

DEVELOP A MODE CHOICE MODEL TO ESTIMATE WALK AND BIKE TRIPS IN THE MARYLAND STATEWIDE MODEL

SEPTEMBER 2025

MARYLAND STATEWIDE TRANSPORTATION MODEL (MSTM)

- Developed and in production for over 20 years
- Covers the whole state of Maryland
- Trip-based model with ≈1,500 level 1 zones within Maryland
- Includes a 'halo' region around the state for a total of ≈1,800 zones
- FHWA peer reviewed
- FHWA long-distance model
- Freight model
- Includes data from MPOs models in Maryland
 - Baltimore Metropolitan Council
 - Metropolitan Washington Council

MARYLAND STATEWIDE TRANSPORTATION MODEL (MSTM)

Level 1

MSTM Network

- Highway network
 - Based on MDOT-SHA roadway centerline data
 - Linkage with other asset data (Counts, ADT Segments, etc.)
 - · Single point intersection coding
 - Multi-resolution database allows for greater flexibility and scalability
- Zone Structure
 - 1. SMZs
 - 2. TAZs
 - 3. Census blocks

Level 1 MSTM Zones

Level 2 MPO Zones

Level 2 MPO Network

Level 3
SHA Centerline Network

Level 3
Census Block Zones

MARYLAND STATEWIDE TRANSPORTATION MODEL (MSTM)

- Traditional 4-step model
 - 1. Trip Generation
 - 2. Trip Distribution
 - 3. Mode-Choice
 - 4. Assignment

Currently in MSTM

- Mode choice accounts only for motorized modes
- Non-motorized shares are static and identified from old survey data, and thus removed from model stream

RESEARCH PROJECT BACKGROUND

- In summer of 2023, MDOT SHA funded a research project to develop a mode choice model.
- Morgan State and Carnegie Mellon University were awarded research funding.
- Both universities jointly collaborated to conduct the research.

RESEARCH GAPS

Current mode choice model limitations:

- Limited data available on alternative travel modes for walk/bike trips
- Survey data restricts accurate OD location detail due to privacy constraints
- Few models incorporate Level of Traffic Stress (LTS) or other bike/ped related network measures

RESEARCH GOALS

Model walk and bike modes in the statewide model

 Expand MSTM capabilities to support MDOT policy & program initiatives related to active transportation

 Improve representation of short distance, nonmotorized trips in the statewide model

Maryland Statewide Household Travel Survey

- April 2018 to August 2019
- 59,913 trips on weekdays
- Demographics, selected travel mode, distance, duration, and OD at CBG level

- Use Google Maps API to request travel cost information
- Modes included: Car, walk, bike, and transit (+walk)

Google Maps API

- Largest navigation platform
- Provide multiple routes for each OD pair
- Distance, duration, and polyline of each route
- Recommends routes based on aggregated travel behavior from users

MDOT Level of Traffic Stress (LTS)

- Level of traffic stress experienced by the road users
- MDOT methodology scores based on factors: speed, volume, number of lanes, bike lane width, etc.
- Scale: 1–4, with higher values = greater stress

Methodology

- Model people's active travel mode choice for the entire Maryland state
- Randomly sample locations within the census block group (CBG) level
- Apply a unique dataset containing the LTS for over 140,000 roads in Maryland and DC
- Request travel time/cost information of the routes of alternative travel modes from Google Maps API

Methodology

Multinomial logit model

Alternatives: Car, walk, bike, and transit

 $Mode\ choice = f(Network\ attributes, Trip\ attributes, Accessibility, Sociodemographic\ variables)$

- Network Attributes: Level of traffic Stress (LTS)
- Accessibility (from Accessibility Observatory)
- Trip Attributes: Travel Time, Distance (Google API)
- Sociodemographic: Employment status, income, age, gender, household size, etc.

Model Results

- Coefficients and statistical significance levels were estimated across all attribute categories, including sociodemographic variables, trip characteristics, and network-related attributes.
- Some attributes with high significance are shown below:

Table. Model result

Variable	Estimate	Significance level
LTS	-0.58	***
Duration	-4.10E-04	***

Table. Model results

Variable		Estimate	Significance level
	Walk	-0.45	***
Number of vehicles	Bike	-0.53	***
	Transit	-1.34	***
	Walk	0.02	***
Parking cost at destination	Bike	0.02	**
	Transit	0.01	***
	Walk	-1.79	***
License	Bike	-1.24	***
	Transit	-2.40	***
	Walk	0.23	**
Gender	Bike	2.12	***
	Transit	0.00	
	Walk	-0.21	***
Age	Bike	-0.69	***
	Transit	-0.15	**
	Walk	0.38	***
Household income	Bike	0.09	
	Transit	0.19	
	Walk	0.01	
Household size	Bike	-0.28	**
	Transit	0.13	***

CASE STUDY

US 1 in Howard County, MD (in red)

- Four-lane highway
- Suburban area
- Medium density mixed use
- Current LTS level 4

Improvements

- Accessible pedestrian signal with countdown (APS/CPS)
- Americans with Disabilities ACT (ADA) improvements
- Lighting enhancements

Travel Mode		Before (%)		After (%)	Change (%)
Bike	•	0.11	•	2.83	2.72
Walk	•	0.21	-	3.41	3.2
Transit	•	1.44	-	3.22	1.78
Car	•	98.2	,	90.54	-7.66

NEXT STEPS

- Integrate MDOT LTS methodology to MSTM network system
- Integrate the updated mode choice model to MSTM
- Validate results using examples of Complete Street project across the state

Thank You!