Cálculo em Várias Variáveis Revisão

ICT-Unifesp

- Revisão
 - Retas
 - Planos
 - Cônicas
 - Exercícios

Mais detalhes nas Seções 10.5 e 12.5 do livro do Stewart. Recurso disponível online pela Biblioteca do ICT.

Revisão

Retas

A **equação vetorial** da reta r que passa pelo ponto P na direção do vetor \vec{v} é dada por:

$$r: X = P + t\vec{v}, \quad t \in \mathbb{R}.$$

e \vec{v} é chamado vetor diretor da reta r.

Em coordenadas, se
$$X = (x, y, z)$$
, $P = (x_0, y_0, z_0)$, $\vec{v} = (v_1, v_2, v_3)$, temos

$$X = P + t\vec{v} \implies (x, y, z) = (x_0, y_0, z_0) + t(v_1, v_2, v_3)$$

 $\implies (x, y, z) = (x_0 + tv_1, y_0 + tv_2, z_0 + tv_3).$

Em coordenadas, se X = (x, y, z), $P = (x_0, y_0, z_0)$, $\vec{v} = (v_1, v_2, v_3)$, temos

$$X = P + t\vec{v} \implies (x, y, z) = (x_0, y_0, z_0) + t(v_1, v_2, v_3)$$

 $\implies (x, y, z) = (x_0 + tv_1, y_0 + tv_2, z_0 + tv_3).$

Daí obtemos as equações paramétricas da reta,

$$\begin{cases} x = x_0 + tv_1 \\ y = y_0 + tv_2, & t \in \mathbb{R}. \\ z = z_0 + tv_3 \end{cases}$$

Exemplo

Encontre a equação vetorial da reta que passa pelos pontos P = (1, 2, 3) e Q = (7, 6, 5).

Exemplo

Encontre a equação vetorial da reta que passa pelos pontos P = (1, 2, 3) e Q = (7, 6, 5).

Observação

A equação vetorial não é única, pois podemos multiplicar o vetor por qualquer constante não nula.

Exemplo

As retas r_1 e r_2 abaixo são reversas, isto é, são retas que não se interceptam e não são paralelas (não pertencendo, portanto, a um mesmo plano):

$$r_1: (x, y, z) = (1 + t, -2 + 3t, 4 - t)$$

 $r_2: (x, y, z) = (2s, 3 + s, -3 + 4s).$

Revisão

Planos

O plano π que passa pelo ponto $P = (x_0, y_0, z_0)$ e é paralelo aos vetores $\ell.i.$, \vec{u} e \vec{v} , é o conjunto dos pontos $X \in \mathbb{R}^3$ que satisfazem a **equação vetorial**

$$X = P + s\vec{u} + t\vec{v}, \quad s, t \in \mathbb{R}.$$

Podemos chamar os vetores \vec{u} e \vec{v} de vetores diretores do plano π .

Em coordenadas, se
$$X = (x, y, z)$$
, $P = (x_0, y_0, z_0)$, $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$ temos $(x, y, z) = (x_0, y_0, z_0) + s(u_1, u_2, u_3) + t(v_1, v_2, v_3)$, $s, t \in \mathbb{R}$.

Em coordenadas, se
$$X = (x, y, z)$$
, $P = (x_0, y_0, z_0)$, $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$ temos

$$(x, y, z) = (x_0, y_0, z_0) + s(u_1, u_2, u_3) + t(v_1, v_2, v_3), \ s, t \in \mathbb{R}.$$

Daí obtemos as **equações paramétricas**,

$$\begin{cases} x = x_0 + su_1 + tv_1 \\ y = y_0 + su_2 + tv_2, & s, t \in \mathbb{R}. \\ z = z_0 + su_3 + tv_3 \end{cases}$$

(ICT-Unifesp)

A equação geral do plano que passa pelo ponto $P=(x_0,y_0,z_0)$ e é paralelo aos vetores $\ell.i.$, \vec{u} e \vec{v} , pode ser obtida por

$$\left[\overrightarrow{PX}, \overrightarrow{u}, \overrightarrow{v}\right] = \left| \begin{array}{ccc} x - x_0 & y - y_0 & z - z_0 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{array} \right| = 0,$$

A equação geral do plano que passa pelo ponto $P=(x_0,y_0,z_0)$ e é paralelo aos vetores $\ell.i.$, \vec{u} e \vec{v} , pode ser obtida por

$$\left[\overrightarrow{PX}, \overrightarrow{u}, \overrightarrow{v}\right] = \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = 0,$$

$$\underbrace{(u_{2}v_{3}-u_{3}v_{2})}_{a}x+\underbrace{(u_{3}v_{1}-u_{1}v_{3})}_{b}y+\underbrace{(u_{1}v_{2}-u_{2}v_{1})}_{c}z+$$

$$+\underbrace{(z_{0}u_{2}v_{1}-y_{0}u_{3}v_{1}-z_{0}u_{1}v_{2}+x_{0}u_{3}v_{2}+y_{0}u_{1}v_{3}-x_{0}u_{2}v_{3})}_{d}=0.$$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

A equação do plano que passa por $P=(x_0,y_0,z_0)$ e é perpendicular ao vetor $\vec{n}=(a,b,c)$ é dada pelo produto escalar

$$\langle \overrightarrow{PX}, \overrightarrow{n} \rangle = 0,$$

onde X = (x, y, z) é um ponto qualquer do plano e o vetor \vec{n} é chamado **vetor normal** do plano.

A equação do plano que passa por $P=(x_0,y_0,z_0)$ e é perpendicular ao vetor $\vec{n}=(a,b,c)$ é dada pelo produto escalar

$$\langle \overrightarrow{PX}, \overrightarrow{n} \rangle = 0,$$

onde X = (x, y, z) é um ponto qualquer do plano e o vetor \vec{n} é chamado **vetor normal** do plano.

Observe que o plano paralelo aos vetores \vec{u} e \vec{v} é perpendicular ao vetor $\vec{u} \times \vec{v}$.

(ICT-Unifesp)

Exemplo

Encontre a equação do plano que passa pelos pontos

$$P = (1,3,2), Q = (3,-1,6) e R = (5,2,0).$$

Observação

Dois planos são paralelos se seus vetores normais forem paralelos.

Dois planos são perpendiculares se seus vetores normais forem ortogonais.

A intersecção de dois planos não paralelos é uma reta.

Revisão

Cônicas

Seções cônicas são curvas resultantes da intersecção de um cone duplo infinito com um plano que não passa pelo vértice deste cone.

A **elipse** \mathcal{E} de focos F_1 e F_2 , com d $(F_1, F_2) = 2c$, é o lugar geométrico dos pontos P do plano tais que a soma das distâncias a F_1 e F_2 é igual a uma constante 2a > 0, com a > c.

$$d(P,F_1)+d(P,F_2)=2a$$

A equação canônica da **elipse horizontal** de focos $F_1=(-c,0)$ e $F_2=(c,0)$ e vértices $A_1=(-a,0), A_2=(a,0), B_1=(0,b),$ e $B_2=(0,-b),$ é dada por

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

onde $b^2 = a^2 - c^2$.

A equação canônica da **elipse vertical** de focos $F_1=(0,-c)$ e $F_2=(0,c)$ e vértices $A_1=(0,-a), A_2=(0,a), B_1=(b,0),$ e $B_2=(-b,0),$ é dada por

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$$

onde $b^2 = a^2 - c^2$.

A **hipérbole** \mathcal{H} de focos F_1 e F_2 , com d $(F_1, F_2) = 2c$, é o lugar geométrico dos pontos P do plano tais que o módulo da diferença entre as distâncias a F_1 e F_2 é igual a uma constante 2a > 0, com a < c.

$$|d(P, F_1) - d(P, F_2)| = 2a$$

A equação canônica da hipérbole horizontal de focos $F_1=(-c,0)$, $F_2=(c,0)$ e vértices $A_1=(-a,0)$ e $A_2=(a,0)$ é dada por

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

com $b^2 = c^2 - a^2$.

Além disso, a hipérbole $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ possui duas **assíntotas**, dadas por

$$y = \left(\frac{b}{a}\right) x$$
 e $y = -\left(\frac{b}{a}\right) x$.

A equação canônica da **hipérbole vertical** de focos $F_1=(0,-c)$, $F_2=(0,c)$ e vértices $A_1=(0,-a)$ e $A_2=(0,a)$ é dada por

$$\boxed{\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1}$$

com $b^2 = c^2 - a^2$.

As **assíntotas** da hipérbole de equação $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ são dadas por

$$y = \left(\frac{a}{b}\right)x$$
 e $y = -\left(\frac{a}{b}\right)x$.

A **parábola** \mathcal{P} cuja diretriz é a reta ℓ e tem foco $F \notin \ell$, é o lugar geométrico dos pontos P do plano que são equidistantes de ℓ e de F.

$$d(P,F) = d(P,\ell)$$

A equação canônica da **parábola horizontal** de vértice na origem, foco F=(p,0), $p\in\mathbb{R}$ e diretriz $\ell:x=-p$ é dada por

$$y^2 = 4px$$

onde $d(F, \ell) = 2|p|$.

A equação canônica da **parábola vertical** de vértice na origem, foco F = (0, p), $p \in \mathbb{R}$ e diretriz $\ell : y = -p$ é dada por

$$x^2 = 4py$$

onde $d(F, \ell) = 2|p|$.

Exercícios

Seção 12.5 do Stewart: 1–17, 19–31, 35, 37, 38, 41–45, 49, 59, 60, 65.