CS315: DATABASE SYSTEMS NORMALIZATION THEORY

Arnab Bhattacharya

arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs315/

2nd semester, 2022-23 Tue 10:30-11:45, Thu 12:00-13:15

• Central question: how to design a "good" database?

- Central question: how to design a "good" database?
- Two ways of answering it: informally and formally

- Central question: how to design a "good" database?
- Two ways of answering it: informally and formally
- Informal
 - Schemas should represent distinct entities
 - Little or no redundancy in storage
 - No modification anomaly
 - Less number of or no null values
 - No spurious tuple

- Central question: how to design a "good" database?
- Two ways of answering it: informally and formally
- Informal
 - Schemas should represent distinct entities
 - Little or no redundancy in storage
 - No modification anomaly
 - Less number of or no null values
 - No spurious tuple
- Formally: Normalization theory

• Consider the following schema: (roll, name, courseid, title)

- Consider the following schema: (roll, name, courseid, title)
- Update anomaly
 - Changing title of a course causes updates to many students

- Consider the following schema: (roll, name, courseid, title)
- Update anomaly
 - Changing title of a course causes updates to many students
- Insert anomaly
 - Admitting a student immediately requires a course and vice versa

- Consider the following schema: (roll, name, courseid, title)
- Update anomaly
 - Changing title of a course causes updates to many students
- Insert anomaly
 - Admitting a student immediately requires a course and vice versa
- Delete anomaly
 - Deleting a course may delete all the corresponding students

- Consider the following schema: (roll, name, courseid, title)
- Update anomaly
 - Changing title of a course causes updates to many students
- Insert anomaly
 - Admitting a student immediately requires a course and vice versa
- Delete anomaly
 - Deleting a course may delete all the corresponding students
- Thus, a bad design

- Must preserve losslessness of the corresponding (natural) join
- Lossy decomposition

			roll	name	batch	
Suppose		20000	1	AB	2011	io docomposed into
		2	AB	2012	is decomposed into	
			3	CD	2014	
	roll	name		name	batch	
_	1	AB	_ and	AB	2011	
	2	AB	and	AB	2012	
	3	CD		CD	2014	

- Must preserve losslessness of the corresponding (natural) join
- Lossy decomposition

•						
			roll	name	batch	
Cum		222	1	AB	2011	io docomposed into
	Su	ppose	2	AB	2012	is decomposed into
			3	CD	2014	
	roll	nan	ne '	name	batch	
_	1	AE	3 anc	AB	2011	whose join produces
	2	AE	3	' AB	2012	whose join produces
	3	CE)	CD	2014	
		roll	name	batch		
	_	1	AB	2011	_	
		1	AB	2012	varith tva	vo enurious tuplos
		2	AB	2011	WILLI LW	vo spurious tuples
	2		AB	2012		
		3	CD	2014		

Lossless decomposition

		roll	n	ame	batch	
Cupi		1		AB	2011	is decomposed into
Suppose		2		AB	2012	is decomposed into
		3	(CD	2014	
roll	nam	е		roll	batch	
roll 1	nam AB		- d	roll 1	batch 2011	-
roll 1 2		ar	nd	roll 1 2		-

Lossless decomposition

			roll	name	batch	
Cupr		oose	1	AB	2011	is decomposed into
	Supp	JUSE	2	AB	2012	is decomposed into
			3	CD	2014	
	roll	nam	ie	roll	batch	
	1	AB	3	nd 1	2011	whose join produces
	2	AB	a	nd 2	2012	whose join produces
	3	CD)	3	2014	
			roll	name	batch	
			1	AB	2011	with no loss
			2	AB	2012	WILLI TIO 1035
			3	CD	2014	

Lossless decomposition

		roll	name	batch	
Sun	2000	1	AB	2011	is decomposed into
Sup	JUSE	2	AB	2012	is decomposed into
		3	CD	2014	
roll	nam	ie	roll	batch	
1	AB		$\frac{1}{1}$	2011	- whose join produces
2	AB	a	2	2012	whose join produces
3	CD	CD 3		2014	
		roll	name	batch	
		1	AB	2011	with no loss
		2	AB	2012	WILLI TIO 1055
		3	CD	2014	

Try to preserve functional dependencies

Functional Dependencies

- Functional dependencies (FDs) are constraints derived from the meaning of and relationships among attributes
- A set of attributes X functionally determines Y, denoted by $X \to Y$, if the value of X determines a *unique* value of Y
 - roll \rightarrow name; roll \rightarrow batch
- For any two tuples t_1 and t_2 in any *legal* instance of r(R), if $t_1.X = t_2.X$ then $t_1.Y = t_2.Y$
- A FD $X \to Y$ is trivial if it is satisfied for all instances of a relation
 - Y ⊂ X

Functional Dependencies

- Functional dependencies (FDs) are constraints derived from the meaning of and relationships among attributes
- A set of attributes X functionally determines Y, denoted by $X \to Y$, if the value of X determines a *unique* value of Y
 - $\bullet \ \ \text{roll} \rightarrow \text{name; roll} \rightarrow \text{batch}$
- For any two tuples t_1 and t_2 in any *legal* instance of r(R), if $t_1.X = t_2.X$ then $t_1.Y = t_2.Y$
- A FD X → Y is trivial if it is satisfied for all instances of a relation
 Y ⊂ X
- A candidate key functionally determines all attributes

Functional Dependencies

- Functional dependencies (FDs) are constraints derived from the meaning of and relationships among attributes
- A set of attributes X functionally determines Y, denoted by X → Y, if the value of X determines a unique value of Y
 roll → name: roll → batch
- For any two tuples t_1 and t_2 in any *legal* instance of r(R), if $t_1.X = t_2.X$ then $t_1.Y = t_2.Y$
- A FD X → Y is trivial if it is satisfied for all instances of a relation
 Y ⊂ X
- A candidate key functionally determines all attributes
- Functional dependencies and keys define normal forms for relations
- Normal forms are formal measures of how "good" a database design is

Armstrong's Axioms

- Given a set of FDs, additional FDs can be inferred using Armstrong's inference rules or Armstrong's axioms
 - \bigcirc Reflexive: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $X, Z \to Y, Z$
 - **1** Transitive: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Armstrong's Axioms

- Given a set of FDs, additional FDs can be inferred using Armstrong's inference rules or Armstrong's axioms
 - **1** Reflexive: If $Y \subseteq X$, then $X \to Y$
 - 2 Augmentation: If $X \to Y$, then $X, Z \to Y, Z$
 - **3** Transitive: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- These rules are
 - Sound: Any other rule derived from these holds
 - Complete: Any rule which holds can be derived from these

Armstrong's Axioms

- Given a set of FDs, additional FDs can be inferred using Armstrong's inference rules or Armstrong's axioms
 - **1** Reflexive: If $Y \subseteq X$, then $X \to Y$
 - 2 Augmentation: If $X \to Y$, then $X, Z \to Y, Z$
 - **3** Transitive: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- These rules are
 - Sound: Any other rule derived from these holds
 - Complete: Any rule which holds can be derived from these
- Other inferred rules
 - **1** Decomposition: If $X \to Y, Z$, then $X \to Y$ and $X \to Z$
 - **1** Union: If $X \to Y$ and $X \to Z$, then $X \to Y, Z$
 - **1** Pseudotransitivity: If $X \to Y$ and $W, Y \to Z$, then $W, X \to Z$

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X using F⁺

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X using F⁺
- F covers G if every FD in G can be inferred from F
- F covers G if $G^+ \subseteq F^+$

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X using F⁺
- F covers G if every FD in G can be inferred from F
- F covers G if $G^+ \subseteq F^+$
- Two sets of FDs F and G are equivalent if every FD in F can be inferred from G and vice versa
- F and G are equivalent if $F^+ = G^+$
- F and G are equivalent if F covers G and G covers F

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X using F⁺
- F covers G if every FD in G can be inferred from F
- F covers G if $G^+ \subseteq F^+$
- Two sets of FDs F and G are equivalent if every FD in F can be inferred from G and vice versa
- F and G are equivalent if $F^+ = G^+$
- F and G are equivalent if F covers G and G covers F
- A set of FDs is minimal if
 - Every FD in F has only a single attribute in RHS
 - Any $G \subset F$ is not equivalent to F
 - Any $F (X \to A) \cup (Y \to A)$ where $Y \subset X$ is not equivalent to F
- Every set of FD has at least one equivalent minimal set

