ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГИМНАЗИЯ №3 Г. ГРОДНО»

Секция «Алгебра, геометрия и математический анализ»

«Неординарное представление известной последовательности»

Авторы работы:

Доминич Роман Игоревич, 8 класс ГУО «Гимназия №3 г. Гродно», Мельников Александр Андреевич, 9 класс ГУО «Гимназия №3 г. Гродно»,

Руководитель работы:

Разумов Евгений Владимирович, учитель математики, магистр педагогических наук, ГУО «Гимназия №3 г. Гродно»

Оглавление

Введение	3
Основная часть	4
Общая теория	4
Исследовательская часть	
Заключение	10
Список использованных источников	11

Введение

Нам часто приходится сталкиваться с подсчётом вариантов того или иного события как в реальной жизни, так и на уроках математики, и на олимпиадах в частности. В этом нам часто помогает комбинаторика. В комбинаторных задачах для их решения используются разные способы, это может быть полный или ограниченный перебор вариантов или использование специальных комбинаторных формул. В более редких случаях, где для некоторого заданного натурального n необходимо найти количество способов какой-либо расстановки n элементов можно прибегнуть к целочисленным последовательностям.

На шестом Минском городском открытом турнире юных математиков (младшая лига — 5-7 классы) в 2019 году была предложена задача «Письма» [1]. При решении данной задачи была выдвинута гипотеза, что количество различных порядков отправления писем совпадает с количеством триангуляций правильного (n+2)-угольника. В данной работе рассмотрим истинность выдвинутого предположения. Некоторые частные случаи задачи рассмотрены в книге «Семь шагов» [2], но не общий случай, который изучим в этой работе.

Объект исследования: последовательности с заданными свойствами.

Предмет исследования: количество всевозможных порядков отправления писем.

Цель работы: доказать, что количество различных порядков отправления писем совпадает с количеством триангуляций правильного (n+2)-угольника.

На основании сформулированной цели определим ряд задач исследования:

- 1) Определить возможный порядок отправления писем.
- 2) Найти количество способов отправления n писем.
- 3) Доказать, что полученная рекуррентная формула совпадает с формулой количества триангуляций (n+2)-угольника.

Основная часть Общая теория

Последовательность чисел Каталана (числа Каталана) — последовательность чисел $\{C_n\}$, которая выражает количество триангуляций (n+2)-угольника (разрезание его на треугольники непересекающимися диагоналями). Кроме этого определения у данной последовательности есть множество других способов выражения, такие как:

- -количество правильных скобочных последовательностей длины 2n;
- -количество способов соединения 2n точек на окружности n не пересекающимися хордами;
 - -количество способов полностью разделить скобками n+1 множитель;
- -количество способов заполнить лестницу ширины и высоты n прямоугольниками;
- -количество кортежей $(x_1, x_2, ..., x_n)$ из n натуральных чисел, что $x_1 = 1$ $x_i \le x_{i-1} + 1$ при $2 \le i \le n$;
- -количество неизоморфных упорядоченных бинарных деревьев с корнем и (n+1) листьями;
- -количество всевозможных способов линеаризации декартова произведения двух линейных упорядоченных множеств: из 2 и из n элементов [3].

Также у данной последовательности существуют несколько известных рекуррентных и нерекуррентных формул представления:

$$C_n = \sum_{i=0}^{n-1} (C_i \cdot C_{n-i-1}), \forall C_n \in \mathbb{N}, C_0 = 1$$

$$C_n = \frac{(2 \cdot n)!}{n! \cdot (n+1)!} = \frac{2^n \cdot (2 \cdot n-1)!!}{(n+1)!} = \prod_{k=1}^n \frac{n+k}{1+k}.$$
(1)

Исследовательская часть

На шестом Минском городском открытом турнире юных математиков в 2019 году была предложена задача «Письма», в которой предлагается рассмотреть следующую комбинаторную задачу.

Сотрудникам почты необходимо разослать n писем. Время от времени начальник опускает очередное письмо в конверт и кладет его на уже лежащую стопку с конвертами. Его помощник время от времени берет самый верхний конверт из стопки и отдает его почтальону для отправки. Будем считать, что письма, которые кладет начальник, пронумерованы им по порядку, начиная с 1. Сколько всего может получиться различных порядков отправления писем?

Введём последовательность $\{P_n\}$ такую, что P_n совпадает с количеством способов отправки n писем.

Сформулируем и докажем лемму:

Лемма 1. Если письмо №1 помощник взял после m ($m \in \mathbb{N}_0$) некоторых других писем, то эти m писем были пронумерованы номерами 2, 3 ..., m, (m+1) в некотором порядке.

Доказательство:

Докажем методом от противного. Пусть среди этих m писем было хотя бы одно с номером, большим (m+1). Пусть, не нарушая общности, это письмо $N^{\Omega}(m+\alpha)$ ($\alpha \in \mathbb{N}$, $\alpha \neq 1$). Так как помощник, по предположению, до письма $N^{\Omega}(m+\alpha)$ писем, среди которых было письмо $N^{\Omega}(m+\alpha)$, то по принципу Дирихле получим, что существует письмо $N^{\Omega}(m+\alpha)$, такое, что $i \in (1; (m+1)]$ и оно было взято после письма $N^{\Omega}(m+\alpha)$.

Рассмотрим письма № i и № 1. Они, по предположению, были взяты помощником после письма № $(m + \alpha)$, значит, они уже лежат в стопке писем, так как если положено оно, то положены и все письма, номера которых меньше. Письмо № i лежит выше в стопке писем, чем письмо № 1, так как было положено туда позже письма № 1, что и показывает его номер. Если оно лежит выше в стопке, то оно будет раньше взято помощником, чем письмо № 1, так как помощник постепенно, идя сверху вниз, забирая письма, дойдёт раньше до письма № i и возьмёт его, пока письмо № 1 будет лежать в стопке. Отсюда получаем противоречие, так как с одной стороны письмо № i было взято позже письма № 1, а с другой наоборот.

Значит, наше предположение неверно и лемма доказана.

Для нахождения количества способов отправления n писем выведем и докажем следующую теорему:

 $Tеорема \ 1.$ Количество различных порядков отправления n писем вычисляется по следующей формуле:

$$P_n = \sum_{m=0}^{n-1} (P_m \cdot P_{n-m-1}), \forall n \in \mathbb{N}, \tag{2}$$

где P_0 определим за 1.

Доказательство:

Рассмотрим все возможные позиции, на которых может стоять письмо №1 и сколько при этом может быть расстановок остальных писем. Пусть письмо №1 помощник вытянул после m некоторых других. Тогда, по Лемме 1, получаем, что до этого помощник вытянул письма №2, №3, ..., №m, №(m+1).

Соответственно после того, как помощник отдал письмо $N^{\circ}1$ почтальону, он в некотором порядке вытянул письма $N^{\circ}(m+2)$, $N^{\circ}(m+3)$, ..., $N^{\circ}n$.

Разобьём все письма на 3 промежутка:

- 1) письма от $N^{\circ}2$ до $N^{\circ}(m+1)$;
- 2) письма от $N^{\circ}(m+2)$ до $N^{\circ}n$;
- 3) письмо №1;

В промежутке 1) переномеруем все письма следующим образом: №2 в №1; №3 в №2; ...; №(m+1)в №m, тогда количество различных отправлений этих писем равно P_m .

В промежутке 2) переномеруем все письма следующим образом: $N^{\circ}(m+2)$ в $N^{\circ}(m+3)$ в N°

Так как m пробегает все значения от 0 до (n-1) (перед письмом N⁰1 могло быть отправлено от 0 до (n-1) письма), то количество различных отправок n писем равно

$$\textstyle\sum_{m=0}^{n-1}(P_m\cdot P_{n-m-1}).$$

Теорема доказана.

Таким образом нами была получена рекуррентная формула представления полученной последовательности $\{P_n\}$. Несложно заметить её полное сходство с формулой чисел Каталана (1). Докажем методом математической индукции.

Предположение индукции: $P_i = C_i$, $\forall i \in \mathbb{N}_0$.

База индукции:

 $P_0 = 1$, $C_0 = 1$, значит $P_0 = C$.

База доказана.

Шаг индукции:

Пусть при $i=n_0$ верно $P_{n_0}=\mathcal{C}_{n_0}$, $\forall n_0 < n$, тогда

$$\sum_{m=0}^{n-1} (C_m \cdot C_{n-m-1}) = \sum_{m=0}^{n-1} (P_m \cdot P_{n-m-1})$$
. Учитывая, что

 $C_n = \sum_{m=0}^{n-1} (C_m \cdot C_{n-m-1})$, а $P_n = \sum_{m=0}^{n-1} (P_m \cdot P_{n-m-1})$, значит и $C_n = P_n$. Шаг доказан.

Так как база индукции верна и из справедливости утверждения при $i=n_0, \forall n_0 < n$ следует его справедливость для i=n, то согласно принципу математической индукции предположение справедливо при всех натуральных i.

Таким образом нами доказано, что последовательность $\{P_n\}$ совпадает с $\{C_n\}$, следовательно, совпадает с последовательностью чисел Каталана. Что приводит нас к новому возможному определению последовательности Каталана.

Далее рассмотрим выпуклый, не обязательно правильный, (n+2)-угольник. За T_{n+2} обозначим количество различных разрезаний (n+2)-угольника непересекающимися диагоналями на треугольники.

Выберем некоторую вершину многоугольника, обозначим её \mathbb{N}_{2} , а далее по часовой стрелке остальные вершины пронумеруем \mathbb{N}_{2} , \mathbb{N}_{2} , ..., \mathbb{N}_{2} (n+2) соответственно каждой следующей вершине.

Утверждение 1. Рассмотрим треугольник: Очевидно, что его можно всего одним способом разрезать на треугольники – не разрезая его вовсе. Значит $T_3 = 1$.

Утверждение 2. Если из вершины № k не исходит ни одной диагонали, то вершины № (k-1) и № (k+1) соединены ребром, чтобы при разрезании из данных трех вершин образовывался треугольник.

Рассмотрим вершину №1:

Если из неё не исходит диагоналей, то по *Утверждению 2* вершины №2 и №(n+2) соединены ребром, отсюда имеем, что исходный (n+2)-угольник разбивается на один треугольник и один (n+1)-угольник с вершинами №2, №3, ..., №(n+2), получаем $T_3 \cdot T_{n+1}$, то есть T_{n+1} способов.

Пусть из вершины №1 исходит ровно r диагоналей $(r \in [1; (n-1)])$ в вершины $t_0 < t_1 < \dots < t_{r-1}$. Рассмотрим диагональ, соединяющую вершины №1 и № t_0 . Тогда возможны 2 случая:

1) $t_0 = 3$, тогда получаем разбиение (n+2)-угольника на треугольник и (n+1)-угольник с вершинами №3, №4, ..., №(n+2) и №1, значит число его разбиений равно $T_3 \cdot T_{n+1}$, то есть T_{n+1} способов.

2) $t_0 > 3$, тогда рассмотрев t_0 -угольник с вершинами №1, №2, ..., № t_0 получим, что в данном многоугольнике вершина №1 не соединена ни с одной другой, значит Вершины №2 и № t_0 соединены диагональю и остаётся (t_0-1) -угольник, количество способов его разрезать равно T_{t_0-1} . Также остаётся $(n-t_0+4)$ -угольник с вершинами № t_0 , № (t_0+1) , ..., №(n+2) и №1, количество способов его разрезаний равно T_{n-t_0+4} , а общее количество различных разрезаний равно $T_{t_0-1} \cdot T_{n-t_0+4}$, а так как t_0 пробегает все значения от 4 до (n+1) отсюда имеем $\sum_{t_0=4}^{n+1} (T_{t_0-1} \cdot T_{n-t_0+4})$ способов разрезания.

Таким образом, сложив все случаи получим следующую формулу:

 $T_{n+2}=2\cdot T_{n+1}+\sum_{t_0=4}^{n+1}(T_{t_0-1}\cdot T_{n-t_0+4})$. А заменив (t_0-3) на k получим $T_{n+2}=2\cdot T_{n+1}+\sum_{k=1}^{n-2}(T_{k+2}\cdot T_{n-k+1})$.

Определим T_2 за 1, тогда можно записать формулу в следующем виде:

$$T_{n+2} = \sum_{k=0}^{n-1} (T_{k+2} \cdot T_{n-k+1}).$$

Для доказательства того, что данная формула совпадает с таковой из Теоремы 1, воспользуемся методом математической индукции:

Предположение: $P_i = T_{i+2}$, $\forall i \in \mathbb{N}_0$.

База индукции:

$$P_0 = 1$$
, $T_2 = 1$, значит $P_0 = T_2$.

База доказана.

Шаг индукции:

Пусть $P_{n_0} = T_{n_0+2}$, $\forall n_0 < n$, тогда

$$\sum_{k=0}^{n-1} (T_{k+2} \cdot T_{n-k+1}) = \sum_{m=0}^{n-1} (P_m \cdot P_{n-m-1})$$
. Значит и

$$T_{n+2} = \sum_{m=0}^{n-1} (P_m \cdot P_{n-m-1}) = P_n$$
. Значит, шаг доказан.

Значит и предположение верно. Таким образом мы получили, что количество всевозможных порядков отправления n писем равно количеству правильный (n+2)-угольник способов разрезать непересекающимися диагоналями на треугольники, ЧТО является одним ИЗ определений последовательности Каталана.

Также нами получен другой способ доказательства – преобразование задачи о письмах в задачу о скобочных последовательностях.

Для начала скажем, что называется правильной скобочной последовательностью длины 2n. Данная последовательность характеризуется 2 свойствами:

- 1) Это последовательность, содержащая 2 разных вида элементов, как правило это открывающаяся и закрывающаяся скобки («(» и «)»);
- 2) Взяв любой её промежуток от начала до любого другого места количество элементов первого типа не меньше количества элементов второго типа.

Переформулируем выше сказанное под условие поставленной ранее задачи:

- 1) Из условия понятно, что возможны всего 2 операции: либо начальник кладёт письмо в стопку, либо письмо забирает помощник;
- 2) На любом промежутке времени от начала до любого момента начальник положил суммарно в стопку писем не меньше, чем их взял помощник.

Поставим в соответствие открывающейся скобке появление письма в стопке, а закрывающейся скобке — его взятие оттуда, тогда наша задача сводится к последовательности чисел Каталана, ведь она является представлением правильной скобочной последовательности.

Заключение

В данной работе представлено решение задачи «Письма». Частные случаи этой задачи представлены в книге «Семь шагов» Антипова М. А. В процессе подготовки к Минскому городскому открытому турниру юных математиков (младшая лига — 5-7 классы) возникла идея обобщить частные значения количества отправки писем. Была выдвинута гипотеза, что количество способов отправки n писем совпадает с соответствующим числом Каталана C_n . Для этого была выведена и доказана теорема 1, в которой сформулирована рекуррентная формула для подсчета количества способов отправки писем. Далее в работе с помощью метода математической индукции доказано, что эта формула совпадает с одним из рекуррентных представлений последовательности чисел Каталана. Также в работе присутствует другое доказательство выдвинутого предположения. Основные результаты получены автором самостоятельно и не рассмотрены ранее в литературе.

Числовые последовательности являются одним из основных понятий в математике. В школе им уделяется мало внимания, в то время как решение многих задач, в условии которых явно или неявно содержатся последовательности, развивает математическую интуицию, логику, а также совершенствует работу с различными математическими объектами.

В дальнейшем планируется найти другие необычные представления известных последовательностей.

Список использованных источников

- 1. Исследовательские задания VI Минского городского открытого турнира юных математиков (младшая лига 5-7 классы). Режим доступа: http://www.uni.bsu.by/arrangements/gtum57/index.html Дата доступа: 15.03.2020.
- 2. Антипов, М. А. Семь шагов. Олимпиады юношеской математической школы / М. А. Антипов, К. А. Кноп, А. М. Порецкий, А. А. Солынин. М.:МЦНМО, 2016.-224 с.
- 3. Спивак, А. Числа Каталана [Электронный ресурс] / Режим доступа: https://www.mccme.ru/circles/oim/materials/spivak-04-1.pdf Дата доступа: 15.03.2020.