Teari Model / Pertemuan te- 5/ Tatatan

Nama: Imanuel AS

8001711181 : MIN

Teori Modul: Catatan Pertinua ke-5

Konbing, Linear dan Himpungn Rembangun

Misaltan V rung vektur atas lapangan F $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ kombinasi linear dari x sika terdapat $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_1, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a \in V \text{ district}$ $x = \{x_1, x_2, ..., x_n\} \subseteq V, a$

[Misal

(1) Misal IR rung vektur atas IR $x = 63,43 \subseteq \mathbb{R}$, 2020-EIR kunsinasi linan dari x kanena terdapat $d_1 = 0 \in \mathbb{R}$, $\alpha_2 = 404 \in \mathbb{R}$ sehinggar $2020 = d_1(3) + d_2(4)$

(2) $M_2(R)$ rung vector ats R $x = \{(0,0), (0,1), (0,0), (0,0)\} \subseteq M_2(R)$ $A = (2,1) \in M_2(R)$

A = 2 (0 0) +1 (0 1) + 3 (0 0) + 4 (0 0)

A Kombinasi linear dari M2(IR)

Himpunan Pembangun

[0] Misal V rung vektor atas F x= &x1, x2, ..., xny EV disebut hembagun V Jika 4 a E V terdopat di, dr, ..., dn EF Sehingga $\alpha = \sum_{i=1}^{n} \alpha_i x_i = \alpha_i x_i + \alpha_i x_i + \alpha_i x_i$

$$M_2(R)$$
 rung vettor atax R
 $X=g(00),(00),(00),(00)$

rembassin $M_2(R)$

rembagun M2 (P)

Butte

Ambil A & M2UR) Subarey, tulis

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 untile scatu a, b, c, d & R

Note that,

 $A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

A membergum $M_2(R)$

Mix
$$F^3 = \delta\left(\frac{9}{6}\right) | a_1b_1 \in F^3$$
, F lapages

 F^3 rung vektor at a_1b_1 dan

 $X = \delta\left(\frac{1}{6}\right), \left(\frac{9}{6}\right), \left(\frac{9}{6}\right)^3$, Buktikan bahuan

 $X = manbangun F^3$.

Penyelogalan:

$$F^3$$
 rung veletor atou F

$$x = \{(3), (3), (3), (3)\} \subseteq F^3$$

Ambil Sebary, $p \in F^3$, $\overline{f}UIU$ $P = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$ which reals $a_1, b_1, c_1 \in F$

Note that,

$$P = d_{1}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + d_{2}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + d_{3}\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ b_{1} \\ c_{1} \end{pmatrix} = \begin{pmatrix} a_{1} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ a_{2} \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ a_{3} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ b_{1} \\ c_{1} \end{pmatrix} = \begin{pmatrix} a_{1} + 0 + 0 \\ 0 + d_{2} + d_{3} \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ b_{1} \\ c_{1} \end{pmatrix} = \begin{pmatrix} a_{1} \\ a_{2} \\ d_{3} \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ b_{1} \\ c_{1} \end{pmatrix} = \begin{pmatrix} a_{1} \\ a_{2} \\ d_{3} \end{pmatrix}$$

: Karena terdapat $\alpha_1 = \alpha_1$, $\alpha_2 = b_1$, $\alpha_3 = c_1$ dedensite npa sehingga beriator $\rho = \lambda_1 \binom{b}{b} + \lambda_2 \binom{b}{1} + \lambda_3 \binom{b}{1}$ make It divibut rembargus $\rho = 0$

(Tersuch)

M

V rung vekter atm lapage F

X = \(\pri_1 \times_1 \times

Himpuna Beby Linear

Misal V rung relatur atoms F

X = & x, x2, ..., xn3 \(\) \(\) \(\) Hupum \(\) disebut bebas linear

\[
\int \(\) \(

d, = d2=...=dn=0 The tidat, make x disebut bergning linear/tidak bebas linear.

(1) $\mathbb{R}^2 = d(\frac{1}{6}) | a_1b \in \mathbb{R}^2 | \text{rung wetter ata, } \mathbb{R}$ $X = \mathcal{E}(\frac{1}{6}), (\frac{0}{1}) \mathcal{E} \in \mathbb{R}^2 \text{ bebay linear, kennene}$ kombinari linear $\mathcal{A}_1(\frac{1}{0}) + \mathcal{A}_2(\frac{0}{1}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \mathcal{A}_1 = 0$ $\mathcal{A}_2 = 0$

(2) IR rung vector atas IF $X = \{2,3\}$ GIR bergatu line or $x = \{2,3\}$ GIR bergatu line or x =

Imanual AS/1811141008

Basis

Mix! V runny vektor at $x = \{x_1, x_2, ..., x_n\} \subseteq V$ disebut best sike

- (1) x menbagun V
- (2) x bebay linear

E Mish
$$R^2$$
 rung vektur atas R

$$X = \{(0), (0)\} \subseteq R^2$$

$$X = \{(0), (0)\}$$

BUE +1

(1) Adb. x nembargu \mathbb{R}^2 Aubil $a \in \mathbb{R}^2$ reborng.

Tulis $A = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ which such $a_1, a_2 \in \mathbb{R}$ Note that, $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = a_1 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

: x nembayur V

(2) Adb. X hebas linear

Plantang tembinasi linear $d_1(0) + d_2(0) = (0), d_1, d_2 \in \mathbb{R}$ Konbinasi linear in have dipendi oleh $d_1 = d_1 = 0$... X bebas linear

. X bayly 122

Teori Modul / Perkmun te-5/ Topt Dukusi

Nama: Imanuel AS

NIM: 1811141008

Topik Outusi

(1) Periksa mana dari himpunan berikut yang merupakan basa dari ruang Vektor IR² atas IR

(a).
$$P_1 = \{\binom{2}{1}, \binom{3}{9}\}$$

Penyelosaran: P, EIR2

Akan dibuktikan: P, adalah basis untuk 122

Akan ditunjukkan! Pi memenuhi:

- (*) P, bebay linear
- (*) Pr membangun R2

Note that,

(4) Adb. P, bebas linear

$$\alpha_{1} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2\alpha_{1} \\ \alpha_{1} \end{pmatrix} + \begin{pmatrix} 3\alpha_{2} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\alpha_1 = 0$$

Dipervleh, $2\alpha_{1}+3\alpha_{2}=0$ $2(0)+3\alpha_{2}=0$

$$X_2 = 0$$

Kovera $\alpha_1=0$ dan $\alpha_2=0$ adalah satu-satunya sulyi, maka P_1 disebut sebagai himpuna belan linear (linearly independent)

I manuel AS/1811141008

(t) Adb. I membanger 122

Aubil sebarang a t IR²
Tulu a = (a1) untuk juato a1/92 t IR

Note that,

$$\mathbf{a} = \alpha_{1} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} 2\alpha_{1} \\ \alpha_{1} \end{pmatrix} + \begin{pmatrix} 3\alpha_{2} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} 2\alpha_{1} + 3\alpha_{2} \\ \alpha_{1} + 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} 2\alpha_{1} + 3\alpha_{2} \\ \alpha_{1} + 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} 2\alpha_{1} + 3\alpha_{2} \\ \alpha_{1} \end{pmatrix}$$

Maka,

$$2 \alpha_1 + 3 \alpha_2 = \alpha_1$$

$$\alpha_1 = \alpha_2$$

Matriks koepismennya adalah

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} \longrightarrow \det(A) = (2.0) - (3.1) = 0-3 = -3 \neq 0$$

Karena det (A) $\neq 0$ maka sutemmi kunji)ten untuk xemua nilai ai, az, [Teorena 4.3.4 (e) dan(g) Anton Rorres] Je denikian xhingga terdapat didan dz $\in \mathbb{R}$ schingga $\mathbf{a} = d\binom{2}{1} + d\binom{3}{0}$.

Karena Pi memenchi himpunan pembangun pada viang webtur R2 Maka Pi disebut membangun IR2.

such himperon dari 122 dan

.. Kanena P, bebas linear dan P, nembargun lt² maka P, adalah basis untik 182.

(b).
$$P_2 = \{ \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \begin{pmatrix} -7 \\ -8 \end{pmatrix} \}$$

Penyelesaian: P2 + IR2

Akan dibuktikan: Pz adalah basis untuk IR2

Akan ditenjutkan : Pz mpmenuhi:

(*) Pr bebw linear

(*) Pr membangun R2

Note that

(t) Adb. Pr bebas linear

Note that,

$$\alpha_{1} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} -7 \\ -8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4\alpha_1 \\ \alpha_1 \end{pmatrix} + \begin{pmatrix} -7\alpha_2 \\ -8\alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4\alpha_1 + (-7\alpha_2) \\ \alpha_1 + (-8\alpha_2) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4a_1 - 7a_2 \\ a_1 - 8a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$\Rightarrow A = \begin{bmatrix} 4 & -7 \\ 1 & -8 \end{bmatrix} \rightarrow det(A) = (4.-8) - (-7.1) = -32 + 7 = -25 \neq 0$$

Karaa det (A) \$ 0 makes JPL memiliki suksi try viel saja,
yaki x = x = 0 adalah satu-saturya suksi.
Maka Pa disebut bebas linear.

