Statistica - 1ª lezione

21 febbraio 2023

Informazioni sul corso

ORARIO E DOCENTI

martedì 15:15 - 18:00
lezione
prof. Alessandro Toigo
alessandro.toigo@polimi.it

giovedì 13:15 - 15:00
laboratorio
prof. Francescopaolo Manicone
francescopaolo.manicone@polimi.it

venerdì 8:15 - 10:00
esercitazioni
prof. Tommaso Andreoli
tommaso.andreoli@polimi.it

Informazioni sul corso

TESTI CONSIGLIATI

- MONTGOMERY D.C., RUNGER G.C., HUBELE N.F., Statistica per ingegneria - II edizione italiana, Egea, 2012
- DALGAARD P., Introductory Statistics with R, Springer, 2008

Informazioni sul corso

MODALITÀ D'ESAME

Prova scritta (obbligatoria):

- 5 appelli a giugno / luglio / settembre / gennaio / febbraio
- voto massimo prova scritta = 30

Progetto di laboratorio (facoltativo):

- si fa in gruppi di 3 persone
- si presenta a giugno / luglio / settembre
- argomento a scelta
- voto $\in \{-1, 0, +1, +2, +3, +4, +5\}$
- il voto è valido per un anno e si somma al primo scritto sufficiente

Programma

- Statistica descrittiva (riassumere molti dati attraverso poche caratteristiche essenziali)
- Probabilità
 (costruire un modello che preveda il risultato di un esperimento)
- Inferenza statistica
 (tarare i parametri del modello in base ai risultati dell'esperimento)
- Regressione lineare (riconoscere relazioni tra dati di tipo diverso)

Programma

- Statistica descrittiva (riassumere molti dati attraverso poche caratteristiche essenziali)
- Probabilità
 (costruire un modello che preveda il risultato di un esperimento)
- Inferenza statistica
 (tarare i parametri del modello in base ai risultati dell'esperimento)
- Regressione lineare (riconoscere relazioni tra dati di tipo diverso)

DATO = risultato ottenuto in una singola misura

In genere, si ripetono più misure, ottenendo così n dati x_1, x_2, \dots, x_n

```
 \begin{array}{c} \text{Tipi} \\ \text{di dati} \end{array} \left\{ \begin{array}{l} \text{CATEGORICI} \quad \text{(sesso, colore degli occhi)} \\ \text{NUMERICI} \end{array} \right. \left\{ \begin{array}{l} \text{DISCRETI} \quad \text{(numero di figli, età)} \\ \text{CONTINUI} \quad \text{(altezza, peso)} \end{array} \right.
```

DATO = risultato ottenuto in una singola misura

In genere, si ripetono più misure, ottenendo così n dati x_1, x_2, \ldots, x_n

$$\begin{array}{c} \text{Tipi} \\ \text{di dati} \end{array} \left\{ \begin{array}{l} \text{CATEGORICI} \quad \text{(sesso, colore degli occhi)} \\ \text{NUMERICI} \end{array} \right. \left\{ \begin{array}{l} \text{DISCRETI} \quad \text{(numero di figli, età)} \\ \text{CONTINUI} \quad \text{(altezza, peso)} \end{array} \right.$$

S = insieme dei valori possibili per ciascun dato

C =classe di valori (cioè un qualunque sottoinsieme $C \subseteq S$)

DATO = risultato ottenuto in una singola misura

In genere, si ripetono più misure, ottenendo così n dati x_1, x_2, \dots, x_n

```
 \begin{array}{c} \text{Tipi} \\ \text{di dati} \end{array} \left\{ \begin{array}{l} \text{CATEGORICI} & (\text{sesso}, \, \text{colore degli occhi}) \\ \text{NUMERICI} & \begin{cases} \text{DISCRETI} & (\text{numero di figli, età}) \\ \text{CONTINUI} & (\text{altezza, peso}) \\ \end{array} \right. \end{array}
```

S = insieme dei valori possibili per ciascun dato

C =classe di valori (cioè un qualunque sottoinsieme $C \subseteq S$)

ESEMPI:

```
S = \{ \text{maschio}, \, \text{femmina} \} \quad \textit{\textbf{C}}_1 = \{ \text{maschio} \}, \, \textit{\textbf{C}}_2 = \{ \text{femmina} \}
```

DATO = risultato ottenuto in una singola misura

In genere, si ripetono più misure, ottenendo così n dati x_1, x_2, \dots, x_n

$$\begin{array}{c} \text{Tipi} \\ \text{di dati} \end{array} \left\{ \begin{array}{l} \text{CATEGORICI} \quad \text{(sesso, colore degli occhi)} \\ \text{NUMERICI} \end{array} \right. \left\{ \begin{array}{l} \text{DISCRETI} \quad \text{(numero di figli, età)} \\ \text{CONTINUI} \quad \text{(altezza, peso)} \end{array} \right.$$

S = insieme dei valori possibili per ciascun dato

C =classe di valori (cioè un qualunque sottoinsieme $C \subseteq S$)

ESEMPI:

$$\begin{split} S &= \{ \text{maschio}, \, \text{femmina} \} \quad \textit{C}_1 = \{ \text{maschio} \}, \, \textit{C}_2 = \{ \text{femmina} \} \\ S &= \{ 0, 1, 2, 3, 4, 5, \ldots \} \qquad \textit{C}_1 = \{ 0 \}, \, \textit{C}_2 = \{ 1, 2 \}, \, \textit{C}_3 = \{ 3, 4, 5, \ldots \} \end{split}$$

DATO = risultato ottenuto in una singola misura

In genere, si ripetono più misure, ottenendo così n dati x_1, x_2, \dots, x_n

$$\begin{array}{c} \text{Tipi} \\ \text{di dati} \end{array} \left\{ \begin{array}{l} \text{CATEGORICI} \quad \text{(sesso, colore degli occhi)} \\ \text{NUMERICI} \end{array} \right. \left\{ \begin{array}{l} \text{DISCRETI} \quad \text{(numero di figli, età)} \\ \text{CONTINUI} \quad \text{(altezza, peso)} \end{array} \right.$$

S = insieme dei valori possibili per ciascun dato

C= classe di valori (cioè un qualunque sottoinsieme $C\subseteq S$)

ESEMPI:

$$\begin{split} S &= \{ \text{maschio, femmina} \} &\quad C_1 &= \{ \text{maschio} \}, \ C_2 &= \{ \text{femmina} \} \\ S &= \{ 0, 1, 2, 3, 4, 5, \ldots \} &\quad C_1 &= \{ 0 \}, \ C_2 &= \{ 1, 2 \}, \ C_3 &= \{ 3, 4, 5, \ldots \} \\ S &= [0, +\infty) &\quad C_1 &= [1.40, \ 1.60), \ C_2 &= [1.60, \ 1.90), \\ C_3 &= [1.90, +\infty) &\quad C_3 &= [1.90, +\infty) \end{split}$$

DATO = risultato ottenuto in una singola misura

In genere, si ripetono più misure, ottenendo così n dati x_1, x_2, \ldots, x_n

$$\begin{array}{c} \text{Tipi} \\ \text{di dati} \end{array} \left\{ \begin{array}{l} \text{CATEGORICI} \quad \text{(sesso, colore degli occhi)} \\ \text{NUMERICI} \end{array} \right. \left\{ \begin{array}{l} \text{DISCRETI} \quad \text{(numero di figli, età)} \\ \text{CONTINUI} \quad \text{(altezza, peso)} \end{array} \right.$$

S = insieme dei valori possibili per ciascun dato

C= classe di valori (cioè un qualunque sottoinsieme $C\subseteq S$)

FREQUENZA ASSOLUTA della classe
$$C =$$

$$= FA(C) := \#\{i \in \{1, 2, ..., n\} \mid x_i \in C\}$$

DATO = risultato ottenuto in una singola misura

In genere, si ripetono più misure, ottenendo così n dati x_1, x_2, \ldots, x_n

$$\begin{array}{c} \text{Tipi} \\ \text{di dati} \end{array} \left\{ \begin{array}{l} \text{CATEGORICI} \quad \text{(sesso, colore degli occhi)} \\ \text{NUMERICI} \end{array} \right. \left\{ \begin{array}{l} \text{DISCRETI} \quad \text{(numero di figli, età)} \\ \text{CONTINUI} \quad \text{(altezza, peso)} \end{array} \right.$$

S = insieme dei valori possibili per ciascun dato

 $\mathit{C} = \mathsf{classe}$ di valori (cioè un qualunque sottoinsieme $\mathit{C} \subseteq \mathit{S}$)

FREQUENZA ASSOLUTA della classe C =

$$= FA(C) := \#\{i \in \{1, 2, \dots, n\} \mid x_i \in C\}$$

FREQUENZA RELATIVA della classe C =

$$=\operatorname{FR}(C):=\frac{1}{n}\operatorname{FA}(C)$$

ESEMPIO: Abbiamo misurato i gruppi sanguigni di n = 12 studenti, ottenendo i dati seguenti:

В

B AB O A O A A A B A A

I valori possibili sono $S = \{A, B, AB, 0\}$

Come classi scegliamo insiemi formati da un solo elemento (singletoni)

$$C_1 = \{A\}, \qquad C_2 = \{B\}, \qquad C_3 = \{AB\}, \qquad C_4 = \{0\}$$

$$C_2$$

$$\},$$

$$C_3 = \{AB\}$$

$$C_4=\{0\}$$

ESEMPIO: Abbiamo misurato i gruppi sanguigni di n = 12 studenti, ottenendo i dati seguenti:

B B AB O A O A A B A A

I valori possibili sono $\mathcal{S} = \{A\,,\,B\,,\,AB\,,\,0\}$

Come classi scegliamo insiemi formati da un solo elemento (singletoni)

$$C_1 = \{A\}, \qquad C_2 = \{B\}, \qquad C_3 = \{AB\}, \qquad C_4 = \{0\}$$

$$FA({A}) = \#{5,7,8,9,11,12} = 6$$

ESEMPIO: Abbiamo misurato i gruppi sanguigni di n = 12 studenti, ottenendo i dati seguenti:

B B AB O A O A A B A A

I valori possibili sono $S = \{A, B, AB, 0\}$

Come classi scegliamo insiemi formati da un solo elemento (singletoni)

$$C_1 = \{A\}, \qquad C_2 = \{B\}, \qquad C_3 = \{AB\}, \qquad C_4 = \{0\}$$

$$FA({A}) = \#{5,7,8,9,11,12} = 6$$

 $FA({B}) = \#{1,2,10} = 3$

ESEMPIO: Abbiamo misurato i gruppi sanguigni di n = 12 studenti, ottenendo i dati seguenti:

B B AB 0 A 0 A A A B A A

I valori possibili sono $S = \{A, B, AB, 0\}$

Come classi scegliamo insiemi formati da un solo elemento (singletoni)

$$C_1 = \{A\}, \qquad C_2 = \{B\}, \qquad C_3 = \{AB\}, \qquad C_4 = \{0\}$$

$$FA({A}) = \#{5,7,8,9,11,12} = 6$$

$$FA({B}) = \#{1,2,10} = 3$$

$$FA(\{AB\}) = \#\{3\} = 1$$

ESEMPIO: Abbiamo misurato i gruppi sanguigni di n = 12 studenti, ottenendo i dati seguenti:

B B AB O A O A A A B A A

I valori possibili sono $S = \{A, B, AB, 0\}$

Come classi scegliamo insiemi formati da un solo elemento (singletoni)

$$C_1 = \{A\}, \qquad C_2 = \{B\}, \qquad C_3 = \{AB\}, \qquad C_4 = \{0\}$$

$$FA({A}) = \#{5,7,8,9,11,12} = 6$$

$$FA({B}) = \#{1,2,10} = 3$$

$$FA(\{AB\}) = \#\{3\} = 1$$

$$FA(\{0\}) = \#\{4,6\} = 2$$

ESEMPIO: Abbiamo misurato i gruppi sanguigni di n = 12 studenti, ottenendo i dati seguenti:

B B AB 0 A 0 A A A B A A

I valori possibili sono $S = \{A, B, AB, 0\}$

Come classi scegliamo insiemi formati da un solo elemento (singletoni)

$$\textit{C}_1 = \{\textit{A}\}, \qquad \textit{C}_2 = \{\textit{B}\}, \qquad \textit{C}_3 = \{\textit{AB}\}, \qquad \textit{C}_4 = \{0\}$$

$$FA(\{A\}) = \#\{5,7,8,9,11,12\} = 6 \Rightarrow FR(\{A\}) = 6/12 = 0.5$$

 $FA(\{B\}) = \#\{1,2,10\} = 3 \Rightarrow FR(\{B\}) = 3/12 = 0.25$
 $FA(\{AB\}) = \#\{3\} = 1 \Rightarrow FR(\{AB\}) = 1/12 = 0.08\overline{3}$

$$FA(\{0\}) = \#\{4,6\} = 2$$
 $\Rightarrow FR(\{0\}) = 2/12 = 0.1\overline{6}$

Tabella delle frequenze

Classi	FA	FR
Α	6	0.5 = 50%
В	3	0.25 = 25%
AB	1	$0.08\overline{3} = 8.\overline{3}\%$
0	2	$0.1\overline{6} = 16.\overline{6}\%$

Tabella delle frequenze

Classi	FA	FR
Α	6	0.5 = 50%
В	3	0.25 = 25%
AB	1	$0.08\overline{3} = 8.\overline{3}\%$
0	2	$0.1\overline{6} = 16.\overline{6}\%$
	12 OK!	

Tabella delle frequenze

Classi	FA	FR
Α	6	0.5 = 50%
В	3	0.25 = 25%
AB	1	$0.08\overline{3} = 8.\overline{3}\%$
0	2	$0.1\overline{6} = 16.\overline{6}\%$
	12 OK!	100% OK!

Tabella delle frequenze

Classi	FA	FR
Α	6	0.5 = 50%
В	3	0.25 = 25%
AB	1	$0.08\overline{3} = 8.\overline{3}\%$
0	2	$0.1\overline{6} = 16.\overline{6}\%$
	12 OK!	100% OK!

Istogramma

Tabella delle frequenze

Classi	FA	FR
Α	6	0.5 = 50%
В	3	0.25 = 25%
AB	1	$0.08\overline{3} = 8.\overline{3}\%$
0	2	$0.1\overline{6} = 16.\overline{6}\%$
	12 OK!	100% OK!

Istogramma

Dati numerici

I dati numerici si possono

ordinare:

$$x_1 = 28.4$$
 $x_2 = 8.3$ $x_3 = 15.7$ $x_{(1)} = 8.3$ $x_{(2)} = 15.7$ $x_{(3)} = 28.4$

dati grezzi dati ordinati

Dati numerici

I dati numerici si possono

ordinare:

$$x_1 = 28.4$$
 $x_2 = 8.3$ $x_3 = 15.7$ dati grezzi $x_{(1)} = 8.3$ $x_{(2)} = 15.7$ $x_{(3)} = 28.4$ dati ordinati

FREQUENZA CUMULATA del valore
$$k =$$

$$= FC(k) := \frac{1}{n} \# \{ i \in \{1, 2, ..., n\} \mid x_i \le k \}$$

Dati numerici

I dati numerici si possono

ordinare:

$$x_1 = 28.4$$
 $x_2 = 8.3$ $x_3 = 15.7$ dati grezzi $x_{(1)} = 8.3$ $x_{(2)} = 15.7$ $x_{(3)} = 28.4$ dati ordinati

FREQUENZA CUMULATA del valore k =

= FC(k) :=
$$\frac{1}{n}$$
 #{ $i \in \{1, 2, ..., n\} \mid x_i \le k$ }

• sommare e moltiplicare per costanti:

$$x_i \longrightarrow y_i = ax_i + b$$
 $a,b \in \mathbb{R}$ $x_1 = 28.4$ $x_2 = 8.3$ $x_3 = 15.7$ temperature in °C $x_i \longrightarrow y_i = 1.8 \cdot x_i + 32$ conversione in °F $y_1 = 83.1$ $y_2 = 46.9$ $y_3 = 60.3$ temperature in °F

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

1 0 3 1 3 2 2 1 2 5 3 0 1 4 3 7 1 3 1 4 2 3 0 5

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

I valori possibili sono $S = \{0, 1, 2, 3, \dots, 100\}$

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

Classi	FA	FR	FC
0			
1			
2			
3			
4			
5			
6			
7			

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

Classi	FA	FR	FC
0	3	3/24 = 0.125	0.125
1			
2			
3			
4			
5			
6			
7			

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

Classi	FA	FR	FC
0	3	3/24 = 0.125	0.125
1	6	6/24 = 0.25	0.125 + 0.25 = 0.375
2			
3			
4			
5			
6			
7			

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

Classi	FA	FR	FC
0	3	3/24 = 0.125	0.125
1	6	6/24 = 0.25	0.125 + 0.25 = 0.375
2	4	$4/24 = 0.1\overline{6}$	$0.375 + 0.1\overline{6} = 0.541\overline{6}$
3			
4			
5			
6			
7			

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

Classi	FA	FR	FC
0	3	3/24 = 0.125	0.125
1	6	6/24 = 0.25	0.125 + 0.25 = 0.375
2	4	$4/24 = 0.1\overline{6}$	$0.375 + 0.1\overline{6} = 0.541\overline{6}$
3	6	6/24 = 0.25	$0.541\overline{6} + 0.25 = 0.791\overline{6}$
4			
5			
6			
7			

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

Classi	FA	FR	FC
0	3	3/24 = 0.125	0.125
1	6	6/24 = 0.25	0.125 + 0.25 = 0.375
2	4	$4/24 = 0.1\overline{6}$	$0.375 + 0.1\overline{6} = 0.541\overline{6}$
3	6	6/24 = 0.25	$0.541\overline{6} + 0.25 = 0.791\overline{6}$
4	2	$2/24 = 0.08\overline{3}$	$0.791\overline{6} + 0.08\overline{3} = 0.875$
5			
6			
7			

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

I valori veramente possibili sono $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$

Classi	FA	FR	FC
0	3	3/24 = 0.125	0.125
1	6	6/24 = 0.25	0.125 + 0.25 = 0.375
2	4	$4/24 = 0.1\overline{6}$	$0.375 + 0.1\overline{6} = 0.541\overline{6}$
3	6	6/24 = 0.25	$0.541\overline{6} + 0.25 = 0.791\overline{6}$
4	2	$2/24 = 0.08\overline{3}$	$0.791\overline{6} + 0.08\overline{3} = 0.875$
5	2	$2/24 = 0.08\overline{3}$	$0.875 + 0.08\overline{3} = 0.958\overline{3}$
6			
7			

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

I valori veramente possibili sono $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$

Classi	FA	FR	FC
0	3	3/24 = 0.125	0.125
1	6	6/24 = 0.25	0.125 + 0.25 = 0.375
2	4	$4/24 = 0.1\overline{6}$	$0.375 + 0.1\overline{6} = 0.541\overline{6}$
3	6	6/24 = 0.25	$0.541\overline{6} + 0.25 = 0.791\overline{6}$
4	2	$2/24 = 0.08\overline{3}$	$0.791\overline{6} + 0.08\overline{3} = 0.875$
5	2	$2/24 = 0.08\overline{3}$	$0.875 + 0.08\overline{3} = 0.958\overline{3}$
6	0	0/24 = 0	$0.958\overline{3} + 0 = 0.958\overline{3}$
7			

ESEMPIO: Abbiamo contato il numero di CD difettosi in 24 scatole da 100 pezzi ciascuna, ottenendo i dati seguenti:

I valori veramente possibili sono $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$

Classi	FA	FR	FC
0	3	3/24 = 0.125	0.125
1	6	6/24 = 0.25	0.125 + 0.25 = 0.375
2	4	$4/24 = 0.1\overline{6}$	$0.375 + 0.1\overline{6} = 0.541\overline{6}$
3	6	6/24 = 0.25	$0.541\overline{6} + 0.25 = 0.791\overline{6}$
4	2	$2/24 = 0.08\overline{3}$	$0.791\overline{6} + 0.08\overline{3} = 0.875$
5	2	$2/24 = 0.08\overline{3}$	$0.875 + 0.08\overline{3} = 0.958\overline{3}$
6	0	0/24 = 0	$0.958\overline{3} + 0 = 0.958\overline{3}$
7	1	$1/24 = 0.041\overline{6}$	$0.958\overline{3} + 0.041\overline{6} = 1$ OK!

Istogramma

Frequenze cumulate

MODA = classe (o classi) più frequenti

MODA = classe (o classi) più frequenti
=
$$\{1,3\}$$
 \Rightarrow dati bimodali

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA =
$$\frac{1}{n} \sum_{i=1}^{n} x_i =: \bar{x}_n$$

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA =
$$\frac{1}{n} \sum_{i=1}^{n} x_i =: \bar{x}_n$$

= $\frac{1+0+3+...+5}{24} = 2.375$

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA =
$$\frac{1}{n} \sum_{i=1}^{n} x_i =: \bar{x}_n$$

$$\mathsf{MEDIANA} = \begin{cases} x_{(\lfloor n/2 \rfloor + 1)} & \text{se } n/2 \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n/2)} + x_{(n/2+1)} \right) & \text{se } n/2 \in \mathbb{N} \end{cases} =: m$$

dove $\lfloor \cdot \rfloor$ = intero immediatamente precedente:

$$\lfloor 7.93 \rfloor = 7, \qquad \lfloor 2.08 \rfloor = 2, \qquad \lfloor 5 \rfloor = 5, \qquad \lfloor 0.57 \rfloor = 0$$

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA =
$$\frac{1}{n} \sum_{i=1}^{n} x_i =: \bar{x}_n$$

$$\mathsf{MEDIANA} = \begin{cases} x_{(\lfloor n/2 \rfloor + 1)} & \text{se } n/2 \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n/2)} + x_{(n/2+1)} \right) & \text{se } n/2 \in \mathbb{N} \end{cases} =: m$$

dove $|\cdot|$ = intero immediatamente precedente:

$$\lfloor 7.93 \rfloor = 7, \qquad \lfloor 2.08 \rfloor = 2, \qquad \lfloor 5 \rfloor = 5, \qquad \lfloor 0.57 \rfloor = 0$$

 $n/2 = 24/2 = 12 \in \mathbb{N}$

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA =
$$\frac{1}{n} \sum_{i=1}^{n} x_i =: \bar{x}_n$$

MEDIANA = $\begin{cases} x_{(\lfloor n/2 \rfloor + 1)} & \text{se } n/2 \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n/2)} + x_{(n/2+1)} \right) & \text{se } n/2 \in \mathbb{N} \end{cases} =: m$

10/15

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA =
$$\frac{1}{n} \sum_{i=1}^{n} x_i =: \bar{x}_n$$

MEDIANA = $\begin{cases} x_{(\lfloor n/2 \rfloor + 1)} & \text{se } n/2 \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n/2)} + x_{(n/2+1)} \right) & \text{se } n/2 \in \mathbb{N} \end{cases} =: m$

$$n/2 = 24/2 = 12 \in \mathbb{N}$$

 $\Rightarrow m = \frac{1}{2} (x_{(12)} + x_{(13)})$

$$X_{(1)}, X_{(2)}, \dots, X_{(24)}$$
0 0 0 1 1 1
1 1 1 2 2 2
2 3 3 3 3 3 3
3 4 4 5 5 7

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA =
$$\frac{1}{n} \sum_{i=1}^{n} x_i =: \bar{x}_n$$

$$\mathsf{MEDIANA} = \begin{cases} x_{(\lfloor n/2 \rfloor + 1)} & \text{se } n/2 \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n/2)} + x_{(n/2+1)} \right) & \text{se } n/2 \in \mathbb{N} \end{cases} =: m$$

$$n/2 = 24/2 = 12 \in \mathbb{N}$$

 $\Rightarrow m = \frac{1}{2} (x_{(12)} + x_{(13)}) = \frac{1}{2} (2 + 2) = 2$

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA = $\frac{1}{n}\sum_{i=1}^{n} x_i =: \bar{x}_n$

$$\mathsf{MEDIANA} = \begin{cases} x_{(\lfloor n/2\rfloor + 1)} & \text{se } n/2 \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n/2)} + x_{(n/2 + 1)} \right) & \text{se } n/2 \in \mathbb{N} \end{cases} =: m$$

$$n/2 = 24/2 = 12 \in \mathbb{N}$$

 $\Rightarrow m = \frac{1}{2} (x_{(12)} + x_{(13)}) = \frac{1}{2} (2+2) = 2$

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA
$$=$$
 $\frac{1}{n}\sum_{i=1}^{n}x_{i}=:\bar{x}_{n}$

MEDIANA $=$ $\begin{cases} x_{(\lfloor n/2\rfloor+1)} & \text{se } n/2\notin\mathbb{N} \\ \frac{1}{2}\left(x_{(n/2)}+x_{(n/2+1)}\right) & \text{se } n/2\in\mathbb{N} \end{cases} =: m$
 $n/2=24/2=12\in\mathbb{N}$

 $\Rightarrow m = \frac{1}{2} (x_{(12)} + x_{(13)}) = \frac{1}{2} (2+2) = 2$

MODA = classe (o classi) più frequenti

MEDIA CAMPIONARIA =
$$\frac{1}{n} \sum_{i=1}^{n} x_i =: \bar{x}_n$$

MEDIANA = $\begin{cases} x_{(\lfloor n/2 \rfloor + 1)} & \text{se } n/2 \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n/2)} + x_{(n/2+1)} \right) & \text{se } n/2 \in \mathbb{N} \end{cases} =: m$
 $n/2 = 24/2 = 12 \in \mathbb{N}$
 $\Rightarrow m = \frac{1}{2} \left(x_{(12)} + x_{(13)} \right) = \frac{1}{2} \left(2 + 2 \right) = 2$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

$$\bar{x} = \frac{1+0+3+1+3+\ldots+0+5}{24}$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

$$\bar{x} = \frac{1 + 0 + 3 + 1 + 3 + \dots + 0 + 5}{24}$$

$$= \underbrace{\frac{\text{FA(0) volte}}{0 + 0 + \dots + 0 + 1 + 1 + \dots + 1 + \dots + 7 + 7 + \dots + 7}_{24}}_{\text{24}}$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

$$\bar{x} = \frac{1 + 0 + 3 + 1 + 3 + \dots + 0 + 5}{24}$$

$$= \frac{\overbrace{0 + 0 + \dots + 0 + 1 + 1 + \dots + 1 + \dots + 7 + 7 + \dots + 7}^{FA(0) \text{ volte}}}{24}$$

$$= 0 \cdot \underbrace{\frac{FA(0)}{24}}_{FR(0)} + 1 \cdot \underbrace{\frac{FA(1)}{24}}_{FR(1)} + \dots + 7 \cdot \underbrace{\frac{FA(7)}{24}}_{FR(7)}$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

$$\bar{x} = \frac{1 + 0 + 3 + 1 + 3 + \dots + 0 + 5}{24}$$

$$= \frac{1 + 0 + 3 + 1 + 3 + \dots + 0 + 5}{1 + 1 + \dots + 1}$$

$$= \frac{1 + 0 + 3 + 1 + 3 + \dots + 1 + \dots + 1}{24}$$

$$= \frac{1 + 0 + 3 + 1 + 3 + \dots + 1 + \dots + 1}{24}$$

$$= \frac{1 + 0 + 3 + 1 + 3 + \dots + 1 + \dots + 1}{24}$$

$$= 0 \cdot \underbrace{\frac{FA(0)}{24} + 1 \cdot \frac{FA(1)}{24} + \dots + 7 \cdot \frac{FA(7)}{24}}_{FR(0)}$$

$$= \sum_{k=1}^{7} k FR(k)$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

• Per una trasformazione affine $y_i = ax_i + b$:

$$\bar{y}_n = a\bar{x}_n + b$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

• Per una trasformazione affine $y_i = ax_i + b$:

$$\bar{y}_n = a\bar{x}_n + b$$

$$\bar{y}_n := \frac{1}{n} \sum_{i=1}^n y_i$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

• Per una trasformazione affine $y_i = ax_i + b$:

$$\bar{y}_n = a\bar{x}_n + b$$

$$\bar{y}_n := \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{n} \sum_{i=1}^n (ax_i + b)$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

• Per una trasformazione affine $y_i = ax_i + b$:

$$\bar{y}_n = a\bar{x}_n + b$$

$$\bar{y}_n := \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{n} \sum_{i=1}^n (ax_i + b)$$

$$= a \frac{1}{n} \sum_{i=1}^n x_i + b \frac{1}{n} \sum_{i=1}^n 1$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

• Per una trasformazione affine $y_i = ax_i + b$:

$$\bar{y}_n = a\bar{x}_n + b$$

$$\bar{y}_n := \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{n} \sum_{i=1}^n (ax_i + b)$$

$$= a \frac{1}{n} \sum_{i=1}^n x_i + b \frac{1}{n} \sum_{i=1}^n 1 = a \bar{x}_n + b \frac{1}{n} n$$

Per dati discreti:

$$\bar{x}_n = \sum_{\text{classi } k} k \operatorname{FR}(k)$$

• Per una trasformazione affine $y_i = ax_i + b$:

$$\bar{y}_n = a\bar{x}_n + b$$

$$\bar{y}_n := \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{n} \sum_{i=1}^n (ax_i + b)$$

$$= a \frac{1}{n} \sum_{i=1}^n x_i + b \frac{1}{n} \sum_{i=1}^n 1 = a \bar{x}_n + b \frac{1}{n} n$$

$$= a \bar{x}_n + b$$

Proprietà della mediana

- Almeno il 50% dei dati è $\leq m$
- Almeno il 50% dei dati è $\geq m$

Proprietà della mediana

- Almeno il 50% dei dati è $\leq m$
- Almeno il 50% dei dati è $\geq m$
- Dalla tabella delle frequenze:

Classi	FA	FR	FC	
0	3	0.125	0.125	solo il 12.5% dei dati \leq 0
1	6	0.25	0.375	solo il 37.5% dei dati \leq 1
2	4	0.16	0.5416	m=2
3	6	0.25	0.7916	solo il $(100 - 54.1\overline{6})\%$ dei dati ≥ 3
4	2	$0.08\overline{3}$	0.875	solo il $(100 - 79.1\overline{6})\%$ dei dati ≥ 4
5	2	$0.08\overline{3}$	$0.958\overline{3}$	solo il $(100 - 87.5)\%$ dei dati ≥ 5
6	0	0	$0.958\overline{3}$	solo il $(100 - 95.8\overline{3})\%$ dei dati ≥ 6
7	1	0.0416	1	solo il $(100 - 95.8\overline{3})\%$ dei dati ≥ 7

Proprietà della mediana

- Almeno il 50% dei dati è $\leq m$
- Almeno il 50% dei dati è $\geq m$
- Dalla tabella delle frequenze:

Classi	FA	FR	FC	
0	3	0.125	0.125	solo il 12.5% dei dati \leq 0
1	6	0.25	0.375	solo il 37.5% dei dati ≤ 1
2	4	0.16	$0.541\overline{6}$	m = 2
3	6	0.25	0.7916	solo il $(100 - 54.1\overline{6})\%$ dei dati ≥ 3
4	2	$0.08\overline{3}$	0.875	solo il $(100 - 79.1\overline{6})\%$ dei dati ≥ 4
5	2	$0.08\overline{3}$	$0.958\overline{3}$	solo il (100 $-$ 87.5)% dei dati \geq 5
6	0	0	$0.958\overline{3}$	solo il $(100 - 95.8\overline{3})\%$ dei dati ≥ 6
7	1	0.0416	1	solo il $(100 - 95.8\overline{3})\%$ dei dati ≥ 7

• Per una trasformazione affine $y_i = ax_i + b$ con $a \neq 0$:

$$m_y = am_x + b$$

Quantili

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

Quantili

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

- Almeno il 100 · γ % dei dati è $\leq q_{\gamma}$
- Almeno il 100 \cdot (1 γ) % dei dati è \geq q_{γ}

Quantili

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

- Almeno il 100 \cdot γ % dei dati è \leq q_{γ}
- Almeno il 100 \cdot (1 $-\gamma$) % dei dati è $\geq q_{\gamma}$
- $q_{0.25} =: Q1$, $q_{0.5} = m =: Q2$, $q_{0.75} =: Q3$: quartili

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

- Almeno il 100 \cdot γ % dei dati è \leq q_{γ}
- Almeno il 100 · (1γ) % dei dati è $\geq q_{\gamma}$
- $q_{0.25} =: Q1, q_{0.5} = m =: Q2, q_{0.75} =: Q3: quartili$
- ullet q_{γ} si può ricavare dalla tabella delle frequenze

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

- Almeno il 100 \cdot γ % dei dati è \leq q_{γ}
- Almeno il 100 \cdot (1 $-\gamma$) % dei dati è $\geq q_{\gamma}$
- $q_{0.25} =: Q1, q_{0.5} = m =: Q2, q_{0.75} =: Q3: quartili$
- q_{γ} si può ricavare dalla tabella delle frequenze
- Per una trasformazione affine $y_i = ax_i + b \operatorname{con} a \neq 0$:

$$q_{\gamma}^{y} = egin{cases} a\,q_{\gamma}^{\mathsf{x}} + b & ext{se } a > 0 \ a\,q_{1-\gamma}^{\mathsf{x}} + b & ext{se } a < 0 \end{cases}$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

X	$X_{(1)}, X_{(2)}, \ldots, X_{(24)}$				
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

Х	(1),	x ₍₂₎ ,	,	, X ₍₂₄	4)
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

$$q_{0.20} = ????$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} \frac{\mathsf{X}(\lfloor n\gamma \rfloor + 1)}{\frac{1}{2} \left(\mathsf{X}(n\gamma) + \mathsf{X}(n\gamma + 1) \right)} & \text{se } n\gamma \notin \mathbb{N} \\ & =: q_{\gamma} \end{cases} =: q_{\gamma}$$

