Université Pierre et Marie Curie - LM 121 - 2012/2013

Correction du Contrôle continu n 2 MMIME 11.3

Exercice 1:

- 1. On sait qu'ils sont liés si et seulement si $\det(u, v, w) = 0$. Or $\det(u, v, w) = 0$ donc ils sont liés. On cherche alors a résoudre le système donné par au + bv + cw = 0. On trouve par exemple la solution suivante :
 - -2u + v + w = 0.
- 2. Dire que z est combinaison linéaire de u, v et w équivaut à dire qu'il existe $a, b, c \in \mathbb{R}$ tels que au + bv + cw = z. Cela nous donne le système suivant :

Mais la deuxième ligne donne $b-c=\frac{-1}{3}$ et la troisième $b-c=\frac{-2}{5}$, donc le système n'a pas de solutions, donc z n'est pas combinaison linéaire de u,v,w.

Exercice 2:

1. On peut par exemple paramétrer D_1 par y, et D_2 par z et on en déduit les équations paramétriques suivantes :

$$D_1: \begin{cases} x = 2+t \\ y = t \\ z = 11+2t \end{cases} \qquad D_2: \begin{cases} x = \lambda - 1 \\ y = 2\lambda + 2 \\ z = \lambda \end{cases}$$

Dire qu'un point M de l'espace est à la fois dans D_1 et D_2 , équivaut à dire qu'il existe un paramètre t tel que M=(2+t,t,11+2t) (i.e. $M \in D_1$), et qu'il existe un parametre λ tel que $M=(\lambda-1,2\lambda+2,\lambda)$. Cela amène à résoudre les solutions en λ et t du système

Les deux dernières équations étant les mêmes, le sytème équivaut au suivant :

$$\begin{cases} t - \lambda &= -3 \\ -\lambda &= 5 \end{cases}$$

qui admet une unique solution $\lambda = -5$ et t = -8. En remplaçant cette valeur de λ (resp. t) dans la paramétrisation de D_1 (resp. D_2), on obtient le même point, et on en déduit que $D_1 \cap D_2$ est réduit à un point qui est A = (-6, -8, -5). (En particulier, les droites sont concourantes).

2. D'après la question précédente, D_1 passe par A et a pour vec-

teur directeur $u = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. De même D_2 passe par A et a pour

vecteur directeur $v = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$. Ainsi, comme ces deux droites sont

concourantes, et non confondues (car leurs vecteurs directeurs ne sont pas colinéaires) il existe bien un unique plan qui les contient, \mathcal{P} , qui est le plan passant par A de vecteurs directeurs u, v.

$$u \wedge v = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \wedge \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}$$

On en déduit donc qu'une équation cartésienne de ${\mathcal P}$ est donnée par

$$-3x + y + z = a$$

pour une certaine constante a. En utilisant le fait que A est dans \mathcal{P} , on trouve a=5 soit l'équation

$$P : -3x + y + z = 5$$

Exercice 3:

Il faut juste calculer correctement les deux membres de l'égalité.

Exercice 4:

En complexe, on obtient f(z) = iz et g(z) = 3 + i + iz. Et finalement $g \circ f(z) = 3 + i - z$. Le point fixe z_0 de $g \circ f$ doit être la

solution de l'équation $g \circ f(z_0) = z_0$. Et après un calcul on trouve $z_0 = \frac{3+i}{2}$. Ainsi, $g \circ f$ est une rotation de centre $(\frac{3}{2}, \frac{1}{2})$, et d'angle $-\pi$ (c'est en fait une symétrie centrale).