

CIFAR

Improving Pathology Foundation Models for Brain Tissue using Parameter Efficient Fine-tuning

Project Page

Abhishek Rajora¹, Ankur Garg¹, Eugene Vorontsov², Ana Nikolic¹, Samira Ebrahimi Kahou^{1,3} University of Calgary¹, Paige², Canada CIFAR AI Chair³

Introduction

- Significance: Adaptation of pathology foundation models to brain tissue is essential for extending Al-assisted diagnostics to rare and complex neurological conditions.
- Foundation Models: Large-scale vision transformers pretrained on histopathology data have shown strong generalization across multiple cancer types.
- But here's the challenge: These models often face domain shift when applied to brain tissue as brain histology is fundamentally different from other tissues.
- Why not retrain? Full fine-tuning of large models like Virchow2 is computationally expensive and risks losing valuable pretrained knowledge.
- Interpretability: Leverage EAGLE pipeline (specifically CHIEF) to identify most diagnostically relevant tiles.
- Combined solution: Facilitate domain adaptation through parameter-efficient fine-tuning (PEFT), preserving interpretability and reducing computational overhead.

Methodology

 Fetch most diagnostically relevant tiles which can be interpreted by pathologist

1) Top 25 tiles filtered from CHIEF

 LoRA adapter applied on MLP and attention layers for low-rank updates

Classification Layer

Pre-trained Virchow2

2) Fine-tuning Virchow2 with LoRA

Research objectives

Our study focuses on advancing the adaptation of foundation models in brain histopathology. The key objectives of our research are:

- Address domain shift between general pathology models and brain-specific morphology.
- Apply LoRA-based fine-tuning to adapt Virchow2 for brain tissue without full retraining.
- Demonstrate performance gains in underrepresented tumor classes while maintaining computational efficiency.
- Deliver an interpretable, lightweight, and clinically relevant adaptation pipeline for computational pathology foundation models.

Experimental results

PEFT adaptation of EAGLE on The Digital Brain Tumor Atlas (TDBTA) results in significant perforamance improvements.

Results on tumor classification

Table: Performance on EBRAINS (TDBTA) test set

	Accuracy	Balanced Accuracy
Linear Probing (Baseline)	83.21	81.64
LoRA (Fine-tuning)	87.07	86.04

• Improved performance in under-represented classes

3) Tumor Classification

PEFT closely aligns embeddings of similar classes

4) t-SNE plot before and after fine-tuning