Devoir à la maison n°11

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Solution 1

1. a. On a évidemment $\varphi = \frac{1+\sqrt{5}}{2}$.

b. On procède par récurrence. Tout d'abord, $F_3 = 2 > \varphi$. En effet, 5 < 9 donc $\sqrt{5} < 3$ puis $\frac{1+\sqrt{5}}{2} < 2$. Ensuite, $F_4 = 3 > \varphi^2$. En effet, $\varphi^2 = \varphi + 1 = \frac{3+\sqrt{5}}{2}$ et il suffit alors de remarquer que $\sqrt{5} < 3$. Supposons $F_{n+2} > \varphi^n$ et $F_{n+3} > \varphi^{n+1}$ pour un certain $n \in \mathbb{N}^*$. Alors

$$F_{n+4} = F_{n+2} + F_{n+3} > \varphi^n + \varphi^{n+1} = \varphi^n(1+\varphi) = \varphi^{n+2}$$

puisque $\varphi^2 = 1 + \varphi$.

Par récurrence double, $F_{n+2} > \varphi^n$ pour tout $n \in \mathbb{N}^*$.

2. Posons $d_1 = a \wedge b$ et $d_2 = b \wedge r$. Puisque d_1 divise a et b, il divise également b et a - bq = r donc il divise d_2 . Puisque d_2 divise b et r, il divise également bq + r = a et b donc il divise d_1 . Puisque d_1 et d_2 sont positifs, $d_1 = d_2$. On en déduit notamment que si r est le reste de la division euclidienne de a par b, alors $a \wedge b = b \wedge r$.

3. a.

$$154 = 48 \times 3 + 10$$
$$48 = 10 \times 4 + 8$$
$$10 = 8 \times 1 + 2$$
$$8 = 2 \times 4 + 0$$

Ainsi N = 4.

b. D'après la question 2, $r_k \wedge r_{k+1} = r_{k+1} \wedge r_{k+2}$ pour tout $k \in [0, N-1]$. En particulier,

$$a \wedge b = r_0 \wedge r_1 = r_N \wedge r_{N+1} = r_N \wedge 0 = r_N$$

- **c.** Soit $k \in [0, N-1]$. Notons q_k le quotient de la division euclidienne de r_k par r_k+1 . Alors $r_k=q_kr_{k+1}+r_{k+2}$. Par définition de l'algorithme d'Euclide $r_{k+2} < r_{k+1} < r_k$ et, puisque $k \le N-1$, $r_{k+1} > 0$. Donc $q_k = \frac{r_k-r_{k+2}}{r_{k+1}} > 0$. Puisque q_k est entier, $q_k \ge 1$. Finalement $r_k = q_kr_{k+1} + r_{k+2} \ge r_{k+1} + r_{k+2}$ car $q_k \ge 1$ et $r_{k+1} \ge 0$.
- **d.** On procède par récurrence double descendante finie. On note HR(k) la proposition $r_k \ge F_{N+2-k}$. **Initialisation**. On sait que $r_N > 0$ donc $r_N \ge 1 = F_2$. De plus, $r_{N-1} > r_n \ge 1$ donc $r_{N-1} \ge 2 = F_3$. Ainsi HR(N) et HR(N-1) sont vraies.

Hérédité. Supposons HR(k+1) et HR(k+2) vraies pour un certain $k \in [0, N-2]$ et montrons que HR(k) est vraie. On a alors $r_{k+1} \ge F_{N-k}$ et $r_{k+2} \ge F_{N-k-1}$. D'après la question précédente,

$$r_k \ge r_{k+1} + r_{k+2} \ge F_{N-k} + F_{N-k-1} = F_{N-k+1}$$

1

de sorte que HR(k) est vraie.

Conclusion. Par récurrence descendante double finie, HR(k) est vraie pour tout $k \in [0, N]$.

