# PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2003-078120

(43)Date of publication of application: 14.03,2003

(51)Int CI

H01L 27/14 H01L 23/02

(21)Application number: 2001-262713 (22)Date of filing: 31.08.2001

(71)Applicant : SFIKO PRECISION INC

(72)Inventor: IGARASHI SHINSUKE

TOKUMASU YOICHI

## (54) SOLID-STATE IMAGING DEVICE

(57)Abstract:

imaging element 4.

PROBLEM TO BE SOLVED: To prevent the reduction of imaging sensitivity of a solid-state imaging device due to an adhesive agent. SOLUTION: A reinforcing plate 2 is provide on one surface of a flexible wiring board 1, and a solid-state imaging element 4 is provided on the other surface thereof. The flexible wiring board 1 and reinforcing plate 2 are provided with openings 1b and 2a respectively that form optical paths between the solid- state imaging element 4 and an optical device unit 3. The opening 1b is made smaller in area than the opening 2a, and the inner circumference end surface of the opening 1b is formed inward than that of the opening 2a. An adhesive agent 6 is interposed between the flexible wiring board 1 and solid-state imaging element 4, and the adhesive agent 6 reaches the inner circumference end surface of the opening 1b through its capillary phenomenon. However, the inner circumference end surfaces of the opening 1b and reinforcing plate 2 are not on the same plane, so that the adhesive agent 6 does not reach the reinforcing plate 2. Therefore, the adhesive agent 6 forms a small slope. and it hardly reaches the light reception part 4a of the solid-state





## (19) 日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-78120 (P2003-78120A)

(43)公開日 平成15年3月14日(2003.3.14)

| (51) Int.Cl.7 |       | 識別記号 | FI   |       | 5 | f-71-}*(参考) |
|---------------|-------|------|------|-------|---|-------------|
| H01L          | 27/14 |      | H01L | 23/02 | В | 4M118       |
|               | 23/02 |      |      |       | F |             |
|               |       |      |      | 27/14 | D |             |

|          |                             | 審查請求                          | 未請求 請求項の数2 OL (全 4 頁) |  |
|----------|-----------------------------|-------------------------------|-----------------------|--|
| (21)出願番号 | 特願2001-262713(P2001-262713) | (71)出願人                       | 396004981             |  |
|          |                             | -                             | セイコープレシジョン株式会社        |  |
| (22)出顧日  | 平成13年8月31日(2001.8.31)       | 日(2001.8.31) 千葉県習志野市茵浜一丁目1番1号 |                       |  |
|          |                             | (72)発明者                       | 五十嵐 晋祐                |  |
|          |                             |                               | 千葉県習志野市茜浜一丁目1番1号 セイ   |  |
|          |                             |                               | コープレシジョン株式会社内         |  |
|          |                             | (72)発明者                       | 徳増 洋一                 |  |
|          |                             |                               | 千葉県晋志野市茜浜一丁目1番1号 セイ   |  |
|          |                             |                               | コープレシジョン株式会社内         |  |
|          |                             | (74)代理人                       | 100067105             |  |
|          |                             |                               | 弁理士 松田 和子             |  |
|          |                             | Fターム(参                        |                       |  |
|          |                             | 1 2 24(8)                     | HA27 HA31             |  |
|          |                             |                               | Inci moi              |  |
|          |                             |                               |                       |  |

## (54) 【発明の名称】 固体操像装置

## (57)【要約】

【課題】 接着剤による固体撮像素子の撮像感度の低下 を防止する。

【解決手段】 フレキシブル配線基板1の片面には補強 板2が、他面には固体撮像素子4が設けられ、フレキシ ブル配線基板1および補強板2には、固体振像素子4と 光学機器ユニット3との間の光路を形成する開口部1 b. 2 a が設けられている。間口部 2 a よりも開口部 1 bの開口面積が小さく設定され、開口部2 aの内周端面 よりも開口部 1 bの内周端面が開口内側に位置してい る。フレキシブル配線基板1と固体振像素子4との間に は接着剤6が介在しており、接着剤6は毛管現象により 開口部1bの内周端面まで至るが開口部1bの内周端面 と補強板2の内周端面とは面一ではないので補強板2に は達することはない。このため、接着剤6は小さな裾野 6 a を形成し、固体撮像素子4の受光部4 a まで接着剤 6が達することはない。





### 【特許請求の範囲】

[請求項1] フレキシブル配線基板の片面には固体操 像素子が搭載されており、前記フレキシブル配線基板の 他面には当該フレキシブル配線基板の挽みを防止する補 被板が接合されるとともに、前配補強板を介して光学機 器ユニットが格載されており、

