

**US Army Corps
of Engineers®**
Engineer Research and
Development Center

Forecasting Climate-Induced Ecosystem Changes on Army Installations

James D. Westervelt and William W. Hargrove

October 2011

Forecasting Climate-Induced Ecosystem Changes on Army Installations

James D. Westervelt and William W. Hargrove

*Construction Engineering Research Laboratory (CERL)
US Army Engineer Research and Development Center
2902 Newmark Dr.
Champaign, IL 61822-1076*

Final Report

Approved for public release; distribution is unlimited.

Abstract

Military installation training lands must be managed to support species at risk as well as to be effective training environments for soldiers. Forecasts from various global climate change models suggest that the habitats associated with some military training installations will face pressures that induce biome-shifts, invasive species, loss of habitat, and changes in training opportunities. This study combined worldwide habitat forecast data with a current habitat map to identify major installations that appear to be most and least at-risk for habitat change.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Table of Contents

Abstract.....	ii
List of Figures.....	iv
Preface	v
1 Introduction.....	1
1.1 Background	1
1.2 Objective	1
1.3 Approach.....	1
1.4 Scope.....	2
1.5 Mode of technology transfer.....	2
2 Analysis Steps.....	3
2.1 Steps 1 & 2: Climate Modeling.....	3
2.2 Step 3: Multivariate geographic clustering.....	5
2.3 Step 4: Current habitat maps.....	7
2.4 Step 5: Future habitat map	10
3 Installation Analyses.....	21
3.1 Step A1: Forecasting installation biome shifts.....	21
3.2 Step A2: Find future areas in the present	22
3.3 Step A3: Rank areas by degree of change	23
3.4 Step A4: Looking at raw change across CONUS.....	24
4 Conclusions.....	29
4.1 “Which installations are most at-risk with respect to ecosystem changes?”	29
4.2 What is the range of anticipated ecosystem shifts based on the forecasts of general circulation models (GCMs)?	29
4.3 Where can one go today to find the ecosystem drivers (weather, climate, soil, and sun) anticipated in the future?	30
Acronyms and Abbreviations	31
References.....	32
Appendix A: Legends	33
Appendix B: Installation Biome Shift Forecasts	36
Appendix C: Ranking Army Installations.....	116
Report Documentation Page (SF 298).....	125

List of Figures

Figures

1	Overall approach.....	4
2	Global ecosystem map – random color table.....	7
3	GAP national land cover map	8
4	TNC ecosystems of the world.....	9
5	TNC ecosystems of the world – United States.....	9
6	Global ecosystem map reclassified to GAP categories	11
7	Global ecosystem map reclassified to TNC categories	11
8	B1 Scenario, PCM Model; GAP Categories.....	13
9	A1 Scenario, PCM Model; GAP categories.....	14
10	B1 Scenario, HAD Model; GAP categories.....	15
11	A1 Scenario, HAD Model; GAP categories	16
12	B1 Scenario, PCM Model; TNC categories	17
13	A1 Scenario, PCM Model; TNC categories.....	18
14	B1 Scenario, Hadley Model; TNC categories.....	19
15	A1 Scenario, Hadley Model; TNC categories.....	20
16	Sample installation report showing local biome shift potentials	22
17	Current location of forecast ecosystem conditions	23
18	Degree of change. Model: PCM, Scenario: A1	25
19	Degree of change. Model: PCM, Scenario: B1.....	26
20	Degree of change. Model: Hadley, Scenario: A1.....	27
21	Degree of change. Model: Hadley, Scenario: B1	28
A1	Legend for GAP maps.....	34
A2	Legend for TNC maps	35

Preface

This study was conducted for Dr. Jeffrey Holland, Director of the Engineer Research and Development Center under a project called, “Integrated Risk Management for Climate Change,” via the Center Directed Research Program. The project Principal Investigator was Dr. Todd Bridges of the Environmental Laboratory.

The work was performed by the Environmental Processes Branch (CN-N) of the Facilities Division (CF), Construction Engineering Research Laboratory (CERL). The CERL Principal Investigator was Dr. James Westervelt. William Meyer is Chief, CEERD-CN-N, and Dr. John Bandy is Chief, CEERD-CF. The Director of ERDC-CERL is Dr. Ilker R. Adiguzel.

CERL is an element of the US Army Engineer Research and Development Center (ERDC), US Army Corps of Engineers. The Commander and Executive Director of ERDC is COL Kevin J. Wilson, and the Director of ERDC is Dr. Jeffery P. Holland.

1 Introduction

1.1 Background

Military installations and ranges support military training and testing across the United States. That land must be managed in a manner that ensures that the military continues to have excellent conditions to support the training and testing missions. An emerging potential threat to those conditions comes in the form of forecasted climate change, which might directly affect training by changing erosion challenges or by compromising training realism. Climate change may also indirectly affect training by changing the suitability of on-installation important habitats – including areas that support threatened or endangered species.

1.2 Objective

This objective of this work was to address three questions regarding the anticipated implications of forecast climate change in the Continental United States (CONUS):

- Which Army installations are most at-risk with respect to ecosystem changes?
- What is the range of anticipated ecosystem shifts based on the forecasts of general circulation models (GCMs)?
- Where can one go today to find the ecosystem drivers (weather, climate, soil, and sun) anticipated in the future?

1.3 Approach

This study assumed that ecosystems are driven by conditions involving temperature, rainfall, solar insolation, and soil characteristics. By correlating these conditions with the ecosystems found across the United States (and the globe), it is possible to forecast ecosystem shifts based on forecast changes to these conditions. Note that identifying shifts in conditions that might favor a different ecosystem is only the first step in actually forecasting the timing or speed with which any given area will shift. Ecosystems can be associated with a significant level of persistence and it can take decades or even millennia for seeds to establish themselves in distant areas.

1.4 Scope

This study focused primarily on major CONUS Army installations.

1.5 Mode of technology transfer

This report will be made accessible through the World Wide Web (WWW) at URL: <http://www.cecer.army.mil>

2 Analysis Steps

This study developed future habitat maps for the Continental United States based on forecasts from global climate change models and habitat classifications developed by the Gap Analysis Program (GAP). Developing future habitat maps involves five steps (Figure 1). Three subsequent analyses use these maps: (1) installation biome shift analysis, (2) an analysis to find current areas that represent forecast installation conditions, and (3) an analysis to rank installations by degree of ecosystem driver shifts. The following sections describe each of the steps taken to develop these future habitat maps.

2.1 Steps 1 & 2: Climate Modeling

These efforts began with published data sets of current and future climate information created for the entire globe by the WorldClim group (<http://www.worldclim.org>). The climate modeling data development and analysis story begins with the running of General Circulations Models (GCM). The Intergovernmental Panel on Climate Change (IPCC), co-sponsored by the United Nations Environmental Programme (UNEP) and the World Meteorological Organization (WMO), is a focal point for coordinated global climate change analyses. In 2001, IPCC published the “Third Assessment Report” in four volumes. The first volume provides the scientific basis of the climate change analyses (IPCC 2001). From the IPCC 2001 analysis, results from two global climate models (GCMs, also known as general circulation models) were selected to represent forecast change extremes. The Hadley Centre model, HadCM3 (Wood et al. 1999), provides the conservative bookend. The National Center for Atmospheric Research (NCAR) Parallel Climate Model (PCM; Dai et al. 2001a; Hu et al. 2004) provides the more extreme forecasts.

These model the globe using grid cells that are roughly 3-degrees square. The Hadley model links an Ocean Model (HadOM3), which includes sea ice; with an atmospheric model (HadAM3). The PCM fully couples an 18-level atmospheric general circulation model (GCM), the 32 level Los Alamos National Laboratory Parallel Ocean Program (POP; Smith et al. 1992; Dukowicz and Smith 1994) ocean GCM, a land surface model, and a dynamic–thermodynamic sea ice model (Washington et al. 2000).

Figure 1. Overall approach.

These models were run using two internationally standardized gas-emission scenarios: Scenario A1, (“business-as-usual”), which corresponds with the highest emissions; and Scenario B1, which corresponds with the lowest emissions. Climate states for 2050 and 2080 were captured for downscaling.

The GCM data were processed into global climate layers by the WorldClim group posted at the WorldClim website (<http://www.worldclim.org>). The WorldClim group specializes in the development of ~1-km resolution climate maps for the world using thin-plate spline interpolations of worldwide weather station data (Hijmans et al. 2005). To create future maps at this resolution, GCM outputs (typically at resolutions of about 110 km) were compared with current conditions to create difference maps (of temperature and rainfall by season). These maps, in turn, were interpolated to the 1-km resolution and added to the equivalent WorldClim current weather maps (see: <http://www.worldclim.org/downscaling>). Using this approach, the WorldClim has processed 2020, 2050, and 2080 outputs from three GCM models that each ran A2A and B2B scenarios, for the third IPCC assessment report (TAR). For each model, scenario, and date combination, WorldClim generated monthly averages for maximum temperature, minimum temperature, and precipitation.

Using the WorldClim results, Chris Zganjar, of The Nature Conservancy, developed and ran geographic information processing scripts to generate nine maps that represent current conditions and future conditions (2050 and 2080) for two scenarios run by two GCMs. The resulting maps represent the current global system and the combinations of the two models, two scenarios, and 2 future years:

1. Precipitation during the locally hottest quarter
1. Precipitation during the locally coldest quarter
2. Precipitation during the locally driest quarter
3. Precipitation during the locally wettest quarter
4. Ratio of precipitation to potential evapotranspiration
5. Temperature during the coldest local quarter
6. Temperature during the hottest local quarter
7. Sum of local monthly Tavg where $Tavg \geq 5^{\circ}\text{C}$
8. Integer number of consecutive months where $Tavg \geq 5^{\circ}\text{C}$ (Length of potential growing season).

2.2 Step 3: Multivariate geographic clustering

Hargrove and Hoffman (2005) reviewed the history of statistical and geographic information system (GIS) based ecosystem map development and then described their Multivariate Geographic Clustering (MGC) empirical process for identifying habitats. They used nine characteristics captured as maps for the conterminous United States:

1. Plant-available water capacity
9. Soil organic matter
10. Total Kjeldahl soil nitrogen
11. Depth to a seasonally high water table
12. Mean precipitation during the growing season
13. Mean insolation during the growing season
14. Degree-day heat sum during the growing season
15. Degree-day cold sum during the non-growing season
16. Elevation.

Maps were at a resolution of 1-km. Each of the maps was converted to non-dimensional forms by assigning standard-deviation values from the means of each of the maps values. This resulted in each location being characterized by a coordinate point in the 9 dimensions. Hargrove and Hoffman used a two-step process using clustering and classification to

classify all locations. In the first step, the 9-dimensional space was divided in up to 3000 cluster centers that were then moved around the space until each cluster signature was associated with a similar number of locations (a subset of 1-km cells). With the established cluster means, each location was then assigned to the cluster that has the closest Euclidian distance in the 9-dimensions.

This study applied the MGC procedure simultaneously using nine sets of 16 map layers representing the current global state and the eight forecast future states:

1. Precipitation during the locally hottest quarter
17. Precipitation during the locally coldest quarter
18. Precipitation during the locally driest quarter
19. Precipitation during the locally wettest quarter
20. Ratio of precipitation to potential evapotranspiration
21. Temperature during the coldest locally quarter
22. Temperature during the hottest locally quarter
23. Sum of monthly Tavg where $Tavg \geq 5^{\circ}\text{C}$
24. Integer number of consecutive months where $Tavg \geq 5^{\circ}\text{C}$ (Length of potential growing season)
25. Available water holding capacity of soil
26. Bulk density of soil
27. Carbon content of soil
28. Nitrogen content of soil
29. Compound topographic index (relative wetness)
30. Solar interception
31. Day/night diurnal temperature difference.

To facilitate the combination and comparison of these maps through a cluster analysis, each was transformed by calculating the standard deviation of the maps' values. This resulted in a 16-value signature for every one of 48.6 million 2-minute square cells for the globe (including water areas) between 60 degrees south latitude and 90 degrees north latitude (10,800 columns and 4500 rows). The signatures for all land areas and for all maps were then clustered into 30,000 clusters. This large number of clusters allows for relatively fine separation of habitat types, yielding an average of about 500 cells per cluster. Figure 2 shows the resulting map for the area of the United States based on current (2000) conditions.

Figure 2. Global ecosystem map – random color table.

The color table is random and shows areas that are similar in the combination of the conditions represented in the 16 input maps. Note that analysis was done for the entire globe and for the eight future condition combinations. This means that areas with the same set of conditions anywhere in the world and/or any time in the future are assigned the same cluster number. The averages of the conditions for all locations associated with a cluster results in a signature for that cluster. This results in an extremely powerful set of maps that can be used for answering a wide variety of questions. Any naturally occurring thing on the earth can be located in the current map to identify the associated clusters and signatures, which can be located across the earth, currently and in the future.

