Ensemble Methods

Introduction à l'apprentissage automatique – GIF-4101 / GIF-7005

Professor : Christian Gagné

Week 11

11.1 Ensemble basics

Ensemble methods

- The no free lunch theorem
 - No learning algorithm is superior to others for every problem
- Statistical arguments for the use of ensembles
 - Average of a set of samples is more reliable than a single sample value
 - Eliminate variance by averaging on ensemble decisions
 - Removes noise from individual classifier decisions
- Several heads are better than one
 - Voting methods
 - Error-correcting output codes
 - Dynamic sampling of data or features
 - Mixture of experts

Condorcet's jury theorem

- What is the probability that a jury will get a majority decision that is correct?
 - Two possible decisions: correct decision or wrong decision
 - Each jury has a *p* probability of making a correct decision
 - When the probability p > 1/2, the probability of correct jury decision tends to 1 with a very large number of jury participants
 - Conversely, with a probability p < 1/2, the probability of a correct jury decision is reduced by increasing the size of the jury.
 - Assumes that the votes are independent and identically distributed (iid)
- Proposed by the Marquis de Condorcet in 1785
 - Mathematical justification of democracy, studied in political science

Ensemble creation approaches

- Different learning algorithms
 - Different assumptions about the data (bias and variance)
- Different hyperparameters
 - Number of hidden neurons/layers
 - Number of neighbours
 - Type of covariance matrix
- Different representations
 - Different measures/sensors
 - Different features (random forest, random subspaces)
- Different training datasets
 - Random sampling of data (bagging)
 - Sampling according to misclassified data (boosting)

Complexity, combination, formalization

- Complexity of basic classifiers
 - Basic classifiers don't have to be very precise individually
 - Simplicity is often better than performance
 - Diversity in classification, specialization in certain fields
 - If the classifier errors are independent and identically distributed (iid)

$$\lim_{L o \infty} E_{ensemble} o E_{Bayes}$$

- Approaches for combinations
 - Multiple expert combinations (parallel)
 - Votes, mixture of experts, stacked generalization
 - Multi-stage combinations (series)
 - Next stage classifiers called only when in doubt at previous stages (cascade classifiers)
- Formalization of ensemble methods

$$\bar{\mathrm{h}}(\textbf{x}|\boldsymbol{\Phi}) = \mathrm{f}(\mathrm{h}_1(\textbf{x}), \mathrm{h}_2(\textbf{x}), \ldots, \mathrm{h}_L(\textbf{x})|\boldsymbol{\Phi})$$

11.2 Votes and Bayesian combination

Votes

- Voting method
 - Assign to the most frequent class among the responses of the basic classifiers
- ullet General formulation: weight each vote by a factor w_j

$$ar{\mathbf{h}}(\mathbf{x}) = \sum_{j=1}^L w_j \mathbf{h}_j(\mathbf{x}), \quad ext{where } w_j \geq 0, \ orall j \ ext{and} \ \sum_j w_j = 1$$

- Linear model of parallel combination
- In the case of simple voting, $w_i = 1/L$
- Weights can represent the confidence in each classifier

Combination of Bayesian models

Bayesian combination model

$$P(C_i|\mathbf{x}) = \sum_{orall \mathcal{M}_j} P(C_i|\mathbf{x},\mathcal{M}_j) P(\mathcal{M}_j)$$

- $w_j = P(\mathcal{M}_j)$ and $h_j(\mathbf{x}) = P(C_i|\mathbf{x},\mathcal{M}_j)$
- ullet Simple voting is the case of *a priori* equal probabilities, $P(\mathcal{M}_j)=1/L$

