

SH61F83

Low Speed USB Micro-controller

Features

- 8-bit CMOS Micro-Processor (uP) core
 - Instruction set is compatible with standard 8051
 - Build-in 6MHz RC Oscillator for USB and MCU
- Memory
 - 14K Bytes MTP (Multiple Times Programmable) Rom, endure 8 write/erase cycles
 - The last 16 bytes (37F0H-37FFH) are reserved and not supposed to be used
 - 256 bytes internal data memory
- Operation voltage 4.4V 5.25V
- One set of Time Capture Circuit (Rising and Falling edge)
- Build-in 32KHz oscillator for programmable wake up timer
- 3.3V regulator output
 - Maximum driving current 20mA
- Up to 37 general purpose I/O ports in 48 pin QFN package
- Interrupt
 - 11 vectors interrupt structure
 - 2 programmable priority levels
- Two 8-Bit auto-reloadable Base Timer

- USB Specification Compliance
 - Complies with USB specification 1.1
 - Support one Low-Speed USB Device Address with 3 endpoints (endpoint 0, 1, and 2)
 - Built-in 1.5Kohms USB pull-up resistor
- Built-in Watch Dog Timer (WDT)
- Two blue LED port
- Reset
 - Hardware reset
 - External reset, Power-on reset, Low-voltage reset
 - USB reset
 - Watch-Dog reset
 - Resume reset
- Two power-reducing modes:
 - Idle mode
 - Power-Down mode
- Package:
 - 52 pad Chip Form
 - 48 pin QFN (6 X 6)

General Description

The SH61F83 is designed for high performance, high integrated Low-speed USB devices and capable of USB In-System-Programming. It contains an 8051 micro-controller, Low-Speed USB SIE, Transceiver and data FIFO, build-in 3.3V regulator, on-chip 14K bytes MTP program memory and internal 256 bytes data memory, Two 8-Bit auto-reloadable Base Timer, programmable Watch-dog timer and Wake-up timer, 37 selectable GPIO in 48 pin QFN package, build-in 6MHz oscillator to eliminate external crystal, POR and LVR circuit saving your external components cost. The SH61F83 is a highly integrated MCU designed for cost effective applications. Application can cover such items as Keyboards and others.

1

V2.0

Pin Configuration

SH61F83 48-Pin (QFN) Package

Pad Configuration

Block Diagram

Pin and Pad Description

PIN No.	PAD No.	Designation	I/O	Description
1	1	P46/VDM/EXT0	I/O	Bi-directional I/O pin shared with VDM
2	2	P30	I/O	Bi-directional I/O pin
3	3	P31	I/O	Bi-directional I/O pin
4	4	P32	I/O	Bi-directional I/O pin
5	5	P33	I/O	Bi-directional I/O pin
6	6	P34	I/O	Bi-directional I/O pin
7	8	P35	I/O	Bi-directional I/O pin
8	9	P36/BLED0	I/O	Bi-directional I/O pin
9	10	P37/BLED1	I/O	Bi-directional I/O pin
10	11	RSTB	I	For external Reset Input with 55k (RRST) Ohm pull high resistance
11	12	P00	I/O	Bi-directional I/O pin
12	13	P01	I/O	Bi-directional I/O pin
13	14	P02	I/O	Bi-directional I/O pin
14	15	P03	I/O	Bi-directional I/O pin
15	-	NC	-	-
16	16	P04	I/O	Bi-directional I/O pin
17	17	P05	I/O	Bi-directional I/O pin
18	18	P06	I/O	Bi-directional I/O pin
19	19	P07	I/O	Bi-directional I/O pin
20	21	P10	I/O	Bi-directional I/O pin
21	22	P11	I/O	Bi-directional I/O pin
22	23	P12	I/O	Bi-directional I/O pin
23	24	P13	I/O	Bi-directional I/O pin
24	25	P14	I/O	Bi-directional I/O pin
25	-	NC	-	-
26	26	P15/TC0	I/O	Bi-directional I/O pin
27	27	P16	I/O	Bi-directional I/O pin
28	28	P17	I/O	Bi-directional I/O pin
29	29	P20	I/O	Bi-directional I/O pin
30	30	P21	I/O	Bi-directional I/O pin
31	31	P22	I/O	Bi-directional I/O pin
32	33	P23	I/O	Bi-directional I/O pin
33	34	P24	I/O	Bi-directional I/O pin
34	35	P25	I/O	Bi-directional I/O pin
35	36	P26	I/O	Bi-directional I/O pin
36	37	P27	I/O	Bi-directional I/O pin
37	38	P40/LED0	I/O	Bi-directional I/O pin
38	39	P41/LED1	I/O	Bi-directional I/O pin
39	40	P42/LED2	I/O	Bi-directional I/O pin
40	41	V18	Р	Regulator output (+1.8V)
41	42, 43	V_{DD}	Р	Power supply (5V)
42	-	NC	-	-
43	-	NC	-	-
44	44, 45	GND1	Р	Ground
45	46	GND2	Р	Ground
46	47, 51	V33	Р	Regulator output (+3.3V)
47	-	NC		-
48	52	P45/VDP	I/O	Bi-directional I/O pin shared with VDP

Functional Description

1. Memory

1.1. Memory Allocation

There are 14K bytes Program Memory and 256 bytes Data Memory. The last 16 bytes (37F0H-37FFH) of Program Memory are reserved and not supposed to be used .These features are described as followed.

1.2. Program Memory

The SH61F83 embeds 14K Bytes (0000H - 37EFH) on-chip program memory for program code. The program memory provides electrical erasure and programming.

1.3. Data Memory

The SH61F83 provides additional Bytes of RAM space for increased data parameter handling, high level language usage. The SH61F83 has internal data memory that is mapped into three separate segments.

The Three segments are

- 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
- 2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
- 3. The Special Function Registers (SFR, addresses 80H to FFH) are directly addressable only.

The Upper 128 bytes of RAM occupy the same address space as SFR, but they are physically separate from SFR space. When an instruction accesses an internal location above address 7Fh, the CPU can distinguish whether to access the upper 128 bytes data RAM or to access SFR by different addressing mode of the instruction. Note the unused address is unavailable in SFR. The Internal RAM configuration is shown as below:

Figure 1-1. SH61F83 Program/Data Memory Map

1.4. Registers

								Svs	tem Regis	sters					
Address	Name		Init.		R/W	Bit7	Bit6		Bit5		3it4	Bit3	Bit2	Bit1	Bit0
00E0H	ACC		00H		R/W	ACC.	7 ACC.	6	ACC.5	A	CC.4	ACC.3	ACC.2	ACC.1	ACC.0
00F0H	В		00H		R/W	B.7	B.6		B.5		B.4	B.3	B.2	B.1	B.0
00D0H	PSW		00H		R/W	CY	AC		F0	F	RS1	RS0	OV	0	Р
0081H	SP		07H		R/W	SP7		i	SP5		SP4	SP3	SP2	SP1	SP0
0082H	DPL		00H		R/W	DPL7			DPL5	_	PL4	DPL3	DPL2	DPL1	DPL0
0083H	DPH		00H		R/W	DPH			DPH5	_	PH4	DPH3	DPH2	DPH1	DPH0
						L	Idle and Po								
Address	Name		Init.		R/W	Bit7			Bit5		3it4	Bit3	Bit2	Bit1	Bit0
0087H	PCON	0	000000	00B	R/W	0	0		0		0	0	0	PD	IDL
008EH	SUSLO		00H		R/W	SUSL	7 SUSL	.6	SUSL5	SI	JSL4	SUSL3	SUSL2	SUSL1	SUSL0
00AFH	PRCON	0	000000)1B	R/W	0	0		0		0	0	ENWD		ENLVR
							Gene	eral	I/O Ports	Registe	rs				
Address	Name		Init.		R/W	Bit7	Bit6	;	Bit5	Ē	3it4	Bit3	Bit2	Bit1	Bit0
0080H	P0	1	111111	I1B	R/W	P0.7	P0.6	;	P0.5	F	20.4	P0.3	P0.2	P0.1	P0.0
0090H	P1	1	111111	I1B	R/W	P1.7	P1.6	;	P1.5	F	21.4	P1.3	P1.2	P1.1	P1.0
00A0H	P2	1	111111	I1B	R/W	P2.7	P2.6	6	P2.5	F	2.4	P2.3	P2.2	P2.1	P2.0
00B0H	P3	1	111111	I1B	R/W	P3.7	P3.6	;	P3.5	F	23.4	P3.3	P3.2	P3.1	P3.0
00C0H	P4	0	111111	I1B	R/W	0	P4.6	;	P4.5		0	0	P4.2	P4.1	P4.0
00A2H	P0WK	0	000000	00B	R/W	P0WK	7 POWK	(6	P0WK5	PO	WK4	P0WK3	P0WK2	P0WK1	P0WK0
00A3H	P1WK	0	000000	00B	R/W	P1WK	7 P1Wk	(6	P1WK5	P1	WK4	P1WK3	P1WK2	P1WK1	P1WK0
00A4H	P2WK	0	000000	00B	R/W	P2WK	7 P2Wk	(6	P2WK5	P2	WK4	P2WK3	P2WK2	P2WK1	P2WK0
00A5H	P3WK	0	000000	00B	R/W	P3WK	7 P3Wk	(6	P3WK5	P3	3WK4	P3WK3	P3WK2	P3WK1	P3WK0
00A6H	P4WK	0	000000	00B	R/W	0	P4Wk	(6	P4WK5	;	0	0	0	0	0
009AH	P0CON	0	000000	00B	R/W	POCO	N7 P0COI	N6	P0CON	5 P00	CON	4 P0CON	3 POCON	2 P0CON1	P0CON0
009BH	P1CON	0	000000	00B	R/W	P1CO	N7 P1COI	N6	P1CON	5 P10	CON	4 P1CON	3 P1CON	2 P1CON1	P1CON0
009CH	P2CON	0	000000	00B	R/W	P2CO	N7 P2COI	N6	P2CON	5 P20	CON	4 P2CON	3 P2CON	2 P2CON1	P2CON0
009DH	P3CON	0	000000	00B	R/W	P3COI	N7 P3COI	N6	P3CON	5 P30	CON	4 P3CON	3 P3CON	2 P3CON1	P3CON0
009EH	P4CON	0	110000	00B	R/W	0	P4COI	N6	P4CON	5	0	0	P4CON	2 P4CON1	P4CON0
00ADH	P3SEL	0	000000	00B	R/W	P3SEI	7 P3SEI	L6	0		0	0	0	0	0
•				•			Base Tin	ner/	Time Capt	ure Reg	jister	's			•
Addr.	Name		Init.	R/W	1	Bit7	Bit6		Bit5	Bit4	1	Bit3	Bit2	Bit1	Bit0
00D2H	BT0		00H	R/W	/ E	3T07	BT06		BT05	BT0	4	BT03	BT02	BT01	BT00
00D3H	BT1		00H	R/W	/ E	3T17	BT16		BT15	BT1	4	BT13	BT12	BT11	BT10
00D4H	BTCON		00H	R/W	/ E	NBT1	BT1M2	I	BT1M1	BT1N	<i>I</i> 0	ENBT0	BT0M2	BT0M1	BT0M0
00C8H	TCSTU		00H	R/W	/	0	0		0	TC0_C	OVL	0	0	TC0F_FULL	TC0R_FULL
00C9H	TCCON		00H	R/W	/	0	0	TC	_CLREN	TC_OV	LEN	0	0	TC0F_INT	TC0R_INT
00CAH	TCSCAL	Е	00H	R/W	/	0	0		0	0		0	TC0TS2	TC0TS1	TC0TS0
00CBH	TCAP0F	₹	00H	R	TC	AP0R7	TCAP0R6	T	CAP0R5	TCAPO	DR4	TCAP0R3	TCAP0R2	TCAP0R1	TCAP0R0
00CCH	TCAP0F	=	00H	R	TC	AP0F7	TCAP0F6	T	CAP0F5	TCAP	0F4	TCAP0F3	TCAP0F2	TCAP0F1	TCAP0F0
						W	ake-up Tim	ner 8	& Resume	Contro	l Reg	gister			
Addr.	Name		Init.	R/W	/	Bit7	Bit6		Bit5	Bit4	1	Bit3	Bit2	Bit1	Bit0
0095H	WKT_CO	Ν	20H	R/W	/	0	0	Р	ERIOD1	PERIC	DD0	WKT3	WKT2	WKT1	WKT0
							R	eset	& Resum	ne Flag					
Addr.	Name		Init.	R/W	1	Bit7	Bit6		Bit5	Bit4	1	Bit3	Bit2	Bit1	Bit0
0093H	CLRWD	_	55H	W	CLI		CLRWDT6	CI	LRWDT5	CLRWI	DT4	CLRWDT3	CLRWDT2	CLRWDT1	CLRWDT0
0094H	PREWD'	Τ	00H	R/W	/	0	0		0	0		0	0	PREWDT1	PREWDT0

