(12) UK Patent Application (19) GB (11)

2134523A

Application No 8403540

Date of filing 10 Feb 1984

(30)Priority data

8300736 (31) (32)

11 Feb 1983 Sweden (SE)

(43)Application published

15 Aug 1964 (51) INT CL3 C07D 401/00 A61K31/435 C07D 405/14 487/04 491/04 (C07D 401/00 217/00 295/ (C07D 405/14 213/04 235/ 02 307/04 317/19)

(C07D 487/04 235/00) (C07D 491/04 307/00 317/

U1S 1318 C2C (56) Documents cited GB 1525958 GB 1500043 EP 0005129A1 EP 0074341A1

(58) Field of search C2C

(71) Applicants Aktiebolaget Hassle, (Sweden), S-431 83 Moindal, Sweden

(72) Inventors **Arne Elof Brandstrom** Stig Ake Ingemar Cartsson **Britt Inger Monica** Kallsson Per Lennart Lindberg

(74) Agent and/or Address for Service J. A. Kemp & Co., 14 South Square, Gray's Inn, London WC1R 5EU

(54) Novel pharmacologically active compounds

(57) Novel compounds of the formula:

wherein X is Sor SO and R1, R2, R3, R4, R⁵, R⁶, R⁷, R⁸ and R¹⁵ are organic residues, pharmaceutical compositions containing such compounds particularly for use in the treatment of gastric disorders.

5039806

Best Available Copy

SPECIFICATION

Novel pharmacologically active compounds

The object of the present invention is to provide novel compounds, and therapeutically acceptable salts thereof, which inhibit exogenously or endogenously stimulated gastric acid secretion and provide gastrointestinal cytoprotective effects and thus can 10 be used in the prevention and treatment of peptic

The present invention relates to the use of the compounds of the invention or therapeutically acceptable salts thereof, for inhibiting gastric acid secretion as well as providing gastrointestinal cytoprotective effects in mammals and man. In a more general sense, the compounds of the invention may be used for prevention and treatment of gastrointestinal inflammatory diseases in mammals and man,

- 20 including e.g. gastritis, gastric ulcer, and duodenal ulcer. Furthermore, the compounds may be used for prevention and treatment of other gastrointestinal disorders, where cytoprotective and/or gastric antisecretory effect is desirable e.g. in patients with
- 25 gastrinomas, in patients with acute upper gastrointestinal bleeding, and in patients with a history of chronic and excessive ethanol consumption. The invention also relates to pharmaceutical compositions containing at least one compound of the
- 30 invention, or a therapeutically acceptable salt thereof, as active ingredient. In a further aspect, the invention relates to processes for preparation of such new compounds and to novel intermediates in the preparation of the compounds of the invention.

Benzimidazole derivatives intended for inhibiting gastric acid secretion are disclosed in the British patent specifications 1 500 043 and 1 525 958, in the US patent 4 182 766, in the European patent specification 0 005 129, and in the Belgian patent specifica-

- 40 tion 890 024. Benzimidazole derivatives proposed for use in the treatment or prevention of special gastrointestinal inflammatory disease are disclosed in the European patent application with publication no. 0 045 200.
- It has been found that the compounds of the formula

wherein

R15 is H, CH3 or C2H5; 50 R^1 , R^2 , R^3 and R^4 , which are the same or different, are

- (a) H
- (b) halogen
- (c) —CN
- (d) -CHO
- 55 (e) -CF₃

O

||
(f)
$$-C-R^{11}$$
O
||
(g) $-O-C-R^{12}$
(h) $-CH(OR^{13})_2$
(i) $-(Z)_0-A-D$

60 (j) aryl

(k) aryloxy

(I) alkylthio containing 1-6 carbon atoms

(m) --NO₂

(n) alkylsulfinyl containing 1-6 carbon atoms

65 or wherein

(o) adjacent groups R1, R2, R3 and R4 together with the adjacent carbon atoms in the benzimidazole ring form a 5-, 6- or 7-membered monocyclic ring or a 9-, 10- or 11-membered bicyclic ring which rings may be saturated or unsaturated and may contain 0-3 hetero atoms selected from N and O, and which rings may be optionally substituted with 1-4 substituents selected from alkyl groups with 1-3 carbon atoms, alkylene radicals containing 4-5 carbon atoms giving spiro

75 compounds, or two or four of these substituents

together form one or two oxo groups

(-C-), whereby if R1, R2, R3 and R4 together with the adjacent carbon atoms in the benzimidazole ring form two rings they may be condensed with each

other, in which formulas R11 and R12, which are the same or different, are

(a) aryl,

0

(b) alkoxy containing 1-4 carbon atoms,

(c) alkoxyalkoxy containing 1-3 carbon atoms in each alkoxy part.

- (d) arylalkoxy containing 1-2 carbon atoms in the alkoxy part,
 - (e) aryloxy,
- (f) dialkylamino containing 1-3 carbon atoms in the
- (g) pyrrolidino or piperidino, optionally substituted with alkyl containing 1-3 carbon atoms
 - R¹³ is (a) alkyl containing 1-4 carbon atoms, or (b) alkylene containing 2-3 carbon atoms;

n is 0 or 1;

Dis(a) -

Ais (a) alkylene containing 1-6 carbon atoms

- (b) cycloalkylene containing 3-6 carbon atoms
- (c) alkenylene containing 2-6 carbon atoms
- 100 (d) cycloalkenylene containing 3-6 carbon atoms,

(e) alkynylene containing 2-6 carbon atoms;

(c) $-(Y)_m - (C)_r - R^{10}$

R9 is (a) alkoxy containing 1-5 carbon atoms, or

(b) dialkylamino containing 1-3 carbon atoms in the alkyl parts; mis0or1; ris0or1; Yis (a) -0-(b) -NH-(c) -NR10-: R10 is (a) H (b) alkyl containing 1-3 carbon atoms, (c) arylalkyl containing 1-2 carbon atoms in the alkyl part, or (d) aryl: R⁵ is (a) Hor (b) ---C-15 wherein R14 is (a) alkyl containing 1-6 carbon atoms, (b) arylalkyl containing 1-2 carbon atoms in the alkyl part (c) aryl (d) alkoxy containing 1-4 carbon atoms (e) arylalkoxy containing 1-2 carbon atoms in the alkyl part (f) aryloxy (g) amino (h) mono- or dialkylamino containing 1-4 carbon atoms in the alkyl part(s) (i) arylalkylamino containing 1-2 carbon atoms in the alkyl part (j) arylamino; R⁶ and R⁸, which are the same or different, are (a) Hor (b) alkyl containing 1-5 carbon atoms; R7is(a) H (b) alkyl containing 1-8 carbon atoms (c) alkoxy containing 1-8 carbon atoms (d) alkenyloxy containing 2-5 carbon atoms (e) alkynyloxy containing 2-5 carbon atoms (f) alkoxyalkoxy containing 1-2 carbon atoms in each alkoxy group (g) dialkylaminoalkoxy containing 1-2 carbon atoms in the alkyl substituents on the amino nitrogen and 1-4 carbon atoms in the alkoxy group (h) oxacycloalkyl containing one oxygen atom and ... 3-7 carbon atoms (i) oxacycloalkoxy containing two oxygen atoms and 4-7 carbon atoms (j) oxacycloalkylalkyl containing one oxygen atom and 4-7 carbon atoms (k) oxacycloalkylalkoxy containing two oxygen 50 atoms and 4-6 carbon atoms, or (I) R⁶ and R⁷, or R⁷ and R⁸ together with the adjacent carbon atoms in the pyridine ring form a ring wherein the part constituted by R^6 and R^7 , or R^7 and

R⁸, is

---CH=CH-CH=CH ---O--(CH₂)_p-----CH₂(CH₂)_p-----O--CH=CH-----N---CH=CH-----N---CH=CH--

wherein p is 2, 3 or 4 and the 0 and N atoms always

are attached to position 4 in the pyridine ring; and physiologically acceptable salts of the compounds I wherein X is S; with the provisos that

(a) not more than one of R⁶, R⁷ and R⁸ is hydrogen, (b) when X is SO, R⁵ is H and R⁶, R⁷ and R⁸ are

selected only from hydrogen, methyl, methoxy,
70 ethoxy, methoxyethoxy and ethoxyethoxy and at the
same time more than one of R¹, R², R³ and R⁴ are
hydrogen, then R¹, R², R³ and R⁴ cannot be selected
only from alkyl groups, halogen, alkoxycarbonyl,
alkoxy or alkanoyl,

(c) when X is S, R⁵ is H, alkanoyl or alkoxycarbonyl, and R⁶, R⁷ and R⁸ are selected only from hydrogen, methyl, ethyl, methoxy, ethoxy, methoxyethoxy and ethoxyethoxy and at the same time more than one of R¹, R², R³ and R⁴ are hydrogen, then R⁷, R², R³ and R⁴ cannot be selected only from alkyl groups, halogen, alkoxycarbonyl, alkoxy, alkanoyl, trifluormethyl, or NO₂,

(d) when X is SO, one of R⁶, R⁷ and R⁸ is H and the other two of R⁶, R⁷ and R⁸ are alkyl, and at the same time more than one of R¹, R², R³ and R⁴ are hydrogen, then those radicals R¹, R², R³ and R⁴ which are not H cannot be selected only from alkyl, halogen, cyano,

hydroxyalkyl, CF3, or (alkyl) — C —,

(e) when R³, R⁴, R⁵ and R¹⁵ are H and simultaneously R⁵ and R³ are H or CH₃ and R³ is OCH₃, then R¹ is not CF₃ when R² is H, and R² is not CF₃ when R¹ is H, are effective as gastrointestinal cytoprotectives and as inhibitors of gastric acid secretion in mammals and man as stated above.

Illustrative examples of the various radicals in the formula I are as follows. These illustrative examples will be applicable to different radicals depending on the number of carbon atoms prescribed for each 100 radical. It will be understood that the expressions "alkyl" and "alkoxy" include straight, branched and

cyclic structures.

F. Cl. Br. I

Alwyl: CH3, C2H5, n-C3H7, 1-C3H7, n-C4H9, sec.-C4H9,

iso.- C_4H_9 , tert.- C_4H_9 , n- C_5H_{11} , n- C_6H_{13} ;

$$- (\mathbf{h}_{\mathsf{CH}_2}^{\mathsf{CH}_2} \cdot - (\mathbf{h}_{\mathsf{CH}_2}^{\mathsf{CH}_2}) \mathbf{c}_{\mathsf{H}_2} \cdot - (\mathbf{h}_{\mathsf{CH}_2}^{\mathsf{CH}_2} - \mathbf{c}_{\mathsf{H}_2}^{\mathsf{CH}_2})$$

-CH₂+, -CH₂CH₂+, -(CH₂)₃+, -CH₂-CH+ , -(Ch₂)₄+, -(CH₂)₅-, -(CH₂)₆-

-сн-сн- . -сн₂-сн-сн- . -сн₂-сн-сн-сн₂- . Alkenylener -(cH₂)₂-CH-CH-CH₂- , -(CH₂)₃-CH-CH-CH₂-

-S-CH3, -S-C2H5, -S-1-63H7 Alkylthio:

-с-с- , -сн₂-с-с- . Alkynylene:

-осн₃ . -ос₂н₅ . -о-п-с₃н₇ . -о-і-с₃н₇ . -O-n-C₄M_g , -O-isa-C₄H_g , -O-sec.-C₄H_g ,

-O-tert.-C4Hg, -O-n-C5H11 .

-осн₂осн₃ , -осн₂сн₂осн₃, -осн₂сн₂осн₂сн₃,

-0CH2CH2CH2OCH2CH2CH3

Aryloxys

-0-CH-CH₂ , -0-Сн-Сн-Сн₃ , -0-Сн-Сн-С₂н₅. -0-CH2-CH-CH-CH2CH3

Alkynylaky: -0-CMCM. -0-CMg-CMCH. -0-CMg-CMC+CMg -0-CMg-C#2-CMgCMg

instrative examples of the radical -CH(OR 13), are:

Illustrative examples of the ring structures involving $\sigma^{L}_{_{\rm P}}$ $\rm R^{2}$ or $\rm R^{4}$ are

y where w is

-CH₂CH₂CH₂--CH₂CH₂CH₂CH₂--CH₂-C(CH₃)₂-CH₂--(CH₂)₅--CH-CH-CH-CH--CH₃--CH₂-CH₂--CH₃-CH₂--CH₃-CH₂-CH₂--CH₃-CH₃-CH₃--CH₃-CH₃-CH₃--CH₂-CH₃-CH₃--CH₂-CH₂--CH₂-CH₂--CCH₂-CH₂--CCH₂-CH₂--CCH₂-CH₃--CCH₂-CH₂--CC(CH₂)₃--C(CH₂)₃--C(CH₂)₃--C(CH₂)₃--C(CH₂)₃-

CH2 CH2
CH2 CH2
-0-C-0-CH2
-CH2-0-CH2-0-CH3

The radical -(Z) $_n$ - A - O comprises the following radicals. The expression (alkyl 1-3d) etc. means alkyl groups containing 1, 2 or 3 carbon atoms.

A - CN A - C - O -(alkyl 1-5c) - N (alkyl 1-3c) Yalkyl 1-3c) A - H A - (alkyl 1-3c) -A - (alkyl 1-2c)-aryl A - aryl A - O - A A - 0 -(alkyl 1-3c) A = O -(alkyl 1-2cl-aryl A - 0 - aryl A - AH - H A - NH -{alkyl 1-3c} A - NH -(alkyl 1-2c)-eryl A - MH - eryl R10 A - M - H A - N - M gl0 A - N - (alkyl 1-3c) gl0 A - N - (alkyl 1-2c)-aryl gl0 A - N - aryl А-О-Е-Н Q A- 0 - C - (alkyl 1-3c) 0 A- 0 - C - (alkyl 1-2c)-aryl

A- NH - C -(elkyl 1-3c)

A- NH - C -(elkyl 1-2c)-eryl

A- NH - eryl

R¹⁰ 0

A- N - C - H

R¹⁰ 0

A - N - C - (elkyl 1-3c)

R¹⁰ 0

A - N - C - (elkyl 1-3c)

R¹⁰ 0

A - N - C -(elkyl 1-2c)-eryl

R¹⁰ 0

A - N - C -eryl

-0 -A - CN

-0 -A - C-0-(alkyl 1-5c)
-0 -A - C - N (alkyl 1-3c)
(alkyl 1-3c)

-0-A - M -0-A -(alkyl 1-3c) -0-A-(alkyl 1-2c)-eryl -0-A-aryl

-0 - A - 0 - H -0 - A - 0 -(alkyl 1-3c) -0 - A - 0 -(alkyl 1-2c)-aryl -0 - A - 0 - aryl -0 - A - NH - H

-0 - A - NH - C - H

-0 - A - NH - C - (alkyl 1-3c)

-0 - A - NH - C - (alkyl 1-2c)-aryl

-0 - A - NH - aryl

R

-0 - A - NH - C - H

R

-0 - A - N - C - (alkyl 1-3c)

-0 - A - N - C - (alkyl 1-3c)

-0 - A - N - C - (alkyl 1-2c)-aryl

-0 - A - N - C - (alkyl 1-2c)-aryl

-C -A -H

-C -A -(alkyl 1-3c)

-C -A -(alkyl 1-2c)-aryl

-C -A -aryl

-C-aryl

-C-0-(alkyl 1-4C)

-C-0-(alkyl 1-3 c)-0-(alkyl 1-3c)

-C-0-(alkyl 1-2c)-aryl

-C-0-aryl

(alkyl 1-3c)

-C-N
(alkyl 1-3c)

(optionally substituted with al

C-N (optionally substituted with alkyl)

(optionally substituted with alkyl)

The radical -0-c-R¹² comprises the following radicals.

-0-c-aryl

0
-0-c-0-(alkyl 1-4c)

-0-c-0-(alkyl 1-3c)-0-(alkyl 1-3c)

-0-c-(alkyl 1-2c)-aryl

-0-c-0-aryl

(alkyl 1-3c)

-0-c-N

(optionally substituted with alkyl)

The racical -C-R¹⁴ comprises the following radicals:

Q
-C-(alkyl 1-6c)
Q
-C-(alkyl 1-2c)-aryl
Q
-C-aryl
Q
-C-aryl
Q
-C-G-(alkyl 1-4c)

0
-C-O-(alkyl 1-2c)-aryl
0
-C-O-aryl
0
-C-NH2
0
-C-NH(alkyl 1-4c)
0
-C-N (alkyl 1-4c)
-C-N (alkyl 1-4c)
0
-C-N (alkyl 1-4c)
0
-C-N (alkyl 1-2c)
-C-N aryl
0
-C-NH(aryl)

-C -A -O -H

-C -A -O -(alkyl 1-3c)
-C -A -O -(alkyl 1-2c)-aryl

-C -A -O -aryl

-C -A -NH -H

-C -A -NH -(alkyl 1-3c)
-C -A -NH -(alkyl 1-3c)
-C -A -N -aryl

-C -A -N -H

-C -A -N -H

-C -A -N -H

-C -A -N -(alkyl 1-3c)
-C -A -N -(alkyl 1-3c)
-C -A -N - (alkyl 1-3c)
-C -A -N -(alkyl 1-3c)

Q R¹⁰ Q -C-A-N - C-(alkyl 1-3C)
Q R¹⁰ Q -C-A-N - C-(alkyl 1-2C)-aryl

o R^{lO} O -C-A-N - C-aryl

The radical -C-R¹¹ comprises the following radicals.

b.

Further illustrative examples of the radicals in the formula I are:

alkylsulfinyl:

SOCH3. SOC2M5. SOCH2CH2CH3. SO-4-C3H7. SO-n-C4H6. SO-n-C5H11

oxacycloalkyl:

$$\overset{\bullet}{\bigcirc}$$

oxacycloalkoxy:

oxecycloalkyl-alkyl:

oxacycloalkyl-alkoxy:

The compounds of the invention that are sulfoxides (X=SO) have an asymmetric centre in the sulfur atom, i.e. these compounds exist as two optical isomers (enantiomers), or if they also contain one or 5 more asymmetric carbon atoms the compounds have two or more diastereomeric forms, each existing in two enantiomeric forms. Such asymmetric carbon atoms may be the carbon atom on which R¹⁵ is attached (when R¹⁵ is other than H) or a carbon atom 10 in some of the substituents.

Both the pure enantiomers, racemic mixtures (50% of each enantiomer) and unequal mixture of the two are within the scope of the present invention. It should be understood that all the diastereomeric 15 forms possible (pure enantioners or racemic mix-

tures) are within the scope of the invention.

The compounds of the invention that are sulfides (X=S) may be asymmetric due to one or more asymmetric carbon afoms, as described above. The 20 different diasetereomenic forms possible as well as the pure enantiomers and racemic mixtures are

within the scope of the invention.

