CSCI 5541: Natural Language Processing

Lecture 8: Contextualized Word Embeddings

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io

Different kinds of encoding "context"

- Count-based
 - o PMI, TF-IDF
- ☐ Distributed prediction-based (type) embeddings
 - Word2vec, GloVe, Fasttext

	Hamlet	Macbeth	Romeo &	Richard III	Julius	Tempest
knife	1	1	4	2		2
aog		~~	_	6	12	2
eword	2	2	7	- 5		5
love	64		135	63		12
like	75	38	34	36	34	41
1789						

Different kinds of encoding "context"

- Count-based
 - o PMI, TF-IDF
- ☐ Distributed prediction-based (type) embeddings
 - Word2vec, GloVe, Fasttext
- ☐ Distributed contextual (token) embeddings from language models
 - o ELMo, BERT, GPT
- Many more variants
 - o Multilingual / multi-sense / syntactic embeddings, etc

Types and tokens

Type: gopher 5.2 1.5 ... 0.2 0.6

Token:

- The gopher is a resident of the dry plains.
- One day, while I was out chasing a gopher, I wandered off too far.
- It's not often a team loses with stats like this.
 Gophers played very well tonight.

"gopher"

3.2 0.0 0.0 0.1

Contextualization of word representations

Static or non-contextualized representations

Contextualized representations

Language models

Contextualized word representations

Transform the representation of a token in a sentence (e.g., from a static word embedding) to be sensitive to its local context in a sentence

Stacked Bidirectional RNN trained to predict next word in language modeling task

> like like

Transformer-based model to predict masked word using bidirectional context and next sentence prediction

Stacked Bidirectional RNN trained to predict next word in language modeling task

53 85 -1 53 85 -1 21 87 7 21 87 7 like

Transformer-based model to predict masked word using bidirectional context and next sentence prediction

ELMo (Embeddings from Language Models)

- ☐ Big idea: (i) transform the representation of a word (e.g., from a static word embedding) to be sensitive to its local context in a sentence and (ii) optimized for a specific NLP task.
- ☐ Output = word representations that can be plugged into just about any architecture a word embedding can be used.

Recurrent Neural Network

RNN allow arbitrarily-sized conditioning contexts; condition on the entire sequence history.

Forward RNN

L layers

ELMo (Embeddings from Language Models)

Pre-training stage:

Train a Bi-RNN LM with L layers on unlabeled text corpora

Fine-tuning stage:

Fine-tune it for a specific task by combining RNN output across all layers

TASK	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)		
SQuAD	85.8	4.7 / 24.9%		
SNLI	88.7 ± 0.17	0.7 / 5.8%		
SRL	84.6	3.2 / 17.2%		
Coref	70.4	3.2 / 9.8%		
NER	92.22 ± 0.10	2.06 / 21%		
SST-5	54.7 ± 0.5	3.3 / 6.8%		

Types and tokens

Type: gopher 5.2 1.5 ... 0.2

Token:

- The gopher is a resident of the dry plains.
- One day, while I was out chasing a gopher, I wandered off too far.

0.6

It's not often a team loses with stats like this.
 Gophers played very well tonight.

"gopher"

5.2 1.5		0.2	0.6
---------	--	-----	-----

3.2 8.5 0.6 8.1

-2.2	2.4	:	5.2	3.4

Stacked Bidirectional RNN trained to predict

next word in language modeling task

Transformer-based model to predict masked word using bidirectional context and next sentence prediction

Attention

Incorporate structure (and parameters) into a network that captures which elements in the input we should be attending to (and which we can ignore).

$$v \in R^h$$
 6.5 2.2 -3. 9.6

Define v be a vector to be learned; think of it as an "word importance" vector. The dot product measures how similar each input vector is to that "word importance" vector.

$$v \in R^h$$
 6.5 2.2 -3. 9.6

Convert r into a vector of normalized weights that sum to 1.

$$a = softmax(r)$$

Positive / Negative

$$x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5$$

Attention vs Weights from fully-connected layer?

