# ОБ ОДНОВРЕМЕННОМ ПРИМЕНЕНИИ НЕСКОЛЬКИХ НЕЗАВИСИМЫХ ПРЕОБРАЗОВАНИЙ ГРАМАТИК

#### 1. Введение

В данной работе представлен очередной шаг к созданию расширяемых синтаксических анализаторов формальных языков – рассмотрены некоторые важные вопросы, касающиеся одновременного применения нескольких независимых преобразований к грамматике.

Ниже будет описана постановка задачи и сформулированы рассматриваемые в данной работе вопросы. Далее будут последовательно введены понятия, на основе которых затем будут даны ответы на поставленные вопросы.

#### 2. Постановка задачи

Пусть у нас есть грамматика G и два преобразования этой конкретной грамматики –  $\phi$  и  $\psi$ . Каждое преобразование оперирует правилами вывода – удаляет одни и добавляет другие. Если применить к грамматике одно из преобразований, то встаёт вопрос о том как к полученной грамматике  $\phi(G) \neq G$ , применять  $\psi$ , предназначенное для применения к G. В некоторых случаях это будет не возможно. В некоторых других случаях можно немного изменив  $\psi$  получить новое преобразование  $\psi$ , которое уже предназначено для применения к  $\phi(G)$  и в некотором смысле преобразует  $\phi(G)$  тем же способом, что и  $\psi$  преобразует G.

Это можно изобразить графически следующим образом:



© П.В. Егоров, 2008

В это работе рассмотрены следующие вопросы. Как нужно изменять исходное преобразование, чтобы его можно было применить после другого преобразования? Какие требования логично предъявлять к этому способу модификации исходного преобразования? Будет ли зависеть результат применения обоих преобразований от порядка их применения?

#### 3. Размеченная грамматика

Пусть есть некоторая грамматика  $G = (V, \Sigma, P, S)$  и p – это некоторое правило вывода из P. Введём несколько вспомогательных обозначений.

Через len(p) будем обозначать длину правой части правила вывода p.

Через p(i), при  $1 \le i \le len(p)$ , будем обозначать i-ый символ правой части правила вывода p.

Через p(0) будем обозначать символ левой части правила вывода p.

Определение 3.1. Разметкой грамматики G будем называть функцию m, которая каждому правилу вывода грамматики G будет ставить в соответствие кортеж, состоящий из нулей и единиц, длиной в количество символов в правой части своего аргумента. Другми словами для любого правила p m(p) есть кортеж

$$(m_1, m_2, \dots m_{len(p)}), \quad \epsilon \partial e \quad m_i \in \{0, 1\}$$

Кортеж m(p) будем называть разметкой правила p.

Для удобства введём слудеющее обозначение для элементов кортежа:  $m(p) = (m(p,1), m(p,2), \dots m(p,len(p))).$ 

Значение m(p,i) будем называть разметкой i-ого символа правой части правила p.

**Определение 3.2.** Определим множесство размеченных грамматик  $\Gamma_M$  как множество всевозможных пар (G,m), где  $G \in \Gamma$ , а m – разметка G. Саму пару (G,m) будем называть размеченной грамматикой.

Разметку правила вывода будем обозначать с помощью верхнего индекса у символов правой части правила вывода. Например для правила вывода  $p:A\to BCde$  и разметки m(p)=(0,1,0,1), размеченное правило вывода будем обозначать так:  $p:A\to B^0C^1d^0e^1$ 

## 4. Синтаксический анализатор

**Определение 4.1.** Пусть L – некоторый язык. Тогда синтаксическим анализатором G будем называть произвольную функцию, определенную на L.

Ниже будет определён синтаксический анализатор  $ct\langle G, m \rangle$ , управляемый размеченной грамматикой. Он будет в качестве результата возвращать конструкцию, очень похожую на классическое дерево вывода слова в грамматике G. Разметка будет им использоваться для того, чтобы вырезать некоторые узлы из классического дерева вывода. Рассмотрим всё по порядку.

