MANAGEMENT AND ANALYSIS OF PHYSICS DATASET (MOD. A)

Fundamentals of Boolean Algebra Combinatorial Functions

- Digital circuits or logic circuits deal with quantized signals (lack or presence of a signal)
- Fundamental elements of the digital computing
- "Logic" because we can apply analysis and synthesis methods derived from Boolean algebra
- Class of elements M and two operators · and +

Duality of the operators

Α	В	AB
0	0	0
1	0	0
0	1	0
1	1	1

Α	В	A+B
0	0	0
1	0	1
0	1	1
1	1	1

Α	В	AB
0	0	0
1	0	0
0	1	0
1	1	1

А	В	A+B
0	0	0
1	0	1
0	1	1
1	1	1

A	В	AB
0	0	0
1	0	0
0	1	0
1	1	1

Α	В	A+B
0	0	0
1	0	1
0	1	1
1	1	1

Proof of non contradiction: M are connections, · is the circuital operator AND and + is the OR

A	В	С	A+BC	(A+B)(A+C)
0	0	0	0	0
1	0	0	1	1
0	1	0	0	0
1	1	0	1	1
0	0	1	0	0
1	0	1	1	1
0	1	1	1	1
1	1	1	1	1

Α	В	AB
0	0	0
1	0	0
0	1	0
1	1	1

Α	В	A+B
0	0	0
1	0	1
0	1	1
1	1	1

P4

- The postulates are valid also for other classes
- For instance: M is the class of all subsets of the set M, · is the intersection and + is the union
- Graphical representation can be used to quickly proof theorems

Simple theorems

T1:
$$A + A = A$$

$$AA = A$$
 Proof:
$$A + A = (A + A) \cdot 1 = (A + A)(A + \overline{A}) = A + A\overline{A} = A + 0 = A$$

T2:
$$A + 1 = 1$$
 $A \cdot 0 = 0$

Proof:
$$A + 1 = (A + 1) \cdot 1 = (A + 1)(A + \overline{A}) = A + \overline{A} \cdot 1 = A + \overline{A} = 1$$

T3:
$$A + AB = A \qquad A(A + B) = A$$

Proof:
$$A + AB = (A \cdot 1) + AB = A(1 + B) = A \cdot 1 = A$$

De Morgan laws

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Proof:

$$(A+B) + \overline{A} \cdot \overline{B} = (A+B+\overline{A})(A+B+\overline{B}) = (B+1)(A+1) = 1 \cdot 1 = 1$$
$$(A+B) \cdot \overline{A} \cdot \overline{B} = A \cdot \overline{A} \cdot \overline{B} + B \cdot \overline{A} \cdot \overline{B} = \overline{B} \cdot 0 + \overline{A} \cdot 0 = 0 + 0 = 0$$

From P3 we can conclude that A+B is the complementary of $\overline{A}\cdot \overline{B}$

Generalization: the complementary of a Boolean function results from the exchange of the dual operators and from the exchange of the operands with their complement

Exercises

1. Demonstrate that $(A + B)(\overline{A} + C) = \overline{A}B + AC$

2. Demonstrate that $f(A,B) = \overline{A} \, \overline{B} + AB = \overline{f}(\overline{A},B)$

Combinatorial functions

Combinatorial functions

A simple way of describing a Boolean function is the truth table

A	В	$f(A,B)=\overline{A}+\overline{B}$
0	0	1
1	0	1
0	1	1
1	1	0

- It describes f as function of its input -> combinatory function
- Many functions can be built from the same truth table

$$f(A,B) = \overline{A \cdot B}$$

$$= \overline{A} \, \overline{B} + \overline{A} \, B + A \, \overline{B}$$

$$= \overline{B} + \overline{A} \, B$$

Which is the best?

- Minterm (m) of n variables is the Boolean product of all the variables where they appears only once (either in the complemented or uncomplemented form)
- They are 2^n . For instance, for n=2 they are $\overline{A} \ \overline{B}$, $\overline{A} \ \overline{B}$, $\overline{A} \ B$ and $A \ B$
- Similarly, Maxterm (M) can be defined for the sum

Α	В	Minterm	Maxterm
0	0	$m_0 = \overline{A} \overline{B}$	$M_0 = \overline{A} + \overline{B}$
1	0	$m_1 = A \overline{B}$	$M_1 = A + \overline{B}$
0	1	$m_2 = \overline{A} B$	$M_2 = \overline{A} + B$
1	1	$m_3 = A B$	$M_3 = A + B$

- m_i is always equal to 0 except in one case (variables in line i)
- M_i is always equal to 1 except in one case (variables in line $2^n 1 i$)
- \bullet The product of two distinct minterms is always 0 and the sum of two distinct maxterm is always 1

$$\overline{m_i} = M_2 n_{-1-i} \qquad \overline{M_i} = m_2 n_{-1-i}$$

$$\sum_{i=0}^{2^{n}-1} m_i = 1$$

$$\prod_{i=0}^{2^{n}-1} M_i = 0$$

 Combinatorial functions expressed as a sum of minterms or product of maxterms are said to be in canonical form

A	В	$f(A,B) = \overline{A} + \overline{B}$
0	0	1
1	0	1
0	1	1
1	1	0

$$f(A,B) = m_0 + m_1 + m_2$$

 $f(A,B) = M_0$

Α	В	F_k
0	0	f_0
1	0	f_1
0	1	f_2
1	1	f_3

$$F_k = \sum_{i=0}^{2^{n}-1} f_i m_i \qquad F_k = \prod_{i=0}^{2^{n}-1} (f_i + M_{2^{n}-1-i})$$

• All the possible Boolean function of n variables are 2^{2^n}

f_0	f_1	f_2	f_3	$\boldsymbol{F_k}$
0	0	0	0	0
1	0	0	0	NOR
0	1	0	0	$A\overline{B}$
1	1	0	0	\overline{B}
0	0	1	0	$\overline{A}B$
1	0	1	0	\overline{A}
0	1	1	0	XOR
1	1	1	0	NAND
0	0	0	1	AND
1	0	0	1	\overline{XOR}
0	1	0	1	Α
1	1	0	1	$A + \overline{B}$
0	0	1	1	В
1	0	1	1	$\overline{A} + B$
0	1	1	1	OR
1	1	1	1	1

From function to circuit

- Canonical form is the most generic, but it is not the simplest
- For building a circuit it is better to simplify
- Passive circuits cannot be used because they degrades the signal after few logic levels -> active components at least in the output stage
- The simplest amplifier is the common emitter transistor -> signal inversion -> NAND or NOR
- Any combinatorial Boolean function can be written with them
 - The complement of a variable is done wiring together the two inputs or applying a 1 for NAND and 0 for NOR
 - By De Morgan NAND is the OR of complements and NOR is the AND of complements

From function to circuit

$$f = A B + \overline{A} \overline{B}$$

$$f = (A + \overline{B})(\overline{A} + B)$$

$$\begin{array}{c}
A \\
\overline{B}
\end{array}$$

$$\overline{A} \\
B$$

$$A + \overline{B})(\overline{A} + B)$$

$$\begin{array}{cccc}
A & & \\
B & & \\
\hline
\end{array} = \overline{A} + \overline{B}$$

$$\begin{array}{cccc}
A & & \\
\hline
A & & \\
\hline
\end{array} = \overline{A} + \overline{B}$$

$$\begin{array}{cccc}
A & & \\
\hline
\end{array} = \overline{A} + \overline{B}$$

Sum of products

Product of sums

De Morgan duality

XOR

•
$$A \oplus B = \overline{A} \oplus \overline{B} = A \overline{B} + \overline{A} B$$

•
$$\overline{A \oplus B} = \overline{A} \oplus B = \overline{A} \overline{B} + A B$$

•
$$\overline{A} = 1 \oplus A$$

•
$$A + B = \overline{\overline{A} \, \overline{B}} = 1 \oplus [(1 \oplus A)(1 \oplus B)]$$

