See Chapter 6 in Regression and Other Stories.

Widen the notebook.

```
html"""

<style>
    main {
        margin: 0 auto;
        max-width: 2000px;
        padding-left: max(160px, 10%);
        padding-right: max(160px, 10%);
    }

</style>
"""
```

```
\circ using Pkg \checkmark , DrWatson \checkmark
```

A typical set of Julia packages to include in notebooks.

```
begin
    # Specific to this notebook
    using GLM \
    # Specific to ROSStanPluto
    using StanSample \
    # Graphics related
    using GLMakie \
    # Common data files and functions
    using RegressionAndOtherStories \
    end

Replacing docs for 'RegressionAndOtherStories.tr DataFrame, AbstractString}' in module 'Regression's company of the second content of
```

6.1 Regression models.

6.2 Fitting a simple regression to fake data.

```
X
                У
             1.18017
    1.0
   2.0
             0.66976
2
   3.0
             0.951537
3
   4.0
             0.941839
   5.0
             1.90931
5
             1.6079
   6.0
   7.0
             2.41162
   8.0
             3.01127
   9.0
             2.70929
   10.0
             2.80496
: more
  20.0
             6.03491
```

```
n = 20
x = LinRange(1, n, 20)
a = 0.2
b = 0.3
sigma = 0.5
y = a .+ b .* x .+ rand(Normal(0, sigma), n)
global fake = DataFrame(x=x, y=y)
end
```

```
• stan6_1 = "
data {
      int N;
      vector[N] x;
      vector[N] y;
 parameters {
      real a;
      real b;
      real<lower=0> sigma;
 }
- model {
      vector[N] mu;
      a \sim uniform(-2, 2);
      b \sim uniform(-2, 2);
      sigma \sim uniform(0, 10);
      mu = a + b * x;
      y ~ normal(mu, sigma);
 }";
```

```
std
   parameters
                  mean
                               mcse
                 0.284945
                           0.00587742
                                         0.230988
1
   "b"
                0.29781
                           0.000481178
                                         0.019324
2
   "sigma"
                0.474901
                           0.00220934
                                         0.090591
3
```

```
data = (N=nrow(fake), x=fake.x,
y=fake.y)
global m6_1s = SampleModel("m6_1s",
stan6_1)
global rc6_1s = stan_sample(m6_1s; data)
success(rc6_1s) && describe(m6_1s)
end
```

Informational Message: The current Metropolis jected because of the following issue: Exception: normal_lpdf: Scale parameter is 0, r/folders/l7/pr04h0650q5dvqttnvs8s2c00000gn/T/7, column 1 to column 23) If this warning occurs sporadically, such as f types like covariance matrices, then the sampl but if this warning occurs often then your mod conditioned or misspecified.

	parameters	median	mad_sd	mean	st
1	"a"	0.282	0.229	0.285	0.23
2	"b"	0.298	0.018	0.298	0.01
3	"sigma"	0.462	0.082	0.475	0.09

```
if success(rc6_1s)
post6_1s = read_samples(m6_1s,
dataframe)
ms6_1s = model_summary(post6_1s, [:a,
:b, :sigma])
end
```



```
• let
      f = Figure()
      ax = Axis(f[1, 1]; title="Regression of
      fake data.", xlabel="fake.x",
      ylabel="fake.y")
      scatter!(fake.x, fake.y)
      x = 1:0.01:20
      y = ms6_1s[:a, :mean] .+ ms6_1s[:b,
      :mean] .* x
      lines!(x, y)
      a = round(ms6_1s[:a, :mean]; digits=2)
      \hat{\mathbf{b}} = \mathbf{round}(\mathbf{ms6\_1s}[:b, :mean]; \mathbf{digits}=2)
      annotations!("y = \$(\hat{a}) + \$(\hat{b}) * x + \epsilon";
      position=(5, 0.8))
      ax = Axis(f[1, 2]; title="Regression of
      fake data.", subtitle="(using the
      link() function)",
           xlabel="fake.x", ylabel="fake.y")
      scatter!(fake.x, fake.y)
      xrange = LinRange(1, 20, 200)
      y = mean.(link(post6_1s, (r,x) \rightarrow r.a +
      x * r.b, xrange))
      lines!(xrange, y)
      annotations!("y = \$(\hat{a}) + \$(\hat{b}) * x + \epsilon";
      position=(5, 0.8))
      current_figure()
  end
```

1	: a	0.2	0.282	0.229		
2	: b	0.3	0.298	0.018		
3	:sigma	0.5	0.462	0.082		
<pre>DataFrame(parameters = Symbol. (names(post6_1s)), simulated = [0.2, 0.3, 0.5], median = ms6_1s[:, :median], mad_sd =</pre>						

