Parsing

The Parsing Process

The role of the parsing process is to reconstruct a derivation by which a given Context Free Grammar can generate a given input string.

Equivalently, construct the parsing tree which represents the derivation.

We consider first an ad-hoc manual method, called Recursive Descent which attempts to emulate the derivation process.

Recursive Descent Parsing

- Top-down parsing builds tree from root symbol
- Each production corresponds to one recursive procedure
- Each procedure recognizes an instance of a nonterminal, consumes the corresponding part of the input, and returns tree fragment for the non-terminal

General Structure

- Each right-hand side of a production provides a body for a function
- Each non-terminal on the rhs is translated into a call to the function (procedure) that recognizes that nonterminal
- Each terminal in the rhs is translated into a call to the lexical scanner. Error if the reulting token is not the expected terminal
- Each recognizing function returns a tree fragment.

Example: Parsing a Declaration

- FULL_TYPE_DECLARATION \$::=
 type DEFINING_IDENTIFIER is TYPE_DEFINITION;
- Translates into
 - get token type
 - Find a defining_identifier function call
 - get token is
 - Recognize a type_definition function call
 - get token semicolon
- In practice, we already know that the first token is type, this is why this procedure was called in the first place.
 predictive parsing is guided by the next token

Example: Parsing a Loop

- FOR_STATEMENT \$::=
 ITERATION_SCHEME loop STATEMENTS end loop;
- Translates into

```
Node1 $:= find_iteration_scheme — function call get token loop
List1 $:= Sequence_of_statements — function call get token end get token loop get token semicolon
Result $:= build loop_node with Node1 and List1 return Result
```

 In case we fail to find any of the expected tokens or one of the called functions returns a failure, this function returns a failure indication.

Complications

 If there are multiple productions for a non-terminal, we need a mechanism to determine which production to use

```
IF_STAT $::= if COND then Stats end if;
IF_STAT $::= if COND then Stats ELSE_PART end if;
```

When next token is if, cannot tell which production to use.

Solution: Factor Grammar

- If several productions have the same prefix, rewrite as a single production:
- IF_STAT \$::= if COND then Stats [ELSE_PART] end if;
- Problem now reduces to recognize whether an optional component (ELSE_PART) is present. With a single token lookahead this is possible — look for a token else.

Illustrate Solution

Consider rule

```
IF_STAT $::= if COND then STATS [else STATS] end if;
 boolean function get_IF()
if Token=if then Scan else return 0;
if get_COND()=0 then return 0;
if Token=then then Scan else return 0;
if get_STATS()=0 then return 0;
if Token=else then
     {Scan; if get_STATS()=0 then return 0};
if Token=end_if then Scan else return 0;
 return 1
 End get_IF
```

Complication: Left Recursion

Grammar cannot be left-recursive

- $ullet E ::= E + T \mid T$
- Problem: to find an E, start by finding an E...
- Original scheme leads to an infinite loop: grammar is inappropriate for recursive descent.

Eliminating Left Recursion

 $ullet E ::= E + T \mid T$ means that eventually E expands into

$$T+T+T\cdots$$

Rewrite as

$$E ::= TE'$$

$$E' ::= +TE' \mid \epsilon$$

• Informally: E' is a possibly empty sequence of terms (T) each preceded by +.

Left Recursion Involving Several Non-Terminals

The grammar

Can be rewritten as

```
A ::= AEC \mid FC \mid D
```

and then apply previous method

The General Case

Arrange the non-terminals in some order A_1, \ldots, A_n

for
$$i \in [1 \dots n]$$
 do

```
for j \in [1 \dots i{-}1] do
```

Replace each production of the form $A_i \to A_j \gamma$ by the productions $A_i \to \delta_1 \gamma \mid \cdots \mid \delta_k \gamma$, where $A_j \to \delta_1 \mid \cdots \mid \delta_k$ are all current A_j -productions.

Eliminate the immediate left recursion among the A_i -productions

Further Complications

Transformation does not preserve associativity.

- $ullet E ::= E + T \mid T$
- Parses a+b+c as (a+b)+c
- $ullet E ::= TE', \qquad E' ::= +TE' \mid \epsilon$
- Parses a+b+c as a+(b+c)
- Incorrect for a-b-c: must rewrite tree.
- In practice, treat as $E ::= T\{+T\}^*$

Use Loop to Parse Sequence of Terms

```
Node1 := P_Term; - call function that parses a term
loop
   exit when Token not in Token_Class_Binary_Addop;
   Node2 := New_Node(P_Binary_Adding_Operator);
   Node2\uparrow.op := Token;
   Scan
                                      past operator
   Node2↑.left := Node1;
   Node2↑.right := P_term;

    find next term

   Node1 := Node2; - operand for next operation
end loop;
```

Table-Driven Parsing

- Parsing performed by a finite-state machine augmented by a push-down stack
- FSM driven by table(s) generated automatically from grammar
- Language

 — Generator
 — Tables

Pushdown Automata

- A context-free language can be recognized by a finite state machine with a stack: a PDA.
- The PDA is defined by set of internal states and a transition table
- The PDA can read the input and read/write to the top of the stack
- Actions of the PDA are determined by the current state, the current symbol at the top of the stack and the current input character.
- Acceptance can be defined by either accepting state or reaching an empty stack

Formally

A PDA is defined by a tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$, where

- Q A finite set of States
- ∑ The input alphabet
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma^*)$ A non-deterministic transition function
- $q_0 \in Q$ The initial state
- $Z_0 \in \Gamma$ The initial stack symbol
- $F \subseteq Q$ The set of accepting states

PDA's Can Accept Languages Beyond FSM's

For example, the language of balanced parentheses expressions.

This language can be generated by the following grammar:

$$S ::= () | (S) | SS$$

A PDA which accepts this language is given as follows:

The transition function for this automaton can be given by

$$\delta(q_0, \epsilon, Z_0) = (q_1, ZZ_0) \qquad \delta(q_1, '(', X)) = (q_1, LX)
\delta(q_1, ')', L) = (q_1, \epsilon) \qquad \delta(q_1, \epsilon, Z) = (q_2, \epsilon)$$

Runs and Acceptance

- An instantaneous description (*ID*) is a tuple (q, x, α) , where q is a state, $x \in \Sigma^*$ is the input left to read, and $\alpha \in \Gamma^*$ is the current stack contents.
- For a PDA A, the ID $(q, x, \beta \alpha)$ is an A-successor of the ID $(p, ax, X\alpha)$, written $(p, ax, X\alpha) \vdash (q, x, \beta \alpha)$, if $(q, \beta) \in \delta_A(p, a, X)$.
- The reflexive-transitive closure of \vdash is defined by the rules $I \vdash^* I$ and $(I \vdash^* J \text{ and } J \vdash K \text{ imply } I \vdash^* K)$.
- The word $w \in \Sigma^*$ is accepted by PDA A if $(q_0, w, Z_0) \vdash^* (q, \epsilon, \gamma)$ for some $q \in F$ and $\gamma \in \Gamma^*$. The language recognized by A L(A) is the set of all words accepted by A.
- An alternative definition is provided by the notion of the word $w \in \Sigma^*$ accepted by an empty stack if $(q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon)$ for some $q \in Q$.

Properties of PDA's and CFL's

- A PDA is defined to be deterministic (DPDA) if it has no ϵ -moves, and for every $q \in Q$, $a \in \Sigma$, and $X \in \Gamma$, $|\delta(q,a,X)| = 1$.
- A language L is a CFL (can be generated by a CFG) iff L is recognizable by a (possibly non-deterministic) PDA.
- There exist CFL's which cannot be recognized by a DPDA (deterministic PDA). For example,

$$\{a^ib^ic \mid i > 1\} \cup \{a^ib^{2i}d \mid i > 1\}$$

Top-Down Parsing

- Parsing tree is synthesized from the root (sentence symbol).
- Stack contains symbols of RHS of most recent production and pending non-terminals.
- Automaton is trivial (no need for explicit states).
- Transition table indexed by stack's top symbol G and input symbol a. Entries in table are terminals or (set of) RHS of a production

Top-Down Parsing

Actions

- Initially, stack contains Grammar start symbol S.
- At each step, let T be the symbol at top of the stack and a be the next input token.
- If T is a terminal symbol, then T must equal a. Pop stack and consume input. This is called a match action.
- Otherwise, choose a grammar production $T \to \alpha$, replace T by α . Do not consume α .
- If stack and input string are both empty, then accept.
- Semantic Action when choosing a production, build tree node for non-terminal, attach to parent T.

Example: Top-Down Parsing

Consider the grammar

$$S := () \mid (S) \mid SS$$

and the leftmost derivation

$$S \implies (S) \implies (SS) \implies (()S) \implies (()())$$

A top-down recognition by a PDA is given by:

Stack	Input	Action	
\overline{S}	$((\)(\))$	Expand	S ::= (S)
(S)	$((\)(\))$	Match	
S)	$(\)(\))$	Expand	S ::= SS
SS)	$(\)(\))$	Expand	S ::= ()
$(\)S)$	$(\)(\))$	Match	
)S)	$)(\))$	Match	
S)	$(\))$	Expand	S ::= ()
$(\))$	$(\))$	Match	
))))	Match	
		Match	
ϵ	ϵ	Accept	

A CFG Corresponds to a PDA

Claim 3. For every CFG \mathcal{G} there exists a PDA \mathcal{A} which accepts by top-down parsing the language $L(\mathcal{G})$.

Proof: Let $\mathcal{G}: \langle T, N, P, S \rangle$ be a CFG. Construct the PDA

 $\mathcal{A}: \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$, where

- $\bullet \quad Q = \{q\} \qquad \bullet \quad \Sigma = T$
- $\bullet \quad \Gamma \quad = \quad N \cup T \qquad \bullet \quad q_0 \quad = \quad q$
- $Z_0 = S$ The grammar start symbol
- $F = \emptyset$ Acceptance is by empty stack

The transition function is defined as the smallest relation satisfying

- For every terminal $a \in T$, $\delta(q, a, a)$ includes (q, ϵ) (a match action).
- For every production $(A \to \alpha) \in P$, $\delta(q, A, \epsilon)$ includes (q, α) (an expand action).

Note that for every leftmost derivation $S \stackrel{*}{\Longrightarrow} xA\alpha \stackrel{*}{\Longrightarrow} xy$, there exists an automaton run $(q, xy, S) \vdash^* (q, y, A\alpha)$.

Correspondence of PDA's to CFG's

Claim 4. For every single-state PDA \mathcal{A} there exists a CFG \mathcal{G} which generates the language recognized by \mathcal{A} with empty stack.

Proof: Let $\mathcal{A}: \langle \{q\}, \Sigma, \Gamma, \delta, q, Z_0, \emptyset \rangle$ be a single-state PDA. Construct the grammar $\mathcal{G}: \langle (T=)\Sigma, (N=)\Gamma, P, Z_0 \rangle$, where the production set P contains the rule $X \to a\gamma$ for each $(q,\gamma) \in \delta(q,a,X)$.

We can show by induction on the length of the run that, whenever $(q, x, X) \vdash^* (q, \epsilon, \gamma)$, there exists a leftmost derivation of \mathcal{G} of the form $X \stackrel{*}{\Longrightarrow} x\gamma$. It follows that if the string w is accepted by \mathcal{A} with empty stack, then $Z_0 \stackrel{*}{\Longrightarrow} w$.

What about multi-state PDA's?

Claim 5. Every PDA is equivalent to a single-state PDA.

Example: Converting a PDA to a CFG

Consider the PDA

 $\mathcal{A}: \langle \{q\}, \Sigma: \{'(', ')'\}, \Gamma: \{S, T\}, \delta, q, S, \emptyset \rangle$, where the transition function is given by the following table:

$X \in \Gamma$			ϵ
\overline{S}	STS	Ø	ϵ
\overline{T}	Ø	ϵ	Ø

Following the recipe of Claim 4 we obtain the grammar $\mathcal{G}: \langle T:\{'(', ')'\}, N:\{S, T\}, P, S\rangle$, where the productions P include the following rules:

$$egin{array}{ccccc} S &
ightarrow & & (STS & | & \epsilon \ T &
ightarrow &) \end{array}$$

We Need Deterministic Parsing

The results presented so far allowed non-deterministic PDA's. Unlike finite-state automata, deterministic push down automata (DPDA) are strictly less expressive then general PDA's.

For example, the context-free language $\{a^nb^nc\}$ \cup $\{a^nb^{2n}d\}$ cannot be recognized by a DPDA.

When doing parsing, we are interested only in a parsing process which is based on a deterministic process.

LL(k) Grammars

Let k > 0 be a positive integer. The grammar \mathcal{G} is called an LL(k) grammar if, for every leftmost derivation

$$S \stackrel{*}{\Longrightarrow} xA\alpha \Longrightarrow x\beta\alpha \stackrel{*}{\Longrightarrow} xy$$

the production $A \to \beta$ is uniquely determined by A, and the k first characters of y.

The name is based on the fact that parsing according to such a grammar reads the input from left to right while constructing a leftmost derivation with a lookahead of k characters.

The unique determination means that if we have two derivations of the form

$$S \stackrel{*}{\Longrightarrow} x_1 A \alpha_1 \Longrightarrow x_1 \beta_1 \alpha_1 \stackrel{*}{\Longrightarrow} x_1 y_1$$

$$S \stackrel{*}{\Longrightarrow} x_2 A \alpha_2 \Longrightarrow x_2 \beta_2 \alpha_2 \stackrel{*}{\Longrightarrow} x_2 y_2$$

such that $y_1[1..k] = y_2[1..k]$, then $\beta_1 = \beta_2$.

Examples

• The following grammar for balanced parentheses expressions is not LL(k) for any k:

$$S ::= () | (S) | SS$$

A 1-lookahead is sufficient in order to distinguish between () and (S). However, no bounded lookahead is sufficient in order to distinguish between (S) and SS.

• The following grammar is LL(1):

$$S ::= (S)S \mid \epsilon$$

If the next input character is (we choose (S)S. Otherwise we choose ϵ .

Constructing LL(1) Tables

- Define two functions on the symbols of the grammar:
 FIRST and FOLLOW.
- For a non-terminal $A \in N$, FIRST(A) is the set of terminals that can appear as the first character in a string derived from N.

$$FIRST(A) = \{ a \in T \mid A \stackrel{*}{\Longrightarrow} ax \} \quad \cup \quad \{ \epsilon \mid A \stackrel{*}{\Longrightarrow} \epsilon \}$$

 FOLLOW(A) is the set of terminals that can appear after a string derived from A.

$$FOLLOW(A) = \{ a \in T \mid S \stackrel{*}{\Longrightarrow} xA\alpha \stackrel{*}{\Longrightarrow} xy\alpha \Longrightarrow xya\beta \}$$

Computing FIRST(X)

- If X is terminal, then $FIRST(X) = \{X\}$.
- For each non-terminal X and production $X \to Y_1 Y_2 \cdots Y_k$,
 - Add a to FIRST(X) if, for some $i \in [1..k]$, $a \in FIRST(Y_i)$ and $\epsilon \in FIRST(Y_j)$, for all $j \in [1..i-1]$.
 - Add ϵ to FIRST(X) if $\epsilon \in FIRST(Y_i)$ for all $i \in [1..k]$.
- If $X \to \epsilon$ is a production, add ϵ to FIRST(X).

For a string $X_1 \cdots X_k$ and terminal a, we say that $a \in FIRST(X_1 \cdots X_k)$ if $a \in FIRST(X_i)$, for some $i \in [1..k]$, and $\epsilon \in FIRST(X_j)$, for all $j \in [1..i-1]$. Also $\epsilon \in FIRST(X_1 \cdots X_k)$ if $\epsilon \in FIRST(X_i)$ for all $i \in [1..k]$.

Computing FOLLOW(X)

- Place \$ in FOLLOW(S), where S is the start symbol,
 and \$ is the input end-marker.
- If there is a production $A \to \alpha B\beta$, then add all symbols in $FIRST(\beta) \{\epsilon\}$ to FOLLOW(B).
- If there is a production $A \to \alpha B$ or a production $A \to \alpha B\beta$, where $\epsilon \in FIRST(\beta)$, then add all symbols in FOLLOW(A) to FOLLOW(B).

Constructing an LL(1) Parsing Table

This is a table M[A, a] which, for each non-terminal $A \in N$ and next input character $a \in T$, tells us which production should next be taken.

- For each production $A \rightarrow \alpha$ of the grammar, do the following:
 - For each terminal $a \in FIRST(\alpha)$, add $A \to \alpha$ to M[A,a].
 - If $\epsilon \in FIRST(\alpha)$ then, for each terminal $b \in FOLLOW(A)$, add $A \to \alpha$ to M[A, b]. If $\epsilon \in FIRST(\alpha)$ and $\$ \in FOLLOW(A)$, then add $A \to \alpha$ to M[A, \$] as well.

Example: Constructing LL(1) **Tables**

we construct the FIRST/FOLLOW tables:

Non-Terminal	FIRST	FOLLOW
\overline{E}	(,id),\$
E'	$+,\epsilon$),\$
T	(,id	+,),\$
T'	$*,\epsilon$	+,),\$
F	(,id	+,*,),\$

leading to the following parsing table:

	id	+	*)	\$
\overline{E}	$E \to TE'$			$E \to TE'$		
E'		$E' \rightarrow +TE'$			$E' o \epsilon$	$E' \to \epsilon$
T	T o FT'			T o FT'		
T'		$T' o \epsilon$	$T' \rightarrow *FT'$		$T' o \epsilon$	$T' o \epsilon$
F	$F \rightarrow id$			$F \to (E)$		

LL(1) Parsing of Arithmetical Expressions

We can parse

with table

vvc barr p	arsc	
Stack	Input	Action
\overline{E}	id + id * id\$	$E \to TE'$
TE'	id + id * id\$	T o FT'
FT'E'	id + id * id\$	$F \rightarrow id$
idT'E'	id + id * id\$	
T'E'	+id*id\$	$T' o \epsilon$
E'	+id*id\$	$E' \rightarrow +TE'$
+TE'	+id*id\$	
TE'	id*id\$	T o FT'
FT'E'	id*id\$	$F \rightarrow id$
idT'E'	id*id\$	
T'E'	*id\$	$T' \to *FT'$
*FT'E'	*id\$	
FT'E'	id\$	$F \rightarrow id$
idT'E'	id\$	
T'E'	\$	$T' o \epsilon$
E'	\$	$E' o \epsilon$
ϵ	\$	Accept
	•	•

	id	+	\$
E	$E \rightarrow TE'$		
E'		$E' \to +TE'$	$E' \to \epsilon$
$T \ T'$	T o FT'		
T'		$T' o \epsilon$	$T' o \epsilon$
F	$F \rightarrow id$		
T' F	$F \rightarrow id$	$T' o \epsilon$	$T' o \epsilon$

	()	*
E	$E \to TE'$		
$E \ E'$	T o FT'	$E' o \epsilon$	
$T \ T'$	$T \to FT'$		
		$T'' o \epsilon$	$T' \to *FT'$
F	$F \rightarrow (E)$		

Correctness of the Construction

Claim 6. A grammar \mathcal{G} is an LL(1) grammar iff the parsing table M[A,a] contains at most one production in each entry.