Decision Trees

- Decision trees are a simple hierarchically structured way to guide one's path to a decision.
- Decision tree learning is one of the most widely used techniques for classification.
 - Its classification accuracy is competitive with other methods, and
 - it is very efficient.
- The classification model is a tree, called decision tree.

Decision Trees Algorithm

- Employs the divide and conquer method
- Recursively divides a training set until each division consists of examples from one class
 - 1. Create a root node and assign all of the training data to it
 - 2. Select the best splitting attribute
 - 3. Add a branch to the root node for each value of the split. Split the data into mutually exclusive subsets along the lines of the specific split
 - 4. Repeat the steps 2 and 3 for each and every leaf node until the **stopping criteria** is reached

Decision Trees Algorithm

- Decision Tree algorithms mainly differ on
 - Splitting criteria
 - Which variable to split first? Information Gain
 - What values to use to split?
 - How many splits to form for each node?
 - Stopping criteria
 - When to stop building the tree Max tolerable error
 - Pruning (generalization method)
 - Pre-pruning versus post-pruning

Exercise: Decision tree to Predict 'Play'

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Question: How to Select the best splitting attribute

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	Normal	True	??

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

<u>Attribute</u>	Rules	Error	Total Error
Outlook	Sunny→No	2/5	

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

<u>Attribute</u>	Rules	<u>Erro</u>	<u>Total</u>
		<u>r</u>	<u>Error</u>
Outlook	Sunny→No	2/5	
	Overcast →yes	0/4	

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

<u>Attribute</u>	Rules	<u>Erro</u>	<u>Total</u>
		<u>r</u>	<u>Error</u>
Outlook	Sunny→No	2/5	4/14
	Overcast →yes	0/4	
	Rainy →yes	2/5	

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

<u>Attribute</u>	Rules Error		<u>Total</u>
			<u>Error</u>
Outlook	Sunny→No	2/5	4/14
	Overcast	0/4	
	→yes		
	Rainy →yes	2/5	
Temp	Hot →No	2/4	5/14
	Mild →Yes	2/6	
	Cool → Yes	1/4	
Humidity	High → No	3/7	4/14
	Normal → Yes	1/7	
Windy	False → Yes	2/8	5/14
	True →No	3/6	

Decision tree after Iteration 1 (for weather/play problem)

Decision tree after Iteration 1 (for weather/play problem)

<u>Attribute</u>	Rules	<u>Error</u>	Total Error
Temp	Hot->No	0/2	1/5
	Mild ->No	1/2	
	Cool -> yes	0/1	
Humidity	High->No	0/3	0/5
	Normal->Yes	0/2	
Windy	False->No	1/3	2/5
	True->Yes	1/2	

<u>Attribute</u>	Rules	<u>Error</u>	Total Error
Temp	Mild->Yes	1/3	2/5
	Cool->yes	1/2	
Humidity	High->No	1/2	1/5
	Normal->Yes	1/3	
Windy	False->Yes	0/3	0/5
	True-No	0/2	

Decision tree

(for weather/play problem)

Outloo k	Temp	Humidi ty	Wind y	Play
Sunny	Hot	Normal	True	YES

Predict using the model

Decision tree (for weather/play problem)

- . Not all leaves need to be pure; sometimes identical instances have different class.
- Splitting stops when data can't be split any further

Decision Tree vs Table Lookup

	Decision Tree	Table Lookup	
Accuracy	Varied level of accuracy	100% accurate	
Generality	General. Applies to all situations	Applies only when a similar case occurred before	
Frugality	Only three variables needed	All four variables are needed	
Simple	Only one or two questions asked	All four variable values are needed	
Easy	Logical, and easy to understand	Can be cumbersome to look up; no understanding of the logic behind the decision	

Decision Trees (Part 2)

Now that we have an intuitive ideas how a decision tree is constructed. Let's focus on more precisely how to create a tree.

