telefication bv The Netherlands Chamber of Commerce 51565536 www.telefication.com

FCC and IC Test Report for Parts 15.207, 15.225 and RSS 210, RSS-Gen

Product name : WRDBK

Applicant : Salto Systems S.L

FCC ID : UKCWRDBK

IC ID : 10088A-WRDBK

Test report No.: 20153970302 Ver 2.00

laboratory certification approvals

Laboratory information

Accreditation

Telefication is designated by the FCC as an Accredited Test Firm for compliance testing of equipment subject to Certification under Parts 15 & 18. The Designation number is: NL0001

The Industry Canada registration number for the 3 meter test chamber of Telefication is: 4173A-1.

Documentation

Telefication complies with the accreditation criteria for test laboratories as laid down in ISO/IEC 17025:2005. The accreditation covers the quality system of the laboratory as well as the specific activities as described in the authorized annex bearing the accreditation number L021 and is granted on 30 November 1990 by the Dutch Council For Accreditation (RvA: Raad voor Accreditatie).

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at Telefication Netherlands

Testing Location

Test Site	Telefication BV	
Test Site location	Edisonstraat 12a	
	6902 PK Zevenaar	
	The Netherlands	
	Tel. +31316583180	
	Fax. +31316583189	
Test Site FCC	NL0001	

Revision History

Version	Date	Remarks	Ву	
v0.50	12-04-2016	First draft	RvB	
V1.00	17-05-2016	Release version	RvB	
V2.00	20-06-2016	AC conducted emissions added	PS	

Table of Contents

Re	evision H	istory	2
Sι	ımmary	of Test results	. 5
1	Gene	ral Description	. 6
	1.1	Applicant	.6
	1.2	Manufacturer	.6
	1.3	Tested Equipment Under Test (EUT)	.6
	1.4	Product specifications of Equipment under test	.7
	1.5	Modification of the Equipment Under Test (EUT)	.7
	1.6	Observations and remarks	.7
	1.7	Environmental conditions	.7
	1.8	Measurement standards	.7
	1.9	Applicable standards	.7
	1.10	Conclusions	.8
2	Test	onfiguration of the Equipment Under Test	. 9
	2.1	Test mode	.9
	2.2	Radiated Test setup1	0
	AC Cond	lucted Mains Test setup1	1
	2.3	Equipment used in the test configuration1	1
	2.4	Sample calculations	2
3	Test r	esults	13
	3.1	Field strength of emissions1	13
	3.1.1	Limit1	3
	3.1.2	Measurement instruments1	13
	3.1.3	Test setup1	3
	3.1.4	Test procedure	13
	3.1.5	Test results of Field strength of emissions	13
	3.1.6	Plots of Field strength of emissions Measurement	14
	3.2	99% Occupied Bandwidth1	5
	3.2.1	Limit1	5
	3.2.2	Measurement instruments1	15
	3.2.3	Test setup1	5
	3.2.4	Test procedure1	15
	3.2.5	Test results of the 99% Occupied Bandwidth Measurement	15
	3.2.6	Plots of the 99% Occupied Bandwidth Measurement1	16
	3.3	Field Strength of Unwanted Emissions1	17
	3.3.1	Limit1	7
	3.3.2	Measurement instruments	17

3.3.3	3 Test setup	17
3.3.4	4 Test procedure	17
3.3.5	Plots of the Field strength of Unwanted Emissions Measurement	18
3.3.6	6 Measurement Uncertainty	19
3.4	Frequency Tolerance	20
3.4.	1 Limit	20
3.4.2	2 Measurement instruments	20
3.4.3	3 Test setup	20
3.4.4	4 Test procedure	20
3.4.5	5 Test results of Frequency Tolerance Measurements	20
3.4.6	6 Measurement Uncertainty	20
3.5	AC conducted mains	21
3.5.	1 Limit	21
3.5.2	2 Measurement instruments	21
3.5.3	3 Test setup	21
3.5.4	4 Test procedure	21
3.5.5	5 Measurement uncertainty	21
3.5.6	6 Test results of AC conducted Mains Measurement	22

Summary of Test results

FCC	IC	Description	Paragraph	Verdict
15.225(a),(b),(c)	RSS-210 A2.6(a),(b),(c)	Field strength of emissions	3.1	Pass
	RSS-GEN 4.6.1	99% Bandwidth	3.2	Pass
15.225(d)	RSS-210 A2.6(d)	Field strength of unwanted emissions	3.3	Pass
15.225(e)	RSS-210 A2.6(e)	Frequency Tolerance	3.4	Pass
15.207(c)	RSS-Gen § 8.8	AC conducted emissions	3.5	Pass

1 General Description

1.1 Applicant

Client name: Salto systems, S.L.

Address C/Arkotz 9 Pol. Lanbarre, Oiartzun

Zip code: 20180

Telephone: +34 943344550

E-mail: j.gutierrez@saltosystems.com

Contact name: J. Gutierrez

1.2 Manufacturer

Manufacturer name: Salto systems, S.L.

