계산력 연습

[영역] 3.함수

중 3 과정

3-2-3.이차함수 $y = a(x-p)^2 + q$ 의 그래프

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2016-03-14
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 이차함수 $y = a(x-p)^2 + q$ 의 그래프

- (1) 이차함수 $y = ax^2$ 의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동한 것이다.
- (2) 꼭짓점의 좌표: (p, q)
- (3) 축의 방정식: x = p

3

이차함수 $y=a(x-p)^2+q$ 의 그래프

- ☑ 이차함수 $y = a(x-p)^2 + q$ 의 그래프에 관한 설명 중 옳은 것에는 O표, 옳지 않은 것은 X표 하여라.
- 1. x = p일 때, 최솟값 q를 갖는다.

()

2. $y = -ax^2$ 의 그래프와 폭이 같다.

()

p = 0이면 꼭짓점이 x축 위에 있다.

(

4. q=0이면 x축과 오직 한 점에서 만난다.

(

)

5. a > 0, q < 0이면 x축과 항상 두 점에서 만난다.

()

6. $y = -a(x+p)^2 - q$ 와 x축에 대하여 대칭이다.

()

- ☑ 이차함수 $y = -\frac{1}{2}(x-2)^2 4$ 의 그래프에 관한 설명 중 옳은 것에는 O표, 옳지 않은 것은 X표 하여라.
- 7. 꼭짓점의 좌표는 (-2, 4)이다.

()

8. $y = -\frac{1}{2}x^2$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 -4만큼 평행이동한 것이다.

()

9. **축의 방정식은** *y*=2**이**다.

()

10. $y = \frac{1}{2}x^2$ 의 그래프와 폭이 같고, x < 2일 때 x의 값이 증가함에 따라 y의 값은 증가한다.

()

 $y = \frac{1}{2}(x-2)^2 + 4$ 의 그래프와 x축에 대하여 대칭이다.

(

- □ 이차함수 $y = -(2x-1)^2 + 3$ 의 그래프에 관한 설명 중 옳은 것에는 O표, 옳지 않은 것은 X표 하여라.
- 12. 직선 $x = \frac{1}{2}$ 을 축으로 한다.

()

13. 꼭짓점의 좌표는 (1, 3)이다.

()

14. y축과 만나는 점의 좌표는 (0, 3)이다.

()

15. 이 함수의 그래프는 제 1, 3, 4사분면을 지난다.

()

16. $y=-4x^2$ 의 그래프를 x축의 방향으로 $\frac{1}{2}$ 만큼, y축 방향으로 $\frac{1}{2}$ 만큼 평행 이동한 것이다.

)

17. $x>\frac{1}{2}$ 일 때, x의 값이 증가함에 따라 y의 값은 감소한다.

- 이차함수 $y=7(x+1)^2+2$ 의 그래프에 관한 설명 중 옳은 것에는 O표, 옳지 않은 것은 X표 하여라.
- 18. *y*축과의 교점은 (0, 9)이다.

()

19. **축의 방정식은** x = -1이다.

()

20. x = -1에서 최댓값 2를 갖는다.

()

21. (-1, 2)를 **꼭짓점으로 하는 포물선이다.**

()

22. $y = -7(x-1)^2 - 2$ 의 그래프와 x축에 대하여 대칭이다.

()

- ☑ 이차함수 $y=3(x-1)^2+4$ 의 그래프에 관한 설명 중 옳은 것에는 O표, 옳지 않은 것은 X표 하여라.
- 23. *y*축과 (0, 4)에서 만난다.

()

24. 그래프는 위로 볼록한 포물선이다.

()

25. x > 1일 때, x의 값이 증가하면 y의 값도 증가한다.

()

26. 점 (2, 7)을 지나는 포물선이다.

()

☑ 다음 이차함수의 그래프는 이차함수 $y = 5x^2$ 의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동 한 것이다. 이때 p, q의 값을 각각 구하여라.

27.
$$y = 5(x-4)^2 - 1$$

28.
$$y = 5(x+2)^2 - 3$$

29.
$$y = 5(x+1)^2 - 6$$

30.
$$y = 5(x-2)^2 + 4$$

31.
$$y = 5\left(x - \frac{1}{3}\right)^2 + 3$$

32.
$$y = 5\left(x + \frac{3}{4}\right)^2 + \frac{2}{5}$$

33.
$$y = 5(x-3)^2 - 6$$

□ 다음 이차함수의 그래프의 꼭짓점의 좌표와 축의 방정식 을 각각 구하여라.

34.
$$y = (x-2)^2 + 3$$

35.
$$y=2(x-1)^2-3$$

36.
$$y = -\frac{1}{2}(x+2)^2 + 1$$

37.
$$y = \frac{1}{2}(x-1)^2 + 4$$

38.
$$y = \frac{1}{2}(x+2)^2 + 3$$

39.
$$y = \frac{1}{2}(x+4)^2 - 1$$

40.
$$y = -2(x-3)^2 + 5$$

41.
$$y = -(x+3)^2 - 4$$

42.
$$y = \frac{3}{4}(x+4)^2 + 5$$

43.
$$y = -3(x-1)^2 + 5$$

44.
$$y = (x+1)^2 - 1$$

45.
$$y = -\frac{1}{2}(x+1)^2 + 3$$

46.
$$y = -3\left(x - \frac{2}{5}\right)^2 + 9$$

□ 다음 이차함수의 그래프를 []안의 수만큼 차례로 x축, y축의 방향으로 평행이동한 그래프의 식을 구하여라.

47.
$$y = 2x^2$$
 [1, 3]

48.
$$y = -2x^2$$
 [-1, 3]

49.
$$y = -3x^2 \left[\frac{1}{2}, -5 \right]$$

50.
$$y = 4x^2$$
 [3, 1]

51.
$$y = 5x^2 [2, -4]$$

52.
$$y = \frac{1}{2}x^2 [-1, -5]$$

53.
$$y = -3x^2$$
 [2, 4]

54.
$$y = -7x^2 [1, -5]$$

55.
$$y = -\frac{1}{4}x^2 [-3, 6]$$

56.
$$y = \frac{1}{2}x^2$$
 [-2,3]

57.
$$y = -\frac{2}{3}x^2$$
 [-2, -7]

58.
$$y = \frac{2}{3}x^2$$
 [-3, 2]

- 59. $y = 2x^2 \quad [-3, -2]$
- 60. $y = -(x+2)^2$ [3, -4]
- 61. $y=2(x-2)^2-3$ [-2, 5]
- 62. $y = -\frac{4}{3}(x-3)^2 1$ [-1, 5]
- 63. $y = 7(x+3)^2 2$ [-3, 6]
- □ 다음 이차함수의 그래프를 []안의 수만큼 차례로 x축, y
 축의 방향으로 평행이동한 그래프의 식을 구하고, 꼭짓점의 좌표와 축의 방정식을 구하여라.
- 64. $y = 3x^2 4$ [1, 2]
- 65. $y = -(x-5)^2 + 2 [4, -2]$
- 66. $y = (x-1)^2 + 3$ [2, 3]
- 67. $y = -2(x+3)^2 + 5 [3, -4]$
- 68. $y=2(x-5)^2+3$ [-2, 7]
- 69. $y = -3\left(x \frac{1}{2}\right)^2 + \frac{2}{3} \left[\frac{5}{2}, -\frac{5}{3}\right]$

- ☑ 다음 조건이 주어질 때, 상수 a의 값을 구하여라.
- 71. 이차함수 $y = -3x^2$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 -2만큼 평행이동할 때, (4, a)를 지난다.
- 72. 이차함수 $y=\frac{1}{2}x^2$ 의 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 $\frac{3}{2}$ 만큼 평행이동 할 때, 점 $(-4,\ a)$ 를 지난다.
- 73. 이차함수 $y=-\frac{1}{4}x^2$ 의 그래프를 x축의 방향으로 4만큼, y 축의 방향으로 -3만큼 평행이동하면 $(-2,\ a)$ 를 지난다.
- 74. 이차함수 $y=ax^2$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 4만큼 평행 이동하였더니 점 (1,-5)을 지난다.
- 75. 이차함수 $y = ax^2$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 -2만큼 평행 이동하였더니 점 (4, 3)을 지난다.
- 76. 이차함수 $y = ax^2$ 의 그래프를 x축의 방향으로 $\frac{3}{2}$ 만큼, y축의 방향으로 -7만큼 평행 이동하였더니 점 (-1, 18)을 지난다.
- 77. 이차함수 $y = a(x-1)^2 + 3$ 의 그래프를 x축의 방향으로 2 만큼, y축의 방향으로 -1만큼 평행 이동하였더니 점 (1, -6)을 지난다.

☑ 다음을 구하여라.

- 78. 이차함수 $y = -\frac{1}{2}(x+p)^2 + q$ 의 그래프가 점 (5, -6)을 지나고, 직선 x = 3을 축으로 할 때, p + q의 값
- 79. 이차함수 $y = a(x-p)^2 + q$ 의 꼭짓점의 좌표가 (-1, 3)이고, 점 (1, 7)을 지날 때, p+q-a의 값
- 80. 이차함수 $y=a(x-p)^2+q$ 의 꼭짓점의 좌표가 (1, 1)이고 점 (2, 2)를 지날 때, a+p+q의 값
- 81. 이차함수 $y = a(x-p)^2 + q$ 의 꼭짓점의 좌표가 (-1, 5)이 고 점 (0, 2)를 지날 때, a+p+q의 값
- 82. 이차함수 $y=a(x-p)^2+q$ 의 그래프의 꼭짓점의 좌표가 (-1,-4)이고, 점 (2,14)를 지날 때, a+p+q의 값
- 83. 이차함수 $y=a(x-p)^2+q$ 의 꼭짓점의 좌표가 $(1,\ 1)$ 이고 점 $(2,\ 2)$ 를 지날 때, a+p+q의 값
- 84. 이차함수 $y=a(x-p)^2+q$ 의 꼭짓점의 좌표가 $(2,\ 6)$ 이고, 점 $(0,\ 2)$ 를 지날때, a-p+q의 값
- 85. 이차함수 $y=a(x-p)^2+q$ 의 그래프가 직선 x=2를 축으로 하고, 직선 y=2x-1이 만나는 두 점의 y좌표가 각각 $3,\ 5$ 일 때, apq의 값

☑ 다음 이차함수의 그래프를 x축, y축으로 대칭이동한 이차 함수의 식을 $y = a(x-p)^2 + q$ 의 꼴로 각각 나타내어라.

86.
$$y = (x+3)^2 - 6$$

87.
$$y = 5(x-1)^2 + 7$$

88.
$$y = -3(x+1)^2 - 5$$

89.
$$y = -2(x-5)^2 + 3$$

- ☑ 다음 조건이 주어질 때, 상수 k의 값을 구하여라.
- 90. 이차함수 $y = -(x+2)^2 3$ 의 그래프와 x축에 대하여 대칭 인 그래프가 점 (-3, k)를 지날 때, k의 값
- 92. 이차함수 $y = -\frac{1}{4}(x+2)^2$ 의 그래프와 x축에 대하여 대칭 인 그래프가 점 (k, 1)을 지날 때, k의 값

□ 다음 이차함수의 그래프가 지나는 사분면을 모두 구하여라.

95.
$$y = \frac{1}{4}(x+2)^2 - 1$$

96.
$$y = -\frac{1}{2}(x+2)^2 + 3$$

97.
$$y = \frac{1}{2}(x-2)^2 - 3$$

98.
$$y = -(x+1)^2 + 7$$

99.
$$y = (x+2)^2 - 3$$

100.
$$y = -\frac{1}{3}(x-8)^2 - 2$$

101:
$$y = 2(x+1)^2 + 1$$

$$102x \quad y = -(x-2)^2 + 1$$

103.
$$y = \frac{1}{2}(x+2)^2 - 1$$

104.
$$y = -2(x-5)^2 + 5$$

$$105_{x} \quad y = 3(x-1)^2 - 4$$

106.
$$y = 3(x-2)^2 - 12$$

lacksquare 이차함수 $y=a(x-p)^2+q$ 의 그래프가 다음 그림과 같을 때, $a,\ p,\ q$ 의 부호를 정하여라.

107.

108

109

110

111

112.

113

정답 및 해설 🖁

- 1) ×
- \Rightarrow a > 0이면 x = p일 때, 최솟값 q를 갖고, a < 0이면 x = p일 때, 최댓값 q를 갖는다.
- 2) 🔾
- 3) ×
- $\Rightarrow p = 0$ 이면 $y = ax^2 + q$ 로 꼭짓점이 y축 위에 있다.
- 4) ()
- 5) 🔾
- 6) ×
- $\Rightarrow y = -a(x-p)^2 q$ 와 x축에 대하여 대칭이다.
- 7) ×
- ⇒ 꼭짓점의 좌표는 (2, -4)이다.
- 8) 🔾
- 9) ×
- \Rightarrow 축의 방정식은 x=2이다.
- 10) ()
- 11) 🔾
- 12) 🔾
- 13) ×
- \Rightarrow 꼭짓점의 좌표는 $\left(\frac{1}{2},\;3\right)$ 이다.
- 14) ×
- $\Rightarrow y$ 축과 만나는 점의 좌표는 (0, 2)이다.
- 15) ×
- 의 위로 볼록한 포물선이고, 꼭짓점의 좌표가 $\left(\frac{1}{2}, 3\right)$, y축과 만나는 점의 좌표가 (0, 2)이므로 모든 사분면을 지난다.
- 16) (
- $\Rightarrow y = -4\left(x \frac{1}{2}\right)^2 + 3 = -\left(2x 1\right)^2 + 3$
- 17) 🔾
- 18) 🔾
- 19) 🔾

- 20) ×
- $\Rightarrow x = -1$ 에서 최솟값 2를 갖는다.
- 21) ()
- 22) ×
- $\Rightarrow y = -7(x+1)^2 2$ 의 그래프와 x축 대칭이다.
- 23) ×
- $\Rightarrow x=0$ 일 때, y=7이므로 y축과 (0,7)에서 만남
- 24) ×
- ⇒ 그래프는 아래로 볼록한 포물선이다.
- 25) ()
- 26) ()
- 27) p = 4, q = -1
- 28) p = -2, q = -3
- 29) p = -1, q = -6
- 30) p=2, q=4
- 31) $p = \frac{1}{3}, q = 3$
- 32) $p = -\frac{3}{4}$, $q = \frac{2}{5}$
- 33) p=3, q=-6
- 34) 꼭짓점의 좌표 : (2, 3), 축의 방정식 : x=2
- 35) 꼭짓점의 좌표 : (1, -3), 축의 방정식 : x=1
- 36) 꼭짓점의 좌표 : (-2, 1), 축의 방정식 : x = -2
- 37) 꼭짓점의 좌표: (1, 4), 축의 방정식: x=1
- 38) 꼭짓점의 좌표: (-2, 3), 축의 방정식: x = -2
- 39) 꼭짓점의 좌표: (-4, -1), 축의 방정식: x = -4
- 40) 꼭짓점의 좌표 : (3, 5), 축의 방정식 : x=3
- 41) 꼭짓점의 좌표 : (-3, -4), 축의 방정식 : x=-3
- 42) 꼭짓점의 좌표 : (-4, 5), 축의 방정식 : x=-4
- 43) 꼭짓점의 좌표 : (1, 5), 축의 방정식 : x=1
- 44) 꼭짓점의 좌표 : (-1, -1), 축의 방정식 : x = -1
- 45) 꼭짓점의 좌표 : (-1, 3), 축의 방정식 : x = -1

- 46) 꼭짓점의 좌표 : $\left(\frac{2}{5}, 9\right)$, 축의 방정식 : $x = \frac{2}{5}$
- 47) $y = 2(x-1)^2 + 3$
- 48) $y = -2(x+1)^2 + 3$
- 49) $y = -3\left(x \frac{1}{2}\right)^2 5$
- 50) $y = 4(x-3)^2 + 1$
- 51) $y = 5(x-2)^2 4$
- 52) $y = \frac{1}{2}(x+1)^2 5$
- 53) $y = -3(x-2)^2 + 4$
- 54) $y = -7(x-1)^2 5$
- 55) $y = -\frac{1}{4}(x+3)^2 + 6$
- 56) $y = \frac{1}{2}(x+2)^2 + 3$
- 57) $y = -\frac{2}{3}(x+2)^2 7$
- 58) $y = \frac{2}{3}(x+3)^2 + 2$
- 59) $y = 2(x+3)^2 2$
- 60) $y = -(x-1)^2 4$
- 다 $y=-(x+2)^2$ 의 그래프를 x축의 방향으로 3만큼, 축의 방향으로 -4만큼 평행이동하면 $y=-(x-1)^2-4$
- 61) $y = 2x^2 + 2$
- 62) $y = -\frac{4}{3}(x-2)^2 + 4$
- 63) $y = 7(x+6)^2 + 4$
- 64) $y=3(x-1)^2-2$, 꼭짓점의 좌표: (1, -2), 축의 방정식: x=1
- 65) $y = -(x-9)^2$, 꼭짓점의 좌표: (9, 0), 축의 방정식: x = 9
- 66) $y = (x-3)^2 + 6$, 꼭짓점의 좌표: (3, 6), 축의 방정식: x = 3

- 67) $y = -2x^2 + 1$, 꼭짓점의 좌표: (0, 1), 축의 방정식: x = 0
- 68) $y=2(x-3)^2+10$, 꼭짓점의 좌표: (3, 10), 축의 방정식: x=3
- 69) $y = -3(x-3)^2 1$, 꼭짓점의 좌표: (3, -1), 축의 방정식: x = 3
- 70) 1
- 다 이차함수 $y=2x^2$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 1만큼 평행이동한 그래프의 식은 $y=2(x-2)^2+1$ 이고, 점 (2, a)를 지나므로 $a=2(2-2)^2+1$ $\therefore a=1$
- 71) -5
- 다 이차함수 $y=-3x^2$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 -2만큼 평행이동한 그래프의 식은 $y=-3(x-3)^2-2$ 이고, 점 (4, a)를 지나므로 $k=-3(4-3)^2-2$ $\therefore a=-5$
- 72) 6
- \Rightarrow 이차함수 $y=rac{1}{2}x^2$ 의 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 $rac{3}{2}$ 만큼 평행이동한 그래프의 식은 $y=rac{1}{2}(x+1)^2+rac{3}{2}$ 이고, 점 $(-4,\ a)$ 를 지나므로 $a=rac{1}{2}(-4+1)^2+rac{3}{2}$ $\therefore \ a=6$
- 73) -12
- ⇒ 이차함수 $y=-\frac{1}{4}x^2$ 의 그래프를 x축의 방향으로 4만큼, y축의 방향으로 -3만큼 평행이동한 그래프의 식은 $y=-\frac{1}{4}(x-4)^2-3$ 이고, 점 (-2, a)를 지나므로 $a=-\frac{1}{4}(-2-4)^2-3$ $\therefore a=-12$
- 74) —1
- 당 평행 이동한 그래프의 식은 $y = a(x+2)^2 + 4$ 이고 이 그래프가 점 (1,-5)를 지나므로 9a+4=-5 $\therefore a=-1$
- 75) 5
- ⇒ 평행 이동한 그래프의 식은 $y=a(x-3)^2-2$ 이고 이 그래프가 점 (4, 3)를 지나므로 3=a-2 \therefore a=5
- 76) 4
- ightharpoonup 평행 이동한 그래프의 식은 $y=a\left(x-rac{3}{2}
 ight)^2-7$ 이고

이 그래프가 점 (-1, 18)를 지나므로

$$18 = \frac{25}{4}a - 7 \qquad \therefore a = 4$$

77) -2

⇒ 평행 이동한 그래프의 식은 $y=a(x-3)^2+2$ 이고 이 그래프가 점 (1, -6)를 지나므로 -6=4a+2. 4a=-8 ∴ a=-2

78) -7

 $\Rightarrow x=3$ 을 축으로 하므로 p=-3이다. $y=-\frac{1}{2}(x-3)^2+q$ 의 그래프가 (5,-6)을 지나므로 $-2+q=-6 \qquad \therefore q=-4$ $\therefore p+q=(-3)+(-4)=-7$

79) 1

○ 이차함수 y=ax²의 그래프를 x축의 방향으로 p만큼, y 축의 방향으로 q만큼 평행이동한 그래프의 식은 y=a(x-p)²+q이다.
 이 그래프의 꼭짓점의 좌표가 (-1, 3)이므로 y=a(x+1)²+3 ∴ p=-1, q=3
 이 그래프가 점 (1, 7)을 지나므로 7=4a+3 ∴ a=1
 ∴ p+q-a=1

80) 3

□ 꼭짓점의 좌표가 (1, 1)이므로 y=a(x-p)²+q에서 p=1, q=1이다.
 (2, 2)를 y=a(x-1)²+1에 대입하면 a+1=2 ∴ a=1
 ∴ a+p+q=3

81) 1

 \Rightarrow $y=a(x-p)^2+q$ 의 그래프는 꼭짓점 (-1, 5)를 지나고 y축과 (0, 2)에서 만나므로 $y=a(x+1)^2+5$ 에 (0, 2)를 대입하면 a+5=2 $\therefore a=-3$ $\therefore p=-1, q=5$ $\therefore a+p+q=1$

82) -3

□ 꼭짓점의 좌표가 (-1, -4)이므로
 y = a(x+1)²-4 ∴ p=-1, q=-4
 점 (2, 14)를 지나므로
 9a-4=14, 9a=18 ∴ a=2
 ∴ a+p+q=2-1-4=-3

83) 3

 \Rightarrow 꼭짓점의 좌표가 (1, 1)이므로 $y = a(x-p)^2 + q$ 에서 p = 1, q = 1이다. (2, 2)를 $y = a(x-1)^2 + 1$ 에 대입하면

$$a+1=2$$
 $\therefore a=1$
 $\therefore a+p+q=3$

84) 3

⇒ 꼭짓점의 좌표가 (2, 6)이므로
 y=a(x-2)²+6
 ∴ p=2, q=6
 점 (0, 2)를 지날 때 4a+6=2, 4a=-4
 ∴ a-p+q=-1-2+6=3

85) 12

⇒ x=2를 축으로 하므로 y=a(x-2)²+q ∴ p=2
 이 그래프가 직선 y=2x-1과 만나는 점의 y좌표가 3, 5이므로 (2, 3), (3, 5)를 지난다.
 점 (2, 3)을 대입하면 q=3
 점 (3, 5)를 대입하면 a+3=5 ∴ a=2
 ∴ apq=2×3×2=12

87) x축 대칭: $y = -5(x-1)^2 - 7$, y축 대칭: $y = 5(x+1)^2 + 7$ $\Rightarrow x$ 축 대칭: $-y = 5(x-1)^2 + 7$ $\therefore y = -5(x-1)^2 - 7$ y축 대칭: $y = 5(-x-1)^2 + 7$ $\therefore y = 5(x+1)^2 + 7$

88) x축 대칭: $y=3(x+1)^2+5$, y축 대칭: $y=-3(x-1)^2-5$

 $\Rightarrow x$ 축 대칭 : $-y = -3(x+1)^2 - 5$ $\therefore y = 3(x+1)^2 + 5$ y축 대칭 : $y = -3(-x+1)^2 - 5$ $\therefore y = -3(x-1)^2 - 5$

89) x축 대칭: $y = 2(x-5)^2 - 3$, y축 대칭: $y = -2(x+5)^2 + 3$ $\Rightarrow x$ 축 대칭: $-y = -2(x-5)^2 + 3$ $\therefore y = 2(x-5)^2 - 3$ y축 대칭: $y = -2(-x-5)^2 + 3$ $\therefore y = -2(x+5)^2 + 3$

90) 4

다 x축에 대칭인 그래프의 식은 $y=(x+2)^2+3$ 이고, 점 (-3, k)를 지나므로 k=1+3=4

91) 4

- \Rightarrow x축에 대칭인 그래프의 식은 $y=2(x-3)^2-4$ 이고, 점 (1, k)를 지나므로 $k=2\times(-2)^2-4=8-4=4$
- 92) k=0 또는 k=-4
- $\Rightarrow y=-rac{1}{4}(x+2)^2$ 의 그래프를 x축에 대칭이동하면 $y=rac{1}{4}(x+2)^2$ 이다. 따라서 $1=rac{1}{4}(k+2)^2$ 이므로 $(k+2)^2=4,\ k+2=\pm 2\qquad \therefore k=0\ \mbox{또는 }k=-4$
- 93) -2
- \Rightarrow x축에 대칭인 그래프의 식은 $y=-\frac{2}{3}(x+2)^2+4$ 이고, 점 $(-5,\ k)$ 를 지나므로 $k=-\frac{2}{3}\times(-3)^2+4=-6+4=-2$
- 94) -8
- \Rightarrow x축에 대칭인 그래프의 식은 $y=-\frac{1}{5}(x-1)^2-3$ 이고, 점 $(6,\ k)$ 를 지나므로 $k=-\frac{1}{5}\times 5^2-3=-5-3=-8$
- 95) 제 1, 2, 3사분면
- □ 꼭짓점 (-2,-1)이고, 축의 방정식은 x=-2이다. y축과의 교점은 (0,0)이고, 아래로 볼록한 그래프이므로 지나는 사분면은 제 1, 2, 3사분면이다.
- 96) 제 1, 2, 3, 4사분면
- ightharpoonup 찍짓점은 (-2, 3)이고, y축과의 교점은 (0, 1)이다. 위로 볼록하므로 지나는 사분면은 제 1, 2, 3, 4사분면이다
- 97) 제 1, 2, 3, 4사분면
- ⇒ 꼭짓점은 (2, -3)이고, y축과의 교점은 (0, -1)이다. 아래로 볼록하므로 지나는 사분면은 제 1, 2, 3, 4사분면 이다
- 98) 제 1, 2, 3, 4사분면
- $y = -(x+1)^2 + 7 = -x^2 2x + 6$ 의 꼭짓점은 (-1,7)이고, y축과의 교점은 (0,6)이고 위로 볼록한 그래프이므로 그래프를 그리면 다음과 같다.

따라서 지나는 사분면은 제 1, 2, 3, 4사분면이다.

- 99) 제 1, 2, 3사분면
- □ 꼭짓점의 좌표는 (-2, -3)이고, y축과의 교점은 (0, 1)이다. 아래로 볼록한 그래프이므로 지나는 사분면은 제 1, 2, 3사분면이다.
- 100) 제 3, 4사분면
- $y = -\frac{1}{3}(x-8)^2 2 = -\frac{1}{3}x^2 + \frac{16}{3}x \frac{70}{3}$ 이므로 꼭짓점의 좌표는 (8,-2)로 제4사분면 위에 있고, y축과 원점보다 아래쪽에서 만나며 위로 볼록한 모양의 포물선이므로 제 3,4사분면을 지난다.
- 101) 제 1, 2사분면
- 102) 제 1, 3, 4사분면
- 103) 제 1, 2, 3사분면
- 104) 제 1, 3, 4사분면
- 105) 제 1, 2, 3, 4사분면
- 106) 제 1, 2, 4사분면
- 107) a > 0, p > 0, q = 0
- 108) a < 0, p > 0, q > 0
- 다 위로 볼록하므로 a < 0이고, 꼭짓점 (p, q)가 제1사분면 위에 있으므로 p > 0, q > 0
- 109) a < 0, p > 0, q < 0
- 다 위로 볼록하므로 a < 0이고, 꼭짓점 (p,q)가 제4사분면 위에 있으므로 p > 0, q < 0이다.
- 110) a < 0, p < 0, q = 0
- 111) a < 0, p > 0, q > 0
- 112) a > 0, p < 0, q < 0
- 113) a < 0, p > 0, q = 0