MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

> NEMZETI ERŐFORRÁS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- 4. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 5. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 6. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1. a) első megoldás		
A New York-i átlagfizetés $\frac{150\ 000}{0,236}$ ($\approx 635\ 593$) fo-	2 pont	
rint,		
ami $\frac{150\ 000}{0,236\cdot190} \approx$	1 pont	
≈ 3345 \$-nak felel meg.	1 pont	Ha a vizsgázó nem kere- kít vagy rosszul kerekít, akkor ez a pont nem jár.
Összesen:	4 pont	

1. a) második megoldás		
150 000 Ft megfelel $\frac{150000}{190}$ ($\approx 789,5$) dollárnak.	1 pont	
Ez 23,6%-a a New York-i átlagfizetésnek, amely így $\frac{150000}{190\cdot0,236} \approx$	2 pont	
≈ 3345 \$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó 789 dollárral számolva 3343 \$-t kap eredményül. Ha a vizsgázó nem kerekít vagy rosszul kerekít, akkor ez a pont nem jár.
Összesen:	4 pont	

1. b) első megoldás		
New Yorkban 3345 \$-ért 100 kg vásárolható, ezért 1 kg ára 33,45 \$.	1 pont	Forintban is elfogadható a számítás: 6356 Ft.
Budapesten 1 kg árut ennek 70,9%-áért lehet vásárolni, azaz 33,45 · 0,709 (≈ 23,72) \$-ért.	2 pont	Más helyes kerekítés (pl. 23,7 \$) is elfogadható.
Ez megfelel 33,45 · 0,709 · 190 (≈ 4506) Ft-nak.	1 pont	Más, helyesen kerekített érték is elfogadható (pl. $23,7 \cdot 190 = 4503$).
A budapesti átlagfizetésből ennyi pénzért 150 000 33,45 · 0,709 · 190 ≈	2 pont	
≈ 33,3 kg terméket lehet vásárolni.	1 pont	
Összesen:	7 pont	

1. b) második megoldás		
Ha a termék egységára <i>e</i> \$/kg, akkor a 100 kg termékért 100 <i>e</i> \$-t kell fizetni New Yorkban.	1 pont	
Ez egyben a New York-i átlagkereset is.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A termék egységára Budapesten 0,709e \$/kg,	1 pont	
az átlagkereset pedig 0,236·100e \$, ami 23,6e \$.	1 pont	
Ennyi pénzért Budapesten $\frac{23,6e}{0,709e} \approx$	2 pont	
≈ 33,3 kg terméket lehet vásárolni.	1 pont	
Összesen:	7 pont	

1. b) harmadik megoldás		
Ha a New York-i átlagfizetés x \$, akkor a budapesti átlagfizetés $x \cdot 190 \cdot 0,236 = 44,84x$ Ft.	1 pont	
Az x \$-os New-York-i átlagfizetésből ott 100 kg ter-		
méket tudunk venni, ezért 1 kg ára $\frac{x}{100}$ \$.	1 pont	
Budapesten 1 kg árut ennek 70,9%-áért lehet vásá-		
rolni, tehát $\frac{x}{100} \cdot 0,709 = 0,00709x$ dollárért.	1 pont	
Ez megfelel $0.00709x \cdot 190 = 1.3471x$ Ft-nak.	1 pont	
A budapesti átlagfizetésből tehát $\frac{44,84x}{1,3471x} \approx$	2 pont	
≈ 33,3 kg terméket lehet vásárolni.	1 pont	
Összesen:	7 pont	

Megjegyzés: Más, ésszerű (legfeljebb két tizedesjegy pontosságú) és helyesen kerekített érték (például 33 kg) is elfogadható válaszként.