For example, by identifying the location of oak-hickory assemblages, one can then identify the gridcells associated with those areas and find out what clusters they represent. By highlighting the gridcells across the country (or globe) across the future conditions, it is possible to identify where the conditions are forecast to be found that are currently associated with oak-hickory forests. This procedure can be used for locating the future locations of areas that share the ecosystem drivers currently associated with habitat, species, growing areas, cities, forests, or military installations.

2.3 Step 4: Current habitat maps

The 30,000 cluster categories generated for the globe across the current and nine future scenarios are simply statistically-similar areas based on standard-deviation values representing 16 distinct soil characteristics, solar interception, and climate values. Correlating these clusters with ac-

cepted habitat types is relevant to this work. This begins with selecting a habitat classification. Many habitat classification maps have been developed for the United States. Early examples include the Bailey (1983, 1995, 1996) and Omernick (1987) classification maps. Bailey generated maps at three levels of detail, identifying 52 ecoregions at the finest level. For studying water resources, Omernick identified 76 national ecoregions. These maps were created through a combination of computer-assisted classification of mapped data and subjective expert opinion.

This study selected two modern ecosystem classifications. The first, the GAP national land cover map, was developed by the GAP program (Davidson, 2010) and uses the Ecological System classification system developed by NatureServe to represent natural and semi-natural land cover, and covers the continental United States.

Ecological systems were developed as a means of representing recurring groups of biological communities that are found in similar physical environments and that are influenced by similar dynamic ecological processes, such as fire or flooding. In addition, the national map contains 551 Ecological Systems and modified Ecological Systems containing 39 land use classes, which are depicted developed and disturbed land cover classes (GAP 2011).

Figure 3 shows the GAP map for the United States. Note that Appendix A to this report (Figure A1,p 34) contains the legend for this map (and all maps derived from this GAP map).

Figure 3. GAP national land cover map.

The second ecosystem map adopted covers the globe and was developed by the Nature Conservancy (TNC) as a unified global representation of ecosystems. Figure 4 shows the global TNC map* and Figure 5 shows the corresponding CONUS map. Figure A2 (p 35) contains the legend for the TNC maps. Note that the GAP ecosystem map is much more detailed than the TNC map (688 categories across the globe, but only 70 across CONUS).

Figure 4. TNC ecosystems of the world.

Figure 5. TNC ecosystems of the world – United States.

* Also available through URL: <http://www.nature.org/multimedia/maps/>

2.4 Step 5: Future habitat map

The goal of this step was to generate a consistent set of one current and eight future habitat maps based on the 551 GAP ecosystem and land use classes for CONUS and the 688 TNC ecosystem classes for the world. These are based on all combinations of two GCM models (Hadley and PCM), two scenarios (A1 and B1 emission levels), and two future times: 2050 and 2080. This step begins with eight future maps (and a current map) that have been collectively classified into 30,000 habitat clusters (Step 3). That is, each of the nine maps shares the same cluster values. Therefore, if the cluster categories in any one of the maps can be associated with ecosystems, then that same association can be shared with the other eight maps. This was done by cross-referencing the 551 GAP ecosystem and land use classes (Figure 3) with the cluster categories (Figure 2) (4284 categories of the 30,000 across the world, across the nine maps) found in the conterminous current map. Counts were made of the number of cells sharing each GAP category with the various cluster categories. For each cluster category, a count of the number of cells containing each shared GAP category was established and the most commonly shared GAP category was then assigned to each respective cluster category.

The reassignment relating Figure 2 to Figure 3 resulted in the map shown in Figure 6. The 4284 cluster categories mapped into 243 (less than half) of the 551 GAP categories. Many GAP categories that represented small areas were washed out in the process – leaving only the more dominant ecosystem types. The cross-referencing established for the current map was then applied to all of the future maps – providing the basis for forecasting ecosystem change.

The same procedure was followed with the global TNC map. Each of the clusters was associated with the one TNC ecosystem type that most frequently correlated with the cluster. Unlike the GAP-based analysis, this was done with the global map. Figure 7 shows the result for CONUS.

There are two interesting differences between Figure 7 and Figure 5. First, the number of ecosystem categories across the United States increased from 70 to 287. This is because the entire globe was analyzed simultaneously and there are many cases where small areas in CONUS share the ecosystem driver conditions associated with broader areas elsewhere.

Figure 6. Global ecosystem map reclassified to GAP categories.

Figure 7. Global ecosystem map reclassified to TNC categories.

In many cases, these areas in CONUS can be very small. Second, while the ecosystem areas are grossly located similarly across the states, the edges of the ecosystem areas are much more jagged in the new map (Figure 7), more accurately representing reality in nature, and its lack of solid edges.

The new GAP and TNC maps were generated using lookup tables that associate each cluster to the associated ecosystem type. By applying these two lookup tables to the eight future maps, it is possible to generate sets of GAP and TNC-based ecosystem maps.

Future time series for each of the two models and the two emission time series are displayed for the GAP-based series in Figures 8 to 11; and for the TNC-based series in Figures 12 to 15. These are in order of apparent eco-

system impact severity. The PCM B1 scenario results are captured in Figures 8 and 12. The top image in each shows the current system state, the center image shows the scenario projected for 2050, and the bottom image, the scenario projected for 2080. This pattern is repeated in Figures 13 to 15. Significant shifts are evident in even the least dramatic forecast of change. Note, for example, the northern shifts in northern Texas and into Oklahoma. Northward shifts are also easily apparent in the Appalachian ecosystems.

The A1 scenario PCM model results (Figures 9 and 11) show similar, but more dramatic, changes. Note the changes throughout most of the country. Note the white areas throughout the 2080 map. Most of these areas represent changes that have no current United States ecosystem analogs. In some cases, these can be mapped to existing areas elsewhere in the world. In other cases there are no current world analogs.

The B1 and A1 Hadley results follow in Figures 10 and 11 (and Figures 14 and 15) respectively. The B1 forecast is more severe than the PCM A1 results. The A1 results suggest extremely dramatic changes throughout most of the country.

Figure 8. B1 Scenario, PCM Model; GAP Categories.

Figure 9. A1 Scenario, PCM Model; GAP categories.

Figure 10. B1 Scenario, HAD Model; GAP categories.

Figure 11. A1 Scenario, HAD Model; GAP categories.

Figure 12. B1 Scenario, PCM Model; TNC categories.

Figure 13. A1 Scenario, PCM Model; TNC categories.

Figure 14. B1 Scenario, Hadley Model; TNC categories.

Figure 15. A1 Scenario, Hadley Model; TNC categories.

3 Installation Analyses

3.1 Step A1: Forecasting installation biome shifts

In this step, one queries the future maps and asks how individual installations are likely to change, from an ecosystem perspective, over the 21st century. This was done by generating a page of images for each major installation that shows the area around each installation for each of the nine maps, and generating a rank-ordering of installations with respect to significance of change (discussed below). Appendix B (p 36) includes the results for select installations. (Figure 16 shows one example.) The location of an area around the installation is shown against the United States. The remaining maps “zoom into” this area. The map at the top-right shows the current ecosystem types. The middle row shows the images of the same area for the years 2050 and 2080. The columns represent the PCM model, B1 scenario; the PCM model, A1 scenario; the Hadley model, B1 scenario; and the Hadley A1, scenario. The top-left box provides an ecosystem/land-cover legend for the most commonly occurring categories across all of the maps on the page.

It is extremely important to read these maps with the following caveats. First, the Hadley and PCM models were chosen to represent relative extremes in GCM forecasts. Similarly, the A1 and B1 gas-emission scenarios provide relative extremes in greenhouse gas emission rates over the 21st century. Secondly, compared with the size of installations, the resolution of the national-scale study is relatively crude. Therefore, on-installation ecosystem details are not captured. Third, the classification of ecosystem type on the installations is likely to be crude – relative to the on-installation knowledge of local ecologists. Fourth, the forecast change identifies the very long-term steady state of an area. It does not take into account the rate of change to that system, which is mediated by seed dispersal rates, longevity of mature trees, human system management initiatives, susceptibility to disease, and inter-species competition.

Figure 16. Sample installation report showing local biome shift potentials.

3.2 Step A2: Find future areas in the present

Another way to understand the potential for biome shift change and to visualize the relative amount of change is to display where one can go today to find the future ecosystem-driving conditions anticipated in the future. Consider Fort Jackson, SC (Figure 17). The images are arranged similarly to those in Figure 16: Current conditions are at top left, 2050 is the middle row, and 2080 is the bottom row. The first two columns are PCM model results, B1 scenario first and A1 scenario second. The last two columns are Hadley model results, again with B1 the first and A1 the second. The color table runs from dark green through bright green to white, with dark green being identical or very similar to the target.

Figure 17. Current location of forecast ecosystem conditions.

The PCM B1 scenario suggests little change for this area by 2050. To find the best current example of conditions estimated for 2080 one needs to travel to the east area in Georgia. The Hadley A1 panel suggests that there are no areas that one can currently go today to find the conditions anticipated for Fort Jackson in 2080, but that the Florida panhandle offers the best analog. The gross graphical suggests that one need move further and further south to find areas that are similar to the modeled futures. Appendix B to this report (p 36) includes panels for selected installations.

3.3 Step A3: Rank areas by degree of change

Which installations are most at-risk for change due to the consequences of potential ecosystem shift? To rank-order installations, the boundary of each installation was used to “cookie-cutter” into the current and future maps over the eight future GAP-based maps to tabulate the ecosystem type and amount of each type. For each future map, the percent of the installa-

tion that still held the current ecosystem types was calculated. The percentage across all eight future maps was then averaged and used to rank-order the installations. Appendix C (p 116) lists all of the Army installations beginning with the least changeable and ending with the installations likely to be most dramatically affected. The last column (on which the table is sorted) lists the average of the counts of changes for each model/scenario/time combination.

3.4 Step A4: Looking at raw change across CONUS

Another way to view the data is to simply look for degree of change over time across the 16 ecological drivers. Remember that each of the driver maps encodes the number of standard deviations from each map's average for each gridcell. Consider that these 16 values represent coordinates in a 16-dimensional space. One way to calculate overall change is to find the straight-line distance using the Pythagorean theorem between the 16-D coordinate for a space in 2000 and the 16-D coordinate representing a later time. This method assumes that one unit of change in one dimension is equivalent to one unit of change in every other dimension.

Figures 18 to 21 each show the two time steps (2050 and 2080) for each of the four model/scenario combinations. The images use a grey-scale color table with areas that change little in white and those that change a lot in black. Each image uses the same color table to allow for easy visual comparison. As expected, the Hadley model is consistently associated with greater change than the PCM model. Also, the higher emission scenario (A1) is associated with across the board greater change. In every map, the degree of change is quite variable across the nation, and the patterns of change are different across models and scenarios.

Figure 18. Degree of change. Model: PCM, Scenario: A1.

Figure 19. Degree of change. Model: PCM, Scenario: B1.

Figure 20. Degree of change. Model: Hadley, Scenario: A1.

Figure 21. Degree of change. Model: Hadley, Scenario: B1.

4 Conclusions

This work has addressed three questions regarding the anticipated implications of forecast climate change in the CONUS for US Army installations.

4.1 “Which installations are most at-risk with respect to ecosystem changes?”

This work investigated the potential for ecosystem shifts on 134 military installations and tabulated the percent of anticipated shift in Appendix C (p 116). That potential was estimated for all eight combinations of two GCMs (Hadley, a model that tends to predict significant change; and PCM, a model that predicts less severe change), two scenarios (A1, higher carbon emissions, and B1, lower emissions), and two time periods. This work concludes that the major training/testing installations that appear to be most at risk include:

- Yakima
- Fort Huachuca
- Fort Drum
- Fort Hunter-Liggett
- Fort Jackson
- Fort Knox
- Fort Bliss
- Fort Sill
- Fort Campbell
- Fort Gordon
- Fort Benning.

4.2 What is the range of anticipated ecosystem shifts based on the forecasts of general circulation models (GCMs)?

The two GCMs chosen represent a reasonable range of climate condition change forecasts. The models generally agreed in the direction of system changes, varying only in degree. Based on this analysis, 66–88 percent of installations are expected to see ecosystem driver conditions (weather, soils, and insolation) change enough by 2050 to support a different system than now exists. By 2080 that range shifts to 68–99 percent. By this anal-

ysis, this work concludes that over the coming decades, most installations are expected to see clear evidence of climate change impact on the types of plants and animals that naturally thrive on their lands.

4.3 Where can one go today to find the ecosystem drivers (weather, climate, soil, and sun) anticipated in the future?

Appendix B to this report (p 36) includes three panels of analysis results for some of the largest Army training and testing installations. The third panel in each set maps where one might go today to find the ecosystem driver conditions that most closely match the anticipated future conditions for the installation. In general one must travel south, or down-slope, to find the anticipated future conditions today. However, in the long term, it becomes increasingly likely that there is no nearby location that is like the anticipated future.

