GAL Buckle 95

François Pelletier

 $15~\mathrm{mars}~2014$

Table des matières

1	Init	ialisation	2
	1.1	Chargement des paquets	2
	1.2	Constantes et données	2
	1.3	Test de normalité	3
2	Est	imation	4
	2.1	Données mises à l'échelle	4
	2.2	Première estimation par QEE	4
	2.3	Résultats de la première estimation par QEE	5
	2.4	Seconde estimation par QEE	5
	2.5	Résultats de la seconde estimation par QEE	6
	2.6	Estimation par GMM	7
3	Cor	nparaison des résultats	8
	3.1	Fonction de répartition	8
			10
		3.1.2 Statistiques	11

Chapitre 1

Initialisation

1.1 Chargement des paquets

- > setwd("~/git/GAL-Buckle95/")
- > library(actuar)
- > library(MASS)
- > library(xtable)
- > library(multicore)
- > library(moments)
- > library(TTR)
- > library(FourierStuff)
- > library(GeneralizedAsymmetricLaplace)
- > library(GMMStuff)
- > library(OptionPricingStuff)
- > library(QuadraticEstimatingEquations)

1.2 Constantes et données

- > #Nombre de décimales affichées
- > options(digits=6)
- > #Marge pour intervalles de confiance
- > alpha.confint <- 0.05
- > #Marge pour test d'hypothèses
- > alpha.test <- 0.05
- > #Chargement des données
- > RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
- > #Taille de l'échantillon
- > n <- length(RETURNS)</pre>

1.3 Test de normalité

> EppsPulley.test(RETURNS)

Epps-Pulley Normality test

T: 0.626033 T*: 0.635568 p-value: 0.007178

\$Tstat

[1] 0.626033

\$Tmod

[1] 0.635568

\$Zscore

[1] 2.44824

\$Pvalue

[1] 0.00717788

\$Reject

[1] TRUE

Chapitre 2

Estimation

2.1 Données mises à l'échelle

```
> sRET <- as.vector(scale(RETURNS))</pre>
```

2.2 Première estimation par QEE

```
> ## Point de départ
> pt.depart <- startparamGAL(sRET)
> ## Fonctions pour les moments
> meanQEE <- function(param) mGAL(param,1)
> varianceQEE <- function(param) cmGAL(param,2)</pre>
> sdQEE <- function(param) sqrt(cmGAL(param,2))</pre>
> skewnessQEE <- function(param) cmGAL(param,3)</pre>
> kurtosisQEE <- function(param) cmGAL(param,4)</pre>
> ## Fonctions pour les dérivées
> dmeanQEE <- function(param) dmGAL(param,1)</pre>
> dsdQEE <- function(param) dmGAL(param,2)</pre>
> ## Estimation gaussienne
> optim1 <- optim(pt.depart,obj.gauss,gr=NULL,sRET,
                   meanQEE, varianceQEE, dmeanQEE, dsdQEE)
> pt.optim1 <- optim1$par</pre>
> ## Estimation de crowder
> optim2 <- optim(pt.depart,obj.Crowder,gr=NULL,sRET,</pre>
                   meanQEE, varianceQEE, skewnessQEE, kurtosisQEE, dmeanQEE, dsdQEE)
> pt.optim2 <- optim2$par</pre>
> ## Estimation de crowder modifiée
> optim3 <- optim(pt.depart,obj.Crowder.Mod,gr=NULL,sRET,
                   meanQEE, varianceQEE, dmeanQEE, dsdQEE)
> pt.optim3 <- optim3$par</pre>
```

2.3 Résultats de la première estimation par QEE

```
> cov.optim1 <- covariance.QEE(M.gauss(pt.optim1,sRET,
                                   meanQEE, varianceQEE, dmeanQEE, dsdQEE),
                  V.gauss(pt.optim1, sRET, meanQEE, varianceQEE,
                                   skewnessQEE, kurtosisQEE, dmeanQEE, dsdQEE), n)
> cov.optim2 <- covariance.QEE(M.Crowder(pt.optim2,sRET,</pre>
                                   varianceQEE, skewnessQEE, kurtosisQEE, dmeanQEE, dsdQEE),
                  V.Crowder(pt.optim2, sRET, varianceQEE,
                                   skewnessQEE, kurtosisQEE, dmeanQEE, dsdQEE), n)
 cov.optim3 <- covariance.QEE(M.Crowder.Mod(pt.optim3,sRET,</pre>
                                   varianceQEE, skewnessQEE, kurtosisQEE, dmeanQEE, dsdQEE),
                  V. Crowder. Mod(pt.optim3, sRET, varianceQEE, dmeanQEE, dsdQEE), n)
> confidence.interval.QEE(pt.optim1,cov.optim1,n)
         LOWER ESTIMATE
                              UPPER
[1,] -0.780018 -0.726048 -0.672077
[2,] 0.436002 0.596316 0.756630
[3,] 0.262650 0.359186 0.455722
[4,] 1.994757 2.021370 2.047982
> confidence.interval.QEE(pt.optim2,cov.optim2,n)
         LOWER ESTIMATE
                              UPPER.
[1,] -0.694457 -0.627404 -0.560351
[2,] 0.413764 0.640292 0.866820
[3,] 0.232650 0.334028 0.435405
[4,] 1.839966 1.878296 1.916626
> confidence.interval.QEE(pt.optim3,cov.optim3,n)
         LOWER ESTIMATE
                              UPPER
[1,] -0.765288 -0.711439 -0.657589
[2,] 0.455485 0.606642 0.757798
[3,] 0.264669
               0.362932
                          0.461195
[4,] 1.932691 1.960299
                          1.987906
```

