

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P71287A
Publications Code WST03_01_2110_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number		Scheme							
1.	H ₀ : μ =	$H_0: \mu = 30 H_1: \mu < 30$							
	$z = \frac{29.5 - 30}{\frac{2.5}{\sqrt{80}}}$								
	z = -1	7888 awrt–1.79	A1						
	-1.7888 < -1.6449								
	Reject	H ₀ or significant result or in the critical region							
	There is evidence to support the manager's claim.								
			(5)						
		Notes	Total 5						
	B1	Both hypotheses correct in terms of μ							
	M1	for attempting test statistic, allow \pm , Condone $\sqrt{\frac{2.5}{80}}$ A1 awrt -1.79 allow $ z = 1.7888$ Allow p value of 0.0367 or awrt 0.0368 or CR \leq 29.54							
	A1								
	B1	B1 $ CV = 1.6449$ or better (Ignore any comparisons) Allow $CR \le 29.54$ SC If p value of 0.0367 or awrt 0.0368 award B1 if 2^{nd} A1 is awarded							
	A1								

Question Number		Scheme	Marks								
2	H ₀ : Potassium has no effect on the quality of apple H ₁ : Potassium has an effect on the quality of apple										
	Grade Expected values	A B C D E d 9.6 67.2 124.8 24.0 14.4	M1A1								
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(9-"9.6")^{2}}{"9.6"} + \dots + \frac{(3-"14.4")^{2}}{"14.4"} \text{ or}$ $\chi^{2} = \sum \frac{O^{2}}{E} - N = \frac{9^{2}}{"9.6"} + \dots + \frac{3^{2}}{"14.4"} - 240$										
	= 10.0	= 10.657 awrt 10.7									
	Degrees of freedom = 4										
	$\chi^2_{4,0.05} = 9.488$										
	[Reject H ₀] Data suggests that potassium may affect the distribution of the grades of apples or there is evidence that Andy's belief is incorrect										
			(8) Total 8								
	Notes B1 Both hypotheses in context. May use other wording eg The grading of apples remains										
	M1										
	A1	At least 3 expected values correct									
	M1	A correct method using their expected values to calculate χ^2 At least one correct, fit expected values with an intention to add									
	A1	awrt 10.7									
	B1	Degrees of freedom = 4 (may by be implied by 9.488)									
	B1ft	9.488 ft their DoF. If no DoF stated then this must be correct for their working.									
	A1ft ft their χ^2 value provided the 2 nd M1 is awarded and CV. If no hypotheses or hypotheses o										

Question Number				Sch	eme							Mark	ζS
3(a)	jam	A	В	C	D	E	F	G	Н	I			
	Pric		2	4	5	3	6	7	8	9		M1	
	Taste		2	8	9	4	3	6	5	7			
	$\sum d^2 = [0+0+]16+16+1+9+1+9+4[=56]$										M1A1		
	$r_s = 1 - \frac{6(56)}{9(80)}; = \frac{8}{15} = 0.5333$ awrt 0.533										dM1A1	Ĺ	
													(5)
(b)	$H_0: \rho = 0$, $H_1: \rho \neq 0$										B1		
		alue = 0.7		1 . 1	• 1 .		1		. 1	•		B1	
	There is n	o evidenc	e of a re	lationsh	np betw	een <u>pri</u>	<u>ce</u> and <u>t</u>	aste of s	strawbe	rry jam		B1ft	(2)
(c)		16 4943											(3)
(0)	$r = \frac{1}{\sqrt{200}}$	$\frac{16.4943}{455 \times 243}$	5556									M1	
	= 0.738		.3330								222mt () 720	A 1	
	= 0.738	9									awrt 0.739	A1	(2)
(d)	$H_0: \rho = 0, H_1: \rho > 0$										B1	(2)	
()	$H_0: \rho = 0, H_1: \rho > 0$ $CV = 0.5822$										B1		
		vidence o	f a posit	ive corr	elation	between	price :	and taste	e of stra	wberry	jam	B1ft	
			•								5		(3)
(e)	Spearman's rank									B1			
	as it is unlikely that a joint normal distribution applies. or the marks are a judgement or the marks are not a meaningful scale.												
	or the ma	rks are a ju	aagemei	nt or the	marks	are not	a mean	ingiui se	care.				(1)
							Notes	,				Total	114
(a)	M1	Attempt	to rank	each jai	r for tas	te and p	rice. A	least 4	pairs of	f ranks o	correct		
	M1 For an attempt at d^2 row for their ranks (may be implied by $\sum d^2 = 56$)												
	A1	$\mathbf{A1} \qquad \sum d^2 = 56$											
	dM1	dM1 Dependent on the previous M being awarded. Using $1 - \frac{6\sum d^2}{9(80)}$											
	ulvii	Dependent on the previous W being awarded. Using $1 - \frac{1}{9(80)}$											
	A1 $\frac{8}{15}$ or awrt 0.533												
(b)	Both hypotheses stated in terms of ρ . Must be two-tail.												
	B1 0.7 for CV. Allow 0.6 if a one tail test is used												
	B1ft For a correct contextualised comment which has price and taste Follow through their r_s with their 0.7 (provided their r_s < 1)												
			_	-	with th	eir 0.7 (provide	d their	$ r_s < 1$	l)			
(c)	M1	Correct awrt 0.7		used									
(d)	A1			stated	in terms	$s of \rho$	Must h	e one-ta	il. If RO) awarda	ed in part (b) the	en allow s	anv
(4)	Both hypotheses stated in terms of ρ . Must be one-tail. If B0 awarded in part (b) then letter instead of ρ that is consistent with part (b)												
	B1 0.5822 Allow 0.6664 if a two-tail test is used.												
	B1ft	Correct	conclusi	on in co	ontext w	hich ha	s positi				y be implied by neir 0.5822 and		
(e)	B1	_	_							_	is ranked' as a		

