Parishram (2025)

Physics

Basic Mathematics

DPP: 6

Q1 $\frac{d}{dx}(\sin 30^\circ)$ is equal to

(A) $\cos 30^{\circ}$

(B) $\csc 30^{\circ}$

(C) 0

(D) $\sin 30^\circ$

Q2 If $y=4x^2-2x+4$ then find $\frac{dy}{dx}$

(A) 8x-2x

(B) 8x - 2

(C) 8x - 2 + 4

(D) 4x + 4

Q3 y=2t(3-t) then find $\frac{dy}{dt}$

(A) 6 - 8t

(B) 6 - 4t

(C) 6 + 5t

(D) None of these

Q4 If $y=x^2+4x^3-8x+4$, then find $\frac{dy}{dx}$

(A) $2x + 4x^2 - x$

(B) $2x + 12x^2 - 8$

(C) $2x + 4x^3 - 8$

(D) $2x + 12x^2 - x$

Q5 Find $rac{dv}{dt}$ at t=2 , if $v=2t^2+4t$

(A) 4

(C) 12

(D) 16

Q6 $\frac{d}{dx} \left(1 + \frac{1}{x^2} + \frac{1}{x^3} \right)$

(A) $x + \frac{1}{x^2} + \frac{1}{x^3}$ (B) $\frac{-2}{x^3} - \frac{3}{x^4}$ (C) $x - \frac{1}{x^2} - \frac{3}{x^3}$ (D) $\frac{-2}{x} - \frac{3}{x^2}$

Q7 $y = \sec x + \tan x$, value of $\frac{dy}{dx}$ is:

(A) $\sec^2 x + \tan x$

(B) $\tan^2 x + \sec x$

(C) $\sec x(\tan x + \sec x)$

(D) $\sec x(1 + \sec x)$

Q8 $\frac{d}{dx}(\sin x \csc x)$ is:

(A) $\sin^2 x - \csc^2 x$

(B) x

(C) 0

(D) 1

Q9 $\frac{d}{dx}\left(1+\frac{1}{x}+\log x+\tan x\right)=$

(A) $1 - \frac{1}{x^2} + \sec^2 x$ (B) $1 + \frac{1}{x^2} + \sec^2 x$

(C) $1 + \frac{1}{x^2} + \frac{1}{x} + \sec^2 x$ (D) $-\frac{1}{x^2} + \frac{1}{x} + \sec^2 x$

Q10 $\frac{d}{dx} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^2$ is equal to:

(B) $-1 + \frac{1}{x^2}$ (C) $1 - \frac{1}{x^2}$ (D) $x^2 - 1$

Q11 $y=\left(1-x^2\right)^{10}$, then find $\frac{dy}{dx}$

(A) $10(1-x^2)^9$

(B) $10(1-x^2)^9x^2$

(C) $-20x(1-x^2)^9$

(D) Not differentiable

Q12 If $y=\mathrm{A}\sin(kx-\omega t)$, then find $rac{dy/dx}{du/dt}$

(A) $\frac{\omega}{k}$ (B) $\frac{k}{\omega}$ (C) $\frac{-k}{\omega}$ (D) $\frac{-\omega}{k}$

Q13 If $y=\left(2-x^2\right)^4$, then find $\frac{dy}{dx}$

(A) $4ig(2-x^2ig)^3 imes (2x)$

(B) $4ig(2-x^2ig)^3$

(C) $4\left(2-x^{2}\right) imes2x$

(D) $-8x(2-x^2)^3$

Q14 If $y = \frac{x}{x+1}$ then find $\frac{dy}{dx}$ (A) $\frac{1}{(x+1)^2}$

(B)
$$\frac{x}{(1+x)^2}$$
 (C) $(x+1)^2$ (D) 1

(C)
$$(x+1)^2$$

Answer F	Key
-----------------	-----

Q1	(C)	
Q2	(B)	
Q3	(B)	

Q8	(C)
----	-----

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Video Solution:

Q2 Video Solution:

Q3 Video Solution:

Q4 Text Solution:

Here we have given $\frac{d}{dx}\left(x^2 + 4x^3 - 8x + 4\right) = 12x^2 + 2x - 8$ $\frac{d}{dx}\left(x^2+4x^3-8x+4\right)$ Apply the Sum/Di erence Rule: $(f\pm g)'=f'\pm g'$ $= \frac{d}{dx}(x^2) + \frac{d}{dx}(4x^3) - \frac{d}{dx}(8x) + \frac{d}{dx}(4)$ $\frac{d}{dx}(x^2) = 2x$ $\frac{d}{dx}(4x^3) = 12x^2$ $\frac{d}{dx}(8x) = 8$ $=2x+12x^2-8+0$ Simplify

Video Solution:

 $=12x^2+2x-8$

Hence option B is correct.

Q5 Video Solution:

Q6 Video Solution:

Q7 Video Solution:

Q8 Video Solution:

Q9 Text Solution:

have $rac{d}{dx}\left(1+rac{1}{x} ext{ln}ig(xig)+ anig(xig)
ight)=rac{- ext{ln}(x)+1}{x^2}$ $+\sec^2(x)$ $\frac{d}{dx}\left(1+\frac{1}{x}\ln(x)+\tan(x)\right)$ Simplify $1+rac{1}{x}\mathrm{ln}\Big(x\Big)+\mathrm{tan}\Big(x\Big): \ \ 1+rac{\mathrm{ln}(x)}{x}$ $+\tan\Bigl(x\Bigr)$ $=rac{d}{dx}\left(1+rac{\ln(x)}{x}+ anig(xig)
ight)$ Apply the Sum/Difference Rule: $(f\pm g)'=f'\pm g'$ $=rac{d}{dx}ig(1ig)+rac{d}{dx}\left(rac{\ln(x)}{x}
ight)+rac{d}{dx}\left(anig(xig)
ight)$ $\frac{d}{dx}(1) = 0$ $\frac{d}{dx}\left(\frac{\ln(x)}{x}\right) = \frac{1-\ln 0}{x^2}$ $\frac{d}{dx}(\tan(x)) = \sec^2(x)$

$$= 0 + \frac{1 - \ln(x)}{x^2} + \sec^2(x)$$
$$= \frac{-\ln(x) + 1}{x^2} + \sec^2(x)$$

Hence option D is correct

Video Solution:

Q10 Video Solution:

Q11 Video Solution:

Q12 Video Solution:

Q13 Video Solution:

Q14 Video Solution:

