02 Exercises

September 13, 2020

0.1 Exercise 02.1 (if-else)

Consider the following assessment criteria which map a score out of 100 to an assessment grade:

Grade	Raw score (/100)
Excellent	≥ 82
Very good Good	$\geq 76.5 \text{ and } < 82$ $\geq 66 \text{ and } < 76.5$
Need improvement	$\geq 45 \text{ and } < 66$
Did you try?	< 45

Write a program that, given an a score, prints the appropriate grade. Print an error message if the input score is greater than 100 or less than zero.

```
[0]: x=54.99
    if x>=82 and x<=100:
        print('Excellent')
    elif x>=76.5 and x<=82:
        print('Very Good')
    elif x>=66 and x<=76.5:
        print('Good')
    elif x>=45 and x<=66:
        print('Need improvement')
    elif x>=0 and x<=45:
        print('Did you try?')
    elif x>100 or x<0:
        print('the score out of the range')</pre>
#raise NotImplementedError()
```

Need improvement

0.2 Exercise 02.2 (bisection)

Bisection is an iterative method for finding approximate roots of a function. Say we know that the function f(x) has one root between x_0 and x_1 ($x_0 < x_1$). We then:

• Evaluate f at the midpoint $x_{\text{mid}} = (x_0 + x_1)/2$, i.e. compute $f_{\text{mid}} = f(x_{\text{mid}})$

- Evaluate $f(x_0) \cdot f(x_{\text{mid}})$
 - $\text{ If } f(x_0) \cdot f(x_{\text{mid}}) < 0:$

f must change sign somewhere between x_0 and x_{mid} , hence the root must lie between x_0 and x_{mid} , so set $x_1 = x_{\text{mid}}$.

- Else

f must change sign somewhere between x_{mid} and x_1 , so set $x_0 = x_{\text{mid}}$.

The above steps can be repeated a specified number of times, or until $|f_{\text{mid}}|$ is below a tolerance, with x_{mid} being the approximate root.

0.2.1 Task

The function

$$f(x) = x^3 - 6x^2 + 4x + 12$$

has one root somewhere between $x_0 = 3$ and $x_1 = 6$.

- 1. Use the bisection method to find an approximate root x_r using 15 iterations (use a for loop).
- 2. Use the bisection method to find an approximate root x_r such that $|f(x_r)| < 1 \times 10^{-6}$ and report the number of iterations required (use a while loop).

Store the approximate root using the variable x_{mid} , and store $f(x_{mid})$ using the variable f.

Hint: Use abs to compute the absolute value of a number, e.g. y = abs(x) assigns the absolute value of x to y.

(1) Using a for loop.

```
[0]: # Initial end points
     x0 = 3.0
     x1 = 6.0
     # Use 15 iterations
     for n in range(15):
         # Compute midpoint
         x mid = (x0 + x1)/2
         # Evaluate function at left end-point and at midpoint
         f0 = x0**3 - 6*x0**2 + 4*x0 + 12
         f = x_mid**3 - 6*x_mid**2 + 4*x_mid + 12
         # YOUR CODE HERE
         if f0*f<0:</pre>
           x1=x_mid
         else:
           x0=x_mid
         #raise NotImplementedError()
```

```
print(n, x_mid, f)
    0 4.5 -0.375
    1 5.25 12.328125
    2 4.875 4.763671875
    3 4.6875 1.910888671875
    4 4.59375 0.699554443359375
    5 4.546875 0.14548873901367188
    6 4.5234375 -0.11891412734985352
    7 4.53515625 0.01224285364151001
    8 4.529296875 -0.053596146404743195
    9 4.5322265625 -0.020741849206387997
    10 4.53369140625 -0.0042658079182729125
    11 4.534423828125 0.003984444148954935
    12 4.5340576171875 -0.0001417014154867502
    13 4.53424072265625 0.0019211164656098845
    14 4.534149169921875 0.0008896438020826736
[0]: assert round(x_mid - 4.534149169921875, 10) == 0.0
     assert abs(f) < 0.0009
```

(2) Using a while loop Use the variable counter for the iteration number.

Remember to quard against infinite loops.

```
[0]: # Initial end points
     x0 = 3.0
     x1 = 6.0
     tol = 1.0e-6
     error = tol + 1.0
     # Iterate until tolerance is met
     counter = 0
     while error > tol:
         counter += 1
         # Compute midpoint
         x_mid = (x0 + x1)/2
         # Evaluate function at left end-point and at midpoint
         f0 = x0**3 - 6*x0**2 + 4*x0 + 12
         f = x_mid**3 - 6*x_mid**2 + 4*x_mid + 12
         # Condition:
         if f0*f<0:</pre>
           x1=x_mid
         else:
           x0=x mid
         if abs(f) < 10**(-6):
```

```
# Guard against an infinite loop
         if counter > 1000:
           print("Oops, iteration count is very large. Breaking out of while loop.")
           break
         print(counter, x_mid, error, f)
    1 4.5 1.000001 -0.375
    2 5.25 1.000001 12.328125
    3 4.875 1.000001 4.763671875
    4 4.6875 1.000001 1.910888671875
    5 4.59375 1.000001 0.699554443359375
    6 4.546875 1.000001 0.14548873901367188
    7 4.5234375 1.000001 -0.11891412734985352
    8 4.53515625 1.000001 0.01224285364151001
    9 4.529296875 1.000001 -0.053596146404743195
    10 4.5322265625 1.000001 -0.020741849206387997
    11 4.53369140625 1.000001 -0.0042658079182729125
    12 4.534423828125 1.000001 0.003984444148954935
    13 4.5340576171875 1.000001 -0.0001417014154867502
    14 4.53424072265625 1.000001 0.0019211164656098845
    15 4.534149169921875 1.000001 0.0008896438020826736
    16 4.5341033935546875 1.000001 0.0003739552628445608
    17 4.534080505371094 1.000001 0.0001161229410939768
    18 4.534069061279297 1.000001 -1.2790232830184323e-05
    19 4.534074783325195 1.000001 5.166610522167048e-05
    20 4.534071922302246 1.000001 1.9437873959304852e-05
    21 4.5340704917907715 1.000001 3.3238050036743516e-06
    22 4.534069776535034 1.000001 -4.7332178070291775e-06
[0]: assert counter == 23
     assert abs(f) < 1.0e-6
```

