TENTOS for WINDOWS -Um Sistema para Microeletrônica

Luiz Gustavo Galves Mählmann ¹
Fernando Gehm Moraes ²
José Luís Güntzel ³
Ricardo Augusto da Luz Reis ⁴

Universidade Federal do Rio Grande do Sul (UFRGS)
Instituto de Informática
Av. Bento Gonçalves, 9500, Campus do Vale - Bloco IV
Telefone: +55 51 316-6830 ou 316-6168 - Fax: +55 51 319-1576
Caixa Postal 15064 - CEP 91501-970 - Porto Alegre - RS - BRASIL

Resumo

Este artigo descreve o Sistema TENTOS, composto por um conjunto de ferramentas para o projeto físico de CIs integradas num gerenciador para ambiente MS-WINDOWSTM. São apresentadas as evoluções do sistema TENTOS em relação às versões anteriores, tais como o recurso de permitir que o projetista possa incorporar novas ferramentas e novos arquivos de tecnologia ao sistema sem a necessidade de recompilação. Também é objeto deste artigo a apresentação das ferramentas da configuração *standard*.

Abstract

This article describes the TENTOS System, composed by a tool set for the physical design of ICs and a manager interface for MS-WINDOWSTM environment. The evolution of the TENTOS system is presented: new features include the ability of adding new tools and technology files with no need for recompilation. The tools of the standard configuration are also presented.

¹ Mestre em Ciência da Computação (CPGCC/UFRGS, 1996), Bacharel em Informática (PUCRS, 1989) E-mail: mahlmann@inf.ufrgs.br

² Doutor em Informática, opção Microeletrônica (LIRMM, França, 1995), Engenheiro Eletrônico (UFRGS, 1987), Professor do Instituto de Informática/PUCRS. E-mail: moraes@music.pucrs.br

³ Doutorando em Ciência da Computação (CPGCC/UFRGS), Engenheiro Eletricista (UFRGS, 1990). E-mail: guntzel@inf.ufrgs.br

⁴ Doutor em Informática, opção Microeletrônica (INPG, França, 1983), Engenheiro Eletrônico (UFRGS, 1978), Professor do Instituto de Informática/UFRGS. E-mail: reis@inf.ufrgs.br

1. Introdução

A partir de meados dos anos 80 diversas ferramentas de CAD para o projeto físico de circuitos integrados foram desenvolvidas pelo Grupo de Microeletrônica da Universidade Federal do Rio Grande do Sul (GME/UFRGS). A fim de facilitar o uso destas ferramentas foi desenvolvida uma interface única de gerenciamento, rodando diretamente em MS-DOS™. O uso deste gerenciador, denominado TENTOS, facilitou muito o projeto físico de circuitos integrados (ICs), uma vez que a execução das ferramentas passou a ser direta e o controle dos formatos de arquivos e dos diretórios de trabalho passou a ser realizado automaticamente pelo gerenciador [MOR 91].

Tendo em vista o fato de que o ambiente MS-WINDOWS™ tornou-se um padrão para computadores PC compatíveis, foi implementada uma nova versão do TENTOS para este ambiente, [MÄH 95]. Nesta nova versão, apenas a interface foi modificada, permanecendo o mesmo conjunto de ferramentas existentes na versão MS-DOS™.

Com base na experiência adquirida com as versões anteriores, desenvolveu-se um novo Sistema TENTOS, com novas características da interface (gerenciamento) e com a inclusão de novas ferramentas. Ao gerenciador foram acrescentadas as seguintes características:

- Fácil agregação de novas ferramentas e arquivos de tecnologia, pelo próprio usuário, durante o uso do sistema [WIR 94];
- Maior interação com o projetista, possibilitando sua interferência em cada etapa de execução (principalmente nas ferramentas de síntese);
- Configuração visual, definindo os dados em caixas de diálogos;

Visando atualizar o conjunto mínimo de ferramentas para o projeto físico de circuitos integrados foram incluídas as seguintes ferramentas:

- TOPRIC, um gerador de *layout* baseado no estilo *linear-matrix* [MOR 94];
- COTONET, um comparador de *netlists* em formato *Spice* [FRE 92];
- EXTRALO, um extrator lógico;
- SIMBY, um editor simbólico [SOT 93];
- SILC, um compactador de *layout* [SOT 94];

Por se tratar de um software acadêmico de distribuição gratuita cujo ambiente de trabalho são computadores IBM-PC compatíveis, o sistema TENTOS é apropriado para o desenvolvimento de ASICs de pequena e média complexidades para aplicações industriais ou com fins didáticos. Para facilitar o seu uso no ensino da microeletrônica, o sistema conta com um manual do usuário e exemplos de execução *on-line*.

Para a instalação do sistema, incorporou-se uma ferramenta que realiza a instalação do mesmo. Esta ferramenta funciona nos mesmos moldes dos produtos MicrosoftTM.

2. O Gerenciador do Sistema TENTOS for Windows

A figura 1 apresenta a atual interface do gerenciador do sistema TENTOS.

Figura 1 - A nova Interface do Sistema TENTOS for Windows

2.1 As Características do Sistema

Dentre as principais características do sistema TENTOS deve-se citar as seguintes:

- Configuração do ambiente de trabalho independente para cada usuário do Sistema;
- A fácil inclusão de novas ferramentas no ambiente;
- A fácil inclusão de novos arquivos de tecnologias no sistema TENTOS;
- A inclusão de novas descrições de circuitos, caracterizadas pela extensão do nome do arquivo que descreve o circuito;
- Toda a interação com o usuário é feita através de caixas de diálogos, propiciando desta forma um uso sem erros da ferramenta;
- O Sistema pode apresentar as mensagens da sua interface em quatro idiomas (português, inglês, espanhol e francês) através de uma simples seleção via menu;
- Sistema com manual do usuário *on-line* [MÄH 96a];
- Exemplos de aplicação *on-line*;
- A troca de informação entre ferramentas é feita através de arquivos gerados pelas mesmas.

2.1.1 A independência da configuração do Sistema

Por se tratar de um gerenciador de programas para microeletrônica, buscou-se dotar o sistema TENTOS de uma completa independência dos dados e programas usados por cada usuário da ferramenta. Desta forma, cada projetista tem a sua configuração do sistema, com as suas ferramentas, os seus diretórios de trabalho e os seus dados.

Esta independência da configuração foi obtida através do uso de arquivos de configuração para o sistema. São dois os arquivos que guardam as configurações dos usuários. O primeiro é o arquivo de incialização (.INI) do sistema TENTOS, o qual armazena os dados referentes ao ambiente TENTOS, e o segundo é o arquivo de configuração (.CFG) que possui os dados de configuração para algumas das ferramentas incorporadas ao TENTOS, tais como a ferramenta de síntese TRAGO.

Juntando-se a estes dois arquivos já citados, que podem ser configurados pelo usuário, existe um terceiro arquivo de dados básicos do sistema, *TENTOS.DAT*, com nome fixo.

A tabela 1 apresenta os arquivos de configuração necessários à execução do TENTOS.

Tabela 1 - Lista dos Arquivos de Configuração necessários à execução do TENTOS

Tipo do Arquivo	Finalidade (conteúdo)		
Dados Básicos	Nome do arquivo de inicialização em uso;		
TENTOS.DAT	Editor utilizado para alterar o arquivo de configuração (.CFG);		
	Posicionamento das janelas de diálogo utilizadas pelo Gerenciador.		
Inicialização	Ferramentas incorporadas aos menus;		
*.INI	Arquivos de tecnologia incorporados ao menu;		
	Formatos possíveis de circuito;		
	Diretórios configurados pelo projetista;		
	Nome do projeto em uso;		
	Nome do circuito em uso;		
	Nome do arquivo de tecnologia em uso;		
	Nome do arquivo de configuração (.CFG) em uso;		
	Se deve ser mostrada ou não a barra de ferramentas;		
	Se deve ser mostrada ou não a barra de status;		
	Se deve ser mostrada ou não a janela de parâmetros;		
	O diretório onde foi selecionado o circuito em uso;		
	O diretório onde foi selecionado o arquivo de inicialização em uso;		
	O diretório onde foi selecionado o arquivo de configuração em uso.		
Configuração	• Informações pertinentes às ferramentas que acompanham a versão <i>standard</i> do		
*.CFG	sistema TENTOS.		

