Lab01实验报告

蒋滨泽 PB18030971

1.描述执行一条XOR指令的过程

数据通路如下:

	数据通路	控制信号
IF(红)	PC指向XOR指令的地址,取出的指令送往IF/ID段寄存器。	BrE=0; JalrE=0; JalD=0;
ID(绿)	Rs1=Instr[19:15];Rs2=Instr[24:20];分别送往寄存器堆读出对应寄存器号的数据RegOut1D,RegOut2D; Rd=Instr[11:7]送往ID/EX段寄存器。同时指令被送往Control Unit产生控制信号。	
EX(红)	RegOut1E与RegOut2E分别经过多选器送往ALU进行 运算,运算结果ALUOutE送入EX/MEM段间寄存器; 目的寄存器号RdE送往EX/MEM段间寄存器。传递控制 信号。	AluControlE=ALU_XOR; Forward1E=0; Forward2E=0; AluSrc1E=1; AluSrc2E=0;
MEM(绿)	ALU运算结果AluOutM经过多选器送至MEM/WB段间寄存器,目的寄存器RdM送往MEM/WB段间寄存器。 传递控制信号。	MemWriteM=0;
WB(黄)	运算结果通过多选器和寄存器写端口写入寄存器堆, 目标寄存器号标识要写入的寄存器。	RegWrite=1; MemtoReg=0;

2.描述执行一条BEQ指令的过程

数据通路如下:

	数据通路	控制信号
IF(红)	PC指向BEQ指令的地址,取出的指令送往IF/ID段寄存器。	BrE=0; JalrE=0; JalD=0;
ID(绿)	Rs1=Instr[19:15];Rs2=Instr[24:20];分别送往寄存器 堆读出对应寄存器号的数据RegOut1D, RegOut2D; ImmD跳转地址的偏移量送往ID/EX段寄 存器。同时指令被送往Control Unit产生控制信号。	
EX(<u>É</u> T)	RegOut1E与RegOut2E分别经过多选器送往Branch Decision进行运算,分支判断结果返回至NPC Generator;跳转目标地址也一同被送至NPC Generator。传递控制信号到取指部分。	Forward1E=0; Forward2E=0; AluSrc1E=1; AluSrc2E=0; BrType=BEQ; BrE=分支是否 发生; JalrE=0; JalD=0;

3.描述执行一条LHU指令的过程

数据通路如下:

	数据通路	控制信号
IF(红)	PC指向LHU指令的地址,取出的指令送往IF/ID段寄存器。	BrE=0; JalrE=0; JalD=0;
ID(绿)	Rs1=Instr[19:15];ImmD=Instr[31:20];送往寄存器 堆读出对应寄存器号的数据RegOut1D; Rd=Instr[11:7]送往ID/EX段寄存器。ImmD跳转地 址的偏移量送往ID/EX段寄存器。同时指令被送往 Control Unit产生控制信号。	
EX(红)	RegOut1E与偏移量ImmE分别经过多选器送往ALU 进行加法运算得到跳转地址,运算结果ALUOutE送 入EX/MEM段间寄存器;目的寄存器号RdE送往 EX/MEM段间寄存器。传递控制信号。	AluControlE=ALU_ADD; Forward1E=0; Forward2E=0; AluSrc1E=1; AluSrc2E=2;
MEM(绿)	ALU运算结果AluOutM送往DataMemory取出数据并存到段间寄存器,目的寄存器RdM送往MEM/WB段间寄存器。传递控制信号。	MemWriteM=0;
WB(黄)	Data Ext将取出的数据选择16位并进行无符号数值 扩展到32位,结果通过多选器和寄存器写端口写入 寄存器堆,目标寄存器号标识要写入的寄存器。	RegWrite=1; MemtoReg=1; LoadedBytesSelect=2Byte;

4.如果要实现CSR指令,设计图中还需要增加什么部件和数据通路?

数据通路如下图,部分控制信号省略:

IF段:无

ID段:增加CSR格式的扩展模块;RegFile添加CSR寄存器文件;控制单元生成CSR的读写使能信号;Op2数据多选器增加对CSR的选择,段寄存器保存读出的CSR数据和CSR地址(Instr[31:20]);立即数扩展模块增加对CSR立即数的扩展;

EX段: 传递CSR数据与地址,选择立即数或源寄存器数据与CSR数据运算并送至段寄存器;

MEM段:传递数据和控制信号;

WB段:将ALU运算结果配合CSR Write、CSR addr信号写入CSR; CSR数据配合寄存器写使能信号和RdW写入目的通用寄存器;

5.Verilog如何实现立即数的扩展?

• I-Type:

```
assign imm = {{21{Instr[31]}}, Instr[30:20]};
```

• S-Type:

```
assign imm = {{21{Instr[31]}}, Instr[30:25], Instr[11:7]};
```

• B-Type:

```
assign imm = {{20{Instr[31]}}, Instr[7], Instr[30:25], instr[11:8],
1'b0};
```

• U-Type:

```
assign imm = {Instr[31:12], 12'b0};
```

• J-Type:

```
assign imm = {{12{Instr[31]}}, Instr[19:12], Instr[20], Instr[31:21],
1'b0};
```

6.如何实现Data Memory的非字对齐的Load和Store?

在Data Memory使用字节交叉编址,按照地址 mod4 的余数将不同字节映射到4个不同的存储体,可自由选择不同的存储体load store。

7.ALU模块中,默认wire变量是有符号数还是无符号数?

无符号数。

8.简述BranchE信号的作用

分支指令在EX段进行分支判断时,如果分支成立,通过使能BranchE信号让IF段的NPC选择分支的 跳转地址。

9.NPC Generator中对于不同跳转target的选择有没有优先级?

有,优先级: Branch = Jalr > Jal

10.Harzard模块中,有哪几类冲突需要插入气泡,分别使流水线停顿几个周期?

Load - Use型的 RAW 数据相关: 停顿一个周期。

分支和跳转的控制相关:分支停顿2个周期,跳转停顿一个周期。

11.Harzard模块中采用静态分支预测器,遇到branch指令时,如何控制flush和stall信号?

Branch指令在EX段如果发生跳转,则Flush IF/ID和ID/EX段寄存器。否则不需要flush或stall。

12.0号寄存器的值始终为0,是否会对forward的处理产生 影响?

有可能产生影响,应当在转发时对源寄存器是0的情况进行特殊判断:如果某条指令写的是x0寄存器则不转发或转发0值。