Polish Clitics: Consequences for the Analysis of Optionality in OT

Bożena Pająk UC San Diego

Optionality (or variation)

- Optionality: variable pronunciation of a given form (varying forms are associated with certain frequencies)
- Optionality in OT
 - Ties

	C_1	l l	C_2
$a \rightarrow cand_1$		[] [] []	o ķ c
$b. \rightarrow cand_2$	*		

Not sufficient to account for the variation pattern in Polish – <u>ranking paradox</u>

More elaborate models of optionality

- Stochastic OT
 (Boersma 1998, Boersma & Hayes 2001)
- Model of Partially Ordered Grammars (Anttila 1997, 2002)
 - These models solve the ranking paradox

But

The probabilities predicted by these models are incompatible with known relative frequencies

Polish clitic /z/: voicing assimilation

z+ignorovatç

z+gazetõ

z+zegarka

s+kotem

s+sunɔ̃tç

'to ignore'

'with a newspaper'

'from a watch'

'with a cat'

'to slip down'

Agree[voi] >> Ident[voi]

Inpu	t:/z+kfasem/	AGREE[voi]	IDENT[voi]
a.	[z+kfasem]	⇒c	
Ъ	→ [s+kfasem]		*

Polish clitic /z/: vowel epenthesis

Epenthesis before {z/s}C

zε+zv^jεzεtçitç 'to make animal-like'

ze+znakjem 'with a sign'

zε+stselitc 'to shoot down'

zε+skawɔ̃ 'with a rock'

No epenthesis

 $z+gz \in \widehat{itc}$ 'to sin'

z+b3dekiem 'with a plunk'

s+frunɔtc 'to fly down'

 $s+p\int \widehat{t} \int w\widetilde{o}$ 'with a bee'

z+zamku 'from a castle'

s+serem 'with cheese'

 $\emptyset \to V/C_1 _ C_2C$ where C_1 and C_2 are 'sufficiently identical' (i.e., identical except for voicing)

Avoidance of identical consonants

Voicing assimilation is obligatory

Epenthesis applies to avoid sequences of *identical* consonants in a cluster (not 'sufficiently identical')

This analysis was shown to work for English and Lithuanian (Baković 2005)

Epenthesis – OT analysis

NoGem+C No adjacent identical consonants (geminate) in a cluster

NoGem+C >> Dep(V)

Input:/z+znak ^j em/		NoGem+C	Dep(V)
a.	[z+znak ^j em]	*	
ხ. →	[ze+znak ^j em]		⇒kc

Combining epenthesis and assimilation

Agree[voi] >> Dep(V)

Input	t:/z+skawő/	NoGem+C AGREE[[voi] DEP(V)
a.	[z+skawɔ̃]	j ×i	
Ъ.	[s+skawõ]	*	
c: ÷	→ [ze+skawɔ̃]	i i	*

Dep(V) >> Ident[voi]

Ing	out:/z+kfaçitç/	NoGem+C	AGREE[voi]	Dep(V)	IDENT[voi]
a.	[z+kfaçítç]		*		
Ъ.	→ [s+kfaçít͡ç]				*
C.	[ze+kfa çítç]			∗i	

Polish clitic /z/: coronal place assimilation (CPA)

Alveolo-palatal

Postalveolar

$$3+3abi$$
 or $z+3abi$ 'from a frog' $s+\widehat{tJ}kafk\widetilde{5}$ 'with hiccups'

Agree[cor] ~ Ident[cor]

Input:/z+zebnőtç/	AGREE[cor]	IDENT[cor]
a. → [z+∡ếbnốt͡ɕ]	* 1	
b. → [z+zε̃bnɔ̃t͡ɕ]	1	*

constraint tie

optionality

Polish clitic /z/: optional epenthesis

```
/z+zrebak<sup>j</sup>em/
                              z+zrebak<sup>j</sup>em
                                                               ze+zrebak<sup>J</sup>em
                                                                                           'with a colt'
                                                       or
/z+3bik<sup>j</sup>em/
                              z+3bik<sup>j</sup>em
                                                               ze+3bik<sup>j</sup>em
                                                                                          'with a wildcat'
                              s+cf<sup>j</sup>ata
/z+cf<sup>j</sup>ata/
                                                               ze+cf<sup>j</sup>ata
                                                                                           'from the world'
/z+(fets<sup>j</sup>i/
                              s+(fetsji
                                                               ze+sfets<sup>j</sup>i
                                                                                           'from Sweden'
```

cf. *z+zrebak^jem *z+zbik^jem *¢+¢f^jata *∫+∫fets^ji

 $\emptyset \rightarrow V/C_1 \underline{\hspace{0.1cm}} C_2C$ where C_1 and C_2 are 'sufficiently identical' (i.e., identical except for voicing and coronal place of articulation)

Contingent optionality (Baković & Pająk 2008, LSA)

- Again, epenthesis applies to avoid sequences of *identical* consonants in a cluster
- Epenthesis is optional because it is *contingent* on the optionality of CPA

Optionality induces a ranking paradox

$$/z + \widehat{d3}\epsilon m\epsilon m / \rightarrow \qquad z + \widehat{d3}\epsilon m\epsilon m \sim z + \widehat{d3}\epsilon m\epsilon m \qquad *z\epsilon + \widehat{d3}\epsilon m\epsilon m$$

$$CPA \qquad no CPA \qquad *epenthesis$$

$$/z + 3bik^{j}\epsilon m / \rightarrow \qquad z\epsilon + 3bik^{j}\epsilon m \sim z + 3bik^{j}\epsilon m \qquad *z + 3bik^{j}\epsilon m$$

$$epenthesis \qquad no CPA \qquad *CPA$$

Input:/z+d͡ʒɛmɛm/	NoGem+C	DEP(V)	AGREE[cor]	[DENT[cor]
a. → [z+d͡ʒɛmɛm]			*	i L
b. → [ʒ+d͡ʒɛmɛm]				*
c. → [ze+d͡ʒemem]		*		1 1 1

Input:/z+3bik ^j em/	NoGem+C	DEP(V)	AGREE[cor]	IDENT[cor]
a. → [z+3bik ^j ɛm]			*	1 1 1
b. [3+3bik ^j em]	*!			*
c. → [zɛ+ʒbik ^j ɛm]		*		1

Stochastic OT (Boersma 1998, Boersma & Hayes 2001)

Stochastic OT: Polish data

Dep(V) >> Ident[cor] / Agree[cor] Agree[cor] ~ Ident[cor]

■ ze+zbik^jem ~ z+zbik^jem

NoGem+C >> Dep(V) Agree[cor] ~ Dep(V)

Stochastic OT: probabilities

- Ranking with the highest probability:
 - (1) NoGem+C >> Dep(V) >> Agree[cor] >> Ident[cor]
- Rankings with lower probability:
 - (2) NoGem+C \Rightarrow Dep(V) \Rightarrow Ident[cor] \Rightarrow Agree[cor]
 - (3) NoGem+C $>> \underline{Agree[cor]} >> \underline{Dep(V)} >> \underline{Ident[cor]}$

Stochastic OT: probabilities

- (1) NoGem+C >> Dep(V) >> Agree[cor] >> Ident[cor]
- (2) NoGem+C >> Dep(V) >> Ident[cor] >> Agree[cor]
- (3) NoGem+C \Rightarrow Agree[cor] \Rightarrow Dep(V) \Rightarrow Ident[cor]

3	RANKING	2048	Predicte	d Winner	
		3+d3εmεn	ı ~ z+dzemem	ze+3bik ⁱ em	~ z+3bik ^j em
•	(1)	W			W
A	(2)		W		W
	(3)	W		W	

Ranking with the highest probability

ACTUAL RELATIVE FREQUENCIES			
z+d͡zemem	< z+d͡ʒɛmɛm	ze+3bik ^j em	>z+3bik ^j em
25%	75% ¹	99%	$1\%^{2}$

¹ Based on an experimental study by Osowicka-Kondratowicz (2004)

² Based on a search through a written corpus of Polish

Stochastic OT: probabilities

Impossible to predict the right probabilities

Input:/z+d͡ʒɛmɛm/	NoGem+C	DEP(V)	IDENT[cor]	AGREE[cor]	DEP(V)
a. → [z+d͡ʒɛmɛm]				*	
b. [3+d͡3ɛmɛm]			*		
c. [ze+d͡ʒemem]		*			

Inp	ut:/z+3bik ^j em/	NoGem+C	DEP(V)	IDENT[cor]	AGREE[cor]	DEP(V)
a.	[z+3bik ^j ɛm]				*	
ъ.	[ʒ+ʒbik ^j ɛm]	*!		*		
с	→ [zɛ+ʒbik ^j ɛm]					*

Model of Partially Ordered Grammars (POG)

(Anttila 1997, 2002)

	Grammar	TOTAL RAN	KINGS (TABLEAUX
(a)	$C_1 >> C_2$	C_1	C_2	C_3
		C_1	C_3	C_2
		C ₃	C_1	C_2
(b)	$C_1 >> C_2$	C_1	C_2	C ₃
	$C_1 >> C_3$	C_1	\mathbb{C}_3	C_2
(c)	$C_1 >> C_2$	C_1	C_2	C ₃
	$C_1 >> C_3$			
	$C_2 >> C_3$			

$$p = n / t$$

- p = a candidate's
 probability of
 occurrence
- n = number of tableaux in which this candidate wins
- t = total number of tableaux

POG: Polish data

D - DEP(V)

A - AGREE[cor]

I - IDENT[cor]

Ranking	Input-Output Mapping		
	/z+d͡ʒemem/	/z+3bik ^j em/	
a. D >> A >> I	3	Z	
b. D >> I >> A	Z	Z	
c. A >> D >> I	3	Zε	
d. I >> D >> A	Z	Z	
e. A >> I >> D	Zε	Zε	
f I >> A >> D	ZE	zε	

