Отчет по лабораторной работе №1

Дисциплина: Компьютерный практикум по статистическому анализу данных

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	13
Список литературы		14

Список иллюстраций

3.1	Примеры определения типа числовых величин	7
3.2	Примеры приведения аргументов к одному типу	8
3.3	Примеры определения функций	8
3.4	Примеры работы с массивами	9
3.5	Примеры использования функций open(), read(), readline(), readlines()	9
3.6	Примеры использования функций print(), println	10
3.7	Примеры использования функций show(), write()	10
3.8	Примеры использования функции parse()	11
3.9	Примеры базовых математических операций	11
3.10	Примеры базовых математических операций	12
3.11	Примеры с операциями над матрицами и векторами	12

Список таблиц

1 Цель работы

Основная цель работы — подготовить рабочее пространство и инструментарий для работы с языком программирования Julia, на простейших примерах познакомиться с основами синтаксиса Julia.

2 Задание

- 1. Установите под свою операционную систему Julia, Jupyter (разделы 1.3.1 и 1.3.2).
- 2. Используя Jupyter Lab, повторите примеры из раздела 1.3.3.
- 3. Выполните задания для самостоятельной работы (раздел 1.3.4).

3 Выполнение лабораторной работы

- 1. Установила под свою операционную систему Julia, Jupyter.
- 2. Повторила примеры на определение типа числовой величины, определение крайних значений диапазонов целочисленных числовых величин, преобразование типов, приведение нескольких аргументов к одному типу, базовый синтаксис определения функции, определение массивов и выполнение операций над массивами.

```
[3]:
typeof(3), typeof(3.5), typeof(3/3.5), typeof(sqrt(3+4im)), typeof(pi)

[3]:
(Int64, Float64, Float64, ComplexF64, Irrational{:π})

[4]:
1.0/0.0, 1.0/(-0.0), 0.0/0.0

[4]:
(Inf, -Inf, NaN)

[5]:
typeof(1.0/0.0), typeof(1.0/(-0.0)), typeof(0.0/0.0)

[5]:
(Float64, Float64, Float64)

[2]:
for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128]
    println("$(lpad(T,7)): [$(typemin(T)),$(typemax(T))]")
    end

Int8: [-128,127]
Int16: [-32768,32767]
Int32: [-2147483648,2147483647]
Int64: [-9223372036854775808,9223372036854775807]
Int128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]
    UInt18: [0,255]
UInt16: [0,65535]
UInt21: [0,4294967295]
UInt64: [0,18446744073709551615]
UInt128: [0,340282266920938463463374607431768211455]
```

Рис. 3.1: Примеры определения типа числовых величин

```
Int64(2.0), Char(2)

[6]:
(2, '\x02')

[7]:

convert(Int64, 2.0), convert(Char, 2)

[7]:
(2, '\x02')

[8]:

Bool(1), Bool(0)

[8]:
(true, false)

[10]:

typeof(promote(Int8(1), Float16(4.5), Float32(4.1)))

[10]:
Tuple(Float32, Float32, Float32)
```

Рис. 3.2: Примеры приведения аргументов к одному типу

Рис. 3.3: Примеры определения функций

```
[14]:
    a = [4 7 6]
    b = [1, 2, 3]
    a[2], b[2]

[14]:
    (7, 2)

[18]:
    a = 1; b = 2; c = 3; d = 4
    Am = [a b; c d]
    Am[1,1], Am[1,2], Am[2,1], Am[2,2]

[18]:
    (1, 2, 3, 4)

[20]:
    aa = [1 2]
    AA = [1 2; 3 4]
    aa*AA*aa'

[20]:

1x1 Matrix{Int64}:
    27
```

Рис. 3.4: Примеры работы с массивами

3. Изучила документацию по основным функциям Julia для чтения / записи / вывода информации на экран: read(), readline(), readlines(), readdlm(), print(), println(), show(), write(). Привела свои примеры их использования, поясняя особенности их применения.

```
[80]:
f1 = open("file1.txt")
[80]:
IOStream(<file file1.txt>)
[63]:
    read(f1, String)
[63]:
    "Hello World\r\nHello Worl\r\nHello Wor"
[77]:
    readline(f1)
[77]:
"Hello World"
[81]:
3-element Vector{String}:
"Hello World"
"Hello Worl"
"Hello Worl"
"Hello Worl"
```

Рис. 3.5: Примеры использования функций open(), read(), readline(), readlines()

Рис. 3.6: Примеры использования функций print(), println

Рис. 3.7: Примеры использования функций show(), write()

4. Изучила документацию по функции parse(). Привела свои примеры её использования, поясняя особенности её применения.

```
[115]:
parse(Int, "1234")
[115]:
1234
[116]:
parse(Float64, "0.256")
[116]:
0.256
[117]:
parse(Int, "1234", base = 5)
[117]:
194
[118]:
parse(Float64, "1.2e-3")
[118]:
0.0012
```

Рис. 3.8: Примеры использования функции parse()

5. Изучила синтаксис Julia для базовых математических операций с разным типом переменных: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня, сравнение, логические операции. Привела свои примеры с пояснениями по особенностям их применения.

Рис. 3.9: Примеры базовых математических операций

Рис. 3.10: Примеры базовых математических операций

6. Привела несколько своих примеров с пояснениями с операциями над матрицами и векторами: сложение, вычитание, скалярное произведение, транспонирование, умножение на скаляр.

```
[149]:
A = [1 2 3; 4 5 6; 7 8 9]
B = [9 8 7; 6 5 4; 3 2 1]
C = A+B
D = A-B
E = A*B
F = A'
print(A, '\n', B, '\n', C, '\n', D, '\n', E, '\n', F)
[1 2 3; 4 5 6; 7 8 9]

[9 8 7; 6 5 4; 3 2 1]

[10 10 10; 10 10 10; 10 10 10]

[-8 -6 -4; -2 0 2; 4 6 8]

[30 24 18; 84 69 54; 138 114 90]
[1 4 7; 2 5 8; 3 6 9]
[164]:
 using LinearAlgebra
 A1 = [1 2 3]
B1 = [4 5 6]
C1 = A1*2
 D1 = dot(A1,B1)
print(A1, '\n', B1, '\n', C1, '\n', D1, '\n')
[1 2 3]
[4 5 6]
[2 4 6]
```

Рис. 3.11: Примеры с операциями над матрицами и векторами

4 Выводы

Я подготовила рабочее пространство и инструментарий для работы с языком программирования Julia, на простейших примерах познакомилась с основами синтаксиса Julia.

Список литературы