Special Report 88-25

November 1988

Ice observations on the Allegheny and Monongahela Rivers

MIC FILE COEY

Michael A. Bilello, Lawrence W. Gatto, Steven F. Daly and John J. Gagnon

ND-A203 630

Proposed for OFFICE OF THE CHIEF OF ENGINEERS

UNCLASSIFIED

٤	iEC1	JRIT	7 CL	PZA	FICA	NOIL	OF.	THIS	PAG	÷Ε

و المراجع المراجع المراجع المراجع المستقد المراجعة المناسطة المناسطة المستقدمة المستقدمة

	REPORT	DOCUMENTATIO	ON PAGE			Form Approved OMB NO. 0704-0188 Exp. Date: Jun 30, 1986				
1a. REPORT SECURITY CLASSIFICATION Unclassified	N		18. RESTRICTIVE MA	ARKINGS						
2a. SECURITY CLASSIFICATION AUTHO	PRITY	 _	3. DISTRIBUTION/AVAILABILITY OF REPORT							
2b. DECLASSIFICATION/DOWNGRAD	ING SCHEDULE		Approved fo	or public relea	ıse; disti	ribution is unlimited.				
4. PERFORMING ORGANIZATION REP	ORT NUMBER(S)		5. MONITORING O	RGANIZATION REP	ORT NUMBE	ER(S)				
Special Report 88-25										
6a. NAME OF PERFORMING ORGANI U.S. Army Cold Regions and Engineering Labora	Research	6b. OFFICE SYMBOL (If applicable) CECRL	7a. NAME OF MON							
6c. ADDRESS (City, State, and ZIP Co	ode)	_ CECKL	7b. ADDRESS (City.	Chief of Eng . State, and ZIP Co						
72 Lyme Road Hanover, N.H. 03755-12	90		Washington	, D.C. 20314						
8a. NAME OF FUNDING/SPONSORIN ORGANIZATION	G	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	INSTRUMENT IDENT		NUMBER				
8c. ADDRESS (City, State, and ZIP Co	rde)		10. SOURCE OF FU	NDING NUMBERS						
			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.				
13a. TYPE OF REPORT 16. SUPPLEMENTARY NOTATION	13b. TIME CO	W.; Daly, Steven	en F. and Gagnon, John J. 14. DATE OF REPORT (Year, Month, Day) November 1988 15. PAGE COUNT 47							
17. COSATI CODE		18. SUBJECT TERMS (Co		-	ittly by bloc	ak number)				
FIELD GROUP	SUB-GROUP	Allegheny River	Win	er ice ter navigatio	n					
19. ABSTRACT (Continue on revene l	necessary and i	Monongahela R								
19. ABSTRACI (Confinue on reverse if necessary and identify by block number) Corps of Engineers and National Weather Service records of ice conditions on the Allegheny and Monongahela Rivers in Pennsylvania and West Virginia were analyzed for seven recent winters. The on-ground observations recorded daily at a number of lock and dam locations were issued in the form of alphanumeric ice codes that included the coverage, type, thickness, riructure and extent of river ice. These codes were used to graph ice conditions throughout the rivers to allow easier analysis of historical ice conditions. In addition, comparisons were made between these observations and aerial videotapes and satellite images of the ice. Results of these comparisons illustrate that ice data from these three sources are complementary and should be used together whenever possible.										
20. DISTRIBUTION/AVAILABILITY OF AE UNCLASSIFIED/UNUMITED	STRACT SAME AS F	RPT. DTIC USERS	21. ABSTRACT SEC Unclassified		NON					
22a. NAME OF RESPONSIBLE INDIVIDU Lawrence W. Gatto	JAL		22b. TELEPHONE (1 603-646-41 (. OFFICE SYMBOL ECRL-RE				

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

PREFACE

This report was prepared by Michael A. Bilello, Meteorologist, Science and Technology Corporation, Hampton, Virginia; Lawrence W. Gatto, Geologist, Geological Sciences Branch, Steven F. Daly, Research Hydraulic Engineer, Ice Engineering Research Branch, and John J. Gagnon, Civil Engineering Technician, Ice Engineering Research Branch, U.S. Army Cold Regions Research and Engineering Laboratory. The work was funded by the Office of the Chief of Engineers, Directorate of Civil Works, under the River Ice Management (RIM) Program, CWIS 32228, Remote Ice Monitoring System, and CWIS 32227, Forecasting Ice Conditions on Inland Rivers.

The excellent cooperation received from U.S. Army Corps of Engineers District, Pittsburgh, and U.S. National Weather Service personnel in Pittsburgh, Pennsylvania, who provided the river-ice data, is greatly appreciated. The authors thank the following CRREL personnel: Kevin Carey and Dr. George Ashton for their technical reviews of the paper; Mark Hardenberg for his editorial work; Edward Foltyn for assisting in preparing the tables in Appendix A; William Bates, Edward Perkins and Eleanor Huke for drawing the figures; Jacqueline Castor and Donna Harp for typing the manuscript; and Guenther Frankenstein, Chief, Ice Engineering Research Branch, for providing the opportunity to conduct the research.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

CONVERSION FACTORS: U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

These conversion factors include all the significant digits given in the conversion tables in the ASTM *Metric Practice Guide* (E 380), which has been approved for use by the Department of Defense. Converted values should be rounded to have the same precision as the original (see E 380).

Multiply	Ву	To obtain
inch	25.4	millimeter
foot	0.3048	meter
foot ³ /second	0.02831685	meter ³ /second
mile	1609.347	meter
degrees Fahrenheit	$T^{\circ}C = (T^{\circ}F - 32)/1.8$	degrees Celsius

Ice Observations on the Allegheny and Monongahela Rivers

MICHAEL A. BILELLO, LAWRENCE W. GATTO, STEVEN F. DALY AND JOHN J. GAGNON

INTRODUCTION

Detailed information on daily ice conditions along entire lengths of navigable rivers is often nonexistent or difficult to recover from data archives. In this report ground observations of ice conditions recorded at a series of U.S. Army Corps of Engineers Lock and Dam sites along the Allegheny River in Pennsylvania and the Monongahela River in Pennsylvania and West Virginia

were compiled from archives, graphed, analyzed and compared to ice data obtained from aerial videotapes and Land-

sat images.

The objectives of this study were 1) to determine the annual variability in river ice conditions for selected winters as observed from the ground, 2) to compare ice data acquired from the ground, videotapes and Landsat images, and 3) to develop a computer program to graphically portray the ground data so that these data, when collected in the future, could be quickly displayed and disseminated as an aid for navigation during the winter. This study was a part of the CRREL River Ice Management (RIM) program, a program that examined several rivers in the United States where ice causes winter navigation problems.

DATA SOURCES, COMPILATION AND ANALYSIS

Ground observations

Ground observations of river ice conditions were routinely obtained from eight U.S. Army Corps of Engineers Lock and Dam (L&D) sites on the Allegheny River and nine L&D sites on the Monongahela River, and occasionally from three National Weather Service (NWS) sites located above L&D 9 on the Allegheny

River. These Corps and NWS sites cover the rivers from Pittsburgh to West Hickory, Pennsylvania, about 158 miles upstream on the Allegheny River, and from Pittsburgh to Opekiska, West Virginia, about 115 miles upstream on the Monongahela River (Fig. 1).

The Corps ground observers use a five-element alphanumeric code (Table 1) to describe ice conditions each day and send the codes to Corps and NWS central offices located around Pitts-

Figure 1. Location map (circled numbers are L&D numbers).

Table 1. Corps of Engineers alphanumeric ice code.

Amount (coverage)	Type	Thickness	Structure	Extent
0-None	R-Running (floating)	In inches	B-Breaking	In miles
1-Scattered 2-2 tenths	A-Stationary		H–Honeycombed T–Rotten	upstream
	P—Stopped J—Jammed			
3-3 tenths	•		L-Layered C-Clear	
4-4 tenths	F-Formed locally		C-Clear	
5–5 tenths	S-Shore			
6-6 tenths				
7–7 tenths	Examples:			
8-8 tenths				
9-9 tenths	1 S 1/2 T X means scatter	ed shore ice, 1/2	in. thick, rotten and er	ctending an un-
10–10 tenths, full	known distance upstream means 3 tenths of the rive extending 4 miles upstrea	er is covered by r		

Table 2. Partial record of ice conditions on the Monongahela River, January 1985.

Date	Braddock	Elizabeth	Monessen	Maxwell	Greensboro	Pt. Marion	Morgantown	Hildebrand	Opekisa
19									7F 1/2 CX
. 20						1F 1/8 CX	1F 1/4 CX		9A1CX
21	9A 1/2 CX	2F 1/2 CX	10A 1 CX	10A 2 CX	10F 1 CX	10F 1 CX	10F 2 CK	10F 2 CX	10A 2 CX
22	10A 1 CX	6R1CX	10A 2 CX	10A 3 CX	10F1 CX	10F 4 CX	10F 4 CX	10F 4 CX	10A 3 CX
23	10A 1 CX	5R 2 CX	10A 21/2 CX	10A 3 1/2	10R BX	10F 5 CX	10F 5 CX	10F 4 CX	10A 3 CX
24	10A 1 CX	5R 2 C10	10A 3 C18	10A 3 1/2 C	K 1R1 C2	10F 5 C11	10F 4 C8	10F 3 C7	10A 4 C14
25	9A 2 C5	6R 3 C10	10R 3 L18	10A 3 C22	1R 1 B5	10F 5 C10	10F 4 C6	10F 3 C7	10A 3 CX
26	9A 2 C5	6R 2 C10	10R 3 L18	10A 1 C22	10A 1 C1	10F 5 B10	10F 5 B6	10F 3 C7	10A 4 C14
27	9A 2 C4	2R 2 C10	10A 3 L18	10A 3 L22	5A 1 B2	10F 5 C10	10F 5 C6	10F 4 C8	10A 5 C14
28	8A 2 B2	2R 2 C10	10P 4 L18	10A 3 L22	8R 2 B3	10F 5 C10	10F 4 1/2 C8	10F 4 C8	10A 7 C14
29	no ice	5R 2 B10	10P 4 L18	10A 3 L22	10A 2 L5	10F 4 C10	10F 4 C8	10F 4 C8	10A 6 C14

burgh. The data are then issued to users by computer modem and are archived at Corps and NWS offices as chronological listings of the ice observations at each of the sites (e.g., Table 2; Appendix A). The data, however, have two major omissions. The ice observers at some sites often did not collect data on weekends, and they frequently could not determine how far upstream a particular ice type existed. We hope that these data gaps can be reduced in the future. Although these ground observations are available beginning with the 1961–62 winter, the records for the seven consecutive winters from 1979–80 to 1985–86 are most complete and are used in this study.

Since it is difficult for a user to visualize and understand the distribution of ice conditions from tables, we developed a way to graph the data. Graphs of ice observations for the Allegheny (Fig. 2a) and Monongahela (Fig. 2b) Rivers during the 1985–86 winter that employ our method

are shown here. Other methods have been used in the past to graph river-ice conditions (Bates et al. 1968, Michel 1971, Starosolszky 1985, Canadian Coast Guard 1986).

Our review of the Corps' ice code (Table 1) indicated that most of the information given can be displayed graphically, although in preparing the hand-drawn graphs (Fig. 2a and b), it was necessary to drop the ice structure element of the code, and to reduce the number of amount and type categories for the sake of readability. Amount was reduced from eleven categories to four: 0 (area clear of ice), 1 through 5 tenths (10-50%), 6 through 9 tenths (60-90%), and 10 tenths (100%). Type was reduced from six to three: running or floating ice; stationary, stopped, jammed or formed locally (any one of the four); and shore ice. We also included discharge and air temperature data to show the relationships between temperature, discharge and ice conditions.

Aerial videotapes

Videotapes (1/2-in. VHS) of the rivers were taken vertically with a Panasonic 777 video camera fitted with a 12:1 zoom lens. A Cessna 172 fixed-wing aircraft, flying at an altitude between 2000 and 3500 ft above the river, depending on cloud conditions and the width of the river, carried the camera. An experienced ice interpreter viewed the tapes on a TV monitor and visually classified ice conditions into six units (Table 3) that were readily identifiable, that satisfactorily described the range of ice that usually occurs on these rivers, and that did not require ground truth data for verification. The interpreter did not attempt to infer characteristics from the tapes that could only be measured on the ground (e.g., porosity, strength or ice thickness).

Boundaries between the units were mapped and the area of each unit was measured. For units comprising both ice and open water—solid ice cover with open-water areas, fragmented ice with open-water areas and ice floes or frazil slush and pans—the surface concentration of ice was also visually estimated.

Table 3. Ice conditions as observed on videotapes (from Gatto et al. 1986).

Map unit	Description
	River is ice-free, no ice apparent.
	River is completely covered (100%) with ice; no individual ice pans, blocks or chunks are visible; ice may be snow-covered.
	River is partially covered with solid ice (as described above) but has open (ice-free) areas.
	River is completely covered (100%) with ice that has distinct, variably sized, individual ice pans, blocks or chunks.
	River is partially covered with fragmented ice (as described above) but has open (ice-free) areas.
000 80 000 80 000 80	River is primarily open (ice-free) with floating ice floes, slush or pans.

Landsat images

Five Landsat satellites have provided images of the rivers since 1972. Each Landsat has two imaging sensors: either a Multispectral Scanner (MSS) with an Instantaneous Field of View (IFOV) of approximately 260 by 260 ft and a Return Beam Vidicon (RBV) with an IFOV of either 262 by 262 ft or 131 by 131 ft, or a MSS (same IFOV) and a Thematic Mapper (TM), with an IFOV of 98 by 98 ft. Gray tones and patterns in river ice are most visible to the eye on images from the 0.6-to 0.7-µm MSS, 0.580-to 0.680-µm RBV (Landsat 1 and 2), 0.505- to 0.750-µm RBV (Landsat 3), and 0.63- to 0.69-µm TM (Landsat 4 and 5).

Images of the same location were taken every 18 days by Landsat 1, 2 and 3. When more than one was operating simultaneously, images of the same location were taken about every 9 days. During simultaneous Landsat 4 and 5 operations, images of the same location were taken every 8 days; images were taken every 16 days when one satellite was operating.

We analyzed black and white Landsat film positives (9 by 9 in.) using traditional photographic interpretation techniques. No special computer enhancements or analytical techniques were used (Gatto 1985). Reaches of the rivers appeared as black, gray or white with textures and patterns within these tones sometimes apparent, but the subtleties that differentiate the six ice conditions that are visible on videotapes were not apparent on Landsat images. To determine which types of river ice usually produced these tones, textures and patterns, we compared ice conditions shown on aerial photographs (Gatto and Daly 1986) and videotapes taken on dates as close as possible to those for which Landsat images were available.

These comparisons show that when the river appeared black on an image and had no discernible textures and patterns, the river was open (ice free). It is possible, however, that thin, transparent ice, which appears black from above and cannot be distinguished from open water in Landsat images, covered part or all of particular river reaches in some instances. Ice conditions that appear gray on Landsat images can vary from fragmented ice (usually thin) with large, interspersed open areas to ice floes, pans or slush mixed with open areas. The gray tone usually had a patchy or mottled appearance, or showed textures or patterns.

When the river appeared white (or nearly white), ice conditions could vary from solid to

Figure 2. Daily ice conditions observed during the 1985–86 winter with air temperatures (U.S.Department of Commerce 1985 and 1986) and river discharges (U.S. Department of the Interior 1985 and 1986).

Martine the standard will be then the new the state of the beautiful to the standard to the st

b. Monongahela River.

Figure 2 (cont'd).

fragmented ice (usually thicker than gray ice). A white tone could include scattered open water areas that are smaller than the Landsat sensor IFOVs, or fewer open water areas than occur where a gray tone is observed. A white tone could also mean that the ice was snow-covered. For example, thin ice in a Landsat scene may be transparent, appear black and be classified as open water. This same ice cover viewed after a light snowfall would appear white.

RESULTS

Ice conditions from ground observations

The Corps and NWS ice observations for the winters from 1979-80 through 1985-86 (Appendix A) were examined to determine the dates of initial ice formation and final clearance of ice on the Allegheny and Monongahela Rivers. First ice occurred as early as 19 December and as late as 20 January on the Allegheny, and as early as 21 December and as late as 3 February on the Monongahela. Final ice was observed as early as 8 February and as late as 20 March on the Allegheny, and as early as 20 January and as late as 4 March on the Monongahela.

Although ice formed on the rivers during all seven winters, the severity of the ice conditions varied each season. Both rivers had the least ice cover in the 1982–83 winter, and the most in 1983–84. During four of the winters, ice formed on the Allegheny River earlier than on the Monongahela, and during all seven winters, ice remained on the Allegheny from 1 to 20 days longer than on the Monongahela. An inspection of the total number of days that ice was observed at each of the L&D sites revealed that approximately the lower 20 miles of the Monongahela and the lower 10 miles of the Allegheny River have the fewest number of days with ice.

The type and structure of ice given in the ice code (Table 1) made it possible to note the times and locations of ice jams and the frequency of running or stationary ice throughout the winter. Also, we could statistically summarize the percent of ice coverage on the rivers.

Ice jams were recorded on the Allegheny at the following locations (Fig. 1): above Rimerton in January 1981, above Mosgrove in March 1982, at Parker in January 1985, and near Natrona in February 1985. An ice jam was observed on the Monongahela in January 1984 at Maxwell.

Ice on both rivers is generally in motion; there are frequently changing intervals of either solid

or partial ice cover with occasional occurrences of open water throughout the winter. A comparison between complete and partial ice covers indicates that, on the Allegheny River above Rimerton, a complete ice cover occurs approximately during 75% of the total days when ice is reported. In contrast, below Acmetonia, a complete ice cover is observed during only about 27% of the total days. On the Monongahela River near Opekiska, a complete ice cover occurs during about 70% of the days when ice is reported, and near Elizabeth and Braddock, about 21%.

Comparisons of river ice observations

It is clear that information on ice type (including movement), thickness and structure (Table 1) can only be obtained by ground observations, although inferences regarding some of these characteristics could be made from aerial videotapes by an experienced interpreter. Because of the dynamic nature of river ice and the limited view upstream of a ground observer, the ground observations apply only for the location near the observation site and only as far upstream as is visible, although the ice conditions as seen near the dams were usually assumed to persist upstream. Sometimes other upstream observers reported ice conditions beyond the view of the observer at the locks and dams.