Registers (continued)

					Interru	pt Control R	egister					
Addr.	Name	Init.	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
00A8H	ΙE	00H	R/W	EA	0	0	ETC0	ET1	0	ET0	EEXT0	
00A9H	IE2	00H	R/W	0	EFUN	ESIE	EOUT0	EIN0	EOT0ERR	EOWSTUP	ESTUP	
00B8H	IP	00H	R/W	0	0	0	PTC0	PT1	0	PT0	PEXT0	
00B9H	IP2	00H	R/W	0	PFUN	PSIE	POUT0	PIN0	POT0ERR	POWSTUP	PSTUP	
00DAH	IF	00H	R/W	0	0	0	TC0	T1	0	T0	EXT0	
00DBH	IF2	00H	R/W	0	FUN	SIE	OUT0	IN0	OT0ERR	OWSTUP	STUP	
00DCH	IRQEN	00H	R/W	EIN2	EIN1	ER0STL	ET0STL	ENAK2	ENAK1	ENAKR0	ENAKT0	
00DDH	IRQEN2	00H	R/W	0	0	0	0	0	ESUSP	EOVL	0	
00DEH	IRQFG	00H	R/W	IN2	IN1	R0STL	TOSTL	NAK2	NAK1	NAKR0	NAKT0	
00DFH	IRQFG2	00H	R/W	0	0	0	0	0	SUSP	OVL	0	
	USB Control Register											
Addr.	Name	Init.	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
00F2H	DADDR	00H	R/W	0	DA6	DA5	DA4	DA3	DA2	DA1	DA0	
00F3H	DFC	01H	R/W	PULL_UP	USB_CON	FW_K	RSU_SEL	USBEN	0	ERWUP	VPCON	
00EAH	TXDAT0	XXH	W	T07	T06	T05	T04	T03	T02	T01	T00	
00EBH	TXCNT0	0XH	W	0	0	0	0	TC03	TC02	TC01	TC00	
00ECH	TXFLG0	00H	R/W	0	0	0	0	0	0	STLT0	T0FULL	
00EDH	RXDAT0	XXH	R	R0.7	R0.6	R0.5	R0.4	R03	R02	R01	R00	
00EEH	RXCNT0	0XH	R	0	0	0	0	RC03	RC02	RC01	RC00	
00EFH	RXFLG0	00H	R/W	0	0	RXERR	R0_OW	R0SEQ	OUT0ENB	STLR0	R0FULL	
00E2H	TXDAT1	XXH	W	T17	T16	T15	T14	T13	T12	T11	T10	
00E3H	TXCNT1	0XH	W	0	0	0	0	CNT13	CNT12	CNT11	CNT10	
00E4H	TXFLG1	00H	R/W	0	0	0	0	T1EPE	T1SEQC	STL1	T1FULL	
00E5H	TXDAT2	XXH	W	T27	T26	T25	T24	T23	T22	T21	T20	
00E6H	TXCNT2	0XH	W	0	0	0	0	CNT23	CNT22	CNT21	CNT20	
00E7H	TXFLG2	00H	R/W	0	0	0	0	T2EPE	T2SEQC	STL2	T2FULL	
00E9H	CRWCON	00H	R/W	0	0	0	0	0	CRSEQ	STLCR	STLCW	
0096H	MODE_FG	02H	R/W	0	Nonidle	WKUPT	RES_TRG	WDT	USBRST	POF	SUSF	

2. Interrupt and Reset Vectors

- External Interrupt 0
- Base Timer 0
- Base Timer 1
- Time Capture Interrupt 0
- SETUP Interrupt
- OWSTUP Interrupt

- OT0ERR Interrupt
- IN0 Interrupt
- OUT0 Interrupt
- SIE Interrupt (NAKT0, NAKR0, T0STL, R0STL, NAK1,NAK2, IN1, IN2)
- Suspend/OVL Interrupt

Address	Interrupt Source	Enable	IRQ Flag	Description
0000H	Reset	-	-	System Reset
0003H	External Interrupt0	IE.0	EXT0	P4.6 Falling Edge
000BH	Base Timer0	IE.1	T0	Base Timer0 Interrupt
0013H	Reserved	-	-	-
001BH	Base Timer1	IE.3	T1	Base Timer1 Interrupt
0023H	Time Capture Interrupt0	IE.4	TC0	Time Capture0 Interrupt
002BH	Reserved	-	-	-
0033H	Reserved	-	-	-
0043H	Setup Interrupt	IE2.0	STUP	SETUP Token Interrupt
004BH	OWSTUP Interrupt	IE2.1	OWSTUP	-
0053H	OT0ERR Interrupt	IE2.2	OT0ERR	-
005BH	IN0 Interrupt	IE2.3	IN0	IN0 Token Interrupt
0063H	OUT0 Interrupt	IE2.4	OUT0	OUT0 Token Interrupt
006BH	SIE Interrupt	IE2.5	SIE	NAKTO, NAKRO, TOSTL, ROSTL, NAK1, NAK2, IN1, IN2
0073H	Suspend/OVL Interrupt	IE2.6	FUN	SUSP/OVL Interrupt
007BH	Reserved	-	-	-

3. Micro-Processor

3.1. General Description

The SH61F83 is a high performance 8051 CPU core embedded micro-controller. The instruction set is compatible with standard 8051.

3.2. Special Function Registers (SFRs)

The SH61F83 has a total of 63 SFRs, as shown in the figure below - SFR Map for SH61F83. Note that not all the addresses are occupied by SFR's. The unoccupied addresses are not implemented and should not be used by the customer. Read access from these unoccupied locations will return unpredictable data, while write accesses will have no effect on the chip.

				SFR Map f	or SH61F83				
F8H								-	FFH
F0H	В	-	DADDR	DFC				XPAGE	F7H
E8H		CRWCON	TXDAT0	TXCNT0	TXFLG0	RXDAT0	RXCNT0	RXFLG0	EFH
E0H	ACC		TXDAT1	TXCNT1	TXFLG1	TXDAT2	TXCNT2	TXFLG2	E7H
D8H			IF	IF2	IRQEN	IRQEN2	IRQFG	IRQFG2	DFH
D0H	PSW		BT0	BT1	BTCON				D7H
C8H	TCSTU	TCCON	TCSCALE	TCAP0R	TCAP0F	-	-		CFH
C0H	P4								C7H
B8H	IP	IP2							BFH
ВОН	P3								В7Н
A8H	IE	IE2		-		P3SEL	-	PRCON	AFH
A0H	P2		P0WK	P1WK	P2WK	P3WK	P4WK		A7H
98H	-	-	P0CON	P1CON	P2CON	P3CON	P4CON		9FH
90H	P1	-	-	CLRWDT	PREWDT	WKT_CON	MODE_FG	-	97H
88H	-	-	-	-	-	-	SUSLO		8FH
80H	P0	SP	DPL	DPH	-	-	-	PCON	87H

Note 1: SFR's in marked column are bit addressable.

Note 2: SFR's in gray color are standard 8051 SFR's, and others are SFR's for SH61F83.

3.2.1. Accumulator (ACC)

ACC is the accumulator register used for most of the arithmetic and logical instructions. Its initial value is 00h.

3.2.2. B Register (B)

The **B** register is an SFR which is used primarily in the multiply and divide instructions. It can also be used as a temporary scratch pad register for the other instructions and its initial value is 00h.

3.2.3. Program Status Word (PSW)

The **PSW** is the register that holds information about the status of the Accumulator, the selected register banks and other information. Its initial value is 00h. This register is described in details in the following figure.

	PSW - Program Status Word Register									
Bit 7	CY	Carry flag								
Bit 6	AC	Auxiliary Carry flag (for BCD operations)								
Bit 5	F0	Flag 0(Available to the user for general purposes)								
Bit 4	RS1	Register Bank select control bit 1 & 0								
Bit 3	RS0	Set/cleared by software to determine working bank. (RS1, RS0): (00) - Bank 0 ⇔ Address → (00H - 07H) (01) - Bank 1 ⇔ Address → (08H - 0FH) (10) - Bank 2 ⇔ Address → (10H - 17H) (11) - Bank 3 ⇔ Address → (18H - 1FH)								
Bit 2	٥٧	Overflow Flag								
Bit 1	Х	User definable flag								
Bit 0	Р	Parity Flag Set/Cleared by hardware each instruction cycle to indicate an odd/even number of "one" bit I the Accumulator, i.e., even parity.								

3.2.4. Stack Pointer (SP)

The Stack Pointer is an 8-bit wide register that is used to point to the top of the stack where addresses are stored. After a reset, the stack pointer is initialized to 07H, and so the stack begins at 08H. However the stack can reside at any location in the Internal RAM and stack pointer can be programmed to suit the user's needs.

3.2.5. Data Pointers (DPH, DPL)

One Data Pointers (DPTR) consist of **DPH**, **DPL** Its intended function is to hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

3.2.6. Port 0, Port1, Port2, Port3 and Port4 (P0, P1, P2, P3 and P4)

The five ports have five SFR's associated with them. Data to be brought out onto the port pins is written to the latches.

3.3. Instruction Set List

Arithmetic Instructions										
	Opcode	E	Bytes	Cycles	Meaning					
	A, Rn		1	1	Add reg to acc					
ADD	A, @Ri		1	2	Add indir byte to acc					
ADD	A, direct		2	2	Add dir byte to acc					
	A, #data		2	2	Add imm. Data to acc					
	A, Rn		1	1	Add reg to acc with carry flag					
ADDC	A, @Ri		1	2	Add indir byte to acc with carry flag					
ADDC	A, direct		2	2	Add dir byte to acc with carry flag					
	A, #data		2	2	Add imm. Data to acc with carry flag					
	A, Rn		1	1	Subtract reg from acc with borrow					
SUBB	A, @Ri		1	2	Subtract indir byte from acc with borrow					
ООВВ	A, direct		2	2	Subtract dir byte from acc with borrow					
	A, #data		2	2	Subtract imm. Data from acc with borrow					
	Α		1	1	Increment acc					
	Rn		1	2	Increment reg					
INC	@Ri		1	3	Increment indir byte					
	DPTR		1	4	Increment data pointer					
	direct		2	3	Increment dir byte					
	A		1	1	Decrement acc					
DEC	Rn		1	2	Decrement reg					
	@Ri		1	3	Decrement indir byte					
	direct		2	3	Decrement dir byte					
MUL	AB		1	11	Multiply A and B, 8-bit					
			1	20	Multiply (AUXC A) and B, 16-bit					
DIV	AB		1	11 20	Divide A by B, 8-bit Divide (AUXC A) by B, 16-bit					
DA	A		1	20	Decimal adjust acc					
				nical Inc	tructions					
	Opcode		Bytes	Cycles	Meaning					
CLR	A	-	1	1	Clear acc					
CPL	A		1	1	Complement acc					
- O. L	A, Rn		1	1	AND register to acc					
	A, RII A, @Ri		1	2	AND indir byte to acc					
	A, @Ri A, direct		2	2	AND dir byte to acc					
ANL	A, direct		2	2	AND imm. Data to acc					
	direct, A		3	3	AND acc to dir byte					
	direct, #data				AND imm. Data to dir byte					
	A, Rn		1	1	OR reg to acc					
	A, @Ri		1	2	OR indir byte to acc					
ORL	A, direct		2	2	OR dir byte to acc					
	A, #data		2	2	OR imm. Data to acc					
	direct, A		2	3	OR acc to dir byte					
	direct, #data		3	3	OR imm. Data to dir byte					
	A, Rn		1	1	Exclusive-OR reg to acc					
	A, @Ri		1	2	Exclusive-OR indir byte to acc					
XRL	A, direct		2	2	Exclusive-OR dir byte to acc					
ANL	A, #data		2	2	Exclusive-OR imm. Data to acc					
	direct, A		2	3	Exclusive-OR acc to dir byte					
	direct, #data		3	3	Exclusive-OR imm. Data to dir byte					

Instruction Set List (continued)