2. a) első megoldás		
(Jelölje q a mértani sorozat hányadosát.)		
A negyedik helyezett 25, a harmadik 25 q , a második 25 q^2 pontot ért el.	1 pont	Be a Point annor is juit,
239 pontot ett et.		ha ez a gondolat csak a
Az első helyezett pontszáma $\frac{4}{3} \cdot 25q^2 = \frac{100q^2}{3}$.	1 pont	megoldásból derül ki.
A szöveg szerint:		
$\frac{100q^2}{3} + 25q^2 + 25q + 25 = 139.$	1 pont	
Összevonás és rendezés után: $175q^2 + 75q - 342 = 0$.	1 pont	

Ennek két megoldása van: a $\frac{6}{5}$, illetve a $-\frac{57}{35}$.	1 pont	
Ez utóbbi a szövegnek nem felel meg (hiszen ekkor a pontszámok nem alkotnának monoton sorozatot),	1 pont	
tehát a 3. helyezett pontszáma 30, a másodiké 36, az első helyezetté pedig 48.	1 pont	
(Ellenőrzés:) A kapott pontszámok összege 139, tehát ezek valóban megoldásai a feladatnak.	1 pont	
Összesen:	8 pont	

2. a) második megoldás		
A második helyezett x , az első $\frac{4}{3}x$ pontot ért el.	1 pont	Ez a 2 pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
A második x , a negyedik 25 pontot ért el, így a mértani sorozat miatt a 3. helyezett pontszáma $\sqrt{25x}$.	1 pont	
A szöveg szerint: $\frac{4}{3}x + x + \sqrt{25x} + 25 = 139$.	1 pont	
Hárommal beszorozva és nullára rendezve egy \sqrt{x} - ben másodfokú egyenletet kapunk: $7(\sqrt{x})^2 + 15\sqrt{x} - 342 = 0$.	1 pont*	
Ennek pozitív gyöke $\sqrt{x} = 6$ (a negatív gyök $\sqrt{x} = -\frac{57}{7}$, ami nem lehetséges),	1 pont*	
igy x = 36.	1 pont*	
Tehát a 2. helyezett pontszáma 36, a harmadiké 30, az első helyezetté pedig 48.	1 pont	
(Ellenőrzés:) A kapott pontszámok összege 139, tehát ezek valóban megoldásai a feladatnak.	1 pont	
Összesen:	8 pont	

A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

Rendezve: $5\sqrt{x} = 114 - \frac{7}{3}x$. Ezt négyzetre emelve és nullára rendezve: $49x^2 - 5013x + 116964 = 0$.	1 pont	
Ennek két megoldása van: $x_1 = \frac{3249}{49}$ (≈ 66,3), ez azonban az eredeti négy- zetgyökös egyenletnek (114 – $\frac{7}{3}x$ < 0 miatt) nem megoldása.	1 pont	
$x_2 = 36$.	1 pont	

Megjegyzés: Ha a vizsgázó (pl. próbálgatással) megadja a helyes pontszámokat, de nem mutatja meg, hogy a feladatnak nincs más megoldása, akkor legfeljebb 4 pontot kaphat.

2. b) első megoldás		
A lehetséges (egyenlően valószínű) kimenetelek száma: $\binom{20}{3}$ (= 1140).	2 pont	Nem bontható.
A kedvező kimenetelek száma: $\binom{4}{3} \cdot 5^3$ (= 500).	2 pont	
A kérdezett valószínűség: $\frac{500}{1140}$ (≈ 0,439).	1 pont	
Összesen:	5 pont	

2. b) második megoldás		
Az utalványok sorsolásának (a nyertesek sorrendjét is figyelembe véve) 20·19·18 (egyenlően valószínű) kimenetele van.	2 pont	Nem bontható.
Először 20, majd 15, végül 10 főiskolásból kell kiválasztani 1-1 résztvevőt, ezek lehetséges száma: 20·15·10.	2 pont	
a kérdezett valószínűség $\frac{20 \cdot 15 \cdot 10}{20 \cdot 19 \cdot 18} = \frac{25}{57} \ (\approx 0,439).$	1 pont	
Összesen:	5 pont	

3. a)		
A kúp alapkörének sugara 6 (cm),	1 pont	
alkotójának hossza $6\sqrt{2} \ (\approx 8,49 \text{ cm}),$	1 pont	
térfogata $V = \frac{T \cdot m}{3} = \frac{6^2 \cdot \pi \cdot 6}{3} = 72\pi \approx 226 \text{ (cm}^3),$	1 pont	
felszíne $A = r\pi(r+a) = 6\pi(6+6\sqrt{2}) =$ = $36(1+\sqrt{2})\pi \approx 273 \text{ (cm}^2).$	1 pont	
Összesen:	4 pont	

3. b) első megoldás		
ρ 45 ³ 6 - ρ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ	2 pont	Ha a vizsgázó ábra nélkül is jól használja az adato- kat a megoldása során, akkor is jár ez a 2 pont.
Ha a beírt gömb sugara ρ , akkor $\rho\sqrt{2} = 6 - \rho$,	1 pont	
amiből $\rho = 6(\sqrt{2} - 1) \ (\approx 2,49 \text{ cm}).$	1 pont	

A lemetszett kisebb kúp magassága $m_1 = 6 - \rho \ (\approx 3.51 \text{ cm}).$	1 pont	
A lemetszett kúp V_1 térfogatára (a hasonló testek térfogatának aránya miatt) felírható: $\frac{V_1}{V} = \left(\frac{m_1}{m}\right)^3 =$	1 pont	
$= \left(\frac{12 - 6\sqrt{2}}{6}\right)^3,$	1 pont	
amiből $V_1 = 72(2 - \sqrt{2})^3 \pi \ (\approx 45.5 \text{ cm}^3).$	1 pont	
A csonkakúp térfogata tehát ≈ 181 (cm³).	1 pont	
Összesen:	9 pont	

3. b) második megoldás		
C 6-ρ Ió ábra, amely tartalmazza a gömb sugarát (ρ), a 45°-os szöget, és a síkmetszet sugarát (r).	2 pont	Ha a vizsgázó ábra nélkül is jól használja az adato- kat a megoldása során, akkor is jár ez a 2 pont.
$\rho = 6 \cdot \text{tg } 22,5^{\circ},$	1 pont	
amiből $\rho \approx 2,49$ (cm).	1 pont	
A KCE egyenlő szárú derékszögű háromszögből $r = 6 - \rho$,	1 pont	
azaz $r \approx 3.51$ (cm).	1 pont	
A csonkakúp magassága (megegyezik a gömb sugarával): m ≈ 2,49 (cm).	1 pont	
A csonkakúp térfogata: $V = \frac{m\pi}{3} (R^2 + Rr + r^2) \approx$ $\approx \frac{2,49\pi}{3} (6^2 + 6 \cdot 3,51 + 3,51^2) \approx$	1 pont	A képletért önmagában nem, csak a jó behelyet- tesítésért jár ez a pont.
$\approx 181 \text{ (cm}^3\text{)}.$	1 pont	
Összesen:	9 pont	

Megjegyzés: Ha a vizsgázó valamelyik válaszában nem kerekít vagy rosszul kerekít, akkor a feladatban összesen legfeljebb 1 pontot veszítsen.

Ha a vizsgázó a beírt gömb sugarának meghatározásakor elvi hibát követ el (például a gömb középpontját a magasság felezőpontjának tekinti), akkor legfeljebb 4 pontot kaphat.

4. a)		
Ha $p = 3$, akkor $f(x) = -3x^3 + 9x - 6$.	1 pont	
$\int_{0}^{2} (-3x^{3} + 9x - 6)dx = [-0.75x^{4} + 4.5x^{2} - 6x]_{0}^{2} =$	2 pont	A primitív függvény megjelenítése nélkül ez a 2 pont nem jár.
=-6.	1 pont	
Összesen:	4 pont	

4. b)		
$-3+(p-3)+p^2-6=0$.	1 pont	
Rendezve: $p^2 + p - 12 = 0$.	1 pont	
Ennek megoldásából adódik, hogy $p = 3$ vagy		
p = -4 esetén lesz a megadott függvénynek	1 pont	
zérushelye az 1.		
Összesen:	3 pont	

4. c)		
A deriváltfüggvény hozzárendelési szabálya: $f'(x) = -9x^2 + 2(p-3)x + p^2$.	2 pont	
Ennek az $x = 1$ -hez tartozó helyettesítési értéke: $p^2 + 2p - 15$.	1 pont	
Megoldandó tehát a $p^2 + 2p - 15 > 0$ egyenlőtlenség.	1 pont	
A $p^2 + 2p - 15 = 0$ egyenlet megoldásai a 3 és a -5,	1 pont	
s mivel a $p^2 + 2p - 15 > 0$ egyenlőtlenség bal oldalán álló polinom főegyütthatója pozitív,	1 pont	Ez a pont jár más helyes indoklás (pl. jó ábra) ese- tén is.
ezért az egyenlőtlenség akkor teljesül, ha $p < -5$ vagy $p > 3$.	1 pont	
Összesen:	7 pont	

II.

