

XXXX

\underline{XXXXX}

学院_	
专业_	
姓名	

2025年8月28日

摘要

XXXXX **关键词:** XXX

目录

1	问题设定与基本概念	1
2 线性分类器与超平面		
	2.1 法向量与正交性质	1
	2.2 带符号距离与原点距离	1
	2.3 点到超平面的距离(通式)	2
3	质心法(Centroid Method)	2
4	线性可分与感知机(Perceptron)	2
	4.1 算法设定	2
	4.2 约束、损失与风险	2
	4.3 与梯度下降的关系与更新	3

1 问题设定与基本概念

给定 n 个样本,特征维度为 d。每个样本 $X_i \in \mathbb{R}^d$,部分属于类别 C,其余不属于 C。将样本 视为 \mathbb{R}^d 中的点。

判别函数 / 预测函数 / 判别式 (discriminant function) 定义为标量函数 f(x), 满足

$$f(x) > 0 \Rightarrow x \in C, \qquad f(x) \le 0 \Rightarrow x \notin C.$$

决策边界(decision boundary)定义为零水平集

$$\{x \in \mathbb{R}^d : f(x) = 0\}.$$

它通常是 \mathbb{R}^d 中的一个 (d-1) 维曲面,即 f 在等值 0 处的**等值面**(isosurface),类似地还有 $\{x:f(x)=1\}$ 等其它等值面。过度贴合训练集而产生蜿蜒曲线将导致**过拟合**。

2 线性分类器与超平面

若取线性判别函数

$$f(x) = w \cdot x + \alpha,$$

则决策边界为

$$H = \{x : w \cdot x = -\alpha\},\$$

称 H 为**超平面** (d=2 为直线,d=3 为平面)。超平面的三条核心性质:

- 1. 维度为 d-1,将 \mathbb{R}^d 切分为两半;
- 2. 平直(由一次方程定义, 无曲率);
- 3. 无界 (无限延伸)。

2.1 法向量与正交性质

若 $x, y \in H$,则

$$w \cdot (y - x) = 0.$$

因此 w 垂直于 H 上的任意方向, w 称为 H 的**法向量**。

2.2 带符号距离与原点距离

若 w 为单位向量,则 $f(x) = w \cdot x + \alpha$ 是点到超平面 H 的**带符号距离**,正负号由法向量一侧决定; H 到原点的距离为 $|\alpha|$,且 $\alpha = 0$ 当且仅当 H 过原点。若 w 非单位向量,可将 w,α 同时除以 ||w|| 归一化。w 与 α 的系数统称为**权重 / 回归系数**(weights)。

2.3 点到超平面的距离(通式)

对任意 $w \neq 0$, 点 x_0 到 $H: w \cdot x + \alpha = 0$ 的距离

$$d(x_0, H) = \frac{|w \cdot x_0 + \alpha|}{\|w\|}.$$

当w为单位向量时,f(x)即上述距离的带符号形式。

3 质心法 (Centroid Method)

记正类与负类(非C)的样本均值为

$$\mu_C = \frac{1}{|C|} \sum_{X_i \in C} X_i, \qquad \mu_X = \frac{1}{|X|} \sum_{X_i \notin C} X_i.$$

采用判别函数

$$f(x) = (\mu_C - \mu_X) \cdot x - (\mu_C - \mu_X) \cdot \frac{\mu_C + \mu_X}{2}.$$

几何意义: 法向量为 $\mu_C - \mu_X$; 决策边界为连接 μ_C 与 μ_X 线段的**垂直平分超平面**。在某些数据上(即便线性可分)此方法仍可能误分; 但当正负类分别来自两个高斯分布且协方差矩阵相同时,常表现良好。亦可调节标量项 α (不改变法向量)以减少误分。

与贝叶斯最优分类器的联系 若 $x|C_k \sim \mathcal{N}(\mu_k, \sigma^2 I)$ 且先验相近,则

$$\log p(x|C_1) - \log p(x|C_2) \propto -\frac{1}{2\sigma^2} (\|x - \mu_1\|^2 - \|x - \mu_2\|^2),$$

等价于"判给更近的质心"。此时质心法与 LDA 的线性边界一致,达到贝叶斯最优;若协方差不同,则最优边界为二次曲面(QDA)。

4 线性可分与感知机(Perceptron)

线性可分:存在某个超平面能将全部训练点正确划分。

4.1 算法设定

样本行向量 X_i 存于矩阵 X 的第 i 行,标签

$$y_i = \begin{cases} 1, & X_i \in C, \\ -1, & X_i \notin C. \end{cases}$$

为简便先考虑过原点的边界(后续可加偏置)。

4.2 约束、损失与风险

目标是找到 w 使

$$y_i(X_i \cdot w) \ge 0 \quad (\forall i).$$

定义分段线性**损失函数**

$$L(z, y_i) = \begin{cases} 0, & y_i z \ge 0, \\ -y_i z, & y_i z < 0, \end{cases}$$

并令风险函数

$$R(w) = \frac{1}{n} \sum_{i=1}^{n} L(X_i \cdot w, y_i) = \frac{1}{n} \sum_{i: y_i X_i \cdot w < 0} (-y_i X_i \cdot w).$$

若 w 正确分类全部样本则 R(w) = 0; 否则 R(w) > 0, 训练目标为

$$\min_{w} R(w)$$
.

4.3 与梯度下降的关系与更新

对误分类样本 i,有 $\nabla_w L(X_i \cdot w, y_i) = -y_i X_i$ 。随机梯度下降更新为

$$w \leftarrow w - \eta \, \nabla_w L = w + \eta \, y_i X_i,$$

当学习率 $\eta = 1$ 即经典感知机更新。感知机针对线性可分数据"慢但正确"; 若数据不可分则不收敛。它不追求最大间隔,鲁棒性不如 SVM。