It should be noted that for all the compounds of the invention wherein R⁵ is H the substituents R¹ and R⁴ 25 as well as R² and R³ are considered to be equivalent. This is due to the tautomerism in the imidazole part of the benzimidazole nucleus causing an equilibrium between the two possible NH-forms. This is illustrated by the following example:

- 30 | Preferred groups of the radicals R¹, R², R³ and R⁴ are:
 - 1. H
 - halogens F, CI, Br and the groups CN, CHO, CO(aryI), COO(alkyI), CF₃, SCH₃, SOCH₃ and NO₂
- 35 3. the groups alkylene-D, O-alkylene-D and CO-alkylene-D wherein D is CN, COO(alkyl), COR¹⁰, OR¹⁰ and R¹⁰
 - 4. aryland aryloxy

- 40 6. —CH₂CH₂CH₂—,—CH₂CH₂CH₂CH₂—and •—CH=CH—CH=CH—
 - 7. —CH=CH-CH=C-(CH₂)₂₋₃-
 - 8. saturated baterocyclic ring structures having 2

45 oxygen atoms.

- 9. unsaturated 6-membered heterocyclic ring structures having one nitrogen atom
- II Further preferred groups of the radicals R¹, R², R³ and R⁴ are:
- 50 1. H
 - 2. halogers Cland Brand the groups CO(phenyl), COOCH₃, CF₃ SCH₃ and SOCH₃
 - 3. the groupsalkyl, alkoxyalkyl, aryloxyalkyl, arylaktyl, aryl
- 4. the groupsalkoxy, alkoxyalkoxy, aryloxyalkoxy, arylalkoxy, aryloxy
 - 5. the groupalkanoyl
 - 6. —CH₂CH₂CH₂—,—CH₂CH₂CH₂CH₂—and
 - -CH=CH-CH=CH-
- 7. —CH=CH-CH=C—(CH₂)₂₋₃—
 - 8. saturated beterocyclic ring structures having 2 oxygen atoms in 4,5-,5,6- or 6,7-"catechol positions", e.g. (5,6-position shown)

- 65 III Still further preferred groups of the radicals R¹, R², R³ and R⁴ are:
 - 1. H
 - 2. Brandthegroups COOCH3 and CF3
 - 3. the groups CH₃, C₂H₅, CH(CH₃)₂, CH₃OCH₂CH₂...,
- 70 pheny
- 4. the groups CH₃O, CH₃(CH₂)₆O—, CH₃OCH₂CH₂O—, (phenyl)-QCH₂CH₂CH₂O—, (phenyl)CH₂CH₂O—, (phenyl)O—
 - 5. the groups CH₃CO--, C₂H₅CO--
- 75 6. —CH2CH2CH2—, —CH2CH2CH2CH2—
 - 7. —OCH. 0-, -0 in the 5,6-"catechol position"
 - IV Particularly preferred groups of the radicals R¹, R², R³ and R⁴ are:
 - H, COOCH3, CF3, CH3, C2H5, CH(CH3)3, CH3O,
- 80 —CH₂CH₂CH₂—, —CH₂CH₂CH₂CH₂— and —OCH₂O— V In a preferred embodiment, at least three of the radicals R¹, R², R³ and R⁴ are other than hydrogen, or

they form at least one ring.

VI In another preferred embodiment the radicals R¹ and R² form a ring structure

VII In another preferred embodiment the radicals R² and R³ form a ring structure.

VIII In a preferred embodiment at least three of the radicals R¹, R², R³ and R⁴ are other than hydrogen. IX In a preferred embodiment the radicals R¹, R², R³ and R⁴ are selected from H, halogen, CF₃, alkyl and alkoxy groups.

X In a preferred embodiment the radicals R^1 , R^2 , R^3 and R^4 are selected from H, alkyl and alkoxy groups. XI In a preferred embodiment the radicals R^1 , R^2 , R^3 and R^4 are selected from H and alkyl groups.

15 XII The preferred groups of X is S.
XIII The preferred group of X is SO.

XIV The preferred group of R¹⁵ is H.

XV Preferred groups of the radical R⁵ are H, arylcarbonyl, alkoxycarbonyl, arylalkoxycarbonyl, di-20 alkylaminocarbonyl and arylaminocarbonyl.

XVI Further preferred groups of the radical R⁵ are H, phenylcarbonyl, methoxycarbonyl, tert-butoxycarbonyl, benzyloxycarbonyl, dimethylaminocarbonyl and phenylaminocarbonyl.

XVII Particularly preferred of the radical R⁵ is H.
 XVII Preferred groups of the radicals R⁶ and R⁸ are:
 1. H, CH₃, C₂H25, C₃H₇ and CH(CH₃)₂

2. ring structures connecting position 4 in the pyridine ring.

30 XIX Particularly preferred groups of the radicals R⁶ and R⁸ are H, CH₃, C₂H₅ and ring structures also connecting position 4 in the pyridine ring XX Preferred groups of the radical R⁷ are:

 H, CH₃, C₂H₅

35 2. OCH₃, OC₂H₅, OCH₂CH₂CH₃, O(CH₂)₃CH₃, OCH₂

3. OCH2CH=CH2, OCH2C=CH

4. OCH₂CH₂OCH₃, OCH₂

5. OCH2CH2N(CH3)2

6. —CH=CH—CH=CH-bound to positions 3 and 4,

40 —CH=CH—CH=CH-bound to positions 4 and 5,

-CH₂CH₂-bound to positions 3 and 4,

—CH₂CH₂CH₂-bound to positions 4 and 5, —CH₂CH₂CH₂CH₂-bound to positions 3 and 4,

45 —OCH₂CH₂-bound to positions 3 and 4, —OCH₂CH₂-bound to positions 4 and 5.

-OCH2CH2CH2-bound to positions 3 and 4,

-OCH2CH2CH2-bound to positions 4 and 5,

XXI Further preferred groups of the radical R7 are:

50 1. CH₁

2. OCH₃, OC₂H₅, OCH₂CH₂CH(CH₃)₂

3. OCH2CH=CH2

4. OCH₂CH₂OCH₃, OCH₂,

—CH₂CH₂CH₂-bound to positions 3 and 4,

55 —CH₂CH₂CH₂-bound to positions 4 and 5,

-CH₂CH₂CH₂CH₂-bound to positions 3 and 4,

-CH₂CH₂CH₂-bound to positions 4 and 5,

—OCH₂CH₂-bound to positions 3 and 4, —OCH₂CH₂-bound to positions 4 and 5, —OCH₂CH₂CH₂-bound to

60 positions 3 and 4, —OCH₂CH₂CH₂-bound to positions 4 and 5.

XXII Particularly preferred groups of the radical R^7 are CH_3 , OCH_3 , $OCH_2CH_2CH(CH_3)_2$, OCH_2

—OCH₂CH₂CH₂-bound to positions 3 and 4 or to 65 positions 4 and 5.

XXIII Preferred pyridyl substitution patterns are:

$$\mathsf{CH}_{3} \xrightarrow{\mathsf{CCH}_{3}} \mathsf{CH}_{3} \qquad \mathsf{CH}_{3} \xrightarrow{\mathsf{CC}_{2}\mathsf{H}_{2}} \mathsf{CH}_{3} \qquad \mathsf{CH}_{3} \xrightarrow{\mathsf{CCH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{3}} \mathsf{CH}_{3}$$

XXIV Further preferred pyridyl substitution patterns are:

XXV Still further preferred pyridyl substitution patterns are:

XXVI Particularly preferred pyridyl substitution patterns are:

5 XXVII In a preferred embodiment two of the radicals R^6 , R^7 and R^6 form one ring structure and the third radical of R⁶, R⁷ and R⁸ is H.

XXVIII In a preferred embodiment R15 and R5 are H, at least three times of the radicals R1, R2, R3 and R4 are 10 other than H, R⁶ and R⁸ are H or CH₃ and R⁶ is CH₃,

OCH3 or OCH2CH=CH2.

XXIX In a preferred embodiment R15 and R5 are H, the radicals R1, R2, R3 and R4 form at least one ring structure, R⁶ and R⁸ are H or CH₃ and R⁷ is CH³, OCH³ 15 or OCH₂CH=CH₂.

XXX Preferred compounds are those of the formula

wherein R^2 is alkyl or alkoxy, preferably CH_3 , C_2H_5 , CH(CH₃)₂ and OCH₃, and X is S or SO.

Further illustrative examples of the radicals in the 20 formula lare given in the examples and lists of specific compounds given elsewhere in this specification.

Illustrative examples of compounds included in the scope of the invention are given in the following

Table 1.

Illustrative examples of compounds included in the scope of the invention.

	g15	R ¹	g ²	R ³	R ⁴	R ⁵		R ⁶	R ⁷	ę\$			
_	H	CH ₃	O ₁	CH3	CH3	М		Oly	001201-012	CH ³			
8		CH ₃	CH3	CH ₃	CH ₃	н		CN3	OCH ² CH-CH ²				
		CH ₃	CH ₃	CH3	CH ₃	H		Ol ₃	осн ₃	CH ₃			
٥		CH ₃	οι,	CH ₃	CH ₃	н	ι,	CII3	осн3	ᅄ			
	M	01)	CH ₃	CH ₃	н	н		CH3	001201-012	CH ₃			
0		013	CH ₁	CH ₃	н	н		CH3	OCHZCH-CHZ	. CH ₃			
	н	CH ₃	OH ₁	CH ₃	н	н		CH ₃	OCH ₃	CH3			
0		CH ₃	OI ₃	CH3	н '	н		CH ₃	осн ₃	, сн ₃			
	н	CH,	CH2	н	CH ₂	н		CH ₃	OCHZCH-CHZ	CH)			
٥	н	CH,	CH ₃	н	CH ₃	H		CH ₃	OCH2CH+CH2	CH3			
	н	οι,	CH ₃	н	CH3	H		CH3	осн,	CH ₃			
٥	н	O13.	CH ₂	н	CH3	н		CH ₃	0СН ₃	CH ₃			
_	н	CH ₃	· CH ₃	н	н	н		CH ₃	OCH ₂ CH-CH ₂	CH ₃			
		,	۵.,					•		cont			

_	R ¹⁵	8 ¹	ę²		A4	R5	A ⁶	R ²	وم
							cH	OCH_CH+CH ₂	O1,
)	ĸ	Or3	ο ₃				οι,	OCH ₂ CH-CH ₂	CH ₃
			or ³	cu3	•	*	CH ₁	מכוליםו-טול	οι,
ı	*	H	· 01 ₃	oı,			-	OCH CH	DI ₃
		œ	#	M	CI ³	H	OI ₃		Ol ₃
,	×	Ol ₃		M	ᅄ	Ħ	CH3	001201-012	
		DL	•	M .	×	×	Or3	OCH ² CH-CH ²	OI ₃
,		CI ₃	*	H	×	H	O13	001201-013	CH3
		i i	Oh	я	H	H	OI3	001201-013	ᅄ
	Ņ			×	н	M	CH3	901 ² 01-01 ²	ᅄ
0	×	H	DI ₃	 M		И	OI ₃	001201-012	ᅄ
	16	×	901 ₃		*	H	CH ₃	مالا مالات	OI ₃
9	ĸ	K	ю, .				013	00176=01	CH ₃
	и	H	0CH ₃	#			راه	التعاربون	OI,
0	×	W	0CH ²	ĸ			CH3	0(CI ₂)3CI+CII ₂	οι,
٥	×	M	oct ₃	Ħ	H	W	-	0(O(Z)3O(3	ο,
٥	и	N	0013	n .	и	ĸ	. _{CH} 3		_
		H	9CH ₃	н	H	н	C ^{IO}	0CH(CH ₃) ₂	CH ₃
٥	*	H	0CH ₃	и	M	H	_{CH} 3	0CH(CH ₃)2	OI:
				н	×	*	c ⁱ 3	oc(cH ³) ³	DI ₂
	×	H	0013	 H	* .	H	CH ₃	oc(cH ₃)3	CN:
50	н	ĸ	OCH)	•	•		•		cor

pat.								2,7	6
	15	a ¹	K ²	k ₃	A^4	R ⁵			
		<u> </u>	OCH ₂	. н	H	и.	CH3	•♦ . s. 2	CIO
-	•		OCH ₃	16	и	16	Or3	•	CH3
) #	1	*	ಜ್ಯಾ ಜ್ಯಾ	н	×	н	· OI3	0CH2 ⁻ ✓	ᅄ
H			0CH ₃	н	×	· N	O13	och2 ✓	CH3
K 0			0CH ₃	×	н	H	ch ³	∞1 ² -<	CH3
H		N	0CH ₃	ж.,	×	×	c _H 3	001 ² -<	Cr3
× و	-		0CH ₃	×	*	×	OI3	0(CH2)2H(CH3)2	O13
, 14		H	001 ₃	и	M	н	ο ₃	0(012)2191(013)2619	
	-	-14		и	-и	N	cu ³	0(CH ²) ² H(CH ²) ⁵	C13
9 ×		*	осн ₃	×	н	н	O13	001201201(013)2	CH3
	M	*	00H ₃	H	H	· ×	CH2	OCH ² CH ² CH(CH ³) ⁵	c ^c
-	Ħ		•	н	14	×	, N	OCH3	C211
~	×	N	∞, ∞,	н	И	×	н	0(CH ²) ³ CH ³	بردع
•	19	н	осн ³	н	×	н	н	6(CH ⁵) ² CH ³	C ² H
	H		-	ж	×	н	O13	OCH ² CH ² CH ² CH(CH ³) ⁵	CH ₃
	11	N Cu	och ²	· (N ₂	×	H	×	ر دیری	701
_	H	CH.3	0CH ₃	n í	×	H	C+3	OCH2CH2CH2	CH
\$0	*	N	оси ₃	CH ₃	×	N	H	CH(CH ²) ⁵	CH.
50	×	CH3	~~;	•					CO

	415	41	g. ²	۲,	4	25	a ⁶ a ⁷	re
_	<u>:</u>	 -	<u></u>	н	*	н	H -{CH2}4-	
•	-		60kg	×		×	и -{CH ² }4-	
			001 ₃	H		W	-(Ol ₂)4-	×
٥		11	001	н	×	H	-(Ol ₂)4-	H
			0CH ₃	*		M	H -0-(Or ²) ³ .	
٥		M	9CH ₃	*	*	H	n -0-(0/2)3-	
,		*	0013	H	×	н	-(CH ₂) ₂ -0-	
٥	×		oci ₃	И	H	H	-(CH ₂) ₂ -0-	•
			0CH ₂	×	×	×	H -01-01-01-	
•			0013		×	H	H -01-01-01-01-	
	H.	×	OCH ₃	ĸ	H		-OI-OI-OI-	Ħ
٠	M		0CH ₃	×	H	×	-O+O+O+O+	Ħ
5		M.	a(a)	*	H		CH3 0CH3	Ol3
54			مريً	*	N		OH3 0CH3	cr ³
5	×		CH(0CH ³) ²	*	H	H	CH3 OCH3	O13
•	•	-	. 1.2					COR E.

cent.

_	R ¹⁵	R1	n ²	83	R ⁴	R ^S	R ⁶	r ²	gê.
_					, n		043	OCH ₃	O ₃
9	×	×	CH(0CH ³) ⁵	 H		ж	OK,	0013	CN ₃
	M	×	O+0 .		 N	n	013	0CH ₃	05
٥	H	×	040	H			οι,	0CH ₃	Ol ₃
,	M	×	CH-CH-COOC 2HS	M	H	H	-		α,
٥	ĸ	M	OH-OH-COOCZHS	H	н	H	CH3	⁰⁰¹ 3	_
			OIZOIZCOOCZNS	×	н	×	c _r 2	OCH3	Di ₃
			olydlycooc _y lly	×	н	×	· CH ₃	9CH ₃	CH ₂
	- *		Or ^Z Or ^Z CON(CH ²) ⁵	н	×	*	оı	OCH ³	CH ₂
•				м	N	×	CII)	OCH ₃	CH
Ø	H	×	Or ² Or ² COH(Or ³) ³	. н	н	H	οij	0013	OI.
	×	ĸ	CH-CH-CH		н		CN ₃	OCH ₃	O.
Ç,	×	H	DI=CH-CR	н		н	οί,	0CH ₂	. 01
S	×	H	DISCISO	*	×			0CH ₃	CH
so			OLOGOI	×	×	H	CH ³		
s	×	×	01201201201	×	H	Ħ	C+3	ocx3	01
50	н	×	OlyDlyDlyDl	н	н	н	ᅄ	OCH)	O
		ж	CH ² CH ² CH ² OCOCH ³	н	×	×	ᅄ	оснз	CH
\$				н	н	H	CH3	осн3	. 0
50	ĸ	×	CH ² CH ² CH ² OCOCH ³		н	×	CN ₃	осн	0
\$	н	H	CH ² CH ² CH ² II(CH ³) ²				CH ₃	OCH ₁	٥
50	M	16	01201201211(013)5	Ħ	•		3	•	cont

	8 15	a)	g ² ,	دړ	4	45	a ⁶	1,	- 4
	-		OLOLOLDE MCCC. AL	н		н,	OI,	αн ₃	cu,
_			OLOGOLINGOC, IL				ο ₃	oci ₃	CH3
	_		01-01-0101				CH ₃	OCH ₃	OI,
	=		0=00001		ĸ	×	OI3	OCH3	ᅄ
			ai,a,aaa				CH3	oci ₃	CH3
_			Or'01'0001"				OI3	осн ₃	O13
	-		a-a-(C)		H	ĸ	OI3	ocu ₃	ο'n
	-		a-a-(O)	` #		*	CH3	. осн ³	· 043
			محمدی	ĸ		×	CH ₃	ocn ³	Ch3
	-		ara-0)			*	ου ₃	oci ₃	ᅄ
_	-	оц.		CH ₂		*	cu3	001201-012	O43
•		ου, Ου,		Oη	×		013	OCH ² CH-CH ²	OI3
_		~ 3	α _γ -∕⊙⟩		×		CH ₃	осн ₃	Oly
	-		~, ~,√⊙)	•	×		043	ock ₃	OI3
	-	. .				ж .	043	с он ₃	CH3
	• •	, "	•- ©	•		N	Ol ₃	OCH ₃	CI ²
•			8CH, CO)		ĸ	M	CH ₃	0CH ₃	CH ₃
			script (i)		×		OI ₃	0CH ₂	cu ₃
50		•	ڪ ئدئد۔					-	

i 1	e ¹⁵	H H H	a ²	я ³ н н	N H	×	CH3	OCH ₃	Oi,
•	* * #		oci ² ca	 H					
•	# #		~			н	ΟΙ,	OCH ₃	OI ₃
	# #	×			, , ,	 M	οų	OCH ₁	Ot ₃
	*		oci ^s coc ^s iè		**		013	0CH ₁	013
9 1		Ħ	oci-cocchi?	H	N.		-	OCH ₂	οú
, ,	M			×	×	*	cH ₃	•	013
۱ م	H		00/01/0H	. #	H ·	×	O1 ₃	0CH ₃	O/3
		и	ooraroor-O	111	H	H	οι ^j	OCH.)	•
ا ۵			corariocari-©	×	M	H	. Or ³	OCH ₃	013
		 M	00120121112	*	M	M	CH3	0CH ₃	c _{iO}
	-		OCH_CH_HIL		×	N	CH3	осн ₃	O13
۰			oororincoo(cu²)s		ж.	H	CH ₃	оси3	CH3
•	*	×		*	×	×	OI3	осн ₃	ᅄ
10	×		OOI ² OI ² OI ³) ⁵	-	¥	¥	он,	• осн ₁	o ₃
5	×	M	cortro –©	· •			ᅄ	ОСН	oi,
so	Ħ	Ħ	00-tro <u>-</u> ⊘				ci)	OCH ₃	OI3
S	Ħ	и	∞ -@	×			013	OCH,	OI,
50	Ħ		ه-⊘ _	×	N		_	0CH ₁	CH ₂
\$	ĸ	H	(O, C,	×	×	¥*	CH ₃	-	, OI ₁
SO OZ		н	co(cu²)²o(C)	ĸ		M	OI3	OCH ³	•
5			-(``	a .	**	H	cio,	OCH3	CH ₃

-45%

8 R5 R⁴ **8**) 215 n² CH3 -- 001² о, 0CI₃ OI,3 œ, OCH₃ CH3 OI3 0CH₃ 013 0001²01²001³ CH3 043 Оij CH3 0CH₃ CH₃ 000 € DI3 ᅄ᠈ ᅄ CX3 ᅄ الارجات OI, ᅄ Oi3 CI13 ᅄ ᅄ or‱⊸© OI, ᇯ 0013 صرٌ∞ه –(ق) 013 CI) 001201-012 O13 00001 o, (000) ᅄ 001/01-01/ OI, ᅄ O1,3 COO. 0120120013 оу Сч, Ol₃ والمواتون 001/01-01/ 01(01)2 ᅄ 01(013)5 ᅄ Ol3 $c(coi_3)_3$ 043 001201-012 ((01))3 CK3 001, CH3 CH3

cont.

	R ¹⁵	<u>,1</u>	2	R ³	R ⁴	R ⁵	26	, 7	8
			001 ₃	CH ₃	и	H	CH3	0013	OI3
50		O'3	осн _а	o ₃	ĸ	И	CH3	CH ₃	H
S	M	α ₃	001 ₁	OI ₃	*	×	CH ³	CN3	×
50 -		о ₃	00120120013	Ol ₁	н	н	· 013	0CH ₃	CH3
\$ 	M	^{C3} 3	00120120CH ³	он ₃	H	н	CH ₃	OCH ₃	CH3
50	*	ο ₃		CH ₃	H	· .	Ħ	CH.3	OI3
\$	N	ο ₃ ~	001 ² 01 ² 001 ³	οl ₃	и	н	×	CH ₃	CH ³
50 -	H	о ₃	COCH ²	CH ₃	н	н	ᅄ	осн3	CH3
S	H	ο ₃	cock ₃	Ol3 .	H	ж .	CH3	OCH3	013
50		Oly CH	cock ₁	CH ₃	н	н	CN ₃	ĸ	CH3
\$	H	Ch3	COCH ₃	CH3	н	- н	CH ₃	H	c _{iO}
50	¥	CH ₃	•	ск ₃	н	H	CH ₃	осн3	CH3
\$	H	CH.3	coc _z u _s	CH ₃	ж	н.	CH ₃	осн ₃	OI3
50	H	CN3	COC ² H ²	CH3	и	н	CH ³	OCH ₃	CH ₃
\$	OI,	CH3	CH3	сн ₃	н	Ħ	CH3	OCH ₃	OI3
20	CH ₃	CH ₃	CH ³	сн _а	н	×	OH ₃	CH ₃	CH.3
\$	н	CH3	CH3	_	н	н	01,	CH ₃	CH ³
50	H	CH ₃	сн ₃	CH.3	н	×	CH3	OCH ₂	CH ₁
s	×	CH3	c _{sH} s	CH3			•	. •	cont.

cent.

	R ¹⁵	<u>,1</u>	g ²	. k ³	14	8 5	16	A ⁷	A.5
<u> </u>			<u> </u>	O13	N .	ж	CH ₃	0CH ₃	c _i ,3
	=	o ₃ ~	ርሃ	οί,	×	ĸ	CN3	0CH ₃	М
		α ₃	C _Z N _S	CH ₃	*	×	OI3	0013	×
•		0'3 ~:	י פינטר <i>ו</i>	οι ₃	н	H	OI,	OCH ₃	cu3
		OL)	Or(OI ²) ⁵	οι ₃	×	, K	013	осн ₃	CH3
٥	•	Ol3	DI(DI ₃)2	ο _λ		И	OI ₃	CH ₃	cu ₃
	*	Oly O	01(013)2	-	и	×	01,	CH ₃	c ^{io}
٥	H	Or3	OI(OI3)5	CN ₃		×	043	0CH ₃	c ^ب ی
		O ₃	∞o^-(^{DI} 3		X	Ol ₃	OCH ₂	CH ₃
٥	H	CK.3	coort-(i)	Oly .	H	и .	013	0CH ₃	OL
•	H	OCH2	Br	0CH ₃		*	ος	0013	CH ₃
	Ħ	9013	I r	OCH ₃	×	 H	οι ₃	CH ₃	×
•	H	0C)/3	Br .	ocx ³	N		Ol ₃	CH ₃	, M
٥	M	, 0CH ²	Br	OCH3	, K'	N .	-	0CH ₃	OI ₃
•	*	ويالج	CI	czns	*		ᅄ	0CH ₃	ᅄ
٥	M	CzHz	CI	ويالع	H	. N	OI3	•	CH ₃
5		CzNs	CI.	CZHS	N '	×	CH ₃	oc _z ils	ران ران
SO.	M	ويالح	CH .	c _z n _s	×	H	CH ₃	OC ⁵ H ²	•
s	M	CH ₃	осн	CH3	CH3	H	oi3	OCH3	CH ₃

cont.

							a6	R ⁷	Į,ā
1	R ¹⁵	R ³	K ²	R ³	14	<u> </u>			
		OL,	004 ₃	CH ₃	O13	M	CH3	0CH ₃	O13
50 -		οι, ~]	och ₃	×	OI,	M	CI(3	0Cr ³	O13
\$		-	001 ₃	к	OI,	K	OI3	OCH3	CH3
50		01 ₃	001 ₃	H	0CH ₃	Ħ	Oi3	OCH ³	CH3
\$	*		•	н	OCH ₃	H	O13	0CH ₃	CH3
50		C)	осн ₃ с1	C1	N	M	CH3	001 ₃	OI3
\$	H	C1	ci ci	cı	м	и	CH ₃	^{0CH} 3	O13
50	×	C1		C1	, и	H	cH3	OCH ² CH-CH ²	OI3
S	Ħ	C1	CI T	C 1		ĸ	CH3	OCH ² CH-CH ²	cاo
50	×	Cl	c1	c)	C1	M	CH3	осн ₃	CH.3
S	×	C1	C1	ci	c)	н	D13	0СН3 .	cu ₃
50	H	C1	C1	cı cı	c1	н	CH ₃	OCH ² CH-CH ²	ᅄ
\$	Ħ	C1	C)	ci	cı	н	ο'n	OCH2CH-CH2	m,
50	×	C1	c 1		осн ₃	N	OI ₃	9CH ₃	CH ₂
5	*	OCH ³	Br	# 	-	 H	OH,	оси ₃	CH ₂
50	H	OCH ³	le .		оси ³		oi,	осн	CH
\$	H	OCH ₃	C1	¢1	OC _Z H _S	" H	CH ₃	осн	CH
so	H	OCH3	C1	C1	OC _Z H _S		CH ₃	ο _λ ,	
s	11	9013	C1	C1	oc _z u _s	H	٠.3	- 1	

a ¹⁵	-1 -	2	رړ	A4	R5	R.6	±7	
8,,,				oc _z v _s		ο,	CH ₃	H
*	oo ₂	ต	_	. CI ₃		OI,	OCH ₃	o ₃
	യാപ്	CH ₃	O13	•		CH ₃	0011	CN ₃
×	COCK ³	מים	O43	01 ₃		OI,	001 ₃	013
	F 75.5	a			_	Oly	OCH ₃	· 01 ₃
*	F	C3	,	C1		•	00l ₃	DI ₁
×	CI .	orwood,	c1	×	×	. Ol ³	00l ₃	OI,
	ព 🖫	01,000013	C1	. #	H	Oly	•	Oly
	ព	, ou _a ce	, c1	H	K	. Oi3	0CH ₃	•
	C1	pu,ca .	·		Ħ	CN ₃	⁶⁰¹ 3	0/3
M.	-01-01	OI-OI-	-01-0	N-01-01-	*	c ₁₀ 3	0CH ₃	c _N 3
		α.) (ε ^{το}			N	cx3	0CH ₃	cx ³
. •		α ₃ > _	. San			· 01 ₃	0CH ₃	o ₃
Ħ	in ∰indis State of the State of					οų	0CH ₂	043
H		~ <u>~</u>		-		043	001,	013
H H	*	- ⊘ •	· H			Ol ₃	0CH ₃	oi,
=	-	•	•					cont

cont.

	R ¹⁵	R1 R2	Ę ³	R ⁴	R ⁵	26	R ⁷	g ⁸
-	¥	K' K'			н	O13	00H ₃	CH3
0	×	H	-001 ₂ 0-	H	н	013	OI ₃	CN3
\$ \$0	*	# . #	-001 ₂ 0-	H	H	CH3	CH ₃	CH ³
s			$\mathcal{L}_{\mathbf{r}}$	н	н	CH3	0CH ₃	cu3
			<u>`</u> Q_		н	OI,	0CH ₃	OI)
50		-01-01-01-R	. N	n	×	CH ₃	0CH ³	cu ³
\$	x	-OI-OI-OI-II			н	, он,	OCH ₃	CN3
50	N .	-		н	H	O13	0013	CH ₃
\$	H	-OI-OI-OI-O		н	H	CH ₃	0CH ³	CH ₃
50		-01-01-01-0	-DI-OI-OI-OI-	H	и	CH ³	OCH ₃	CH3
S	×	. #	-OHOH-OH-OH-	 H	×	OI ₃	OCH ₃	OH ₃
SO	×	N			×	OH ₃	OCH ₃	CH ₃
S	H	-סיים מיים	-3-	. н	×	CH ₃	осн	CH ₂
50	H	-012012012	ω, "			_	осн ₃	CH.
s	H	0013	-012012013-	C1	и	CH3	-	:OI
so		0CH ₃	-01 ² 01 ² 01 ² -	C1	H	CH ₃	0CH ₃	
s	н	0CH ₃	-0505015-	C1	H	c _{iO} 3	oc _z n _s	CH _:

ı	R ²⁵	2 1	R ²	^g 3	R ⁴	g\$	<u> </u>	R ²	/ g8,
3		20 3		-01,01,01,-	C)	и	013	oc _z n _s	. Ol ³
		- 0	. 01	- OI - C - DI ₂ OI ₂ -		M	CH ₃	0013	c _i 3
٥	Ħ	- 0	01	- OI - C - OLOI2 -			O13	0013	ο×
•					u	u	он ₃	оск ₃ .	cr ₃
	M		••	© _	×	×	013	`ocu ₃	α,
	11		`	-001-0-	×	C0,CH ₃	013	0CH ₃ ;	CB3
9	16	×		-001,0-	*	co _z cu ₃	013	OCH3	CH ₃
•				-001,0-		CO ₂ C ₂ H ₅	CH2	9CH ₃	ᅄ
•				-001,0-		CO ₂ C ₂ H ₃	O13	0CH ₃	OI3 .
			•	-00150-		co ₂ c(co ₃) ₃	ᅄ	0013	α'n
,		n		-0C1 / 0-	N	ω ^χ ε(αι ³) ³	44 CH3	OCH ₃	ᅄ
				-00120-	. H	صُحہ'۔﴿∑		0013	ᅄ
0	M	M		-0CI ₂ 0-	H	دميصي ﴿﴿) o ₃	0CH ₃	Ol3
	#	×		-0CI ₂ 0-	H	œ- ⊘ ¯	CH ₃	0CH ₃	Ol3
0	M	Ħ		-001 ₇ 0-	×	∞ ⊘	CH3	ocsi ³	ᅄ
	×	ĸ		-00120-	H	comi	O13	0013	cx3

cent.

	R ¹⁵	B ³	R 2		R3	R ⁴	R5 -	R ⁶	R ⁷	
·				001,0-		М	COMIZ	O13	0CH3	CH3
	_	- M		-001-0-		H	CONNEZINS	CH3	OCH ₃	CH ₃
30	_	11 .		-00-20-			CONCZIIS	cu ³	0CH ₃	c _{iO} 3
~				-0040-		и '	COMOLY-(C) o ₃	0CH ₃	CH3
				-0040-		×	соноц{(∑) o₁,	90013	cx³ .
~ i		»		-00-Ç0-		×	COMM	O13	оск ₃	CH3
50				-001 2 0-		×	· com	CH3	⁰⁰⁴ 3	CH ³
~ ;	 *	n H		-001 ₂ 0-		н	con(CH ₃)2	013	⁰⁰¹ 3	. ^{DI} 3
				-001/0-		н	COH(CH ₃) ₂	ᅄ	⁰⁰¹ 3	^{CH} 3
~ S		οι,	CH ₃	4	CH ₃		K.	CH ₃	001,01,001	OI3
50	 H	οι ₃	CH ₃		CH3	M	, H	CH ₂	001,01,001	CH3
 s	H	H	OCH3		» ~	н	н	-0	H-CH-0-	Ħ
so	 H	 N	001		H	×	M	-0	H=CH-0-	H
		H	0013		×	. *	н	н	-0-C	H-CH-
5 50		 *	0CH ²	•	н	н	н	н	-ò-c	H-CH-
so S	*	*	0013		н	H	H	-0	H=CH-RH-	ĸ
_		- K	оси _л		N	н	н	-0	N=CH- III(-	H
50 5		*	OCH ₃		N	N		н	-101-	O+O+ .

g2 a15 r) -184-CH-CHœ, -01-01-11(013)œ, -CH-CH-N(CH₃)-004 ω'n 0013 CI₃
CI₃ 0CH₃ 6(CI²)²CI³ 6(CI²)²CI³ دياج Cyly 0CH₃ 043

-	R ¹⁵	81		r)	R ⁴	g.S	R ⁶	٧	ga .
	- -	<u> </u>	<u> </u>	0CH ₃	н	ω- ⊚ .	ο,	OCH3	CH3
•			CH ₃	CH ² OCO (()	×	დ -@	CH3	ocs ³	cu3
			or ² 000-⊘	OI ₃		∞ · ⊘	CI3	оси ³ .	DI 3
		-	-00120-	•	×	coczic	013	0CH ₃	OI3
۵	-	 M	-001,0-		×	COCZHS	c ^{iO} 3	ocu ₃	נים
٥		10	οι ₃	or,	*	COOCH ³	OI,	₆₀₁ 3	O13
		-oc*	<u>@</u>		×	и	o13	9CH ₃	OI,
0		-00	,	N	• и	H	OI3	001 ³	OI,
			sona	н	н	н	Cr ³	001 ₃	O1:
	H		CH(CH ₃) ₂	Ħ	H	н ,	CH3	och ² -<	CH ₂
٥	×	ĸ	сн(сн ²). ⁵	M	. н	н	CH3	0CH ² -	CH ₂
	*	11	CH ² CH ² COCH ³	и	×	*	C#3	OCH ² CH-CH ³	CH
50			си,си,соси,		×		CH3	OCH ² CH-CH ²	CH
so		×	CH ₃	сиз	M	соос (си ³) ³	CH3	OCH3	CH

	g15	1,1	g2		*3	R ⁴	A ⁵	R ⁶	, , , , , , , , , , , , , , , , , , ,	g ⁰
-			CH ₂		CH ₂	*	con(CN ₃) ₂	CHJ	OCH ₃	CH ₂
•	-		οι,		OI,	#	con(CH ₃) ₂	CH3	осн	CH.
~					n	×	H	CH3	"DCII*CII*CĬI ²	~ CH
					×		H	CH ₃	001201-012	CH
	ć ;	CL.	OL.	124	OL	H	*	CH ₃	cu ₃	H
		. ~	ου. - Ου.		OL,	*	N	CN ₃	CH ₃	
~			OL.	j.	CU	×			cu ₃	O
			OL.		CIL		M		α,	CH
~			OL.	**	Oly	×	*	CN3		
•			CK.	Ĭ,	OL,	. #	N	CH ₃	K	OI
~			CIL	. •	×	. 013		OL3	CN ₃	*
	•		CIL.		M	οι ₃	M	αŋ	CI ₃	. *
-				.7	CH ₂	*		CH ₃	oc ₂ n ₅	O
	•	~	CM	}	CH ₁	ń.	. ж	ο'n	oc _z u _s	CI CI
59		. ت	COOCH	. ;	c) ₃	H	*		OCH ₃	. c _z
5				-CHZCHZCHZ-	• .	×	H	ᅄ	OCN ₃	

Table 1 cont.

	R ¹⁵	R ¹		R ³	R ⁴	R ⁵	R 6	R ⁷	R ⁸
<u>.</u> so	<u>.</u>		-CH ₂ CH ₂ CH ₂		н	н	CH3	осн3	CH3
	H	*	осн ³	н	Ж	×	-CH	сн ₂ сн ₂ о-	. н
50 		H	0CH ₃	H	×	W	M	-0CH ² CH ²	•
SO -	M	77 10.	SOCH	H	н	H	CH3	осн	CH3
S 	M	W	SOCH ₂	И	н	n	CH3	OCH ₃	CH ³
so s	H	×	CH3	CH3	И	M	CH3	-0CH2-	CH3
	H	×	CH ₃ .	CH ₃	н	H	CH ₃	-0CH ₂ -	CH3
SO			(-CH-CH-CH-	~	I-CH=CH-	H.	CH ₃	0CH ₃	CH ₃
s so	H	H.	NO ₂	н ,	н	H	CH ₃	осн ₃	CH3
s	н	H .	σ ₃	н	н	н	CH3	OCH Z	CH ³
50	н	, н	σ_{3}	Ħ	н	Ж	CH ₃	осн <u>г</u> -	CH3
5	H	×	CH ₂ CH ₂ COOC ₂ H ₅	н	н	и	CH3	осн3	CH3
sa sa	×	ĸ	OCH.	н	н	₆ с-ос(сн ³) ³	CH ₃	осн ₃	CH3
50	n M	H	CH ₃	сн ₃	н	H	н	осн3	с ₂ н

The invention takes into consideration that compounds that structurally deviate from the formula 1, after administration to a living organism may be transformed to a compound of formula 1 and in this structural form exert their effect. Such compounds structurally deviating from compounds of the formula 1, are included in the scope of the invention.

Likewise, certain compounds of formula I may be metabolized into other compounds of formula I to before exerting their effect. Compounds of the invention wherein X is S are thus believed to exert their antisecretory and cytoprotective activities after metabolism to compounds wherein X is SO and compounds of the invention wherein R⁵ is R¹⁴CO are believed to exert antisecretory and cytoprotective activity after metabolism to compounds wherein R⁵ is

H. These considerations are also a further aspect of the invention.

Further, it is believed that all compounds of
20 formula I wherein X is SO after administration to a
living organism, exert their antisecretory and cytoprotective effects after metabolic or pure chemical
transformation to another, reactive species. Accordingly, the same is true also for the compounds of

25 formula I wherein X is S, but via initial transformation to the corresponding compounds of formula I wherein X is SO. These considerations as well as such reactive species per se are included within the scope of the present invention.

30 Preparation

Compounds of formula I above may be prepared according to the following methods:

a) Oxidizing a compound of the formula l,

wherein X is S and R¹⁵, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ have the meanings given, to give a compound of the same formula I wherein X is SO. This oxidation may 5 be carried out by using an oxidizing agent selected from the group consisting of nitric acid, hydrogen peroxide, peracids, peresters, ozone, dinitrogentetraoxide, iodosobenzene, N-halosuccinimide, I-chlorobenzotriazole, t-butylhypochlorite, diazabicyclo-

10 [2,2,2] - octane bromine complex, sodium metaperiodate, selenium dioxide, manganese dioxide, chromic acid, cericammonium nitrate, bromine, chlorine, and sulfuryl chloride. The oxidation usually takes place in a solvent wherein the oxidizing agent is 15 present in some excess in relation to the product to be

oxidized.

The oxidation may also be carried out enzymatically by using an oxidating anzyme or microbiotically by

using a suitable microorganism. 20 b) Reacting a compound of the formula

with a compound of the formula

in which formulas R¹⁵, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are as defined previously and wherein one of Z¹ and Z² is SH and the other is a leaving group, gives a compound of the formula I wherein X is S.

Examples of leaving groups Z¹ and Z² in the compounds II and III are halogens, preferably chlorine, bromine or iodinem acyloxy radicals, for example residues of strong organic sulfonic acids, for instance of an arylsufonic acid, for example tosyloxy or an alkylsulfonic acid, for example mesyloxy, alkylmercapto groups, for example methylmercapto, alkylsulfinyl groups, for example methylsulfinyl and the like.

Thus, Z¹ or Z² when designating leaving groups may be a reactive esterified hydroxy group. The esterification may be carried out with an organic acid or with an inorganic a .id such as HCl, HBr or H₂SO₄.

The reaction of a compound of formula II above
40 with a compound of formula III is conveniently carried
out in the presence of a suitable solvent that is inert
under the reaction conditions utilized as described
hereinafter. The reaction may further be carried out in
the presence of a suitable base. Suitable, bases
include, for example, inorganic bases such as sodium

or potassium hydroxide, sodium or potassium alkoxide, sodium or potassium hydride and the like, organic bases such as tertiary amines, for example triethylamine and the like.

Suitable solvents for the above described reaction include, for example, alcohols, preferably lower alkanols such as methanol and ethanol mixtures of such alcohols with water, ethers, such as tetrahydrofuran, halogenated hydrocarbons, such as methylene chloride. Aprotic solvents such as ethers and halogenated carbons are necessary in the case of sodium and potassium hydride.

The reaction of the compounds of formulas II and III may be carried out at a temperature between the ambient temperature and the boiling temperature of the reaction mixture. It is preferred to carry out the reaction, however, at a temperature at or close to the boiling point of the reaction mixture for the preparation of a compound of the formula I wherein R⁵ is H.

c) Esterification of a compound of the formula

$$R^{3} \xrightarrow{R^{7}} R^{5} \xrightarrow{V^{1}} V^{2}$$

$$\downarrow R^{15} \downarrow R^{15}$$

wherein R¹⁵, R⁵, R⁶, R⁷ and R⁸ are as defined above and Y¹, Y², Y³ and Y⁴ represent either R¹, R², R³ and R⁴ according to the above definition, respectively, or the groups (Z) n-A-COOH, COOH and (Z)n-A-OH, whereby Z, n and A are as defined above, by reaction with the appropriate alcohol R⁹OH, R¹⁰OH or carboxylic acid R¹⁰COOH, respectively, to the formation of a compound of formula I containing a radical R¹, R², R³ and/or R⁴ which is either of the ester groups (Z)n-A-COOR⁹, COOR¹⁰ or (Z)n-A-OCOR¹⁰.

The esterfication is carried out as an ordinary esterfication, in the presence of an acid catalyst such as sulfuric acid, hydrochloric acid and p-toluenesulphonic acid and, if necessary, in the presence of an inert solvent such as toluene.

d) Acylation of a compound of the formula

wherein R¹⁵, X, R¹, R², R³, R⁴, R⁵, R⁷ and R⁸ are as defined above, by reaction with an appropriate acylating agent (R¹⁴CO)₂O, R¹⁴COX¹, whereby X¹ is a leaving group such as C1, N₃ and p-nitrophenoxy, R*NCO, whereby R* is defined by the relation R*NH equals R¹⁴, provided that R* is K when R¹⁴ is amino, to the formation of a compound of formula I wherein R⁵ is R¹⁴CO as defined above.

The acylation is preferably carried out in the presence of a base such as triethylamine, K₂CO₃ and NaOH and with a solvent such as tetrahydrofuran, acetonitrile and water. Normally, if the benzimidazole moiety is asymetrically substituted, both the N(1)-

and the N(3)-acyl derivatives are obtained, and therefore, if necessary, the two components have to be separated. This may be done by recrystallizations or by extractive or chromatographic techniques.

e) Hydrolyzing a compound of the formula

wherein X, R^{15} , R^1 , R^2 , R^3 , R^4 , R^6 , R^7 and R^8 are as defined above and Z3 is a suitable N-protecting group such as alkanoyl, carboalkoxy and trimethylsilvl, to the formation of a compound of the formula I wherein 10 R⁵ is H.

The alkanoyl group in Z³ can have 1-6 carbon atoms and the carboalkoxy group 2-6 carbon atoms. The hydrolysis may be performed in alkaline solution or in . acidic solution, the latter mainly for compounds 15 wherein X is S:

whereafter the compound of the formula I obtained if desired, when X is -S-, is converted to a physiologically acceptable salt or oxidized to form a compound of the formula I wherein X is -SO-.

Depending on the process conditions and the starting materials, the end products of the formula l wherein X is S is obtained either as the free base or as a salt. The end products of the formula I wherein X is, -SO- are obtained as the free base. Both the free base

25 and the salts of these end products are included within the scope of the invention. Thus, basic, neutral or mixed salts may be obtained as well as hemi, mono, sesqui or polyhydrates. Acid addition salts of the new sulficides may in a manner known per se be

30 transformed into free base using basic agents such as alkali or by ion exchange. The free bases of the selfides obtained may also form salts with organic or inorganic acids. In the preparation of acid addition salts preferably such acids are used which form 35 suitable therapeutically acceptable salts.

Examples of such acids are hydrohalogen acids, sulfonic acid, phosphoric acid, nitric acid, and perchloric acid; aliphatic, alicyclic, aromatic or heterocyclic carboxyl or sulfonic acids, such as formic acid, 40 acetic acid, propionic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, ascorbic acid, maleic acid, hydroxymaleic acid, pyruvic acid, phenylacetic acid, benzoic acid, p-aminobenzoic acid, p - hydroxybenzoic acid, salicyclic 45 acid or p-aminosalicylic acid, ambonic acid, methanesulfonic acid, ethanesulfonic acid, hydroxyethanesulfonic acid, ethylenesulfonic acid, halogenbenzenesulfonic acid, toluenesulfonic acid, naphtylsulfoni acid or sulfanilic acids, methionine, 50 tryptophane, lysine or arginine.

These or other salts of the new sulfide compounds, as e.g. picrates, may serve as purifying agents of the free bases obtained. Salts of the bases may be formed, separated from solution, and then the free 55 base can be recovered in higher purity from a new

salt solution.

Racemates obtained can be separated according to

known methods, e.g. recrystallization from an optically active solvent, use of microorganisms, reactions with optically active acids forming diastereomeric salts which can be separated, (e.g. separation based on different solubilities of the diastereomers), acylation of the benzimidazole nitrogen ($R^5 = H$) or another nitrogen or oxygen atom in a substituent by an 65 optically active activated carboxylic acid (e.g. acid chloride), followed by chromatographic separation and deacylation.

Suitable optically active acids for salt formation are the L- and D-forms of tartaric acid, di - o - tolyl - tartaric 70 acid, malic acid, mandelic acid, camphorsulfonic acid or quinic acid, and for acylation O - methylmandelic acid. Preferably the more active part of the two antipodes is isolated.

In the case of diastereomeric mixtures (racemate 75 mixtures) these may be separated into stereoisomeric (diastereomeric) pure racemates by means of chromatography or fractional crystalliza-

The starting materials utilized in the processes a and c-e are obtained from the process b. The starting 80 materials used for process b are in some cases known, but in most cases unknown. These unknown starting materials may, however, be obtained according to processes known per se.

Starting materials of the formula II

$$R^{2} \xrightarrow{R^{1}} N \xrightarrow{N} Z^{1}$$

$$Z^{1}$$

$$Z^{1}$$

$$Z^{1}$$

wherein Z¹ is SH may be obtained from the corresponding o - phenylenediamine by reaction with potassium ethylxanthate (Org. Synth. Vol. 30, p. 56) or thiophosgene.

The compounds of the formula II wherein Z1 is alkylmercapto and alkylsulfinyl may be obtained from the above mentioned compound by simple S alkylation with alkyl halide and by oxidation of the product from the S - alkylation, respectively.

95

The compounds of the formula II wherein Z1 is halogen or acyloxy may be obtained from compounds of the same formula wherein Z¹ is OH by treatment with POCI₃, POBr₃ and the like or the appropriate acyl halide, respectively. The starting 100 material wherein Z1 is OH is obtained from the corresponding o-phenylenediamine by reaction with phosgene.

The o-phenylenediamines required may be obtained from the corresponding substituted ben-105 zenes according to processes known per se, e.g. by the consecutive processes: nitration, reduction, acetylation, nitration, deacetylation and reduction, or from one of the intermediary stages just mentioned. In order to obtain a o - phenylenediamine wherein R5 110 is other than H, acylation (by the group R14CO) is preferably made on the nitro - aniline stage.

Starting materials of the formula

wherein R15 is H, may be obtained either from the correspondingly substituted (R⁶, R⁷ and R⁸) 2 - methyl - substituted pyridine N - oxide via a known rearrangement to the intermediate 2 - pyridinylmethanol 5 ur via a hydroxymethylation of the substituted (R⁶, R⁷ and R8) pyridine to give the same intermediate, and then treatment of the 2 - pyridinylmethanol with halogenating agents such as thionyl chloride or Oacylating agents such as p - toluenesulfonyl chloride 10 to give compounds of the formula III wherein Z² is halogen and sulfonyloxy groups, respectively.

These leaving groups may then be substituted for alkylmercapto groups by treatment with e.g. sodium alkylmercaptide, which may then be oxidized to an 15 alkylsulfinyl group, or substituted for SH by treatment with e.g. NaSH.

For the preparation of intermediates of formula

wherein R7 is alkoxy, alkenyloxy, alkynyloxy, alkoxyalkoxy and dialkylaminoalkoxy, a compound of 20 formula VII, wherein R7 is NO2, is reacted by the corresponding sodium alkoxide. Analogously, for the preparation of an intermediate of formula VII wherein R⁶ and R⁷ or R⁷ and R⁸ form a ring structure including an oxygen atom at position 4, a compound of formula VII wherein R7 is NO2 and R6 or R8 represents

hydroxyalkyl is reacted with a non-nucleophilic base. The following intermediates A) and B) are included in the scope of the invention:

A) New compounds of the formula

30 wherein R^{1a} , R^{2a} , R^{3a} and R^{4a} are the same or different and selected from the groups

- (a) H,
- (b) alkyl containing 1-6 carbon atoms, including cycloalkyl,
- (c) alkoxyalkyl containing 1-3 carbon atoms in the alkoxy part and 1-6 carbon atoms in the alkyl part,
 - (d) aryloxyalkyl containing 1-3 carbon atoms in the alkyl part.
- (e) arylalkyl containing 1-6 carbon atoms in the 40 alkyl part,
 - (f) aryl,
 - (g) alkoxy containing 1-6 carbon atoms,
- (h) alkoxyalkoxy containing 1-3 carbon atoms in the outer part and 1-6 carbon atoms in the part 45 nearest the aromatic ring,

- (i) aryloxyalkoxy containing 1-6 carbon atoms in the alkoxy part,
- (j) arylalkoxy containing 1-6 carbon atoms in the alkoxy part and
- (k) aryloxy,
 - R⁵⁰ is
 - (a) H,
- (b) alkoxycarbonyl containing 1-4 carbon atoms in the alkoxy part,
- (c) arylalkoxycarbonyl containing 1-2 carbon atoms in the alkoxy part,
 - (d) dialkylaminocarbonyl containing 1-4 carbon atoms in each alkyl group, or
 - (e) arylamine: irbonyl,
- and Z^{1a} is
 - (a) SH.
- (b) Clor Br and provided that not more than one of R10, R20, R30 and R40 is H, are suitable intermediates for the 65 preparation of compounds of the formula I with R1, R^2 , R^3 , R^4 and R^5 having the same meaning as R^{1a} , R^{2a} , R^{3a} , R^{4a} and R^{5a} , respectively, according to method b.
 - B) New compounds of the formula

wherein R60 and R80 are

- (a) Hor
 - (b) alkyl containing 1-5 carbon atoms, and R7a is
 - (a) alkenyloxy containing 2-5 carbon atoms, or
 - (b) alkynyloxy containing 2-5 carbon atoms,
 - (c) oxacycloalkyl containing one oxygen atom and
- 75 3-7 carbon atoms
 - (d) oxacycloalkoxy containing two oxygen atoms and 4-7 carbon atoms
 - (e) oxacycloalkylalkyl containing one oxygen atom and 4-7 carbon atoms
- (f) oxacycloaikylalkoxy containing two oxygen atoms and 4-6 carbon atoms,
- (g) R^{6a} and R^{7a} , or R^{7a} and R^{8a} together with the adjacent carbon atoms in the pyridine ring form a ring wherein the part constituted by R60 and R70 or R70 and
 - -CH=CH-CH=CH-
 - -O-(CH₂)_{pa}-
 - $-CH_z-(CH_{lpa}-$
- -0-CH=CH
 - wherein pais 2, 3 or 4 and the O atom always is attached to position R7a, and Z2ª is
 - (a) SH,
 - (b) halogen CI, Br, I or

and provided that not more than one of R^{6a} and R^{8a} is H, are suitable intermediates for the preparation of compounds of the formula I with R⁶, R⁷ and R⁸ having 100 the same meaning as R^{6a}, R^{7a} and R^{8a}, respectively,

according to method b.

For clinical use the compounds of the invention are formulated into pharmaceutical formulations for oral. rectal, parenteral or other mode of administration.

unreacted starting material. The oil was chromatographed on a silica column using CH₃OH—CH₂Cl₂5:95 as eluant and then the product was recrystallized from CH₃CN giving the desired product in crystalline 5 form (0.85 g, 32%), m.p. 116°C.

Which one of these two procedures that have been used for the preparation of the different sulfoxides have been indicated in Table 2 below. For most of the compounds synthesized according to example 2 the 10 chromatographic separation was not performed.

Example 3. Method b. Preparation of 4,6 - dimethyl-5-methoxy-2-[[(3,4 - dimethyl-2 - pyridinyl) methyl] thio]-1H-benzimidazole.

To 4,6 - dimethyl - 5 - methoxy - 2 - mercapto - 1H15 benzimidazole (1.04 g, 0.0050 mol) in methanol (50 ml) were added (in the following order) NaOH (0.2 g, ;.0050 mol) dissolved in water (2 ml) and 3,4-dimethyl - 2 - chloromethylpyridine hydrochloride (0.96 g, 0.0050 mol). The mixture was heated until reflux. NaOH (0.2 g, 0.0050 mol) dissolved in water (2 ml) was added dropwise and then the reflux was continued for 3 hours. The mixture was poured on ice-water (200 ml). Filtration and recrystallization from CH₃CN gave the desired product (1.1 g, 67%).

25 NMR data for the final product is given below.

Example 4 and 5. Method d. Preparation of N¹benzoyl - 5 - methoxy - 2 - [[(4 - methoxy - 3,5 dimethyl - 2 - pyridinyl) methyl] - thio] - 1Hbenzimidazole and N¹ - benzoyl - 6 - methoxy - 2 - [[(430 methoxy - 3,5 - dimethyl - 2 - pyridinyl) methyl] thio] 1H-benzimidazole

1H-benzimidazole
5-Methoxy-2-[((4-methoxy-3,5-dimethyl-2-pyridinyl) methyl]-thio]-1H-benzimidazole (3.0 g, 0.009 mol) was dissolved in CH₃CN (30 ml) and
35 triethylamine (1.9 ml) was added. Benzoyl chloride (1.4 g, 0.010 mol) was added dropwise under stirring during 15 min. Then the mixture was stirred at 55°C for 45 min. The solvent was evaporated off and ether was added to the residue under ice-cooling. The crystalline residue, thus obtained was stirred with water, filtered off and dried giving a white crystalline product mixture (1.9 g, 48%) of the desired two products in a 75:25 molar ratio (according to HPLC-analysis and NMR). NMR data for the final products is

45 given below.

Example 6. Method d. Preparation of N - methoxy-carbonyl - 5.6 - methylenedioxy - 2 - [[(4 - methoxy - 3.5 - dimethyl - 2 - pyridinyl) - methyl] sulfinyl] - 1H-benzimidazole.

50 Chloro methylformate (0.24 g, 0.0026 mol) dissolved in CH₂Cl₂ (5 ml) was added dropwise to a stirred solution of 5,6 - methylenedioxy - 2 - [[(4 - methoxy - 3,5 - dimethyl - 2 - pyridinyl) - methyl] sulfinyl] - 1H - benzimidazole (0.80 g, 0.0022 mol) and triethylamine in CH₂Cl₂ (10 ml). The mixture was then stirred at room temperature for 19 h. The CH₂Cl₂-solution was washed with water, dried (MgSO₄) and the solvent was evaporated giving the desired product as an oil (0.06 g, 6%). NMR data for the final product is given below.

Example 7. Method d. Preparation of N^1 - (N' - phenylcarbamoyl) - 5,6 - methylenedioxy - 2 - [[(4 - methoxy - 3,5 - dimethyl - 2 - pyridinyl) - methyl] sulfinyl] - 1H- benzimidazole.

Phenylisocyanate (0.20 g, 0.00167 mol) dissolved in CH₂Cl₂ (5 ml) was added dropwise under stirring to a solution of 5,6 - methylenedioxy - 2 - [[(4 - methoxy - 3,5 - dimethyl - 2 - pyridinyl) - methyl] sulfinyl] - 1H - benzimidazole (0.50 g, 0.00139 mol) and triethylamine (0.28 g, 0.00278 mol) in CH₂Cl₂ (15 ml). The mixture was then stirred at room temperature for 50 hours. The CH₂Cl₂-solution was washed with water, dried (MgSO₄) and the solvent was evaporated giving the desired product as an oil (0.03 g, 5%). NMR data
 for the final products is given below.

75 for the final products is given below.
Example 8. Method e. Preparation of 4,6-dimethyl - 5 - methoxy - 2 - [[(4 - methoxy - 3,5 - dimethyl - 2 - pyridinyl)methyl]sulfinyl] - 1H - benzimidazole.
N¹ - Propionyl - 4,6 - dimethyl - 5 - methoxy - 2 - [[(4 - methoxy - 3,5 - dimethyl - 2 - pyridinyl)methyl]sulfinyl] - 1H - benzimidazole (1.0 g, 0.0023 mol) was heated in 1M NaOH (15 ml) for 1 h under stirring and N₂-atmosphere, pH was adjusted to 9.5 by addition of 2M HCI. Extraction with CH₂Cl₂, separation of the

phases, drying the organic phase, evaporation of the solvent and recrystallization from CH₃CN gave the desired product (0.30 g, 35%), m.p. 137°C.

The following Table 2 gives data for further examples of compounds of the invention.