Address: C/Arkotz 9 Pol. Lanbarre, Oiartzun

Zip code: 20180

Telephone: +34 943344550

E-mail: j.gutierrez@saltosystems.com

Contact name: J. Gutierrez

1.3 Tested Equipment Under Test (EUT)

Product name: WRDBK Brand name: SALTO

Product type: BLE capable wall RFID card reader

FCC ID: UKCWRDBK
IC ID 10088A-WRDBK
Model(s): WRDB,WRDBK

Software version: Special firmware for testing

 Hardware version:
 224824 - 221298

 Date of receipt
 01-12-2015

 Tests started:
 09-12-2015

 Testing ended:
 20-06-2016

1.4 Product specifications of Equipment under test

Tx Frequency:	13.56 MHz
Rx frequency:	13.56 MHz
Antenna type and gain:	PCB loop Antenna
Type of modulation:	ASK
Emission designator:	unknown

1.5 Modification of the Equipment Under Test (EUT)

None.

1.6 Observations and remarks

The EUT has two versions: one with a keypad (WRDBK) and one without keypad (WRDB). All the test have been performed on the worst case off the 2 the WRDBK.

1.7 Environmental conditions

Test date	17-03-2016	06-04-2016	20-06-2016
Ambient temperature	24°C	20.7°C	23°C
Humidity	42.1%	38.1%	50.2%

1.8 Measurement standards

- ANSI C63.4:2014
- ANSI C63.10:2013

1.9 Applicable standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC part 15 Subpart C §15.207
- FCC Part 15 Subpart C §15.225.
- RSS-210, issue 8, RSS-GEN Issue 4.

1.10 Conclusions

The sample of the product showed NO NON-COMPLIANCES to the specifications stated in paragraph 1.9 of this report.

The results of the test as stated in this report, are exclusively applicable to the product items as identified in this report. Telefication accepts no responsibility for any properties of product items in this test report, which are not supported by the tests as specified in paragraph 1.9 "Applicable standards".

All conducted tests are performed by:

Name

: ing R. van Barneveld

Review of test methods and report by:

Name

: ing. P.A. Suringa

The above conclusions have been verified by the following signatory:

Date

: 20-06-2016

Name

: ing M.T.P.M Wouters v/d Oudenweijer

Function

: Director Certification

Signature

2 Test configuration of the Equipment Under Test

2.1 Test mode

The applicant provided test mode firmware for the EUT, in which it was possible to configure the EUT to transmit continuously.

2.2 **Radiated Test setup**

Radiated emissions test setup 30 MHz – 1 GHz

AC Conducted Mains Test setup

2.3 Equipment used in the test configuration

Description	Manufacturer	Model	ID	Used at Par.
Spectrum Analyzer	Rohde & Schwarz	ESR7	TE01220	3.1 to 3.4
Climate Chamber	TE 00741	CTS	-40/350	3.4
Biconilog Antenna	Chase	CBL6112a	TE00967	3.3
SAC Chamber	Comtest Engineering BV	-	TE00861	3.3
Triple loop antenna	Schwarzbeck	HXYZ 9170	TE01311	3.1 and 3.2
EMI receiver	Rohde & Schwarz	ESR 7	TE01220	3.5
Artificial Mains network (AMN)	Rohde & Schwarz	ESH3-Z5	TE00208	3.5
Pulse limiter	Rohde & Schwarz	ESH3-Z2	TE00756	3.5

2.4 Sample calculations

Field Strength Measurement example:

Frequency (MHz)	Polarization	Height(m)	Peak (dBµV/m)
67,8	Horizontal	2	23,7

The following realtion applies:

 $E (dB\mu V/m) = U(dB\mu V) + AF (dB/m) + CL (dB)$

Where:

E = Electric field strength

U = Measuring reveiver voltage

AF = Antenna factor

CL = Cable loss

(23.7 = 15.8 + 1.1 + 6.8)

3 Test results

3.1 Field strength of emissions

3.1.1 Limit

15.225(a)

For The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

15.225(b)

Within the band 13.410 – 13.553 MHz and 13.567 – 13.710 MHz, the field strength of ant emissions shall not exceed 334 microvolts/meter at 30 meters.

15.225(c)

Within the band 13.110 – 13.410 MHz and 13.710 – 14.010 MHz, the field strength of ant emissions shall not exceed 106 microvolts/meter at 30 meters.

Frequency (MHz)	μV/m at 30 meter	dBµV/m at 30 meter	dBµV/m at 3 meter
13.553 – 13.567	15,848	84	124
13.410 – 13.553 and 13.567 – 13.710	334	50.5	90.5
13.110 – 13.410 and 13.710 - 14.010	106	40.5	80.5

3.1.2 Measurement instruments

The measurement instruments are listed in chapter 2.3 of this report.

3.1.3 Test setup

The test setup is as shown in chapter 2.2 of this report.

