Homework11 518021911160 窦嘉伟

Problem1

Find t(R) using warshall algorithm for the relation given blow.

MR =

 $0\ 1\ 0\ 0$ 0010

0001

 $0\ 1\ 0\ 0$

Warshall:

 $i=1, j=1\sim4$

0100

 $0\ 0\ 1\ 0$

0001

 $0\ 1\ 0\ 0$

i=2, j=1i=2, j=2 $0\ 1\ 1\ 0$

 $0\ 1\ 1\ 0$

i=2, j=3

i=3, j=3

0111

0011

0001

0111

0111

0111

i=2, j=40110

 $0\ 0\ 1\ 0$ $0\ 0\ 0\ 1$

 $0\ 0\ 1\ 0$ $0\ 0\ 0\ 1$

 $0\ 1\ 0\ 0$

 $0\ 1\ 1\ 0$

i=3, j=1i=3, j=2 $0\,1\,1\,1$ 0111

i=3, j=4 $0\,1\,1\,1$

0010 0011 $0\ 0\ 0\ 1$ 0001 0011 $0\ 0\ 0\ 1$

 $0\ 1\ 1\ 0$ i = 4, j = 1

 $0\ 1\ 1\ 0$

i=4, j=2i=4, j=30111

 $0\ 1\ 1\ 1$ i=4, j=4

0111 0111 0011 0111 $0\,1\,1\,1$ 0111

 $0\ 0\ 0\ 1$ $0\ 0\ 0\ 1$ $0\ 1\ 1\ 1$

 $0\,1\,1\,1$ 0111 $0\,1\,1\,1$

T(R)

 $0\ 1\ 1\ 1$

0111

 $0\,1\,1\,1$

 $0\ 1\ 1\ 1$

- 1. If R is reflexive, then s(R) and t(R) are both reflexive.
- 2. If R is transitive, then r(R) is transitive. And find a counterexample to show that s(R) is not transitive.
- 1. R is reflexive $\Rightarrow R_{i,i} = 1$

$$\Rightarrow S = s(R) = R \cup R^{-1} \Rightarrow S_{i,i} = R_{i,i} \vee R_{i,i}^{-1} = 1 \Rightarrow s(R)$$
 is reflexive

$$\mathcal{T} = t(R) = R \cup R^2 \cup R^n \Rightarrow T_{i,i} = R_{i,i} \vee R^2_{i,i} \vee \dots \vee R^n_{i,i} = 1 \Rightarrow t(R)$$
 is reflexive

2. R is transive \Rightarrow $R_{ij} = 1 \land R_{jk} = 1 \longrightarrow R_{ik} = 1$

Counterexample:

R =

111

010

000

Problem3

An equivalence closure e(R) for releation R is defined by:

- 1. e(R) is an equivalence relation.
- 2. For any equivalence R 0, if R \subseteq R 0, then e(R) \subseteq R 0

For a relation R on a non-empty set, prove that tsr(R) (defined in theorem 10.5.12) is the equivalence closure of R.

Obviously, tsr(R) is transitive.

r(R) is reflexive \Rightarrow s(r(R)) is reflexive \Rightarrow t(s(r(R))) is reflexive \Rightarrow tsr(R) is reflexive $ts(r(R)) \supseteq st(r(R)) \Rightarrow ts(r(R))$ is symmetric

So tsr(R) is equivalence relation.

For any equivalence R_0 , if $R\subseteq R_0$, then $r(R)\subseteq R_0$, then $s(r(R))\subseteq R_0$, then $t(s(r(R)))\subseteq R_0$

So,tsy(R) is eauibalence closure of R.

Problem4

Determine wether $f: Z \times Z \rightarrow Z$ is surjective if:

1.
$$f(m, n) = m + n$$

2.
$$f(m, n) = m - n$$

3.
$$f(m, n) = |m| - |n|$$

$$4. f(m, n) = m 2 + n 2$$

$$5. f(m, n) = m 2 - n$$

- 1. T
- 2. T
- 3. T
- 4. F
- 5. F

Problem5

For every function below, answer the questions:

- 1. Whether the function is injective, surjective or bijective. If it is bijective, write down the expression of f $\,-1$
- 2. Write down the image of the function and the inverse image of a given set S.
- 3. The relation $R = \{ \langle x, y \rangle | x, y \in dom(f) \land f(x) = f(y) \}$ is an equivalence relation on dom(f), find this relation for the function.

All the functions:

1.
$$f: R \to (0, \infty), f(x) = 2x, S = [1, 2]$$

Injective, surjective, bijective $f^{-1}:(0,\infty)\to R, f(x)=1/2$

 $R = \{ \langle x,y \rangle | x,y \in dom(f) \land x = y \}$

2.
$$f: N \rightarrow N, f(n) = 2n + 1, S = \{2, 3\}$$

Injective, not surjective, not bijective

Image
$$\{x | x \in N \land x \equiv 1 \mod(2)\}$$
 {1}

 $R = \{\langle x,y \rangle | x,y \in dom(f) \land x = y\}$

3.
$$f: Z \rightarrow N, f(x) = |x|, S = \{0, 2\}$$

Not injective, surjective, not bijective

Image N
$$\{0,2,-2\}$$

$${\langle x,y \rangle | |x| = |y| \land x \in Z \land y \in Z}$$

4. f: N
$$\rightarrow$$
 N \times N, f(n) = , S = <2, 2>

Injective, surjective, bijective $f^{-1}: N \times N \longrightarrow N, f(\langle n, n+1 \rangle) = n$

$$\{\langle n,n+1\rangle | n \in \mathbb{N}\}$$

$${\langle x,y \rangle | x \in N \land y \in N \land x = y}$$

5.
$$f: [0, 1] \rightarrow [0, 1], f(x) = (2x+1)/4, S = [0, 1/2]$$

Injective, not surjective, not bijective $[1/4, 3/4]$ $[0,1/2]$ $\{\langle x,y \rangle | x, y \in [0,1] \land x = y\}$

Problem6

Let f, $g \in A_B$, and $f \cap g! = \emptyset$, are $f \cap g$ and $f \cup g$ are functions? If so, prove it. If not, show the counterexample.

$$f \cap g$$
 是。 $f \cap g = \{ \langle a, b \rangle \mid \langle a, b \rangle \in f \land \langle a, b \rangle \in g \} \Rightarrow \ddot{A} J = dom(f \cap g), K$
$$= ran(f \cap g) 则 f \cap g \in J_K$$

 $f \cup g$ 不是, 若 A = [0,1] = B, f(x) = x, $g(x) = x^2$, 则 < 1/2, 1/2, $> \in f \cup g$ $\land < 1/2$, 1/2, $4 > \in f \cup g$, 所以 $f \cup g$ 不是函数