

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

FREIBURG

UNI

Anwesenheitsblatt 1

Abgabe: Freitag, 13.05.2021, um 10:00 Uhr.

Aufgabe 1 (4 Punkte). Beweisen Sie das Schwache Gesetz der großen Zahl: Seien X_1, X_2, \ldots unabhängig und identisch verteilt mit $Var(X_i) < \infty$. Dann gilt

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} E[X_1].$$

Aufgabe 2 (4 Punkte). Installieren Sie Jupyter Lab oder verwenden Sie Google Colab und erzeugen und plotten Sie Bernoulli-verteilte Zufallsvariablen als Histogramm zu verschiedenen Parameter $n \in \mathbb{N}$ und $p \in (0, 1)$.

Aufgabe 3 (8 Punkte). Erzeugen Sie wie in Aufgabe 2 Zufallsvariablen $(X_i)_{i \leq n}$ und berechnen Sie $\frac{1}{n} \sum_{i=1}^{n} X_i$. Erzeugen Sie nun die Zufallsvariablen $(X_{i,k})_{i \leq n_1, k \leq n_2}$ mit $n_1, n_2 \in \mathbb{N}$. Erstellen Sie für $k = 1, \ldots, n_2$ ein Histogramm von Y_k mit

$$Y_k := \frac{1}{\sqrt{Var[X_0]n_1}} \sum_{i=1}^{n_1} (X_{i,k} - E[X_0]).$$

Diskutieren Sie Ihre Ergebnisse.

Herbustik Blutt 07 Lews Jaschke Ferenz Bung Aufgabe 07: $\text{retro } Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i^i \text{ denn gill feir } Y_n^i \\
 E[Y_n] = E[\frac{1}{n} \sum_{i=1}^{n} X_i^i] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} \sum_{i=1}^{n} E[X_n] = \frac{1}{n} \sum_{i=1}^{n} E[X_n]$ lim P(1/n-E[Yn]) =

in-xas

Lim (Ver (Yn)) = lim (Ver (= \(\frac{1}{2}\) = \(\frac{1}{2}\) =

h-xas \(\frac{\xeta}{2}\) = \(\frac{1}{2}\) = \(\frac{1}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \ lin ([] Ver ([] = 1 Xi) = lin ([] = 1 Ver (Xi) | E h-sos (EZ hZ) | h-sos (EZ hZ) E Xi emabliancia $\lim_{h\to 20} \left(\frac{K}{h^2 E^2}\right) \longrightarrow 0 \quad \text{für } K = \max_{i=1,2,\dots} \left(\text{Var}(x_i)\right) (\infty)$