

Deep Learning CS60010

Abir Das

Assistant Professor
Computer Science and Engineering Department
Indian Institute of Technology Kharagpur

http://cse.iitkgp.ac.in/~adas/

Agenda

• To brush up basics of Linear Algebra.

Computer Science and Engineering Indian Institute of Technology Kharagpur cse.iitkgp.ac.in

Resources

• "Deep Learning", I. Goodfellow, Y. Bengio, A. Courville. (Chapter 2)

Scalars, Vectors, Matrices and

- Scalars: They are single numbers. Denoted mostly as lowercase variable names.
 - x, y, z
- **Vectors**: Vectors are array of numbers. Typically denoted as boldface lowercase variable names. Individual components are treated as scalars.

•
$$\mathbf{x} = [x_1, x_2, ..., x_d]^T$$
, $\mathbf{y} = [y_1, y_2, ..., y_d]^T$, $\mathbf{z} = [z_1, z_2, ..., z_d]^T$

• **Matrices**: Matrices are 2-D array of numbers. Typically denoted as boldface uppercase variable names.

$$\bullet \ \mathbf{A} = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} B_{1,1} & \cdots & B_{1,n} \\ \vdots & \ddots & \vdots \\ B_{m,1} & \cdots & B_{m,n} \end{bmatrix}$$

• Tensors: Arrays with more than 2 dimensions are generally called

Matrix Operations

- **Transpose**: Transpose of a matrix is the mirror image of the matrix across the diagonal line, called the main diagonal of the matrix.
 - The transpose of a matrix A is denoted as A^T , where $(A^T)_{i,j} = A_{j,i}$
- **Addition**: Matrices can be added as long as they have the same shape, by adding their corresponding elements.
 - C = A + B, where $C_{i,j} = A_{i,j} + B_{i,j}$
- **Multiplication**: In order for the product of the two matrices \boldsymbol{A} and \boldsymbol{B} to be defined, \boldsymbol{A} must have the same number of columns as that of the rows of \boldsymbol{B} . If \boldsymbol{A} is of shape $m \times n$ and \boldsymbol{B} is of shape $n \times p$ then \boldsymbol{C} is of shape $m \times p$, the product operation $\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B}$ is defined by,

$$\boldsymbol{C}_{i,j} = \sum \boldsymbol{A}_{i,k} \boldsymbol{B}_{k,j}$$

Matrix Operations

- Elementwise or Hadamard Product: It's a matrix containing the product of the individual elements. It is denoted as $A \odot B$
- **Dot Product**: The dot product between two vectors x and y of the same dimensionality is the matrix product x^Ty
- Matrix product is not commutative (AB = BA does not always hold). However, the dot product between two vectors is commutative, i.e., $x^Ty = y^Tx$
- Let us consider a system of linear equations as follows,

$$A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,n}x_n = b_1$$

 $A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,n}x_n = b_2$

• • •

$$A_{m,1}x_1 + A_{m,2}x_2 + \dots + A_{m,n}x_n = b_m$$

Computer Science and Engineering Indian Institute of Technology Kharagpur cse.iitkqp.ac.in

System of Linear Equations

$$A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,n}x_n = b_1$$

$$A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,n}x_n = b_2$$

$$A_{m,1}x_1 + A_{m,2}x_2 + \dots + A_{m,n}x_n = b_m$$

We can write these as,

$$\begin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$Ax = b$$

System of Linear Equations Ax = b

- $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$
- There can be 3 possibilities
 - m = n and $det(A) \neq 0$, the solution is unique, $x = A^{-1}$. When is det(A) = 0?
 - m < n underdetermined problem (No. of equations < No. of variables). Infinitely many solutions. What can be a meaningful solution?
 - m > n overdetermined problem (No. of equations > No. of variables). No solution. What can be a meaningful solution?
 - We need to be familiar with the concept of norms for this.

