MLT Homework 3

Ana Borovac Jonas Haslbeck Bas Haver

September 27, 2018

Question 1

Show the following monotonicity property of VC-dimension: For every two hypothesis classes if $\mathcal{H}' \subset \mathcal{H}$ then $VCdim(\mathcal{H}') \leq VCdim(\mathcal{H})$.

Solution

Let assume:

$$C' \subseteq \mathcal{H}' : \operatorname{VCdim}(\mathcal{H}') = |C'|$$

We also know:

$$C' \subseteq \mathcal{H}' \subset \mathcal{H} \implies C' \subset \mathcal{H}$$

From that we can conclude:

$$VCdim(\mathcal{H}) \ge |C'| = VCdim(\mathcal{H}') \implies VCdim(\mathcal{H}') \le VCdim(\mathcal{H})$$

Question 2

Given some finite domain set, \mathcal{X} , and a number $k \leq |\mathcal{X}|$, figure out the VC-dimension of each of the following classes (and prove your claims).

Subquestion 2.1

 $\mathcal{H}_{=k}^{\mathcal{X}} = \{h \in \{0,1\}^{\mathcal{X}} : |\{x : h(x) = 1\}| = k\}.$ That is, the set of all functions that assign the value 1 to exactly k elements of \mathcal{X} .

Solution

Claim: $\operatorname{VCdim}(\mathcal{H}_{=k}^{\mathcal{X}}) = |\mathcal{X}| - k$. Proof: Let C denote subset of \mathcal{X} such that $|C| = |\mathcal{X}| - k$.

In the "worst" case we want to label all elements of C with 0. In order to do that we need at least k elements in a set $\mathcal{X} \setminus C$. From there we can conclude that the biggest subset of \mathcal{X} which can be shattered by $\mathcal{H}_{=k}^{\mathcal{X}}$ is of size $|\mathcal{X}| - k$.

Subquestion 2.2

$$\mathcal{H}_{at-most-k} = \{h \in \{0,1\}^{\mathcal{X}} : |\{x : h(x) = 1\}| \le k \text{ or } |\{x : h(x) = 0\}| \le k\}$$
.

Question 3

Solution

Question 4

Solution