

Classic Snake Game played by a Reinforcement Learning Agent

Svetlana Gabdullina Denis Rollov

Approaches

- 1. Value Iteration
- 2. Policy Iteration
- 3. Using NN

System

- 1. Action
- 2. State
- 3. Reward

Action

- 1. Left (-1)
- 2. Straight (0)
- 3. Right (1)

State

- 1. Snake's location
- 2. Food's location
- 3. Boarders' location

State

1. If there is an obstacle further (True / False)³

2. Food's direction

Reward

```
1. +500, if food is eaten
```

2. -100, if snake is dead

3. + 0, if got closer to food

4. -10, otherwise

Value iteration / Policy iteration

NN-approach

- 1. Dataset of (X, y)
- 2. X: (1, s, r, angle, action)
- 3. y: 1, if food is eaten
 - -1, if snake is dead
 - 0, otherwise

NN-approach

- 1. Model: MLP(hidden=15)
- 2. Problem: regression
- 3. Best action maximizes the prediction

Experiments

Field size: 15x15

Number of training games: 30000

	Value Iteration	Policy Iteration	MLP
Average number of steps	424	198	123
Average maximal length	22	23	12

Github repo

Github repo

Scan or click the qr-code

Conclusions

- 1. It was interesting
- 2. Policy iteration method showed the best result
- 3. We definitely should try additional data sampling

Thank you for your attention!

Svetlana Gabdullina Denis Rollov