6.3 Interpret coefficients as comparisons, not effects.

	earnk	height	male
1	50.0	74	1
2	60.0	66	0
3	30.0	64	0
4	25.0	65	0
5	50.0	63	0
6	62.0	68	0
7	51.0	63	0
8	9.0	64	0
9	29.0	62	0
10	32.0	73	1
: mo	re		
1816	6.0	68	1

```
begin
carnings =
CSV.read(ros_datadir("Earnings",
"earnings.csv"), DataFrame)
carnings[:, [:earnk, :height, :male]]
end
```

	variable	mean	min	median	max	n
1	:earnk	21.1473	0.0	16.0	400.0	0
2	:height	66.5688	57	66.0	82	0
3	:male	0.371696	0	0.0	1	0

describe(earnings[:, [:earnk, :height, :male]])

```
• stan6_2 = "
data {
     int N;
     vector[N] male;
     vector[N] height;
     vector[N] earnk;
• }
parameters {
     real a;
     real b;
     real c;
     real<lower=0> sigma;
• }
model {
     vector[N] mu;
     sigma ~ exponential(1);
     mu = a + b * height + c * male;
     earnk ~ normal(mu, sigma);
· }";
```

	parameters	mean	mcse	std
1	"a"	-25.8136	0.342803	11.8855
2	"b"	0.645866	0.00533156	0.184075
3	"c"	10.6543	0.0382441	1.48058
4	"sigma"	21.2877	0.00837708	0.35878

```
data = (N=nrow(earnings),
    height=earnings.height,
    male=earnings.male,
    earnk=earnings.earnk)
    global m6_2s = SampleModel("m6_2s",
    stan6_2)
    global rc6_2s = stan_sample(m6_2s; data)
    success(rc6_2s) && describe(m6_2s)
end
```

	parameters	median	mad_sd	mean	st
1	"a"	-25.412	11.818	-25.814	11.8
2	"b"	0.64	0.184	0.646	0.18
3	"c"	10.678	1.469	10.654	1.48
4	"sigma"	21.274	0.366	21.288	0.3

```
if success(rc6_2s)
post6_2s = read_samples(m6_2s,
dataframe)
ms6_2s = model_summary(post6_2s, [:a,
:b, :c, :sigma])
end
```



```
• let
      \hat{a}, \hat{b}, \hat{c} = round.(ms6_2s[:, :mean];
      digits=2)
      fig = Figure()
      ax = Axis(fig[1, 1]; title="Earnings")
      for males", subtitle="earnk = $(round(c))
      + \hat{a}; digits=2)) + \hat{b}) * mheight + \epsilon")
      m = sort(earnings[earnings.male .== 1,
      [:height, :earnk]])
      scatter!(m.height, m.earnk)
      mheight_range =
      LinRange(minimum(m.height),
      maximum(m.height), 200)
      earnk = mean.(link(post6_2s, (r,x) ->
      r.c + r.a + x * r.b, mheight_range))
      #earnk = ms6_2s[:c, "mean"] +
      ms6_2s[:a, "mean"] + ms6_2s[:b,
      "mean"] .* mheight
      lines!(mheight_range, earnk;
      color=:darkred)
      ax = Axis(fig[1, 2]; title="Earnings")
      for females", subtitle="earnk = $(â) +
      \$(\hat{b}) * \text{fheight} + \varepsilon"
      f = sort(earnings[earnings.male .== 0,
      [:height, :earnk]])
      scatter!(f.height, f.earnk)
      fheight_range =
      LinRange(minimum(f.height),
      maximum(f.height), 200)
      earnk = mean.(link(post6_2s, (r,x) ->
      r.a + x * r.b, fheight_range))
```

```
lines!(fheight_range, earnk;
  color=:darkred)

fig
end
```

```
R2 = 0.10735394024175804

R2 = 1 - ms6_2s[:sigma, :mean]^2 / std(earnings.earnk)^2
```

6.4 Historical origins of regression.

```
stan6_3 = "
data {
    int N;
    vector[N] m_height;
    vector[N] d_height;
}
parameters {
    real a;
    real b;
    real<lower=0> sigma;
}
model {
    vector[N] mu;
    sigma ~ exponential(1);
    mu = a + b * m_height;
    d_height ~ normal(mu, sigma);
}";
```

heights =

	daughter_height	mother_height
1	52.5	59.5
2	52.5	59.5
3	53.5	59.5
4	53.5	59.5
5	55.5	59.5
6	55.5	59.5
7	55.5	59.5
8	55.5	59.5
9	56.5	58.5
10	56.5	58.5
: mo	re	
5524	73.5	63.5

```
heights =
CSV.read(ros_datadir("PearsonLee",
    "heights.csv"), DataFrame)
```

	parameters	mean	mcse	std
1	"a"	29.7912	0.0211552	0.756311
2	"b"	0.545054	0.000338452	0.012109
3	"sigma"	2.26304	0.000512356	0.021351

```
    let
    data = (N=nrow(heights),
        m_height=heights.mother_height,
        d_height=heights.daughter_height)
        global m6_3s = SampleModel("m6_3s",
        stan6_3)
    global rc6_3s = stan_sample(m6_3s; data)
        success(rc6_3s) && describe(m6_3s)
        end
```

	parameters	median	mad_sd	mean	st
1	"a"	29.77	0.791	29.791	0.78
2	"b"	0.545	0.013	0.545	0.01
3	"sigma"	2.263	0.022	2.263	0.02

```
if success(rc6_3s)
post6_3s = read_samples(m6_3s,
dataframe)
ms6_3s = model_summary(post6_3s, [:a,
:b, :sigma])
end
```



```
• let
      f = Figure()
     ax = Axis(f[1, 1]; title="Mothers' and
      daugthers' heights")
     xlims!(ax, 51, 74)
     scatter!(jitter.
      (heights.mother_height), jitter.
      (heights.daughter_height); markersize=3)
     x_range = LinRange(51, 74, 100)
     lines!(x_range, mean.(link(post6_3s,
      (r, x) \rightarrow r.a + r.b * x, x_range));
      color=:darkred)
     scatter!([mean(heights.mother_height)],
      [mean(heights.daughter_height)];
      markersize=20)
      f
 end
```



```
• let
      f = Figure()
      ax = Axis(f[1, 1]; title="Mothers' and
      daughters' heights,\naverage of data,
      and fitted regression line",
          xlabel="Mother's height [in]",
          ylabel="Adult daugther's height
          [in]")
      scatter!(heights.mother_height,
      heights.daughter_height; markersize=5)
     xrange = LinRange(50, 72, 100)
     y = 30 .+ 0.54 .* xrange
     m = mean(heights.mother_height)
     d = mean(heights.daughter_height)
     scatter!([m̄], [d̄]; markersize=20,
     color=:gray)
     lines!(xrange, y)
     vlines!(ax, m̄; ymax=0.55, color=:grey)
     hlines!(ax, d̄; xmax=0.58, color=:grey)
      annotations!("y = 30 + 0.54 * mother's
      height", position=(49, 55), textsize=15)
      annotations!("or: y = 63.9 + 0.54 *
      (mother's height - 62.5)", position=
      (49, 54), textsize=15)
 end
```



```
• let
      f = Figure()
      ax = Axis(f[1, 1]; title="Mothers' and
      daughters' heights,\naverage of data,
      and fitted regression line",
          xlabel="Mother's height [in]",
          ylabel="Adult daugther's height
          [in]")
     scatter!(heights.mother_height,
      heights.daughter_height; markersize=5)
     xrange = LinRange(0, 72, 100)
     y = 30 .+ 0.54 .* xrange
     m = mean(heights.mother_height)
     d = mean(heights.daughter_height)
     scatter!([m̄], [d̄]; markersize=20,
      color=:gray)
     lines!(xrange, y)
      annotations!("y = 30 + 0.54 * mother's
      height", position=(20, 35), textsize=15)
      annotations!("or: y = 63.9 + 0.54 *
      (mother's height - 62.5)", position=
      (20, 33), textsize=15)
 end
```

```
stan6_4 = "
- data {
      int N;
      vector[N] m;
      vector[N] d;
parameters {
      real a;
      real b;
      real<lower=0> sigma;
• }
- model {
      vector[N] mu;
      a \sim normal(25, 3);
      b \sim normal(0, 0.5);
      sigma ~ exponential(1);
      mu = a + b * m;
      d ~ normal(mu, sigma);
· }";
```

```
parameters
                                           std
                 mean
                             mcse
                29.5157
                          0.0235803
                                        0.769221
1
   "b"
                0.54945
                          0.000376458
                                        0.0122975
2
   "sigma"
                2.26274
3
                          0.000620423
                                        0.0223053
```

```
data = (N = nrow(heights), m =
heights.mother_height, d =
heights.daughter_height)
global m6_4s = SampleModel("m6_4s",
stan6_4)
global rc6_4s = stan_sample(m6_4s; data)
success(rc6_4s) && describe(m6_4s)
end
```

	parameters	median	mad_sd	mean	st
1	"a"	29.541	0.769	29.516	0.76
2	"b"	0.549	0.012	0.549	0.01
3	"sigma"	2.262	0.023	2.263	0.02

```
if success(rc6_4s)
post6_4s = read_samples(m6_4s,
    :dataframe)
ms6_4s = model_summary(post6_4s, [:a,
    :b, :sigma])
end
```


Above trankplot and the low ess numbers a couple of cells earlier do not look healthy.

