MATH 417, HOMEWORK 2

CHARLES ANCEL

Exercise 1. Consider the formula $x \star y \stackrel{\text{def}}{=} 2xy$. Show that $(\mathbb{R}_{>0}, \star)$ is a group.

SOLUTION

To show that $(\mathbb{R}_{>0}, \star)$ is a group under the operation $x \star y = 2xy$, we need to verify the following group axioms:

Proof.

Closure. Let $x, y \in \mathbb{R}_{>0}$. We need to show that $x \star y = 2xy \in \mathbb{R}_{>0}$.

$$x > 0$$
 and $y > 0$
 $\Rightarrow 2xy > 0$ since $2 > 0$, $x > 0$, $y > 0$.

Thus, $x \star y \in \mathbb{R}_{>0}$, proving closure.

Associativity. Let $x, y, z \in \mathbb{R}_{>0}$. We need to show that $(x \star y) \star z = x \star (y \star z)$.

$$(x \star y) \star z = (2xy) \star z$$

= $2(2xy)z$ (by definition of \star)
= $4xyz$,
 $x \star (y \star z) = x \star (2yz)$
= $2x(2yz)$ (by definition of \star)
= $4xyz$.

Thus, $(x \star y) \star z = x \star (y \star z)$, proving associativity.

Identity Element. We need to find an element $e \in \mathbb{R}_{>0}$ such that $e \star x = x \star e = x$ for all $x \in \mathbb{R}_{>0}$.

$$e \star x = 2ex = x \implies e = \frac{1}{2},$$

 $x \star e = 2x\left(\frac{1}{2}\right) = x.$

Thus, the identity element is $e = \frac{1}{2}$.

Inverses. For each $x \in \mathbb{R}_{>0}$, we need to find an element $y \in \mathbb{R}_{>0}$ such that $x \star y = y \star x = e$, where $e = \frac{1}{2}$.

$$x \star y = 2xy = \frac{1}{2}$$

$$\Rightarrow y = \frac{1}{4x},$$

$$y \star x = 2yx = 2\left(\frac{1}{4x}\right)x = \frac{1}{2}.$$

Thus, the inverse of x is $y = \frac{1}{4x}$.

Since the operation \star satisfies closure, associativity, identity, and inverses, we conclude that $(\mathbb{R}_{>0}, \star)$ is a group.

Exercise 2. State and prove a formula for the parity of a permutation in terms of its cycle type.

SOLUTION

Statement of the Formula. Let $\sigma \in S_n$ be a permutation, and let c_1, c_2, \ldots, c_k be the lengths of the disjoint cycles in the cycle decomposition of σ . The parity of the permutation σ (i.e., whether it is even or odd) can be determined by the formula:

$$parity(\sigma) = \sum_{i=1}^{k} (c_i - 1) \mod 2.$$

In other words, a permutation is even if the sum of $c_i - 1$ for all cycles is even, and odd if this sum is odd.

Proof of the Formula. To prove this formula, we need to show that the sum $\sum_{i=1}^{k} (c_i - 1)$ modulo 2 corresponds to the parity of the permutation σ .

Proof.

Cycle Decomposition and Transpositions. Any permutation $\sigma \in S_n$ can be written as a product of disjoint cycles. Let $\sigma = \tau_1 \tau_2 \cdots \tau_k$, where each τ_i is a cycle of length c_i .

A c_i -cycle $(a_1 a_2 \dots a_{c_i})$ can be decomposed into $(c_i - 1)$ transpositions:

$$(a_1 a_2 \dots a_{c_i}) = (a_1 a_{c_i})(a_1 a_{c_{i-1}}) \cdots (a_1 a_2).$$

The number of transpositions in the decomposition of τ_i is $c_i - 1$.

Sum of Transpositions. The total number of transpositions required to express σ as a product of transpositions is:

$$\sum_{i=1}^{k} (c_i - 1).$$

Parity Calculation. The parity of σ is even if this sum is even and odd if this sum is odd. This can be seen as follows: - If the total number of transpositions (2-cycles) used to express σ is even, then σ is an even permutation. - If the total number of transpositions used to express σ is odd, then σ is an odd permutation.

Thus, the parity of the permutation σ can be calculated as:

$$\operatorname{parity}(\sigma) = \sum_{i=1}^{k} (c_i - 1) \mod 2.$$

Example for Verification. Consider the permutation $\sigma = (1\,2\,3)(4\,5)$ in S_5 :

- The cycle (123) is a 3-cycle and can be decomposed into 2 transpositions: (13)(12).
- The cycle (45) is a 2-cycle and can be decomposed into 1 transposition: (45).

