Deployment of unsupervised learning in the search for new physics at the LHC with the ATLAS detector

by

Sakarias Garcia de Presno Frette

THESIS

for the degree of

MASTER OF SCIENCE

Faculty of Mathematics and Natural Sciences University of Oslo

Autumn 2022

Deployment of unsupervised learning in the search for new physics at the LHC with the ATLAS detector

Sakarias Garcia de Presno Frette

Abstract

Acknowledgments

Contents

Int	roduction	1
1	Machine learning phenomenology	3
2	Standard model	9
3	Implementation	11
4	Results	13
5	Discussion	15
Cor	nclusion	17
Appendices		19
Appendix A		21
Ap	pendix B	23
Ap	Appendix C	
Appendix D		27

vi CONTENTS

Introduction

Outline of the Thesis

2 CONTENTS

Machine learning phenomenology

Neural Networks

Autoencoders

Autoencoders are a subset of neural networks. Where as a general neural network in principle can take any shape, autoencoders are more restrictive. This restrictiveness can in its most general sence we condensed into the following points:

- Same number of output categories as input categories
- A latent space with smaller dimensionality than the input/output layer

What we end up with two funnel shaped parts linked together.

Standard model

Implementation

Results

14 CHAPTER 4. RESULTS

Discussion

Conclusion

Future work, more work

Appendices

Appendix A

Appendix B

Appendix C

Appendix D

Bibliography