Chapter 4 Linked Lists

Yi-Fen Liu
Department of IECS, FCU

References:

- E. Horowitz, S. Sahni and S. Anderson-Freed, *Fundamentals of Data Structures (2nd Edition)*
- Slides are credited from Prof. Chung, NTHU

Outline

- Pointers
- Singly Linked Lists
- Dynamically Linked Stacks and Queues
- Polynomials
- Chain
- Circularly Linked Lists
- Equivalence Relations
- Doubly Linked Lists

POINTERS

Pointers (1)

- Consider the following alphabetized list
 - (bat, cat, sat, vat)
- If we store this list in an array
 - Add the word mat to this list
 - move sat and vat one position to the right before we insert mat.
 - Remove the word cat from the list
 - move sat and vat one position to the left
- Problems of a sequence representation (ordered list)
 - Arbitrary insertion and deletion from arrays can be very timeconsuming
 - Waste storage

Pointers (2)

move= 5

Insert 25

	0	1	2	3	4	5	6	7	8	9
list:	10	20	25	30	40	50				

move= 4

Delete 20

	0	1	2	3	4	5	6	7	8	9
list:	10	25	30	40	50					

move = 5

Pointers (3)

- An elegant solution: using linked representation
 - Items may be placed anywhere in memory
- Store the address, or location, of the next element in that list for accessing elements in the correct order with each element
 - The list element is a node which contains both a data component and a pointer to the next item in the list
 - The pointers are often called links

Pointers (4)

- C provides extensive supports for pointers
- Two most important operators used with the pointer type
 - & the address operator
 - * the dereferencing (or indirection) operator
- Example
 - int i, *pi;
 - then i is an integer variable and pi is a pointer to an integer
 - If we say "pi = &i;"
 - then &i returns the address of i and assigns it as the value of pi
 - To assign a value to i we can say
 - i = 10; or *pi = 10;

Pointers (5)

- Pointers can be dangerous
 - It is a wise practice to set all pointers to NULL when they are not actually pointing to an object
 - Using explicit type cast when converting between pointer types
 - Example

```
pi = (int *) malloc(sizeof(int));
/*assign to pi a pointer to int*/
pf = (float *)pi;
/*casts int pointer to float pointer*/
```

- In many systems, pointers have the same size as type int
 - Since int is the default type specifier, some programmers omit the return type when defining a function
 - The return type defaults to int which can later be interpreted as a pointer

Pointers (6)

- Using dynamically allocated storage
 - When programming, you may not know how much space you will need, nor do you wish to allocate some vary large area that may never be required
 - C provides heap, for allocating storage at run-time
 - You may call a function, malloc, and request the amount of memory you need
 - When you no longer need an area of memory, you may free it by calling another function, free, and return the area of memory to

the system

```
int i, *pi;
float f, *pf;
pi = (int *) malloc(sizeof(int));
pf = (float *) malloc(sizeof(float));
*pi = 1024;
*pf = 3.14;
printf("an integer = %d, a float = %f\n", *pi, *pf);
free(pi);
free(pf);
```

SINGLY LINKED LIST

Singly Linked Lists (1)

- Linked lists are drawn as an order sequence of nodes with links represented as arrows
 - The name of the pointer to the first node in the list is the name of the list

Usual way to draw a linked list

Singly Linked Lists (2)

- The nodes do not resident in sequential locations
- The locations of the nodes may change on different runs

Singly Linked Lists (3)

- Why it is easier to make arbitrary insertions and deletions using a linked list?
 - To insert the word mat between cat can sat, we must
 - Get a node that is currently unused; let its address be paddr
 - Set the data field of this node to mat
 - Set paddr's link field to point to the address found in the link field of the node containing sat
 - Set the link field of the node containing cat to point to paddr

Singly Linked Lists (4)

- Delete mat from the list.
 - We only need to find the element that immediately precedes mat,
 which is cat, and set its link field to point to sat's link
 - We have not moved any data, and although the link field of mat still points to sat, mat is no longer in the list

Delete mat from list

Singly Linked Lists (5)

- We need the following capabilities to make linked representations possible
 - Defining a node's structure, that is, the fields it contains.
 We use self-referential structures, discussed in Chapter 2 to do this
 - Create new nodes when we need them (malloc)
 - Remove nodes that we no longer need (free)

Singly Linked Lists (6)

- Self-Referential Structures
 - One or more of its components is a pointer to itself

```
– typedef struct list {  char data;  list *link; }
```

– list item1, item2, item3; item1.data='a'; item2.data='b'; item3.data='c'; item1.link=&item2; item2.link=&item3; item3.link=NULL;

Construct a list with three nodes item1.link=&item2; item2.link=&item3; malloc: obtain a node (memory) free: release memory

Singly Linked Lists (7)

Example: List of words

```
typedef struct listNode *listPointer;
   typedef struct listNode {
     char data [4];
     listPointer link;
   };
Creation
   • listPointer ptr = NULL;
Testing
   • #define IS EMPTY(ptr) (!(ptr))

    Allocation

   • ptr = (listPointer) malloc (sizeof(listNode));

    Return the spaces

   free(ptr);
```

Singly Linked Lists (8)

Example: Two-node linked list

```
typedef struct listNode *listPointer;
typedef struct listNode {
  int data;
  listPointer link:
                                #define IS_FULL(ptr) (!(ptr))
};
listPointer ptr =NULL;
```

When returns *NULL* if there is no more memory.

first

NULL

second

Program: Create a two-node list

```
listPointer create2()
  /* create a linked list with two nodes */
  listPointer first, second;
  first = (listPointer) malloc(sizeof(listNode));
 second = (listPointer) malloc(sizeof(listNode));
second -> link = NULL;
 second \rightarrow data = 20;
first -> data = 10;
first ->link = second;
  return first;
```

Singly Linked Lists (9)

Insertion

- Observation
 - insert a new node with data = 50 into the list ptr after node

Singly Linked Lists (10)

Implement Insertion

```
void insert(listPointer *ptr, listPointer node)
{
/* insert a new node with data = 50 into the list
 ptr after node */
  listPointer temp;
  temp=(listPointer)malloc(sizeof(listNode));
  if(IS FULL(temp)){
   fprintf(stderr, "The memory is full\n'');
   exit(1);
  temp->data=50;
```

Singly Linked Lists (11)

if(*ptr){ //nonempty list

```
temp->link = node->link;
node->link = temp;
else{ //empty list
temp->link = NULL;
*ptr = temp;
           ptr
                    10
                                           20
                                                NULL
           node
                           50
                    temp
```

Singly Linked Lists (12)

- Deletion
 - Observation: delete node from the list

Singly Linked Lists (13)

• Implement Deletion:

Singly Linked Lists (14)

- Print out a list (traverse a list)
 - Program: Printing a list

```
void print_list(list_pointer ptr)
{
  printf("The list contains: ");
  for (; ptr; ptr = ptr->link)
    printf("%4d", ptr->data);
  printf("\n");
}
```

DYNAMICALLY LINKED STACKS AND QUEUES

Dynamically Linked Stacks and Queues

- Both stack and the queue are easy insertion and deletion of nodes by using link list
 - Easily add or delete a node form the top of the stack
 - Easily add a node to the rear of the queue and add or delete a node at the front of a queue

Dynamically Linked Stacks (1)

Represent n stacks

```
link
item
        link
         NULL
```

Stack

```
#define MAX_STACKS 10 /*maximum number of stacks*/
typedef struct {
        int key;
        /* other fields */
        } element:
typedef struct stack *stack_pointer;
typedef struct stack {
        element item;
        stack_pointer link;
        };
stack_pointer top[MAX_STACKS];
```

Dynamically Linked Stacks (2)

Push in the linked stack

```
void add(stack pointer *top, element item) {
  /* add an element to the top of the stack */
  stack pointer temp = (stack pointer) malloc
  (sizeof (stack));
  if (IS FULL(temp)) {
   fprintf(stderr, " The memory is full\n'');
   exit(1);
                                     temp -
                                                    link
                                              item
 temp->item = item;
 temp->link = *top;
                                      top
                                                    link
 *top= temp;
                                                    link
```

NULL

Dynamically Linked Stacks (3)

Pop from the linked stack

```
element delete(stack pointer *top) {
/* delete an element from the stack */
  stack pointer temp = *top;
  element item;
  if (IS EMPTY(temp)) {
   fprintf(stderr, "The stack
is empty\n");
   exit(1);
  <u>item = temp->item;</u>
  *top = temp->link;
  free (temp);
  return item;
```


Dynamically Linked Queues (1)

Represent n queues

Dynamically Linked Queues (2)

enqueue in the linked queue

```
void addg(queue_pointer *front, queue_pointer *rear,
                                element item)
   add an element to the rear of the queue */
   queue_pointer temp =
                      (queue_pointer) malloc(sizeof(queue));
   if (IS_FULL(temp))
      fprintf(stderr, "The memory is full\n");
      exit(1);
                                                         front
                                                                              link
   temp->item = item;
                                                                              link
   temp->link = NULL;
   if (*front) (*rear)->link = temp;
   else *front = temp;
   *rear = temp;
                                                         rear
                                                                              NULL
Add to the rear of a linked queue
                                                         temp
                                                                     item
                                                                              NULL
```

Dynamically Linked Queues (3)

dequeue from the linked queue (similar to push)

```
element deleteq(queue_pointer *front)
  delete an element from the queue */
  queue_pointer temp = *front;
  element item;
  if (IS_EMPTY(*front)) {
    fprintf(stderr, "The queue is empty\n");
    exit(1);
  item = temp->item;
  *front= temp->link;
  free(temp);
  return item;
```


Delete from the front of a linked queue

Dynamically Linked Stacks and Queues

- The solution presented above to the *n*-stack,
 m-queue problem is both computationally and conceptually simple
 - We no longer need to shift stacks or queues to make space
 - Computation can proceed as long as there is memory available

POLYNOMIALS

Polynomials (1)

- Representing polynomials as singly linked lists
 - In general, we want to represent the polynomial

$$A(x) = a_{m-1}x^{e_{m-1}} + \dots + a_0x^{e_0}$$

• Where the a_i are nonzero coefficients and the e_i are nonnegative integer exponents such that

$$e^{m-1} > e^{m-2} > ... > e^1 > e^0 \ge 0$$

 We will represent each term as a node containing coefficient and exponent fields, as well as a pointer to the next term

Polynomials (2)

 Assuming that the coefficients are integers, the type declarations are

```
typedef struct poly_node *poly_pointer; typedef struct poly_node { int coef; int expon; poly_pointer link; }; poly_pointer a,b,d; b = 8x^{14} - 3
```

 $a = 3x^{14} + 2x^{8} + 1$ $3 \quad 14 \quad 2 \quad 8 \quad 1 \quad 0 \quad \text{NULL}$ $b \quad (a) \quad 10 \quad 6 \quad \text{NULL}$ $b = 8x^{14} - 3x^{10} + 10x^{6}$ Polynomial representation

Draw poly_nodes as

coef	expon	link
------	-------	------

Polynomials (3)

- Adding Polynomials
 - To add two polynomials, we examine their terms starting at the nodes pointed to by a and b
 - If the exponents of the two terms are equal
 - add the two coefficients
 - create a new term for the result
 - If the exponent of the current term in a is less than b
 - create a duplicate term of b
 - attach this term to the result, called d
 - advance the pointer to the next term in b.
 - We take a similar action on a if a->expon > b->expon

Polynomials (4)

Generating the first three terms of d = a+b

Polynomials (5)

Polynomials (6)

```
poly_pointer padd(poly_pointer a, poly_pointer b)
/* return a polynomial which is the sum of a and b */
  poly_pointer front, rear, temp;
  int sum:
  rear = (poly_pointer)malloc(sizeof(poly_node));
  if (IS_FULL(rear)) {
     fprintf(stderr, "The memory is full\n");
     exit(1);
  front = rear;
  while (a && b)
     switch (COMPARE(a->expon,b->expon)) {
       case -1: /* a->expon < b->expon */
            attach(b->coef,b->expon,&rear);
            b = b -> link:
            break;
       case 0: /* a->expon = b->expon */
            sum = a -> coef + b -> coef;
            if (sum) attach(sum,a->expon,&rear);
            a = a->link; b = b->link; break;
       case 1: /* a->expon > b->expon */
            attach(a->coef,a->expon,&rear);
            a = a -> link;
  /* copy rest of list a and then list b */
  for (; a; a = a->link) attach(a->coef,a->expon,&rear);
  for (; b; b = b->link) attach(b->coef,b->expon,&rear);
  rear->link = NULL:
  /* delete extra initial node */
  temp = front; front = front->link; free(temp);
  return front;
```

Add two polynomials

Polynomials (7)

