CSE 2500-01: Homework 7

Arturo Salinas-Aguayo

Spring 2025

Electrical and Computer Engineering Department

College of Engineering, University of Connecticut $_{\text{Coded in } \textsc{LAT}_{\textsc{EX}}}$

Problems

$_{ m LHS}$	RHS
$\sum_{i=0}^{0} r^{i}$	$\frac{r^{0+1}-1}{r-1}$
II	II
r^0	$\frac{r-1}{r-1}$
II	11
1	1
II	II
1	1

Therefore, LHS = RHS

Theorem 1: Induction Proof 1

Prove the following statement using mathematical induction:

$$\forall n \in \mathbb{Z}, n \ge 1, \quad \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

Proof by Mathematical Induction.

Let the property, P(n) be the equation:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

Base Case: Show that P(1) is true.

$$\begin{array}{ccc}
LHS & RHS \\
\frac{1}{1(1+1)} & \frac{1}{1+1} \\
\parallel & \parallel \\
\frac{1}{2} & = & \frac{1}{2}
\end{array}$$

Therefore, P(1) is true.

Inductive Step: Assume that P(k) is true for some integer $k \geq 1$. That is, assume:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$

We need to show that P(k+1) is true.

LHS
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{(k+1)((k+1)+1)}$$

$$\frac{k}{k+1} + \frac{1}{(k+1)((k+1)+1)}$$

$$\frac{k}{(k+1)} + \frac{1}{(k+1)((k+1)+1)}$$

$$\frac{k(k+1)+1}{(k+1)(k+2)}$$

$$\parallel$$

$$\frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$\parallel$$

$$\frac{k+1}{k+2}$$

$$= \frac{k+1}{k+2}$$

Thus, we have shown that if P(k) is true, then P(k+1) is also true.

QED

Theorem 2: Induction Proof 2

Prove the following statement using mathematical induction:

$$\forall n \in \mathbb{Z}, n \ge 0, \quad \sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2$$

Proof by Mathematical Induction.

Let the property, P(n) be the equation:

$$\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2$$

Base Case: Show that P(0) is true.

$$\begin{array}{ccc} \mathbf{LHS} & \mathbf{RHS} \\ \sum_{i=1}^{0+1} i \cdot 2^i & 0 \cdot 2^{0+2} + 2 \\ \parallel & \parallel & \parallel \\ 1 \cdot 2^i & 2 \\ \parallel & & \downarrow \\ 2 & = 2 \end{array}$$

Inductive Step: Assume that P(k) is true for some integer $k \geq 0$. That is, assume:

$$\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{k+2} + 2$$

Then we need to show that P(k+1) is true.

Thus, we have shown that if P(k) is true, then P(k+1) is also true.

QED

Theorem 3: Induction Proof 3

Prove the following inequality using mathematical induction:

$$\forall n \in \mathbb{Z}, n \ge 2, \forall x \in \mathbb{R}, x \ge -1, \quad 1 + nx \le (1+x)^n$$

Proof. Let the property, P(n) be the inequality:

$$1 + nx \le (1+x)^n$$

Base Case: Show that P(2) is true.

LHS RHS

$$1 + 2x$$
 $(1 + x)^2$
|| ||
 $1 + 2x$ $1 + 2x + x^2$

$$1 + 2x \le 1 + 2x + x^2 \quad \text{is true for } x \ge -1$$

Inductive Step: Assume that P(k) is true for some integer $k \geq 2$. That is, assume:

$$1 + kx \le (1+x)^k$$

We must show that P(k+1) is true.

LHS

$$1 + (k+1)x$$
$$1 + kx + x$$
$$1 + x(k+1)$$

RHS

$$(1+x)^{k+1}$$

$$(1+x)(1+x)^k$$
\$\\$\\$ (by inductive hypothesis)\$
$$(1+x)(1+kx) \le (1+x)(1+x)^k$
$$(kx^2+kx+x+1) \le (1+x)(1+x)^k$
$$kx^2+x(k+1)+1 \le (1+x)(1+x)^k$$$$$$

Since $1 + x(k+1) \le kx^2 + x(k+1) + 1$, it follows that:

$$1 + x(k+1) \le kx^2 + x(k+1) + 1 \le (1+x)(1+x)^k = (1+x)^{k+1}$$

Thus, we have shown that if P(k) is true, then P(k+1) is also true.

QED

Theorem 4: Recursively Defined Sequence

A sequence c_0, c_1, c_2, \ldots is defined recursively as follows:

$$c_0 = 3$$
, $c_k = (c_{k-1})^2$ for all integers $k \ge 1$.

Prove by induction that:

$$c_n = 3^{2^n}$$
 for all integers $n \ge 0$.