- Some papers or topics are followed by tutorials to facilitate understanding. The tutorials are not valid choices for the critic review report required in Assignment 1.
- Based on **personal experience**, some papers are marked with "+" symbols, from + to ++++ indicating easy to hard implementation. Theoretical papers or papers outside my expertise lack the ranking. The ranking may be helpful for you to choose a "technical path", which you may follow in doing Assignment 2 and 3. But they have NO effect in assessing your Assignment 1.

[Undergoing construction ...]

Probabilistic models

- Probabilistic PCA (http://www.robots.ox.ac.uk/~cvrg/hilary2006/ppca.pdf)(++)
 - Bayesian PCA (https://papers.nips.cc/paper/1549-bayesian-pca.pdf)(++)
- <u>Linear Discriminant Analysis (http://www.face-rec.org/algorithms/LDA/discriminant-analysis-for-recognition.pdf)</u>
- <u>Latent Dirichlet Process-based Model</u>
 (http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf)(+++), nested
 (https://cocosci.berkeley.edu/tom/papers/ncrp.pdf)(+++), https://cocosci.berkeley.edu/tom/papers/ncrp.pdf)(+++), https://cocosci.berkeley.edu/tom/papers/ncrp.pdf)(-++), https://cocosci.berkeley.edu/tom/papers/ncrp.pdf)(-++), https://cocosci.berkeley.edu/tom/papers/ncrp.pdf)(-++), https://cocosci.berkeley.edu/tom/papers/ncrp.pdf)(-++), https://cocosci.berkeley.edu/coco

Non-parametric and kernel methods

- Good old nearest neighbour (https://www.nowpublishers.com/article/Details/MAL-064)
- Kernel PCA (http://pca.narod.ru/scholkopf_kernel.pdf)(++)
 - KPCA application (https://alex.smola.org/papers/1999/MikSchSmoMuletal99.pdf)

Ensemble

- Adaboost (http://web.eecs.utk.edu/~leparker/Courses/CS425-528fall10/Handouts/AdaBoost.M1.pdf)(++)
 - Adaboost-Multiclass (https://web.stanford.edu/~hastie/Papers/samme.pdf)
 - <u>Fast Object Detection</u>
 (https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf)
 - Gradient Boost (paper-1 (https://statweb.stanford.edu/~jhf/ftp/stobst.pdf), paper-2 (http://maths.dur.ac.uk/~dma6kp/pdf/face_recognition/Boosting/Mason99AnyboostLopaper-3 (http://maths.dur.ac.uk/~dma6kp/pdf/face_reco
 - tutorial-1 (https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full), tutorial-2 (https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/)
- Random Forest (https://link.springer.com/article/10.1023/A:1010933404324)(++)
- Comparative Study (http://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf)

Generative Models and Data Representation

- Generative Adversarial Nets (https://arxiv.org/abs/1406.2661)(+)
 - Wasserstein GAN (https://arxiv.org/abs/1701.07875)(++)

- For Image Data (https://arxiv.org/abs/1511.06434)(++)
- <u>Sparse Encoding (https://www.semanticscholar.org/paper/Learning-Overcomplete-Representations-Lewicki-Sejnowski/0ee7cacbf988c7b3f24b2bc6dd43d9fce1b25bdc)</u>
 (+++)
 - Efficient Sparse Encoding Algorithms (https://papers.nips.cc/paper/2979-efficientsparse-coding-algorithms.pdf)(+++)
- Metric Learning (https://ai.stanford.edu/~ang/papers/nips02-metric.pdf)(++)
- Auto Encoder (http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoisingautoencoders.pdf)(+)
 - Sparse AutoEncoder
 (https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf)(++)
 - Variational AutoEncoder (Auto-encoding variational Bayes)(++) tutorial (https://arxiv.org/abs/1606.05908)
- Deep Learning and AI (https://www.nowpublishers.com/article/Details/MAL-006)

Training Techniques, Regularisation

- [Large Margin and SVM, ?]
- [Early Stopping, ?]
- <u>Dropout (http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf)</u>
- Long Short-term Memory (http://www.bioinf.jku.at/publications/older/2604.pdf)
 - Recurrent sequence translation, GRU (https://arxiv.org/pdf/1409.1259.pdf)
 - Recurrent Unit Comparison (https://arxiv.org/pdf/1412.3555v1.pdf)
- <u>Batch Normalisation (https://arxiv.org/abs/1502.03167)(+, Inception-v2)</u>

Deep Architecture

- <u>AlexNet (https://www.nvidia.com/content/tesla/pdf/machine-learning/imagenet-</u>classification-with-deep-convolutional-nn.pdf)
- Very-deep (at its time) VGG (https://arxiv.org/abs/1409.1556)
- Inception Net v1 (https://arxiv.org/pdf/1409.4842.pdf), v2(see above), v3
 (https://arxiv.org/abs/1512.00567), v4 (https://arxiv.org/pdf/1602.07261.pdf)(with ResNet)
- ResNet (https://arxiv.org/abs/1512.03385)
 - ResNet connects to boosting (https://arxiv.org/abs/1605.06431), Using Boosting to Train ResNet (https://arxiv.org/abs/1706.04964)

Reinforcement

- [Regret Bounding, ?]
- [Temporal Difference, ?]
- [Q-Learning, ?]
- [Policy-Gradient, ?]
- Monte Carlo Tree Search (https://hal.inria.fr/inria-00116992/document)(++)
 - AlphaGo Zero (https://deepmind.com/documents/119/agz_unformatted_nature.pdf)
 (++++)

Dvnamic Models

- [HMM, ?]
- [Kalman Filter, ?]

Monte Carlo Methods (for MCTS, see above)

- RANSAC (https://dl.acm.org/citation.cfm?id=358692)(+, behind pay-wall, use our library to download)
- [Inference methods, ?]

Application / Practical Tasks

Cavet: Papers in this section represent trend as of 2018, but may not be time-tested.

- Attack and Defense
 - Attack Deep NN Image Recognisers by Slightly Noisy Images (https://arxiv.org/pdf/1312.6199.pdf)(+)
 - Single Pixel Attack (https://arxiv.org/pdf/1710.08864.pdf)(++)
 - Mass Destruction Attack (https://arxiv.org/pdf/1802.08195.pdf)(++): attact on non-specific image processing systems, even slightly touched biological ones!
- Object Detection (papers in this section are of difficulty +++ if implemented from scratch, but existing implementations are widely available)
 - Regional CNN (https://arxiv.org/pdf/1311.2524.pdf), fast
 (https://arxiv.org/abs/1504.08083), faster (https://arxiv.org/pdf/1506.01497.pdf)
 tutorial-1 (https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4), tutorial-2
 (https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e)
 - Yolo (https://arxiv.org/pdf/1506.02640v5.pdf)
 - Single Shot Detector (https://arxiv.org/abs/1512.02325)
- Sequence to sequence translation (https://arxiv.org/pdf/1409.3215.pdf)(+)
 - Align and translation together (https://arxiv.org/abs/1409.0473)(+)
 - Attention-based (http://papers.nips.cc/paper/7181-attention-is-all-you-need)
- Game Playing and Control
 - Q-Learning (https://deepminddata.storage.googleapis.com/assets/papers/DeepMindNature14236Paper.pdf)(++, the pioneer work), [Double-Q, ?], [Rainbow-Q, ?], [Q from Demo, ?]
 - [Deterministic Policy Gradient, ?], [DDPG, ?], [A3C, ?], [A2C, ?]
- Recommendation systems
 - Reduction-based (http://files.grouplens.org/papers/webKDD00.pdf)(+)
 - <u>Matrix Factorisation</u>
 <u>(http://www.cs.rochester.edu/twiki/pub/Main/HarpSeminar/Factorization Meets the National Model.pdf)</u>
- Text Content Analysis and Generation
 - Sentient Analysis (http://www.cs.columbia.edu/~julia/papers/Agarwaletal11.pdf)(++)
 - Dialogue Bots (https://arxiv.org/abs/1507.04808)