0.3 Exercise 02.3 (series expansion)

break

#raise NotImplementedError()

The power series expansion for the sine function is:

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

(See mathematics data book for a less compact version; this compact version is preferred here as it is simpler to program.)

1. Using a for statement, approximate $\sin(3\pi/2)$ using 15 terms in the series expansion and report the absolute error.

2. Using a while statement, compute how many terms in the series are required to approximate $\sin(3\pi/2)$ to within 1×10^{-8} .

Store the absolute value of the error in the variable error.

Note: Calculators and computers use iterative or series expansions to compute trigonometric functions, similar to the one above (although they use more efficient formulations than the above series).

0.3.1 Hints

To compute the factorial and to get a good approximation of π , use the Python math module:

```
import math
nfact = math.factorial(10)
pi = math.pi
```

You only need 'import math' once at the top of your program. Standard modules, like math, will be explained in a later. If you want to test for angles for which sine is not simple, you can use

```
a = 1.3
s = math.sin(a)
```

to get an accurate computation of sine to check the error.

(1) Using a for loop

```
[0]: # Import the math module to access math.sin and math.factorial
import math
    # Value at which to approximate sine
    x = 1.5*math.pi
    # Initialise approximation of sine
    approx_sin = 0.0
    for n in range(16):
        approx_sin +=((-1)**n)*(x**((2*n)+1))/math.factorial((2*n)+1)
        error = abs((math.sin(x)-approx_sin))
        print(error, approx_sin, math.sin(x))
    #raise NotImplementedError()
```

```
5.71238898038469 4.71238898038469 -1.0
11.728641652283956 -12.728641652283956 -1.0
7.636666525534631 6.636666525534631 -1.0
2.602329768407337 -3.602329768407337 -1.0
0.555634071762265 -0.444365928237735 -1.0
0.08189021082585013 -1.0818902108258501 -1.0
0.008861411268856534 -0.9911385887311435 -1.0
0.0007351881114854297 -1.0007351881114854 -1.0
4.829695774011267e-05 -0.9999517030422599 -1.0
2.5759875719177927e-06 -1.000002575987572 -1.0
1.1381159747969605e-07 -0.9999998861884025 -1.0
4.234491202126378e-09 -1.0000000042344912 -1.0
1.345145106412815e-10 -0.9999999998654855 -1.0
3.6917136014835705e-12 -1.0000000000036917 -1.0
```

```
8.79296635503124e-14 -0.9999999999999121 -1.0 2.220446049250313e-15 -1.0000000000000022 -1.0
```

```
[0]: assert error < 1.0e-12
```

(2) Using a while loop Remember to guard against infinite loops.

```
[0]: # Import the math module to access math.sin and math.factorial
     import math
     # Value at which to approximate sine
     x = 1.5*math.pi
     # Tolerance and initial error (this just needs to be larger than tol)
     tol = 1.0e-8
     error = tol + 1.0
     # Intialise approximation of sine
     approx sin = 0.0
     # Initialise counter
     n = 0
     # Loop until error satisfies tolerance, with a check to avoid
     # an infinite loop
     while error > tol and n < 1000:
       # compute how many terms in the series are required to approximate \sin(3/2)_{\sqcup}
     \rightarrow to within 1×10-8
       approx_sin +=((-1)**n)*(x**((2*n)+1))/math.factorial((2*n)+1)
       error = abs((math.sin(x)-approx_sin))
       # raise NotImplementedError()
       # Increment counter
       n += 1
       if error < 1.0e-8:
       print("The approx_sin is:", approx_sin)
       print("The error is:", error)
       print("Number of terms in series:", n)
```

```
The approx_sin is: 4.71238898038469
The error is: 5.71238898038469
Number of terms in series: 1
The approx_sin is: -12.728641652283956
The error is: 11.728641652283956
Number of terms in series: 2
The approx_sin is: 6.636666525534631
The error is: 7.636666525534631
Number of terms in series: 3
The approx_sin is: -3.602329768407337
The error is: 2.602329768407337
```

Number of terms in series: 4

The approx_sin is: -0.444365928237735

The error is: 0.555634071762265

Number of terms in series: 5

The approx_sin is: -1.0818902108258501

The error is: 0.08189021082585013

Number of terms in series: 6

The approx_sin is: -0.9911385887311435

The error is: 0.008861411268856534

Number of terms in series: 7

The approx_sin is: -1.0007351881114854

The error is: 0.0007351881114854297

Number of terms in series: 8

The approx_sin is: -0.9999517030422599

The error is: 4.829695774011267e-05

Number of terms in series: 9

The approx_sin is: -1.000002575987572

The error is: 2.5759875719177927e-06

Number of terms in series: 10

The approx_sin is: -0.9999998861884025 The error is: 1.1381159747969605e-07

Number of terms in series: 11

[0]: assert error <= 1.0e-8