Modelling Long-Run Relationships in Finance

Noé Debrois

June 16, 2024

Stationarity and Unit Root Testing

• Why Test for Non-Stationarity?

high R2 even if the 2

- Non-stationary series can result in spurious regressions.
- Standard asymptotic analysis assumptions are invalid if variables are not stationary. -> the "t-ratios" don't follow a t-distribution.

Two Types of Non-Stationarity: "weak form or constitute" stationarity.

- Random Walk with Drift: $y_t = \mu + y_{t-1} + u_t$
- (ut sind in both cases) • Deterministic Trend Process: $y_t = \alpha + \beta t + u_t$

Stochastic Non-Stationarity

• Model: $y_t = \mu + \phi y_{t-1} + u_t$ (where $\phi > 1$ describes explosive processes, typically ignored). We use $\phi = 1$ to characterize non-stationarity.

Impact of Shocks

- AR(1) Model: $y_t = \phi y_{t-1} + u_t \longrightarrow \text{so} \quad \forall_t = \phi \left(\phi \ \forall_{t-2} + u_{t-1} \right) + u_t$
- Three Cases:

Three Cases:

1.
$$\phi < 1$$
: Shocks die away.

2. $\phi = 1$: Shocks persist indefinitely.

3. $\phi > 1$: Shocks grow over time.

T swas hibutions leads to:

T ending Non-Stationary Series

Detrending Non-Stationary Series

For stock, non-stationally \longrightarrow Difference Stationarity: $\Delta y_t = y_t - y_{t-1} = \mu + u_t$: we induced stationally by differentiably. Deterministic Trend Stationarity: Remove deterministic trend. For deterministic Trend Stationarity: Remove deterministic trend.

"detrending"

generalization:

Jon can differentiate d times. If you I(d) then Dy v I(o) In Fi./Eco. -> usually a single unit root.
Some are stationary of consumer prices are
known to have 2 unit poots.

e 4= 0-1. we can waite: Dy+= ut + p+ lt + 4yt-1 texts based on the t-ratio on the y_{t-1} term in the estimated regression of y_t : $\frac{\hat{\psi}}{s \in \hat{\psi}} = \text{test statistic}. \longrightarrow \text{does not follow the usual t-distribution under the null (non-stat.)}.$ Lingual: comparison to carried value: He rejected if < critical value.

Testing for Unit Roots How do we test for unit noot? Dickey-Fuller Test: Tests null hypothesis H_0 : $\phi = 1$ vs H_1 : $\phi < 1$. (in $g = \phi g + u_f$) Augmented Dickey-Fuller (ADF) Test: Augments DF test to allow

for higher oxder ; lowhour to test for a fuether und root

- for autocorrelation in residuals.
- Phillips-Perron Test: Corrects DF test for autocorrelation for wirder.

until we rejected the Stationarity Tests: to cope we the fact that previous tras durde poorly when \$3.1

- KPSS Test: Tests null hypothesis H_0 : y_t is stationary vs H_1 : y_t is non-stationary.
- Compare KPSS results with ADF/PP to confirm conclusions.

Cointegration

of order (d,d)

- Definition: Series are cointegrated if a linear combination of them is stationary.
- Engle-Granger Approach: Two-step method to test and estimate cointegration relationships.
- Johansen Test: Tests for multiple cointegration relationships using a

Vector Error Correction Model (VECM).

Contegrating relationship may be seen a long-term relationship.

Error Correction Models (ECM)

• Specifying an ECM: Combines first differences and levels of variables:

$$\Delta y_t = \beta_1 \Delta x_t + \beta_2 (y_{t-1} - \gamma x_{t-1}) + u_t \tag{1}$$

• Error Correction Term: $(y_{t-1} - \gamma x_{t-1})$ is stationary if y_t and x_t are cointegrated. (I(0)) a over though the constituents are I(1).

Testing for Cointegration in Regression

- Use DF/ADF tests on residuals from cointegrating regression.
- Engle-Granger (EG) Test: Tests null hypothesis H_0 : residuals contain unit root vs H_1 : residuals are stationary.

Johansen Technique for Cointegrated Systems

• Converts VAR to VECM:

$$\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{k-1} \Delta y_{t-(k-1)} + u_t \tag{2}$$

• Johansen Test: Tests for cointegration by examining the rank of Π matrix via eigenvalues.

Practical Steps

- 1. Test for non-stationarity using ADF or similar tests. Goodle stewliked brak.
- 2. If series are I(1), test for cointegration using Engle-Granger or Johansen method.
- 3. If cointegration is found, estimate a Vector Error Correction Model.