(*) Adb. P2 membangen IR2

Ambly sebarang
$$a \in \mathbb{R}^2$$

Tulis $\cdot a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$; untile suatur a_1 , $a_2 \in \mathbb{R}$

Note that,

$$\mathbf{a} = \mathbf{d}_{1} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \mathbf{d}_{2} \begin{pmatrix} -7 \\ -8 \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} 4 \mathbf{d}_{1} \\ \alpha_{1} \end{pmatrix} + \begin{pmatrix} -7 \mathbf{d}_{2} \\ -8 \mathbf{d}_{2} \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} 4 \mathbf{d}_{1} + (-7 \mathbf{d}_{2}) \\ \alpha_{1} + (-8 \mathbf{d}_{2}) \end{pmatrix}$$

$$\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} 4 \mathbf{d}_{1} - 7 \mathbf{d}_{2} \\ \alpha_{1} - 8 \mathbf{d}_{2} \end{pmatrix}$$

Maka,

$$4d_1 - 7d_2 = a_1$$

 $d_1 - 8d_2 = a_2$

Matriks toefishenny, adalah

$$A = \begin{bmatrix} 4 & -7 \\ 1 & -8 \end{bmatrix} \rightarrow \det(A) = (4.-8) - (-7.1) = (-32) + (7) = -25 \neq 0$$

Kavena det (A) \neq 0 make system in konsisten while semia nilai q_1, q_2 . [Teorema 4.3.4 (e) dan (g) Anton Rornes] sedemikian sehingga terdapet di dan de \neq R sehingga $q = \alpha_1 \cdot {4 \choose 1} + \alpha_2 \cdot {-7 \choose -8}$.

Karena P2 memenuhi definiji himpunan pembangun pada rungvektor 12² maka P2 dixebut membangun 12°.

suate himpinan produ 122 dan

.. Karena P2 bebas linear dan P2 rembangun 1R2 maka P2 adalah basis untuk 1R2

(c).
$$P_3 = \{(0), (\frac{1}{3})\}$$

Penyelosaion: P3 E122

Akan ditunjukkan: Pz adalah bukan basu untuk IR2.

Akan difunjukkan: Pa tidak menenuhi sigarat bebas linear.

Note that,

(t) Adb. P3 tidak beby linear Note that,

Note that,
$$d_1 \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} + d_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} d_2 \\ 3d_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ 43d_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} d_2 \\ 3d_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \ \ \, \forall 2 = 0$$
$$3d_2 = 0$$

Karena hilai de = 0 sedengkan d, dapat drisi aleh sebarang niki darr elemen IR sedeniki an sehingga di = de = 0 adalah bukan satu-satunya solusi untuk SPL dratas.

Maka P3 trdak bebas linear.

i. Kanena P3 tedek bebsy linear maken P3 tedek menenchi syanet pertama untuk definisi basis , sedemitian sehinoga P3 bukan basis untuk 12².

Penyelesaian: Py EIR2

Akan dibuktikan: Py adalah Bukan baris untuk IR2

Aten defenjekten: Py todak memourhi

(x) Py beby linear

Note that,

(+) Adb. Py beby linear

Note that,

$$\alpha_{1}$$
 $\binom{3}{9}$ + α_{2} $\binom{-4}{-12}$ = $\binom{0}{0}$

$$\binom{3}{9}\binom{1}{0}$$

$$\begin{pmatrix} 3\alpha_1 - 4\alpha_2 \\ 9\alpha_1 - 12\alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

9 d, -12d2 =0

=> Matrilos loogtonen:

$$A = \begin{bmatrix} 3 & -4 \\ 9 & -12 \end{bmatrix} \rightarrow \det(A) = (3.-12) - (-4.9) = (-36) + (36) = 0$$

Kacera det (A) = O maka SPL hemiliki sulux trivial saja, yakar di = de = O bukan satu-saturya sulusi.

Maka Pry disebut tidak belos linear.

suntuhinpuran peda 122 dan

:. Karona Py Utadak beby linear maka: Py todak menonuhi syarat pertama untuk depinisi Basisi sedenikian sehingga Py bukan basis untuk 12

Makeylar, 28 Septerse son

(2) Buktikan bahun himponan

$$P = \{ \begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -8 \\ -12 & -4 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \}$$

merupakan basis M2(R)

Penyelisian: PEM2(R)

Akan dibuktilen: P adalah basis untuk M2UP)

Akan ditunjukten : P memenuhi :

(*) P below linear

(F) & membragun M2 (R)

