Problema 1 - Campo Agrícola

Um campo agrícola possui setores organizados de forma matricial, onde alguns são de terras férteis e outros inférteis. Irrigadores ocupam um setor por completo, **nunca** estão localizados na borda da matriz e irrigam cada um dos 4 setores vizinhos (norte, sul, leste, oeste).

Implemente um programa que leia um inteiro \mathbf{M} , um inteiro \mathbf{N} ($M \leq 10$, $N \leq 10$), seguidos de $M \times N$ inteiros. Depois o programa deve escrever quantos **setores férteis** estão cobertos por pelo menos um irrigador e quantos não estão. Um 0 representa um setor infértil, 1 um setor fértil e 2 um setor ocupado por um irrigador. O setor onde está localizado o próprio irrigador não deve ser contabilizado.

Input	Output
4 6	4 5
$0\ 0\ 0\ 1\ 1\ 0$	
$0\ 2\ 2\ 1\ 1\ 0$	
$1\ 0\ 2\ 1\ 2\ 0$	
$1\ 1\ 1\ 0\ 0\ 0$	

Figure 1: Imagem do exemplo 1

Problema 2 - Sugestão de amigos

Você foi contratado para ajudar na implementação de uma rede social que conta com M usuários cadastrados. Um recurso que você quer implementar é a sugestão de amigos. Um usuário B deverá ser sugerido para A se eles não forem amigos, mas ambos possuirem pelo menos um amigo em comum.

As amizades estão armazenadas em uma matriz $M \times M$ de inteiros, onde o valor a_{ij} é igual a 1 se o usuário \mathbf{i} $(0 \le i < M)$ for amigo do usuário \mathbf{j} $(0 \le j < M)$ e 0 caso contrário. Assuma que a matriz sempre é simétrica, então $a_{ij} = a_{ji}$. Além disso não é possível ser amigo de si, então $a_{ii} = 0$.

Implemente um programa que leia um inteiro \mathbf{M} ($M \leq 100$), seguidos de $M \times M$ inteiros e um inteiro \mathbf{x} . O programa deve escrever todas as sugestões de amizades para o usuário \mathbf{x} em ordem numérica crescente.

Input	Output
6	1 4
$0\ 0\ 0\ 1\ 0\ 1$	
$0\ 0\ 0\ 1\ 1\ 0$	
$0\ 0\ 0\ 0\ 1\ 0$	
$1\ 1\ 0\ 0\ 1\ 1$	
$0\ 1\ 1\ 1\ 0\ 1$	
100110	

Problema 3 - Campeonato de empates

Um campeonato de futebol conta com M times, numerados de 0 a M-1. Cada time enfrenta cada um dos outros times uma única vez. Os resultados são armazenados em uma matriz, onde o elemento a_{ij} $(0 \le i, j \le M-1)$ representa quantos gols o time i fez contra o time j. Portanto, o resultado da partida $i \times j$ (ou $j \times i$, tanto faz pois é uma única partida) é a_{ij} gols para i e a_{ji} gols para j. No exemplo abaixo, o resultado do time 3 contra o time 0 foi a_{30} para o time 3 e a_{03} para o time 0, ou seja, 3×1 .

Implemente um programa que leia um inteiro \mathbf{M} ($M \leq 20$), seguidos de $M \times M$ inteiros. Como um time não enfrenta ele próprio, assuma que os elementos da diagonal são sempre 0. O programa deve escrever **quantas** partidas terminaram **empatadas**.

Input	Output
6	3
$0\ 2\ 2\ 1\ 3\ 2$	
$0\ 0\ 3\ 3\ 5\ 2$	
3 2 0 1 3 1	
3 2 2 0 0 6	
$3\ 6\ 0\ 0\ 0\ 2$	
3 3 3 0 2 0	

Problema 4 - Uma pechincha!

Você está planejando uma viagem (somente ida) de uma cidade \mathbf{X} para uma cidade \mathbf{Z} . Para isso você está pesquisando passagens de avião que sejam as mais baratas possível, nem que para isso seja necessário passar por uma cidade \mathbf{Y} . Foi possível coletar preços de passagens com diversas origens e destinos que foram armazenados em uma matriz $M \times M$ de inteiros, onde o valor a_{ij} representa o preço em reais para ir da cidade \mathbf{i} para a cidade \mathbf{j} . Implemente um programa que leia um inteiro \mathbf{M} ($M \le 10$), seguidos de $M \times M$ inteiros, um inteiro \mathbf{X} e um inteiro \mathbf{Z} . O programa deve escrever o custo da viagem de \mathbf{X} para \mathbf{Z} , passando por no máximo 1 cidade intermediária, com menor custo total. Esse custo deve ser precedido pelas cidades separadas por traço (vide exemplo abaixo).

Input	Output
3	0-1-2 R\$7
$0\ 5\ 9$	
$0\ 0\ 2$	
0 0 0	
0 2	