Práctica 4

- 1. Decidir cuáles de las siguientes funciones son continuas:
 - (a) $f: (\mathbb{R}^2, d_2) \to (\mathbb{R}, d), f(x, y) = x^2 + y^2$.
 - (b) $id_{\mathbb{R}^2}: (\mathbb{R}^2, \delta) \to (\mathbb{R}^2, d_{\infty})$, la función identidad.
 - (c) $id_{\mathbb{R}^2}: (\mathbb{R}^2, d_{\infty}) \to (\mathbb{R}^2, \delta)$, la función identidad.
 - (d) $i:(A,d)\to(E,d)$, la inclusión,

En (a), (b) y (c) las métricas d, d_2 y d_{∞} son como en la Práctica 3, y δ representa a la métrica discreta, mientras que en (d) (E, d) es un espacio métrico y $A \subseteq E$.

2. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} x, & \text{si } x \in \mathbb{Q}, \\ 0, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Probar que f es continua únicamente en x = 0.

3. Sea $f:(0,1)\to\mathbb{R}$ dada por

$$f(x) = \begin{cases} 0, & \text{si } x \notin \mathbb{Q}, \\ \frac{1}{n}, & \text{si } x = \frac{m}{n} \text{ con } m \text{ y } n \in \mathbb{N} \text{ coprimos }. \end{cases}$$

Probar que f es continua en los irracionales del (0,1) y **no** es continua en los racionales del (0,1).

- **4.** Sean $f, g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$, $g(x) = \frac{x^2}{1+x^2}$. Probar que:
 - (a) f continua, y sin embargo existe $G \subseteq \mathbb{R}$ abierto tal que f(G) no es abierto.
 - (b) g es continua, y sin embargo existe $F \subseteq \mathbb{R}$ cerrado tal que g(F) no es cerrado.
- **5.** Sea (E,d) un espacio métrico, y sea $x_0 \in E$. Sea $f: E \to \mathbb{R}$ una función continua en x_0 . Probar que si $f(x_0) > 0$ entonces existe r > 0 tal que f(x) > 0 para todo $x \in B(x_0, r)$.
- **6.** Sean (E,d) e (E',d') espacios métricos y $f,g:E\to E'$ funciones continuas.
 - (a) Probar que $\{x \in E : f(x) \neq g(x)\}$ es abierto.
 - (b) Deducir que $\{x \in E : f(x) = g(x)\}$ es cerrado.
 - (c) Probar que si D es denso en E y $f|_D = g|_D$, entonces f = g. Definición: D es denso en E si $\overline{D} = E$.
- 7. Considerando en cada \mathbb{R}^n la métrica euclídea d_2 , probar que:

- (a) $\{(x,y) \in \mathbb{R}^2 : x^2 + y \operatorname{sen}(e^x 1) = -2\}$ es cerrado.
- (b) $\{(x, y, z) \in \mathbb{R}^3 : -1 \le x^3 3y^4 + z 2 \le 3\}$ es cerrado.
- (c) $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : 3 < x_1 x_2\}$ es abierto.

Mencionar otras dos métricas para las cuales siguen valiendo estas afirmaciones.

- 8. Sean (E,d) e (E',d') espacios métricos y $f:E\to E'$ una función continua y suryectiva. Probar que si D es denso en E entonces f(D) es denso en E'.
- 9. Sea (E,d) un espacio métrico. Probar que todo punto de E es aislado si y sólo si toda función de E en un espacio métrico arbitrario es continua.
- **10.** Consideramos las funciones $\mathcal{E}, \mathcal{I}: C([0,1]) \to \mathbb{R}$ definidas por:

$$\mathcal{E}(f) = f(0), \qquad \mathcal{I}(f) = \int_0^1 f(x) \ dx.$$

- (a) Demostrar que si utilizamos en C([0,1]) la distancia d_{∞} ambas resultan continuas
- (b) Demostrar que si en cambio utilizamos en C([0,1]) la distancia d_1 , \mathcal{I} es una función continua pero \mathcal{E} no lo es.
- (c) Analizar si es posible que una función $\mathcal{F}:C([0,1])\to\mathbb{R}$ sea continua para la distancia d_1 pero no para d_{∞} .
- 11. Sea (E,d) un espacio métrico.
 - (a) Sea $x_0 \in E$, y sea $f: E \to \mathbb{R}$ dada por $f(x) = d(x, x_0)$. Probar que f es continua.
 - (b) Sea $A \subseteq E$ cerrado, y sea $g: E \to \mathbb{R}$ dada por g(x) = d(x, A). Probar que g es continua, y que g(x) > 0 si $x \notin A$.
 - (c) Sean $A, B \subseteq E$ cerrados, no vacíos y disjuntos, y sea $h: E \to [0, 1]$ dada por

$$h(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Probar que h es continua, y que $h(x) = 0 \ \forall x \in A \ y \ h(x) = 1 \ \forall x \in B$.

- (d) Sean $A, B \subseteq E$ cerrados, no vacíos y disjuntos. Probar que existen conjuntos abiertos y disjuntos U y V tales que $A \subseteq U$ y $B \subseteq V$.
- **12.** Sea $A \subseteq \mathbb{R}$. Probar que $f : \mathbb{R} \to \mathbb{R}$ dada por f(x) = d(x, A) es una función uniformemente continua.
- 13. Sean (E,d) e (E',d') espacios métricos y sea $f:E\to E'$ una función para la cual existe $c\geq 0$ tal que

$$d'(f(x_1), f(x_2)) \le c \cdot d(x_1, x_2)$$

para todos $x_1, x_2 \in E$. Probar que f es uniformemente continua.

14. Para cada r > 0 estudiar la continuidad uniforme de la función

$$f:(r,+\infty)\to\mathbb{R}, \qquad f(x)=\sqrt{x}.$$

- **15.** (a) Sean (E,d) e (E',d') espacios métricos y $f:E\to E'$ una función. Probar que si existen dos sucesiones $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq E, \alpha>0$ y $n_0\in\mathbb{N}$ tales que
 - i. $\lim_{n\to\infty} d(x_n, y_n) = 0$ y
 - ii. $d'(f(x_n), f(y_n)) \ge \alpha$ para todo $n \ge n_0$,

entonces f no es uniformemente continua.

- (b) Verificar que la función $f(x) = x^2$ no es uniformemente continua en \mathbb{R} . ¿Y en $(-\infty, -\pi]$?
- (c) Verificar que la función f(x) = sen(1/x) no es uniformemente continua en (0,1).
- **16.** Sea $f:(E,d)\to (E',d')$ una función uniformemente continua y sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en X. Probar que $(f(x_n))_{n\in\mathbb{N}}$ es una sucesión de Cauchy en E'.
- 17. (a) Dar un ejemplo de una función $f: \mathbb{R} \to \mathbb{R}$ acotada y continua pero no uniformemente continua.
 - (b) Dar un ejemplo de una función $f:\mathbb{R}\to\mathbb{R}$ no acotada y uniformemente continua.
- **18.** Sea $f:(E,d)\to (E',d')$ una función uniformemente continua, y sean $A,B\subseteq E$ conjuntos no vacíos tales que d(A,B)=0. Probar que d'(f(A),f(B))=0.