Developed by:	Prof. Jose L Jime	enez & Dr. Zhe Pe	eng, Dept. of Chen	n. & CIRES, Univ.	Colorado-Boulde	Shortcut:	https://tinyur	.com/covid-esti	mator_
Short description	of this tool in CIF	RES Press Releas	e:	Simplified versio	n of this tool by Na	at Geographic	Direct copy in	Google Drive	as Google Sheet)
For more info:	https://tinyurl.com	m/FAQ-aerosols	Other languages	: https://tinyurl.com	m/preguntas-espa	<u>ınol</u>	Direct download	oad into Excel	
5 min. read on ae	erosol evidence:	Patterns of trans	mission	Extensive discus	sion in my Twitter	Threads	Come back for	or new versions	
Recorded webina	ar on this tool:	1. Description &	Tour (watch first)	2. Q&A session	3. Short intro by	A. Mishra			
nformacion en es	spanol / castellar	1. Descripcion y	demonstracion	2. Entrevista PF	3. Entrevista HA				
El Pais Simulatio	n based on this:	English Version	Version en españ	<u>ĭol</u>					
Subscribing to en	nail list for tool:	https://groups.go	ogle.com/forum/#	!forum/covid-estin	<u>nator</u>				
		http://tinyurl.com	/estimator-feedbac	<u>ck</u>				Varian Quantum	Malife McQ and Obs
Feedback to impr Using extensive in eedback from ma	nput and any people	http://tinyurl.com Linsey Marr, She Stanier, Joel Eav Mikszewski, Pras Chong, John Fay	/estimator-feedbacelly Miller, Giorgio I ves, Alfred Trukenr sad Kasibhatla, Jo y, Dustin Poppend	ck Buonnano, Lidia N mueller, Ty Newel be Bruce, Paul Da ieck, Jim Bagrows	Morawska, Don M I, Greg Blonder, A bisch, Yumi Roth, ski, Gary Chaulklir	ndrew Maynard Andrew Persily n, Richard Mee	l, Nathan Skinner , Susan Masten, han, Jarrell Weng	Clark Vangilder, Sebastien Tixier, A er, Alex Huffman,	Matthew McQueen, Cha Roger Olsen, Alex Amber Kraver, Howard , Bertrand Waucquez, d Twitter. Thanks a lot to
Jeedback to impr Jeedback from ma But any mistakes	nput and any people	http://tinyurl.com Linsey Marr, She Stanier, Joel Eav Mikszewski, Pras Chong, John Fay Elizabeth Goldbe	/estimator-feedbacelly Miller, Giorgio I ves, Alfred Trukenr sad Kasibhatla, Jo y, Dustin Poppend	ck Buonnano, Lidia N mueller, Ty Newel be Bruce, Paul Da ieck, Jim Bagrows	Morawska, Don M I, Greg Blonder, A bisch, Yumi Roth, ski, Gary Chaulklir	ndrew Maynard Andrew Persily n, Richard Mee	l, Nathan Skinner , Susan Masten, han, Jarrell Weng	Clark Vangilder, Sebastien Tixier, A er, Alex Huffman,	Roger Olsen, Alex Amber Kraver, Howard , Bertrand Waucquez,
Subscribing to en Feedback to impr Using extensive if feedback from ma (But any mistakes Version & date	nput and any people s are my own):	http://tinyurl.com Linsey Marr, She Stanier, Joel Eav Mikszewski, Pras Chong, John Fay Elizabeth Goldbe everyone!)	/estimator-feedbacelly Miller, Giorgio I ves, Alfred Trukenr sad Kasibhatla, Jo y, Dustin Poppend	ck Buonnano, Lidia N mueller, Ty Newel be Bruce, Paul Da ieck, Jim Bagrows	Morawska, Don M I, Greg Blonder, A bisch, Yumi Roth, ski, Gary Chaulklir	ndrew Maynard Andrew Persily n, Richard Mee	l, Nathan Skinner , Susan Masten, han, Jarrell Weng	Clark Vangilder, Sebastien Tixier, A er, Alex Huffman,	Roger Olsen, Alex Amber Kraver, Howard , Bertrand Waucquez,
Jeedback to improve the search of the search	nput and any people s are my own): 3.5.1	http://tinyurl.com Linsey Marr, She Stanier, Joel Eav Mikszewski, Pras Chong, John Fay Elizabeth Goldbe everyone!) 23-Apr-21	/estimator-feedbace elly Miller, Giorgio I ves, Alfred Trukenr sad Kasibhatla, Jo y, Dustin Poppend erg (only listing the	ck Buonnano, Lidia N mueller, Ty Newel be Bruce, Paul Da ieck, Jim Bagrows	Morawska, Don M I, Greg Blonder, A bisch, Yumi Roth, ski, Gary Chaulklir	ndrew Maynard Andrew Persily n, Richard Mee	l, Nathan Skinner , Susan Masten, han, Jarrell Weng	Clark Vangilder, Sebastien Tixier, A er, Alex Huffman,	Roger Olsen, Alex Amber Kraver, Howard , Bertrand Waucquez,
Jeedback to improve the edback from management of the edback from management of the edback from the edback fro	nput and any people s are my own): 3.5.1 ing to estimate of COVID-19 by a	http://tinyurl.com Linsey Marr, She Stanier, Joel Eav Mikszewski, Pras Chong, John Fay Elizabeth Goldbe everyone!) 23-Apr-21	/estimator-feedbace elly Miller, Giorgio I ves, Alfred Trukenr sad Kasibhatla, Jo y, Dustin Poppend erg (only listing the	ck Buonnano, Lidia I mueller, Ty Newel be Bruce, Paul Da ieck, Jim Bagrows e most important I	Morawska, Don M I, Greg Blonder, A bisch, Yumi Roth, ski, Gary Chaulklin nere, many others	Indrew Maynard Andrew Persily n, Richard Mee have contribute	, Nathan Skinner, Susan Masten, Shan, Jarrell Wenged feedback as we	Clark Vangilder, Sebastien Tixier, er, Alex Huffman, ell over email and	Roger Olsen, Alex Amber Kraver, Howard , Bertrand Waucquez, d Twitter. Thanks a lot to

This model does NOT include droplet or contact / fomite transmission, and assumes that 6 ft / 2 m social distancing is respected. Otherwise higher transmission will result

This model does NOT include transmission to the people present, when they are in locations other than the one analyzed here

The model can easily be adapted to other situations, such as offices, shops etc.

Simplicity and uncertainties - IMPORTANT, PLEASE READ

The model is kept simple so that it can be understood and changed easily. The goal is to get the order-of-magnitude of the effects quickly, and to explore the trends.

Several parameters are uncertain, and have been estimated based on current knowledge. Alternative estimates can be entered to explore their effect in the results.

The model is consistent with known superspreading events of COVID-19. It represents the situation in which someone highly infectious is present in the space. Note that many people are much less infectious (e.g. Ma et al., 2020, Clinical Infectious Diseases, https://doi.org/10.1093/cid/ciaa1283), and for those the number of infected people will be too high.

More complex and realistic models can be built, however the parametric uncertainty may still dominate the total uncertainty

D									
		ch can be incorpo				-			
		scientific estimate				· · · · · · · · · · · · · · · · · · ·			
		e number of reque	• •					-	
		two runs of the mo					-		
		have more uncer		· · ·					
		ve to be interprete	•						
	1000 similar eve	ents were conduct	ed, this would be t	the average proba	bility. Any one ev	ent may have mu	ch fewer or many	more transmissio	n cases.
How to use the	estimator								
This online version	on will be kept up	-to-date. We can't	allow people to m	nake changes to th	ne online version,	as otherwise peo	ple would overwri	te each other's ch	anges
People interested	d in using the mo	del should downlo	ad an Excel versi	on from File> Do	ownload or make	a G Sheets copy	with File> Make	a copy	
	•	nload an Excel ve							
	The online mode	el will continue to	be updated, so yo	u may want to re-o	download the file l	ater on, if you cor	ntinue to use it, to	get the latest upd	ates
	See the version	log at the bottom	of this sheet for a	brief description of	f the updates				
Inputs and Outpu	ıts								
	Most important i	inputs are colored	in orange						
	Inputs are colore	ed in yellow.	These are the ce	ells you should cha	ange to explore di	fferent cases.			
	Descriptions and	d intermediate cal	culations are not o	colored. Do not ove	erwrite the calcula	ations or you will b	reak the estimato	r.	
	Outputs are cold	ored in blue.	These are the fir	nal results of the m	nodel for each cas	se. Do not overwri	te them or you wi	ll break the estima	tor.
Note that in some	e cases, the case	e in a sheet assum	nes that an infecte	d person is preser	nt (e.g. in the clas	sroom). While in o	other cases we us	e the prevalence	of the disease in the po
	an input on the	calculations. They	can be converted	easily, but pay at	tention to what ea	ch specific sheet	is doing.		
All sheets are sel	f-contained, exce	ept for the Univers	sity case						
For the University	y case								
	Approximately s	scaled for a large l	Jniversity in the W	estern US for the	Fall 2020 semest	er			
	First, results are	calculated for a t	ypical classroom ("Classroom Shee	t"), assuming eithe	er one student or	the professor are	infected	
		Assumes enhan	ced social distanc	ing and masks in	place				
		Classroom size	does not matter m	nuch, since studen	ts will scale with i	t			
	Then, results are	e scaled to the wh	ole campus ("Can	npus Sheet"), takii	ng into account th	e probability of inf	ection in the popu	ulation	
					_				
								1	

Suggestions and im Please email me for a	-	ns for improveme	nts additional inn	ut data etc	jose.jimenez@co	olorado edu			
lease email me for a	arry suggestio	ns for improveme	inis, additional inp	di dala etc.	Jose Jimenez @ Co	Jiorado.edu			
cientific Approach									
ne model combines		vle:							
	pheric "box m f the Jacob At lows easy cal	odel", which assumos. Chem. textb culation, is approx	oook, and Chapter ximately correct a	21 of the Coopers long as near-fie	r and Alley Air Pol ld effects are avoi	lution Control Eng ded by social dist	gineering Textbook	for indoor applica	
Mill	er et al. Skagi	t Choir Outbreak	https://doi.org/10	.1111/ina.12751					
Ori	ginal Wells-Ril	ley model:	https://academic	.oup.com/aje/artic	le-abstract/107/5	421/58522			
Bud	onnano et al. (2020a)	https://www.scier	ncedirect.com/scie	ence/article/pii/S0	16041202031280	00		
Buc	onnano et al. (2020b)	https://doi.org/10	.1016/j.envint.202	20.106112				
ey parameters, so	urces, and u	ncertainties							
ne most uncertain	parameter is	the quanta emis	ssion rates for S	ARS-CoV-2					
See	e FAQ sheet fo	or the definition of	quanta						
	970 q / h	This is from the M	Miller et al. choir s	uperspreading ca	se	https://doi.org/1	0.1111/ina.12751		
			This value is at the	ne high end of the	Buonnano et al.	values provided b	oelow, consistent v	vith this being a su	perspreading event
			which was likely	influenced by a ve	ery high emission	rate of quanta fro	om the specific ind	ex case	
			We do not think t	hat this very high	value should be a	applied to all situa	ations, as that wou	ld overestimate th	e infection risk.
Bud	onnano et al. (2020a, b) provide	es a range of estin	nates. Recommer	nded values by the	e author are:	Paper 1	Paper 2	
		likely supersprea face value, just lo	ders which are le	ss frequent but m f-magnitude (i.e. i	ay have higher en t is of the order of	nissions (as in the 0.001% or 0.01%	e choir case). Thus	s don't take abs. p · 10% or approach	isease yet. Also there a robabilities of infection ing 100%?. It is the f knowledge.
		For a professor of	lelivering a lecture	e:4.4, 21, and 134	for oral breathing	g, speaking and a	loud speaking (or	singing)	
		For a student sitt	ing on a lecture: 4	l, 16, 97 for oral b	reathing, speakin	g and aloud spea	king (or singing)		
		For a more gene	ral set of activities	s, provided by the	same author, bas	ed on their 2nd p	aper:		
			Resting – Oral bi	reathing = 2.0 qua	anta/h				
			Resting - Speak	ing = 9.4 quanta/h	1				
			Resting – Loudly	speaking = 60.5	quanta/h				
			Standing – Oral I	oreathing = 2.3 qι	ıanta/h				
			Standing - Spea	king = 11.4 quant	a/h				

3 to <6 months	4.1	c, d	6.1	c, d						
to <3 months						1				
1 to <3 months	3.5	c, d	5.8	c, d						
irth to <1 nonth	3.6	c	7.1	c						
Age Group ^a	Mean (m³/day)	Sources Used for Means	95 th Percentile ^b (m³/day)	Sources Used for 95 th Percentiles	Multiple Percent	iles				
able 6-1. Reco	mmended Loi	ng-Term Exp	oosure Values for I	Inhalation (males	and females comb	ined)				
	https://www	epa.gov/ex	pobox/exposure	-factors-handbo	ok-chapter-6					
		-	• •		!), but use Tables	below for a mo	ore accurate es	stimate		
	Recommen	ded values	from US EPA Ex	posure Factors	Handbook (Chap	ter 6), depend	on age and ac	tivity level		
	increase wi	th activity. B								s the quanta emission rate t n of respiratory particles
nalation (Bre	athing) Rate	<u>s</u>								
			neasurements of adult measuren			ntrations have	never been re	ported for childrer	ı (L. Morawska,	, pers. comm.). Therefore we
						•	• •	th its high infectiv	•	
		-								e the quantum emission rate
		can s	till be transmitted	through aeroso	ols under the right	circumstances	s (indoors, low	er ventilation, crov	vding, longer du	uration, activities that favor
	For compar	ison, values	s for measles car	n be over 5500 c	q h-1 (Riley et al. a	above). So CO	VID-19 is muc	h less transmissib	le through the a	air than measles, but it
	For children	as a first a		•	se numbers propo	•	dy mass.			
					oudly speaking = 4					
				•	peaking = 63.1 qu	•				
			-		ıdly speaking = 17 ral breathing = 13	-				
			-	-	eaking = 26.3 qua					
			-		al breathing = 5.6	•				
					peaking = 65.1 qu					

Birth to <1 year

1 to <2 years

2 to <3 years

2 to 16 man

c, d, e, f

c, d, e, f

c, d, e, f

~ 4 ~ f

9.2

12.8

13.7

120

c, d, e

c, d, e

c, d, e

. 4 .

See Table 6-4, Table 6-6

5.4

8.0

8.9

10 1

3 to <6 years	10.1	c, d, e, f	13.8	c, d, e	through Table 6-8,	
6 to <11 years	12.0	c, d, e, f	16.6	c, d, e	Table 6-10, Table 6-14	
11 to <16 years	15.2	c,d,e,f	21.9	c, d, e	Table 6-15 [none available for Stifelman	
16 to <21 years	16.3	c,d,e,f	24.6	c, d, e	(2007)]	
21 to <31 years	15.7	d, e, f	21.3	d, e		
31 to <41 years	16.0	d, e, f	21.4	d, e		
41 to <51 years	16.0	d, e, f	21.2	d, e		
51 to <61 years	15.7	d, e, f	21.3	d, e		
61 to <71 years	14.2	d, e, f	18.1	d, e		
71 to <81 years	12.9	d, e	16.6	d, e		
≥81 years	12.2	d, e	15.7	đ, e		

When age groupings in the original reference did not match the U.S. EPA groupings used for this when age groupings in the original reference did not match the U.S. EPA groupings used for this handbook, means from all age groupings in the original reference that overlapped U.S. EPA's age groupings by more than one year were averaged, weighted by the number of observations contributed from each age group. Similar calculations were performed for the 95th percentiles. See Table 6-25 for concordance with U.S. EPA age groupings.

Some 95th percentile values may be unrealistically high and not representative of the average

Arcus-Arth and Blaisdell (2007).

Brochu et al. (2006b).

U.S. EPA (2009a).

Stifelman (2007).

Table 6-2. Recommended Short-Term Exposure Values for Inhalation (males and females combined)	
---	--

Table 0-2. Rec	ommended Short-Teri	n Exposure Values i	tor Inhalation (males	and females combined)
Activity Level	Age Group (years)	Mean (m³/minute)	95 th Percentile (m³/minute)	Multiple Percentiles
Sleep or Nap	Birth to <1	3.0E-03	4.6E-03	•
	1 to <2	4.5E-03	6.4E-03	
	2 to <3	4.6E-03	6.4E-03	
	3 to <6	4.3E-03	5.8E-03	
	6 to <11	4.5E-03	6.3E-03	
	11 to <16	5.0E-03	7.4E-03	
	16 to <21	4.9E-03	7.1E-03	
	21 to <31	4.3E-03	6.5E-03	
	31 to ≤41	4.6E-03	6.6E-03	
	41 to <51	5.0E-03	7.1E-03	
	51 to <61	5.2E-03	7.5E-03	
	61 to <71	5.2E-03	7.2E-03	
	71 to <81	5.3E-03	7.2E-03	
	>01	5.2E_02	7.05_02	

	≥81	5.2E-03	7.0E-03		1					
Sedentary/	Birth to <1	3.1E-03	4.7E-03							
Passive	1 to <2	4.7E-03	6.5E-03							
	2 to <3	4.8E-03	6.5E-03							
	3 to <6	4.5E-03	5.8E-03	See Table 6-17 and						
	6 to <11	4.8E-03	6.4E-03	Table 6-19						
	11 to <16	5.4E-03	7.5E-03							
	16 to <21	5.3E-03	7.2E-03							
	21 to <31	4.2E-03	6.5E-03							
	31 to <41	4.3E-03	6.6E-03							
	41 to <51	4.8E-03	7.0E-03							
	51 to <61	5.0E-03	7.3E-03							
	61 to <71	4.9E-03	7.3E-03							
	71 to <81	5.0E-03	7.2E-03							
	>81 ≥81	4.9E-03	7.0E-03							
Light Intensity	Birth to <1	7.6E-03	1.1E-02							
Light Intensity	1 to <2	1.2E-02	1.6E-02							
	2 to <3	1.2E 02 1.2E-02	1.6E-02							
	3 to <6	1.1E-02	1.4E-02							
	6 to <11	1.1E-02 1.1E-02	1.5E-02		-					
	11 to <16	1.3E-02	1.7E-02							
	16 to <21	1.3E-02 1.2E-02	1.6E-02							
	16 to 21	1.2E=02	1.6E=02	1						
<u>lask efficienc</u>	cies in reducing	virus emissio	n (as they com	e out the nose a	nd mou	th of an infect	ed person)			
	Note that mas	k fit may be as	important as the	e type of mask, se	e this vi	deo: <u>https://twi</u>	ter.com/jljcolora	do/status/12809354	<u>408398766080</u>	
	50%	Default valu	ue for the genera	al population, with	a variet	y of types of m	asks (cloth, surg	ical) and also varia	tion on how well th	ey are worn
		Reference:	Davies et al. (2	013) https://pu	bmed.n	cbi.nlm.nih.gov	/24229526/			
		This number	er can varv wide	ly from about 10%	to abou	ıt 80%, depend	ing on the gualit	y of masks and how	w they are worn.	
	90%	For N95 ma	asks (KN95, FF2 wer value for th	2). If well fitted and	d worn th munity i	neir efficiency fo	or the large partic	cles that most likely	contain the viruse	s is 99% or more. Howeve orn perfectly and can have
	0%			n exhalation valve		of the air is exh	austed through t	he valve, and there	is little filtering	
							adotod tili odgir ti	,		

		Such masks are	good for occupation	onal exposure, if a		ng, drilling etc. But	•		•
	65%	For surgical mask	ks, from Milton et a	al. (2013)	https://journals.p	los.org/plospathog	gens/article?id=10	.1371/journal.ppa	at.1003205
		This is probably t	oo high for the ge	neral population,	which won't wear	surgical masks as	s well as in a rese	arch study. We si	uggest using 50%
	23%	efficiency would be		ted inertia of exha	aled particles und	er normal breathin			it makes sense that i.nlm.nih.
sk efficier	ncies in reducing v	irus inhalation by	a susceptible pe	erson (for virus a	Iready in aerosc	ol particles floatin	ng in the air)		
	The physical flo	ws during exhalation	n and inhalation a	are different, and	affect aerosol par	ticles differently. T	herefore the effici	encies are typica	lly different
	30%	themselves. After	discussion w/ Lin	sey Marr, we "dis	counted" this to b	e conservative, gi	ven imperfect wea	aring and fit in the	n masks that people put on the community. We think 30 peping the mask well fit a
	90%	we use a lower va		n the community					s is 99% or more. Howe rn perfectly and can hav
	23%	v=eGONzm3vdul		ception that "face	shields protect f				com/watch? the human body, driven
ilding ven	ntilation rates								
<u>ilding ven</u>		to replacement of i	ndoor air with out	door air. Recircula	ation of air with fil	tering is under "ad	ditional control me	easures"	
ilding ven	This refers only Note that e.g. a air. But due to n	ventilation rate of 1	h-1 does not mea	an that 100% of the approximation is	ne air is replaced is that the fractior	in 1 h. That's the 'n of the intial air th	"plug flow" assum at remains in the s	ption, the air insid	
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh	ventilation rate of 1	h-1 does not me k that way. A bette 1 * 1) =* 100% = 3	an that 100% of the er approximation i 36%, after 2 h, wh	ne air is replaced is that the fractior at remains is exp	in 1 h. That's the 'n of the intial air the (-1 * 2) = 14% and	"plug flow" assum at remains in the s d so on.	ption, the air insid	
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh An MIT calculat	ventilation rate of 1 nixing it doesn't wor at remains is exp(-	h-1 does not meak that way. A bette 1 * 1) =* 100% = 3 ation (through crace	an that 100% of the er approximation i 86%, after 2 h, wh cks, windows etc.	ne air is replaced is that the fractior at remains is exp) can be downloa	in 1 h. That's the 'n of the intial air the (-1 * 2) = 14% and ded here: http://cc	"plug flow" assum at remains in the s d so on. polvent.mit.edu/	ption, the air insid	
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh An MIT calculat	ventilation rate of 1 nixing it doesn't wor nat remains is exp(-or for natural ventila asured approximate See this post whi	h-1 does not mean that way. A better that way. A better that way is a be	an that 100% of the approximation in 36%, after 2 h, whocks, windows etc. Ince with a fast (few o do it with some	ne air is replaced is that the fractior at remains is exp) can be downloav minutes respongraphs: https://m	in 1 h. That's the 'n of the intial air that (-1 * 2) = 14% and ded here: http://cc.se) CO2 meter su	"plug flow" assum at remains in the s d so on. polvent.mit.edu/ ch as this one	ption, the air insic space vs time is e	
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh An MIT calculat	ventilation rate of 1 nixing it doesn't won nat remains is exp(- or for natural ventila asured approximate See this post whi space-using-a-ch How: go into the	h-1 does not mean that way. A better that way. A better 1 * 1) = * 100% = 3 to 100 to	an that 100% of the approximation in a possible and a factorial and the approximation in a factorial and a fac	ne air is replaced is that the fractior at remains is exp) can be downloav minutes respon graphs: https://mource=friends_lintle (more people w	in 1 h. That's the 'n of the intial air the (-1 * 2) = 14% and ded here: http://cc.se) CO2 meter suedium.com/@jjosek&sk=6cda52f568	"plug flow" assum at remains in the s d so on. colvent.mit.edu/ ch as this one 19945/how-to-q 2244450a10691fd leave quickly. Look	ption, the air insic space vs time is e uantify-the-ventila 07d1ad2c k at the data later	exp (-ACH * time) * 100% ation-rate-of-an-indoor- r, and look at the point a
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh An MIT calculat	ventilation rate of 1 nixing it doesn't wor nat remains is exp(- or for natural ventila asured approximate See this post whi space-using-a-ch How: go into the which the CO2 -	h-1 does not mean that way. A better that way. A better 1 * 1) = * 100% = 3 to 100 to	an that 100% of the approximation in 36%, after 2 h, who cks, windows etc. Ince with a fast (few to do it with some 4d8b6d4dab44?s areathing for a while of the peak. That	ne air is replaced is that the fraction at remains is exp) can be downloa w minutes respongraphs: https://mource=friends_line (more people wit is the time cons	in 1 h. That's the 'n of the intial air the (-1 * 2) = 14% and ded here: http://cc.se) CO2 meter su edium.com/@jjosek&sk=6cda52f568/ould help). Then I	"plug flow" assum at remains in the sed so on. polvent.mit.edu/ ch as this one 2 19945/how-to-quickly. Look illation rate is 1 div	ption, the air insic space vs time is e uantify-the-ventila 07d1ad2c k at the data later	exp (-ACH * time) * 1009 ation-rate-of-an-indoor-
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh An MIT calculat	ventilation rate of 1 nixing it doesn't wor nat remains is exp(- or for natural ventila asured approximate See this post whi space-using-a-ch How: go into the which the CO2 -	h-1 does not mean that way. A better that way. A better 1 * 1) = * 100% = 3 to 100 to	an that 100% of the approximation in 36%, after 2 h, who cks, windows etc. Ince with a fast (few to do it with some 4d8b6d4dab44?streathing for a while of the peak. That 1495	ne air is replaced is that the fraction at remains is exp) can be downloav minutes respon graphs: https://mource=friends_line (more people with is the time consideration of the properties of the time consideration is the time consideration of the time consideration of the time and the time consideration of the time consideration of the time consideration of the time and the time consideration of the time consideration of the time and time a	in 1 h. That's the 'n of the intial air the (-1 * 2) = 14% and ded here: http://ccse) CO2 meter suedium.com/@jjosek&sk=6cda52f568/ould help). Then I tant, and the ventirticular measurem	"plug flow" assum at remains in the sid so on. polvent.mit.edu/ ch as this one e 19945/how-to-q 2244450a10691fd eave quickly. Lool illation rate is 1 divinent)	ption, the air inside space vs time is equantify-the-ventile ordinates of the data later ided by that. See	exp (-ACH * time) * 1009 ation-rate-of-an-indoor-
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh An MIT calculat	ventilation rate of 1 nixing it doesn't wor nat remains is exp(- or for natural ventila asured approximate See this post whi space-using-a-ch How: go into the which the CO2 -	h-1 does not mean that way. A better that way. A better 1 * 1) = * 100% = 3 to 100 to	an that 100% of the approximation in 36%, after 2 h, who cks, windows etc. Ince with a fast (few to do it with some 4d8b6d4dab44?streathing for a while of the peak. That 1495	ne air is replaced is that the fraction at remains is exp) can be downloa w minutes respongraphs: https://mource=friends_line (more people with is the time consippm (global atmosphere)	in 1 h. That's the 'n of the intial air the (-1 * 2) = 14% and ded here: http://ccse) CO2 meter suedium.com/@jjosek&sk=6cda52f568/ould help). Then I tant, and the ventirticular measurem	"plug flow" assum at remains in the sid so on. polvent.mit.edu/ ch as this one e 19945/how-to-q 2244450a10691fd eave quickly. Lool illation rate is 1 divinent)	ption, the air inside space vs time is equantify-the-ventile ordinates of the data later ided by that. See	exp (-ACH * time) * 1000 ation-rate-of-an-indoor- r, and look at the point at a calculator below.
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh An MIT calculat	ventilation rate of 1 nixing it doesn't wor nat remains is exp(- or for natural ventila asured approximate See this post whi space-using-a-ch How: go into the which the CO2 -	h-1 does not mean that way. A better that way. A better 1 * 1) = * 100% = 3 the state of the sta	an that 100% of the approximation in 36%, after 2 h, whicks, windows etc. are with a fast (few to do it with some 4d8b6d4dab44?s areathing for a while of the peak. That 1495 area 1080	ne air is replaced is that the fractior at remains is exp) can be downloav minutes respon graphs: https://mource=friends_lintle (more people with is the time consippm (for your pappm (global atmospm	in 1 h. That's the 'n of the intial air the (-1 * 2) = 14% and ded here: http://ccse) CO2 meter suedium.com/@jjosek&sk=6cda52f568/ould help). Then I tant, and the ventirticular measurem	"plug flow" assum at remains in the sid so on. polvent.mit.edu/ ch as this one e_19945/how-to-q 2244450a10691fd eave quickly. Lool illation rate is 1 divinent) und, don't change	ption, the air inside space vs time is expace vs time is expace vs time is expace vs time is expace. Lantify-the-ventile or	exp (-ACH * time) * 1000 ation-rate-of-an-indoor- r, and look at the point at a calculator below. what you are doing)
ilding ven	This refers only Note that e.g. a air. But due to n So after 1 h, wh An MIT calculat	ventilation rate of 1 nixing it doesn't wor nat remains is exp(- or for natural ventila asured approximate See this post whi space-using-a-ch How: go into the which the CO2 -	h-1 does not mean that way. A better that way. A better 1 * 1) = * 100% = 3 to 1 * 1) = * 100% = 3 to 1 * 100%	an that 100% of the approximation in 36%, after 2 h, whicks, windows etc. are with a fast (few to do it with some 4d8b6d4dab44?s areathing for a while of the peak. That 1495 area 1080	ne air is replaced is that the fraction at remains is exp can be download with minutes respon graphs: https://mource=friends_lingle (more people with is the time consistent ppm (global atmosph ppm (you need to the fraction).	in 1 h. That's the in of the intial air that of the intial air that (-1 * 2) = 14% and ded here: http://ccse) CO2 meter suedium.com/@jjosek&sk=6cda52f568/ould help). Then tant, and the vention of the inticular measurem ospheric background	"plug flow" assum at remains in the sid so on. polvent.mit.edu/ ch as this one e_19945/how-to-q 2244450a10691fd eave quickly. Lool illation rate is 1 divinent) und, don't change	ption, the air inside space vs time is expace vs time is expace vs time is expace vs time is expace. Lantify-the-ventile or	r, and look at the point a calculator below. what you are doing)

	es for several situat	ions in h-1 (= ACH, a		•								
0.5-1.5	Houses	Typical values with	the windows c	losed. Depends	on how airtight the o	onstruction is. O	lder buildings tend	to have higher values				
3-15	Windows open	Estimate for open v	windows. Value	varies a lot der	ending on outdoor w	ind speed and g	eometry.					
0.1-8	Primary school	https://www.science	edirect.com/sci	ence/article/abs	/pii/S135223100700	<u>8758</u>						
2.5	Univ classroom	https://link.springer	.com/article/10	.1007/s00420-0	<u>08-0301-9</u>							
0.4-5	Univ classroom	https://onlinelibrary	.wiley.com/doi/	full/10.1111/ina.	<u> 2111</u>							
5-6	Univ classroom	https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0668.2012.00769.x										
2-11	Univ classroom	https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12272										
Varies	ASHRAE 62	nttps://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2										
		This is for commercial	This is for commercial buildings. Per Prof. Shelly Miller: "If it was commissioned and maintained properly then this is probably a									
		reasonable first est	reasonable first estimate (if you can't measure or get hard data from facilities folks) (Link)									
			hether they co	uld provide the	I't have the most recomore updated version			hase. I have asked an the people (max				
		older standards. Ol up the standard that	ld standards ca at was valid in 2	in also be obtair 2005. Note that		SHRAE page. E.g	g. for a building bui stems in old buildir	dings will have followed It in the US in 2005, loo ngs are not always				
		To use in the other	sheets, use the	e calculation be	ow (example of dayo	are):						
		Rp	5	L/s/person	From standard							
		Ra	0.9	L/s/m2	From standard							
		Occupant density	25	per / 100 m2	From standard							
		Surface area	100	m2	For a specific loc	ocation						
		Height of room	3	m	For a specific loc							
		Height of room Volume of room	300	m m3	· ·	ation	c location					
					For a specific loc	ation ove, for a specifi	c location per values above					
		Volume of room	300	m3	For a specific loc Product of two ab Calculated accord	ation ove, for a specifi ding to standard,						
		Volume of room N occupants	300 25	m3 people	For a specific loc Product of two ab Calculated accord Calculated accord	ation ove, for a specifi ding to standard, ding to standard,	per values above per values above	sheets for vent. rate				
		Volume of room N occupants Vent Rate	300 25 215	m3 people L/s	For a specific loc Product of two ab Calculated accord Calculated accord	ation ove, for a specifi ding to standard, ding to standard,	per values above per values above	sheets for vent. rate				
		Volume of room N occupants Vent Rate Vent. in h-1 BLE 6.2.2.1 Minimus	300 25 215 2.58 m Ventilation F	m3 people L/s h-1 Rates in Breathi	For a specific local Product of two about the Calculated according This is the parameter according Zone	ation ove, for a specifi ding to standard, ding to standard,	per values above per values above	sheets for vent. rate				
		Volume of room N occupants Vent Rate Vent. in h-1	300 25 215 2.58 m Ventilation F	m3 people L/s h-1 Rates in Breathi	For a specific local Product of two about the Calculated according This is the parameter according Zone	ation ove, for a specifi ding to standard, ding to standard,	per values above per values above	sheets for vent. rate				
		Volume of room N occupants Vent Rate Vent. in h-1 BLE 6.2.2.1 Minimus	300 25 215 2.58 m Ventilation F	m3 people L/s h-1 Rates in Breathi on with the acco	For a specific local Product of two about the Calculated according This is the parameter and Zone Expansion of the Calculated according The Calculated according to the Ca	ation ove, for a specifi ding to standard, ding to standard,	per values above per values above enter in the other s	sheets for vent. rate				
		Volume of room N occupants Vent Rate Vent. in h-1 BLE 6.2.2.1 Minimus	300 25 215 2.58 m Ventilation F	m3 people L/s h-1 Rates in Breathi on with the acco	For a specific local Product of two about the Calculated according This is the parameter according Zone	ation ove, for a specifi ding to standard, ding to standard, eter you need to Default Val	per values above per values above enter in the other s					

	pa			_	, 1950				
Occupancy Category	cfm/ person	L/s· person	cfm/ft ²	L/s·m ²	Notes	#/1000 ft ² or #/100 m ²	cfm/ person	L/s· person	Air Class
Correctional Facilities									
Cell	5	2.5	0.12	0.6		25	10	4.9	2
Dayroom	5	2.5	0.06	0.3		30	7	3.5	1
Guard stations	5	2.5	0.06	0.3		15	9	4.5	1
Booking/waiting	7.5	3.8	0.06	0.3		50	9	4.4	2
Educational Facilities									
Daycare (through age 4)	10	5	0.18	0.9		25	17	8.6	2
Daycare sickroom	10	5	0.18	0.9		25	17	8.6	3
Classrooms (ages 5–8)	10	5	0.12	0.6		25	15	7.4	1
Classrooms (age 9 plus)	10	5	0.12	0.6		35	13	6.7	1
Lecture classroom	7.5	3.8	0.06	0.3	Н	65	8	4.3	1
Lecture hall (fixed seats)	7.5	3.8	0.06	0.3	Н	150	8	4.0	1
Art classroom	10	5	0.18	0.9		20	19	9.5	2
Science laboratories	10	5	0.18	0.9		25	17	8.6	2
University/college laboratories	10	5	0.18	0.9		25	17	8.6	2
Wood/metal shop	10	5	0.18	0.9		20	19	9.5	2
Computer lab	10	5	0.12	0.6		25	15	7.4	1
Media center	10	5	0.12	0.6	A	25	15	7.4	1
Music/theater/dance	10	5	0.06	0.3	Н	35	12	5.9	1
Multiuse assembly	7.5	3.8	0.06	0.3	Н	100	8	4.1	1
Food and Beverage Service	,								
Restaurant dining rooms	7.5	3.8	0.18	0.9		70	10	5.1	2
Cafeteria/fast-food dining	7.5	3.8	0.18	0.9		100	9	4.7	2 _
Bars, cocktail lounges	7.5	3.8	0.18	0.9		100	9	4.7	2 _
Kitchen (cooking)	7.5	3.8	0.12	0.6		20	14	7.0	
	Correctional Facilities Cell Dayroom Guard stations Booking/waiting Educational Facilities Daycare (through age 4) Daycare sickroom Classrooms (ages 5–8) Classrooms (age 9 plus) Lecture classroom Lecture hall (fixed seats) Art classroom Science laboratories University/college laboratories Wood/metal shop Computer lab Media center Music/theater/dance Multiuse assembly Food and Beverage Service Restaurant dining rooms Cafeteria/fast-food dining Bars, cocktail lounges	Occupancy Category person Correctional Facilities 5 Cell 5 Dayroom 5 Guard stations 5 Booking/waiting 7.5 Educational Facilities Daycare (through age 4) 10 Daycare sickroom 10 Classrooms (ages 5–8) 10 Classrooms (age 9 plus) 10 Lecture classroom 7.5 Lecture hall (fixed seats) 7.5 Art classroom 10 Science laboratories 10 University/college laboratories 10 Wood/metal shop 10 Computer lab 10 Music/theater/dance 10 Multiuse assembly 7.5 Food and Beverage Service Restaurant dining rooms 7.5 Cafeteria/fast-food dining 7.5 Bars, cocktail lounges 7.5 Kitchen (cooking) 7.5	Occupancy Category person person Correctional Facilities 5 2.5 Dayroom 5 2.5 Guard stations 5 2.5 Booking/waiting 7.5 3.8 Educational Facilities 5 2.5 Daycare (through age 4) 10 5 Daycare sickroom 10 5 Classrooms (ages 5–8) 10 5 Classrooms (age 9 plus) 10 5 Lecture classroom 7.5 3.8 Art classroom 10 5 Science laboratories 10 5 University/college laboratories 10 5 Wood/metal shop 10 5 Computer lab 10 5 Multiuse assembly 7.5 3.8 Food and Beverage Service Restaurant dining rooms 7.5 3.8 Cafeteria/fast-food dining 7.5 3.8 Kitchen (cooking) 7.5 3.8 Kitchen (cooking) 7.5	Occupancy Category person person cfm/ft² Correctional Facilities Cell 5 2.5 0.12 Dayroom 5 2.5 0.06 Guard stations 5 2.5 0.06 Booking/waiting 7.5 3.8 0.06 Educational Facilities Daycare (through age 4) 10 5 0.18 Daycare sickroom 10 5 0.18 Classrooms (ages 5–8) 10 5 0.12 Classrooms (age 9 plus) 10 5 0.12 Lecture classroom 7.5 3.8 0.06 Art classroom 10 5 0.18 Science laboratories 10 5 0.18 University/college 10 5 0.18 University/college 10 5 0.18 Wood/metal shop 10 5 0.12 Media center 10 5 0.12 Music/theater/dance 10 5	Occupancy Category person person cfm/ft² L/s·m² Correctional Facilities Cell 5 2.5 0.12 0.6 Dayroom 5 2.5 0.06 0.3 Guard stations 5 2.5 0.06 0.3 Booking/waiting 7.5 3.8 0.06 0.3 Educational Facilities Daycare (through age 4) 10 5 0.18 0.9 Daycare sickroom 10 5 0.18 0.9 Classrooms (ages 5–8) 10 5 0.12 0.6 Classrooms (age 9 plus) 10 5 0.12 0.6 Lecture classroom 7.5 3.8 0.06 0.3 Lecture hall (fixed seats) 7.5 3.8 0.06 0.3 Art classroom 10 5 0.18 0.9 Science laboratories 10 5 0.18 0.9 University/college laboratories 10 5 0.18 0.9	Occupancy Category person person cfm/ft² L/sm² Notes Correctional Facilities Cell 5 2.5 0.06 0.3 Dayroom 5 2.5 0.06 0.3 Booking/waiting 7.5 3.8 0.06 0.3 Educational Facilities Daycare (through age 4) 10 5 0.18 0.9 Daycare sickroom 10 5 0.18 0.9 Classrooms (age 5-8) 10 5 0.12 0.6 Classrooms (age 9 plus) 10 5 0.12 0.6 Lecture classroom 7.5 3.8 0.06 0.3 H Lecture hall (fixed seats) 7.5 3.8 0.06 0.3 H Lecture hall (fixed seats) 7.5 3.8 0.06 0.3 H Vuriversity/college laboratories 10 5 0.18 0.9 Wood/metal shop 10 5 0.18 0.9	Occupancy Category	Cocupancy Category	Cocupancy Category

GENERAL NOTES FOR TABLE 6.2.2.1

- 1 Related requirements: The rates in this table are based on all other applicable requirements of this standard being met.
- 2 Environmental Tobacco Smoke: This table applies to ETS-free areas. Refer to Section 5.17 for requirements for buildings containing ETS areas and ETS-free areas.
- 3 Air density: Volumetric airflow rates are based on an air density of 0.075 lb_{ds}/ft³ (1.2 kg_{ds}/m³), which corresponds to dry air at a barometric pressure of 1 atm (101.3 kPa) and an air temperature of 70°F (21°C). Rates may be adjusted for actual density but such adjustment is not required for compliance with this standard.
- 4 Default occupant density: The default occupant density shall be used when actual occupant density is not known.
- 5 Default combined outdoor air rate (per person): This rate is based on the default occupant density.
- 6 Unlisted occupancies: If the occupancy category for a proposed space or zone is not listed, the requirements for the listed occupancy category that is most similar in terms of occupant density, activities, and building construction shall be used.

ITEM-SPECIFIC NOTES FOR TABLE 6.2.2.1

- A For high-school and college libraries, use values shown for Public Assembly Spaces—Libraries.
- B Rate may not be sufficient when stored materials include those having potentially harmful emissions.
- C Rate does not allow for humidity control. Additional ventilation or dehumidification may be required to remove moisture. "Deck area" refers to the area surrounding the pool that would be expected to be wetted during normal pool use, i.e., when the pool is occupied. Deck area that is not expected to be wetted shall be designated as a space type (for example, "spectator
- D Rate does not include special exhaust for stage effects, e.g., dry ice vapors, smoke.
- E When combustion equipment is intended to be used on the playing surface or in the space, additional dilution ventilation and/or source control shall be provided.
- F Default occupancy for dwelling units shall be two persons for studio and one-bedroom units, with one additional person for each additional bedroom.
- G Air from one residential dwelling shall not be recirculated or transferred to any other space outside of that dwelling.

Below are the additional tables from the standard, for other situations - enlarge the images to look for your situation of interest

TABLE 6.2.2.1	Minimum Ventilation Rates in Breathing Zone (Continued)
(This table is not valid in	isolation, it must be used in conjunction with the accompanying notes \

TABLE 6.2.2.1 Minimum Ventilation Rates in Breathing Zone (Continued)

TABLE 6.2.2.1 Minimum Ventilation Rates in Breathing Zone (Continued) (This table is not valid in isolation: it must be used in conjunction with the accompanying notes

 R_{α}

0.12 0.6

0.06 0.3

0.06 0.3

0.12 0.6

0.18 0.9

0.06 0.3

0.12 0.6

10 0.18 0.9 E

0.06 0.3

0.48 2.4

0.06 0.3

0.06 0.3

10 0.06 0.3

5 0.12 0.6

Default Values

Occupant Density Combined Outdoor

cfm/

25

26

22

17

7.8

4.6

5.0

12.4

12.8

7.0

23

10.8

13.0

6.5

4.6

8.3

#/1000 ft²

15

150

120

			(This table is not valid in isolation; it must be used in conjunction with the accompanying notes.)																			
		People Outdo Air Rate		Area C			Defa	alt Values				People () utdoor	Area O	utdoor		Defa	ult Values			(1110-10010	is not valid i
	Occupancy Category	Air I			Rate	Notes	Occupant Density (see Note 4)	Combined Outdoor Air Rate (see Note 5)		Air Class	Occupancy Category	Air	Rate	Air I	Rate	Notes	Occupant Density (see Note 4)	Combined Outdoor Air Rate (see Note 5)		Air Class	0	People C
		cfm/ person	L/s- person	cfm/ft ²	L/s·m ²		#/1000 ft ² or #/100 m ²	cfm/ person	L/s-person		Category	cfm/ person	L/s- person	cfm/ft ²	L/s-m ²		#/1000 ft ² or #/100 m ²	cfm/ person	L/s-person	Class	Occupancy Category	R
Coffee sta	tations	5	2.5	0.06	0.3		20	8	4	-1	Freezer and refrigerated	10		0	0	r	0			2		cfm/ person
Conferen	nce/meeting	5	2.5	0.06	0.3		50	6	3.1	1	spaces (<50°F)	10	,	U	U		0		0	2	Retail	
Corridors	2	_	_	0.06	0.3		_			1	General manufacturing (excludes heavy industrial										Sales (except as below)	7.5
Occupiab for liquid	ble storage rooms ds or gels	5	2.5	0.12	0.6	В	2	65	32.5	2	and processes using chemicals)	10	5.0	0.18	0.9		7	36	18	3	Mall common areas	7.5
Hotels, M	Motels, Resorts, Dor	mitories									Pharmacy (prep. area)	5	2.5	0.18	0.9		10	23	11.5	2	Barbershop	7.5
Bedroom	n/living room	5	2.5	0.06	0.3		10	11	5.5	1	Photo studios	5	2.5	0.12	0.6		10	17	8.5	1	Beauty and nail salons	20
Barracks	s sleeping areas	5	2.5	0.06	0.3		20	8	4.0	1	Shipping/receiving	10	5	0.12	0.6	В	2	70	35	2	Pet shops (animal areas)	7.5
Laundry 1	rooms, central	5	2.5	0.12	0.6		10	17	8.5	2	Sorting, packing, light	7.5	3.8	0.12	0.6		7	25	12.5	2	Supermarket	7.5
	rooms within	5	2.5	0.12	0.6		10	17	8.5		assembly	-						-			Coin-operated laundries	7.5
dwelling	units	-		0.12							Telephone closets		_	0.00	0.0		_			1	Sports and Entertainment	
Lobbies/p	prefunction	7.5	3.8	0.06	0.3		30	10	4.8	1	Transportation waiting	7.5 10	3.8	0.06	0.3	В	100	8	4.1	1	Gym, sports arena	20
	rpose assembly	5	2.5	0.06	0.3		120	6	2.8	- 1	Warehouses	10	,	0.06	0.3	В				2	(play area)	20
Office Bu	Buildings										Public Assembly Spaces	5	2.5	0.06	0.3		150		2.7		Spectator areas	7.5
Breakroon		5	2.5	0.12	0.6		50	7	3.5	1	Auditorium seating area Places of religious	3						3		1	Swimming (pool & deck)	_
Main entr	try lobbies	5	2.5	0.06	0.3		10	11	5.5	1	worship	5	2.5	0.06	0.3		120	6	2.8	1	Disco/dance floors	20
Occupiab for dry m	ble storage rooms	5	2.5	0.06	0.3		2	35	17.5	1	Courtrooms	5	2.5	0.06	0.3		70	6	2.9	1	Health club/aerobics room	20
Office spo			2.5	0.06	0.3			17	8.5		Legislative chambers	5	2.5	0.06	0.3		50	6	3.1	1	Health club/weight rooms	20
Reception		5	2.5	0.06	0.3		30	7	3.5		Libraries	5	2.5	0.12	0.6		10	17	8.5	1	Bowling alley (seating)	10
	ne/data entry	5	2.5	0.06	0.3		60	,	3.0		Lobbies	5	2.5	0.06	0.3		150	5	2.7	1	Gambling casinos	7.5
	incous Spaces	-	2.3	0.00	0.3		00	0	3.0	-	Museums (children's)	7.5	3.8	0.12	0.6		40	11	5.3	1	Game arcades	7.5
		5	2.5	0.06	0.3		5	17	8.5		Museums/galleries	7.5	3.8	0.06	0.3		40	9	4.6	1	Stages, studios	10
	ults/safe deposit r bank lobbies	7.5	2.5	0.06	0.3		15	17	6.0		Residential										GENERAL NOTES FOR TABLE 6.2	
		7.5	2.5		0.3		15	20		- 1	Dwelling unit	5	2.5	0.06	0.3	F,G	F			1	1 Related requirements: The rates in	this table are bas
_	er (not printing) NOTES FOR TABLE 6.2		2.5	0.06	0.3		4	20	10.0	- 1	Common corridors	_	_	0.06	0.3					1	2 Environmental Tobacco Smoke: To 3 Air density: Volumetric airflow rate	

- 0.06 0.3 D
- CREAREAL NOTIS FOR TABLE 6.2.2.1

 Ratated requirements: The rate in this are based on all other applicable requirements of this standard being not.

 Environmental Flower Souther: This table applies to ETS-few areas. Refer to Section 5.17 for requirements for buildings containing ETS areas and ETS-five areas.

 3. Air density: Volumetric ariflers set as are based on an air density of 0.075 Sa₂/m², 1 Value, m²/m², which corresponds to dy air at a horocontric pressure of 1 amn (101.3 kPs) and an air temperature of 20°PC/CV, Rates may be adjusted for stant density in the standardsort for the value of the standardsort for the value of the value
- 4 Default occupant density: The default occupant density shall be used when actual occupant density is not known. Default combined outdoor air rate (per person): This rate is based on the default occupant density

People Outdoor

 R_n

efm/ L/s-

7.5 3.8

7.5 3.8

7.5 3.8

20 10

7.5 3.8

3.8

3.8

10

7.5 3.8 0.18 0.9

7.5 3.8 0.18 0.9

- Unlisted occupancies: If the occupancy category for a proposed space or zone is not listed, the requirements for the listed occupancy category that is most similar in terms of occupandensity, activities, and building construction shall be used.

- be expected to be wetted during normal pool use, i.e., when the pool is occupied. Deck area that is not expected to be wetted shall be designated as a space type (for example, "speciator

Standards for other regions should be roughly similar, but follow guidelines from other associations or national governments.

