នខ្លីអេចរុំ ស់ឧសម ខូចង្ហួយ របស់ខ្លុំមួយយ៉ សាលខេងគំន្នអំពីសំងគំស

ម្រន្យ១ទ្រើសរើសសិស្សពូតែប្រទាំសាលា ផ្លែកអក្សរសិល្ប៍ខ្មែរ កសិតទិន្យា សិទ្យុបទិន្យា ថ្លាក់នី៩ សិទ្យុាក់នី១២

សម័យប្រឡងៈ ថ្ងៃទី៣០ ខែមករា ឆ្នាំ២០២០

វិញ្ញាសាៈ រួមទិន្សា ស្កាភ់នី១២

រយៈពេលៈ ១៨០នាទី ពិន្ទុៈ ១០០ពិន្ទុ

ទ្រខាន

I. (១០ ពិន្ទុ) កាំភ្លើងមួយត្រូវបានចាត់ទុកជាម៉ាស៊ីនកម្ដៅ។ គេដឹងថាកាំភ្លើងធ្វើពីដែកដែលមានម៉ាសស្ញើ 1.8kg។ គ្រាប់ កាំភ្លើងនេះមានម៉ាស 2.40g ហើយពេលបាញ់ចេញមានល្បឿន 320m/s និងមានទិន្នផលថាមពលស្មើ 1.10%។ សន្មតថា តូ(ដង)កាំភ្លើងស្របថាមពលទាំងអស់ដែលបញ្ចេញនិងកើនឡើងសីតុណ្ហភាពស្មើសាច់ក្នុងរយៈពេលខ្លីមុនពេលបាត់បង់ ថាមពលកម្ដៅខ្លះទៅក្នុងមជ្ឈដ្ឋានបរិយាកាស។ គណនាកំណើនសីតុណ្ហភាពនៅក្នុងគ្រាប់កាំភ្លើង។ គេឲ្យកម្ដៅម៉ាសដែក C_{ដែក} = 448J/kg°C។

II. (១០ តិន្ទុ) ស្វ៊ែរបន្ទុកអគ្គិសនីឯកលក្ខណ៍ពីរត្រូវបានគេព្យួរទៅនឹងចំណុចនឹងមួយ ដោយខ្សែមិនយឺតនិងមិនគិតម៉ាស ដែលមានប្រវែង (= 1.50m (ដូចរូប)។ បន្ទុកអគ្គិសនី q = 25.0µC ត្រូវបានបញ្ជូនទៅឲ្យកូនបាល់នីមួយៗ ក្រោយមក វាច្រានគ្នាចេញបានមុំ 30.0° ជាមួយអ័ក្សឈរ។ តើម៉ាសរបស់ស្វ៊ែនីមួយៗមានតម្លៃប៉ុន្មាន?

- III. (១០ កិន្ត្) នៅអាកាសយានដ្ឋានមួយ ស្ត្រីម្នាក់កំពុងទាញវ៉ាលីរបស់គាត់ដែលមានម៉ាស 20.0kg ឲ្យផ្លាស់ទីដោយល្បឿន ថេរ ហើយប្រើកម្លាំងដែលមានទិសដៅបង្កើតបានមុំ heta ជាមួយអ័ក្សដេក និងមានតម្លៃ 35.0N ដូចបង្ហាញក្នុងរូប។ កម្លាំងកកិតដែលមានអំពើលើវ៉ាលីមានតម្លៃស្មើ 20.0N។
 - \mathbf{s} . រកតម្លៃរបស់មុំ θ ។

