Домашнее задание №6 по курсу «Машинное обучение»: Выпуклые задачи. Регуляризация и стабильность

Терлиженко Ирина

29 октября 2019 г.

1 Задания

1. Постройте пример того, что 0-1 функция потерь может обладать локальным минимумом, не являющимся глобальным.

Другими словами, приведите пример выборки $S \in (X \times \{\pm 1\})^m$ (например, для пространства примеров $X = \mathbb{R}^2$), для которой существует вектор w и некоторый $\epsilon > 0$, что выполняется

- 1. Для любого w', такого, что $||w-w'|| \le \epsilon$, выполняется $L_S(w) \le L_S(w')$. Это означает, что w локальный минимум L, где L 0-1 функция потерь.
- 2. Существует некоторый w^* , такой, что $L_S(w^*) < L_S(w)$. Это означает, что w не является глобальным минимумом.
- 2. Рассмотрим задачу обучения логистической регрессии. Пусть $H = X = \{x \in \mathbb{R}^d : ||x|| \le B\}$ для некоторой скалярной величины B, пусть $y = \pm 1$, и пусть функция потерь имеет вид

$$l(w, (x, y)) = \log(1 + \exp(-y\langle w, x \rangle))$$

Покажите, что задача одновременно и выпукло-липшицево-ограничена, и выпукло-гладко-ограничена. Приведите соответствующие параметры липшицевости и гладкости.

3. Рассмотрим задачу полупространств с hinge-loss. Пусть множество примеров — евклидов шар радиуса R, то есть $X = \{x : \|x\|_2 \le R\}$. Множество меток $Y = \{\pm 1\}$. Функция потерь $l(w, (x, y)) = \max\{0, 1 - y\langle w, x\rangle\}$. Данная функция потерь является выпуклой.

Покажите, что эта функция потерь также является R-липшицевой.