Question Number	Scheme								
4(a)	Label the houses in area A 1- 41, area B 1 – 164, area C 1 – 123 and area D 1 - 82								
()	<u>Use random numbers</u> to select a								
	Simple random sample of <u>20</u> area <u>A</u> , <u>80</u> area <u>B</u> , <u>60</u> area <u>C</u> and <u>40</u> area <u>D</u>								
(b)	$\frac{357 \times 260}{595}$	M1							
	156 and 10	4		A1					
				(2)					
(c)		_							
	Observed	Expected	$\frac{\left(O-E\right)^2}{E}$						
	162	"156"	$\frac{\left(162 - "156"\right)^2}{"156"} = \frac{3}{13} = 0.2307$	M1					
	98	"104"	$\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$						
	$\chi^2 = 4.657 + 0.2307 + 0.346$								
	= 5.234 awrt 5.23								
	v = (2-1)(3-1) = 2								
	$\chi_2^2(0.05) = 5.991 \Rightarrow \text{CR}: \ \chi^2 > 5.991$								
		There is no evidence to suggest that there is an association between age and listening to LSB							
	_		Notes	Total 11					
(a)	M1 I	or suitable lab	pelling of all four areas. E.g. for area A: 1 – 41 or 0 - 40						
	M1 F								
	For 20 A, 80B, 60C and 40 D (dependent on 2 nd M1 only) NB A simple random sample of 20 A, 80B, 60C and 40 D scores M0M1A1. Allow M1: allocate random numbers to each house M1: arrange the numbers in order A1: select the 1 st 20 for area A, 80 for area B, 60 for area C and 40 for area D								
			cored then award B1 for $\underline{20}$ area \underline{A} , $\underline{80}$ for $\underline{80}$ area \underline{B} , $\underline{60}$ for area \underline{C} and $\underline{40}$ for area \underline{I}						
(b)			od for finding one expected value.	2					
()			for both values						
(c)	M1 A correct method for finding both contributions to the χ^2 value								
	M1 Adding the two values to 4.657 (may be implied by a full χ^2 calculation, do not ISV								
	A1 awrt 5.23								
	B1 2								
	B1ft 5.991 or better ft their DoF								
	dA1 A correct contextual conclusion, which has the words age and listening dependent or marks being awarded.								
		NB if they give	e a p value of 0.0730 rather than the CV they can get M1M1B1B0 p	Al					

Question Number		Scheme	Marks				
5(a)	$2.977 \pm 2.5758 \times \frac{0.015}{3}$						
	= (2.9641	, 2.9898) awrt (2.964, 2.990)	A1				
			(3)				
(b)	The CI do	bes not contain the stated weight.	B1 (1)				
(c)	$2.995 - 1.96 \times \frac{0.015}{\sqrt{n}} < 2.991$						
		$\frac{96 \times 0.015}{995 - 2.991}$	M1d				
	\sqrt{n} < awr	rt 7.35	A1				
	n = 54		A1cao				
		N. d	(4)				
(-)		Notes	Total 8				
(a)	M1	$2.977 \pm (z \text{ value}) \times \frac{0.015}{3}$					
	B 1	awrt 2.5758					
	A1	awrt (2.964, 2.990 (condone 2.99))					
(b)	B1	cao this must be consistent with their confidence interval					
(c)	M1 Setting up an inequality using z value > 1.5 Condone =						
	M1d	Dep on previous M mark. Correct rearranging to get $\sqrt{n} < \dots$ or $n < \dots$ Condone =	or >				
	A1	awrt 7.35 may be implied by awrt 54					
	A1cao	54					

