Resumos M.D.S.

Aos longo dos anos, tem-se assistido a um aumento da população mundial, que por sua vez aumenta a procura/exploração dos recursos naturais.

Este aumento da procura dos recursos, promove um aumento do consumo per-capita.

Exemplos de consumo de água:

De que forma este consumo afeta o planeta?

O Dia da Sobrecarga da Terra exemplifica o uso excessivo dos recursos naturais, levando a um défice ecológico.

Uso de materiais per capita por dia

Sustentabilidade

Abordagem holística que envolve a dimensão ambiental, social e económica, funcionando em simbiose para uma prosperidade duradoura.

Melhoria do nível de vida das populações, satisfazendo as necessidades das gerações existentes e futuras.

Sustentabilidade Ambiental

Gestão eficiente dos recursos

Minimização do impacto ao nível ambiental

Sustentabilidade Social

Igualdade de oportunidades para todos os indivíduos

Sociedade que permita a inclusão social e distribuiçao equitativa de bens

Respeito na diversidade das comunidades locais

Sustentabilidade Económica

Eficiência económica e prosperidade da sociedade

Geração de riqueza nas organizações e promoção de um emprego digno

Sustentabilidade forte

Sustentabilidade fraca

Ambiente e justiça social

Não se recorre à Natureza

Não se foca no crescimento económico

Foca-se no crescimento económico

Desenvolvimento sustentável

Estado menos sustentável 📥 Estado mais sustentável

Reconhecimento da importância dos capitais social e natural

Diminuição do consumo de recursos, emissão de gases e da desigualdade social

Como alcançar este objetivo?

Abordagem para sistemas complexos

1) Definir o problema

Criar um "objetivo principal", tendo só impacto se a escala temporal for adequada e a cota de mercado significativa.

2) Identificar as partes interessadas e as suas preocupações

Stakeholders (parte interessada) são indivíduos ou organizações que são afetados pela articulação.

3) Estudar os dados existentes

Deve-se estudar o impacto ambiental e a energia necessária.

4) Estabelecer uma opinião fundamentada considerando os impactos nos três capitais

5) Alternativas

Materiais e sustentabilidade

Estima-se que o consumo de materiais irá aumentar até 2060, passando dos 79 Gt em 2011 para 167 Gt em 2060.

Materiais por propriedades

"End-of-life recycled materials only make up 6% of all materials processing in 2014, indicating a continuously low degree of material loop closing"

Materiais por utilização

Materiais- tipologia

Materiais em fim de vida- resíduos

Recursos não renováveis

Recursos finitos constituem uma problemática para as gerações

Exploração mineira em Portugal

Nos próximos 30 anos, os países desenvolvidos têm de assegurar os recursos africanos para alimentar as suas indústrias de energia renovável.

A exploração destes recursos acarreta certos riscos associados à sua extração, sendo considerados materiais críticos. Isto significa que estes materiais provêm de um local ou de um número reduzido de nações, expondo a sua cadeia de distribuição a restrições de índole geoeconómicas ou geopolíticas.

Índice herfindhal-hirshman (IHH)

O IHH mede o risco associado à distribuição de um dado material quando é controlado por uma ou por um número limitado de nações, sendo determinado através da seguinte expressão:

$$IHH = \sum_{i=1}^{n} f_i^2$$

 f_i -fração de mercado proveniente da nação i;

n-número total de nações.

IHH=1-a nação tem o monopólio de mercado;

IHH=0,5- as duas nações têm igual cota de mercado;

IHH < 0,1 – indicador de um mercado sem restrições;

IHH > 0,25 — indicador de restrições severas nas cadeias de distribuição.

Materiais: risco de conflito

Materiais: legislação em vigor ou previsão de alteração

A legislação e as normas regulamentam os impactos dos produtos no ambiente, na saúde e na sociedade.

Deste modo, contabilizam-se todas as etapas do ciclo de vida dos materiais usados na produção até ao final de vida do produto.

Exemplos

- 1. As baterias recarregáveis contêm cádmio;
- 2. Os processos de cromagem envolvem a utilização de crómio VI altamente tóxico;
- 3. A maioria dos polímeros contem retardadores de chama ou plastificantes, alguns banidos recentemente, outros em lista de espera.

Exemplos de materiais críticos

"Heavy" Rare Earth Elements

(terras raras "pesadas")

Dispórsio (Dy), Érbio (Er), Európio (Eu), Gadolínio (Gd), Hólmio (Ho), Lutécio (Lu), Térbio (Tb), Túlio (Tm), Itérbio (Yb), Ítrio (Y)

Platinum-group metals

(metais do grupo platina)

Platina (Pt); Paládio (Pd); Ródio (Rd); Irídio (Ir); Ruténio (Ru)

"Light" Rare Earth Elements

(terras raras "leves")

Lantânio (La), Cério (Ce), Praseodímio (Pr), Neodímio (Nd), Samário (Sm)

Como minimizar os problemas associados à escassez de recursos?

- 1. Utilização eficiente no projeto;
- 2. Substituição por um material mais abundante;
- Reciclagem envolve muita mão de obra, embora pouco capital e energia (caso a energia e o capital começarem a escassear, o custo será comparável ao da mão-deobra).

Reciclagem

"Tratamento de resíduos ou materiais usados, de forma a poderem ser reutilizados ou transformados em novas matérias-primas e novos produtos".

Caracterização dos gastos

A qualificação dos gastos pode ser vista numa perspetiva de valor do recurso numa determinada aplicação de manufatura.

O critério CPQA mede o potencial de gasto:

- C Classification (hazardousness);
- P Potential mineral characteristics;
- Q Quantity/availability and homogeneity of the waste at the source;
- A Applicability of the material (alternative / recovery proposals).

Aplicação de resíduos:

- 1. Reciclagem de latas de alumínio;
- 2. Reciclagem de vidro de embalagem (garrafas e fracos de vidro);
- 3. Reciclagem de papel;
- 4. Aparas de madeira e/ou serragem.

Casos mais complexos

Eletrónica e eletrodomésticos

- 1. Diferentes tipos de materiais (plásticos, cerâmicos e metais);
- 2. Alguns materiais de levada toxicidade (chumbo e mercúrio);
- 3. Separação complexa;
- 4. Queima bastante problemática.

Resíduos Hospitalares

Resíduos das centrais nucleares

Pilhas

Resíduos sólidos urbanos (RSU)

- 1. A queima pode ser uma solução para a fração orgânica
- 2. Separação difícil

Reciclagem dos plásticos

A Reciclagem dos polímeros assume diversas vertentes, consoante o processo utilizado, distinguindo-se os seguintes métodos:

1.Reciclagem mecânica

Desafios

•Separação e purificação dos materiais

•Reduzir as contaminações do produto reciclado, de forma a manter as suas propriedades

Técnicas de separação

Espectroscopia de infravermelho

 Deteta compósitos ou objetos com múltiplas camadas de diferentes materiais

Fluorescência de raios-x

- Deteta substâncias tóxicas e metais pesados
- Necessita de elevada energia e proteção

Separação por densidade

- Separa o PE do PP dos restantes polímeros, através da água
- Plásticos mais densosuso de outras soluções

2. Reciclagem energética

Recorre aos resíduos plásticos como forma de recuperar a sua energia, utilizando processos térmicos.

3. Reciclagem química

Transformação dos polímeros em monómeros que servem de matéria-prima para a obtenção de produtos nobres.

Assim, diminuem-se os custos de pré-tratamento, recolha e seleção.

Hidrogenação

Quebra das ligações poliméricas, através de um tratamento com hidrogénio e calor. **Gaseificação**

Os plásticos são aquecidos com ar ou oxigénio, gerando-se um gás de síntese que contém CO e H2.

Pirólise

Quebra das moléculas por ação do calor e na ausência de oxigénio.

