Name	Advait Ravi Sapkal
UID No.	2021700055
Experiment No.	5

AIM:	To implement the solution to the Matrix Chain Multiplication problem.								
Program 1									
PROBLEM STATEMENT:	Given a chain A1; A2; A3; An of n matrices, where for $i=1;2;$ n, matrix Ai has dimensions pi-1 X pi, fully parenthesize the product A1*A2*A3 *An in a way that minimizes the number of scalar multiplications. Also, show the parenthesizing used.								
ALGORITHM:	Matrix Chain Multiplication Problem								
	Idea:								
	1. Characterize: The optimal substructure of this problem is as follows. Suppose that to optimally parenthesize $A_iA_{i+1}\cdots A_j$, we split the product between A_k and A_{k+1} . Then the way we parenthesize the "prefix" subchain $A_iA_{i+1}\cdots A_k$ within this optimal parenthesization of $A_iA_{i+1}\cdots A_j$ must be an optimal parenthesization of $A_iA_{i+1}\cdots A_k$. Why? If there were a less costly way to parenthesize $A_iA_{i+1}\cdots A_k$, then we could substitute that parenthesization in the optimal parenthesization of $A_iA_{i+1}\cdots A_j$ to produce another way to parenthesize $A_iA_{i+1}\cdots A_j$ whose cost was lower than the optimum: a contradiction. A similar observation holds for how we parenthesize the subchain $A_{k+1}A_{k+2}\cdots A_j$ in the optimal parenthesization of $A_iA_{i+1}\cdots A_j$: it must be an optimal parenthesization of $A_{k+1}A_{k+2}\cdots A_j$.								
	2. Recurse: This recursive equation assumes that we know the value of k , which we do not. There are only $j-i$ possible values for k , however, namely $k=i,i+1,\ldots,j-1$. Since the optimal parenthesization must use one of these values for k , we need only check them all to find the best. Thus, our recursive definition for the minimum cost of parenthesizing the product $A_i A_{i+1} \cdots A_j$ becomes								
	$m[i,j] = \begin{cases} 0 & \text{if } i=j,\\ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j. \end{cases} $ The $m[i,j]$ values give the costs of optimal solutions to subproblems, but they do not provide all the information we need to construct an optimal solution. To help us do so, we define $s[i,j]$ to be a value of k at which we split the product $A_iA_{i+1}\cdots A_j$ in an optimal parenthesization. That is, $s[i,j]$ equals a value k such that $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j.$								

Algorithm:

3. Compute:

```
MATRIX-CHAIN-ORDER (p)
 1 \quad n = p.length - 1
 2 let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
 3 for i = 1 to n
        m[i,i] = 0
                              # l is the chain length
 5 for l = 2 to n
         for i = 1 to n - l + 1
 6
             j = i + l - 1
 7
             m[i,j] = \infty
 8
             for k = i to j - 1
 9
                 q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
10
                 if q < m[i, j]
11
                     m[i,j] = q
12
                     s[i, j] = k
13
14
    return m and s
```

4. Construct:

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Trace:												, ,	9/0
trace	A	30 3 S	manufacture (Competer (Manufacture (Manufact	A 3	A 4 5 10	1020	20 25 P5 P6		Á,		10 4. 2/2 A2	4 515 1,3	
	1	2	3	4	5	6		1	2	2	4	,	
1	0	15750	7875	-	11875	15125	1	Į.	1	1	23	3	
2		0	2615	4375	7125		2	1	2	2	3	3	3
3			0	02 F 10	2500	5375	3			n	3	3	3
4				0	1000	3500	4				W	4	5
5					0	5000	5					4	5
6						0	6						mh
1:3:4:0	787	4375 0+87 25+ C) +	1500	0		20		(1 - A)				

Code:

```
#include<stdio.h>
#include<stdib.h>
#include<stdbool.h>
#include<limits.h>

//utils

void print_matrix(int n,int mat[n][n]){
    for(int i=1;i<n;i++){
        for(int j=1;j<n;j++){
            if(i>j)printf(" ");
            else printf(" %7d ",*(*(mat+i)+j));
        }
        printf(" \n");
    }

//constructing the solution
void print_optimal_parentheses(int n,int s[n][n],int i,int j){
```

```
if(i==j){
        printf("A%d",i);
    }else{
        printf("(");
        print_optimal_parentheses(n,s,i,s[i][j]);
        print_optimal_parentheses(n,s,s[i][j]+1,j);
        printf(")");
//computing the solution
void matrix_chain_multiplication(int dimensions[],int n){
    //initialization
    int m[n+1][n+1];
    int s[n+1][n+1];
    for(int i=0;i<n+1;i++){</pre>
        m[i][i]=0;
        s[i][i]=0;
    }
    int len=2;
    while(len<n+1){</pre>
        int second=len;
        int first=1;
        while(second<n+1){</pre>
             int min=INT_MAX;
            int mink=0;
            int k=first;
             while(k<second){</pre>
                 int temp_cost= m[first][k]
                               + m[k+1][second]
                               + dimensions[first-
1]*dimensions[k]*dimensions[second];
                 if(temp_cost<min){</pre>
                     min=temp_cost;
                     mink=k;
                 k++;
             m[first][second]=min;
             s[first][second]=mink;
```

```
first++;
            second++;
        len++;
    //printing results
    printf("\nthe cost matrix is: \n");
    print_matrix(n+1,m);
    printf("\nthe k matrix is: \n");
    print_matrix(n+1,s);
    printf("\noptimal cost is: %d\n",m[1][n]);
    printf("\noptimal parentheses is:\n\n");
    print_optimal_parentheses(n+1,s,1,n);
    printf(" \n");
int main(){
    printf("enter number of matrices:\n");
    scanf("%d",&n);
    int dimensions[n+1];
    printf("enter dimension array:\n");
    for(int i=0;i<n+1;i++)scanf("%d",&dimensions[i]);</pre>
    matrix chain multiplication(dimensions,n);
```

Analysis:

```
we are filling the upper half of an nxn makix, where n is the
      number of mahnes. For each place we are varying h from 3 to j. 1
      to check all possibilities. The cost can be said to be
which when evaluated comes out to be an expression in n of degree 3.

The time complexity is \Omega(n^3) = \theta(n^3) = \Omega(n^3)

The extra space required is the two tables of size nxn: total auxillary space = \theta(n^2) = \theta(n^2) = \Omega(n^2)
```

RESULT:

Output:

```
d:\DAA\matrix chain>cd "d:\DAA\matrix chain\" && gcc mcm.c
enter number of matrices:
enter dimension array: 30 35 15 5 10 20 25
the cost matrix is:
       0 15750
                                          11875
                                                    15125
                                                    10500
                        2625
                                 4375
                                           7125
                                  750
                                           2500
                                           1000
                                                     3500
                                                     5000
the k matrix is:
                0
optimal cost is: 15125
optimal parentheses is:
((A1(A2A3))((A4A5)A6))
d:\DAA\matrix chain>
```

Conclusions:

- 1. The cost of multiplying n matrices without this dp optimization is O(2ⁿ) which is highly improved to O(n³) after dp optimization.
- 2. The cost without any recursion/dp would have been even higher (the matrices are multiplied linearly as it is)
- 3. The extra space needed is $O(n^2)$ which is okay.
- 4. The time and space complexities are tight, and they don't change for any best or worst case. $O(n^3)$, $\Theta(n^3)$, $\Omega(n^3)$. Similarly, we have for space complexity: $O(n^2)$, $\Theta(n^2)$, $\Omega(n^2)$.
- 5. The algorithm is highly useful and has many applications wherever multiple matrix multiplications are concerned, such as AI, physics, etc.