Group Meeting

Yunlong Pan

Outline

- ClimateX
- Our ChatIAMs
- Result Comparison
- Few-shots(Not random)

ClimateX

Source:

- Paper: <<ClimateX: Do LLMs Accurately Assess Human Expert Confidence in Climate Statements?>> https://arxiv.org/abs/2311.17107
- 2. Github Code: https://github.com/rlacombe/ClimateX/tree/main
- 3. Dataset: https://huggingface.co/datasets/rlacombe/ClimateX

statement_idx int64	report string · classes	page_num int64	sent_num int64	<pre>statement string · lengths</pre>	<pre>confidence string · classes</pre>	score int64	<pre>split string · classes</pre>
0↔809 10%	AR6_WGI 28	18÷300 25%	16÷23 24%		high 58	2 58	train 96
0	AR6_WGI	20	22	Since 2011 (measurements reported in AR5), concentrations have continued to increase in the atmosphere, reaching annual averages of 410 parts per million (ppm) for carbon dioxide (CO 2), 1866 parts per billion (ppb) for methane (CH 4), and 332 ppb for nitrous oxide (N 20) in 2019.6 Land and ocean have taken up a near-constant proportion (globally about 56% per year) of CO 2 emissions from human activities over the past six decades, with regional differences	high	2	train
1	AR6_WGI	21	8	Mid-latitude storm tracks have likely shifted poleward in both hemispheres since the 1980s, with marked	medium	1	train
2	AR6_WGI	21	18	The average rate of sea level rise was 1.3 [0.6 to 2.1] mm yr-1 between 1901 and 1971, increasing to 1.9 [0.8 t	high	2	train
3	AR6_WGI	24	2	Since 1750, increases in CO2 (47%) and CH4 (156%) concentrations far exceed – and increases in N2O (23%)	very high	3	test
4	AR6_WGI	24	4	Temperatures during the most recent decade (2011–2020) exceed those of the most recent multi-century warm…	medium	1	train
5	AR6_WGI	24	5	Prior to that, the next most recent warm period was about 125,000 years ago, when the multi-century	medium	1	train
6	AR6_WGI	24	7	Late summer Arctic sea ice area was smaller than at any time in at least the past 1000 years	medium	1	train

ClimateX: Dataset

Rows: 8093 statements

Source: AR6 WGI, AR6 WGII, AR6 WGIII

confidence: low, medium, high, very high

split: train(7794), test(300)

ClimateX: Github

https://github.com/rlacombe/ClimateX/blob/main/dsp_zeroshot_experiments.ipynb

- Model setting
- Loading the dataset
- Defining templates
- Defining the task
- Experiment
- Saving experiment results
- Precision, recall, and F1 score
- Over/under confidence assessment

ClimateX: Defining templates

Example:

You will be presented with a statement about climate science, climate impacts or climate change mitigation which is retrieved or paraphrased from the IPCC AR6 WGI, WGII or WGIII assessment reports. Climate scientists have evaluated that statement as low confidence, medium confidence, high confidence, or very high confidence, based on evidence (type, amount, quantity, consistency) and agreement among their peers. What is their confidence level?

Respond *only* with one of the following words: 'low', 'medium', 'high', 'very high'. If you don't know, you can r espond 'I don't know'.

Follow the following format.

Statement: \${a short statement about climate.}
Confidence: \${must be *only*: 'low', 'medium', 'high', 'very high'}

Statement: Since 2011 (measurements reported in AR5), concentrations have continued to increase in the atmosphere, reaching annual averages of 410 parts per million (ppm) for carbon dioxide (CO 2), 1866 parts per billion (ppb) for methane (CH 4), and 332 ppb for nitrous oxide (N 20) in 2019.6 Land and ocean have taken up a near-constant proportion (globally about 56% per year) of CO 2 emissions from human activities over the past six decades, with regional differences

CliamteX result: Dataframe

statement_i	report	page_num	sent_num	statement	confidence	score	split	prediction	correct
3	AR6_WGI	24	2	Since 1750, i	very high	3	test	very high	TRUE
42	AR6_WGI	37	16	Over the nex	low	0	test	high	FALSE
77	AR6_WGI	47	7	By the end o	high	2	test	high	TRUE
81	AR6_WGI	62	2	Over the pas	medium	1	test	high	FALSE
86	AR6_WGI	63	8	The paleo co	high	2	test	very high	FALSE
98	AR6_WGI	65	30	These higher	medium	1	test	medium	TRUE
151	AR6_WGI	85	31	Model estim	low	0	test	medium	FALSE
157	AR6_WGI	87	27	Projected cha	medium	1	test	medium	TRUE
162	AR6_WGI	90	4	A long-term	medium	1	test	very high	FALSE
165	AR6_WGI	90	14	Ocean warm	medium	1	test	very high	FALSE
190	AR6_WGI	93	13	The total Ant	very high	3	test	high	FALSE
197	AR6_WGI	93	34	Since AR5, th	high	2	test	very high	FALSE
233	AR6_WGI	101	6	Water cycle	high	2	test	high	TRUE
237	AR6_WGI	101	11	Global land	medium	1	test	high	FALSE
282	AR6_WGI	116	13	The largest o	medium	1	test	high	FALSE
322	AR6_WGI	122	19	For global wa	low	0	test	high	FALSE

Macro F1 score: 0.35772096872812476 Weighted F1 score: 0.41720454917319505 Accuracy (total): 0.4633333333333333

•	precision	recall	f1-score	support
high low medium very high	0.4690 0.6364 0.4545 0.3333	0.6800 0.1400 0.6000 0.0800	0.5551 0.2295 0.5172 0.1290	100 50 100 50
accuracy macro avg weighted avg	0.4733 0.4695	0.3750 0.4633	0.4633 0.3577 0.4172	300 300 300
confidence				

high 100 medium 100 very high 50

low

Name: count, dtype: int64

50

ClimateX:
Precision, recall,
and F1 score

Precision: column mean

Recall: row mean

F1 score: $\frac{2 \times Precision \times Recall}{Precision + Recall}$

ClimateX result

Details:

https://github.com/rlacombe/ ClimateX/blob/main/results/ic cs-zeroshot/gpt4-zeroshottemp0-2023-06-09.csv

D Appendix: Classifier Results Table

Table 4 presents the precision, recall, and F1 score for each classifier, as well as support (number of sentences for which the model answered with a valid confidence label). Note that the 'very high' class and the 'low' class each have 50 total sentences, while the 'high' and 'medium' classes each have 100, for a total of 300 sentences in the test set.

Models		GPT-3.	5-turbo	GP	T-4	Cohere Command XL		
Setting		Zero-shot	Few-shot	Zero-shot	Few-shot	Zero-shot	Few-shot	
	Precision	0.500	0.476	0.428	0.375	0.221	0.238	
'very high'	Recall	0.146	0.208	0.120	0.180	0.300	0.592	
very mgn	F1	0.226	0.290	0.188	0.243	0.254	0.339	
	Support	48	48	50	50	50	49	
	Precision	0.504	0.485	0.472	0.475	0.332	0.383	
'high'	Recall	0.582	0.505	0.680	0.660	0.760	0.546	
'high'	F1	0.540	0.495	0.557	0.552	0.462	0.450	
	Support	98	99	100	100	100	99	
	Precision	0.389	0.389	0.410	0.466	0.500	0.0	
'medium'	Recall	0.636	0.616	0.570	0.610	0.010	0.0	
meatum	F1	0.483	0.477	0.477	0.528	0.020	0.0	
	Support	99	99	100	100	100	100	
	Precision	0.167	0.143	0.667	0.833	1.000	0.353	
'low'	Recall	0.020	0.041	0.040	0.100	0.020	0.245	
IOW	F1	0.036	0.064	0.076	0.179	0.039	0.289	
	Support	50	49	50	50	50	49	
	Accuracy	0.434	0.417	0.443	0.470	0.310	0.320	
Aggragata	Macro F1	0.321	0.331	0.324	0.376	0.194	0.270	
Aggregate	Weighted F1	0.384	0.384	0.389	0.430	0.209	0.254	
	Support	295	295	300	300	300	297	

Table 4: Detailed results: Model classification performance results for the 3 models we assessed in both the zero shot and few shot setting. Reported metrics: accuracy, weighted and macro F1 score, and class-wise recall, precision, and F1 metrics.

Our ChatIAMs

Source:

- 1. Paper Draft: https://www.overleaf.com/1225397724nhhpgfjszczg#a93b66
- 2. Github Code: https://github.com/yl1127/Academic-projects/blob/main/yl Climate LLM/yl Climate 0515.ipynb
- 3. Dataset: https://huggingface.co/datasets/rlacombe/ClimateX
- 4. IAMs(Integrated Assessment Modelling): https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Annex-III.pdf
- 5. https://openscm-runner.readthedocs.io/en/latest/notebooks/magicc/run-magicc.html

IAMs(Integrated Assessment Modelling) Result

Climate Variables(10)

- Surface Air Temperature Change,
- Atmospheric Concentrations | CO2,
- Effective Radiative Forcing,
- CO2,
- Aerosols,
- Direct Effect | BC,
- Direct Effect | OC,
- Direct Effect | SOx,
- Direct Effect and Indirect Effect
- Sea Level Change

- Time: 1950-2100
- Scenarios: ssp119, ssp126, ssp245, ssp370, ssp460 and ssp585
- Confidence interval

IAMs(Integrated Assessment Modelling) Result

model	quantile	region	scenario	unit	variable	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963
AIM/CGE	0.005	World	ssp370	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
AIM/CGE	0.005	World	ssp370-lowN	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
AIM/CGE	0.005	World	ssp370-lowN	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
GCAM4	0.005	World	ssp434	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
GCAM4	0.005	World	ssp460	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
IMAGE	0.005	World	ssp119	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
IMAGE	0.005	World	ssp126	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
MESSAGE-G	0.005	World	ssp245	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
REMIND-MA	0.005	World	ssp534-over	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
REMIND-MA	0.005	World	ssp585	ppm	Atmospheric	312.821	313.014	313.342	313.73	314.095	314.415	314.698	314.992	315.345	315.807	316.625	317.299	318.044	318.65
AIM/CGE	0.005	World	ssp370	W / m^2	Effective Rac	0.80966205	0.81077522	0.79057856	0.79139343	0.79597298	0.81300747	0.82454413	0.84433543	0.90661575	0.89860682	0.89155208	0.73754744	0.45263293	0.15029892
AIM/CGE	0.005	World	ssp370-lowN	W / m^2	Effective Rac	0.79121384	0.79394895	0.77288623	0.77322946	0.77723483	0.79357729	0.80299683	0.82074545	0.88454495	0.87629651	0.86844606	0.71061633	0.42641029	0.12150809
AIM/CGE	0.005	World	ssp370-lowN	W / m^2	Effective Rac	0.79121482	0.79395029	0.77288766	0.7732309	0.77723634	0.79357887	0.80299848	0.82074713	0.88454667	0.8762981	0.86844763	0.71061809	0.42641207	0.1215099
GCAM4	0.005	World	ssp434	W / m^2	Effective Rac	0.78568667	0.78775469	0.76663331	0.7669466	0.77094004	0.78668819	0.7956232	0.8131947	0.87686123	0.86835434	0.86020667	0.70175987	0.4171346	0.11205342
GCAM4	0.005	World	ssp460	W / m^2	Effective Rac	0.78568667	0.78775469	0.76663331	0.7669466	0.77094004	0.78668819	0.7956232	0.8131947	0.87686123	0.86835434	0.86020667	0.70175987	0.4171346	0.11205342
IMAGE	0.005	World	ssp119	W / m^2	Effective Rac	0.75608834	0.76328763	0.74011381	0.73918868	0.7418622	0.75706093	0.76218838	0.77510625	0.84243892	0.83392309	0.82469352	0.65677924	0.37498351	0.06424094
IMAGE	0.005	World	ssp126	W / m^2	Effective Rac	0.75735758	0.764652	0.74147711	0.74055438	0.74323359	0.75854553	0.76377905	0.77673264	0.84408932	0.83564646	0.82649084	0.65864162	0.37692131	0.06621139
MESSAGE-G	0.005	World	ssp245	W / m^2	Effective Rac	0.7671681	0.77170857	0.74951881	0.74915014	0.75250786	0.76755881	0.77421458	0.7892204	0.85475033	0.84597021	0.8370461	0.67307447	0.38965827	0.08147979
REMIND-MA	0.005	World	ssp534-over	W / m^2	Effective Rac	0.75592244	0.76001522	0.73784248	0.73752714	0.74067671	0.75516356	0.76091636	0.77564355	0.84113219	0.8318951	0.82236415	0.65891232	0.37515457	0.0666921
REMIND-MA	0.005	World	ssp585	W / m^2	Effective Rac	0.75594287	0.76003582	0.73786316	0.73754789	0.74069753	0.75518448	0.76093738	0.77566469	0.8411535	0.8319167	0.82238608	0.6589345	0.37517677	0.06671422
AIM/CGE	0.005	World	ssp370	W / m^2	Effective Rac	-0.5304396	-0.5001678	-0.5202375	-0.5292447	-0.5436614	-0.5637574	-0.6206919	-0.6680614	-0.6300215	-0.635823	-0.6586038	-0.7385091	-0.7297062	-0.7928036
AIM/CGE	0.005	World	ssp370-lowN	W / m^2	Effective Rac	-0.5551753	-0.5234276	-0.5444155	-0.5538431	-0.568907	-0.5899676	-0.649566	-0.6991544	-0.6593253	-0.665441	-0.6893015	-0.7730214	-0.7638204	-0.8298716
AIM/CGE	0.005	World	ssp370-lowN	W / m^2	Effective Rac	-0.5551752	-0.5234275	-0.5444154	-0.553843	-0.5689069	-0.5899674	-0.6495658	-0.6991543	-0.6593251	-0.6654409	-0.6893014	-0.7730213	-0.7638203	-0.8298715
GCAM4	0.005	World	ssp434	W / m^2	Effective Rac	-0.556515	-0.5251568	-0.5461263	-0.5556163	-0.5706129	-0.592069	-0.6517806	-0.7014343	-0.661906	-0.6683134	-0.6923157	-0.7765654	-0.7676006	-0.8335888
GCAM4	0.005	World	ssp460	W / m^2	Effective Rac	-0.556515	-0.5251568	-0.5461263	-0.5556163	-0.5706129	-0.592069	-0.6517806	-0.7014343	-0.661906	-0.6683134	-0.6923157	-0.7765654	-0.7676006	-0.8335888
IMAGE	0.005	World	ssp119	W / m^2	Effective Rac	-0.6176804	-0.5820325	-0.6053387	-0.6157834	-0.6324793	-0.655887	-0.7222108	-0.7773758	-0.7327347	-0.7394581	-0.7659657	-0.8596647	-0.8493915	-0.9229873
IMAGE	0.005	World	ssp126	W / m^2	Effective Rac	-0.6172275	-0.5815023	-0.6048156	-0.6152491	-0.6319481	-0.6552797	-0.7215722	-0.7767227	-0.7320153	-0.7386745	-0.7651461	-0.8587762	-0.8484662	-0.9220806
MESSAGE-G	0.005	World	ssp245	W / m^2	Effective Rac	-0.5899441	-0.5565909	-0.5787846	-0.5888308	-0.6046579	-0.6274759	-0.690784	-0.7434131	-0.7013667	-0.708162	-0.7335968	-0.8234114	-0.8139557	-0.8839538
REMIND-MA	0.005	World	ssp534-over	W / m^2	Effective Rac	-0.59386	-0.5608477	-0.5829814	-0.5930545	-0.6090188	-0.6320715	-0.695606	-0.748323	-0.7067081	-0.7138575	-0.7395438	-0.8289024	-0.8194307	-0.8892413
REMIND-MA	0.005	World	ssp585	W / m^2	Effective Rac	-0.59386	-0.5608477	-0.5829814	-0.5930545	-0.6090189	-0.6320715	-0.695606	-0.748323	-0.7067081	-0.7138575	-0.7395438	-0.8289024	-0.8194307	-0.8892413
AIM/CGE	0.005	World	ssp370	W / m^2	Effective Rac	-0.1057173	-0.111232	-0.1127764	-0.1148976	-0.1162407	-0.1259323	-0.1344366	-0.1396555	-0.1395005	-0.143876	-0.1484634	-0.1698231	-0.1735158	-0.1789923
AIM/CGE	0.005	World	ssp370-lowN	W / m^2	Effective Rac	-0.1106161	-0.1163264	-0.1179237	-0.1201438	-0.1215233	-0.1316937	-0.1406	-0.1460691	-0.1458942	-0.1505174	-0.1553348	-0.1777748	-0.1816529	-0.187392
AIM/CGE	0.005	World	ssp370-lowN	W / m^2	Effective Rac	-0.110616	-0.1163263	-0.1179236	-0.1201437	-0.1215232	-0.1316936	-0.1405999	-0.1460689	-0.1458941	-0.1505173	-0.1553347	-0.1777746	-0.1816527	-0.1873919
GCAM4	0.005	World	ssp434	W / m^2	Effective Rac	-0.1139736	-0.1199034	-0.1215703	-0.1238855	-0.1252599	-0.1358751	-0.1451247	-0.1508593	-0.1508054	-0.155727	-0.1607726	-0.1840205	-0.1880755	-0.1940253

Our method

```
In [318...
     ex = Example(
          input=ipcc_train[0]['input'], table = function_response, label=ipcc_train[0]['label'])
     ex.demos=sample(ipcc_train, 0)
     print(zero_shot_template(ex))
```

You are a knowledgeable climate science assistant trained to assess the confidence level associated with various s tatements about climate change.

You will be presented with a statement about climate science, climate impacts or climate change mitigation which is retrieved or paraphrased from the IPCC AR6 WGI, WGII or WGIII assessment reports. Climate scientists have evaluated that statement as low confidence, medium confidence, high confidence, or very high confidence, based on evidence (type, amount, quantity, consistency) and agreement among their peers. What is their confidence level?

Respond *only* with one of the following words: 'low', 'medium', 'high', 'very high'. If you don't know, you can r espond 'I don't know'.

Follow the following format.

Statement: \${a short statement about climate.}
IAMs output: \${a json table about dataset related with statment above.}
Confidence: \${must be *only*: 'low', 'medium', 'high', 'very high'}

Statement: Since 2011 (measurements reported in AR5), concentrations have continued to increase in the atmosphere, reaching annual averages of 410 parts per million (ppm) for carbon dioxide (CO 2), 1866 parts per billion (ppb) for methane (CH 4), and 332 ppb for nitrous oxide (N 20) in 2019.6 Land and ocean have taken up a near-constant prop ortion (globally about 56% per year) of CO 2 emissions from human activities over the past six decades, with regional differences

IAMS output: {"model":{"19":"REMIND-MAGPIE","119":"REMIND-MAGPIE","219":"REMIND-MAGPIE","319":"REMIND-MAGPIE","41 9":"REMIND-MAGPIE"},"quantile":{"19":0.005,"119":0.025,"219":0.5,"319":0.975,"419":0.995},"variable":{"19":"Effect ive Radiative Forcing","119":"Effective Radiative Forcing","219":"Effective Radiative Forcing","319":"Effective Radiative Forcing","419":"W \/ m^2","119":"W \/ m^2","219":"W \/ m^2","219":"W \/ m^2","219":"ssp585","119":"ssp585","219":"ssp585","319":"ssp585","419":"ssp585","419":"ssp585","319":"ssp585","319":9.433997846}} Confidence:

Our result

statement_i	report	page_num	sent_num	statement	confidence	score	split	tables	prediction	correct
3	AR6_WGI	24	2	Since 1750, i	very high	3	test		very high	TRUE
42	AR6_WGI	37	16	Over the nex	low	0	test	{"model":{"5	very high	FALSE
77	AR6_WGI	47	7	By the end o	high	2	test	{"model":{"5	very high	FALSE
81	AR6_WGI	62	2	Over the pas	medium	1	test		high	FALSE
86	AR6_WGI	63	8	The paleo co	high	2	test		high	TRUE
98	AR6_WGI	65	30	These higher	medium	1	test		medium	TRUE
151	AR6_WGI	85	31	Model estim	low	0	test		medium	FALSE
157	AR6_WGI	87	27	Projected cha	medium	1	test		medium	TRUE
162	AR6_WGI	90	4	A long-term	medium	1	test	{"model":{"9	high	FALSE
165	AR6_WGI	90	14	Ocean warm	medium	1	test	{"model":{"9	high	FALSE
190	AR6_WGI	93	13	The total Ant	very high	3	test	{"model":{"5	high	FALSE
197	AR6_WGI	93	34	Since AR5, th	high	2	test	{"model":{"5	high	TRUE
233	AR6_WGI	101	6	Water cycle	high	2	test	{"model":{"9	high	TRUE
237	AR6_WGI	101	11	Global land	medium	1	test	{"model":{"9	high	FALSE
282	AR6_WGI	116	13	The largest o	medium	1	test	{"model":{"9	medium	TRUE
322	AR6_WGI	122	19	For global w	low	0	test	{"model":{"9	medium	FALSE
361	AR6_WGI	134	16	At global and	medium	1	test	{"model":{"9	medium	TRUE

Our result

Details: https://github.com/yl1127/Academic-projects/blob/main/yl Climate LLM/ChatlAMs/

Our Result:

level2	GPT-3.5-turbo	GPT-4	GPT-4-turbo	GPT-3.5-turbo	GPT-4	GPT-4-turbo	GPT-4-turbo
Settings	Zero-shot	Zero-shot	Zero-shot	few-shots	few-shots	few-shots(random)	few-shots(semantic search)
Accuracy	41.5	45.2	46.3	37.9	43.3	47.7	46.3
Note				idk:102			

ClimateX:

ClimateX	GPT-3.5-turbo	GPT-4	GPT-3.5-turbo	GPT-4	
Settings	Zero-shot	Zero-shot	few-shots	few-shots	
Accuracy	43.4	44.3	41.7	47.0	

Compare with ClimateX

```
p Initialize Reactive Jupyter | Sync all Stale code
    samples_compare['pred==pred_gpt4'].value_counts()

    v 0.0s

...

pred==pred_gpt4
True 222
False 78
Name: count, dtype: int64
```

```
30 wrong -> correct
24 correct -> wrong
24 wrong -> wrong
```

Few-shot

```
You are a knowledgeable climate science assistant trained to assess the confidence level associated with various statements a
You will be presented with a statement about climate science, climate impacts or climate change mitigation which is retrieved
Respond *only* with one of the following words: 'low', 'medium', 'high', 'very high'. If you don't know, you can respond 'I d
Follow the following format.
Statement: ${a short statement about climate.}
IAMs output: ${a json table from IAM climate modeling.}
Confidence: ${must be *only*: 'low', 'medium', 'high', 'very high'}
___
Statement: For example, pathways that lead to poverty reduction can have synergies with food security, water, gender, terrest
Confidence: very high
Statement: Increases in frequency, intensity and severity of droughts, floods and heatwaves, and continued sea level rise wil
Confidence: medium
Statement: Relative to 1995-2014, the likely global mean sea level rise by 2100 is 0.28-0.55 m under the very low GHG emissio
Confidence: low
Statement: By the end of the century, scenarios with very low and low GHG emissions would strongly limit the change of severa
```

IAMs output: {"model":{"510":"uSEM"}, "quantile":{"510":0.5}, "variable":{"510":"Sea Level Change"}, "unit":{"510":"mm"}, "scenar

Confidence:

Few-shots results

Our Result:

level2	GPT-3.5-turbo	GPT-4	GPT-4-turbo	GPT-3.5-turbo	GPT-4		GPT-4-turbo	GPT-4-turbo
Settings	Zero-shot	Zero-shot	Zero-shot	few-shots	few-sho	s	few-shots(random)	few-shots(semantic search)
Accuracy	41.5	45.2	46.3	37.9	43.3		47.7	46.3
Note				idk:102				

ClimateX:

ClimateX	GPT-3.5-turbo	GPT-4	GPT-3.5-turbo	GPT-4
Settings	Zero-shot	Zero-shot	few-shots	few-shots
Accuracy	43.4	44.3	41.7	47.0