© Laurent Garcin MP Dumont d'Urville

e. On a en particulier, $b = r_1 \ge F_{N+1}$. Puisque $N \ge 2$, on peut utiliser la question **1.b** pour affirmer que $F_{N+1} > \phi^{N-1}$. On a donc $b > \phi^{N-1}$ puis le résultat voulu par stricte croissance du logarithme.

f. Supposons d'abord $N \ge 2$. Puisque b s'écrit avec au plus k chiffres en base $10, b < 10^k$. La question précédente, montre alors que

$$b < k \frac{\ln 10}{\ln \varphi} + 1$$

On utilise alors l'indication de l'énoncé pour affirmer que b < 5k + 1. Mais puisque b et 5k + 1 sont des entiers, ceci donne $b \le 5k$.

Remarquons maintenant que $k \ge 1$ de sorte que, si $N \le 2$, on a encore $N \le 5 \le 5k$.

while b!=0: a,b=b,a%b n+=1

return n

Solution 2

1. a. On a évidemment $[(1 - X) + X]^{2n-1} = 1$. En développant le membre de gauche à l'aide de la formule du binôme de Newton, on obtient

$$\sum_{k=0}^{2n-1} {2n-1 \choose k} X^k (1-X)^{2n-1-k} = 1$$

En séparant la somme en deux parties, on a également

$$\sum_{k=0}^{n-1} {2n-1 \choose k} X^k (1-X)^{2n-1-k} + \sum_{k=n}^{2n-1} {2n-1 \choose k} X^k (1-X)^{2n-1-k} = 1$$

ou encore

$$(1-X)^n \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k} + X^n \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k} = 1$$

Il suffit donc de poser

$$F_n = \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k}$$

$$G_n = \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k}$$

 F_n et G_n ainsi définis sont des combinaisons linéaires de polynômes de $\mathbb{R}_{n-1}[X]$ donc des polynômes de $\mathbb{R}_{n-1}[X]$.

b. Soit (F, G) un couple de polynômes de $\mathbb{R}_{n-1}[X]$ vérifiant

$$(1 - X)^n F + X^n G = 1$$

Alors

$$(1 - X)^n(F - F_n) + X^n(G - G_n) = 0$$

Ainsi X^n divise $F - F_n$. Or $\deg(F - F_n) \le n - 1$ donc $F = F_n$. De même, $(1 - X)^n$ divise $G - G_n$ mais $\deg(G - G_n) \le n - 1$ donc $G = G_n$.

2. a. En substituant 1 - X à X dans l'égalité $(1 - X)^n F_n(X) + X^n G_n(X) = 1$, on obtient

$$(1 - X)^n G_n (1 - X) + X^n F_n (1 - X) = 1$$

Mais l'unicité des polynômes F_n et G_n prouvée à la question **1.b** montre que $F_n(1-X) = G_n(X)$ et que $G_n(1-X) = F_n(X)$.

© Laurent Garcin MP Dumont d'Urville

b. En évaluant l'égalité $(1-X)^n F_n(X) + X^n G_n(X) = 1$ en 0, on obtient $F_n(0) = 1$. En évaluant cette même égalité en $\frac{1}{2}$, on obtient

$$\frac{1}{2^n} F_n\left(\frac{1}{2}\right) + \frac{1}{2^n} G_n\left(\frac{1}{2}\right) = 1$$

Or $G_n\left(\frac{1}{2}\right) = F_n\left(1 - \frac{1}{2}\right) = F_n\left(\frac{1}{2}\right)$ d'après la question **2.a**. Ainsi $F_n\left(\frac{1}{2}\right) = 2^{n-1}$. Enfin, on a prouvé à la question **1.a** que

$$F_n = \sum_{k=0}^{n-1} {k \choose 2n-1} X^k (1-X)^{n-1-k}$$

Ainsi
$$F_n(1) = {2n-1 \choose n-1} = {2n-1 \choose n}$$
.

