Thermodynamics I

Lecture 14

The Ideal Gas Equation (Ch-3)

Dr. Ahmed Rasheed

0					
		U	и	h	
	<i>T</i> ,°C	m³/kg	kJ/kg	kJ/kg	
		$P = 0.1 \text{ MPa } (99.61^{\circ}\text{C})$			
	Sat.	1.6941	2505.6	2675.0	
	100	1.6959	2506.2	2675.8	
0	150	1.9367	2582.9	2776.6	
		:	:	:	
	1300	7.2605	4687.2	5413.3	
		$P = 0.5 \text{ MPa } (151.83^{\circ}\text{C})$			
	Sat.	0.37483	2560.7	2748.1	
	200	0.42503	2643.3	2855.8	
	250	0.47443	2723.8	2961.0	

Property tables provide very accurate information about the properties, but they are bulky and vulnerable to typographical errors.

A more practical and desirable approach would be to have some simple relations among the properties that are sufficiently general and accurate.

- Equation of state: Any equation that relates the pressure, temperature, and specific volume of a substance.
- The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the *P-v-T* behavior of a gas quite accurately within some properly selected region.

1662: Robert Boyle

1802: J. Charles and J. Gay-Lussac

$$P = R\left(\frac{T}{U}\right)$$
 Ideal-gas equation of state

$$P \cup = RT$$

The gas constant R is different for each gas and is determined from

$$R = \frac{R_u}{M}$$
 (kJ/kg·K or kPa·m³/kg·K)

R: gas constant

M: molar mass (kg/kmol)

 R_u : universal gas constant

Substance	R, kJ/kg⋅K	
Air	0.2870	
Helium	2.0769	_
Argon	0.2081	
Nitrogen	0.2968	
		000

$$R_{u} = \begin{cases} 8.31447 \text{ kJ/kmol} \cdot \text{K} \\ 8.31447 \text{ kPa} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 0.0831447 \text{ bar} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 1.98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10.7316 \text{ psia} \cdot \text{ft}^{3}/\text{lbmol} \cdot \text{R} \\ 1545.37 \text{ ft} \cdot \text{lbf/lbmol} \cdot \text{R} \end{cases}$$

- The molar mass M can simply be defined as the mass of one mole (also called a gram-mole, abbreviated gmol) of a substance in grams, or the mass of one kmol (also called a kilogram-mole, abbreviated kgmol) in kilograms.
- The mass of a system is equal to the product of its molar mass M and the mole number N:

$$m = MN \quad (kg)$$

$$PU = RT$$

$$V = mU \longrightarrow PV = mRT$$

$$mR = (MN)R = NR_u \longrightarrow PV = NR_uT$$

$$V = N\overline{U} \longrightarrow P\overline{U} = R_uT$$

Where \overline{U} is the molar specific volume, that is, the volume per unit mole (in m³/kmol or ft³/lbmol). A bar above a property denotes values on a unit-mole basis throughout this text.

Properties per unit mole are denoted with a bar on the top.

Ideal gas equation at two states for a fixed mass

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Real gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).

The ideal-gas relation often is not applicable to real gases; thus, care should be exercised when using it.

5

Example 3-10

Determine the mass of the air in a room whose dimensions are 4 m \times 5 m \times 6 m at 100 kPa and 25°C.

Solution The mass of air in a room is to be determined.

Analysis A sketch of the room is given in Fig. 3–48. Air at specified conditions can be treated as an ideal gas. From Table A–1, the gas constant of air is $R = 0.287 \text{ kPa} \cdot \text{m}^3/\text{kg} \cdot \text{K}$, and the absolute temperature is $T = 25^{\circ}\text{C} + 273 = 298 \text{ K}$. The volume of the room is

$$V = (4 \text{ m})(5 \text{ m})(6 \text{ m}) = 120 \text{ m}^3$$

$$PV = mRT$$

$$m = \frac{PV}{RT} = \frac{(100 \text{ kPa})(120 \text{ m}^3)}{(0.287 \text{ kPa} \cdot \text{m}^3/\text{kg} \cdot \text{K})(298 \text{ K})} = 140.3 \text{ kg}$$

Is Water Vapor an Ideal Gas?

Percentage of error $([|v_{table} - v_{ideal}|/v_{table}] \times 100)$ involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.

Is Water Vapor an Ideal Gas?

- At pressures below 10 kPa, water vapor can be treated as an ideal gas, regardless of its temperature, with negligible error (less than 0.1 percent).
- At higher pressures, however, the ideal gas assumption yields unacceptable errors, particularly in the vicinity of the critical point and the saturated vapor line.
- In air-conditioning applications, the water vapor in the air can be treated as an ideal gas. Why?
- In steam power plant applications, however, the pressures involved are usually very high; therefore, ideal-gas relations should not be used.