Question Number		Scheme	Marks				
6(a)	$\overline{h} = 65.4$						
	$s^2 = \frac{214}{1}$	4676 – 50×("65.4") ² 49	M1				
	=16.6		A1				
			(3)				
(b)	$H_0:\mu_{do}=$	$\mu_{ m do\ not}\ m H_1$: $\mu_{ m do}<\mu_{ m do\ not}$	B1				
	$z = \pm \frac{"65.4" - 70.8}{\sqrt{\frac{"16.693"}{50} + \frac{29.6}{40}}}$						
	$= \pm 5.2$	1 awrt 5.21	A1				
	CV 1.644	49	B1				
	Amala's belief is supported						
			(6)				
(c)		bles you to assume that (the sampling distribution of the sample mean of) resting e is normally distributed for both groups	B1				
			B1 (1)				
(d)	Each population/sample is independent or each male is independent of the other males.						
	Assume the $\sigma_{do}^2 = s_{do}^2$ and $\sigma_{do \text{ not}}^2 = s_{do \text{ not}}^2$						
		Notes	Total 12				
(a)	B1	65.4 only					
	M1	Correct method to find s^2 using their \overline{h}					
	A1 awrt 16.7						
(b)	B1 Both hypotheses correct - must be clear which is exercise and which is not						
	M1 For the denominator. Ft their 16.693						
	M1 Correct ft their 65.4 and 16.693						
	A1 awrt 5.21 allow $ z = 5.21$						
	B1	CV = 1.6449 or better					
	A1	ft their z value and CV if the hypotheses are the correct way round. Correct conclus need belief. May be in words with heart and exercise e.g. resting heart rate is lower exercise regularly					
(c)	B 1	For the idea both groups normally distributed					
(d)	B1	For identifying the need for the groups or males to be independent.					
	B1	Realising the $\sigma^2 = s^2$ Allow sample sizes big enough for CLT to hold					

Question Number		Scheme	Marks				
7(a)	$E(B_1 -$	$(B_2) = 0$	B1				
	$\operatorname{Var}(B_1 - B_2) = 0.006$						
	$P(B_1 - B_2 > 0.1) = 2P(B_1 - B_2 > 0.1)$						
		= $2 \times P\left(Z > \frac{0.1}{\sqrt{"0.006"}}\right) \left[= 2 \times P\left(Z > 1.2909\right)\right]$	M1				
		= 0.1967 awrt 0.197	A1 (5)				
(b)	$\overline{B} \sim N$	$\left(1.96, \frac{0.003}{n}\right)$	B1				
	$P(\overline{B} >$	$ \frac{\left(1.96, \frac{0.003}{n}\right)}{2) = P\left(Z > \frac{2 - 1.96}{\sqrt{0.003/n}}\right) [< 0.01] $	M1				
	$\sqrt{\frac{2-1.90}{n}}$	$\frac{6}{3} > 2.3263$	B1 dM1				
	<i>n</i> = 11		A1 (5)				
(c)	$\mu_M = 2$	$21.8 + 500 \times 1.96 = 1001.8$; $\sigma_M^2 = 0.6 + 500 \times 0.003 = 2.1$	M1; M1				
	Let $X = 4T - 3M$						
	$\mu_X = 4$	$\times 774 - 3 \times "1001.8" [= 90.6] ; \sigma_X^2 = 16 \times 1.8 + 9 \times "2.1" [= 47.7]$	M1; M1				
	P(4T -	$-3M > 100$ $= P\left(Z > \frac{100 - 90.6}{\sqrt{47.7}}\right) \left[= P(Z > 1.361)\right]$	M1				
		= 0.0869 (table) or 0.08675 (calc)	A1				
			(7)				
(a)	D1	F	Total 17				
(a)	B1 B1	For expected value being 0 written or used For 0.006 being written or used for Variance					
	M1	Realising they need to consider both					
	M1	Correct standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using their 0.1 and 0.006 If the expected value and/or standardisation using the expected v	d deviation				
		not stated then they must be correct					
(b)	A1 B1	awrt 0.197 The correct distribution written or used					
(0)	M1		fam ad				
	B1	Correct standardisation. Allow using their distribution if stated but must contain \sqrt{n} to Using awrt 2.3263	IOF SU				
	dM1	Dep on previous M being awarded using a z value, $2 < z < 3$					
	A1	11					
(c)	M1	Correct method for finding the mean of M					
	M1 M1	Correct method for finding the var of M Realising the need to find $4T - 3M$ or $4T - 3M - 100$ or $100 + 3M - 4T$					
	M1	Correct method for finding the mean of X (using $4T - 3M - 100 = -9.4$ or $100 + 3M - 41$	(4-4T=9.4)				
	M1	Correct method for finding the var of X	,				
	M1	Correct standardisation using their mean of X and their standard deviation of X If the stated then they must be correct	e are not				
	A1	awrt 0.0869 or 0.0868					