Generación de Números Aleatorios

Generación de Números Aleatorios

Propósito

- Métodos de generación de números aleatorios.
- Test de Aleatoriedad:
 - □ Test de Frecuencia.
 - □ Test de Autocorrelación.

Generación de Números Pseudo-Aleatorios

- "Pseudo": el hecho de utilizar un método deja de ser aleatorio.
- Objetivo: Producir una secuencia de núm. en [0,1] que simulan o imitan las propiedades ideales de distribución uniforme e independiente
- Consideraciones importantes para las generadores:
 - Rápido
 - Portable
 - Tener un ciclo suficientemente largo
 - Replicable
 - Aproximado a las propiedades estadísticas ideales de uniformidad e independencia.

Propiedades de los Números Aleatorios

- Uniformidad.
- □ Independencia.
- Analisis de estas propiedades.
- Cada número aleatorio, R_i , debe ser una extracción muestral independiente de una Distr. Uniforme(0,1) con fdp: $f(x) \neq 0$

$$f(x) = \begin{bmatrix} 1, & 0 \le x \le 1 \\ 0, & \text{otro caso} \end{bmatrix}$$

$$E(R) = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$$

Técnicas

- Método de Congruencia Lineal (MCL).
- Generadores Congruentes Lineales Combinados (CLCG).
- Series de Números Aleatorios (Random-Number Streams).

Método de Congruencia Lineal

[Técnicas]

Produce una secuencia de enteros, X₁, X₂, ... entre 0 y m-1 a través de la relación recursiva:

- La selección de los valores para a, c, m, y X_0 afectan drásticamente las propiedades y la longitud de ciclo.
- Para convertir los enteros en números aleatorios:

$$R_i = \frac{X_i}{m}, \quad i = 1, 2, ...$$

Ejemplo

[MCL]

- Usando $X_0 = 27$, a = 17, c = 43, and m = 100.
- Los valores para X_i y R_i son:

$$X_1 = (17*27+43) \mod 100 = 502 \mod 100 = 2, \qquad R_1 = 0.02;$$

 $X_2 = (17*2+43) \mod 100 = 77, \qquad \qquad R_2 = 0.77;$
 $X_3 = (17*77+43) \mod 100 = 52, \qquad \qquad R_3 = 0.52;$

. . .

Otras Características

- Densidad Máxima
 - \square Los valores R_i , i=1,2,..., no dejan grandes vacíos en [0,1]
- Período Máximo
 - \square Se logra con una apropiada elección de a, c, m, y X_o .
 - Ejemplos.
- La mayoría de los lenguajes usan valores para m potencia de 2, por eficiencia.

Generadores Congruentes Lineales Combinados (CLCG)

- Razón: generadores de períodos largos son necesitados por el aumento de la complejidad de los sistemas de simulación.
- Método: Combinar 2 o mas GCL Multiplicativos.
- Sea $X_{i,1}$, $X_{i,2}$, ..., $X_{i,k}$, las $i^{\text{e-sima}}$ salidas desde k diferentes GCL multiplicativos.
 - □ Donde el jes generador:
 - Tiene módulo primo m_j , y el multiplicador a_j es elegido t.q. el perído es m_j -1.
 - produce enteros $X_{i,j}$ aprox. ~ Uniforme [1, m-1].
 - $W_{i,j} = X_{i,j}$ -1 es aprox. ~ Uniforme sobre los enteros en $[0, m_i$ -2]

Generadores Congruentes Lineales Combinados (CLCG)

L'Ecuyer sugiere generadores de la forma:

$$X_{i} = \sum_{j=1}^{k} (-1)^{j-1} X_{i,j} \mod m_{1} - 1 \qquad \text{Aqu\'i}, \ R_{i} = \sum_{j=1}^{l} \frac{X_{i}}{m_{1}}, \qquad X_{i} > 0$$

$$\lim_{j \to 1} \frac{m_{1} - 1}{m_{1}}, \qquad X_{i} = 0$$

El máximo período posible es:

$$P = \frac{(m_1 - 1)(m_2 - 1)...(m_k - 1)}{2^{k-1}}$$

 Se puede obtener facilmente períodos máximos de 262(incluso hasta 2191)

Generadores Congruentes Lineales Combinados (CLCG)

- Ejemplo: para computadoras de 32-bit, L'Ecuyer [1988] sugiere una combinación de k=2 generadores con $m_1=2,147,483,563$, $a_1=40,014$, $m_2=2,147,483,399$ and $a_2=20,692$.
- Algoritmo:

Step 1: Seleccionar la semilla

- $X_{1,0}$ en el rango[1, 2,147,483,562] para el 1er generador
- $X_{2,0}$ en el rango [1, 2,147,483,398] para el 2do generador.

