FGCGTCACCTGCAGGCCCGGGGGGTTGGTTTCCACCCTGGAGGTTGCTGACACCCTGTGCCCTCGGGTTGCTTC CAGCCGGTGGCACAGACGCCTCCAGGGGGCAGCACTCAAGCGCATCTTAGGAATGACAGAGTTGCGTCCCTCTCTGTTG CCAGGCTGGAGTTCAGTGGCATGTTCTTAGCTCACTGAAGCCTCAAATTCCTGGGTTCAAGTGACCCTCCCACCTCAGC

24 8 ¥c ¥c CCCATGAGGACCTGGGACTACAGGACACAGCTAAATCCCTGACACGG ATG AAA ATT AAA GCA GAG AAA

28 . 999 AGC N N AAT AAC A GCA I ATT D GAT GA 66A M 166 Q L H CAA CTT CAC 1 W W TGG TGG (P S R S CCT TCC AGA AGC G GGT GA E

48 144 CAC S AGT GAC АAA ر 116 L W CTG TGG . L CTG C TGT I V ATT GTG 1 4E L. L V CTC TTG GTG 1 CCA P P CCG (K AAG (M ATG AAC AAC

68 204 E GAG S TCT 4 E S AGT K AAG N L AAC CTG / E GAA T A I S ACT GCT ATC AGT K D K AAG GAC AAA / ™ 166 ACT ص 200 A GCA C 76C

88 264 M ATG CAA CAA K AAG I ATT . GGT T ACT TT6. A GCT K AAG K AAG / ٧ GTG E GAG E GAA D GAT A GCA D GAT I ATA E GAG 999 V.. GTG

108 324 ×₹ A A G L CTG ACC A S AGC L M CTA ATG A T N ACC AAT E H GAA CAC A A A G E R K E GAA AGA AAA GAG A M ATG (M ATG I ATC X &

128 384 CTG E GAA 0 \ > F E GAA N AAT L CTG , J E AA AAA L CTG A GCC E GAG O CAG K AAG E GAA / E GAA AGA သည

သည S TCT 2 2 2 2 2 2 E GAA GGT ₩ 766 A D S GCA GAT TCC 7 H S TCT E GAG S 50 2 7 2 3 5 L CTA R AGG E GAA

168 504 188 564 208 624 228 684 248 744 268 804 288 864 308 924 328 984 SAT SAT 0 \$ D GAT SZ u E ×₹ S AGT 50 AH AT E AA $_{\rm ATA}^{\rm I}$ S AGT **~** \$ F 7TC SA E P CCT чE S [] H CAT 1 11G R AGG 7 T M ATG N AAT I ATA JH Χ¥ S 23 7 7 0 \$ AAC N CAT H ص 200 C TGT A A M ATG F 2 <u>™</u> A GCA A A A G P CCT u E SZ E GAG ㅗ 는 A AG ပ<u>ြ</u> SAGC LE. D GAT o.₹ ×₹ L 316 L CTG SA AGA P CCT E GAA L S TCT u. | STCT CAG M ATG ATT SZ o \{5 4 📙 E GAG N AAT T ACT F JC 75 K AAG 7 CTG ٦ ٦ ာ ည ٧ GTG CA A I ATT CAG. A GCT 7 1 T ACT N AAT 999 ACC ACC Y L CTG D GAT D GAC P CCA N AAC $\underset{\text{ATT}}{I}$ 0 gg GGA ACA I ATA K AAG V GTG a E 4 = ص 200 ACA SAC age Sec $^{\mathsf{Y}}_{\mathsf{TAT}}$ AAG AG E GA ACT E GAG чE $_{\rm ATT}^{\rm I}$ GAA D GAC S AGT AGG $\stackrel{\Gamma}{\vdash}$ L TG 0 \$ Y D GAC S AGT P 733 ЖЖ AGA AGA F 2 I ATC Q CAG CAG C P ₩ 766 V GTC ව වූ A GCT ATG 4 E ح 23 SAGC M ATG E GAG ၁ <u>၂</u> S AGT 0 E AAA AAA ၁ည 7. 266 L CTC 7 5 CAG ACT CAA E SAA D 3AC 7.0 AAC AAC £ AA A D GAT V GTG 4G R LTA E GAG $_{\rm IAT}^{\rm Y}$ C& GGA A A A A I ¥¥ DGAT F 2 D GAC 7 E AI Α¥ AGA GAA GAA K AAG E GAA E. GAG ACA T V GTC D GAT S [] CCA 34C N AAT ر 13 N AAT M ATG N AAC D SAT A GCA V STC $\neg \vdash$ 980

FIG. 1B

388 L164 428 1284 408 L224 488 1464 98 AGA AGA 4 | ACA SAA чE A GCT ල M ATG E GAA $_{\rm ATC}^{\rm I}$ L C] H CAT P CCT Y TAT ₹ Ag $\overset{I}{\text{ATC}}$ D GAT CAG CAG P 73 ۷ GTA E GAG CAG CO E GAG 0 \$ $\overset{I}{\text{ATC}}$ L E T GAA ACA (D GAT CAG .0 K AAG V GTG AAA A A GCT N AAT S 700, P L CTG L CTG A A A C TGT 2 2 2 3 Υ TAT ۳ ک<u>ک</u> A GCA $_{\rm ATT}^{\rm I}$ ACA A D GAC N AAT V GTA A GCC A GCC V GTG 4 P Y V TAC GTA 6 E GAA N AAT T ACC CAG GGA N AAT GAC S V GTC A AC E GAA S L CTA GCA GCA 1 11 E GAG 999 AH CATA S 22 CAC L CTG R AGG ر 176 I ATT ص ک I A C Q A TGT CAG GCT I ATC AC H E GAA R AGG L CTG чE * AZ A GCG A AG STCT $_{\rm ATT}^{\rm I}$ CS P 7G ₹ N AAC F K T TT AAA ACC -E GAG R CGG ٧ GTG S AGC VGTT STOT GAC T AGG ¥ GG TGG L TA V GTA S AGT C Q TGC CAA A M ATG J H H . 1900 1900 CAG CAG E GAG D GAC CAG F SA щE H I ATA ACA A 3CT SA ATG 75 ACA SZ S AGT SH SH I ATT N AAT . 366 ATG £ A}

SAAGATCTAATGCATCCTATATCCAGTAAAGTAGAATTATCTCTTCATCTGGGACCTGGAAATCCTGAAATAAAAAGGA ITAGCTATTAATACTCAAATTGAGTTAAAATGAAAATTCCTCCTTAAAAATCAAACGTAATATGTATTACATTCATG | FAATGCAATAAACACAGTTGCAGGAAAGTATGTTAGCTATATACTATGAAGTACTCTTAGTTTACTTATGTTGAATGGC GTACATTAGTAGTTCTTTGTATTGAATAAATACTAAATCACCTA

FIG. 1C

JAGCCGGTGGCACAGACGCCTCCAGGGGCCAGCACTCAAGCGCATCTTAGGAATGACAGAGTTGCGTCCCTCTCGGTTG GCGTCACCTGCAGGCCCGGGGCCGCGGGGTTGGTTTCCACCCTGGAGGTTGCTGACACCCTGTGCCCGGGCTGCCTGACTTC CCAGGCTGGAGTTCAGTGGCATGTTCATAGCTCACTGAAGCCTCAAATTCCTGGGTTCAAGTGACCCTCCTACCTCAGC

19 чE ۷ GTG L TTG L CCA P CCG K AAG (M ATG N AAC . 966 . S AGC . N AAC S AGT Υ TAC D GAC ₹ 100 100 ACC AGG M CCC ATG /

39 ACT ¥¥ GAC , K AAG ™ 76G ACT م ا A GCA ၁ ၁၉ ၁၉ $_{\rm CAC}$ S AGT GAC × & L 77G TGG L CTG L CTG C TGT ٧ GTG ATT

59 177 E GAG ₽¥S D GAT GCA GCA D GAT I ATA E GAG 999 V GTG E GAG CAA STCT 4E S AGT K AAG L CTG N AAC E GAA S AGT I ATC SCT

79 99 297 K AAG L CTG E GAG A S E GAG ¥¥ R AGA CAG CAG E GAA K AAG E GAA M ATG E GAA M ATG R AGA I ATC X K 2 767 M ATG AAA AAA K AAG K AAG L CTG ¬ ACC ATT G GGT S AGC M ATG T ACT ار 176 L CTA N AAT A GCT A A A G T ACC K AAG H S ۷ 676 ЭÃ

119 S 1 E SAG 8 8 8 သည LCTA A 26 E GAA E GAA E GAA E GAG L CTG Н E GAA CAA CAA V GTT E GAA N AAT L <u>ا</u> ال ×₹

139 ΥTAT A T AGA M ATG C N AAC N AAT E GAA L CTG ၁<u>၉</u> STCT R AGG JBC E GAA G GGT W TGG S 700 DGAT 3CA L 116

159 AAG A66 7 1 чE . 266 E GAA N K I AAT AAG ATT G A A A ۷ GTG STCT S 23 3 ≥ 13 × S AGC ط <u>ک</u> 0.8 80 ပဋ ACC

FIG.2A

179 537 339 359 1077 199 597 219 259 279 837 299 897 319 957 239 $_{\rm ATT}^{\rm I}$ 3AA 407 E 3AG E A 380 - E E E E ₹ \$66 4 E aAC SAC 7 5 1 Z-Z ъ¥ S AGT 80 A S AGT д СТ I ATC A SCT I ATC CAG CAG م 53 ™ 76 V GTC AGCT 9 CAG A 30G д Э A M E GAG ¥¥ C TGT E 3AG SAGC C TGT S AGT C TGT 75 CAG CAA C В В D GAC L ¥₩ D SAC 75 ACT D SAT ٧ 576 Ag Ag L STA E GAG Y C&A 9 9 9 CAA L TA ΛÅ GAC I ATT ¥ ¥ ر 160 GAT 7 T 7E AGA AGA E GA GA gg m CCA ⊢ ACA DGAT STCT D GAC \times ACA → E GAG V GTC DGAT L CAG E GAA SAC N AAT M ATG N AAC A A SCA V STC D GAT 7. 3.TG STCA D GAT 999 A. H 0.8 ¥¥ S AGT I ATA ACA T E GA **A**CC → S AGT F 7 E GAA P CCT A SCT 46G F M ATG I ATA H SAT L 176 AAT LΠΑ X & ٦ ا ح 200 A 3CA M ATG V TA ٦ 2 98 N AAC M CAT C TGT 7 7 7 E GAG K 4AG K AAG SCT A GCA 4 E STCA ΨË C TGT SAT O чE D SAT CAA X & A L CTG L CTG SA 75 R 4GA ط <u>ک</u> STOT I ATT L SAG GAA S ㄴ 는 M ATG SGA ر اقار N AAT E GAG ACT ACT F 7 E A AG L ال 176 34C чE CAG 80 A T ۷ GTG A GCT 7 T 4CT යියි AAT AT ыÆ 75 D SAT D GAC CCA AAC I ATT GGA CAG S I ATA 4CA А 4AG 7 3TG CAC D GAC

FIG.2B

379 1137 ا 176 CAC H K AAG T R ACC CGG A M ATG Q I L Q CAG ATT CTC CAG A Q Y G CAG TAT GGC Q CAG S N TCC AAT V GTA N AAT V STC 1 17 17

399 1197 L CTG E GAA S ٧ 676 W TGG g GGC 4 E 0 \ **.** 666 R AGA M ATG K AAG E GAG V GTG ال دTG Y TAT A GCC **4**CC GAC GAC E 3AG

419 1257 \prod_{ATT} R AGG CCA ٧ 6TT V GTA Q CAG F N S I I ATC I ATC / E GAG T ACA P E CCA GAA / A GCC CAG N AAC A SS

439 1317 Р L CTG I ATT S AGC L D GAC T ACA E T M M GAA ACA ATG ATG A D GAT CAA C K AAA S I ATT N AAT a G A E GAA

459 1377 ATT 7 T N AAC S TCT S AGT E GAG A GCT S AGT E GAA E GAA را 15 P CCT I ATC T L K : ACA CTC AAG A F 77C N AAT S TCT S 70 70

478 1434 * A Y V V A K A L Q H F K E H F K T W TAC GTA GTG GCA AAA GCT CTA CAG CAT TTT AAG GAA CAT TTT AAA ACC TGG

| FAATGCAATAAACACAGGTTGCAGGAAAGTATGTTAGCTATATACTATGAAGTACTCTTAGTTTACTTATGTTGAATGGC

TTAGCTATTAATACTCAAATTGAGTTAAAATGAAAATTCCTCCTTAAAAATCAAACGTAATATGTATTACATTCATG

GTACATTAGTAGTTCTTTGTATATTGAATAATACTAAATCACCTA

FIG.2C

FIG. 3A

ACATTITAAGCTACTTATAGTCCTTGGAAATAGCAACAAATATCTTAGTTATTGGACTATTATAACCTTAGTCATCTTATTACTGCTTG ATTATGAGACACTCTCCCTGCTAATCCTTAGAACATCTTGGTTCTTGGTACTTGACTTTTAGCCCCTCTGACATATAGTTGATGTCAGA 3GTCACAACTAAACCTAAATTAAATCCTCATACAAAGCCCCATTAAGATAAATGCTCAAATTCTGGGAACATTTCACTTGCTTTGCCAG CAATTITACCCTTCAGAGGGTGTGGGATCTAATCAGGGGAACAACTACCCTGGGCTTAATTCTCATTAACAGGGACTAATTTGTCAAAG GTTATAAATTATTTTTGCTTTGGAGTAAGATATCATCATTTTGCATAGCTACAAATCTGAAGTTAAAGAAAATTTTAAAAATGTAA JGGCAGTACTAGCTGAAGTGATGGGTATGGAAGCATTCACTGTGAGGATTTTGCTGAGGTGCCTGGCACAGGGTAGGGGAACTCACCCA GGCTGCAAGATGCTAACAGTTCAGGTTCAAGGTCTTAGTGTGGACTAAGGTGCAGTCAGGATGGGAACAGGTGCAACTTGGGCCAACAT CAGTATGAAGGGCCTGATCTGAGGGCAGGGGAAGGAGGGGGGCATTCTGGGAAGCAAGAGTTCCTGGTATCCTGTTGACCAGAGTCTTGG ACTGGGCTCAGCCTTGGCTACTGGCCCGGCAGATGATAGAAGAGAAAAACCAGGAACCCAGGCTGAAGCCCAGTGGTTGGGCTGGCCACA SAGGAGGGTCTAGTGGAACAGGTCTAAACTGGCGTTTGAATTTTAAGATAAGTTAATCATACATTGGCTGGGTCAGCCATGTCTTAG CACCATGCATAGCCTTAAAAGGGGTGGCCTAAGGGCATGGTCCGCTCCAAAAAGGAAAGGGGGGCCCCAGAATATTTCTGAATCCCACTC <u> AČTGCCAGGGAAGAACCTCTCAATTCACTCAATAGTGCATTCTCCTGCTTCTCAATAGGCTAATACTCTAGAGAATATGGGGGACAAGGG</u> ICTTTACAAAAGTAGAACACAAAAAAATTCAATGGAAATCTACAGACACCTATTTGCAGATGAGGAAACACGGCTATGAAGATTGGGAA SATTGGGAAGAACTGGCCAGGTGTGCTCCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCTGGTGGATCACTTGAGGTCAGGA STTGGAGACCAGCCTGGGCAACATAGTAAAACCCTGTCTCTACTCAAATTACAAAATCAGCAGGGCGTTGTGGTGCCCACCTGTAATC CCAGCTATGCAGGAGGCTGAGGCAGGACAATCACTTGAACCTGGTAGGCGGAGGTTGCAGTGAGCCAAAATCACGCCACTGTACTCCAG | GTGGGAAAATAACAAATAGATCTGCTGAGATGGAGGCTTTGACTAATGTTTTAATAACAGGCAACAAAAAGAGGCAGGATATTT CCCAATAAAGAGAAAGCAGGACTCATGTTTAAGAAACCCATGAGATGTGTATGGACCTCATGGAAGAGCTCTTGCTTTCTAATGATCTA ACATAAGCAGAGGACATTAAAGGGACTTTTTTTTTTAAGGATATCTTAATGTTTTAAATGAGAAGACATAGAAAGGGATAGGTCCAAC GGTGAATTCTGGACCTAGGATGGCTGATCCCAAGGCATTCCAAACTGGGGCAAGGAAGTTGTGTGCTTTAAAACTTCTCATTGACTGTCA 3TCACTGGGCATGAGCAGTCCCCCAGGAAGGGGGGGATGACCTTGAGCAAGGTGGATGTCTTCAGCCAAGGGCAAYCACTGGGAAGGAGA CCAGCTATGAACTGTCAGCTGCCAACACTCCCAGCATCTGAGAGGATGAGGGCTTCAATTCTAAGGGCAGGGGCTCCAAGGGCAGGGCAGGGCAGGGCAGGGG 3TGTCTGGCATTTCAGTAGTGCTCTATTTTACAAATCCCAGTAAACTGCTCCACTGTGGCTTGTTTATGTGTTAATACTGCTTGTTTT TTCTTTTCTGAGACAGTCTCACTCTGTCACCCAGGCTGGAGTGCGGTGGCACGATCTCGGCTCGGCTGCAACCTCCGCCTCCCAGGTTCA TTACCGTGTTAGCCAGATTGGTCTCGATCTCCTGACCTCATGATCCGCCTGCTTTGGCCTCCCAAAGTGCTGGGATTACAGGTGTGTGAG CCACCGCACACAGCCAGATCCACTGGCTTCTATATATTTCTGGGTGAAGCTAATTCAGGATTCTGATGGACCTGTCTTCCCGAGGGAA OTTGAGACTGGGTCTTGCTCTGTCACCCAGGCTGAAATGCAGTGGCATAACCTCAGCTCACTGCAGCCTTGATCTCCCAAGCTCAAGCC GCAATGGGATTTTGCCATGTTTCCCAGGCTGGGCTTGAACTCCTAAGCTCAAGCTATCCTCCCACCTCTGCTTCCCAAAGTGCTGGGAT ACCAGGGTGCCAAACATACCCTTCTCCTCCTTTCCTGCAGCTCTACCTCCTCCTGATGATCAGGACAATCATGTATGATGACTCCTTTC YGCAATTCTTGAACCTCCTGAGTAGCTGGGACTACAGATGTGTGCCACCACACACCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGT TGGATTACATGCTGCATCCCGGAGAATGGGCACTGCATTCTCACTGGTCATCATGTCAGAGCCTGCGCTGCAGAGGCTTTCCCATTGC ICTGTCAGTGTGTTATAGGGTCAGTGGATTTCATGGTCATGTGCCCACTGCTGCACCTCCATTCTTGTAAAATGGGTCCTCTGGTTCAA GGCTGGTCTCCTTGAGGGATGGTGCTGTTCTGCATCATCCTTGATGAGGGACCCTGCTATTGGGCTCATGTACAGCCCCCA ACTTGTAAAAGGAAAGTTAGAGGGACAAACTATAGCCCCTGCCACAGCAGCTGCTGTCGAGGACAAAAATGGTGCTCCTCATTTCCCT CTTGACTGCTGCTCTCTCAGAAGGAACCCATTGTGTTGGGTGAGAACACATCATTTGAAATTTAGTAAGACTCTTGCTGTGCCTATGGT AGAAGCATTCCCTCTCTGGGGCCAAGATCTTTAAATGCACAGAGTCCAAAGTCGTGGGAACCAAAGCAGAAATTAAAAAGGAGATGACT <u> 36GATTATGGTAAGAACTGTTTCCACCCTTGATTTGCTGCACCCATGTGTTCTACCTAGGAGATAGCACCCATATACTGGTTATTCAT</u> TGTGATGCCATGTGGGATCTTGTGTCAATAGAATAAATACTCAGATGTTCTGGCTGAAGCTTTACAAGCAGAAAAGGCCAACCGATGAC | ICTCTGCCACAATGAGCGCTCCATTCATGTTCCTATTGTGCCAACACTAGGGTGTCTGTAATCACTGAAAACATTATTGCTATCATTAT GCCTTTATTCCTTCTCTAATGCTGTTCTTTAAGTAGATGTGAATTTCTGAACTACATACTTTTTCTTTACTCTTTGAGAGGTTGTTTGG YCCCTGAGTGGTCTGAGCTCCCAGTTACCAGGCCCTTCTCAGGCTGTGGCTGTTGCACTTACCTCCCCAGCCATCCCCCACTTTTTTT GAAATAAGCGTTGAGCCCAGTCAAGATGAGTTCCTGCTCTTTCCAGGATAGACGGAGTCTAGTGTAGATCACTTGACATCAAAGAGACT AGGTTCCAGCAGGGGACCACAGCTACTCGTATACCCTTGACCAAAGACTGGTCCTTGTCTATCAAGGATGGTCGTCTTCTTCCACCAAG CTGGTAGTCAATGGGGTGACAGTGTCGCAGCCAGATTGCCCTCACATCCAACTCTTAGTGATCTTCTTCTTAACATTTCTTGCAAGGCAG 'ATTATITITITITITGAGACAGAGTCTCGCTCTGTCGCCAAGGCTGGAGTGCAGTGGCACGATCTCAGCTCACTGCAACCTCTGCCI CCCGGCTTCAAGTGATTCTCCCGCCTCAGCCTCCAGAGTAGCTGGGATTATAGGCATGCGCCACCACGCCTGGCTAATTTTGTATTT *AGTAGAGACAGTCTTTTGCCATATTAGTCTGTCTGGTCTCGAACTCCTGACCTCAGGTGATCTGCCCGCCTTGGCCTTTCGGAGTGC1

3GCCAGGATGGTCTTCAGCCTTCTTAACTTTTAAAGGATAATTTCACGGGGAGAATTCTAGGTTAGTGTATTTYTCTTTCAATACTTTA TATCCTTTCTGGTGTAGTCTGAGCTCCCTAAGTCTGTGGTATGGTGTCTTGTAATTGATTTGGGAAAATTCTCAGTCATTATTACTTC SAGCTITICAAGTCCTCTCTTGTAACAATTITGAAATATACAATGCCTTGTTGTTAACTAGTCACCCTGCTCTGCTCTCAAACACTAGG CATACCTCTGGCTTCTTTCGAGAATTTCTCTTTGGTTTTCCTACAGTTTGAATATGATATAATTATGTATAGACTTGGGGCTAT <u> AAATATTTCTTCTTCGTTGTGTTTTTTAACTTGTGCCAACTTTTTAATTGATACATAGTATTTTACATATTTATGGGGTACATGT</u> ATAGTGTTCCATTGTTTATATAGACCACATTTTACTTTATCCATTTGTACATTGATGAACACTGAGGTTGATCCATATCTTGGCTATTG GCTGGATCATGTGGTAGATGTATTTTAAGTTTTTGAGAAACCTCCATACTCTTCCATGATGGCTGTATTAATTTACATTCCCATCAAT ICTCCCTCTGTTGTCCAGGCTGGAGTGCAGTGGCCTGATCTTGGCTCACTGCAAACTCTGCCTCCCAGGTTCAAGTGATCCTCATTCC AGTATATGAGTTCCCTTTTTTTTTCTGCATCCTCACCAGCATCTATTATTTTGTCTTTATAATAATGGCCTTTCTAACCAGGGTAAGAT CAGCCATCTGAGTAGCTGTGGTTACAGGCGTGTGCCACCATGCCTAGCTAAATTTTGTATTTTTAGTAGAGACGAGGTTTTACCGTGT GAATAGTGCTGCAATAAACATGGGGGTGCAGGTATCCCTTTAATATACCGATTTCTTTTCCTTTGGATAAATACCCAGTAATGGGATT GATATCTCATTGTGGTTTTGATTTGCATCTCCCTGATGAGTAGTGATGTCAAGCGTTTTTCCATATGCCCATTGGCCATTTGTATGTC CTTTCTTTCTTTCCTTCTTTCGACCAGTTCTCACTATGTTGCTCAGGCTAGCCTAGAACCCCTGGGCTCAGAGTTATCCTCTCAG CTCAGCCTTTCAAGTAGGTGGGACAAATGCGCCATTCTATCATACCCAACAATTCCTCATTTCTGTTACAGTGGTTTTTATTTCTAGCA FCAGCATATTAATTAGTTATTTCAATTCTAGCCTGATAATTCCAAAATCTCGGTTATATTTGAGTCTGTATCTATGCTTGGTTTGTCT CCTCAGACTGCGTTTTTCCTTTTAGGATGTCCCTTATCATTTTTTGTTGAAACAAGACATGATGTATCAGATAAAAGTAATTGAGGT ТССТТССТТССТТССТТССТТССТТССТТССТТССТТССТТССТТССТТСТТТСТТТСТТТСТТТСТТТСТТТСТТТСТТТСТТТСТТТСТТТСТТТСТ

-16.3A-2

AAACAGGCCTTTAATATGAGGTTTTATGTTTATCTGGCTTGGAGTTAGGCTGTGTTTACTCTTTGCTGTAACTTTGGTGCCAGAGGCTA CTTTAGCTGTAACCCCTCTTATTATACAGGAGCCTTACGGATGTGGTGGTAATGTGGGAGGGTGGGCTTAAGTATTCAGCAGTCCTGTG ATCAGGCCTCAGTCTTTTAATAAGCCTGAGTACTTCCCTTTCCCTTTCTGCATGTTAGAGTGGCCTGGAGTTGGGGGGTATCCATTACCC CAGGTTGGTAGGCTTTGGTAAAACCACAGTCTATCAAGCTGTGGTAAAATAGTTTCCCTGCAGTCTGGCTTTGTTAAGGATAACAGAGG 3TGGGGTTCCTGGAGGTAAAACTCAGGAAAGTGTGAGGGCCTCCACACAAAGGGTCTGCTGAAGTTTGTTCCATAGCCTCAGTTCTCTA ATGGATCTAAGAAGAGTTATTGATTTTCAATTTGTCCAACTTAATTCTTGTTTTGAAGACAGAAGTGATGACTTCCAAGCTCTTTATAT GTTGAACCCAACCCCATATTATTTTCAATTAGCAATTGCATATAGCAATGGTACATTGCATTTATAGAAATATAATTGATGTTTGCCTG TGTATCTTTTTCCTATTATGTTGCTGAATTCATTTCTTAGTTCTAGGAATTTTTCAAATACATCCCTTAGGATATTCTGTATACATAA TCATGTCATCTGCACATAGGGACAGTTTTATTTCTTTTTTCTAGTCTGTATTTCTTATTTCCTTTTTCTTTGCCTTATTGCAGTGGCTAGAA ATTGAGCATAATGTTAGCTGTAGGTGTTTTAAATCTTTATCCAGTTGACGAAGTTACCCTTTATTCCAATTTTTCTGAGAGTTTATATC TCTATTTGCTAATATTTTGTTAAGGATTTTTGCATCTGTGTTCATGAGGGATCTGGGCTGGTAGGTTTTTTTCCCCCCCTGCAATGTCTC SATCTTGGCTCACTGCAACCTCCCACCTCCCAGGTTTAAGCGATTCTCCTGCCTCAGGCTCCTGAGTAGCTGGGACTACAGGTCACACCCA AGGCTGTAGTGCAGTGGTGTGTCACTCTGCTCACTACAACCTCTGCCTCCCACGTTCAGGTGATTCCCCTGCCTTACTCAGCCTCTGGAG 3AGCTGGGATTACAGGCACCCGCCACCATGCCCGGCTAATTTTTTGTATTTTTAGTAGAGGGGGGTTTCACCATGTTGACCAGACTGG TTGAGACAGTCTTGCTGTTGCCCAGGCTGGAGTACAGTGGTACGATCATGGCTCACTGCAGCCTCAAACTCCCAGGCTCAAGTGATCT GCCCAGAGGATCTCAAGCAATTCACCTACCTTGGCCCCTCTTCTTGTATTTTATGGAAGAATTATTGGTGTCAATTCTTCTTGAAAGT ICTCGAACTCCTGACCTCAAGTGATCCACCCGCCTCGGCCTCTCAAAGTGCTGGGATTACAGGCATGAGCCACGCGCGCCCAGGCTGAGGA AAATTTCCTCTGGTGCCCTTGTTTTTGTCTCCTGTTATGTTTGTGTTTCCACAGAGTCTCCGTGAATATGGTGTGAGGCTTGAAGT ATAAATGTGTTAAATTTTGTCAAATTTTTTTGCATGTATTGATATGATTATGTGGTTTTTTCTTCTTTAGTTACTGCAGTGGGTTGCAT TCCTGCCTCAGCCTTCCCAGTACAGGGGCAGGCTACCACATCTGGCCAATTTTTAAATTTTTCTTTTGTAGAGAGGGGTCTCACTATGT TITCTITITGGGGAGTITTAAATTATACAATCAATTTGCTTAATAGGTATAAGCTATTCAAGTTATCTATTTTATACTGGATGAGTTGC <u> AATAGTTTGTGGTTTATGGTTTATATGGTCCATTTCATCTGAGGTATAAAATTTAYTTGTGTAGTATTGTTGGTAGTATTCCCTTGTT</u>

16.3A - 3

CGTAGTCAGAGTGCATGCTCTGTACAGTTTCAGTTCTTTCAAATTTATTGAGCTTTGTTTAATGGATCTGGATACAGTTTATCTTGGCA CATATTCGATGTGAAATCTTACATTATTCACTCGGGACTTTTCTTTTTTTGATGTATGCATTTAGTATTCTAAATTTACTTCTKAGT 4CTGCATACTGCTTGAACTATGTCTGACAAATATTAATATTGTTTTTAAATCTTTATTCAGTTCAGTGTATTTTAAAATTTTCCTTT ICTGCCTCTTCTTTGATTTGTTATTTAGAATTGTGTTGTTATTTTCCGAGTATTTACATTTTCCTCTTATCTTTCTGCATTGATTCCAT <u> GCGGTGATTAGATACTGTTGGTTGATGATGTCATTGAGGGTCCGATAACCCTACTGATTTAAATTTTAGTCTGTCAATTATTCAGA</u> <u>SAGAGAGGTGTTGAACTCTGCAATGTGAATTGTGGATTTGTCAATTTCTCCTTTCAGTTCTATTAGTTTTTTCTTCACATATTTTACAA</u> CTCTGTTGTTTGGTGCATACACATTTATGCACCAAATTTAGGATTGCTATAACTTCTTGGTGGATTGACCCTTTTACATTATATATGT ICATATATGTACATAGATATATATATTTTTTTGAGATGGTGTACTCTGTCACCCAGGCTGGAGTACAGTAGTGCTCACTGCAACCTCTG GECATTACAGGTGTGAGCCACCGTGCCTGGTTTAATATTTTTAATCCACTCAGTCTTTGTCTTCTACTGGTGTACATAGACATTCGCAT TTTTTAGGGGTTACTTTAAGTATTTCATTATATGTACATAACTTATCACAGTATATTGGTATCGTTATTTTACCAGTTCAAGGTAAAGT GTIGITICITCCCTCTTTATGCCCCATAGTTCCTTCTTCTTTGTTTTCGTTTAGAGAACTTCCTAGCCATTCTATTGGGGTAGATCT CCTAGTGACAAATTCTCTTAGCTTTCTTTTCTCTGTGAATGTCTTTATTTCCCTCTTTGTTCCTGGAGGACATTCTCACTGGATATAGG ATTCTTGGCTATTGGGTCTTTTCTTTTGGCACTTTTGTAAGTGTGCAGCCTGCTGTCAAAATAAAAATTAAAATAAAATAAAAATGAAT GTTTTCCTTTGCTACGTTCATGAAAGTATAATTCACTGAATGAGGAGGGACACCCATCTCTATAATCTGGAGGCCCATGCTCACCTCT TTAGTAGAGACGGGTTTAACCATGATGGACAGGCTGGTCTCGAACTCCCGACCTCCAGCGATTAGCCCACCTTGGCCTCCAAAGTGCT AGAGAAATGGTTTAAAGGAACTAAGGCTGTTTCTCCTAAAAAGAAAATAGTTGGAGACATGTGACCTCCAAAGAAAAGAACAGGACTTTTTCT ATGGGGCTCCAAGGGGTTTCTATGAGAATGATAAAGGAGAGATTTCAGCTTAGTCTCAGGAAGACTTTTCAACAACCAAACTGCCC AAAGATGGACTGCCCTGCCTAAGGATTGTGTTCTGACATTAAGGGTATGGAGGTATGGGTTAGATGATTAGAATATTTTACCAAAATGCCATAG CICTCTCTCTGGTCAGTCTTTCCAGAGGTTTGTCAATTTTGTTGACTTTTTCCCCCCAAAGAATCAGCTCTTTGTTTCATGGATTTTC GTAATGTAAATGTTGATATGTAAGAGCTTGAATCTGTTATGTTTTTGCTTTCTCTATGTTTTCTCAATTTTTAATTTCTCTGTTTTCTT SCTCCTGGGTCAAGTGATCTCGTGCCKCAGCCKCCCCAGTAGCTGGGATTACAGGCACGCACCACCATGCCCAGCTAATTTTGTATT

3ATGACTGCTTATGGGAAATGTGTCTGCTTTGTTAGGAATCTTGCCTAATATATGTATAATTCAAGATGGTATTATAAAGTGACATATA AAAAAAGAAGCACAAAAAAGACGGTGACTGGCAACAGCCTCACTGGAATACGTCTCTAATCATCAAGGCAACCCACACTCATTTGGATG AGAACATTTTGGAACTACGATTTTGGTGGCAACCAAAAAACCTCCAGTACATTCCTCTGAACATTCTCCAGAGGCAAGTCTTTCTCC GTGCATCCGGTGATGTTATTATTTTAAAGTTATGTGCCACAAAGATGCATTCTTTGCTATACAAAAGAGCTGTTGTTAAAATTTATAA AAACATGCCTCCCAAGCCAACGTTCATCATCCAGGAATACGGAGGATGTTTGGGATATGGGGGGCATGAAATTTTACAATTGTAGG ICTGGCTCCAGGATCCAGGCTCAAAGCCAATATACTATCCACCACCCCAACTCTTTAGTTTGATCAATTTGTCAATTATTTTACAGTT YGATATAAAAAGGGGAAAAGGAGAAGGCACCAAATGGAAGATTCTTAGGCATTAAGTGCTCAGACAGCATAGATCTTCATTAGATGACGT 3CCCTTTAACAAGGGTAGACTTGCAAGTTGCACTGMCTTTCCTGCCCTCCTCTGGCTACCTGTTCCAGCATCCAGAGTTTGTGAACCTG CGATAGAGAGTTGCAGATTTCATTTTGATGTTAGCGACCACACAAAATTACTTTCCCTACATAAGAACATGTTATTACTCTAGTTGA1 GATITTAACATTTGCACTTAAAATAACACTTATTCTGTACCATGMASTGTCTAGGAGCTTCTACATATTCCATTATTATCTTTATTT ATTTATCTGTAAATTAAGGGGATAATTGCCCAGTCAATAAATGTGTCCCCTTCAAAGGTTACATACTTAACCAATGGTGCTACTGGGC ATGGAGACTGGGCTTCATTTTTGAATTAGCCTGAAGTTGTTTGAGGTCAAATCTGATGAAAAGAGCGGCTGGGGAAGCTGGATATTT 3GGMCCAAGGACAGCACCCTGGCATGGGCAGGCCCACTNGGCGACTCTCTCAGGGCTGCTGCAGCTGTGTCAGTGTCCCCACAGGGAGN 3CTTTTTTTTTTTTAACTGAATTAAGTTGCCAAGTTTGAAAATCAGAATTTCACATAAGATCCCTATTTCTGTCTTTTGAAAAA JTGAATGTTCTTTCCACAGTGAGCCCACATTCCTTCCTGACGACCATCACCGTTCAGCTGGAGTAGAGAGGGCTCTGCTGGCTTCAGAT CCGGACGCGCAGGTCCTCTGCAGGCCCCGCCCACCCGGCGTCACCTGCAGGTCCCGCCCACCCGGCGTCTGCAGGCCCCGCCCACCCGG ATATTTCAGGCTATTGATGTTGTAATATCATACTAGGCAACTCCACTTCAATATGAGTCTCTATGATGTAAAATGAAATAGGATGTGT SGTCACCTGCAGGCCCCGCCCACCCGGCGTCTGCAGGCCCCGCCCACCCGGCGTCACCTGCAGGCCCCGCCCACCCGGCGTCTGCAGGC CTGACATCCAGCCATGACCATCGCATTAAGCCCAGCAGTCAGGGCAGGGGAGCAACTGCTCAGAGGCACCTTTGACCCACTACTTTTT CCCTCCTGCTTTATCTGCCCAGAGCGAGGCTCTCTTTCTAATGTGTACAAGGCGTTCTACCTATGACTCGTGGTCCTGCCATAGAAA <u>3GTTGGTTTCCACCMTGGAGGTTGCTGACACCCTGTGCCCTCGGCTGACTTCCAGCCGGTGGCACAGACGCCTCCAGGGGGCAGCGCACTC</u>

