Locomotion and Manipulation

Chapter 2

Warm-up assignment

- Some great examples of robots and business ideas!
- Lessons learned
 - Its very unlikely that robots will do something that we do not already do (seamless transition)
 - 2. If it would not be difficult to realize, we would already have it (risks)
 - 3. Robotics act in the physical world, so we need to validate them *experimentally*

Peer-to-Peer Grading

- 80% for your work, 20% for grading others
- Grading scoring
 - Penalty for not grading others
 - Penalty for grading different than others
- TAs will provide final grade by adopting peer grades or overriding
- Statistics
 - 57 total, 54 submitted homework, 39 assessed
 - 38/54 left as is, 19 overrides (11 more than 2 points)
 - 13 up, 6 down
- The system works, even without TA (random fluctuations will average out)

A 94-100

A- 90-93

B+ 87-89

B 84-86

B- 80-83

C+ 77-79

C 74-76

C- 70-73

Brainstorming

- What are all the different ways a robot could move in its environment?
- Find examples online...

Locomotion

- Rolling
- Walking
- Running
- Jumping
- Sliding
- Crawling
- Climbing
- Swimming
- Flying

Other actuators

- Electric motor (turns)
 - (brushless) DC
 - Stepper
- Linear actuator
 - Electric
 - Pneumatic
 - Hydraulic
 - Many specialty actuators

Kinematics and Dynamics

- Kinematics
 - Position and speed (x, x')
- Dynamics
 - Acceleration and jerk (x", x"")

Static and Dynamic Stability

Degrees of Freedom: Pitch, Yaw, and Roll

Brainstorming

 How many degrees of freedom does a car have?

Standard Wheels

Manipulators

Coordinate System

Nested Coordinate Systems

Expressing rotations

Take-home lessons

- Planning / AI requires mapping the robot's actuators into motion in the physical world
- The relationship between position and orientation of the actuators together with the robot's geometry define the forward kinematics
- Many problems in robotics cannot be understood by looking at kinematics alone, this class focusses on slow enough robots.

Outlook

- Homework covers this and next week (available now)
- Lab: reactive behaviors / robot programming basics
- Next week: Forward kinematics