Singular Value Decomposition

my favorite among all factorizations

yes, it is worth studying yet another factorization

SVD is general: can find SVD for any matrix A, even if A is:

Nonsymmetric

Noninvertible

Invertible, but with nearly linearly dependent columns

Nonsquare (we will focus on the square case for today)

Complex-valued

SVD is meaningful:

Rich geometric & algebraic information

Enables low-rank approximations

Exposes bases for nullspace, for image of A, and for subspaces perpendicular to these

The SVD is a factorization:

$$A = U\Sigma V^T$$

U and V are orthogonal

 Σ is diagonal with nonnegative entries, arranged from largest to smallest Equivalent to $AV=U\Sigma$

$$A \qquad V \qquad U \qquad \Sigma$$

 $AV=U\Sigma$ implies $AV_1=\sigma_1U_1$ and $AV_2=\sigma_2U_2$ and so on

Columns of U are the left singular vectors of AColumns of V are the right singular vectors of AEntries on the diagonal of Σ are the singular values of A

Example: you take the SVD of a ten-by-ten matrix A.

You notice two zero singular values; the first eight are positive.

That is, $\sigma_9 = 0 = \sigma_{10}$ while $\sigma_8 > 0$.

What does this mean?

Example: you take the SVD of a ten-by-ten matrix A.

You notice two zero singular values; the first eight are positive.

That is, $\sigma_9 = 0 = \sigma_{10}$ while $\sigma_8 > 0$.

What does this mean?

• We know $AV_9 = \overrightarrow{0}$ and $AV_{10} = \overrightarrow{0}$

Example: you take the SVD of a ten-by-ten matrix A.

You notice two zero singular values; the first eight are positive.

That is, $\sigma_9 = 0 = \sigma_{10}$ while $\sigma_8 > 0$.

What does this mean?

- We know $AV_9 = \overrightarrow{0}$ and $AV_{10} = \overrightarrow{0}$
- A is noninvertible
- $\{V_9, V_{10}\}$ is a basis for the nullspace of A
- $\{U_1, \dots, U_8\}$ is a basis for the range of A (span of cols of A)
- The equation Ax = b has a solution only if $b \perp U_9$ and $b \perp U_{10}$
- If x is one solution to Ax = b, another is $(x + 2.2V_9 4.7V_{10})$

Low rank approximation

What if the first three singular values are much larger than the others? We can get a good approximation by dropping all of the small ones:

$$A = \sum_{j=1}^{n} \sigma_j U_j V_j^T \qquad A \approx \sum_{j=1}^{3} \sigma_j U_j V_j^T$$

This is the **best** possible rank-3 approximation of A.

Definition: the *Frobenius norm* of a matrix M is the square root of the sum of the squares of the entries of M, written $\|M\|_F$

Theorem: If A has the SVD $AV = U\Sigma$, and we want to find a rank k matrix B to make $\|A - B\|_F$ as small as possible, the answer is $B = \sum_{i=1}^k \sigma_i U_i V_i^T$.

Application 5: low-rank approximation

Full (rank 600) image

$$A = \sum_{j=1}^{600} \sigma_j U_j V_j^T$$

store 360000 values

Rank 15 approximation

$$A \approx \sum_{j=1}^{15} \sigma_j U_j V_j^T$$

store 18015 values

Geometric introduction of SVD

Let A be n-by-n.

Idea: a linear transformation carries the n-dimensional unit ball to an n-dimensional hyper-ellipse.

$$AV_i = \sigma_i U_i$$

Pictorial, 2D singular value decomposition algorithm!

- 1. find unit vector V_1 so that $||AV_1||$ is as large as possible
- 2. set $\sigma_1 = ||AV_1||$ and $U_1 = \frac{1}{\sigma_1}AV_1$
- 3. find unit vector V_2 so that $||AV_2||$ is as small as possible (alternative if n>2: find unit V_2 with $V_2\perp V_1$ so AV_2 is as large as possible)

4. set
$$\sigma_2 = ||AV_2||$$
 and $U_2 = \frac{1}{\sigma_2}AV_2$

 V^T rotates/flips

 Σ rescales coordinates

U rotates / flips

Algebraic construction / definition of SVD

(in practice, avoid actually forming A^TA – we'll see how later)

Theorem: a symmetric matrix in $\mathbb{R}^{n \times n}$ has a full set of n mutually perpendicular eigenvectors.

Even if A is nonsymmetric, A^TA is symmetric.

Let V_1, V_2, \dots, V_n denote the (unit, \perp) eigenvectors of $A^T A$.

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the corresponding eigenvalues of $A^T A$.

Exercise 1: show that the eigenvalues are non-negative, $\lambda_i \geq 0$.

Define the singular values of A as $\sigma_i = \sqrt{\lambda_i}$.

Exercise 2: show that $||AV_i|| = \sigma_i$ for each $i = 1 \cdots n$.

Define $U_i = \frac{1}{\sigma_i} AV_i$ for $\sigma_i > 0$.

