[8장] 나무-기반의 방법

개요

8.1 의사결정 나무의 기초

8.1.1 회귀나무

야구선수 연봉 예제

특징 공간 층화로 예측 - 트리 만드는 방법

나무 가지치기 - 단일 트리 모델 성능 향상

8.1.2 분류나무

8.1.3 나무와 선형모형 비교

8.1.4 나무의 장점과 단점

장점

단점

8.2 배깅, 랜덤 포레스트, 부스팅 및 베이즈 가법회귀나무

8.2.1 배깅

OOB(Out-of-bag) 오류 추정

변수 중요성 측도

8.2.2 랜덤 포레스트

8.2.3 부스팅

8.2.4 베이즈 가법회귀나무(BART)

8.2.5 나무 앙상블 방법 요약

번외

개요

💡 나무 기반 방법은 **예측 변수의 공간을 수 영역**으로 나눠서, 각 영역의 평균 반응값 또 는 최빈 반응값을 사용하여 예측하는 방식

- 예측 정확도 면에 있어선 6장과 7장에서 나왔던 고성능 지도 학습법보다는 떨어짐
- 나무 기반 기법의 특징
 - 종류: 배깅(Bagging), 랜덤 포레스트(random forest), 부스팅(boosting), 베이즈 가 법회귀나무(Bayesian additive regression trees)
 - 。 다중의 나무를 생성하여 결합하여 예측
 - 예측도를 극적으로 향상 ↔ 해석에 있어서 일부의 손실 발생

8.1 의사결정 나무의 기초

의사결정 나무는 회귀 문제와 분류 문제에 모두 적용 가능

8.1.1 회귀나무

야구선수 연봉 예제

[그림 1]

- 말단마디(terminal node): leaf라고도 하며, 각 조건의 가장 끝을 의미
 - 해당 예제에서는 평균 로그 연봉 예측 값이 해당 조건에서의 terminal node의 값이 됨
- 내부마디(internal node): 예측 변수 공간이 분할되는 지점, 위에 쓰여진 조건
 - 마디에 해당하는 값은 왼쪽 가지에 해당하는 영역, 그 반대가 오른쪽 가지에 해당하는 영역
- 가지(branch) : 각 마디들을 연결하는 선분
- 。 해석
 - 가장 상위에 있는 internal node인 **years**가 영향력이 가장 큼
 - hits는 years가 4.5년 이상일 때만 의미 있음
- [그림2]
 - 그림 1을 2차 평면 상에 시각화

특징 공간 층화로 예측 - 트리 만드는 방법

- 회귀나무를 구축하는 절차
 - \circ 예측변수 공간을 J개의 명확하고 겹치지 않는 영역으로 나눈다. ($R_1,R_2,R_3,...,R_j$)
 - [그림 2]에서는 J가 3인 영역으로 나눔
 - \circ R_i 영역에 속하는 **모든 관측을 동일한 값**(예. R_i 영역의 평균 반응값)으로 예측
- R_i 영역을 만드는 방법은..?
 - **잔차 제곱합(RSS)를 최소화**하는 방향으로 영역을 분할
 - 다만 J개의 영역으로 완벽하게 특징 공간을 "겹치지 않게" 분할하는 것은 잔차 제곱합을
 최소화하는 식으로는 계산 상 불가능
- 재귀적 이진 분할(Recursive Binary Splitting)
 - 。 **탑다운 방식**으로 데이터를 나눠가며
 - ∘ 탐욕적(greedy)으로 각 단계에서 RSS를 가장 크게 줄이는 분할을 선택
 - 예측변수(X_j)와 cutpoint(s)를 적절히 선택해 (예. years < 4.5) 두 공간으로 나 누며 RSS가 가장 낮아지게
 - 식으로 따지자면
 - $\circ \quad R_1(j,s) = X \mid X_j < s$ 와 $R_2(j,s) = X \mid X_j \geq s$ 의 공간으로 나눠
 - \circ 잔차 제곱합인 $\sum_{i\in R_1(j,s)}{(yi-yR1)^2}+\sum_{i\in R_2(j,s)}{(yi-yR2)^2}$ 가 가장 작아지도록 하는
 - 。 j와 s를 찾음
 - 이 방식은 특정한 정지 조건이 있을 때까지 반복할 수 있다.
 - 예. 어떤 영역도 5개 이상의 관측이 포함되지 않는 경우
 - ∘ 위에서 말한 internal node가 정해지는 방식

나무 가지치기 - 단일 트리 모델 성능 향상

- 나무 모델은 overfitting이 일어나기 쉬워 성능 저하가 일어날 수 있음
 - 애초에 탐욕적으로 RSS가 작은 기준을 최우선을 정하는 상황에
 - 분할이 너무 많이 일어나는 경우 → 과적합이 일어날 수 있음
 - 해결1: 편향이 좀 있더라도 트리를 작게 만들면 예측 성능이 좋아질 수 있음(편향 / 분산 간 트레이드오프)

- ∘ 해결2(?): RSS 감소가 어떤 임곗값을 초과할 때만 나무 구축
 - 쓸모 없어 보이는 분할이 개선점이 될 수 있을 정도로 중요할 수 있음

가지치기(prunning)

- 매우매우 큰 트리를 만든다(RSS가 충분히 줄어들 때까지 계속 분할)
- 가지치기를 통해 하위 트리(subtree)를 만든다.
- 목표: 테스트 에러가 가장 낮은 하위 트리를 선택
 - 다만, 모든 하위 트리의 교차 검증 오류를 다 계산한다는 것은 불가능에 가까움
- 비용복잡도 가지치기(cost complexity prunning)
 - 。 음수가 아닌 조율모수(tunning parameter, lpha)를 도입해서 모델의 복잡도와 정확도 사이에서 균형을 조절
 - tunning parameter가 0에 가까워질수록 가장 큰 트리에 가까워짐
 - 이 땐 훈련 오차만 측정
 - tunning parameter가 커지면 커질수록 단순한 트리가 됨
 - terminal node가 많은 나무를 유지하는 비용이 생겨, 더 작은 subtree에서 최소화 되는 경향이 있다.
 - 가지가 예측 가능해지고, 점진적으로 나무에서 제거될 수 있음 → 부분 나무 전체의 시퀀스를 얻을 수 있음
 - α 는 검증 세트를 사용하거나 k-겹 교차검증으로 선택할 수 있음
 - 복잡도를 조절하기 위해 패널티 항을 사용한다는 점에서 라쏘와 비슷

• 예시

- 훈련 세트 132, 테스트 세트 131개로 관측 결과를 나눠 제일 큰 회귀 나무를 생성
 - 6-겹 교차 검증을 통해 MSE를 추정
 - 아래의 표에서,
 - CV가 가장 낮으면서(초록선)
 - Test 오차가 적절히 낮은(주황선)
 - 나무가 3마디일 때가 가장 적절한 나무가 되며, 3-마디 나무로 가지치기 했다고 할 수 있다.

。 이 결과는 맨 처음에 나온 나무 예제와 동일

8.1.2 분류나무

	회귀 트리	분류 트리
반응 형태	양적 반응(숫자형 응답)	질적 반응(범주형 응답)
말단 노드 값	훈련 샘플의 평균 값	가장 흔히 발생하는 클래스
추가 특징	-	노드 안에 있는 클래스의 비율도 중요
생성 방식	재귀적 이진 분할	재귀적 이진 분할
분할 결정 기준	RSS 최소화	분류 오류율 or 지니 지수 or 엔트로 피

- 분류 오류율: 말단 노드에서 가장 흔한 클래스가 아닌 비율(상대적으로 민감하지 않음)
- **지니 지수**: K 부류에 걸친 총 분산의 측도 → 작을수록 좋음
 - 지니 지수가 작다는 것은, 한 노드 내에 최대한 **하나의 클래스로 응집**될 수 있다는 것
 - 노드 내에 A, B 클래스가 있다고 했을 때 데이터가 A 분류로 들어가는 경우가 많을 수록 해당 노드가 A라고 설명할 수 있기 때문(노드가 A로써 pure하다고 할 수 있다! 해당 노드는 A라고 예측하기 쉬워짐)
 - 지니 지수가 높다는 건 여러 클래스가 속해 있어서 해당 노드가 대표적으로 무슨 값 이다 라고 설명하기 모호해짐

• 엔트로피: 불확실성을 수치로 나타냄

- "이 노드 안에 클래스가 얼마나 섞여 있는가"
- 덜 섞여 있을수록 엔트로피가 작고, 많이 섞여 있을수록 엔트로피가 커짐
 - 이 또한 지니 지수랑 매우 흡사한 의미를 갖게 됨
 - 차이가 있다면 엔트로피는 '예측 값이 클래스에 개수에 따라 얼마나 헷갈리 냐'에 초점
 - 지니 지수는 '예측이 해당 노드 내에서 틀릴 확률'에 초점을 맞춤
- 가지치기 할 때 셋 다 쓸 수 있으나,
 - 예측 정확도를 목표로 한다면 분류 오류율을 선택하는 게 유리
 - 특정 분할의 품질 평가에는 지니 지수 or 엔트로피를 사용하는 게 유리
- 예시: 심장병 유무 예측