☐ Fully-connected layer weights W are static w.r.t the input

 \square Attention scores a are dynamic w.r.t the input context

 $\boldsymbol{\mathcal{Q}}$

Examples from Sebastian Raschka

Attention

Neural Machine Translation by Jointly Learning to Align and Translate

Hierarchical Attention Networks for Document Classification

Attention

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

BERT

☐ Transformer or self-attention based (Vaswani et al., 2017) masked language model using bidirectional context and next sentence prediction

☐ Generates multiple layers of representations for each token sensitive to its context use.

Classical (causal) language model

Consider only the left context to predict the next word (i.e., the final word in a sequence is masked)

Masked language model

Use any context (left or right) to predict a masked word

Each token in input starts represented by **token** and **position** embeddings

natural

The value for time step j at layer i is the result of attention over all time steps in the previous layer i-1

The value for time step j at layer i is the result of attention over all time steps in the previous layer i-1

At the end, we have one representation for each layer for each token

Input Length (T)

Tokenization in BERT

■ BERT uses WordPiece tokenization, which segments some morphological structure of tokens

	unwilling	un #will #ing
□ Vocabulary size: 30,000	barked	bark #ed

The

■ BERT encodes each sentence by appending a special token to the beginning ([CLS]) and end ([SEP]) of each sequence

The

Training BERT

- □ #1: Masked language modeling
 - [Mask] one word from input and try to predict that word as output
 - Maximum length = 512

Input Length (T)= 512

Training BERT

- □ #1: Masked language modeling
 - [Mask] one word from input and try to predict that word as output
 - Maximum length = 512
 - Concatenate two sentences with [SEP] token
 - More powerful than Bidirectional-RNN LM

Training BERT

- ☐ #2: Next sentence prediction
 - For a pair of sentences, predict from [CLS] representation whether they appeared sequentially in the training data

Next=True [CLS] I like natural language processing [SEP] because NLP is fun Next=False [CLS] I like natural language processing [SEP] Minnesota is cold.

o This objective turns out to be not that effective, found in RoBERTa paper (Liu et al., 2019)

L_{MLM}

$L_{MLM} + L_{NSP}$

Details of BERT training

- Deep layers
 - 12 layers for BERT-base
 - 24 layers for BERT-large
- Large representation size (768 per layer)
- ☐ Pretrained on English Wikipedia (2.5B words) and BookCorpus (800M words)

Coreference resolution with BERT

BERTology

- ☐ Hewitt et al. 2019
- Tenney et al. 2019
- ☐ McCoy et al. 2019
- ☐ Liu et al. 2019
- Clark et al. 2019
- Goldberg 2019
- ☐ Michel et al. 2019

Tenney et al. (2019), "BERT Rediscovers the Classical NLP Pipeline"

Other pretrained LMs

- BERT
- ☐ XLNet
- ALBERT
- RoBERTa
- Distilbert
- ☐ GPT-2/3
- Multilingual-BERT

https://huggingface.co/models

Summary

woman	king
5.2	1.5
0.5	0.4
-6.2	0.6

- ☐ Word embeddings can be substituted for one-hot encodings in many models (MLP, CNN, RNN, logistic regression).
- ☐ Bidirectional modeling in ELMo/BERT helps learn more context sensitive information.
- ☐ Attention gives us a mechanism to learn which parts of a sequence to pay attention to more in forming a representation of it.
- Static word embeddings (word2vec, Glove) provide representations of word types; contextualized word representations (ELMo, BERT) provide representations of tokens in context.

M

Questions

- ☐ Any caveats in pre-training and fine-tuning framework?
- Other types of self-supervision objective from unlabeled text, rather than next/masked token prediction?
- Better representation model than self-attention (previously, bi-directional RNN)?
- ☐ Scaling up the pre-training guarantees performance gain (scaling law)? Then, NLP will be solved simply by scaling?