Algorytmy grafowe 05: algorytm Floyda-Warshalla.

A Zadania na rozgrzewkę przed egzaminem/kolokwium zaliczeniowym - nie obowiązkowe

Zadanie A.1. Niech G bedzie grafem skierowanym na zbiorze wierzchołków $\{v_1, \ldots, v_6\}$ zadanym poniższą macierzą wag.

$$\mathbf{W} = \begin{bmatrix} 0 & 3 & \infty & \infty & -1 & \infty \\ \infty & 0 & 3 & \infty & 2 & -2 \\ 3 & \infty & 0 & 1 & \infty & \infty \\ 1 & \infty & \infty & 0 & \infty & \infty \\ \infty & 1 & \infty & \infty & 0 & \infty \\ \infty & \infty & 1 & \infty & \infty & 0 \end{bmatrix}$$

Wykorzystując algorytm Floyda–Warshalla wyznacz najkrótsze ścieżki między każdą parą wierzchołków w G, których wierzchołki wewnętrzne mogą należeć tylko do zbioru $\{v_2, v_3, v_6\}$. Wypisz takie ścieżki prowadzące: z v_1 do v_4 i z v_1 do v_5 (numeracja wierzchołków zgodna z numeracją kolumn). Czy to są najkrótsze ścieżki w tym digrafie między tymi wierzchołkami?

Zadanie A.2. Wykorzystując algorytm Floyda–Warshalla wyznacz najkrótsze ścieżki między każdą parą wierzchołków w G. Zapisz kolejne macierze W_i i P_i , $i=0,1,\ldots$ Dla ostatniej macierzy wypisz wszystkie uzyskane ścieżki (spacery) z wierzchołka d.

	a	b	c	d	e
a	∞	∞	∞	∞	1
b	∞	∞ ∞ ∞ 1	-3	∞	∞
\mathbf{c}	∞	∞	∞	1	∞
d	∞	1	∞	∞	3
\mathbf{e}	1	∞	∞	3	∞

Zadanie A.3. (UWAGA - nowe zadanie - poćwiczmy modyfikowanie macierzy P_i i odczytywanie ścieżek) Na digrafie o zbiorze wierzchołków $\{1, 2, ..., 7\}$ o poniższej macierzy wag:

$$\begin{bmatrix} 0 & \infty & 2 & 7 & \infty & \infty & 1 \\ \infty & 0 & 11 & 10 & 7 & \infty & 4 \\ 2 & 9 & 0 & \infty & \infty & \infty & 3 \\ 10 & \infty & \infty & 0 & \infty & 8 & \infty \\ \infty & \infty & \infty & 1 & 0 & \infty & \infty \\ \infty & 1 & \infty & \infty & \infty & 0 & \infty \\ 3 & \infty & \infty & \infty & 2 & 3 & 0 \end{bmatrix}$$

zadziałano algorytmem Floyda-Warshalla. Po rozpatrzeniu wierzchołków: {1,2,3,4,5,6} otrzymano macierze:

	0	11	2	7	18	15	1
	13	0	11	8	7	16	4
	2	9	0	9	16	17	3
$W_6 =$	10	9	12	0	16	8	11
	11	10	13	1	0	9	12
	14	1	12	9	8	0	5
	3	4	5	3	2	3	0

	1	3	1	1	2	$\mid 4 \mid$	1
	3	2	2	5	2	4	2
	3	3	3	1	2	4	3
$P_6 =$	4	6	1	4	2	4	1
	4	6	1	5	5	4	1
	3	6	2	5	2	6	2
	7	6	1	5	7	7	7

Wyznacz macierze W_7 i P_7 a na ich podstawie wypisz najkrótsze ścieżki: z 1 do 2, z 1 do 4, z 3 do 2, z 3 do 4, z 5 do 2, z 6 do 3, z 6 do 4, z 6 do 5.

Przykładowe rozwiązania na końcu pliku.

