Unsupervised Learning Clustering-K Means

• dataroadmap مدرس: مونا حاتمی

یادگیری بدون نظارت

در یادگیری بدون نظارت نیاز به آموزش دادن مدل وجود ندارد و ما اجازه میدیم مدل به خودی خود رابطه بین دیتاهای موجود رو کشف کند.

پس درالگوریتم های یادگیری نیازی به دیتاست ترین (train dataset) نداریم یا به عبارتی دیگر نیازی به لیبل کردن دیتا (y), نداریم.

Customer Segmentation

جداسازی مشتری

Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
1	41	2	6	19	0.124	1.073	NBA001	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

AMBY

960

9300

Clustering

Clustering

	خوشه بندی -
Cluster	Segment Name
cluster-1	AFFULUENT AND MIDDLE AGED
cluster-2	YOUNG EDUCATED AND MIDDLE INCOME
cluster-3	YOUNG AND LOW INCOME

Clustering

خوشه بندي

								DebtIncomeRatio	
Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Address	DebtIncomeRatio	Defaulted
1	41	2	6	19	0.124	1.073	NBA001	6.3	0
2	47	1	26	100	4.582	8.218	NBA021	12.8	0
3	33	2	10	57	6.111	5.802	NBA013	20.9	1
4	29	2	4	19	0.681	0.516	NBA009	6.3	0
5	47	1	31	253	9.308	8.908	NBA008	7.2	0
6	40	1	23	81	0.998	7.831	NBA016	10.9	1
7	38	2	4	56	0.442	0.454	NBA013	1.6	0
8	42	3	0	64	0.279	3.945	NBA009	6.6	0
9	26	1	5	18	0.575	2.215	NBA006	15.5	1

Customer ID	Segment
1	YOUNG AND LOW INCOME
	AFFULUENT AND MIDDLE AGED
3	AFFULUENT AND MIDDLE AGED
4	YOUNG AND LOW INCOME
5	AFFULUENT AND MIDDLE AGED
	AFFULUENT AND MIDDLE AGED
7	YOUNG AND LOW INCOME
8	YOUNG AND LOW INCOME
9	AFFULUENT AND MIDDLE AGED
dati	arosquan

Clustering vs Classification

AMILION

480

Clustering Applications

- RETAIL/MARKETING:
 - Identifying buying patterns of customers
 - Recommending new books or movies to new customers
- BANKING:
 - Fraud detection in credit card use
 - Identifying clusters of customers (e.g., loyal)
- INSURANCE:
 - Fraud detection in claims analysis
 - Insurance risk of customers

Clustering Algorithms

- Partitioned-based Clustering
 - · Relatively efficient
 - E.g. k-Means k-Median, Fuzzy c-Means
- Hierarchical Clustering
 - · Produces trees of clusters
 - E.g. Agglomerative, Divisive
- Density-based Clustering
 - Produces arbitrary shaped clusters
 - E.g. DBSCAN

Distance Formula

محاسبه فاصله دو نقط 1-dimensional similarity/distance

Customer 1
Age
54

Customer 2
Age
50

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

Dis
$$(x_1, x_2) = \sqrt{(54 - 50)^2} = 4$$

Distance Formula

Multi-dimentional similarity/distance

Customer 1					
Age	Income	education			
54	190	3			

Customer 2						
Age	Income	education				
50	200	8				

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

= $\sqrt{(54 - 50)^2 + (190 - 200)^2 + (3 - 8)^2} = 11.87$

k_Mean

k-Means clustering – initialize k

1) Initialize k=3 centroids randomly

 $C_1 = [8., 5.]$ $C_2 = [5., 5.]$ $C_3 = [6., 3.]$

K- Means clustering- calculate the distance

K- Means clustering- assign to centroid

3) Assign each point to the closest centroid

K- Means clustering- assign to centroid

3) Assign each point to the closest centroid

K- Means clustering- new centroids

4) Compute the new centroids for each cluster.