-16.3A-5

AAGCGCATCTTAGGAATGACAGGTGAGARCATCCTCCGGGCCCCAGATTTCTCCTCGCCGCTCTTGCCCATTTCTCCGGAGAGCCAG

ACAAAAATTAGTCGATTGTGGTGGTGCATGCTTGTAATCCCATCTTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCG AGAAAGCCGCTCCCAAGTCCAAGGCCGAGCTCCGCAGACGCCCGGCCCCTCCGGCGCGGACAGAACAAAGCCATTGTTCTTGCCGGGGA 4GGTAGAAATACTGTGGGCTGCTTCAGAGGCTGCCGAGCAAAACTCAGGCAATCTCCTGGGCTGTTCCAATACGTTTATTCTCTTTTTT AAAACAGGAGGAGGAGGTAGAGGCGGGGAGACACACCCTGCAAAACTACTGGCAAAACTAAGCGGAGCCGGGTGTGTGGTGGCGCTCTCA SECCTGTAATCTCAACACTTTGGGAGGCCGAGGGGGGGCCGATCACTTGAGGTCAGGAGTTGGAGGCCAGCCTGGCCGGCATGGTGAAAC CCAAGCAGAAAAAAAATCACTCTGAAAACGATCACATCTAACTATCAATGCTCATACAGTTTATGGAATTATCAGCCCAACTTGATAAA ATCAGTATTTGAGGAAACTGTGGATAAGCCCCCTGATTTCAATCCCCATTGTGCCAGGTCCTGGTTAACTGAGGTTAACGAAGTAAAGA 3CTGCAGACACTATTAACTGCTACCTTAAACCGATTACTCTAGCTTAGCCTACTTTCCACGTACAGATTTTACCAGTGGACAACATGAT SAACAGAATTTTCAAACTCAACATTAATGCAACTCCTCAGTCCCTGACAATGGCGGGTGGAAAAGTTTCTAAAAATATGCAGCAGCACA SCTITATCTIGITITICICICCCTGGGACTITITCTCCAGACATTGAAAACAGAAATACTAATAAGGCCACTTITACCTGCCTGATGCAA AGGACATGCTGGAATGTGGGACAGTAAAAATCACTTAAACTTTGCGTGACCTTGAAGAAAGTCACGATGATCTGTTTTTCCAGGTCCCT CAGCCTGGAGTCTCTTTGAGTCTCCAAGGCTGCCTGAGTTCCTCTAACATCCTCTAGGCAGTATCAGCTAATGAGACAATGAATTCC ATGGAGGCAGCAGTGGGAACAGAAGTACCTCTTGGATAATTTACAACACTGGTGAGCAGAGGGTCAGATCACCCTGGGGTTTGTGTC ACAACCAAAAAAGTGGCTGTGGCACTGAGTTCTTGGATGGTTTTCTACAGCTGGTCCAGATTTTCCATGGGCTCACCTTTAAATTAAAA GTGCCTATGTTGTTCTGATTTACTAAACTTTAAAAATATGTCCATTGTTGTCTGTTAACAGCTTTTGGCAACTTTTTCAGAGATTGAAA 4GGAATGATTATAGTAGATTTTATAATGCCATATAAGGTTTCTTATTTAACTTCATTCTTAATTCTCAAAATAAAATGAAATTACATAG GAATTTCTGCACTTTGAAGAATTTGAAAACAAAGCCATGTGTGAGAATATGAGATCCACTCATATGCCCTTGCAAGAAATAGGTTGCAT IATGTGAGCAAATTAGAGAAATGAGTACAATTATTAGCTAGTACCATTCAACAAGCGCTAAAGGATACAAATACCTCTACAATACATAAA TCCTTTTTCCGGACTTAÀAAAAAAGCACCCCCTCTTTCTTTTTTCAGAAGGCATATATGTAAATGATTCCAAATTAATCTTTAGCAT IATCTTATTTATCTATGAAACAGGATTGGTAATACTCATATCATAAGGTTGAAAGGATTAAATGAGGCACTATGGAAAATTTCTAACAT TTATTACCCAAAATGTCAACGACTGTCATAAAGATAAAAATTAATAATTGGCCAGGTGCGGTGGGTTCACGCCTGTAATCCCCAGCA AAGCAAAGTAATATAGTTACCAGAATAGTATTTTTACATGTCTTTAAGTGTATGTTGTTGTTGTTGTTTTTTAAGGTAATTATGTGATGT TGTGGAAAGAACAGAGCCTGGGTTAGATAAAATTCCGGTTGTCTACCAGATTGTGATAGTGAGCAAATTACTTAACCTCTATGATCCT CTTTGGGAGCTGAGGTGGGTAGATCACAAGGTCAGGAGATTGAGACCATCCTGGCTAACGCGGTGAAACCCCCATCTCTACAAAAAAC 3GTGGTGCCTGGGACAGTAGAAGATGCTTAATAAAGATAGCTTTCATTATTATTATTAGCTTTTCAGGTGATGGTGATTGTAAATGT

1G.3A-6

AAAAATTAGCTGGGTGTGTTGGCGGCCGCCTGTAGTCCCAGCTACTCATAGTCCCAGCTACTCAGGAGGCTGAGGCAGAAATGGTG TGAACCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGTCTGGGCTACAGAGCCAGACTTCATCTCAAAAAAA AAAAAAATTAATAATATATAAACCCGAAGTATGAACTGAATTATTTCCCTTAGTAGCACATCACATAGGCTGATGATAGTTTTGGTG ACATTGTAAATACTACATATTGGCTAAATATTTCCTGGACAGGACATGAAGGACACATAAATCAGTCTCTGTATGATGTTTCTCACTGTA
 ATGGAGTTTATCTGGCTCAAGACCAGGACATTTATTGCATATCAGGTTTCTACAGTTCAGGCAAAAGTTTGAGGATAAGGACTTACTGC
 AAAAAGTCTTCTATTGTTCTCAACCATTTTCTCGCTTAGCACATGCAGAGATTTGAAATGGTCCGTGGTACAGTAGTTGTGTGTTGTATAA 3GAAATTTGTGGAAAGAGAGGCTTATTATTTCTAGAAATATGCTAGAGTWCGTTTTGATTGTGCACCTGAGGAATTAATAGATTAAGTA TTTCTCTTGTAGAATATTAGAACAAGGGATTTGCAGTTTACAGAGAAGAAGGCTTGGCGAGGTGTTTGGAAATACACTCAGAAACCTGA ITITTATTITITATTIGCTTCAGTAGCATTADCCTTTCCTACCAAGATTCGAACAATCCATTTGCCTTTTTTTCCCTAAAATCTCTCAT GTTTTATAAGGACTGGGGTTAATAGAATACTGGCAGTGAAGTTTGTCTTAGGACTTCTTAATTGGATAATCAGTGAAGTCACCAGATCC CATCTGTCTCATTAAAATATCTGGATTACTTCGTGCCTCAAAAATATCCTCGGCTTACCTGACTCTAGACAGTCAAGAAGCTTTATTA 2AGTTAGAGACAGTTCCAAGTTTTACAAAACGCAAGATAACTGTCCAAGAGCTGTAATGGCTTAATCATCTTTGAATAATACTCTCTC TGAAGCTATATCATAAGAAATAAAAATCTACATTTTAAAAAATTGGCTGTAATCATAGGGTGACTAACTGTCCCTGTTTACCCAÁGACT TGTATCTTGTGCTGATAGCCCCACATGGATATTTCTGTTTCCAAGTTTGTGTCACTTCTGGAGATATTAGCCTGAACTCAGCAAAATA 3GATGATCAAAATGAACCTTTCCAGTGAATTCTGTCCTTCTTGTGCTGTTGTCATCTGACTTAGATATACTGGCCGGGCGCGGTGGCTC CAGGGTTTCCCAGGCTGAGGGACAATGGGTACTAAAACCAGGACAGTCCCAGGCAAACTGGGACGGTTGATCACCCTACCCAATGGCCT ATTGTCTAATGTATGCCACTTTCTGGAGGTGATATTGTTCAACTGATAGATGAGCATCACTGATTGAAATATTTTGTGGTTTTCATGCT ACACCTGTAATCCCAGTACTTTGGGAGGCTGAGGTGGTTGGATCCCTTGGGATCAGGAGTTTGAGACCAGCCTGGCCAATATGGTGAAT GAAGCCCTGTCTCTACTAAAAATACAAAAATTAGTTGTGCGTGGTGAAGTGTGCCTGTAATCCCAGGTACTCAGGAGGTTGAGGCAGGA SAACTGCTTGAACCAGGGAGTCGGAGGTTGCAGTGAGCCCAGATCACACCACTGCACTCCAGCCTGGCAACAGAGTGAGACTCCATCTC AAAAAAAAAAAAATTAGCTGGATGTGGTGGCACATGCCTGTAATCCCAGCTACCTGGAAGGCTGAGGCAGGAGAATCGCTTGAACCCA 3GAGACGGAGGTTGCAGTGGGACGAGATCGTGCCACTGCACTCCAGCCTGGGTGTCACAGCGAGACTCCATCTCAAAAATAAAAATCA AAATTGGCCAAAATAGGTAACAGACAGGGTCAGGCGTGGTGGTCATGCCTGGAATCCCAGTACTTTGGGAGGCTGAGGTGGGAGGACC CAACTTGCTTGCCTTCCTGCCTGCCTTCCCTAAAATACTAAGTTAAATGCAATACATGCCCTGACATTGTAGTTTGCTTTCACAAAGAT

TTACTGAATACTTACTCTAGGCTAAACCTTGTGCTACATGTTGGGGCTACAGGGATGAAAGARAATTGGTCTTGCCCTCCAGGAACCT

SCCTCCAGGAAGGGGGGCTGGATCACTGTGGCTCATTGCTCTGTGGCTTCTGATTGAGTTCAGCCAATGGGAGGCATMATTTTGGCGTG CGCACCATCAAGAGTGCCCATGTAACAGAGATAAGTAAATGCATCTTGAGCTGAACACTGAAGGATAAGAAACAAAGGGGAAAAAGAC TAGAAGGGGCAATATACAGCAAGGAGGAAAAAAATAAACTACTGTGCATTCATGCCAGTGTTAGCATTTAGGACATCTGGAAGCTAGAGG GGAGTGGAAAAGGAGAGAGAGTGATAGGAGCTGGGGTCAGAGATTTCAGGGTGGGGAAGGTCTTGCAGGACCTTGTAGGTAATTGTAAA ACTGCCCACTTCTGAAAACAGTTTCTGCATAAAGCTATTTTCATAATTTCCTCTGATGTGCCTTCTGTTTCCTGTGTAGACCCTGATT SACCAGCTACACTGGCATMAGCTGGGAACTTGTTAGAAATGCAGAATCCCAAGTCCCCGAGACAAACTGAATCAGAACCTGCACTTTAA GAGACAGAATAGACAAGTCAGAGACAGGTGGGAAGGGCCTAAAACAGGGCAGAAGTAGGGAGGTAAATGAGGAGACAAATACAAAGGAA
 ATGCGTAGGGAAGAACAATGCACCCCTTTACCCAGCCTCCTCCATCATTAACATCTTATGCAACTATATTATAATATCGAAAACAATCAA
 TTATCATATGTGAAGCTTTGCTACCACAATCAAGATATTCAAGCCATTAGCAGAAGATTTTCTGGTGTTACCTCCTTATAGCCACACG CATTCCTCCATCATTAACCCCTGGGAACAACTAATCTGTTCATCTTTAATTATTTTTTTCACGAACATTTTTGTAGATGGGTACATG CAGTGTGTATCTTTTGGGATTGGTAACAGAGCAAGACAGGATCTCACTCTGTCACCCAGGCTGGAGTGCAGTGTCGTGATCTTGGCTCA AATTITITIGEATTITATAATGATGGGGTTTCACCATTITIGCCTAGGCTAGTCTAGAACTCCTGGGCTCAAGTGATCCAACCGCCTTG JAATAGGAAAATAAATTATTGAAATAGAGGAAGAGACAGGTAATAGAGGTATACACAAGTAGAATGGGGCAATAAATGGCGCATTT GTATCAATACTTCACTCCTTCCAGTTGCTGAGTAGTATTCCATGGCTTGGAGGTGCTAGAGTTTATTCATCATCACATTCAACCCATTGAA 3GMCATTTGGGTGGCTTCCAAGTTTCCAGTTTTGGGCTATTATGAACAAAGTTACTATGAACATTCATATACAATGGATACTTTTTGTA 3CAGCTCTGGCTGTTCCTCTGCAATTGCAGTTCCCTCCTCCAAGGCTCTGGCTCTCACTGGGTTCCTGTATCCAATAACAGACTCCCT TTGCAGCCTCCACCTCCTGGGCTCAGGTGATCCTTCCACCCCAGCCTCCTGAGTAGCTGGGACTACAGACACACGCCACCTCACCTGGC **AATAGTATCCTTTTCAAATGAAAACAGTAATTTAACATAAACTATGAACTTAAAATCTAAAGTAAAACTTGACAACAGTGATGCAGAAT** TTTTGCTCCTTAGCTCAGTTAGGTCTGTGTTCTTATCTTATGACCAGGAAGAACTAGGTACCCTGACATCAAAGAATGAGTGGCATAG CAAGATCCCAGGTGGCCCATTTGTATGGTAGAGTTTAAGAAGCATTGGTTTAAAAAGATCCCTCTTGATAGGAGCATGGAAGATACATT AATTTATTAAGCAAAAAGGAAAGCTCTCAGGAAAGAGTGGGGTCCTGAAAGCAGGTTGCTGGTTGCCCCTTCGTAGTTGAATACAAGGG

16.34-8 CTICTATATAAAACCTGATGGGGCCGAGTTCCCTGTTCGTATAAGGCATGAATTCCTGGTGGCTCCACCGCCCTCCCCAGTGCGTATG

GGGACCTTCGTCCACTAGGGACATGTTTAGACAAGCTCCCTGTGCACGTTCCCTTATCTGCACAAAACATGGGTTGGAGGTTCTCCGG GGACCCTTCCTTTACTTTCTGCCTAAAGCAAGCTGGCTAACTCCTTTCAACAATACTAAAGACATACAGACAATGGTTCTCAGTACAAT AATTTGAAGAAGGAACATTCTGTACAGTCACGGAAAGTGTCAAAAATGAAAATGAGGCAGGGTGTGGGGGCTCACGCCTGTAATCTCCG CACTTTGGGAGGCCTAGGTGGGTGGATTGCTTGAGCCTAAGAATTTGAGACCAGCCTGGGCAATATGGTATAACCCTGTGTGTACAAA GAGTAA TCCAGTATAGTGGTTTTTTTGTTGTTGTTTGTTTTTTTTGAGAAAGGGTCTTGCGCTGTCACCCAGGCTGGAGTGCAGTG GTACGATCTTGGCTCACTGCAACCTCCGCCTACCAGGTTCAAGCCATCCTCCCAACTCAGCCTCCAGAGTAGCTGGGACTACAGGTGTG STCAGCCTCCCAAAGTGCTGGGATTGCAGGCGTGAGCCACCACACCCAGCCCCAGTGTAGTCGTTTTTTCTTTTTATTCTATG AATACAAAAATTAGCCAGGTGTGGTGGCCCAAGCCTGTAGTCCCAGCTACTTGGGAAGTTAGGGGTGGGAAATCCTAGGTGACAGAATGA CGCCACCATGTCCAGATAATTTTGTATTTTTTGTAGAGATGGGATTTTGCCATGTTGCCTGAATGCCTGGGCCTCAAGCAATCCACCCTC TTTAATGAATTTACACGTTACCCAAATGTTCCCTAGTTTTTCTGCCTTCCAAGATCACTCTGGAAGAATATTTAAGAATATACCAAAT JATGCTCCTAGGTCAGGGTCCTCTTTGGCATGACACTACCACCACAGTGCAGACCCACAGGGGAGGAGGACGGCCACAGTCCCTCA ICCATGTCACCAACCTTTCTCTGAGGGAACCTACTGGCCACCTCCCTTTAGGACCAGCCCATCGTCCACAACGTGGAAGTCCAGCGTTTC CGTTCAAATCGGAGTTCTTTCTTCATGACATTTCTTTGCAAAGTCCCGGAACCCACAGCTCTGAGACTCTGGCTGTCCCCCAACCCACC CGCCCCAGAACAACCACCGGCTTCTTTCAGTGTAGCCAAAAGGCTATTGGAGTCTTCTCAAATGAAAGAGATTTTATCAAAGGCTTGGA SGAGTGTTTAGAGCAGGAATGTTCTTGGGCATCTGCCTTCCCCCACCAGCACCCCCCACAAGGCAAGGCAAGGCCAGTTCACCCTCAGTGCTCA CATITIAAATATITAAGTAAACTTAAAATGGTGTITGTITTGATTTGACATITTAAAAGATATCGCTGTTCTAAAAATTCTGTGTTTTT GTCACCCAGGCCAGAATGCAGTGACACGATCTCAGCTCACTGCAACTTCTGCCTCCCAGATTTAAGGGTTTTCTCTTGCCTCAGCCTCC CTACTAGCTGGGATTACAGGCTTGCACCACCTACGTCCGGCTAATTTTTGTATTTTTAGTAGAGATGTGGTTTCACCATGTTGGCCAGG <u> AGTTGTTTGGGCTCCTATTCTACAATGTGCTATTACTATTAAGCATTCTTGTATCATGGCATTCCTCAAATAGTTTTTAAATTACTTT</u> ATCCCCCTTTTCCAAGATGTGCACAGCCTGACTCCTAACTCCCCACCACTGACTCTAGGGGAAAAAAGAGCACAGGGCAGGAAACGATT CCCTCTCGGTTGCCAGGCTGGAGTTCAGTGGCATGTTCATAGCTCACTGAAGCCTCAAATTCCTGGGTTCAAGTGACCCTCCTACCTC CAGGTCTCGAGCTCCTGACCTCAAGTGATCCACCCGGCGTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTACGCCCAGGC <u> ATTITATTTTATAATTTTGTTTTAGACAAGGTCTAGCTCTGTTGCCTGGGCTGGAGTGTAGTGGTGCAATCACGATTCAGTGCGGCCCT</u>

-16.3A-9

35ATTATAGGAGTGAACTACTGTGCCCAGTCTTTTAAAAATTTTCAAGAGATTGGGGTCTTGCTATATTGCCCAGGCTGGTCTCCCAC | CCTGGTGTTAAGCGATCCTCCCACCTCAGCCTCCTTGAGTAGCTGGGATGACATTACAGGCACACACTGCCACCACTGGCTTGAGTCTAAAAC AGTGACCATCAGGGAACCGTCAGATGCATGCCAGACTAAAGCAGAGTGAGGCTGTGCTGGGTGCTCTGTGTCTGTGGCTGCCCGTGCTCTCT <u> ACTTCCCTGTCTTGCTCTGTGCCTTTGGGAGGTTGACCCTGAGTTGGCATCTCAGGGTCTCAGTCTGCTGGTTTCCTGSGTTTCCTCGGTTTCCTGSGTTCCCCCTTG</u> SAATAATTATGTTTTATTCCAGAACCCTGACAAATGAAGAGGCCTAAAAACCCCCTAGGTATTATCCGATCTTGGTGATCAGGGAGGTG AAGGCTACTGCTCCCACAAGGCAACCACGGTCCCCGCTCTGGCTCTCACTGAGCTCCAGAATCATTGTTTCCTCCCCTTACCCAAGTGA TTGTTTTGTTTTTAATGCAGACACATAGTTTTAAAAATTATTCACTTCATCTACTGTAAGAAAAGTCATATTAATTCACAATTTTGA <u>TAAAACAAACAAACAAACAACTTCTGTGACATTTTGGCTAACAAGTGGTTCAATATTAAAGCTTTGTCCACCAGGTGCAGTGGTGGG</u> ICATGCCTGTAGTCTCAGTGCTTTAGGAGGCTGAGGTGGGAGGATCACTTGAGGCCAGGAGGTCGAGGCTGCAGTGAACCATGATCTCA ATTTATAAGACATGCATATAATTTACTTGACCATTATAATACCATTATAATATCTAAATCTATTTCTTTATCGTCCAATAATCCACA GATCTCCTGGGTTCGAGTGAGCCTTAGCCTCCTGTTTAGCTGGTACTACAGGTGCATGCCACCACCTAGCTAATTTTTAAAATTTTT ATAGTCCTCAAAGTTTTGTACGTATCTGAGCAGTCATCAGTTGCACAGTGCAGAGGGATGAACTGCCGTCCCGCCACCTAAAAAGCATT CAATCTGTCTCCTTTGGCCTGGGTCTCTCACTGCCTTTTAGATAAAAATCTGGCAATAACCAAAGAGTTTTCATAAGGCCTGTTGATCT SAGTCAGCACACAAGGATTCTTTTTCCATATAGGCTGAGTATTCCTTATCTTACATGCGTGACGCCAAAGTGTTTCAGGTTCTGGA TGTTTTGGGATTTTTGAAATATTTGCATATACACAATGAGATATCTTGGGGATAGAACCTACATCTAAACACAAAATTCATTTATGTTTC ATATACACCTTATACACGTAGCCTGAAGGTAAATTTACACAATATTTTTAATAATTTTCCACATAAAACAAAGTTTGTATACATTGAAC CCATCACATGAGGTTAAGTGTAGAATTTTCCACTTGTCTCTCTGTGCTTAAAAAGTTTAGATTGGCCAGGCATGGTGGCTATGGCTA CATCAGGAAGCAAGGTGTCCCTGTCTCAGCCACCCACAAGGACACTCTGTAGTTGTCTTTCATTCCTGATTCCGAATTTATACGCTACT TGCAGCAGAAAGGAGCTGGGAGGGTCCTTTTTTCCCTTGGGGACACGGAATAAATTGTGTATTATGTGCCTGCATTTTGACTGTGAC CTACTAAAAATAAAAAAGTTAGCCTGGCATGTTGGTGCTTGTAATCCCAGCTACTCGGGAGGCCGAGGCAGGAGAATCTCTTGAA CAATCCCATCACTTTAGGAGGCCAAAGCAGGTGGGTCATTTGAGGTCAGGAGTCAAAACCAGCCTGGCCAACATGGTGAAACCCTGTCT <u> AAAAAAAGGTTAGATTTTGGAGCATTTTGGATTTTTGGATTTTTGCATTAAGTGTTCAAGCTGAAAAGAAAAGAAAATCCGATTTGCTCAGGA</u>

FIG.3A-10

TTTMCCCATCCTGCTGTCATGCAGATCCAAGAACCAAATTAAAACACATTTGCCGGGGTCATAATAATGTGGCCAGAATTTAAAGAAA GAAGACTCAATAGTCTTCCATTCATGTGGGCCTTTATAATGCACGGGCCCAGATGCAATACATCTGGCGGTCTGCTTGGGTTGGCTTGGCCAC GGATTGAAGGAGGCAGAGAAGTCTGGGATGATTCCCCAAATGTCTGGATCTGGTGACAGGGAGATATGGCAGGGCGAGCTTAGGGGAAA 3GTTCCAGGTAACTTCATCGAAAGAGAGTTTCAGGCAGTAGAAATAAGAGCACCCAGGACAAAGCCCCCAGGGAAGAGAAAACATCTGACG 3AGGACAGAGGAAGAAGAGGTCAGGAATGAGACTGAGCAGGTGTCATGTGTCTGACACCAGAGCCTGACACATAGTACGTAGTAGACACT AAGCTGGGTTAGGAACTGTTGAAACTGAAATCCCTGAGGSYTKTGCCGÀCAGAGACAGCCGGTAGAAGGTTGTCTTTGCCTGTCTGT CCTGGTCTCCCTCACACTTTCCTTTCCTACTCCCCTTCCCTCTGTGGCCCTGGCTCAGCCCAGGGAGAGAGGCCCTGTGCCACATAT
 ATCGAGAGGTTGAAGAACCCATCCTGTTTTGCCAGTGAGAAGGGATAGAATTAAAAGGATTAGGAGGGCTCAGGCATGGTGGCTCCAG
 CTTCTTGATGACTTTAGCAACAAAATTCTTGTTGGTAGTGAGAGTTAGACCCTGGTGGACTGGGTAGGGGGGTTCCTGGATCATGAGCA AACTTGATTTTTAATTATGTATGATTTTGCTTGTTTAGTCTACCGATTTCTATTTGCTTTAGCTTACTCAAAAATAAAGCGCGGCACTT 3ATGAATGCATAACCTGGCTGCTGGAGCCAACATGGGTTGGGTGAGCCCACTCTTACCAGCAGCTAATCAAAAATTTGCCTGGAATTCT NGTGTCATCCCAGCTACTCAGGAGGCTGAGGCGGGGGGATCACTTGAGCCCAGGAGTTGGAGACTATAGAGCACTATGATTACACCTGT 3AATAGCCACTGCACTCTAGCCTGGGCAACATATCAAGACCCTGTTTCTAGGGACAAAAATATNNTTTAATAAATTTTAAAAATTAAGGG AAAGGTAACCACATCCTGCTACAAANAAAAGAAGNTGGAGAGGTANGANGAGGACCAAGAGCTAATGGCATCATTTACACAAAAAGAGA AAGGCCTGTGCCAGCCAATGGCCCCCACTACACTCTGCCCCGGCCTTTCTCATCTCAAAAAATGGCATCCCCCATCCAAAAGCTCAAGTC SCATTCTTCTCAGGACAACAACAGTGGCCTTTTAAAACCAGTGCATTATTGTTGCCCTTTGGGAAATCCTCCACAATTATCCAGGTCTTG IGAAACTCTTAATACTCTTTGAACACGGGGCCCGTATTTTCATTTTGCACTGGGTCCTGAAAATTGTGTAGCTGGCTCTACTTTCAGGG <u> SAGGCTCCTGTCCTACGTCTTGGCTGCTCCTCCCAGATCACCTTCTGGCCGGTCCCAAGTCCACTTCCCGTGCTCCTTGCTCCCTTCC</u> CTCATTCTCCAAAGAGGMACMATTATCTCTTTCCTGGTGATTAAAACAGCTTCCTAACTGGSTTCCCTTCTACCTTGCTTTCCCATAGT CTTCAAAAAATGTATGTATTTCTGACTTTTTACCCTGCCCTACTTACAGGATATGCACATTTCTGATCTCCAGCCAATATCACACTTCT
 ATTGTATCAGAAGTCTCCTCCTCAAAGAGGCCTTCCTCGGCCACTTATCCTCAAGTAGCTCCTCCCCTTCTAAGTTACTGGCTATCCCA
 CTTTCAGGCCAGCCGGCTTCACACATGTGCCACGTGCGCCCTCGCTCAGAAGGGATCTGTACTCGGTTTGGATCTATTGTTGCCATCT ICTCTCACTGCACTCTGCCACACTTGGCCAAGTTTGTTCCCACTCCTCTTGCACTTGCTCTCAGATCTCAGAAGAGGCGTGCTCCTTGT

-16.3A-11

CTTTGGAACGCAGCGTGGGACCTGCAACGCAGAGACCACTGTATCCCCGGTGCAGAATGTAATGAGTGCCTGATACATTTGCCGAATA <u> AAACAATTATTTTATTGTATTTTTTTGAGATGGAGTCTTGCTCTCGTTGCCCAGACTGGAGTGCACTGCTGCGATCTCAGCTCACTGCTGCA</u> CTAGTCTGAATTTTTTAAAAAGGTTATTGGTCTACCTTCCAATGACATTGCACTCTGTGTGGCTCAATAAAACATTTTCATTTATATA STCTTAAGTCAGTGATCTTTATGTCCATCGGTCCTTTCCAGCAAGTGAGTTAGCCAACCTTTGCCTGCAAAGGAGGAAATTTTTAATTG ATCCTAATCAATAATTAAATTTGTGTAGTGCTGATCTAAACAGATAAATTCTGGCTTCATGATGATGGTGAAGTGGAATATAATTTTCT 3CTCTGTTGCCCAGGCTGGAGTGCAGTGACGCTATCTCAGGTCAAAACCTCCGCCTCCTAGGTTTAAGCAATCCTCCTGTCTCAGG AGGCTGGTCTCAAACTCCTGACCCAAGTGATGTGTCTGCCTCAGCCTCCCAAAATGCTGGGATTACAGGCCTGAGCCACTGTGCCTGGG SCAGCTATGTACGAGAGCTTGGTGAGAATATGTGAATAATCACAGAACTTCAGAGCTGGGAGTAACAGCTGGAAATATTTCTTCCA ATAATTGCATTTTTTATGAGGAGGACGATGAGGTCCAAGTGGACAGGACCATGAGACAATCGTGTGGCAAGGAAGTTGATGAATTTGAC aaggaaggaaggaaggaaggaagggagggaggkaaggaagggaaggaaggaaggaaggaaggaaggaaggaaggaaggaaggaaggaaggaaggaaggaag STITIGITITACTICICITATGCATATICICCICAACTITITICAGIGGGCCAGAGGAGGAGGAGTGCCICTIGIGACIGIGAAGGA GGATCTCAGTTGAGGAGAACTCGTTAGAGATTTGCCCTCTTTCTGTCTTTTGAGACCTTACTGGTGCAAGACAGCAAATCCTAGCTGG GTCTACAGGACACATGCACTCTTAGGTTACATAACTGCAGGGACCACTGTCATTGTATCCTGGAGCTGGTTCTATATAAGACACAGCC TGAGCAGTATATAGGCTTCCTAGTCTGCTCCTGGCCAAATGTCCCAGTTGGAAGCCCCAGAGGTTGTCTGGCTATGCCAGTGGCAGGATG 3GCAAGTCTAACTCAAGGGTGACATATTAGCAAGACCTTTATGGCCATGCATCTAAGATGCTCTGTCCAAGCCTGAACTTAGCAACAAT TITGCTTCTAAATCTCCTTAATTATCAAGCAGCTATCTACAATATTTTGTAATCCCCTTAAATCTTGAGCATAATGATGTCATAATTAT <u>ACCTCTACCTCCCAGGTTCAAGCGATTCTCCTGCCTCAGCCTCTCGAGTGGCTGGGACTATAG</u>GTGCGTGCCACCACCACCAGCTAATT STTCTACCAGGCTAACACCCCTGGCCTCTCACCCTCCCATTTCTCACCCTGCAAAGCAGAGTGCTATTTGATTCATGTTCTTAGTCTGT GAAAGTGMCCGGWTTCACATGAAGTATTGCTTAATCTTAAGAACAAAATGGCAGCTGTGAAAACAGATGAAGTAATTAGAGGAAGAAGCCC ACTAATTTGACCTGCTCAGCAATCTCTAAGCAAGATAGAGTAGCTGTAATTCTTCATTTTACAGGTCATGTCAAATCATTTCGTACAT

FIG. 3A-12 g

TTTTGGAAGCTTCGAGATATTTCAAAGTAATTAGTACTAGTTAGCAATAAAGTTCTGTTCTGAGAAATTGCTCTTAAAGGAGGAACA GCAATGGTGCACAGAGTCAGGGTAAAAGCTGGACAATTTCCTATGACCAACTTTTCCAGGACTCTGCTCTGCTCTTCCTGAGAAAATA CCCAAAGTGCTGCCTCTTCCATTGGCCCAACCATGCATCTTTCAGGATAGGMCACATCTGTTTATAGGTGTGGATTGTAGTTGCTCATA CAACAAAATTTGGGTCTGTTGAAAAAAAAACACGCAGATGCCAGCCTTGATGTCAAACGGGCCCAAACTTGGACAGTGGTAAACTAATGA <u> AGTGACATTAGGCTGTTTAAAATAATAATAGTTCGAGTTTTGCTATGAGCTGATCTGTTTTCCAAGAGAGCTAAGAGTTTTCCAGCTAA</u> AAGAGGGAATTAGTGGGTAATCAAGGCAGCTGACATGGGGTGTGGCTGGGCCTTGAATGTGTGTCACTCTCTGTGCCCAGGCAGAGCAA AGATAAACTCCAGACTGCATGTTGCTCAGAGACCAGGACCAACGTCATAGGGCGCCTAAAAGGCAGGTGGCCCAGTTCAGAATTGTCAA GAGATITCAGGTGCCGGAGAGACCCATCGTGTAGATTCCAGAGTTGGCTATCATGACTAACAGCTGTCTAAGTTGTTTTTAAATGAATC ATTAAGGGCTACATTTTCAGTTCAGCTAATCAAGTAGCAAATTACGGTGGGTCTAAAATACTTATCTATTGCATTATGTATATGCTAGA CTGTGTAAATACACTTTTCAAACTGTTTTATCTAAGAGTTTACTCACTTTCACATTGTGGCTTATAGTATTTTCAATCTAAGAGACTAA ICATAGTTGTAAATCTCAAAATGTTGGGTTAATAGGATTAAACACTGTGTCATCAAATTGATAG<u>GACACAGCTAAATCCCTGACACGGA</u> <u> IGAAAATTAAAGCAGAGAAAAAGGAAGGTCCTTCCAGAAGCTGGTGGCAACTTCACTGGGGAGATATTGCAAAGTTAGTGGTAAATACA</u> ATATAGGAAGGTAGCCCAAGGTCACTGTTGCCAATTGTGTACACAGCCTGCCCTMTAGTGTTTTCTTCTAAACAGCACCAAATTTTAGA TAAAATAGTAAATACGTAAAGCAGATAAATATCCCCTTTGTGGGAGTTAAAATAATCTAACTTATTATAGTT17TAACTTTATA TAAACTCAAAGGGAAATTCATTAACTGAGAAGAAAAATTTTAACTGTGCACTATTCACATAGCATAATGGGTTTTATAAGGAGTATGA GAAAAATGTGTGTGGTTTTGCTTTCTTTAAAAATAATAGCGAACCACGTAGGTAAAAAACTCACTTGAGAACATAGACTTTTGGAG GGGAAGGCTGAGGCAGGAGAATCACTTGAACCTGGGAGGTGGAGGTTGCGGTGGGCCGAGATCACGCCATTGCACTCCAGCCTGGGCA TTTGCTTACATAGGAAACTACATATTTAAATTGAAAATTAAAAAAATATTTTAAGGTTTTAATGAGTCCTATCAAAACACATTTG1 <u> AAGCATACGACTATTCTAACTTATTTAACTTTTCTTAGTAAAGTTTTAACCTCTGTATTTAGAATATTTGTAACTAATGTGTATCGAAT</u> CCAGCCTGACCCACATGGAGAAACTCCATCTCTACTAAAAATACAAAATTAACCGGGCTTGGTGGCGCATGCCTATAATCCCAGCTACT GTGTTTCGAGATGTTTACAAAATGAAGCTTGGACTCTGAGAGGATGTGATCTATCCTCTCCCATTGCATTGAGTTTCAAGTACTTCACAT TACTAGTACAGTTGCTAGTTTACGACTGTATTAAAAAGACATTCCAAATGTTGATCAAATAATGGAGGT7TCTGTGGTTGTTTTC7T

<u>GTTTATTGTGTGTTGCTGTTGAAAGACAGTCACTGCGCACCCACTTGGAAGGACAAAACTGCTATCAGTGAAAACCTGAAGAGTA</u> SCTCCTCAGTAGGCCACGTTGGCTATTTTGAACAGGGAATGACAATGAATTTTAAACTTACTAAGGGCTTATTAAAGGTGTATAAGACA GCAATTGTTCTTAAACTAGTGAAAGAATGGGTTATAATTACGTTGAATCTGGTTGTTCTGTGGCCATTAACTTGCAACTTTGCTTGGTG CTCAGGCACATTAGCATAAGTTGTCTAAAGTCATAAGGAAAAATTGACAGAAAAATGCTTTGGAGCCCCAGGTGTTTTCAATTGATGC JAACAGAAACTAACCAAATGGAAGACATTTGATGCGGGTTTATTTTTCCTTTGCAG<u>TAACAGCGGGA</u>ACATGAAGCGCGCCACTTGGT ITCGCTGTTTTCACGGTGAAACGTTCTCAAGGCGCTTAAACCAGGTCATCCTGACGCCAAACATCTGGGTAAAAATAGAAAATTCCAAT <u>AGATGGİTGGTGTCATCTCAGCACAGCTCTAATGAACAGTGAAATACITTICTAGCATTIGAAAAATTTAAAACCATTAGAGTAATCTGT</u> ATATATACTITGGGTACTTAATATATAGAAGAACAAATTAGCTAAAATGCAGCTGATTTGGGGTCTGTAATAATCAGAGTCAAGAATGA 3AGAAATTGCTGACTGTTTTGAGGTCCCCAGCTGGGCACTTAATATAAAATTATGAAGAAAATGCAAAATTTCTCTAATATAAACACA TTCAGAATATGAGCCTATAAGAGAACAATTAAGCCTCTCTTTTGGAGACATGAAAGGTTGGTGAACTTGGTGTTTTGTAATCTGATCA <u>GGTATTAAGCA</u>AATGAAAATCATGATGGAAAGAAAAAGAAGGAACACACCAATCTAATGAGCACCCTGAAGAAATGCAGAAAAA TTAGGCGCTCACAAGTGAGGAGTAGAAGGTATGGTCCGTGTGGCAGCTGTGTCCATGTGGCAGCTGACAGCTAATTCATTATGATCTGC 3AAGAGAGGGGTTTCACCATGCTGGCCAGGCTGGTCCCGAACTCTGGGGCTCAAGTGATCCACCTGCCTCAGCCTCCCAAAGTGCTGG TATATGCATATTCATTTACTCATGAATTAGATACATGAATTGCTACCATTGATATCTCAAGGCACAATATGTATTTAAGGTGAGATTCA CTTGAGTCTTAAATGAAAGAAAAAAATGGATAAATGAAAACAGGGCCTGAGCAAGTGACAAGAATGAGGTTCAGTGAACTCTATTTG1 TGTTTTTTGTTTCTGTTTTTGAGACAGAGTCTCGCTCTGTCACCCAGGCTGGAGTTGATCCCGCTCATTGCAACCTCCACCTCC TCATTAGCGAGTGTGGATATAAGTCCACATTTCAAATAATCTTCTAGATATTTTGAAACTTTTAGCCGACTTGCCAGATCTGATTAGAT CACCATAGTTTTCCCTTGTCACTTGGCCAATAAAGAGCTCATAATGATCAGTGTCAGCTCTGCCATTTGCTTTTGGTCCGCTTTGAGCT <u>AGCAG</u>GTACAGTCATTGAAAATAATGTCTGTTCTTACACAGATCTGGACCAGAAATACTGCACTTGTTAGTGCGATTGATGAATTACT TGGTCTCTTCTGAGTTAGGATATTGAGTCAAAAGTATITGAAGAGTTTITTTTTTTACTAGATCAGTGGICICCAGAGTTTTTGTTT <u>ATTTTCCTTAGTAATAAATTTCATGGGTAGCTGCTTTTATTTGAGGAAAAGTTTAAGGGAAGCTTCAGATTTCCTTGAAGAACATATT</u> CGTGTAGGATAGGCTTCTGCAAGACTCCAACCCGGAATCTGGGGGATTCATCTCTCTGTTTAAGTGCTGCTT