5. a)		
Ha a jelöli a négyzetes oszlop alapélének hosszát, és k darabból készítjük a hasábokat, akkor H_1 felszíne: $A_{H_1} = 2 \cdot 2a^2 + 2 \cdot k \cdot a^2 + 2 \cdot k \cdot 2a^2 = 2a^2(3k+2).$	2 pont	
H_2 felszíne: $A_{H_2} = 2a^2 + 4 \cdot k \cdot 2a^2 (= 2a^2(4k+1)).$	2 pont	
Az $\frac{A_{H_1}}{A_{H_2}}$ = 0,8 feltételből (2 a^2 -tel történő egyszerűsítés és rendezés után): $3k + 2 = 0,8 \cdot (4k + 1)$.	2 pont	
Az egyenlet megoldása $k = 6$,	1 pont	

tehát 6-6 négyzetes oszlopot használtunk a hasábok építéséhez.	1 pont	
Összesen:	8 pont	

Megjegyzés: Ha a vizsgázó (pl. próbálgatással) megadja a jó eredményt, de nem bizonyítja, hogy más megoldás nincs, akkor legfeljebb 3 pontot kaphat.

5. b) első megoldás		
$\frac{a_{n+1}}{a_n} = \frac{(3n+5)(4n+1)}{(4n+5)(3n+2)} =$	1 pont	
$= \frac{12n^2 + 23n + 5}{12n^2 + 23n + 10} \left(= 1 - \frac{5}{12n^2 + 23n + 10} \right).$	1 pont	
A fenti hányados minden pozitív egész <i>n</i> esetén 1-nél kisebb,	1 pont	
és a sorozat minden tagja pozitív,	1 pont	
ezért a sorozat szigorúan monoton csökkenő.	1 pont	
Ebből következik, hogy a sorozat felülről korlátos.	1 pont	
Mivel a sorozat minden tagja pozitív, ezért a sorozat alulról is korlátos,	1 pont	
tehát a sorozat korlátos.	1 pont	
Összesen:	8 pont	

5. b) második megoldás		
Vizsgáljuk az $a_{n+1} - a_n$ különbséget!	1 pont	
$\frac{3n+5}{4n+5} - \frac{3n+2}{4n+1} =$	1 pont	
$= \frac{12n^2 + 23n + 5 - 12n^2 - 23n - 10}{(4n+5)(4n+1)} = -\frac{5}{(4n+5)(4n+1)}.$	1 pont	
A kapott tört minden pozitív egész <i>n</i> esetén negatív,	1 pont	
ezért a sorozat szigorúan monoton csökkenő.	1 pont	
A $\left\{\frac{3n+2}{4n+1}\right\}$ sorozat konvergens (határértéke 0,75),	1 pont	
s mivel minden konvergens sorozat korlátos,	1 pont	
tehát a sorozat egyben korlátos is.	1 pont	
Összesen:	8 pont	

6. a) első megoldás		
Az <i>A</i> , <i>B</i> sorrendje az első 2 helyen kétféleképpen alakulhatott.	1 pont	
A <i>D</i> osztály a 3., 4., és 5. hely bármelyikén végezhetett, ez 3 lehetőség.	1 pont	
A <i>C</i> , <i>E</i> , <i>F</i> osztályok a fennmaradó három helyen 3!-féle sorrendben végezhettek.	1 pont	
A különböző lehetőségek száma tehát 2·3·3!= 36.	1 pont	
Összesen:	4 pont	

6. a) második megoldás		
Az A, B sorrendje az első 2 helyen kétféleképpen alakulhatott.	1 pont	
A <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> osztályok a fennmaradó négy helyen 4!-féle sorrendben végezhettek.	1 pont	
Előzőek közül nem megfelelő, amikor <i>D</i> az utolsó, ez 3!-féleképpen fordulhat elő.	1 pont	
A különböző lehetőségek száma tehát $2 \cdot (4! - 3!) = 36$.	1 pont	
Összesen:	4 pont	