Attach a node to the end of a list

```
void attach(float coefficient, int exponent, poly pointer *ptr) {
/* create a new node with coef = coefficient and expon = exponent,
  attach it to the node pointed to by ptr. Ptr is updated to point to
  this new node */
  poly pointer temp;
  temp = (poly pointer) malloc(sizeof(poly node));
  /* create new node */
  if (IS FULL(temp)) {
    fprintf(stderr, "The memory is full\n");
    exit(1);
  temp->coef = coefficient; /* copy item to the new node */
  temp->expon = exponent;
  (*ptr) ->link = temp; /* attach */
                           /* move ptr to the end of the list */
  *ptr = temp;
```

Polynomials (8)

Analysis of padd

$$A(x)(=a_{m-1}x^{e_{m-1}}+\cdots+a_0x^{e_0})+B(x)(=b_{n-1}x^{f_{n-1}}+\cdots+b_0x^{f_0})$$

coefficient additions

 $0 \le additions \le min(m, n)$

where m (n) denotes the number of terms in A (B).

exponent comparisons

extreme case:

$$e_{m-1} > f_{m-1} > e_{m-2} > f_{m-2} > ... > e_1 > f_1 > e_0 > f_0$$

m+n-1 comparisons

creation of new nodes

extreme case:

maximum number of terms in d is m+n (m + n new nodes)

summary: O(m+n)

Polynomials (9)

A Suite for Polynomials

```
e(x) = a(x) * b(x) + d(x)
poly pointer a, b, d, e;
a = read poly();
b = read poly();
d = read poly();
temp = pmult(a, b);
e = padd(temp, d);
print poly(e);
```

```
read_poly()
print_poly()
padd()
psub()
pmult()
```

temp is used to hold a partial result. By returning the nodes of temp, we may use it to hold other polynomials

Polynomials (10)

- Erase Polynomials
 - erase frees the nodes in temp

```
void erase (poly_pointer *ptr) {
/* erase the polynomial pointed to by ptr */
   poly_pointer temp;
   while ( *ptr) {
    temp = *ptr;
    *ptr = (*ptr) -> link;
    free(temp);
   }
}
```

CHAIN

Chain (1)

- Chain
 - A singly linked list in which the last node has a null link
- Operations for chains
 - Inverting a chain
 - For a list of $length \ge 1$ nodes, the **while** loop is executed length times and so the computing time is linear or O(length).

Chain (2)

```
list_pointer invert(list_pointer lead)
{
    /* invert the list pointed to by lead */
    list_pointer middle,trail;
    middle = NULL;
    while (lead) {
        trail = middle;
        middle = lead;
        lead = lead->link;
        middle->link = trail;
    }
    return middle;
}
Inverting a singly linked list
```

trial

Chain (3)

- Concatenates two chains
 - Concatenates two chains, ptr1 and ptr2.
 - Assign the list ptr1 followed by the list ptr2.

O(length of list *ptr1*)

CIRCULARLY LINKED LISTS

Circularly Linked Lists

- Circular Linked list
 - The link field of the last node points to the first node in the list
- Example
 - Represent a polynomial $ptr = 3x^{14}+2x^8+1$ as a circularly linked list

Maintain an Available List (1)

- We free nodes that are no longer in use so that we may reuse these nodes later
- We can obtain an efficient erase algorithm for circular lists, by maintaining our own list (as a chain) of nodes that have been "freed"
- Instead of using malloc and free, we now use get_node and ret_node

Maintain an Available List (2)

- When we need a new node, we examine this list
 - If the list is not empty, then we may use one of its nodes.
 - Only when the list is empty we have to use malloc to create a new node

```
poly_pointer get_node(void)
/* provide a node for use */
  poly_pointer node;
  if (avail) {
    node = avail;
   \avail = avail->link;
  else {
     node = (poly_pointer) malloc(sizeof(poly_node));
     if (IS_FULL(node)) {
       fprintf(stderr, "The memory is full\n");
       exit(1);
  return node;
```

get_node function

Maintain an Available List (3)

- Insert ptr to the front of this list
 - Let avail be a variable of type poly_pointer that points to the first node in our list of freed nodes
 - Henceforth, we call this list the available space list or avail list
 - Initially, we set avail to NULL

```
void ret_node(poly_pointer ptr)
{
  /* return a node to the available list */
   ptr->link = avail;
   avail = ptr;
}

ret_node function
```

Maintain

an Available List (4)

