

Groupe moteur propulso A

Table des matières ETAPE N°I : MISE EN SITUATION 2 ETAPE N°II : TRAVAIL DEMANDE 3 ETAPE N°II.1 : CONSTRUCTION DU DOCUMENT A-GROUPE_MOTEUR_PROPULSO.SLDASM 3 ETAPE N°II.2 : RECONCEPTION 1 ▶ GUIDAGE EN ROTATION DE L'ARBRE 5 ETAPE N°III : ANNEXES ▶ FICHES DE FABRICATION 7

Etape n°l: Mise en situation

L'évaluation portera sur le **Groupe moteur propulso** (a) de la figure ci-dessous qui est utilisé pour propulser le **robot marcheur Hexapode** de la société **A4 Technologie**, concepteur et fabricant de matériels didactiques dans le domaine de l'enseignement des technologies et du numérique.

G√ Vous trouverez dans le dossier Ressources :

- Le plan d'ensemble au format pdf de la version achetée du Groupe moteur propulso (à celle ci-dessous.
- Deux vidéos du *fonctionnement* du robot marcheur Hexapode : La vidéo Hexapode-1.avi permet de visualiser le *fonctionnement* du Groupe moteur propulso (A) dans son contexte d'utilisation.

✓ Vous trouverez dans le dossier « Votre-Nom-Groupe Moteur propulso-A à construire » les composants *.SLDRT fabriqués dans le dossier Pièces fabriquées, les composants *.SLDASM dans le dossier Sous assemblages et les composants du Commerce, *.SLDRT et/ou *.SLDASM dans le dossier Composants du commerce : le moteur est donné sous la forme d'un document *.SLDASM avec 2 configurations « Défaut » et « Sans axe moteur ».

Documents à rendre

Le dossier « **Votre-Propre nom-Groupe Moteur propulso-A à construire** » complété de votre travail sera déposé sur moodle en fin d'évaluation.

& Extrait du plan fourni en Ressources :

Etape n°II : Travail demandé

Etape n°II.1: Construction du document A-GROUPE_MOTEUR_PROPULSO.SLDASM

Mise en situation

DASM dans sa Configuration

« Défaut » tel que présenté cicontre et ci-dessous pour le document demandé.

G→ Le Châssis = {<u>16</u>, <u>18</u>, <u>19</u>} est fixe.

La roue d'engrenage <u>20</u> est serrée (voir fiche de montage n°50 : cliquez <u>ICI</u>) sur l'Axe <u>01</u> mobile en rotation par rapport au Châssis. L'Axe <u>01</u> solidaire de la Roue d'engrenage <u>20</u> est arrêté axialement par les <u>Bossages</u> présents dans les **Flanc gauche** et **droite** du châssis du groupe moteur propulo A.

	Α	1	Groupe moteur Propulso	Voir éclaté et nomenclature pages 10 et 11
	01			Aoerzngué, 0 3 x L104
	16			Acier nickelé - Type tôle - Tête cyīndnque
	18			ABS injecté sur panoplie Propulso
19 1		1	Flanc droit du groupe moteur [Configuration Défaut]	ABS injecté sur panoplie Propulso
	20	1	Roue Droite 0,5M 48T 20PA 1,5FW [Défaut : version actuelle]	ABS injecté sur panoplie Propulso
	21	1	Vis sans fin à gauche 0,45M 1T 4,031936HA 20PA 6W (6 : coef. De longueur)	ABS injecté sur panoplie Propulso
22		1	Moteur	1,5 à 4,5 V, 0 21, axe de sortie Ø2 (Réf MOT-D21-2A)

Nomenclature:

Travail demandé: Construction sur SolidWorks du documents A-GROUPE MOTEUR PROPULSO.SLDASM

- Travail demandé : Constructi

 1 Ouvrez le document
 CHASSIS_GROUPE_MOTEUR_P
 ROPULSO.SLDASM qui se
 trouve dans le dossier Sousassemblages :
 - 1.1 Le document contient un squelette comme montré ci-
 - 1.2 Ajoutez les Flanc droit et gauche dans leur configuration « Défaut » comme montré ci-contre : le Plan1 sera le plan de symétrie du document. La Verticale est l'Axe Y.
 - 1.3 Ajoutez ensuite le document

- 1.4 Ajoutez les Vis d'assemblage 16.
- **1.5** Pour le **résultat** des figures cicontre.

