Example Let Y be a Gamma random variable with r=1000, $\lambda=8$.

Find P(6202 Y 630). Why is this a CLT problem??

Notice Y has the same distribution as $X_1 + X_2 + \dots + X_{1000}$.

Where the X_j 's are independent exponential random variables, each with near $\mu = \frac{1}{8}$ and variance $\sigma^2 = \frac{1}{8}2$.

So $P(6206 Y 630) = P(6206 X_1 + \dots + X_{1000} 630)$ Lycut $\left(\frac{P(6206 X_1 + \dots + X_{1000} 630)}{\sqrt{1000} \sqrt{\frac{1}{1000}}} \left(\frac{630 - 9000 X_2}{\sqrt{1000} \sqrt{\frac{1}{1000}}}\right)\right)$ $\approx P(-.57 < 7 < .57)$ = P(76 < .57) - P(76 < .57) = 0.7157 - (1-0.7157) = 0.7157 - (1-0.7157)