classmate Date 14.10 2019 Page 1 X RECURSION 1. AST annotation Crircularity between closures & environment Cextended - rec- env) 2 interpreter 3 Y combinator (2)-calculus) Caefine (Gr 6) (2 cn) (if (= n o) (*n (f (-n1))). ((G add1)5) ((G (200 x))s) ((G !)s) = 51 = 120 ((G!)h) =? (!n) $C_1 = 1$! is a fixed point of G we want for Y that takes an arbitrary & and. return its fixed point Y is called the fixed point complicinator for the y combinator

1: N > N G: (M>M) -> (M->M) $\lambda: (M \rightarrow M) \rightarrow (M \rightarrow M) \rightarrow (M \rightarrow M)$ (define (4 g) (let (Is (lambda (x) (g (xx)))]) ((22) ((y o) 2) => ((a (s s)) 2) => (2 ((s s) 1)) > (*2 ((9 (s s) 1)) > (*2 (*1((ss)0)) → (* 2 (* 1 ((cr Cs s))) 0))) 3 (x2 (* 1 1)) Colefine Ya Clambda (g) 8= x->n-> Clet (Is (lambda Ca) g (x(x))(n) (lambda Cn) (2)2 ((g(x x)) n)))]) (ss))))) 7.2 km panos (= 10

(define 1 (ya a))

input state y
<u> </u>
//>
x' = f(x, o)
g=h(n)
value, (expressible)
ast eval- est store
env stare
eval-ast [ast? env? storep] -> [val? store?]
imperative programming.
Modeling store.
0 1 2 3
(100)
STORE: IN -> storable values?
ENV: M-> Denotable Valere
Collection Charge
C: TN -> memory address 3 ENV.
×= ×+1 ((β β))
impping remains sime
Store gets modified.
pointers: storable = location.

	Classmate Date Page
	int (ont ($\lambda(x)$: $g(x(x))$)
	9 (f (f))
	inf (gff)
	(nf: f
•	9: b
	else -> n & (Cn-1)
	966: 6 9 Cf(b))
	no: bx inf: fx (inf: fx (inf: fx)
	6 C6) + Min
	inf (966) inf (inf x)
	S= x → n → ya: 9

g(x(n))(h) \$\press_2 \in n \in \cdots

ent: x x(n) inf Cinf) s: n g (n)(n)) s (s) 2: n g(n)(n) g (d (n(n) &(s)

int fact (int n)

if (n==0 || n==1)

refum

else

2 gran n & fact On-