Práctica 11 Circuitos de Temporización

Objetivo. Reconocer la importancia de los circuitos temporizadores en los sistemas digitales para sincronizar eventos. Observar la estabilidad de los circuitos de temporización y finalmente tener la capacidad de elegir el adecuado.

Introducción Teórica

Realizada por los alumnos.

Materiales y Equipo empleado

- 1 74HC14
- 1 GAL 22V10
- 1 Display de 7 segmentos ánodo común
- ✓ 1 C. I. 555
- ✓ 2 push buttom
- √ 10 resistores de 330Ω a ¼ W
- √ 10 resistores de 10K Ω a ¼ W
- ✓ 2 resistores de 1K Ω a ¼ W
- √ 1 resistores de 12K Ω a ¼ W
- ✓ 2 Capacitor de 10 µF 10 V
- ✓ 2 Capacitor de 47µF 10 V
- ✓ 1 Capacitor de 100µF 10 V
- √ 1 Capacitor de 1µF 10 V
- 2 Capacitor de 0,01µF (cerámico)

Desarrollo Experimental

1.- Arme el circuito de la figura 1 y realice las actividades que se le piden.

Figura 1. Diagrama a bloques del Contador y el Convertidor BCD a 7 Segmentos.

Para generar el pulso de reloj oprima el push button. ¿Qué observa en el display?

2.- Ahora genere el pulso de reloj con la siguiente configuración de la figura 2 y anote sus observaciones.

Figura 2. Diagrama a bloques del Contador antirrebotes.

Para generar el pulso de reloj oprima el push button. ¿Qué observa en el display?

3.- Arme la siguiente configuración como en la figura 3 y observe su respuesta en el DISPLAY. Haga el cálculo de la frecuencia del pulso de salida de acuerdo a la tabla 1.

C.I.		FRECUENCIA	
7414	≈ 0,87/RC	(R≤500 Ω) C≥ 100pF	
74LS14	≈ 0,87/RC	(R \leq 2K Ω) C \geq 100pF	
74HC14	≈ 1,27/RC	(R≤10M Ω) C≥100pF	

Tabla 1. Tabla para calcular la frecuencia de operación del oscilador con compuertas.

Figura 3. Diagrama a bloques del Contador con oscilador a compuerta.

CONFIGURACIONES MONOESTABLE Y ASTABLE CON EL C. I. 555.

4.- Arme la configuración de la figura 4. Se trata de una configuración monoestable y genera un solo pulso en su salida al oprimir el push button.

Figura 4. Diagrama a bloques con el C. I. 555 configurado como monoestable.

Calcule la duración del ciclo de acuerdo con los valores del circuito de la figura 4: T =_____.

Fundamentos de Diseño Digital -GAL 22V10-

5.- Arme la configuración que se muestra en la figura 5. Ahora el C. I. 555 está configurado para que opere como un tren de pulsos.

Figura 5. Diagrama a bloques con el C. I. 555 configurado como tren de pulsos.

Calcule la frecuencia de acuerdo con los valores del circuito de la figura 5: f = ______.

Observaciones y Conclusiones Individuales.

Bibliografía.

Figura A. Terminales del circuito integrado 555.

Figura B. Terminales del circuito integrado 7490.

Figura C. Terminales del circuito integrado 22V10.