INDEX

Sr.no	Practical Name	Date	Remark
1	Data collection,cleaning,modeling and compilation	02/08/2023	
2	Explore data visualization techniques	09/08/2023	
3	Implement statistics distribution: a) Normal distribution b) Binomial distribution c) Poisson distribution d) Chi-square distribution	18/08/2023	
4	Perform hypothesis testing: a) One sample t test for small samples b) Two sample t test for small samples c) Paired t-test d) One sample z test for large samples e) Two sample z test for large samples	08/09/2023	
5	Exploring categorical and binary data	13/09/2023	
6	Implementation of non-parametric test: a) Sign test b) Wilcoxon matched pair test (or sign rank test) c) Kruskal wallis test	20/09/2023	
7	Perform ANOVA testing: a) One way ANOVA b) Two way ANOVA	27/09/2023	
8	Implement regression analysis and fit a straight line	12/10/2023	
9	Perform time series analysis	18/10/2023	

Practical 1 Data collection, cleaning, modeling and compilation

Input and output

import pandas as pd import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

 $\label{lem:data=pd.read_csv(r"C:\Users\ocmodels03dev\Desktop\SAMEER\risk_analytics_train - risk_analytics_train - risk_analytics_train - risk_analytics_train.csv", index_col=0, header=0) \\ data.head()$

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
Loan_ID												
LP001002	Male	No	0.0	Graduate	No	5849	0.0	NaN	360.0		Urban	Υ
LP001003	Male	Yes		Graduate	No	4583	1508.0	128.0	360.0		Rural	N
LP001005	Male	Yes	0.0	Graduate	Yes	3000	0.0	66.0	360.0		Urban	Υ
LP001006	Male	Yes		Not Graduate	No	2583	2358.0	120.0	360.0		Urban	Υ
LP001008	Male	No	0.0	Graduate	No	6000	0.0	141.0	360.0		Urban	Υ

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area
Loan_ID											
LP001015	Male	Yes	0.0	Graduate	No	5720		110.0	360.0	1.0	Urban
LP001022	Male	Yes		Graduate	No	3076	1500	126.0	360.0	1.0	Urban
LP001031	Male	Yes		Graduate	No	5000	1800	208.0	360.0	1.0	Urban
LP001035	Male	Yes	2.0	Graduate	No	2340	2546	100.0	360.0	NaN	Urban
LP001051	Male	No	0.0	Not Graduate	No	3276	0	78.0	360.0	1.0	Urban

data.dtypes

Gender	object
Married	object
Dependents	float64
Education	object
Self_Employed	object
ApplicantIncome	int64
CoapplicantIncome	int64
LoanAmount	float64
Loan_Amount_Term	float64
Credit_History	float64
Property_Area	object
dtype: object	

Semiurban

NaN

count	356	367	357.000000	367	344	367.000000	367.000000	362.000000	361.000000	338.000000	367
unique			NaN			NaN	NaN	NaN	NaN	NaN	
top	Male	Yes	NaN	Graduate	No	NaN	NaN	NaN	NaN	NaN	Urban
freq	286		NaN	283	307	NaN	NaN	NaN	NaN	NaN	140
mean	NaN	NaN	0.829132	NaN	NaN	4805.599455	1569.577657	136.132597	342.537396	0.825444	NaN
std	NaN	NaN	1.071302	NaN	NaN	4910.685399	2334.232099	61.366652	65.156643	0.380150	NaN
min	NaN	NaN	0.000000	NaN	NaN	0.000000	0.000000	28.000000	6.000000	0.000000	NaN
25%	NaN	NaN	0.000000	NaN	NaN	2864.000000	0.000000	100.250000	360.000000	1.000000	NaN
50%	NaN	NaN	0.000000	NaN	NaN	3786.000000	1025.000000	125.000000	360.000000	1.000000	NaN
75%	NaN	NaN	2.000000	NaN	NaN	5060.000000	2430.500000	158.000000	360.000000	1.000000	NaN
max	NaN	NaN	3.000000	NaN	NaN	72529.000000	24000.000000	550.000000	480.000000	1.000000	NaN

data.isnull().sum()	# for train
Gender	13
Married	3
Dependents	15
Education	Ø
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	Ø
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	ø
Loan_Status	Ø
dtype: int64	

data.isnull().sum() # for test

Gender	11
Married	Ø
Dependents	10
Education	0
Self_Employed	23
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	5
Loan_Amount_Term	6
Credit_History	29
Property_Area	0
dtype: int64	

for value in ['Gender','Married','Dependents','Self_Employed','Loan_Amount_Term']: data[value].fillna(data[value].mode()[0],inplace=True)

data.isnull().sum() # for train

<u> </u>	
Gender	ø
Married	0
Dependents	0
Education	ø
Self_Employed	0
ApplicantIncome	ø
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	0
Credit_History	50
Property_Area	0
Loan_Status	0
dtype: int64	

categorical_data=['Gender','Dependents','Self_Employed','Credit_History'] for i in categorical_data:

data[i].fillna(data[i].mode()[0],inplace=True) data.isnull().sum() # for test

Gender 0 Married 0 Dependents 0 Education 0 0 Self_Employed ApplicantIncome 0 CoapplicantIncome LoanAmount 5 Loan_Amount_Term Credit_History 0 Property_Area dtype: int64

$$\label{lem:cond} \begin{split} & data['LoanAmount'].fillna(round(data['LoanAmount'].mean(),0),inplace=True) \\ & data.isnull().sum() \\ & \# \ for \ train \end{split}$$

```
Gender
                          0
 Married
                          0
 Dependents
                          0
 Education
                         0
 Self Employed
                         0
 ApplicantIncome
                         0
 CoapplicantIncome
                         0
 LoanAmount
                         ø
 Loan_Amount_Term
                         0
 Credit_History
                        50
 Property_Area
                         0
 Loan_Status
                         0
 dtype: int64
numerical_data=['LoanAmount','Loan_Amount_Term']
for i in numerical data:
 data[i].fillna(data[i].mean(),inplace=True)
data.isnull().sum()
                          # for test
Gender
                           0
                           0
Married
                           0
Dependents
Education
                           0
Self_Employed
                           0
                           0
ApplicantIncome
CoapplicantIncome
                           0
LoanAmount
                           0
                           0
Loan Amount Term
Credit_History
                           0
Property_Area
                           ø
dtype: int64
data['Credit History'].fillna(value=0,inplace=True)
print(data.isnull().sum())
                         # for train
Gender
                          a
Married
                          0
                          0
Dependents
Education
                          0
Self Employed
                          0
ApplicantIncome
                          0
CoapplicantIncome
                          0
 LoanAmount
                          0
Loan Amount Term
                          0
Credit_History
                          0
Property_Area
                          0
 Loan_Status
                          0
 dtype: int64
```

Signature : _____

Practical 2 Explore Data Visualization Techniques

input and output:


```
3 Histogram:
data = [32, 45, 50, 28, 36, 42, 38, 25, 29, 52, 48, 60] plt.hist(data, bins=5, color='lightblue',
edgecolor='black')
plt.title("Histogram")
plt.xlabel("Values")
plt.ylabel("Frequency")
```


4 Scatter Plot: x = [3, 5, 7, 10, 12, 15] y = [25, 40, 30, 50, 35, 60] plt.scatter(x, y, color='red', marker='o') plt.title("Scatter Plot") plt.xlabel("X-axis") plt.ylabel("Y-axis") plt.show()

6 Box Plot: data = [45, 60, 75,300, 80,350, 90, 95, 100, 110, 120,250,200] plt.boxplot(data,vert=False,) plt.title("Box Plot") plt.ylabel("Values") plt.show()

7 Barh Plot: categories = ['A', 'B', 'C', 'D'] values = [25, 40, 15, 30]
plt.barh(categories, values, color='pink')
plt.title("Horizontal Bar Plot")
plt.xlabel("Values")
plt.ylabel("Categories")
plt.show(

8 Area Plot: days = [1, 2, 3, 4, 5] temperature = [25, 28, 30, 26, 22] plt.fill_between(days, temperature, color='yellow', alpha=0.6) plt.title("Area Plot") plt.xlabel("Days") plt.ylabel("Temperature") plt.show()

9 Stacked Bar Plot: categories = ['A', 'B', 'C', 'D'] values1 = [25, 40, 15, 30] values2 = [15, 20, 30, 25]

```
plt.bar(categories, values1, color='green', label='Value 1')
plt.bar(categories, values2, bottom=values1, color='orange', label='Value 2')
plt.title("Stacked Bar Plot")
plt.xlabel("Categories")
plt.ylabel("Values")
plt.legend()
plt.show()
```



```
10 Step Plot:

time = [1, 2, 3, 4, 5]

stock_price = [100, 110, 105, 120, 130]

plt.step(time, stock_price, color='red', where='mid')

plt.title("Step Plot")

plt.xlabel("Time")

plt.ylabel("Stock Price")

plt.show()
```


Signature ___

Practical 3 Implement statistics distribution

a) Normal distribution

Input and output

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from scipy import stats
# Given information
mean = 78
std dev = 25
total students = 100
score = 60
# Calculate z-score for 60
z_score = (score - mean) / std_dev
# Calculate the probability of getting a score less than 60
prob = norm.cdf(z score)
# Calculate the percentage of students who got less than 60 marks
percent = prob * 100
# Print the result
print("Percentage of students who got less than 60 marks:", round(percent, 2), "%")
Percentage of students who got less than 60 marks: 23.58 %
# Given information
mean = 78
std dev = 25
total students = 100
score = 70
# Calculate z-score for 70
z_score = (score - mean) / std_dev
# Calculate the probability of getting a more than 70
prob = norm.cdf(z score)
# Calculate the percentage of students who got more than 70 marks
percent = (1-prob) * 100
# Print the result
print("Percentage of students who got more than 70 marks: ", round(percent, 2), " %")
Percentage of students who got more than 70 marks:
                                                                       62.55 %
```

b) Binomial distributionInput and output

```
from scipy.stats import binom
# setting the values
# of n and p
n = 6
p = 0.6
# defining list of r values
r values = list(range(n + 1))
# list of pmf values
dist = [binom.pmf(r, n, p) for r in r_values ]
print(dist)
[0.00409600000000000, 0.0368640000000002, 0.138240000000001, 0.276480000000001, 0.311040000000001, 0.186624000000001, 0.0466559999999999]
# plotting the graph
plt.bar(r_values, dist)
plt.show()
    0.30
   0.25
   0.20
   0.15
   0.10
   0.05
    0.00
                                 i
                                             2
                                                          3
                                                                                    5
When success and failure are equally likely, the binomial distribution is a normal distribution.
#Expected number of successful trials = 5
#total number of trails =30
#The probability of success = 0.15
stats.binom.pmf(5, 30, 0.15)
 0.18610694845752918
the corresponding probability is 0.1861, that is the probability that exactly 5 customers will return
items is approximately 18.61%
```

c) Poisson distribution Input and output

#Question: The number of calls arriving at a call center follows a Poisson distribution at 20 calls per hour. #Calculate the probability that the number of calls will be maximum 10.

stats.poisson.cdf(10,20)

0.010811718826652723

the corresponding probability is 0.0108

d) Chi-square distribution

Input and output

```
from scipy.stats import chi2
# Parameters for the Chi-Square distribution
degrees_of_freedom = 5 # Degrees of freedom
# Generate a range of x values
x = np.linspace(0, 20, 1000)
# Calculate the probability density function (PDF) for the Chi-Square distribution
pdf = chi2.pdf(x, degrees of freedom)
# Plot the PDF
plt.plot(x, pdf, label=f'Chi-Square (df={degrees_of_freedom})')
plt.xlabel('x')
plt.ylabel('PDF')
plt.legend()
plt.title('Chi-Square Distribution')
plt.grid()
plt.show()
                                         Chi-Square Distribution
                                                                             Chi-Square (df=5)
       0.14
       0.12
       0.10
   o.08
       0.06
       0.04
       0.02
                0.0
                                    5.0
                                                       10.0
                                                                 12.5
                                                                           15.0
                                                                                     17.5
                                                                                               20.0
```

-	\sim 10 $^{\prime}$	atur	·^ ·	
-			_	
\mathbf{v}	мик	atui	.	

Practical 4 Perform hypothesis testing

a) One sample t test for small samples

i) Two-sided Input and output

Q) The Violet industries produces furniture for home and office use. The production engineer claims that the average number of furniture items produced is 30. Test his claim.

```
import pandas as pd
df=pd.DataFrame({
    'Sr_no':[1,2,3,4,5,6,7,8,9,10],
    'Items_Produced':[34,34,23,45,23,45,34,23,37,35]
})
df
```


Let

 \boldsymbol{X} : The number of furniture items produced by machine $\boldsymbol{A}.$

Thus μ : The average number of furniture items produced by machine A.

The Hypothesis is

H0: The mean number of items produced by machine A is equal to 30 i.e $\mu = 30$ Against

H1: The mean number of items produced by machine A is not equal to 30 i.e $\mu \neq 30$

#import library

from scipy.stats import ttest 1samp

#conduct the test

ttest_1samp(df['Items_Produced'],30)

TtestResult(statistic=1.2674612253287467, pvalue=0.23680061493494728, df=9)

We see that the p-value(0.2368) > 0.05(l.o.s), Hence we do not reject H0 We may conclude that the average number of items produced by machine A = 30.

ii) one-sided Input and output

The blaze industries pvt.ltd claims that their manufactured electric bulbs have LIFE OF 45000 hrs. Test their claims at 5% level of significance.

data=pd.DataFrame({

'Sr_no':[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],

'Life':[35000,49000,44000,45900,43400,50000,47200,32700,33200,43000,46300,47800,32100,33200,33900]

data.head()

Let

X: The life of bulb in hours

Thus μA : The average life of bulb in hours

The hypothesis is

H0: The mean life of bulb in hours is equal to 45000, i.e. $\mu A = 45000$

AGAINST

H1: The mean life of bulb in hours is less than equal to 45000, i.e. $\mu A \le 45000$

#conduct the test

#this is the test is two tailed

t_test_less=ttest_1samp(data['Life'],45000)

#to get the p-value for one-tailed test

#divide the p-value by 2

 $p_value_less = t_test_less.pvalue/2$

#print p-value

p_value_less

0.022628491566062506

we see that p-value(0.02) is less than 0.05(l.o.s), hence we reject H0.

We may conclude that the avg life of a bulb in an hour is less than or equal to 45000. And the manufacturer's claim is wrong.

S	iana	ıture	•	
_	19110	LUIU		

b) Two sample t test for small samples Input and output

In a pig farm, to increase the weight of the pig, two different diets were given. The data for gain in weight is as given. Test whether the two diets differ significantly regarding their effect on increase in weight.

