Лексикографското произведение на фундирани множества е фундирано множество

Иво Стратев

7 март 2019 г.

Твърдение:

Нека $(A, <_A)$ е фундирано множество и нека $(B, <_B)$ е фундирано множество. Тогава $(A \times B, <_{lexA,B})$ е фундирано множество, където $(\forall (a,b) \in A \times B)(\forall (a',b') \in A \times B)[(a,b) <_{lexA,B} (a',b') \iff a <_A a' \lor (a = a' \land b <_B b')]$

Доказателство:

Нека $(A, <_A)$ е фундирано множество и нека $(B, <_B)$ е фундирано множество. Нека $(\forall (a,b) \in A \times B)(\forall (a',b') \in A \times B)[(a,b) <_{lexA,B} (a',b') \iff a <_A a' \lor (a = a' \land b <_B b')]$

Ще докажем, че в $(A \times B, <_{lexA,B})$ няма безкрайни спускания, което е еквивалентно на това множеството $(A \times B, <_{lexA,B})$ да е фундирано.

Допускаме, че в $(A \times B, <_{lexA,B})$ има безкрайно спускане. Тогава е вярно, че съществува редица p_0, p_1, \ldots с елементи от $A \times B$, таква че $p_0 >_{lexA,B} p_1 >_{lexA,B} \ldots$ Нека тогава $(a_0, b_0), (a_1, b_1), \ldots$ с елементи от $A \times B$ е такава, че $(a_0, b_0) >_{lexA,B} (a_1, b_1) >_{lexA,B} \ldots$ Тогава са възможни няколко случаи:

Случай 1:

 $(\forall i \in \mathbb{N})[a_i >_A a_{i+1}]$. Тогава $a_0 >_A a_1 >_A \dots$ е безкрайно спускане в $(A, <_A)$, но това е абсурд, понеже $(A, <_A)$ е фундирано.

Случай 2:

$$(\exists I \subseteq \mathbb{N})[\overline{\overline{I}} = \overline{\overline{\omega}} \land (\forall i_1 \in I)(\forall i_2 \in I)[i_1 <_{\mathbb{N}} i_2 \implies a_{i_1} = a_{i_2} \land b_{i_1} >_B b_{i_2}]]$$
 Нека тогава $I \subseteq \mathbb{N}$ и $\overline{\overline{I}} = \overline{\overline{\omega}} \land (\forall i_1 \in I)(\forall i_2 \in I)[i_1 <_{\mathbb{N}} i_2 \implies a_{i_1} = a_{i_2} \land b_{i_1} >_B b_{i_2}]$

Случай 2.1:

 $(\exists J \subseteq I)(\exists a \in A)[\overline{\overline{J}} = \overline{\overline{\omega}} \land (\forall j \in J)[a_j = a] \land (\forall j_1 \in J)(\forall j_2 \in J)[j_1 <_{\mathbb{N}} j_2 \implies b_{j_1} >_B b_{j_2}]]$

Нека тогава $J \subseteq I$, нека $a \in A$ и нека

 $\overline{\overline{J}} = \overline{\overline{\omega}} \wedge (\forall j \in J)[a_j = a] \wedge (\forall j_1 \in J)(\forall j_2 \in J)[j_1 <_{\mathbb{N}} j_2 \implies b_{j_1} >_B b_{j_2}]]$. Тогава е вярно $(\forall j_1 \in J)(\forall j_2 \in J)[j_1 <_{\mathbb{N}} j_2 \implies b_{j_1} >_B b_{j_2}]$. Понеже $J \subseteq I \subseteq \mathbb{N}$ и $\overline{\overline{J}} = \overline{\overline{\omega}}$, то елементите на J могат да бъдат наредени в строго растяща редица $j_0 <_{\mathbb{N}} j_1 <_{\mathbb{N}} \dots$ Но тогава $b_{j_0} >_B b_{j_1} >_B \dots$ е безкрайно спускане, което е абсурд, защото $(B, <_B)$ е фундирано множество.

Случай 2.2:

 $(\forall J\subseteq I)[(\exists a\in A)[(\forall j\in J)[a_j=a]\land (\forall j_1\in J)(\forall j_2\in J)[j_1<_{\mathbb{N}} j_2\implies b_{j_1}>_B b_{j_2}]]\implies (\exists n\in \mathbb{N})[\overline{\overline{J}}=\overline{\{0,1,\dots,n-1\}}]]$ Тогава въвеждаме следната релация $R:=\{(i_1,i_2)\in I\times I\mid a_{i_1}=a_{i_2}\}.$

R е рефлексивна

В сила е $(\forall i \in I)[a_i = a_i] \implies (\forall i \in I)[(i,i) \in R]$, тоест R е рефлексивна.

R е симетрична

Нека $(i_1, i_2) \in R$ тогава $a_{i_1} = a_{i_2}$. Но понеже равенството е симетрично, то $a_{i_2} = a_{i_1}$ и значи $(i_2, i_1) \in R$. Следователно $(\forall (i_1, i_2) \in R)[(i_2, i_1) \in R]$, следователно R е симетрична.