Table 2. Summary of working examples.

R ⁷ R ⁸ ↓ R ⁶	R ¹	
() R15	N TO	?
•	\N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3

									* ¥				
	ı	a ¹⁵	a ¹	R ²	 A 3	R ⁴	R ⁵	g ⁶	R ⁷	a ⁸	Method ([s. No.)	Tield 1	M.p.(^D C) other data
_		н	(#3	C+,	 сн,	CH ₃	н	CH3	осн ₂ сн•сн ₂	CH3	b (Ex 3)	82	164-165
			CHY		СН,	СН,	×	CH3	OCH2CH-CH2	Сн3	a (Ex 2)	73	1/6-148
			СН,	O.,	CH,	СН,	н	CH3	осн ₃	CH3	p (E= 3)	79	207
	so		CH,	•	•	CH ₃		CH3	осн ₃	CH3	a (E = 2)	32	193
			CH ₃	•	•	n		CHI	OCH ZCH+CH 2	CH3	b (E= 1)	97	165
	50		CH3	-	د ډان		H	_	OCH ₂ CH+CH ₂	CH3	a (Ex 2)	59	147
			CH		cı,		н	CH,	осн ₃	CH3	5 ([+ 3)	.79	159
	50		CH 1		сн ₃		н	-	осн	CH3	a (Ex 1)	83	188
			CH ³	•	-	CH ₃	н	CH3	OCH2CH+CH2	CH3	5 (E: 3)	11	NMR

cont.

C.	1	£15	41	n²	ري	n4	R5	**	47	1,8	Method {[s. No.]	Tield 1	M.p.(^O C) other data
18	54	н	οs	O13	ж	CH3	н	CH3	0CH2CH+CH2	CH ₃	a (Em 1)	58	129
19	s	M	OL,	OI ₃	n	CH3	Ħ	OI3	0013	CH3	b (Ex 3)	79	163
20	so	×	Oi3	CH ₃	н	013	н	ᅄᢃ	осн ₃	CH3	a (Ex 1)	52	191
21	s	H	Or,	013	н	N -	Ħ	CH3	OCH2CH-CH2	CH3	b (Ex 3)	37	109
22	50	н	Oi ₃	OI,	н	н	н	CH ₃	001201-012	CH3	a (Ez 1)	58	149
23	s	н	×	CH ₃	OI3	H	н	CH3	0CH2CH+CH2	CH3	b (Ex 3)	99	181
24	50	н	M	CH ₃	OI ₃	· N	н	CH ₃	001201-012	CH3	a (Ex 1)	71	157
25	s	×	CH ₂	×	×	СН,	н	CH3	001201-012	OH ₃	b (Ex 3)	62	IFR
26	so	N	ᅄ	н	×	ᅄ	н	DI ₃	001201-012	CH3	a (Ex 1)	10	155
27	s	Ħ	013	at .	M	н	H	CH ₃	001201-012	CH ₃	b (Ex 3)	90	JONE .
28	so	*	01,	н	ж	н	н	CH ₃	OCH2CH=CH2	CH ₃	a (Ex 1)	69	142
25	s	н	×	CH ₃	H	H	н	CH ₃	OCH_CH-CH2	CH ₃	b (Ex 3)	74	HHR
30	50	И	M	DL,	н	н	н	CH ₃	001201-012	O+3	a (Ex 1)	55	134
31	5	H	10	0013	н	H	н	CH3	OCH ² CH-CH ²	ᅄ	b (Ex 3)	51	105-107
32	50	M	н	OCH ₃	н	н	H	CH ₃	OCH2CH-CH2	CH ³	a (Ex 1)	62	111
13	s	#	H	оси ₃	н	H	н	O13	OCH ² CE CH	CH3	b (E= 3)	66	154
													cont

cont.

E1	x	R ¹⁵	R ¹	R ²	R ³	R ⁴	8 5	R 6	R ⁷	R ⁸	Method ({s. No.}	Yield 1	M.p.(^O C) other data
<u>ж</u>	so	rt	*	OCH ₃	н	н	н	CH3	0CH ₂ C1CH	Lily	• (Ex 1)	71	145
25	so		н	00H ₃	н	н	H	7.1	0CH ₃	czhs	a (Ex 1)	31 -	147
36	s		н	OCH ₁	н	H	н	×		-(CH ₂)4-	b (Es 3)	61	MAR
37	so		н	осн ₃	~×	н	H	н		-(CH ₂) ₄ -	• (Ex 2)	34	NAME
38	s	н	н	(H, 0)	. н	н	Ħ	CH3	∞н3	CH3	b (Ex 3)	22	148
40	s	rt	οų	н	СНЗ	н	н	CH ₃	осн ₂ сн-сн ₂	сн3	b (Ex 3)	76	134-136
41.	so	н	CN,	h	CH ₃	н	н	CH3	00H2CH+CH2	CH3	a (Ex 1)	35	113
42	s	н	н	OCH,CN	, н	H	H	CH ₃	осн ₃	CH3	b (Ex 3)	29	66
13	so	н	н	OCH.,EN	н	н	н	CH3	0CH ₃	CH3	a (Ex 1)	39	- 94
	s		×	$\dot{\bigcirc}$	н	н	н	CH3	осн3	c ^{io} 3	b (Ex 3)	75	NMR
45	so	н	H	$\overline{\wedge}$	н	н	н	CH ₃	OCH 3	CH3	a (Ex 2)	60	155

Ĺ	,1	R15	a ¹	# ²	R)	R ⁴	A ⁵	R ⁶	A ⁷	R ^S	Method - (Ex. No.)	Tield Z	M.p.(°C) other data
47	50		×	COOCH 2 CH 2 COCH 3	CH.)	н	M	CH3	∞н ₃	CH3	•		
48	s	н	H	mm ¹ (OI,	×	н	CH3	∞н ₃	CH3	c		
49	50	H		COCCH TO	ᅄ	н	н	CH;	осн ₃	CH3	•		
50	s	н		CHZON	CH3	н	H	CH3	осн3	CH3	b (Ex 3)	86	192
51	SO	M	n	CHZON	어	н	H	O13	оси 3	CH ₃	a (Ex 1)	10	169
52	\$	M	n 7	OHZOCO-	CH3	H	×	CH3	0CH ³	CH3	¢		
53	so	×	H	CH _Z OCO-((())	CH3	H	H	CH3	осн	CH3	•		
54	5	H	H	соосн3	· он ₃	H	н	ᅄ	0CH ² CH-CH ²	CH ₃	b (Ex 3)	75	168
55	so	H	×	соосн	CH3	H	н.	CH3	OCH ² CH-CH ²	CH3	a (Ex 1)	52	139
56	5	H	CH ₃	0CH ₃	CH ₃	H	н	CH3	OCH 3	CH3	b (Ex 3)	70	HER
8	so	Ħ	CH ₃	оси ₃	CH ₃	H	н	CH3	OCH ₃	CH3		56	133
3	\$	H	013	осн ₃	O13	H	H	CH3	OI3	н	b (Ex 3)	-67	INIR
1	so	m	CH ₃	0013	O13	H	H	CH3	CH ₃	н	a (Ex 1)	32	161
57	\$	×	CH ₃	оси _д си _д оси _з	CH3	н	н	CH3	осн ₃	CH ₃	b (Ex 3)	90	704
54	50	H	CH ₃	OCH ₂ CH ₂ OCH ₃	Сн3	H	H	CH3	осн ³	CH3	a (Ex 1)	-68	144

į.	I	R ¹⁵	a ¹	R ²	R3	R ⁴	R ⁵	R ⁶	R ⁷	R ^B	Me thod (Ex. No.)	Tield 1	M.p.(⁰ C) other data
59	s	н	CH ₃	OCH ₂ CH ₂ OCH ₃	CH3	н	н	н	снз	сн3	b (Ex 3)	95	MR
60	so	H	CH3	00H2CH20CH3	CH3	н	H	H	CH ³	CHa	a (Ex 1)	58	131
61	5	н	CH ₃	COCH	CH ₃	н	н	CH3	осн ₃	CH ₃	b (Ex 3)	90	192-4
62	so	H	CH ₃	COCH ₃	CH ₃	н	ii.	CH3	осн3	CH3	a (Ex 2)	25	164-5
63	`s	н	uiz	LOCH ₃	CH ₃	н	И	CH3	H.	CH3	b (Ex 3)	99	184-6
64	50	×	CH ₃	сосн	CH ₃	н	н	CH3	н	CH ₃	a (Lx. 2)	ຍ	148-50
65	:	H	CH ₃	COCZHS	CH ₃	н	н	CH3	осн ₃	CH3	b (Ex 3)	68	. 149
66	SO	Ħ	CH ₃	COCZIL	CH ₃	н	н	CH3	осн ₃	сн3	a (Ex 2)	48	METR
67	s	H	CH ₃	C ₂ H _S	013	н	н	CH3	осн3	CH ₃	b (Ex 3)	91	182
68	SO	н	CH ₃	C ₂ H _S	CH3	H	н	CH3	осн	CH ₃	a (Ex 2)	67	175-7
69	s	н	CH ₃	Czris	CH ₃	н	H	CH3	осн	H	b (Ex 3)	95	MR
70	50	H	CH ₃	CzHs	CH ₃	н	н	CH ₃	осн 3	H	a (Ex 2)	73	142-3
71	s	H	CzHs	ČN	C ₂ H	, н	н	ᅄ	OCH3	CH ₃	b (Ex 3)	82	150
72	50	н	CzHs	CN	C _Z H,	, H	н	CH ₃	осн3	CH3	a (Ex 2)	81	180
73	s	н	CH ₃	осн ₃	CH ₃	H3	н	CH3	осн3	CH3	b (Ex 3)	82	143
74	50	н	CHZ	осн	CH ₃	CH ₃	н	CH ₃	осн ₃	CH ₃	a (Ex 2)	43	163

L A	1	415	q 1	8 2	43	R ⁴	R5	4 6	R ²	48	Method {(s. No.)	Tield 1	M.p.(^O C) other data
75	<u> </u>	*	C1	C1	ÇI	н	м	CH ₃	OCH ₃	Сн3	b (E= 3)	90	204
	so	н	C1	¢1	C1	н	н .	CH ₃	осн ₃	CH3	•		
	sa		H	сн	CH3	н	H	H .,	осн ₃	C ₂ H ₅	a (Ex 1)	. 43	156
78	s	н	H	car Car	н	н	H	CH3	0CH ³	ᅄ	b (Ex 3)	90	IPR
79	50	н	×	COH CH	#	н	. #	CH3	0CH ₃	CH3	a (Ex 1)	61	MR
80	5	м	и	-0CH ₇ 0-		н	H	CH ₃	001 ₃	CH3	b (Ex 3)	91	168
81	-	ж		-0СН ₇ 0-		н	н	CH ₃	OCH ₂	CH ₃	a (Ex 1)	67	165
82	5	*		H-CH-CH-	н	н	н	•	́осн ₃	, CH ₃	b (Ex 3)	73	MHR
	•			H-OI=CH-		н	н		0СН3	CH ₂	a (Ex 1)	60	. 184
83	so	M .		-CH-CH-CH-CH-		н	H	CH3/	_	CH ₃	b (Ex 3)	78	191
84	3	4		-01-01-01-01-		н	H	CH	OCH ₂	CH ₃	a (Ex 1)	34	175
85			н .	- '			" *	CH	0СН ³	CH ₃	b (Ex 3)	58	神像
86	5	н	-0120	H ² CH ² CH ² -	H	H		,-	•	•	a (Ex 1)	27	175
87	SO	Ħ	-cx ² c	H2CH2CH2-	н	H	H	CH3	OCH ³	CH3		-	_
88	s	H	н	-0CH _Z 0-	٠	H	CO ₂ CH ₃	CH3	OCH ₃	CH ₃	<u> </u>		cont.

£.	1	R ¹⁵	R1	. _R 2	R ³	R ⁴	R ⁵	:	R ⁶	R ⁷	R ⁸	Me thod {{x, No.}	Tield 2	M.p.(^O C) other data
6	so	н	H	-0CH ₂ 0-		н	co	2 ^{CH} 3	ᅄ	оси ₃	CH3	d (Ex 6)	6	we
7	so	н	н	-0CH _Z O-		H	COM	0) CH ₃	осн ₃	CH ₃	d (Ex 7)	5	104R
90	s	×	H	OCH2CH2CH2O	н	н	. н	•	СН.3	осн3	CH3	b (Ex 3)	25	MAR.,
91	50	н	ų	OCH2CH2CH2O-		H	H		си3	осн ₃	CH3	a (Ex 2)	78	61
92	s	н	CHZ	0(CH ₂)6CH ₃	OI,	н	Ą		OI,	осн ₃	CH3	b (Ex 3)	64 ·	HIR
	50		CH ₂	0(CH ₂)6CH ₃	ᅄ		н		CH3	осн ₃	CH3	a (Ex 2)	32	116
	s		н - Л	C ₂ H ₅	'n	н	H		CH3	OCH2CH=CH2	CH3	b (Ex 3)	45	MAK
	so		н	CzH _S	н	н	н		CH3	OCHZCH-CHZ	CH ₃	a (Ex 1)	49	124-6
	s		н	0CH ₂	ж	н	'n		CH ₃	0CH2CH2CH(CH3)2	CH3	b (Ex 3)	25	MAK
96	-		н	OCH ₃	н	н	н		CH ₂	OCH2CH2CH(CH3)2	CH ₃	4 (Ex 1)	33	111
97		н		CH+CH-CH+C-CH ₂ CH ₂		н	н		CH ³	0CH ₃	CH3	b (Ex 3)	96	190
98	-	H		- CH-CH-CH-C-CH ₂ CH ₂		н	н		. сн ₃	0CH ³	CH3	a (Ex 2)	93	109
	5	н	н	осн,	н	м	CO	(0)) CH ₃	осн3	CH3	d (E= 4)}	48	torca
5	s	н	н	н	ОСН	, H	co	\sqrt{O}) СН3	осн ₃	CH ³	d (Ex 5)∫		

Table 2 cont.

Ĺs.	I	R ¹⁵	A ¹	a ²	A 3	R ⁴	R ⁵	x ⁶	R ⁷	RB	Method (Ex. No.)	Yield 3	M.p.(^O C) other data
99	5	И	н	O((O(3)2	И	H	н	CH3	001201-012	CH3	b (Ex 3)	99	70
101	s	M	ĸ	c(O(3)3	И	н	н	CH3	001201-012	ᅄ	b (Ex 3)	52	88-89
102	50	Ħ	M	C(CP1 ₂) ₃	H	M	M	CH3	001201-012	CH3	4 (Ex 2)	12	wat
103	s	H		(וטליסלוס	М	ĸ	н	ᅄ	OCH ₃	ᅄ	b (Ez 3)	84	WR "
104	SO	Ħ	M	נוספלוחלום	_ "	M	H .	CH3	900/3	CHO	a (Es 1)	38	118
105	s	H	×	\$	Ļ	×	ж	CH3	0CH ₃	CH3	b (Ex 3)	58	216
106	so		ĸ	ζ	\mathcal{L}	Ħ	н .	CH3	сы _{3 .}	CH3	a (Ex 2)	32	158
107	50	H	H	0CH ₃ -0"	M -0.	M	co ₂ O1 ₃	CH3	ocu ₃	O13	d) (Ex 4 and	s) {6	1098
106	59	Ħ	ĸ	` x	601	н.	00 ₂ CH ₃	CY3	oci ₃	ᅄ	له	Ĺ	l
109	5		ĸ	soi ₃	*	Ħ	H	CH ₃	OCH ³ .	. ^{O1} 3	(L x3) d	83	147-148
110	\$	×	H	OI(OI3)2	×	H	×	013	OCH 2-CO	CH.3	b (Ex 3)	84)N MAK
111	5 0	*	h	ci(ci(3)2	×	H .	.	CH3	OCH (CH3	a (Ex 2)	89	¹ H M4R

cont.

Table 2 cont

a 15	RI	R ²	83.	R ⁴	8 ₂	R ⁵	R'	RB	Method (Ex: No.)	Yield Z	M.p.("C) other data
H	n.	CIL_CIL_COCIL_	н	H	И	CH3	OCH ² CH-CH ²	СНЗ	b (Ex 3)	40	· ¹ H JOH
×	H	cijaljaci	н	H	н	CH3	осн ² сн-сн ⁵	CH3	a (E= 2)	28	123-4
×	H	در ٥	×	10	H	CH3	осн3	CH3	b (E= 3)	21	162
н	×	001	×	N	н	-CH-	CH-CH-CH-	Ħ	b (Ex 3)	67	105
н	н	осн ₃	H	H	×	-CH-	си-си•си-	. #	4 (Ex 1)	66	100
H	н	•-⊘	×	H	н	снз	осн	си3	b (E= 3)	98	122
H	×	∘ -⊘	×	×	ж	Сн3	осн ₃	CH3	a (2c2)	80	118
Ħ	n	0CH2CH2	ĸ	H	H	CH ³	осн ₃	CH3	b (Ex 3)	80	¹ н юж
н	H	∞ئەتئەت	×	Ħ	H	CH3	OCH ³	CH3	a (Ex 2)	55	145 4
	×	∞ - ⊘	×	M	M	CH3	осн ³	c _M 3	b (E= 3)	82	1 _{H 199} R
H		u -⊘	н	н	H	СнЭ	осн ₃	снз	a (Ex 2)	24	¹ H 104R
H	H	-⟨⊙ ⟩	Ħ		11	CH3	осн ₃	CH ³	b (E= 3)	88	158
	16 16 16 16 16 16 16 16 16 16 16 16 16 1	M M M M M M M M M M M M M M M M M M M	H H CH_CH_COCH ₃ H H CH_CH_COCH ₃ H H OCH ₃ H H H H OCH ₃ H H H H H H H H H H H H H H H H H H H	H H CH ₂ Ch ₂ COCH ₃ H H H CH ₂ Ch ₂ COCH ₃ H H H CH ₃ H H H OCH ₃ H H H OCH ₃ H H H OCH ₂ Ch ₂ COCH H H OCH ₂ Ch ₂ COCH H H OCH ₂ Ch ₂ COCH H H CO-O H	M M CH ₂ CH ₂ COCH ₃ M M M C CH ₂ CH ₂ COCH ₃ M M M M COCH ₃ M M M M OCH ₃ M M M M OCH ₃ M M M M OCH ₂ CH ₂ M M M M OCH ₂ CH ₂ M M M M CCH ₂ CH ₂ M M	H H CI-2CI-2COCI-3 H H CI-2CI-2COCI-3 H H H H H OCH-3 H H H H H OCH-3 H H H H H OCH-2CI-2CI-2COCI-3 H H H H H OCH-2CI-2CI-2COCI-3 H H H H H OCH-2CI-2CI-2COCI-3 H H H H H CO	H H CH_CH_CCOCH_3 H H H CH_3 H H CH_CH_CCOCH_3 H H H CH_3 H H CCH_CH_CCOCH_3 H H H CH_3 H H OCH_3 H H H CH_3 H H OCH_CCH_CCH_C H H H CH_3 H H OCH_CCH_C H H H CH_3 H H OCH_CCH_C H H H CH_3 H H CCH_C H H H CH_3 H H CCH_C H H H CH_3	H H CH_CH_CCOCH_3 H H H CH_CH_CCH_CCH_2 H H CH_CH_CCCH_3 H H H CH_3 H H CH_3 H H CH_3 H H H CH_3 H CH_3 H H H CH_3 H H H H CH_3 H H H CH_3 H H H H H CH_3 H H H H CH_3 H H H H CH_3 H H H H CH_3 H H H H H CH_3 H H H H H H CH_3 H H H H H H CH_3 H H H H H H CH_3 H H H H H H H CH_3 H H H H H H H H H H H H H H H H H H H	H H CH_CON_COOM3 H H H CM3 OCM_CM+CM2 CM3 H H CH_CON_COOM3 H H H CM3 OCM_CM+CM2 CM3 H H OCM3 H H H CM3 OCM3 CM3 H H OCM3 H H H CM3 OCM3 H H OCM3 CM3 CM3 H H H CM3 OCM3 H H H CM3 OCM3 H H H CM3 OCM3 CM3 H H OCM_CM2CM2 H H H CM3 OCM3 CM3 CM3 H H OCM2CM2 H H H CM3 OCM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	H	H H CH_CCH_CCOCH_3 N N N N CH_3 OCH_CCH-CM_2 CM_3 b (Ex. 3) 40 N N CH_CCH_CCOCH_3 N N N N CH_3 OCH_CCH-CM_2 CM_3 a (Ex. 2) 28 N N CH_2CH_CCOCH_3 N N N N CH_3 OCH_3 CM_3 b (Ex. 3) 21 N N OCH_3 N N N N CH_3 OCH_3 CM_3 b (Ex. 3) 21 N N OCH_3 N N N N CH_3 OCH_5 CM_5 b (Ex. 3) 67 N N OCH_3 N N N N CH_3 OCH_5 CM_5 b (Ex. 3) 98 N N OCH_2CM_CCM_C N N N N CM_3 OCH_3 CM_3 b (Ex. 3) 98 N N OCH_2CM_C N N N N CM_3 OCM_3 CM_3 b (Ex. 3) 80 N N OCM_2CM_C N N N N CM_3 OCM_3 CM_3 b (Ex. 2) 55 N N CO O N N N CM_3 OCM_3 CM_3 b (Ex. 2) 24

cont.