B Program do napisania

Proszę o przesłanie

- do nocy z wtorku na środę (14/15 kwietnia);
- w mailu o tytule **AGR03** (WAŻNE: Nie będę czytała tych maili, więc z istotnymi sprawami proszę się zgłaszać w osobnych mailach.)
- plików o zindywidualizowanej nazwie 03NazwiskoImie.py albo 03NazwiskoImie.txt (jeśli .py nie chce się wysłać) albo skompresowane o nazwie 03NazwiskoImie (ale TYLKO jeśli piszą Państwo w kilku plikach) albo 03NazwiskoImieNieDziala.* (jeśli podjęli Państwo próbę zrobienia, ale nie działa);

- na adres: kryba@amu.edu.pl.
- Proszę:
 - nazwisko pierwsze, bez polskich znaków;
 - nie wysyłać niekompletnych programów bez dopisku NieDziala.
- \bullet Proszę o wpisanie w programie 'graph05.txt' a nie odwołania do pliku, które Państwo wykorzystywali.
- Proszę nie wysyłać mi pliku tekstowego z grafem.

UWAGA: Przypominam, że piszemy w Pythonie3

Zadanie B.1. W pliku graph05.txt zapisana jest macierz wag pewnego digrafu z wagami G. We wczytanym grafie wierzchołki powinny być numerowane kolejno liczbami naturalnymi zaczynając od 1 (zgodnie z kolejnością wierszy). Napisz program, który wykorzystując algorytm Floyda-Warshalla znajduje wszystkie najkrótsze ścieżki między dowolną parą wierzchołków w grafie.

W wyjściu powinny się znajdować kolejno:

- wygenerowane macierze W_i i P_i (i = 0, 1, ...);
- jeśli nie ma ujemnych cykli, wszystkie najkrótsze ścieżki z wierzchołka 1;
- jeśli są ujemne cykle, to informacja, że są.

Uwaga: warto pobrać plik txt ze strony a nie kopiować to poniżej do pliku txt.

PRZYKŁADOWE WEJŚCIE: 0 2 - - 1 2 0 1 4 8

- 1 0 2 -

- 4 2 0 10

18-100

PRZYKŁADOWE WYJŚCIE:

 $egin{array}{ll} W & 0 = \\ 0 & 2 & \mathrm{inf} & \mathrm{inf} & 1 \end{array}$

 $2\ 0\ 1\ 4\ 8$

 $\inf 1 \ 0 \ 2 \inf$

inf 4 2 0 10

1 8 inf 10 0

P 0 =

 $1\ 1\ None\ None\ 1$

2 2 2 2 2

None 3 3 3 None

None $4\ 4\ 4\ 4$

5 5 None 5 5

W 1 =

0.2 inf inf 1

 $2\ 0\ 1\ 4\ 3$

 $\inf \ 1 \ 0 \ 2 \ \inf$

inf 4 2 0 10

1 3 inf 10 0

P 1 =

 $1\ 1\ None\ None\ 1$

2 2 2 2 1

None 3 3 3 None

None 4 4 4 4

5 1 None 5 5

W 2 =

 $0\ 2\ 3\ 6\ 1$

 $2\ 0\ 1\ 4\ 3$

 $3\ 1\ 0\ 2\ 4$

```
6\ 4\ 2\ 0\ 7
1\ 3\ 4\ 7\ 0
P \ 2 =
1\ 1\ 2\ 2\ 1
2\ 2\ 2\ 2\ 1
2\ 3\ 3\ 3\ 1
2 4 4 4 1
5\ 1\ 2\ 2\ 5
W 3 =
0\ 2\ 3\ 5\ 1
2\ 0\ 1\ 3\ 3
3\ 1\ 0\ 2\ 4
5\ 3\ 2\ 0\ 6
1\ 3\ 4\ 6\ 0
P \ 3 =
1 1 2 3 1
2 2 2 3 1
2 3 3 3 1
2\ 3\ 4\ 4\ 1
5\ 1\ 2\ 3\ 5
W~4 =
0\ 2\ 3\ 5\ 1
2\ 0\ 1\ 3\ 3
3\ 1\ 0\ 2\ 4
5\ 3\ 2\ 0\ 6
1\ 3\ 4\ 6\ 0
P \ 4 =
1\ 1\ 2\ 3\ 1
2 2 2 3 1
2 3 3 3 1
2\ 3\ 4\ 4\ 1
5\ 1\ 2\ 3\ 5
Ostateczna macierz odległosci:
0\ 2\ 3\ 5\ 1
2 0 1 3 3
3 1 0 2 4
5\ 3\ 2\ 0\ 6
1\ 3\ 4\ 6\ 0
Ostateczna macierz poprzednikow:
1\ 1\ 2\ 3\ 1
2\ 2\ 2\ 3\ 1
2\ 3\ 3\ 3\ 1
2\  \, 3\  \, 4\  \, 4\  \, 1
5\ 1\ 2\ 3\ 5
Najkrotsze sciezki:
```

