Taller de Geometría Diferencial semana 4

Juan Sebastián Gaitán

6 de agosto de 2018

Ejercicio 3.1

Para $r, a, b \in \mathbb{R}^+$ considere las helices parametrizadas en \mathbb{R}^3 por:

$$\gamma_1: r \mapsto (r \cdot \cos(at), r \cdot \sin(at), b \cdot (at)),$$

$$\gamma_2: r \mapsto (r \cdot \cos(-at), r \cdot \sin(-at), b \cdot (at)).$$

Calcule sus curvaturas κ_1, κ_2 y las torsiones τ_1, τ_2 respectivamente. Encuentre un movimiento euclidiano $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\gamma_2 = \Phi \circ \gamma_1$. $\xi \Phi$ conserva orientación?

Demostraci'on.

Ejercicio 3.3

Demuestre que la curva $\gamma: (-\frac{\pi}{2},\frac{\pi}{2}) \to \mathbb{R}^3$ con

$$\gamma: t \mapsto (2\cos^2 t - 3, \sin t - 8, 3\sin^2 t + 4)$$

es regular. Determine si la imagen de γ está contenida en:

- 1. una linea recta en \mathbb{R}^3 o no.
- 2. un plano en \mathbb{R}^3 o no.

Demostración. Note que las curvas parametrizadas por γ_1 y γ_2 son círculos y por lo tanto las curvaturas son $\frac{1}{r}$ y $\frac{-1}{r}$ respectivamente. Además, el movimiento rígido está dado por:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Ejercicio 3.5

Sea $\gamma:I\to\mathbb{R}^3$ un a C^2 -curva regular en \mathbb{R}^3 con curvatura no nula. Entonces la torsion satisface:

 $\tau(t) = \frac{\det[\dot{\gamma}(t), \ddot{\gamma}(t), \ddot{\gamma}(t)]}{|\dot{\gamma}(t) \times \ddot{\gamma}(t)|^2}$

Demostración. Considere lo siguiente:

$$\begin{split} \tau(s) &= \langle \dot{N}(s), B(s) \rangle = \left\langle \frac{\dddot{\gamma}(s)}{|\ddot{\gamma}(s)|}, \frac{N(s) \times T(s)}{|N(s) \times T(s)|} \right\rangle \\ &= \left\langle \frac{\dddot{\gamma}(s)}{|\ddot{\gamma}|}, \frac{\frac{\ddot{\gamma}(s)}{|\ddot{\gamma}|} \times \dot{\gamma}(s)}{|\frac{\ddot{\gamma}(s)}{|\ddot{\gamma}|} \times \dot{\gamma}(s)|} \right\rangle \\ &= \frac{\langle \dddot{\gamma}(s), \ddot{\gamma}(s) \times \dot{\gamma}(s) \rangle}{|\langle \dddot{\gamma}(s)| \cdot |\ddot{\gamma}(s) \times \dot{\gamma}(s)|} \\ &= \frac{\det[\dot{\gamma}(t), \ddot{\gamma}(t), \dddot{\gamma}(t)]}{|\dddot{\gamma}(s)| \cdot ||\ddot{\gamma}(s)| \cdot |\dot{\gamma}(s)| \sin \frac{\pi}{2}} \\ &= \frac{\det[\dot{\gamma}(s), \ddot{\gamma}(s), \dddot{\gamma}(s)]}{|\dot{\gamma}(s) \times \ddot{\gamma}(s)|^2} \end{split}$$

Lema

Sea β una curva cerrada en S^2 . Si la a curva geometrica dada por β interseca todo circulo maximal de S^2 , entonces la longitudde arco de β es mayor a 2π ,

Demostración. Demostración en la página 80 de Differential Geometry of Curves and Surfaces de Kristopher Tapp. \Box

Ejercicio 3.7

Sea $\gamma: \mathbb{R} \to \mathbb{R}^3$ una C^2 -curva regular cerrada en \mathbb{R}^3 con parametrización natural. busque una demostración del teorema de Fenchel:

$$L(\dot{\gamma}) \int_0^P \kappa(s) ds \ge 2\pi$$

Demostración. Sea $\gamma:[0,l]\to\mathbb{R}^3$ un a curva regular parametrizada por longitud de arco. Como γ tiene velocidad unitaria, su función velocidad \mathbf{v} , es una curva en S^2 .

Vamos a usar el hecho de que γ es cerrada para demostrar que la curva geométrica que describe \mathbf{v} interseca a todo circulo maximal de S^2 . Para esto, sea $P \subseteq \mathbb{R}^3$ un subespacio bidimensional arbitrario tal que $G = P \cap S^2$ es un ciculo maximal. Denote por \mathbf{n} el vector normal de P. Note que un punto en S^2 está en G si y solo si es ortogonal a \mathbf{n} . Como

 $\frac{d}{dt}\langle\gamma(t),{\bf n}\rangle=\langle{\bf v}(t),{\bf n}\rangle,$ y por el teorema fundamental del calculo, se tiene:

$$\int_0^l \langle \mathbf{v}(t), \mathbf{n} \rangle dt = \langle \gamma(l), \mathbf{n} \rangle - \langle \gamma(0), \mathbf{n} \rangle = 0$$

. Como el valor medio de $\langle \mathbf{v}(t), \mathbf{n} \rangle$, entonces, se tiene $\langle \mathbf{v}(t_0), \mathbf{n} \rangle$ para algún $t_0 \in [0, l]$ y por lo tanto, \mathbf{v} interseca todo circulo maximal. Por el lema 2.17, se tiene que la longitud de arco de \mathbf{v} es mayor que 2π , de dinde se tiene:

$$\int_0^l \kappa(t)dt = \int_0^l |\mathbf{v}'(t)|dt \ge \pi.$$