Иллюстративные примеры к теме № 1 "Линейное программирование"

1.1. Решение задач линейного программирования симплекс-методом

ПРИМЕР 1.

Решить задачу линейного программирования вида

$$c'x \to \max, \ Ax = b, \ x \ge 0,$$
 (1.1)

со следующими исходными данными

$$c = (-5 - 2 \ 3 - 4 - 6 \ 0 - 1 - 5)', \quad b = (6 \ 10 - 2 \ 15)$$

$$A = \begin{pmatrix} 0 & 1 & 4 & 1 & 0 & -3 & 5 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 7 & -1 & 0 & -1 & 3 & 8 & 0 \\ 1 & 1 & 1 & 1 & 0 & 3 & -3 & 1 \end{pmatrix} m = 3, n = 8,$$

$$(1.2)$$

и заданным начальным базисным планом

$$x^{Ha4} = (4\ 0\ 0\ 6\ 2\ 0\ 0\ 5)$$

$$J_{\text{B}} = \{1\ 4\ 5\ 8\} = \{j_1 = 1, j_2 = 4, j_3 = 5, j_4 = 8\}$$

Итерация 1

По заданному множеству $J_{\scriptscriptstyle\rm B} = \{1\ 4\ 5\ 8\}$ сформируем матрицы и вектор

$$A_{B} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \quad B = A_{b}^{-1} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}, \quad c_{B} = (-5 - 4 - 6 - 5)'$$

Вычислим вектор потенциалов

$$u' = c'_{\rm B}B = (1\ 0\ 6\ -5)$$

и оценок

$$\Delta = (\Delta_j, j = 1...8) = u'A - c' = (0.40 - 10.00.00.00.00).$$

Для данного вектора оценок условий $\Delta_j \ge 0, j \in J_H = J \setminus J_{\mathbb{B}}$, не выполняется.

Выберем индекс $j_0 \in J_H$, для которого $\Delta j_0 < 0$:

$$j_0 = 3 \in J_H = \{2\ 3\ 6\ 7\}$$

Построим вектор

$$z = (z_1, z_2, ..., z_m)' := BA_{j_0} = (-4 \ 4 \ 1 \ 1)'.$$

Для данного вектора z условие $z_i \leq 0, i=1,...,m$, не выполняется, поэтому продолжаем итерацию.

Найдем шаги θ_i , i = 1,..., 4, по правилу

$$\theta_{i} = \begin{cases} x_{j_{i}} / z_{i}, & ecnu \ z_{i} > 0, \\ \infty & ecnu \ z_{i} \leq 0, \end{cases} \qquad i = 1, 2, 3, 4;$$
 (1.3)

Получим

$$\theta_1 = \infty$$
, $\theta_2 = 1.5000$, $\theta_3 = 2$, $\theta_4 = 5$,

и найдем

$$\theta_0 = \min_{i=1,2,3,4} \theta_i = 1.5 = \theta_2$$
.

Следовательно, $s = 2, j_s = j_2 = 4$.

Построим новый базисный план $\overline{x}=(\overline{x_j},j\in J)=(\overline{x_j},j=1,\dots,8)$ и соответствующий ему базис $\bar{J}_{\scriptscriptstyle B}$ по правилам

$$\overline{x}_{j} = 0, j \in J_{H} \setminus j_{0}; \quad \overline{x}_{j_{0}} = \theta_{0}; \quad \overline{x}_{j_{i}} = x_{j_{i}} - \theta_{0}z_{i}; i = 1, ..., m,$$
(1.4)

$$\bar{J}_{B} = (\bar{J}_{B} \setminus j_{S}) \cup j_{0} = \{j_{1}, \dots, j_{s-1}, j_{0}, j_{s+1}, \dots, j_{m}\}.$$
(1.5)

В результате получаем новый план

$$\overline{x}$$
 = (10 0 1.5 0.5 0 0 3.5)

и новый базис

$$\bar{J}_{\rm B} = \{1\ 3\ 5\ 8\}$$

Переходим на следующую итерацию, исходя из новых плана

$$x := \overline{x} = (10\ 0\ 1.5\ 0\ 0.5\ 0\ 0\ 3.5)$$

и базиса

$$J_{\rm B} := \bar{J}_{\rm B} = \{1\ 3\ 5\ 8\}.$$

Итерация 2

По заданному множеству $J_{\scriptscriptstyle \rm B} = \{1\ 3\ 5\ 8\}$ сформируем матрицы и вектор

$$A_{b} = \begin{pmatrix} 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}, B = A_{b}^{-1} = \begin{pmatrix} 0 & 1.0000 & 0 & 0 \\ 0.2500 & 0 & 0 & 0 \\ -0.2500 & 0 & -1.0000 & 0 \\ -0.2500 & -1.0000 & 0 & 1.0000 \end{pmatrix}, c_{B} = (-5 \ 3 \ -6 \ -5)'.$$

Вычислим вектор потенциалов

$$u' = c'_{\rm B}B = (3.5\ 0\ 6\ -5)$$

и оценок

$$\Delta = (\Delta_j, j = 1, ..., 8) = u'A - c' = (0.42.5 \ 0.2.5 \ 0.7.5 \ 81.5 \ 0).$$

Для данного вектора оценок условий $\Delta_j \geq 0, j \in J_H = J \setminus J_{\mathbb{B}}$, не выполняется.

Выберем индекс $j_0 \in J_{\scriptscriptstyle H}$, для которого $\Delta_{j_0} < 0$:

$$j_0 = 6 \in J_H = \{2 \ 4 \ 6 \ 7\}.$$

Построим вектор

$$z = BA_{j_0} = (0 -0.75 -2.25 3.75)$$
'.

Для данного вектора z условие $z_i \leq 0, i=1, \dots, m$, не выполняется, поэтому продолжаем итерацию.

Найдем шаги θ_i , i = 1, ..., 4, по правилу (1.3)

$$\theta_1 = \infty$$
, $\theta_2 = \infty$, $\theta_3 = \infty$, $\theta_4 = 0.9333$,

и найдем

$$\theta_0 = \min_{i=1,2,3,4} \theta_i = 0.9333 = \theta_4$$

Следовательно, s = 4, $j_s = j_4 = 8$.

Построим новый базисный план $\overline{x} = (\overline{x_j}, j \in J) = (\overline{x_j}, j = 1, ..., 8)$ и соответствующий ему базис $\overline{J}_{\scriptscriptstyle B}$ по правилам (1.4) и (1.5). В результате получаем новый план

$$\overline{x}$$
 = (10 0 2.2 0 2.6 0.9333 0 0)

и новый базис

$$\bar{J}_{\rm B} = \{1\ 3\ 5\ 6\}$$

Переходим на следующую итерацию, исходя из новых плана

$$x := \overline{x} = (10 \ 0 \ 2.2 \ 0 \ 2.6 \ 0.9333 \ 0 \ 0)$$

и базиса

$$J_{\scriptscriptstyle\rm B} := \bar{J}_{\scriptscriptstyle\rm B} = \{1\ 3\ 5\ 6\}.$$

Итерация 3

По заданному множеству $J_{\rm B} = \{1\ 3\ 5\ 6\}$ сформируем матрицы и вектор

$$A_{b} = \begin{pmatrix} 0 & 4 & 0 & -3 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 3 \\ 1 & 1 & 0 & 3 \end{pmatrix}, \quad B = A_{b}^{-1} = \begin{pmatrix} 0 & 1.0000 & 0 & 0 \\ 0.2000 & -0.2000 & 0 & 0.2000 \\ -0.4000 & -0.6000 & -1.0000 & 0.6000 \\ -0.0667 & -0.2667 & 0 & 0.2667 \end{pmatrix}, \quad c_{\rm B} = (-5\ 3\ -6).$$

Вычислим вектор потенциалов

$$u' = c'_{\rm B}B = (3 - 26 - 3)$$

и оценок

$$\Delta = (\Delta_{\rm j}, j=1,\, \ldots\,,\, 8) = u'A - c' = (0~46~0~2~0~0~71~2.000071~2).$$

Для данного вектора оценок выполняется условие $\Delta_{\mathbf{j}} \geq 0, j \in J_{\scriptscriptstyle H} = J \setminus J_{\scriptscriptstyle \mathrm{B}}$

Алгоритм заканчивает работу. Оптимальный план $x^0 = x = (10\ 0\ 2.2\ 0\ 2.6\ 0.9333\ 0\ 0)$ найден.

Ответ: $x^0 = (10\ 0\ 2.2\ 0\ 2.6\ 0.9333\ 0\ 0)$ - оптимальный план.

ПРИМЕР 2

Решить задачу линейного программирования вида (<u>1.1</u>) со следующими исходными данными

$$c = (-5 -2 \ 3 -4 -6 \ 0 \ 1 -5)', \quad b = (6 \ 10 -2 \ 15)$$

$$A = \begin{pmatrix} 0 & 1 & 4 & 1 & 0 & -3 & 1 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 7 & -1 & 0 & -1 & 3 & -1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 3 & -1 & 1 \end{pmatrix}$$

и заданным начальным базисным планом

$$x^{Ha4} = (10\ 0\ 1.5\ 0\ 0.5\ 0\ 0\ 3.5).$$

$$J_{\rm B} = \{1 \ 4 \ 5 \ 8\} = \{j_1 = 1, j_2 = 3, j_3 = 5, j_4 = 8\}.$$

Итерация 1

По заданному множеству $J_{\scriptscriptstyle \rm B} = \{1\ 3\ 5\ 8\}$ сформируем матрицы и вектор

$$A_b = \begin{pmatrix} 0 & 4 & 4 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \quad B = A_b^{-1} = \begin{pmatrix} 0 & 1.0000 & 0 & 0 \\ 0.2500 & 0 & 0 & 0 \\ -0.2500 & 0 & -1.0000 & 0 \\ -0.2500 & -1.0000 & 0 & 1.0000 \end{pmatrix}, \quad c_B = (-5 \ 3 \ -6 \ -5)'.$$

Вычислим вектор потенциалов

$$u' = c'_B B = (3.5 \ 0 \ 6 \ -5)$$

и оценок

$$\Delta = (\Delta_i, j = 1, ..., 8) = u'A - c' = (0.42.5 \ 0.2.5 \ 0.7.5 \ 1.5 \ 0).$$

Для данного вектора оценок условий $\Delta_{\mathbf{j}} \geq 0, j \in J_{\scriptscriptstyle H} = J \setminus J_{\scriptscriptstyle \mathrm{B}}$, не выполняется.

Выберем индекс $j_0 \in J_H$, для которого $\Delta j_0 < 0$:

$$j_0 = 6 \in J_H = \{2 \ 4 \ 6 \ 7\}.$$

Построим вектор

$$z = BA_{i_0} = (0 -0.75 -2.25 3.75)$$
'.

Вычислим шаги θ_i , $i=1,\ldots,4$, по правилу (1.3)

$$\theta_1 = \infty, \, \theta_2 = \infty, \, \theta_3 = \infty, \, \theta_4 = 0.9333,$$

и найдем

$$\theta_0 = \min \theta_i = 0.93333 = \theta_4,$$

Следовательно, s = 4, $j_s = j_4 = 8$.

Построим новый базисный план $\overline{x} = (\overline{x_j}, j \in J) = (\overline{x_j}, j = 1, ..., 8)$ и соответствующий ему базис $\overline{J}_{\rm B}$ по правилам (1.4) и (1.5). В результате получаем новый план

$$\overline{x} = (10 \ 0 \ 2.2 \ 0 \ 2.6 \ 0.9333 \ 0 \ 0)$$

и новый базис

$$\bar{J}_{\rm B} = \{1\ 3\ 5\ 6\}$$

Переходим на следующую итерацию, исходя из новых плана

$$x := \overline{x} = (10\ 0\ 2.2\ 0\ 2.6\ 0.9333\ 0\ 0)$$

и базиса

$$J_{\rm B} := \bar{J}_{\rm B} = \{1\ 3\ 5\ 6\}.$$

Итерация 2

По заданному множеству $J_{\scriptscriptstyle \rm B}$ = {1 3 5 6} сформируем матрицы и вектор

$$Ab = \begin{pmatrix} 0 & 4 & 0 & -3 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 3 \\ 1 & 1 & 0 & 3 \end{pmatrix}, \quad B = A_b^{-1} = \begin{pmatrix} 0 & 1.0000 & 0 & 0 \\ 0.2000 & -0.2000 & 0 & 0.2000 \\ -0.4000 & -0.6000 & -1.0000 & 0.60000 \\ -0.0667 & -0.2667 & 0 & 0.2667 \end{pmatrix}, \quad c_{\rm B} = (-5\ 3\ -6\ 0)'.$$

Вычислим вектор потенциалов

$$u' = c'_{\rm B}B = (3 - 26 - 3)$$

и оценок

$$\Delta = (\Delta_{j}, j = 1, ..., 8) = u'A - c' = (0.46.0.2.0.00071.2).$$

Для данного вектора оценок условий $\Delta_{\mathbf{j}} \geq 0, j \in J_{\scriptscriptstyle H} = J \setminus J_{\scriptscriptstyle \mathbb{B}},$ не выполняется.

Выберем индекс $j_0 \in J_H$, для которого $\Delta_{j_0} < 0$:

$$j_0 = 7 \in J_H = \{2 \ 4 \ 7 \ 8\}.$$

Построим вектор

$$z = BA_{j_0} = (0\ 0\ 0\ -0.3333)$$
'.

Для данного вектора выполняется условие $z_i \le 0, i = 1, ..., m$. Алгоритм останавливает свою работу.

Ответ: данная задача не имеет решения, т.к. ее целевая функция не ограничена на множестве планов.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Решить симплекс-методом задачу линейного программирования вида (1.1) с заданными исходными данными и начальным базисным планом.

Задача 1

$$c = (-5 \ 2 \ 3 \ -4 \ -6 \ 0 \ 1 \ -5)'$$

$$A = \begin{pmatrix} 0 & 1 & 4 & 1 & 0 & -8 & 1 & 5 \\ 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & -1 & 3 & -1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 3 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 36 \\ -11 \\ 10 \\ 20 \end{pmatrix}$$

$$x = (4 \ 5 \ 0 \ 6 \ 0 \ 0 \ 0 \ 5)', J_b = (1 \ 2 \ 4 \ 8)$$

OTBET: $x^0 = (0\ 9.5000\ 5.3333\ 1.5000\ 0\ 0\ 3.6667\ 0),\ c'x^0 = 32.6667.$

Задача 2

$$c = (-6 - 9 - 5 \ 2 - 6 \ 0 \ 1 \ 3)'$$

$$A = \begin{pmatrix} 0 & 1.0 & 1.0 & 1.0 & 0 & -8.0 & 1.0 & 5.0 \\ 0 & -1.0 & 0 & -7.5 & 0 & 0 & 0 & 2.0 \\ 0 & 2.0 & 1.0 & 0 & -1.0 & 3.0 & -1.4 & 0 \\ 1.0 & 1.0 & 1.0 & 1.0 & 0 & 3.0 & 1.0 & 1.0 \end{pmatrix},$$

$$b = \begin{pmatrix} 15 \\ -45 \\ 1.8 \\ 19 \end{pmatrix}$$

$$x = (4 \ 0 \ 6 \ 6 \ 0 \ 0 \ 3 \ 0) \ J_b = (1 \ 3 \ 4 \ 7)$$

OTBET: $x^0 = (0\ 0\ 0\ 7.0555\ 0\ 1.8029\ 2.57777\ 3.9580),\ c'x^0 = 28.5628.$

Задача 3

$$c = (-6 -9 -5 2 -6 0 1 3)'$$

$$A = \begin{pmatrix} 0 & -1.0 & 1.0 & -7.5 & 0 & 0 & 0 & 2.0 \\ 0 & 2.0 & 1.0 & 0 & -1.0 & 3.0 & -1.5 & 0 \\ 1.0 & -1.0 & 1.0 & -1.0 & 0 & 3.0 & 1.0 & 1.0 \end{pmatrix},$$

$$b = \begin{pmatrix} 6\\1.5\\10 \end{pmatrix}$$

$$x = (4.0 \ 0 \ 6.0 \ 0 \ 4.5 \ 0 \ 0 \ 0)', \ J_b = (1 \ 3 \ 5)$$

OTBET: $x^0 = (0 \ 0.7500 \ 0 \ 2.6818 \ 0 \ 0 \ 0 \ 13.4318), \ c'x^0 = 38.9091.$

Задача 4

$$c = (-6 - 9 - 5 \ 2 - 6 \ 0 \ 1 \ 3)'$$

$$A = \begin{pmatrix} 2.0 & -1.0 & 1.0 & -7.5 & 0 & 0 & 0 & 2.0 \\ 4.0 & 2.0 & -1.0 & 0 & 1.0 & 2.0 & -1.0 & -4.0 \\ 1.0 & -1.0 & 1.0 & -1.0 & 0 & 3.0 & 1.0 & 1.0 \end{pmatrix},$$

$$b = \begin{pmatrix} 14 \\ 14 \\ 10 \end{pmatrix}$$

$$x = (4 \ 0 \ 6 \ 0 \ 4 \ 0 \ 0)', J_b = (1 \ 3 \ 5)$$

OTBET: $x^0 = (4.625 \ 0 \ 0 \ 0 \ 1.0 \ 0 \ 2.375), \ c'x^0 = -20.6250.$

Задача 5

$$c = (-6 \ 9 \ -5 \ 2 \ -6 \ 0 \ 1 \ 3)'$$

$$A = \begin{pmatrix} -2.0 & -1.0 & 3.0 & -7.5 & 0 & 0 & 0 & 2.0 \\ 4.0 & 2.0 & -6.0 & 0 & 1.0 & 5.0 & -1.0 & -4.0 \\ 1.0 & -1.0 & 0 & -1.0 & 0 & 3.0 & 1.0 & 1.0 \end{pmatrix},$$

$$b = \begin{pmatrix} -23.5 \\ -24.0 \\ 2.0 \end{pmatrix}$$

$$x = (0 \ 0 \ 0 \ 5 \ 4 \ 0 \ 0 \ 7)', J_b = (4 \ 5 \ 8)$$

ОТВЕТ: Задача не имеет решения, т.к. целевая функция не ограничена сверху на множестве допустимых планов.

Задача 6

$$c = (6 - 9 \ 5 - 2 \ 6 \ 0 - 1 \ 3)'$$

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 0 & 0 & 0 & 2 \\ 4 & 2 & -1 & 0 & 1 & 5 & -1 & -5 \\ 1 & 11 & 0 & 1 & 0 & 3 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} -2 \\ 14 \\ 4 \end{pmatrix}$$

$$x = \begin{pmatrix} 4 & 0 & 6 & 0 & 4 & 0 & 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \end{pmatrix}$$

OTBET: $x^0 = (0 \ 0 \ 26 \ 4 \ 40 \ 0 \ 0), \ c'x^0 = 362.$

1.2. Решение задач линейного программирования двойственным симплексметодом

ПРИМЕР 1.

Решить двойственным симплекс-методом задачу линейного программирования вида

$$c'x \to \max, \quad Ax = b, \quad x \ge 0,$$
 (2.1)

со следующими исходными данными

$$c = (2 \ 2 \ 1 - 10 \ 1 \ 4 \ - 2 \ - 3)', \qquad b = (-2 \ 4 \ 3)$$

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 0 & 0 & 0 & 2 \\ 4 & 2 & 1 & 0 & 1 & 5 & -1 & -5 \\ 1 & 1 & 0 & -1 & 0 & 3 & -1 & 1 \end{pmatrix}, m = 3, n = 8,$$

и заданным начальным двойственным планом

$$y^{Haq} = (1 \ 1 \ 1), \quad J_{\text{B}} = \{j_1 = 2, j_2 = 5, j_3 = 7\}$$

и соответстующим ему копланом

$$\mathcal{S} = (\mathcal{S}_j, j = 1, ..., 8) = y^{\text{max}} \cdot A - c \cdot = (1 \quad 0 \quad 1 \quad 2 \quad 0 \quad 4 \quad 0 \quad 1) \,.$$

Итерация 1

По заданному множеству $J_{\text{\tiny B}} = \{j_1 = 2, j_2 = 5, j_3 = 7\}$ сформируем матрицы

$$A_{\mathcal{S}} = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}, \qquad B = A_{\mathcal{S}}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 1 & -1 \\ -1 & 0 & -1 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_B = Bb = (2 -1 -1) = (\chi_{j_1} = 2, \chi_{j_2} = -1, \chi_{j_3} = -1).$$

Условие $\chi_{\delta} \geq 0$ не выполняется.

Находим базисный индекс $j_k \in J_{\scriptscriptstyle \rm B}$, для которого $\chi_{j_k} < 0$:

$$k = 2$$
, $j_k = j_2 = 5$.

Находим числа

$$\mu_j = B'_k A_j, \ j \in J, \tag{2.2}$$

где B'_k - k-я строка матрицы B, A_j - j-ый столбец матрицы условий A:

$$\mu = (\mu_j, j = 1, ..., 8) = e'_k BA = (\mu_1 = 1, \mu_2 = 0, \mu_3 = 2, \mu_4 = -6, \mu_5 = 1, \mu_6 = 2, \mu_7 = 0, \mu_8 = -4)$$

Вычисляем шаги σ_j , $J_H = \{1 \ 3 \ 4 \ 6 \ 8\}$, σ_0 по правилам

$$\sigma_{j} = \begin{cases} -\delta_{j} / \mu_{j}, & ecnu \quad \mu_{j} < 0, \\ \infty & ecnu \quad \mu_{j} \geq 0, \end{cases} \qquad j \in J_{H}, \qquad \sigma_{0} = \min_{j \in J_{H}} \sigma_{j} = \sigma_{j_{0}}.$$
 (2.3)

Получим

$$\sigma_{1}=\infty,\;\sigma_{3}=\infty,\;\sigma_{4}=0.3333,\;\sigma_{6}=\infty,\;\sigma_{7}=\infty,\;\sigma_{8}=0.25,\;\;\sigma_{0}=\min_{j\in J_{H}}=\sigma_{8}=0.25,\;\;j_{0}=8$$

Построим новый двойственный план

$$\overline{y} = y + \sigma_0 e'_k B = (1.25 \ 1.25 \ 0.75),$$

соответствующий ему новый коплан

$$\overline{\delta} = \delta + \sigma_0 \mu = \overline{y}A - c = (1.2500 \quad 0 \quad 1.5000 \quad 0.5000 \quad 0.2500 \quad 4.5000 \quad 0)$$

и новый базис $\bar{J}_{\scriptscriptstyle \rm B} = \{2\ 8\ 7\}.$

Переходим к следующей итерации, исходя из новых двойственного плана $y := \bar{y}$, соответствующего ему коплана

$$\delta := \overline{\delta} = (1.2500 \quad 0 \quad 1.5000 \quad 0.5000 \quad 0.2500 \quad 4.5000 \quad 0)$$

и базиса $J_{\scriptscriptstyle \rm B} := \bar{J}_{\scriptscriptstyle \rm B} = \{2~8~7\}.$

Итерация 2

По заданному множеству $J_{\rm B}=\{j_1=2,j_2=8,j_3=7\}$ сформируем матрицы

$$A_{\overline{b}} = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 5 & -1 \\ 1 & 1 & -1 \end{pmatrix}, \qquad B = A_{\overline{b}}^{-1} = \begin{pmatrix} -1.500 & -0.500 & 0.500 \\ -0.250 & -0.250 & 0.250 \\ -1.750 & -0.750 & -0.250 \end{pmatrix}$$

Вычисляем базисные компоненты псевдоплана

$$\chi_{\scriptscriptstyle B} = Bb = (2.5 \ 0.25 \ -0.25) = (\chi_{j_1} = 2.5, \chi_{j_2} = 0.25, \chi_{j_3} = -0.25)$$

Условие $\chi_{\scriptscriptstyle E} \geq 0$ не выполняется.

Находим базисный индекс $j_k \in J_{\scriptscriptstyle \rm B}$, для которого $\chi_{j_k} < 0$:

$$k = 3, j_k = j_3 = 7.$$

Найдем числа μ_j , $j \in J = \{1, 2, ..., 8\}$, по правилу, (2.2), в результате получим

$$\mu = (\mu_j, j = 1, ..., 8) = e'_k BA = (\mu_1 = 0.25, \mu_2 = 0, \mu_3 = -2.5, \mu_4 = 12.5, \mu_5 = -0.75, \mu_6 = -4.5, \mu_7 = 1, \mu_8 = 0)$$

Вычисляем шаги σ_j , $J_H = \{1 \ 3 \ 4 \ 5 \ 8\}$, σ_0 по правилам (2.3). Получим

$$\sigma_1 = \infty$$
, $\sigma_3 = 0.6$, $\sigma_4 = \infty$ $\sigma_5 = 0.3333$, $\sigma_8 = \infty$, $\sigma_0 = \min_{i \in J_{ir}} = \sigma_5 = 0.3333$, $\sigma_8 = \infty$, $j_0 = 5$

Построим новый двойственный план

$$\overline{y} := y + \sigma_0 e'_k B = (0.6667 \ 1.0000 \ 0.6667),$$

соответствующий ему новый коплан

$$A_{\overline{b}} = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 5 & -1 \\ 1 & 1 & -1 \end{pmatrix}, \quad B = A_{\overline{b}}^{-1} = \begin{pmatrix} -1.500 & -0.500 & 0.500 \\ -0.250 & -0.250 & 0.250 \\ -1.750 & -0.750 & -0.250 \end{pmatrix}$$

и новый базис $\bar{J}_{\rm B} = \{2 \ 8 \ 5\}.$

Переходим к следующей итерации, исходя из новых двойственного плана $y := \bar{y}$, соответствующего ему коплана

$$\delta = \overline{\delta} = (1.3333 \quad 0 \quad 0.6667 \quad 4.6667 \quad 0 \quad 3.0000 \quad 0.3333 \quad 0)$$

и базиса $J_{\scriptscriptstyle\rm B}:=\bar{J}_{\scriptscriptstyle\rm B}=\{2\ 8\ 5\}.$

Итерация 3

По заданному множеству $J_{\scriptscriptstyle \rm B}=\{j_1=2,j_2=8,j_3=5\}$ сформируем матрицы

$$A_{\overline{b}} = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -5 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad B = A_{\overline{b}}^{-1} = \begin{pmatrix} 0.3333 & 0.0000 & 0.6667 \\ 0.3333 & -0.0000 & 0.3333 \\ 2.3333 & 1.0000 & 0.3333 \end{pmatrix}$$

Вычисляем базисные компоненты псевдоплана

$$\chi_{\scriptscriptstyle B} = Bb = (\chi_{\scriptscriptstyle J_1} = 2.6667, \chi_{\scriptscriptstyle J_2} = 0.3333, \chi_{\scriptscriptstyle J_3} = 0.3333)$$

Все базисные компоненты данного псевдоплана положительные. Алгоритм заканчивает свою работу построением оптимального плана исходной задачи:

оптимальный план:

$$x^0 = (0\ 2.6667\ 0\ 0\ 0.3333\ 0\ 0.3333)$$

оптимальное значение целевой функции

$$c'x^0 = 4.6667$$
.

ПРИМЕР 2

Решить двойственным симплекс-методом задачу линейного программирования вида (2.1) со следующими исходными данными

$$c = (2\ 2\ 1\ -10\ 1\ 4\ 0\ -3), \qquad b = (-2\ 4\ -3)$$

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 0 & 0 & 0 & 2 \\ 4 & 2 & 1 & 0 & 1 & 5 & -1 & -5 \\ 1 & 1 & 0 & 1 & 0 & 3 & 1 & 1 \end{pmatrix}$$

и заданным начальным двойственным планом

$$y^{Ha4} = (1 \ 1 \ 1), \ J_{\text{B}} = \{j_1 = 2, j_2 = 5, j_3 = 7\}$$

и соответсвующему ему коплану

$$\delta = (\delta_j, j = 1, ..., 8) = y^{\text{may}} A - c' = (1 \ 0 \ 1 \ 4 \ 0 \ 4 \ 0 \ 1)$$

Итерация 1

По заданному множеству $J_{\scriptscriptstyle \rm B}=\{j_1=2,j_2=5,j_3=7\}$ сформируем матрицы

$$A_{\mathcal{B}} = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}, \qquad B = A_{\mathcal{B}}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_{B} = Bb = (\chi_{j_{1}} = 2, \chi_{j_{2}} = -5, \chi_{j_{3}} = -5)$$

Условие $\chi_{\scriptscriptstyle B} \ge 0$ не выполняется.

