UCLA CS 145 Homework #2

DUE DATE: Sunday 10/29/2017 11:59 pm

Note:

- You are expected to submit both a report and code. The submission format is specified on CCLE under HW2 description.
- "######## Please Fill Missing Lines Here ######### is used where input from you is needed in the code file.

1. Support Vector Machine

The table shown below contains 20 data points and their class labels.

Point #	x1	x2	Class (y)
1	0.52	-1	1
2	0.91	0.32	1
3	-1.48	1.23	1
4	0.01	1.44	1
5	-0.46	-0.37	1
6	0.41	2.04	1
7	0.53	0.77	1
8	-1.21	-1.1	1
9	-0.39	0.96	1
10	-0.96	0.08	1
11	2.46	2.59	-1
12	3.05	2.87	-1
13	2.2	3.04	-1
14	1.89	2.64	-1
15	4.51	-0.52	-1

16	3.06	1.3	-1
17	3.16	-0.56	-1
18	2.05	1.54	-1
19	2.34	0.72	-1
20	2.94	0.13	-1

Suppose by solving the dual form of the quadratic programming of svm, we can derive the α 's for each data point as follows:

$$\alpha_2 = 0.9492$$
 $\alpha_{18} = 0.3030$
 $\alpha_{19} = 0.9053$
Others = 0

- (1) Please point out the support vectors in the training points.
- (2) Calculate the normal vector of the hyperplane: w
- (3) Calculate the bias b, according to $b = \sum_{k:\alpha_k \neq 0} (y_k w^T x_k)/N_k$ where $x_k = (x_{k1}, x_{k2})^T$ indicate the support vectors and N_k is the total number of support vectors.
- (4) Write down the learned decision boundary function $f(x) = w^T x + b$ (the hyperplane) by substituting w and b with learned values in the formula.
- (5) Suppose there is a new data point x = (-1, 2), please use the decision boundary to predict its class label.
- (6) Show a plot of the data points and your decision boundary line (x1 feature on x-axis, x2 feature on y-axis) in your report. Plot both data points and decision boundary in the same graph, and use different colors to represent points in different classes (y).

2. Artificial Neural Network

- 2.1 Suppose you have a fully-connected multilayer neural network with 1 input, 2 hidden and 1 output layers. If your dataset has p features, the two hidden layers have 3 and 4 neurons respectively, and the output layer has k outputs, calculate the number of parameters in the neural network in terms of p and k. Assume that the bias terms have not been considered in the specified neurons and need to be added to the parameter count.
- 2.2 Write down the major steps involved in backpropagation algorithm.

2.3 Given the following multilayer neural network, a training data point $x=(x_1=0,x_2=1)$, and the target value T=1, please calculate weights and bias after 1 iteration of backpropagation algorithm (show your calculations and fill out the empty tables given below). The learning rate $\eta=0.8$. The initial weights and bias are in the following table.

w ₁₃	w ₁₄	w ₂₃	w ₂₄	w ₃₅	w ₄₅	θ_3	θ_4	θ_5
-0.3	0.2	0.4	-0.1	-0.2	-0.3	0.2	-0.4	0.1

Multilayer neural network:

The following tables need to be completed:

Net Input and Output Calculations

Unit, j	Net Input, I_j	Output, O_j
3		
4		
5		

Calculation of the error at each node

Unit, j	Err_j
5	
4	
3	

Calculations for weight and bias updating

Weight or Bias	New Value
w ₃₅	
w ₄₅	
w ₁₃	
w ₁₄	
w ₂₃	
w ₂₄	
θ_5	
θ_4	
θ_3	

3. K Nearest Neighbors

Fill in the missing lines of code in KNN.py to implement KNN algorithm by using Euclidean distance as distance measure. Use 5-fold cross validation to calculate the average accuracy on "iris.data" for different values of K.

- (1) Report the best value of K obtained.
- (2) Show a plot of K value vs. average accuracy over 5-folds. K values must be on x-axis, and average accuracies must be on y-axis. You may try different ranges of K to observe the graph.
- (3) Why does your reported best K value give a better average accuracy than extreme K values (using just nearest point i.e. K=1, or using all points in training data as K nearest points i.e. K=120)?
- (4) Is there anything you would like to specify about your code? (optional)

Note:

- (1) Your code will be graded based on your code implementation (yes, partial grading for the missing lines). The questions for the report above have a separate weightage.
- (2) You may observe different best K values for different runs. Just report the one observed from any of the runs. Make sure (1) and (2) are from the same run.
- (3) For verification purposes, accuracy for best K will be pretty high for the given dataset.