XX

Estrutura do tema ISC

- 1. Representação de informação num computador
- Organização e estrutura interna dum computador
- 3. Execução de programas num computador
- 4. O processador e a memória num computador
- 5. Da comunicação de dados às redes
- 6. Evolução da tecnologia e da eficiência

AJProença, Sistemas de Computação, UMinho, 2015/16

1

O processador: análise do nível ISA (Instruction Set Architecture) (1)

pushl

movl

mov1

addl

movl

popl

ret

Mesmo código em assembly

%esp,%ebp

%ebp,%esp

12 (%ebp), %eax

8 (%ebp), %eax

%ebp

%ebp

0

Ex. de código C

```
int sum(int x, int y)
{
  int t = x+y;
  return t;
}
```

- operações num processador?
- · como aceder a operandos?
- · registos visíveis ao programador?
- tipos de instruções presentes num processador?
- formatos de instruções em linguagem máquina?
- instruções de input/output ?
- escalares multi-byte em memória?

A

Componentes (físicos) a analisar:

- a unidade de processamento / o processador:
 - >o nível ISA (Instruction Set Architecture):
 tipos e formatos de instrucões, acesso a operandos, ...
 - CISC versus RISC
 - paralelismo no processador: pipeline, super-escalaridade, ...
 - paralelismo fora do processador: on-chip e off-chip
- a hierarquia de memória:

cache, memória virtual, ...

- periféricos:
 - interfaces humano-computador (HCI)
 - arquivo de informação
 - comunicações (no tema 5...)

AJProença, Sistemas de Computação, UMinho, 2015/16

O processador: análise do nível ISA (Instruction Set Architecture) (2)

ACC.

Operações lógicas/aritméticas num processador

- operações mais comuns:
 - lógicas: not, and, or, xor, ...
 - aritméticas: inc/dec, neg, add, sub, mul, ...
- nº de operandos em cada operação
 - 3-operandos (RISC, ...)
 - 2-operandos (IA-32, ...)
 - 1-operando (microcontroladores, ...)
 - 0-operandos (stack-machine, ...)
- localização dos operandos
 - · variáveis escalares (registos...)
 - variáveis estruturadas (memória...)

O processador: análise do nível ISA

(Instruction Set Architecture) (3)

1

Modos de aceder a operandos

- em arquiteturas RISC
- em operações aritméticas/lógicas: operandos sempre em registo
- em load/store:1 ou 2 modos de especificar o endereço de memória

- exemplo: IA-32 (Intel Architecture 32-bits)

Type	Form	Operand value	Name
Immediate	\$Imm	Imm	Immediate
Register	\mathbf{E}_a	$R[E_a]$	Register
Memory	Imm	M[Imm]	Absolute
Memory	(Ea)	$M[R[\mathbf{E}_a]]$	Indirect
Memory	$Imm(E_b)$	$M[Imm + R[E_b]]$	Base + displacement
Memory	$(\mathbf{E}_b, \mathbf{E}_i)$	$M[R[E_b] + R[E_i]]$	Indexed
Memory	$Imm(\mathbf{E}_b, \mathbf{E}_i)$	$M[Imm + R[E_b] + R[E_i]]$	Indexed
Memory	$(, \mathbf{E}_i, s)$	$M[R[E_i] \cdot s]$	Scaled indexed
Memory	$Imm(, E_i, s)$	$M[Imm + R[E_i] \cdot s]$	Scaled Indexed
Memory	$(\mathbf{E}_b, \mathbf{E}_i, s)$	$M[R[E_b] + R[E_i] \cdot s]$	Scaled indexed
Memory	$Imm(\mathbf{E}_b, \mathbf{E}_i, s)$	$M[Imm + R[E_b] + R[E_i] \cdot s]$	Scaled indexed

AJProença, Sistemas de Computação, UMinho, 2015/16

5

O processador: análise do nível ISA

(Instruction Set Architecture) (5)

10.