Step 2: Por cada generador individual,

$$X_{1,j+1} = 40,014 \ X_{1,j} \mod 2,147,483,563$$

 $X_{2,j+1} = 20,692 \ X_{1,j} \mod 2,147,483,399.$

Step 3: $X_{j+1} = (X_{1,j+1} - X_{2,j+1}) \mod 2,147,483,562.$

Step 4: Return

$$R_{j+1} = \begin{bmatrix} X_{j+1} \\ \hline 2,147,483,563 \\ \hline 2,147,483,562 \\ \hline 2,147,483,563 \end{bmatrix}, \quad X_{j+1} > 0$$

$$X_{j+1} = 0$$

Step 5: Setear j = j+1, ir a step 2.

□ Generador Combinado tiene período: $(m_1 - 1)(m_2 - 1)/2 \sim 2 \times 10^{18}$

Series de Números Aleatorios (Random-Numbers Streams)

- La semilla GCL:
 - \square Es el valor inicial X_0 que inicializa la secuencia de núm. aleatorios.
 - Cualquier valor de la secuencia puede ser usado para "sembrar" el generador.
- Una serie de Núm. Aleatorios (NA) es:
 - \square Referirse a una semilla "inicial" tomada desde la secuencia $X_0, X_1, ..., X_{P}$
 - Si estas semillas están separadas por b valores, entonces el stream i debería estar definido por la semilla inicial:
 - □ Algunos $b = 10^5$... hasta $b = 10^{37}$.
- Un simple generador con k streams puede actuar como k distintos generadores virtuales.
- Sirve para comparar dos o mas alternativas de un sistema, por ej..

Test para Números Aleatorios

- Dos categorias:
 - Testing para la uniformidad:

$$H_0$$
: $R_i \sim U[0,1]$

$$H_1$$
: $R_i \sim U[0,1]$

- Fracaso en el rechazo de la hipotesis nula, H₀, significa que no se ha detectado evidencia de no-uniformidad.
- Testing para la independencia:

$$H_0$$
: $R_i \sim \text{independiente}$

$$H_1$$
: $R_i \sim \text{independiente}$

- Fracaso en rechazar la hipotesis nula, H_0 , sign. Significa que evidencia de dependencia no se ha detectado.
- Establecer un nivel de confianza α, la probabilidad de rechazar
 H₀ cuando éste es verdadera:

$$\square\square\alpha = P(rechazar H_0|H_0 es true)$$

Test para Números Aleatorios

- Cuando deben ser usados:
 - Para generadores de los lenguajes de simulación, no son necesarios.
 - Para generadores de lenguajes de propósito general, planillas de calculo, etc., los tests debe ser aplicados.
- Tipos de tests:
 - Tests teóricos.
 - Tests Empiricos (énfasis en estos).

Tests de Uniformidad

■ Testeo de Frecuencia:

- □ Dos diferentes métodos:
 - Test Kolmogorov-Smirnov
 - Test Chi-square

Test Kolmogorov-Smirnov

- \square Conocemos: $F(x) = x, 0 \le x \le 1$
- □ Si la muestra es es R_1 , R_2 , ..., R_N , entonces la fda empirica, $S_N(x)$ es: $S_N(x) = \frac{\# \text{ of } R_1, R_2, ..., R_n \text{ which are } \leq x}{N}$
- El test está basado sobre el estadis.: $D = max | F(x) S_N(x) |$
 - La distribución muestral de D es conocida (Kolmogorov-Smirnov) y es tabulada en función de N y α .

Test Kolmogorov-Smirnov

Ejemplo: números generados 0.44, 0.81, 0.14, 0.05, 0.93.

