Machine Learning Fundamentals

A Concise Introduction

Hui Jiang

Machine Learning Fundamentals

A Concise Introduction

Hui Jiang

York University, Toronto

Contents

Pr	Preface x1				
N	otatio	n		xvii	
1	Introduction				
	1.1	What	Is Machine Learning?	1	
	1.2	Basic	Concepts in Machine Learning	4	
		1.2.1	Classification versus Regression	4	
		1.2.2	Supervised versus Unsupervised Learning	5	
		1.2.3	Simple versus Complex Models	5	
		1.2.4	Parametric versus Nonparametric Models	7	
		1.2.5	Overfitting versus Underfitting	8	
		1.2.6	Bias-Variance Trade-Off	10	
	1.3	Gene	ral Principles in Machine Learning	11	
		1.3.1	Occam's Razor	11	
		1.3.2	No-Free-Lunch Theorem	11	
		1.3.3	Law of the Smooth World	12	
		1.3.4	Curse of Dimensionality	14	
	1.4	Adva	nced Topics in Machine Learning	15	
		1.4.1	Reinforcement Learning	15	
		1.4.2	Meta-Learning	16	
		1.4.3	Causal Inference	16	
		1.4.4	Other Advanced Topics	16	
	Exe	rcises .		18	
2	Mat	hemati	ical Foundation	19	
	2.1	Linea	r Algebra	19	
		2.1.1	Vectors and Matrices	19	
		2.1.2	Linear Transformation as Matrix Multiplication	20	
		2.1.3	Basic Matrix Operations	21	

		2.1.4	Eigenvalues and Eigenvectors	23				
		2.1.5	Matrix Calculus	25				
	2.2	Proba	bility and Statistics	27				
		2.2.1	Random Variables and Distributions	27				
		2.2.2	Expectation: Mean, Variance, and Moments	28				
		2.2.3	Joint, Marginal, and Conditional Distributions	30				
		2.2.4	Common Probability Distributions	33				
		2.2.5	Transformation of Random Variables	40				
	2.3	Infor	mation Theory	41				
		2.3.1	Information and Entropy	41				
		2.3.2	Mutual Information	43				
		2.3.3	KL Divergence	46				
	2.4	Math	ematical Optimization	48				
		2.4.1	General Formulation	49				
		2.4.2	Optimality Conditions	50				
		2.4.3	Numerical Optimization Methods	59				
	Exe	rcises		64				
3	Sup	ervised	d Machine Learning (in a Nutshell)	67				
	3.1	Overv	view	67				
	3.2	Case	Studies	72				
4	Feat	ture Ex	traction	77				
	4.1	Featu	re Extraction: Concepts	77				
		4.1.1	Feature Engineering	77				
		4.1.2	Feature Selection	78				
		4.1.3	Dimensionality Reduction	79				
	4.2	Linea	r Dimension Reduction	79				
		4.2.1	Principal Component Analysis	80				
		4.2.2	Linear Discriminant Analysis	84				
	4.3	Nonli	inear Dimension Reduction (I): Manifold Learning	86				
		4.3.1	Locally Linear Embedding	87				
		4.3.2	Multidimensional Scaling	88				
		4.3.3	Stochastic Neighborhood Embedding	89				
	4.4	Nonli	near Dimension Reduction (II): Neural Networks	90				
		4.4.1	Autoencoder	90				
		4.4.2	Bottleneck Features	91				
	Lab	Project	:I	92				
	Eve	Exercises						

DISCRIMINATIVE MODELS 95					95
5	5.1 5.2 5.3	Formu Learna Gener 5.3.1 5.3.2	Learning Theory Ilation of Discriminative Models ability ralization Bounds Finite Model Space: H Infinite Model Space: VC Dimension		100 102
6	Line	ear Mod	dels		107
	6.1	Percer	otron		108
	6.2	-	r Regression		
	6.3		num Classification Error		
	6.4	Logist	ic Regression		114
	6.5	Suppo	ort Vector Machines		116
		6.5.1	Linear SVM		116
		6.5.2	Soft SVM		121
		6.5.3	Nonlinear SVM: The Kernel Trick		123
		6.5.4	Solving Quadratic Programming		
		6.5.5	Multiclass SVM		
		,	II		
	Exer	cises .			130
7	Leaı	ning D	Piscriminative Models in General		133
	7.1	_	neral Framework to Learn Discriminative Models		133
		7.1.1	Common Loss Functions in Machine Learning		135
		7.1.2	Regularization Based on L_p Norm		
	7.2	Ridge	Regression and LASSO		
	7.3		x Factorization		
	7.4		nary Learning		
	Lab		III		
	Exer	cises .			150
8	Neu	ral Net	works		151
Ü	Neural Networks 8.1 Artificial Neural Networks				
	0.1	8.1.1	Basic Formulation of Artificial Neural Networks		152 152
		8.1.2	Mathematical Justification: Universal Approximator .		
	8.2		l Network Structures		
		8.2.1	Basic Building Blocks to Connect Layers		
		8.2.2	Case Study I: Fully Connected Deep Neural Networks		
		8.2.3	Case Study II: Convolutional Neural Networks		
		8.2.4	Case Study III: Recurrent Neural Networks (RNNs)		

		8.2.5	Case Study IV: Transformer	172
	8.3	Learni	ing Algorithms for Neural Networks	174
		8.3.1	Loss Function	
		8.3.2	Automatic Differentiation	176
		8.3.3	Optimization Using Stochastic Gradient Descent	188
	8.4	Heuris	stics and Tricks for Optimization	189
		8.4.1	Other SGD Variant Optimization Methods: ADAM	. 192
		8.4.2	Regularization	. 194
		8.4.3	Fine-Tuning Tricks	. 196
	8.5	End-to	o-End Learning	197
		8.5.1	Sequence-to-Sequence Learning	. 198
	Lab	Project	IV	200
	Exer	cises .		. 201
9	Ence	mbla I	Learning	203
,	9.1		clation of Ensemble Learning	
	7.1	9.1.1	Decision Trees	
	9.2		ng	
	7.2	9.2.1	Random Forests	
	9.3		ing	
	7.0	9.3.1	Gradient Boosting	
		9.3.2	AdaBoost	
		9.3.3	Gradient Tree Boosting	
	Lab		V	
G	ENEI	RATIV	e Models	219
10			of Generative Models	221
			llation of Generative Models	
	10.2		ian Decision Theory	
			Generative Models for Classification	
			Generative Models for Regression	
	10.3		tical Data Modeling	
	40.1		Plug-In MAP Decision Rule	
	10.4		ty Estimation	
			Maximum-Likelihood Estimation	
	46-		Maximum-Likelihood Classifier	
	10.5		rative Models (in a Nutshell)	
			Generative versus Discriminative Models	
	Exer	cises .		. 237

11	Unii	nodal I	Models	239
	11.1	Gauss	ian Models	 240
	11.2	Multin	nomial Models	 243
	11.3	Marko	ov Chain Models	 245
	11.4	Gener	alized Linear Models	 250
		11.4.1	Probit Regression	 252
			Poisson Regression	
			Log-Linear Models	
	Exer			
10	Miss	ture Mo	a d a la	257
14			rlation of Mixture Models	
	12.1		Exponential Family (e-Family)	
			· · · · · · · · · · · · · · · · · · ·	
	12.2		Formal Definition of Mixture Models	
	12.2	-	tation-Maximization Method	
			Auxiliary Function: Eliminating Log-Sum	
	10.0		Expectation-Maximization Algorithm	
	12.3		ian Mixture Models	
	40.4		K-Means Clustering for Initialization	
	12.4		n Markov Models	
			HMMs: Mixture Models for Sequences	
			Evaluation Problem: Forward–Backward Algorithm	
			Decoding Problem: Viterbi Algorithm	
			Training Problem: Baum–Welch Algorithm	
		,	VI	
	Exer	cises .		 288
13	Enta	ngled 1	Models	291
	13.1	Formu	lation of Entangled Models	 291
		13.1.1	Framework of Entangled Models	 292
		13.1.2	Learning of Entangled Models in General	 294
	13.2	Linear	Gaussian Models	 296
		13.2.1	Probabilistic PCA	 296
		13.2.2	Factor Analysis	 298
	13.3	Non-C	Gaussian Models	 300
		13.3.1	Independent Component Analysis (ICA)	 300
		13.3.2	Independent Factor Analysis (IFA)	 301
			Hybrid Orthogonal Projection and Estimation (HOPE)	
	13.4		Generative Models	
		-	Variational Autoencoders (VAE)	
			Generative Adversarial Nets (GAN)	
	Exer			

14	Bave	esian L	earning	311
	•		ulation of Bayesian Learning	
			Bayesian Inference	
			Maximum a Posterior Estimation	
			Sequential Bayesian Learning	
	14.2		gate Priors	
			Maximum-Marginal-Likelihood Estimation	
	14.3		oximate Inference	
			Laplace's Method	
			Variational Bayesian (VB) Methods	
	14.4		ian Processes	
			Gaussian Processes as Nonparametric Priors	
		14.4.2	Gaussian Processes for Regression	335
			Gaussian Processes for Classification	
	Exer	cises .		340
15	Gra	ohical I	Models	343
		-	pts of Graphical Models	343
	15.2 Bayesian Networks			
			Conditional Independence	
			Representing Generative Models as Bayesian Networks .	
			Learning Bayesian Networks	
			Inference Algorithms	
			Case Study I: Naive Bayes Classifier	
			Case Study II: Latent Dirichlet Allocation	
	15.3	Marko	ov Random Fields	366
		15.3.1	Formulation: Potential and Partition Functions	366
		15.3.2	Case Study III: Conditional Random Fields	368
		15.3.3	Case Study IV: Restricted Boltzmann Machines	370
	Exer	cises .		372
A l	PPEN	IDIX		375
A	A Other Probability Distributions			377
Bil	bliog	raphy		381
Index 3				397