Bias and variance

- Bias and variance in two-class classifier ensembles
 - h_j are iid, with expectation $\mathbb{E}[h_j]$ and variance $Var(h_j)$

$$\mathbb{E}[\bar{\mathbf{h}}] = \mathbb{E}\left[\sum_{j=1}^{L} \frac{1}{L} \mathbf{h}_{j}\right] = \frac{1}{L} L \mathbb{E}[\mathbf{h}_{j}] = \mathbb{E}[\mathbf{h}_{j}]$$

$$\operatorname{Var}(\bar{\mathbf{h}}) = \operatorname{Var}\left(\sum_{j=1}^{L} \frac{1}{L} \mathbf{h}_{j}\right) = \frac{1}{L^{2}} L \operatorname{Var}(\mathbf{h}_{j}) = \frac{1}{L} \operatorname{Var}(\mathbf{h}_{j})$$

- Variance decreases as the number of independent voters L increases
 - With ensembles, we can therefore reduce the variance without affecting the bias.
 - Quadratic error is also reduced

Diversity and negative correlation

Variance of ensembles, general case

$$\operatorname{Var}(\bar{\mathbf{h}}) = \frac{1}{L^2} \operatorname{Var} \left(\sum_{j} \mathbf{h}_{j} \right) = \frac{1}{L^2} \left[\sum_{j} \operatorname{Var} \left(\mathbf{h}_{j} \right) + 2 \sum_{j} \sum_{i>j} \operatorname{Cov}(\mathbf{h}_{j}, \mathbf{h}_{i}) \right]$$

- Further variance reduction with negatively correlated voters
- Quadratic error can be reduced, provided the negative correlation does not affect the bias of the set
- Diversity in the answers of the classifiers in the ensemble
 - Goal in the overall training: to obtain classifiers that do not make the same mistakes.
 - Borderline case without diversity: L copies of the same classifier

11.3 Decision matrices and error-correcting output codes

Decision matrix

Multi-class classification with ensembles, with weighted vote

$$\bar{\mathbf{h}}_i(\mathbf{x}) = \sum_j w_{i,j} \mathbf{h}_{j,i}(\mathbf{x})$$

- Decision matrix **W**: weight values $w_{i,j}$
- ullet Decision matrix for a one-against-all classification (example with L=K=4)

$$\mathbf{W} = \begin{bmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & -1 & +1 \end{bmatrix}$$

- Ambiguity when a basic classifier makes a bad decision
 - Two values $\bar{\mathbf{h}}_i(\mathbf{x}) = 0$
 - Too high similarity between codes (low Hamming distance)

Ensembles with redundancy

• Decision matrix for one-versus-one decisions (example with K=4, L=K(K-1)/2=6)

$$\mathbf{W} = \left[\begin{array}{ccccccccc} +1 & +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & 0 & +1 & +1 & 0 \\ 0 & -1 & 0 & -1 & 0 & +1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{array} \right]$$

- Value of $w_{i,j} = 0$ means the decision is ignored
- Error in a basic classifier does not necessarily imply ambiguity
- Value L grows quadratically with K
- Generalization of the approach: error-correcting output codes
 - Use a decision matrix **W** of preset size *L*.
 - Hamming distance between lines is maximized

Error-correcting output codes

- Error-correcting Output Codes (ECOC)
 - With K classes, there are $2^{(K-1)}-1$ problems with two different classes
 - Diversity of discriminants: different columns
 - Error correction: different components for a line
- Example of matrix with ECOC (K = 4 and L = 9)

- Minimum difference (Hamming distance) of d = 5 between each pair of lines
 - Therefore tolerates up to $\left\lfloor \frac{d-1}{2} \right\rfloor = \left\lfloor \frac{5-1}{2} \right\rfloor = 2$ basic classifier errors
- Choice of the class according to $\bar{h}_i(\mathbf{x})$ maximum
- Value $\bar{h}_i(\mathbf{x})$ normalized in [0,1] can be interpreted as a probability
- Choice of values W partly arbitrary, some dichotomies may be more difficult than others