2.4 Seconde estimation par QEE

2.5 Résultats de la seconde estimation par QEE

```
> cov.optim4 <- covariance.QEE(M.gauss(pt.optim4,sRET,
                                   meanQEE, varianceQEE, dmeanQEE, dsdQEE),
                  V.gauss(pt.optim4, sRET, meanQEE, varianceQEE,
+
                                   skewnessQEE, kurtosisQEE, dmeanQEE, dsdQEE), n)
> cov.optim5 <- covariance.QEE(M.Crowder(pt.optim5,sRET,</pre>
                                   varianceQEE, skewnessQEE, kurtosisQEE, dmeanQEE, dsdQEE),
                  V. Crowder (pt.optim5, sRET, varianceQEE, skewnessQEE,
                                   kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim6 <- covariance.QEE(M.Crowder.Mod(pt.optim6,sRET,
                                   varianceQEE, skewnessQEE, kurtosisQEE, dmeanQEE, dsdQEE),
                  V. Crowder. Mod(pt.optim6, sRET, varianceQEE, dmeanQEE, dsdQEE), n)
> confidence.interval.QEE(pt.optim4,cov.optim4,n)
         LOWER ESTIMATE
                             UPPER
[1,] -0.779792 -0.725853 -0.671914
[2,] 0.436017 0.596319 0.756622
[3,] 0.262456 0.358969 0.455482
[4,] 1.995452 2.022048 2.048644
> confidence.interval.QEE(pt.optim5,cov.optim5,n)
         LOWER ESTIMATE
                              UPPER
[1,] -0.692712 -0.625874 -0.559036
[2,] 0.414139 0.640445 0.866750
[3,] 0.231568 0.332845 0.434122
[4,] 1.842116 1.880376 1.918636
> confidence.interval.QEE(pt.optim6,cov.optim6,n)
         LOWER ESTIMATE
                              UPPER
[1,] -0.766288 -0.712450 -0.658612
```

```
[2,] 0.455051 0.606193 0.757334 [3,] 0.264972 0.363196 0.461419 [4,] 1.934050 1.961614 1.989178
```

2.6 Estimation par GMM

```
> ## GMM régulier
> optim7 <- optim.GMM(pt.depart,</pre>
                  conditions.vector=meanvariance.gmm.vector,
                  data=sRET, W=diag(2),
                  {\tt meanf=meanQEE, variancef=varianceQEE)}
> pt.optim7 <- optim7$par</pre>
> cov.optim7 <- mean.variance.GMM.gradient.GAL(pt.optim7,sRET) %*%
                  covariance. GMM (meanvariance.gmm.vector,pt.optim7,sRET,
                                   meanf=meanQEE, variancef=varianceQEE) %*%
                  t(mean.variance.GMM.gradient.GAL(pt.optim7,sRET)) / n
> ## GMM itératif
> optim8 <- iterative.GMM(pt.depart,
                  conditions.vector=meanvariance.gmm.vector,
                  data=sRET, W=diag(2),
                  meanf=meanQEE, variancef=varianceQEE)
> pt.optim8 <- optim8$par</pre>
> cov.optim8 <- mean.variance.GMM.gradient.GAL(pt.optim8,sRET) %*%
                  optim8$cov %*%
                  t(mean.variance.GMM.gradient.GAL(pt.optim8,sRET)) / n
> confidence.interval.QEE(pt.optim7,cov.optim7,n)
         LOWER ESTIMATE
                              UPPER
[1,] -0.878702 -0.641646 -0.404589
[2,] -0.469225  0.625908  1.721040
[3,] -0.192234  0.326366  0.844965
[4,] 1.696121 1.965995 2.235869
> confidence.interval.QEE(pt.optim8,cov.optim8,n)
         LOWER ESTIMATE
                             UPPER
[1,] -0.874031 -0.636980 -0.399929
[2,] -0.473292  0.626346  1.725984
[3,] -0.193600 0.322895 0.839390
[4,] 1.704166 1.972716 2.241265
```