- 예측 변수 13개를 이용하여 가장 큰 트리(상단)를 만든 후, 교차 검증(하단 좌측)을 통해 6개의 노드를 가진 나무(하단 우측)으로 가지치기 함
- 이 때, 예측 값이 같은 leaf가 생성된 사례가 존재
 - 마디 순도(node purity)를 증가 시키면서 수행됨
 - 똑같은 Yes여도 한 쪽은 9/9 순도일 수 있고, 다른 한 쪽은 7/11 순도일 수도 있다.
 - 지니 지수나 엔트로피는 노드가 '더 순수한지'를 더 잘 감지함

8.1.3 나무와 선형모형 비교

• 선형 회귀 모델

$$f(X)=eta_0+\sum_{j=1}^p X_jeta_j$$

• 회귀나무 모델

$$f(X) = \sum_{m=1}^M c_m \cdot (X \in R_m)$$

• R_m 은 공간 분할 영역, c_m 은 각 영역의 예측값(평균값)

• 모델 선택 기준

- 데이터가 선형인 경우: **선형 회귀**를 이용하는 것이 성능이 훨씬 좋음
- 데이터가 비선형이며 복잡한 경우: **회귀 트리**가 훨씬 유연하며 성능이 좋음
- ▼ GPT한테 물어본 선형회귀 vs 회귀나무에 대한 좀 더 디테일한 표 정리

항목	선형 모델 (예: 선형 회귀)	트리 기반 모델 (예: 회귀/분류 트리)
모델 형태	연속적인 선형식 $f(X) = \beta_0 + \sum X_j \beta_j$	영역별 상수 함수 $f(X) = \sum c_m \cdot 1(X \in R_m)$
관계 가정	변수와 응답 사이에 선형적 관계 를 가정	변수와 응답 사이의 비선형적, 복잡한 구 조 도 허용
해석 용이성	계수 β를 통해 변수의 영향 해석이 직관적 임	트리 구조로 의사결정 경로가 명확하므로 시각적 해석이 쉬움
예측 정확도 (단순 구 조)	선형 구조가 잘 맞을 경우 우수함	단순 선형 구조일 경우 과소적합 위험 있 음
예측 정확도 (복잡 구 조)	고차항이나 상호작용 없이는 잘 대 응 못함	복잡하거나 비선형적인 관계 에 대해 유 리함
과적합 경향	적절한 정규화 없으면 과적합 가능 성 있음	과도하게 깊은 트리 는 과적합 우려 → 가 지치기(pruning) 필요
모델 선택 기준	MSE, AIC, BIC, cross- validation 등	주로 cross-validation , pruning 시엔 복잡도-비용 균형 고려
성능 평가 방법	교차 검증, 테스트셋 오차 등	교차 검증, 테스트셋 오차 등 (같음)
범주형 변수 처리	일반적으로 더 복잡한 인코딩 필요 (e.g. one-hot)	직접 분할 가능 (e.g. "Sex: female vs. male")
적용 예시	선형적으로 예측 가능한 문제 (e.g. 집값, 키와 몸무게)	구조적 경계가 있는 문제 (e.g. 질병 유무, 고객 분류 등)

8.1.4 나무의 장점과 단점

장점

- 설명이 매우 쉽다
 - 트리는 사람들에게 설명하기 쉬우며, 경우에 따라 선형 회귀보다 더 쉽게 설명될 수 있다.
- 사람의 사고 방식과 유사하다
 - 어떤 사람들은 트리 방식이 인간의 의사결정 구조와 더 가깝다고 느낀다.
- 시각화가 쉽고 해석이 간단하다
 - 트리는 **그래픽으로 표현이 가능하고**, 특히 작을 경우 **비전문가도 이해하기 쉬움**
- 범주형 변수도 자연스럽게 처리 가능하다
 - ∘ 더미 변수(dummy variable)를 만들 필요 없이 그대로 분할 가능함

단점

• 예측 정확도가 다른 방법들보다 낮은 편

- 일반적으로 트리는 선형 회귀나 로지스틱 회귀 등 기존 방법들보다 예측력이 떨어질 수
 있음
- 비견고성(non-robust)
 - 데이터가 약간만 바뀌어도 트리의 구조가 크게 바뀔 수 있음 → 즉, 과적합이나 민감도
 문제 발생 가능

8.2 배깅, 랜덤 포레스트, 부스팅 및 베이즈 가법회 귀나무

단순한 의사결정나무만으로는 모델의 성능이 다소 떨어질 수 있음이 때, 배깅, 랜덤 포레스트, 부스팅, 베이즈 가법회귀나무 기법 등의 앙상블 기법을 이용하면 예측 성능이 크게 개선 될 수 있다.