Porquê uma taxa tão reduzida de reciclagem?

Ciclo de vida dos materiais plásticos

Se o custo (ambiental, económico, etc...) 1+2 > 6- reciclagem material

Se o custo (ambiental, económico, etc...) 1+2 < 6- Incineração

O impacto ambiental, económico, etc. da incineração é:

$$[7 - (1+3)]$$

Se (1 + 3) >7, o impacto da incineração será < 0, sendo favorável.

Em modo de conclusão:

Os plásticos são a família mais complexa de materiais utilizados, sendo difícil diminuir as emissões de CO2.

Reduzir a variedade de plásticos em uso Embalagens mais duradouras e de plásticos em uso Fácil reutilização plásticos

Reciclagem do alumínio

- 1) 85% do alumínio utilizado no sector automóvel é recuperado;
- 2) Entre 60 e 70% do alumínio usado em novos veículos é feito de material reciclado;
- 3) Reciclagem dos excedentes de alumínio durante o processamento (gera escórias).

Formação da escória salina

Processo de obtenção de alumínio primário

1) Processo Bayer (Bauxite-Alumina)

2) Processo eletrolítico (Alumina-Alumínio)

Hidrometalurgia do alumínio

Bauxite: Al₂O₃.xH₂O.
 Impurezas: SiO₂. Fe₂O₃

Processo Bayer:

- a bauxite (~ 50 % Al₂O₃) é concentrada para a forma de óxido.
- (i) Dissolução numa base forte (NaOH) a elevada T, P Al₂O₃ dissolve-se para [Al(H₂O)₂(OH)₄]⁻
- (ii) Filtração de sólidos Fe₂O₃, SiO₂ não se dissolvem – LAMAS
- (iii) pH é reduzido para precipitar Al(OH)₃(s)

 Toma vantagem da natureza anfotérica da alumina.
- (iv) calcinação

Eletrometalurgia do alumínio

O Processo Hall-Heroult

 Al_2O3 purificada em criolite fundida (Na_2AlF_6 , ponto de fusão = 1012°C).

Ânodo:
$$C(s) + 20^{-2} (I) \rightarrow CO_2(g) + 4e-$$

Cátodo:
$$3e- + Al_3 + (I) \rightarrow Al(I)$$

A grafite é consumida na reação.

O alumínio retirado da célula apresenta uma pureza entre 99,5 e 99,9%, sendo o ferro e o silício as principais impurezas.

$$2Al_2O_3 + 3C \longrightarrow 4Al + 3CO_2$$

Em modo de conclusão:

- A energia incorporada num produto reciclado é praticamente metade do produto obtido a partir de recursos primários;
- A existência de diferentes ligas no mercado dificulta a separação e afinação de propriedades no material reciclado;
- Re-design de produto com economia de material e incentivo à reutilização de produto no final de vida com o intuito de diminuir as emissões de carbono;
- 4) Aumento da eficiência energética e diminuição da produção de dióxido de carbono.

Resíduos- problema ou oportunidade?

Baterias de lítio- elementos críticos

Perspetivas de procura

- 1) Mobilidade elétrica;
- 2) Sistemas de armazenamento de energia.

Turbinas eólicas

Painéis fotovoltaicos

Robótica

Manufatura aditiva

Energias renováveis-desafios

A transição para uma sociedade de baixo carbono depende da implementação de tecnologias renováveis.

Até 2025, pretende-se que mais de 80% da eletricidade produzida na EU seja proveniente de fontes renováveis.

Energia e sustentabilidade

Lei da conservação de energia

A quantidade total de energia no Universo permanece constante.

1ª lei da termodinâmica

A energia pode ser convertida de uma forma para outra, mas não pode ser criada ou destruída.

2ª lei da termodinâmica

A entropia do Universo aumenta numa transformação espontânea e mantém-se constante numa situação de equilíbrio.

Acesso a energia renovável

Contexto em Portugal

Figura 6.10 >> Proporção de fontes renováveis no consumo de energia primária

A contribuição das fontes de energia renováveis para o consumo de energia primária foi 23,7% em 2019 (-0,2 p.p. face a 2018). Esta diminuição resultou da menor contribuição da energia hídrica para o total das energias renováveis no consumo primário em 2019 (3,9%, quando em 2018 foi de 5,2%).

A biomassa (lenhas e resíduos florestais, biogás e biodiesel) continuou a ser, em 2018, a fonte de energia renovável com maior contribuição para o consumo primário com 8,0% (7,6% em 2018).

Em termos do coeficiente/fonte para o total da produção de eletricidade a partir das fontes renováveis, em 2019 a componente eólica representou 47,4% (41,2% em 2018), a hidrica 35,5% (44,5% em 2018) e a térmica 11,7% (10,3% em 2018).

Figura 6.13 >> Capacidade instalada de energias renováveis

Em 2019, a potência total instalada de energias renováveis foi 14 402 MW, a qual apresentou desde 2009 um crescimento contínuo a uma taxa média anual de 4,3%, em resultado essencialmente do aumento de 2 247 MW de potência instalada de energia hídrica e de 1 893 MW de energia eólica.

Limites do desenvolvimento das energias renováveis

Energia eólica

How much wind power could we plausibly generate?

power per person = wind power per unit area \times area per person.

Chapter B (p263) explains how to estimate the power per unit area of a wind farm in the UK. If the typical windspeed is $6\,\text{m/s}$ (13 miles per hour, or $22\,\text{km/h}$), the power per unit area of wind farm is about $2\,\text{W/m}^2$.

 $250 \ pessoas/km^2 = 4000 \ m^2/pessoa$

 $2 \text{ W/m}^2 \text{ x } 4000 \text{ m}^2/\text{pessoa} = 8000 \text{ W/pessoa} = 200 \text{ kWh/d/pessoa}$

Cenário:

utilizar 10% da área do

Desafios

- 1) Uso de Materiais Críticos (Nd e B nos magnetes permanentes);
- 2) Mobilização de terra (ou mar, se offshore) e impactes (visuais, ruído);
- 3) Fim de vida de alguns componentes (ao fim de cerca de 20 anos): compósitos de fibra de vidro das pás de difícil reciclagem;
- 4) Largas regiões com pouco vento.

Energia solar: painéis fotovoltaicos

Photovoltaic (PV) panels convert sunlight into electricity. Typical solar panels have an efficiency of about 10%; expensive ones perform at 20%. (Fundamental physical laws limit the efficiency of photovoltaic systems to at best 60% with perfect concentrating mirrors or lenses, and 45% without concentration. A mass-produced device with efficiency greater than 30% would be quite remarkable.) The average power delivered by south-facing 20%-efficient photovoltaic panels in Britain would be

 $20\% \times 110 \, \text{W/m}^2 = 22 \, \text{W/m}^2$.

Sistemas de armazenamento de energia

Energia incorporada na obtenção de materiais

Todos os materiais contêm energia que é usada na exploração e conformação, tratamento térmico ou químico.

Esta manipulação, apresenta as seguintes consequências:

• Geração de CO₂, óxidos nitrosos (NO_x), compostos sulfurosos, poeiras e calor perdido.

Deste modo, a energia é um dos indicadores ambientais mais usados. Estes índices ambientais assemelham-se aos índices de desempenho e custo.

Fontes antropogénicas de CO2, por setor e material

Consumo de energia e emissões de CO2 – contribuição dos edifícios e do setor da construção

Edifícios-Como se utiliza a energia?

Estratégias de mitigação

	2020	2030	2050
Energy intensity	Improve by 6% per year 2020-2030	Improve by 4% per year 2030-2040	Improve by 3% per year 2040-2050
Share of existing buildings net-zero ready	<1%	20%	>85%
Avoided demand in homes from behaviour		12%	14%
Stock of heat pumps	180 million	600 million	1 800 million
Dwellings with solar thermal	250 million	400 million	1 200 million
Appliances unit consumption (realtive to 2020)		-25%	-40%
Distributed PV generation	320 TWh	2 200 TWh	7 500 TWh

1) Bombas de calor

Tecnologia eficiente e sustentável

- 2) Energia solar térmica
- 3) Energia solar fotovoltaica

Materiais de isolamento

Material	Typical thermal conductivity (W/m/K)	Commonly available formats	
Natural materials			
Wood fibre	0.038-0.050	Boards, semi-rigid boards and batts	
Paper (cellulose)	0.035-0.040	Loose batts, semi-rigid batts	
Hemp	0.038-0.040	Semi-rigid slabs, batts	
Wool	0.038-0.040	Semi-rigid boards, rolls	
Flax	0.038-0.040	Semi-rigid boards, rolls	
Cork	0.038-0.070	Boards, granulated	
Synthetic materials			
Mineral fibre	0.032-0.044	Boards, semi-rigid boards, rolls	
Glass fibre	0.038-0.041	Boards, semi-rigid boards, rolls	
Extruded polystyrene (XPS)	0.033-0.035	Boards	
Expanded polystyrene (EPS)	0.037-0.038	Boards	
Polyurethane (PUR)/polyisocyanorate (PIR)	0.023-0.026	Boards	

Cimento

O cimento corresponde à matéria-prima mais usada no caso dos cerâmicos, apresentando uma influência preponderante na sua produção.

Como se produz o betão?

Desafios na fabricação de cimento Portland

A produção de uma tonelada de cimento Portland comum gera aproximadamente 800 Kg de CO_2 .

Para além da componente associada à queima de combustível (frequentemente carvão ou coque de petróleo), ocorre a decomposição da calcite (que gera 0.54 ton de CO_2 /ton. de cimento).

Como minimizar as emissões?

 Diminuição do teor de clínquer no cimento e uso de materiais suplementares (resíduos);

Materiais suplementares

- Escórias de alto forno;
- Cinzas (centrais termoelétricas a carvão e de biomassa);
- Materiais vulcânicos;
- Lama vermelha;
- Resíduos de mineração.
- 2. Uso de combustíveis derivados de resíduos, permitindo um serviço mais seguro que valorize energeticamente os produtos;

Materiais:

- Resíduos pré-tratados industriais e municipais;
- Pneus Resíduos oleosos e solventes;
- Plásticos, têxteis e resíduos de papel;
- Biomassa;
- Farinhas de origem animal;
- Lodos de esgoto;
- 3. Desenvolvimento de cimentos não calcários.

Cimentos não calcários:

- Os geopolímeros são polímeros inorgânicos formados pela reação entre uma solução alcalina e uma fonte de aluminossilicatos;
- O material endurecido apresenta uma estrutura 3D, com meso e microporos, semelhante aos zeólitos.

Ligante

- Metacaulino
- X Cinzas volantes
- X Escórias de alto forno

Ativadores alcalinos

Transportes-mobilidade sustentável

Estratégia Avoid-shift-improve

Economia linear

Consequências

- 1) Diminuição/ destruição dos recursos naturais;
- 2) O preço da matérias-primas irá aumentar;
- 3) A pressão ambiental irá aumentar;
- 4) Produção global de resíduos;

Este modelo exige vastas quantidades de materiais a baixo preço e de fácil acesso e muita energia.

Economia circular

A economia circular envolve a partilha, reutilização, reparação e reciclagem de materiais e produtos existentes, aumentando o seu ciclo de vida.

Quando um produto chega ao fim do seu ciclo de vida, os materiais mantêm-se dentro da economia, podendo ser reutilizados.

Princípios da economia circular

Benefícios da economia circular

Nível económico

- Aumento de GDP;
- Criação de mais trabalhos e de melhor qualidade;
- Aumento do rendimento por família.

Nível ambiental

- Redução da emissão de dióxido de carbono;
- Abolição dos materiais primários;
- Diminuição do uso de fertilizantes no solo;
- Diminuição do tráfego automóvel.

Companhias

- Aumento da qualidade da empresa;
- Diminuição da exposição à volatilidade dos preços dos recursos;
- Melhoria da sustentabilidade do mercado a longo termo.

Aplicação da economia circular

- Edifícios;
- Telemóveis;
- Máquinas de lavar a roupa.

Manufatura sustentável

Desenvolvimento de processos que minimizem o impacto ambiental, conservação de energia e dos recursos naturais;

A manufatura sustentável é um processo que envolve a otimização de diversos parâmetros utilizados na produção de um dado material, bem como a sua utilização futura e o tratamento no final do seu ciclo de vida útil.

Basic relationships between manufacturing and the environment

Estratégias que promovam a manufatura sustentável

Deve-se reduzir nos recursos da manufatura (energia, água, materiais e resíduos). Fatores externos a considerar

Evolução da manufatura sustentável

Durante muito anos, consideravam-se apenas os métodos de mitigação da poluição, reduzindo a poluição que tinha sido gerada.

Atualmente, previne-se a poluição, através de medidas mais sustentáveis, nomeadamente a implementação de uma manufatura que diminua o consumo de água, energia e gases prejudiciais ao ambiente.

Avaliação do ciclo de vida de um produto

Atualmente, recorre-se ao programa CES Edupack como alternativa face à ferramenta LCA, selecionando os materiais e os processos mais sustentáveis.

Análise do ciclo de vida

Aplicações

Como realizar as decisões?

Vantagens

- •Ferramenta que analisa o ciclo do início ao fim da vida do produto;
- •Evita o problema da mudança
- Abrange vários impactos ambientais
- Análise quantitativa

Desvantagens

- •Requisitos de dados
- •Relevância dos resultados
- Processo bastante moroso e que dispende de uma elevada quantidade de recursos

Exemplos da seleção da categoria de impacto

- 1. Aquecimento global (CO₂ e CH₄)
- 2. Acidificação (SO₂ e NH₃)
- 3. Eutrofização (Nitrogénio e fósforo)
- 4. Esgotamento dos recursos não renováveis (fósseis e minerais)
- Formação do oxidante fotoquímico (O₃ e compostos orgânicos e NO_x)

Auditoria ecológica

A ferramenta de análise do LCA de um produto/material é um processo bastante complexo e que requer experiência, sendo considerado bastante dispendioso e moroso.

Qual será a melhor alternativa?

- Aplicar uma Eco auditoria que combina o custo aceitável com precisão suficiente, para ajudar na tomada de decisões;
- A ferramenta Eco Audit encontra-se presente no programa CES EDUPACK, facilitando no processo de tomada de decisão

Exemplo

1. Auditoria: energia

Permite fazer a distinção entre as diferentes fases de vida de um produto, quantificando o consumo energético associado a cada uma das etapas.

2. Auditoria: Energia e custo

Neste caso, é possível observar no primeiro gráfico o consumo de CO₂ em todas as fases do processo, enquanto no segundo apresenta-se o custo associado.

Representação dos Eco-Dados: energia incorporada

$$Energia\ incorporada = \frac{\sum energias\ que\ entram\ na\ fábrica\ por\ hora}{massa\ grânulos\ de\ PET\ produzidos\ por\ hora}$$

A energia incorporada mede a soma das energias necessárias para produzir um bem ou serviço (MJ/Kg).

Representação dos Eco Dados

• Extração

No seguinte gráfico é possível identificar a energia incorporada por unidade de volume de vários materiais que pertencem a diferentes classes.

Fabrico do produto

Na seguinte figura, é possível constatar a energia associada ao processamento do produto

Destino final do ciclo de vida útil

Potencial de fim de vida

Crédito por reciclar ou reutilizar o material

Estratégias para a seleção de materiais

Esta ferramenta permite testar alternativas/hipóteses, tais como a utilização de outros materiais, estratégias de fim de ciclo de vida diferentes, etc.