

Лабораторная работа №7 Определение постоянной Планка

Хафизов Фанис

11 апреля 2021 г.

1 Цель работы

- 1. Изучение явления внешнего фотоэлектрического эффекта и проверка справедливости уравнения Эйнштейна для фотоэффекта;
- 2. Экспериментальное определение постоянной Планка.

2 Оборудование

Рис. 1: Экспериментальная установка для измерения фототока.

Эксперимент по демонстрации фотоэлектрического эффекта формируется с помощью следующих элементов: фотоэлемента, катод которого облучается лучом света, который характеризуется частотой ν ; потенциометра, позволяющего применять к аноду напряжение U (положительное или отрицательное по отношению к катоду); вольтметра для измерения данного напряжения; микроамперметра для измерения фотоэлектрического тока I.

3 Порядок действий

- 1. Соберем экспериментальную установку.
- 2. Получим экспериментальную зависимость напряжения на резисторе, подключенного последовательно с фотоэлементом U от угла φ в пределах от 13° до 25°. Построим график этой зависимости.
- 3. Для фиксированного значения $\varphi = 20^{\circ}$ получим зависимость напряжения на резисторе при фотоэлементе от приложенного напряжения между анодом и катодом $U(U_1)$. Построим график этой зависимости и по нему определим запирающее напряжение для данной длины волны излучения.
- 4. Исследуем зависимость запирающего напряжения от длины волны излучения, определяя минимальное по модулю напряжение между анодом и катодом, при котором прекращается фототок.
- 5. Построим график зависимости запирающего напряжения U_3 от длины волны излучения λ в координатах, в которых она будет линейной. По графику определим постоянную Планка. Оценим погрешность.

4 Теоретическая зависимость

Формула дифракционной решетки:

$$m \cdot \lambda = d \cdot \sin(\varphi) \tag{1}$$

Так как мы наблюдаем первый дифракционный максимум, то m=1. Уравнение Эйнштейна для фотоэффекта:

$$h\frac{c}{\lambda} = A_B + e \cdot U_3 \tag{2}$$

$$(1), (2) \Rightarrow U_3 = \frac{1}{e} \left(\frac{hc}{d\sin(\varphi)} - A_B \right) \tag{3}$$

Получили, что запирающее напряжение пропорционально $\frac{1}{\sin(\varphi)}$.

5 Таблицы данных и графики

$\varphi,^{\circ}$	U, B
13	6,5
14	8,9
15	14,0
16	14,0
17	14,0
18	14,0
19	14,0
20	14,0
21	14,0
22	14,0
23	9,9
24	7,1
25	6,5

Таблица 1: Зависимость $U(\varphi)$

U_1 , B	U, B
7,5	13,97
7,17	13,5
7,15	12,74
7,12	11,35
7,09	10,22
7,06	9,1
7,03	8,15
7	7,2
6,97	6,52
6,92	5,75
6,89	5,55
6,82	5,4

Таблица 2: Зависимость $U(U_1)$

$\varphi,^{\circ}$	$1/\sin(\varphi)$	U_1 , B
15	3,86	6,83
16	3,62	6,89
17	3,42	7,09
18	3,23	7,04
19	3,07	7,07
20	2,92	7,10
21	2,79	7,21
22	2,67	7,36

Таблица 3: Зависимость $U_3(1/\sin(\varphi))$

Рис. 2: График зависимости $U(\varphi)$.

Рис. 3: График зависимости $U(U_1)$.

Рис. 4: График зависимости $U_3(1/\sin(\varphi))$.

6 Расчеты

Угловой коэффициент графика зависимости $U_3(1/\sin(\varphi))$ равен $\alpha=0,392B$.

Из (3)
$$\alpha = \frac{hc}{ed}$$
.
 $h = \frac{\alpha ed}{c} = \frac{0,392 \cdot 1,6 \cdot 10^{-19} \cdot 1,67 \cdot 10^{-6}}{3 \cdot 10^8} = 3,49 \cdot 10^{-34} \, \text{Дж·c}$
 $\Delta h = h \cdot \varepsilon_h = h \cdot \varepsilon_\alpha = h(\varepsilon_{U_3} + \varepsilon_{\sin\alpha}) = h(\frac{\Delta U_3}{U_3} + \frac{\cos\alpha\Delta\alpha}{\sin\alpha}) = 3,49 \cdot 10^{-34} \, (\frac{0,02}{6,64} + 0,07) = 0,26 \cdot 10^{-34} \, \text{Дж·c}$
 $\varepsilon_h = \frac{\Delta h}{h} = 7,5\%$
 $h = (3,49 \pm 0,26)10^{-34} \, \text{Дж·c}$

7 Выводы

Экпериментально полученное значение постоянной Планка значительно отличается от табличных данных (примерно в 2 раза), но порядок значений совпадает. Причиной этого могла стать погрешность, связанная с оборудованием. Из-за этого вычисленная погрешность является небольшой, хотя расхождение в жизни велико.