HOMEWORK 2 (PACKET SWITCHING)

Just type your answers in the space provided. Submit your answers (a modified version of this file) as an attachment in the submission box.

CONCEPTS

- Transmission Delay
- Propogation Delay
- Queueing & Processing Delay
- End-to-End Delay
- Bandwidth-Delay Product
- Packet Switching and Message Segmentation

Q1

- 1. How long does it take a packet of length L=1000 bytes to propagate over a link of distance d=2500 km, where propagation speed is $s=2.5\times10^8$ m/s, and transmission rate of R=2 Mbps?
- 2. More generally, how long does it take a packet of length L to propagate over a link of distance d with propagation speed s, and transmission rate R bps?
- 3. Does this delay depend on packet length?

4. Does this delay depend on natistrission rate ?
Q2
Suppose two hosts A and B , are separated by d =20,000 km and are connected by a link R =1Gbps (10^9 bps). Assume that the propagation speed $s=2.5\times10^8$ m/s,
1. Calculate the bandwidth-delay product, i.e., $R \times$ propagation delay. What is the unit ?
2. Consider sending a file of L =800,000 bits from A to B . If the file is sent continuously as one large message, what is the maximum number of bits that will be in the link at any given time?
3. What is the width (in meters) of a bit in the link? (If N is the number of bits in the wire with a distance of K meters, then K/N is meters per bit.)
4. Derive a general expression for the width of a bit in terms of the propagation speed s , the transmission rate R and the length of the link d .

In modern packet-switched networks, the source host segments long, application-layer messages (for example, an image or a music file) into smaller packets and sends the packets into the network. The receiver then reassembles the packets back into the original message. We refer to this process as **message segmentation**.

Assume we have a source **A** and a destination **B**, connected via three links and two switches **S1** and **S2**. **A** connects to **S1**, **S1** to **S2**, and **S2** to **B**.

We will consider two case where a message is sent from **A** to **B** with and without **message segmentation**. Consider a message that is $L=7.5\times10^6$ bits long that is to be sent from **A** to **B** in the following manner. And suppose each link $R=1.5\times10^6$ bps. For the time being, ignore propagation, queuing, and processing delays.

Consider sending the message from A to B without message segmentation. How long
does it take to move the message from the host A to the first packet switch \$1? Keeping
in mind that each switch uses store-and-forward packet switching, what is the total time
to move the message from A to B?

2.	Now suppose that the message is segmented into 5,000 packets, with each packet being 1,500 bits long. How long does it take to move the first packet from A to the first switch \$1 ?
3.	When the first packet is being sent from the first switch \$1 to the second switch \$2, the second packet is being sent from the A to the first switch \$1. At what time will the second packet be fully received at the first switch \$1?
4.	How long does it take to move the file from A to B when message segmentation is used?