Matematica Discreta (Compitino Prima Parte) 26 Gennaio 2011

Cognome e Nome:

Numero di Matricola:

Si prega di giustificare in maniera dettagliata ogni risposta.

1. Dimostrare per induzione che, per ogni numero naturale $n \ge 2$,

$$n^2 > 2n - 4$$
.

Soluzione Base n = 2: 4 > 0.

Supponiamo che la disequazione sia vera per $n \ge 2$. La proviamo per n + 1:

$$(n+1)^2 = n^2 + 2n + 1 >_{\text{ip.ind.}} 2n - 4 + 2n + 1 = (2n-2) + (2n-1) =$$
$$= (2n+2-4) + (2n-1) = 2(n+1) - 4 + (2n-1) > 2(n+1) - 4$$

perche' da n > 2 segue che 2n - 1 e' maggiore di 0.

2. Sia N_0 l'insieme dei numeri naturale e sia $A = \{a, b, c\}$ un insieme con il seguente ordine totale: $a \le b \le c$. Si consideri sull'insieme $N_0 \times A$ la seguente relazione R:

$$(x,y) R(z,w) \Leftrightarrow x = z e y \leq w.$$

- (i) Determinare se R e' una relazione di equivalenza oppure un ordinamento parziale.
- (ii) Determinare quante sono le coppie $(x, y) \in N_0 \times A$ per cui

$$\neg \exists z \exists w [z \in N_0 \land w \in A \land (x, y) \neq (z, w) \land (x, y) R (z, w)].$$

Soluzione (i) Proprieta' riflessiva: (x, y) R(x, y) perche' $y \le y$ vale in ogni ordinamento.

Proprieta' simmetrica: (x,b) R (x,c) perche' $b \le c$, ma (x,c) R (x,b) non vale perche' $c \le b$ non vale.

Proprieta' transitiva: Se (x,y) R (z,w) R (t,u) allora x=z=t e $y \le w \le u$. Ne segue che x=t e $y \le u$ (dalla proprieta' transitiva di \le). Quindi (x,y) R (t,u).

Proprieta' antisimmetrica: Se (x,y) R (z,w) e (z,w) R (x,y) allora $x=z,y\leq w\leq y$. Dalla proprieta' antisimmetrica di \leq segue che y=w. Quindi (x,y)=(z,w).

In conclusione R e' una relazione di ordinamento parziale su $N_0 \times A$.

(ii) Esistono infinite coppie. Sono tutte quelle del tipo (x, c) con x numero naturale.

- 3. Dimostrare che $\binom{n}{k} = \binom{n}{n-k}$ per $0 \le k \le n$.
- 4. Si dimostri che $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ per tutti gli insiemi $A, B \in C$. Soluzione Sia $x \in A \cup (B \cap C)$. Allora si hanno due casi.
 - (i) $x \in A$: Allora x appartiene ad ogni sovrainsieme di A, in particolare, $x \in A \cup B$ e $x \in A \cup C$. Cosi' $x \in (A \cup B) \cap (A \cup C)$.
 - (ii) $x \in B \cap C$: Allora $x \in B$ e $x \in C$. Da $x \in B$ segue che x appartiene ad ogni sovrainsieme di B, in paricolare $A \cup B$. Da $x \in C$ segue che x appartiene ad ogni sovrainsieme di C, in paricolare $A \cup C$. In conclusione $x \in (A \cup B) \cap (A \cup C)$.

Proviamo ora il viceversa. Sia $x \in (A \cup B) \cap (A \cup C)$. Allora $x \in A \cup B$ e $x \in A \cup C$. Abbiamo due casi.

- (i) $x \in A$. In questo caso x appartiene ad ogni sovrainsieme di A, in particolare $x \in A \cup (B \cap C)$.
- (ii) $x \notin A$. Allora da $x \in A \cup B$ segue che $x \in B$ e da $x \in A \cup C$ segue che $x \in C$. Quindi $x \in B \cap C$. Cosi' x appartiene ad ogni sovrainsieme di $B \cap C$, in particolare, $x \in A \cup (B \cap C)$.
- 5. Determinare la cardinalita' delle funzioni da un n-insieme in un k-insieme.

Soluzione Sia $A = \{a_1, \ldots, a_n\}$ e $B = \{b_1, \ldots, b_k\}$. Una funzione f da A in B e' univocamente determinata dalla sequenza (di lunghezza n) dei valori $(f(a_1), f(a_2), \ldots, f(a_n))$ con $f(a_i) \in B$. Quanti possibili valori possiamo mettere nella posizione i della sequenza? k possibili valori quanti sono gli elementi di B! Quindi in totale abbiamo $k \times k \times \cdots \times k = k^n$ possibilita'.