RL	Set List (continue		1	Rotate acc left
RLC	A	1	1	
	A	1	1	Rotate acc left through the carry
RR	A	1	1	Rotate acc right
RRC	A	1	1	Rotate acc right throught the carry
SWAP	Α	1	4	Swap nibbles within the acc
			Data Tr	ansfer
	Opcode	Bytes	Cycles	Meaning
	A, Rn	1	1	Move reg to acc
	A, @Ri	1	2	Move indir byte to acc
	Rn, A	1	2	Move acc to reg
	@Ri, A	1	2	Move acc to indir byte
	A, direct	2	2	Move dir byte to acc
	A, #data	2	2	Move imm. Data to acc
	Rn, #data	2	2	Move imm. Data to reg
MOV	direct, A	2	2	Move acc to dir byte
MOV	direct, Rn	2	2	Move reg to dir byte
	@Ri, #data	2	2	Move imm. Data to indir byte
	Rn, direct	2	3	Move dir byte to reg
	direct, @Ri	2	3	Move indir byte to dir byte
	@Ri, direct	2	3	Move dir byte to indir byte
	direct, direct	3	3	Move dir byte to dir byte
	direct, #data	3	3	Move imm. Data to dir byte
	DPTR,#data16	3	3	Load data pointer with 16-bit constant
MOVC	A, @A+DPTR	1	7	Move code byte relative to DPTR to acc
MOVC	A, @A+PC	1	8	Move code byte relative to PC to acc
	@Ri, A	1	4	Move acc to xdata byte (8 bit address)
MOVX	A, @Ri	1	5	Move xdata byte to acc (8 bit address)
WOVA	@DPTR, A	1	5	Move acc to xdata byte (16 bit address)
	A, @DPTR	1	6	Move xdata byte to acc (16 bit address)
PUSH	direct	2	5	Push dir byte to stack
POP	direct	2	4	Pop dir byte from stack
	A, Rn	1	3	Exchange reg with acc
XCH	A, @Ri	1	4	Exchange indir byte with acc
	A, direct	2	4	Exchange dir byte with acc
XCHD	A, @Ri	1	4	Exchange low-order digit in indir byte with acc
			Bit Mani	pulation
	Opcode	Bytes	Cycles	Meaning
	C	1	1	Clear carry
CLR	bit	2	3	Clear dir bit
	C	1	1	Set carry
SETB	bit	2	3	Set dir bit
A F:	C	1	1	Complement carry
CPL	bit	2	3	Complement dir bit
	C, bit	2	2	AND dir bit to carry
ANL	C, /bit	2	2	AND complement of dir bit to carry
	C, bit	2	2	OR dir bit to carry
ORL	C, /bit	2	2	OR complement of dir bit to carry
	C, bit	2	2	Move dir bit to carry
MOV	bit, C	2	3	Move carry to dir bit
	Dit, U			I WOYO GATTY to all bit

Instruction Set List (continued)

			Pro	ogram B	Branching
	Opcode		Bytes	Cycles	
JC	rel	(not taken) (taken)	2	2	Jump if carry is set Jump if less than
JNC	rel	(not taken) (taken)	2	2	Jump if carry is not set Jump if greater than or equal
JB	bit, rel	(not taken) (taken)	3	4 6	Jump if dir bit is set
JNB	bit, rel	(not taken) (taken)	3	4 6	Jump if dir bit is not set
JBC	bit, rel	(not taken) (taken)	3	4 6	Jump if dir bit is set and clear bit
JZ	rel	(not taken) (taken)	2	3 5	Jump if acc is zero
JNZ	rel	(not taken) (taken)	2	3 5	Jump if acc is not zero
SJMP	rel		2	4	Short jump (relative address)
ACALL	addr11		2	7	Absolute subroutine call
LCALL	addr16		3	7	Long subroutine call
RET			1	8	Return from subroutine
RETI			1	8	Return from interrupt
AJMP	addr11		2	4	Absolute jump
LJMP	addr16		3	5	Long jump
JMP	@A+DPTR		1	6	Jump indir relative to DPTR
CJNE	A, direct, rel	(not taken) (taken)	3	4 6	Compare dir byte to acc. And jump if not equal
CJNE	A, #data, rel	(not taken) (taken)	3	4 6	Compare imm. Data to acc. And jump if not equal
CJNE	Rn, #data, rel	(not taken) (taken)	3	4 6	Compare imm. Data to reg and jump if not equal
CJNE	@Ri, #data, rel	(not taken) (taken)	3	4 6	Compare imm. Data to indir and jump if not equal
DJNZ	Rn, rel	(not taken) (taken)	2	3 5	Decrement reg and jump if not zero
DJNZ	direct, rel	(not taken) (taken)	3	4 6	Decrement dir byte and jump if not zero
NOP			1	1	No operation

4. Oscillators

The SH61F83 has a built-in 6MHz RC resonator for system clock. The oscillator generates the system timing and control signal to be supplied to the CPU core and the on-chip peripherals, such as USB, Timer and so on.

Besides, the SH61F83 also has a built-in 32KHz RC resonator to generate the clock for wake up timer.

5. Reset and Power-reducing Mode

There are totally four Reset Sources in the SH61F83 application.

- Hardware reset: Low-Voltage Reset, Power-On Reset or External Reset
- WDT (Watch-dog Timer) Reset
- Resume Reset
- USB Reset

5.1. Hardware Reset

5.1.1. Power-On Reset (POR) and LVRA

When power is first applied to the SH61F83, the internal Power-On Reset will be generated and reset the whole chip.

This process is fulfilled by a power-on reset circuit and an auxiliary Lower-voltage reset circuit (LVRA) monitoring V_{DD} . Once V_{DD} climb up from 0V and cross the V_{POR} , the internal POR signal will active and end after $T_{RST(POR)}$.

The LVRA will perform as a function Low-voltage Reset when system is normal running (under normal/idle/power-down mode). LVRA reset signal (this signal is shared with POR signal) will active when V_{DD} was less than V_{LVRA} and lasts for $T_{PW(LVRA)}$, LVRA signal will end after $T_{RST(LVR)}$ when V_{DD} was larger than V_{LVRA} .

See Figure5-1 for the POR and LVRA behavior.

Figure 5-1. Power-on Reset and LVRA

Note:

 $V_{POR(max.)} = 3.6V$

 $V_{LVRA(min.)} = 2.9V$, $V_{LVRA(typ.)} = 3.0V$, and $V_{LVRA(max.)} = 3.1V$

 $T_{PW(LVRA)}$ (Drop-Down Pulse Width for LVRA) = 2^9 X T_{SYS}

 $T_{RST(POR)}$ (Internal Power-on Reset Hold Time) = 2^{16} X T_{SYS}

 $T_{RST(LVR)}$ ((Internal Low-voltage Reset Hold Time) = 2^{16} X T_{SYS}

5.1.2. Low Voltage Reset (LVR)

(1) Low Voltage Reset 1 (LVR1)

00AFH	PRCON	Initial Value	Power-reducing Control Register			
Bit[7:3]	-	00000b	ı	Reserved		
Bit2	ENWDT	0b	R/W	1: Enable Watch-Dog timer under idle mode 0: Disable Watch-Dog timer under idle mode Reset source: Hardware reset, USB reset, or Resume Reset		
Bit1	-	0b	-	Reserved		
Bit0	ENLVR1	1b	R/W	1: Enable Low-Voltage Reset 1 under power-down mode 0: Disable Low-Voltage Reset 1 under power-down mode Reset source: Hardware reset, USB reset, or Resume Reset		

The LVR1 circuit will monitor the 1.8V regulator output voltage to the MCU core.

LVR1 reset signal will active when the input power of MCU core was less than V_{LVR1} and lasts for $T_{PW(LVR1)}$, LVR1 signal will end after $T_{RST(LVR)}$ when the power was larger than V_{LVR1} . See Figure 5-2 for the LVR1 behavior.

Figure 5-2. Low Voltage Reset 1

Note: $V_{LVR1(min.)} = 1.4V$, $V_{LVR1(typ.)} = 1.5V$, and $V_{LVR1(max.)} = 1.6V$ $T_{PW(LVR1)}$ (Drop-Down Pulse Width for LVR1) = 2^9 X T_{SYS} . $T_{RST(LVR)}$ (Internal Low-voltage Reset Hold Time) = 2^1 6 X T_{SYS} .

Under Power-down mode:

- ENLVR1 = 0: Disable LVR1 under Power-down mode
- ENLVR1 = 1: Enable LVR1 under Power-down mode

Figure 5-3. Low Voltage Reset 1 under Power-down Mode

(2) Low Voltage Reset (LVR2)

The embedded Low-Voltage Reset (LVR2) circuit monitors the 3.3V regulator output Voltage. It will generate an internal reset to the whole chip while heavy loads at 3.3V regulator output switched on which cause the regulator output voltage temporarily fall below the minimum specified operating voltage. This feature is can protect system from working under bad power supply environment.

LVR2 reset signal will active when the 3.3V regulator output was less than V_{LVR2} and lasts for $T_{PW(LVR2)}$, LVR2 signal will end after $T_{RST(LVR)}$ when the power was larger than V_{LVR2} . See Figure 5-4 for the LVR2 behavior.

Figure 5-4. Low Voltage Reset 2

Note: $V_{\text{LVR2 (Min.)}} = 2.2V$, $V_{\text{LVR2(typ.)}} = 2.4V$, and $V_{\text{LVR2 (max.)}} = 2.6V$) $T_{\text{PW(LVR2)}}$ (Drop-Down Pulse Width for LVR2) = 2^9 X T_{SYS} $T_{\text{RST(LVR)}}$ (Internal Low-voltage Reset Hold Time) = 2^{16} X T_{SYS}

5.1.3. External Reset

(1) Normal mode and IDLE mode

The MCU will generate internal system reset when the voltage level of the External Reset is less than the lower-threshold voltage $V_{LT(RSTB)}$ and its pulse width larger than $T_{PW(RSTB)}$. The reset cycle will end after $T_{RST(RSTB)}$ when the RSTB pin level is larger than the upper-threshold voltage $V_{UT(RSTB)}$.

Figure 5-5. External Reset

Note: $T_{PW(RSTB)}$ (RESETB Input Low Pulse Width) = 2^{13} X T_{SYS} $T_{RST(RSTB)}$ (External Reset Hold Time) = 2^{7} X T_{SYS} $V_{UT(RSTB)}$ (Upper-threshold voltage of External reset) = 2V (Min.) $V_{LT(RSTB)}$ (Lower-threshold voltage of External reset) = 0.8V (Max.)

(2) Power-down mode

When the device was in Power-down mode, an External Reset can't force the device to exit its Power-down mode.

5.2. Watch-dog Timer Reset

The SH61F83 implements a Watchdog timer to avoid system stop or malfunction. The clock source of the WDT is Fsys. The time-out interval of Watchdog timer is selected by PREWDT[1:0]. The Watchdog timer must be cleared within time-out period; otherwise the Watchdog timer will overflow and cause a system reset. The Watchdog timer is cleared and enabled after the system is reset, and can be disabled by the software only on idle mode. Users can clear the Watchdog timer by writing a #55H to the CLRWDT (0093H) register.

0093H	CLRWDT	Initial Value	Clear Watch-dog Timer Control Register			
Bit[7:0]	CLRWDT [7:0]	55H	W	Write "55H" to clear watch-dog timer Reset source: Hardware reset, USB reset, WDT reset, Resume reset		

0094H	PREWDT	Initial Value	Watch-dog Timer Pre-scalar Control Register			
Bit[7:2]	-	000000b	-	Reserved		
Bit[1:0]	PREWDT [1:0]	00Ь	R/W	Watch-dog timer Pre-scalar control register 00: 2 ¹⁶ T _{SYS} (10.922ms) 01: 2 ¹⁷ T _{SYS} (21.845ms) 10: 2 ¹⁸ T _{SYS} (43.688ms) 11: 2 ¹⁹ T _{SYS} (87.376ms) Reset source: Hardware reset, USB reset, WDT reset, Resume reset		

Note1: The new Pre-scalar value will be loaded after the Watchdog Timer was cleared (write #55H to CLRWDT register)

Note2: When system enters Power-Down Mode, WDT will stop due to the lack of T_{SYS}. When system resumes from Power-Down Mode, the WDT control register will be cleared to the initial state.

5.3. IDLE and Power-Down Mode

The SH61F83 has two power-reducing modes:

- IDLE mode (IDL = 1 & SUSLO = 55H): The CPU is frozen, but otherwise the circuit continues to run.
- Power-down mode (**PD** = 1 & **SUSLO** = 55H): The oscillator is frozen.