The aerial videotapes give more accurate information on the areal coverage and extent of different ice types than do the ground observations. Landsat images also show the areal distributions of ice as do the videotapes, but with much less detail and frequency. We have compared data from these three data sets collected during 1984–85 and 1985–86 to illustrate their advantages and disadvantages.

Winter of 1984-85

Ground observers reported ice on the Allegheny River for 49 days from 10 January to 25 February (Fig. A6) and on the Monongahela River for 37 days from 14 January to 20 February (Fig. A13). Ice was observed on videotapes taken of the lower 7 miles of the Allegheny River on 11 days from 23 January to 24 February. A 28 February tape showed no ice. Ice was apparent on videotapes of the lower 66 miles of the Monongahela River taken on five days from 28 January to 24 February. A 16 January Landsat image was the only one taken this entire winter when ice was present. There were no days this winter when ground observations, videotapes and Landsat images were acquired on the same day.

Figure 3. Ice conditions on the Allegheny River on 16 January 1985 as observed by ground observers and on a Landsat image (dashed line is gray ice, solid line is white ice).

The 16 January Landsat image showed that 70% of the Allegheny River below L&D 6 was covered with gray ice and 30% was open (Fig. 3). White ice and gray ice covered 88% of the river upstream of I &D 6 to river mile 72, while 12% of this section was open. Ground observations made on 16 January at the four L&D sites below L&D 6 showed 1-in.-thick, clear, running ice covering 20-100% (average coverage 80%) of the river some unknown distance upstream from each site. Between L&D 6 and L&D 8 was 3- to 4-in.thick, layered, stopped ice covering all of the river and extending upstream an unknown distance. Above L&D 9 (some unknown distance) was 1-in.-thick, clear, running ice covering 80% of the river.

The gray ice apparent on the Landsat image was composed of this thin, clear, moving ice, while the white ice consisted of the thicker, layered ice that was stopped. When used together, Landsat and ground observations provide details of the ice and its extent upstream not available from either source alone.

The 16 January Landsat image showed only 6 miles of gray ice on the Monongahela River above Opekiska L&D. The ground observation at Opekiska L&D showed shore ice, 1/2 in. thick and clear, covering 70% of the river some unknown distance upstream. Ground observers also reported 1/8- to 1/4-in.-thick, clear, locally formed ice and shore ice covering 10% of the river for unknown distances upstream of L&D 7, L&D 8 and

a. 28 January 1985.

b. 4 February 1985.

Figure 4. Ice conditions on the lower 5 miles of Maxwell Dam pool, Monongahela River, as observed on videotapes and by ground observers (see Table 3 for definitions of ice symbols).

Morgantown L&D. No other ground observations were made. It is not surprising that this thin, clear ice below Opekiska L&D was not apparent on the Landsat image.

Ice conditions 5 miles upstream of Maxwell L&D on the Monongahela River as observed from videotape and the ground were compared for 28 January and 4 February. The videotape from 28 January shows 69% of this reach covered with solid ice, 28% with fragmented ice with interspersed open areas and 3% open water. The ground observer at Maxwell reported 100% of the

river covered with stationary ice, 3 in. thick and layered, and extending 22 miles upstream (Fig. 4a). The 4 February tape shows 27% of this reach covered with solid ice, 62% covered with fragmented ice with interspersed open areas and 11% being open water (Fig. 4b). A Maxwell ground observer reported on 4 February that 100% of the river was covered with stopped ice that was 4 in. thick and layered, extending 22 miles upstream.

For the first 5 miles upstream of Maxwell L&D, the tapes and ground observations showed nearly complete ice cover on both dates, with the ground observer reporting stationary ice on 28 January and stopped ice on 4 February. This suggests that the ice was moving between 28 January and 4 February, which would explain why the 4 February tape (Fig. 4b) showed more fragmented ice than the 28 January tape (Fig. 4a). As with Landsat and ground observations, the videotapes and ground observations are also complementary and provide a more detailed view of ice conditions than either one alone.

Winter of 1985-86

Ground observers reported ice on the Allegheny River for 63 days from 19 December to 19 February (Fig. 2a, A7) and on the Monongahela River for 39 days from 26 December to 1 February (Fig. 2b, A14). Videotapes were

taken of the lower 17 miles of the Allegheny River and of the lower 13 miles of the Monongahela River on 9 days when ice was apparent from 28 December to 28 January. Landsat images taken on 3 and 19 January and 4 and 20 February were not useful because the ground was cloud-covered. The only Landsat image that showed ice was taken on 8 March 1986, after the last videotape was taken and the last ground observation was made.

The 8 March Landsat image showed gray ice on 92% of the Allegheny River above L&D 8, on

a. 28 December 1985.

b. 8 January 1986.

c. 22 January 1986.

Figure 5. Ice conditions on the lower 2.5 miles of L&D 3 pool, Allegheny River, as observed on videotapes and by ground observers (see Table 3 for definitions of ice symbols).

32% of the Allegheny at L&D 4 pool, and on 11% of the Monongahela River at L&D 2 pool. Since no ground observations or videotapes were taken on this day, we cannot compare them to the Landsat-derived data. However, we can compare data from videotapes and ground observations from other days.

Ground observers at the Allegheny River L&D 3 would have a visual range of at least 2.5 miles upstream of the dam, which is the extent of the videotape coverage for this pool. On 28 December 1985, the videotape showed 82% of this reach covered by solid ice with interspersed open at eas, 4% covered by ice floes, slush and pans, and 14% open water (Fig. 5a). The ground observer reported 90% of the river covered with 1-in.-thick, clear ice that was stopped, and that extended upstream 9 miles. On 8 January, the videotape showed 4% solid ice, 33% fragmented ice, 37% fragmented ice with interspersed open areas, and 26% open water (Fig. 5b). The ground observer reported a 90% cover of stationary, 1-in.thick, clear ice that extended an unknown distance upstream. On 22 January (Fig. 5c), video showed 39% covered with ice floes, slush and pans, and 61% open water. The ground observer reported 30% coverage with running ice that was 6 in. thick and breaking, and that extended 9 miles upstream.

Computer-generated graphs

It became obvious during preparation of Figure 2 that because of the extensive hand-drafting required, use of the future ground observations would be limited. To expedite preparation of graphs of future data, a computer graphics program was developed to use the same ice codes as were used to prepare the hand-drawn graphs. In the computer-generated graphs (Fig. 6; Appendix A), the order of the L&D locations is reversed (see Fig. 1), the ice code symbols are slightly different (see Fig. 2), and ice thicknesses were not included because of space limitations. The use of a multi-colored diagram will allow thickness to be added (Bilello et al. 1988).

Figure 6. Part of the computer-generated diagram of daily ice conditions, Monongahela River, January 1985.

SUMMARY AND CONCLUSIONS

The river ice conditions on the Allegheny and Monongahela Rivers were highly variable, as shown by the graphs of the ground observations. The observed ice was largely in motion, although there was much stationary ice and major periods of open water. The graphs provide a convenient way of showing these wide variations, in space and time.

Each method of observation—ground, aerial video and Landsat—has certain advantages and disadvantages (Table 4). Ground observations have the advantage that data on thickness, movement and structure can be frequently obtained, and, generally, ground observations are not affected by the weather. The major limitation of ground observation is the line-of-sight of the observer, which is often no more than several miles. Given the wide variability of ice conditions, this limitation can be critical.

Aerial video observation has the advantages of providing detailed views of large river reaches, at frequent intervals, and at reasonable cost. The video image is relatively easy to interpret, but training or experience is essential. The disadvantages are the lack of ice thickness and the adverse effect of bad weather, especially low cloud ceilings. Given these restrictions, aerial video is perhaps the best means of closely observing ice conditions on large rivers and, when

combined with ground observations, the two methods provide an excellent means of recording and analyzing river ice.

Landsat imagery has the advantage of providing images of large reaches of a river that can be easily interpreted. There is a good data base of usable images starting in 1972. Disadvantages are the infrequent coverage, the obscuration by clouds and poor resolution of the images, which limit the level of detailed information. Thin, clear ice, for example, is often undetected. Ice conditions determined from Landsat are recorded as either white or gray in tone so that ice details that are obtained by either ground observers or aerial videos are not apparent from Landsat images.

Despite differences in the detail obtainable from the three methods, they generally agree on the overall extent of ice coverage. For example, the total percentage of selected pools covered by ice as determined on selected dates is shown in Figure 7. It can be seen that, except for 16 January 1985 on the Monongahela River, the methods are within 15% of each other. The Landsat observation on 16 January 1985 (Fig. 7b) indicates much more ice than the ground observation.

This study has illustrated the importance of three observation techniques for monitoring riverice conditions. Each method provides useful data and, when analyzed together, they give a more

Table 4. Advantages and disadvantages of the three data

		Advantages		Disadvantages
Landsat	-	Synoptic view of large reaches of the river	-	Poor IFOV gives limited, not detailed information
	-	Good data base of images since 1972	-	Infrequent acquisition Cloud cover can obscure river
	-	Easy to interpret images	-	Snow cover obscures ice
Video	-	View of large reaches of the river	-	Cannot provide ice thickness
	-	Good IFOV gives as much detail as is required	-	Cannot acquire tapes if cloud ceiling is too low
	-	Easy to interpret, but experienced interpreter is required	-	Snow cover obscures ice
	-	Frequent acquisition		
Ground	_	Detailed ice data	-	Limited horizontal view
	-	Frequent observations	-	Data quality depends on observer
	-	Not weather-dependent	-	Data must be graphed to be useful

a. Allegheny River.

b. Monongahela River.

