Généralités sur les réseaux

Schéma d'une liaison de données

Classification des réseaux selons leur taille

Distance entre processeurs	Emplacement des processeurs	Exemple	Débit
1m	1 m 2	Réseau personnel PAN	1 Mb/s
10m	Une salle		
100m	Un immeuble	Réseau local LAN	10 Mb/s à 1Gb/s
1km	Un campus		
10km	Une ville	Réseau métropolitain MAN	~100Mb/s
100km	Un pays	Réseau longue distance	
1 000km	Un continent	WAN	Quelques Mb/s
10 000km	Une planète	Internet	

Modes de communication

- 1. Mode point-à-point (bi-point ou peer to peer)
- 2. Mode multipoint
 - Multicast
 - □ Broadcast

Les éléments matériels d'interconnection d'ordinateurs:

- La carte réseau (appelée coupleur)
- Le transmetteur (tranceiver/adaptateur) (modem)
- La prise

Les éléments matériels d'interconnection d'ordinateurs:

- Le support physique d'interconnexion
 - •Le câble coaxial

La paire torsadée

La fibre optique

Les éléments matériels d'interconnection d'ordinateurs:

Les concentrateur

•Hub

•Switch

Les équipements d'interconnexion entre Rx locaux

- Les Répéteurs
- Les ponts (bridges)
- Les passerelles (gateways)
- Les routeurs
- Les firewall

REPEATER / HUB / SWITCH

Répéteur/adaptateur (UNICOM)

Commutateur/ Switch Netgear

Switch multi Protocole (3com)

Switch empilables

ROUTEURS / FIREWALL / DSLAM

Netgear Wireless Firewall / Router

Alcatel DSLAM 7301 et 7300 Compact

Routeur cisco serie 2600

Routeur cisco serie 12 000

page 14

☐ Topologie en bus

☐ Topologie en étoile

□ Topologie en anneau

☐ Topologies hybride

1 : étoile, 2 : anneau, 3 : arbre, 4 : maillage régulier, 5 : intersection d'anneau, 6 : maillage irrégulier.

Méthodes d'accès au canal de communication

Méthode d'accès du jeton (token ring)

Méthode d'accès csma/cd (Career sense multiple access with collision detection)

CSMA/CD

CSMA/CD

Caractéristiques d'une transmission de données

- Le mode de connexion (connecté/non connecté)
- Le sens des échanges (simplex/half-duplex/full-duplex)
- Le mode de transmission (série/parallèles)
- La synchronisation entre émetteur et récepteur (mode synchrone/asynchrone)

Le multiplexage

- Multiplexage fréquentiel
- Multiplexage temporel

Le multiplexage

■ Multiplexage fréquentiel FDM

Le multiplexage

■ Multiplexage temporel TDM

où n: nombre de voie BV et Q: quantum de temps alloué à chaque terminal

Modèles de communication

Les sept couches du modèle OSI

Le modèle TCP/IP

TCP/IP model	Protocols and services	OSI model
	HTTP, FTTP,	Application
Application	Telnet, NTP, DHCP, PING	Presentation
		Session
Transport	TCP, UDP (Transport
Network	IP, ARP, ICMP, IGMP	Network
Network	[Data Link
Interface	Ethernet	Physical

Transmission de données au travers du modèle OSI

Transmission de données au travers du modèle OSI

Encapsulé Décapsuler Capsule=couche Poupée russe

Un signal est une variable ou source d'information évoluant en fonction du temps.

Exemple: un signal s(t), en électronique est une tension v(t) ou un courant i(t).

Signal analogique vs numérique

S(t) = Asin(2πFt+φ)
A: Amplitude (volts)
F:hertz (hz)
T:secondes (s)
φ:phase (radian)
F=Fréquence = 1/T

Gain

$$G = 10 \log_{10} (Pe/Pr)$$

G se mesure en dB decibel Pe/Pr est un rapport de puissance resp.

