Part 1. Modeling, Computers, and Error Analysis Ch3. Approximation and Round-Off Errors & Ch4. Truncation Errors and The Taylor Series

Lecture 2 & 3

Round-Off and Truncation Errors

3.4, 4.1

Homeyra Pourmohammadali

Sources of Numerical Errors

Round-Off

• Created due to approximate representation of numbers

Truncation

• Created by approximating mathematical procedure

Round-Off Error

It is related to how numbers are stored in a computer using binary digit or bit

Computer Representation of Numbers

Number system

• Base (e.g. base-10 system, base-2 system, ...)

Integer representation

Signed magnitude method

Floating-point representation

- Mantissa
- Exponent

Number Systems

• A convention for representing quantities, examples:

Example 1. Binary (base-2) number (as 8-bit word) and finding its equivalent decimal number

1 0 1 0 1 1 0 1

Integer Representation

Signed Magnitude Method:

- The first bit of a word indicate the sign
- The remaining bits are used to store numbers

Sign

Number

- 1 is for negative sign -
- 0 is for positive sign +

Decimal integer representation in a 16-bit computer (what number is it?)

Floating-Point Representation

Numbers are represented as:

- fractional part (called mantissa or significand) &
- integer part (called exponent or characteristics)

- is for negative sign -
- is for positive sign +

Decimal integer representation in a 16-bit computer (what number is it?)

Floating-Point Representation

$$m = mantissa$$

$$b = base of number system$$

$$e = exponent$$

e.g.
$$1/34$$
 storage $1/34 = 0.029411765...$?

Issue of leading zero

Normalization & its limitations

$$1/b \le m < 1$$

Example 2. Consider 7-bit floating-point system

Example 2. Consider 7-bit floating-point system

Truncation Error

Created by approximating mathematical procedure

Example 3.Truncation error due to approximation of mathematical procedure for differentiation

Taylor Series

- Predict a function value at one point in terms of the function value and its derivatives at another point
- The smooth function can be approximated as a polynomial

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + f''(x_i)\frac{h^2}{2!} + f'''(x_i)\frac{h^3}{3!} + \dots$$
$$h = x_{i+1} - x_i$$

- zero-order approximation (considering only the first term)
- Higher-order approximation (considering higher terms)

Taylor Series Example

If f(a), f'(a), f''(a) and f'''(a) is known and the higher order derivatives are zero, find f (a+2) using Taylor series.

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + f''(x_i)\frac{h^2}{2!} + f'''(x_i)\frac{h^3}{3!} + \dots$$

$$h = x_{i+1} - x_i$$

Control of numerical errors, Overall approach

- True error (based on exact solution) not usually available, use approximate (estimated) error
- No systematic, general approach for error estimation for all problems – specific methods use different approaches
- A few guidelines
 - Avoid subtracting two nearly equal numbers
 - Don't add very small and very large numbers
- Error control methods
 - Sensitivity analysis, such as grid refinement study
 - Examine limiting cases