As noted earlier, this analysis looks only at the anticipated changing conditions that support ecosystems and that matches future conditions to current conditions to see what ecosystems are currently supported by specific combinations of conditions. While this analysis might predict what ecosystems might emerge in the future if conditions were to stabilize, it absolutely does not forecast when the new system will replace the current system. However, this analysis does suggest that across CONUS there will be a long-term mismatch between extant systems and the conditions upon which those systems depend. Ecological models may become useful for forecasting change rate and process, but the consequences of these changes will be the subject of study for many decades to come.

Acronyms and Abbreviations

<u>Term</u>	<u>Definition</u>
BRD	Biological Resources Discipline
CEERD	U.S. Army Corps of Engineers, Engineer Research and Development Center
CERL	Construction Engineering Research Laboratory
CONUS	Continental United States
DC	District of Columbia
ERDC	Engineer Research and Development Center
GAP	Gap Analysis Program
GCM	general circulation model
GIS	geographic information system
MGC	Multivariate Geographic Clustering
NCAR	National Center for Atmospheric Research
PCM	Parallel Climate Model
POP	Parallel Ocean Program
TNC	The Nature Conservancy
TR	Technical Report
URL	Universal Resource Locator
US	United States
USGS	U.S. Geological Survey
WWW	World Wide Web

References

- Bailey, R. G. 1983. Delineation of ecosystem regions. *Environmental Management*. 7:365–373.
- Dai, A., G. A. Meehl, W. M. Washington, T. M. L. Wigley, and J. M. Arblaster. 2001. Ensemble simulation of twenty-first century climate changes: Business-as-usual versus CO₂ stabilization. *Bull. Amer. Meteor. Soc.* 82:2377–2388.
- Davidson, A. 2010. National Land Cover Developments. Gap Analysis Bulletin No. 17. USGS/BRD/Gap Analysis Program, Moscow, ID,
<http://www.gap.uidaho.edu/bulletins/17/Davidson.pdf>
- GAP. 2011. Welcome to the GAP Analysis Program (GAP) Land Cover Viewer. Webpage, <http://www.gap.uidaho.edu/landcoverviewer.html>
- Hargrove, W. M. and F. W. Hoffman. 2005. Potential of Multivariate Quantitative Methods for Delineation and Visualization of Ecoregions. *Environmental Management*. 34(1): S39–S60
- Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology* 25:1965–1978
- IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY: Cambridge University Press.
- Smith, R. D., J. K. Dukowicz, and R. C. Malone. 1992. Parallel ocean general circulation modeling. *Physica D*. 60:38–61.
- Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory. 1999. Changing spatial structure of the thermohaline circulation in response to atmospheric CO₂ forcing in a climate model. *Nature*, 399:572–575.

Appendix A: Legends

1201) Developed, Open Space	4141) East-Central Texas Plains Riparian Forest
1202) Developed, Low Intensity	4143) Madrean Encinal
1203) Developed, Medium Intensity	4144) Mediterranean California Mixed Oak Woodland
1204) Developed, High Intensity	4147) Inter-Mountain Basins Curl-leaf Mountain Mahogany Woodland and Shrubland
1402) Cultivated Cropland	4152) Edwards Plateau Limestone Savanna and Woodland
1403) Pasture/Hay	4201) Boreal Aspen-Birch Forest
2102) Open Water (Fresh)	4204) West Gulf Coastal Plain Mesic Hardwood Forest
2103) Open Water (Brackish/Salt)	4207) Ozark-Ouachita Mesic Hardwood Forest
3105) Undifferentiated Barren Land	4212) Atlantic Coastal Plain Southern Maritime Forest
3111) North American Warm Desert Active and Stabilized Dune	4302) Southern Piedmont Dry Oak-(Pine) Forest – Hardwood Modifier
3116) Great Lakes Dune	4309) East Gulf Coastal Plain Interior Shortleaf Pine-Oak Forest – Mixed Modifier
3121) Inter-Mountain Basins Active and Stabilized Dune	4313) Northern Atlantic Coastal Plain Dry Hardwood Forest
3201) North American Warm Desert Bedrock Cliff and Outcrop	4315) Madrean Pine-Oak Forest and Woodland
3202) Rocky Mountain Cliff, Canyon and Massive Bedrock	4316) Madrean Upper Montane Conifer-Oak Forest and Woodland
3203) Western Great Plains Cliff and Outcrop	4317) Mediterranean California Lower Montane Black Oak-Conifer Forest and Woodland
3204) Great Lakes Acidic Rocky Shore and Cliff	4318) Mediterranean California Red Fir Forest
3209) North Pacific Montane Massive Bedrock, Cliff and Talus	4319) North Pacific Dry Douglas-fir-(Madrone) Forest and Woodland
3216) Inter-Mountain Basins Cliff and Canyon	4320) Mediterranean California Mixed Evergreen Forest
3218) Colorado Plateau Mixed Bedrock Canyon and Tableland	4323) Laurentian-Acadian Northern Pine-(Oak) Forest
3301) Western Great Plains Badland	4324) Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland
3405) North American Warm Desert Playa	4326) Boreal White Spruce-Fir-Hardwood Forest
3407) Inter-Mountain Basins Playa	4327) Laurentian-Acadian Pine-Hemlock-Hardwood Forest
3501) North Pacific Alpine and Subalpine Bedrock and Scree	4328) Ozark-Ouachita Shortleaf Pine-Oak Forest and Woodland
3502) North American Alpine Ice Field	4330) Central Appalachian Oak and Pine Forest
3503) Rocky Mountain Alpine Bedrock and Scree	4331) Appalachian Hemlock-Hardwood Forest
3504) Mediterranean California Alpine Bedrock and Scree	4332) West Gulf Coastal Plain Pine-Hardwood Forest
3605) North American Warm Desert Pavement	4333) Acadian Low-Elevation Spruce-Fir-Hardwood Forest
3607) North American Warm Desert Volcanic Rockland	4334) Southern Ridge and Valley Dry Calcareous Forest
4101) Central and Southern Appalachian Northern Hardwood Forest	4335) Central Appalachian Pine-Oak Rocky Woodland
4104) Northeastern Interior Dry Oak Forest-Hardwood Modifier	4338) North Pacific Lowland Mixed Hardwood-Conifer Forest and Woodland
4109) Southern and Central Appalachian Oak Forest – Xeric	4401) Southern and Central Appalachian Cove Forest
4110) North Pacific Oak Woodland	4402) South-Central Interior Mesophytic Forest
4111) Rocky Mountain Aspen Forest and Woodland	4404) Mediterranean California Mesic Serpentine Woodland and Chaparral
4113) Laurentian-Acadian Northern Hardwoods Forest	4501) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland – Offsite Hardwood Modifier
4114) Northeastern Interior Dry-Mesic Oak Forest	4507) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland – Loblolly Modifier
4115) Ozark-Ouachita Dry-Mesic Oak Forest	4508) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland – Open Understory Modifier
4116) Southern Interior Low Plateau Dry-Mesic Oak Forest	4511) Central and Southern California Mixed Evergreen Woodland
4118) Crosstimbers Oak Forest and Woodland	4512) Colorado Plateau Pinyon-Juniper Woodland
4120) North-Central Interior Dry-Mesic Oak Forest and Woodland	4514) Great Basin Pinyon-Juniper Woodland
4124) North-Central Interior Maple-Basswood Forest	4518) Madrean Pinyon-Juniper Woodland
4125) Southern and Central Appalachian Oak Forest	4519) Mediterranean California Dry-Mesic Mixed Conifer Forest and Woodland
4126) Allegheny-Cumberland Dry Oak Forest and Woodland – Hardwood	4520) California Montane Jeffrey Pine-(Ponderosa Pine) Woodland
4133) Atlantic Coastal Plain Dry and Dry-Mesic Oak Forest	4521) Mediterranean California Subalpine Woodland
4136) Central and South Texas Coastal Fringe Forest and Woodland	4522) North Pacific Maritime Dry-Mesic Douglas-fir-Western Hemlock Forest
4140) East-Central Texas Plains Post Oak Savanna and Woodland	4523) North Pacific Mountain Hemlock Forest

Figure A1. Legend for GAP maps.

182)	47%	-North Atlantic Coast
183)	61%	-North Central Tillplain
184)	53%	-Northern Appalachian / Acadian
185)	76%	-Ouachita Mountains
186)	94%	-Ozarks
187)	31%	-Piedmont
188)	53%	-Prairie-Forest Border
189)	94%	-Southern Blue Ridge
269)	54%	-Southern Shortgrass Prairie
355)	74%	-Tropical Florida
423)	92%	-Valdivian Temperate Forests
431)	70%	-Uruguayan Savanna
432)	56%	-Espinal
434)	37%	-Low Monte
452)	45%	-Chilean Matorral
496)	38%	-California North Coast
497)	37%	-Canadian Rocky Mountains
498)	57%	-East Cascades - Modoc Plateau
499)	90%	-East Gulf Coastal Plain
500)	33%	-Florida Peninsula
502)	33%	-Klamath Mountains
503)	81%	-Mid-Atlantic Coastal Plain
573)	27%	-Zagros Mountains Forest Steppe
610)	25%	-Eastern Anatolian Montane Steppe
667)	78%	-Mediterranean Dry Woodlands And Steppe
668)	36%	-Mediterranean Woodlands And Forests
673)	85%	-Baluchistan Xeric Woodlands
679)	52%	-Central Persian Desert Basins
693)	64%	-Registan-North Pakistan Sandy Desert
705)	56%	-Central Appalachian Forest
706)	56%	-Chesapeake Bay Lowlands
707)	30%	-Cumberlands And Southern Ridge And Valley
708)	78%	-Great Lakes
709)	58%	-High Allegheny Plateau
710)	38%	-Interior Low Plateau
711)	73%	-Lower New England / Northern Piedmont
712)	61%	-Mississippi River Alluvial Plain
714)	99%	-Superior Mixed Forest
715)	31%	-Upper East Gulf Coastal Plain
716)	44%	-Western Allegheny Plateau
718)	41%	-Arizona-New Mexico Mountains
720)	35%	-Middle Rockies - Blue Mountains
721)	79%	-Montane Cordillera
723)	25%	-Okanagan
724)	29%	-Pacific Northwest Coast
726)	27%	-Sierra Nevada
727)	82%	-South Atlantic Coastal Plain
728)	40%	-Southern Rocky Mountains
729)	84%	-Upper West Gulf Coastal Plain
731)	40%	-Utah-Wyoming Rocky Mountains
732)	51%	-West Cascades
733)	97%	-West Gulf Coastal Plain
738)	77%	-Boreal Shield
746)	100%	-Gulf Coast Prairies And Marshes
747)	67%	-Aspen Parkland
748)	86%	-Central Mixed-Grass Prairie
749)	71%	-Central Shortgrass Prairie
750)	48%	-Central Tallgrass Prairie
751)	72%	-Crosstimbers And Southern Tallgrass Prairie
752)	51%	-Dakota Mixed-Grass Prairie
753)	53%	-Edwards Plateau
754)	69%	-Fescue-Mixed Grass Prairie
755)	90%	-Northern Great Plains Steppe
756)	74%	-Northern Tallgrass Prairie
757)	90%	-Osage Plains/Flint Hills Prairie
760)	98%	-California Central Coast
762)	37%	-Great Central Valley
763)	71%	-Apache Highlands
765)	30%	-Chihuahuan Desert
766)	59%	-Colorado Plateau
767)	70%	-Columbia Plateau
768)	73%	-Great Basin
770)	45%	-Sonoran Desert
771)	53%	-Tamaulipan Thorn Scrub
772)	60%	-Wyoming Basins
806)	50%	-Central Ranges Xeric Scrub

Figure A2. Legend for TNC maps.

Appendix B: Installation Biome Shift Forecasts

Installations are alphabetically ordered on the following pages:

Dugway Proving Grounds.....	38
Fort Benning.....	40
Fort Bliss.....	43
Fort Bragg Military Reservation	46
Fort Campbell.....	49
Fort Carson Military Reservation.....	52
Fort Drum	55
Fort Gordon	58
Fort Hood	61
Fort Huachuca	64
Hunter-Liggett Military Reservation.....	67
Fort Irwin.....	70
Fort Jackson	73
Fort Knox.....	76
Fort Leonard Wood Military Reservation	79
Fort Lewis Wood Military Reservation	82
Fort McCoy	85
Fort Polk Military Reservation.....	88
Fort Riley Military Reservation	91
Fort Rucker Military Reservation	94
Fort Sill Military Reservation	97
Fort Stewart.....	100
U.S. Army Aberdeen Proving Ground.....	103
White Sands Missile Range	106
Yakima Firing Center.....	109
Yuma Proving Ground.....	112

Each installation is illustrated with three panels:

1. A series of current and future GAP-analysis maps.
2. A series of current and future TNC-analysis maps.
3. A series of maps showing where, today, one might go to find the future forecast conditions.

