PhD Defense

On the mod p cohomology of pro-p lwahori subgroups

Daniel Kongsgaard

University of California, San Diego

May 25, 2022

Acknowledgements

I would like to acknowledge Professor Claus Sørensen and the rest of the committee.

I would also like to acknowledge Daniel M. Kane, Ilias Diakonikolas, Jerry Li, and Kevin Tian.

Finally I would also like to thank the attendants of my defense.

Overview

- Introduction
 - Cohomology of compact Lie groups
 - Lazard Theory
 - $E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p)$
- \bigcirc On the mod p cohomology of unipotent groups
- 3 On the mod p cohomology of pro-p lwahori subgroups
 - $I \subseteq SL_2(\mathbb{Z}_p)$
 - $I \subseteq GL_2(\mathbb{Z}_p)$
 - Other calculations
 - Nilpotency index
- 4 Future work
 - Division quaternion algebras
 - Central division algebras
 - Serre spectral sequence

Overview

- Introduction
 - Cohomology of compact Lie groups
 - Lazard Theory
 - ullet $E_1^{s,t}=H^{s,t}(\mathfrak{g},\mathbb{F}_p)\Longrightarrow H^{s+t}(G,\mathbb{F}_p)$
- 2 On the mod p cohomology of unipotent groups
- 3 On the mod p cohomology of pro-p lwahori subgroups
 - $I \subseteq SL_2(\mathbb{Z}_p)$
 - $I \subseteq \operatorname{GL}_2(\mathbb{Z}_p)$
 - Other calculations
 - Nilpotency index
- 4 Future work
 - Division quaternion algebras
 - Central division algebras
 - Serre spectral sequence

Cohomology of connected compact Lie groups (1)

Given a connected compact Lie group G with Lie algebra $\mathfrak g$ with $\ell=\operatorname{rank}(G)$.

Theorem (Chevalley and Eilenberg, 1948)

$$H^*(G,\mathbb{R})\cong H^*(\mathfrak{g},\mathbb{R}),$$

or more explicitly $H^*(G,\mathbb{R})$ is an exterior algebra $\bigwedge(\xi_1,\ldots,\xi_\ell)$ on generators ξ_i of various odd degrees $2d_i-1$.

Cohomology of connected compact Lie groups (2)

Theorem (Kac, 1985)

$$H^*(G,\mathbb{F}_p)\cong \mathbb{F}_p[x_1,\ldots,x_r]/(x_1^{p^{k_1}},\ldots,x_r^{p^{k_r}})\otimes_{\mathbb{F}_p}\bigwedge(\xi_1,\ldots,\xi_\ell)$$

for p > 2. Here $\deg(\xi_i) = 2d_{i,p} - 1$ and $\deg(x_i) = 2d_{i,p}$, where Kac defines $d_{i,p}$ along with r and the k_i .

Cohomology of connected compact Lie groups (2)

Theorem (Kac, 1985)

$$H^*(G,\mathbb{F}_p)\cong \mathbb{F}_p[x_1,\ldots,x_r]/(x_1^{p^{k_1}},\ldots,x_r^{p^{k_r}})\otimes_{\mathbb{F}_p}\bigwedge(\xi_1,\ldots,\xi_\ell)$$

for p > 2. Here $\deg(\xi_i) = 2d_{i,p} - 1$ and $\deg(x_i) = 2d_{i,p}$, where Kac defines $d_{i,p}$ along with r and the k_i .

Note: The above cohomology is the cohomology of G as a topological space, and not continuous group cohomology. Continuous group cohomology can be thought of as the cohomology of the classifying space BG. One can identify $H^*(BG,\mathbb{R})$ with a polynomial algebra $\mathbb{R}[x_1,\ldots,x_\ell]$ in variables of even degrees.

Mod p cohomology of p-adic Lie groups G

Let G be a p-valued compact p-adic Lie group, and denote by $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G$ the Lazard Lie algebra attached to G.

Theorem (Lazard, 1965)

If G is equi-p-valued, then there is an isomorphism of algebras

$$H^*(G,\mathbb{F}_p)\cong \bigwedge \mathfrak{g}^*.$$

Mod p cohomology of p-adic Lie groups G

Let G be a p-valued compact p-adic Lie group, and denote by $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G$ the Lazard Lie algebra attached to G.

Theorem (Lazard, 1965)

If G is equi-p-valued, then there is an isomorphism of algebras

$$H^*(G,\mathbb{F}_p)\cong \bigwedge \mathfrak{g}^*.$$

Note: Any compact *p*-adic Lie group contains an open equi-*p*-valuable subgroup. So distinction between *p*-valued and equi-*p*-valued groups is somewhat nuanced.

Other newer results

Let \mathcal{N} be the unipotent radical of a Borel in a split reductive \mathbb{Z}_p -group.

Theorem (Ronchetti, 2020)

There is a $\mathcal{T}(\mathbb{Z}_p)$ -equivariant isomorphism

$$H^*(\mathfrak{n}_{\mathbb{Z}_p},\mathbb{Z}_p)\cong\operatorname{gr} H^*(N,\mathbb{Z}_p),$$

where $\mathfrak{n}_{\mathbb{Z}_p} = \text{Lie}(\mathcal{N})$ and $\mathcal{N} = \mathcal{N}(\mathbb{Z}_p)$.

Interesting p-valuable groups G

There are many examples of naturally occurring p-valuable groups G which are not equi-p-valuable, where detailed information about $H^*(G, \mathbb{F}_p)$ is important. E.g.

- unipotent groups (i.e., the \mathbb{Z}_p -points of the unipotent radical of a Borel in a split reductive group),
- Serre's standard groups with e > 1,
- pro-p lwahori subgroups for large enough p,
- $1 + \mathfrak{m}_D$ where D is the quaternion division algebra over \mathbb{Q}_p for p > 3 (or more generally a central division algebra over \mathbb{Q}_p).

p-adic integers

$$\mathbb{Z}_p = \left\{ \sum_{n=0}^{\infty} a_n p^n \mid a_n \in \{0, 1, \dots, p-1\} \right\} \supseteq \mathbb{Z}$$

is a commutative ring on which we have a p-adic valuation $v_p \colon \mathbb{Z}_p \to \mathbb{N} \cup \{\infty\}$ given by $v_p(0) = \infty$ and $v_p(a) = \min\{n \in \mathbb{N} \mid a_n \neq 0\}$ for $a = \sum_{p \in \mathbb{N}} a_p p^p \neq 0$ and satisfying

(a)
$$v_p(a) = \infty \iff a = 0$$
,

(b)
$$v_p(ab) = v_p(a) + v_p(b)$$
,

(c)
$$v_p(a+b) \ge \min(v_p(a), v_p(b))$$

p-valuations

Let G be any group.

Definition

A p-valuation ω on G is a function

$$\omega \colon G \setminus \{1\} \to (0, \infty)$$

which, with the convention that $\omega(1) = \infty$, satisfies

(a)
$$\omega(g) > \frac{1}{p-1}$$
,

(b)
$$\omega(g^{-1}h) \ge \min(\omega(g), \omega(h))$$
,

(c)
$$\omega([g,h]) \ge \omega(g) + \omega(h)$$
 (where $[g,h] = ghg^{-1}h^{-1}$),

(d)
$$\omega(g^p) = \omega(g) + 1$$

for any $g, h \in G$.

Filtration of G

Let G be a p-valued group. For any real number $\nu > 0$ put

$$G_{\nu} \coloneqq \{g \in G : \omega(g) \ge \nu\} \quad \text{ and } \quad G_{\nu+} \coloneqq \{g \in G : \omega(g) > \nu\},$$

and note that these are normal subgroups.

The subgroups G_{ν} form a decreasing exhaustive and separated filtration of G with the properties

$$G_{
u} = \bigcap_{
u' <
u} G_{
u'} \quad \text{ and } \quad [G_{
u}, G_{
u'}] \subseteq G_{
u+
u'}.$$

There is a unique (Hausdorff) topological group structure on G for which the G_{ν} form a fundamental system of open neighborhoods of the identity element. We assume that G is profinite, so that $G = \varprojlim_{\nu > 0} G/G_{\nu}$ is a pro-p group since $\omega(g^p) = \omega(g) + 1$ implies that G/G_{ν} is a p-group (finite since G_{ν} is open).