Sans le Flanc doit

- 2 Créez le document AXE_DE_ROUES.SLDASM comme montré sur la figure ci-contre :
- 2.1 Ajoutez le squelette réduit à un Axe et un Plan comme montré figure ci-contre: Déduisez des relations Parents Enfants la création de ce squelette.
- 2.2 Insérez le dòcument Axe.SLDPRT <u>01</u> et fixez-le à la racine: vérifiez son alignement sur le squelette: Le **PLAN1** est un plan de symétrie comme montré sur la figure ci-contre.
- 2.3 Insérez la roue d'engrenage 20 qui doit être s'alignée sur l'axe 01 selon cette même figure...
- **2.4** Enregistrez le document dans le dossier **Sous-assemblages**.
- **3 Créez** le document ARBRE MOTEUR.SLDASM:

Plan de face

1. Origine

Plan de droite

[®] (-) Vis sans fin G Dp6 P1 44+

- 3.1 Ajoutez le document
 Axe_moteur.SLDPRT et fixez-le
 à la racine: Le document
 contient le squelette ci-contre.
- 3.2 Insérez la Vis sans fin 21 et alignez les squelettes afin de la positionner sur l'axe moteur pour le résultat ci-contre. Faites le choix des éléments des squelettes correspondants selon la coupe rappelée ci-contre.
- **3.3** Enregistrez le document dans le dossier **Sous-assemblages**.
- 4 Créez le document A-GROUPE_MOTEUR_PROPULSO. SLDASM.
- 4.1 Ajoutez le document CHASSIS_GROUPE_MOTEUR_PROP ULSO.SLDASM et fixez-le à la racine.
- 4.2 Puis ajoutez les documents ARBRE_MOTEUR.SLDASM et AXE DE ROUES.SLDASM.
- 4.3 Puis ajoutez les liaisons pivots mécaniques
- 4.31 ① Isolez l'Axe-moteur et le Palier Nylon...
- **4.32** ① Utilisez les *squelettes adéquats* présents dans les documents concernés...
- 4.4 Puis ajoutez la liaison

 Engrenage Engrenage ...
- 4.5 Enregistrez le document à la racine du dossier Votre-Propre nom_Groupe moteur propulso-A à construire.
- 5 Le correcteur doit pouvoir simuler le Réducteur à la souris .
- 6 Ajoutez une <u>Vue éclatée</u>
 simulant le
 Montage/démontage réaliste
 du Groupe moteur : rappelezvous que le Moteur reste monté.

•C

A-A

Etape n°II.2: Reconception 1 > Guidage en rotation de l'Arbre

▶ <u>Objectif</u>: Etude d'Avant-Projet de la reconception du guidage en rotation de L'axe <u>01</u> selon la figure ci-contre où le guidage de l'ensemble {axe **01**, Roue d'engrenage **20**} est réalisé par deux paliers à Roulements 23. d'ensemble le plan GROUPE_MOTEUR_PROPUL SO-A_Reconception-1.pdf donné dans le dossier Reconception-1 du dossier Ressources.

- ▶ La roue d'engrenage **20** est serrée sur l'Axe **01** mobile en rotation par rapport au Châssis = **16**, **18**, **19**}. Les entretoises **24** en appuient sur les flancs de la roue d'engrenage **20** sont *montées glissantes* sur l'Axe **01**.
- ▶ Le Châssis = {16, 18, 19} est fixe: Les documents ci-dessous possèdent les configurations « Défaut » et « Reconception 1 ». Cette dernière est dédiée au montage des roulements 23.

Données du cahier des charges cdcf 🖝

Nomenclature * en vert, les éléments impactés par la Reconception demandée.

	А	1	Groupe moteur Propulso	Voir éclaté et nomenclature pages 10 et 11
	01	1	Axe	Aoerzngué, 0 3 x L104
	16	2	Vis TC Ø2,9x6,5	Acier nickelé - Type tôle - Tête cyïndnque
	18	1	Flanc gauche du groupe moteur [Configuration Défaut]	ABS injecté sur panoplie Propulso
Reconception 1▶			[Configuration Reconception 1]	Pour montage des roulements 23
	19	1	Flanc droit du groupe moteur [Configuration Défaut]	ABS injecté sur panoplie Propulso
Reconception 1▶			[Configuration Reconception 1]	Pour montage des roulements 23
	20	1	Roue Droite 0,5M 48T 20PA 1,5FW [Défaut : version actuelle]	ABS injecté sur panoplie Propulso
	21	1	Vis sans fin à gauche 0,45M 1T 4,031936HA 20PA 6W (6 : coef. De longueur)	ABS injecté sur panoplie Propulso
	22	1	Moteur	1,5 à 4,5 V, 0 21, axe de sortie Ø2 (Réf MOT-D21-2A)
Deconception 1	23	2	Roulements à billes à contacts rigides	SKF-623
Reconception 1▶	24	1	Entretoise	ABS injecté sur panoplie Propulso

Travail demandé sur le logiciel Pyvot 0.6:

- 2. L'étude sur le logiciel **Pyvot** doit être <u>aussi proche que possible</u> des <u>solutions adoptées</u> pour le guidage en rotation étudié.
 - ▶ L'étude **Pyvot** doit permettre :
 - 1 De visualiser le roulement qui positionne axialement l'ensemble {01, 20, 23, 24} par rapport au Châssis {16, 18, 19}.
 - 2 De *visualiser* le cheminement des efforts.
 - 3 De visualiser le schéma architectural de la liaison pivot réalisée.
 - 4 De *visualiser* le **montage/démontage** des éléments.
 - 5 Enregistrez l'étude faites sous le nom de Montage.pyvot dans le dossier Etude_Pyvot.

Travail demandé sur le logiciel SolidWorks: Reconception 1

- Dbjectif: Ajoutez une
 Configuration « Reconception

 1 » au document AGROUPE_MOTEUR_PROPULSO.SL

 DASM afin qu'il affiche (comme
 montré ci-contre) le guidage en
 rotation de l'Axe 01 étudié
 précédemment sur Pyvot.
 - ▶ Suivez la *marche à suivre* suivante :
 - 1 Configurez le document CHASSISGROUPE_MOTEUR_PROPULSO.
 SLDASM > Mesurez la distance entre les deux Bossages.
 - **2** Configurez le document AXE_DE_ROUES.SLDASM:
 - **2.1** Ajoutez une **Configuration** « Reconception 1 ».
 - 2.2 Vous devrez créer l'entretoise 24 ci-contre et définir la valeur des cotes fonctionnelles marquées « ? »: Utilisez la-es mesures faites...
 - 2.3 Enregistrez l'Entretoise <u>24</u> dans le dossier **Pièces** fabriquées.

- **2.4** Insérez les Roulements **23** depuis la **Toolbox** et l'Entretoise **24** afin de les assembler.
- 2.5 Utilisez les Fonctions de réutilisation de votre travail pour dupliquer les Composants insérés.

3 Configurez le document A-GROUPE_MOTEUR_PROPULSO. SLDASM ▶ Ajoutez une Configuration « Recconception 1 » affichant la Solution étudiée.

- 4 Le correcteur doit *pouvoir simuler* le **Réducteur** à la souris ⁴.
- **5** Ajoutez une **vue éclatée** à la **Configuration** « Reconception 1 » afin de *simuler* le *montage/démontage réaliste* du **Groupe Moteur**.

Etape n°III: Annexes Fiches de fabrication

Extrait du manuel page 21 fourni en ressources ▶ RETOUR