Каждому узлу кроме корня в классическом дереве вывода можно сопоставить значение разметки правила, в результате применения которого появился данный узел. Такое сопоставление будем называть разметкой узлов дерева вывода. Для единообразия доопределим разметку на корне дерева единицей. Чтобы пояснить идею разметки дерева вывода, обратимся к примеру:

Пусть дана следующая грамматика:

$$T \to R^0 E^0 E^1$$

$$R \to s^1 a^0 m^0$$

$$E \to \varepsilon$$

$$E \to p^1 l^0 e^1$$

Соответствующее дерево вывода слова «sample» в данной грамматике будет выглядеть так:



**Определение 4.2.** Вспомогательным деревом вывода слова w в грамматике G, назовём дерево, полученное из классического дерева вывода слова w в грамматике G, в результате удаления всех листьев, помеченных  $\varepsilon$ .

Определение 4.3. Сокращённым деревом вывода слова w в грамматике G, с разметкой т назовём дерево, полученное из вспомогательного дерева вывода слова w в грамматике G, путём вырезания из дерева всех узлов, размеченных нулями. Ниже дано определение вырезания узла из дерева.

Определение 4.4. Пусть у узла  $p_1$  есть сыновья  $n_1, n_2, \ldots n_k$ . А у узла  $n_i, (1 \leq i \leq k)$  есть сыновья  $c_1, c_2, \ldots c_m$ . Вырезанием узла  $n_i$  из дерева, называется операция замены в списке сыновей  $p_1$  узла  $n_i$  на список своих сыновей  $c_1, c_2, \ldots c_m$ .

**Пример 4.1.** Сокращённое дерево вывода для классического дерева вывода из предыдущего примера.

Исходное классическое дерево вывода:



Вспомогательное дерево вывода:



Сокращённое дерево вывода:



Определение 4.5. Пусть CT – это множество всех сокращённых деревьев вывода. Определим  $ct\langle G,m\rangle$  как синтаксический анализатор, который слову ставит в соответствие его сокращённое дерево вывода в грамматике G с разметкой m.

Далее мы будем изучать свойства данных синтаксических анализаторов, при применении к грамматике расширяющих преобразований.

## 5. Расширяющие пеобразования АЕ

**Определение 5.1.** Расширяющим преобразованием размеченных грамматик назовём функцию  $f:\Gamma_M \to \Gamma_M$  такую, что

- 1.  $L(f(G,m)) \subset L(G)$ .
- 2.  $\forall w \in L(G), ct\langle G, m \rangle(w) = ct\langle f(G, m) \rangle$

Другими словами, расширяющее преобразование увеличивает язык грамматики, но не изменяет действия синтаксического анализатора ct на языке исходной грамматики.

Определим класс расширяющих преобразований Add. Произвольное правило вывода с произвольной же своей разметкой задаёт преобразование, добавляющее это правило в размеченную грамматику. Возможно, перед этим понадобится добавить в множество терминалов все ещё отсутствующие там терминалы из правой части правила вывода. Множество таких преобразований обозначим Add.

Область определения преобразования из Add – это множество грамматик, в которых добавляемое правило отсутсвует, а все нетерминалы правила вывода уже определены в грамматике.

Далее определим класс расширяющих преобразований Extract. Рассмотрим четвёрку (p,l,r,B), где p – правило вывода  $A \to \alpha\beta\gamma$ ,  $l = |\alpha|, r = |\alpha| + |\beta|$ , а B – произвольный символ, не являющийся терминальным в исходной грамматике. Эта четвёрка определяет преобразование грамматики, удаляющее правило вывода p и добавляющее вместо него два правила вывода:  $A \to \alpha B\gamma$  и  $B \to \beta$ . Причём разметка певого на участках  $\alpha$  и  $\gamma$  совпадает с разметкой удаляемого правила на тех же участках, разметка символ B в первом добавляемом правиле — 0, а разметка второго добавляемого правила совпадает с разметкой соответствующего участка удаляемого правила вывода. Множество таких преобразований обозначим Extract.

Область определения преобразования из Extract – это множество грамматик, в которых присутствует правило вывода p и отсутствует правило вывода  $B \to \beta$ , причём терминал B может быть и не определён в исходной грамматике.

### **Пример 1.** Пример примерения преобразования Extract.

Исходную грамматику с одним правилом вывода  $p:S\to s^0a^1m^0p^1l^0e^1$  преобразование (p,2,4,B) превратит в следующую грамматику:

$$S \to s^0 a^1 B^0 l^0 e^1$$
$$B \to m^0 p^1$$

Определение 5.2. Введём два обозначения:

 $AE = Add \cup Extract$ 

 $AE^* = \langle AE \rangle$  – транзитивное замыкание AE.

## 6. Независимые преобразования

**Определение 6.1.** Пусть  $\phi$  и  $\psi$  – это преобразования из AE. Определим операцию  $\phi/\psi$  следующим образом:

- 1. Ecau  $\phi \in Add$  uau  $\psi \in Add$ , mo  $\phi/\psi = \phi$
- 2. Ecau  $\phi = (p_1, l_1, r_1, N_1), \ \psi = (p_2, l_2, r_2, N_2), \ a \ p_1 \neq p_2, \ mo \ \phi/\psi = \phi.$
- 3. Иначе, введём дополнительные обозначения:  $\phi=(p,l_1,r_1,N_1),\;\psi=(p,l_2,r_2,N_2),$

 $t,\ b$  — правила вывода, добавляемые преобразованием  $\psi,\$ причём b — это то правило вывода, левая часть которого  $N_2.$ 

$$\Delta = l_2 - r_2 + 1.$$

Этот случай разбивается на следующие подслучаи:

- (a)  $ecnu l_1 \leq l_2 \wedge r_1 > r_2 \vee l_1 < l_2 \wedge r_1 \geq r_2, mo \phi/\psi = (t, l_1, r_1 + \Delta, N_1)$
- (b)  $ecnu r_1 \leq l_2, mo \phi/\psi = (t, l_1, r_1, N_1)$
- (c) ecau  $l_1 \geq l_2$ , mo  $\phi/\psi = (t, l_1 + \Delta, r_1 + \Delta, N_1)$
- (d)  $ecnu l_1 \ge l_2 \wedge r_1 < r_2 \vee l_1 > l_2 \wedge r_1 \le r_2, mo \phi/\psi = (b, l_1 l_2, r_1 l_2, N_1)$
- (е) иначе значение не определено.

Для простоты обозначений будем считать, что операция / имеет меньший приоритет, чем операция композиции функций. То есть  $\phi_2\phi_1/\psi_2\psi_1 = (\phi_2\phi_1)/(\psi_2\psi_1)$ .

По аналогии с операцией деления будем применять ещё и двухстрочную запись:  $\phi/\psi=\frac{\phi}{\psi}$ .

**Определение 6.2.** Доопределим рекурсивно операцию  $\phi/\psi$  на преобразования из  $AE^*$ .

 $Ecnu \exists \phi_1 \in AE, \phi_2 \in AE^* : \phi = \phi_2\phi_1, mo$ 

$$\frac{\phi}{\psi} = \frac{\phi_2}{\psi/\phi_1} \frac{\phi_1}{\psi} \tag{1}$$

Иначе  $\exists \psi_1 \in AE, \psi_2 \in AE^* : \psi = \psi_2 \psi_1$ . В этом случае

$$\frac{\phi}{\psi} = \frac{\phi/\psi_1}{\psi_2} \tag{2}$$

В обоих тождествах считаем, что если значение хоть одного из подвиражений не определено, то значение  $\phi/\psi$  также не определено.

Определение 6.3. Пусть  $\phi = \phi_n \phi_{n-1} \dots \phi_1$ , где  $\phi_i \in AE$ . Тогда n будем называть сложностью преобразования  $\phi$ .

**Лемма 1.** Пусть  $\phi \in AE^*$  – преобразование сложности n. Тогда для любого  $\psi \in AE^*$ ,  $\phi/\psi$  также имеет сложность n.