For each page, the location of an area around the installation is shown against the United States. The remaining maps “zoom into” this area. The map at the top-right shows the current ecosystem types. The middle row shows the images of the same area for 2050 and 2080. The columns represent the PCM model, B1 scenario; the PCM model, A1 scenario; the Hadley model, B1 scenario; and the Hadley A1, scenario. The top-left box for the GAP and TNC images provides an ecosystem/land-cover legend for the most commonly occurring categories across all of the maps on the page.

Dugway Proving Grounds

Dugway Proving Grounds

-) Different from any area in the world in 2000
- 197) 37% -Canadian Rocky Mountains
- 573) 27% -Zagros Mountains Forest Steppe
- 610) 25% -Eastern Anatolian Montane Steppe
- 578) 62% -Central Asian Southern Desert
- 579) 52% -Central Persian Desert Basins
- 597) 91% -Taklimakan Desert
- 718) 41% -Arizona-New Mexico Mountains
- 720) 35% -Middle Rockies - Blue Mountains
- 728) 40% -Southern Rocky Mountains
- 765) 30% -Chihuahuan Desert
- 766) 59% -Colorado Plateau
- 767) 70% -Columbia Plateau
- 768) 73% -Great Basin
- 769) 17% -Mojave Desert
- 776) 63% -Palearctic
- 813) 74% -Tirari-Sturt Stony Desert

Dugway Proving Grounds

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort Benning

Fort Benning Military Reservation

- 0) No Current US Analog
- 1402) Cultivated Cropland
- 1403) Pasture/Hay
- 2102) Open Water (Fresh)
- 4302) Southern Piedmont Dry Oak-(Pine) Forest - Hardwood Mo
- 4334) Southern Ridge and Valley Dry Calcareous Forest
- 4507) East Gulf Coastal Plain Interior Upland Longleaf Pine
- 8202) Evergreen Plantations or Managed Pine (can include de
- 8203) Managed Tree Plantation
- 9851) East Gulf Coastal Plain Small Stream and River Floodp
- 9908) West Gulf Coastal Plain Wet Longleaf Pine Savanna and

Fort Benning Military Reservation

- 0) Different from any area in the world in 2000
- 98) 47% -Southern Acacia-Commiphora Bushlands And Thickets
- 187) 31% -Piedmont
- 499) 90% -East Gulf Coastal Plain
- 503) 81% -Mid-Atlantic Coastal Plain
- 707) 30% -Cumberlands And Southern Ridge And Valley
- 715) 31% -Upper East Gulf Coastal Plain
- 727) 82% -South Atlantic Coastal Plain
- 729) 84% -Upper West Gulf Coastal Plain
- 733) 97% -West Gulf Coastal Plain

Fort Benning Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Bliss

Fort Bliss

- [] 0) No Current US Analog
- [] 1202) Developed, Low Intensity
- [] 1402) Cultivated Cropland
- [] 1315) Madrean Pine-Oak Forest and Woodland
- [] 1518) Madrean Pinyon-Juniper Woodland
- [] 5201) Chihuahuan Creosotebush, Mixed Desert and Thorn Scrub
- [] 5202) Chihuahuan Mixed Salt Desert Scrub
- [] 5203) Chihuahuan Stabilized Coppice Dune and Sand Flat Scrub
- [] 5207) Sonora-Mojave Creosotebush-White Bursage Desert Scrub
- [] 5211) Apacherian-Chihuahuan Mesquite Upland Scrub
- [] 5212) Chihuahuan Mixed Desert and Thorn Scrub
- [] 5213) Sonoran Paloverde-Mixed Cacti Desert Scrub
- [] 5303) Apacherian-Chihuahuan Semi-Desert Grassland and Steppe
- [] 5407) Mogollon Chaparral
- [] 5810) Western Great Plains Mesquite Woodland and Shrubland
- [] 7310) Western Great Plains Shortgrass Prairie
- [] 9833) North American Warm Desert Lower Montane Riparian Woodland and Shrubland

Fort Bliss

-) Different from any area in the world in 2000
- 93) 43% -Northern Acacia-Commiphora Bushlands And Thickets
- 145) 96% -Kalahari Xeric Savanna
- 269) 54% -Southern Shortgrass Prairie
- 419) 28% -Trans-Mexican Volcanic Belt Pine-Oak Forests
- 432) 56% -Espinal
- 434) 37% -Low Monte
- 448) 37% -High Monte
- 538) 49% -Central China Loess Plateau Mixed Forests
- 673) 85% -Baluchistan Xeric Woodlands
- 693) 64% -Begistan-North Pakistan Sandy Desert
- 703) 55% -Sonoran-Sinaloan Transition Subtropical Dry Forest
- 704) 49% -Sierra Madre Occidental Pine-Oak Forests
- 718) 41% -Arizona-New Mexico Mountains
- 763) 71% -Apache Highlands
- 765) 30% -Chihuahuan Desert
- 770) 45% -Sonoran Desert

Fort Bliss

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort Bragg Military Reservation

Fort Bragg Military Reservation

- [] 0) No Current US Analog
- [] 1402) Cultivated Cropland
- [] 1403) Pasture/Hay
- [] 4115) Ozark-Ouachita Dry-Mesic Oak Forest
- [] 4302) Southern Piedmont Dry Oak-(Pine) Forest - Hardwood Mo
- [] 4328) Ozark-Ouachita Shortleaf Pine-Oak Forest and Woodland
- [] 4508) East Gulf Coastal Plain Interior Upland Longleaf Pine
- [] 8202) Evergreen Plantations or Managed Pine (can include de
- [] 9220) Gulf and Atlantic Coastal Plain Tidal Marsh Systems
- [] 9804) East Gulf Coastal Plain Large River Floodplain Forest
- [] 9903) East Gulf Coastal Plain Near-Coast Pine Flatwoods - 0

Fort Bragg Military Reservation

- 0) Different from any area in the world in 2000
- 185) 76% -Ouachita Mountains
- 187) 31% -Piedmont
- 293) 71% -Alto Paran Atlantic Forests
- 499) 90% -East Gulf Coastal Plain
- 500) 33% -Florida Peninsula
- 503) 81% -Mid-Atlantic Coastal Plain
- 712) 61% -Mississippi River Alluvial Plain
- 727) 82% -South Atlantic Coastal Plain
- 746) 100% -Gulf Coast Prairies And Marshes

Fort Bragg Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort Campbell

Fort Campbell

- 0) No Current US Analog
- 1402) Cultivated Cropland
- 1403) Pasture/Hay
- 2102) Open Water (Fresh)
- 4115) Ozark-Ouachita Dry-Mesic Oak Forest
- 4116) Southern Interior Low Plateau Dry-Mesic Oak Forest
- 4302) Southern Piedmont Dry Oak-(Pine) Forest - Hardwood Modifier
- 4328) Ozark-Ouachita Shortleaf Pine-Oak Forest and Woodland
- 4332) West Gulf Coastal Plain Pine-Hardwood Forest
- 4501) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Offsite Hardwood Mod
- 4507) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Loblolly Modifier
- 6202) Evergreen Plantations or Managed Pine (can include dense successional regrowth)
- 8203) Managed Tree Plantation
- 9804) East Gulf Coastal Plain Large River Floodplain Forest - Forest Modifier
- 9851) East Gulf Coastal Plain Small Stream and River Floodplain Forest
- 9908) West Gulf Coastal Plain Wet Longleaf Pine Savanna and Flatwoods

Fort Campbell

-) Different from any area in the world in 2000
- 185) 76% -Ouachita Mountains
- 186) 94% - Ozarks
- 187) 31% -Piedmont
- 189) 94% -Southern Blue Ridge
- 293) 71% -Alto Paran Atlantic Forests
- 431) 70% -Uruguayan Savanna
- 499) 90% -East Gulf Coastal Plain
- 503) 81% -Mid-Atlantic Coastal Plain
- 706) 56% -Chesapeake Bay Lowlands
- 707) 30% -Cumberlands And Southern Ridge And Valley
- 710) 38% -Interior Low Plateau
- 712) 61% -Mississippi River Alluvial Plain
- 715) 31% -Upper East Gulf Coastal Plain
- 729) 84% -Upper West Gulf Coastal Plain
- 733) 97% -West Gulf Coastal Plain
- 751) 72% -Crosstimbers And Southern Tallgrass Prairie

Fort Campbell

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort Carson Military Reservation

Fort Carson Military Reservation

- █ 0) No Current US Analog
- █ 1402) Cultivated Cropland
- █ 3201) North American Warm Desert Bedrock Cliff and Outcrop
- █ 4512) Colorado Plateau Pinyon-Juniper Woodland
- █ 4518) Madrean Pinyon-Juniper Woodland
- █ 4530) Southern Rocky Mountain Ponderosa Pine Woodland
- █ 4531) Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland
- █ 4546) Northwestern Great Plains - Black Hills Ponderosa Pine Woodland and Savanna
- █ 5201) Chihuahuan Creosotebush, Mixed Desert and Thorn Scrub
- █ 5212) Chihuahuan Mixed Desert and Thorn Scrub
- █ 5303) Apacherian-Chihuahuan Semi-Desert Grassland and Steppe
- █ 5308) Inter-Mountain Basins Montane Sagebrush Steppe
- █ 5706) Inter-Mountain Basins Big Sagebrush Shrubland
- █ 7206) Southern Rocky Mountain Montane-Subalpine Grassland
- █ 7306) Northwestern Great Plains Mixedgrass Prairie
- █ 7310) Western Great Plains Shortgrass Prairie
- █ 9810) Inter-Mountain Basins Greasewood Flat

Fort Carson Military Reservation

- 0) Different from any area in the world in 2000
- 269) 54% -Southern Shortgrass Prairie
- 704) 49% -Sierra Madre Occidental Pine-Oak Forests
- 718) 41% -Arizona-New Mexico Mountains
- 719) 90% -Black Hills
- 720) 35% -Middle Rockies - Blue Mountains
- 728) 40% -Southern Rocky Mountains
- 730) 36% -Utah High Plateaus
- 731) 40% -Utah-Wyoming Rocky Mountains
- 748) 86% -Central Mixed-Grass Prairie
- 749) 71% -Central Shortgrass Prairie
- 755) 90% -Northern Great Plains Steppe
- 763) 71% -Apache Highlands
- 765) 30% -Chihuahuan Desert
- 766) 59% -Colorado Plateau
- 768) 73% -Great Basin
- 772) 60% -Wyoming Basins

Fort Carson Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Drum

Fort Drum

- 1313) Northern Atlantic Coastal Plain Dry Hardwood Forest
- 1330) Central Appalachian Oak and Pine Forest
- 1331) Appalachian Hemlock-Hardwood Forest
- 1333) Acadian Low-Elevation Spruce-Fir-Hardwood Forest
- 1334) Southern Ridge and Valley Dry Calcareous Forest
- 1335) Central Appalachian Pine-Oak Rocky Woodland
- 4401) Southern and Central Appalachian Cove Forest
- 4551) Acadian-Appalachian Montane Spruce-Fir Forest
- 7503) Atlantic Coastal Plain Southern Dune and Maritime Grassland
- 8201) Deciduous Plantations
- 8501) Disturbed, Non-specific
- 8504) Euderal Wetland
- 9212) Central Interior and Appalachian Swamp Systems
- 9214) Laurentian-Acadian Swamp Systems
- 9224) Laurentian-Acadian Shrub-Herbaceous Wetland Systems
- 9308) Laurentian-Acadian Alkaline Conifer-Hardwood Swamp
- 9501) Boreal Acidic Peatland Systems

Fort Drum

-) Different from any area in the world in 2000
- 182) 47% -North Atlantic Coast
- 184) 53% -Northern Appalachian / Acadian
- 558) 100% -Pannonian Mixed Forests
- 559) 67% -Po Basin Mixed Forests
- 571) 39% -Western European Broadleaf Forests
- 705) 56% -Central Appalachian Forest
- 706) 56% -Chesapeake Bay Lowlands
- 708) 78% -Great Lakes
- 709) 58% -High Allegheny Plateau
- 710) 38% -Interior Low Plateau
- 711) 73% -Lower New England / Northern Piedmont
- 712) 61% -Mississippi River Alluvial Plain
- 713) 100% -St. Lawrence - Champlain Valley
- 715) 31% -Upper East Gulf Coastal Plain
- 716) 44% -Western Allegheny Plateau
- 729) 84% -Upper West Gulf Coastal Plain

Fort Drum

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort Gordon

Fort Gordon

- [] 0) No Current US Analog
- [] 1201) Developed, Open Space
- [] 1402) Cultivated Cropland
- [] 1403) Pasture/Hay
- [] 2102) Open Water (Fresh)
- [] 4302) Southern Piedmont Dry Oak-(Pine) Forest - Hardwood Modifier
- [] 4332) West Gulf Coastal Plain Pine-Hardwood Forest
- [] 4507) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Lob
- [] 4508) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Open
- [] 8202) Evergreen Plantations or Managed Pine (can include dense successiona
- [] 8203) Managed Tree Plantation
- [] 9804) East Gulf Coastal Plain Large River Floodplain Forest - Forest Modif
- [] 9842) Atlantic Coastal Plain Small Brownwater River Floodplain Forest
- [] 9908) West Gulf Coastal Plain Wet Longleaf Pine Savanna and Flatwoods

Fort Gordon

- 0) Different from any area in the world in 2000
- 98) 47% -Southern Acacia-Commiphora Bushlands And Thickets
- 185) 76% -Ouachita Mountains
- 187) 31% -Piedmont
- 293) 71% -Alto Paran Atlantic Forests
- 431) 70% -Uruguayan Savanna
- 199) 90% -East Gulf Coastal Plain
- 500) 33% -Florida Peninsula
- 503) 81% -Mid-Atlantic Coastal Plain
- 707) 30% -Cumberlands And Southern Ridge And Valley
- 712) 61% -Mississippi River Alluvial Plain
- 715) 31% -Upper East Gulf Coastal Plain
- 727) 82% -South Atlantic Coastal Plain
- 729) 84% -Upper West Gulf Coastal Plain
- 733) 97% -West Gulf Coastal Plain
- 751) 72% -CrossTimbers And Southern Tallgrass Prairie

Fort Gordon

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Hood

Fort Hood

- [] 0) No Current US Analog
- [] 1201) Developed, Open Space
- [] 1202) Developed, Low Intensity
- [] 1402) Cultivated Cropland
- [] 1403) Pasture/Hay
- [] 2102) Open Water (Fresh)
- [] 4152) Edwards Plateau Limestone Savanna and Woodland
- [] 5211) Apacherian-Chihuahuan Mesquite Upland Scrub
- [] 5216) Tamaulipan Mesquite Upland Scrub
- [] 5810) Western Great Plains Mesquite Woodland and Shrubland
- [] 5811) Edwards Plateau Limestone Shrubland
- [] 7602) Llano Uplift Acidic Forest, Woodland and Glade
- [] 8408) Modified/Managed Southern Tall Grassland

Fort Hood

- [] 0) Different from any area in the world in 2000
- [] 50) 37% -Albertine Rift Montane Forests
- [] 97) 100% -Somali Acacia-Commiphora Bushlands And Thickets
- [] 155) 51% -Southwestern Arabian Foothills Savanna
- [] 269) 54% -Southern Shortgrass Prairie
- [] 432) 56% -Espinal
- [] 433) 36% -Humid Pampas
- [] 751) 72% -Crossttimbers And Southern Tallgrass Prairie
- [] 753) 53% -Edwards Plateau
- [] 765) 30% -Chihuahuan Desert
- [] 771) 53% -Tamaulipan Thorn Scrub
- [] 785) 62% -Brigalow Tropical Savanna
- [] 790) 76% -Mitchell Grass Downs
- [] 793) 50% -Southeast Australia Temperate Savanna
- [] 795) 77% -Coolgardie Woodlands
- [] 808) 100% -Great Sandy-Tanami Desert
- [] 814) 34% -# 814 categories

Fort Hood

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Huachuca

Fort Huachuca

- 3201) North American Warm Desert Bedrock Cliff and Outcrop
- 4143) Madrean Encinal
- 4315) Madrean Pine-Oak Forest and Woodland
- 4514) Great Basin Pinyon-Juniper Woodland
- 4518) Madrean Pinyon-Juniper Woodland
- 4530) Southern Rocky Mountain Ponderosa Pine Woodland
- 5201) Chihuahuan Creosotebush, Mixed Desert and Thorn Scrub
- 5202) Chihuahuan Mixed Salt Desert Scrub
- 5204) Chihuahuan Succulent Desert Scrub
- 5206) Mojave Mid-Elevation Mixed Desert Scrub
- 5207) Sonora-Mojave Creosotebush-White Bursage Desert Scrub
- 5211) Apacherian-Chihuahuan Mesquite Upland Scrub
- 5212) Chihuahuan Mixed Desert and Thorn Scrub
- 5213) Sonoran Paloverde-Mixed Cacti Desert Scrub
- 5303) Apacherian-Chihuahuan Semi-Desert Grassland and Steppe
- 5407) Mogollon Chaparral
- 5503) California Lower Montane Blue Oak-Foothill Pine Woodland and Savanna

Fort Huachuca

- 0) Different from any area in the world in 2000
- 93) 43% -Northern Acacia-Commiphora Bushlands And Thickets
- 99) 92% -Southern Africa Bushveld
- 145) 96% -Kalahari Xeric Savanna
- 349) 76% -Sinaloan Dry Forests
- 394) 25% -Bolivian Montane Dry Forests
- 432) 56% -Espinazo
- 148) 37% -High Monte
- 673) 85% -Baluchistan Xeric Woodlands
- 703) 55% -Sonoran-Sinaloan Transition Subtropical Dry Forest
- 704) 49% -Sierra Madre Occidental Pine-Oak Forests
- 763) 71% -Apache Highlands
- 765) 30% -Chihuahuan Desert
- 770) 45% -Sonoran Desert
- 806) 50% -Central Ranges Xeric Scrub
- 808) 100% -Great Sandy-Tanum Desert
- 812) 100% -Simpson Desert

Fort Huachuca

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Current

2050 bipcm

2050 alpcm

2050 bihad

2050 aihad

2100 bipcm

2100 alpcm

2100 bihad

2100 aihad

ERDC/CERL

Hunter-Liggett Military Reservation

Hunter-Liggett Military Reservation

- █ 0) No Current US Analog
- █ 1201) Developed, Open Space
- █ 1203) Developed, Medium Intensity
- █ 1402) Cultivated Cropland
- █ 3201) North American Warm Desert Bedrock Cliff and Outcrop
- █ 4404) Mediterranean California Mesic Serpentine Woodland and Chaparral
- █ 4518) Madrean Pinyon-Juniper Woodland
- █ 4519) Mediterranean California Dry-Mesic Mixed Conifer Forest and Woodland
- █ 4601) California Coastal Redwood Forest
- █ 5207) Sonora-Mojave Creosotebush-White Bursage Desert Scrub
- █ 5210) Southern California Coastal Scrub
- █ 5211) Apacherian-Chihuahuan Mesquite Upland Scrub
- █ 5213) Sonoran Paloverde-Mixed Cacti Desert Scrub
- █ 5410) Southern California Dry-Mesic Chaparral
- █ 5501) California Central Valley Mixed Oak Savanna
- █ 5503) California Lower Montane Blue Oak-Foothill Pine Woodland and Savanna
- █ 7501) California Central Valley and Southern Coastal Grassland

Hunter-Liggett Military Reservation

- [] Different from any area in the world in 2000
- [150] 58% -Nam Karoo
- [157] 45% -Succulent Karoo
- [152] 45% -Chilean Matorral
- [573] 27% -Zagros Mountains Forest Steppe
- [317] 59% -Middle East Steppe
- [655] 31% -Aegean And Western Turkey Sclerophyllous And Mixed Forests
- [666] 55% -Mediterranean Acacia-Argania Dry Woodlands And Succulent Thickets
- [368] 36% -Mediterranean Woodlands And Forests
- [673] 85% -Baluchistan Xeric Woodlands
- [687] 82% -North Saharan Steppe And Woodlands
- [693] 64% -Registan-North Pakistan Sandy Desert
- [694] 52% -Sahara Desert
- [760] 98% -California Central Coast
- [761] 49% -California South Coast
- [762] 37% -Great Central Valley
- [797] 54% -Eyre And York Mallee

Hunter-Liggett Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort Irwin

Fort Irwin

- 5208) Sonora-Mojave Mixed Salt Desert Scrub
- 5209) Sonoran Mid-Elevation Desert Scrub
- 5211) Apacherian-Chihuahuan Mesquite Upland Scrub
- 5212) Chihuahuan Mixed Desert and Thorn Scrub
- 5213) Sonoran Paloverde-Mixed Cacti Desert Scrub
- 5303) Apacherian-Chihuahuan Semi-Desert Grassland and Steppe
- 5307) Inter-Mountain Basins Big Sagebrush Steppe
- 5308) Inter-Mountain Basins Montane Sagebrush Steppe
- 5309) Inter-Mountain Basins Semi-Desert Shrub Steppe
- 5407) Mogollon Chaparral
- 5410) Southern California Dry-Mesic Chaparral
- 5503) California Lower Montane Blue Oak-Foothill Pine Woodland and Savanna
- 5603) Inter-Mountain Basins Juniper Savanna
- 5706) Inter-Mountain Basins Big Sagebrush Shrubland
- 5803) Colorado Plateau Blackbrush-Mormon-tea Shrubland
- 7501) California Central Valley and Southern Coastal Grassland
- 9822) North American Warm Desert Wash

Fort Irwin

- 0) Different from any area in the world in 2000
- 259) 57% -Northwestern Thorn Scrub Forests
- 192) 63% -Arabian Desert And East Sahero-Arabian Xeric Shrublands
- 573) 27% -Zagros Mountains Forest Steppe
- 580) 15% -Elburz Range Forest Steppe
- 667) 78% -Mediterranean Dry Woodlands And Steppe
- 673) 85% -Baluchistan Xeric Woodlands
- 679) 52% -Central Persian Desert Basins
- 687) 82% -North Saharan Steppe And Woodlands
- 693) 64% -Registan-North Pakistan Sandy Desert
- 694) 52% -Sahara Desert
- 695) 100% -South Iran Nubo-Sindian Desert And Semi-Desert
- 760) 98% -California Central Coast
- 766) 59% -Colorado Plateau
- 768) 73% -Great Basin
- 769) 17% -Mojave Desert
- 770) 45% -Sonoran Desert

Fort Irwin

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Jackson

Fort Jackson

- [] 0) No Current US Analog
- [] 1201) Developed, Open Space
- [] 1402) Cultivated Cropland
- [] 1403) Pasture/Hay
- [] 2102) Open Water (Fresh)
- [] 4136) Central and South Texas Coastal Fringe Forest and Woodland
- [] 4302) Southern Piedmont Dry Oak-(Pine) Forest - Hardwood Modifier
- [] 4332) West Gulf Coastal Plain Pine-Hardwood Forest
- [] 4507) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Loblolly Modifier
- [] 4508) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Open Understory Mod
- [] 8202) Evergreen Plantations or Managed Pine (can include dense successional regrowth)
- [] 8203) Managed Tree Plantation
- [] 9804) East Gulf Coastal Plain Large River Floodplain Forest - Forest Modifier
- [] 9842) Atlantic Coastal Plain Small Brownwater River Floodplain Forest
- [] 9851) East Gulf Coastal Plain Small Stream and River Floodplain Forest
- [] 9908) West Gulf Coastal Plain Wet Longleaf Pine Savanna and Flatwoods

Fort Jackson

-) Different from any area in the world in 2000
- 78) 22% -Western Congolian Swamp Forests
- 98) 47% -Southern Acacia-Commiphora Bushlands And Thickets
- 185) 76% -Ouachita Mountains
- 187) 31% -Piedmont
- 293) 71% -Alto Paran Atlantic Forests
- 355) 74% -Tropical Florida
- 431) 70% -Uruguayan Savanna
- 499) 90% -East Gulf Coastal Plain
- 500) 33% -Florida Peninsula
- 503) 81% -Mid-Atlantic Coastal Plain
- 702) 70% -Afrotropic
- 707) 30% -Cumberlands And Southern Ridge And Valley
- 715) 31% -Upper East Gulf Coastal Plain
- 727) 82% -South Atlantic Coastal Plain
- 729) 84% -Upper West Gulf Coastal Plain
- 733) 97% -West Gulf Coastal Plain

Fort Jackson

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Knox

Fort Knox

- 4115) Ozark-Ouachita Dry-Mesic Oak Forest
- 4116) Southern Interior Low Plateau Dry-Mesic Oak Forest
- 4126) Allegheny-Cumberland Dry Oak Forest and Woodland - Hardwood
- 4302) Southern Piedmont Dry Oak-(Pine) Forest - Hardwood Modifier
- 4328) Ozark-Ouachita Shortleaf Pine-Oak Forest and Woodland
- 4330) Central Appalachian Oak and Pine Forest
- 4332) West Gulf Coastal Plain Pine-Hardwood Forest
- 4334) Southern Ridge and Valley Dry Calcareous Forest
- 4401) Northern and Central Appalachian Cove Forest
- 4402) South-Central Interior Mesophytic Forest
- 4507) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Loblolly Modifier
- 3202) Evergreen Plantations or Managed Pine (can include dense successional regrowth)
- 3203) Managed Tree Plantation
- 9004) East Gulf Coastal Plain Large River Floodplain Forest - Forest Modifier
- 9842) Atlantic Coastal Plain Small Brownwater River Floodplain Forest
- 9851) East Gulf Coastal Plain Small Stream and River Floodplain Forest
- 9908) West Gulf Coastal Plain Wet Longleaf Pine Savanna and Flatwoods

