Today's Topic: What is Convolution?

Let's explore more about the theoretical aspect of deep learning

Part I

- In probability/signal processing/differential equation, we also see this term.
 - 1. Example. The probability density function for sum of two independent random variables, z=x+y
 - 2. Example. Convolution theorem for FT

PDF(probability density function)

%E5%9C%96%E7%89%87.png

Covolution theorem

>%E5%9C%96%E7%89%87.png

- · Brief review about CNN
 - Processing grid-format data
 - 1D:
 - 1. sound wave (amptitude x time)
 - 2. skeletion animation(angles x time)
 - 。 2D:
 - 1. audio data (after FT \rightarrow row:freq x col:time)
 - 2. colored image (RGB channel x height x width)
 - 3D: 1.volume data(CT)
 - 1. colored video data (time x height x width)
- · Mathematical foundation
 - Mathematical operation
 - A kind of moving average
 - $\qquad \text{Input}(x), \text{Kernel}(w) \text{ function and feature map(ouput}, s) \\$
 - Communative property due to flip operation

Continous form:

%E5%9C%96%E7%89%87.png

Notation:

Discrete form: **%**E5%9C%96%E7%89%87.png Communativeness **%**E5%9C%96%E7%89%87.png **%**E5%9C%96%E7%89%87.png • (continue) An example of 2D convolution **%**E5%9C%96%E7%89%87.png **Cross-correlation: %**E5%9C%96%E7%89%87.png · Convolution in DL Implementation in the DL packages: Cross Correlation (without flip) Sparse interactions(sparse connectivity) • Reduce computation complexity Forward aspect **%**E5%9C%96%E7%89%87.png **Backward aspect %**E5%9C%96%E7%89%87.png Feature extraction through multiple layers **%**E5%9C%96%E7%89%87.png

- · Convolution in DL (continue)
 - Parameter sharing
 - · Tied weight
 - Margin detection
 - $\circ~$ Example.Right neighbor of original pixel subtract it self: 280*320 pixels \rightarrow 280*319 pixels
 - To represent this transform, the number of operations
 - 1. matrix: 320 * 280 * 319 * 280 = 8 billion
 - 2. covolution: 319 * 280 * 3 = 0.3 million

Parameter sharing

%E5%9C%96%E7%89%87.png

Margin detection

%E5%9C%96%E7%89%87.png

- Convolution in DL (continue)
 - Convolution as a infinitely strong prior (probability distribution)
 - · Low (information) entropy / Highly centralized probability density
 - We can think convolution layer as a fully connective layer with a prior: the weight of element in this hidden layer must equal to its neighbors', but can move in the space.
 - The variation of basic convolution
 - \circ Stride \neq 1
 - Valid convolution (fill zeros)
 - Unshared convolution (skip)
 - Tiled convolution (skip)
- · Cognitive science foundation of CNN
 - Primary visual cortex(V1)
 - Function: space mapping (2D structure)
 - $\circ \ \ \mathsf{Simple} \ \mathsf{cell} \to \mathsf{relu}$
 - ullet Complex cell o pooling
 - Supplement: pooling
 - · local shift invariance
 - we care the apperance of features rather than location
 - "Grandma cell"(Halle Berry Neuron)
 - IT(顳下皮質)
 - Fovea(中央凹)
 - Saccade
 - \circ Attention mechanism \to NLP
 - Garbor function can describe V1 cells
 - detector

Pooling

©%E5%9C%96%E7%89%87.png
Garbor function
©%E5%9C%96%E7%89%87.png
E5%9C%96%E7%89%87.png
©%E5%9C%96%E7%89%87.png
s : response, I : image, w : weight, τ : direction, (x_0,y_0) : origin, α : scaling factor, β : decay rate, f : frequency, ϕ : phrase
Gaussion term : threshold
Cosine term : reponse to the changes along x/y axis
C(I) describe the behavior of complex cell
E5%9C%96%E7%89%87.png
$s_0,\!s_1$ are same except ϕ (special case: ϕ = 1/4 period) $ o$ quadrature pair, whcih causes invariance
Part II
 An toy model of CNN (without any DL computation framework) Run the code
 Description for the detail about convolution function in the code
Function for convolution layer (./common/layer.py)
A simple CNN (simple_convnet.py)
Training process (train_convnet.py)
©%E5%9C%96%E7%89%87.png

Reference:

ttps://github.com/oreilly-japan/deep-learning-from-scratch (https://github.com/oreilly-japan/deep	o-icaming-nom-
cratch)	
eep Learning, by Ian Goodfellow, Yoshua Bengio and Aaron Courville	