008EH	SUSLO	Initial Value	Power saving Control Register 1				
Bit[7:0]	SUSLO [7:0]	00H	R/W IDL = 1 & SUSLO = 55H: Enter idle mode PD = 1 & SUSLO = 55H: Enter Power-down mode Reset source: Hardware reset, USB reset, WDT reset, Resume reset				

0087H	PCON	Initial Value	Power saving Control Register 2					
Bit[7:2]	-	000000b	- Reserved					
Bit1	PD	0b	R/W	PD = 1 & SUSLO = 55H: Enter Power-down mode Reset source: Hardware reset, USB reset, WDT reset, Resume reset				
Bit0	IDL	0b	R/W	IDL = 1 & SUSLO = 55H: Enter idle mode Reset source: Hardware reset, USB reset, WDT reset, Resume reset				

Figure 5-6. Sketch map for IDLE and Power-Down Mode implement

5.3.1. IDLE Mode

Two continuous instructions that set PCON.0 to '1' and set SUSLO to '55H' let the SH61F83 enter IDLE mode. In IDLE mode, the internal clock signal is gated off to the CPU only. The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their value during IDLE mode. The port pins hold the latest logical states before system enter IDLE mode.

There are four ways to terminate IDLE mode and back to Normal mode. In order to make the program execute properly, user should add three NOPs after the instruction that put the device into IDLE mode. (If Watch-Dog Timer was disabled at IDLE mode, then it will restart to count from the value where it was stopped when entering IDLE Mode. When the system leaves IDLE Mode, PCON.0 and SUSLO will be cleared by hardware)

- (1) Activation of any enabled interrupt will terminate the IDLE mode. (As same as standard 8051 micro controller) The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into IDLE mode.
- (2) Port0, Port1, Port2, Port3 and Port4 can be set as a resume ports by setting **P0WK**, **P1WK**, **P1WK**, **P2WK**, **P3WK**, and **P4WK**. Any low level of enabled resume source will terminate the IDLE mode
- (3) When the wake-up timer is time-out in IDLE mode, the next instruction to be executed will be the one following the instruction that put the device into IDLE mode.
- (4) Hardware reset, USB reset or Watch Dog Reset. At this time, the CPU resumes program execution from the beginning of the whole program, which is 0000H.

Example:

IDLE2:

```
MOV
          PORT2.
                     #FFH; Initialize PORT2 resume source to be high.
MOV
          P2WK,
                     #FFH; Enable PORT2 resume ability.
MOV
          PORTO,
                     #00H; Pull low PORT0.
MOV
          P0WK.
                     #00H: Disable PORT0 resume ability.
          PRCON, #FBH ; Disable Watch-Dog timer under idle mode.
ANL
MOV
          CLRWDT, #55H ; Clear Watch-Dog Timer
          PCON.
ORL
                     #01H; Set IDLE mode.
MOV
          SUSLO, #55H
                         ; Enter IDLE mode.
NOP
                     ; 3 NOP instruction (make sure program will executes properly)
NOP
NOP
MOV
          CLRWDT, #55H ; Clear Watch-dog Timer
```


00A2H	P0WK	Initial Value	Port0 Resume Enable Register			
Bit[7:0]	P0WK[7:0]	00h	R/W	1: Enable wake-up function of PORT0's pins (Low level trigger) 0: Disable wake-up function of PORT0's pins (Low level trigger) Reset source: Hardware reset		

00A3H	P1WK	Initial Value	Port1 Resume Enable Register				
Bit[7:0]	P1WK[7:0]	00h	1: Enable wake-up function of PORT1's pins (Low level trigger) 0: Disable wake-up function of PORT1's pins (Low level trigger) Reset source: Hardware reset				

00A4H	P2WK	Initial Value	Port2 Resume Enable Register				
Bit[7:0]	P2WK[7:0]	00h	1: Enable wake-up function of PORT2's pins (Low level trigger) 0: Disable wake-up function of PORT2's pins (Low level trigger) Reset source: Hardware reset				

00A5H	P3WK	Initial Value	Port3 Resume Enable Register			
Bit[7:0]	P3WK[7:0]	00h	1: Enable wake-up function of PORT3's pins (Low level trigger) 0: Disable wake-up function of PORT3's pins (Low level trigger) Reset source: Hardware reset			

00A6H	P4WK	Initial Value		Port4 Resume Enable Register		
Bit7	-	0b	- Reserved			
Bit[6:5]	P4WK[6:5]	00b	R/W	1: Enable wake-up function of PORT4's pins (Low level trigger) 0: Disable wake-up function of PORT4's pins (Low level trigger) Reset source: Hardware reset		
Bit[4:0]	-	00000b	-	Reserved		

In this example, Watch-dog Timer can be cleared either before entering IDLE mode or after terminating IDLE mode. The number of NOPs applied after the instruction that put the device into IDLE mode depends on the type of the instruction in order to make the program work properly. In INTSUB, it detects if interrupts occur in Idle mode or not.

5.3.2. Power-down Mode

Method of entering Power-down mode: set PCON.1 = 1 and set SUSLO = 55h

- In the Power- down mode, the on-chip oscillator stops.
- With the clock frozen, all functions are stopped, but the on-chip RAM and Special function Registers are held.
- In order to make sure the program will resume properly, user should add three NOPs immediately after setting SUSLO to 55H.

There are two ways to exit from Power-down mode.

- Low Voltage Reset or Power-On Reset.
- Resume reset: A resume reset holds SFR values, CPU status and Pin state, but program is re-run at 0000h. There are three ways to generate resume reset.
- (1) Port0, Port1, Port2, Port3 and Port4 can be set as a resume ports by setting **P0WK**, **P1WK**, **P1WK**, **P2WK**, **P3WK**, and **P4WK**. Any low level of enabled resume source is triggered in Power-down mode will cause a resume reset.
- (2) Wake-up Timer time out
- (3) USB Bus Non-idle State (VDM is low, or VDM & VDP both high)

Note1: In the case that the Wake-up Timer wakes up from Power-down mode, there should be at least 32uS delay before setting PCON.1 = 1 and SUSLO = 55h to enter into Power-down mode again.

Port resume reset example 1: Assume that PORT2 is resume source and H/W issues K-State when Resume Reset occurs.

```
PWRDN HW:
       MOV
                  PORT2
                            #FFH; initialize PORT2 resume source to be high.
       MOV
                  P2WK
                            #FFH; Enable PORT2 resume ability.
       MOV
                  PORT0
                            #00H: Pull low PORT0.
       MOV
                  P0WK
                            #00H; Disable PORT0 resume ability.
       ANL
                  DFC #EFH; RSU_SEL = 0, H/W issue K-State to respond RESUME signal.
       ORL
                            #02H; ERWUP = 1, Enable Remote Wake Up function.
                  DFC,
       MOV
                  CLRWDT #55H ; Clear Watch-Dog Timer.
       ORL
                  PCON
                            #02H; Set POWER DOWN mode.
       MOV
                  SUSLO
                            #55H; Enter POWER DOWN mode.
       NOP
                            ; 3 NOP instruction (make sure program will executes properly)
       NOP
       NOP
```


Figure 5-7. Select H/W Issues K-State by Resume Ports Reset

RSU_SEL

Port resume reset example 2: Assume that PORT2 is resume source and F/W issues K-State when Resume Reset occurs.

FW_K
Reset
F/W
issues
K-state

Figure 5-8. Select F/W Issues K-State by Resume Ports Reset

Wake-up Timer Time out Resume Reset

Figure 5-9. Wake-up Timer Time Out Waveform

USB Bus Non-idle State Resume Reset

■ Resume reset after Non-idle event

Figure 5-10. USB Non-idle Resume Reset Waveform

■ USB reset signal at Power-down mode

Figure 5-11. USB Reset wake-up waveform

5.4. Wake-up Timer

- The SH61F83 has a Built-in 32KHz Ring-Oscillator. It is the clock source of wake-up timer. The 32KHz Ring-Oscillator will start when the control register **WKT[3:2]** was not equal to #00b.
- The wake-up timer can only be enabled/disabled by WKT[3:0] (WKT[3:0] not equal to 00xxb).
- If the Wake-up timer is enabled and system enter idle/power-down mode, the wake-up timer will load the time-out period register WKT[3:0] and start to count.

0095H	WKT_CON	Initial Value		Wake-up Timer & Resume Reset Control Register				
Bit[7:6]	-	00b	-	Reserved				
Bit[5:4]	Period [1:0]	10b	R/W	Internal Resume Reset period for Power-Down mode (these times do not include resonator start-up time) 00: 2 ¹⁰ T _{SYS} (170us) 01: 2 ¹¹ T _{SYS} (340us) 10: 2 ¹⁶ T _{SYS} (10.922ms) 11: 2 ¹⁷ T _{SYS} (21.845ms) Reset source: Hardware reset				
Bit[3:0]	WKT[3:0]	0000b	R/W	Wake-up timer 00xx: disable Wake-up timer under Power-down mode or IDLE mode Others: enable Wake-up timer under Power-down mode or IDLE mode 0101: 2º T _{RING} (31.25us@32KHz) 0110: 2º T _{RING} (4ms@32KHz) 0111: 2º T _{RING} (8ms@32KHz) 0100: 2º T _{RING} (16ms@32KHz) 1001: 2¹¹0 T _{RING} (32ms@32KHz) 1010: 2¹¹1 T _{RING} (64ms@32KHz) 1011: 2¹²2 T _{RING} (128ms@32KHz) 1010: 2¹¹3 T _{RING} (512ms@32KHz) 1101: 2¹¹4 T _{RING} (512ms@32KHz) 1111: 2¹¹5 T _{RING} (5.024s@32KHz) 1111: 2¹¹5 T _{RING} (1.024s@32KHz) 1111: 2¹¹5 T _{RING} (4.096s@32KHz) 1110: 2¹¹5 T _{RING} (4.096s@32KHz) 1110: 2¹¹5 T _{RING} (4.096s@32KHz)				

5.5 MODE_FG Flag

0096H	MODE_FG	Initial Value		Mode Register	
Bit7	-	0b	-	- Reserved	
Bit6	Nonidle	0b	R/W	USB bus flag. Write "0" to clear, write "1" no effect. 1: set by non-idle event Reset source: Hardware reset, USB reset	
Bit5	WKUPT	0b	R/W	Set "1" after wake-up timer time-out. Write "0" to clear, write "1" no effect. Reset source: Hardware reset or USB reset	
Bit4	RES_TRG	0b	R/W	"1": Remote wake up; "0": Global wake up. Write "0" to clear, write "1" no effect. Reset source: Hardware reset or USB reset	
Bit3	WDT	0b	R/W	Set "1" after Watchdog reset. Write "0" to clear, write "1" no effect. Reset source: Hardware reset or USB reset	
Bit2	USBRST	0b	R/W	Set "1" after USB reset. Write "0" to clear, write "1" no effect. Reset source: Hardware reset	
Bit1	POF	1b	R/W	Set "1" after power-on reset, Low voltage reset and External reset. Write "0" to clear, write "1" no effect. Reset source: Hardware reset	
Bit0	SUSF	0b	R/W	Set "1" when entering Power-down mode. Write "0" to clear, write "1" no effect. Reset source: Hardware reset or USB reset	

Figure 5-12. Event for exit from idle and power down mode

6. Input/Output Ports

6.1. Port-0 Configuration: (Reset source: Hardware reset)

I/O Dort	Function	I/O	Circuit Structure	Contro		Description
I/O Port	runction	1/0	Circuit Structure	P0.x	P0CON.x	Description
		I/O		0	0	Output Low (0.4V, min: 4mA)
Port0[7:0]	:0] Port0	1/0	Shown in Figure 6-1	1	0	Output High (2.4V, min: -50uA)
				Х	1	HI-Z

Note: P02 and P03 have the Schmitt trigger functions.

6.2. Port-1 Configuration: (Reset source: Hardware reset)

I/O Port	I/O Port Function		Circuit Structure	Contr	ol Bits	Description
I/O Port	runction	I/O	Circuit Structure	P1.x	P1CON.x	Description
		I/O		0	0	Output Low (0.4V, min: 4mA)
Port1[7:0]	Port1	1/0	Shown in Figure 6-1	1	0	Output High (2.4V, min: -50uA)
		I		Х	1	HI-Z

Note: P15 and P16 have the Schmitt trigger functions.