9	~
-	
1	-
ta s	
<i>-</i>	Z m
T	_
3- T	
. 6aa	

En x a	5 41	R ²	ą J	**	B ₂	10	R ⁷	k ⁸	Method [m. No.)	field 3	M.p. ('C) other data
124 SO N		√ ⊙>	н	H	н	СНЗ	oc+)	си3	* (Ex 2)	52	104
125 S 'H	н	SOCH	H	н	н	CH3	œн ₃ .	Сн3	b (Ex 3)	57	l _H wer
126 SO H	И	SOCH		н	H 1	CH3	oc H ₃	CH)	a (Ex 1)	47	TH IME
127 SO N	н	NO,	н	н	н	CH3	осн ₃	CH3	a (E= 1)	14	l mag
128 S H	н	Br	×	10	×	Сн	осн ² сн-сн ²	CH3	b (2x 3)	64	171
129 SO H	H	Br	н	н	n	CH ₃	оси ₂ си-си ₂	CH3	a (Ex 2)	58	143
130 S H	н	осн ₃	H	×	H	-CH+C	и-0-	н	b (Ex 3)	77	port "
131 SO H	H	оси3	н	н	н	-CH-C	н-0-	N	a (Ex 2)	19	
132 SO N	н	CHZ	cH ₃	H	(OC (CH2)	3 CH3	осиз .	CH ₃	d (Ex 6)	22	T68
134 SO H	M	CH ₃	. сн3	H	Enich ₃)2	CH3	осн ₃	CH3	d (Ex 6)	21	¹ H 1006
135 S H	M	СНЗ	cH ₃	H	н .	Сн	OCH OCH	CH3		•	
136 SO H	n	CH ₃	сн ₃	Ħ,	H	Сн3	OCH-	CH3		•	
137 S H	н		-CH ² CH ² C4 ² -	н	H	LH3	осн	CH3	b (Ex 3)	74	160
138 SO H	н		-CH ₂ CH ₂ CH ₂ -	н	н	СН	оси,	СНЗ	a (Ex 1)	40	171

cont.

Table 2 cont.

Ē 12	1	R ¹	5 R1	R ²	R ³	R ⁴	R ^S	R ⁶	R ⁷	R ⁸	Method {Ex. No.}	Tield Z	M.p. (°C) other data
139	s	м	-CH	CH-CH+A-	н	н	H	. CH3	осн ₃	CH3	b (Ex 3)	- 38	191R ·
140	SO	14	-CH	CH-CH-N-	н	н	H	CH3	осн	CH3	• (E= 1)	26	60
141	5	м	• н		-0CH ₂ 0-	H	H	CH3	СНЗ	CH3	b (Ex 3)	. 83	193-95
142	SC	. 11	×		OCH ₂ 0	H	н	CH3	СНЗ	CH3	a (Ex 2)	76	173
43	•	*	H	COCH ₂	CH ₃	H	ж	н	осиз	C ₂ H ₅	a (Ex 2)	49	154
	5	 H		CH3	CH		н	СНЗ	CH ₂	н	b (E= 3)	39	1H MR
		H	-	CH ₃	οι,		н	CHZ	CH3	, ж	a (Ex 2)	65	¹ H JUSE
	5	*	_	CH3	CH3		н	и	CH3	СНЗ	b (Ex 3)	78	143
			CH	•	CH ₂		н	. ж	CH3	CH3	a (Ex 2)	64	180
	s		CH,	•	CH ₂		H	CH3	н	ᅄ	b {Ex 3}	70	239-42
		71	•	CH ₃	CH ₃		н	CH3	н	CH3	a (Ex 2)	14	171
			CH ₂	•	H	СНЗ	н	CH3	CH ₃	н	b (Ex 3)	56	210
			CH ₃	•	н	CH3		CH3	CH ₃	н	a (Ex 2)	66	³ н юя
			CH ₃	=	CH3	-	н	CH ₃	OC 2H5	CH3	b (Ex 3)	94	151
			CH ₃		сн ₃		н	•	· ос ₂ н ₅	cii ₃	1 (Ex 2)	29	150
		н	•		7' n	н	н	н	CH ₃	c _z H ₅	b (Ex 3)	48	1 _{H NOR}

cont.

Table 2 cont.

En z R ¹⁵ R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶ R ⁷	R.8	Mehtud (Ex. No.)	Tield	M.p. ('C) other data
155 SO H H	-	н	И	н	н сн	C2H2	a (E= 2)	44	105
156 S N N	- ○ .	×	n	×	сн3 осн2сн2осн	CH3	b (C= 3)	94	1H MAR
157 SO H N	\rightarrow	H	M.	н	сн ₃ осн ₂ сн ₂ осн ₃	Сн3	a (Ex 2)	18	181
158 S H H	σ,	м	H	н	CH ₃ OCH ₂	СН3	b (E x 3)	67	100
159 SO N N	cf 3	н	M	. н	CH ³ OCH ²	СНЗ	a (Ex 2)	57	125 -
160 S N N	CHZCHZCOOCZHS	M	H	H	сн3 осн3	CH ³	b (Ex 3)	15	J ^H Mar
161 SO H H	осиз	H	н	ç-00(D	1 ₃) ₃ CH ₃ OCH ₃	CH3	d (Ex 6)	50	155
163 SO N N	OCH,	H	H	н	-сн ₂ сн ₂ 0-	H			
164 S 44 H	OCH.	. 11	H	H	-сн ₂ сн ₂ сн ₂ 0-	н	b (Ex 3)	71	¹ H MAR
165 SO N H	OCH ₃	*	H	H	н	-och ₂ ch ₂ -			.•
166 SO H H	OCH ₃	н	H	и	н	-осн ² сн ² сн ³ -	•		

Identifying data for compounds of the invention

MR-data of the compounds in Table 2 (90 MRz)

Example	
Na	NMR-data: &(COCl ₃) ppm
17	2.3(s,3H), 2.35(d,6H), 2.5(s,3H), 2.55(s,3H),
	4.4(s,2H), 4.25-4.4(d,2H), 5.2-5.6(m,2H),
	5.9-6.4(m,lH), 6.9(s,lH), 8.35(s,lH).
25	
	•
27	2.2(s,3H), 2.3(s,3H), 2.6(s,3H), 4.35-4.45(d,2H),
	4.45(s,2H), 5.2-5.6(m,2H), 5.85-6.35(m,1H).
	6.9-7.55(m,3H), 8.3(s.1H).
29	2.2(s,3H), 2.25(s,3H), 2.4(s,3H), 4.2-4.35(c,7H).
	4.4(s,2H), 5.5-5.6(m,2H), 5.85-6.3(m,1H).
	6.9-7.1(d.1H), 7.3-7.55(t,2H), 8.3(s,1H).
35	1.8(m,<\), 2.75(m,4H), 3.8(s.3H), 4.25(s.2H).
	6.85(m,1H), 7.05(s.2H), 7.4(d.1H), 8.3(s.1H).
37	1.7(m,4H), 2.3-2.7(m,4H), 3.85(s,3H), 4.6(d.7H).
	6.8(s,1H), 7.05(s,2H), 7.6(m,1H), 8.3(s,1H).
44	1.2-2.0(m,10H), 2.25(s.3H), 2.3(s.3H), 2.5(m,1H).
Ì	3.75(s,3H), 4.45(s,2H), 7.1(q,1H), 7.5(m,2H),
	8.35(s.1H).
56	
1	
1	

Example	Stenes >
No.	NMR-data: \$(CDCl ₃) ppm
3	2.3(s.6H), 2.35(s.3H), 2.5(s.3H), 3.75(s.3H),
	4.4(s.2H), 7.05-7.2(d.1H), 7.25(s.1H).
	8.3-8.45[d,1H).
57	2.2(s,3H), 2.25(s,3H), 2.3(s,3H), 2.5(s,3H),
	3.45(s,3H), 3.75(s,3H), 3.85(m,4H), 4.3(s,2H),
	7.2(br.s., 1H), 8.3(s,1H).
59	2.3(s,6H), 2.4(s,3H), 2.55(s,3H), 3.5(s,3H),
	3.9(m,4H), 4.3(s,2H), 7.2(s,1H), 7.3(s,1H),
	0.4(s,lH), 9.3(br.s., lH).
66	1.2(t,3H), 2.15(s,3H), 2.2(s,3H), 2.3(s,3H),
	'2.4(s,3H), 2.8(q,2H), 3.65(s,3H), 4.8(s,2H),
	7.3(s,1H), 8.25(s,1H).
69	1.1(t,3H), 2.2(s,3H), 2.4(s,3H), 2.55(s,3H),
	2.75(q,2H), 3.85(s,3H), 4.35(s,2H), 6.75(d,1H),
	7.25(s,lH), 8.4(d,lH).
78	1.2(d,3H), 1.6(m,6H), 2.25(s,3H), 2.3(s,3H),
	3.0(m,1H), 3.75(s,3H), 4.15(m,1H), 4.45(s,2H),
	4.55(m,lH), 7.3(q,lH), 7.6(m,2H), 8.3(s,lH).
79	1.25(d.3H), 1.65(m.6H), 2.15(s,3H), 2.2(s.3H).
	3.1(m,1H), 3.65(s,3H), 4.1(m,1H), 4.6(m,1H),
'	4.8(s,2H), 7.4(q,1H), 7.7(d,1H), 7.8(s,1H),
	8.3(s.1H).
82	2.2(s,3H), 2.3(s,3H), 3.7(s,3H), 4.75(s,2H).
	7.3-8.5(m,8H).

5.0-::4	
`. . .	NMR-data: d(CDC13) ppm
25	1.55(-,4H), Z.2(s.3H), Z.25(s.3H), Z.7-3.1(m.4H).
	3.75(s.3H), 4.35(s,2H), 6.9(d;1H), 7.3(d.1H),
	5.25(s,1H).
6	Z.Z(s,3H), Z.35(s,3H), 3.5(s,3H), 4.15(s,3H),
	4.75(s,2H), 6.1(s,2H), 7.3(s,1H), 7.5(s,1H),
,	d.15(s.1H).
7.	2.15(s,3H), 2.2(s,3H), 3.7(s,3H), 4.7(s,2H).
	6.05(s,2H), 7.0-7.6(m,7H), 8.15(s.1H), 8.3(s,1H).
90	2.25(s,3H), 2.1-2.4(m,2H), 2.3(s,3H), 3.75(s,3H),
	4.2(t,4H), 4.4(s,2H), 6.75-7.2(m,5H), 7.2-7.5(n,3H),
	8.35(s.1H).
92	0.7-2.05(m,13H), 2.25(m,3H), 2.3(m,3H), 2.35(m,3H),
	2.5(s,3H), 3.65-3.9(m,2H), 3.75(s,3H), 4.35(s,2H).
	7.2(s,1H), 8.3(s,1H).
93	1.25(t,3H), 2.25(s,3H), 2.3(s,3H), 2.8(q,2H),
	4.4(d,2H), 4.45(s,2H), 5.2-5.65(m,2H), 5.85-6.3(m,1H)
	7.0-7.65(m,2H), 7.5(s,1H), 8.35(s,1H).
95	O.9(s,3H), 1.0(s,3H), 1.5-1.95(m,2H), 2.15-2.45(m,3H)
1 1	2.25(s,3H), 2.3(s,3H), 3.7-4.0(t,2H), 3.85(s,3H),
	4.45(s,2H), 2.8-7.0(m,1H), 7.15(d.1H), 7.45-7.55
	(d,lH), 8-3(s,lH).
4+5	2.25(s,3H), 2.40(s,3H), 3.6 and 3.85(2s, total 3H),
	3.80(s,3H), 4.8 and 4.85(2s,total 2H), 8.35-7.95
	(m,8H), 8.35(e,1H).

Example	
No.	MMR-data: =(CDC1 ₃) ppm
103	2.3(s,3H), 2.35(s,3H), 3.0(k,2H), 3.35(s,3H),
	3.65(t,2H), 3.8(s,3H), 4.4(s,2H), 6.8-7.6(m,4H),
	B.25(s,1H).
107-108	2.2(s,3H), 2.35(s,3H), 3.75(s,3H), 3.9 and 3.95
	(2s,total 3H), 4.15(s,3H), 4.75(s,2H), 7.07-7.95
•	(=,3H), 8.15(s,1H).
102	1.32(s,9H), 2.08(s,3H), 2.15(s,3H), 4.09(d,2H),
	4.74(s,2H), 5.10-5.45(m,2H), 5.73-6.25(m,1H),
•	7.28-7.73(m,3H), 8.27(s,1H).
139	2.22(s,3H), 2.29(s,3H), 3.75(s,3H), 4.40(s,2H),
	7.38-7.58(m,1H), 7.87-8.02(m,2H), 8.29-8.47(m,1H),
	8.70-9.00(m,2H),
110	1.25(d,6H), 1.6-2.15(m,4H), 2.25(s,3H), 2.3(s,3H),
	3.0(m,1H), 3.7-4.05(m,4H), 4.25(m,1H), 4.5(s,2H),
	7.15(q,1H), 7.5(s,1H), 7.55(d,1H), 8.3(s,1H).
111	1.3(d,6H), 1.55-2.15(m,4H), 2.2(s,3H), 2.25(s,3H),
	3.05(m,1H), 3.65(d,2H), 3.9(m,2H), 4.2(m,1H), 4.8
	(s,2H), 7.3(d,1H), 7.4-7.8(m,2H), 8.3(s,1H).
119	2.3(s,3H),-2.35(s,3H),-3.15(t,2H), 3.7(s,3H),
	4.25(2,2H), 4.4(s,2H), 6.9(q,1H), 7.15(d,1H), 7.3-
	7.6(m,6H), 8.35(s,1H).
 125	2.3(s,3H), 2.35(s,3H), 2.8(s,3H), 3.8(s,3H), 4.5
!	(s,2H), 7.5(d,1H), 7.75(d,1H), 8.05(s,1H), 8.4(s,1H).

MM-data of the compounds in Table 2. (cont.

Example No.	IMR-data: d(CDC1 ₃) ppm
126	2.2(s,6H), 2.8(s,3H), 3.7(s,3H), 4.85(s,2H), 7.6
	(q.1H), 7.85(d.1H), 8.15(s.1H), 8.25(s.1H).
127	2.25(d,6H), 3.75(s,3H), 4.9(d,2H), 7.8(d,1H).
	8.3(s,1H), 8.3(q,1H), 8.65(d,1H).
134	2.2(d,6H), 2.35(d,6H), 3:1(s,6H), 3.7(s,3H), 4.95
	(s.2H), 7.2(s,1H), 7.6(s,1H), 8.3(s,1H).
112	2.1(s,3H), 2.25(s,3H), 2.3(s,3H), 2.65-3.2(m,4H).
	4.4(d.2H), 4.42(s,2H), 5.2-5.6(m,2H), 5.9-6.4(m,1H),
	7.1(dd,1H), 7.4(d,1H), 7.5(d,1H), 8.35(s,1H).
121	2.25(s,3H), 2.35(s,3H), 3.8(s,3H), 4.45(s,2H),
	7.45-8.0(m,7H), 8.15(s,1H), 8.4(s,1H).
122	2.2(s,6H), 3.7(s,3H), 4.8(d,2H), 7.5-8.05(m,7H),
	8.2(s,1H), 8.25(s,1H).
144	2.25(s,3H), 2.35(s,6H), 2.38(s,3H), 2.55(s,3H),
	4.4(s,2H), 7.15(d,1H), 7.3(s,1H), 8.4(d,1H).
145	2.15(s,3H), 2.23(s,3H), 2.27(s,3H), 2.4(s,3H),
	2.47(s.3H), 4.8(s.2H), 7.1(d.1H), 7.3(s.1H),
	8.37(d,1H).
151	2.2(s,3H), 2.23(s,3H), 2.35(s,3H), 2.4(s,3H),
i •	2.47(s,3H), 4.8(d,2H), 7.0(s,1H), 7.1(d,1H), 8.37
	(d,1H).
130	3.85(s,3H), 4.65(s,2H), 6.8-7.8(#,7H), 8.55(d,1H)

NMR-data of the compounds in Table 2. (cont.)

Example No.	MMR-data: &(CDC1 ₃) ppm
131	3.85(s,3H), 4.95(d,2H), 6.65-7.60(m,7H), 8.45(d,1H).
160	1.15(t,3H), 2.20(s,3H), 2.27(s,3H), 2.49-2.73(m,2H), 2.89-3.13(m,2H), 3.72(s,3H), 4.09(q,2H), 4.37(s,2H), 6.98 and 7.08(dd,1H), 7.30-7.55(m,2H), 8.28(s,1H).
154	1.1-2.1(m,13H),2.3(s,3H),2.5-2.8(m,3H), 4.4(s,2H), 7.1-7.65(m,4H), 8.5(s,1H)
156	1.1-2.0(m,11H), 2.25(s,3H), 2.3(s,3H), 3.45(s,3H), 3.7(t,2H), 4.0(t,2H), 4.4(s,2H), 7.05-7.65(m,3H), 8.35(s,1H)
164 (270 MHz)	2.13(m,2H),2.88(t,2H),3.82(s,3H),4.26(t,2H), 4.69(s,2H),6.7-6.85(m,2H),7.04(d,1H), 7.39(d,1H),8.1(d,1H).

