

NLP

Vectorización de documentos

Ing. Hernán Contigiani hernan4790@gmail.com

Programa de la materia

- Clase 1: Introducción a NLP, Vectorización de documentos.
- Clase 2: Preprocesamiento de texto, librerías de NLP y Rule-Based Bots.
- Clase 3: Word Embeddings, CBOW y SkipGRAM, representación de oraciones.
- Clase 4: Redes recurrentes (RNN), problemas de secuencia y estimación de próxima palabra.
- Clase 5: Redes LTSM, análisis de sentimientos.
- Clase 6: Modelos Seq2Seq, traductores y bots conversacionales.
- Clase 7: Celdas con Attention. Transformers, BERT & ELMo, fine tuning.
- Clase 8: Cierre del curso, NLP hoy y futuro, deploy.
- *Unidades con desafíos a presentar al finalizar el curso.
- *Último desafío y cierre del contenido práctico del curso.

Desafíos semanales

Vectorización de texto

Bot "simple"

Word Embedding

Predicción de próxima palabra

Análisis de sentimientos

conversacional

¿Cómo me acercaran sus soluciones?

¿Qué es NLP?

El procesamiento de lenguaje natural (PLN o NLP) es un campo de la

Inteligencia artificial + Lingüística

Campos de aplicación del data science

Timeline

Test de turing "1950"

Blade runner
"Test emocional"

En 2014 una computadora
logra superar parcialmente
este ensayo

Eliza (1964) - Primer bot NLP


```
Welcome to
                    EEEEEE
                                          2222222
                                                   AAAAA
                           LL
                                                       AA
                                           222
                                                   AAAAAA
                    EEEEE
                           LL
                    FF
                                                   AA
                                                       AA
                    EFFEFF LLLLLL IIII 2222222 AA
                                                       AA
  Eliza is a mock Rogerian psychotherapist.
  The original program was described by Joseph Weizenbaum in 1966.
  This implementation by Norbert Landsteiner 2005.
ELIZA: Please tell me what's been bothering you.
      I don't really know
ELIZA: Do you wish to be able to really know ?
      Hmm.. well, I quess yes
ELIZA: Do you say you guess yes for some special reason ?
      I don't really know
ELIZA: Does that trouble you ?
      What do you think?
YOU:
ELIZA: What are your feelings now ?
YOU:
       Sad
ELIZA: Does talking about this bother you ?
```

Se basaba en encontrar las palabras claves del texto y utilizarlas para formular una pregunta

Los chatbots y asistentes virtuales...

Apple Siri 2010

Google Now 2012

Amazon alexa 2015

Microsoft Cortana 2015

Los modelos que transformaron NLP

Elegir la herramienta que más se ajusta a sus problemas

Vectorización de texto

LINK GLOSARIO

Término t: palabra/símbolo "t" del documento

Document: su largo es variable, normalmente una sentencia/oración/párrafo.

Corpus: conjunto de documentos, forman todo el vocabulario.

No podemos ingresar texto
a una red
¿Cómo transformamos
palabras a números?

vectorización

word2vect

Vectores de frecuencia

"Por cada documento en el corpus se calcula un vector que representa cuántas veces cada palabra del vocabulario aparece en ese documento"

que	bueno	esta	muy	excelente
2	1	1	0	0
0	1	1	1	0
0	0	1	0	1

Vectores de frecuencia (ejemplo)

Vectores de frecuencia (ejemplo resuelto)

One-hot encoding

"Por cada documento en el corpus se calcula un vector que representa si cada palabra del vocabulario aparece o no en ese documento"

que	bueno	esta	muy	excelente
1	1	1	0	0
0	1	1	1	0
0	0	1	0	1

One-hot encoding (ejemplo)

One-hot encoding (ejemplo resuelto)

Los vectores tienen el largo del vocabulario

One-hot encoding

One-Hot Encoding

The quick brown fox jumped over the brown dog

¡El idioma inglés tiene más de 180.000 palabras en su vocabulario en uso!

Bolsa de palabras "Bag of words" (BOW)

Representar a las palabras por su presencia o ausencia en el texto (y a veces la cantidad). Previo a la existencia de los embeddings y no tiene en consideración el contexto.

El problema es que los vectores de frecuencia o One-Hot encoding son muy "sparse"

"Necesito mucho espacio para guardar información que no aporta valor"

TF-IDF (Term frequency-Inverse term frequency)

"Se utiliza como indicador de cuán importante es una palabra (término) en un documento"

El motor tan utilizado "Elasticsearch" se basa en este mecanismo

Factor IDF (Inverse Document Frequency)

"Proporción de documentos en el corpus que poseen el término"

Si el término aparece en todos los documentos el IDF será cero (es popular y por lo tanto aporta poco valor)

Factor IDF

Se obtiene como la división de la cantidad de documentos sobre la suma en axis=0 (vertical) del OneHotEncoding.

Factor TF (Term frequency)

"Frecuencia de aparición de un término a lo largo de un documento"

$$tf(n) = \sum_{n=0}^{\infty} \frac{D1}{(n)}$$

La frecuencia de aparición de un término (n) en un documento (D1) es la suma de las ocurrencias de dicho término

Se obtiene igual que el vector de frecuencia

Factor TF-IDF

"Que bueno que esta"

"Esta muy bueno"

"Esta excelente"

Vocabulario: {"que", "bueno", "esta", "muy", "excelente"}

IDF					ı
que	bueno	esta	muy	excelente	
log(3/1)	log(3/2)	log(3/3)	log(3/1)	log(3/1)	

TF-IDF

que	bueno	esta	muy	excelente
2 * log(3/1)	1 * log(3/2)	1 * log(3/3)	0 * log(3/1)	0 * log(3/1)
0 * log(3/1)	1 * log(3/2)	1 * log(3/3)	1 * log(3/1)	0 * log(3/1)
0 * log(3/1)	0 * log(3/2)	1 * log(3/3)	0 * log(3/1)	1 * log(3/1)

TF-IDF (ejemplo)

"hola como estas"

"hola como estas y como llego al subte"

Vocabulario: ??

	TF						
	hola	como	estas	у	llego	al	subte
	IDF						
	hola	como	estas	у	llego	al	subte
	TF-IDI	F					
	hola	como	estas	у	llego	al	subte
Facultad de	Ingeniería Universidad de I	Buenos Aires					

TF-IDF (ejemplo resuelto)

"hola como estas"

"hola como estas y como llego al subte"

Vocabulario: {"que", "bueno", "esta", "muy", "excelente"}

11-						
hola	como	estas	у	llego	al	subte
1	1	1	0	0	0	0
1	2	1	1	1	1	1

ī		
ı	U	Г

hola	como	estas	У	llego	al	subte
log(2/2)	log(2/2)	log(2/2)	log(2/1)	log(2/1)	log(2/1)	log(2/1)

TF-IDF

	hola	como	estas	у	llego	al	subte
	0	0	0	0	0	0	0
Facultad de	O Ingeniería Universidad de B	0 Buenos Aires	0	log(2/1)	log(2/1)	log(2/1)	log(2/1)

Similitud coseno

"Se utiliza para evaluar la dirección de dos vectores"

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^{N} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

Similitud coseno = $1 \rightarrow los$ vectores tienen la misma dirección.

Similitud coseno = $0 \rightarrow los$ vectores son ortogonales.

Similitud coseno = $-1 \rightarrow los$ vectores apuntan en sentido contrario.

Desafio

¡Muchas gracias!