•
$$AB = \overline{\overline{A} + \overline{B}} = 1 \oplus [(1 \oplus A) + (1 \oplus B)]$$

A	В	$A \oplus B$
0	0	0
1	0	1
0	1	1
1	1	0

- A function is represented as union of intersections of subsets
- Veitch or Karnaugh maps

ļ	Α	
В	m_3	m_2
	m_1	m_0

	A						
B	m_3	m_7	m_6	m_2			
}	m_{11}	m_{15}	m_{14}	m_{10}			
	m_9	m_{13}	m_{12}	m_8			
	m_1	m_5	m_4	m_0			
l		(I		

- A function is represented as union of intersections of subsets
- Veitch or Karnaugh maps

- A function is represented as union of intersections of subsets
- Veitch or Karnaugh maps

	Α		
В	m_3	m_2	
	m_1	m_0	

m. ₁	=	A	B
m_1	_	П	D

- A function is represented as union of intersections of subsets
- Veitch or Karnaugh maps

	Α		
В	m_3	m_2	
	m_1	m_0	
'		_	

 $m_2 = A B$

- A function is represented as union of intersections of subsets
- Veitch or Karnaugh maps

	Α	
മ	m_3	m_2
	m_1	m_0

$$m_3 = A B$$

•
$$f = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, B \, \overline{C} \, \overline{D} + A \, B \, \overline{C} \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, C \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{C$$

А					
3	m_3	m_7	m_6	m_2	
B	m_{11}	m_{15}	m_{14}	m_{10}	
	m_9	m_{13}	m_{12}	m_8	
	m_1	m_5	m_4	m_0	
		(

•
$$f = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, B \, \overline{C} \, \overline{D} + A \, B \, \overline{C} \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, C \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{C} \, \overline{D} +$$

•
$$f = AC + \overline{CD}$$
 -> NAND

	А						
8	m_3	m_7	m_6	m_2			
B	m_{11}	m_{15}	m_{14}	m_{10}	(
	m_9	m_{13}	m_{12}	m_8]		
	m_1	m_5	m_4	m_0			
		(

•
$$f = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, B \, \overline{C} \, \overline{D} + A \, B \, \overline{C} \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, C \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{C$$

• $f = A C + \overline{C} \overline{D}$ -> NAND

					_
3	m_3	m_7	m_6	m_2	
9	m_{11}	m_{15}	m_{14}	m_{10}	
	m_9	m_{13}	m_{12}	m_8	
	m_1	m_5	m_4	m_0	
C					

•
$$f = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{C} \, \overline$$

•
$$f = A C + \overline{C} \overline{D}$$
 -> NAND

•
$$\overline{f} = \overline{A} C + \overline{C} D$$

•
$$f = (A + \overline{C})(C + \overline{D})$$
 -> NOR

Exercises

1. Demonstrate that $(A \oplus B) \oplus C = A \oplus (B \oplus C) = B \oplus (A \oplus C)$

2. Simplify $AB\overline{C} + ABC + \overline{A}BC + \overline{A}B\overline{C} + A\overline{B}C + \overline{A}\overline{B}C$

Examples of combinatorial logic

Adder

- Elementary cell for adding two bits (binary digit)
- Extension to two n-bits numbers

A_i	$\boldsymbol{B_i}$	C_i	S_i	C_{i+1}
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
_1	1	1	1	1

$$S_{i} = (A \overline{B} \overline{C} + \overline{A} B \overline{C} + \overline{A} \overline{B} C + A B C)_{i}$$

$$C_{i+1} = (A B \overline{C} + A \overline{B} C + \overline{A} B C + A B C)_{i}$$

$$S_{i} = (A \overline{B} + \overline{A} B)_{i} \overline{C_{i}} + (\overline{A} \overline{B} + A B)_{i} C_{i} = (A \oplus B)_{i} \oplus C_{i}$$

$$C_{i+1} = (A B + A C + B C)_{i}$$

Adder

- Elementary cell for adding two bits (binary digit)
- Extension to two n-bits numbers