Preparation of intermediates Example 11, Method A. Preparation of 4,5,7 trimethyl-2-mercapto-1H-benzimidazole.

2-Nitro-3,4,6-trimethylaniline (10.2 g, 0.057 mol) was dissolved in 95% ethanol (900 ml) and hydrogenated in the presence of Pd/C-catalyst until the theoretical amount of hydrogen had been consumed (1 hour). The whole mixture was transferred to another flask and potassium ethylxanthate (12.8 g,

10 0.080 mol) dissolved in water (12.5 ml) was added. The mixture was refluxed overnight, 2M NaOH (20 mi) was added and the volatiles were evaporated off. The residue was dissolved in methanol (300 ml) and the catalyst was filtered off. Part of the solvent (200

15 ml) was evaporated off. Water (100 ml) was added and the mixture was acidified with acetic acid (10 ml) dissolved in water (20 ml). The crystalline precipitate was filtered off, washed with water and dried under reduced pressure, giving the desired product (7.2 g,

20 66%), NMR: δ(COCI₃) 2.0(s,3H), 2.05(s,3H), 2.1(s,3H), 3.3(br.s,1H), 6.5(s,1H). Example 12. Method B. Preparation of 4,6,7 trimethyl-5-methoxy-2-mercapto-1Hbenzimidazole.

A solution of 4 - methoxy - 3,5,6 - trimethyl - 1,2 phenylenediamine (1.8 g, 0.010 mol) and triethylamine (2.1 g), 0.021 mol) in CHCl3 (15 ml) was added dropwise to a stirred solution of thiophosgene (0.60 g, 0.0052 mol) in CHCl₃ (5 ml). The mixture was then 30 stirred at room temperature for 1 hour. Water (15 ml) and triethylamine (0.5 g) was added and the mixture was stirred for 1 hour. The precipitate was filtered off, washed with water and dried in the air giving the

desired product (0.96 g, 43%), NMR: $\delta(COCl_3)$

35 2.5(s,3H), 2.65(s,6H), 3.65(s,3H), 12.0(br.s.,1H). Example 13. Method C. Preparation of 4-allyloxy - 3,5 dimethyl - 2 - pyridinyl - methanol.

4 - Allyloxy - 2,3,5 - trimethyl - pyridine N-oxide (4.0 g, 0.021 mol) was added dropwise under stirring to acetic anhydride (8.0 ml, 0.062 mol) preheated to 80°C, giving a final temperature of 120°C. The mixture was then heated at 80°C for 1 hour. Methanol (15.0 ml) was added and the mixture was kept at 80°C for 15 min. The volatiles were evaporated under reduced 45 pressure. 10% HCI (20ml) was added and the mixture

was heated at 90°C for 1 hour and then cooled to room temperature. Excess 2M NaOH was added and the mixture was extracted with CH2Cl2. The organic phase was separated out and dried. Volatiles were 50 evaporated off giving the desired product as an oil

(3.0 g, 75%), NMR: δ(COCl₃) 2.1(s,3H), 2.25(s,3H), 4.4(m,2H), 4.65(s,2H), 4.75(s, 1H), 5.2-5.65(m,2H), 5.9-6.45(m,1H), 8.3(s,1H).

Example 14. Method D. Preparation of 4 - allyloxy - 3,5 -dimethyl-2-pyridinyl-methyl chloride hydrochloride.

Thionyl chloride (4.0 ml) dissolved in CH2Cl2 (12 ml) was added dropwise to a stirred solution of 4 allyloxy-3,5-dimethyl-2-pyridinylmethanol (8.0 g, 60 0.041 mol) in CH₂Cl₂ (50 ml), maintaining the temperature below 6°C. Then the mixture was stirred at room temperature for 45 min (final temperature 15°C). isopropanoi (2 ml) was added and the solution was heated shortly at 35°C. The solvent was evaporated 65 off and the crystalline residue was recrystallized from ethanol/ether giving the desired product (3.0 g, 29%), m.p. 115°C.

Table 3a. Intermediates. Summary of working examples.

$$\begin{array}{c}
R^{2a} \\
R^{3a}
\end{array}$$

$$\begin{array}{c}
R^{3a}
\end{array}$$

$$\begin{array}{c}
R^{5a}
\end{array}$$

$$\begin{array}{c}
R^{5a}
\end{array}$$

No.	Z ^{la}	R ^{la}	R ^Z a	R ^{3a}	R ^{4a}	R ^{Sa}	Method ^{x).} (Ex. No.)	Tield (%)	Mp (OC) other data
15	SH	CH3	CH3	CH3	ᅄᢃ	H	A(Ex 11)	19	HPR
16	SH	CH ₃	CH ₃	CH3	н	H	A(Ex 11)	66	NPSK
11	SH	CH3	СН3 _	H	СНЗ	н	A(Ex 11)	66	NETR
17	SH	н	$\overline{}$	н	н	н	A(Ex 11)	71	NIR
18	SH	CH ₁	осн	СНЗ	н	н	A(Ex 11)	78	NMR
19	SX	CH3	OCH ₂ CH ₂ OCH ₃	CH3	н	н	A(Ex II)	. 85	NPR
110	SH.	-	C ₂ H ₅	CH3	н	н	A(Ex II)	89	NMR
111	SH	• .	0CH2CH2CH20	н	H	н	A(Ez 11)	14	167
112	SH	•	0(CH ₂)6CH ₃	CH3	н	н	A(Ex 11)	73	ĸR
12	SH	CH ₃	ОСНЗ	CH3	СНЗ	н	B(Ex 12)	43	NAR
113	SH	-сн	-сн-сн-сн-сн-сн-		н	H	A(Ex [1)	23	ra

^{*)} Method A: The 1,2-phenylenediamine is reacted with C₂M₅OCS₂K Method 8: The 1,2-phenylenediamine is reacted with CSC1₂

35

Table 25. Intermediates. Summary of working examples.

No.	z ^{2a}	R ^{6a}	R ⁷⁴	R ^{Sa}	Salt/Base	Method XX) (Ex. No.)	Yield (1)	Mp (°C) other data
13	OH	· CH ₂	OCH ₂ CH=CH ₂	CH3	Base -	C(Ex 13)	75	NA
14	C1	•	0CH2CH+CH2	CK3	кс1	0(Ex 14)	29	1150
114		CH3	OCH,CECH	CH3	Base	C(Ex 13)	88	70 ⁰
115		CH ₂	OCH ₂ C±CH	CH ₃	нс1	D(Ex 14)	76	135 ⁰
116	ОН	H	-(CH ₂)	•	Base	C(Ex 13)	35	MAS
117	C1	н	-(CH ₂)		нс1	D(Ex 14)	72	MR
118		СН.	OCH_CH_CH(CH		Base	C(Ex 13)	51	MR
119		-	OCHZCHZCH(CH		нст	0(Ex 14)	95	
120	OH	_	осн ₂	СН		C(Ex 13)	30	MIR
:21	C1	•	осн,	CH.		D(Ex 14)	23	133
:22	ùн	СНЗ	uc _z n _s	CH.	Base	C(Ex 13)	70	8.p. 120- 26 C/0.4
123	C1	CH.	0C ₂ H ₅	CH.	, HC1	D(Ex 14)	89	157
124	ОH	•	-CH-0-	н.	Base	C(Ex 13)	18	JH MAK.
125	C1	-CH:	-CH-O-	Ħ	нст	D(Ex 14)	95	195

Method C: Rearrangement of the pyridine N-oxide with $(CH_3CO)_2O$.

Method D: Chlorination with $SOC1_2$.

NMF	-data of the	compounds in	Table	3a and	Table
35	•				

Even	-i-
EXAM	DIB

برواح المرابط وتعالم

No. NMR-data: δ(ppm) 5 15 δ(DMSO-d_e) 2.05(s,6H), 2.2(s,6H).

16 δ(CDCl₃) 2.05(s,3H), 2.15(s,3H), 2.2(s,3H, 3.2(s,2H), 6.7(s,1H).

11 δ(CDCl₃) 2.0(s,3H), 2.05(s,3H), 2.1(s,3H), 3.3(br.s.,1H), 6.5(s,1H).

10 17 δ(DMSO-d_a) 1.1-2.05(m,10H), 2.4(m,1H), 6.85-7.05(m,3H).

18 δ(DMSO-d_e) 1.95(s,3H), 2.0(s,3H), 3.35(s,3H), 6.55(s,1H).

19 δ(CDCl₃) 2.1(s,3H), 2.15(s,3H), 3.2(s,3H),

15 3.35-3.8(m,4H), 6.6(s,1H). 110 δ(CDCl₃+DMSO-d₆) 1.05(t,3H), 2.3(s,3H), 2.35(s,3H),

2.6(q,2H), 6.85(s,1H). 112 δ(CDCl₂) 0.5-1.7(m,13H), 2.0(s,3H), 2.1(s,3H),

12 0(CDCl₃) 2.5(s,3H), 2.65(s,6H), 3.65(s,5H), 12.0(br.s.,1H).

113 8(CDCl₃) 3.35(s,2H), 3.4(s,2H), 7.15-8.05(m,4H), 12.65(br.s.,1H), 13.3(br.s.,1H).

25 13 δ(CDCl₃) 2.1(s,3H), 2.25(s,3H), 4.4(m,2H), 4.65(s,2H), 4.75(s,1H), 5.2-5.65(m,2H), 5.9-6.45(m,1H), 8.3(s,1H).

116 δ(CDCl₃) 1.5-1.9(m,4H), 2.5-2.8(m,4H), 4.7(s,2H), 7.3(s,1H), 8.2(s,1H).

30 117 118 δ(CDCl₃) 1.0(s,3H), 1.05(s,3H), 1.5-2.05(m,3H), 2.15(s,3H), 2.3(s,3H), 3.75-4.0(t,2H), 4.15-4.5(br.s.,1H), 4.65(s,2H), 8.3(s,1H).

120 δ(CDCl₃) 1.7-2.2(m,4H), 2.15(s,3H), 2.25(s,3H), 3.75- 4.05(m,4H), 4.15-4.4(m,1H), 4.6(s,2H),

3.75- 4.05(m,4H), 4.15-4.4(m,1H), 4.0(3,2H), 8.25(s,1H).

124 δ(CDCl₃) 8.55(d,1H), 7.8(d,1H), 7.5(d,1H), 7.0(d,1H), 5.1(s,2H).

Pharmaceutical preparations containing a compound of the invention as active ingredient are illustrated in the following examples.

Example 167. Syrup

A syrup containing 1% (weight per volume) of active substance was prepared from the following

45 ingredients:

55

4,6-Dimethyl-5-ethyl-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-

	3,3-dillictiff 2 pyriamy state of the	
	1H-benzimidazole-HCI	1.0 g
	Sugar, powder	30.0 g
50	Saccharine	0.6 g
50	Glyceroi	5.0 g
	Flavouring agent	0 .05g
	Ethanol 96%	5.0 g
	Distilled water g.s. to a final volume of	100 m

Sugar and saccharine were dissolved in 60 g of warm water. After cooling the acid addition salt was dissolved in the sugar solution and glycerol and a solution of flavouring agents dissolved in ethanol

60 were added. The mixture was diluted with water to a final volume of 100 ml.

The above given active substance may be replaced with other pharmaceutically acceptable acid addition salts.

Example 168. Enteric-coated tablets

An enteric-coated tablet containing 20 mg of active compound was prepared from the following ingredients: 1 5,6-Methylenedioxy-2-[[(4-methoxy-

5		3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-	
•		1H-benzimidazole	200 g
		Lactose	700 g
		Methyl cellulose	6 g
		Polyvinylpyrrolidone cross-linked	50 g
10		Magnesium stearate	15 g
10		Sodium carbonate	6 g
		Distilled water	q.s.
	11	Cellulose acetate phthalate	200 g
	••	Cetyl alcohol	15 g
15		Isopropanol	2000 g
13		Methylene chloride	2000 g
	,	5.6 - Methylenedioxy - 2 - [[(4 - methoxy	- 3,5 -
			· 4 LI _

dimethyl - 2 - pyridinyl)methyl]sulfinyl] - 1H benzimidazole, powder, was mixed with lactose and 20 granulated with a water solution of methyl cellulose and sodium carbonate. The wet mass was forced through a sieve and the granulate dried in an oven. After drying the granulate was mixed with polyvinylpyrrolidone and magnesium stearate. The dry mix-25 ture was pressed into tabled cores (10 000 tablets), each tablet containing 20 mg of active substance, in a tabletting machine using 6 mm diameter punches.

II A solution of cellulose acetate phthalate and cetyl alcohol in isopropanol/methylene chloride was 30 sprayed onto the tablets I in an Accela Cota, Manesty (RTM) coating equipment. A final tablet weight of 110

mg was obtained.

Example 169. Solution for intravenous administra-35 tion

A parenteral formulation for intravenous use, containing 4 mg of active compound per ml, was prepared from the following ingredients: 4,6-Dimethyl-5-ethyl-2-[[(4-methoxy-

40 3,5-dimethyl-2-pyridinyl)methyl]thio]-4 g 1*H*-benzimidazole Polyethylene glycol 400 for injection 400 g q.s. Disodium hydrogen phosphate 1000 ml Sterile water to a final volume of

45 4,6-Dimethyl-5-ethyl-2-[[(4-methoxy-3,5dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazole was dissolved in polyethylene glycol 400 and 550 ml of water was added. pH of the solution was

50 brought to pH 7.4 by adding a water solution of disodium hydrogen phosphate and water was added to a final volume of 1000 ml. The solution was filtered through a 0.22 µm filter and immediately dispensed into 10 ml sterile ampoules. The ampoules were 55 sealed.

Biological tests

I. Inhibiting effect in vitro on acid secretion in isolated rabbit gastric glands

Test Method

60 Gastric gland preparation

Isolated rabbit gastric glands were prepared as described by Berglindh et al., Acta physiol. scand. 1976. 96. 150-159. This method involves vascular perfusion of the raibbit stomach via the gastric 65 arteries, scraping and scissor mincing of the sepa-

rated gastric mucosa and collagenase (0.1%, Type I, Sigma Chemicals, St. Louis, MO. USA) digestion at 37°C for 60-90 min. The glands are then harvested and filtered through nylon cloth to remove coarse frag-70 ments. The glands are thereafter incubated at 37°C in a medium containing NaCl 132.4 mM, KCl 5.4 mM, NaH₂PO₄, 5.0 mM, NaH₂PO₄, 1.0 mM, MgSO₄ 1.2 mM, CaCl₂ 1.0 mM, glucose 10 mM, and 1 mg/ml rabbit albumine, pH 7.4.

75 Measurement of acid secretion

The acid secretion in the isolated gland preparation was recorded by measuring the uptake of 14C-labelled aminopyrine into the glands as described by Berglindh et al., Acta physiol. scand. 1976. 97. 401-414. 80 Accumulation of aminopyrine in the glands indicates gastric acid secretion within the glands. The standard medium contained 10-6M 14C-aminopyrine (Amersham, Great Britain). After the incubation period, the glands were centrifuged, the supernatant was re-85 moved and the glands dried, weighed and dissolved in Soluene -350 (Packard, IU. USA). Samples of the supernatant and glands were separately counted in a scintillation counter. The accumulation of 14C-labelled aminopyrine in the glands was calculated as detailed by Berglindh et al., Acta physiol. scand. 1976.

Experimental protocol

Glands were incubated for 60 min. in the presence of 5×10^{-5} M histamine and the test compound to be studied. The free base of the test compound was dissolved in methanol. The final concentration of methanol was 1% in the incubation medium, having no influence on the aminopyrine accumulation ratio. For each test compound a complete dose-response 100 curve was generated by testing doses in duplicate in

the concentration range 10⁻⁷M to 10⁻⁴M. The logarithm of the concentration (in M) of the test compounds giving 50% inhibition of the aminopyrine accumulation in the glands (IC $_{50}$) is listed in Table 4

105 below.

II. Inhibiting effect in vivo on gastric acid secretion in conscious dog

Test Method

Chronic gastric fistula dogs were used. These dogs 110 have been surgically provided with a gastric cannula in the stomach and a duodenal fistula used for direct introduodenal administration of test compounds. Following a 4 weeks' recovery period after surgery. tests were performed once a week on each dog. Food 115 and water were withdrawn 18 hours before each test.

Gastric acid secretion was induced by continuous infusion of histamine at individual doses 1100-300 nmol/kg, h), resulting in submaximal secretion of gastric acid. At least 2 hours after onset of stimula-

120 tion, when the gastric acid secretion had reached a steady level, the test compounds in the form of free base suspended in 0.5% Methocel (RTM) (90 HG. 15.000, Dow Chem. Corp.), were given intraduodenally at doses from 1 to 8 µmoVkg. The gastric juice was

125 collected by free flow from the gastric cannula in consecutive 30 minutes samples for 3 hours. The samples were titrated to pH 7.0 with 0.1 M NaOH using a Radiometer automatic titrator and the acid output was calculated.

The per cent inhibition of acid secretion was

calculated by comparing in each dog the acid output in the tests to the acid output in control tests when

only the vehicle was given. The peak inhibitory effect for each compound is given in Table 5 below.