Figure 7. Percent of river ice cover as observed on the ground, from videotapes and from Landsat images.

complete understanding of a dynamic river-ice regime than would be possible with one method alone.

With the computer-graphics capability developed for this study, there may be increased use of the ground observations if they are quickly graphed and available for rapid dissemination where navigation on ice-prone rivers throughout the winter is required. This potential for expanded use of these data may result in the receipt of better and more complete information from the ice observers.

LITERATURE CITED

Bates, R.E., D. Saboe and M. Bilello (1968) Ice conditions and prediction of freeze-over on streams in the vicinity of Ft. Greely, Alaska. USA Cold Regions Research and Engineering Laboratory, Special Report 121.

Bilello, M.A., J.J. Gagnon and S.F. Daly (1988) Computer-generated graphics of river ice conditions. Hampton, Virginia: Science and Technology Corporation, STC Technical Report 2280. Canadian Coast Guard (1986) Ice maps for Trois Rivieres Sorel et Grondines. Quebec, Canada: Garde Cotiere, Bureau des Glaces.

Gatto, L.W. (1985) Ice conditions on the Ohio and Illinois Rivers, 1972-85. IEEE International Geoscience and Remote Sensing Symposium Digest, 2:856-961.

Gatto, L.W., and S.F. Daly (1986) Ice conditions along the Allegheny, Monongahela and Ohio Rivers, 1983-84. USA Cold Regions Research and Engineering Laboratory, Internal Report 930 (unpublished).

Gatto, L.W., S.F. Daly and K.L. Carey (1986) Ice atlas, 1984–85, Ohio, Allegheny and Monongahela Rivers. USA Cold Regions Research and Engineering Laboratory, Special Report 86-23. Michel, B. (1971) Winter regime of rivers and lakes. USA Cold Regions Research and Engineering Laboratory, Monograph III-B1a.

Starosolszky, O. (1985) Ice and river engineering. In *Developments in Hydraulic Engineering-*3 (P. Novak, Ed.). New York: Elsevier Applied Science Publishers, pp. 175–219.

U.S. Department of Commerce (1985 and 1986) Climatological Data, Pennsylvania—Monthly and Annual Summaries. Asheville, N.C.: National Oceanic and Atmospheric Adminstration Environmental Data Service, National Climatic Center.

U.S. Department of Interior (1985 and 1986) U.S. Geological Survey—Water Resources Data for Pennsylvania. Water year 1985 and 1986, Allegheny River at Natrona, Pennsylvania, and Monongahela River at Braddock, Pennsylvania.

APPENDIX A: ICE CODE RECORDS AND COMPUTER-GENERATED GRAPHS OF DATA

LEGEND

С	Open water
?	Distance upstream unkno
ğ	1-5 tenths, Stationary ice
	6-9 tenths, Stationary ice
	10 tenths, Stationary ice
¥	1-5 tenths, Running Ice
	6-9 tenths, Running Ice
	10 tenths Running ins

Figure A1.

3180	SHIPSHIS	ACHT BALLS	MAT EQUIR	FREEPORT	CTINION	KITTHING	HESERONE	RIMERION	PRINCE	filmed_IN	U. NJCX
1/6											
1/7											
1/8								991 CX			
1/5			CO. CH				1971LX	SE1CX			
1/1 0 1/11			SETICAL Tetical				181316	SETICX			
1/12							,	SET CX			
1/13			902TX	2H2CX				(ENDX			
1/14							INCX	IPICX			
1/15											
1/17											
1/18											
1/19											
1/21											
1/22											
1/23											
1/24 1/25			Incx				SALEX	MAT CIT			
1/26			IRICA	#10t			SEILA	WICK			
1/27			BET CX	SELEX				981CX			
1/20			SET CX	SPICK			197328	SPICK			
1/29 1/雅			SETICE SETICE	SINCX ORICX			1973C8 1873C8	SETEX SETEX			
1/31			SET CX	WICK			107303	101318			
2/1		7P2CX	MET CX	MITCX.			1873	imar.			
1/1		7P2CX	SET CX								
2/3 2/4		\$72CX \$72CX	902EX 10P2CX	18 7 101			197503	10/56%			
2/5		100209	187201	107101			1 BPSC#	IBISTA			
2/6		100209	107201	1 87 1CX			18PSC9	HUGLX			
2/7		100209	1 BP2CX	861 CX			187509	IDELX			
2/8 2/9		1002C9 702CX	18 72CX 18 72CX				187529	100GLX TOUGLX			
2/19		6A4CX	1821CX					IDELX			
2/11		SPICE	107101	18P2CX			197609	INCI			
2/12		940t	187103	197301			187509	INCLE			
2/13 2/19		994CK 975CK	1871CX 572CX	10/3CX 10/3CX			189609 189609	I DUSLX			
2/15		68183	94CI	18 P3CX			187509	TOTAL			
2/16		62109	94CX	107303				10/9LX			
2/17 2/1 3		98989 187909	7P4CX 1BP9CX					1819LX 1819LX			
2/19		187909	187405	1 973 CX			187609	103.1			
2/20		100909	BMCE	107301			187529	1839.3			
2/21		ORSC9	8P986	107201			187509	10J%X			
2/23 2/23		3219	87 416				107409	1819LX 1819LX			
2/29								INAL			
2/75							107907	18791.1			
2/26 2/27							1 8P9C 7	INTL			
2/28				981 CX			1879CB 1879CB	HUTLE			
2/23		971C9	981 CK	WICK			187408	18/94			
N.		107169	98208								
IJ? IJ3		18 77 (5) 18 77 (5)	10P2C6 18P2C6				187538	10.1101.31			
3/1		#77C9	107206				197578	10/10/			
3/5		58219	872 76				107400	18/18LX			
3/6			79216				19740	TOTAL			
3/7 3/8							10790	INTEL			
3/1							9293				
3/18		7841X	90ZTX				2017	IRSLE			
3/11			1821%				99179	TRSLX			
3/12 3/13							SR419 SR419	SITICX SIZLX			
3/11							25419	1821.8			
3/15								-			
3/16 3/17											
3/17 3/18							25419 25419	IRSTN ISSTN			
3/19							25979	1001A			
3/78							19119				
¥71 ¥72											

the tente to the second of the second of the second

Figure A2.

3180	SHIPSONS	ACHT CHEE	MAT ROWN	FREEPORT	CLINION	X1117MMG	MOSERONE	PITERION	PARKER	FRANKLIN	U. MICK
12/28											
12/21											
12/22								10F2EX			
12/23								10F2CX			
12/24								10F2CX			
12/25								18F2CX 18F2CX			
12/26 12/27								18F2CX			
12/28								19FZCX			
12/29								16F2CX			
12/35								10/2CX			
12/31								10F2CX			
1/1		1£3CX						18F1C18			
1/2		173CX SR3CX	COLCU		1051100	1861100	10F1XX	10/10/18	1011300	16316000	
1/3 1/4		10P1EX	SRYCX IOPICX					10FSC18 10FSC18			
1/5		107201	18FZLX					10/5010			
1/6		9RZCX	10F3LX	0F300X	8P3XX	9P3XX	973XX	18/5010		1011000	
1/7		SP2CX	10F3LX					10/6018			
1/8		10P3CX	1874.6					1876216		10/30/10	1851 ZL#
1/9		10P4CX 10P4CX	10F9L6 10F5L6					18F6C18	1 9 20015		791 0 00
1/10 1/11		10PSCX	107646					1856018			
1/17		10PSCX	107716					10/8018			
1/13		TOPGLE	18771.6	1 SPEKK	I OPEJOI	IOPEXX	1 DP SXX	10/0018		1821000	18319001
1/14		10P9LX	187716					10/00/10		10130110	151 XX
1/15		18 79LX	107716					10/9010	971 68 8		
1/16		18791.8	9716					10/9018			
1/17		1 079 LX 1 077 LX	10F7L6 10F7L6					1078C10 1078C10			
1/19		1877LX	107716					1879018			
1/20		1877LX	107716	167500	1875301	1875/00	187500	10/5/10		18) 1907	19,11000
1/21		107713	19771.6					10/9018			
1/22		18771.	10751.6					1879018			
1/23		10F7LX	187616	1075301	1976/01	1 (PCID)	1976300	1979018		10,110000	18110000
1/24 1/25		2875% 2875%	7751.6 7751.6					1979C10 1979C10			
1/26		18713	7781.6					10/9(10	104003		
1,27			7761.6	985XX	88533	MESTE		1879(18		3000	
1/20			7FSL6					10/9018			
1/29			679.6					1077010			
1/38		187101	100103	167900	167463	18740	18740	1077210	1011000		
1/31 2/1		M2CX	1881CX 1881CX					1077019			
2/2		M21X	19614	100101							
2/3		IMICE	ISTICE	MICK							
2/4		1 1072CX	1981CX	#3C1							
2/5		100201	1981CX	M3CX				_			
2/6		18PGL2	1007101	M3CX	MSXX	19PSIX	100500	1 OPSICK			
2/1 2/8		GIGL2 FAUBLE	10071CX								
2/9		1002	1 882CX	90213							
2/18		1002		WZTX	CH50E	#58g	1075300	1075101			I EU STOX
2/11		18679									
2/12		198765	188203	100101							
2/13 2/14		1001(7	100107	IMPICE	MSO	107500	107533	1075301		100900	16/200
2/15		1901C7 10P2L3	MO								
2/16		109.3									
2/17		1863									
2/18		167273		1 00 7 57 X	1750	1075301	1075300	197533			18/1902
2/19		7861.9	SESTE								
2/20		1007LX	100716	ZB1 ZTX							
1/27 2/22		331 11	1 837 X								
1/13											
- 40											

