

Chapter2: Memory, I/O addressing

Asst.Prof.Dr.Supakit Nootyaskool

Objective

- Tell the relationship between binary and hexadecimal.
- Understand parity and error correction.
- Know what is inside the text file.
- Understand address bus, data bus, and control signal
- Tell devices selecting on the decoder circuit.

Topics

- Relationship between binary and hexadecimal
- Parity and error correction
- Text data
- Address bus, Data bus, and Control signal
- Decoder

RELATIONSHIP BETWEEN BINARY AND HEXADECIMAL

Able to convert binary to hexadecimal and convert back.

When you read a computer code

```
#include <dos.h>
#include <stdio.h>
#include <comio.h>
#define PORT1 0x3F8 /* Defines Serial Port Base Address (COM1 */
void main(void){
    unsigned char c = 0;
    unsigned char chrctr = 0;
    /*int exit = 1; */
                                                                        What is 0x3F8?
    outportb(PORT1 + 1, 0); /* Turn off interrupts */
    /* PORT1 Communication Settings */
    outportb(PORT1 + 3, 0x80); /* Set DLAB ON */
    outportb(PORT1 + 0, 0x0C); /* Set the baud rate to 9600 */
    outportb(PORT1 + 1, 0x00); /* Set Baud - Divisor latch HIGH */
    outportb(PORT1 + 3, 0x03); /* 8 bits, no parity, 1 stop */
    outportb(PORT1 + 2, 0xC7); /* FIFO Control Register */
    outportb(PORT1 + 4, 0x0B); /* Turn on DTR, RTS, and OUT2) */
    printf("Waiting on transmission from source.\nPress ESC to quit.\n");
                              /* Execute the loop if ESC has been hit */
    while (chrctr != 27) {
    c = inportb(PORT1 + 5);
    if (c \& 0 \times 0.1) {
        chrctr = inportb(PORT1);
       printf("%d",chrctr);
    if (kbhit()) {
        chrctr = getch();
        outportb (PORT1, chrctr);
```

Binary <-> Hexadecimal

0000	1000 8
0001	1001 9
0010 2	1010 A
0011 3	1011 B
0100 4	1100 C
0101 5	1101 D
0110 6	1110 E
0111 7	1111 F

Activity2.1 Convert Binary and Hex

• 3F8H

0011-____

• 01101100111001111001

D

Format of the number system

We can conclude that

Value x Baseposition-1

•
$$101_2 = 1x2^1 + 0x2^1 + 1x2^0 = ?_{10}$$

• $453_8 = = ?_{10}$
• $453_{16} = = ?_{10}$

Relationship between binary, octal, and hexadecimal

```
• 4310_{10} = 1000011100001
divided in 4 = 0001 0000 1110 0001
divided in 3 = 001 000 011 100 001
```

0001 0000 1110 0001

Hex $= 1 \quad 0 \quad E \quad 1 = 10E1_{16}$ 001 000 011 100 001

Oct = $1 \ 0 \ 3 \ 4 \ 1 = 10341_8$

PARITY AND ERROR CORRECTION

Write odd and even parity

Tell error correction checking

Error in signal communication

Parity bit and error correction

 A parity bit is a bit appended to a binary sequence in order to sum of the number in even or odd.

• Even = 0, Odd = 1

0100

01001

01000

Parity bit and error correction

Activity 2.2 write parity bit

Error correction

At receiver, if there is an error

TEXT DATA

Text file

https://mh-nexus.de/en/

American Standard Code for Information Interchange (ASCII)

		II control aracters			A		printab acters	ole				E		ed AS acters	CII		
00	NULL	(Null character)		32	space	64	@	96	•	128	Ç	160	á	192	L	224	Ó
01	SOH	(Start of Header)		33	!	65	Α	97	а	129	ü	161	ĺ	193		225	ß
02	STX	(Start of Text)		34	"	66	В	98	b	130	é	162	Ó	194	Т	226	Ô
03	ETX	(End of Text)		35	#	67	С	99	С	131	â	163	ú	195	ŀ	227	Ò
04	EOT	(End of Trans.)	0.0	36	\$	68	D	100	d	132	ä	164	ñ	196	-	228	õ
05	ENQ	(Enquiry)		37	%	69	Е	101	е	133	à	165	Ñ	197	† ã	229	Õ
06	ACK	(Acknowledgement)		38	&	70	F	102	f	134	å	166	a	198	ã	230	μ
07	BEL	(Bell)		39	•	71	G	103	g	135	ç	167	0	199	Ã	231	þ
08	BS	(Backspace)		40	(72	Н	104	h	136	ê	168	ż	200	L	232	Þ
09	HT	(Horizontal Tab)		41)	73	I	105	i	137	ë	169	®	201	F	233	Ú
10	LF	(Line feed)		42	*	74	J	106	j	138	è	170	7	202	1	234	Û
11	VT	(Vertical Tab)		43	+	75	K	107	k	139	Ϊ	171	1/2	203	┰	235	Ù
12	FF	(Form feed)		44	,	76	L	108	- 1	140	î	172	1/4	204	F	236	ý Ý
13	CR	(Carriage return)		45	-	77	M	109	m	141	ì	173	i	205	=	237	Ý
14	SO	(Shift Out)		46		78	N	110	n	142	Ä	174	€€	206	#	238	_
15	SI	(Shift In)		47	I	79	0	111	0	143	Â	175	>>	207	п	239	•
16	DLE	(Data link escape)		48	0	80	P	112	р	144	É	176		208	ð	240	≡
17	DC1	(Device control 1)		49	1	81	Q	113	q	145	æ	177	200	209	Ð	241	±
18	DC2	(Device control 2)		50	2	82	R	114	r	146	Æ	178		210	Ê	242	_
19	DC3	(Device control 3)		51	3	83	S	115	S	147	ô	179	T	211	Ë	243	3/4
20	DC4	(Device control 4)		52	4	84	T	116	t	148	Ö	180	-	212	È	244	¶
21	NAK	(Negative		53	5	85	U	117	u	149	ò	181	Á	213	Į.	245	§
22	SYN	(Syn etrkorow ds) idle)		54	6	86	V	118	V	150	û	182	Â	214	ĺ	246	÷
23	ETB	(End of trans.		55	7	87	W	119	w	151	ù	183	À	215	Î	247	
24	CAN	(Otanatél)		56	8	88	X	120	X	152	ÿ	184	©	216	Ϊ	248	0
25	EM	(End of medium)		57	9	89	Υ	121	У	153	Ö	185	4	217	_	249	-
26	SUB	(Substitute)		58	:	90	Z	122	Z	154	Ü	186		218	Т	250	
27	ESC	(Escape)		59	;	91	[123	{	155	Ø	187	- 1	219		251	1
28	FS	(File separator)		60	<	92	1	124		156	£	188	Ţ	220		252	3
29	GS	(Group separator)		61	=	93]	125	}	157	Ø	189	¢	221	-	253	2
30	RS	(Record separator)		62	>	94	۸	126	~	158	×	190	¥	222	Ì	254	
31	US	(Unit separator)		63	?	95	_			159	f	191	٦	223		255	nbsp
127	DEL	(Delete)															

USASCII code chart

В, — В В В В В В В В В В В В В В В В В В	5 -					° 0 0	°0 ,	0,0	01	00	0	10	1 1
	b **	b 3	b ₂ +	- +	Row	0	-	2	3	4	5	6	7
	0	0	0	0	0	NUL .	DLE	SP	0	0	P	``	Р
	0	0	0	_	1	SOH	DC1	!	1	Α.	Q	0	q
	0	0	_	0	2	STX	DC2		2	В	R	ь.	r
	0	0	_	_	3	ETX	DC3	#	3	C	S	С	\$
	0	-	0	0	4	EOT	DC4	•	4	D	T	đ	1
	0	-	0	+	5	ENQ	NAK	%	5	Ε	U	e	U
	0	-	-	0	6	ACK	SYN	8	6	F	>	f	٧
:	0	_	-	1	7	BEL	ETB	•	7	G	W	g	w
	-	0	0	0	8	BS	CAN	(8	н	X	h	×
	-	0	0	1	9	нТ	EM)	9	1	Y	i	у
	_	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	_	1	11	VT	ESC	+	:	K	C	k.	{
	1	1	0	0	12	FF	FS	•	<	L	\	l	
	1	1	0	1	13	CR	GS	•	*	М	כ	E	}
	•	1	1	0	14	so	RS	•	>	8	^	n	>
	-	1	1		15	SI	US	/	?.	0	-	0	DEL

USASCII code chart

В, В В В В В В В В В В В В В В В В В В	; =					° ° °	°0 ,	° , o	0 1	00	0	10	1 1
	b ₄	b 3	b 2+	- +	Row	0	-	2	3	4	5	6	7
`]	0	0	0	0	0	NUL	DLE	SP	0	0	Р	``	Р
	0	0	0	_	1	SOH	DC1	!	1	Α.	Q	0	q
	0	0	_	0	2	STX	DC2		2	В	R	. b	r
	0	0	_	_	3	ETX	DC3	#	3	C	S	С	\$
	0	1	0	0	4	EOT	DC4	•	4	D	T	đ	1
	0	_	0	1	5	ENQ	NAK	%	5	Ε	U	e	U
	0	1	-	0	6	ACK	SYN	8	6	F	>	f	٧
	0	_	-	1	7	BEL	ETB	,	7	G	W	g	w
	-	0	0	0	8	BS	CAN	(8	P			1
	_	0	0		9	Н	_E M)	9			UU	
		0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	-	1	11	VT	ESC	+	;	K	C	k .	{
	1	1	0	0	12	FF	FS	•	<	L	\	l	1
	1	-	0	1	13	CR	GS	-	=	M	כ	E	}
	•	1	1	0	14	so	RS	•	>	N	^	n	~
	1	1	1		15	SI	US	1	?	0		0	DEL

ADDRESS BUS, DATA BUS AND CONTROL SIGNAL

ADDRESS, DATA, and CONTROL

- Address bus is a sequence of binary data that points to the location of the data in the memory or I/O devices.
- **Control signal** is the signal sending to the devices such as the memory, the I/O to control reading, writing, enable, and disable.
- **Data bus** is the data that sending from a device to other device on the data wires. The data location relates to the address pointing the position.

Activity 2.3 Describe process of parcel express.

 What is an issue concern in the parcel post?

Data transferring in the computer system

- — Clock signal
- Control signal
- Address bus
- Data bus

Device Address in computer

I/O port address	Description
060H - 064H	Keyboard controller
170H - 376H	Secondary IDE hard-disk controller
1F0H - 3F6H	Primary IDE hard-disk controller
220H	Sound card
300H	Network interface controller card (LAN card)
330H	SCSI adapter
3F2H	Floppy drive controller
2E8H, 2F8H, 3E8H, 3F8H	Communication port 1-4 (COM1-4)
278H, 378H, 3BCH	Line printer terminal port 1,2 (LPT1, 2, 3)
	I

Example transferring data in the comport with C-language

```
#include <stdio.h>
#include <comio.h>
#define PORT1 0x3F8 /* Defines Serial Port Base Address (COM1 */
void main(void){
    unsigned char c = 0;
    unsigned char chrctr = 0;
    /*int exit = 1; */
                                                                               Address
    outportb(PORT1 + 1, 0); /* Turn off interrupts */
    /* PORT1 Communication Settings */
    outportb(PORT1 + 3, 0x80); /* Set DLAB ON */
    outportb(PORT1 + 0, 0x0C); /* Set the baud rate to 9600 */
    outportb(PORT1 + 1, 0x00); /* Set Baud - Divisor latch HIGH */
    outportb(PORT1 + 3, 0x03); /* 8 bits, no parity, 1 stop */
    outportb(PORT1 + 2, 0xC7); /* FIFO Control Register */
    outportb(PORT1 + 4, 0x0B); /* Turn on DTR, RTS, and OUT2) */
    printf("Waiting on transmission from source.\nPress ESC to quit.\n");
                            /* Execute the loop if ESC has been hit */
    while(chrctr != 27){
    c = inportb(PORT1 + 5);
    if (c \& 0x01) {
        chrctr = inportb(PORT1);
       printf("%d",chrctr);
    if (kbhit()) {
        chrctr = getch();
        outportb (PORT1, chrctr);
```

Digital data in computer

A computer has three bus

- Data bus:
- Address bus:
- Control bus:

Digital

Memory

A computer ha

• Data bus:

CPU

- Address bus:
- Control bus:

- Data bus carries data or information from CPU/a device to another device.
- Size of data bus
 - 8bits $-> 2^8 = 256$ levels
 - 16bits $-> 2^{16} = 65,536 \approx 64$ K
 - 32bits $-> 2^{32} \approx 4G$
 - 64bits $-> 2^{64} \approx 1.8 \times 10^9$
 - 128bits $-> 2^{128} \approx 3.4 \times 10^{38}$

Why does the computer development from 8 bit to 128 bit?

Calculation circumference between two objects

Activity 2.4 Proof Float and Double keep PI

Approximation

A quick and easy approximation for π is 22/7

```
22/7 = 3.1428571...
```

But as you can see, 22/7 is **not exactly right**. In fact π is not equal to the ratio of any two numbers, which makes it an <u>irrational number</u>.

A really good approximation, better than 1 part in 10 million, is:

```
355/113 = 3.1415929... (think "113355", slash the middle "113/355", then flip "355/113")
```

Summary:

```
22/7 = 3.1428571...

355/113 = 3.1415929...

\pi = 3.14159265...
```

https://www.mathsisfun.com/numbers/pi.html

```
#include <stdio.h>
int main()
{
    float pi_f = 355.0/113.0;
    double pi_d = 355.0/113.0;
    printf("%1.50e",pi_f);
    printf("\n");
    printf("%1.50e",pi_d);
    return 0;
}
```

A computer has

- Data bus:
- Address bus:
- Control bus:

Control Lines

Address Lines

Data Lines

- Address bus relates to position of devices.
- For example memory 4Byte at 8bit has

-Bus

Activity 2.5, The circuit diagram shown below has 4 ICs, given you consider, which is the chip doing as the memory.

Activity 2.6, The memory IC has the pin name as the list below, given you write the full name of the pin.

- 1) An_____
- 2) Dn_____
- 3) WE _____
- 4) OE _____
- 5) CS_____

Example printer port address in Window XP

DECODER CIRCUIT

Decoder circuit

a0	a1	q0	q1	q2	q3
0	0	1 0 0 0	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Decoder circuit selects devices

Decoder circuit with enable

1-OF-8 DECODER/ DEMULTIPLEXER

SN54/74LS138

TRUTH TABLE

INPUTS				OUTPUTS									
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	00	01	02	03	04	05	06	07
Н	X	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
X	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
X	X	L	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

Extended address

Figure a

GUARANTEED OPERATING RANGES

Power Supply Current

GUARANTE	ED OPERATING RANGES									
Symbol	Parameter					N	lin Typ	Max	Unit	
VCC	Supply Voltage				54 74		.5 5.0 75 5.0	5.5 5.25	V	
ТД	Operating Ambient Temperature Range				54 74		55 25 0 25	125 70	°C	
ГОН	Output Current — High						-0.4		mA	
IOL	Output Current — Low							4.0 8.0	mA	
DC CHARA	CTERISTICS OVER OPER	ATING TE	MPERA	TURE R	ANGE (unless ot	herwise specified)			
Symbol	I Parameter			Тур	Max	Unit	Tes			
V _{IH}	Input HIGH Voltage					٧	Guaranteed Input HIGH Voltage for All Inputs			
VIL	Input LOW Voltage	54 74			0.7	٧	Guaranteed Input LOW Voltage for All Inputs			
VIK	Input Clamp Diode Voltage		-0.65	-1.5	٧	V _{CC} = MIN, I _{IN} = -18 mA				
VOH	Output IIICII Voltaga	54	2.5	3.5		٧	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}			
	Output HIGH Voltage	74	2.7	3.5		٧	or V _{IL} per Truth T			
V _{OL}	Output LOW Voltage	54, 74		0.25	0.4	٧	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}		
		74		0.35	0.5	٧	I _{OL} = 8.0 mA	per Truth Tal		
lu.	Input HICH Current				20	μА	V _{CC} = MAX, V _{IN} = 2.7 V			
ΠΗ	I _{IH} Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V			
ΙL	Input LOW Current				-0.4	mA	V_{CC} = MAX, V_{IN} = 0.4 V			
Ios	Short Circuit Current (Note 1)				-100	mA	V _{CC} = MAX			

10 mA Vcc = MAX

LED SEVEN SEGMENT COMMON ANODE AND CATHODE

Activity: 2.7 Plot your name on 7-segment

Alphabet present on 7-Segment

Once we have identified the decoded letter as a 5-bit value, we would like to display it. To do so, we can use a 7-segment LED display as shown in Fig. 1. For invalid addresses, we will display a dash (i.e. only segment G illuminated).

Figure 1: 7 segment display alphabet.

Summary