REKURENSI

ANALISIS ALGORITMA DAN KOMPLEKSITAS

DIVIDE AND CONQUER

- Adalah teknik mendisain algoritma dengan cara:
 - Divide: Memecah instance menjadi beberapa subinstance kecil terhadap permasalahan yang sama
 - Conquer: Menyelesaikannya secara rekursif dan independen
 - Combine: Menggabungkan solusi-solusi tersebut untuk mendapatkan penyelesaian dari permasalahan awalnya
- Recursive case: sub-problem yang diselesaikan secara rekursif.
- Base case: sub-problem sudah cukup kecil untuk diselesaikan.
- Contoh: metode yang dipakai oleh kantor pos dalam mengirimkan surat.

BENTUK UMUM D&C

Bentuk umum D&C:

```
function DC(x) if x cukup kecil dan sederhana then return(adhoc) else Bagi x menjadi instances x_1, x_2, ..., x_l. for i = 1 to I do y_i = DC(x_i) Gabungkan y_i untuk mendapatkan solusi y untuk x. return y
```

Tiga kondisi :

- Harus benar dalam menentukan base case.
- Harus memungkinkan untuk membagi instance menjadi sub-instance dan menggabungkannya secara efisien.
- Sub-instances sebaiknya berukuran hampir sama.

CONTOH: MERGESORT

Input: 10 2 5 3 7 13 1 6

BEBERAPA ASPEK D&C

Keuntungan:

- Memecahkan masalah yang sulit
- Efisiensi algoritma
- Paralelisme
- Perhitungan yang lebih akurat

Isu implementasi:

- Rekursi → memilih base case
- Stack, queue → ukuran stack
- Bagaimana menghitung running time? → relasi rekurensi

REKURENSI

- Jika algoritma memuat panggilan rekursif ke dirinya sendiri, running time-nya dapat digambarkan dengan rekurensi.
- Rekurensi: persamaan/pertidaksamaan yang menggambarkan suatu fungsi sebagai nilai-nilainya dengan input yang lebih kecil.
 - Contoh: worst-case running time dari Merge-Sort:

$$T(n) = \begin{cases} \theta(1) & \text{if } n = 1, \\ 2T(n/2) + \theta(n) & \text{if } n > 1. \end{cases}$$

- Penyelesaiannya adalah $T(n) = \Theta(n \mid g \mid n)$.
- Running time T(n) hanya terdefinisi untuk bilangan bulat n, karena ukuran input selalu bilangan bulat untuk hampir semua algoritma.
- Kadang-kadang fungsi floors, ceilings, dan kondisi batas dapat diabaikan pada saat menyelesaikan rekurensi.

BEBERAPA METODE PENYELESAIAN

Substitusi

 Menebak batas, kemudian membuktikan dengan induksi matematika.

Metode pohon-rekursi

 Mengkonversi rekurensi menjadi pohon yang node-nya merepresentasikan biaya.

Metode master

Mencari batas rekursi dengan bentuk:

```
T(n) = aT(n/b) + f(n)
 a \ge 1, b > 1, f(n) adalah fungsi yang diberikan.
```

 Mencirikan algoritma D&C dengan a sub-problem, masing-masing berukuran 1/b dari ukuran awal, dengan langkah pembagian dan penggabungan memerlukan waktu f(n).

METODE SUBSTITUSI

- Terdiri dari 2 langkah:
 - Tebak bentuk penyelesaian.
 - Gunakan induksi matematika untuk menentukan konstanta dan menunjukkan bahwa penyelesaian bisa dipakai.
- Ketika mengaplikasikan hipotesis induktif ke nilai-nilai yang kecil, tebakan tersebut kita substitusikan

 metode substitusi.
- Powerful, tetapi harus mampu menebak bentuk solusi.
- Dapat dipakai untuk menentukan batas bawah maupun batas atas rekurensi.

- Jika f(n) adalah jumlah maksimum node daun pada pohon biner dengan tinggi n, maka f(n) = 2 f(n-1), f(0)=1.
 Buktikan bahwa f(n) = O(2ⁿ).
- Bukti:
 - Base case: $f(1)=2 f(0) = 2 \times 1 = 2 \le c 2^1$ dengan $c \ge 1$.
 - Langkah induksi:
 - Misalkan $f(j) = O(2^{j})$ berlaku untuk j = n-1.
 - Maka (substitusi ke rekurensi awal):

$$f(n) = 2 f(n-1)$$

 $\leq 2 \times c \times (2^{n-1})$
 $= c \cdot 2^n$

berlaku untuk semua $n \ge 1$ dan $c \ge 1$.

Maka terbukti bahwa f(n) = O(2ⁿ).

Tentukan batas atas dari rekurensi:

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$
, dengan $T(1)=1$

- Tebakan solusi: T(n)=O(n lg n)
- Harus dibuktikan bahwa terdapat konstanta positif c>0 dan n₀ sedemikian hingga T(n)≤cn Ig n untuk semua n≥n₀
- Base case:
 - Jika n=1, $T(1) \le c 1 \lg 1=0 \rightarrow tidak tepat karena <math>T(1)=1$
 - Kita dapat mengganti T(1) dengan T(2)=4 dan T(3)=5 sebagai base case:
 - $T(2) \le c_1 2 \lg 2$ untuk sebarang pilihan $c_1 \ge 2$
 - $T(3) \le c_1 3 \log 3$ untuk sebarang pilihan $c_1 \ge 2$
 - Maka, kita dapat memilih $c_1 = 2$ and $n_0 = 2$

- Langkah induksi:
 - Misalkan $T(\lfloor n/2 \rfloor) \le c_2 \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$ untuk $\lfloor n/2 \rfloor \rightarrow$ mengasumsikan bahwa $T(n)=O(n \lg n)$ berlaku
 - Maka {substitusi ke rekurensi awal $T(n) = 2T(\lfloor n/2 \rfloor) + n$ }:

```
T(n) \le 2(c_2 \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n

\le c_2 n \lg(n/2) + n

= c_2 n \lg n - c_2 n \lg 2 + n

= c_2 n \lg n - c_2 n + n

\le c_2 n \lg n
```

- Baris terakhir berlaku asalkan c₂ ≥1
- Terdapat konstanta positif $c = \max\{2, 1\}=2$ dan $n_0 = 2$ sedemikian hingga $T(n) \le cn$ lg n untuk semua $n \ge n_0$
- Maka terbukti bahwa $T(n)=O(n \lg n)$

BAGAIMANA CARA MENEBAK SOLUSI?

- Tidak ada metode tertentu

 pengalaman dan kreatifitas.
- Dapat dilihat dari kemiripan dengan rekurensi yang sudah ada solusinya.
 - Misal: $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n \rightarrow dapat ditebak bahwa solusinya adalah <math>T(n) = O(n \lg n)$ karena ketika n besar, perbedaan antara $\lfloor n/2 \rfloor dan \lfloor n/2 \rfloor + 17$ tidak signifikan.
- Dapat juga dengan memilih batas bawah/atas yang loose, kemudian sedikit demi sedikit memperbaikinya.
 - Contoh: $T(n) = 2T(\lfloor n/2 \rfloor) + n$
 - Dapat dimulai dengan batas bawah $T(n) = \Omega(n)$ karena terdapat n dalam rekurens.
 - Batas atas dapat dipilih $T(n) = O(n^2)$.
 - Batas bawah dinaikkan sedikit demi sedikit, batas atas diturunkan sedikit demi sedikit sehingga didapatkan $T(n) = \theta$ (n lg n)
- Juga dapat menggunakan pohon rekurensi > cara berikutnya

LATIHAN

 Buktikan bahwa T(n) = O(lg n) untuk T(n) = T(n/2)+1 dengan T(1) = 1.

METODE POHON REKURSI

Dapat digunakan untuk mendapatkan tebakan yang bagus yang kemudian diverifikasi dengan metode substitusi.

 Pada metode ini, penyederhanaan dilakukan untuk mempermudah penyelesaian.

Dapat juga digunakan sebagai bukti langsung penyelesaian suatu rekurensi.

Prinsip:

- Setiap node merepresentasikan cost dari sub-problem tunggal dalam pemanggilan rekursif.
- Pertama, kita jumlahkan cost dari semua node pada setiap level pohon.
- Kemudian, kita jumlahkan cost dari semua level.

Bentuk rekurensi dari running time mergesort adalah: T(n) = 2T(n/2) + n, T(1) = O(1).

Cost dari setiap level pohon adalah n.

Depth dari tree:

- Untuk level i: ukuran sub-problem n/2ⁱ
- Level terakhir: n/2ⁱ = 1 berarti i = lg n.

Jumlah cost setiap level konstan, yaitu n.

Berarti terdapat (lg n + 1) level, yang masing-masing jumlah cost-nya adalah n.

Maka: $T(n) = O(n \lg n)$

Kemudian diperlukan verifikasi dari tebakan dengan metode substitusi.

Selesaikan rekurensi: T(n) = T(n/3)+T(2n/3)+O(n).

Pohon rekursi:

Total: $O(n \lg n)$

Tinggi pohon:

- Path terpanjang untuk mencapai level terbawah dilalui pada node paling kanan pada setiap level: n → 2/3 n → (2/3)²n → (2/3)³n → ... → 1
- Maka: $1 = (2/3)^i n \rightarrow i = \log_{3/2} n$.

Biaya untuk setiap level: cn

Total biaya : cn (1 + $\log_{3/2} n$) = O(cn $\log_{3/2} n$) = O(n lg n)

Pembuktian dengan metode substitusi (langsung ke langkah induksi):

• Misal berlaku untuk j = n/3 dan j = 2/3, maka:

$$T(n) \leq T(n/3) + T(2n/3) + cn$$

$$\leq d(n/3)\lg(n/3) + d(2n/3)\lg(2n/3) + cn$$

$$= (d(n/3)\lg n - d(n/3)\lg 3)$$

$$+ (d(2n/3)\lg n - d(2n/3)\lg(3/2)) + cn$$

$$= dn\lg n - d((n/3)\lg 3 + (2n/3)\lg(3/2)) + cn$$

$$= dn\lg n - d((n/3)\lg 3 + (2n/3)\lg 3 - (2n/3)\lg 2) + cn$$

$$= dn\lg n - dn(\lg 3 - 2/3) + cn$$

$$\leq dn\lg n$$
untuk $d \geq c/(\lg 3 - (2/3))$.

Selesaikan rekurensi: $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$

Penyederhanaan:

- Abaikan fungsi floor pada rekurensi
- Anggap bahwa n merupakan hasil kali dari 4, sehingga ukuran sub-problem merupakan bilangan bulat.

Tulis rekurensi sebagai $T(n) = 3T(n/4) + cn^2$

PEMBENTUKAN POHON REKURSI

$$T(n) = 3T(n/4) + cn^2$$

Ekspansi langkah demi langkah pohon rekursi:

MENENTUKAN COST (BIAYA) DARI POHON

Ukuran sub-problem untuk node pada level i adalah $n/4^{i}$.

- Ukuran sub-problem sama dengan 1 (level terendah) pada saat n/4ⁱ = 1 → n = 4ⁱ → i = log₄ n.
- Maka, pohon terdiri dari $\log_4 n + 1$ level (0, 1, 2,..., $\log_4 n$).

Setiap node pada level i memiliki cost $c(n/4^i)^2$ untuk $0 \le i \le \log_4 n$ -1.

Maka, total cost semua node pada level i adalah $3^i *c(n/4^i)^2 = (3/16)^i cn^2$.

Level terakhir, yaitu level $\log_4 n$, memiliki $3^{\log_4 n} = n^{\log_4 3}$ nodes.

Cost dari keseluruhan pohon:

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + (\frac{3}{16})^{2}cn^{2} + \dots + (\frac{3}{16})^{\log_{4}n - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n - 1} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$< \sum_{i=0}^{\infty} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{1}{1 - (3/16)}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{16}{13}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= O(n^{2})$$

Maka, tebakan untuk penyelesaian $T(n)=O(n^2)$.

Note: $\sum_{k=0}^{\infty} x^k = 1/(1-x)$

VERIFIKASI KEBENARAN DARI TEBAKAN

Selanjutnya dapat digunakan metode substitusi untuk memverifikasi bahwa tebakan kita benar.

- Akan ditunjukkan bahwa T(n) $\leq dn^2$ untuk suatu konstanta d > 0 dan $n \geq n_0$. Base case:
 - Untuk n = 1 → T(n) = 3T(⌊n/4⌋) + cn², diasumsikan T(0) = 0
 T(1) = 3T(0) + c 1 ≤ d (1)² → berlaku untuk d > 0, d ≥ c.

Langkah induksi:

Asumsikan bahwa T(j) ≤ dj² berlaku untuk suatu j = n/4

$$T(n) \le 3T(\lfloor n/4 \rfloor) + cn^2$$

$$\le 3d\lfloor n/4 \rfloor^2 + cn^2$$

$$\le 3d(n/4)^2 + cn^2$$

$$= 3/16dn^2 + cn^2$$

$$\le dn^2,$$

dengan $d \ge (16/13)c$.

Dengan demikian, terbukti bahwa $T(n)=O(n^2)$.

GARIS BESAR POHON REKURENSI UNTUK BENTUK TERTENTU

Misalkan terdapat rekurensi: T(n) = a T(n/b) + f(n)

• Contoh di bawah: $T(n) = 3T(n/4) + cn^2$

Pohon rekursinya akan berbentuk sbb:

- Root akan memuat nilai f(n).
- Jumlah child adalah a, masing-masing memuat nilai f(n/b). Kemudian, setiap node pada child ini mempunyai child dengan nilai f(n/b²).
- Secara umum, level i terdiri dari ai node dengan nilai f(n/bi).

- Maka jumlah cost pada level i adalah aⁱf(n/bⁱ).
- Jika diasumsikan bahwa $T(1) = f(1) = \Theta(1)$, maka depth dari tree adalah: $\log_b n$, jadi terdapat: $\log_b n+1$ level.

Maka: T (n) = f (n)+a f(n/b)+a² f (n/b²)+··+aⁱ f(n/bⁱ)+··+a^L f (n/b^L)

- L = log_bn adalah depth dari pohon.
- Karena f(1) = Θ (1), maka term terakhir dari jumlahan adalah: Θ (α^L) = Θ ($\alpha^{\log_b n}$) = Θ ($n^{\log_b a}$).

METODE MASTER

- Algoritma-algoritma divide and conquer sering menghasilkan rekurensi untuk running time dalam bentuk: T(n) = aT(n/b) + f(n), dengan a dan b konstanta dan f(n) fungsi lain dari n.
- Master Method (Metode Master) dapat dimanfaatkan untuk menyelesaikan rekurensi dengan bentuk demikian jika f(n) berupa polinomial sederhana.
- Cara penyelesaiannya berdasarkan Teorema Master.
 - Merupakan kasus khusus dari penggunaan pohon rekursi.
- Teorema Master tidak bisa digunakan untuk semua fungsi f(n) → Metode Master kurang 'powerful' dibandingkan pohon rekurensi
 - Tidak semua T(n) berbentuk seperti T(n) = aT(n/b) + f(n).
- Jika teorema dapat digunakan, rekurensi dapat diselesaikan dengan cara cepat.

TEOREMA MASTER

Misalkan a ≥ 1 dan b > 1 adalah konstanta, f(n) suatu fungsi dan T(n) didefinisikan sebagai bilangan bulat non-negatif dengan rekurensi:

$$T(n) = a T(n/b) + f(n)$$

Maka T(n) memiliki batas asimtotik sbb:

- Jika $f(n) = O(n^{\log_b a k})$ utk suatu k > 0, maka $T(n) = O(n^{\log_b a})$.
 - f(n) dibandingkan dengan nlogba, dan ternyata nlogba lebih besar.
- Jika $f(n) = \Theta(n^{\log_b a})$, maka $T(n) = \Theta(n^{\log_b a} \log n)$.
 - f(n) dibandingkan dengan n^{log_b a}, dan ternyata keduanya memiliki ukuran yang sama.
- Jika $f(n) = \Omega(n^{\log_b a + k})$ utk suatu k > 0, dan jika a $f(n/b) \le c$ f(n) untuk suatu konstanta c < 1 dengan n cukup besar, maka $T(n) = \Theta(f(n))$.
 - f(n) dibandingkan dengan n^{log_b a}, dan ternyata f(n) lebih besar.

Syarat-syarat dapat dipakainya teorema Master:

- Pada kasus 1, selain f(n) harus lebih kecil dari n logo a, f(n) juga harus lebih kecil secara polinomial. Jadi f(n) harus lebih kecil secara asimtotik dengan faktor nk untuk suatu k > 0.
- Pada kasus 3, selain f(n) harus lebih besar dari n log₀ a, f(n) juga harus lebih besar secara polinomial, juga harus memenuhi kondisi bahwa a f(n/b) ≤ c f(n).

Teorema Master tidak dapat dipakai jika:

- f(n) lebih kecil dari n logo a, tetapi f(n) tidak lebih kecil secara polinomial.
- f(n) lebih besar dari n log₀ a, tetapi f(n) tidak lebih besar secara polinomial atau tidak memenuhi kondisi a f(n/b) ≤ c f(n).

Misalkan terdapat rekurensi T(n) = 9 T(n/3) + n.

Maka a = 9, b = 3, f(n) = n, sehingga:

$$n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$$

Karena $f(n) = O(n^{\log_3 9 - k})$ dengan k = 1, kita dapat menggunakan kasus 1 Teorema Master.

Jadi penyelesaiannya adalah $T(n) = \Theta(n^2)$.

Misalkan terdapat rekurensi T(n) = T(2n/3) + 1.

Maka a = 1, b = 3/2, f(n) = 1, sehingga:

$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1.$$

Karena $f(n) = O(n^{\log_b a})$, kita dapat menggunakan kasus 2 Teorema Master.

Jadi penyelesaiannya adalah $T(n) = \Theta(1 \times lg \cdot n) = \Theta(lg \cdot n)$.

Misalkan terdapat rekurensi $T(n) = 2 T(n/2) + n \lg n$.

Maka a = 2, b = 2, $f(n) = n \lg n$, sehingga:

$$n^{\log_b a} = n^{\log_2 2} = n$$

Apakah f(n) secara polinomial lebih besar daripada n logь a?

Rasio $f(n) / n^{\log_b a} = (n \lg n) / n = \lg n$, secara asimtotik lebih kecil dibandingkan dengan n^k untuk k > 0.

Jadi teorema Master tidak dapat dipakai untuk menyelesaikan permasalahan ini.

LATIHAN

- Gunakan pohon rekursi untuk menentukan upper bound dari rekurensi T(n) = 2T(n - 1) + 1, T(1) = 1. Gunakan metode substitusi untuk memverifikasi jawaban Anda.
- 2. Gunakan metode master untuk mencari tight asymptotic bound dari rekurensi T(n) = 2T(n/4) + 1.