POLICY GRADIENT

Peaking popularity
Already the most widely used

Diego Klabjan
Professor, Industrial Engineering and Management Sciences

Northwestern ENGINEERING

Outline

- Formulation
- Algorithm
- Issues
- Bias

FORMULATION

Episodes

$$\underbrace{p_{\theta}(s_1, a_1, \dots, s_T, a_T)}_{\pi_{\theta}(T)} = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

$$\theta^* = \arg \max_{\theta} E_{T \sim \pi_{\theta}(T)} \left[\sum_{t} r(s_t, a_t) \right]$$

Episodes

$$\theta^* = \operatorname*{argmax}_{\theta} E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

$$\theta^* = \operatorname*{argmax}_{\theta} E_{(s,a) \sim p_{\theta}(s,a)} \left[\sum_{t} r(s,a) \right]$$

infinite horizon case

$$\theta^* = \operatorname*{argmax}_{\theta} E_{(s,a) \sim p_{\theta}(s,a)} \left[\sum_{t} r(s,a) \right] \qquad \qquad \theta^* = \operatorname*{argmax}_{\theta} \sum_{t=1}^{T} E_{(s_t,a_t) \sim p_{\theta}(s_t,a_t)} [r(s_t,a_t)]$$

finite horizon case

Telescoping

$$\theta^* = \underset{\theta}{\operatorname{argmax}} E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

$$J(\theta)$$

- Assuming everything is finite
 - Otherwise an approximation

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right] = \sum_{i} p(\tau^i) \sum_{t} r(s_t^i, a_t^i)$$
 sum over samples from π_{θ}

ALGORITHM

Gradient Optimization

- $J(\theta)$ not convex
- Gradient optimization still applicable

$$\theta = \theta + \alpha \, \nabla J(\theta)$$

- α learning rate
- Challenge to find the gradient
- $g(\theta) = E_{z \sim Q} f(\theta, z)$
 - $\nabla g(\theta) = E_{z \sim Q} \nabla_{\theta} f(\theta, z)$
- What about $g(\theta) = E_{z \sim Q(\theta)} f(\theta, z)$?

Direct Policy Differentiation

$$\theta^* = \operatorname*{argmax}_{\theta} E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

$$J(\theta)$$

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] = \int \pi_{\theta}(\tau)r(\tau)d\tau$$
$$\sum_{t=1}^{T} r(s_t, a_t)$$

a convenient identity

$$\underline{\pi_{\theta}(\tau)\nabla_{\theta}\log\pi_{\theta}(\tau)} = \pi_{\theta}(\tau)\frac{\nabla_{\theta}\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \underline{\nabla_{\theta}\pi_{\theta}(\tau)}$$

$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} \pi_{\theta}(\tau)} r(\tau) d\tau = \int \underline{\pi_{\theta}(\tau)} \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) d\tau = E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$$

Direct Policy Differentiation

$$\theta^* = \underset{\theta}{\operatorname{argmax}} J(\theta)$$

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)]$$

$$p_{\theta}(s_1, a_1, \dots, s_T, a_T) = p(s_1) \prod_{t=1}^T \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

$$\log \text{ of both sides } \pi_{\theta}(\tau)$$

$$\log \pi_{\theta}(\tau) = \log p(s_1) + \sum_{t=1}^T \log \pi_{\theta}(a_t|s_t) + \log p(s_{t+1}|s_t, a_t)$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) \, r(\tau)]$$

$$\nabla_{\theta} \left[\log p(s_1) + \sum_{t=1}^{T} \log \pi_{\theta}(a_t|s_t) + \log p(s_{t+1}|s_t, a_t) \right]$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=1}^{T} r(s_{t}, a_{t}) \right) \right]$$

Algorithm

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(s_t^i, a_t^i)$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=1}^{T} r(s_{t}, a_{t}) \right) \right]$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \right) \left(\sum_{t=1}^{T} r(s_{t}^{i}, a_{t}^{i}) \right)$$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

REINFORCE algorithm:

1. sample $\{\tau^i\}$ from $\pi_{\theta}(a_t|s_t)$ (run the policy)

2. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \middle| s_{t}^{i} \right) \right) \left(\sum_{t} r \left(s_{t}^{i} \middle| a_{t}^{i} \right) \right)$

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} I(\theta)$

Algorithm

- Network produces softmax
- Take log as "loss" function
 - Standard back propagation

Multi-step MDP

- Replace instantaneous reward r with long-term value $Q^{\pi}(s, a)$
- For discounted objective
 - Any differentiable policy $\pi_{\theta}(a|s)$
 - Can be shown

