

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously presented) A method for depositing a layer on a substrate in a process chamber, the method comprising:
 - supplying a gaseous mixture to the process chamber, the gaseous mixture comprising a silicon-containing gas, a fluorine-containing gas, an oxygen-containing gas, and a nitrogen-containing gas;
 - providing energy to the gaseous mixture to deposit a nitrogen-containing fluorinated silicate glass layer onto the substrate; and
 - forming a barrier layer over the nitrogen-containing fluorinated silicate glass layer.
2. (Previously presented) The method of claim 1 wherein the barrier layer comprises at least one of tantalum, tantalum nitride, silicon nitride, and silicon-carbon.
3. (Previously presented) The method of claim 1 further comprising forming a metal layer over the barrier layer.
4. (Original) The method of claim 3 wherein the metal layer comprises copper.
5. (Original) The method of claim 1 wherein the nitrogen-containing gas is selected from the group consisting of N₂, N₂O, NH₃, and NF₃.
6. (Original) The method of claim 1 wherein the silicon-containing gas comprises TEOS, the fluorine-containing gas comprises SiF₄, and the oxygen-containing gas comprises O₂.
7. (Original) The method of claim 1 wherein the gaseous mixture further includes an inert gas.

8. (Original) The method of claim 1 wherein providing energy comprises forming a plasma from the gaseous mixture in the process chamber.

9. (Original) The method of claim 1 wherein a ratio of a flow rate of the nitrogen-containing gas into the process chamber to a total flow rate of the gaseous mixture into the process chamber is less than about 10%.

10. (Original) The method of claim 1 wherein the nitrogen-containing fluorinated silicate glass layer has a nitrogen content of less than about 5 at. %.

11. (Original) The method of claim 10 wherein the nitrogen-containing fluorinated silicate glass layer has a nitrogen content of less than about 1 at. %.

12. (Original) The method of claim 11 wherein the nitrogen-containing fluorinated silicate glass layer has a nitrogen content of less than about 0.1 at. %.

13. (Original) The method of claim 12 wherein the nitrogen-containing fluorinated silicate glass layer has a nitrogen content of about 0.03-0.08 at. %.

14. (Canceled)

15. (Previously presented) A method for depositing a layer on a substrate having a barrier layer in a process chamber, the method comprising:

supplying a gaseous mixture to the process chamber, the gaseous mixture comprising a silicon-containing gas, a fluorine-containing gas, an oxygen-containing gas, and a nitrogen-containing gas; and

providing energy to the gaseous mixture to deposit a nitrogen-containing fluorinated silicate glass layer onto the barrier layer;

wherein the barrier layer is formed over a metal layer.

16. (Original) The method of claim 15 wherein the metal layer comprises copper.

17. (Previously presented) The method of claim 15 wherein the barrier layer comprises at least one of silicon-carbon, silicon nitride, tantalum and tantalum nitride.

18. (Previously presented) A method of forming a layer on a substrate in a process chamber, the method comprising:

forming a fluorinated silicate glass layer over the substrate;
forming a patterned photoresist layer over the fluorinated silicate glass layer;
etching the fluorinated silicate glass layer according to the patterned photoresist layer;

removing the photoresist layer and substantially simultaneously introducing nitrogen dopants into the fluorinated silicate glass layer by subjecting the photoresist layer and the fluorinated silicate glass layer to a plasma formed from a nitrogen-containing gas;
wherein the plasma contains no oxygen species.

19. (Original) The method of claim 18 wherein the nitrogen-containing gas is selected from the group consisting of N₂ and NH₃.

20. (Original) The method of claim 18 wherein the nitrogen-containing gas comprises at least one of N₂ and NH₃.

21. (Canceled)

22. (Original) The method of claim 18 wherein nitrogen dopants are incorporated into the fluorinated silicate glass layer in a region near a surface of the fluorinated silicate glass layer which is exposed to the plasma formed from the nitrogen-containing gas.

23. (Original) The method of claim 22 wherein the region near the surface of the fluorinated silicate glass layer has a nitrogen content of less than about 10 at. %.

24. (Original) The method of claim 23 wherein the region near the surface of the fluorinated silicate glass layer has a nitrogen content of about 1 to about 5 at. %.

25. (Original) The method of claim 18 further comprising forming a barrier layer over the nitrogen-containing fluorinated silicate glass layer.

26. (Previously presented) The method of claim 25 wherein the barrier layer comprises at least one of silicon-carbon, silicon nitride, tantalum and tantalum nitride.

27. (Original) The method of claim 25 further comprising forming a metal layer over the barrier layer.

28. (Original) The method of claim 27 wherein the metal layer comprises copper.

Appl. No. 09/759,854
Amdt. dated December 9, 2003
Amendment under 37 CFR 1.116 Expedited Procedure
Examining Group

PATENT

29-30. (Canceled)