Long Short-Term Memory Networks applied in Time Series

Fábio Silva

A sequence of ordered data points

Where can we find them?

Properties in time series

Properties in time series

> Trend

Properties in time series

> Seasonality

Other Properties

- > Noise
- Level

Univariate

Multivariate

- Endegenous
- Exogenous

Forecast ≠ Prediction

How to?

Predict Direct Values?

Data Transformations?

Data Transformations:

- > Power Transform
- > Difference Transform
- > Standardization
- > Normalization

Making data stationary

Why?

Can we convert a time series problem into a classical machine learning problem?

Source: https://www.kdnuggets.com/2019/05/machine-learning-time-series-forecasting.html

Source: https://www.kdnuggets.com/2019/05/machine-learning-time-series-forecasting.html

Different Approaches

- Regression
 - AR
 - ☐ ARMA
 - ARIMA
 - SARIMA
 - **L** ...

- Neural Networks
 - MLP
 - RNN
 - LSTM
 - **_** ...

Next time step as a function of some number of past (or lag) observations.

This is a common approach for classical statistical time series forecasting.

AutoRegressive (AR)

$$\check{Y}_t = \Phi_1 Y_{t-1} + \dots + \Phi_1 Y_{t-p} + \varepsilon_t + c$$

AR(p):

p is the order (number of time lags)

AutoRegressive Moving Average (ARMA)

$$\check{Y}_t = c + \varepsilon_t + \Phi_1 \Upsilon_{t-1} + \dots + \Phi_p \Upsilon_{t-p} + \Theta_1 \varepsilon_{t-1} \dots + \Theta_q \varepsilon_{t-q}$$

ARMA(p,q):

- p is the order (number of time lags)
- q is the order of the moving-average model

AutoRegressive Integrated Moving Average (ARIMA)

$$\check{Y}_t = \Phi_1 \Upsilon_{t-1} \dots + \Phi_1 \Upsilon_{t-p} + a_t - \Theta_1 a_{t-1} \dots - \Theta_p a_{t-q}$$

ARIMA(p,d,q):

- p is the order (number of time lags)
- d s the degree of differencing
- q is the order of the moving-average model

Seasonal Autoregressive Integrated Moving Average (SARIMA)

An extension of ARIMA

Supports seasonal data

SARIMA(p,d,q) (P,D,Q)m:

- p is the order (number of time lags)
- d s the degree of differencing
- q is the order of the moving-average model

- P: Seasonal autoregressive order.
- D: Seasonal difference order.
- Q: Seasonal moving average order.
- m: The number of time steps for a single seasonal period.

LSTM uses an artificial RNN architecture

With LSTM we can have some temporal information "stored" while:

- we train the model
- we produce predictions

Deals with vanishing gradients and address exploding gradients

LSTM Unit:

- > cell
- > input gate
- > output gate
- > forget gate

Source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM_cell.png

Data Input

Source: https://www.tensorflow.org/tutorials/structured_data/time_series

Can be applied in different architectures

- > Vanilla
- > Stacked
- > Encoder-Decoder
- > Bidirectional

Traffic Analysis

> Smart City problem

Discovering safer routes

#	Features				
1	City Name				
	Road Number				
3	Road Name				
	Road Category				
5	Current Speed				
6	Free Flow Speed				
7	Speed Diference (#6 - #5)				
8					
9	Free Flow Travel Time				
	Time Diff (#9 - #8)				
11	Creation Date				

Images source: https://www.flaticon.com/auth s/freepik

#	Features				
1	City Name				
2	Wheather Description				
3	Temperature				
4	Atmospheric Pressure				
5	Humidity				
6	Wind Speed				
7	Cloudiness				
8	Precipition				
9	Current Luminosity				
10	Sunrise				
11	Sunset				
12	Creation Date				

Assess performance of time series models:

- > LSTM
- > ARIMA

Grid search for parameter optimization

Walk Forward Validation

Practical Case - Results

Dataset	Model	MAE	RMSE	Parameters
Α	ARIMA	0.662	0.919	(10,1,1)
А	LSTM	0.703	0.905	Window Size=7 Batch Size = 20
ВО	ARIMA	1.845	2.797	(3,1,1)
В0	LSTM	1.410	2.169	Window Size=24 Batch Size = 20
B1	ARIMA	1.858	2.659	(7,0,1)
B1	LSTM	1.479	2.304	Window Size=24 Batch Size = 50
B2	ARIMA	1.853	2.683	(3,0,1)
B2	LSTM	1.407	1.912	Window Size=48 Batch Size = 30

Practical Case - Results

Practical Case - Results

> LSTM Univariante vs multivariate

#	Timesteps	Batch	Layers	Neurons	Dropout	Act.	RMSE	MAE
<u>209</u>	<u>96</u>	<u>672</u>	<u>5</u>	<u>64</u>	<u>0.2</u>	<u>relu</u>	<u>3.496</u>	<u>1.567</u>
188	96	672		64	0.2	tanh	3.518	1.567
95	96	252	5	32	0.2	relu	3.555	1.592
195	96	672		128	0.5	tanh	3.583	1.598
12	48	252	3	64	0.5	relu	3.649	1.629

#	Timesteps	Batch	Layers	Neurons	Dropout	Act.	RMSE	MAE
<u>53</u>	<u>24</u>	<u>672</u>	<u>4</u>	<u>64</u>	<u>0.5</u>	<u>tanh</u>	<u>2.907</u>	<u>1.346</u>
24	24	672	4	32	0.5	tanh	3.006	1.412
16	24	252	4	32	0.5	tanh	3.031	1.419
17	24	672	5	64	0.5	tanh	3.037	1.402
37	48	252	2	64	0.5	tanh	3.038	1.425

> LSTM Univariante vs multivariate

> ARIMA univariante vs multivariate

р	d	q	RMSE	MAE
8	1	1	8.869	7.474
			7.967	6.275
12			6.452	5.200
<u>12</u>		<u>2</u>	<u>6.336</u>	<u>5.088</u>

р	d	q	RMSE	MAE
8	1	1	8.325	6.736
8	1	2	8.301	6.822
12	1	1	6.171	4.972
<u>12</u>	<u>1</u>	<u>2</u>	<u>6.110</u>	<u>4.918</u>

> ARIMA Univariante vs multivariate

<u>Autoregression:</u>

- > depend on mathematical > restrictions on data formulas
- > less parameters
- > less time to train
- smaller lag

LSTM:

- format
- > more parameters to optimize
- > more time to train

Regression based modes

- some parametrization are impossible to compute valid models
- > often requires data transformations
- > overfit does not occur as often
- > need constant model update for further predictions

LSTMs:

- generally take longer to train
- > require more memory and time to train
- easy to overfit
- handle bigger lags better
- desirable better hardware (GPU) to run efficiently
- models can be trained once

The findings on the practical case have been similar in other fields such as:

- Retail Sales
- Driving Patterns

Final Notes

On the literature contrary results can be found where LSTM performance is lower than other counterparts

Final Notes

About Me

- Teaching at ESTG, Polytechnique Institute of Porto
- Researcher at CIICESI and collaborator at ALGORITMI Centre
- Participation in several research projects and collaborations with international researchers
- Research Interests:
 - Intelligent Systems
 - Ubiquitous computing
 - Smart City
 - Industry 4.0

THANKS!

Any questions?

Long Short-Term Memory Networks applied in Time Series

Fábio Silva

