Lecture 1: Introduction

United International College

Course Information

Text Book

SEVENTH EDITION

Database System Concepts

Database System Concepts

Seventh Edition

Avi Silberschatz
Henry F. Korth
S. Sudarshan

McGraw-Hill Education ISBN: 0073523321

Course Information

Contact and Timetable

Section	Instructor	TA	Time		Venue	
1001 1004	Dr. Zhiyuan Li	Mr. Shichen Zhang	Lec	Mon 15:00-16:50	T5-505	
	goliathli@uic.edu.cn	shichenzhang@uic.edu.cn	Lab	Wed 13:00-13:50	T8-303	
	T3-502-R6	T3-502-R26-H6	Tut	TBD	TBD	
1002 1005	Dr. Jefferson Fong	Mr. Steven Li mianli@uic.edu.cn	Lec	Mon 10:00-11:50	T7-303	
	jeffersonfong@uic.edu.cn		Lab	Thu 15:00-15:50	T8-303	
	T3-602-R1	T3-605-R25	Tut	TBD	TBD	
1003 1006	Dr. Tianhui Meng	Ms. Lily Lin chengyanlin@uic.edu.cn T3-602-R25	Lec	Wed 9:00-10:50	T7-303	
	tianhuimeng@uic.edu.cn		Lab	Fri 9:00-9:50	T29-101	
	T6-403-R7		Tut	TBD	TBD	

Course assessment

• 3 Assignments: 10%

Midterm: 20%

• Lab: 10%

Group project: 20%

Final Exam: 40%

Course assessment

Regulations

- MR sections and FE sections will be graded separately.
- Low final exam score will downgrade the letter grade.

Final Exam Score	Highest Letter Grade
0 - 19	F
20 - 24	D
25 - 29	C-

Lecture Weekly Schedule

Week	Lecture	Readings	Lab
1	1. Introduction	Chap. 1	1. XAMPP
2	2. Basic ER model	Chap. 6.1-3, 6.5	2. Basic Query
3	3. ER Constraints	Chap. 6.4	3. Cross Table Queries
4	4. Extended ER	Chap. 6.5.3, 6.8	4. Join
5	5. ER Design Issues	Chap. 6.9	5. Aggregation
6	6. Relational Model	Chap. 2.1-4, 6.8.6	6. Data Definition
7	7. Exercises	-	7. Data Modification
8		Reading Week	
9	8. Design Purpose	Chap. 7.1	8. Null Values & Subquery 1
10	9. Functional Dependencies	Chap. 7.4	9. Set Operations & Subquery 2
11	10. BCNF	Chap. 7.3, 7.5	10. Correlation
12	11. 3NF	Chap. 7.3, 7.5	11. Foreign key & Triggers
13	12. MVDs (Optional)	Chap. 7.6	12. Constraints
14	13. XML Database	Chap. 30	13. Triggers
15		Project Presentatio	n

Introduction to Databases

Whether you know it or not, you're using a database every day

Database Management System (DBMS)

- Database Applications
 - Banking: transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
 - Social media sites: posts, friendship relationship, activities
- Database can be very large.
- Database touch all aspects of our lives.

University Database Example

- Course Management
 - Add students, instructors, and courses
 - Register students for courses, and generate class rosters
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts
- Provide basic features necessary for data access
 - Shared access by a community of uses
 - Well-defined schema for data access
 - Support query language

File systems

• In the early days, applications were built directly on top of file systems.

Drawbacks of file systems

- Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files.
- Difficulty in accessing data
 - Need to write a new program to carry out each new task.
- Data isolation
 - Multiple files and formats
- Integrity problems
 - Integrity constraints (e.g., account balance ≥ 0) become buried in program code rather than being stated explicitly.
 - Hard to add new constraints or change existing ones.

Drawbacks of file systems

- Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out.
 - Example: Transfer of funds from one account to another should either complete or not happen at all.
- Concurrent access by multiple users
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two students want to choose the same course that has only one vacancy left.
- Security problems
 - Hard to provide user access to some, but not all, data

Database system offer solutions to all the above problems.

DBMS provides...

- Efficient
- Reliable
- Convenient
- Safe
- Multi-user (Storage of and access to)
- Massive amounts of persistent data

In general

Key Concepts

Key Concepts

- Data modeling
- Schema vs. Data instances
- Data definition language (DDL)
- Data manipulation or query language (DML)
- DBMS implementer
- Database designer
- Database application developer
- Database administrator

History of Database Systems

- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - Tapes provide only sequential access
 - Punched cards for input
- Late 1960s and 1970s:
 - Hard disks allow direct access to data
 - Network and hierarchical data models in widespread use
 - Ted Codd defines the relational data model
 - Would win the ACM Turing Award for this work
 - IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype

History (cont.)

1980s:

- Research relational prototypes evolve into commercial systems
 - SQL becomes industrial standard
- Parallel and distributed database systems
- Object-oriented database systems
- 1990s:
 - Large decision support and data-mining applications
 - Large multi-terabyte data warehouses
 - Emergence of Web commerce
- 2000s:
 - XML and XQuery standards
 - Automated database administration

Database Popularity Rank 2017 - 2018

Rank					Score		
Feb 2018	Jan 2018	Feb 2017	DBMS	Database Model	Feb 201 8	Jan 2018	Feb 2017
1.	1.	1.	Oracle 🗄	Relational DBMS	1303.28	-38.66	-100.55
2.	2.	2.	MySQL 🖶	Relational DBMS	1252.47	-47.24	-127.83
3.	3.	3.	Microsoft SQL Server 🔠	Relational DBMS	1122.04	-26.03	-81.42
4.	4.	4.	PostgreSQL 🔠	Relational DBMS	388.38	+2.19	+34.70
5.	5.	5.	MongoDB 🔠	Document store	336.42	+5.47	+0.92
6.	6.	6.	DB2 🚹	Relational DBMS	189.97	-0.30	+2.07
7.	7.	1 8.	Microsoft Access	Relational DBMS	130.07	+3.37	-3.32
8.	1 9.	1 0.	Redis 🖶	Key-value store	127.02	+3.88	+12.98
9.	1 0.	1 1.	Elasticsearch 🗄	Search engine	125.32	+2.76	+17.01
10.	4 8.	4 7.	Cassandra 🗄	Wide column store	122.78	-1.10	-11.60
11.	11.	4 9.	SQLite 🚹	Relational DBMS	117.27	+3.02	+1.96
12.	12.	12.	Teradata	Relational DBMS	72.99	+0.36	-2.60
13.	1 5.	1 6.	Splunk	Search engine	67.27	+3.27	+11.24
14.	14.	14.	Solr	Search engine	63.87	-0.50	-3.81
15.	4 13.	4 13.	SAP Adaptive Server 🛨	Relational DBMS	63.49	-1.98	-8.25
16.	16.	4 15.	HBase	Wide column store	61.70	+0.07	+2.46

COMP3013 Introduction 19

Database Popularity Rank 2019 - 2020

Rank					Score		
Jan 2020	Dec 2019	Jan 2019	DBMS	Database Model	Jan 2020	Dec 2019	Jan 2019
1.	1.	1.	Oracle 🚹	Relational, Multi-model 👔	1346.68	+0.29	+77.85
2.	2.	2.	MySQL [Relational, Multi-model 👔	1274.65	-1.01	+120.39
3.	3.	3.	Microsoft SQL Server ₽	Relational, Multi-model 👔	1098.55	+2.35	+58.29
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 👔	507.19	+3.82	+41.08
5.	5.	5.	MongoDB 🚹	Document, Multi-model 👔	426.97	+5.85	+39.78
6.	6.	6.	IBM Db2 ₽	Relational, Multi-model 👔	168.70	-2.65	-11.15
7.	7.	1 8.	Elasticsearch 🚹	Search engine, Multi-model 🛐	151.44	+1.19	+8.00
8.	8.	4 7.	Redis 😷	Key-value, Multi-model 👔	148.75	+2.51	-0.27
9.	9.	9.	Microsoft Access	Relational	128.58	-0.89	-13.04
10.	↑ 11.	10.	SQLite 🚹	Relational	122.14	+1.78	-4.66
11.	↓ 10.	11.	Cassandra 🖽	Wide column	120.66	-0.04	-2.32
12.	12.	12.	Splunk	Search engine	88.67	-1.85	+7.25
13.	13.	13.	MariaDB 🖪	Relational, Multi-model 👔	87.45	+0.66	+8.63
14.	14.	1 5.	Hive [+	Relational	84.24	-1.81	+14.33
15.	15.	4 14.	Teradata 😷	Relational, Multi-model 👔	78.29	-0.21	+2.10
16.	16.	1 20.	Amazon DynamoDB 🚹	Multi-model 👔	62.02	+0.39	+6.93

COMP3013 20 Introduction

Database Popularity Rank 2020 - 2021

	Rank			Score			
Sep 2021	Aug 2021	Sep 2020	DBMS	Database Model	Sep 2021	Aug 2021	Sep 2020
1.	1.	1.	Oracle +	Relational, Multi-model 👔	1271.55	+2.29	-97.82
2.	2.	2.	MySQL [Relational, Multi-model 👔	1212.52	-25.69	-51.72
3.	3.	3.	Microsoft SQL Server 😷	Relational, Multi-model 👔	970.85	-2.50	-91.91
4.	4.	4.	PostgreSQL 🚻	Relational, Multi-model 👔	577.50	+0.45	+35.22
5.	5.	5.	MongoDB 🚹	Document, Multi-model 👔	496.50	-0.04	+50.02
6.	6.	↑ 7.	Redis 🞛	Key-value, Multi-model 👔	171.94	+2.05	+20.08
7.	7.	4 6.	IBM Db2	Relational, Multi-model 👔	166.56	+1.09	+5.32
8.	8.	8.	Elasticsearch	Search engine, Multi-model 🛐	160.24	+3.16	+9.74
9.	9.	9.	SQLite 😷	Relational	128.65	-1.16	+1.98
10.	↑ 11.	10.	Cassandra 🗄	Wide column	118.99	+5.33	-0.18
11.	↓ 10.	11.	Microsoft Access	Relational	116.94	+2.10	-1.51
12.	12.	12.	MariaDB 😷	Relational, Multi-model 👔	100.70	+1.72	+9.09
13.	13.	13.	Splunk	Search engine	91.61	+1.01	+3.71
14.	14.	1 5.	Hive	Relational	85.58	+1.64	+14.41
15.	15.	1 7.	Microsoft Azure SQL Database	Relational, Multi-model 👔	78.26	+3.11	+17.81
16.	16.	16.	Amazon DynamoDB 🚹	Multi-model 🔃	76.93	+2.03	+10.75

COMP3013 Introduction 21

End of Chapter 1