Exercise 3: show that the U_i are also perpendicular unit vectors.

Let V_1, V_2, \dots, V_n denote the (unit, \perp) eigenvectors of A^TA .

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the corresponding eigenvalues of A^TA .

Exercise 1: show that the eigenvalues are non-negative, $\lambda_i \geq 0$.

Define the singular values of A as $\sigma_i = \sqrt{\lambda_i}$.

Exercise 2: show that $||AV_i|| = \sigma_i$ for each $i = 1 \cdots n$.

Define $U_i = \frac{1}{\sigma_i} AV_i$ for $\sigma_i > 0$.

Exercise 3: show that the U_i are also perpendicular unit vectors.

E1 hint:
$$0 \le ||AV_i||^2 = \cdots$$

E2 hint: modify E1 solution.

Let V_1, V_2, \dots, V_n denote the (unit, \perp) eigenvectors of A^TA .

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the corresponding eigenvalues of A^TA .

Exercise 1: show that the eigenvalues are non-negative, $\lambda_i \geq 0$.

Define the singular values of A as $\sigma_i = \sqrt{\lambda_i}$.

Exercise 2: show that $||AV_i|| = \sigma_i$ for each $i = 1 \cdots n$.

Define $U_i = \frac{1}{\sigma_i} AV_i$ for $\sigma_i > 0$.

Exercise 3: show that the U_i are also perpendicular unit vectors.

E1 hint: $0 \le ||AV_i||^2 = \cdots$

E1 solution: $0 \le ||AV_i||^2 = V_i^T A^T A V_i = V_i^T \lambda_i V_i = \lambda_i ||V_i||^2 = \lambda_i$.

E2 hint: modify E1 solution.

E2 solution: $||AV_i||^2 = \cdots = \lambda_i$, so $||AV_i|| = \sigma_i$.

E3 solution: $||U_i|| = \frac{1}{\sigma} ||AV_i|| = \frac{\sigma}{\sigma} = 1$, and also $U_i^T U_j = \frac{1}{\sigma_i \sigma_j} V_i^T A^T A V_j = \frac{1}{\sigma_i \sigma_j} V_i^T \lambda_j V_j = 0$.

Let V_1, V_2, \dots, V_n denote the (unit, \perp) eigenvectors of A^TA .

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the corresponding eigenvalues of A^TA .

Exercise 1: show that the eigenvalues are non-negative, $\lambda_i \geq 0$.

Define the singular values of A as $\sigma_i = \sqrt{\lambda_i}$.

Exercise 2: show that $||AV_i|| = \sigma_i$ for each $i = 1 \cdots n$.

Define $U_i = \frac{1}{\sigma_i} AV_i$ for $\sigma_i > 0$.

Exercise 3: show that the U_i are also perpendicular unit vectors.

For any i with $\sigma_i=0$, we can't define $U_i=\frac{1}{\sigma_i}AV_i$. However, if $\sigma_i=0$, we know $AV_i=0$ so $AV_i=\sigma_iU_i$ for any choice of U_i . Therefore, we can choose any U_i we like for these i. Choose these U_i so that U is orthogonal.

Put it together:

We have $AV_i = \sigma_i U_i$ for each i. Collect the U_i and V_i into matrices. Now $AV = U\Sigma$ or $A = U\Sigma V^T$

Application 1: matrix 2-norm

Definition: the 2-norm of a matrix A is the largest possible value of $||Ax|| = ||Ax||_2$ given that ||x|| = 1.

$$||A|| = ||A||_2 = \sigma_1$$

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} : \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 2 & 1 \\ -1.0 & 0.0 & 1.0 \end{bmatrix} \rightarrow \begin{bmatrix} ||A||_2 = 2.303 \\ 7 & 1 \\ 7 & 1 \end{bmatrix}$$

Application 2: matrix rank

rank(A) = # nonzero singular values of A

numerical rank: the # of singular values greater than a tolerance (like 10^{-14})

Application 3: condition number

$$\kappa(A) = \sigma_1/\sigma_m$$

In solving Ax=b, if you know b to an accuracy of k digits, you will find x accurate to only $k - \log_{10}(\kappa(A))$ digits

Small condition numbers are good (1 is optimal). (Orthogonal matrices have condition number 1)

Vandermonde matrices are very poorly conditioned. (we'll meet these soon)

Application 4: solve Ax=b for square A

- 1) get SVD $A = U\Sigma V^T$
- 2) compute U^Tb
- 3) Solve diagonal system $\Sigma w = U^T b$
- 4) compute x = Vw

```
A <- matrix(rnorm(16),nrow=4) # random 4x4 matrix
b <- rnorm(4) # random rhs vector

sing <- svd(A)
u <- sing$u  # extract left singular vectors

sigma <- sing$d  # extract vector of singular values

v <- sing$v  # extract right singular vectors

x <- v %*% (1/sigma * (t(u) %*% b)) # get x = A^{-1}b

print(max(abs(A %*% x - b))) # should be close to 0
```

```
## [1] 1.776357e-15
```