Indução e Recursão: Indução Matemática Fraca e Indução Matemática Forte

Área de Conhecimento em Algoritmos e Teoria - DCC/UFMG

Introdução à Lógica Computacional

2024/2

Introdução

Indução e recursão: Introdução

- Indução e recursão são técnicas essenciais da Matemática Discreta e têm inúmeras aplicações em Ciência da Computação.
- Muitas afirmações matemáticas estabelecem que uma certa propriedade é satisfeita por todo inteiro positivo *n*:
 - 1. $n! \le n^n$
 - 2. $n^3 n$ é divisível por 3.

 Se um conjunto tem n elementos, seu conjunto potência tem 2ⁿ elementos.

Aqui vamos ver uma técnica poderosa para demonstrar este tipo de resultado: a indução matemática.

Indução Matemática (Fraca)

Princípio da indução matemática: Intuição

 Imagine que você esteja diante de uma escada de infinitos degraus e você se pergunta:

"Será que eu consigo alcançar qualquer degrau dessa escada?"

- Você sabe que
 - 1. você consegue alcançar o primeiro degrau, e
 - 2. se você alcançar um degrau qualquer, você consegue alcançar o próximo.
- Usando as regras acima, você pode deduzir que você consegue:
 - 1. alcançar o primeiro degrau: pela regra 1;
 - 2. alcançar o segundo degrau: pela regra 1, depois regra 2;
 - 3. alcançar o terceiro degrau: regra 1, depois regra 2 por duas vezes;
 - 4. ...
 - 5. alcançar o n-ésimo degrau: regra 1, depois regra 2 por n-1 vezes.
- Logo, você pode concluir que pode alcançar todos os degraus da escada!

Princípio da indução matemática (fraca)

 Para mostrar que uma propriedade P(n) vale para todos os inteiros positivos n, uma demonstração que utilize o princípio da indução matemática (fraca) possui duas partes:

Demonstração por indução fraca:

Passo base: Demonstra-se P(1).

Passo indutivo: Demonstra-se que, para qualquer inteiro positivo k, se P(k) é verdadeiro, então P(k+1) é verdadeiro.

- Note que o passo indutivo é uma implicação; sua premissa (P(k)) é verdadeiro) é chamada de **hipótese de indução** ou **I.H.**
- O princípio da indução matemática pode ser expresso como uma regra de inferência sobre os números inteiros:

$$\left(\underbrace{P(1)}_{\mathsf{Passo base}} \land \underbrace{\forall k \in \mathbb{Z}^+ : (P(k) \to P(k+1))}_{\mathsf{Passo indutivo}}\right) \quad \to \quad \underbrace{\forall n \in \mathbb{Z}^+ : P(n)}_{\mathsf{Conclus\~ao}}$$

• Exemplo 1 Se n é um inteiro positivo, então $1 + 2 + \cdots + n = n(n+1)/2$.

Demonstração. Seja P(n) a proposição "a soma dos n primeiros inteiros positivos é n(n+1)/2".

Passo base: Queremos mostrar que P(1) é verdadeiro. Mas P(1) é verdade porque

$$1 = \frac{1(1+1)}{2}.$$

Passo indutivo: Queremos mostrar que $\forall k \in \mathbb{Z}^+ : (P(k) \to P(k+1))$.

Assuma que P(k) seja verdadeiro para um inteiro positivo arbitrário k. Ou seja, a nossa hipótese de indução é de que, para um inteiro positivo k arbitrário:

$$1+2+\cdots+k=\frac{k(k+1)}{2}.$$

• Exemplo 1 (Continuação)

Sob a hipótese de indução, deve-se mostrar que P(k+1) é válido, ou seja:

$$1+2+\cdots+k+(k+1)=\frac{(k+1)[(k+1)+1]}{2}=\frac{(k+1)(k+2)}{2}.$$

Podemos, então, derivar

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
 (pela I.H.)
$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2},$$

de onde concluímos o passo indutivo.

Como concluímos com sucesso tanto o passo base quanto o passo indutivo, mostramos por indução que $\forall n \in \mathbb{Z}^+ : P(n)$, ou seja, que $1+2+\cdots+n=n(n+1)/2$ para todo inteiro positivo n.

• Exemplo 2 Desenvolva uma conjectura de uma fórmula equivalente à soma dos *n* primeiros inteiros ímpares positivos.

Então, demonstre sua conjectura usando indução matemática.

Solução.

Vamos começar testando alguns exemplos com valores de n:

$$n = 1$$
: 1
 $n = 2$: $1 + 3 = 4$
 $n = 3$: $1 + 3 + 5 = 9$
 $n = 4$: $1 + 3 + 5 + 7 = 16$
 $n = 5$: $1 + 3 + 5 + 7 + 9 = 25$
...: $1 + 3 + 5 + 7 + 9 + 11 + 13 + ... = ?$

Qual padrão podemos tentar inferir a partir dos exemplos acima?

• Exemplo 2 (Continuação)

Uma conjectura que parece razoável e que podemos tentar demonstrar é:

"A soma dos n primeiros inteiros positivos ímpares é n²."

Demonstração. Seja P(n) a proposição "A soma dos n primeiros inteiros positivos ímpares é n^2 ".

Passo base: P(1) é verdadeiro porque o primeiro inteiro positivo ímpar é 1, o que é igual a 1^2 .

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro positivo arbitrário k.

Note que o k-ésimo inteiro positivo ímpar é dado por 2k-1.

Logo, a hipótese de indução é:

$$1+3+5+\cdots+(2k-1)=k^2$$
.

• Exemplo 2 (Continuação)

Queremos mostrar que $\forall k \in \mathbb{Z}^+ : (P(k) \to P(k+1))$, onde P(k+1) é:

$$1+3+\cdots+(2k-1)+(2(k+1)-1)=(k+1)^2.$$

Logo, podemos derivar

$$1+3+\cdots+(2k-1)+(2(k+1)-1)=k^2+(2(k+1)-1)$$
 (pela I.H.)
= k^2+2k+1
= $(k+1)^2$,

de onde concluímos o passo indutivo.

Como concluímos com sucesso o passo base e o passo indutivo, mostramos por indução que $\forall n \in \mathbb{Z}^+ : P(n)$, ou seja, que a soma dos n primeiros ímpares positivos é n^2 .

- ullet Podemos usar a indução para mostrar que propriedades dos naturais \mathbb{N} , ajustando os passos base e indutivo adequadamente.
- Exemplo 3 Para todo inteiro não-negativo n, $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$.

Demonstração. Seja P(n) a proposição " $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ ".

Passo base: P(0) é verdadeiro porque:

$$\sum_{i=0}^{0} 2^{i} = 2^{0+1} - 1,$$

já que o lado esquerdo da igualdade acima pode ser escrito como

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1,$$

e o lado direito pode ser escrito como

$$2^{0+1} - 1 = 2^1 - 1 = 1$$
.

Exemplo 3 (Continuação)

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro não-negativo arbitrário k, ou seja, assuma como verdadeira a hipótese de indução

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1.$$

Queremos mostrar que, se a hipótese acima for verdadeira, então P(k+1) também é verdadeira, ou seja, que

$$\sum_{i=0}^{k+1} 2^i = 2^{(k+1)+1} - 1 = 2^{k+2} - 1.$$

• Exemplo 3 (Continuação)

Para isto, podemos derivar

$$\begin{split} \sum_{i=0}^{k+1} 2^i &= \left(\sum_{i=0}^k 2^i\right) + 2^{k+1} \\ &= \left(2^{k+1} - 1\right) + 2^{k+1} \\ &= 2 \cdot 2^{k+1} - 1 \\ &= 2^{k+2} - 1, \end{split} \tag{pela I.H.}$$

de onde concluímos o passo indutivo.

Logo, por indução mostramos que $\forall n \in \mathbb{N} : P(n)$, ou seja, que $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ para todo inteiro $n \ge 0$.

 No caso geral, podemos usar a indução para mostrar que uma propriedade vale para qualquer subconjunto dos inteiros

$$\{n \in \mathbb{Z} \mid n \geq n_0\},\$$

onde $n_0 \in \mathbb{Z}$ é um ponto de partida.

Neste caso, a indução fica como a seguir

Demonstração por indução fraca:

Passo base: Demonstra-se $P(n_0)$, onde n_0 é um inteiro.

Passo indutivo: Demonstra-se que, para qualquer inteiro k maior ou igual a n_0 , se P(k) é verdadeiro, então P(k+1) é verdadeiro.

• Exemplo 4 Para todo inteiro $n \ge 4$, $2^n < n!$.

Demonstração. Note que neste caso vamos começar nossa indução a partir de $n_0 = 4$ e demonstrar que a propriedade vale para todo inteiro maior ou igual a 4.

Seja P(n) a proposição " $2^n < n!$ ".

Passo base: P(4) é verdadeiro porque $2^4 = 16$ é menor que 4! = 24.

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro positivo arbitrário $k \geq 4$, ou seja, a hipótese de indução é que, para um inteiro arbitrário $k \geq 4$,

$$2^k < k!$$
.

Sob esta hipótese, queremos mostrar P(k+1), ou seja,

$$2^{k+1} < (k+1)!$$

• Exemplo 4 (Continuação)

Para isto, podemos derivar

$$2^{k+1} = 2(2^k)$$

 $< 2(k!)$ (pela I.H.)
 $< (k+1)k!$ (2 < k + 1, pois $k \ge 4$)
 $= (k+1)!,$

de onde concluímos o passo indutivo.

Logo, por indução mostramos que $\forall n \in \mathbb{Z}, n \geq 4 : P(n)$, ou seja, que $2^n < n!$ para todo inteiro $n \geq 4$.

• Exemplo 5 Para todo inteiro $n \ge 0$, $n^3 - n$ é divisível por 3.

Demonstração. Seja P(n) a proposição " $n^3 - n$ é divisível por 3".

Passo base: P(0) é verdadeiro porque $0^3 - 0 = 0$ é divisível por 3.

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro não-negativo arbitrário k, ou seja, que é verdadeira a hipótese de indução de que k^3-k é divisível por 3.

Queremos mostrar que P(k+1) também é verdadeiro, ou seja, que $(k+1)^3 - (k+1)$ é divisível por 3.

Para isto, podemos fazer:

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$

= $(k^3 - k) + 3(k^2 + k)$.

• Exemplo 5 (Continuação)

Então sabemos que

$$(k+1)^3 - (k+1) = (k^3 - k) + 3(k^2 + k).$$

Note que no lado direito da igualdade acima, a primeira parcela da soma é $(k^3 - k)$ e, pela I.H., este valor é divisível por 3.

Além disso, a segunda parcela $3(k^2 + k)$ da soma do lado direito também é divisível por 3.

Logo todo o lado direito da igualdade é divisível por 3, e assim concluímos indutivo ao mostrar que $(k+1)^3 - (k+1)$ é divisível por 3.

Assim mostramos por indução que $\forall n \in \mathbb{N} : P(n)$, ou seja, que $n^3 - n$ é divisível por 3 para todo inteiro $n \geq 0$.

• Exemplo 6 Para todo inteiro não-negativo n, se um conjunto possui n elementos, então este conjunto possui 2^n subconjuntos.

Demonstração. Seja P(n) a proposição "todo conjunto de n elementos possui 2^n subconjuntos".

Passo base: P(0) é verdadeiro porque o único conjunto de 0 elementos é o conjunto vazio \emptyset , que possui somente $2^0=1$ subconjunto (ele mesmo).

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro não-negativo arbitrário k, ou seja, a hipótese de indução é:

"Todo conjunto de k elementos possui 2^k subconjuntos."

Sob a I.H., queremos demonstrar P(k+1), ou seja, que

"Todo conjunto de k + 1 elementos possui 2^{k+1} subconjuntos."

• Exemplo 6 (Continuação)

Para mostrar isto, seja T um conjunto qualquer de k+1 elementos. Então é possível escrever T como $S \cup \{a\}$, onde

- a é um elemento qualquer de T;
- $S = T \{a\}$ e, portanto, |S| = k.

Note que os subconjuntos de $\mathcal T$ podem ser obtidos da seguinte forma.

