CMPT-379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Formal Language Theory

• Σ is the alphabet, e.g. $\Sigma = \{a, b\}$

• Σ^* is the set of all strings with alphabet Σ A good example of Σ^* is the short story *The Library of Babel* by Jorge Luis Borges

• A (formal) Language is a set of strings

Defining the Set of Regular Languages

- A **regular language** is a set of strings constructed as follows:
 - ϕ is a RL
 - ∀x ∈ Σ ∪ ϵ , {x} is a RL
 - If L_1 and L_2 are RLs then the following are RLs,
 - 1. $L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$
 - 2. $L_1 \cup L_2$
 - 3. L_1^*

Programming Languages and Formal Language Theory

- We ask the question: Does a particular formal language describe some key aspect of a programming language
- Then we find out if that language isn't in a particular language class

Programming Languages and Formal Language Theory

• For example, if we abstract some aspect of the programming language structure to the formal language:

 $\{ww^R \mid \text{ where } w \in \{a,b\}^*, w^R \text{ is the reverse of } w\}$ we can then ask if this language is a regular language

• If this is false, i.e. the language is not regular, then we have to go beyond regular languages

Recursion in Regular Languages

• Consider a regular expression for arithmetic expressions:

$$2 + 3 * 4$$

 $8 * 10 + -24$
 $2 + 3 * -2 + 8 + 10$

$$^s*-?\s*\d+\s*((\+|*)\s*-?\s*\d+\s*)$$

• Can we compute the meaning of these expressions?

Recursion in Regular Languages

 Construct the finite state automata and associate the meaning with the state sequence

 However, this solution is missing something crucial about arithmetic expressions – what is it?

Do Programming Languages belong to Regular Languages

- Consider the following arithmetic expressions
 - -(((2)+(3))*(4))
 - -((8)*((10)+(-24)))
- Map ($\rightarrow a$ and) $\rightarrow b$. Map everything else to ϵ .
- This results in strings like *aaababbabb* and *aabaababbb*
- What is a good description of this language? Let's call it L

Pumping Lemma proofs

- Is *L* a regular language?
- To show something is not a regular language, we use the pumping lemma
- For any infinite set of strings generated by a finite-state machine if you consider a string that is long enough from this set, there has to be a loop which visits the same state at least twice (from *the pigeonhole principle*)
- Thus, in a regular language L, there are strings x, y, z such that $xy^nz \in L$ for $n \ge 0$ where $y \ne \epsilon$

Pumping Lemma proofs

• Let L' be the intersection of L with the language L_1 defined by the regular expression a^*b^*

- Intersect the set $L = \{\epsilon, ab, abab, aabb, \ldots\}$ with $L_1 = \{\epsilon, a, b, aa, ab, aab, abb, bb, \ldots\}$
- Recall that RLs are closed under intersection, so L' must also be a RL. In fact, we can describe L' as the language a^nb^n for $n \ge 0$

Pumping Lemma proofs

- For any choice of y (consider a^i or a^ib or b^i) if we multiply y^n for $n \ge 0$ we get strings that are not in L'
- For example, for a string aaabbb if we pick y = ab and pick n = 2 we get a string aaababbb which is not in L'
- ullet Hence, the pumping lemma leads to the conclusion that L' is **not** regular
- This implies that L is not regular since RLs are closed under intersection
- What lies beyond the set of regular languages?

The Chomsky Hierarchy

- **unrestricted** or **type-0** grammars, generate the *recursively enumerable* languages, automata equals *Turing machines*
- **context-sensitive** or **type-1** grammars, generate the *context-sensitive* languages, automata equals *Linear Bounded Automata*
- **context-free** or **type-2** grammars, generate the *context-free* languages, automata equals *Pushdown Automata*
- **regular** or **type-3** grammars, generate the *regular* languages, automata equals *Finite-State Automata*

The Chomsky Hierarchy A system of grammars G = (N, T, P, S)

- T is a set of symbols called terminal symbols. Also called the alphabet Σ
- N is a set of non-terminals, where $N \cap T = \emptyset$ Some notation: $\alpha, \beta, \gamma \in (N \cup T)^*$ N is sometimes called the set of variables V
- *P* is a set of production rules that provide a finite description of an infinite set of strings (a language)
- S is the start non-terminal symbol (similar to the start state in a FSA)

Languages

- Language defined by *G*: *L*(*G*)
 - L(G): set of strings $w \in T^*$ derived from S
 - $S \Rightarrow^+ w$ (derives in 1 or more steps using rules in P)
 - w is a sentence of G
 - Sentential form: $S \Rightarrow^+ \alpha$ and α contains a mix of terminals and non-terminals
- Two grammars G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$

The Chomsky Hierarchy:
$$G = (N, T, P, S)$$
 where, $\alpha, \beta, \gamma \in (N \cup T)^*$

- unrestricted or type-0 grammars: $\alpha \rightarrow \beta$, such that $\alpha \neq \epsilon$
- context-sensitive or type-1 grammars: $\alpha A\beta \rightarrow \alpha \gamma \beta$, such that $\gamma \neq \epsilon$
- context-free or type-2 grammars: $A \rightarrow \gamma$
- **regular** or **type-3** grammars: $A \rightarrow a \ B$ or $A \rightarrow a$

Regular grammars: right-linear CFG:

$$L(G) = \{a^*b^* \mid n \ge 0\}$$

$$A \rightarrow a A$$
 (1)

$$A \rightarrow \epsilon$$
 (2)

$$A \rightarrow b B \tag{3}$$

$$B \rightarrow b B \tag{4}$$

$$B \rightarrow \epsilon$$
 (5)

• Input: bb

• Derivation using sentential forms: $A \Rightarrow bB \Rightarrow bbB \Rightarrow bb\epsilon = bb$

Context-free grammars: $L(G) = \{a^n b^n \mid n \ge 0\}$

$$S \rightarrow a S b$$

$$S \rightarrow \epsilon$$

- Input: *aabb*
- Derivation using sentential forms:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aa\epsilon bb = aabb$$

Context-free grammars: $L(G) = \{a^n \mid n \ge 0\}$

$$S \rightarrow S S$$

$$S \rightarrow a$$

- Input: aaaa
- Derivation using sentential forms:

$$S \Rightarrow SS \Rightarrow aS \Rightarrow aSS \Rightarrow aaSS \Rightarrow aaaS \Rightarrow aaaa$$

But what about another derivation:

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow aSSS \Rightarrow ... \Rightarrow aaaa$$

Key problem with CFGs: ambiguity

Context-sensitive grammars: $L(G) = \{a^n b^n \mid n \ge 1\}$

$$S \rightarrow SBC$$

$$S \rightarrow aC$$

$$aB \rightarrow aa$$

$$CB \rightarrow BC$$

$$Ba \rightarrow aa$$

$$C \rightarrow b$$

Context-sensitive grammars: $L(G) = \{a^n b^n \mid n \ge 1\}$

```
S_1
S_2 B_1 C_1
S_3 B_2 C_2 B_1 C_1
a_3 C_3 B_2 C_2 B_1 C_1
a_3 B_2 C_3 C_2 B_1 C_1
a_3 a_2 C_3 C_2 B_1 C_1
a_3 a_2 C_3 C_2 B_1 C_1
a_3 a_2 C_3 B_1 C_2 C_1
a_3 a_2 B_1 C_3 C_2 C_1
a_3 a_2 a_1 C_3 C_2 C_1
a_3 a_2 a_1 b_3 b_2 b_1
```

Unrestricted grammars: $L(G) = \{a^{2i} \mid i \ge 1\}$

$$S \rightarrow A C a B$$

$$C a \rightarrow a a C$$

$$C B \rightarrow D B$$

$$C B \rightarrow E$$

$$a D \rightarrow D a$$

$$A D \rightarrow A C$$

$$a E \rightarrow E a$$

$$A E \rightarrow \epsilon$$

Unrestricted grammars: $L(G) = \{a^{2i} \mid n \ge 1\}$

```
S
A C a B
A a a C B
A a a E
A a E a
A E a a
a a
```

Unrestricted grammars: $L(G) = \{a^{2i} \mid i \ge 1\}$

- A and B serve as left and right end-markers for sentential forms (derivation of each string)
- C is a marker that moves through the string of a's between A and B, doubling their number using C a → a a C
- When C hits right end-marker B, it becomes a D or E by $C \ B \to D \ B$ or $C \ B \to E$
- If a D is chosen, that D migrates left using $a D \rightarrow D a$ until left end-marker A is reached

Unrestricted grammars: $L(G) = \{a^{2i} \mid i \ge 1\}$

- ullet At that point D becomes C using $A\ D \to A\ C$ and the process starts over
- Finally, E migrates left until it hits left end-marker A using $a \to E a$
- Note that $L(G) = \{a^{2i} \mid i \ge 1\}$ can also be written as a context-sensitive grammar
- But consider G', where $L(G') = \{a^{2i} \mid i \ge 0\}$ can only be an unrestricted grammar. Note that $a^0 = \epsilon$

Examples of Languages in the Chomsky Hierarchy

- **context-sensitive** grammars: 0^i , i is not a prime number and i > 0
- **indexed** grammars: $0^n 1^n 2^n \dots m^n$, for any fixed m and $n \ge 0$
- **context-free** grammars: $0^n 1^n$ for $n \ge 0$
- **deterministic context-free** grammars: $S' \to S$ c, $S \to S$ $A \mid A$, $A \to a$ S $b \mid ab$: the language of "balanced parentheses"
- regular grammars: $(0|1)^*00(0|1)^*$

Language	Automaton	Grammar	Recognition	Dependency
Recursively Enumerable Languages	Turing Machine	Unrestricted Baa → A	Undecidable	Arbitrary
Context- Sensitive Languages	Linear-Bounded	Context- Sensitive At → aA	NP-Complete	Crossing
Context- Free Languages	Pushdown (stack)	Context-Free S → gSc	Polynomial	Nested
Regular Languages	Finite-State Machine	Regular A → cA	Linear	Strictly Local

Complexity of Parsing Algorithms

- Given grammar G and input x, provide algorithm for: Is $x \in L(G)$?
 - unrestricted: undecidable
 - context-sensitive: NSPACE[n] linear non-deterministic space
 - indexed grammars: NP-Complete
 - context-free: $O(n^3)$
 - deterministic context-free: O(n)
 - regular grammars: O(n)

Verifying that L = L(G)

- Let's say we have a context-free grammar G and a description of a language L
- How can we say for sure that L = L(G)?
- By verifying the statement in two directions:
 - \Rightarrow All strings generated by G are in L
 - \Leftarrow All strings $w \in L$ can be generated by G

Verifying that L = L(G)

• Example: $T = \{a, b\}$. Consider language L to be "all strings with same number of as and bs"

- Consider G to be a CFG: $S \rightarrow \epsilon \mid a S \mid b S \mid b S \mid a S$
- To verify that L = L(G), prove that
 - \Rightarrow All strings generated by G are in L
 - \Leftarrow All strings $w \in L$ can be generated by G

Proof (\Rightarrow) : All strings generated by G are in L

- Proof by induction:
 - Base case: ϵ is in L (trivial)
 - Inductive hypothesis: Assume $u \in L$ and $v \in L$. Let w be generated by G with |u| < |w| and |v| < |w|
 - * Because w is generated by G then either $w \Rightarrow a \ u \ b \ v$ or $w \Rightarrow b \ u \ a \ v$, where u and v are generated by G
 - * Since |u| < |w| and |v| < |w| and $u, v \in L$ then since we only added a single matching a, b pair, we can conclude that w is in L

Proof (\Leftarrow): All strings $w \in L$ can be generated by G

- Proof by induction (show that $S \Rightarrow^+ w$):
 - Base case: $w = \epsilon$ (trivial: $S \rightarrow \epsilon$)
 - Inductive hypothesis: For a given $w \in L$, assume that for all $u, v \in L$ where |u| < |w| and |v| < |w| we have $S \Rightarrow^+ u$ and $S \Rightarrow^+ v$
 - * Case 1 w starts with a: Find the first b from the right so that $w = a \ u \ b \ v$ and v has the same number of as and bs Because $w \in L$ it has to be true that $u, v \in L$ and by the inductive hypothesis $S \Rightarrow^+ u$ and $S \Rightarrow^+ v$ Using rule $S \to a \ S \ b \ S$ and the above step we get $S \Rightarrow^+ w$
 - * Case 2 w starts with b: (analogous to Case 1)

CFG Ambiguity: Number of derivations grows exponentially

$$L(G) = a + using CFG rules \{ S \rightarrow S S, S \rightarrow a \}$$

CFG Ambiguity

- Algebraic character of parse derivations
- Power Series for grammar for the (simplified) arithmetic expression CFG:
 E → digit | digit | E binop E
- Write it down as an equation with coefficients equal to number of different analyses possible:

```
E = digit + digit binop digit
+ 2(digit binop digit binop digit)
+ 5(digit binop digit binop digit binop digit)
+ 14...
```

CFG Ambiguity

- Coefficients in previous equation equal the number of parses for each string derived from E
- These ambiguity coefficients are Catalan numbers:

$$Cat(n) = \frac{1}{n+1} \binom{2n}{n}$$

• $\begin{pmatrix} a \\ b \end{pmatrix}$ is the binomial coefficient

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{a!}{(b!(a-b)!)}$$

- Why Catalan numbers? Cat(n) is the number of ways to parenthesize an expression of length *n* with two conditions:
 - 1. there must be equal numbers of open and close parens
 - 2. they must be properly nested so that an open precedes a close

- For an expression of length n there are a total of 2n choose n parenthesis pairs. But n+1 of them have the right parenthesis to the left of its matching left parenthesis () ().
- So we divide 2n choose n by n + 1:

$$Cat(n) = \frac{1}{n+1} \binom{2n}{n}$$

n	catalan(n)	
1	1	
2	2	
3	5	
4	14	
5	42	
6	132	
7	429	
8	1430	
9	4862	
10	16796	

Summary

- Aspects of PL structure cannot be represented by FSAs
- Pumping lemma proofs for proving a language is not regular
- Chomsky hierarchy: from FSAs to Turing machines
- Verifying that a particular language is generated by a grammar G
- Context-free grammars (seems sufficient for PLs) but problems with ambiguity