

CS208: Applied Privacy for Data Science End-to-end privacy

School of Engineering & Applied Sciences Harvard University

April 12, 2022

Secure Multiparty Computation

Requirement: At end of protocol, each party P_i learns $f_i(x_1, ..., x_n)$ and nothing else!

DP vs. Crypto

Model	Utility	Privacy	Who Holds Data?
Centralized Differential Privacy	statistical analysis of dataset	individual-specific info	trusted curator
Local or Federated Differential Privacy	statistical analysis of dataset	individual-specific info	original users (or delegates)
Secure Multiparty Computation	any query desired	everything other than result of query	original users (or delegates)
Fully Homomorphic (or Functional) Encryption	any query desired	everything (except possibly result of query)	untrusted server

Difference of Means

Outcome: $y_i \in [y_{\min}, y_{\max}]; \qquad R = y_{\max} - y_{\min}$ Treatment: $t_i \in \{0, 1\}$

Difference of Means

Outcome:
$$y_i \in [y_{\min}, y_{\max}]; \qquad R = y_{\max} - y_{\min}$$

Treatment: $t_i \in \{0, 1\}$

$$n_{1} = \sum t_{i} \qquad n_{0} = \sum 1 - t_{i}$$

$$\bar{y}_{1} = \frac{\sum t_{i} y_{i}}{n_{1}} \qquad \bar{y}_{0} = \frac{\sum (1 - t_{i}) y_{i}}{n_{0}}$$

$$sd(y_{1}) = \sqrt{\frac{\sum t_{i} (y_{i} - \bar{y}_{1})^{2}}{n_{1}}} \quad sd(y_{0}) = \sqrt{\frac{\sum (1 - t_{i}) (y_{i} - \bar{y}_{0})^{2}}{n_{0}}}$$

Statistic

$$\bar{y}_1 - \bar{y}_0$$
 $\frac{R}{n_1+1} + \frac{R}{n_0+1}$

Sensitivity

Difference of Means

 $\sqrt{\frac{sd(y_1)^2}{n_1} + \frac{sd(y_0)^2}{n_0}} \qquad R\sqrt{\frac{N^*-1}{N^{*3}}}$

where
$$N^* = \min(n_0, n_1)$$

Alg.1 Differentially Private Diff. of Means Estimate

- 1. Calculate $\bar{y}_1 \bar{y}_0$
- 2. Calculate $\Delta f = \frac{x_{\text{max}} x_{\text{min}}}{N_1 + 1} + \frac{x_{\text{max}} x_{\text{min}}}{N_0 + 1}$
- 3. Draw $Z \sim f_{Laplace}(\mu = 0, b = \Delta f/\epsilon)$
- 4. Release $M(X) = \bar{y}_1 \bar{y}_0 + Z$

Privacy-Preserving Randomized Controlled Trials: A Protocol for Industry Scale Deployment

Mahnush Benjamin M. Case James Honaker Andrew Knox Movahedi* Li Li Yiming Paul Li Sanjay Saravanan Shubho Sengupta

> Erik Taubeneck Facebook Inc Menlo Park, CA

Algorithm 1 Differentially Private RCT Input:

- - x_T: user-level outcomes for the test group • x_C: user-level outcomes for the control group • R: upper bound of user-level outcomes (lower bound =
 - 0) ρ₁: zCDP privacy budget for point estimate
 - ρ₂: zCDP privacy budget for standard error

α: significance level of confidence interval (e.g., 10%) Output: [DP lift -w, DP lift +w] confidence interval

- $Y_i = \begin{cases} X_i & \text{if } X_i \le R \\ R & \text{if } X_i > R \end{cases}$
- Calculate sample means, variances, and counts: \(\bar{u}_T\), \(\bar{u}_C\). s_T^2 , s_C^2 , n_T , n_C .
 - 3: lift ← \(\bar{q}_T \bar{q}_C\).
 - 5: Sensitivity of lift: $\Delta_{\text{lift}} \leftarrow \frac{R}{n_T} + \frac{R}{n_C}$.
 - 6: Sensitivity of the standard error of lift: $\Delta_{se_{lift}} \leftarrow \sqrt{\frac{N^*-1}{N^*}}R$, where $N^* = \min(n_T, n_C)$.
- 4: Standard error of lift: $se_{lift} \leftarrow \sqrt{s_T^2/n_T + s_C^2/n_C}$.

Normal $\left(0, \frac{\Delta_{se_{lift}}^2}{2\rho_2}\right)$. 8: DP lift \leftarrow lift + Z_1 , where $Z_1 \sim \text{Normal}\left(0, \frac{\Delta_{\text{lift}}^2}{2\rho_1}\right)$. 9: DP $se_{lift} \leftarrow se_{lift} + Z_2$, where $Z_2 \sim Normal\left(0, \frac{\Delta_{se_{lift}}^2}{2\rho_2}\right)$.

7: Draw scalar random noise $Z_1 \sim \text{Normal}\left(0, \frac{\Delta_{\text{lift}}^2}{2\alpha}\right), Z_2 \sim$

10: $w = \sqrt{(se_{\text{lift}} + Z_2)^2 + \frac{\Delta_{\text{lift}}^2}{2a_1} \cdot z_{1-\alpha/2}}$, where $z_{1-\alpha/2}$ is the critical value of standard normal at $1 - \alpha/2$.