Übungen zum Ferienkurs Theoretische Elektrodynamik

1 Koaxialkabel

Ein unendlich langes gerades Koaxialkabel besteht aus einem inneren, leitendem Vollzylinder vom Radius r, und konzentrisch dazu einem leitenden Zylindermantel mit Radius R > rund vernachlässigbarer Dicke, welcher als Rückleitung dient. Die Zylinderachse liegt auf der z-Achse.

- a) Geben Sie die Stromdichte im Koaxialkabel an, wenn der hin- und rückfließende Strom jeweils gleichmäßig über den Leiter verteilt sind.
- b) Berechnen Sie das zugehörige Vektorpotential im ganzen Raum.
- c) Berechnen Sie die Selbstinduktion pro Längeneinheit

2 Induktion in rotierendem Kreisring

Ein leitender Kreisring rotiert mit konstanter Winkelgeschwindigkeit ω um die x-Achse. Es wirkt das homogene Magnetfeld $\vec{B} = B\vec{e}_z$. Berechnen Sie die induzierte Spannung.

3 Punktladung vor Dielektrikum

Sei der Rechte Halbraum(x > 0) von einem Dielektrikum mit $\epsilon_r > 1$ gefüllt. Im Linken Halbraum(x < 0) befinde sich eine Punktladung der Ladung q an der Stelle $-a\vec{e}x$. Berechnen sie das Elektrische Feld im ganzen Raum, so wie die auf der Grenzfläche induzierte Flächenladungsdichte und die induzierte Gesamtladung.

4 Magnetisierung durch äußeres Feld

Eine Kugel mit Radius R und Permeabilität μ_r befindet sich in einem äußeren homogenen Magnetfeld B_0 . Dieses Magnetfeld bewirkt eine Magnetisierung M_0 . Bestimmen sie M_0 aus μ_r und B_0 . Bestimmen sie die Stärke des H-Feldes in der Kugel für $\mu_r >> 1$

5 Kugelkondensator mit inhomogenem Dielektrikum

Ein Kugelkondensator besteht aus zwei konzentrischen, unendlich dünnen Kugelschalen mit den Radien R_1 und $R_2 > R_1$. Die Kugelschalen haben die Ladungen $q_1 = q$ und $q_1 = -q$. Der Zwischenraum zwischen den Beiden Schalen sei ganz mit einem inhomogenen Dielektrikum der Dielektrizitatskonstante $\epsilon_r(r)$ gefüllt.

- a)Bestimmen Sie \vec{R}
- b) Nun sei $\epsilon_r(r) = \epsilon r^2$. Berechnen Sie das elektrische Feld so wie Die Kapazität des Kondensators.

Philipp Landgraf Abgabe: 18.03.2015