Laboratoire de physique Interférence et diffraction de la lumière

Latino Nathan Arzul Paul INF1b

30.05.2018

Sommaire

Introduction

- Interférence
- Diffraction
- Principe de Babinet

• Présentation des expérience

- Fente simple
- Fente double
- Epaisseur d'un cheveu

Conclusion

Interférence

Pour deux ondes de même nature, il peut y avoir:

Interférence constructive

Interférence destructive

Interférence

Expérience de Young

Diffraction

Principe de Huygens

Diffraction

But: déterminer la longueur d'onde λ

Schéma de mesure:

D'après l'expérience d' Augustin Fresnel:

$$y = Ltg\theta \cong Lsin\theta = \frac{m\lambda L}{a}$$

L: distance entre le masque et l'écran

a: largeur de la fente

m: index de la frange sombre

 λ : longueur d'onde

• Les distances mesurées sont misent dans un tableau

•
$$y = Ltg\theta \cong Lsin\theta = \frac{m\lambda L}{a}$$

- La pente de la droite donne $p = \frac{y}{m}$
- $\lambda = \frac{ay}{mL}$
- $\lambda = p \frac{a}{L}$

m	у
	(m)
1	0.003
2	0.007
3	0.011
4	0.015
5	0.019
6	0.023
7	0.027
8	0.03

Incertitude: $\Delta y = \pm 0,002 \text{ m}$ ($\pm 0,2 \text{ cm}$)

- Sachant que:
 - $a = (0.16 \pm 0.01) 10^{-3} \text{ m}$
 - L = $(88 \pm 2) 10^{-2}$ m
 - $p = (3.92 \pm 0.05) 10^{-3}$
- $\lambda = p \frac{a}{L} = 710 \text{ nm}$

•
$$\lambda = p \frac{a}{L}$$

• Donc :
$$\Delta \lambda = \left| \frac{\partial \lambda}{\partial p} \right| \Delta p + \left| \frac{\partial \lambda}{\partial a} \right| \Delta a + \left| \frac{\partial \lambda}{\partial L} \right| \Delta L$$

•
$$\Delta \lambda = \frac{a}{L} \Delta p + \frac{p}{L} \Delta a + \frac{pa}{L^2} \Delta L \cong 70 \text{ nm}$$

•
$$\lambda = (710 \pm 70) \text{ nm}$$

Fente double

D'après l'expérience de Young:

$$y = Ltg\theta \cong Lsin\theta = \frac{m\lambda L}{d}$$

L: distance entre le masque et l'écran

d: distance entre les deux fentes

m: index de la frange clair

 λ : longueur d'onde

Fente double

• Même mesure que pour la pente simple

•
$$y = Ltg\theta \cong Lsin\theta = \frac{m\lambda L}{d}$$

- On cherche *d*
- $p = \frac{y}{m}$
- $d = \frac{\lambda L}{p}$

m	y (m)
0	0
1	0.002
2	0.005
3	0.007
4	0.009
5	0.011
8	0.018
9	0.021
10	0.023

Incertitude: $\Delta y = \pm 0,002 \text{ m}$ ($\pm 0,2 \text{ cm}$)

Fente double

•
$$d = \frac{\lambda L}{p} = 2,7 \ 10^{-4} \text{ m}$$

•
$$\Delta d = \left| \frac{\partial d}{\partial \lambda} \right| \Delta \lambda + \left| \frac{\partial d}{\partial L} \right| \Delta L + \left| \frac{\partial d}{\partial p} \right| \Delta p$$

•
$$\Delta d = \frac{L}{p} \Delta \lambda + \frac{\lambda}{p} \Delta L + \frac{\lambda L}{p^2} \Delta p \cong 0.3 \ 10^{-4} \text{ m}$$

•
$$d = (2.7 \pm 0.3) 10^{-4} \text{ m}$$

Epaisseur d'un cheveu

D'après le principe de Babinet:

$$y = Ltg\theta \cong Lsin\theta = \frac{m\lambda L}{a}$$

L: distance entre le masque et l'écran

a: largeur de la fente

m: index de la frange sombre

 λ : longueur d'onde

Epaisseur d'un cheveu

Même méthode de mesure

•
$$y = Ltg\theta \cong Lsin\theta = \frac{m\lambda L}{a}$$

• On cherche *a*

•
$$p = \frac{y}{m}$$

•
$$a = \frac{m\lambda L}{y} = \frac{\lambda L}{p}$$

m	у
	(m)
1	0.008
2	0.017
3	0.026
4	0.035
5	0.045

Incertitude: $\Delta y = \pm 0,002 \text{ m}$ ($\pm 0,2 \text{ cm}$)

Epaisseur d'un cheveu

•
$$a = \frac{\lambda L}{p} = 6.8 \ 10^{-5} \ \text{m} = 0.068 \ \text{mm}$$

•
$$\Delta a = \left| \frac{\partial a}{\partial p} \right| \Delta p + \left| \frac{\partial a}{\partial \lambda} \right| \Delta \lambda + \left| \frac{\partial a}{\partial L} \right| \Delta L$$

•
$$\Delta a = \frac{\lambda L}{p^2} \Delta p + \frac{L}{p} \Delta \lambda + \frac{\lambda}{p} \Delta L \cong 0.009 \text{ mm}$$

• $a = (0.068 \pm 0.009) \text{ mm}$

Conclusion

- Fente simple:
 - $\lambda = (710 \pm 70) \text{ nm}$
 - Valeur du fabriquant : $\lambda = (670 \pm 10) \text{ nm}$
- Fente double:
 - $d = (2.7 \pm 0.3) 10^{-4} \text{ m}$
 - Valeur du fabriquant: $d = (2.5 \pm 0.1) 10^{-4} \text{ m}$
- Epaisseur cheveu:
 - $a = (0.068 \pm 0.009) \text{ mm}$
 - Epaisseur moyenne d'un cheveu: 0,04 à 0,1 mm

Source

- KOCIAN, Philippe. Travaux pratiques de physique, 2016
- KOCIAN, Philippe. Phénomènes ondulatoires, 2016
- Images : google