

INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL

Prof^a. Miguel Bozer da Silva e Prof. Henrique Ferreira dos Santos

profmiguel.silva@fiap.com.br

2020

Prof. Miguel Bozer da Silva

APRENDIZADO DE MÁQUINA

Aprendizado de Máquina

O Machine Learning (ML), ou em português Aprendizado de Máquina, envolve técnicas de **inteligência artificial baseada em dados**;

Os algoritmos de ML podem ser de diferentes tipos e estratégias de aprendizado;

Se um algoritmo prevê uma determinada estrutura matemática rígida do modelo ele é denominado paramétrico como os algoritmos de Regressão Linear e Regressão Logística;

Existem algoritmos não paramétricos como o KNN e a Árvore de Decisão;

Além da qualidade paramétrica, os algoritmos de ML podem ser divididos em dois grupos:

Algoritmo de **Aprendizado Supervisionado**;

Algoritmos de **Aprendizado Não Supervisionado**;

Aprendizado de Máquina

No aprendizado supervisionado temos rótulos para cada entrada de dado. No não supervisionado, não fornecemos nenhuma informação (rótulo) para o

agrupai

Prof. Miguel Bozer da Silva

APRENDIZADO SUPERVISIONADO

- O que é o aprendizado supervisionado?
- No aprendizado supervisionado temos os dados de entrada do nosso modelo e também conhecemos os *labels* deles, isto é o valor esperado da saída do modelo para cada entrada:

i-ésima entrada do nosso modelo. Aqui temos todas as características diferentes que iremos utilizar para fazermos uma predição da saída

 $y^{(i)} egin{array}{cccccc} & Label & com & a & saída \ & esperada & pelo & nosso \ & modelo & \end{array}$

- O que é o aprendizado supervisionado?
- No aprendizado supervisionado temos os dados de entrada do nosso modelo e também conhecemos os *labels* deles, isto é o valor esperado da saída do modelo para cada entrada:

Salario mensal	Nível de educação	Moradia	Aprovação do cartão de crédito
8500,00	Mestrado	Casa/Apartamento Próprio quitado	Aprovado
1950,00	Ensino médio / técnico	Aluguel	Reprovado
:	.	:	:
3500,00	Graduação	Casa/Apartamento Próprio financiado	Reprovado

 Para o caso dos classificadores, conhecemos os nossos dados de entrada (x) e conhecemos os labels dele (y) que são categóricos

altura	peso	Classe
1,83	95	adulto
1,65	77	adulto
1,25	50	criança
:	:	:
1,77	69	adulto
$\mathbf{x}^{(i)}$ Entr	ada de dados	$y^{(i)}$ Saída de dados

 Para o caso dos classificadores, conhecemos os nossos dados de entrada (x) e conhecemos os labels dele (y)

			x_2	Ī		
altura	peso	Classe			* *	
1,83	95	adulto		*	**	* Adultos
1,65	77	adulto	OS		•	
1,25	50	criança	beso			crianças
÷	:	:		•		
1,77	69	adulto				
						→
				altuı	ra	x_1

 Os modelos classificadores irão estimar parâmetros (θ) que nos indicam a relação entre as nossas entradas (x) e a nossa saída – label (y)

• A etapa de aprendizado no nosso modelo $f(\theta)$ é chamada de treinamento. Nela o modelo aprenderá a relação das entradas com as saídas.

 Após o treinamento, podemos usar o nosso modelo para estimar dados desconhecidos: Caso um novo dado cuja classe é desconhecida for apresentado ao modelo, podemos classifica-lo!

 Após o treinamento, podemos usar o nosso modelo para estimar dados desconhecidos: Caso um novo dado cuja classe é desconhecida for apresentado ao modelo, podemos classifica-lo!

 Podemos também estimar uma saída de valores numéricos contínuos (y) a partir de um conjunto de dados de entrada (x)

		\mathcal{Y}	\hat{y} - Previsões do modelo
idade	altura		
5	1,00	cm)	
11	1,43	Altura (cm)	
7	1,19	Altu	
:	:		
16	1,73		
$\mathbf{x}^{(i)}$	$y^{(i)}$	_	-
			Idade (anos) x_1

 Nesses casos temos a necessidade de utilizar modelos regressores para resolver o problema que estamos trabalhando

			У	\hat{y} - Previsões do modelo
idade	altura			
5	1,00		cm)	
11	1,43		ra (
7	1,19		Altura (cm)	
:	÷	,	•	
16	1,73			
$\mathbf{x}^{(i)}$	$y^{(i)}$			-
				Idade (anos) x_1

Prof. Miguel Bozer da Silva

PROJETO DE APRENDIZADO SUPERVISIONADO

- Podemos resumir o passo a passo de um projeto de aprendizado supervisionado como:
 - Receber os dados
 - Analise Exploratória dos dados
 - Tratamento dos dados
 - Divisão do conjunto de dados
 - Realização do treinamento
 - Avaliação do modelo

ETAPA 1:

- Receber os dados
- Analise Exploratória dos dados
 - Tratamento dos dados

Vimos isso nas últimas aulas com o auxílio do pandas!

