Цель

Цель курсового проекта — получение навыков разработки программного обеспечения устройств на базе микроконтроллеров с использованием высокоуровневых языков программирования.

Программное обеспечение, разработанное в рамках данного курсового проекта, предназначено для мониторинга температуры и влажности на территории садового участка.

Актуальность разработки

На данный момент устройства, предоставляющие схожий функционал не имеют возможности объединения их в сеть и передачи данных ведущему устройству, например, ПК или смартфону, не только напрямую от устройства с датчиком, но и по цепочке.

Требования к устройству

- устройство должно работать от автономного источника питания;
- устройство должно считывать и передавать: температура воздуха и влажность;
- передача данных выполняется по сети Bluetooth;
- данные должны передаваться по цепочке от одного устройства к другому;
- диапазон измерений температуры: -5°C до +35°C; влажности: от 0 до 100 %;
- диапазон рабочих температур должен быть от -5°C до +35°C.

Выбор микроконтроллера

	Raspberry Pi 3	Arduino Nano	Arduino Uno
Цена	Высокая	Низкая	Средняя
Потребление энергии	Высокое	Низкое	Низкое
Сложность в настройке	Средняя	Высокая	Средняя

Формат сообщения

Передача данных с датчиков происходит по цепочке, от одного устройства к другому. Порядок передачи определен заранее и программно не изменяется.

- тип сообщения (1 байт);
- идентификатор отправителя (1 байт);
- идентификатор источника данных (1 байт);
- температура (1 байт);
- влажность (1 байт);
- контрольная сумма (1 байт).

Модули

Основными критериями выбора модулей являлась **цена** и возможность получения модуля в **кратчайшие сроки.**

В качестве модуля Bluetooth LE было рассмотрено два варианта: HM-10 и MLT-BT05. Оба модуля имеют одинаковое конструктивное исполнение, интерфейс управления и рабочие характеристики. Однако модуль HM-10 стоит **значительно дороже** (в 3 и более раз), чем MLT-BT05. Поэтому было принято решение использовать модуль MLT-BT05.

В качестве модуля для измерения температуры и влажности было рассмотрено также два варианта: DHT-11 и DHT-22. Оба модуля имеют одинаковое конструктивное исполнение и способ подключения. Но модуль DHT-11 не отвечает требованиями к устройству, так как он может измерять влажность только в пределах 20-80 % и температуру от 0°C до +50°C. Поэтому выбор остановился на модуле DHT-22.

В качестве источника автономного питания были выбраны солнечные батареи, так как в отличие от аккумуляторов не требуют подзарядки.

Варианты устройства

- **Генератор**. Осуществляет сбор данных с датчиков и передачу данных на следующее устройство. Является начальным звеном цепи.
- **Ретранслятор**. Осуществляет прием и передачу данных с предыдущего устройства, а также передачу данных со своих датчиков.
- Приемник. Осуществляет прием данных с предыдущего устройства и вывод данных через последовательный порт. Является конечным звеном цепи.

Схема подключения модулей

- DHT-22. Коннектор ввода данных подключается к 8-му цифровому разъему на плате Arduino.
- MLT-BT05. Коннекторы UART RX и UART TX подключаются к разъемам 9 и 10 платы Arduino соответственно.
- Arduino Uno. Питание микроконтроллера возможно как через USB-разъем, так и через специальные разъемы: VCC и GND.

Алгоритмы

Прием данных

В режиме приема данных устройство ожидает поступления данных. Так как сообщения начинается либо с байта 0x00, либо с байта 0x01, то все считанные байты, не равные данному значению пропускаются. Если считанный байт равен 0x00 или 0x01, то дальше выполняется чтение остальных пяти байт. В случае если очередной байт невозможно считать, то данный блок данных сбрасывается. Если байты продолжают поступать, то это также является ошибкой, все они считываются, но не сохраняются, блок данных сбрасывается.

Проверка данных

XOR

Передачи данных

Передача данных устройством обеспечивается в режиме «Master», для перехода в который используется команда «AT+ROLE1». После переключения режима необходимо подключиться к другому Bluetooth-модулю с помощью команды «AT+CONA<MAC-адрес устройства>». Установка подключения выполняется в течение 3-5 секунд, если соединение установилось, то модуль переходит в режим передачи данных. Затем отправляется сообщение с заранее подготовленной информацией. После соединение разрывается командой «AT+DISC», устройство переводится в режим «Slave» с помощью команды «AT+ROLE0». В случае если соединение не было установлено, отправляемые данные будут проигнорированы.

Генератор

- 1. Сбор данных о температуре и влажности с датчика.
- 2. Преобразование данных.
- 3. Подготовка сообщения для передачи, расчет контрольной суммы.
- 4. Передача данных.
- 5. Приостановка работы устройства на заданное время.

Ретранслятор

- 1. Выполнение процедуры приема данных.
- 2. Проверка количества считанных байт.
- 3. Если количество байт не совпадает с длиной сообщения, то полученные данных игнорируются, в случае совпадения считается контрольная сумма.

- 4. Если контрольные суммы не совпали, то данные игнорируются, в случае совпадения проверяется ID отправителя.
- 5. Если ID отправителя не совпал, то данные игнорируются, в случае совпадения выполняется подготовка данных для передачи.
- 6. Заменить ID отправителя на собственный ID.
- 7. Если тип сообщения "обычное", то выполняется пересчет контрольной суммы и передача сообщения.
- 8. Если тип сообщения "терминальное", то выполняются следующие действия:
- 8.1. Тип сообщения меняется на "обычное".
- 8.2. Пересчитывается контрольная сумма.
- 8.3. Передача сообщения.
- 8.4. Приостановка работы.
- 8.5. Сбор и преобразование данных с датчиков.
- 8.6. Подготовка и передача сообщения.

Приемник

- 1. Выполнение процедуры приема данных
- 2. Проверка количества считанных байт.
- 3. Если количество байт не совпадает с длиной сообщения, то полученные данных игнорируются, в случае совпадения считается контрольная сумма.
- 4. Если контрольные суммы не совпали, то данные игнорируются, в случае совпадения проверяется ID отправителя.
- 5. Если ID отправителя не совпал, то данные игнорируются, в случае совпадения данные передаются в UART-порт.

Программная реализация

Константы, определенные в исходных текстах:

- STD MSG тип сообщения «обычный», 0х00
- TER_MSG тип сообщения «терминальный», 0x01
- SLEEP INT интервал простоя, значение для различных устройств разное
- MAX_ATTEMPTS количество попыток считывания для каждого байта, 3
- BUFFER SIZE длина буфера (сообщения), 6
- RX_PIN, TX_PIN номера разъемов для подключения Bluetooth-модуля, 9 и 10
- CUR ID ID текущего устройства

SLEEP_INT: ретран. – 1500 мск, ген. - 30000 мск, прием. – не определено.

Заключение

В ходе выполнения курсового проекта было разработано устройство для мониторинга температуры и влажности на территории садового участка. При проектировании решались следующие проблемы: особенности управления Bluetooth-модулей; проверки целостности данных; особенности передачи данных по сети Bluetooth. На следующем этапе были разработаны алгоритмы функционирования устройства, протокол передачи данных.

В качестве направлений дальнейшего развития данного устройства можно определить следующие улучшения: расширение количества способов передачи данных — использования сетей WiFi и GPRS, расширение функционала — добавление команд для управления системой полива, использование комбинированных источников питания (солнечная панель + аккумулятор).