1 Estimation

Delta method Suppose X_1, \ldots, X_n are iid with mean μ and variance σ^2 . The CLT yields

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{d}{\approx} N(0, 1).$$

Suppose we need the asymptotic distribution of $g(\overline{X})$, for some function g. Expanding $g(\overline{X})$ yields

$$q(\overline{X}) \approx q(\mu) + (\overline{X} - \mu)q'(\mu),$$

asymptotic mean and asymptotic variance

$$\mathrm{E}(g(\overline{X})) pprox g(\mu) \quad \mathrm{and} \quad \mathrm{var}(g(\overline{X})) pprox \frac{g'(\mu)^2 \sigma^2}{n},$$

and asymptotic distribution

$$g(\overline{X}) \stackrel{d}{pprox} \mathcal{N}\left(g(\mu), \frac{g'(\mu)^2 \sigma^2}{n}\right).$$

Order statistics (data) The order statistics of data x_1, \ldots, x_n are their values in increasing order, which we denote $x_{(1)} \leq \ldots \leq x_{(n)}$.

Sample median The sample median is $m = x_{([n+1]/2)}$ if n is odd, or $m = 1/2(x_{(n/2)} + x_{(n/2+1)})$ if n is even.

Lower and upper quartile The lower quartile has 1/4 of the sample that is less than it, and the upper quartile has 3/4 of the sample that is less than it.

Inter-quartile range (IQR) The *inter-quartile range* is defined by IQR = upper quartile - lower quartile.

Order statistic (random sample) The rth order statistic of the random sample X_1, \ldots, X_n is the random variable $X_{(r)}$, where $X_{(1)} \leq \ldots \leq X_{(n)}$.

Pdf of order statistic Suppose X_1, \ldots, X_n are iid and continuous, each having cdf F and pdf f. Then, the pdf of $X_{(r)}$ is

$$f_{(r)}(x) = \frac{n!}{(r-1)!(n-r)!} F(x)^{r-1} [1 - F(x)]^{n-r} f(x).$$

Quantile For a distribution with cdf F and pdf f, the pth quantile is the value x_p such that

$$F(x_p) = \int_{-\infty}^{x_p} f(u)du = p, \quad 0 \le p \le 1.$$

Probability integral transform Suppose X is a continuous random variable taking values in (a,b), with strictly increasing cdf F. Then, $F(X) \sim \mathrm{U}(0,1)$ is called the probability integral transform of X.

Lemma If $U_{(1)}, \ldots, U_{(n)}$ are the order statistics of a random sample of size n from a U(0,1) distribution, then

$$E(U_{(r)}) = \frac{r}{n+1},$$

$$var(U_{(r)}) = \frac{r}{(n+1)(n+2)} \left(1 - \frac{r}{n+1}\right).$$

Q-Q plot If data x_1, \ldots, x_n are from a distribution with cdf F, then Q-Q plots use the approximation

$$F(x_{(k)}) \approx \frac{k}{n+1}.$$

Normal Q-Q plot If data x_1, \ldots, x_n are from a $N(\mu, \sigma^2)$ distribution, for some unknown μ and σ^2 , then

$$x_{(k)} \approx \sigma \phi^{-1} \left(\frac{k}{n+1} \right) + \mu.$$

Exponential Q-Q plot If data x_1, \ldots, x_n are from a $\text{Exp}(\mu)$ distribution, for some unknown μ , then

$$x_{(k)} \approx -\mu \log \left(1 - \frac{k}{n+1}\right).$$

Pareto Q-Q plot If data x_1, \ldots, x_n are from a $Par(\alpha, \theta)$ distribution, for some unknown α and θ , then

$$\log x_{(k)} \approx \log \alpha - \frac{1}{\theta} \log \left(1 - \frac{k}{n+1} \right).$$

Observed/Fisher information In a model with scalar θ and log-likelihood $\ell(\theta; \mathbf{X})$, the observed information $J(\theta)$ and the Fisher information $I(\theta)$ are

$$J(\theta) = -\frac{d^2\ell}{d\theta^2}, \quad I(\theta) = \mathrm{E}\left(-\frac{d^2\ell}{d\theta^2}\right).$$

When $\theta = (\theta_1, \dots, \theta_p)$, the observed information matrix and the Fisher information matrix are $p \times p$ symmetric matrices $J(\theta)$ and $I(\theta)$ whose (j, k) elements are

$$J(\boldsymbol{\theta})_{j,k} = -\frac{\partial^2 \ell}{\partial \theta_j \partial \theta_k}, \quad I(\boldsymbol{\theta})_{j,k} = \mathrm{E}\left(-\frac{\partial^2 \ell}{\partial \theta_j \partial \theta_k}\right).$$

Note that expectations are taken over \boldsymbol{X} .

