

Logarithmic & Exponential Functions

LEARNING OBJECTIVES

Upon completion of Chapter 6, you should be able to:

- 1) Define a logarithmic function.
- 2) Convert from logarithmic to exponential form and vice versa.
- 3) Apply laws of logarithm to simplify expressions.
- 4) Solve logarithmic equations.
- 5) Sketch graphs of exponential functions of the form $y = ka^x$, where a is a positive integer.
- 6) Solve exponential equations.
- 7) Solve application problems involving logarithmic and exponential functions.

Relevant sections in e-book:

- 4.3 Logarithmic functions
- 4.4 Properties of Logarithms
- 4.5 Exponential and Logarithmic Equations and Applications

The method of logarithms, by reducing to a few days the labour of many months, doubles as it were, the life of astronomer, besides freeing him from the errors and disgust inseparable from long calculations.

- P. S. Laplace -

6.1 Logarithmic Functions

If x and b are positive real numbers such that $b \neq 1$, then y is called the logarithm of x to base b where

$$y = \log_b x$$
 if and only if $b^y = x$.

For instance, let us consider

$$3^2 = 9$$
.

The exponent is 3. In order to make the exponent the subject (i.e. to write it in terms of the other two numbers), we have to make use of logarithms.

$$2 = \log_3 9$$
 (read as "2 is the logarithm of 9 to base 3")

Exponent is made the subject

VIDEO EXAMPLE 6.

(a)
$$y = \log_2 8$$

(b)
$$y = \log_5 25$$

VIDEO EXAMPLE 6.2

Write each equation in exponential form.

(a)
$$\log_8 64 = 2$$

(b)
$$\log \left(\frac{1}{10000} \right) = -4$$

(c)
$$\log_4 1 = 0$$

$$y = \log_b x \text{ is the same as } b^y = x.$$

VIDEO EXAMPLE 6.3

Write each equation in logarithmic form.

(a)
$$5^3 = 125$$

(b)
$$\left(\frac{1}{5}\right)^{-3} = 125$$

(c)
$$10^9 = 1000,000,000$$

$$y = \log_b x$$
 is the same as $b^y = x$.

Logarithmic and exponential form can be interchanged as depicted in the following diagram.

6.2 Laws of logarithms

Since $y = \log_a x$ is equivalent to $x = a^y$, we can derive the laws of logarithms from the laws of indices. The laws of logarithms are as follows:

Suppose that n is a real number

and a, b, x and y are positive,

and $a \neq 1$ and $b \neq 1$,

Property 1: $\log_a xy = \log_a x + \log_a y$ (Product law)

Property 2: $\log_a \frac{x}{y} = \log_a x - \log_a y$ (Quotient law)

Property 3: $\log_a x^n = n \log_a x$ (Power law)

Property 4: $\log_a x = \frac{\log_b x}{\log_b a}$ (Change of base law)

Property 5: $\log_a a = 1$

Property 6: $\log_a 1 = 0$

Evaluate each of the following:

(a)
$$\log_6 2 + \log_6 3$$

(b)
$$\log_3 10 + \log_3 0.1$$

Simplify each of the following:

(a)
$$\log_4 48 - \log_4 12$$

(b)
$$\log(x^2-9) - \log(x-3)$$

Evaluate each of the following without using a calculator.

(a)
$$\log_b \sqrt[3]{b}$$

$$(b) \frac{\log_b 32}{\log_b \frac{1}{4}}$$

Evaluate each of the following without using a calculator.

$$(a) \log_6 4 + \log_6 9$$

(b)
$$\frac{1}{3}\log_5 8 - \log_5 10$$

Simplify each of the following to a single logarithm.

- (a) $\log_a 3 + 2 \log_a x 5 \log_a y$
- (b) $\log x \log y \log z$
- (c) $2 \log z$

Given that $x = \log_b 3$ and $y = \log_b 5$, find the following in terms of x and y:

- (a) $\log_b 15$
- (b) $\log_b \left(3\sqrt{5}\right)$
- (c) $\log_b 0.6$
- $(d)\frac{\log_b 25}{\log_b 3b^2}$

Evaluate $\log_3 343 \times \log_{49} 16 \times \log_8 27$.

If $4\log(x\sqrt{y}) - \log y = 1 + 2\log x$, where x and y are positive, express y in terms of x.

6.3 Solve logarithmic equations

An equation that contains a variable within a logarithmic expression is called a logarithmic equation. For example, $\log_2(3x-4) = \log_2(x+2)$ and $\log_5 x = 1$ are logarithmic equations.

If b, x and y are positive real numbers with $b \ne 1$, then

$$\log_b x = \log_b y$$
 implies that $x = y$.

