

Shokoufeh Kazemlou

Motivati

LTL₃ Monit

Problem

Related

Work

Synchronou

Asynchrono

Monitoring

Conclusion

Work

Decentralized Crash-Resilient Runtime Verification

Shokoufeh Kazemlou

Department of Computing and Software McMaster University

December 13, 2017

1/41

Overview

Motivation

LTL₃ Monitor

Problem Statement

Related Work

Contributions

6 Synchronous Monitoring

Asynchronous Monitoring

8 Conclusion

9 Future Work

Presentation outline

1 Mo

Motivation

Motivation

2 LTL₃ Monitor

Monito

Problem Statement

Relat

Related Work

Contribu

Contributions

Asynchron

Synchronous Monitoring

Conclusi

Asynchronous Monitoring

Work

Conclusion

9

Future Work

Shokoufe Kazemlo

Motivation

I TI -

Problem

Relate

Work

Synchrono

Asynchrono

Conclusion

Work

Motivation

Traditional Verification

Exhaustive verification methods are extremely valuable to ensure system-wide correctness.

They often require developing an abstract model of the system and may suffer from the infamous state-explosion problem.

Shokoufe

Motivation

.

Proble

Relate

.....

001111100110

Monitoring

Monitoring

Conclusi

Work

Motivation

Traditional Verification

Exhaustive verification methods are extremely valuable to ensure system-wide correctness.

They often require developing an abstract model of the system and may suffer from the infamous state-explosion problem.

Runtime Verification

Runtime verification (RV) refers to a technique, where a monitor checks at run time whether or not the execution of a system under inspection satisfies a given correctness property.

RV complements exhaustive verification techniques as well as underapproximated methods such as testing and tracing.

Shokoufel Kazemlou

Motivation

LTL3

Problem

Relate

Contribut

Synchronoi Monitoring

Asynchrono Monitorina

Conclusio

Future Work

Motivation

RV in Distributed Systems

Designing a decentralized runtime monitor for a distributed system is an especially difficult task since it deals with

- computing global snapshots at run time, and
- estimating the total order of events

in order for the monitor to reason about the temporal behavior of the system.

LTL₃ Monitor

Presentation outline

Motivation

LTL₃ Monitor

Problem Statement

Related Work

Contributions

Synchronous Monitoring

Asynchronous Monitoring

Conclusion

9 Future Work

Future Work

Shokoufe

Motivatio

LTL₃

Probler

Relate

Contributio

Synchronous Monitoring

Monitoring

Conclusi

Work

3-Valued LTL (LTL3) [Bauer, Leucker, Schallhart 11]

3-valued LTL evaluates LTL formulas for finite words with an eye on possible future extensions.

Three Truth Values

The set of truth values is $\mathbb{B}_3 = \{\top, \bot, ?\}$, where

- T: the formula is permanently satisfied no matter how the current execution extends,
- ±: the formula is permanently violated no matter how the current execution extends
- ?: denotes an unknown verdict; i.e., there exist extensions that can falsify or make true the formula.

Shokoufel

Motivatio

LTL3 Monitor

Problem

Stateme

Relate Work

Contributior

Monitoring Monitoring

Asynchrono Monitoring

Conclusio

Work

3-Valued LTL

LTL₃ Semantics

Let $u \in \Sigma^*$ be a finite word. The truth value of an LTL₃ formula φ with respect to u, denoted by $[u \models_3 \varphi]$, is defined as follows:

$$[u \models_3 \varphi] = \begin{cases} \top & \text{if} \quad \forall w \in \Sigma^\omega : uw \models \varphi \\ \bot & \text{if} \quad \forall w \in \Sigma^\omega : uw \not\models \varphi \\ ? & \text{otherwise.} \end{cases}$$

Shokoufe

Motivati

LTL₃

Problem

Relat

Contributio

Synchronou

Asynchrono

Conclusio

Future Work

3-Valued LTL

LTL3 Monitor

Let φ be an LTL formula. The LTL₃ monitor of φ is the unique deterministic finite state machine $\mathcal{M}_3^{\varphi} = (\Sigma, Q, q_0, \delta, \lambda)$, where Q is a set of states, q_0 is the initial state, $\delta \subseteq Q \times \Sigma \times Q$ is the transition relation, and $\lambda : Q \to \mathbb{B}_3$, is a function such that:

$$\lambda(\delta(q_0,u))=[u\models_3\varphi]$$

for every finite word $u \in \Sigma^*$.

Example

LTL₃ monitor for a **U** b

Problem Statement

Presentation outline

Motivation

2 LTL₃ Monitor

Problem Statement

Related Work

6 Contributions

Synchronous Monitoring

Asynchronous Monitoring

Asylicilionous Monitoring

Conclusion

9 Future Work

Shokoufeh

Motivatio

wouvan

Monitor

Problem Statement

Related

_ ..

Synchronou

Asynchrono Monitoring

Conclusio

Future Work

Problem Statement

Distributed Monitors

Let $\mathcal{M} = \{M_1, M_2, \dots, M_n\}$ be a set of distributed monitors monitoring an underlying system.

Distributed system being monitored

Kazemlo

Motivati

Problem

Statement

Relate Work

Continbutio

Monitoring

Monitoring

Conclusio

Work

Synchronous Monitoring

Local Monitor Algorithm

Data: LTL formula φ and state s_j

Result: a verdict from \mathbb{B}_3

 ${\bf 1} \ \, {\rm Let} \ \, {\cal S}_i^{s_j}$ be the initial concrete local state of the monitor

2 $LS_i^1 \leftarrow \mu(\mathcal{S}_i^{s_j}, \varphi)$

3 for $r=1,2,\cdots$ do

Send: broadcasts its current abstract local state LS_i^r

Receive: let $\Pi_i^r = \{LS_j^r\}_{j \in [1,n]}$ be the set of all messages received at round r.

6 Computation: $LS_i^{r+1} \leftarrow LC(\Pi_i^r)$

7 emits a verdict from \mathbb{B}_3

Problem Statement

A non-faulty monitor should compute and emit a verdict that a centralized monitor that has global view of the system would compute. Formally:

$$\forall i \in [1, n] : M_i \text{ is non-faulty } \rightarrow \nu_i = [\alpha \models_3 \varphi]$$

Presentation outline

Motivation

2 LTL₃ Monitor

Problem Statement

Related Work

5 Contributions

6 Synchronous Monitoring

Asynchronous Monitoring

8 Conclusion

9 Future Work

Related Work

Contribution: Synchronous

Asynchrono Monitoring

Conclusi

Shokoufel

Motivat

LTL3

Problem Stateme

Related Work

Contribution
Synchronous
Monitoring

Asynchronol Monitoring

Conclusio

Work

Related Work

Central Monitor

- H. Chauhan and V. K. Garg and A. Natarajan and N. Mittal. A
 Distributed Abstraction Algorithm for Online Predicate Detection (SRDS
 2013).
- N Mittal and V. K. Garg. Techniques and applications of computation slicing (Distributed Computing 2005).
- V. A. Ogale and V. K. Garg. Detecting Temporal Logic Predicates on Distributed Computations (DISC 2007).

Shokoufe Kazemlo

Motivation

LTL3 Monito

Probler Statem

Related Work

Contribution
Synchronou
Monitorina

Asynchronous Monitoring

Conclusio

Related Work

Fault-free Setting

- A. Bauer and Y. Falcone. Decentralised LTL monitoring (FMSD 2016).
- C. Colombo and Y. Falcone. Organising LTL monitors over distributed systems with a global clock (FMSD 2016).
- M. Mostafa, B. Bonakdarpour. Decentralized Runtime Verification of LTL Specifications in Distributed Systems. (IPDPS 2015).

Fault-tolerant Distributed Monitoring

B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, C. Travers. Decentralized Asynchronous Crash-Resilient Runtime Verification (CONCUR 2016).

Presentation outline

Motivation

2 LTL₃ Monitor

Problem Statement

Related Work

Contributions

6 Synchronous Monitoring

Asynchronous Monitoring

8 Conclusion

9 Future Work

Future Work

Contributions

Shokoufe

Motivati

LTL3

Problem

Relate

Work

Contributions
Synchronous
Monitoring

Asynchrono Monitoring

Conclusio

Work

Contributions

Contributions

- An automata-based distributed LTL monitoring algorithm for the decentralized crash-resilient synchronous monitoring.
- Reducing the message size overhead from |AP| per message, to $\log(m_q)$, where m_q is the number of outgoing transitions from the current monitor state in each local monitor's automaton.
- Introducing an Extended LTL₃ monitor for synchronous/asynchronous crash-resilient monitoring.

Presentation outline

Motivation

2 LTL₃ Monitor

Problem Statement

Related Work

Contributions

Synchronous Monitoring

Asynchronous Monitoring

8 Conclusion

9 Future Work

Synchronous Monitoring

Shokoufe Kazemlo

Motivat

. . .

Proble

Relate

Work

Contributions Synchronous

Monitoring Asynchrono

O---I---i--

Conclus

Fulure Work

Synchronous Monitoring

Distributed Synchronous Setting

Finite trace $\alpha = s_0 s_1 \cdots s_k$;

Set of synchronous monitors $\mathcal{M} = \{M_1, M_2, \cdots, M_n\}$;

Correctness property expressed by an LTL formula φ .

Algorithm Sketch

- takes a sample from state s_j ;
- broadcasts a message containing its current observation, and receives messages from other monitors;
- performs a local computation and updates its current observation;
- emits a truth value from \mathbb{B}_3 .

Kazeml

Motivat

LTL3 Monito

Staten

Relate Work

Synchronous Monitoring

Asynchrono Monitoring

Conclusion

Synchronous Monitoring

Uniform Consensus

Eeach process proposes a value, and the processes have to collectively agree on the same value.

- Validity: A decided value is a proposed value.
- Agreement: No two processes decide different values.
- **Termination:** Every correct process decides.

Validity Specification in Synchronous Monitoring

The decided value must be the same value that a centralized monitor with full view of the system would compute.

Number of Rounds

The lower bound on the number of rounds required to consistently monitor the system is f + 1, where f is the total number of crashes the system can tolerate.

Shokoufeh

Motivatio

Monit

Problem

Stateme

Work

Contribution

Synchronous Monitoring

Asynchronol Monitoring

Conclusio

Future Work

Synchronous Monitoring

Local Monitor Algorithm

Data: LTL formula φ and state s_j

Result: a verdict from \mathbb{B}_3

1 Let $\mathcal{S}_{i}^{s_{j}}$ be the initial concrete local state of the monitor

2
$$LS_i^1 \leftarrow \mu(\mathcal{S}_i^{s_j}, \varphi)$$

3 for
$$r=1,2,\cdots$$
 do

4 Send: broadcasts its current abstract local state LS_i^r

Receive: let $\Pi_i^r = \{LS_j^r\}_{j \in [1,n]}$ be the set of all messages received at round r.

6 Computation: $LS_i^{r+1} \leftarrow LC(\Pi_i^r)$

7 emits a verdict from \mathbb{B}_3

Shokou Kazem

Motivat

Problem

Relate

Synchronous Monitoring

Asynchrono Monitoring

Conclusi

Future Work

Challenges in Synchronous Monitoring

Example

Let $\varphi = \mathbf{F}(a \wedge b)$, $AP = \{a, b\}$, and $\mathcal{M} = \{M_1, M_2, M_3, M_4\}$. Suppose $s = \{a, b\}$ is the current global state of the system, and the initial samples of the monitors are as follows:

sample

	а	b
M_1	true	Н
M_2	Ц	true
M_3	Ц	true
M_4	Ц	true

round 1

	а	b
M_1	crashed	crashed
M_2	true	true
M_3	Ц	true
M_4	Ц	true

round 2

	а	b
M_1	crashed	crashed
M_2	crashed	crashed
M_3	true	true
M_4	Ц	true

round 3

	а	b
M_1	crashed	crashed
<i>M</i> ₂	crashed	crashed
<i>M</i> ₃	true	true
M_4	true	true

Shokoufe

Motivati

LTL3

Problem

Poloto

Work

Synchronous Monitoring

Asynchronou Monitoring

Conclusio

Future Work

Synchronous Monitoring

Challenge

If each monitor broadcasts its sample \Rightarrow the message size is |AP|

Reducing the Message Size Overhead

We introduce an algorithm which decreases the message size from |AP| to $\log(m_q)$ where m_q is the number of outgoing transitions from monitor state q.

Shokoufe

Motivatio

LTLo

Problem

Relate

Contribut

Synchronous Monitoring

Monitoring

Conclusi

Future Work

Automata-based Synchronous Monitoring

The General Idea

 Each local monitor M_i evaluates the input formula and computes a possible set of verdicts;

$$V_i = \{\delta(q, s') \mid s' \in E(S_i^s)\}$$

• At each round, each monitor M_i broadcasts its verdict set V_i , and computes a new verdict set by applying the intersection function on the verdict sets received from other monitors;

$$V_i^{r+1} = LC(\Pi_i^r) = \bigcap_{j \in [1,n]} \{V_j^r\} = \bigcap_{j \in [1,n]} \{V_j^r\}$$

 After f + 1 rounds of communication, each monitor emits the verdict that a centralized monitor that has the global view of the system would compute.

Synchronous Monitoring

Automata-based Synchronous Monitoring

Local Monitor Algorithm

Data: LTL₃ monitor \mathcal{M}^{φ} and state s_i

Result: a verdict from B₃

- 1 Let $\mathcal{S}_{i}^{s_{j}}$ be the initial concrete local state of the monitor
- 2 $LS_i^1 \leftarrow \mu_2(\mu_1(\mathcal{S}_i^{s_j}, \mathcal{M}_{\varphi})) = V_i^1$
- 3 for $r = 1, \dots, f + 1$ do
- **Send:** broadcasts its current abstract local state $LS_i^r = V_i^r$ 4
- **Receive:** let $\Pi_i^r = \{V_i^r\}_{j \in [1,n]}$ be the set of all messages received at round r. 5
- Computation: $LS_i^{r+1} \leftarrow LC_i(\Pi_i^r) = \bigcap_{i \in [1,n]} \{V_i^r\}$ 6
- 7 emit $\lambda_e(v_i)$

Decentralized Crash-Resilient Runtime

Verification

Example

Let $\varphi = \mathbf{F}(a \wedge b)$.

Automata-based Synchronous Monitoring

Figure: LTL₃ monitor of $\varphi = \mathbf{F}(a \wedge b)$.

Synchronous

Monitoring

And suppose the initial samples of the monitors are as follows:

sample

	а	b	V_i^1
M_1	true	Ц	$\{q_0,q_{\top}\}$
M_2	Ц	true	$\{q_0,q_{\top}\}$
M_3	l la	ļļ	$\{q_0,q_{\top}\}$
M_4	Ц	l la	$\{q_0,q_{\top}\}$

Shokoufe

Motivatio

.....

LTL3 Monit

Proble Statem

Relate

Work

Synchronous Monitoring

Asynchrono Monitorina

Conclusi

Future Work

Automata-based Synchronous Monitoring

Example

 $egin{array}{|c|c|c|c|c|} \hline {
m round 1} & V_i^2 & & & & & \\ \hline M_1 & {
m crashed} & & & & & & \\ M_2 & \{q_0,q_ op\} & & & & & & \\ M_3 & \{q_0,q_ op\} & & & & & & \\ M_4 & \{q_0,q_ op\} & & & & & & \\ \hline \end{array}$

rouria 2	
	V_i^3
M_1	crashed
M_2	crashed
<i>M</i> ₃	$\{q_0,q_{\top}\}$
M_4	$\{q_0,q_{\top}\}$

rouna 3		
	V_i^4	
M_1	crashed	
M_2	crashed	
M_3	$\{oldsymbol{q}_0,oldsymbol{q}_ op\}$	
M_4	$\{q_0,q_{\top}\}$	

As we see $|V_3| = |V_4| > 1$. Therefore, they cannot emit the correct verdict \top as we have $[\{a,b\} \models_3 \mathbf{F}(a \land b)] = \top$.

Insufficiency of LTL3 Monitor

The LTL₃ monitor of $\varphi = \mathbf{F}(a \wedge b)$ is not sufficient to distinguish the correct verdict when local monitors have partial view of the system.

Shokoufel

Motivati

.

Monito

State

Automata-based Synchronous Monitoring

Extended LTL₃ Monitor

Input: LTL₃ monitor $\mathcal{M}^{\varphi} = \{\Sigma, Q, q_0, \delta, \lambda\}$ **output:** Extended LTL₃ monitor $\mathcal{M}^{\varphi}_{e} = \{\Sigma, Q_e, q_0, \delta_e, \lambda_e\}$ Where.

 $Q \subseteq Q_e$, q_0 q_0 is the initial state

 $\delta_e: Q_e \times \Sigma \to 2^{Q_e}$ is a transition function

 $\lambda_e: Q_e \times Z \to Z$ is a transition function $\lambda_e: Q_e \to \mathbb{B}_3$ is a mapping function, such that:

- for every non-empty finite trace $\alpha \in \Sigma^*$, we have $\lambda_e(\delta_e(q_0, \alpha)) = \lambda(\delta(q_0, \alpha))$.
- ② at every $q \in Q_e$ we have $|\mathcal{I}^q| = 1$.

Synchronous Monitoring

Extended LTL₃ Monitor Construction

Transition

A transition t_i^i from monitor state q_i to monitor state q_j is defined as follows:

$$t'_j = \{s \in \Sigma \mid \delta(q_i, s) = q_j\}$$

Indistinguishable Transitions

We say a transition t_1 is indistinguishable from another transition t_2 , and denote it by *indisting*?(t_1 , t_2), if the following holds:

$$\exists s \in t_2$$
. covered? (s, t_1)

Covered State

We say state s is covered by transition t, and we denote it by covered? (s, t), if we have:

$$\forall ap \in AP. \ \exists s' \in t. \ (ap \in s \Leftrightarrow ap \in s')$$

Extended LTL3 Monitor Construction

Shokoufeh Kazemlou

Motivatio

Monito

Problem Statemer

Relate

Contribution

Synchronous Monitoring

Asynchronou Monitoring

Conclusion

Future Work

```
Input: \mathcal{M}^{\varphi} = \{\Sigma, Q, q_0, \delta, \lambda\}
       Output: \mathcal{M}_{e}^{\varphi} = \{\Sigma, Q_{e}, q_{0}, \delta_{e}, \lambda_{e}\}
 1 0 -- 0
 2 for every q_i \in Q do
              Obtain the set of outgoing transitions T_i from monitor state q_i
               for every t_i^i \in T_i do
                                                                                                                                                   /* t_i^i = \{s \in \Sigma \mid \delta(q_i, s) = q_j\} */
                        /* N<sub>i</sub> denotes the number of transitions from which t<sup>i</sup><sub>i</sub> is indistinguishable, and K<sub>i</sub> denotes the number of transitions
                          indistinguishable from t\ */
                       N_j \leftarrow 0, K_j \leftarrow 0
                       for every t_k^i \in T_i \setminus \{t_i^i\} do
                               If indisting f(t_i^i, t_k^i) then
                                       N_i \leftarrow N_i + 1
                               If indisting f(t_h^i, t_s^i) then
10
                                       K_i \leftarrow K_i + 1
11
                       if N_i > 0 then
12
                               \{t_{i1}^i, t_{i2}^i\} \leftarrow SPLIT(t_i^i, N_i, K_i, T_i)
13
                                T_i \leftarrow \{t_{i1}^i, t_{i2}^i\} \cup T_i \setminus \{t_i^i\}
14
                               Q_e \leftarrow \{q_{i1}, q_{i2}\} \cup (Q_e \setminus \{q_i\})
15
                               if i z i then
16
                                        for every t_k^i \in T_i do
                                           \delta(q_i, s) = q_k for every s \in t_k^i
18
                                        \delta(q_{i1}, s) \leftarrow \delta(q_i, s) for every s \in \Sigma
19
                                        \delta(q_{j2}, s) \leftarrow \delta(q_i, s) for every s \in \Sigma
20
                               if i = i then
21
                                        for every tile To do
22
                                          \delta(q_{j1}, s) = q_k for every s \in t_k^i
                                       \delta(q_{i2}, s) \leftarrow \delta(q_{i1}, s) for every s \in \Sigma
24
                                \lambda_e(q_{i1}) \leftarrow \lambda(q_i)
25
                               \lambda_e(q_{i2}) \leftarrow \lambda(q_i)
26
27
                                \delta_{e}(q_{i}, s) \leftarrow q_{i} \text{ for every } s \in t_{i}^{i}
28
                               \lambda_e(q_j) \leftarrow \lambda(q_j)
```

Algorithm 3: Extended LTL₃ monitor Construction

Verification Shokoufeh

Motivati

111011141

Monito

Statem

Relate

VVOIK

Synchronous Monitoring

Asynchrono

Conclusi

Future

Automata-based Synchronous Monitoring

Example

Consider the LTL₃ monitor for $\varphi = \mathbf{F}(a \wedge b)$.

The set of outgoing transitions from monitor state q_0 is $T_0 = \{t_0^0, t_{\perp}^0\}$ where:

$$t_0^0 = \{\{a\}, \{b\}, \emptyset\}$$

 $t_{\top}^0 = \{\{a, b\}\}$

We can verify that t_0^0 is indistinguishable from t_{\top}^0 . Therefore we split transition t_0^0 into two transitions $t_{01}^0 = \{\{a\}\}$ and $t_{02}^0 = \{\{b\}, \emptyset\}$.

Shokoufeh Kazemlou

Motivatio

Monito

Problem Statemer

Related Work

Contribu

Synchronous Monitoring

Asynchrono Monitoring

Conclusion

Work

Example

Note that we have

$$\lambda(q_{01})=\lambda(q_0)=? \ \lambda(q_{02})=\lambda(q_0)=?$$

Shokoufeh Kazemlou

Motivation

Problem

Statemen

Relate Work

Contributi

Synchronous Monitoring

Asynchrono Monitoring

Conclusion

Work

Example

Note that we have

$$\lambda(q_{01}) = \lambda(q_0) = ?$$

 $\lambda(q_{02}) = \lambda(q_0) = ?$

Shokoufeh Kazemlou

Motivation

. . .

Problem

Stateme

Work

Contribution

Synchronous Monitoring

Asynchronou Monitoring

Conclusio

Work

Example

Note that we have

$$\lambda(q_{01}) = \lambda(q_0) = ?$$

 $\lambda(q_{02}) = \lambda(q_0) = ?$

Shokoufe

Motivation

LTL₃

Probler Statem

Relate Work

Contributio

Synchronous Monitoring

Asynchrono Monitoring

Conclusi

Work

Automata-based Synchronous Monitoring

Example

Suppose $s = \{a, b\}$ is the current global state of the system and Let $\varphi = \mathbf{F}(a \wedge b)$. The initial state of the monitors is as follows:

sample

	а	b	LS_i
M_1	true	Ц	$\{q_{02},q_{ op}\}$
M_2	 	true	$\{oldsymbol{q}_{01},oldsymbol{q}_{ op}\}$
M_3	 	 	$\{q_{01}, q_{02}, q_{\top}\}$
M_{4}	Ь	Ь	$\{a_{01}, a_{02}, a_{\pm}\}$

round 1

	LS_i^2
M_1	crashed
M_2	$\{oldsymbol{q}_{ op}\}$
M_3	$\{q_{01}, q_{\top}\}$
M_4	$\{q_{01}, q_{\top}\}$

round 2

	LS_i^3
M_1	crashed
M_2	crashed
M_3	{ <i>q</i> ⊤}
M_4	$\{q_{01}, q_{\top}\}$

round 3

	LS_i^4
<i>M</i> ₁	crashed
M_2	crashed
M_3	{ q ⊤}
M_4	{ <i>q</i> ⊤}

Presentation outline

okoufeh Motivatio

2 LTL₃ Monitor

Problem Statement

Related Work

Contributions

Synchronous Monitoring

Asynchronous Monitoring

Conclusion

Future Work

Kazem

Motivati

LTL₃ Monito

Problen Stateme

Relate Work

Synchronou

Asynchronou Monitoring

Future

Shokoufe

Motivat

wouvac

LTL₃

Probler Statem

Relate

Contributio

Monitoring

Asynchronou Monitoring

Conclusio

Hutun Work

Asynchronous Monitoring

Asynchronous Monitoring

The system under inspection produces a finite trace $\alpha = s_0 s_1 \cdots s_k$, and is inspected with respect to an LTL formula φ by a set $\mathcal{M} = \{M_1, M_2, \cdots, M_n\}$ of asynchronous distributed monitors.

Local Monitor Algorithm

Data: Extended LTL3 monitor $\mathcal{M}_e^{\varphi} = \{\Sigma, Q_e, q_0, \delta_e, \lambda_e\}$ and state s_j

Result: a set of monitor states

1 Let $S_i^{s_j}$ be the initial concrete local state of the monitor;

2 $Snap_i^{s_j} \leftarrow \mathcal{S}_i^{s_j}$

3 emit $V_i^{s_j} = \mu_2(\mu_1(Snap_i^{s_j}, \mathcal{M}^{\varphi}))$

Kazemk

Motivatio

Monitor

Statem

Relate

Contributio

Synchrono

Asynchronou Monitoring

Conclusion

Future

Asynchronous Monitoring

Example

Let $\varphi = \mathbf{F}(a \wedge b)$ whose Extended LTL₃ monitor is given below. Suppose monitors are at monitor state q_0 , and let $s = \{a, b\}$ be the global state of the system.

Shokoufe

Motivatio

....

Monito

Stateme

Relate

Contributio

Monitoring

Asynchronou

Monitoring

Conclusion

Future Work

Example

The following tables represent each monitor M_i 's initial local snapshot $Snap_i^s$ and its verdict set V_i calculated based on only $Snap_i^s$.

Snap ₁			
	<i>M</i> ₁	M_2	M_3
а	true	Ц	Ц
b	Ц	Ц	Ц
<i>V</i> ₁	$\{q_1,q_{ op}\}$		

Snap ₂					
	M_1	<i>M</i> ₂	M_3		
а	Ц	Ц	4		
b	Ц	true	4		
<i>V</i> ₂	$\{q_0,q_{ op}\}$				

$Snap_3$					
	<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₃		
а	Ц	Ц	1		
b	Ц	Ц	Ц		
<i>V</i> ₃	$\{q_0, q_1, q_{\top}\}$				

$$V_1 \cap V_2 \cap V_3 = q_{\top}$$
.

Presentation outline

Conclusion

Shokoufe

Motivation

.

Problem

Related

Synchrono Monitorina

Asynchrono Monitoring

Conclusion

Future Work

Conclusion

Conclusion

- We proposed a synchronous monitoring algorithm that copes with f crash failures in a distributed setting. The algorithm solves the synchronous monitoring problem in f+1 rounds of communication and reduces the message size overhead from |AP| to $\log(m_q)$.
- We proposed an algorithm for distributed crash-resilient asynchronous RV that consistently monitors the system under inspection with no communication between monitors.

Presentation outline

Motivation

2 LTL₃ Monitor

Problem Statement

Related Work

6 Contributions

Synchronous Monitoring

Asynchronous Monitoring

8 Conclusion

9 Future Work

Future Work

Shokoufeh

Motivation

1 ---

Monito

Statem

Relate Work

> Synchronou Monitoring

Asynchrono Monitoring

Conclusio

Future Work

Future Work

Futur Work

- To address more severe faults, e.g., Byzantine failures.
- To have monitors observe, communicate, and emit verdicts between any two global states.
- To extend our results to the case where the input to the monitors is a sequence of global states and each monitor produces a sequence of verdict sets, one per each global state