Normal Forms

- The process of decomposing relations into smaller relations that conform to certain norms is called normalization
- Keys and FDs of a relation determine which normal form a relation is in
- Different normal forms
 - 1NF: based on attributes only
 - 2NF, 3NF, BCNF: based on keys and FDs
 - 4NF: based on keys and multi-valued dependencies (MVDs)
 - 5NF or PJNF: based on keys and join dependencies
 - DKNF: based on all constraints

- A relation is in 1NF if
 - Every attribute is atomic

- A relation is in 1NF if
 - Every attribute is atomic
- Phone numbers are not atomic

- A relation is in 1NF if
 - Every attribute is atomic
- Phone numbers are not atomic
- Values like "CS315" may not be considered atomic

- A relation is in 1NF if
 - Every attribute is atomic
- Phone numbers are not atomic
- Values like "CS315" may not be considered atomic

ld	Name	Phones	-
1	Α	{3, 4}	should be
2	В	{5}	_

- A relation is in 1NF if
 - Every attribute is atomic
- Phone numbers are not atomic
- Values like "CS315" may not be considered atomic

ld	Name	Phones	-
1	Α	{3, 4}	should be
2	В	{5 }	_

<u>ld</u>	Name	Phone
1	Α	3
1	Α	4
2	В	5

Nested Relations

- Nested relations or composite attributes should be decomposed
- Example

Faculty	Name	Course(Courseld, Title)
11	AB	(1, yz)
12	CD	(2, wx)
13	EF	(2, wx)
13	EF	(3, uv)

should be decomposed into

Nested Relations

- Nested relations or composite attributes should be decomposed
- Example

Faculty	Name	Course(Courseld, Title)
11	AB	(1, yz)
12	CD	(2, wx)
13	EF	(2, wx)
13	EF	(3, uv)

should be decomposed into

-	Name	Faculty
and	AB	11
anu	CD	12
	EF	13
-		

	Faculty	Courseld	Title
	11	1	yz
l	12	2	WX
	13	2	WX
	13	3	uv

Prime Attribute, Full and Transitive FD

- A prime attribute must be a member of some candidate key
 - Example: roll
- A non-prime attribute is not a member of any candidate key
 - Example: gender

Prime Attribute, Full and Transitive FD

- A prime attribute must be a member of some candidate key
 - Example: roll
- A non-prime attribute is not a member of any candidate key
 - Example: gender
- A FD X → Y is a full functional dependency if the FD does not hold when any attribute from X is removed
 - Example: (roll, courseid) → (grade)
- It is a partial functional dependency otherwise
 - (roll, gender) \rightarrow (name)

Prime Attribute, Full and Transitive FD

- A prime attribute must be a member of some candidate key
 - Example: roll
- A non-prime attribute is not a member of any candidate key
 - Example: gender
- A FD X → Y is a full functional dependency if the FD does not hold when any attribute from X is removed
 - Example: (roll, courseid) → (grade)
- It is a partial functional dependency otherwise
 - (roll, gender) → (name)
- A FD X → Y is a transitive functional dependency if it can be derived from two FDs X → Z and Z → Y where Z is not a set of prime attributes
 - Example: (roll) → (hod) since (roll) → (dept) and (dept) → (hod) hold
- It is non-transitive otherwise
 - Example: (roll) → (name)

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key
- Alternatively, every attribute should either be
 - In a candidate key or
 - Depend fully on every candidate key

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key
- Alternatively, every attribute should either be
 - In a candidate key or
 - Depend fully on every candidate key
- Consider (<u>roll</u>, <u>courseid</u>, grade, name, title) with FDs:
 (roll, courseid) → (grade); (roll) → (name); (courseid) → (title)

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key
- Alternatively, every attribute should either be
 - In a candidate key or
 - Depend fully on every candidate key
- Consider (<u>roll</u>, <u>courseid</u>, grade, name, title) with FDs: (roll, courseid) → (grade); (roll) → (name); (courseid) → (title)
- It is not in 2NF since (name) depends partially on (roll), and (title) depends partially on (courseid)
- After 2NF normalization,

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key
- Alternatively, every attribute should either be
 - In a candidate key or
 - Depend fully on every candidate key
- Consider (<u>roll</u>, <u>courseid</u>, grade, name, title) with FDs: (roll, courseid) \rightarrow (grade); (roll) \rightarrow (name); (courseid) \rightarrow (title)
- It is not in 2NF since (name) depends partially on (roll), and (title) depends partially on (courseid)
- After 2NF normalization,
 - (roll, courseid, grade) with FD: (roll, courseid) → (grade)
 - (roll, name) with FD: (roll) → (name)
 - (courseid, title) with FD: (courseid) → (title)

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key
- Alternatively, for every FD X → Y, either
 - It is trivial, or
 - X is a superkey, or
 - Every attribute in Y − X is prime

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey, or
 - Every attribute in Y − X is prime
- Consider (facultyid, name, courseid, title) with FDs: (facultyid) → (name, courseid); (courseid) → (title)

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey, or
 - Every attribute in Y X is prime
- Consider (facultyid, name, courseid, title) with FDs: (facultyid) → (name, courseid); (courseid) → (title)
- It is not in 3NF since (title) depends transitively on (facultyid) through (courseid)
- After 3NF normalization,

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey, or
 - Every attribute in Y − X is prime
- Consider (facultyid, name, courseid, title) with FDs: (facultyid) → (name, courseid); (courseid) → (title)
- It is not in 3NF since (title) depends transitively on (facultyid) through (courseid)
- After 3NF normalization,
 - (\underline{roll} , name, courseid) with FD: (facultyid) \rightarrow (name, courseid)
 - (<u>courseid</u>, title) with FD: (courseid) → (title)

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- Also called 3.5NF

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- Also called 3.5NF
- BCNF decomposition can lose FDs

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- Also called 3.5NF
- BCNF decomposition can lose FDs
- Consider ($\underline{\sf Id}$, Dist, Lot, Area) with FDs: (Id) \to (Dist, Lot, Area); (Dist, Lot) \to (Id, Area); (Area) \to (Dist)

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- Also called 3.5NF
- BCNF decomposition can lose FDs
- Consider (\underline{Id} , Dist, Lot, Area) with FDs: (Id) \rightarrow (Dist, Lot, Area); (Dist, Lot) \rightarrow (Id, Area); (Area) \rightarrow (Dist)
- It is not in BCNF since (Area) is not a superkey although (Area) → (Dist) holds
- After BCNF normalization,

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- Also called 3.5NF
- BCNF decomposition can lose FDs
- Consider (\underline{Id} , Dist, Lot, Area) with FDs: (Id) \rightarrow (Dist, Lot, Area); (Dist, Lot) \rightarrow (Id, Area); (Area) \rightarrow (Dist)
- It is not in BCNF since (Area) is not a superkey although (Area) → (Dist) holds
- After BCNF normalization,
 - (<u>Id</u>, Lot, Area) with FD: (Id) → (Dist, Lot, Area)
 - (Dist, Area) with FD: (Area) → (Dist)
- Loses the FD (Dist, Lot) → (Id, Area)

- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)

- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Difference lies in one condition
 - X → Y where Y is prime is allowed in 3NF

- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Difference lies in one condition
 - X → Y where Y is prime is allowed in 3NF
- Consider (city, <u>showroom</u>, mall) with FDs: (mall) → (city); (city, showroom) → (mall)

- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Difference lies in one condition
 - $X \rightarrow Y$ where Y is prime is allowed in 3NF
- Consider (city, showroom, mall) with FDs: (mall) → (city); (city, showroom) → (mall)
- Candidate keys are (city, showroom) and (mall, showroom) but not (city, mall)

- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Difference lies in one condition
 - $X \rightarrow Y$ where Y is prime is allowed in 3NF
- Consider (city, showroom, mall) with FDs: (mall) → (city); (city, showroom) → (mall)
- Candidate keys are (city, showroom) and (mall, showroom) but not (city, mall)
- Not in BCNF as (mall) → (city) violates with (mall) not being a superkey

- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Difference lies in one condition
 - $X \rightarrow Y$ where Y is prime is allowed in 3NF
- Consider (city, <u>showroom</u>, mall) with FDs: (mall) → (city); (city, showroom) → (mall)
- Candidate keys are (city, showroom) and (mall, showroom) but not (city, mall)
- Not in BCNF as (mall) → (city) violates with (mall) not being a superkey
- BCNF decomposition is not possible while guaranting both losslessness and dependency preservation

- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Difference lies in one condition
 - $X \rightarrow Y$ where Y is prime is allowed in 3NF
- Consider (city, showroom, mall) with FDs: (mall) → (city); (city, showroom) → (mall)
- Candidate keys are (city, showroom) and (mall, showroom) but not (city, mall)
- Not in BCNF as (mall) → (city) violates with (mall) not being a superkey
- BCNF decomposition is not possible while guaranting both losslessness and dependency preservation
- Therefore, "good" design ensures either BCNF or its relaxation, i.e., 3NF

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

According to rule, (<u>mall</u>, city) and (<u>showroom</u>, city)

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

• According to rule, (mall, city) and (showroom, city)

mall	city	showroom	city
iit	kanpur	tata	kanpur
zsq	kanpur	maruti	kanpur
quest	kolkata	tata	kolkata

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

• According to rule, (mall, city) and (showroom, city)

mall	city	showroom	city
iit	kanpur	tata	kanpur
zsq	kanpur	maruti	kanpur
quest	kolkata	tata	kolkata

Joining produces

showroom	city	mall
tata	kanpur	iit
tata	kanpur	zsq
maruti	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

• If (mall, showroom) and (showroom, city)

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

• If (mall, showroom) and (showroom, city)

mall	showroom		showroom	city
iit	tata	_	tata	kanpur
quest	tata		maruti	kanpur
zsq	maruti	_	tata	kolkata

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

• If (mall, showroom) and (showroom, city)

mall	showroom	showroom	city
iit	tata	tata	kanpur
quest	tata	maruti	kanpur
zsq	maruti	tata	kolkata

Joining produces

showroom	city	mall
tata	kanpur	iit
tata	kanpur	quest
maruti	kanpur	zsq
tata	kolkata	iit
tata	kolkata	quest

Lossless Decomposition

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

Lossless Decomposition

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

• If (mall, showroom) and (mall, city)

Lossless Decomposition

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

• If (mall, showroom) and (mall, city)

mall	showroom	
iit	tata	
quest	tata	
zsq	maruti	(

mall	city
iit	kanpur
zsq	kanpur
quest	kolkata

Lossless Decomposition

showroom	city	mall
tata	kanpur	iit
maruti	kanpur	zsq
tata	kolkata	quest

• If (mall, showroom) and (mall, city)

mall	showroom	mall	city
iit	tata	iit	kanpur
quest	tata	zsq	kanpur
zsq	maruti	quest	kolkata

Joining correctly produces

showroom	city	mall
tata	kanpur	iit
tata	kolkata	quest
maruti	kanpur	zsq

- Possible decomposition is
 - (mall, city) and (mall, showroom)

- Possible decomposition is
 - (mall, city) and (mall, showroom)
- FD (city, showroom) → (mall) is lost

- Possible decomposition is
 - (mall, city) and (mall, showroom)
- FD (city, showroom) → (mall) is lost
- This is allowed

ma	all	city	mall	showroom
ii	t	kanpur	iit	tata
ZS	q	kanpur	zsq	tata

- Possible decomposition is
 - (mall, city) and (mall, showroom)
- FD (city, showroom) → (mall) is lost
- This is allowed

mall	city	mall	showroom
iit	kanpur	iit	tata
zsq	kanpur	zsq	tata

although joining them produces

mall	city	showroom
iit	kanpur	tata
zsq	kanpur	tata

that *violates* the FD (city, showroom) → (mall)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) \rightarrow (Price)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) → (Price)
- L is not in 2NF because (Rate) depends partially on (Dist)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) \rightarrow (Price)
- L is not in 2NF because (Rate) depends partially on (Dist)
- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) \rightarrow (Price)
- $L_2 = (\underline{\text{Dist}}, \text{Rate}) \text{ with FD}$:
 - (Dist) → (Rate)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) \rightarrow (Rate)
 - (Area) → (Price)
- L is not in 2NF because (Rate) depends partially on (Dist)
- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) \rightarrow (Price)
- $L_2 = (\underline{\text{Dist}}, \text{Rate}) \text{ with FD}$:
 - (Dist) → (Rate)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) \rightarrow (Price)
- L is not in 2NF because (Rate) depends partially on (Dist)
- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) \rightarrow (Price)
- $L_2 = (\underline{\text{Dist}}, \text{Rate}) \text{ with FD}$:
 - (Dist) → (Rate)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)
- L2 is in 2NF and in 3NF

Example (contd.)

- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) → (Price)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)

Example (contd.)

- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) \rightarrow (Price)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)
- $L_{11} = (\underline{Id}, Dist, Lot, Area)$ with FDs:
 - (Id) → (Dist, Lot, Area)
 - (Dist, Lot) → (Id, Area)
- $L_{12} = (\underline{\text{Area}}, \text{Price}) \text{ with FD}$:
 - (Area) → (Price)

Example (contd.)

- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) → (Price)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)
- L₁₁ = (Id, Dist, Lot, Area) with FDs:
 - (Id) → (Dist, Lot, Area)
 - (Dist, Lot) → (Id, Area)
- $L_{12} = (\underline{\text{Area}}, \text{Price}) \text{ with FD}$:
 - (Area) → (Price)
- L₁₁ and L₁₂ are in 3NF

 1NF: The relation should have no multivalued attributes or nested relations

- 1NF: The relation should have no multivalued attributes or nested relations
- 2NF: For a relation where candidate key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the candidate key

- 1NF: The relation should have no multivalued attributes or nested relations
- 2NF: For a relation where candidate key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the candidate key
- 3NF: The relation should not have a nonkey attribute functionally determined by a set of nonkey attributes

- 1NF: The relation should have no multivalued attributes or nested relations
- 2NF: For a relation where candidate key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the candidate key
- 3NF: The relation should not have a nonkey attribute functionally determined by a set of nonkey attributes
- BCNF: The relation should not have an attribute functionally determined by a set of nonkey attributes

 1NF: Form new relations for each multi-valued attribute or nested relation

- 1NF: Form new relations for each multi-valued attribute or nested relation
- 2NF: Decompose and set up a relation for each partial key with its dependent(s); retain the primary key and attributes fully dependent on it

- 1NF: Form new relations for each multi-valued attribute or nested relation
- 2NF: Decompose and set up a relation for each partial key with its dependent(s); retain the primary key and attributes fully dependent on it
- 3NF: Decompose and set up a relation for each transitively dependent nonkey attribute with nonkey attributes that it functionally depends upon

- 1NF: Form new relations for each multi-valued attribute or nested relation
- 2NF: Decompose and set up a relation for each partial key with its dependent(s); retain the primary key and attributes fully dependent on it
- 3NF: Decompose and set up a relation for each transitively dependent nonkey attribute with nonkey attributes that it functionally depends upon
- BCNF: Decompose and set up a relation for each nonkey attribute with attributes functionally dependent on it

- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>)
 - (c, t, b): t can teach c, and b is a textbook for c
- No other FD
- Therefore, relation is in BCNF

- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>)
 - (c, t, b): t can teach c, and b is a textbook for c
- No other FD
- Therefore, relation is in BCNF

course	teacher	book
C1	AB	B1
C1	AB	B2
C1	CD	B1
C1	CD	B2
C2	EF	B3
C2	EF	B4
C2	AB	B3
C2	AB	B4

- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>)
 - (c, t, b): t can teach c, and b is a textbook for c
- No other FD
- Therefore, relation is in BCNF

course	teacher	book
C1	AB	B1
C1	AB	B2
C1	CD	B1
C1	CD	B2
C2	EF	B3
C2	EF	B4
C2	AB	B3
C2	AB	B4

- Modification anomalies are still there
 - Inserting a new teacher for C1 requires two tuples

- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>)
 - (c, t, b): t can teach c, and b is a textbook for c
- No other FD
- Therefore, relation is in BCNF

course	teacher	book
C1	AB	B1
C1	AB	B2
C1	CD	B1
C1	CD	B2
C2	EF	B3
C2	EF	B4
C2	AB	B3
C2	AB	B4

- Modification anomalies are still there
 - Inserting a new teacher for C1 requires two tuples
 - Better design if (course, teacher) and (course, book)

Multi-Valued Dependency (MVD)

- A multi-valued dependency (MVD) X woheadrightarrow Y holds for a relation schema R if for all *legal* relations r(R), if for a pair of tuples t_1 and t_2 , $t_1.X = t_2.X$, then there exists another pair of tuples t_3 and t_4
 - $t_1.X = t_2.X = t_3.X = t_4.X$
 - $t_3.Y = \bar{t_1}.Y$
 - $t_3.R Y X = t_2.R Y X$
 - $t_4.Y = t_2.Y$
 - $t_4.R Y X = t_1.R Y X$

	Χ	Υ	R - Y - X
t_1	а	b	С
t_2	а	d	е
<i>t</i> ₂ <i>t</i> ₃	a a a a	b	е
t_4	а	d	С

- Example: (course) -> (teacher) in (course, teacher, book)
 - If (C1, AB, B1) and (C1, CD, B2) exist, then (C1, AB, B2) and (C1, CD, B1) must exist
 - Otherwise, AB (resp. CD) has something special to do with B1 (resp. B2)

• $X \rightarrow Y$ implies $X \rightarrow R - Y - X$

- $X \rightarrow Y$ implies $X \rightarrow R Y X$
- $R = (\underline{X}, \underline{Y}, \underline{Z})$
- X → Y, and by symmetry, X → Z
- Then, decomposition into (X, Y) and (X, Z) will be lossless
- For any relation $r = \Pi_{X,Y}(r) \bowtie \Pi_{X,Z}(r)$

- $X \rightarrow Y$ implies $X \rightarrow R Y X$
- $R = (\underline{X}, \underline{Y}, \underline{Z})$
- X → Y, and by symmetry, X → Z
- Then, decomposition into (X, Y) and (X, Z) will be lossless
- For any relation $r = \Pi_{X,Y}(r) \bowtie \Pi_{X,Z}(r)$
- A MVD $X \rightarrow Y$ on R is trivial if either $Y \subseteq X$ or $R = X \cup Y$
- It is non-trivial otherwise

- $X \rightarrow Y$ implies $X \rightarrow R Y X$
- $R = (\underline{X}, \underline{Y}, \underline{Z})$
- X → Y, and by symmetry, X → Z
- Then, decomposition into (X, Y) and (X, Z) will be lossless
- For any relation $r = \Pi_{X,Y}(r) \bowtie \Pi_{X,Z}(r)$
- A MVD $X \rightarrow Y$ on R is trivial if either $Y \subseteq X$ or $R = X \cup Y$
- It is non-trivial otherwise
- Closure of a set of MVDs is the set of all MVDs that can be inferred

- A relation is in 4NF
 - If X → Y is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD X → Y, either
 - It is trivial, or
 - X is a superkey

- A relation is in 4NF
 - If X → Y is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD X → Y, either
 - It is trivial, or
 - X is a superkey
- Every 4NF relation is in BCNF
- Consider (course, teacher, book) with MVD: course → book

- A relation is in 4NF
 - If X → Y is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD X → Y, either
 - It is trivial, or
 - X is a superkey
- Every 4NF relation is in BCNF
- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>) with MVD: course --> book
- It is not in 4NF since (course) is not a superkey
- After 4NF normalization,

- A relation is in 4NF
 - If X → Y is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD X → Y, either
 - It is trivial, or
 - X is a superkey
- Every 4NF relation is in BCNF
- Consider (course, teacher, book) with MVD: course → book
- It is not in 4NF since (course) is not a superkey
- After 4NF normalization,
 - (course, book) with trivial MVD: (course) → (book)
 - (course, teacher) with trivial MVD: (course) → (teacher)
- Decompose R with X → Y into (X,Y) and (X,R-Y-X)

- A relation is in 4NF
 - If X → Y is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD X → Y, either
 - . It is trivial, or
 - X is a superkey
- Every 4NF relation is in BCNF
- Consider (course, teacher, book) with MVD: course --> book
- It is not in 4NF since (course) is not a superkey
- After 4NF normalization,
 - (course, book) with trivial MVD: (course) → (book)
 - (course, teacher) with trivial MVD: (course) → (teacher)
- Decompose R with X → Y into (X,Y) and (X,R-Y-X)

course	teacher		course	book
C1	AB		C1	B1
C1	CD		C1	B2
C2	EF		C2	B3
C2	AB	_	C2	B4

- General way of decomposing a relation into multi-way joins
- A join dependency (JD) $(R_1 \subseteq R, ..., R_n \subseteq R)$ holds for a schema R if for all *legal* relations r(R),

$$\bowtie_{i=1}^n (\Pi_{R_i}(r)) = r$$

- General way of decomposing a relation into multi-way joins
- A join dependency (JD) $(R_1 \subseteq R, ..., R_n \subseteq R)$ holds for a schema R if for all *legal* relations r(R),

$$\bowtie_{i=1}^n (\Pi_{R_i}(r)) = r$$

A JD is trivial if one of R_i is R itself

- General way of decomposing a relation into multi-way joins
- A join dependency (JD) $(R_1 \subseteq R, ..., R_n \subseteq R)$ holds for a schema R if for all *legal* relations r(R),

$$\bowtie_{i=1}^n (\Pi_{R_i}(r)) = r$$

A JD is trivial if one of R_i is R itself

Salesman	Brand	Product
J	Α	V
J	Α	В
W	Α	V
W	Α	В
W	R	V
W	R	Р

- If S sells products of brand B and if S sells product type P, then S
 must sell product type P of brand B (assuming B makes P)
- This means that $(S,B) \bowtie (B,P) \bowtie (P,S)$ is equal to (S,B,P)

- General way of decomposing a relation into multi-way joins
- A join dependency (JD) $(R_1 \subseteq R, ..., R_n \subseteq R)$ holds for a schema R if for all *legal* relations r(R),

$$\bowtie_{i=1}^n (\Pi_{R_i}(r)) = r$$

• A JD is trivial if one of R_i is R itself

Salesman	Brand	Product
J	Α	V
J	Α	В
W	Α	V
W	Α	В
W	R	V
W	R	Р

- If S sells products of brand B and if S sells product type P, then S
 must sell product type P of brand B (assuming B makes P)
- This means that $(S,B) \bowtie (B,P) \bowtie (P,S)$ is equal to (S,B,P)
- A MVD is a special case of JD with n = 2

Fifth Normal Form (5NF) or Project-Join Normal Form (PJNF)

- A relation is in 5NF or PJNF
 - If $(R_1, ..., R_n)$ is a non-trivial JD, then every R_i is a superkey of R

Fifth Normal Form (5NF) or Project-Join Normal Form (PJNF)

- A relation is in 5NF or PJNF
 - If $(R_1, ..., R_n)$ is a non-trivial JD, then every R_i is a superkey of R
- Consider that J starts selling brand R's products
- Insertion anomaly since multiple tuples need to be inserted

Fifth Normal Form (5NF) or Project-Join Normal Form (PJNF)

- A relation is in 5NF or PJNF
 - If $(R_1, ..., R_n)$ is a non-trivial JD, then every R_i is a superkey of R
- Consider that J starts selling brand R's products
- Insertion anomaly since multiple tuples need to be inserted
- Better design if broken into three relations (B,P), (S,B), and (P,S)

Brand	Product			Product	Salesman
Diana	1 100000	Salesman	Brand	V	J
A	<u> </u>		Α	В	J
Α	В	W	Δ	V	W
R	V	W		v	W
R	Р	VV	n	D	VV
	<u></u>			Р	W

• Now, insertion requires only one tuple (J, R) in (Salesman, Brand)

Domain-Key Normal Form (DKNF)

- A relation schema is in domain-key normal form (DKNF) if all constraints and relations that should hold can be enforced simply by domain constraints and key constraints
- Ideal normal form
- Once a relation is in DKNF, there is no anomaly
- Mostly theoretical