浙江大学 2018 - 2019 学年 春夏 学期

《离散数学及其应用》课程期末考试试卷

课程号: 211B0010_, 开课学院: _计算机_

-10 11 1.1 E-

考试试卷: √A卷、B卷(请在选定项上打√)

考试形式: √闭、开卷(请在选定项上打√),允许带_____入场

考试日期: 2019年07月04日,考试时间: 120分钟

诚信考试,沉着应考,杜绝违纪。

考生如		⋜号:							
题序	_	=	三	四	五	六	七	总 分	
得分									
评卷人									

1. (20 marks) Determine whether the following statements are true or false. If it is true write a $\sqrt{}$ otherwise a \times in the blank before the statement.

- 1) (x) "This statement is false." is a proposition.
- 2) (\times) If a relation R on a nonempty set A is transitive then $R^2 = R$.
- 3) ($\sqrt{}$) The wheel W_n is not a bipartite graph for every n>=3.
- 4) $(\sqrt{}) P(A) = P(B)$, if and only if A = B, where P(X) is the power set of X.
- 5) (\times) A weakly connected directed graph with $deg^+(v)=deg^-(v)$ for all vertices v is not always strongly connected.
- 6) ($\sqrt{}$) The Hasse diagram for the partial ordering ($\{1, 2, 3, 4, 5, 6, 7, 8, 9\}, |$) is not a tree.
- 7) (\times) $\left[\frac{x}{2}\right] = \left[\frac{x+1}{2}\right]$ for all real number x.
- 8) (\times) There is not any countable infinite set A with a bijection: A \rightarrow A \times A.

9)	(\checkmark) Let a_1 = 2, a_2 = 9, and a_n = 2 a_{n-1} + 3 a_{n-2} for n ≥ 3. Then a_n ≤ 3 ^{n} for all positive
	in	itegers.

10) ($\sqrt{}$) If $\forall x (P(x) \lor Q(x))$ and $\forall x ((\neg P(x) \land Q(x)) \rightarrow R(x))$ are true, then $\forall x (\neg R(x) \rightarrow P(x))$ is also true, where the domains of all quantifiers are the same.

2. (33 marks) Filling in the blanks.

- 1) If *T* is a full 3-ary tree with 10 vertices, its minimum and maximum heights are __2, 3____.
- 2) Use Huffman coding to encode these symbols with given frequencies: A: 0.10, B: 0.20, C: 0.05, D: 0.15, E: 0.30, F: 0.12, G: 0.08. The average number of bits required to encode a symbol is ______.
- 3) If G is a planar connected graph with 10 vertices, each of degree 4, then G has ____12___ regions.
- 4) The full disjunctive normal form of $\neg r \lor (p \leftrightarrow q)$ is

 $_m0 \lor m1 \lor m2 \lor m4 \lor m6 \lor m7___.$

5) Let $A=\{a, b, c, d, e\}$, the Hasse diagram of a

partial relation R

on A is illustrated in Fig. 1

Fig.1

Then $|R| = _12$ {(a,a),(a,b),(a,c),(a,d),(a,e),(b,b),(b,d),(c,c),(c,d),(c,e),(d,d),(e,e)} ___.

- 6) There are ___9___ non-isomorphic rooted trees with 5 vertices.
- 7) There is a binary tree. Its postorder traversal is DEBFCA, and its inorder traversal is DBEACF. Its preorder is _____ABDECF_____.
- 8) Suppose $A = \{1,2,3\}$, there are __8__ relations which are reflexive and symmetric on the set A; there are __5__ equivalence relations on the set A; there are __19___ partial orderings on the set A.

- 9) Suppose that S= {a, b}. How many ordered pairs (A, B) are there such that A and B are subsets of S with A⊆B?9 .
- 10) Suppose W is a weighted graph (See Fig. 2), the length of the shortest path between a and z is 15.

Fig. 2

- **3**. (12 marks) How many different ways can you put 9 coins in 9 boxes which are labeled $B_1,...,B_9$ on them
- (1) if the coins are all different and no box is empty?
- (2) if the coins are all different and only two boxes B_1 and B_9 are empty?
- (3) if the coins are all different and exactly four boxes are not empty?
- (4) if the coins are all different and each box is either empty or contains exactly three coins?
- (5) if the coins are identical?
- (6) if the coins are identical and exactly six boxes are empty?

评分标准:列出式子即可,不必算最后数字。式子正确,即使最后数字算错也给全部分。

- (1) (2分) P(9,9) = 362880
- (2) (2分) 7^9 -C(7,1)*6⁹+C(7,2)*5⁹-C(7,3)*4⁹+C(7,4)*3⁹-C(7,5)*2⁹+C(7,6)
 - = 40353607-70543872+41015625-9175040+688905-10752+7 = 2328480

(解法2: 7! * S(9,7))

(解法3: C(9,3) * 7! + C(9,2) * C(7,2) * 7!/2)

(解法4: C(7,2)*9!/(2!*2!)+C(7,1)*9!/3!)

(解法5: C(9,3) * 7! + C(7,5) * P(9,5) * C(4,2))

(解法6: C(9,3) * 7! + C(7,2) * C(9,2) * C(7,2) * 5!)

