Разработка программного комплекса моделирования и визуализации движения беспилотных летательных аппаратов

Дербенев Леонид Олегович

Институт математики и механики им. Н.Н. Красовского

11 июня 2024 г.

Задача

Материальная точка

Материальная точка имеет следующую модель движения:

$$\ddot{r}=m\cdot u,$$

где $r = (x, y, z)^{\mathsf{T}}$ — радиус/вектор положения объекта, $u = (u_x, u_y, u_z)^{\mathsf{T}}$ управление, являющееся ускорением, m — масса точки. Покоординатная запись:

$$\ddot{x} = u_x, \quad \ddot{y} = u_y, \quad \ddot{z} = u_z.$$

Запись, включающая скорости:

$$\dot{x}=V_x, \quad \dot{y}=V_y, \quad \dot{z}=V_z, \ \dot{V}_x=u_x, \quad \dot{V}_y=u_y, \quad \dot{V}_z=u_z.$$

Коптер

Коптер имеет следующую модель:

$$\begin{split} \dot{x} &= V_x, & \dot{y} &= V_y, & \dot{z} &= V_z, \\ \dot{V_x} &= \frac{u_x - V_x}{l_{xz}}, & \dot{V_y} &= \frac{u_y - V_y}{l_y}, & \dot{V_z} &= \frac{u_z - V_y}{l_{xz}}. \end{split}$$

Здесь $u = (u_x, u_y, u_z)^{\mathsf{T}}$ — управление, командный сигнал скорости, имеющий смысл желаемой скорости по каждой из координат; l_{xz} , l_y коэффициенты, описывающие инерционность выхода на выбранный уровень скорости: выход осуществляется за время порядка 3l.

Вертолет

```
\dot{x} = V_{\text{rop}} \cos \psi,
 \dot{z} = V_{\text{ron}} \sin \psi.
\dot{y} = V_{\text{Bent}}
\dot{\psi} = \frac{\beta_{\mathsf{6ok}}}{V_{\mathsf{---}}} u_{\mathsf{6ok}}, \quad |u_{\mathsf{6ok}}| \leqslant 1,
 \dot{V}_{\text{rop}} = \dot{a}, \quad a_{\min} \leqslant a \leqslant a_{\max}, \quad V_{\text{rop}}^{\min} \leqslant V_{\text{rop}} \leqslant V_{\text{rop}}^{\min},
 \dot{V}_{\text{Bept}} = u_{\text{Bept}}, \quad u_{\text{Bept}}^{\min} \leqslant u_{\text{Bept}} \leqslant u_{\text{Bept}}^{\max}, \quad V_{\text{Bept}}^{\min} \leqslant V_{\text{Bept}} \leqslant V_{\text{Bept}}^{\max}.
```

Здесь ψ — угол курса; u_{60k} — ускорение, управляющее разворотом круса; $u_{\text{верт}}$ — ускорение (создаваемое изменением скорости вращения винтов), управляющее вертикальной скоростью; a — ускорение, управляющее величиной горизонтальной скорости (продольное); $\beta_{\mathsf{бок}}$ — коэффициент горизонтальной маневренности судна.

Самолет

```
\begin{split} \dot{x} &= V \cos \theta \cos \psi, \\ \dot{z} &= V \cos \theta \sin \psi, \\ \dot{y} &= V \sin \theta, \\ \dot{\theta} &= \frac{\beta_{\text{Bept}}}{V} \; u_{\text{Bept}}, \\ \dot{\psi} &= \frac{\beta_{\text{GoK}}}{V} \; u_{\text{GoK}}, \\ |u_{\text{Bept}}| &\leqslant 1, \quad |u_{\text{GoK}}| \leqslant 1, \\ \dot{V} &= a, \quad a_{\min} \leqslant a \leqslant a_{\max}, \quad V_{\min} \leqslant V \leqslant V_{\max}. \end{split}
```

Здесь θ — угол тангажа, ψ — угол курса; $u_{\text{верт}}$, $u_{\text{бок}}$ — ускорения, управляющие углами тангажа и курса; a — ускорение, управляющее скоростью; $\beta_{\text{верт}}$, $\beta_{\text{бок}}$ — коэффициенты маневренности судна.

ПИД регулятор

$$u(t) = P + I + D = K_p \cdot e(t) + K_i \cdot \int_0^{\mathsf{T}} e(t)d\tau + K_d \frac{de}{dt},$$

где $K_p,~K_i,~K_d$ — коэффициенты усиления пропорциональной, интегрирующей и дифференцирующей составляющих. В данной работе был использован линейный пропорциональный регулятор, то есть u=Kx, где $K\in R^{m\times n}$. Теперь задача имеет вид:

$$\dot{x} = Ax + BKx = (A + BK)x$$

Данная система является устойчивой $\Longleftrightarrow \forall \lambda$ — собственное значение, выполняется: $Re\lambda < 0$.

В данной работе будем использовать только пропорциональный регулятор:

$$u = -k_x \cdot (x - x_w) - k_V \cdot (V_x - V_{x,w})$$

Наивная прокладка

Наивная прокладка

Прокладка по дуге окружности

Прокладка по дуге окружности

Прокладка по дуге окружности

Радиовещание

 t_i - такт вещания текущей позиции.

Этапы обнаружения конфликта

- Проверка расстояния
- Проверка сближения
- Вычисление промежутка конфликта

Проверка расстояния

R - радиус фильтрации.

Проверка сближения

$$(p_2 - p_1, v_2 - v_1) < 0,$$

где p_1, p_2 - точки позиций в пространстве первого и второго судна соответственно, v_1, v_2 - векторы скорости первого и второго судна соответственно.

Вычисление промежутка конфликта

$$||(x_1(t), z_1(t))^T - (x_2(t), z_2(t))^T|| \le R_{30},$$

 $|y_1(t) - y_2(t)| \le H_{30},$

где R_{30} — радиус защитного объема, H_{30} — высота защитного объема.

Заключение

???

Спасибо за внимание

???