

Tópicos de Física Moderna 2º Teste

Licenciatura em Engenharia Informática

11 de maio de 2012 - 16h00 Duração - 2h00

В

	NOME:	nº:	
	considerada correta se forem assinaladas com uma	e escolha múltipla. A resposta a estas questões só é cruz <u>todas</u> as opções corretas que lhe correspondem. ra apresentar todos os cálculos, principalmente os que	
2val	Q1. Uma lâmpada de incandescência de 60 W radia devido ao aquecimento do seu filamento à temperatura de 3500 K.		
	a) Se apenas 8% da potência total emitida pela lâmpada se situar na região do visível (considere λ (médio do visível) = 550nm), o número (N) de fotões do visível emitidos por segundo é $M = 13.3 \times 10^{18} \text{ fotões/s}$ $M = 1.66 \times 10^{19} \text{ fotões/s}$ $M = 1.33 \times 10^{19} \text{ fotões/s}$ $M = 1.66 \times 10^{20} \text{ fotões/s}$	b) Assumindo que radia como um corpo negro ideal, o máximo no seu espetro de energia radiada ocorre para	
2val	Q2. O trabalho de extração do molibdénio é de 4.22 e	V (1 eV = 1.602×10 ⁻¹⁹ J)	
	a) O maior comprimento de onda (λ_{max}) da radiação incidente no molibdénio que ainda provoca emissão de fotoeletrões é	b) Se radiação de 180 nm (ultra-violeta) incidir sobre a placa de molibdénio, o potencial de travagem (V _c) dos fotoeletrões emitidos é	
	$\lambda_{max} = 199 \text{ nm}$ $\lambda_{max} = 294 \text{ nm}$ $\lambda_{max} = 1.99 \times 10^{-7} \text{ m}$ $\lambda_{max} = 2.94 \times 10^{-7} \text{ m}$	$V_c = 2.673 \text{ mV}$ $V_c = 0.2673 \text{ V}$ $V_c = 2.673 \text{ V}$ $V_c = 2.673 \text{ W}$	
2			

3val Q3. Das seguintes afirmações assinale as que são verdadeiras (V) e as que são falsa (F)

a) No efeito fotoelétrico

- **F** Se o comprimento de onda da radiação incidente no cátodo aumenta, aumenta o potencial de corte.
- **V** Se a frequência da radiação incidente no cátodo aumenta, aumenta o potencial de corte.
- **F** Se o comprimento de onda da radiação incidente no cátodo aumenta, aumenta a intensidade da fotocorrente medida e aumenta o potencial de corte.