K- Means clustering- new centroids

k_Mean

k_Mean

k-Means clustering – repeat

5) Repeat until there are no more changes.

SSE = the sum of the squared differences between each point and its centroid.

$$SSE = \sum_{1}^{n} (x_i - C_j)^2$$

Choosing a K Value

Elbow Method

SSE = the sum of the squared differences between each point and its centroid.

$$SSE = \sum_{i=1}^{n} (x_i - C_j)^2$$

gsmi

Input Libraries

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

dataroadmak

```
M df=pd.read_csv('data_for_kmean.csv')
```

Open dataframe

```
M df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 200 entries, 0 to 199
      Data columns (total 2 columns):
          Column
                       Non-Null Count Dtype
           Feature 1 200 non-null
                                       float64
                                       float64
          Feature 2 200 non-null
      dtypes: float64(2)
      memory usage: 3.2 KB
t[4]:
           Feature 1 Feature 2
         0 -6.428841 10.141117
         1 5 8 6 8 6 7 9 5 2 0 1 1 0 4
         2 -0.376109 3.264279
         3 2.166792 9.563005
```

Scatter Plot

```
■ sns.scatterplot(x=df["Feature 1"], y=df["Feature 2"])
5]: <AxesSubplot:xlabel='Feature 1', ylabel='Feature 2'>
         10
          5
     Feature 2
        -5
       -10
                     -10
                                                  5
                                Feature 1
```

```
kmeans.labels
]: array([2, 0, 3, 0, 0, 1, 0, 3, 0, 3, 2, 3, 0, 0, 2, 3, 0, 3, 1, 2, 1, 3,
          3, 1, 2, 1, 1, 3, 0, 0, 2, 1, 0, 3, 3, 2, 1, 1, 1, 3, 1, 2, 2, 2,
          3, 0, 2, 3, 1, 3, 3, 2, 0, 3, 1, 2, 3, 3, 2, 0, 1, 0, 1, 2, 0, 3,
          1, 0, 0, 1, 0, 3, 1, 3, 1, 0, 0, 3, 2, 3, 3, 1, 0, 1, 3, 3, 3, 2,
          3, 1, 1, 1, 1, 3, 3, 1, 0, 2, 1, 0, 3, 1, 3, 3, 0, 3, 1, 0, 1, 1,
          0, 2, 2, 0, 1, 0, 2, 2, 0, 2, 3, 2, 3, 2, 3, 0, 2, 3, 1, 2, 2, 2,
          3, 1, 1, 2, 0, 2, 0, 3, 1, 0, 1, 2, 2, 0, 3, 1, 2, 2, 2, 2, 3, 0,
          3, 2, 0, 0, 0, 3, 0, 3, 3, 2, 1, 2, 3, 0, 2, 3, 0, 3, 2, 0, 3, 2,
          0, 0, 1, 0, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 0, 0, 2, 1, 3, 0, 0,
          1, 3])
    kmeans.cluster centers
     array([[ 3.71749226, 7.01388735],
            [-9.46941837, -6.56081545],
            [-4.13591321, 7.95389851],
            [-0.0123077 , 2.13407664]])
```

```
    df_k=df

                                           dataroadmap
```

df_k['Lable(K=4)']=kmeans.labels_

df_k

	н	
	ü	

	Feature 1	Feature 2	Lable(K=4)
0	-6.428841	10.141117	2
1	5,868679	5.201104	0
2	-0.376109	3.264279	3
3	2.166792	9.563005	0
4	5.095086	7.207527	0

Scatter Plot

-5

-10

-15

-10

-5

Feature 1

5

KMean for k=2

5.868679 5.201104

3

Scatter Plot

```
sns.scatterplot(data=df_k, x='Feature 1',y='Feature 2',hue='Lable(K=2)',palette='tab10')
20]: <AxesSubplot:xlabel='Feature 1', ylabel='Feature 2'>
```