POG: Polish data & probabilities

D - DEP(V)

A - AGREE[cor]

I - IDENT[cor]

Ordered Pairs:

D >> I

F	redicted P	ROBABILITIES	
/z+d͡ʒemem/		/z+3bik ⁱ em/	
3+d͡ʒɛmɛm	2/3 = 0.67	z+3bik ^j em	2/3 = 0.67
z+dzemem	1/3 = 0.33	ze+3bik ^j em	1/3 = 0.33

Ac	tual Relati	VE FREQUEN	CIES
z+dzemem	< z+d3emem	ze+3bik ^j em	> z+zbik ^j em
25%	75%	99%	1%

RANKING

a. D
$$\gg$$
 A \gg I

INPUT-OUTPUT MAPPING

2

3 Ζε

3

POG: Polish data & probabilities

NG NoGem+C

D = Dep(V)

A(v) - AGREE[voi]

I(v) IDENT[voi]

A(c) AGREE[cor]

I(c) IDENT[cor]

11. A(v) NG

12. A(v) NG

ORDERED PAIRS: NG >> D

 $A(v) \ge I(v)$

 $A(v) \ge D$

D >> I(v)

D >> I(c)

TOTAL RANKINGS

(a)	1.	NG	A(v)	\mathbf{D}	I(v)	A(c)	I(c)	
	2.	NG	A(v)	\mathbf{D}	A(c)	I(v)	I(c)	
	3.	NG	A(v)	\mathbf{D}	A(c)	I(c)	I(v)	
	4.	A(v)	NG	\mathbf{D}	I(v)	A(c)	I(c)	
	5.	A(v)	NG	\mathbf{D}	A(c)	I(v)	I(c)	
	6.	A(v)	NG	\mathbf{D}	$A(\epsilon)$	I(c)	I(v)	
(b)	7.	NG	A(v)	\mathbf{D}	I(v)	I(c)	A(c)	
	8.	NG	A(v)	\mathbf{D}	I(c)	I(v)	A(c)	
	9.	NG	A(v)	\mathbf{D}	I(c)	A(c)	I(v)	
	10.	A(v)	NG	D	I(v)	I(c)	A(c)	

I(c)

I(c)

I(v)

A(c)

```
(c) 13. NG
            A(v)
                         D
                                    I(c)
                   A(c)
                              I(v)
   14. NG
            A(v)
                   A(c)
                         D
                                    I(v)
                              I(c)
      NG
                         D
                                    I(c)
            A(c)
                   A(v)
                              I(v)
      NG
            A(c)
                   A(v)
                         D
                              I(c)
                                    I(v)
   17. A(c)
                   A(v)
                                    I(c)
            NG
                              I(v)
   18. A(c)
            NG
                   A(v)
                         D
                              I(c)
                                    I(v)
   19. A(v) NG
                   A(c)
                         D
                              I(v)
                                    I(c)
   20. A(v)
            NG
                   A(c)
                         D
                              I(c)
                                    I(v)
   21. A(v) A(c)
                   NG
                         D
                              I(v)
                                    I(c)
   22. A(v) A(c)
                   NG
                              I(c)
                                    I(v)
   23. A(c) A(v)
                   NG
                         D
                              I(v)
                                    I(c)
   24. A(c) A(v)
                   NG
                          D
                              I(c)
                                     I(v)
```

A(c)

I(v)

POG: Polish data & probabilities

RANKING	INPUT-OUTPUT MAPPING		
	/z+d͡ʒɛmɛm/	/z+3bik ^j em/	
a. 1-6	3	Z	
b. 7-12	Z	Z	
c. 13-24	3	zε	

Predicted probabilities have changed (Smolensky 2007)

Predicted Probabilities				
/z+d͡zemem/		/z+3bik ⁱ em/		
3+તેંદ્રદmદm	18/24 = 0.75	z+3bik ^j em	12/24 = 0.5	
z+d͡ʒɛmɛm	6/24 = 0.25	ze+3bik ^j em	12/24 = 0.5	

Act	rual Relati	ve Frequenc	CIES
<u> </u>		ze+3bik^jem > z+3bik ^j em	
25%	75%	99%	1%

Why these frequencies?

- morphological transparency

(Matt Goldrick, p.c.)

Conclusions

- Some models (Stochastic OT, POG) can account for the variation pattern, but not for the relative frequencies
- This result presents a challenge for theories that claim to predict probabilities of the varying forms
- Frequency depends on multiple factors
 - Grammar provides possibilities
 - Probabilities are better predicted by factors such as morphological transparency

Acknowledgments

Amalia Arvaniti Eric Baković Lucien Carroll Rebecca Colavin Alex del Giudice Matt Goldrick Cynthia Kilpatrick J. Grant Loomis Hannah Rohde Sharon Rose

Thank you