Para cada subconjunto X de S, existem exatamente dois suconjuntos de T: o subconjunto X (em que a não aparece) e o subconjunto $X \cup \{a\}$ (em que a aparece). Logo o número de subconjuntos de T é o dobro do número de subconjuntos de S. Pela hipótese indutiva, S tem 2^k subconjuntos, logo T possui $2 \cdot 2^k = 2^{k+1}$ subconjuntos. Isto conclui o passo indutivo.

Logo, por indução mostramos que $\forall n \in \mathbb{N} : P(n)$, ou seja, que todo conjunto de n elementos possui 2^n subconjuntos.

• Exemplo 7 Uma das Leis de De Morgan afirma que, para dois conjuntos A_1 e A_2 , temos

$$\overline{A_1 \cap A_2} = \overline{A_1} \cup \overline{A_2}.$$

Sabendo disto, demonstre a seguinte generalização da Lei de De Morgan:

$$\bigcap_{j=1}^{n} A_j = \bigcup_{j=1}^{n} \overline{A_j} ,$$

sempre que A_1, A_2, \ldots, A_n são subconjuntos de um conjunto universal U e $n \ge 2$.

• Exemplo 7 (Continuação)

Demonstração. Seja P(n) a proposição " $\bigcap_{j=1}^{n} \overline{A_{j}} = \bigcup_{j=1}^{n} \overline{A_{j}}$ sempre que $A_{1}, A_{2}, \ldots, A_{n}$ são subconjuntos de um conjunto universal U e $n \geq 2$ ".

Passo base: P(2) é verdadeiro porque, como já demonstramos nesse curso, a Lei de De Morgan original garante que $\overline{A_1 \cap A_2} = \overline{A_1} \cup \overline{A_2}$.

• Exemplo 7 (Continuação)

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro positivo arbitrário $k \geq 2$, ou seja, a hipótese de indução é

$$\overline{\bigcap_{j=1}^k A_j} = \bigcup_{j=1}^k \overline{A_j},$$

sempre que A_1, A_2, \ldots, A_n são subconjuntos de um conjunto universal U e $n \ge 2$.

Queremos mostrar que, sob a I.H., P(k+1) também é verdadeira, ou seja, que

$$\bigcap_{j=1}^{\overline{k+1}} A_j = \bigcup_{j=1}^{\overline{k+1}} \overline{A_j},$$

sempre que A_1, A_2, \ldots, A_n são subconjuntos de um conjunto universal U e n > 2.

• Exemplo 7 (Continuação)

Para isto, note que

$$\overline{\bigcap_{j=1}^{k+1} A_j} = \overline{\left(\bigcap_{j=1}^k A_j\right) \cap A_{k+1}}$$

$$= \overline{\left(\bigcap_{j=1}^k A_j\right)} \cup \overline{A_{k+1}}$$

$$= \overline{\left(\bigcup_{j=1}^k \overline{A_j}\right)} \cup \overline{A_{k+1}}$$

$$= \overline{\bigcup_{j=1}^{k+1} \overline{A_j}},$$

(usando a Lei de De Morgan sobre os conjuntos $\bigcap_{j=1}^k A_j$ e A_{k+1})

(pela I.H.)

de onde concluímos o passo indutivo.

Logo, por indução mostramos que $\forall n \in \mathbb{Z}, n \geq 2 : P(n)$, ou seja, que a generalização da Lei de De Morgan é válida.

• Exemplo 8 Seja o inteiro $n \ge 1$. Demonstre que qualquer região quadrada de tamanho $2^n \times 2^n$, com um quadrado removido, pode ser preenchida com peças no formato L, formada por 3 quadradinhos, do tipo mostrado abaixo.

Demonstração. Seja P(n) a proposição "qualquer região quadrada de tamanho $2^n \times 2^n$, com um quadrado removido, pode ser preenchida com peças no formato L".

• Exemplo 8 (Continuação)

Passo base: P(1) é verdadeiro porque qualquer tabuleiro de tamanho $2^1 \times 2^1$ com um quadrado removido pode ser preenchido com uma peca em formato de L, conforme mostrado abaixo:

• Exemplo 8 (Continuação)

Passo indutivo: Assuma como hipótese indutiva que P(k) seja verdadeiro para um inteiro positivo arbitrário k, ou seja, que qualquer região quadrada de tamanho $2^k \times 2^k$, com um quadrado removido, pode ser preenchida com peças no formato de L.

Sob a I.H., queremos mostrar que P(k+1) também deve ser verdadeiro, ou seja, que qualquer região quadrada de tamanho $2^{k+1} \times 2^{k+1}$, com um quadrado removido, pode ser preenchida com peças no formato de L.

• Exemplo 8 (Continuação)

Para isto, considere uma região quadrada de tamanho $2^{k+1} \times 2^{k+1}$ qualquer, com um quadrado removido.

Divida essa região em 4 regiões de tamanho $2^k \times 2^k$ como mostrado abaixo.

Pela hipótese de indução, a região $2^k \times 2^k$, com um quadrado removido, pode ser preenchida com peças no formato de L. O problema passa a ser como a mesma hipótese indutiva pode ser aplicada às outras três regiões sem nenhum quadrado removido.

• Exemplo 8 (Continuação)

Temporariamente remova um quadrado de cada região $2^k \times 2^k$ que está "completa", formando um "buraco" como mostrado na figura à esquerda.

Cada uma dessas três regiões tem tamanho $2^k \times 2^k$ e, portanto, pela I.H., podem ser preenchidas com peças no formato de L.

Para finalizarmos a solução, preenchemos o "buraco" criado pelas três peças removidas de cada região cobrindo-o com uma peça L, como mostrado na figura à direita. Com isto concluímos o passo indutivo.

Logo, por indução mostramos que $\forall n \in \mathbb{Z}^+ : P(n)$, ou seja, que qualquer região de tamanho $2^n \times 2^n$, $n \ge 1$, com um quadrado removido, pode ser preenchida com peças no formato de L.

• Exemplo 8 (Continuação)

Ilustrando o passo a passo do passo indutivo da demonstração anterior:

(i) Comece com a região de tamanho $2^{k+1} \times 2^{k+1}$.

(iv) Retire um quadrado de cada sub-região restante.

(ii) Divida-a em 4 sub-regiões de tamanho $2^k \times 2^k$.

(v) Aplique a I.H. em cada uma das sub-regiões restantes.

(iii) Use a I.H. para preencher a sub-região com o buraco original.

(vi) Preencha o buraco com uma peça em L.

Quando usar indução matemática

- Algumas observações importantes sobre a indução matemática:
 - 1. O princípio da indução <u>pode</u> ser utilizado para <u>demonstrar propriedades</u> dos números inteiros (se elas forem verdadeiras).
 - O princípio da indução não pode ser utilizado para descobrir propriedades dos números inteiros.
- A propriedade de interesse geralmente é descoberta usando um outro método (talvez até tentativa e erro).

Uma vez que uma propriedade tenha sido conjecturada, a indução pode ser usada para demonstrá-la (caso a propriedade seja mesmo verdadeira).

Modelo de demonstração por indução matemática (fraca)

- 1. Expresse a afirmação a ser demonstrada na forma "para todo inteiro $n \ge n_0$, P(n)", onde n_0 é um inteiro fixo.
- 2. Escreva "Passo base." e mostre que $P(n_0)$ é verdadeiro, se certificando de que o valor correto de n_0 foi utilizado. Isto conclui o passo base.
- 3. Escreva as palavras "Passo indutivo."
- 4. Escreva claramente a hipótese indutiva, na forma "Assuma que P(k) seja verdadeiro para um inteiro arbitrário fixo $k \ge n_0$."
- 5. Escreva o que precisa ser demonstrado sob a suposição de que a hipótese de indução é verdadeira. Ou seja, escreva o que P(k+1) significa.
- 6. Demonstre a afirmação P(k+1) utilizando o fato de que P(k) é verdadeiro. Certifique-se de que sua demonstração é válida para qualquer $k \ge n_0$.
- 7. Identifique claramente as conclusões do passo indutivo, e conclua-o escrevendo, por exemplo, "isto completa o passo de indução".
- 8. Completados o passo base e o passo indutivo, escreva a conclusão da demonstração: que, por indução matemática, P(n) é verdadeiro para todos os inteiros $n > n_0$.