ETAPA 1 (Recordando):

- Tratamento de valores nulos;
- Tratamento de outliers;
- Em alguns projetos podemos ter conjuntos de dados categóricos. Nesses casos, temos que ajustá-los para valores numéricos.
- Temos duas principais abordagens para quando conseguimos estabelecer uma ordenação dos dados e quando não conseguimos fazer isso.

One Hot Enconding

- Quando não conseguimos ordenar os dados usamos o One Hot Enconding
- O One Hot Enconder transforma colunas categóricas em colunas binárias:

Label Enconding

- Quando conseguimos ordenar os dados usamos o Label Enconding
- O Label Encoding é aplicado quando temos números ordenados dos nossos dados:

SAFETY-LEVEL	SAFETY-LEVEL
(TEXT)	(NUMERICAL)
None	0
Low	1
Medium	2
High	3
Very-High	4

ETAPA 1 (Recordando):

- Somente faltou comentar um tópico de tratamento dos dados:
 - A normalização e padronização dos dados

- Alguns modelos de Machine Learning exigem que os valores estejam em escalas similares para que eles não se tornem tendenciosos. Por exemplo:
 - Se temos o peso, altura e o tamanho da camisa que uma pessoa usa.
 Podemos tentar usar esses dados para estimar qual o tipo de camisa uma pessoa pode comprar
 - Para isso, o nosso modelo recebe os valores do peso e da altura e estima a saída de tamanho da camisa.

id	Peso	Altura(m)	Camisa
1	75	1,77	G
2	80	1,85	G
3	92	1,8	G
4	67	1,69	M
5	88	1,9	GG
6	105	1,95	GG

A escala do peso é muito maior que a altura.

 Caso as grandezas dos dados envolvidos forem muito diferentes, podemos padronizar ou normalizar os nossos dados:

Padronização:

$$z_i = rac{x_i - \mu}{\sigma}$$

Onde:

 z_i é o i-ésimo valor padronizado;

 x_i é o i-ésimo valor original dos nossos dados σ é o desvio padrão dos dados.

 μ é a média dos dados

ullet Normalização: $X_{changed} = rac{X - X_{min}}{X_{max} - X_{min}}$

Onde:

 $X_{changed}$ é o valor normalizado

X é o valor antes da normalização

 X_{min} é o menor valor do conjunto de dados

 X_{max} é o maior valor do de dados

Após a padronização dos dados:

id	Peso	Altura(m)	Camisa
1	75	1,77	G
2	80	1,85	G
3	92	1,8	G
4	67	1,69	M
5	88	1,9	GG
6	105	1,95	GG

id	Peso	Altura(m)	Camisa
1	-0,71	-0,61	G
2	-0,33	0,25	G
3	0,56	-0,29	G
4	-1,30	-1,46	M
5	0,26	0,78	GG
6	1,52	1,32	GG

 A Padronização dos dados transforma os mesmos em uma distribuição normal padrão

Recomendado quando os dados estão em uma distribuição normal

• Após a normalização dos dados:

id	Peso	Altura(m)	Camisa
1	75	1,77	G
2	80	1,85	G
3	92	1,8	G
4	67	1,69	M
5	88	1,9	GG

id	Peso	Altura(m)	Camisa
1	0,21	0,31	G
2	0,34	0,62	G
3	0,66	0,42	G
4	0,00	0,00	M
5	0,55	0,81	GG

 A normalização pode ser aplicada quando a distribuição dos dados não é normal ou se o desvio padrão dos mesmos for muito pequeno.

- **ETAPA 2**:
- Divisão do conjunto de dados
- Realização do treinamento
- Avaliação do modelo no conjunto de teste

Dados disponíveis (X; y)

Projeto de Aprendizado Supervisionado

 Num projeto de aprendizado supervisionado teremos um conjunto de dados total que será utilizado

 Podemos escolher alguns modelos para aprender a relação das entradas e saídas de dados na etapa de treinamento dos modelos

$$\hat{y} = f(\boldsymbol{\theta}) = \begin{cases} 0 \text{ se classe } 0 \\ 1 \text{ se classe } 1 \end{cases}$$

– Um erro comum é pensar que podemos usar todos os nossos dados para estimarmos os parâmetros dos modelos (θ) (treinamento do

modelo) **SVM** Dados disponíveis (X; y) Reg. Logística K-Vizinhos mais próximos Entre outros

$$f(\boldsymbol{\theta}) = \begin{cases} 0 \text{ se classe } 0 \\ 1 \text{ se classe } 1 \end{cases}$$

 Dessa forma, n\u00e3o separamos dados para verificar o desempenho de cada modelo com novos dados dos quais ele nunca foi exposto.

$$f(\boldsymbol{\theta}) = \begin{cases} 0 \text{ se classe } 0 \\ 1 \text{ se classe } 1 \end{cases}$$

 Reutilizar os dados de treinamento para testarmos o nosso modelo é uma péssima ideia. NECESSITAMOS testá-lo em novos dados

$$f(\boldsymbol{\theta}) = \begin{cases} 0 \text{ se classe } 0 \\ 1 \text{ se classe } 1 \end{cases}$$

Divisão dos Conjuntos de Dados

- Conjunto de treinamento: Utilizado para o modelo aprender as relações entre as entradas e saídas dos meus dados
- Conjunto de teste: Utilizado para verificar se o nosso modelo foi devidamente treinado e checarmos com métricas de desempenho se o nosso

Com a divisão dos dados podemos atuar da seguinte forma:

Modelos treinados : Parâmetros θ estimados para cada modelo!

para cada entrada

Com a divisão dos dados podemos atuar da seguinte forma:

Modelos previamente treinados

– Agora podemos comparar o que os modelos estavam (\hat{y}) prevendo com o que eles deveriam estar prevendo (y_test)

y_test	ŷsvм	\hat{y}_{reg}	$\hat{\mathcal{Y}}_{KNN}$
Adulto	Criança	Adulto	Criança
Adulto	Adulto	Criança	Adulto
Criança	Criança	Criança	Adulto
Adulto	Adulto	Adulto	Criança
Criança	Criança	Adulto	Adulto
Adulto	Criança	Adulto	Adulto
Adulto	Criança	Adulto	Criança
:	:	:	:
Criança	Adulto	Criança	Adulto

 Podemos comparar os modelos e tentar ver qual deles consegue chegar o mais próximo possível de y_test. Para isso, usamos as métricas de desempenho

y_test	ŷsvм	$\widehat{\mathcal{Y}}_{reg}$	$\widehat{\mathcal{Y}}_{KNN}$
Adulto	Criança	Adulto	Criança
Adulto	Adulto	Criança	Adulto
Criança	Criança	Criança	Adulto
Adulto	Adulto	Adulto	Criança
Criança	Criança	Adulto	Adulto
Adulto	Criança	Adulto	Adulto
Adulto	Criança	Adulto	Criança
:	:	:	:
Criança	Adulto	Criança	Adulto

 Para usarmos modelos de Machine Learning temos que criar os conjuntos de dados para treinamento e teste

Como pudemos ver ao longo da aula, existem muitas formas de agrupar os diferentes algoritmos de Machine Learning. Muito desse processo de classificação ainda está sendo feito agora!

É realmente um Zoológico de Algoritmos!

https://www.youtube.com/watch?v=w6Pw4MOzMuo&list=LL&index=129&ab channel=MichaelBronstein

- Infelizmente, o Zoológico é muito grande para nosso tour: não vamos conseguir conhecer todos os algoritmos que existem esse ano;
- Além disso, muitos outros algoritmos estão sendo propostos todos os meses!
- Vamos estudar alguns dos mais importantes para realizar tarefas básicas de Inteligência Artificial e Ciência de Dados, entre eles:

Aprendizado supervisionado:

- > Regressão: regressão linear, SVR (SVM), Árvore de Decisão e KNR;
- Classificação: KNN, Árvore de Decisão, RandomForest, SVM, Naive Bayes, Regressão Lógistica;

❖ Aprendizado não supervisionado:

- > Agrupamento: k-means, hierárquico, DBSCAN, mistura gaussiana;
- Redução de dimensionalidade: t-SNE, PCA, kPCA, Isomap;
- No segundo semestre iremos ver outra parte do zoológico que realiza essas mesmas tarefas de maneira diferente: as Redes Neurais Artificiais (Deep Learning).

Avaliação do modelo

Porque devemos avaliar o modelo?

• IA PODE ERRAR!

Erros acontecem... overfitting e underfitting

Overfitting

- Modelo que se ajusta aos dados de treinamento muito bem, incluindo outliers
- Impacto negativo na capacidade do modelo em generalizar

Underfitting

 Um modelos que nem se ajusta bem aos dados de treino, nem generaliza para novos dados

Erros acontecem... overfitting e underfitting

Um modelo com **overfitting** tem mais coeficientes do que o necessário. É um modelo com pouca capacidade de generalização: ele terá alta acurácia para os dados de treinamento e acurácia extremamente baixa para os dados de teste.

•

Erros acontecem...

Bias (enviesamento): Precisamos ser éticos na escolha das colunas que iremos usar e no dados que iremos fornecer aos algoritmos para que injustiças e preconceitos prévios não sejam ensinados aos algoritmos!

Overffiting (sobreajuste): Precisamos fazer separação treino/teste para atestar a generalidade de nosso modelo, levando em consideração o tipo de dados e o propósito para escolher tipo de metodologia de separação (80/20, cross validation, data leakage);

Acurácia e Precisão: Precisamos comparar com resultados de sistemas tradicionais (normalmente denominados de Modelo Base);

Copyright © 2020 Prof. Miguel Bozer da Silva e Prof. Henrique Ferreira dos Santos

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).