8.2.1 배깅

- 5장에서 나왔던 부트스트랩을 머신러닝 성능 향상에서 사용할 때, 배깅이라고 함
 - 부트스트랩: 어떤 통계량(ex. 표준편차)등을 직접 계산하기 어렵거나 불가능할 때 사용
- 기본적으로 의사결정나무는 분산이 크다
 - 훈련 데이터를 무작위로 나누고 각각 트리를 적용했을 땐 전혀 다른 트리가 만들어 질수 있다는 의미
 - 。 여러 모델의 평균을 구하여 분산을 줄임 → 배깅의 기본 아이디어
 - ullet 관측 값이 $Z_1,...,Z_n$ 일 때, 평균의 분산은 $Var(ar{Z})=\sigma^2/n$ 으로 평균을 내면 분산이 줄어든다는 것이 직관적으로 보임
- 머신 러닝에 적용한다면?

$$\hat{f}_{avg}(x) = rac{1}{B} \sum_{b=1}^B \hat{f}^b(x)$$

- \hat{f}_b 는 서로 다른 학습 세트로 훈련한 예측 함수들이며, B로 나누면서(=평균으로 만들어) 저분산 통계 학습 모형으로 만듦
- 현실적으로는 여러 훈련 세트를 사용하는 건 불가능하므로, 단일 훈련 세트를 이용해서 부트스트랩 기법으로 훈련 데이터세트를 이용함

$$\hat{f}_{bag}(x) = rac{1}{B}\sum_{b=1}^B \hat{f}^{*b}(x)$$

- 회귀나무와 배깅
 - 회귀나무에 배깅을 쓰려면 B개의 회귀나무를 만들어 예측 평균을 내면 됨 → 가지치기 는 안되어 있음
 - 트리는 분산이 크고 편향이 낮은 모델
 - 예측 평균을 낸다는 것 → 분산도 같이 낮아진다는 것 → 정확도 향상
- 분류에서는?
 - 。 정량적 Y대신 범주형 Y로 치환해서 사용
 - 。 각 트리의 예측 클래스를 모아서 **다수결**로 최종 예측
- 테스트 에러 관련 그래프 예시

- 。 트리 개수가 많아지면서 오차율은 줄어듦
- 어느정도 되었을 때(약 100개의 트리일 때 쯤부터) 오차율이 안정화 되므로, 최소 100개 정도의 트리를 만들어 평균 분산값을 내면 충분히 좋은 모델이 됨

OOB(Out-of-bag) 오류 추정

- 배깅에서 테스트 오차 추정하는 방법
- 원리

- 배깅: 부트스트랩 샘플링으로 각 트리를 학습
 - 훈련 데이터 중 일부만 뽑아서 트리를 학습 시킨다는 의미
- 。 통계적으로, 각 트리는 평균적으로 전체 데이터의 2/3 정도만 사용
 - 나머지 1/3의 데이터는 트리 학습에 사용하지 않음 → 이 때의 데이터가 OOB(out of bag) 샘플이라 함
- 。 각 관측값 i에 대해 이 샘플이 포함되지 않았던 트리가 있음
 - 해당 트리에서의 OOB 샘플이므로 이 트리들에서만 예측 수행(통계적으로 약 B/3 개의 트리)
 - 회귀 → 예측값들의 평균으로 OOB 예측 , 분류 → 예측값들의 다수결로 OOB 예측
 - 위에서 얻은 OOB 예측값과 실제 값을 비교
 - 전체 관측값에 대해
 - 。 회귀인 경우는 MSE, 분류인 경우에는 분류 오류율을 계산
- OOB 에러는 외부 테스트 데이터 없이도 테스트 에러를 추정하기가 매우 쉬움
 - 부트스트랩 기법의 특징을 통해 가능했던 것!!
- 예시(상단 그래프)
 - OOB 에러는 트리 개수가 충분히 클 때 LOO 교차 검증 결과와 거의 같아짐
 - 그렇기 때문에 데이터가 크고 cross-validation이 너무 느리다면 OOB를 쓰는 게 매우
 빠르다 → 대규모 데이터 셋에서 유용!

변수 중요성 측도

- 배깅은 많은 트리를 조합하기 해서 예측이 정확하지만, 해석이 어려움
 - 。 어떤 변수가 중요한지 직관적으로 파악하기 힘듦
 - → 그럼에도 **변수별 중요도 요약이 가능**함
- 측정 방법
 - 。 회귀 트리
 - 각 트리에서 특정 변수로 나눈 분할이 RSS를 얼마나 줄였는지 기록
 - B개의 트리에서 얻어낸, 각 특정 변수마다 RSS 감소 기록값의 평균을 구함
 - RSS 감소량이 클수록 중요한 변수
 - 트리에서 변수를 정하는 방법이 RSS 최소화 하는 건데, 최소화 하는 양 자체가 큰 건 주요 변수라는 얘기
 - 。 분류 트리

- 각 트리에서 변수별 분할이 지니 지수를 얼마나 줄였는지 기록
- B개의 트리에서 얻어낸, 각 특정 변수마다의 지니 지수 감소량을 찾아 평균을 구함
- 가장 감소량이 큰 변수일 수록 중요한 변수
- 개인적으로 궁금해진 것!! → 엔트로피나 분류 오류율을 써도 되는가?
 - 분류 오류율은 덜 민감해서 이론상 가능하지만 변수 중요성 측정에는 쓰지 않음
 - 엔트로피는 사용할 수 있지만 다음의 기준에서 선택해서 쓸 수 있음

상황	추천 기준
계산 비용 신경 쓴다	☑ 지니 지수
해석을 명확히 하고 싶다 (정보 이득 기반 설명)	☑ 엔트로피
다수 클래스 vs 소수 클래스 구분을 예민하게 하고 싶 다	엔트로피가 약간 유리할 수 있 음
실험적으로 성능 비교 중이다	둘 다 돌려보고 확인

대신 성능 상으로는 차이가 미미하고 속도는 지니 지수를 사용하는 게 더 빠르므로 지니 지수 사용을 권장!

8.2.2 랜덤 포레스트

- 랜덤 포레스트는 배깅의 확장 버전
 - 기본적으로 부트스트랩 샘플링된 여러 데이터셋에 대해 트리를 만든 후 평균을 내는 방식이라는 점은 배깅과 동일
- 핵심 차이점: **무작위 변수 선택**
 - 。 트리를 만들 때, 매 분할마다 전체 변수 p 중 무작위로 고른 m개의 변수만 후보로 사용
 - 일반적으로 $m pprox \sqrt{p}$ 로 구해 고른다
 - 각 트리의 구조가 더 다양해짐 → 상호 상관이 줄어듦
- 유용한 이유
 - 변수 하나가 너무 강력하다면, 모든 트리가 첫 분류에 그 변수를 기준으로 사용해서 트리 구조들이 비슷해짐
 - 배깅을 해도 예측들 간의 상관이 높아져, 분산 감소 효과가 적어짐
 - 랜덤하게 변수를 뽑기 때문에, 트리들이 덜 유사해져 예측 분산이 많이 줄어듦
- m의 효과
 - m=p 인 경우: 랜덤 포레스트가 곧 배깅이 됨

- $\circ \ m=\sqrt{p}$ 인 경우: 일반적인 랜덤 포레스트 설정
- m이 작을수록 변수 다양성이 커지고 상관은 줄어들지만, 너무 작으면 약한 분할만 생겨서 성능이 다소 떨어질 수 있음

8.2.3 부스팅

- 앞선 배깅이나 랜덤 포레스트와 달리 순차적으로 학습 시킴
 - 이전 트리들의 잘 학습 안된 부분을 다음 트리가 보완해줌
 - 즉, 앞선 결과를 토대로 다음 결과가 정해질 수 있음(좋은 쪽으로)
 - 。 부트스트랩 사용X
- 부스팅의 주요 하이퍼 파라미터
 - B (트리 개수)
 - 너무 크면 과적합 가능 → **교차 검증으로 조정**
 - λ (learning rate / shrinkage rate)
 - 학습 속도 조절
 - 작을수록 느리게 학습되며 일반화 잘 됨

- 보통 0.01 또는 0.001
- 入가 작으면 **더 많은 트리(B)** 필요해짐
- d (트리의 분할 수 = interaction depth)
 - 트리 한 개가 얼마나 복잡한지를 나타내는 척도
 - **d = 1**이면 stump (단일 분할) → **가산 모델과 유사해짐**
 - 일반적으로 낮게 설정하는 것이 좋음
- 부스팅의 기본 아이디어 (회귀 기준) : 분류나무 부스팅도 비슷하지만 디테일이 다름(복잡함)
 - 1. 처음엔 단순한 모델로 시작함.
 - 2. 현재 모델의 잔차를 계산함: 실제 값 예측 값
 - 3. 이 잔차에 대해 새로운 결정 트리를 학습시킴
 - 4. 학습된 트리를 기존 모델에 조금씩(λ만큼) 추가함
 - 5. 잔차를 업데이트
 - 6. 1~4의 과정을 B번 반복함
 - a. 각 트리는 **작고 단순하게** 만들고, 전체적으로 조화롭게 오류를 줄임

▼ 부스팅 vs. 배깅

항목	부스팅(Boosting)	배깅(Bagging)
트리 생성 방식	순차적 (앞선 결과 반영)	병렬 (독립적으로)
데이터 샘플링	원본 데이터, 단 잔차로 학습	부트스트랩 사용
목적	잔차(error)를 점진적으로 줄이기	분산 감소
각 트리의 역할	이전 트리의 오류 보정 에 집중	동등하게 기여

8.2.4 베이즈 가법회귀나무(BART)

• 기존 앙상블과의 차이

방식	설명
배깅/랜덤 포레스트	트리를 각각 독립적으로 만들고 예측값을 평균 함
부스팅	트리를 순차적으로 만들되, 이전 트리의 오류(잔차)를 보정 함
BART	트리를 순차적으로 학습하되, 매 단계에서 기존 트리를 살짝씩 수정 (perturbation)해가며 개선해나감 + 베이지안 관점 도입

• 작동 방식

- K개의 트리를 준비 (보통 작고 단순한 트리)
- 。 각 반복(iteration)에서:
 - 트리 하나씩 차례대로 업데이트함
 - 나머지 트리의 예측값을 제외하고 해당 트리에서만 보정해야 할 잔차(residual)를 계산
 - 기존 트리를 기반으로 작은 변화(perturbation)를 시도:
 - 트리 구조 변경 (가지 추가/제거)
 - 단말 노드 값 변경
 - 이 변화를 통해 **잔차에 더 잘 맞는 방향으로 조정**
- 。 B번 반복하고, 초반 L번은 burn-in이라 버림
 - → 최종 예측값은 이후의 평균

$$f^(x)=rac{1}{B-L}\sum_{b=L+1}^B f^b(x)$$

- 신뢰 구간이나 percentile도 함께 계산 가능 → 불확실성 추정 가능
- perturbation 방식의 장점
 - o 매번 새 트리를 훈련하는 게 아니라 기존 트리를 조금씩 바꿔가며 적합
 - 데이터를 "심하게 적합하지 않도록 하여(overfitting 억제) 안정적임
 - 개별 트리는 작고, 전체 모델은 점진적으로 정확도 상승
- 베이지안 해석
 - 매번 트리를 조금씩 수정하는 과정은, 사실상 베이지안 사후 분포로부터 트리를 샘플링하는 과정임
 - BART 알고리즘 전체는 MCMC (Markov Chain Monte Carlo) 알고리즘의 일종으로 해석 가능

8.2.5 나무 앙상블 방법 요약

방법	특징 요약
Bagging	- 각 트리를 독립적으로, 부트스트랩 샘플 에서 학습 - 트리들이 서로 비슷해져서 모델 공간 탐색이 제한적 일 수 있음 - 과적합 억제에 효과적이나, 다양성 부족으로 성능 한계

	- Bagging과 거의 같지만, 각 분할마다 무작위로 일부 변수만 사용	
Random Forests	- 트리 간 **상관성(decorrelation)**을 줄여서 더 다양한 트리 생성 →	
	Bagging보다 더 넓은 모델 공간 탐색 가능	
	- 원본 데이터만 사용, 부트스트랩 없음	
Boosting	- 트리를 순차적으로 학습, 잔차(residual)를 점진적으로 보정	
	- 학습률(λ)을 작게 설정해 천천히 학습함 (slow learning)	
	→ 과적합을 조심스럽게 피하면서 정교한 모델 구성	
	- Boosting과 유사하게 순차적 학습 , 원본 데이터만 사용	
BART	- 단, 이전 트리를 "조금씩 수정" (perturbation)하는 방식으로 개선 -	
	로컬 최적(local minima)에 갇히지 않도록 모델 공간을 더 잘 탐색함 - 베이지안 방식과 연결됨 (사후 분포에서 트리 샘플링처럼 작동)	

▼ 추가 표(by. GPT)

비교 기준	Bagging	Random Forest	Boosting	BART
트리 학습 방식	병렬 (독립적으로 생성)	병렬 (독립적으로 생성) + 변수 무작 위 선택	순차적 (앞선 트리 잔차에 맞춰 학습)	순차적 (기존 트리 를 작게 수정하며 학습)
데이터 샘플링	부트스트랩 샘플 사용	부트스트랩 샘플 사용 + 변수 하위 집합 사용	부트스트랩 사용 안함 , 원본 데이터 반복 사용	부트스트랩 사용 안함 , 원본 데이터 반복 사용
트리 간 의존성	없음 (완전 독립)	없음 (변수 무작위 화로 약한 다양성 부여)	있음 (이전 트리 기반으로 다음 트 리 구성)	있음 (이전 트리를 수정하며 점진적 개선)
트리 다양성 유도 방식	데이터 샘플링만	데이터 샘플링 + 변수 무작위 선택	잔차 기반 학습 (error- corrective)	트리 구조 및 값의 무작위 수정 (perturbation) 기반 다양화
모델 업데이트 단 위	전체 트리 예측값 평균	전체 트리 예측값 평균	각 트리 예측값에 가중치 λ 곱해 누 적	매 반복마다 트리 수정 후 전체 예측 누적
과적합 위험	낮음 (분산 감소 효과)	낮음 (분산 감소 + 다양성)	있음 (Β, λ 조절 필요)	낮음 (작은 트리, 느린 학습, 베이지 안 구조로 제어)