11.4 Bagging, random subspaces and random forests

Bagging and random subspaces

- Bagging: ensemble of classifiers trained on slightly different datasets
 - Each basic classifier trained on dataset \mathcal{X}_j
 - \mathcal{X}_j : draw with replacement of N data in \mathcal{X}
 - Replacement: several copies of some data, absence of some others
 - Ideally, basic classifiers should be unstable
 - Unstable training algorithm: for slightly different datasets, gives classifiers with different behaviors
 - Stable: k-nearest neighbours, parametric classification
 - Unstable: multilayer perceptron, Hart condensation
 - In general, unstable algorithms have a large variance
- Random subspaces
 - Generate each basic classifier by random sampling of a subset of features

Decision trees

- Decision trees
 - Hierarchical (recursive) separation of the input space
 - Each node of the tree is a test on a value with discrete outcomes
 - Performs a finer and finer division of the input space
- Decision tree properties
 - Top-down construction of trees according to performance criteria (ex. entropy)
 - Pruning reduces over-specialization
 - Useful to extract interpretable decision rules

Decision trees

 $By \ Stephen \ Milborrow, \ CC-SA \ 4.0, \ https://commons.wikimedia.org/wiki/File:Cart_tree_kyphosis.png.$

Random forest

- Problem with decision trees for classification
 - Classifiers with low bias and high variance
 - Which implies high risk of overfitting (even if pruning is used)
- Solution: make an ensemble of trees
 - · Averaging keeps bias low while reducing overall variance
 - But the ensemble must include a good diversity of trees
- Generate "randomized" trees with bagging and random subspaces
 - To learn each node, use different subsets of data and variables
- Ensemble of random trees corresponds to a random forest
 - Averaging tree decisions
 - Variance on decisions is a good indicator of overall confidence

11.5 Boosting

Boosting

- Bagging: requires unstable algorithms
 - Passively generated diversity
- Boosting: actively generate new classifiers from data that is difficult for existing classifiers to handle
 - 1. Randomly divide the dataset into three subsets $(\mathcal{X}_1, \mathcal{X}_2 \text{ and } \mathcal{X}_3)$
 - 2. Train Classifier h_1 on \mathcal{X}_1
 - 3. Evaluate data \mathcal{X}_2 with h_1 , use misclassified data and an equal number of well-classified data to form \mathcal{X}_2'
 - 4. Train classifier h_2 on \mathcal{X}_2'
 - 5. Evaluate data \mathcal{X}_3 with h_1 and h_2 , use data where h_1 and h_2 disagree to form \mathcal{X}_3'
 - 6. Train classifier h_3 on \mathcal{X}_3'
- ullet Evaluate data classification: test data with h_1 and h_2 , if they disagree, use decision of h_3
- Improves performance, but requires very large datasets

AdaBoost

- AdaBoost (adaptive boosting): reuse the same dataset for basic classifiers
 - Unlike classic boosting, does not require very large datasets
 - Can generate an arbitrarily high number of classifiers
- AdaBoost.M1: the probability of sampling a data changes according to the errors of the basic classifiers
 - Initially, $p_1^t = 1/N$, $t = 1, \dots, N$
 - ullet Sample dataset \mathcal{X}_j from \mathcal{X} according to probabilities p_j^t
 - Train classifier h_j with \mathcal{X}_j
 - If error rate of h_j is higher than $\epsilon_j > 0.5$, interrupt the algorithm, $\epsilon_j = \sum_t p_j^t \ell_{0-1}(r^t, h_j(\mathbf{x}^t))$
 - ullet Calculate the probabilities ho_{j+1}^t according to the classification of ${\mathcal X}$ with h_j
 - Repeat to generate the *L* basic classifiers

Weak learner

- Boosting and AdaBoost do not require very precise classifiers
 - Weak learner: algorithm with an error probability of less than 1/2 in two classes (better than random classification) and relatively unstable (sustained variations in classification)
 - Using weak learners allows a good diversity for the classification
- Decision stumps: weak learner commonly used with AdaBoost
 - Decisions based on a threshold applied to a single dimension

$$h(\mathbf{x}|\theta,\upsilon,\gamma) = \operatorname{sgn}(\theta(\mathbf{x}_{\gamma}-\upsilon)), \quad \theta \in \{-1,1\}, \ \gamma \in \{1,\ldots,D\}, \ \upsilon \in \mathbb{R}$$

Deterministic training of decision stumps

$$\begin{split} \tilde{x}_j^k &= & x_j^t \mid \tilde{x}_j^1 \leq \tilde{x}_j^2 \leq \dots \leq \tilde{x}_j^{k-1} \leq x_j^t \leq \tilde{x}_k^{k+1} \leq \dots \leq \tilde{x}_j^N \\ v_j^k &= & 0.5(\tilde{x}_j^k + \tilde{x}_j^{k+1}), \ k = 1, \dots, N-1 \\ \mathcal{A}_j &= & \left\{ (s_j, v_j^k, j) \mid \forall s_j \in \{-1, 1\}, \ \forall k \in \{1, \dots, N-1\} \right\} \\ \mathcal{A} &= & \mathcal{A}_1 + \mathcal{A}_2 + \dots + \mathcal{A}_D \\ (\theta, v, \gamma) &= & \underset{(s_j, u_j^k, j) \in \mathcal{A}}{\operatorname{argmin}} E(h(\cdot|s_j, u_j^k, j)|\mathcal{X}) \end{split}$$

Errors with AdaBoost

AdaBoost algorithm

- 1. Initialize the probabilities of each data, $p_1^t = 1/N$, $t = 1, \dots, N$
- 2. For each basic classifier j = 1, ..., L:
 - 2.1 Sample dataset \mathcal{X}_j from \mathcal{X} according to probabilities p_i^t
 - 2.2 Train classifier h_j with dataset \mathcal{X}_j
 - 2.3 Calculate the error of the classifier, $\epsilon_j = \sum_t p_j^t \ell_{0-1}(r^t, h_j(\mathbf{x}^t))$
 - 2.4 If error $\epsilon_j>$ 0.5, then L=j-1 and stop the algorithm
 - 2.5 Calculate $\beta_j = \frac{\epsilon_j}{1-\epsilon_j}$
 - 2.6 Calculate the new probabilities p_{j+1}^t

$$p_{j+1}^t = rac{q_j^t}{\sum_s q_j^s}, \quad q_j^t = \left\{ egin{array}{ll} eta_j p_j^t & ext{if } \mathbf{h}_j(\mathbf{x}^t) = r^t \ p_j^t & ext{otherwise} \end{array}
ight., \quad t = 1, \dots, \mathcal{N}$$

Evaluating the classification of a data:
$$\bar{\mathbf{h}}(\mathbf{x}) = \sum_{j=1}^L \left(\log \frac{1}{\beta_j}\right) \mathbf{h}_j(\mathbf{x})$$

Example with AdaBoost

Maximizing margins with AdaBoost

- AdaBoost maximizes margins for the classification
 - Learning with higher probabilities for difficult-to-classify data
 - Difficult data: data in the margin
 - $\bar{\mathbf{h}}_i$ is the result of a weighted vote

$$\bar{\mathbf{h}}_i = \frac{\text{votes for class } i - \text{votes against class } i}{\text{total number of votes}}$$

- ullet With many classifiers, $ar{\mathrm{h}}_i(\mathbf{x}) o 1$ if $\mathbf{x} \in \mathcal{C}_i$ and $ar{\mathrm{h}}_i(\mathbf{x}) o -1$ otherwise
- Wide margins ⇒ better generalization
- Many variants of boosting
 - LPBoost: learning $\alpha_j = \log \frac{1}{\beta_i}$ by linear programming
 - ullet At each generation of basic classifier, relearns the $lpha_j$ of all current classifiers
 - Many parallels to be made with SVMs

