TABLES DE PROBABILITÉS ET STATISTIQUE

A. Tables des lois associées à la loi Normale

A.1. Loi normale $\mathcal{N}(0,1)$

1° Fonction de répartition de la loi Normale. — La fonction de répartition Φ de la loi Normale $\mathcal{N}(0,1)$ est définie par $\Phi(z) = \int_{-\infty}^z \mathrm{e}^{-u^2/2} \,\mathrm{d}u/\sqrt{2\pi}, \, z \in \mathbb{R}$. Pour tout $z \in \mathbb{R}$, on a $\Phi(z) = 1 - \Phi(-z)$.

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	$0,\!5675$	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

Exemples. — $\Phi(0,25) \approx 0.5987$, $\Phi(-0.32) = 1 - \Phi(0.32) \approx 1 - 0.6255 = 0.3745$.

2° Quantiles de la loi Normale. — Pour $\alpha \in]0,1[$, le quantile d'ordre α de la loi Normale est $z_{\alpha} = \Phi^{-1}(\alpha)$. Pour tout $\alpha \in]0,1[$, on a $\Phi^{-1}(\alpha) = -\Phi^{-1}(1-\alpha)$.

α	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,5	0,0000	0,0251	0,0502	0,0753	0,1004	0,1257	0,1510	0,1764	0,2019	0,2275
0,6	$0,\!2533$	0,2793	0,3055	0,3319	$0,\!3585$	0,3853	$0,\!4125$	$0,\!4399$	0,4677	0,4959
0,7	0,5244	0,5534	0,5828	0,6128	0,6433	0,6745	0,7063	0,7388	0,7722	0,8064
0,8	0,8416	0,8779	0,9154	0,9542	0,9945	1,0364	1,0803	1,1264	1,1750	1,2265
0,9	1,2816	1,3408	1,4051	1,4758	1,5548	1,6449	1,7507	1,8808	2,0537	2,3263
α	0,990	0,991	0,992	0,993	0,994	0,995	0,996	0,997	0,998	0,999
$\Phi^{-1}(\alpha)$	2,3263	2,3656	2,4089	2,4573	2,5121	2,5758	2,6521	2,7478	2,8782	3,0902
α	0,9990	0,9991	0,9992	0,9993	0,9994	0,9995	0,9996	0,9997	0,9998	0,9999
$\Phi^{-1}(\alpha)$	3,0902	3,1214	3,1559	3,1947	3,2389	3,2905	3,3528	3,4316	3,5401	3,7190

Exemples. — On a $\Phi^{-1}(0,75) \approx 0.6745$, $\Phi^{-1}(0,995) \approx 2.5758$, $\Phi^{-1}(0,9995) \approx 3,2905$; ainsi que $\Phi^{-1}(0,25) \approx -0.6745$, $\Phi^{-1}(0,005) \approx -2.5758$, $\Phi^{-1}(0,0005) \approx -3,2905$.

3° Quantiles de la loi Normale (bis). — Si Z est une variable aléatoire suivant la loi normale $\mathcal{N}(0,1)$, la table donne, pour α fixé, la valeur $z_{1-\alpha/2}$ telle que

$$\mathbb{P}\{|Z| \geqslant z_{1-\alpha/2}\} = \alpha.$$

Ainsi, $z_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi normale $\mathcal{N}(0,1)$.

α	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	∞	2,5758	2,3263	2,1701	2,0537	1,9600	1,8808	1,8119	1,7507	1,6954
0,1	1,6449	1,5982	1,5548	1,5141	$1,\!4758$	$1,\!4395$	1,4051	1,3722	1,3408	1,3106
0,2	1,2816	$1,\!2536$	1,2265	1,2004	$1,\!1750$	1,1503	1,1264	1,1031	1,0803	1,0581
0,3	1,0364	1,0152	0,9945	0,9741	0,9542	0,9346	0,9154	$0,\!8965$	0,8779	0,8596
0,4	0,8416	0,8239	0,8064	0,7892	0,7722	0,7554	0,7388	0,7225	0,7063	0,6903
0,5	0,6745	0,6588	0,6433	0,6280	0,6128	$0,\!5978$	$0,\!5828$	$0,\!5681$	$0,\!5534$	0,5388
0,6	$0,\!5244$	0,5101	0,4959	0,4817	$0,\!4677$	$0,\!4538$	$0,\!4399$	$0,\!4261$	$0,\!4125$	0,3989
0,7	0,3853	$0,\!3719$	$0,\!3585$	0,3451	0,3319	0,3186	$0,\!3055$	0,2924	$0,\!2793$	$0,\!2663$
0,8	$0,\!2533$	0,2404	0,2275	0,2147	0,2019	$0,\!1891$	$0,\!1764$	0,1637	0,1510	0,1383
0,9	0,1257	0,1130	0,1004	0,0878	0,0753	0,0627	0,0502	0,0376	0,0251	0,0125

α	10^{-3}	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}	10^{-9}
$z_{1-lpha/2}$	3,2905	3,8906	4,4172	4,8916	5,3267	5,7307	6,1094

Exemples. — Pour $\alpha = 0.5$, on trouve $z \approx 0.6745$; pour $\alpha = 0.25$, on trouve $z \approx 1.1503$; pour $\alpha = 10^{-6}$, on trouve $z \approx 4.8916$.

A.2. Lois de Pearson

Si X est une variable aléatoire suivant la loi du χ^2 , ou de Pearson, à ν degrés de liberté, la table donne, pour α fixé, la valeur $k_{1-\alpha}$ telle que

$$\mathbb{P}\{X \geqslant k_{1-\alpha}\} = \alpha.$$

Ainsi, $k_{1-\alpha}$ est le quantile d'ordre $1-\alpha$ de la loi du χ^2 à ν degrés de liberté.

ν α	0,990	0,975	0,950	0,900	0,100	0,050	0,025	0,010	0,001
1	0,0002	0,0010	0,0039	0,0158	2,7055	3,8415	5,0239	6,6349	10,8276
2	0,0201	0,0506	0,1026	$0,\!2107$	4,6052	5,9915	$7,\!3778$	9,2103	13,8155
3	0,1148	0,2158	0,3518	$0,\!5844$	6,2514	7,8147	9,3484	11,3449	16,2662
4	0,2971	0,4844	0,7107	1,0636	7,7794	9,4877	11,1433	13,2767	18,4668
5	0,5543	0,8312	1,1455	1,6103	9,2364	11,0705	12,8325	15,0863	20,5150
6	0,8721	1,2373	1,6354	2,2041	10,6446	12,5916	14,4494	16,8119	22,4577
7	1,2390	1,6899	2,1673	2,8331	12,0170	14,0671	16,0128	18,4753	24,3219
8	1,6465	$2,\!1797$	2,7326	$3,\!4895$	13,3616	15,5073	17,5345	20,0902	26,1245
9	2,0879	2,7004	3,3251	4,1682	14,6837	16,9190	19,0228	21,6660	27,8772
10	$2,\!5582$	3,2470	3,9403	$4,\!8652$	15,9872	18,3070	20,4832	23,2093	29,5883
11	3,0535	3,8157	4,5748	5,5778	17,2750	19,6751	21,9200	24,7250	31,2641
12	3,5706	4,4038	5,2260	6,3038	18,5493	21,0261	23,3367	26,2170	32,9095
13	4,1069	5,0088	5,8919	7,0415	19,8119	22,3620	24,7356	27,6883	34,5282
14	4,6604	5,6287	$6,\!5706$	7,7895	21,0641	23,6848	26,1189	29,1412	36,1233
15	$5,\!2293$	6,2621	$7,\!2609$	$8,\!5468$	22,3071	24,9958	27,4884	30,5779	37,6973
16	5,8122	6,9077	7,9616	9,3122	23,5418	26,2962	28,8454	31,9999	39,2524
17	6,4078	$7,\!5642$	8,6718	10,0852	24,7690	27,5871	30,1910	33,4087	40,7902
18	7,0149	8,2307	9,3905	10,8649	25,9894	28,8693	31,5264	34,8053	42,3124
19	7,6327	8,9065	10,1170	11,6509	27,2036	30,1435	32,8523	36,1909	43,8202
20	8,2604	9,5908	10,8508	12,4426	28,4120	31,4104	34,1696	37,5662	45,3147
21	8,8972	10,2829	11,5913	13,2396	29,6151	32,6706	35,4789	38,9322	46,7970
22	9,5425	10,9823	12,3380	14,0415	30,8133	33,9244	36,7807	40,2894	48,2679
23	10,1957	11,6886	13,0905	14,8480	32,0069	35,1725	38,0756	41,6384	49,7282
24	10,8564	12,4012	13,8484	15,6587	33,1962	36,4150	39,3641	42,9798	51,1786
25	11,5240	13,1197	14,6114	16,4734	34,3816	37,6525	40,6465	44,3141	$52,\!6197$
26	12,1981	13,8439	15,3792	17,2919	35,5632	38,8851	41,9232	45,6417	54,0520
27	12,8785	14,5734	16,1514	18,1139	36,7412	40,1133	43,1945	46,9629	55,4760
28	13,5647	15,3079	16,9279	18,9392	37,9159	41,3371	44,4608	48,2782	56,8923
29	14,2565	16,0471	17,7084	19,7677	39,0875	42,5570	45,7223	49,5879	58,3012
30	14,9535	16,7908	18,4927	20,5992	40,2560	43,7730	46,9792	50,8922	59,7031

