Orthogonal Polynomials and Spectral Algorithms

Nisheeth K. Vishnoi

FOCS, Oct. 8, 2016

Orthogonal Polynomials

μ -orthogonality

Polynomials p(x), q(x) are μ -orthogonal w.r.t. $\mu: \mathcal{I} \to \mathbb{R}_{\geq 0}$ if

$$\langle p,q\rangle_{\mu}:=\int_{\mathbf{x}\in\mathcal{I}}p(\mathbf{x})q(\mathbf{x})d\mu(\mathbf{x})=0$$

Orthogonal Polynomials

μ -orthogonality

Polynomials p(x), q(x) are μ -orthogonal w.r.t. $\mu: \mathcal{I} \to \mathbb{R}_{\geq 0}$ if

$$\langle p,q\rangle_{\mu}:=\int_{\mathbf{x}\in\mathcal{I}}p(x)q(x)d\mu(\mathbf{x})=0$$

μ -orthogonal family

Start with $1, x, x^2, \ldots, x^d, \ldots$ and apply Gram-Schmidt orthogonalization w.r.t. $\langle \cdot, \cdot \rangle_{\mu}$ to obtain a μ -orthogonal family $p_0(x) = 1, p_1(x), p_2(x), \ldots, p_d(x), \ldots$

Orthogonal Polynomials

μ -orthogonality

Polynomials p(x), q(x) are μ -orthogonal w.r.t. $\mu: \mathcal{I} \to \mathbb{R}_{\geq 0}$ if

$$\langle p,q\rangle_{\mu}:=\int_{\mathbf{x}\in\mathcal{I}}p(x)q(x)d\mu(\mathbf{x})=0$$

μ -orthogonal family

Start with $1, x, x^2, \ldots, x^d, \ldots$ and apply Gram-Schmidt orthogonalization w.r.t. $\langle \cdot, \cdot \rangle_{\mu}$ to obtain a μ -orthogonal family $p_0(x) = 1, p_1(x), p_2(x), \ldots, p_d(x), \ldots$

Examples

- Legendre: $\mathcal{I} = [-1, 1]$ and $\mu(x) = 1$.
- Hermite: $\mathcal{I} = \mathbb{R}$ and $\mu(x) = e^{-x^2/2}$.
- Laguerre: $\mathcal{I} = \mathbb{R}_{\geq 0}$ and $\mu(x) = e^{-x}$.
- Chebyshev (Type 1): $\mathcal{I} = [-1, 1]$ and $\mu(x) = \frac{1}{\sqrt{1-x^2}}$.

Monic μ -orthogonal polynomials satisfy 3-term recurrences

$$p_{d+1}(x) = (x - \alpha_{d+1})p_d + \beta_d p_{d-1}$$

for $d \ge 0$ with $p_{-1} = 0$.

Monic μ -orthogonal polynomials satisfy 3-term recurrences

$$p_{d+1}(x) = (x - \alpha_{d+1})p_d + \beta_d p_{d-1}$$

for $d \ge 0$ with $p_{-1} = 0$.

Proof sketch

degree d

$$\bullet \quad \overrightarrow{p_{d+1} - xp_d} = \alpha_{d+1}p_d + \beta_d p_{d-1} + \sum_{i < d-1} \gamma_i p_i$$

Monic μ -orthogonal polynomials satisfy 3-term recurrences

$$p_{d+1}(x) = (x - \alpha_{d+1})p_d + \beta_d p_{d-1}$$

for $d \ge 0$ with $p_{-1} = 0$.

Proof sketch

degree d

② For i < d-1, $\langle xp_d, p_i \rangle_{\mu} = \langle p_{d+1} - xp_d, p_i \rangle_{\mu} = \gamma_i \langle p_i, p_i \rangle_{\mu}$ but

Monic μ -orthogonal polynomials satisfy 3-term recurrences

$$p_{d+1}(x) = (x - \alpha_{d+1})p_d + \beta_d p_{d-1}$$

for $d \ge 0$ with $p_{-1} = 0$.

Proof sketch

degree d

$$\bullet \quad \overrightarrow{p_{d+1}} - \overrightarrow{xp_d} = \alpha_{d+1}p_d + \beta_d p_{d-1} + \sum_{i < d-1} \gamma_i \overrightarrow{p_i}$$

$$\textbf{ § For } i < d-1, \, \langle \textit{xp}_d, \textit{p}_i \rangle_{\mu} = \langle \textit{p}_{d+1} - \textit{xp}_d, \textit{p}_i \rangle_{\mu} = \gamma_i \langle \textit{p}_i, \textit{p}_i \rangle_{\mu} \text{ but }$$

Monic μ -orthogonal polynomials satisfy 3-term recurrences

$$p_{d+1}(x) = (x - \alpha_{d+1})p_d + \beta_d p_{d-1}$$

for $d \geq 0$ with $p_{-1} = 0$.

Proof sketch

degree d

$$\bullet \quad \overline{p_{d+1} - xp_d} = \alpha_{d+1}p_d + \beta_d p_{d-1} + \sum_{i < d-1} \gamma_i p_i$$

- ② For i < d-1, $\langle xp_d, p_i \rangle_{\mu} = \langle p_{d+1} xp_d, p_i \rangle_{\mu} = \gamma_i \langle p_i, p_i \rangle_{\mu}$ but

Roots (corollaries)

- If $p_0, p_1, \ldots, p_d, \ldots$ are orthogonal w.r.t. $\mu : [a, b] \to \mathbb{R}_{\geq 0}$ then for each p_d , roots are distinct, real and lie in [a, b].
- Roots of p_d and p_{d+1} also interlace!

• Hermite: $\mathcal{I} = \mathbb{R}$ and $\mu(x) = e^{-x^2/2}$ Invariance principles, hardness of approximation a la Mossel, O'Donnell, Oleszkiewicz, ...

- Hermite: $\mathcal{I}=\mathbb{R}$ and $\mu(x)=e^{-x^2/2}$ Invariance principles, hardness of approximation a la Mossel, O'Donnell, Oleszkiewicz, ...
- Laguerre: $\mathcal{I}=\mathbb{R}_{\geq 0}$ and $\mu(x)=e^{-x}$ Constructing sparsifiers a la Batson, Marcus, Spielman, Srivastava, ...

- Hermite: $\mathcal{I}=\mathbb{R}$ and $\mu(x)=e^{-x^2/2}$ Invariance principles, hardness of approximation a la Mossel, O'Donnell, Oleszkiewicz, ...
- Laguerre: $\mathcal{I} = \mathbb{R}_{\geq 0}$ and $\mu(x) = e^{-x}$ Constructing sparsifiers a la Batson, Marcus, Spielman, Srivastava, ...
- Chebyshev (Type 2): $\mathcal{I} = [-1,1]$ and $\mu(x) = \sqrt{1-x^2}$ Nonbacktracking random walks and Ramanujan graphs a la Alon, Boppana, Friedman, Lubotzky, Philips, Sarnak, ...

- Hermite: $\mathcal{I}=\mathbb{R}$ and $\mu(x)=e^{-x^2/2}$ Invariance principles, hardness of approximation a la Mossel, O'Donnell, Oleszkiewicz, ...
- Laguerre: $\mathcal{I} = \mathbb{R}_{\geq 0}$ and $\mu(x) = e^{-x}$ Constructing sparsifiers a la Batson, Marcus, Spielman, Srivastava, ...
- Chebyshev (Type 2): $\mathcal{I} = [-1,1]$ and $\mu(x) = \sqrt{1-x^2}$ Nonbacktracking random walks and Ramanujan graphs a la Alon, Boppana, Friedman, Lubotzky, Philips, Sarnak, ...
- Chebyshev (Type 1): $\mathcal{I} = [-1,1]$ and $\mu(x) = \frac{1}{\sqrt{1-x^2}}$ Spectral algorithms – This talk

- Hermite: $\mathcal{I}=\mathbb{R}$ and $\mu(x)=e^{-x^2/2}$ Invariance principles, hardness of approximation a la Mossel, O'Donnell, Oleszkiewicz, ...
- Laguerre: $\mathcal{I}=\mathbb{R}_{\geq 0}$ and $\mu(x)=e^{-x}$ Constructing sparsifiers a la Batson, Marcus, Spielman, Srivastava, ...
- Chebyshev (Type 2): $\mathcal{I} = [-1,1]$ and $\mu(x) = \sqrt{1-x^2}$ Nonbacktracking random walks and Ramanujan graphs a la Alon, Boppana, Friedman, Lubotzky, Philips, Sarnak, ...
- Chebyshev (Type 1): $\mathcal{I} = [-1,1]$ and $\mu(x) = \frac{1}{\sqrt{1-x^2}}$ Spectral algorithms – This talk
- Extensions to multivariate and matrix polynomials
- Several examples in this workshop ..

Many spectral algorithms today rely on ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s}v$, $A^{-1}v$, $\exp(-A)v$, ...
- or top few eigenvalues and eigenvectors.

Many spectral algorithms today rely on ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s}v$, $A^{-1}v$, $\exp(-A)v$, ...
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a **small number** of computations of the form Bu where B is a matrix closely related to A (often A itself) and u is some vector.

Many spectral algorithms today rely on ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s}v$, $A^{-1}v$, $\exp(-A)v$, ...
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a **small number** of computations of the form Bu where B is a matrix closely related to A (often A itself) and u is some vector.

• A key feature: If Av can be computed quickly (e.g., if A is sparse) then Bu can also be computed quickly.

Many spectral algorithms today rely on ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s}v$, $A^{-1}v$, $\exp(-A)v$, ...
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a **small number** of computations of the form Bu where B is a matrix closely related to A (often A itself) and u is some vector.

• A key feature: If Av can be computed quickly (e.g., if A is sparse) then Bu can also be computed quickly.

Approximation theory provides the right framework to study these questions –

Many spectral algorithms today rely on ability to quickly compute good approximations to matrix-function-vector products: e.g.,

- $A^{s}v$, $A^{-1}v$, $\exp(-A)v$, ...
- or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a **small number** of computations of the form Bu where B is a matrix closely related to A (often A itself) and u is some vector.

• A key feature: If Av can be computed quickly (e.g., if A is sparse) then Bu can also be computed quickly.

Approximation theory provides the right framework to study these questions – Borrows heavily from orthogonal polynomials!

How well can functions be approximated by simpler ones?

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) **throughout** \mathcal{I}

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) **throughout** \mathcal{I}

$$\begin{split} &\inf_{p \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)|.\\ &\inf_{p,q \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)/q(x)|. \end{split}$$

 Σ_d : set of all polynomials of degree at most d.

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) **throughout** \mathcal{I}

$$\inf_{p \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)|.$$

$$\inf_{p,q \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)/q(x)|.$$

 Σ_d : set of all polynomials of degree at most d.

 150+ years of fascinating history, deep results and many applications.

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \mapsto \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) **throughout** \mathcal{I}

$$\begin{split} &\inf_{p \in \Sigma_d} \sup_{x \in \mathcal{I}} \lvert f(x) - p(x) \rvert. \\ &\inf_{p,q \in \Sigma_d} \sup_{x \in \mathcal{I}} \lvert f(x) - p(x) \rvert_{q(x)} \rvert. \end{split}$$

 Σ_d : set of all polynomials of degree at most d.

- 150+ years of fascinating history, deep results and many applications.
- Interested in fundamental functions such as x^s , e^{-x} and 1/x over finite and infinite intervals such as [-1,1], [0,n], $[0,\infty)$.

How well can functions be approximated by simpler ones?

Uniform (Chebyshev) Approximation by Polynomials/Rationals

For $f : \mathbb{R} \to \mathbb{R}$ and an interval \mathcal{I} , what is the closest a degree d polynomial/rational function can remain to f(x) throughout \mathcal{I}

$$\begin{split} &\inf_{p \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)|.\\ &\inf_{p,q \in \Sigma_d} \sup_{x \in \mathcal{I}} |f(x) - p(x)/q(x)|. \end{split}$$

 Σ_d : set of all polynomials of degree at most d.

- 150+ years of fascinating history, deep results and many applications.
- Interested in fundamental functions such as x^s , e^{-x} and 1/x over finite and infinite intervals such as [-1,1], [0,n], $[0,\infty)$.
- For our applications good enough approximations suffice.

A simple example:

A simple example:

Compute $A^s v$ where A is symmetric with eigenvalues in [-1,1], v is a vector and s is a large positive integer.

• The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.

A simple example:

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.

A simple example:

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.
- Candidate approximation to $A^s v$: $\sum_{i=0}^d a_i A^i v$.

A simple example:

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.
- Candidate approximation to $A^s v$: $\sum_{i=0}^d a_i A^i v$.
- The time to compute $\sum_{i=0}^{d} a_i A^i v$ is O(md).

A simple example:

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.
- Candidate approximation to $A^s v$: $\sum_{i=0}^d a_i A^i v$.
- The time to compute $\sum_{i=0}^{d} a_i A^i v$ is O(md).
- $\|\sum_{i=0}^d a_i A^i v A^s v\| \le \delta \|v\|$ since
 - ullet all the eigenvalues of A lie in [-1,1], and
 - $p_{s,d}$ is δ -close to x^s in the entire interval [-1,1].

Algorithms/Numerical Linear Alg.- f(A)v, Eigenvalues, ...

A simple example:

Compute $A^s v$ where A is symmetric with eigenvalues in [-1,1], v is a vector and s is a large positive integer.

- The straightforward way to compute $A^s v$ takes time O(ms) where m is the number of non-zero entries in A.
- **Suppose** x^s can be δ -approximated over the interval [-1,1] by a degree d polynomial $p_{s,d}(x) = \sum_{i=0}^d a_i x^i$.
- Candidate approximation to $A^s v$: $\sum_{i=0}^d a_i A^i v$.
- The time to compute $\sum_{i=0}^{d} a_i A^i v$ is O(md).
- $\|\sum_{i=0}^d a_i A^i v A^s v\| \le \delta \|v\|$ since
 - ullet all the eigenvalues of A lie in [-1,1], and
 - $p_{s,d}$ is δ -close to x^s in the entire interval [-1,1].

How small can d be?

For any s, for any $\delta > 0$, and $\frac{d}{d} \sim \sqrt{s \log \left(\frac{1}{\delta}\right)}$, there is a polynomial $p_{s,d}$ s.t. $\sup_{x \in [-1,1]} |p_{s,d}(x) - x^s| \leq \delta$.

For any
$$s$$
, for any $\delta > 0$, and $\frac{d}{d} \sim \sqrt{s \log(1/\delta)}$, there is a polynomial $p_{s,d}$ s.t. $\sup_{x \in [-1,1]} |p_{s,d}(x) - x^s| \le \delta$.

• Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m\sqrt{s}$ time.

For any s, for any $\delta > 0$, and $\frac{d}{d} \sim \sqrt{s \log(1/\delta)}$, there is a polynomial $p_{s,d}$ s.t. $\sup_{x \in [-1,1]} |p_{s,d}(x) - x^s| \leq \delta$.

- Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m\sqrt{s}$ time.
- Conjugate Gradient Method: Given Ax = b with eigenvalues of A in (0,1], one can find y s.t. $\|y A^{-1}b\|_A \le \delta \|A^{-1}b\|_A$ in time roughly $m\sqrt{\kappa(A)\log 1/\delta}$.

For any
$$s$$
, for any $\delta > 0$, and $\frac{d}{d} \sim \sqrt{s \log(1/\delta)}$, there is a polynomial $p_{s,d}$ s.t. $\sup_{x \in [-1,1]} |p_{s,d}(x) - x^s| \le \delta$.

- Simulating Random Walks: If A is random walk matrix of a graph, we can simulate s steps of a random walk in $m\sqrt{s}$ time.
- Conjugate Gradient Method: Given Ax = b with eigenvalues of A in (0,1], one can find y s.t. $\|y A^{-1}b\|_A \le \delta \|A^{-1}b\|_A$ in time roughly $m\sqrt{\kappa(A)\log 1/\delta}$.
- Quadratic speedup over the Power Method: Given A, in time $\sim m/\sqrt{\delta}$ can compute a value $\mu \in [(1-\delta)\lambda_1(A), \lambda_1(A)]$.

Recall: Chebyshev polynomial orthogonal w.r.t. $\frac{1}{\sqrt{1-x^2}}$ over [-1,1]

$$T_{d+1}(x) = 2xT_d(x) - T_{d-1}(x)$$

Recall: Chebyshev polynomial orthogonal w.r.t. $\frac{1}{\sqrt{1-x^2}}$ over [-1,1]

$$T_{d+1}(x) = 2xT_d(x) - T_{d-1}(x)$$

Averaging Property

$$xT_d(x) = \frac{T_{d+1}(x) + T_{d-1}(x)}{2}.$$

Recall: Chebyshev polynomial orthogonal w.r.t. $\frac{1}{\sqrt{1-x^2}}$ over [-1,1]

$$T_{d+1}(x) = 2xT_d(x) - T_{d-1}(x)$$

Averaging Property

$$xT_d(x) = \frac{T_{d+1}(x) + T_{d-1}(x)}{2}.$$

Boundedness Property

For any θ , and any integer d, $T_d(\cos \theta) = \cos(d\theta)$.

Recall: Chebyshev polynomial orthogonal w.r.t. $\frac{1}{\sqrt{1-x^2}}$ over [-1,1]

$$T_{d+1}(x) = 2xT_d(x) - T_{d-1}(x)$$

Averaging Property

$$xT_d(x) = \frac{T_{d+1}(x) + T_{d-1}(x)}{2}.$$

Boundedness Property

For any θ , and any integer d, $T_d(\cos \theta) = \cos(d\theta)$.

Thus, $|T_d(x)| \le 1$ for all $x \in [-1, 1]$.

 $D_s \stackrel{\text{def}}{=} \sum_{i=1}^s Y_i$ where Y_1, \dots, Y_s i.i.d. ± 1 w.p. $\frac{1}{2}$ ($D_0 \stackrel{\text{def}}{=} 0$).

$$D_s \stackrel{\mathsf{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } ^1/2 \ (D_0 \stackrel{\mathsf{def}}{=} 0).$$

$$\mathsf{Thus, Pr} \left\lceil |D_s| \geq \sqrt{2s \log{(2/\delta)}} \right\rceil \leq \delta.$$

$$D_s \stackrel{\text{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } \frac{1}{2} \left(D_0 \stackrel{\text{def}}{=} 0 \right).$$

$$\text{Thus, } \Pr\left[|D_s| \ge \sqrt{2s \log\left(2/\delta\right)} \right] \le \delta.$$

Key Claim:
$$\underset{Y_1,...,Y_s}{\mathbf{E}}[T_{D_s}(x)] = x^s$$
.

$$\begin{array}{c} D_s \stackrel{\mathsf{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } 1/2 \text{ } (D_0 \stackrel{\mathsf{def}}{=} 0). \\ & \mathsf{Thus, } \mathsf{Pr} \left[|D_s| \geq \sqrt{2s \log{(2/\delta)}} \right] \leq \delta. \end{array}$$

Key Claim:
$$\underset{Y_1,\ldots,Y_s}{\mathbf{E}}[T_{D_s}(x)] = x^s$$
.

$$x^{s+1} = x \cdot \underset{Y_1, \dots, Y_s}{\mathbf{E}} T_{D_s}(x) = \underset{Y_1, \dots, Y_s}{\mathbf{E}} [x \cdot T_{D_s}(x)]$$

$$= \underset{Y_1, \dots, Y_s}{\mathbf{E}} [1/2(T_{D_s+1}(x) + T_{D_s-1}(x))] = \underset{Y_1, \dots, Y_{s+1}}{\mathbf{E}} [T_{D_{s+1}}(x)].$$

$$D_s \stackrel{\mathsf{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } 1/2 \ (D_0 \stackrel{\mathsf{def}}{=} 0).$$

$$\mathsf{Thus, } \mathsf{Pr} \left[|D_s| \geq \sqrt{2s \log \left(2/\delta \right)} \right] \leq \delta.$$

Key Claim:
$$\underset{Y_1,\ldots,Y_s}{\mathbf{E}}[T_{D_s}(x)] = x^s.$$

$$\begin{aligned} x^{s+1} &= x \cdot \mathop{\mathbf{E}}_{Y_1, \dots, Y_s} T_{D_s}(x) = \mathop{\mathbf{E}}_{Y_1, \dots, Y_s} [x \cdot T_{D_s}(x)] \\ &= \mathop{\mathbf{E}}_{Y_1, \dots, Y_s} [1/2(T_{D_s+1}(x) + T_{D_s-1}(x))] = \mathop{\mathbf{E}}_{Y_1, \dots, Y_{s+1}} [T_{D_{s+1}}(x)]. \end{aligned}$$

Our Approximation to x^s :

$$p_{s,d}(x) \stackrel{\mathsf{def}}{=} \underbrace{\mathsf{E}}_{\mathsf{Y}_1,\ldots,\mathsf{Y}_s} \left[T_{D_s}(x) \cdot \mathbf{1}_{|D_s| \leq d} \right] \text{ for } d = \sqrt{2s \log{\left(\frac{2}{\delta}\right)}}.$$

$$D_s \stackrel{\mathsf{def}}{=} \sum_{i=1}^s Y_i \text{ where } Y_1, \dots, Y_s \text{ i.i.d. } \pm 1 \text{ w.p. } 1/2 \ (D_0 \stackrel{\mathsf{def}}{=} 0).$$

$$\mathsf{Thus, } \mathsf{Pr} \left[|D_s| \geq \sqrt{2s \log \left(2/\delta \right)} \right] \leq \delta.$$

Key Claim:
$$\underset{Y_1,\ldots,Y_s}{\mathsf{E}}[T_{D_s}(x)] = x^s$$
.

$$\begin{array}{lll} x^{s+1} & = & x \cdot \mathop{\mathbf{E}}_{Y_1, \dots, Y_s} T_{D_s}(x) = \mathop{\mathbf{E}}_{Y_1, \dots, Y_s} [x \cdot T_{D_s}(x)] \\ & = & \mathop{\mathbf{E}}_{Y_1, \dots, Y_s} [1/2(T_{D_s+1}(x) + T_{D_s-1}(x))] = \mathop{\mathbf{E}}_{Y_1, \dots, Y_{s+1}} [T_{D_{s+1}}(x)]. \end{array}$$

Our Approximation to x^s :

$$p_{s,d}(x) \stackrel{\mathsf{def}}{=} \underset{Y_1, \dots, Y_s}{\mathsf{E}} \left[T_{D_s}(x) \cdot \mathbf{1}_{|D_s| \le d} \right] \ \text{ for } \ d = \sqrt{2s \log{(2/\delta)}}.$$

$$\begin{split} \sup_{x \in [-1,1]} |p_{s,d}(x) - x^s| &= \sup_{x \in [-1,1]} \left| \Pr_{Y_1, \dots, Y_s} \left[T_{D_s}(x) \cdot 1_{|D_s| > d} \right] \right| \\ &\leq \Pr_{Y_1, \dots, Y_s} \left[1_{|D_s| > d} \cdot \sup_{x \in [-1,1]} |T_{D_s}(x)| \right] \leq \Pr_{Y_1, \dots, Y_s} \left[1_{|D_s| > d} \right] \leq \delta. \end{split}$$

Let f(x) be δ -approximated by a Taylor polynomial $\sum_{s=0}^k c_s x^s$. Then, one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Let f(x) be δ -approximated by a Taylor polynomial $\sum_{s=0}^{k} c_s x^s$. Then, one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Approximating the Exponential

For every b>0, and δ , there is a polynomial $r_{b,\delta}$ s.t. $\sup_{x\in[0,b]}|e^{-x}-r_{b,\delta}(x)|\leq \delta$; degree $\sim \sqrt{b\log 1/\delta}$. (Taylor $-\Omega(b)$.)

Let f(x) be δ -approximated by a Taylor polynomial $\sum_{s=0}^k c_s x^s$. Then, one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Approximating the Exponential

For every b>0, and δ , there is a polynomial $r_{b,\delta}$ s.t. $\sup_{x\in[0,b]}|e^{-x}-r_{b,\delta}(x)|\leq \delta$; degree $\sim \sqrt{b\log 1/\delta}$. (Taylor $-\Omega(b)$.)

• Implies $\tilde{O}(m\sqrt{\|A\|\log 1/\delta})$ time algorithm to compute a δ -approximation to $e^{-A}v$ for a PSD A. Useful in solving SDPs.

Let f(x) be δ -approximated by a Taylor polynomial $\sum_{s=0}^k c_s x^s$. Then, one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Approximating the Exponential

For every b>0, and δ , there is a polynomial $r_{b,\delta}$ s.t. $\sup_{x\in[0,b]}|e^{-x}-r_{b,\delta}(x)|\leq \delta$; degree $\sim \sqrt{b\log 1/\delta}$. (Taylor $-\Omega(b)$.)

- Implies $\tilde{O}(m\sqrt{\|A\|\log 1/\delta})$ time algorithm to compute a δ -approximation to $e^{-A}v$ for a PSD A. Useful in solving SDPs.
- When A is a graph Laplacian, implies an optimal spectral algorithm for Balanced Separator that runs in time $\tilde{O}(m/\sqrt{\gamma})$. (γ is the target conductance) [Orecchia-Sachdeva-V. 2012].

Let f(x) be δ -approximated by a Taylor polynomial $\sum_{s=0}^k c_s x^s$. Then, one may instead try the approx. (with suitably shifted $p_{s,d}$)

$$\sum_{s=0}^k c_s p_{s,\sqrt{s\log 1/\delta}}(x)$$

Approximating the Exponential

For every b>0, and δ , there is a polynomial $r_{b,\delta}$ s.t. $\sup_{x\in[0,b]}|e^{-x}-r_{b,\delta}(x)|\leq \delta$; degree $\sim \sqrt{b\log 1/\delta}$. (Taylor $-\Omega(b)$.)

- Implies $\tilde{O}(m\sqrt{\|A\|\log 1/\delta})$ time algorithm to compute a δ -approximation to $e^{-A}v$ for a PSD A. Useful in solving SDPs.
- When A is a graph Laplacian, implies an optimal spectral algorithm for Balanced Separator that runs in time $O(m/\sqrt{\gamma})$. (γ is the target conductance) [Orecchia-Sachdeva-V. 2012].

How far can polynomial approximations take us?

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^s on [-1,1] requires degree $\Omega(\sqrt{s})$.
- Polynomial approx. to e^{-x} on [0, b] requires degree $\Omega(\sqrt{b})$.

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^s on [-1,1] requires degree $\Omega(\sqrt{s})$.
- Polynomial approx. to e^{-x} on [0, b] requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. $|p(x)| \le 1$ over [-1,1] must have its derivative $|p^{(1)}(x)| \le d^2$ for all $x \in [-1,1]$.

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^s on [-1,1] requires degree $\Omega(\sqrt{s})$.
- Polynomial approx. to e^{-x} on [0, b] requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. $|p(x)| \le 1$ over [-1,1] must have its derivative $|p^{(1)}(x)| \le d^2$ for all $x \in [-1,1]$.

• Chebyshev polynomials are a tight example for this theorem.

Bad News [see Sachdeva-V. 2014]

- Polynomial approx. to x^s on [-1,1] requires degree $\Omega(\sqrt{s})$.
- Polynomial approx. to e^{-x} on [0, b] requires degree $\Omega(\sqrt{b})$.

Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. $|p(x)| \le 1$ over [-1,1] must have its derivative $|p^{(1)}(x)| \le d^2$ for all $x \in [-1,1]$.

• Chebyshev polynomials are a tight example for this theorem.

Bypass this barrier via rational functions!

For all integers $d \geq 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \leq 2^{-\Omega(d)}$.

For all integers $d \ge 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \le 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

For all integers $d \geq 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \leq 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

• No dependence on the length of the interval!

For all integers $d \ge 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \le 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

- No dependence on the length of the interval!
- Hence, for any $\delta > 0$, we have a rational function of degree $O(\log 1/\delta)$ that is a δ -approximation to e^{-x} . For most applications, an error of $\delta = 1/\operatorname{poly}(n)$ suffices, so we can choose $d = O(\log n)$.

For all integers $d \geq 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \leq 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

- No dependence on the length of the interval!
- Hence, for any $\delta > 0$, we have a rational function of degree $O(\log 1/\delta)$ that is a δ -approximation to e^{-x} . For most applications, an error of $\delta = 1/\text{poly}(n)$ suffices, so we can choose $d = O(\log n)$.
- Thus, $(S_d(A))^{-1} v \delta$ -approximates $e^{-A}v$.

For all integers $d \geq 0$, there is a degree-d polynomial $S_d(x)$ s.t. $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{1}{S_d(x)} \right| \leq 2^{-\Omega(d)}$.

$$S_d(x) \stackrel{\text{def}}{=} \sum_{k=0}^d \frac{x^k}{k!}$$
. (Proof by induction.)

- No dependence on the length of the interval!
- Hence, for any $\delta > 0$, we have a rational function of degree $O(\log 1/\delta)$ that is a δ -approximation to e^{-x} . For most applications, an error of $\delta = 1/\text{poly}(n)$ suffices, so we can choose $d = O(\log n)$.
- Thus, $(S_d(A))^{-1} v \delta$ -approximates $e^{-A}v$.

How do we compute $(S_d(A))^{-1} v$?

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

• Since *d* is $O(\log n)$, it suffices to compute $(A - \beta_i I)^{-1}u$.

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, it suffices to compute $(A \beta_i I)^{-1}u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, it suffices to compute $(A \beta_i I)^{-1}u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**

Saff-Schönhage-Varga 1975

For every d, there exists a degree-d polynomial p_d s.t., $\sup_{x \in [0,\infty)} \left| e^{-x} - \frac{p_d}{1+x/d} \right| \leq 2^{-\Omega(d)}.$

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, it suffices to compute $(A \beta_i I)^{-1}u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**

Saff-Schönhage-Varga 1975

For every d, there exists a degree-d polynomial p_d s.t., $\sup_{a \in \mathbb{R}} \left| e^{-x} - p_d \left(\frac{1}{1 + x/d} \right) \right| \leq 2^{-\Omega(d)}.$

 $x \in [0,\infty)$

Proof uses properties of Legendre, Laguerre polynomials!

Factor
$$S_d(x) = \alpha_0 \prod_{i=1}^d (x - \beta_i)$$
 and output $\alpha_0 \prod_{i=1}^d (A - \beta_i I)^{-1} v$.

- Since *d* is $O(\log n)$, it suffices to compute $(A \beta_i I)^{-1}u$.
- When A is Laplacian, and $\beta_i \leq 0$, then $A \beta_i I$ is **SDD!**

Saff-Schönhage-Varga 1975

For every d, there exists a degree-d polynomial p_d s.t., $\sup_{x \in [0,\infty)} \left| e^{-x} - p_d \left(\frac{1}{1 + x/d} \right) \right| \le 2^{-\Omega(d)}.$

Proof uses properties of Legendre, Laguerre polynomials!

Sachdeva-V. 2014

Moreover, the coefficients of p_d are bounded by $d^{O(d)}$, and can be approximated up to an error of $d^{-\Theta(d)}$ using $\operatorname{poly}(d)$ arithmetic operations, where all intermediate numbers use $\operatorname{poly}(d)$ bits.

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an **SDD** $A \succeq 0$, a vector v with ||v|| = 1 and δ , we compute a vector u s.t. $||\exp(-A)v - u|| \le \delta$, in time $\tilde{O}(m \log ||A|| \log 1/\delta)$.

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an **SDD** $A \succeq 0$, a vector v with ||v|| = 1 and δ , we compute a vector u s.t. $||\exp(-A)v - u|| \le \delta$, in time $\tilde{O}(m \log ||A|| \log 1/\delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

 $\sqrt{\gamma}$ -approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time *independent* of γ

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an **SDD** $A \succeq 0$, a vector v with ||v|| = 1 and δ , we compute a vector u s.t. $||\exp(-A)v - u|| \le \delta$, in time $\tilde{O}(m \log ||A|| \log 1/\delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

 $\sqrt{\gamma}$ -approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time *independent* of γ

SDD Solvers

Given Lx=b, L is SDD, and $\varepsilon>0$, obtain a vector u s.t., $\|u-L^{-1}b\|_L\leq \varepsilon\|L^{-1}b\|_L$. Time required $\tilde{O}\left(m\log 1/\varepsilon\right)$

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an **SDD** $A \succeq 0$, a vector v with ||v|| = 1 and δ , we compute a vector u s.t. $||\exp(-A)v - u|| \le \delta$, in time $\tilde{O}(m \log ||A|| \log 1/\delta)$.

Corollary [Orecchia-Sachdeva-V. 2012]

 $\sqrt{\gamma}$ -approximation for Balanced separator in time $\tilde{O}(m)$. Spectral guarantee for approximation, running time *independent* of γ

SDD Solvers

Given Lx = b, L is SDD, and $\varepsilon > 0$, obtain a vector u s.t., $\|u - L^{-1}b\|_{L} \le \varepsilon \|L^{-1}b\|_{L}$. Time required $\tilde{O}\left(m\log \frac{1}{\varepsilon}\right)$

Are Laplacian solvers necessary for the matrix exponential?

Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For $\varepsilon, \delta \in (0, 1]$, there exist $\operatorname{poly}(\log(1/\varepsilon\delta))$ numbers $0 < w_j, t_j$ s.t. for all symm. $\varepsilon I \preceq A \preceq I$, $(1 - \delta)A^{-1} \preceq \sum_j w_j e^{-t_j A} \preceq (1 + \delta)A^{-1}$.

- Weights w_j are $O(\text{poly}(1/\delta \varepsilon))$, we lose only a polynomial factor in the approximation error.
- For applications polylogarithmic dependence on both $1/\delta$ and the condition number of A ($1/\varepsilon$ in this case).
- Discretizing $x^{-1} = \int_0^\infty e^{-xt} dt$ naively **needs** poly($1/(\varepsilon\delta)$) terms.
- Substituting $t = e^y$ in the above integral obtains the identity $x^{-1} = \int_{-\infty}^{\infty} e^{-xe^y + y} dy$.
- Discretizing this integral, we bound the error using the Euler-Maclaurin formula, Riemann zeta fn.; global error analysis!

• Uniform approx. the right notion for algorithmic applications.

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).
- Constructing and analyzing best approximations heavily rely on the theory of orthogonal polynomials.

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).
- Constructing and analyzing best approximations heavily rely on the theory of orthogonal polynomials.
- Looking forward to many more applications ..

- Uniform approx. the right notion for algorithmic applications.
- Taylor series often not the best.
- Often reduce computations of f(A)v to a small number of sparse matrix-vector computations.
 - Mere existence of good approximation suffices (see V. 2013).
- Constructing and analyzing best approximations heavily rely on the theory of orthogonal polynomials.
- Looking forward to many more applications ..

Thanks for your attention!

Reference

Faster algorithms via approximation theory. Sushant Sachdeva, Nisheeth K. Vishnoi. Foundations and Trends in TCS, 2014.