비교 기준	Bagging	Random Forest	Boosting	BART
트리 크기	깊은 트리 (prune 안함)	깊은 트리 (prune 안함)	보통 작은 트리 (depth 1~2, stump 추천)	보통 아주 작은 트 리 (크기 제한 필 수)
성능 향상 원리	분산 감소	분산 감소 + 트리 상관성 제거	편향 감소 (잔차 보정), 정교한 학 습	편향 감소 + 베이 지안적 모델 공간 탐색
베이지안 해석 가 능 여부	×	×	×	✓ (MCMC와 사후 분포 샘플링 관점)
대표 하이퍼파라 미터	B (트리 수)	B, m (분할 변수 개수)	B (트리 수), λ (학 습률), d (트리 깊 이)	B (반복 수), K (트리 수), L (burn-in 길이)

범외

▼ 솔직히 부스팅이랑 BART는 뭔 소리인지 이해가 안돼서 GPT한테 다른 방식으로 알려 달라 고 했습니다...

··· 아 너무 어렵다..ㅠ

혹시 베이지안의 사후 분포에 대해서 진짜 겁나 쉽게 설명해줄 수 있어? 비유를 할 수 있으면 비유를 해줘도 되고..

🅌 비유: 라면 취향 찾기 실험

너랑 친구가 있어.

너는 "내가 진짜 좋아하는 라면은 어떤 맛일까?" 궁금해서 실험을 하기로 해.

1. 🔮 사전 확률(prior): 처음 갖고 있는 예상

처음에 너는 생각해.

"나는 매운 라면을 좋아할 확률이 높을 것 같아.

치즈라면은 좀 애매하고,

된장라면은 별로일 거 같아."

이게 바로 **사전 확률**이야.

→ 데이터를 보기 전, 내 추측

2. 🅌 데이터 관찰(likelihood): 실제로 라면을 먹어본 결과

며칠간 실험을 해봤어.

• 매운 라면 먹고: 너무 맵기만 해서 별로

• 치즈라면 먹고: 생각보다 괜찮음

• 된장라면 먹고: **오, 이거 은근 맛있는데?**

이게 바로 데이터 = 관찰 결과 = likelihood

3. 🧠 사후 확률(posterior): 관찰 결과를 반영한 새로운 생각

그럼 이제 너는 이렇게 생각해:

"음... 처음엔 매운 라면 좋아할 줄 알았는데,

먹어보니까 **된장라면이 내 입맛**이야!

이제는 된장라면일 가능성이 가장 높다고 생각해."

이게 바로 **사후 확률(posterior distribution)**이야.

→ "내 예상 + 실제 경험"을 합친 업데이트된 믿음

♂ 정리하면:

용어	의미	라면 예시
사전 확률 (Prior)	경험 전 나의 믿음	"매운 게 좋을 듯"
우도 (Likelihood)	실제 관측된 데이터	"매운 거 별로, 된장 맛있음"
사후 확률 (Posterior)	업데이트된 믿음	"된장이 내 스타일이네"

···· 그럼 BART의 매번 트리를 조금씩 수정하는 과정은, 사실상 베이지안 사후 분포 로부터 트리를 샘플링하는 과정임 이 설명은 너의 라면 예시?에서 확장?해서 설 명 가능해?

🥌 BART = 라면 취향 찾기 + 매번 살짝 바꿔보는 과정

아까 넌 된장라면을 좋아하는 걸 **데이터 기반으로 깨달았다**고 했잖아? 근데 너는 진짜 호기심이 많아서 이렇게 생각함:

"그래도 혹시... 된장 70%, 치즈 30% 비율이면 더 좋을 수도 있지 않을까? 그리고 조 리 시간을 좀 늘린다면?? 거기에 두부토핑을 살짝 넣으면?" 등..

이제 트리로 생각하면?

BART에서는:

- 너의 **라면 취향 = 하나의 결정 트리**
- 트리는 특정 입력(라면 특성)에 대해 "맛있음 or 별로"를 알려주는 룰

⑥ BART의 핵심은?

