

Department of Inter Disciplinary Studies, Faculty of Engineering, University of Jaffna, Sri Lanka MC 4010: Assignment 1 Answers

40 minutes 04-10-2023

Important instructions:

- Answer all the questions (1-7).
- If it is determined that you have violated any policies during this exam, you will receive a score of zero for this assignment, without any exceptions or considerations.
- 1. Let p, q, and r represent the following propositions in the context of computer engineering:

p: The CPU executes instructions correctly.

q: The memory is error-free.

r: The program passes all test cases.

- (a) You passed all test cases, but the memory is error-prone.
- (b) The CPU executes instructions correctly, the memory is error-free, and the program passes all test cases.
- (c) To pass all test cases, it is necessary for the CPU to execute instructions correctly.
- (d) The CPU executes instructions correctly, but you didn't pass all test cases; nonetheless, the program passes all test cases.
- (e) Executing instructions correctly in the CPU and having error-free memory is sufficient for the program to pass all test cases.
- (f) You will pass all test cases if and only if you either have error-free memory or the CPU executes instructions correctly.

- (a) $r \wedge \neg q$
- (b) $p \wedge q \wedge r$
- (c) $r \to p$
- (d) $p \wedge \neg r \wedge r$
- (e) $(p \land q) \rightarrow r$
- (f) $r \leftrightarrow (q \lor p)$
- 2. Let N(x) be the statement "x has visited Colombo Port City," where the domain consists of the students in your batch (E21). Express each of these quantifications in English.
 - (a) $\exists x N(x)$
 - (b) $\forall x N(x)$
 - (c) $\exists x \neg N(x)$

(d) $\neg \exists x N(x)$

Solutions

- (a) $\exists x N(x)$ There exists a student who has visited Colombo Port City.
- (b) $\forall x N(x)$ Every student has visited Colombo Port City.
- (c) $\exists x \neg N(x)$ There exists a student who has not visited Colombo Port City.
- (d) $\neg \exists x N(x)$ There does not exist a student who has visited Colombo Port city.
- 3. (a) Design a digital circuit that produces the output $(\neg p \lor \neg r \lor s) \land ((\neg p \land s) \lor (q \land \neg r))$ when given input bits p, q, r and s.
 - (b) Construct a combinatorial circuit using inverters, **OR** gates, and **AND** gates that produces the output $(\neg p \land \neg r) \lor (\neg p \land \neg q \land \neg r) \lor (p \land q)$ from input bits p, q and r.
 - (c) Find the output of each of these combinatorial circuits based on the provided diagrams:

(c) i.
$$\neg[(\neg q \land p) \lor \neg(\neg p \land \neg q \land \neg r)]$$

ii. $\neg[\neg(\neg(\neg p \lor \neg r) \lor \neg(\neg p \lor (q \land \neg r)))]$

4. Prove that the following compound propositions are logically equivalent:

(a)
$$\neg (p \land q)$$
 and $\neg p \lor \neg q$

(b)
$$p \lor q$$
 and $\neg p \to q$

(c)
$$p \leftrightarrow q$$
 and $(p \to q) \land (q \to p)$

Solutions

	p	q	$p \wedge q$	$\neg (p \land q)$
(a)	Τ	Τ	Т	F
	Т	F	F	Т
	F	Т	F	Т
	F	F	F	Τ

	p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
ſ	Τ	Т	F	F	F
ſ	Τ	F	F	Т	Т
Ī	F	Т	Т	F	Т
	F	F	Т	Т	Т

$$\therefore \neg (p \land q) \equiv \neg p \lor \neg q$$

	p	q	$p \lor q$
	T	Т	Т
(b)	Т	F	Т
	F	Т	Т
	F	F	F

p	q	$\neg p$	$\neg p \rightarrow q$
Т	Т	F	Т
Т	F	F	Т
F	Т	Т	Т
F	F	Т	F

$$\therefore \quad p \lor q \equiv \neg p \to q$$

	p	q	$p \leftrightarrow q$
	Т	Τ	Т
(c)	Т	F	F
	F	Τ	F
	F	F	Т

p	q	$(p \to q)$	$(q \to p)$	$(p \to q) \land (q \to p)$
Τ	Т	Т	Τ	T
Τ	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	T

$$\therefore \quad p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

5. For statements p, q, r, s Simplify the following expressions.

(a)
$$\neg (p \lor q) \lor (\neg p \land \neg q)$$

(b)
$$[(p \rightarrow q) \rightarrow p] \rightarrow p$$

(c)
$$[(p \to q) \land \neg q] \to \neg p$$

(a)
$$\neg (p \lor q) \lor (\neg p \land \neg q)$$

 $\equiv (\neg p \land \neg q) \lor (\neg p \land q)$
 $\equiv \neg p \land (\neg q \lor q)$
 $\equiv \neg p \land T$
 $\equiv \neg p$

(b)
$$[(p \to q) \to p] \to p$$

$$\equiv \neg [\neg (\neg p \lor q) \lor p] \lor p$$

$$\equiv [(\neg p \lor q) \land \neg p] \lor p$$

$$\equiv [(\neg p \land \neg p) \lor (q \land \neg p)] \lor p$$

$$\equiv (\neg p \lor p) \lor (q \land \neg p)$$

$$\equiv \quad T \vee (q \wedge \neg p) \\ \equiv \quad T$$

(c)
$$[(p \to q) \land \neg q] \to \neg p$$

$$\equiv \neg [(\neg p \lor q) \land \neg q] \lor \neg p$$

$$\equiv [\neg (\neg p \lor q) \lor q] \lor \neg p$$

$$\equiv [(p \land \neg q) \lor q] \lor \neg p$$

$$\equiv [(p \lor q) \land (\neg q \lor q)] \lor \neg p$$

$$\equiv [(p \lor q) \land T] \lor \neg p$$

$$\equiv (p \lor q) \lor \neg p$$

$$\equiv (p \lor \neg p) \lor q$$

$$\equiv T \lor q$$

$$\equiv T$$

- 6. Construct a truth table for each of these compound propositions:
 - (a) $p \leftrightarrow \neg p$
 - (b) $(p \land q) \to (p \lor q)$
 - (c) $(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
 - (d) $(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$

	p	$\neg p$	$p \leftrightarrow \neg p$
(a)	Т	F	F
	F	Τ	F

	p	q	$p \wedge q$	$p \lor q$	$(p \land q) \to (p \lor q)$
	Τ	Т	Т	Т	T
(b)	Т	F	F	Т	Τ
	F	Т	F	Т	Т
	F	F	F	F	T

	p	q	$\neg p$	$q \to \neg p$	$p \leftrightarrow q$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
	Т	Τ	F	F	Т	F
(c)	Т	F	F	Τ	F	F
	F	Т	Т	Т	F	F
Ì	F	F	Т	Т	Т	Т

	p	q	$\neg q$	$p \rightarrow q$	$p \to \neg q$	$(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$
	Т	Τ	F	Т	F	Τ
(d)	Т	F	Τ	F	Т	Т
	F	Т	F	F	Т	Т
	F	F	Т	Т	F	Т

- 7. (a) Use a direct proof to show that, (1) the sum of two odd integers is even. (2) the sum of two even integers is even.
 - (b)) Use a proof by contradiction to show that there is no rational number r for which $r^3+r+1=0$ [Hint: Assume that r=a/b is a root, where a and b are integers and a/b is in lowest terms. Obtain an equation involving integers by multiplying by b^3 . Then look at whether a and b are each odd or even.]

Solutions

(a) i. Let x, y an odd integers.

 $\exists n_1 \in \mathbb{N} \text{ such that } x = 2n_1 + 1$ $\exists n_2 \in \mathbb{N} \text{ such that } y = 2n_2 + 1$ consider $x + y = (2n_1 + 1) + (2n_2 + 1) = 2(n_1 + n_2 + 1)$ since $n_1 + n_2 + 1$ is also integer.

 \therefore x + y = 2k where $k = n_1 + n_2 + 1$

Therefore sum of two odd integers is even.

ii. Let a, b an even integers.

 $\exists n \in \mathbb{N} \text{ such that } a = 2n$ $\exists m \in \mathbb{N} \text{ such that } b = 2m$ consider a + b = 2n + 2m = 2(n + m)since n + m is also integer. $\therefore a + b = 2k \text{ where } k = n + m$

Therefore sum of two even integers is even.

(b) given equation $r^3 + r + 1 = 0$

Let's assume a rational number r = a/bwhere a, b are integers and $b \neq 0$ substitute r = a/b in the given equation. $r^3 + r + 1 = 0 \Rightarrow (a/b)^3 + (a/b) + 1 = 0 = a^3 + ab^2 + b^3 = 0$ There are 3 cases there for a, b.

Case 1:-

If a is an even and b is an odd then a^3 is an even term, ab^2 is an even and b^3 is an odd term. So there by sum of a^3, ab^2, b^3 gives an odd term but zero is an even number. So there is a contradiction here.

Case 2:-

If a is an odd and b is an even then a^3 is an odd term, ab^2 is an even and b^3 is an even term. So there by sum of a^3 , ab^2 , b^3 gives an odd term but zero is an even number. So there is a contradiction here.

Case 3:-

If both a, b are odd numbers with no common factors. Then a^3 is an odd term, ab^2 is an odd and b^3 is also an odd term. So there by sum of a^3, ab^2, b^3 gives an odd term but zero is an even number. So there is a contradiction here.

All our assumption leads to contradiction. So there is no rational number r for $r^3 + r + 1 = 0$