6. b) első megoldás		
Az összes eset felében az <i>E</i> osztály megelőzi <i>F</i> -et, a másik felében pedig <i>F</i> előzi meg <i>E</i> -t.	2 pont	
A megfelelő esetek száma tehát $\frac{6!}{2} = 360$.	2 pont	
Összesen:	4 pont	

6. b) második megoldás		
Ha az <i>E</i> osztály első, akkor az <i>F</i> osztály 5-féle, ha az <i>E</i> második, akkor az <i>F</i> 4-féle, ha az <i>E</i> harmadik, akkor az <i>F</i> 3-féle, ha az <i>E</i> negyedik, akkor az <i>F</i> 2-féle, végül ha az <i>E</i> ötödik, akkor az <i>F</i> osztály csak 1-féle helyen végezhetett. Ez összesen 15 lehetőség.	2 pont*	$E \text{ \'es } F \begin{pmatrix} 6 \\ 2 \end{pmatrix} = 15 \text{ -f\'ele hely-}$ $re \text{ ker\"ulhet, ezeken bel\"ul}$ $E \text{ \'es } F \text{ sorrendje r\"ogz\'i-}$ $tett.$
A maradék négy helyen az <i>A</i> , <i>B</i> , <i>C</i> és <i>D</i> osztályok 4! = 24-féleképpen végezhettek.	1 pont	
A megfelelő esetek száma tehát $15 \cdot 24 = 360$.	1 pont	
Összesen:	4 pont	

A *-gal jelölt 2 pontot az alábbi gondolatért is megkaphatja a vizsgázó:

A, B, C és D bármely rögzített sorrendje esetén 5 helyre lehet az E és F osztályt elhelyezni. Az 5 hely közül 2-t ismétléssel (hiszen A, B, C és D egy rögzített sorrendjén belül ugyanoda is

kerülhet E és F) kiválasztva a lehetőségek száma:
$$\binom{5+2-1}{2} = \binom{6}{2} = 15$$
. (Mindegyik kiválasz-

táshoz pontosan egy olyan eset tartozik, amelyben az E osztály megelőzi az F-et.)

6. c)		
Az <i>A</i> csapat a <i>B</i> ellen veszített, a többi mérkőzését megnyerte (nincs döntetlenje).	1 pont	
Az <i>F</i> -nek nincs egyetlen pontja sem, tehát ők nem érhettek el döntetlent.	1 pont	
A B, C, D, E csapatok egymás ellen összesen 6 mérkőzést játszottak,	1 pont	
ebből (az összes mérkőzés harmada) 5 végződött döntetlenre.	1 pont	

A <i>B</i> csapat a <i>C</i> , <i>D</i> , <i>E</i> elleni 3 mérkőzésből 3 pontot ért el, tehát vagy 1 győzelme, 1 döntetlenje és 1 veresége vagy pedig 3 döntetlenje volt.	2 pont*	
Ha 1 győzelme és 1 veresége lenne <i>B</i> -nek, akkor a <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> csapatok egymás elleni 6 mérkőzéséből legfeljebb 4 végződhetett volna döntetlennel.	1 pont*	
Ez azonban nem lehetséges, tehát <i>B</i> mindhárom mérkőzése, így a <i>D</i> elleni is döntetlen lett.	1 pont*	
Összesen:	8 pont	

A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

Az egyes csapatok az egymás elleni 3-3 mérkőzésük-		
ből a következő pontokat szerezték: a <i>B</i> osztály	1 pont	
3 pontot, a C 4-et, a D 3-at és az E 2 pontot.		
Mivel csak egy mérkőzés volt ezek közül, amelyik	1 pont	
nem döntetlenre végződött,	P	
ezért csak a <i>C</i> nyerhette meg az <i>E</i> osztály elleni találkozóját.	1 pont	
A <i>B</i> és <i>D</i> közötti mérkőzés tehát valóban döntetlenre végződött.	1 pont	

Megjegyzés: A mérkőzések eredményét mutatja az alábbi táblázat, amelyben a mérkőzésen győztes csapat neve, illetve a döntetlen eredmény látható. Ha ezt a táblázatot (vagy egy ezzel egyenértékű eredményleírást) elkészíti a vizsgázó, de nem indokolja, hogy másképpen nem tölthető ki a táblázat, akkor legfeljebb 4 pontot kaphat.

	A	В	C	D	E	F	pont
A		В	A	A	A	A	8
В	В		dönt.	dönt.	dönt.	В	7
C	Α	dönt.		dönt.	C	C	6
D	A	dönt.	dönt.		dönt.	D	5
E	Α	dönt.	С	dönt.		Е	4
F	A	В	С	D	Е		0

7. első megoldás		
Mivel a (2; 6) pont rajta van az egyenesen, azért $6 = 2a + b$, tehát $b = 6 - 2a$.	1 pont	$a = 3 - \frac{b}{2}$ (mivel $a < 0$, ezért $b > 6$)
Ezzel az egyenes egyenlete: $y = ax + 6 - 2a$.	1 pont	$y = \left(3 - \frac{b}{2}\right)x + b$
Ez az egyenes az x tengelyt a $P\left(2-\frac{6}{a};0\right)$ pontban,	1 pont	$P\left(\frac{2b}{b-6};0\right)$
az y tengelyt a $Q(0; 6-2a)$ pontban metszi.	1 pont	Q(0;b)

Mivel $a < 0$, ezért $2 - \frac{6}{a}$ és $6 - 2a$ is pozitív.	1 pont	Ez a pont akkor is jár, ha jó ábrát készít és azon a P és Q pontok a tengelyek pozitív felén helyezkednek el.
A levágott háromszög területe: $T(a) = \frac{1}{2} \left(2 - \frac{6}{a} \right) (6 - 2a).$	1 pont	$T(b) = \frac{1}{2} \cdot \frac{2b}{b-6} \cdot b$
A szorzásokat elvégezve kapjuk, hogy $T(a) = 12 - 2a - \frac{18}{a}.$	1 pont	$T(b) = \frac{b^2}{b-6}$
Ennek ott lehet minimuma, ahol az $a \mapsto T(a)$ $(a < 0)$ függvény deriváltja nulla.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$T'(a) = -2 + \frac{18}{a^2}$,	2 pont*	$T'(b) = \frac{b^2 - 12b}{(b-6)^2}$
ez 0, ha $a = 3$ vagy $a = -3$.	1 pont*	b = 0 vagy b = 12
Mivel $a < 0$, azért $a = -3$.	1 pont*	
Ez valóban minimumhely, mert $T''(-3) > 0$.	1 pont*	
Ha $a = -3$, akkor $b = 12$.	1 pont	
A keresett egyenes egyenlete: $y = -3x + 12$.	1 pont	
A legkisebb terület 24 egység.	1 pont	
Összesen:	16 pont	

A *-gal jelölt 6 pontot a következő gondolatmenetért is megkaphatja a vizsgázó:

Mivel $a < 0$, exert $0 < -a$,	G	
így a $T(a) = 12 + 2 \cdot (-a) + \frac{18}{(-a)}$ kifejezés utolsó két tagja pozitív.	2 pont	
Ezért alkalmazhatjuk rá a számtani és mértani közép közötti egyenlőtlenséget:	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$T(a) = 12 + 2 \cdot (-a) + \frac{18}{(-a)} \ge$	2 pont	
$\geq 12 + 2 \cdot \sqrt{2 \cdot (-a)} \cdot \frac{18}{(-a)} = 12 + 2 \cdot \sqrt{36} = 24$.	2 pont	
Egyenlőség pontosan akkor teljesül, ha		
$2 \cdot (-a) = \frac{18}{(-a)}, \text{ azaz ha } a = -3.$	1 pont	