前記フレキシブル配線基板および前記補強板には前記固 体撮像素子と前記光学機器ユニットとの間の光路を形成 する開口部が設けられており、

前記フルキシブル配線基板に設けられている前記開口部 の内周端面は前記補強板に設けられている前記開口部の 内周端面よりも開口内側に位置することを特徴とする固 休損像基置。

[請求項2] 請求項1において、前記プレキシブル配 総基板に設けられている前記開口部と前記補強板に設け られている前記開口部とは、同心的に位置することを特 徴とする固体操像装置。

## 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、固体撮像素子と光 20 学レンズとを備えた固体振像装置に関し、更に詳しく は、装置の小型化に適した高性能な固体振像装置に関す るものである。

### [0002]

【従来の技術】従来の固体撮像装置には、薄型化、小型 化を実現するためにポリイミド等により形成されている 厚さ約0.025mmのフィルム材料を使用したフレキ シブル配線基板(以下、FPCと呼ぶ。)を採用し、こ のFPCの表面側に光学レンズやレンズ鏡筒等の光学機 器ユニットを裏面側に固体撮像素子を設けているものが 30 ある。図3に示すように、FPC31の表面にはFPC 31の撓みを防止するための厚さ約0.4mmの補強板 3.2が接着創等で接合固着して設けられており、FPC 31の裏面には配線パターン31aが設けられている。 配線パターン31aと対向する位置には固体損傷素子3 4がフリップチップ電極35を介して設けられている。 【0003】FPC31と固体振像素子34との間は約 0. 07 mm間隔があり、ここに接着剤36が介在され てFPC31からの固体撮像素子34の脱落を防止して いる。補強板32およびFPC31にはそれぞれ開口部 40 32a、31bが設けられ、図示しない光学機器ユニッ トと固体撮像素子34との間の光路を形成して、光学機 器ユニットを通過した光を固体撮像素子34の受光部3 4 a に入射可能にしている。

[0004] 従来、FPC31の開口部1bと構築板3 2の開口部32aとは実質的に同じ大きさに形成され、 開口部32aおよび開口部31bの内関婚面は面一となっている。このため、接着約36は毛管現象によって補金板32の開口部32a内周婚面にまで至り、開口部32a、31bの内陽極面における接着剤6の厚さは、 F P C 3 1 と固体撮像素子 3 4 との間の間隔約0.0 7 mmにF P C 3 1 の厚さ0.025 mmと補強販 3 2 の 厚さ0.4 mmを加えた合計約1.4 mmにもなり、大きな裾野 3 6 a を形成していた。

【発明が解決しようとする課題】上記のように、固体振

## [0005]

像素子34の脱落防止のために接着剤36を設けると、 毛管現象によって大きな裾野36aが形成されていた。 受光部34aの外側からFPC31の期口部31bの内 周幅面までの間隔は場所によって異なるが0.2~0. 7mmあるが、裾野36aが大きいため、裾野36aが 受光部34aまで達してしまい、受光部34aでの結像 が接着剤36により阻害されて固体損像素子34の損像

感度の低下が発生してしまう問題があった。

## [0006]

(課題を解決するための手段) 本発明に係る関係場像集 面では、フレキシブル配線基板の片面には固体規像素子 が搭載されており、フレキシブル配線基板の他面には当 該フレキシブル配線基板の携みを防止する補強板が接合 されるとともに、補強板を介して光学機器ユニットが搭 載されており、フレキシブル配線基板は大砂 る開口部が設けられており、フレキシブル配線基板 が自口部が設けられており、フレキシブル配線基板 が自口部の内層端面は対象板に設めれている開口部の内層端面は排数板に設けられている 同口のの内層端面はりも開口内側に位置するようにしている。また、好ましくはプレキシブル配線基板に設け られている開口部と補強板に設けられている間口部と は、同心的に位置するのがより、 に、同心的に位置するのがより、 に、同心的に位置するのがより、 に、同心的に位置するのがより、 に、同心的に位置するのがより、

### [0007]

[発明の実施の形態] 本発明の実施の形態を実施例にも とづき、図面を参照して説明する。図1に固体撮像装置 の全体を示す。光学機器ユニット3は、レンズ32等の 光学機器を保持するもので、レンズホルダ31にレンズ 32が保持され、レンズホルダ31の上面から上方に突 出した連結片31aにレンズ押え33の凹部33aが嵌 合係止されてレンズホルダ31とレンズ押え33との間 にレンズ32が脱出不能に挟持固定されている。レンズ 押え33には絞り部33bが設けてある。レンズホルダ 31の外周部には円筒部31bが下方に突出して設けて あり、円筒部31bの内周面には雌ねじ部31cが形成 されている。ホルダ34には赤外線カットフィルタ35 が保持固定されている。ホルダ34の上面には円筒部3 4 aが上方に突出して設けてあり、円筒部34aの外周 面に、雌ねじ部31cに螺合する雄ねじ部34bが形成 してある。雌ねじ部31 cと雄ねじ部34 bとの螺合量 を調整することで、レンズ32と受光部2aとの間の距 離を調整することができ、所謂ピントの合わせ込みが可 能である。ホルダ34の底部内間にはその全周に買って 講部34cが設けられている。講部34cには接着剤3 6が充填され、この接着剤36によって、ホルダ34が 補強板2に固定されている。

