Kurs:Mathematik für Anwender/Teil I/20/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3312201244 6 0 7 0 4 1 3 6 4 53

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Die *Produktmenge* aus zwei Mengen $m{L}$ und $m{M}$.
- 2. Eine $Verknüpfung \circ auf$ einer Menge M.
- 3. Die geometrische Reihe für $x \in \mathbb{R}$.
- 4. Die Stetigkeit einer Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

in einem Punkt $x \in \mathbb{R}$.

5. Das Oberintegral einer nach oben beschränkten Funktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem beschränkten Intervall $I\subseteq\mathbb{R}$.

6. Das *charakteristische Polynom* zu einer $n \times n$ -Matrix M mit Einträgen in einem Körper K.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über das Verhalten der Reihenglieder bei Konvergenz.
- 2. Das Ableitungskriterium für konstante Funktionen.

3. Das Injektivitätskriterium für eine lineare Abbildung.

Aufgabe * (1 Punkt)

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt.

pq?

ww f

wf f

f ww

f f w

Aufgabe * (2 Punkte)

Erläutere das Beweisprinzip der vollständigen Induktion.

Aufgabe * (2 Punkte)

Zeige, dass die Gleichung

$$\frac{2}{n} = \frac{1}{a} + \frac{1}{b}$$

in $\mathbb N$ auch Lösungen a
eq b besitzt.

Aufgabe (0 Punkte)

Aufgabe * (1 Punkt)

2 von 5 18.03.2020, 11:17

Bestimme die Lösungsmenge des Ungleichungssystems

$$2x \geq 7$$

und

$$5x \leq 12$$

über Q.

Aufgabe * (2 Punkte)

Es seien L,M,N Mengen und $F\colon L\to M$ und $G\colon M\to N$ injektive Abbildungen. Zeige, dass die Hintereinanderschaltung $G\circ F$ ebenfalls injektiv ist.

Aufgabe * (4 (1+1+1+1) Punkte)

Es sei $(x_n)_{n\in\mathbb{N}}$ die Heron-Folge zur Berechnung von $\sqrt{3}$ mit dem Startwert $x_0=1$ und $(y_n)_{n\in\mathbb{N}}$ die Heron-Folge zur Berechnung von $\sqrt{\frac{1}{3}}$ mit dem Startwert $y_0=1$.

- 1. Berechne x_1 und x_2 .
- 2. Berechne y_1 und y_2 .
- 3. Berechne $x_0 \cdot y_0, \ x_1 \cdot y_1$ und $x_2 \cdot y_2$.
- 4. Konvergiert die Produktfolge $z_n = x_n \cdot y_n$ innerhalb der rationalen Zahlen?

Aufgabe * (4 Punkte)

Zeige die Abschätzung

$$\sum_{i=1}^n \frac{1}{\sqrt{i}} \leq 3\sqrt{n} \,.$$

Aufgabe * (6 Punkte)

Es sei

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ z \longmapsto f(z),$$

ein Polynom vom Grad $d \geq 2$, $w \in \mathbb{R}$ ein Punkt und t(z) die Tangente an f im Punkt w. Zeige die Beziehung

$$f(z) - t(z) = (z - w)^2 g(z)$$

mit einem Polynom g(z) vom Grad d-2.

Aufgabe (0 Punkte)

Aufgabe * (7 Punkte)

Beweise den Satz über die Charakterisierung von Extrema mit höheren Ableitungen.

Aufgabe (0 Punkte)

Aufgabe * (4 (1+3) Punkte)

1. Überführe die Matrixgleichung

$$\begin{pmatrix} 3 & 7 \\ -4 & 5 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

in ein lineares Gleichungssystem.

2. Löse dieses lineare Gleichungssystem.

Aufgabe * (1 Punkt)

Beweise den Satz über die Dimension des Standardraumes.

Aufgabe * (3 Punkte)

Es sei V ein K-Vektorraum und sei v_1, \ldots, v_n eine Familie von Vektoren in V. Zeige, dass die Familie genau dann linear unabhängig ist, wenn es einen Untervektorraum $U \subseteq V$ gibt, für den die Familie eine Basis bildet.

Aufgabe * (6 Punkte)

Es sei

$$M = egin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix}$$

eine invertierbare Matrix. Zeige durch zwei Matrizenmultiplikationen, dass

$$M^{-1} = rac{1}{\det M} egin{pmatrix} ei-fh & ch-bi & bf-ce \ fg-di & ai-cg & cd-af \ dh-eg & bg-ah & ae-bd \end{pmatrix}$$

ist.

Aufgabe * (4 Punkte)

Bestimme die Eigenwerte und die Eigenräume der durch die Matrix

$$M = egin{pmatrix} 3 & 4 & -5 \ 0 & -1 & 4 \ 0 & 0 & 7 \end{pmatrix}$$

gegebenen linearen Abbildung

$$arphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \, v \longmapsto Mv.$$