단 하나의 정답 트리를 고정하지 않아! 대신 여러 개의 그럴듯한 트리들을 사후 분포에서 뽑아가며, 전체 평균으로 예측을 만들어.

🞲 그러니까 매번 트리를 조금씩 바꾸는 과정은?

내가 생각하는 최적의 라면 레시피를, 살짝씩 조정해보면서 "이게 더 맛있을 수도 있잖아?" 하고 **탐색하는 과정**이야.

- 된장 80% → 된장 60%
- 치즈 없는 버전 → 치즈 살짝 넣은 버전
- 조리시간 3분 → 4분

이런 식으로 트리를 살짝 바꿔가며 성능(데이터와의 일치도)을 평가하고, 그게 좋다면 **사후 분포에서 더 높은 확률로 채택**되는 거지.

🧠 BART는 이렇게 동작해

- 1. **초기엔** 라면 레시피(트리)를 막 지어봐 → prior
- 2. 데이터를 보고: "이 조합은 생각보다 별로였네, 수정해야지"
- 3. 조금씩 바꿔가며:

- → 트리를 grow/split/merge/change 해서 다양하게 만들어봄
- → MCMC 방식으로 사후 분포에서 **트리 샘플**들을 계속 뽑는 거임

4. 예측은?

→ 여러 트리들의 예측을 **평균(앙상블)**해서 쓰는 거야

☑ 요약: 너의 라면 비유에서 BART는...

요소	의미
라면 레시피	하나의 트리 모델 구조
실험 결과	데이터
레시피 수정	트리 구조 변경 (MCMC step)
여러 레시피 평균	여러 트리 평균 → 최종 예측
이 모든 걸 감싸는 틀	베이지안 사후 분포 기반 탐색과 추론

즉, BART는 **"라면 취향을 탐색하는 베이지안 미식가"**라고 보면 돼 ㅋㅋ 매번 조금씩 레시피(트리)를 바꿔보면서, 가장 맛있는 조합을 찾아가는 거지.

\cdots 그럼 위 예시로 부스팅도 설명해줘

🥌 부스팅 = "라면 레시피 계속 보완해나가기"

앞에서 넌 라면 실험을 하다가

"된장라면이 꽤 괜찮네" 라는 결론을 얻었지?

그럼 부스팅은 뭐냐면...

"된장라면이 전체적으로 괜찮긴 한데, 뭔가 2% 부족한데?"

"그 부족한 부분을 메꾸는 보완책을 하나 더 만들어보자"

→ 이게 바로 부스팅이야.

◎ 부스팅이 하는 일 (라면 버전)

1. 1차 시도

● 된장라면 기반 레시피 만들었어 → 약간 짜다

2. 2차 시도 (잔여 오류 보완)

- "간을 잡아주는 치즈를 살짝 넣자" → 치즈 10% 추가
- 3. **3차 시도 (또 남은 아쉬움 보완)**
 - "면발이 심심한데 매운 기름을 살짝?" → 매운 오일 약간
- 4. ...
- 5. **최종 예측(맛)** = 이 모든 시도들의 **가중 평균**

🧠 기술적으로 다시 말하면:

- **첫 번째 트리**가 rough하게 예측함
- 그 예측이 **틀린 부분(잔차)**을 보고
- 두 번째 트리가 "이 틀린 부분만 잘 고치자"
- 계속 반복해서, 각 단계마다 에러 보완
- 최종 예측은:Final Model=T1+small step×T2+small step×T3+…
 Final Model=T1+small step×T2+small step×T3+…\text{Final Model} = T_1 + \text{small step} \times T_2 + \text{small step} \times T_3 + \cdots
- → 한 번에 끝내는 게 아니라, **매우 신중하고 점진적으로 완성해 나감**

🚀 베이지안과 차이점 (BART vs 부스팅)

항목	BART	부스팅
철학	여러 후보를 뽑아서 평균 (탐색 기 반)	한 방향으로 보완해감 (누적 개선)
방식	트리들을 사후 분포에서 샘플링	트리를 순차적으로 학습하고 잔차를 보완
예측	샘플된 모든 트리 평균	앞 단계까지 누적한 결과 + 새 트리
라면 비유	다양한 레시피 뽑아서 평균 맛 찾기	계속 맛의 부족한 부분 만 집중해서 보완하 기

🔽 요약: 부스팅은 이런 라면 미식가

"맛있지만 완벽하진 않아.

그러니까 지금 이 조합에서 **뭔가 아쉬운 부분**만 딱 잡아서 조금씩 **더 완벽한 맛**으로 다듬어보자."

→ 이렇게 **점진적으로 개선**해 나가는 방식이 바로 부스팅.