Lorsque le degré de liberté ν est tel que $\nu>30,$ la variable aléatoire

$$Z = \sqrt{2X} - \sqrt{2\nu - 1}$$

suit approximativement la loi normale centrée réduite.

A.3. Lois de Student

Si T est une variable aléatoire suivant la loi de Student à ν degrés de liberté, la table donne, pour α fixé, la valeur $t_{1-\alpha/2}$ telle que

$$\mathbb{P}\{|T| \geqslant t_{1-\alpha/2}\} = \alpha.$$

Ainsi, $t_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi de Student à ν degrés de liberté.

να	0,900	0,500	0,300	0,200	0,100	0,050	0,020	0,010	0,001
1	0,1584	1,0000	1,9626	3,0777	6,3138	12,7062	31,8205	63,6567	636,6193
2	0,1421	0,8165	1,3862	1,8856	2,9200	4,3027	6,9646	9,9248	31,5991
3	0,1366	0,7649	1,2498	1,6377	2,3534	3,1824	4,5407	5,8409	12,9240
4	0,1338	0,7407	1,1896	1,5332	2,1318	2,7764	3,7469	4,6041	8,6103
5	0,1322	0,7267	1,1558	1,4759	2,0150	2,5706	3,3649	4,0321	6,8688
6	0,1311	0,7176	1,1342	1,4398	1,9432	2,4469	3,1427	3,7074	5,9588
7	0,1303	0,7111	1,1192	1,4149	1,8946	2,3646	2,9980	3,4995	5,4079
8	$0,\!1297$	0,7064	1,1081	1,3968	1,8595	2,3060	$2,\!8965$	$3,\!3554$	5,0413
9	0,1293	0,7027	1,0997	1,3830	1,8331	2,2622	2,8214	3,2498	4,7809
10	$0,\!1289$	0,6998	1,0931	1,3722	1,8125	$2,\!2281$	2,7638	3,1693	4,5869
11	0,1286	0,6974	1,0877	1,3634	1,7959	2,2010	2,7181	3,1058	4,4370
12	$0,\!1283$	0,6955	1,0832	1,3562	1,7823	2,1788	2,6810	3,0545	4,3178
13	$0,\!1281$	0,6938	1,0795	1,3502	1,7709	2,1604	$2,\!6503$	3,0123	4,2208
14	$0,\!1280$	0,6924	1,0763	1,3450	1,7613	2,1448	2,6245	2,9768	4,1405
15	$0,\!1278$	0,6912	1,0735	1,3406	1,7531	2,1314	$2,\!6025$	2,9467	4,0728
16	0,1277	0,6901	1,0711	1,3368	1,7459	2,1199	$2,\!5835$	2,9208	4,0150
17	$0,\!1276$	0,6892	1,0690	1,3334	1,7396	2,1098	$2,\!5669$	$2,\!8982$	3,9651
18	$0,\!1274$	0,6884	1,0672	1,3304	1,7341	2,1009	$2,\!5524$	$2,\!8784$	3,9216
19	$0,\!1274$	0,6876	1,0655	1,3277	1,7291	2,0930	$2,\!5395$	$2,\!8609$	3,8834
20	0,1273	0,6870	1,0640	1,3253	1,7247	2,0860	2,5280	$2,\!8453$	3,8495
21	0,1272	0,6864	1,0627	1,3232	1,7207	2,0796	$2,\!5176$	2,8314	3,8193
22	$0,\!1271$	0,6858	1,0614	1,3212	1,7171	2,0739	$2,\!5083$	2,8188	3,7921
23	0,1271	0,6853	1,0603	1,3195	1,7139	2,0687	$2,\!4999$	$2,\!8073$	3,7676
24	$0,\!1270$	0,6848	1,0593	1,3178	1,7109	2,0639	$2,\!4922$	2,7969	3,7454
25	$0,\!1269$	0,6844	1,0584	1,3163	1,7081	2,0595	$2,\!4851$	2,7874	3,7251
26	$0,\!1269$	0,6840	1,0575	1,3150	1,7056	2,0555	$2,\!4786$	2,7787	3,7066
27	$0,\!1268$	0,6837	1,0567	1,3137	1,7033	2,0518	$2,\!4727$	2,7707	3,6896
28	$0,\!1268$	0,6834	1,0560	1,3125	1,7011	2,0484	$2,\!4671$	2,7633	3,6739
29	$0,\!1268$	0,6830	1,0553	1,3114	1,6991	2,0452	2,4620	2,7564	3,6594
30	$0,\!1267$	0,6828	1,0547	1,3104	1,6973	2,0423	2,4573	2,7500	3,6460
40	$0,\!1265$	0,6807	1,0500	1,3031	1,6839	2,0211	2,4233	2,7045	3,5510
60	$0,\!1262$	0,6786	1,0455	1,2958	1,6706	2,0003	2,3901	2,6603	3,4602
80	$0,\!1261$	0,6776	1,0432	1,2922	1,6641	1,9901	2,3739	2,6387	3,4163
120	$0,\!1259$	0,6765	1,0409	1,2886	1,6577	1,9799	2,3578	2,6174	3,3735
∞	0,1257	0,6745	1,0364	1,2816	1,6449	1,9600	2,3263	2,5758	3,2905

Lorsque $\nu=\infty,\,t_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de la loi normale $\mathcal{N}(0,1).$

A.4. Lois de Fisher–Snedecor ($\alpha=0,05$)

Si F est une variable aléatoire suivant la loi de Fisher–Snedecor à (ν_1,ν_2) degrés de liberté, la table donne la valeur $f_{1-\alpha}$ telle que

$$\mathbb{P}\{F \geqslant f_{1-\alpha}\} = \alpha = 0.05.$$

Ainsi, $f_{1-\alpha}$ est le quantile d'ordre $1-\alpha=0,95$ de la loi de Fisher–Snedecor à (ν_1,ν_2) degrés de liberté.

$\nu_2^{\nu_1}$	1	2	3	4	5	6	8	10	15	20	30	∞
1	161	200	216	225	230	234	239	242	246	248	250	254
2	18,5	19,0	19,2	19,2	19,3	19,3	19,4	19,4	19,4	19,4	19,5	19,5
3	10,1	$9,\!55$	$9,\!28$	$9,\!12$	9,01	8,94	8,85	8,79	8,70	8,66	8,62	8,53
4	7,71	6,94	$6,\!59$	6,39	$6,\!26$	$6,\!16$	6,04	5,96	5,86	5,80	5,75	5,63
5	6,61	5,79	$5,\!41$	$5,\!19$	5,05	4,95	4,82	4,74	4,62	$4,\!56$	$4,\!50$	4,36
6	5,99	5,14	4,76	$4,\!53$	$4,\!39$	4,28	$4,\!15$	4,06	3,94	3,87	3,81	3,67
7	5,59	4,74	$4,\!35$	$4,\!12$	3,97	3,87	3,73	3,64	3,51	3,44	3,38	3,23
8	$5,\!32$	4,46	4,07	3,84	3,69	$3,\!58$	3,44	3,35	$3,\!22$	$3,\!15$	3,08	2,93
9	$5,\!12$	$4,\!26$	3,86	3,63	3,48	3,37	3,23	3,14	3,01	2,94	$2,\!86$	2,71
10	4,96	4,10	3,71	3,48	3,33	$3,\!22$	3,07	2,98	$2,\!85$	2,77	2,70	2,54
11	4,84	3,98	3,59	3,36	3,20	3,09	2,95	2,85	2,72	$2,\!65$	$2,\!57$	2,40
12	4,75	3,89	3,49	3,26	3,11	3,00	2,85	2,75	2,62	$2,\!54$	2,47	2,30
13	4,67	3,81	3,41	3,18	3,03	2,92	2,77	2,67	$2,\!53$	2,46	2,38	2,21
14	4,60	3,74	3,34	3,11	2,96	2,85	2,70	2,60	2,46	2,39	2,31	2,13
15	4,54	3,68	3,29	3,06	2,90	2,79	2,64	2,54	2,40	2,33	$2,\!25$	2,07
16	4,49	3,63	3,24	3,01	$2,\!85$	2,74	2,59	2,49	$2,\!35$	$2,\!28$	2,19	2,01
17	4,45	3,59	3,20	2,96	2,81	2,70	$2,\!55$	$2,\!45$	2,31	$2,\!23$	$2,\!15$	1,96
18	4,41	3,55	3,16	2,93	2,77	$2,\!66$	2,51	2,41	$2,\!27$	$2,\!19$	$2,\!11$	1,92
19	4,38	3,52	3,13	2,90	2,74	2,63	2,48	2,38	$2,\!23$	$2,\!16$	2,07	1,88
20	$4,\!35$	3,49	3,10	$2,\!87$	2,71	2,60	$2,\!45$	$2,\!35$	$2,\!20$	$2,\!12$	2,04	1,84
22	4,30	3,44	3,05	2,82	2,66	$2,\!55$	2,40	2,30	$2,\!15$	2,07	1,98	1,78
24	4,26	3,40	3,01	2,78	2,62	2,51	2,36	$2,\!25$	2,11	2,03	1,94	1,73
26	4,23	3,37	2,98	2,74	2,59	2,47	2,32	2,22	2,07	1,99	1,90	1,69
28	4,20	3,34	2,95	2,71	$2,\!56$	2,45	2,29	2,19	2,04	1,96	1,87	1,65
30	4,17	3,32	2,92	2,69	$2,\!53$	2,42	2,27	2,16	2,01	1,93	1,84	1,62
40	4,08	3,23	2,84	2,61	$2,\!45$	2,34	2,18	2,08	1,92	1,84	1,74	1,51
50	4,03	3,18	2,79	$2,\!56$	2,40	$2,\!29$	2,13	2,03	1,87	1,78	1,69	1,44
60	4,00	3,15	2,76	$2,\!53$	$2,\!37$	$2,\!25$	2,10	1,99	1,84	1,75	1,65	1,39
80	3,96	3,11	2,72	$2,\!49$	$2,\!33$	2,21	2,06	1,95	1,79	1,70	1,60	1,32
100	3,94	3,09	2,70	2,46	2,31	2,19	2,03	1,93	1,77	1,68	1,57	1,28
∞	3,84	3,00	2,60	2,37	2,21	2,10	1,94	1,83	1,67	1,57	1,46	1,00

A.5. Lois de Fisher–Snedecor ($\alpha=0,025$)

Si F est une variable aléatoire suivant la loi de Fisher–Snedecor à (ν_1,ν_2) degrés de liberté, la table donne la valeur $f_{1-\alpha}$ telle que

$$\mathbb{P}\{F \geqslant f_{1-\alpha}\} = \alpha = 0,025.$$

Ainsi, $f_{1-\alpha}$ est le quantile d'ordre $1-\alpha=0.975$ de la loi de Fisher–Snedecor à (ν_1,ν_2) degrés de liberté.

$\nu_2^{\nu_1}$	1	2	3	4	5	6	8	10	15	20	30	∞
1	648	800	864	900	922	937	957	969	985	993	1 001	1018
2	38,5	39,0	39,2	39,2	39,3	39,3	39,4	39,4	39,4	39,4	39,5	39,5
3	17,4	16,0	15,4	15,1	14,9	14,7	14,5	14,4	14,3	14,2	14,1	13,9
4	12,2	10,6	9,98	9,60	$9,\!36$	9,20	8,98	8,84	8,66	8,56	8,46	8,26
5	10,0	8,43	7,76	$7,\!39$	$7,\!15$	6,98	6,76	6,62	$6,\!43$	6,33	$6,\!23$	6,02
6	8,81	$7,\!26$	6,60	$6,\!23$	5,99	5,82	5,60	5,46	$5,\!27$	$5,\!17$	5,07	4,85
7	8,07	$6,\!54$	5,89	$5,\!52$	$5,\!29$	5,12	4,90	4,76	$4,\!57$	4,47	4,36	4,14
8	7,57	6,06	$5,\!42$	5,05	$4,\!82$	4,65	$4,\!43$	4,30	4,10	4,00	3,89	3,67
9	7,21	5,71	5,08	4,72	4,48	4,32	4,10	3,96	3,77	3,67	3,56	3,33
10	6,94	$5,\!46$	$4,\!83$	$4,\!47$	$4,\!24$	4,07	$3,\!85$	3,72	$3,\!52$	3,42	3,31	3,08
11	6,72	5,26	4,63	$4,\!28$	4,04	3,88	3,66	3,53	3,33	3,23	3,12	2,88
12	$6,\!55$	5,10	$4,\!47$	4,12	3,89	3,73	$3,\!51$	3,37	3,18	3,07	2,96	2,72
13	6,41	4,97	$4,\!35$	4,00	3,77	3,60	3,39	$3,\!25$	3,05	2,95	2,84	2,60
14	6,30	$4,\!86$	$4,\!24$	3,89	$3,\!66$	3,50	$3,\!29$	$3,\!15$	2,95	2,84	2,73	2,49
15	6,20	4,76	$4,\!15$	3,80	$3,\!58$	3,41	3,20	3,06	$2,\!86$	2,76	2,64	2,40
16	6,12	4,69	4,08	3,73	3,50	3,34	$3,\!12$	2,99	2,79	2,68	$2,\!57$	2,32
17	6,04	4,62	4,01	3,66	3,44	3,28	3,06	2,92	2,72	2,62	2,50	$2,\!25$
18	5,98	$4,\!56$	3,95	3,61	3,38	3,22	3,01	$2,\!87$	2,67	2,56	$2,\!44$	2,19
19	5,92	$4,\!51$	3,90	$3,\!56$	$3,\!33$	3,17	2,96	$2,\!82$	2,62	2,51	2,39	2,13
20	5,87	$4,\!46$	3,86	$3,\!51$	$3,\!29$	3,13	2,91	2,77	$2,\!57$	2,46	$2,\!35$	2,09
22	5,79	4,38	3,78	3,44	$3,\!22$	3,05	2,84	2,70	$2,\!50$	2,39	$2,\!27$	2,00
24	5,72	$4,\!32$	3,72	3,38	$3,\!15$	2,99	2,78	2,64	2,44	2,33	2,21	1,94
26	5,66	$4,\!27$	3,67	3,33	3,10	2,94	2,73	$2,\!59$	$2,\!39$	2,28	2,16	1,88
28	5,61	$4,\!22$	3,63	3,29	3,06	2,90	2,69	$2,\!55$	$2,\!34$	2,23	$2,\!11$	1,83
30	5,57	4,18	3,59	$3,\!25$	3,03	2,87	2,65	$2,\!51$	2,31	2,20	2,07	1,79
40	5,42	4,05	3,46	3,13	2,90	2,74	$2,\!53$	$2,\!39$	$2,\!18$	2,07	1,94	1,64
50	5,34	3,98	3,39	3,06	$2,\!83$	2,67	2,46	$2,\!32$	2,11	1,99	1,87	1,55
60	5,29	3,93	3,34	3,01	2,79	2,63	2,41	$2,\!27$	2,06	1,94	1,82	1,48
80	$5,\!22$	3,86	$3,\!28$	2,95	2,73	$2,\!57$	$2,\!36$	2,21	2,00	1,88	1,75	1,40
100	5,18	3,83	3,25	2,92	2,70	2,54	2,32	2,18	1,97	1,85	1,71	1,35
∞	5,02	3,69	3,12	2,79	2,57	2,41	2,19	2,05	1,83	1,71	1,57	1,00

B. Estimation d'une proportion par intervalle de confiance

B.1. ABAQUE ($\alpha = 0.05$)

L'abaque suivant a été construit pour un niveau de confiance $1-\alpha=0.95$. Pour une taille d'échantillon $n\leqslant 25$, elle donne l'intervalle de confiance « exact » (méthode de Clopper-Pearson) pour la proportion, et, pour n>25, un intervalle de confiance asymptotique — moins lourd à calculer — déterminé à l'aide d'une approximation normale.

En ordonnée, on place la proportion observée p et on obtient les bornes inférieure et supérieure de l'intervalle de confiance approximatif comme les abscisses des points d'intersection de la droite horizontale y = p avec les deux courbes correspondant à la taille n de l'échantillon.

B.2. Table ($\alpha = 0.05$)

La table suivante donne les bornes inférieures des intervalles de confiance de niveau $1-\alpha=0.95$ pour une proportion, où n est la taille de l'échantillon et p=k/n la proportion observée. La détermination de l'intervalle suit la méthode de Clopper–Pearson. L'intervalle de confiance est alors

$$[p_{\min}(k,n), 1 - p_{\min}(n-k,n)]$$

où les $p_{\min}(k,n)$ sont les valeurs lues dans le tableau et $p_{\min}(0,n)=0$.

n k	1	2	3	4	5	6	7	8	9	10
2	0,0126	0,1581								
3	0,0084	0,0943	0,2924							
4	0,0063	0,0676	0,1941	$0,\!3976$						
5	0,0050	0,0527	0,1466	0,2836	$0,\!4782$					
6	0,0042	0,0433	0,1181	0,2228	$0,\!3588$	0,5407				
7	0,0036	0,0367	0,0990	0,1841	0,2904	0,4213	0,5904			
8	0,0032	0,0318	0,0852	0,1570	0,2449	0,3491	$0,\!4735$	0,6306		
9	0,0028	0,0281	0,0749	0,1370	0,2120	0,2993	0,3999	0,5175	0,6637	
10	0,0025	0,0252	0,0667	0,1215	0,1871	0,2624	0,3475	0,4439	0,5550	0,6915
11	0,0023	0,0228	0,0602	0,1093	0,1675	0,2338	0,3079	0,3903	0,4822	0,5872
12	0,0021	0,0209	0,0549	0,0992	0,1517	0,2109	$0,\!2767$	0,3489	0,4281	0,5159
13	0,0019	0,0192	0,0504	0,0909	$0,\!1386$	0,1922	0,2513	0,3158	0,3857	0,4619
14	0,0018	0,0178	0,0466	0,0839	$0,\!1276$	$0,\!1766$	0,2304	$0,\!2886$	0,3514	0,4190
15	0,0017	0,0166	0,0433	0,0779	0,1182	0,1634	0,2127	0,2659	0,3229	0,3838
16	0,0016	0,0155	0,0405	0,0727	0,1102	0,1520	0,1975	0,2465	0,2988	0,3543
17	0,0015	0,0146	0,0380	0,0681	0,1031	0,1421	0,1844	0,2298	0,2781	0,3292
18	0,0014	0,0137	0,0358	0,0641	0,0969	0,1334	0,1730	0,2153	0,2602	0,3076
19	0,0013	0,0130	0,0338	0,0605	0,0915	0,1258	0,1629	0,2025	0,2445	$0,\!2886$
20	0,0013	0,0123	0,0321	0,0573	0,0866	0,1189	0,1539	0,1912	0,2306	0,2720
n k	11	12	13	14	15	16	17	18	19	20
11	0,7151									
12	0,6152	0,7353								
13	0,5455	0,6397	0,7529							
14	0,4920	0,5719	0,6613	0,7684						
15	0,4490	0,5191	0,5954	0,6805	0,7820					
16	0,4134	$0,\!4762$	0,5435	0,6165	0,6977	0,7941				
17	0,3833	0,4404	0,5010	0,5657	0,6356	0,7131	0,8049			
18	0,3575	0,4099	$0,\!4652$	0,5236	0,5858	0,6529	0,7270	0,8147		
19	0,3350	0,3836	0,4345	0,4880	0,5443	0,6042	0,6686	0,7397	0,8235	
20	0,3153	0,3605	0,4078	$0,\!4572$	0,5090	0,5634	0,6211	0,6830	0,7513	0,8316

Exemples. - a) Une biologiste a relevée 3 mutants sur une portée de 12 souris. Au niveau de confiance 95 %, la probabilité d'obtenir une souris mutante est estimée par [0,0549; 1-0,4281] = [0,0549; 0,5719].

b) Deux étudiants sur 20 ont su répondre à une question de cours. Au seuil $\alpha = 5\%$, la probabilité qu'un étudiant soit studieux est estimée par [0,0123; 1-0,6830] = [0,0123; 0,3170].

B.3. Intervalle de confiance du paramètre d'une loi de Poisson

La table suivante donne l'intervalle de confiance $[\lambda_{\min}(k,\alpha), \lambda_{\max}(k,\alpha)]$ du paramètre λ d'une loi de de Poisson pour une observation unique égale à $k \in \mathbb{N}$. La détermination de l'intervalle suit le même principe que la méthode de Clopper–Pearson pour une proportion. Pour k = 0, l'intervalle donné est l'intervalle « bilatéral » $[0, -\ln(\alpha/2)]$.

