FEniCS Course

Lecture 10: Discontinuous Galerkin methods for elliptic equations

Contributors André Massing

The discontinuous Galerkin (DG) method uses discontinuous basis functions

$$V_h = P^k(\mathcal{T}_h) = \{v_h \in L^2(\Omega) : v_h|_T \in P^k(T) \ \forall \ T \in \mathcal{T}_h\}$$

The discontinuous Galerkin (DG) method uses discontinuous basis functions

$$V_h = P^k(\mathcal{T}_h) = \{v_h \in L^2(\Omega) : v_h|_T \in P^k(T) \ \forall \ T \in \mathcal{T}_h\}$$

The discontinuous Galerkin (DG) method uses discontinuous basis functions

$$V_h = P^k(\mathcal{T}_h) = \{ v_h \in L^2(\Omega) : v_h|_T \in P^k(T) \ \forall \ T \in \mathcal{T}_h \}$$

The DG method eases mesh adaptivity

The DG method eases mesh adaptivity

The DG method eases mesh adaptivity

The DG method eases space adaptivity

The DG method eases space adaptivity

The DG method eases space adaptivity

DG-FEM Notation

Interface facets

Average
$$\langle v \rangle = \frac{1}{2}(v^+ + v^-)$$

Jump $[v] = (v^+ - v^-)$

Boundary facet

$$\langle v \rangle = [v] = v$$

Jump identity

$$[(\nabla_h v)w_h] = [\nabla_h v]\langle w_h \rangle + \langle \nabla_h v \rangle [w_h]$$

$$a_{h}(u_{h}, v_{h}) = \sum_{T \in \mathcal{T}} \int_{T} \nabla u_{h} \cdot \nabla v_{h} \, \mathrm{d}x - \underbrace{\sum_{F \in \mathcal{F}} \int_{F} \langle \nabla u_{h} \rangle \cdot \boldsymbol{n}[v_{h}] \, \mathrm{d}S}_{\text{Consistency}}$$

$$- \underbrace{\sum_{F \in \mathcal{F}} \int_{F} \langle \nabla v_{h} \rangle \cdot \boldsymbol{n}[u_{h}] \, \mathrm{d}S}_{\text{Symmetry}} + \underbrace{\sum_{F \in \mathcal{F}} \frac{\gamma}{h_{F}} \int_{F} [u_{h}][v_{h}] \, \mathrm{d}S}_{\text{Penalty}}$$

$$a_{h}(u_{h}, v_{h}) = \sum_{T \in \mathcal{T}} \int_{T} \nabla u_{h} \cdot \nabla v_{h} \, \mathrm{d}x - \underbrace{\sum_{F \in \mathcal{F}} \int_{F} \langle \nabla u_{h} \rangle \cdot \boldsymbol{n}[v_{h}] \, \mathrm{d}S}_{\text{Consistency}}$$

$$- \underbrace{\sum_{F \in \mathcal{F}} \int_{F} \langle \nabla v_{h} \rangle \cdot \boldsymbol{n}[u_{h}] \, \mathrm{d}S}_{\text{Symmetry}} + \underbrace{\sum_{F \in \mathcal{F}} \frac{\gamma}{h_{F}} \int_{F} [u_{h}][v_{h}] \, \mathrm{d}S}_{\text{Penalty}}$$

$$a_{h}(u_{h}, v_{h}) = \sum_{T \in \mathcal{T}} \int_{T} \nabla u_{h} \cdot \nabla v_{h} \, \mathrm{d}x - \underbrace{\sum_{F \in \mathcal{F}} \int_{F} \langle \nabla u_{h} \rangle \cdot \boldsymbol{n}[v_{h}] \, \mathrm{d}S}_{\text{Consistency}}$$
$$- \underbrace{\sum_{F \in \mathcal{F}} \int_{F} \langle \nabla v_{h} \rangle \cdot \boldsymbol{n}[u_{h}] \, \mathrm{d}S}_{\text{Symmetry}} + \underbrace{\sum_{F \in \mathcal{F}} \frac{\gamma}{h_{F}} \int_{F} [u_{h}][v_{h}] \, \mathrm{d}S}_{\text{Penalty}}$$

$$a_{h}(u_{h}, v_{h}) = \sum_{T \in \mathcal{T}} \int_{T} \nabla u_{h} \cdot \nabla v_{h} \, \mathrm{d}x - \sum_{F \in \mathcal{F}} \int_{F} \langle \nabla u_{h} \rangle \cdot \boldsymbol{n}[v_{h}] \, \mathrm{d}S$$

