Composition of Relations

Given $R \subseteq A \times B$ and $S \subseteq B \times C$, then the composition of R with S, written $R \circ S$, is defined by:

$$R \circ S riangleq \{ \ \langle a,c
angle \in A imes C \ | \ \exists \ b \in B \ (a \ R \ b \wedge b \ S \ c) \ \}$$

The notation $R \circ S$ may be read as 'R composed with S'

The relation $R \circ S$ is only defined if the types of R and S match

We will write a R b S c for $a R b \wedge b S c$

Examples

Let R and S be binary relations on $\{1, 2, 3, 4\}$ such that

$$R \triangleq \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$$

$$S \triangleq \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 4 \rangle, \langle 4, 3 \rangle, \langle 4, 4 \rangle\}$$

$$R \circ S = \{\langle 1, 1 \rangle, \langle 2, 4 \rangle, \langle 3, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 2 \rangle\}$$

$$S \circ R = \{\langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle, \langle 4, 4 \rangle, \langle 4, 1 \rangle\}$$

$$R^{-1} = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 3 \rangle, \langle 1, 4 \rangle\}$$