Χ

2111cs010024@mallareddyuniversity.ac.in >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Course
outline
About
NPTEL ()
How does an NPTEL
online
course
work? ()
Week 1 ()
Week 2 ()
Week 3 ()
Week 5 ()
week 4 ()
Week 5 ()
Week 6 ()
Week 7 ()
· · · · · · · · · · · · · · · · · · ·
Week 8 ()
Week 9 ()
One-hot
representation

s of words

Week 9: Assignment 9

The due date for submitting this assignment has passed.

Due on 2024-09-25, 23:59 IST.

As per our records you have not submitted this assignment.

1) Let X be the co-occurrence matrix such that the (i,j)-th entry of X captures the **1 point** PMI between the i-th and j-th word in the corpus. Every row of X corresponds to the representation of the i-th word in the corpus. Suppose each row of X is normalized (i.e., the L_2 norm of each row is 1) then the (i,j)-th entry of XX^T captures the:

PMI between word i and word j
Euclidean distance between word i and word j
Probability that word i
Cosine similarity between word \emph{i}
No, the answer is incorrect. Score: 0
Accepted Answers:
Cosine similarity between word i

2) Consider the following corpus: "human machine interface for computer applications. *1 point* user opinion of computer system response time. user interface management system. system engineering for improved response time". What is the size of the vocabulary of the above corpus?

13	
14	
15	
16	

No, the answer is incorrect. (unit? Score: 0 unit=115&less Accepted Answers: on=116) 15 Distributed 3) At the input layer of a continuous bag of words model, we multiply a one-hot vector 1 point Representatio $x \in \mathbb{R}^{|V|}$ with the parameter matrix $W \in \mathbb{R}^{k imes |V|}$. What does each column of W correspond ns of words (unit? to? unit=115&less on=117) the representation of the i-th word in the vocabulary SVD for learning word the i-th eigen vector of the co-occurrence matrix representation No, the answer is incorrect. s (unit? Score: 0 unit=115&less Accepted Answers: on=118) the representation of the i-th word in the vocabulary SVD for learning word 4) Suppose that we use the continuous bag of words (CBOW) model to find vector representation representations of words. Suppose further that we use a context window of size 3 (that is, given s (Contd.) the 3 context words, predict the target word $P(w_t|(w_i, w_i, w_k))$). The size of word vectors (unit? (vector representation of words) is chosen to be 100 and the vocabulary contains 10,000 words. unit=115&less The input to the network is the one-hot encoding (also called 1-of-V encoding) of word(s). How on=119) many parameters (weights), excluding bias, are there in W_{word} ? Enter the answer in thousands. Continuous For example, if your answer is 50,000, then just enter 50. bag of words model (unit? unit=115&less on=120) No. the answer is incorrect. Score: 0 Skip-gram Accepted Answers: model (unit? (Type: Numeric) 1000 unit=115&less on=121) Skip-gram 5) Consider a skip-gram model trained using hierarchical softmax for analyzing model (Contd.) scientific literature. We observe that the word embeddings for 'Neuron' and 'Brain' are highly (unit? similar. Similarly, the embeddings for 'Synapse' and 'Brain' also show high similarity. Which of the unit=115&less following statements can be inferred? on=122) ■ 'Neuron' and 'Brain' frequently appear in similar contexts Contrastive estimation The model's learned representations will indicate a high similarity between 'Neuron' and (unit? 'Synapse' unit=115&less The model's learned representations will not show a high similarity between 'Neuron' and on=123) Hierarchical According to the model's learned representations, 'Neuron' and 'Brain' have a low cosine softmax (unit? similarity unit=115&less No, the answer is incorrect. on=124) Score: 0 GloVe Accepted Answers: representation 'Neuron' and 'Brain' frequently appear in similar contexts s (unit? The model's learned representations will indicate a high similarity between 'Neuron' and unit=115&less 'Synapse' on=125)

1 point

1 point

Evaluating word	6) Which of the following is an advantage of the CBOW model compared to the Skip- gram model?	1 point
representation s (unit?	It is faster to train	
unit=115&less	It requires less memory	
on=126)	It performs better on rare words	
Relation	All of the above	
between SVD and Word2Vec (unit?	No, the answer is incorrect. Score: 0	
unit=115&less on=127)	Accepted Answers: It is faster to train	
O Lecture	7) Which of the following is an advantage of using the skip-gram method over the bag	- 1 point
Material for Week 9 (unit?	of-words approach?	
unit=115&less	○ The skip-gram method is faster to train	
on=128)	○ The skip-gram method performs better on rare words	
Week 9	○ The bag-of-words approach is more accurate	
Feedback Form: Deep	The bag-of-words approach is better for short texts	
Learning - IIT Ropar (unit?	No, the answer is incorrect. Score: 0	
unit=115&less	Accepted Answers:	
on=192)	The skip-gram method performs better on rare words	
Quiz: Week 9 : Assignment 9	8) What is the role of the softmax function in the skip-gram method?	1 point
(assessment?	To calculate the dot product between the target word and the context words	
name=297)	○ To transform the dot product into a probability distribution	
week 10 ()	To calculate the distance between the target word and the context words	
week 10 ()	○ To adjust the weights of the neural network during training	
Week 11 ()	No, the answer is incorrect. Score: 0	
Week 12 ()	Accepted Answers:	
Daniel and	To transform the dot product into a probability distribution	
Download Videos ()	9) What is the computational complexity of computing the softmax function in the	1 point
	output layer of a neural network?	•
Books ()		
	O(n)	
Text Transcripts	O(-2)	
()	$O(n^2)$	
	O(nlogn)	
Problem	O(logn)	
Solving Session -		
July 2024 ()	No, the answer is incorrect. Score: 0	
, (/	Accepted Answers:	
	O(n)	$\langle \rangle$

10) How does Hierarchical Softmax reduce the computational complexity of computing <i>1 point</i> the softmax function?
It replaces the softmax function with a linear function
It uses a binary tree to approximate the softmax function
It uses a heuristic to compute the softmax function faster
It does not reduce the computational complexity of computing the softmax function
No, the answer is incorrect. Score: 0
Accepted Answers:
It uses a binary tree to approximate the softmax function