Eigenvalues and Eigenvectors

- Suppose A is a matrix. The question is does there exist any vector x for A so that the operation Ax gives a vector which is nothing but a stretched (and not rotated) version of the vector x? i.e., $Ax = \lambda x$, or $(\lambda I A)x = 0$.
- For non-trivial solution $\det(\lambda I A) = |\lambda I A| = 0$
- If $A \in \mathbb{R}^{m \times n}$, then $|\lambda I A| = 0$ will be a n^{th} order equation. That means you can have n solutions of λ such λ 's are called eigenvalues (real or complex conjugate). The corresponding vector x 's are the eigenvectors.
- Remember that eigenvectors are not unique. This is because if x is an eigenvector, then ax is also the same eigenvector (as it satisfies $Aax = \lambda ax$). So, we are satisfied with the direction of the eigenvectors only.

Standard Results on Eigenvalues and Eigenvectors

- If $\lambda_1, \lambda_2, \dots, \lambda_n$ are eigenvalues of \overline{A} , then for any positive integer m, $\lambda_1^m, \lambda_2^m, \dots, \lambda_n^m$ are eigenvalues of A^m . The significance is that if you have eigenvalues of A, you don't have to compute the eigenvalues of A^m .
- If A is a non-singular or invertible matrix with eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$, then $\lambda_1^{-1}, \lambda_2^{-1}, \cdots, \lambda_n^{-1}$ are eigenvalues of A^{-1} .
- For triangular matrix (upper, lower or diagonal), the eigenvalues are the diagonal elements itself.
- If a square matrix $A \in \mathbb{R}^{n \times n}$, is symmetric then all its eigenvalues are real and it has n linearly independent eigenvectors. The reverse is also true i.e., if a square matrix $A \in \mathbb{R}^{n \times n}$ has n real eigenvalues and n real orthogonal eigenvectors, then the matrix is symmetric.

Standard Results on Eigenvalues and Eigenvectors • A matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if $\forall x \neq 0 \in \mathbb{R}^n, x^T Ax > 0$. It is

- positive semi-definite if $x^T A x \ge 0$
- A matrix $A \in \mathbb{R}^{n \times n}$ is negative definite if $\forall x \neq 0 \in \mathbb{R}^n, x^T A x < 0$. It is negative semi-definite if $x^T A x \leq 0$
- If A is positive definite, $\lambda_i > 0 \ \forall i$
- If A is positive semi-definite, $\lambda_i \geq 0 \ \forall i$
- If A is negative definite, $\lambda_i < 0 \ \forall i$
- If *A* is negative semi-definite, $\lambda_i \leq 0 \ \forall i$

Vector Norms

- Vector norm is a real valued function (i.e., its output is always a real number) with the following properties.
 - ||x|| > 0 and ||x|| = 0 only if x = 0
 - $\alpha ||\mathbf{x}|| = |\alpha|||\mathbf{x}||$
 - $||x + y|| \le ||x|| + ||y|| \rightarrow$ Triangle inequality
- L_p norm: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$
- L_0 norm: $||x||_0 = \text{Number of non-zero elements in } x$ L_∞ norm: $||x||_\infty = \max_i |x_i|$

• $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$

Matrix/Induced Norms

• You can think of matrix norm as the multiplying capacity of the matrix.

- ||A|| > 0 and ||A|| = 0 only if A = 0
- $\alpha ||A|| = |\alpha|||A||$
- $||A + B|| \le ||A|| + ||B|| \rightarrow$ Triangle inequality
- $||AB|| \le ||A||||B|| \rightarrow Additional$

System of Linear Equations Ax = b

- $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$
- There can be 3 possibilities
 - m=n and $\det(A) \neq 0$, the solution is unique, $x=A^{-1}$. When is $\det(A)=0$?
 - m < n underdetermined problem (No. of equations < No. of variables). Infinitely many solutions. What can be a meaningful solution?
 - minimize $J = ||x||_2$ subject to $Ax = b \rightarrow x = A^T (AA^T)^{-1}b$
 - m > n overdetermined problem (No. of equations > No. of variables). No solution. What can be a meaningful solution?
 - Minimize $J = ||Ax b||_2 \rightarrow x = (A^T A)^{-1} A^T b$

Thank You!!