> Pe: puissance à l'émission (watt) et Pr puissance à la réception (watt)

Bande passante

$$G = 10 \log_{10} (PO/P1)$$

Si P1=1/2P0 => on dira que la bande passant est une bande à 3dB

Temps de tranfert

$$T_{transfert} = T_{emission} + T_{propagation}$$

Perturbations:

- Le bruit blanc (la qualité du signal est caractérisée par le rapport signal /bruit)
- Les bruits impulsifs
- ☐ L'affaiblissement
- ☐ **Les distorsion:** caractérise le déphasage entre le signal en entrée et le signal en sortie.

Erreurs de transmission:

Taux_{err} = Nombre de bits erronés / Nombre de bits émis

Capacité d'un canal (formule de C. Shanon):

C'est Shannon qui en 1949 a prouvé que la capacité d'un canal de transmission n'était pas seulement limitée par la bande passante mais aussi par le rapport Signal/Bruit:

$$C = W \log_2 \left(1 + \frac{S}{B}\right)$$
en Bits/s

Vitesse de transmission

- \square Un état est la plus petite portion du signal échangée entre deux ETCD. La durée d'un ét2at est notée t ou \triangle .
 - Un état contient un nombre d'informations (bits) n.
- ☐ La valence Le nombre d'états différents possibles dans un signal est dit valence du signal notée V.

$$n = \log_2(V)$$
 ou bien $V=2^n$

- ☐ La rapidité ou vitesse de modulationR est la quantité d'états transmis en une seconde : $\mathbf{R} = 1 / t = 1/\Delta$ (bauds)
- ☐ Le débit binaire D d'une voie de transmission est le nombre maximum de symboles binaires transmis par seconde sur cette voie

$$\Delta = 1 \text{ ms}$$

$$R = \frac{1}{\Lambda} = \frac{1}{10^{-3}} = 1000 \text{ bauds}$$

Représentation des données: modulation de base pour la transmission analogique

- Modulation d'amplitude ASK (amplitude shift Keying)
- Modulation de fréquence FSK (frequency SK)
- Modulation de phase PSK (phase SK)

La modulation d'amplitude ou l'**ASK**: l'amplitude du signal varie du simple ou double suivant que l'on veuille transmettre un 0 ou un 1

La modulation de fréquence ou **FSK**: la fréquence du signal varie du simple ou double suivant que l'on transmet un 0 ou un 1

La modulation de phase ou **PSK** : la phase du signal varie en fonction du bit à envoyer

$$S(t)=asin(\pi)$$

$$01 == \square$$
 phi= $\pi/2$

10 ==
$$□$$
 phi= $π$

11 ==
$$\Box$$
 phi=3 $\pi/2$

Représentation du signal numérique

Le rôle principal de la couche réseau (IP: Internet Protocol dans TCP/IP) est de :

- •Transporter des paquets de la source vers la destination via les différentes nœuds de commutation du réseaux traversés
- •Trouver un chemin tout en assurant une régulation et répartition de la charge des réseaux

Ce rôle est assuré par un ensemble de fonctions :

- Fragmentation et réassemblage (conversion de messages en paquets)
- Adressage et routage (acheminement des paquets)
- Régulation et répartition de la charge (contrôle de flux)

Entête de couche IP

De quoi est constituée une adresse IP ? Comment est-elle utilisée lors de l'acheminement des paquets ?

Cette adresse est sous la forme de 4 champs w.x.y.z où w, x, y et z sont des octets dont la valeur ne dépasse pas 255.

Des exemples 192.168.10.2, 200.10.177.90, 122.10.10.2

De quoi est constituée une adresse IP ? Comment est-elle utilisée lors de l'acheminement des paquets ?

					Netwo	ork					Hos	st
Binary	11000000		10101000		00000001		00000001					
	2 ⁷ +2 ⁶			2 ⁷ +	-2 ⁵ +2 ³		2 ⁰			2 ⁰		
Dasimal	192			168	8		1			1		
Decimal												
		128 1	64 0		32 1	16 0		8	4	0	2	1 0

De quoi est constituée une adresse IP ? Comment est-elle utilisée lors de l'acheminement des paquets ?