Grading on G

Consider the graded abelian group (denoted additively)

$$\operatorname{gr} G = \bigoplus_{\nu > 0} \operatorname{gr}_{\nu} G,$$

where $\operatorname{gr}_{\nu} G := G_{\nu}/G_{\nu+}$ for $\nu > 0$.

An element $\xi \in \operatorname{gr} G$ is called homogeneous (of degree ν) if it lies in $\operatorname{gr}_{\nu} G$. Note that $p\xi = 0$ for any homogeneous $\xi \in \operatorname{gr} G$ since $\omega(g^p) = \omega(g) + 1$. Hence $\operatorname{gr} G$ is an \mathbb{F}_p -vector space.

Lie bracket on gr G

Bilinearly extending the map

$$\operatorname{\mathsf{gr}}_{\nu} G \times \operatorname{\mathsf{gr}}_{\nu'} G \to \operatorname{\mathsf{gr}}_{\nu+\nu'} G$$

 $(\xi,\eta) \mapsto [\xi,\eta] \coloneqq [g,h] G_{(\nu+\nu')+},$

we obtain a graded \mathbb{F}_p -bilinear map

$$[-,-]$$
: gr $G \times$ gr $G \rightarrow$ gr G .

One can check that [-,-] makes gr G a graded Lie algebra over \mathbb{F}_p .

$\mathbb{F}_p[\pi]$ -Lie algebra structure on gr G

The map

$$\operatorname{\mathsf{gr}}_{
u} G o \operatorname{\mathsf{gr}}_{
u+1} G$$
 $gG_{
u+} \mapsto g^{p}G_{(
u+1)+}$

is well-defined and \mathbb{F}_p -linear, so it induces an \mathbb{F}_p -linear map of degree one

$$\pi$$
: gr $G \to \operatorname{gr} G$.

We view gr G as a graded module over $\mathbb{F}_p[\pi]$, and note that the Lie bracket on gr G is bilinear for the $\mathbb{F}_p[\pi]$ -module structure, i.e., gr G is a Lie algebra over $\mathbb{F}_p[\pi]$.

$\mathbb{F}_p[\pi]$ -Lie algebra structure on gr G

The map

$$\operatorname{\mathsf{gr}}_{\nu} G \to \operatorname{\mathsf{gr}}_{\nu+1} G$$
 $gG_{\nu+} \mapsto g^{p}G_{(\nu+1)+}$

is well-defined and \mathbb{F}_p -linear, so it induces an \mathbb{F}_p -linear map of degree one

$$\pi$$
: gr $G \to \operatorname{gr} G$.

We view gr G as a graded module over $\mathbb{F}_p[\pi]$, and note that the Lie bracket on gr G is bilinear for the $\mathbb{F}_p[\pi]$ -module structure, i.e., gr G is a Lie algebra over $\mathbb{F}_p[\pi]$.

Definition

The pair (G, ω) is called of finite rank if gr G is finitely generated as an $\mathbb{F}_p[\pi]$ -module.

Ordered basis of (G, ω)

Assume from now on that (G, ω) is of finite rank d.

For any finitely many $g_1, \ldots, g_r \in G$ we have a continuous map (not group homomorphism)

$$\mathbb{Z}_p^r \to G$$

$$(x_1, \dots, x_r) \mapsto g_1^{x_1} \cdots g_r^{x_r}.$$
(1)

Definition

The sequence of elements (g_1, \ldots, g_r) in G is called an ordered basis of (G, ω) if the map (1) is a bijection and

$$\omega(g_1^{x_1}\cdots g_r^{x_r}) = \min_{1 \leq i \leq r} (\omega(g_i) + v_p(x_i)) \quad \text{ for any } x_1, \dots, x_r \in \mathbb{Z}_p.$$

$\mathbb{F}_p[\pi]$ -basis of gr G

Definition

For any $g \in G \setminus \{1\}$, we put $\sigma(g) \coloneqq gG_{\omega(g)+} \in \operatorname{gr} G$.

Note that for $g \in G \setminus \{1\}$ and $x \in \mathbb{Z}_p \setminus \{0\}$

$$\omega(g^{x}) = \omega(g) + v_{p}(x)$$
 and $\sigma(g^{x}) = \bar{x}\pi^{v_{p}(x)} \cdot \sigma(g)$,

where \bar{x} is the image of $p^{-v_p(x)}x$ in \mathbb{F}_p^{\times} .

An ordered basis (g_1, \ldots, g_d) of (G, ω) corresponds to an $\mathbb{F}_p[\pi]$ -basis $(\sigma(g_1), \ldots, \sigma(g_d))$ of gr G.

Lazard Lie algebra $\mathfrak{g}=\mathbb{F}_p\otimes_{\mathbb{F}_p[\pi]}\operatorname{\mathsf{gr}} G$

Let

$$\mathfrak{g} \coloneqq \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G,$$

and note that this an \mathbb{F}_p -Lie algebra with an \mathbb{F}_p -basis of vectors $\xi_i = 1 \otimes \sigma(g_i)$ for $i = 1, \dots, d$.

Lazard Lie algebra $\mathfrak{g}=\mathbb{F}_p\otimes_{\mathbb{F}_p[\pi]}\operatorname{\mathsf{gr}} G$

Let

$$\mathfrak{g} \coloneqq \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G,$$

and note that this an \mathbb{F}_p -Lie algebra with an \mathbb{F}_p -basis of vectors $\xi_i = 1 \otimes \sigma(g_i)$ for $i = 1, \dots, d$.

Note that the commutators $[g_i, g_j]$, allow us to calculate

$$\sigmaig([g_i,g_j]ig)=ig[\sigma(g_i),\sigma(g_j)ig]$$
 and thus $[\xi_i,\xi_j]=1\otimesig[\sigma(g_i),\sigma(g_j)ig].$

Continuous group cohomology (over \mathbb{F}_p)

Let G be a topological group and \mathbb{F}_p a trivial G-module. Continuous group cohomology $H^*(G,\mathbb{F}_p)$ is the cohomology of the complex $C^{\bullet}(G,\mathbb{F}_p)=\mathcal{C}(G^{\bullet},\mathbb{F}_p)$ of continuous maps $G\times G\times \cdots \times G\to \mathbb{F}_p$, i.e.,

$$0 \longrightarrow \mathbb{F}_p \xrightarrow{\partial_1} \mathcal{C}(G,\mathbb{F}_p) \xrightarrow{\partial_2} \mathcal{C}(G^2,\mathbb{F}_p) \xrightarrow{\partial_3} \cdots,$$

where the coboundary maps ∂_n are given by

$$\partial_n(f)(g_1,\ldots,g_n) = f(g_2,\ldots,g_n) + \sum_{i=1}^n (-1)^i f(g_1,\ldots,g_i g_{i+1},\ldots,g_n),$$

with *n*-th term $(-1)^n f(g_1, ..., g_{n-1})$.

Continuous group cohomology (over \mathbb{F}_p)

Let G be a topological group and \mathbb{F}_p a trivial G-module. Continuous group cohomology $H^*(G,\mathbb{F}_p)$ is the cohomology of the complex $C^{\bullet}(G,\mathbb{F}_p)=\mathcal{C}(G^{\bullet},\mathbb{F}_p)$ of continuous maps $G\times G\times \cdots \times G\to \mathbb{F}_p$, i.e.,

$$0 \longrightarrow \mathbb{F}_p \xrightarrow{\partial_1} \mathcal{C}(G,\mathbb{F}_p) \xrightarrow{\partial_2} \mathcal{C}(G^2,\mathbb{F}_p) \xrightarrow{\partial_3} \cdots,$$

where the coboundary maps ∂_n are given by

$$\partial_n(f)(g_1,\ldots,g_n) = f(g_2,\ldots,g_n) + \sum_{i=1}^n (-1)^i f(g_1,\ldots,g_i g_{i+1},\ldots,g_n),$$

with *n*-th term $(-1)^n f(g_1, \ldots, g_{n-1})$. (Discrete is a special case.)