7. második megoldás		
A Q pont második koordinátája b, és legyen a P pont	1 mont	
első koordinátája x ($b > 6$ és $x > 2$).	1 pont	
A (2; 6) ponton át párhuzamost húzunk a tengelyekkel, és az OPQ háromszög területét a kapott két kisebb háromszög és a téglalap területének összegeként írjuk fel:	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$\frac{(x-2)\cdot 6}{2} + \frac{(b-6)\cdot 2}{2} + 12 =$	1 pont	
=3x+b.	1 pont	
(A hasonló derékszögű háromszögek miatt:) $\frac{x-2}{6} = \frac{2}{b-6},$ ahonnan $b = \frac{12}{x-2} + 6$.	1 pont	
Ezt visszaírva a területre kapott kifejezésbe: $T(x) = 3x + \frac{12}{x-2} + 6.$	1 pont	
Ennek ott lehet minimuma, ahol az $x \mapsto T(x)$ $(x > 2)$ függvény deriváltja nulla.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$T'(x) = 3 - \frac{12}{(x-2)^2}$.	2 pont	
ez 0, ha $x = 0$ vagy $x = 4$.	1 pont	
Mivel $x > 2$, azért $x = 4$.	1 pont	
Ez valóban minimumhely, mert $T''(4) > 0$.	1 pont	
Ha $x = 4$, akkor $b = 12$ és a QP egyenes meredeksége -3 .	1 pont	
A keresett egyenes egyenlete: $y = -3x + 12$.	1 pont	
A legkisebb terület 24 egység.	1 pont	
Összesen:	16 pont	

8. a)		
Az egyenlően valószínű kimenetelek száma: $\binom{50}{10}$.	1 pont	
A kedvező kimenetelek száma: $\binom{45}{10} + \binom{45}{9} \binom{5}{1}$.	2 pont	
A kérdezett valószínűség: $\frac{\binom{45}{10} + \binom{45}{9} \binom{5}{1}}{\binom{50}{10}} \approx$	1 pont	
≈ 0,742.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó indoklás nélkül binomiális eloszlással számol, akkor legfeljebb 1 pontot kaphat. Ha említi, hogy az így kapott eredmény közelítés, akkor legfeljebb 2 pontot kaphat.

8. b)		
0,9 annak a valószínűsége, hogy az első gépsoron készült pohár jó.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A kérdezett valószínűség $\binom{15}{2} \cdot 0,1^2 \cdot 0,9^{13} \approx$	2 pont	
≈ 0,267.	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó nem a megfelelő modellt használja (például hipergeometrikus eloszlást használ), akkor erre a részre nem kaphat pontot.

8. c) első megoldás		
Jelölje <i>A</i> azt az eseményt, hogy az első gépsoron készült a pohár, <i>B</i> pedig azt az eseményt, hogy selejtes a pohár.	1 pont	Ez a 2 pont akkor is jár, ha ez a gondolat csak a
$P(A \mid B) = \frac{P(AB)}{P(B)}.$	1 pont	megoldásból derül ki.
$P(AB) = 0.6 \cdot 0.1 = 0.06.$	1 pont	
Ha összesen n darab pohár van, akkor $0.6 \cdot n \cdot 0.1 + 0.4 \cdot n \cdot 0.04 = 0.076 n$ darab selejtes van közöttük.	2 pont*	
Egy selejtes választásának valószínűsége: $P(B) = \frac{0,076 n}{n} = 0,076 .$	1 pont*	
Tehát $P(A B) = \frac{0.06}{0.076} \approx 0.789$.	1 pont	
Összesen:	7 pont	

A *-gal jelölt 3 pontot a következő gondolatmenetért is megkaphatja a vizsgázó:

Ha \overline{A} jelöli azt az eseményt, hogy a második gépsoron készült a pohár, akkor $P(B) = P(B A) \cdot P(A) + P(B \overline{A}) \cdot P(\overline{A}) =$	1 pont	
$= 0.1 \cdot 0.6 + 0.04 \cdot 0.4 = 0.076.$	2 pont	

8. c) második megoldás		
Az <i>n</i> db elkészült pohár között 0,6 <i>n</i> az első gépsoron és 0,4 <i>n</i> a második gépsoron készült.	2 pont	
Az első gépsoron készült $0,6n$ pohár között a selejtesek száma $0,6n \cdot 0,1 = 0,06n$,	1 pont	
a második gépsoron készült $0.4n$ pohár között a selejtesek száma $0.4n \cdot 0.04 = 0.016n$.	1 pont	
Az összes selejtes pohár száma tehát 0,076n.	1 pont	
Ezek közül egyet választva $\frac{0,06n}{0,076n} \approx 0,789$ a való-	2 pont	
színűsége annak, hogy az első gépsoron készült selej-	2 point	
tes poharat választottunk.		
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó egy konkrét n értékkel helyesen számol, akkor is teljes pontszámot kaphat.