Fort Knox

- [] 0) Different from any area in the world in 2000
- [] 98) 47% -Southern Acacia-Commiphora Bushlands And Thickets
- [] 185) 76% -Ouachita Mountains
- [] 186) 94% - Ozarks
- [] 187) 31% -Piedmont
- [] 189) 94% -Southern Blue Ridge
- [] 294) 64% -Araucaria Moist Forests
- [] 503) 81% -Mid-Atlantic Coastal Plain
- [] 705) 56% -Central Appalachian Forest
- [] 706) 56% -Chesapeake Bay Lowlands
- [] 707) 30% -Cumberlands And Southern Ridge And Valley
- [] 710) 38% -Interior Low Plateau
- [] 712) 61% -Mississippi River Alluvial Plain
- [] 715) 31% -Upper East Gulf Coastal Plain
- [] 716) 44% -Western Allegheny Plateau
- [] 727) 82% -South Atlantic Coastal Plain
- [] 729) 84% -Upper West Gulf Coastal Plain

Fort Knox

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Leonard Wood Military Reservation

Fort Leonard Wood Military Reservation

- 0) No Current US Analog
- 1201) Developed, Open Space
- 1402) Cultivated Cropland
- 1403) Pasture/Hay
- 2102) Open Water (Fresh)
- 2103) Open Water (Brackish/Salt)
- 4115) Ozark-Ouachita Dry-Mesic Oak Forest
- 4118) Crosstimbers Oak Forest and Woodland
- 4207) Ozark-Ouachita Mesic Hardwood Forest
- 4328) Ozark-Ouachita Shortleaf Pine-Oak Forest and Woodland
- 4332) West Gulf Coastal Plain Pine-Hardwood Forest
- 8202) Evergreen Plantations or Managed Pine (can include dense successional stages)
- 8408) Modified/Managed Southern Tall Grassland

Fort Leonard Wood Military Reservation

- 0) Different from any area in the world in 2000
- 50) 37% -Albertine Rift Montane Forests
- 103) 37% -Victoria Basin Forest-Savanna Mosaic
- 163) 61% -North Central Tillplain
- 185) 76% -Ouachita Mountains
- 186) 94% -Ozarks
- 187) 31% -Piedmont
- 187) 44% -Dry Chaco
- 131) 70% -Uruguayan Savanna
- 441) 78% -Paraná Flooded Savanna
- 708) 78% -Great Lakes
- 710) 38% -Interior Low Plateau
- 729) 84% -Upper West Gulf Coastal Plain
- 750) 48% -Central Tallgrass Prairie
- 751) 72% -Crosstimbers And Southern Tallgrass Prairie
- 757) 90% -Osage Plains/Flint Hills Prairie
- 814) 34% -# 814 categories

Fort Leonard Wood Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Lewis Wood Military Reservation

Fort Lewis Military Reservation

- 4320) Mediterranean California Mixed Evergreen Forest
- 4338) North Pacific Lowland Mixed Hardwood-Conifer Forest and Woodland
- 4519) Mediterranean California Dry-Mesic Mixed Conifer Forest and Woodland
- 4522) North Pacific Maritime Dry-Mesic Douglas-fir-Western Hemlock Forest
- 4523) North Pacific Mountain Hemlock Forest
- 4524) Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest
- 4531) Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland
- 4547) North Pacific Dry-Mesic Silver Fir-Western Hemlock-Douglas-fir Forest
- 4550) East Cascades Oak-Ponderosa Pine Forest and Woodland
- 4601) California Coastal Redwood Forest
- 4602) East Cascades Mesic Montane Mixed-Conifer Forest and Woodland
- 4603) Mediterranean California Mesic Mixed Conifer Forest and Woodland
- 4606) North Pacific Maritime Mesic-Wet Douglas-fir-Western Hemlock Forest
- 5503) California Lower Montane Blue Oak-Foothill Pine Woodland and Savanna
- 8106) Harvested forest-tree regeneration
- 8107) Harvested forest-shrub regeneration
- 9216) North Pacific Shrub Swamp

Fort Lewis Military Reservation

- 123) 92% -Valdivian Temperate Forests
- 135) 57% -Patagonian Steppe
- 152) 45% -Chilean Matorral
- 168) 42% -Southwest Iberian Mediterranean Sclerophyllous And Mixed Forests
- 196) 38% -California North Coast
- 198) 57% -East Cascades - Modoc Plateau
- 502) 33% -Klamath Mountains
- 533) 71% -Cantabrian Mixed Forests
- 536) 64% -Celtic Broadleaf Forests
- 664) 76% -Illyrian Deciduous Forests
- 670) 45% -Northwest Iberian Montane Forests
- 717) 66% - Temperate Broadleaf And Mixed Forests
- 722) 71% -North Cascades
- 724) 29% -Pacific Northwest Coast
- 732) 51% -West Cascades
- 734) 81% - Temperate Conifer Forests
- 780) 32% -Southeast Australia Temperate Forests

Fort Lewis Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort McCoy

Fort McCoy

- [White] 0) No Current US Analog
- [Yellow] 1402) Cultivated Cropland
- [Light Green] 1403) Pasture/Hay
- [Dark Blue] 2102) Open Water (Fresh)
- [Medium Green] 4113) Laurentian-Acadian Northern Hardwoods
- [Dark Green] 4115) Ozark-Ouachita Dry-Mesic Oak Forest
- [Black] 4118) Crosstimbers Oak Forest and Woodland
- [Black] 8408) Modified/Managed Southern Tall Grass

Fort McCoy

- 0) Different from any area in the world in 2000
- 186) 94% -Ozarks
- 188) 53% -Prairie-Forest Border
- 433) 36% -Humid Pampas
- 708) 78% -Great Lakes
- 714) 99% -Superior Mixed Forest
- 750) 48% -Central Tallgrass Prairie
- 751) 72% -Crosstimbers And Southern Tallgrass Prairie
- 756) 74% -Northern Tallgrass Prairie
- 757) 90% -Osage Plains/Flint Hills Prairie

Fort McCoy

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Polk Military Reservation

Fort Polk Military Reservation

- [] 0) No Current US Analog
- [] 1201) Developed, Open Space
- [] 1202) Developed, Low Intensity
- [] 1203) Developed, Medium Intensity
- [] 1402) Cultivated Cropland
- [] 1403) Pasture/Hay
- [] 2102) Open Water (Fresh)
- [] 2103) Open Water (Brackish/Salt)
- [] 4309) East Gulf Coastal Plain Interior Shortleaf Pine-Oak Forest - Mixed Modifier
- [] 4332) West Gulf Coastal Plain Pine-Hardwood Forest
- [] 4507) East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Loblolly Modifier
- [] 6203) Managed Tree Plantation
- [] 9220) Gulf and Atlantic Coastal Plain Tidal Marsh Systems
- [] 9804) East Gulf Coastal Plain Large River Floodplain Forest - Forest Modifier
- [] 9854) Mississippi River Floodplain and Riparian Forest
- [] 9908) West Gulf Coastal Plain Wet Longleaf Pine Savanna and Flatwoods

Fort Polk Military Reservation

- [] 0) Different from any area in the world in 2000
- [] 103) 37% -Victoria Basin Forest-Savanna Mosaic
- [] 185) 76% -Ouachita Mountains
- [] 187) 31% -Piedmont
- [] 301) 100% -Catacambo Moist Forests
- [] 431) 70% -Uruguayan Savanna
- [] 441) 78% -Param Flooded Savanna
- [] 442) 61% -Southern Cone Mesopotamian Savanna
- [] 499) 90% -East Gulf Coastal Plain
- [] 707) 30% -Cumberlands And Southern Ridge And Valley
- [] 712) 61% -Mississippi River Alluvial Plain
- [] 715) 31% -Upper East Gulf Coastal Plain
- [] 727) 82% -South Atlantic Coastal Plain
- [] 729) 84% -Upper West Gulf Coastal Plain
- [] 733) 97% -West Gulf Coastal Plain
- [] 746) 100% -Gulf Coast Prairies And Marshes
- [] 751) 72% -Crosstimbers And Southern Tallgrass Prairie

Fort Polk Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort Riley Military Reservation

Fort Riley Military Reservation

- [] 0) No Current US Analog
- [] 1402) Cultivated Cropland
- [] 1403) Pasture/Hay
- [] 4152) Edwards Plateau Limestone Savanna and Shrubland
- [] 5810) Western Great Plains Mesquite Woodland
- [] 7302) Central Mixedgrass Prairie
- [] 7317) Southeastern Great Plains Tallgrass Prairie
- [] 8408) Modified/Managed Southern Tall Grassland

Fort Riley Military Reservation

- [Black] 0) Different from any area in the world in
- [Green] 269) 54% -Southern Shortgrass Prairie
- [Pink] 433) 36% -Humid Pampas
- [Dark Blue] 748) 86% -Central Mixed-Grass Prairie
- [Yellow] 750) 48% -Central Tallgrass Prairie
- [Light Blue] 751) 72% -Crosstimbers And Southern Tallgra
- [Yellow] 753) 53% -Edwards Plateau
- [Orange] 757) 90% -Osage Plains/Flint Hills Prairie

Fort Riley Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Fort Rucker Military Reservation

Fort Rucker Military Reservation

- [] 0) No Current US Analog
- [] 1402) Cultivated Cropland
- [] 1403) Pasture/Hay
- [] 2102) Open Water (Fresh)
- [] 4501) East Gulf Coastal Plain Interior Upland Longleaf Pine Wood
- [] 4507) East Gulf Coastal Plain Interior Upland Longleaf Pine Wood
- [] 4508) East Gulf Coastal Plain Interior Upland Longleaf Pine Wood
- [] 8202) Evergreen Plantations or Managed Pine (can include dense :
[] 8203) Managed Tree Plantation
- [] 9804) East Gulf Coastal Plain Large River Floodplain Forest - F
- [] 9903) East Gulf Coastal Plain Near-Coast Pine Flatwoods - Open I
- [] 9908) West Gulf Coastal Plain Wet Longleaf Pine Savanna and Fla

Fort Rucker Military Reservation

- █ 0) Different from any area in the world in 2000
- █ 98) 47% -Southern Acacia-Commiphora Bushlands And Thickets
- █ 293) 71% -Alto Paraná Atlantic Forests
- █ 294) 64% -Araucaria Moist Forests
- █ 301) 100% -Catatumbo Moist Forests
- █ 319) 47% -Guayanán Moist Forests
- █ 499) 90% -East Gulf Coastal Plain
- █ 503) 81% -Mid-Atlantic Coastal Plain
- █ 707) 30% -Cumberlands And Southern Ridge And Valley
- █ 712) 61% -Mississippi River Alluvial Plain
- █ 715) 31% -Upper East Gulf Coastal Plain
- █ 727) 82% -South Atlantic Coastal Plain
- █ 729) 84% -Upper West Gulf Coastal Plain
- █ 733) 97% -West Gulf Coastal Plain
- █ 746) 100% -Gulf Coast Prairies And Marshes

Fort Rucker Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

2050 b1pcm

2050 a1pcm

2050 b1had

2050 a1had

2100 b1pcm

2100 a1pcm

2100 b1had

2100 a1had

ERDC/CERL

Fort Sill Military Reservation

Fort Sill Military Reservation

- [] 0) No Current US Analog
- [] 1402) Cultivated Cropland
- [] 1403) Pasture/Hay
- [] 2102) Open Water (Fresh)
- [] 5211) Apacherian-Chihuahuan Mesquite Upland Scrub
- [] 5213) Sonoran Paloverde-Mixed Cacti Desert Scrub
- [] 5216) Tamaulipan Mesquite Upland Scrub
- [] 5810) Western Great Plains Mesquite Woodland and Shrubland
- [] 7302) Central Mixedgrass Prairie
- [] 7602) Llano Uplift Acidic Forest, Woodland and Glade
- [] 8408) Modified/Managed Southern Tall Grassland

Fort Sill Military Reservation

- 0) Different from any area in the world in 2000
- 269) 54% -Southern Shortgrass Prairie
- 287) 22% -Baj o Dry Forests
- 433) 36% -Humid Pampas
- 573) 85% -Baluchistan Xeric Woodlands
- 748) 86% -Central Mixed-Grass Prairie
- 751) 72% -Crosstimbers And Southern Tallgrass Prairie
- 753) 53% -Edwards Plateau
- 770) 45% -Sonoran Desert
- 771) 53% -Tamaulipan Thorn Scrub
- 785) 62% -Brigalow Tropical Savanna
- 790) 76% -Mitchell Grass Downs
- 795) 77% -Coolgardie Woodlands
- 808) 100% -Great Sandy-Tanami Desert
- 812) 100% -Simpson Desert
- 813) 74% -Tirari-Sturt Stony Desert
- 814) 34% -# 814 categories

