Sets, Patterns, and Fourier Decay

Jacob Denson

March 28, 2022

Fourier Analysis and Patterns in Sets

- ▶ What can one learn about the geometry of a compact set $E \subset \mathbb{T}^d$ via analytical properties of probability measures μ supported on E?
- ▶ A set E has Minkowski dimension s if $|N_{\delta}(E)| \lesssim \delta^{d-s}$.
- A set E has Hausdorff dimension s if for any t < s, E supports a probability measure μ_t with

$$\sum_{k\neq 0} |\widehat{\mu}_t(k)|^2 |k|^{t-d} < \infty.$$

Very similar to Minkowski dimension, but 'multiscale'.

- ▶ A set has Fourier Dimension s if it supports μ_t with $|\widehat{\mu}_t(k)| \lesssim |k|^{-t/2}$ for all k.
- ▶ $\dim_{\mathbb{F}}(E) \leq \dim_{\mathbb{H}}(E) \leq \dim_{\mathbb{M}}(E)$.

Pattern Avoidance

- ▶ If dim(E) is large, does E 'contain patterns'.
- ▶ Basic Example: If dim(E) is large, are there $m_1, \ldots, m_n \in \mathbb{Z}$ and distinct $x_1, \ldots, x_n \in E$ such that $m_1x_1 + \cdots + m_nx_n = 0$? (Can large sets be linearly independent over \mathbb{Q})
- ▶ (Keleti, 1999) There is $E \subset \mathbb{T}$ with $\dim_{\mathbb{H}}(E) = 1$ such that for any m_1, \ldots, m_n and distinct $x_1, \ldots, x_n \in E$, $m_1x_1 + \cdots + m_nx_n \neq 0$.
- If $\dim_{\mathbb{F}}(E) > 0$, there is $n, m_1, \dots, m_n \in \mathbb{Z}$ and distinct $x_1, \dots, x_n \in E$ such that $m_1x_1 + \dots + m_nx_n = 0$.
- If $\dim_{\mathbb{F}}(E) > 2/n$, then there are m_1, \ldots, m_n and distinct $x_1, \ldots, x_n \in E$ such that $m_1x_1 + \cdots + m_nx_n = 0$.

Independent Sets

- (Rudin, 1960): There exists $E \subset \mathbb{T}$ and a finite Borel measure μ with supp $(\mu) \subset E$ such that E is independent but $|\widehat{\mu}(k)| \to 0$ as $|k| \to \infty$.
- ► (Körner, 2007): There exists independent *E* supporting measures converging to zero as 'fast as possible'.
- ▶ (Körner, 2009): There exists $E \subset \mathbb{T}$ with $\dim_{\mathbb{F}}(E) = 1/(n-1)$ such that E avoids solutions to all n-term linear equations.

Arithmetic Progressions $(x_1 - 2x_2 + x_3 = 0)$

- (Łaba and Pramanik, 2007): For some small $\varepsilon > 0$, if $|\widehat{\mu}(k)| \leq C_1 |k|^{-(1-\varepsilon)/2}$ and $\mu((x,x+r)) \leq C_2 r^{\alpha}$ for appropriate C_1 , C_2 , and α , supp(μ) contains arithmetic progressions.
- Schmerkin, 2015): There is $E \subset \mathbb{T}$ avoiding arithmetic progressions with $\dim_{\mathbb{F}}(E) = 1$.
- ► (Liang and Pramanik, 2020): Generalized Schmerkin's construction to all translation-invariant patterns.

Fourier Dimension and Nonlinear Patterns

• (Henriot and Łaba and Pramanik, 2015): For certain linear maps A_1, \ldots, A_n and polynomials Q, there is $\varepsilon > 0$ such that if $E \subset \mathbb{T}$ and $\dim_{\mathbb{F}}(E) \geq 1 - \varepsilon$, E contains a family of points of the form

$$\{x, x + A_1y, \dots, x + A_{n-1}y, x + A_ny + Q(y)\}.$$

The pattern $\{x, x + t, x + t^2\}$ is *not* covered.

- (Fraser and Guo and Pramanik, 2019): If $\deg(f) > 1$ and f(0) = 0, then patterns of the form $\{x, x + t, x + f(t)\}$ exist in $\sup p(\mu)$ if μ satisfies explicit estimates ala Łaba and Pramanik.
- ▶ (Kuca, Orponen, Sahlsten, Preprint 2021): If $E \subset \mathbb{T}^2$ and $\dim_{\mathbb{H}}(E) \geq 2 \varepsilon$, then E contains solutions to $y_2 x_2 = (y_1 x_1)^2$ for distinct $x, y \in E$.

Sets Avoiding Nonlinear Patterns for Hausdorff Dimension

▶ Find large $E \subset \mathbb{T}^d$ such that for distinct $x_1, \ldots, x_n \in E$,

$$x_n \neq f(x_1,\ldots,x_{n-1}).$$

Author	Property of f	$dim_{\mathbb{H}}(X)$
Mathé (2017)	A degree r polynomial	d/r
Fraser Pramanik (2019)	f is C^1	1/(n-1)
D. Pramanik Zahl (2020)	f Lipschitz	1/(n-1)
D. (2020)	$f = g \circ \pi$ where the linear map $\pi: \mathbb{R}^{n-1} \to \mathbb{R}^{m-1}$	1/(m-1)
	map $\pi:\mathbb{R}^{n-1} o\mathbb{R}^{m-1}$	
	is is surjective	

Can we modify these constructions to obtain Salem sets?

Main Result

Theorem

Suppose $f(x_1, ..., x_{n-1})$ is C^{d+1} , and for each $1 \le i \le n-1$,

$$D_{x_k}f=\left(\frac{\partial f_i}{\partial x_{kj}}\right)$$

is invertible. Then there exists $E \subset \mathbb{T}^d$ with

$$dim_{\mathbb{F}}(E) = \frac{d}{n - 3/4}$$

avoiding solutions to the equation $x_n = f(x_1, \dots, x_{n-1})$.

▶ (Fraser and Pramanik, 2016) obtains a set $E \subset \mathbb{R}$ with

$$\dim_{\mathbb{H}}(E) = \frac{d}{n-1}.$$

Linear Result

Theorem

Suppose f is Lipschitz. Then there exists $E \subset \mathbb{T}^d$ with

$$dim_{\mathbb{F}}(E) = \frac{d}{n-1}$$

avoiding solutions to the equation

$$x_n - x_{n-1} = f(x_1, \ldots, x_{n-2}).$$