Fisher information (iid) If $X_1, ..., X_n$ are iid from $f(\boldsymbol{x}; \boldsymbol{\theta})$, then $I(\boldsymbol{\theta}) = ni(\boldsymbol{\theta})$, where $i(\boldsymbol{\theta})$ is the Fisher information in a sample of size 1; that is, in the scalar case,

$$I(\theta) = ni(\theta), \quad i(\theta) = E\left(-\frac{d^2 \log f(X_1; \theta)}{d\theta^2}\right).$$

Properties of MLEs (scalar case)

- $\sqrt{I(\theta)}(\hat{\theta} \theta) \stackrel{d}{\longrightarrow} N(0, 1)$, that is, $\hat{\theta} \stackrel{d}{\approx} N(\theta, I(\theta)^{-1})$;
- $\hat{\theta} \stackrel{p}{\longrightarrow} \theta \text{ as } n \to \infty;$
- $\hat{\theta}$ is asymptotically unbiased;
- the variance of $\hat{\theta}$ is $\sim 1/n$, and as small as possible;
- if $\psi = q(\theta)$ then $\hat{\psi} = q(\hat{\theta})$.

2 Confidence intervals

Clusing MLE Using $\sqrt{I(\theta)}(\hat{\theta} - \theta) \stackrel{d}{\approx} N(0, 1)$,

$$\mathrm{P}\left(-z_{\alpha/2} < \sqrt{I(\theta)}(\hat{\theta} - \theta) < z_{\alpha/2}\right) \approx 1 - \alpha.$$

One can either solve for θ , or use $I(\theta) \approx I(\hat{\theta})$.

Student t-distribution Let $Z \sim N(0,1)$ and $Y \sim \chi_n^2$ be independent. We say that $T = Z/(\sqrt{Y/n})$ has a student t-distribution, and write $T \sim t_n$.

Independence of \overline{X} and S Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Then, \overline{X} and S are independent, and

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right), \quad \frac{(n-1)S}{\sigma^2} \sim \chi_{n-1}^2.$$

Pivot A *pivot* is a random variable, function of both X and θ , whose distribution does not depend on θ .

Pivot (normal) Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Examples of pivot include

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}, \quad \frac{(n-1)S}{\sigma^2} \sim \chi_{n-1}^2.$$

CI using pivot Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathrm{N}(\mu, \sigma^2)$. We have

$$P\left(-t_{n-1}(\alpha/2) < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{n-1}(\alpha/2)\right) = 1 - \alpha,$$

where $t_{n-1}(\alpha/2)$ satisfies $P(t_{n-1} > t_{n-1}(\alpha/2)) = \alpha/2$.

3 Hypothesis testing

General setup Let X_1, \ldots, X_n be a random sample from $f(x; \theta)$ where $\theta \in \Theta$ is a scalar or vector parameter. Suppose we are interested in testing, for $\Theta_0 \cap \Theta_1 = \emptyset$,

- the null hypothesis H_0 : $\theta \in \Theta_0$;
- against the alternative hypothesis H_1 : $\theta \in \Theta_1$.

Consider a statistic $t(\mathbf{X})$ such that large values of $t(\mathbf{X})$ cast doubt on H_0 , and let $t_{obs} = t(\mathbf{x})$ be the value observed. Then, the p-value is $p = P(t(\mathbf{X}) \ge t_{obs}|H_0)$.

Critical region The *critical region* C is such that if we have $x \in C \subset \mathbb{R}^n$, we reject H_0 , and keep it otherwise.

Errors in hypothesis testing

- type I error: rejecting H_0 when H_0 is true;
- type II error: not rejecting H_0 when H_0 is false.

Size and power The *type I error probability*, also called the *size*, is

$$\alpha = P(\text{reject } H_0|H_0 \text{ true}) = \sup_{\theta \in \Theta_0} P(\boldsymbol{X} \in C|\theta),$$

while the type II error probability is

 $\beta(\theta) = P(\text{don't reject } H_0|\text{true value is }\theta) = P(X \notin C|\theta),$

and $w(\theta) = 1 - \beta(\theta) = P(X \in C|\theta)$ is called the *power*. We want $w(\theta) \approx 1$ for $\theta \in \Theta_1$, and $w(\theta) \approx 0$ for $\theta_0 \in \Theta_0$.

