

Disciplina: Teoria dos Grafos e Computabilidade

Professor: Zenilton Kleber Gonçalves do Patrocínio Júnior

1ª AVALIAÇÃO - 20 pontos

Nome:

- 1) Considerando um grafo não direcionado simples G = (V, E) com 15 vértices e 7 componentes, responda e justifique as seguintes questões (respostas sem justificativas ou cujas justificativas não sejam adequadas serão desconsideradas): (01 + 01 + 01 = 03 pts)
 - a) É possível que esse grafo possua 07 arestas?
 - b) É possível que a soma de graus de todos os vértices seja igual a 16?
 - c) É possível que a soma de graus de todos os vértices seja maior que 40?
- 2) Considere o grafo G = (V, E) representado pela matriz de adjacência a seguir. (03 + 01 = 04 pts)

	a	b	c	d	e	f
a	0	0	0	1	0	0
b	1	0	1	0	0	0
c	0	0	0	0	0	1
d	0	1	0	0	0	0
e	0	1	1	1	0	0
f	0	0	1	0	0	0

Pede-se:

- a) Determine o fecho transitivo direto e o fecho transitivo inverso de cada um dos vértices;
- b) Determine a base e a antibase de G.
- 3) Considere o grafo G = (V, E) representado pela matriz de incidência a seguir. (03 + 01 + 02 = 06 pts)

a	-1	0	0	+1	-1	0	0	0	0	0
b	+1	-1	0	0	0	0	0	0	0	0
c	0	0	+1	-1	0	0	-1	0	0	0
d	0	0	0	0	+1	-1	0	0	0	0
e	0	+1	-1	0	0	0	0	-1	0	0
f	0	0	0	0	0	+1	+1	0	-1	+1
g	0	0	0	0	0	0	0	+1	+1	-1

Pede-se:

- a) Determine o <u>intervalo de vida de cada um dos vértices</u> e a <u>classificação de cada aresta</u> a partir da realização de uma <u>busca em profundidade</u> em que tanto as raízes da busca quanto os sucessores dos vértices são selecionados em *ordem lexicográfica*;
- b) Determine, <u>justificando sua resposta</u>, se o **grafo G é conexo ou não**. Caso ele seja conexo, estabelecer, <u>também justificando sua resposta</u> (resposta sem justificativas será desconsiderada):
 - i. se ele é simplesmente conexo, mas não semifortemente conexo; ou
 - ii. se ele é semifortemente conexo, mas não fortemente conexo; ou
 - iii. se ele é fortemente conexo.
- c) Determine os **componentes fortemente conexos** de G utilizando o <u>método de Kosaraju</u> (OBS: é obrigatório demonstrar o método passo a passo).

- 4) Indique (justificando sua resposta) qual dos seguintes grafos <u>não é isomorfo</u> a nenhum dos demais (respostas sem justificativas ou com justificativas inadequadas serão desconsideradas): (02 pts)
 - a) $G_1 = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{2, 3\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{4, 5\}\});$
 - b) $G_2 = (\{1, 2, 3, 4, 5\}, \{\{4, 5\}, \{1, 3\}, \{1, 3\}, \{2, 3\}, \{2, 5\}, \{4, 5\}\});$
 - c) $G_3 = (\{1, 2, 3, 4, 5\}, \{\{1, 3\}, \{2, 4\}, \{1, 2\}, \{2, 3\}, \{3, 5\}, \{4, 5\}\});$
 - d) $G_4 = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 4\}, \{4, 5\}\});$
 - e) $G_5 = (\{1, 2, 3, 4, 5\}, \{\{4, 5\}, \{1, 3\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{4, 5\}\}).$
- 5) Não se conhece uma condição necessária e suficiente trivial para a existência de um ciclo (ou mesmo, caminho) hamiltoniano em um grafo qualquer. Contudo, os teoremas de Dirac, Ore e Bondy-Chvátal estabelecem condições suficientes para um grafo ser hamiltoniano. (02 + 03 = 05 pts)

Pede-se:

- a) Forneça um exemplo de grafo hamiltoniano (isto é, que possui ciclo hamiltoniano) para cada uma das situações abaixo:
 - i. Um exemplo de grafo hamiltoniano que atenda às condições dos 3 teoremas citados;
 - Um exemplo de grafo hamiltoniano que atenda às condições tanto do teorema de Ore quanto do teorema de Bondy-Chvátal, mas que não atenda às condições do teorema de Dirac;
 - iii. Um exemplo de grafo hamiltoniano que atenda às condições do teorema de Bondy-Chvátal, mas que não atenda às condições nem do teorema de Dirac e nem do teorema de Ore;
 - iv. Um exemplo de grafo hamiltoniano que não atenda a nenhum dos 3 teoremas citados.
- b) Forneça um algoritmo polinomial para determinar se um grafo direcionado e acíclico é semihamiltoniano (isto é, possui um caminho hamiltoniano), juntamente com uma discussão sobre sua complexidade.