一. 绪论:

- 1. BCD 码
 - ① 二一十进制编码
 - (2) 用四位二进制数表示一位十进制数
 - ③ 每位二进制数都有权值
- 2. 余3码
 - ① 二一十进制编码
 - (2) 无权码
 - ③ 可正确产生进位信号 有进位结果+3,无进位结果-3 余 3 码是对 9 的自补码 0 与 9,1 与 8 的余 3 码互为反码 方便十进制运算,可将减法变加法
- 3. 格雷码
 - 1) 无权码
 - ② 相邻两码之间只有一个 bit 不一样格雷码的用途:
 - (1) 卡诺图
 - (2) 循环计数

格雷码的写法:

- (1) 计算法: Gray[i] = Bin[i] ⊕ Bin[i + 1]
- (2) 反射法:

0	0	0	0	0	0
1	0	1	0	0	1
	1	1	0	1	1
	1	0	0	1	0
			1	1	0
			1	1	1
			1	0	1
			1	0	0
1bit	2bi	t	3	Bbit	

(3) 图形法:

	0	1
0	0	1
1	3	2

1	V1A•				
		00	01	11	10
	0	0	1	2	3
	1	7	6	5	4

	00	01	11	10
00	0	1	2	3
01	7	6	5	4
11	8	9	A	В
10	F	Е	D	С

二. 逻辑代数基础

- 1.逻辑代数公式、定理和规则
- (1) Distributive Law (分配律)

$$A \bullet (B+C) = AB+AC \quad A+BC = (A+B) \bullet (A+C)$$

(2) DeMorgan's Laws (德摩根定理)

(1)
$$\overline{\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n} = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_2 \dots \overline{\mathbf{X}}_n$$

(2)
$$\overline{X_1 X_2 \dots X_n} = \overline{X}_1 + \overline{X}_2 + \dots + \overline{X}_n$$

懒得排版懒得写详细信息,结合 PPT 食用风味更佳,最后祝大家 98.5 (滑稽)

(3) 对偶规则:

或变与,与变或 异或变同或,同或变异或

优先级不改变

推论: ①**两个逻辑表达式相等,它们的对偶也相等** ②**F=(F^D)**^D

(4) 部分定律:

合并律
$$AB+A\bar{B} = A$$

吸收律 A+AB=A

消除律
$$A + \overline{AB} = A + B$$

蕴含律
$$AB+ \overline{A}C+BC = AB+ \overline{A}C$$

冗余律
$$AB+ \bar{A}C+BCD = AB+\bar{A}C$$

包含律
$$(A+B)(\bar{A}+C)(B+C) = (A+B)(\bar{A}+C)$$

- (5) 化简原则:
 - ① 与项(和项)的个数最少
 - ② 每个与项(和项)中变量的个数最少 (可以使用对偶规则推论②)

2.逻辑函数表示方法

(1) 最小(大)项表达式:

Row No.	ABC	Minterms	Maxterms
0	0 0 0	$A'B'C'=m_0$	$A+B+C = M_0$
1	0 0 1	$A'B'C = m_1$	$A+B+C'=M_1$
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	1 0 0	$AB'C' = m_4$	$A' + B + C = M_4$
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	1 1 1	$ABC = m_7$	$A' + B' + C' = M_7$

性质:

$$(1)m_i = \overline{M_i}$$

$$(2)F(X1, X2, ...Xn) = \sum (m_a, m_b, ...m_i) = \prod (M_{2^n - m_a}, M_{2^n - m_b}, ...M_{2^n - m_i})$$

$$\bar{F}(X1, X2, ... Xn) = \sum (m_{2^n - m_a}, m_{2^n - m_b}, ... m_{2^n - m_i}) = \prod (M_a, M_b, ... M_i)$$

三. 组合逻辑电路的分析与设计

- 1.三态门与 OC 门的应用(略)
- 2.常用组合逻辑芯片及其功能(见附录)
- 3.竞争与险象
 - (1) 概念:

竞争: 多个信号经不同路径到达某一点有时间差, 称为竞争。 2

险象(hazard):由于竞争使得电路产生了暂时的错误输出, 称为险象。

(2) 险象的分类:

懒得排版懒得写详细信息,结合 PPT 食用风味更佳,最后祝大家 98.5 (滑稽)

Static-1 Hazard Static-0 Hazard

Dynamic Hazards

(3) 险象的检查与消除:

检查表达式中是否存在某个变量 X,

- ①. 它同时以原变量和反变量的形式出现;
- ②. 在特定条件下简化成下面形式之一: X+X' XX'

步骤:代数法(略)

卡诺图法:

- ①.检查是否有边相邻的卡诺圈
- ②.在相邻边处添加卡诺圈,逻辑表达式中添加冗余项

四. 触发器

1.常用触发器的功能表与次态方程

(1) S-R 触发器

S	R	Qn+1
0	0	Qn
1	0	1
0	1	0
1	1	X

$Q_{n} \rightarrow Q_{n+1}$	S	R
0-0	0	X
0→1	1	0
1→0	0	1
1→1	X	0

$$Q_{n+1} = S + \bar{R}Q_n$$

(2) J-K 触发器

J	K	Qn+1
0	0	Qn
1	0	1
0	1	0
1	1	Qn'

$Q_{n} \rightarrow Q_{n+1}$	J	K
0-0	0	X
0→1	1	X
1→0	X	1
1-1	X	0

$$Q_{n+1} = J\overline{Q_n} + \overline{K}Q_n$$

(3) D 触发器

D	Qn+1
0	0
1	1

$Q_{n} \rightarrow Q_{n+1}$	D
0-0	0
0→1	1
1→0	0
1-1	1

$$Q_{n+1} = D$$

(4) T触发器

	/4-1/2 4 1
T	Qn+1
0	Qn
1	Qn'

$Qn \rightarrow Qn+1$	T
0-0	0
0→1	1
1→0	1
1→1	0

$$Q_{n+1} = T\overline{Q_n} + \overline{T}Q_n$$

(5) T`触发器

$$Q_{n+1} = \overline{Q_n}$$

- 2.触发器功能转换
- (1) 代数法:直接联立次态方程,注意 RS=0。
- (2)卡诺图法:列出现有触发器参数关于 Qn 和目标触发器参数的卡诺图并化简,注意 RS=0。
- 3.触发器转换公式:
- (1) RS:
- ①RS→JK: $S = J\overline{Q_n}$, $R = KQ_n$
- ②RS \rightarrow D: S = D, $R = \overline{D}$
- ③RS→T:
- (2) JK:
- ①JK \rightarrow RS: J = S, $K = \bar{S}R$
- ②JK \rightarrow D:J = D, $K = \overline{D}$
- ③JK→T: J = T , K = T
- **④JK→T'**: J = 1, K = 1
- (3) D:
- $\textcircled{1}D \rightarrow RS:D = J\overline{Q_n} + \overline{K}Q_n$
- ②D \rightarrow JK: $D = T \oplus Q_n$
- ③D→T: $D = \overline{Q_n}$
- $\textcircled{4}D \rightarrow T': D = S + \overline{R}Q_n$
- (4) T:
- ①T \rightarrow RS: $T = S\overline{Q_n} + RQ_n$
- ②T→JK: $T = J\overline{Q_n} + KQ_n$
- $\ \ \Im \mathsf{T} \rightarrow \mathsf{D} : T = D \oplus Q_n$
- 4T \rightarrow T': T = 1

五. 时序逻辑电路

- 1.常用时序逻辑芯片及其功能(见附录)
- 2.时序逻辑分析的步骤

确定系统变量(输入变量、输出变量、状态变量)

① 列输入方程(驱动方程,控制函数) (触发器的输入方程)

懒得排版懒得写详细信息,结合 PPT 食用风味更佳,最后祝大家 98.5 (滑稽)

- ② 列输出方程(输出函数)
- ③ 列次态方程(状态方程)
- ④ 列状态转换表
- ⑤ 画状态图
- ⑥ 画时序图 (波形图)

3.时序逻辑设计的步骤(UNIT12PPT P32-40, P48-51 信息密度高,实用性强,建议打印!(本人此处偷懒了一下下,其余文字不再赘述))

- 1. 需求 → 原始状态图、状态表
- 2. 最小化原始状态表
- 3. 状态分配(编码)→ 状态转移表
- 4. 状态转移表 → 触发器驱动表 (激励表)
- 5. 卡诺图化简 → 激励函数表达式(输入方程) 输出函数表达式(输出方程)
- 6. 电路实现
- 7. 检查无关状态

六. 可编程逻辑器件(建议打印 ppt p12-18,28-30,47-55,78-80)

ROM/PROM——n 输入 m 输出

- 存放包含 2^n 个 words (字) 的 array (数组),每个字长为 m bits.
- \overline{p} **a b** \overline{p} **b** \overline{p} **c** \overline{p} **c** \overline{p} **d** \overline{p} \overline{p}
- 每个输入组合(地址)选中一个存储单元, 给定输入,输出为相应的 word.
- PROM 的或阵列可编程

PLA ——将内容相同的存储单元用一个存储单元来代替(令几个地址码读出同一存储单元的内容)

- 与阵和或阵都可编程,每条"字"线不一定是最小项,且字数少于或等于 2^n
- 地址和字之间没有一一对应关系,一个地址可能同时访问两个或两个以上的字
- 必须对表达式化简,即矩阵中存储的是化简后的内容,与真值表不再一一对应
- 有的 PLA 包含记忆元件(触发器网络),既能实现组合逻辑又能实现时序逻辑。
- 在使用 PLA 时需考虑变量复用

PAL---

- 与阵列可编程
- 需根据输出端所连变量个数决定与阵列
- 需要化简表达式

附录:

逻辑门:

译码器:

数据选择器:

计数器:

芯片型号	功能描述	置数方式	清零方式
74160	模十加法计数器	同步	异步
74161	模十六加法计数器	同步	异步
74162	模十加法计数器	同步	同步
74163	模十六加法计数器	同步	同步
74193	模十六可逆计数器	异步	异步
7490	模二/五/十加法计数器	异步	异步

Connection Diagram

Dual-In-Line Package

Truth Table

Count		Clear	Load	Function		
Up	Down	Olcai	Loud	- unouon		
1	Н	L	Н	Count Up		
Н	↑	L	Н	Count Down		
X	X	Н	X	Clear		
X	Х	L	L	Load		

H = high level

L = low level

↑ = transition from low-to-high

X = don't care

74193

Order Number MM54HC192/193 or MM74HC192/193

LS90 MODE SELECTION

RES	ET/SE	T INP	OUTPUTS							
MR ₁	MR ₂	MS ₁	MS ₂	Q ₀	Q_1	Q_2	Q_3			
Н	Н	L	Х	L	L	L	Г			
Н	н	Χ	L	L	L	L	L			
X	X	Н	н	н	L	L	Н			
L	X	L	x	Count						
X	L	X	L	Count						
L	X	Χ	L	Count						
X	L	L	x	Count						

移位寄存器:

Function Table

Inputs							Outputs						
		de		Serial		Parallel			_		•		
Clear	S1	S2	Clock	Left	Right	Α	В	С	D	Q_{A}	QB	Q_C	Q_D
L	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	L	L	L	L
H	Х	Χ	L	Х	Χ	Х	Χ	Х	Χ	Q _{A0}	Q_{B0}	Q_{C0}	Q_{D0}
H	Н	Н	↑	Χ	Χ	а	b	С	d	а	b	С	d
H	L	Н	↑	Χ	Н	Х	Χ	Х	Χ	Н	Q_{An}	Q_{Bn}	Q_{Cn}
H	L	Н	↑	Χ	L	Х	Χ	Χ	Χ	L	Q_{An}	Q_{Bn}	Q_{Cn}
H	Н	L	↑	Н	Χ	Х	Х	Х	Χ	Q_{Bn}		Q_{Dn}	Н
H	Н	L	↑	L	Χ	Х	Χ	Χ	Χ			Q_{Dn}	L
H	L	L	X	X	X	Χ	Χ	Χ	Χ		Q_{B0}	Q_{C0}	Q_{D0}

锁存器与触发器:

