Zh2b-programozás

(!) Ez az előnézete a kvíz publikált verziójának

Kezdés: dec 13, 16:27

Kvízinstrukciók

A ZH-n a programozási feladat összesen **30 pont**ot ér, és **120 perc** áll rendelkezésre. Egymással kommunikálni tilos. Segítségként használható a <u>C referencia</u> (https://bead.inf.elte.hu/files/c). A megoldást egy zip fájlba csomagolva kell feltölteni. A zip fájlban csak forrásfájlok legyenek (.c, .h). A feladat megoldása több lépésből áll. Az egyes lépések után kapott megoldást érdemes meghagyni, és a zip fájlba mindegyik elvégzett lépés eredményét becsomagolni.

1. kérdés 30 pont

Ki emlékszik még a mobiltelefonok előtt népszerű számológépekre? Készítsünk programot, mely egy ilyen eszközt szimulál! Az egyszerűség kedvéért a számológépünk csak nemnegatív egész számokkal fog dolgozni, és csak az összeadás és szorzás műveleteket támogatja majd. A feladat elsőre kissé bonyolultnak tűnik, de megijedni nem kell. Néhány globális változó és pár egyszerű függvény alkotja a megoldást. A feladatleírás elején elmagyarázzuk, hogyan működik egy számológép, utána pedig részletesen leírjuk, hogy mit is kell csinálni.

Egy számológép működése

A működést az alábbi rajz mutatja be. A gép 5 lehetséges állapottal rendelkezik, melyek között képzeletbeli billentyűk lenyomásának hatására mozog. Számjegyeket (0-9) és két műveleti jelet (+ és *) vihetünk be a kezelő felületen. A gép legfeljebb két (nemnegatív egész) számot tart a memóriájában: a végrehajtandó művelet két operandusát. Nevezzük ezt a két tárolt számot memory-nak és input-nak. A számjegyek bevitele (mely a digit(n)) függvénnyel történik) során az input-ban tárolt értéket módosítjuk: az eddigi értéket megszorozzuk 10-zel, és hozzáadjuk a digit paraméterét.

A számológép kiinduló állapota a LEFT állapot: ebben az állapotban az első végrehajtandó művelet bal oldali operandusát vihetjük be. Az input -ban tárolt érték kezdetben 0, a számjegyek egymás utáni bevitelével hozzuk létre a bal oldali operandust - közben mindvégig a LEFT állapotban maradunk. Egy műveleti jel bevitele (mely a plus vagy a times függvényekkel történik) hatására átlépünk a LEFT_PLUS vagy a LEFT_TIMES állapotba, és ennek során az input értéke átkerül a memory-ba, az input pedig a 0 értéket veszi fel. Ha egymás után több műveleti jelet viszünk be, a legutoljára bevitt művelet jut érvényre. A LEFT_PLUS és a LEFT_TIMES állapotokból számjegyek bevitelével juthatunk tovább a PLUS_RIGHT és a TIMES_RIGHT állapotokba. Ezek a számjegyek az input tár módosításával az elvégzendő művelet jobb oldali operandusát határozzák meg. A PLUS_RIGHT és a TIMES_RIGHT állapotokból egy műveleti jel bevitelével léphetünk tovább, melynek során kiszámoljuk a szóban forgó művelet eredményét, és eltároljuk a memory-ban. (Ha a PLUS_RIGHT állapotban voltunk, az eredmény memory+input, ha a TIMES_RIGHT állapotban voltunk, az eredmény memory*input lesz.) A plus hatására a LEFT_PLUS, a times hatására a LEFT_TIMES állapotba jutunk, és értelemszerűen az input 0-ra állításával megkezdhetjük az újabb jobb oldali operandus beolvasását.

Alapfeladat (12 pont)

A fentieknek megfelelően készítsük el a számológépet. Hozzunk létre egy felsorolási típust (STATE) az 5 állapot ábrázolására. A számológép reprezentálásához három globális változót használjunk: State, memory és input. (A memory és az input típusa legyen nemnegatív egész szám.)

Készítsük el a kezelőfelületet megvalósító három függvényt: digit(n), plus() és times(). A digit(n) és a plus() struktogramja az alábbi. A plus()-hoz használjunk switch utasítást!

digit(n) input := 10*input + n state = LEFT_PLUS state := PLUS_RIGHT | state = LEFT_TIMES | state := TIMES_RIGHT | SKIP

plus()

A <u>times()</u> implementációja nagyon hasonló a <u>plus()</u>-éhoz, ezért érdemes ezt egy megfelelően felparaméterezett segédfüggvénybe kiemelni. (Segítség: annyi a különbség, hogy a legutolsó utasításban <u>LEFT_TIMES</u> értéket kell adni a <u>state</u>-nek.)

Készíts egy reset() műveletet is, amely alapállapotba hozza a számológépet! (A tárolt értékeket kinullázza, és LEFT állapotba lép.)

Készíts főprogramot, mellyel letesztelhetjük a számológép működését! A főprogramban hívjuk meg a kezelőfelület műveleteit egy elképzelt bemenetre, majd írjuk ki a memory és az input értékét. (Nem kell

fájlból vagy a szabványos bemenetről olvasni az inputot!)

Modularizálás (10 pont)

Bontsuk szét két fordítási egységre a programot! A számológép megvalósítása kerüljön az egyikbe, a főprogram a másikba. A két modul közötti interfész kerüljön a konvencióknak megfelelően egy fejállományba (header). (Használj benne include guardot!)

Az interfészben csak a négy művelet legyen (digit(n), plus(), times() és reset()). A globális változók és az esetleges segédfüggvények legyenek csak a saját fordítási egységükben elérhetők!

A négy művelet adja vissza, hogy mit is látnánk a számológép kijelzőjén! A reset() és a digit(n) műveletek az input, míg a plus() és a times() műveletek a memory értékét adják vissza.

A főprogram a következőképpen működjön. Ha van parancssori argumentuma a programnak, akkor dolgozza fel azokat, mindegyik előtt meghívva a reset() műveletet. Egy parancssori argumentum feldolgozása során a benne szereplő karaktereknek megfelelően hívjuk meg a digit(n), a plus() és a times() műveleteket. (Figyelmen kívül hagyhatók azok a karakterek, amelyek nem a +, * és 0-9.)

Számológép típus (8 pont)

(Ne töröld ki az eddigi megoldást, készíts új fájl(oka)t ezen részfeladat megoldásához!)

	ator típust, mely egy számológép belső állapotát (state, memory és in	out)
rekordda	(struktúrával) reprezentálja. A <mark>calculator</mark> legyen egy típusszinoníma a	
struktúrá	a! A műveletek kapják meg (be- és kimenő) paraméterként a számológe	pet!
Feltöltés	Fáil kiválasztása	
Feltöltés	Fájl kiválasztása	
Feltöltés	Fájl kiválasztása	

Kvíz mentve ekkor: 16:27

Kvíz beadása