Scatter Plots

```
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,6))
ax1.set_title('K Mean(K=4)')
ax1.scatter(x=df_k['Feature 1'],y=df_k['Feature 2'],c=df_k['Lable(K=4)'], cmap='tab10')
ax2.set_title('K Mean(K=3)')
ax2.scatter(x=df_k['Feature 1'],y=df_k['Feature 2'],c=df_k['Lable(K=2)'],cmap='tab10')
```

11]: <matplotlib.collections.PathCollection at 0x1cc75a17a90>


```
M from sklearn.datasets import make_blobs
  H # Create Data
    data = make_blobs(n_samples=200, n_features=2,
                               centers=4, cluster_std=1.8, random_state=101)
    data
15]:
     (array([[-6.42884095e+00, 1.01411174e+01],
              5.86867888e+00, 5.20110356e+00],
             [-3.76109375e-01, 3.26427943e+00],
              2.16679181e+00, 9.56300522e+00],
              5.09508570e+00, 7.20752718e+00],
             [-1.08788882e+01, -6.11318040e+00],
```

```
type(data)
4]: tuple
    len(data)
7]: 2
                          dataroadmaP
```

```
data[0]
array([[-6.42884095e+00,
                         1.01411174e+01],
       [ 5.86867888e+00, 5.20110356e+00],
       [-3.76109375e-01, 3.26427943e+00],
 type(data[0])
 numpy.ndarray
 len(data[0])
 200
```

```
data[1]
t[36]: array([3, 2, 0, 2, 2, 1, 2, 0, 2, 0, 3, 0, 2, 2, 3, 0, 2, 0, 1, 3, 1, 0,
             0, 1, 3, 1, 1, 0, 2, 2, 3, 1, 2, 0, 0, 3, 1, 1, 1, 2, 1, 3, 3, 3,
             0, 3, 3, 0, 1, 2, 0, 3, 2, 0, 1, 3, 0, 0, 3, 2, 1, 2, 1, 3, 2, 0,
             1, 2, 2, 1, 2, 0, 1, 3, 1, 2, 2, 0, 3, 0, 0, 1, 2, 1, 0, 0, 0, 3,
             2, 1, 1, 1, 1, 3, 0, 1, 2, 3, 1, 2, 0, 1, 0, 0, 2, 0, 1, 2, 1, 1,
             0, 3, 3, 2, 1, 2, 3, 3, 2, 3, 0, 3, 0, 3, 0, 2, 3, 0, 1, 3, 3, 3,
             0, 1, 1, 3, 2, 3, 2, 0, 1, 2, 1, 3, 3, 2, 0, 1, 3, 3, 3, 3, 0, 2,
             0, 3, 2, 2, 2, 0, 2, 0, 0, 3, 1, 3, 0, 2, 3, 0, 2, 0, 3, 3, 0, 3,
             2, 2, 1, 2, 3, 1, 1, 3, 1, 1, 1, 1, 1, 0, 1, 2, 2, 3, 1, 0, 2, 2,
             1, 0])
   ▶ data[0][1]
t[37]: array([5.86867888, 5.20110356])
```

```
M data[0][:,0]
ut[33]: array([-6.42884095e+00, 5.86867888e+00, -3.76109375e-01, 2.16679181e+00,
                5.09508570e+00, -1.08788882e+01, 2.03405554e+00, -1.71798771e+00,
                1.16911341e+00, -1.35185444e+00, -6.18548214e+00, -1.19856602e+00,
                2.90296863e+00, 2.39250023e+00, -5.27545147e+00, -5.66814687e-01,
                5.97336628e+00, -2.31355268e+00, -1.01344756e+01, -4.54082629e+00,
               -1.04155833e+01, 6.64796693e-01, 2.11460477e+00, -1.11790221e+01,
               -6.63698251e+00. -7.67422005e+00. -7.98668260e+00. 1.27983684e+00.
                3.54480244e+00, 4.03940181e+00, -2.88118898e+00, -9.11009911e+00,
                5.26001172e+00, 2.05859724e+00, -1.71289834e+00, -5.40562319e+00,
               -1.11995123e+01, -1.13753641e+01, -1.17821836e+01, 1.74815503e+00,
               -9.00392334e+00, -2.86564584e+00, -1.42742293e+00, -3.10933432e+00,
                2.71130095e-01, 8.21556561e-01, -4.11495481e+00, 1.55414928e+00,
               -1.16546211e+01, -1.22009637e+00, 3.22017630e+00, -5.40452892e+00,
                6.02795351e+00, 4.02600451e-01, -7.38985009e+00, -1.60537707e+00,
                8.72770362e-01, 1.03445241e+00, -3.88943018e+00, 3.16835529e+00,
               -8.07309689e+00, 9.16131646e-01, -7.39648298e+00, -1.71632701e+00,
                2.71396283e+00, -2.16570885e+00, -1.19474369e+01, 4.89539219e+00,
                2.86177832e+00, -9.15392597e+00, 2.03477094e+00, 7.56601080e-01,
                -8.84039494e+00, -3.02650610e+00, -8.88037875e+00, 5.20737777e+00,
     H data[0][:,1]
```

```
ut[34]: array([ 10.14111739,
                            5.20110356,
                                         3.26427943,
                                                        9.56300522,
                7.20752718, -6.1131804, 9.76664755,
                                                        1.4140114 .
                8.24556988, 3.13245345, 9.67406555,
                                                        2.50408937.
                7.91251003, 5.38173971, 9.63836659,
                                                        0.05602628,
                5.87172022, 0.52398009, -3.43130837, 11.39201739,
               -5.67545836, 0.09423047,
                                         3.55938488,
                                                       -9.30976605.
                6.39426436, -7.26839654, -9.57113308,
                                                        0.35315078,
                7.93535678, 4.88870433,
                                         9.12919391,
                                                       -7.6978166 ,
                4.74007434, -2.44083039,
                                          2.51221197,
                                                        7.47228315,
               -2.55276744. -4.94525091. -9.50883007.
                                                        2.05595679.
```

```
    df_dict={'Feature 1':data[0][:,0],'Feature 2':data[0][:,1]}
```

```
★ final_df=pd.DataFrame.from_dict(df_dict)
```

