FCFS Example with different arrival times

	AT	BT	ST	CT	TAT	WT	RT	
\times (P1)	2-	2	2	4	2	0	0	
× P2	<i>→</i> 0	1	0	1	1	0	0	I/0-20
× p3.	2 =	3	4	7	5	2	2	,
\times P4	3	2	7	9	6	4	4	
× P5	4	4	9	13	9	5	5	

P2	111	P1	P3	P4	P5
	~~z	4	•	9	13

$$TAT = CT - AT$$

$$WT = TAT - BT$$

$$RT = ST - AT$$

Avg TAT =
$$(2+1+5+6+9)/5 = \frac{23}{5}$$

Avg WT = $(0+0+2+4+5)/5 = \frac{11}{5}$
Avg RT = $(0+0+2+4+5)/5 = \frac{11}{5}$

$$cpv$$
 utilization = $\frac{12}{13} \times 10^{0}$

Throughput =
$$\frac{5}{13}$$
 procen/unit time

$$\frac{12}{13} \times 10^{0} \quad \boxed{\frac{4}{12}}$$

$$\begin{array}{ccc}
 & & & AT \\
 & & & & P^2 & O \\
 & & & & & & P^3 & O
\end{array}$$

$$(P1) \rightarrow (P2) \rightarrow (P3)$$