

Web-basierte Geoprozessierung mit Python und PyWPS

Jonas Eberle

Friedrich Schiller Universität Jena Institut für Geographie Lehrstuhl für Fernerkundung

Email: jonas.eberle@uni-jena.de

Web: www.eo.uni-jena.de

Über mich

Jonas Eberle

- Wissenschaftlicher Mitarbeiter, Doktorand an der Universität Jena
- Freiberuflicher Web-und Software-Entwickler

Ausbildung

- Bachelor of Science Angewandte Informatik mit Studienrichtung Umweltinformatik, Hochschule Ostwestfalen
- Master of Science Geoinformatik & Fernerkundung, Universität Jena

Mein Fokus

 Web-basierte Tools für den Zugriff und die Analyse von Erdbeobachtungs-Zeitreihendaten basierend auf OGC-kompatiblen Diensten für Web- und Mobil-Anwendungen

Motivation

- Warum brauchen wir web-basierte Geoprozessierungsdienste?
 - Verarbeitung von Geodaten über das Internet
 - z.B. Transformation von Koordinaten, Berechnung des Höhenprofils
 - Zugriff auf externe Datenprovider inklusive der Vorverarbeitung der Daten
 - Verstecken der Verarbeitungskomplexität
 - Parallele Verarbeitung durch Cloud / Cluster
 - Multi-core Verarbeitung
 - Abbauen von Barrieren in Datenzugriff und –analyse
 - Automatische Verknüpfung von Datenzugriff und -analyse
 - "Pay per use" business model?
- Warum sollte Geoprozessierungsdienste über WPS verfügbar sein?
 - Standard-kompatible Clients (z.B., QGIS Plugin, Python-Bibliothek "OWSlib")
 können direkt mit den bereitgestellten Diensten arbeiten
 - Wiederverwendung von existierenden Bibliotheken und Anwendungen (z.B., Clients, Monitoring, Logging)

OGC Web Processing Service (WPS)

WPS Version 1.0

Neue Methoden in WPS 2.0:

- GetStatus
- GetResult
- Dismiss

WPS Beispielaufrufe

http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi?service=WPS&version=1.0.0 request=**GetCapabilities**

request=**DescribeProcess**&identifier=1013_single_ts_plot_point

request=**Execute**&identifier=1013_single_ts_plot_point&datainputs=
[datasetName=mod13q1_evi;pointX=13.54;pointY=52.31]
&status=true&storeExecuteResponse=true (optional)

WPS Software (open source)

Software	Language	Supported process languages	Website
52° North WPS	Java	Java, R (WPS4R interface)	52north.org/wps
Degree WPS	Java	Java	www.deegree.org
ZOO WPS	С	C, Python, PHP, Java, JavaScript	www.zoo-project.org
PyWPS	Python	Python	pywps.wald.intevation.org
Geoserver WPS	Java	Java, Python	geoserver.org

WPS Prozessbeschreibung

Input- und Outputtypen

ComplexData

- i.d.R. genutzt f
 ür Raster- und Vektordaten
- Referenziert als URL oder kodiert in Anfrage/Antwort
- Datenformate: Raster, Vektor, XML, JSON, etc.

LiteralData

- genutzt für "einfache" Werte
- Datenformate: Zeichenketten, Ganzahlen, Fließkommazahlen, etc.

BoundingBoxData

- Koordinatenpaare der Ecken in einem definierten Koordinatensystem
- Format: minx, miny, maxx, maxy

Python

- Open Source Programmiersprache
- http://python.org
- Standardbibliotheken
 - os, sys
 - CSV
 - json
 - requests (HTTP)

Geo/GIS-Bibliotheken

- Lesen, Schreiben, Transformieren: GDAL/OGR, Fiona, RasterlO
- Geometrien: Shapely
- Koordinaten: PyProj
- Rasterverarbeitung: NumPy
- GIS: PyGRASS, PyQGIS

Anwendungen

- Desktop-GIS Scripting (QGIS, GRASS GIS, ArcGIS)
- WebGIS Server (pycsw, PyWPS)
- WebGIS CMS (GeoNode, Django)
- WebGIS Clients (OWSlib)

PyWPS

- Implementierung der OGC Web Processing Service (WPS) Spezifikation des OGC
- PyWPS ist geschrieben in Python
- Erste Entwicklung 2006 durch Jachym Cepicky
- Unterstützt alle verfügbaren Tools in Python
- http://pywps.org
- Aktuelle stabile Version: 3.2.6
- Komplette Neuentwicklung: PyWPS 4
- OSGeo Incubation dieses Jahr gestartet
- Google Summer of Code Projekte

PyWPS Workshop auf der FOSS4G:

Online-Tutorials für PyWPS 3 und 4, siehe http://pywps.org

PyWPS 3 Prozessbeispiel #1

```
from pywps.Process import WPSProcess
import types
class Process(WPSProcess):
    def __init__(self):

# init process
WPSProcess.__init__(self,
        identifier = "test_prozess",
        title="Test Prozess",
        version = "0.1",
        storeSupported = "true",
        statusSupported = "true",
        abstract="liest einen LiteralInput vom Typ
            string ein und gibt ihn wieder aus",
        grassLocation =False)

#Definition der Prozess Inputs
```

Prozesseigenschaften

Prozess-Input(s)

Prozess-Output(s)

```
def execute(self):
    self.str_out.setValue(self.str_in.getValue())
    return
```

Prozessausführung

PyWPS 3 Prozessbeispiel #2

```
# process inputs
self.wkt = self.addLiteralInput(identifier="wkt",
    title = "wkt".
    abstract="",
    type=types.StringType,
    minOccurs=1.
    max0ccurs=1
self.epsq source = self.addLiteralInput(identifier="epsq source",
    title = "Source EPSG projection",
    abstract="",
    type=types.IntType,
    min0ccurs=1.
    max0ccurs=1
self.epsq target = self.addLiteralInput(identifier="epsq target",
    title = "Target EPSG projection",
    abstract="",
                                        # process output
    type=types.IntType,
                                        self.output = self.addLiteralOutput(identifier="output",
    min0ccurs=1.
                                            title = "WKT output",
    max0ccurs=1
                                            abstract="",
                                            type=types.StringType
```


PyWPS 3 Prozessbeispiel #2

```
def execute(self):
   # get input values
   wkt = self.wkt.getValue()
   epsg source = int(self.epsg source.getValue())
   epsg_target = int(self.epsg_target.getValue())
   osr.UseExceptions()
   # Achtung: Zur Uebersicht werden in diesem Beispiel keine Exceptions aufgefangen!
   source = osr.SpatialReference()
   source.ImportFromEPSG(epsg source)
   target = osr.SpatialReference()
   target.ImportFromEPSG(epsg target)
   geom = ogr.CreateGeometryFromWkt(wkt)
   transform = osr.CoordinateTransformation(source, target)
   geom.Transform(transform)
   output wkt = geom.ExportToWkt()
   # return output
   self.output.setValue(output_wkt)
```


Client-Bibliotheken

- OpenLayers 2 WPS Client
 - http://dev.openlayers.org/examples/wps-client.html
- OpenLayers 3 WPS Client
 - https://github.com/boundlessgeo/wps-gui/blob/master/src/wpsclient.js
- Python "OWSlib"
 - https://geopython.github.io/OWSLib/#wps
- QGIS Desktop
 - https://plugins.qgis.org/plugins/wps/

Use case: Earth Observation Monitor

Datenzugriff und -analyse für Vegetationszeitreihen

Verwendete Datensätze

- MODIS Vegetation Produkt (MOD13Q1)
- Globale Verfügbarkeit mit der Google Earth Engine

Verfügbare WPS Dienste

- Datenintegration f
 ür Punkt und Polygone
- Trendberechnungen
- Breakpoint-Berechnungen
- Ableitung phänologischer Parameter

Client-Anwendungen

- Webportal: <u>www.earth-observation-monitor.net</u>
- Mobile App f
 ür Android & iOS: mobileEOM

Client-Anwendung: mobileEOM

Live-Demo

http://artemis.geogr.uni-jena.de/eoscience20/fossgis.html

Google Earth Engine

- NASA MODIS
- Landsat 1-8
- Sentinel-1

ESA Science Data Hub

Sentinel-1

PyWPS Workshop auf der FOSS4G:

Vielen Dank für die Aufmerksamkeit.

Fragen?

Kontaktinformationen

Jonas Eberle
Friedrich-Schiller-University
Institute for Geography
Department Earth Observation
Loebdergraben 32
07743 Jena, Germany

phone: +49 3641 94 88 89

email: jonas.eberle@uni-jena.de

WPS for data access

MODIS Vegetation pixel time-series

http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi?service=WPS&version= 1.0.0&request=Execute&identifier=1013_single_ts_plot_point&datainputs=[dat asetName=mod13q1_evi;pointX=13.54;pointY=52.31]

http://artemis.geogr.uni-jena.de/pywps/tmp/b5b17389-05d7-4058-9d87-aea05a0234d7/data/

data.RData	03-Aug-2015 19:30 10K
data.csv	03-Aug-2015 19:30 9.5K
data.old.csv	03-Aug-2015 19:30 36
decompose.csv	03-Aug-2015 19:30 25K
decompose.png	03-Aug-2015 19:30 67K
plot.png	03-Aug-2015 19:30 47K
process.cfg	03-Aug-2015 19:30 158
sos.csv	03-Aug-2015 19:30 13K

	date	value	quality	interpolated
1	2000-02-18	0.153	1	0
2	2000-03-05	0.1364	0	0
3	2000-03-21	0.1416	0	0
4	2000-04-06	0.1719	1	0
5	2000-04-22	0.1931	0	0
6	2000-05-08	0.2309	1	0
7	2000-05-24	0.2801	1	0
8	2000-06-09	0.3254	1	0
9	2000-06-25	0.3882	1	0
10	2000-07-11	0.2612	1	0
11	2000-07-27	0.2811333333333333	3	1
12	2000-08-12	0.301066666666667	3	1

Output uuid: b5b17389-05d7-4058-9d87-aea05a0234d7

WPS for data access

MODIS Vegetation polygon time-series

```
http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi?service=WPS&version= 1.0.0&request=Execute&identifier=1013_single_ts_plot_polygon&datainputs=[datasetName=mod13q1_evi;wkt=POLYGON((13.59 55.79, 14.72 55.84, 14.10 58.48, 13.00 58.43, 13.59 55.79))]
```

http://artemis.geogr.uni-jena.de/pywps/tmp/1109b91c-34d7-4404-bfe4-02d55ea4b1c0/

```
data/
   data.csv
   files.txt
   GEE_data.json
   output
       analysis clipped.vrt
       MOD1301.A2000049.EVI.tif
       MOD1301.A2000065.EVI.tif
       MOD1301.A2000081.EVI.tif
       MOD1301.A2000097.EVI.tif
       MOD1301.A2015305.EVI.tif
   plot.png
   polygon_modis.wkt
   polygon_wgs84.wkt
   process.cfg
   ts.info
```

Polygon-based time-series observations (EVI example) in the final GeoTiff raster file format (output folder, files.txt), original files from Google Earth Engine (GEE_data.json) and further statistical summaries (data.csv, plot.png)

WPS for data analysis

Breakpoints for vegetation time-series

```
http://artemis.geogr.uni-jena.de/cgi-bin/
testbox.cgi?
service=WPS&version=1.0.0&request=Execute&i
dentifier=2010 single ts bfast point&datain
puts=[uuid=b5b17389-05d7-4058-9d87-
aea05a0234d7]
```

⊭ eţ

BFAST Plot

Trends for vegetation time-series data

greenbrown Trend Analysis

5. Juli 2016 19 Jonas Eberle

WPS for data discovery

Sentinel-1 ESA Data Hub – Overlapping areas

```
http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi?service=WPS&version= 1.0.0&request=Execute&identifier=s1_datahub_test&datainputs=[wkt=POLYGON(( 13.59 55.79, 14.72 55.84, 14.10 58.48, 13.00 58.43, 13.59 55.79)); product=GRD; maxoverlap=70] &rawdataoutput=output
```

```
Title,
                                          Link,
                               Overlap,
                                                      Geometry
                                 0.94,
                                          Download,
S1A EW GRDM 1SDH 20150427T...,
                                                      POLYGON ((...))
S1A EW GRDM 1SDH 20150427T...,
                                          Download,
                                                      POLYGON ((...))
                                 1.00.
S1A EW GRDM 1SDH 20150422T...,
                                          Download,
                                 0.87,
                                                      POLYGON ((...))
S1A EW GRDM 1SDH 20150415T...,
                                 0.94,
                                          Download,
                                                      POLYGON ((...))
S1A EW GRDM 1SDH 20150415T...,
                                          Download,
                                 1.00.
                                                      POLYGON ((...))
S1A EW GRDM 1SDH 20150410T...,
                                 0.87,
                                           Download,
                                                      POLYGON ((...))
```

• • •

WPS for data discovery

Landsat and Google Earth Engine example

```
http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi?service=WPS&version=
1.0.0&request=Execute&identifier=gee_agu_getscenes&datainputs=[wkt=POINT(
11 51);dataset=LANDSAT/LC8_L1T;start=2013-11-01;end=2014-07-20;
maxcloudcover=30]
```