6.3.1 Solve a logarithmic equation by using equivalence property

VIDEO EXAMPLE 6.4

Solve the equation: $\log (x^2 + 7x) = \log 18$.

6.3.2 Solve a logarithmic equation by writing in exponential form

VIDEO EXAMPLE 6.5

Solve the equation $\log_8 (3y-5)+10=12$

Solve the equation $\log_2 w - 3 = -\log_2 (w+2)$

Solve the equation $\log_5 (3x + 8) = 1 + \log_5 x$.

Solve the equation $\lg (7x - 1) + \lg (x + 2) = 2$.

Solve the equation $\log_2 (x + 1) - \log_4 (x - 3) = 2$.

Solve the equation $\log_9 x - \log_3 x = 2$.

6.4 Applications of logarithms

In chemistry, the pH of a solution is defined to be

$$pH = -log[H^+]$$

where [H⁺] is the concentration of hydrogen ions measured in moles per litre.

(a) Complete the following table.

pH	$[H^+]$
-	1.0
	0.1
	0.01
	0.001
	0.0001
	0.00001
	0.000001
	0.0000001
	0.00000001
	0.000000001
	0.0000000001
	0.00000000001
	0.000000000001
	0.0000000000001
	0.00000000000001

(b) When [H⁺] decreases by a factor of 10, how does the pH change accordingly?

(c) What is the advantage of using the pH scale compared to [H⁺]?

When a physical quantity varies over a large range, taking its logarithm will give us a more manageable set of numbers to work with.

MS960Y/Z

The hydrogen ion concentration of a sample of human blood was measured to be $[H^+] = 3.2 \times 10^{-8}$ moles per litre. Is the sample acidic or basic?

6.5 Graphs of exponential functions

You have been taught exponential expressions in Chapter 1, such as a^{y}, x^{-t}, y^{z} .

To draw the graph of an exponential function, we can set up the table of values and plot the points on a coordinate plane and then join the points with a smooth curve.

Draw the graph of $f(x) = 4^x$ for $-3 \le x \le 3$.

X	f(x)
0	
1	
2	
3	
-1	
-2	
-3	

VIDEO EXAMPLE 6.8

Draw the graph of $h(x) = \left(\frac{1}{4}\right)^x$ for $-3 \le x \le 3$.

x	h(x)
0	
1	
2	
3	
-1	
-2 -3	
-3	

For the graph of $f(x) = a^x$, where a > 0 and $a \ne 1$:

- 1. f(x) > 0 for all values of x.
- 2. The graph intersects the y-axis at the point (0,1).
- 3. The graph does not touch the x-axis at all. It can get very close the x-axis.
- 4. When a > 1, $f(x) = a^x$ is an increasing function. When 0 < a < 1, $f(x) = a^x$ is a decreasing function.
- 5. The domain is $\{x \mid -\infty < x < \infty\}$ and the range is $\{f(x) \mid f(x) > 0\}$.

Sketch the following graphs and state their domain and range:

(a)
$$y = 5^x$$

(b)
$$y = \left(\frac{1}{3}\right)^x$$

6.6 Exponential equations

A basic exponential equation is of the form

$$a^x = b$$

where a > 0 and $a \ne 1$ and b > 0.

Taking logarithm (usually of base 10) on both sides, we have

$$\lg a^x = \lg b$$

$$x \lg a = \lg b$$

Thus the solution of the equation is $x = \frac{\lg b}{\lg a}$.

Graphically, the solution of the exponential equation $a^x = b$ is the intersection of the graphs $y = a^x$ and y = b.

Solve the following equations:

(a)
$$5^x = 25$$

(b)
$$5^x = 11$$

(c)
$$2(3)^x = 7$$

Solve the equation $5^{x+2} = 5^x + 18$.

$$5^{x+2} = 5^x + 18$$

$$5^x \times 5^2 = 5^x + 18$$

$$5^x \times 5^2 - 5^x = 18$$

$$25 (5^x) - 5^x = 18$$

$$24 (5^x) = 18$$

$$5^x = \frac{3}{4}$$

$$\lg 5^x = \lg \frac{3}{4}$$

$$x \lg 5 = \lg \frac{3}{4}$$

$$x = \frac{\lg \frac{3}{4}}{\lg 5}$$

$$= -0.179 \text{ (from the calculator, 3 s. f.)}$$

Solve the equation $3^x + 3^{x+3} = 7$.

Solve the equation $4^x - 2^{x+2} = 5$.

Solve the equation $10^{2x-5} = 36 - 10^{2x-5}$.

6.7 Applications of exponential functions

A loan of \$6000 was taken with 2% interest compounded annually, the total amount payable, Z at the end of t years would be given by $Z = 6000(1.02)^t$. Find t when the total amount payable first exceeds \$9000.