Chapitre 3

Comparaison des résultats

3.1 Fonction de répartition

```
> # Points d'évaluation
> xi <- seq(2*min(sRET),2*max(sRET),length.out=2^6)</pre>
> # Fonction de répartition par intégration de la fonction caractéristique
> dist1 <- cbind(cftocdf(xi,cfGAL,param=pt.optim1),</pre>
                  cftocdf(xi,cfGAL,param=pt.optim2),
                   cftocdf(xi,cfGAL,param=pt.optim3),
                  cftocdf(xi,cfGAL,param=pt.optim4),
                   cftocdf(xi,cfGAL,param=pt.optim5),
                   cftocdf(xi,cfGAL,param=pt.optim6),
                  cftocdf(xi,cfGAL,param=pt.optim7),
                  cftocdf(xi,cfGAL,param=pt.optim8))
> # Fonction de répartition par point de selle
> dist2 <- cbind(psaddleapproxGAL(xi,pt.optim1),</pre>
                  psaddleapproxGAL(xi,pt.optim2),
                  psaddleapproxGAL(xi,pt.optim3),
                  psaddleapproxGAL(xi,pt.optim4),
                  psaddleapproxGAL(xi,pt.optim5),
                  psaddleapproxGAL(xi,pt.optim6),
                  psaddleapproxGAL(xi,pt.optim7),
                  psaddleapproxGAL(xi,pt.optim8))
> # Fonction de répartition par intégration de la fonction de densité
> dist3 <- cbind(pGAL(xi,pt.optim1),</pre>
                  pGAL(xi,pt.optim2),
```

3.1.1 Graphiques

3.1.2 Statistiques

Test du χ^2 , Méthode avec intégration

	chisquare.stat	df	p.value
pt.optim1	5.473824	6.000000	0.484626
pt.optim2	5.329673	6.000000	0.502277
pt.optim3	5.388158	6.000000	0.495076
pt.optim4	5.474310	6.000000	0.484567
pt.optim5	5.337004	6.000000	0.501372
pt.optim6	5.390662	6.000000	0.494769
pt.optim7	5.454256	6.000000	0.487003
pt.optim8	5.476963	6.000000	0.484245

Test du χ^2 , Méthode avec point de selle

> xtable(do.call(rbind,lapply(1.pts.estim,chisquare.test1,hist(sRET),pGAL,"saddlepoint")),destitute de Kolmogorov-Smirnov

```
ks.test1 <- function(param,x,y) ks.test(x,y,param)

xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)</pre>
```

Statistique de distance minimale

```
tvariate1 <- seq(-.1,.1,by=0.01)
xtable(do.call(rbind,mclapply(l.pts.estim,md.test,sRET,tvariate1,cfGAL,empCF)),dig</pre>
```

	chisquare.stat	df	p.value
pt.optim1	9.293574	6.000000	0.157728
pt.optim2	8.345592	6.000000	0.213862
pt.optim3	9.050625	6.000000	0.170751
pt.optim4	9.292836	6.000000	0.157767
pt.optim5	8.344140	6.000000	0.213959
pt.optim6	9.062381	6.000000	0.170100
pt.optim7	8.616379	6.000000	0.196330
pt.optim8	8.610490	6.000000	0.196698

statistic	p.value	alternative	method	data.name
0.158220	0.171912	two-sided	One-sample Kolmogorov-Smirnov test	X
0.140346	0.289345	two-sided	One-sample Kolmogorov-Smirnov test	X
0.156772	0.179751	two-sided	One-sample Kolmogorov-Smirnov test	X
0.158159	0.172235	two-sided	One-sample Kolmogorov-Smirnov test	X
0.139916	0.292753	two-sided	One-sample Kolmogorov-Smirnov test	X
0.156960	0.178718	two-sided	One-sample Kolmogorov-Smirnov test	X
0.141230	0.282437	two-sided	One-sample Kolmogorov-Smirnov test	X
0.140016	0.291954	two-sided	One-sample Kolmogorov-Smirnov test	X
	0.158220 0.140346 0.156772 0.158159 0.139916 0.156960 0.141230	0.158220 0.171912 0.140346 0.289345 0.156772 0.179751 0.158159 0.172235 0.139916 0.292753 0.156960 0.178718 0.141230 0.282437	0.158220 0.171912 two-sided 0.140346 0.289345 two-sided 0.156772 0.179751 two-sided 0.158159 0.172235 two-sided 0.139916 0.292753 two-sided 0.156960 0.178718 two-sided 0.141230 0.282437 two-sided	0.1582200.171912two-sidedOne-sample Kolmogorov-Smirnov test0.1403460.289345two-sidedOne-sample Kolmogorov-Smirnov test0.1567720.179751two-sidedOne-sample Kolmogorov-Smirnov test0.1581590.172235two-sidedOne-sample Kolmogorov-Smirnov test0.1399160.292753two-sidedOne-sample Kolmogorov-Smirnov test0.1569600.178718two-sidedOne-sample Kolmogorov-Smirnov test0.1412300.282437two-sidedOne-sample Kolmogorov-Smirnov test

	md.stat	df	p.value
pt.optim1	0.000422	21.000000	0.000000
pt.optim2	0.120174	21.000000	0.000000
pt.optim3	0.001384	21.000000	0.000000
pt.optim4	0.000388	21.000000	0.000000
pt.optim5	0.123295	21.000000	0.000000
pt.optim6	0.001451	21.000000	0.000000
pt.optim7	0.007980	21.000000	0.000000
pt.optim8	0.010416	21.000000	0.000000