PRZYKŁADOWE WEJŚCIE: 01--931 1 0 -2 - 7 - -- -2 0 2 - - -- - 2 0 -1 - -97--10-4-3 - - - -4 0 1 1 - - - - 1 0 PRZYKŁADOWE WYJŚCIE: $0\ 1\ inf\ inf\ 9\ 3\ 1$ 1 0 -2 inf 7 inf inf inf -2 0 2 inf inf inf inf inf 2 0 -1 inf inf 9 7 inf -1 0 -4 inf $3\ inf\ inf\ inf\ -4\ 0\ 1$ 1 inf inf inf 1 0 P 0 =1 1 None None 1 1 1 2 2 2 None 2 None None None 3 3 3 None None None None None 4 4 4 None None $5\ 5\ \mathrm{None}\ 5\ 5\ \mathrm{None}$ 6 None None None 6 6 6 7 None None None 7 7 W 1 = $0\ 1\ inf\ inf\ 9\ 3\ 1$ 1 0 -2 inf 7 4 2 inf -2 0 2 inf inf inf inf inf 2 0 - 1 inf inf 9 7 inf -1 0 -4 10 3 4 inf inf -4 0 1 $1\ 2\ \mathrm{inf}\ \mathrm{inf}\ 10\ 1\ 0$ P 1 =1 1 None None 1 1 1 2 2 2 None 2 1 1 None 3 3 3 None None None None None 4 4 4 None None 5 5 None 5 5 5 1 $6\ 1\ None\ None\ 6\ 6$ 7 1 None None 1 7 7 $W\ 2\,=\,$ 0 1 -1 inf 8 3 1 $1\ 0\ \mbox{-}2$ inf $7\ 4\ 2$ -1 -2 -4 2 5 2 0 inf inf 2 0 -1 inf inf 8 7 5 -1 0 -4 9 3 4 2 inf -4 0 1 $1\ 2\ 0\ \inf\ 9\ 1\ 0$

Ujemny cykl. Nie ma rozwiązania.

None None 4 4 4 None None

 $P \ 2 =$

1 1 2 None 2 1 1 2 2 2 None 2 1 1 2 3 2 3 2 1 1

2 5 2 5 5 5 1 6 1 2 None 6 6 6 7 1 2 None 2 7 7

$\mathbf{A1}$													
W	0	3	-	-	-1	-		1	1	-	-	1	-
	-	0	3	-	-	-2		-	2	2	-	-	2
	3	-	0	1	-	-	D	3	-	3	3	-	-
$W_0 =$	1	-	-	0	-	-	$P_0 =$	4	-	-	4	-	-
	-	1	-	-	0	-	ĺ	-	5	-	-	5	-
	-	-	1	-	-	0		-	-	6	-	-	6
					-	_			-	_			
	0	3	6	-	-1	1	,	1	1	2	-	1	2
$W_2 =$	-	0	3	-	-	-2		-	2	2	-	-	2
	3	-	0	1	-	-	$P_2 =$	3	-	3	3	-	-
	1	-	-	0	-	-	12 -	4	-	-	4	-	-
	-	1	4	-	0	-1		-	5	2	-	5	2
	-	-	1	-	-	0		-	-	6	-	-	6
	0	-		_		_				_	0		
	0	3	6	7	-1	1	ļ	1	1	2	3	1	2
	6	0	3	4	-	-2	ļ	3	2	2	3	-	2
$W_3 =$	3	-	0	1	-	-	$P_3 =$	3	-	3	3	-	-
W 3 —	1	-	-	0	-	-	13 —	4	-	-	4	-	
	7	1	4	5	0	-1		3	5	2	3	5	2
	4	-	1	2	-	0	[3	-	6	3	-	6
	0	0	0	0	1 1	1 1	٦ .	1	1	-	0	1 -	١.٥
	0	3	2	3	-1	1	-	1	1	6	3	1	2
	2	0	-1	0	-	-2		3	2	6	3	-	2
$W_6 =$	3	-	0	1	-	-	$P_6 =$	3	-	3	3	-	-
,, e —	1	-	•	0	-	_] 1 6 —	T .	-	-	4	-	-
	3	1	0	1	0	-1]	3	5	6	3	5	2