でではなべ できなだけではない

Figure A3.

```
OUSXX
                                                                                                                                                                                                                              XISX
XISX
                                                                                                                                                                            ESTA NESTA
                   922G
                                                                                         51218
51218
51218
51218
51218
51218
51218
51218
51218
            MICK ADDRESS OF THE STATE OF TH
            211472
2011478
1001478
1001478
1001478
1001478
1001478
                                                                                                                                                   200
                                      SETA
SETA
SETA
            Ě
1561X
1561X
1561X
                                                                                                                               367X
367X
367X
3738
3738
            S E
            182.6
182.8
182.8
182.8
182.8
182.8
182.8
182.8
182.8
            5 3
                                      5
            ŽŽ
                                      ₽
            10273
10273
10273
10273
10273
                                                                                                                                                                 H 12
                                                                                                                                                                        THE TE
                                                                                                                                                                                                                                                          ÊE
                         200
                                                                                                                                                                                                                                                         228 3
                                                                                                                                                                                                             22222
                                                                                                                                                                 # # E
                                                                                                                                                                 2222
                                                                                                                                                                                                              2255
                                                                                                                                                                                                                                                          # 5 5 E
                                                                                                                                                                                                              55555
```


Figure A4.

DATE	SHRPSBRG	ACHIONIA	MATROMA	FREEPORT	CLINTOR	KITTANNG	MOSEROUE	RIMERION	PRRKER	FRANKLIN	U. HICK
1/16											
1/17											
1/18								1 DR1 CX		151100	1 R1 XX
1/19						7R1 CX		1 DR1 CX		251 XX	351 KX
1/20		TORY CX	10R1CX	100106	10R1CX	781 CX	18P1E9	IOPICX	BRT XX	451 XX	78) XX
1/21			6A1CX	19P1C6	102109	1081CX	109109	10P1CX		451 XX	7F:XX
1/22				SETICX			109169				351 XX
1/23				BRICX			109109				
1/24							100119	10P1EX			
1/25								10P1TX			
1/26								1 0911X			
1/27								19 21 TX			
1/28								10 9 1 (X	751 XX		
2/29											
1/38											
1/31								19 9 1TX			
2/1								10P1TX			
2/2								15118			
2/3											
2/4											
2/5											
2/6											
2/7											
2/1											
2/9											
2/18											
2/11											
2/12											
2/13		10R1CX	1 DIFT CX								
2/14	1081CX	10R1CX	1081 CX	1R 1CX	9F1 CX	1 081 7X		I DP1 CX		2F1XX	
2/15	1 0021 CX	1 DR1 CX	1 ORT CX		851 CX			10P1CX		2 51 XX	151100
2/16								10 9 1 FX			
2/17								IOPITX			
2/18											
2/19											

All the same and the same

Figure A5.

DATE	SHIPSONS	ACHT CHUTA	HAT FORM	FREEPORT	CLINTON	KITTROOS	MOSGROWE	RIMERTON	PRINCER	FRINKLIN	U. HICK
12/23											
12/24											
12/25	GRICK	6R1CX	781 CX								
12/26	982CX	10P2CX	BR2CX						19 01 XX		
12/27	SRZEX	18PZCX	BR1.CX	GRZCX	1 8/72CX	10P8L5	10P4LN				
12/20	254CX	7P2CX	MP1 CX		1982CX	187915	10P4LX				
12/29	354CX 985CX	70SCX 70SCX	1 R2CX 7R2CX	10R3TH	10R2CX 10R4CX	10PBLS 10PBLX	9P9LX 9P9LX				
12/ 30 12/ 3 1	785CX	785LX	382CX		IUNTLA	1SF BLA	3F 11,20				
1/1	295CX	393CX	181 CX								
1/2		!R1CX	IRICX								
1/3		153CX			1985LX	10P8L5	SP48X				
1/4	1 PSEX	1RSCX			10ASL4	10P8L5	354BX				
1/5				1 ORSEX	108SL4	FOP9L5	103487	2S2LX			
176				10A3CX	TOMSUS	10PBLX	3J 48 7	2521.X			
1/7											
1/8	283CX	7531.X	10RZCX				101497	AFIEN			SR1 XX
1/9 1/18		! R2TX 2R2TX	7R1CX 3821X	1093EX 1093CX	10ASLS 10ASL4	10P8C\$ 10P8L5	10J407 10J419	MF1CX MF1LX			
1/11	353LX	1091CX	981CX	10R3CX	108514	10PBLS	101489	#P1LX			
1/12	JJJ02.11	1883CX	1082CH	1003CX	100515	10PSL5	183489	10P1CX			
1/13	TRICX	1 DA3CX	3R1CX	10A3EX	10051.8	10PSL5	101199	10 9 1 CX			
1/14		19 03C X									
1/15	1061CX	1883EX	100465								851 XX
1/16	I OPI CX	10P4CX	100465	10F3CX	188518	108103	101403	19 73 CX			1001100
1/17	SPICK	10P4CX	109405	10P3CX	188SLX	10 0 1C3	101409	10P3CX			10,1100
1/18		109409	109405	10P3CX	1985LX	100163	101409	10P4EX	CC: um		
1/19 1/20	SP2CX 10P2CX	10PSCX 10PSCX	10P4CS 10P4CS	10P3CX 10P4CX	19ASL8 18AGL8	00/2 C3	183509	10ASLX	551 XX 1f1 XX	371 XX	1851XX 1891XX
1/21	10P3CX	10PSCX	18PSCS	TOP TOR	I UMBL.O				II I INK	ar i me	197170
1/22	10P4CX	10P7CX	107605								
1/23	10P4CX	10P7CX	107755	18P4CX	100619	198583	133215	1881118			
1/24	1 0P4CX	10P7CX	197706	18P4CX	18761.8	100503	10,181,9	10011LX	1871101	371700	107110
1/25	354LX	10P7CX	187701	1083CX	10751	1009.3	10719	19ATILX			
1/26		10F7CX	109706	1 BR3CX	10751.0	100583	10/5.7	10011LX			
1/27		10P7CX	107766	TORYCX	1875.7	1 005 F3	16/9.7	1 081 1LX		251 XX	1871100
1/29	3PHCX	685DI	107706						351 XX		
1/29 1/30	IRSCX	967CX 757CX	1897C6 1897C6	188901	1073.3	5210L S	18/917	188711.1			
1/31		357CX	107706	ISMCX	1673.3	5710L5	10/9.7	16071LX		25170	101125
2/1		357CH	187706	1884CX	1833	INTELS	1839.7	18811LX		23174	100
2/2		357CX	167706	188405	1074.3	5P1 BL 5	183917	10011LX			
2/3		357CX	797CX	100406	1874.3	SPIRES	18/8.7	18811LX		251 XX	197170
2/9											
2/\$			797EX								
2/6	IPICK	IFICE	SETICK.	198306	354LX	₩18.5	1939L7	1001111			
2/T 2/8	SRICK WICK	7P4CX GPSCX	MATCK Matck	1983C6 1983C6	359LX 359LX	4918LS 4918LS	10/817	10011LX 10011LX			
2/9	361CX	35501	W/LX	683CX	354LX	W19L3	1939L7 1986L7	1887 ZLX			
2/10		*******		68216	3591.8	PEX	1838.7	1987 ZLX		251 XX	1971700
2/11											
2/12											
2/13			HRITX	1837%	354LX	4718L 5	3891.5	10019LX			
2/14	389CX	584131	30) TX	123.3	785LX	ERI OL X	iPS.X	30972		1981 XX	
2/15	GRATH	18613	MITH	OP97%	18611	ZRSTN	1891%	3021X			
2/16 2/17											
4/11											

Figure A6.