Relative Humidity (%) Contours are labeled as % decay per min	
-0 https://www.medrxiv.org/content/10.1101/2020.04.13.20063784v1 (lower confidence in this result due to lack of replicates) 0.2 - 1 https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1777906 0.48 https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiaa334/5856149 Online estimator based on above (includes UV = 0, which is what should be used in most indoor spaces) The equation in the estimator is also implemented below. Enter your RH, T, UV index (0 indoors) to get decay estimate Graciously provided by Dr. Paul Dabisch, Dept. of Homeland Security, USA T (C) = 20 This is the input T (F) = 68 For display only RH (%) 60 (20 to 70, in % units) UV index 0 0 (indoors) to 10 (full sun noon) Virus decay 1.621 h-1	
0.2 - 1 https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1777906 0.48 https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiaa334/5856149 Online estimator based on above (includes UV = 0, which is what should be used in most indoor spaces) The equation in the estimator based on above (includes UV = 0, which is what should be used in most indoor spaces) The equation in the estimator based on above (includes UV = 0, which is what should be used in most indoor spaces) The equation in the estimator is also implemented below. Enter your RH, T, UV index (0 indoors) to get decay estimate of according to the standard security, USA T (C) = 20 This is the input For display only RH (%) 60 (20 to 70, in % units) UV index 0 0 (indoors) to 10 (full sun noon) Virus decay 1.621 h-1 7.56923714796555 -141125518824506 [Temp (degO-2054)] -002175703466380 [RH (%)-4.2235]] -202175703466380 [RH (%)-4.2235]] -326655 -15-10 %/min 10-15 %/min	
0.48 https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiaa334/5856149 Online estimator based on above (includes UV = 0, which is what should be used in most indoor spaces) The equation in the estimator is also implemented below. Enter your RH, T, UV index (0 indoors) to get decay estimate Graciously provided by Dr. Paul Dabisch, Dept. of Homeland Security, USA T (C) = 20 This is the input T (F) = 68 For display only RH (%) 60 (20 to 70, in % units) UV index 0 0 (indoors) to 10 (full sun noon) Virus decay 1.621 h-1 7.59923714795655 -1.41125518824509 Temp (degO-2054) 1066 -0.02175703466389 Select (Wim-2 UV8) - 50 1.3973422174602 10.55 Wimin 10.55 Wi	
Online estimator based on above (includes UV = 0, which is what should be used in most indoor spaces) The equation in the estimator is also implemented below. Enter your RH, T, UV index (0 indoors) to get decay estimate Graciously provided by Dr. Paul Dabisch, Dept. of Homeland Security, USA T (C) = 20 This is the input T (F) = 68 For display only RH (%) 60 (20 to 70, in % units) UV index 0 0 (indoors) to 10 (full sun noon) Virus decay 1.621 h-1 7.56923714795655 1.141125518824569 ([temp (deg0 - 20.54] / 10.66 1.141125518824509 ([temp (deg0 - 20.54] / 10.66 1.1520 %/min 1.1520 %/min 1.1520 %/min 1.15327239370088 ([Solar (W/m*2 UV8) - 50] / 1.3973422174600 Time of virus-containing aerosol to surfaces An important uncertainty is the size range of the infective particles. Here we assume 1-5 um, based on our read of the literature	
The equation in the estimator is also implemented below. Enter your RH, T, UV index (0 indoors) to get decay estimate Graciously provided by Dr. Paul Dabisch, Dept. of Homeland Security, USA T (C) = 20 This is the input T (F) = 68 For display only RH (%) 60 (20 to 70, in % units) UV index 0 0 (indoors) to 10 (full sun noon) Virus decay 1.621 h-1 7.56923714795655 + 1.41125518824506 [temp(deg0-2.054] / 38.655] + 1.41125518824506 [temp(deg0-2.054] / 38.655] + 7.55272292970083 [temp(deg0-2.054] / 38.655] + 7.55272292970083 [solar (W/m^2 2U/8) - 50] / 30 40 50 Relative Humidity (%) Contours are labeled as % decay per milestimate of the literature	
Graciously provided by Dr. Paul Dabisch, Dept. of Homeland Security, USA T (C) = 20 This is the input T (F) = 68 For display only RH (%) 60 (20 to 70, in % units) UV index 0 0 (indoors) to 10 (full sun noon) 20-25 %/min 15-20 %/min 15	
T (C) = 20 This is the input T (F) = 68 For display only RH (%) 60 (20 to 70, in % units) UV index 0 0 (indoors) to 10 (full sun noon) Virus decay 1.621 h-1 7.56923714795655 -1.41125518824508* -0.02175703466389* -0.02175703466389* -1.55272292970088* -1.5527229297088* -1.5527229297088* -1.5527229297088* -1.5527229297088* -1.5527229297088* -1.5527229297088* -1.5527229297088* -1.5527229297088* -1.5527229297088* -1.552722929708	
T (C) = 20 This is the input T (F) = 68 For display only RH (%) 60 (20 to 70, in % units) UV index 0 (indoors) to 10 (full sun noon) Virus decay 1.621 h-1 7.56923714795655 +1.41125518824588* (Temp (deg0 - 2054) 10.66 +0.02175703466389* (Solar (W/m^2 2U/8) - 50) 10.55 %/min +0.02175703466389* (Solar (W/m^2 2U/8) - 50) 10.55 %/min +(Temp (deg0 - 2054) 10.66 +(Temp (deg0	
T (F) = 68 For display only RH (%) 60 (20 to 70, in % units) UV index 0 0 (indoors) to 10 (full sun noon) Virus decay 1.621 h-1 7.56923714795655 + 1.41125518824508 + [Temp (degO-20.54] 10.66 + 0.02175703466399 + [RH (%)-45.235] 28.665 - 1.520729970083 + [Solar (W/m^2 UV8)-50] 50 + 1.666 - 1.520729970083 + [Solar (W/m^2 UV8)-50] 50 Relative Humidity (%) Contours are labeled as % decay per mix tion of virus-containing aerosol to surfaces An important uncertainty is the size range of the infective particles. Here we assume 1-5 um, based on our read of the literature	
UV index	>30 %/m
Virus decay	6/min
Virus decay 1.621 h-1 7.56923714795655 + 1.41125518824508* [Temp (degO - 20.54] 10.66 + 0.02175703466388* [RH (%) -45.235] 28.665 + 7.55272292970083* [Solar (W/m^2 UVB) - 50] 50 + [Temp (degO - 20.54] [Solar (W/m^2 UVB) - 50] 50 - [Temp (degO - 20.54] 10.66 10.66	*******
15-20 %/min	
10.66 10-15 %/min 10-15	
10.66 10-15 %/min 10-15	
10.66 10.45 %/min 10.66 10.45 %/min 10.66	
+ 0.02175703466389* 28.665 + 7.55272292970083* \[\begin{array}{ c c c c c c c c c c c c c c c c c c c	
+7.55272292970083* \[\left[Solar (W/m^2 UVB) - 50 \right] \\ +\left[\left[Temp (degQ - 20.54) \right] \right] \\ \left[\left[Solar (W/m^2 UVB) - 50 \right] \right] \right] \right] \right] \right] \\ \text{10.66} \\ \left[\left[Solar (W/m^2 UVB) - 50 \right] \right] \right] \right] \right] \right] \right] \\ \text{1.3973422174602} \\ Contours are labeled as % decay per mix of the infective particles. Here we assume 1-5 um, based on our read of the literature	
+ 7.55272292970083* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_
tion of virus-containing aerosol to surfaces An important uncertainty is the size range of the infective particles. Here we assume 1-5 um, based on our read of the literature	
tion of virus-containing aerosol to surfaces An important uncertainty is the size range of the infective particles. Here we assume 1-5 um, based on our read of the literature	
tion of virus-containing aerosol to surfaces An important uncertainty is the size range of the infective particles. Here we assume 1-5 um, based on our read of the literature	50
tion of virus-containing aerosol to surfaces An important uncertainty is the size range of the infective particles. Here we assume 1-5 um, based on our read of the literature	ute
An important uncertainty is the size range of the infective particles. Here we assume 1-5 um, based on our read of the literature	2008
An important uncertainty is the size range of the infective particles. Here we assume 1-5 um, based on our read of the literature	
Literature values in h-1	
0.2-2 https://www.sciencedirect.com/science/article/abs/pii/S1352231002001577 (depends on air speed, particle size range)	

Virus removal rate of ot	ther control mea	sures									
For a po	ortable HEPA filte	er unit, use this	calculation (n	netric units):							
	HEPA f	flow rate	440	m3 h-1							
	Rooms	size	147	m3							
	Remov	al rate	3.0	h-1	Enter this value	in cell for additional	l control measur	es			
HEPA fi	ilter calculation (U	JS units):									
	HEPA f	flow rate	260	cfm (cubic feet p	er minute)						
	Room	size	5200	ft3							
	Remov	al rate	3.0	h-1	Enter this value	in cell for additional	I control measur	es			
A more	elaborate calcula	ator for HEPA f	ilters can be fo	ound here: https:/	//tinyurl.com/port	<u>ableaircleanertool</u>					
For reci	irculated air, eithe			9							
	HVAC s	system, and a	lso from basic	aerosol dynamic	s and losses in t	ubing. This will happ	en even if there	is no filtration, an	ind in the surfaces of d will be enhanced by v (HT Jim Bagrowski)		
	If you have some other "air cleaned the rate of recirculation, and the e						timate it in the sa	ame way as the pr	evious item, depending on		
	Recircu	ulated flow rate	e =	300	m3 / h	Can also enter va	lues in cubic fee	t per hour, if next	ow is in cubic feet		
	Volume	e of room =		100	m3						
	Filter et	fficiency =		20%		Enter from table b	elow, I recomme	end value in 1-3 m	icrons. Example = MERV 8		
	Remov	al in ducts, air	handler =	10%		Assuming some lo	osses in bends,	air handler surface	es etc. Just a guess		
	Other r	removal measi	ures =	0%		Germicidal UV (or	other systems)	, from specs or the	system		
	ACH fo	or additional co	ontrol meas =	0.9	h -1	Enter this value in	cell for "Additio	nal control measu	res"		
	that cor - The c	ntains more vi urves are use	rus, but suspe ful to understa	ct it is 1-10 um m	nostly, based on noting the notion of the no	our read of the litera	ture. Therefore of grades in more	using 1-3 um to be	ot sure the particle size conservative. hk https://www.nafahq.		
	TABLE 3: MERV PAR	RAMETERS				HEPA detailed view					
	THE SERVICE CONTRACTOR OF THE SERVICE CONTRA		e Particle Size Efficie <u>µm</u> Range 2 (1.0-3.0)	Range 3 (3.0-10.0)	Average Arrestance, %	0.2 0.3 1 99.9 - 99.8 - 99.7 -	0.4				
	1	n/a	n/a	E3 < 20	A _{avg} < 65	99.5 —					
	1057	56		2008 335828	1000 C 1000 T 1000 C						

2	n/a	n/a	E3 < 20	65 ≤ A _{avg} < 70
3	n/a	n/a	E3 < 20	70 ≤ A _{avg} < 75
4	n/a	n/a	E3 < 20	75 ≤ A _{avg}
5	n/a	n/a	20 ≤ E3	n/a
6	n/a	n/a	35 ≤ E3	n/a
7	n/a	n/a	50 ≤ E3	n/a
8	n/a	20 ≤ E ₂	70 ≤ E3	n/a
9	n/a	35 ≤ E ₂	75 ≤ E3	n/a
10	n/a	50 ≤ E ₂	80 ≤ E3	n/a
11	20 ≤ E ₁	65 ≤ E ₂	85 ≤ E3	n/a
12	35 ≤ E ₁	80 ≤ E ₂	90 ≤ E3	n/a
13	50 ≤ E ₁	85 ≤ E ₂	90 ≤ E3	n/a
14	75 ≤ E ₁	90 ≤ E ₂	95 ≤ E3	n/a
15	85 ≤ E ₁	90 ≤ E ₂	95 ≤ E 3	n/a
16	95 ≤ E ₁	95 ≤ E ₂	95 ≤ E3	n/a

Disease prevalence in your area - Probability of someone being infected in a given region and time period

This depends on the state of the pandemic in a given region and time period, as well as the dynamics of the disease and its infectivity in different types of cases, which are not known very precisely

For the US, you could use the online tools below to find the current estimated fraction of infectious people in a given county

https://sites.google.com/compassfortcollins.org/coronavirusrisk/home

https://www.descarteslabs.com/resources/covid-19-now

https://covid19risk.biosci.gatech.edu/

On a simple test for Boulder on 22-Jul, the tools give 0.08%, 0.25%, 0.49% infectious respectively. I have asked for input from epi folks about which may be more accurate, or whether the uncertainty is that large

For other countries, this tool has country-level estimates of the current fraction of infected

https://covid19-projections.com/

For the UK, you can get estimates from here: https://covid.joinzoe.com/data

This parameter is not easy to quantify accurately, but one can hope to get the order-of-magnitude right from the disease prevalence data and/or the epidemiological models. People are thought to be contagious mostly the week around the onset of symptoms, so that has to be taken into account in the estimates. Also there is a fraction of undetected contagious cases (asymptomatic / presymptomatic), which will increase transmission. Plus one would hope that a major fraction of the cases that are in quarantine or a hospital and not transmitting the disease much. The uncertainty on the fraction of contagious individuals in the community is one more reason why the absolute risk values will be uncertain, but the relative risks will still be robust.

A range of values is estimated below to provide some bounds. An in-between value of 0.3% is used as default, as the approx. geometric mean of the results below

One estimate for New York City (NYC) at the height for their large outbreak in March-May 2020

Praction of population infective period production infective at a given time: Another estimate for Boulder, CO in early June 2020 (low prevalence): New cases per day per 100,000 people (from NYT database) Fraction of asymptomatic or unreported cases Duration of infective period Fraction of population infective at a given time: Praction of population infective at a given time: O.03% As the disease progresses, the fraction of the population that has had the disease and has some immunity is not negligible any more, and may be higher than some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://jsmanetwork.com/journals/jamainternalmedicine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ Praction of the usefulness and limitations of this method TABLE 3 Values of physical activity levels (M) from comper and tables are from Persily and de Jonge (2017). First determine the metabolic rate (met) for the activity of interest from Table 3 If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons 1 just tried to explain Then enter the value you determine on the spreadsheet for calculation ABLE 4. CO ₂ generation rates at 273 K and 101 kPa for rarges of ages and level of physical activity fuested on mean body mass in each age group) Dancing—eneral				Fra	action of of	the popula	tion that o	got infected	d over a p	eriod of 2 month	20%			
New cases per day per 100,000 people (from NYT database) Reaction of anymptomatic or unreported cases Duration of infective period Fraction of population infective at a given time: 0.03% Fraction of population infective at a given time: 0.03% As the disease progresses, the fraction of the population that has had the disease and has some immunity is not negligible any more, and may be higher than some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://ganarhevork.com/punals/jamainternalmed/cine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ Polementod and tables are from Persity and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be equations in the paper. For A Persity (pers commit): when you get above 4, people usually can be committed to a plant of the paper. For A Persity (pers committed to a plant of the paper. For A Persity (pers committed to a plant of the people usually can be above 4 people				Du	ration of in	fective peri	od				7	days		
New cases per day per 100,000 people (from NYT database) Fraction of asymptomatic or unreported cases Duration of infective period Fraction of population infective at a given time: O 0,03% As the disease progresses, the fraction of the population that has had the disease and has some immunity is not negligible any more, and may be higher than some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://gamanetwork.com/journals/jamaniternalmedicine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ You can estimate the metabolic rate (met) for the activity of interest from Table 3 Table 4 or table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations in the magnetic conditioning, etc. One can still use equations of and 1 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation The enter the value you determine on the spreadsheet for calculation The enter the value you determine on the spreadsheet for calculation The enter the value you determine on the spreadsheet for calculation The enter the value you determine on the spreadsheet for calcula				Fra	action of po	pulation in	fective at	a given tin	ne:		2.3%			
Fraction of asymptomatic or unreported cases 50% 7 days 7 days 7 days 7 days 8 Fraction of infective period 7 days 9 days 9 days 9 Fraction of population infective at a given time: 0.03% 9 0.03% 9 0.011 0.0013 0.0014 0.0018 0.0027 0.0036 9 0 0.0015 0.0015 0.0015 0.0027 0.0036 9 0 0.0015 0			Another es	timate for	Boulder, C	O in early	June 202	0 (low prev	valence):					
Duration of infective period Fraction of population infective at a given time: Duration of inmune people As the disease progresses, the fraction of the population that has had the disease and has some immunity is not negligible any more, and may be higher than some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ TABLE 3 Values of physical activity levels (M) from comperation and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds begends a lof on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just the to explain" Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation Reg (v) Mean body mass (kg) BMR (MJ/day) BMR (MJ/day) BMR (MJ/day) Level of physical activity (met) Lev				Ne	w cases pe	er day per 1	100,000 p	eople (fror	n NYT da	tabase)	1.8			
Fraction of population infective at a given time: As the disease progresses, the fraction of the population that has had the disease and has some immunity is not negligible any more, and may be higher than some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://jamanetwork.com/journals/jamaintemalmedicine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ TABLE 3 Values of physical activity levels (M) from comper neemethod and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real althieles, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just the do explain* Then enter the value you determine on the spreadsheet for calculation				Fra	action of as	ymptomati	c or unrep	orted case	es		50%			
As the disease progresses, the fraction of the population that has had the disease and has some immunity is not negligible any more, and may be higher than some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ Possible Rates Table 3 Values of physical activity levels (M) from comper and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybre real athieles, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), athigh values but the uncertainties are likely to be higher for the reasons i just tried to explain" Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation Age (v) Mean body mass (kg) BMR (MJ/day) 10 12 14 16 20 3.0 4.0 Evel of physical activity (met) Evel of physi				Du	ration of in	fective peri	od				7	days		
As the disease progresses, the fraction of the population that has had the disease and has some immunity is not negligible any more, and may be higher than some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ Prist determine the interval of this method and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain: Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Mailes Age (v) (kg BMR (MJ/day) 10 12 1.4 1.6 2.0 3.0 4.0 Mailes Ale 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Stiting reading, writing, typing 1.3				Fra	action of po	pulation in	fective at	a given tin	ne:		0.03%			
As the disease progresses, the fraction of the population that has had the disease and has some immunity is not negligible any more, and may be higher than some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ Prist determine the interval of this method and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain: Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Mailes Age (v) (kg BMR (MJ/day) 10 12 1.4 1.6 2.0 3.0 4.0 Mailes Ale 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Stiting reading, writing, typing 1.3														
some areas like New York City. This reduces the number of people who could possibly get infected. It can be estimated from studies such as this one: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2768834 You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ Print determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation Mean body mass Mean body mass Mean body mass Mean body mass Mean body mass Mean body mass Mean body mass Males 1 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Males 1 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Males 1 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Males 1 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Males 1 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Males 1 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Males 1 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Males 1 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036	raction of i	inmune people												
You can estimate this number for US States and many countries using the total number of ever infected at: https://covid19-projections.com/ PAGE FAQs for the usefulness and limitations of this method TABLE 3 Values of physical activity levels (M) from comperate method and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO2 generation rates at 273 k and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) ABLE 4 CO2 generation rates at 273 k and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) ABLE 4 CO2 generation rate (L/s) Wean body mass Mean body mass Me											y is not negligible	any more, ar	nd may be hi	gher than 20%
D2 Emission Rates Be FAQs for the usefulness and limitations of this method Be method and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), a high values but the uncertainties are likely to be higher for the reasons I just tried to explain' Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Age (y) (kg) BMR (MJ/day) Age (y) (kg) BMR (MJ/day) BMR (MJ/day) Age (y) (kg) BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Evel of physical activity (met) Level of physical activity (met) L		It can be estir	mated from stud	dies such	as this one	: https://jar	manetwor	k.com/jour	nals/jama	internalmedicine	e/fullarticle/27688	<u>34</u>		
TABLE 3 Values of physical activity levels (M) from comper for the method and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Age (y) (kg) BMR (MJ/day) Mean body mass (kg) BMR (MJ/day) To be a complete from Table 3 Age (y) (kg) BMR (MJ/day) To be a complete from Table 3 Activity Activity Calculated Activity Activity (activity calculated the equations) and the age, gender, and metabolic rate Activity Activity Calculated to 2.8 Calisthenics—light effort 2.8 Calisthenics—light effort 3.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 9.0 Calculated for 2.8 Calisthenics—light effort 9		You can estin	nate this numbe	er for US S	States and	many coun	ıtries usin	g the total	number o	of ever infected a	t: https://covid19-	projections.co	om/	
TABLE 3 Values of physical activity levels (M) from comper for the method and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Age (y) (kg) BMR (MJ/day) Mean body mass (kg) BMR (MJ/day) To be a complete from Table 3 Age (y) (kg) BMR (MJ/day) To be a complete from Table 3 Activity Activity Calculated Activity Activity (activity calculated the equations) and the age, gender, and metabolic rate Activity Activity Calculated to 2.8 Calisthenics—light effort 2.8 Calisthenics—light effort 3.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 9.0 Calculated for 2.8 Calisthenics—light effort 9														
TABLE 3 Values of physical activity levels (M) from comper for the method and tables are from Persily and de Jonge (2017) First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Age (y) (kg) BMR (MJ/day) Mean body mass (kg) BMR (MJ/day) To be a complete from Table 3 Age (y) (kg) BMR (MJ/day) To be a complete from Table 3 Activity Activity Calculated Activity Activity (activity calculated the equations) and the age, gender, and metabolic rate Activity Activity Calculated to 2.8 Calisthenics—light effort 2.8 Calisthenics—light effort 3.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 2.8 Calisthenics—vigorous effort 8.0 Calisthenics—light effort 9.0 Calculated for 2.8 Calisthenics—light effort 9														
Activity M (met) Rar First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Age (y) (kg) BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Males Age (y) 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Activity M (met) Rar Calisthenics—light effort 2.8 Calisthenics—light	O2 Emissi	on Rates												
First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Mean body mass Mean body m	ee FAQs fo	r the usefulness a	nd limitations of	f this meth	nod						TABLE 3 Values	of physical activ	vity levels (M) f	rom compendium
First determine the metabolic rate (met) for the activity of interest from Table 3 Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Age (y) (kg) Mean body mass Mean body mass Mean body mass Mean body mass BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Calisthenics—light effort 2.8 Calisthenics—wigorous effort 3.8 Calisthenics—vigorous effort 3.8 Calisthenics—vigorous effort 4.0 Calisthenics—light effort 4.0 Calisthenics—light effort 4.0 Calisthenics—light effort 4.0 Calisthenics—vigorous effort 4.0 Calisthenics—light effort 4.0 Calisthenics—light effort 4.0 Calisthenics—light effort 4.0 Calisthenics—vigorous effort 4.0 Calisthenics—light effort 4.0 Calisthenics—l	he method	and tables are fror	n <u>Persily and d</u>	e Jonge (2	2017)						Activity		M (met)	Range
Then, determine the CO2 generation rate based on the age, gender, and metabolic rate If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO2 generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) ABLE 4 CO2 generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (met) Level of physical activity (met) Age (y) (kg) BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Males Age (x) 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Sitting reading, writing, typing 1.3		First determin	ne the metaboli	c rate (me	t) for the a	ctivity of int	erest fror	n Table 3			•	effort		Kange
If met > 4 on table 3, you can use the highest value (for met = 4) in Table 4, or one could use the equations in the paper. For A Persily (pers comm): "when you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) Age (y) (kg) BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Males Calisthenics-vigorous effort Child care Cleaning, sweeping-moderate effort Custodial work-light 2.3 Dancing-aerobic, general 7.3 Dancing-aerobic, general 7.8 Health club exercise classes-general Kitchen activity-moderate effort 3.3 Lying or sitting quietly 1.0 Sitting reading, writing, typing 1.3		Then, determ	ine the CO2 ge	eneration r	ate based	on the age	, gender,	and metab	oolic rate					
equations in the paper. For A Persily (pers comm): "When you get above 4, people usually can't sustain such activity levels for very long, except maybe real athletes, and how their body responds depends a lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) CO ₂ generation rate (L/s) Level of physical activity (met) Age (y) (kg) BMR (MJ/day) Age (y) (kg) BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Males Child care Cleaning, sweeping—moderate effort 2.0 Cleaning, sweeping—moderate effort 2.3 Dancing—aerobic, general 7.8 Health club exercise classes—general Kitchen activity—moderate effort 3.8 Lying or sitting quietly 1.0 Sitting reading, writing, typing 1.3														
lot on physical conditioning, etc. One can still use equations 9 and 11 in Persily and de Jonge (2017), at high values but the uncertainties are likely to be higher for the reasons I just tried to explain" Then enter the value you determine on the spreadsheet for calculation ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) CO ₂ generation rate (L/s) Level of physical activity (met) Males Age (y) (kg) BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Males Then enter the value you determine on the spreadsheet for calculation Custodial work—light 2.3 Dancing—aerobic, general 7.3 Health club exercise classes—general Kitchen activity—moderate effort 3.3 Lying or sitting quietly 1.0 Sitting reading, writing, typing 1.3												ous cirore	0.0	2.0 to 3.0
ABLE 4 CO ₂ generation rates at 273 K and 101 kPa for ranges of ages and level of physical activity (based on mean body mass in each age group) CO ₂ generation rate (L/s) Level of physical activity (met) Age (y) (kg) BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Males 1.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Dancing—aerobic, general 7.3 Health club exercise classes—general Kitchen activity—moderate effort 3.3 Lying or sitting quietly 1.0 Sitting reading, writing, typing 1.3		lot on physica	al conditioning,	etc. One c	an still use	equations	9 and 11	in Persily	and de Jo	onge (2017), at		-moderate	3.8	
CO2 generation rate (L/s) Dancing—general 7.8 Health club exercise 5.0 classes—general Kitchen activity—moderate effort 3.3 Sitting reading, writing, typing 1.3 1.4 1.6 1.6 1.0 1.2 1.4 1.6 1.0 1.0 1.2 1.4 1.6 1.0 1		Then enter th	e value you de	termine or	n the sprea	dsheet for	calculatio	n			Custodial work-lig	ht	2.3	
Mean body mass Level of physical activity (met) Health club exercise 5.0	ABLE 4 CO ₂ §	generation rates at 273	K and 101 kPa for r	ranges of age	s and level of	physical activi	ty (based or	mean body r	nass in each	age group)	Dancing—aerobic, g	general	7.3	
Mean body mass Males	_			CO _o gene	ration rate (L/	's)					Dancing—general		7.8	
Age (y) (kg) BMR (MJ/day) 1.0 1.2 1.4 1.6 2.0 3.0 4.0 Kitchen activity—moderate effort 3.3 Males Lying or sitting quietly 1.0 <1		Mean hody mass										е	5.0	
41 8.0 1.86 0.0009 0.0011 0.0013 0.0014 0.0018 0.0027 0.0036 Sitting reading, writing, typing 1.3	Age (y)	•	BMR (MJ/day)	1.0	1.2	1.4	1.6	2.0	3.0	4.0	Kitchen activity—m	oderate effort	3.3	
1	Malas										Lying or sitting quie	etly		1.0 to 1.3
1 to <3 12.8 3.05 0.0015 0.0018 0.0021 0.0024 0.0030 0.0044 0.0059 Sitting at sporting event as 1.5	Males													
		8.0	1.86	0.0009	0.0011	0.0013	0.0014	0.0018	0.0027	0.0036	Sitting reading, writ	ting, typing	1.3	

24/	10.0	0.0				0021	0.0021	0.0000	0.0011	0.0037	spectator		
3 to <6	18.8	3.9				0026	0.0030	0.0038	0.0057	0.0075		light effort (e.g,	1.5
6 to < 11	31.9	5.1				0035	0.0040	0.0050	0.0075	0.0100	office work)		
11 to <16	57.6	7.0		0.004		0048	0.0054	0.0068	0.0102	0.0136	Sitting quietly	in religious service	1.3
16 to <21	77.3	7.7				0053	0.0060	0.0075	0.0113	0.0150	Sleeping		0.95
21 to < 30	84.9	8.2		0.00		0056	0.0064	0.0080	0.0120	0.0160	Standing quie	etly	1.3
30 to <40	87.0	7.8				0053	0.0061	0.0076	0.0114	0.0152 0.0155		s, light effort (e.g,	3.0
40 to <50	90.5	8.0		0.00		0054	0.0062	0.0077	0.0116		store clerk,		
50 to <60 60 to <70	89.5 89.5	7.9 6.8				0054	0.0062	0.0077	0.0116	0.0154 0.0133	Walking, less	than 2 mph, level	2.0
70 to <80	83.9	6.5				0046					surface, ven	y slow	
						0045	0.0051	0.0064	0.0095	0.0127	_	mph to 3.2 mph,	3.5
≥80	76.1	6.1	9 0.00	0.003	36 0.0	0042	0.0048	0.0060	0.0090	0.0120	level surface	e, moderate pace	_
Females	77	4.7		000 000	10 01	0040	0.004.4	0.0047	0.0005	0.0004			
<1 1 to <3	7.7 12.3	1.7 2.8		0.000 0.000 0.000		0012 0020	0.0014	0.0017 0.0028	0.0025	0.0034			
	18.3												
3 to <6		3.5		0.000		0024	0.0028	0.0035	0.0052	0.0070			
6 to < 11	31.7 55.9	4.7		0.003		0032	0.0037	0.0046	0.0069	0.0092			
11 to < 16 16 to <21	65.9	6.0		029 0.003 029 0.003		0041 0042	0.0047	0.0058	0.0088	0.0117			
21 to < 30	71.9	6.4		0.000		0042	0.0047	0.0037	0.0089	0.0119			
30 to < 40	74.8	6.0		0.000		0044	0.0030	0.0063	0.0074	0.0128			
40 to <50	77.1	6.1		0.000		0041	0.0047	0.0060	0.0088	0.0119			
50 to <60	77.5	6.1		030 0.00		0042	0.0048	0.0060	0.0070	0.0117			
60 to <70	76.8	5.6		0.000		0042	0.0048	0.0055	0.0070	0.0120			
70 to <80	70.8	5.4		0.000		0037	0.0044	0.0053	0.0082	0.0116			
≥80	64.1	5.1		0.000		0037	0.0042	0.0050	0.0077	0.0100			
=00	04.1	5.1	0.00	0.00	30 0.	0033	0.0040	0.0050	0.0073	0.0101			
Varaion las													
Version log		45 Jun 0000	Otombod develo	ma a m 4 - £ 41; ·			.ti.a.a. :- :- : '						
1.0			Started develop			or, adap	ung previ	ous work					
2.0			Made public thro										
2.1-2.4			Made various cl										
2.5		23-Jun-2020	Some more clar	ifications, fi	xed som	ne issue	s with text	, added o	utdoors a	and demonstrat	tion cases		

2.6 and later	24-27 June	Some clarifications to the text, added FAQs sheet and more detail on the input parameters
2.7.0 and later	28-29 June	Fixed mistake in description of Campus / B11 and / B12. Added and reorganized FAQs. Added ASHRAE Standards calculator
2.7.7 and later	30-Jun-20	Fixed error in Outdoors and Demonstration tabs (in conversion to m/s). New results are even lower for transmission outdoors
		Colored duration of event as an input, was white in several of the sheets. Clarified some of the labels. Added several FAQs and explanations.
2.7.9 and later	1-Jul-20	Text clarifications, added FAQs
2.8.0 and later	2-3 July	Added efficiency for face shields, added FAQs
2.9.0 and later	4-Jul-20	Updated calculation of students in "Classroom" sheet, so that it can be calculated from the surface area per student. Updated FAQs
3.0.0 and later	6-Jul & later	Added calculator for portable HEPA filters in Readme sheet. Updated several FAQs
		Clarified that the number of instructors = 1 in the classroom is an assumption and is not an input.
		Minor adjustments to outdoors case to match Skagit choir event, except outdoors instead of indoors (There were some small differences)
		Changed units of occupant density to people per 100 m2 to match the standard, as people / m2 was causing confusion
3.0.9 and later	14-Jul-20	Fixed bug in classroom sheet, instructor was using student breathing rate instead of instructor (not a big change in results)
		Added link to Shelly Miller's report on air cleaners and table of rec. cleaners in the US (FAQs)
3.1.0	16-Jul & later	Added conditional vs absolute probability to Choir case
		Updated multiple FAQs
		Tried implementing DHS virus decay rate on readme page. However results don't agree with online tool yet, checking w/ authors
3.2.0	20-Jul-20	Released beta sheet with new format, for testing and comments
		Added some steps towards the CO2 estimation
3.2.6 & later	21-Jul-20	Completed CO2 estimation, fixed multiple bugs in beta sheet (thanks to Prasad Kasibhatla for his eagle eyes!)
		Finished calculator of Dabish DHS virus decay rates (consulting with him and other experts about what is best to use for that rate)
		Updated breathing rates with EPA report, clearly higher quality than what I was using before (thanks to Susan Masten)
		Added direct links for Copy to G Drive & download to Excel, since File doesn't work at > 100 users (thx Joe Bruce for pointing out this was possible)
		Fixed error in Campus sheet, N students in classroom was missing from calc of student cases (thanks to Prasad Kasibhatla)
		Clarified on each sheet which results are conditional vs. absolute, which seemed to be the most confusing feature
		Replaced "airborne" with "aerosol" everywhere to avoid confusion
		Updated multiple FAQs and readme descriptions
3.3.0 & later	22-Jul & later	Added the fraction of inmune people to the Master sheet
		Updated class sheet using new master sheet
		Removed breathing rate of index case since it does not enter the calculations
		Updated Subway sheet to new master sheet
3.3.8 & later	24-July & later	Added calculator for other removal measures (HT Jim Bragowski)
		Added calculator to estimate ventilation rate from decay of CO2 after leaving location
		Añadido enlace a charla grabada en espanol / castellano, describiendo la herramienta, y demostrando cómo usarla

		Spelled checked whole document (HT Gary Chaulklin)
		Updated breathing rate for Class from sedentary to avg of sedentary and light activity for 16-21 yr old (Adapt as needed for your case)
		Highlighted that ventilation in L/s/person is what really matters for disease transmission
		Updated references for typical mask inhalation efficiency in the community (HT Linsey Marr)
		Updated calculation of ventilation in L/s/per to use total ppl present (as using susceptible + infected, no longer accurate if immune ppl present)
		Moved location of L/s/per and density of people to make those intermediate outputs clearer
3.4.0 & later	31-Jul & later	Updated FAQs
		Added stadium sheet based on a case study
		Added supermarket case
		Added additional tables from 2013 ASHRAE standard (sorry, I hadn't realized there were more pages when I first added this info)
	3-Aug & later	Updated absolute probability from (1-exp(-B67*B89/B38)) to 1 - (1 - B70*B57)^B40. Only matters for high probs (HT Prasad Kasibhatla)
3.4.8	6-Aug & later	Added ratio of infection probability to excess CO2 breathed, to better quantify risk of inhaled CO2 under different situations
		Added ppm CO2 levels for certain levels of risk for conditional and absolute cases
		Found better way to keep tables in FAQ in places, they kept jumping up every few days somehow
		Added more info to FAQ and Readme pages
		Fixed typo on background CO2 in readme, should be 415 pm not 550 ppm
		Labeled all sheets on the old format as "_Old" on their tab names. I intend to transfer those to the new format as soon as I can, hopefully the coming weekend. The new format is much clearer, in particular the difference between conditional and absolute probabilities is very confusing to a lot of people, so it helps to have them shown separately.
3.4.14		Updated "for any one person"> "for a given person" on the results label, as the former was being confused with being for all persons present
3.4.17	5-Sep-20	Fixed error in calculator of fraction of infective population (Readme/row 398 at present, was dividing by asympt/unreported fraction, need to divide be 1-that
3.4.18	29-Sep-20	Added feedback form
3.4.19	27-Oct-20	Updating of references
3.4.20	28-Nov-20	Clarification of Readme page
3.4.21	29-Dec-20	Fixing typo on several of the case sheets
3.4.22	1-Feb-21	Updated Miller reference
3.4.23	26-Mar-21	Added Dr. Zhe Peng as co-developer
3.4.24	26-Mar-21	Fixed typo on cell B88 in Subway, Superm., and Stadium sheets (RH was being used erroneously instead of background CO2 level). HT Bill Mason
3.5.1	23-Apr-21	Added location and explanation for risk parameters from Peng et al. (2021) preprint. Parameter calculation to be added soon
Planned Improv	vements at time	allows
During March-A _l	oril 2021	
	Add risk parame	eters and updated BMJ table with the risk parameters

	Add discussion	of more contagiou	s variants					
Other possible	improvements							
	<u> </u>	endent solution for	one case, with a	graph				
	Explain quanta	in this tool vs Mont	eCarlo tools					
	Add an initial co	ndition of quanta,	to reflect a previo	us run with a prev	ious use of the s	pace (that just de	cays exponentially)	
	Add drop down	menus for quanta,	breathing rates to	master sheet				
	Adapting all the	current cases into	the updated gene	eral master sheet				
	Adding an estim	nate of the close co	ntact situation					
	Adding the Gua	ngzhou restaurant	super-spreading	event as an exam	iple			
	Adding a hospit	al situation (need t	o ask people who	work at hospitals	for details)			

FAQs a	about the estimator: big picture
s ther	e some general explanation of your tool for a general audience?
	Yes, see this CIRES Press Release: https://cires.colorado.edu/news/covid-19-airborne-transmission-tool-available
	National Geographic has created a simplified version of this tool, which is easier to use to compare different cases: https://www.nationalgeographic.com/science/2020/08/how-to-measure-risk-airborne-coronavirus-your-office-classroom-bus-ride-cvd/
	Also this presentation: https://twitter.com/jljcolorado/status/1283868965849059328
	Robin Lloyd has published a short summary in Scientific American: https://www.scientificamerican.com/article/coronavirus-news-roundup-for-june-20-june-26/
	It has been covered in other news articles, too many to keep track of them here
Are the	ere examples where you or others have applied the estimator to investigate some cases in more detail?
	There has been limited time to document cases. I list below some useful cases that people have reported using the tool. If you run the tool for a given case, do share your results in some form, e.g. blog post, Twitter, or just a Google Doc that's publicly viewable, and send me the link for posting here.
	This blog post from Prof. Andrew Maynard applies the model to a one semester course at his University and explores the trends in the results
	Ryan Davis (a PhD graduate of our program at CU-Boulder) summarized his results for college classroom situations in Twitter
low ca	an I let other people know about the estimator?
	You can send them the link to this online document: https://tinyurl.com/covid-estimator
	Some people have trouble with the tinyurl links, in that case you can share the direct (if more cumbersome) link: https://docs.googlecom/spreadsheets/d/16K1OQkLD4BjgBdO8ePj6ytf-RpPMIJ6aXFg3PrIQBbQ/edit#gid=519189277
	If more than 100 people are trying to view the document, Google sends extra people automatically to the View-only version, which does not allow use of the File menu. In that case the links on the green area on the top right of the Readme page allow making a copy into Google Drive, or downloading into Excel
	If you use Twitter, you can also re-tweet the original release Tweet: https://twitter.com/jljcolorado/status/1275466006312304640

The downloaded spreadsheet can give some nominal errors when opening in Excel, but if you say "yes" it seems to run fine, so we don't think those affect anything. Nobody has told me that it doesn't work for them, once they download.

I don't know how to change that, since it is a native GSheet and Google is converting it into Excel. Sorry for the confusion this may cause. (If any of you knows how to fix this detail, let me know)

¿Puede traducir esta herramienta al castellano / español? (Can you translate this tool into Spanish?)

En principio podría porque soy de Zaragoza (España), aunque llevo 27 años en Estados Unidos. Pero también lo pueden hacer los usuarios poniendo el texto en el traductor de Google. De momento estamos cambiando cosas varias veces al dia, añadiendo explicaciones, corrigiendo algún error, añadiendo nuevos aspectos del cálculo, añadiendo casos etc. Así que recomendamos siempre bajar la ultima version antes de empezar a usar la herramienta. Y mantener dos versiones me llevaria mas tiempo de el que tengo ahora. Si las cosas se calman y la herramienta no esta cambiando (y todavía es útil), entonces haria el esfuerzo.

How do I cite this estimator?

Something like "J.L. Jimenez, COVID-19 Aerosol Transmission Estimator, https://tinyurl.com/covid-estimator, accessed 1-Jul-2020" for scientific documents, or just the link for online documents should be sufficient. I do intend to keep the document online indefinitely. For scientific documents you should also cite the papers in which it is based (Miller et al., Buonnano et al. 1 & 2, Riley et al.)

I would like to use this estimator, but this is very difficult to understand. What can I do?

The experience so far from the feedback we are getting is that scientists (or people with quantitative backgrounds in other professions) are able to quickly understand the estimator and put it to use, sometimes asking us a question or two. People without a science or quantitative background have more trouble. I can't support users with limited background individually, unfortunately. If you are in the latter situation, I would reach out to someone you know who may be more familiar with science, physics, math, computer programming etc. and see if they can help.

FAQs about the estimator: parameters and model formulation

What is the structure of the model?

It is a box model to track a pollutant (in this case the virus) in an indoor space, see for example Chapter 3 of Daniel Jacob's book http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap3.html#pgfld=112721, plus the Wells-Riley model of infection https://academic.oup.com/aje/article-abstract/107/5/421/58522

I don't use feet or square feet, can I just work on metric units?

Yes, the sheets take the dimensions in feet, but they immediately convert them to meters, and use the meters in all subsequent calculations. So you can type your values in m or m2 directly into those cells (and ignore the ones in feet), and the spreadsheet will work the same.

One exception is the surface area per student in the "Classroom" sheet. You will need to update that calculation to work with students / m2

How do I model a situation in which only some people are wearing masks?

You can run two cases, one with masks and one without, and that will bound the probability of infection.

To get the average effect, you can multiply the mask efficiency by the fraction of the people wearing masks, for both emission and inhalation. So for example if 50% of the people are wearing surgical / clothy masks, you would enter 25% (0.5*50%) for emission efficiency, and 15% (0.5*30%) for inhalation efficiency

To estimate a specific case (e.g. infected person not wearing a mask, susceptible person is wearing a mask), just adjust the efficiencies of emission and inhalation accordingly in the sheet.

If I use the classroom-campus sheets, and I double the class duration and half the number of classes, the number of cases increases. Is this a bug?

If you shorten the semester to 6.5 weeks, double number of class periods, to get the same h/ semester for student and instructor, the number of cases stays the same

If you double the class period to 100 min, but reduce the number of class periods (for students) from 2 to 1 in the default case, the number of cases increases from 593 to 704 student cases. This is slightly non-linear because the longer class period allows more accumulation of infectious quanta in the room, so the second 50 min. have a higher probability of infection than the first 50 min.

How good is the assumption that the air is well mixed within the room?

How good this assumption is depends on the specific situation. If a 6ft / 2 m distance is kept, it should apply approximately in many situations. And on average, inhomogeneities will partially cancel out. For example, assume an extreme example of a room where 1/2 of the volume has 0 quanta / m3 and the other 1/2 has twice the average quanta concentration. As long as the number of inhaled quanta is low (< 0.3 or so), the infection risk is linear with the quanta (1- exp(-qi) ~ qi, per https://en.wikipedia.org/wiki/Taylor_series#Exponential_function), and the average number of infections will be the same as it would be in a well-mixed room. At higher concentrations the well-mixed situation is riskier, due to the saturation of the infection probability due to the exponential function.

What is a quanta?

A quanta is defined as an infectious dose of the aerosol pathogen, whose inhalation leads to infection. Quanta are discrete and present at very low concentration. For example a given room may have 3 quanta (analogous to pathogen-loader aerosol particle(s)) floating in it, and a susceptible person may or may not be "lucky" enough to inhale at least one of the quanta, given a certain breathing time in the room.

The exponential form of the probability equation reflects the probability of a susceptible person in the room inhaling at least one quanta, based on a Poisson statistical distribution of the number of discrete quanta inhaled by a susceptible person present in the space, given a certain aerosol quanta concentration in the room and an inhalation time.

As a result, if the average inhaled amount is one quanta, then 63% of the susceptibles will be infected. It is part of the Wells-Riley model of aerosol infection, see https://academic.oup.com/aje/article-abstract/107/5/421/58522

Quanta are specific for each disease. They lump together in an empirical parameter the rate of emission of viruses as part of respiratory particles in exhaled breath, the infectivity of the viruses upon emission, the particle size distribution of the emissions, the deposition efficiency and deposition location in the respiratory track of the susceptible person of those particles, and the probability that deposition leads to infection. Trying to model each of those parameters explicitly is daunting. As each parameter by itself is quite uncertain, especially for a new disease like COVID-19, the resulting uncertainty of the fully detailed model would be enormous. We can instead use the concept of quanta, and calibrate the emission rate to known outbreaks of the disease. In this way we can do realistic modeling (as in this tool) even with incomplete information about all those factors.

What quanta should I use for singing or shouting?

We believe the value of 970 q h-1 is realistic for the Skagit Choir case. It does seem that this was probably a "super-emitter" case, i. e. a person who was emitting an unusually high amount of virus. It is suspected that such "super-emitters" may be partially responsible for super-spreading events (see https://www.sciencemag.org/news/2020/05/why-do-some-covid-19-patients-infect-many-others-whereas-most-don-t-spread-virus-all), in addition to environmental conditions that help the virus transmit at the room-level. Values for loudly speaking / singing recommended by Buonnano range 60-400 q h-1 depending on the level of activity of the person (see "Readme" sheet). So it depends what you are trying to simulate. If you want to see the probability for a worst-case scenario, then use 970 q h-1. For a more typical case, we would recommend 150 q h-1. In any case it is the RELATIVE risk when you change something (ventilation, masking...) that is most meaningful, and that will be much more similar for the two emission rates.

What about resuspension of virus-laden particles that have settled on the floor?

This is a concern. I.e. large drops or aerosol particles settle to the floor (this is accounted for in the estimator for the aerosols). The people walking in the room, or while vacuum cleaning, put some of those particles back into the air. Ideally we would add that to the model, but it is quite uncertain and complex to do so. (If you have ideas about how to implement a quick estimate, let me know)

The air within a room is not always well mixed. Doesn't that lead to over- or under-estimating infection risk?

One limitation, really of the box model of mixing and dilution (not of the Wells-Riley infection model) is that the air is assumed to be well mixed in the space. On average, this effect will cancel out: e.g. (to make a simple extreme example) if in a room 1/2 of the air contains all the virus, due to poor mixing, and the other 1/2 contains no virus. Then the people on the first half will have twice the chance of infection, while the people on the other half will have zero chance of infection. So that the average probability of infection will be the same. This holds at low quanta concentrations, relevant for most situations, because the infection model is linear to a very good approximation there.

At very high concentrations, then the model is non-linear and such an average will underestimate the risk (but given all the uncertainties in the model, this is a small problem).

If you have enough information for a specific situation, you can model one room as several sub-rooms in the estimator. Just one copy of the master sheet per sub-room, each with its particular parameters, and then add the results for the whole room. This will be quite complex in most situations, and in particular airflow patterns in rooms are extremely dependent on the specific room, ventilation pattern, location of occupants etc. but experts and researchers might derive useful information this way.

The estimator only considers one space, but what if a person moves through a building, spending time in multiple spaces?

Run the estimator for each space, sum the quanta inhaled, and then apply the Wells-Riley infection probability equation (1-exp(-total quanta inhaled))

Are there limitations to the Wells-Riley model formulation?

The W-R model can no doubt be made more sophisticated with attention from the scientific community. A possible example is listed below.

High exertion activities (HEA) may lead to more efficient infection. Two effects are already accounted for in the model: (a) HEA lead to more respiratory particle exhalation by the infective (which translate to higher quanta emission rates), and (b) also to more virus inhalation by the susceptible due to a higher breathing rate (both effects are already in the model). But a possible third effect is not captured by the model: (c) that the virus in the air is more infective under certain high flow breathing situations. HEA lead to increased breathing velocity and depth of inhalation. Velocity would affect the natural filtration via nose hairs or the upper respiratory tract. Depth of inhalation would determine the amount of quanta inhaled into the recesses of the lungs, versus a shallow breath. A final mechanism is that mouth breathing vs nose breathing may have different risk profiles. This could potentially apply to choirs, and also to singing in a karaoke, or aerobic exercise in a gym. (HT Howard Chong)

Conversely, the model does not predict how the severity of the infection may vary with the dose. For COVID-19, there is emerging evidence that the severity of the infection is lower at low doses than at high doses, which is a benefit of wearing masks. See this article which summarizes the science as of mid-July 2020: https://www.latimes.com/california/story/2020-07-21/masks-help-avoid-major-illness-coronavirus

The W-R model has been used by a small community for years, while the majority of the infectious diseases field mostly ignored aerosol transmission of diseases. With the intense current focus of the scientific community on this topic, it is very likely that multiple improvements and tweaks to the W-R model will be proposed. However, W-R is the best we have now, and it should capture the first-order effects, given all the uncertainties.

Is there a threshold of inhaled quanta below which there is no infection?

The Wells-Riley model does not have a threshold in its usual formulation. Simply the probability of infection goes down as the number of guanta inhaled goes down. I am not aware of any evidence of a threshold for COVID-19, so I would not assume that one exists. But if the quanta inhaled is very low, the probability of infection will be very low too. What happens if the infected person leaves after X min, but the susceptible person stays? Or if a 2nd infected person comes in after Y This type of model can easily account for those situations. In this case I am choosing to keep things simple, so that they are more understandable. For those with calculus abilities, just follow the derivation of the solution in Miller et al. and you can use equation 3 in there, and stitch together different periods. You can modify the solution for the case of interest there, and then just modify the formula in the spreadsheet. The tool released by Buonnano et al. does include a slightly more complex scenario, so you could try it with that tool. Since the parameters are uncertain, shouldn't the inputs and outputs be represented as probability distributions? Yes. In this model I am choosing to keep things simple so that it is easier to understand. But one could implement a MonteCarlo simulation using the probability distributions of the parameters and the model here. The tool released by Buonnano et al. (based on https://doi.org/10.1016/j.envint.2020.106112) is based on a model which includes this methodology. The first version will not include the MonteCarlo option, but a subsequent version may do so. The tool released by Prasad Kasibhatla does allow performing MonteCarlo simulations, see link below. What level of infection risk is acceptable? First, keep in mind that the uncertainties are high, given that we have limited information about the quanta emissions in particular, and you shouldn't overinterpret the results. If you get 1% for a case, it may really be 0.3% or 4%, but it won't be 0.001% or 100%. Second, which infection risk is tolerable is a guestion for the people involved, not for me. I.e. we all do activities that involve some risk, and we tolerate it because the risk is low enough compared to the benefit. For example we go places in cars and planes, even though there is a small chance of death or injury by doing those things, because we value the travel more. For example, given the odds of dying in car and airplane travel, we are accepting a risk of 0.00006% and 0.00001% each time we travel respectively (estimated from odds of death from https://www.nsc.org/work-safety/tools-resources/injury-facts/chart, assuming traveling by car 1/2 of the days, by plane 8 times a year, during a 75 yr lifespan). For things like cancer risk, the US EPA uses a chance of 1 in a million (0.0001%) as the limit. Some researchers have suggested that people may be willing tolerate a chance of 1 in 1000 (0.1%) of COVID-19 infection across all their activities (not just one activity which you may simulate with the estimator such as going to class). But you should be the one to determine this for yourself and your situation. Why haven't you included eye protection? We do know that COVID-19 can be transmitted through the eyes. So if virus-laden aerosol particles land on the eyes, infection can result. For this reason we recommend wearing eye protection, such as glasses, goggles, etc. in indoor or crowded outdoor situations.

However, there is no information we know of about the relative importance of transmission through inhalation or through the eyes, so it is not possible to quantitatively include the impact of eye protection. The estimator assumes that the inhalation route is dominant.

Can I use the estimator to model the time series of infections for the students in my class over an academic year?

You would need a more complex model than this one. This is for two reasons: (a) this model only accounts for aerosol transmission, but students may transmit the disease (during school time) through the contact or droplet routes as well, e.g. if distancing is not well followed. (b) most importantly, the students are part of a larger society, they may get COVID-19 outside school, e.g. from a sibling that goes to a different school, their parents, their friends when they interact outside of school or at a party, when they travel out of town etc. So one really needs an epidemiological time series model that approximately accounts for all the interactions in society. This aerosol model addresses a smaller piece, and can perhaps be used to fine-tune some of the parameters that go into epidemiological models.

Can I use the estimator to model the transmission of other diseases that have some fraction of aerosol transmission?

Yes, the mathematical model is the same. Mainly two parameters change: the quanta emission rate, and the decay rate of the infectious agent. Some quanta emission rates from the literature are below *in italics* (from https://www.medrxiv.org/content/10.101/2020.06.15.20132027v2 and references therein). For tuberculosis, the decay rate is ~0. For the other diseases, I would assume the same as for COVID-19 as a first approximation, or search the literature for more accurate rates.

Influenza: 15-128 q h-1

Measles: 5580 g h-1

Tuberculosis: 1.25 - 30,480 q h-1 (Decay rate ~ 0)

SARS: 28 q h-1 (The decay rate for SARS is very similar than for COVID-19, see: https://www.nejm.org/doi/full/10.

1056/nejmc2004973)

In reality, much like the COVID-19 quanta emission rate can be quite variable, the same is the case for other diseases. The table below for tuberculosis summarizes several studies, and illustrates the range of variability. Ref: https://www.ingentaconnect.com/content/juatld/iitld/2003/00000007/00000011/art00002

Table Quanta production rate data for TB and measles outbreaks, as reported by various

Disease	Description	Reported quanta per hour	Reported by	Original source
ТВ	Average TB patient	1.25	Nardell et al. ¹³	Riley et al.15
TB	Outbreak in office building	12.7	Nardell et al. 13	Nardell et al. ¹³
TB	Laryngeal case of TB	60	Nardell et al. 13	Riley et al. 15
TB	Bronchoscopy-related outbreak	250	Nardell et al. ¹³	Catanzaro ¹⁴
TB	Bronchoscopy-related outbreak	360	Gammaitoni & Nucci ¹¹	Catanzaro ¹⁴
TB	Outbreak related to jet irrigation of abscess	2 280	Gammaitoni & Nucci ¹¹	Hutton et al. 16
TB	Autopsy outbreak	5 400	Gammaitoni & Nucci ¹¹	Kantor et al. 17
TB	Intubation-related outbreak	30 840	Gammaitoni & Nucci ¹¹	Haley et al. 18
Measles	Outbreak in a school (index case)	5 580	Riley et al. ⁹	Riley et al. ⁹

An additional detail is that the particle size distribution containing the infective agents may vary between the different diseases, which in turn will affect the deposition rate (per e.g. https://www.sciencedirect.com/science/article/abs/pii/S1352231002001577). The impact of this uncertainty can be evaluated by varying the deposition rate, see Readme Sheet.

FAQs about using CO2 as an indicator of risk

This method described in Milton et al. (2003). Since both virus-containing respiratory particles and CO2 are exhaled, high CO2 concerns the CO2 emission rate is a function of the person's age, gender, and body mass, as well as the level of activity. Find the emission rate relevant to your case in the tables in the Readme page.

A tool developed by Dr. Andy Persily of NIST to model CO2 vs. time in indoor spaces can be found here: https://pages.nist.gov/CONTAM-apps/webapps/CO2Tool/#/ It allows comparison with the results of our tool, and exploring the effect of some variables in a graphical way.

There are several limitations of this method:

- (a) the emission of respiratory particles increases mores strongly with talking and singing, while CO2 changes less for those activities
- (b) masks can filter exhaled respiratory particles but not CO2
- (c) the virus loses infectivity while in aerosols, but CO2 is inert and is only lost to ventilation
- (d) virus-containing particles are deposited to the ground / walls / furniture, and the virus decays in them, while those effect do not happen for CO2
- (e) virus-containing particles are only emitted by the infected person, while everyone emits CO2
- (f) Cooking or heating with natural gas, propane, wood etc. can emit CO2 which is unrelated to breathing
- (g) Outdoor CO2 background can decrease due to crop uptake during the growing season in agricultural areas, or increase due to pollution. These changes are generally below +/-50 ppm, and thus are small compared to the range of interest for indoor air quality

Some colleagues have recommended to keep indoor CO2 below 600-800 pm to reduce the chance of COVID transmission (per this paper https://onlinelibrary.wiley.com/doi/pdf/10.1111/ina.12639). That sounds like a reasonably low level, although I have not seen a quantitative justification (pls send it my way if you find it). For a more robust result, it is recommended to build a curve of infection risk vs CO2 concentration for your situation of interest. A CO2 sensor can be used to monitor an indoor space.

Indoor CO2 sensors with a display are available in the ~\$100 range. E.g. https://www.amazon.com/GZAIR-Temperature-Relative-Mountable-0-5000ppm/dp/B08644N7QD I've reached out to colleagues about recommendations, but that type of sensor is what you would need for an indoor space

The global background CO2 concentration increases over time due to fossil fuel burning. The changes are small compared to the changes in indoor levels due to human breath, but for completeness you can look them up here: https://www.esrl.noaa.gov/gmd/ccgg/trends/

FAQs about improvements to this estimator

Can you add other outbreaks such as the Guangzhou restaurant or others?

Yes. The Guangzhou restaurant has already been analyzed with a similar model by <u>Buonnano et al. (2020b)</u> and can be explained by the model. I will add it here as time allows. For many outbreaks the problem is lack of information on ventilation, which is critical for a quantitative analysis.

FAQs about comparison of this estimator to other related models

Are there other models available to try to address this problem?

Yes, there are multiple other models. So far all try to do the same thing, estimate room-level transmission (away from "close contact" situations like talking face-to-face at 1-2 m), using a box model for the room, and the Wells-Riley infection model.

I am listing here all the models that I know of that are public. There are many more private ones that people are developing, so far all different versions of the same ideas, often customized for a specific situation of interest. If you know of a model that's not listed here, let me know.

Yes. The Guangzhou restaurant has already been analyzed with a similar model by <u>Buonnano et al. (2020b)</u> and can be explained by the model. I will add it here as time allows. For many outbreaks the problem is lack of information on ventilation, which is critical for a quantitative analysis.

Prof. Prasad Kasibhatla of Duke Univ. has adapted the classroom / campus sheets here to take into account the ranges of uncertainty of the parameters through a MonteCarlo simulation at https://tinyurl.com/yxfd23kr (also a Google Sheet that can be downloaded and run in Excel). His version will be useful for advanced researchers who are familiar with the MonteCarlo technique. If you don't know what that is, stay with my tool. A web version of this tool, specific for classrooms, is posted at http://covid-exposure-modeler-data-devils.cloud.duke.edu/

Alfred Trukenmueller in Germany <alfred.trukenmueller@gmx.de> has developed a similar spreadsheet (in German) based on the Buonnano et al. model. He has made it available at https://www.magentacloud.de/share/e7esxr9ywc

M. Evans has submitted paper with a similar model: https://www.medrxiv.org/content/10.1101/2020.05.21.20108894v3 No software is available to our knowledge

Prof. Charles Stainer at the Univ. of Iowa has developed a similar tool (developing part of it independently, and adapting the infection model in our tool), into a custom tool for that University. The results are consistent with ours. It is available here: https://www.stanierlab.org/post/covid-19-aerosol-transmission-calculator-customized-to-iowa A news story on their tool is here: https://dailyiowan.com/2020/07/16/university-of-iowa-researchers-use-aerosol-transmission-calculator-assess-classroom-safety/

NIST has also released the FaTIMA model, see next FAQ

So far the results of all the models are very similar in the comparisons we have done. Nathan Skinner (Park Street Church, Boston) has compared this model with the Buonnano and Evens models for their case, and found consistent results. If you find any discrepancies let us know. Perfect agreement is not expected due to small differences in the model parameters or structures used.

Is your model similar to the FaTIMA model from NIST?

FaTIMA is at https://www.nist.gov/services-resources/software/fatima

Yes, both tools are trying to address the same problem and using similar physics and experimental results, but do it slightly differently. Both should be useful to those interested

FaTIMA currently has more detail on the building and control measures and one can enter those parameters more directly, while in our estimator those are entered as first order rates already.

FaTIMA does not include an infection model, however, while our estimator does. So with FATIMA you can estimate relative exposures, but not infection rates.

FaTIMA also does not presently include the effect of masks, or of the breathing rate (which varies with activity level)

Our estimator has all the equations exposed in the spreadsheet formulas, so it is easier to figure out what's going on. Neither model is that complicated mathematically, but having the code be "open source" may get more people to understand what we are doing, and then potentially incorporate it into other tools etc. Documentation for FaTIMA is at https://doi.org/10.6028/NIST.TN.2095

Due to the format it may be easier for our estimator to expose different cases, classroom, bus, protest, choir... and have them all there as different sheets. This is only about communication, not the model per se.

The most important output is to estimate the relative risk of different actions, and that can be done with both tools (except for masks)

This specific FAQ was written in 25-Jun-2020. Both tools may evolve in the future.

Can I develop my own model or tool, using the information here?

This model is distributed under the GNU Public License https://www.gnu.org/licenses/gpl-3.0.en.html

You are free to adapt this model in any way that would be useful (as long as you don't charge others for the model itself). That was an important reason to make the tool available in this "open source" way, so that we could demystify aerosol transmission modeling, and so that smart people everywhere could do creative things building on this knowledge. But please make sure that you understand the model well. Importantly, I recommend that you compare ("benchmark") your results of a new tool against those of this tool, but multiple sets of parameters, to gain confidence that the new tool is free of bugs.

FAQs about mitigation techniques for COVID-19 aerosol transmission

What do you recommend in terms of masks, face shields etc?

Wear the best face mask you can get. N95 / FFP2 are best if you pay attention to fitting it well around your face and closing gaps, but in many countries there is still limited supply, so we shouldn't deplete their availability for health care and other essential workers. But if you already have one, do wear it by all means. Otherwise surgical masks are the next best, followed by cloth masks. Cloth masks can be quite good if fitted well. See this video to understand the fit: https://twitter.

com/jljcolorado/status/1280935408398766080 (and don't stand behind someone with a poorly fitted mask). Face shields provide very little protection, see this thread and its references: https://twitter.com/jljcolorado/status/1278691722449481729

In addition, since we do know that COVID-19 can be transmitted through the eyes, wear some eye protection. Ideally some safety glasses that are pretty closed around your eyes, limiting the airflow and thus the potential for aerosols to deposit there (see e.g. https://www.mcmaster.com/safety-glasses/). Prescription safety glasses can be obtained from e.g. https://www.rx-safety.com/shop/master-safety-glasses/prescription-safety-glasses/prescription-safety-glasses-rx-jy7/# (I bought one from them and it is ok). Otherwise regular glasses or sunglasses will help some, but not as much.

This precautions are most important indoors away from your home, or outdoors in crowded situations. In less crowded situations outdoors I wear a surgical mask and my regular glasses.

I see that ventilation can be used to reduce transmission. What can I do for my specific case?

See this article for ideas: https://www.sciencedirect.com/science/article/pii/S0160412020317876

Note that "ventilation" in this context means replacing indoor air with outdoor air. Or potentially filtering indoor air, or subjecting it to germicidal UV light. Moving the air with fans or similar is not "ventilation" but "mixing". It probably hurts by spreading virus-laden particles around faster. It also has a compensating positive effect as the turbulence leads to faster particle deposition to walls and ground.

Is a portable HEPA filter unit useful?

A portable HEPA filter system is very useful, as it can remove virus particles from the air. These can be used at home or office situations. They do need to be of a size appropriate to the size of the room. If it is a big room, you may need a couple. Units that have been tested and certified by the Assoc of Home Appliance Manufacturers are listed at https://ahamverifide.org Prof. Shelly Miller of CU-Boulder is an expert on this area and has written a blog post about this: https://shellym80304.com/2020/06/15/a-hopefully-helpful-short-report-on-air-cleaners/ You can download her report from that page. The table below is from that report. But there are many more good filters that are not listed on that table. Follow the instructions in Prof. Miller's blog.

This one was purchased by a very knowledgeable colleague for her home: https://www.sylvane.com/coway-airmega-300-air-purifier.
httml
You will see for this one that the clean air delivery rate (CADR) is 260, and the units are cubic feet per minute. So divide by the volume of your room, and multiply by 60 min/hour to get the air exchange rate that you are adding to your room by running the air cleaner.

See the calculation in the Readme page.

Table 1. Recommended air filters available in the USA, organized by the type of filter

Brand	Model	Tech	Max room size (ft²)	Smoke CADR	Dust CADR	Pollen CADR	AHAM	CARB	Cost \$
Oransi	EJ120	Activated Carbon & HEPA filter	500	323	332	360	√		899.00
Airgle	AG500	Activated Carbon & HEPA filter	369	238	239	253	✓	√	1500.0 0
Winix	D360	Activated Carbon & HEPA filter	360	233	230	235	✓		249.99
Honeywell	HPA600B	HEPA filter	325	210	184	205	✓	✓	769.99
Honeywell	HPA200	Activated Carbon & HEPA filter	310	200	190	180	✓	√	217.79
Samsung	Cube Air Purifier	Washable pre- filter, Activated Carbon & HEPA filter	310	200	205	185		✓	699.00
Braun	SensorAir Diagnostic Filtration System	Washable pre- filter and filter, Activated Carbon filter	300	200	194	190	✓	✓	446.90
Honeywell	HPA100	Activated Carbon & HEPA filter	155	100	106	100	√	√	153.99
Sharp	FPF30UH	HEPA filter	143	101	92	109	✓	✓	119.99
Whirlpool	WPT60	Activated Carbon & HEPA filter	104	67	86	86	✓	√	115.99

Is reducing the duration of indoor interactions useful?

Yes, this is very useful. In principle the number of infectious particles inhaled will increases proportionally to the duration of the event. But it is worse than that: the risk of infection increases more than linearly with the duration of the event. This is because (assuming the air is clean at the start) the infectious particles accumulate in the room, and e.g. the second 30 min. have a higher concentration than the first 30 min. This can be explored with the estimator, change the duration of the event and look at the output vs duration (e.g. in a graph). So we recommend to keep all indoor activities as short as feasible for that activity.

Is germicidal UV a good idea?

Generally yes, as long as the UV is away from people to avoid serious eye damage, and as long as ozone is not produced.

See this webinar from Prof. Shelly Miller about it: https://shellym80304.files.wordpress.com/2020/05/isiaq-guv-2-compiled.pdf

New systems using 222 nm light are very promising, as (unlike older systems based on 254 nm light) it seems to be safe for people. See: https://www.nature.com/articles/s41598-020-67211-2

That said, it is being marketed very aggressively by the companies supplying it, and it is not always the most cost-effective solution (purchase, installation, and maintenance are all significant). Improved ventilation and mask wearing should come first. See this paper for an overview of the building-level strategies: https://www.sciencedirect.com/science/article/pii/S0160412020317876

A company is promoting an air cleaning system using ions, plasmas, or OH radicals. Do these systems work?

Be very careful with that type of system. They are being promoted very aggressively, but often there is very little detail given about how the system really works. In some cases claims are made that are obviously wrong or suspicious. See this NYT article as an example: https://www.nytimes.com/2020/06/23/us/politics/trump-arizona-church-covid.htm Oxidation systems will turn volatile organic compounds (VOCs) in the air into more oxidized species, NOT into CO2 and water, and the oxidized species and aerosols formed may actually be worse for health than the original VOCs.

My group has done extensive research on similar systems, from the point of view of atmospheric chemistry applications, see https://doi.org/10.1039/C9CS00766K. I have not seen a lot of peer-reviewed analyses of the details of these "advanced" cleaning systems. There is one in this paper: https://iopscience.iop.org/article/10.1088/1361-6463/ab1466

?Tiene recomendaciones en espanol / castellano?

Si, leerlas aqui: https://twitter.com/jljcolorado/status/1280516427158560781

FAQs about COVID-19 aerosol transmission

How can I learn more about aerosol transmission of COVID-19?

I posted a series of 3 threads in Twitter in mid July-2020 with my views at the time. There are many arguments supporting aerosol transmission, and no good arguments against it that I have found (but there are a lot of misunderstandings and errors about aerosols, especially in the medical community). All 3 are linked here: https://twitter.com/ilicolorado/status/1283972530869420035

There are many resources out there. We would recommend starting with the Miller et al. and Buonnano et al. papers (and their references) and Linsey Marr's Twitter feed: https://twitter.com/linseymarr See a profile of Prof. Marr at: https://www.nytimes.com/2020/06/12/well/live/Coronavirus-aerosols-linsey-marr.html

Read her tweets from the start of the pandemic starting from now and in reverse chronological order, and you will find links to many many resources, and discussion of many of the important topics

Some in the medical community deny that COVID-19 can be transmitted through aerosols. What do you think of this?

Aerosol transmission has been controversial, but now Germany (https://www.rki.
de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html), the UK (https://www.gov.uk/government/publications/review-of-two-metre-social-distancing-guidance), the European CDC (https://www.gov.uk/government/publications/review-of-two-metre-social-distancing-guidance), the European CDC (https://www.gov.uk/government/publications/review-of-two-metre-social-distancing-guidance), and the US CDC (describes it without using the name, https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html) have accepted aerosol transmission of COVID-19. https://www.ecdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html) have accepted aerosol transmission of COVID-19. https://www.ecdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html) have accepted aerosol transmission of COVID-19. https://www.ecdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html) have accepted aerosol transmission.

Also REHVA (the European Federation of Heating and Ventilation and Air Conditioning Associations) and ASHRAE (the American Society of Heating, Refrigeration, and Air Conditioning Engineers) have already acknowledged aerosol transmission and recommended measures for their control: https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_ver2_20200403_1.pdf https://ashrae.org/file.library/about/position_documents/pd_infectiousaerosols_2020.pdf

There are 3 ways of transmission: contact / fomite, when a person shakes hands or touches an object that an infected person has touched (and the infected person had virus in their hands from touching their nose, a cough etc.). However this is thought to be unlikely (see this from the US CDC https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html), in particular because enveloped viruses like SARS-CoV-2 may have trouble surviving on hands though the studies are contradictory (https://www.medrxiv.org/content/10.1101/2020.07.01.20144253v1). The second way is droplet transmission, when large ballistic droplets in a cough or sneeze land on the eyes, nostrils, or mouth of another person. And the third is aerosol transmission, when particles smaller than ~50 microns (not 5 um as it is often repeated in error) are inhaled by a health person. The pandemic is likely being driven by asymptomatic or pre-symptomatic spread, and those people don't cough, leaving aerosol transmission as the main likely route. It is also likely being driven by super-spreading events, and those (like the Skagit choir) are very very hard to explain without aerosol transmission. See also the next FAQ.

Unfortunately part of the medical community is literally stuck in science from 1910, and is only changing very slowly and with a lot of resistance. Wells in 1934 (https://academic.oup.com/aje/article-abstract/20/3/611/280025) already got it right, but he and others faced extreme resistance to the evidence. For historical / sociological reasons it has been very difficult to change this stance, despite accumulating evidence, including for COVID-19. For example, it is nearly impossible to explain the Skagit Choir case without aerosol transmission. I am part of a group of experts trying to change this, and I am also collaborating with Profs. Linsey Marr and Lydia Bourouiba and two historians on a paper on how things got to be this way historically. But we can't wait for the medical community to change its understanding before we get the pandemic under control.

A problem with the WHO committee on disease transmission is that they rely most strongly on evidence from hospitals. That is where a lot of their experts work, and that is where they know the circumstances well. Cases from the community are much more difficult to analyze. They say that if transmission in hospitals is limited even when using surgical masks, therefore it must not go through the air. BUT hospitals have high ventilation, e.g. change the ventilation rate to 12 ACH (typical of hospital) in one of the cases in this model, and transmission goes down dramatically. And everyone is wearing at least surgical masks. And people appear to be more infectious around the onset of disease (when they are in the community) and less when they are very sick in a hospital. And the patients are not talking loudly or singing, they are mostly just breathing, which greatly reduces the quanta emission rate. Therefore it makes a lot of sense that aerosol transmission is limited in hospitals, but it doesn't disprove that it is major in the community. Together with "an anti-aerosol" bias of some critical experts, this partly explains why they are being so slow to accept the risk.

WHO does accept that intubation in hospitals creates an aerosol risk, but aerosols are not important otherwise. What do you think?

Intubation and similar procedures create huge amounts of aerosols, so transmission can happen even over short times and with high ventilation. It is also easy to detect. As described above in these FAQs, tuberculosis can release 30,000 infectious doses (quanta) per hr during intubation. But 12 doses / hr were enough to cause an outbreak in an office! We think the same is going on with COVID-19: WHO recognizes the obvious intubation source, but ignores that it happens at a much lower level all the time, and with longer times and low ventilation, it does matter.

COVID-19 does not have a high reproductive number (R0). Thus can't we rule out that it is transmitted via aerosols?

No. This is an argument often made by some in the medical community to argue that COVID-19 is not transmitted by aerosols at all. However the argument is flawed and based on a logic error. The argument is based on the assumption that a disease is either "airborne," and then it will display the high transmission characteristics of measles or chickenpox, or otherwise it is not transmitted by aerosols at all. No intermediate cases are possible. This assumption makes no sense, and there is no basis for it.

The reproductive number R0 is not indicative of aerosol transmission. Anthrax or hantavirus (in N. America) are transmitted exclusively through aerosols, but their R0 = 0 for humans (not for other species). I.e. people get it from aerosols produced in other ways, not expired by humans. But after infection, the human respiratory system does not produce any infective aerosols, and person-to-person transmission does not occur. Very high values of R0 (e.g. measles, chickenpox, with well accepted values of 10-15, pers. comm. J. Tang) are indicative of aerosol transmission. Lower values do not rule out less-efficient aerosol transmission. Clearly if R0 can be 15 measles or it can be 0 (hantavirus) for diseases acquired through aerosols, it can be something in between (COVID-19).

Different diseases have different fractions and ease of transmission via the aerosol route. For example tuberculosis is only transmitted via aerosols. COVID-19 is transmitted in several ways, including through aerosols. And it is a lot less transmissible than measles or chickenpox through aerosols, but that does not mean that it is not transmissible. We call it "opportunistic airborne" or "aerosol", meaning that it will transmit well through aerosols only under certain conditions: indoors, crowding, low ventilation, long duration (which can be quantified by the estimator), and likely, the presence of a "super-spreader" that emits a high amount of virus particles into the air. There is a lot of evidence to support this, see for example https://www.medrxiv.org/content/10.1101/2020.06.15.20132027v1

No. This is an argument often made by some in the medical community to argue that COVID-19 is not transmitted by aerosols at all. However the argument is flawed and based on a logic error. The argument is based on the assumption that a disease is either "airborne," and then it will display the high transmission characteristics of measles or chickenpox, or otherwise it is not transmitted by aerosols at all. No intermediate cases are possible. This assumption makes no sense, and there is no basis for it.

This can actually be explored with the estimator. To simulate measles, enter quanta emission rates in the range 5500 q h-1, and you will see that the infection rates are much greater than for typical COVID-19 situations.

Tuberculosis is only transmitted through aerosols, but its R0 is difficult to quantify due to latency and other issues. But it can be high depending on the situation.

But we are not absolutely certain, so why should we take precautions against aerosol transmission?

Because of the precautionary principle: https://en.wikipedia.org/wiki/Precautionary_principle. The cost of doing nothing, if aerosol transmission is happening, is much higher than the cost of doing something, if aerosol transmission ended up being unimportant. Many measures to reduce aerosol transmission, such as reducing indoor crowding, masks etc. also limit other ways of transmission. And remember that absence of (complete) evidence is not evidence of (complete) absence.