3.1.4 Test procedure

According to ANSI C63.4-2014, section 5.3 and 8.2.1

3.1.5 Test results of Field strength of emissions

Technology Std.	Frequency (MHz)	Max Field strength at 3m (dBµV/m)
RFID	13.56	68.42
Uncertainty	+3.0 / -2.5 dB	

3.1.6 Plots of Field strength of emissions Measurement

RFID Field strength of emission (10 MHz to 30 MHz)

Remark: in the plot the limit is modified for an inverse linear distance extrapolation factor of 40 dB/decade.

3.2 99% Occupied Bandwidth

3.2.1 Limit

According to RSS-Gen 4.6.1.

3.2.2 Measurement instruments

The measurement instruments are listed in chapter 2.3 of this report.

3.2.3 Test setup

The test setup is as shown in chapter 2.2 of this report.

3.2.4 Test procedure

- 1 Set the centre frequency to the nominal EUT channel centre frequency.
- 2 Set span = 1.5 times to 0.5 times the Occupied Bandwidth.
- 3 Set VBW \geq 3 x RBW.
- Video averaging is not permitted. Where practical detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode(until the trace stabilizes) shall be used.

3.2.5 Test results of the 99% Occupied Bandwidth Measurement

Technology Std.	Frequency (MHz)	99% Occupied Bandwidth (MHz)	
RFID	13.56	1.070	
Uncertainty	±1 kHz		

3.2.6 Plots of the 99% Occupied Bandwidth Measurement

RFID 99% Occupied Bandwidth

3.3 Field Strength of Unwanted Emissions

3.3.1 Limit

15.225(d)

The field strength of any emissions appearing outside of the 13.110 -14.010 MHz band shall not exceed the general radiated emission limits in part 15.209.

Frequency (MHz)	Field strength (µV/m)	Field strength (dBµV/m)	Measurement distance(m)
1.705 - 30	30	69.5	3
30 -88	100	40	3
88 - 216	150	43,5	3
216-960	200	46	3
Above 960	500	54	3

3.3.2 Measurement instruments

The measurement instruments are listed in chapter 2.3 of this report.

3.3.3 Test setup

The test setup is as shown in chapter 2.2 of this report.

3.3.4 Test procedure

According to ANSI C63.4-2014, section 5.4.2 and 8.2.3

3.3.5 Plots of the Field strength of Unwanted Emissions Measurement

30 MHz to 140 MHz

Vertical polarization

Measured peaks Vertical 30 - 140 MHz

Frequency (MHz)	Polarization	Height(m)	Quasi-Peak (dBµV/m)	Quasi-Peak Limit (dBµV/m)	Margin (dB)
40,68	Vertical	1,5	37,5	40	-2,5

Horizontal polarization

Frequency (MHz)	Polarization	Height (m)	Peak (dBµV/m)
67,8	Horizontal	2	23,7

3.3.6 Measurement Uncertainty

Horizontal polarization			
30 – 200 MHz	4.5 dB		
200 – 1000 MHz	3.6 dB		
Vertical polarization			
30 – 200 MHz	5.4 dB		
200 – 1000 MHz	4.6 dB		

3.4 Frequency Tolerance

3.4.1 Limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

3.4.2 Measurement instruments

The measurement instruments are listed in chapter 2.3 of this report.

3.4.3 Test setup

The test setup is as shown in chapter 2.2 of this report.

3.4.4 Test procedure

According to ANSI C63.10-2013, section 6.8

3.4.5 Test results of Frequency Tolerance Measurements

Temperature variation:

Temp. (°C)	-20	-10	0	10	20	30	40	50
Frequency (MHz)	13.5601	13.5601	13.5601	13.5601	13.5601	13.5601	13.5600	13.5600
Deviation (%)* ⁾	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0	0
Limit (%)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

^{*)} w.r.t. nominal frequency of 13.560 MHz

Voltage variation:

\	/oltage	Frequency (MHz)*)	Deviation (%)*)	Limit (%)
	93.5 V	13.5600	0	0.01
	110 V	13.5600	0	0.01
•	126.5 V	13.5600	0	0.01

3.4.6 Measurement Uncertainty

Measurement uncertainty = + /- 16 Hz

3.5 AC conducted mains

3.5.1 Limit

§ 15.207 (c)

Fraguency range (MUZ)	Lir	nits
Frequency range (MHz)	Quasi-Peak (dBµV)	Average (dBµV)
0.15 – 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 – 30	60	50

3.5.2 Measurement instruments

The measurement instruments are listed in chapter 2.3 of this report.

3.5.3 Test setup

The test setup is as shown in chapter 2.2 of this report.

3.5.4 Test procedure

According to According to ANSI C63.4-2014, section 13.3

3.5.5 Measurement uncertainty

+/- 3.6 dB.

3.5.6 Test results of AC conducted Mains Measurement

Neutral

Note: the average value at 13.56 MHz is 39.84 dBµV/m (margin -10.16 dB)

Live

Note: the average value at 13.56 MHz is $49.42 \, dB\mu V/m$ (margin -0.58 dB) whereas the quasi-peak value is $55.14 \, dB\mu V/m$ (margin -4.86 dB)