注: 思路正确, 有所遗漏 (例如解法3第二个式子漏除2) 给半对。

(3) (2分) $(4^9-C(4,1)^* 3^9 + C(4,2)^* 2^9-C(4,3))$ *C(9,4) = 186480* 126 = 23496480

(解法2: 4! * S(9,4) * C(9,4))

(解法3: C(9,4)* (穷举六种情况组合: 6111,5211,4311,4221,3321,3222))

注:解成5个盒子的给半对。

(4) (2分) 9!/(3!*3!*3!) * C(9,3) = 141120

(解法2: C(9,3)* C(9,3)* C(6,3))

- (5) (2分) C(9+9-1, 9) = 24310
- (6) (2分) C(3+6-1,6) * C(9,3) = 2352

注:解成C(3+9-1,9)* C(9,3)的给半对;列出C(3+6-1,6)给半对

注:一个半对给1分;两个或三个半对:都合起来给2分。

4. (8 marks)

- (1) Find the smallest partial ordering on $\{1, 2, 3\}$ that contains (1,1), (3,2), (1,3).
- (2) Find the smallest equivalent relation on {1, 2, 3} that contains (1,1), (3,2), (1,3).
- $(1) \{(1,1),(2,2),(3,3),(3,2),(1,3),(1,2)$ (4 marks)
- (2) {(1,1), (1,2), (1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)} (4 marks) 评分标准:
 - (1) 每小题4分,满分为正确枚举出所有有序对或者写出0-1矩阵

- (2) 概念清楚,但漏掉小部分有序对,酌情扣分。
- 5. (8 marks) Let a_n be the number of strings of length n consisting of the characters 0, 1, 2 with no consecutive 0's.
- (1) Find a recurrence relation for a_n and give the necessary initial condition(s).
- (2) Find an explicit formula for a_n by solving the recurrence relation in part (1).

(1) 共4分

$$a_n = 2a_{n\text{-}1} + 2a_{n\text{-}2}$$

或者
$$a_n = 2a_{n-1} + 2a_{n-2}$$
 (3分)

$$a_0 = 1$$
 $a_1 = 3$ OR $a_1 = 3$ $a_2 = 8$ (1分)

(2) 共4分

$$x2-2x-2=0$$
 $x_1=1+sqrt(3)$ $x_2=1-sqrt(3)$ (1分)

$$a_n = c1 * x_1^n + c2 * x_2^n$$
 (2分)

$$1 = c1 + c2$$

$$3 = c1 * (1+sqrt(3)) + c2 * (1-sqrt(3))$$

$$c1 = 0.5 + sqrt(3)/3$$

$$c2 = 0.5 - sqrt(3)/3$$
 (1分)

$$a_n = (0.5 + \text{sqrt}(3)/3) * (1+\text{sqrt}(3))^n + (0.5 - \text{sqrt}(3)/3) * ((1-\text{sqrt}(3)))^n$$

- **6**. (10 marks) G is a directed graph (See Fig. 3).
- (1) Find the number of different paths of length 3.
- (2) Determine whether G is strongly connected or weakly connected.
- (3) Is the underlying undirected graph of G a Hamilton graph? Justify your answer.
- (4) Find the chromatic number of the underlying undirected graph of G.
- (5) Find the spanning tree for the underlying undirected graph of G. Choose V_4 as the

root of the spanning tree.

(1) 共2分

$$\mathsf{M} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \quad \overset{153}{1}$$

Calculate M³

Total 11 1分

注: 给出结论,无过程也得满分。

(2) 2分

weakly connected, not strongly connected

注: 给出结论, 即得满分

(3) 2分

No. delete V3 make 2 connected components

注:结论1分,原因1分

(4) 2分

3

注: 给出结论即得满分。

(5) 2分

Multi solutions. Example

注: 给出一个以V₄为根的树即得满分,若给出的不是带根树,扣1分。

- 7. (9 marks) Let G be a connected planar simple graph with at least 3 vertices containing no triangles, let e and v be the number of edges and the number of vertices of G, respectively. Prove that:
- (1) $e \le 2v-4$.
- (2) G has a vertex of degree at most 3.
- (3) $\chi(G) \le 4$. Where $\chi(G)$ is the chromatic number (色数) of G. (You cannot use "the four color theorem" in your proof.)

每小题3分。

(1) $2e = \sum \deg(R_i) \ge 4r$ (1分) $4r \le 2e$ $e-v+2=r \le 0.5e$ (1分) $0.5e \le v-2$ $e \le 2v-4$ (1分)

(2)

So we have

$$\sum_{v \in V(G)} \deg(v) = 2|E(G)| \le 4n - 8,$$

(1分)

which by the pigeonhole principle implies that there is a vertex $v \in V(G)$ with $\deg(v) \leq 3$. (2 %)

(3) We prove it by induction on the number of vertices of G. If $|V(G)| \le 4$, there is nothing to prove. (1分)

Suppose the statement holds for all the graphs with n-1 vertices, we prove it for the graph G on n vertices.

Now by the induction hypothesis, since the graph G-v is also triangle-free, we have $\chi(G-v) \leq 4$. So by coloring the vertex v by a color different from its neighbors, we get a valid 4-coloring of G. (2/T)