

ALGORITMA & PEMROGRAMAN 1 (CAK1BAB3)

Pertemuan 02 - Prodi S1 Informatika, Fakultas Informatika, Universitas Telkom

Outline

Tipe Data Integer Tipe Data Character Tipe Data Real **Contoh Soal Latihan Soal**

Tipe Data Integer

Integer

- Representasi Internal : Bilangan Bulat
- Operasi: Aritmatika, Perbandingan dan Logika pada tingkat bit

Integer

- **❖**Operator + * / %
- Pembagian

Pembagian integer **71 div 21 = 3**

Modulo (sisa pembagian) **71 mod 21** = 71 - (3*21) = 71 - 63 = 8

- ❖ Jika terjadi overflow, maka diambil sebanyak bit yang ada
 - Perkalian **71** * **21** = 1491 --> **211** (sebanyak bit yang ada)
- ❖ Konversi basis bilangan digital ke desimal: 0100 0111=?

$$0x2^7+1x2^6+0x2^5+0x2^4+0x2^3+1x2^2+1x2^1+1x2^0=0+64+0+0+0+4+2+1=71$$

Integer

- ❖ Operasi geser << dan >>
 - Geser ke kiri (=x2ⁿ): **71** << **2** = $71x2^2$ = 284 --> **28** 0100 0111 << 2 = **01** 0001 1100 = 0001 1100 = 28
 - Geser ke kanan (=/2ⁿ): **71** >> **2** = $71/2^2$ = **17** 0100 0111 >> 2 = 0001 0001 **11** = 0001 0001 = 17
- ❖ Operasi logika &, |, dan ^

Contoh #1 Mencari Posisi

Sebuah program digunakan untuk mencari posisi suatu benda yang bergerak selama t detik, apabila benda bergerak dengan kecepatan tetap v meter/detik dan telah berada pada posisi d_0 meter.

$$kecepatan = \frac{jarak\ tempuh}{selang\ waktu}$$

Masukan terdiri dari tiga bilangan bulat yang menyatakan jarak awal, kecepatan dan lama benda bergerak.

Keluaran terdiri dari sebuah bilangan yang menyatakan jarak akhir benda setelah bergerak.

No	Masukan	Keluaran	Penjelasan
1	3 4 5	23	Jarak benda bergerak dengan v=4, dan t=5 adalah 20, posisi akhir = 3+20 = 23
2	10 5 10	60	Jarak benda bergerak dengan v=5, dan t=10 adalah 50, posisi akhir = 10+50 = 60
3	100 1 1	101	Jarak benda bergerak dengan v=1, dan t=1 adalah 1, posisi akhir = 100+1 = 101

Jawaban Soal #1Mencari Posisi

```
program Jarak
```

kamus

posisi, posisi0 : integer

kecepatan, waktu : integer

algoritma

input(posisi0,kecepatan,waktu)

posisi = posisi0 + (kecepatan * waktu)

output(posisi)

endprogram

Jarak benda yang bergerak dengan kecepatan tertentu setelah sekian detik dapat dihitung dengan persamaan:

Jarak = kecepatan x waktu

Selanjutnya, benda memiliki posisi awal, sehingga posisi akhir dapat dihitung dengan persamaan:

CONSOLE OUTPUT INPUT MEMORY PROGRAM

posisi0=-NOT-INITIALIZEDkecepatan=-NOT-INITIALIZEDkecepatan: integer

| kecepatan : integer | waktu=-NOT-INITIALIZED-| posisi=-NOT-INITIALIZED-| posisi=-NOT-INITIALIZED-| read posisi0, kecepatan, waktu | posisi <- posisi0 + kecepatan*waktu | write posisi | endprogram

Algoritma dan Pemrograman 1 Telkom University

Tipe Data Real

Real

- ☐ Bilangan riil dapat menyimpan pecahan
- Representasi internal data real menganut standar IEEE-754. Bit yang ada dibagi 3 bagian; tanda negatif/positif (1 bit), mantisa, dan eksponen.
- ☐ Setiap bilangan riil x dapat ditulis sebagai +a x 10^b
- **a** merupakan pecahan (e.g. 0.1415) dan **b** adalah bilangan bulat. Contoh:

$$-3.142857 = -0.3142857 \times 10^{1}$$

$$0.004142 = +0.4142 \times 10^{-2}$$

$$365.26 = +0.36526 \times 10^3$$

Sign +/-	Eksponen (b)	Mantisa (a)
1 bit	11 bit	52 bit

Real

Operasi	Keterangan
a + b	Operasi penjumlahan a dengan b
a - b	Operasi pengurangan a oleh b
a * b	Operasi perkalian a sebanyak b
a / b	Operasi pembagian a oleh b

Contoh #2 Temperatur

Diberikan nilai data temperatur dalam satuan Celcius. Buat algoritma untuk mengkonversi temperatur tersebut ke satuan Fahrenheit, Reamur, dan Kelvin.