Note that,

(K) Adb. P beby linear

Note that
$$d_{1} \cdot \begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix} + d_{2} \cdot \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} + d_{3} \cdot \begin{pmatrix} 0 & -8 \\ -12 & -4 \end{pmatrix} + d_{4} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 3d_{1} & 6d_{1} \\ 3d_{1} & -6d_{1} \end{pmatrix} + \begin{pmatrix} 0 & -d_{2} \\ -d_{2} & 0 \end{pmatrix} + \begin{pmatrix} 0 & -8d_{3} \\ -12d_{3} & -4d_{3} \end{pmatrix} + \begin{pmatrix} a_{4} & 0 \\ -d_{4} & 2d_{4} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 3d_{1} + 0 + 0 + a_{4} & 6d_{1} + (-d_{4}) + (-8d_{3}) + 0 \\ 3d_{1} + (-d_{3}) + (-1)d_{3} + (-6d_{4}) & -6d_{1} + 0 + (-4d_{3}) + 2d_{4} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
3 \, \alpha_1 + \alpha_4 & 6 \, \alpha_1 - \alpha_2 - \theta \, \alpha_3 \\
3 \, \alpha_1 - \alpha_2 - 12 \, \alpha_3 - \alpha_4 & -6 \, \alpha_1 & -4 \, \alpha_3 + 2 \, \alpha_4
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \frac{1}{3} x_1 + \frac{1}{3} x_1 + \frac{1}{3} x_2 - \frac{1}{3} x_3 - \frac{1}{3} x_4 = 0$$

$$6 x_1 - x_2 - 8 x_3 = 20$$

$$-6 x_1 - 4x_3 + 2x_4 = 0$$

$$A = \begin{bmatrix} 3 & 0 & 0 & 1 \\ 3 & -1 & -12 & -1 \\ 6 & -1 & -8 & 0 \\ -6 & 0 & -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 & 1 \\ 3 & -1 & -12 & -1 \\ 6 & -1 & -8 & 0 \\ -6 & 0 & -4 & 2 \end{bmatrix}$$

$$det(A) = (3.-1.-0.2) - (0.-12.0.-6) + (0.-1.6.0) - (1.3.-1.-4)$$

$$-(3.-1.-0.0) + (0.3.0.-4) - (0.-1.6.2) + (1.-12.-1.-6)$$

$$= (40) - (0) + (0) - (12) - (0) + (0) - (0) + (-72)$$

$$= -36$$

$$= 0$$

Imanuel AS/1811141008

Karena matrily toef Dien dari JPL-nya memiliki determinan do,
maka SPL memiliki Jolyi trivial saja i Yakni ki=ki=o.

Karena k, = k, = 0 adalah satu - satung sulyi, maka P disebut bebas liniear.

(*) Adb. Pmembangon M2(IR)

=> And sebarag A & M2 (R)

Note that,

$$A = d_{1} \cdot \begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix} + d_{2} \cdot \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} + d_{3} \cdot \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix} + d_{4} \cdot \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 3d_{1} & 6d_{1} \\ 3d_{1} & -6d_{1} \end{bmatrix} + \begin{bmatrix} 0 & -d_{2} \\ -d_{2} & 0 \end{bmatrix} + \begin{bmatrix} 0 & -8d_{3} \\ -12d_{3} & -4d_{3} \end{bmatrix} + \begin{bmatrix} a_{4} & 0 \\ -d_{4} & 2a_{4} \end{bmatrix}$$

$$\begin{bmatrix} \alpha & b \\ c & d \end{bmatrix} = \begin{bmatrix} 3\alpha_1 + \cdots & \alpha_4 & 6\alpha_1 - \alpha_2 - 8\alpha_3 \\ 3\alpha_1 - \alpha_2 - 12\alpha_3 - \alpha_4 & -6\alpha_1 & -4\alpha_3 + 2\alpha_4 \end{bmatrix}$$

Maka,

$$3 d_1 + d_2 - 12 d_3 - d_4 = 0$$
 $6 d_1 - d_2 - 0 d_3 = 0$

Matrify lackoranya adoloh

$$A = \begin{bmatrix} 3 & 0 & 0 & 1 \\ 3 & -1 & -12 & -1 \\ 6 & -1 & -0 & 0 \\ -6 & 0 & -4 & 2 \end{bmatrix} \rightarrow det(A) = -36 \neq 0$$

Kama det (A) \$0 nata SPL konsoten until semua nilai ai az, az, az, ay.
[Teomena 4.].y (e) dan (g) Anton Pornes].

Sedemiter schingge todopet di, drids, dy ER schingga

$$A = \alpha_1 \cdot \begin{bmatrix} 3 & 6 \\ 3 - 6 \end{bmatrix} + \alpha_2 \cdot \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} + \alpha_3 \cdot \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix} + \alpha_4 \cdot \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

Icana P menanuhi deprinisi hingunan pembangun pada rung utetor M2(R) Maka P disebut menatang M2(R).

Prembangun M2(IR), naka Padakh basis untek (M2(IR).