Lie algebra cohomology (over \mathbb{F}_p) (1)

Let \mathfrak{g} be a Lie algebra over \mathbb{F}_p with \mathbb{F}_p a trivial (left) \mathfrak{g} -module. Lie algebra cohomology $H^*(\mathfrak{g}, \mathbb{F}_p)$ is the cohomology of the complex $C^{\bullet}(\mathfrak{g}, \mathbb{F}_p) = \operatorname{Hom}_{\mathbb{F}_p}(\bigwedge^{\bullet} \mathfrak{g}, \mathbb{F}_p)$, i.e.,

$$0 \longrightarrow \mathbb{F}_p \xrightarrow{\partial_1} \mathsf{Hom}_{\mathbb{F}_p}(\mathfrak{g}, \mathbb{F}_p) \xrightarrow{\partial_2} \mathsf{Hom}_{\mathbb{F}_p} \Big(\bigwedge^2 \mathfrak{g}, \mathbb{F}_p \Big) \xrightarrow{\partial_3} \cdots,$$

where the coboundary maps ∂_n are given by

$$\partial_n(f)(x_1,\ldots,x_n)=\sum_{i< j}(-1)^{i+j}f([x_i,x_j],x_1,\ldots,\widehat{x}_i,\ldots,\widehat{x}_j,\ldots,x_n),$$

where $\hat{x_i}$ means excluding x_i .

Lie algebra cohomology (over \mathbb{F}_p) (2)

Note: The cochain complex corresponds to the chain complex $C_{\bullet}(\mathfrak{g}, \mathbb{F}_p) = \bigwedge^{\bullet} \mathfrak{g}$, i.e.,

$$\cdots \longrightarrow \bigwedge^3 \mathfrak{g} \stackrel{d_3}{\longrightarrow} \bigwedge^2 \mathfrak{g} \stackrel{d_2}{\longrightarrow} \mathfrak{g} \stackrel{d_1}{\longrightarrow} \mathbb{F}_p \longrightarrow 0,$$

where the boundary maps d_n are given by

$$d_n(x_1 \wedge \cdots \wedge x_n)$$

$$= \sum_{i < j} (-1)^{i+j} [x_i, x_j] \wedge x_1 \wedge \cdots \wedge \widehat{x}_i \wedge \cdots \wedge \widehat{x}_j \wedge \cdots \wedge x_n,$$

where \hat{x}_i means excluding x_i .

Bigrading of the Lie algebra cohomology

Suppose that $\mathfrak{g}=\mathfrak{g}^1\oplus\mathfrak{g}^2\cdots$ is a graded Lie algebra. Then $\bigwedge^n\mathfrak{g}$ is also graded by letting

$$\operatorname{\mathsf{gr}}^j\Bigl(\bigwedge^n\mathfrak{g}\Bigr)=\bigoplus_{j_1+\cdots+j_n=j}\mathfrak{g}^{j_1}\wedge\cdots\wedge\mathfrak{g}^{j_n}.$$

Bigrading of the Lie algebra cohomology

Suppose that $\mathfrak{g} = \mathfrak{g}^1 \oplus \mathfrak{g}^2 \cdots$ is a graded Lie algebra. Then $\bigwedge^n \mathfrak{g}$ is also graded by letting

$$\operatorname{\mathsf{gr}}^j\Bigl(\bigwedge^n\mathfrak{g}\Bigr)=\bigoplus_{j_1+\cdots+j_n=j}\mathfrak{g}^{j_1}\wedge\cdots\wedge\mathfrak{g}^{j_n}.$$

Letting \mathbb{F}_p be a \mathbb{Z} -graded (concentrated in degree 0) \mathfrak{g} -module, we get a grading

$$\mathsf{Hom}_{\mathbb{F}_p}\Bigl(\bigwedge^n\mathfrak{g},\mathbb{F}_p\Bigr)=igoplus_{s\in\mathbb{Z}}\mathsf{Hom}_{\mathbb{F}_p}^s\Bigl(\bigwedge^n\mathfrak{g},\mathbb{F}_p\Bigr)$$

where $\mathrm{Hom}_{\mathbb{F}_p}^s$ denotes the homogeneous \mathbb{F}_p -linear maps of degree s. This passes to bigrading of Lie algebra cohomology

$$H^{s,t}(\mathfrak{g},\mathbb{F}_p)=H^{s+t}\Big(\mathrm{gr}^s\,\mathsf{Hom}_{\mathbb{F}_p}(\bigwedge\mathfrak{g},\mathbb{F}_p)\Big).$$

Spectral sequences

A cohomological spectral sequence is a choice of $r_0 \in \mathbb{N}$ and a collection of

- \mathbb{F}_p -modules $E_r^{s,t}$ for each $s,t\in\mathbb{Z}$ and all integers $r\geq r_0$
- differentials $d_r^{s,t}: E_r^{s,t} \to E_r^{s+r,t+1-r}$ such that $d_r^2 = 0$ and E_{r+1} is (isomorphic to) the homology of (E_r, d_r) , i.e.,

$$E_{r+1}^{s,t} = \frac{\ker(d_r^{s,t} : E_r^{s,t} \to E_r^{s+r,t+1-r})}{\operatorname{im}(d_r^{s-r,t+r-1} : E_r^{s-r,t+r-1} \to E_r^{s,t})}.$$

For a given r, the collection $(E_r^{s,t}, d_r^{s,t})_{s,t\in\mathbb{Z}}$ is called the r-th page.

E_1 (page 1)

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\cdots \longrightarrow E_1^{s-1,t+1} \longrightarrow E_1^{s,t+1} \longrightarrow E_1^{s+1,t+1} \longrightarrow \cdots$$

$$\cdots \longrightarrow E_1^{s-1,t} \longrightarrow E_1^{s,t} \longrightarrow E_1^{s,t} \longrightarrow \cdots$$

$$\cdots \longrightarrow E_1^{s-1,t-1} \longrightarrow E_1^{s,t-1} \longrightarrow E_1^{s,t-1} \longrightarrow \cdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

E_2 (page 2)

Convergent spectral sequences

A spectral sequence *converges* if d_r vanishes on $E_r^{s,t}$ for any s,t when $r\gg 0$.

In this case $E_r^{s,t}$ is independent of r for sufficiently large r, we denote it by $E_{\infty}^{s,t}$ and write

$$E_r^{s,t} \Longrightarrow E_\infty^{s+t}$$
.

If we have terms E_{∞}^n with a natural filtration $F^{\bullet}E_{\infty}^n$ (but no natural double grading), we set $E_{\infty}^{s,t}=\operatorname{gr}^sE_{\infty}^{s,t}=F^sE_{\infty}^{s+t}/F^{s+t}E_{\infty}^{s+t}$.

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p)$$

Theorem (Sørensen, 2021)

Let (G,ω) be a p-valuable group and $\mathfrak{g}=\mathbb{F}_p\otimes_{\mathbb{F}_p[\pi]}\operatorname{gr} G$ its Lazard Lie algebra. Then there is a multiplicative spectral sequence collapsing at a finite stage,

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p).$$

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p)$$

Theorem (Sørensen, 2021)

Let (G,ω) be a p-valuable group and $\mathfrak{g}=\mathbb{F}_p\otimes_{\mathbb{F}_p[\pi]}\operatorname{gr} G$ its Lazard Lie algebra. Then there is a multiplicative spectral sequence collapsing at a finite stage,

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p).$$

I.e., the multiplication on E_{∞} is compatible with the cup product on $H^*(G, \mathbb{F}_p)$ in the sense that the following diagram commutes.

$$E_{\infty}^{s,n-s} \otimes E_{\infty}^{s',n'-s'} \longrightarrow E_{\infty}^{s+s',n+n'-s-s'}$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$\operatorname{gr}^{s} H^{n}(G,k) \otimes \operatorname{gr}^{s'} H^{n'}(G,k) \longrightarrow \operatorname{gr}^{s+s'} H^{n+n'}(G,k)$$

Proof idea:

Theorem (Sørensen, 2021)

There is a convergent spectral sequence collapsing at a finite stage,

$$E_1^{s,t} = HH^{s,t}(\operatorname{gr}\Omega(G),\operatorname{gr}W) \Longrightarrow HH^{s+t}(\Omega(G),W),$$

where W is a finite filtered $\Omega(G)$ -bimodule.

$$H^*(G, W^{\mathrm{ad}}) \iff HH^*(\Omega(G), W) \iff HH^*(\operatorname{gr}\Omega(G), \operatorname{gr}W)$$

 $\cong HH^*(U(\mathfrak{g}), \operatorname{gr}W) \iff H^*(\mathfrak{g}, (\operatorname{gr}W)^{\mathrm{ad}})$