🥹. រកតម្លៃរបស់កម្លាំងកែងដែលផ្ទៃដីមានអំពើលើវ៉ាលី។

- IV. (១០ កិន្ត្) ផង់នីមួយៗមានម៉ាស m₀ និងផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស ភេ។ គេដឹងថាក្នុងផ្ទៃ 2mm² និង ក្នុងមួយវិនាទីមានផង់ចំនូន 2 × 10¹⁵ ទៅទង្គិចនឹងផ្ទៃនោះ។ គេឲ្យៈ m₀ = 9.1 × 10⁻³¹kg និង v = 5.0 × 10¹⁵m/s។ គេសន្មតថា ទង្គិចរវាងផង់និងផ្ទៃប៉ះជាទង្គិចស្ងក់។
 - 🤧 គណនាកម្លាំងសរុបដែលផង់មានអំពើលើផ្ទៃប៉ះ។
- 🤨 គណនាសម្ពាធសរុបរបស់ផង់លើផ្ទៃប៉ះ។
- V. (១០ កិន្ត្) ប្រសិនបើថាមពលស៊ីនេទិចគ្រប់គ្រាន់នោះម៉ូលេគុលដែលស្ថិតនៅលើផែនដីអាចរូចផុតពីផែនដីដែលអាច ឲ្យវាមានចលនាចាកចេញពីផែនដីជារ្យេងរហូត។
 - 🛪. ចូរប្រើប្រាស់ច្បាប់រក្សាថាមពលបង្ហាញថា ថាមពលស៊ីនេទិចអប្បបរមាដែលត្រូវការដើម្បីឲ្យម៉ូលេគុលអាចខ្ទាតចេញ ពីផែនដីស្មើនឹង mgR_E ដែល m ជាម៉ាសម៉ូលេគុល g ជាសំទុះនៃទម្លាក់សេរីនៅលើផែនដី និង R_E ជាកាំរបស់ ផែនដី។
 - $oldsymbol{2}$. កណនាសីកុណ្ណភាពដើម្បីឲ្យថាមពលស៊ីនេទិចអប្បបរមានេះស្មើនឹងដប់ដងនៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេកុល អុកស៊ីសែន។ គេឲ្យ: $g=9.80 \mathrm{m/s^2},~R_\mathrm{E}=6.37 \times 10^6 \mathrm{m}$
- VI. (១៥ ពិទ្ធុ) ស៊ីឡាំងក្នុងរូបត្រវិបានបិទដោយពិស្តុងដែលតភ្ជាប់នឹងរ៉ឺស់រមូយមានថេរកម្រាញ 2.00 × 10³N/m។ នៅស្ថានភាពទំនេរនៃរ៉ឺស់រស៊ីឡាំងមានឧស្ម័នចំណុះ 5.00ℓ ក្រោមសម្ពាធ 1.00atm និងសីពុណ្ហាភាព 20.0°C។
 - 🛪. បើពិស្តុងមានមុខកាត់ 0.0100m² និងមានម៉ាសអាចចោលបាន។ ចូរពណនាកម្ពស់ឡើងដល់របស់ពិស្តងនៅសីតុណ្ហភាពកើនឡើងដល់ 250°C។
 - គណនាសម្ពាធរបស់ឧស្ម័ននៅសីតុណ្ហភាព 250°C។

VII. (១០ ពិស្តុ) អង្គធាតុចម្លងរាងស៊ីឡាំងវែងកាំបាត a មួយមានរន្ធប្រហោងរាងស៊ីឡាំងដែលមានអង្កត់ផ្ចិត a តាមបណ្ដោយ ស៊ីឡាំងនេះ(ដូចរូប)។ ចរន្ត I មានទិសដៅចេញក្រៅមកទំព័រ និងមានលក្ខណៈឯកសណ្ឋាន។ គណនាដែនម៉ាញេទិច និងទិសដៅរបស់វាជាអនុគមន៍នៃ μ_0 , I, r និង a នៅត្រង់៖

🙃 ចំណុច P₁។

ខ. ចំណុច P₂។

VIII. (១០ តិន្ទុ) គ្រាប់អង្កាំឯកលក្ខណ៍ពីរមានម៉ាស m និងបន្ទុក q។ នៅពេលដែលគេដាក់វាក្នុងចានដែលមានផ្នែកខាងក្នុង រាងស្វ៊ែកាំ R ដោយឮានកកិត ហើយជញ្ជាំងរបស់វាមិនចម្លងអគ្គិសនី នោះបន្ទុកទាំងពីរផ្លាស់ទីចេញពីគ្នាដូចបង្ហាញក្នុង រូប។ នៅលក្ខខណ្ឌលំនឹង បន្ទុកស្ថិតនៅចម្ងាយ R ពីគ្នា។ គណនាបន្ទុកអគ្គិសនីរបស់របស់គ្រាប់អង្គាំនីមួយៗ។

IX. (១៥ កិន្ត្) កូនបាល់មួយដែលមានម៉ូម៉ង់និចល $I=\left(rac{2}{5}
ight)$ m \mathbf{r}^2 រម្យេលដោយគ្មានរអិលនៅផ្នែកខាងក្នុងនៃស៊ីឡាំងកាំ R មួយ។ បើស៊ីឡាំងមានចលនារង្វិលជុំវិញអ័ក្សរបស់វា ដោយសំទុះមុំ α តើតម្លៃ α ត្រូវស្មើប៉ុន្មានដើម្បីឲ្យបន្ទាត់ភ្ជាប់រវាង ផ្ចិតរបស់បាល់និងផ្ចិតនៃបាតរបស់ស៊ីឡាំងផ្គុំបានមុំ heta ធ្យេបនឹងអ័ក្សឈរជានិច្ច?

ម្រន្យ១ទ្រើសរើសសិស្សពុតែប្រទាំសាលា ផ្លែកអក្សរសិល្ប៍ខ្មែរ កណិតទិន្យា សិទ្យុបទិន្យា ស្នាក់នី៩ សិទសួក់នី១២

សម័យប្រឡងៈ ថ្ងៃទី៣០ ខែមករា ឆ្នាំ២០២០

វិញ្ញាសាៈ រួមទិន្សា ថ្ពាភ់នី១២

រយៈពេលៈ ១៨០នាទី ពិន្ទុៈ ១០០ពិន្ទុ

អង្រាគំំលោ

I. (១០ ចិន្ទូ) គណនាកំណើនសីតុណ្ហភាពនៅក្នុងគ្រាប់កាំភ្លើង

េយីងមាន :
$$W = \Delta K = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 = \frac{1}{2}mv_2^2 - 0$$

$$: W = \frac{1}{2}mv^2$$

ម្យ៉ាងទៀត :
$$W = Q_h - Q_c \Rightarrow Q_c = Q_h - W$$

$$\label{eq:continuous} \tilde{\mathfrak{l}} \widetilde{\mathfrak{n}} \quad : \quad e = \frac{W}{Q_h} \ \Rightarrow \ Q_h = \frac{W}{e}$$

ឃើងបាន :
$$Q_c = \frac{W}{e} - W = W\left(\frac{1}{e} - 1\right) = \frac{1}{2}mv^2\left(\frac{1}{e} - 1\right)$$

និង :
$$Q_c = m'C\Delta T$$

$$: \quad \frac{1}{2} m v^2 \left(\frac{1}{e} - 1 \right) = m' C \Delta T$$

នាំឲ្យ :
$$\Delta T = \frac{mv^2\left(\frac{1}{e}-1\right)}{2m'C}$$

ដោយ :
$$m = 2.40g = 2.40 \times 10^{-3} kg$$
, $m' = 1.8 kg$, $v = 320 m/s$

:
$$C_{\rm idin} = 448 J/kg^{\circ}C$$
, $e = 1.10\% = 0.011$

េយីងហ៊ុន :
$$\Delta T = \frac{2.40 \times 10^{-3} (320)^2 \left(\frac{1}{0.011} - 1\right)}{2 \times 1.8 \times 448} = 13.7$$
°C

II. (១០ តិន្ទុ) ម៉ាសរបស់ស្វែនីមួយៗ

លក្ខណ្ឌលំនឹង ឬគោលការណ៍និចលភាព $: \Sigma \vec{F} = \vec{0}$

$$\label{eq:continuity} \mbox{$\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}$$

ដែល :
$$\vec{F}_e + \vec{T}_x = \vec{0}$$
 នោះ $F_e = T_x$

ពែ :
$$F_e = k_e \frac{q^2}{d^2}$$
 និង $T_x = T \sin \theta$

$$: \sin \theta = \frac{\frac{d}{2}}{\ell} \Rightarrow d = 2\ell \sin 30^\circ = 2\ell \cdot \frac{1}{2} = \ell$$

ពេហន :
$$T\sin\theta = k_e \frac{q^2}{\rho^2}$$
 (1)

ម្យ៉ាងទៀត :
$$\vec{T}_y + \vec{F}_g = \vec{0}$$
 ឬ $T_y = F_g$

ដែល :
$$T_y = T\cos\theta$$
 និង $F_g = mg$

:
$$T\cos\theta = mg \Rightarrow T = \frac{mg}{\cos\theta}$$
 (2)

តាម (1) និង (2) គេបាន
$$: \quad mg\frac{\sin\theta}{\cos\theta} = k_e \frac{q^2}{\ell^2} \ \Rightarrow \ m = \frac{k_e}{g\tan\theta} \left(\frac{q}{\ell}\right)^2$$

ដោយ :
$$k_e = 9 \times 10^9 SI$$
, $g = 9.80 m/s^2$, $q = 25.0 \mu C = 25 \times 10^{-6} C$

:
$$\ell = 1.5 \text{m}, \ \theta = 30.0^{\circ} \implies \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

ដូចនេះ :
$$m = \frac{k_e\sqrt{3}}{g} \left(\frac{q}{\ell}\right)^2$$
 (kg)

III. (**១០ ពិន្ទុ**)

\mathbf{s} . រកតម្លៃរបស់មុំ θ

លក្ខណ្ឌលំនឹង :
$$\Sigma \vec{F} = \vec{0}$$

$$\mathbf{y} : \vec{\mathbf{f}}_{N} + \vec{\mathbf{w}} + \vec{\mathbf{f}}_{k} + \vec{\mathbf{F}}_{x} + \vec{\mathbf{F}}_{v} = \vec{\mathbf{0}}$$

តាម
$$(ox)$$
 : $\vec{f}_k + \vec{F}_x = \vec{0}$ នោះ $F_x = f_k$

:
$$F\cos\theta = f_k \Rightarrow \cos\theta = \frac{f_k}{F}$$

ដោយ :
$$f_k = 20.0N$$
, $F = 35.0N$

ទាំឲ្យ :
$$\cos \theta = \frac{20}{35} = 0.571$$

ដូចនេះ :
$$\theta=55.2^\circ$$

រកតម្លៃរបស់កម្លាំងកែងដែលផ្ទៃដីមានអំពើលើវ៉ាលី

យើងមាន :
$$\vec{F}_N + \vec{w} + \vec{F}_v = \vec{0}$$
 ឬ $F_N - W + F_v = 0$

:
$$F_N = W - F_v = mg - F \sin \theta$$

ដោយ :
$$m = 20.0 kg$$
, $g = 9.80 m/s^2$, $F = 35.0 N$, $\theta = 55.2$ °

ពេញន :
$$F_N = 20 \times 9.80 - 35(0.821) = 167N$$

ដូចនេះ :
$$F_N = 167N$$

IV. (១០ ពិន្ទុ)

🥦 គណនាកម្លាំងសរុបដែលផង់មានអំពើលើផ្ទៃប៉ះ

យើងមាន :
$$\mathbf{F} \cdot \Delta \mathbf{t} = \mathbf{m} \Delta \mathbf{v} = \mathbf{N} \cdot \mathbf{m}_0 \cdot \mathbf{v}$$
 (ទង្គិចស្គ័ $\Delta \mathbf{v} = \mathbf{v}$)