My question is not here

Shoot me an email at <jose.jimenez@colorado.edu>

					pt this one to your case - Default values are for Skagit Choir outbreak
•			•	odel - See notes	specific to this case (if applicable) at the very bottom
Important inputs as highlighted in					
Other, more specialized inputs are					
Calculations are not highlighted -				ou are doing	
Results are in blue these are the	e numbers of interes	t for most peop	ile		
Environmental Parameters					
	Value		Value in other u	inits	Source / Comments
Length of room	30	ft	9.2	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
Width of room	60	ft =	18.3	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
	1800	sq ft	167	m2	Can overwrite the m2 one. If you want to enter sq ft, enter "=B15*0.305^2" in the m2 cell, where B15 is the cell w/ sq
Height	16	ft =	4.8	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
Volume			810	m3	Volume, calculated. (Can also enter directly, then changing dimensions does not work)
Pressure	0.95	atm			Used only for CO2 calculation
Temperature	20	С			Use web converter if needed for F> C. Used for CO2 calculation, eventually for survival rate of virus
Relative Humidity	50	%			Not yet used, but may eventually be used for survival rate of virus
Background CO2 Outdoors	415	ppm			See readme
Duration of event	30	min	0.5	h	Value for your situation of interest
Number of repetitions of event	1	times			For e.g. multiple class meetings, multiple commutes in public transportation etc.
Ventilation w/ outside air	0.7	h-1			Value in h-1: Readme: Same as "air changes per hour". Value in L/s/per to compare to guidelines (e.g. ASHRAE 62.
Decay rate of the virus	0.62	h-1			See Readme, can estimate for a given T, RH, UV from DHS estimator
Deposition to surfaces	0.3	h-1			Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range
Additional control measures	0	h-1			E.g. filtering of recirc. air, HEPA air cleaner, UV disinfection, etc. See FAQs, Readme for calc for portable HEPA filter
Total first order loss rate	1.62	h-1			Sum of all the first-order rates
Ventilation rate per person	2.6	L/s/person			This is the value of ventilation that really matters for disease transmission. Includes additional control measures
Parameters related to people ar	nd activity in the ro	om			
a. a	a activity in the fo				
Total N people present	61				Value for your situation of interest
Infective people	1	person			Keep this at one unless you really want to study a different cases - see conditional and absolute results
Fraction of population inmune	0%				From seroprevalence reports, will depend on each location and time, see Readme
Susceptible people	60	people			Value for your situation of interest

Density (area / person) in room	30	sq ft / persor	n				
Density (people / area) in room		persons / m2					
		m3 / person					
Density (volume / person) in room	13.3	mo / person					
Breathing rate (susceptibles)	1.56	m3 / h				See Readme sheet - varies a lot with activity level	
CO2 emission rate (1 person)	0.0091	1 L/s (@ 273 K and 1 atm)			From tables in Readme page. This does not affect infection calculation, only use of CO2 as indicator, cou	ıld ignore	
CO2 emission rate (all persons)	0.6271	1 L/s (@ at actual P & T of room)			Previous, multiplied by number of people, and applying ideal gas law to convert to ambient P & T		
Quanta exhalation rate (infected)	970	infectious do	oses (qı	uanta) h-1		See Readme file. Depends strongly on activity, also like person. This is the most uncertain parameter, try	different values.
Exhalation mask efficiency	0%					0 if infective person is not wearing a mask. See Readme sheet	
Fraction of people w/ masks	0%					Value for your situation. It is applied to everybody for both emission & inhalation. Modify formulas manual	ly if needed
Inhalation mask efficiency	0%					See Readme sheet	
Parameters related to the COVID-19	9 disease						
Probability of being infective	0.011%					Very important parameter, specific for each region and time period. For ABSOLUTE results (prob. given prevalence of disease in the population). See Readme sheet	
Hospitalization rate	20%					From news reports. Varies strongly with age and risk factors	
Death rate	4%					From news reports. Varies strongly with age and risk factors (1% typical - Higher for older / at risk people)
CONDITIONAL result for ONE EVEN	NT: we assume t	the number of	of infed	cted people abo	ove, and get the results	s under that assumption	
More appropriate to simulate known of							
appropriate to cirridiate inform	outbreaks (e.g. cl	noir, restaurai	nt etc.),	and an worst-ca	ase scenario for regular	events (if one is unlucky enough to have infective people in attendance of a given event)	
Net emission rate	, -	infectious do			ase scenario for regular	events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present	
Net emission rate	970		oses (q	uanta) h-1	ase scenario for regular	Includes the number of infective people present	
	970 0.23	infectious do	oses (qu	uanta) h-1 uanta) m-3	ase scenario for regular		
Net emission rate Avg Quanta Concentration Quanta inhaled per person	970 0.23 0.18	infectious do infectious do infectious do	oses (qu oses (qu oses (qu	uanta) h-1 uanta) m-3 uanta)	_	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE	970 0.23 0.18 ERSON & ONE E	infectious do infectious do infectious do	oses (qu oses (qu oses (qu	uanta) h-1 uanta) m-3 uanta)	_	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	I. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person)	970 0.23 0.18	infectious do infectious do infectious do	oses (qu oses (qu oses (qu	uanta) h-1 uanta) m-3 uanta)	_	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	I. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person) Prob. of hospitalization (1 person)	970 0.23 0.18 ERSON & ONE E 16.6% 3.3%	infectious do infectious do infectious do	oses (qu oses (qu oses (qu	uanta) h-1 uanta) m-3 uanta)	_	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	I. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person)	970 0.23 0.18 ERSON & ONE E 16.6% 3.3% 0.7%	infectious do infectious do infectious do	oses (quoses (uanta) h-1 uanta) m-3 uanta)	_	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	I. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death	970 0.23 0.18 ERSON & ONE E 16.6% 3.3% 0.7% 11061	infectious do in	oses (quoses (uanta) h-1 uanta) m-3 uanta) number of infec	ted above, typically 1)	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et a	I. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN	970 0.23 0.18 ERSON & ONE E 16.6% 3.3% 0.7% 11061	infectious do in	oses (quoses (uanta) h-1 uanta) m-3 uanta) number of infec	ted above, typically 1)	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. See FAQs for rough estimate of death traveling by car on a given day	l. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN Number of COVID cases arising	970 0.23 0.18 ERSON & ONE E 16.6% 3.3% 0.7% 11061	infectious do in	oses (quoses (uanta) h-1 uanta) m-3 uanta) number of infec	ted above, typically 1)	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people present	I. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN Number of COVID cases arising N of hospitalizations arising	970 0.23 0.18 ERSON & ONE E 16.6% 3.3% 0.7% 11061 DEES & ONE E 9.95 1.99	infectious do in	oses (quoses (uanta) h-1 uanta) m-3 uanta) number of infec	ted above, typically 1)	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people present Number of people	l. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN Number of COVID cases arising	970 0.23 0.18 ERSON & ONE E 16.6% 3.3% 0.7% 11061	infectious do in	oses (quoses (uanta) h-1 uanta) m-3 uanta) number of infec	ted above, typically 1)	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people present	I. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN Number of COVID cases arising N of hospitalizations arising	970 0.23 0.18 ERSON & ONE E 16.6% 3.3% 0.7% 11061 IDEES & ONE E 9.95 1.99 0.40	infectious do in	oses (quoses (uanta) h-1 uanta) m-3 uanta) number of infect umber of infect	ted above, typically 1)	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people present Number of people	I. (2020)
Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PE Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN Number of COVID cases arising N of hospitalizations arising N of deaths arising	970 0.23 0.18 ERSON & ONE E 16.6% 3.3% 0.7% 11061 IDEES & ONE E 9.95 1.99 0.40	infectious do in	pses (qr pses (qr pses (qr risk ming n	uanta) h-1 uanta) m-3 uanta) number of infect umber of infect	ted above, typically 1)	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people present Number of people	

Results for CO2 as an indicator of ris	sk (not needed	for infection es	timation, can igno	ore for simplicity)		
Avg CO2 mixing ratio	•		00 ppm backgroun	• • • • • • • • • • • • • • • • • • • •	Analytical solution of the box model. Equation (4) in Miller et al. (2020). See FAQ page for differences v	v/ quanta calc
Avg CO2 concentration					Conversion from Atmos. Chem. Cheat Sheet, plus ideal gas law	
Exhaled CO2 re-inhaled per person					This parameter is the most analogous to risk. See FAQ page for limitations	
Exhaled CO2 re-inhaled per person					This parameter is the most analogous to risk. See <u>FAQ page</u> for limitations	
Exhaled CO2 re-inhaled per person				t unit, for use next)		
Ratio of prob of infection to Ex CO2	5.334	% chance of infe	ction for 1 person	per %CO2 * h inhaled		
CO2 to inhale 1 hr for 1% infect.	434	ppm			This is another metric of risk	
	•			-	many infected people may be present in our event, and calculate results based on that	
More appropriate for general risk estim	ation, e.g. in a d	college classroon	, indoor gathering	etc., where often infectiv	e people will not be present	
N of infective people present	0.007				It has to be interpreted statistically. This would be the average over e.g. 100 repetitions of the event in a	a given location
Absolute results for A GIVEN PERSO	ON & ONE EVE	NT (using disea	se prevalence in c	community)		
Probability of infection (1 person)	0.11%					
Prob. of hospitalization (1 person)	0.02%					
Prob. of death (1 person)	0.00%					
Ratio to risk of car travel death	72	times larger risk			See <u>FAQs</u> for rough estimate of death traveling by car on a given day	
Absolute results for ALL ATTENDEE	S & ONE EVEN	IT (using diseas	e prevalence in co	ommunity)		
Number of COVID cases arising	0.06				Number of people	
N of hospitalizations arising	0.01				Number of people	
N of deaths arising	0.00				Number of people	
CO2 to inhale 1 hr for 1% infect.	3300	ppm			This is another metric of risk	
ABSOLUTE result for events that are	REPEATED N	IULTIPLE TIMES	(e.g. many class	meetings during a sem	nester, or a daily commute on public transportation) - Ignore for a single event	
			(organization)			
Absolute results for A GIVEN PERSO	ON & MULTIPLI	E EVENTS (usin	g disease prevale	nce in community)		
Probability of infection (1 person)	0.11%					
Prob. of hospitalization (1 person)	0.02%					
Prob. of death (1 person)	0.00%					
Ratio to risk of car travel death	72	times larger risk	(than traveling sam	ne N of days)	See <u>FAQs</u> for rough estimate of death traveling by car on a given day	
Absolute results for ALL ATTENDEE		EVENTS (using	disease prevalen	ce in community)		
Number of COVID cases arising	0.06				Number of people	
N of hospitalizations arising	0.01				Number of people	
N of deaths arising	0.00				Number of people	
Specific notes for this case						
- Filmo notes io. tino outo						

Probability of death is set higher because of the higher age of choir members (75% of those ill were >= 65 yr old). Suggest changing to 1% for general applications

Probability of being infective calculated from prevalence of the disease in the county at the time (7 cases * 2 to account for undetected cases / 129000 population of county), see Miller et al. 2020

			пистоп оргон		pt this one to your case - Default values are for Skagit Choir outbreak
	•	-	·	odel - See notes s	specific to this case (if applicable) at the very bottom
Important inputs as highlighted in					
Other, more specialized inputs are				• •	
Calculations are not highlighted -				ou are doing	
Results are in blue these are th	e numbers of interes	t for most peop	ole		
Environmental Parameters					
	Value		Value in other u	ınits	Source / Comments
Length of room	25		7.6	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
Width of room	20	ft =		m	Can enter as ft or as m (once entered as m, changing in ft does not work)
	500	sq ft	47	m2	Can overwrite the m2 one. If you want to enter sq ft, enter "=B15*0.305^2" in the m2 cell, where B15 is the cell w/ sq
Height	10	ft =	3.1	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
Volume			142	m3	Volume, calculated. (Can also enter directly, then changing dimensions does not work)
Pressure	0.95	atm			Used only for CO2 calculation
Temperature	20	С			Use web converter if needed for F> C. Used for CO2 calculation, eventually for survival rate of virus
Relative Humidity	50	%			Not yet used, but may eventually be used for survival rate of virus
Background CO2 Outdoors	415	ppm			See readme
Duration of event	50	min	0.8	h	Value for your situation of interest
Number of repetitions of event	180	times			For e.g. multiple class meetings, multiple commutes in public transportation etc.
Ventilation w/ outside air	3	h-1			Value in h-1: Readme: Same as "air changes per hour". Value in L/s/per to compare to guidelines (e.g. ASHRAE 62.
Decay rate of the virus	0.62	h-1			See Readme, can estimate for a given T, RH, UV from DHS estimator
Deposition to surfaces	0.3	h-1	0.62		Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range
Additional control measures	0	h-1			E.g. filtering of recirc. air, HEPA air cleaner, UV disinfection, etc. See FAQs, Readme for calc for portable HEPA filter
Total first order loss rate	3.92	h-1			Sum of all the first-order rates
Ventilation rate per person	11.8	L/s/person			This is the value of ventilation that really matters for disease transmission. Includes additional control measures
Parameters related to people as	nd activity in the ro	om			
Total N people present	10				Value for your situation of interest
Infective people	1	person			Keep this at one unless you really want to study a different cases - see conditional and absolute results
Fraction of population inmune	0%				From seroprevalence reports, will depend on each location and time, see Readme
Susceptible people	9	people			Value for your situation of interest

Density (area / person) in room	50	sq ft / person				
Density (people / area) in room	0.21	persons / m2				
Density (volume / person) in room		m3 / person				
Breathing rate (susceptibles)	0.52	m3 / h			See Readme sheet - varies a lot with activity level	
CO2 emission rate (1 person)	0.005	L/s (@ 273 K	and 1 atm)		From tables in Readme page. This does not affect infection calculation, only use of CO2 as indicator,	could ignore
CO2 emission rate (all persons)	0.0565	L/s (@ at act	ual P & T of room)		Previous, multiplied by number of people, and applying ideal gas law to convert to ambient P & T	
Quanta exhalation rate (infected)	25	infectious dos	ses (quanta) h-1		See Readme file. Depends strongly on activity, also like person. This is the most uncertain parameter,	try different values
Exhalation mask efficiency	50%				0 if infective person is not wearing a mask. See Readme sheet	
Fraction of people w/ masks	100%				Value for your situation. It is applied to everybody for both emission & inhalation. Modify formulas man	nually if needed
Inhalation mask efficiency	30%				See Readme sheet	
Parameters related to the COVID-1	9 disease					
					Very important parameter, specific for each region and time period. For ABSOLUTE results (prob.	
Probability of being infective	0.20%				given prevalence of disease in the population). See Readme_sheet	
Lloopitalization rate	20%				From news reports. Varies strongly with age and risk factors	
Hospitalization rate						
Death rate	1%				From news reports. Varies strongly with age and risk factors (1% typical - Higher for older / at risk pec	pple)
·					From news reports. Varies strongly with age and risk factors (1% typical - Higher for older / at risk ped	ople)
•	1%		f infected people a	bove, and get the resul		ople)
Death rate CONDITIONAL result for ONE EVE	1% NT: we assume	the number o				pple)
Death rate CONDITIONAL result for ONE EVE	1% NT: we assume	the number o			ts under that assumption	pple)
Death rate CONDITIONAL result for ONE EVE	1% INT: we assume outbreaks (e.g. cl	the number o			ts under that assumption	pple)
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of	1% INT: we assume outbreaks (e.g. cl	the number o	t etc.), and an worst		ts under that assumption ar events (if one is unlucky enough to have infective people in attendance of a given event)	pple)
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of the control of	NT: we assume outbreaks (e.g. cl	the number o	t etc.), and an worst ses (quanta) h-1 ses (quanta) m-3		ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present	pple)
CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration	NT: we assume outbreaks (e.g. cl	infectious dos	t etc.), and an worst ses (quanta) h-1 ses (quanta) m-3		ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present	pple)
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration	1% ENT: we assume to outbreaks (e.g. cl. 12.5 0.02 0.00	infectious dos	t etc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta)	-case scenario for regula	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	pple)
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person	1% ENT: we assume to outbreaks (e.g. cl. 12.5 0.02 0.00	infectious dos	t etc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta)	-case scenario for regula	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN P	1% INT: we assume outbreaks (e.g. cl 12.5 0.02 0.00 ERSON & ONE I	infectious dos	t etc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta)	-case scenario for regula	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN P Probability of infection (1 person)	1% NT: we assume to outbreaks (e.g. cl 12.5 0.02 0.00 ERSON & ONE I 0.48%	infectious dos	t etc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta)	-case scenario for regula	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of the series of the simulate known of the series of the simulate known of the series of th	1% NT: we assume outbreaks (e.g. cl 12.5 0.02 0.00 ERSON & ONE I 0.48% 0.11% 0.005%	infectious dos	ses (quanta) h-1 ses (quanta) m-3 ses (quanta)	-case scenario for regula	Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN P Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death	1% NT: we assume outbreaks (e.g. cl 12.5 0.02 0.00 ERSON & ONE I 0.48% 0.1% 0.005%	infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos	tetc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta) ning number of info	ected above, typically	ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller See FAQs for rough estimate of death traveling by car on a given day	
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN P Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person)	1% NT: we assume outbreaks (e.g. cl 12.5 0.02 0.00 ERSON & ONE I 0.48% 0.1% 0.005%	infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos	tetc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta) ning number of info	ected above, typically	ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller See FAQs for rough estimate of death traveling by car on a given day	
Death rate CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN P Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death	1% NT: we assume outbreaks (e.g. cl 12.5 0.02 0.00 ERSON & ONE I 0.48% 0.1% 0.005%	infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos	tetc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta) ning number of info	ected above, typically	ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller See FAQs for rough estimate of death traveling by car on a given day	et al. (2020)
CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN P Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN	1% NT: we assume to outbreaks (e.g. cl 12.5 0.02 0.00 PERSON & ONE II 0.48% 0.1% 0.005% 79	infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos infectious dos	tetc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta) ning number of info	ected above, typically	ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller See FAQs for rough estimate of death traveling by car on a given day	et al. (2020)
CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN P Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN Number of COVID cases arising	1% INT: we assume to outbreaks (e.g. cl. 12.5 0.02 0.00 ERSON & ONE I 0.48% 0.1% 0.005% 79 INDEES & ONE E 0.04	infectious dos	tetc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta) ning number of info	ected above, typically	ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people prese	et al. (2020)
CONDITIONAL result for ONE EVE More appropriate to simulate known of Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN P Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEN Number of COVID cases arising N of hospitalizations arising	1% INT: we assume to outbreaks (e.g. cl. 12.5 0.02 0.00 ERSON & ONE E 0.48% 0.10% 79 NDEES & ONE E 0.04 0.04 0.01 0.00	infectious dos	tetc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta) ning number of infe isk	ected above, typically c	ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people prese Number of people	et al. (2020)
Conditional Results for A GIVEN Probability of infection (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for A LL ATTEN Number of COVID cases arising N of hospitalizations arising N of deaths arising	1% NT: we assume to outbreaks (e.g. cl. 12.5 0.02 0.00 ERSON & ONE E 0.48% 0.11% 0.005% 79 NDEES & ONE E 0.04 0.01 0.00 risk (not needed	infectious dos	tetc.), and an worst ses (quanta) h-1 ses (quanta) m-3 ses (quanta) ning number of infe isk	ected above, typically cted above, typically 1	ts under that assumption or events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people prese Number of people	et al. (2020)

Exhaled COZ e-inhaled per person Exhaled COZ e-inhaled per person Retained COZ e-inhaled retained COZ e-inhaled Retained COZ e-inhaled Retained COZ e-inhaled Retained Retai	Exhalad CO2 to inheled not notice	0.22	grama (avalue	ding 100 nnm haakara	und\	This parameter is the most analogous to risk Coo FAO nego for limitations	
Exhelect Cot re-inhelect per person Outstall School or price of incident in 1st. Cot 2 Outstall in 1 in for 1% infection ABSOLUTE result for ONE EVENT: we use the prevalence of the disease in the community to estimate how many infected people may be present in our event, and calculate results based on that More appropriate for general risk estimation, e.g. in a college classroom, induor gathering etc., where often infective people will not be present. No infective people present. Outstall of the present of the extra people of the disease of the community. No infective people present. Outstall of the present of the extra people of the disease of the community. No infective people present. Outstall of the people. Outstall of the p	Exhaled CO2 re-inhaled per person		` `	• •	•	This parameter is the most analogous to risk. See FAQ page for limitations	
Raiso city for for infection to Ex, CQC 0.18 % shames of infection for 1 person per %CQC* in inhaled CQC to inhaled 1 hr for 1% fixedoc 0.44 prim 0.020 0.04 p	· · ·					This parameter is the most analogous to risk. See <u>FAQ page</u> for limitations	
ABSOLUTE result for ONE EVENT, we use the prevalence of the disease in the community to estimate how many infected people may be present in our event, and calculate results based on that Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Prob. of hospitalization (1 person) Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Prob. of hospitalization (1 person) Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Prob. of hospitalization (1 person) Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Not disease at a final of the person of the community of the person of the community of the person of the community of the person of the person of the community of the person of the community of the person of the community of the person o							
ABSOLUTE result for ONE EVENT: we use the provaence of the disease in the community to estimate how many infected people may be present in our event, and calculate results based on that More appropriate for general risks estimation, e.g. in a college classroom, indoor gathering etc., where offer infective people will not be present N of infective people present 0.020 It has to be interpreted statistically. This would be the average over e.g. 100 repetitions of the event in a given location Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Probability of infection (1 person) 0.00% Prob. of insightation (1 person) 0.00% Radio to risk of car travel death 1 interest larger risk 0.00 0.00% Radio to risk of car travel death 0.00 0.00% Number of people 0.00% Number of people 0.00% Number of peo	Ratio of prob of infection to Ex_CO2	0.189	% chance of i	infection for 1 person p	er %CO2 * h inhaled		
More appropriate for general risk estimation, e.g. in a college classroom, indoor gathering etc., where often infactive people will not be present Not infactive people present 0.000 Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Probability of infection (1 person) 0.0006 Prob. of Inapplitation (1 person) 0.0006 Absolute results for ALL ATTENDEES & ONE EVENT (using disease prevalence in community) Number of COVID cases arising 0.00 Not inapplitations arising 0.00 Not death of people Number of people Number of people Number of people Number of people Absolute results for ALL ATTENDEES & ONE EVENTS (using disease prevalence in community) Number of people Absolute results for A OVEN PERSON & MULTIPLE TIMES (e.g. many class meetings during a sere-seter, or a daily commute on public transportation) - Ignore for a single event Absolute results for A OVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Probability of infection (1 person) 1.53% Prob. of hospitalization (1 person) 0.01% Absolute results for A OVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising 0.01 Number of Poople Absolute results for A OVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Number of Poople Absolute results for A DIVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Number of Poople Absolute results for A DIVEN PERSON & MULTIPLE Using disease prevalence in community) Number of Poople Absolute results for A DIVEN PERSON & MULTIPLE Using disease prevalence in community) Number of Poople Absolute results for A DIVEN PERSON & MULTIPLE Using disease prevalence in community) Number of Poople Number of Poople Numbe	CO2 to inhale 1 hr for 1% infect.	944	ppm			This is another metric of risk	
More appropriate for general risk estimation, e.g. in a college classroom, indoor gathering etc., where often infactive people will not be present Not infactive people present 0.000 Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Probability of infection (1 person) 0.0006 Prob. of Inapplitation (1 person) 0.0006 Absolute results for ALL ATTENDEES & ONE EVENT (using disease prevalence in community) Number of COVID cases arising 0.00 Not inapplitations arising 0.00 Not death of people Number of people Number of people Number of people Number of people Absolute results for ALL ATTENDEES & ONE EVENTS (using disease prevalence in community) Number of people Absolute results for A OVEN PERSON & MULTIPLE TIMES (e.g. many class meetings during a sere-seter, or a daily commute on public transportation) - Ignore for a single event Absolute results for A OVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Probability of infection (1 person) 1.53% Prob. of hospitalization (1 person) 0.01% Absolute results for A OVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising 0.01 Number of Poople Absolute results for A OVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Number of Poople Absolute results for A DIVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Number of Poople Absolute results for A DIVEN PERSON & MULTIPLE Using disease prevalence in community) Number of Poople Absolute results for A DIVEN PERSON & MULTIPLE Using disease prevalence in community) Number of Poople Absolute results for A DIVEN PERSON & MULTIPLE Using disease prevalence in community) Number of Poople Number of Poople Numbe	ABSOLUTE result for ONE EVENT	: we use the prev	alence of the	disease in the comm	nunity to estimate how	many infected people may be present in our event, and calculate results based on that	
No finfactive people present 0.020 It has to be interpreted statistically. This would be the average over e.g. 100 repetitions of the event in a given location Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Prob. of hospitalization (1 person) 0.00% Ratio to risk of car travel death 1 times larger risk See FAQs for rough estimate of death traveling by car on a given day Absolute results for ALL ATTENDEES & ONE EVENT (using disease prevalence in community) Number of COVID cases arising 0.00 Number of people Not floating arising 0.00 Number of people Not deaths arising 0.00 See FAQs for rough estimate of death traveling by car on a given day It is another metric of risk ABSOLUTE result for events that are REPEATED MULTIPLE TIMES (e.g. many class meetings during a semester, or a daily commute on public transportation) - Ignore for a single event Absolute results for A GIVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Probability of infection (1 person) 1.53% Prob. of negatification (1 person) 0.02% Ratio to risk of car travel death 1 times larger risk (than traveling same N of days) See FAQs for rough estimate of death traveling by car on a given day It is sea arising 0.01 Number of Dovid Cases arising 0.02 Number of Dovid Cases arising 0.03 Number of Dovid Cases arising 0.04 Number of Dovid Cases arising 0.05 Number of Dovid Cases arising 0.06 Number of Dovid Cases arising 0.07 Number of Dovid Cases arising 0.08 Number of Dovid Cases arising 0.09 Number of Dovid Cases arising 0.00 Number of Dovid Cases arising 0.0		•					
Absolute results for A GIVEN PERSON & ONE EVENT (using disease prevalence in community) Probability of infection (1 person) 0.00% Prob. of floating (1 person) 0.00% Ratio to risk of car travel death 1 times larger risk See FAQs for rough estimate of death traveling by car on a given day Absolute results for ALL ATTENDEES & ONE EVENT (using disease prevalence in community) Number of COVID cases arising 0.00 Number of COVID cases arising 0.00 Not deaths arising 0.00 Number of people		, ,		, , ,			
Prob. of Indeptification (1 person) 0.00%	N of infective people present	0.020				It has to be interpreted statistically. This would be the average over e.g. 100 repetitions of the event in a	given location
Prob. of hospitalization (1 person) 0.00% See Rough (1 person) 0.00% Number of people Number of peo	Absolute results for A GIVEN PER	SON & ONE EVE	NT (using dis	ease prevalence in c	ommunity)		
Prob. of hospitalization (1 person) 0.00% Prob. of death (1 person) 0.00% Ratio to risk of car travel death 1 times larger risk Society Residence in community) Number of COVID cases arising 0.00 Number of people Number of peop	Probability of infection (1 person)	0.01%				0.00008571742813	
Prob. of death (1 person) Ratio to risk of car travel death 1 times larger risk See FAQs for rough estimate of death traveling by car on a given day See FAQs for rough estimate of death traveling by car on a given day Number of CPOID cases arising 0.00 Nor hospitalizations arising Nor hospitalizations arising Nor hospitalization (1 person) 1.53% Prob. of hospitalization (1 person) 0.02% Ratio to risk of car travel death 1 times larger risk (than traveling same N of days) Nor hospitalization (1 person) Number of people Absolute results for ALL ATTENDEES & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising 0.03 Nor hospitalizations arising 0.		0.00%					
Ratio to risk of car travel death Ratio to risk of		0.00%					
Number of COVID cases arising 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	· · · /	1	times larger ri	isk		See FAQs for rough estimate of death traveling by car on a given day	
Number of COVID cases arising 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.							
No fine spitalizations arising 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			IT (using dise	ease prevalence in co	mmunity)		
Notice deaths arising 0.00 Number of people This is another metric of risk ABSOLUTE result for events that are REPEATED MULTIPLE TIMES (e.g. many class meetings during a semester, or a daily commute on public transportation) - Ignore for a single event Absolute results for A GIVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Probability of infection (1 person) 1.53% Prob. of hospitalization (1 person) 0.02% Ratio to risk of car travel death 1 times larger risk (than traveling same N of days) See FAQs for rough estimate of death traveling by car on a given day Absolute results for ALL ATTENDEES & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising 0.03 Number of people Nof deaths arising 0.00 Number of people							
CO2 to inhale 1 hr for 1% infect. 29811 ppm	N of hospitalizations arising	0.00				Number of people	
ABSOLUTE result for events that are REPEATED MULTIPLE TIMES (e.g. many class meetings during a semester, or a daily commute on public transportation) - Ignore for a single event Absolute results for A GIVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Probability of infection (1 person) 1.53% 9	N of deaths arising	0.00				Number of people	
Absolute results for A GIVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Probability of infection (1 person) Prob. of hospitalization (1 person) 0.02% Prob. of death (1 person) 0.02% Ratio to risk of car travel death 1 times larger risk (than traveling same N of days) See FAQs for rough estimate of death traveling by car on a given day Absolute results for ALL ATTENDEES & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising 0.14 Number of COVID cases arising 0.03 Number of people Nof deaths arising 0.00 Number of people Number of people Specific notes for this case Breathing rate Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	CO2 to inhale 1 hr for 1% infect.	29811	ppm			This is another metric of risk	
Absolute results for A GIVEN PERSON & MULTIPLE EVENTS (using disease prevalence in community) Probability of infection (1 person) Prob. of hospitalization (1 person) 0.02% Prob. of death (1 person) 0.02% Ratio to risk of car travel death 1 times larger risk (than traveling same N of days) See FAQs for rough estimate of death traveling by car on a given day Absolute results for ALL ATTENDEES & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising 0.14 Number of COVID cases arising 0.03 Number of people Nof deaths arising 0.00 Number of people Number of people Specific notes for this case Breathing rate Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	ARSOLUTE result for events that	are REPEATED M	IIII TIPI F TIM	IFS (e.g. many class r	neetings during a sem	nester or a daily commute on public transportation) - Ignore for a single event	
Probability of infection (1 person) 1.53%	ADOCEOTE TOOUR TOT OVOIRE MARK		.02111 22 1111	Le (e.g. many clase i	noonings during a com	isotor, or a daily commute on public nanoportation, "ignore for a emigre event	
Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Absolute results for ALL ATTENDEES & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising Nof hospitalizations arising Nof deaths arising Nof deaths arising Nof deaths arising Nof deaths arising Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	Absolute results for A GIVEN PER	SON & MULTIPLI	E EVENTS (us	sing disease prevalen	ce in community)		
Prob. of death (1 person) Ratio to risk of car travel death Ratio to risk of car travel death Absolute results for ALL ATTENDEES & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising Nof hospitalizations arising Nof deaths arising O.00 Specific notes for this case Breathing rate Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	Probability of infection (1 person)	1.53%					
Ratio to risk of car travel death I times larger risk (than traveling same N of days) Absolute results for ALL ATTENDEES & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising N of hospitalizations arising N of deaths arising N of deaths arising Output Description to the sort this case Breathing rate Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	Prob. of hospitalization (1 person)	0.31%					
Absolute results for ALL ATTENDEES & MULTIPLE EVENTS (using disease prevalence in community) Number of COVID cases arising 0.14 Number of people To study transmission to young children, BR also needs to be adjusted according to Readme table	Prob. of death (1 person)	0.02%					
Number of COVID cases arising 0.14	Ratio to risk of car travel death	1	times larger ri	isk (than traveling sam	e N of days)	See <u>FAQs</u> for rough estimate of death traveling by car on a given day	
Number of COVID cases arising 0.14	About to months for ALL ATTENDA		EVENTO (
N of hospitalizations arising 0.03 N of hospitalizations arising 0.00 Number of people			EVENIS (us	ing disease prevalend	ce in community)	N	
N of deaths arising 0.00 Number of people Specific notes for this case Breathing rate Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	<u> </u>					• •	
Specific notes for this case Breathing rate Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	·						
Breathing rate Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	N of deaths arising	0.00				Number of people	
Using 1/2 of sedentary and light activity, 16-21 yrs old as default. BR only matters for susceptible. To study transmission from students to teacher, need to increase this value accordingly. To study transmission to young children, BR also needs to be adjusted according to Readme table	Specific notes for this case						
To study transmission to young children, BR also needs to be adjusted according to Readme table	Breathing rate						
To study transmission to young children, BR also needs to be adjusted according to Readme table		Using 1/2 of sede	entary and ligh	t activity, 16-21 yrs old	as default. BR only mat	tters for susceptible. To study transmission from students to teacher, need to increase this value accordin	gly.
Quanta emission rate		-	, ,	• •	•		
	Quanta emission rate						

