Algebra: Chapter 0 Exercises Chapter 3, Section 2

David Melendez

July 22, 2018

Problem 1. Prove that if there is a homomorphism from a zero ring to a ring R, then R is a zero ring.

Solution. Let Z denote the zero ring, and let $\varphi: Z \to R$ be a ring homomorphism. Since φ is a homomorphism, it must take the identity in Z to the identity in R, so $\varphi(0) = 1_R$. But 0 is also the *additive* identity in Z, meaning $\varphi(0) = 0$, and so 0 = 1 in R.

If $r \in R$, we then have $1 \cdot r = 0 \cdot r = 0$, showing that R is the zero ring.

Problem 2. Let R and S be rings, and let $\varphi: R \to S$ be a function preserving both operations $+, \cdot$.

- 1. Prove that if φ is surjective, then necessarily $\varphi(1_R) = 1_S$.
- 2. Prove that if $\varphi \neq 0$ and S is an integral domain, then $\varphi(1_R) = 1_S$.

Solution.

1. First suppose φ is surjective. Then, if $s \in S$, then there exists an $r \in R$ such that $\varphi(r) = s$. Note that

$$\varphi(1_R) \cdot s = \varphi(1_R) \cdot \varphi(r)$$

$$= \varphi(1_R \cdot r)$$

$$= \varphi(r)$$

$$= s.$$

Since this is true for all $s \in S$ (as φ is surjective), this implies that $\varphi(1_R) = 1_S$, as desired.

2. Now, let $\varphi \neq 0$ and suppose $\varphi(1_R) \neq 1_S$. This implies that $\varphi(1_R) - 1_S \neq 0$. Since φ is nonzero, there exists an $r \in R$ with $\varphi(r) \neq 0$. Note, then, that we have:

$$\varphi(r) \cdot (\varphi(1_R) - 1_S) = \varphi(r) \cdot \varphi(1_R) - \varphi(r) \cdot 1_S$$
$$= \varphi(r \cdot 1_R) - \varphi(r)$$
$$= \varphi(r) - \varphi(r)$$
$$= 0.$$

implying S is not an integral domain since both of the terms in the original product are nonzero. Therefore, if S is an integral domain and $\varphi \neq 0$, then $\varphi(1_R) = 1_S$.

;++;