

SISMICITÉ MULTI-ÉCHELLE : DE L'EXPÉRIENCE EN LABORATOIRE AU SYSTÈME DE FAILLES NATURELLES

MULTI-SCALE SEISMICITY: FROM THE LABORATORY TO NATURAL FAULT SYSTEMS

Etablissement Ecole normale supérieure

École doctorale Géosciences, Ressources Naturelles et Environnement

Spécialité Géosciences et géoingénierie

Unité de recherche Laboratoire de Géologie de l'Ecole Normale Supérieure

Encadrement de la thèse HIDEO AOCHI Co-Directeur Alexandre SCHUBNEL

Financement du 01-01-2025 au 31-12-2028 origine ANR PREMs Employeur BRGM

Début de la thèse le 1 octobre 2025

Date limite de candidature (à 23h59) 10 avril 2025

Mots clés - Keywords

sismicité, modélisation, mécanique de roche

Seismicity, numerical modeling, rock mechanics

Description de la problématique de recherche - Project description

Le processus de génération des tremblements de terre est hautement non linéaire et les paramètres physiques qui régissent le système naturel sont difficiles à contraindre. Pourtant, la sismicité naturelle présente un comportement statistique systématique (lois d'échelle, regroupement spatial et temporel, séquences de pré-secousse-secousse principale-réplique, susceptibilité aux petites perturbations). Dans le cadre du projet ANR PREMs (Prédictibilité des tremblements de terre et modèles mathématiques), nous cherchons à comprendre la physique derrière ces observables détectables.

L'objectif principal de cette thèse est d'examiner comment les simulations basées sur la physique peuvent contraindre la sismicité. D'une part, les expériences récentes en laboratoire fournissent désormais des catalogues microsismiques de haute qualité dans des conditions contrôlées. D'autre part, des modèles basés sur la physique ont été développés avec divers ingrédients tels que le frottement dépendant du taux et de l'état, l'hétérogénéité multi-échelle du frottement des failles, la distribution spatiale des failles sismogènes, ainsi que divers systèmes de chargement de contraintes. Dans ce projet, nous souhaitons d'abord commencer à modéliser l'échelle expérimentale, en mettant l'accent sur la question de la prévisibilité de la sismicité dans des conditions de laboratoire contrôlées. Dans une deuxième étape, nous espérons étendre notre modèle à l'échelle du terrain. Un étudiant très motivé devra travailler à :

- développer une méthode numérique basée sur la méthode des équations intégrales aux limites.
- effectuer des tests de sensibilité en modélisation numérique.
- analyser les résultats de simulation à l'aide de quantités statistiques.
- participer à des expériences en laboratoire
- analyser les catalogues de sismicité en laboratoire et sur le terrain

Earthquake generation process is highly nonlinear and the physical parameters governing the natural system are difficult to constrain. Yet, natural seismicity exhibits some systematic statistical behavior (scaling laws, space and time clustering, foreshock-mainshock-aftershock sequences, susceptibility to small perturbations). In the framework of ANR project PREMs (Predictability of Earthquakes and Mathematical Models), we aim to understand the physics behind these detectable observables.

The main purpose of this thesis is to consider how physics-based simulations can constrain seismicity. On one hand, recent laboratory experiences now provide high quality of microseismic catalogs under controlled conditions. On the other hand, physics-based models have been developed with various ingredients such as rate- and state-dependent friction, multi-scale heterogeneity in fault friction, spatial distribution of seismogenic faults, as well as various stress loading system. In this project, we first aim to start modelling the experimental scale, emphasizing on the question of predictability of the seismicity in controlled laboratory settings. In a second step, we hope to extend our model to the field scale. A highly motivated student is expected to work to:

- develop numerical method based on the boundary integral equation method.
- Carry out sensitivity tests in numerical modeling.
- Analyze the simulation results through statistical quantities.
- Participate to laboratory experiments
- Analyze laboratory and field seismicity catalogs

Thématique / Domaine / Contexte

Earthquake science

Geosciences

This PhD project is a part of the ANR project PREMs. The PhD student is expected to actively exchange and collaborate with the researchers in the host laboratories, the partners and international collaborators.

Objectifs

Establishing physics-based simulation for the seismicity, emphasizing on the possible modulation of the seismicity due to various stress loading before a catastrophic one for exploring the predictability of the earthquakes.

Méthode

- Numerical modeling : Boundary integral equation method
- · Laboratoty experience: Triaxial apparatus at ENS.

Résultats attendus - Expected results

· Conceptual model, numerical code, experimental datasets, scientific publications

Références bibliographiques

- Aochi and Ide (2009). Complexity in earthquake sequences controlled by multi-scale heterogeneity in fault fracture energy, JGR. https://doi.org/10.1029/2008JB006034
- Colledge et al. (2023). Susceptibility of microseismic triggering to small sinusoidal stress perturbations at the laboratory scale, JGR. https://doi.org/10.1029/2022JB025583

Précisions sur l'encadrement - Details on the thesis supervision

The PhD student will have a contract (36 months) with BRGM, and belong to the Unit "Impacts, monitoring and safety of underground uses" of the Decarbonated Energy Direction under the supervision of Hideo Aochi and Julie Maury. The main office is in Orléans, France. Besides, a part of this PhD. will be held at ENS Paris, under the supervision of Alexandre Schubnel. At LGENS, the PhD. student will belong to the Unit "Déformation et Structures". Training courses will be also available in PSL, as well as within the doctoral school GRNE.

Applications must be sent to BRGM (https://www.brgm;fr). Selection by the supervisors and BRGM will take place before submission to the ED (May 19, 2025). For further information, please contact Hideo Aochi (h.aochi@brgm.fr).

Conditions scientifiques matérielles et financières du projet de recherche

The PhD student will have a contract (36 months) with BRGM in the framework of ANR PREMs project (2025-2028). The working environment (incl. computing facility and laboratory experiments) is guaranteed by the BRGM and LG-ENS.

Ouverture Internationale

We seek an internationally competitive and highly motivated student. It is expected to collaborate with the researchers from the University of Tokyo, in particular, and participate actively in the international communications.

Objectifs de valorisation des travaux de recherche du doctorant : diffusion, publication et confidentialité, droit à la propriété intellectuelle,...

All the results obtained during the PhD thesis are asked to publish in different forms (thesis, scientific articles, database, numerical programs), according to the Open Science policy.

Collaborations envisagées

The PHD student is expected to work collaboratively with different researchers and students within BRGM, ENS and the other partners of the project PREMs.

Complément sur le sujet

 $https:\!//aochihi.github.io/anr-prems/\ (https:\!//aochihi.github.io/anr-prems/)$

Profil et compétences recherchées - Profile and skills required

- Master en Sciences de la Terre, Physique ou Ingénierie
- Motivation et capacité de travail en équipe
- Programmation en Matlab, Python ou autre logiciel scientifique
- Rédaction et lecture d'articles scientifiques
- Des connaissances préalables en modélisation numérique ou en techniques expérimentales sont un plus
- Master's degree in Earth Sciences, Physics or Engineering
- Motivation
- Capacity of work in a team
- Programming in Matlab, Python or other scientific software
- Prior knowledge in numerical modelling or experimental techniques is a plus
- Writing & reading scientific papers

Niveau de français : Conversational french is welcomed

Niveau d'anglais requis : Scientific and conversationnal english are required $% \left(1\right) =\left(1\right) \left(1\right) \left($