

AuE 8930: Machine Perception and Intelligence

Lecture: Automotive radar principles and analysis

Instructor: Bing Li, Ph.D. bli4@clemson.edu

Assistant Professor
Department of Automotive Engineering
Clemson University International Center for
Automotive Research (CU-ICAR)

Outline

- Automotive Radar Motivation
- Automotive Radar History
- Automotive Radar Basics
 - Ranges
 - Frequency Bands
- Automotive Radar Principle
 - Pulsed Radar
 - FMCW Radar
 - DOA
- Automotive Radar Object Detection
 - Object Clustering
 - Object Classification
 - Object Tracking

Society of Automotive Engineers (SAE) automation levels

0

No Automation

Zero autonomy; the driver performs all driving tasks.

1

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design. 2

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

<u>NHTSA</u>

Advanced driver assistance system (ADAS)

Society of Automotive Engineers (SAE) automation levels

3

Conditional Automation

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4

High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

<u>NHTSA</u>

Automated driving system (ADS)

Consumer Electronics Show (CES) 2019

CES 2019: NVIDIA launches Level 2+ automated driving solution

More features

Blind Spot Detection (BSD)

Majorly based on RADAR sensors. However it can be built on LiDAR, Camera and Ultrasonic sensor

Forward / Rear Collision Warning System (FCW & RCW)

Majorly based on RADAR and LiDAR sensors

Majorly based on RADAR and LiDAR sensors

ADAS FEATURES IN AUTOMOBILE INDUSTRY

Intelligent Parking Assistance (IPA)

It is based on Camera and Ultrasonic sensor sensors

Majorly based on RADAR and LiDAR sensors

Cross Traffic Alert (CTA)

Normally based on RADAR sensors. However it can be build on LiDAR and Camera sensors

It is build on Camera and LiDAR sensors

Automotive Radar History

Postulation of electromagnetic waves

1895

Guglielmo Marconi first wireless communication system

1935

Sir R.A. Watson-Watt first airplane radio-location

-- 1958

Radar Speed Meter For traffic speed limit enforcement "Gatsometer"

1999

77 GHz ACC Radar
Distronic in Mercedes Benz
S-class sedan

1888

Heinrich Hertz
Prove of electromagnetic
waves & speed of light

1904

Christian Hülsmeyer First radar patent "Telemobiloskop"

1946

Air Traffic Control First civil radars

- 1992

Greyhound bus radar First collision warning 24 GHz radar for 1500 busses (Eaton Vorad T-200)

1970's First automotive Radar

2003 Widely available

Automotive Radar Basics

- Radar (RAdio Detection And Ranging)
 - Relative position
 - Relative speed
 - Relative azimuth angle
- Electromagnetic wave
 - Radio wave
 - Signal echo
- Advantages over optical sensors
 - Robustness in harsh weather conditions (darkness/brightness, fog, rain, temperature, et al)
 - Long, middle and short ranges
 - High accuracy

Automotive Radar Basics

Automotive Radar Basics - Ranges

Long Range

Adaptive Cruise Control

Short/Medium Range

Blind Spot Detection

Lane Change Assist

Cross Traffic Alert

Forward Collision Warning

Forward Collision Mitigation

Rear Collision Warning

Stop & Go

ACC: 150 to 200m

BSD: 10m

LCA: 70m

CTA: 30m

FCW: 70m

FCM: 70m

RCW: 70m

S&G: 70m

FOV: +/-8°

FOV: +/-75°

FOV: +/-65°

Field of View (FOV)

Automotive Radar Frequency Bands

24GHz NB	24GHz UWB	26GHz UWB	77GHz	79GHz UWB	
Worldwide	US/Canada Japan	US/Canada Japan	"Worldwide"	Singapore	
	EU until 2013/ will be extended to 2022 but with reduced bandwidth			EU	
different bandwidth EU: 200MHz (75cm) [450MHz] (33cm) US: 200MHz (75cm) JP: 200MHz (75cm)	US: 7GHz (2.2cm) JP+EU: 5GHz (3cm)	US: 1 GHz (15cm) JP: July 2010 5 GHz (3cm)	1 GHz (15cm) JP: 500MHz (30cm)	4 GHz (4cm)	
20dBm	-41dBm	-41dBm	23.5dBm	-9dBm	

24/26 GHz → 76-81 GHz

K Band (24 GHz) E Band (77 GHz)

Automotive Radar Frequency Bands

Moving from 24GHZ to 77GHz radar

Range resolution, Velocity resolution and Smaller components

Automotive Radar Frequency Bands

Type	LRR	MRR	SRR
Maximum transmit	55 dBm	-9 dBm/MHz	-9 dBm/MHz
power (EIRP)			
Frequency band	76-77 GHz	77-81 GHz	77-81 GHz
Bandwidth	600 MHz	600 MHz	4 GHz
Distance range			
$R_{min}R_{max}$	10-250 m	1-100 m	0.15-30 m
Distance resolution ΔR	0.5 m	0.5 m	0.1 m
Distance accuracy δR	0.1 m	0.1 m	0.02 m
Velocity resolution Δv	0.6 m/s	0.6 m/s	$0.6\mathrm{m/s}$
Velocity accuracy δv	0.1 m/s	0.1 m/s	0.1 m/s
Angular accuracy $\delta \varphi$	0.1°	0.5°	1°
3 dB beamwidth in			
azimuth $\pm \varphi_{\max}$	$\pm 15^{\circ}$	±40°	$\pm 80^{\circ}$
3 dB beamwidth in			
elevation $\pm \vartheta_{\max}$	$\pm 5^{\circ}$	$\pm 5^{\circ}$	$\pm 10^{\circ}$
Dimensions	74x77x58 mm	50x50x50 mm	50x50x20 mm

* SRR: 24 GHz is still being used as well

Radar signal and echo

$$R = \frac{c\tau}{2}$$

- R: relative distance
- c: EM wave travel speed as a constant
- τ : time of flight (ToF)

$$P_r = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 L} \quad \rightarrow \quad R = \sqrt[4]{\frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 L P_r}}$$

$$R \leftrightarrow \lambda$$

$$R \leftrightarrow \sigma$$

P_t: Transmit signal power

G: Antenna gain (A_o/A_i)

 λ : Radar wavelength

 σ : Radar cross section (RCS)

R: relative distance

L: Other losses (propagation,)

Automotive radar measures what?

Rang

Speed

Race cars approach and then recede from us, what's the sound difference?

Radar echo back time

$$au = rac{R}{c}$$
 $au_{echo} = rac{(R + v\Delta t)}{c}$

• The difference causes a frequency change f_D :

$$f_D \sim v, \lambda_c$$
?

 λ_c is the wavelength of carrier

Doppler shift / effect

Doppler shift effect:

Transmitted signal: $\cos(2\pi f_c t)$

Received signal: $\cos(2\pi f_c(t + \frac{2R}{c}))$

Range change w.r.t velocity in one cycle: $R = R_o + v_o t$

Substituting:

$$\cos\left(2\pi f_c\left(t + \frac{2(R_o + v_o t)}{c}\right)\right) = \cos\left(2\pi (f_c + f_c \frac{2v_o}{c})t + \frac{2\pi f_c R_o}{c}\right)$$

$$-f_D \qquad f_D = -f_c \frac{2v_o}{c} = -\frac{2v_o}{\lambda_c}$$

- Pulse radar
 - T_r Pulse Repetition Interval (PRI)
 - Pulse Repetition Frequency (PRF)PRF = 1 / PRI
 - One antenna for both transition and reception
- Range measurement $R = \frac{c\tau}{2}$
- Maximum unambiguous range

$$R_{max} = \frac{c}{2}T_r = \frac{c}{2PRF}$$

Range ambiguity resolution

$$\Delta R = \frac{cT_p}{2} \approx \frac{c}{2B}$$
, where B is the Bandwidth

Target separation capability

Long range radar bandwidth

High-range resolution radar bandwidth

- How to measure velocity?
- Spectrum of pulsed radar signal
 - Fourier transform (FT)
- Coherent pulse interval (CPI)
 - Phase → Frequency modulation
 - What is Frequency modulation?

Amplitude modulation

Frequency Modulation

- Spectrum of coherent pulsed signals
- Reflection signal:
 - An object is detected

- Velocity estimation
 - Doppler shift

- Coherent pulsed signal data matrix
 - Fast Time: the different time slots composing a PRI, sampling rate dependent;
 - Slow Time: the time axis of PRI;

Sample: ranges and velocities of two objects

Coherent pulsed signal data matrix

Two objects are in the same rang bin, but different velocity

Sample: ranges and velocities when there are three objects

- Coherent and Doppler processing
 - Different returns show differently in the Doppler domain.
 - By applying Fourier Transform, range-Doppler map transfer Fast time -> Range and Slow time -> Doppler

Two objects are in the same rang bin, but different velocity

Sample of three objects

Range-Doppler Maps

- Pulse radar characteristics
 - Low power consumption
 - Low cost circuitry
 - High accuracy for the detection
 - Environment distortions

