Tópico 03 - Deep Learning e CNNs

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Tópicos

- Deep Learning
- Redes Neurais Convolucionais
- Overfitting
- Aumento de Dados
- Transfer-Learning

Antes do "deep".....

- Problema: Interpretar relações em altas dimensionalidades (i.e Imagens, Aúdios)
- Solução: Descritores de características
- Então, um modelo computacional aprende a representação
- Interpretação humana é limitada a baixas dimensionalidades

Aprendizado de Máquina – Prof. André Hochuli

Deep Learning / CNNs

Tradicional vs Deep

Tradicional

Deep

• Rede com Múltiplas Camadas

- Extração de Características é implícita
- Aprendizado de Filtros
- Abstração Profunda

- Quebra de paradigma em problemas de visão computacional
 - (áudio, imagens, vídeo, etc.).

- Classificação de Tecido
- Imagens Médicas

Face

Figure 2. Outline of the *DeepFace* architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate outputs for each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.

PKLot

Transferência de contexto (Image Translation)

Deep Fakes

Animating Faces

A single model animates all images given only a single source image

https://www.youtube.com/watch?v=mUfJOQKdtAk

- Vantagens:
 - Extração de Características é implícita
 - Abstração em alto nível
 - Altas taxas de reconhecimento
- Desvantagens:
 - Custo computacional
 - Datasets Númerosos
 - Parametrização do Modelo e Ajuste-Fino

• Lecun 90's

- Extração de Características (N-Dimensional)
 - Sequência de camadas convolucionais
 - Aprendizado de Filtros
- Classificação (1D)
 - RNA
 - SVM
 - •

Convolução

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

- Pooling Layer
 - Redução de Características

- Camadas Convolucionais
 - Convolução
 - Pooling

- Classificação
 - Rede Neural

Softmax

- Lenet
 - Yan Lecun 90's (Bell Labs / IBM / FACEBOOK)
 - Handwritten Digits
 - ~60 K Paramêtros
 - ~345 K Paramêtros

- AlexNet
 - Alex Krizhevsky 2012 (Krizhevsky Net)
 - Imagenet 2012 Challenge (1000 classes)
 - → 1.2 M Train, 50K Val, 150K Test
 - 2012 Winner (15.3% Error Top 5)
 - \rightarrow 2° SIFT Based (26.2%)

Alexnet

Imagenet Challenge

- Imagenet 2012 Challenge
 - 1000 Classes
 - 1.2 M Imagens (Treino)
 - 50K Imagens (Validação)
 - 150K Imagens (Teste)
 - [LINK TO ACCs]

* ABRENT DE PARTURENTE PARTURENTE

Deep Learning / CNNs

Codificação

[LINK]

Overfitting, Aumento de Dados e Transfer Learning

Feed-Forward e Back-Propagation

Feed-Forward e Back-Propagation

Feed-Forward and Back Propagation

Sobre-Ajuste (Overfitting)

Generalização

Data Augmentation

Criação de dados sintéticos

Dropout

• Eliminação de Pesos e Neurônios

(a) Standard Neural Net

(b) After applying dropout.

Transfer Learning

- Compartilhamento de Pesos
- Pesos de Convolução são congelados (ou não) durante o treinamento

Let's Code

• [LINK]