α	k = 0	1	2	3	4	5	6
0,01	0,00-5,30	0,01-7,43	0,10-9,27	0,34-10,98	0,67-12,59	1,08-14,15	1,54–15,66
0,05	0,00-3,69	$0,\!03-\!5,\!57$	$0,\!24-7,\!22$	$0,\!62 -\!8,\!77$	1,09-10,24	1,62-11,67	2,20-13,06
0,10	, ,	$0,\!05-\!4,\!74$	$0,\!36-\!6,\!30$	$0,\!82-7,\!75$	1,37-9,15	1,97-10,51	2,61-11,84
0,15	, ,	$0,\!08-\!4,\!25$	$0,\!45-\!5,\!73$	0,97-7,13	$1,\!57-\!8,\!49$	2,22-9,80	2,91-11,09
0,20	0,00-2,30	0,11-3,89	0,53-5,32	1,10-6,68	1,74-7,99	2,43-9,27	3,15–10,53
α	k 7	8	9	10	11	12	13
0,01	2,04-17,13	$2,\!57-\!18,\!58$	3,13-20,00	3,72-21,40	4,32-22,78	4,94-24,14	5,58-25,50
0,05	$5 \mid 2,81-14,42$	3,45-15,76	4,12-17,08	4,80-18,39	5,49–19,68	$6,\!20-\!20,\!96$	6,92-22,23
0,10	3,29-13,15	3,98-14,43	4,70-15,71	5,43-16,96	6,17-18,21	6,92-19,44	7,69–20,67
0,15	3,62-12,36	4,35-13,61	5,10-14,85	$5,\!87-\!16,\!07$	6,64-17,29	7,43-18,49	8,22-19,69
0,20	3,89–11,77	4,66-12,99	5,43-14,21	6,22-15,41	7,02–16,60	7,83–17,78	8,65–18,96
α	k 14	15	16	17	18	19	20
0,01	6,23-26,84	6,89-28,16	7,57-29,48	8,25-30,79	8,94-32,09	9,64-33,38	10,35-34,67
0,05	7,65-23,49	8,40-24,74	$9,\!15-\!25,\!98$	9,90-27,22	10,67–28,45	11,44-29,67	12,22-30,89
0,10	8,46-21,89	9,25-23,10	10,04-24,30	10,83-25,50	11,63-26,69	12,44-27,88	13,25-29,06
0,15	9,02-20,88	9,83-22,07	10,65-23,24	$11,\!47-\!24,\!42$	12,30-25,59	$13,\!13-\!26,\!75$	13,96–27,91
0,20	9,47-20,13	10,30-21,29	11,14-22,45	11,98–23,61	12,82–24,76	13,67–25,90	14,53-27,05
α	k 21	22	23	24	25	26	27
0,01	11,07–35,95	11,79–37,22	12,52–38,48	13,26–39,74	14,00-41,00	14,74–42,25	15,49-43,50
0,05	5 13,00–32,10	13,79–33,31	14,58 - 34,51	15,38-35,71	16,18–36,90	16,98 - 38,10	17,79–39,28
0,10	14.07–30.24	14.89–31.41	15.72-32.59	16,55-33,75	17.38–34.92	18.22-36.08	19 06-37 23
0,15							19,91–35,94
0.15 0.20	5 14,80–29,07	15,65-30,22	16,49-31,37	17,34-32,52	18,20-33,66	19,06-34,80	19,91–35,94
0,20	5 14,80–29,07	15,65-30,22	16,49-31,37	17,34-32,52	18,20-33,66	19,06-34,80	19,91–35,94
0,20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 15,65 - 30,22 \\ 16,24 - 29,32 \\ \hline 29 \end{array} $	16,49–31,37 17,11–30,45 30	17,34–32,52 17,97–31,58 31	18,20–33,66 18,84–32,71 32	19,06–34,80 19,72–33,84 33	19,91–35,94 20,59–34,96 34
0,20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,65–30,22 16,24–29,32 29 17,00–45,98	16,49–31,37 17,11–30,45 30 17,77–47,21	17,34–32,52 17,97–31,58 31 18,53–48,44	18,20–33,66 18,84–32,71 32	19,06–34,80 19,72–33,84 33 20,08–50,89	19,91–35,94 20,59–34,96 34 20,86–52,11
$ \begin{array}{c c} 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ 0,10 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,65–30,22 16,24–29,32 29 17,00–45,98 19,42–41,65 20,75–39,54	$ \begin{array}{r} 16,49-31,37 \\ 17,11-30,45 \end{array} $ $ \begin{array}{r} 30 \\ 17,77-47,21 \\ 20,24-42,83 \\ 21,59-40,69 \end{array} $	17,34–32,52 17,97–31,58 31 18,53–48,44 21,06–44,00 22,44–41,84	18,20–33,66 18,84–32,71 32 19,30–49,67 21,89–45,17 23,30–42,98	19,06–34,80 19,72–33,84 33 20,08–50,89 22,72–46,34 24,15–44,13	19,91–35,94 20,59–34,96 34 20,86–52,11 23,55–47,51 25,01–45,27
$ \begin{array}{c c} 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ 0,10 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,65–30,22 16,24–29,32 29 17,00–45,98 19,42–41,65 20,75–39,54	$ \begin{array}{r} 16,49-31,37 \\ 17,11-30,45 \end{array} $ $ \begin{array}{r} 30 \\ 17,77-47,21 \\ 20,24-42,83 \\ 21,59-40,69 \end{array} $	17,34–32,52 17,97–31,58 31 18,53–48,44 21,06–44,00 22,44–41,84	18,20–33,66 18,84–32,71 32 19,30–49,67 21,89–45,17 23,30–42,98	19,06–34,80 19,72–33,84 33 20,08–50,89 22,72–46,34 24,15–44,13	19,91–35,94 20,59–34,96 34 20,86–52,11 23,55–47,51 25,01–45,27
$ \begin{array}{c c} 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ 0,10 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 15,65 - 30,22 \\ 16,24 - 29,32 \\ \hline 29 \\ 17,00 - 45,98 \\ 19,42 - 41,65 \\ 20,75 - 39,54 \\ 21,64 - 38,21 \\ \end{array} $	$ \begin{array}{r} 16,49-31,37 \\ 17,11-30,45 \\ \hline 30 \\ 17,77-47,21 \\ 20,24-42,83 \\ 21,59-40,69 \\ 22,51-39,34 \end{array} $	$17,34-32,52 17,97-31,58 \hline 31 18,53-48,44 21,06-44,00 22,44-41,84 23,38-40,47$	18,20-33,66 18,84-32,71 32 19,30-49,67 21,89-45,17 23,30-42,98 24,25-41,59	$\begin{array}{r} 19,06-34,80 \\ 19,72-33,84 \\ \hline \hline 33 \\ 20,08-50,89 \\ 22,72-46,34 \\ 24,15-44,13 \\ 25,12-42,72 \\ \end{array}$	19,91–35,94 20,59–34,96 34 20,86–52,11 23,55–47,51 25,01–45,27 26,00–43,84