Neyman–Pearson lemma Consider testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$. Define the critical region C by

$$C = \left\{ \boldsymbol{x} : \frac{L(\theta_0; \boldsymbol{x})}{L(\theta_1; \boldsymbol{x})} \le k \right\},\,$$

and suppose k and α are such that $P(X \in C|H_0) = \alpha$. Then, among all tests of size $\leq \alpha$, the test with critical region C has maximum power.

Uniformly most powerful Consider testing $H_0: \theta = \theta_0$ against $H_1: \theta \in \Theta_1$. If the critical region is the same for all $\theta_1 \in \Theta_1$, then C is said to be uniformly most powerful.

Likelihood ratio Consider testing $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta \supset \Theta_0$. The *likelihood ratio* is defined by

$$\lambda(\boldsymbol{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta; \boldsymbol{x})}{\sup_{\theta \in \Theta} L(\theta; \boldsymbol{x})}.$$

A likelihood ratio test (LRT) of H_0 against H_1 has critical region $C = \{ \boldsymbol{x} : \lambda(\boldsymbol{x}) \leq k \}$. For a test of size α , we must choose k such that $\sup_{\theta \in \Theta_0} P(\lambda(\boldsymbol{X}) \leq k | \theta) = \alpha$.

Likelihood ratio statistic The *likelihood ratio statistic* is defined by $\Lambda(\mathbf{X}) = -2 \log \lambda(\mathbf{X})$. For Λ , the LRT has critical region $C = \{\mathbf{x} : \Lambda(\mathbf{x}) \geq k\}$. If H_0 is true, then

$$\Lambda(\boldsymbol{x}) \stackrel{d}{\longrightarrow} \chi_p^2 \text{ as } n \to \infty, \quad p = \dim \Theta - \dim \Theta_0.$$

For a size- α test, we choose k such that $P(\chi_p^2 \ge k) = \alpha$.

Goodness of fit tests Consider n independent observations of categories i = 1, ..., k. Let n_i be the number of observations in category i, with $\sum_i n_i = n$, and π_i the probability of being category i, with $\sum_i \pi_i = 1$. We test

- the null hypothesis $H_0: \pi_i = \pi_i(\theta)$, where $\theta \in \Theta$, and dim $H_0 = q < k 1$;
- against the general alternative H_1 : the π_i are unrestricted except for $\sum_i \pi_i = 1$, and dim $H_1 = k 1$.

In this case, the likelihood ratio statistic is given by

$$\Lambda = -2\log\frac{\sup_{H_0}L(\theta; \boldsymbol{x})}{\sup_{H_1}L(\theta; \boldsymbol{x})} = 2\sum_{i=1}^k n_i\log\left(\frac{n_i}{n_i\pi_i(\hat{\theta})}\right),$$

and $\Lambda \approx \chi^2_{k-1-q}$ when H_0 is true.

2

H. Montanelli

4 Bayesian inference

Notation We write $f(x|\theta)$ instead of $f(x;\theta)$ to emphasize that we have a model for data x given the value θ .

Prior We summarize our beliefs about θ in a *prior* pmf/pdf $\pi(\theta)$; we treat θ as a random variable.

Posterior Using the continuous Bayes' theorem,

$$f_{Z|Y}(z|y) = \frac{f_{Z|Y}(y|z)f_{Z}(z)}{f_{Y}(y)},$$

we define the *posterior* pmf/pdf as

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta) \times \pi(\theta),$$

posterior \propto likelihood \times prior.

Posterior summaries

- the posterior mode (θ that maximizes $\pi(\theta|\mathbf{x})$);
- the posterior mean (expectation over θ);
- the posterior variance (variance over θ);
- the posterior median (satisfies $\int_{-\infty}^{m} \pi(\theta|x)d\theta = 1/2$);
- other quantiles of $\pi(\theta|\mathbf{x})$.

Credible interval A $100(1-\alpha)\%$ credible interval for θ is an interval (θ_a, θ_b) such that

$$P(\theta_a \le \theta \le \theta_b | \boldsymbol{x}) = \int_{\theta_a}^{\theta_b} \pi(\theta | \boldsymbol{x}) d\theta = 1 - \alpha.$$

If $P(\theta \leq \theta_a | \boldsymbol{x}) = P(\theta \geq \theta_b | \boldsymbol{x}) = \alpha/2$, then the interval is called *equal-tailed*.

Highest posterior density A credible interval I is called a *highest posterior density* interval if $\pi(\theta|\mathbf{x}) \geq \pi(\theta'|\mathbf{x})$, for all $\theta \in I$ and $\theta' \notin I$. (For the normal, every equal-tailed credible interval is a highest posterior density interval.)

Posterior predictive density Let X_{n+1} represent a future observation, independent of X_1, \ldots, X_n , and let $\boldsymbol{x} = (x_1, \ldots, x_n)$ denote the observed data. The pdf of X_{n+1} , the posterior predictive density, is defined by

$$f(x_{n+1}|\boldsymbol{x}) = \int_{\Theta} f(x_{n+1}, \theta|\boldsymbol{x}) d\theta = \int_{\Theta} f(x_{n+1}|\theta) \pi(\theta|\boldsymbol{x}) d\theta,$$

where we used $P(A \cap B|C) = P(A|B \cap C)P(B|C)$.

Proper prior A prior is *proper* if $\int \pi = 1$, and is *improper* if the integral cannot be normalized.

Jeffreys prior The *Jeffreys prior* is defined by

$$\pi(\theta) \propto I(\theta)^{1/2}$$
.

where $I(\theta)$ is the expected information.

Prior/posterior odds Suppose we want to compare two hypotheses H_0 and H_1 , exactly one of which is true. The prior and posterior odds of H_0 relative to H_1 are

prior odds =
$$\frac{P(H_0)}{P(H_1)}$$
, posterior odds = $\frac{P(H_0|\boldsymbol{x})}{P(H_1|\boldsymbol{x})}$

Bayes factor The Bayes factor B_{01} is defined via

$$\frac{\mathrm{P}(H_0|\boldsymbol{x})}{\mathrm{P}(H_1|\boldsymbol{x})} = \frac{P(\boldsymbol{x}|H_0)}{\mathrm{P}(\boldsymbol{x}|H_1)} \times \frac{\mathrm{P}(H_0)}{\mathrm{P}(H_1)},$$

posterior odds = Bayes factor \times prior odds.

General setup We are assuming we have:

- prior probabilities $P(H_0)$ and $P(H_1)$, which satisfy $P(H_0) + P(H_1) = 1$;
- prior distributions for $\theta_0 \in \Theta_0$ and $\theta_1 \in \Theta_1$ under H_0 and H_1 , which we write as $\pi(\theta_0|H_0)$ and $\pi(\theta_1|H_1)$;
- models for data x under H_0 and H_1 , which we write as $f(x|\theta_0, H_0)$ and $f(x|\theta_1, H_1)$.

Computing the Bayes factor Use

$$P(H_i) = \int_{\Theta_i} \pi(\theta_i) d\theta_i$$
 and $P(H_i|\boldsymbol{x}) = \int_{\Theta_i} \pi(\theta_i|\boldsymbol{x}) d\theta_i$.

Alternatively, use

$$\pi(\theta_i|H_i) = \pi(\theta_i) / \int_{\Theta_i} \pi(\theta_i) d\theta_i,$$

and

$$P(\boldsymbol{x}|H_i) = \int_{\Theta} f(\boldsymbol{x}|\theta_i, H_i) \pi(\theta_i|H_i) d\theta_i.$$

Note that if $H_i: \theta = \theta_i$, then $P(\boldsymbol{x}|H_i) = f(\boldsymbol{x}|\theta_i)$.

Assessing evidence The quantity $2 \log B_{01}$ is used to summarize the evidence for H_0 compared to H_1 :

B_{01}	$2\log B_{01}$	Evidence for H_0
< 1	< 0	Negative
1 - 3	0 - 2	Hardly worth a mention
3 - 20	2 - 6	Positive
20 - 150	6 - 10	Strong
> 150	> 10	Very strong

Asymptotic normality Let $\tilde{\ell}(\theta) = \log \pi(\theta|x)$ and $\tilde{\theta}$ be the posterior mode. Expanding $\tilde{\ell}(\theta)$ yields

$$\tilde{\ell}(\theta) \approx \tilde{\ell}(\tilde{\theta}) + (\theta - \tilde{\theta})\tilde{\ell}'(\tilde{\theta}) + \frac{1}{2}(\theta - \tilde{\theta})^2\tilde{\ell}''(\tilde{\theta}),$$

with $\tilde{\ell}'(\tilde{\theta}) = 0$. Therefore,

3

$$\pi(\boldsymbol{\theta}|\boldsymbol{x}) = \exp(\tilde{\ell}(\boldsymbol{\theta})) \propto \exp\left(-\frac{1}{2}\tilde{J}(\tilde{\boldsymbol{\theta}})(\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})^2\right),$$

 $i.e., \theta | \boldsymbol{x} \stackrel{d}{\approx} \mathrm{N}(\tilde{\theta}, \tilde{J}(\tilde{\theta})^{-1}).$ (Similarly, $\theta | \boldsymbol{x} \stackrel{d}{\approx} \mathrm{N}(\hat{\theta}, J(\hat{\theta})^{-1}).$)

H. Montanelli