Princípio da indução matemática (fraca): Erros comuns

- Como em qualquer outra técnica de demonstração, o princípio da indução matemática deve ser usado com cautela para evitar erros.
- Em particular, para que a demonstração por indução esteja correta é preciso demonstrar ambos o passo base e o passo indutivo.

Se um dos dois passos não for demonstrado, o resultado não está garantido!

Exemplo 9 Imagine que tenhamos a conjectura de que o predicado P(n) definido como "10" é múltiplo de 7" é verdadeiro para todo $n \in \mathbb{N}$.

Se quisermos demonstrar esta afirmação por indução:

- a) É possível demonstrar o passo indutivo?
- b) É possível demonstrar o passo base?
- c) A demonstração por indução pode ser concluída com sucesso?

Princípio da indução matemática (fraca): Erros comuns

• Exemplo 9 (Continuação)

Solução.

a) Vamos começar pelo passo indutivo.

Passo indutivo: Assuma como hipótese indutiva que P(k) seja verdadeiro para um inteiro $k \ge 0$ arbitrário, ou seja, que 10^k é divisível por 7. Sob a I.H., queremos mostrar que P(k+1) também deve ser verdadeiro, ou seja, que 10^{k+1} é divisível por 7.

Se 10^k é divisível por 7, então existe um inteiro r tal que que $10^k = 7r$.

Logo podemos derivar

$$10^{k+1} = 10 \cdot 10^k$$

= $10 \cdot 7r$ (pela I.H.)
= $7(10r)$

e, portanto, 10^{k+1} é divisível por 7, o que conclui o passo indutivo com sucesso.

Princípio da indução matemática (fraca): Erros comuns

- Exemplo 9 (Continuação)
 - b) Agora olharemos o passo base.

Passo base: Queremos mostrar P(0), ou seja, que $10^0 = 1$ é divisível por 7. Mas isso é claramente falso.

Logo o passo base não é válido.

c) Por fim concluímos que a demonstração por indução não foi completada com sucesso, pois, apesar de o passo indutivo ter sido demonstrado, o passo base não foi.

(Na verdade, o predicado P(n) é falso para todo $n \in \mathbb{N}!$)

Indução Matemática (Forte) e Boa Ordenação

Princípio da indução matemática (forte): Introdução

 O princípio de indução que vimos até agora é conhecido como o princípio da indução matemática fraca:

$$\left(\underbrace{P(1)}_{\mathsf{Passo base}} \land \underbrace{\forall k \in \mathbb{Z}^+ : (P(k) \to P(k+1))}_{\mathsf{Passo indutivo}}\right) \to \underbrace{\forall n \in \mathbb{Z}^+ : P(n)}_{\mathsf{Conclusão}}$$

Ele recebe este nome de indução "fraca" porque a hipótese de indução (I.H.) do passo indutivo é apenas que P(k) seja verdadeiro para algum k.

- Às vezes é complicado usar a indução fraca para demonstrar um resultado, e podemos recorrer ao **princípio da indução matemática forte**.
 - Neste princípio, a hipótese de indução do passo indutivo é de que P(j) é válido para todo $1 \le j \le k$.

Princípio da indução matemática (forte)

 Para mostrar que uma propriedade P(n) vale para todos os inteiros positivos n, uma demonstração que utilize princípio da indução matemática (forte) possui duas partes:

Demonstração por indução forte:

Passo base: Demonstra-se P(1);

Passo indutivo: Demonstra-se que, para qualquer inteiro positivo k, se P(j) é verdadeiro para todo $1 \le j \le k$, então P(k+1) é verdadeiro.

- A **hipótese de indução** ou **I.H.** da indução forte é $P(1) \wedge P(2) \wedge ... \wedge P(k)$ são todos verdadeiros.
- O princípio da indução matemática forte pode ser expresso como uma regra de inferência sobre os números inteiros:

$$\left(\underbrace{P(1)}_{\mathsf{Passo base}} \land \underbrace{\forall k \in \mathbb{Z}^+ : (P(1) \land P(2) \land \ldots \land P(k) \rightarrow P(k+1))}_{\mathsf{Passo indutivo}}\right) \rightarrow \underbrace{\forall n \in \mathbb{Z}^+ : P(n)}_{\mathsf{Conclusão}}$$

Princípio da indução matemática forte: Intuição

- Imagine que você esteja diante de uma escada de infinitos degraus, e você novamente se pergunta: "Será que eu consigo alcançar qualquer degrau dessa escada?"
- Mas, desta vez, você sabe que:
 - 1. você consegue alcançar o primeiro degrau e também o segundo degrau, e
 - 2. se você alcançar um degrau qualquer, você consegue alcançar dois degraus acima (ou seja, você pode subir degraus de dois em dois).
- Você consegue usar a indução fraca para verificar que conseguimos alcançar qualquer degrau dessa escada?