Reamur = Celcius
$$\times \frac{4}{5}$$
, Fahrenheit = Celcius $\times \frac{9}{5} + 32$, Kelvin = Celcius + 273.15

Masukan terdiri dari bilangan rill yang menyatakan suhu dalam Celcius.

Keluaran terdiri dari tiga bilangan yang menyatakan hasil konversi dalam Reamur, Fahrenheit, dan Kelvin.

No	Masukan	Keluaran	Penjelasan
1	50.2	40.16 122.36 323.35	50.2 Celsius sama dengan 40.16 Reamur, 122.36 Fahrenheit, dan 323.35 Kelvin

Jawaban Soal #2 Temperatur

```
program Suhu
kamus
  celcius,reamur,fahrenheit,kelvin: real
algoritma
  input(celcius)
  reamur = celcius * 4/5
  fahrenheit = celcius * 9/5 + 32
  kelvin = celcius + 273.15
  output(reamur, fahrenheit, kelvin)
endprogram
package main
import "fmt"
func main(){
  var celcius, reamur, fahrenheit, kelvin float 64
  fmt.Scan(&celcius)
  reamur = celcius * \frac{4.0}{5.0}
  fahrenheit = celcius * 9.0/5.0 + 32.0
  kelvin = celcius + 273.15
  fmt.Println(reamur, fahrenheit, kelvin)
```

Pada bahasa pemrograman:

Operasi / pada bilangan bulat akan menghasilkan nilai integer.

Oleh karena itu perlu dikondisikan operasi / menjadi pembagian biasa, yaitu dengan mengubah bilangan bulat menjadi pecahan atau desimal

13

Tipe Data Character

Character

- Representasi internal >> <u>bilangan bulat</u> yang merupakan nomor urut karakter tersebut dalam suatu tabel/daftar karakter yang diakui.
 Umumnya ada dua table yaitu: Tabel ASCII dan Tabel UTF-16 (penyempurnaan ASCII dan symbol non huruf latin)
 Operasi dasar karakter tidak ada karena secara internal dianggap sebagai bilangan bulat atau integer.
- ☐ Pada saat input, pembacaan karakter diubah menjadi nilai integernya,
- ☐ Pada saat output, data integer diubah menjadi tampilan karakternya.

Character

• Relasi Integer dengan simbol karakter

	0	1	2	3	4	5	6	7
32 40	SPC (!	" *	# +	\$,	% -	&	/
48 56	0 8	1 9	2 :	3 ;	4 <	5 =	6 >	7 ?
64	@	A	B	C	D	E	F	G
72	H	I	J	K	L	M	N	O
80	P	Q	R	S	T	U	V	W
88	X	Y	Z	[\]		-
96	h	a	b	c	d	e	f	g
104		i	j	k	I	m	n	o
112	p	q	r	s	t	u	V	w
120	x	y	z	{		}	~	DEL

Contoh #3 Pesan Rahasia

Diberikan input pesan rahasia berupa 5 buah bilangan bulat. Formula untuk membongkar rahasia tersebut adalah 64 ditambah dengan hasil pembagian 64 dari penjumlahan dua angka yang bersebelahan yang di-modulo 4096.

Masukan terdiri dari lima bilangan bulat x1, x2, x3, x4, dan x5.

Keluaran terdiri dari empat karakter hasil operasi di atas.

No	Masukan	Keluaran
1	-981 21623 983 22152 1127	Baik

Jawaban Soal #3 Pesan Rahasia

```
program rahasia
kamus
  x1,x2,x3,x4,x5: integer
  y1,y2,y3,y4 : char
algoritma
  input(x1,x2,x3,x4)
  y1 = ((x1 + x2) \mod 4096) >> 6 + 64
  y2 = ((x2 + x3) \mod 4096) >> 6 + 64
  y3 = ((x3 + x4) \mod 4096) >> 6 + 64
  y4 = ((x4 + x5) \mod 4096) >> 6 + 64
  output(y1,y2,y3,y4)
endprogram
package main
import "fmt"
func main(){
  var x1,x2,x3,x4,x5 int
  var y1,y2,y3,y4 int
  fmt.Scan(&x1,&x2,&x3,&x4,&x5)
  y1 = ((x1+x2) \% 4096) >> 6 + 64
  y2 = ((x2+x3) \% 4096) >> 6 + 64
  y3 = ((x3+x4) \% 4096) >> 6 + 64
  y4 = ((x4+x5) \% 4096) >> 6 + 64
  fmt.Printf("%c%c%c%c",y1,y2,y3,y4)
```

Bilangan y di geser ke kanan sebanyak n bit atau y >> n akan sama dengan $\frac{y}{2^n}$

[CCH1A4 go]\$

Latihan Soal

Soal #1 Persegi Panjang

Apabila diketahui panjang dan lebar dari persegi panjang adalah p dan l, maka buatlah sebuah algoritma yang digunakan untuk menghitung luas $(p \times l)$ dan keliling (2p + 2l) suatu persegi panjang.

Masukan terdiri dari dua bilangan bulat positif p dan l.

Keluaran berupa bilangan K dan L yang menyatakan keliling dan luas dari persegi Panjang.

No	Masukan	Keluaran	Penjelasan
1	22	8 4	p dan l adalah 2
2	70 20	180 1400	$K = 2 \times 70 + 2 \times 20 = 180$
3	5 46	102 230	$L = 5 \times 46 = 230$

Soal #2 Lingkaran

Sebuah program digunakan untuk menghitung luas dan keliling lingkaran.

Luas lingkaran = πr^2

 $Keliling\ lingkaran = 2\pi r$

Masukan terdiri dari suatu bilangan riil yang menyatakan jari-jari lingkaran.

Keluaran terdiri dari dua bilangan yang menyatakan luas dan keliling lingkaran

No	Masukan	Keluaran	Penjelasan
1	1	3.14 6.28	luas lingkaran = 3.14 keliling lingkaran = 6.28
2	5	78.5 31.40000000000002	luas lingkaran = 78.5 keliling lingkaran = 31.40000000000000000
3	10	314 62.80000000000004	luas lingkaran = 314 keliling lingkaran = 62.800000000000004

Soal #3 Fungsi F(x,y)

Sebuah program digunakan untuk menghitung persamaan berikut ini dan menampilkannya

$$f(x,y) = \frac{1}{3x^2 + 10} + 10y + 7$$

Masukan terdiri dari dua bilangan bulat x dan y

Keluaran terdiri dari sebuah bilangan yang menyatakan nilai dari f(x,y)

No	Masukan	Keluaran	Penjelasan
1	22	27.0454545454547	x = 2 dan y = 2
2	70 20	207.00006798096533	x = 70 dan y = 20
3	5 46	467.01176470588234	X = 5 dan y = 46

Soal #4 Digit

Sebuah program digunakan untuk menentukan tiga digit nilai yang terdapat pada suatu bilangan bulat positif x.

Masukan berupa bilangan bulat positif x yang kurang atau sama dengan 999.

Keluaran terdiri dari dari tiga bilangan d1, d2, dan d3 yang menyatakan digit pertama, kedua dan ketiga dari x.

Petunjuk: satuan dapat diperoleh apabila bilangan apapun dimodulo dengan 10

No	Masukan	Keluaran	Penjelasan
1	444	4 4 4	x = 444, maka d1 = 4, d2 = 4 dan d3 = 4
2	1	0 0 1	x = 1, maka $d1 = 0$, $d2 = 0$ dan $d3 = 1$
3	546	5 4 6	x = 546, maka d1 = 5, d2 = 4 dan d3 = 6

Soal #5 Toko

Seorang pedagang sedang menghitung harga jual suatu barang yang akan dijualnya. Pedagang tersebut menetapkan bahwa keuntungan setiap barang yang dijual adalah 5% dari modal barangnya.

Masukan terdiri dari tiga bilangan bulat positif yang menyatakan harga beli tiga barang yang akan dijual.

Keluaran berupa tiga bilangan yang menyatakan harga jual dari masing-masing barang dengan keuntungan 5%.

No	Masukan	Keluaran
1	1000 2000 3000	1050 2100 3150
2	123 456 135	129.15 478.8 141.75
3	572	5.25 7.35 2.1

Terima Kasih ©