Cette adresse est sous la forme de 4 champs w.x.y.z où w, x, y et z sont des octets dont la valeur ne dépasse pas 255.

Des exemples 192.168.10.2, 200.10.177.90, 122.10.10.2

Principe de découpages en classes

Les classes d'adresses IP

Classe	Adresses
A	0.0.0.0 à 127.255.255
В	128.0.0.0 à 191.255.255.255
С	192.0.0.0 à 223.255.255
D	224.0.0.0 à 239.255.255
E	240.0.0.0 à 247.255.255

0000000=0

 $\begin{array}{c} 1111111111=255 \\ \text{Partie réseau ou préfixe} \end{array}$

192.168.1	.1
11000000.10101000.00000001	.00000001

Adresse de réseau

192.168.1	.0
11000000.10101000.00000001	.00000000

Adresse de broadcast

192.168.1	.255
11000000.10101000.00000001	11111111

De quoi est constituée une adresse IP ? Comment est-elle utilisée lors de l'acheminement des paquets ?

Le masque d'adresse IP: Le masque de sous-réseau est créé en plaçant le nombre binaire 1 dans chaque position de bit qui représente la partie réseau et en plaçant le nombre binaire 0 dans chaque position de bit qui représente la partie hôte. Le préfixe et le masque de sous-réseau constituent des moyens distincts de représenter la même chose : la partie réseau d'une adresse.

Exemples:

Classe C 255.255.255.0 = en binaire 1111111111111111111111111100000000

Les types d'adresses IP

Private Address Ranges					
Class A	10.0.0.0~10.255.255.255				
Class B	172.16.0.0~172.31.255.255				
Class C	192.168.0.0~192.168.255.255				

Special Addresses					
Diagnostic	127.0.0.0 ~ 127.255.255.255				
Any Network	0.0.0.0				
Network Broadcast	255.255.255				

Espace d'adressage par classe

Classe	Masque réseau	Adresses réseau	Nombre de réseaux	Nombre d'hôtes par réseau	
A	255.0.0.0	1.0.0.0 - 126.255.255.255	126	16777214	
В	255.255.0.0	128.0.0.0 - 191.255.255.255	16384	65534	
C	255.255.255.0	192.0.0.0 - 223.255.255.255	2097152	254	
D	240.0.0.0	224.0.0.0 - 239.255.255.255	adresses uniques	adresses uniques	
E	non défini	240.0.0.0 - 255.255.255	adresses uniques	adresses uniques	

Opération AND Généralement, cette opération est exécutée par les routeurs pour router les paquets vers leur réseau de destination.

Adresse machine AND Masque de réseau = Adresse du réseau de destination

Exemple

@machine 172.16.20.35 en binaire: 10101100.00010000.00010100.001100011

En appliquant l'opération AND entre l'adresse hôte et le masque ; on obtient :

Adresse réseau: 172.16.20.32 en binaire: 10101100.00010000.00010100.00100000

Notions de base de création de sous réseaux

Pourquoi le besoin de découpage en sous réseaux ?

- Satisfaction des besoins
- Délimitation du domaine de diffusion
- Nécessité de sécurité

création de sous-réseaux

Nombre de sous-réseaux : 2^m où m est le nombre de bits empruntés Le nombre d'hôtes : 2ⁿ - 2 où n est le nombre de bits laissés pour les hôtes.

Exemple d'adressage classique de sous-réseaux utilisant l'adresse 192.168.1.0/24

En binaire:

création de sous-réseaux

 $192.168.1.0 (/25) \rightarrow Adresse : 11000000.101010000000001.000000000$

 $192.168.1.128 (/25) \rightarrow Adresse : 11000000.101010000000001.100000000$

création de sous-réseaux, Quelles sont les limites de cette méthode?

Exemple: 192.168.15.0/24

Nouveau masque: 255.255.255.224 /27

Impossible de satisfaire un LAN de plus de 30 hôtes Gaspillage d'adresses

Le routage statique

Donner le contenu de la table de routage au niveau de chaque routeur pour une connectivité réussie