Introduction

Computer Vision

Goal of Computer Vision

extract semantic information from digital image data to be used for decision making support or automated systems

challenging problem: images are only 2D projections of the 3D world

Applications of Computer Vision

facial recognition

automated inspection

autonomous driving

medical imaging

optical character recognition

augmented reality

and many more ...

Image Processing

transformations from image to image (such as scaling, smoothing, sharpening, or contrast stretching)

to facilitate either machine perception or just human interpretation

Image Understanding (Recognition)

Image Classification

Semantic Segmentation

Object Detection

Instance Segmentation

Course Schedule

Part 1: Old-School Computer Vision

1. Digital Image Processing

image formation, intensity transformations, compression, spatial filtering, Fourier transform, aliasing, image pyramids

2. Edges and Features

Canny & Marr-Hildreth edge detectors, Hough transform, feature detection (Harris corner detector) and description (SIFT), feature matching, eigenfaces

3. Projective Geometry

geometric transformations, image alignment, stereo vision, camera calibration

Part 2: Machine Learning

Image Classification: From Classic ML to Deep Learning

supervised learning, linear regression, bias-variance tradeoff, neural networks, convolutional neural networks, transfer learning, transformers (language models, ViT, DINO, CLIP)

5. Segmentation and Detection

semantic segmentation, object detection (R-CNN, YOLO), object tracking, instance segmentation, promptable segmentation

6. Image Synthesis

generative models, GAN, VAE, diffusion

Main Areas of AI/ML

empowered by one key component: learning from data (ML)

tabular data

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape L	andContour	Utilities	 PoolArea F	oolQC	Fence	MiscFeature	MiscVal	MoSold	YrSold	SaleType	SaleCondition	SalePrice
9		60		65.0	8450	Pave	NaN	Reg		AllPub		NaN	NaN	NaN			2008	WD	Normal	208500
1		20		80.0	9600	Pave	NaN	Reg		AllPub		NaN	NaN	NaN			2007	WD	Normal	181500
2		60		68.0	11250	Pave	NaN			AllPub		NaN	NaN	NaN			2008	WD	Normal	223500
3				60.0	9550	Pave	NaN	IR1		AllPub		NaN	NaN	NaN			2006	WD	Abnorml	140000
4		60		84.0	14260	Pave	NaN	IR1		AllPub		NaN	NaN	NaN			2008	WD	Normal	250000
1455	1456	60		62.0	7917	Pave	NaN	Reg	Lv1	AllPub		NaN	NaN	NaN			2007	WD	Normal	175000
1456	1457	20		85.0	13175	Pave	NaN	Reg	Lvl	AllPub		NaN	MnPrv	NaN			2010	WD	Normal	210000
1457	1458			66.0	9042	Pave	NaN	Reg		AllPub		NaN	GdPrv	Shed	2500		2010	WD	Normal	266500
1458	1459	20		68.0	9717	Pave	NaN	Reg		AllPub		NaN	NaN	NaN			2010	WD	Normal	142125
1459	1460	20		75.0		Pave	NaN	Reg		AllPub		NaN	NaN	NaN			2008		Normal	147500
[1460	rows	x 81 column	s]																	

computer vision

control

language models

When to Use ML (Learning from Data)

automation

too complex for rules

object recognition, chat bot, ...

uncertainty

too complex for humans

AlphaFold

protein structure predictions, demand forecasting, ...

blend of diverse components from different domains (statistics, optimization, computer science, ...)

Deep Learning: special kind of ML methods using *deep* neural networks (e.g., CNNs, transformers)

Used Programming Language: Python

- good compromise between rapid prototyping and production
- vast ecosystem
- very popular for data processing and ML: scientific Python stack

Used Python Libraries

computer vision:

deep learning:

Programming Environments

locally, best use

- a virtual environment to flexibly install packages (e.g., venv)
- an IDE of your choice (e.g., VS Code)
- both plain Python files or <u>Jupyter notebooks</u> are fine

but cloud-based environments also fine (e.g., Google Colab)

Literature

- Computer Vision: Algorithms and Applications
- Digital Image Processing, Gonzales & Woods

- Deep Learning
- The Little Book of Deep Learning
- Understanding Deep Learning