$ \begin{array}{c c} 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 15,65 - 30,22 \\ 16,24 - 29,32 \\ \hline 29 \\ 17,00 - 45,98 \\ 19,42 - 41,65 \\ 20,75 - 39,54 \\ 21,64 - 38,21 \\ \end{array} $	$ \begin{array}{r} 16,49-31,37 \\ 17,11-30,45 \\ \hline 30 \\ 17,77-47,21 \\ 20,24-42,83 \\ 21,59-40,69 \\ 22,51-39,34 \end{array} $	$17,34-32,52 17,97-31,58 \hline 31 18,53-48,44 21,06-44,00 22,44-41,84 23,38-40,47$	18,20-33,66 18,84-32,71 32 19,30-49,67 21,89-45,17 23,30-42,98 24,25-41,59	$\begin{array}{r} 19,06-34,80 \\ 19,72-33,84 \\ \hline \hline 33 \\ 20,08-50,89 \\ 22,72-46,34 \\ 24,15-44,13 \\ 25,12-42,72 \\ \end{array}$	19,91–35,94 20,59–34,96 34 20,86–52,11 23,55–47,51 25,01–45,27 26,00–43,84
$ \begin{array}{c c} 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,65–30,22 16,24–29,32 29 17,00–45,98 19,42–41,65 20,75–39,54 21,64–38,21 22,35–37,20 36	16,49–31,37 17,11–30,45 30 17,77–47,21 20,24–42,83 21,59–40,69 22,51–39,34 23,23–38,32 37	17,34–32,52 17,97–31,58 31 18,53–48,44 21,06–44,00 22,44–41,84 23,38–40,47 24,11–39,43	18,20-33,66 18,84-32,71 32 $19,30-49,67 21,89-45,17 23,30-42,98 24,25-41,59 25,00-40,54$	19,06–34,80 19,72–33,84 33 20,08–50,89 22,72–46,34 24,15–44,13 25,12–42,72 25,89–41,65 40	19,91–35,94 20,59–34,96 34 20,86–52,11 23,55–47,51 25,01–45,27 26,00–43,84 26,77–42,76
$ \begin{array}{c c} 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ 0,10 \\ 0,20 \\ \hline \alpha \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 15,65-30,22\\ 16,24-29,32\\ \hline 29\\ 17,00-45,98\\ 19,42-41,65\\ 20,75-39,54\\ 21,64-38,21\\ 22,35-37,20\\ \hline 36\\ 22,42-54,54 \end{array} $	$ \begin{array}{r} 16,49-31,37\\ 17,11-30,45\\ \hline 30\\ 17,77-47,21\\ 20,24-42,83\\ 21,59-40,69\\ 22,51-39,34\\ 23,23-38,32\\ \hline 37\\ 23,21-55,75 \end{array} $	$ \begin{array}{r} 17,34-32,52\\ 17,97-31,58\\ \hline 31\\ 18,53-48,44\\ 21,06-44,00\\ 22,44-41,84\\ 23,38-40,47\\ 24,11-39,43\\ \hline 38\\ 24,00-56,96 \end{array} $	18,20–33,66 18,84–32,71 32 19,30–49,67 21,89–45,17 23,30–42,98 24,25–41,59 25,00–40,54	$ \begin{array}{r} 19,06-34,80 \\ 19,72-33,84 \\ \hline 33 \\ 20,08-50,89 \\ 22,72-46,34 \\ 24,15-44,13 \\ 25,12-42,72 \\ 25,89-41,65 \\ \hline 40 \\ 25,59-59,36 \end{array} $	$ \begin{array}{r} 19,91-35,94 \\ 20,59-34,96 \end{array} $ $ \begin{array}{r} 34 \\ 20,86-52,11 \\ 23,55-47,51 \\ 25,01-45,27 \\ 26,00-43,84 \\ 26,77-42,76 \end{array} $ $ \begin{array}{r} 41 \\ 26,38-60,56 \end{array} $
$ \begin{array}{c c} 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ 0,15 \\ 0,20 \\ \hline \alpha \\ 0,01 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 15,65-30,22\\ 16,24-29,32\\ \hline \hline 29\\ 17,00-45,98\\ 19,42-41,65\\ 20,75-39,54\\ 21,64-38,21\\ 22,35-37,20\\ \hline 36\\ 22,42-54,54\\ 25,21-49,84\\ \end{array}$	$ \begin{array}{r} 16,49-31,37\\ 17,11-30,45 \hline 30\\ 17,77-47,21\\ 20,24-42,83\\ 21,59-40,69\\ 22,51-39,34\\ 23,23-38,32 \hline 37\\ 23,21-55,75\\ 26,05-51,00 \end{array} $	$\begin{array}{r} 17,34-32,52\\ 17,97-31,58\\ \hline \hline 31\\ 18,53-48,44\\ 21,06-44,00\\ 22,44-41,84\\ 23,38-40,47\\ 24,11-39,43\\ \hline 38\\ \hline 24,00-56,96\\ 26,89-52,16\\ \end{array}$	$\begin{array}{c} 18,20-33,66 \\ 18,84-32,71 \\ \hline 32 \\ 19,30-49,67 \\ 21,89-45,17 \\ 23,30-42,98 \\ 24,25-41,59 \\ 25,00-40,54 \\ \hline 39 \\ 24,79-58,16 \\ \hline \end{array}$	$\begin{array}{r} 19,06-34,80 \\ 19,72-33,84 \\ \hline \hline 33 \\ 20,08-50,89 \\ 22,72-46,34 \\ 24,15-44,13 \\ 25,12-42,72 \\ 25,89-41,65 \\ \hline 40 \\ \hline 25,59-59,36 \\ 28,58-54,47 \\ \hline \end{array}$	$\begin{array}{r} 19,91-35,94 \\ 20,59-34,96 \\ \hline 34 \\ 20,86-52,11 \\ 23,55-47,51 \\ 25,01-45,27 \\ 26,00-43,84 \\ 26,77-42,76 \\ \hline 41 \\ 26,38-60,56 \\ 29,42-55,62 \\ \end{array}$
$\begin{array}{c c} 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ 0,10 \\ 0,20 \\ \hline \alpha \\ 0,01 \\ 0,05 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 15,65-30,22\\ 16,24-29,32\\ \hline 29\\ \hline 17,00-45,98\\ 19,42-41,65\\ 20,75-39,54\\ 21,64-38,21\\ 22,35-37,20\\ \hline 36\\ \hline 22,42-54,54\\ 25,21-49,84\\ 26,73-47,54\\ \end{array}$	$ \begin{array}{r} 16,49-31,37\\ 17,11-30,45\\ \hline 30\\ 17,77-47,21\\ 20,24-42,83\\ 21,59-40,69\\ 22,51-39,34\\ 23,23-38,32\\ \hline 37\\ 23,21-55,75\\ 26,05-51,00\\ 27,59-48,68 \end{array} $	$\begin{array}{r} 17,34-32,52\\ 17,97-31,58\\ \hline \hline 31\\ 18,53-48,44\\ 21,06-44,00\\ 22,44-41,84\\ 23,38-40,47\\ 24,11-39,43\\ \hline \hline 38\\ 24,00-56,96\\ 26,89-52,16\\ 28,46-49,81\\ \hline \end{array}$	$18,20-33,66 \\ 18,84-32,71$ 32 $19,30-49,67$ $21,89-45,17$ $23,30-42,98$ $24,25-41,59$ $25,00-40,54$ 39 $24,79-58,16$ $27,73-53,31$ $29,33-50,94$	$19,06-34,80 \\ 19,72-33,84$ 33 $20,08-50,89$ $22,72-46,34$ $24,15-44,13$ $25,12-42,72$ $25,89-41,65$ 40 $25,59-59,36$ $28,58-54,47$ $30,20-52,07$	$\begin{array}{r} 19,91-35,94 \\ 20,59-34,96 \\ \hline 34 \\ 20,86-52,11 \\ 23,55-47,51 \\ 25,01-45,27 \\ 26,00-43,84 \\ 26,77-42,76 \\ \hline 41 \\ 26,38-60,56 \\ 29,42-55,62 \\ 31,07-53,20 \\ \hline \end{array}$

Étant donné un échantillon observé (k_1, \ldots, k_n) d'une loi de Poisson de paramètre λ , en posant $k = k_1 + \cdots + k_n$, l'intervalle de confiance de λ est $\left[\frac{1}{n}\lambda_{\min}(k,\alpha), \frac{1}{n}\lambda_{\max}(k,\alpha)\right]$.

Pour estimer une proportion p à partir d'un grand échantillon $(n \ge 50)$ et une proportion observée k/n faible $(k/n \le 10)$, on prendra $\left[\frac{1}{n}\lambda_{\min}(k,\alpha),\frac{1}{n}\lambda_{\max}(k,\alpha)\right]$ pour intervalle de confiance asymptotique de p. À l'opposée, lorsque n-k est petit, on utilise cette table pour estimer 1-p avec k'=n-k, pour en déduire l'estimation de p.

Exemples. — a) Dans un scrutin, sur 100 bulletins dépouillés, 4 bulletins sont nuls ou blancs. Pour $\alpha = 0.05$, l'intervalle de confiance asymptotique de la proportion de bulletins nuls ou blancs est [0.0109; 0.1024], soit plus raisonnablement [0.01; 0.10].

b) Deux étudiants sur 20 ont su répondre à une question de cours. Au seuil $\alpha = 0.05$, la probabilité qu'un étudiant soit studieux est estimée par [0.24/20; 7.22/20] = [0.012; 0.361].

C. Tests de Kolmogorov-Smirnov

C.1. Table de quantiles de la statistique de Kolmogorov-Smirnov

La statistique de Kolmogorov–Smirnov apparaît lors d'un test d'adéquation d'une loi observée avec une loi de probabilité sur \mathbb{R} sans partie discrète, c'est-à-dire de fonction de répartition $F: \mathbb{R} \to [0, 1]$ continue. Elle est égale à

$$k = \sup_{x \in \mathbb{R}} |F(x) - F_n(x)| = \max_{i=1}^n \left(F(x_{(i)}) - (i-1)/n \right) \vee \left(i/n - F(x_{(i)}) \right)$$

où $(x_{(i)})_{i=1}^n$ est l'échantillon ordonné, et $a \vee b = \max(a, b)$. Au seuil α donné, on accepte l'hypothèse d'égalité des lois si $k \leq k_{n,1-\alpha}$, cette dernière valeur étant donnée par la table qui suit.

α n	0	1	2	3	4	5	6	7	8	9
0,01	1,0000	0,9950	0,9293	0,8290	0,7342	0,6685	0,6166	0,5758	0,5418	0,5133
0,05	1,0000	0,9750	0,8419	0,7076	0,6239	$0,\!5633$	0,5193	0,4834	0,4543	0,4300
0,10	1,0000	0,9500	0,7764	0,6360	0,5652	0,5094	0,4680	$0,\!4361$	0,4096	0,3875
0,15	1,0000	0,9250	0,7261	0,5958	0,5248	$0,\!4744$	0,4353	0,4050	0,3806	0,3601
0,20	1,0000	0,9000	0,6838	0,5648	$0,\!4927$	0,4470	0,4104	0,3815	0,3583	0,3391
$\setminus n$	- 10			- 10			4.0		10	4.0
α	10	11	12	13	14	15	16	17	18	19
0,01	0,4889	0,4677	0,4490	$0,\!4325$	0,4176	0,4042	0,3920	0,3809	0,3706	0,3612
0,05	0,4092	0,3912	$0,\!3754$	0,3614	0,3489	0,3376	0,3273	0,3180	0,3094	0,3014
0,10	$0,\!3687$	0,3524	0,3381	$0,\!3255$	0,3142	0,3040	0,2947	$0,\!2863$	$0,\!2785$	$0,\!2714$
0,15	0,3425	0,3273	0,3141	0,3023	$0,\!2918$	$0,\!2823$	0,2737	$0,\!2659$	$0,\!2587$	0,2520
0,20	0,3226	0,3083	0,2957	0,2847	$0,\!2748$	$0,\!2658$	0,2577	$0,\!2503$	0,2436	0,2373
$\setminus n$		2.1			2.1		2.0		2.0	
α	20	21	22	23	24	25	26	27	28	29
0,01	$0,\!3524$	0,3443	0,3367	0,3295	0,3229	$0,\!3166$	0,3106	0,3050	0,2997	$0,\!2947$
0,05	0,2941	0,2872	$0,\!2809$	$0,\!2749$	0,2693	0,2640	$0,\!2591$	$0,\!2544$	0,2499	0,2457
0,10	0,2647	$0,\!2586$	$0,\!2528$	0,2475	0,2424	$0,\!2377$	0,2332	$0,\!2290$	0,2250	0,2212
0,15	0,2459	0,2402	0,2348	0,2298	$0,\!2251$	$0,\!2207$	0,2166	0,2127	0,2089	0,2054
0,20	0,2315	$0,\!2261$	0,2211	0,2164	0,2120	0,2079	0,2040	0,2003	0,1968	0,1934

0,01	30	1 31	32	33	34	35	36	37	38	39
0,01	0.0000	31								
0.05	0,2899	0,2853	0,2809	0,2768	0,2728	0,2690	0,2653	0,2618	0,2584	0,2552
0,05	0,2417	0,2379	0,2342	0,2308	0,2274	0,2242	0,2212	0,2183	0,2154	0,2127
0,10	0,2176	0,2141	0,2108	0,2077	0,2047	0,2018	0,1991	0,1965	0,1939	0,1915
0,15	0,2021	0,1989	0,1958	0,1929	0,1901	$0,\!1875$	0,1849	$0,\!1825$	0,1801	0,1779
0,20	0,1903	0,1873	0,1844	0,1817	0,1791	$0,\!1766$	0,1742	0,1718	0,1696	0,1675
α n	40	42	44	46	48	50	52	54	56	58
0,01	0,2521	0,2461	0,2406	0,2354	0,2306	0,2260	0,2217	0,2177	0,2138	0,2102
0,05	0,2101	0,2052	0,2006	0,1963	0,1922	0,1884	0,1848	0,1814	0,1782	0,1752
0,10	0,1891	0,1847	0,1805	0,1766	0,1730	0,1696	0,1664	0,1633	0,1604	0,1577
0,15	0,1757	0,1715	0,1677	0,1641	0,1607	0,1575	0,1545	0,1517	0,1490	0,1465
0,20	0,1654	0,1616	0,1579	0,1545	0,1514	0,1484	0,1456	0,1429	0,1404	0,1380
n	60	65	70	75	80	85	90	95	100	105
α									0,1608	
0,01	0,2067	0,1988	0,1917	0,1853	0,1795	0,1742	0,1694	0,1649	,	0,1570
0,05	0,1723	0,1657	0,1597	0,1544	0,1496	0,1452	0,1412	0,1375	0,1340	0,1308
1 '	1	· ·	· ·	,	· ·	,	<i>'</i>	,	,	0,1178
	· /			*		-	l '	*	· ·	0,1094
0,20	0,1357	0,1305	0,1258	0,1216	0,1178	0,1144	0,1112	0,1083	0,1056	0,1031
α n	110	120	130	140	150	160	170	180	190	200
0,01	0,1534	0,1470	0,1413	0,1362	0,1316	0,1275	0,1237	0,1203	0,1171	0,1142
0,05	0,1279	0,1225	0,1178	0,1135	0,1097	0,1063	0,1031	0,1003	0,0976	0,0952
0,00	0 1171	0,1103	0,1060	0,1022	0,0988	0,0957	0,0929	0,0903	0,0879	0,0857
0,03	0,1151	0,1100	0,1000							
	$\begin{bmatrix} 0,1151 \\ 0,1070 \end{bmatrix}$	0,1103 0,1025	0,0985	0,0950	0,0918	0,0889	0,0863	0,0839	0,0817	0,0796
0,01	0,1534 0,1279	$0,1470 \\ 0,1225$	0,1413 0,1178	0,1362 0,1135	0,1316 0,1097	$0,1275 \\ 0,1063$	$0,1237 \\ 0,1031$	0,1203 0,1003	$0,1171 \\ 0,0976$	0,10 0,10 20 0,11 0,09

Dudley (1964) a montré que pour tout u > 0,

$$\lim_{n \to \infty} \mathbb{P} \{ K_n \le u / \sqrt{n} \} = 1 + 2 \sum_{k=1}^{\infty} (-1)^k e^{-2k^2 u^3},$$

formule qui permet d'approcher les p-valeurs $1-F_{K_n}(k)=1-\mathbb{P}\{K_n\leqslant k\}$ du test de Kolmogorov–Smirnov pour n assez grand.