3180	SHEPSERS	ACHTONIA	MART ROWN	FREEPRAT	CLIMIUM	KITTENNE	MOSEROUE	RIMERION	PREKER	FRANKLIN	W. HICK
1/8											
1/9											
1/18								SR ZBX	121 KX		
1/11						9871 CX	981 FX	BE! TX	291 XX		
1/12										OR1 XX	
1/13			BET CX	1 001 CX							
1/15	781 CX	1991CX	1981CX		18 9 1CX			6R1CX	TETEX		
1/15	381 CX	BOT CX	921 CX	SENCE	10PZLX	MR1 CX	1091 CX	BET CX		5 2 1100	
1/16	I OFFICE	9E1CK	TORTOX	ZRICK	1084LX	100至X		SET CX			1R1XX
1/17	SMICX	SATEX	BAP1 CX	281 CX	1 GP9LN	1891CX		SRICX			
1/18	6P1CX	961 CX	10P2CX	18 P 2CX	10P4L8	109104		SR1CX		251 XX	
1/19	6P1CX	9P1CX	18P2CX	1 8F2CX							
1/20	9P2EX	9P2CX	10P2CX						9P1 XX		5\$1 XX
1/21	9F3CX	9PZCX	10P3CX	! ONSCX	10PSL9	10PSC7					
1/22	107466	10P3C9	10P3C6	100306	109619	10PSL?				19 2 1XX	
1/23	109466	197309	107906	10/1306	10F7L9	10751.7					1 0PT XX
1/24	IOPICS	8J 3CB	105466	100306	10771.9	10PSL7					10P1XX
1/25	IDP4C6	10 P4C9	101406	199466	18771.9	10PSL7			19 9 1 XX	651 XX	10P1*X
1/26	10P4CS	100409	109406								10P1XX
1/27	107466	10P9C9	107606								
1/28	109466	102409	109666	199466	1097L8	18751.7					
1/29	189466	109409	TOPECS	100406	10P7L8	10751.6			1031198	251 XX	
1/30	109406	10P4C3	109606	100506	10 P7 L8	10 PS L6					
1/31	109906	100403	109666	100506	10P6L6	1074C3				******	
2/1	87906	109409	107606	138506	:OPSL6	10F4C3				SSIXX	
2/2	68405	10951.9	107606								
2/3	109405	107564	107665		/ mm /	100355					
2/4	10P4CS 10P5C6	BPGC9 BPGC9	10P6C6 10P6C6	1005C6 1005C6	6P\$1.6	10A2CS 10A2C7			10.1100	3S130X	192133
2/ 5 2/ 6	OPSES	8P6C9	99666	198506	SPSL6 SPSL6	84207			IWINA	331 W	TUTTAA
2/7	OFSC1	8P6C9	99666	100506	6P51.6	86207					
2/8	25506	107603	97505	188505	69516	79201			151308		1991304
2/9	35566	189609	97606	10000		111601					
2/18	98106	107609	97705								
2/11	189106	86669	W7C6	198556	6P6L6	79204					
2/12		88609	8F7C6	188586	679.6	SR2C3			107133	251 XX	
2/13		88609	8P7C6	109506	SP9L5	4R2C3				••••	
2/19		86703	M706	100506	189415	1981.07	•				
2/15		98709	87755	198506	18P9L5	198107				351 XX	
2/16	SM1C5	807.8	27 73								
2/17	SMT C6	20709	877C3								
2/18	881 CG	88709	SPGL3								
2/19		M7C3	159C3	109506	18 99L 4	15163			1951107	251100	251 NO
2/20	373%	12301	88 1 C6	188506	1074.3	15103					
2/21	38306	19881		100506	10711.2	78157					
2/22	31316	19881	18416	28516	1 979L 2				1031100	15110	
2/23	38386	18874	28973								
2/24		18619	29316								
2/25	58816	18879	TOPRE	38576	3515	30507					
2/26											
2/27											

Figure A7.

MIE	SHIPSHIS	ACHI ONE A	WITTE	FREEFERT	CUMM	KITTERN	MOSEROUE	EMERICA	PRINCE	FREMILIN	u. HICK
12/17											
12/18						.					
12/39 12/20	SETICAL	SEICK	SP1US	SHICS	MICE	781 67	MICX		2F1XX 6F1XX		
12/21	Gil Cr	981 CX	52106		A112		ATTLE		DI - KA		ZEIKK
12/22	MEZCX	92201	CFR.								SEIXX
12/23	6221.7	S#ZLX	SF31.6		97 <u>7,3</u>	2532.5	£ 8000				
12/24 12/25	I BILIX I SI CX	181LX 152LX	153L6 5P1CX		9721.6	2521.3	6AZCX				
12/26	M-SCH	95109	97706	981 CS	97206	W206	9A3EX		2 9 1 XX		
12/27	MPZCX	97109	107206	96206	77.8	¥3C7	985CX			3 8 1 101	
12/2 8 12/29	#7CX #2CX	99109 189109	18 72 06 18 72 06								
12/90	9F2CX	97103	\$7206						1811101		
12/31	#FZCX	97105	97206	90206		W305	9663		103122	151104	
1/1 1/2	195UX Sassux	68209 18209	19296 773C4	90206	\$71.6	***	7000		1811100		A 11 MU
1/3	ZESEA	IRZLO	593C1	902C6	77.5	2521.4	785CX 453CX		18,1100 18,31100		אמנע? אמנע?
1/1			15206						1811100		25110
1/5			15206						***		
1/6	WICE	SET CX	152CX 981C6	100105	971L6 1 9 71L7	MICK MICK	352CX 1863CX		351 At		Mari XX
1/8	9#1 CX	381 CX	100106	1216	187718	1 1117	SMCX	18P2CX	10,1100		
1/9	30 CX	981 CX	1001.05	68106	1972.8	98207	188523	18721			
1/18 1/11		901 CX	SAI CE	15166	1977.0	9237	1 BMCX	107313		351 104	
1/12											
1/13								1931			
1/14	981 CX 982 CX	901 CX 902 CX	901CX 901C6	198156 98165	1871C7 971C8	91 17	1073EX	100-913	101100		g in
1/16	#2C#	902CX	702CH	知為	97203	98167 98167	9933 9933	Wal Wal			
1/17		WZLX		25106	9201	15387	9903	WELK.	1931100		
1/18											
1/19 1/20									M IN		
1/21	98571	98679	MEZTX	301 BT 6	901648	981687	981685	#1		72122	
1/22	SIKER.	305.00	2687	29296	2000	1538,8	751 CBN	1530.8			
1/2 3 1/24	1867X 1867X	18619 18619	183L) 283LS	20204 10316	15 00 4 151 0 74	20007 2531.7	5)168E	25 <u>8.7</u> 25 <u>8.7</u>			
1/75	10578	18379	123.6	74370	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	130.7	V 1 1000	r-varja			
1/26			18376					_			
1/21 1/28					15784	157 5 5 98167	15168	ISBLE Mile	12120	(2)	
1/29	9NCI	SR1C9	WICE.	MET CL	321. 3	1982(7	199203	100213	1212	20 1 ANS	
1/30	681 TB	70215	003 76	87176	9861.5	990,7	30103	92.5			
1/31 2/1	90276 90205	78219 58418	183 76 28176	88 1 CS	aleria	INC. 7	INSCI	921.9		15120	
2/2	SECTO.	36710	AFT 18								
2/3				93613	91781.5	2510.7	354C6	2521.6			
2/4				18/84.3	18/10/5	2501.7	35407	1521.7			
2/5 2/6		121	78316	90016 10016	18676	19617	35406	1521.7 1521.7			
2/7								1531.9			
2/8											
2/9 2/18											
2/11											
2/12								CET CT			
2/13 2/14				SITLS	9821.6	921.C7 982.C7	MICS MICS	WICE			
2/15				e-13		~~~	MA.7				
2/16		310 1	9372								
2/17	****	<u>19</u> 1111	92376	cent-	14174	184.7		****			
2/18 2/19	20117	3119	18576 18176	91516 11116	127 [8	IRM.7	18203	151L8			
2/20											
2/21											

And the second of the territory and the second of the seco

Figure A8.

DATE	BHABOOCX	ELIZMETH	MONESSEN	MODIFILE	SAMSOOM	PT. 1982	PERMIT OUR	NL DBRAND	OPEXISKA
1/8									
1/9									
1/10							100113	1 (991 XX	
1/11									
1/12									
1/13									
1/14									
1/15									
1/16									
1/16									
1/19									
1/20									
1/21									
1/22									
1/23									
1/21									
1/25 1/26									
1/27									
1/28									
1/29									
1/30									
1/31									
2/1					1991XS	105114		1 OR1 XX	100136
2/2					188115	198135		1081 XX	TEMEN
2/3			1001X1	1001319	100115	1981X11		1 981 101	1 000 300
2/4 2/5			1 0001 XX 1 0001 XX	1001X18 1001X19	1982XS 1981XS	1881 X1 1 1882 X1 1		1 (87) 102	1861 188
2/6			391 XX	1001110	108194	1002311		1 (00) XX 1 (00) XX	1005X12 1002X14
2/1			781 XX	DIXID	100191	1002111		1882701	1802314
2/6			301 103	1901178		1981 177 1	180213	1862701	1002X14
2/9			981 XX	1001110		901711	50213	198270	1882314
2/18			841 XX	188235		981111	SRZKS	1882701	10021114
2/11			791 XX	100135		981711	SN113	1 90.270 K	1002X14
2/12			雅潔	1981 15		9 1111	100213	1 DEZICK	1002014
2/13			1062700	1001110		10011171	1002319	100200	1983314
2/14 2/15			1 002301 1 002301	1 0007 X T		1001371	782119	100300	1005710
2/15			1002XX			1 0001 123 1	9211/2 9211/2	1092XX 1882XX	1003X10 1003X10
2/17			SRZRI	100111	98138	1001311	1007337	1 002 XX	188386
2/16			100200	TRITTE	MIN.	1881111	100111	100302	186376
Z/19			180210	1007177	981338	1 00 1X11	781 X1	188300	100316
2/20			58231				SS1XX	551100	100375
2/21									SRSTS
2/22									
2/23									
1/29 2/25									
2/26									
2/27									
2/28									
2/23									
3/1									
3/2									
3/3			77133		167135			107107	TIE
3/4 3/5			SETIME						9112
3/3 3/6									
3/0									

Figure A9.

