Prepoznavanje ročno zapisanih števk

Števke 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 predstavimo s sivinskimi slikami velikosti 16×16 . V prvem – *učnem* naboru imamo slike znanih števk, v drugem – *testnem* naboru pa slike števk, ki jih želimo prepoznati.

Ideja prepoznavanja

Recimo, da testiramo, ali neka slika iz testnega nabora predstavlja števko 5. Iz učnega nabora vzamemo vse slike, ki predstavljajo 5 in jih predstavimo z vektorjem dolžine 256 (vse stolpce slike zložimo po vrsti enega pod drugega). Te vektorje nato staknemo skupaj enega ob drugega v matriko A_5 . Recimo, da je **b** vektor, ki predstavlja našo testno sliko.

Sedaj si ogledamo sistem $A_5\mathbf{x} = \mathbf{b}$. V splošnem ta sistem nima rešitev, znamo pa poiskati rešitev z minimalno normo oz. najboljši 'približek rešitve' $\mathbf{x}_5 = A_5^+\mathbf{b}$. Stvar ponovimo za vse števke iz učnega nabora, tj. poračunamo $\mathbf{x}_i = A_i^+\mathbf{b}$ za vse i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Nato izberemo tisti i, za katerega je $\|\mathbf{b} - A_i\mathbf{x}_i\|$ najmanjše. Če smo dobili i = 5, smo (najbrž) prepoznali števko 5.

Implementacija

Sestavite primerno velik učni nabor števk (20 ali več). Tako direktna metoda, kot je opisana zgoraj, običajno ni dovolj učinkovita. Primerneje je, če vnaprej poračunamo singularne razcepe matrik A_i , $A_i = U_i S_i V_i^{\mathsf{T}}$, nato pa poiščemo rešitve sistemov $U_i S_i \mathbf{y}_i = \mathbf{b}$, kjer je $\mathbf{y}_i = V^{\mathsf{T}} \mathbf{x}_i$.

- 1. Utemeljite, da velja $\|\mathbf{x}_i\| = \|\mathbf{y}_i\|$ in $\|\mathbf{b} A_i\mathbf{x}_i\| = \|U_i^\mathsf{T}\mathbf{b} S_i\mathbf{y}_i\|$.
- 2. Namesto učnega nabora si torej zapomnimo le singularne vrednosti S_i in singularne vektorje U_i . Ali si moramo res zapomniti vse te vrednosti? Kako učinkovit/zanesljiv je postopek, če bi si zapomnili le prvih k singularnih vrednosti in singularnih vektorjev?