Находим базисный индекс $j_k \in J_{\scriptscriptstyle \rm B}$, для которого $\chi_{j_k} < 0$:

$$k = 2, j_k = j_2 = 5.$$

Найдем числа μ_j , $j \in J = \{1, 2, ..., 8\}$, по правилу, (2.2), в результате получим

$$\mu = (\mu_j, j = 1, ..., 8) = e'_k BA = (\mu_1 = -1, \mu_2 = 0, \mu_3 = 4, \mu_4 = -20, \mu_5 = 1, \mu_6 = 8, \mu_7 = 0, \mu_8 = 2)$$

Вычисляем шаги σ_j , $J_H = \{1 \ 3 \ 4 \ 6 \ 8\}$, σ_0 по правилам (2.3). Получим

$$\sigma_1 = 1, \ \sigma_3 = \infty, \ \sigma_4 = 0.2, \ \sigma_6 = \infty, \ \sigma_7 = \infty, \ \sigma_8 = \infty, \ \sigma_0 = \min_{j \in J_u} = \sigma_4 = 0.2 \quad j_0 = 4$$

Построим новый двойственный план

$$\overline{y} = y + \sigma_0 e'_k B = (1.6 \ 1.2 \ 1.2),$$

соответствующий ему новый коплан

$$\overline{\delta} = \delta + \sigma_0 \mu = \overline{y}A - c = (0.8000 \quad 0 \quad 1.8000 \quad 0 \quad 0.2000 \quad 5.6000 \quad 0 \quad 1.4000)$$

и новый базис $\bar{J}_{\scriptscriptstyle \rm E} = \{2\ 4\ 7\}.$

Переходим к следующей итерации, исходя из новых двойственного плана $y := \bar{y}$, соответствующего ему коплана

$$\delta := \overline{\delta} = (0.8000 \quad 0 \quad 1.8000 \quad 0 \quad 0.2000 \quad 5.6000 \quad 0 \quad 1.4000)$$

и базиса $J_{\scriptscriptstyle\rm B}:=\bar{J}_{\scriptscriptstyle\rm B}=\{2\ 4\ 7\}.$

Итерация 2

По заданному множеству $J_{\scriptscriptstyle\rm B}=\{j_1=2,j_2=4,j_3=7\}$ сформируем матрицы

$$A_{\mathcal{B}} = \begin{pmatrix} -1 & -7 & 0 \\ 2 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \quad B = A_{\mathcal{B}}^{-1} = \begin{pmatrix} 0.0500 & 0.3500 & 0.3500 \\ -0.1500 & -0.0500 & -0.0500 \\ 0.1000 & -0.3000 & 0.7000 \end{pmatrix}$$

Вычислим базисные компоненты псевдоплана

$$\chi_{B} = Bb = (\chi_{j_{1}} = 0.25, \chi_{j_{2}} = 0.25, \chi_{j_{3}} = -3.5)$$

Условие $\chi_{\scriptscriptstyle B} \geq 0$ не выполняется.

Находим базисный индекс $j_k \in J_{\text{в}}$, для которого $\chi_{j_k} < 0$:

$$k = 3$$
, $j_k = j_3 = 7$.

Найдем числа μ_j , $j \in J = \{1, 2, ..., 8\}$, по правилу, (2.2), в результате получим

$$\mu = (\mu_j, j = 1, ..., 8) = e'_k BA = (\mu_1 = -0.7, \mu_2 = 0, \mu_3 = -0.2, \mu_4 = 0, \mu_5 = -0.3, \mu_6 = 0.6, \mu_7 = 1, \mu_8 = 2.4)$$

Вычисляем шаги σ_j , $J_H = \{1\ 3\ 5\ 6\ 8\}$, σ_0 по правилам (2.3). Получим

$$\sigma_1 = 1.1429, \quad \sigma_3 = 9, \sigma_5 = 0.6667 \quad \sigma_6 = \infty, \quad \sigma_8 = \infty,$$

$$\sigma_0 = \min_{j \in J_H} = \sigma_5 = 0.6667, \qquad j_0 = 5$$

Построим новый двойственный план

$$\overline{y} = y + \sigma_0 e'_k B = (1.6667 \ 1.0000 \ 1.6667),$$

соответствующий ему новый коплан

$$\overline{\delta} = \delta + \sigma_0 \mu = \tilde{y}A - c = (0.3333 \quad 0 \quad 1.6667 \quad 0 \quad 0 \quad 6.0000 \quad 0.6667 \quad 3.0000)$$

и новый базис $\bar{J}_{\scriptscriptstyle \rm E} = \{2\ 4\ 5\}.$

Переходим к следующей итерации, исходя из новых двойственного плана $y:=\bar{y}$, соответствующего ему коплана

$$\delta := \overline{\delta} = (0.3333 \quad 0 \quad 1.6667 \quad 0 \quad 0 \quad 6.0000 \quad 0.6667 \quad 3.0000)$$

и базиса $J_{\scriptscriptstyle \rm B} := \bar{J}_{\scriptscriptstyle \rm B} = \{2\ 4\ 5\}.$

Итерация 3

По заданному множеству $J_{\scriptscriptstyle\rm B}=\{j_1=2,j_2=4,j_3=5\}$ сформируем матрицы

$$A_{\tilde{b}} = \begin{pmatrix} -1 & -7 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \qquad B = A_{\tilde{b}}^{-1} = \begin{pmatrix} 0.1667 & 0 & 1.1667 \\ -0.1667 & -0.0000 & -0.1667 \\ -0.3333 & 1.0000 & -2.3333 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_{\scriptscriptstyle E} = Bb = (\chi_{\scriptscriptstyle j_1} = -3.8333, \chi_{\scriptscriptstyle j_2} = 0.8333, \chi_{\scriptscriptstyle j_3} = 11.6667)$$

Условие $\chi_{\scriptscriptstyle B} \geq 0$ не выполняется.

Находим базисный индекс $j_k \in J_{\text{в}}$, для которого $\chi_{j_k} < 0$:

$$k = 1, j_k = j_1 = 2.$$

Найдем числа $\mu_j, j \in J = \{1, 2, ..., 8\}$, по правилу, (2.2), в результате получим

$$\mu = (\mu_j, j = 1, ..., 8) = e'_k BA = (\mu_1 = 0.8333, \mu_2 = 1, \mu_3 = 0, \mu_4 = 0, \mu_5 = 0, \mu_6 = 3.5, \mu_7 = 1.1667, \mu_8 = 1.5)$$

Вычисляем шаги σ_j , $J_{\scriptscriptstyle H} = \{1\ 3\ 5\ 6\ 8\}$, σ_0 по правилам (2.3). Получим $\sigma_0 = \infty$

Алгоритм заканчивает свою работу.

Ответ: исходная задача не имеет решения, т.к. ее ограничения несовместны.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Решить двойственным симплекс-методом задачи линейного программирования вида (2.1) с заданными исходными данными и начальным двойственным базисным планом.

Задача 1

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 0 & 0 & 0 & 2 \\ 4 & 2 & 1 & 0 & 1 & 5 & -1 & -5 \\ 1 & 1 & 0 & -1 & 0 & 3 & -1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} -2 \\ -4 \\ -2 \end{pmatrix}$$

$$c = \begin{pmatrix} 5 & 2 & 3 & -16 & 1 & 3 & -3 & -12 \end{pmatrix}, \quad y^{\text{MEV}} = \begin{pmatrix} 1 & 2 & -1 \end{pmatrix}, \quad J_{\overline{b}} = \{1 & 2 & 3\}.$$

Ответ:

$$x^0 = (0 0 0.4000 0 0.2.0000 0.4000), c'x^0 = -17.2000.$$

Задача 2

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 1 & 0 & 0 & 2 \\ -4 & 2 & 1 & 0 & 5 & 1 & -1 & 5 \\ 1 & 1 & 0 & -1 & 0 & 3 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} -2 \\ 4 \\ -2 \end{pmatrix}$$

$$c = \begin{pmatrix} -12 & 2 & 2 & -6 & 10 & -1 & -9 & 8 \end{pmatrix}, y^{\text{MCK}} = \begin{pmatrix} 1 & 2 & -1 \end{pmatrix}, J_{5} = \{2 & 4 & 6\}.$$

Ответ:

$$x^0 = (0 0 5.0 1.0 0 0 1.0 0), c'x^0 = -5.$$

Задача 3

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 1 & 0 & 0 & 2 \\ -4 & 2 & 1 & 0 & 5 & 1 & -1 & 5 \\ 1 & 1 & 0 & 1 & 4 & 3 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} -2 \\ 8 \\ -2 \end{pmatrix}$$

$$c = \begin{pmatrix} 12 & -2 & -6 & 20 & -18 & -5 & -7 & -20 \end{pmatrix}, y^{\text{MAY}} = \begin{pmatrix} -3 & -2 & -1 \end{pmatrix}, J_{\overline{b}} = \{2 & 4 & 6\}.$$

Ответ:

Задача не имеет решения, т.к. пусто множество ее допустимых планов.

Задача 4

$$A = \begin{pmatrix} -2 & -1 & 10 & -7 & 1 & 0 & 0 & 2 \\ -4 & 2 & 3 & 0 & 5 & 1 & -1 & 0 \\ 1 & 1 & 0 & 1 & -4 & 3 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} -2 \\ -5 \\ 2 \end{pmatrix}$$

$$c = \begin{pmatrix} 10 & -2 & -38 & 16 & -9 & -9 & -5 & -7 \end{pmatrix}, y^{\text{MAY}} = \begin{pmatrix} -3 & -2 & -1 \end{pmatrix}, J_{\overline{b}} = \{2 \ 8 \ 5\}.$$

Ответ:

$$x^{0} = (1.35 \ 0.20 \ 0 \ 0 \ 0 \ 0.45), \ c'x^{0} = 9.9500.$$

Задача 5

$$A = \begin{pmatrix} 3 & -1 & 10 & -7 & 1 & 0 & 0 & 2 \\ 7 & -2 & 14 & 8 & 0 & 12 & -11 & 0 \\ 1 & 1 & 0 & 1 & -4 & 3 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 5 \\ -2 \end{pmatrix}$$

$$c = \begin{pmatrix} 36 & -12 & 66 & 76 & -5 & 77 & -76 & -7 \end{pmatrix}, y^{\text{MEV}} = \begin{pmatrix} -3 & 7 & -1 \end{pmatrix}, J_{\overline{b}} = \{7 & 8 & 4\}.$$

Ответ:

$$x^0 = (0 0.2622 0.1662 0.5415 0 0 0), c'x^0 = 27.2264.$$

1.3. Решение матричной транспортной задачи методом потенциалов

ПРИМЕР 1.

Имеется 3 склада, содержащие некоторое количество единиц однотипной продукции (см.таблицу 1), имеется также 5 потребителей, нуждающихся в определенном количестве данной продукции (см.таблицу 2). При перевозке одной единицы продукции со склада i потребителю j возникают издержки c_{ij} . Величины издержек приведены в таблице 3. При перевозке x_{ij} единиц продукции со склада i потребителю j суммарные затраты на перевозку составляют x_{ij} c_{ij} .

Требуется найти такой план перевозок, при котором общие затраты на перевозку всей продукции, по всем потребителям, будут минимальны.

Таблица 1

Склад №	Запас ед. продукции
1	20
2	30
3	25

Таблина 2

Потребитель №	Потребность в ед. продукции
1	10
2	10
3	10
4	10
5	10

Таблица 3 Издержки на перевозку единицы продукции со склада i потребителю j

	Потребители				
Склад №	1	2	3	4	5
1	2	8	-5	7	10
2	11	5	8	-8	-4
3	1	3	7	4	2

IIIar 1

Проверка на сбалансированность.

Общее число запасов на складах: 75; общая потребность: 50.

Мы видим, что общее число запасов превышает общую потребность на 25.

Задача является <u>открытой (несбалансированной)</u>, для приведения ее к закрытой введем фиктивного потребителя №6 с потребностью в продукции равной 25.

Все издержки по доставке продукции данному потребителю с любого склада принимаем равными нулю.

IIIar 2

Отыскание начального плана перевозок. Найдем начальный базисный план

перевозки методом северо-западного угла.

Запишем настоящую задачу в виде транспортной таблицы. В верхней строке перечислим потребности потребителей по порядку номеров. В левом столбце перечислим имеющиеся запасы на складах. На пересечении j-го столбца и i-й строки будем записывать количество продукции x_{ij} , поставляемое с i-го склада j-му потребителю. Пока начальное решение не найдено, оставим эти клетки пустыми.

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$						
$a_2 = 30$						
$a_3 = 25$						

Введем вспомогательные строку и столбец, в которых будем отмечать оставшиеся нераспределенные запасы и соответственно потребности (остатки). Изначально их содержимое равно исходным запасам и потребностям, так как еще ничего не распределялось. На рисунке они представлены желтым цветом.

Выберем клетку, в которую будем распределять продукцию на следующей итерации, это левая верхняя клетка (северо-западный угол). На рисунке, как сама клетка, так и соответствующие ей остатки отображаются красным шрифтом.

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$	
$a_1 = 20$	<i>x</i> ₁₁						20
$a_2 = 30$							30
$a_3 = 25$							25
	10	10	10	10	10	25	

Итерация 1

Заполним клетку (1,1).

Сравним значения остатков для производителя a_1 и потребителя b_1 .

Нераспределенных остатков по потребностям для b_1 меньше (см. таблицу выше, красный шрифт), положим $x_{11} = \min\{a_1, b_1\}$ и запишем это в клетку (1,1) одновременно вычитая его из обеих клеток остатков (см. таблицу ниже). При этом клетка остатков по потребностям обнулится указывая, что все потребности для b_1 удовлетворены (см. таблицу ниже). Поэтому исключим столбец b_1 из дальнейшего рассмотрения (серый фон). Ненулевое значение остатка по запасам для a_1 показывает, сколько единиц продукции у него осталось не потребленной.

$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$	

$a_1 = 20$	10	x ₁₂					10
$a_2 = 30$							30
$a_3 = 25$							25
	0	10	10	10	10	25	

Итерация 2

Заполним клетку (1,2).

Сравним значения остатков для производителя a_1 и потребителя b_2 .

Они равны (см. таблицу выше, красный шрифт). Положим $x_{12} = \min\{10, 10\} = 10$ запишем это в клетку (1,2) и обнулим соответствующие клетки остатков (см. таблицу ниже). Так как все потребности для b_2 удовлетворены и все запасы a_1 использованы, исключим столбец b_2 и строку a_1 из дальнейшего рассмотрения (серый фон).

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$	
$a_1 = 20$	10	10					0
$a_2 = 30$			x ₁₂				30
$a_3 = 25$							25
	0	0	10	10	10	25	

Итерация 3

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$	
$a_1 = 20$	10	10					0
$a_2 = 30$			10	x ₂₄			20
$a_3 = 25$							25
	0	0	0	10	10	25	

Итерация 4

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$	
$a_1 = 20$	10	10					0
$a_2 = 30$			10	10	X25		10
$a_3 = 25$							25
	0	0	0	0	10	25	

Итерация 5

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$	
$a_1 = 20$	10	10					0
$a_2 = 30$			10	10	10		0
$a_3 = 25$						x 36	25
	0	0	0	0	0	25	

Итерация 6

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$	
$a_1 = 20$	10	10					0
$a_2 = 30$			10	10	10		0
$a_3 = 25$						25	0
	0	0	0	0	0	0	

Получен начальный допустимый план перевозок (см. таблицу ниже), удовлетворены нужды всех потребителей и использованы все запасы производителей

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10	10	0	0	0	0
$a_2 = 30$	0	0	10	10	10	0
$a_3 = 25$	0	0	0	0	0	25

Шаг 3

Проверим полученный <u>план</u> на <u>невырожденность</u>. Количество клеток N с ненулевыми перевозками должно удовлетворять условию N = n + m - 1. В нашем случае N = 6, n + m = 6 + 3 = 9, план является <u>вырожденным</u>. Прежде чем двигаться дальше выберем 2 клетки с нулевыми значениями перевозок. Выбирать следует такие клетки, которые не образуют <u>циклов</u> с клетками с ненулевыми перевозками.

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10	10	0	0	0	0
$a_2 = 30$	0	0	10	10	10	0
$a_3 = 25$	0	0	0	0	0	25

В последней таблице представлен построенный начальный базисный план перевозки. Базисные клетки отмечены серым цветом. Значения перевозок x_{ij} , $(i,j) \in U = \{(i,j): i=1,...,m,j=1,...,n\}$, отмечены синим цветом.

Шаг 4

Проведем поэтапное улучшение начального базисного плана перевозки, используя метод потенциалов.

Итерация 1

Составим вспомогательную рабочую матрицу затрат. Она строится из исходной матрицы издержек (см. Таблицу 3) путем переноса только тех значений c_{ij} , которые соответствуют базисным клеткам транспортной таблицы. Остальные ячейки остаются пустыми.

Кроме того, введем вспомогательный столбец, в который внесем значения неизвестных u_1 , ..., u_3 (3, это m - число складов) и вспомогательную строку, в которую внесем значения неизвестных v_1 , ..., v_6 (6, это n - число потребителей). На рисунке они представлены желтым цветом. Эти n+m неизвестных должны для всех (i, j), соответствующих базисным клеткам, удовлетворять линейной системе уравнений $u_i + v_i = c_{ij}$, $(i, j) \in U_B$.

Эту систему всегда можно решить следующим способом: На первом шаге полагают $v_6=0$. Если на k-м шаге найдено значение неизвестной, то в системе всегда имеется еще не определенная неизвестная, которая однозначно может быть найдена на (k+1)-м шаге из уравнения $u_i+v_i=c_{ij}$, так как значение другой неизвестной в этом уравнении уже известно. Переменные u_i и v_i называются потенциалами.

Рабочая матрица затрат с рассчитанными потенциалами представлена ниже.

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	2	8	-5			0	$u_1 = 0$
a ₂			8	-8	-4		$u_2 = 13$
a ₃						0	$u_3 = 0$
	$v_1 = 2$	$v_2 = 8$	$v_3 = -5$	$v_4 = -21$	$v_5 = -17$	$v_6 = 0$	

Порядок вычисления потенциалов был следующий:

- 1) Пусть $v_6 = 0$;
- 2) $u_1 = c_{1,6} v_6$;
- 3) $u_3 = c_{3,6} v_6$;
- 4) $v_1 = c_{1,1} u_1$;
- 5) $v_2 = c_{1,2} u_1$;
- 6) $v_3 = c_{1,3} u_1$;
- 7) $u_2 = c_{2,3} v_3$;
- 8) $v_4 = c_{2,4} u_2$;
- 9) $v_5 = c_{2,5} u_2$;

Теперь для всех небазисный (свободных) клеток рабочей матрицы затрат вычислим оценки Δ_{ij} , по формуле $\Delta_{ij} = c_{ij}$ - u_i - v_j , $(i,j) \in U_H = U \setminus U_B$, (зеленый цвет). Если же среди оценок нет отрицательных - план является оптимальным, решение задачи

прекращаем. В противном случае продолжаем решение задачи. Рабочая матрица затрат с заполненными оценками клетками представлена ниже.

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	2	8	-5	28	27	0	$u_1 = 0$
a ₂	-4	-16	8	-8	-4	-13	$u_2 = 13$
a ₃	-1	-5	12	25	19	0	$u_3 = 0$
	$v_1 = 2$	$v_2 = 8$	$v_3 = -5$	$v_4 = -21$	$v_5 = -17$	$v_6 = 0$	

Из всех отрицательных оценок имеет смысл выбрать наибольшую по модулю (красный цвет), так как ее воздействие на общие затраты является максимальным. В нашем случае такая оценка находится в клетке $(i_0,j_0)=(2,2)$. В совокупности клеток содержится единственный цикл $U_{\mu\nu\kappa\eta}\cup(i_0,j_0)$. В таблице клетки цикла отмечены голубым цветом. Отметим в транспортной таблице ячейку $(i_0,j_0)=(2,2)$ знаком + . Начиная с клетки $(i_0,j_0)=(2,2)$, последовательно обойдем все клетки цикла, поочередно помечая их знаками - и + . В результате множество клеток $U_{\mu\nu\kappa\eta}$ цикла разобьется на два подмножества: множество клеток цикла, помеченных знаком + - $U_{\mu\nu\kappa\eta}^+$, и множество клеток цикла, помеченных знаком - $U_{\mu\nu\kappa\eta}^-$.

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10	10-	0+	0	0	0
$a_2 = 30$	0	0+	10-	10	10	0
$a_3 = 25$	0	0	0	0	0	25

Найдем $\theta = \min_{\substack{(i,j) \in U_{\text{queen}}}} \mathbf{x}_{ij}$ и выбираем одну ячейку, $(i_*,\ j_*) \in U_{\text{queen}}$, где этот минимум достигается. В нашем случае $\theta = 10$ и $(i_*,j_*) = (1,2)$.

Переход к новому плану перевозок по правилу

$$\overline{x}_{ij} = x_{ij} + \theta, \ \ (i,j) \in U_{\text{ulker}}^+, \ \ \overline{x}_{ij} = x_{ij} - \theta, \ \ (i,j) \in U_{\text{ulker}}^-, \ \ \overline{x}_{ij} = x_{ij}, \ \ (i,j) \in U \setminus U_{\text{ulker}}. \ \ (3.1)$$

Новое множество базисных клеток строим по правилу

$$\overline{U}_{\scriptscriptstyle B} = (U_{\scriptscriptstyle B} \setminus (i_*, j_*)) \cup (i_0, j_0). \tag{3.2}$$

В результате получим новый базисный план перевозок, приведенный ниже

$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$

$a_1 = 20$	10	0	10	0	0	0
$a_2 = 30$	0	10	0	10	10	0
$a_3 = 25$	0	0	0	0	0	25

Здесь базисные клетки отмечены серым цветом.

Итерация 2

Рабочая матрица затрат с пересчитанными потенциалами и оценкам.

	b_1	b_2	b ₃	b ₄	b ₅	b ₆	
a_1	2	16	-5	28	27	0	$u_1 = 0$
a ₂	-4	5	8	-8	-4	-13	$u_2 = 13$
a ₃	-1	11	12	25	19	0	$u_3 = 0$
	$v_1 = 2$	$v_2 = -8$	$v_3 = -5$	$v_4 = -21$	$v_5 = -17$	$v_6 = 0$	

Для небазисной клетки (2,6) оценка Δ_{26} = -13 является отрицательной. Полагаем (i_0 , j_0) = (2,6).

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10	0	10+	0	0	0-
$a_2 = 30$	0	10	0-	10	10	0+
$a_3 = 25$	0	0	0	0	0	25

Найдем
$$\theta = \min_{(i,j) \in U_{\text{users}}} x_{ij}$$
 и выбираем одну ячейку, $(i_*, j_*) \in U_{\text{users}}$, где этот минимум

достигается. На данной итерации имеем $\Delta=0$ и $(i_*,j_*)=(1,6)$.

Находим новый план перевозок по правилам (1) и соответствующее ему множество базисных клеток по правилу (2).

В результате получим новый базисный план перевозок, приведенный ниже

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10	0	10	0	0	0
$a_2 = 30$	0	10	0	10	10	0
$a_3 = 25$	0	0	0	0	0	25

Итерация 3

Рабочая матрица затрат с пересчитанными потенциалами и оценкам.

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	2	16	-5	28	27	13	$u_1 = -13$
a ₂	-4	5	8	-8	-4	0	$u_2 = 0$
a ₃	-14	-2	-1	12	6	0	$u_3 = 0$
	$v_1 = 15$	$v_2 = 5$	$v_3 = 8$	$v_4 = -8$	$v_5 = -4$	$v_6 = 0$	

Для небазисной клетки (3,1) оценка $\Delta_{31} = -14$ является отрицательной. Полагаем (i_0 , j_0) = (3,1).

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10-	0	10+	0	0	0
$a_2 = 30$	0	10	0-	10	10	0+
$a_3 = 25$	0+	0	0	0	0	25+

Найдем
$$\theta = \min_{(i,j) \in U_{\text{quota}}} x_{ij}$$
 и выбираем одну ячейку, $(i_*, j_*) \in U_{\text{quota}}$, где этот минимум

достигается. На данной итерации имеем $\theta = 0$ и $(i_*, j_*) = (2,3)$.

Находим новый план перевозок по правилам (3.1) и соответствующее ему множество базисных клеток по правилу (3.2).

В результате получим новый базисный план перевозок, приведенный ниже

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10	0	10	0	0	0
$a_2 = 30$	0	10	0	10	10	0
$a_3 = 25$	0	0	0	0	0	25

Итерация 4

Рабочая матрица затрат с пересчитанными потенциалами и оценкам.

	b_1	b ₂	b ₃	b ₄	b ₅	b ₆	
a ₁	2	2	-5	14	13	-1	$u_1 = 1$
a ₂	10	5	14	-8	-4	0	$u_2 = 0$
a ₃	1	-2	13	12	6	0	$u_3 = 0$
	$v_1 = 1$	$v_2 = 5$	$v_3 = -6$	$v_4 = -8$	$v_5 = -4$	$v_6 = 0$	

Для небазисной клетки (3,2) оценка $\Delta_{32}=$ -2 является отрицательной. Полагаем (i_0 , j_0) = (3,2).

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10 -	0	10	0	0	0
$a_2 = 30$	0	10 -	0	10	10	0+
$a_3 = 25$	0	0 +	0	0	0	25 -

На данной итерации имеем $\theta = 0$ и $(i_*, j_*) = (2,2)$.

Находим новый план перевозок по правилам (3.1) и соответствующее ему множество базисных клеток по правилу (3.2).

В результате получим новый базисный план перевозок, приведенный ниже

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10	0	10	0	0	0
$a_2 = 30$	0	0	0	10	10	10
$a_3 = 25$	0	10	0	0	0	15

Итерация 5

Рабочая матрица затрат с пересчитанными потенциалами и оценкам.

	b_1	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	2	4	-5	14	13	-1	$u_1 = 1$
a_2	10	2	14	-8	-4	0	$u_2 = 0$
a ₃	1	3	13	12	6	0	$u_3 = 0$
	$v_1 = 1$	$v_2 = 3$	$v_3 = -6$	$v_4 = -8$	$v_5 = -4$	$v_6 = 0$	

Для небазисной клетки (1,6) оценка $\Delta_{16} =$ -1 является отрицательной. Полагаем (i_0 , j_0) = (1,6).

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	10 -	0	10	0	0	0 +
$a_2 = 30$	0	0	0	10	10	10
$a_3 = 25$	0 +	10	0	0	0	15 -

На данной итерации имеем $\theta = 10$ и $(i_*, j_*) = (1,1)$.

Находим новый план перевозок по правилам (3.1) и соответствующее ему множество базисных клеток по правилу (3.2).

В результате получим новый базисный план перевозок, приведенный ниже

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$			10			10
$a_2 = 30$				10	10	10
$a_3 = 25$	10	10				5

Итерация 6

Рабочая матрица затрат с пересчитанными потенциалами и оценкам.

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	1	5	-5	15	14	0	$u_1 = 0$
a ₂	10	2	13	-8	-4	0	$u_2 = 0$
a ₃	1	3	12	12	6	0	$u_3 = 0$
	$v_1 = 1$	$v_2 = 3$	$v_3 = -5$	$v_4 = -8$	$v_5 = -4$	$v_6 = 0$	

В приведенной выше таблице нет отрицательных оценок (план улучшить нельзя), следовательно, достигнуто оптимальное решение.

	$b_1 = 10$	$b_2 = 10$	$b_3 = 10$	$b_4 = 10$	$b_5 = 10$	$b_6 = 25$
$a_1 = 20$	0	0	10	0	0	10
$a_2 = 30$	0	0	0	10	10	10
$a_3 = 25$	10	10	0	0	0	5

Общие затраты на перевозку всей продукции, для оптимального плана составляют:

$$\sum_{i=1}^{3} \sum_{j=1}^{6} c_{ij} x_{ij} = 130.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Имеется m складов, содержащие некоторое количество единиц однотипной продукции $a_i,\ i=1,\ ...,\ m$, имеется также n потребителей, нуждающихся в определенном количестве данной продукции $b_i=1,\ ...\ ,n$. При перевозке одной единицы продукции со склада i потребителю j возникают издержки c_{ij} . Величины c_{ij} ,

 a_i , $i=1,\ldots,m,$ b_i , $j=1,\ldots,n,$ приведены в таблице. При перевозке x_{ij} единиц продукции со склада **i** потребителю **j** суммарные затраты на перевозку составляют x_{ij} c_{ij} .

Требуется найти такой план перевозок, при котором общие затраты на перевозку всей продукции, по всем потребителям, будут минимальны.

Задача 1. Решить транспортную задачу с данными из Таблицы (m = 4, n = 8):

			Π		Запас ед. продукции				
Склад №	1	2	3	4	5	6	7	8	
1	-3	6	7	12	6	-3	2	16	$a_1 = 20$
2	4	3	7	10	0	1	-3	7	$a_2 = 11$
3	19	3	2	7	3	7	8	15	$a_3 = 18$
4	1	4	-7	-3	9	13	17	22	$a_4 = 27$
Потребность в ед. продукции	b ₁ = 11	b ₂ = 4	$b_3 = 10$	b ₄ = 12	<i>b</i> ₅ = 8	<i>b</i> ₆ =9	b ₇ = 10	b ₈ = 4	

Ответ: x_{ij} , $i=1, \dots, 4, j=1, \dots, 8$. Компоненты оптимального плана перевозок приведены в таблице

	$b_1 = 11$	$b_2 = 4$	$b_3 = 10$	$b_4 = 12$	$b_5 = 8$	$b_6 = 9$	$b_7 = 10$	$b_8 = 4$	$b_9 = 8$
$a_1 = 20$	11	0	0	0	0	9	0	0	0
$a_2 = 11$	0	0	0	0	0	0	10	1	0
$a_3 = 18$	0	4	0	0	8	0	0	3	3
$a_3 = 27$	0	0	10	12	0	0	0	0	5

Общие затраты на перевозку всей продукции для оптимального плана составляют:

$$\sum_{i=1}^{4} \sum_{j=1}^{8} c_{ij} x_{ij} = -108.$$

Задача 2. Решить транспортную задачу с данными из Таблицы 2, m=4, n=8.

Таблица 2 Издержки на перевозку единицы продукции со склада i потребителю j

		Потребители					Запас ед. продукции		
Склад №	1	2	3	4	5	6	7	8	

1	-3	10	70	-3	7	4	2	-20	15
2	3	5	8	8	0	1	7	-10	12
3	-15	1	0	0	13	5	4	5	18
4	1	-5	9	-3	-4	7	16	25	20
Потребность в ед. продукции	5	5	10	4	6	20	10	5	

Ответ: компоненты $x_{ij},\ i=1,\ \dots\ ,\ 4,\ j=1,\ \dots\ ,\ 8,\$ оптимального плана перевозок приведены в таблице

	$b_1 = 5$	$b_2 = 5$	$b_3 = 10$	$b_4 = 4$	$b_5 = 6$	$b_6 = 20$	$b_7 = 10$	$b_8 = 5$
$a_1 = 15$	0	0	0	0	0	0	10	5
$a_2 = 12$	0	0	0	0	0	12	0	0
$a_3 = 18$	5	0	10	0	0	3	0	0
$a_3 = 20$	0	5	0	4	6	5	0	0

Общие затраты на перевозку всей продукции для оптимального плана составляют:

$$\sum_{i=1}^{4} \sum_{j=1}^{8} c_{ij} x_{ij} = -154.$$

Задача 3. Решить транспортную задачу с данными из Таблицы 3, m = 4, n = 5.

Таблица 3 Издержки на перевозку единицы продукции со склада i потребителю j

	Потребители				ІИ	Запас ед. продукции
Склад №	1	2	3	4	5	
1	3	0	3	1	6	53
2	2	4	10	5	7	20
3	-2	5	3	2	9	45
4	1	3	5	1	9	38
Потребность в ед. продукции	15	31	10	3	18	

Ответ: компоненты x_{ij} , $i=1,\ldots,4,$ $j=1,\ldots,6,$ оптимального плана перевозок приведены в таблице

$b_1 = 15$	b ₂ =31	$b_3 = 10$	b ₄ =3	b ₅ =18	b ₆ =79

$a_1 = 53$	0	31	1	3	18	0
a ₂ =20	0	0	0	0	0	20
a ₃ =45	15	0	9	0	0	21
a ₄ =38	0	0	0	0	0	38

Общие затраты на перевозку всей продукции для оптимального плана составляют:

$$\sum_{i=1}^{4} \sum_{j=1}^{6} c_{ij} x_{ij} = 111.$$

Задача 4. Решить транспортную задачу с данными из Таблицы 4, m = 5, n = 4.

Таблица 4 Издержки на перевозку единицы продукции со склада \boldsymbol{i} потребителю \boldsymbol{j}

	Потребители			ели	Запас ед. продукции
Склад №	1	2	3	4	
1	2	6	8	-3	13
2	3	2	12	4	5
3	7	2	5	7	7
4	9	2	14	9	9
5	8	7	8	8	10
Потребность в ед. продукции	20	5	6	11	

Ответ: компоненты $x_{ij},\ i=1,\ \dots\ ,\ 5,\ j=1,\ \dots\ ,\ 5,\$ оптимального плана перевозок приведены в таблице

	b ₁ =20	b ₂ =5	b ₃ =6	b ₄ =11	b ₅ =2
$a_1 = 13$	2	0	0	11	0
$a_2 = 5$	5	0	0	0	0
a ₃ =7	1	0	6	0	0
a ₄ =9	2	5	0	0	2
a ₅ =10	10	0	0	0	0

Общие затраты на перевозку всей продукции для оптимального плана составляют:

$$\sum_{i=1}^{5} \sum_{j=1}^{5} c_{ij} x_{ij} = 131.$$

Задача 5. Решить транспортную задачу с данными из Таблицы 5, m = 5, n = 4.

Таблица 5 Издержки на перевозку единицы продукции со склада \boldsymbol{i} потребителю \boldsymbol{j}

	Потребители			ли	Запас ед. продукции
Склад №	1	2	3	4	
1	1	1	-1	-1	7
2	0	0	2	6	3
3	5	4	7	6	7
4	7	8	5	7	3
5	2	5	10	2	7
Потребность в ед. продукции	10	10	4	3	

Ответ: компоненты $x_{ij},\ i=1,\ \dots\ ,\ 5,\ j=1,\ \dots\ ,\ 4,\$ оптимального плана перевозок приведены в таблице

	b ₁ =10	b ₂ =10	b ₃ =4	b ₄ =3
$a_1 = 7$	3	0	1	3
$a_2 = 3$	0	3	0	0
a ₃ =7	0	7	0	0
a ₄ =3	0	0	3	0
a ₅ =7	7	0	0	0

Общие затраты на перевозку всей продукции для оптимального плана составляют:

$$\sum_{i=1}^{5} \sum_{j=1}^{4} c_{ij} x_{ij} = 56.$$

1.4. Корректировка решения задачи линейного программирования при изменении параметров задачи

ПРИМЕР 1.

Рассмотрим задачу линейного программирования (ЛП) вида

$$c'x \to \max, \quad Ax = b, \quad x \ge 0,$$
 (4.1)

со следующими исходными данными

$$c = \begin{pmatrix} -5 & -2 & 3 & -4 & -6 & 0 & -1 & -5 \end{pmatrix}', b = \begin{pmatrix} 6 & 10 & -2 \end{pmatrix}', (4.2)$$

$$A = \begin{pmatrix} 0 & 1 & 4 & 1 & 0 & -3 & 5 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 7 & -1 & 0 & -1 & 3 & 8 & 0 \end{pmatrix}, m = 3, n = 8.$$

Предположим, что для задачи ЛП с этими данными известен оптимальный базисный план

$$x^{0} = (10.0 \ 0 \ 1.5 \ 0 \ 0.5 \ 0 \ 0),$$

 $J_{B} = \{j_{1} = 1, \ j_{2} = 3, \ j_{3} = 5\} \subset J = \{1, 2, ..., 8\},$

$$(4.3)$$

оптимальный двойственный план

$$u^{0\prime} = c_B' A_B^{-1} = (2.25 - 5.00 - 6.00)$$

и соответствующий ему коплан

$$\Delta' = (\Delta_j, j = 1, ..., 8) = u^{0'}A - c' = (0 51.25 0 1.25 0 11.25 55.25 5.04)4)$$

Предположим, что исходные данные задачи изменились.

Отдельно рассмотрим следующие ситуации

- А) изменился вектор стоимости c, все остальные данные не изменились,
- Б) из основных ограничений задачи удалили одно ограничение,
- В) изменился вектор ограничений b, все остальные данные не изменились,
- Г) добавилось еще одно новое основное ограничение. Тредуется для новой задачи найти оптимальный план.

Пусть имеет место ситуация А). Очевидно, что в этом случае оптимальный базисный план старой задачи является допустимым базисным планом в новой задаче. Поэтому для построения решения новой задачи удобно воспользоваться симплекс-методом, начиная процесс решения с базисного плана (4.3).

Рассмотрим ситуацию Б). Пусть из основных ограничений задачи (4.1) удалили 3-е основное ограничения, т.е. данные для новой задачи имеют вид

$$c = (-5 - 2 \ 3 - 4 - 6 \ 0 - 1 - 5)', \bar{b} = (6 \ 10)',$$

$$\bar{A} = \begin{pmatrix} 0 & 1 & 4 & 1 & 0 & -3 & 5 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad \bar{m} = 2, \quad n = 8.$$
(4.5)

У вектора потенциалов $u^{0\prime}=(u_1^0=2.25,u_2^0=-5,u_3^0=6)$ 3-я компонента u_3^0 отлична от нулю. Подсчитаем вектор

$$z = A_B^{-1} e_3 \operatorname{sign}(u_3^0) = \begin{pmatrix} 0 & 1 & 0 \\ 0.25 & 0 & 0 \\ 0.25 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}.$$

Здесь $e_3 = e_m$ --- единичный вектор с единицей на m -ом месте.

Среди компонент вектора $z=(z_1=0,z_2=0,z_m=-1)$ есть оприцательные. Найдем шаги по правилу

 $\theta_i=\left\{ \left(\frac{i}{c} \right) \in \mathbb{Z}_i \right\} z_i \leq 0; \theta_i=\left(\frac{i}{c} \right) z_i \leq 0; \theta_i=\left($

$$\theta_1 = \theta_2 = \infty, \ \theta_3 = 0.5,$$

$$\theta_0 = \min_{i=1,2,3} \theta_i = \theta_s = \theta_3 = 0.5.$$

Строим новый план $\bar{x}=(\bar{x}_j, j\in J)$ по правилу

$$\bar{x}_j = x_j^0 = 0, j \in J_N = J \setminus J_B; \quad \bar{x}_{j_i} = x_{j_i}^0 + \theta_0 z_i, \ i = 1, 2, ..., m.$$

В результате получим план

$$\bar{x} = (\bar{x}_1 = 10, \bar{x}_2 = 0, \bar{x}_3 = 1.5, \bar{x}_4 = 0, \bar{x}_5 = 0, \bar{x}_6 = 0, \bar{x}_7 = 0, \bar{x}_8 = 0)$$

Строим новый базис \bar{J}_{R} по правилу

$$\bar{J}_B = J_B^0 \setminus j_s = \{j_1 = 1, j_2 = 3, j_3 = 5\} \setminus j_s = \{j_1 = 1, j_2 = 3\}.$$

Нетрудно проверить, что пара (\bar{x}, \bar{J}_B) , полученная в результате небольшой корректировки оптимального базисного плана старой задачи, является базисным планом новой задачи, т.е. задачи с данными (4.5).

Решаем новую задачу симплекс-методом, начиная процесс решения с этого базисного плана (\bar{x}, \bar{J}_B) .

Рассмотрим ситуацию Г), а именно, к основным ограничениям задачи (4.1) с данными (4.2) добавилось еще одно условие

$$x_1 + x_2 + x_3 + x_4 + 3x_6 - 3x_7 + x_8 \le 9.$$

Очевидно, что последнее условие эквивалентно следующим

$$x_1 + x_2 + x_3 + x_4 + 3x_6 - 3x_7 + x_8 + x_9 = 9, \quad x_9 \ge 0.$$

Для новой задачи

$$\bar{c}'x \to \max, \quad \bar{A}x = \bar{b}, \quad x \ge 0,$$
 (4.6)

исходные данные принимают вид

$$\bar{c} = (-5 - 2 \ 3 - 4 - 6 \ 0 - 1 - 5 \ 0)', \bar{b} = (6 \ 10 - 2 \ 9 \)4.7)$$

$$\bar{A} = \begin{pmatrix} 0 & 1 & 4 & 1 & 0 & -3 & 5 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 7 & -1 & 0 & -1 & 3 & 8 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 3 & -3 & 1 \end{pmatrix}, \ \bar{m} = 4, \ \bar{n} = 9.$$

Легко проверить, что для задачи ЛП (4.6) вектор

$$\bar{x} = (x^0, x_9) = (10.0 \quad 0 \quad 1.5 \quad 0 \quad 0.5 \quad 0 \quad 0 \quad x_9)$$

не является даже допустимым планом при любом значении компоненты $x_9 \ge 0$. Поэтому для того, чтобы решить эту задачу ЛП симплекс-методом, нужно использовать первую фазу симплекс-метода для построения начального базисного плана.

Отметим, что вектор y'=(2.25-5.00-6.00-0.00), построенный по оптимальному двойственному базисному плану $u^{0'}=(2.25-5.00-6.00)$, $J_B=\{1,\ 3,\ 5\}$ старой

задачи ЛП задачи (4.1) с данными (4.2) является допустимым двойственным базисным планом (с базисом $\bar{J}_B = \{1, 3, 5, 9\}$) в новой задаче ЛП (4.6). Поэтому решать задачу ЛП (4.6) эффективнее двойственным симплекс-методом, взяв в качестве начального двойственного базисного плана этот двойственный план.

Решим задачу ЛП (4.6) двойственным симплекс-методом, исходя из начального двойственного базисного плана y'=(2.25-5.00-6.00-0.00) , $J_B=\{1,\ 3,\ 5,\ 9\}$. В результате получим оптимальный план задачи (4.6)

$$\bar{x}^0 = (5.00 \ 0 \ 0.4.75 \ 4.00 \ 0 \ 0.25 \ 0 \ 0), \ \bar{J}_B^0 = \{1, 4, 5, 74.8\}$$

и оптимальный двойственный план

$$\bar{u}^0 = (1.00 - 17.25 \ 6.00 \ 12.25), \quad \bar{J}_B^0 = \{1, 4, 5, 7\}.,$$
 (4.9)

Проиллюстрируем теперь ситуацию В), когда меняется вектор условий b.

В качестве исходной рассмотрим задачу ЛП (4.6) с исходными данными (4.7), для которой известны оптимальный базисный план (4.8) и оптимальный двойственный базисный план (4.9).

Предположим, что исходные данные задачи изменились, а именно, вектор условий $\bar{b}=(6\ 10\ -2\ 9)'$ заменили на $\bar{\bar{b}}=(6\ 10\ 3\ 9)'$ и требуется решить новую задачу ЛП

$$\vec{c}'x \to \max, \quad \bar{A}x = \bar{b}, \quad x \ge 0,$$
 (4.10)

Легко проверить, что для задачи ЛП (4.10) вектор \bar{x}^0 (4.8) } не является даже допустимым планом. Поэтому для того, что решить эту задачу ЛП симплекс-методом нужно использовать первую фазу симплекс-метода для построения начального базисного плана.

Отметим, что оптимальный двойственный базисный план (см.(4.9))

$$\bar{u}^0 = (1.00 - 17.25 \ 6.00 \ 12.25), \quad \bar{J}_B^0 = \{1, 4, 5, 7\},$$

старой задачи ЛП (4.7) является допустимым двойственным базисным планом в новой задаче ЛП (4.10) . Поэтому решать задачу ЛП (4.10) эффективнее двойственным симплекс-методом, взяв в качестве начального двойственного плана этот план.

Решим задачу ЛП (4.10) двойственным симплекс-методом, исходя из начального двойственного базисного плана (4.9) . В результате получим оптимальный план задачи (4.10)

$$\bar{x}^0 = (5.0 \quad 0 \quad 0 \quad 4.6667 \quad 0 \quad 0.1111 \quad 0.3333 \quad 0 \quad 0), \quad \bar{\bar{J}}_B^0 = \{1, 4, 6, 7\},$$

и оптимальный двойственный план

$$\bar{u}^0 = (1.00 - 5.75 \ 0.25 \ 0.75).$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ.

Задача 1.

Для задачи ЛП вида (4.1) с исходными данными

$$c = (1 \quad 4 \quad -9 \quad 6 \quad -5 \quad 8 \quad 3 \quad -7 \quad 1), \quad b = (14 \quad 23 \quad 6)$$
 (4.11)

известны оптимальный базисный план

$$x^0 = (3.00 0 0.4.00 0 2.00 0 0), J_{\bar{p}}^0 = \{1, 4, 6\}, 12\}$$

и оптимальный двойственный базисный план

$$u^{0} = (1 \ 1 \ 1), \quad J^{0}_{5} = \{1, 4, 6\}$$
 (4.13)

Последовательно решить двойственным симплекс-методом задачи ЛП, каждая из которых получается из предыдущей добавлением нового ограничения.

В качестве исходной взять задачу (4.1) с данными (4.11). Добавляемые ограничения имеют вид

$$x_1 - 2x_2 - x_3 + 2x_4 + 3x_6 + 3x_7 + x_8 \le 9$$
, (4.14)

$$x_1 + x_3 + x_5 + x_6 + x_7 - x_8 \le 20, (4.15)$$

$$-2x_1 + x_2 + x_3 - x_4 + 3x_6 + 3x_7 + x_8 \le 14 . (4.16)$$

Таким образом, первой решается задача (4.1) с данными (4.11), (4.14), исходя их известного начального двойственного плана (4.13).

Второй решается задача (4.1) с данными (4.14), (4.15). В качестве начального двойственного плана берется найденный оптимальный двойственный базисный план первой задачи.

Третьей решается задача (<u>4.1</u>) с данными (<u>4.14</u>) - (<u>4.16</u>), в качестве начального двойственного плана берется найденный оптимальный двойственный базисный план второй задачи.

Задача 2.

Для задачи ЛП вида (4.1) с исходными данными (4.11) известны оптимальный базисный план (4.13).

Используя известный оптимальный двойственный план (4.13) решить новую задачу ЛП, в которой вектор условий $b = (14\ 23\ 6)'$ заменен на новый вектор $\overline{b} = (14\ 22\ 7)'$