```
In [1]: import pandas as pd
   import numpy as np
   from datetime import date
   import xlrd
   import seaborn as sns
   from matplotlib import pyplot as plt
   from PIL import Image
```

Data Preprocessing

Read in data

```
In [2]: cab = pd.read_csv("Cab_Data.csv")
    city = pd.read_csv("City.csv")
    customer = pd.read_csv("Customer_ID.csv")
    transaction = pd.read_csv("Transaction_ID.csv")
```

```
In [3]: cab.head(3)
```

Out[3]:	ut[3]: Transac		Date of Travel	Company	City	KM Travelled	Price Charged	Cost of Trip
	0	10000011	42377	Pink Cab	ATLANTA GA	30.45	370.95	313.635
	1	10000012	42375	Pink Cab	ATLANTA GA	28.62	358.52	334.854
	2	10000013	42371	Pink Cab	ATLANTA GA	9.04	125.20	97.632

```
In [4]: city.head(3)
```

Out[4]:		City	Population	Users
	0	NEW YORK NY	8,405,837	302,149
	1	CHICAGO IL	1,955,130	164,468
	2	LOS ANGELES CA	1,595,037	144,132

```
In [5]: customer.head(3)
```

Out[5]:		Customer ID	Gender	Age	Income (USD/Month)
	0	29290	Male	28	10813
	1	27703	Male	27	9237
	2	28712	Male	53	11242

```
In [6]: transaction.head(3)
```

Out[6]:		Transaction ID	Customer ID	Payment_Mode
	0	10000011	29290	Card
	1	10000012	27703	Card
	2	10000013	28712	Cash

Merge Data

```
In [7]:
          data = cab.merge(transaction, on = "Transaction ID", how = "left")
 In [8]:
          data.head(3)
 Out[8]:
                           Date
             Transaction
                                                         KM
                                                                Price
                                                                       Cost of Customer
                                              City
                                Company
                                                                                          Payment_N
                      ID
                                                    Travelled
                                                             Charged
                                                                          Trip
                         Travel
                                          ATLANTA
                                 Pink Cab
          0
                10000011 42377
                                                       30.45
                                                               370.95
                                                                       313.635
                                                                                   29290
                                          ATLANTA
                                 Pink Cab
          1
               10000012 42375
                                                       28.62
                                                               358.52 334.854
                                                                                   27703
                                          ATLANTA
          2
               10000013 42371
                                 Pink Cab
                                                        9.04
                                                               125.20
                                                                        97.632
                                                                                   28712
 In [9]:
          data1 = data.merge(customer, on = "Customer ID", how = "left")
In [10]:
          data1.head(3)
Out[10]:
                           Date
             Transaction
                                                         KM
                                                                 Price
                                                                       Cost of Customer
                                                                                          Payment_N
                             of
                                Company
                                                   Travelled Charged
                                                                          Trip
                         Travel
                                          ATLANTA
          0
                10000011
                         42377
                                 Pink Cab
                                                       30.45
                                                               370.95
                                                                       313.635
                                                                                   29290
                                                GΑ
                                          ATLANTA
                                 Pink Cab
               10000012 42375
                                                       28.62
                                                               358.52 334.854
                                                                                   27703
                                                GΑ
                                          ATLANTA
          2
               10000013 42371
                                 Pink Cab
                                                        9.04
                                                               125.20
                                                                        97.632
                                                                                   28712
                                                GΑ
          df = data1.merge(city, on = "City", how = "left")
In [11]:
In [12]:
          df.head()
```

Out[12]:		Transaction ID	Date of Travel	Company	City	KM Travelled	Price Charged	Cost of Trip	Customer ID	Payment_N
	0	10000011	42377	Pink Cab	ATLANTA GA	30.45	370.95	313.635	29290	
	1	10000012	42375	Pink Cab	ATLANTA GA	28.62	358.52	334.854	27703	
	2	10000013	42371	Pink Cab	ATLANTA GA	9.04	125.20	97.632	28712	
	3	10000014	42376	Pink Cab	ATLANTA GA	33.17	377.40	351.602	28020	
	4	10000015	42372	Pink Cab	ATLANTA GA	8.73	114.62	97.776	27182	

```
In [13]: df['Date'] = ""

for i in range(len(df)):
    datetime_date = xlrd.xldate_as_datetime(df['Date of Travel'].loc[i], 0)
    date_object = datetime_date.date()
    df['Date'].loc[i] = date_object

/var/folders/rz/316s6lrn5jg56g_hd0gzw7580000gn/T/ipykernel_18273/3879047127.p
    y:6: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
```

```
In [14]: df.head(3)
    df1 = df.copy()
```

able/user guide/indexing.html#returning-a-view-versus-a-copy

Check NA Values

df['Date'].loc[i] = date object

```
In [16]: df1.isnull().sum()
Out[16]: Transaction ID
                                0
         Date of Travel
                                0
         Company
                                0
         City
                                0
         KM Travelled
         Price Charged
                                0
         Cost of Trip
                                0
          Customer ID
                                0
         Payment Mode
                                0
          Gender
                                0
          Income (USD/Month)
                                0
          Population
                                0
         Users
                                0
         Date
                                 0
          dtype: int64
```

Check duplicated values

```
In [17]:
          duplicate = df1[df1.duplicated()]
In [18]:
          duplicate
Out[18]:
            Transaction
                                                          Price
                                                   KM
                                                                      Customer
                           of
                              Company City
                                                                                Payment_Mode Ge
                                                                  of
                                             Travelled Charged
                        Travel
                                                                 Trip
```

Check outliers & Summary Statistics

In [19]:	df1.d	escribe()					
Out[19]:	Transaction ID		Date of Travel	KM Travelled	Price Charged	Cost of Trip	Custo
	count 3.593920e+05		int 3.593920e+05 359392.000000 359392.000000		359392.000000	359392.000000	359392.
	mean	1.022076e+07	42964.067998	22.567254	423.443311	286.190113	19191
	std	1.268058e+05	307.467197	12.233526	274.378911	157.993661	21012.
	min	1.000001e+07	42371.000000	1.900000	15.600000	19.000000	1.0
	25%	1.011081e+07	42697.000000	12.000000	206.437500	151.200000	2705.
	50%	1.022104e+07	42988.000000	22.440000	386.360000	282.480000	7459.
	75%	1.033094e+07	43232.000000	32.960000	583.660000	413.683200	36078.
	max	1.044011e+07	43465.000000	48.000000	2048.030000	691.200000	60000.0

For the column Price Charged, the outlier seems evident. But no other features can validate the reason for such huge

Construct new columns

```
In [20]: df1['Profit'] = df1['Price Charged'] - df1['Cost of Trip']
    df1['Year'] = pd.to_datetime(df1['Date']).dt.to_period('Y')

In [21]: len(df1)
Out[21]: 359392

In [22]: df1.to_csv('cabdata1.csv')
```

Assumption 1

Do metropolitans with large population have higher average than other areas?

It took too long to finish running the command line. Thus, I switched to Tableau.

It is surprising to see that cities with larger population may not have relatively high average profits. Dallas has less population but a relatively high average profits.

By breaking down, it is appearent Yellow Cab generates more profits.

```
In [23]: (df1['Company'] == 'Yellow Cab').sum()
Out[23]: 274681
In [24]: (df1['Company'] == 'Pink Cab').sum()
Out[24]: 84711
```

Assumption 2

Do cities where people have high income level tend to generate higher profits?

By sorting cities according to its median income level, cities with high median income level may not have a relatively high average cab profit.

For most of the cities, Yellow Cab has higher average profits. But there is one exception, Tucson AZ. By looking Yellow Cab company separately, cities with higher median income level may not have high profits. Orange county has less profits than that of Dallas.

Assumption 3

Does profits have seasonality?

In [25]:	df.	head()								
Out[25]:	-	Transaction ID	Date of Travel	Company	City	KM Travelled	Price Charged	Cost of Trip	Customer ID	Payment_N
	0	10000011	42377	Pink Cab	ATLANTA GA	30.45	370.95	313.635	29290	
	1	10000012	42375	Pink Cab	ATLANTA GA	28.62	358.52	334.854	27703	
	2	10000013	42371	Pink Cab	ATLANTA GA	9.04	125.20	97.632	28712	
	3	10000014	42376	Pink Cab	ATLANTA GA	33.17	377.40	351.602	28020	
	4	10000015	42372	Pink Cab	ATLANTA GA	8.73	114.62	97.776	27182	
In [26]:	fro	m statsmoo	dels.ts	a.season	al import	seasonal	_decompo	se		
	df2	= df.copy	y()							
In [27]:	df2	['Profit']] = df1	['Profit	1					
In [28]:		<pre>df2['Year']=df1['Year'] df2['Month'] = pd.to_datetime(df1['Date']).dt.to_period('M')</pre>								
In [29]:	_	<pre>yellow = df2[df2['Company'] == 'Yellow Cab'] pink = df2[df2['Company'] == 'Pink Cab']</pre>								
In [30]:		<pre>yanalysis = yellow.groupby('Month')[['Profit']].mean() panalysis = pink.groupby('Month')[['Profit']].mean()</pre>								
In [31]:	pan yan	alysis.intalysis.intalysis.inc	terpola dex=yar	te(inplactation	ce = True ndex.to_t) imestamp				

```
In [32]: plt.rcParams['figure.figsize'] = [10, 15]

decompose_result_mult = seasonal_decompose(yanalysis, model = 'additive')

trend = decompose_result_mult.trend
    seasonal = decompose_result_mult.seasonal
    residual = decompose_result_mult.resid

decompose_result_mult.plot()
    plt.show()
```



```
In [33]: plt.rcParams['figure.figsize'] = [10, 15]

decompose_result_mult = seasonal_decompose(panalysis, model = 'additive')

trend = decompose_result_mult.trend
    seasonal = decompose_result_mult.seasonal
    residual = decompose_result_mult.resid

decompose_result_mult.plot()
    plt.show()
```


Two companies show different seasonality. Yellow Cab has peaks around the mid of a year while Pink Cab has peaks around the end of the year.

Assumption 4

Is the number of customers positively related to the profits? What about age?

It is surprising to see that for both companies, the number of customers does not have positive relationship with the average profits. In 2018, the number of users is higher than that in 2016. However, the mean average decreases a lot for both companies.

There is no specific pattern for both companies overall. Generally speaking, Yellow Cab company has younger population of customers for most of the cities.

Assumption 5

It is clear to see that in all those three years, the profit generated by car payment overweights that generated by cash. Also, the profit of yellow cab exceeds that of pink cab. If we focus on the yellow cab's profits, it is clear that the major part is generated by card payment.

By City

```
In [36]: plot('2016')
```


In [38]: plot('2018')

By digesting at the payment mode level, it is not evident what customer prefer as payment. For both companies, the difference of profits generated by each payment mode is neglectable.

Recommendation

To sum up, if we look from a more macro persepective, XYZ should invest in Yellow Cab as it has more profit generating power than Pink Cab and performs better from 2016 to 2018.