* * * END OF CHAPTER 6 * * *

TUTORIAL CHAPTER 6

Multiple Choice Questions

- 1. Which of the following is equal to $\lg (a + b)^3$?
 - (a) $3(\lg a)(\lg b)$
 - (b) $3(\lg a + \lg b)$
 - (c) $\lg a + 3 \lg b$
 - (d) $3 \lg (a + b)$
- 2. If $xy = 10^{p+q}$, then $\log_a(xy)$ is equal to
 - (a) p+q
 - (b) $p + q \log_a 10$
 - (c) $(p+q)/\log_a 10$
 - (d) $(p+q) \log_a 10$

Written solutions

1. The diagram below shows the graph of $y = 2^{-x}$, sketch the graph of $y = 2^{x}$ on the same axes. What is the relationship between the graphs of $y = 2^{x}$ and $y = 2^{-x}$?

- 2. Sketch the graphs of $y = \left(\frac{1}{2}\right)^x$ and y = 1 x for $-2 \le x \le 2$ on the same axes. State the number of solutions of the equation $\left(\frac{1}{2}\right)^x + x 1 = 0$.
- 3. Express each of the following in logarithmic form:
 - (a) $7^3 = 343$
- (b) $5^{-2} = \frac{1}{25}$
 - (c) $10^x = \sqrt{2}$
- 4. Express each of the following in exponential form:
 - (a) $\log_6 216 = 3$
- (b) $\log 0.01 = -2$
- (c) $\log_b a = c$

- 5. Evaluate the following logarithms:
 - (a) $\log_2 4$

(b) log₃ 27

(c) $\log_2 \frac{1}{\varrho}$

(d) $\log_3 \sqrt{3}$

(e) $\log_9 3$

(f) $\log_{\sqrt{b}} b^2$

(g) $\log_b \frac{1}{h^2}$

- (h) $\frac{\log_b 9}{2\log_b 27}$
- 6. Evaluate the following expressions:
 - (a) $(\log_8 1 \log_8 8)^8$
 - (b) $\log_8 4 + \log_8 2$
 - (c) $\log_3 135 \log_3 15$
 - (d) $\log_7 56 3\log_7 2$
 - (e) $\log_7 4 + 2\log_7 3 2\log_7 6$
- 7. Simplify and express each of the following as a single logarithm.
 - (a) $3\log_2 5 2\log_2 7$
 - (b) $\frac{1}{2}\log_5 64 + \frac{1}{3}\log_5 27 \log_5(x^2 + 4)$
 - (c) $\frac{5}{6}\log_3 x + \frac{2}{3}\log_3 y \frac{1}{2}\log_3 x \log_3 y$
 - (d) $3\lg\left(\frac{y^2}{x}\right) 2\lg y + \frac{1}{4}\lg(x^4y^8)$
 - (e) $\frac{2}{3} \lg(x+5) + 2\lg(x+1) \lg(x^2 + 6x + 5)$
- 8. Given that $\log_x 2 = A$ and $\log_x 3 = B$, find the following in terms of A and B.
 - (a) $\log_x \frac{3}{2}$

(b) log, 6

(c) log_x 16

(d) $\log_{r} 27$

(e) $\log_x \frac{1}{4}$

(f) $\log_x \frac{1}{27}$

(g) log_x 24

(h) $\log_{x} 54$

(i) $\log_x \frac{8}{9}$

- (j) $\log_x \sqrt[3]{3}$
- 9. Given that $\log x = p$ and $\log y = q$, find the following in terms of p and q.
 - (a) $\log(x^2y)$
- (b) $\log\left(\frac{x}{100 \, v}\right)$ (c) $\log\sqrt{10 x y^3}$
- (d) xv^2

10. Solve for y in terms of x.

(a)
$$\log y = 2 + 3\log x$$

(b)
$$3 + \log_2(x - y) = \log_2(x + 2y)$$

(c)
$$2\log_9(x\sqrt{y}) = \frac{3}{2} - \log_9 x^2 y + \log_9 \frac{x}{y}$$

(d)
$$\log_a(x+y) = \log_a x + \log_a y$$

(e)
$$x = \log_a \left(y + \sqrt{y^2 - 1} \right)$$

11. Evaluate the following:

(a)
$$\log_3 32 \cdot \log_2 27$$

(b)
$$\frac{\log_4 25}{\log_8 \frac{1}{125}}$$

12. Solve the following equations

(a)
$$\lg (x+3) + \lg (x-3) = \lg 16$$

(b)
$$\log_7 x + \log_7 (x - 6) = 1$$

(c)
$$\log_2(x+3) = 3 - \log_2(x+5)$$

(d)
$$\log_3(x-5) + \log_3\frac{1}{4} = 2 - \log_3(2x+4)$$

(e)
$$\log_9 (4x + 1) = \log_3 (x + 3) + \log_3 0.6$$

(f)
$$\log_4 x + \log_x 32 = \frac{19}{6}$$

(g)
$$\log_8 (\log_4 (\log_2 x)) = 0$$

13. Solve the following exponential equations.

(a)
$$9^x = 4$$

(b)
$$6^x = \frac{1}{13}$$

(c)
$$7(3^x) = 26$$

(d)
$$5^{x+1} - 5^x = 28$$

(e)
$$7^{x+2} = 7^x + 16$$

(f)
$$3^{2x} + 3^x - 20 = 0$$

(g)
$$6(7^{2x}) - 17(7^x) + 5 = 0$$

14. Solve the following for x.

(a)
$$2^{\log_2 x} = 16$$

- (b) $2^{\log_x 2} = 16$
- (c) $x^{\log_2 x} = 16$
- (d) $\log_2 x^2 = 2$
- (e) $(\log_2 x)^2 = 1$
- (f) $x = (\log_2 x)^{\log_2 x}$
- 15. Solve the simultaneous equations.

(a)
$$2^x = 8(2^y)$$

$$\lg (2x - y) = 0$$

(b)
$$\log_3(x-y)=1$$

$$5^x \times 125 = \frac{1}{25^y}$$

- 16. Show that $\log_2 x = \log x \log_2 10$.
- 17. When the intensity of sound is I units, the loudness if the sound D in decibels (dB), is given by the formula $D = 10 \log_{10} \frac{I}{I_0}$,

where $I_0 = 10^{-16}$ units, which is the minimum intensity that can be heard.

- (a) If the intensity of sound of a conversation is 3.2×10^{-10} units, find its loudness correct to the nearest decibel.
- (b) If the noise level of an aeroplane is 130 dB, find the intensity of the noise.
- 18. \$10000 was deposited in a CPF Special Account which has 4% interest rate compounded annually. How much money will be in the account 20 years later?
- 19. It was found that the percentage of carbon C-14, C, contained in the bones of an animal n years after it has dies is given by $C = 2^{-kn}$ where k is a positive constant. The percentage of C-14 contained in the bones after the animals has been dead for 5668 years was 50%. How long was the animal dead if the percentage of carbon-14 found in the bones was 76%?

ANSWERS:

Multiple Choice Questions

1.D 2.D

Written Solutions

- 1. Reflection about *y*-axis
 - (b) 3

2. 2 solutions

(c) -3 (d) $\frac{1}{2}$ (e) $\frac{1}{2}$

(f) 4

5. (a) 2

- (g) -2
- (h) $\frac{1}{2}$

- 6. (a)1
- (b)1

- (c) 2
- (d) 1
- (e) 0

- 7. (a) $\log_2 \frac{125}{49}$ (b) $\log_5 \left(\frac{24}{x^2 + 4} \right)$ (c) $\log_3 \left(\frac{x^{\frac{1}{3}}}{y^{\frac{1}{3}}} \right)$ (d) $\lg \left(\frac{y^6}{x^2} \right)$ (e) $\lg \left(\frac{x + 1}{(x + 5)^{1/3}} \right)$
- 8. (a) B A
- (b) *A*+*B*
- (c) 4A (d) 3B

- (f) -3B (g) 3A + B
- (h) 3B + A (i) 3A 2B (j) $\frac{1}{3}B$

- 9. (a) 2p+q (b) p-2-q
- (c) $\frac{1+p+3q}{2}$ (d) 10^{p+2q}
- (a) $y = 100x^3$ (b) $y = \frac{7x}{10}$
- (c) $y = \frac{3}{x}$ (d) $y = \frac{x}{x-1}$ (e) $y = \frac{a^{2x} + 1}{2a^x}$

(a) 15 11.

12.

15.

(b) 7

(b) -1

- (c) -1 (d) 7 (e) 2, $\frac{28}{9}$
- (f) 8, 10.1

(a) 5

- (g) 16
- 13. (a) 0.631 (b) -1.43

- (c) 1.19 (d) 1.21 (e) -0.565
- (f) 1.26

(g) -0.565 or 0.471

- (a) 16 14.
- (b) $2^{\frac{1}{4}}$ (c) 4, $\frac{1}{4}$ (d) 2 (e) 2, $\frac{1}{2}$
- (f) 4

- - (a) x = -2, y = -5 (b) x = 1, y = -2
- (a) 65 dB 17.
- (b) 10^{-3} units
- \$21,911.23 18.
- $k = \frac{1}{5668}$, 2244 years 19.