Modeling Conventionalization and Predictability in Multiword Expressions at

the brain level

Murielle Popa-Fabre $^{\mathrm{1}}$

Shohini Bhattasali 2

John Hale 3

Christophe Pallier 4

¹CNRS Université Paris Diderot-Paris 7

²University of Maryland

³University of Georgia

⁴CEA Inserm Cognitive Neuroimaging Unit

Introduction

Multiword Expressions (MWEs) demonstrate finergrained distinctions such as degrees of conventionalization and predictability.

Examples: break the ice, boa constrictor, safe and sound, see to it, in spite of

These gradiences could be reflected during cognitive processing and are captured using computational metrics, Association Measures.

Question

Are these computational measures and their cognitive instantiations are discernible at the cerebral level during sentence processing?

Data Collection

Participants (n=51) were college-aged, right-handed, native English speakers.

Listened to a spoken recitation of *The Little Prince* for 1 hour and 38 minutes across nine separate sections; 15,388 words in total.

Comprehension was confirmed through multiple-choice questions at the end of each section (90% accuracy, SD = 3.7%).

Multiword Expressions

742 MWEs were identified in the dataset through a transition-based MWE analyzer (Al Saied et al., 2017) trained on Children's Book Test dataset (Hill et al., 2015).

Association Measures calculated using corpus frequency counts from COCA:

• Pointwise Mutual Information (PMI):

$$PMI = log_2 \frac{c(w_n^1)}{E(w_n^1)} \tag{1}$$

2 Dice's Coefficient:

Dice =
$$\frac{n \times c(w_n^1)}{\sum_{i=1}^n c(w_i)}$$
 (2)

Group-level Results

Figure 1: Z-map showing regions having a significant effect for Dice's coefficient versus Pointwise Mutual Information after Bonferroni correction with p < 0.05

Regions for Dice >PMI	Cluster size	MNI Co	ordinates	z-scores
	(in voxels)	x y	${f Z}$	
R Superior Temporal Gyrus (BA 38)	47	48 10	-26	5.80
R Middle Temporal Gyrus	84	54 -18	-10	6.09
R Middle Temporal Gyrus (BA 22)	98	48 -36	2	5.85
R Superior Temporal Gyrus (BA 22)	70	48 -12	2	5.83
R Middle Temporal Gyrus (BA 22)	16	58 -46	2	5.14
L Superior Temporal Gyrus	13	-62 -18	6	5.64
R Superior Frontal Gyrus	10	20 56	12	5.53
R Inferior Frontal Gyrus (BA 45)	10	48 20	14	5.64
L Supramarginal Gyrus	22	-56 -56	22	5.37
R Inferior Parietal Lobule/	10	62 -46	22	5.44
Superior Temporal Gyrus (BA 40)				
R Inferior Parietal Lobule/	16	54 -46	22	5.45
Superior Temporal Gyrus (BA 40)				
R Superior Frontal Gyrus	35	20 42	34	5.69
R Cingulate Gyrus	17	2 -34	34	5.85
R Precenus	22	32 -72	36	5.76
L Inferior Parietal Lobule	12	-34 -58	46	5.17

Table 1: Significant clusters for Dice's Coefficient versus Pointwise Mutual Information after Bonferroni correction with p < 0.05

fMRI Analysis

Preprocessing was carried out with AFNI version 16 and ME-ICA v3.2 (Kundu et al., 2011).

GLM Analysis:

- MWE predictors convolved with SPM12's canonical HRF, regressed against observed BOLD signal during passive story listening.
- To account for sentence-level compositional processes, a regressor formalizing syntactic structure building included (Hale, 2014).
- Includes four regressors of non-interest: word offset, frequency, pitch, intensity
- r^2 Model Comparison: For every subject, we compute how much the inclusion of each variable of interest (i.e. Dice and PMI) increases the cross-validated r^2 .

Conclusion

- Dice's Coefficient, formalizing the degree of predictability, is a better predictor of cerebral activation for processing MWEs.
- Indicates that Dice is a more cognitively plausible computational metric.
- Suggests that a bimodal distribution of gradience is more suitable for processing MWEs

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1607441.