Computational Statistics (B.Sc. Data Science)

Prof. Dr. Dominik Liebl

Inhaltsverzeichnis

In	Informationen		
1	Der	Expectation Maximization (EM) Algorithmus	7
	1.1	Motivation: Clusteranalyse mit Hilfe Gaußscher Mischverteilungen	8
	1.2	Der EM Algorithmus zur ML-Schätzung Gaußscher Mischvertei-	
		lungen	12
	1.3	Der alternative (wahre) Blick auf den EM-Algorithmus	

Informationen

Dies ist das Skript zur Vorlesung Computational Statistik (B.Sc. Data Science)

Vorlesungszeiten

Wochentag	Uhrzeit	Hörsaal
Dienstag (Vorlesung)	9:15-10:45	Online-Vorlesung (Zoom-Link)
Freitag (Vorlesung)	8:30-10:00	Online-Vorlesung (Zoom-Link)

Zoom-Link: https://uni-regensburg.zoom.us/j/82236631432?pwd=eWxIZlVqeDdUR2g5YlQ4ZlRPdjZ0dz09

Leseecke

Folgende frei zugängliche Lehrbücher enthalten Teile dieses Kurses. In den jeweiligen Kapiteln, werde ich auf die einzelnen Bücher verweisen.

- Pattern Recognition and Machine Learning (by Christopher Bishop)
- An Introduction to Statistical Learning, with Applications in R (by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani).
- Statistical Learning with Sparsity: the Lasso and Generalizations (by Trevor Hastie, Robert Tibshirani and Martin Wainwright).
- Elements of Statistical Learning: Data mining, Inference and Prediction (by Trevor Hastie, Robert Tibshirani and Jerome Friedman).
- Computer Age Statistical Inference: Algorithms, Evidence and Data Science (by Bradley Efron and Trevor Hastie)

Florence Nightingale

Das Logo zu diesem Skript stammt von einer Briefmarke zur Erinnerung an Florence Nightingale eine britische Krankenschwester und inspirierende Statistikerin.

Kapitel 1

Der Expectation Maximization (EM) Algorithmus

Der EM Algorithmus wird häufig verwendet, um komplizierte Maximum Likelihood Schätz-Probleme zu vereinfachen. Wir stellen den Algorithmus zur Schätzung von Gaußschen Mischverteilungen (GMV) vor, da der EM-Algorithmus hier wohl seine häufigste Anwendung hat. Bereits die originale Arbeit zum EM-Algorithmus (Dempster et al., 1977) beschäftigt sich mit solchen Mischverteilungen.

Mögliche Anwendungen von Gaußschen Mischverteilungen:

- Automatisierte Videobearbeitungen: Z.B. Bildeinteilungen in Vorder- und Hintergrund. (Hier würde man jede Pixel-Farbkodierung mit Hilfe einer Gaußschen Mischverteilungen modellieren.)
- Automatisierte Erkennung von Laufstilen
- Generell: Auffinden von Gruppierungen (zwei oder mehr) in den Daten (Clusteranalyse).

Lernziele für dieses Kapitel

Sie können ...

- ein Anwendungsfeld des EM-Algorithmuses benennen.
- die Probleme der klassischen Maximum Likelihood Methode zur Schätzung von Gaußschen Mischverteilungen benennen und erkläutern.
- die Grundidee des EM-Algorithmuses erläutern.
- den EM-Algorithmus zur Schätzung von Gaußschen Mischverteilungen anwenden.

• das Grundidee der Vervollständigung der Daten durch latente Variablen erläutern.

Begleitlektüre(n)

Zur Vorbereitung der Klausur ist es grundsätzlich aussreichend das Kursskript durchzuarbeiten - aber Lesen hat ja noch nie geschadet. Dieses Kapitel basiert hauptsächlich auf:

• Kapitel 9 in **Pattern Recognition and Machine Learning** (Bishop, 2006). (Der **Link** führt zur frei erhältlichen pdf-Version des Buches.)

Weiterer guter Lesestoff zum EM Algoithmus gibt es z.B. hier:

• Kapitel 8.5 in Elements of Statistical Learning: Data Mining, Inference and Prediction (Hastie et al., 2009). (Der Link führt zur frei erhältlichen pdf-Version des Buches.)

R-Pakete für diese Kapitel

Installiere die notwendige R-Pakete für dieses Kapitel:

1.1 Motivation: Clusteranalyse mit Hilfe Gaußscher Mischverteilungen

Der folgende Code-Chunck bereitet die Daten auf.

Achtung: Wir haben zwar die Information zu den verschiedenen Pinguin-Arten (Penguine_Art) tun aber im Folgenden so, also ob wir diese Information nicht kennen würden. Wir wollen alleine auf Basis der Flossenlängen (Penguine_Flosse) die Gruppenzugehörigkeiten per Clusteranalyse bestimmen. (Im Nachhinein können wir dann mit Hilfe der Daten in Penguine_Art prüfen, wie gut unsere Clusteranalyse ist.)

```
library("palmerpenguins") # Pinguin-Daten
library("scales") # Für transparente Farben: scales::alpha()
library("RColorBrewer") # Hübsche Farben
```

1.1. MOTIVATION: CLUSTERANALYSE MIT HILFE GAUBSCHER MISCHVERTEILUNGEN9

```
col_v <- RColorBrewer::brewer.pal(n = 3, name = "Set2")</pre>
## Vorbereitung der Daten:
Pinguine <- palmerpenguins::penguins %>%
                                                 # Pinguin-Daten
  tidyr::as_tibble() %>%
                                                 # Datenformat: 'tibble'-dataframe
  dplyr::filter(species!="Adelie") %>%
                                               # Pinquin-Art 'Adelie' löschen (verbleiben: 'Chin
  droplevels() %>%
                                                # Lösche das nicht mehr benötigte Adelie-Level
                                                # NAs löschen
  tidyr::drop_na() %>%
                     = species,
                                                # Variablen umbenennen
  dplyr::mutate(Art
                Flosse = flipper_length_mm) %>%
                                                # Variablen auswählen
    dplyr::select(Art, Flosse)
##
       <- nrow(Pinguine)
                                                 # Stichprobenumfang
## Variable 'Penguine_Art' aus Pinguine-Daten herausziehen
Penguine_Art <- dplyr::pull(Pinguine, Art)</pre>
## Variable 'Penguine_Flosse' aus Pinguine-Daten herausziehen
Penguine_Flosse <- dplyr::pull(Pinguine, Flosse)</pre>
## Plot
## Histogramm:
hist(x = Penguine_Flosse, freq = FALSE,
     xlab="Flosse (mm)", main="Pinguine\n(Zwei Gruppen)",
     col=gray(.65,.5), border=gray(.35,.5), ylim=c(0.0003, 0.039))
## Stipchart hinzufügen:
stripchart(x = Penguine_Flosse, method = "jitter", jitter = .0005, at = .001,
           pch = 21, col=alpha(col_v[3],.5), bg=alpha(col_v[3],.5), cex=1.3, add = TRUE)
```


Das Clusterverfahren basierend auf Gaußschen Mischverteilungen:

- 1. Gaußsche Mischverteilung (per EM-Algorithmus) schätzen
- 2. Die Datenpunkte wie bei der Linearen (oder Quadratischen) Diskriminanz-Analyse den Gruppen zuordnen (siehe Abbildung 1.1)

Abbildung 1.1 zeigt das Resultat einer Clusteranalyse basierend auf einer Mischverteilung zweier gewichteter Normalverteilungen. Cluster-Ergebnis: 95% der Pinguine konnten richtig zugeordnet werden - lediglich auf Basis ihrer Flossenlängen.

Mit Hilfe der folgenden R-Codes kann die obige Clusteranalyse und die Ergebnisgrafik repliziert werden:

Abbildung 1.1: Clusteranalyse basierend auf einer Mischverteilung mit zwei gewichteten Normalverteilungen.

```
## Geschätzte Gruppen-Zuordnungen
class <- mclust_obj$classification</pre>
## Anteil der korrekten Zuordnungen:
# cbind(class, Penguine_Art)
round(sum(class == as.numeric(Penguine_Art))/n, 2)
## Geschätzte Mittelwerte
mean_m <- t(mclust_obj$parameters$mean)</pre>
## Geschätzte Varianzen (und evtl. Kovarianzen)
cov_l <- list("Cov1" = mclust_obj$parameters$variance$sigmasq[1],</pre>
                "Cov2" = mclust obj$parameters$variance$sigmasq[2])
## Geschätzte Gewichte (a-priori-Wahrscheinlichkeiten)
prop_v <- mclust_obj$parameters$pro</pre>
## Auswerten der Gaußsche Mischungs-Dichtefunktion
        <- 100 # Anzahl der Auswertungspunkte
      <- seq(min(Penguine_Flosse)-3, max(Penguine_Flosse)+5, length.out = np)</pre>
## Mischungs-Dichte
```

```
<- dnorm(xxd, mean_m[1], sqrt(cov_l[[1]]))*prop_v[1] +
yyd
           dnorm(xxd, mean_m[2], sqrt(cov_1[[2]]))*prop_v[2]
## Einzel-Dichten
        <- dnorm(xxd, mean_m[1], sqrt(cov_l[[1]]))*prop_v[1]</pre>
yyd1
yyd2
        <- dnorm(xxd, mean_m[2], sqrt(cov_1[[2]]))*prop_v[2]
## Plot
hist(x = Penguine_Flosse, xlab="Flosse (mm)", main="Pinguine\n(Zwei Gruppen)",
     col=gray(.65,.5), border=gray(.35,.5), freq = FALSE, ylim=c(0, 0.04))
lines(x = xxd, y=yyd, lwd=2, col=gray(.35,.75))
lines(x = xxd, y=yyd1, lwd=2, col=gray(.35,.75), lty=2)
lines(x = xxd, y=yyd2, 1wd=2, col=gray(.35,.75), 1ty=2)
stripchart(Penguine_Flosse[class==1], method = "jitter", jitter = .0005, at = .001,
           pch = 21, col=alpha(col_v[1],.5), bg=alpha(col_v[1],.5), cex=1.3, add = TRU
stripchart(Penguine_Flosse[class==2], method = "jitter", jitter = .0005, at = .001,
           pch = 21, col=alpha(col_v[2],.5), bg=alpha(col_v[2],.5), cex=1.3, add = TRU
```

1.2 Der EM Algorithmus zur ML-Schätzung Gaußscher Mischverteilungen

1.2.1 Gaußsche Mischmodelle (GMM)

Eine Zufallsvariable X, die einer Gauschen Mischverteilung folgt, bezeichnen wir als

$$X \sim \mathcal{N}_{mix}(G, \pi, \mu, \sigma)$$

Die dazugehörige Dichtefunktion einer Gaußschen Mischverteilung ist folgendermaßen definiert:

$$f_G(x|\pi,\mu,\sigma) = \sum_{g=1}^{G} \pi_g f(x|\mu_g \sigma_g)$$
 (1.1)

- Gewichte: $\pi = (\pi_1, \dots, \pi_G)$ mit $\pi_g > 0$ und $\sum_{g=1}^G \pi_g = 1$
- Mittelwerte: $\mu = (\mu_1, \dots, \mu_G)$ mit $\mu_g \in \mathbb{R}$
- Standardabweichungen: $\sigma = (\sigma_1, ..., \sigma_G)$ mit $\sigma_q > 0$
- Normalverteilung der Gruppe $g=1,\dots,G$:

$$f(x|\mu_g\sigma_g) = \frac{1}{\sqrt{2\pi}\sigma_g} \exp\left(-\frac{1}{2}\left(\frac{x-\mu_g}{\sigma_g}\right)^2\right)$$

• Unbekannte Parameter: π , μ und σ

1.2.2 Maximum Likelihood (ML) Schätzung

Man kann versuchen die unbekannten Parameter $\pi=(\pi_1,\ldots,\pi_G),$ $\mu=(\mu_1,\ldots,\mu_G)$ und $\sigma=(\sigma_1,\ldots,\sigma_G)$ eines Gaußschen Mischmodells

klassisch mit Hilfe der Maximum Likelihood Methode zu schätzen.

Ich sag's gleich: Der Versuch wird scheitern.

Wiederholung der Grundidee der ML-Schätzung:

• Annahme: Die Daten $\mathbf{x}=(x_1,\dots,x_n)$ sind eine Realisation einer einfachen (also i.i.d.) Zufallsstichprobe (X_1,\dots,X_n) mit

$$X_i \sim \mathcal{N}_{mix}(G, \pi, \mu, \sigma)$$

für alle $i=1,\ldots,n$.

Die Daten $\mathbf{x}=(x_1,\dots,x_n)$ "kennen" also die unbekannten Parameter π,μ und σ und wir müssen ihnen diese Informationen "nur noch" entlocken.

- Schätz-Idee: Wähle π , μ und σ so, dass $f_G(\cdot|\pi,\mu,\sigma)$ "optimal" zu den beobachteten Daten $\mathbf x$ passt.
- Umsetzung der Schätz-Idee: Maximiere (bzgl. π , μ und σ) die Likelihood Funktion

$$\mathcal{L}(\pi, \mu, \sigma | \mathbf{x}) = \prod_{i=1}^n f_G(x_i | \pi, \mu, \sigma)$$

Bzw. maximiere die Log-Likelihood Funktion (einfachere Maximierung)

$$\begin{split} \ln\left(\mathcal{L}(\pi,\mu,\sigma|\mathbf{x})\right) &= \ell(\pi,\mu,\sigma|\mathbf{x}) = \sum_{i=1}^n \ln\left(f_G(x_i|\pi,\mu,\sigma)\right) \\ &= \sum_{i=1}^n \ln\left(\sum_{g=1}^G \pi_g \phi_{\mu_g \sigma_g}(x_i)\right) \end{split}$$

Beachte: Die Maximierung muss die Parameterrestriktionen in (1.1) berücksichtigen ($\sigma_g>0$ und $\pi_g>0$ für alle $g=1,\ldots,G$ und $\sum_{g=1}^G\pi_g=1$).

• Die maximierenden Parameterwerte $\hat{\pi}$, $\hat{\mu}$ und $\hat{\sigma}$ sind die **ML-Schätzer**. Das kann man so ausdrücken:

$$(\hat{\pi}, \hat{\mu}, \hat{\sigma}) = \arg\min_{\pi, \mu, \sigma} \ell(\pi, \mu, \sigma | \mathbf{x})$$

Numerische Lösungen: Versucht man obiges Maximierungsproblem numerisch mit Hilfe des Computers zu lösen, wird man schnell merken, dass die Ergebnisse höchst instabil, unplausibel und wenig vertrauenswürdig sind.

Für echte GMMs (G>1) treten während einer numerischen Maximierung sehr leicht Probleme mit Singularitäten auf. Dies geschieht immer dann, wenn eine der Normalverteilungskomponenten versucht den ganzen Datensatz \mathbf{x} zu beschreiben und die andere(n) Normalverteilungskomponente(n) versuchen lediglich einzelne Datenpunkte

zu beschreiben. Eine Gaußsche Dichtefunktion f_g , die sich um einen einzigen Datenpunkt x_i konzentriert (d.h. $\mu_g = x_i$ und $\sigma_g \to 0$) wird dabei sehr große Werte annehmen (d.h. $f_g(x_i) \to \infty$) und so die Log-Likelihood auf unerwünschte maximieren. Solche trivialen Maximierungslösungen resultieren i.d.R. in unplausiblen Schätzergebnissen.

Analytische Lösung: Es ist zwar etwas mühsam, aber man kann versuchen die Log-Likelihood analytisch zu maximieren. Tut man dies sich das an, kommt man zu folgenden Ausdrücken:

$$\begin{split} \hat{\pi}_g &= \frac{1}{n} \sum_{i=1}^n p_{ig} \\ \hat{\mu}_g &= \sum_{i=1}^n \frac{p_{ig}}{\left(\sum_{j=1}^n p_{jg}\right)} x_i \\ \hat{\sigma}_g &= \sqrt{\sum_{i=1}^n \frac{p_{ig}}{\left(\sum_{j=1}^n p_{jg}\right)} \left(x_i - \hat{\mu}_g\right)^2} \end{split}$$

für $g = 1, \dots, G$.

Die Herleitung der Ausdrücke für μ_g , σ_g und π_g , $g=1,\ldots,G$, ist wirklich etwas lästig (mehrfache Anwendungen der Kettenregel, Produktregel, etc., sowie Anwendung des Lagrange-Multiplikator Verfahrens zur Optimierung unter Nebenbedingungen) aber machbar. In einer der Übungsaufgaben dürfen Sie den Ausdruck für $\hat{\mu}_g$ herleiten.

Aber: Diese Ausdrücke für $\hat{\pi}_g$, $\hat{\mu}_g$ und $\hat{\sigma}_g$ hängen von den **unbekannten** Parametern $\pi=(\pi_1,\dots,\pi_G),\,\mu=(\mu_1,\dots,\mu_G)$ und $\sigma=(\sigma_1,\dots,\sigma_G)$, denn:

$$p_{ig} = \frac{\pi_g \phi_{\mu_g \sigma_g}(x_i)}{f_G(x_i | \pi, \mu, \sigma)}$$

für $i=1,\ldots,n$ und $g=1,\ldots,G$. Erlauben also keine direkte Schätzung der unbekannten Parameter π , μ und σ

Lösung: Der EM Algorithmus

1.2.3 Der EM Algorithmus für GMMs

Die Ausdrücke für $\hat{\pi}_g$, $\hat{\mu}_g$ und $\hat{\sigma}_g$ legen jedoch ein einfaches iteratives ML-Schätzverfahren nahe: Nämlich einer alternierenden Schätzung von p_{ig} und $\hat{\pi}_g$, $\hat{\mu}_g$ und $\hat{\sigma}_g$.

Der Der EM Algorithmus:

- 1. Setze Startwerte $\pi^{(0)}$, $\mu^{(0)}$ und $\sigma^{(0)}$
- 2. Für r = 1, 2, ...

1.2. DER EM ALGORITHMUS ZUR ML-SCHÄTZUNG GAUßSCHER MISCHVERTEILUNGEN15

• (Expectation) Berechne:

$$p_{ig}^{(r)} = \frac{\pi_g^{(r-1)} \phi_{\mu_g^{(r-1)} \sigma_g^{(r-1)}}(x_i)}{f_G(x_i | \pi^{(r-1)}, \mu^{(r-1)}, \sigma^{(r-1)})}$$

• (Maximization) Berechne:

$$\begin{split} \hat{\pi}_g^{(r)} &= \frac{1}{n} \sum_{i=1}^n p_{ig}^{(r)}, \qquad \hat{\mu}_g^{(r)} = \sum_{i=1}^n \frac{p_{ig}^{(r)}}{\left(\sum_{j=1}^n p_{jg}^{(r)}\right)} x_i \\ \hat{\sigma}_g^{(r)} &= \sqrt{\sum_{i=1}^n \frac{p_{ig}^{(r)}}{\left(\sum_{j=1}^n p_{jg}^{(r)}\right)} \left(x_i - \hat{\mu}_g^{(r)}\right)^2} \end{split}$$