ORTE	OMMODOCX	ELIZBETH	MOMESSEN	MINUELL	GRMSBORD	PT. HMR	PIGRAT OLIN	HLDBRAND	OPEKISKA
12/19 12/20									
12/21								35106	SF178
12/22			3F1CX					35106	107108
12/23								77116	197108
12/24								281 XS	107169
12/25									109108
12/26			371 CX					SSICE	187108
12/27								SF136	109158
12/28								1991%	10P1C8
12/20								19P1X6	9 2173
12/30								SET XIS	SET TX
12/31								2011/16	921 TX
1/1		SP1XX							1001 (8
1/2 1/3		SIF1 XX SIF1 XX							100°176 100178
1/4		SR1 XX	1981 XX	19/13/5	10F1X5		10F1X4	18/176	108105
1/5	SS1X1	SRZXX	1081101	10811/20	1001105		100174	108136	1002014
1/6	451 X1	182101	1 001 1200	1002123	100115		1002114	108216	1002014
1/7	552X1	SR2XX	108214	1002123	987 XS		1002111	89216	1002114
1/8	MRT XT	48 33OX	1 500,30cx	1902X23	109115		198324	100276	1982314
1/9		78308	1683XX		10R1X3		1004365	1001345	1002X14
1/19		79 301	10A3/00	10A2X23	1002115		1984%	100416	18623114
1/11		79:3301	198100	1882823	109215		1004X5	100136	1 003 X3 4
1/12		SR3XX	1 ORSXX	19 02 X23	109305		1894%	1001145	1 003X1 4
1/13		30230	186510	1803123	100335		1884%5	100436	1963014
1/14		923X	10A5/01	1003123	188305		189986	1084%	1003011
1/15		3730	1 30 100	1003123	109365		1009%	1001165	1003171
1/16		29300	1006100	1003X23 1003X23	9738S		100495	100116	1989X14 1984X12
1/17 1/18		1895101 785101	1 98632X 1 98632X	10/13X23	1 BM2XS 1 BM1 XS		100436 100436	100536 100536	1009012
1/19		1 805201	1 206101	1863923	188775		184536	198576	3,00401.2
1/28		786308	1987101	1883923	98135		199105	188536	1001012
1/21		MCD	1887786	1883123	9715		189635	189536	1800018
1/22		20500	TORCKE	1063X20	901		1 80 915	188586	1 00 47/1 0
1/23		28508	TORROCK	1003770			100906	188986	180400
1/29		20-4101	1 DANGEL	1 DA336	971 IS		100176	189486	100700
1/25		101000	1 CONSTITUTE	100336	常吃		100376	186336	1 00300
1/26		12400	19000	100306	幣水		100376	199335	100295
1/27		12110	SERIO	1 963 X3			100376	936	55171
1/28		78401						20206	221 ID
1/29	10201	19733						20206	SSIM
1/30 1/31		181XX 181XX	1071)(1		187115			1971% 1971%	
2/1		16180	1987 331		知底	981 101	921XX	10/135	90105
2/2			1 441 1 441			,A. 1 A. 1	1981319	1001700	1981 CB
2/3				105133	98285		199115		1901014
2/4			100112	198130	9820S	1001100	1 987 34	98136	1002101
2/5			1862301	180200	9275	1902/00	100201	195285	1983)(14
2/6			105205	1002100	繁165	10010	100304	100306	1003814
2/7			100235	100200	常海	18990	108304	1983%	1003014
2/1			188287	1002101	%1%	100400	100304	1003306	10023114
2/3			100301	198233	935	1005/00	188484	188496	1982774
7/1 8			199302	92 111	9275 9275	1005308	189481	100306	18621.6
2/11 2/12			96361 Off BX		策2% 策2%	198403	100314 100314	1882%	9021.3
2/12			1892X2	198270	77.73 9275	10021X 1002XX	1 (MCSRY 1 (MCSRY	1983% 1983%	1982L2 1983L3
2/13			1983KK	981 B1	気が	1 002701	100303	1 MISSNS	1983L3
2/15			186332	~	90 SS	180230	198273	1983%	363L2
2/16			100311		#185		W212	1983%	1882L1
2/17							79271	15186	199171
2/18							58211		
2/19									
2/20									

Figure A10.

ONTE	BR PROOC K	ELIZBETH	MONESSEN	MODIFIE	GENIS BORG	PI, HME	MGANT (SUM	ALDORAND	OPEKISKA
12/19									
12/20			7F1 XX	7F1 XX	781 102			ceruc	
12/21 12/22			IT I NA	/I IAA	(R182			SSTX	
12/23									
12/25									
12/25									
12/25									
12/27									
12/28									
12/29									
12/30									
12/31									
1/1									
1/2									
1/3									
1/4									
1/5									
1/6									
1/7									
1/8									
1/5									
1/18									
1/11		1 82XX	1 0A1 XX	1 0A1 XX	8 2 1 XS	1 09 1 XX	10#1XS	198176	
1./12	8P3000	1 RZCX	1 DR2EX	1 DRZCX	B#115	1002CX	108205	190106	1 0093 JU 3
1/13	9P3XX	1 R 1 XX	1 OR2XX	1 082XX	雅塔	1002100	108215	100216	1 D#1 X6
1/14	293BX	29180	10 03 CX	19R2CX	樂和	10f2CX	1 BM2CX	1903CX	108106
1/15	1 R 3XX	3R1 8X	1 0A3LX	1082L23	98785	10A3CX	180205	190206	1 0AZC 7
1/16		3 9 1 XX	1 OR 3XX	10AZL23	9225	1 DR4CX	TORZES	100306	1092012
1/17		3923XX	108403	1001123	98235	1 DRSXX	1 DAYS	1083%	1003012
1/18	! MSCX	3A3BX	TORSLX	1004.23	7R285	10AGCX	TOPICS	TOMCS	1 083CX
1/19		4R4XX	1085XX	1089023	523%	1096300	100495	1004986	1984700
1/20	283LX	6P3NX	1 OASLX	108418	37.3%	10AGEX	1004CS	188465	1804CX
1/21		9A2XX	1085705	984X14	W3M	1094101	1004%\$	109996	1084301
1/22		192701	109500	984)(18		1005000	188535	198536	100300
1/23 1/24		9RZXX 9REXX	1 087XX 487XX	92113	98336	1095101	188515	198536	92100
	C0700	18380	TR / AA				2RSX3	285%	
1/25	683800						1881 117		19199
1/26 1/27		1 8210X 1 8210X	1F1BX	15168	and the	CELCY	1001 X3	Œ1CF	18138
1/28		18288	1718X 1082XX	IF 1 DA	使166 混176	STICK STICK	SFICK	971CX	981 CX 551 T1
1/28			7821.K		30176 18186	38188			33111
1/39			/RELN		(K) 300				
1/31									

Figure A11.

DATE	BRACOOCK	ELIZBETH	MONESSEN	WANTEIT	GENSBORG	PI, MMR	MIGRAT OLD	HL DBRANG	OPEKISKA
1/16									
1/17									
1718							151 CX		
1/19							151CX	105106	IDFICX
1/20			IFICK	1F1CX	251 CX	8F1CX	1f1 CX	10F1E6	10F1CX
1/21			IFICX			BF1CX	1F1CX	15106	IDFICK
1/22									9F1CX
1/23									751 [1
1/24									26111
1/25									
1/26									
1/27									
1/28									
1./29									
1/38									
1/31									
2/1									
2/2									
2/3									
2/4									
2/5									
2/6									
2/7 2/ 8									
2/9									
2/18									
2/11									
2/12									
2/13						251CX	1851CX	187106	10F1CX
2/14							1651CX	INFICE	INFICK
2/15							15180	107106	18F1CX
2/16									32111
2/17									
2/18									

Figure A12.