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s,a)]$$

ENHANCEMENTS

Variance of Policy-Gradient

Known to have high variance

Baselines

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta} (\tau^{i}) [r(\tau^{i}) - b]$$

a convenient identity

$$\pi_{\theta}(\tau)\nabla_{\theta}\log\pi_{\theta}(\tau) = \nabla_{\theta}\pi_{\theta}(\tau)$$

- Let b (baseline) be constant
 - Independent of τ

$$E[\nabla_{\theta} \log \pi_{\theta}(\tau)b] = \int \pi_{\theta}(\tau)\nabla_{\theta} \log \pi_{\theta}(\tau)b \, d\tau = \int \nabla_{\theta}\pi_{\theta}(\tau)b \, d\tau = b\nabla_{\theta} \int \pi_{\theta}(\tau) \, d\tau = b\nabla_{\theta} 1 = 0$$

- Subtracting a baseline is unbiased in expectation
- Candidate

$$b = \frac{1}{N} \sum_{i=1}^{N} r(\tau^{i})$$

Reducing Variance

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \right) \left(\sum_{t=1}^{T} r(s_{t}^{i}, a_{t}^{i}) \right)$$

• Policy at time t' cannot affect reward at time t when t < t'

$$\nabla_{\theta}J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i}|s_{t}^{i}) \left(\sum_{t'=1}^{T} r(s_{t'}^{i}, a_{t'}^{i}) \right)$$
"reward to go"
$$\hat{Q}_{i,0}$$

$$\nabla_{\theta}J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i}|s_{t}^{i}) \left(\sum_{t'=t}^{T} r(s_{t'}^{i}, a_{t'}^{i}) \right) \text{ REINFORCE algorithm}$$

- Recall $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s,a)]$
 - At time *t*
 - Q matters
 - Q captures reward only from t onwards
- Scientific justification for truncation

Analyzing Variance

$$\begin{aligned} \operatorname{Var}[x] &= E[x^2] - E[x]^2 \\ \nabla_{\theta} J(\theta) &= E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) (r(\tau) - b)] \\ \operatorname{Var} &= E_{\tau \sim \pi_{\theta}(\tau)} [(\nabla_{\theta} \log \pi_{\theta}(\tau) (r(\tau) - b))^2] - E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) (r(\tau) - b)]^2 \\ &= [E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]]^2 \end{aligned}$$

$$\frac{d\text{Var}}{db} = \frac{d}{db}E[g(\tau)^{2}(r(\tau) - b)^{2}] = \frac{d}{db}(E[g(\tau)^{2}r(\tau)^{2}] - 2E[g(\tau)^{2}r(\tau)b] + b^{2}E[g(\tau)^{2}])$$
$$= -2E[g(\tau)^{2}r(\tau)] + 2bE[g(\tau)^{2}] = 0$$

$$b = \frac{E[g(\tau)^2 r(\tau)]}{E[g(\tau)^2]}$$
 This is just expected rew by gradient magnitudes!

This is just expected reward, but weighted

Optimal constant baseline

Reducing Variance Using a Baseline

- Good baseline
 - State value function $B(s) = V^{\pi_{\theta}}(s)$
- Policy gradient

$$A^{\pi_{\theta}}(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) A^{\pi_{\theta}}(s, a)]$$

- Advantage function $A^{\pi_{\theta}}(s, a)$
 - For optimal policy advantage function always non-positive

Estimating Advantage Function

Two function approximators and two parameter vectors

$$V_{v}(s) \approx V^{\pi_{\theta}}(s)$$

$$Q_{w}(s, a) \approx Q^{\pi_{\theta}}(s, a)$$

$$A_{w,v}(s, a) = Q_{w}(s, a) - V_{v}(s)$$

- θ fixed; w, v learnable
 - Updating both value functions by ideas from Q-learning
- Alternative to have a single network for advantage

Policy Gradient Algorithms

Many equivalent forms

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta} \left(s, a \right) r_{t}] \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta} \left(s, a \right) Q^{w}(s, a)] \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta} \left(s, a \right) A^{w,v}(s, a)] \end{split} \quad \text{Advantage Actor-Critic}$$

- Equality for expectation
- When sampling and approximating functions
 - Different algorithms

Algorithm

- Loop
 - 1. sample $\{\tau^i\}$ from $\pi_{\theta}(a_t|s_t)$ (run the policy)
 - 2. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \middle| s_{t}^{i} \right) \right) \left(\sum_{t} A_{w,v}(s_{t}^{i}, a_{t}^{i}) \right)$
 - 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
 - 4. Create set: episode τ^i and each (s_t^i, a_t^i)
 - 5. Adjust *w*, *v* based on MSE (recomputing the advantage function)
- Only value and Q functions approximation used
 - MSE based only on states and policy (actions)

UPDATING FUNCTIONS

Functional Approximation of V

- Updating the value function approximation
- At state s
 - Have reward plus future based on approximate value function
 - · Based on optimal action
 - Have value of approximate value function
- Match them
 - L2 loss

fitted value iteration algorithm:

1. set
$$y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_v(s_i')])$$

2. set
$$\mathbf{v} \leftarrow \operatorname{argmin}_{v'} \frac{1}{2} \sum_{i} (V_{v'}(s_i) - y_i)^2$$

Functional Approximation of Q

fitted value iteration algorithm:

- 1. $\operatorname{set} y_i^1 \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_v(s_i')])$ 2. $\operatorname{set} v \leftarrow \operatorname{argmin}_{v'} \frac{1}{2} \sum_i (V_{v'}(s_i) y_i^1)^2$

fitted Q iteration algorithm:

- 1. $\operatorname{set} y_i^2 \leftarrow r(s_i, a_i) + \gamma E[V_v(s_i')]$ approximate $E[V_v(s_i')] \approx \max_{a'} Q_w(s_i', a_i')$ 2. $\operatorname{set} w \leftarrow \operatorname{argmin}_{w'} \frac{1}{2} \sum_i \left(Q_{w'}(s_i, a_i) y_i^2 \right)^2$

Doesn't require simulation of actions!

parameters w

Value Iteration with Fitted Q-factor

- Observed data are trajectories
 - Formally, $U = \{(s_i, a_i, s_i', r_i) | i \in N\}$
- Loop
 - Sample $S \subseteq U$
 - For $i \in S$
 - $y_i \leftarrow r_i + \gamma \max_{a'_i} Q_w(s'_i, a'_i)$
 - Set $w \leftarrow \operatorname{argmin}_{w'} \frac{1}{2} \sum_{i \in S} (Q_{w'}(s_i, a_i) y_i)^2$

Online Version

full fitted Q-iteration algorithm:

- 1. collect dataset $\{(s_i, a_i, s'_i, r_i)\}$ using some policy
- 2. set $y_i \leftarrow r(s_i, a_i) + \gamma \max_{a_i'} Q_w(s_i', a_i')$ 3. set $w \leftarrow \operatorname{argmin}_{w'} \frac{1}{2} \sum_i (Q_{w'}(s_i, a_i) y_i)^2$

online Q iteration algorithm:

- 1. take some action a_i and observe (s_i, a_i, s_i', r_i) 2. $y_i = r(s_i, a_i) + \gamma \max_{a'} Q_w(s_i', a_i')$ 3. $w \leftarrow w \alpha \frac{dQ_w}{dw}(s_i, a_i)(Q_w(s_i, a_i) y_i)$

Overall Algorithm

Loop

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(a_t|s_t)$ (run the policy)
- 2. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \middle| s_{t}^{i} \right) \right) \left(\sum_{t} A_{w,v}(s_{t}^{i}, a_{t}^{i}) \right)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
- 4. Create set: episode τ^i and each (s_t^i, a_t^i)
- 5. For all *t*, *i* present in episodes in step 4
 - 1. Let $y_{ti}^1 \leftarrow \max_{a_i} (r(s_t^i, a_t^i) + \gamma E[V_v(s_t^{i\prime})])$.
 - 2. Let $y_{ti}^2 \leftarrow r(s_t^i, a_t^i) + \gamma E[V_v(s_t^{i'})]$. // OR $y_{ti}^2 \leftarrow r(s_t^i, a_t^i) + \gamma \max_{a_t^i} Q_w(s_{ti}^{i'}, a_{ti}^{i'})$
- 6. Value function update: set $v \leftarrow \operatorname{argmin}_{v'} \frac{1}{2} \sum_{ti} (V_{v'}(s_t^i) y_{ti}^1)^2$
- 7. Q-factor update: set $w \leftarrow \operatorname{argmin}_{w'} \frac{1}{2} \sum_{ti} (Q_{w'}(s_t^i, a_t^i) y_{ti}^2)^2$

Deep Q-Learning

- Deep network used to model Q factor
- State modeled by RNN
 - Possibly combined with CNN if images involved
- Final network a combination of CNN+RNN+Fully connected

Exploration-Exploitation

- Exploration-Exploitation tradeoff
- Have visited part of the state space and found a reward of 100
 - Is this the best we can hope for?
 - Should we keep 'pounding' the visited states and figure out actions that lead to 100?
 - Perhaps there are other states that we have not yet visited that lead to even higher reward
- Exploitation
 - Should we stick with what we know
 - Find a good policy with respect to this knowledge
 - Risk of missing out on a better reward somewhere else
- Exploration
 - Should we look for states with more reward
 - At risk of wasting time and getting some negative reward

Exploration-Exploitation Epsilon-Greedy

- Exploitation
 - Follow your current best policy
 - Be greedy
- Exploration
 - Deviate to explore
 - Strategy
 - Greedy policy vector a
 - Perturb it by epsilon

$$a + \epsilon$$

- ϵ random vector
- Has to be probability vector

- Common exploration
 - Probability(a)
 - 1ϵ if a = optimal (argmax)
 - $\epsilon/(|\mathcal{A}|-1)$ otherwise

Exploration-Exploitation

- Sample from one policy
 - Exploration
 - Behavior policy
- Update and optimization different policy
 - Exploitation
 - Learning policy
- Same policies: on-policy learning
- Two different policies: off-policy learning

Off-policy vs On-policy

- On-policy algorithm
 - Learn the policy being executed by the agent
 - One policy
- Off-policy algorithm
 - Evaluate a policy from samples generated by a different policy
 - Target policy
 - Learn policy independent of policy taken by agent (behavior policy)
 - Two policies

Off-policy Framework

- $\pi_{\theta'}$ is target policy
 - Gradient with respect to this policy
 - Gradient at this point
- Loop
 - Sample episode based on policy $\pi_{ heta}$
 - // Behavior policy
 - Perform gradient step at $\pi_{\theta'}$
 - // Adjusts $\pi_{\theta'}$
- Challenge
 - The two policies should be somehow related
 - Idea: gradient taken with respect to a function that involves π_{θ}

Policy Gradient and On-policy

$$\theta^* = \underset{\theta}{\operatorname{argmax}} J(\theta)$$

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)]$$

$$\nabla_{\theta} J(\theta) = E_{\underline{\tau \sim \pi_{\theta}(\tau)}} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$$
Same policy

- Neural networks change only slightly with each gradient step
- On-policy learning inefficient

REINFORCE algorithm:

1. sample $\{\tau^i\}$ from $\pi_{\theta}(a_t|s_t)$ 2. $\nabla_{\theta}J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(a_t^i|s_t^i)\right) \left(\sum_t r(s_t^i, a_t^i)\right)$ 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta}J(\theta)$

Must have this

$$\theta^* = \operatorname*{argmax}_{\theta} J(\theta)$$

$$J(\theta') = E_{\tau \sim \pi_{\theta'}(\tau)}[r(\tau)]$$

We have samples from some $\pi_{\theta}(\tau)$

$$J(\theta') = E_{\tau \sim \pi_{\theta}(\tau)} \left[\frac{\pi_{\theta'}(\tau)}{\pi_{\theta}(\tau)} r(\tau) \right]$$

$$\pi_{\theta}(\tau) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

$$\frac{\pi_{\theta'}(\tau)}{\pi_{\theta}((\tau)} = \frac{p(s_1) \prod_{t=1}^{T} \pi_{\theta'}(a_t | s_t) p(s_{t+1} | s_t, a_t)}{p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)} = \frac{\prod_{t=1}^{T} \pi_{\theta'}(a_t | s_t)}{\prod_{t=1}^{T} \pi_{\theta}(a_t | s_t)}$$

Importance sampling

$$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$

$$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$\theta^* = \underset{\theta}{\operatorname{argmax}} J(\theta)$$
$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)]$$

Convenient identity

$$\pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) = \nabla_{\theta} \pi_{\theta}(\tau)$$

Estimate the value of some *new* parameters θ' :

$$J(\theta') = E_{\tau \sim \pi_{\theta}(\tau)} \left[\underbrace{\pi_{\theta'}(\tau)}_{\pi_{\theta}(\tau)} r(\tau) \right]$$
 Depends on θ'

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim \pi_{\theta}(\tau)} \left[\frac{\nabla_{\theta'} \pi_{\theta'}(\tau)}{\pi_{\theta}(\tau)} r(\tau) \right] = E_{\tau \sim \pi_{\theta}(\tau)} \left[\frac{\pi_{\theta'}(\tau)}{\pi_{\theta}(\tau)} \nabla_{\theta'} \log \pi_{\theta'}(\tau) r(\tau) \right]$$

