Liite lukuun 5.

Jäykän kappaleen tasokinematiikka - harjoitustehtäviä

5.1 Vauhtipyörä pyörii vapaasti pyörimisnopeudella 1800 r/min myötäpäivään, kun siihen alkaa vaikuttaa hetkellä t=0 vastapäiväinen muuttuva momentti. Momentti aiheuttaa vastapäiväisen kulmakiihtyvyyden $\alpha=4\cdot t \ rad/s^3$, missä t on momentin vaikutusaika. Määritä aika, jonka kuluttua vauhtipyörän pyörimisnopeus on laskenut arvoon 900 r/min myötäpäivään ja aika, jonka kuluttua vauhtipyörän pyörimissuunta muuttuu. Montako kierrosta vauhtipyörä on pyörinyt momentin vaikutettua 14 s? Vast. 6,9 s, 9,7 s, \approx 260 r

5.2 Moottorin hammaspyörä A pyörittää nostorummun hammaspyörää B. Taakkaa L aletaan nostaa levosta vakiokiihtyvyydellä siten, että taakan noustua 0,8 m sen nopeus on 2 m/s. Laske tätä hetkeä vastaava nostovaijerin pisteen C kiihtyvyys ja pyörän A kulmanopeus ja kulmakiihtyvyys.

Vast. 10.3 m/s^2 , 15.0 1/s, 18.8 1/s^2

5.3 Suorakulmion muotoinen levy pyörii myötäpäivään akselin O ympäri. Sivun BC kulmanopeus on vakio 6 rad/s. Määritä pisteen A nopeus- ja kiihtyvyysvektori.

Vast.
$$\vec{v}_A = (1,7\vec{i} - 1,8\vec{j}) \text{ m/s}$$

 $\vec{a}_A = (-10,8\vec{i} - 10,1\vec{j}) \text{ m/s}^2$

5.4 Hihnapyörä ja siihen kiinnitetty levy pyörivät kasvavalla kulmanopeudella. Tietyllä hetkellä hihnan nopeuden suuruus on v = 1,5 m/s ja pisteen A kiihtyvyyden suuruus on $a_A = 75$ m/s². Määritä vastaava levyn ja pyörän kulmakiihtyvyys, pisteen B kiihtyvyys ja hihnan pisteen C kiihtyvyys. Vast. 300 1/s², 37,5 m/s², 22,5 m/s²

5.5 Ympyrälevy pyörii vakiokulmanopeudella $\omega=40~\text{rad/s}$ akselinsa ympäri, joka on vinossa asennossa yz-tasossa siten, että $\tan\theta=3/4$. Määritä pisteen P nopeus- ja kiihtyvyysvektori, kun sen paikkavektori on $\vec{r}_P=(150~\vec{i}+160~\vec{j}-120~\vec{k})$ mm.

Vast.
$$\vec{v}_P = 0.4 \cdot (-20\vec{i} + 12\vec{j} - 9\vec{k}) \text{ m/s},$$

 $\vec{a}_P = 16 \cdot (-15\vec{i} - 16\vec{j} + 12\vec{k}) \text{ m/s}^2$

5.6 r-säteinen pyörä vierii liukumatta pitkin vaakasuoraa pintaa. Määritä pyörän kulmaasema, kulmanopeus ja kulmakiihtyvyys sen keskipisteen O liikesuureiden s, v_O ja a_O funktiona. Määritä myös alustan kanssa kosketuksessa olevan pyörän kehän pisteen A nopeus ja kiihtyvyys. Vast. $\theta = s/r$, $\omega = v_O/r$, $\alpha = a_O/r$, $v_A = 0$, $a_A = r\omega^2$

5.7 Kolmiolevyä ABC liikutetaan hydraulisylinterin D avulla. Sylinterin mäntä liikkuu tietyllä aikavälillä ylöspäin vakionopeudella 0,3 m/s. Laske vaakasuorassa ohjaimessa liikkuvan rullan B keskipisteen nopeus ja kiihtyvyys sekä levyn sivun CB kulmanopeus ja kulmakiihtyvyys, kun kulma $\theta = 30^{\circ}$. Vast. $v_B = -0.17$ m/s, $a_B = -0.69$ m/s², $\omega = 1.72$ 1/s, $\alpha = 1.72$ 1/s²

5.8 Kaapelikela vierii liukumatta vaakasuoralla alustalla. Kaapelin kohdan A nopeus on $v_A=0.4$ m/s oikealle. Laske kelan keskipisteen O nopeus ja kelan kulmanopeus. Vast. $v_O=0.6$ m/s, $\omega=0.67$ 1/s myötäpäivään

5.9 Varren OA kulmanopeus on $\omega_{OA}=8$ 1/s vastapäivään kuvan asemassa. Määritä vastaava varren CB kulmanopeus ω_{CB} .

Vast. 6,3 1/s vastapäivään

5.10 Pystysuuntaisessa ohjaimessa olevan luistin A asemaa säädetään vaakasuuntaisessa ohjaimessa olevien luistien B ja C avulla. Luistin A nopeus on v_A ylöspäin. Määritä kulman θ funktiona vastaavat luistien B ja C nopeudet, jotka ovat yhtä suuria ja vastakkaissuuntaisia. Vast. $v_B = \frac{1}{2} v_A \tan \theta$

5.11 Varsi OA pyörii akselin O ympäri vastapäivään kulmanopeudella $\omega_{OA}=4\,1/s$. Määritä pyörän C kulmanopeus ω_{C} , kun a) pyörä B on kiinteä, eikä siis pyöri ja b) pyörii myötäpäivään kulmanopeudella $\omega_{B}=2\,1/s$. Vast. a) $8\,1/s$ b) $10\,1/s$

5.12 Luisti A on nivelöity varteen O_2A ja voi liukua vapaasti pitkin vartta O_1B . Varrella O_2A on tietyllä aikavälillä vakio kulmanopeus $\omega=2$ 1/s. Laske varren O_1B kulmanopeus, kun $\theta=45^\circ$. $O_2A=100$ mm Vast. 0,38 1/s

5.13 Pyörä vierii liukumatta vaakatasoa pitkin oikealle. Pyörän säde on r = 300 mm ja keskipisteen O nopeus $v_o = 3$ m/s. Laske pyörän pisteen A nopeus kuvan asemassa, jossa $r_A = 200$ mm ja $\theta = 30^\circ$. Vast. $(4,00\,\bar{i} + 1,73\,\bar{j})$ m/s

5.14 Kuvan mukaisessa mäntämekanismissa kammen OB pyörimisnopeus on 1500 r/min myötäpäivään ja kulma $\theta = 60^{\circ}$. Määritä männän A nopeus, kiertokan-

gen pisteen G nopeus ja kiertokangen kulmanopeus. $OB = 125 \,\text{mm}$, $BG = 100 \,\text{mm}$ ja $AG = 250 \,\text{mm}$.

Vast. 20,2 m/s, 19,2 m/s, 29,5 1/s

5.15 Varret AB ja CB ovat kuvan tilanteessa kohtisuorassa toisiaan vastaan. Hydraulisylinteri aiheuttaa tapille A nopeuden $v_A = 0.5 \text{ m/s}$ oikealle. Määritä varsien AB ja CB kulmanopeudet. Vast. $\omega_{CB} = 3.2 \text{ 1/s}$ vastapäivään, $\omega_{AB} = 2.4 \text{ 1/s}$ vastapäivään

5.16 Kappaleiden A ja B liikettä hallitaan pyörittämällä niiden läpi kulkevia ruuveja. Kappaleen A nopeus on 75 mm/s oikealle ja kappaleen B nopeus 50 mm/s vasemmalle sekä etäisyys x = 150 mm. Määritä varren ACD kulmanopeus. Vast. 0,295 1/s vastapäivään

5.17 Kuvan mekanismia käytetään pienien laatikoiden siirtämiseen kuljettimelle. Varsi OD ja kampi CB ovat pystyasennossa. Kampi CB pyörii myötäpäivään vakio pyörimisnopeudella 0,5 r/s. Määritä nopeus, jolla laatikko kuvan asemassa siirtyy kuljettimelle. Vast. 0,514 m/s

5.18 Pyörä vierii liukumatta vaakatasoa pitkin oikealle. Pyörän säde on r=300 mm ja keskipisteen O nopeus $v_0=3$ m/s. Määritä pyörän hetkellinen nopeusnapa ja laske sen avulla pyörän pisteen A nopeus kuvan asemassa, kun $r_A=200$ mm ja $\theta=30^\circ$. Vast. 4,36 m/s

5.19 Kuvan mekanismissa on varren OB kulmanopeus 10 1/s myötäpäivään, kun kulma $\theta = 45^{\circ}$. Määritä vastaavat pisteiden A ja D nopeudet sekä varren AB kulmanopeus. Vast. 1,5 1/s, 1,6 m/s, 4,3 1/s

5.20 Hydraulisylinteri antaa tapille A vaakasuuntaisen nopeuden $v_A = 4 \text{m/s}$ kulman θ ollessa 45° . Määritä pisteen D nopeus ja sauvan ABD kulmanopeus tarkasteluhetkellä.

Vast. 4,5 m/s, 7,5 1/s

5.21 Tapin E vaakasuuntaista liikettä hallitaan muuttamalla painetta paineilmasylinterissä F, joka on vaaka-asennossa. Tapin E nopeus on 2 m/s oikealle, kun kulma $\theta = 30^{\circ}$. Määritä rullan D nopeus pystysuuntaisessa ohjaimessa ja laske varren ABD kulmanopeus. Vast. 2,31 m/s, 13,33 1/s

5.22 Akseli O pyörittää sauvaa OA kohdassa O olevan laakerin ympäri myötäpäivään pyörimisnopeudella 90 r/min. Hammaspyörä B voi pyöriä sauvasta OA riippumatta. Määritä pyörän B pyörimisnopeus, kun a) uloin pyörä D on kiinteä ja b) uloin pyörä D pyörii vastapäivään akselin O ympäri pyörimisnopeudella 80 r/min. Käytä nopeusnapaa hyväksi.

Vast. a) 360 r/min b) 600 r/min

5.23 r-säteinen pyörä vierii liukumatta vaakatasoa pitkin vasemmalle. Pyörän keskipisteen O nopeus on v_O ja kiihtyvyys a_O , jotka ovat vasemmalle. Määritä pyörän pisteiden A ja C kiihtyvyys tarkasteluhetkellä. Vast. $a_C = r \omega^2$

5.24 Tarkastellaan tehtävän 5.14 mäntämekanismia. Kammen OB pyörimisnopeus on 1500 r/min myötäpäivään. Kampikulma on $\theta = 60^{\circ}$ tarkasteluhetkellä. Määritä

vastaava männän A kiihtyvyys ja kiertokangen AB kulmakiihtyvyys. OB = 125 mm, BG = 100 mm ja AG = 250 mm.

Vast. 994 m/s², 7740 1/s² myötäpäivään

5.25 Tarkastellaan tehtävän 5.15 mekanismia. Tapin A nopeus on vakio $v_A = 0,5$ m/s oikealle ja tarkasteluhetkellä varret AB ja CB ovat kohtisuorassa toisiaan vastaan. Määritä vastaava varren CB kulmakiihtyvyys. Vast. 5,76 $1/s^2$

5.26 Tarkastellaan tehtävän 5.17 siirtäjämekanismia. Varsi OD ja kampi CB ovat tarkasteluhetkellä pystyasennossa. Kampi CB pyörii myötäpäivään vakio pyörimisnopeudella 0,5 r/s. Määritä kohdan E kiihtyvyys. Vast. 0.29 m/s²

5.27 Kuvan sahamekanismissa terä on kiinnitetty runkoon, joka liikkuu vaakasuuntaisessa ohjaimessa. Moottorin pyörimisnopeus on vakio 60 r/min vastapäivään. Määritä terän kiihtyvyys ja varren AB kulmakiihtyvyys, kun kulma $\theta = 90^{\circ}$.

Vast. 4,9 m/s², 0,47 1/s² vastapäivään

5.28 Kuvassa on esitetty öljynpumppauksessa käytettävä mekanismi. Taipuisa sauva D on kiinnitetty sektorikappaleeseen kohdasta E, minkä ansiosta sauva on kohdan D jälkeen olevassa porausputkessa aina pystysuuntainen. Kun kampi OA pyörii, ai-

heuttaa varsi AB palkille BCE edestakaisen liikkeen. Kampi OA pyörii vakio pyörimisnopeudella myötäpäivään yhden kierroksen kolmessa sekunnissa. Määritä imusauvan D kiihtyvyys, kun kampi OA ja palkki BCE ovat kuvan mukaisesti vaaka-asennossa.

Vast. 0,57 m/s² alaspäin

5.29 Levy pyörii pisteen O ympäri vastapäivään kulmanopeudella 41/s, joka vähenee nopeudella $101/s^2$. Levyssä on ura, jossa liikkuu luisti A. Tarkasteluhetkellä on r = 150 mm, $\dot{r} = 125 \text{ mm/s}$ ja $\ddot{r} = 2025 \text{ mm/s}^2$. Määritä luistin A absoluuttinen nopeus ja kiihtyvyys.

Vast. $0.61 \,\mathrm{m/s}$, $0.63 \,\mathrm{m/s^2}$

5.30 Sauvassa AC oleva tappi A liikkuu pyörivässä sauvassa OD olevassa urassa. Sauvan OD kulmanopeus on $\omega=2$ 1/s myötäpäivään ja se on vakio tarkasteluhetkellä. Kuvan tilanteessa $\theta=45^{\circ}$ ja sauva AC on vaaka-asennossa. Määritä tapin A absoluuttinen nopeus ja kiihtyvyys sekä nopeus ja kiihtyvyys sauvassa OD olevan uran suhteen. Vast. 900 mm/s, 8050 mm/s², 636 mm/s, 8910 mm/s²

5.31 Ajoneuvo A liikkuu kohti länttä suurella nopeudella täysin tasaista tietä B pitkin, joka on maapallon päiväntasaajan tangentin suuntainen. Tiellä ei ole kaarevuutta myöskään pystytasossa. Määritä, kuinka suuri suhteellinen nopeus v_{rel} ajoneuvolla on oltava tiehen nähden, kun sen pystysuuntaisen kiihtyvyyskomponentin halutaan olevan nolla. Maan keskipisteen kiihtyvyys oletetaan nollaksi. $R = 6378 \ km$.

Vast. 837 km/h

5.32 Autot A ja B liikkuvat vakionopeudella 72 km/h. Määritä auton A nopeus ja kiihtyvyys autosta B havaittuina, kun autot ovat kuvan asemassa. xykoordinaatisto liikkuu auton B mukana.

Vast. $(47.3\vec{i} + 10.0\vec{j})$ m/s, $(-4.0\vec{i} - 12.9\vec{j})$ m/s²

5.33 Paloauto liikkuu eteenpäin nopeudella 60 km/h ja kiihtyvyydellä 3 m/s². Tikkaita nostetaan ja pidennetään samanaikaisesti. Tarkasteluhetkellä kulma $\theta = 30^{\circ}$ ja se kasvaa vakionopeudella $\dot{\theta} = 10^{\circ}/s$. Mitta b = 1,5 m, $\dot{b} = 0,6$ m/s ja $\ddot{b} = -0,3$ m/s². Määritä tikkaiden pään A kiihtyvyys a) paloauton suhteen ja b) tien suhteen. Vast. a) 0.57 m/s², b) 2,44 m/s²

5.34 Kuvan mekanismissa sauva DC pyörii vastapäivään vakiokulmanopeudella $\omega = 2 \, 1/s$. Määritä kappaleen EBO kulmanopeus ja kulmakiihtyvyys mekanismin ollessa kuvan asemassa. Vast. $2 \, 1/s$, $8 \, 1/s^2$