

Evaluating the Quality of Assessment and Survey Items Using (Interactive) Visualizations

Okan Bulut

Centre for Research in Applied Measurement and Evaluation University of Alberta

Outline

O1 Overview
Why data visualization?

O2 Data visualization principles
What are the key principles in developing visualizations?

03 Evaluating items visually

What are the visual analysis options for evaluating survey items?

Why Visualization?

Four datasets with nearly identical simple descriptive statistics for x and y but they have very different distributions...

Property	Value
Mean of x	9
Mean of y	7.50
SD of x	3.32
SD of y	2.03
Correlation of x and y	0.82

Source: https://en.wikipedia.org/wiki/Anscombe%27s_quartet

To move a huge amount of information into the brain very quickly

To identify patterns and communicate relationships and meaning

To inspire new questions and further exploration

To help identify sub-problems

To discover or search for interesting or specific data points in a larger field

Source: Hand drawn by William Playfair (1786) in The Commercial and Political Atlas – *to make a case against England's policy of financing colonial wars through national debt*.

Did we get any better?

Source: Fox News – the percentages add up to 193%...

"The key function of data visualization is to move information from point **A** to point **B**."

-- Iliinsky and Steele (2011)

We have all done this...

Purpose

Source: Adapted from <u>Iliinsky and Steele</u> (2011, p. 9)

In practice, we...

EXPLORE (Informative)

Potential issues in the data:

- Missingness
- Outliers
- Non-normality
- Non-linearity
- o Extreme skewness and kurtosis

EXPLAIN (Informative)

Relationships between variables; correlations; interactions; patterns over time

PROVE (Persuasive)

Statistical models (e.g., regression); model fit; accuracy; predictions; inferences

Some Design Principles...

Determine the number of dimensions

Number of variables

Colours and shading

Shapes and lines

Size and thickness

Font and font size

Short-term memory → Long-term memory

Source: Cole Nussbaumer Knaflic (2015, p.100)

Decoding -> Understanding

Brainpower used for decoding

Brainpower left for understanding

TOTAL BRAINPOWER AVAILABLE

Source: Adapted from <u>Iliinsky and Steele</u> (2011, p.24)

More Complex # Better

What is the **takeaway** message in this figure?

Source: PISA 2009

"Simplicity is the ultimate sophistication."

-- Leonardo da Vinci

Created by Darkhorse Analytics

www.darkhorseanalytics.com

Source: https://www.darkhorseanalytics.com/blog/data-looks-better-naked

Created by Darkhorse Analytics

www.darkhorseanalytics.com

Colour

Size

Rainbow distribution in color indicates sales rank in given country from #1 (red) to #10 or higher (dark purple)

Country	Α	В	С	D	Е
AUS	1	2	3	6	7
BRA	1	3	4	5	6
CAN	2	3	6	12	8
CHI	1	2	8	4	7
FRA	3	2	4	8	10
GER	3	1	6	5	4
IND	4	1	8	10	5
ITA	2	4	10	9	8
MEX	1	5	4	6	3
RUS	4	3	7	9	12
SPA	2	3	4	5	11
TUR	7	2	3	4	
UK	1	2	3	6	7
US	1	2	4	3	5

RANK	1	2	3	4	5+		
COUNTRY I DRUG							
	Α	В	С	D	E		
Australia	1	2	3	6	7		
Brazil	1	3	4	5	6		
Canada	2	3	6	12	8		
China	1	2	8	4	7		
France	3	2	4	8	10		
Germany	3	1	6	5	4		
India	4	1	8	10	5		
Italy	2	4	10	9	8		
Mexico	1	5	4	6	3		
Russia	4	3	7	9	12		
Spain	2	3	4	5	11		
Turkey	7	2	3	4	8		
United Kingdom	1	2	3	6	7		
United States	1	2	4	3	5		

Source: Cole Nussbaumer Knaflic (2015, p.119)

Number of newly married adults per 1,000 marriage eligible adults

Note: Marriage eligible includes the newly married plus those widowed, divorced, or never married at interview.

Source: U.S. Census

Example	Encoding	Ordered	Useful values	Quantitative	Ordinal	Categorical	Relational
• ••	position, placement	yes	infinite	Good	Good	Good	Good
1, 2, 3; A, B, C	text labels	optional alpha or num	infinite	Good	Good	Good	Good
	length	yes	many	Good	Good		
. • •	size, area	yes	many	Good	Good		
/_	angle	yes	medium	Good	Good		
	pattern density	yes	few	Good	Good		
===	weight, boldness	yes	few		Good		
	saturation, brightness	yes	few		Good		
	color	no	few (<20)			Good	
	shape, icon	no	medium			Good	
	pattern texture	no	medium			Good	
	enclosure, connection	no	infinite			Good	Good
====	line pattern	no	few				Good
***	line endings	no	few				Good
	line weight	yes	few		Good		

HIGH SCHOOL STUDENTS' COLLEGE PREFERENCES (SORTED)

Which comparison is easier?

1

Which comparison is the easiest?

Which comparison is the easiest?

Decide the scale carefully

Minimum Hourly Wage in Alberta

Minimum Hourly Wage in Alberta

The success of your visualization is measured by your audience's understanding.

They are **not** you...

Understand the context in which your audience is thinking.

Software Options

https://www.microsoft.com

https://www.tableau.com

https://datastudio.google.com

https://plot.ly/

https://cran.r-project.org/

Software Options

		Excel	Tableau	Google Data Studio	Plotly	R
	\$	Commercial	Commercial + Public	Commercial + Public	Commercial + Public	Open-source & Free
	Z	Easy	Moderate to High	Moderate to High	Moderate to High	High Difficulty
		Moderate quality	High quality	High quality	High quality	High quality
		Static	Static + Interactive	Interactive	Interactive	Static + Interactive

Other Software Options

- 1 jamovi
 - https://www.jamovi.org/
 - Free (utilizing R in the background)
 - Compatible with Windows, Mac, and Linux
 - Good for both statistical analysis and data visualizations
- 2 Modrian
 - http://mondrian.theusrus.de/
 - Free and open source
 - Compatible with Windows, Mac, and Linux
 - Good for a variety of visualizations (from basic to complex plots)

Checklist for Evaluating Items

Alignment 3

Check if the items are related to each other

Construct validity

Check if the items can define a single construct properly

Functionality

Check if response options of the items function properly

Discrimination

4

Check if the items discriminate low and high levels of the construct

Missingness

Check if the items suffer from extreme missingness

Example

- http://www.oecd.org/pisa/
- A large-scale, international assessment for 15-year-old students
- Administered every 3 years
- 540,000 students from 72 countries participated in PISA 2015
- Reading, science, and math assessments (plus additional subject areas)
- Student, teacher, and school survey items to learn more about students

Example

PISA

- Alberta students who participated in PISA 2015 (n = 2,133)
- Data files are available at: https://github.com/okanbulut/dataviz
 - PISA Alberta.xlsx
 - PISA Alberta.csv
 - PISA_Alberta.sav
- 10 Likert-type survey items potentially measuring "attitudes towards teamwork"
- Each question has the following response options:

```
1 = Strongly disagree 2 = Disagree 3 = Agree 4 = Strongly agree
```

First eight questions share the same statement:

"To what extent do you disagree or agree about yourself?"

- 1. I prefer working as part of a team to working alone.
- 2. I am a good listener.
- 3. I enjoy seeing my classmates be successful.
- 4. I take into account what others are interested in.
- 5. I find that teams make better decisions than individuals.
- 6. I enjoy considering different perspectives.
- 7. I find that teamwork raises my own efficiency.
- 8. I enjoy cooperating with peers.

The other two items are independent:

- 9. I make friends easily at school.
- 10. Other students seem to like me.

Missingness

Microsoft Excel

- Make sure that missing values are labeled with a distinct value (e.g., 999).
- Create a pivot table for each item (see <u>this tutorial</u> on how to create pivot tables in Excel)
- Insert a bar graph to examine missingness visually (see the example file that I shared at https://github.com/okanbulut/dataviz.

Missingness

jamovi

- Make sure that missing values are labeled with a distinct value (e.g., 999).
- Import the data into jamovi.
- Exploration → Descriptives → Bar Plots (see my tutorial video <u>HERE</u>)

Missingness

naniar package in R

• Check out this nice vignette on the naniar package.

```
install.packages("naniar")
library("naniar")
mydata <- read.csv("PISA_Alberta.csv", header = TRUE, na.strings = 999)
# Select only the survey items
gg_miss_upset(mydata[, 6:15], nsets = 10)</pre>
```


Functionality

Microsoft Excel

- Make sure that missing values are **NOT** labeled this time (i.e., replace 999 with null)
- Create a new pivot table for each item (this time missing is NOT included) and calculate percentages based on counts.
- Insert a bar graph to examine the percentages for each response option for a given item.
- My threshold for an acceptable response rate is typically 5%. So, you can add a horizontal line at 5% as a threshold (see <u>this nice tutorial</u> on how to add such a line into Excel)

Which response option(s) are not functioning well?

I take into account what others are interested in.

\$T082Q01NA 80% 70% 60% 50% 40% 30% 20% 1 2 3 4

I prefer working as part of a team to working alone.

I enjoy seeing my classmates be successful.

Other students seem to like me.

Alignment

jamovi

- Make sure that missing values are **NOT** labeled with a distinct value (e.g., missing is null).
- Import the data into jamovi.
- Factor → Reliability Analysis → Correlation heatmap (see my tutorial video <u>HERE</u>)

Discrimination

jamovi + Microsoft Excel

- Make sure that missing values are **NOT** labeled with a distinct value (e.g., missing is null).
- Import the data into jamovi.
- Factor → Reliability Analysis → Cronbach's α & Item-rest correlation (see my tutorial video <u>HERE</u>)
- · Copy the output table and paste it into an Excel spreadsheet

Construct Validity

jamovi

- Make sure that missing values are **NOT** labeled with a distinct value (e.g., missing is null).
- Import the data into jamovi.
- Factor → Exploratory Factor Analysis → Scree plot (see my tutorial video <u>HERE</u>)

Some Resources...

Some Resources...

- Navarro and Foxcroft <u>Learning Statistics with jamovi</u>
- Santiago Ortiz 45 ways to communicate two quantities
- Stephanie Evergreen <u>Data Visualization Checklist</u>
- Financial Times <u>Visualization Vocabulary</u>
- Darkhorse Analytics <u>Visualizing Distributions</u>
- Chez Voila Glass Ceiling Visuals Remake
- Eager Eyes <u>Understanding Pie Charts</u>

Thank You

For questions and comments: bulut@ualberta.ca