11.6 Other combination models

Mixture of experts

- Mixture of experts
 - Experts-classifiers specialized on certain aspects of the problem
 - Work in parallel, with routing function weighting decisions according to expertise
 - Similar to weighted voting, but with non-constant weighting

$$ar{\mathrm{h}}(\mathbf{x}) = \sum_{j=1}^L w_j(\mathbf{x}) \mathrm{h}_j(\mathbf{x})$$

- Specialization in different regions of reduced space correlation
- Thus generates biased but negatively correlated experts
 - Implies an overall reduction of the variance, and thus of the error
- Routing function can be non-linear (e.g. multilayer perceptron)
 - May reduce bias, at the risk of increasing variance (overfitting)

Mixtures of experts

Stacked generalization

- Stacked generalization: two-stage system
 - First stage: basic classifiers working in parallel
 - Second stage: combination system associating the output of the basic classifiers with the desired label

$$\mathbf{\bar{h}}(\textbf{x}) = \mathbf{h}_{\textit{comb}}(\mathbf{h}_1(\textbf{x}), \mathbf{h}_2(\textbf{x}), \dots, \mathbf{h}_L(\textbf{x}))$$

- Combination system: standard classifier
 - Learn how basic classifiers make mistakes
 - Training of the combination system must be done on data not seen by the basic classifiers
 - Allows to estimate and correct the biases of the basic classifiers

Stacked generalization

Cascading classifiers

- Cascading classifiers: sequence of basic classifiers
 - Moving from one stage to another if the classifier k has a low confidence in its classification, $w_j(\mathbf{x}) < \theta_j$

$$ar{\mathrm{h}}(\mathbf{x}) = \mathrm{h}_j(\mathbf{x}) \quad \text{if } w_j(\mathbf{x}) \geq heta_j \ ext{and} \ w_k(\mathbf{x}) < heta_k, \ orall k < j$$

- Confidence $w_j(\mathbf{x})$ can correspond to the *a posteriori* probability $P(C_i|\mathbf{x})$ of the classifier
- Threshold on confidence θ_j should be high (high rejection rate) for first stages
- Training of the cascade
 - Classifier h_1 trained with $\mathcal{X}_1 = \mathcal{X}$
 - ullet Dataset \mathcal{X}_{j+1} is formed from the rejects of \mathcal{X}_j with classifier h_j
 - Classifier h_{j+1} trained with dataset \mathcal{X}_{j+1}
- Basic classifiers of increasing complexity
 - Simple (inexpensive) classifiers handle most cases
 - Complex (expensive) classifiers on the top stages handle difficult cases

Cascading classifiers

Overproduction and selection

- $\bar{\mathrm{h}}(\mathbf{x}|\Phi) = f(\mathrm{h}_1(\mathbf{x}), \mathrm{h}_2(\mathbf{x}), \ldots, \mathrm{h}_L(\mathbf{x})|\Phi)$: meta-classifier
 - Each classifier $h_i(\mathbf{x})$ can be seen as a feature (or a basic function) of the meta-classifier
- Overproduction and selection
 - Generate a wide variety of candidate classifiers
 - E.g. random subspaces method
 - Select a subset of these classifiers to form the final ensemble
- Possible selection by feature selection methods
 - Sequential forward selection
 - Sequential backward selection
 - Multiobjective evolutionary algorithms

11.7 Ensembles in scikit-learn

Scikit-learn

- ensemble.BaggingClassifier: several variants of *Bagging* classifiers, including random subspaces
- ensemble.RandomForestClassifier: random forest for classification
- ensemble.AdaBoostClassifier: AdaBoost.SAMME variants of the AdaBoost algorithm
- ensemble.VotingClassifier: vote of classifiers, including majority vote and probability weighted summation
- multiclass.OutputCodeClassifier: combination of classifiers with a decision code, which can be an error-correcting output codes