9. a)		
Ha d a számtani sorozat differenciája, akkor a három-	1 pont	
szög oldalhosszai 4, $4+d$, $4+2d$ (és $0 < d$).	1 pont	
A háromszög derékszögű, ezért	1 ,	
$4^2 + (4+d)^2 = (4+2d)^2$.	1 pont	
A négyzetre emeléseket elvégezve, rendezés után	1 pont	
kapjuk: $3d^2 + 8d - 16 = 0$.	1 point	
A másodfokú egyenlet gyökei: $d_1 = -4$, $d_2 = \frac{4}{3}$.	1 pont	
A negatív gyök nem ad megoldást, tehát a háromszög		
oldalai 4, $\frac{16}{3}$ és $\frac{20}{3}$ egység hosszúak.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó (pl. próbálgatással vagy a 3, 4, 5 pitagoraszi számhármas elemeit $\frac{4}{3}$ -dal megszorozva) megadja a háromszög oldalainak hosszát, de nem mutatja meg, hogy a feladatnak nincs más megoldása, akkor 2 pontot kaphat.

9. b)		
(Indirekt módon bizonyítunk.) Tegyük fel, hogy van 60°-os szöge a háromszögnek.	1 pont	
Mivel az oldalak páronként különböző hosszúságúak, és nagyobb oldallal szemben nagyobb szög van,	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
ezért ha van 60°-os szög, akkor az a 4+d hosszúságú oldallal szemközt van.	2 pont*	
Erre az oldalra felírva a koszinusztételt: $(4+d)^2 = 4^2 + (4+2d)^2 - 2 \cdot 4 \cdot (4+2d) \cdot \cos 60^\circ.$	2 pont	
$16 + 8d + d^2 = 16 + 8d + 4d^2$	1 pont	
Ebből $d^2 = 0$, azaz $d = 0$.	1 pont	
Ez viszont ellentmond annak, hogy a háromszög nem szabályos ($d > 0$).	2 pont	
Az eredeti feltételezésünk tehát hamis, azaz a háromszögnek valóban nincs 60°-os szöge.	1 pont	
Összesen:	11 pont	

A *-gal jelölt 3 pont jár, ha a vizsgázó a 4 és a 4 + 2d egység hosszú oldalakra is felírja a ko-szinusztételt és helyes gondolatmenettel azokban az esetekben is ellentmondásra jut.

Megjegyzés: Teljes pontszám jár az alábbi gondolatmenetért is.

Indirekt tegyük fel, hogy van a háromszögnek 60° -os szöge a 4+d hosszú oldallal szemben. Ha ekkor a 4 egység hosszú oldallal szemben $0 < \alpha < 60^\circ$, akkor a 4+2d egység hosszú oldallal szemben $120^\circ - \alpha$ nagyságú szög lesz. (4 pont)

A szinusztételt felírva 2-2 oldalra:

$$\frac{\sin(120^{\circ} - \alpha)}{\sin \alpha} = \frac{4 + 2d}{4}, illetve \frac{\sin 60^{\circ}}{\sin \alpha} = \frac{\sqrt{3}}{2\sin \alpha} = \frac{4 + d}{4}.$$

Mindkettőből (addíciós tételek segítségével) d-t kifejezve:

$$d = \sqrt{3} \operatorname{ctg} \alpha - 1$$
, illetve $d = \frac{2\sqrt{3}}{\sin \alpha} - 4$. (4 pont)

Ezeket egymással egyenlővé téve és rendezve:

$$1 = \frac{\sqrt{3}}{2}\sin\alpha + \frac{1}{2}\cos\alpha = \sin(\alpha + 30^{\circ}).$$

Ez azonban ellentmondás, mert semmilyen $0 < \alpha < 60^{\circ}$ esetén nem teljesülhet. Az eredeti feltételezésünk tehát hamis, azaz a háromszögnek valóban nincs 60° -os szöge. (3 pont)