Solution to P.S.5

March 18, 2012

1. solution

• to prove V is positive definite, we refer to the definition of it. i.e. $\forall x \in \mathbb{R}^n$,

$$x^{T}V x = x^{T}E[(R - \bar{R})(R - \bar{R})^{T}]x$$

$$= E[x^{T}(R - \bar{R})(R - \bar{R})^{T}x]$$

$$= E[AA^{T}]$$

$$\geq 0$$

where $A = x^T (R - \bar{R})$.

- ullet besides, since V is full-rank, which means that the eigenvalues of V are non zero.
- \bullet thus, V is positive definite.

2. solution

- since V is full rank, thus V^{-1} exists (for all the eigenvalues λ_i of V are nonzero), with its eigenvalues are $\frac{1}{\lambda_i}$, where λ_i are the eigenvalues of V.
- thus when V is a positive definite matrix, it is obvious that $\frac{1}{\lambda_i} > 0$, which means V^{-1} is positive definite as well.

3. solution

• with V^{-1} being positive definite, $(\alpha \bar{R} - \varsigma e)' V^{-1} (\alpha \bar{R} - \varsigma e) > 0$.

•

$$(\alpha \bar{R} - \varsigma e)' V^{-1} (\alpha \bar{R} - \varsigma e) = \alpha^2 \bar{R} V^{-1} \bar{R} - \alpha \varsigma \bar{R} V^{-1} e - \alpha \varsigma e' V^{-1} \bar{R} + \varsigma^2 e' V^{-1} e$$

$$= \alpha^2 \varsigma - \alpha^2 \varsigma - \alpha^2 \varsigma + \varsigma^2 \delta$$

$$= \varsigma^2 \delta - \alpha^2 \varsigma$$

$$= \varsigma (\varsigma \delta - \alpha^2)$$

• besides, since $\varsigma = \bar{R}'V^{-1}\bar{R}$ is positive, thus $\varsigma\delta - \alpha^2 > 0$

4. solution

• the minimization problem is to minimize

$$L = \frac{1}{2}\omega'V^{-1}\omega + \lambda \left[\bar{R}_p - \omega'\bar{R}\right] + \gamma \left[1 - \omega'e\right]$$

- $\frac{\partial L}{\partial \omega} = V\omega \lambda \bar{R} \gamma e$, and $\frac{\partial^2 L}{\partial \omega^2} = V$.
- when $\omega = \omega^*$, which is derived from the F.O.N.C, we still ensure that $\frac{\partial^2 L}{\partial \omega^2} > 0$, indicating that w^* derived from the first order necessary condition is a sufficient condition to ensure the minimum variance is achieved.

5. solution

• refer to the answers provided by the classmates as a bonus question.