Selected Problems - IX

Problem 1) Design a sequential circuit with two JK Plip-Plops A and B and two inputs E and F. If E=0, the circuit remains in the same state regardless of the value of F. When E=1 and F=1, the circuit goes through the state transitions the circuit goes through the state transitions. From 00 to 01, to 10, to 11, back to 00, and repeats. When E=1 and F=0, the circuit goes through the state when E=1 and F=0, the circuit goes through the state and repeats.

Solution. We have the following extended state

-cbl	e	CS		l nex	+	41	ip- \$10	op inp	uts	
inp	uts F	prese stc:	tes YB	ste+ YA	-es YB	JA	KA	JB	K3	
0 0 0 0	o b o b	0 0 1 1	0 1 0 1	0011	1010	00000	0 0 00	0000	0000	
1 1 1 1	7 7 7 7	0 0 1 1	0101	0 1 1 0	7070	01 d d	7000	1 d 1 d	07 0 1	
1 1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	7 0 0 1	7010	7 0 d d	0 0 0	7 0 7 7	d 1 d d	

J_A :	EF	100	01	11	10
	0		d	d	
	1	1		1	

JA = EFYB + EFYB = E (FBYB)

-and the circuit diagram can be drawn as

Problem 2) A sequential circuit has three flip-flops A, B, and C; one input x and one output y. The state diagram is shown as

The circuit is to be designed by treating the unused states as don't care conditions. Analyze the circuit obtained from the design to determine the effect of the unused states.

a. Use D flip-flops in the design. b. Use JK flip-flops in the design.

Solution.

	iolo.	tion.	onstr	-uct	the	ex-	tend	ded	stct	e to	oble	cs
	X	1 ya	yo	ye	YA	YB	Ye	DA	DB	Dc	Z	
	0	0	0	0	0	70	70	01	70	70	01	
	0	0	0	1	0	00	10	0	00	10	01	
	01	00	1	00	00	10	00	0 0	70	0	1	
	01	00	7 7	1	00	01	10	00	0	70	010	
	0	1	0	0	0 0	1	0 1	0	1	0	0	_
_	we	trec	+ +	e uni	bsed	stat	es	101,	110,	111 a	s dor	1+
											PC	9.3

Dc:

XYA YO	yc 00	01	11	10
00	1	1	1	
01		d	d	d
11	[1	d	d	d
10				

Z

z : you	10			
XUA	00	01	11	10
00			24	
01	* The second	d	d	d
11		d	d	d
10	1	1	1	1

Now;
-we check if the sequential circuit is locked or
not
-when the state machine goes to the unused
states x ya yo ya Ya Yo Ya

states x ya yo ya Ya Yo Ya

it returns to
not

one of the

Hence;
-the state machine is NOT a locked type,
that is;

(1) it is self-correcting

b. We again construct the extended state table

	44	YB	40	YA	YB	Ye	JA	KA	JB	KB	Jc	Kc	7
X	34	J.	5-						1		1	d	0
0	0	0	0	0	7	7	0				0	d	1
1	0	0	0	1	0	0	1	d		d			1
0	0	0	1	0	0	7	0	d	0	d	d		
1	0	0	1	1	0	0	1	d		d	d	1	1
0	0	1	0	0	1	0	0	d	d		0	a	0
1	0	1	0	0	0	0	0	d	d	1	0	d	1
0	0	1	1	0	0	7	0	d	d	1	d	0	0
1	0	1	1	0	1	0	0	d	d	0	d	1	1
0	1	0	0	0	1	0	d	1	1	d	0	d	0
1	1	0	0	0	1	1	d	1	1	d	1	d	0

Ja = xyo, Ka=1

ygyc 00 01 11 10 xyx 00 1 . d d 11 1 d d d 10 . . d d

Jo = YA + X'YC

PS 9.7

Now;
-we check if the sequential circuit is locked or not
-we her the state machine goes to the unused
states

X	YA	40	ye	YA	YB	Ye	
0	1	0	1	0	1	0	_
1	1	0	1	0	1	0	
0	1	1	0	0	1	0	
1	1	1	0	0	0	1	
0	1	1	1	0	0	0	
1	1	1	7	0	1	0	

it returns to one of the used states

Therefore;

-the state machine is NOT a locked type one

(b) that is, it is self-correcting

Problem 3) Consider the following state-diagram

PS 9.8

Design the sequential circuit specified by the state diagram depicted above using T type Plip-Plops.

Solution. We construct the extended state table

X	94	Yo	YA	YB	TA	TB
0	0	0	0	1	0	1
1	0	0	0	0	0	0
0	0	1	1	1	1	0
1	0	1	1	0	1	1
0	1	0	1	1	0	1
1	1	0	1	0	0	0
0	1	1	0	0	1	1
1	1	1	1	1	0	0

PS 9.9