CS-GY 9223 I: Lecture 7
Preconditioning, acceleration, coordinate decent, etc.

NYU Tandon School of Engineering, Prof. Christopher Musco

LOGISTICS

- Self-proctored, 2-hour midterm to be taken anytime next week.
- <u>No Collaboration</u> allowed at all. Or outside resources. Just use your own notes and material from the class.
- Sample problems are available on course website. We can review during office hours tomorrow or next week.
- You should have received an invite to Gradescope.
 Hopefully tonight/tomorrow I can upload a "practice test" to make sure their system works.

GRADIENT DESCENT

Conditions:

- Convexity: f is a convex function, S is a convex set.
- · Bounded initial distant:

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \le R$$

Bounded gradients (Lipschitz function):

$$\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$$
 for all $\mathbf{x} \in \mathcal{S}$.

Theorem

GD Convergence Bound] (Projected) Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{\epsilon^2}$$
 iterations.

ONLINE GRADIENT DESCENT

$$\mathbf{x}^* = \min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}^*)$$
 (the offline optimum)

Conditions:

- f_1, \ldots, f_T are all convex.
- Each is G-Lipschitz: for all \mathbf{x} , i, $\|\nabla f_i(\mathbf{x})\|_2 \leq G$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Theorem (OGD Regret Bound)

After T steps,
$$\left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
. I.e. the average regret $\frac{1}{T}\left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right]$ is $\leq \epsilon$ after:

$$T = \frac{R^2 G^2}{\epsilon^2}$$
 iterations.

STOCHASTIC GRADIENT DESCENT

Conditions:

- Finite sum structure: $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, with f_1, \dots, f_n all convex.
- Lipschitz functions: for all \mathbf{x} , j, $\|\nabla f_j(\mathbf{x})\|_2 \leq \frac{G'}{n}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Theorem (SGD Regret Bound)

Stochastic Gradient Descent returns $\hat{\mathbf{x}}$ with

$$\mathbb{E}[f(\hat{\mathbf{x}})] \leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) + \epsilon \text{ after }$$

$$T = \frac{R^2 G'^2}{\epsilon^2}$$
 iterations.

We always have that G' > G, but iterations are typically cheaper by a factor of n.

BEYOND THE BASIC BOUNDS

Can our convergence bounds be tightened for certain functions? Can they guide us towards faster algorithms?

Goals:

- Improve ϵ dependence below $1/\epsilon^2$.
 - Ideally $1/\epsilon$ or $\log(1/\epsilon)$.
- · Reduce or eliminate dependence on G and R.
- Further take advantage of structure in the data (e.g. repetition in features in addition to data points).

SMOOTHNESS

Definition (β -smoothness)

A function f is β smooth if, for all x, y

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \frac{\beta}{\beta} \|\mathbf{x} - \mathbf{y}\|_2$$

After some calculus (see Lem. 3.4 in **Bubeck's book**), this implies: $[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} ||\mathbf{x} - \mathbf{y}||_2^2$

For a scalar valued function f, equivalent to $f''(x) \leq \beta$.

SMOOTHNESS

Recall from definition of convexity that:

$$f(\mathbf{y}) - f(\mathbf{x}) \ge \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x})$$

So now we have an upper and lower bound.

$$0 \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

$$\left[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)}) \right] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}} (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_{2}^{2}$$

$$\left[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)}) \right] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_2^2$$

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$

Theorem (GD convergence for β -smooth functions.)

Let f be a $\frac{\beta}{\beta}$ smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \le R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T - 1}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all x, y

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \ge \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

 α is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent to $f''(x) \ge \alpha$.

GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

- · Choose number of steps T.
- For i = 1, ..., T:

•
$$\eta = \frac{2}{\alpha \cdot (i+1)}$$

$$\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

Theorem (GD convergence for α -strongly convex functions.)

Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha(T-1)}$$

Corollary: If $T = O\left(\frac{G^2}{\alpha \epsilon}\right)$ we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

What if f is both β -smooth and α -strongly convex?

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \leq \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \leq \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-(T-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of f.

Is it better if κ is large or small?