	Se o comprimento de onda da radiação incidente no cátodo diminui, aumenta o potencial de corte.			
	F Se a intensidade da radiação monocromática que incide no cátodo aumenta, aumenta o potencial de			
	corte.			
	V Se a intensidade da radiação monocromática que incide no cátodo aumenta, aumenta a intensidade da			
	fotocorrente medida mas o potencial de corte mantém-se constante. b) Considere o efeito fotoelétrico, a experiência de Franck-Hertz e o efeito de Compton			
	V No efeito de Compton radiação monocromática de alta energia (raios-X ou raios γ) interage com os			
	eletrões de um metal e é difundida em todas as direções.			
	F O efeito de Compton é uma prova experimental direta da existência de níveis eletrónicos discretos nos átomos.			
	Para explicar quer o efeito fotoelétrico quer o efeito de Compton é assumida a natureza corpuscular da radiação e a noção de fotão.			
	A experiência de Franck-Hertz foi a primeira prova experimental direta da existência de níveis eletrónicos discretos nos átomos.			
	$m{\digamma}$ No efeito fotoelétrico radiação monocromática de alta energia (raios-X ou raios γ) interage com os			
	eletrões de um metal e é difundida em todas as direções.			
	No efeito fotoelétrico radiação monocromática com energia de alguns eV (energia maior do que a energia			
	de ligação dos eletrões no metal) incide num metal (cátodo da fotocélula) e dá origem a uma corrente elétrica.			
	cietilea.			
1val	Q4. Associe corretamente os modelos atómicos (coluna da esquerda) com as suas principais características			
	(coluna da direita)			
	(column da direita)		A – Nos átomos existem órbitas estáveis, quantificadas.	
	1 – Modelo atómico de Rutherford (1–1	(1-D)	B – O átomo é indivisível	
	2 – Modelo atómico de Dalton	(2-B)	C – O átomo é uma distribuição esférica e uniforme de carga	
	2 modele distilles de Balton	()	positiva com eletrões uniformemente distribuídos.	
	3 – Modelo atómico de Bohr	(3-A)	D – O átomo é formado por um núcleo central, muito pequeno,	
	4 – Modelo atómico de Thomson	(4-C)	onde está localizada a carga positiva e as cargas estão sujeitas	
	4 - Modelo atomico de monisori	(4 0)	apenas à interação de Coulomb.	
2 cml	05 Átamas da hidragánia ancentra	m co num o	ostado eveitado em que a energia de ligação é 2.42×10 ⁻¹⁹ l	
Svui	Q5. Átomos de hidrogénio encontram-se num estado excitado em que a energia de ligação é –2.42×10 ⁻¹⁹ J.			
	a) O número quântico <i>n</i> corresponde	ente a esse	estado excitado é $n = 3$	
		$\overline{}$	damental são emitidos fotões com três comprimentos de onda	
	diferentes, λ_1 , λ_2 , λ_3 . Calcule-os.	$\lambda_1 = 102$	2.55 nm; $\lambda_2 = 121.54$ nm; $\lambda_3 = 656.34$ nm	
5val	Q6. Considere um sistema atómico formado por um protão e um mesão μ^- , cuja massa é 207 vezes a massa do eletrão e cuja carga é igual à do eletrão. Usando o modelo atómico de Bohr determine:			
	a) A massa reduzida do sistema $\mu = 1.694 \times 10^{-28} \text{ kg}$			
	b) A constante de Rydberg para este "átomo" $R = 2.04 \times 10^9 \text{ m}^{-1}$			
	c) O menor raio permitido para este		ómico. $r_1 = 2.84 \times 10^{-13} \text{ m}$	

d) A energia de ligação do estado fundamental deste "átomo".

$$E_1 = -4.05 \times 10^{-16}$$
 J

e) O maior e o menor comprimento de onda da série de Lyman deste "átomo".

$$\lambda_{max} = 6.5 \times 10^{-10} \text{ m};$$
 $\lambda_{min} = 4.9 \times 10^{-10} \text{ m}$

3val Q7. Considere um protão dum raio cósmico com energia cinética igual a 2 GeV. $(1G = 1 \times 10^9)$

- a) A velocidade deste protão é
 - \Box v = 3.0 × 10⁸ m/s
 - $\nabla = 2.84 \times 10^8 \, \text{m/s}$
 - $v = 1.02 \times 10^9 \, \text{km/h}$
 - \Box v = 2.84 × 10⁷ m/s
 - \Box v = 6.25 × 10⁸ m/s

- b) O comprimento de onda de de Broglie deste protão é
 - $\Delta = 1.42 \times 10^{-15} \,\mathrm{m}$
 - $\Delta = 1.32 \times 10^{-15} \,\mathrm{m}$
 - $\lambda = 4.46 \times 10^{-16} \text{ m}$
 - $\Delta = 1.42 \times 10^{-14} \text{ m}$
 - $\lambda = 0.446 \text{ fm } (1 \text{fm} = 1 \times 10^{-15} \text{m})$
- **1val Q8.** Usando as regras que aprendeu, princípio da energia mínima e princípio de exclusão de Pauli, faça a distribuição eletrónica dos 26 eletrões do átomo de ferro.