```
fl=pd.DataFrame({
    'Sr_no':[1,2,3,4,5,6,7,8,9,10],
    'Diet A':[45,34,46,23,67,45,65,23,65,23],
    'Diet B':[45,35,32,47,37,51,42,38,32,46]
})
dfl
```

	Sr_no	Diet A	Diet B
0	1	45	45
1	2	34	35
2	3	46	32
3	4	23	47
4	5	67	37
5	6	45	51
6	7	65	42
7	8	23	38
8	9	65	32
9	10	23	46
-			

Let

X: The gain in weight due to diet A

Y: The gain in weight due to diet B

Thus

μa: The average gain in weight due to diet A

AGAINST

μb : The average gain in weight due to diet B

The Hypothesis is

H0: The average gain in weight due to diet A is equal to The average gain in weight due to diet B i.e μ a = μ b

H1 : The average gain in weight due to diet A is not equal to The average gain in weight due to diet B i.e $\mu a \neq \mu b$

#t-test for testing equality of means
from scipy.stats import ttest_ind
#conduct the test
ttest_ind(df1['Diet A'],df1['Diet B'])

TtestResult(statistic=0.5169140149580205, pvalue=0.6115094596012607, df=18.0)

since the p-value (0.611) > 0.05 (level of significance) hence we fail to reject H0 we may conclude that the average gain in weight due to diet A is not equal to the average gain in weight due to diet B

$\overline{}$	-			4				
<u> </u>	10	an	9	*:	11	\sim	•	
J		411	а	LL		_	_	

c) Paired t test

Input and output

A Pharma company claims to have produced a new drug which improves sleep of 18 year old teenagers. The hours of sleep for 10 teenagers before and after giving the new drug is recorded. Test whether there is a significant difference in the average hours of sleep.

Let

X : Hours of sleep before medication

Y: Hours of sleep after medication

Thus,

The Hypothesis is

H0: The average hours of sleep before medication is equal to the average of sleep after medication. i.e.uA=uB

H1 : The average hours of sleep before medication is not equal to the average of sleep after medication. i.e. $\mu A \neq \mu B$

```
data=pd.DataFrame({
    'sr no.':[1,2,3,4,5,6,7,8,9,10],
    'Hours of sleep(before)':[5.0,6.0,6.5,5.5,6.5,7,8,7.5,6,7],
    'Hours of sleep(after)':[7,7.5,9,7,8,7.5,7,7,7,6.5]
})
data
```

uata			
	sr no.	Hours of sleep(before)	Hours of sleep(after)
0	1	5.0	7.0
1	2	6.0	7.5
2	3	6.5	9.0
3	4	5.5	7.0
4	5	6.5	8.0
5	6	7.0	7.5
6		8.0	7.0
7	8	7.5	7.0
8	9	6.0	7.0
9	10	7.0	6.5

from scipy.stats import ttest_rel

ttest_rel(data['Hours of sleep(before)'],data['Hours of sleep(after)'])

TtestResult(statistic=-2.2785119632047284, pvalue=0.048680802344322635, df=9)

Since the p-value(0.048) is less than 0.05 (level of significance),hence we reject H0.

We may conclude that the average hours of sleep before medication is not equal to the average of sleep after medication.

i.e $\mu a \neq \mu b$

Signature	:	
_		

d) One sample z test for large samples Input and output

A random sample of 40 glass rod is taken from a lot manufactured under a new process. they are tested for their strength. Can we claim that the breaking strength is equal to 55 lbs?

The hypothesis is.

H0: The mean of the breaking strength of glass rod is equal to 55 i.e. $\mu = 55$

H1: The mean of the breaking strength of glass rod is not equal to 55 i.e. $\mu \neq 55$

data1=pd.DataFrame({

	Strength(in	lbs)
0		48.6
1		38.8
2		52.6
3		48.0
4		60.2

#import the library

from statsmodels.stats import weightstats as stests

conduct the test

stests.ztest(data1['Strength(in lbs)'],value=55)

(-4.431740748679182, 9.347536680921983e-06)

Since, the p-value(0.00) is less than 0.05 (LO.S), hence we reject Ho.

We may conclude that the average breaking strength of the glass rod is not equal to 55 lbs.

Signature	:	
0.5	•	

e) Two sample z test for large samples Input and output

Two types of fertilisers are tested on farm lands of the same size. The yields in quintals are given below. Can we conclude that the two fertilisers have the same yield?

