Birla Institute of Technology & Science, Pilani K. K. Birla Goa Campus First Semester 2018-2019 Course Handout (Part-II)

In addition to part I this portion gives further specific details regarding the course Logic in Computer Science.

Course Details

Course Title : Advanced Algorithms & Complexity

Course Number : CSF364 Instructor-In-charge : A Baskar

Objective

- Introduce various algorithms design techniques to solve optimization problems.
- Introduce the notion of hard problems and techniques to prove hardness of the problem.
- Study approximation algorithms and randomized algorithms to solve hard problems

Text book

 (T_1) Introduction to Algorithms, TH Cormen, CE Leiserson, RL Rivest, C Stein, Third Edition, MIT Press.

Please note that whatever definitions, notations and techniques which we use in the class are final.

References

- $(\it{R}_{\rm{1}})~$ Randomized Algorithms, Rajeev Motwani, Prabhakar Raghavan, Cambridge University Press2000
- (R₂) Algorithm Design, Jon Kleinberg, Eva Tardos, First Edition, Pearson.

Course Plan

Modules

Module No	Topic	Objectives		
	Introduction	Introducing goals and motivation for the course		
ī	Randomized Data Struc-	Introducing probabilistic techniques using ad-		
1	tures	vanced data structures		
II	Algorithm Design Tech-	Review of algorithm design techniques and using		
	niques	them to solve optimization problems		
III		Introduce the concept of complexity classes and		
	NP-Completeness	understand NP-complete problems. Learn the re-		
		duction techniques		
IV	Randomized Algorithms	Investigate the power of randomization to design		
1 V	Kandonnized Algoridinis	efficient algorithms for NP-hard problems		
V	Approximation Algo-	Using approximation techniques to design effi-		
V	rithms	cient algorithms for NP-hard problems		

Lecture Schedule

Lecture	Topics	Reading	Module No
1	Overview of Algorithms		I
2–6	Treaps	R ₁ 8.2	II
7–8	Skip Lists	R ₁ 8.3	II
9	Introduction to Algorithm Design Techniques		III
10-12	Dynamic Programming	T ₁ 15	III
13-15	Greedy Algorithms	T ₁ 16	III
16	Introduction to the complexity classes		
	NP and NP-complete	$T_1 34$	IV
17–24	NP-hard problems: 3 CNF SAT, Hamiltonian Cycle,		
	Subset Sum, Travelling Salesman problem,	$T_1 34$	IV
25	Introduction to Approximation Algorithms	$T_1 \ 35$	V
26–33	Designing approximation algorithms for various	T_1 35	
	NP-hard problems		V
34	Introduction to randomized algorithms:	T_1 5	
	hiring problem		VI
35–37	Balls and Bins Problem, Coupon Collectors Problem,	T_1 5	
	Birthday Paradox		VI
38–39	Application of Randomized algorithms for		
	NP hard problems		VI
40	Summary and Review		

Evaluation Scheme

No	Component	Weightage	Date	Time	Remarks
1	MidSem	30%	13/03/2019	2 PM – 3.30 PM	Closed Book
2	Comprehensive	45%	07/05/2019	9 AM – 12 Noon	Partly Open Book
3	Surprise quiz	15%	-	-	Open Book
4	Lab	10%	TBA	TBA	Open Book

Chamber Consultation

Wednesday (4:30 PM - 5:30 PM)

Notices

The course site on photon will be used and some announcements will be made in the class during lectures.

Make-up Policy

- Make-up (for MidSem and Compre) shall be granted only in genuine cases based on individual's need and circumstances.
- No marks will be awarded without make-up for that component
- There are no make-ups for quizzes or labs. If we conduct n of them, we will consider the best n-1.

Instructor-In-Charge CSF364