TAAATTATTCATTITTAAAATCTGCCAAGTITITITITTTTCAAAGAATCTTGTTAAGCCTCCTGTCCATTTAGTGAAGGTTACTTTA

GTTAAAACTAGATAATAAAATCCATCAGTCTACCTGAGTTCTCTTACATGGCAACTCATTACAATTGGGTGCATGTGAACAGAGCAAGG TAAAAAAGGTTATCTTCAAMCATTMCCCTTAAATCAAAGAGGAAATTAAAACTGTAACAAAAATAATTTGGAAAATATTTTCAATTTTA CTATCTATCCCTCTATCAAAGTTGGGGGCCACTGAATTCCAGATTGCTGCTTGCATCTTTTTACTTCTGAGCATCATGGCCTCTG 'GAACTACATATTTTATCCATGGAGAATACATATTATTTCAAATGTCTTTGGAAGATGTAAAAAATTGTTCATATGCCACAGTATAAA ACCATTITIAAGIGIAACGITCAGIAGIGITAAATACATICATACIGITGIGCAACCAATCICCAGAATTATTITCAICTIGCAAAAAC CTCACCTACTGCCCTGAGTCAGTCAGGGTTCTGGCAAGGAAAGGAGAATGCCTGACCAGCAGCTGCAAACCCTTCTCCCCTTTTGGCAGC GAGCCTGGCCATCTGGGAATAGAGACACTAGATAGCACTCATACACTCTTCACAAAACACATTATCACATGGAATGTTTTGAACATCTG AACTGAGATAAAGTCAGCAGATGTGTGCACGGGGGACCCAGTGATTTTCTGCTTTTCTCCTTCCCTGAACCTCCTGGCAAGGAGGACA 35AGTCCGTTAAGCAACTGGAGCCGGGTAGTGTGACAGGCTGACCCCAAAGCTGTGTGTCAGCGTCACCGGACTGGTTGATGTTGCAGC 36GTATACAGCTTTAACAAGAATATTCCACTTTGGGTGGGTCAAGTAAGCAAATGTGGATTTCACTTCTGGCCCTGAAGAATCCAAGCA ACTAGTAGAATTTTTTGTTTATTCTTAAAAATCTTATTGTACAAAAATTCATTGAATTATACTCTTAAGTTTGAGGCACTCAATTAGAAA CGTCGATAGGATATTCCTTAGGAATGTTTACTAGACAGAGGTCTACTTCTTCCATGGCAATGTTTCACTTCCAAAACTTGGGACCTGTG ATAGCGCTTTTGATAAACTGTCAACTATAGGAATAGAGTTATAAGCGTGAATCTGCCAGTTGGTACAATGTCTAGCAGGAAACGGAAGG GTTCAGTAAATTTCTAAATTATAGACATTGAATAGCTTGCAGTTTAATGACATTAATAATTAACATCACACTCAAAACAATGACTTTTT AATCAAAAGATTTTGAGGAAATCTAAAATAGCTCCTCATCAGGAAAATGTGGAAGCCCCTCCAGCTGGGATCTTCCCTGGTGGGCTTG1 AGAGTGACTTGACCTCCAAATCAGGTTTTATTTGTATGTGTTTTTAATGAAATGGGGTCTTGCTATGTTGCTCAGGCTGGTCTTGAACT CCTGGGCTCAAGGGATCCTCCTGCCTCACTTCCCGAGTAGCTGGGATCACAGGCACTAGCCACATGCCTGGCTCAATGCCAGGTTAAT ACAGATGTCTTGCCTATGATAATGGATACTAGGTATAATAATAGATGCCTTGCTTTGTTTAGCTCATTTAATGCAAAGACCTTGAGAAGT AGATACTATTATTCCTATTATTCTTATTTGCAAATGAGGAGACTAAGGCTTATATGTATTAAGTAATTTGCCCAAGGGTACACAGCCCAC TGTAGTTTGGAATTGGGAATATTAGGATTTTTGGCTTATGAGGACAATGAGCAGAATATGTAAAATTGGGACTGATTGAGAAAATCCTGG ATCCTCACTGTCCCCTTCCTCCACCCCTCCTTATTAATATTTAGTGAGACTATCTGAAACTTATTAAGTAGGAAACCCTAGAGAAGGTT TGAAAGTCTATACATATTAAACAATGCCCCATTCCCCCCAGCCCCAGTCAGATTTTAATTTAAAAATACAAGTGGAAGTTCTAATATT

16.3A-15

CACCATCATGACCAGCTAATTTTTGTATTTCTAGCAGAGACAGGGTTTTACTATGTTGGCCAGGCTGTTCTCAAACTCCTGACATCAGG TGATCCACCCGCCTCCAGCCTCCCAAAATGCTGGAATTACAGTGTTGAGCCACTGCACCCTGCCGAAAAACAACAACACTTTAAGATGTTA 3CACGATCTTGGCTCACTGCAACCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCTTCAGCCTCTGAAGTGGCTGGGATTACAGGCACC GATTCCAGCCAAGTGAAGTGGCTCATGCCTGCAATCCCAAGCACTTTGGGAGGTCAACCTGGGCAGATCACTTGAGGCCAGGAGTTCGA GNTCAGCCTGGGNAAANTGGTGNAACTCCGTCTCTANTANAACATACAAAAATTNGCCCGGCATGGTGGCACGCACGCTGTACTCCCAGC TACTGGGGAGGCTGAGGCAGGAGAATCTCTTAAACCTGGGAGATGGAGGTTGCAGTGAGCTGAGATTGCACCACTGCACTCCAGCCTGG CACACTCCTGTCTGGGTCAAAATGTATTGGCAAGCTGGGGCCCTGGCAGTTITCTTACGTGGATCATAGCAAATGCTACGTGGCTTA 3CAGCCAAACTTTACAATGAGGACAACKGACAAATCCTAGCCAGGCAGAGAAGATGTGGAAGATTGTCAGTGCCCAGGTGATTCTTTGG GCTTAATACTCCAGGAAAGGGTCATTTCCATTAGCTCTGAGGCTGTCTTCTTATGGCCAGATCCACTATACTCACTTCATTCCCTGCA CGATATCTCGGCCATGGAGGGGGCTGGGGTTCAGAAGTCCACACTTGCAGGGAAGCCAGAGGTTTGGGCAGGGGCACAGGAAGAAAGGTC TGTTGCACCATGGTGCTGACCCGTGAGGCACTCCAGGGGCAGGGCTGAGGCTCGCAGGGACAGGTGCCACTGCTGCTGGTGGCTCCTCACC ACCCAGAGCAGGACTTGGCCAAGTACAGCAAGCACCACAAGGGGGAGCACTGGGAATATAAACAAGAAGAACAAAGCTTGTTTATATTC AGCATAAATGAAAGAATTAAAATGTACCAGCTTTATAAACTGTAAAGCCCACTTTCCCCATGCACCAGTGGATGAAGATTGAAGACAGA ATTACAATGTAACTCAACGGGAACATTTAACTTGACATACAAGAATTGTACTTTCTTGCAATGTTTAAGGATATACAACAATTAAAGAC <u>GAAACTTCTGAATGAAGTTCAAGAACATCTGGAGGAAGAAGAAGGCTATGCCGGGAGTCTTTGGCAGATTCCTGGGGTGAATGCAGG</u> CTCAAGATTTCACAGTTCTTAAGGCACCTATTTCAGCTTACTTTTTATTAATTTATGTTAATATTTAGAACGGAGATGCCTGATCTGA *AGGGGCCTTTTGCTAGAATCTAATACTAATGTTTACATACCATCACCTGTGTATACGCAATTTATAAGGTAGAGCACCATTCAG GTACATTTCAAAGGGTGAAATCAACTAAGGTGCACATAGATCATGAAATGGAAATTGGACTTTTGTTTCTACTTTTAACTAG<u>GAGGCCC</u> 'GAGGGCAGGGATCATATTTGTCTTCACTTATGCATTGGTGGCATCCAGTAAATGTTTACCAAATTGCATTTGGAATCATAGCA TTGCAGTCTCTGATTTCAATCCACATTAATTTTTCCTTCTGGAGGCCAAATATTTAAAGATACTCTCTGCCTCCCAAATCTTACCTTCA GGTCACTGAATGCATCTCTTAAAATATCCTGGCTTTCTGCCTTGTATTTGTTATTTGTGAACATGTTCCCACTAGATAGTAAGCTCTT

-16.3A-16

'ATGTAGAC TGGCATGTTTTCTTTTTTGTACCCTTTGGTTATCTTCTGAGCAGAGGGATCACAGAGGGTGGTGACCTGAATAGGATGAG CCATATTAGAGCACATACTAATTAGGGTATGCTCCTGGCTTGGCAATGCCATACTCAATTACAAAGGGAGCAACTACTAAGATAATGAA GCGCCAAGTTAATTTGCCTCCACTATTAATTGCATCTGCTCTATTTTAGAGCTACTGTCGCCTGCTAATACACCAGAATATGGTGTA ATCAGCACCAGCAGGAAGATCAGGAGATATGGGGACCATTCCCATCTGGGTCAGTTGTGTGATCTTATGAACATTTCTTGGGGCTTTAAA TCATGAGACAGGGTCTGGCTCTTTTGCCCTGGCTAGAGGGCAGTGGTGCCATCTTGGCTTACTGCAGCCTCCACCTCCTGGGTTCAAG TGATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCGCCCACCACCACGCCTAGCTAATTTTTGTATTTTTAGTAGAGACAG GGTTTTACCATGTTGGCCAGGCTGGTGACCTCAGGTGATCCACACACTTGGCCTCCCAAAGTGAAAACTTGACCTTTTAGGCTATTG GTGGGCAATGTAAACCAGGAGAAATTTCAGATCCTGTTTCCATAGGCAAAGGCAAAGTCAGGTATAAGAGGGTTAAGAAATTATCTTAA AGTTAATTGCCTCATACTAGCTTGCCCAGAATTATTATTGAATTGAATGACTACTGTAAGTTGACTTTAAAATTTTGCAATAAGAATG CTACTCGGAAGGCTGAGACAGAAGAATCACTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCCGAGATGGTGCCATTGCACTCCAGCCTG GTCCAGGGCCGGGTGCAGTGGCTCACCCCTGTTATCCCTAGCACTTTGGGAGGCCTAGGCATGTGGATTMCCTGAGCTCAGGAGTTCGA <u>CATTGAGGAAGATGCACAATTGACCCAAATGGAGGATGTGTYMAGCCAGTTGACTGTGGGATGTGAATTCTCTTTTAACAGGAGTTTTA</u> <u> CCAGCTTTCTCTAAAGAGCCGATGACAAAAGCAGATCTTGAGCAATGTTGGGACATTCCCAACTTCTTCCAGCTGTTTTGTAATTTCAG</u> AAAAGATTACTTTTACTTTAGAGGTTTACACTAAAGTCAAGTTTTGTTTAGCTTCAGAAATGGTAGACATTTCTGAGTCACATTGTATAG CTCTGCCCCACTAACGGCTCCAATTAAGCTAGATTTTTCTCCCCCTTCAAGAAGTGAGCTGAATACAAAATTGAGTGGAATTTCACGC CAGATTGAACGGTTTTTCAGGAAGATATATCAATTTCTATTTCCTTTCCATGAAGATAATGAAAAGATCTCCCCATCAGTGAAAAGCT CGTTTCTTGAAGAGACAATTTATGGAAAATGTTTCAGAGCCTCTTAAAAGAAGCTTTGAAGTCTGCTAAACACTATCCCTCTTCCATCA TTCCCTCATTTATTATTTCTTTATTTTATTTTGTGACGGAGTCTCACTCTGCCACCCAGCCTGGAGTACAGTGGTGTGATCTTGG <u> FGTCTCTATTTATGAAAGTGTCAGTGAAACAATTACTAAGATGCTGAAGGCAATAGAAGATTTACCAAAACAAGACAAAGGCAAGTATT</u> CTCACTGCAACCTCTGCCTCCCAGGTTCAAGCAATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGTTGTGCACCACCACGCC CAGCTAATTITTTGTATTTTTAGTAGAGGGGGGGGGTGTCAGTATCTTGGCCAAGCTGGTCTCAAACTCCCGACCTCAGGTGATCCACC <u> ACGTCTTCAGACAGATGCAGCAAGAGTTTGACCAGACTTTTCAATCACATTTCATATCAGATACAGACCTAACTGAGCCTTACTTT</u>

-1G.3A-17

AGCTCTATTCTGCTAAAGCATCAGAGAGCTTCTTTAAAATTGATCTGGAATCCTCAACTCCCAGTTTGAGAAGCCCACTCTCACATATA ACCAGAGCAATTTAGTGCCCTCCTCTGAATCACAATCATTCCTTAAATCATAAAATGTATGCATAAAACCACAAAAAATGCTCATA AACCCCAAACTACAGAAATATTAGATAAGAATTGCCTTCTACCAACACTAATCATGCCTCATGGCATCCATGTTGGAGACACAATGCTG CAAGTGTAGGATCTGCATTTCCTTTGTCACTGTATTGACCCCTAAGCCAGGTTGAAGGCTGCTCCCCTCTGAGATGAAAAAAGG CCACGCCTGGCTAATITTTTGTATTTTTAGTAGAGACAGGGGTITCACCATGTTGGCCAGGCTGGTCTCGAACTCCTGACCTCAAGTGAT SACCCTATCTGACTATTTTTCAATTATATTAGCTGTGGCAACATCTGAATCAGATTCTCAAAATCGCCATGACATTACATAACTG GCCTCTACATAGGAGAGGTTTACCTTTCAGAAACTGAAGCTAGGAAACAGTGCATTACATCCTTCAGGTGCCATCGTTCCATGAACAGA GAACAGCCATCATTACTGGAATTGTTGGGTTCTATTTCAGAGTCCAGTGGACTTTTTTTATAAGTCAATTATTTGGTCTGGTAGTCCAT TCTGAGGTTGCAAATTCATCAAAATATTCAGGATAAACACCAGGCGAGTAGACTAAATCTATCCAGGCTGGGTGGTATTAAGTGATTTTA CAACCACTGTAACCCCCTCCCACACACACATAGGTTTCCACTGTCTGCCACCATTGCCTTCTCATTCACACAGGGGGG ICCCCTAGCCAGACAGTACACAGAAGCTACCGCAGAGGAGACACTGTCTTCCCAGATGAGCAAATGTGGACTGTTTATCAAGAATAGTC ICTGCCTAATGACTTGACACTTTGAGTTTTGCCCCTTGTGGTAGGCAAAATAATGACTGCCCACAATATCCCCCACCATATCCCCAGAA CTTTATGTTTTAAGGCGGCAGATATCTTCTGTGGGCTTCTATGGAGTAAGTTAGATACCGCATTCGAGAATGAGAATTGCCACGAGGG CCAGCCCTACTCTCAGCTGCCTCACACGCACCCTCCCCAGCCCCTCTGCGCCACTTCCATCTCAGTGATGACCTGGAAAGCCAAGGTCC CCTGTGAATGCAAATAGTAAAGACAAAAACAAAATAGCAACCAAAAGTCTGTGTTACACTATTGTACTCTTCTTCTCCAGTATCCC NGGCAGGCGCTCTACAGCACTTGAATGTGGTTTCCATCACTTTTCTGGACAGGTAGTTGGTGAGGAATAAGCCTACTGCCCCTAGAAAA ATTITIGAGACAGAGICTIGCTCTGTCACCCAGGCTGGAGTGCAGTGGAATGATCTTGGCTCACTGCAACCTCCACCTCCGGGGTTTA AGGGTTTCGCCATGTTGTCCAGGCTGGTCTCGAACTTCTGACCTCAAATGATCCGCCCCACCTCGGCCTCCCAAAGTGCTGGGATTACAG AGTGATTCTCCTGCCTCAGCCTCCGGAGTAGCTGTGATTACAGGCACTCACCACCATACCTGGCTAATTTTTGTATTTTGAGTAGAGGC CTTAAAAGTGGAAGAAGGAGGCAGAAAAGAATTAATAGTAGCAGCCACAAGAAGGACTTGGCTCGACTTTGACGACCTTGAAGACAG AGGAAGGGCCCAGGAGCCGAGTAATGTAGGTGGCCTCGAGGAACTGGAATGGTATAGAAATGAATTCTCCTCTAGAGCCTCCGCAAAA 3CCTGACTGTTTACATGGATATCAACTGTCTTGGAATAACACTGAGAATATGTTCATTAGAACAAAAGGGCTCCTCCCCCTCCATGTTG 3TAGCAGCCTTACACAAGCATTGGTTACATTCCCATGJGCACAGGACTGTCAGTAGTGATTCAGACATGCCACAATCTAGATAATTTT

TCTGACCTAAAAGACCAAACAATAATGAATTTGTGCTGTTTCAAGCCACTGAATCTGTGGTAGCTGTAGCAGAGCTAATAATAATAGTA GGTGCGATCTTGGCTCAGTACAACCTCCGCCTCCTAGGTTCAAGCGATTCTTCTGCCTCAGCCACCTGAGTAGCTGGGACTACAGGCAC GTTGAGTATAGGTTCCATTTTGTTCTCATATTTCTTTCCTACCTTGGTCTTTCTGGACCTCAGTTCCTGAATCTGTTGAAAGCGAATAGG TGGGAGAGTAGATGATTTAGCTCAGTGACTGCACTGGAAGTAGCTCCCTGGAAGGGTTCTGAGGGTTCTGTCAAGGCTAGACTAAGCGAG GTGATGGATTGTGCTGTGGCTGCAGGATGGGGAATTAGTGTCATATGGGCCTAGAATTTGTCATCCTTGGTGTACATACCAGGTATTAA GTGCCACCACGCCCAGCTAATITTTGCATTITTTTTTTTGAGACAGATGACATCTTGATTITTAGCCTAGGGAGACCCACTTCAGACT CTAGATGCTAGAGATAAAATGATGATTATGACACAGCCTCTGACTTCCAGGAGCTCAGTCCAGAGAAAGGAAAACAGATTAGTGAACA ATGACAGAAAATCATCAGGTTGTAAATTAGTAATACATGTTTCCTAATGTCAAACACTCTATTGGGAACCGCCAATTTTCTGTTGGATA ATCÁAACAGTGCTTCACTGTTTTTAAACTATGGACTTTGCAATTTATCTCAAAATAAAACGTTTCATTTTTAAATGCTGAGGATTTAAT <u> AAGTGGTTCACAATCACCTATTTACTTAATCCTATTGACATCAGAAATACTAATGATATAAGACAAATGATTTTTAAAGTAATCAAATA</u> TACAGGGCAAAGAAGAGGGTCCAGGAAAGCAGCTGGGAGAAACTGACTTTCTGGTCACCAAAGGGGATGGGTGCCTTACATGCCATTCT GTGCAATTTTTAATAGCTGTTCAGTTGTCCCAGGAAATTATTGCACCAACGTGCATTTCTGTGTCTAAATATAGGAAAAAGGGCCAGGG AACATGGCGCAACCCCATCTCTACTAAAAGTACAAAGATTAGCTGGGCTTGGTGGCTCTCACCTGTAATCCCAGCTACTTGGGAGCCTG GACTTCTCTTTTACACATTTTTATATGGATTGTTAATTCTCCTAGGGGAAAAAACTTCTCAAAAACTTGATTGGCTTTAGATATTTTCC1 GCGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCATTTGAGGTCAGGAGTTCAAGAAACCGGCCTGGAC TCTGTCTCAAAAATAAATTAAATTACATACATACATATAGGAAAAGATTTTGAAAGGCACTGGTAAGAAAAAGCTGCGGCATTGTC 'ATAAAAGAACAAAATAAATGAAAGCTGCCCTCTCCTACCTTATCAACTCCCTCTTCTAAAAGATAGTTATTAATAATTCTTCATGACT

TCCACTTCTTCAAAGTGCAAACTCTTATGACACTAACGTGTAAATGTTATGTTCCCTGTAG<u>CTCCTGACCACGGAGGCCTGATTTCAAA</u>

rccctattggctagggttagaccgcacaggctagactaattcccattggctaatttaaagagagtgacgaggtgagtggtctggagg GAATCAGGGTGGAGCGTGTAATCGAAAAAGGTTGCTTTACGAGGAAATTAAGTTTAAAAGTAGAAGGCAAAGAATTGAACATACTGACA STCACAAGCATAGTGGATTCATTTGCTTTCCTCCAAGCACTTTTTTGCAGGCTCATTTCCATCTGGGGGCGTTCAATGTAGGTTTATAA GTGCCACAAAAGAAATAGCACTCGAATATAAAATTTTCTTTTAATTCTCAGCAAGGAAAGTTACTTCTATAGAAGGTGCGCCCTTAC ACTGGTGTTTTGTTTGTTTGTTTATGAGACAGAGTCTTGCTCTGTTGCCCAGGCTGGNGTGGCACAATCTCGGCTCACTGCAACCTCC GTATTITTAGTAGGACGAGGGTTTCACCATATTGGCCAGGCTGGTCTCGAACTCCTGACCTTGTGATCCGCCCACCTCGGCCTCCCAA AAATATTTTTTGAAAGTGGCATTGGCTCTTTCCCATTGGTGGGTTAATGAACTAATTAGCATTTAAATAGGGAAAGTGGCTTCTCCTC YGATGGAGCAATGGTGAGCGTGCACTTGCCAAGGGAGGGGAAGGGGTTCTTAACCCTGACAATGCAOGTGGCCCCTGCTGCTGTGTGTGTG AGGGACTAGATTCCTGGAAGACAATTTTTCCAAAGATGGTGGGGCAGGGGGCACGTTTGGGGGATGATCATCAGGCATTATTCTCCTAAG 3AGCGCTCAACCTAGACCCTTTGCATGCACAGTTCACAATAGGGTTTGTGCTCCCGTGAGAATGGAATGCCTCCGCTGATCTGACAGCA CCGTGGCCCAGGGGTTGGGGACCCCTGCTATAAAGGAAGTTCAGAAAATCAGATTATAAATTCTGATTTTATAAATCAGAATTTATAAA <u> AATTCAGATTATATATTACTACCAAGTAATAGCTCTTTTGCCCTTAACTTCCCACAGTGAAGACCACTGGAGTAATTTATATCAACGC</u> GCCGTTCAGAGAAAAGGGAGGATGGATTGTTACAACCGTTTCTGTCGCCCAGGCTGGAGTGCAGTGCGCGATCTTCGCTCACTGAAA ACCTCTCGGGGTTCAAGCAATTCTCCCTGCCTCAGCCTGCCAAGTAGCTGGGATTACAGGCATGTGCCACCACGCCCGGCTAATTTTTT SCTTTCCCTTCTCCAGACTAAAGTCACTCCTCCAACCCCACGGGCCAAATTACAACTTTTCTTACATAAAACAAGAGCTTTTGATTC GAGTAATTTGTAAATAAAGGACCCAAGATAATCTTTGGGTTCTAACAAAATTCTTCTGTAAAAACAGTGGTCCCCAGCCTTCTGGCACC 36CGGGGCTCAGGCAGTCATGCTTGCTCACCTGCCGCTCACCTCCTGCTGTACAGCTCCGTTCCTAAGAGGCTACAGGCTGATATGGGT SATGTTACCTGGGCAGGACAGAGGACTGTGTGTGGGGAACTTGACCAGAATTTGTCAAGATGTTTCAAAATTTCATGAAAAATGCCAAAAA FACTGATTCTTTGGAAAGAAATTTAGAACTCACATCTAACAATTTTTTAGGGTTTCTTTAGTATTCTGGACAGAGGACAAAATCTCAT AGTGCTGGGATTACAGGCATGAACCACCGTGCCTGGTTTATAAACTTTTATTATTCCAAAGTATGTCATTCTTTCACTTTCTT CCTCTACCTCCTGAGTTCCAAGCGATTCTGCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCACGCGCCACCATACCTGGCTGATTT

-1G.3A-20

TGTATTTTAGTAGAGATGGGGTTTCACCATATTGGCCAGGCTGGTCTCGAACTCCTGACCTCGKGATCCTCCCACCTCAGCCTCCCC <u>ATTITCCAAACTCTTAACCATAAACATAAAGATATTCCTTGACTTAGGATTAGGATTATGTCACAACCCATCATAAGTTTGAAAAAT©AT</u> | FAACATATTACTTTTATTTAATCACCTTGCTCAAGGAGCCTGTAAATTACATATTAATATTGTCCATTATGAAATAAGTCTTTCCATTG SCAACCTCCACTTCCCAGGTTCAAGTGATTCTCCTGCCTCAGCCTCTCGAGTAGCTGGGATTACAGGCAACCGCCACCATGCCCAGGTA TTAAATAAAAAAATGAGTTTAATAGAGTCTATTAAATTAGATCATTATTCGGAGTGGTTAGTAAACCTGTTTAGAGTCGACAACACTCC GGCCTCCCAAAGTCCTGGGATTACAGGCTTGAGCCACCATCCCTGGCCTCCAGCCTGGGTTCTTATTGACACTGAATTCTCAAGTTAG STTTCTCTCTTTTTTTTTTTTTTTTTTTTTGTGCCAGAGTCTCGCTCTGTCGCCGAGGCTGGAGGTGCAATGGCACGATCTCGGCTCACT TGGGCTAGTGAGGAAGTCAGGTTACACGGGCCACAGAACAAGAATAGATGTTC111CTCTCTCTCTTCCACTTCATTCTGTGTCA TCCCTCTTGTGCAAATTTTCTGCCATGGACACCTCTACCCCACCTTAGAATGTATATAGACAATTTTGACATCTAGAATGTCTTGTTG GGCAGAAAAGCGTTTGGAAAGCGTTGCTCCAGGTAGCTCTGATTACAAACTGGACCTTTTCGCGGGGTTACCTAGAGCAGTTGAGAGTG 4AGTTGAACCATTGTAAATTGGGGACCATATGTACATGTATGCATATATGATATTAAAAATTATTAGACGTCTTTAAAAATTTGACTTT TTTGTTTTGTTTYGTTTTTGTTTTTTGTTTTTTTGAGCGGAGTCTTGCTCCGTNGCCCAGGCTGGAGGGCAGTGGCACAATCTTGGC 3GCTAAATTTTTGTATTTTTAGTAGAGGGGGTTTCACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTTGTGATCCACCTGC 3CCTCTCCCGGACCTCAGTAGTTGGTCTTTTCTCCCCCTTCTTTTGAAAGCAGAGTCCATTATACAAATGGACTTGTTTACTTCTCCACA TTGAGACCAGCCTGGCCAACATGGCGAAACCCCGTTCTACTAAAAATACAAAAATTAGCCAGATATGGTGGTATGAACCTGTAATCCCA CCTCCCAAAGTGCTGGGATTACÀGGCGTGAGCCACCATGCCCAGCCCCTTTCTCCCTTTTTAAATATCACCAGCCTGGGTTCTTTGTTC1 GCTACTCAGGAGGCTGAGGCAAGAGAATTGCŤTGAACCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATCAAGCCTCCAGCCTGGGCCTC AACTGCTGACTCGAGGACTCTCTCAGCCTGTTTTATCATTTGGAAGAGGAAATAATATATCTGCTTCGTACACATCTTTAGAAGTTTTAA TTTCTTCTACCCAGCTAAAATAGTTTATTAATAATCCTTGAATGTCACAAGTNGAATACAGAATAAATCAGATAATACATTAAAATGC YAGCGCTGGGATTACAGGTGTGAGCCATCGCGCCTGGCCAACAAATTGTTACAATGTTAAACAACATAATATCCTAAACATATTGGCT

-1G.3A-21

ACCTGATAATCAATATGCACCAGATAATGGACACAGTATACATCAGATAATACAGTACAAATTCAATGAAAGTTTAGTGTTGCAAAGGT

YAAATGTAAAGAATGTCCTAATGTGC TCCCATGCTTGCTTAAAACTGTTATTATAAATTGCTTTTTATAAAATATATAAAAGAATGATG CCGGAGGCTGAGGCAGGAGAATCGCTTGAAACCAGAAGCCGGAGGTTGCAGTGGGTCAAGATCAAGCAACTGCACTCCAGCCTAGGTG CCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAATATAAAAATTAGCCAGGTGTGGTGGTGGCACCTGTAGTCTCAGCTAC ^raataggccagccatggtggctcatccctgtaattccaggtctttgggaggctgaggcaggtgaatcacttgaggttaggagtttgag NCAGAGCGAGACTTTGTCTCAGGAAAAAAAAAAAATTCTCAGTCACCTAGATTGAGAAATAGAACATTACCAAAACAGATAAAAGCCCCA **ENGIGITICCCATCCACATCACATTCACTITATCTCCTCAAAAGGAAAGTGCTATITTGAATITAGTATTAATTATTTCCTTGCATTTCT** 3TCAATGTAGAATTITITAAACTTAAAAACATGCTTCATACAGCCGGGTGTGGTGGCTCATGCCTGTAATCCCAGCATTTTGGGAGGCCA TTAGCTGGTCATGGTGGCGCGTGCCTGTAATCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATTGTTTGAACCCAGGAGGCAGAGGTTG 2ATGAAACGGGCACATGTCTGGCTGGGTGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGCAATCACTTAAGG GTAGTCCCAGCTACTCGGGAGGCTGAGGCACAAGTATCACTTGATCCCAGGAAGCAGAGGTTGCAGTGAGCCAAGATTGTGTCACTGCA 3TCAAATGTTAATTTGACTATGTAACTTATTAATGAAGGAACCAGCAGGTGTTAGAGCTGGGTCAAAGAAGTATAAGAGAGTGTGGAG TGCCATTATCTTTCTATCAGACCAAAATAATTTACATCTCTACTAGACAAACATTTGCCACTTTTCAATCCATAATCTATGGGTAAT TCATGGAGTCTGGCCCTAATCAACAGTAAATAGTAAAGCCAACAAAGGATCTCTTCCCTAGACCTTGAAGTGATCTTTGGGTGGACCC JTTAGAGAATAATTTAGTATGACATTGAGAGGACACGCAAGCCTGGGCAGCATAGTGAGACCCGCCTCTACAAAAAATTAAAAATTAG 4AAGGAAATGCAGCCATTTTTTTTTTGCCTTATTTCCAAGTTCTGGATAATTTTTCTTTTTTAACAATATATAAATTTTTTATGTA CCGGGCATGGTGTGTGAGCCTGTAGTCCTAGCTACTCAGGAGGCTAAGGTGGAAATACCACTTGAGCCCGGGAGTTCGAGGCTGTAGT 3TATGTTGGTCTATGTAGGCATATCACAATWTATYCATTCCCTAGCTGAAGTACATTTGCTTTCAAGGTATTGCTATTATAAACAAATC CCAGGAGTTCGAGACCAGCCTGGTCAGCATGGTGAAACCCCGTCTCTACTAAAACTACAAAAATTAGCCAGGCATGGTGGCATGCGCC1 TTCATTACTGATAAATATAAAATATTTCCAAAACATCACAAATCTTTTNTNNTNCACTATTTACTATACACTTTNGGTCTNAATTTAA | ICATACCTTTAATCAAATAATAATTTTGTCTCTTCAATCAGCTNTGATTTACTTTGTTCNAANACNAAGCACACACACTATAATTANAAT AGCGGCTTCACTATGTGGTTCTTTTCCTCTCTTCCCATACTAATTACTGGTACTGGACATATACATCCAAAATCAAATAGTARTGTC CTITTTAAGGGATAAATGGGATGTGATGTAGAAGGGGCATAGTAGGGACTTCATCTGTTTTGGCAAATTTTTTCTTAATATAGGTGGTA

16.3A-22

GATTTAACGTAGTTCATGGTCTTTAGAAAACAAGAAAGTCCATAAAGAAATCAATTTAAAACACAAAATACTTTCTAATCTAGAAATG GACACAGATGTAGACGATATTAATAATTACTCCAGAACAACAGGCATAACTAAAAACTACCACAGGCAAAAGGGGAAAATAGAGAATG 3CTATTTCTGCTTAGAGTTATAGGGCTATAACTGATAGAGGTAACCTTGAAGAAATATGGCCAATGTAGGT:TTTAGGAGAGAGAGACTTA CAAATAAAGCAATTTGAGTTCAAAATTTGACTCTGAAACTTACCAGCTGAGTAAGCTTGGGAAAGTACCTCAACCATTCTAGGCCTCAG J**AGAAACAGAGATCATCTTTAATTCAATACAG**GTAAAGGAGAGACCCCAAGAGCAGATACGGAAATGACACGTGCATACCTTGATTTCAC GTTCCACCTGTAAAATGGTAACAATCATAGCTATCTTAACGTGTACACCTATAAAGTGATTAGTATAGATTTCTTATACAAAACAAGA SCTCTGTAAATTATAGCTCTTATTAGTTGCTGACACAATAAAGCCACTGAGTTATCTTGAGAATTAAACATTTATATGTTACTCGTCAC 3GTGCTGGTGCTGCTGCTAACTGCTTATCTCTGAAACTTTCTCCCAAAGATTGCCCTTGGAGCACTTATGCCCCAGAGCTTCCTGCAGG GCACCTGAGAGCATTCTTTATAAACCACTTCTGTCAGAATCTCAGGCACTGCTTCTAGGAAATTAGACTTATGGCATTCTATAATCCA CCTGATGTACCTGCTCTGCACACAGAATTAGACGAGGGGATCAGGTTGGTCAATGTATCCAATCAGCAGTATGGCCAGATTCTCCAGAT 3ACCCGGAAGCACTTGGAGGACACCGCCTATCTGGTGGAGAAGATGAGAGGGCAATTTGGCTGGGTGTCTGAACTGGC<u>AAACCAGGCCC</u> JTACAAATGCGCCAGGCTAGTGATTCCTGATGAGGCTGGTTTTGAGGGTTCCCAAAAAGACTTGGATACAAAAATTACTGGGCAGAGGCA ATTGAAGATGCAATATTCTGTGTGTAGTATGTTAGGTTATGTTGGTGCCCTATCCAGATCCCTGGGGATCCCTTTTACCAGCTCCCACT ATCAGGCTGAGGCTAACAGTCATCTGAAGCCATATCCTTGCTTAGCTTCTTTCACTTCTCTAGTTTGCTTTCCTCATCCCCTTAAAAGT 3CATTTCCCTCTTTTTCAAACTACAAAGCTGTGGATCATGCCTGATTTGAGAAATAAGTTTAGAAAGTCACAGCAAGCTCATTAAAAA AGTGTATTCATTACTGCAGACCACAGTCAAAGGGTTTTGAAAGCCACTGTTCCAATCCCTGCCAGCTCTCTGATTCTATAACTCTATTA SATTACACTTGAGGAAGGTAAAATAATTCAATATATTTGATCATCCTCGCATATATAGACTTTTAGTTTAACGAGGAAAAAGTCTTGTA TTGAAGAATAAAACTTGAAGAAAAATTTTAGCAGTGCTTTCAACCTTTAGAAATCTACAGTCAATATTTAGTTGTTTTTACCATTGTCA AAGGGCTGGGACTTAAGCCCATGTTGCCCACCTCCAAGTTTCATGGACTTTTCCTTCTCCACATTACTTTCTTCTCTGTAG<u>ACTG</u> 3GCATGTGGAATTTATAACAAAGTTCTGTCTCCAGCCCAGTTTCTGTTACATAAAACCATATAATTAACAGTTAAACTGGATCTGGT

GTATTITICTATICTGTGCTTTGATTTACTTCCATTCTAGTGTCTCTTGAGTAACATAACAGATTTATCTAAAATTCTTTATGCTGATAA

ICTITCCCCAGTTTTTCAAATGAGGCACAGAGGAGGTTAAGCAACTTGTCTGAGCTCACACAGGCTAGTAAATGGTAGAACTAGAATTCA CATTTACTGGGTGTCAGGCAATGTTCTAAGACTTTTTCCATATATCAGATCATTTAATACCCTCAATGACCCTAATAAGGGAAGTAGAAT <u> ACGGTTGTGGTCCCTGGTTGTATAATAGTTACATGGGTGTTGACTTTACAATTATTTAAACCAAACATAAATACTTTATGCAGTTTTTA</u> GTGGCACAGACAGTAATACTCAGCAAACATCCCACCTCCTCTCTTTTTCCAGCTCCCCTTGTGGTTAAACGTTGCCATGTGGCAA TTTCTGCTGAGGGCACAAAGAAAGTCCTGAAATCATGTGCTACAGCTATGAGATAATGTGCCTTTGCCTACCAGGCTTCTCAGTGTTTA AACTCAAGCAGTATTTCTCTAGAATCAGTGAACGTAACCACTTTGCTAAACTGCCTGTGAAGTTACTTTTCTCAAAACAGCTCCTATTT <u>GCCTTCCTCTAATTTCACACTCAAGATCCCTCTTGAAGAAAGTGCTGAGAGTTCTAACTTCATTGGCTACGTAGTGGCAAAAGCTCTAC</u> ATAATTGGTTTTGCATTTTTGAAAGCTATTTGATTATGCATATGAAGAGCCATAAAATTTCCTTTTGATATAATAATTCCACTTCCGAA ATCAATCCTAAGGRATAAATCTAAATTTGATGAAMAKTCTCCCTCCAAGATCTAGATTTTGCAGCATTATTTAAATATTAAAAGTTGGCC AACACGGAGAAACTGCGTCTCTACTAAAAAAAAAAATTAGCCGGGCATGGTGGCGGCCGTGTAGTCCCAGCTACTCGGGAGGCTG <u>AGCATTTTAAGGAACATTTTAAAACCTG</u>GTAAGCAGAGTGCCTGGTTAGGAATGCCTTGTTGACAGGAATAGTTAATTCTCAAAAGGGA AGGCAGGAGAATGGCGTGAACCCGGGAGGCAGARCTTGCAGTGAGCAGAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGAGA TGTGTAAAAACAAGAGAATGATTAAGTAKATTATGACTAAATACACTCAATACATTTTATGAAACGTTAAAAAATATTCAAAAAATTTAA TGTATGTTATACTCACAGAAAGAGAAAGAGGAAAAATTTTTAAATCATTCTCTTAAGGTTACATCAAGTTGCGTATCAGTTCAGTTCCAT TTGATTCTTGCCAAAATCACACCTACAACCATAAATTGTAAATTTCTAGGAAAACTCAGTACAAAACTTGGTGCAATGCAATAAAGTT ATAATCCTTCTTCTGTAG<u>GTAGTTCCAAGGATTCATGAAGGAAATATTTCCAAACAAGATGAAACAATGATGACAGACTTAAGCATTC</u> TTACCTCAGCACAAACCCAGGCCTATCCTGACTAAGGTGGTATTAAATTACTATTGAATGTGTATTGGGATTTAGTAAACTTCTACTG TCACACTGCACGGCTTCCTGTTAAGATATTTGCTCAAAAATGCGAGATATAAAAAATCTGGGTAATATGATCAACCTTAAAGAATAATT ATAATGACTTGCTAACTACTTTAACAAGAGCTTTATTATCAGCTAGTCTTGGAGGTAATAGTATTATCATGATTTTTCAGAAAAAGAT(