Converting to more familiar form: Using that fact the $\nabla f(\mathbf{x}^*) = \mathbf{0}$ along with

$$\frac{\alpha}{2}\|\mathbf{x}-\mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x}-\mathbf{y}) - [f(\mathbf{x})-f(\mathbf{y})] \leq \frac{\beta}{2}\|\mathbf{x}-\mathbf{y}\|_2^2,$$

we have:

$$\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2 \le \frac{2}{\alpha} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$
$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \ge \frac{2}{\beta} \left[f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \right]$$

Corollary (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{\beta}{\alpha} e^{-(T-1)\frac{\alpha}{\beta}} \cdot \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(\beta/\alpha\epsilon)\right) = O(\kappa\log(\kappa/\epsilon))$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Alternative Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$$

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $H = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $H \in \mathbb{R}^{d \times d}$. We have:

$$\mathbf{H}_{i,j} = \left[\nabla^2 f(\mathbf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

For vector **x**, **y**:

$$\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}) \approx \left[\nabla^2 f(\mathbf{x})\right] (\mathbf{x} - \mathbf{y}).$$

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $H = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $H \in \mathbb{R}^{d \times d}$. We have:

$$\mathbf{H}_{i,j} = \left[\nabla^2 f(\mathbf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

Example: Let $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Recall that $\nabla f(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b})$.

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \ge 0$.

This is a natural notion of "positivity" for symmetric matrices. To denote that **H** is PSD we will typically use "Loewner order" notation (\succeq in LaTex):

$$H \succeq 0$$
.

We write $B \succeq A$ or equivalently $A \succeq B$ to denote that (B - A) is positive semidefinite. This gives a <u>partial ordering</u> on matrices.

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \geq 0$.

For the least squares regression loss function: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, $\mathbf{H} = \nabla^2 f(\mathbf{x}) = 2\mathbf{A}^T \mathbf{A}$ for all \mathbf{x} . Is \mathbf{H} PSD?

THE LINEAR ALGEBRA OF CONDITIONING

If f is β -smooth and α -strongly convex then at any point \mathbf{x} , $\mathbf{H} = \nabla^2 f(\mathbf{x})$ satisfies:

$$\alpha I_{d \times d} \leq H \leq \beta I_{d \times d}$$
,

where $I_{d\times d}$ is a $d\times d$ identity matrix.

This is the natural matrix generalization of the statement for scalar valued functions:

$$\alpha \leq f''(x) \leq \beta$$
.

SMOOTH AND STRONGLY CONVEX HESSIAN

$$\alpha I_{d \times d} \leq H \leq \beta I_{d \times d}$$
.

Equivalently for any z,

$$\alpha \|\mathbf{z}\|_2^2 \le \mathbf{z}^\mathsf{T} \mathsf{H} \mathbf{z} \le \beta \|\mathbf{z}\|_2^2.$$

Exercise: Show that for $f(x) = ||Ax - b||_2^2$,

$$[f(\mathbf{x}) - f(\mathbf{y})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) = (\mathbf{x} - \mathbf{y})^{\mathsf{T}} [2 \mathbf{A}^{\mathsf{T}} \mathbf{A}] (\mathbf{x} - \mathbf{y}).$$

This would imply:

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \le [f(\mathbf{x}) - f(\mathbf{y})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

SIMPLE EXAMPLE

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagaonl matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What are α, β for this problem?

$$\alpha \|\mathbf{z}\|_2^2 \le \mathbf{z}^\mathsf{T} \mathbf{H} \mathbf{z} \le \beta \|\mathbf{z}\|_2^2$$

GEOMETRIC VIEW

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = 1$, $d_2^2 = 1$.

GEOMETRIC VIEW

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = \frac{1}{3}, d_2^2 = 2$.

Any symmetric matrix **H** has an <u>orthogonal</u>, real valued eigendecomposition.

Here **V** is square and orthogonal, so $\mathbf{V}^T\mathbf{V} = \mathbf{V}\mathbf{V}^T = \mathbf{I}$. And for each \mathbf{v}_i , we have:

$$H\mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

That's what makes $\mathbf{v}_1, \dots, \mathbf{v}_d$ eigenvectors.

Recall $VV^T = V^TV = I$.

Claim: $H \Leftrightarrow \lambda_1, ..., \lambda_d \geq 0$.

Recall $VV^T = V^TV = I$.

Claim: $\alpha I \leq H \leq \beta I \Leftrightarrow \alpha \leq \lambda_1, ..., \lambda_d \leq \beta$.

Recall $VV^T = V^TV = I$.

In other words, if we let $\lambda_{max}(H)$ and $\lambda_{min}(H)$ be the smallest and largest eigenvalues of H, then for all z we have:

$$\begin{split} \mathbf{z}^\mathsf{T} \mathbf{H} \mathbf{z} &\leq \lambda_{\mathsf{max}}(\mathbf{H}) \cdot \|\mathbf{z}\|^2 \\ \mathbf{z}^\mathsf{T} \mathbf{H} \mathbf{z} &\geq \lambda_{\mathsf{min}}(\mathbf{H}) \cdot \|\mathbf{z}\|^2 \end{split}$$

If $f(\mathbf{x})$ is β -smooth and α -strongly convex, then for any \mathbf{x} we have the the maximum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \beta$ and the minimum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \alpha$.

$$\lambda_{\mathsf{max}}(\mathsf{H}) = \beta$$
 $\lambda_{\mathsf{min}}(\mathsf{H}) = \alpha$

POLYNOMIAL VIEW POINT

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{2\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \le e^{-T/\kappa} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2$$

Goal: Prove for
$$f(x) = \|Ax - b\|_2^2$$
.

ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:

$$(\mathbf{X}^{(T+1)} - \mathbf{X}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^T \mathbf{A}\right) (\mathbf{X}^{(t)} - \mathbf{X}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(\mathbf{I} - \frac{1}{\lambda_{\text{max}}} \mathbf{A}^T \mathbf{A}\right)$ in terms of the eigenvalues $\lambda_{\text{max}} = \lambda_1 \geq \ldots \geq \lambda_d = \lambda_{\text{min}}$ of $\mathbf{A}^T \mathbf{A}$?

UNROLLED GRADIENT DESCENT

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^T \mathbf{A}\right)^T (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(\mathbf{I}-\frac{1}{\lambda_{\max}}\mathbf{A}^T\mathbf{A}\right)^T$?

So we have $\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \le$

IMPROVING GRADIENT DESCENT

We now have a <u>really good</u> understanding of gradient descent.

Number of iterations for ϵ error:

	G-Lipschitz	eta-smooth
R bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
lpha-strong convex	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right)$

How do we use this understanding to design faster algorithms?

ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:

$$\begin{aligned} \cdot \ & \mathbf{x}^{(1)} = \mathbf{y}^{(1)} = \mathbf{z}^{(1)} \\ \cdot \ & \text{For } t = 1, \dots, T \\ \cdot \ & \mathbf{y}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)}) \\ \cdot \ & \mathbf{x}^{(t+1)} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right) \mathbf{y}^{(t+1)} + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \left(\mathbf{y}^{(t+1)} - \mathbf{y}^{(t)}\right) \end{aligned}$$

Theorem (AGD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run AGD for T steps we have:

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*) \le \kappa e^{-(t-1)\sqrt{\kappa}} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O(\sqrt{\kappa} \log(\kappa/\epsilon))$ achieve error ϵ .

INTUITION BEHIND ACCELERATION

Level sets of $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$.

Other terms for similar ideas:

- Momentum
- Heavy-ball methods

What if we look back beyond two iterates?

PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function g(x) with the same minimum but which is better suited for first order optimization (e.g., has a smaller conditioner number).

Claim: Let $h(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}^d$ be an <u>invertible function</u>. Let $g(\mathbf{x}) = f(h(\mathbf{x}))$. Then

$$\min_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{x}} g(\mathbf{x})$$
 and $\underset{\mathbf{x}}{\operatorname{arg min}} f(\mathbf{x}) = h\left(\underset{\mathbf{x}}{\operatorname{arg min}} g(\mathbf{x})\right)$.

PRECONDITIONING

First Goal: We need $g(\mathbf{x})$ to still be convex.

Claim: Let P be an invertible $d \times d$ matrix and let $g(\mathbf{x}) = f(P\mathbf{x})$.

 $g(\mathbf{x})$ is always convex.

PRECONDITIONING

Second Goal:

 $g(\mathbf{x})$ should have better condition number κ than $f(\mathbf{x})$.

Example:

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}. \ \kappa_{f} = \frac{\lambda_{1}(\mathbf{A}^{\mathsf{T}}\mathbf{A})}{\lambda_{d}(\mathbf{A}^{\mathsf{T}}\mathbf{A})}.$$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{P}\mathbf{x} - \mathbf{b}\|_{2}^{2}. \ \kappa_{g} = \frac{\lambda_{1}(\mathbf{P}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{P})}{\lambda_{d}(\mathbf{P}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{P})}.$$

Ideal preconditioner: Choose P so that $P^TA^TAP = I$. For example, could set $P = \sqrt{(A^TA)^{-1}}$.