$$- \sum_{F \in \mathcal{F}} \int_{F} \langle \nabla v_{h} \rangle \cdot \boldsymbol{n}[u_{h}] \, \mathrm{d}S + \sum_{F \in \mathcal{F}} \frac{\gamma}{h_{F}} \int_{F} [u_{h}][v_{h}] \, \mathrm{d}S$$
Symmetry
Penalty
$$l_{h}(v_{h}) = \int_{\Omega} f v_{h} \, \mathrm{d}x - \sum_{F \in \mathcal{F}^{b}} \int_{F} \langle \nabla v_{h} \rangle \cdot \boldsymbol{n}g \, \mathrm{d}S + \sum_{F \in \mathcal{F}^{b}} \frac{\gamma}{h_{F}} \int_{F} g v_{h} \, \mathrm{d}S$$

$$a_{h}(u_{h}, v_{h}) = \sum_{T \in \mathcal{T}} \int_{T} \nabla u_{h} \cdot \nabla v_{h} \, \mathrm{d}x - \sum_{F \in \mathcal{F}} \int_{F} \langle \nabla u_{h} \rangle \cdot \boldsymbol{n}[v_{h}] \, \mathrm{d}S$$

$$- \sum_{F \in \mathcal{F}} \int_{F} \langle \nabla v_{h} \rangle \cdot \boldsymbol{n}[u_{h}] \, \mathrm{d}S + \sum_{F \in \mathcal{F}} \frac{\gamma}{h_{F}} \int_{F} [u_{h}][v_{h}] \, \mathrm{d}S$$

$$= \int_{\Omega} f v_{h} \, \mathrm{d}x - \sum_{F \in \mathcal{F}^{b}} \int_{F} \langle \nabla v_{h} \rangle \cdot \boldsymbol{n}g \, \mathrm{d}S + \sum_{F \in \mathcal{F}^{b}} \frac{\gamma}{h_{F}} \int_{F} g v_{h} \, \mathrm{d}S$$

Split of SIP form into interior and boundary

contribution

$$a_{h}(u_{h}, v_{h}) = \sum_{T \in \mathcal{T}} \int_{T} \nabla u_{h} \cdot \nabla v_{h} \, \mathrm{d}x - \sum_{F \in \mathcal{F}^{i}} \int_{F} \langle \nabla u_{h} \rangle \cdot \boldsymbol{n}[v_{h}] \, \mathrm{d}S$$

$$- \sum_{F \in \mathcal{F}^{i}} \int_{F} \langle \nabla v_{h} \rangle \cdot \boldsymbol{n}[u_{h}] \, \mathrm{d}S + \sum_{F \in \mathcal{F}^{i}} \frac{\gamma}{h_{F}} \int_{F} [u_{h}][v_{h}] \, \mathrm{d}S$$
Symmetry
$$- \sum_{F \in \mathcal{F}^{b}} \int_{F} \nabla u_{h} \cdot \boldsymbol{n}v_{h} \, \mathrm{d}s - \sum_{F \in \mathcal{F}^{b}} \int_{F} \nabla v_{h} \cdot \boldsymbol{n}u_{h} \, \mathrm{d}s$$
Consistency
$$+ \sum_{F \in \mathcal{F}^{b}} \frac{\gamma}{h_{F}} \int_{F} u_{h}v_{h} \, \mathrm{d}s$$
Penalty
Penalty

Useful FEniCS tools (I)

Access facet normals and local mesh size:

```
n = FacetNormal(mesh)
h = CellSize(mesh)
```

Restriction:

```
f = Function(V)
f('+')
grad(f)('+')
```

Useful FEniCS tools (II)

Average and jump:

```
# define it yourself
h_avg = (h('+') + h('-'))/2
# or use built-in expression
avg(h)
jump(v)
jump(v, n)
```

Integration on interior facets:

```
... *dS
alpha/h_avg*dot(jump(v, n), jump(u, n))*dS
```

Exercise

Solve our favorite Poisson problem given

• Domain:

$$\Omega = [0, 1] \times [0, 1], \qquad \partial \Omega_D = \partial \Omega$$

• Source and boundary values:

$$f(x,y) = 200\cos(10\pi x)\cos(10\pi y)$$
$$g_D(x,y) = \cos(10\pi x)\cos(10\pi y)$$

Mission: Solve this PDE numerically by using the SIP method. Print the errornorm for both the L^2 and the H^1 norm for various mesh sizes. For a UnitSquareMesh (128,128) the error should be 0.0009166 and 0.1962, respectively.

Extra mission: Implement the NIP variant, solve the same problem and compare the H^1 and L^2 error for a range of meshes UnitSquareMesh(N,N), $N=2^j, j=2,\cdots,7$. Can you determine the order of convergence?