Q1. Logic

- (a) Prove, or find a counterexample to, each of the following assertions:
 - (i) If $\alpha \models \gamma$ or $\beta \models \gamma$ (or both) then $(\alpha \land \beta) \models \gamma$

True, because of monotonicity.

(ii) If $(\alpha \land \beta) \models \gamma$ then $\alpha \models \gamma$ or $\beta \models \gamma$ (or both).

(iii) If $\alpha \models (\beta \lor \gamma)$ then $\alpha \models \beta$ or $\alpha \models \gamma$ (or both).

- (b) Decide whether each of the following sentences is valid, unsatisfiable, or neither.
 - (i) Smoke \Longrightarrow Smoke

(ii) Smoke ⇒ Fire

(iii) $(Smoke \implies Fire) \implies (\neg Smoke \implies \neg Fire)$

Weither

(iv) $Smoke \lor Fire \lor \neg Fire$

Volid

(v) $((Smoke \land Heat) \implies Fire) \iff ((Smoke \implies Fire) \lor (Heat \implies Fire))$

(vi) $(Smoke \implies Fire) \implies ((Smoke \land Heat) \implies Fire)$

Valid

(vii) $Big \vee Dumb \vee (Big \implies Dumb)$

- (c) Suppose an agent inhabits a world with two states, S and $\neg S$, and can do exactly one of two actions, a and b. Action a does nothing and action b flips from one state to the other. Let S^t be the proposition that the agent is in state S at time t, and let a^t be the proposition that the agent does action a at time t (similarly for b^t).
 - (i) Write a successor-state axiom for S^{t+1} .

$$S^{\dagger \dagger \dagger} \iff [(S^{\dagger} \Lambda a^{\dagger}) V (\gamma S^{\dagger} \Lambda b^{\dagger})$$

(ii) Convert the sentence in the previous part into CNF.

Agent can do only one action, we know that $b^{\dagger} = 7a^{\dagger}$ so we can replace b^{\dagger} and obtain:

Q2. First Order Logic

Consider a vocabulary with the following symbols:

- Occuption(p, o): Predicate. Person p has occuption o.
- Customer(p1, p2): Predicate. Person p1 is a customer of person p2.
- Boss(p1, p2): Predicate. Person p1 is a boss of person p2.
- Doctor, Surgeon, Lawyer, Actor: Constants denoting occupations.
- Emily, Joe: Constants denoting people.

Use these symbols to write the following assertions in first-order logic:

(iii) Emily is either a surgeon or a lawyer.

(iv) Joe is an actor, but he also holds another job.

(v) All surgeons are doctors.

$$\forall \rho \circ (\rho, S) = 0 \circ (\rho, O)$$

(vi) Joe does not have a lawyer (i.e., is not a customer of any lawyer).

(vii) Emily has a boss who is a lawyer.

(viii) There exists a lawyer all of whose customers are doctors.

(ix) Every surgeon has a lawyer.

Q3. [Optional] Local Search

(a) Hill Climbing

- (i) Hill-climbing is complete.

 True

 False
- (ii) Hill-climbing is optimal.

 True

 False

(b) Simulated Annealing

- (i) The higher the temperature T is, the more likely the randomly chosen state will be expanded. True False
- (ii) In one round of simulated annealing, the temperature is 2 and the current state S has energy 1. It has 3 successors: A with energy 2; B with energy 1; C with energy 1-ln 4. If we assume the temperature does not change, What's the probability that these states will be chosen to expand after S eventually?
- (iii) On a undirected graph, If T decreases slowly enough, simulated annealing is guaranteed to converge to the optimal state.

 ▼ True ☐ False

(c) Local Beam Search

The following state graph is being explored with 2-beam graph search. A state's score is its accumulated distance to the start state and lower scores are considered better. Which of the following statements are true?

K	States A and B	will be expa	anded before	C and D.
	States A and D	will be exp	anded before	B and C.

- States B and D will be expanded before A and C.
- None of above.

(d) Genetic Algorithm

- (i) In genetic algorithm, cross-over combine the genetic information of two parents to generate new offspring.
 - True False
- (ii) In genetic algorithm, mutation involves a probability that some arbitrary bits in a genetic sequence will be flipped from its original state.
 - True False

(e) Gradient Descent

- (i) Gradient descent is optimal.

 True

 False
- (ii) For a function f(x) with derivative f'(x), write down the gradient descent update to go from x_t to x_{t+1} . Learning rate is α .