**Лемма 6.1.** Для любых  $\psi_1$ , из AE и  $\phi$ ,  $\psi_2$  из  $AE^*$  верно следующее равенство:

 $\frac{\phi}{\psi_2\psi_1} = \frac{\phi/\psi_1}{\psi_2}$ 

**Доказательство.** Доказательство будет проведено индукцией по сложности преобразования  $\phi$ . База индукции тривиально следует из определения операции /.

**Предположение индукции.** Пусть для  $\phi$  сложности не более n справедливо равенство:

$$\frac{\phi}{\psi_2 \psi_1} = \frac{\phi/\psi_1}{\psi_2} \tag{3}$$

**Ш**аг индукции.  $\exists \phi_1 \in AE, \phi_2 \in AE^* : \phi = \phi_2 \phi_1.$ 

$$\frac{\phi}{\psi_2\psi_1} = \frac{\phi_2\phi_1}{\psi_2\psi_1} \stackrel{\text{(1)}}{=} \frac{\phi_2}{\psi_2\psi_1/\phi_1} \frac{\phi_1}{\psi_2\psi_1} \stackrel{\text{(1)}}{=} \frac{\phi_2}{\frac{\psi_2}{\phi_1/\psi_1} \frac{\psi_1}{\phi_1}} \frac{\phi_1/\psi_1}{\psi_2} \stackrel{\text{(3)}}{=}$$

$$= \frac{\left(\frac{\phi_2}{\psi_1/\phi_1}\right)}{\left(\frac{\psi_2}{\phi_1/\psi_1}\right)} \left(\frac{\phi_1/\psi_1}{\psi_2}\right) \stackrel{(1)}{=} \frac{\frac{\phi_2}{\psi_1/\phi_1}}{\psi_2} \stackrel{(1)}{=} \frac{\phi_2\phi_1/\psi_1}{\psi_2} = \frac{\phi/\psi_1}{\psi_2}$$

Теорема 6.1.  $\frac{\phi}{\psi}\psi = \frac{\psi}{\phi}\phi$ 

**Доказательство.** Доказательство будем вести индукцией по сложности преобразований  $\phi$  и psi.

**База индукции.** Пусть  $\phi$  и  $\psi$  из AE, рассмотрим единственный нетривиальный случай – это  $\phi = (t, l_1, r_1, N_1), \psi = (t, l_2, r_2, N_2) \in Extract$ . Существует два принципиально различных случая. Рассмотрим их оба:

1 случай.  $l_1 \leq l_2 \wedge r_1 > r_2 \vee l_1 < l_2 \wedge r_1 \geq r_2$ . Преобразование  $\psi$  удаляет одно правило вывода  $t: A \to \alpha_1 \alpha_2 \beta \gamma_2 \gamma_1$  и вместо него добавляет два новых правила:  $A \to \alpha_1 \alpha_2 N_2 \gamma_2 \gamma_1$ ,  $N_2 \to \beta$ .

Преобразование  $\phi/\psi$  удалит в этой грамматике первое правило вывода и заменит его двумя следующими правилами:

$$A \to \alpha_1 N_1 \gamma_1, N_1 \to \alpha_2 N_2 \gamma_2,$$

В результате преобразование  $(\phi/\psi)\psi$  удалит из исходной грамматики одно правило вывода t и добавит три следующих правила вывода:

$$A \to \alpha_1 N_1 \gamma_1, N_1 \to \alpha_2 N_2 \gamma_2, N_2 \to \beta.$$

Аналогичными рассуждениями несложно убедиться, что преобразование  $(\psi/\phi)\phi$  делает в точности тоже самое.

2 случай.  $r_1 \leq l_2$ . Рассуждениями, аналогичными проделанным в доказательстве предыдущего случая, легко показать, что преобразования  $(\phi/\psi)\psi$  и  $(\psi/\phi)\phi$  совпадают.

**Предположение индукции.** Пусть для  $\phi$  и  $\psi$  сложностью не более n справедливо равенство:

$$\frac{\phi}{\psi}\psi = \frac{\psi}{\phi}\phi\tag{4}$$

Шаг индукции. Шаг индукции будет доказан в три этапа.

**Этап 1.** Пусть  $\psi$  имеет сложность не более n, а  $\phi = \phi_2 \phi_1$ , где  $\phi_1$  имеет сложность 1, а  $\phi_2 - n$ .

$$\begin{split} \frac{\phi}{\psi}\psi &= \frac{\phi_2\phi_1}{\psi}\psi \stackrel{\text{(1)}}{=} \frac{\phi_2}{\psi/\phi_1} \stackrel{\phi_1}{\psi}\psi \stackrel{\text{(4)}}{=} \frac{\phi_2}{\psi/\phi_1} \frac{\psi}{\phi_1}\phi_1 \stackrel{\text{(4)}}{=} \\ &= \frac{\psi/\phi_1}{\phi_2}\phi_2\phi_1 \stackrel{\text{(2)}}{=} \frac{\psi}{\phi_2\phi_1}\phi_2\phi_1 = \frac{\psi/\phi}{\phi} \end{split}$$

**Этап 2.** Пусть  $\phi$  имеет сложность не более n, а  $\psi = \psi_2 \psi_1$ , где  $\psi_1$  имеет сложность 1, а  $\psi_2 - n$ .

Повторяя рассуждения предыдущего этапа в обратном порядке получаем,  $(\psi/\phi)\phi = (\phi/\psi)\psi$ .

На данный момент мы доказали, что для  $\phi$  и  $\psi$ , один из которых сложности n+1, а второй не более n утверждение верно. Тем самым, можно считать, что мы расширили предположение индукции. Осталось завершить доказательство, показав, что в случае, когда оба преобразования имеют сложность n+1, утверждение также верно.

**Этап 3.** Пусть  $\psi$  имеет сложность не более n+1, а  $\phi=\phi_2\phi_1$ , где  $\phi_1$  имеет сложность 1, а  $\phi_2-n$ .

$$\frac{\phi}{\psi}\psi = \frac{\phi_2\phi_1}{\psi}\psi \stackrel{(1)}{=} \frac{\phi_2}{\psi/\phi_1} \frac{\phi_1}{\psi}\psi = \frac{\phi_2}{\psi/\phi_1} \frac{\psi}{\phi_1}\phi_1 = \frac{\psi/\phi_1}{\phi_2}\phi_2\phi_1 \stackrel{(2)}{=} \frac{\psi}{\phi_2\phi_1}\phi_2\phi_1 = \frac{\psi}{\phi}\phi_1$$

Следствие 6.1. Синтаксический анализатор  $ct\langle \frac{\phi}{\psi}\psi(G)\rangle$  совместим с синтаксическим анализатором  $ct\langle \phi(G)\rangle$ .

Доказательство. Согласно Теореме 2,  $ct\langle (\phi/\psi)\psi(G)\rangle = ct\langle (\psi/\phi)\phi(G)\rangle$  совместим с  $ct\langle \phi(G)\rangle$ , так как первое – это расширение второго.

Сейчас можно дать ответы на все вопросы, сформулированные в начале работы.

Во-первых, операция  $\frac{\psi}{\phi}$  — это и есть тот искомый способ модификации преобразования  $\psi$  так, чтобы его можно было применять после другого преобразования  $\phi$ .

Во-вторых, главное требование к нему – это совместимость синтаксического анализатора для грамматики  $\frac{\psi}{\phi}\phi(G)$  с синтаксическим анализатором грамматики  $\phi(G)$ . Это требование выполняется согласно следствию из теоремы.

В-третьих, как следует из теоремы, порядок применения преобразований значения не имеет.

Полученные результаты можно проиллюстрировать следующей диаграмой:



### 7. Заключение

Введённая операция  $\phi/\psi$  меняет преобразование  $\phi$  так, чтобы его можно было применять после преобразования  $\psi$ . Теорема же показывает, что в случае двух преобразований, не важно какое из них применять первым – результат будет одинаковым.

Эти выкладки фактически открывают дорогу к конструированию синтаксических анализаторов довольно сложных языков из независимых другот друга простых частей. Каждая такая часть — это расширяющее преобразование исходной грамматики.