Princípio da indução matemática forte: Intuição

• Vamos tentar responder à pergunta usando indução forte.

Vamos chamar de P(n) a proposição "Eu consigo alcançar o n-ésimo degrau da escada".

Passo base: P(1) é verdadeiro porque eu consigo alcançar o primeiro degrau. O mesmo vale para P(2).

Passo indutivo: Assumamos como hipótese de indução que para um $k \geq 2$, as proposições $P(1), P(2), \ldots, P(k)$ são todas verdadeiras. Queremos mostrar que P(k+1) também é verdadeiro, ou seja, que podemos alcançar também o (k+1)-ésimo degrau.

Para ver que podemos alcançar o degrau k+1, note que pela I.H. alcançamos todos os degraus entre 1 e k (para $k \geq 2$), e, em particular, o degrau k-1. Como alcançamos k-1 e a regra 2 diz que uma vez que tenhamos alcançado um degrau podemos alcançar dois degraus acima, podemos alcançar o degrau k+1. E assim termina o passo indutivo.

Dessa forma, a demonstração por indução forte está completa.

• Exemplo 10 Se *n* é um inteiro maior ou igual a 2, então *n* pode ser escrito como o produto de números primos.

Demonstração. Seja P(n) a proposição "n pode ser escrito como o produto de números primos".

Passo base: P(2) é verdadeiro porque 2 pode ser escrito como o produto de um número primo, ele mesmo.

Passo indutivo: A hipótese de indução é que, para um inteiro $k \geq 2$ arbitrário, P(j) é verdadeiro para todos os inteiros positivos tais que $2 \leq j \leq k$, ou seja, que qualquer inteiro j entre 2 e k pode ser escrito como o produto de primos.

Para completar o passo indutivo, temos que mostrar que a I.H. de indução implica que P(k+1) também é verdadeiro, ou seja, que o inteiro k+1 também pode ser escrito como o produto de primos.

• Exemplo 10 (Continuação)

Há dois casos a se considerarem: k + 1 é primo ou k + 1 é composto.

- Caso 1: k+1 é primo. Neste caso P(k+1) é trivialmente verdadeiro, porque k+1 é o produto de um único primo, ele mesmo.
- <u>Caso 2</u>: k+1 é composto. Neste caso k+1 pode ser escrito como o produto de dois inteiros a e b tais que $2 \le a \le b \le k$. Pela hipótese de indução, tanto a quanto b podem ser escritos como o produto de primos (já que P(j) vale para todo $2 \le j \le k$). Logo, k+1=ab também pode ser escrito como o produto de primos e assim concluímos o passo indutivo.

Como concluímos com sucesso o passo base e o passo indutivo, mostramos por indução que $\forall n \in \mathbb{Z}^+, n \geq 2 : P(n)$, ou seja, que todo inteiro $n \geq 2$ pode ser escrito como o produto de números primos.

• Exemplo 11 Toda postagem de 12 centavos ou mais pode ser feita usando apenas selos de 4 centavos e selos de 5 centavos.

Demonstração. Seja P(n) a proposição "qualquer postagem de n centavos pode ser feita usando apenas selos de 4 centavos e selos de 5 centavos".

Passo base: Vamos precisar de quatro casos base:

- P(12) é verdadeiro porque podemos usar três selos de 4 centavos;
- P(13) é verdadeiro porque podemos usar dois selos de 4 centavos e um selo de 5 centavos;
- P(14) é verdadeiro porque podemos usar um selos de 4 centavos e dois selos de 5 centavos; e
- P(15) é verdadeiro porque podemos usar 3 selos de 5 centavos;

Isto completa o passo base.