6.3. Port-2 Configuration: (Reset source: Hardware reset)

I/O Dow	O Dort Eunstion		Cinquit Ctmustums	Contr	ol Bits	Description
I/O Port	Function	I/O	Circuit Structure	P2.x	P2CON.x	Description
		I/O		0	0	Output Low (0.4V, min: 4mA)
Port2[7:0]	Port2	1/0	Shown in Figure 6-1	1	0	Output High (2.4V, min: -50uA)
		I		Х	1	HI-Z

6.4. Port-3 Configuration: (Reset source: Hardware reset)

I/O Dout	Function	I/O	Circuit Structure	Contr	ol Bits	Description	
I/O Port	Function	1/0	Circuit Structure	P3.x	P3CON.x	Description	
		I/O		0	0	Output Low (0.4V, min: 5mA)	
Port3[5:0]	Port3		1/0	Shown in Figure 6-1	1	0	Output High (2.4V, min: -50uA)
		ı		Х	1	HI-Z	

I/O Dort	Function	1/0	Circuit Structure	C	ontrol Bit	s	Decemention	
I/O Port	runction	1/0	Circuit Structure	P3.x	P3CON.x	P3SEL.x	Description	
				0	0	0	Output Low (0.4V, min: 5mA)	
	:6] Port3	I/O		1	0	0	Output High (2.4V, min: -50uA)	
Port3[7:6]			Shown in Figure 6-2	0	0	1	Output Low (1.0V - 1.2V, typ: 20mA)	
				1	0	1	Output High (2.4V, min: -50uA)	
		ı		Х	1	Х	HI-Z	

6.5. Port-4 Configuration: (Reset source: Hardware reset)

I/O Dort	Function	I/O	Circuit Structure	Contr	ol Bits	Description	
I/O Port	runction	1/0	Circuit Structure	P4.x	P4CON.x	Description	
		I/O		0	0	Output Low (2.6V - 3.2V, typ: 9mA)	
Port4[2:0]	Port4		Shown in Figure 6-1	1	0	Output High (2.4V, min: -50uA)	
		ı		Χ	1	HI-Z	

Figure 6-1. PORT Configuration-1

Figure 6-2. PORT Configuration-2

6.6. USB VDM/P46 Configuration: (Reset source: Hardware reset)

USB_CON	PULL_UP	VPCON	P46	P4CON6	Description
0	0	Х	Х	1	P46 output in Hi-Z mode, Read P46 will get the value on pad P46
0	1	Х	Х	1	1.5K ohm pull-up resistor active when bit "PULL_UP" = "1", P46 in Hi-Z mode, Read P46 will get the value on pad P46
0	Х	Χ	0	0	Output Low (0.4V, min: 8mA)
0	Х	Χ	1	0	Output High (2.4V, min: -0.8mA)
1	Х	0	Х	Х	USB Mode (VDM Pull-up by 1.5Kohm) Read P46 will get the value of "DM_I" signal on USB transceiver
1	Х	1	Χ	Х	USB Mode. Force Low (For pseudo Plug off)

Note 1: Read Figure 6-3 for the general circuit diagram

Note 2: When entering USB Mode (**USB_CON** = 1) or P46 Output Mode (**P4CON6** = 0), **PULL_UP** function will be controlled by H/W automatically regardless of the value in the control bit (**PULL_UP**).

Note 3: P46 has the Schmitt trigger function.

6.7. USB VDP/P45 Configuration: (Reset source: Hardware reset)

USB_CON	VPCON	P45	P4CON5	Description
0	Х	Х	1	P45 output in Hi-Z mode, Read P45 will get the value on pad P45
0	Х	0	0	Output Low (0.4V, min: 8mA)
0	Х	1	0	Output High (2.4V, min: -0.8mA)
1	0	Х	Х	USB Mode Read P45 will get the value of "DP_I" signal on USB transceiver
1	1	Χ	Х	USB Mode. Force Low (Plug off)

Note 1: Read Figure 6-3 for the general circuit diagram

Note 2: P45 has the Schmitt trigger function.

Figure 6-3. USB Configuration

7. Interrupts

7.1. Interrupt Enables

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the SFR named **IE**, **IE2**, **IRQEN**, **IRQEN2**. The register **IE** also contains a global disable bit, which can be cleared to disable all interrupts at once. Figure 7-1 shows the interrupt register for the SH61F83.

Interrupt Enable Register

H8A00	ΙE	Initial Value		Interrupt Enable Register
Bit7	EA	0b	R/W	Disable all interrupts. If EA = 0, no any interrupts will be acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit. Reset Source: Hardware reset, USB reset or WDT reset
Bit6	-	0b	-	Reserved
Bit5	-	0b	-	Reserved
Bit4	ETC0	0b	R/W	Time Capture0 interrupt
Bit3	ET1	0b	R/W	Base Timer1 interrupt
Bit2	-	0b	ı	Reserved
Bit1	ET0	0b	R/W	Base Timer0 interrupt
Bit0	EEXT0	0b	R/W	External interrupt0

Enable bit = 1, enables the interrupt Enable bit = 0, disables the interrupt Reset source: Hardware reset or USB reset Note: EA bit will also be clear by WDT reset

00A9H	IE2	Initial Value		Interrupt Enable Register
Bit7	-	0b	-	Reserved
Bit6	EFUN	0b	R/W	SUSP/OVL interrupt
Bit5	ESIE	0b	R/W	SIE interrupt (NAKT0, NAKR0, NAK1, NAK2, T0STL, R0STL)
Bit4	EOUT0	0b	R/W	Out0 interrupt
Bit3	EIN0	0b	R/W	IN0 interrupt
Bit2	EOT0ERR	0b	R/W	OT0ERR interrupt
Bit1	EOWSTUP	0b	R/W	OWSTUP interrupt
Bit0	ESTUP	0b	R/W	Setup interrupt

Enable bit = 1, enables the interrupt Enable bit = 0, disables the interrupt Reset source: Hardware reset or USB reset

00DCH	IRQEN	Initial Value		SIE Interrupt Enable Register
Bit7	EIN2	0b	R/W	IN2 interrupt
Bit6	EIN1	0b	R/W	IN1 interrupt
Bit5	ER0STL	0b	R/W	R0 stall interrupt
Bit4	ET0STL	0b	R/W	T0 stall interrupt
Bit3	ENAK2	0b	R/W	T2 NAK interrupt
Bit2	ENAK1	0b	R/W	T1 NAK interrupt
Bit1	ENAKR0	0b	R/W	R0 NAK interrupt
Bit0	ENAKT0	0b	R/W	T0 NAK interrupt

Enable bit = 1, enables the interrupt Enable bit = 0, disables the interrupt Reset Source: Hardware reset or USB reset

00DDH	IRQEN2	Initial Value		FUN Interrupt Enable Register
Bit7	-	0b	R/W	Reserved
Bit6	-	0b	R/W	Reserved
Bit5	-	0b	R/W	Reserved
Bit4	-	0b	R/W	Reserved
Bit3	-	0b	R/W	Reserved
Bit2	ESUSP	0b	R/W	Suspend interrupt (bus idle > 5ms)
Bit1	EOVL	0b	R/W	OVL interrupt
Bit0	-	0b	R/W	Reserved

Enable bit = 1, enables the interrupt Enable bit = 0, disables the interrupt Reset Source: Hardware reset or USB reset

Figure 7-1. Interrupt Structure

7.2. Interrupt Priorities

- Each interrupt source can also be individually programmed to one of the two priority levels by setting or clearing a bit in the SFR named IP (Interrupt Priority) and IP2. The Following figure shows the IP & IP2 register in the SH61F83.
- Low-priority interrupt can be interrupted by a high-priority interrupt, but cannot be interrupted by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.
- If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests the same priority levels are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the software polling sequence.
- In operation, all the interrupt flags are latched into the interrupt control system every machine cycle. The samples are polled during the following machine cycle. If the flag for an enabled interrupt is set to 1, the interrupt system generates an LCALL to the appropriate location in Program Memory, unless some other condition blocks an interrupt, such as an interrupt of equal or higher priority level already in progress.
- The hardware-generated LCALL accesses the contents of the Program Counter pushed onto the stack, and reloads the PC with the beginning address of the service routine. As previously noted, the service routine for each interrupt begins at a fixed location.
- Only the Program Counter is automatically pushed onto the stack, not the PSW or any other register. Having only the PC automatically saved allows the programmer to decide how much time to spend saving other registers.

00B8H	IP	Initial Value	Interrupt Priority Register	
Bit7	-	0b	-	Reserved
Bit6	-	0b	-	Reserved
Bit5	-	0b	-	Reserved
Bit4	PTC0	0b	R/W	Time Capture0 interrupt priority bit
Bit3	PT1	0b	R/W	Base Timer1 interrupt priority bit
Bit2	-	0b	-	Reserved
Bit1	PT0	0b	R/W	Base Timer0 interrupt priority bit
Bit0	PEXT0	0b	R/W	External interrupt0 priority bit

1: high priority, 0: low priority

Reset Source: Hardware reset or USB reset

00B9H	IP2	Initial Value	Interrupt Priority Register	
Bit7	-	0b	-	Not implemented (always 0)
Bit6	PFUN	0b	R/W	SUSP/OVL interrupt priority bit
Bit5	PSIE	0b	R/W	SIE interrupt priority bit (NAKT0, NAKR0, NAK1, NAK2, T0_STL, R0_STL, IN1, IN2)
Bit4	POUT0	0b	R/W	Out0 interrupt priority bit
Bit3	PIN0	0b	R/W	IN0 interrupt priority bit
Bit2	POT0ERR	0b	R/W	OT0ERR interrupt priority bit
Bit1	POWSTUP	0b	R/W	OWSTUP interrupt priority bit
Bit0	PSTUP	0b	R/W	Setup interrupt priority bit

1: high priority, 0: low priority

Reset Source: Hardware reset or USB reset

7.3. Interrupt Flag

00DAH	IF1	Initial Value		Interrupt Control Flag
Bit[7:5]	-	0b	-	Reserved
Bit4	TC0	0b	R/W	Time Capture 0 Interrupt flag. Set by hardware when the eight bits are received or end condition is detected. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit3	T1	Ob	R/W	Base Timer 1 Interrupt flag. Set by hardware when the Base timer1 overflow is detected. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit2	-	0b	-	Reserved
Bit1	ТО	0b	R/W	Base Timer 0 Interrupt flag. Set by hardware when the Base Timer0 over flow is detected. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit0	EXT0	0b	R/W	External Interrupt 0 flag. Set by hardware when the P46 falling edge signal is detected. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset

00DBH	IF2	Initial Value		Interrupt Control Flag
Bit7	-	0b	-	Reserved
Bit6	FUN	0b	R/W	FUN Interrupt flag. Set by hardware when an invalid program ROM address is detected or the idle time of USB bus large then 5ms. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit5	SIE	0b	R/W	When OUT0, IN0, IN1 or IN2 is responded by a NAK, responds ACK to IN1, IN2 or responds STALL to IN0 or OUT0 tokens, SIE will be set. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit4	OUT0	0b	R/W	When OUT token for endpoint 0 is done, it will set the OUT0 flag. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit3	INO	0b	R/W	When IN token for endpoint 0 is done, it will set the INO flag. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit2	OT0ERR	0b	R/W	When an Out token with wrong data sequence is received, OT0ERR will be set 1. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit1	OWSTUP	0b	R/W	When a receiving setup token overwrites the existing data in FIFO, R0_OW will set 1. After the overwriting setup packet is received and a following IN or OUT token happens, OWSTUP is set. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit0	STUP	0b	R/W	When a SETUP TOKEN for endpoint 0 is done, it will set the STUP flag. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset

00DEH	IRQFG	Initial Value		Interrupt Control Flag
Bit7	IN2	0b	R/W	When IN token for endpoint 2 is done, it will set the IN2 flag. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit6	IN1	0b	R/W	When IN token for endpoint 1 is done, it will set the IN1 flag. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit5	R0STL	0b	R/W	When SH61F83 responds STALL to OUT0 tokens, R0_STL will be set. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit4	T0STL	0b	R/W	When SH61F83 responds STALL to IN0 tokens, T0_STL will be set. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit3	NAK2	0b	R/W	When IN2 is responded by a NAK, NAK2 will be set. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit2	NAK1	0b	R/W	When IN1 is responded by a NAK, NAK1 will be set. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit1	NAKR0	0b	R/W	When OUT0 is responded by a NAK, NAKR0 will be set. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit0	NAKT0	0b	R/W	When IN0 is responded by a NAK, NAKT0 will be set. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset

00DFH	IRQFG2	Initial Value		Interrupt Control Flag
Bit7	-	0b	-	Reserved
Bit6	-	0b	-	Reserved
Bit5	-	0b	-	Reserved
Bit4	-	0b	-	Reserved
Bit3	-	0b	1	Reserved
Bit2	SUSP	0b	R/W	When USB SIE detects a bus idle state (J state > 5ms), its sets the SUSP Flag. Write "0" to clear, write "1" no effect Reset Source: Hardware reset or USB reset
Bit1	OVL	0b	R/W	OVL Interrupt 1 flag. Set by hardware when an invalid program ROM address is detected. Write "0" to clear, write "1" no effect. Reset Source: Hardware reset or USB reset
Bit0	-	0b	-	Reserved

8. Base Timer

- The Timer-x is an 8-bit counter with a programmable clock source selection and the value of Base Timer-x counter can be read out any time.(x = 0, 1)
- The Base Timer-x can be enabled/disabled by the CPU. After reset, the Base Timer-x is disabled and cleared.
- The Base Timer-x can be preset by writing a preset value to **BTx** register at any time. When the Base Timer-x is enabled, the Base Timer-x starts counting from the preset value to FFH and when the values reaches 00H, it generates a Base Timer-x interrupt if the Base Timer-x interrupt is enabled. When it reaches 00H, the Base Timer-x will auto-load the value in **BTx** register and begins counting.
- The Base Timer-x can be enabled by writing a "1" to "ENBTx" in the BTCON (Base Timer Control) register. The ENBTx is level trigger. If any value is written to BTx register when it is counting, Base Timer-x will reload that value immediately and continue counting from that written value. Every time ENBTx goes rising, the counter begins to count from the preset value in BTx register.
- The input clock source of Base Timer-x is controlled by the **BTxM[2:0]** register. The following table shows 8 ranges of the Base Timer-x. For counting accuracy, please set the Base Timer-x register first, then preset the **BTxM[2:0]** register, last, enable the Base Timer-x.