Overview

- Introduction
 - Cohomology of compact Lie groups
 - Lazard Theory
 - $E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p)$
- \bigcirc On the mod p cohomology of unipotent groups
- 3 On the mod p cohomology of pro-p lwahori subgroups
 - $I \subseteq SL_2(\mathbb{Z}_p)$
 - $I \subseteq \operatorname{GL}_2(\mathbb{Z}_p)$
 - Other calculations
 - Nilpotency index
- 4 Future work
 - Division quaternion algebras
 - Central division algebras
 - Serre spectral sequence

Main result

Let $N = \mathcal{N}(\mathbb{Z}_p)$ be the \mathbb{Z}_p -points of \mathcal{N} , where \mathcal{N} is the unipotent radical of a Borel in a split and connected reductive \mathbb{Z}_p -group, and let $\mathfrak{n} = \operatorname{Lie}(\mathcal{N}_{\mathbb{F}_p})$. Then (for $p \geq h_{\mathcal{G}} - 1$ an odd prime)

- N is p-valuable with a p-valuation such that g ≅ n (as graded Lie algebras) for g = F_p ⊗_{F_p[π]} gr N,
- $\operatorname{gr}^s H^{s+t}(N, \mathbb{F}_p) \cong H^{s,t}(\mathfrak{g}, \mathring{\mathbb{F}_p}) \cong H^{s,t}(\mathfrak{n}, \mathbb{F}_p)$, and
- the cup product on $H^*(\mathfrak{g}, \mathbb{F}_p)$ is compatible with the cup product on $H^*(N, \mathbb{F}_p)$ in the sense that the following diagram commutes.

$$H^{s,n-s}(\mathfrak{n},\mathbb{F}_p) \otimes H^{s',n'-s'}(\mathfrak{n},\mathbb{F}_p) \longrightarrow H^{s+s',n+n'-s-s'}(\mathfrak{n},\mathbb{F}_p)$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$\operatorname{gr}^s H^n(N,\mathbb{F}_p) \otimes \operatorname{gr}^{s'} H^{n'}(N,\mathbb{F}_p) \longrightarrow \operatorname{gr}^{s+s'} H^{n+n'}(N,\mathbb{F}_p)$$

Example

For \mathcal{N} think of the group

$$\mathcal{N} = \left\{ egin{pmatrix} 1 & * & * \ 0 & 1 & * \ 0 & 0 & 1 \end{pmatrix}
ight\} \subseteq \mathsf{GL}_n \ ext{or} \ \mathsf{SL}_n \, .$$

Overview

- Introduction
 - Cohomology of compact Lie groups
 - Lazard Theory
 - $E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p)$
- 2 On the mod p cohomology of unipotent groups
- 3 On the mod p cohomology of pro-p lwahori subgroups
 - $I \subseteq \mathsf{SL}_2(\mathbb{Z}_p)$
 - $I \subseteq GL_2(\mathbb{Z}_p)$
 - Other calculations
 - Nilpotency index
- 4 Future work
 - Division quaternion algebras
 - Central division algebras
 - Serre spectral sequence

Pro-p Iwahori subgroups of SL_n and GL_n (1)

Let $\mathcal{G} = SL_n$ or $\mathcal{G} = GL_n$ and let h be the Coxeter number of \mathcal{G} (i.e., h = n). Let furthermore

- F/\mathbb{Q}_p a finite extension with ramification index $e = e(F/\mathbb{Q}_p)$ and inertia degree $f = f(F/\mathbb{Q}_p)$,
- p-1 > eh,
- \mathcal{O}_F the valuation ring of F with maximal ideal $\mathfrak{m}_F = (\varpi_F)$,
- exp and log the two mutually inverse isomorphisms (and homeomorphisms)

$$\mathfrak{m}_F \xrightarrow[\log]{\exp} U_F^{(1)}.$$

Note that exp transfers a \mathbb{Z}_p -basis of \mathfrak{m}_F to a \mathbb{Z}_p -basis of $U_{\Gamma}^{(1)}=1+\mathfrak{m}_{F}.$

Pro-p Iwahori subgroups of SL_n and GL_n (2)

When $\mathcal{G}=\operatorname{SL}_n$ or $\mathcal{G}=\operatorname{GL}_n$, we can always take the pro-p lwahori subgroup I of $\mathcal{G}(F)$ to be the subgroup of $\mathcal{G}(\mathcal{O}_F)$ which is upper triangular and unipotent modulo ϖ_F .

Pro-p Iwahori subgroups of SL_n and GL_n (2)

When $\mathcal{G} = \operatorname{SL}_n$ or $\mathcal{G} = \operatorname{GL}_n$, we can always take the pro-p lwahori subgroup I of $\mathcal{G}(F)$ to be the subgroup of $\mathcal{G}(\mathcal{O}_F)$ which is upper triangular and unipotent modulo ϖ_F .

When $\mathcal{G} = \mathsf{SL}_n$, we have roots $\Phi = \{ \varepsilon_i - \varepsilon_j \mid 1 \le i \ne j \le n \}$ and can take

$$\Delta = \{\alpha_1 = \varepsilon_1 - \varepsilon_2, \alpha_2 = \varepsilon_2 - \varepsilon_3, \dots, \alpha_{n-1} = \varepsilon_{n-1} - \varepsilon_n\},\$$

where ε_i is the map that takes a diagonal matrix to its *i*-th diagonal entry. In this case

$$\alpha_i^{\vee}(u) = \text{diag}(1, \dots, 1, u, u^{-1}, 1, \dots, 1) = \text{diag}_{i, i+1}(u).$$

Ordered basis of I in $SL_n(F)$

Let $\{b_1,\ldots,b_\ell\}$ be a \mathbb{Z}_p -basis of \mathcal{O}_F , where $\ell=[F:\mathbb{Q}_p]$. With a chosen ordering of $\{(i,j):1\leq i,j\leq n\}$, we get for $\mathcal{G}=\mathsf{SL}_n$:

Proposition (Lahiri and Sørensen, 2022)

- $(1_n + \varpi_F b_1 E_{ij}, \ldots, 1_n + \varpi_F b_\ell E_{ij})_{1 \leq j < i \leq n}$
- $(\operatorname{diag}_{i,i+1}(\exp(\varpi_F b_1)),\ldots,\operatorname{diag}_{i,i+1}(\exp(\varpi_F b_\ell)))_{i=1,\ldots,n-1}$
- $\bullet \ (1_n + b_1 E_{ij}, \ldots, 1_n + b_\ell E_{ij})_{1 \leq i < j \leq n}$

is an ordered basis of I.

Here E_{ij} denotes the matrix with 1 in the (i,j)-entry and zeroes in all other entries, and 1_n is the identity matrix in $M_n(F)$.

p-valuation on I

On this basis we have a p-valuation given by:

•
$$\omega(1_n + \varpi_F b_m E_{ij}) = \frac{1}{e} + \frac{j-i}{eh}$$
 for $j < i$,

•
$$\omega(\operatorname{diag}_{i,i+1}(\exp(\varpi_F b_m))) = \frac{1}{e}$$
 for $i = 1, \ldots, n-1$,

•
$$\omega(1_n + b_m E_{ij}) = \frac{j-i}{eh}$$
 for $i < j$.

Ordered basis of I in GL_n

Given the ordered basis of I in SL_n , it is straightforward to obtain an ordered basis of GL_n by simply adding the elements $(\exp(\varpi_F b_1)1_n,\ldots,\exp(\varpi_F b_\ell)1_n)$ to the middle item in the earlier list (corresponding to adding the root $\varepsilon_1+\cdots+\varepsilon_n$). The p-valuation of all of these are clearly also $\frac{1}{e}$.