X	(1),	$x_{(2)},$,	X ₍₂₄	4)
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

$$q_{0.20} = ????$$

$$n\gamma = 24 \cdot 0.20 = 4.8$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} \frac{\mathsf{X}(\lfloor n\gamma \rfloor + 1)}{\frac{1}{2} \left(\mathsf{X}(n\gamma) + \mathsf{X}(n\gamma + 1) \right)} & \text{se } n\gamma \notin \mathbb{N} \\ & =: q_{\gamma} \end{cases} =: q_{\gamma}$$

X	$X_{(1)}, X_{(2)}, \ldots, X_{(24)}$				
0	0	0	•	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

$$q_{0.20} = x_{(\lfloor 4.8 \rfloor + 1)}$$

$$n\gamma = 24 \cdot 0.20 = 4.8$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

X	(1),	$x_{(2)},$,	X ₍₂₄	1)
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

FA	FR	FC
3	0.125	0.125
6	0.25	0.375
4	0.16	0.5416
6	0.25	0.7916
2	0.083	0.875
2	0.083	0.9583
0	0	0.9583
1	0.0416	1
	3 6 4 6 2 2	3 0.125 6 0.25 4 0.16 6 0.25 2 0.083 2 0.083 0 0

$$q_{0.20} = x_{(\lfloor 4.8 \rfloor + 1)} = x_{(5)}$$

$$n\gamma = 24 \cdot 0.20 = 4.8$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

X	(1),	x ₍₂₎ ,	,	, X ₍₂₄	4)
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

$$q_{0.20} = x_{(|4.8|+1)} = x_{(5)} = 1$$

$$n\gamma = 24 \cdot 0.20 = 4.8$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

X	(1),	x ₍₂₎ ,	,	X ₍₂₄	4)
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	$0.958\overline{3}$
6	0	0	0.9583
7	1	0.0416	1

$$Q1 = q_{0.25} = ????$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

(1),	$x_{(2)},$	• • • •	$X_{(24)}$	4)
0	0	1	1	1
1	1	2	2	2
3	3	3	3	3
4	4	5	5	7
	0 1 3	0 0 1 1 3 3	0 0 1 1 1 2 3 3 3	1 1 2 2 3 3 3 3

FA	FR	FC
3	0.125	0.125
6	0.25	0.375
4	0.16	0.5416
6	0.25	0.7916
2	0.083	0.875
2	0.083	0.9583
0	0	0.9583
1	0.0416	1
	3 6 4 6 2 2	3 0.125 6 0.25 4 0.16 6 0.25 2 0.083 2 0.083 0 0

$$Q1 = q_{0.25} = ????$$

$$n\gamma = 24 \cdot 0.25 = 6$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

$X_{(1)}, X_{(2)}, \ldots, X_{(24)}$					
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

$$Q1 = q_{0.25} = \frac{1}{2} \left(x_{(6)} + x_{(7)} \right)$$

$$n\gamma=24\cdot0.25=6$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

$X_{(1)}, X_{(2)}, \ldots, X_{(24)}$					
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	$0.08\overline{3}$	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

Q1 =
$$q_{0.25} = \frac{1}{2} (x_{(6)} + x_{(7)}) = \frac{1}{2} (1 + 1)$$

$$n\gamma = 24 \cdot 0.25 = 6$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

Х	$X_{(1)}, X_{(2)}, \ldots, X_{(24)}$					
0	0	0	1	1	1	
1	1	1	2	2	2	
2	3	3	3	3	3	
3	4	4	5	5	7	

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

Q1 =
$$q_{0.25} = \frac{1}{2} (x_{(6)} + x_{(7)}) = \frac{1}{2} (1 + 1) = 1$$
 $n\gamma = 24 \cdot 0.25 = 6$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

X	(1),	x ₍₂₎ ,	,	X ₍₂₄	4)
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

CI	assi	FA	FR	FC
	0	3	0.125	0.125
	1	6	0.25	0.375
	2	4	0.16	0.5416
	3	6	0.25	0.7916
	4	2	0.083	0.875
'	5	2	0.083	$0.958\overline{3}$
	6	0	0	0.9583
	7	1	0.0416	1

$$Q3 = q_{0.75} = ????$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

X	(1),	x ₍₂₎ ,	,	X ₍₂₄	4)
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

$$Q3 = q_{0.75} = ????$$

$$n\gamma = 24 \cdot 0.75 = 18$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

X	(1),	x ₍₂₎ ,	,	X ₍₂₄	4)
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

Q3 =
$$q_{0.75} = \frac{1}{2} (x_{(18)} + x_{(19)})$$

$$n\gamma = 24 \cdot 0.75 = 18$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

X	$X_{(1)}, X_{(2)}, \ldots, X_{(24)}$					
0	0	0	1	1	1	
1	1	1	2	2	2	
2	3	3	3	3	3	
3	4	4	5	5	7	

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

Q3 =
$$q_{0.75} = \frac{1}{2} (x_{(18)} + x_{(19)}) = \frac{1}{2} (3 + 3)$$

$$n\gamma = 24 \cdot 0.75 = 18$$

QUANTILE DI ORDINE γ (con $\gamma \in (0, 1)$ fissato)

$$= \begin{cases} x_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ \frac{1}{2} \left(x_{(n\gamma)} + x_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N} \end{cases} =: q_{\gamma}$$

Х	$X_{(1)}, X_{(2)}, \ldots, X_{(24)}$				
0	0	0	1	1	1
1	1	1	2	2	2
2	3	3	3	3	3
3	4	4	5	5	7

Classi	FA	FR	FC
0	3	0.125	0.125
1	6	0.25	0.375
2	4	0.16	0.5416
3	6	0.25	0.7916
4	2	0.083	0.875
5	2	0.083	0.9583
6	0	0	0.9583
7	1	0.0416	1