00D2H	ВТ0	Initial Value		Base Timer-0 Control Register
Bit[7:0]	BT0[7:0]	00h	R/W	Base Timer-0 register Reset Source: Hardware reset or USB reset

00D3H	BT1	Initial Value	Base Timer-1 Control Register	
Bit[7:0]	BT1[7:0]	00h	R/W	Base Timer-1 register Reset Source: Hardware reset or USB reset

00D4H	BTCON	Initial Value		Base Timer Control Register
Bit7	ENBT1	0b	R/W	0: Disable Base Timer-1 1: Enable Base Timer-1 Reset Source: Hardware reset or USB reset
Bit[6:4]	BT1M[2:0]	000b	R/W	Base Timer-1 clock source 000: FBT /2 ⁰ 001: FBT /2 ¹ 010: FBT /2 ² 011: FBT /2 ³ 100: FBT /2 ⁴ 101: FBT /2 ⁵ 110: FBT /2 ⁶ 111: FBT /2 ⁷ FBT = Fsys/6 Reset Source: Hardware reset or USB reset
Bit3	ENBT0	0b	R/W	0: Disable Base Timer-0 1: Enable Base Timer-0 Reset Source: Hardware reset or USB reset
Bit[2:0]	BT0M[2:0]	000b	R/W	Base Timer-0 clock source $000: F_{BT}/2^0 \\ 001: F_{BT}/2^1 \\ 010: F_{BT}/2^2 \\ 011: F_{BT}/2^3 \\ 100: F_{BT}/2^4 \\ 101: F_{BT}/2^5 \\ 110: F_{BT}/2^6 \\ 111: F_{BT}/2^7 \\ F_{BT} = F_{SYS}/6 \\ \text{Reset Source: Hardware reset or USB reset}$

9. Time Capture 0

The SH61F83 provide one set of Time Capture I/O pins, TC0, the Time Capture input provides both rising and falling edge 8 bits time register. A PreScaler allows TCAP0 to select 8 types of time capture tick size (From 2us to 16us).

Figure 9-1. Function Block Diagram of Time Capture Function TCAP0

00CBH	TCAP0R	Initial Value	Time Capture 0 Rising-edge Register	
Bit[7:0]	TCAP0R[7:0]	00h	R	Time Capture 0 Rising-edge data register. Reset Source: Hardware reset or USB reset

00CCH	TCAP0F	Initial Value	Time Capture 0 Falling-edge Register	
Bit[7:0]	TCAP0F[7:0]	00h	R	Time Capture 0 Falling-edge data register. Reset Source: Hardware reset or USB reset

00C8H	TCSTU	Initial Value		Time Capture Status register
Bit[7:5]	-	000b	-	Reserved
Bit4	TC0_OVL	0b	R/W	Time Capture 0 (TCAP0) Over Flow flag. TC0_OVL event will active If TC_CLREN = 1 & TC_OVLEN = 1 and the data width on TC0 pad is longer then TCAP0 free-run counter. TCAP0 free-run counter will count continuously. Write '0' to clear TC0_OVL flag, write '1' no effect. Reset Source: Hardware reset or USB reset
Bit[3:2]	-	00b	-	Reserved
Bit1	TC0F_FULL	0b	R	Time Capture 0 Falling Edge Register (TCAP0F) Full flag. When TC0 pin get a falling-edge, TCAP0 free-run counter value will be load into TCAP0F and TC0F_FULL bit will be set to "1" also. This bit will be clear by hardware when firmware read a byte from TCAP0F. Reset Source: Hardware reset or USB reset
Bit0	TC0R_FULL	0b	R	Time Capture 0 Rising Edge Register (TCAP0R) Full flag. When TC0 pin get a rising-edge, TCAP0 free-run counter value will be load into TCAP0R and TC0R_FULL bit will be set to "1" also. This bit will be clear by hardware when firmware read a byte from TCAP0R. Reset Source: Hardware reset or USB reset

00C9H	TCCON	Initial Value		Time Capture Control Register
Bit[7:6]	-	00b	-	Reserved
Bit5	TC_CLREN	0b	R/W	Enable force clear TCAP0 free-run counter control bit 0: TCAP0 free-run counter is continued. 1: Enable force clear TCAP0 free-run counter function. When force clear function enable, TCAP0 free-run counter is clear when a rising or falling edge is detected on TC0 pad. Reset Source: Hardware reset or USB reset
Bit4	TC_OVLEN	0b	R/W	Enable TC0_OVL event function 0: Disable TC0_OVL event. 1: Enable TC0_OVL event. User can set both TC_CLREN and TC_OVLEN to detect the over-run event of TCAP0 free-run counter. Reset Source: Hardware reset or USB reset
Bit[3:2]	-	00b	-	Reserved
Bit1	TC0F_INT	0b	R/W	Enable Time Capture 0 falling-edge interrupt request. When ETC0 = 1 & TC0F_INT = 1, the falling-edge on TC0 pad will cause an ETC0 IRQ. Reset Source: Hardware reset or USB reset
Bit0	TC0R_INT	0b	R/W	Enable Time Capture 0 rising-edge interrupt request. When ETC0 = 1 & TC0R_INT = 1, the rising-edge on TC0 pad will cause an ETC0 IRQ. Reset Source: Hardware reset or USB reset

00CAH	TCSCALE	Initial Value	Time Capture Input Clock Scale Register	
Bit[7:4]	-	0000b	-	Reserved
Bit3	-	0b	-	Reserved
Bit[2:0]	TC0TS[2:0]	000b	R/W	Time Capture 0 free-run timer scale control: 000: Select 2us time scale for TCAP0 free-run counter base timer 001: Select 4us time scale for TCAP0 free-run counter base timer 010: Select 6us time scale for TCAP0 free-run counter base timer 011: Select 8us time scale for TCAP0 free-run counter base timer 100: Select 10us time scale for TCAP0 free-run counter base timer 101: Select 12us time scale for TCAP0 free-run counter base timer 110: Select 14us time scale for TCAP0 free-run counter base timer 111: Select 16us time scale for TCAP0 free-run counter base timer Reset Source: Hardware reset or USB reset

Following figures show how Time Capture function works on TC0 input signal with different H/W setting condition

Figure 9-2. Timing Diagram of TC0 #1

Figure 9-3. Timing Diagram of TC0 #2

Figure 9-4. Timing Diagram of TC0 #3

Figure 9-5. Timing Diagram of TC0 #4

10. USB Control Register

10.1. DADDR

USB Device Address Register

00F2H	DADDR	Initial Value	Device Address Register	
Bit7	-	0B	-	Reserved
Bit[6:0]	DADDR[6:0]	0000000B	R/W	USB Device address Reset Source: Hardware reset (External reset, Power-on reset and Low-Voltage reset) or USB reset)

10.2. DFC

USB Feature Control Register

00F3H	DFC	Initial Value		Device Feature Control Register
Bit7	PULL_UP	0B	R/W	Internal 1.5K ohm pull up resistor On/Off control 0: Disable internal USB D- pad 1.5K ohm pull-up resistor 1: Enable internal USB D- pad 1.5K ohm pull-up resistor This F/W controlled function will be mask and is controlled by H/W if USB Mode was enabled (USB_CON = 1) Reset Source: Hardware reset
Bit6	USB_CON	0B	R/W	0: Enable GPIO Mode 1: Enable USB Mode Reset Source: Hardware reset
Bit5	FW_K	0B	R/W	0: FW stops issuing K-state on USB bus 1: FW starts to issue K-state on USB bus Reset Source: Hardware reset or USB reset
Bit4	RSU_SEL	0B	R/W	0: Enable HW to response RESUME by issuing K-state 1: Disable HW to response RESUME by issuing K-state Reset Source: Hardware reset or USB reset
Bit3	USBEN	0B	R/W	After power on, USBEN is reset to 0. USBEN will be set to 1 after HOST issues USB reset and then the device starts to respond USB commands. This bit can be also read and written by F/W. 0: Disable USB functions 1: Enable USB functions Reset Source: Hardware reset
Bit2	-	0B	-	Reserved
Bit1	ERWUP	0В	R/W	Remote Wake Up Enable Bit 0: Disable remote wake-up 1: Enable remote wake-up ERWUP can be returned by SETUP command - GetStatus () to a device ERWUP can be set by SETUP command - ClearFeature (DEVICE_REMOTE_WAKEUP) and SetFeature (DEVICE_REMOTE_WAKEUP). For remote wake-up function, H/W designer and F/W programmer must follow the below notes. Remote wake bit in DFC register can only be set/reset by HOST. Reset Source: Hardware reset or USB reset
Bit0	VPCON	1B	R/W	USB Virtual Plug-off Control 0: Perform USB plug-in only if the device is disconnected 1: Perform USB pseudo plug-off Reset Source: Hardware reset

Note: If software remote wakes up the PC, the "SUSF" bit flag in the "MODE_FG" register SHOULD BE cleared BEFORE the "RSU_SEL" bit flag be cleared.

10.3. TXDATx

USB Transmit FIFO Data Register, x = 0/1/2 for Endpoint 0/1/2. The byte count of the transmitted data must be equal to or less than 8.

00EAH	TXDAT0	Initial Value		USB TX FIFO 0 Data Register
Bit[7:0]	TXDAT0[7:0]	XXH	W	Transmit FIFO 0 Reset Source: no reset source

00E2H	TXDAT1	Initial Value		USB TX FIFO 1 Data Register
Bit[7:0]	TXDAT1[7:0]	XXH	W	Transmit FIFO 1 Reset Source: no reset source

00E5H	TXDAT2	Initial Value		USB TX FIFO 2 Data Register
Bit[7:0]	TXDAT2[7:0]	XXH	W	Transmit FIFO 2 Reset Source: no reset source

10.4. TXCNTx

USB FIFO Transmit Bytes Count Register, x = 0/1/2 for Endpoint 0/1/2. The firmware writes the corresponding bytes count to this register after writing data to the **TXDATx**.

00EBH	TXCNT0	Initial Value		USB TX FIFO 0 Bytes Count Register
Bit[7:4]	-	0000B	-	Reserved
Bit[3:0]	TXCNT0[3:0]	XXXXB	W	TX FIFO 0 Transmit Bytes Count Reset Source: no reset source

00E3H	TXCNT1	Initial Value		USB TX FIFO 1 Bytes Count Register
Bit[7:4]	-	0000B	-	Reserved
Bit[3:0]	TXCNT1[3:0]	XXXXB	W	TX FIFO 1 Transmit Bytes Count Reset Source: no reset source

00E6H	TXCNT2	Initial Value	USB TX FIFO 2 Bytes Count Register	
Bit[7:4]	-	0000B	1	Reserved
Bit[3:0]	TXCNT2[3:0]	XXXXB	W	TX FIFO 2 Transmit Bytes Count Reset Source: no reset source

10.5. TXFLGx

USB Transmit FIFO Flag/Control Register, x = 0/1/2 for Endpoint 0/1/2.

