

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Hideo MORIMOTO

Art Unit: Examiner:

2858

Serial No.: Filed:

10/616,347 July 9, 2003

Title:

CAPACITANCE TYPE SENSOR

Commissioner for Patents P. O. Box 1450 Alexandria, Virginia 22313-1450

TRANSMITTAL OF PRIORITY DOCUMENT(S) UNDER 35 U.S.C. 119

Applicants hereby confirm their claim of priority under 35 U.S.C. 119 from Japanese Patent Application No. 2002-202241 filed on July 11, 2002. A certified copy of the application from which priority is claimed is submitted herewith.

Please apply any charges not covered, or any credits, to Deposit Account 50-0591 (Reference Number 07700.038001).

Date: /

Respectfully submitted,

Yonathah P. Osha, Reg. No. 33,986 ROSENTHAL & OSHA L.L.P.

1221 McKinney Street, Suite 2800

Houston, Texas 77010 Telephone: (713) 228-8600 Facsimile: (713) 228-8778

55713_1.DOC

CERTIFICATE OF MAILING BY FIRST CLASS MAIL (37 CFR 1.8) Applicant(s): Hideo MORIMOTO			Docket No. 07700.038001
Serial No. 10/616,347	Filing Date 07/09/2003	Examiner	Group Art Unit 2858
Invertion; CAPACITANCE TYPE SENSOR			
PATENT & TRADENE			
I hereby certify that this Transmittal of Priority Document Under 35 U.S.C. 119 (Identify type of correspondence)			
is being deposited with the United States Postal Service as first class mail in an envelope addressed to:			
Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on October 17, 2003 (Date)			
Brenda C. McFadden (Typed or Printed Name of Person Mailing Correspondence)			
Porenda C. Mc Falden			
(Signature of Person Mailing Correspondence)			
Note: Each paper must have its own certificate of mailing.			

日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 7月11日

出 願 番 号

Application Number:

特願2002-202241

[ST.10/C]:

[JP2002-202241]

出 願 人
Applicant(s):

ニッタ株式会社

2003年 4月22日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2002-202241

【書類名】 特許願

【整理番号】 20711006

【提出日】 平成14年 7月11日

【あて先】 特許庁長官 殿

【国際特許分類】 G01L 1/18

【発明の名称】 静電容量式センサ

【請求項の数】 3

【発明者】

【住所又は居所】 奈良県大和郡山市池沢町172番地 ニッタ株式会社奈

良工場内

【氏名】 森本 英夫

【特許出願人】

【識別番号】 000111085

【氏名又は名称】 ニッタ株式会社

【代理人】

【識別番号】 100089196

【弁理士】

【氏名又は名称】 梶 良之

【選任した代理人】

【識別番号】 100104226

【弁理士】

【氏名又は名称】 須原 誠

【手数料の表示】

【予納台帳番号】 014731

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

特2002-202241

【包括委任状番号】 9407223

【包括委任状番号】 0000300

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 静電容量式センサ

【特許請求の範囲】

【請求項1】 検知部材と、

前記検知部材と対向している第1の電極と、

前記検知部材と前記第1の電極との間において、前記第1の電極との間で容量 素子を構成し且つ前記検知部材が変位するのに伴って、それと同じ方向に変位可 能な第2の電極と、

前記第1の電極および前記第2の電極の両方が設けられた1つの可撓性を有する基板とを備え、

前記第1の電極に対して入力される信号を利用して前記第1の電極と前記第2 の電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出される ことに基づいて前記検知部材の変位を認識可能であることを特徴とする静電容量 式センサ。

【請求項2】 前記第1の電極および前記第2の電極のいずれもが前記基板の一方の面上に設けられていることを特徴とする請求項1に記載の静電容量式センサ。

【請求項3】 前記検知部材および前記基板をそれぞれ別々に支持する支持部材をさらに備えていることを特徴とする請求項1または2に記載の静電容量式センサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、外部から加えられる力の検出を行うために用いて好適な静電容量式センサに関する。

[0002]

【従来の技術】

静電容量式センサは、操作者によって加えられた力の大きさおよび方向を電気 信号に変換する装置として一般的に利用されている。例えば、携帯電話の入力装 置として、多次元方向の操作入力を行うための静電容量式センサをいわゆるジョ イスティックとして組み込んだ装置が利用されている。

[0003]

静電容量式センサでは、操作者から加えられた力の大きさとして、所定のダイナミックレンジをもった操作量を入力することができる。また、加えられた力を各方向成分ごとに分けて検出することが可能な二次元または三次元のセンサとしても利用されている。

[0004]

ここで、例えば、本件出願人による2000年12月27日付けの特許協力条約に基づく国際出願に係るPCT/JP00/09355号明細書には、図11に示すような静電容量式センサ501が記載されている。静電容量式センサ501は、基板520と、人などによって操作されることによって外部から力が加えられる操作用部材である検知部材530と、導電性を有する変位電極512と、基板520上に形成された容量素子用電極E501~E505および基準電極(共通電極)E500と、容量素子用電極E501~E505および基準電極E500に密着して基板520上を覆うように形成された絶縁膜513と、検知部材530および変位電極512を基板520に対して支持固定する支持部材560とを有している。

[0005]

基板520上には、図12に示すように、原点〇を中心とする円形の容量素子 用電極E505と、その外側に扇形の容量素子用電極E501~E504と、さ らにその外側に原点〇を中心とする環状の基準電極E500とが形成されている 。なお、変位電極512と容量素子用電極E501~E505とのそれぞれの間 には、容量素子が構成されている。

[0006]

ここで、静電容量式センサ501では、容量素子用電極E501~E505に対して、クロック信号などの信号が入力される。そして、容量素子用電極E501~E505に信号が入力されている状態で、検知部材530が外部からの力を受けて変位すると、これにともなって変位電極512がZ軸方向に変位する。す

ると、変位電極512と容量素子用電極E501~E505とのそれぞれの間に 構成された容量素子の電極間隔が変化することにより、これらの容量素子のそれ ぞれの静電容量値が変化して、容量素子用電極E501~E505に入力された 信号の位相にずれが生じる。このように、入力された信号に生じる位相のずれを 利用して、検知部材530の変位、つまり、検知部材530が外部から受けた力 のX軸方向、Y軸方向およびZ軸方向の大きさと方向を知ることが可能となって いる。

[0007]

【発明が解決しようとする課題】

静電容量式センサ501では、検知部材530の形状が変更されると、検知部材530への操作力に対する容量素子の静電容量値の変化特性が変化して、静電容量式センサ501のジョイスティクとしての操作性が変わってしまう。そのため、静電容量式センサ501が、例えば携帯電話、携帯情報端末(Personal Digital Assistants: PDA)などの機器に搭載される場合には、その機器がモデルチェンジされる度に、そのモデルにおけるジョイスティクとしての操作性を把握して、制御回路およびソフトウェアを調整しなければならなくなる。

[0008]

また、静電容量式センサ501では、変位電極512と、容量素子用電極E501~E505が形成された基板520とがそれぞれ別々に製作された後で、両者が組み立てられる。従って、静電容量式センサ501の組み立てが完了するまでは、当該センサはジョイスティクとして機能することができないため、その性能を確認することができない。

[0009]

そこで、本発明の主な目的は、検知部材の形状などが変更された場合でも、センサ部の特性が大きく変化しない静電容量式センサを提供することである。

[0010]

また、本発明のその他の目的は、すべての組み立てが完了しないでも、センサ 部単体でその特性を確認することができる静電容量式センサを提供することであ る。

[0011]

【課題を解決するための手段】

上記目的を達成するために、請求項1の静電容量式センサは、検知部材と、前記検知部材と対向している第1の電極と、前記検知部材と前記第1の電極との間において、前記第1の電極との間で容量素子を構成し且つ前記検知部材が変位するのに伴って、それと同じ方向に変位可能な第2の電極と、前記第1の電極および前記第2の電極の両方が設けられた1つの可撓性を有する基板とを備え、前記第1の電極に対して入力される信号を利用して前記第1の電極と前記第2の電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とするものである。

[0012]

請求項1によると、第1および第2の電極が設けられた1つの基板が適正に折り曲げられることによって、センサ部が一体に構成(ユニット化)された後で、当該センサ部と検知部材とが組み立てられる。従って、検知部材(キーパッド)の形状または大きさが変更された場合でも、検知部材への操作力に対する容量素子の静電容量値の変化特性が変化することがほとんどない。そのため、静電容量式センサが例えば携帯電話などの機器に搭載される場合において、当該センサの外観(意匠)または検知部材の形状などが変更されても、ユニット化されたセンサ部は共通に利用できるので、当該機器がモデルチェンジされる度に、そのモデルにおけるジョイスティクとしての操作性を把握して、制御回路およびソフトウェアを調整する必要がなくなる。

[0013]

また、センサ部が一体に構成されているため、その他の部品との組み立てが完了しないでも、センサ部単体でその性能を確認することができる。従って、センサ部における容量素子の静電容量値の大きさなどをユニット単位で事前にチェックしておいて、規定の範囲内の静電容量値を有するセンサ部(良品)だけを選別することが可能となって、センサとして不良品が発生するのを抑制することができ、センサの歩留まりが向上する。

[0014]

なお、「検知部材の変位を認識可能である」とは、「検知部材に外部から加え られる力を認識可能である」ということとほぼ同じ意味である。

[0015]

請求項2の静電容量式センサは、前記第1の電極および前記第2の電極のいずれもが前記基板の一方の面上に設けられていることを特徴とするものである。

[0016]

請求項2によると、各電極のいずれもが1つの基板の一方の面上に設けられているため、センサの製造工程がさらに簡略化され、製造コストを低減できる。

[0017]

請求項3の静電容量式センサは、前記検知部材および前記基板をそれぞれ別々 に支持する支持部材をさらに備えていることを特徴とするものである。

[0018]

請求項3によると、検知部材と、第1および第2の電極が設けられた基板とが、それぞれ別々に支持されているため、両者のいずれか一方だけを容易に交換することができる。

[0019]

【発明の実施の形態】

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。

[0020]

まず、本発明の実施の形態に係る静電容量式センサ1の構成について、図面を 参照しつつ説明する。図1は、本発明の実施の形態に係る静電容量式センサの模 式的な断面図である。図2は、図1の静電容量式センサの検知ボタンの上面図で ある。

[0021]

静電容量式センサ1は、センサユニット10と、基板20と、人などによって 操作されることによって外部から力が加えられる操作用の検知ボタン30と、検 知ボタン30を基板20に対して支持固定する支持部材60と、検知ボタン30 と支持部材60との間に配置された樹脂シート70と、カバーケース80とを有 している。 [0022]

また、センサユニット10は、フレキシブル・プリント・サーキット基板(FPC)11と、FPC11上に形成された容量素子用電極E1~E4(図1では E1およびE2のみを示す)、変位電極E0、基準電極(共通電極)E11、決定スイッチ用固定電極E21および決定スイッチ用可動電極E22などの複数の電極と、樹脂シート90とを有している。

[0023]

ここでは、説明の便宜上、図示のとおり、XYZ三次元座標系を定義し、この座標系を参照しながら各部品に配置説明を行うことにする。すなわち、図1では、センサユニット10のFPC11上の決定スイッチ用固定電極E21の中心位置に原点Oが定義され、右水平方向にX軸が、上垂直方向にZ軸が、紙面に垂直奥行方向にY軸がそれぞれ定義されている。従って、FPC11の第1面11a(図3参照)の表面は、XY平面を規定し、センサユニット10の上方の検知ボタン30の中心位置をZ軸が通ることになる。

[0024]

基板20は、一般的な電子回路用のプリント回路基板であり、この例ではガラスエポキシ基板が用いられている。また、基板20として、ポリイミドフィルムなどのフィルム状の基板を用いてもよいが、フィルム状の基板の場合は可撓性を有しているため、十分な剛性をもった支持基板上に配置して用いるのが好ましい。なお、本実施の形態では、基板20上には、センサ回路(電子回路)が設けられている。

[0025]

支持部材60は、平板状の部材であって、例えばシリコンゴムなどの弾性を有する材料により形成されている。また、支持部材60の下面には、センサユニット10よりも大きい略矩形の下方に開いた凹部60aが形成されており、支持部材60の下面の凹部60a以外の部分が基板20に接触するように配置されている。

[0026]

また、支持部材60の凹部60aの底面には、決定スイッチ用固定電極E21

に対応する位置には突起体 6 1 が形成されており、容量素子用電極 E 1 ~ E 4 に対応する位置にはそれぞれ突起体 6 2 が形成されている。カバーケース 8 0 は、例えば樹脂により形成された部材であって、樹脂シート 7 0 の上面において検知ボタン 3 0 の周囲を覆うように配置されている。

[0027]

ここで、本実施の形態では、支持部材60に突起体61、62が形成されているため、決定スイッチ用可動電極E22の頂部近傍および容量素子用電極E1~ E4に対向する変位電極E0のそれぞれの所定の部分を効率よく変位させることができる。なお、突起体61、62は、必ずしも形成されていなくてもよい。

[0028]

検知ボタン30は、乙軸を中心とする円形の中央ボタン31と、中央ボタン31の外側に配置された環状の方向ボタン32とから構成されている。ここで、中央ボタン31の径は、基準電極E11の外径よりも若干大きい。また、方向ボタン32は、図2に示すように、受力部となる小径の上段部32aと、上段部32aの下端部から外側に突出する大径の下段部32bとから構成されている。上段部32aの外径は、容量素子用電極E1~E4のそれぞれの外側の曲線を結んでできる円の径よりも若干小さく、下段部32bの外径は、容量素子用電極E1~E4のそれぞれの外側の曲線を結んでできる円の径よりも若干大きい。なお、中央ボタン31および方向ボタン32は別部材である方が好ましいが、同一部材であってもよい。

[0029]

ここで、中央ボタン31は、決定スイッチ用固定電極E21、決定スイッチ用可動電極E22および基準電極E11に対応するように、支持部材60上の樹脂シート70の上面に接着固定されている。また、方向ボタン32は、容量素子用電極E1~E4に対応するように、その下段部32bがカバーケース80の一部である止め部80aにより押止され、樹脂シート70の上面において抜け止め構造により配置されている。このように、方向ボタン32の外径は、カバーケース80の止め部80aの先端部によって形成される円の径よりも大きくなっているため、カバーケース80から飛び出ることはない。なお、方向ボタン32は樹脂

シート70の上面に接着固定されていてもよい。また、中央ボタン31と樹脂シート70とは、一体成型されていてもよい。

[0030]

また、方向ボタン32の上段部32aの上面には、図2に示すように、X軸およびY軸のそれぞれの正方向および負方向に対応するように、すなわち、容量素子用電極E1~E4に対応するように、操作方向(カーソルの移動方向)に対応した矢印が形成されている。

[0031]

なお、基板20、支持部材60、樹脂シート70およびカバーケース80は、 それぞれに形成された貫通孔(図示しない)に嵌挿された固定ネジ(図示しない)がそれに対応するナット(図示しない)に螺締されることによって、各部品が 互いに離れないように固定されている。

[0032]

次に、本実施の形態に係る静電容量式センサ1に含まれるセンサユニット10の構成について、図面を参照しつつ説明する。図3は、図1の静電容量式センサのセンサユニットの概略構成を示す図である。なお、図3では、決定スイッチ用可動電極E22および樹脂シート90の図示が省略されている。

[0033]

センサユニット10は、図3に示すように、2つの略矩形の第1面11aおよび第2面11bと、両者を連結する連結部11cとから構成されるFPC11を有している。ここで、FPC11は、可撓性を有しており、連結部11cにおいて折り曲げることによって、第1面11aと第2面11bとを対向させることができる。

[0034]

第1面11a上には、図3に示すように、原点Oを中心とする円形の決定スイッチ用固定電極E21と、決定スイッチ用固定電極E21の外側に配置された環状の基準電極E11と、基準電極E11の外側に配置された略扇形である容量素子用電極E1~E4と、接続端子T1、T2、T0、T11、T21などを含む接続端子群が、銀やカーボンなどを原料とする導電性インクによるスクリーン印

刷によって形成されている。

[0035]

また、第1面11aの中心位置近傍の上方には、図1に示すように、基準電極 E11に接触するとともに、決定スイッチ用固定電極E21と離隔しつつ、これ を覆うようにドーム状の決定スイッチ用可動電極E22が配置されている。ここで、中央ボタン31に対する操作が行われた場合に、決定スイッチ用可動電極E22の頂部近傍に下方へ向かう力が加えられると、決定スイッチ用可動電極E22がクリック感を付随しつつ弾性変形して決定スイッチ用固定電極E21に接触 するようになっている。その結果、決定スイッチ用固定電極E21と基準電極E11とが、決定スイッチ用可動電極E22を介して電気的に接続されるので、両者の間の電気的な接続の有無が検出されることによって、スイッチとして利用することが可能となる。

[0036]

そして、第2面上には、環状の変位電極EOが、銀やカーボンなどを原料とする導電性インクによるスクリーン印刷によって形成されている。変位電極EOの外径は、容量素子用電極E1~E4のそれぞれの外側の曲線を結んでできる円の径とほぼ同じであって、その内径は、容量素子用電極E1~E4のそれぞれの内側の曲線を結んでできる円の径とほぼ同じである。なお、第2面11bの中心位置近傍には、開口11dが形成されており、その径は、変位電極EOの内径とほぼ同じである。

[0037]

ここで、容量素子用電極E1はX軸の正方向に対応するように配置され、容量素子用電極E2はX軸の負方向に対応するように配置されており、外部からの力のX軸方向成分の検出に利用される。また、容量素子用電極E3はY軸の正方向に対応するように配置され、容量素子用電極E4はY軸の負方向に対応するように配置されており、外部からの力のY軸方向成分の検出に利用される。また、決定スイッチ用固定電極E21は、原点O上に配置されており、決定スイッチ用可動電極E22(図1参照)とともに、入力などの決定操作に利用される。

[0038]

なお、一対の容量素子用電極E1および容量素子用電極E2とは、X軸方向に離隔してY軸に対して線対称に配置されている。また、一対の容量素子用電極E3および容量素子用電極E4は、Y軸方向に離隔してX軸に対して線対称に配置されている。

[0039]

また、容量素子用電極E1~E4、変位電極E0などの各電極としては、導電性インクの印刷層の他、例えば金属製の板、導電性プラスチック、シリコンゴムなどの導電性ゴム、導電性熱可塑性樹脂(PPT、エラストマー)などで形成されたものであってもよい。さらに、容量素子用電極E1~E4、変位電極E0などの各電極および配線は、ポリミイドなどの樹脂フィルム上に銅箔などの金属箔で形成してもよい。この場合、露出する銅箔部は、ハンダ、金または銀などでメッキして酸化防止策を講じるのが好ましい。

[0040]

ここで、FPC11の表面には、図1に示すように、第1面11a上の容量素子用電極E1~E4のそれぞれの外縁近傍および決定スイッチ用可動電極E22の全面、並びに、第2面11bの変位電極E0の全面に密着して、FPC11を覆うように薄い樹脂シート90が配置されている。つまり、樹脂シート90は、FPC11の表面において、容量素子用電極E1~E4のそれぞれの中央部近傍および開口11dに対応する部分を除く領域に配置されている。

[0041]

従って、FPC11上に容量素子用電極E1~E4、変位電極E0などの各電極が設けられた後で、FPC11が、第1面11aと第2面11bとが対向するように連結部11cで折り曲げられると、第1面11a上の樹脂シート90と第2面11b上の樹脂シート90とが当接するようになる。このとき、容量素子用電極E1~E4のそれぞれの中央部近傍に対応する部分には樹脂シート90が配置されていないため、容量素子用電極E1~E4の上面と、変位電極E0を覆う樹脂シート90の下面との間には所定高さ(樹脂シート90の厚さをほぼ同じ高さ)の空隙が形成される。このようにして、容量素子用電極E1~E4と変位電極E0との間に容量素子C1~C4が構成される。なお、FPC11が、上述の

ように、折り曲げられた後で、第1面11aおよび第2面11b上の樹脂シート90同士が、接着剤などによって接着される。

[0042]

また、本実施の形態では、容量素子用電極E1~E4、変位電極E0、基準電極E11および決定スイッチ用固定電極E21は、リード線(図示しない)によって、接続端子T1、T2、T0、T11、T21にそれぞれ接続されており、これらの接続端子を介して、基板20上に設けられたセンサ回路などに接続される。

[0043]

次に、静電容量式センサ1の回路構成について、図4を参照して説明する。図 4は、図1に示す静電容量式センサの構成に対する等価回路図である。

[0044]

静電容量式センサ1では、FPC11上の容量素子用電極E1~E4と変位電極E0との間には、共通の電極である変位可能な変位電極E0と、固定された個別の容量素子用電極E1~E4で形成される容量素子C1~C4が構成されている。ここで、容量素子C1~C4は、それぞれ変位電極E0の変位に起因して静電容量値が変化するように構成された可変容量素子であるということができる。

[0045]

また、決定スイッチS1が、決定スイッチ用固定電極E21と決定スイッチ用可動電極E22との間に形成されている。つまり、基準電極E11に接触している決定スイッチ用可動電極E22が、決定スイッチ用固定電極E21と接触する状態(オン状態)および決定スイッチ用固定電極E21と接触しない状態(オフ状態)のいずれかの状態を取り得るようになっている。

[0046]

なお、本実施の形態では、変位電極E O および基準電極E 1 1 は、接続端子T O、T 1 1 を介してそれぞれ接地されている。

[0047]

次に、上述のように構成された本実施の形態に係る静電容量式センサ1の動作 について、図面を参照して説明する。図5は、図1に示す静電容量式センサの方 向ボタンにX軸正方向への操作が行われた場合の側面の模式的な断面図である。 図6は、図1に示す静電容量式センサの中央ボタンに操作が行われた場合の側面 の模式的な断面図である。

[0048]

まず、図1に示す検知ボタン30に力が作用していないときの状態において、 図5に示すように、方向ボタン32にX軸正方向への操作が行われた場合、すな わち、方向ボタン32の上段部32aに形成されたX軸正方向に対応するように 矢印を基板20側に押し下げるような力(Z軸負方向への力)が加えられた場合 を考える。

[0049]

方向ボタン32のX軸正方向に対応する部分が押し下げられることにより、支持部材60および樹脂シート70が弾性変形を生じてたわみ、支持部材60のX軸正方向に対応する突起部62が下方へと変位する。すると、突起部62の先端部は、FPC11の第2面11bの裏面に当接するようになって、FPC11の第2面11bの突起部62が当接する部分近傍に対して下方向への力が作用する

[0050]

その後、引き続き、方向ボタン32のX軸正方向部分が押し下げられると、支持部材60、樹脂シート70およびFPC11がさらに弾性変形を生じてたわみ、変位電極E0が下方に変位する。従って、変位電極E0と容量素子用電極E1と間の間隔が小さくなる。なお、一般的に、容量素子の静電容量値は、容量素子を構成する電極の間隔に反比例することより、容量素子C1の静電容量値は大きくなる。

[0051]

従って、方向ボタン32にX軸正方向への操作が行われた場合には、容量素子C1~C4のなかで、変位電極E0と容量素子用電極E1~E4との間の間隔に変化があった容量素子C1の静電容量値のみが変化する。そして、このとき、後で詳述するように、端子T1に入力される周期信号Aは、容量素子C1を含む遅延回路を通過することによって位相にずれが生じ、その位相のずれが読み取られ

ることによって出力信号Vxが導出される。

[0052]

また、このとき、変位電極EOと容量素子用電極E2~E4とのそれぞれの間隔はほとんど変化しない。そのため、容量素子C2~C4の静電容量値は変化せず、容量素子C2~C4をそれぞれ含む遅延回路を通過することによっては、位相にずれは生じない。なお、方向ボタン32にX軸正方向への操作が行われた場合に、方向ボタン32と支持部材60の突起体62との位置関係によって、容量素子C2~C4の静電容量値が変化することもあるが、それらの変化量は、容量素子C1の静電容量値の変化量と比較して小さい。

[0053]

次に、図1に示す検知ボタン30に力が作用していないときの状態において、図6に示すように、中央ボタン31に操作が行われた場合、すなわち、中央ボタン31を基板20側に押し下げるような力(乙軸負方向への力)が加えられた場合を考える。

. [0054]

中央ボタン31が押し下げられることにより、支持部材60および樹脂シート70が弾性変形を生じてたわみ、支持部材60の決定スイッチ用固定電極E21に対応する突起部61が下方へと変位する。すると、突起部61の先端部は、決定スイッチ用可動電極E22に当接するようになって、決定スイッチ用可動電極E22の頂部近傍に対して下方向への力が作用する。

[0055]

そして、その力が所定値に満たないときには決定スイッチ用可動電極E22はほとんど変位しないが、その力が所定値に達したときには、決定スイッチ用可動電極E22の頂部近傍部分が座屈を伴って急激に弾性変形して凹んだ状態となって決定スイッチ用固定電極E21と接触するようになる。これにより、決定スイッチS1がオフ状態からオン状態に切り換えられる。このとき、操作者には、明瞭なクリック感が与えられることになる。

[0056]

次に、容量素子C1~C4のそれぞれの静電容量値の変化から、検知ボタン3

0の方向ボタン32への外部からの力の大きさおよび方向を示す出力信号の導出方法について、図7~図10を参照して説明する。図7は、図1に示す静電容量式センサに入力される周期信号から出力信号を導出する方法を説明するための説明図である。ここで、出力信号Vx、Vyの変化は、それぞれ外部からの力のX軸方向成分およびY軸方向成分の大きさおよび方向を示す。

[0057]

ここで、出力信号Vx、Vyを導出するために、端子T1、T2に対して、クロック信号などの周期信号が入力される。そして、端子T1、T2に周期信号が入力されている状態で方向ボタン32が外部からの力を受けて変位すると、これにともなって変位電極E0がZ軸負方向に変位し、容量素子C1~C4の電極間隔が変化して、容量素子C1~C4のそれぞれの静電容量値が変化する。すると、端子T1、T2に入力された周期信号の位相にずれが生じる。このように、周期信号に生じる位相のずれを利用して、方向ボタン32の変位、つまり、方向ボタン32が外部から受けた力のX軸方向およびY軸方向の大きさと方向を示す出力信号Vx、Vyを得ることができる。

[0058]

さらに詳細に説明すると、端子T1に対して周期信号Aが入力されるとき、端子T2に対しては周期信号Aと同一の周期で、かつ、周期信号Aの位相とは異なる周期信号Bが入力される。そのとき、方向ボタン32が外部から力を受けて、容量素子C1~C4の静電容量値がそれぞれ変化すると、端子T1、T2にそれぞれ入力された周期信号Aおよび周期信号Bの少なくともいずれかの位相にずれが生じる。つまり、容量素子C1、C3の静電容量値が変化すると、端子T1にそれぞれ入力された周期信号Aの位相にずれが生じ、一方、容量素子C2、C4の静電容量値が変化すると、端子T2にそれぞれ入力された周期信号Bの位相にずれが生じる。

[0059]

すなわち、外部からの力にX軸方向成分が含まれる場合は、容量素子C1の静電容量値が変化し、端子T1に入力された周期信号Aの位相にずれが生じるか、或いは、容量素子C2の静電容量値が変化し、端子T2に入力された周期信号B

の位相にずれが生じるかのいずれか或いは両方である。ここで、容量素子C1、C2の静電容量値の変化は、外部からの力のX軸正方向成分、X軸負方向成分にそれぞれ対応している。このように、端子T1および端子T2にそれぞれ入力された周期信号Aおよび周期信号Bの位相のずれを例えば排他和回路などで読み取ることによって、出力信号Vxが導出される。この出力信号Vxの変化量の符号が、外部からの力のX軸方向成分が正方向または負方向の向きかを示し、出力信号Vxの変化量の絶対値がX軸方向成分の大きさを示す。

[0060]

また、外部からの力にY軸方向成分が含まれる場合は、容量素子C3の静電容量値が変化し、端子T1に入力された周期信号Aの位相にずれが生じるか、或いは、容量素子C4の静電容量値が変化し、端子T2に入力された周期信号Bの位相にずれが生じるかのいずれか或いは両方である。ここで、容量素子C3、C4の静電容量値の変化は、外部からの力のY軸正方向成分、Y軸負方向成分にそれぞれ対応している。このように、端子T1および端子T2にそれぞれ入力された周期信号Aおよび周期信号Bの位相のずれを例えば排他和回路などで読み取ることによって、出力信号Vyが導出される。この出力信号Vyの変化量の符号が、外部からの力のY軸方向成分が正方向または負方向の向きかを示し、出力信号Vyの変化量の絶対値がY軸方向成分の大きさを示す。

[0061]

次に、端子T1、T2に入力された周期信号A、Bによる出力信号Vx、Vyを導出するための信号処理回路について、図8を参照しながら説明する。図8は、図1に示す静電容量式センサの信号処理回路を示す回路図である。

[0062]

端子T1には、抵抗素子R1、R3が接続されており、端子T2には、抵抗素子R2、R4が接続されている。また、抵抗素子R1、R2の出力端および抵抗素子R3、R4の出力端には、それぞれ排他和回路の論理素子であるEX-OR素子100、101が接続されており、その出力端は端子T120、T121に接続されている。そして、端子T120、T121には、ローパスフィルター(平滑回路)110、111が接続されており、その出力端は端子T130、T1

3 1 に接続されている。また、抵抗素子R 1 \sim R 4 の出力端は、それぞれ容量素子用電極E 1 \sim E 4 に接続され、それぞれ変位電極E 0 との間で容量素子C 1 \sim C 4 を構成している。また、変位電極E 0 は、上述したように、端子T 1 1 を介して接地されている。

[0063]

ここで、ローパスフィルター110、111は、EX-OR素子100、101から出力される出力信号Vxをアナログ電圧Vx'に変換するためのものである。つまり、容量素子C1~C4のそれぞれの静電容量値の変化が、ローパスフィルター110、111に入力される前の出力信号Vxの波形のデューティ比の変化として検出され、この信号をローパスフィルター110、111を通過させて平滑することにより、このデューティ比を電圧値に変換して利用することができる。ローパスフィルター110、111は、抵抗素子R110、R111および容量素子C110、C111でそれぞれ構成されている。なお、容量素子C110、C111の2つの電極のなかで抵抗素子R110、R111に接続されていない方の電極は接地されている。

[0064]

従って、EX-OR素子100、101から端子T120、T121に対して出力される出力信号Vxは、ローパスフィルター110、111を通過することにより平滑され、端子T130、T131に対してアナログ電圧Vx'として出力される。このアナログ電圧Vx'の値は、出力信号Vxのデューティ比に比例して変化する。したがって、出力信号Vxのデューティ比が大きくなるとそれに伴ってアナログ電圧Vx'の値も大きくなり、一方、出力信号Vxのデューティ比が小さくなるとそれに伴ってアナログ電圧Vx'の値も小さくなる。また、出力信号Vxのデューティ比がほとんど変化しないときはアナログ電圧Vx'の値もほとんど変化しない。

[0065]

ここから、X軸方向成分の出力信号Vxの導出方法について、図9および図10を参照して説明する。図9は、図1に示す静電容量式センサのX軸方向成分についての信号処理回路を示す回路図(図8の一部分)である。図10は、図9に

示す信号処理回路の各端子および各節点における周期信号の波形を示す図である。なお、Y軸方向成分の出力信号Vyの導出方法については、X軸方向成分の出力信号Vxの導出方法と同様であるので、詳細な説明は省略する。

[0066]

図9の信号処理回路において、容量素子C1と抵抗素子R1および容量素子C2と抵抗素子R2はそれぞれCR遅延回路を形成している。従って、端子T1、T2に入力された周期信号(矩形波信号)は、それぞれCR遅延回路によって所定の遅延が生じ、EX-OR素子100に入力される。

[0067]

さらに詳細に説明すると、端子T1には周期信号 $f(\phi)$ (上述の周期信号 Aに対応している)が入力され、また、端子T2には $f(\phi)$ と同一の周期で、かつ、位相が θ だけずれている周期信号 $f(\phi)$ (上述の周期信号 Bに対応している)が入力される。端子T1に入力される周期信号 $f(\phi)$ は、容量素子C1と抵抗素子R1により構成されるCR遅延回路を通過して、節点X1に到達する。このとき、節点X1における周期信号には、図10に示すように、時間 A0 遅延が生じている。同様に、端子A0 に入力される周期信号 A1 に対 A2 に到達する。このとき、節点A3 に対 A4 に到達する。A5 に到達する。このとき、節点A7 における周期信号には、時間 A6 の遅延が生じている。

[0068]

ここで、端子T1、T2にそれぞれ入力される異なる位相の周期信号 f (ϕ)、f (ϕ + θ) は、1つの周期信号発振器から出力された周期信号を2つの経路に分け、その一方の経路に図示しないCR遅延回路を設け、CR遅延回路を通過する周期信号の位相を遅延させることによって発生させられる。なお、周期信号の位相をずらせる方法は、CR遅延回路を用いる方法に限らず、他のどのような方法であってもよいし、また、2つの周期信号発振器を用いて、それぞれ異なる位相の周期信号 f (ϕ)、f (ϕ + θ) を発生させ、端子T1、T2のそれぞれに入力してもよい。

[0069]

ここで、時間 a、 b は、それぞれC R 遅延回路における遅延時間に対応し、それぞれのC R の時定数により決定される。したがって、抵抗素子R 1、R 2 の抵抗値が同一である場合は、時間 a、 b の値は容量素子C 1、C 2 の静電容量値に対応するようになる。すなわち、容量素子C 1、C 2 の静電容量値が大きくなると、時間 a、 b の値も大きくなり、容量素子C 1、C 2 の静電容量値が小さくなると、時間 a、 b の値も小さくなる。

[0070]

このように、EX-OR素子100には、節点X1、X2における周期信号と同一の波形の信号が入力され、これらの信号の間で排他的論理演算が行われ、その結果を端子T120に対して出力される。ここで、端子T120に対して出力される信号は、所定のデューティ比をもった矩形波信号である(図10参照)。

[0071]

ここで、方向ボタン32のX軸正方向部分に対する操作が行われた場合(図5参照)の各端子および各節点における周期信号の波形を考えることにする。なお、この場合の信号処理回路における容量素子用電極E1、E2と変位電極E0との間で構成される容量素子をC1、C2、とし、方向ボタン32に対する操作が行われていない場合の信号処理回路の節点X1、X2および端子T120と同位置における各節点および端子を節点X1、X2 および端子T120、とする(図9参照)。

[0072]

このとき、上述と同様に、図9の信号処理回路において、端子T1には周期信号 $f(\phi)$ が入力され、また、端子T2には、 $f(\phi)$ と同一の周期で位相が θ だけずれている周期信号 $f(\phi+\theta)$ が入力されている。端子T1に入力される周期信号 $f(\phi)$ は、容量素子C1'と抵抗素子R1により構成されるCR遅延回路を通過して、節点X1'に到達する。このとき、節点X1'における周期信号には、図10に示すように、時間 $a+\Delta$ a の遅延が生じている。これは、容量素子C1'の静電容量値が容量素子C1よりも大きくなったことにより、CR遅延回路の時定数が大きくなったためである。一方、端子T2に入力される周期信号 $f(\phi+\theta)$ は、容量素子C2'と抵抗素子R2により構成されるCR遅延回

路を通過して、節点X2'に到達する。このとき、方向ボタン32のX軸負方向部分には力が加えられていないため、節点X2'における周期信号は、節点X2 における周期信号と同じ波形を有している。

[0073]

このように、EX-OR素子100には、節点X1'、X2'における周期信号と同一の波形の信号が入力され、これらの信号の間で排他的論理演算が行われ、その結果を端子T120'に対して出力される。ここで、端子T120'に対して出力される信号は、所定のデューティ比をもった矩形波信号であり、図10に示すように、方向ボタン32に対する操作が行われていない場合において、端子T120に出力された矩形波信号よりも、デューティ比の小さい矩形波信号である。

[0074]

ここで、実際には、上述したように、端子T120および端子T120'に対して出力される信号は、いずれもローパスフィルター110によって平滑された後で出力される。

[0075]

なお、本実施の形態の静電容量式センサ1は、力覚センサとして用いられており、携帯電話、携帯情報端末(PDA)、パソコン、ゲームなどの入力装置(ジョイスティック)として利用されるのに好ましい。また、本実施の形態の静電容量式センサ1は、力覚センサとして用いられる場合に限らず、例えば加速度センサなど、その他のセンサとして用いられる場合も、本実施の形態と同様の効果を得ることができる。

[0076]

以上のように、本実施の形態に係る静電容量式センサ1においては、容量素子用電極E1~E4および変位電極E0が設けられた1つのFPC11が適正に折り曲げられることによって、センサユニット10が一体に構成された後で、センサユニット10が、基板20と検知ボタン30との間に組み込まれる。従って、検知ボタン30の形状または大きさが変更された場合でも、検知ボタン30への操作力に対する容量素子C1~C4の静電容量値の変化特性が変化することがほ

とんどない。そのため、静電容量式センサ1が例えば携帯電話などの機器に搭載される場合において、当該センサの外観または検知ボタン30の形状が変更されても、ユニット化されたセンサユニット10は共通に利用できるので、当該機器がモデルチェンジされる度に、そのモデルにおけるジョイスティクとしての操作性を把握して、制御回路およびソフトウェアを調整する必要がなくなる。

[0077]

また、センサユニット10が一体に構成されているため、その他の部品との組み立てが完了しないでも、センサユニット10単体でその性能を確認することができる。従って、センサユニット10における容量素子C1~C4の静電容量値の大きさなどをユニット単位で事前にチェックしておいて、規定の範囲内の静電容量値を有するセンサユニット(良品)だけを選別することが可能となって、センサとして不良品が発生するのを抑制することができ、センサの歩留まりが向上する。

[0078]

また、容量素子用電極E1~E4および変位電極E0などの各電極のいずれもが1つのFPC11の一方の面上に設けられているため、センサの製造工程がさらに簡略化され、製造コストを低減できる。

[0079]

また、検知ボタン30およびセンサユニット10(FPC11)がそれぞれ別々に基板20に対して固定されているため、検知ボタン30およびセンサユニット10のいずれか一方だけを容易に交換することができる。

[0800]

また、容量素子用電極E1~E4および変位電極E0などの各電極が、基板20上に直接設けられるのではなく、センサユニット10に設けられる。そして、センサユニット10は、例えば回路パターン(配線)が形成された基板20の上に載置することが可能となるため、基板20の有効配線面積を削減しなくてもよくなる。

[0081]

以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施の

形態に限られるものではなく、特許請求の範囲に記載した限りにおいて、様々な設計変更を行うことが可能なものである。例えば、上述の実施の形態では、センサユニットが、1つのFPCの一方の面上に形成されている複数の電極などを有している場合について説明しているが、これに限らず、センサユニットの構成は任意に変更することができる。従って、上述の複数の電極などは、必ずしも基板の一方の面上に形成されている必要はなく、基板の両方の面上に形成されていてもよい。

[0082]

また、上述の実施の形態では、基板として、FPCが用いられている場合について説明しているが、これに限らず、基板としては、FPC以外の可撓性を有する基板であってもよいし、剛性を向上させるためにFPCに、例えば薄い金属板、樹脂などの補強板が取り付けられたものであってもよい。ここで、FPCの裏面に薄い金属板が接着されている場合には、FPCの復元力が大きくなって、検知ボタンへの操作前および操作後における変位電極の位置ずれが比較的小さくなって、センサのヒステリシスが小さくなるという効果がある。

[0083]

また、上述の実施の形態では、外部から加えられた力のX軸方向成分およびY 軸方向成分の2つの成分を検出可能な静電容量式センサについて説明しているが 、これに限らず、上述の2つのうち必要な1成分だけを検出可能なものであって もよい。

[0084]

【発明の効果】

以上説明したように、請求項1によると、第1および第2の電極が設けられた 1つの基板が適正に折り曲げられることによって、センサ部が一体に構成 (ユニット化) された後で、当該センサ部と検知部材とが組み立てられる。従って、検知部材 (キーパッド) の形状または大きさが変更された場合でも、検知部材への操作力に対する容量素子の静電容量値の変化特性が変化することがほとんどない。そのため、静電容量式センサが例えば携帯電話などの機器に搭載される場合において、当該センサの外観 (意匠) または検知部材の形状などが変更されても、

ユニット化されたセンサ部は共通に利用できるので、当該機器がモデルチェンジ される度に、そのモデルにおけるジョイスティクとしての操作性を把握して、制 御回路およびソフトウェアを調整する必要がなくなる。

[0085]

また、センサ部が一体に構成されているため、その他の部品との組み立てが完了しないでも、センサ部単体でその性能を確認することができる。従って、センサ部における容量素子の静電容量値の大きさなどをユニット単位で事前にチェックしておいて、規定の範囲内の静電容量値を有するセンサ部(良品)だけを選別することが可能となって、センサとして不良品が発生するのを抑制することができ、センサの歩留まりが向上する。

[0086]

請求項2によると、各電極のいずれもが1つの基板の一方の面上に設けられているため、センサの製造工程がさらに簡略化され、製造コストを低減できる。

[0087]

請求項3によると、検知部材と、第1および第2の電極が設けられた基板とが、それぞれ別々に支持されているため、両者のいずれか一方だけを容易に交換することができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態に係る静電容量式センサの模式的な断面図である。

【図2】

図1の静電容量式センサの検知部材の上面図である。

【図3】

図1の静電容量式センサのセンサユニットの概略構成を示す図である。

【図4】

図1に示す静電容量式センサの構成に対する等価回路図である。

【図5】

図1に示す静電容量式センサの方向ボタンにX軸正方向への操作が行われた場合の側面の模式的な断面図である。

【図6】

図1に示す静電容量式センサの中央ボタンに操作が行われた場合の側面の模式的な断面図である。

【図7】

図1に示す静電容量式センサに入力される周期信号から出力信号を導出する方法を説明するための説明図である。

【図8】

図1に示す静電容量式センサの信号処理回路を示す回路図である。

【図9】

図1に示す静電容量式センサのX軸方向成分についての信号処理回路を示す回路図である。

【図10】

図9に示す信号処理回路の各端子および各節点における周期信号の波形を示す 図である。

【図11】

従来の静電容量式センサの模式的な断面図である。

【図12】

図11の静電容量式センサの基板上に形成されている複数の電極の配置を示す 図である。

【符号の説明】

- 1 静電容量式センサ
- 11 FPC (基板)
- 20 基板(支持部材)
- 30 操作ボタン(検知部材)
- E 0 変位電極(第2の電極)
- E1~E4 容量素子用電極(第1の電極)
- C1~C4 容量素子

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図11】

【図12】

特2002-202241

【書類名】

要約書

【要約】

【課題】 検知ボタンの形状が変更された場合でもセンサ特性が大きく変化しないと共に、センサユニット単体でセンサ特性を確認できるようにする。

【解決手段】 FPC11の第1面11 a上に容量素子用電極E1~E4を形成すると共に、第2面11 b上に変位電極E0を形成する。そして、第1面11 a と第2面11 bとが対向するように、FPC11を連結部11 cにおいて折り曲げることによって、容量素子用電極E1~E4と変位電極E0との間に容量素子を構成する。

【選択図】

図 3

出願人履歴情報

識別番号

[000111085]

1. 変更年月日 2002年 2月21日

[変更理由] 住所変更

住 所 大阪府大阪市浪速区桜川4丁目4番26号

氏 名 ニッタ株式会社