Deep Neural Networks for Visual Recognition Final Project

Team: ICVL

Julius Surya and Kyuho Bae

Paper References

- Lin, Tsung-Yi, et al., "Focal loss for dense object detection," IEEE TPAMI, 2018
- Zherzdev, Sergey, and Gruzdev, Alexey, "LPRNet:
 License Plate Recognition via Deep Neural Networks,"
 Pattern Recognition Letters, 2018

Outline

- Proposed approach
- Evaluation result
- Conclusion

Proposed approach

Overall framework

Car-plate detection

Network

Car-plate detection

Platform	Keras
Data format	<box information=""><class></class></box>
Dataset	Both parking and cctv full-size image
Learning rate	1e-5
Optimizer	Adam
Batch size	1
Epoch	15 (15,000 steps)

LPR Net

Figure 1. Example of LPRNet recognitions

Modify dataset for korean car plate

Туре	License Plate		Туре	
1	52개 3108		P1	
2	39u2764		P2	Rec
3	山3108	서울52바3108	×	plat
4	설52배 3108	서울52바3108	×	
5	6510	43가6510	P5	
6	무 6662	부산27무6662	×	

Network

Layer Type	Parameters
Input	94x24 pixels RGB image
Convolution	#64 3x3 stride 1
MaxPooling	#64 3x3 stride 1
Small basic block	#128 3x3 stride 1
MaxPooling	#64 3x3 stride (2, 1)
Small basic block	#256 3x3 stride 1
Small basic block	#256 3x3 stride 1
MaxPooling	#64 3x3 stride (2, 1)
Dropout	0.5 ratio
Convolution	#256 4x1 stride 1
Dropout	0.5 ratio
Convolution	# class_number 1x13 stride 1

Platform	Tensorflow
Data format	Carplate_info.png (ex. 01_A04_6539.png)
Dataset	Both parking and cctv cropped plate image (P1, P2, and P5)
Learning rate	1e-3 and decay 90% per 2,000 iteration
Optimizer	Adam
Batch size	50
Epoch	300 (120,000 steps but chose model with steps 55,000)

Evaluation result

Parking

ResNet-50		
num_bbox_examples	285	
num_bbox_corrects	243	
bbox_accuracy	85.26%	
num_rec_examples	285	
num_rec_corrects	168	
rec_accuracy	58.95%	
avg_pt	192.97 ms	
score	134.91	

VGG-16		
num_bbox_examples	285	
num_bbox_corrects	238	
bbox_accuracy	83.51%	
num_rec_examples	285	
num_rec_corrects	163	
rec_accuracy	57.19%	
avg_pt	178.07 ms	
score	132.89	

Evaluation result

cctv

ResNet-50		
num_bbox_examples	451	
num_bbox_corrects	410	
bbox_accuracy	90.91%	
num_rec_examples	436	
num_rec_corrects	264	
rec_accuracy	60.55%	
avg_pt	202.49 ms	
score	141.21	

VGG-16		
num_bbox_examples	451	
num_bbox_corrects	385	
bbox_accuracy	85.37%	
num_rec_examples	436	
num_rec_corrects	250	
rec_accuracy	57.34%	
avg_pt	214.61 ms	
score	131.24	

Conclusion

- one-stage object detection approach for car-plate detection
- Fast and robust license plate recognition without using RNN
- Total score: 276.12

Thank You Q & A