覚制御ロボットの最新動向と応用技術

六軸力覚センサの原理と

The Fundamentals and Mechanism of Six Axis Force Sensor

向井

Suguru MUKAI and Yoshiyuki NODA

Key words

force, force sensor, six axis force sensor, load cell, force measurement, strain gage, parallel link

1. はじめに

六軸力覚センサとは、X、Y、Z軸方向の力 (F_X, F_Y, F_Z) と力のモーメント (M_X, M_Y, M_Z) の大きさと 方向を測るセンサである. 構造体のひずみや変位量などの 物理量をさまざまな方法で電気信号に変え、力を検出して いる.

六軸力覚センサは、ひずみゲージ式・圧電式・光学式・ 静電容量式など、さまざまな検出方法が実用化されてい る. 本稿では、ロードセルの特徴と合わせて六軸力覚セン サに求められる構造について解説していく.

2. ひずみゲージの計測原理とロードセルの特徴

2.1 ひずみゲージの計測原理1)-3)

図1に示すように、長さLの構造体(以下、起歪体) に外力が加わると起歪体が変形する. 外力による変形量を ΔL としたとき、L と ΔL の割合をひずみといい、次式で 表す.

$$\varepsilon = \Delta L/L \tag{1}$$

ひずみゲージは、抵抗体に外力が加わったときに生じる ひずみによって電気抵抗が変化する性質を利用している. 図2にひずみゲージの構造を示す. ひずみゲージの抵抗 変化率 $\Delta R/R$ はひずみに比例する.

$$\Delta R/R = K \cdot \varepsilon \tag{2}$$

ここで、Kはゲージ率であり、ゲージの材料によって 決まる定数である.

ひずみゲージを起歪体の中でひずみが大きく発生する部 分に貼り付け、起歪体のひずみを抵抗値に変換している. 抵抗値をそのまま測定することは困難なため、一般的にひ ずみゲージでホイートストンブリッジを組み、ひずみゲー ジの抵抗値変化を電圧変化に変換する. ブリッジからは印 加電圧とひずみに比例した電圧信号が出力される.

^{**(}株)レプトリノ (長野県佐久市猿久保 92-8)

図1 ひずみと抵抗値の関係

2.2 ロードセルの特徴

ロードセルにおける力の検出方法は、一般的にひずみゲ ジ式が用いられる. 起歪体に力が加わるとそれを電気信 号に変換するため、荷重変換器とも呼ばれている. ひずみ ゲージ式ロードセル (以下、ロードセル) の特徴は以下の とおりである.

- ・ひずみゲージを起歪体に直接貼り付けるため、線形 性 再現性が良い
- ・同じひずみゲージを使っても、起歪体の構造・材質に よって感度を高めたり剛性を高めることに対応可能
- ・構造が単純で構成部品も少なく、製作が比較的簡単で ある
- ・時間経過にともなうドリフトが小さく、長期的な計測 に適している
- ・測る荷重の種類によってさまざまな種類がある(図 3)

一軸を検出するロードセルは図3に示すように、一方向 にしか力がかからないように接点が球面のロードボタンや 軸受けが設けられ、測定軸以外の力がかからないように工 夫された構造をしている.

^{***}山梨大学大学院総合研究部(山梨県甲府市武田 4-3-11)

- (a) 圧縮用ロードセル
- (b) 引張用ロードセル

図3 主なロードセルの種類

図4 六軸力覚センサ

図5 起歪体:クロスビーム型

ロードセルを使用するためにはアンプが必要になるが、ロードセルの出力電圧は数 mV 程度と非常に小さいため、ゲインが高く高精度なアンプが必要になる. ほかにもゼロ点の調整やゲイン調整が煩雑であることや、システムの小型化が難しいといった欠点があったが、最近では高性能なA/D 変換器が入手可能になったことでロードセルの欠点が解消されてきている.

3. 六軸力覚センサ

3.1 六軸力覚センサの構造

六軸力覚センサの外観を**図4**に示す. 六軸力覚センサは, ロードセルとは異なりすべての方向からの力を受ける

図6 F_X がかかった場合の変形

図7 F_Z がかかった場合の変形

ため、被計測対象の構造物に対してテーブルとベースを完全に固定しなければならない. したがって、ロードセルとは異なる起歪体構造が必要になる.

図5は、クロスビーム型と呼ばれる六軸検出として一般的な起歪体の構造である。起歪体にはさまざまな形があるが、クロスビーム型が最も理解しやすいのでこれを例に説明する。

各軸方向に外力が加わった場合の変形は**図 6~9** のようになる.

図 6 に示すように、 F_X (または F_Y)がかかった場合、X 軸(またはY 軸)方向にのみ変形する。図 7 に示すように、 F_Z がかかった場合、Z 軸方向にのみ変形する。図 8 に示すように M_Y (または M_X)がかかった場合、Y 軸(または X 軸)を中心に回転する。図 9 に示すように、 M_Z がかかった場合、Z 軸を中心に回転する。このように、クロスビーム型は加わった外力の方向にのみ起歪体が変形するため、それぞれの梁の変形を検出することで 6 方向の力に変換することができる。

六軸力覚センサにおいて最も重要なのは、起歪体が以下 の構造をもっていることである.

- ・外力方向に対し、線形に変形すること(非直線性)
- ・同じく, 別の方向に変形しないこと(他軸干渉)

図8 M_Y がかかった場合の変形

図9 M_z がかかった場合の変形

・一体構造であること

・固定した際の影響がないこと

これを満たした起歪体の変形を精度良くとらえることが できれば、検出方法は何であっても構わないことになる.

六軸力覚センサを選定する際は、起歪体構造を確認し、 検出方法による分解能・温度特性等の性能が目的の仕様を 満足できるかどうかを検討しなければならない.

3.2 剛性と感度

上記の起歪体構造に加え、六軸力覚センサには正確な力 検出と定格荷重以上の荷重がかかった際にどこまで壊れな いかが求められる。どのような検出方法であっても、起歪 体の変形を検出して力に変換している。起歪体の変形は、 外力が大きいほど大きくなり、限界を超えると壊れてしま う. 剛性の低い起歪体であればストッパー機構などを設け るなどして過負荷から保護することも可能だが、固有振動 数などを考えると可能な限り剛性の高いセンサであること が好ましい. しかし半面,「剛性が高い」ことは「起歪体 の変形量が小さい」となり感度が落ちることになる.

検出方法によって差はあるものの、剛性と感度はトレー ドオフの関係にあるので、目的に応じて仕様を決定する必 要がある.

3.3 ひずみゲージ式六軸力覚センサ

クロスビーム型起歪体の場合、4本の梁の上下・左右の 面にひずみゲージを貼り付け、梁の曲げひずみを検出し力

図10 薄型六軸力覚センサ

図11 加重試験装置の概要

変換している、梁の形状や起歪体の材質を変えることで感 度や剛性を調整することができるため、他の検出方法に比 べ比較的容易に用途に合わせた設計が可能である. また. 起歪体の構造が正しければ従来のセンサのように固定用ボ ルトの締め付けトルクに細かく気を使う必要もなく、テー ブル・ベースを必要としない構造にすることもできる. 図 10 は弊社が開発した起歪体とカバーのみで構成された薄 型六軸力覚センサである. 起歪体は一枚の金属板からの削 出で、変換回路を内蔵し力信号をデジタル出力している.

4. 六軸力覚センサの校正

六軸力覚センサには非常に高価な製品が多い. 検出方法 や構造に起因するところもあるが、大きな要因の一つは校 正の大変さである.

図12 試験装置の外観

六軸方向すべてに何個もの検量された重りをかける校正 作業は作業性が悪く時間がかかる。また、他軸成分を含ま ず単軸のみに加重することや複合力を自在にかけることは 非常に困難なことである. そこに作業者の個人差も考慮し なければならない.

この問題を解消するため、弊社では独自に六方向に加重 試験ができる装置を開発し、自動で校正作業を行うことで コストを大幅に削減している.

図11に加重試験装置の概要を示し、図12に外観を示 す. 加重する際は固定されたセンサに重りをかけるのが一 般的だが、この試験装置はセンサを6方向への運動可能な ステージに固定し、さらにセンサへ重りをつなぐ治具を固 定して、ステージを姿勢変更させることで加重を変えるこ とができる. 試験装置はパラレルリンク機構を用いてお り、ステージを6方向の任意の位置や姿勢に移すことで自 在の加重を発生させることができる. 被試験センサはステ ージ上に組み込んだマスタセンサ上に設置され、マスタセ ンサ出力を基準に校正を行っている.

しかし、高精度センサ(非直線性 ±0.5% 以下) に対応

できていないため、今後改善を進めさらに高精度な試験装 置を開発し、六軸力覚センサの価格を引き下げていく予定 である.

5. お わ り に

今, 人工知能や IoT (Internet of Things) が非常に注目 されている. IoTでは、作業の環境や状態を定量化するこ とが重要であり、あらゆるモノにさまざまなセンサが取り 付けられることが予想される. 人と協調する作業や人と同 様の作業をするロボットが普及しつつあり、力計測・力制 御の需要はますます高まってくるものと思われる。六軸力 覚センサは、今後さらにさまざまな用途で活用される可能 性があり、技術の進歩やさらなる低価格化が期待される.

参考文献

- 1) 西田恵一:ひずみゲージ・センサの使い方とひずみ測定器の製 作, CQ 出版社, トランジスタ技術 2003 年 7 月号 (2003) 257-264.
- 2) 力が加わったことによる微小なひずみを検出するセンサ, CQ 出 版社. トランジスタ技術. 2007年7月号 (2007) 136.
- 3) 岡野一雄: 物理/化学センサのしくみと動作原理, CQ 出版社, Interface, 2001年2月号(2001)65.

向井 優

信州大学繊維学部機能機械学課程学士課程 2012 年3月卒業. 2014年に(株)レプトリノ入社. 六 軸力覚センサの設計、開発業務に従事. 現在に 至る

野田善之

2006年豊橋技術科学大学大学院工学研究科博士 後期課程修了. 博士 (工学). 2006年豊橋技術 科学大学生産システム工学系助手, 2011年山梨 大学大学院総合研究部准教授, 現在に至る. 振 動制御、パワーアシスト、注湯制御に興味をも つ. 計測自動制御学会, IEEE の会員.