数据结构与算法 2016 期末 王洪庆 中间有一些题漏掉了

一 . 是非判断题 (正确:√, 错误: X; 每题 2 分 , 共 20 分) ↓

- (\mathbf{X}) 1. 因为顺序表是随机存储结构, 所以其数据元素的检索效率为 O(1)。
- 2. 逻辑上考虑,静态链表属于链接存储结构,因此其结点需要动态分配。 $(\mathbf{X})_{\omega}$
- (X)+ 3. 栈和队列都是操作受限的线性表,因此其插入和删除操作的效率低。
- 4. 农夫过河问题的求解,既可以使用广度优先搜索,也可以使用深度优先搜索。深度优先 (V)+ 搜索需要栈控制,而广度优先搜索需要队列控制。
- (V)+ 5. 已知二叉树的先根和中根遍历结果,就可唯一地确定其后根遍历结果。
- (V) 6. n个结点的二叉树中, 度为 2 的结点数为 m, 则度为 1 的结点数是 n-2m-1。
- (V)+ 7. 描述折半检索的二叉判定树一定是一颗 AVL 树。
- 在散列表中,采用线性探测的空地址法处理碰撞时容易产生二次聚集问题,因此应该避 免使用该方法。 (X)+
- 9. AOE 网中,增加非关键活动的持续时间,不会影响整个工程的时间。缩短关键活动的 持续时间,也不一定能减少整个工程的时间。
- 10. 筛选法实现堆排序时,数据元素的存储结构是顺序表。基数排序中,数据元素的存储结 构使用了单链表实现。 (V)

二 . 选择题 (单选 , 每题 2 分 , 共 20 分) 🖟

(A) $O(N^{1/2})$ (B) $O(\log_2 N)$

1.	程序段{ i=0,	s=0;	while $(s \le N) \{s = \underline{s+i};$	<u>i</u> ++; }	}}	的时间复杂度为:	(A)).	J
----	-----------	------	--	----------------	----	----------	-----	----	---

(C) O(N)

(D) O(N²)+

(C) "

- (B) 4 2. KMP 模式匹配中,模式串"abcabbc"的 NEXT 数组值为:
- - (B) {-1, 0, 0, -1, 0, 2, 0 } (A) {-1, 0, 0, 0, -1, 1, 0}
 - (D) {-1, 0, -1, 0, 0, 1, -1} (C) {-1, 0, 0, -1, -1, 2, 0}
- 3. 循环队列 A[0..m]的头尾指针分别是 F、R, 牺牲一个空间区分空满时, 判满条件是: (C)
- (B) F+1 == R (C) (R+1)%(m+1) == F (D) (F+1)%(m+1) == R(A) R+1 = F
- 4. 设某 Haffman 树上共有 253 个结点,则其外部结点数目为:
 - (D) 128+ (C) 127 (B) 126 (A) 125
- 5. 在一棵含有 n 个结点的树中, 只有度为 k 的分支结点和度为 0 的终端结点,则该树中含。 (B) + 有的终端结点的数目为:
 - (B) n-(n-1)/k (C) n-(n+1)/k(D) n-n/(k+1)(A) n-n/k

•	1 7 4 2 2 2 2	·# <= 115>	es_12_	, The state of the	6 24 ±0	- -	- - 141		٠ بــــز بــــــر بــــ	4 +7	(C)
8.	十万个数据元素										(C)+
	(A) 起泡排序	(B) 快速排						(D) 难	排序。		
9.	下列图的运算,	那种不能用于	俭测图	的连通	性问题	烫:					(D)+
	(A) 图的遍历	(B) 最短路	径	(C) 最	小生	戊树	((D) 拓	扑排序	£ +1	I
10.	n个顶点的无向	图邻接表存储	结构中	7,所有	顶点	的边表	结点	总个数	最多为	J:	(C) ₽
	(A) \underline{n}^2	(B) n(n+1)/2		(C) n(n	-1)		(D) n(n	-1)/2+		
Ξ.	填空题(每空	2分,共40	分)	ų							
	散列表的检索效验 设有关键字序列: 和线性探测法解码 构造该散列表:	32、13、18、 共冲突,按上i	22、	38、17	. 71.	99、	42, 1	吏用散	列函数	H(k)=k%
	↑ □ □ □ □ □ □	4									
	00 10		40	50	6₽	7₽	8.	9.0	10₽	42	
	22.0 99	φ 13 φ	+3	38₽	17₽	18₽	710	420	32₽	e)	
3.	LinkList function { LinkList p. (if (L && L-) { q=L; I while(p	回答后面的问 n1(LinkList L) q; -/ >next) -/ L=L->next; p= n->next) p=p->n	题。。 L; 。 ext; 。	//L 是不							
	p->next	t=q; q->next=N	NULL;	₩							
	} •										
	return L; 🗸										
	} 该算法的功能	为: <u>原第一</u>	个结点	成为最	后一个	'结点,	原第.	二个结	点成为	第一	<u>↑</u> .,
		4454444444		义为: {	ЕТур	e data	; <u>B</u> 7	Node	*left,	*rig	ht; }。
4.	else if (B)	TINODE * B1). TULL) return T->left==NUL (function1 (B)	L &&		-				: ••		

7. 完成下列包含 n 个记录的待排序序列 pvector 的堆排序算法。记录序列采用顺序存储, 其定义如下: →

typedef tagSortObject+

```
{ int record[MAX_NUM], n; //record 为记录数组,n 为记录个数(n<MAX_NUM)↓
} SortObject;↓
假定调整以 K<sub>i</sub> 为根的筛选算法已经实现,其定义如下:↓
void SIFT(SortObject *pvector, int i, int n)。↓
```

另外定义 r1 和 r2 记录交换算法为 void SWAP(RecordNode *r1, RecordNode *r2)。

完成下列堆排序算法: 。

void headSort(SortObject *pvector)

n 个记录,且有 $h=log_2(n+1)$ 。则,初始堆构建过程中的比较次数 $C_1(n)$ 的计算公式为:

$$C_1(n) = \sum_{n=0}^{h-1} \frac{(h-m)^* 2^{m+1}}{(h-m)^* 2^{m+1}}$$

重新建堆总共的比较次数 C2(n)的计算公式为: +

$$C_2(n) < \sum_{j=1}^{n-1} -2 |\log_2(n-j+1)|$$

8. AOV 网的邻接表(出边表)存储结构如下: +

按照深度优先遍历算法,写出从 C₀ 开始的深度优先遍历结果: ↓

C0 C2 C3 C5 C6 C7 C8 C1 C4

按照广度优先遍历算法,写出从 C₁ 开始的广度优先遍历结果: ↓

C1 C2 C3 C4 C5 C6 C0 C7 C8

3) 按照拓扑排序算法, 写出 AOV 网的拓扑序列: 4

C1 C4 C0 C7 C8 C2 C3 C6 C5

四.问答题(每题10分,共20分)。

- 1. 回答下列哈夫曼树以及哈夫曼编码的相关问题 (每小题 5 分): →
 - 1) 假定字符个数为 n,试简单描述哈夫曼编码算法实现时应该选择的合适存储结构。#

三叉静态链表, m 介外部结点, 必有 m-1 个内部结点。 2m-1 个元素, 前 m 介外部结点, 后 m-1 个内部构造结点, 最后 1 个是根结点。 4

2) 假定报文中各字符及其出现频率如下: A(50), B(30), C(10), D(25), E(11), F(99), G(8), H(51), I(22)。试画出对应的哈夫曼树(严格按照左小右大构造),并给出各个字符的哈夫曼编码。

- 2. 回答下列动态字典的相关问题(每小题5分)↓
 - 1) 为什么二叉排序树是动态字典的合适表达(从插入、删除和检索三个方面回答)? ~

假定 N <u>个</u>记录,插入、删除: 无数据元素的移动,log₂N₄ 检索: 类似折半检索(缩小区间的检索),效率高,log₂N₄ 中序遍历: 有序。

2) 等概率检索情况下,插入、删除记录后如何保持二叉排序树的高检索效率?。

保持二叉排序树是 AVL 树(平衡二叉树),AVL 树的检索效率高。。每个结点增加平衡因子,判断最小不平衡子树,根据 4 中情况(LL, RR, LR, RL)之一进行调整。。