Current value is for a teacher talking a lot
For teenagers, use values from readme, according to activity
Small children are thought to be less contagious, and also breathe less air, so perhaps reduce the quanta emission rate by x5

This is a general spreadsheet app	licable to any situati	on under the as	sumptions of this mo	del - See note	s specific to this case (if applicable) at the very bottom
Important inputs as highlighted in	•			der dec note.	s specific to and case (if applicable) at the very solitoni
Other, more specialized inputs are		•		pplications	
Calculations are not highlighted - o				• •	
Results are in blue these are the		<u> </u>			
Environmental Parameters					
	Value		Value in other u	nits	Source / Comments
Length of room	44	ft	13.4	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
Width of room	10	ft =	3.1	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
	440	sq ft	41	m2	Can overwrite the m2 one. If you want to enter sq ft, enter "=B15*0.305^2" in the m2 cell, where B15 is the cell w/ s
Height	12	ft =	3.7	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
Volume			150	m3	Volume, calculated. (Can also enter directly, then changing dimensions does not work)
Pressure		atm			Used only for CO2 calculation
Temperature	20	-			Use <u>web converter</u> if needed for F> C. Used for CO2 calculation, eventually for survival rate of virus
Relative Humidity		%			Not yet used, but may eventually be used for survival rate of virus
Background CO2 Outdoors	415	ppm			See readme
Duration of event	20	min	0.3	h	Value for your situation of interest
Number of repetitions of event	60	times			For e.g. multiple class meetings, multiple commutes in public transportation etc.
Ventilation w/ outside air	5.7	h-1			Value in h-1: Readme: Same as "air changes per hour". Value in L/s/per to compare to guidelines (e.g. ASHRAE 62
Decay rate of the virus	0.62	h-1			See Readme, can estimate for a given T, RH, UV from DHS estimator
Deposition to surfaces	0.3	h-1			Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range
Additional control measures	3.6	h-1			E.g. filtering of recirc. air, HEPA air cleaner, UV disinfection, etc. See FAQs, Readme for calc for portable HEPA filters.
Total first order loss rate	10.22	h-1			Sum of all the first-order rates
Ventilation rate per person	11.1	L/s/person			This is the value of ventilation that really matters for disease transmission. Includes additional control measures
Parameters related to people an	d activity in the ro	om			
Total N people present	35				Value for your situation of interest
Infective people	1	person			Keep this at one unless you really want to study a different cases - see conditional and absolute results
Fraction of population inmune	15%				From seroprevalence reports, will depend on each location and time, see Readme
Susceptible people	28.9	people			Value for your situation of interest

Density (area / person) in room	13	sq ft / person				
Density (people / area) in room	0.86	persons / m2				
Density (volume / person) in room	4.3	m3 / person				
Breathing rate (susceptibles)	0.42	m3 / h			See Readme sheet - varies a lot with activity level	
CO2 emission rate (1 person)	0.007	L/s (@ 273 K a	nd 1 atm)		From tables in Readme page. This does not affect infection calculation, only use of CO2 as indicator,	could ignore
CO2 emission rate (all persons)			IP & T of room)		Previous, multiplied by number of people, and applying ideal gas law to convert to ambient P & T	J
Quanta exhalation rate (infected)	25	infectious dose	s (quanta) h-1		See Readme file. Depends strongly on activity, also like person. This is the most uncertain parameter,	try different values
Exhalation mask efficiency	50%				0 if infective person is not wearing a mask. See Readme sheet	
Fraction of people w/ masks	100%				Value for your situation. It is applied to everybody for both emission & inhalation. Modify formulas mar	nually if needed
Inhalation mask efficiency	30%				See Readme sheet	
Parameters related to the COVID-19 of	disease					
Probability of being infective	0.10%				Very important parameter, specific for each region and time period. For ABSOLUTE results (prob. given prevalence of disease in the population). See Readme sheet	
Hospitalization rate	20%				From news reports. Varies strongly with age and risk factors	
Death rate	1%				From news reports. Varies strongly with age and risk factors (1% typical - Higher for older / at risk pec	nle)
CONDITIONAL result for ONE EVENT			nfected people ab	ove, and get the results		рісу
CONDITIONAL result for ONE EVENT	Γ: we assume t	the number of i				pic)
CONDITIONAL result for ONE EVENT	Γ: we assume t tbreaks (e.g. ch	the number of i	etc.), and an worst-o		s under that assumption	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out	F: we assume to tbreaks (e.g. ch	the number of i	etc.), and an worst-c		s under that assumption events (if one is unlucky enough to have infective people in attendance of a given event)	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate	T: we assume to the threaks (e.g. characteristics) 12.5	the number of i	etc.), and an worst-c s (quanta) h-1 s (quanta) m-3		events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person	7: we assume to the threaks (e.g. cf. 12.5 0.01 0.00	the number of interior, restaurant entirectious dose infectious dose	etc.), and an worst-outc.), and an worst-outc.) s (quanta) h-1 s (quanta) m-3 s (quanta)	ase scenario for regular	s under that assumption events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person	7: we assume to the threaks (e.g. cf. 12.5 0.01 0.00	the number of interior, restaurant entirectious dose infectious dose	etc.), and an worst-outc.), and an worst-outc.) s (quanta) h-1 s (quanta) m-3 s (quanta)	ase scenario for regular	s under that assumption events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER	12.5 0.00 0.00 0.00 0.00 RSON & ONE E	the number of interior, restaurant entirectious dose infectious dose	etc.), and an worst-outc.), and an worst-outc.) s (quanta) h-1 s (quanta) m-3 s (quanta)	ase scenario for regular	events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER Probability of infection (1 person)	12.5 0.01 0.00 RSON & ONE E	the number of interior, restaurant entirectious dose infectious dose	etc.), and an worst-outc.), and an worst-outc.) s (quanta) h-1 s (quanta) m-3 s (quanta)	ase scenario for regular	events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person)	12.5 0.01 0.00 RSON & ONE E 0.06% 0.01%	the number of interior, restaurant entirectious dose infectious dose	etc.), and an worst-cost (quanta) h-1 s (quanta) m-3 s (quanta) ng number of infect	ase scenario for regular	events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER Probability of infection (1 person) Prob. of hospitalization (1 person)	12.5 0.01 0.00 RSON & ONE E 0.06% 0.01% 0.00%	infectious dose	etc.), and an worst-outs.), and an worst-outs.) s (quanta) h-1 s (quanta) m-3 s (quanta) ng number of infects.	ase scenario for regular	sunder that assumption events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al.	
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEND	12.5 0.01 0.00 RSON & ONE E 0.06% 0.01% 0.00%	infectious dose	etc.), and an worst-outs.), and an worst-outs.) s (quanta) h-1 s (quanta) m-3 s (quanta) ng number of infects.	ase scenario for regular	sunder that assumption events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al.	et al. (2020)
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death	12.5 0.01 0.00 RSON & ONE E 0.06% 0.01% 0.00%	infectious dose	etc.), and an worst-outs.), and an worst-outs.) s (quanta) h-1 s (quanta) m-3 s (quanta) ng number of infects.	ase scenario for regular	sunder that assumption events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. (2020)	et al. (2020)
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEND Number of COVID cases arising	12.5 0.01 0.00 RSON & ONE E 0.06% 0.01% 0.00%	infectious dose	etc.), and an worst-outs.), and an worst-outs.) s (quanta) h-1 s (quanta) m-3 s (quanta) ng number of infects.	ase scenario for regular	sunder that assumption events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. (2020) See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people prese	et al. (2020)
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEND Number of COVID cases arising N of hospitalizations arising	12.5 0.01 0.00 RSON & ONE E 0.06% 0.01% 0.00% 10 PEES & ONE E 0.017 0.003 0.000	infectious dose infectious dos	etc.), and an worst-cetc.), and an worst-cetc.), and an worst-cetc.) s (quanta) h-1 s (quanta) m-3 s (quanta) ng number of infect	ase scenario for regular cted above, typically 1) ted above, typically 1)	sunder that assumption events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. (2020) See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people prese Number of people	et al. (2020)
CONDITIONAL result for ONE EVENT More appropriate to simulate known out Net emission rate Avg Quanta Concentration Quanta inhaled per person Conditional Results for A GIVEN PER Probability of infection (1 person) Prob. of hospitalization (1 person) Prob. of death (1 person) Ratio to risk of car travel death Conditional Results for ALL ATTEND Number of COVID cases arising N of hospitalizations arising N of deaths arising	12.5 0.01 0.00 RSON & ONE E 0.06% 0.01% 0.000 10 EES & ONE E 0.003 0.000	infectious dose infectious dos	etc.), and an worst-cetc.), and an worst-cetc.), and an worst-cetc.) s (quanta) h-1 s (quanta) m-3 s (quanta) ng number of infect	ase scenario for regular cted above, typically 1) ted above, typically 1)	sunder that assumption events (if one is unlucky enough to have infective people in attendance of a given event) Includes the number of infective people present Analytical solution of the box model. Equation (4) in Miller et al. (2020) Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et al. (2020) See FAQs for rough estimate of death traveling by car on a given day Number of people. Multiplies probability of one person, times the number of susceptible people prese Number of people	et al. (2020)

Exhaled CO2 re-inhaled per person	0.16	grams (excl	udina 4	100 ppm backgroun	d)	This parameter is the most analogous to risk. See FAQ page for limitations	
Exhaled CO2 re-inhaled per person		•			*	This parameter is the most analogous to risk. See FAQ page for limitations	
Exhaled CO2 re-inhaled per person		• • • •	•	is above, different u		This parameter is the most analogous to risk. Occ The page for immunions	
Ratio of prob of infection to Ex CO2				ion for 1 person per			
CO2 to inhale 1 hr for 1% infect.	4078		i ii ii eet	ion for a person per	70002 ITIIIIaicu	This is another metric of risk	
CO2 to initiale 1 fil for 1 /6 lifect.	4070	ppiii				This is another metric or risk	
ABSOLUTE result for ONE EVENT:	we use the prev	alence of th	ne dise	ase in the commu	nity to estimate how	many infected people may be present in our event, and calculate results based on that	
More appropriate for general risk esti	•						
mere appropriate for general new est.	mation, o.g. m a	Jonogo Graco	100111, 1	macor gainoning old	., whore enem imperior	poople will not be procent	
N of infective people present	0.030					It has to be interpreted statistically. This would be the average over e.g. 100 repetitions of the event in a	given location
Absolute results for A GIVEN PERS	SON & ONE EVE	NT (using d	isease	prevalence in con	nmunity)		
Probability of infection (1 person)	0.0017%	, ,			,		
Prob. of hospitalization (1 person)	0.0003%						
Prob. of death (1 person)	0.0000%						
Ratio to risk of car travel death		times larger	risk			See FAQs for rough estimate of death traveling by car on a given day	
Absolute results for ALL ATTENDE	ES & ONE EVEN	IT (using di	sease	prevalence in com	munity)		
Number of COVID cases arising	0.0005					Number of people	
N of hospitalizations arising	0.0001					Number of people	
N of deaths arising	0.0000					Number of people	
3						· · · · · · · · · · · · · · · · · · ·	
CO2 to inhale 1 hr for 1% infect.	127176	mag				This is another metric of risk	
ABSOLUTE result for events that a	re REPEATED N	IULTIPLE TI	MES (e.g. many class me	eetings during a sem	ester, or a daily commute on public transportation) - Ignore for a single event	
			- (. .	J	, , , , , , , , , , , , , , , , , , ,	
Absolute results for A GIVEN PERS	SON & MULTIPLI	E EVENTS (using	disease prevalence	e in community)		
Probability of infection (1 person)	0.10%	Ì			• ,		
Prob. of hospitalization (1 person)	0.02%						
Prob. of death (1 person)	0.00%						
Ratio to risk of car travel death	0	times larger	risk (th	nan traveling same l	N of days)	See FAQs for rough estimate of death traveling by car on a given day	
Absolute results for ALL ATTENDE	ES & MULTIPLE	EVENTS (u	sing d	isease prevalence	in community)		
Number of COVID cases arising	0.03					Number of people	
N of hospitalizations arising	0.01					Number of people	
N of deaths arising	0.00					Number of people	
Ü							
Technical appendix: ventilation cal	culations for thi	s case					
Volume				150 m	13		
probability of being infected	0.30%						

passengers on car	35	people			typical value	
Breathing rate	0.8	m3 / h			Estimated from Miller et al. (2020), for someone occasionally talking	
Duration of subway ride	20	min	0.33	h	Typical value	
volumetric recirc air		cfm	1521	m3/h	from info provided by subway operator	
	424.80					
filter efficiency	35%				assumption	
Volumetric recirc air particle free	148.7	L/s	4.25	L/s/P		
ventilation w/ filtered recirc air	3.6	h-1				
volumetric rate outside air	500	cfm	845	m3/h	from info provided by subway operator	
=	236	L/s	6.74	L/s/P		
Ventilation w/ outside air	5.6	h-1			Same as "air changes per hour"	
total volumetric rate	384.7	L/s	11.0	L/s/person		

9 aerosol tran	ismission:	Case of super	market wo	orker	
plicable to any situati	on under the a	esumptions of this mo	dol See note	s specific to this case (if applicable) at the very bottom	
•		•	luei - See Hote.	s specific to this case (if applicable) at the very bottom	
	-		pplications		
	<u> </u>		ou are doing		
e numbers of interes	it ioi most peop	ile in the second secon			
Value		Value in other u	nits	Source / Comments	
	ft				
					l w/ sa fl
		5.5	m	Can enter as ft or as m (once entered as m, changing in ft does not work)	- 1 -
		2043	m3	Volume, calculated. (Can also enter directly, then changing dimensions does not work)	
0.95	atm			Used only for CO2 calculation	
20	С			Use web converter if needed for F> C. Used for CO2 calculation, eventually for survival rate of virus	
50	%			Not yet used, but may eventually be used for survival rate of virus	
415	ppm			See readme	
480	min	8.0	h	Value for your situation of interest	
21	times			For e.g. multiple class meetings, multiple commutes in public transportation etc.	
3	h-1			Value in h-1: Readme: Same as "air changes per hour". Value in L/s/per to compare to guidelines (e.g. ASHRA	AE 62.1)
0.62	h-1			See Readme, can estimate for a given T, RH, UV from DHS estimator	
0.3	h-1			Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range	
0	h-1			E.g. filtering of recirc. air, HEPA air cleaner, UV disinfection, etc. See FAQs, Readme for calc for portable HEPA	A filter
3.92	h-1			Sum of all the first-order rates	
22.7	L/s/person			This is the value of ventilation that really matters for disease transmission. Includes additional control measure	s
nd activity in the ro	om				
75				Value for your situation of interest	
1	person			Keep this at one unless you really want to study a different cases - see conditional and absolute results	
6%				From seroprevalence reports, will depend on each location and time, see Readme	
69.56	neonle			Value for your situation of interest	
	value Value 80 4000 18 0.95 20 50 415 480 21 3 0.62 0.3 0 3.92 22.7 and activity in the ro	value Note: The second of the	value Name 30 4000 sq ft 372 2043 0.95 atm 20 C 50 % 415 ppm 480 min 8.0 21 times 3 h-1 0.62 h-1 0.3 h-1 0 h-1 3.92 h-1 1.5/person and activity in the room value va	olicable to any situation, under the assumptions of this model - See notes orange - change these for your situation the highlighted in yellow - change only for more advanced applications don't change these unless you are sure you know what you are doing the numbers of interest for most people Value Value Value Value in other units 80 ft	e highlighted in yellow - change only for more advanced applications don't change these unless you are sure you know what you are doing enumbers of interest for most people Value Value in other units Source / Comments Can enter as it or as in (once entered as in, changing in it does not work) So it = 15.5 in Can enter as it or as in (once entered as in, changing in it does not work) 18 it = 5.5 in Can enter as it or as in (once entered as in, changing in it does not work) Can enter as it or as in (once entered as in, changing in it does not work) 18 it = 5.5 in Can enter as it or as in (once entered as in, changing in it does not work) 19 2043 in 3 Volume, calculated, (Can also enter directly, then changing dimensions does not work) 10.95 atm 10 20 C 10 20 C 20 C

Density (area / person) in room	53	sq ft / person				
Density (people / area) in room		persons / m2				
Density (volume / person) in room		m3 / person				
_ county (common percent) and com						
Breathing rate (susceptibles)	0.72	m3 / h			See Readme sheet - varies a lot with activity level	
CO2 emission rate (1 person)	0.00675	L/s (@ 273 K ar	d 1 atm)		From tables in Readme page. This does not affect infection calculation, only use of CO2 as indicator, cou	uld ignore
CO2 emission rate (all persons)	0.5719	L/s (@ at actual	P & T of room)		Previous, multiplied by number of people, and applying ideal gas law to convert to ambient P & T	
Quanta exhalation rate (infected)	10	infectious doses	(quanta) h 1		See Readme file. Depends strongly on activity, also like person. This is the most uncertain parameter, try	different values
Exhalation mask efficiency	50%	inectious doses	(quanta) 11-1		0 if infective person is not wearing a mask. See Readme sheet	unierent values
Fraction of people w/ masks	100%				Value for your situation. It is applied to everybody for both emission & inhalation. Modify formulas manua	lly if poodod
						illy il fleeded
Inhalation mask efficiency	30%				See Readme sheet	
Parameters related to the COVID-19	disease					
Probability of being infective	0.10%				Very important parameter, specific for each region and time period. For ABSOLUTE results (prob. given prevalence of disease in the population). See Readme sheet	
Hospitalization rate	20%				From news reports. Varies strongly with age and risk factors	
Death rate	1%				From news reports. Varies strongly with age and risk factors (1% typical - Higher for older / at risk people	<i>)</i>
						,
CONDITIONAL result for ONE EVEN	F: wo assume t	he number of it	facted poople abo	we and get the regulte	under that accumption	
					events (if one is unlucky enough to have infective people in attendance of a given event)	
wore appropriate to simulate known ou	ibreaks (e.g. cri	on, restaurant e	c.), and an worst-ce	ase scenario for regular (events (if one is unitacky enough to have infective people in alternative of a given event)	
Net emission rate	5	infectious doses	(quanta) h-1		Includes the number of infective people present	
Avg Quanta Concentration	0.00	infectious doses	(quanta) m-3		Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
Quanta inhaled per person		infectious doses	. ,			
Conditional Results for A GIVEN PEI	RSON & ONE E	VENT (assumir	g number of infec	ted above, typically 1)		
Probability of infection (1 person)	0.2%				Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller et a	al. (2020)
Prob. of hospitalization (1 person)	0.0%					
Prob. of death (1 person)	0.0%					
Ratio to risk of car travel death	41	times larger risk			See FAQs for rough estimate of death traveling by car on a given day	
Conditional Results for ALL ATTEND	EES & ONE E	/ENT (assumin	number of infect	ed above, typically 1)		
Number of COVID cases arising	0.17				Number of people. Multiplies probability of one person, times the number of susceptible people present	
N of hospitalizations arising	0.03				Number of people	
N of deaths arising	0.00				Number of people	
Results for CO2 as an indicator of ris	sk (not needed	for infection es	timation, can igno	re for simplicity)		
Avg CO2 mixing ratio			00 ppm backgroun		Analytical solution of the box model. Equation (4) in Miller et al. (2020). See FAQ page for differences w/	quanta calc
Avg CO2 concentration		, .	400 ppm backgrou	•	Conversion from Atmos. Chem. Cheat Sheet, plus ideal gas law	quanta outo
7.11g 302 concentration	0.30	9 III o (excludini	, 100 ppin backgrou	ariu,	Other State In the International Content Officer Officer, place laced gas law	