What's the problem with this choice?

DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

- · Let $D = diag(A^TA)$
- Intuitively, we roughly have that $D \approx A^T A$.
- Let $P = \sqrt{D^{-1}}$

P is often called a **Jacobi preconditioner**. Often works very well in practice!

DIAGONAL PRECONDITIONER

```
A =
        -734
                                   33
                                              9111
                                                             0
         -31
                                  108
                                             5946
                                                           -19
         232
                                  101
                                              3502
                                                            10
         426
                                  -65
                                             12503
        -373
                                  26
                                             9298
        -236
                       -2
                                  -94
                                             2398
        2024
                                 -132
                                            -6904
                                                           -25
       -2258
                                   92
                                            -6516
        2229
                                            11921
                                                           -22
         338
                                   -5
                                           -16118
                                                           -23
```

ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then $\nabla g(x) = P^T \nabla f(Px)$.

 $\nabla g(\mathbf{x}) = \mathbf{P} \nabla f(\mathbf{P}\mathbf{x})$ when **P** is symmetric.

Gradient descent on *g*:

• For
$$t = 1, ..., T$$
,
• $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \mathbf{P} \left[\nabla f(\mathbf{P} \mathbf{x}^{(t)}) \right]$

Gradient descent on g:

• For
$$t = 1, ..., T$$
,
• $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} - \eta \mathbf{P}^2 \left[\nabla f(\mathbf{y}^{(t)}) \right]$

When **P** is diagonal, this is just gradient descent with a different step size for each parameter!

ADAPTIVE STEPSIZES

Algorithms based on this idea:

- · AdaGrad
- · RMSprop
- · Adam optimizer

(Pretty much all of the most widely used optimization methods for training neural networks.)

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Gradient Descent: When $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, approximate $\nabla f(\mathbf{x})$ with $\nabla f_i(\mathbf{x})$ for randomly chosen i.

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Coordinate Descent: Only compute a <u>single random</u> entry of $\nabla f(\mathbf{x})$ on each iteration:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \qquad \nabla_i f(\mathbf{x}) = \begin{bmatrix} 0 \\ \frac{\partial f}{\partial x_i}(\mathbf{x}) \\ \vdots \\ 0 \end{bmatrix}$$

Update: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \eta \nabla_i f(\mathbf{x}^{(t)})$.

COORDINATE DESCENT

When \mathbf{x} has d parameters, computing $\nabla_i f(\mathbf{x})$ often costs just a 1/d fraction of what it costs to compute $\nabla f(\mathbf{x})$

Example: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ for $\mathbf{A} \in \mathbb{R}^{n \times d}, \mathbf{x} \in \mathbb{R}^d, \mathbf{b} \in \mathbb{R}^n$.

- $\cdot \nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} 2\mathbf{A}^{\mathsf{T}}\mathbf{b}.$
- $\nabla_i f(\mathbf{x}) = 2 \left[\mathbf{A}^\mathsf{T} \mathbf{A} \mathbf{x} \right]_i 2 \left[\mathbf{A}^\mathsf{T} \mathbf{b} \right].$

STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size η .
- For i = 1, ..., T:
 - Pick random $j_i \in 1, ..., d$.
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla_{j_i} f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$.

COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)

Given a G-Lipschitz function f with minimizer \mathbf{x}^* and initial point $\mathbf{x}^{(1)}$ with $\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2 \le R$, SCD with step size $\eta = \frac{1}{Rd}$ satisfies the guarantee:

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \frac{2GR}{\sqrt{T/d}}$$

IMPORTANCE SAMPLING

Often it doesn't make sense to sample i uniformly at random:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -.5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{bmatrix}$$

$$\mathbf{b} = \begin{vmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{vmatrix}$$

Select indices i proportional to $\|\mathbf{a}_i\|_2^2$:

$$Pr[select index i to update] = \frac{\|\mathbf{a}_i\|_2^2}{\sum_{i=1}^d \|\mathbf{a}_i\|_2^2} = \frac{\|\mathbf{a}_i\|_2^2}{\|\mathbf{A}\|_2^2}$$