The ordered basis of $I \subseteq \mathsf{SL}_2(\mathbb{Z}_p)$

Let I be the pro-p lwahori subgroup of $SL_2(\mathbb{Q}_p)$, so we can take I of the form

$$I = egin{pmatrix} 1 + p\mathbb{Z}_p & \mathbb{Z}_p \ p\mathbb{Z}_p & 1 + p\mathbb{Z}_p \end{pmatrix}^{\det=1} \subseteq \mathsf{SL}_2(\mathbb{Z}_p),$$

and

$$g_1 = \begin{pmatrix} 1 & 0 \\ p & 1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} \exp(p) & 0 \\ 0 & \exp(-p) \end{pmatrix}, \quad g_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

is an ordered basis of L

Commutators $[g_i, g_j]$

Calculating $[g_i, g_j]$ for i, j = 1, 2, 3, we can find $x_1, x_2, x_3 \in \mathbb{Z}_p$ such that

$$[g_i,g_j]=g_1^{x_1}g_2^{x_2}g_3^{x_3},$$

and thus

$$ig[\sigma(g_i),\sigma(g_j)ig]=\sigmaig([g_i,g_j]ig)=\sum_{\ell=1}^d\overline{\chi}_\ell\pi^{v_p(\chi_\ell)}\,.\,\sigma(g_\ell).$$

Letting $\{\ell_1, \dots, \ell_r\}$ be the subset of $\{1, \dots, d\}$ such that $\nu_p(x_{\ell_s}) = 0$ and $\nu_p(x_{\ell}) > 0$ for $\ell \notin \{\ell_1, \dots, \ell_r\}$, we get that

$$[\xi_i, \xi_j] = \sum_{s=1}^r \overline{x}_{\ell_s} \xi_{\ell_s}.$$

$$g_1^{x_1}g_2^{x_2}g_3^{x_3}$$

Note that

$$g_1^{x_1} g_2^{x_2} g_3^{x_3} = \begin{pmatrix} \exp(px_2) & x_3 \exp(px_2) \\ px_1 \exp(px_2) & px_1 x_3 \exp(px_2) + \exp(-px_2) \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

$$[g_1,g_2]=g_1^{x_1}g_2^{x_2}g_3^{x_3}$$

$$[g_1,g_2] = \begin{pmatrix} 1 & 0 \\ p(1-\exp(-2p)) & 1 \end{pmatrix} = g_1^{x_1}g_2^{x_2}g_3^{x_3}$$

implies that $x_2 = x_3 = 0$ and

$$a_{21} = px_1 = p(1 - \exp(-2p)) = 2p^2 + O(p^3).$$

So $x_1=2p+O(p^2)$, and thus $\sigma([g_1,g_2])=2\pi$. $\sigma(g_1)$, which implies that

$$[\xi_1, \xi_2] = 0.$$

$$[g_1,g_3]=g_1^{x_1}g_2^{x_2}g_3^{x_3}$$

$$[g_1,g_3] = \begin{pmatrix} 1-\rho & p \\ -\rho^2 & 1+\rho+\rho^2 \end{pmatrix} = g_1^{x_1}g_2^{x_2}g_3^{x_3}$$

implies that

$$a_{11} = \exp(px_2) = 1 - p,$$

 $a_{12} = x_3 \exp(px_2) = x_3(1 - p) = p,$
 $a_{21} = px_1 \exp(px_2) = px_1(1 - p) = -p^2.$

So
$$x_2 = \frac{1}{p} \log(1-p) = \frac{1}{p} ((-p) + O(p^2)) = -1 + O(p)$$
 and $x_1, x_3 \in p\mathbb{Z}_p$. Hence $[\xi_1, \xi_3] = -\xi_2$.

$[g_2, g_3]$

$$[g_2,g_3]=\begin{pmatrix}1&\exp(2p)-1\\0&1\end{pmatrix}=g_1^{x_1}g_2^{x_2}g_3^{x_3}$$
 implies that $x_1=x_2=0$ and $a_{12}=x_3=\exp(2p)-1=2p+O(p^2).$ So
$$[\xi_1,\xi_2]=0.$$

Commutators in $\mathfrak{g}=\mathbb{F}_p\otimes_{\mathbb{F}_p[\pi]}\operatorname{gr} I$ and grading on \mathfrak{g}

Altogether we have that ξ_1, ξ_2, ξ_3 is a basis of the Lazard Lie algebra $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}, [\pi]} \operatorname{gr} I$ with commutators

$$[\xi_1, \xi_2] = 0,$$
 $[\xi_1, \xi_3] = -\xi_2,$ $[\xi_2, \xi_3] = 0.$

Commutators in $\mathfrak{g}=\mathbb{F}_p\otimes_{\mathbb{F}_p[\pi]}\operatorname{gr} I$ and grading on \mathfrak{g}

Altogether we have that ξ_1, ξ_2, ξ_3 is a basis of the Lazard Lie algebra $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}, [\pi]} \operatorname{gr} I$ with commutators

$$[\xi_1, \xi_2] = 0,$$
 $[\xi_1, \xi_3] = -\xi_2,$ $[\xi_2, \xi_3] = 0.$

Note: By the general formula for ω on SL_n (with e=1 and h=2), we see that

$$\omega(g_1) = 1 - \frac{1}{2} = \frac{1}{2}, \qquad \omega(g_2) = 1, \qquad \omega(g_3) = \frac{1}{2},$$

so

$$\mathfrak{g}^1=\mathfrak{g}_{\frac{1}{2}}=\operatorname{span}_{\mathbb{F}_p}(\xi_1,\xi_3), \qquad \mathfrak{g}^2=\mathfrak{g}_1=\operatorname{span}_{\mathbb{F}_p}(\xi_2).$$

Grading on $\bigwedge^n \mathfrak{g}$

For n = 0: $\mathbb{F}_p = \operatorname{gr}^0 \mathbb{F}_p$ with \mathbb{F}_p -basis 1.

For n = 1: $\mathfrak{g} = \operatorname{gr}^1 \mathfrak{g} \oplus \operatorname{gr}^2 \mathfrak{g}$, where $\operatorname{gr}^1 \mathfrak{g} = \mathfrak{g}^1$ has basis ξ_1, ξ_3 and $\operatorname{gr}^2 \mathfrak{g} = \mathfrak{g}^2$ has basis ξ_2 .

For n=2: $\bigwedge^2 \mathfrak{g}=\operatorname{gr}^2(\bigwedge^2 \mathfrak{g}) \oplus \operatorname{gr}^3(\bigwedge^2 \mathfrak{g})$, where $\operatorname{gr}^2(\bigwedge^2 \mathfrak{g})=\mathfrak{g}^1 \wedge \mathfrak{g}^1$ has basis $\xi_1 \wedge \xi_3$ and $\operatorname{gr}^3(\bigwedge^2 \mathfrak{g})=\mathfrak{g}^1 \wedge \mathfrak{g}^2$ has basis $\xi_1 \wedge \xi_2, \xi_3 \wedge \xi_2$.

For n = 3: $\bigwedge^3 \mathfrak{g} = \operatorname{gr}^4(\bigwedge^3 \mathfrak{g})$, where $\operatorname{gr}^4(\bigwedge^3 \mathfrak{g}) = \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2$ has basis $\xi_1 \wedge \xi_3 \wedge \xi_2$.

For n > 3: $\bigwedge^n \mathfrak{g} = 0$.

Grading on $\mathsf{Hom}_{\mathbb{F}_p}(\bigwedge^n\mathfrak{g},\mathbb{F}_p)$

Recall that

$$\mathsf{Hom}_{\mathbb{F}_p}\Bigl(\bigwedge^n\mathfrak{g},\mathbb{F}_p\Bigr)=\bigoplus_{s\in\mathbb{Z}}\mathsf{Hom}_{\mathbb{F}_p}^s\Bigl(\bigwedge^n\mathfrak{g},\mathbb{F}_p\Bigr),$$

and let

$$e_{i_1,\ldots,i_n}=(\xi_{i_1}\wedge\cdots\wedge\xi_{i_n})^*$$

be the element of the dual basis of $\operatorname{Hom}_{\mathbb{F}_p}(\bigwedge^n \mathfrak{g}, \mathbb{F}_p)$ corresponding to $\xi_{i_1} \wedge \cdots \wedge \xi_{i_n}$ in the basis of $\bigwedge^n \mathfrak{g}$.

Grading on $\mathsf{Hom}_{\mathbb{F}_p}(\bigwedge^n\mathfrak{g},\mathbb{F}_p)$

Recall that

$$\mathsf{Hom}_{\mathbb{F}_p}\Bigl(\bigwedge^n\mathfrak{g},\mathbb{F}_p\Bigr)=\bigoplus_{s\in\mathbb{Z}}\mathsf{Hom}_{\mathbb{F}_p}^s\Bigl(\bigwedge^n\mathfrak{g},\mathbb{F}_p\Bigr),$$

and let

$$e_{i_1,\ldots,i_n}=(\xi_{i_1}\wedge\cdots\wedge\xi_{i_n})^*$$

be the element of the dual basis of $\operatorname{Hom}_{\mathbb{F}_p}(\bigwedge^n \mathfrak{g}, \mathbb{F}_p)$ corresponding to $\xi_{i_1} \wedge \cdots \wedge \xi_{i_n}$ in the basis of $\bigwedge^n \mathfrak{g}$.

We can transfer the previous grading and bases to $\operatorname{Hom}_{\mathbb{F}_p}(\bigwedge^n \mathfrak{g}, \mathbb{F}_p)$ using this.

Finding $H^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p)$

We will now calculate all maps

$$\operatorname{\mathsf{gr}}^j\Bigl(\bigwedge^n\mathfrak{g}\Bigr) o \operatorname{\mathsf{gr}}^j\Bigl(\bigwedge^{n-1}\mathfrak{g}\Bigr) \ x_1 \wedge \dots \wedge x_n \mapsto \sum_{i < j} (-1)^{i+j} [x_i, x_j] \wedge x_1 \wedge \dots \wedge \widehat{x_i} \wedge \dots \wedge \widehat{x_j} \wedge \dots \wedge x_n$$

in the chain complex and transfer them to the cochain complex

$$\mathsf{Hom}^{s}_{\mathbb{F}_p}\Big(\bigwedge^{n-1}\mathfrak{g},\mathbb{F}_p\Big)\to \mathsf{Hom}^{s}_{\mathbb{F}_p}\Big(\bigwedge^{n}\mathfrak{g},\mathbb{F}_p\Big).$$

$$\operatorname{\sf gr}^0 H^n(\mathfrak{g},\mathbb{F}_p)$$

In grade 0 we have the chain complex

$$0 \longrightarrow \mathbb{F}_p \longrightarrow 0,$$

which gives us the grade 0 cochain complex

$$0 \longleftarrow \operatorname{\mathsf{Hom}}^0_{\mathbb{F}_p}(\mathbb{F}_p,\mathbb{F}_p) \longleftarrow 0.$$

So
$$H^0 = H^{0,0}$$
 with dim $H^{0,0} = 1$.

$$\operatorname{\sf gr}^{-1} H^n(\mathfrak{g},\mathbb{F}_p)$$

In grade 1 we have the chain complex

$$0 \longrightarrow \mathfrak{g}^1 \longrightarrow 0,$$

which gives us the grade -1 cochain complex

$$0 \longleftarrow \operatorname{\mathsf{Hom}}_{\mathbb{F}_p}^{-1}(\mathfrak{g},\mathbb{F}_p) \longleftarrow 0.$$

So dim $H^{-1,2} = 2$ and $H^{-1,2} = \mathbb{F}_p[e_1, e_3]$.

$$\operatorname{gr}^{-2} H^n(\mathfrak{g}, \mathbb{F}_p) (1)$$

In grade 2 we have the chain complex

$$0 \longrightarrow \mathfrak{g}^1 \wedge \mathfrak{g}^1 \xrightarrow{(1)} \mathfrak{g}^2 \longrightarrow 0,$$

since

$$\begin{split} \mathfrak{g}^1 \wedge \mathfrak{g}^1 &\to \mathfrak{g}^2 \\ \xi_1 \wedge \xi_3 &\mapsto -[\xi_1, \xi_3] = \xi_2. \end{split}$$

$$\operatorname{gr}^{-2} H^n(\mathfrak{g}, \mathbb{F}_p)$$
 (2)

This gives us the grade -2 cochain complex

$$0 \longleftarrow \operatorname{\mathsf{Hom}}_{\mathbb{F}_p}^{-2} \left(\bigwedge^2 \mathfrak{g}, \mathbb{F}_p \right) \stackrel{(1)}{\longleftarrow} \operatorname{\mathsf{Hom}}_{\mathbb{F}_p}^{-2} (\mathfrak{g}, \mathbb{F}_p) \longleftarrow 0.$$

So

$$\dim H^{-2,3} = \dim \ker((1)) = 0,$$

 $\dim H^{-2,4} = \dim \operatorname{coker}((1)) = 0.$

$$\operatorname{\mathsf{gr}}^{-3} H^n(\mathfrak{g}, \mathbb{F}_p)$$

In grade 3 we have the chain complex

$$0 \longrightarrow \mathfrak{g}^1 \wedge \mathfrak{g}^2 \longrightarrow 0,$$

which gives us the grade -3 cochain complex

$$0 \longleftarrow \operatorname{\mathsf{Hom}}_{\mathbb{F}_p}^{-3} \left(\bigwedge^2 \mathfrak{g}, \mathbb{F}_p \right) \longleftarrow 0.$$

So dim
$$H^{-3,5} = 2$$
 and $H^{-3,5} = \mathbb{F}_p[e_{1,2}, e_{3,2}]$.

$$\operatorname{\sf gr}^{-4} H^n(\mathfrak{g}, \mathbb{F}_p)$$

In grade 4 we have the chain complex

$$0 \longrightarrow \mathfrak{g}^1 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2 \longrightarrow 0,$$

which gives us the grade -4 cochain complex

$$0 \longleftarrow \operatorname{Hom}_{k}^{-4}(\bigwedge^{3}\mathfrak{g},k) \longleftarrow 0.$$

So dim $H^{-4,7} = 1$ and $H^{-4,7} = \mathbb{F}_p[e_{1,3,2}]$.

$$H^*(\mathfrak{g}, \mathbb{F}_p)$$

Altogether we see that

$$\begin{split} H^0 &= H^{0,0} = \mathbb{F}_p, \\ H^1 &= H^{-1,2} = \mathbb{F}_p[e_1, e_3], \\ H^2 &= H^{-3,5} = \mathbb{F}_p[e_{1,2}, e_{3,2}], \\ H^3 &= H^{-4,7} = \mathbb{F}_p[e_{1,3,2}], \end{split}$$

with dimensions 1, 2, 2, 1.

$$E_1^{s,t} = H^{s,t}(\mathfrak{g},\mathbb{F}_p) \Longrightarrow H^{s+t}(I,\mathbb{F}_p)$$

t	0	-1	-2	-3	-4
0	1				
1					
2		2			
3					
4					
5				2	
6					
7					1

Recall that all differential $d_r^{s,t} \colon E_r^{s,t} \to E_r^{s+r,t+1-r}$ has bidegree (r,1-r), i.e., they are all below the (r,-r) arrow going r to the left and r up in the table to the left, where $r \ge 1$.

This means that all differentials for $r \ge 1$ are trivial, so the spectral sequence collapses on the first page.

$H^n(I, \mathbb{F}_p)$ dimensions

Hence $H^{s,t}(\mathfrak{g},\mathbb{F}_p)=E_1^{s,t}\cong E_\infty^{s,t}=\operatorname{gr}^sH^{s+t}(I,\mathbb{F}_p)$, and we get that

$$\dim H^n(I, \mathbb{F}_p) = \begin{cases} 1 & n = 0, \\ 2 & n = 1, \\ 2 & n = 2, \\ 1 & n = 3. \end{cases}$$

$H^n(I, \mathbb{F}_p)$ dimensions

Hence $H^{s,t}(\mathfrak{g},\mathbb{F}_p)=E_1^{s,t}\cong E_\infty^{s,t}=\operatorname{gr}^sH^{s+t}(I,\mathbb{F}_p)$, and we get that

$$\dim H^n(I, \mathbb{F}_p) = \begin{cases} 1 & n = 0, \\ 2 & n = 1, \\ 2 & n = 2, \\ 1 & n = 3. \end{cases}$$

Furthermore $H^{s,t} \cup H^{s',t'} \subseteq H^{s+s',t+t'}$ by a result of Fuks, so the cup products

$$\operatorname{\sf gr}^{\sf s} H^n(I,\mathbb{F}_p) \otimes \operatorname{\sf gr}^{\sf s'} H^{n'}(I,\mathbb{F}_p) o \operatorname{\sf gr}^{\sf s+s'} H^{n+n'}(I,\mathbb{F}_p)$$

are trivial, except for $H^1(I,\mathbb{F}_p)\otimes H^2(I,\mathbb{F}_p)\to H^3(I,\mathbb{F}_p)$.