 Erase a circular list in a fixed amount (constant) of time O(1) independent of the number of nodes in the list using cerase

```
void cerase(poly_pointer *ptr)
{
  /* erase the circular list ptr */
  poly_pointer temp;
  if (*ptr) {
    temp = (*ptr)->link;
        (*ptr)->link = avail;
    avail = temp;
    *ptr = NULL;
  }
}
```

Erasing a circular list

✔紅色link所連接而成的 chain

Polynomial Representations (1)

- We must handle the zero polynomial as a special case
 - To avoid it, we introduce a head node into each polynomial
 - Each polynomial, zero or nonzero, contains one additional node
 - The expon and coef fields of this node are irrelevant

Polynomial Representations (2)

- For fit the circular list with head node representation
 - We may remove the test for (*ptr) from cerase (p.168)
 - Changes the original padd to cpadd

```
poly-pointer cpadd(poly-pointer a, poly-pointer b)
/* polynomials a and b are singly linked circular lists
with a head node. Return a polynomial which is the sum
of a and b */
  poly-pointer starta, d, lastd;
  int sum, done = FALSE;
  starta = a;
                        /* record start of a */
  a = a -> link;
                        /* skip head node for a and b*/
  b = b \rightarrow link;
  d = get_node();
                         /* get a head node for sum */
  d\rightarrow expon = -1; lastd = d;
                              /* head node */
  do
    switch (COMPARE(a->expon, b->expon)) {
       case -1: /* a->expon < b->expon */
             attach(b->coef,b->expon,&lastd);
             b = b -> link;
             break:
       case 0: /* a->expon = b->expon */
             if (starta == a)
                                done = TRUE;
                     /*a->expon=-1, so b->expont > -1 */
                sum = a -> coef + b -> coef;
                if (sum) attach(sum, a->expon, &lastd);
                a = a -> link; b = b -> link;
             break;
               /* a->expon > b->expon */
             attach(a->coef,a->expon,&lastd);
             a = a -> link;
   while (!done);
                      /* link to the first node */
 lastd->link = d;
 return d;
```

Circularly Linked Lists (1)

- Operations for circularly linked lists
 - Question
 - What happens when we want to insert a new node at the front of the circular linked list ptr?

- Answer
 - move down the entire length of ptr.
- Possible Solution

Circularly Linked Lists (2)

- Insert a new node at the front of a circular list
- To insert node at the rear, we only need to add the additional statement *ptr = node to the else clause of insert_front

```
void insert_front(list_pointer *ptr, list_pointer node)
/* insert node at the front of the circular list ptr,
where ptr is the last node in the list */
{
   if (IS_EMPTY(*ptr)) {
     /* list is empty, change ptr to point to new entry */
     *ptr = node;
     node->link = node;
}
else {
   /* list is not empty, add new entry at front */
     node->link = (*ptr)->link;
     (*ptr)->link = node;
}
```


Circularly Linked Lists (3)

Finding the length of a circular list

```
int length(list_pointer ptr)
/* find the length of the circular list ptr */
  list_pointer temp;
  int count = 0:
  if (ptr) {
     temp = ptr;
     do {
       count++;
       temp = temp->link;
     } while (temp != ptr);
  return count;
```

Finding the length of a circular list

EQUIVALENCE RELATIONS

Equivalence Relations (1)

- Reflexive Relation
 - For any polygon $x, x \equiv x$ (e.g., x is electrically equivalent to itself)
- Symmetric Relation
 - For any two polygons x and y, if $x \equiv y$, then $y \equiv x$
- Transitive Relation
 - For any three polygons x, y, and z, if $x \equiv y$ and $y \equiv z$, then $x \equiv z$
- Definition
 - A relation over a set, S, is said to be an equivalence relation over S iff it is symmetric, reflexive, and transitive over S
- Example
 - "equal to" relationship is an equivalence relation

Equivalence Relations (2)

Example

— If we have 12 polygons numbered 0 through 11 $0\equiv 4,\,3\equiv 1,\,6\equiv 10,\,8\equiv 9,\,7\equiv 4,\,6\equiv 8,\,3\equiv 5,\,2\equiv 11,\,11\equiv 0$ we can partition the twelve polygons into the following equivalence classes

$$\{0, 2, 4, 7, 11\}, \{1, 3, 5\}, \{6, 8, 9, 10\}$$

- Two phases to determine equivalence
 - First phase: the equivalence pairs (i, j) are read in and stored
 - Second phase:
 - We begin at 0 and find all pairs of the form (0, j)
 Continue until the entire equivalence class containing 0 has been found, marked, and printed
 - Next find another object not yet output, and repeat the above process