Elbow Method

14010.228683268439

```
k=1

kmeans = KMeans(n_clusters=k)

kmeans.fit(df)

KMeans
KMeans
KMeans(n_clusters=1)
kmeans.inertia_
```

SSE = the sum of the squared differences between each point and its centroid.

$$SSE = \sum_{1}^{n} (x_i - C_j)^2$$

for loop

```
for k in range(1, 10):
    kmeans = KMeans(n_clusters=k)
    kmeans.fit(df)
    sse[k] = kmeans.inertia_ # Inertia: Sum of distance
```

sse

```
[78]: {1: 14010.228683268439,
2: 4788.049576608008,
3: 3241.7230990171934,
4: 2186.5336916907268,
5: 1726.3707402813363,
6: 1328.7298595220077,
7: 1059.0967616238315,
8: 805.4078760179675,
9: 677.7041091263894}
```

Plot

```
plt.plot(list(sse.keys()), list(sse.values()))
      plt.xlabel("Number of cluster")
      plt.ylabel("SSE")
80]: Text(0, 0.5, 'SSE')
         14000
         12000
         10000
          8000
          6000
          4000
          2000
                                                7
                                                     8
                     5
                          à
                                     5
                               Number of cluster
```

Assignment:

تمرین:

کدهای ارائه شده در درس را بررسی و اجرا کنید.

برای خود یک دیتاست فیک بسازید و با استفاده از K-Mean دسته بندی کنید.