- Applications
 - Short range radar, et al

- Pulse Radar
 - (1) Pulse Doppler Radar
 - High pulse repetition frequency (PRF)
 - No Doppler ambiguities
 - Numerous range ambiguities
 - (2) Moving Target Indicator Radar
 - Low pulse repetition frequency
 - No range ambiguities
 - Doppler ambiguities

- Continuous wave (CW) radar
 - Constantly transmit and receive

Linear swept frequency modulation

Beat Frequency f_b
 of the difference
 (caused by time delay and existence of objects)

Frequency Modulated Continuous Wave (FMCW)

Two categories of FMCW radar modulated frequency

For waveform with up chirp only

$$R = \frac{ct_d}{2} \rightarrow t_d = \frac{cR}{2}$$

Based on triangle similarity:

$$\frac{t_d}{f_b} = \frac{T}{B} \quad \to \quad R = f_b \, \frac{cT}{2B}$$

time

Received signal(s)

 f_b :
Beat
frequency

B:

Frequency band

Velocity V is calculated by range changes over *t* and we also get:

B

$$f_d = \frac{2V}{\lambda_c}$$

 For waveform with both up and down chirps

Why both up and down chirps?

- Less bandwidth for same transmitted power

$$P = \frac{1}{\pi} \int_{B_{low}}^{B_{high}} F(\omega) d\omega$$

$$f_b = \frac{2BR}{cT} \qquad f_d = \frac{2V}{\lambda_c}$$

Upsweep Beat Frequency $f_{b+} = f_b - f_d$

Downsweep Beat Frequency $f_{b-} = f_b + f_d$

Range
$$R=\frac{cT}{4B}\,f_{b+}+f_{b-}$$

Speed $V=\frac{\lambda}{4}\,f_{b+}+f_{b-}$

FMCW radar characteristics

Applications:

Higher power consumption

Long range radar, et al

- Higher cost circuitry
- Lower accuracy for the detection
- Simultaneous range and radial velocity

Table: Comparison of UWB and FMCW Radar. (Bold text represents the superior system in each category)

Category	UWB	FMCW (tested at 5.8 GHz)		
Precision indoor	1.3 cm to 2.8 cm	1.1 cm to 2.3 cm		
\rightarrow relative	< 0.4 %	< 0.8 %		
Precision outdoor	1.4 cm to 2.2 cm	1.2 cm to 2.2 cm		
\rightarrow relative	< 0.6%	< 0.4 %		
Accuracy indoor	always $<$ 2 % or 25 cm	generally <3% or 25 cm		
Accuracy outdoor	generally <1% or 20 cm	generally $<1\%$ or $10\mathrm{cm}$		
Maximum range	32 m at high data rate	At least 70 m		
\rightarrow theoretical	240 m with 10 % packet loss	245 m		
Update rate	Around 400 Hz	Around 4 Hz		
Track moving targets	Very good	Glitches, low update rate		
Spectral efficiency	$1.36\cdot 10^{-2}$ bit/s/Hz	no data transfer		
Bandwidth	500 MHz	100 MHz/150 MHz at 2.4 GHz/5.8 GHz		
Output power	-12 dBm	18 dBm		
Transceiver power	520 mW peak	$\approx 900 \mathrm{mW}$		
Processing power	$\approx 8 \mathrm{mW}$	$\approx 700 \mathrm{mW}$		
Computational effort	Very low (timestamp subtraction)	High (very large FFTs)		

Automotive Radar DOA

- Direction of Arrival (DOA)
- Motivation

Automotive Radar DOA

Application for ACC

Azimuth estimation

LRR typically ± 5~10° in 250 m

MRR typically ±45° in 60 m

Adaptive cruise control

Automotive Radar DOA

- Digital beamforming with antenna-array
- Multiple radar beams

Sequential lobing

Bosch MRR sensor

Main antenna: ±10° in 60 m Elevation antenna: ±25° in 36 m

Automotive Radar Object Detection

Object detection and tracking procedure

FFT (Fast Fourier Transform)

Automotive Radar Object Clustering

Pedestrian 1 Pedestrian 2 Pedestrian 3 Pedestrian 3 -10 -20 -30 -40 -50

Range [m]

10

Detection data:

Ranges and velocities of three objects:

Based on Constant false alarm rate (CFAR) techniques:

Automotive Radar Object Clustering

DBSCAN approach (parameter-based)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Fig. 4: Calculation of the density criterion using DBSCAN with an adaptive search radius ε and adaptive threshold k in Cartesian coordinates

$$\begin{split} c_{i,j} &= \frac{r_{i,j}}{2\Delta r} (\sin(\theta_{i,j+1} - \theta_{i,j}) + \sin(\theta_{i,j} - \theta_{i,j-1})) \\ \text{with:} \quad i,j \quad \text{index of grid in } r \, / \, \theta \, \text{- direction} \\ r_{i,j} \quad \text{radial distance} \\ \Delta r \quad \text{radial resolution (constant)} \\ \theta_{i,j} \quad \text{azimuth angle} \end{split}$$

Automotive Radar Object Clustering

DBSCAN result

Segmentation

Fig. 9: Clustering results for grid-based DBSCAN (f = 2) showing outliers (pink triangle) and 5 clusters (red, green, black, blue, cyan) for clutter (1), a pedestrian (2) next to a car (3), two other vehicles (4-5) and a barrier (6)

[a]

Automotive Radar Object Classification

Features: Distance spread, Dimension, Velocity σ : Radar cross section (RCS) ...

Automotive Radar Object Tracking

Tracking based on motion model

$$\mu_t = [x, y, v_x, v_y, \dots]^T$$

- For linear model trajectory
 - zero acceleration model

$$\mu_t = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mu_{t-1}$$

- For non-linear model trajectory
 - Linearization

$$H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} \qquad G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$$

Kalman filter:

$$\mu_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$$

$$\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$

$$K_{t} = \overline{\Sigma}_{t}C_{t}^{T}(C_{t}\overline{\Sigma}_{t}C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - C_{t}\overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t}C_{t})\overline{\Sigma}_{t}$$

Extended Kalman filter:

$$\overline{\mu}_{t} = g(u_{t}, \mu_{t-1})$$

$$\overline{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{T} + R_{t}$$

$$K_{t} = \overline{\Sigma}_{t} H_{t}^{T} (H_{t} \overline{\Sigma}_{t} H_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - h(\overline{\mu}_{t}))$$

$$\Sigma_{t} = (I - K_{t} H_{t}) \overline{\Sigma}_{t}$$

Automotive Radar Object Tracking

Automotive Radar Systems

77 GHz Automotive Radar system example

Automotive Radar Systems

EVOLUTION OF A RADAR Bosch's latest long-range system greatly simplifies the radar's printed circuit board. Instead of a handful of gallium arsenide chips to generate, amplify, and detect the 77-gigahertz microwaves, the system uses just one or two (as shown) of Infineon's silicon germanium chips.

Bosch based on SiGe Infineon Chipset

FCMW modulation

LRR 7dBm Pout, 4 channels (2 TX/RX)

Two PCB boards

On-board Integrated antennas

7.4 x 7 x 5.8 cm

Bosch radar generations (Source: Bosch)

Automotive Radar Systems

Radar camera fusion

Radar: Other Application Examples

Automotive localization and mapping

Military

Weather

Imaging

Speed enforcement

Summary Highlights

- Automotive radar
 - SRR/MRR/LRR
 - Range, relative velocity
 - Bandwidth
 - Pulsed VS. FMCW
 - Doppler shift
 - Antenna-array and radar beams
 - Object detection and tracking

END, Thank you

Reference

- Maria S. Greco. "Automotive Radar.", IEEE Radar Conference 2012.
- Hasch, Jürgen, Eray Topak, Raik Schnabel, Thomas Zwick, Robert Weigel, and Christian Waldschmidt. "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band." IEEE Transactions on Microwave Theory and Techniques 60, no. 3 (2012): 845-860.
- Greg Kregoski. "FMCW Radar in Automotive Applications.", ROHDE & SCHWARZ
- Prasad Malai. "Automotive Radar System.",
- Larry Hawkins, et al. "Radar Defense VS. Automotive.", Analog Devices.
- Brian Su. "Automotive Radar Signal Generation、Analysis And Test Challenges", Keysight Technologies.
- Helena Perslow, and eremy Carlson. "ADAS Current & Future Perspectives". IHS Automotive 2015.

Appendix Related Resource

- Why are automotive radar systems moving from 24GHz to 77GHz?
- Automotive Dataset: <u>nuScenes</u> (Data and Python Code), which includes Automotive Radar data
- <u>Distance Sensors RADAR</u>, Clemson CVEL
- Automotive Radar Signals: Analysis and Limitations (Video)
- Radar System Modeling and Simulation for Automotive Advanced Driver Assistance Systems (Video)