Practical Sheet 2: k-Nearest neighbours

APL 405 - 2023W (Machine Learning for Mechanics)

[20 marks] Predicting colors with k-NN: Consider a synthetic binary classification problem (M = 2) with a given training dataset having N = 10 (statistically independent) observations of 2-dimensional input variables $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ and one categorical output y, representing either the colour Red or Blue.

i	x_1	x_2	y
1	-1	3	Red
2	2	1	Blue
3	-2	2	Red
4	-1	2	Blue
5	-1	0	Blue
6	1	1	Red

- 1. Write a function to calculate the Euclidean distance between two vectors. Using a test input $\mathbf{x}^* = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$, compute the Euclidean distance between each training data point $\mathbf{x}^{(i)}$ and the test data point. Print the result in tabular fashion
- 2. Output the k-NN prediction for (i) k=1 (one neighbour), and (ii) k=3 (three neighbours)
- 3. Repeat step (2) for the test input $\mathbf{x}^* = \begin{bmatrix} 0 & 2 \end{bmatrix}^T$. What color prediction do you get for the two cases?
- 4. Repeat step (2) for the test input $\mathbf{x}^* = \begin{bmatrix} 0.5 & 2 \end{bmatrix}^T$. What color prediction do you get for the two cases?
- 5. Can you plot the decision boundaries of the two k-NN classifiers?
- 6. Consider a case where the scale of the input variable x_1 is 100 times greater than x_2 , meaning (say) the column of x_1 is multiplied with 100. Normalize the input data (using min-max scaling) and then implement step (2) for predicting on the test input $\mathbf{x}^* = \begin{bmatrix} 0 & 2 \end{bmatrix}^T$.