الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2015

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأوّل

التمرين الأوّل: (04 نقاط)

 $(O; \vec{i}, \vec{j}, \vec{k})$ الفضاء منسوب إلى المعلم المتعامد والمتجانس

 $\cdot D(0;4;5)$ و C(4;3;5) ، B(10;4;3) ، A(1;5;4) نعتبر النقط

. أ) بيّن أنّ النقط A ، B ، A استقامية (1

ب) بيّن أنّ النقط A ، B ، A و D من نفس المستوي.

ج) استنتج أنّ النقطة D هي مرجّح النقط A ، B و B ، المرفقة بمعاملات يُطلب تعيينها .

. D عين إحداثيات النقطة E نظيرة النقطة A بالنسبة إلى النقطة E

ه) اكتب معادلة ديكارتية للمستوي (\mathcal{P}) المحوري للقطعة (\mathcal{P}).

 $2\overline{MA} - \overline{MB} + 2\overline{MC} = |3\overline{MD} - 3\overline{MA}| : عيّن (2)$ مجموعة النقط M من الفضاء حيث M

F(1;8;10) أ) تحقق أن النقطة F(1;8;10) تنتمي إلى المستوي (9).

(FD) ب) المستقيم بيقطع (FD) بيقطع بيقطع

حدّد طبيعة الرباعي AGEH ، ثمّ احسب مساحته.

(AEH) المستقيم الذي يشمل النقطة D ويعامد المستوي (Δ) (4

أ) بيّن أنّ الشعاع \overrightarrow{AC} ناظمي للمستوي (\overrightarrow{AEH}).

N(3t;4-2t;5+t) با تحقق أنّه من أجل كل عدد حقيقي t ، النقطة N(3t;4-2t;5+t) تتتمي إلى المستقيم

 $v(t)=2|t|\sqrt{14}\ uv$ هو v(t) هو NAGEH هو عدد حقيقي t ، حجم المجسم عدد حقيقي $v(t)=2|t|\sqrt{14}$ هو ربيّن أنّه من أجل كل عدد حقيقي $v(t)=2|t|\sqrt{14}$

 $v(t)=2\sqrt{3}\;uv$ من أجليهما Δ من Δ من Δ من أجليهما λ من أجليهما λ من أحداثيات كل من النقطتين λ

التمرين الثاني: (05 نقاط)

ينسب المستوي إلى المعلم المتعامد والمتجانس $(O;\vec{u},\vec{v})$. نعتبر النقط B ، C ، B ، A و I لاحقاتها $z_I=-1-i$ و $z_H=-3+4i$ ، $z_C=-3$ ، $z_B=-2+i$ ، $z_A=i$ على الترتيب:

 $(O; \vec{u}, \vec{v})$ مثل النقط A ، B ، A و I و I و I مثل النقط (1)

C النسبة وزاوية للتشابه المباشر الذي مركزه B ويحوّل النقطة A إلى النقطة C

ABC عيّن z_G لاحقة النقطة G مركز ثقل المثلث (2

 $\frac{z_B-z_C}{z_H-z_A}$ اكتب على الشكل الجبري العدد المركّب (3

ب) استنتج أن المستقيمين (AH) و (BC) متعامدان.

ABC بيّن أنّ H هي نقطة تلاقي ارتفاعات المثلث

بيّن أنّ النقط G ، H و I في استقامية.

 $\theta \in \mathbb{R}$ مجموعة النقط M من المستوي ذات اللاحقة z حيث: $z + 1 + i = \sqrt{5}e^{i\theta}$ مجموعة النقط $z + 1 + i = \sqrt{5}e^{i\theta}$ مع $z + 1 + i = \sqrt{5}e^{i\theta}$ مع $z + 1 + i = \sqrt{5}e^{i\theta}$ مع $z + 1 + i = \sqrt{5}e^{i\theta}$ مجموعة النقط $z + 1 + i = \sqrt{5}e^{i\theta}$ مع $z + 1 + i = \sqrt{5}e^{i\theta}$

أ) بيّن أنّ النقطة A تنتمي إلى المجموعة (Γ) .

ب) عين طبيعة المجموعة (٢) مع تحديد عناصرها المميزة.

 (Γ) أنشئ المجموعة

د) تحقّق أنّ النقطتين B و C تتتميان إلى المجموعة (Γ) .

التمرين الثالث: (04 نقاط)

م عين حسب قيم العدد الطبيعي n ، باقي القسمة الإقليدية للعدد 2^n على 7 .

.7 على $1962^{1954} - 1954^{1962} + 2015^{53}]$ على (بالتنتج باقي القسمة الإقليدية للعدد

2) أ) بيّن أنّ 89 عدد أوّلي.

ب) عين كل القواسم الطبيعية للعدد 7832.

ج) بيّن أنّ العددين 981 و 977 أوّليان فيما بينهما.

x و y عددان طبیعیان غیر معدومین قاسماهما المشترك الأكبر هو x

$$\begin{cases} x^2 - y^2 = 31328 \\ x - y = 8[22] \end{cases}$$
 عين x و y علماً أنّ:

a و a أعداد طبيعية غير معدومة حيث a أوّلي مع b و a أولي مع a

 $b \times c$ عم أقلي مع a أولي مع أن أن مبرهنة بيزو ، برهن أن

 $PGCD(a;b^n)=1$ ، n عدد طبیعي غیر معدوم n اثبت أنّه من أجل كل عدد طبیعي غیر معدوم $PGCD(a;b^n)=1$ (يُرمز PGCD إلى القاسم المشترك الأكبر.)

ج) استنتج القاسم المشترك الأكبر للعددين 1962¹⁹⁵⁴ و 1954¹⁹⁶².

التمرين الرابع: (07 نقاط)

 $f(x)=1-x^2\ln x$ ، $g(x)=1-x^2\ln x$

1) أ) ادرس استمرارية الدالة f عند 0 من اليمين.

ب) احسب $\frac{f(x)-1}{x}$ ، ثمّ فسّر النتيجة هندسيا.

 $\lim_{x\to+\infty} f(x) \pmod{(1/2)}$

ب) ادرس اتجاه تغيّر الدالة f ، ثمّ شكّل جدول تغيراتها.

 $0;+\infty[$ المعادلة α اتقبل حلاً وحيدا α في المجال α (3) أ) بيّن أن المعادلة α (4) تقبل حلاً α (5) أي بيّن أن المعادلة α (4) أي بيّن أن المعادلة α (5) أي بيّن أن المعادلة α (4) أي بيّن أن المعادلة α (5) أي بيّن أن المعادلة α (6) أي بيّن أن المعادلة α (7) أي بيّن أن المعادلة α (8) أي بيّن أن المعادلة α (9) أي بيّن أن أي بيّن أيّن أي بيّن أي

gنعتبر الدالة g المعرّفة على \mathbb{R} بـ \mathbb{R} نعتبر الدالة و المعرّفة على g

 $(O; \vec{i}, \vec{j})$ المنحنى الممثل للدالة g في نفس المعلم (\mathcal{C}_g).

أ) ادرس شفعية الدالة g.

-[-2;2] على المجال (\mathcal{C}_g) على المجال

، $]0;+\infty[$ المعرّفة على المجال $x\mapsto x^2\ln x$ المعرّفة على المجال $0;+\infty[$ المعرّفة على المجال $0;+\infty[$ والتي تتعدم من أجل القيمة 1.

 $F(t) = \int_{t}^{\alpha} f(x) dx$ عدد حقيقي ينتمي إلى المجال $[0;\alpha]$ نضع t (6

 $\cdot \alpha$ و t بدلالة t و t

 $F(t) = \frac{-3t f(t) - t^3 - 6t + \alpha^3 + 6\alpha}{9}$ ، $]0;\alpha]$ من المجال $[0;\alpha]$ من أجل كل عدد حقيقي t من المجال أو

 $\lim_{t \to 0} F(t) \iff (\Rightarrow$

. $]0;\alpha]$ عدد حقيقي ينتمي إلى المجال m (7

m مساحة الدائرة ذات المركز المبدأ O ونصف القطر S(m)

نفرض أنّ مساحة الحيّز المستوي المحدّد بالمنحنى (\mathcal{C}_g) ، حامل محور الفواصل والمستقيمين اللّذين

 $A = \frac{2}{9}(\alpha^3 + 6\alpha)$ ua : هي A حيث $x = \alpha$ و $x = -\alpha$ الترتيب معادلتيهما على الترتيب

(ua وحدة المساحات).

.5(m)=2 عين القيمة المضبوطة للعدد m حتى يكون القيمة المضبوطة للعدد

m علماً أنّ $3,140 < \pi < 3,142$ أعط حصرًا للعدد (ب

الموضوع الثاني

التمرين الأوّل: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة ، في كل حالة من الحالات الأربع الآتية ، مع التعليل.

$$u_{n+1} = \frac{1}{2}u_n + 3$$
 ، $u_{n+1} = \frac{1}{2}u_n + 3$ ، $u_{n+1} = \frac{1}{2}u_n + 3$ هو: (1) الحد العام للمنتالية العددية

$$u_n = 3\left(\frac{1}{2}\right)^{n+1} + \frac{3}{2} \iff u_n = 3\left(\frac{1}{2}\right)^n \iff u_n = -3\left(\frac{1}{2}\right)^n + 6 \iff u_n = -3\left(\frac{1}{2}\right)^n +$$

Z المستوي منسوب إلى معلم متعامد ومتجانس. مجموعة النقط M من المستوي، ذات اللاحقة Z حيث (2

$$iz-1-i$$
 هي: أ) دائرة نصف قطرها 3 ولاحقة مركزها $iz-1-i$

ب) دائرة نصف قطرها
$$3$$
 ولاحقة مركزها $i-1$

$$-1+i$$
 دائرة نصف قطرها 3 ولاحقة مركزها

و ما أعداد طبيعية غير معدومة وأصغر من أو تساوي 9. و c ، b ، a (3) و c ، b ، a

abcd عدد طبيعي مكتوب في النظام العشري.

من أجل كل الأعداد a ، b ، c ، b ، a و c ، b ، a كان:

.11 على القسمة على (
$$a-b+c-d$$
) العدد

ب) العدد
$$(a+b+c+d)$$
 يقبل القسمة على $(a+b+c+d)$

ج) العدد cd المكتوب في النظام العشري، يقبل القسمة على 11.