		ı		I	ī		Ordeno R ₀ de
Step 1:	$R_{(i)}$	0.05	0.14	0.44	0.81	0.93 -	menor a mayor
	i/N	0.20	0.40	0.60	0.80	1.00	
	i/N – R _(i)	0.15	0.26	0.16		0.07 -	$D^{+} = max \{i/N - R_{(i)}\}$
Step 2: {	R _(i) – (i-1)/N	0.05	- -	0.04	0.21	0.13 -	$D^{-} = max \{R_{i0} - (i-1)/N\}$
				¥	·		$\mathbf{D} = \max_{\mathbf{I} \in \mathcal{I}_{(i)}} (\mathbf{I} \mathbf{I}_{(i)})$

Step 3:
$$D = max(D^+, D^-) = 0.26$$

Step 4: For
$$\alpha = 0.05$$
,

$$D_{\alpha} = 0.565 > D$$

 H_0 no es rechazada.

Test Chi-square

- \square Es aproximadamente una distr. chi-square con n-1 grados de libertad (la cual es tabulada)
- □ Para la distr. Uniforme, E_i , el número esperado en cada clase es: $E_i = \frac{N}{m}$, dende N es el # total de observaciones
- Valido solo para grande muestras (N >= 50)

Tests para Autocorrelación

- Testea la autocorrelación entre cada m números, comenzando desde un ies número.
 - □ La autocorrelación ρ_{im} entre numeros: R_i , R_{i+m} , R_{i+2m} , $R_{i+(M+1)m}$
 - \square *M* es el mas grande entero t.q.

$$i + (M + 1)m \leq N$$

Hipótesis:

 $H_0: \rho_{im} = 0$, si los numeros son independientes

 $H_1: \rho_{im} \neq 0$, si los numeros son dependientes

- Si los valores son independientes:
 - \square Para un M grande, la distr. del estimador de ρ_{im} , denotado $\hat{\rho}_{im}$ es aproximadamente una normal.

Tests para Autocorrelación

$$Z_0 = \frac{\hat{\rho}_{im}}{\hat{\sigma}_{\hat{\rho}_{im}}}$$

 \square Z_0 es distr. normalmente con media = 0 y varianza = 1, y:

$$\hat{\rho}_{im} = \frac{1}{M+1} \left[\sum_{k=0}^{M} R_{i+km} R_{i+(k+1)m} \right] - 0.25$$

$$\hat{\sigma}_{\rho_{im}} = \frac{\sqrt{13M+7}}{12(M+1)}$$

La hipotesis nula no es rechaza si: $-Z_{\alpha/2} \le Z \le Z_{\alpha/2}$.

Ejemplo

- Test entre los 3rd, 8th, 13th, y asi, para las observaciones de la pag. 291 (libro Jerry Banks).
 - \square Donde, $\alpha = 0.05$, i = 3, m = 5, N = 30, y = 4

$$\hat{\rho}_{35} = \frac{1}{4+1} \begin{bmatrix} (0.23)(0.28) + (0.28)(0.33) + (0.33)(0.27) \\ + (0.27)(0.05) + (0.05)(0.36) \end{bmatrix} - 0.25$$

$$= -0.1945$$

$$\hat{\sigma}_{\rho_{35}} = \frac{\sqrt{13(4) + 7}}{12(4+1)} = 0.128$$

$$Z_0 = -\frac{0.1945}{0.1280} = -1.516$$

Observando la tabulación (Tabla A.3 del libro), $z_{\alpha/2}$ ($z_{0.025}$) = 1.96. , la hipótesis no es rechazada.

Referencias

- RIPLEY, B.D. [1987], Stochastic Simulation, Wiley, New York.
- L'ECUYER, P. [1998], Random Number Generation, Chapter 4 in Handbook of Simulation, J. banks, ed., pp.93-137. Wiley, New York.
- L'ECUYER, P. [1988], Efficient and Portable Combines Random Number Generators, Communication of the ACM, Vol. 31, pp. 742-749, 774.
- Jerry Banks, John S. Carson, II, Barry L. Nelson, Discrete-Event System Simulation, David M. Nicol. Quinta Edición. ISBN-10: 0136062121. Publisher: Prentice Hall.