3) Master Theorem Works for recurrences of the form

 $T(n) = aT(\frac{n}{h}) + f(n)$ az1, b>1, f(n) is asymptotically the function.

1. If $f(n) = O(n^{\log_b a) - \epsilon}$ for some constant E70, then T(n)=0 (nloga) factor n

2. If $f(n) = \Theta(n^{\log_n a})$, then $T(n) = \Theta(n^{\log_n a})$

If f(n) = 12 (nlogoa)+6) for some constant f(n) 3. Eyo, and if $af(\frac{n}{b}) \ge cf(n)$ for polynomialy I greater) Some constant CZ1 and all sufficiently than ugs, ph large n, then T(n) = O(f(n))the fator

We are comparing f(n) with func. $n^{\log_b a}$.

The larger of the two, determines solution to

the recursion the recussion.

f(n) > nloJba so soln is f(n) f(n) = nlyna so soln is O(nlogalyn) or Carl 2 0 (f(n) sgn)

$$f(n) = \Omega \left(n^{\log b^{\alpha} + \epsilon} \right) \longrightarrow \widehat{A}$$

By def of
$$\Omega$$
, the RHS in eq. (A) should be lower bound of $f(n)$. $f(n) = n\log n$, so n can be a lower bound.

for
$$\epsilon \approx 0.2$$
.

___ iNotes _

 $(C \angle 1)$ To find c: af(n) < cf(n) 3 n logn = cnlogn 3nlogn - 3nlog4 & cnlogn,) (B) of we take C=3 the R.H.S in always 4 be greater than T(n) = O (nlogn) (

 $T(n) = 2T(\frac{n}{2}) + nlogn$ $a=\lambda$, $b=\lambda$, $f(n)=n\log n$. $n^{\log_b n} = n^{\log_2 n} = n$ Pit fay f(n) > n logo anymptotically. But it is not polynomially larger The ratio $\frac{f(n)}{n^{\log_{0} a}} = \frac{n \log n}{n} = \log n$ is asymptotically len that not for any tre constant t. 5) Neige Sont, Maximum Subarrary $T(n) = aT(\frac{a}{2}) + \Theta(n)$ a=2 b=2 f(n)=0Note = Note = N f(n) = n!36° $T(n) = \Theta(n \log n)$.

Extended Master Theorem: T(n)=a T(n)+ O(n*logn) a=1, b>1, k>0 a real no. if a>bk then T(n)=0 (nlyba) (2) if $a=b^k$ then

if
$$a=b^k$$
 then

a) $p>=1 \Rightarrow T(n) = O(n^{\log_b^n} \log^{m} n)$

b) $p=-1 \Rightarrow T(n) = O(n^{\log_b^n} \log \log n)$

c) $p<-1 \Rightarrow T(n) = O(n^{\log_b^n} \log \log n)$

3) if
$$a \ge b^k$$

(a) $p > 0 \Rightarrow T(n) = O(n^k \log^k n)$

(b) $p \le 0 \Rightarrow T(n) = O(n^k)$

Example:

$$T(n) = 2T(\frac{n}{2}) + n$$

$$\alpha = 2, b = 2, k = 1 p = 0$$

$$\alpha = b^{k}$$

$$2 = 2^{1}$$

$$Can 2$$

$$p > -1$$

$$T(n) = 0 (n^{\log_{2}^{1}} \log^{0} n)$$

T(n) = 0 (nlogn)