នាំឲ្យ :
$$F = \frac{N \cdot m_0 \cdot v}{\Delta t}$$

ដោយ :
$$N=2\times 10^{15}$$
, $m_0=9.1\times 10^{-31} kg$, $v=5.0\times 10^{15} m/s$, $\Delta t=1.0 s$

ឃើងបាន :
$$F = \frac{2 \times 10^{15} \times 9.1 \times 10^{-31} \times 5 \times 10^{15}}{1} = 9.1N$$

🤨 គណនាសម្ពាធសរុបរបស់ផង់លើផ្ទៃប៉ះ

តាម :
$$P = \frac{F}{\Lambda}$$

ដោយ :
$$F = 9.1N$$
, $A = 2mm^2 = 2 \times 10^{-4}m^2$

ពេញន :
$$P = \frac{9.1}{2 \times 10^{-4}} = 4.55 \times 10^4 Pa$$

ដូចនេះ :
$$P = 4.55 \times 10^4 Pa$$

V. (90 ពិន្ទុ)

 $m{\mathfrak{S}}$. ចូរបង្ហាញថា ថាមពលស៊ីនេទិចអប្បបរមាដែលត្រូវការដើម្បីឲ្យម៉ូលេកុលអាចខ្ទាតចេញពីផែនដីស្មើនឹង \mathbf{mgR}_{E} ដែល \mathbf{m} ជាម៉ាសម៉ូលេកុល \mathbf{g} ជាសំទុះនៃទម្លាក់សេរីនៅលើផែនដី និង \mathbf{R}_{E} ជាកាំរបស់ផែនដី

តាមច្បាប់រក្សាថាមពល :
$$\Delta K = \Delta U \Leftrightarrow K = U$$
 ឬ $K = mgh$

ដូចនេះ :
$$K_{min} = mgR_E$$
 ពិត

ខ. គណនាសីតុណ្ហភាពដើម្បីឲ្យថាមពលស៊ីនេទិចអប្បបរមានេះស្មើនឹងដប់ដងនៃថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេកុល អុកស៊ីសែន

ដោយ :
$$K_{min} = 10 \, (K_{av}) \Leftrightarrow K_{min} = 10 \left(\frac{3}{2}k_BT\right) = 15k_BT$$
 : $T = \frac{K_{min}}{15k_B} = \frac{mgR_E}{15k_B}$ ព័ព $m = \frac{M}{N_A}$ ទាំឲ្យ : $T = \frac{MgR_E}{15k_BN_A} = \frac{MgR_E}{15R}$

ដោយ :
$$R_E = 6.37 \times 10^6 \text{m}$$
, $R = 8.31 \text{J/mol} \cdot \text{K}$, $g = 9.80 \text{m/s}^2$, $M = 32.0 \text{g} = 32 \times 10^{-3} \text{kg}$

ពេហ្នេន :
$$T = \frac{32 \times 10^{-3} \times 9.80 \times 6.37 \times 10^6}{15 \times 8.31} = 1.60 \times 10^4 K$$

ដូចនេះ :
$$T = 1.60 \times 10^4 K$$

VI. (9៥ ରିଛୁ)

🛪. ចូរគណនាកម្ពស់ឡើងដល់របស់ពិស្តុងនៅសីតុណ្ហភាពកើនឡើងដល់ 250°C

តាម :
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

ដោយ :
$$V_2 = V_1 + Ah$$
 និង $P_2 = P_1 + \frac{F}{A} = P_1 + \frac{kh}{A}$

ឃើងបាន :
$$\frac{P_1V_1}{T_1} = \frac{\left(P_1 + \frac{kh}{A}\right)(V_1 + Ah)}{T_2} \; \underbrace{\mathbb{V}}_{\frac{1}{2}} \frac{P_1V_1}{T_1} T_2 = \left(P_1 + \frac{kh}{A}\right)(V_1 + Ah)$$

ដោយ :
$$k=2\times 10^3 \mathrm{N/m},\; P_1=1 \mathrm{atm}=1.013\times 10^5 \mathrm{Pa},\; V_1=5.00 \mathrm{l}=5\times 10^{-3} \mathrm{m}^3,\; A=0.01 \mathrm{m}^2$$

:
$$T_1 = 20.0$$
°C = 293K, $T_2 = 250$ °C = 523K

ឃើងបាន :
$$\frac{1.013\times 10^5\times 5\times 10^{-3}\times 523}{293}=\left(1.013\times 10^5+\frac{2\times 10^3h}{0.01}\right)\left(5\times 10^{-3}+0.01h\right)$$

$$: 2000h^2 + 2013h - 397 = 0$$

តាម :
$$\Delta = (2013)^2 - 4(2000)(-397) = 273 \times 10^4$$

$$\text{is:} \quad : \quad \sqrt{\Delta} = \sqrt{273 \times 10^4} = \pm 2689$$

ដែល :
$$h = \frac{-2013 - 2689}{2 \times 2000} = -1.175 < 0$$
 (មិនយក) : $h = \frac{-2013 + 2689}{2 \times 2000} = 0.169 > 0$ (យក)

:
$$h = \frac{-2013 + 2689}{2 \times 2000} = 0.169 > 0$$
 (Wfi)

ដូចនេះ :
$$h = 0.169m$$

🤨 គណនាសម្ពាធរបស់ឧស្ម័ននៅសីពុណ្ហភាព 250°C

ឃើងមាន :
$$P_2 = P_1 + \frac{kh}{A}$$

ដោយ :
$$k=2\times 10^3 N/m,\; P_1=1 atm=1.013\times 10^5 Pa,\; A=0.01 m^2,\; h=0.169 m$$

ឃើងបាន :
$$P_2 = 1.013 \times 10^5 + \frac{2 \times 10^3 \times 0.169}{0.01} = 1.35 \times 10^5 Pa$$

ដូចនេះ :
$$P_2 = 1.35 \times 10^5 Pa$$

f VII. (f 90 f ar g f g) កណនាដែនម៉ាញេទិច និងទិសដៅរបស់វាជាអនុកមន៍នៃ μ_0 , f I, f r និង f a នៅត្រង់៖

🙃. ចំណុច P₁

ចរន្តអគ្គិសនី I ត្រូវមាននៅក្នុងអង្គធាតុចម្លងនូវដង់ស៊ីតេចរន្ត $J=rac{I}{A}$ ដែលក្នុងរកណីនេះគេអាចរក A

2. ចំណុច P₂

នៅត្រង់
$$P_2$$
 គេបាន៖
$$: B_s = \frac{\mu_0 J \left(\pi a^2\right)}{2\pi r}$$
 និង
$$: B_1' = B_2' = \frac{\mu_0 J \pi \left(\frac{a}{2}\right)^2}{2\pi \sqrt{r^2 + \left(\frac{a}{2}\right)^2}}$$

តាមរូបខាងលើ យើងឃើញថាកុំប៉ូសង់តាមបន្ទាត់ដេកនៃ B_1^\prime និង B_2^\prime ទប់ទល់គ្នា។ ចំពោះកុំប៉ូសង់តាមបន្ទាត់ឈរ ពេអាចសរសេរដូចតទៅ៖ <mark>៤</mark>

$$: B = B_s - B_1' \cos \theta - B_2' \cos \theta = \frac{\mu_0 J (\pi a^2)}{2\pi r} - 2 \left(\frac{\frac{\mu_0 J \pi a^2}{4}}{2\pi \sqrt{r^2 + \frac{a^2}{4}}} \right) \frac{r}{\sqrt{r^2 + \frac{a^2}{4}}}$$

