Jerome Dumortier

Overviev

Truncation

Count Models

Zero-Inflation
Models

Survival Models

Limited Dependent Variable Models

Jerome Dumortier

02 April 2025

Overview

Truncatio

Censoning

Count Mode

Zero-Inflation

Survival

Packages and Files

Required packages:

- AER
- censReg
- foreign
- MASS
- pscl
- stargazer
- survival
- survminer
- truncreg

Required files:

data("NMES1988",package="AER")

Jerome Dumortier

Overview

Truncation

Count Mode

Count Mode

Zero-Inflation
Models

Surviva Models

Topics Covered

Regression models in which the dependent variable is somehow limited:

- Truncated data: Values above and/or below particular points are not reported
- Censored data: Values above and/or below particular points are reported at those points
- Count data: Discrete, integer count value
- Survival/duration data: Time to a certain event

lerome Dumortier

Truncation

Concept

Value above and/or below a certain point are not part of the data

Examples

- Low income household studies
- On-site visitation data (unobserved non-visitors)
- Employment data on hours worked (excludes unemployed)

Simulated data

- "True" Coefficients: $\beta_0 = -2$ and $\beta_1 = 0.5$
- Values v < 0 are not reported in the data

Next slide: The green regression line is "correct" whereas the "red" is the line obtained from a regression model which ignores the truncation.

Jerome Dumortier

Overview

Truncation

Censoring

Count Mode

Hurdle and Zero-Inflatio

Survival Models

Graphical Illustration


```
Limited
Dependent
Variable
Models
```

Jerome Dumortier

Overview

Truncation

Censoring

Count Mode

Zero-Inflation

Models

Survival Models

Setup for truncation Data

```
truncation1 = truncation[c("yreal","x")]
truncation2 = subset(truncation,yobs>0,select=c("yobs","x"))
bhat_real = lm(yreal~x,data=truncation1)
bhat_truncated = lm(yobs~x,data=truncation2)
```

Required package to estimate a truncated model

truncreg

Additional variable output sigma:

Related to the truncated normal distribution

Jerome Dumortier

Overview

Truncation

Censoring

Count Mode

Zero-Inflatio

Survival Models

Complete vs. Truncated Data with Regular OLS

##									
##									
##	Dependent variable:								
##									
##		yreal	yobs						
##		(1)	(2)						
##									
##	x	0.498***	0.314***						
##		(0.048)	(0.063)						
##	Constant	-1.980***	-0.500						
##		(0.292)	(0.440)						
##									
##	Observations	50	35						
##	R2	0.688	0.431						
##	Adjusted R2	0.681	0.414						
##	Residual Std. Error	1.041 (df = 48)	0.933 (df = 33)						
##	F Statistic	105.639*** (df = 1; 48)) 25.024*** (df = 1; 33)						
##									
##	Note:	*p<0	0.1; **p<0.05; ***p<0.01						

Jerome Dumortier

Overvie

Truncation

Count Mode

Zero-Inflatio

Models

Surviva Models

Results: Correcting for Truncation

```
## Call:
## truncreg(formula = vobs ~ x. data = truncation2, point = 0, direction = "left")
## BFGS maximization method
## 36 iterations. Oh:Om:Os
## g'(-H)^-1g = 1.6E-11
##
##
## Coefficients :
              Estimate Std. Error t-value Pr(>|t|)
## (Intercept) -3.23034
                         1.55068 -2.0832 0.0372345 *
## x
               0.62119
                         0.17749 3.4998 0.0004656 ***
## sigma
               1.15784
                         0.22372 5.1754 2.274e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -37.758 on 3 Df
```

Jerome Dumortier

Overvie

Truncation

Censoring

Count Mode

Zero-Inflation
Models

Survival

Achievement Scores: Data Load and Description

Loading the data using the package foreign

```
url = "https://stats.idre.ucla.edu/stat/data/truncreg.dta"
achievement = read.dta(url)
```

Description of the data from UCLA Source:

"A study of students in a special GATE (gifted and talented education) program wishes to model achievement as a function of language skills and the type of program in which the student is currently enrolled. A major concern is that students are required to have a minimum achievement score of 40 to enter the special program. Thus, the sample is truncated at an achievement score of 40."

```
Limited
Dependent
Variable
Models
```

Jerome Dumortier

Overview

Truncation

Censoring

Count Mode

Zero-Inflatio

Models

```
Achievement Scores: Regular OLS Estimation
```

```
##
## Call:
## lm(formula = achiv ~ langscore + prog, data = achievement)
##
## Residuals:
       Min
                      Median
                                           Max
## -16.9413 -5.7033 -0.8462
                               5.2205 21.3010
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               27.63965
                           3.70639
                                    7.457 4.01e-12 ***
## langscore
                0.46319
                           0.06792
                                     6.820 1.45e-10 ***
## progacademic 2.97343
                           1.44889
                                            0.0416 *
                                     2.052
## progvocation -0.52118
                           1.72739 -0.302
                                            0.7632
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.534 on 174 degrees of freedom
## Multiple R-squared: 0.3054, Adjusted R-squared: 0.2934
## F-statistic: 25.5 on 3 and 174 DF. p-value: 1.01e-13
```

Jerome Dumortier

Overview

Truncation

Court Made

Zero-Inflatio Models

Survival Models

Achievement Scores: Truncated Model

```
##
## Call:
## truncreg(formula = achiv ~ langscore + prog, data = achievement,
      point = 40, direction = "left")
##
## BFGS maximization method
## 57 iterations. Oh:Om:Os
## g'(-H)^-1g = 2.5E-05
##
##
##
## Coefficients .
               Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 11.29942
                           6.77173 1.6686
                                             0.09519 .
## langscore
                0.71267
                           0 11446 6 2264 4 773e-10 ***
                           2.05432 1.9776
## progacademic 4.06267
                                             0.04797 *
## progvocation -1.14422
                           2.66958 -0.4286
                                             0.66821
## sigma
                8.75368
                           0.66647 \ 13.1343 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Log-Likelihood: -591.31 on 5 Df
```

Hurdle and Zero-Inflatio Models

Survival Models

Overview

Concept

• Value above and/or below a certain point are not part of the data

Examples

- Capacity constrained data, e.g., class enrollments or ticket sales
- Hours worked (or leisure demand), which is essentially capacity constrained
- Commodity purchases (non-negative)

Simulated data

- "True" Coefficients: $\beta_0 = -2$ and $\beta_1 = 0.5$
- Values y < 0 are reported at 0

R package censReg to reduce bias

Jerome Dumortier

Overview

Truncatio

Censoring

Count Mode

Hurdle and Zero-Inflation

Survival Models

Graphical Illustration

Jerome Dumortier

Overview

Truncati

Censoring

Count Mode

Zero-Inflatio

Survival Models

Complete vs. Censored Data with Regular OLS

##			
##			
##		Dependent v	variable:
##			
##		yreal	У
##		(1)	(2)
##			
##	x	0.569***	0.325***
##		(0.051)	(0.034)
##	Constant	-2.375***	-0.556***
##		(0.270)	(0.178)
##			
##	Observations	50	50
##	R2	0.722	0.660
##	Adjusted R2	0.716	0.653
##	Residual Std. Error (df = 48)	1.004	0.662
##	F Statistic (df = 1; 48)	124.762***	93.289***
##			
##	Note:	*p<0.1; **p<0.	.05; ***p<0.01

```
Limited
Dependent
Variable
Models
```

Jerome Dumortier

Overview

Truncatio

Censoring

Count Mode

Zero-Inflatio

Models

Survival Models

Estimation of a Censored Model

```
## Call:
## censReg(formula = v ~ x. data = censoring)
## Observations:
           Total Left-censored
                                   Uncensored Right-censored
              50
                                           27
##
## Coefficients:
              Estimate Std. error t value Pr(> t)
## (Intercept) -1.9372
                          0.4070 -4.760 1.94e-06 ***
               0.5112 0.0641 7.976 1.51e-15 ***
## logSigma
              -0.1030
                          0.1405 -0.733
                                           0.463
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Newton-Raphson maximisation, 6 iterations
## Return code 8: successive function values within relative tolerance limit (reltol)
## Log-likelihood: -44.21329 on 3 Df
```

Surviva Models

Overview

Dependent variable

Discrete, integer count data

Examples

- What are the number of arrests for a person?
- What determines the number of credit cards a person owns?

Three count data models

- Poisson regression
- Quasi-Poisson Regression Model
- 3 Negative Binomial Regression Model

Choice criteria: Presence or absence of overdispersion

- Overdispersion Variance of the dependent variable is larger than its mean.
- Poisson model is not suitable for overdispersion

Jerome Dumortier

Overvie

Truncatio

Censoring

Count Models

Zero-Inflatio

Survival Models

Packages

The main package used is pscl. There is also an additional resource with more theoretical details on the topic: Regression Models for Count Data in R. A more up-to-date version of the document may be found with the pscl package documentation.

Poisson Regression Model

Recall Poisson distribution:

$$Pr(Y = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!}$$

Equidispersion as key characteristics:

- Mean and variance equal to λ , i.e., $E(Y) = \lambda$ and $Var(Y) = \lambda$
- Poisson regression: $\lambda = exp(\beta_0 + \beta_1 \cdot x_1 + \cdots + \beta_k \cdot x_k)$.

Jerome Dumortier

Overvie

Truncat

censoning

Count Models

Hurdle and Zero-Inflation Models

Models

NHTS Example: Number of Vehicles (hhpub)

Data source

- 2022 National Household Travel Survey
- Survey quantifying trip and travel habits across the United States
- Example use: Quantifying intra-day electricity demand from electric vehicles

Outcome of interest

 Number of vehicles based on household income, home ownership, and urban/rural household location

Data preparation

- Elimination of missing and unknown data value
- Conversion of income to 1,000 dollars

```
Limited
Dependent
Variable
Models
```

Jerome Dumortier

Overview

Truncatio

Censoring

Count Models

Zero-Inflatio

Survival Models

Data Preparation

```
= subset(nhtshh,hhfaminc %in% c(1:11) &
hhpubdata
                                    homeown %in% c(1,2) &
                                    urbrur %in% c(1,2) &
                                    hhvehcnt %in% c(0:12))
hhfaminc
                    = c(1:11)
                    = c(10,12.5,20,30,42.5,57.5,82.5,112.5,137.5,
income
                         175,200)
                    = data.frame(hhfaminc.income)
income
hhpubdata
                      merge(hhpubdata,income)
hhpubdata$rural
                      hhpubdata$urbrur-1
hhpubdata$rent
                    = hhpubdata$homeown-1
```

Jerome Dumortier

Overvie

Truncati

Censorin

Count Models

Zero-Inflatio
Models

Surviva Models

Poisson Model Execution

Preliminary step: Calculation of mean and variance of dependent variable

mean(hhpubdata\$hhvehcnt)

[1] 2.069776

var(hhpubdata\$hhvehcnt)

[1] 1.14393

Similar values and thus, Poisson regression model as an appropriate first step.

```
Limited
Dependent
Variable
Models
```

Jerome Dumortier

Overviev

Truncatio

Censoring

Count Models

Zero-Inflatio

Survival Models

Results

```
##
## Call:
## glm(formula = hhvehcnt ~ income + rent + rural, family = poisson,
      data = hhpubdata)
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.4421798 0.0225213 19.634
                                             <2e-16 ***
## income
               0.0023088 0.0001575 14.660
                                            <2e-16 ***
## rent
              -0.0211945
                         0.0195415 -1.085
                                            0.278
## rural
               0.2215387 0.0208192 10.641
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 3070.9 on 5746 degrees of freedom
## Residual deviance: 2771.4 on 5743 degrees of freedom
## ATC: 17267
##
## Number of Fisher Scoring iterations: 4
```

Jerome Dumortier

Overvie

.....

Count Models

Zero-Inflatio Models

Survival Models

Interpretation

Sign of coefficients as an indication of the direction of influence on the outcome variable, i.e., the number of cars.

- Association of higher income and rural living with a higher number of car
- Association of renting with lower number of vehicles.
- Possible correlation between income and renting

General coefficient interpretation using $\exp(\beta)$, i.e., every unit increase in X has a multiplicative effect of $\exp(\beta)$ on the mean of Y, i.e., λ :

- $\beta = 0 \Rightarrow \exp(\beta) = 1$: Y and X are not related.
- $\beta > 0 \Rightarrow \exp(\beta) > 1$: Expected count E(y) is $\exp(\beta)$ times larger than when X = 0
- $\beta < 0 \Rightarrow \exp(\beta) < 1$: Expected count E(y) is $\exp(\beta)$ times smaller than when X = 0

Jerome Dumortier

Overview

Truncation

Censoring

Count Models

Zero-Inflation
Models

Survival Models

Testing for Overdispersion I

Function dispersiontest() from the package AER:

• Tests the null hypothesis of equidispersion (i.e., assuming no overdispersion)

Executed after the main regression using glm(...,family=poisson)

```
Limited
Dependent
Variable
Models
```

Jerome Dumortier

Overview

Truncation

Censorin

Count Models

Hurdle and Zero-Inflatio Models

Surviva Models

Testing for Overdispersion II

dispersiontest(bhat_pois)

```
##
## Overdispersion test
##
## data: bhat_pois
## z = -31.151, p-value = 1
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
## 0.5013062
```

Given the *p*-value, the null hypothesis cannot be rejected. If the data suggests overdispersion, two alternative regression models can be used: (1) Quasi-Poisson and (2) Negative Binomial.

Jerome Dumortier

Overvie

Trunca

Cerisoring

Count Models

Zero-Inflation
Models

Survival

Quasi-Poisson Regression Model

Dataset blm from article Black Lives Matter: Evidence that Police-Caused Deaths Predict Protest Activity.

- Dependent variable: Total number of protests in a city
- Note that the paper includes a significant number of supplementary materials which allows for the replication of the results and much more.

First step: Calculation of mean and variance of the variable totalprotests:

```
mean(blm$totprotests)
```

```
## [1] 0.4959529
```

var(blm\$totprotests)

```
## [1] 6.35326
```

Jerome Dumortier

Overview

Truncat

Censorin

Count Models

Zero-Inflatio

Surviva Models

Presence of Overdispersion

Likely overdispersion due to variance being significantly higher than mean. In a first step, a regular Poisson model is estimated.

Jerome Dumortier

Overview

Truncation

Censorin

Count Models

Zero-Inflatio

Survival Models

Estimation Results

```
##
                                Dependent variable:
                                    totprotests
                            Poisson
                                          glm: quasipoisson
                                              link = log
                              (1)
                                                 (2)
## log(pop)
                        1.129*** (0.040) 1.129*** (0.062)
## log(popdensity)
                        -0.183** (0.087) -0.183 (0.135)
## percentblack
                        0.017*** (0.003) 0.017*** (0.005)
## blackpovertyrate
                      0.146*** (0.026) 0.146*** (0.041)
## I(blackpovertvrate2) -0.002*** (0.0004) -0.002** (0.001)
## percentbachelor
                        0.039*** (0.004) 0.039*** (0.006)
## collegeenrollpc
                      0.009*** (0.002)
                                           0.009** (0.004)
## demshare
                       0.043*** (0.005) 0.043*** (0.008)
                       -20.009*** (0.633) -20.009*** (0.984)
## Constant
                             1.226
                                                1,226
## Observations
## Log Likelihood
                            -612 473
## Akaike Inf Crit
                           1,242,946
## Note:
                                 *p<0.1: **p<0.05: ***p<0.01
```

Note: Switch of statistical significance for population density

```
Limited
Dependent
Variable
Models
```

Jerome Dumortier

Overvie

Truncati

Censorin

Count Models

Zero-Inflation
Models

Surviva Models

Testing for Overdispersion

```
##
## Overdispersion test
##
## data: bhat1
## z = 1.4052, p-value = 0.07998
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
## 2.212733
```

Null hypothesis rejected at 10% but not 5% significance level. The Quasi-Poisson Regression Model handles overdispersion by adjusting standard errors but leaving the coefficient estimates the same.

Jerome Dumortier

Overvie

Truncat

censoning

Count Models

Zero-Inflatio

Surviva Models

Negative Binomial Regression Model

The Negative Binomial Regression Model can be used in the presence of count data and overdispersion. Below, the results from the article Black Lives Matter: Evidence that Police-Caused Deaths Predict Protest Activity are recreated using the negative binomial models presented in the paper.

Three models:

- 1 Resource mobilization and opportunity structure
- 2 Adding black death
- 3 Adding all police-caused deaths instead (victims of any race)

Jerome Dumortier

Overview

Truncatio

Censorin

Count Models

Zero-Inflati

Models

Survival Models

BLM Models

```
bhat3 = glm.nb(eq1,data=blm,link=log)
```

bhat4 = glm.nb(eq2,data=blm,link=log)

bhat5 = glm.nb(eq3,data=blm,link=log)

Jerome Dumortier

Overview

Truncati

Censorin

Count Models

Zero-Inflatio Models

Survival Models

BLM Model Results

```
Dependent variable:
##
##
                                            totprotests
                             (1)
                                                (2)
                                                                  (3)
                       1.292*** (0.072) 1.281*** (0.070) 1.277*** (0.071)
## log(pop)
## log(popdensity)
                     -0.313** (0.133) -0.305** (0.131) -0.312** (0.132)
## percentblack
                   0.022*** (0.005) 0.018*** (0.005) 0.022*** (0.005)
## blackpovertyrate
                   0.132*** (0.031) 0.128*** (0.031) 0.129*** (0.031)
## I(blackpovertyrate2) -0.001*** (0.0005) -0.001*** (0.0005) -0.001*** (0.0005)
                       0.045*** (0.005) 0.044*** (0.005) 0.045*** (0.005)
## percentbachelor
## collegeenrollpc
                     0.011** (0.004)
                                        0.010** (0.004)
                                                          0.010** (0.004)
## demshare
                       0.041*** (0.007) 0.041*** (0.007)
                                                            0.041*** (0.007)
## deathsblackpc
                                          2.825*** (0.931)
## deathspc
                                                             0.956 (0.633)
## Constant
                      -20.905*** (1.117) -20.734*** (1.101) -20.801*** (1.108)
## Observations
                           1,226
                                             1.226
                                                                1,226
## Log Likelihood
                           -551.093
                                             -546.677
                                                               -549.919
## theta
                      1.559*** (0.351) 1.686*** (0.404) 1.622*** (0.374)
## Akaike Inf. Crit.
                          1,120,187
                                            1,113,353
                                                               1,119,839
## Note:
                                                  *p<0.1: **p<0.05: ***p<0.01
```

Surviva Models

Overview

Problem:

- Presence of many observations at 0 in count data
- Issues using Poisson or a Negative-Binomial Regression Model.

Application of hurdle and zero-inflated models:

- Data NMES1988 from the package AER
- Data BLM protests

NMES1988 Data:

- 4406 observations of people on Medicare who are 66 years or older.
- Outcome of interest: Number of doctor visits
- Independent variables: hospital (number of hospital visits), health (self-indicated health status), chronic (number of chronic conditions), gender, school, and insurance.

Jerome Dumortier

Overview

Truncation

_

Count Model

Hurdle and Zero-Inflation Models bhat pois

bhat hurdle

bhat nb

bhat zi

Survival Models

Estimation

eq	=	<pre>visits~hospital+health+chronic+gender+</pre>	
		school+insurance	

- = glm(eq,data=NMES1988)
- h----dl-(--- d-+--NMEG1000 dd-
- = hurdle(eq,data=NMES1988,dist="negbin")

= glm(eq,data=NMES1988,family=poisson)

= zeroinfl(eq,data=NMES1988)

Jerome Dumortier

Overview

Truncati

Censoring

Count Mode

Hurdle and Zero-Inflation Models

Survival Models

Results

##					
##					
##			Depender	nt variabl	e:
##					
##				isits	
##		Poisson	normal	hurdle	zero-inflated
##		(4)	(0)	(0)	count data
## ##		(1)	(2)	(3)	(4)
	hospital	0.165***	1.620***	0.212***	0.159***
##	nonprodu			(0.021)	(0.006)
##	healthpoor	0.248***	1.845***	0.316***	0.253***
##		(0.018)	(0.312)	(0.048)	(0.018)
##	healthexcellent	-0.362***	-1.331***	-0.332***	-0.304***
##		(0.030)	(0.363)	(0.066)	(0.031)
##	chronic	0.147***	0.944***	0.126***	0.102***
##		(0.005)	(0.077)	(0.012)	(0.005)
##	gendermale	-0.112***	-0.632***	-0.068**	-0.062***
##		(0.013)	, ,	(0.032)	(0.013)
##	school	0.026***	0.143***	0.021***	0.019***
##		(0.002)	(0.027)	(0.005)	(0.002)
##	insuranceyes	0.202***	1.104***	0.100**	0.081***
##		(0.017)		(0.043)	(0.017)
	Constant	1.029***	1.632***	1.198***	1.406***
##		(0.024)	(0.335)	(0.059)	(0.024)
##	Observations	4,406	4,406	4,406	4,406
	Note:			0.1; **p<0	.05; ***p<0.01

Survival Models

Overview

Length of time until a certain event occurs and variables influencing time passed (also known as time-to-event data analysis). Examples:

- Time to failure of mechanical device
- Time to death after diagnosis with a certain disease
- Time to re-arrest after release from prison
- Time to defaulting on loan or mortgage

Data used for this topic

rossi

Jerome Dumortier

Overvie

.....

Court Marile

Count Mode

Zero-Inflation

Survival Models

Theoretical Aspects

T as a random variable representing survival time with the cumulative distribution function written as:

$$F(t) = Pr(T \leq t)$$

where t is a realization of T. Survival function as the complement probability (at least t):

$$S(t) = 1 - F(t) = Pr(T \ge t)$$

Hazard function or hazard rate h(t) as risk of failure at time t.

Jerome Dumortier

Overview

Count Mode

Hurdle and Zero-Inflation

Survival Models

Example Data rossi

Experimental recidivism study on 432 male prisoners over a period of one year after release from prison (Rossi et al., 1980):

- week: Week of first arrest after release
- arrest: Event indicator equal to 1 for rearrest during study period
- fin: Receipt of financial aid after release from prison (randomly assigned factor by the researchers)
- age: Age at the time of release
- race: Black and other
- wexp: Full-time work experience prior to incarceration
- mar: Married at the time of release
- paro: Released on parole
- prio: Number of prior convictions.
- educ: Education coded as 2 (grade 6 or less), 3 (grades 6-9), 4 (grades 10-11), 5 (grade 12), or 6 (some post-secondary).

```
Limited
Dependent
Variable
Models
```

Dumortier

Analysis

Overview

Truncat

Censorin

Count Mode

Hurdle and Zero-Inflatio

Survival Models Number of prisoners rearrested during study period:

```
sum(rossi$arrest)
```

```
## [1] 114
```

Surival object in R created by function Surv():

```
bhatmar = survfit(Surv(week,arrest)~mar,data=rossi)
bhatfin = survfit(Surv(week,arrest)~fin,data=rossi)
ggsurvplot(bhatmar,pval=TRUE,risk.table=TRUE)
ggsurvplot(bhatfin,pval=TRUE,risk.table=TRUE)
```

Jerome Dumortier

Overview

Truncation

Count Mode

Zero-Inflatio

Survival Models

Survival Curve: Marriage

Jerome Dumortier

Overview

Truncation

Count Mode

Zero-Inflatio

Survival Models

Survival Curve: Financial Aid

Jerome Dumortier

Overview

Truncatio

Censoring

Count Mode

Hurdle and Zero-Inflation

Survival Models

Cumulative Hazard Function: Marriage

Jerome Dumortier

Overview

Truncatio

Count Mode

Hurdle and Zero-Inflatio

Survival Models

Cumulative Hazard Function: Financial Aid

Jerome Dumortier

Overvie

Truncati

Censoning

Count Mode

Zero-Inflation

Survival Models

Cox Regression in R: Setup

Statistically insignificant variables excluded from regression output on next slide due to space constraints: paroyes, raceother, and wexpyes

In general, all variables must be reported!

Jerome Dumortier

Overvie

Truncati

censoning

Count Mode

Zero-Inflatio

Survival Models

Cox Regression in R: Results

```
Dependent variable:
                                                 week
                              (1)
                                                (2)
                                                                  (3)
                             0.712*
                                              0.738**
                                                                 0.434
## marnot married
                            (0.367)
                                             (0.367)
                                                                (0.382)
## prio
                                                                0.091***
                                                                (0.029)
                                              -0.387**
                                                                -0.379**
## finves
                                              (0.190)
                                                                (0.191)
                                                               -0.057***
## age
                                                                (0.022)
## Observations
                              432
                                                432
                                                                  432
## R2
                             0.011
                                               0.020
                                                                 0.074
## Max. Possible R2
                             0.956
                                              0.956
                                                                 0.956
## Log Likelihood
                            -673 060
                                             -670 955
                                                                -658 748
## Wald Test
                        3.770* (df = 1) 7.930** (df = 2) 32.110*** (df = 7)
## IR Test
                        4.642** (df = 1) 8.852** (df = 2) 33.266*** (df = 7)
## Score (Logrank) Test 3.935** (df = 1) 8.139** (df = 2) 33.529*** (df = 7)
## Note:
                                                  *p<0.1: **p<0.05: ***p<0.01
```