2.1.2 Associando novas Ferramentas ao TENTOS

Para dar uma maior flexibilidade ao sistema, constatou-se a necessidade de fazer com que a inclusão de novas ferramentas fosse realizada sem a necessidade de uma recompilação do programa. O próprio projetista agrega/altera as ferramentas conforme for o seu interesse, utilizando a caixa de diálogo apresentada na figura 2.

Figura 2 - Janela de Instalação/Configuração das Ferramentas

As informações fornecidas pelo usuário no momento da inclusão/alteração de ferramentas ficam armazenadas no arquivo de inicialização (*.INI) que está sendo utilizado pelo sistema no momento da operação. Portanto, no momento em que é inicializado o

TENTOS, o arquivo de inicialização é lido e o sistema tem a configuração dos seus menus ordenada conforme disposição estabelecida pelo projetista no momento em que adicionava/alterava/excluía ferramentas.

Cabe salientar que as ferramentas a serem incluídas no sistema podem necessitar de parâmetros ou dados para serem inicializadas. O TENTOS permite que estes parâmetros sejam definidos e repassados às ferramentas no momento da sua execução na linha de comando. Por exemplo, a configuração para o editor de layouts EMA, apresentada na figura 2, será executada da seguinte forma: C:\TENTOS\BIN\EMA2.EXE \$CIRC_D.RS \$TECH_DE, onde \$CIRC_D e \$TECH_DE referem-se ao nome do circuito e ao arquivo de tecnologia, respectivamente, que foram selecionados através do sistema TENTOS. Portanto, para se ter o melhor desempenho do sistema, as ferramentas incorporadas devem permitir que os seus parâmetros sejam informados na linha de comando.

2.1.2.1 Lista de Variáveis

Como parâmetros de ferramentas no momento da sua execução, poderemos ter constantes ou variáveis. A tabela 2 ilustra algumas das variáveis que poderão ser utilizadas como parâmetros no momento de configurar a execução das ferramentas.

Tabela 2 - Lista das variáveis que podem ser usadas como parâmetros

Variáveis	Descrição	Exemplos	
Nome do Circuito	Indica o nome do circuito.		
\$CIRC_DE \$CIRC_D \$CIRC_E \$CIRC	Diretório + Nome + Extensão Diretório + Nome Nome + Extensão Nome	C:\TENTOSUS\INV.RS C:\TENTOSUS\INV INV.RS INV	
Arquivo de tecnologia	Indica o nome do arquivo de tecnologia.		
\$TECH_DE \$TECH_D \$TECH	Diretório + Nome + Extensão Diretório + Nome Nome	C:\TENTOS\TEC\CMOS12.TEC C:\TENTOS\TEC\CMOS12 CMOS12	
Arquivo de Configuração	Indica o nome do arquivo de configuração.		
\$CONF_DE \$CONF_E \$CONF	Diretório + Nome + Extensão Nome + Extensão Nome	C:\TENTOSUS\TENTOSUS.CFG TENTOSUS.CFG TENTOSUS	

Um exemplo ilustrará bem a diferença entre constantes e variáveis.

Exemplo:

A execução do editor de layouts (EMA) [STE 89] poderia ser feita de dois modos:

Com constantes:

C:\TENTOS\BIN\EMA2.EXE

(linha de comando)

C:\USER\ALU.RS C:\TENTOS\TEC\CMOS15.TEC (parâmetros: circuito e arquivo de tecnologia) Deste modo o Gerenciador sempre executaria o mesmo arquivo.