Q3 =
$$q_{0.75} = \frac{1}{2} (x_{(18)} + x_{(19)}) = \frac{1}{2} (3+3) = 3$$
 $n\gamma = 24 \cdot 0.75 = 18$

$$n\gamma = 24 \cdot 0.75 = 18$$

$$\mathsf{RANGE} = \mathit{x}_{(n)} - \mathit{x}_{(1)}$$

RANGE =
$$x_{(n)} - x_{(1)}$$

= 7 - 0 = 7

RANGE =
$$x_{(n)} - x_{(1)}$$

RANGE INTERQUARTILE = Q3 - Q1 =: IQR

RANGE =
$$x_{(n)} - x_{(1)}$$

RANGE INTERQUARTILE = Q3 - Q1 =: IQR
= 3 - 1 = 2

$$RANGE = X_{(n)} - X_{(1)}$$

RANGE INTERQUARTILE = Q3 - Q1 =: IQR

VARIANZA CAMPIONARIA =
$$\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x}_n)^2=:s_n^2$$

RANGE =
$$x_{(n)} - x_{(1)}$$

RANGE INTERQUARTILE = Q3 - Q1 =: IQR
VARIANZA CAMPIONARIA = $\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2 =: s_n^2$
= $\frac{(1-2.375)^2 + (0-2.375)^2 + \dots + (5-2.375)^2}{24-1} \simeq 3.1141$

$$\mathsf{RANGE} = \mathit{x}_{(n)} - \mathit{x}_{(1)}$$

RANGE INTERQUARTILE = Q3 - Q1 =: IQR

VARIANZA CAMPIONARIA =
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2 =: s_n^2$$

DEVIAZIONE STANDARD CAMPIONARIA =
$$\sqrt{s_n^2} =: s_n$$

$$\mathsf{RANGE} = \mathit{x}_{(n)} - \mathit{x}_{(1)}$$

RANGE INTERQUARTILE = Q3 - Q1 =: IQR

VARIANZA CAMPIONARIA =
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2 =: s_n^2$$

DEVIAZIONE STANDARD CAMPIONARIA =
$$\sqrt{s_n^2}$$
 =: s_n \simeq 1.7647

• $[s^2] = [x_i]^2$, mentre $[s] = [\bar{x}] = [x_i]$.

Proprietà di s² e di s

- $[s^2] = [x_i]^2$, mentre $[s] = [\bar{x}] = [x_i]$.
- Vale la disuguaglianza di Chebyshev

$$\#\{i \in \{1,2,\ldots,n\} \mid |x_i - \bar{x}| \ge k \, s\} \le \frac{n-1}{k^2} \qquad \forall k > 0$$

Proprietà di s² e di s

- $[s^2] = [x_i]^2$, mentre $[s] = [\bar{x}] = [x_i]$.
- Vale la disuguaglianza di Chebyshev

$$\#\{i \in \{1, 2, \dots, n\} \mid |x_i - \bar{x}| \ge k \, s\} \le \frac{n-1}{k^2} \qquad \forall k > 0$$

$$= \frac{24-1}{3^2} \le 2 \qquad \text{con } k = 3$$

- $[s^2] = [x_i]^2$, mentre $[s] = [\bar{x}] = [x_i]$.
- Vale la disuguaglianza di Chebyshev

$$\#\{i \in \{1,2,\ldots,n\} \mid |x_i - \bar{x}| \ge k \, s\} \le \frac{n-1}{k^2} \qquad \forall k > 0$$

Vale la formula alternativa

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n \cdot \bar{x}^{2} \right)$$

- $[s^2] = [x_i]^2$, mentre $[s] = [\bar{x}] = [x_i]$.
- Vale la disuguaglianza di Chebyshev

$$\#\{i \in \{1,2,\ldots,n\} \mid |x_i - \bar{x}| \ge k \, s\} \le \frac{n-1}{k^2} \qquad \forall k > 0$$

Vale la formula alternativa

$$s^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n \cdot \bar{x}^2 \right)$$

$$s^2 = \frac{1}{n-1} \sum_{i} (x_i - \bar{x})^2$$

- $[s^2] = [x_i]^2$, mentre $[s] = [\bar{x}] = [x_i]$.
- Vale la disuguaglianza di Chebyshev

$$\#\{i \in \{1,2,\ldots,n\} \mid |x_i - \bar{x}| \ge k \, s\} \le \frac{n-1}{k^2} \qquad \forall k > 0$$

Vale la formula alternativa

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n \cdot \bar{x}^{2} \right)$$

$$s^{2} = \frac{1}{n-1} \sum (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \sum (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

- $[s^2] = [x_i]^2$, mentre $[s] = [\bar{x}] = [x_i]$.
- Vale la disuguaglianza di Chebyshev

$$\#\{i \in \{1,2,\ldots,n\} \mid |x_i - \bar{x}| \ge k \, s\} \le \frac{n-1}{k^2} \qquad \forall k > 0$$

Vale la formula alternativa

$$s^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n \cdot \bar{x}^2 \right)$$

$$s^{2} = \frac{1}{n-1} \sum (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \sum (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$
$$= \frac{1}{n-1} \left(\sum x_{i}^{2} - 2\bar{x} \sum x_{i} + \bar{x}^{2} \sum 1 \right)$$

Proprietà di s² e di s

- $[s^2] = [x_i]^2$, mentre $[s] = [\bar{x}] = [x_i]$.
- Vale la disuguaglianza di Chebyshev

$$\#\{i \in \{1,2,\ldots,n\} \mid |x_i - \bar{x}| \ge k \, s\} \le \frac{n-1}{k^2} \qquad \forall k > 0$$

Vale la formula alternativa

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n \cdot \bar{x}^{2} \right)$$

$$s^{2} = \frac{1}{n-1} \sum (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \sum (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n-1} \left(\sum x_{i}^{2} - 2\bar{x} \sum x_{i} + \bar{x}^{2} \sum 1 \right)$$

$$= \frac{1}{n-1} \left(\sum x_{i}^{2} - 2n\bar{x}\bar{x} + \bar{x}^{2}n \right)$$