$$S_{i} = (A \overline{B} \overline{C} + \overline{A} B \overline{C} + \overline{A} \overline{B} C + A B C)_{i}$$

$$C_{i+1} = (A B \overline{C} + A \overline{B} C + \overline{A} B C + A B C)_{i}$$

$$S_{i} = (A \overline{B} + \overline{A} B)_{i} \overline{C_{i}} + (\overline{A} \overline{B} + A B)_{i} C_{i} = (A \oplus B)_{i} \oplus C_{i}$$

$$C_{i+1} = (A B + A C + B C)_{i}$$

Adder

- Elementary cell for adding two bits (binary digit)
- Extension to two n-bits numbers

Subtractor

- Exercise
 - Draw the circuit
 - Can be easily obtained from an adder?

Subtractor

A_i	B_i	R_i	D_i	R_{i+1}
0	0	0	0	0
1	0	0	1	0
0	1	0	1	1
1	1	0	0	0
0	0	1	1	1
1	0	1	0	0
0	1	1	0	1
1	1	1	1	1

$$D_{i} = (A \overline{B} \overline{R} + \overline{A} B \overline{R} + \overline{A} \overline{B} R + A B R)_{i}$$

$$R_{i+1} = (\overline{A} B \overline{R} + \overline{A} \overline{B} R + \overline{A} B R + A B R)_{i}$$

$$D_{i} = (A \overline{B} + \overline{A} B)_{i} \overline{R_{i}} + (\overline{A} \overline{B} + A B)_{i} R_{i} = (A \oplus B)_{i} \oplus R_{i}$$

$$R_{i+1} = (\overline{A} B + \overline{A} R + B R)_{i}$$

Subtractor

$$D_{i} = (A \overline{B} \overline{R} + \overline{A} B \overline{R} + \overline{A} \overline{B} R + A B R)_{i}$$

$$R_{i+1} = (\overline{A} B \overline{R} + \overline{A} \overline{B} R + \overline{A} B R + A B R)_{i}$$

$$D_{i} = (A \overline{B} + \overline{A} B)_{i} \overline{R_{i}} + (\overline{A} \overline{B} + A B)_{i} R_{i} = (A \oplus B)_{i} \oplus R_{i}$$

$$R_{i+1} = (\overline{A} B + \overline{A} R + B R)_{i}$$

Adder

- Modular adder has a propagation delay that depends on the number of bits (n)
- Carry propagation delay: $2T_P \cdot n$
- Carry can be calculated in parallel
- Carry-lookahead
 - Generate a carry if A and B are 1: $G_i = A_i B_i$
 - Propagate a carry if A or B are 1: $P_i = A_i + B_i$ but also if $P_i = A_i \oplus B_i$
- $C_{i+1} = G_i + C_i P_i$
- $C_4 = A_3 B_3 + A_2 B_2 (A_3 \oplus B_3) + A_1 B_1 (A_2 \oplus B_2) (A_3 \oplus B_3) + A_0 B_0 (A_1 \oplus B_1) (A_2 \oplus B_2) (A_3 \oplus B_3) + C_0 (A_0 \oplus B_0) (A_1 \oplus B_1) (A_2 \oplus B_2) (A_3 \oplus B_3)$
- Parallel carry propagation delay: $3T_P$

Parity generator

- The parity bit is a bit that added to the data makes the total number of ones (1s) even (even parity) or odd (odd parity)
- Parity is used for error detection during data transmission
- For instance, 1001010 has $P_{odd}=0$ and $P_{even}=1$
- Elementary cell for odd parity generation
- Extension to two n-bits numbers

D_i	P_i	P_{i+1}
0	0	0
1	0	1
0	1	1
1	1	0

$$P_{i+1} = (D \overline{P} + \overline{D} P)_i = (D \oplus P)_i$$

$$P_0 = 1$$

Parity generator

- The parity bit is a bit that added to the data makes the total number of ones (1s) even (even parity) or odd (odd parity)
- Parity is used for error detection during data transmission
- For instance, 1001010 has $P_{odd}=0$ and $P_{even}=1$
- Elementary cell for odd parity generation
- Extension to two n-bits numbers