• Ou com variáveis:

C:\TENTOS\BIN\EMA2.EXE (linha de comando)

\$CIRC_D.RS \$TECH_DE (parâmetros: circuito e arquivo de tecnologia)

Deste modo, a cada execução do editor de layout, seria passado como parâmetro para a sua execução o nome do circuito selecionado no presente momento (com extensão .RS), bem como o nome do arquivo de tecnologia que se encontra selecionado na hora da execução.

2.1.3 Associando novos arquivos de tecnologia ao TENTOS

Com a mesma facilidade com que novas ferramentas podem ser associadas ao gerenciador, arquivos de tecnologia também podem ser incluídos ou retirados. A figura 3 apresenta a caixa de diálogo onde são manipulados os arquivos de tecnologia já incorporados ou em fase de inclusão.

Figura 3 - Janela de Instalação/Configuração dos Arquivos de Tecnologia

2.2 A Estrutura do Sistema TENTOS

A figura 4 apresenta a estrutura de menus do sistema TENTOS *for Windows* na versão 1.00.

Figura 4 - A estrutura de Menus do Sistema TENTOS

Os pontilhados existentes na figura 4 representam o fato de o menu não possuir um número fixo de elementos naquela posição. Os retângulos, cujos interiores são de cor cinza, claro ou escuro, exercem apenas uma função ilustrativa, pois nestas posições é que serão incorporadas as ferramentas (vide seção 2.1.2) e os arquivos de tecnologia (vide seção 2.1.3).

Na seção seguinte será detalhado cada um dos itens que compõe a estrutura de menus apresentada na figura 4.

2.2.1 Submenu Arquivo

Projeto: Seleciona o nome do projeto que será manipulado pelas ferramentas integradas ao Gerenciador. A figura 5 apresenta o layout da janela onde deverá ser indicado o nome do projeto a ser manipulado pelo projetista.

Figura 5 - Caixa de Diálogo - Projeto (Informações do Projeto).

Sair: Encerra o uso do sistema TENTOS.

2.2.1.1 Submenu Arquivo - Configuração

Lê ".INI": Seleciona o nome do arquivo de inicialização que será utilizado como configuração do sistema. As ferramentas poderão utilizar esta informação através das variáveis.

Salva ".INI": Salva a configuração atual do sistema em um arquivo selecionado pelo usuário.

Lê ".CFG": Seleciona o nome do arquivo de configuração que será utilizado pelas ferramentas que acompanham o sistema TENTOS. As ferramentas poderão utilizar esta informação através das variáveis.

Edita ".CFG": Permite a edição do arquivo de configuração selecionado na opção *Arquivos - Configuração - Lê* ".*CFG*", utilizando-se o editor de textos selecionado através da opção *Arquivo - Configuração - Opções - Editor*.

Barra de Ferramentas: Habilita ou desabilita o aparecimento da barra de ferramentas.

Barra de Status: Habilita ou desabilita o aparecimento da barra de *status*.

Janela de Parâmetros: Habilita ou desabilita o aparecimento da janela de parâmetros no momento de execução das ferramentas.

2.2.1.2 Submenu Arquivo - Configuração - Opções

Diretórios: Serve para configurar os caminhos dos diretórios manipulados diretamente pelo gerenciador.

Editor: Serve para indicar qual editor de textos deve ser utilizado pelo projetista para alteração de dados no arquivo de configuração (.CFG) selecionado.

2.2.1.3 Submenu Arquivo - Configuração - Opções - Tecnologia

Arquivos de Tecnologia: Seleciona qual será o arquivo de tecnologia, dentre os inseridos no gerenciador, através da opção INSTALAR - TECNOLOGIAS.

2.2.1.4 Submenu Arquivo - Configuração - Idioma

Seleciona o idioma (inglês, português, espanhol ou francês) que será utilizado para apresentar as mensagens da interface.

2.2.2 Submenus Descrições, Sintetizar, Ferramentas e Simuladores

Estes submenus não possuem nenhum item vinculado ao TENTOS. Todas as opções incorporadas a eles serão feitas através do módulo INSTALAR - FERRAMENTAS.

2.2.3 Submenu Instalar

Ferramentas: Configuração/instalação de ferramentas.

Tecnologias: Configuração/instalação de arquivos de tecnologia.

Tipos de Circuito: Configuração/instalação das extensões de arquivos de circuitos.

3. A Configuração Standard do Sistema TENTOS

Esta seção são apresentadas as ferramentas que compõem a configuração básica do Sistema TENTOS. A figura 6 apresenta a disposição das ferramentas nos menus do Sistema TENTOS na versão 1.00.

Figura 6 - A disposição das ferramentas nos menus do Sistema TENTOS

3. 1 Menu Descrições

Editor de Layout - EMA: Editor gráfico de máscaras para circuitos integrados, [STE 89].

Editor de Layout - SELA: Editor de *layout* desenvolvido pelo GME/UFRGS através de convênio SID Microeletrônica - GME [CAS 91].

Edição Textual do Circuito: É um editor de texto utilizado para editar as descrições textuais de circuitos. É utilizado o *Bloco de notas* que acompanha o MS-WINDOWSTM.

Editor de Esquemáticos: Consiste de um software para geração de diagramas elétricos de maneira gráfica interativa (ESQUELETO), [GME 92].

Editor de Símbolos: Módulo auxiliar do editor de esquemáticos, serve para criar novos símbolos.

Editor Simbólico - SIMBY: Editor simbólico capaz de descrever graficamente uma célula de um circuito através de elementos simbólicos, como transistores, fios e contatos.

3.2 Menu Sintetizar

Trago: Ferramenta de síntese de *layout* para circuitos em lógica aleatória [MOR 90], baseada no estilo *gate-matrix*.

Tropic: Ferramenta de síntese de *layout* para circuitos em lógica aleatória [MOR 94], baseada no estilo *linear-matrix*.

3.3 Menu Ferramentas

Conversor Formato Layout SEL p/ Layout RS: Conversor de formatos de circuito.

Conversor Formato Esquemático ↔ Formato Spice: Conversor de formatos de circuito.

Verificador das Regras de Projeto: Verifica as regras de projeto de um layout.

Conversor de Formato Layout RS p/ Formato Layout CIF: Conversor de formatos de circuito.

Extrator Elétrico:Tem por objetivo a obtenção de um arquivo de dados com a lista de transistores, em formato compatível com o simulador SPICE.

Planificador (**Expansor**): Cria uma descrição plana de um circuito.

Compactador-SYLC: Gera o layout a nível de máscara a partir de um layout simbólico.

Extrator Lógico (**Extralo**): Obtém a descrição do circuito a nível de portas lógicas [MOR 90a].

Comparador de NetLists - COTONET: Possibilita a comparação do *netlist* gerado a partir da representação esquemática do circuito com o *netlist* extraído a partir do layout [FRE 92].

3.4 Menu Simuladores

Simulador Spice: Simulador a nível elétrico (transistores, capacitores e resistências).

4. Conclusão

A nova versão do sistema TENTOS for MS-WINDOWS foi apresentada. A interface gerenciadora foi totalmente re-estruturada, passando a permitir a inclusão/exclusão/alteração de ferramentas e de arquivos de tecnologia, sem a necessidade de recompilação. Esta característica deixou-a mais ágil e menos sensível às evoluções tecnológicas. Além disso, o

TENTOS passou a ser um ambiente aberto, o que permite ao usuário incluir suas próprias ferramentas, além daquelas disponíveis na instalação standard (ferramentas do GME/UFRGS).

Outra característica importante desta versão do TENTOS é a inclusão, na configuração *standard*, do gerador de *layouts* TROPIC, o qual se baseia em novos conceitos de geração.

Por ser uma ferramenta de distribuição gratuita e baseada numa plataforma de baixo custo (PC compatível), o sistema TENTOS pode ser usado em ambientes acadêmicos, para projetos de circuitos e ensino de Microeletrônica.

