DM₅ Mathématiques

EXERCICE

1. Soit $n \in \mathbb{N}^*$. Soit $x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$. La fonction tangente est \mathscr{C}^{∞} sur cet intervalle. On peut donc utiliser la formule de Leibniz :

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad (\tan^2)^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} \tan^{(k)}(x) \times \tan^{(n-k)}(x).$$

Or, on sait que, pour tout $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, $\tan^{(n+1)}(x) = (\tan^{\prime})^{(n)}(x) = (\tan^2)^{(n)}(x)$ car $\tan^{\prime} x = 1 + \tan^2 x$. D'où,

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad \tan^{(n+1)}(x) = \sum_{k=0}^{n} {n \choose k} \tan^{(k)}(x) \times \tan^{(n-k)}(x).$$

2. On procède par récurrence forte.

- On a, pour $x \in [0, \frac{\pi}{2}]$, $\tan^{(0)} x = \tan x \ge 0$.
- D'après la question 1, pour $x \in [0, \frac{\pi}{2}[$, $\tan^{(n+1)}x$ est positif, car somme de n termes positifs, par hypothèse de récurrence.

D'où,

$$\forall n \in \mathbb{N}, \ \forall x \in \left[0, \frac{\pi}{2}\right[, \quad \tan^{(n)} x \geqslant 0.$$

3. Soit $n \in \mathbb{N}$. Si I est un intervalle, et $f: I \to \mathbb{R}$ est une fonction de classe \mathscr{C}^{n+1} , et $a \in I$, alors

$$\forall x \in I, \quad f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{f^{(n+1)}(x)}{n!} (x-t)^n \, dt.$$

4.

5. On a $a_0 = \tan(0) = 0$, et $a_1 = \tan'(0) = 1 + \tan^2 0 = 1$. Pour tout $n \in \mathbb{N}^*$,

$$(n+1)a_{n+1} = \frac{(n+1)\tan^{(n+1)}0}{(n+1)!}$$

$$= \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} \times \tan^{(k)} 0 \times \tan^{(n-k)} 0$$

$$= \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \times \frac{1}{n!} \tan^{(k)} 0 \times \tan^{(n-k)} 0$$

$$= \sum_{k=0}^{n} \frac{\tan^{(k)} 0}{k!} \times \frac{\tan^{(n-k)} 0}{(n-k)!}$$

$$= \sum_{k=0}^{n} a_k a_{n-k}$$

6. D'après la question 4, la série $\sum a_n x^n$ converge pour $x \in \left[0, \frac{\pi}{2}\right[$. Or, la série $\sum a_n x^n$ est une série entière, son rayon de convergence R est donc supérieur ou égal à $\frac{\pi}{2}$:

$$\forall x \in]-R, R[, \sum a_n x^n \text{ converge.}]$$

D'où, $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\subset]-R, R[$, la série $\sum a_n x^n$ converge. La fonction S est donc bien définie sur $]-\frac{\pi}{2}, \frac{\pi}{2}[$.

7. On peut dériver terme à terme la série entière $\sum a_n x^n$ sans changer son rayon de convergence. Ainsi, pour $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$,

$$S'(x) = \sum_{n=1}^{\infty} a_n n x^{n-1} = \sum_{n=0}^{\infty} a_{n+1} (n+1) x^n$$

$$= 1 + \sum_{n=1}^{\infty} x^n \sum_{k=0}^n a_k a_{n-k}$$

$$= 1 + \sum_{n=1}^{\infty} \sum_{k=0}^n (a_k x^k) \cdot (a_{n-k} x^{n-k})$$

$$= 1 + \left(\sum_{n=1}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=1}^{\infty} a_n x^n\right)$$

$$= 1 + \left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=1}^{\infty} a_n x^n\right)$$

$$= 1 + S^2(x).$$

PROBLÈME

Partie 1.

1. Soit $\vec{v} \in E \setminus F$, donc $\vec{v} \neq \vec{0}$. Soit p l'application $p : \vec{x} \mapsto \vec{x} - p(\vec{x})$, la projection sur F^{\perp} , car E est de dimension finie. On procède par Analyse-Synthèse, ce qui démontre l'existence et l'unicité.