Parity generator

- And for even parity generator?
 - Just change P_0
- As for the adder we can limit the propagation time with a module that works in parallel
- It is possible to connect the single module in a tree-like structure

$$P = (D_0 \oplus D_1) \oplus (D_2 \oplus D_3)$$

Comparison

- For comparing two binary numbers (a, b), three output values are needed -> two output bits (N, M)
- Modular approach for n-bits extension

	N	M
a > b	0	1
a < b	1	0
a = b	0	0

a_i	b_i	N_{i+1}	M_{i+1}	N_i	M_i
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	1	0
1	1	0	0	0	0
0	0	1	0	1	0
1	0	1	0	1	0
0	1	1	0	1	0
1	1	1	0	1	0
0	0	0	1	0	1
1	0	0	1	0	1
0	1	0	1	0	1
1	1	0	1	0	1
0	0	1	1	Χ	Χ
1	0	1	1	Χ	X
0	1	1	1	Χ	Χ
1	1	1	1	Χ	Х

Comparison

- For comparing two binary numbers (a, b), three output values are needed -> two output bits (N, M)
- Modular approach for n-bits extension

	N	M
a > b	0	1
a < b	1	0
a = b	0	0

a_i	b_i	N_{i+1}	M_{i+1}	N_i	M_i
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	1	0
1	1	0	0	0	0
0	0	1	0	1	0
1	0	1	0	1	0
0	1	1	0	1	0
1	1	1	0	1	0
0	0	0	1	0	1
1	0	0	1	0	1
0	1	0	1	0	1
1	1	0	1	0	1
0	0	1	1	Х	Х
1	0	1	1	Χ	Х
0	1	1	1	Χ	Х
1	1	1	1	Χ	Х

Redundant terms

Comparison

- For comparing two binary numbers (a, b), three output values are needed -> two output bits (N, M)
- Modular approach for n-bits extension

$$N_i = N_{i+1} + \overline{a_i} b_i \overline{M_{i+1}}$$

$$M_i = M_{i+1} + a_i \, \overline{b_i} \, \overline{N_{i+1}}$$

a_i	b_i	N_{i+1}	M_{i+1}	N_i	M_i
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	1	0
1	1	0	0	0	0
0	0	1	0	1	0
1	0	1	0	1	0
0	1	1	0	1	0
1	1	1	0	1	0
0	0	0	1	0	1
1	0	0	1	0	1
0	1	0	1	0	1
1	1	0	1	0	1
0	0	1	1	Χ	Х
1	0	1	1	Χ	Х
0	1	1	1	Χ	Х
1	1	1	1	Χ	Χ

Multiplexer

- A Mux selects one signal among 2^n (D_i) thanks to n address lines (S_j)
- For n=1, two levels of NAND ports can easily implement it
- Any combinatorial function can be generated connecting the address lines to the variables and connecting 1 to D_i if the minterm m_i is present, 0 otherwise
- A Demux applies the inverse operation
- It can be used as decoder because it selects the output line D_i corresponding to the minterm m_i

Tristate

- It is used for developing bidirectional connections
- Many data buses are usually tristate because they are used to link devices that can be both source and sink of information
- A control line is used for putting the output in high-impedance

A	С	В
0	0	Z
1	0	Z
0	1	0
1	1	1

Programmable Logic Array

- PLA consists of an AND array connected to an OR array
- Constant propagation delay
- It can build any sum of products
- The AND array can be fixed while the OR array is programmable
- Programmable logic-planes grow too quickly in size as the number of inputs is increased

Field-Programmable Gate Array

- Programmable logic blocks linked by programmable interconnections
- Programmable Input and Output
- Configurable Logic Block can be either a combinatorial or a sequential circuit
- Look up tables are used to implement the truth table of a combinatorial function

Exercise

• Design a circuit able to compare two 2-bit numbers at a time