4) الفضاء منسوب إلى معلم متعامد ومتجانس. مجموعة النقط M من الفضاء ذات الإحداثيات (x;y;z) حيث

$$A(1;2;-3)$$
 هي: أ) المجموعة $A\{1;2;-3\}$ حيث $X=1+\frac{2}{3}t-k$ $Y=2-t+\frac{3}{2}k$ $Y=2-t+\frac{3}{2}k$

ب) المستقيم الذي يشمل النقطة A(1;2;-3) و A(1;2;-3) شعاع توجيه له.

 $\vec{n}(3;-2;-1)$ و A(1;2;-3) شعاع ناظمي له.

التمرين الثاني: (05 نقاط)

1) حل في مجموعة الأعداد المركّبة $\mathbb C$ المعادلة ذات المجهول z التالية:

$$((1+\sqrt{3})^2 = 4+2\sqrt{3} : 2^2-2(1-\sqrt{3})z+8=0$$

المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$.

 $z_B=\overline{z_A}$ و $z_A=\left(1-\sqrt{3}\right)+i\left(1+\sqrt{3}\right)$ و B و A و المستوي ، لاحقتاهما على الترتيب: A

$$\frac{z_B}{z_A} = e^{-\frac{7\pi}{6}i}$$
 : بيّن أنّ (2

 $.z_A$ باستتتج عمدة للعدد المركّب

- $\sin \frac{7\pi}{12}$ و $\cos \frac{7\pi}{12}$ استنتج القيمة المضبوطة لكل من العددين $\sin \frac{7\pi}{12}$
- 7x-2y=1 التالية: (x;y) المعادلة ذات المجهول (x;y) التالية: 3
- ب) بيّن أنّه إذا كانت الثنائية (x; y) من الأعداد الصحيحة ، حلا للمعادلة 24y = 12 فإن x يكون مضاعفا للعدد 12.
 - -7x-24y=12 من الأعداد الصحيحة ، حلولا للمعادلة (x;y) من الأعداد الصحيحة ،
 - د) عيّن مجموعة قيم العدد الطبيعي n التي يكون من أجلها العدد $\left(z_A\right)^n$ عددا حقيقيا سالبا تماماً.

التمرين الثالث: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد والمتجانس $(O;\vec{i},\vec{j},\vec{k})$. B(-1;-5;-1) و A(2;0;0) نعتبر النقطتين

المستقيم الذي يشمل النقطة A و u(-1;2;-1) شعاع توجيه له.

$$\begin{cases} x=-3-3t \ y=2+2t \ (t\in\mathbb{R}) :$$
المستقيم المعرّف بالتمثيل الوسيطي التالي Δ_2

- المستقيم الذي يشمل النقطة B و v(2;5;3) شعاع توجيه له.
- يّن أنّ المستقيمين (Δ_1) و (Δ_2) يتقاطعان في النقطة C يُطلب تعيين إحداثياتها. (1)
 - بيّن أنّ المستقيمين (Δ_1) و (Δ_1) ليسا من نفس المستوي.
 - (Δ_2) و (Δ_1) الذي يشمل المستقيمين (Ω_1) و (Δ_2)
- ب) استنتج أنّ y = 2z 3y + 3y + 3y + 3y + 3y هي معادلة ديكارتية للمستوي ((\mathcal{P}) .
 - (\mathcal{G}) جهي المستوي النقطة B على المستوي المستوي النقطة العمودي النقطة المستوي (\mathcal{G}).
- (4) أ) بيّن أنّه توجد نقطة وحيدة I من المستقيم I من المستقيم I من المستقيم I من المستقيم I النقط I ، I و I ، I ، I و I ، I ، I و I ،
 - [AD] بيّن أنّ النقطة I هي منتصف القطعة
 - لنقطة K مرجح الجملة المثقلة $\{(B;1),(I;2)\}$ والنقطة G المسقط العمودي للنقطة G على المستوي G المستوي G
 - أ) بيّن أنّ النقطة G هي مرجح النقط C ، A النقطة بمعاملات يُطلب تعيينها.
 - ب) استنتج إحداثيات النقطة G.

التمرين الرابع: (07 نقاط)

 $f(x) = (x-1)e^{\frac{1}{x}}$ ، $]-\infty;0[$ الدالة المعرّفة بر f(0) = 0 ومن أجل كل عدد حقيقي f(0) = 0 من المجان $f(0;\vec{i},\vec{j})$ المنحنى الممثل للدالة $f(0;\vec{i},\vec{j})$ المنحنى الممثل للدالة $f(0;\vec{i},\vec{j})$ المنحنى الممثل للدالة $f(0;\vec{i},\vec{j})$

- . ادرس استمراریة الداله f عند f من الیسار (1
- احسب $\lim_{x \to 0} \frac{f(x)}{x}$ ، ثمّ فسّر النتيجة هندسيا.
 - $\lim_{x \to -\infty} f(x) \pmod{6}$
- ب) ادرس اتجاه تغيّر الدالة ركم ، ثمّ شكّل جدول تغيّراتها.
 - . $\lim_{x \to -\infty} [f(x) x] = 0$ أ) بيّن أنّ (4
- ب) استنتج أنّ المنحنى (\mathcal{C}_f) يقبل مستقيما مقاربا مائلا (Δ) بجوار ∞ -، يُطلب تعيين معادلة له.
 - $g(x) = \frac{f(x)}{x}$: ب $g(x) = \frac{f(x)}{x}$ الدالة المعرّفة على المجال $g(x) = -\infty$
 - $\lim_{x\to-\infty}g(x) \pmod{6}$
 - ب) ادرس اتجاه تغيّر الدالة g ثمّ شكّل جدول تغيّراتها.
 - f(x)>x ،] $-\infty$; 0[من المجال x من عدد حقيقي من أجل كل عدد حقيقي x من المجال) (6
 - $\cdot(\Delta)$ استنتج وضعية المنحنى (\mathcal{C}_f) بالنسبة إلى المستقيم
 - (\mathcal{C}_f) أنشئ المنحنى (ج
 - $u_{n+1}=f\left(u_{n}
 ight)$ ، n عدد طبیعي $u_{0}=-3$: المنتالية المعرّفة ب $u_{0}=-3$ ومن أجل كل عدد طبيعي $\left(u_{n}
 ight)$
 - $u_n < 0$ ، n بيّن أنّه من أجل كل عدد طبيعي أ
 - $\cdot (u_n)$ حدّد اتجاه تغیّر المتتالیة (ب
 - $\lim_{n\to +\infty} u_n$ متقاربة ، ثمّ عيّن أنّ المنتالية (u_n) متقاربة ، بيّن أنّ المنتالية
 - x عدد حقیقی، h_m الدالة ذات المتغیّر الحقیقی x المعرّفة علی المجال h_m عدد m (8

$$h_m(x) = xe^{\frac{1}{x}} - mx$$

- h_m عيث h'_m هي الدالة المشتقة للدالة $h'_m(x)$ عيث (أ
- ب) باستعمال المنحنى (e_f) ، ناقش بيانيا وحسب قيم الوسيط الحقيقي m ، عدد حلول المعادلة $h'_m(x) = 0$

الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015

اختبار في مادة: الرياضيات الشعبة: رياضيات المدة: 04 ساعات ونصف

العلامة		(الموضوع الأول) عناصر الإجابة		
مجموع	مجزأة	التمرين الأوّل: (04 نقاط)		
	0,25	$\overrightarrow{AB}(9;-1;-1)$ $\overrightarrow{AC}(3;-2;1)$ ليست في استقامية لأن $\overrightarrow{AC}(3;-2;1)$ $\overrightarrow{AC}(3;-2;1)$ النقط $\overrightarrow{AC}(3;-2;1)$		
	0,5	$\overrightarrow{AD} = -\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$ ب - النقط C ، B ، A و D من نفس المستوي لأن		
	0,25	$\{(A;2),(B;-1),(C;2)\}$ ينتج D مرجّح D ينتج D مرجّح D ينتج D مرجّح عن ب - أو		
	0,25	E(-1;3;6) ومنه AE] ومنه D - ع		
	0,25	$x+y-z+1=0$ و $D \in (\mathcal{P})$ و $\overline{n_{(\mathcal{P})}} = \overrightarrow{AD}$ ومنه:		
	0,5	$AD=ED=\sqrt{3}$ هي سطح الكرة ذات المركز D ونصف القطر AD حيث Γ		
04	0,25	$F \in (\mathcal{G}) - 3$		
نقاط	0,25	ب - $AGEH$ و GH متعامدتان، متقايستان ومتناصفتان في D ومنه $AGEH$ مريع.		
:	0,25	$s(AGEH) = 2AD^2 = 6ua$		
	0,5	$\overrightarrow{DF} \perp \overrightarrow{AC}$ و $\overrightarrow{AE} \perp \overrightarrow{AC}$ و \overrightarrow{DF} و $\overrightarrow{AE} \perp \overrightarrow{AC}$ و $\overrightarrow{AE} \perp \overrightarrow{AC}$. $\overrightarrow{AE} \perp \overrightarrow{AC}$		
	0,25	$N\in (\Delta)$ بن \overrightarrow{DN} و \overrightarrow{AC} مهرتبطان خطیا وبالتالی $\overrightarrow{DN}=t.\overrightarrow{AC}$.		
	0,25	$v(t) = \frac{1}{3}DN \times s(AGEH) = 2\sqrt{14t^2} = 2 t \sqrt{14} uv - \Rightarrow$		
	0,25	$N_{2}\left(-3\sqrt{\frac{3}{14}};4+2\sqrt{\frac{3}{14}};5-\sqrt{\frac{3}{14}}\right), N_{1}\left(3\sqrt{\frac{3}{14}};4-2\sqrt{\frac{3}{14}};5+\sqrt{\frac{3}{14}}\right)-3$		
		التمرين الثاني: (05 نقاط)		
	0,5	$(O; \overrightarrow{u}, \overrightarrow{v})$ النقط A ، B ، A و I في المعلم H ، C ، B ، A النقط H ، C ، B ، A		
03 نقاط	0,5	ب - $\frac{5\pi}{4}$ و $\frac{\sqrt{2}}{z_A - z_B}$ إذاً نسبة النشابه المباشر هي $\frac{5\pi}{2}$ و اوية له.		
	0,25	$z_G = -\frac{5}{3} + \frac{2}{3}i$.2		
	0,5	$\frac{z_B - z_C}{z_H - z_A} = -\frac{1}{3}i - 3$		
	0,5	ب - $\frac{z_B-z_C}{z_H-z_A}$ هو عدد تخيلي صرف إذاً المستقيمان (BC) و (BC) متعامدان.		
	0,75	جہ - $z_A - z_C = -i$ وهو تخیلي صرف ومنه $(BH) \perp (AC)$ ؛ بما أنّ ارتفاعات جہ - $z_H - z_B$		
		مثلث تتلاقى في نقطة واحدة فإنّ H هي نقطة تلاقي ارتفاعات المثلث ABC .		

تابع للإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015 المتحان المعبة: رياضيات المدة: 04 ساعات ونصف اختبار في مادة: 10 ساعات ونصف

لامة	العا	تابع للموضوع الأول عناصر الإجابة	
مجموع	مجزاة		
	0,5	وهو حقيقي ومنه $(GH)//(IH)$ إذن النقط H ، G و GH و GH و استقامية. gH و gH و gH و gH و gH	
	0,5	$A \in (\Gamma)$ أي $ z_A + 1 + i = \sqrt{5}$ أي $z_A + 1 + i = 1 + 2i$.5	
02 نقاط	0,25	$\sqrt{5}$ ب $z=z_I+\sqrt{5}e^{i heta}$ مع $ heta\in\mathbb{R}$ إذن Γ هي دائرة مركزها I ونصف قطرها و	
	0,25	A - إنشاء الدائرة Γ من المركز I وتمر بالنقطة A .	
	0,5	$C \in (\Gamma)$ و $B \in (\Gamma)$ و $B = IC = \sqrt{5}$ این $ z_C - z_I = \sqrt{5}$ و $ z_B - z_I = \sqrt{5}$	
		التمرين الثالث: (04 نقاط)	
	0,5	$2^{3k+2} \equiv 4[7]$ ومنه $2^{3k+1} \equiv 2[7] \equiv 2^{3k+1}$ و $2^{3k+2} \equiv 4[7]$ و $2^{3k+2} \equiv 4[7]$ و $2^{3k+2} \equiv 4[7]$	
	0,5	$1962^{1954} - 1954^{1962} + 2015^{53} \equiv 0[7] - 4$	
	0,25	2. أ - 89 عدد أوّلي لأنه لا يقبل القسمة على $7.5،3،2$ و $89 < 11^2$.	
	0,5	$D_{7832} = \{1, 2, 4, 8, 11; 22; 44, 88; 89, 178, 356, 712, 979, 1958, 3916, 7832\} - \checkmark$	
	0,25	ج - باستعمال خوارزمية إقليدس أو تحليل 981 نجد 1 = PGCD(981,977)	
04	0.5	و $x'-y' \equiv 4[11]$ و $PGCD(x';y')=1$ و $x'^2-y'^2=7832$.3	
نقاط	0,5	$(x;y) = (1962;1954)^{1/2}$ ومنه $(x';y') = (981;977)$	
	0,25	$b \times c$ البرهان أنّ a أوّلي مع $b \times c$.	
	0,5	$PGCD(a;b^n)=1$ ، $n\in\mathbb{N}$ كل الستدلال بالتراجع، إثبات أنّه من أجل كل الستعمال الاستدلال بالتراجع، إثبات أنّه من أجل كل	
	0,75	$ p \gcd(981^{1954}; 2^8) = 1 + p \gcd(981^{1954}; 977^{1962}) = 1 + p \gcd(981^{1954}; 977) = 1 - \Rightarrow $	
		$p \gcd(1962^{1954};1954^{1962}) = 2^{1954} p \gcd(981^{1954};977^{1962} \times 2^8) = 2^{1954} \cdot 1.4$	
		التمرين الرابع: (07 نقاط)	
	0,5	$\lim_{x \to 0} f(x) = 1 = f(1)$ ، ومنه الدالة f مستمرة على يمين 0.	
	0,25	$\lim_{x \to 0} \frac{f(x) - 1}{x} = \lim_{x \to 0} -x \ln x = 0 - 1$	
	0,25	$x \geq 0$ التفسير الهندسي: (\mathcal{C}_f) يقبل نصف مماس في $A(0;1)$ معادلته $y = 1$ و	
03,25 نقطة	0,25	$\lim_{x \to +\infty} f(x) = -\infty - 1.2$	
	0,75	$f'(x) = -x(2\ln x + 1)$ ، $x \in]0;+\infty[$ ب من أجل $f'(x) = -x(2\ln x + 1)$	
	0,25	$[e^{-rac{1}{2}};+\infty[$ متزایدة تماما علی $[0;e^{rac{1}{2}}]$ ومنتاقصة تماما علی f	
	0,25	جدول تغيرات الدالة f.	
	0,75	$[0;+\infty[$ في المجال $f(x)=0$ تقبل حلاً وحيدا α في المجال $f(x)=0$.	

تابع للإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015 الحتبار في مادة: الرياضيات المشعبة: رياضيات المدة: 04 م

ساعات ونصف	04	المدة:
------------	----	--------

دمة مجموع	العا مجزأة	عناصر الإجابة	تابع للموضوع الأول	
	0,5	$f(1,532) < f(\alpha) < f(1,531)$ إذاً $f(1,532) \approx -0,001$	$f(1,531) \approx 0,002 - 4$	
	0,25	$g(-x)=g(x)$ ن \mathbb{R} متناظر بالنسبة إلى 0 و		
	1) على المجال [2;2-].	\mathcal{C}_{g}) ب - إنشاء المنحنى	
	0,5	هي الدالة الأصلية للدالة $x\mapsto x^2\ln x$ على المجال $x\mapsto \frac{1}{3}$	į.	
]∞+;0[والذي تتعدم مر	
03,75 iada	0,25	$F(t) = \left(\alpha - \frac{1}{3}\alpha^{3} \ln \alpha + \frac{1}{9}\alpha^{3}\right) - \left(t - \frac{1}{3}t^{3} \ln t + \frac{1}{9}t^{3}\right) - 1.6$		
	0,25	$F(t) = \frac{-3t f(t) - t^3 - 6t + \alpha^3 + 6\alpha}{9} \text{ (i)} = \frac{1 - f(t)}{t^2} : \ln(\alpha) = \frac{1}{\alpha^2} \text{(ii)}$		
	0,5	$\lim_{t \to 0} F(t) = \frac{\alpha^3 + 6\alpha}{9} \lim_{x \to \infty} \lim_{x \to \infty} \frac{1}{1 + 6\alpha}$	$\int_{0}^{\infty} f(x) = 1$ البينا	
	0,25	$\frac{2}{3}\sqrt{\frac{\alpha^3+6\alpha}{\pi}}$: هي: $5(m)=2$ هي يكون m عند m عند m عند π		
	0,25	$1,344 < m < 1,346$ نجد: $1,531 < \alpha < 1,532$ و $3,140 < m < 1,532$	π < 3,142 ب علما أنّ	
نمة	العلا	عناصر الإجابة	(الموضوع الثاني)	
مجموع	مجزأة		التمرين الأوّل: (04 نقاط	
	1	(n) التعليل (يمكن حساب u_1 في كل حالة أو u_1 بدلالة u_1 بدلالة u_1		
04 نقاط	1	2. الاقتراح الصحيح (ب) + التعليل ($ z-1-i =3$) معناه $ iz-1-i =3$		
	1	3. الاقتراح الصحيح (أ) + التعليل (يمكن استعمال خواص الموافقة بترديد 11)		
	1	4. الاقتراح الصحيح (ب) + التعليل (في التمثيل الوسيطي يمكن ملاحظة أن الشعاعين مرتبطان خطيا)		
			التمرين الثاني: (05 نقاط	
	1,25	$z \in \{(1-\sqrt{3})-i(1+\sqrt{3});(1-\sqrt{3})+i(1+\sqrt{3})\}$ axis z^2-1	$-2\left(1-\sqrt{3}\right)z+8=0 \cdot 1$	
02.25				
03.25	0,75	A	$e^{i} = e^{\frac{5\pi}{6}i} = e^{\frac{7\pi}{6}i} - 1.2$	
03,25	0,75	$\frac{z_B}{z_A} = -\frac{\sqrt{3}}{2} + \frac{1}{2}$ $\arg(z_A) = \frac{7\pi}{12} \text{ eash } \arg\left(\frac{z_B}{z_A}\right) = \frac{1+\sqrt{3}}{12} = \frac{1+\sqrt{3}}{\sqrt{8}} = \frac{\sqrt{2}+\sqrt{6}}{4} \text{ so } \cos\frac{7\pi}{12} = \frac{\pi}{12}$	$-2\arg(z_A) = -\frac{7\pi}{6} - 2$	

0.5				
(انقطة العاملة على المعادلة على المعادلة على العاملي وعلى العاملة على العاملي وعلى العاملة على العاملي وعلى العاملي والعاملي وعلى العاملي وعلى العاملي وعلى العاملي وعلى العاملي وعلى العاملي وعل	01,75	0,5	$k \in \mathbb{Z}$ مع $2k+1;7k+3$ مع کل الثنائیات $2k+1;7k+3$ مع $2x-2y=1$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,25	7x = 12(1+2y) ومنه x مضاعف لـ 12 حسب مبرهنة غوص.	
(التعرين الثالث: (4) ومنه (13;-2;1) ومنه $C = (\Delta_1) \cap (\Delta_2)$.1 $C = (\Delta_1) \cap (\Delta_2)$.2 $C = (\Delta_1) \cap (\Delta_2)$.2 $C = (\Delta_1) \cap (\Delta_2)$.2 $C = (\Delta_1) \cap (\Delta_2)$.3 $C = (\Delta_1) \cap (\Delta_2)$.4 $C = (\Delta_1) \cap (\Delta_2)$.3 $C = (\Delta_1) \cap (\Delta_2)$.3 $C = (\Delta_1) \cap (\Delta_2)$.4 $C = (\Delta_1) \cap (\Delta_2)$.3 $C = (\Delta_1) \cap (\Delta_2)$.3 $C = (\Delta_1) \cap (\Delta_2)$.4 $C = (\Delta_1) \cap (\Delta_2)$.4 $C = (\Delta_1) \cap (\Delta_2)$.4 $C = (\Delta_1) \cap (\Delta_2)$.5 $C = (\Delta_1) \cap (\Delta_2)$.4 $C = (\Delta_1) \cap (\Delta_2)$.5 $C = (\Delta_1) \cap (\Delta_2)$.4 $C = (\Delta_1) \cap (\Delta_2)$.5 $C = (\Delta_1) \cap (\Delta_2)$.4 $C = (\Delta_1) \cap (\Delta_2)$.5 $C = (\Delta_1) \cap (\Delta_2)$.5 $C = (\Delta_1) \cap (\Delta_2)$.6 $C = (\Delta_1) \cap (\Delta_2)$.7 $C = (\Delta_1)$	نقطة	0,5	$k \in \mathbb{Z}$ مع $x=24k+12$ و $x=24k+12$ مع $x=24k+12$.	
$C(3;-2;1)$ ووقد $C(\Delta_1) \cap (\Delta_2)$.1 $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ 0.5 $0.$		0,5		
0,5			التمرين الثالث: (04 نقاط)	
(\mathcal{G}) ($\mathcal{G})$ (\mathcal{G} ($\mathcal{G})$ (0,5	$C(3;-2;1)$ ومنه $C \in (\Delta_1) \cap (\Delta_2)$.1	
$y = -2 + 2\alpha + 2\beta; (\alpha \in \mathbb{R}); (\beta \in \mathbb{R}) - 1.3$ $y = -2 + 2\alpha + 2\beta; (\alpha \in \mathbb{R}); (\beta \in \mathbb{R}) - 1.3$ $y = -2 + 2\alpha + 2\beta; (\alpha \in \mathbb{R}); (\beta \in \mathbb{R}) - 1.3$ $y = -2 + 3\beta$ $y = -$		0,5	2. (Δ_1) و (d) غير متوازيين وغير متقاطعين وعليه فهما ليسا من نفس المستوي	
		0,5	$\{y=-2+2lpha+2eta;(lpha\in\mathbb{R});(eta\in\mathbb{R})\}$ وهو تمثيل وسيطي المستوي $\{y=-2+2lpha+2eta;(lpha\in\mathbb{R})\}$	
0.75 $D(0;0;4)$ ومنه $D \in (\Delta_2) \cap (IA)$ ؛ $I(1;0;2)$ ومنه $I \in (d) \cap (\mathfrak{P})$ - 1 . 4 .		0,25	ب - استنتاج أنّ $2z-8=0+4x+3y+2z-8=0$ هي معادلة ديكارتية للمستوي (\mathcal{P}) .	
0,75 $D(0;0;4)$ D	مر نقاط	0,25	جـ - $C \in (\mathcal{P})$ و \overrightarrow{BC} عمودي على المستوي \mathcal{P} .	
0,5 $\frac{IG}{IC} = \frac{1}{3}$ ومنه $\frac{IG}{IC} = \frac{1}{3}$ وعليه $\frac{IG}{IC} = \frac{IG}{IC} = IG$	04	0,75	$D(0;0;4)$ ومنه $D\in (\Delta_2)\cap (IA)$ ؛ $I(1;0;2)$ ومنه $I\in (d)\cap (\mathcal{G})$ - أ . 4	
0,5		0,25	$I\left(\frac{x_A + x_D}{2}; \frac{y_A + y_D}{2}; \frac{z_A + z_D}{2}\right)$ و $I\overline{A} = -ID$ لأن IAD	
0,5 $G\left(\frac{5}{3}; -\frac{2}{3}; \frac{5}{3}\right) - \varphi$ Itim (t) $\frac{1}{x}$		0,5		
0,25 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		0,5	$G\left(\frac{5}{3}; -\frac{2}{3}; \frac{5}{3}\right) - \checkmark$	
$0,25$ $\frac{1}{x} = \lim_{x \to 0} \frac{e^{\frac{1}{x}} - \lim_{t \to \infty} te^{t} = 0}{t \to \infty}$ $\frac{2}{t \to \infty}$ $\frac{1}{x} = \lim_{t \to \infty} \frac{e^{\frac{1}{x}} - \lim_{t \to \infty} te^{t}}{t \to \infty}$ $\frac{1}{x} = 0$ $$				
0.25 0.25		0,25	f(x) = 0 = f(0) إذن الدالة $f(x) = 0 = f(0)$ مستمرة على يسار $f(x) = 0 = f(0)$	
$\begin{array}{c} \textbf{02,50} \\ \textbf{ihi} \\ \textbf{0,5} \\ \textbf{0,5} \\ \textbf{0,5} \\ \textbf{0,5} \\ \textbf{0,5} \\ \textbf{0,25} \\ \textbf{0,26} \\ \textbf{0,27} \\ \textbf{0,27} \\ \textbf{0,28} \\ \textbf{0,28} \\ \textbf{0,28} \\ \textbf{0,29} \\ 0,$		0,25	$ \cdot \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} e^{\frac{1}{x}} - \lim_{t \to -\infty} te^{t} = 0 .2 $	
02,50 $f'(x) > 0$ $f'(x) = \left(\frac{x^2 - x + 1}{x^2}\right)e^{\frac{1}{x}}$ $x \in]-\infty;0[$ 0,25 $.]-\infty;0]$ $.]-\infty;0]$ $.]-\infty;0[$ 0,25 $.]-\infty;0[$ $.]-\infty;0[$ $.]-\infty;0[$ 0,25 $.]-\infty;0[$ <th></th> <td>0,25</td> <td>التفسير الهندسي: (\mathcal{C}_f) يقبل نصف مماس مواز لحامل محور الفواصل في المبدأ O .</td>		0,25	التفسير الهندسي: (\mathcal{C}_f) يقبل نصف مماس مواز لحامل محور الفواصل في المبدأ O .	
0,25 .]- ∞ ;0] uhapit label 10,25 . f 0,25 . f $\lim_{x\to\infty} [f(x)-x] = \lim_{t\to0} \frac{e^t}{t} - e^t - \frac{1}{t} = \lim_{t\to0} \frac{e^t-1}{t-0} - e^t = 0$ - 1.4		0,25		
0,25 $\lim_{x \to -\infty} \left[f(x) - x \right] = \lim_{t \to -0} \frac{e^t}{t} - e^t - \frac{1}{t} = \lim_{t \to -0} \frac{e^t - 1}{t - 0} - e^t = 0 - 1.4$		0,5	$f'(x) > 0$ $f'(x) = \left(\frac{x^2 - x + 1}{x^2}\right)e^{\frac{1}{x}} : x \in]-\infty; 0[$	
$\lim_{x \to -\infty} \left[f(x) - x \right] = \lim_{t \to -0} \frac{e^t}{t} - e^t - \frac{1}{t} = \lim_{t \to -0} \frac{e^t - 1}{t - 0} - e^t = 0 -1 .4$		0,25	f متزايدة تماما على المجال $[0;\infty]$.	
1 (1) Net 1 17 17 17 (0) 11 11 1		0,25	جدول تغيرات الدالة f.	
1 (1) Net 1 17 17 17 (0) 11 11 1		0,25	$\lim_{x \to -\infty} \left[f(x) - x \right] = \lim_{t \to 0} \frac{e^t}{t} - e^t - \frac{1}{t} = \lim_{t \to 0} \frac{e^t - 1}{t - 0} - e^t = 0 1.4$	
		0,25	$y=x$ ، $-\infty$ بجوار (Δ) يقبل مستقيما مقاربا مائلا (Δ) بجوار $y=x$ ، $y=x$ معادلة له.	

تابع للإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015 المحات ونصف اختبار في مادة: الرياضيات الشعبة: رياضيات المدة: 04 ساعات ونصف

العلامة		عناصر الإجابة	تابع للموضوع الثاني
مجموع	مجزأة	17,10	
	0,25	-	$\lim_{x\to-\infty}g(x)=1-\frac{1}{5}.5$
	0,5	$g'(x) < 0 : g'(x) = e^{\frac{1}{x}} \times \frac{1}{x^2} \times \frac{1}{x} :]$	
	0,25	.]-∞;0]	g متناقصة تماما على المجال
	0,25	•	جدول تغيرات الدالة g .
04,50 نقطة	0,25	$x < f(x) < 0$ معناه $0 < g(x) < 1$ ، $]-\infty$	
	0,25	$f\left(0 ight)$ إذاً يتقاطعان في المبدأ $f\left(0 ight)$	
	0,5		(\mathcal{C}_f) المنحنى ج- إنشاء المنحنى
	0,75	$u_n < 0$ ، n إجع يكون من أجل كل عدد طبيعي	7. أ - باستعمال الاستدلال بالتر
	0,25		متزایدهٔ تماه (u_n) متزایدهٔ تماه
	0,25	ما ومحدودة من الأعلى بالعدد ℓ إذن هي متقاربة نحو ℓ .	متزايدة تماد (u_n) متزايدة تماد
	0,25	$\lim_{n \to +\infty} u_n = 0$ أي $f(\ell) = \ell$ فإن $f(\ell) = \ell$	$-\infty$ بما أنّ f مستمرة على $[0;\infty]$
	0,5	$h'_{m}(x) = e^{\frac{1}{x}} \left(1 - \frac{1}{x}\right) \cdot m = \frac{f(x)}{x} \cdot m \cdot \left[-c^{2}\right]$	x من المجال]0;0 من المجال]0;0
		$x \neq 0$ $f(x) =$	mx تكافئ $h'_m(x)=0$ ب
	0,25	ية المجال $h'_{m}(x)=0$.] $-\infty$; 0 نقبل حلا وحيدا في المجال	إذا كان $[0;1]$ فإن المعادلة
		فإن المعادلة $h'_m(x) = 0$ لا تقبل حلا.	\in] ∞ ,0] \cup [1;+ ∞ [ايذا كان

ملاحظة: تقبل وتراعى جميع الطرق الصحيحة الأخرى مع التقيد التام بسلم التنقيط.