At
$$\theta = \theta'$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$$
 - Original policy gradient

$$\theta^* = \underset{\theta}{\operatorname{argmax}} J(\theta)$$
$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)]$$

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim \pi_{\theta}(\tau)} \left[\frac{\pi_{\theta'}(\tau)}{\pi_{\theta}(\tau)} \nabla_{\theta'} \log \pi_{\theta'}(\tau) r(\tau) \right]$$

$$= E_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\prod_{t=1}^{T} \frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \right) \left(\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(a_t|s_t) \right) \left(\sum_{t=1}^{T} r(s_t, a_t) \right) \right]$$

$$=E_{\tau \sim \pi_{\theta}(\tau)}\left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(a_t|s_t) \left(\prod_{\underline{t'=1}}^{t} \frac{\pi_{\theta'}(a_{t'}|s_{t'})}{\pi_{\theta}(a_{t'}|s_{t'})}\right) \left(\sum_{\underline{t'=t}}^{T} r(s_{t'}, a_{t'})\right)\right]$$

future has no effect on present

at *t* past reward does not matter (sunk cost)

 $\frac{\pi_{\theta'}(\tau)}{\pi_{\theta}(\tau)} = \frac{\prod_{t=1}^{I} \pi_{\theta'}(a_t|s_t)}{\prod_{t=1}^{T} \pi_{\theta}(a_t|s_t)}$

Reinforcement Learning

$$\nabla_{\theta'}J(\theta') = E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(a_{t}|s_{t}) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(a_{t'}|s_{t'})}{\pi_{\theta}(a_{t'}|s_{t'})} \right) \left(\sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \right) \right]$$

$$\theta^{*} = \underset{\theta}{\operatorname{argmax}} \sum_{t=1}^{T} E_{(s_{t}, a_{t}) \sim p_{\theta}(s_{t}, a_{t})} [r(s_{t}, a_{t})]$$
exponential in T ...

$$J(\theta) = \sum_{t=1}^{T} E_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} [r(s_t, a_t)] = \sum_{t=1}^{T} E_{s_t \sim p_{\theta}(s_t)} \left[E_{a_t \sim \pi_{\theta}(a_t|s_t)} [r(s_t, a_t)] \right]$$

$$J(\theta') = \sum_{t=1}^{T} E_{s_t \sim p_{\theta}(s_t)} \left[\frac{p_{\theta'}(s_t)}{p_{\theta}(s_t)} E_{a_t \sim \pi_{\theta}(a_t|s_t)} \left[\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} r(s_t, a_t) \right] \right]$$

Ignore this part

Perform importance sampling for states and actions

Off-policy PG Algorithm

Off-policy REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(a_t|s_t)$ // behavior policy
- 2. $\nabla_{\theta'} J(\theta') \approx \sum_{i} \left(\sum_{t} \nabla_{\theta'} \log \pi_{\theta'} \left(a_t^i | s_t^i \right) r(s_t^i, a_t^i) / \pi_{\theta} \left(a_t^i | s_t^i \right) \right)$
 - 3. $\theta' \leftarrow \theta' + \alpha \nabla_{\theta'} J(\theta')$ // target policy
- Choice of behavior policy
 - Epsilon greedy with respect to learned policy
 - Policy that minimizes the variance of learned policy
 - Details complicated

Hanna and Stone 2018: Towards a Data Efficient Off-Policy Policy Gradient

Practical Version

Replace reward with advantage

Off-policy actor-critic algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(a_t|s_t)$ // behavior policy
 2. $\nabla_{\theta'}J(\theta') \approx \sum_i \left(\sum_t \nabla_{\theta'}\log \pi_{\theta'}\left(a_t^i\big|s_t^i\right)A^{\pi_{\theta}}(s_t^i,a_t^i)/\pi_{\theta}\left(a_t^i\big|s_t^i\right)\right)$ 3. $\theta' \leftarrow \theta' + \alpha \nabla_{\theta'}J(\theta')$ // target policy

Policy Gradient in Practice

- Remember that the gradient has high variance
 - Not the same as supervised learning
 - Much more uncertainty
 - Gradients will be really noisy
- Consider using much larger batches
- Tweaking learning rates is very hard
 - Adaptive step size rules like ADAM help

Advantages of Policy-Based RL

- Advantages:
 - Good convergence properties
 - Effective in high-dimensional or continuous action spaces
 - Learns stochastic policies
- Disadvantages:
 - Typically converge to a local rather than global optimum
 - Evaluating a policy is typically inefficient and high variance