STAT 401A - Statistical Methods for Research Workers Regression diagnostics

Jarad Niemi (Dr. J)

Iowa State University

last updated: October 20, 2014

All models are wrong!

George Box (Empirical Model-Building and Response Surfaces, 1987): All models are wrong, but some are useful.

```
http:
```

//stats.stackexchange.com/questions/57407/what-is-the-meaning-of-all-models-are-wrong-but-some-are-useful

"All models are wrong" that is, every model is wrong because it is a simplification of reality. Some models, especially in the "hard" sciences, are only a little wrong. They ignore things like friction or the gravitational effect of tiny bodies. Other models are a lot wrong - they ignore bigger things.

"But some are useful" - simplifications of reality can be quite useful. They can help us explain, predict and understand the universe and all its various components.

This isn't just true in statistics! Maps are a type of model; they are wrong. But good maps are very useful.

Regression

The simpler linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

this can be rewritten as

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{ind}{\sim} N(0, \sigma^2)$

where we estimate the errors via the residuals

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i).$$

Key assumptions are:

- Normality of the errors
- Constant variance of the errors
- Independence between observations
- Linearity between mean response and explanatory variable

Histograms with best fitting bell curves

Normal data

Normal QQ-plot

Definition

The quantile-quantile or qq-plot is an exploratory graphical device used to check the validity of a distributional assumption for a data set.

A normal qq-plot graphs the theoretical quantiles from a normal distribution versus the observed quantiles.

Remark The bottom line is that, if the distribution assumption is satisfied, the points should fall roughly along the y=x line.

Normal

SAS swaps the x and y axes

Normal (n=10)

SAS swaps the x and y axes

Normal(n=100)

SAS swaps the x and y axes

Normal (n=1000)

SAS swaps the x and y axes

Not normal (n=10)

SAS swaps the x and y axes

Not normal (n=100)

SAS swaps the x and y axes

Not normal (n=1000)

SAS swaps the x and y axes

Constant variance

Recall the model

$$Y_i = \beta_0 + \beta_x X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

so the variance for the e_i is constant.

To assess this assumption, we look at plots of residuals vs anything and look for patterns that show different "spreads", e.g.

- funnels
- football shapes

The most common way this assumption is violated is by having increasing variance with increasing mean, thus we often look at a residuals vs predicted (fitted) mean plot.

Constant variance

Constant variance

Residual

Extreme Non-Constant variance (funnel)

Residual

Extreme non-Constant variance (funnel)

Residual

Non-constant variance (n=10, $\sigma_2/\sigma_1 = 4$)

Non-constant variance (n=100, $\sigma_2/\sigma_1 = 4$)

Non-constant variance (n=1000, $\sigma_2/\sigma_1 = 4$)

Extreme non-Constant variance (football)

Residual

Independence

Lack of independence includes

- Cluster effect
- Serial correlation
- Spatial association

Make plots of residuals vs relevant explanatory variables and look for patterns, e.g.

- Residuals vs groups (prefer blocking)
- Residuals vs time (or observation number)
- Residuals vs spatial variable

Summary

Often the best strategy is graphical exploration of the data, here are some relevant graphs:

- transformed response vs transformed explanatory
- transformed response vs transformed explanatory
- qqplot of residuals
- residual vs fitted value
- residual vs explanatory
- residual vs observation number
- residual vs any other variable

Linearity

Assess using scatterplots of (transformed) response vs (transformed) explanatory variable:

Testing Composite hypotheses

Comparing two models

- *H*₀ : (reduced)
- *H*₁ : (full)

Do the following

- 1. Calculate extra sum of squares.
- 2. Calculate extra degrees of freedom
- 3. Calculate

$$\mathsf{F\text{-}statistic} = \frac{\mathsf{Extra~sum~of~squares} \; / \; \mathsf{Extra~degrees~of~freedom}}{\hat{\sigma}^2_{\mathit{full}}}$$

- 4. Compare this to an F-distribution with
 - numerator degrees of freedom = extra degrees of freedom
 - \bullet denominator degrees of freedom = degrees of freedom in estimating $\hat{\sigma}^2_{\textit{full}}$

Lack-of-fit F-test

Let Y_{ii} be the i^{th} observation from the j^{th} group where the group is defined by those observations having the same explanatory variable value (X_i) .

Two models:

ANOVA: $Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$

ANOVA: $Y_{ij} \sim N(\mu_j, \sigma^2)$ (full) Regression: $Y_{ij} \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$ (reduced)

- Regression model is reduced:
 - ANOVA has J parameters for the mean
 - Regression has 2 parameters for the mean
 - Set $\mu_i = \beta_0 + \beta_1 X_i$.
- Small pvalues indicate a lack-of-fit, i.e. the reduced model is not adequate.
- Lack-of-fit F-test requires multiple observations at a few X_i values!

Telomere length

Telomere length

SAS code

```
DATA t;
INFILE 'telomeres.csv' DSD FIRSTOBS=2;
INPUT years length;
PROC REG DATA=t;
MODEL length = years / CLB LACKFIT;
RUN;
```

The REG Procedure Model: MODEL1 Dependent Variable: length

Number of Observations Read 39 Number of Observations Used 39

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.22777	0.22777	8.42	0.0062
Error	37	1.00033	0.02704		
Lack of Fit	9	0.18223	0.02025	0.69	0.7093
Pure Error	28	0.81810	0.02922		
Corrected Total	38	1 22810			

Indicates no evidence for a lack of fit, i.e. regression seems adequate.

```
# Use as.factor to turn a continuous variable into a categorical variable
m_anova = lm(telomere.length ~ as.factor(years), Telomeres)
m_reg = lm(telomere.length ~ years , Telomeres)
anova(m_reg, m_anova)

Analysis of Variance Table

Model 1: telomere.length ~ years
Model 2: telomere.length ~ as.factor(years)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 37 1.000
2 28 0.818 9 0.182 0.69 0.71
```

No evidence of a lack of fit.

Lack-of-fit F-test summary

- Lack-of-fit F-test tests the assumption of linearity
- Needs multiple observations at various explanatory variable values
- Small pvalue indicates a lack-of-fit, i.e. means are not linear
 - Transform response, e.g. log
 - Transform explanatory variable
 - Add other explanatory variables