1. Aufgabenblatt

(Besprechung in den Tutorien 24.–28.10.2022)

Aufgabe 1. Analyse einer Turing-Maschine

Gegeben sei die Turing-Maschine $M = (Z = \{z_0, z_1, z_2, z_3, z_4\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c, \square\}, \delta, z_0, \square, E = \{z_4\})$, wobei δ wie folgt definiert ist:

δ	$\mid a \mid$	b	c	
$\overline{z_0}$	(z_0, a, R)	(z_1, a, R)		
z_1	⊥	(z_1,b,R)	(z_1, c, R)	(z_2, c, L)
z_2	(z_4, a, N)	(z_3,b,L)	(z_2, c, L)	\perp
z_3	(z_0,a,R)	(z_3,b,L)	\perp	\perp

- a) Stellen Sie M als Zustandsgraph dar.
- b) Geben Sie die Konfigurationsfolge (beginnend mit der Startkonfiguration z_0abb) der Turing-Maschine M bei Eingabe abb an (ohne Begründung).
- c) Für welche Wörter $w \in \Sigma^*$ erreicht M den Endzustand z_4 ? Geben Sie für jedes solches Eingabewort an, was nach Erreichen des Endzustandes auf dem Band steht.
- d) Sei w ein beliebiges Wort der Länge n, für das die Turing-Maschine M den Endzustand z_4 erreicht. Gilt dann immer, dass M auf Eingabe w nach höchstens $4 \cdot n + 2$ Schritten den Endzustand erreicht?

Aufgabe 2. Konstruktion einer Turing-Maschine

Für ein Alphabet Σ sei die Funktion rev: $\Sigma^* \to \Sigma^*$ die Funktion, die ein Wort umdreht (z.B. ist rev(abc) = cba). Formal ist sie wie folgt definiert:

$$\begin{split} \operatorname{rev}(\varepsilon) &= \varepsilon & \text{für das leere Wort } \varepsilon \in \Sigma, \\ \operatorname{rev}(w\,x) &= x\operatorname{rev}(w) & \text{für ein Wort } w \in \Sigma^* \text{ und einen Buchstaben } x \in \Sigma. \end{split}$$

a) Konstruieren Sie eine Turing-Maschine, die genau bei Eingabewörtern aus der Sprache

$$L := \{ w c \operatorname{rev}(w) \mid w \in \{a, b\}^* \}$$

in einem Endzustand stoppt. Das Eingabealphabet der TM sei $\Sigma = \{a, b, c\}$. Erläutern Sie das Funktionsprinzip Ihrer Turing-Maschine.

(Hinweis: Sie können Ihre Turing-Maschine als Graph angeben. Bedenken Sie auch, dass das Bandalphabet größer als das Eingabealphabet sein darf.)

b) Geben Sie für die Sprache $\{w \operatorname{rev}(w) \mid w \in \{a,b\}^*\}$ eine Turing-Maschine an, die diese erkennt. Als Begründung ist es dabei ausreichend, die prinzipielle Arbeitsweise Ihrer Turing-Maschine in Worten zu beschreiben.