```
x:yield due to fertiliser 1
y:yield due to fertiliser 2
Thus,
μA=The average yield due to fertiliser 1
μB=The average yield due to fertiliser 2
The Hypothesis is,
i.e. \mu A = \mu B
Ho:The average yield due to fertiliser 1 is equal to the average yield due to fertiliser 2
Ha:The average yield due to fertiliser 1 is not equal to the average yield due to fertiliser 2
i.e. μA≠μB
df fertilizer=pd.DataFrame({
  'Fertilizer
1':[23,34,45,32,34,51,39,34,28,30,46,41,35,43,24,36,25,33,36,43,26,45,32,47,42,31,35,46,34,32,46,36,25,46,
  'Fertilizer
2':[45,34,21,34,45,32,46,53,24,23,54,53,34,45,43,45,32,47,36,37,37,29,30,31,38,42,48,29,37,35,47,43,31,43,
```

43]

df fertilizer.head()

	Fertilizer 1	Fertilizer 2
0	23	45
1	34	34
2	45	21
3	32	34
4	34	45

#import the library

from statsmodels.stats import weightstats as stests

#conduct the test

stests.ztest(df_fertilizer['Fertilizer 1'],df_fertilizer['Fertilizer 2'])

(-1.1390306751872912, 0.25469036008906554)

Since the p-value (0.255) is more than 0.05 (level of significance). hence, we accept Ho.

We may conclude that the average yeild due to fertilizer 1 is equal to the average yeild due to fertilizer 2.

S	i,	٦r	12	4.	ır	е	•	
J	1,	J'	ıa		41	C	•	

Practical 5 Exploring categorical and binary data

Input and output

print(category_counts)

United States 39206
Australia 23936
Canada 14178
United Kingdom 13620
Germany 11098
France 10998
Name: Country, dtype: int64

sns.countplot(data=df, x='Customer_Gender')
plt.title("Categorical Data Distribution")

plt.hist(df['Month'], bins=10, edgecolor='black')
plt.title('Revenue Histogram')
plt.xlabel('Month')
plt.ylabel('Revenue')

one_hot_encoded_data = pd.get_dummies(df, columns = ['Product']) one_hot_encoded_data Date Day Month Year Customer_Age Age_Group Customer_Gender Country State Product_Category ... British Columbia Accessories 26 November 2015 M Australia Accessories 47 Adults (35-64) F Australia Accessories one_hot_encoded_data = pd.get_dummies(df, columns = ['State']) one hot encoded data Date Day Month Year Customer_Age Age_Group Customer_Gender Country Product_Category Sub_Category ... State_Tasmania Bike Racks M Canada Bike Racks Accessories 23-03-2014 49 Adults (35-64) March 2014 M Australia Bike Racks 23-03-2016 Bike Racks 15-05-2014 41 Adults (35-64) M United Kingdom

Signature :

Practical 6 Implementation of non parametric test

a) Sign test

Input and output

```
import numpy as np
from scipy.stats import binom
data = [
  (4, 3),
  (5, 6),
  (7, 6),
  (4, 5),
  (3, 2),
  (6, 6),
  (8, 7),
  (5, 4),
  (6, 6),
  (4, 4),
differences = [x - y \text{ for } x, y \text{ in data}]
positive diff = sum(1 \text{ for diff in differences if } diff > 0)
negative diff = sum(1 \text{ for diff in differences if diff} < 0)
n = len(data)
k = positive diff
print(k)
p value = binom.cdf(k, n, 0.5) + binom.sf(k - 1, n, 0.5)
print("p-value:", p_value)
 p-value: 1.2460937499999998
```

b) <u>Wilcoxon matched pair test (or sign rank test)</u> Input and output

```
import numpy as np
from scipy.stats import wilcoxon
before = [35, 42, 38, 46, 33, 29, 42, 37, 40, 32]
after = [30, 40, 36, 44, 28, 24, 41, 35, 38, 30]
differences = [after[i] - before[i] for i in range(len(before))]
```

```
statistic, p_value = wilcoxon(differences)

print("Test Statistic:", statistic)
print("p-value:", p_value)