• Exemplo 11 (Continuação)

Passo indutivo: A hipótese de indução é que P(j) é verdadeiro para $12 \le j \le k$, onde k é um inteiro $k \ge 15$. Ou seja, a I.H. é que toda postagem de valores entre 12 centavos e k centavos pode ser feita usando selos de 4 e 5 centavos apenas.

Para completar o passo indutivo, vamos mostrar que, sob a I.H., P(k+1) é verdadeiro, ou seja, que uma postagem de k+1 centavos pode ser feita usando-se apenas selos de 4 e 5 centavos.

Pela I.H., P(k-3) é verdadeiro porque $k-3 \geq 12$ e para todo $12 \leq j \leq k$ temos P(j) verdadeiro. Logo, existe uma maneira de postar k-3 centavos usando apenas selos de 4 e 5 centavos. Para postar k+1 centavos, basta acrescentar à postagem possível para k-3 centavos um selo de 4 centavos.

Isto concluímos o passo indutivo e a demonstração.

- Exemplo 12 O Jogo de Nim possui as seguintes regras:
 - 1. Há duas pilhas de fósforos (não vazias) sobre a mesa.
 - Dois jogadores se alternam em rodadas, sendo que em cada rodada um jogador escolhe uma pilha de fósforos e retira da mesma um número positivo de fósforos.
 - 3. O jogador que remover o último fósforo ganha o jogo.

Mostre que se as duas pilhas contêm inicialmente o mesmo número de fósforos, então o segundo jogador sempre pode ganhar o Jogo de Nim.

Demonstração. Seja n o número de fósforos em cada pilha. Seja P(n) a proposição "o segundo jogador pode ganhar o Jogo de Nim se houver inicialmente n fósforos em cada pilha".

Passo base: P(1) é verdadeiro porque nesse caso o primeiro jogador só tem uma opção: remover um fósforo de uma das pilhas, e assim o segundo jogador ganha ao remover o fósforo da outra pilha.

Exemplo 12 (Continuação)

Passo indutivo: A hipótese de indução é a afirmação de que P(j) é verdadeiro para todo $1 \leq j \leq k$, onde $k \geq 1$ é um inteiro arbitrário. Ou seja, a I.H. é que o segundo jogador sempre pode vencer o Jogo de Nim em que cada pilha começa com j fósforos, sendo j um inteiro entre 1 e k, com $k \geq 1$.

Assumindo a I.H., precisamos mostrar que P(k+1) é verdadeiro, ou seja, que o segundo jogador pode vencer o Jogo de Nim se cada pilha começar com k+1 fósforos.

Para mostrar isto, suponha que cada pilha comece com k+1 fósforos. Pelas regras do jogo, o primeiro jogador tem que remover um número r fósforos tal que $1 \le r \le k+1$. Comece por notar que se o primeiro jogador remover exatamente k+1 fósforos de uma pilha, o segundo jogador ganha ao remover k+1 fósforos da outra pilha.

• Exemplo 12 (Continuação)

Vamos nos concentrar agora no caso de o primeiro jogador remover $1 \le r \le k$ fósforos de uma pilha.

Nesse caso, o segundo jogador pode remover o mesmo número \emph{r} de fósforos da outra pilha.

Nesse caso, cada pilha passa a conter um número igual de fósforos k+1-r.

Como $1 \le k+1-r \le k$, a hipótese de indução garante que o segundo jogador pode ganhar o Jogo de Nim uma vez que cada pilha tenha k+1-r fósforos.

Logo a indução forte termina.

Princípio da Boa Ordenação

- O princípio da indução matemática fraca e forte são equivalentes:
 - Toda demonstração que pode ser feita com indução fraca, pode ser feita também com indução forte.
 - Desafio para o(a) estudante: como demonstrar isto?
 - Toda demonstração que pode ser feita com indução forte, pode ser feita também com indução fraca.
 - Desafio para o(a) estudante: como demonstrar isto?
- Além disso, o princípio da indução matemática fraca e forte são equivalentes ao seguinte axioma dos números naturais:
 - **Princípio da Boa Ordenação:** Seja S um subconjunto não-vazio de \mathbb{N} . Então S tem um menor elemento.