3GAACTGGTACTCTGAAAGAGAAAATGAGAAATTTGACAAGATCCTGTCCCCAAGGAGCTTCCTATCCAACAGGGGCACAAGACAGATA STCTGGGAGTTCAGGGGAGGGTCGTTCACATTCTGGTAGGAAGATACTTCTGAGCTCAGTATATTCCCTTTCTCACTGTCCTTCTATC CAAATGATTCTTGTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCGCACACCACCATGCCTGGCTAATTTTTGTGTTTTTTAGTAG TTTTTTTTGAGACAGAGTCTTGTTCTGTCACCCATACTGGAGTACAGTGGCACGATCTCGGCTCACTGCAACCTCGGCCTCCCAGGT ACTTCTTCAGGGGCAATATACCCTCTTCTACCCATAAACTAGGGGCAACATACCCTCTCTCCCCTTTCACACATGACCATAACACCATG *AGCACTCAACTCTTGTAAGTTGACATTTACCCATGTGACTCTTTATGAACGTTCATCTCCCATCCCGAGACCTACAGTCCATGAGGGTA <u> ACATTITAAATTATTCATGAGACCTTGTTAGTAGGTCACCATCAATGTGTAATTAAGCCAGATGTGACAGGATTTGTTGCCTCTCCCT</u> YCCAAGACCAGCTCAGCTAAAAGAAATGGATGGATACCGACTCATGAGTCAGAGGGGAAAGCTGGACGTCTATGCCCAGAGCCAGGGCAGA 3GAGAGGAGAGACTTGGTTGACAGTCCCCATGTAGTACCCCTTTGTTTAGGTTACTGAGTCATCAACAGATCTCAGTTCAAATAGTC CACCGTTCTAGGGTTTTTGCTCTTTGTCAGTGGGGACTTAGGACTCTGCCTGGCACAGGGCAAACCCTCAATATTTGTTGAAT NAATTAATTAATAAACACGTGTAAATGAATATCAGTAGACTACAACAAGAGTAACAGTAGGCGAAGGTGGAAGGCAAAGGTGGGAAGAG ACTTCCAATGGCAATGGGAATTAAGATACTGAGTAATTGGGAGATCAAGCAAATTATTTACTAACAAGGCACACGAAGTGATTTTTCAC YGGCAATGTTAATGTTTTTCTTTTTTATGTTGTAGTTTTTAAAATTCTAAAAGTAACAAAATCACAACTACCAAACATTTAGACGACAAAAT 3TCAGGGCTCTGAGTGCTGGGCTGTGGAGTCTGAGGTTCACTCTACAGCGCTGGTGAGACACGATAGGTTTTAGAGAAAGGAAGCCTCA *ATCCATAATCCCACCATCTTAACACAACCACTATTATCATTTGTTTTCCTTATTCACATTTCTACCTATTTTCTTAGATTYCCAAGA GGCATGATCTCGGCTCACGGCAACCTCCCACCTCCCAGGTTCAAGCGACTCTCATGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGTGT YACGGGTCAGGTCTAGAGTCTGGGAGGAGGAACCGATGGACAGCTGCTTCAGGGCCCAGCGCTCAGGGTGAAGCAGCTGCAGTTGTT

16.3A-25

<u> AGTGATCCTTCCACCTCAGCCTCCCCAAGGGCTGGTATTACAGGCATGAGCCACTGCCTGGCCTGGCCTTTTCAATTTTTAAAATCTTCA</u> CCTGCCAAAGTTTAAAGAGAAAAGATACTAAGGGAAAAACCAGGAAAAGATGGTAGAAAAGAATCACCCTGGCATTTTCAATCACGTAAA GCACCACCACATTGGCTAATTTTTGTATTTTTAGTAGAGATGTGTTTTTACCATGTTGGCCGGGCTGGTCTCAAACTCCTGGCCTC <u> ACTGAATTICTITTTTGTGCACCTTACTTGGTATCATGGATAAAATTTTGTCAATTTTCTGATTATATCAATGCATTCAGGGTCCCAAA</u> !CATAGCTGCCGGCCCTGGGATCTACAGTCACAGGCTGTAACACAATATCTTGCACATCCTGAGTCTTTAATAAGCTTTTGTAGATGGG CTCTTACCATCATCATCGTGAAAGGCAAATATACAAAATTTGTTGACTAATGTAATGGTCATGAGTAACAGAAGTTTACTGACCA AACACTACGTGCATGTAGAGTTCAGAATAAACACTTTATTATCACATCAGAGGAAAAGACCATCTTAGAGGCTCAACAACACCAGGAAAG CTGTGACGATTTCTTCAAATTGTTAAGAATATCCATGCATATGGGTTTCACATTATTTTGCTACACACAGTACCAAATTTTTCCAAAAGC CAACAGCAGGTATTCTATTACCCATCCTGGACTTTTACTCCAAGAAAAATACACTGAGTCTGTGAGTAATTTATTAGTATTTTGATCA <u>ATCCTGAAATAAAAAAGGATAATGCAATAAACACAGTTGCAGGAAAGTATGTTAGCTATATACTATGAAGTACTCTTAGTTTACTTATG</u> <u>TTGAATGGCTTAGCTATTAATACTCAAATTGAGTTAAAATGAAAATTCCTCCTTAAAAAATCAAACGTAATATGTATTACATTTCATGG</u> <u>TACATTAGTAGTTCTTTGTATATTGAATAAATACTAAATCACCTA</u>GGTGTCTATGTTCTATCACACCTCTACAAACATGTCACTTCCTAAT ITTTGTAAAGACCAATAGGTTCTGTATAGTCTTTTTTAAATTGTGGTAAAATACACATGGCATTAATTTTACCATTTTAACCATTTTAA TGCTGCTTTTTTTTTTTAAGG<u>TAAGAAGATCTAATGCATCCTATATCCAGTAAGTAGAATTATCTTCATCTGGGACCTGGAA</u> CTGGAACTTTCTTCTAGTTATCTAGCATCCTAAGTGCCTGGACGTTCCTGATTGGTTTGCAATGTGTTTTTATTTCCCATCCCCAAGT GAAACTCTGTACTCGTTAAGCACTCACTTCCCGTTTCCCCATCCCCAGCCCGTAGCAACCACGACTGTACTTTCTATGAATTTGACTA ICTGTCGCCCAGGCTGGAGTGCAGTGGTGCAATCACAGTGTCCTTTTGTGACTGGTTTATTTCACTTAGTGCCATGTTTTCAAGGTTCA [CCATGTTGTTGCATGTCTCAGAACTTCC11T1TAGGCTAATATTCTTGCATGTATTTACCTAGTTTTGCTTATCCATTCAGCCATTG ATGGACACTTGGGTTGCTTCCATCTTTTGGCTATTGTGAATAATGCTGTTTTGAACGTGGGTGTGCTACATAGTTACTTTTTAAAATTG GCACAACAGCGCTGTCTTTGACATACGTATTTTATGGAAAACACAGATTTTCCTGGCTGACGCTCAACCTCATAATTTGGACCTTGG CTCTAGGTACTGCATGTAGGTGGAATCATACAGTATITGTCTITIGCTTCATITIGTITITGTTTTTGTTTTTCTAAGACAGGGTCTCAC AGTGCACAATTTGTGGCATTAAGTACACTCACGTTGCTGTGCAACCATCACCACCGTCCATCTTCAGAACCTTTTTATCTTCCTAAAC1

TAAAGAACTTTTCACCCAGTCTTGATCTATCTGACAGAAAGGCTTGTCAGAGAAAGTTAGAGTTCAGAGGCAGCCAGTTGAATATAAT CTCCTGAGTAGCTGGGACTACAGGTACTACCATGCCCGTCTATTTTTGTAT†TTTTTAGTAGAGATGGGGTTTCTCCATGTTGTCCAGG STGGTCTCAAACTCCCAGGCTCAAGCAATCTGCCCGCCTCAGCCTCCAAAAGTGCTGTAATTACAGGCATGAGCCACTGCTCCTGGCAG GACAAAAAATAAGTGATTAAGAGAACCTATTITCTATCCAATGAGCTATCAAAAGCTTATAGAGTGGAAAGAGAGTGGGGGGAAGTG ICAGTTACCCGAGATCAACTGCGGTTTTAAAATATTATGTGGAAAATTCCAGAAATACATAGTAAGTTITCAATTGCATGCCATTAAAT 3GAACTAATAGAATCCTGGGTTCTTCGGTGTGCAATAAAYCTCAAATACAGCTATTCAACCATAGATTTTAAATATTTGTTAGTGAAGG SAAAAAAACATGGTATGTATAAGGTTCAGTACTATCTGCAGTTTCAGACATCCCCTTGGGGTCTTGGAACATATCCCCCGTGGATAASG 'ACTCTATTGCČCAGGCTGGAGTGCAGTGGCATGATCTGGGCTCACTGAAGCCTGACCTCCTTGGCTCAGGTGATCCTCCCACCTCAGC 3GCTCAAAACAGCTAAATGGAAAGAAGATTTTGCATGCAGGCTGAACTGGATTTTCATCCTGGCTACTATATTCTCCAGATGTGTCTCACT CTCATGCTGTCCCTGACCCCTTCCTCTCCGGAGGTGAATGCTCCCTTTGTCCAGTGGCTCCACGATGACTACATTCCCCAAATTGTTCT 3GAAACTACTGTAAAAGTTTGTSTTTTATAGAGTAGTTSTSAGAACTACATTAATCCATAATGTGTGSCTCATGATACTCATTGATAGA TGGTAGTAGCAACAATAAAAAATAATATTATCAAGTAACTGATTCATAATTGACTCTCAAAAACGTTAATTTTCTGCTTTCCTTTACCT ATTAGCAGGTCATCCCTCTTTAAAATGTACCAAATGGAATCTAAATATCATCGCAATTTGACCCAGCATCATCCATTTAAACAAATATA CAAGTTTTTCTTTAACAATGAGAAATTTTATCTCATTACATTTTCTCCCTAAACTCTTATTTCAATCTACATTCCTAAGAATTTTATCC TGGCCAAGATCCTTAATCTCAGTGTCATCTATAAGGTAATTAAAGTACACTAGTGCCCCACTAATCTGTGGTTTTGCTTTCCAAGCT PATGTAGTATATTITTATGCTTAAATATCTTTTGTTGATCAACACAATTITTGATCATTTTTAAATTTTAAAATTAAGAACATCCTGT SACATCAAATTCTAGGTATGAAATATTTATTCTAGATTGGGTGATCATTATAATTATTTTTTTGTACATAATTGATCAAAATAACATAAA CCAATAAGTTAACGTATCCACTAATAATTATTTCTTCCTAGAACAAGACAGGATTAAGCATCATGACCGTCCCTATTGGGGGATG CTTCCCAGTATTCAGGTCTCAGCTCAAATGTGACTTCCTCAATGAGGCCTCCTGGTGATCAGATCTAAAGCACCCTCTACACAATCAC TGTTTAGTGCTATACCCATTAATTTACTATCATCACACTTGTCACTATCTGCAGATGTCTTGTTTGGTTTACTTTTGTNGTGTTTGTCAC TGCCAGAATATCAGTTCTATGAAGAAAAGGGCCTTGTCTATTTTGACACTTATAGANATGATGNAGGNACGACATACAAATGGCCAATG TTTTATAGATGCAAGCACTGTGGCACCTACTGGTATAAATGCACCTGCTGATTGGAATGTTCTTTCCCCAGATCTTCCCCAGATCTTCCCCAGATCTTCCCCAGATCTTC

GGTATTTGGGTGAAACAAATAAACCAGCCTCAAAATAACACAAGGGGCCGGGTGCAGTGGCTCACGCCTGTATCCCCAGCACTTTGGGAG GGCATATGGAAAAACGCTTGACTTCAAGAGTACTNATGGNTATNACCAACATTTATGGAGTAACTACTTTGAAAAGAACCATTCTGTCT TTACTATCAAGCCAAGATACTCAAGGAAGGCAGCAGAAGTGGAAGCTCCATGTGGGCAGAGGAGGAGCCTAGTCTTGAGATGTGATTTAGCT GCTCGAGGCAGGCAGATTACTTCAGGTGAGGAGTTCGAGACCAGCCTGGCTAACATGGTGAACCTCCAT

xpression in normal brain	Oligodendrocytes	•		,	ř	. 1	 t		na	a	•	•		•	•	1	•	•	•				1		ŧ	1		1
	Astrocytes (1	•		1	,	1	na	•	•	,	ı	1		ı	1	•	,			•	•					.1
	Neuron	‡	‡	‡	‡	‡	‡	‡	na	‡	+	‡	‡	-/+		+		-/+	+	+		‡	+	+	+	+		+
	White Matter	r	•	t		ı		,	na	ı.	•	•	ı			ı	ı	ı	,	,		1	,	1	,	1		,
	Gray Matter	‡	‡	‡ ‡ +	† † +		+++	‡	na	‡	‡	. +++	+++	+/-		+	+	-/+	‡	‡		‡	+	+	+	+		+ 1
	Brain Regions	Frontal cortex(1)	Motor cortex(2)	Parietal cortex(3)	Occipital cortex(4)	Hippocampal formation(5)	CAI	CA2	CA3	CA4	Dentate gyrus	subjculum	parahippocampal gyri	Caudate/Putamen(6)	GPi/GPe/Putamen(7)	GPi	GPe	Putamen	Amygdala(8)	Thalamus(9)medial	Substantia nigra level(10)	SNc(substantia nigra pars compacta)	SNr(substantia nigra pars reticulata)	Red Nucleus	3rd cranial nerve nuclei	superior colliculus	Upper pons(11)	Locus <u>coeruleus</u>

FIG.4B

pedigree	Affected Individuals	Phenolype	a.a. change	exon	comment	nt change	nt position
30124	3010189	208	R331T	æ	3 of 4 offected individuals	AGA -> ACT	51,641
	3010185	208					
	3010184	ZOS					
30105	3010027	SCZ	1231	3	the only affected individual	ATT -> ACT	35,044
31102	3110017	ma jor	£202K	7	all three affected individual	GAA -> AAA	45,487
		depr			(also seen once in Costa Rica)		
	3110014	208			•		
	3110003	SCZ					
30120	3010155	SCZ	E202K	7	one of the affected individuals	GAA -> AAA	45,487
30126	3010203	ZOS	intronic	10	3 of 4 offected individuals	insertion:	of ter
						GAATGCCTGGTTAG	65,41/
	3010210	SCZ				21 base pairs	
	3010204	SCZ				3 of exon 10	
30140	3011486	208	intronic	9	one of the two affected	1 <- A	43,450
					individuals	(24bp	
		-				downstream of	
						exon 6)	
32301	3210041	208			two of the three affected		:
	3210051	SCZ			individuals		

FIG.5A

pedigree	Affected Individuals	Phenotype	a.a. change	exou	comment	nt change	nt position
30120	3010155	205	L34L	. 4	one of the two affected individuals	CTC -> CTA	36,307
32200	3210104 3210009	225	L34L	4	both affected individuals	CTC -> CTA	36,307
31109	3110013	SCZ	1231	3	one of the two affected individuals	ATT -> ACT	35,044

FIG.5B

a.a. change	exon	nt change	position
non-coding 5'-UTR	-	G->C (35 bp upstream from 3' endo of exon 1)	15,385
[42] (silent)	4	CTG -> CTA	36,331
V123G	9	199 <- 119	43,184
non-coding (intronic)	9	A -> T (24 bp downstream from exon 6)	43,350
V301	. 7	GTC -> ATC	45,571

FIG.50

AGTTGCGTCCCTCTGTTGCCAGGCTGGAGTTCAGTGGCATGTTCATAGCTC
ACTGAAGCCTCAAATTCNTGGGTTCAAGTGACCCTCCTACCTCAGCCCCATGA
GGACCTGGGACTACAGTTCCCTCCCTTTGGAACGCAGCGTGGGCACCTGCAA
'CGCAGAGACCACTGTATCTCCGGTGCAGAATGTAATGAGTGCCTGATACATT
TGCCGAATAAACTATTCCAAGGGTTGAACTTGCTGGAAGCAANAGAAGCACT
ATTCTGGTAACAGCGGGAACATGAAGCCGCCACTCTTGGTGTTTATTGTGTGT
CTGCTGTGGTTGAAAGACAGTCACTGCGCACCCACTTGGAAGGACAAAACTG
CTATCAGTGAAAACCTGAAGAGTTTTTCTGA

FIG.6A

AGTTGCGTCCCTCTCTGTTGCCAGGCTGAGTTCAGTGGCATGTTCTTAGCTC
ACTGAAGCCTCAAATTCCTGGGTTCAAGTGACCCTCCCACCTCAGCCCCATGA
GGACCTGGGACTACAGATGGAGTCTTGCTCTCGTTGCCCAGACTGGAGTGCA
CTGCTGCGATCTCAGCTCACCTGCAACCTCTACCTCCCAGGTTCAAGCGATTCT
CCTGCCTCAGCCTCTCGAGTGGCTGGGACTATAGTAACAGCGGGAACATGAA
GCCGCCACTCTTGGTGTTTTATTGTGTGTCCGCTGTGGTTGAAAGACAGTCACT
GCGCACCCACTTGGAAGGACAAAACTGCTATCAGTGAAAACCTGAAGAGTTT
TTCT

FIG.6B

3 153	23 213	43	63 333	83 393	103 453	123 513	143 573	163 633	183
L CTG	T ACT	I ATA	M ATG	E GAA	S AGC	AAC	E GAA	9	TC
K AAG CI	P CCT	E GAG	M ATG	GAA GAA	E GAA	S AGT	٧ GTG	S AGT	٧ GTG
M ATG A	GCA GCA		I ATC	¥ ¥	E GAA	E GAA	M ATG	R AGA	CAT H
	c TGT	A GCT	\times	င 7ရိင	E GAG	L CTG	N AAT	D GAC	E GAG
TTTATTCTGTGGACAATGAGAGACAACTGCAAGGATTAACAGTGAGAAC	CAT	E GAG	M ATG	A AG	E GAG	ာ ၂၅	¥ ¥	N AAT	·I
CAGT(с 767	S TCT	O CAG	K AAG	L CTG	A GCT	V GTG	E GAA	CAC
TTAA	D GAC	ч E	¥₩	ا 176	CAC	R AGG	S TCT	Q CAG	S TCA
AGGA.	× &	SAGT	$\stackrel{I}{\text{ATT}}$	T ACC	E GAA	C TGC	S 252	L CTC	ر" 1976
TGCA	L 176	AAC	а 990	AAA	CAT	E GAA	W TGG	P CCT:	CAG
CAAC	W 766	A GCG	ATT	M ATG	V GTT	D GAT	A GCA	ᅩ崖	A GCG
GAGA	L CTA	AAC	ا 176	L CTA	E GAA	W TGG	CCT	L CTG	D GAT
ATGA(L CTG	E GAA	A GCT	A A	N AAT	S 700	S &	ı Ε	E GAA
GACA	с 767	S AGT	I ATA	SAGC	M ATG	D GAT	c TGC	O CAG	E GAG
TGTĢ	٧ 676	I ATC	AAG	CAC	7 E	A GCA	T ACC	Y TAT	T ACT
ATTC))))	A GCC	۷ GTG	E GAA	Α¥	L CTG	ACC .	I ATC	V GTC
CTT	чE	ACT	E GAG	E GAA	L CTG	STCT	D GAT	A AG	
TTAM	M ATG	×₩	G GGA	GAG	GCC	٧ 10	чE	R AGG	¥ ¥
TGAC	L 776	D GAC	D GAT	R AGA	E .	CAG	R AGG	T _C	S AGC
CACACTCTGACTTAAC	CH	K AAG	۷ GTA	R. AGG	Q CAG	၁ ၁၅	M ATG	чE	. v GTC
CAC	P CCA	™ 7GG	3AC	3A 3A	*AG	J T	၁၉	9 S	ط <u>ل</u>

FIG.7A

```
203
753
        223
813
                243
873
                        263
933
                                 283
993
                                         303
1053
                                                 323
1113
                                                                  363
1233
                                                          343
1173
                                                                          383
        L &
                G P
                         o §
                                         SA
                                 GAC D
                                                 y ≸
                                                          N AAT
                                                                  ACC __
                                                                           <u>≥</u>
×¥
        > 15
                E
GAG
                         Y
TAT
                                 CA O
                                                 CAG O
                                                          L
CTC
                                                                  M
ATG
                                         9
                                                                           .
38C
                A
GCT
        a
B
C
B
                         > 15
                                 ¥¥
                                         AG R
                                                 ၁
ဤ
                                                          E
G¥
                                                                  O CAG
                                                                           чE
        ACT ACT
                D
GAT
                         S
S
S
                                 P SC
                                         GAC.
                                                 AGA
                                                          R
AGA
                                                                  V
GTG
                                                                           CAG
                                                                  V .
GTG
        ප පු
                A GCA
                                 ط
ک
                                                          Z
Z
Z
7₹
7
                        7
T
                                         0 \
                                                 AAG
AAG
                                                                           E
GAG
                        S
AGT
                                                          L
        S 23
                AGA .
                                 D GAC
                                         E.
GAG
                                                                           R
AGA
<del>-</del> | | 5
                                                  8.
S
                                                                  0 Se
               . Y
TAC
S.
AGC
        ACA →
                         7
11
                                 E
GAG
                                         P 73
                                                 чE
                                                          E
GA
                                                                  D.
GAC
                                                                           M
ATG
                        N
AAC
. R
AGA
                                 _
ACA
        F 2
                A
GCC
                                         L
CTA
                                                                  √
TAC
                                                                           A AG
                                                  N
AAT
                                                          Р
ССТ
       Y
                CCA C
                                                                  o ≸
AAC A
                         ာ
၁၅
                                 A
GCC
                                         I
ATA
                                                  > \
∏
                                                          V
GTG
                                                                           E
GAG
F 5
        Sβ
                E
GAG
                                         A A
                                                          NAT
                         7
CTC
                                 ·R
CGT
                                                 ာ်
ည
                                                                  CAG O
                                                                           M
ATG
                X
AAG
75
        L
CTG
                                         S
                                 L
CTG
                                                 D
GAT
                                                          P
CCT
                                                                  N
AAT
                                                                           L
CTG
                S
202
S
        <u>4</u> |
                         Q
CAG
                                 ACC
                                         AH
                                                 S 77
                                                          C
TGC
                                                                  S
TCC
                                                                           7
F
ACA
                <u>ا</u> ا
        A
GCT
                        7
                                 ACA
                                         P
CCG
                                                 J
T
                                                          D
GCA
                                                                  R
AGA
                                                                          ACG
                                                 N
AAT
        0 89
CAG
                S
T2T
                        V
GTC
                                 I
ATC
                                         99
                                                          DGAT
                                                                  S
AGT
                                                                           ACC
D
GAT
        GAC
GAC
                P CCA
                         N
AAT
                                 70
                                         .
66A
                                                 CAG CAG
                                                          S
77
                                                                  V
GTC
                                                                           GAC D
A S
        <u>u</u> |
                4 E
                         <del>.</del> کی
                                         CAG.
                                 ¥ ¥
                                                  9
                                                          L
CTA
                                                                  _
CTG
                                                                           F
GA
        E
GA
                         I H
                                 E
GA
                                         AAC N
                                                                  R
GA
                                                                           L CTG
                L E
                                                          Y
TAT
                                                  7 ==
        .
Ag
                7
7
7
7
                         A.
GCC
                                 S
AGT
                                         လ ည
                                                 ¥¥
                                                                           SG ±
                                                          D
GAT
                                                                  75
        R
CGG
                         ₩
766
                ۳ <u>۲</u>
                                 V
GTC
                                         GAC
                                                 999
                                                          98
                                                                  A
GCC
                                                                           .
TAT
                                 S
AGT
        ر
53
                E
SAG
                         S
                                         × &
                                                 D
GAT
                                                                  E
SAG
                                                          ပည္
                                                                           CAG CO
```

;	·										
	403 1353	423	443 1473	463 1533	467 1545	1624	1703	1782	1815		
·	' Q S P G A E D I F N P V K V AC CAG TCC CCA GGA GCT GAG GAC ATC TTT AAT CCA GTG AAA GTA	H E G N S S D Q D D T V V P AT GAA GGA AAT TCT TCT GAT CAA GAT GAC ACA GTG GTT CCT	S N F T L S S P L E K S A G TCT AAC TTC ACA CTC AGC CCT CTT GAA AAG AGT GCT GGC	H V V E K V L Q H F K E H F CAC GTG GTA GAG AAG GTT CTT CAG CAC TTT		.AGCAAGAATTACACCTTCGGCCAAGACCTGAGAATTCTGAAAATACAAAGCAGGC	TAACACAATGAACACACGCTGCATGAAAGTTAGGTATATTAGGAAGCACTATTGGTTTACTTTGTTGAATGGAAGTTT	'ATAAAAATTTCTTCCTAAAAAGTAAAATGTACATATGTAGAATATGATGCATTAG	GAGTCCCCT	FIG.7C	
	V S E L A Y GTT TCT GAA CTG GCA TAC	M V A L S A ATG GTA GCC CTA AGT GCT C	S S L L P S TCA AGC CTC CTG CCT TCC	N A N F I D AAC GCT AAC TTC ATT GAT	K T W * AAA ACT TGG TAA	GAAGATTTAGTCCATCCTATAATC	TAACACAATGAACACAGCTGCA ⁻	AATAGCTATTCAAATTGAGTTAAT	TTCTTTGTÄTACTAAATAAATACT		

$ \boxtimes $
ည္က
×
ğ
₹
2
g
4
\Box
ֻ≾
Ġ
S
5
ICCAAAAACTGACATGAGGAGTCACTGGAGAATCATGATCAAGGA
\overline{C}
؈ؙؚ
25
8
9
S
Æ
5
₹
₹
₹
\mathbb{S}
岸
Ç
≯
9
\Box
Š
9
9
В
5
Ş
CAACTGAGTGTGGACTGAAACTTC
\mathbb{H}
38
99
\circ

3 153	23 213	43 273	63 333	83 393	103 453	123 513	143 573	163 533	183 [.] 593
,i	2	, 2	, w	, y,	H H	57 17	21 17	16	18
L CTG	T ACT	I ATA	M AŤG	GAA	S AGC	N AAC	N AAT	I ATA	√ TAC
K L	P CCT	E GAG	M ATG	E GAA	GAA	S AGT	E GAA	CAC CAC	ر <u>ا</u> د
M ATG A	A GCA		I ATC	× &	E GAA	E GAA	M ATG	S	s AGC
	C TGT	A GCT	A &	ر 160	E GAG	L CTG	N AAT	V GTG	R AGA
GTGGACAATGAGAGACAACTGCAAGGATTAACAGTGAGAAC	CAT	E GAG	M ATG	K AAG	E GAG	C TGC	A A	Q CAG	N AAC
CAGT	c TGT	S TCT	O CAG	A AG	L CTG	A GCT	V GTG	A GCG	7 F
ITAA(D GAC	7 F	X &	ر 176	CAC	R AGG	S TCT	D GAT	L CTC
4GGA ⁻	AAA	S AGT	I	ACC	E GAA	C TGC	S TCC	E GAA	S TCT
TGCA	ا 176	N AAĈ	399 8	A AA	A H	E GAA	₩ 766	E GAG	T ACA
CAAC	W TGG	A GCG	I ATT	M ATG	V GTT	D GAT	A GCA	T ACT	٧ 6TG
3AGA(L CTA	N AAC		L CTA	E GAA	W TGG	P CCT	V GTC	D GAT
atga(L CTG	E GAA	A GCT	× ₩	N AAT	. S TCC	CAA	666	A GCA
SACA	C TGT	S AGT	I ATA	S AGC	M ATG	D GAT	ე 760	¥ ¥ .	S AGC
TGTG(V GTG	I ATC	K AAG	CAC	L CT	A GCA	T ACC	s AGC	L CTG
ATTC	д Э	A^ GCC	٧٠ GTG	E GAA	× &	L CTG	⊤ ACC	V GTC	CAG
JELIS.	4 E	T ACT	E GAG	E GAA	L CTG	S TCT.	D GAT	P 733	S AGC
TTAA	M ATG	AAA	G GGA	E GAG	A GCC	> \ GT	F	9	F TC
TGAC	л П	D GAC	D GAT	R AGA	E GAG	O CAG	R AGG	S AGT	V GTG
ACTC`	E3	⊼ AAG	V GTA	R AGG	O CAG	C TGC	M ATG	-	H CAT
CAC	CCA	™ 766	GAC	GAA	K AAG	٦H	C TGC	D GAC	E GAG

203 753 986 . S T C G ACA F 75 Y TAT S CAG 4 E A GCT CAG D GAC 4 E E GAA R 66 R CGG L CTG CAG ¥ ¥ F

223 813 A GCA AGA AGA ≺ TAC A CCA E GAG K AAG S 700 ر 116 S P 23 шE 4 E 7 TC P 733 E GAG ACA. V GTT GAC 1 4CT

243 873 4 <u>P</u> S AGT ال 176 AAC AAC ၁ဠ 72 L CTG CAG F 5 V GTC N AAT - DO ATT A <u>™</u> S AGC P. P. E GAG A GCT DGAT

263 933 P CCT GAC E GAG ACA A GCC R CGT L CTG T T ACA I ATC L CTC AA A E GAA S AGT V GTC S AGT 6,5 74٧ 6TT S

283 993 0 \$ E GAG P 53 L CTA $\underset{\text{ATA}}{\mathrm{I}}$ K AAG S ATT . P (g GC . GGA . CAG AAC A S GAC X AAA GAC 80 A A C P

303 1053 AAG ж ЭЭ 4 = N AAT ٧ GTT DGAT 2 L 17G N AAT CAG 40 . GGC ٦ ا X & . 666 D GAT S 9 AGA AGA ag o

323 1113 Y TAC L E GAA P. P. ٧ 6TG N AAT P C 76C D GAC D GAT S TCT L CTA Y. TAT D GAT Q CAG ၁ ၁၉ ¥ ¥ GG 0 ာ ၁၉ AGA AGA

343 1173 ٧ 6TG 0 CAG GAC 7₹ 08 -0 CAG N AAT S 700 AGA S AGT VGTC L CTG R GA L CTC A GCC E GAG N AAT 75 E GAA AGA AGA

363 1233 E GAG AGA $^{\rm M}_{\rm ATG}$ AAG AAG E GAG M ATG L CTG ٦<u>٢</u> T ACG ACC D GAC E GA L CTG CAC CAG T ACC M ATG CAG

383 1293 N AAT <u>u</u> <u>E</u> I ATC GAC E GAG A GCT 669 **80 80 80** CCA S CAG CAG 7≺ TAC A GCA L CTG SA'A X TAT S V GTT ₩ 7GG 9 98

423 1353 1413 443 1473 451 1497 L Q H F CTT CAG CAC TTT E GAA CAA_GAT 7 CCT AGC S s AGC F I D H V V E K V TTC \dot{A} TT \dot{G} AT \dot{G} A F T L TTC ACA CTC , E G N GAA GGA AAT AAC A S TCT S 700 A GCT L S CTA AGT L P CTG CCT K E H F K T W * AAG GAG CAC TTT AAA ACT TGG TAA 900 L CTC AAC AAC A G N A T GCT GCCT / S S TCA AGC V K V M V GTG AAA GTA ATG GTA مـ У GTT S AGT GTG > CCA ACA ⊣ K AAG

SAAGATTTAGTCCATCCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGAGAATTCTGAAAATACAAAGCAGGC 1576 TAACACAATGAACACAGCTGCATGAAAGTTAGGTATATATTAGGAAGCACTATTGGTTTACTTTGTTGAATGGAAGTTT 1655 AATAGCTATTCAAATTGAGTTAATATAAAAATTTCTTCCTAAAAAGTAAAATGTACATATGTAGAATATGATGCATTAG 1734 *TTCTTTGTATACTAAATAAATACTGAGTCCCCT*

FIG.8C

3	23 213	43 273	63 333	83 393	103	123 513	143	163 633	183 693
L CTG	P T SCT ACT	E I GAG ATA	- M M ATG ATG	E E GAA GAA	E S GAA AGC	S N AGT AAC	E P 3AG CCA	L C STC TGC	R A
M K ATG AAG	A GCA C	. G GGG G	I - I ATC A	K AAA G	E GAA G	E : GAA A(M I ATG G/	L 1 CTG C	L F CTG CC
	C TGT	A GCT	AAA	C TGC	E GAG	L CTG	-	Q CAG	T ACC
FAACAGTGAGAAC	. CAT	E GAG	M ATG	K AAG	E i GAG) 160	_	F	T ACA
\CAG7	c TGT	S r TCT	Q A CAG	K AAG	L CTG	_	۷ - GTG	وTC	I
ATTA	D A GAC	ıı E	K AAA	L 7TG	H CAC	R AGG	S TCT	N AAT	L CTC
4AGG/	A AA	S AGT	I ATT	T A ACC	E F GAA	C TGC	S 3- TCC	م ا (رود	X AAA
CTGC,	ا 3 TT6	N 3 AAC	G G G	X K	H F CAT	E F GAA	M TGG	I ATT	E GAA
ACAA	W A TGG	A C: GCG	ATT S	M A ATG	V 7.GTT	D 3. GAT	_	A 3 GCC	S S AGT
AGAG,	L G CTA	N A AAC	L T 776	L A CTA	E F GAA	. W .	P A CCT	₩ 766	V F GTC
AATG	L T. CTG	E T. GAA	A A GCT	C AAA	N S AAT	S T TCC	CAA	S A AGC	S A AGT
GGAC	C G TGT	S C AGT	I G ATA	S C AGC	M T ATG	D A GAT	C TGC	P 5 CCA	r CA
стат	v C GTG	I C ATC	K G AAG	H A CAC	L A CTT	A G GCA	T C ACC	E T GAG	Y T TAT
TATT))) 	T GCC	V G GTG	E A GAA	K G AAA	L T CTG	T ACC	A T GCT	V A GTT
ACTI	M F ATG.:TTT	K T AAA ACT	i E A GAG	. E	. L .c cTG	S T TCT	D T GAT	D A GAT	S C TCA
ACTTAA(L N	D K GAC AA) G \T GGA	R E 4GA GAG	: A IG GCC	\ \ \G GTT	7 E	A GCA	T TC
rc'tg/		K [4AG GA	V D GTA GAT	R R 4GG AG	O E CAG GAG	C Q TGC CAG	M R ATG AGG	Y R TAC AGA	L S ITG AGT
ACAC.	P	W FGG AV	D 1	E F 3AA AG	K (L O	C PTGC AT	A Y	N VAC 11
S	S	F-	Ö	Ö	₹ ₹	, — —	- =	~ ĭ	- ₹

FIG.9A

203	
щ	ATA
\checkmark	AAG
S	NTT TCA AAG
Н	<
۵.	9
G	; AAA GAC TCC AAC CAG GGA GGC CCG
9	66A
O	CAG
Z	AAC
S))]
0	GAC
\checkmark	AAA
	CAA GAC
O	CAA
\checkmark	₩,
۵.	CCA AAA (
۵.	<u> </u>
۵	GAC
ш	ICA GAG GAC CCT
—	₹Ç

223 813 ٧ GTT ၁ဠ GAT S T7 L 116 $\overset{\mathsf{N}}{\mathsf{AAT}}$ c GG 990 **-** | X A . 666 D GAT STCA 9 9 9 R AGA 0 \(\frac{1}{2} \) E GAG . Р ССТ

243 873 ۷ GTG N AAT P 733 ပည္ GAC D GAT STCT L CTA YTAT D GAT Q. CAG J 23 X A G G G C 76C R AGA , YAG S 3 4 <u>|</u>

263 933 0 \ CAG .0 N AAT S 700 R AGA S AGT V GTC L CTG R 59 __ CTC A GCC E GAG N AAT L E GAA AGA Z ≺ J Z E GAA ط <u>ک</u>

283 993 E GAG M ATG L CTG <u>ا</u> ا ACG $^{\top}$ D GAC E GAA L CTG H SS. ⊁ TAT CAG C ACC ACC M ATG CAG C ٧ GTG ٧ GTG c.g.c GAC D 7₹

303 E GAG A GCT GGA CCA 200 0 CAG Y A GCA L CTG E GA S TCT ٧ 115 W TGG G GGČ 4 E CAG C E GAG AGA . M ATG K AAG

323 1113 S ST N. AAT ... 99 90 E G¥A H CAT A GCT S AGT L CTA A GCC ۷ GTA $\overset{\rm M}{\rm ATG}$ V GTA ¥ ¥ ٧ GTG 9 P N AAT 4 E agc o

343 1173 S AGC 75 ACA A F 2 AG N S 700 P () L CTG J CTC S -S TCA P 73 V GTT ٧ GTG ACA. D GAC D GAT CAA CO D GAT

363 1233 K AAG . GAG V GTA V GTG CAC DGAT I 4 1 1 N AAC A GCT N AAC A GCT S AGT AAG E GAA 75 .:S AGC

L Q H F K E H F K T W * CTT CAG CAC TTT AAG GAG CAC TTT AAA ACT TGG TAA

375 1269

FIG.9B

GAAGATTTAGTCCATCCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGAGAATTCTGAAAATACAAAGCAGGC 1348 TAACACAATGAACACAGCTGCATGAAAGTTAGGTATATATTAGGAAGCACTATTGGTTTACTTTGTTGAATGGAAGTTT 1427 AATAGCTATTCAAATTGAGTTAATATAAAAATTTCTTCCTAAAAAGTAAAATGTACATATGTAGAATATGATGCATTAG 1506

TTCTTTGTATACTAAATAAATACTGAGTCCCCT

1539

FIG.9C

			-						
3 153	23 213	43 273	63 333	83 393	103 453	123 513	143 573	163 633	183 693
L CTG	T ACT	I ATA	M ATG	E GAA	s AGC	N AAC	A GCC	N AAC	T ACA
K L	P CCT	E GAG	M ATG	E GAA	E GAA	S AGT	CCA	C TGC	A GCC
M ATG AV	A GCA	666	I ATC	× &	E GAA	E GAA	M. ATG	L CTC	R CGT
	C TGT	A GCT	AAA A	TGC	E GAG	L CTG	N AAT;	L CTG	L CTG
CACACTCTGACTTAACTTTATTCTGTGGACAATGAGAGACAACTGCAAGGATTAACAGTGAGAAC	H CAT	E GAG	M ATG	K AAG	E GAG	ာ ၁၉۲	× &	O CAG	T ACC
CAGT	C TGT	S TCT	Q CAG	AAG	L CTG	A GCT	v GTG	F	T ACA
TTAA	GAC	7 E	A AA	L	CAC	R AGG	S TCT	v GTC	I ATC
AGGA	×	S AGT	I	T ACC	E GAA	င 760	S TCC	N AAT	L
TGCA	л. Пб	N AAC		A A	H CAT	E GAA	W TGG	٦ ((A A
CAAC	W TGG	A GCG	I ATT	M ATG	V GTT	D GAT	A GCA	I	E GAA
GAGA	L CTA	N AAC	L 776	L CŢĀ	E ĜAA	W TGG	P CCT	A GCC	S AGT
ATGA	L CTG	E GAA	A GCT	AAA.	N AAT	S 700	o ¥	™ TGG	V GTC
GACA	C TGT	S AGT	I ATA	S AGC	M ATG	D GAT	ာ ၁၅	S AGC	S AGT
тете	ý GTG	I ATC	. K AAG	CAC	- JE	A GCA	T ACC	CCA	CAA
ATTC	م 200	A GCC	V GTG	E GAA	ΑĄ	L CTG	-	E GAG	Y TAT
. 1113	4	T ACT	E [.] GAG	E GAA	L CTG	S TCT	D GAT	A GCT	V GTT
TTAA	M ATG	AAA	G GGA	E GAG	A GCC	۷ 577	чE	D GAT	S TCA
TGAC	٦ ٦	D GAC	D GAT	R AGA	E GAG	CAG	R AGG	A GCA	7 T
ACTC	7 E	K AAG	V GTA	R AGG	O CAG		M ATG	R AGA	S AGT
CAC	P CCA	₩ 766	GAC	E GAA	K AAG	L TTA	ာ ဤ	Z ≺	ر 12

FIG.10A

* #

ACT ACT

¥ ¥

щË

F S

E GAG

A AG

노는

CAG:

374 1266

203 753 223 813 243 873 263 933 303 1053 283 993 N AAT _ \ ∑ \ \ P 73 7₹ A AG D GAC I ATA > 15 ٧ GTG 0 \\ E GAG E GAG N AA.T. Ř ŘĠ O CAG $\overset{\mathsf{M}}{\mathsf{ATG}}$ A GCT N AAT SZ ص ک D GAT L CTG GA I ATT S TCT သည် 200 P SS J E L TTG P 500 D GAC R AGA ACG S 700 S AGT <u>e</u> × ¥ D GAT $^{\mathsf{T}}$ CAG . G 98 S TCT V GTC D GAC ZZ ≺ CAG 9 L CTA L CTĠ E GA A GCA AAC AAC J L Y TAT R CGA L CTG L CTG S 77 ¥¥. D GAT L ± SS E GAA . 666 0 CAG GAC GAC A GCC $\forall \top \forall \top$ STCT ¥ ¥ D GAT ၁ဠ E GAG cy cy > TT5 D GAC. S TCA ¥¥¥ N AAT ACC → <u>™</u>20 O CAG 0 \\ 900 M ATG 99 Α̈́Υ C TGC AGA AGA E GAB cAG CAG чE GAC AGA . R AGA ٧ 676 Gg 0 K AAG P 73 0 \$ ZG ≺ ۷ 5TG E GAG GAC GAC E GAG. 8 8 LCTA o CAG R AGA P CT 4 = SA E ag o M ATG

323 1113 D GAT S [7 STCT N AAT G GGA E GAA CAT A GCT S AGT L CTA A GCC V GTA M ATG V GTA ×₩ V GTG ۵. S N AAT <u>4</u> E I ATC

343 1173 S AGC S AGC L CTC ACA T <u>т</u> 5 N AAC STCT S 700 P CCT. L CTG 70 S AGC SZ P CCT V 6TT V GTG ACA T GAC GAC GAT 80

363 1233 7E > CTT A A A G E GAG V GTA V GTG CAC D GAT I ATT F AAC N A GCT N AAC 900 A GCT S AGT K AAG E GAA JE P CC T

1536 GAAGATTTAGTCCATCCTATAATCAGCAAGAATTACACCTTCGGCCAAGACCTGAGAATTCTGAAAATACAAAGCAGGC 1345 AATAGCTATTCAAATTGAGTTAATATAAAAATTTCTTCCTAAAAAGTAAAATGTACATATGTAGAATATGATGCATTAG 1503 TTCTTTGTATACTAAATAAATACTGAGTCCCCT

FIG. 10C

٧ GTG L 716 75 GCAACCTCGTTGGTGAGGCCTGCAGTTAGTGTCACGGCGGAAAC ATG AAG CCG CCA

28 129 T ACT R GA GAC AAG T G ACA GGG / CCT م A GCG C TGT CAG O 2 12 13 D GAC . R AGA Ŀ CTG R 66 L CTG $^{\mathsf{Y}}$

48 189 E GAG E GAA D GAT V GTA GAC GAC I ATA E GAG . . . A GCT A AAG S TCC G GGT K AAG P 000 D GAC E GA R CGT I ATC S 70 70

68 249 E GAG E GAG R AGA R AGA E GAA M ATG L CTG I ATC ¥ ¥ M ATG CAG A AG M ATG . 66C J 116 A GCT K AAG K AAG

88 309 L CTG A GCC E GAG CAG CO K AAG E GAA E GAA R AGA C TGC ΑĄ A A G L CTG $\stackrel{\cdot}{ACA} \stackrel{\cdot}{A}$ R AGA M ATG L CTA ×₩ S AGC CAT H GAA GAA

108 369 27 ` v GTG CAG CAG 2 7 1 1 1 L CTA R AGG E GAA E GAA E GAG E GAA L CTA CAT E GAA C& S V GTT E GAA AAT Z M ATG 7 5 A AG

128 429 YTAT чE R AGA M ATG သည D GAC S AGT E GAA L ၁ ၂၉ ၂၉ S T2T AA A 0 1 E GA D GAC ₩ 766 S 700 G GGT L CTG

148 489 . AAG R 66 ٦ ا V GTT R CGG E GAA I ATT ACG S 700 AA K M ATG S S 700 ™ 7<u>6</u> S AGT S AGC CAA CAA 0 76 76 ACC → H A

168 549 E GAG . GGT ٧ GTT P 73 J F3 E GAG Α¥ E GAA D GAT D GAC E GAA H CAT F 5 P CCT 4 = 700 u E CAG CAG

ACC L CTG: CAG CAG S 7 12 13 ٧ 676 E N GAG AAT Q I E CAG ATA GAG A M ATG L CTG CAG V GTA D GAT E GA .E GAG ACT ACT

FIG

208 GA E 0 \} Q CAG CAG ×₩ 7 F VGTC S H 4 E S AGC . AAC YTAT CTC 4 E G.A. D GAT

228 729 4 E - Y TAC P CCT E GAG M ATG S 700 D GAČ ACAD GAC S ATG <u>_</u> = TAC S o ₹ 4 = A GCT L CTG D. GAC

248 789 $_{\text{ATT}}^{\text{I}}$ GAC GAC <u>≯</u> S AGT CAG CAG M ATG P CCT H A A ΑĄ A A A GCA P CCA E GAG Α¥ 255 A GCT CA S 4 =

268 849 A GCA S AGC V GTC S AGT o\$ Y TAT V 677 S 75 S AGC 75 N AAT C TGT 4 = L CTG CAG CAG F 5 F 7 S AGC ح 2

288 909 A GCC S TCT D GAT Α¥ GAC 0 \ Α¥ S 700 L ₹ D GAC É GAG $\overset{I}{\text{ATT}}$ A GCC K AAG L CTG M ATG E GAG $\stackrel{\mathsf{ACA}}{\mathsf{A}} = 1$ V GTT ACA

368 969 P CCT E GAA G GGA C TGT L C7G . 999 R AGA 9 R CGG ٧ 6TG P 200 ₩ 7GG T. ACG T ACG S 700 S AGT P 000 G GGA GT. Se H

328 1029 7₹ D GAT CAG C C TGT Α̈́Ā CAG CAG C 267 R AGA A GCA CAT чE 0 \\ L CTC C TGT GAA . S 700 S 70G N AAC O CAG 9

348 1089 E GAG J F3 A E GAG D GAT A GCG K AAG ACA A 7AC L CTA E GAA P CT ٧ GTT A GCT P 73 ၁ဠ GAC D A GCA W TGG CTA

368 1149 J 116 H S H A 0.85 ACC ACC . M ATG CAG L CTC V GTA Q CAG A GCC Y TAT CAG CA CAG N AAT 27.55 I ATA N AAC ٦<u>٦</u>

388 1209 L CTG GAG ₽CA → V GTA 75 ¥ 50 G GGT 4 E CAG E GAG R. AGA M ATG A AG E GAG M ATG L CTG YTAT T ACG ACC ACC D GAC E GAG

P G S E N I F S F I K V V CCA GGA AGC GAG AAC ATC TTC AGT TTC ATA AAG GTA GTT S Q T AGC CAG ACC (

P CCT S K Q D E K M I D I S I L TCC AAA CAA GAT GAA AAG ATG ATA GAC ATA CTG 7 TC E G N : GAA GGA AAT

N F T L T I P L E E S A E S S D F I S 448 AAT TTC ACA CTC ACC ATC CCT CTT GAA GAA AGT GCT GAG AGT TCC GAC TTC ATT AGC 1289

466 1443 Y M L A K A V Q H F K E H F K S W *
TAC ATG CTG GCC AAA GCT GTA CAG CAT TTT AAG GAA CAT TTT AAA TCT TGG TAA

1522 2075 2154 2233 2312 1601 1680 1759 1838 1917 1996 2391 ATACCTTGAAAACGTATTCAACCTCATTAATAATCAAAGGCATGAAAACTAAGACAAGTTAGCAGTTTTTACCTATTGA STCAGTCATGTCTGACTCTTTGGGACCCCTTGGACTGTAGCCCACCAGGCTCCTCTGTCCGTGGGATTCTTCAGACAGG AATACTGGGGCAGGTTGCTATTTCCTTCTCCAGGAAATCTTCCCTATCCAGGGATGGAACCCAGGTCTCCTGCATTGCA SCAGAGIATTIGATTAGGGACGTTTGCTGATAGGAATAGATGGTTCTTAAAAGGGAAAAATGACAAAACTAGCTTTTGA ATTTTCAAATTAAAAAAAAAATCCTGATAGAATGCAATGAAATGAGAATTCTTATATGTGATTGCCAGAAACAACTG STITIGICITITIGAAAAGTIAITCAATTATACATATCAAGAGTCATCAAAATTTCTTTTTAATATAATAATTCCACTTC 'AGTAAACTGTTAAAAACTGAATGTCATCTGAATGTCTAAAAACCAGAAATGGTTAAAAAGCTGTGGCTAAATATGCTCC BGTAGATGCTTTACTATCTGAGCAACCAATGAATTACTCAAGTCAGTAGGGGGTAGAGGCAAATTTTAACTTAGTTTT AAATATCTTATAAAACCATTAAAAATATTTATAAAATTTAAATCATGACATGACATCTGCTGGAACAAGAGTTTATTCT NAACTCTATAAATGTAATGATCAAAACGAAAAAAATCTACAATTTGGCATTAAAAATAAAAAGGGTTGGCAGG

FIG.110

25 AAG AAG C Q C A P T G TGT CAG TGT GCG CCT ACA GGG . GAC F I V Y L L R L R TTT ATT GTG TAT ATG ATG CGG CTG AGA V GTG

45 192 V GTA 2 2 2 3 ΨE G GGT P K CCG AAG (S 202 ACT ACT ۵ ک

K A G E I D AAG GCT GGG GAG ATA GAC E D GAA GAC (I R ATC CGT (∝ g

65 252 AGA AGA E GA M ATG L CTG I ATC M K ATG AAA 1 CAG CAG A AG M ATG ဗ္ဗ I ATT ال 116 A GCT ΑAG A A ٧ 6TG / E GAG E GA

85 312 CAG CAG R E E K AGA GAA GAA AAG K K C AAG AAA TGC / L CTG ACA M R ATG GAG L ×₩ s Agc CAT E GAA E GAG E GAG GAT AGA

105 372 ၁<u>၁</u> L R AGG GAA E GAA E GAG E GAA L CTA CAT E GAA c¥5 > FE E GAA N AAT M ATG -1 E A A L CTG A GC E GAG

125 432 M ATG ၁၉ GAC GAC S AGT E GAA L CTG သည S ×₩ ၁ ၁၅ E GAA o o e ₩ TGG S 700 GGT M ATG L . S TCT V GTG CAG

145 492 V GTT ය ගියි E GAA I ATT T ACG 2 2 3 3 ¥¥ M ATG S TCT 2 2 3 3 w TGG S AGT S AGC o¥ ၁ ၁၅ ACC ACA ⊤ Y TAT 4E AG R

165 552 P GAG ≯¥ GAA G D GAT GAC GAC E GAA H CAT F 77C P CCT 4 E L C1C 4 E Q CAG Y I ATA K AAG R CGG F 5 185 512 S AGC v 3TG Z A E GAG I ATA L M Q CTG ATG CAG A Q CAG ۷ GTA D GAT F GA E GAG _ ACT 7 T ΑĞ e GAG > FT5

FIG.12A

205 672 CAG CAG ×₹ F TC V GTC 는 있 чE S AGC AAC A Y TAT را درا u E ය ශීර් D GAT Acc

225 732 E GAG M ATG S 77 eAC GAC PCA → ۵ کا کا S TCA $^{\rm M}$ ΨE S TCA cg o шE A GCT L CTG D GAC 4 E E GA o \$ C46.0

245 792 S AGT c_{AG} M ATG P 733 H A GCA ×₩ ×₩ A GCA ь. ССА E GAG × \ S 700 4E A GCT P CCA <u>u</u> <u>E</u> чE 7¥ ≺ ٩ <u>٢</u>

. 265 852 SAG cA K Y TAT > FB S TCT 75 S AGC F N AAT c TGT 4E L CTG 7 T C 7 F S AGC ۳ 2 ATT GAC GAC ™ TGG

285 912 ¥¥ GAC . o\$ ×₹ S 22 **-**1 ≚ GAC D GAG GAG $\stackrel{1}{\text{ATT}}$ A GCC K AAG L CTG Q CAG M ATG S S E GAG T ACA ۷ ل آ [−] ACA A GCA S AGC V GTC

305 972 C TGT 1. CTG G GGG R AGA සු ප ح 66 V GTG P CCT ₩ TGG T ACG T ACG / S 700 Р 200 G GGA G GGT CAC A GCC S 72 PAT P

325 1032 ၁ <u>T</u>GT ≯ ¥ Q CAG သည် AGA A A GCA H CA 40 را درا C TGT E GAA S 700 S TCG AAC N Q CAG ၁၉ P CCT E GA ය ශීර්

345 1092 E 3AG D GAT A GCG X AAG T ACA √ TAC L F TT E Р ССТ > C GT A GCT P CCT သည GAC D A GCA ₩ 766 L ≺ TAC D GAT CAG

365 1152 . o 95 ACC M ATG Q CAG را دا د V GTA Q CAG A GCC Y TAT cAG co CAG N AAT S 700 $_{\rm ATA}^{\rm I}$ N AAC V GTC ار 176 E GAG A GCC

385 1212 <u>≥</u> G G чE 95 E GAG R AGA M ATG X AAG E GAG M ATG L CTG Y \ IAT T ACG ACC A D GAC E GAG ال 176 F S H CA

465 466 1455 S D TCC GAC T E L A S Q T P G S E N I F S F I K V V ACA GAG CTG GCC AGC CAG ACC CCA GGA AGC GAG AAC ATC TTC AGT TTC ATA AAG GTA GTT S K Q D E K M I D I S I TCC AAA CAA GAT GAA AAG ATG ATA GAC ATT F T L T I P L E E S A E S TTC ACA CTC ACC ATC CCT CTT GAA GAA AGT GCT GAG AGT ` I S Y M L A K A V Q H F K E H F K A TTT AGC TAC ATG CTG GCC AAA GCT GTA CAG CAT TTT AAG GAA CAT TTT AAA F TTC 1 V H E G N GTT CAC GAA GGA AAT S N TCT AAT 1 . 221 F

SCAGAGTATTTGATTAGGGACGTTTGCTGATAGGAATAGATGGTTCTTAAAAGGGAAAAATGACAAAACTAGCTTTTGA 1534 ATACCTTGAAAACGTATTCAACCTCATTAATAATCAAGGCATGAAAACTAAGACAAGTTAGCAGTTTTTACCTATTGA 1613 FAGTAAACTGTTAAAAACTGAATGTCATCTGAATGTCTAAAAACCAGAAATGGTTAAAAGCTGTGGCTAAATATGCTCC 1929 AAATATCTTATAAAACCATTAAAAATATTTATAAAATTTAAATCATGACATGACATCTGCTGGAACAAGAGTTTATTCT 2008 3TTTTGTCTTTTTGAAAAGTTATTCAATTATACATATCAAGTCATCAAATTTCTTTTAATAATAAAATTCCACTTC 1771 AAGCCTATCTATAAGGCAAATATTATTACTACTTCCAGAAAAGAAACTTGAGACTCAGGGTCCAAGTGTTAGTTG 2087 CTCAGTCATGTCTGACTCTTTGAGACCCCTTGGACTGTGGCCCACCAGGCTCCTCTGTCCATGGGATTCTTCAGACAAG

FIG.12C

3016	TTGGAGAGGTTGTTGGTCATCAATCAACCAATATCTTTTTAGCATCTTCTAAGTGAAGGC
2956	CCTTGTAGGTAGGTCCCTATCAATGTATAATTAAGCTGGGTATTTCTAGATTCGCTGCCTCTCCCTTTATCTGAATG
. 2877	ACATAGTATTCTCCTTTGGTAAAATGGTCAATCTTAAAGAAGCATTAAATGTTAATTCTAAGTTATTACTCATAAGGGA 2877
2798	ACAACTAAATGACATTTCAGACGTACATTACCATCTCTGTTAGGATAATCTTCTGAATTAATGGCACAATTAGAACTGT
2719	AAACTITAGTATAAGTACTICTATTCCATGGTAATCCTACAGTAAGACGAAATGTAAATTGTGGTCGGTC
2640	GATTTCAAATTAGAAGATATGTTGCTAAAATAGCTAGGTAAATGTAGATTGAACACTGTATCAATGTGTTCTCATCTTT
2561	GGTTGGAAATGGATGATTITITITAACCTTTTCATCTTTTGATATTTTTACAATTTTCTATAATGAATAAATA
2482	AAACTCTATAAATGTAATGATCAAAACGAAAAAAAATCTACAATCTGCATTAAAAAATAAAAAGGGTTGGCAGGAATTAC
2403	CTCTGAATCATAATTGCCACATTAAACTGGTTCCTGTTGGGACATTTGGTTGAAAAAAAA
2324	GGTAGATGCTTTACTATCTGAGCAACCAAATGAATTACTCAAGTCAGTAGGGGGTAGAGGCAAATTTTAACTTAGTTTT
2245	AATACTGGAGCAGGTTGCTATTTCCTTCTCCAGGAAATCTTCCCTATCCAGGGATGGAACCCAGGTCTCCTGCATTGCA 2245

FIG. 12D

K AAG M GTGAAGGTCCTTACAĜAAGCTGGTGGCAACCTCGTTGGTGAGAGCCTGCAGTTAGTGTCACGGCGGAAAÇ ATG 22 136 A GCG C TGT CAG CAG C TGT D GAC R AGA L CTG CAG L CTG L CTG (Υ TAT ۷ (3TG I ATC 4 | ر 116 I ATC CCA ۳ 2

42 196 E GAG . 666 A GCT K AAG S TCC <u>4</u> | G GGT A AG ح 93 D GAC E GAA R CGT I ATC S 700 T ACT R CGA GAC AAG . 999 ACA 62 256 L CTG I ATC ×¥ M ATG CAG K AAG M CTG 99 $\underset{\mathsf{ATT}}{\mathrm{I}}$ L TTG A GCT K AAG K AAG V GTG E GAG E GAA D GAT V GTA GAC $_{\mathsf{ATA}}^{\mathrm{I}}$ 82 316 E GAA R AGA 0 20 20 20 ×₹ A AG L CTG T ACC R AGA M ATG L CTA Α¥ S AGC H CAT E GAA E GAG . GAG R AGA AGA AGA E GAA M ATG 102 376 GAA ш E GAA E GAG E GAA L CTA H CAT E GAA 0 \ ۸ 115 E GAA N AAT M_ ATG_/ L K AAG L CTG A GCC Q E CAG GAG K AAG E GAA

122 436 S AGT E GAA L CTG C TGC S TCT A A A C 76C E GAA D GAC W 766 S 700 G GGT M ATG L CTG S TCT V GTG CAG O 2 1 1 1 1 CTA R AGG

142 496 $_{\rm ATT}^{\rm I}$ ¬ ACG S 700 ≯ & M ATG S TCT S 700 ™ 166 S AGT S AGC CAA CAA C TGC T ACC ACA Y 4 = R AGA M ATG ၁ ည D GAC 162 556 Α¥ E GAA D GAT GAC GAA G H F P CCT 4 | L CTC O ACG YTAT I ATA K AG . R CGG 1 1 1 ۷ 1 R 66 E GAA 182 616 AAT Z GAG ш ATA o CAG M ATG L CTG V Q GTA CAG E D GAA GAT (E GAG T ACT F 71 K AAG E GAG . GGT V GTT P CCT ٦<u>٢</u> E GAG

.13A FIG

V GTC CAC S TGC M ATG N AAC Y TAT ر درد чE G GGA V GTG D GAC V GTG ACC. L CTG CAG S AGC ٧ 6TG

222 736 GAC D Ğ. ⊢ GAC SZ M ATG 4 E √ TAC S TCA c& & 4 E A GCT L CTG D GAC F E GAB G & c ge M ATG cyg Cyg A A A

242 796 P CC 7 H K A GCA A A A A Α¥ A GCA P E GAG K AAA (S-700 F A GCT CCA 4 = 7 | ≺ TAC P CCT E GAG M ATG S 700

262 856 V GTT STCT L CTC S AGC F 2 N AAT C TGT F L C4G Q CAG F S AGC D CCC $\underset{\text{ATT}}{\text{I}}$ GAC D ₩ 166 S AGT CAG M ATG

282 916 A A S 700 L GAC D E GAG $\overset{I}{\text{ATT}}$ A GCC K AAG L CTG M ATG E GAG ACAV GTT ACA → A GCA S AGC V GTC S AGT CA CA CA ΥĀ

302 976 R AGA 900 R CGG ٧ 6TG P CCT W TGG T ACG T ACG S 700 S AGT P 000 G GGA G 66T CAC H A GCC STCT D GAT A A A A GAC 0 8

322 1036 ၁ ၂၅ R AGA A GCA H 4 = CAA CAA 7 C TGT E GAA S 20 S 70G AAC AAC O CAG 9 $\overset{\mathsf{P}}{\mathsf{CTT}}$ E GAA G GGA <u>ت</u>ا د L CTG . 366 342 1096 K AAG ₹ ACA Y TAC L CTA <u>E</u> GAA P CCT 7 7 7 5 A GCT P CCT 200 D GAC A GCA ₩ 766 L CTA Y TAC D GAT CAG CTGT CAG C

362 1156 CAG CAG L CTC V GTA C4G A GCC Y 0 CAG Q CAG SCT. S 700 $\underset{\text{ATA}}{\mathrm{I}}$ N AAC V GTC 1 11 11 E GAG 7 F3 A GCC E GAG D GAT A GCG

382 4 = Q CAG E GAG R AGA M ATG K AAG E GAG L M CTG ATG (Y TAT T ACG T ACC D GAC E GAG ر 176 H S H CAT 0 CAG M ATG

FIG. 13B

1276 I ATA F F S TTC AGT ⁻ I ATC N AAC G S E GGA AGC GAG A CCA S Q T AGC CAG ACC (A GCC T E L , ACA GAG CTG (V GTA . 36T

422 D GAC I ATA E K M GAA AAG ATG / S K Q D TCC AAA CAA GAT G F E G N GAA GGA AAT CAC V GTT .G GGT P CS ٧ GTT V GTA AAG

442 1396 E GAG A GCA E E S GAA GAA AGT (L S N F T L T I P TCT AAT TTC ACA CTC ACC ATC CCT S TCC L P CTG CCT $\underset{\mathsf{ATT}}{\mathrm{I}}$ S. AGC I ATA

462 1456 чE H CAT F K E TTT AAG GAA (F I S Y M L A K A V Q H TTC ATT AGC TAC ATG CTG GCC AAA GCT GTA CAG CAT D GAC S 700 S AGT

466 1468 W * TGG TAA K S AAA TCT T

2337 2416 1626 1705 1863 1942 2021 2100 2179 2258 1547 1784
 ATACTGGAGCAGGTTGCTATTTCCTTCTCCAGGAAATCTTCCCTATCCAGGGATGGAACCCAGGTCTCCTGCATTGCAG
 ATACCTTGAAAACGTATTCAACCTCATTAATAATCAAAGGCATGAAAACTAAGACAAGTTAGCAGTTTTTACCTATTGA 3GAATCAATCCAAAGGAGTAAATCTAAAATTGAAGTTCCCACCCCAAGATCAATATTTGCAAATTATTTAAAAAT AGTAAACTGTTAAAAACTGAATGTCATCTGAATGTCTAAAAACCAGAAATGGTTAAAAGCTGTGGCTAAATATGCTCCA AATATCTTATAAAACCATTAAAAATATTTATAAAATTTAAAATCATGACATGACATCTGCTGGAACAAGAGTTTATTCTA TCAGTCATGTCTGACTCTTTGAGACCCCTTGGACTGTAGCCCACCAGGCTCCTCTGTCCATGGGATTCTTCAGACAAGA 3TAGATGCTTTACTATCTGAGCAACCAAATGAATTACTCAAGTCAGTAGGGGGGTAGAGGCAAATTTTAACTTAGTTTTC 3CAGAGTATTTGATTAGGGACGTTTGCTGATAGGAATAGATGGTTCTTAAAAGGGAAAAATGACAÄAACTAGCTTTTGA ITTTGTCTTTTTGAAAAGTTATTCAATTATACATATCAAGAGTCATCAAATTTCTTTTAATATAATAATTCCACTTCT **AACTCTATAAATGTAATGATCAAAACGAAAAAAAAATCTACAATCTGCATTAAAAAATAAAAAGGGTTGGCAGG**

FIG. 13C

Majority gphkng1815-1. gp7c-1. gp7c-1.	Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7c-1. gp7c-1.	Majority gphkng1815-1. gp7b-1. gp7c-1.	
CTTGGAGTCAACTGAGTGGGACTGAAACTTCCAAAAACT 10 30 40 CTTGGAGTCAACTGAGTGTGGACTGAAACTTCCAAAAACT CTTGGAGTCAACTGGACTGAAAACT CTTGGAGTCAACTGGACTGAAAACT CTTGGAGTCAACTGGACTGAAAACT	G A C A T G A G G A G T C A C T G G A G A A T C A T G A T C A A G G A G C T A C 50 60 70 80 60 60 60 60 60 60 60 60 60 60 60 60 60	ACACTCTGACTTAACTTTATTCTGTGGACATGAGACA 90 100 110 120 100 ACACTCTGACTTTATTCTGTGGACATGAGACA 81 ACACTCTGACTTTATTCTGTGGACATGAGACA 81 ACACTCTGACTTTATTCTGTGGACATGAGACA 81 ACACTCTGACTTTAATTCTGTGGACAATGAGACA 81 ACACTCTGACTTTAATTCTGTGGACAATGAGACA	ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT 130 140 150 150 160 121 ACTGCAAGGATTAACAGTGAGCATGAAGCTGCCACTTT 121 ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT 121 ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT 121 ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT 121 ACTGCAAGGATTAACAGTGAGAACATGAAGCTGCCACTTT	FIG.14A

FIG.14A

Majority gphkng1815-1. gp7b-1. gp7c-1.	Majority gphkng1815-1. gp7c-1. gp7c-1.	Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7c-1. gp7c-1. gp7d-1.
TGATGTTTCCCGTGTCTGCTATGGTTGAAAGACTGTCA 170 180 190 200 TGATGTTTCCCGTGTCTGCTATGGTTGAAAGACTGTCA TGATGTTTCCCGTGTCTGCTATGGTTGAAAGACTGTCA TGATGTTTCCCGTGTCTGCTATGGTTGAAAGACTGTCA TGATGTTTCCCGTGTCTGCTATGGTTGAAAGACTGTCA TGATGTTTCCCGTGTCTGCTATGGTTGAAAGACTGTCA	TTGTGCACCTACTTGGAAGGACAAACTGCCATCAGTGAA 210 220 230 240 TTGTGCACCTACTTGGAAGGACAAACTGCCATCAGTGAA TTGTGCACCTACTTGGAAGGACAAAACTGCCATCAGTGAA TTGTGCACCTACTTGGAAGGACAAAACTGCCATCAGTGAA TTGTGCACCTACTTGGAAGGACAAAACTGCCATCAGTGAA TTGTGCACCTACTTGGAAGGACAAAACTGCCATCAGTGAA	A A C G C G A A C A G T T T T T C T G A G G C T G G G G A G A T A G A C G T A G 250 280 2	ATGGAGGGGAGGTAGCTTTGATTGGCATTAAACAGAT 290 320 ATGGAGAGGTAGCTTTGATTGGCATTAAACAGAT ATGGAGAGGTGAAGATAGCTTTGATTGGCATTAAACAGAT ATGGAGAGGTGAAGATAGCTTTGATTGGCATTAAACAGAT ATGGAGGTGAAGATAGCTTTGATTGGCATTAAACAGAT ATGGAGGGGAGATAGCTTTGATTGGCATTAAACAGAT
161 161 161	201 201 201 201	241 241 241 241	281 281 281 281

FIG.14B

Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp76-1. gp7c-1.	Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7c-1. gp7d-1.
G A A C A C A G C A A A 350 G A A C A C A G C A A A G A A A G C A A A A	A A G A A A A G C A G G 390 A A G A A A A G C A G G A A G A A A G C A G G A A G A A A G C A G G A A A A A G C A G G A A A A A G C A G G A A A A A G C A G G	1 G A A C A C C T G G A 430 1 G A A C A C C T G G A 1 G A A C A C C T G G A 1 G A A C A C C T G G A 1 G A A C A C C T G G A 1 G A A C A C C T G G A 1 G A A C A C C T G G A	CTGGCAGATTCC 470 480 CTGGCAGATTCC CTGGCAGATTCC CTGGCAGATTCC CTGGCAGATTCC
G A G A G A G G A A 340 G A G A G A G G A A G A G A G G A A G A G A	A A G T G C A A A G 380 A A G T G C A A A G A A G T G C A A A G A A G T G C A A A G A A G T G C A A A G A A G T G C A A A G A A G T G C A A A G	A T C A A G T T C A 420 A T C A A G T T C A A T C A A G T T C A A T C A A G T T C A A T C A A G T T C A A T C A A G T T C A	CCAGGTTTCT 460 CCAGGTTTCT CCAGGTTTCT CCAGGTTTCT CCAGGTTTCT
330 330 7 6 A 7 6 6 A A A 6 7 6 A 7 6 6 A A A 6 7 7 6 A 7 6 6 A A A 6 7 7 6 A 7 6 6 A A A 6	370 370 A A C C T T G A A G A A C C T T G A A G A A C C T T G A A G A A C C T T G A A G	410 410 A A A C T T A T G A A A A C T T A T G A A A A C T T A T G A A A A C T T A T G A	A A A G C T T A T 450 A A A G C T T A T A A A G C T T A T
C A A A A T C A G A A A A T C A	C T A A T G A A C T A A T G A A	A G G C C C T G A G G C C C T G	6 6 4 6 6 4 4 6 6 6 4 6 6 4 4 6 6 6 4 6 6 4 4 6 6 6 6 6
321 321 321 321	361 361 361	401 401 401	44 44 12 12 12 12 12 12 12 12 12 12 12 12 12

•

FIG.14C

Majority gphkng1815-1. gp7b-1. gp7d-1.	Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7c-1. gp7c-1.	Majority gphkng1815-1. gp7c-1. gp7c-1.
TGGGATGAATGCAGGCCTTGCCTGGAAGTAACTGCATGA 490 500 510 520 TGGGATGAATGCAGGCTTGCCTGGAAAGTAACTGCATGA 1	G G T T T G A T A C C A C C T G C C A A C C T G C A T G G T C C T C T G T G A A 550 530 540 6 G T T T G A T A C C A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G A A C C T G C A T G G T C C T C T G T G T G T G T G T G	A A T A T G G — — — — — — — — — — — — — — — — —	CTGTTTCCTCTCCAGGAAATGACAGAGTGGCCCTGTCA 610 620 630 640
481 481 481 481	521 521 521 521	561 561 561	601 569 569 568

·

,

FIG.14D

•

FIG.14E

.

801 753 569 568	G A C T G A C G T T A C A G A G C C T T T C T T T T T C C A T C T T T G T C C 810 820 840 6 A C T G A C G T T A C A G A G C C T T T T T T T C C A T C T T T G T C 6 A C T G A C G T T A C A G A G C C T T T C T T T T T C C A T C T T T G T C	Majority gpkng1815-1. gp7b-1. gp7d-1.
841 793 569 568	A A G G A G C C A G C C A G A G C A G A T G C T G A G C C A A G C T G G G 860 860 870 880 A A G G A G C C A G C C T A C A G A G C A G A G C T G A G C C A A G C T G G G A G C C A A G C T G G G A G C C A A G C T G G G A G C A A G C T G G G A G C A A G C T G G G A G C A A G C T G G G A G C A A G C T G G G A G C A A G C T G G G A G C A A G C T G G G G A G C A A G C T G G G G A G C A A G C T G G G G A G C A A G C T G G G G A G C A A G C T G G G G A G C T A C A G C A A G C T G G G G A G C T G A G C T G G G C A A G C T G G G G A G C T G G G G A G C T G G G G A G C T G G G G A G C T G G G G C A G G C T G G G G C A G G T G G G G C A G C T G G G G C A G G C T G G G G C A G G C T G G G G C C A A G C T G G G G C C A A G C T G G G G C C A A G C T G G G G C A G G T G G G G C C A A G C T G G G G C A G G C T G G G C C A A G C T G G G C C A G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G A G C C A A G C T G G G C C A A G C T G A G C C A A G C T G G C C A A G C T G G C C A A G C T G G G C C A A G C T G G G C C A A G C T G G C C A A G C T G G C C A A G C T G G C C A A G C T G G C C A A G C T G G C C A A G C T G G C C A A G C T G A G C C A A G C T G G C C A A G C T G G C C A G C C A G C C A G C C A G C C A A G C C C A G C C A A G C C C A G C C A G C C A G C C A G C C A G C C A G C C A G C C A G C C A G C C A G C C A A G C C C A A G C C C A A G C C C A G C C A G C C A G C C A G C C A G C C A G C C A G C C A G C C C A A G C C C A G C C A G C C A G C C A G C C A G C C C A G C C A G C C C A G C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C A G C C C C	Majority gpkng1815-1. gp7b-1. gp7d-1.
881 833 605 602	CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT 890 910 920 CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT CCATTCCCAATGTCTTCCAGCTGCTCTGCAACTTGAGTTT	Majority gpkng1815-1. gp7b-1. gp7d-1.
921 873 645 642	CTCAGTTTATCAAAGTGTCAGTGAAAACTCATCACAACC 930 940 950 950 960 CTCAGTTTATCAAAGTGTCAGTGAAAACTCATCACAACC CTCAGTTTATCAAAGTGTCAGTGAAAACTCATCACAACC CTCAGTTTATCAAAGTGTCAGTGAAAACTCATCACAACC	Majority gpkng1815-1. gp7b-1. gp7c-1. gp7d-1.
	FIG.14F	

FIG.14F

Majority gphkng1815-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7c-1. gp7c-1. gp7d-1.	Ma jor i ty gphkng1815–1. gp7c–1. gp7d–1.
CTGCGTGCCACAGAGCCCTCCAAAACAAGACT 970 980 961 CTGCGTGCCACAGAGGACCTCCAAAACAAGACT 913 CTGCGTGCCACAGAGGCTCCAAAACAAGACT 685 CTGCGTGCCACAGAGGCT 685 CTGCGTGCCACAGAGACT 685 CTGCGTGCCACAGAGACT	C C A A C C A G G G G G C C C G A T T T C A A G A T A C T A C C T G A G C A G A T T T C A A G A T A C T A C C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A G G C C C G A T T T C A A G A T A C T A C T G A G C A G G C C C G A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A T T T C A A G A T A C T A C T G A G C A G C A T T T C A A G A T A C T A C T G A G C A G C A G C A G C C C G A T T T C A A G A T A C T A C T G A G C A G C A G C C C G A T T T C A A G A T A C T A C C T G A G C A G C C C G A T T T C A A G A T A C T A C C T G A G C A G C C C G A T T T C A A G A T A C T A C C T G A G C A G C C C G A T T T C A A G A T A C T A C C T G A G C A G C C C C G A T T T C A A G A T A C T A C C T G A G C C C C G A T T T C A A G A T A C T A C C T G A G C A G C C C C G A T T T C A A G A T A C T A C C T G A G C C C C G A T T T C A A G A T A C T A C C T G A G C C C C G A T T T C A A G A T A C T A C C T G A G C C C C G A T T T T C A A G A T A C T A C C T G G C C C C G A T T T T C A A G A T A C T A C C T G G C C C C G A T T T T C A A G A T A C T A C C T G G C C C C G A T T T T C A A G A T A C T A C C T G G C C C C C G A T T T T C A A G A T A C T A C C T G G C C C C C C A T T T T C A A G A T A C T A C C T G G C C C C C C A T T T T C A A G A T A C C T G G C C C C C C C C A T T T T C A A G A T A C C T G C C C C C C C C C A T T T T C T A C C T G C C C C C C C C C C C C C C C C	A G A C C A G A G G C T C A G A T G G G A A A C T T G G C C A G A A T T T G T C T 1080 1050 1080	GATIGCGTTAATTTTCGCAAGAGATGCCAGAATGCCAGG 1081 GATTGCGTTAATTTTCGCAAGATGCCAGG 1033 GATTGCGTTAATTTTCGCAAGAGATGCCAGG 805 GATTGCGTTAATTTTCGCAAGAGATGCCAGG 805 GATTGCGTTAATTTTCGCAAGAGATGCCAGG 805 GATTGCGTTAATTTTCGCAAGAGATGCCAGG 807 GATTGCGTTAATTTTCGCAAGAGATGCCAGG

.

