- 一、(共30分,每题5分)
- 1、设事件 A 与 B 相互独立, $P(A) = 0.5, P(A \cup B) = 0.8,$ 求 $P(A\overline{B})$.

解:因为事件A与B相互独立,所以

2、三人独立地去破译一份密码,他们译出的概率分别为 $\frac{1}{5}$, $\frac{1}{3}$, $\frac{1}{4}$. 求能将此密码译出的概率.

解:
$$P=1-(1-\frac{1}{5})(1-\frac{1}{3})(1-\frac{1}{4})=\frac{3}{5}$$
5 分

3、设随机变量X的分布律为

X	-1	0	1	2
p	0. 125	0. 25	0. 25	0. 375

求 $Y = X^2 + 1$ 的分布律,并计算 $P(1 \le X < 3)$.

解:	Y	1	2	5
	p	0. 25	0. 375	0. 375

4、设随机变量 X 服从参数为 λ 的泊松分布,且已知 E[(X-1)(X-2)] = 1 求 λ .

$$E[(X-1)(X-2)] = E(X^2 - 3X + 2)$$

= $D(X) + [E(X)]^2 - 3E(X) + 2 = 1$ 2 分

所以 $\lambda^2 - 2\lambda + 1 = 0$, 得 $\lambda = 1$1 分

5、为检查某食用动物含某种重金属的水平,假设重金属的水平服从正态分布 $X \sim N(\mu, \sigma^2), \mu, \sigma$ 均未知,现抽取容量为 25 的一个样本,测得样本均值为 186,样 本标准差为 10,求 μ 的置信度为 0.95 的置信区间.

解: 总体均值 μ 的置信度为 0.95 的置信区间为

即
$$(186 \pm \frac{10}{5} \times 2.0639)$$
2 分

所求置信区间为 (181.8722, 190.1278)1 分

6、某车间用一台包装机包装葡萄糖.包得的袋装糖重量 $X \sim N(\mu, \sigma^2)$,当机器正常时, 其均值 $\mu = 0.5$ 公斤,标准差 $\sigma = 0.015$ 公斤.某日开工后为检验包装机是否正常,随机 地抽取它所包装的糖 9 袋,称得平均重量为 0.511 公斤,问这天包装机工作是否正常? (取显著水平 $\alpha = 0.05$)

由于
$$|rac{\overline{X}-0.5}{\sigma/\sqrt{n}}|=|rac{0.511-0.5}{0.015/\sqrt{9}}|=2.2$$
 , $z_{0.025}=1.96$, ……2 分

- 二、(共18分,每题6分)
- 1、设随机变量 X 和 Y 相互独立,概率密度分别为

$$f_X(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & x \le 0. \end{cases} \qquad f_Y(y) = \begin{cases} 3e^{-3y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

(1) E(2X-3Y); (2) D(2X-3Y); (3) ρ_{XY} .

解: (1)
$$E(2X-3Y)=2E(X)-3E(Y)=2\times\frac{1}{2}-3\times\frac{1}{3}=0;$$
2 分

(2)
$$D(2X-3Y)=4D(X)+9D(Y)=4\times\frac{1}{4}+9\times\frac{1}{9}=2;$$
2 \bigstar

(3) 因为量X和Y相互独立,所以 $\rho_{XY} = 0$.

区 2 꽶

2、已知随机变量 $X \sim N(1, 25), Y \sim N(2, 36)$, $\rho_{XY} = 0.4$,

求: U = 3X + 2Y 与V = X - 3Y的协方差.

解:
$$Cov(U,V) = Cov(3X + 2Y, X - 3Y)$$

$$=3D(X)-9Cov(X,Y)+2Cov(X,Y)-6D(Y)....3 分$$

$$=3D(X)-7\rho_{XY}\sqrt{D(X)}\sqrt{D(Y)}-6D(Y)$$

$$=3\times25-7\times0.4\times5\times6-6\times36=-225$$
3 分

概率论与数理统计 B

 $rac{\mathsf{V}}{\mathsf{V}}$ 3、设 X_1,X_2,\dots,X_{13} 是来自正态总体N(0,1)的一个样本,且已知随 机变量 $Y = a(\sum_{i=1}^{4} X_i)^2 + b(\sum_{i=1}^{13} X_i)^2$ 服从自由度为 2 的 χ^2 分布,

求a,b的值.

解: 因为 $X_i \sim N(0,1)$ 且相互独立, $i = 1,2,\dots,13$.

$$\frac{1}{2}\sum_{i=1}^{4}X_{i}\sim N(0,1)$$
, $\frac{1}{3}\sum_{i=5}^{13}X_{i}\sim N(0,1)$, 且相互独立.....2 分

由 χ^2 分布的定义,得 $(\frac{1}{2}\sum_{i=1}^4 X_{ii})_{\text{5}, \neq 7}^2 (\frac{1}{23}\sum_{i=1}^{13} X_i)^2 \sim \chi^2(2)$,

所以
$$a = \frac{1}{b} = \frac{1}{b}$$
.....

