Mobile Security

Network Security - Lecture 6

Ruxandra F. Olimid

Faculty of Mathematics and Computer Science, University of Bucharest

*slides adapted from the course TTM4137 thought at NTNU

Outline

- Intro to Mobile Security
- GSM Architecture
- GSM Security Requirements / Principles
- Vulnerabilities and Attacks

Evolution

3GPP - Specifications

About 3GPP

Specifications Groups

Specifications

3GPP Calendar

Technologies

News & Events

Hom

Sitemap

ontact

3GPP Specification series

Go to spec numbering scheme page

Click on spec number for details

spec number	title	notes
TS 36.101	Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception	
TS 36.104	Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception	
TS 36.106	Evolved Universal Terrestrial Radio Access (E-UTRA); FDD repeater radio transmission and reception	
TS 36.111	Location Measurement Unit (LMU) performance specification; Network based positioning systems in Evolved Universal Terrestrial Radio Access Network (E-UTRAN)	
TS 36.112	Location Measurement Unit (LMU) conformance specification; Network based positioning systems in Evolved Universal Terrestrial Radio Access Network (E-UTRAN)	
TS 36.113	Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) and repeater ElectroMagnetic Compatibility (EMC)	
	i	

Overview

- User device
- Access network
 - Radio link
- Core network

[Source: ITU EMF Guide http://emfguide.itu.int/emfguide.html]

GSM - Architecture

MS: Mobile Station

ME: Mobile Equipment

SIM: Subscriber Identity Module

BSS: Base Station Subsystem

BTS: Base Transceiver Station

BSC: Base Station Controller

NSS: Network Subsystem

MSC: Mobile Services Switching Center

HLR: Home Location Register

VLR: Visitor Location Register

EIR: Equipment Identity Register AuC: Authentication Center

PSTN: Public Switched Telephone Network

GSM - Arhitecture

- MS (Mobile Station):
 - Consists in a Mobile Equipment (ME) and the Subscriber's Identity Module (SIM)
- BSS (Base Station Subsystem):
 - Consists in several BTSs and BSCs
 - The BSC is a central element that controls the radio network, maintaining radio connectivity with several BTSs and providing connection to the NSS
 - BTS is the element to which the MS connects to in the GSM network via radio link; its functions include signal processing, signaling, ciphering
- NSS (Network SubSystem):
 - MSC is the main element of the NSS with respect to call functions, being responsible for call control, BSS control, and interconnecting to the external networks (PSTN)

GSM - Arhitecture

VLR (Visitor Location Register):

- Stores information about subscribers that are served by the MSC (it maintains copies of the data from HLR, increasing efficiency: decreases the number of messages that are exchanged between the MSC and the HLR)
- Usually is not independent hardware, but a software component of the MSC

HLR (Home Location Register):

- It is the main database in GSM
- Maintains information for each subscriber: IMSI, phone no. MSISDN (Mobile Station International Subscriber Directory Number), available services for the subscriber, location, etc.

AuC (Authentication Center):

- For each subscriber, stores the permanent key K_i that is also stored in the SIM
- Generates the authentication vectors (RAND, SRES, K_C) in the authentication phase

GSM - Arhitecture

- EIR (Equipment Identity Register):
 - Keeps inventory of the devices in the mobile network, which are identified by their IMEI
 - Keeps up to date 3 lists:

White list: contains the equipment that are compliant to the operator and can access the mobile network without any restriction

 <u>Black list</u>: contains the equipment that have been reported as stolen or that have been proved to affect the network functionality, and that are restricted to access the mobile network

 Gray list: contains the equipment that are not fully compliant to the operator, and are allowed to access the network but there are under surveillance

GSM – Security Principles

We will find a similar limitation for LTE, where for example 3GPP did not considered PKI to be a feasible solution

Goal: GSM should be as secure as the wired network (PSTN) ...

...but, security mechanisms should not have a negative impact on the usability of the system

- Security requirements in GSM:
- Access control to the MS: provide authenticated user access to the mobile station
- Anonymity of subscribers (privacy): keep the identity of the subscribers (and their location, possibility of linking calls, etc.) hidden to external parties
- Authentication of subscribers: subscribers must prove their identity and their right to access mobile services
- *Confidentiality:* maintain the confidentiality <u>on the radio link</u>

GSM – Security Principles

Weaknesses in GSM security:

- Breaking Kerckhoffs' principle: cryptographic algorithms were kept confidential (e.g.: A5/1, A5/2), and their strength was not publicly tested
- Short keys; cryptosystems are vulnerable to exhaustive search attack
- Limited encryption: data is encrypted on the radio link only
- Unilateral authentication: The mobile station does not authenticate the network (only the network authenticates the mobile station)
- No specification about the integrity of the data
- Active attacks are possible; e.g.: IMSI Catchers, when an adversary masquerades a legitimate BTS
- Users are (usually) not notified about the level of security used

Mobile Equipment (ME)

Identification:

- IMEI (International Mobile Equipment Identity), a number used to identify the mobile phone; it is printed on the device, and it can be displayed by dialing *#06#
- IMEISV (IMEI Software Version) discards the check digit from the IMEI and adds 2 digits SVN (Software Version Number)

Access control:

- IMEI can be used to deny connectivity to the network for stolen phones based on a blacklist stored by the operator
- Biometric authentication; e.g.: fingerprint recognition, voice recognition
- Screen unlock mechanisms; e.g.: codes, patterns

SIM Card

Identification:

- IMSI (International Mobile Subscriber Identity), a global unique identifier for the subscriber (≅15 digits)
- ICCID (Integrated Circuit Card ID) it is the identifier of the SIM itself and printed on the SIM card

Access control:

- PIN (Personal Identification Number), a sequence of numbers required to unlock the SIM card
- PUK (Personal Unlocking Key), a code required when the PIN has been introduced incorrectly several times

IMSI (International Mobile Subscriber Identity)

MCC	MNC	MSIN
(Mobile Country Code)	(Mobile Network Code)	(Mobile Subscriber Identification Number)
- 3 digits -	- 2 digits (EU) / 3 digits (US) -	
242 (Norway)	01 (Telenor) / 02 (Telia)	XXXXXXXXX
226 (Romania)	01 (Vodafone) / 10 (Orange)	XXXXXXXXX

SIM Card

Authentication and Confidentiality:

- IMSI (International Mobile Subscriber Identity)
- **TMSI** (Temporary Mobile Subscriber Identity), a temporary identity used to restrict the sending of IMSI over the air and mitigate eavesdrop attacks
- K_i a 128-bits permanent key
- Cryptographic mechanisms: a challenge-response mechanism that uses the permanent key for the authentication of the subscriber and a key generation mechanism for confidentiality of communication

SIM cards must be <u>tamper-resistant</u> (i.e. an adversary should not be able to read / modify the security information stored on the SIM card). Otherwise, SIM cards become vulnerable to <u>cloning</u> <u>attacks</u>, for which the attacker creates copies of the SIM card to use in different purposes (eavesdropping on the victim, making calls on the victim behalf, etc.)

^{*}Terminology: Initially, the card itself was also called a SIM, later the card itself was called UICC (Universal Integrated Circuit Card) and the SIM was considered the application running on the card

Anonymity of Subscribers

- Goal: Keep the identity (presence/absence in an area, location, etc.) of the subscriber private to unauthorized parties
- A subscriber can identity itself by one of the following identifiers:
 - **IMSI** permanent identity
 - TMSI temporary identity

Principles:

- Introduce the TMSI as a way to avoid IMSI exposure on the radio interface
 - e.g.: IMSI uniquely identifies a subscriber, and if it intercepted it suffice to prove the presence of the subscriber in a location
- TMSI is assigned to the MS when authenticates to the network, and it is local in the visiting network (VLR keeps the IMSI – TMSI correspondence); the MS stores the TMSI in the SIM to use it even after rebooting
- TMSI must be renewed at specific intervals (tradeoff with efficiency); a TMSI that is not changed often enough can break privacy too

Authentication of Subscribers

- Goal: Prove the identity of the subscriber to the mobile network, and avoid unauthorized parties to access the mobile services
- The authentication mechanism uses:
 - The permanent key K_i , unique for each subscriber, that is stored:
 - in the SIM card (subscriber's side)
 - in the AuC (network operator's side)
 - Cryptographic algorithms: A3 (subscriber authentication), A8 (key generation)

Principles:

- K_i does never leave the 2 locations (SIM, AuC);
- Authentication consists in checking if the subscriber knows the correct key K_i by using a challenge-response mechanism
- The serving network does not have access to the key K_i, so it cannot perform authentication without help from the home network
- During authentication phase, is derived a key K_c that will be later used for encryption

Authentication of Subscribers

Authentication Triplets

- Goal: Allow the visiting network to authenticate the MS without knowing K_i and improve efficiency by using batches of triplets
- A triplet used for authentication is

(RAND, XRES, K_c)

where XRES = $A3(K_i, RAND)$ and $Kc = A8(K_i, RAND)$

Operation:

- AuC produces batches of triplets for each MS, each with a different RAND and sends them to the HLR
- For a single request, the VLR receives a batch of triplets from the HLR (to avoid often communication between the VLR and the HLR)
- If the network runs out of triplets, it should request more from the HLR, but if not it is allowed to reuse triples

Encryption

- Goal: Encrypt all communication between the mobile station and the BTS (both phone calls and sensitive signaling information such as TMSI, MSISDN, etc.)
- The GSM encryption uses:
 - The key **K**_c, derived in the authentication mechanism
 - Encryption algorithm: A5 (radio encryption)
- Principles:
 - Encryption is only performed on the radio link (!)
 - The encryption algorithm uses as input the session ley K_{c} derived from the authentication phase
- Operation:
 - The key K_c is used as the encryption key for a stream cipher (LFSR-based):

Ciphertext = $A5(K_c, Plaintext)$

Encryption

- Both A5/1 and A5/2 were not public, breaking *Kerckhoffs' principle*
- Encryption operates at the physical layer (Layer 1), which brings some advantages:
 - Maximum amount of data is encrypted (both user and signaling data)
 - The encryption algorithm can be implemented in hardware
- A5 algorithms are stream ciphers, so encryption is performed bit-by-bit
- A frame counter (22 bits) is used as an additional input together with the key K_c
- Vulnerability! The frame counter repeats every 2²² frames (approx. every 3.5 hours), so the key stream repeats if the K_c is not renewed meanwhile
- GSM is full duplex: for each frame, first 114-bit block (Block1) is used for encryption of data that is being transmitted, and the second 114-bit block (Block2) is used for decryption of data that is being received

Encryption

[Source: P.S.Pagliusi – A Contemporary Foreword on GSM Security, InfraSec '02]

Overview

[Source: P.S.Pagliusi – A Contemporary Foreword on GSM Security, InfraSec '02]

Overview

[Source: P.S.Pagliusi – A Contemporary Foreword on GSM Security, InfraSec '02]

Crypto

Key	Length / Input + Output	Info
K _i	128 bits	Key shared between the subscriber and the network operator, stored in the SIM and AuC
K _c	54/64 bits	Secret session key, that will be used for encryption Kc = A8(K _i , RAND)
RAND	128 bits	Random challenge
SRES / XRES (Signed Response / Expected Response)	32 bits	Response to the challenge request / Expected response to the challenge request SRES / XRES = A3(K _i , RAND)
A3, resp. A8	Input: K _i , RAND Output: SRES, resp. K _c	Generic algorithms for authentication, resp. key generation (no specific algorithms) e.g.: COMP128 combines A3 and A5 and generates XRES (32 bits) and K_c (54 random bits concatenated to 10 bits of 0) Stored in the SIM
A5	Input: Kc, plaintext Output: ciphertext	Class of standardized encryption algorithms: A5/0 (no encryption), A5/1 (CEPT + USA), A5/2 (Asia), A5/3 (Kasumi, UMTS) Stored in the mobile equipment (not SIM!)

Security Principles

Modularity:

- GSM is modular in the sense that the cryptographic algorithms can be replaced with others, as long as maintain the same input-output structure
- A5 refers to a family of algorithms; e.g.: A5/1, A5/2, A5/3 (64 bits key K_c); A5/0 (no encryption), A5/4 (128 bits key K_c) some used for UMTS (e.g.: A5/3)

Standardization:

- A5 must be standardized (e.g.: MS must communicate to BTS in roaming)
- A3, A8 must not necessary be standardized, because both parties involved (the SIM and the AuC) belong to the same network operator; however, 3GPP gave an example algorithm set TS55.205

Security Principles

- Use the SIM as a security module:
 - Authentication and confidentiality are performed based on a shared secret (K_i)
 - The SIM stores secret information of the subscriber (K_i, IMSI) and cryptographic algorithms (A3, A8)
 - Should be tamper-resistance
- Security in the visiting network:
 - The key K_i must not be shared to the visitor network
 - Authentication triplets allow authentication in visitor networks
- Algorithms' requirements:
 - Statistically impossible to guess SRES
 - Statistically impossible to find K_i, K_c from the eavesdropped data
 - ... (assumptions that exclude trivial attacks)

Passive attacks:

- The adversary eavesdrops on the radio link and gets the IMSI
- The attack is possible because the IMSI is sent in clear over the radio link when the MS posses no TMSI or it cannot be identified by using the TMSI

Active attacks:

- The adversary requests the IMSI from the MS
- IMSI Catcher: the adversary masquerades a legitimate BTS and asks the MS for the IMSI
- The attack is possible because the MS does not authenticate the network and cell reselection criteria is signal strength
- We will learn more on IMSI Catchers when we will study LTE

Cryptanalysis:

- Key length
 - the key length of K_c (54/64 bits) is too small to provide security
 - Exhaustive search (brute force) can break the key in a few hours
- COMP128 was cracked in 1998 (by Wagner and Goldberg, but apparently known before by some operators)
 - <u>Chosen plaintext attack</u>: K_i is found when about 16000 pairs RAND-SRES are collected
 - Possible ways to connect RAND-SRES pairs:
 - Steal the SIM and connect to a phone emulator (2 to 10 hours, dependent on the phone)
 - Use a false BTS (longer in time, but does not require physical access to the SIM)

Cryptanalysis:

- A5/1 was broken in 1999 (by Biryukov, Shamir, later the attack was improved together with Wagner)
 - <u>Time-memory trade-off</u>:
 - Pre-processing phase: Compute a large database of states and related keys of the stream system
 - Attack phase: search subsequences of the key stream in the database; if a match is found, the state is the one in the database (with high probability)
 - 2s of known plaintext (both uplink and downlink) to succeed
- **A5/2** was cryptanalysed in 1999 (Goldberg, Wagner, Green), 2003 (Barkan, Biham, Keller), etc.

Radio links:

- BTS to BSC link is sometimes not wired, making it easily susceptible to eavesdropping
- Possible because GSM security do NOT consider encryption beyond the BTS-BSC link (but only on the MS – BTS radio link)

Engineering attacks:

- Attacks against the chip card, side-channel attacks
- Software attacks

Optionality:

- Encryption was introduced as an optional feature
- Very few terminals inform the user if encryption is taking place or not

To remember!

- Apply Kerckhoffs' principle (make crypto public!)
- 2. Think about the future (e.g.: do not use small cryptographic keys, think about Moore's law!)
- 3. Trade-off between efficiency / usability and security might expose vulnerabilities
- 4. Do not underestimate your adversary! (active attacks were considered infeasible)
- 5. New notions: security aspects in GSM network