Fort Sill Military Reservation

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Fort Stewart

Fort Stewart

- 0) No Current US Analog
- 1402) Cultivated Cropland
- 1403) Pasture/Hay
- 4212) Atlantic Coastal Plain Southern Maritime Forest
- 4332) West Gulf Coastal Plain Pine-Hardwood Forest
- 8201) Deciduous Plantations
- 8202) Evergreen Plantations or Managed Pine (can include dense successional stages)
- 9103) Atlantic Coastal Plain Central Salt and Brackish Tidal Marsh
- 9219) South Florida Everglades Sawgrass Marsh
- 9220) Gulf and Atlantic Coastal Plain Tidal Marsh Systems
- 9223) Floridian Highlands Freshwater Marsh
- 9804) East Gulf Coastal Plain Large River Floodplain Forest – Forest Mosaics
- 9842) Atlantic Coastal Plain Small Brownwater River Floodplain Forest

Fort Stewart

- [■] 0) Different from any area in the world in 2000
- [■] 78) 22% -Western Congolian Swamp Forests
- [■] 98) 47% -Southern Acacia-Commiphora Bushlands And Thickets
- [■] 185) 76% -Ouachita Mountains
- [■] 293) 71% -Alto Paraná Atlantic Forests
- [■] 294) 64% -Araucaria Moist Forests
- [■] 301) 100% -Catatumbo Moist Forests
- [■] 355) 74% -Tropical Florida
- [■] 429) 49% -Humid Chaco
- [■] 431) 70% -Uruguayan Savanna
- [■] 499) 90% -East Gulf Coastal Plain
- [■] 500) 33% -Florida Peninsula
- [■] 503) 81% -Mid-Atlantic Coastal Plain
- [■] 727) 82% -South Atlantic Coastal Plain
- [■] 729) 84% -Upper West Gulf Coastal Plain
- [■] 746) 100% -Gulf Coast Prairies And Marshes
- [■] 751) 72% -Crosstimbers And Southern Tallgrass Prairie

Fort Stewart

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

U.S. Army Aberdeen Proving Ground

U.S. Army Aberdeen Proving Ground

- 4116) Southern Interior Low Plateau Dry-Mesic Oak Forest
- 4126) Allegheny-Cumberland Dry Oak Forest and Woodland - Hardwood
- 4136) Central and South Texas Coastal Fringe Forest and Woodland
- 4302) Southern Piedmont Dry Oak-(Pine) Forest - Hardwood Modifier
- 4328) Ozark-Ouachita Shortleaf Pine-Oak Forest and Woodland
- 4330) Central Appalachian Oak and Pine Forest
- 4331) Appalachian Hemlock-Hardwood Forest
- 4332) West Gulf Coastal Plain Pine-Hardwood Forest
- 4402) South-Central Interior Mesophytic Forest
- 4536) Atlantic Coastal Plain Upland Longleaf Pine Woodland
- 5202) Evergreen Plantations or Managed Pine (can include dense successional regrowth)
- 5203) Managed Tree Plantation
- 9220) Gulf and Atlantic Coastal Plain Tidal Marsh Systems
- 9839) West Gulf Coastal Plain Small Stream and River Forest
- 9842) Atlantic Coastal Plain Small Brownwater River Floodplain Forest
- 9908) West Gulf Coastal Plain Wet Longleaf Pine Savanna and Flatwoods
- 9913) West Gulf Coastal Plain Pine-Hardwood Flatwoods

U.S. Army Aberdeen Proving Ground

- [] 0) Different from any area in the world in 2000
- [] 185) 76% -Ouachita Mountains
- [] 186) 94% -Ozarks
- [] 187) 31% -Piedmont
- [] 189) 94% -Southern Blue Ridge
- [] 129) 49% -Humid Chaco
- [] 431) 70% -Uruguayan Savanna
- [] 503) 81% -Mid-Atlantic Coastal Plain
- [] 705) 56% -Central Appalachian Forest
- [] 706) 56% -Chesapeake Bay Lowlands
- [] 710) 38% -Interior Low Plateau
- [] 711) 73% -Lower New England / Northern Piedmont
- [] 712) 61% -Mississippi River Alluvial Plain
- [] 716) 44% -Western Allegheny Plateau
- [] 727) 82% -South Atlantic Coastal Plain
- [] 746) 100% -Gulf Coast Prairies And Marshes
- [] 779) 88% -Eastern Australian Temperate Forests

U.S. Army Aberdeen Proving Ground

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

2050 b1pcm

2050 a1pcm

2050 b1had

2050 a1had

2100 b1pcm

2100 a1pcm

2100 b1had

2100 a1had

ERDC/CERL

White Sands Missile Range

White Sands Missile Range

- 5212) Chihuahuan Mixed Desert and Thorn Scrub
- 5213) Sonoran Paloverde-Mixed Cacti Desert Scrub
- 5303) Apacherian-Chihuahuan Semi-Desert Grassland and Steppe
- 5307) Inter-Mountain Basins Big Sagebrush Steppe
- 5308) Inter-Mountain Basins Montane Sagebrush Steppe
- 5309) Inter-Mountain Basins Semi-Desert Shrub Steppe
- 5407) Mogollon Chaparral
- 5604) Madrean Juniper Savanna
- 5706) Inter-Mountain Basins Big Sagebrush Shrubland
- 5707) Southern Colorado Plateau Sand Shrubland
- 5810) Western Great Plains Mesquite Woodland and Shrubland
- 7302) Central Mixedgrass Prairie
- 7305) Inter-Mountain Basins Semi-Desert Grassland
- 7306) Northwestern Great Plains Mixedgrass Prairie
- 7309) Western Great Plains Sand Prairie
- 7310) Western Great Plains Shortgrass Prairie
- 9833) North American Warm Desert Lower Montane Riparian Woodland and Shrubland

White Sands Missile Range

- 0) Different from any area in the world in 2000
- (93) 43% -Northern Acacia-Commiphora Bushlands And Thickets
- (269) 54% -Southern Shortgrass Prairie
- (32) 56% -Espinal
- (34) 37% -Low Monte
- (48) 37% -High Monte
- (538) 49% -Central China Loess Plateau Mixed Forests
- (693) 64% -Begistan-North Pakistan Sandy Desert
- (704) 49% -Sierra Madre Occidental Pine-Oak Forests
- (718) 41% -Arizona-New Mexico Mountains
- (720) 35% -Middle Rockies - Blue Mountains
- (748) 86% -Central Mixed-Grass Prairie
- (749) 71% -Central Shortgrass Prairie
- (763) 71% -Apache Highlands
- (765) 30% -Chihuahuan Desert
- (767) 70% -Columbia Plateau
- (770) 45% -Sonoran Desert

White Sands Missile Range

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Current

2050 bipcm

2050 alpcm

2050 bihad

2050 aihad

2100 bipcm

2100 alpcm

2100 bihad

2100 aihad

ERDC/CERL

Yakima Firing Center

Yakima Firing Center

- 5308) Inter-Mountain Basin Montane Sagebrush Steppe
- 5403) California Montane Woodland and Chaparral
- 5410) Southern California Dry-Mesic Chaparral
- 5501) California Central Valley Mixed Oak Savanna
- 5502) California Coastal Live Oak Woodland and Savanna
- 5503) California Lower Montane Blue Oak-Foothill Pine Woodland and Savanna
- 5702) Columbia Plateau Scabland Shrubland
- 5706) Inter-Mountain Basins Big Sagebrush Shrubland
- 5803) Colorado Plateau Blackbrush-Mormon-tea Shrubland
- 7203) Northern Rocky Mountain Lower Montane, Foothill and Valley Grassland
- 7304) Columbia Basin Foothill and Canyon Dry Grassland
- 7501) California Central Valley and Southern Coastal Grassland
- 8106) Harvested forest-tree regeneration
- 8304) Recently burned shrubland
- 8404) Introduced Upland Vegetation - Annual Grassland
- 9227) North American Arid West Emergent Marsh
- 9822) North American Warm Desert Wash

Yakima Firing Center

- 0) Different from any area in the world in 2000
- 123) 92% -Valdivian Temperate Forests
- 195) 62% -Badghyz And Karabil Semi-Desert
- 197) 37% -Canadian Rocky Mountains
- 198) 57% -East Cascades - Modoc Plateau
- 537) 37% -Central Anatolian Steppe And Woodlands
- 573) 27% -Zagros Mountains Forest Steppe
- 606) 25% -Alai-Western Tian Shan Steppe
- 610) 25% -Eastern Anatolian Montane Steppe
- 613) 59% -Gissaro-Alai Open Woodlands
- 668) 36% -Mediterranean Woodlands And Forests
- 679) 52% -Central Persian Desert Basins
- 686) 36% -Mesopotamian Shrub Desert
- 720) 35% -Middle Rockies - Blue Mountains
- 722) 71% -North Cascades
- 732) 51% -West Cascades
- 767) 70% -Columbia Plateau

Yakima Firing Center

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

ERDC/CERL

Yuma Proving Ground

Yuma Proving Ground

- [] 0) No Current US Analog
- [] 1202) Developed, Low Intensity
- [] 1203) Developed, Medium Intensity
- [] 1204) Developed, High Intensity
- [] 1402) Cultivated Cropland
- [] 2102) Open Water (Fresh)
- [] 3111) North American Warm Desert Active and Stabilized Dune
- [] 3201) North American Warm Desert Bedrock Cliff and Outcrop
- [] 3405) North American Warm Desert Playa
- [] 3605) North American Warm Desert Pavement
- [] 3607) North American Warm Desert Volcanic Rockland
- [] 5206) Mojave Mid-Elevation Mixed Desert Scrub
- [] 5207) Sonora-Mojave Creosotebush-White Bursage Desert Scrub
- [] 5212) Chihuahuan Mixed Desert and Thorn Scrub
- [] 5213) Sonoran Paloverde-Mixed Cacti Desert Scrub
- [] 9822) North American Warm Desert Wash
- [] 9835) North American Warm Desert Riparian Woodland and Shrubland

Yuma Proving Ground

- 0) Different from any area in the world in 2000
- 95) 100% -Sahelian Acacia Savanna
- 259) 57% -Northwestern Thorn Scrub Forests
- 260) 100% -Thar Desert
- 192) 63% -Arabian Desert And East Sahero-Arabian Xeric Shrublands
- 673) 85% -Baluchistan Xeric Woodlands
- 679) 52% -Central Persian Desert Basins
- 687) 82% -North Saharan Steppe And Woodlands
- 692) 80% -Red Sea Nubo-Sindian Tropical Desert And Semi-Desert
- 693) 64% -Registan-North Pakistan Sandy Desert
- 694) 52% -Sahara Desert
- 695) 100% -South Iran Nubo-Sindian Desert And Semi-Desert
- 696) 91% -South Saharan Steppe And Woodlands
- 699) 57% -West Saharan Montane Xeric Woodlands
- 770) 45% -Sonoran Desert
- 806) 50% -Central Ranges Xeric Scrub
- 814) 34% -# 814 categories

Yuma Proving Ground

These images show where the forecasted physical and climate conditions most closely match the conditions found across the region in 2000. This answers the question, "Where can I go today to find the forecasted conditions for this installation?"

Current

2050 b1pcm

2050 a1pcm

2050 b1had

2050 a1had

2100 b1pcm

2100 a1pcm

2100 b1had

2100 a1had

ERDC/CERL

Appendix C: Ranking Army Installations

Which installations are most at-risk for change due to the consequences of potential ecosystem shift? To rank-order installations, the boundary of each installation was used to “cookie-cutter” into the current and future maps over the eight future GAP-based maps to tabulate the ecosystem type and amount of each type. For each future map, the percent of the installation that still held the current ecosystem types was calculated. The percentage across all eight future maps was then averaged and used to rank-order the installations. The following table lists all of the Army installations ranked by their “risk for change,” beginning with the least changeable and ending with the installations likely to be most dramatically affected.

The change counts for each of the model/scenario/time combination are listed in the columns with the average of these (not listed) used to sort the table. The color-breaks are arbitrarily set at 80 and 50 percent.