Cup product in Lie algebra cohomology

For $f \in \operatorname{Hom}_{\mathbb{F}_p}(\bigwedge^p \mathfrak{g}, \mathbb{F}_p)$ and $g \in \operatorname{Hom}_{\mathbb{F}_p}(\bigwedge^q \mathfrak{g}, \mathbb{F}_p)$, we recall that the cup product in cohomology is induced by: $f \cup g \in \operatorname{Hom}_{\mathbb{F}_p}(\bigwedge^{p+q} \mathfrak{g}, \mathbb{F}_p)$ defined by

$$(f \cup g)(x_1 \wedge \cdots \wedge x_{p+q})$$

$$= \sum_{\substack{\sigma \in S_{p+q} \\ \sigma(1) < \cdots < \sigma(p) \\ \sigma(p+1) < \cdots < \sigma(p+q)}} \operatorname{sign}(\sigma) f(x_{\sigma(1)} \wedge \cdots \wedge x_{\sigma(p)}) g(x_{\sigma(p+1)} \wedge \cdots \wedge x_{\sigma(p+q)}).$$

When finding \cup : $H^1 \otimes H^2 \to H^3$, where $H^1 = \mathbb{F}_p[e_1, e_3]$, $H^2 = \mathbb{F}_p[e_{1,2}, e_{3,2}]$ and $H^3 = \mathbb{F}_p[e_{1,3,2}]$, we need to calculate $e_i \cup e_{j,k}$ on the basis $\xi_1 \wedge \xi_3 \wedge \xi_2$ of $\operatorname{gr}^4(\bigwedge^3 \mathfrak{g})$.

Cup product on $H^*(\mathfrak{g}, \mathbb{F}_p)$

In this case, the sum simplifies to

$$(e_i \cup e_{j,k})(x_1 \wedge x_2 \wedge x_3) = \sum_{\substack{\sigma \in S_3 \\ \sigma(2) < \sigma(3)}} \operatorname{sign}(\sigma)e_i(x_{\sigma(1)})e_{j,k}(x_{\sigma(2)} \wedge x_{\sigma(3)}).$$

The terms on the right are only non-zero if $x_{\sigma(1)} = \xi_i$ and $x_{\sigma(2)} \wedge x_{\sigma(3)} = \xi_j \wedge \xi_k$ (up to constants).

Cup product on $H^*(\mathfrak{g}, \mathbb{F}_p)$

In this case, the sum simplifies to

$$(e_i \cup e_{j,k})(x_1 \wedge x_2 \wedge x_3) = \sum_{\substack{\sigma \in S_3 \\ \sigma(2) < \sigma(3)}} \operatorname{sign}(\sigma)e_i(x_{\sigma(1)})e_{j,k}(x_{\sigma(2)} \wedge x_{\sigma(3)}).$$

The terms on the right are only non-zero if $x_{\sigma(1)} = \xi_i$ and $x_{\sigma(2)} \wedge x_{\sigma(3)} = \xi_j \wedge \xi_k$ (up to constants).

When $x_1 \wedge x_2 \wedge x_3 = \xi_1 \wedge \xi_3 \wedge \xi_2$, we see that $e_1 \cup e_{3,2} = e_{1,3,2}$ (with $\sigma = (1)$) and $e_3 \cup e_{1,2} = -e_{1,3,2}$ (with $\sigma = (1,2)$). This translates to a cup product on $H^*(I, \mathbb{F}_p)$.

$$I \subseteq \operatorname{SL}_2(\mathbb{Z}_p)$$

 $I \subseteq \operatorname{GL}_2(\mathbb{Z}_p)$
Other calculation
Nilpotency index

$H^*ig((1+\mathfrak{m}_D)^{\mathsf{Nrd}=1},\mathbb{F}_pig)$ for D a div. quat. alg. over \mathbb{Q}_p

Let D be the division quaternion algebra over \mathbb{Q}_p for a prime p>3 and let $G=(1+\mathfrak{m}_D)^{\mathrm{Nrd}=1}$, where $\mathrm{Nrd}=\mathrm{Nrd}_{D/\mathbb{Q}_p}$ is the norm form. Sørensen and Henn have shown that

$$H^*(G, \mathbb{F}_p) \cong \mathbb{F}_p \oplus \mathbb{F}_D \oplus \mathbb{F}_D \oplus \mathbb{F}_p$$

of graded \mathbb{F}_p -algebras (where $\mathbb{F}_D \cong \mathbb{F}_{p^2}$). The only non-trivial cup product is $H^1(G,\mathbb{F}_p) \times H^2(G,\mathbb{F}_p) \to H^3(G,\mathbb{F}_p)$, which corresponds to the trace pairing

$$\mathbb{F}_D \times \mathbb{F}_D \to \mathbb{F}_p$$
, $(x, y) \mapsto \operatorname{Tr}(xy)$.

Comparing $H^*(I, \mathbb{F}_p)$ and $H^*((1+\mathfrak{m}_D)^{\mathsf{Nrd}=1}, \mathbb{F}_p)$

When $p \equiv 3 \pmod{4}$, we can write $\mathbb{F}_D = \mathbb{F}_p[\alpha]$ with $\alpha^2 = -1$, and see that

$$Tr(1) = 2,$$
 $Tr(\alpha) = 0,$ $Tr(\alpha^2) = -2.$

$$I\subseteq \mathsf{SL}_2(\mathbb{Z}_p)$$

 $I\subseteq \mathsf{GL}_2(\mathbb{Z}_p)$
Other calculations
Nilpotency index

Comparing $H^*(I, \mathbb{F}_p)$ and $H^*((1+\mathfrak{m}_D)^{\mathsf{Nrd}=1}, \mathbb{F}_p)$

When $p \equiv 3 \pmod{4}$, we can write $\mathbb{F}_D = \mathbb{F}_p[\alpha]$ with $\alpha^2 = -1$, and see that

$$Tr(1) = 2,$$
 $Tr(\alpha) = 0,$ $Tr(\alpha^2) = -2.$

Hence

$$H^*(I, \mathbb{F}_p) \cong H^*((1+\mathfrak{m}_D)^{\mathsf{Nrd}=1}, \mathbb{F}_p).$$

Note: We even have that $\mathfrak{g} \cong \mathfrak{g}_D$, where $\mathfrak{g}_D = \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G$.

Question

Does this result generalize?

Sidenote: I is not uniformly powerful (1)

Definition

Let G be a finitely generated pro-p group. The *lower p-series* $\cdots \geq P_3(G) \geq P_2(G) \geq P_1(G)$ of G is given by $P_i(G)$, where $P_1(G) = G$ and

$$P_{i+1}(G) = P_i(G)^p [P_i(G), G]$$

for i > 1.

Sidenote: *I* is not uniformly powerful (2)

Definition

Let p be an odd prime. A pro-p group G is uniformly powerful (often written as uniform) if

- (i) G is finitely generated,
- (ii) G is powerful, i.e., $G/\overline{G^p}$ is abelian, and
- (iii) for all i, $[P_i(G): P_{i+1}(G)] = [G: P_2(G)]$.

Sidenote: *I* is not uniformly powerful (3)

Theorem (K, 2022)

Let I be the pro-p lwahori subgroup of $SL_2(\mathbb{Q}_p)$ and let g_1, g_2, g_3 be the ordered basis of I. Then the lower p-series is given by

$$P_{i}(I) = \begin{cases} I^{p^{n}} & \text{if } i = 2n + 1, \\ [I, I]^{p^{n-1}} & \text{if } i = 2n, \end{cases}$$

where $P_{2n+1}(I) = I^{p^n}$ is the subgroup generated by $g_1^{p^n}, g_2^{p^n}, g_3^{p^n}$ and $P_{2n}(I) = [I, I]^{p^{n-1}}$ is the subgroup generated by $g_1^{p^n}, g_2^{p^n-1}, g_3^{p^n}$. Thus I is not uniformly powerful, since

$$[P_i(G): P_{i+1}(G)] = \begin{cases} 1 & \text{if } i = 2n, \\ 2 & \text{if } i = 2n + 1. \end{cases}$$

The ordered basis of $I \subseteq GL_2(\mathbb{Z}_p)$

Let I be the pro-p lwahori subgroup of $GL_2(\mathbb{Q}_p)$, so we can take I of the form

$$I = egin{pmatrix} 1 +
ho \mathbb{Z}_p & \mathbb{Z}_p \
ho \mathbb{Z}_p & 1 +
ho \mathbb{Z}_p \end{pmatrix} \subseteq \mathsf{GL}_2(\mathbb{Z}_p),$$

and

$$g_1 = \begin{pmatrix} 1 & 0 \\ p & 1 \end{pmatrix},$$
 $g_2 = \begin{pmatrix} \exp(p) & 0 \\ 0 & \exp(-p) \end{pmatrix},$ $g_3 = \begin{pmatrix} \exp(p) & 0 \\ 0 & \exp(p) \end{pmatrix},$ $g_4 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

is an ordered basis of I.

