Tout manquement à l'une de ces règles entraînera l'attribution de la note minimale de zéro.

Classe:..... Prénom:..... Il est toléré de travailler avec une personne de la classe, à condition de l'avoir indiqué sur la copie. $Il\ est\ \textbf{interdit}\ d'utiliser\ \textbf{un\ logiciel\ d'intelligence\ artificiel\ pour\ répondre\ aux\ questions.}\ Des\ explications\ seront\ demandées\ en\ cas\ de\ doute.$

EXERCICE 1

En utilisant les techniques du cours, étudier les variations de la fonction $f: x \mapsto x^3 - 3x + 1$ sur \mathbb{R} .

EXERCICE 2

Soit la fonction g définie sur \mathbb{R} par $g(x) = -x^2 - 2x + 1$.

1. a. Soit h un nombre réel non nul. Montrer que $\frac{g(0+h)-g(0)}{h}=-h-2$.

- **c.** Interpréter graphiquement ce nombre.
- 2. Retrouver le résultat de la question précédente en calculant la fonction dérivée de g et en l'évaluant

EXERCICE 3

Une entreprise fabrique des robots ménagers. On note x le nombre de robots fabriqués par jour. On sait que cette entreprise peut fabriquer jusqu'à 60 appareils par jour. Le coût de fabrication, en euros, de x appareils, est donné par la fonction C définie par $C(x) = x^2 + 160x + 800$.

- 1. Déterminer les coûts fixes de cette entreprise. *Un coût fixe est une dépense qui ne change pas lorsque les ventes ou les volumes de production augmentent ou diminuent.*
- - **b.** En déduire que le bénéfice réalisé par la vente de x appareils est donné par la fonction B définie par $B(x) = -x^2 + 90x 800$.
 - **c.** Après avoir soigneusement calculé B', déterminer les variations de B sur l'intervalle [0; 60].

- 3. On appelle **coût marginal** au rang x, noté $C_m(x)$ le coût de fabrication d'un robot supplémentaire lorsque x robots ont déjà été produits. Ainsi, $C_m(x) = C(x+1) C(x)$.
 - **a.** Montrer que $C_m(x) = 2x + 161$.