The total number of transpositions is 2 + 1 = 3. Thus, σ is an odd permutation. According to the formula:

$$parity(\sigma) = ((3-1) + (2-1)) \mod 2 = (2+1) \mod 2 = 1.$$

The parity is 1 (odd), matching our calculation.

This proves that the formula for the parity of a permutation in terms of its cycle type is correct.

Exercise 3. Suppose b, c, d, e are integers. Show that if $d, e \in I(b, c)$, then $I(d, e) \subseteq I(b, c)$

SOLUTION

Let I(b,c) denote the ideal in \mathbb{Z} generated by b and c, and I(d,e) denote the ideal generated by d and e. To show that $I(d,e) \subseteq I(b,c)$, we proceed as follows:

Proof.

Definition of Ideals. The ideal I(b,c) generated by b and c in \mathbb{Z} consists of all linear combinations of b and c:

$$I(b,c) = \{xb + yc \mid x, y \in \mathbb{Z}\}.$$

Similarly, the ideal I(d, e) generated by d and e is:

$$I(d, e) = \{ud + ve \mid u, v \in \mathbb{Z}\}.$$

Given Conditions. We are given that $d, e \in I(b, c)$. Therefore, there exist integers x_1, y_1, x_2, y_2 such that:

$$d = x_1b + y_1c,$$

$$e = x_2b + y_2c.$$

Subset Inclusion. We need to show that any element in I(d, e) is also in I(b, c). Take any element in I(d, e):

$$k = ud + ve$$
 for some $u, v \in \mathbb{Z}$.

Substituting $d = x_1b + y_1c$ and $e = x_2b + y_2c$:

$$k = u(x_1b + y_1c) + v(x_2b + y_2c).$$

Expanding and simplifying, we get:

$$k = (ux_1 + vx_2)b + (uy_1 + vy_2)c.$$

Let $x = ux_1 + vx_2$ and $y = uy_1 + vy_2$. Then:

$$k = xb + yc$$
.

Conclusion. Since $x, y \in \mathbb{Z}$, we have k = xb + yc. This shows that $k \in I(b, c)$. Therefore, every element $k \in I(d, e)$ is also in I(b, c), proving that:

$$I(d, e) \subseteq I(b, c)$$
.

Exercise 4. Let $a, b, d \in \mathbb{Z}$. Show that if the equation d = ax + by has at least one solution $(x, y) \in \mathbb{Z}^2$, then it has infinitely many such solutions.

SOLUTION

Given the equation d = ax + by with $a, b, d \in \mathbb{Z}$, we aim to show that if there exists at least one integer solution (x_0, y_0) , then there are infinitely many integer solutions.

Proof.

Existence of a Particular Solution. Suppose there exists a solution $(x_0, y_0) \in \mathbb{Z}^2$ such that:

$$d = ax_0 + by_0.$$

General Solution. We will derive the general solution to the equation d = ax + by.

Consider any integer t. Let x and y be parameterized by t:

$$x = x_0 + bt$$
, $y = y_0 - at$.

Verification of the General Solution. Substitute $x = x_0 + bt$ and $y = y_0 - at$ into the equation d = ax + by:

$$d = a(x_0 + bt) + b(y_0 - at)$$

$$= ax_0 + abt + by_0 - bat$$

$$= ax_0 + by_0 + (abt - bat)$$

$$= ax_0 + by_0 + 0$$

$$= d.$$

Thus, d = ax + by for $x = x_0 + bt$ and $y = y_0 - at$.

Conclusion. Since t can be any integer, there are infinitely many pairs (x, y) given by:

$$x = x_0 + bt$$
, $y = y_0 - at$

that satisfy the equation d = ax + by.

Therefore, if there is at least one solution to the equation d = ax + by, there are infinitely many integer solutions.

Exercise 1.6.3. Suppose that a natural number p > 1 has the property that for all nonzero integers a, b, if p divides the product ab, then p divides a or p divides b. Show that p is prime. (This is the converse of Proposition 1.6.19 in the book.)

SOLUTION

To prove that p is a prime number, we assume the given property and use a proof by contradiction.

Proof.

Assumption. Assume p is not prime. Then p can be factored into two positive integers greater than 1:

$$p = mn$$
,

where 1 < m < p and 1 < n < p.

Applying the Property. Consider the integers m and n:

$$p \mid mn \pmod{p = mn}$$
.

By the given property, since p divides the product mn, p must divide either m or n.

Contradiction. Since p = mn:

- If $p \mid m$, then m = kp for some integer k, which implies $m \geq p$, contradicting 1 < m < p.
- If $p \mid n$, then n = kp for some integer k, which implies $n \ge p$, contradicting 1 < n < p.

In both cases, we reach a contradiction. Therefore, our assumption that p is not prime must be false.

Conclusion. Since assuming p is not prime leads to a contradiction, we conclude that p must be prime.

Exercise 1.7.1. Prove that addition and multiplication in \mathbb{Z}_n are both commutative and associative.

SOLUTION

In \mathbb{Z}_n , addition and multiplication are defined modulo n. We will prove the commutativity and associativity of these operations.

Addition in \mathbb{Z}_n .

Commutativity. Let $a, b \in \mathbb{Z}_n$. We need to show that a + b = b + a in \mathbb{Z}_n .

Proof.

Addition in \mathbb{Z}_n is defined as:

$$a + b \equiv a + b \pmod{n}$$
.

Using the commutativity of addition in \mathbb{Z} , we have:

$$a+b=b+a$$
.

Therefore:

$$a + b \equiv b + a \pmod{n}$$
.

Hence, addition in \mathbb{Z}_n is commutative.

Associativity. Let $a, b, c \in \mathbb{Z}_n$. We need to show that (a+b) + c = a + (b+c) in \mathbb{Z}_n .

Proof.

Addition in \mathbb{Z}_n is defined as:

$$a + b \equiv a + b \pmod{n}$$
.

Using the associativity of addition in \mathbb{Z} , we have:

$$(a+b) + c = a + (b+c).$$

Therefore:

$$(a+b) + c \equiv a + (b+c) \pmod{n}.$$

Hence, addition in \mathbb{Z}_n is associative.

Multiplication in \mathbb{Z}_n .

Commutativity. Let $a, b \in \mathbb{Z}_n$. We need to show that $a \cdot b = b \cdot a$ in \mathbb{Z}_n .

Proof. Multiplication in \mathbb{Z}_n is defined as:

$$a \cdot b \equiv a \cdot b \pmod{n}$$
.

Using the commutativity of multiplication in \mathbb{Z} , we have:

$$a \cdot b = b \cdot a$$
.

Therefore:

$$a \cdot b \equiv b \cdot a \pmod{n}$$
.

Hence, multiplication in \mathbb{Z}_n is commutative.

Associativity. Let $a, b, c \in \mathbb{Z}_n$. We need to show that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ in \mathbb{Z}_n .

Proof. Multiplication in \mathbb{Z}_n is defined as:

$$a \cdot b \equiv a \cdot b \pmod{n}$$
.

Using the associativity of multiplication in \mathbb{Z} , we have:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

Therefore:

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c) \pmod{n}$$
.

Hence, multiplication in \mathbb{Z}_n is associative.

CONCLUSION

We have shown that both addition and multiplication in \mathbb{Z}_n are commutative and associative, completing the proof.

Exercise 1.7.16. Find an integer x such that $x \equiv 3 \pmod{4}$ and $x \equiv 5 \pmod{9}$.

SOLUTION

We need to find an integer x that satisfies the following system of congruences:

$$\begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 5 \pmod{9} \end{cases}$$

To solve this, we can use the method of successive substitutions or apply the Chinese Remainder Theorem.

Proof.

Method of Successive Substitutions.

1. Express x in terms of one congruence: From the first congruence, write x as:

$$x = 4k + 3$$
 for some integer k .

2. Substitute into the second congruence: Substitute x in the second congruence:

$$4k + 3 \equiv 5 \pmod{9}.$$

Simplify this to solve for k:

$$4k + 3 \equiv 5 \pmod{9}$$
$$4k \equiv 2 \pmod{9}$$
$$k \equiv 2 \cdot 4^{-1} \pmod{9}.$$

3. Find the inverse of 4 modulo 9: The multiplicative inverse of 4 modulo 9 is an integer y such that:

$$4y \equiv 1 \pmod{9}$$
.

By checking values, we find that $4 \cdot 7 \equiv 28 \equiv 1 \pmod{9}$. Thus, the inverse is 7.

4. Solve for k: Substitute the inverse back into the equation:

$$k \equiv 2 \cdot 7 \pmod{9} k \equiv 14 \pmod{9} k \equiv 5 \pmod{9}$$
.

5. Find x: Substitute k back into the expression for x:

$$x = 4k + 3 = 4 \cdot 5 + 3 = 20 + 3 = 23.$$

Thus,

$$x \equiv 23 \pmod{36}$$
.

Verification. To verify:

– Check
$$x \equiv 3 \pmod 4$$
:
$$23 \div 4 = 5 \text{ remainder } 3 \quad \Rightarrow \quad 23 \equiv 3 \pmod 4.$$

– Check
$$x \equiv 5 \pmod 9$$
:
$$23 \div 9 = 2 \text{ remainder } 5 \quad \Rightarrow \quad 23 \equiv 5 \pmod 9.$$

Both congruences are satisfied.

Conclusion. The integer x that satisfies both congruences is:

23 .