Exhaled CO2 re-inhaled per person	3.22	grams (exclu	ding 400 ppm backgr	round)	This parameter is the most analogous to risk. See FAQ page for limitations	
Exhaled CO2 re-inhaled per person	2575.64	ppm * h (may	be easier units, exclu	udes 400 ppm backgrour	nd This parameter is the most analogous to risk. See FAQ page for limitations	
Exhaled CO2 re-inhaled per person	0.2576	%CO2 * h (sa	ame as above, differe	ent unit, for use next)		
Ratio of prob of infection to Ex_CO2	0.009	% chance of	infection for 1 person	per %CO2 * h inhaled		
CO2 to inhale 1 hr for 1% infect.	10503	ppm			This is another metric of risk	
ABSOLUTE result for ONE EVENT	we use the pre	valence of the	e disease in the com	nmunity to estimate how	w many infected people may be present in our event, and calculate results based on that	
More appropriate for general risk est	imation, e.g. in a	college classro	oom, indoor gathering	g etc., where often infecti	ve people will not be present	
N of infective people present	0.071				It has to be interpreted statistically. This would be the average over e.g. 100 repetitions of the event	in a given location
Absolute results for A GIVEN PER	SON & ONE EVE	NT (using dis	sease prevalence in	community)		
Probability of infection (1 person)	0.02%					
Prob. of hospitalization (1 person)	0.00%					
Prob. of death (1 person)	0.00%					
Ratio to risk of car travel death	3	times larger r	risk		See FAQs for rough estimate of death traveling by car on a given day	
Absolute results for ALL ATTENDI	EES & ONE EVE	NT (using dis	ease prevalence in	community)		
Number of COVID cases arising	0.01				Number of people	
N of hospitalizations arising	0.00				Number of people	
N of deaths arising	0.00				Number of people	
-						
CO2 to inhale 1 hr for 1% infect.	145450	ppm			This is another metric of risk	
ABSOLUTE result for events that	are REPEATED N	MULTIPLE TIN	MES (e.g. many class	s meetings during a sei	mester, or a daily commute on public transportation) - Ignore for a single event	
Absolute results for A GIVEN PER	SON & MULTIPL	E EVENTS (u	sing disease preval	ence in community)		
Probability of infection (1 person)	0.35%					
Prob. of hospitalization (1 person)	0.07%					
Prob. of death (1 person)	0.00%					
Ratio to risk of car travel death	3	times larger r	risk (than traveling sa	me N of days)	See FAQs for rough estimate of death traveling by car on a given day	
Absolute results for ALL ATTENDI	EES & MULTIPLE	EVENTS (us	ing disease prevale	nce in community)		
Number of COVID cases arising	0.25				Number of people	
N of hospitalizations arising	0.05				Number of people	
N of deaths arising	0.00				Number of people	
Specific notes for this case						
•	Roulder Colorado).				
Based on a specific supermarket in E	Jouidel, Colorado					
Horizontal dimensions estimated from		using scale), h	eight using pictures f	rom Google Street View	(using people present for scale)	
	m Google Maps (ı		eight using pictures f	rom Google Street View	(using people present for scale)	

Other parameters estimated per Readme for this situation	
This is for a supermarket worker. For a customer, change the time spent in the story to e.g. 1 hr, 4 times a week to simulate 1 month	

				<u> </u>	ONLY through air beyond close proximity, so will underestimate a lot)
This is a general spreadsheet app	licable to any situati	on, under the a	ssumptions of this mo	odel - See notes	specific to this case (if applicable) at the very bottom
mportant inputs as highlighted in	orange - change the	se for your situ	ation		
Other, more specialized inputs are	highlighted in yello	w - change only	for more advanced a	applications	
Calculations are not highlighted -	don't change these ι	unless you are	sure you know what y	ou are doing	
Results are in blue these are the	e numbers of interes	t for most peop	le		
Environmental Parameters					
	Value		Value in other u	ınits	Source / Comments
Length of room	600	ft	183.0		Can enter as ft or as m (once entered as m, changing in ft does not work)
Width of room	300				Can enter as ft or as m (once entered as m, changing in ft does not work)
	180000		16745		Can overwrite the m2 one. If you want to enter sq ft, enter "=B15*0.305^2" in the m2 cell, where B15 is the cell w/ sq
Height	50		15.3	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
Volume			255354	m3	Volume, calculated. (Can also enter directly, then changing dimensions does not work)
Pressure	0.95	atm			Used only for CO2 calculation
Temperature	20	С			Use web converter if needed for F> C. Used for CO2 calculation, eventually for survival rate of virus
Relative Humidity	50	%			Not yet used, but may eventually be used for survival rate of virus
Background CO2 Outdoors	415	ppm			See readme
Duration of event	90	min	1.5	h	Value for your situation of interest
Number of repetitions of event	1	times			For e.g. multiple class meetings, multiple commutes in public transportation etc.
Ventilation w/ outside air		h-1			Value in h-1: Readme: Same as "air changes per hour". Value in L/s/per to compare to guidelines (e.g. ASHRAE 62.
Decay rate of the virus	0.62				See Readme, can estimate for a given T, RH, UV from DHS estimator
Deposition to surfaces		h-1			Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range
Additional control measures		h-1			E.g. filtering of recirc. air, HEPA air cleaner, UV disinfection, etc. See FAQs, Readme for calc for portable HEPA filter
Total first order loss rate	40.92	h-1			Sum of all the first-order rates
Ventilation rate per person	91.5	L/s/person			This is the value of ventilation that really matters for disease transmission. Includes additional control measures
Parameters related to people ar	nd activity in the re-	om			
i arameters related to people ar	ia activity in the ro	Ont			
Total N people present	31000				Value for your situation of interest
Infective people		person			Keep this at one unless you really want to study a different cases - see conditional and absolute results
Fraction of population inmune	0%	,			From seroprevalence reports, will depend on each location and time, see Readme
Susceptible people		people			Value for your situation of interest

Density (area / person) in room	6	sq ft / person				
Density (people / area) in room		persons / m2				
		m3 / person				
Density (volume / person) in room	0.2	mo / person				
Breathing rate (susceptibles)	0.72	m3 / h			See Readme sheet - varies a lot with activity level	
CO2 emission rate (1 person)	0.0061	L/s (@ 273 k	(and 1 atm)		From tables in Readme page. This does not affect infection calculation, only use of CO2 as indicator, or	could ignore
CO2 emission rate (all persons)	213.6272	L/s (@ at act	ual P & T of roon)	Previous, multiplied by number of people, and applying ideal gas law to convert to ambient P & T	
Quanta exhalation rate (infected)	50	infectious do	ses (quanta) h-1		See Readme file. Depends strongly on activity, also like person. This is the most uncertain parameter,	try different values
Exhalation mask efficiency	0%				0 if infective person is not wearing a mask. See Readme sheet	
Fraction of people w/ masks	0%				Value for your situation. It is applied to everybody for both emission & inhalation. Modify formulas man	ually if needed
Inhalation mask efficiency	0%				See Readme sheet	
Parameters related to the COVID-19	9 disease					
Probability of being infective	0.100%				Very important parameter, specific for each region and time period. For ABSOLUTE results (prob. given prevalence of disease in the population). See Readme sheet	
Hospitalization rate	20%				From news reports. Varies strongly with age and risk factors	
Death rate	1%				From news reports. Varies strongly with age and risk factors (1% typical - Higher for older / at risk peo	ple)
CONDITIONAL result for ONE EVEN	NT: we assume	the number o	f infected peop	e above, and get the resul	ts under that assumption	
More appropriate to simulate known of	outbreaks (e.g. c	hoir, restaurar	nt etc.), and an w	rst-case scenario for regula	ar events (if one is unlucky enough to have infective people in attendance of a given event)	
Net emission rate	50	infectious do	ses (quanta) h-1		Includes the number of infective people present	
Avg Quanta Concentration	0.00	infectious do	ses (quanta) m-3		Analytical solution of the box model. Equation (4) in Miller et al. (2020)	
Quanta inhaled per person	0.00	infectious do	ses (quanta)			
Conditional Results for A GIVEN PR	ERSON & ONE I	EVENT (assu	mina number of	infected above, typically '	1)	
Probability of infection (1 person)	0.001%				Applying Wells-Riley infection model to the amount of infectious doses inhaled. Equation (1) in Miller e	et al. (2020)
Prob. of hospitalization (1 person)	0.0%					
Prob. of death (1 person)	0.0%					
Ratio to risk of car travel death	0	times larger	risk		See <u>FAQs</u> for rough estimate of death traveling by car on a given day	
Conditional Results for ALL ATTEN	IDEES & ONE F	VENT (assum	ning number of	nfected above, typically 1		
Number of COVID cases arising	0.16	· · ·	<u> </u>		Number of people. Multiplies probability of one person, times the number of susceptible people preser	nt
N of hospitalizations arising	0.03				Number of people	-
N of deaths arising	0.00				Number of people	
Populte for CO2 on an indicator of	rick (not noods:	l for infaction	octimation co	ignore for eimplicity		
Results for CO2 as an indicator of i	•				Applytical colution of the box model. Equation (4) in Miller et al. (2020). See TAO page for differences	w/ guanta cala
Avg CO2 exponentiation			ng 400 ppm back	•	Analytical solution of the box model. Equation (4) in Miller et al. (2020). See <u>FAQ page</u> for differences	w/ quanta caic
Avg CO2 concentration	0.13	g m-s (exclu	ding 400 ppm ba	kgrouna)	Conversion from Atmos. Chem. Cheat Sheet, plus ideal gas law	

Exhaled CO2 re-inhaled per person	0.14	grams (excludin	g 400 ppm background)	This parameter is the most analogous to risk. See FAQ page for limitations	
Exhaled CO2 re-inhaled per person	111.06	ppm * h (maybe	e easier units, excludes 400 ppm backgro	ound This parameter is the most analogous to risk. See FAQ page for limitations	
Exhaled CO2 re-inhaled per person	0.0111	%CO2 * h (sam	e as above, different unit, for use next)		
Ratio of prob of infection to Ex_CO2	0.0005	% chance of infe	ection for 1 person per %CO2 * h inhale	d	
CO2 to inhale 1 hr for 1% infect.	174614	ppm		This is another metric of risk	
ARSOLUTE result for ONE EVENT: we	use the nrev	valence of the d	isease in the community to estimate h	now many infected people may be present in our event, and calculate results based on that	
More appropriate for general risk estimati			•		
mere appropriate for general new communic	on, o.g. m a .	oonege ondeereer	n, macer gamering etc., where enem inte	indice people will het be precent	
N of infective people present	31.000			It has to be interpreted statistically. This would be the average over e.g. 100 repetitions of the event in a s	given location
Absolute results for A GIVEN PERSON	& ONE EVE	NT (using disea	ase prevalence in community)		
Probability of infection (1 person)	0.02%				
Prob. of hospitalization (1 person)	0.00%				
Prob. of death (1 person)	0.00%				
Ratio to risk of car travel death	3	times larger risk	(See FAQs for rough estimate of death traveling by car on a given day	
About to requite for ALL ATTENDED	ONE EVEN	IT (voing diago			
Absolute results for ALL ATTENDEES			se prevalence in community)	Number of secolo	
Number of COVID cases arising	4.88			Number of people	
N of hospitalizations arising	0.98			Number of people	
N of deaths arising	0.05			Number of people	
CO2 to inhale 1 hr for 1% infect.	6035	ppm		This is another metric of risk	
ABSOLUTE result for events that are R	EPEATED N	MULTIPLE TIMES	S (e.g. many class meetings during a	semester, or a daily commute on public transportation) - Ignore for a single event	
Absolute results for A GIVEN PERSON	& MULTIPL	E EVENTS (usin	ng disease prevalence in community)		
Probability of infection (1 person)	0.02%				
Prob. of hospitalization (1 person)	0.00%				
Prob. of death (1 person)	0.00%				
Ratio to risk of car travel death	3	times larger risk	(than traveling same N of days)	See FAQs for rough estimate of death traveling by car on a given day	
Absolute results for ALL ATTENDEES	& MULTIPLE	EVENTS (using	d disease prevalence in community)		
Number of COVID cases arising	4.88	•	, , , , , , , , , , , , , , , , , , , ,	Number of people	
N of hospitalizations arising	0.98			Number of people	
N of deaths arising	0.05			Number of people	
0					
Specific notes for this case	41.0	1 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 -		0101000550	
This is a case for a soccer stadium, as dis			••	<u>8131820550</u>	
And boood on this nanor, https://www.coic	encedirect co	m/science/article	e/pii/S1352231013004494		

Input Parameters						
	Value			Value in other units	Source	
Surface area	500	sq ft	=	46.5 m2	Typical value	
Height	10	ft	=	3.1 m	Typical value	
Volume				142 m3		
Faculty / instructors	1	person			Typical value - Assumed constant	
Surface area per student	65	sq ft	=	6.0 m2	CU-Boulder: 60-120 sq ft / person. UNC = 36 sq ft / person. See Readme	
Students	7	people			You can change this number directly, then the previous input of area per student is not used	
Breathing rate (instructor)	1.1	m3/h			Estimated from Miller et al. (2020), for someone talking a lot	
Breathing rate (students)	0.8	m3 / h			Estimated from Miller et al. (2020), for someone occasionally talking	
Duration of class period	50	min		0.83 h	Typical value	
Ventilation w/ outside air	3	h-1		15 L/s/per	First value is the same as "air changes per hour". Second is used in most guidelines now	
Decay rate of the virus	0.32	h-1			Average of literature values (0 and 0.62), Miller et al. (2020)	
Deposition to surfaces	0.3	h-1			Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range	
Additional control measures	0	h-1			E.g. UV disinfection, personal HEPA air cleaner, etc.	
Total first order loss rate	3.62	h-1				
CONDITIONAL RESULT: Case in	n which instructe	or is infect	ted, stu	dents are susceptible		
Quanta emission rate (instructor)	135	q h-1			Estimated from Miller (2020) and Buonnano et al. (2020a, 2020b). See Readme sheet	
Mask efficiency for emission	50%				See readme sheet	
Net emission rate	67.5	q h-1				
Avg Quanta Concentration	0.09	q m-3			Equation (4) in Miller et al. (2020)	
Mask efficiency for intake	30%				See readme sheet	
Quanta inhaled per student	0.04	quanta				
Probability of infection (1 student)	4%				Equation (1) in Miller et al. (2020). This assumes instructor was infected. See "Campus" sheet for more	general cas
Number of COVID cases arising	0.29					
CONDITIONAL RESULT: Case in	n which student	is infected	i, other	students and instructor	are susceptible	
Quanta emission rate (student)	16	h-1			Estimated from Miller (2020) and Buonnano et al. (2020a, 2020b). See Readme sheet	
Mask efficiency for emission	50%				See readme sheet / Assume potentially different masks types for students and instructor	

Net emission rate	8	q h-1		
Avg Quanta Concentration	0.01	q m-3	Equation (4) in Miller et al. (2020)	
Avg Quanta Concentration	0.01	q III-3	Equation (4) in while et al. (2020)	
Mask efficiency for intake	30%		See readme sheet	
Quanta inhaled per person	0.007	quanta	Using instructor breathing rate	
Probability of infection (1 person)	0.7%		Equation (1) in Miller et al. (2020). This assumes 1 student was infected. See "Campus" sheet for more general of	case
Number of COVID cases arising	0.048		This is for one lecture only, of the length specified above. For a whole semester, see "Campus" sheet	

Input Parameters					
	Value		Value in of	ther units	Source
Surface area	1800	sq ft	=	167.4 m2	Just assuming a value, similar to choir outbreak case
Height	16	ft	=	4.8 m	Assuming that air within this height can get mixed to respiratory height
Volume				810 m3	
Infected people	1	person			Just assuming a value, similar to choir outbreak case
Susceptible people	60	people			Just assuming a value, similar to choir outbreak case
Breathing rate (index case)	1.1	m3 / h			Estimated from Miller et al. (2020), for someone singing
Breathing rate (susceptible)	1.1	m3 / h			Estimated from Miller et al. (2020), for someone singing
Duration of event	150	min		2.50 h	Just assuming a value, similar to choir outbreak case
Wind speed	5	km/ h		1.4 m/s	1/2 of low end of average daytime US wind speed per https://sciencing.com/average-daily-wind-speed-24011.htm
Ventilation w/ outside air	386	h-1			Same as "air changes per hour", calculated approximately from the wind speed
Decay rate of the virus	9.3	h-1			Estimated (UV index 5, default T & RH) from https://www.dhs.gov/science-and-technology/sars-airborne-calculato
Deposition to surfaces	0.3	h-1			Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range
Additional control measures	0	h-1			E.g. UV disinfection, personal HEPA air cleaner, etc.
Total first order loss rate	396	h-1			
CONDITIONAL RESULT: Case	with one person i	infected, ev	eryone else is sus	sceptible	
Quanta emission rate (infected)	970	q h-1			Just assuming a value, similar to choir outbreak case. This should be an upper limit for COVID-19. See Readme
Mass efficiency for emission	0%				No masks were worn, for comparison with choir outbreak
Net emission rate	970	q h-1			Includes the number of infected people above
Avg Quanta Concentration	0.00	q m-3			Equation (4) in Miller et al. (2020)
Quanta inhaled per person	0.0083	quanta			
Probability of infection (1 person)	0.8%				Equation (1) in Miller et al. (2020)
Number of COVID cases arising	0.5				

Estimation of COVID-19 aeros	sol transm	nission in a	university campus		
Input Parameters					
				Comments	
Probability of a student being infected	0.30%			See readme sheet	
Probability of an instructor being infected	0.30%			See readme sheet	
Student population of campus	33000	people		Estimated for large Western US university	
Instructors w/ in-person teaching	2000	people		Estimated for large Western US university, including TAs	
Indoor classroom periods per student	2	per day		Estimated for large Western US university. Duration set in "Classroom" sheet	
Indoor classroom periods per instructor	1	per day		Estimated for large Western US university. Duration set in "Classroom" sheet	
Duration of semester	13	weeks	65 days		
Total class hours for student per semester	108	h / semester			
Total class hours for instructor per semeste	54	h / semester			
Probability of hospitalization for students	5%			Estimated from news reports, varies with time and location	
Probability of hospitalization for faculty	20%			Estimated from news reports, varies with time and location	
Probability of death for students	0.05%			Estimated from news reports, varies with time and location	
Probability of death for faculty	0.50%			Estimated from news reports, varies with time and location	
ABSOLUTE Results: infections, hospitali	izations, and c	deaths			
Student cases	1144	cases			
Instructor cases		cases			
mondotor cases		Cuses			
Student hospitalizations	57	hospitalizations	3		
Instructor hospitalizations		hospitalizations			
	0.0				
Student deaths	0.57	deaths			
Instructor deaths	0.01	deaths			

Estimation of COVID-	io acrosor tr	anomis	31011	iii aii aibali	Jus		
Input Parameters							
input i didineters	Value			Value in other u	ınits	Source	
Surface area		sq ft	=	28.6		Provided by bus operator	
Height	7.9		=	2.4		Provided by bus operator	
Volume					m3		
Passengers	40	people				Capacity is 50 people, provided by bus operator. Assuming 80% full for this estimation	
Breathing rate		m3 / h				Estimated from Miller et al. (2020), for someone occasionally talking	
Duration of trip	45	min		0.75	h	Typical value. People may come in and out for urban buses, that mixes people and will increase transmis	ssion more
Ventilation w/ outside air	3	h-1		1.4	L/s/per	First value is the same as "air changes per hour". Second is used in most guidelines now	
Decay rate of the virus	0.32	h-1				Average of literature values (0 and 0.62), Miller et al. (2020)	
Deposition to surfaces	0.3	h-1				Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range	
Additional control measures	0	h-1				E.g. UV disinfection, personal HEPA air cleaner, etc.	
Total first order loss rate	3.62	h-1					
Fraction of population infected	0.30%					See readme sheet	
Number of passengers infected	0.12	people					
ABSOLUTE RESULTS: probab	ility of infection, t	taking into	accou	nt the prevalence	of the disea	ase in the population	
Quanta emission rate	10	q h-1				Estimated from Miller (2020) and Buonnano et al. (2020a, 2020b). See Readme sheet	
Mask efficiency for emission	50%					See readme sheet	
Net emission rate	5	q h-1					
Avg Quanta Conc. (1 infected)	0.01	q m-3				Equation (4) in Miller et al. (2020)	
Avg Quanta Conc. (w/ prob of inf	f. 0.002						
Mask efficiency for intake	30%					See readme sheet	
Quanta inhaled per person	0.00	quanta					
Probability of infection (1 person)	0.1%					Equation (1) in Miller et al. (2020)	
Number of COVID cases arising	0.03						

Input Parameters						
•	Value			Value in other units	Source	
Surface area	1800	sq ft	=	167 m2	Just assuming a value, similar to choir outbreak case	
Height	15	ft	=	5 m	Assuming that air within this height can get mixed to respiratory height	
Volume				766 m3		
Prob. of demonstrator infected	0.30%				See readme sheet	
Number of infected people	2.5	person			Just assuming a value, similar to choir outbreak case	
Susceptible people	837	people			Assume 5 people per m2, per http://www.gkstill.com/Support/crowd-density/CrowdDensity-1.html	
Breathing rate (index case)	0.8	m3 / h			Estimated from Miller et al. (2020), for someone occasionally talking	
Breathing rate (susceptible)	0.8	m3 / h			Estimated from Miller et al. (2020), for someone occasionally talking	
Duration of event	150	min		2.50 h	Typical value for a demonstration. Also similar to choir outbreak case	
Wind speed	5	km/ h		1.4 m/s	1/2 of low end of average daytime US wind speed per https://sciencing.com/average-daily-wind-speed-	-24011.htm
Ventilation w/ outside air	386	h-1			Same as "air changes per hour", calculated approximately from the wind speed	
Decay rate of the virus	9.3	h-1			Estimated (UV index 5, default T & RH) from https://www.dhs.gov/science-and-technology/sars-airborne	e-calculato
Deposition to surfaces	0.3	h-1			Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range	
Additional control measures	0	h-1			E.g. UV disinfection, personal HEPA air cleaner, etc.	
Total first order loss rate	396	h-1				
ABSOLUTE RESULTS: probab	ility of infection,	taking into	accoun	the prevalence of the disc	ease in the population	
Quanta emission rate (infected)	100	q h-1			People talking loudly, see readme sheet	
Mass efficiency for emission	40%				Assume 80% mask wearing	
Net emission rate	151	q h-1			Includes the number of infected people above	
Avg Quanta Concentration	0.00	q m-3			Equation (4) in Miller et al. (2020)	
Quanta inhaled per person	0.00	quanta				
Probability of infection (1 person	0.10%				Equation (1) in Miller et al. (2020)	
Number of COVID cases arising	0.8					

Input Parameters							
•	Value			Value in other	units	Source	
Surface area	146595	sq ft	=	13637.0) m2	https://en.wikipedia.org/wiki/BOK_Center and estimated from Google maps	
Height	120	ft	=	36.6	3 m	https://en.wikipedia.org/wiki/BOK_Center	
Volume				499114	1 m3		
Attendees	19199	people				https://en.wikipedia.org/wiki/BOK_Center	
Breathing rate	0.9	m3/h				Estimated from Miller et al. (2020), for someone talking, shouting, cheering part of the time	
Duration of Event	120	min		2.00) h	Typical value, includings some waiting time before event, and time to enter and exit	
Area of player field	19550	sq ft	=	1818.6	3 m2	https://en.wikipedia.org/wiki/Ice_hockey_rink#Dimensions with buffer at the back	
Rest of building area	127045		=	11818.4	m2		
Ventilation for player field	2137	L/s		7692	2 m3 h-1	10 L/s/person + 0.9 L/s/m2, per ASHRAE 62.1-2013	
Ventilation for rest of building	83593	L/s		300934	m3 h-1	3.8 L/s/person + 0.3 L/s/m2, per ASHRAE 62.1-2013	
Ventilation w/ outside air	0.62	h-1		#REF!	L/s/per	First value is the same as "air changes per hour". Second is used in most guidelines now	
Decay rate of the virus	0.32	h-1				Average of literature values (0 and 0.62), Miller et al. (2020)	
Deposition to surfaces	0.3	h-1				Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range	
Additional control measures	0	h-1				E.g. UV disinfection, personal HEPA air cleaner, etc.	
Total first order loss rate	1.24	h-1					
Case in which instructor is infe	cted, students a	re suscep	tible				
Quanta emission rate per person	50	q h-1				Estimated from Miller (2020) and Buonnano et al. (2020a, 2020b). See Readme sheet, shouting, cheering, ta	lking
Mask efficiency for emission	15%					See readme sheet; Assuming 1/3 of people wearing masks	
Net emission rate per person	43	q h-1					
Fraction of infected people in OK	0.10%						
Total emission rate	816						
Avg Quanta Concentration	0.001	q m-3				Equation (4) in Miller et al. (2020)	
Mask efficiency for intake	15%					See readme sheet	
Quanta inhaled per person		quanta					
Probability of infection (1 student)	0%					Equation (1) in Miller et al. (2020)	

Number of COVID cases arising	24				
realises of oo vib cacco anoling	- '				