Методы Reinforcement learning

Постановка задачи

Агент взаимодействует с окружающей средой, предпринимает действия, переходит в разные состояния.

Окружающая среда поощряет агента за действия.

Многорукий бандит

Агенты с одним состоянием.

Состояние агента не меняется. У агента фиксированный набор действий $\{A\}$. И возможность выбора из этого набора действий.

Пример. Агент находится в комнате с несколькими игровыми автоматами. Каждый автомат имеет неизвестное, стационарное распределение вероятности.

Целью является максимизация выигрыша после ряда действий.

Жадный алгоритм

Если дейстие a было выбрано k_a раз, то его ценность можно оценить как

$$Q(a) = \frac{r_1 + r_2 + \dots + r_{k_a}}{k_a}$$

и выбирать действие, которое максимизирует вознаграждение:

$$Q(a^*) = \max_a Q(a)$$

Случайные стратегии

С вероятностью (1-α) Выбирать действие с лучшей ожидаемой прибытью.

С вероятностью α Выбирать случайное действие.

Модель

Марковский процесс принятия решений

- -множество состояний S
- -множество действий А
- -вознаграждение при переходе из состояния s в состояние s' после действия a задается функцией $R^a_{ss'}$
- -вероятность перехода из состояния s в состояние s' после действия a задается функцией перехода $P_{ss'}^a$

Модель

Стратегия является случайной величиной, задающей выбор действия а в состоянии s.

$$\pi(s,a) = \Pr(A_r = r, S_t = s)$$

Модель бесконечного горизонта

Приведенная выгода:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}$$

Коэффициент приведения: $\gamma \in [0,1]$

Ожидаемая выгода, если стартовать из s

$$V^{\pi}(s) = E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right]$$

Как найти стратегию, которая максимизирует выгоду?

Написать систему уравнений для V?

Ожидаемая выгода, если стартовать из s:

$$\begin{aligned} \mathbf{V}(s) &= E_{\pi} [\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid S_{t} = s] = \\ &= E_{\pi} [r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid S_{t} = s] = \\ &= E_{\pi} [r_{t+1} + \gamma \mathbf{V}(S_{t+1}) \mid S_{t} = s] \end{aligned}$$

Уравнение Беллмана:

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'}(R^{a}_{ss'} + \gamma V^{\pi}(s'))$$

 $R_{ss'}^a$ — вознаграждение при переходе из состояния s в состояние s' после действия a

 $P_{ss'}^{a}$ — вероятность перехода из состояния s в состояние s' после действия a

Оптимальная функция ценности состояния:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

по всем стратегиям π

Уравнение оптимальности Беллмана:

$$V^*(s) = \max_{a} \sum_{s'} P^a_{ss'}(R^a_{ss'} + \gamma V^*(s'))$$

Оптимальная стратегия:

$$\pi^*(s) = \arg\max_{a} V^*(s)$$

Итерация по ценностям

Итерационный процесс для оптимальной функции состояний:

$$V_{k+1}^{*}(s) = \max_{a} \sum_{s'} P_{ss'}^{a} (R_{ss'}^{a} + \gamma V_{k}^{*}(s'))$$

Итерация по стратегиям

$$\pi_0 \overset{E}{\to} V^{\pi_0} \overset{I}{\to} \pi_1 \overset{E}{\to} V^{\pi_1} \overset{I}{\to} \pi_2 \overset{E}{\to} \dots \overset{I}{\to} \pi^* \overset{E}{\to} V^*$$

Шаг 1. стратегия улучшается, подстраиваясь под функцию ценности

$$\pi(s) = \arg\max_{a} V(s)$$

Шаг 2. функция ценности состояний V(s) корректируется, чтобы соответствовать стратегии

Метод Монте-Карло

Требуется оценить величину $V^{\pi}(s)$.

Вероятности переходов не даны.

 $V^{\pi}(s)$ оценивается как среднее значение выгод в ряде эпизодов.

Оценка ценности действия

Ожидаемая выгода, при начальном состоянии s, осуществленном действии a:

$$Q^{\pi}(s,a) = E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid S_{t} = s, A_{t} = a \right]$$

По формуле полной вероятности:

$$V^{\pi}(s) = \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

Метод Монте-Карло

Формирование стратегии.

Стратегия выбирает действие, которое максимизирует значение Q:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

Процесс улучшения стратегии π :

$$\pi_0 \overset{E}{\rightarrow} Q^{\pi_0} \overset{I}{\rightarrow} \pi_1 \overset{E}{\rightarrow} Q^{\pi_1} \overset{I}{\rightarrow} \pi_2 \overset{E}{\rightarrow} \dots \overset{I}{\rightarrow} \pi^* \overset{E}{\rightarrow} Q^*$$

Шаг 1. стратегия улучшается, подстраиваясь под функцию ценности Шаг 2. функция ценности корректируется, чтобы соответствовать стратегии

Многорукий бандит

Если дейстие a было выбрано k_a раз, то его ценность можно оценить как

$$Q(a) = \frac{r_1 + r_2 + \dots + r_{k_a}}{k_a}$$

и выбирать действие, которое максимизирует вознаграждение:

$$Q(a^*) = \max_a Q(a)$$

Среднее значение можно вычислять по формуле:

$$Q_{k+1} = Q_k + \frac{1}{k+1} (r_{k+1} - Q_k)$$

Метод временных различий

Общее правило корректировки:

$$H$$
овая оценка ← C тарая оценка +
+ $Д$ лина шага × $[$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$$ $$$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$$ $$$ $$$ $$$

Свойство функции состояния:

$$V(s) = E_{\pi}[r_{t+1} + \gamma V(S_{t+1}) | S_t = s]$$
 (2)

TD(0)-метод:

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$
(3)

Если α уменьшается, то V(s) \rightarrow V π (s).

Гибкие стратегии

Е-жадные стратегии

С вероятностью (1- €) выбирать действие по жадной стратегии.

С вероятностью Є выбирать действие случайно.

Mетод SARSA

$$(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$$

Позволяет построить функцию Q*(s, a), для которой жадная стратегия будет давать оптимальное управление.

1. TD(0)-обучение для функции ценности действий Q(s, a):

$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \alpha \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_{t}, a_{t}) \right]$$

2. Использовать Є-жадную стратегию.

Если α уменьшается, то Q(s,a) \rightarrow Q*(s,a).

Q-обучение

Позволяет построить функцию Q(s, a), для которой жадная стратегия будет давать оптимальное управление.

1. Корректировка функции ценности действий Q(s, a):

$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_{t}, a_{t}) \right]$$

2. Использовать Є-жадную стратегию.

Если α уменьшается, то Q(s,a) \rightarrow Q*(s,a).