

Standardi: standardizacijska tijela i referentne arhitekture. Protokoli za upravljanje uređajima

Kolegij Internet stvari: 11. predavanje 22.05.2023.

Sadržaj

- Standardi općenito
- Standardi u IoT-u
- Referentne arhitekture
 - oneM2M
 - AIOTI
- Protokoli za upravljanje uređajima

Standardi

 Tehnički dokumenti dizajnirani da bi se koristili kao pravila, smjernice ili definicije ¹

• Proizvođači, potrošači, regulatorska tijela

• Cilj: povećati sigurnost proizvoda, smanjiti troškove i cijene

¹ European Committee for Standardization: https://www.cen.eu/work/ENdev/whatisEN/Pages/default.aspx

Razlozi za uvođenje standarda (1)

- Mogućnost razmjene informacija, ideja, dobara
 - Jezik
 - Monetarni sustav

- Industrijska revolucija
 - Masovna produkcija
 - Potreba za tehničkim standardima

Razlozi za uvođenje standarda (2)

Interoperabilnost nezavisno razvijanih sustava

- Mogućnost suradnje i nadogradnje postojećih sustava
 - Stvaranje dodane vrijednosti za krajnje korisnike

Standardi u računarstvu (1)

- Kodovi za zapis podataka
 - ASCII, UTF-8
 - WAV, AU
 - JPEG, PNG
 - MPEG, MP4
- Hardver
 - Utičnice za spajanje hardverskih komponenti (matična ploča, napajanje, tipkovnica, miš, ...)
 - Protokoli za komunikaciju između različitih hardverskih komponenti

Standardi u računarstvu (2)

- Softver
 - Komunikacija između različitih modula
 - Standardizirana sučelja
- TM forum
 - Industrijsko udruženje telekomunikacijskih operatora
 - Otvorena, standardizirana sučelja i informacijski modeli za razvoj interoperabilnih ICT usluga
 - Sustavi za podršku poslovanju i održavanju mreže

Internetski standardi

- Internet Engineering Task Force (IETF)
 - Zajednica operatora, mrežnih arhitekata, pružatelja usluga i istraživača zadužena za evoluciju internetske arhitekture i rad Interneta
- Standardizacija protokola
 - IP
 - TCP, UDP, SCTP
 - HTTP, DNS, DHCP

Primjer standarda: IPv6

- https://tools.ietf.org/html/rfc8200
- Terminologija
- Format paketa
- Format zaglavlja
- Zahtjevi za protokole višeg sloja
- Sigurnosna razmatranja

Standardi u IoT-u

Standardizacijska tijela u IoT-u (1)

Horizontal/Telecommunication

Standardizacijska tijela u IoT-u (2)

- ITU (International Telecommunication Union)
- ETSI (European Telecommunications Standards Institute)
- OMG (Object Management Group)
- W3C (World Wide Web Consortium)
- OMA (Open Mobile Alliance)
- oneM2M

 Cilj: uvesti otvorene standarde koji će omogućiti inovaciju i razvoj brojnih novih usluga koje se na te standarde oslanjaju

oneM2M

- Objedinjuje standarde različitih svjetskih organizacija
 - ETSI
 - TIA (Telecommunications Industry Association)
 - ...
- Standardi u IoT-u
 - Početna faza: organizacije samostalno razvijaju standarde
 - Danas: zainteresirani sudionici sudjeluju u radu više organizacija

Dosezi IoT standardizacije

- Standardizirana sučelja za razvoj M2M/IoT aplikacija
 - oneM2M (ETSI, TIA, ...), ITU
- Integracija IoT uređaja i usluga u javnu pokretnu mrežu
 - 3GPP
- Specifični slojevi unutar arhitekture IoT platformi
 - IETF ROLL usmjeravanje (protokol RPL)
 - IETF 6lo korištenje protokola IPv6 na uređajima s ograničenim resursima
- Upravljanje uređajima
 - OMA

Referentne arhitekture

Referentne arhitekture - primjeri

- Hardver, softver, procesi, specifikacije i konfiguracije složenih sustava
- Temelj za vlastiti razvoj složenih sustava

TM Forum

- Arhitektura i skup najboljih praksi za dizajn sustava za podršku poslovanju i održavanju mreže
- 50 otvorenih API-ja temeljenih na REST-u
- Modularnost, mikrousluge

Referentne arhitekture IoT-a

• Entiteti: IoT uređaji, aktuatori, mrežni prilazi, usluge, korisnici

- Povezivost između entiteta (IoT uređaji spojeni preko mrežnog prilaza na IoT platformu ili direktno?)
- Struktura mreže između IoT uređaja

Funkcionalnosti za upravljanje IoT uređajima, uslugama i korisnicima

oneM2M

- Glavni cilj: definiranje međusloja između mreže i aplikacija
 - umreženi uređaji
 - korisničke aplikacije
- Međusloj IoT platforma

- Temeljni dokument: funkcijska (referentna) arhitektura
- Ostale specifikacije: protokol za uslužni sloj, sigurnosna rješenja, povezivanje protokola HTTP i MQTT s platformom oneM2M, informacijski modeli

Entiteti i referentne točke

- Aplikacijski entitet (AE)
 - Očitavanje brojila
 - Praćenje vozila, ...
- Entitet zajedničkih usluga (CSE)
 - Obrada podataka
 - Upravljanje pretplatama, ...
- Mrežne usluge (NSE)
 - Upravljanje uređajima
 - Lokacijske usluge

Tipovi čvorova

- Logički entiteti
 - Definirani funkcijama koje posjeduju
 - Podjela: prema pružanju ili nepružanju zajedničkih usluga

Funkcije zajedničkih usluga

Upravitelj sloja aplikacija i usluga

- Upravljanje životnim fazama softvera
 - Instaliranje
 - Ažuriranje
 - Deinstaliranje
- Različita dostupna stanja softvera
 - Idle
 - Starting
 - Active
 - Stopping

Upravitelj podacima i skladištenjem

- Prikupljanje
- Konverzija
- Analiza
- Semantička obrada

- Podaci koje su prikupili aplikacijski entiteti
- Metapodaci za održavanje sustava
 - Podaci o uređajima (pokrenute aplikacije, stanje memorije...)
 - Dozvole pristupa
 - Informacije o pretplatama i lokacijama

Upravitelj uređajima

- Konfiguracija
- Dijagnostika
- Praćenje rada
- Upravljanje softverom
- Upravljanje topologijom
 - Za mrežne prilaze

AIOTI

Alliance for Internet of Things Innovation

• Članovi: ICT tvrtke

AIOTI

Ostale standardizacijske aktivnosti

Upravljanje uređajima

- Upravljanje uređajima
 - Za komunikaciju između upravljačkog poslužitelja i upravljačkih klijenata oneM2M pretpostavlja korištenje postojećih protokola za upravljanje uređajima:

- Lightweight M2M (LWM2M)
- OMA Device Management (OMA DM)

Protokoli za upravljanje uređajima

- Mogu se koristiti za različite funkcije zajedničkih usluga
 - Konfiguracija uređaja
 - Ažuriranje softvera
 - Nadzor uređaja
 - Sigurnost komunikacije između uređaja
- Standardizacijsko tijelo OMA
 - Otvoreni standardi u javnoj pokretnoj mreži
 - Članovi: proizvođači hardvera, operatori pokretnih mreža, proizvođači softvera

OMA – Device Management (DM)

- Namjena: upravljanje pokretnim uređajima
 - Može se koristiti za upravljanje M2M/IoT uređajima
- Obilježja:
 - Oslanja se na protokol HTTP
 - DM poslužitelj i DM klijent
- Sigurnost
 - Autentifikacija
 - Korištenje kriptografske hash funkcije MD5
 - Autorizacija

OMA-DM tijek komunikacije

Lightweight M2M (LWM2M)

- Noviji standard organizacije OMA
- Nasljednik OMA DM-a
 - Prilagođeniji M2M/IoT uređajima
 - Izvođenje na uređajima s ograničenim resursima
- Obilježja
 - Oslanja se na protokol CoAP
 - LWM2M poslužitelj i LWM2M klijent
- Sigurnost
 - Autentifikacija
 - Autorizacija

LWM2M tijek komunikacije

Implementacije

- OMA-DM
 - Open5GMTC OMA DM
 - Friendly OMA-DM embedded client
- LWM2M
 - Leshan (Java)
 - Wakaama (C)

Doseg standarda

- Standard ≠ implementacija
- Standardi su često sveobuhvatni i složeni
- Implementacije standarda mogu obuhvatiti samo ograničeni skup definiranih funkcionalnosti

Standardi organizacijskih tijela

- Glavne prednosti
 - Rigorozan dizajn
 - Responzivnost industrije
 - Testiranje i certifikacija

IoT standardizacija - poteškoće

- 1. Duplicirane IoT-arhitekture i modeli
- 2. Veliki broj komunikacijskih protokola za heterogene IoT uređaje
- Podatkovni modeli su vlasnički i razvijaju se za specifične, vertikalne domene
- 4. Nedostaje usklađenosti procesa obrade podataka nastalih senzorskim mjerenjima
- 5. Sigurnost i privatnost se razmatraju na pojedinačnim slojevima
- 6. Lako korištenje i održavanje IoT rješenja zahtjeva globalni pristup

Literatura

- 1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, and Jerome Henry. 2017. IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things (1st ed.). Cisco Press. (2. poglavlje)
- 2. oneM2M, M2M Functional Architecture, Technical Specification, 2018, http://www.onem2m.org/images/files/deliverables/Release2A/TS-0001-Functional Architecture-v 2 18 1.pdf
- 3. Alliance for Internet of Things Innovation (AIOTI), High Level Architecture (HLA), 2018, https://aioti.eu/wp-content/uploads/2018/06/AIOTI-HLA-R4.0.7.1-Final.pdf
- 4. Reinhard Herzog, Musings on IoT standardization landscape, Technical Blog, 2018, https://www.symbiote-h2020.eu/blog/2018/09/12/musings-on-iot-standardization-landscape/

Internet stvari 22.05.2022. 38 od 38