6.5 The paradox of regression to the mean.

```
midterm
                  final
      39.0331
                 31.4929
      58.12
                 51.6225
 2
      58.9264
                 47.0342
 3
      47.4465
                 35.3108
 4
      62.3286
                 38.493
 5
 6
      50.4649
                 66.393
      52.7304
 7
                 44.1828
 8
      43.209
                 37.7982
      23.9576
                 36.4188
 9
 10
      55.5456
                 77.6372
: more
1000
      40.0598
                 29.367
```

```
n = 1000
true_ability = rand(Normal(50, 10), n)
noise_1 = rand(Normal(0, 10), n)
noise_2 = rand(Normal(0, 10), n)
midterm = true_ability + noise_1
final = true_ability + noise_2
global exams =
DataFrame(midterm=midterm, final=final)
end
```

```
• stan6_5 = "
- data {
      int N;
      vector[N] midterm;
     vector[N] final;
parameters {
     real a;
     real b;
     real<lower=0> sigma;
• }
- model {
     vector[N] mu;
     sigma ~ exponential(1);
     mu = a + b * midterm;
     final ~ normal(mu, sigma);
· }";
```

```
parameters
                 mean
                              mcse
                                           std
   "a"
                24.0196
                          0.0393881
                                        1.40601
1
   "b"
                0.525487
                          0.000759792
                                        0.02697
2
3
   "sigma"
                12.0779
                          0.00617686
                                        0.261575
```

```
data = (N=nrow(exams),
    midterm=exams.midterm,
    final=exams.final)
    global m6_5s = SampleModel("m6_5s",
    stan6_5)
    global rc6_5s = stan_sample(m6_5s; data)
    success(rc6_5s) && describe(m6_5s)
end
```

```
parameters median mad_sd
                               mean
                                         st
"a"
            24.05
                     1.377
                              24.02
                                       1.46
"b"
            0.525
                     0.026
                              0.525
                                       0.02
"sigma"
            12.072
                     0.252
                              12.078
                                       0.26
```

```
if success(rc6_5s)
post6_5s = read_samples(m6_5s,
dataframe)
ms6_5s = model_summary(post6_5s, [:a,
:b, :sigma])
end
```

df_poll =

	poll1	poll2	poll3	poll4	poll5	
1	2002	10.0	70.0	25.0	5.0	
2	2002	5.0	72.0	25.0	3.0	
3	2001	10.0	68.0	26.0	6.0	
4	2001	5.0	65.0	27.0	8.0	
5	2001	2.0	67.0	25.0	8.0	
6	2000	8.0	67.0	28.0	5.0	
7	2000	6.0	66.0	26.0	8.0	
8	2000	2.0	66.0	28.0	6.0	
9	1999	5.0	71.0	22.0	7.0	
10	1995	9.0	77.0	13.0	10.0	
: more						
32	1937	12.0	60.0	33.0	7.0	

Used in later notebooks.

```
STATE
                         DOR
              TOTLDF
                                 DORAVG
                                            HRS
    "AL"
              296.0
                       33.47
                                 32.65
                                           11.61
1
    "AR"
              77.0
                       15.4
                                 15.65
                                           9.7
2
    "AZ"
                       41.5
              231.0
                                 39.42
                                           7.92
3
    "CA"
              528.0
                       9.21
                                 9.14
                                           8.8
4
    "FL"
              851.0
                       30.19
                                 30.18
                                           10.91
5
    "GA"
              323.0
                       19.63
                                 19.12
                                           12.78
6
    "ID"
                       48.48
                                 44.16
7
              31.0
                                           3.55
    "IL"
              238.0
                       11.26
8
                                 10.98
                                           8.18
    "IN"
              79.0
                       11.81
                                 10.93
                                           5.61
9
    "KY"
              59.0
                       10.67
                                 10.24
                                           7.03
10
more
    "WY"
              5.0
                       9.98
                                 11.63
                                           4.58
26
```

```
st_abbr = death[:, 1]
ex_rate = death[:, 8] ./ 100
err_rate = death[:, 7] ./ 100
hom_rate = death[:, 5] ./ 100000
ds_per_homicide = death[:, 3] ./ 1000
ds = death[:, 2]
hom = ds ./ ds_per_homicide
ex = ex_rate .* ds
err = err_rate .* ds
pop = hom ./ hom_rate
std_err_rate = sqrt.( (err .+ 1) .* (ds .+ 1 .- err) ./ ((ds .+ 2).^2 .* (ds .+ 3)) )
end;
```