Generatory liczb pseudolosowych

Paweł Prochot

1. Opis projektu

Celem niniejszego projektu jest zaimplementowanie generatora liczb losowych \mathbf{G} o rozkładzie równomiernym, oraz na jego bazie, generatora \mathbf{U} z rozkładem jednostajnym na przedziale (\mathbf{a}, \mathbf{b}) .

Korzystając z generatora U, tworzone są generatory dla najpopularniejszych rozkładów tj.

- Bernoulliego (dwupunktowego)
- Dwumianowego
- Poissona
- Wykładniczego
- Normalnego

2. Informacje dotyczące implementacji

Generatory zostały napisane w języku C++.

Deklaracje generatorów znajdują się w folderze Header Files, a ich implementacje w Source Files.

3. (G) Generator liczb całkowitych o rozkładzie równomiernym

Generator ${f G}$ to liniowy generator multiplikatywny.

Generowana liczba jest postaci:

$$X_{n+1} = (aX_n + c) \bmod m$$

Podstawową implementację generatora można otrzymać za pomocą metody *defaultGenerator()*, jej parametry to:

$$m = 2^{31} - 1$$

$$a = 7^5$$

$$c = 0$$

Seed do generatora jest tworzony za pomocą metody <u>initalizeSeed()</u>, która przy użyciu aktualnej daty w systemie tworzy liczbę według wzoru:

$$s + 60 \left(min + 60 \left(g + 24 \left(d - 1 + 31 (m - 1 + 12r) \right) \right) \right)$$

$$s - sekundy, min - minuty, g - godziny, d - dzień, m - miesiąc, r - rok$$

Przy czym ostatni bit tej liczby jest zawsze zamieniany na 1, tak aby liczba była nieparzysta.

4. (U) Generator liczb z rozkładu jednostajnego

Generator U korzysta w swojej implementacji z generatora G. Liczby przez niego generowane należą do przedziału od (a,b), jednakże w implementacjach kolejnych generatorów korzystana jest jego wersja na przedziale (0,1).

Wygenerowana liczba jest postaci $x*\frac{b-a}{m}+a$, gdzie m to parametr z generatora **G**.

5. (B) Generator o rozkładzie Bernoulliego

Generator przyjmuje pewne prawdopodobieństwo \mathbf{p} , oraz generator $\mathbf{U}(\mathbf{0},\mathbf{1})$.

Na początku generowana jest liczba z \mathbf{U} , którą następnie porównuje się z prawdopodobieństwem \mathbf{p} i jeśli liczba jest mniejsza bądź równa to zwracane jest 1, w p.p. 0.

6. (D) Generator o rozkładzie dwumianowym

Generator przyjmuje pewne prawdopodobieństwo \mathbf{p} , oraz liczbę prób \mathbf{n} .

Algorytm generuje \mathbf{n} liczb z rozkładu $\mathbf{U}(\mathbf{0},\mathbf{1})$ i sprawdza ile liczb jest mniejszych bądź równych od \mathbf{p} .

7. (P) Generator o rozkładzie Poissona

Korzystając z lematu 3.9 z Komputerowe generatory liczb losowych, tj.

Jeżeli a_1, \ldots, a_n to liczby o jednakowym rozkładzie wykładniczym U(0,1), to zmienna losowa $U=\min\{j: \Sigma_{i=0}^j \ a_i > \lambda\}$ ma rozkład Poissona z parametrem λ .

Dzięki temu lematowi, jesteśmy w stanie skonstruować algorytm generujący rozkład Poissona.

ALGORYTM 3.27
$$q = e^{-\lambda}$$
, $X = 0$, $S = q$, $P = q$ Generuj Uo rozkładzie $U(0, 1)$ While $U > S$ do $X = X + 1$, $P = P * \lambda / X$, $S = S + P$ Return X

Rozkład dla generatora P z parametrami lambda=1 dla 100 000 prób

8. (W) Generator o rozkładzie wykładniczym

Do wygenerowania liczb o rozkładzie wykładniczym z parametrem λ , korzystamy z generatora U(0,1) i obliczona wartość jest postaci: $T=-\frac{\ln(u)}{\lambda}$.

9. (N) Generator o rozkładzie normalnym

Aby wygenerować liczbę z rozkładu normalnego, korzystamy z transformacji~Boxa-Mullera. Losujemy dwie liczby u~i~v z rozkładu U(0,1), a następnie liczba postaci $Z=\sqrt{-2\ln u}\cos(2\pi v)$, jest liczbą z rozkładu normalnego.

10. Źródła Exponential distribution - Wikipedia

Normal distribution - Wikipedia

Box-Muller transform - Wikipedia

Komputerowe Generatory Liczb Losowych – Robert Wieczorowski, Ryszard Zieliński