FIG.146

Majority gphkng1815-1. gp7c-1. gp7c-1.	Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7c-1. gp7d-1.
ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA 1130 1140 1150 1160 1173 ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA 1073 ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA 845 ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA 847 ATTATCTATCTGATGACTGCCCTAATGTGCCTGAACTATA	CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC 1170 1180 1190 1200 1161 CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTACATCC 1113 CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC 885 CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC 882 CAGAGAACTCAATGAGGCCCTCCGACTGGTCAGTAGATCC	AATCAGCAATACGACCAGTGCAGTGACCCAGTATC 1210 1220 1230 1240 1201 AATCAGCACCAGGTGCAGATGACCCAGTATC 1153 AATCAGCAATACGACCAGGTGCCAGATGACCCAGTATC 925 AATCAGCAATACGACCAGGTGCCAGATGACCCAGTATC 922 AATCAGCAATACGACCAGGTGCCAGATGACCCAGTATC	ACCTGGAAGACACCCACGCTTCTGATGGAGGAGAGAGAGA

•

FIG.14H

C. A. Majority	13 <u>2</u> 0 C A gphkng1815–1. C A gp7b–1. C A gp7c–1. C A gp7d–1.	A G Majority A G gphkng1815-1. A G gp7b-1. A G gp7c-1. A G gp7d-1.	G A Majority 1400 G A gphkng1815-1. G A gp7c-1. G A gp7c-1. G A gp7d-1.	TTC Majority 1440 TTC gphkng1815-1. TTC gp7b-1. TTC gp7c-1.
C A G T C C C	1310 G C A T A C C A G T C C C G C C A T A C C A G T C C C G C A T A C C A G T C C C G C A T A C C A G T C C C	A G T G A A G T A A T G G T 1350 A G T G A A G T A A T G G T A G T G A A G T A A T G G T A G T G A A G T A A T G G T A G T G A A G T A A T G G T A G T G A A G T A A T G G T	TCTTCTGATCAAGAT 1390 TCTTCTGATCAAGAT TCTTCTGATCAAGAT TCTTCTGATCAAGAT	T G C C T T C C T C T A A C T 1430 T G C C T T C C T C T A A C T T G C C T T C C T C T A A C T T G C C T T C C T C T A A C T T G C C T T C C T C T A A C T
6 C T G G G T T T C T G A A C	1290 6 C T G G G T T T C T G A A C T 6 C T G G G T T T C T G A A C T 6 C T G G G T T T C T G A A C T 6 C T G G G T T T C T G A A C T	G G A C A T C T T T A A T C C 1330 G G A C A T C T T T A A T C C G G A C A T C T T T A A T C C G G A C A T C T T T A A T C C G G A C A T C T T T A A T C C G G A C A T C T T T A A T C C	G C T C A T G A A G G A A A T 1370 G C T C A T G A A G G A A A T G C T C A T G A A G G A A A T G C T C A T G A A G G A A A T G C T C A T G A A G G A A A T G C T C A T G A A G G A A A T	TTCCTTCAAGCCTCC 1410 TTCCTTCAAGCCTCC TTCCTTCAAGCCTCC TTCCTTCAAGCCTCC
6 C A G T T T G	1281 G C A G T T T G 1233 G C A G T T T G 1005 G C A G T T T G 1002 G C A G T T T G	G G A G C T G A 1321 G G A G C T G A 1273 G G A G C T G A 1045 G G A G C T G A 1042 G G A G C T G A	C C C T A A G T 1361 C C C T A A G T 1313 C C C T A A G T 1085 C C C T A A G T 1082 C C C T A A G T	C A C A G T G G 1401 C A C A G T G G 1353 C A C A G T G G 1125 C A C A G T G G 1122 C A C A G T G G

•

FIG.14[

.

ACACTCAGCAGCCCTCTTGAAAGAGTGCTGGCAACGCTAAACACCTCAGCAACGCTAAACACGTGCTGCTGCAACGCTAAACACCTCTCAAAGAGTGCTGCTGCAACGCTAAACACTCTCAGCAACGTTGCTGCTGCTAAACACTTCTTGAAAGAGTGCTGCTGCTAAACACTTTGAAAGAGTGCTGCTGCAACGTTAAACTTGAAAGAGTGCTGCTGCTAAACACTTTCAGCAACGTTTTCAGCACTTTTAAAACTTGATCAGCAACGTTCTTCAGCACTTTAAAACTTGATCAGTAAAGAGTTCTTCAGCACTTTAAGTCCATTTAATTAA
1165 A 1165 A 1165 A 1165 A 1205 C 12

.

FIG.14J

Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7b-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp76-1. gp7c-1. gp7d-1.	Majority gphkng1815-1. gp7c-1. gp7c-1.	
GAATTCTGAAATACAAGCAGGCTAACACAATGAACACA 1610 1620 1630 1640 1601 GAATTCTGAAATACAAGCAGGCTAACACACACA 1553 GAATTCTGAAATACAAGCAGGCTAACACACACA 1325 GAATTCTGAAATACAAAGCAGGCTAACACACACA 1322 GAATTCTGAAATACAAAGCAGGCTAACACAATGAACACA	GCTGCATGAAGTTAGGTATATTAGGAAGCACTATTGG 1680 1641 GCTGCATGAAAGTTAGGTATATTAGGAAGCACTATTGG 1593 GCTGCATGAAAGTTAGGTATATTAGGAAGCACTATTGG 1365 GCTGCATGAAAGTTAGGTATATTAGGAAGCACTATTGG 1365 GCTGCATGAAAGTTAGGTATATTAGGAAGCACTATTGG	TTTACTTGTTGAATGGAAGTTTAATAGCTATTCAAATTG 1690 1700 1710 1720 1681 TTTACTTGTTGAATGGAAGTTTAATAGCTATTCAAATTG 1633 TTTACTTGTTGAATGGAAGTTTAATAGCTATTCAAATTG 1405 TTTACTTTGTTGAATGGAAGTTTAATAGCTATTCAAATTG 1405 TTTACTTTGTTGAATGGAAGTTTAATAGCTATTCAAATTG	AGTTAATATAAAATTTCTTCCTAAAAGTAAATGTACA 1750 1750 1750 1750 1750 1750 1673 AGTTAATATAAAATTTCTTCCTAAAAGTAAAATGTACA 1445 AGTTAATATAAAATTTCTTCCTAAAAAGTAAAATGTACA 1674 AGTTAATATAAAATTTCTTCCTAAAAAGTAAAATGTACA 1750 1750 1750 1750 1750 1750 1750 1750	FIG.14K

•

FIG.14K

2	×	V	V	V													
•		-	-	—													
	<<	\forall	V	V													
	$\overline{}$	⋖	\forall	⋖								-					
	⋖	⋖	\forall	V													
i	 		-														
	ပ	ပ	ပ	ပ													
ı	\forall	\forall	\forall	V													
		—	\vdash														
,	⋖	¥	K	V													
Ś.	├ —	—	\vdash	—				•									
-	ပ	ပ	ပ	Ġ													
		 	\vdash	—												-	
	├ ─		\vdash	-													
	 		\vdash														
	ပ	ပ	ပ	ပ													
	!	⊢-	\vdash	<u> </u>													_
		⊢		 													1
	ပ	ပ	9	9												7	-
>	\forall	\forall	\forall	¥												_	_
2.	-	-	⊢	—												,	•
-	ſ	—)
		\forall														FIG. 1	-
		ပ														4	_
	i	ဌ					,										
		_				1		-									
	1	V			ပ		ပ										
		9			ပ		1	<u>ن</u>									
	1				ပါ			د			•						
>		Α.				2		<u>ں</u>									
•	ł				ပ	1810	,										
		\forall			A			9									
	1	A			5			V									
		A G						16									
		-		_	ن			ر د									
	0			<u>-</u>	V			\forall									
ij		\sim	$\overline{}$	$\overline{}$			_	_	-	_							

gphkng1815-1.. gp7b-1. gp7c-1. gp7d-1.

Majority

AATACTGAGTCC

T A T (

1761 1713 1485 1482

T A T

A A T A (A A T A (A A T A (A A T A (

1801 1753 1525 1522

9p7b-1. 9p7c-1. 9p7d-1.

Majority

TATGTAGAATATGATGCATTAGTTCTTTGTATAATA 1770 1780 1790 18<u>0</u>0

.

•

•

FIG.14M

FIG. 15A

7ATGAAATCCACGATTGAACGGGTTTTCCGGAAGATATATCAGTTTCTCTTTCCTTTCCATGAAGACGATGAAAAAGAGC

FIG. 15E

•

.

FIG.15C

.

FIG.15D

bhkng1 2721 bhkng2 2721 bhkng2 TGTTCTCATCTTTAAAGTACTTCTATTCCATGGTAATCCTACAGTAAGACGAAATGTAAATCTGTTCGG bhkng1 bhkng1 ctacaGGAAAAAACAACTAAATGACATTTCAGACGTACATTACCATCTCTGTTAGGATAATCTTCTGAATTAATGGCAC bhkng2 bhkng2 tctacaGGAAAAAAACAACTAAATGACATTTCAGACGTACATTACCATCTCTGTTAGGATAATCTTCTGAATTAATGGCAC	300 300 300
DNKNG3	720
bhkng1 bhkng2 ATAAATAATTTTGAGATTTCAAATTAGAAGATATGTTGCTAAAATAGCTAGGTAAATGTAGATTGAACACTGTATCAAT bhkng2	\TG
DIIKIIY 2561	540
bhkng1 GTTGGCAGGbhkng2 GTTGGCAGGAATTACGGTTGGAAATGGATGATTTTTTTTT	.: GA
DNKNG3 GIGAAAAAIGAGIAIAAAACICIAIAAAIGIAAIGAICAAAAAACAAAAAAAA	190 200 200
bhkng1 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGATCAAAACGAAAAAAATCTACAATCTGCATTAAAAATAAAAAG bhkng2 GTGAAAAATGAGTATAAAACTCTATAAATGTAATGATCAAAACGAAAAAAATCTACAATCTGCATTAAAAAATAAAAAG	99 99
DNKNG3 AAIIIIAALIIAGIIIICICIGAAICAIAAIIGCCACAIIAAALIGGIICCIGIIGGGACAIIIGGIIGAAAAAAAAAA	444 180
bhkng2 AATTTTAACTTAGTTTTCTCTGAATCATAATTGCCACATTAAACTGGTTCCTGTTGGGACATTTGGTTGAAAAAAAA	X X
2321	001
bhkng2	S S
2241 bhkng1 CAGGTCTCCTGCATTGCAGGTAGATGCTTTACTATCTGAGCAACCAAATGAÁT.TACTCAAGTCAGTAGGGGGTAGAGGC	320 3CA

FIG.15E

2801 bhkng1bhkng2 ATTAGAACTGTACATAGTATTCTCCTTTGGTAAAATGGTCAATCTTAAAGAAGCATTAAATGTTAATTCTAAGTTATTAC	bhkng3 2881 bhkng1 bhkng2 TCATAAGGACCTTGTAGGTAGGTCCCTATCAATGTATAATTAAGCTGGGTATTTCTAGATTCGCTGCCTCTCCCTTTAT bhkng3 2961 3029	bhkng2 CTCTGAATGTTGGAGAGGTTGTTGGTCATCAACCAATATCTTTTTAGCATCTTCTAAGTGAAGGC bhkng3 FIG.15F		
---	--	---	--	--

FIG. 15F

FIG.16

APTWKDKTAIS	ENLKSFSEVGEIDADEEVKKALTGIKQMKIMMERKEKEHTNLMSTLKKCREEKQEALKLL ENLKSFSEVGEIDADEEVKKALTGIKQMKIMMERKEKEHTNLMSTLKKCREEKQEALKLL ENLKSFSEVGEIDADEEVKKALTGIKQMKIMMERKEKEHTNLMSTLKKCREEKQEALKLL ENLKSFSEVGEIDADEEVKKALTGIKQMKIMMERKEKEHTNLMSTLKKCREEKQEALKLL	NEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTCQPSWSSVKNKIERFFRKIYQ NEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTCQPSWSSVKNKIERFFRKIYQ NEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTCQPSWSSVKNKIERFFRKIYQ NEVQEHLEEEERLCRESLADSWGECRSCLENNCMRIYTTCQPSWSSVKNKIERFFRKIYQ ************************************	FLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ FLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ FLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ FLFPFHEDNEKDLPISEKLIEEDAQLTQMEDVFSQLTVDVNSLFNRSFNVFRQMQQEFDQ ************************************	TEQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSETIT TFQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSETIT TFQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSETIT TFQSHFISDTDLTEPYFFPAFSKEPMTKADLEQCWDIPNFFQLFCNFSVSIYESVSETIT ***********************************
mature HKNG HKNG1-V1-IPF3 HKNG1/1-V1-IPF2 HKNG1-IPF1	mature HKNG HKNG1-V1-IPF3 HKNG1/1-V1-IPF2 HKNG1-IPF1	mature HKNG HKNG1-V1-IPF3 HKNG1/1-V1-IPF2 HKNG1-IPF1	mature HKNG HKNG1-V1-IPF3 HKNG1/1-V1-IPF2 HKNG1-IPF1	mature HKNG HKNG1-V1-IPF3 HKNG1/1-V1-IPF2 HKNG1-IPF1

FIG.17A

mature HKNG	KMLKA I EDL PKQDKAPDHGGL I SKML PGQDRGL CGEL DQNL SRCFKFHEK CQKCQAHL SE
HKNG1-V1-IPF3	KMLKA I EDL PKQDKAPDHGGL I SKML PGQDRGL CGEL DQNL SRCFKFHEKCQKCQAHL SE
HKNG1/1-V1-IPF2	HKNG1/1-V1-IPF2 KMLKAIEDLPKQDKAPDHGGLISKMLPGQDRGLCGELDQNLSRCFKFHEKCQKCQAHLSE
HKNG1-IPF1	KMLKA I EDL PKQDKAPDHGGL I SKML PGQDRGLCGEL DQNL SRCFKFHEKCQKCQAHL SE

mature HKNG	DCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDTAYLVEKMRGQFGWVSELANQ	
HKNG1-V1-IPF3	DCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDTAYLVEKMRGQFGWVSELANQ	
HKNG1/1-V1-IPF2	HKNG1/1-V1-IPF2 DCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDTAYLVEKMRGQFGWVSELANQ -	3
HKNG1-IPF1	DCPDVPALHTELDEAIRLVNVSNQQYGQILQMTRKHLEDTAYLVEKMRGQFGWVSELANQ	

mature HKNG	APETEIIFNSIQVVPRIHEGNISKQDETMMTDLSILPSSNFTLKIPLEESAESSNFIGYV
HKNG1-V1-IPF3	APETEIIFNSIQVVPRIHEGNISKQDETMMTDLSILPSSNFTLKIPLEESAESSNFIGYV
HKNG1/1-V1-IPF2	HKNG1/1-V1-IPF2 APETEIIFNSIQVVPRIHEGNISKQDETMMTDLSILPSSNFTLKIPLEESAESSNFIGYV
HKNG1-IPF1	APETEIIFNSIQVVPRIHEGNISKQDETMMTDLSILPSSNFTLKIPLEESAESSNFIGYV

VAKALQHFKEHFKTW	VAKALQHFKEHFKTW	F2 VAKALQHFKEHFKTW	VAKALQHFKEHFKTW	*****
mature HKNG	HKNG1-V1-IPF3	HKNG1/1-V1-IPF2	HKNG1-IPF1	

FIG.17B

```
39
                59
177
                         79
                                 99
19
                A Q
                                 A
GCA
        K
AAG
                         ص
23
ACC -
                V
GTG
                         0
CAG
                                 \forall \forall
GAC
                                 \underset{\text{ATT}}{\text{I}}
                SΔ
                         P
CCT
A
GCT
                                 ×₩
        A
GCA
                S
AGT
                         CCA
V
GTT
                                 M
ATG
        999
                ₩
766
                         L
CTC
E
GAG
        CAG
CAG
                g
(g
                         T
ACC
                                 R
CGG
L
CTG
                                 ACA
        L
CTC
                CCA
                         V
GTG
ACC
                                 L
CTG
        36
رور
                L
TTG
                         CAA
S
700
        AGA
AGA
                L
CTG
                         715
                                 S
TCC
> 15
                S.
TCT
        CAC
                                 Α¥
                         ₩
766
Г
П
                                 A
GCT
        ™
TGG
                P
CC
                         S
700
999
                                 T
ACA
        R
CGG
                R
CGT
                         N
AAT
A
GCG
                                 D
GAC
        Si
                7
T1
                         S
A
GCC
                T E
ACA GAG
        S
700
                                 0
CAG
                         A
GCC
R
CGG
        T
ACT
                         E
GAA
                                 L
CTA
A.
GCC
                M
ATG
                                 G
GGA
        L
CTG
                         T
ACT
CAG 0
        R
CGG
                GA
66A
                                 L
CTG
                         7
L
CTG
        P
CCT
                JT
                                 D
GAC
                         *
TAG
CAC H
        ၁
၁၅
                I
ATC
                         STCT
                                 E
GAG
%
CGT
        L
CTG
                C
TGT
                                 H K
```

N AAT

A GCA

 $\underset{\mathsf{ATT}}{\mathrm{I}}$

D GAT

GGA

M 166

CAC

J L

0 ¥

™ TGG

₩ TGG

S AGC

AGA AGA

25

P CCT

G GGT

E GAA

A AC

×¥

E GAG

139 417

A A

L TTG

W 166

L CTG

L CTG

C TGT

V GTG

I ATT

4 E

۷ GTG

ر 176

L CTC

P CS

P CCG

K AAG

M ATG

AAC

999

S AGC

AAC AAC

159

S AGT

K AAG

L CTG

N AAC

E GAA

S AGT

I ATC

A GCT

T ACT

AAA ,

D GAC

, AAG

₩ 76G

T ACT

CCC

A GCA

၁၉

SK H

SAGT

GAC

179 537 199 597 ACC → $\stackrel{I}{\sqcap}$ S AGC GT M ATG ACT L CTA 1 TG N AAT A GCT ACC K AAG K AAG H V GTG E GAA K AAG E GAG E GAG E GAA × & D GAT R AGA A GCA E GAA D GAT I ATA M ATG E GAG M ATG 999 I ATC V GTG M ATG E 3AG 0 \\ STCT F A AG

 ∞

219 657 o § N AAT ر 70 J F3 X AA AA L CTG A GCC E GAG Q CAG A AG GA E E GAA AGA သည် ×¥ L CTG

239 E AA . GGT ™ 756 S 700 DGAT A GCA L 776 S TCT E GAG R 66 ၁ဗ္ဗ L CTA R AGG $\stackrel{E}{\neq}$ E GAA E AA E GAG ر 7 CAT H

259 S 700 ™ 766 S AGC P CCT CAA C E TGC T ACC ACA Y TAT \prod_{ATT} R AGA M ATG , o 29 N AAC N AT : E GAA L CTG 2 190 STCT R AGG

279 837. R AGG 9 L XTG 7 ≺ TAC C TGT . R AGA CAA 느늗 * TGA A GCC E GAG T ACG ACC L CTG LCTC K AAG N AAT A A ٧ · GTG STOT

299 897 319 957 AG - AG K M ATG C TGC 7 17 10 10 10 N AAT L CTG S TCA TAC V GTT M ATG D GAT L CTG CAA V C TGT 1 I ATT K AAG R AGA L CTG ACC Y L TTG ACC AAC LTC G G R A A G G V GTG V GTC C TGT N AAT GAC AAA × E GAG A GCC ACA AAT

339 1017 7 2 R AGA A GCC M ATG S AGT S AGC P CCA _Y TAT M ATG S ™ 766 G GGT S R CGA AGG T ACG * TAG Sag

359 1077 9 E GAG * TGA AGA AGA AGA AGA .W TGG W TGG $\overset{I}{\text{ATC}}$ P CCT P 533 T ACA R AGG W TGG T ACT S AGC GGA о С С * TGA R AGA

379 1137 L STCT STCA R AGA Q CAG AA A a CAG م 200 R AGG ACC , CA CA CA CA W TGG N AAC L CTG C TGT G GG A GCT L 776 AAT

399 1197 TGA 0 AZ. ¥ & M ATG K AAG N AAC a g m 4 = μ A Ω. E GAA K AAG M ATG F 7 . GA CAA CAA 7 E * TAG GA 9

 $\frac{7}{\infty}$

X AA K AAG L 776 L CTC S TCC R AGA S TCA CAC S , I ATT L CTA РССТ C 16C J L A GCA * ¥ T ACT Q CAG * TGA

439 R AGG L I ATT S AGC Y TAC L CTC K AAG O A W TGG * TAG T ACG A GCT L 77G S T ACT L CTA V GTT R AGA L CTG V GTG

459 1377 I ATC I ATT R AGA S AGT V GTA P CS Y TAT L CTA I ATC C TGC * ¥ I ATC K AAG K AAG G GGT РССТ K AAA L I ATT N AAC 479 ၁ ၂၅ S AGT CAC X & N AAT C 76C * # G GGA K AAA A A A N AAT * TGA S 700 X AAA ₩ 766 G T GGG ACC S 7CT S TCA S TCT

499 1497 _ <u>|</u> W 766 , E GAA > <u>TT</u>9 $\overset{\mathsf{Y}}{\mathsf{TAT}}$ T ACT ΨE * TAG S TCT → TAC K AAG M ATG T ACT Y TAT L CTA * TAG C 767 ۷ GTA AA A R AGG 519 1557 N AAT R CGT X AA AA $\underset{\text{ATC}}{\mathrm{I}}$ A A A * TA Р P CCT I ATT A A A M ATG A A A ٧ 177 * TGA N AAT S TCA Y TAC * ¥ Υ TAT S AGC

539 1617 CAC N AAT L CTA I ATA TAA * E GAA I ATT Y TAT L 776 S S AGT S AGT I ATT ≺ TAC W TGG S I ATT √ TAC Y TAT M ATG

L CTA

540 1620

gaattagacg ag	gcgatcag	gttggtcaat	gtatccaatc	agcagtatgg	ccagattctc	60
cagatgaccc gg	aagcactt	ggaggacacc	gcctatctgg	tggagaagat	gagagggcaa	120
tttggctggg tg	tctgaact	ggcaaaccag	gccccagaaa	cagagatcat	ctttaattca	180
atacaggtaa ga	agatctaa	tgcatcctat	atccagtaag	t		221

FIG.21A

Met Lys Ile Lys Ala Glu Lys Asn Glu Gly Pro Ser Arg Ser Trp Trp Gln Leu'His Trp Gly Asp Ile Ala Asn Asn Ser Gly Asn Met Lys Pro Pro Leu Leu Val Phe Ile Val Cys Leu Leu Trp Leu Lys Asp Ser His Cys Ala Pro Thr Trp Lys Asp Lys Thr Ala Ile Ser Glu Asn Leu Lys 55 Ser Phe Ser Glu Val Gly Glu Ile Asp Ala Asp Glu Glu Val Lys Lys Ala Leu Thr Gly Ile Lys Gln Met Lys Ile Met Met Glu Arg Lys Glu Lys Glu His Thr Asn Leu Met Ser Thr Leu Lys Lys Cys Arg Glu Glu 100 105 Lys Gln Glu Ala Leu Lys Leu Leu Asn Glu Val Gln Glu His Leu Glu 120 Glu Glu Glu Arg Leu Cys Arg Glu Ser Leu Ala Asp Ser Trp Gly Glu 135 140 Cys Arg Ser Cys Leu Glu Asn Asn Cys Met Arg Ile Tyr Thr Thr Cys 150 Gln Pro Ser Trp Ser Ser Val Lys Asn Lys Ile Glu Arg Phe Phe Arg 165 170 Lys Ile Tyr Gln Phe Leu Phe Pro Phe His Glu Asp Asn Glu Lys Asp 180 185 Leu Pro Ile Ser Glu Lys Leu Ile Glu Glu Asp Ala Gln Leu Thr Gln 200 205 Met Glu Asp Val Phe Ser Gln Leu Thr Val Asp Val Asn Ser Leu Phe 215 220 Asn Arg Ser Phe Asn Val Phe Arg Gln Met Gln Glu Phe Asp Gln 230 -235 Thr Phe Gln Ser His Phe Ile Ser Asp Thr Asp Leu Thr Glu Pro Tyr 245 250 Phe Phe Pro Ala Phe Ser Lys Glu Pro Met Thr Lys Ala Asp Leu Glu 265 Gln Cys Trp Asp Ile Pro Asn Phe Phe Gln Leu Phe Cys Asn Phe Ser 275 280 285 Val Ser Ile Tyr Glu Ser Val Ser Glu Thr Ile Thr Lys Met Leu Lys 295 300 Ala Ile Glu Asp Leu Pro Lys Gln Asp Lys Ala Pro Asp His Gly Gly 310 Leu Ile Ser Lys Met Leu Pro Gly Gln Asp Arg Gly Leu Cys Gly Glu 325 330 Leu Asp Gln Asn Leu Ser Arg Cys Phe Lys Phe His Glu Lys Cys Gln 340 345 Lys Cys Gln Ala His Leu Ser Glu Asp Cys Pro Asp Val Pro Ala Leu 360 His Thr Glu Leu Asp Glu Ala Ile Arg Leu Val Asn Val Ser Asn Gln 370 375

FIG.21B-1

Gln Tyr Gly Gln Ile Leu Gln Met Thr Arg Lys His Leu Glu Asp Thr 385 390 395 400

Ala Tyr Leu Val Glu Lys Met Arg Gly Gln Phe Gly Trp Val Ser Glu 405

Leu Ala Asn Gln Ala Pro Glu Thr Glu Ile Ile Phe Arg Arg Ser Asn 420

Ala Ser Tyr Ile Gln 435

FIG.21B-2

acacagaatt agacgaggcg a	atcaggttgg	tcaatgtatc	caatcagcag	tatggccaga	60
ttctccagat gacccggaag c	cacttggagg	acaccgccta	tctggtggag	aagatgagag	120
ggcaatttgg ctgggtgtct g	gaactggcaa	accaggcccc	agaaacagag	atcatcttta	180
attcaataca ggtagttcca a	aggattcatg	aaggaaatat	ttccaaacaa	gatgaaacaa	240
tgatgacaga cttaagcatt c	ctgccttcct	ctaatttcac	actcaagatc	cctcttgaag	300
aaagtgctga gagttctaac t	ttcattggct	acgtagtggc	aaaagctcta	cagcatttta	360
aggaacattt taaaacctgg t	taagcagagt	gcctggttag	gaatgccttg	ttgacaggaa	420
tagttaattc tcaaaaggga a	aaaacaaac	ttgtttcaaa	atacctggaa	aacatgttta	480
acctcattaa taaagacatg	aaaacaaaca	agatggcatt	ttct		524

FIG.22

gaattagacg	aggcgatcag	gttggtcaat	gtatccaatc	agcagtatgg	ccagattctc	60
cagatgaccc	ggaagcactt	ggaggacacc	gcctatctgg	tggagaagat	gagagggcaa	120
	tgtctgaact					180
atacaggtag	ttccaaggat	tcatgaagga	aatatttcca	aacaagatga	aacaatgatg	240
	gcattctgcc					300
	ctaacttcat					360
					aactactcag	420
gtcggaggtg	gtagagcagc	atgtggagcc	agttctctct	ccgactccat	catcacactg	480
	tgttaagata					540
gatctaatgc	atcctatatc	cagtaagt		•		568

FIG.23A

Met	Lys	Ile	Lys	Ala	Glu	Lys	Asn	Glu		Pro	Ser	Arg	Ser	'	Trp
Gln	Leu	His	Trp 20	Gly	Asp	Ile	Ala	Asn 25	10 Asn	Ser	Gly	Asn	Met 30	15 Lys	Pro
Pro	Leu	Leu 35		Phe	He	Val	Cys 40		Leu	Trp	Leu	Lys 45		Ser	His.
Cys	A1a 50		Thr	Trp	Lys	Asp 55	. •	Thr	Ala	Ile	Ser 60	Glu	Asn	Leu	Lys
Ser 65		Ser	G 1u	Va1	G1y 70	Gīu'	Ile	Asp	Ala	Asp 75	Glu	Glu	Val	Lys	Lys 80
			Gly	85	_			_	90				_	95	
_			Thr 100					105		•	•	_	110		
_		115	Ala				120					125			
	130		Arg		_	135					140		•	_	
145			Cys		150			-		155					160
			Trp	165			•		170			•		175	-
•			G1n 180					185			·		190	_	•
		195	Ser				200			•		205			
	210		Val			215				•	220				
225			Phe		230					235				•	240
			Ser	245					250	-	•	•		255	
			A1a 260			•		265			•		270		
		275					280					285			
1	290					295					300	-			Lys
305			•		310	_		•		315		•		-	Gly 320
				325	-				330					335	Glu
	-		340					345					350		Gln
		355					360					365			Leu
	370			•		375					380				Gln Thr
385		ury	uiti	TIE	390		. ric C	- 1 -	ni y	395		rea	·	ush	400

Ala Tyr Leu Val Glu Lys Met Arg Gly Gln Phe Gly Trp Val Ser Glu Leu Ala Asn Gln Ala Pro Glu Thr Glu Ile Ile Phe Asn Ser Ile Gln Val Val Pro Arg Ile His Glu Gly Asn Ile Ser Lys Gln Asp Glu Thr Met Met Thr Asp Leu Ser Ile Leu Pro Ser Ser Asn Phe Thr Leu Lys Ile Pro Leu Glu Glu Ser Ala Glu Ser Ser Asn Phe Ile Gly Tyr Val Val Ala Lys Ala Leu Gln His Phe Lys Glu His Phe Lys Thr

FIG.23C

FIG.24

contig 1

contig 270 bp106 bp-	HKNG homology
----------------------	---------------

FIG 25

ammunum TS homology

GGTGTCTATG TTCTATCACA TCTACAAACA TGTCACTTCC TAATTAACAA AATGTTCTTC
CTTTAGTTTG CTTTTGCACT TAAAATATAT ATAATTGACT TTTTTGGAAA AAAATCTAAG
ATTCATTGCT TTGTTTTGTA AAGACCAATA GGTTCTGTAT AGTCTTTTTT TAAAATTGTGG
TAAAATACAC ATGGCATTAA TTTACCATTT TAACCATTTT AAAGTGCACA ATTTGTGGCA
TTAAGTACAC TCACGTTGCT GTGCAACCAT CACCACCGTC CATCTTCAGA ACCTTTTTAT
CTTCCTAAAC TGAAACTCTG TACTCGTTAA GCACTCACTT CCCTTTTCCC CATCCCCCAG
CCCGTAGCAA CCACGACTGT ACTTTCTATG AATTTGACTA CTCTAGGTAC TGCATGTAGG
TGGAATCATA CAGTATTTGT CTTTTGCTTTG KTTTGKTTTG TTTTTGTTT TCTAAGACAG
GGTCTCACTC TGTCGCCCTA GCTGGATTGC AGAGTTAAGT TTATGATTAT GAAATAAAAA
CTAAATAACN ATTGTCCTCG TTTG

FIG.26

FIG.27

cctgaaagcc	tggcgccaat	gacccgcgag	acattttttg	cctggggtgc	tcctgtcgga	60
aaggaaagag	gaaaggacga	ctaagaactt	atactcgaac	tcccgaattt	ctcttttcaa	120
ggtttaagag	gaaagctggt	tcgtggggat	tggatgggag	gccaccagga	aaccaagttc	180
	ttcagtgctc					240
	tgaaaacgct					300
	actttgagac					360
	aaacgctgcc					420
	cggccgcgga					480
gtgtgttgcc	cgcgccagtc	acgtccctaa	tgggaccctc	cgtttcggcg	tctgtaaggc	540
gaggaggacg	atgcgtcccc	tccctsgcag	gattgaggtt	aggactaaac	ggggtccgca	600
	gctcccgagc					660
	ccgcggcgtc					720
	tgcccgtgcg					780
	tttccaggtc					840
	cttaccttaa					900
	actcagtgta					960
	gcttttggaa					1020
tgcatggata	ttcttaacaa	tttgaagaaa	tcgtcacagc	tttcctgggt	tgttgagcct	1080
ctaaaatggt	cttttcctct	gatgtgat <u>aa</u>	<u>taaag</u> tgttt	attttgaact	caaaaaaaaa	1140
aaaaaaaaa	aaaaaaaaa	a				1161

FIG.28

HKNG GENOMIC vs gnkhexp:

HKNG GENOMIC	888	cctgaaagcctggcgccaatgacccgcgagacattttttgcctggggtg	936
gnkh exp	1	cctgaaagcctggcgccaatgacccgcgagacattttttgcctggggtg	49
HKNG GENOMIC	937	ctcctgtcggaaaggaaaggaaaggacgactaaga-actcgaa	980
gnkh exp	50	ctcctgtcggaaaggaaaggaaaggacgactaagaacttatactcgaa	99
HKNG GENOMIC	981	ctcccgaatttctcttttcaaggtttaagaggaaagctggttcgtgggga	1030
gnkh exp	100	ctcccgaatttctcttttcaaggtttaagaggaaagctggttcgtgggga	149
HKNG GENOMIC	1031		1080
gnkh exp	150		199
HKNG GENOMIC	1081	stcctcttcccgccgcctttgccccgcccacatcactttcgctccagttt	1130
gnkh exp	200	ctcctcttyccgccgcctttgccccgccacatcactttcgctccagttt	249
HKNG GENOMIC	1131	ttgaaaacgctgcgaagcggaatggtccacaggggaaaacggaggagggg	1180
gnkh exp	250	ttgaaaacgctgcgaagcggaatggtccacaggggaaaacggaggagggg	299
HKNG GENOMIC	1181	ccaaagccaggactttgagaccggcgcgcggtcaagcccaggcagctctc	1230
gnkh exp	300		349
HKNG GENOMIC		cctaaccctccagcactgggcaaacgctgcccgatgacgcccgcc	1280
gnkh exp			399
HKNG GENOMIC	1281	ggccacggcatcactggggcgactgcgagcccggcgggagccgctggg	1330
gnkh exp	400	ggccacggcatcactggggcgactgcgagcccggccgcggagccgctggg	449
HKNG GENOMIC	1331	acgcggcttacctcccggctgtcgctgttgtgttgtcccgcgccagt	1380
gnkh exp	450		499
HKNG GENOMIC	1381	cacgtccctaatgggaccctccgtttcggcgtctgtaaggcgaggaggac	1430
gnkh exp	500		549
HKNG GENOMIC	1431	gatgcgtcccctccctggcaggattgaggttaggactaaacggggtccgc	1480
gnkh exp	550		599
HKNG GENOMIC	1481	agcgcccggcagctcccgagcgctctccccagccgcgcctcccttcc	1530
gnkh exp	600		649

HKNG GENOMIC	1531	cgccacccgtcccgcaggggcccgcggcgtcacctctcaggctgtagcgc	1580
gnkh exp	650	cgccacccgtcccgcaggggcccgcggcgtcacctctcaggctgtagcgc	699
HKNG GENOMIC	1581	gcctgcatgccgaataccgacagggtgccggtgcccgtgcggtcgtcctt	1630
gnkh exp	700	gcctgcatgccgaataccgacagggtgccggtgcccgtgcggtcgtcctt	749
HKNG GENOMIC	1631	cctgacgccgcagcggaggatgttgttggatctgccccaggtact	1669
gnkh exp	750	cctgacgccgcagcggaggatgtgttggatctgccccag	788
HKNG GENOMIC	1669	ttcaggatttccaggtcccagatgaagagataattctacttact	9596
gnkh exp	788	gatttccaggtcccagatgaagagataattctacttactggatat	833
HKNG GENOMIC	9597	aggatgcattagatcttcttaccttaaaaaaaaaaaaaa	9645
gnkh exp	834	aggatgcattagatcttcttaccttaaaaaaaaaaaaaa	883
HKNG GENOMIC	9646	atcaaaatactaataaattactcacagactcagtgtattttttcttggag	9695
gnkh exp	884	atcaaaatactaataaattactcacagactcagtgtattttttcttggag	933
HKNG GENOMIC	9696	taaaagtccaggatgggtaatagaatacctgctgttggcttttggaaaaa	9745
gnkh exp	934	taaaagtccaggatgggtaatagaatacctgctgttggcttttggaaaaa	983
HKNG GENOMIC	9746	ttggtactgtgtagcaaaataatgtgaaacccatatgcatggatattc	9795
gnkh exp	984	ttggtactgtatgtagcaaaataatgtgaaacccatatgcatggatattc	1033
HKNG GENOMIC	9796	ttaacaatttgaagaaatcgtcacagctttcctgggttgttgagcctcta	9845
gnkh exp	1034		1083
HKNG GENOMIC	9846	agatggtcttttcctctgatgtgataataaagtgtttattctgaactc	9893
gnkh exp	1084	aaatggtcttttcctctgatgtgataataaagtgtttattttgaactc	1131

FIG.30B

MTPASGATASLGRLRARPRSRWDAAYLPAVAAVCVARASHVPNGTLRFGVCKARRTMRPLPXRIEVRTKRGPQRPAAPER SPQPRLPPSRHPSRRGPRRHLSGCSAPACRIPTGCRCPCGRPS

FIG.32

MGPSVSASVRRGGRCVPSLAGLRLGLNGVRSARQLPSALPSRASLLPATRPAGARGVTSQAVARLHAEYRQGAGARAVVL PDAAAEDVLDLPQDFQVPDEEIILLTGYRMH

FIG.33

19 58	39			
S Q L A S H N P V T E D I F N S T K A TCT CAA CTG GCA AGC CAT AAC CCA GTG ACT GAG GAC ATC TTT AAT TCA ACA AAG GCA	V P K I H G G D S S K Q D E I M V D S S S TT CCA AAG ATT CAT GGA GGA GAT TCT TCC AAG CAG GAT GAA ATT ATG GTA GAC TCA AGC $FIG.34$			
	一 元			

•

human	fgwvSELANQAPETEIIFNSIQVVPRIHEGNISKQDETMMTDLS	(i/1)	pssnf
bovine	fgwvTELASQTPGSENIFSFIKVVPGV HEGNFSKQDE - KMIDIS		
guinea pig	fgwvLELAYQSPGAEDIFNPVKVMVALSAHEGNSSDQDD-TVVPSS		
rat	fgwvSQLASHNPVTEDIFNSTKAVPKIHGGDSSKQDE-IMVDSS		