:
$$B = \frac{\mu_0 (2I)}{2\pi r} \left[1 - \frac{2r^2}{4r^2 + a^2} \right]$$

ដូចនេះ : $B = \frac{\mu_0 I}{\pi r} \left(\frac{2r^2 + a^2}{4r^2 + a^2} \right)$ វាមានទិសដៅឆ្ពោះទៅខាងលើ(មកទំព័រ)។

VIII. (១៥ តិខ្ចុ) គណនាបន្ទុកអគ្គិសនីរបស់របស់គ្រាប់អង្គាំនីមួយៗ

ចានមានអំពើលើគ្រាប់អង្កាំនីមួយៗដោយកម្លាំង \vec{F}_N ដែលមានទិសផ្គុំបាន 60.0° ធ្យើបនឹងអ័ក្សដេក។ ដោយប្រើរូបខាងក្រោម គេបានៈ

លក្ខខណ្ឌលំនឹង : $\vec{F}_{e} + \vec{w} + \vec{F}_{N} = \vec{0}$

ម្យ៉ាងទៀត : $\vec{F}_e + \vec{w} + \vec{F}_N \cos 60.0^\circ + \vec{F}_N \sin 60.0^\circ = \vec{0}$

តាម (ox) : $F_e - F_N \cos 60.0^\circ = 0$ ឬ $F_e = F_N \cos 60.0^\circ$ (1)

តាម (oy) : $F_N \sin 60.0^\circ - mg = 0$ ឬ $F_N \sin 60.0^\circ = mg$

 $fs: F_N = \frac{mg}{\sin 60.0^\circ}$ (2)

តាម (1) និង (2)

ឃើងបាន : $k_e \frac{q^2}{R^2} = \frac{mg}{\tan 60.0^\circ} = \frac{mg}{\sqrt{3}}$

ដូចនេះ : $q = R \left(\frac{mg}{k_e \sqrt{3}}\right)^{\frac{1}{2}}$

IX. (១៥ កិន្ត្) តើតម្លៃ α ត្រូវស្មើប៉ុន្មានដើម្បីឲ្យបន្ទាត់ភ្ជាប់រវាងផ្ចិតរបស់បាល់និងផ្ចិតនៃបាតរបស់ស៊ីឡាំងផ្គុំបានមុំ θ ធ្យេប និងអ័ក្សឈរជានិច្ច?

តាងកម្លាំងកកិតលើផ្ទៃរបស់បាល់គឺ F។ កម្លាំង F ត្រាវិទប់ទល់នឹងកំប៉ូសង់នៃទម្ងន់ដែលមានទិសតាមតង់សង់

ម៉ូម៉ង់កម្លាំងបង្វិលទៅលើបាល់គឺ $: au = \operatorname{Fr}$

កើបាន : $\tau = \operatorname{mgr} \sin \theta$

ម៉្យាងទៀត ម៉ូម៉ង់កម្លាំងបង្វិលនេះគឺ $au=\mathrm{I}lpha_{\mathrm{b}}$

ដែល α_b នេះគឺសំទុះមុំនៃចលនាបាល់ ហើយជាប់ទាក់ទង់នឹង α នៃស៊ីឡាំងតាមកន្សោម $\alpha_b = \left(rac{R}{r}
ight) lpha$

ដោយប្រើកន្សោម
$$au=\mathrm{I}lpha_{\mathrm{b}}$$
 គេបាន : $\mathrm{mgr}\sin\theta=\left(\frac{2}{5}\mathrm{mr}^2\right)\left(\frac{R}{r}lpha\right)$ ដូចនេះ : $lpha=\frac{5g\sin\theta}{2R}$

ធ្វើនៅភ្នំពេញ, ថ្ងៃទី ៣០ ខែ មករា ឆ្នាំ២០២០ អ្នកធ្វើអត្រាកំណែ