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(I, \mathbb{F}_p)$$

Let $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} I$ be the Lazard Lie algebra of I, and note that it has basis $\xi_1, \xi_2, \xi_3, \xi_4$ with $[\xi_1, \xi_4] = -\xi_2$ the only non-zero commutator.

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(I, \mathbb{F}_p)$$

Let $\mathfrak{g}=\mathbb{F}_p\otimes_{\mathbb{F}_p[\pi]}\operatorname{gr} I$ be the Lazard Lie algebra of I, and note that it has basis ξ_1,ξ_2,ξ_3,ξ_4 with $[\xi_1,\xi_4]=-\xi_2$ the only non-zero commutator.

An argument similar to the $I\subseteq SL_2(\mathbb{Z}_p)$ case allows us to find $E_1^{s,t}=H^{s,t}(\mathfrak{g},\mathbb{F}_p)$ and show that

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(I, \mathbb{F}_p)$$

collapses at the first page.

$H^n(I,\mathbb{F}_p)$ dimensions

We get that

$$\dim H^n(I, \mathbb{F}_p) = \begin{cases} 1 & n = 0, \\ 3 & n = 1, \\ 4 & n = 2, \\ 3 & n = 3, \\ 1 & n = 4. \end{cases}$$

This time the non-trivial cup products are

$$H^1 \otimes H^1 \to H^2,$$
 $H^1 \otimes H^2 \to H^3,$
 $H^1 \otimes H^3 \to H^4,$ $H^2 \otimes H^2 \to H^4.$

Compairing $H^*(I, \mathbb{F}_p)$ with $H^*(1 + \mathfrak{m}_D, \mathbb{F}_p)$

By explicit calculation, we can check that

$$H^*(I,\mathbb{F}_p)\cong H^*(1+\mathfrak{m}_D,\mathbb{F}_p).$$

Proposition (Sørensen, 2021)

$$H^*(1+\mathfrak{m}_D,\mathbb{F}_p)\cong H^*((1+\mathfrak{m}_D)^{\mathsf{Nrd}=1},\mathbb{F}_p)\otimes_{\mathbb{F}_p}\mathbb{F}_p[\varepsilon]$$
 (where $\varepsilon^2=0$).

Thus

$$H^*(I_{\mathsf{GL}_2(\mathbb{Q}_p)}, \mathbb{F}_p) \cong H^*(I_{\mathsf{SL}_2(\mathbb{Q}_p)}, \mathbb{F}_p) \otimes_{\mathbb{F}_p} \mathbb{F}_p[\varepsilon].$$

Other pro-p Iwahori cohomology calculations

We can similarly find the mod p cohomology of the pro-p lwahori I_G for G=

- $SL_3(\mathbb{Q}_p)$,
- $GL_3(\mathbb{Q}_p)$,
- $SL_4(\mathbb{Q}_p)$ (partially),
- $GL_4(\mathbb{Q}_p)$ (partially),
- $SL_2(F)$ (for F/\mathbb{Q}_p quadratic),
- $GL_2(F)$ (for F/\mathbb{Q}_p quadratic).

Consequences: Nilpotency index of mod p cohomology (1)

Given any (suitable) cohomology theory H (say over \mathbb{F}_p), we can think of the ring H^* with the cup product $H^* = \mathbb{F}_p \oplus H^+$, where $\mathbb{F}_p = H^0$ and $H^+ = \bigoplus_{n>0} H^n$.

Assuming that only finitely many H^n are non-zero and that each H^n is finite dimensional, one can note that H^+ must be nilpotent.

Question

What is the smallest positive integer m such that $(H^+)^m = 0$?

Question

What is the smallest positive integer m such that $(H^1)^m = 0$?

Consequences: Nilpotency index of mod p cohomology (2)

n	2	3	4
$I\subseteq SL_n(\mathbb{Z}_p),\ H^1$	2	2	3
$I\subseteq SL_n(\mathbb{Z}_p),\ H^+$	3	5	8
$I\subseteq GL_n(\mathbb{Z}_p),\ H^1$	3	4	5
$I\subseteq GL_n(\mathbb{Z}_p),\ H^+$	4	7	11
$I\subseteq SL_n(\mathcal{O}_F)$ (quadratic), H^1	3		
$I\subseteq SL_n(\mathcal{O}_F)$ (quadratic), H^+	4		
$I\subseteq GL_n(\mathcal{O}_F)$ (quadratic), H^1	5		
$I\subseteq GL_n(\mathcal{O}_F)$ (quadratic), H^+	7		

Overview

- Introduction
 - Cohomology of compact Lie groups
 - Lazard Theory
 - $E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p)$
- \bigcirc On the mod p cohomology of unipotent groups
- 3 On the mod p cohomology of pro-p lwahori subgroups
 - $I \subseteq SL_2(\mathbb{Z}_p)$
 - $I \subseteq \operatorname{GL}_2(\mathbb{Z}_p)$
 - Other calculations
 - Nilpotency index
- 4 Future work
 - Division quaternion algebras
 - Central division algebras
 - Serre spectral sequence

Division quaternion algebras

Let p > 5 be a prime such that $p \equiv 3 \pmod{4}$. Let D be a division quaternion algebra over \mathbb{Q}_p and note that we can assume that $i^2 = -1$ and $i^2 = p$. Also $\mathcal{O}_D = \mathbb{Z}_p[i, j, k]$ (where k = ii) and $\mathfrak{m}_D = i\mathcal{O}_D = \mathcal{O}_D i$ has \mathbb{Z}_p -basis p, pi, j, k (by Voight's book). $D \subseteq M_2(\mathbb{Q}_p(i))$ gives the right diagram.

Central division algebras

Conjecture

Let D be the central division algebra over \mathbb{Q}_p of dimension n^2 and invariant $\frac{1}{n}$. Let \mathcal{O}_D be the maximal compact (local) subring of D with maximal ideal \mathfrak{m}_D and residue field $\mathbb{F}_D \cong \mathbb{F}_{p^n}$. If p > n+1 then

- $H^*(I_{\mathsf{GL}_n(\mathbb{Q}_p)},\mathbb{F}_p)\cong H^*(1+\mathfrak{m}_D,\mathbb{F}_p)$ as graded algebras, and
- $H^*(I_{\mathsf{SL}_n(\mathbb{Q}_p)}, \mathbb{F}_p) \cong H^*((1+\mathfrak{m}_D)^{\mathsf{Nrd}=1}, \mathbb{F}_p)$ as graded algebras.

In particular (due to Sørensen)

$$H^*(I_{\mathsf{GL}_n(\mathbb{Q}_p)}, \mathbb{F}_p) \cong H^*(I_{\mathsf{SL}_n(\mathbb{Q}_p)}, \mathbb{F}_p) \otimes_{\mathbb{F}_p} \mathbb{F}_p[\varepsilon]$$

as graded algebras, where $\varepsilon^2 = 0$.

Serre spectral sequence

Assume we have the "standard" setup over \mathbb{Q}_p with $\mathcal{G}=\mathsf{SL}_n$, \mathcal{U} unipotent upper triangular matrices and \mathcal{T} diagonal matrices with determinant 1. Let

$$I = \left\{ g \in \mathcal{G}(\mathbb{Z}_p) : \operatorname{red}(g) \in \mathcal{U}(\mathbb{F}_p) \right\} \text{ (pro-}p \text{ lwahori)},$$

 $K = \ker(\operatorname{red}: \mathcal{G}(\mathbb{Z}_p) \to \mathcal{G}(\mathbb{F}_p)) \triangleleft I.$

Then $I/K \cong \mathcal{U}(\mathbb{F}_p)$, and thus we get the (multiplicative) Serre spectral sequence

$$E_2^{s,t} = H^s(\mathcal{U}(\mathbb{F}_p), H^t(K, \mathbb{F}_p)) \Longrightarrow H^{s+t}(I, \mathbb{F}_p).$$

Since K is uniformly powerful, we know by Lazard that

$$H^t(K, \mathbb{F}_p) \cong \bigwedge^t \mathsf{Hom}_{\mathbb{F}_p}(K, \mathbb{F}_p).$$

Division quaternion algebras Central division algebras Serre spectral sequence

Thank you