3. Prüfe Konvergenz

Der obige pseudo-Code wird im Folgenden Code-Chunck umgesetzt:

```
library("MASS")
library("mclust")
## Daten:
x <- cbind(Penguine_Flosse) # Daten [n x d]-Dimensional.
                           # Dimension (d=1: univariat)
d \leftarrow ncol(x)
n \leftarrow nrow(x)
                            # Stichprobenumfang
G \leftarrow 2
                            # Anzahl Gruppen
## Weitere Deklarationen:
        <- matrix(NA, n, G)
         <- matrix(NA, n, G)
loglikOld <- 1e07
tol
      <- 1e-05
         <- 0
it
check
         <- TRUE
## EM Algorithmus
## 1. Startwerte für pi, mu und sigma:
pi <- rep(1/G, G) # Naive pi
sigma <- array(diag(d), c(d,d,G)) # Varianz = 1</pre>
mu <- t(MASS::mvrnorm(G, colMeans(x), sigma[,,1]*4) )</pre>
while(check){
  ## 2.a Expectation-Schritt
  for(g in 1:G){
    p[,g] <- pi[g] * mclust:::dmvnorm(x, mu[,g], sigma[,,g])</pre>
```

```
}
  p <- sweep(p, 1, STATS = rowSums(p), FUN = "/")
  ## 2.b Maximization-Schritt
  par
       <- mclust::covw(x, p, normalize = FALSE)</pre>
        <- par$mean
  sigma <- par$S
       <- colMeans(p)
  ## 3. Prüfung der Konvergenz
  for(g in 1:G) {
    llk[,g] <- pi[g] * mclust:::dmvnorm(x, mu[,g], sigma[,,g])</pre>
  loglik <- sum(log(rowSums(llk))) # aktueller Log-Likelihood Wert</pre>
  ##
            <- abs(loglik - loglikOld)/abs(loglik)
  loglikOld <- loglik</pre>
            \leftarrow it + 1
  ## Anderung der Log-Likelihood noch groß genug?
           <- diff > tol
  check
}
## Schätz-Resultate:
results <- matrix(c(pi, mu, sqrt(sigma)),
                  nrow = 3, ncol = 2, byrow = TRUE,
                  dimnames = list(
            c("Gewichte", "Mittelwerte", "Standardabweichungen"),
            c("Gruppe 1", "Gruppe 2")))
##
results %>% round(., 2)
                         Gruppe 1 Gruppe 2
                                     0.69
#> Gewichte
                             0.31
#> Mittelwerte
                           194.26
                                   216.20
                             6.26
                                      7.32
#> Standardabweichungen
```

Das Schätzergebnis erlaubt es uns, Abbildung 1.1 zu replizieren:

1.3 Der alternative (wahre) Blick auf den EM-Algorithmus

Der EM Algorithmus ermöglicht es Maximum Likelihood Probleme zu vereinfachen, indem man die Daten durch nicht beobachtete ("latente") Variablen vervollständigt.

Zur Erinnerung: Wie haben es ja nicht geschafft, die Log-Likelihood Funktion

$$\ell(\pi, \mu, \sigma | \mathbf{x}) = \sum_{i=1}^{n} \ln \left(\sum_{g=1}^{G} \pi_g \phi_{\mu_g \sigma_g}(x_i) \right)$$

direkt zu maximieren. Die $\log(\sum_{g=1}^G [\dots])$ -Konstruktion macht einem das Leben schwer.

18KAPITEL 1. DER EXPECTATION MAXIMIZATION (EM) ALGORITHMUS

In unseren Pinguin-Daten gibt zwei Gruppen $(g \in \{1,2\})$. Ist gäbe im Prinzip also latente (unbeobachtete) Zuordnungsdaten z_{iq} mit

$$z_{ig} = \left\{ \begin{array}{ll} 1 & \text{falls Pinguin } i \text{ zu Gruppe } g \text{ geh\"{o}rt.} \\ 0 & \text{sonst.} \end{array} \right.,$$

wobe
i $\sum_{g=1}^G z_{ig} = 1$ für alle $i=1,\dots,n.$

Beachte: Für jeden Datenpunkt i (jeder Pinguin i) gibt es nur **eine** Gruppe (daher $\sum_{g=1}^{G} z_{ig} = 1$). Dies ist eine wichtige Restriktion von GMMs, welche bei den Pinguin-Daten unproblematisch ist, in anderen Anwendungen aber evtl. problematisch sein kann.

Die Zuordnungsdaten $\mathbf{z}=(z_{11},\dots,z_{nG})$ sind leider unbekannt (latent). Wir wissen aber trotzdem etwas über diese Zuordnungen. Laut unserem Modell

$$f_G(x|\pi,\mu,\sigma) = \sum_{g=1}^G \pi_g f(x|\mu_g \sigma_g),$$

ist die Zuordnung \boldsymbol{z}_{ig} nämlich eine Realisation einer Bernoulli Zufallsvariable

$$Z_{ig} \sim \mathcal{B}(\pi_g)$$

Also

$$P(Z_{ig}=1)=-\pi_g=P(\mbox{Pinguin}\ i$$
gehört zu Gruppe $g)$
$$P(Z_{ig}=0)=1-\pi_g=P(\mbox{Pinguin}\ i \mbox{ gehört nicht zu Gruppe}\ g)$$

Man bezeichnet π_1, \dots, π_G als die "a-priori-Wahrscheinlichkeiten". Wenn wir nichts über die Flossenlänge von Pinguin i wissen, dann bleiben uns nur die a-priori-Wahrscheinlichkeiten: Mit Wahrscheinlichkeit π_g gehört Pinguin i zu Gruppe g.

Falls wir die Flossenlänge von Pinguin i erfahren, können wir die a-priori-Wahrscheinlichkeiten mit Hilfe des Satzes von Bayes aktualisieren. Dies führt dann zur a-posteriori-Wahrscheinlichkeit:

A-posteriori-Wahrscheinlichkeit p_{ig} :

(Satz von Bayes)

$$\begin{split} p_{ig} &= \frac{\pi_g \phi_{\mu_g \sigma_g}(x_i)}{f_G(x_i | \pi, \mu, \sigma)} \\ &= \frac{\overbrace{P(Z_{ig} = 1)}^{\text{"A-priori-Wahrs."}} \phi_{\mu_g \sigma_g}(x_i)}{f_G(x_i | \pi, \mu, \sigma)} = \overbrace{P(Z_{ig} = 1 | X_i = x_i)}^{\text{"A-posteriori-Wahrs."}} = p_{ig} \end{split}$$

1.3. DER ALTERNATIVE (WAHRE) BLICK AUF DEN EM-ALGORITHMUS19

Beachte: p_{ig} ist ein (bedingter) Mittelwert (Expectation)

$$p_{ig} = \underbrace{1 \cdot P(Z_{ig} = 1 | X_i = x_i) + 0 \cdot P(Z_{ig} = 0 | X_i = x_i)}_{=E(Z_{ig} = 1 | X_i = x_i)}$$

Der EM Algorithmus

- 1. Setze Startwerte $\pi^{(0)}$, $\mu^{(0)}$ und $\sigma^{(0)}$
- 2. Für r = 1, 2, ...
 - (Expectation) Berechne:

$$p_{ig}^{(r)} = E\left(Z_{ig}^{(r-1)} \left| X_i^{(r-1)} = x_i \right.\right)$$

wobei
$$\begin{split} Z_{ig}^{(r-1)} &\sim \mathcal{B}\left(\pi_g^{(r-1)}\right) \\ &\text{und } X_i^{(r-1)} &\sim \mathcal{N}_{mix}(G, \pi^{(r-1)}, \mu^{(r-1)}, \sigma^{(r-1)}) \end{split}$$

- (Maximization) Berechne: $\hat{\pi}_g^{(r)},\,\hat{\mu}_g^{(r)},\,\hat{\sigma}_g^{(r)}$
- 3. Prüfe Konvergenz

->

20 KAPITEL~1.~DER~EXPECTATION~MAXIMIZATION~(EM)~ALGORITHMUS

Literaturverzeichnis

- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer Science & Business Media.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society: Series B*, 39(1):1–22.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data mining, Inference, and Prediction. Springer Science & Business Media.