【0008】補強板2は、厚さが約0.4mmのアルミ 等の金属板で形成されて、FPC1の裏面(図2中上側 の面) に接着創等で接合固着されており、FPC1の撓 **み防止用となっている。FPC1はポリイミド等により** 形成されているフィルム材料を使用した厚さ約0.02 5 mmのフレキシブル配線基板であり、表面(図2に示 された FPC1の下側) には、FPC1 上の素子に導通 する配線パターン1 aが形成されているとともに固体撮 優素子4がフリップチップ電板5を介して配線パターン 10 1 a と導通するように搭載されている。 FPC1 と固体 撮像素子4との間は約0.07mm間隔があり、フリッ プチップ電板5のみでは取り付け強度が弱いため、この 間隔に接着剤6が介在されてFPC1からの固体撮像素 子4の脱落を防止している。接着剤6は固体撮像素子4 の全層に亘って設けられている。接着剤6としては、粘 度16.5pa·s (25°C) のものが用いられてい る。

【0009】FPC1および補強板2には、固体振像素 子4と光学機器ユニット3との間の光路を形成する開口 20 部1 h. 2 a が設けられており、レンズ32を透過した 光が開口部1b,2aを通して固体撮像素子4の受光面 4 a に入射可能となっている。開口1a、2 a は同心的 に位置しており、その形状は矩形状に閉じた形状となっ ている。

【0010】そして、補強板2の開口部2aとFPC1 の開口部1 b とを比べると、FPC1の閉口部1 b が補 強板2の開口部2aよりも開口面積が小さく設定され、 その開口中心からの距離が補強板2の開口部2aよりも 0. 15mm短くなっている。すなわち、図2に示すよ 30 うにFPC1の間口部1bの内層端面が補強板2の閉口 部2aの内周端面よりも固体振像素子4の受光部4aに 1.5 mm接近し、補職板2の開口部2aとFPC1 の開口部1 bとの間に段差部7が形成されている。受光 部4aとFPC1の閉口部1bの内間端面との間隔aは 場所によって異なるが0.2~0.7mmとなる。接着 剤6は、毛管現象によってFPC1の開口部1bの内周 端面にまで至り裾野 6 a を形成する。しかしながら、段

差部7により接着剤6が補強板2に達することはない。 このため、開口部1bにおける接着剤6の厚さは、FP C1と固体撮像素子4との間隔約0.07mmとFPC 1の厚さ約0.025mmとの合計約0.1mmとな り、接着剤6の厚さが十分薄くなっているので、裾野6 aが小さく形成される。このため、裾野6aは受光部4 aに届かない程度の十分に小さなものとなっている。 【0011】FPC1の開口部1bの内周端面を補強板 2の開口部2aの内周端面よりも受光部4aに近づけて FPC1と補強板4とで段差部7を形成したため、開口 部1bの内側での接着剤6の厚みが薄くなり、これによ り接着剤6の裾野6aが小さくなって接着剤6が固体振 像素子4の受光部4aに達することはない。このため、 受光部4 a での結像に接着剤6が悪影響を与えて固体振 像素子4の撮像感度が低下することはない。なお、本実 施例では開口部1bの形状を矩形に閉じた形状とした が、これに限らず、一辺がオープンになっている切り欠 き形状とするようにしてもよく、また円形とするように

## してもよい。 [0012]

【発明の効果】以上説明したように本発明では、フレキ シブル配線基板の開口部の内周端面が補強板の開口部の 内周端面よりも開口内側に位置するので、フレキシブル 配線基板と固体撮像素子との間に接着剤を介在させて も、接着剤の影響を受けて撮像感度が低下することがな w.

#### 【図面の簡単な説明】

【図1】本発明が適用された固体撮像装置の断面図であ

- 【図2】本発明の要部拡大断面図である。 【図3】従来の固体撮像装置の要部拡大断面図である。 【符号の説明】
  - フレキシブル配線基板
- 1 b 間口部

2

- 2 a 開口部
- 補強板 3 光学機器ユニット
- 固体楊像素子

[図2]







[図3]