Table 4 Biological effects in isolated rabbit gastric glands

J.	1	213	R ¹	1 ²	R ³	R.	1,2	A ⁶	R ⁷	2.5	-low IC50
12	20	1	CH,	CH	α,	CH ₃	1	CH ₃	осн	CB.	6-5
10	50		aL,	CH	CH3	•	*	CH3	осн3	CH.	6.5
. 37	50		1	ося		*	Ħ	×	-(C	H ₂)4-	5-0
4.3	50		H	ocs,cs		1	ı	CH ₃	oca,	CX3	4.4.
ol.	50			CH_OH	CH ₃	×	1	CH ₃	оси3	CH3	6,1
104	50		×	CIL, CIL, OCIL,		1	H	CH3	OCH 3	CH ₃	5-7
	50		œ,	оси,	cu,	*	×	CH3	OCH ₃	CH ₃	6.5
1	50		Сц	OCH,	CH ₃	Ħ	Ħ	CH ³	CN,	Ħ	6.7
>4	50	ъ	CIL	003,01,001,	CH,		ĸ	CH3	ocn,	CH3	5.9
₩	50		ai,	001,01,001,	CK,		1	×	CH	CH3	5.4
62	so	1 .	a,	COCIL	CB,		1	ca,	OCH 3	CH ₃	6-2
64	50	x	Œ,	COCH	CN,	×		CH3	1	CH ₃	5.4
••	50		a,	coc ₂ E ₃	CH,	H		, CM,	OCH ₃	CH.	6.0
			,	• •	•			•		_	Cont.

coat

coat	•										
No .	x	R12	R1	R ²	R ³	R ⁴	R ⁵	R ⁶	x?	R ⁵	-log IC _{SO}
64	50	ĸ	95	c2H2	CH ₃	н .	я	сн3	осн	CH.3	6.5
א	so	H	(rs	c ₂ n ₅	СНЗ	H	Ħ	CH3	осн3	н	5-9
72	so	×	c ₂ A		c2×2	H	Ħ	CH,	осн3	CH3	5.0
74	so	1	он _э \	оси _з .	CH3	CH3	Ħ	CH3	осн ₃	CH3	6.2
79	so	1	×	25	я	H	Ħ	CH3	осн ³	CH ₃	5.0
81	50		=	ОСИ 20-		Ħ	×	СНЭ	осн3	CH ₃	6.1
#3	50	Ħ	-Сн	-св-св-фн-	H	H	Ħ	СĸЭ	осн3	CH ₂	{5.5 5.3
107	so	H	n	OCH ₃	×	H	CO ² CH	Сн3	осн3	CH3	ا د د ا
108	so		M	h	осн ₃	H	CO2CH3	CH3	осн 3	CH3	1

cont.

cont.

to.	×	R15	Rì	a ²	R ³	R ⁴	R ⁵	R	R ²	28	-10E 1C50
	50	•		COCh,	Ch ₃	н	M	CH ₃	OCH ₂ CH-CH ₂	CH.)	5.3
67	SO	h	-CH	2CH2CH2CH2-	Ħ	Ħ	h	CH3	och ₃	CH.	6.3
91	>0	M	h	0011 ₂ 011 ₂ 011 ₂ 0-©	h	R	H	CH 3	OCH 3	CH3	15.8
. 2	so		cita		CH3	H	×	СНЗ	ося	CH.	5.9
94	so			C ₂ N ₅	h	h	Ħ	CH3	оси2си-си	CH ³	4.6
76	SU			OC# ₃	h	h	M	CH3	OCH 2CH 2CH (CH 3)	2 ^{CH} 3	6.1
ys	so		-0	H-CH-CH-CCH ₂ CH ₂ -		H	H	CH3	осн ₃	CH3	5.6
102	sc	н	н	C(CH ₃) ₃	н	н	н	CH3	OCH ² CH-CH ²	CH3	5.9
104	so		×	CH2CH2OCH3	ж ì	н :	H	CH3	OCH3	сн3	5.7
106	so	н	×	٠,	, _ ₀₋	н	н	CH ³	осн3	CH ₃	6.0
111	SO	н	н	сн(сн ₃) ₂	н	H	н	CH3	OCH 2 O	CH3	6.2
113	so	н	н	сн ₂ сн ₂ сосн ₃	H	H	н		OCH2CH-CH2	CH3	5.8
118	so	н	н	- ⊘	н	H	×	CH3	осн ₃	CH ₃	6.4

ont.

cont.

No.	1	R ¹⁵	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	-log IC ₅₀
120	so	н	н	OCH_CH	н	н	н	СНЭ	осн3	CH3	6.3
124	SO	н	н	-⊚ ·	H	H	н	CH3	осн ₃	СНЗ	7.0
129	so	H	H	Br .	H .	н	H .	CH3	OCH2CH=CH2	CH3	
142	SO.	×	×	-OCH	20-	H	H	CH ³	CH3	Сн3	6.0
143	50	ĸ	H	COCH	CH ₃	н	H	н	осн ₃	CZHS	6.1
145	50	н	CH,	си ₃	CH3	H	H	CH3	CH ₃	н	6.2
147	so	×	•	CH ₃	CH ₃	H	Ж	H	CH3	CH3	6.4
149	SO	H	•	CH ₃	CH3	H	H	CH ₃	н	CH3	6.2
151	50	H	CH	CH ₃	H	CH ₃	H	CH ₃	CH3	н	6.3
153	SO	N	ᅄ	CH	CH ₃	H	H	CH ₃	oc _z H ₅	CH3	5.2
77	SO	H	н		CH ₃	H	H	H	осн3	C2H5	6.0
159	so	H	H	cer ₃	H	H	H	CE3	OCH 2	CH ³	6.3

Table 5 Biological effects in conscious dogs

			R ¹	8 _S			•					
No.	x	R ¹⁵			R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	(1.D.) DOSE (j.mol/kg	3 1 NH 18
84	\$	н	н		-CH=CH=CH=	н	H	CH3	осн ₃	сн3	8 .	· 85
109	s	н	H	SCH.	н	н	н	CH3	осн ₃	CH3	8	60

Comment to the test results

It is seen in Table 4 and Table 5 that the tested compounds potently inhibited gastric acid secretion both in vitro and in vivo.

5 CLAIMS

1. A compound of the formula

wherein

R15 is H, CH3 or C2H5;

- 10 R1, R2, R3 and R4, which are the same or different, are
 - (a) H
 - (b) halogen
 - (c) —CN
 - (d) —(tHO
- 15 (e) —(.F₃

- O || (f) —C—R'
- (g) --O-C-R¹²
- (h) -CH(OR13)2
- (i) $-(Z)_n A D$
- g (j) aryl
 - (k) anyloxy
 - (I) alkylthio containing 1-6 carbon atoms
 - (m) -NO₂
 - (n) alkylsulfinyl containing 1-6 carbon atoms or

25 wherein

- (o) adjacent groups R^1, R^2, R^3 and R^4 together with the adjacent carbon atoms in the benzimidazole ring form a 5-, 6- or 7-membered monocyclic ring or a 9-, 10- or 11-membered bicyclic ring which rings may be
- 30 saturated or unsaturated and may contain 0-3 hetero atoms selected from—N— and—O—, and which rings may be optionally substituted with 1-4 substituents selected from alkyl groups with 1-3 carbon atoms, alkylene radicals containing 4-5 carbon atoms
- 35 giving spiro compounds, or two or four of these substituents together form one or two oxo groups.

(—C—), whereby if R1, R2, R3 and R4 together with the adjacent carbon atoms in the benzimidazole ring form two rings they may be condensed with each other, in which formulas R11 and R12, which are the same or different, are

(a) aryl,

(b) alkoxy containing 1-4 carbon atoms,

(c) alkoxyalkoxy containing 1-3 carbon atoms in each alkoxy part,

(d) arylalkoxy containing 1-2 carbon atoms in the 10 alkoxy part,

(e) aryloxy,

(f) dialkylamino containing 1-3 carbon atoms in each alkyl residue, or

(g) pyrrolidino or piperidino, optionally substituted with alkyl containing 1-3 carbon atoms; R13 is (a) alkyl containing 1-4 carbon atoms, or

(b) alkylene containing 2-3 carbon atoms;

Zis-O-or-C-

nis0or1;

A is (a) alkylene containing 1-6 carbon atoms

(b) cycloalkylene containing 3-6 carbon atoms

(c) alkenylene containing 2-6 carbon atoms

(d) cycloalkenylene containing 3-6 carbon atoms,

25 or

20

(e) alkynylene containing 2-6 carbon atoms; Dis(a) -CN

0 (c) -(Y)_m-(C),-R¹⁰

30 wherein

R⁹ is (a) alkoxy containing 1-5 carbon atoms, or

(b) dialkylamino containing 1-3 carbon atoms in each alkyl residue;

mis0or1;

35 ris0or1;

Yis (a) -0-

(b) -NH-

(c) -NR10-:

R¹⁰ is (a) H

(b) alkyl containing 1-3 carbon atoms,

(c) arylalkyl containing 1-2 carbon atoms in the alkyl part, or

(d) aryl;

R5 is (a) Hor

0

(b) -C-R14:

R¹⁴ is (a) alkyl containing 1-6 carbon atoms,

(b) arylalkyl containing 1-2 carbon atoms in the alkyl part

(c) aryl

(d) alkoxy containing 1-4 carbon atoms

(e) arylalkoxy containing 1-2 carbon atoms in the alkyl part

(f) aryloxy

(g) amino

(h) mono- or dialkylamino containing 1-4 carbon atoms in each alkyl residue

(i) arylalkylamino containing 1-2 carbon atoms in the alkyl part

(j) arylamino;

R⁶ and R⁸, which are the same or different, are

(a) Hor

(b) alkyl containing 1-5 carbon atoms;

R⁷is(a) H

(b) alkyl containing 1-8 carbon atoms

(c) alkoxy containing 1-8 carbon atoms

(d) alkenyloxy containing 2-5 carbon atoms

(e) alkynyloxy containing 2-5 car .n atoms

(f) aikoxyalkoxy containing 1-2 carbon atoms in

70 each alkoxy group

(g) dialkylaminoalkoxy containing 1-2 carbon atoms in each of the alkyl residues on the amino nitrogen and 1-4 carbon atoms in the alkoxy group

(h) oxacycloalkyl containing one oxygen atom and

75 3-7 carbon atoms

(i) oxacycloalkoxy containing two oxygen atoms and 4-7 carbon atoms

(j) oxacycloalkylalkyl containing one oxygen atom and 4-7 carbon atoms

(k) oxacycloalkylalkoxy containing two oxygen atoms and 4-6 carbon atoms, or

(I) R⁶ and R⁷, or R⁷ and R⁸ together with the adjacent carbon atoms in the pyridine ring from a ring wherein the part constituted by R^6 and R^7 , or R^7 and

85 R⁸, is

90

-CH=CH-CH=CH-

-O-(CH2)p-

-CH2(CH2)p-

-O-CH=CH--NH-CH=CH-

-N-CH=CH-

wherein p is 2, 3 or 4 and the O and N atoms always 95 are attached to position 4 in the pyridine ring; and physiologically acceptable salts of the compounds I wherein X is S; with the provisos that

(a) not more than one of R⁶, R⁷ and R⁸ is hydrogen,

(b) when X is SO, R5 is H and R6, R7 and R8 are 100 selected only from hydrogen, methyl, methoxy, ethoxy, methoxyethoxy and ethoxyethoxy and at the same time more than one of R1, R2, R3 and R4 are hydrogen, then those radicals R1, R2, R3 and R4 which 105 are not H cannot be selected only from alkyl groups,

halogen, alkoxycarbonyl, alkoxy or alkanoyl.

(c) when X is S, R5 is H, alkanoyl or alkoxycarbonyl, and R^6 , R^7 and R^8 are selected only from hydrogen, methyl, ethyl, methoxy, ethoxy, methoxyethoxy and 110 ethoxyethoxy and at the same time more than one of R^1 , R^2 , R^3 and R^4 are hydrogen, then those radicals R^1 , R2, R3 and R4 which are not H cannot be selected only from alkyl groups, halogen, alkoxycarbonyl, alkoxy, alkanoyl, trifluoromethyl, or NO2,

(d) when X is SO, one of R⁶, R⁷ and R⁸ is H and the other two of R⁶, R⁷ and R⁸ are alkyl, and at the same time more than one of R1, R2, R3 and R4 are hydrogen, then those radicals R1, R2, R3 and R4 which are not H cannot be sele sted only from alkyl, halogen, cyano,

(e) when R^3 , R^4 , R^5 and R^{15} are H and simultaneously R^6 and R^8 are H or CH₃ and R^7 is OCH₃, then R^1 is not 5 CF₃ when R^2 is H, and R^2 is not CF₃ when R^1 is H.

- 2. A compound according to claim 1 wherein X=S.
- 3. A compound according to claim 1 wherein X=SO.
- 4. A compound according to any one of the preceding claims wherein R⁵=H.
 - 5. A compound according to any one of the preceding claims wherein R¹⁵=H.
- A compound according to any one of the
 preceding claims wherein at least three of the radicals R¹, R², R³ and R⁴ are other than hydrogen, or they form at least one ring.
- 7. A compound according to any one of the preceding claims wherein R¹, R², R³ and R⁴ are 20 selected from H, alkyl and alkoxy groups.
 - 8. A compound according to any one of the preceding claims wherein R^8 and R^8 are selected from H, CH₃, C₂H₅, C₃H₇, CH(CH₃)₂ and ring structures connecting with position 4 in the pyridine ring.
- A compound according to any one of the preceding claims wherein two of the radicals R⁶, R⁷ and R⁸ form one ring structure and the third radical of R⁶, R⁷ and R⁸ is H or alkyl.
- A compound according to any one of claims
 1-8 wherein R⁵ and R¹⁵ are H; at least three of the radicals R¹, R², R³ and R⁴ are other than H; R⁶ and R⁸ are each H or CH₃; and R⁷ is CH₃, OCH₃ or OCH₂CH=CH₂.
 - 11. A compound of the formula:

35 wherein X is S or SO

R2 is CH3, C2H5, CH(CH3)2 or OCH3.

12. A process for the preparation of a compound of the formula:

$$\begin{array}{c}
R^{2} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
R^{3}
\end{array}$$

$$\begin{array}{c}
R^{4}
\end{array}$$

$$\begin{array}{c}
R^{5}
\end{array}$$

$$\begin{array}{c}
R^{5}
\end{array}$$

$$\begin{array}{c}
R^{5}
\end{array}$$

$$\begin{array}{c}
R^{5}
\end{array}$$

wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 and R^{15} are as 40 defined in claim 1, and X is SO

by oxidizing a compound of the formula l,

wherein R¹⁵, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ have the meanings given above, to give a compound of the same formula I wherein X is S0;

13. Process for preparation of a compound of the formula I wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁶ and R¹⁵ are as defined in claim 1 and X is S by reacting a compound of the formula:

$$\begin{array}{c|c}
R^2 & R^1 \\
R^3 & R^4 & R^5
\end{array}$$

50 with a compound of the formula:

in which formulae R^{15} , R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 and R^8 are as defined in claim 1 and wherein one of Z^1 and Z^2 is SH and the other is a leaving group, to give a compound of the formula I wherein X is S.

14. Process for the preparation of a compound of the formula I wherein X is S and at least one of R¹, R², R³ and R⁴ is an ester group (Z)_n-A-COOR⁹, COOR¹⁰ or (Z)_n-A-OCOR¹⁰ wherein Z, n, A, R⁹ and R¹⁰ are as defined in claim 1 by esterification of a compound of the formula:

wherein R¹⁵, R⁵, R⁶, R⁷ and R⁸ are as defined in claim 1 and Y¹, Y², Y³ and Y⁴ represent either R¹, R², R³ and R⁴ as defined in claim 1, respectively, or the groups (Z)_n-A-COOH, COOH and (Z)_n-A-OH, but at least one of Y¹, Y², Y³, Y⁴ is in the acid or alcohol form, by reaction with the appropriate alcohol R⁹OH, R¹⁰OH or carboxylic acid R¹⁰COOH, respectively, to form the required compound.

15. Process for preparation of a compound of the formula I wherein R⁵ is R¹⁴CO and R¹⁴ is as defined in claim 1, by acylation of a compound of the formula:

wherein R15, X, R1, R2, R3, R4, R6, R7 and R8 are as defined in claim 1, by reaction with an appropriate acylating agent (R14CO)2O, or R14COX1, wherein X1 is a leaving group.

16. Process for the preparation of a compound of the formula I wherein R5 is H, by hydrolyzing a compound of the formula

$$R^{\frac{1}{2}} = R^{\frac{1}{2}} + R^{\frac{1}{2}}$$

wherein X, R15, R1, R2, R3, R4, R6, R7 and R8 are as defined in claim 1 and Z3 is a suitable N-protecting 10 group to form the required compound.

- 17. A process according to any one of claims 13-16 wherein a compound in which X is S is obtained and the resulting compound is converted into a physiologically acceptable salt.
- 18. A process according to any one of claims 12-17 substantially as hereinbefore described with reference to any one of the Examples.
 - 19. A pharmaceutical composition containing a compound or salt according to any of claims 1-11
- 20 together with an inert carrier or diluent. 20. A composition according to claim 19 substantially as hereinbefore described with reference to any one of Examples 167-169.
- 21. A compound according to any one of claims 25 1-11 or a physiologically acceptable salt thereof or a composition according to claim 19 or 20 for use in a method of treatment of the human or animal body by surgery or therapy.
- 22. A compound according to any one of claims 30 1-11 or a physiologically acceptable salt thereof or a composition according to claim 19 or 20 for use in the treatment of gastric disorders.
- 23. A compound as defined in any of claims 1-11, or a therapeutically acceptable salt thereof, or a 35 composition according to claim 19 or 20 for use in inhibiting gastric acid secretion in the human or apimal body.
- 24. A compound as defined in any of claims 1-11, or a therapeutically acceptable salt thereof, or a 40 composition according to claim 19 or 20 for use as a gastrointestinal cytoprotecting agent in the human or animal body.
- 25. A compound as defined in any of claims 1-11, or a therapeutically acceptable salt thereof, or a 45 composition according to claim 19 or 20 for use in the treatment of gastrointestinal inflammatory diseases in the human or animal body.
 - 26. A compound of the formula:

$$R^{2a} \xrightarrow{R^{1a}} N \xrightarrow{N} z^{1a} VIII$$

wherein R^{1a} , R^{2a} , R^{3a} and R^{4a} are the same or different 50 and selected from the groups

- (a) H,
- (b) alkyl containing 1-6 carbon atoms including cycloalkyl
- (c) alkoxyalkyl containing 1-3 carbon atoms in the 55 alkoxy residue and 1-6 carbon atoms in the alkyl
 - (d) aryloxyalkyl containing 1-6 carbon atoms in the alkyl residue.
- (e) arylalkyl containing 1-6 carbon atoms in the 60 alkyl residue,
 - (f) aryl,
 - (g) alkoxy containing 1-6 carbon atoms,
- (h) alkoxyalkoxy containing 1-3 carbon atoms in the outer alkoxy residue and 1-6 carbon atoms in the 65 alkoxy residue nearest the aromatic ring.
 - (i) aryloxyalkoxy containing 1-6 carbon atoms in the alkoxy residue,
 - (j) arylalkoxy containing 1-6 carbon atoms in the alkoxy residue, and
- (k) aryloxy,
 - R^{5a} is (a) H,
 - (b) alkoxycarbonyl containing 1-4 carbon atoms in the alkoxy residue,
- (c) arylalkoxycarbonyl containing 1-2 carbon
- 75 atoms in the alkoxy residue,
 - (d) dialkylaminocarbonyl containing 1-4 carbon atoms in each alkyl residue, or
 - (e) arylaminocarbonyl, and Z1ª is (a) SH,
- (b) ClorBr provided that not more than one of R^{1a}, R^{2a}, R^{3a} and R40 is H.
 - 27. A compound of the formula:

wherein R60 and R50 are

- (a) Hor
- (b) alkyl containing 1-5 carbon atoms, and R7ª is (a) alkenyloxy containing 2-5 carbon atoms,
 - (b) alkynyloxy containing 2-5 carbon atoms,
- (c) oxacycloalkyl containing one oxygen atom and 3-7 carbon atoms.
 - (d) oxacycloalkoxy containing two oxygen atoms and 4-7 carbon atoms,
 - (e) oxacycloalkylalkyl containing one oxygen atom
- 95 and 4-7 carbon atoms
 - (f) oxacycloalkylalkoxy containing two oxygen
 - atoms and 4-6 carbon atoms, or (g) R^{6a} and R^{7a} , or R^{7a} and R^{8a} together with the
- adjacent carbon atoms in the pyridine ring form a ring 100 wherein the part constituted by R^{6a} and R^{7a} or R^{7a} and R80 is
 - -CH=CH--CH=CH--
 - —O—(CH₂)_{p•}—
 - ---CH2--(CH2)pa-
- -0-CH=CH-

wherein pais 2, 3 or 4 and the O atom always is attached to position R70, and Z2a is (a) SH,

(b) halogen Cl, Br, 1 or

(c) OH

provided that not more than one of R^{6e} and R^{8e} is H.

Privated for Her Majesny's Stationary Office by The Tweeddale Press Ltd. Bernick-upon-Tweed, 1894. Published at the Phent Office, 25 Southempton Buildings, London WC2A 147, from which copies may be obtained.

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

: .
R QUALITY

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox