Convolution:

The convolution of two functions is given by

$$(F * G)(t) = \int_0^t F(u)G(t - u)du.$$

Convolution Properties:

- i) F * G = G * F,
- (F * G) * H = F * (G * H),
- iii) F * (G + H) = F * G + F * H.

Proof of F * G = G * F

We know

$$(F*G)(t) = \int_0^t F(u)G(t-u)du.$$

Letting t - u = v i.e u = t - v.

Then

$$(F * G)(t) = \int_0^t F(u)G(t - u)du.$$
$$= \int_0^t F(t - v)G(v)dv.$$
$$= (G * F)(t).$$

$$\therefore \qquad F * G = G * F.$$

The other properties are proved in a similar way.

Convolution theorem:

If
$$L^-\{f(s)\}=F(t)$$
 and $L^-\{g(s)\}=G(t)$

then

$$L^{-}{f(s)g(s)} = \int_{0}^{t} F(u)G(t-u)du = (F * G)(t).$$

Example:
$$L^-\left\{\frac{1}{(s-1)(s-2)}\right\}$$

Since
$$L^{-}\{\frac{1}{s-1}\} = e^{t} = F(t)$$

and
$$L^{-}\{\frac{1}{s-2}\} = e^{2t} = G(t)$$
.

We have

$$L^{-}\left\{\frac{1}{(s-1)(s-2)}\right\} = (F * G)(t)$$
$$= \int_{0}^{t} e^{u} e^{2(t-u)} du$$
$$= e^{2t} - e^{t}.$$

Example:
$$L^-\left\{\frac{s}{(s^2+a^2)^2}\right\}$$

$$\frac{s}{(s^2 + a^2)^2} = \frac{s}{s^2 + a^2} \cdot \frac{1}{s^2 + a^2}$$

We have

$$L^{-}\left\{\frac{s}{s^{2} + a^{2}}\right\} = \cos at,$$

$$L^{-}\left\{\frac{1}{s^{2} + a^{2}}\right\} = \frac{\sin at}{a}$$