R е транзитивна

Нека $(i_1,i_2) \in R$ и нека $(i_2,i_3) \in R$. Тогава $a_{i_1} = a_{i_2} \wedge a_{i_2} = a_{i_3}$, но понеже равенството е транзитивна релация, то $a_{i_1} = a_{i_3}$. Следователно $(i_1,i_3) \in R$ и тогава е в сила $(\forall i_1 \in R)(\forall i_2 \in R)(\forall i_3 \in R)[(i_1,i_2) \in R \wedge (i_2,i_3) \in R \implies (i_1,i_3) \in R]$. Тоест R е транзитивна.

Заключение R е релация на еквивалентност.

Тогава нека $K := \{ [i]_R \mid i \in I \}.$

Лема:
$$(\forall J \in K)(\exists n \in \mathbb{N})[\overline{\overline{J}} = \overline{\overline{\{0,1,\ldots,n-1\}}}]$$

Нека $J \in K$ и нека $j \in J$ тогава е в сила

 $(\forall j' \in J)[(j,j') \in R] \Longrightarrow (\forall j' \in J)[a_{j'} = a_j]$. Понеже $J \subseteq I$, то е в сила $(\forall j_1 \in J)(\forall j_2 \in J)[j_1 <_{\mathbb{N}} j_2 \Longrightarrow b_{j_1} >_B b_{j_2}]$. Тогава е в сила $(\exists n \in \mathbb{N})[\overline{\overline{J}} = \overline{\{0,1,\ldots,n-1\}}]$. Нека тогава $n \in \mathbb{N}$ и $\overline{\overline{J}} = \overline{\{0,1,\ldots,n-1\}}$.

Тогава
$$(\forall J \in K)(n \in \mathbb{N})[\overline{\overline{J}} = \overline{\overline{\{0,1,\ldots,n-1\}}}].$$

Както знаем K е разбиване на I и доказахме, че всеки елемент на K е крайно множество. Тогава K изброимо безкрайно иначе ще се окаже, че I, което е изброимо безкрайно е обединение на краен брой крайни множества, тоест е крайно, което е абсурд. Прилагаме аксиомата за избора за множеството I и получаваме функция $f: \mathcal{P}(I) \setminus \emptyset \to I$, за която $(\forall S \in \mathcal{P}(I) \setminus \emptyset)[f(S) \in S]$. K е разбиване, тогава е в сила $(\forall J_1 \in K)(\forall J_2 \in K)[a_{f(J_1)} = a_{f(J_2)} \iff J_1 = J_2]$. Нека тогава $J:=\{f(k) \mid k \in K\}$. Така $(\forall j_1 \in J)(\forall j_2 \in J)[j_1 <_{\mathbb{N}} j_2 \implies (a_{j_1},b_{j_1})>_{lexA,B}(a_{j_2},b_{j_2}) \land a_{j_1} \neq a_{j_2}] \implies (\forall j_1 \in J)(\forall j_2 \in J)[j_1 <_{\mathbb{N}} j_2 \implies a_{j_1} >_A a_{j_2}]$. Очевидно $\overline{J}=\overline{K}=\overline{\omega}$. Тогава елементите на J могат да бъдат наредени в строго растяща редица $j_0 <_{\mathbb{N}} j_1 <_{\mathbb{N}} \ldots$ Но тогава $a_{j_0} >_A a_{j_1} >_A \ldots$ е безкрайно спускане, което е абсурд, защото $(A, <_A)$ е фундирано множество.

Случай 3:

Нека $I:=\{n\in\mathbb{N}\mid (\exists k\in\mathbb{N})[k<_{\mathbb{N}}n\wedge a_k=a_n]\}$ е крайно. Понеже множеството I е крайно множество от естествени числа то има максимален елемент относно релацията $<_{\mathbb{N}}$, която е линейна наредба. Нека тогава i е този максимален елемент. Да допуснем, че $(\exists i'\in\mathbb{N})[i'>_{\mathbb{N}}i\wedge a_{i'-1}=a_{i'}\wedge b_{i'-1}>_{B}b_{i'}]$. Нека $i'\in\mathbb{N}$ и

 $i' >_{\mathbb{N}} i \wedge a_{i'-1} = a_{i'} \wedge b_{i'-1} >_B b_{i'}$. Тогава $i' \in I$ и $i <_{\mathbb{N}} i'$ значи i не е максимален, което е противоречие. Тогава е в сила $(\forall n_1 \in \mathbb{N})(\forall n_2 \in \mathbb{N})[i \leq_{\mathbb{N}} n_1 \wedge n_1 <_{\mathbb{N}} n_2 \implies a_{n_1} >_A a_{n_2}]$. Тогава редицата $(a_i, b_i), (a_{i+1}, b_{i+1}), \ldots$ попада в **Случай 1** понеже сме премахнали само краен брой членове от оригиналната.

Разгледахме всички възможни случаи: когато нямаме повтарящи се първи елементи, когато имаме изброимо много с два подслучая (изброимо дълга поредица и изборимо много крайни поредици) и когато имаме само краен брой повторения и при всички достигнахме до противоречие. Няма други възможни случай. Тогава не е вярно, че в $(A \times B, <_{lexA,B})$ има безкрайно спускане. Следователно в $(A \times B, <_{lexA,B})$ няма безкрайно спускане. Следователно в $(A \times B, <_{lexA,B})$ е фундирано. Твърдението е доказано.