Informações detalhadas do sistema podem ser encontradas em [MÄH 96] e [MÄH 96a].

5. Referências

- [CAS 91] CASACURTA, Alexandre et al. SELA: Sistema de Edição de LAyouts. In: SEMINÁRIO INTERNO DE MICROELETRÔNICA, 7., 1991, Capão da Canoa, RS. p. 137-140.
- [FRE 92] FREITAS, Demétrio; REIS, Ricardo. COTONET: Um Comparador de Netlists Formato Spice. In: SIMPÓSIO BRASILEIRO DE CONCEPÇÃO DE CIRCUITOS INTEGRADOS, 7., 1992, Rio de Janeiro, RJ. p. 81 93.
- [GME 92] GRUPO DE MICROELETRÔNICA. Sistema Esqueleto. Porto Alegre: CPGCC/UFRGS, 1992. 76 p.
- [MÄH 94] MÄHLMANN, Luiz G. G. O Sistema TENTOS para MS-Windows. Porto Alegre: CPGCC/UFRGS, 1994. (TI 437).
- [MÄH 95] MÄHLMANN, Luiz G. G. et al. TENTOS for WINDOWS v1: Ferramentas para o Projeto Físico de CI's. In: PRIMER WORKSHOP IBERCHIP, 1995. Cartagena de Indias. Colombia. p. 357 366.
- [MÄH 96] MÄHLMANN, Luiz G. G. O Sistema TENTOS for WINDOWS Um gerenciador de ferramentas para Microeletrônica. Porto Alegre: CPGCC/UFRGS, 1996. 93 p. Dissertação de Mestrado.
- [MÄH 96a] MÄHLMANN, Luiz G. G. et al. O Sistema TENTOS para MS-Windows v. 1.00. Porto Alegre: CPGCC/UFRGS, 1996. 77 p. (RP 261).
- [MOR 90] MORAES, Fernando G. TRAGO: Síntese Automática de Leiaute para Circuitos em Lógica Aleatória. Porto Alegre: CPGCC/UFRGS, 1990. 199 p. Dissertação de Mestrado.
- [MOR 90a] MORAES, Fernando G.; REIS, Ricardo A. L. EXTRALO: Extrator Lógico. In: SIMPÓSIO BRASILEIRO DE CONCEPÇÃO DE CIRCUITOS INTEGRADOS, 5., 1990, Ouro Preto, MG. p.167-176.
- [MOR 91] MORAES, Fernando G.; REIS, Ricardo A. L. TENTOS: Gerenciador de Software para Microeletrônica. Porto Alegre: CPGCC/UFRGS, 1991. (RP 155).
- [MOR 94] MORAES, Fernando. Synthese Topologique de Macro-cellules en Technologie CMOS. Montpellier: Universite Montepellier II, 1994. Tese de Doutorado.
- [SOT 93] SOTO, F.; HENTZ, A.; CARRO, L. et al. CHARRUA: A symbolic editor for analog circuits. In: CONGRESSO DA SOCIEDADE BRASILEIRA DE MICROELETRÔNICA, 8., 1993, Campinas, Brasil. p.12.20 12.22.
- [SOT 94] SOTO, F.; CARRO, L.; SUZIM, A Compactação de Células-folha e Montagem Hierárquica com Minimização de Conexões. In: CONGRESSO DA SOCIEDADE BRASILEIRA DE MICROELETRÔNICA, 9., 1994, Rio de Janeiro, Brasil. p.58-64.
- [STE 89] STEMMER, Marcos A. Editor de Máscaras EMA2: Interface Gráfica do Extrator. Porto Alegre: CPGCC/UFRGS, 1989. 24 p. Trabalho Individual I.
- [WIR 94] WIRTH, Gilson I. SGC: Um Ambiente para a Automação de Procedimentos de Caracterização e Teste. Porto Alegre: CPGCC/UFRGS, 1994. 134 p. Dissertação de Mestrado.