Legend:	
Percent Habit Unchanged By Climate Change	
80-100% unchanged	
50-80% unchanged	
0-50% unchanged	

Installation	Size (0.02 x 0.02) degree cells	PCM Model				Hadley Model			
		PCM B1 2050	PCM B1 2080	PCM A1 2050	PCM A1 2080	HAD B1 2050	HAD B1 2080	HAD A1 2050	HAD A1 2080
Camp Adair Military Reservation	2	100	100	100	100	100	100	100	100
Hunter Army Airfield	77	100	100	100	100	100	100	100	21
Fort Stewart	2294	100	97	100	95	100	99	100	14
Arlington National Cemetery	4	100	100	100	100	100	100	100	0
Army Reserve Outdoor Training Area	4	100	100	100	100	100	100	100	0
Army Training Area	20	100	100	100	100	100	100	100	0
Globecom Radio Receiving Station	15	100	100	100	100	100	100	100	0
Kearney Rifle Range	8	100	100	100	100	100	100	100	0
LaPorte Outdoor Training Facility	6	100	100	100	100	100	100	100	0
Malabar Transmitter Annex	4	100	100	100	100	100	100	100	0
US Army Reserve Center	4	100	100	100	100	100	100	100	0
Florence Military Reservation	56	100	100	89	79	89	89	89	63
Camp Grayling Military Reservation	2451	97	97	97	97	97	94	97	13
Savanna Army Depot (Scheduled to close)	228	100	100	100	95	97	95	95	0
Fort Irwin	5112	91	91	95	88	90	86	92	46
Fort Belvoir Military Reservation	110	100	100	97	90	90	69	90	29
Camp Roberts Military Reservation	425	95	91	100	97	91	84	89	10

Legend:			
Percent Habit Unchanged By Climate Change			
80-100% unchanged			
50-80% unchanged			
0-50% unchanged			

Installation	Size (0.02 x 0.02) degree cells	PCM Model				Hadley Model						
		Low Emissions		High Emissions		Low Emissions		High Emissions				
		PCM B1 2050	PCM B1 2080		PCM A1 2050	PCM A1 2080		HAD B1 2050	HAD B1 2080		HAD A1 2050	HAD A1 2080
Fort Detrick	8	100	100		100	100		100	50		100	0
Badger Army Ammunition Plant	35	100	100		100	100		83	83		83	0
Fort William H. Harrison Military Reservation	30	100	100		100	100		100	70		70	0
Fort George G. Meade	56	100	100		100	79		100	79		79	0
Cornhusker Army Ammunition Plant	8	100	100		100	100		100	100		25	0
Bearmouth National Guard Training Area	15	100	100		100	73		100	67		67	13
Joliet Army Ammunition Plant	182	100	100		100	52		100	77		88	0
Custer Reserve Forces Training Area	96	100	100		100	51		100	78		78	0
Fort Riley Military Reservation	1280	98	98		98	98		95	54		60	0
Buckeye National Guard Target Range	10	100	100		100	0		100	100		100	0
Fitzsimons Army Medical Center (Closed)	4	100	50		50	50		100	100		100	50
Natick Laboratories Military Reservation	36	100	100		100	0		100	100		100	0
Louisiana Ordnance Plant	95	92	92		92	75		75	62		75	0
Nap of the Earth Army Helicopter Training Are	5338	75	73		73	71		72	71		70	50
Camp Dodge Military Reservation	25	100	100		100	32		24	92		92	0
Fort Pickett Military Reservation (Closed)	352	97	97		88	91		91	18		53	0
Sharpe General Depot (Field Annex)	3	100	100		100	100		67	67		0	0

Legend:	
Percent Habit Unchanged By Climate Change	
80-100% unchanged	
50-80% unchanged	
0-50% unchanged	

Installation	Size (0.02 x 0.02) degree cells	PCM Model				Hadley Model			
		PCM B1 2050	PCM B1 2080	Low Emissions	High Emissions	HAD B1 2050	HAD B1 2080	HAD A1 2050	HAD A1 2080
Fort McCoy	713	100	100		100	98	50	47	34
Newport Army Ammunition Plant	24	100	100		100	100	75	25	25
Dugway Proving Grounds	3640	86	78		77	63	71	67	69
US Army Aberdeen Proving Ground	205	82	77		73	67	62	67	62
Aberdeen Proving Ground Military Reservation	445	89	78		69	66	57	66	64
Camp Bullis	234	100	100		100	48	60	55	48
Edgewood Arsenal	40	70	70		70	70	70	70	20
New Cumberland General Depot (US Military R	130	88	88		78	54	66	54	66
Milan Arsenal And Wildlife Management Area	234	97	84		84	91	74	12	59
Fort Wolters	25	100	100		100	36	52	52	52
Fort Lewis Military Reservation	3089	61	61		64	54	60	56	60
Charles Melvin Price Support Center	8	100	100		100	100	25	0	25
Fort Devens (Closed)	140	66	66		66	50	66	66	66
Radford Army Ammunition Plant	240	90	87		97	70	27	27	27
Camp Swift N. G. Facility	650	100	100		100	37	31	24	29
Yuma Proving Ground	6052	84	74		81	15	73	42	52
Fort Rucker Military Reservation	702	74	74		74	74	48	43	28

Legend:		PCM Model				Hadley Model			
Installation	Size (0.02 x 0.02) degree cells	Low Emissions		High Emissions		Low Emissions		High Emissions	
		PCM B1 2050	PCM B1 2080	PCM A1 2050	PCM A1 2080	HAD B1 2050	HAD B1 2080	HAD A1 2050	HAD A1 2080
Fort Benjamin Harrison (Closed)	35	100	100	100	100	0	0	0	0
Los Alamitos Armed Forces Reserve Center	8	100	100	100	100	0	0	0	0
Sacramento Army Depot (Closed)	4	50	50	100	50	50	50	50	0
Fort Carson Military Reservation	30777	62	57	57	26	57	55	71	11
Rock Island Arsenal	5	100	40	40	0	0	100	100	0
Kansas Army Ammunition Plant	44	100	100	100	73	0	0	0	0
Fort McClellan Military Reservation (Closed)	242	93	85	93	37	30	7	21	0
Fort A. P. Hill Military Reservation	728	65	48	89	72	33	23	33	0
Navajo Army Depot (Closed)	221	69	64	67	20	44	34	43	16
Camp Atterbury Military Reservation	198	58	58	60	57	57	34	32	0
Redstone Arsenal	273	96	44	100	38	27	23	23	0
Fort Leonard Wood Military Reservation	756	100	100	100	12	15	0	7	0
White Sands Missile Range	13522	52	51	45	29	46	47	40	24
Camp Joseph T. Robinson	288	82	74	72	24	24	24	24	6
Red River Army Depot	242	59	51	51	51	54	23	31	0
Fort Polk Military Reservation	3450	94	93	90	18	10	4	7	0
Fort Wingate Depot Activity (Closed)	144	83	77	77	0	49	15	14	0

Legend:	
Percent Habit Unchanged By Climate Change	
80-100% unchanged	
50-80% unchanged	
0-50% unchanged	

Installation	Size (0.02 x 0.02) degree cells	PCM Model				Hadley Model			
		PCM B1 2050	PCM B1 2080	PCM A1 2050	PCM A1 2080	HAD B1 2050	HAD B1 2080	HAD A1 2050	HAD A1 2080
Fort Bragg Military Reservation	1392	75	52	32	45	31	50	30	1
Lake City Army Ammunition Plant	18	100	100	100	6	6	0	0	0
Camp Johnson	9	44	44	44	44	44	22	44	22
Fort Leavenworth Military Reservation	63	87	100	100	0	16	0	0	0
Fort Hood	4321	72	72	73	22	22	21	21	0
Fort Gillem Heliport	15	100	100	100	0	0	0	0	0
Fort McPherson	4	100	100	100	0	0	0	0	0
Fort Monmouth Military Reservation	8	100	100	100	0	0	0	0	0
Longhorn Ordnance Army Ammo Plant	42	100	100	100	0	0	0	0	0
Fort Benning Military Reservation	1599	78	48	81	38	30	11	14	0
Mount Baker Helicopter Training Area	8017	42	42	39	34	40	36	36	25
Buckley Air National Guard AF Base	30	30	30	30	0	100	50	50	0
US Army Ammunition Depot	169	98	89	100	2	0	0	0	0
Military Ocean Terminal Sunny Point	150	100	100	80	0	0	0	0	0
West Point US Military Academy	121	61	56	68	23	50	10	10	0
Fort Gordon	792	78	64	80	12	19	13	13	0
Fort Campbell	925	96	74	82	4	19	0	1	0

Legend:	
Percent Habit Unchanged By Climate Change	
80-100% unchanged	
50-80% unchanged	
0-50% unchanged	

Installation	Size (0.02 x 0.02) degree cells	PCM Model				Hadley Model							
		Low Emissions		High Emissions		Low Emissions		High Emissions					
		PCM B1 2050	PCM B1 2080		PCM A1 2050	PCM A1 2080		HAD B1 2050	HAD B1 2080		HAD A1 2050	HAD A1 2080	
Fort Sill Military Reservation	900	42	38		38	38		38	38		38	0	
Pine Bluff Arsenal	288	89	83		87	3		0	0		0	0	
Fort Bliss McGregor Range	11190	35	31		29	35		43	44		23	12	
Sunflower Army Ammunition Plant	35	83	83		83	0		0	0		0	0	
Anniston Army Depot	90	70	53		70	20		11	11		11	0	
Umatilla Chemical Depot (Closed)	88	59	55		27	23		24	20		24	0	
Warrenton Training Center Military Reservatio	130	47	25		64	18		31	18		22	0	
Fort Lee Military Reservation	66	36	50		50	27		50	0		0	0	
Belle Mead General Depot	8	50	50		50	50		0	0		0	0	
Fort Knox	2311	39	39		40	22		25	12		16	0	
Iowa Army Ammunition Plant	170	72	55		36	7		7	7		7	0	
Fort Jackson	527	64	13		13	54		13	13		13	0	
Fort Ritchie Military Reservation (Closed)	2011	27	25		27	19		19	23		22	8	
Hunter-Liggett Military Reservation	11581	23	22		23	22		21	19		21	11	
Lexington-Blue Grass Army Depot (Closed)	1915	37	36		37	4		4	7		5	0	
Fort Dix Military Reservation	1529	20	20		20	14		19	14		13	1	
Fort Drum	3877	24	21		24	7		17	10		11	3	

Legend:	
Percent Habit Unchanged By Climate Change	
80-100% unchanged	
50-80% unchanged	
0-50% unchanged	

Installation	Size (0.02 x 0.02) degree cells	PCM Model				Hadley Model				
		PCM B1 2050	PCM B1 2080	Low Emissions	High Emissions	HAD B1 2050	HAD B1 2080	HAD A1 2050	HAD A1 2080	
Fort Huachuca	6280	14	15		18	10	17	13	10	4
Army Chemical Center	4	0	0		100	0	0	0	0	0
Blossom Point Field Test Facility	15	100	0		0	0	0	0	0	0
Greencastle Military Reservation	9	0	0		0	0	0	100	0	0
Indiana Arsenal Army Ammunition Plant (Closed)	1439	15	15		15	10	10	9	11	0
Yakima Firing Center	12237	11	11		11	10	10	8	10	0
Ravenna Arsenal	1381	13	13		13	12	6	2	6	6
Tooele Army Depot	4069	9	9		7	6	6	4	4	3
Fort Bliss	8206	7	5		3	5	9	7	5	5
Seneca Army Depot (Scheduled to close)	1281	6	6		6	4	6	4	4	3
Fort Ord Military Reservation (Closed)	5071	6	5		5	6	6	5	7	1
Fort Eustis Military Reservation	1268	5	5		5	5	6	4	7	3
Fort Ethan Allen Military Reservation	1273	6	6		6	5	6	6	4	0
Fort Chaffee (Closed)	8316	7	7		7	4	5	1	3	0
Camp MacKall Military Reservation	66	12	9		0	0	0	12	0	0
Picatinny Arsenal	1305	6	5		6	3	5	0	0	0
Fort Indiantown Gap Military Reservation (Clo)	1513	8	5		5	1	1	1	2	1

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 26-10-2011			2. REPORT TYPE Final		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Forecasting Climate-Induced Ecosystem Changes on Army Installations			5a. CONTRACT NUMBER			
			5b. GRANT NUMBER			
			5c. PROGRAM ELEMENT			
6. AUTHOR(S) James D. Westervelt and William W. Hargrove			5d. PROJECT NUMBER			
			5e. TASK NUMBER			
			5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Engineer Research and Development Center (ERDC) Construction Engineering Research Laboratory (CERL) PO Box 9005, Champaign, IL 61826-9005			8. PERFORMING ORGANIZATION REPORT NUMBER			
			ERDC/CERL TR-11-36			
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Engineer Research and Development Center (ERDC) Environmental Laboratory (EL) 3909 Halls Ferry Road Vicksburg, MS 39180-6199			10. SPONSOR/MONITOR'S ACRONYM(S)			
			CEERD-EM-D			
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
13. SUPPLEMENTARY NOTES						
14. ABSTRACT Military installation training lands must be managed to support species at risk as well as to be effective training environments for soldiers. Forecasts from various global climate change models suggest that the habitats associated with some military training installations will face pressures that induce biome-shifts, invasive species, loss of habitat, and changes in training opportunities. This study combined worldwide habitat forecast data with a current habitat map to identify major installations that appear to be most and least at-risk for habitat change.						
15. SUBJECT TERMS ecosystem management, climate change, habitat, military training, modeling						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 134	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified			19b. TELEPHONE NUMBER (include area code)	