Introduction to code generation

What is a Code Generator?

By Team 8

Manoj Gayala - CS19BTECH11011
Nisha M - CS19BTECH11012
Sharanya Gupta - CS19bTECH11020
Sravanthi Reddy - ES19BTECH11007
Suraj Gubbala - CS19BTECH11042
Vedika Verma - CS19BTECH11057
Jatin Kumar - CS19BTECH11036

Introduction to Code generation

- It's the last stage of compiler development.
- This phase generates assembly code, which is our target code.
- This lower level object code generated has the following properties :
 - It carriers the exact meaning of the source code.
 - It would be efficient in terms of CPU usage and memory management.

Includes -

- Allocation of memory to each variable.
- The instructions are broken down into a series of assembly instructions.
- Memory registers are used to store variables and intermediated results.

The code generator itself should run efficiently while performing the above actions.

Front end and back end of the compiler

Involvement of symbol table - Refers symbol table for knowing how much and what type of run-time is allocated and table helps in adding temporary variable information.

- In reality, the problem of generating the target code is undecidable. The problems like register allocation etc remain NP hard.
- Elaboration of the three basic steps in code generation
 - o Instruction Selection The complexity of this depends upon the level of IR and the desired quality of the generated code
 - Register allocation -
 - Allocation which variables should be put into registers .
 - Assignment which register should be used for a variable.
 - Finding an optimal assignment of registers to variables is NP complete.
 - Instruction ordering Picking the best order is NP complete. The code generator has to look at multiple instructions at a time.