1^{ère} année Master MAS Séries Chronologiques Année: 2020/2021

Correction de la série d'exercices n°2

EXERCICE N° 1:

1. Représenter graphiquement cette série temporelle :

La série chronologique

Années

FIGURE 1 – Série chronologique.

- 2. Le nuage de points est limité par deux droites qui sont parallèles, c'est le **modèle addi- tif**
- 3. Estimer la tendance de cette série par la méthode des moindres carrés ordinaires (MCO) : On a

$$\overline{t} = 10.5, \quad \overline{x} = 44.9$$

et

$$\sigma_t^2 = 33.25, \qquad \sigma_X^2 = 776.79.$$

De plus,

$$Cov(t, X) = 17.35.$$

L'équation de la droite de la régression de X sur t, X = at + b, avec :

$$a:=\frac{Cov(t,X)}{\sigma_t^2}=0.52 \quad \text{et} \quad b:=\overline{x}-a\overline{t}=39.42$$

4. Représenter la droite d'ajustement sur le graphique précédent :

FIGURE 2 – Ajustement Linéaire.

5. Calculer les moyennes mobiles d'ordre 4 de cette série :

Années	T1	T2	Т3	T4
2010			40.38	41.00
2011	41.88	42.38	42.50	43.12
2012	43.38	44.00	45.12	45.88
2013	46.62	47.25	47.75	48.25
2014	48.88	49.62		

6. Estimer les coefficients saisonniers :

Années	T1	T2	Т3	T4
2010			39.62	-21.00
2011	11.12	-30.38	42.50	-24.12
2012	11.62	-29.00	38.88	-20.88
2013	11.38	-29.25	39.25	-21.25
2014	11.12	-29.62		
Coefficients saisonniers S_j	11.31	-29.56	40.06	-21.81

7. Établir la série désaisonnalisée ou corrigée des variations saisonnières :

Années	T1	T2	Т3	T4
2010	38.69	39.56	39.94	41.81
2011	41.69	41.56	44.94	40.81
2012	43.69	44.56	43.94	46.81
2013	46.69	47.56	46.94	48.81
2014	48.69	49.56	49.94	51.81

FIGURE 3 – Série corrigée des variations saisonnières et la série lissée des prédictions.

8. Donner une prévision du nombre de passagers au premier trimestre 2018 :

$$\widehat{X_{33}} = (0.52 \times 33 + 39.42) + 11.31 = 67.89$$

EXERCICE N° 2:

1. Calculer les moyennes mobiles d'ordre 4 de cette série :

Années	T1	T2	Т3	T4
2011			413.00	425.25
2012	441.00	456.00	470.00	479.75
2013	486.50	496.75		

2. Estimer les coefficients saisonniers :

La série chronologique

Années

FIGURE 4 – Série chronologique.

On utilise la décomposition additive de la série chronologique : Différence = Série brute – Tendance

Années	T1	T2	Т3	T4
2011			-17.00	119.75
2012	-34.00	-72.00	-10.00	121.25
2013	-23.50	-90.75		
Coefficients saisonniers S_j	-28.75	-81.38	-13.50	120.50

On a
$$\overline{S} = \frac{1}{p} \sum_{j=1}^{p} S_j = -0.78$$
, les coefficients finaux sont :

	T1	T2	Т3	T4
Coefficients saisonniers \tilde{S}_j	-27.97	-80.59	-12.72	121.28

3. Établir la série désaisonnalisée ou corrigée des variations saisonnières :

Années	T1	T2	Т3	T4
2011	398.97	402.59	408.72	423.72
2012	434.97	464.59	472.72	479.72
2013	490.97	486.59	504.72	529.72

4. Représenter cette série désaisonnalisée :

FIGURE 5 – Série corrigée des variations saisonnières.

Exercice n° 3:

1. Calculer les moyennes mobiles d'ordre 4 de cette série :

Années	T1	T2	Т3	T4
2008			88.00	87.50
2009	87.00	86.25	87.25	87.00
2010	85.00	81.25	78.25	78.75
2011	81.00	84.50		

2. Estimer les coefficients saisonniers :

La série chronologique

Années

FIGURE 6 – Série chronologique.

On utilise la décomposition additive de la série chronologique : Différence = Série brute – Tendance

Années	T1	T2	Т3	T4
2008			14.00	-0.50
2009	-2.00	-8.25	6.75	2.00
2010	6.00	-11.25	7.75	-11.75
2011	8.00	-8.50		
Coefficients saisonniers S_i	4.00	-9.33	9.50	-3.42

On a
$$\overline{S} = \frac{1}{p} \sum_{j=1}^p S_j = 0.1875$$
, les coefficients finaux sont :

	T1	T2	T3	T4
Coefficients saisonniers \tilde{S}_i	3.81	-9.52	9.31	-3.60

 $3. \ \ \acute{E}tablir \ la \ s\'{e}rie \ d\'{e}saisonnalis\'{e}e \ ou \ corrig\'{e}e \ des \ variations \ saisonni\`{e}res:$

Années	T1	T2	Т3	T4
2008	89.19	83.52	92.69	90.60
2009	81.19	87.52	84.69	92.60
2010	87.19	79.52	76.69	70.60
2011	85.19	85.52	88.69	86.60

FIGURE 7 – Série corrigée des variations saisonnières.