

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 19-03-2012		2. REPORT TYPE Briefing Charts		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Silicon-Containing Polymers and Composites				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Joseph M. Mabry				5d. PROJECT NUMBER	
				5f. WORK UNIT NUMBER 23030521	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RZSM 9 Antares Road Edwards AFB CA 93524-7401				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RZS 5 Pollux Drive Edwards AFB CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S) AFRL-RZ-ED-VG-2012-081	
12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited. PA# 12226.					
13. SUPPLEMENTARY NOTES For presentation at the 243 rd ACS National Meeting, San Diego, CA, 25-29 March 2012 and publication in Polymer Preprints, March 25, 2012.					
14. ABSTRACT Many hydrophobic surfaces exist in nature, but there is no naturally occurring oleophobic surface. There is plenty of academic and commercial interest in the development of oleophobic surfaces. The focus is on commercially available textiles. This presentation shows that fluoroPOSS are superhydrophobic. FluoroPOSS polymer composite surfaces can be superhydrophobic and superoleophobic. Superhydrophilic and superoleophobic surfaces have been developed. Such surfaces are ideal for the separation of both free-oil and oil-water emulsions. These membranes, for the first time, allow continuous-flow oil-water emulsion separation. Functionality will allow the covalent attachment of these low energy materials to substrates of choice.					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 39	19a. NAME OF RESPONSIBLE PERSON Dr. Joseph M. Mabry
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified			19b. TELEPHONE NUMBER (include area code) N/A

Silicon-Containing Polymers and Composites

**Silicones and Silicone-Modified Materials
ACS National Meeting
28 March 2012**

Joseph M. Mabry
Air Force Research Laboratory
Propulsion Materials & Applications
joseph.mabry@edwards.af.mil
(661) 275-5857

Distribution Statement A: Approved for public release; distribution unlimited.

Motivation

- Many hydrophobic surfaces exist in nature but there is no naturally occurring oleophobic surface
- Plenty of academic and commercial interest in the development of oleophobic surfaces
- Focus on commercially available textiles

www.thedailygreen.com

www.gfn.com/sowhatsyourpoint/wp-content

DISTRIBUTION A. Approved for public release; distribution unlimited.

www.defense-technologynews.blogspot.com

www.tressugar.com

Non-wetting surfaces

Contact angles with water:

Superhydrophilic

$$\theta \sim 0^\circ$$

Hydrophilic

$$0^\circ < \theta < 90^\circ$$

Hydrophobic

$$\theta > 90^\circ$$

Superhydrophobic

$$\theta^* > 150^\circ$$

Similarly, superoleophobic surfaces display contact angle $\theta^* > 150^\circ$ with oils or alkanes

Nanocomposite Materials

Silicon-containing compounds

Fluorinated POSS Synthesis

Angew Chem (2008)

DISTRIBUTION A. Approved for public release; distribution unlimited.

Hydrophobic Materials

- Spin-cast surface of Fluorodecyl POSS
- ~4 μm rms roughness by AFM
- 154° Water contact angle

Angew Chem (2008)

DISTRIBUTION A. Approved for public release; distribution unlimited.

Low Surface Energy Materials

Fluorodecyl:
 $R = -\text{CH}_2\text{CH}_2(\text{CF}_2)_7\text{CF}_3$

Similarly, GG analysis results in surface energy calculation of: $\gamma_c = 8 \text{ mN/m}$

Contacting liquids:

hexadecane ($\gamma_{lv} = 27.5 \text{ mN/m}$), dodecane (25.3), decane (23.8), octane (21.6), heptane (20.1), and pentane (15.5)

ACS AMI (2010)

DISTRIBUTION A. Approved for public release; distribution unlimited.

Water/Oil Repellant Nanocomposites

88°

Polychlorotrifluoroethylene
(PCTFE)

40° increase in water contact angle!

10% POSS

128°

PCTFE with
10% Fluorodecyl₈T₈

Increase in hexadecane contact angle less than desired

The Lotus Leaf

Water, $\gamma_{LV} = 72.1 \text{ mN/m}$

Hexadecane, $\gamma_{LV} = 27.5 \text{ mN/m}$

On most surfaces, $\theta_{oil} < \theta_{water}$. This is because the surface tension (γ_{LV}) of water is significantly higher than that for oils.

Electrospun Surfaces

- ‘Beads on a string’ morphology, with high roughness and porosity
- A single step process - surface turns superhydrophobic for all POSS concentrations > 10 wt%

Science (2007)

DISTRIBUTION A. Approved for public release; distribution unlimited.

Effect of Surface Texture

Each surface is composed of PMMA+POSS – 44 wt% blend; contact angle for hexadecane on corresponding spincoated surfaces = $q_{adv} = q_{rec} = 79^\circ$.

$$q^*_{adv} = 156^\circ$$

$$q^*_{rec} = 150^\circ$$

Water contact angles
 $q^*_{adv} = q^*_{rec} = 165^\circ$

$$q^*_{adv} = 153^\circ$$

$$q^*_{rec} = 141^\circ$$

$q^*_{adv} = q^*_{rec} = 163^\circ$
Science (2007), PNAS (2008).

$$q^*_{adv} = 147^\circ$$

$$q^*_{rec} = 120^\circ$$

$$q^*_{adv} = q^*_{rec} = 162^\circ$$

DISTRIBUTION A. Approved for public release; distribution unlimited.

Comparison with Lotus Leaf

Water

Coat with electrospun fibers

44 wt% POSS

Water

Hexadecane

Coat with electrospun fibers

44 wt% POSS

Hexadecane

It is possible to support a composite interface even if $\theta < 90^\circ$

Re-entrant curvature : $180^\circ > \theta > 0^\circ$

Lotus Leaf

Cylinders / Fibers

Herminghaus, *Euro. Phys. Lett.* (2000), *Science* (2007); PNAS (2008)

DISTRIBUTION A. Approved for public release; distribution unlimited.

- Constructing super-repellent surfaces
 - Three key ingredients

PMMA + 44 wt% POSS
electrospun coating (beads on a string) morphology

Science (2007)

DISTRIBUTION A. Approved for public release; distribution unlimited.

The Dip-Coating Process

Hexadecane ($\gamma_V = 27.5 \text{ mN/m}$) on an as-received commercial polyester fabric

Dip

Before

Dry (heat in oven at 60° C for 20 minutes)

After dip-coating with a solution of
fluorodecyl POSS

Solution of fluorodecyl POSS in
Asahiklin (30 mg/ml)

Adv Mater (2008)

DISTRIBUTION A. Approved for public release; distribution unlimited.

Dip-Coated Polyester Fabric

Before coating

Hexadecane

After coating with fluorodecyl POSS in Asahiklin (30 mg/ml)

Dip-coating process for conformal coating of textured surfaces

$\text{R}_f = -\text{CH}_2-\text{CH}_2-(\text{CF}_2)_7-\text{CF}_3$
Fluorodecyl POSS

$\gamma_{sv} \approx 8 \text{ mN/m}$

Tecnoflon® (BR9151)
Fluoro-elastomer from
Solvay-Solexis
 $\gamma_{sv} \approx 18 \text{ mN/m}$

50:50 mixture, total solids = 10 mg/ml

Anticon 100 polyester fabric

EDAXS spectrum for fluorine

Designing Superoleophobic Surfaces

Anish Tuteja,¹ Wooseok Choi,² Minglin Ma,² Joseph M. Nagy,³ Sarah A. Mazzella,³ Gregory C. Rutledge,¹ Gareth H. McKinley,^{2*} Robert E. Cohen,^{3*}

**Superhydrophobic
Superoleophilic**

At low POSS concentrations many surfaces are *both* superhydrophobic and superoleophilic ($\theta_{\text{alkane}}^* \approx 0^\circ$). Thus, these porous surfaces form ideal membranes for separating mixtures / dispersions of alkanes (oils) and water

But...water is more dense than hydrocarbons!

Science (2007)

DISTRIBUTION A. Approved for public release; distribution unlimited.

Hydrophilic Membranes

A and **B**. Neat x-PEGDA dip-coated stainless steel mesh 100 and polyester fabric **C**. An apparatus with a mesh 100 coated with neat x-PEGDA Both water and rapeseed oil permeate through.

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.

PEGDA + Fluorodecyl POSS

Can hydrogen bond with water

Photo-crosslinkable

AFM Phase images of spin-coated
PEGDA + POSS films

20% POSS
Under water

Fluorodecyl POSS molecules preferentially segregate to the air interface and crystallize.

Fluorodecyl POSS

$$\gamma_{sv} \approx 8 \text{ mN/m}$$

DISTRIBUTION A. Approved for public release; distribution unlimited.

PEGDA + Fluorodecyl POSS Blends

Surfaces with inherent re-entrant curvature **dip-coated** with PEGDA + POSS blends

Stainless Steel Wire Mesh

Commercial Polyester Fabric

PEGDA surface reconfiguration leads to superhydrophilic behavior.

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.

Free Oil – Water separation

Stainless steel mesh coated with PEGDA + 20 wt% fluorodecyl POSS.

DISTRIBUTION A. Approved for public release; distribution unlimited.

Separation of Oil-Water Emulsions

Water-in-Oil Emulsion

Oil-in-Water Emulsion

A simple, scalable, gravity-based system for the separation of both oil-in-water and water-in-oil emulsions. This is one of the first gravity-based systems to achieve such high emulsion separation efficiencies.

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.

Oil-Water Emulsion Separation

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.

Separation Efficiency

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.

Incompletely Condensed Silsesquioxane

- Incompletely condensed silsesquioxane synthesis yields a disilanol capable of functionalization with dichlorosilanes.*

X-Ray Crystal Structure of Disilanol

- Crystal structure is dimeric via intra- and intermolecular hydrogen bonding between silanols.
- M_r , monoclinic, space group P2(1)/c , $a=11.84(10)$ Å, $b=57.11(6)$ Å, $c=19.06(2)$ Å, $\alpha=90.00^\circ$, $\beta=92.21(10)^\circ$, $\gamma=90.00^\circ$, $V= 12878(2)$ Å³

Ramirez, S. M.; Diaz, Y. J.; Campos, R. ; Stone, R.T.; Haddad, T.S.; Mabry, J.M., *J. Am. Chem. Soc.*, 2011, 133, 20084.

DISTRIBUTION A. Approved for public release; distribution unlimited.

Edge Capping Reactions

- Edge capping reactions typically have 40-70% yield
- Main side product is starting material (recycled)
- Disilanol can revert back to closed cage during reaction
- Reactions take 5-10 minutes

Edge Capping Reactions

$R = \text{CH}_2\text{CH}_2(\text{CF}_2)_7\text{CF}_3$

$R_1 = \text{CH}_3$

$R_2 = \text{CH}_2\text{CH}_2\text{CH}_2\text{OC(O)CHCH}_2$

+ $\text{Cl}_2\text{SiR}_1\text{R}_2$ $\xrightarrow{\text{NEt}_3}$

- Typically 40-70% yield
- Main side product is starting material (recycled), formed during base addition
- Disilanol can revert back to closed cage during reaction
- Reactions take 5-10 minutes
- Si ratio (1:2:2:4)
- **New Si peak!**

^{29}Si NMR taken in fluorinated solvent

1H NMR Characterization of Compounds

^{19}F NMR taken in diethyl ether. ^1H NMR taken in $\text{C}_6\text{F}_6/\text{CDCl}_3$ mixture.

DISTRIBUTION A. Approved for public release; distribution unlimited.

F-POSS Structures Synthesized

-29.5 ppm

-17.8 ppm

-32.1 ppm

-17.8 ppm

-45.5 ppm

-17.1 ppm

-17.9 ppm

$\text{R} = \text{CH}_2\text{CH}_2(\text{CF}_2)_7\text{CF}_3$

DISTRIBUTION A. Approved for public release; distribution unlimited.

Initial Copolymerizations

Sample #	Weight (g)		Weight (%) F-POSS	Monomer (mmol)		Mol Ratio (MMA:MMA-F- POSS)	Initiator (mol %)	Conversion (%)	Weight (%) FPOSS*
	MMA-F-POSS	MMA		MMA-F-POSS	MMA				
1	0.085	1.31	6.3	0.02	13.1	655	0.5	42	2.74
2	0.362	1.31	21.6	0.09	13.1	145	0.2	71	14.4
3	0.50	3.50	12.5	0.12	35.0	291	1		
4	1.00	3.00	25.0	0.24	30.0	125	1	62.5	
5	2.00	2.00	50.0	0.47	20.0	42	0.2	92.5	

*Weight (%) of F-POSS was calculated from elemental analysis of Fluorine content in the final polymer.

Summary

- FluoroPOSS are superhydrophobic
- FluoroPOSS polymer composite surfaces can be superhydrophobic and superoleophobic
- Superhydrophilic and superoleophobic surfaces have been developed
- Such surfaces are ideal for the separation of both free-oil and oil-water emulsions
- These membranes, for the first time, allow continuous-flow oil-water emulsion separation
- Functionality will allow the covalent attachment of these low energy materials to substrates of choice

Acknowledgements

Profs. Gareth McKinley & Bob Cohen
Superoleophobic Surfaces

Professor Anish Tuteja
Oil/Water Separation Membranes

Polymer Working Group
Fluorinated POSS

Financial Support

Air Force Office of Scientific Research

Air Force Research Laboratory, Propulsion Directorate

Polymer Working Group

The Polymer Working Group at Edwards Air Force Base:

Ms. Dana Pinson
Dr. Sean Ramirez
Mr. Pat Ruth
Dr. Tim Haddad
Ms. Vandana Vij
Dr. Greg Yandek

Dr. Andy Guenthner
Mr. Brian Moore
Dr. Joe Mabry
Mr. Kevin Lamison
Dr. Josiah Reams

Financial Support:
Air Force Office of Scientific Research
Air Force Research Laboratory, Propulsion Directorate

PWG Presentations

Who	What	When
Joe Mabry	Si Polymers & Composites	8:30
Andy Guenthner	Silicon Cyanate Esters	9:20
Sean Ramirez	F-POSS Disilanol	10:30
Anish Tuteja	Oil/water separation	10:55
Greg Yandek	Architecture effects on POSS	1:30

PWG Posters

Who

Andy Guenthner

Tim Haddad

Brian Moore

Dana Pinson

Patrick Ruth

Kevin Lamison

Vandana Vij

Yvonne Diaz

What

Solubility Parameters

POSS Dianilines

Architecture effects on solubility properties

Si-containing imide oligomers

Silica-Reinforced Fluoropolymers

Separation Membrane Breakthrough Pressure

Fluorinated silane modified perfluorooctynes

Incompletely-Condensed Fluorinated POSS

QUESTIONS?

U.S. AIR FORCE