

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

▲ 1 • Asked by Tanu

Please help me with this doubt

2 · Asked by Tanu

Please help me with this doubt

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Sum of the telescoping series : $\sum (t_n - t_{n+1})$ is telescoping series, then

$$t_1 - t_2 + t_2 - t_3 + t_3 - t_4 + \dots + t_n - t_{n+1} = t_1 - t_{n+1}$$
.

$$\Rightarrow$$
 Sum of given series is $t_1 - \lim_{n \to \infty} t_{n+1}$.

Note: If telescoping series is convergent then this series is converge to sum of this series.

Q1. Let $a_1 = 1$ and $a_n = 2 - \frac{1}{n}$ for $n \ge 2$, then

$$\sum_{n=1}^{\infty} \left(\frac{1}{a_n^2} - \frac{1}{a_{n+1}^2} \right)$$
 converges to

(b)
$$\frac{1}{2}$$

(c)
$$\frac{1}{3}$$

(d)
$$\frac{3}{4}$$

Q2. Let $\langle a_n \rangle$ be a sequence of real numbers such that $a_1 =$

1 and $\lim_{n\to\infty} a_n = 3$, then the value of $\sum_{n=1}^{\infty} \left(a_{n+1}^2 - a_n^2\right)$ is

- (a) 7 (b)
- (c) 9 (d) 10

2 • Asked by Harsha

Sir last doubt plz explain kar dijiye

Result:

(1) Sum of series
$$\sum \frac{1}{n(n+1)}$$
 is $1 = \frac{1}{1} \cdot \frac{1}{1!}$.

(2) Sum of series
$$\sum \frac{1}{n(n+1)(n+2)}$$
 is $\frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2!}$

(3) Sum of series
$$\sum \frac{1}{n(n+1)(n+2)(n+3)}$$
 is

$$\frac{1}{3} \cdot \frac{1}{3!} = \frac{1}{3 \times 6} = \frac{1}{18}$$

(4) Sum of serries
$$\sum \frac{1}{n(n+1)....(n+m)}$$
 is $\frac{1}{m} \cdot \frac{1}{m!}$.

Q3. The sum of the series \sum

- n(n+1)(n+2)
- (a) 1
- (c) $\frac{1}{4}$ (d) $\frac{1}{8}$

Sum of Series of type
$$\sum_{k=1}^{n} f(n,k) = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$$

Step – 1: Re – write the series in the form
$$\frac{1}{n} \sum_{k=1}^{n} \binom{k}{n}$$

Step – 2: Put
$$\frac{1}{n} = dx$$
 & $\frac{k}{n} = x$ then Change summitton into integration with limit 0 to 1

Step - 3: Integrate and get final solution

Q4. The value of $\lim_{n\to\infty}\sum_{i=1}^{n}\frac{1}{2}$ is

[IIT-JAM 2011]

(A)
$$2(\sqrt{2}-1)$$

(B)
$$2\sqrt{2}-1$$

(C)
$$2-\sqrt{2}$$

(D)
$$\frac{1}{2}(\sqrt{2}-1)$$

Sum of series by expansion:

We know that (i)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

(ii)
$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

(iii)
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{3}$$

(iii)
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{3}$$
.
(iv) $\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4}$...
(v) $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!}$

(v)
$$\sin x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^5}{5!}$$

(vi)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots$$

(vii)
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots$$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q5. Let $a_n = n + \frac{1}{n}$, $n \in \mathbb{N}$. Then the sum of the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{a_{n+1}}{|n|} \text{is} \qquad [IIT-JAM 2018]$$

(A)
$$e^{-1}-1$$

(C) $1-e^{-1}$

(B)
$$e^{-1}$$

(C)
$$1 - e^{-1}$$

(B)
$$e^{-1}$$

(D) $1+e^{-1}$

Q6. The value of the series $\sum_{n=1}^{\infty} \frac{n}{n}$

- (A) 1
- (C) 2

(B) 3

(D) 4

The sum of the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + n - 2}$ is Q7.

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + n - 2}$$
 is

[IIT-JAM 2016]

(A)
$$\frac{1}{3} \ln 2 - \frac{5}{18}$$

(B)
$$\frac{1}{5} \ln 2 - \frac{5}{6}$$

(C)
$$\frac{2}{3} \ln 2 - \frac{5}{18}$$

(D)
$$\frac{2}{3} \ln 2 - \frac{5}{6}$$

Q8.
$$\sum_{n=1}^{\infty} \tan^{-1} \frac{2}{n^2} = is$$

[IIT-JAM 2016]

(A)
$$\frac{\pi}{4}$$

(B)
$$\frac{\pi}{2}$$

(C)
$$\frac{3\pi}{4}$$

Q9. The sum of the finite series

$$S \neq \frac{1}{2} - \frac{1}{3 \times 1!} + \frac{1}{4 \times 2!} - \frac{1}{5 \times 3!} + \dots$$
 is equal to

[CSIR-NET Nov. 2020]

(A)
$$2 - \frac{1}{e}$$

(B)
$$1 - \frac{2}{e}$$

(C)
$$\frac{2}{e}$$
 -1

(D)
$$\frac{1}{e} - 2$$

$$S_1 = \frac{1}{3} - \frac{1}{2} \times \frac{1}{3^2} + \frac{1}{3} \times \frac{1}{3^3} - \frac{1}{4} \times \frac{1}{3^4} + \dots$$
 and

$$S_2 = \frac{1}{4} + \frac{1}{2} \times \frac{1}{4^2} + \frac{1}{3^2} \times \frac{1}{4^3} + \frac{1}{4} \times \frac{1}{4^4} + \dots$$
 Which of the

following identities is true?

[CSIR-NET Feb. 2022]

$$(A)(3S_1 = 4S_2)$$

(B)
$$4S_1 = 3S_2$$

(C)
$$S_1 + S_2 = 0$$

(D)
$$S_1 = S_2$$

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR