2.3 Product and Quotient Rules and Higher Order Derivatives

Product Rule:

$$\frac{d}{dx}\left[f(x)-g(x)\right]=f(x)g'(x)+f'(x)g(x)$$

Extending the Product Rule:

$$f(f(x)) \cdot g(x) \cdot h(x) = f(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$$

Examples: Product Rule

Find the derivative of $h(x) = (3x + 5)(x^2 - 2x^3)$

$$h'(x) = (3x+5)(2x-6x^2) + (3)(x^2-2x^2)$$

$$= \frac{6x^2+10x-18x^3-30x^2+3x^2-6x^3}{=-24x^3-21x^2+10x}$$

Find the derivative of $y = x^2 e^x$

$$y' = x^2 e^x + 2xe^x$$

= $xe^x (x+2)$

Find the derivative of $y = 4x^2 sinx - 7cosx$.

$$y' = (4x^2)(\cos x) + 8x \sin x - 7(-\sin x)$$

= $4x^2\cos x + 8x \sin x + 7 \sin x$

Quotient Rule:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

* Order Matters

Examples: Quotient Rule

Find the derivative of $y = \frac{3x+1}{2x^2-5}$

$$y' = \frac{(2x^2-5)(3) - (3x+1)(4x)}{(2x^2-5)^2} = \frac{(6x^2-15-12x^2-4x)}{(2x^2-5)^2} = \frac{-(6x^2-4x-15)}{(2x^2-5)^2}$$

Find the equation of the tangent line to the graph of $f(x) = \frac{2 + \frac{1}{x}}{x - 1}$ at $\left(2, \frac{5}{2}\right)$.

$$f'(x) = \frac{\partial x + 1}{\lambda^2 - x}$$

$$f'(x) = \frac{(x^2 - x)(2) - (2x + 1)(2x - 1)}{(x^2 - x)^2}$$

$$f'(2) = \frac{(2^2 - 2)(2) - (2(2) + 1)(2(4) - 1)}{(2^2 - 2)^2} = -\frac{11}{4}$$

Find $\frac{dy}{dx}$ if $y = \frac{2(x^3 - x^2)}{5x}$

$$\frac{dy}{dx} = \frac{2}{5}(2x-1)$$

Proof: $\frac{d}{dx}[tanx] = sec^2x$

$$\frac{2\left(\frac{5\ln x}{\cos x}\right) - \left(\cos x\right)\left(\cos x\right) - \left(\sin x\right)\left(-\sin x\right)}{\left(\cos x\right)^{2}} = \frac{\cos^{2}x + \sin^{2}x}{\cos^{2}x}$$

$$= \frac{1}{\cos^{2}x} = \sec^{2}x$$

Derivatives of Trigonometric Functions

$$\frac{d}{dx}[tanx] = \int ec^2 x$$

$$\frac{d}{dx}[cotx] = - CSC^2x$$

$$\frac{d}{dx}[secx] = Secx \int_{anx}$$

$$\frac{d}{dx}[cscx] = -CSCXCOTX$$

Examples: Derivatives of Trigonometric Functions

Find the derivative of each function

$$y = 3x^{2} - cscx$$

$$y' = (ox - (-cscx cotx)) = (ox + cscx cotx)$$

$$y = x^{3}cotx$$

$$y' = x^{3}(-csc^{2}x) + 3x^{2}cotx$$

$$= x^{2}(-xcsc^{2}x + 3cotx)$$

Differentiate both forms of the trigonometric expression and show that the two derivatives are equal.

$$\frac{1 - cscx}{secx} = cosx - cotx$$

Higher Order Derivatives

First Derivative	y'	filx)	dy	de Flei	Dx[y]
Second Derivative	y"	f "(x)	d^2y/dx^2	de [flx)]	Dx2[y]
Third Derivative	y'''	f"(x)	dy/dx2		J
Fourth Derivative	y (4)	f(1)(x)	dy/dx4		
Nth Derivative	y (m)	F(N)(x)	d'y/dxn		

Position Function:

Velocity Function:

Acceleration Function: 5''(t) = V'(t) = a(t)

Examples: Acceleration Due to Gravity

The position function of an object dropped on Mars is $s(t) = -1.85t^2 + 3$, where s(t) is the height in meters and t is the time in seconds after the object is dropped. What is the ratio of the Earth's gravitational force to Mars?

$$S(t) = -1.85t^2 + 3$$

 $S'(t) = -3.70 + 3$
 $S''(t) = -3.70$

$$\frac{-9.8}{-3.70} \approx 2.45$$

Finding the value of a derivative on the calculator: