Representation Learning: Autoencoder

Supervised Learning

- Give the data (x->y), x is the data, y is the label
- Goal: Learn the mapping: from x to y.

Stark Classification

Unsupervised Learning

- Given the data x without labels
- Goal: Learn hidden structure(low dimension) from

Representation Learning
Data lies on a low-dimensional
manifold

Clustering Group data points based their similarity

Density Estimation Estimate data probability p(x) from data x1, x2, ..., xn

Autoencoder

Principal Component Analysis

PCA aims to find the directions of maximum variance in high-dimensional data and projects it onto a new subspace with equal or fewer dimensions than the original one

MNIST Dataset

PCA for MNIST Visualization

- Each image has 28 by 28 pixels -> 28 by 28 matrix -> 784 dimensional vector
- Using PCA, find a project matrix $~\mathbf{W} \in R^{784 imes 2}$
- After projection, each image can be encoded into a 2-Dimensional space

Principal Component Analysis

Autoencoder: NonLinear

Deep Autoencoder

Deep Autoencoder vs PCA

Deep Autoencoder vs PCA

Structure of Autoencoder

Undercomplete Autoencoder

- Simply copy input to output without learning anything useful
 - The autoencoder just mimic the identity function
 - Reconstruct the training data perfectly
 - Overfitting
- To avoid the above issue, we should use undercomplete autoencoder
 - The hidden layer size c is small compared to the original feature dimensionality

Sandwich Architecture in Autoencoder

- Forcing c (hidden layer size) is less than d (the input layer size)
 - Learn the important features
 - Information bottleneck:
 - A kind of trade-off between compression and retaining information

Can we use only 4 bricks to rebuild the previous shape?

Optimization Targets

- For Autoencoder, the training objective is to minimize $||x \tilde{x}||^2$
- $oldsymbol{\cdot}$ But we do not care the output layer $ilde{oldsymbol{x}}$
- Hidden representation is what we really want to learn

Build Autoencoders in Keras

https://blog.keras.io/building-autoencoders-in-keras.html

Regularized Autoencoder

Add different constraintions in case that we learn

the identity transformation, i.e., overfitting

Sparse Autoencoders

- Constrain on c that penalizes it from dense
- Regularization on output of encoder, not parameters

- kernel_regularizer : instance of keras.regularizers.Regularizer
- bias_regularizer: instance of keras.regularizers.Regularizer
- activity_regularizer: instance of keras.regularizers.Regularizer

Example

Denoising Autoencoders

- Add noise into original data points
- Still reconstruct original data points

$$L(x,g(f(ar{x})))$$

Applications of Autoencoders

Better Representation

Bag-of-Word

Greedy Layer-wise Pre-training for W1

Greedy Layer-wise Pre-training for W2

Greedy Layer-wise Pre-training for W3

Fine-tune by backpropagation

Recommendation System

The two best performing public stocks of the decade - Netflix (+3700%) and Domino's Pizza (+3000%) - perfectly epitomize the 2010s. You either build the world's most advanced machine learning content recommender system, or make a better pizza sauce, there's no middle ground.

1:20 PM - 27 Dec 2019

3,926 Retweets 20,086 Likes

Rec. Sys. are Everywhere

Core Problem in Rec. Sys.

- Filter Information for users
- Personalization is the key:
 - Given a certain user, compute the score that quantifies how strongly a user u likes/prefer items i.

Content-based Method

- Define the similarity from items' content
 - Name: cosine similarity
 - Category
 - Rating
 - Description
 - o Etc
- Combine them into a final score
- Ranked items based on their similar scores compared to users' purchased item

User Behavior

- Content-based methods: only look at the items' information
- The Insights behind the huge interaction behind users and items

Ratings in Netflix

Order History

User Behavior

- Content-based methods: only look at the items' information
- The Insights behind the interaction behind users and items

 Item

Item 1 Item 2 Item 3 Item k-1 Imte k User 1 3 0 User User 2 0 3 Vector User n-1 0 2 User n 0 0 0

Vector

User-based CF

- Find the similarity score betweens users
- Recommend products which these similar uses have liked or bought previously

$$s_{u,v} = cos(ec{u},ec{v}) = rac{ec{u} * ec{v}}{||ec{u}|||ec{v}||}$$

Cosine similarity used a lot in information retrieval

Item-based CF

- Find the similarity between each item pair
- Recommend similar items which were liked or purchased by the users in the past

$$s_{i,m} = cos(ec{i},ec{m}) = rac{ec{i}*ec{m}}{||ec{i}|||ec{m}||}$$

Data Sparsity

movield	1	2	3	4	5	6	7	9	10	11	 106487	106489	106782	106920	109374
userld															
316	-0.829457	NaN	NaN	NaN	NaN	NaN	-1.329457	NaN	-0.829457	NaN	 NaN	NaN	NaN	NaN	NaN
320	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN
359	1.314526	NaN	NaN	NaN	NaN	1.314526	NaN	NaN	0.314526	0.314526	 NaN	NaN	NaN	NaN	NaN
370	0.705596	0.205596	NaN	NaN	NaN	1.205596	NaN	NaN	NaN	NaN	 -1.294404	-0.794404	0.705596	0.205596	NaN
910	1.101920	0.101920	-0.39808	NaN	-0.39808	-0.398080	NaN	NaN	NaN	0.101920	 NaN	NaN	-0.398080	NaN	NaN

Similarities between users and items are zero

- Data Preprocessing:
 - Use the mean value of the row
 - Use the mean value of the column
- Matrix Factorization
 - Singular Value Decomposition
 - Non-Negative Matrix Factorization
 - Auto-encoder

NMF for Rec.

Autoencoder for Rec.

Pros & Cons of CF

- Pros:
 - Capture latent user and item factors
 - Can handle sparsity
 - Scalable computation (ALS)
- Cons:
 - Biases (Temporal and Popularity)
 - Cold Start Problem
 - No Context-awareness

How to evaluate Rec. Sys.

- Offline Evaluation:
 - Train/Test Splitting
 - RMSE
 - Recall
 - o Etc
- Online Evaluation:
 - A/B Testing
 - Click-Through Rate (CTR)
 - Conversion Rate (CR)
 - Etc

Advanced Rec. Sys.

Deep Learning for Rec.:

Wide & Deep model

• Reinforcement Learning for Rec.:

