------ CEN 4072/6070 Software Testing & Verification ------

- 1. a. would not, b. would, c. would not, d. would not, e. would, f. would
- 2. a. true, b. false, c. true, d. false, e. true, f. true, g. false, h. true, i. false, j. true
- - b. sp(if b then S, P) \equiv sp(S, b \wedge P)) V (\neg b \wedge P)
 - c. By the sp ROI, we need to show: sp(if b then S, P) \Rightarrow Q

sp(if y>0 then y := y - (2*y), y=x) = sp(y := y - (2*y), y>0
$$\land$$
 y=x) V (y \le 0 \land y=x)
= (y=y'-2y' \land y'>0 \land y'=x) V (y \le 0 \land y=x)
= (y=-x \land x>0 \land y'=x) V (y \le 0 \land y=x)

To prove [$(y=-x \land x>0 \land y'=x) \lor (y\leq 0 \land y=x)$] \Rightarrow Q, it must be shown that:

- (1) $(y=-x \land x>0 \land y'=x) \Rightarrow Q$ and that
- (2) $(y \le 0 \land y = x) \Rightarrow Q$.

For (1), we have: $(y=-x \land x>0 \land y'=x) \Rightarrow (y=-x \land y'=x) \Rightarrow Q$ and for (2) we have: $(y\leq 0 \land y=x) \Rightarrow y=x \Rightarrow Q$.

5. function of while statement: $(x \ge 5 \to x, y := 5, y)$ function of if then statement: $(y > 0 \to (x \ge 5 \to x, y := 5, y) \mid y \le 0 \to x, y := x, y)$ function of initial assignment statement: (x, y := x, x-2)

Therefore, the function of the compound program is...

=
$$(y>0 \rightarrow (x\geq 5 \rightarrow x,y := 5,y) \mid y\leq 0 \rightarrow x,y := x,y) \circ (x,y := x,x-2)$$

= $(x-2>0 \rightarrow (x\geq 5 \rightarrow x,y := 5,x-2) \mid x-2\leq 0 \rightarrow x,y := x,x-2)$
= $(x>2 \rightarrow (x\geq 5 \rightarrow x,y := 5,x-2) \mid x\leq 2 \rightarrow x,y := x,x-2)$

=
$$(x \ge 5 \rightarrow x, y := 5, x-2 \mid x \le 2 \rightarrow x, y := x, x-2)$$

- 6. a. valid, b. invalid, c. valid, d. invalid, e. invalid, f. invalid, g. valid, h. valid, i. valid, j. invalid
- 7. a. Theorem.

Let f = [while p do g]. If $X_0 \in D(f)$, $X \in D(f)$, and $q(X) = (f(X) = f(X_0))$, then q is an invariant of while p do g; i.e., it has the following properties:

- 1. $q(X_0)$ is true, and
- 2. $(q(X) \land p(X)) \Rightarrow qoq(X)$.

In addition, q(X) is an f-adequate invariant; i.e.,

3.
$$(q(X) \land \neg p(X)) \Rightarrow (X=f(X_0))$$
.

b.
$$q = (\mathbf{p} = \mathbf{p_0} \mathbf{2^{k_0-k}} \wedge \mathbf{k} \ge \mathbf{0})$$
 (Setting $t(X) = t(X_0)$ for variables p, k yields: $[0=0 \wedge p2^k = p_02^{k_0}] \Rightarrow \mathbf{p} = \mathbf{p_0} \mathbf{2^{k_0-k}})$

c. Property (2): Does $(q(X) \land p(X)) => q \circ q(X)$?

$$(q(X) \land p(X)) = (p = p_0 2^{\mathbf{k_0} - \mathbf{k}} \land k \ge 0 \land k \ne 0)$$

Does (
$$p = p_0 2^{\mathbf{k_0 - k}} \land k \neq 0$$
) => ($(p = p_0 2^{\mathbf{k_0 - k}})$ o $(p, k := \mathbf{2p, k - 1})$) ?
$$= (\mathbf{2p} = p_0 2^{\mathbf{k_0 - (k - 1)}})$$

$$= (p = p_0 2^{\mathbf{k_0 - (k - 1) - 1}})$$

$$= (p = p_0 2^{\mathbf{k_0 - k}})$$

Therefore, $(q(X) \land p(X)) => q \circ g(X) \checkmark$

Property (3): Does ($q(X) \land \neg p(X)$) \Rightarrow ($X=f(X_0)$) ?

$$(q(X) \land \neg p(X)) = (p = p_0 2^{\mathbf{k_0 - k}} \land k \ge 0 \land k = 0) \Rightarrow (p = p_0 2^{\mathbf{k_0}} \land k = 0)$$

$$\Rightarrow (p = t_p(p_0) = p_0 2^{\mathbf{k_0}} \land k = t_k(k_0) = 0)$$

$$\Rightarrow (X = t(X_0)). \checkmark$$

d. **Does** $\neg p => (t = I)$?

$$(k=0) => (t = (p,k := p2^{0},0)$$

= $(p,k := p,k)$
= I) $\sqrt{}$

7. d. (cont.)

Does
$$p \Rightarrow (t = t \circ g)$$
?

There are 2 cases to consider: k<0 and k>0.

case a:

$$(k<0) \Rightarrow (t = undefined)$$
 $\sqrt{}$
 $(k<0) \Rightarrow ((t \circ g) = undefined \circ g$
 $(since ((k<0) \circ g(k<0)) = true)$
 $= undefined)$ $\sqrt{}$

case b:

$$(k>0) => (t = (p,k := p2^k,0))$$
 $\sqrt{(k>0)} => ((t \circ g) = (p,k := p2^k,0) \circ (p,k := 2p,k-1)$
 $(since ((k\geq 0) \circ g(k>0)) = true)$
 $= (p,k := (2p)2^{(k-1)},0)$
 $= (p,k := p2^k,0))$ $\sqrt{}$

Therefore, $p => (t = t \circ g)$

Therefore, t = [T], assuming term(t,T).

e.
$$H_0$$
: $\neg b \land Q \equiv k=0 \land p=16$

$$H_1$$
: $b \land wp(S, H_0) \equiv k \neq 0 \land wp(p := p*2; k := k-1, k=0 \land p=16)$
 $\equiv k \neq 0 \land k-1=0 \land 2p = 16$
 $\equiv k=1 \land p=8$

$$H_2$$
: $b \land wp(S, H_1) \equiv k \neq 0 \land wp(p := p*2; k := k-1, k=1 \land p=8)$
 $\equiv k \neq 0 \land k-1=1 \land 2p=8)$
 $\equiv k=2 \land p=4$

$$H_{n>0}$$
: $b \wedge wp(S, H_{n-1}) \equiv k=n \wedge p=2^{(4-n)} \equiv k=n \wedge p=16/2^n)$

f. wp in closed form: (k=0 \land p=16) V (0<k≤4 \land p=16/2^k) (Note that (k>4 \land p=16/2^k) is FALSE since p can only assume INTEGER values.)

=
$$(0 \le k \le 4 \land p = 2^{(4-k)})$$
 = $(0 \le k \le 4 \land p = 16/2^k)$

Equivalently, this could be written as:

$$[(k=0 \land p=16) \lor (k=1 \land p=8) \lor (k=2 \land p=4) \lor (k=3 \land p=2) \lor (k=4 \land p=1)]$$

7. g. $wlp(T,Q) = wp(T,Q) \vee \neg wp(T,true)$

wlp in closed form:
$$(0 \le k \le 4 \land p = 2^{(4-k)}) \lor k < 0 = (0 \le k \le 4 \land p = 16/2^k) \lor k < 0$$

(Note that T does not terminate for k<0.)

8. INITIALIZATION: Does $P \Rightarrow I$?

P:
$$(p=1 \land k=n) \Rightarrow (p=\mathbf{2^{n-k}} = 1=2^{n-n} = 1=2^0 = 1=1 = true)$$

Therefore $P \Rightarrow I$. \checkmark

PRESERVATION: Does $\{I \land b\}$ s $\{I\}$?

I
$$\land$$
 b: $\{p=2^{n-k} \land k \neq 0\}$
 $p := p*2$
 $\{p=2^{n-k+1} \land k \neq 0\}$
 $k := k-1$
 $\{p=2^{n-(k+1)+1} \land k+1 \neq 0\}$
 \Leftrightarrow
 $\{p=2^{n-k} \land k+1 \neq 0\} \Rightarrow I \checkmark$

FINALIZATION: Does (I $\land \sim b$) \Rightarrow Q?

$$(I \land \neg b)$$
: $(p=2^{n-k} \land k=0) \Rightarrow p=2^n = Q \checkmark$

- 9. a. false, b. true, c. false, d. true, e. true
- 10. a. true, b. false, c. false, d. false, e. true
- 11. a. i.
 - b. A fundamental property of all functions, f, computed by a while loop is that $q(X) = (f(X) = f(X_0))$ for all execution states, X, that hold when the loop predicate is evaluated. This implies that the final state, $X_n = f(X_0) = f(X_n)$.

Let $X_0 = (x_0, y_0) = (a,b)$. Then for the function, f, given above, we have

$$f(X_0) = X_n = (a,a+b) \text{ and } f(X_n) = (a,a+b+a)$$

Thus, $f(X_0) \neq f(X_n)$ (except for the special case $x_0=0$), and we therefore conclude that there is no program of the form "while b do s" that computes function f for all $X \in D(f)$.

(Equivalently, we could show that while $q(X) \Leftrightarrow (x=x_0 \land y+x=y_0+x_0)$ agrees with X_0 , it does <u>not</u> agree with X_n .)