Test Statistic: 0.0
p-value: 0.004016514660032747
```

c) Kruskal wallis test

Input and output

Signature :

Practical 7 Perform ANOVA testing

a) One way ANOVA

Input and output

Q. A firm wishes to compare 4 programmes for training workers to perform a certain task. 20 new employees are randomly assigned to these programmes with 5 in each. At the end of the training, a test is conducted to see how quickly the trainees perform that task. The number of times the task is performed per hour is recorded for each trainee. Perform ANOVA to check the effectiveness of the programme. (Assume the level of significance = 0.05) Programme $_1$ = [9, 12, 14, 11, 13] programme $_2$ =[10, 6, 9, 9, 10] Programme $_3$ = [12, 14, 11, 13, 11] Programme $_4$ = [9, 8, 11, 7,8]

Null Hypothesis: The average number of times the task is performed are equal Alternative Hypothesis: At least one pair of averages is not equal

from scipy.stats import f oneway

programme_1=[9,12,14,11,13] programme_2=[10,6,9,9,10] programme_3=[12,14,11,13,11] programme_4=[9,8,11,7,8]

f_oneway(programme_1,programme_2,programme_3,programme_4)

F_onewayResult(statistic=7.044871794871795, pvalue=0.0031129438989961743)

Conclusion:- we see that p-value(0.003) is less than 0.05(level of significance) hence,we reject null null hypothesis we may conclude that at least one of the training programme has different effect

Signature	:	

b) Two way ANOVA

Input and output

import pandas as pd import numpy as np

import statsmodels.api as sm

A botanist wants to know whether or not plant growth is influenced by sunlight exposure and watering frequency. She plants 30 seeds and lets them grow for two months under different conditions for sunlight exposure and watering frequency. After two months, she records the height of each plant, in inches. Use the following steps to perform a two-way ANOVA to determine if watering frequency and sunlight exposure ave a significant effect on plant growth, and to determine if there is any interaction effect between watering frequency and sunlight exposure.

```
from statsmodels.formula.api import ols
df=pd.DataFrame({
  'water':np.repeat(['daily', 'weekly'], 15),
  'sun':np.tile(np.repeat(['low','med','high'],5),2),
  'height':[6,6,6,5,6,5,5,6,4,5,6,6,7,8,7,3,4,4,4,5,4,4,4,4,4,5,6,6,7,8,]
print(df)
       water
                  sun
                        height
       daily
                 low
 0
       daily
 1
                 1<sub>ow</sub>
                              6
 2
       daily
                 low
       daily
                 1ow
 4
       daily
                 1ow
       daily
                 med
 6
       daily
                 med
       daily
                 med
 8
       daily
                 med
       daily
                 med
 10
       daily
                high
       daily
                high
 11
       daily
                high
 12
       daily
                high
                              8
 13
                high
 14
       daily
                 low
      weekly
 16
      weekly
                 low
 17
                 1ow
      weekly
 18
      weekly
                 low
 19
                 low
 20
      weeklv
                 med
 21
      weekly
                 med
 22
      weekly
                 med
 23
      weekly
                 med
                high
 26
      weekly
                              6
 27
      weekly
                high
 28
      weekly
                high
 29
      weekly
                high
```

 $model=ols('height \sim C(water) + C(sun) + C(water):C(sun)', \ data=df).fit() \\ sm.stats.anova_lm(model,typ=2)$

	sum_sq	df	F	PR(>F)
C(water)	8.533333	1.0	16.0000	0.000527
C(sun)	24.866667	2.0	23.3125	0.000002
C(water):C(sun)	2.466667	2.0	2.3125	0.120667
Residual	12.800000	24.0	NaN	NaN

water: p-value = 0.000527 # sun: p-value = 0.000002 # water*sun: p-value = 0.120667

Since the values for water and sun lite both less than 05 this means that both factors have a statistically significant effect on plant height. And since the p-value for the interaction effect (120667) is not less than 05, this tells us that there is no significant interaction effect between sunlight exposure and watering frequency

^ :		4	
~ I	ดทว	tura	
יוט	yııa	ture	

Practical 8 Implement regression analysis and fit a straight line

Input and output

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
x=np.array([1,2,3,4,5])
y=np.array([7,14,15,18,19])
n=np.size(x)
x mean=np.mean(x)
y mean=np.mean(y)
x mean,y mean
(3.0, 14.6)
Sxx=np.sum(x*x)-n*x_mean*x_mean
Sxy=np.sum(x*y)-n*x_mean*y_mean
Sxx,Sxy
(10.0, 28.0)
b1=Sxy/Sxx
b0=y_mean - b1*x_mean
print('Slope b1 is', b1)
print('Intercept b0 is',b0)
Slope b1 is 2.8
Intercept b0 is 6.20000000000000001
plt.scatter(x,y)
plt.xlabel('Independent variable X')
plt.ylabel('dependent variable Y')
Text(0, 0.5, 'dependent variable Y')
    18
    16
dependent variable Y
    14
    12
    10
     8
                    1.5
                                        2.5
                                                           3.5
                                                                     4.0
                                                                              4.5
           1.0
                              2.0
                                                 3.0
                                                                                        5.0
```


