# Digital systems and basics of electronics

Adam Szmigielski

aszmigie@pjwstk.edu.pl

materials: ftp(public) : //aszmigie/SYC/ENG

Computer systems, microprocessors and microcontrollers - lecture 11

# Calculating machines - historical background

- abacus first abacus (600-500 BC Egypt or China),
- 650 Indians discover numeric Zero the beginning of written calculations,
- 1100 The first multiplication table,
- 1612 John Napier (1550-1617) used logarithms and the decimal point (invented in the Netherlands)
- 1617 tool to help in multiplying ćubes Napier"
- 1622 William Oughtred (1574-1660) creates a logarithmic slider,
- 1623 Wilhelm Schickard (1592-1635) constructed four operation calculator,
- 1642 Blaise Pascal (1623-1662) creates a "Pascalene- 5-digit machine adding, recognized for first calculating machine.

- Gottfriend Wilhelm von Leibniz (1646-1716) built a four operations calculating machine
- 1822 Charles Babbage (1792-1871) began to construct machine for navigational calculations.
- 1842 Ada Augusta King (daughter of Lord Byron) first programmer (she used the machine Babbage),
- 1854 George Bool develops logical calculus,
- 1903 Nicola Tesla patents electrical logic gates
- 1935-1938 Konrad Zuse (1910 1995) builds **Z1** *first computer on relays* (binary systemm).

### Contemporary computer

- 1937 Alan Turing (1912-1954) develops the theory of a universal machine (performing algorithms),
- 1941 Zuse creates **Z3** using floating-point arithmetic,
- 1943 Colossus decrypt computer,
- 1944 Howard Aiken (1900-1973) and engineers from IBM are building the *Harvard Mark* computer,
- 1945 John von Neumann publishes the idea of "machine at Princeton",
- 1943-1946 *ENIAC* the first computer on the lamps (University of Pennsylvania),
- 1948 EDSAC computer based on the idea of John Neumann (Cambridge),
- 1949 EDVAC universal von Neumann computer,

- 1950 ACE computer built according to the design of Turing,
- 1951 UNIVAC the first commercially sold computer,
- 1954 IBM 704 first computer with operating system,
- 1963 DEC PDP-5 first minicomputer,
- 1964 third-generation computers on integrated circuits,
- 1971 Intel 4004 first microprocessor,
- 1972 Cray Research The first supercomputers,
- 1974 processor Intel 8080,
- 1975 personal computer *Altair*,
- 1981 the beginning of the era of personal computers the first IBM PC.

# The algorithm and the Turing machine

Formalities -  $\{Q, \Sigma, \delta, q_0, F\}$ , where:



- $\bullet$  Q set of state machine,
- $\Sigma$  *alphabet* set of tape symbols
- $\delta$  transition function:

$$\delta: Q \times \Sigma \longrightarrow Q \times \Sigma \times \{R, L, N\}$$

R, L, N corresponds to the direction of movement of the tape reader.

- $q_0$  initial state,
- F set of the final states.

# Von Neumann computer - 1945

Components of the von Neumann computer:

- ALU processor
- computer memory (containing data and program)
- input output devices

Features von Neumann computer:

- finite list of commands,
- possibility of the program and its storage in a memory (such as data)
- sequential read instructions from memory and executing.



#### Harvard architecture

- Data storage is separated from the commands memory (otherwise than in von Neumann architecture),
- A simpler, compared to the von Neumann architecture, construction is faster performance used in digital numerical processing,
- Harvard architecture is now widely used in the single-chip microcomputers (program is in ROM (called Read Only Memory), the data in RAM (Random Access Memory)).

## Architecture CPU vs organization



• Processor architecture - Functional

#### ALU and control unit



A and B - data, R - output, F -  $\overset{\mathbf{R}}{\text{selection}}$  of operations D - exit status

- Arithmetic-Logical Unit combinational circuit, performed on the data in the arithmetical operations (such as addition, subtraction) and logical (eg, OR, AND),
- control system decodes the commands and controls its execution.

### Processor registers

- Accumulator A, ACC register directly cooperating with ALU,
- Stack Pointer SP indicates the end of the stack (the highlighted area of memory),
- ullet Programm Counter PC program memory address of the current instruction to execute,
- Instruction Register contains the command code executed command,
- Flags Register contains a Flags (bit tags) can be set depending on the result operation performed (eg, excess, zero parity bit),
- General Purpose Registers for general purposes.