C.2. Table de quantiles de la statistique unilatérale de Kolmogorov-Smirnov

Les statistiques suivantes apparaissent dans les tests d'adéquation unilatéraux, ou de comparaison, de Kolmogorov–Smirnov :

$$k_n^+ = \sup_{x \in \mathbb{R}} \left(F(x) - F_n(x) \right) = \max_{1 \le i \le n} \left(\frac{i}{n} - F(x_{(i)}) \right)$$

ou

$$k_n^- = \sup_{x \in \mathbb{R}} \left(F_n(x) - F(x) \right) = \max_{1 \leqslant i \leqslant n} \left(F\left(x_{(i)}\right) - \frac{i-1}{n} \right)$$

La table suivante donne $\sqrt{n} \times F_{K_n^{\pm}}^{-1}(1-\alpha)$, les quantiles multipliés par le facteur d'échelle \sqrt{n} (se reporter à KNUTH (D. E.), The Art of Computer Programming, vol. 2., p. 51).

n α	0,99	0,95	0,90	0,80	0,75	0,50	0,25	0,20	0,10	0,05	0,01	
1	0,0100	0,0500	0,1000	0,2000	0,2500	0,5000	0,7500	0,8000	0,9000	0,9500	0,9900	
2	0,0140	0,0675	0,1296	0,2416	0,2929	0,5176	0,7071	0,7818	0,9670	1,0980	1,2728	
3	0,0170	0,0792	0,1471	0,2615	0,3112	0,5147	0,7539	0,8187	0,9783	1,1017	1,3589	
4	0,0194	0,0879	0,1590	,	,	0,5110	0,7642	0,8248	0,9853	1,1304	1,3777	
5	0,0215	0,0947	0,1675	0,2793		0,5245	0,7674	0,8277	0,9995	1,1392	1,4024	
6	,	0,1002	,	,		0,5319	0,7703	0,8343	1,0052	1,1463	1,4144	
7	,	,	$0,\!1787$,	· ·	,	,	0,8398	1,0093	1,1537	1,4246	
8		,	0,1826	,	0,3280			0,8431	1,0135	1,1586	1,4327	
9		,	0,1856	· ·	· ·	*	· ·	0,8455	1,0173	1,1624	1,4388	
10	0,0291	0,1147	0,1880	0,2884	0,3297	0,5426	0,7845	0,8477	1,0202	1,1658	1,4440	
11	0,0303	0,1172	0,1900	0,2883	0,3330	0,5439	0,7863	0,8498	1,0225	1,1688	1,4484	
12	0,0314	0,1193	0,1916	0,2879	0,3357	0,5453	0,7880	0,8519	1,0246	1,1714	1,4521	
13	0,0324	0,1212	0,1929	0,2903	0,3379	0,5468	0,7897	0,8537	1,0265	1,1736	1,4553	
14	0,0333	0,1229	0,1940	0,2925	0,3397	0,5486	0,7912	0,8551	1,0282	1,1755	1,4581	
15	0,0342	0,1244	0,1948	0,2944	0,3412	0,5500	0,7926	0,8564	1,0298	1,1773	1,4606	
16	0,0351	$0,\!1257$	0,1955	0,2961	0,3425	0,5512	0,7938	0,8576	1,0311	1,1789	1,4628	
17	0,0359	0,1269	0,1961	0,2975	· ·	0,5523	0,7948	0,8587	1,0324	1,1803	1,4648	
18	0,0367	0,1280	,		0,3445	0,5532	0,7958	0,8597	1,0335	1,1816	1,4667	
19	0,0374	0,1290	,	,	,	,	0,7967	0,8607	1,0346	1,1828	1,4683	
20	0,0381	0,1298	0,1971	0,3007	0,3461	0,5547	0,7975	0,8616	1,0355	1,1839	1,4698	
21	0,0387	0,1306	0,1973	0,3015	0,3467	0,5554	0,7983	0,8624	1,0365	1,1849	1,4712	
22	0,0394	0,1313	0,1974	0,3023	0,3473	$0,\!5561$	0,7991	0,8631	1,0373	1,1859	1,4725	
23	0,0400	0,1320	0,1974	0,3030	0,3478	$0,\!5567$	0,7998	0,8639	1,0381	1,1868	1,4737	
24	0,0405	0,1326	0,1974	0,3035	,	0,5573	0,8004	0,8645	1,0388	1,1876	1,4748	
25	0,0411	0,1331	0,1974	,	· ·		0,8010	0,8651	1,0395	1,1884	1,4758	
26	,	0,1336	,	,	· ·	*	0,8016	0,8657	1,0402	1,1891	1,4768	
27	,	0,1340	,		· ·	,	0,8021	0,8663		1,1898	1,4777	
28	,	0,1344	,	,	· ·	*	0,8027	0,8668	1,0414	1,1904	1,4785	
29	,	,	· ·	,	0,3504	*	0,8032	0,8673		1,1911	1,4793	
30	0,0435	0,1351	0,2006	0,3062	0,3509	0,5605	0,8036	0,8678	1,0424	1,1916	1,4801	
n > 30	$y_p - \frac{1}{6}n^{-1/2} + O(1/n)$, avec $y_p^2 = \frac{1}{2}\ln(1/(1-p))$											
y_p	0,0709	0,1601	0,2295	0,3340	0,3793	0,5887	0,8326	0,8971	1,0730	1,2239	1,5174	

D. Autres tables

D.1. Coefficients binomiaux

Les coefficients binomiaux sont

$$C_n^k = \binom{n}{k} = \frac{n!}{k! (n-k)!}$$
 pour $n \in \mathbb{N}, k \in \{0, 1, \dots, n-1, n\}.$

Ils satisfont la relation $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$ qui mène à la construction du triangle de Pascal

ci-dessous.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	1																
1	1	1															
2	1	2	1														
3	1	3	3	1													
4	1	4	6	4	1												
5	1	5	10	10	5	1											
6	1	6	15	20	15	6	1										
7	1	7	21	35	35	21	7	1									
8	1	8	28	56	70	56	28	8	1								
9	1	9	36	84	126	126	84	36	9	1							
10	1	10	45	120	210	252	210	120	45	10	1						
11	1	11	55	165	330	462	462	330	165	55	11	1					
12	1	12	66	220	495	792	924	792	495	220	66	12	1				
13	1	13	78	286	715	1287	1716	1716	1287	715	286	78	13	1			
14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001	364	91	14	1		
15	1	15	105	455	1365	3003	5005	6435	6435	5005	3003	1365	455	105	15	1	
16	1	16	120	560	1820	4368	8008	11440	12870	11440	8008	4368	1820	560	120	16	1

D.2. Nombres Premiers

Liste des nombres premiers antérieurs à 2013. — 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011.

Remarque. — Les tables et illustrations de ce document ne sont soumises à aucun copyright, elles sont copyleft. Elles ont été réalisées à l'aide des langages C, MetaPost et TEX.