FIG.35

cataacccag tgactgagga catctttaat tcaacaaagg cagttcca	aa gattcatgga 60
ggagattett ccaageagga tgaaattatg gtagaeteaa geageatt	
aacttcaccg tccagaatcc tcctgaagaa ggtgctgaga gctcaaat	gt tatttactac 180
atggcagcta aagttctgca gcatctaaag ggatgttttg aaacttgg	ta agaatagctg 240
attaggaaag ctttgttgag agggtaggta acataaaaaa aaaaaaaa	

FIG.36A

His Asn Pro Val Thr Glu Asp Ile Phe Asn Ser Thr Lys Ala Val Pro 10 15 15 Lys Ile His Gly Gly Asp Ser Ser Lys Gln Asp Glu Ile Met Val Asp 20 25 30 Ser Ser Ser Ile Leu Pro Ser Ser Asn Phe Thr Val Gln Asn Pro Pro 35 40 45 Glu Glu Gly Ala Glu Ser Ser Asn Val Ile Tyr Tyr Met Ala Ala Lys 50 55 60 Val Leu Gln His Leu Lys Gly Cys Phe Glu Thr Trp Glu Leu Ile Arg 65 70 75 80 Lys Ala Leu Leu Arg Gly Val Thr Lys Lys Lys Lys 90

FIG.36B

cccttcactg cgcgcccact gggaaggaga cagatgctac ggatggaaa	c ctaaagagtc	60
ttccagaggt aggagaggca gatgtagagg gagaggtcaa gaaggcttt	g attggcatta	120
agcaaatgaa aatcatgatg gaaaggagag aggaggaaca cgcaaaatt	g atgaaagcct	180
tgaagaagtg caaagaagaa aagcaggagg cccagaaact catgaacga	a gtgcaagaac	240
gtctggagga agaagaaaag ctatgtcagg catcttctat aggttcttg	ıg gatggatgca	300
ggccatgttt ggaaagtaac tgcatacgat tttatacagc ttgccaacc	t ggttggtcct	360
ctgtgaaaag catgatgaag caatttctca agaagatata ccgatttct	g tcttcccaga	420
gtgaagatgt aaaggateee eetgeeatag aacagetgae taaggaaga	it ttacaagtgg	480
tacacataga gaacctgttt agccagctgg ccgtggatgc aaaatctci	c ttcaacatga	540
gcttttacat ttttaagcag atgcagcaag aatttgatca ggcttttca	ıa ttatacttca	600
tgtccgatgt ggacttaatg gagccatacc ccccagcttt atctaaag	ng ataatcaaaa	660
aagaagaact tgggcaaagg tggggcattc ccaatgtctt ccagctgt	t cataatttca	720
gtctctctgt ttatgggaga gtccaacaaa taataatgaa gacactcaa	nt gcaattgaag	780
attcatggga accacacaa gagttagacc agagaggtat gacttcagg	ng atgttacctg	840
agcaaaatgg agaaatgtgt gaggaatttg tcaagaattt atctggat	gt ttaaaatttc	900
gtaaaagatg ccaaaaatgt cacaattacc tatctgaaga atgccctg	at gtacctgaac	960
ttcacataga attccttgag gccctgaaat tagtcaatgt atccaatc	ag caatatgatc	1020
agattgtcca gatgacccag tatcatttgg aagataccat atacctga	tg gagaaaatgc	1080
aagagcagtt tggatgggtg tctcaactgg caagccataa		1120 -
FIG.37A		
FIG.STA		

```
Leu His Cys Ala Pro Thr Gly Lys Glu Thr Asp Ala Thr Asp Gly Asn
Leu Lys Ser Leu Pro Glu Val Gly Glu Ala Asp Val Glu Gly Glu Val
                                25
Lys Lys Ala Leu Ile Gly Ile Lys Gln Met Lys Ile Met Met Glu Arg
Arg Glu Glu His Ala Lys Leu Met Lys Ala Leu Lys Lys Cys Lys
Glu Glu Lys Gln Glu Ala Gln Lys Leu Met Asn Glu Val Gln Glu Arg
                                        75
Leu Glu Glu Glu Lys Leu Cys Gln Ala Ser Ser Ile Gly Ser Trp
                85
Asp Gly Cys Arg Pro Cys Leu Glu Ser Asn Cys Ile Arg Phe Tyr Thr
                                105
Ala Cys Gln Pro Gly Trp Ser Ser Val Lys Ser Met Met Lys Gln Phe
                            120
                                                125
Leu Lys Lys Ile Tyr Arg Phe Leu Ser Ser Gln Ser Glu Asp Val Lys
                        135
                                            140
Asp Pro Pro Ala Ile Glu Gln Leu Thr Lys Glu Asp Leu Gln Val Val
                    150
                                        155
His Ile Glu Asn Leu Phe Ser Gln Leu Ala Val Asp Ala Lys Ser Leu
                                    170
Phe Asn Met Ser Phe Tyr Ile Phe Lys Gln Met Gln Gln Glu Phe Asp
                                185
Gln Ala Phe Gln Leu Tyr Phe Met Ser Asp Val Asp Leu Met Glu Pro
                            200
                                                205
Tyr Pro Pro Ala Leu Ser Lys Glu Ile Ile Lys Lys Glu Glu Leu Gly
                        215
                                            220
Gln Arg Trp Gly Ile Pro Asn Val Phe Gln Leu Phe His Asn Phe Ser
                                        235
Leu Ser Val Tyr Gly Arg Val Gln Gln Ile Ile Met Lys Thr Leu Asn
                245
                                    250
Ala Ile Glu Asp Ser Trp Glu Pro His Lys Glu Leu Asp Gln Arg Gly
            260
                                265
Met Thr Ser Glu Met Leu Pro Glu Gln Asn Gly Glu Met Cys Glu Glu
        275
                            280
Phe Val Lys Asn Leu Ser Gly Cys Leu Lys Phe Arg Lys Arg Cys Gln
                        295
                                            300
Lys Cys His Asn Tyr Leu Ser Glu Glu Cys Pro Asp Val Pro Glu Leu
                    310
                                        315
His Ile Glu Phe Leu Glu Ala Leu Lys Leu Val Asn Val Ser Asn Gln
                325
                                    330
Gln Tyr Asp Gln Ile Val Gln Met Thr Gln Tyr His Leu Glu Asp Thr
            340
                                345
Ile Tyr Leu Met Glu Lys Met Gln Glu Gln Phe Gly Trp Val Ser Gln
                            360
Leu Ala Ser His Asn Pro Val Thr Glu Asp Ile Phe Asn Ser Thr Lys
                        375
                                            380
Ala Val Pro Lys Ile His Gly Gly Asp Ser Ser Lys Gln
385
                    390
```

FIG.37B

tttttttt	ttttttcaa	ggctttcatc	aattttgcgt	gttcctcctc	tctcctttcc	60
atcatgattt	tcatttgctt	aatgccaatc	aaagccttct	tgacctctcc	ctctacatct	120
gcctctccta	cctctggaag	actctttagg	tttccatccg	tagcatctgt	ctccttccaa	180
gtaggtgcac	tgtcacaata	tttcaaccat	aacagataca	cagaaatcac	aaagagtggt	240
ggctgcatgg	tccagtgttc	caccgatatt	gcagctctcc	ccagagaaat	tgccactaac	300
ttctgaaagg	accttcactt	tttacgatgt	gcctcgtgcc	g		341

FIG.38A

cggcacgagg	cacatcgtaa	aaagtgaagg	tcctttcaga	agttagtggc	aatttctctg	60
gggagagctg	caatatcggt	ggaacactgg	accatgcagc	caccactctt	tgtgatttct	120
gtgtatctgt	tatggttgaa	atattgtgac	agtgcaccta	cttggaagga	gacagatgct	180
acggatggaa	acctaaagag	tcttccagag	gtaggagagg	cagatgtaga	gggagaggtc	240
aagaaggctt	tgattggcat	taagcaaatg	aaaatcatga	tggaaaggag	agaggaggaa	300
cacgcaaaat	tgatgaaagc	cttgaaaaaa	aaaaaaaaa	a		341

FIG.38B

FIG.38C

ggcaccgagg cacatcgtaa					60
gggagagctg caatatcggt	ggaacactgg	accatgcagc	caccactctt	tgtgatttct	120
gtgtatctgt tatggtgaaa					180
cggatggaaa cctaaagagt					240
agaaggcttt gattggcatt					300
acgcaaaatt gatgaaagcc	ttgaagaagt	gcaaagaaga	aaagcaggag	gcccagaaac	360
tcatgaacga agtgcaagaa	cgtctggagg	aagaagaaaa	gctatgtcag	gcatcttcta	420
taggttcttg ggatggatgc					480
cttgccaacc tggttggtcc					. 540
accgatttct gtcttcccag					600
ctaaggaaga tttacaagtg					660
caaaatctct cttcaacatg	agcttttaca	tttttaagca	gatgcagcaa	gaatttgatc	720
aggcttttca attatacttc	atgtccgatg	tggacttaat	ggagccatac	ccccagctt	780
tatctaaaga gataatcaaa					840
tccagctgtt tcataatttc					900
agacactcaa tgcaattgaa	gattcatggg	aaccacacaa	agagttagac	cagagaggta	960
tgacttcaga gatgttacct	gagcaaaatg	gagaaatgtg	tgaggaattt	gtcaagaatt	1020
tatctggatg tttaaaattt					1080
aatgccctga tgtacctgaa					1140
tatccaatca gcaatatgat					1200
tatacctgat ggagaaaatg					1260
acccagtgac tgaggacatc					1320
attcttccaa gcaggatgaa					1380
tcaccgtcca gaatcctcct					1440
cagctaaagt tctgcagcat				tagctgatta.	1500
ggaaagcttt gttgagaggg	taggtaacat	aaaaaaaaa	aaaaa		1545

FIG.39A

His 1	Arg	Gly	Thr	Ser	G1x	Lys	Val	Lys	Val	Leu	Ser	G1 u	۷a٦		Gly
Asn	Phe	Ser	Gly 20	Glu	Ser	Cys	Asn	Ile	Gly	Gly	Thr	Leu	Asp	15 His	Ala
Ala	Thr	Thr 35		Cys	Asp	Phe	Cys	Val	Ser	Va1	Met	Val 45	Lys	Tyr	Cys
Asp	Ser 50		Pro	Thr	Trp	Lys 55	Glu	Thr	Asp	Ala	Thr		Gly	Asn	Leu
Lys 65	Ser	Leu	Pro	Glu	Va7 70	Gly	Glu	Ala	Asp	Va1		Gly	G1u	Val	Lys 80
	Ala	Leu	Ile	G1 <i>y</i> 85	Île	Lys	Gln	Met	Lys 90	Ile	Met	Met	Glu	Arg 95	Arg
Glu	Glu	Glu	His 100	Āla	Lys	Leu	Met	Lys 105		Leu	Lys	Lys	Cys 110		Glų
Glu	Lys	Gln 115	Glu	Ala	Gln	Lys	Leu 120	Met	Asn	Glu	Val	G7n 125		Arg	Leu
Glu	G1u 130	Glu	Glu	Lys	Leu	Cys 135	Gln	Ala	Ser	Ser	Ile 140		Ser	Trp	Asp
Gly 145	Cys	Arg	Pro	Cys	Leu 150	Glu	Ser	Asn	Cys	Ile 155	Arg	Phe	Tyr	Thr	Ala 160
Cys	Gln	Pro	G1y	Trp 165	Ser	Ser	Val	Lys	Ser 170	Met	Met	Lys	Gln	Phe 175	Leu
			180		Phe			185				•	190	•	•
		195			GIn		200					205			
	210				Ser	215					220				
225					Ile 230					235				•	240
				245	Phe				250			•		255	
			260		Lys			265					270	_	
		275			Asn		280					285			
	290		,		Val	295					300				
305					G1u 310					315					320
				325	Pro				330					335	
		-	340		Gly			345					350	•	
		355			Ser		360					365			
	3/0				Ala	375					380				
Tyr 385	Asp	Gln	He	Val	G1n 390	Met	Thr	Gln	Tyr	His 395	Leu	Glu	Asp	Thr	Ile 400
								_	_						

Tyr Leu Met Glu Lys Met Gln Glu Gln Phe Gly Trp Val Ser Gln Leu Ala Ser His Asn Pro Val Thr Glu Asp Ile Phe Asn Ser Thr Lys Ala Val Pro Lys Ile His Gly Gly Asp Ser Ser Lys Gln Asp Glu Ile Met Val Asp Ser Ser Ser Ile Leu Pro Ser Ser Asn Phe Thr Val Gln Asn Pro Pro Glu Glu Gly Ala Glu Ser Ser Asn Val Ile Tyr Tyr Met Ala Ala Lys Val Leu Gln His Leu Lys Gly Cys Phe Glu Thr Trp Glu Leu Ile Arg Lys Ala Leu Leu Arg Gly Asn Val Thr Asn Lys Lys Lys

FIG.39B-2

aaaacgacgg	ccagtgcggc	acgaggcaca	tcgtaaaaag	tgaaggtcct	ttcagaagtt	60
agtggcaatt	tctctgggga	gagctgcaat	atcggtggaa	cactggacca	tgcagccacc	120
	atttctgtgt					180
gaaggagaca	gatgctacgg	atggaaacct	aaagagtctt	ccagaggtag	gagaggcaga	240
tgtagaggga	gaggtcaaga	aggctttgat	tggcattaag	caaatgaaaa	tcatgatgga	300
	gaggaacacg					360
	cagaaactca					420
	tcttctatag					480
	tatacagctt					540
	aagatatacc					600
-	cagctgacta				•	660
	gtggatgcaa					720
	tttgatcagg					780
	ccagctttat					840
	aatgtcttcc					900
	ataatgaaga					960
	agaggtatga					1020
	aagaatttat					1080
	tctgaagaat					1140
	gtcaatgtat					1200 -
	gataccatat			• • • •		1260
	agccataacc					1320
	ggaggagatt					1380
	tctaacttca					1440
	tacatggcag				ttgaaacttg	1500
gtaagaatag	ctgattagga	aagctttgtt	gagagggtag	g		1541

FIG.40A

	0-	_	_							-					
Met 1	Gln	Pro	Pro	Leu 5	Phe	Val	Ile	Ser	Val 10	Tyr	Leu	Leu	Trp	Leu 15	Lys
Tyr	Cys	Asp	Ser 20	Ala	Pro	Thr	Trp	Lys 25	Glu	Thr	Asp	Ala	Thr	Asp	Gly
Asn	Leu	Lys 35	Ser	Leu	Pro	Glu	Val 40	Gly	Gīu	Ala	Asp	Va1 45.		Gly	Glu
Va1	Lys 50		Ala	Leu	Пe	Gly 55	70	Lys	Gln	Met	Lys		Met	Met	Glu
Arg 65	Arg	Glu	Glu	Glu	His 70		Lys	Leu	Met	Lys	Ala	Leu	Lys	Lys	
	Glu	G1u	Lys	G1n	, ,	Ala	G1 n	Lÿs	Leu	Met	Asn	G1u	Val		80 Glu
Arg	Leu	Glu	Glu 100	GT u	G1u	Lys	Leu	Cys 105	G1n	Ala	Ser	Ser		95 Gly	Ser
Trp	Asp	Gly 115	-00	Arg	Pro	Cys	Leu 120		Ser	Asn	Cys	Ile 125	110 Arg	Phe	Tyr
Thr	Ala 130		G1n	Pro	G1y	Trp 135		Ser	Val	Lys	Ser 140		Met	Lys	Gln
Phe 145	Leu	Lys	Lys	Ile	Tyr 150		Phe	Leu	Ser	Ser 155		Ser	G1u	Asp	Val 160
	Asp	Pro	Pro	Ala 165		Glu	Gln	Leu	Thr 170	Lys	Glu	Asp	Leu	G]n 175	Val
Val	His	Ile	Glu 180	Asn	Leu	Phe	Ser	Gln 185		Ala	۷a٦	Asp	Ala 190	Lys	Ser
Leu	Phe	Asn 195	Met	Ser	Phe	Tyr	Ile 200		Lys	Gln	Met	G1n 205	ĞÎn	Glu	.Phe
Asp	G1n 210	Ala	Phe	Gln	Leu	Tyr 215	Phe	Met	Ser	Asp	Va1 220		Leu	Met	Glu
Pro 225	Tyr	Pro	Pro	Ala	Leu 230	Ser	Lys	Glu	Ile	I1e 235		Lys	Glu	Glu	Leu 240
Gly	GIn	Arg	Trp	G1y 245	Пe	Pro	Asn	۷a٦	Phe 250	G1n	Leu	Phe	His	Asn 255	Phe
Ser	Leu	Ser	Va1 260	Tyr	Gly	Arg	Val	G1n 265		Ile	Пe	Met	Lys 270	Thr	Leu
•	Ala	275					280	Pro				285	Asp		•
Gly	Met 290'	Thr	Ser	Glu	Met	Leu 295	Pro	Glu	G1n	Asn	Gly 300	Glu	Met	Cys	Glu
305	Phe				310					315	Phe				320
	Lys			325	•				330	Cys				Pro 335	Glu
	His		340					345	Lys				350	Ser	
	G1n	355					360					365	Leu		•
	11e 370					375	Met				380	Gly			
G1n 385	Leu	Ala	Ser	His	Asn 390	Pro	Val	Thr	Glu	Asp 395	Ile	Phe	Asn	Ser	Thr 400
₹								\sim	40	_	4				-

Lys Ala Val Pro Lys Ile His Gly Gly Asp Ser Ser Lys Gln Asp Glu 415

Ile Met Val Asp Ser Ser Ser Ile Leu Pro Ser Ser Asn Phe Thr Val 425

Gln Asn Pro Pro Glu Glu Gly Ala Glu Ser Ser Asn Val Ile Tyr Tyr 435

Met Ala Ala Lys Val Leu Gln His Leu Lys Gly Cys Phe Glu Thr Trp 450

FIG.40B-2

aaaacgacgg	ccagtgcggc	acgaggcaca	tcgtaaaaag	tgaaggtcct	ttcagaagtt	60
agtggcaatt	tctctgggga	gagctgcaat	atcggtggaa	cactggacca	tgcagccacc	120
actctttgtg	atttctgtgt	atctgttatg	gttgaaatat	tgtgacagtg	cacctacttg	180
gaaggagaca	gatgctacgg	atggaaacct	aaagagtctt	ccagaggtag	gagaggcaga	240
tgtagaggga	gaggtcaaga	aggctttgat	tggcattaag	caaatgaaaa	tcatgatgga	300
aaggagagag	gaggaacacg	caaaattgat	gaaagccttg	aagaagtgca	aagaagaaaa	360
gcaggaggcc	cagaaactca	tgaacgaagt	gcaagaacgt	ctggaggaag	aagaaaagct	420
atgtcaggca	tcttctatag	gttcttggga	tggatgcagg	ccatgtttgg	aaagtaactg	480
catacgattt	tatacagctt	gccaacctgg	ttggtcctct	gtgaaaagca	tgatgaagca	540
atttctcaag	aagatatacc	gatttctgtc	ttcccagagt	gaagatgtaa	aggatccccc	600
tgccatagaa	cagctgacta	aggaagattt	acaagtggta	cacatagaga	acctgtttag	660
ccagctggcc	gtggatgcaa	aatctctctt	caacatgagc	ttttacattt	ttaagcagat	720
gcagcaagaa	tttgatcagg	cttttcaatt	atacttcatg	tccgatgtgg	acttaatgga	780
gccatacccc	ccagctttat	ctaaagagat	aatcaaaaaa	gaagaacttg	ggcaaaggtg	840
			taatttcagt			900
			aattgaagat			960
gttagaccag	agaggtatga	cttcagagat	gttacctgag	caaaatggag	aaatgtgtga	1020
			aaaatttcgt			1080
			acctgaactt			1140
			atatgatcag			1200_
			gaaaatgcaa			1260
			ggacatcttt			1320
			ggatgaaatt			1380
•		-	tcctcctgaa			1440
			gcagcatcta		ttgaaacttg	1500
gtaagaatag	ctgattagga	aagctttgtt	gagagggtag	g		1541

FIG.41A

```
Met Gln Pro Pro Leu Phe Val Ile Ser Val Tyr Leu Leu Trp Leu Lys
                                     10
Tyr Cys Asp Ser Ala Pro Thr Trp Lys Glu Thr Asp Ala Thr Asp Gly
                                 25
Asn Leu Lys Ser Leu Pro Glu Val Gly Glu Ala Asp Val Glu Gly Glu
Val Lys Lys Ala Leu Ile Gly Ile Lys Gln Met Lys Ile Met Met Glu
                        55
Arg Arg Glu Glu His Ala Lys Leu Met Lys Ala Leu Lys Lys Cys
                    70
                                         75
Lys Glu Glu Lys Gln Glu Ala Gln Lys Leu Met Asn Glu Val Gln Glu
Arg Leu Glu Glu Glu Lys Leu Cys Gln Ala Ser Ser Ile Gly Ser
                                105
Trp Asp Gly Cys Arg Pro Cys Leu Glu Ser Asn Cys Ile Arg Phe Tyr
                            120
                                                 125
Thr Ala Cys Gln Pro Gly Trp Ser Ser Val Lys Ser Met Met Lys Gln
                        135
Phe Leu Lys Lys Ile Tyr Arg Phe Leu Ser Ser Gln Ser Glu Asp Val
                    150
                                         155
Lys Asp Pro Pro Ala Ile Glu Gln Leu Thr Lys Glu Asp Leu Gln Val
                165
                                     170
Val His Ile Glu Asn Leu Phe Ser Gln Leu Ala Val Asp Ala Lys Ser
            180
                                185
Leu Phe Asn Met Ser Phe Tyr Ile Phe Lys Gln Met Gln Glu Phe
                             200
Asp Gln Ala Phe Gln Leu Tyr Phe Met Ser Asp Val Asp Leu Met Glu
                        215
Pro Tyr Pro Pro Ala Leu Ser Lys Glu Ile Thr Lys Lys Glu Glu Leu
                    230
                                         235
Gly Gln Arg Trp Gly Ile Pro Asn Val Phe Gln Leu Phe His Asn Phe
                245
                                     250
                                                         255
Ser Leu Ser Val Tyr Gly Arg Val Gln Gln Ile Ile Met Lys Thr Leu
                                 265
Asn Ala Ile Glu Asp Ser Trp Glu Pro His Lys Glu Leu Asp Gln Arg
                            280
                                                 285
Gly Met Thr Ser Glu Met Leu Pro Glu Gln Asn Gly Glu Met Cys Glu
                        295
                                             300
Glu Phe Val Lys Asn Leu Ser Gly Cys Leu Lys Phe Arg Lys Arg Cys
                    310
                                         315
                                                             320
Gln Lys Cys His Asn Tyr Leu Ser Glu Glu Cys Pro Asp Val Pro Glu
                325
                                     330
                                                         335
Leu His Ile Glu Phe Leu Glu Ala Leu Lys Leu Val Asn Val Ser Asn
            340
                                345
                                                     350
Gln Gln Tyr Asp Gln Ile Val Gln Met Thr Gln Tyr His Leu Glu Asp
        355
                            360
Thr Ile Tyr Leu Met Glu Lys Met Gln Glu Gln Phe Gly Trp Val Ser
                        375
                                            380
Gln Leu Ala Ser His Asn Pro Val Thr Glu Asp Ile Phe Asn Ser Thr
                    390
                                        395
```

Lys Ala Val Pro Lys Ile His Gly Gly Asp Ser Ser Lys Gln Asp Glu 415

Ile Met Val Asp Ser Ser Ser Ser Ile Leu Pro Ser Ser Asn Phe Thr Val 420

Gln Asn Pro Pro Glu Glu Gly Ala Glu Ser Ser Asn Val Ile Tyr Tyr 435

Met Ala Ala Lys Val Leu Gln His Leu Lys Gly Cys Phe Glu Thr Trp 450

FIG.41B-2

aaaacgacgg	ccagtgcggc	acgaggcaca	tcgtaaaaag	tgaaggtcct	ttcagaagtt	60
agtggcaatt	tctctgggga	gagctgcaat	atcggtggaa	cactggacca	tgcagccacc	120
actctttgtg	atttctgtgt	atctgttatg	gttgaaatat	tgtgacagtg	cacctacttg	180
gaaggagaca	gatgctacgg	atggaaacct	aaagagtctt	ccagaggtag	gagaggcaga	240
tgtagaggga	gaggtcaaga	aggctttgat	tggcattaag	caaatgaaaa	tcatgatgga	300
aaggagagag	gaggaacacg	caaaattgat	gaaagccttg	aagaagtgca	aagaagaaaa	360
gcaggaggcc	cagaaactca	tgaacgaagt	gcaagaacgt	ctggaggaag	aagaaaagct	420
atgtcaggca	tcttctatag	gttcttggga	tggatgcagg	ccatgtttgg	aaagtaactg	480
catacgattt	tatacagctt	gccaacctgg	ttggtcctct	gtgaaaagca	tgatgaagca	540
atttctcaag	aagatatacc	gatttctgtc	ttcccagagt	gaagatgtaa	aggatccccc	600
tgccatagaa	cagctgacta	aggaagattt	acaagtggta	cacatagaga	acctgtttag	660
ccagctggcc	gtggatgcaa	aatctctctt	caacatgagc	ttttacattt	ttaagcagat	720
	tttgatcagg					780
	ccagctttat					840
gggcattccc	aatgtcttcc	agctgtttca	taatttcagt	ctctctgttt	atgggagagt	900
	ataatgaaga	-			-	960
	agaggtatga					1020
	aagaatttat		_		. –	1080
	tctgaaggca			_		1140
	agactcaagc			_	-	1200
	tgctgagagc	_				1260
	atgttttgaa	acttggtaag	aatagctgat	taggaaagct	ttgttgagag	1320
gataga						1326

FIG.42A

Met Gln Pro Pro Leu Phe Val Ile Ser Val Tyr Leu Leu Trp Leu Lys Tyr Cys Asp Ser Ala Pro Thr Trp Lys Glu Thr Asp Ala Thr Asp Gly Asn Leu Lys Ser Leu Pro Glu Val Gly Glu Ala Asp Val Glu Gly Glu Val Lys Lys Ala Leu Ile Gly Ile Lys Gln Met Lys Ile Met Met Glu Arg Arg Glu Glu Glu His Ala Lys Leu Met Lys Ala Leu Lys Lys Cys 70 Lys Glu Glu Lys Gln Glu Ala Gln Lys Leu Met Asn Glu Val Gln Glu Arg Leu Glu Glu Glu Lys Leu Cys Gln Ala Ser Ser Ile Gly Ser 105 Trp Asp Gly Cys Arg Pro Cys Leu Glu Ser Asn Cys Ile Arg Phe Tyr 120 125 Thr Ala Cys Gln Pro Gly Trp Ser Ser Val Lys Ser Met Met Lys Gln 135 140 Phe Leu Lys Lys Ile Tyr Arg Phe Leu Ser Ser Gln Ser Glu Asp Val 150 155 Lys Asp Pro Pro Ala Ile Glu Gln Leu Thr Lys Glu Asp Leu Gln Val 170 Val His Ile Glu Asn Leu Phe Ser Gln Leu Ala Val Asp Ala Lys Ser 185 190 Leu Phe Asn Met Ser Phe Tyr Ile Phe Lys Gln Met Gln Glu Phe 200 195 205 Asp Gln Ala Phe Gln Leu Tyr Phe Met Ser Asp Val Asp Leu Met Glu 215 220 Pro Tyr Pro Pro Ala Leu Ser Lys Glu Ile Thr Lys Lys Glu Glu Leu 230 235 Gly Gln Arg Trp Gly Ile Pro Asn Val Phe Gln Leu Phe His Asn Phe 250 Ser Leu Ser Val Tyr Gly Arg Val Gln Gln Ile Ile Met Lys Thr Leu 265 270 Asn Ala Ile Glu Asp Ser Trp Glu Pro His Lys Glu Leu Asp Gln Arg 280 285 Gly Met Thr Ser Glu Met Leu Pro Glu Gln Asn Gly Glu Met Cys Glu 295 300 Glu Phe Val Lys Asn Leu Ser Gly Cys Leu Lys Phe Arg Lys Arg Cys 310 315 Gln Lys Cys His Asn Tyr Leu Ser Glu Gly Ser Ser Lys Asp Ser Trp 325 330 Arg Arg Phe Phe Gln Ala Gly Glx 340

FIG.42B

Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar			M M M	KPPLLVFIVC KPPLLVFIVY KLPLLMFPVC QPPLFVISVY QPPLFVISVY QPPLFVISVY	LLRLRDCQCA LLWLKDCHCA LLWLKYCDSA LLWLKYCDSA
Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	PTGKDRTSIR PTWKDKTAIS PTWKETDATD PTWKETDATD	EDPKGFSKAG ENANSFSEAG GNLKSLPEVG GNLKSLPEVG	EIDADEEVKK EIDVDEEVKK EIDVDGEVKI EADVEGEVKK EADVEGEVKK EADVEGEVKK	ALIGMKQMKI ALIGIKQMKI ALIGIKQMKI ALIGIKQMKI	MMERKEKEHT LMERREEEHS MMERREEEHS MMERREEEHA MMERREEEHA MMERREEEHA
Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	KLMRTLKKCR KLMKTLKKCK KLMKALKKCK KLMKALKKCK	EEKQEALKLM EEKQEAQKLM EEKQEAQKLM	NEVQEHLEEE NEVHEHLEEE NEVQERLEEE NEVQERLEEE	ERLCRESLAD ERLCQVSLMG ESLCQVSLAD EKLCQASSIG EKLCQASSIG EKLCQASSIG	SWDECKSCLE SWDECRACLE SWDGCRPCLE SWDGCRPCLE
Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	SDCMRFYTTC SNCMRFDTTC SNCIRFYTAC SNCIRFYTAC	QSSWSSMKST QPAWSSVKNK QPGWSSVKSK QPGWSSVKSK	IERVFRKIYQ VEQFFRKIYQ MKQFLKKIYR MKQFLKKIYR	FLFPFHEDNE FLFPFHEDDE FLFPLQE.ND FLSSQSE.DV FLSSQSE.DV FLSSQSE.DV	KELPIGEKFT
Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	EEDVQLMQIE EEDAQVSHIE KEDLQVVHIE KEDLQVVHIE	NVFSQLTVDV HVFSQLSADV NLFSQLAVDA NLFDQLAVDA	NSLFNRSFNV GFLYNMSFHV TSLFNRSLYV KSLFNMSFYI KSLFNMSFYI KSLFNMSFYI	FKQMQQEFDL FKQLRREFDQ FKQMQQEFDQ FKQMQQEFDQ	TFQSHFISDT AFQSYFMSDT AFQSYFTSGT AFQLYFMSDV AFQLYFMSDV AFQLYFMSDV

FIG.43A

Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	DSMEPYFFPA DVTEPFFFPS DLMEPYP.PA DLMEPYP.PA	FSKEPAKKAH LSKEPAYRAD LSKEIIKKEE LSKEITKKEE	LEQCWDIPNF PMQSWDIPSF AEPSWAIPNF LGQRWGIPNF LGQRWGIPNF LGQRWGIPNF	FQLFCNFSLS FQLLCNLSFS FQLFHNFSLS FQLFHNFSLS	VYQSVSATVT VYQSVSEKLI VYGRVQQIIM VYGRVQQIIM
Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	KMLKAIEDLP EMLKAIEDLS TTLRATEDPP KTLNAIEDSW KTLNAIEDSW KTLNAIEDSW	KQDKDSAHGG KQDKDSNQGG EPHKELDQRG EPHKELDQRG	LISKMLPGQD PSSTTWPVRG PISKILPEQD MTSEMLPEQN MTSEMLPEQN MTSEMLPEQN	RGLCGEPGQN RGSDGKLGQN GEMCEEFVKN GEMCEEFVKN	SSECLQFHAR LSDCVNFRKR LSGCLKFRKR LSGCLKFRKR
Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	CQKCQDYLWA CQKCQDYLSD CQKCHNYLSE CQKCHNYLSE	DCPAVPELYT DCPNVPELYR ECPDVPELHI GSSKDSWR	ELNEALRLVS EFLEALKLVN	ISNQQYAQVL' RSNQQYDQVV VSNQQYDQIV	QMTRKHLEDT QMTQHHLEDT QMTQYHLEDT QMTQYHLEDT QMTQYHLEDT
Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	TYLMEKMREQ TLLMEKMREQ IYLMEKMQEQ	FGWVSQLASH		IKVVPGVH VKVMVALSAH TKAVPKIH	GGDSSKQDEI
Human bovine guinea Rat HKNGTvar Rat HKNGD9 Rat HKNGCvar	MVDSSSILPS	SNFTVQNPPE			KEHFKTW KGCFETW

FIG.43B

	_					
cctgtagtcc	cagctacgcg	agaggctgag	gcagcagaat	tacttgaacc	caggaggcgg	60
aggttgcagt	gagccgagat	cgcgccactg	cactccagcc	tgggtgagag	agcgagactc	120
tgtctcaaaa	aaaaaaaaa	aagaccgcca	gggctcaaac	aaaaaacctc	ggaaaagccc	180
tggcggtctt	tttttttt	ttttttttt	ttttttggga	cagtcttgct	ctgtcgccca	'240
ggctggagta	caatggtcgg	atcttggctc	actgcaacct	ctgcctccca	ggttcaagca	300
attettetge	ctcagcctcc	caagtagcca	ccacgcccag	ctaatttttg	tacttttagt	360
agagacgggg	gtttcaccat	gttgtccagg	ctggtcttga	actcctgacc	tcaggtgatc	420
cacccgcctc	ggcccccaa	agtactagga	ttacaggcgt	gagccaccgc	gtccagcgcc	480
crggcggttt	ttaatcaagt	agaaaagctg	cattatacca	cttgcttcgg	ttgcttcagt	540
gagaacgaag	aaatggaaat	gcaaatccct	tattagttgt	aggaaacaga	tctcaaacag	600
cagttttgtt	gacaagaccg	caggaaaacg	tgggaactgt	gctgctggct	tagagaaggc	660
gcggtcgacc	agacggttcc	caaagggcgc	agtccttccc	agccaccgca	cctgcatcca	720
ggttcccggg	tttcctaaga	ctctcagctg	tggccctggg	ctccgttctg	tgccacaccc	780
gtggctcctg	cgtttccccc	tggcgcacgc	tctctagagc	gggggccgcc	gcgaccccgc	840
cgagcaggaa	gaggcggagc	gcgggacggc	cgcgggaaaa	ggcgcgcgga	aggggtcctg	900
ccaccgcgcc	acttggcctg	cctccgt <u>ccc</u>	gccgcgccac	ttggcctgcc	<u>tccgtcccgc</u>	960
cgcgccactt	cgcctgcctc	<u>cgtcccccgc</u>	ccgccgcgcc	atgcctgtgg	ccggctcgga	1020
gctgccgcgc	cagcccttac	cccccaccac	acaggagcgg	gacgccgagc	<u>cgcgtccgcc</u>	1080
gcacggggag	ctgcagtacc	tggggcagat	<u>ccaacacatc</u>	ctccgctgcg	<u>gcgtcaggaa</u>	1140
ggacgaccgc	acgggcaccg	gcaccctgtc	ggtattcggc	atgcaggcgc	<u>gctacagcct</u>	1200
gagaggtgac	gccgcgggcc	cctgcgggac	gggtggcggg	aaggagggag	gcgcggctgg	1260
ggagagcgct	cgggagctgc	cgggcgctgc	ggaccccgtt	tagtcctaac	ctcaatcctg	1320
ccagggaggg	gacgcatcgt	cctcctcgcc	ttacagacgc	cgaaacggag	ggtcccatta	1380
gggacgtgac	tggcgcgggc	aacacacaca	gcagcgacag	ccgggaggta	agccgcgtcc	1440
cagcggctcc	acaaccaaac	tcgcagtcgc	cccagtgatg	ccgtggcccc	cgaggcgggc	1500
gtcatcgggc	agcgtttgcc	cagtgctgga	gggttaggga	gagctgcctg	ggcttgaccg	1560
cgcgccggtc	tcaaagtcct	ggctttggcc	cctcctccgt	tttcccctgt	ggaccattcc	1620
gcttcgcagc	gttttcaaaa	actggagcga	aagtgatgtg	ggcggggcaa	aggcggcggg	1680
aagaggacag	cactgaagct	ggcgcgggaa	cttggtttcc	tggtggcctc	ccatccaatc	1740
cccacgaacc	agctttcctc	ttaaaccttg	aaaagagaaa	ttcgggagtt	cgagttctta	1800
gicgiccttt	cctctttcct	ttccgacagg	agcaccccag	gcaaaaaatg	tctcgcgggt	1860
cattggcgcc	aggettteag	gggacagtgg	aacaaaacaa	ggtgggcaca	ggacgttagg	1920
cagccgttgg	ccctccctaa	ggccacaccg	tcctgccgtc	ctggatcctg	cgccagctgc	1980
gcgggggagg	ggactcgaag	gtgtgtgagc	caggggctga	ccttgaccgc	tcagataaat	2040
ggagcgcagc	cttgacacag	gggtggaggt	ggttttgaat	ggggaaaccc	attcgtggtg	2100
aagcagattc	actgtagcta	gcggaaaagc	cctccggccc	acggacccat	ctagagacga	2160
atacatagca	gctgctgtgg	ctgattggcg	tgggacagcg	tggggagttt	tgtctgagga	2220
gagggatcca	cttttctgca	gctccaagcc	caggggcctt	tgatgagcca	tagacctcat	2280
ttttaaccca	cctttctgct	tagacattga	gcaagttact	tctcatataq	cttccctata	2340
tgttaaaaat	ggagaaaata	atgcttagta	ggcaattctg	ataaaagcag	atacttacaa	2400
aaatctctct	gttgtctgaa	tataaactgt	accacaagcg	agtgcggatg	aacgaggact.	2460
gcatttaaag	ataagttttt	acactttcat	ttctctgtgg	ctcgacactt	ctgatgcctc	2520
cctttttgtt	cctgggacac	atgcttggtg	ttgtcttcac	acctttgtga	caggattagc	2580
actagtgggc	agtggatgat	agctcctcct	cccttttgcc	acatattcat	ccctaccctc	2640
gccaccatct	cactgtgtgg	aattcctgtg	tccactggtc	accggggcac	agaagtgctg	2700
tctcagcctg	aatcgggcca	ctgatgggac	ttgcagcctg	ggagetecae	catgatetet	2760
ggcccacttt	gcgggagtct	aggctttctg	gatgctccag	gcctcacgtc	ccagggcagt	2820
tttcttccct	gaagaaagtt	ggatggcatg	atctgtcttc	ccatcttgaa	accotatooc	2880
aaattgtttt	tcag <u>atgaat</u>	tccctctgct	gacaaccaaa	catatattct	ggaaggat.gt.	2940
tttggaggag	ttgctgtggt	ttatcaaggt	aaagaagtcg	ctgctattag	aagtcagtag	3000
			C 4 4 A	-3	3	5000.