Equivalence Relation (3)

Program to find equivalence classes

```
#include <stdio.h>
void main(void) {
                                       #define MAX SIZE
                                                              24
  short int out[MAX SIZE];
                                       #define IS_FULL(ptr)
                                                              (!(ptr))
  node pointer seq[MAX SIZE];
                                       #define FALSE
  node pointer x, y, top;
                                       #define TRUE
  int i, j, n;
  printf("Enter the size (<=%d) ", MAX SIZE);
  scanf("%d", &n);
  for (i=0; i< n; i++) {
   /*initialize seg and out */
   out[i] = TRUE;
   seq[i] = NULL;
                                   typedef struct node *node_pointer;
  /* Phase 1 */
                                   typedef struct node {
  /* Phase 2 */
                                           int data:
                                           node_pointer link;
                                   };
```

Equivalence Relations (4)

Phase 1: read in and store the equivalence pairs <i, j>

```
/* Phase 1: Input the equivalence pairs: */
[0]
                         printf("Enter a pair of numbers (-1 -1 to quit): ");
[1]
                         scanf("%d%d",&i,&j);
           3 NULL
                         while (i >= 0)
[2]
                           x = (node_pointer)malloc(sizeof(node));
                           if (IS_FULL(x)) {
[3]
                              fprintf(stderr, "The memory is full\n");
[4]
                              exit(1);
[5]
           3 NULL
                           x->data = j; x->link = seq[i];
                                                              seq[i] = x;
[6]
                           x = (node_pointer) malloc(sizeof(node));
                            if (IS_FULL(x)) {
[7]
           4 NULL
                              fprintf(stderr, "The memory is full\n");
                              exit(1);
[8]
[9]
           8 NULL
                           x->data = i; x->link = seq[j]; seq[j] = x;
                            printf("Enter a pair of numbers (-1 -1 to quit): ");
[10]
           6 NULL
                           scanf("%d%d",&i,&j);
\lceil 11 \rceil
```

 $0 \equiv 4$, $3 \equiv 1$, $6 \equiv 10$, $8 \equiv 9$, $7 \equiv 4$, $6 \equiv 8$, $3 \equiv 5$, $2 \equiv 11$, $11 \equiv 0$

Equivalence Relations (5)

Phase 2

- Begin at 0 and find all pairs of the form <0, j>,
 where 0 and j are in the same equivalence class
- By transitivity, all pairs of the form < j, k > imply that k in the same equivalence class as 0
- Continue this way until we have found, marked,
 and printed the entire equivalent class containing
 0

Equivalence Relations (6)

New class: 0 11 4 7 2

DOUBLY LINKED LISTS

Doubly Linked Lists (1)

 Singly linked lists pose problems because we can move easily only in the direction of the links

- Doubly linked list has at least three fields
 - left link field (llink), data field (item), right link field (rlink)
 - The necessary declarations

```
typedef struct node *node_pointer;
typedef struct node{
  node_pointer llink;
  element item;
  node_pointer rlink;
};
```

Doubly Linked Lists (2)

- Sample
 - doubly linked circular with head node

Doubly Linked Lists (3)

- empty double linked circular list with head node

- suppose that ptr points to any node in a doubly linked list, then:
 - ptr = ptr -> llink -> rlink = ptr -> rlink -> llink

Doubly Linked Lists (4)

```
void dinsert (node-pointer node, node-pointer newnode)
                       insert newnode to the right of node */
                       newnode->llink = node;
Insert a node
                       newnode->rlink = node->rlink;
                       node->rlink->llink = newnode;
                       node->rlink = newnode;
                   Insertion into a doubly linked circular list
         Head node—
         node
 llink
                rlink
         item
                                            New node
```

Doubly Linked Lists (5)

Delete a node

```
void ddelete(node_pointer node, node_pointer deleted)
{
/* delete from the doubly linked list */
   if (node == deleted)
      printf("Deletion of head node not permitted.\n");
   else {
      deleted->llink->rlink = deleted->rlink;
      deleted->rlink->llink = deleted->llink;
      free(deleted);
   }
}
```

Deletion from a doubly linked circular list