6 3

Znalezione ścieżki:

z 1 do 4 : 1 2 6 3 4 (krótsza: 1 5 2 6 3 4)

z 1 do 5 : 1 5 (nie ma krótszej)

A2												
	0	-	-	-	1		\mathbf{a}	-	-	-	a	
$W_0 =$	-	0	-3	-	-		-	b	b	-	-	
	-	-	0	1	-	$P_0 =$	-	-	С	С	-	
	-	1	-	0	3	ĺ	-	d	-	d	d	
	1	-	-	3	0	ĺ	е	-	-	е	е	
	0	-	-	-	1		a	-	-	-	a	
$W_1 =$	-	0	-3	-	-		-	b	b	-	-	
	-	-	0	1	-	$P_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	-	-	с	С	-	
	-	1	-	0	3		-	d	-	d	d	
	1	-	-	3	0		е	-	-	е	е	
	0	-	-	-	1		\mathbf{a}	-	-	-	a	
	-	0	-3	-	-		-	b	b	-	-	
$W_2 = $	-	-	0	1	-	$P_2 = 0$	-	-	c	c	-	
	-	1	-2	0	3		-	d	b	d	d	
	1	-	-	3	0		е	-	-	е	е	
						_						
	0	-	-	-	1		a	-	-	-	a	
	-	0	-3	-2	-		_	b	b	c	-	
$W_3 = $	1	-	0	1	-	$P_3 =$	-	_	c	c	-	
	-	1	-2	-1	3		-	d	b	С	d	
	1	-	-	3	0		е	-	-	e	е	

Ujemny cykl. Nie ma rozwiązania.

Wyznaczone spacery:

z d do a: nie ma wyznaczonego

z d do b: db z d do c: dbc

z d do d: dbcd (to jest ten ujemny cykl!!!)

A 3

A3																
	0	11	2	7	18	15	1		1	3	1	1	2	4	1	
	13	0	11	8	7	16	4		3	2	2	5	2	4	2	
	2	9	0	9	16	17	3		3	3	3	1	2	4	3	_
$W_6 =$	10	9	12	0	16	8	11	$P_6 =$	4	6	1	4	2	4	1	_
	11	10	13	1	0	9	12		4	6	1	5	5	4	1	_
	14	1	12	9	8	0	5		3	6	2	5	2	6	2	
	3	4	5	3	2	3	0		7	6	1	5	7	7	7	_
	0	5	2	4	3	4	1		1	6	1	5	7	7	1	
	7	0	9	7	6	7	4	Ī	7	2	1	5	7	7	2	
	2	7	0	6	5	6	3	Ī	3	6	3	5	7	7	3	
W	10	g	12	n	13	8	11	$P_{\pi} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	4	6	1	4	7	4	1	

ścieżki: z 1 do 2 : 1 7 6 2

10

1

4

13

10 8 7 0 5

5 3 2 3 0

1

0

9 12

4 6 1

7

6 1 5 7 6

6 1 5 7 7 7

z 1 do 4 : 1754

11

8

 $z\ 3\ do\ 2:3\ 7\ 6\ 2$

z 3 do 4 : 3 7 5 4

 $z \ 5 \ do \ 2 : 5 \ 4 \ 6 \ 2$

 ${\bf z} \ {\bf 6} \ {\bf do} \ {\bf 3} : {\bf 6} \ {\bf 2} \ {\bf 7} \ {\bf 1} \ {\bf 3}$

 $z \ 6 \ do \ 4 : 6 \ 2 \ 7 \ 5 \ 4$

z 6 do 5 : 6 2 7 5

5 4

1

2

5