tctgttctca acacagcagc cagtgagatc ctttcaaaac tcaaagcagc caggtgtggt 3060 ggctcacgcc tgtaatccca ccgctttggg aggctgagtc agatcacctg aggttaggaa 3120 tttgggacca gcctggccaa catggcgaca ccccagtctc tactaataac acaaaaaatt 3180 agccaggtgt gctggtgcat gtctgtaatc ccagctactc aggaggctga ggcatgagaa 3240 ttgctcacga ggcggaggtt gtagtgagct gagatcgtgg cactgtactc cagcctggcg 3300 acagagggag aacccatgtc aaaaacaaaa aaagacacca ccaaaggtca aagcatatca 3360 ttcctcaccc tcaagccctt agtggctcca tttcactcag taagagccac ggtccttatg 3420 gtgtccgttt ttcagctctg accttagctg ctgctctctg caccaccctg ctgttcttgt 3480 gagtttttga gcacaccggg acatececae teeetggaae ettetteeee cacaettgge 3540 ttcttccttt gagtctctac tccactcggg caagccttcc tagacctcct gatttaaaac 3600 tgtgactete eeccaacete ettggtgttt etcegtagae gaacateace atetgatgta 3660 tgtcagcctt tcccttcccc tgttagaagg gggacagcag gtagtaaaag tgaaatgtgc 3720 tgtaagettt atgagggeag aggatttgtt tetegtgtte actgttgtat egeeagggee 3780 tcaaacacag cctgccacat agtaggagtc aacatatatt gatcactaaa tgtagatacc 3840 acctgtgttc ccatgttcat ataaattcta gaagagtctc ttcagtaaca aggtgaaccc 3900 cttccagagg gctgagtagg tacctcaggc cggggccaga gtgctgtgaa gacagcagca 3960 gcccagacca agettetetg tgtteegtgt cetggtetag aaccagegat gttetttetg 4020 accagtgctt tttggaaggt ggctgaggtc tgggctcagg tctgggccat actagaagct 4080 gggatccctt ctatagagca cttggtatgg cttgtatggt cttggggcaa gccagaccca 4140 agccctctta tcccatttta gaaagggctt caatttggat ccagccccag gtctgcctta 4200 gctctgtatt cttggggtat tttgttctgt attggcctat cttgactaac aatgagcctt 4260 ggatttgaaa catatcatca gaaacctcag aagacaacat tcttaaactg gctagagcct 4320 ggtctgaatg gatgaaaagg agagactttt gaagcaatat gtaaaagatt gagaaatgat 4380 ttgttggaaa tttctcaatt ggagaaattt ctttgatttg ttggaaattt ctttgattct 4440 ttctcaatca aagaaaatcg ggacaaactc aacaatagaa agggaggaag caagatactc 4500 agaaataaaa tgcattcccc tgtttcaact taatgcttca attcaggatt ctaaggaatc 4560 cttgccagga atgtcagact caccttgata gttggagtta ctccattggt gactcgatca 4620 aatacaggag ttgaggcacc tgcactgtaa aatactgatt agtctgatca ttaggaatat 4680 cctgtatgcc aggtagaaga tacattgaac agattgcatg taggcattaa attcattttg 4740 gggtattaca tatagacaac acatttcatt aagaaacata aaactgtcag atcggtggaa 4800 tacttaaaag cacttggagg tgtttagcct, aaaaagctta gttgagggga atggaagaaa 4860 agatetggga gggtggttee aaagaaggga teagaetate etaaageeet eaggaatetg 4920 ggctgggacc acctacttaa agataggatg ggcagctggg tgtggtggct cacgcctgta 4980 atcccagcac ttcgggaggc cgaagcgggc ggatcacctg aggtcaggag ttcgaggcca 5040 gcctgaccaa catggagaaa cgctgtctct actaaaaata caaaattagc tgggtgtagt 5100 ggcgcatgcc tgtaatccca gctactcggg aggctgaggc agggggaatcg cttgaacctg 5160 ggaggtggag ggtgccgtga gccacgatcg cgccattgca ctccagcctg ggcaacaaga 5220 gcgaaactct caaaaaacaa aaaaaaggat gggttccata tgggtggtgt caagtgccca 5280 cctcctagca agtcagcagg ggccagaggc ccttgtaagt ggtgtctcgg ggggatcaac 5340 5400 cacaaatgct aaagagctgt cttccaaggg agtgaaaatc tgggatgcca atggatcccg 5460 agactttttg gacageetgg gatteteeae eagagaagaa ggggaettgg geeeagttta 5520 tggcttccag tggaggcatt ttggggcaga atacagagat atggaatcag gtgaggagat 5580 agaacaatgc cttccatttc cgggtgccct tcctagcacg tgtttgctcc gttgttttag 5640 ataaggtctg ggggatgagt caatgtcaca ggagctgatg tatagctttg accttgtgag 5700 gggtggtgcc aggttgaagc cacaattaac gcctactgaa ggccgtttca catcttttt 5760 tttttttttt ttttaattat tatactttaa gttttagggt acatgtgcac aatgtgcagg 5820 ttagttacat atgtatacat gtgccatgct ggtgcgctgc accactaact caccatctag 5880 catcaggtat atctcccaat gctatccctc cccctcctc ccaccccaca acatccccag 5940 agtgtgatgt teceetteet gtgteeatat gttetegttg ttegatteee actatgagtg 6000

agaatatgcg	gtgtttggtt	ttttgttctt	gcgatagttt	actgagaatg	atgatttcca	6060
tttcaccacg	tccctacaga	ggacatgaac	tcatcatttt	ttatggctgc	atagtattcc	6120
atggtgtata	tgtgccacat	tttcttaatc	cagtctatca	tgttggacat	ttgggttggt	6180
tccaagtctt	tgcctattgt	gaatagtgcc	acaataaaca	tacgtgtgca	tatatcttta	6240
tagcagcatg	atttaatagt	cctttgggta	tatacccagt	aatgggatgg	ctgggtcaaa	6300
tggtatttct	agttctagat	ccccgaggaa	tcgccacact	gacttccaca	atggttgaac	6360
tagtttacag	tcccaccaac	agtgtcaaag	tgtcctattt	ctccacatcc	tctccagcac	6420
ctgttgtttc	ctgacttttt	aatgattgcc	attctaactg	gtgtgagatg	gtatctcatt	6480
gtggttttga	tttgcgtttc	tctgatggcc	agtgatggtg	agcatttttt.	catgtgtttt	6540
ttggctgcat	aaatgtcttc	ttttgagaag	tgtctgttca	tatccttcac	ccacttttta	6600
atggggttgt	ttttttctta	taaatttgtt	tgagttcatt	gtagattctg	gatattagcc	6660
ctttgtcaga	tgagtaggtt	gcaaaaatgt	tctcccattt	tgtgggttgc	ctgttcactc	6720
tgatggtagt	ttcttttgct	gtgcagaagc	tctttagttt	aattagatcc	catttgtcaa	6780
ttttggcttt	tgttgccatt	gcttttggca	taggcatgaa	gtccttgccc	atgcctatgt	6840
cctgaatggt	aatgcctagg	ttttcttcta	gggtttttat	ggttttaggt	ctaacgttta	6900
agtctttaat	ccatcttgaa	ttgatttttg	tataaggtgt	aaggaaggga	tccagtttca	6960
gctttttaca	tatggctagc	cagttttccc	agcaccattt	attacatagg	gaatcctttc	7020
cccattgctt	gtttttctca	ggtttgtcaa	agatcagata	gttgtagata	tgcggcgtta	7080
tttctgaggg	ctctgttctg	ttccattgat	ctatgtgtct	gttttggtac	cagtaccata	7140
ctgttttggt	tactgtagcc	ttgtagtata	gtttgaagtc	aggtagcgtg	atgcctccag	7200
ctttgttctt	ttggcttagg	attgacttgg	cgatgcgggc	tcttttttgg	ttccatatga	7260
actttaaagt	agttttttcc	aattctgtga	agaaagtcat	tggtagcttg	atggggatgg	7320
cattgaatct	ataaattacc	ttgggcagta	tggccatttt	cacgatattg	attcttccta	7380
cccatgagca	tggaatggtc	ttccatttct	ttgtatcctc	ttttatttca	ttgagcagtg	7440
gtttgtagtt	ctccttgaag	aggtccttca	catccctttt	aaggtggatt	cctaggtatt	7500
ttattctctt	tgaagcaatt	gtgagtggaa	gttcactcat	gatttggctc	tctgtttgtc	7560
tgttattggt	gtataagaat	gcttgtgatt	tttgcagatt	gattttatat	cctgagactt	7620
tgctgaagct	gcttatcagc	ttaaggagat	tttgggctga	gacaatgggg	ttttctagat	7680
atacaatcat	gtcgtctgca	aacagggaca	atttgacttc	ctcttttcct	aattgaatac	7740
cctttatttc	cttctcctgc	ctaattgccc	tggccagaac	ttccaacact	atgttgaata	7800
ggagtggtga	gagagggcat	ccctgtcttg	tgccagtttt	caaagggaat	gcttccagtt	7860
tttgcccatt	cactatgata	ttggctgtgg	ctttgtcata	gatagctctt	attattttga	7920
aatatgttcc	atcaatacct	aatttattga	gagtttttag	catgatgtgt	tgttgaattt	7980
tgtcaaaggc	tttttctgca	tctattgaga	taatcatgtg	gtttttgtct	ttggatctgt	8040
ttatatgctg	gattacattt	attgatttgc	gtatattgaa	ccagccttgc	atcctaggga	8100
tgaagcccac	atgatcatgg	tggataagct	ttttgatgtg	ctgctggatt	cggtttgcca	8160
gratttatt	gaggattttt	gcatcaatgt	tcatcaagga	tattggtcta	aaattctctt	8220
ttttggtgtg	tctctgccca	gctttggtat	caggatgatg	ttggcttcat	aaaatgagtt	8280
agggaggatt	ccctcttttt	ctattgattg	gaatagtttc	agaaggaatg	gtaccagttc	8340
ctctttgtac	ctctggagaa	ttcggctgtg	aatccatctg	gtcctggact	ctctttggtt	8400
ggtaagctat	tgattattgc	cacaatttca	gctcctgtta	ttggtctatt	cagagattca	8460
acttcttcct	ggtttagtct	tgggagagtg	tatgtgtcaa	ggaatttatc	catttcttct	8520
agattttcta	gtttatttgc	gtagaggtgt	ttgtagtaat	ctctgatggt	agtttgtatt	8580
tctgtgggat	cggtggtgat	atccccttta	tcatttttta	ttgcgtctat	ttgattcttc	8640
tctttttctt	tattagtctt	gctagcggtc	tataaatttt	gttgatcctt	tcaaaaaacc	8700
agctcctgga	rrcattaatt	ttttgaaggg	ttttttgtgt	ctctatttcc	ttcagttctg	8760
ctctgatttt	agttatttct	tgccttctgc	tagcttttga	atatgtttgc	tcttgctttt	8820
ctagttcttt	taattgtgat	gttagggtgt	caattttqqa	tctttcctac	tttctct.tat	8880
gggcatttag	tgctataaat	ttccctctac	acactgcttt	gaatgtgtcc	cagaggttct	8940
ggtatgttgt	gtctttgttc	ttgttggttt	caaagaacat	ctttatttct	gccttcattt	9000
		-	~ ~			

cgttatgtac	ccagtagtca	ttcaggagca	ggttgttcag	tttccatgta	gttgagcagt	9060
tttgagtgag	attcttaatc	ctgagttcta	gtttgattgc	actgtggtct	gagagatagt	9120
ttgttataat	ttctgttctt	ttacatttgc	tgaggagagc	tttacttcca	actatgtggt	9180
cggttttgga	ataggtgtgg	tgtggtgctg	aaaaaaatgt	atattctgtt	gatttgggat	9240
ggagttctgt	agatgtctat	taggtctgct	tggtgcagag	ctgagttcaa	ttcctgggta	9300
tccttgttga	ctttctgtct	cgttgatctg	tgtactgttg	acagtgggtg	ttaaagtctc	9360
ccattattaa	tgtgtggagt	ctaagtctct	ttgtaggtca	ctcagatgat	tggcacttac	9420
tgggcgcttg	gcactttcca	tactgtgtca	tcggcagata	gctgcatggt	tggtgttcgt	9480
gctggggaat	gggaagttca	tcggtgggac	aaggacaaaa	tgcccccatt	gctttgttgt	9540
ggctttaatc	tccctttcga	ggctgagcca	cagcgtgctg	taggtggcgc	tgctgtgaag	9600
cgcagtacca	gggtcacact	ccactcccag	ctctgcagag	gtggagaaag	aatgaaacat	9660
ctcactcctg	gacttccact	ttcctgtcac	tgttggtgtc	acctcttact	ggatgtcaca	9720
gagcccagcc	cctcccacct	gtgcctagga	aaagcagatg	ccaccttgga	atgtggggtt	9780
tgtgtgtgca	atttactagc	tgggcagaga	ccagcaacct	ggagagcagg	tgtctcgtct	9840
aaggggacag	tcacatttca	cctccagcca.	cctggaggaa	tttgggcctg	gtgatgtcag	9900
aattcttcaa	taaaagccta	aaatctatat	tttatgtgcg	gtcatgagat	ctgttaaatg	9960
ttagcaactt	caggaagttt	aaaaatgctg	tgtggaccta	gaataggcaa	gttcttaaag	10020
gcagaaagtg	gaatgctagt	ttccagggac	tggggaacag	ggaggaatgg	ggagttcatg	10080
tttaatgggc	acagaggttt	tgttagggat	gacgaaaaag	ttcgggagat	ggtgatggtg	10140
arggagargg	tgatggtgat	ggagatggtg	atggtgatgg	tgatggtgat	gggtgatggt	10200
gatggtgatg	gtgatggtga	tggagatggt	gatggtgatg	gtgatggaga	tggtgatggt	10260
gatggtgatg	gtgatggaga	tggtgatggt	gatggagatg	gtgatggtga	tggtgatgga	10320
gatggtgatg	gtgatggtga	tggtgatggt	gatggtgatg	gtgatggaga	tggagatggt	10380
gatggtgatg	gttgcctaac	atcaggaacg	tgcttaatgc	ttctgaattg	cacacaaaa	10440
tggcaagttt	aatattatgt	gtactttatc	acaatgaaaa	aagctgctgc	gtgggccaag	10500
ttacttgtgc	aggtaatgtt	ctgcaggtgg	ttgcctgcac	ctcagttgta	gggtgtccgt	10560
aggatgtgag	gccagtcccc	gggcttaatg	atgctttaaa	tcctgcctag	tattcaatta	10620
tttcttgtcg	cttaaaaggc	ctaataaaat	tatggtctta	gtttacagtg	gtatgaatgc	10680
ttagctgttg	gattttagta	ggaaagttcg	tccctttttg	tttttaattt	tgttttacag	10740
atteacagga	atttttttt	ttttttttt	ttttttttt	taatgcacag	aaagtttccc	10800
tygactetet	acccagtttc	cccagtgata	atatettggg	taacatcctg	tatacattca	10860
cattggtgca	ttcctcagag	ttgtcagatt.	ttgctagttt	tacgtgcact	tgtgtatgtg	10920
igiattigca	attttagcac	gtgtagactc	ttgtaaccac	tacaatcaag	ttacagaact	10980
acactaccaa	ggttcatctt	tttaaaatct	ttgatgttac	cttttttgga	acagtgacca	11040
tgagaggact	ttcctcccaa	aattttgaaa	actactgaac	cagaatatag	tctgacacta	11100
ataggtagaa	atttaaccaa	aggagattat	gaagctctgc	acttgagtta	acaaaatcac	11160
tteteagett	ccagttccat	ctcagaagga	aggaaaaggg	attaaaaatc	cagagaccag	11220
aaaatgggag	caaagtacaa	ggtggtgtaa	tcattacaga	ggtttcctga	tgtttccaag	11280
tcagtcgtgt	gttgagctgc	taaactctaa	agtaatttta	ggtggaatgt	tggaaacatg	11340
ctgctgaggt	gatagaaagg	aatccatggt	cctctgttag	ttggaaagta	tatggaatac	11400
tatattctac	ataagataca	atactctctg	tgagacaagg	ataaagtaga	ttttgtcagt	11460
gaaattgtga	caagaatcgc	tgatgggttt	agagectaag	tttgcgagga	gcactggaag	11520
adattaagat	tgttgagatt	ggaaagggtt	agctatgggg	gaacaggagg	aggtgactcc	11580
atgacagacc	aaatattcaa	aggactgtgt	agaagaggaa	aaagactttg	ttagggctcc	11640
agaggacaga	gccaggagtc	agacagggcc	ttgaactcaa	cccaccgaga	tctgcaaact	11700
rrgcaggatg	caccagatgt	cttgtagcca	tgggtcaagg	ggggaccctg	ggtaagagac	11760
rgraatagat	gacctctaag	gccatctcat	gacatgtgtg	attaatgtat	gtacctgtcc	11820
tctctttttg	acaattctac	agattattca.	ggacagggag	ttgaccaact	gcaaagagtg	11880
attgacacca	tcaaaaccaa	ccctgacgac	agaagaatca	tcatgtgcgc	ttggaatcca	11940
agaggttgaa	agaaccccgt	cgtcttcatt	tatactaacc	atactcttag	agggaagcaa	12000
		y 1	^ 4.4 ^			

tctggttttg tgcagaggca ctgagggagg caggaccctg ggcaacttcc cccagccaca 12060 tggttgtgtg acgttgggca agtcacattt tgctgcactt tcaccttcag atcatgaggt 12120 tgggcccaga ggatttttt ttttttttt ttttttgaga cagagttttg ctctgttgcc 12180. caggetggaa tgcaacggeg tgatettgge teactgtaac etetgeetee tgggttegag 12240 tgattctcct gcctcagcct ccaagtagct gggattacag catgtgccac catgcctggc 12300 taattttgta tttttagtag agacgggttc acatgttggt caggctggtc ttgactcctq 12360 accetcagat gatetgeett geetcageet eccaacegag tgatettaag ttgtgtatta 12420 tactcattct tacacaaaaa gggctttaaa tgcctagaaa ctacatgaag atgttaacat 12480 tttaaatgga agcagatgaa gttccagctc gctgccacct cactaacatt tttaacaatt 12540 atattgtaaa attcaactct accagggtgt agagccaggt gtggtggctc acacctgtaa / 12600 ttccaacaac tccagaggcc aaggcgagag gatcatttga acccacggaa tttgaggctg 12660 tagtgagtca tgatcacgcc attgcactcc atcctgggca acagagtgag accctgaata 12720 tttaaaaaca acaacaacaa caaaactcta tcaggatatc ataagtactt agagtgaaat 12780 acttgcatct gtaatagaga cttattttt tttttttga gacacagtct caccetgttg 12840 cccaggctgg agtgcagtgg tttgatctcc gctcacggca acctccatct cccaggttca 12900 agtgagttcc cattcctcag ccccagagct gggaccacag gcgcgcgaat ttttgtattt 12960 ttagcagaga cggggtttca ctatgttggc caggctagtc tcaaactcaa gttggcctca 13020 agtgatctgc ccaccctggc gtcccagtgt tgggatttca ggcatgagcc actgtgcctg 13080 gccatgtaat agagactttt aatataggag ggtgtaccag aagcaccagt ttcctgtggc 13140 aaacagaatt attcctgctg tatttgtaat ttggtgccac gaggtagccc agatcccttc 13200 agctctgatg gaagagcatt gcttcagccg taaatggaca cctgcagaaa ccttgcaccg 13260 atggatagtc tccctcagct ccgtgccatc gctgcagggg ctgttatgga catcactgca 13320 gcccagtggc tctctctct ggtctccacc atatgagttg gcttctgttt ctctcctgtt 13380 ttactttgcc tttagctgtg gtctttcaaa ccaccatccc tccttatctt cctctgctgg 13440 ttcctcagat cttcctctga tggcgctgcc tccatgccat gccctctgcc agttctatgt 13500 ggtgaacagt gagctgtcct gccagctgta ccagagatcg ggagacatgg gcctcggtgt 13560 gcctttcaac atcgccaget acgccctgct cacgtacatg attgcgcaca tcacgggcct 13620 gaaggtgggc tgtctcggga agggtgactt gccagcctac cacatgagct cttcagttct 13680 ttaatatggg aaaacaaatt gcagagttta gtctctgatt agcttttaaa tttgatatgt 13740 gtaagtaaga catgaaccag cttttacttt gaaaccttcc ttttctggaa ggttttctgg 13800 ccctgtggta tatgcactaa cagatctata caggttgttt gtgatacagc ttctatggat 13860 cttctcaaaa gctatgctga ggttgggtat ggtggctcat gcctgtaatc ccagcacttt 13920 ggaagactga gacaggagca attgcttgag gtctggagtt caataccagc ctgggcaaca 13980 taacaagatg ctgttgctac aaaaaaatgg aaaagctaca ctaaattatt tttttaaaaa 14040 aagcettgeg gtgtetgeat attetaatgt ttttaaatga tgttttaaag aattgaaact 14100 aacatactgt tctgctttct cccggtttat agccaggtga ctttatacac actttgggag 14160 atgcacatat ttacctgaat cacatcgagc cactgaaaat tcaggtaaga attagatgtt 14220 atacttttgg gtttggtacc ttctcttgat aaaaggttga ctgtggaaca ggtatctgct 14280 caatgctgtg tccaagataa agatgactgc tccaaatgtg gggcttcagt ttagggagaa 14340 gtggtgggca ggtgggcagg acaaggcagg catctgcctc agcaaccatg gcacttaact 14400 tgtcaggtgc tgtgaggtac taagcaccag taccagagag ggaagagcca cattcaagcc 14460 aggggattgt ccaaaaggag gcattttaac tcattttaac ttgaaggaga attgaagtgc 14520 aaatgttttt ccttttcttt ttttttgaga tggagtcttt ctctgtcggc caggctggag 14580 tgtgccgtgg tgcgatctca gctcactgca acctccacct cccgggttca agcaattctt 14640 ctgcctcage ctcccaggta gctgggatta caggcacatg ccaccacace cagctaattt 14700 tttgtattat tagtagagat ggggtttcgt catgttggcc aggctgatct caaactcctg 14760 acttcaagtg taccacctgc ctcagcctcc gaaagttctg gaattacagg cataagccac 14820 caccetggce ataaatattt tttgttaatt ttacattaag tacaatattt aggtecaaac 14880 ttcaaaagtc tgttgaaatc cctgaagtta tagcagccaa caattgatat gaaatggcaa' 14940 taaaaatgta agttcatctg cttcatgagc cttaaggaaa aaaactcaga accagacact 15000

	ttttagcccc	ttccaggtta	gatccaggtt	ttaaaagtta	ttcctttgag	ggagtttggc	15060
	tgcttttgag	tggaggtgac	ttcaggctta	ttctctctqq	ctctctactc	tootcatttt	15120
	tagacatagt	aataggttgt	gacctgtctt	cacatcctaa	ttgccactgt	ctattcatcc	15180
	caggaatcct	ggctttcatc	cctttctgtt	cactgtccat	gcatgtcatc	tttccttctt	15240
	tctgccaggg	accagatggg	ttagggattg	tgaattcaag	taaacgtaga	gctactatga	15300
	gttacagatt	gactgtgttc	ctgtctttaa	taaatttgcc	aagagtggtt	ataagaactt	15360
	acacctgatg	aggcaccagg	ctcctgatgc	tgtgtaatgt	cacaaaatac	ccctcactct	15420
	cgatctgtgc	aagagaacag	ctggttgcgc	tccaatcatg	ttacataacc	tacgcgaagg	15480
	tatcgacagg	atcatactcc	tgtaaaatag	aactttgttg	atcacatcct	gtgtacttgt	15540
	ttcacggaca	tgaggagcaa	ttacaacagg	tcgtacaatt	atggcaaaat	aatggcctta	15600
	ttttgttttt	agcttcagcg	agaacccaga	cctttcccaa	agctcaggat	tcttcgaaaa	15660
	gttgagaaaa	<u>ttgatgactt</u>	caaagctgaa	gactttcaga	ttgaagggta	caatccgcat	15720
	<u>ccaactatta</u>	<u>aaatggaaat</u>	ggctgtttag	ggtgctttca	aaggagctcg	aaggatatta	15780
	tcagtcttta	<u>ggggttgggc</u>	tggatgccga	ggtaaaagtt	ctttttqctc	taaaagaaaa	15840
	aggaactagg	<u>tcaaaaatct</u>	gtccgtgacc	tatcagttat	taatttttaa	ggatgttgcc	15900
	actggcaaat	gtaactgtgc	cagttctttc	cataataaaa	gactttgagt	taactcacta	15960
	agggtatctg	acaatgctga	ggttatgaac	aaagtgagga	gaatgaaatg	tatgtgctct	16020
	tagcaaaaac	atgtatgtgc	<u>atttcaatcc</u>	cacgtactta	taaagaaggt	taataaattt	16080
	<u>cacaagctat</u>	<u>ttttggaata</u>	<u>tttttagaat</u>	<u>attttaagaa</u>	tttcacaagc	tattccctca	16140
	<u>aatctgaggg</u>	agctgagtaa	_caccatcgat	catgatgtag	agtgtggtta	tgaactttaa	16200
	<u>agttatagtt</u>	<u>gttttatatg</u>	ttgctataat	aaagaagtgt	tctqcattcq	tccacacttt	16260
	gttcattctg	tactgccact	tatctgctca	gttccttcct	aaaatagatt	aaagaactct	16320
	ccttaagtaa	acatgtgctg	tattctggtt	tggatgctac	ttaaaagagt	atattttaga	16380
	aataatagtg	aatatatttt	gccctatttt	tctcatttta	actgcatctt	atcctcaaaa	16440
	tataatgacc	atttaggata	gagttttttt	ttttttttt	taaactttta	taaccttaaa	16500
	gggttatttt	aaaataatct	atggactacc	attttgccct	cattagette	agcatggtgt	16560
	gacttctcta	ataatatgct	tagattaagc	aaggaaaaga	tgcaaaacca	cttcaaaatt	16620
	aatcagtgaa	atatttttcc	cttcgttgca	taccagatac	ccccaatatt	gcacgactat	16680
	ttttattctg	ctaatttatg	acaagtgtta	aacagaacaa	ggaattattc	caacaaqtta	16740
	tgcaacatgt	tgcttatttt	caaattacag	tttaatgtct	aggtgccagc	ccttgatata	16800
	gctatttttg	taagaacatc	ctcctggact	ttagattaat	taaatctaaa	cttatttaag	16860
	gattaagtag	gataacgtgc	attgatttgc	taaaagaatc	aagtaataat	tacttagctg	16920
	attcctgagg	gtggtatgac	ttctagctga	actcatcttg	atcqqtaqqa	ttttttaaat	16980
	ccatttttgt	aaaactattt	ccaagaaatt	ttaagccctt	tcacttcaga	рвевеверве	17040
	ttgttggggc	tgagcactta	attttcttga	gcaggaagga	qtttcttcca	aacttcacca	17100
	tctggagact	ggtgtttctt	tacagattcc	tccttcattt	ctattaaata	accadaatee	17160
	tatcaaagac	caaaaaaatg	agtcctgtta	acaaccacct	qqaacaaaaa	cagattttat	17220
	gcatttatgc	tgctccaaga	aatgctttta	cgtctaagcc	agaggcaatt	aattaatttt	17280
	tttttttttg	acatggagtc	actgtccgtt	gcccaggctg	cagtgcagtg	gcgcaatctt	17340
	ggctcactgc	aacctccacc	tcccaggttc	aagtgattct	cctgcctcag	cctcccatat	17400
	agctgggatc	acaggcacct	gccaccatgc	ccggctaatt	ttttqtattt	tttatagaga	17460
-	cagggtttca	ccatgttggc	caggctggtc	tcaaacacct	gacctcaaat	gatccacctg	17520
	cctcagcctc	ccaaagtgtt	gggattacag	gcgtaagcca	ccatacccaa	ccctgaatta	17580
	atatttttaa	aataagtttg	gagactgttg	gaaataatag	ggcagaggaa	catattttac	17640
	tggctacttg	ccagagttag	ttaactcatc	aaactctttq	ataatagttt	gacctctgtt	17700
	ggtgaaaatg	agccatgatc	tcttgaacat	gatcagaata	aatgcccag	ccacacaatt	17760
	gtagtccaaa	ctttttaggt	cactaactta	ctagatagta	ccagatttt	ttacacaaaa	17820
	agtgcaaatg	ttaagatctc	cactagtgag.	gaaaggctag	tattacagaa	accttateaa	17880
	aggcaattga	acctccaagc	cctgaccctc	aggcctaaga	attttaatac	agacaaactg	17940
	aagaaccgtt	tgttagtgga	tattgcaaac	aaacaggagt	caaagettee	tactccacao	18000
	- •	5 5.554			georgy	uguecucucug	10000

tctagttcac gagacaggcg	tagcagtagc	tggcagcatc	tcttctcaca	ggggccctca	18060
ggcacagett acettgggag	gcatgtagga	agcccgctgg	atcatcacgg	gatacttgaa	18120
atgctcatgc aggtggtcaa	catactcaca	caccctagga	ggagggaatc	agatcggggc	18180
aatgatgcct gaagtcagat	tattcacgtg	gtgctaactt	aaagcagaag	gagcgagtac	18240
cactcaattg acagtgttgg	ccaaggctta	gctgtgttac	catgcgtttc	taggcaagtc	18300
cctaaacctc tgtgcctcag	gtccttttct	tctaaaatat	agcaatgtga	ggtggggact	18360
ttgatgacat gaacacacga	agtccctctg	agaggttttg	tggtgccctt	taaaagggat	18420
caattcagac tctgtaaata	tccagaatta	tttgggttcc	tctggtcaaa	agtcagatga	18480
atagattaaa atcaccacat	tttgtgatct	atttttcaag	aagcgtttgt	attttttcat	18540
atggctgcag cagctgccag	agacttagag	tttttttggc	aggtagggtt	gggagg	18596

FIG.44G

ggggggggg	ggaccacttg	gcctgcctcc	gtcccgccgc	gccacttggc	ctgcctccgt	60
cccgccgcgc	cacttcgcct	gcctccgtcc	cccgcccgcc	gcgccatgcc	tgtggccggc	120`
tcggagctgc	cgcgccggcc	cttgcccccc	gccgcacagg	agcgggacgc	cgagccgcgt	180
ccgccgcacg	gggagctgca	gtacctgggg	cagatccaac	acatcctccg	ctgcggcgtc	240
aggaaggacg	accgcacggg	caccggcacc	ctgtcggtat	tcggcatgca	ggcgcgctac	300
agcctgagag	atgaattccc	tctgctgaca	accaaacgtg	tgttctggaa	gggtgttttg	360
gaggagttgc	tgtggtttat	caagggatcc	acaaatgcta	aagagctgtc	ttccaaggga	420
gtgaaaatct	gggatgccaa	tggatcccga	gactttttgg	acagcctggg	attctccacc	480
agagaagaag	gggacttggg	cccagtttat	ggcttccagt	ggaggcattt	tggggcagaa	540
tacagagata	tggaatcaga	ttattcagga	cagggagttg	accaactgca	aagagtgatt	600
gacaccatca	aaaccaaccc	tgacgacaga	agaatcatca	tgtgcgcttg	gaatccaaga	660
gatcttcctc	tgatggcgct	gcctccatgc	catgccctct	gccagttcta	tgtggtgaac	720
agtgagctgt	cctgccagct	gtaccagaga	tcgggagaca	tgggcctcgg	tgtgcctttc	780
aacatcgcca	gctacgccct	gctcacgtac	atgattgcgc	acatcacggg	cctgaagcca.	840
ggtgacttta	tacacacttt	gggagatgca	catatttacc	tgaatcacat	cgagccactg	900
aaaattcagc	ttcagcgaga	acccagacct	ttcccaaagc	tcaggattct	tcgaaaagtt	960
gagaaaattg	atgacttcaa	agctgaagac	tttcagattg	aagggtacaa	tccgcatcca	1020
actattaaaa	tggaaatggc	tgtttagggt	gctttcaaag	gagcttgaag	gatattgtca	1080
gtctttaggg	gttgggctgg	atgccgaggt	aaaagttctt	tttgctctaa	aagaaaaagg	1140
aactaggtca	aaaatctgtc	cgtgacctat	cagttattaa	tttttaagga	tgttgccact	1200
ggcaaatgta	actgtgccag	ttctttccat	aataaaaggc	tttgagttaa	ctcactgagg	1260
gtatctgaca	atgctgaggt	tatgaacaaa	gtgaggagaa	tgaaatgtat	gtgctcttag	1320
caaaaacatg	tatgtgcatt	tcaatcccac	gtacttataa	agaaggttgg	tgaatttcac	1380
aagctatttt	tggaatattt	ttagaatatt	ttaagaattt	cacaagctat	tccctcaaat	1440
					actttatagt	1500
		taaagaagtg				1536

FIG.45A

Met Pro Val Ala Gly Ser Glu Leu Pro Arg Arg Pro Leu Pro Pro Ala Ala Gln Glu Arg Asp Ala Glu Pro Arg Pro Pro His Gly Glu Leu Gln 25 Tyr Leu Gly Gln Ile Gln His Ile Leu Arg Cys Gly Val Arg Lys Asp Asp Arg Thr Gly Thr Gly Thr Leu Ser Val Phe Gly Met Gln Ala Arg Tyr Ser Leu Arg Asp Glu Phe Pro Leu Leu Thr Thr Lys Arg Val Phe Trp Lys Gly Val Leu Glu Glu Leu Leu Trp Phe Ile Lys Gly Ser Thr Asn Ala Lys Glu Leu Ser Ser Lys Gly Val Lys Ile Trp Asp Ala Asn 105 Gly Ser Arg Asp Phe Leu Asp Ser Leu Gly Phe Ser Thr Arg Glu Glu 120 125 Gly Asp Leu Gly Pro Val Tyr Gly Phe Gln Trp Arg His Phe Gly Ala Glu Tyr Arg Asp Met Glu Ser Asp Tyr Ser Gly Gln Gly Val Asp Gln 150 155 Leu Gln Arg Val Ile Asp Thr Ile Lys Thr Asn Pro Asp Asp Arg Arg 170 Ile Ile Met Cys Ala Trp Asn Pro Arg Asp Leu Pro Leu Met Ala Leu 180 185 Pro Pro Cys His Ala Leu Cys Gln Phe Tyr Val Val Asn Ser Glu Leu Ser Cys Gln Leu Tyr Gln Arg Ser Gly Asp Met Gly Leu Gly Val Pro Phe Asn Ile Ala Ser Tyr Ala Leu Leu Thr Tyr Met Ile Ala His Ile 230 235 Thr Gly Leu Lys Pro Gly Asp Phe Ile His Thr Leu Gly Asp Ala His 250 Ile Tyr Leu Asn His Ile Glu Pro Leu Lys Ile Gln Leu Gln Arg Glu 260 265 Pro Arg Pro Phe Pro Lys Leu Arg Ile Leu Arg Lys Val Glu Lys Ile 280 Asp Asp Phe Lys Ala Glu Asp Phe Gln Ile Glu Gly Tyr Asn Pro His 295 300 Pro Thr Ile Lys Met Glu Met Ala Val 305 310

FIG.45B

MPVAGSELPRRPLPPAAQERDAEPRPPHGELQYLGQIQHILRCGVRKDDRTGTGTLSVFG MQARYSLRDEFPLLTTKRVFWKGVLEELLWFIKGSTNAKELSSKGVKIWDANGSRDFLDS LGFSTREEGDLGPVYGFQWRHFGAEYRDMESDYSGQGVDQLQRVIDTIKTNPDDRRIIMC AWNPRDLPLMALPPCHALCQFYVVNSELSCQLYQRSGDMGLGVPFNIASYALLTYMIAHI TGLKPGDFIHTLGDAHIYLNHIEPLKIQLQREPRPFPKLRILRKVEKIDDFKAEDFQIEG YNPHPTIKMEMAV

FIG.46

FIG.47A

													,												
	_	36		2	\ <u>280</u>	7 6	170	7		-	2			154	7	<u>∽</u> .		<u>~ c</u>	7.0						
		20	-	2	768	2 6	168	2	7		7	-	-	190	7	,	- ,	7	_						
		25	Ξ	2	\280 \280	7 6	170	2	-		7	_		154	7	<u>~</u> .		<u> </u>	7.1				(Į.	
8		20	—		268	7 6	168	7	-	7	7	7	- 2	164	7	?	(7							
		39	15	7	268	7 0	170	7		_	2	_	_	9	2	<u>~~ .</u>	==		7.7						
		S	-	-	268	1 2	168	7	•	7	7	2	7	164	7	7.	- (7.	_						(
		_			8	1 5	70							54		_									7
FROM	P	5030	1 M	1 2	.68 \ 2	1 - 1	68	2 2	-	2 1	2 2	2 1	7	64	2 2	2.		2	1 1/2						
	1																								_
		123	12	7	268	25	170	7	_	_	2	=	=	154	7	<u>ی</u> .	<u>=</u>		12						
		2	•	_	268	1 1	168	2	~	7	2	7	7	160	7	2 ,	· ,	7	_						
•		=	2	2	268	7	170	2		_	2	_	_	154	~	~ <u>`</u>		<u></u> -	15						
	٦	207	_		268	1 2	168	7	-	7	7	2	7	154	7	2	- ,	7	_						
															_					54					
							— _L		6001	3 2	2 2	38	2 2) } } }	<u> </u>	2 -	7	<u> </u>	7 7	 · -	2 2	<u> </u>	= ;	7	1 42
		•										76	,	<u> </u>	ğ [)					=					
		122	~	7	268	5 5 7	168	~	7	-	7	-	-	160	7		(7							
		ഗ്.		7	268	2 6	170	7	7	-	2	-	_	156	7	7	7	7							

FIG.48