Analyse Soient $\vec{u} \in F$ et $\lambda \in \mathbb{R}$ tels que $\vec{u} + \lambda \vec{v} \in F^{\perp}$, $||\vec{u} + \lambda \vec{v}|| = \alpha$ et $\langle \vec{u} + \lambda \vec{v} \mid \vec{v} \rangle > 0$. On a

$$\begin{split} \vec{u} + \lambda \vec{v} \in F^{\perp} &\quad \text{donc} &\quad \langle \vec{u} + \lambda \vec{v} \mid \vec{u} \rangle = 0 \\ &\quad \text{donc} &\quad \langle \vec{u} + \lambda \pi(\vec{v}) \mid \vec{u} \rangle + \lambda \left\langle p(\vec{v}) \mid \vec{u} \right\rangle = 0 \\ &\quad \text{donc} &\quad \langle \vec{u} + \lambda \pi(\vec{v}) \mid \vec{u} \rangle = 0 \\ &\quad \text{donc} &\quad \vec{u} + \lambda \pi(\vec{v}) \in F^{\perp} \\ &\quad \text{donc} &\quad \vec{u} + \lambda \pi(\vec{v}) = \vec{0} \end{split}$$

On en déduit $\vec{u} = -\lambda \pi(\vec{v})$. On a

$$\begin{split} \|\vec{u} + \lambda \vec{v}\| &= \alpha \text{ donc } \| - \lambda \pi(\vec{v}) + \lambda \vec{v}\| = \alpha \\ \text{ donc } \|\lambda p(\vec{v})\| &= \alpha \\ \text{ donc } |\lambda| &= \frac{\alpha}{\|p(\vec{v})\|} \end{split}$$

car $p(\vec{v}) \neq \vec{0}$ (sinon, $\vec{v} \in F$, ce qui est faux par hypothèse). On en déduit $\lambda \in \{\alpha/\|p(\vec{v})\|, -\alpha/\|p(\vec{v})\|\}$. Et, on a,

$$\begin{split} \langle \vec{u} + \lambda \vec{v} \mid \vec{v} \rangle > 0 & \quad \text{si, et seulement si} & \quad \langle \lambda p(\vec{v}) \mid \vec{v} \rangle > 0 \\ & \quad \text{si, et seulement si} & \quad \lambda \langle p(\vec{v}) \mid \vec{v} \rangle > 0 \\ & \quad \text{si, et seulement si} & \quad \lambda \langle p(\vec{v}) \mid p(\vec{v}) \rangle + \langle p(\vec{v}) \mid \pi(\vec{v}) \rangle > 0 \\ & \quad \text{si, et seulement si} & \quad \lambda \| p(\vec{v}) \|^2 > 0 \\ & \quad \text{si, et seulement si} & \quad \lambda > 0 \end{split}$$

On en déduit $\lambda > 0$.

Synthèse On pose $\lambda=\alpha/\|p(\vec{v})\|$, et $\vec{u}=-\lambda\pi(\vec{v})$. On a $\vec{u}+\lambda\vec{v}=-\lambda\pi(\vec{v})+\lambda\vec{v}=\lambda p(\vec{v})\in F^\perp$. Par l'équivalence de l'analyse, on a $\langle \vec{u}+\lambda\vec{v}\mid\vec{v}\rangle>0$ car $\lambda>0$. Finalement, on a

$$\|\vec{u} + \lambda \vec{v}\| = \|\lambda p(\vec{v})\| = \lambda \|p(\vec{v})\| = \alpha.$$

D'où l'existence et l'unicité. De plus, $\vec{u} + \lambda \vec{v} = \lambda p(\vec{v})$ où p est la projection orthogonale sur F^{\perp} (car $(F^{\perp})^{\perp} = F$, car E est de dimension finie).

2. On procède par Analyse-Synthèse.

Analyse Supposons construit la famille $(\vec{w}_1,\dots,\vec{w}_n)$ vérifiant les conditions de l'énoncé. Ainsi, pour tout $p\in [\![1,n]\!]$, $\vec{w}_p\in E_p$. Soit alors les réels x_1,\dots,x_p tels que $\vec{w}_p=x_1\vec{w}_1+\dots+x_{p-1}\vec{w}_{p-1}+x_p\vec{v}_p$. De plus, $\vec{w}_p\in E_{p-1}^\perp$, d'où, $\forall q\in [\![1,p-1]\!]$,

$$\begin{split} 0 &= \langle \vec{w}_p \mid \vec{v}_q \rangle \\ &= \langle x_1 \vec{w}_1 + \dots + x_{p-1} \vec{w}_{p-1} + x_p \vec{w}_p \mid \vec{v}_q \rangle \\ &= x_1 \langle \vec{w}_1 \mid \vec{v}_q \rangle + \dots + x_{p-1} \langle \vec{w}_{p-1} \mid \vec{v}_q \rangle + x_p \langle \vec{v}_p \mid \vec{v}_q \rangle \\ &= x_q \langle \vec{w}_q \mid \vec{v}_q \rangle + \dots + x_{p-1} \langle \vec{w}_{p-1} \mid \vec{v}_q \rangle + x_p ||\vec{v}_p|| \end{split}$$