DATE	327000CX	ELIZBETH	HOMESSEN	MANLELL	GRYSBORO	PT. MAR	TISANT OLIN	HL08RAND	OPEKISKA
12/24									
12/25									
12/26		TETEX	10F1EX	9F1CX		#F1CX	WILX	9F1LX	9F1EX
12/27		4P2BX	1 OF 250X	10P28X	18153	9F2CX	100108	!OF I CX	rie ten
12/28	SPZBX	99.28X	10AZLX	5A28X	391 9 3	9F2CX	TOFTEX	10F1CX	10F1CX
12/29	982 38DX	183800	1 R Z L X	1093LX		3 9 2CX	7F1CX	10F1CX	19F1CX
12/30	88 38X	4R1 8X	WELX.	1 DA 3LX	SR1 BX	9P1 CX	19PZCX	19P2CX	!OJ1CX
12/31	4R 38X	581 BX	1 093L X	1 DO41 X		9P2CX	10P2CX	6SZEX	10J2CX
171	32:38X	BR21.X	1083LX	! DR4LX		10J3CX	10P2CX	10F2CX	10JZCX
1/2	2921X	2 P2BX	1 DA3LX	1083LX		9.J3LX	10P3CX	10FZCX	IOUZEX
1/3	ZRZTX		10A3LX	1063LX	18188	JIBLX	10P3CX	19F2CX	1012CX
1/4	tri ix		10832.4	1082LX		9JZLX	10P3CX	9F 218X	TOPZEX
1/5			10年至4	TORZLX		1032 8 X	19371	7F2TK	10P2CX
1/6			1092T1	100711		9J2LX	19211	3P2T1	109201
1/7			108271	10RZL1		2321H	19211	29271	
1/8		921 BX	1 BR3L X	109211			10F1CX		10F1CX
1/9		4R1 BX	78211	8P2L1			FOFTEN	10FTEX	
1/10			SA211				1P171	1 1 11X	
1/11		791 8X	1091 CX	1 DW1 CX			10F1CX	10F1CX	
1/12		481 BX	!OA1LX	1881LX	48188	981 CX	TOFTCK	10F1CX	10F1CX
1/13			FORTLX	10611.K	423 TX	96158	TOFTCX	19F1EX	8F1CX
1/15			1 DAZLX	1981LX	BR1 TX	9F1EX	10F1CX	10F1CX	IDETCX
1/15			I DAZLX	1081LX		TOFZEX	19F1CX	19F1CX	19F1CX
1/16		991 CX	1 0A 31. X	10A2LX	SF1CX	10F3CX	10F2CX	10F1EX	10F2CX
1/17			1083LX	1 QAZLX	SR1CX	SAL SICK	10F2CX	10F1EX	10FZCX
1/18		ZHZCX	1 0A3LX	1 DAZLX	281 CX	9J 3EX	10F2CX	10F1CX	10FZCX
1/19		GRI CX	1094LX	1003LX	2R1CX	9J3TN	19F2CX	10/1CX	1 07 3C X
1/28		SR2CX	1089LX	10MSLX	@P1CX	10F4CX	10F3CX	1073CX	10F3EX
1/21	9R1 CX	1081CX	1885LX	19 85LX	10P1CX	10F4CX	10F3CX	10F3LX	10F3CX
1/22	19 7 1CX	10P2CX	10PSLX	TOPSLIK	1 0 72CX	(OF4CX	I OF SCH	i W B X	10F4CX
1/23	1 0P2()X	10P2CX	10PSLX	10PSLX	10F2CX	10F4CX	10F3CX	1073CX	19F3CX
1/29		10P2CX	10PSLX	TOPSEK	187201	10F4CX	10F3CX	10F3CX	10F3CX
1/25	4828X	121 SX	18JSBX	1 OPSØX	1#ZTX	18J 48X	10F37X	19F3CX	18F2CX
1/26	3/32	GRI RX	! OJ SAN	183589	- 04.00	103488	10F31X	16731%	18F2CX
1/27	18182	20100	10PSBX	18JSBN	IRICX	151 8 8	8 2 11X	197381	10F2TX
1/28		12193	10751.0	18J58X			8J2LX	10P281	107211
1/29 1/30		1 87 BM	10PSLS 10PSLS	10.39X 10.39X			9P2L1	1 6P 2T1	18/11%
1/30			10PSL3	10J38X				1 8P 2TX	10FITX BEITX
1/31 2/1		281 BX	10PSL2	i UJ JAN			75161	1897771 1851/08	ariik Setiti
2/2		GRISK	10PSL1		381 TV	60 17.1	WICK		
2/3		BEIDA	1073.1		201 TX	#1L1	TILA	1BS1CX	1971 CX
2/4									

Figure A13.

3180	BRABOOCX	ELIZBETH	MOMESSEN	MOUELL	CRYSBORG	PT. MBR	MERN TOLD	HL DBRAME	OPEKISKA
1/17									
1/13									
1/19									SSICX
1/15									43164
1/15					151CX	151CX	1F1CX		751CX
1/17					1510	IFICX	75101		#F1CX
1/18									SF1CX
1/19									7F1CX
1/26						1F1CX	1F1 CX		991 CX
1/21	9A1 CX	2f1 CX	10A1CX	10A2CX	10F1CX	IDFIEX	1 DF2CX	19F2CX	10R2CX
1/22	IONICX	6R1CX	10R2CX	109308	19F1CX	10F4CX	10F9CX	10F4CX	1 DA3CX
1/23	1081CX	SRZCX	10A3CX	1084CX	981 BX	TOFSEX	10FSCX	10F4CK	10A3CX
1/24	1091 (5	SR2C10	1083018	10 93C22	18102	1055011	100106	10F3C7	1004C14
1/25	98205	6R3C10	983118	10A1C22	18185	10FSC10	10F 9C6	105327	1 ORSEX
1/26	98205	682C10	983118	1001C22	100161	10F5810	107586	10F3C7	1084014
1/27	98204	292C10	1093118	1093L22	SA182	1 0F5 C10	105506	107408	1085E14
1/28	8A2B2	2R2C10	10P4L18	10R3L22	88283	10F5C16	105506	10F4C8	1087014
1/29		SR2810	10 01 118	1093L22	1 092LS	10F4C18	107406	107408	1086014
1/30		884810	10P4L18	1983L22	18215	10F5C10	197496	10F4C8	1006014
1/31		5 218 17	10 P4 L16	1 DA3L22	18195	1 094 L10	98406	18F4C8	1005014
2/1		6R4817	10A4L10	1063114		98415	100415	ICENCE	1083714
2/2		5 2 18 17	9R4B19	983810	291 T1	107472	108414	85418	1003714
2/3	49387	7 212 15	984811	98483	28315	108411	10P4L1	97578	1004014
2/4	SR387	9R4815	1 DP489	10P4L22	SR314	10P1C18	1 0P 1C5	1 0 F\$18	1 005 L14
2.5	38SL7	4 248 12	IOPFL14	10P4LZZ	SR374	1092018	I OP 2CS	107514	1004114
2/6	38587	3R4812	18 P4 L11	10P2L22	28214	782110	88215	102414	1084114
2/7	1 R 3 B 4	12481 B	10P4L7	10721,22	18215	38285	10P2L5	189374	1003114
2/8	18385	3R481 0	10P4L7	19F2L22	3R295	1093110	10F3L5	107315	1083114
2/9	28385	3R4810	10P4L7	10731.22	19285	10/1110	187415	10/315	10 05 L14
2/18	18315	981815	1095118	10A3L22	29 385	10F489	1054L5	107315	1984L14
2/11	18385	384818	10752.18	1073022	29115	107998	105915	107315	1005L14
2/12			1075810	197387	18115	39202	#3LS	107315	19/5LX
2/13			18F587 18F586	197300 197304	1 8 115 1 8 115	107183	7731.5 10F31.5	10F3L5 1083L1	10F46X 10F56X
2/14 2/15	S# 198 5	29491 B	197586	1073816	18294	6F1C2	#3.1	1973.1	10F400
2/15	36785 1 898 5	284810	197586	1073010	67184	18F1C4	1073.3	1873.1	157498
2/16) ETHIS	284810 284810	18PS86	1073010	18294	10P181	10F3L2	1973.1	10F496
2/18		TEARIN	107581	1073010	18294	107181	1073.2	187312	97304
2/19			182483	197393	IRZBY	(M.18)	90211	100°371	### ###
2/20			107382	197.393			18211	100 311	-
2/21			I UF JUS				18411		
2/22									

Figure A14.

BATE	MHODOCK	ELIZ be th	MONESSEN	MARKELL	GRNSBORD	P1. 1998	HERMY OLIN	HL DBRAND	OPEKISKA
12/29									
12/25									
12/26								SFIEX	9F1107
12/27	32114								
12/28									
12/29	1517X	291815							9FICX
12/30									9F1CX
12/31					18185				IFICX
171									
1/2									
1/3									
1/4									
1/5									
1/6									
1/7									
1/8		18105	44	***	18165	76162	77102	8F 1C2	95165
1/9 1/10		18185	881L18	8R1 B20	48105	9F1C10	97105	97104	981 [1
1/11			9A1C10 5A1B10	891 820 201 820	19155	8F2C7	77101	9F1C1	99101
1/12			38281	28184 88184	IRICS	8F2CX 381 BX	SF1C1 78111	97111 97111	901 C1 901 B1
1/13			46281	307 900		3K 1 DA	(#1)1	ifili	MATEN
1/14			981 B1 8	8R1 BX		SF18X	25181	9F1 F1	106161
1/15			981818	981 BX	781 (5	BF1BX	7/103	97101	9F1B1
1/16		9818X	902818	SRZBX	SAICS	9F1CX	97105	95101	97201
1/17		381 BH	1001618	9P) BN	981 C5	97102	9F1E1	97171	97201
1/18			1091018	10P18X		9/111	97111	9F1T1	97201
1/19			9P1 CK	9 7185			55111	SF111	651111
1/20									GFIHI
1/21	18314								
1/22									
1/23									
1/24									
1/25									
1/26									
1/27									
1/28		1F1B1		151 9 0					
1/29		98181	109101	197181	18185			4F1C1	F 1C1
1/30		991 B1	10711	102101				9 7101	
1/31		架路	17119	IPICS		61102	77101	75101	OF 1CI
2/1			171118	SP11.2	38116	771E1	ancı	75101	#1E1
2/2									
2/3									

[☆] U. S. GOVERNMENT PRINTING OFFICE: 1989--600-057--82057