

A Novel Low-cost FPGA-based Real-time Object Tracking System

Peng Gao¹, Ruyue Yuan¹, Zhicong Lin¹, Linsheng Zhang² and Yan Zhang¹

¹ Harbin Institute of Technology

² Sanechips Technology Co., Ltd

Visual object tracking:

Single Object, Model-Free, Object Given, Real-time

Scale variations

Illumination variations

CPU

GPU

CPU/GPU

- High computational cost
- Consume a prohibitive amount of power

FPGA

- High energy efficiency
- Reconfigurable Computing

Frame image format transforming

$$R \leftarrow 1.164 \times (Y - 16) + 1.596 \times (Cr - 128)$$

 $G \leftarrow 1.164 \times (Y - 16) - 0.392 \times (Cb - 128) - 0.813 \times (Cr - 128)$
 $B \leftarrow 1.164 \times (Y - 16) + 2.017 \times (Cb - 128)$

Getting ROI Detective Value

$$V \leftarrow \max(R, G, B)$$

$$S \leftarrow \begin{cases} \frac{V - \min(R, G, B)}{V} & \text{if } V \neq 0 \\ 0 & \text{other wise} \end{cases}$$

$$H \leftarrow \begin{cases} \frac{60(G - B)}{V - \min(R, G, B)} & \text{if } V = R \\ \frac{120 + 60(B - R)}{V - \min(R, G, B)} & \text{if } V = G \\ \frac{240 + 60(R - G)}{V - \min(R, G, B)} & \text{if } V = B \end{cases}$$

$$\begin{cases} H_{kc} = 1 & if |H_k - \overline{H}_{k-1}| < H_T \\ S_{kc} = 1 & if |S_k - \overline{S}_{k-1}| < S_T \\ V_{kc} = 1 & if |V_k - \overline{V}_{k-1}| < V_T \end{cases}$$

- H_{kc} , S_{kc} , V_{kc} are the classification value of the current image pixel.
- \overline{H}_{k-1} , \overline{S}_{k-1} , \overline{V}_{k-1} are the HSV component mean of the pixels in the previous frame bounding box.
- H_T , S_T , V_T are preset thresholds.

$$A_{kc} = 1$$
 if $W(HSV) < A_T$

- $W(HSV) = (\alpha |H_k \overline{H}_{k-1}| + \beta |S_k \overline{S}_{k-1}| + \gamma |V_k \overline{V}_{k-1}|)$ is the weight formula for HSV component.
- α , β , γ are the weight coefficient of each component $(\alpha + \beta + \gamma = 1)$.

$$\begin{cases} M_{10} = \sum_{x} W(I(x,y)) \\ M_{01} = \sum_{y} W(I(x,y)) \\ M_{00} = \sum_{x} \sum_{y} W(I(x,y)) \end{cases}$$

- M_{10} and M_{01} are the one-moments.
- M_{00} is the zero-moment.
- $W(\cdot)$ represents a weighted function.
- $I(\cdot)$ denotes the classification value of the pixel.
- The closer the current pixel is to the center of the previous frame, the larger the weight.

Centroid of bounding box:
$$x_c = \frac{M_{10}}{M_{00}}$$
, $y_c = \frac{M_{01}}{M_{00}}$

Size of bounding box:
$$w = 2 \times \sqrt{\frac{M_{00}}{256}}$$
, $h = 1.2w$

Algorithm and Theory: Kalman predictor

Camshift algorithm has an extremely compelling effect when tracking object which moves in small range. But it becomes less effective when object moving in large range, as opposed to Kalman predictor.

Therefore, based on the characteristics of the two algorithms, we optimized the classical Camshift algorithm by combined binary classifier with Kalman predictor.

Hardware Implementation: Overview

We implement our hardware system based on a Xilinx Spartan-6 platform.

Hardware	Configuration
FPGA	Xilinx Spartan-6
System clock	148.5MHz
DDR3	2Gbit
Maximum bandwidth	10 Gbit/s

Hardware Implementation: Optimization of DDR

Hardware Implementation: pipeline

System stage-level pipeline

Preprocess stage pipeline

Hardware Implementation: Parallel operating of algorithm module

Results:

(Girl)

Results:

(DragonBaby)

Results: The success plots of our tracker and other state-of-the-art trackers

Results: Tracking speed of our tracker and other state-of-the-art trackers

Tracker	Precision	Mean FPS
Struck	53.5%	9.8
TLD	51.9%	24.4
OURS	48.4%	309.91
CXT	45.4%	13.9
VTD	44.4%	-
CPF	43.1%	-
VTS	42.2%	6.3
LOT	40.7%	0.5
OAB	40.5%	5.5
KMS	38.9%	-

Performance Comparison:

System	Resolution	Real-time	Camera	Tracking Window
Ours	1920×1080	<u>Yes</u>	Moving	<u>Adaptive</u>
Liu's [2]	80×60	<u>Yes</u>	Fixed	<u>Adaptive</u>
Singh's [3]	-	<u>Yes</u>	Moving	Fixed
Elkhatib's [4]	640×480	Yes	Moving	-

^[2] S.Liu, et al. Real-Time Object Tracking System on FPGAs. 2011 Symposium on Application Accelerators in High-Performance Computing, SAAHPC 2011. 1-7.

^[3] L.Elkhatib, et al. An Optimal Design of Moving Objects Tracking Algorithm on FPGA. IEEE 4th International Conference on Intelligent and Advanced Systems, ICIAS 2012. 745-749.

^[4] S.Singh, et al. FPGA-based Real-time Object Tracker using Modified Particle Filtering and SAD Computation. IEEE 18th International Symposium on VLSI Design and Test, 2014. 1-2.

Hardware system experiment:

