

Machine Learning with Python

Python

- Python is one of the most popular programming language for machine learning.
- Ease of learning and use.
- Rich ecosystem of libraries that make ML development easier and faster.
 - NumPy, Pandas for data manipulation
 - scikit-learn for traditional ML algorithms
 - TensorFlow, PyTorch, Keras for deep learning
 - Matplotlib, Seaborn, Plotly for visualization

Iris Clustering and Classification

Iris Versicolor

Iris Setosa

Iris Virginica

Iris Clustering and Classification

Feature Information:

- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica

Training / test data

Labels

Features

			Laboro	
Sepal length	Sepal width	Petal length	Petal width	Species
5.1	3.5	1.4	0.2	Iris setosa
4.9	3.0	1.4	0.2	Iris setosa
7.0	3.2	4.7	1.4	Iris versicolor
6.4	3.2	4.5	1.5	Iris versicolor
6.3	3.3	6.0	2.5	Iris virginica
5.8	3.3	6.0	2.5	Iris virginica

Import Libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load iris
from sklearn.cluster import KMeans

Load Data

View Data (Optional)

Clustering with k-Means

Plot

Classification

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear model import LogisticRegression
from sklearn.model \overline{\overline{\sigma}}election import train test split
from sklearn.metri\overline{\sigma}s import accuracy_scor\overline{\sigma}, classification_report
```

Load Data


```
iris = load iris()
X = iris.data
y = iris.target
X train, X test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=10)
```

Preprocess

Train Logistic Regression Model

logreg = LogisticRegression(max_iter=200)
logreg.fit(X_train, y_train)

Prediction

Evaluation