Tipos de instruções presentes num processador

- transferência de informação
 - · de/para registos/memória, ...
- operações aritméticas e lógicas
 - soma, subtração, multiplicação, divisão, ...
 - AND, OR, NOT, XOR, comparação, ...
 - deslocamento de bits, ...
- controlo do fluxo de execução
 - para apoio a estruturas de controlo
 - para apoio à invocação de procedimentos/funções
- outras...

O processador: análise do nível ISA (Instruction Set Architecture) (4)

A

Registos visíveis ao programador (inteiros)

- em arquiteturas RISC: 32 registos genéricos...
- no IA-32:

31		15 8	7 0	_
%eax	%ax	%ah	%al	
%ecx	%CX	%ch	%cl	
%edx	%dx	%dh	%dl	
%ebx	%bx	%bh	%bl	
%esi	%si			
%edi	%di			
%esp	%sp			Stack pointer
%ebp	%bp			Frame pointer

AJProença, Sistemas de Computação, UMinho, 2015/16

6

O processador: análise do nível ISA

(Instruction Set Architecture) (6)

AC.

Ex: instruções de transferência de info no IA-32

mov	S, D	D←S	Move (byte,wo	rd,long_word)
movzbl movsbl		D←ZeroExtend(S) D←SignExtend(S)		g Zero-Extended g Sign-Extended
push	S	%esp ← %esp - 4; Me	m[%esp] ← S	Push
pop	D	D←Mem[%esp]; %esp	←%esp+ 4	Pop
lea	S, D	D← &S	Load Effective	Address / Pointer

D – destino: [Reg | Mem] **S** – *source*, fonte: [Imm | Reg | Mem]

D e S não podem ser ambos operandos em memória no IA-32

O processador: análise do nível ISA

(Instruction Set Architecture) (7)

A

Ex: instruções aritméticas/lógicas no IA-32

inc	D	D← D +1	Increment
dec	D	D← D –1	Decrement
neg	D	D← -D	Negate
not	D	D ← ~D	Complement
add sub imul	S, D S, D S, D	D←D+S D←D-S D←D*S	Add Subtract 32 bit Multiply
and	S, D	D←D&S	And
or	S, D	D←D S	Or
xor	S, D	D← D S	Exclusive-Or
shl	k, D	D← D << k	Left Shift
sar	k, D	D← D >> k	Arithmetic Right Shift
shr	k, D	D← D >> k	Logical Right Shift

AJProença, Sistemas de Computação, UMinho, 2015/16

9

11

O processador: análise do nível ISA

(Instruction Set Architecture) (9)

20.

Formatos de instruções em linguagem máquina

- campos duma instrução

- comprimento das instruções
 - variável (prós e contras; IA-32...)
 - fixo (prós e contras; RISC...)
- exemplos de formatos de instruções

O processador: análise do nível ISA (Instruction Set Architecture) (8)

A.

Ex: instruções de controlo de fluxo no IA-32

jmp	Label	%eip ← Label	Unconditional j	iump
je js jg jge ja	Label Label Label Label Label		Jump if Zero/E Jump if Negati Jump if Greate Jump if Greate Jump if Above	ve r (signed >) r or equal (signed >=)
call ret	Label	pushl %eip; %e popl %eip	ip ← Label	Procedure call Procedure return

AJProença, Sistemas de Computação, UMinho, 2015/16

10

O processador: análise do nível ISA

(Instruction Set Architecture) (10)

 \sim

Formatos de instruções no IA-32

ytes	0 or 1	0 or 1	0 or 1	0 or 1
	Instruction Prefix	Segment Override		Address Size Override

(a) Prefix

O processador: análise do nível ISA

(Instruction Set Architecture) (11)

13

Formatos de instruções no MIPS (RISC)

AJProença, Sistemas de Computação, UMinho, 2015/16

O processador: análise do nível ISA (Instruction Set Architecture) (12)

Instruções de input/output

- finalidade
 - escrita de comandos
 - leitura de estado
 - escrita/leitura de dados
- específicas (requer sinais de controlo no bus...); ou
- idênticas ao acesso à memória
 - » memory mapped I/O

Escalares multi-byte em memória (como ordená-los)

- little-endian
- big-endian