

Hello

Done By: Zeinelabdin Salih

Instructor: Vijay Kumar

March 27, 2021

Page	Content	Slides
1	Title / Name / Date	1 - 2
2	Outline	3
3	Introduction / Executive Summary	4 - 5
4	Project Obejtives	6
5	Hypotheses Generation	7 - 8
6	Methodology	9 – 10
7	Descriptive Analytics	11 - 16
8	Assumptions	17 - 18
9	Predication Models	19 - 23
11	Conclusions	24

* Introducation

→ Dataset Brief:

- This dataset is mainly created for analyzing the historical stock price of TSLA. Starting from 2010 until February 2021.
- It contains 7 Variables and 2679 datapoints.
- The features of analysis are Date, High, Low, Open, Close, Volume and Adj Close
- It can be used to make cool charts of the stock price for learning data analysis for finance.
- Our Target variable is "Close" Price
- Data source is Kaggle Website

- I checked missing values and possibility of outliers In exploration analysis
- Since I am dealing with Time Series data, there are some assumption you have taking caring of it
- I used the statistical methods and some graph to explain those assumptions
- I used Arima (Auto Regressive Moving Average),
 Decision Tree and Linear Regression Models to predict
 the forecast for Tesla stock close price

- Analysis and find the relationship between variables
- Build models to predict Tesla Stock Close Price
- Observe which model is best for predication
- Compare forecast Price with exiting Stock price on Tesla website

Hypothesis Generation

- Stock Price Hypothesis Attributes:

- **Data & Time:** which is the much important feature for stocks
- **Volume of Stocks:** Explaining the demand of stocks on daily bases
- Open Price: Considered as one of major factors, especially at beginning of the week
- High & Low Price: The highest and lowest price stated during a day
- Close Price: The super significance attribute, which is used for finding historical insights in order to predict the future forecasting
- Adjusted Close Price: Important because it shows the stock's value after dividends are posted
- Other Factors: The stock market and price is very sensitive to many aspects for Exp. Profitability of company, Inflation, Investors Movement, Natural Disasters and Pandemics.

* Hypothesis Generation

→ Possible Outcomes

- 1. Do the close prices in coming two months it will raise up again?
- Will stock volume decrease and drop down the close price as well?

Methodology

- The dataset available as structured data in CSV format
- I changed the "Date" variable type to date
- There no missing values detected
 - The boxplots graphs showing there some outliers, but In my opinion, I don't believe that we must treat outliers since we need to check the data stationary
- Project done in **Jupytor Notebook Python 3.8**

Date	0
High	0
Low	0
0pen	0
Close	0
Volume	0
Adj Close	0
dtype: int64	

	Date	High	Low	Open	Close	Volume	Adj Close
count	2679	2679.000000	2679.000000	2679.000000	2679.000000	2.679000e+03	2679.000000
unique	2679	NaN	NaN	NaN	NaN	NaN	NaN
top	2013-06-04	NaN	NaN	NaN	NaN	NaN	NaN
freq	1	NaN	NaN	NaN	NaN	NaN	NaN
mean	NaN	71.456871	68.343933	69.925943	70.028605	3.176344e+07	70.028605
std	NaN	127.593072	121.612343	124.658055	125.036783	2.914939e+07	125.036783
min	NaN	3.326000	2.996000	3.228000	3.160000	5.925000e+05	3.160000
25%	NaN	7.691000	7.414000	7.581000	7.575000	1.130900e+07	7.575000
50%	NaN	45.495998	44.000000	44.650002	44.646000	2.503650e+07	44.646000
75%	NaN	62.341000	60.201000	61.339001	61.503000	4.107750e+07	61.503000
max	NaN	900.400024	871.599976	891.380005	883.090027	3.046940e+08	883.090027

Methodology

— Statistical Methods / Techniques Used:

- Installed new environut libraires
- Univariate, Multivariate Analysis
- User define, Lambda functions
- Assumptions Checking: Autocorrelation, Stationary
- Predictive Analysis: Arima, Linear Regression and Decision Tree Models

UnivariateAnalysis

Showing Outliers in Volume varible

UnivariateAnalysis

Showing the targe varible Close Price using the linear graph

UnivariateAnalysis

Volume Frequency

⊸Multivariate Analysis

Varibales Relationships

→MultivariateAnalysis

Show and explain your web, app or software projects using these gadget templates.

→MultivariateAnalysis

Visualizing outliers in Stock Price Varibles

Assumptions

Stationary

We trying to know the close price is stationary or not.

ADF Statistic: 6.21024818678538

p value: 1.0

We fail to reject the H0 So, The Close prices is non-Stationary

Assumptions

→ Autocorrelation

Represents the degree of similarity between a given close price

→ Decision Tree

Model

Forecasting the close

price and testing

⊸Linear Regression Model

Forecast Prediction for close price and validate the testing data

→Arima Model – 1stApproach

The graph shows predicted for validation model

→Arima Model - 2ndApproach

The graph shows predicted for validation

800

* Conclusions/Findings

- The Close Price are Autocorrelated and Non-Stationary
- All the variables are highly correlated to target variable
- The best model to predict the foresting for Close price is Arima Model
- Model observed that the price is dropped down which is true predicted (as I showed in slide 22), still it is not achieved the but it very close.

Thanks!

Any questions?