三、(共18分,每题6分)

1、设总体 $X \sim N(52, 6^2)$,现随机抽取容量为 36 的一个样本,求样本均值 \overline{X} 落入(50.8,53.8) 之间的概率.

$$P\{50.8 < \overline{X} < 53.8\} = \Phi(53.8 - 52) - \Phi(50.8 - 52)$$

=
$$\Phi(1.8) - \Phi(-1.2) = 0.9641 - 1 + 0.8849$$
3 \bigstar

2、设随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} Ae^x, & x \le 0, \\ B, & 0 < x \le 1, \\ 1 - Ae^{-(x-1)}, & x > 1. \end{cases}$

求: (1) A, B 的值; (2) $P\{X > \frac{1}{3}\}$.

解: (1) 由连续型随机变量分布函数的连续性,得

$$\lim_{x\to 0^-} F(x) = F(0) , \quad \lim_{x\to 1^-} F(x) = F(1) ,$$

区 3 꽶

孙

既率论与数理统计 B 试题

3、箱子中有一号袋1个,二号袋2个.一号袋中装1个红球,2个黄 球,二号袋中装2个红球,1个黄球,今从箱子中任取一袋,从中 任取一球,结果为红球,求这个红球是从一号袋中取得的概率.

 $B=\{$ **抽出的是红球** $\}$

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{\sum_{i=1}^{2} P(A_i)P(B \mid A_i)} = \frac{1}{5}$$
3 £

四、(8分) 设随机变量 X 具有密度函数 $f(x) = \begin{cases} Ax, & 0 < x < 1, \\ 0, &$ 其它. 求 (1) 常数 A; (2) X 的分布函数.

(2)
$$F(x) = \begin{cases} 0, & x < 0, \\ \int_0^x 2x dx, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

$$= \begin{cases} 0, & x < 0, \\ x^2, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$
4 \(\frac{\frac{1}{3}}{3} \)

五、(8分) 某箱装有100件产品,其中一、二、三等品分别为

60、30、10件,现从中随机抽取一件,记

$$X_i =$$
 $\begin{cases} 1, \text{ 若抽到 } i \text{ 等品,} \\ 0, \text{ 没有抽到 } i \text{ 等品.} \end{cases}$ 求 X_1 , X_2 的联合分布律.

解:设A1,A2,A3分别表示抽到一、二、三等品,

$$P(X_1 = 0, X_2 = 0) = P(A_3) = 0.1$$
, $P(X_1 = 1, X_2 = 0) = P(A_1) = 0.6$

$$P(X_1 = 0, X_2 = 1) = P(A_2) = 0.3$$
, $P(X_1 = 1, X_2 = 1) = 0$

 X_1, X_2 的联合分布律为

Х ₂	0	1
X_1		
0	0. 1	0.3
1	0. 6	0. 0

......8分(每个2分)

六、(10 分) 设随机变量 X 和 Y 的联合概率密度为

$$f(x,y) = \begin{cases} 15x^2y, & 0 < x < y < 1, \\ 0, & \text{ 其它.} \end{cases}$$

(1) 求边缘概率密度; (2) 判断随机变量X和Y是否独立.

(2) 因为 $f(x,y) \neq f_X(x) f_Y(y)$, 所以随机变量 X 和 Y 不独立.

.....4 分

七、(8 分) 设 X_1, X_2, \dots, X_n 是总体X 的一个样本, x_1, x_2, \dots, x_n 为一相对应的样本观测值,总体X 的概率密度为

$$f(x) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \\ 0, & 其它. \end{cases}$$

求参数 θ 的矩估计和极大似然估计.

曲
$$A_1 = \mu_1$$
得 $\frac{\theta}{\theta + 1} = \overline{X} \Rightarrow \hat{\theta} = \frac{\overline{X}}{1 - \overline{X}}$ 2 分

(2) 似然函数
$$L(\theta) = \prod_{i=1}^{n} \theta x_i^{\theta-1} = \theta^n (\prod_{i=1}^{n} x_i)^{\theta-1}$$

对数似然函数
$$LnL(\theta) = nLn\theta + (\theta - 1)\sum_{i=1}^{n} Lnx_i$$
2 分

令
$$\frac{dLnL(\theta)}{d\theta} = 0$$
, 得 $\frac{n}{\theta} + \sum_{i=1}^{n} Lnx_i = 0 \Rightarrow \hat{\theta} = -\frac{n}{\sum_{i=1}^{n} Lnx_i}$

参数
$$\theta$$
的极大似然估计量为 $\hat{\theta} = -\frac{n}{\sum\limits_{i=1}^{n} LnX_{i}}$ 2 分

附
$$\Phi(1.8) = 0.9641$$
, $\Phi(1.2) = 0.8849$, $\Phi(1.5) = 0.9332$, $\Phi(2.2) = 0.0.9861$,
$$Z_{0.025} = 1.96$$
, $Z_{0.05} = 1.645$, $t_{0.025}(24) = 2.0639$, $t_{0.025}(25) = 2.0595$