MATH 4000/6000 - Final Exam Study Guide

Exam time/location: Friday, May 6, 8 AM – 11 AM, usual classroom

The exam is **cumulative**. You should expect ≤ 10 questions, with a format similar to that used in the three midterms.

Course summary

Part I: The Integers

- Axioms: \mathbb{Z} is a commutative ring with $1 \neq 0$, ordered, and satisfies the well-ordering principle (see the initial handout)
- Binomial theorem
- Theory of divisibility
 - basic definitions and properties of divisibility
 - definition of the gcd
 - Euclid's algorithm for computing the gcd
 - gcd can be written as a linear combination of starting numbers
- Euclid's lemma
- Unique factorization theorem
- Congruences
 - basic definitions
 - congruence mod m is an equivalence relation
 - Fermat's little theorem
 - inverses and cancelation; solving $ax \equiv b \mod m$
 - simultaneous congruences and the Chinese remainder theorem

Part II: Rings: First examples

- Ring axioms
- Definition of **fields** and **integral domains**
- Detailed discussion of \mathbb{Z}_m
 - $-\bar{a}$ is a unit in $\mathbb{Z}_m \iff \gcd(a,m)=1$
 - for positive integers m, \mathbb{Z}_m is a field $\iff m$ is prime $\iff \mathbb{Z}_m$ is an integral domain
- Definition of \mathbb{Q} from \mathbb{Z} (ordered pairs up to cross-multiplication equivalence); verification that + and \cdot are well-defined

- Definition of \mathbb{C} from \mathbb{R}
- Basic properties of complex numbers
 - basic concepts: complex conjugation, absolute value, polar form
 - multiplication of complex numbers in polar form
 - de Moivre's theorem
 - -n distinct nth roots of every nonzero complex number
 - solving linear and quadratic, and cubic equations over \mathbb{C} (solving cubic equations is NOT examinable)

Part III: Polynomials over commutative rings

- Definition of the polynomial ring R[x]
- Basic properties
 - if R is a domain, deg(a(x)b(x)) = deg(a(x)) + deg(b(x))
 - if R is a domain, then R[x] is a domain
 - if R is a field, then u is a unit in $R[x] \iff u$ is a nonzero constant in R
- Division algorithm in F[x], F a field
- \bullet gcds in F[x] and their properties
- irreducibles in F[x], Euclid's lemma, unique factorization theorem in F[x]
- root-factor theorem
- The Fundamental Theorem of Algebra (proof non-examinable)
- testing irreducibility of polynomials with integer coefficients
 - rational root test
 - reduction modulo p
 - Eisenstein's criterion

Part IV: Field extensions, part 1

- definition of $F[\alpha]$, where α belongs to a field containing F
- definition of f(x) splitting completely; definition of a splitting field for $f(x) \in F[x]$ over F
- $F[\alpha]$ is a field if α is a root of nonconstant polynomial in F[x]

Part V: Ring homomorphisms

- definition of a ring homomorphism
- kernel of a homomorphism; $\ker \phi = \{0\} \iff \phi$ is injective
- definition of an ideal of a commutative ring
- \mathbb{Z} and F[x] are principal ideal domains: all ideals are of the form $\langle a \rangle$ for a single element a
- construction of the quotient ring R/I, for an ideal I of R
- ring isomorphisms (basic properties) and the Fundamental Homomorphism Theorem

Part VI: Field extensions, part 2

- If $f(x) \in F[x]$ is irreducible, then $K = F[x]/\langle f(x) \rangle$ is a field containing F that also contains at least one root of f(x) (namely, \bar{x})
- If $f(x) \in F[x]$, there is an field K containing F over which f splits; moreover, there is a splitting field for f(x) over F
- definition of the degree [K:F]
- degrees multiply in towers
- if p(x) is irreducible of degree n over F, then $K = F[x]/\langle p(x) \rangle$ is a field containing F with [K:F] = n.
- if $K = F[\alpha]$ and α is a root of a degree n irreducible polynomial over F, then [K:F] = n

Practice problems over §5.1

- 1. Find the degree [K:F] in each of the following cases.
 - (a) $F = \mathbb{Q}, K = \mathbb{Q}[\sqrt{2}],$
 - (b) $F = \mathbb{Q}[i], K = \mathbb{Q}[\sqrt{3}, i],$
 - (c) $F = \mathbb{Q}[\sqrt{3} + i], K = \mathbb{Q}[\sqrt{3}, i].$
 - (d) $F = \mathbb{Q}, K = \mathbb{Q}[\cos(\pi/3) + i\sin(\pi/3)].$
 - (e) $F = \mathbb{Q}[i], K = \mathbb{Q}[\sqrt[5]{8}, i],$
- 2. (a) Find $[\mathbb{Q}[\sqrt[6]{2}, \sqrt[7]{2}] : \mathbb{Q}]$.
 - (b) Show: $\mathbb{Q}[\sqrt[6]{2}, \sqrt[8]{2}] = \mathbb{Q}[\sqrt[24]{2}]$. What is $[\mathbb{Q}[\sqrt[6]{2}, \sqrt[8]{2}] : \mathbb{Q}]$?
- 3. One can show (you are not asked to do so) that the polynomial $p(x) = x^6 + x^3 + 1$ is irreducible over $F = \mathbb{Z}_2$. Let $K = \mathbb{Z}_2[x]/\langle p(x) \rangle$ and let $\alpha = \bar{x} \in K$.
 - (a) Show that if F' is a field with $F \subsetneq F' \subsetneq K$, then [F' : F] = 2 or [F' : F] = 3.
 - (b) Let $\beta = \alpha^3$. Find $[K : F[\beta]]$ and $[F[\beta] : F]$.
- 4. Let F be a field. Suppose $f(x) \in F[x]$ has degree 3. Prove that there is a field K containing F satisfying (a) f(x) splits over K, (b) deg $f(x) \le 6$.