# Buses of $\mu$ -C



- address bus sends the address (selected memory cell or I / O device)
- $data\ bus$  transfers data between the  $\mu P$  a memory or I / O device)
- system bus provides control signals.

### Instruction cycle

Format command:

op code arguments

Instruction cycle:

- fetch opcode get to the register command command code. command codes are stored in memory as data (von Neumann architecture),
- decode command interpretation of the loaded code command (usually a byte) as command from the command list processor,
- execute a command loads more arguments command, depending on the particular command execution over the operation of the control system. Save the result in memory external processor or register.

#### Features CISC architecture

CISC Complex Instruction Set Computers – name of the architecture of microprocessors with the following characteristics:

- The presence of complex, specialized instruction require from a few to several machine cycles,
- A wide range of addressing modes (complex structure of address decoders),
- Relatively long list of processor instructions.

Disadvantages of CISC architecture:

- too long list of commands some of them are rarely used,
- too much time is wasted on operations rewriting from memory to registers and vice versa,
- generally low efficiency in numerical calculations.

#### Features of RISC architecture

RISC Reduced Instruction Set Computers - name of the architecture of microprocessors with the following characteristics:

- Reduced number of instructions to a minimum,
- Reduce addressing modes, allowing instruction codes are simpler, more unified, (simplifies the instruction decoder),
- Reducing communications between the memory and the CPU,
- Pipelining (called pipelining) parallel execution of orders.

Currently popular processors developer's perspective are seen as CISC, but their core is a RISC-head. Orders are broken down into CISC microcode (called microops), which are then performed by RISC-executive head block.

## Microcontrollers $\mu C$

Microcontroller - computer implemented in a single chip, comprising a central processing unit (CPU), RAM, in general, the program memory and extensive input-output systems.

The term microcontroller comes from the main area of application, which is controlled electronic devices.

#### Construction of microcontroller

A typical microcontroller comprises:

- calculating unit (ALU) mostly 8-bit,
- data memory (RAM),
- Program Memory,
- Universal input ports some of these ports may have alternative functions, selectable programmatically
- controllers serial or parallel (UART, SPI, I2C, USB, CAN, etc.)
- Analog-to-digital or digital-to-analog
- Timers
- control system work properly (watchdog)
- internal non-electrical sensors (eg temperature)

### microcontroller clocking

The system clock of the microcontroller can be clocked:

- external signal treated (solution often used in large systems requiring synchronous collaboration of many individuals),
- own generator, requiring the connection of external retaining elements clock frequency (it is mostly quartz resonator and two capacitors)
- internal arrangement treated, which does not require connecting additional components

Modern microcontrollers achieve clock frequencies up to several hundred MHz, but in most timing applications may be much slower.

# Programming languages $\mu C$

- High level languages (eg. VB, C, Java)
- Assembler

# Programming methods $\mu C$

*ROM* program memory can be programmed in three ways:

- 1. High Voltage Programming or programming method introduced over 15y.o. ago programmable memory EPROM using signals 12V requires the programmer.
- 2. ISP (In-System Programmable) which does not require removal from the system memory in which is running.
- 3. Bootloader after reset  $\mu C$  program is run located in the Bootloader, which through bandwidth (eg serial port) connects to a host computer, retrieves the program code and place it in a dedicated the ROM area.

#### Review of current microcontrollers

The most popular microcontrollers:

- 1. The undisputed standard for mass market company imposed *Intel*, which introduced market microcontroller 8051,
- 2. Very popular are also microcontrollers business AVR Atmel on the basis Laboratory classes will be conducted,
- 3. PIC business Microchip Technology,
- 4. other.

# Microcontrollers AVR ATmega328

A detailed description in the data sheet. To be continued.

## Task for laboratory

- 1. Write a program which after reset, via a serial link will send the message "Hello world",
- 2. Run the calculator performs basic arithmetic operations on two operands in infix notation. Each event (including numbers and signs) should be confirmed by pressing enter.
- 3. Run the calculator performs basic arithmetic operations on two operands in infix notation that reads the entire expression and makes its analysis.