00ECH	TXFLG0	Initial Value		USB TX FIFO 0 Flag/Control Register
Bit [7:2]	-	000000B	-	Reserved
Bit 1	STLT0	0	R/W	Pipe 0 stall bit 0: SIE responds ACK, NAK or not respond to pipe 0 IN token 1: STLT0 bit is used to stall the pipe 0 IN token. SIE will respond STALL to pipe 0 IN token as long as STLT0 bit is set Reset source: Hardware reset or USB reset
Bit 0	T0FULL	0	R/W	TXDAT0 FIFO full status bit. F/W writes "1" to set H/W FIFO pointer. Clear to "0" by H/W after receiving ACK from host. 0: empty 1: full Reset Source: Hardware reset or USB reset

00E4H	TXFLG1	Initial Value		USB TX FIFO 1 Flag/Control Register
Bit[7:4]	1	0000B	1	Reserved
Bit3	T1EPE	0b	R/W	This bit is used to enable/disable the endpoint 1 1: Enable endpoint 1 0: Disable, the corresponding endpoint does not respond to a valid IN Token Reset source: Hardware reset or USB reset
Bit2	T1SEQC	0b	W	The data sequence of each transmitted data packet is controlled by hardware and is toggled after receiving ACK from host. The F/W can reset the data sequence by writing "1" to T1SEQC for resetting the next transmitting data sequence on endpoint 1. Write "0" to no effect. Read this bit will always get value with "0" Reset source: Hardware reset or USB reset
Bit1	STLT1	0b	R/W	Pipe 1 stall bit, this bit is used to stall the pipe 1. STL1 is set by SETUP command - SetFeature (ENDPOINT_HALT) and STL1 is reset by SETUP command - ClearFeature (ENDPOINT_HALT). 0: responds ACK, NAK or not respond to IN1 1: STLT1 bit is used to stall the pipe 1 IN token. SIE will respond STALL to Host IN token as long as STLT1 bit is set Reset source: Hardware reset or USB reset
Bit0	T1FULL	0b	R/W	TXDAT1 FIFO full status bit. F/W writes "1" to set H/W FIFO pointer. Clear to "0" by H/W after receiving ACK form host. 0: Empty 1: Full Reset Source: Hardware reset, USB reset

00E7H	TXFLG2	Initial Value		USB TX FIFO 2 Flag/Control Register
Bit[7:4]	-	0000B	-	Reserved
Bit3	T2EPE	0b	R/W	This bit is used to enable the endpoint 2. 1: Enable endpoint 2 0: Disable, the corresponding endpoint does not respond to a valid IN Token Reset source: Hardware reset or USB reset
Bit2	T2SEQC	0b	W	The data sequence of each transmitted data packet is controlled by hardware and is toggled after receiving ACK from host. The F/W can reset the data sequence by writing "1" to T2SEQC for resetting the next transmitting data sequence on endpoint 2. Write "0" to no effect. Read this bit will always get value with "0" Reset source: Hardware reset or USB reset
Bit1	STLT2	0b	R/W	Pipe 2 stall bit, this bit is used to stall the pipe 2. STL2 is set by SETUP command - SetFeature (ENDPOINT_HALT) and STL2 is reset by SETUP command - ClearFeature (ENDPOINT_HALT). 0: responds ACK, NAK or not respond to IN2 1: STLT2 bit is used to stall the pipe 2 IN token. SIE will respond STALL to Host IN token as long as STLT2 bit is set Reset source: Hardware reset or USB reset
Bit0	T2FULL	0b	R/W	TXDAT 2 FIFO full status bit. F/W writes "1" to set H/W FIFO pointer. Clear to "0" by H/W after receiving ACK form host. 0: Empty 1: Full Reset Source: Hardware reset or USB reset

The TX FIFO operational model refers to Figure 10-1.

In the following, the related F/W procedures and H/W actions are described.

- (1) After Hardware Reset or USB Reset, the **TxFULL** bit in **TXFLGx** will reset to 0 to announce no data in FIFOs (x = 0/1/2).
- (2) F/W writes up to n bytes of data to the **TXDATx** FIFO. (n = 0-8)
- (3) F/W writes data byte count to the corresponding **TXCNTx** register.
- (4) F/W sets the TxFULL bit.
- (5) SIE issues data from the corresponding FIFO byte-by-byte after SIE receives a valid corresponding IN transaction.
- (6) SIE waits the ACK.
- (7) After SIE receives ACK package successively, the **TxFULL** bit is then reset to 0 by H/W. If SIE don't receive ACK, **TxFULL** is on its original status.

Figure 10-1. TX FIFO Operating Model (for a valid IN Transaction)

10.6. RXDAT0

USB Receive FIFO Data Register for Endpoint 0.SIE writes data to the RXDAT0 FIFO for Endpoint 0. CPU read data from the RXDAT0 for Endpoint 0. The operational model refers to Figure 10-2.

00EDH	RXDAT0	Initial Value		USB RX FIFO 0 Data Register
Bit[7:0]	RXDAT0 [7:0]	XXH	R	RX FIFO Data Register for Endpoint 0 Reset Source: no reset source

10.7. RXCNT0

USB Received FIFO bytes count register for Endpoint 0. SIE writes the corresponding bytes count to this register after writing data to the RXDAT0.

00EEH	RXCNT0	Initial Value		USB RX FIFO 0 Bytes Count Register					
Bit[7:4]	-	0000B	1	Reserved					
Bit[3:0]	RXCNT0 [3:0]	XXXXB	W	RX FIFO bytes count register for Endpoint 0 Reset Source: no reset source					

10.8. RXFLG0

USB Receive FIFO Flag/Control Register for Endpoint 0

00EFH	RXFLG0	Initial Value		USB RX FIFO Flag/Control Register
Bit[7:6]	-	00B	-	Reserved
Bit5	RXERR	0B	R/W	Receiving error on pipe 0. When device receives a DATA packet with CRC or bit stuffing errors, this bit is set. Write "0" to clear, Write "1" no effect. Reset Source: Hardware reset or USB reset
Bit4	R0_OW	0B	R	This bit is set as long as receiving FIFO is corrupted by setup token Reset Source: Hardware reset or USB reset
Bit3	ROSEQ	0B	R	The data toggle bit of receiving transaction on pipe 0. This bit is updated by hardware as long as pipe 0 receives a setup or out transaction. Reset Source: Hardware reset or USB reset
Bit2	OUT0ENB	ОВ	R/W	0: The device will receive the data of OUT0 packet when RX FIFO 0 is empty and respond ACK if no bit stuffing error or CRC error. 1: The SH61F83 will respond OUT0 token with NAK. Reset Source: Hardware reset or USB reset
Bit1	STLR0	ОВ	R/W	Pipe 0 stall bits. STLR0 bit is used to stall the pipe 0 OUT token. 0: responds ACK, NAK or not respond to OUT token. 1: SIE will respond STALL to HOST OUT token. Reset Source: Hardware reset or USB reset
Bit0	R0FULL	0B	R/W	RXDAT0 FIFO full bit. Set to "1" by H/W when the RX FIFO 0 fills with valid data. 0: Empty. 1: Full. Write "0" to clear, Write "1" no effect. Reset Source: Hardware reset or USB reset

10.9. CRWCON

EP0 Control Read/Write Function Control Register

00E9H	CRWCON	Initial Value		EP0 Control Read/Write Setup Register
Bit [7:3]	•	00000B	1	Reserved
Bit 2	CRSEQ	0B	R/W	Select "Valid OUT0 Token" for "STLCR" as Data 1 or Data 0/1. 0: "Valid OUT0 Token" include both OUT Token with "Data 1" & "Data 0" 1: "Valid OUT0 Token" means only OUT Token with "Data 1" Reset Source: Hardware reset, USB reset, SETUP
Bit 1	STLCR	0B	R/W	1: Enable H/W set "STLR0" and "STLT0" bits when a "valid OUT0 token" was processed 0: Disabled Reset Source: Hardware reset, USB reset, SETUP
Bit 0	STLCW	0B	R/W	1: Enable H/W set "STLT0" and "STLR0" bits when a "valid IN0 token" was processed 0: Disabled Reset Source: Hardware reset, USB reset, SETUP

CRSEQ	STLCR	STLCW	Valid OUT0 Data 0	Valid OUT0 Data 1	Valid IN0 Token	Note
0	0	0	STLT0 = 0 & STLR0 = xx	STLT0 = 0 & STLR0 = xx	STLT0 = xx & STLR0 = 0	
1	0	0	STLT0 = 0 & STLR0 = xx	STLT0 = 0 & STLR0 = xx	STLT0 = xx & STLR0 = 0	
0	1	0	STLT0 = 1 & STLR0 = 1	STLT0 = 1 & STLR0 = 1	STLT0 = xx & STLR0 = 0	
1	1	0	STLT0 = 0 & STLR0 = xx	STLT0 = 1 & STLR0 = 1	STLT0 = xx & STLR0 = 0	
0	0	1	STLT0 = 0 & STLR0 = xx	STLT0 = 0 & STLR0 = xx	STLT0 = 1 & STLR0 = 1	
1	0	1	STLT0 = 0 & TLR0 = xx	STLT0 = 0 & STLR0 = xx	STLT0 = 1 & STLR0 = 1	
0	1	1	STLT0 = 0 & STLR0 = 1	STLT0 = 0 & STLR0 = 1	STLT0 = 1 & STLR0 = 0	Illegal
1	1	1	STLT0 = 0 & STLR0 = xx	STLT0 = 0 & STLR0 = 1	STLT0 = 1 & STLR0 = 0	Illegal

Note1: xx means unchanged

Note2: Set the control register in the illegal condition will result in abnormal state under EP0 Control Read/Write Transfer. The RX FIFO operational model refers to Figure 10-2.

In the following, the related F/W procedures and H/W actions are described.

- (1) After Hardware Reset or USB Reset, the R0FULL bit in RXFLG0 will reset to 0 to announce no data in RXDAT0 FIFO.
- (2) SIE receives data (a valid SETUP Transaction or a valid OUT Transaction) byte-by-byte from USB transceiver.
- (3) SIE issues ACK.
- (4) A SETUP or OUT IRQ occurs and H/W writes data and bytes count to the RXDATO and RXCNTO registers.
- (5) H/W sets the R0FULL bit to "1".
- (6) After F/W read data from RXDAT0 FIFO, F/W has to set the R0FULL bit to "0".

Figure 10-2. RXFIFO Operation Model

11. MTP (Multiple Times Programmable) Program Memory

The SH61F83 embeds 14K MTP program memory for program code, which endure 8 write/erase cycles. The MTP program memory can be electrical erased and programmed by HidUpdate4.exe. The erasure and programming steps as follows:

Note: 37F0H - 37FFH bytes are reserved and not supposed to be used.

Hardware Way:

1. Make a Boot Circuit as showing in the following picture

Figure 11-1

- Connect the Device USB Cable to the Boot Circuit (D+, D- being connected), and then supply 5V power (PC USB Cable or Power Supply).
- 3. After LED flicker, disconnect the USB Cable from the Boot Circuit
- 4. Connect the USB Cable directly to the PC
- 5. Run HidUpdate4.exe
- 6. Click BURN NUM and the software shows the left times the IC can be erased and programmed
- 7. Click **LOAD FILE** and select the User Program
- 8. Click WRITE IC to do Erase/Program/Verify
- 9. After the software shows being finished, click EXIT
- 10. Reconnect the USB Cable (or Scroll On/Off), SH61F83 will run with the new User Program

Figure 11-2 Boot Circuit

Software Way:

User Program should add these two segments:

```
User Program should add Report Descriptor as follows, (Report ID=5)
         DB 0x06, 0x00, 0xFF
                                                 // usage page
                                                 // usage(1)
         DB
             0x09, 0x01
                                                // Collection(Application)
         DB
             0xA1, 0x01
                                                 // REPORT_ID (5)
         DB 0x85, 0x05
                                                // Logical Minimum (0)
         DB 0x15, 0x00
         DB 0x25, 0xFF
                                                // Logical Maximum (255)
         DB 0x19, 0x01
                                                // Usage Minimum(0x01)
         DB 0x29, 0x05
                                               // Usage Maximum(0x05)
                                                // REPORT SIZE (8)
         DB 0x75, 0x08
                                               // REPORT COUNT(5)
         DB 0x95, 0x05
         DB 0xB1, 0x02
                                              // FEATURE(DATA, VARIABLE, ABSOLUTE)
         DB 0xC0
                                                         // END COLLECTION
1. If User Program receives Set Report Feature Command as
              SetUp: 0x21 0x09 0x05 0x03 (0x00 or 0x01) 0x00 0x06 0x00
              Out: 0x05 0x75 0x00 0x00 0x00 0x00
              In: Data Length = 0
  User Program should run
          CLR IE.7
          MOV
                     A, #05Ah
          MOV
                     B, #0A5h
          LJMP
                     0x3F00
```