Signature : _____

Practical 9 Perform time series analysis Input and output

import pandas as pd import numpy as np import matplotlib.pyplot as plt

$$\label{lem:college} \begin{split} df &= pd.read_csv(r"C:\Users\rahul\Desktop\RJ\ COLLEGE\aapl.csv",\ parse_dates=True,index_col="Date") \\ df.head() \end{split}$$

	Open	High	Low	Close	Volume	Adj Close
Date						
2008-10-14	116.26	116.40	103.14	104.08	70749800	104.08
2008-10-13	104.55	110.53	101.02	110.26	54967000	110.26
2008-10-10	85.70	100.00	85.00	96.80	79260700	96.80
2008-09-10	93.35	95.80	86.60	88.74	57763700	88.74
2008-08-10	85.91	96.33	85.68	89.79	78847900	89.79

print(df)

df.plot(subplots=True, figsize=(6, 6))

Resampling: Resampling is a methodology of economically using a data sample to improve the accuracy and quantify the uncertainty of a population parameter. Resampling for months or weeks and making bar plots is another very simple and widely used method of finding seasonality.

```
# Resampling the time series data based on monthly 'M' frequency df month = df.resample("M").mean()
```

```
# using subplot
fig, ax = plt.subplots(figsize=(6, 6))
```

plotting bar graph ax.bar(df_month['2008':].index, df_month.loc['2008':, "Volume"], width=25, align='center')

$$\label{eq:df} \begin{split} df &= pd.read_csv(r"C:\Users\rahul\Desktop\RJ\ COLLEGE\aapl.csv")\\ import\ datetime\ as\ dt\\ df['Date'] &= pd.to_datetime(df['Date'])\\ plt.plot(df['Date'][1:200].dt.month) \end{split}$$

df.iloc[1:200,:]

	0pen	High	Low	Close	Volume	Adj Close
Date						
2008-10-13	104.55	110.53	101.02	110.26	54967000	110.26
2008-10-10	85.70	100.00	85.00	96.80	79260700	96.80
2008-09-10	93.35	95.80	86.60	88.74	57763700	88.74
2008-08-10	85.91	96.33	85.68	89.79	78847900	89.79
2008-07-10	100.48	101.50	88.95	89.16	67099000	89.16

2008-07-01	181.25	183.60	170.23	177.64	74006900	177.64
2008-04-01	191.45	193.00	178.89	180.05	51994000	180.05
2008-03-01	195.41	197.39	192.69	194.93	30073800	194.93
2008-02-01	199.27	200.26	192.55	194.84	38542100	194.84
2007-12-31	199.50	200.50	197.75	198.08	19261900	198.08
199 rows × 6	columns					

	•				4				
•	14	nı	n	2	ŦI		r	Δ	•
J	1	gı		a	L	и		C	