Feedback — XIV. Principal Component Analysis

Help

You submitted this quiz on **Sun 11 May 2014 10:59 PM PDT**. You got a score of **5.00** out of **5.00**.

Consider the following 2D dataset:

Which of the following figures correspond to possible values that PCA may return for $u^{(1)}$ (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).

Your Answer			Score	Explanation
		~	0.25	The first principal component is aligned with the
o.s.	2.00			direction of maximal variance, but this is aligned

Question 2

Which of the following is a reasonable way to select the number of principal components k? (Recall that n is the dimensionality of the input data and m is the number of input examples.)

Your Answer	Score	Explanation
-------------	-------	-------------

✓ 1.00

Choose k to be the smallest value so that at least 99% of the variance is retained.

This is correct, as it maintains the structure of the data while maximally reducing its dimension.

- Use the elbow method.
- Ohoose k to be the largest value so that at least 99% of the variance is retained
- Choose k to be 99% of m (i.e., k=0.99*m, rounded to the nearest integer).

Total

1.00 / 1.00

Question 3

Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an equivalent statement to this?

Your Answer	Score	Explanation
$rac{rac{1}{m}\sum_{i=1}^{m} x^{(i)}-x_{ ext{approx}}^{(i)} ^2}{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2}\leq 0.05$	1.00	This is the correct formula.
$-rac{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2}{rac{1}{m}\sum_{i=1}^{m} x^{(i)}-x_{ ext{approx}}^{(i)} ^2}\geq 0.05$		
$-rac{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2}{rac{1}{m}\sum_{i=1}^{m} x^{(i)}-x_{ ext{approx}}^{(i)} ^2}\leq 0.05$		
$-rac{rac{1}{m}\sum_{i=1}^{m} x^{(i)}-x_{ ext{approx}}^{(i)} ^2}{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2}\geq 0.95$		
Total	1.00 / 1.00	

Question 4

Which of the following statements are true? Check all that apply.

Your Answer	Scor	e Explanation
■PCA is susceptible to local optima; trying multiple random initializations may help.	✔ 0.25	PCA is a deterministic algorithm: there is no initialization and there are no local optima.
■PCA can be used only to reduce the dimensionality of data by 1 (such as 3D to 2D, or 2D to 1D).	✔ 0.25	PCA can reduce data of dimension n to any dimension $k < n$.
If the input features are on very different scales, it is a good idea to perform feature scaling before applying PCA.	✔ 0.25	Feature scaling prevents one feature dimension from becoming a strong principal component only because of the large magnitude of the feature values (as opposed to large variance on that dimension).
Given input data $x \in \mathbb{R}^n$, it makes sense to run PCA only with values of k that satisfy $k \leq n$. (In particular, running it with $k=n$ is possible but not helpful, and $k>n$ does not make sense.)	✔ 0.25	The reasoning given is correct: with $k=n$, there is no compression, so PCA has no use.
Total	1.00	I .

Question 5

Which of the following are recommended applications of PCA? Select all that apply.

|--|--|--|

		Quiz Fe	eedback Coursera
Data compression: Reduce the dimension of your input data $x^{(i)}$, which will be used in a supervised learning algorithm (i.e., use PCA so that your supervised learning algorithm runs faster).	•	0.25	If your learning algorithm is too slow because the input dimension is too high, then using PCA to speed it up is a reasonable choice.
	~	0.25	This is a good use of PCA, as it can give you intuition about your data that would otherwise be impossible to see.
As a replacement for (or alternative to) linear regression: For most learning applications, PCA and linear regression give substantially similar results.	~	0.25	PCA is not linear regression. They have different goals (and cost functions), so they give different results.
■To get more features to feed into a learning algorithm.	~	0.25	PCA will reduce the number of features, not expand it.
Total		1.00 / 1.00	