3. a. Pour $x \neq 1$,

$$F_n(x) = \frac{1}{(1-x)^n} - \frac{x^n G_n(x)}{(1-x)^n} = \frac{1}{(1-x)^n} - x^{n-1} \frac{x G_n(x)}{(1-x)^n}$$

Or $\lim_{x\to 0} \frac{xG_n(x)}{(1-x)^n} = 0$ car G_n est continue en 0. Il s'ensuit donc que

$$F_n(x) = (1-x)^{-n} + o(x^{n-1})$$

b. Le développement limité de $x \mapsto (1+x)^{\alpha}$ en 0 est usuel.

$$(1-x)^{-n} = \sum_{x\to 0}^{n-1} \frac{\prod_{j=0}^{k-1} (-n-j)}{k!} (-x)^k + o(x^{n-1})$$

$$= \sum_{x\to 0}^{n-1} \sum_{k=0}^{n-1} \frac{(-1)^k \prod_{j=0}^{k-1} (n+j)}{k!} (-x)^k + o(x^{n-1})$$

$$= \sum_{x\to 0}^{n-1} \frac{\prod_{j=0}^{k-1} (n+j)}{k!} x^k + o(x^{n-1})$$

$$= \sum_{x\to 0}^{n-1} \frac{(n+k-1)!}{k!(n-1)!} x^k + o(x^{n-1})$$

$$= \sum_{x\to 0}^{n-1} \binom{n+k-1}{k!(n-1)!} x^k + o(x^{n-1})$$

Puisque deg $F_n \le n-1$, on a par unicité du développement limité, on a pour x au voisinage de 0

$$F_n(x) = \sum_{k=0}^{n-1} {n+k-1 \choose k} x^k$$

Comme tout voisinage de 0 est infini

$$F_n = \sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k$$

4. a. Première méthode : En dérivant la relation $(1 - X)^n + X^n G_n = 1$, on obtient

$$-n(1-X)^{n-1}F_n + (1-X)^nF_n' + nX^{n-1}G_n + X^nG_n' = 0$$

ou encore

$$(1 - X)^{n-1} (nF_n - (1 - X)F'_n) = X^{n-1} (nG_n + F'_n)$$

Comme X^{n-1} et $(1-X)^{n-1}$ sont premiers entre eux, X^{n-1} divise $nF_n - (1-X)F_n'$. De plus,

$$\deg(nF_n - (1 - X)F_n' \le n - 1$$

donc il existe $k \in \mathbb{R}$ tel que $nF_n - (1 - X)F_n' = kX^{n-1}$. En évaluant cette égalité en 1, on obtient $k = nF_n(1) = n\binom{2n-1}{n}$.

© Laurent Garcin MP Dumont d'Urville

Seconde méthode : D'après **3.b**, $F_n = \sum_{k=0}^{n-1} {n+k-1 \choose k} X^k$. Ainsi

$$\begin{split} n\mathbf{F}_{n} - (1 - \mathbf{X})\mathbf{F}_{n}' &= n\sum_{k=0}^{n-1} \binom{n+k-1}{k} \mathbf{X}^{k} - (1 - \mathbf{X})\sum_{k=1}^{n-1} k \binom{n+k-1}{k} \mathbf{X}^{k-1} \\ &= n + \sum_{k=1}^{n-1} \binom{n+k-1}{k} \mathbf{X}^{k} - \sum_{k=1}^{n-1} k \binom{n+k-1}{k} \mathbf{X}^{k-1} + \sum_{k=1}^{n-1} k \binom{n+k-1}{k} \mathbf{X}^{k} \\ &= n + \sum_{k=1}^{n-1} (n+k) \binom{n+k-1}{k} \mathbf{X}^{k} - \sum_{k=1}^{n-1} k \binom{n+k-1}{k} \mathbf{X}^{k-1} \\ &= n + \sum_{k=1}^{n-1} (k+1) \binom{n+k}{k+1} \mathbf{X}^{k} - \sum_{k=0}^{n-2} (k+1) \binom{n+k}{k+1} \mathbf{X}^{k} \\ &= \sum_{k=0}^{n-1} (k+1) \binom{n+k}{k+1} \mathbf{X}^{k} - \sum_{k=0}^{n-2} (k+1) \binom{n+k}{k+1} \mathbf{X}^{k} \\ &= n \binom{2n-1}{n} \mathbf{X}^{n-1} \end{split}$$

- **b.** Remarquons que si un tel polynôme H_n existe alors $\deg H_n = 2n-1$. Notons E l'ensemble des polynômes de $\mathbb{R}_{2n-1}[X]$ s'annulant en 0. E est un sous-espace vectoriel de $\mathbb{R}_{2n-1}[X]$ de dimension 2n-1 puisque c'est, par exemple, le noyau de la forme linéaire non nulle $P \in \mathbb{R}_{2n-1}[X] \mapsto P(0)$. L'application $D: \begin{cases} E \longrightarrow \mathbb{R}_{2n-2}[X] \\ P \longmapsto P' \end{cases}$ est bien définie puisque pour tout $P \in \mathbb{R}[X]$, $\deg P' \leq \deg P 1$. C'est clairement une application linéaire. D est injective puisque si $P \in \ker D$, P' = 0 i.e. P est constant et P(0) = 0 donc P est nul. Puisque dim P0 dimensiones P1 est bijective. Le polynôme P2 appartient à P3 est nul. Puisque dimensiones P4 unique antécédent par P5 dans P6 d'où l'existence et l'unicité de P6.
- **c.** D'après la question **4.a**, $nF_n (1 X)F'_n = n \binom{2n-1}{n} X^{n-1}$ et donc

$$n(1-X)^{n-1}F_n - (1-X)^nF_n' = n\binom{2n-1}{n}X^{n-1}(1-X)^{n-1}$$

Autrement dit, $[(1-X)^n F_n]' = (1-n\binom{2n-1}{n}H_n)'$. Puisque les polynômes $(1-X)^n F_n$ et $1-n\binom{2n-1}{n}H_n$ coïncident en 0 (on rappelle que $F_n(0) = 1$ et $H_n(0) = 0$), ils sont égaux.

- **d.** En évaluant l'égalité $(1-X)^n F_n = 1 n \binom{2n-1}{n} H_n$ en 1, on trouve $H_n(1) = \frac{1}{n \binom{2n-1}{n}}$.
- **5.** a. Rappelons que pour tout $x \in \mathbb{R}$, $H'_n(x) = x^{n-1}(1-x)^{n-1}$.
 - Si n est impair, H'_n est positive sur $\mathbb R$ et ne s'annule qu'en 0 et 1. H_n est donc strictement croissante sur $\mathbb R$. De plus, deg $H_n = 2n 1 \ge 1$ donc les limites de H_n en $-\infty$ et $+\infty$ sont infinies. Les variations de H_n imposent $\lim_{n \to \infty} H_n = -\infty$ et $\lim_{n \to \infty} H_n = +\infty$.
 - Si n est pair, H'_n est négative sur $]-\infty,0]$, positive sur [0,1], négative sur $[1,+\infty[$ et ne s'annule qu'en 0 et 1. Ainsi H_n est strictement décroissante sur $]-\infty,0]$, strictement croissante sur [0,1] et strictement décroissante sur $[1,+\infty[$. Pour les mêmes raisons que précédemment, les limites de H_n en $-\infty$ et $+\infty$ sont infinies et les variations de H_n imposent $\lim_{n\to\infty} H_n = +\infty$ et $\lim_{n\to\infty} H_n = -\infty$.
 - **b.** Puisque $(1-X)^n F_n = 1 n \binom{2n-1}{n} H_n$ et que $F_n(1) \neq 0$, les racines réelles de F_n sont exactement les antécédents distincts de 1 de $\frac{1}{n \binom{2n-1}{n}}$ par H_n .
 - Si n est impair, les variations et la continuité de H_n montrent que $\frac{1}{n\binom{2n-1}{n}}$ admet un unique antécédent par H_n . Puisque $H_n(1) = \frac{1}{n\binom{2n-1}{n}}$, 1 est l'unique antécédent de $\frac{1}{n\binom{2n-1}{n}}$ par H_n . Mais celui-ci est à exclure puisque $F_n(1) \neq 0$. Ainsi F_n n'admet pas de racine réelle.

• Si n est pair, les variations et la continuité de H_n montrent que $\frac{1}{n\binom{2n-1}{n}}$ admet un unique antécédent par H_n sur $]-\infty,0]$. Puisque $H_n(1)=\frac{1}{n\binom{2n-1}{n}}$, les variations de H_n montrent que le seul autre antécédent de $\frac{1}{n\binom{2n-1}{n}}$ par H_n est 1. Mais celui-ci est à exclure puisque $F_n(1)\neq 0$. Ainsi F_n admet une unique racine réelle et on peut même préciser que celle-ci est strictement négative.