- 2. After USB Cable being connected to PC, the device runs with original User Program (VID = UserVID, PID = UserPID)
- 3. PC runs HidUpdate4.exe
- 4. Click **SET** and input UserVID, UserPID
- 5. Click BURN NUM and the software shows the left times the IC can be erased and programmed
- 6. Click LOAD FILE and select User Program
- 7. Click WRITE IC to do Erase/Program/Verify
- 8. If fails, wait for another 5 seconds, and Click WRITE IC again to do Erase/Program/Verify
- 9. After the software shows being finished, click EXIT
- 10. Reconnect the USB Cable (or Scroll On/Off), SH61F83 will run with the new User Program

12. Electrical Characteristics

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics ($V_{DD} = 5V$, GND = 0V, $T_A = 25$ °C, $f_{OSC} = 6MHz$, unless otherwise noted)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS					
Main Power											
Operating Voltage	V_{DD}	4.4	5	5.25	V						
Operating Current 1 (f _{SYS} = 6Mhz)	I _{OP}	-	-	10	mA	No load (f _{OSC} = 6Mhz)					
Idle mode Current	I _{IDLE}	-	-	6	mA	No Load (Enable Wake-up timer)					
Power down Current	I _{PD}	-	1	200	μΑ	No Load, In Power-down mode (disable wake-up timer, LVR Disable)					
Regulator											
3.3V Regulator Voltage	V ₃₃ (V33)	-	3.3	-	V	$V_{DD} = 4.4V - 5.25V$, $I_{O} = 20mA$ (max)					
1.8V Regulator Voltage	V ₁₈	1.7	1.8	1.9	V	$V_{DD} = 4.4V - 5.25V$, $I_{O} = 10mA$ (max)					
	GPIC	and L	ED P	ort							
Output High Voltage Port0	V_{OH1}	2.4	-	-	V	$I_{OHI} = -50\mu A \text{ (min.)}$					
Output High Voltage Port1	V_{OH2}	2.4	ı	-	V	$I_{OH2} = -50\mu A \text{ (min.)}$					
Output High Voltage Port2	V_{OH3}	2.4	-	-	V	$I_{OH3} = -50\mu A \text{ (min.)}$					
Output High Voltage Port3	V _{OH4}	2.4	-	-	V	$I_{OH4} = -50\mu A \text{ (min.)}$					
Output High Voltage Port4[2:0]	V _{OH5}	2.4	-	-	V	I _{OH5} = -50μA (min.)					
Output High Voltage Port4[6:5] (When USB_CON = 0)	V _{OH6}	2.4	-	-	V	I _{OH6} = -0.8mA (min.)					
Output Low Voltage Port0	V _{OL1}	-	-	0.4	V	I _{OLI} = 4mA (min.)					
Output Low Voltage Port1	V _{OL2}	-	-	0.4	V	I _{OL2} = 4mA (min.)					
Output Low Voltage Port2	V _{OL3}	-	-	0.4	V	I _{OL3} = 4mA (min.)					
Output Low Voltage Port3[5:0]	V _{OL4}		-	0.4	V	I _{OL4} = 5mA (min.)					
Output Low Voltage Port3[7:6] (When P3SEL x = 0)	V _{OL5}	-	-	0.4	V	I _{OL5} = 5mA (min.)					
Output Low Voltage Port3[7:6] (When P3SEL x = 1)	V_{OL6}	1.0	-	1.2	V	I _{OL6} = 20mA (Typ.) (Blue)					
Output Low Voltage Port4[2:0] (When P4SEL x = 0)	V_{OL9}	2.6	-	3.2	٧	I _{OL9} = 9mA (Typ.) (LED)					
Output Low Voltage Port4[6:5] (When USB_CON = 0)	V _{OL11}	-	-	0.4	V	I _{OL11} = 8mA (min.)					
RSTB internal pull-up resistor	R _{RST}	30	55	80	kΩ	@ 0v					
Schmitt Trigger Input High Voltage (P02, P03, P15, P16, P45 and P46)	V _{STIH}	2.2	-	-	٧						
Schmitt Trigger Input Low Voltage (P02, P03, P15, P16, P45 and P46)	V _{STIL}	-	-	1	٧						
Input High Voltage	V _{IH}	2	-	-	V						
Input Low Voltage	V_{IL}	-	-	0.8	V						

(continued)

Reset (DC)									
Power-on Reset Level	V_{POR}			3.6	V				
Auxiliary Lower-voltage Reset Level	V_{LVRA}	2.9	3.0	3.1	V				
Low Voltage Reset 1 Level	V_{LVR1}	1.4	1.5	1.6	V				
Low Voltage Reset 2 Level	V_{LVR2}	2.2	2.4	2.6	V				
Upper Threshold Voltage for external Reset	V _{UT(RESET)}	2	-	-	V				
Lower Threshold Voltage for external Reset	V _{LT(RESET)}	-	-	8.0	V				

AC Electrical Characteristics ($V_{DD} = 5V$, GND = 0V, $T_A = 25$ °C, $f_{OSC} = 6MHz$, unless otherwise noted)

Oscillator										
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS				
Internal RC Frequency 1	F _{SYS}	5.91	6	6.09	MHz	±1.5%				
Internal RC Frequency 2	F_{RING}	27.2	32	36.8	KHz	±15%				

Reset (AC)										
PARAMETER	SYMBOL	MIN.		MAX.	UNIT	CONDITIONS				
External Reset Pulse Width	T _{PW(RSTB)}	-	2 ¹³	-	T _{SYS}	F _{SYS} = 6MHz				
External Reset hold time	T _{RST(RSTB)}	-	2 ⁷	-		F _{SYS} = 6MHz				
Power On Reset time	T _{RST(POR)}	-	2 ¹⁶	-		F _{SYS} = 6MHz				
Low Voltage Reset time	T _{RST(LVR)}	-	2 ¹⁶	-	T _{SYS}	F _{SYS} = 6MHz				
Drop-Down Width for LVR1	T _{PW(LVR1)}	-	2 ⁹	-	T _{SYS}	F _{SYS} = 6MHz				
Drop-Down Width for LVR2	T _{PW(LVR2)}	-	2 ⁹	-	T _{SYS}	F _{SYS} = 6MHz				
Drop-Down Width for LVRA	T _{PW(LVRA)}	-	2 ⁹	-	T _{SYS}	F _{SYS} = 6MHz				
Watch-Dog Reset Hold Time	T _{RST(WDT)}	-	500	-	μs					
Internal USB Reset Hold Time	T _{RST(USB)}	2	-	4	T _{SYS}	F _{SYS} = 6MHz				
SE0 Width for USB Reset	T _{URST}	22	-	-	μs					
SE0 Width for USB Reset (power-down mode)	T _{URST1}	3	-	-	ms					
Internal Resume Reset Width (Global wake-up)	T _{WKRST1}	-	2.7	-	ms					
Internal Resume Reset Width (Remote Wakeup, RSU_SEL = 0) (HW Issue K)	T _{WKRST2}	-	18.4	-	ms					
Internal Resume Reset Width (Remote Wakeup, RSU_SEL = 1)	T _{WKRST3}	-	5.4	-	ms					
Internal Resume Reset Width (Wake-Up timer)	T _{WKRST4}	2 ¹⁰	-	2 ¹⁷	T _{SYS}	F _{SYS} = 6MHz, (Depend on Period[1:0])				
Noise cancellation for ExT0	T _{PW(EXT0)}	-	-	2 ²	T_{SYS}	F _{SYS} = 6MHz				
Noise cancellation for P15/TC0	TPW(SDA)	-	-	2 ²	T _{SYS}	F _{SYS} = 6MHz				
P46 and P45 slew rate	T _{DAT}	-	2.6	-	μs	500pF load				

USB DC/AC Specifications

- Please refer to the UNIVERSAL SERIAL BUS specification Version 1.1 Chapter 7.
 Some items are listed in the following table.
 In addition, the crossover point voltage should meet the following specifications.

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input High Voltage (Driven)	V _{IH} (USB)	2.0	1	-	V	DM, DP
Input High Voltage (Floating)	V _{IHZ} (USB)	2.7	•	3.6	V	DM, DP
Input Low Voltage	V _{IO} (USB)	-	ı	0.8	V	DM, DP
Differential Input Sensitivity	V _{DI} (USB)	0.2	-	-	V	DM, DP (VDP - VDM)
Differential Common Mode Range	V _{DM} (USB)	0.8	-	2.5	V	DM, DP (Includes Vol Range)
Output Low Voltage	V _{OL} (USB)	0.0	-	0.3	V	DM, DP
Output High Voltage (Drive)	V _{OH} (USB)	2.8	-	3.6	V	DM, DP
Output Crossover Voltage	V _{CRS} (USB)	1.3	-	2.0	V	DP, DM, V _{DD} = 4.4V - 5.25V

Application Circuit (For Reference Only)

Window 7 Compatible Keyboard (For reference only)

Ordering Information

Part No.	Package
SH61F83H-HAxxx	Chip Form
SH61F83Q/048QR-HAxxx	QFN48 (6 X 6)

Note: 'xxx' is the code number assigned by Sinowealth.

Package Information

QFN 48L (6 X 6) Outline Dimensions

unit: inches/mm

Dimensions In Millimeters Dimensions In Inches Symbol Min. Max. Min. Max. Α 0.700/0.800 0.800/0.900 0.028/0.031 0.031/0.035 **A1** 0.000 0.050 0.000 0.002 **A3** 0.203REF. 0.008REF. D 0.233 0.239 5.924 6.076 Ε 5.924 6.076 0.233 0.239 D1 3.700 3.900 0.146 0.154 0.154 E1 3.700 3.900 0.146 0.200MIN. 0.008MIN. k 0.150 0.250 0.006 0.010 b 0.400TYP. 0.016TYP. е 0.324 0.476 0.013 0.019

Bonding Diagram

Pad Location unit: μm

Pad NO.	Pad Name	Х	Υ	48QFN	Pad NO.	Pad Name	Х	Υ	48QFN
1	PORT4[6]	674.32	-288.9	1	27	PORT1[6]	-633.24	691.78	27
2	PORT3[0]	674.32	-207.9	2	28	PORT1[7]	-674.32	73.37	28
3	PORT3[1]	674.32	-126.9	3	29	PORT2[0]	-674.32	-7.63	29
4	PORT3[2]	674.32	-45.9	4	30	PORT2[1]	-674.32	-88.63	30
5	PORT3[3]	674.32	35.1	5	31	PORT2[2]	-674.32	-169.63	31
6	PORT3[4]	674.32	116.1	6	32	GND	-674.32	-250.63	bonding to frame
7	GND	674.32	197.1	bonding to frame	33	PORT2[3]	-674.32	-331.63	32
8	PORT3[5]	674.32	278.1	7	34	PORT2[4]	-674.32	-412.63	33
9	PORT3[6]	674.32	359.1	8	35	PORT2[5]	-674.32	-493.63	34
10	PORT3[7]	674.32	472.05	9	36	PORT2[6]	-674.32	-574.63	35
11	RSTB	674.32	585	10	37	PORT2[7]	-674.32	-670.03	36
12	PORT0[0]	674.32	675	11	38	PORT4[0]	-516.01	-692.32	37
13	PORT0[1]	548.1	691.78	12	39	PORT4[1]	-435.01	-692.32	38
14	PORT0[2]	452.7	691.78	13	40	PORT4[2]	-354.01	-692.32	39
15	PORT0[3]	371.7	691.78	14	41	VCC	-251.36	-605.75	40
16	PORT0[4]	290.7	691.78	16	42	VDD5V	18.87	-692.32	41
17	PORT0[5]	209.7	691.78	17	43	PVDD	99.87	-692.32	41
18	PORT0[6]	128.7	691.78	18	44	GND	180.87	-692.32	44
19	PORT0[7]	47.7	691.78	19	45	GND	261.87	-692.32	44
20	GND	-33.3	691.78	bonding to frame	46	GND	342.87	-692.32	45 & bonding to frame
21	PORT1[0]	-114.3	691.78	20	47	VDDROUT	432.87	-692.32	46
22	PORT1[1]	-195.3	691.78	21	48	VNN	528.27	-696.82	nc
23	PORT1[2]	-294.84	691.78	22	49	VPP	600.27	-696.82	nc
24	PORT1[3]	-375.84	691.78	23	50	TFLASH_BAK	672.27	-696.82	nc
25	PORT1[4]	-456.84	691.78	24	51	VDDRIN	674.32	-603.68	46
26	PORT1[5]	-537.84	691.78	26	52	PORT4[5]	674.32	-522.68	48

Data Sheet Revision History

Revision No.	History	Date
2.0	Add notice, P20, P39	Feb. 2018
1.0	Original	Jun. 2013