Remember the important question in tree construction is how to pick which attributes to split the tree on. This brings up the concept of information gain and entropy

https://towardsdatascience.com/decision-tree-in-python-b433ae57fb93

https://towardsdatascience.com/enchanted-random-forest-b08d418cb411#.hh7n1co54

Decision Trees (Part 2)

Model Parameters:

- Max_depth: maximum depth of the trees
- Criterion: default is "gini", other choice is "entropy"

```
model = DecisionTreeClassifier(max_depth=3, criterion='entropy')
model = DecisionTreeClassifier(max_depth=3, criterion='gini')
```

Entropy and Information Gain

High Entropy

Mixed cases = Heterogenous
 Example: 50% boy + 50% girls

Low Entropy

- Pure cases, homogenous
- Example: 90% boy + 10% girls
- or 10% boy + 90% girls

Information Gain from splitting a dataset S into different partition V

$$Gain(S, D) = H(S) - \sum_{V \in D} \frac{|V|}{|S|} H(V)$$

Entropy formula:

$$H = -\sum p(x)\log p(x)$$

Gini Index: $G = \sum_{i=1}^{C} p(i) * (1 - p(i))$

$$G = \sum_{i=1}^{C} p(i) * (1 - p(i)) = \sum_{i=1}^{C} p(i) - p^{2}(i) = 1 - \sum_{i=1}^{C} p^{2}(i)$$

For pure class: When P(i) is 1 or 0, G = 0For mix class: When P(i) = 0.5, G = 0.5

$$730$$
 age >30
married married
yes no yes no
 13 77 90 30
 13 77 90 30
Tight = $1 - (\frac{90}{40 + 30})^2 - (\frac{30}{40 + 30})^2$
 $= 0.375$

Gini Index

Information gain is the difference in impurity before and after the split

$$Gain(S, D) = H(S) - \sum_{V \in D} \frac{|V|}{|S|} H(V)$$

$$\frac{\text{Information}}{\text{gain}} = 0.5 - (\frac{120}{240})(8.375) - (\frac{120}{240})(0.460)$$

$$= 0.0825$$

Decision Tree Algorithms

Decision-Tree	C4.5	CART	CHAID
Full Name	Iterative Dichotomiser (ID3)	Classification and Regression	Chi-square Automatic
		Trees	Interaction Detector
Basic algorithm	Hunt's algorithm	Hunt's algorithm	adjusted significance testing
Developer	Ross Quinlan	Bremman	Gordon Kass
When developed	1986	1984	1980
Types of trees	Classification	Classification & Regression	Classification & regression
		trees	
Serial implementation	Tree-growth & Tree-pruning	Tree-growth & Tree-pruning	Tree-growth & Tree-pruning
Type of data	Discrete & Continuous;	Discrete and Continuous	Non-normal data also
	Incomplete data		accepted
Types of splits	Multi-way splits	Binary splits only; Clever	Multi-way splits as default
		surrogate splits to reduce	
		tree depth	
Splitting criteria	Information gain	Gini's coefficient, and others	Chi-square test
Pruning Criteria	Clever bottom-up technique		Trees can become very large
_	avoids overfitting		. 9
Implementation	Publicly available	Publicly available in most	Popular in market research,
		packages	for segmentation

Random Forests

- Repeatedly select data from the data set with replacement and build a separate tree with each new training set. Each of these trees built will be used to make new forecast. The class label that receive the most votes becomes the predicted class for that data point
- Each tree may be a "weak" classifier and is subject to overfitting from the specific training sample dataset. However, by building not just one tree, but multiple trees for different training samples, the hope is that the combined forecast from individual "weak" classifiers may become a "strong" classifier
- This is the basic idea behind the "Ensemble methods", in which we combine multiple machine learning algorithms to obtain better predictive performance. We'll run multiple models on the data and use the aggregate predictions, which will be better than a single model alone.

Learning by doing