6.867: Exercises (Week 1)

Sept 15, 2017

1. (Bishop 3.1) Show that the tanh function and the logistic sigmoid function σ are related by

$$tanh(a) = 2\sigma(2a) - 1 \tag{1}$$

Hence show that a general linear combination of logistic sigmoid functions of the form

$$y(x, w) = w_0 + \sum_{j=1}^{M} w_j \sigma(\frac{x - u_j}{s})$$
 (2)

is equivalent to a linear combination of tanh functions of the form

$$y(x,b) = b_0 + \sum_{j=1}^{M} b_j \tanh(\frac{x - u_j}{2s})$$
 (3)

and find expressions to relate the new parameters $\{b_0, ..., b_M\}$ to the original parameters $\{w_0, ..., w_M\}$.

Solution: Since $\sigma(\alpha) = \frac{1}{1 + exp(-\alpha)}$, we have

$$2\sigma(2\alpha) - 1 = \frac{2}{1 + e^{-2\alpha}} - 1$$

$$= \frac{2}{1 + e^{-2\alpha}} - \frac{1 + e^{-2\alpha}}{1 + e^{-2\alpha}}$$

$$= \frac{1 - e^{-2\alpha}}{1 + e^{-2\alpha}}$$

$$= \frac{e^{\alpha} - e^{-\alpha}}{e^{\alpha} + e^{-\alpha}}$$

$$= \tanh(\alpha)$$

Let $a_j = (x - u_j)/2s$. We can rewrite (2) as

$$y(x, w) = w_0 + \sum_{j=1}^{M} w_j \sigma(2\alpha_j)$$

$$= w_0 + \sum_{j=1}^{M} \frac{w_j}{2} (2\sigma(2\alpha_j) - 1 + 1)$$

$$= b_0 + \sum_{j=1}^{M} b_j \tanh(\alpha_j),$$

where
$$b_j = w_j/2$$
 for $j = 1, ..., M$, and $b_0 = w_0 + \sum_{j=1}^{M} w_j/2$.

2. (Bishop 3.2) Show that the matrix

$$\Phi(\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}\tag{4}$$

takes any vector v and projects it onto the space spanned by the columns of Φ . Use this result to show that the least-squares solution ($f = \Phi w^*$, where $w^* = (\Phi^T \Phi)^{-1} \Phi^T Y$) corresponds to an *orthogonal* projection of the target vector Y onto the subspace spanned by the columns of Φ .

Solution: We first write

$$\begin{split} \Phi(\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}\nu &= \Phi\tilde{\nu} \\ &= \varphi_1\tilde{\nu}^{(1)} + \varphi_2\tilde{\nu}^{(2)} + \dots + \varphi_M\tilde{\nu}^{(M)} \end{split} \tag{5}$$

where Φ_m is the m-th column of Φ , $\tilde{\nu}=(\Phi^T\Phi)^{-1}\Phi^T\nu$, and $\tilde{\nu}^{(m)}$ is the m-th element of the vector $\tilde{\nu}$. There, $\Phi(\Phi^T\Phi)^{-1}\Phi^T\nu$ can be represented as a linear combination of all the columns of Φ , which implies that $\Phi(\Phi^T\Phi)^{-1}\Phi^T\nu$ is a projection of ν to the column space of Φ .

By comparing with the least squares solution, we see that $f = \Phi w^* = \Phi(\Phi^T \Phi)^{-1} \Phi^T Y$ corresponds to a projection of Y onto the space spanned by the columns of Φ . To see that this is indeed an orthogonal projection, here are two alternative solutions:

(1) We first note that for any column of Φ , ϕ_i , we have

$$\Phi(\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}\phi_{\mathbf{j}} = [\Phi(\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}\Phi]_{\mathbf{j}} = \phi_{\mathbf{j}}$$
(6)

and therefore,

$$(f - Y)^{T} \phi_{j} = (\Phi w^{*} - Y)^{T} \phi_{j} = Y^{T} (\Phi (\Phi^{T} \Phi)^{-1} \Phi^{T} - I)^{T} \phi_{j}$$

$$= Y^{T} (\Phi (\Phi^{T} \Phi)^{-1} \Phi^{T} - I) \phi_{j}$$

$$= Y^{T} (\Phi (\Phi^{T} \Phi)^{-1} \Phi^{T} \phi_{j} - \phi_{j})$$

$$= 0$$
(7)

Thus, (f - Y) is orthogonal to every column of Φ , which implies that it is orthogonal to the column space of Φ .

(2) Suppose that this is indeed an orthogonal projection, then by definition, $(Y-f)^Tq=0$ for any vector q in the column space of Φ . Let us prove this by contradiction. Suppose that it is not, then there exist a vector \tilde{q} in the column space of Φ such that $(Y-f)^T\tilde{q}\neq 0$. Without loss of generality, assume that $(Y-f)^T\tilde{q}>0$ and $\|\tilde{q}\|_2=1$. Let us consider $\tilde{f}=f+\delta\tilde{q}$ for some $\delta>0$, and the sum-of-squares error of \tilde{f} :

$$\begin{split} (Y - \tilde{f})^T (Y - \tilde{f}) &= (Y - f - \delta \tilde{q})^T (Y - f - \delta \tilde{q}) \\ &= (Y - f)^T (Y - f) + \delta^2 \tilde{q}^T \tilde{q} - 2\delta (Y - f)^T \tilde{q} \\ &= (Y - f)^T (Y - f) + \delta^2 - 2\delta (Y - f)^T \tilde{q} \end{split}$$

Let us consider the term $\delta^2 - 2\delta(Y-f)^T\tilde{q}$. By assumption, $(Y-f)^T\tilde{q} > 0$. Furthermore, for δ small enough, the linear term $2\delta(Y-f)^T\tilde{q}$ will dominate the quadratic term δ^2 . In other words, for $\delta > 0$ small enough, we have that $\delta^2 - 2\delta(Y-f)^T\tilde{q} < 0$, which implies that

$$(Y-\tilde{f})^{\mathsf{T}}(Y-\tilde{f}) < (Y-f)^{\mathsf{T}}(Y-f), \text{for small enough } \delta.$$

However, this implies that \tilde{f} achieves a smaller sum-of-square error than f, which contradicts the fact that f is the least squares solution. Therefore, f must correspond to a projection of Y onto the column space of Φ .

3. (Bishop 3.3) Consider a dataset in which each data point (x_n, y_n) is associated with a weighting factor $r_n > 0$, so that the sum-of-squares error function becomes

$$E_{D}(w) = \frac{1}{2} \sum_{n=1}^{N} r_{n} \{ y_{n} - w^{T} \phi(x_{n}) \}^{2}$$
 (8)

Find an expression for the solution w^* that minimizes the sum-of-squares error. Give two alternative interpretations of the weighted sum-of-squares error function in terms of (i) data dependent noise variance and (ii) replicated data points.

Solution: If we define $R = diag(r_1, ..., r_N)$ to be a diagonal matrix containing the weighting coefficients, then we can write the weighted sum-of-squares cost function in the form

$$\mathsf{E}_\mathsf{D}(w) = \frac{1}{2} (\mathsf{Y} - \Phi w)^\mathsf{T} \mathsf{R} (\mathsf{Y} - \Phi W).$$

Setting the derivative with respect to w to zero, and then we obtain

$$w^* = (\Phi^\mathsf{T} \mathsf{R} \Phi)^{-1} \Phi^\mathsf{T} \mathsf{R} \mathsf{Y}$$

which reduces to the standard solution for the case R = I.

If we compare the sum-of-squares error function to the log likelihood function (see Lecture 2 slides), we see that r_n can be regarded as the inverse variance, particular to the data point (x_n, y_n) . Alternatively, r_n can be regarded as an *effective* number of replicated observations of data point (x_n, y_n) ; this becomes particularly clear if r_n taking positive integer values, although it is valid for any $r_n > 0$.

4. (Bishop 3.4) Consider a linear model of the form

$$f(x, w) = w_0 + \sum_{i=1}^{D} w_i x^{(i)}$$
(9)

where $x^{(i)}$ is the i-th coordinate of the vector x, and together with a sum-of-squares error function of the form

$$E_{D}(w) = \frac{1}{2} \sum_{n=1}^{N} \{y_{n} - f(x_{n}, w)\}^{2}$$
(10)

Now suppose that Gaussian noise ϵ_i with zero mean and variance σ^2 is added independently to each of the input variables $x^{(i)}$. By making use of $\mathbb{E}[\epsilon_i] = 0$ and $\mathbb{E}[\epsilon_i \epsilon_j] = \delta_{ij} \sigma^2$, show that minimizing E_D averaged over the noise distribution is equivalent to minimizing the sum-of-squares error for noise-free input variables with the addition of a weight-decay regularization term, in which the bias parameters w_0 is omitted from the regularizer.

Solution: Let

$$\tilde{y}_n = w_0 + \sum_{i=1}^{D} w_i (x_n^i + \epsilon_{ni}) = f_n + \sum_{i=1}^{D} w_i \epsilon_{ni}$$

where $f_n = f(x_n, w)$ is the predicted value for the n-th data point and $\varepsilon_{ni} \sim \mathcal{N}(0, \sigma^2)$. From (10), we then define

$$\tilde{E} = \frac{1}{2} \sum_{n=1}^{N} \{y_n - \tilde{y}_n\}^2
= \frac{1}{2} \sum_{n=1}^{N} \{\tilde{y}_n^2 - 2\tilde{y}_n y_n + y_n^2\}
= \frac{1}{2} \sum_{n=1}^{N} \left\{ f_n^2 + 2f_n \sum_{i=1}^{D} w_i \epsilon_{ni} + \left(\sum_{i=1}^{D} w_i \epsilon_{ni} \right)^2 - 2y_n f_n - 2y_n \sum_{i=1}^{D} w_i \epsilon_{ni} + y_n^2 \right\}$$
(11)

If we take the expectation of $\tilde{\mathbb{E}}$ under the distribution of ε_{ni} , we see that the second and fifth terms disappear, since $\mathcal{E}[\varepsilon_{ni}] = 0$. For the third term we get

$$\mathbb{E}\left[\left(\sum_{i=1}^{D} w_{i} \epsilon_{ni}\right)^{2}\right] = \sum_{i=1}^{D} w_{i}^{2} \sigma^{2}$$

since the ϵ_{ni} are all independent with variance σ^2 . From this and (10), we see that

$$\mathbb{E}[\tilde{\mathsf{E}}] = \mathsf{E}_{\mathsf{D}} + \frac{\mathsf{N}}{2} \sum_{\mathsf{i}=1}^{\mathsf{D}} w_{\mathsf{i}}^2 \sigma^2$$

as required.

5. (Bishop 3.5) Using the technique of Lagrange multipliers (Appendix E of Bishop if you are not familiar with), show that minimization of the regularized error function

$$\frac{1}{2} \sum_{n=1}^{N} \{ y_n - w^{\mathsf{T}} \phi(x_n) \}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$
 (12)

is equivalent to minimizing the unregularized sum-of-squares error

$$E_{D}(w) = \frac{1}{2} \sum_{n=1}^{N} \{y_{n} - w^{T} \phi(x_{n})\}^{2}$$
 (13)

subject to the constraint

$$\sum_{j=1}^{M} |w_j|^q \leqslant \eta \tag{14}$$

Discuss the relationship between the parameters η and λ .

Solution: We can rewrite the constraint (14) as

$$\frac{1}{2}\left(\sum_{j=1}^{M}|w_{j}|^{q}-\eta\right)\leqslant0$$

where we have incorporated the 1/2 scaling factor for convenience. Clearly this does not affect the constraint.

Employing the technique of Lagrange multipliers, we can combine the condition with (13) to obtain the Lagrangian function

$$L(w,\lambda) = \frac{1}{2} \sum_{n=1}^{N} \{y_n - w^{\mathsf{T}} \phi(x_n)\}^2 + \frac{\lambda}{2} (\sum_{j=1}^{M} |w_j|^q - \eta)$$
 (15)

and by comparing this with (12), we see immediately that they are identical in their dependence on w.

Now suppose we choose a specific value of $\lambda > 0$ and minimize (12). Denoting the resulting value of w by $w^*(\lambda)$, and using the KKT condition, we see that the value of η is given by

$$\eta = \sum_{j=1}^{M} |w_j^*(\lambda)|^q.$$

6. (Bishop 3.6, Modified) Consider a linear basis function regression model for a multivariate target variable y (i.e. y is a column vector) having a Gaussian distribution of the form

$$p(y|W,\Sigma) = \mathcal{N}(f(x,W),\Sigma) \tag{16}$$

where $f(x, W) = W^T \varphi(x)$, together with a training dataset comprising input basis vectors $\varphi(x_n)$ and corresponding target vectors y_n , with n = 1, ..., N.

- 1. Write down the log likelihood function given the data.
- 2. Derive the maximum likelihood estimator W_{ML} for the parameter matrix W.

3. The maximum likelihood estimator for the covariance matrix Σ_{ML} involves optimization over positive definite matrices, and is very complex. However, as you see in Lectures, the maximum likelihood estimator often takes an intuitive form. Based on W_{ML} from (2) and your experience when y_n is a scalar, guess Σ_{ML} .

Solution: (1) We first write down the log likelihood function which is given by

$$\ln L(W, \Sigma) = -\frac{N}{2} \ln |\Sigma| - \frac{1}{2} \sum_{n=1}^{N} (y_n - W^T \phi(x_n))^T \Sigma^{-1} (y_n - W^T \phi(x_n))$$

(2) We set the derivative with respect to W equal to zero, giving

$$0 = \sum_{n=1}^{N} \Sigma^{-1} (y_n - W^{\mathsf{T}} \phi(x_n)) \phi(x_n)^{\mathsf{T}}$$

Multiplying through by Σ and introducing the design matrix Φ and the target data matrix T (i.e., the ith row of T is the vector y_i^T), we have

$$\Phi^T \Phi W = \Phi^T T$$

Solving for *W* then gives $W_{\text{ML}} = (\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}\mathsf{T}$.

(3) Σ_{ML} takes the following intuitive form:

$$\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (y_n - W_{ML}^T \phi(x_n)) (y_n - W_{ML}^T \phi(x_n))^T.$$

7. (JWHT 3.5, Modified) Consider a dataset with N data points, $(x_1, y_1), \ldots, (x_N, y_N)$, where both x_n and y_n are scalar numbers. Consider the fitted values that result from performing linear regression without an intercept. In this setting, the ith fitted value takes the form

$$f(x_i, w) = x_i w$$

where $w \in \mathbb{R}$. Derive the w^* that minimizes the sum-of-squares error. Show that we can write

$$f(x_i, w) = \sum_{j=1}^{N} a_j y_j$$

and derive the equation for a_i .

(Note: We interpret this result by saying that the fitted values from linear regression are linear combinations of the target values.)

Solution: The sum-of-squares error is

$$\frac{1}{2} \sum_{i=1}^{N} (y_i - x_i w)^2$$

Setting the derivative with respect to w equal to zero, and we obtain

$$\sum_{i=1}^{N} (y_i - x_i w) x_i = 0 \Rightarrow w = (\sum_{i=1}^{N} x_i y_i) / (\sum_{k=1}^{N} x_k^2)$$

Then,

$$f(x_i, w) = \left[(\sum_{j=1}^{N} x_j y_j) / (\sum_{k=1}^{N} x_k^2) \right] x_i = \sum_{j=1}^{N} \frac{x_j x_i}{\sum_{k=1}^{N} x_k^2} y_j$$

which implies that $\alpha_j = \frac{x_j x_i}{\sum_{k=1}^N x_k^2}.$

8. We have provided the advertisement data used in lectures. To gain hands on experience, you are highly encouraged to build your own regression model with the data. As a starting point, you could build the same model as in lectures and check your understanding with the results in the lecture slides.