BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 11 249.9

Anmeldetag:

14. März 2003

Anmelder/Inhaber:

ROBERT BOSCH GMBH,

70469 Stuttgart/DE

Bezeichnung:

Mikroprozessorsystem und Verfahren zum

Erfassen des Austauschs von Bausteinen

des Systems

IPC:

H 04 L 9/30

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 26. Februar 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Mukm

Klostermerror

R. 304710

5

Mikroprozessorsystem und Verfahren zum Erfassen des Austauschs von Bausteinen des Systems

15

20

25

30

Stand der Technik

Die vorliegende Erfindung betrifft die Verhinderung von Manipulationen an Mikroprozessorsystemen, insbesondere an Motorsteuergeräten für Kraftfahrzeuge. Derartige Geräte sind im Allgemeinen als Mikroprozessorsysteme mit einem Mikroprozessor, einem Programm- und Arbeitsspeicher für den Mikroprozessor und ein oder mehreren Schnittstellen für die Kommunikation mit Sensoren und Aktoren am Motor aufgebaut. Durch Manipulationen am Steuerprogramm des Prozessors lässt sich das Verhalten des Motors beeinflussen, um so z.B. eine höhere Motorleistung zu erzielen. Leistungsbegrenzungen, die erforderlich sind, um für den Motor eventuell schädliche Überlastsituationen zu verhindern, oder die durch gesetzliche Vorgaben bedingt sind, können auf diese Weise umgangen werden. Es besteht daher Bedarf nach Techniken, die unbefugte Manipulationen an derartigen Mikroprozessorsystemen unmöglich machen oder doch zumindest in abschreckender Weise erschweren.

Eine zu diesem Zweck bekannte und angewandte Technik ist, Bauelemente eines solchen Mikroprozessorsystems zu verkleben. Allerdings hat sich gezeigt, dass kein Kleber verfügbar ist, der nicht in irgendeiner Weise wieder gelöst werden könnte. Ein schwerwiegender Nachteil des Verklebens ist außerdem, dass dadurch nicht nur unbefugte Manipulation, sondern in gleicher Weise auch Reparaturen an dem Mikroprozessorsystem erschwert werden.

10

Vorteile der Erfindung

Durch die vorliegende Erfindung wird ein Mikroprozessorsystem und ein Verfahren zum Austausch eines Bausteins in einem solchen System geschaffen, die einen unbefugten Austausch ganz erheblich erschweren, ohne die Reparaturfreundlichkeit des Systems zu beeinträchtigen. Die Erschwerung geht soweit, dass in den meisten Fällen der mit der Manipulation erreichbare Nutzen den hierfür erforderlichen Aufwand nicht rechtfertigt und die Manipulation somit im wirtschaftlichen Sinne unmöglich wird.

Die Erfindung geht aus von einem Mikroprozessorsystem mit einer Mehrzahl von Bausteinen, darunter einem Mikroprozessor und wenigstens einem Speicherbaustein zum Speichern von Code und Daten für den Mikroprozessor, wobei in wenigstens einem der Bausteine eine Seriennummer dieses Bausteins in nicht veränderbarer Weise gespeichert ist. Bei Mikroprozessoren ist es allgemein üblich, diese bei Herstellung mit einer programmtechnisch abfragbaren Seriennummer auszustatten, die jeden Mikroprozessor

eindeutig identifiziert und am fertigen Mikroprozessor nicht veränderbar ist. Nichtflüchtige Speicherbausteine, insbesondere Flash-Speicher, mit Seriennummern sind ebenfalls verfügbar.

5

15

20

25

30

Die Erfindung sieht vor, in dem Mikroprozessorsystem eine Codenummer, die aus der Seriennummer des wenigstens einen durch eine Seriennummer gekennzeichneten Bausteins durch Anwendung eines Verschlüsselungsverfahrens erhalten ist, sowie Informationen, insbesondere einen Programmcode und einen Schlüssel, zu speichern, die den Mikroprozessor in die Lage versetzt, aus der Codenummer eine Seriennummer zu berechnen, die, wenn das Mikroprozessorsystem nicht manipuliert ist, mit der Seriennummer des Bausteins übereinstimmen sollte. Falls das System manipuliert wurde und der Baustein durch einen anderen mit einer notwendigerweise abweichenden Seriennummer ersetzt wurde, wird dies erkannt, und es können angemessene Maßnahmen getroffen werden, indem etwa der Mikroprozessor bestimmte für einen solchen Fall vorgesehene Abschnitte seines Codes ausführt oder die Ausführung bestimmter für seine normale Funktion relevanter Codeteile verweigert. Wenn das Mikroprozessorsystem ein Motorsteuergerät ist, kann es bei entsprechender Ausstattung des Fahrzeugs mit einer Anzeigeeinrichtung auf dieser eine Nachricht für den Fahrer anzeigen, dass aufgrund eines Fehlers im System bestimmte Funktionen des Mikroprozessorsystems gesperrt sind, oder es kann das Starten des Motors unterbinden.

Vorzugsweise ist das Verschlüsselungsverfahren, mit dem die Codenummer aus der Seriennummer erhalten

ist, ein asymmetrisches Verfahren, d.h. ein Verfahren, das unterschiedliche Schlüssel für Ver- und Entschlüsselung verwendet, wobei der zur Entschlüsselung verwendete sogenannte öffentliche Schlüssel, der die Rückberechnung der Seriennummer aus der Codenummer ermöglicht, nicht eingesetzt werden kann, um umgekehrt aus einer Seriennummer eine Codenummer zu berechnen. Somit ist ein Ungefugter, selbst wenn er um die Verschlüsselung weiß und in der Lage ist, den im System gespeicherten öffentlichen Schlüssel zu extrahieren, nicht in der Lage, aus diesem eine korrekte Codenummer zur Seriennummer eines Bausteins zu bestimmen, den er als Ersatz für einen mit Seriennummer gekennzeichneten Baustein in das System einfügen möchte. Es ist daher nicht erforderlich, besondere Maßnahmen zu treffen, um einen Unbefugten daran zu hindern, die zum Berechnen der Seriennummer aus der Codenummer benötigte Information aus dem Mikroprozessorsystem zu extrahieren.

20

10

15

Ein Baustein des Mikroprozessorsystems, den gegen unbefugten Austausch zu sichern wichtig ist, ist ein Speicherbaustein, insbesondere ein Speicherbaustein, der Programmcode und/oder Parametertabellen für die von dem Mikroprozessorsystem durchzuführende Steuerungsaufgabe enthält. Die aus der Seriennummer eines solchen Speicherbausteins berechnete Codenummer kann ohne Beeinträchtigung der Sicherheit in eben diesem Speicherbaustein gespeichert sein.

Ein anderer Baustein, der sinnvollerweise erfindungsgemäß gesichert wird, ist der Mikroprozessor des Systems selbst.

Die zum Berechnen der Seriennummer aus der Codenummer benötigte Information sollte zweckmäßigerweise nicht in demselben Speicherbaustein wie die Codenummer gespeichert sein. Zwar wäre auch bei Speicherung im gleichen Baustein ein Austausch dieses Bausteins durch einen Unbefugten sehr schwierig, da er, um diesen Baustein durch einen funktionsfähigen anderen ersetzen zu können, zuvor die Bedeutung der einzelnen darin gespeicherten Daten erkennen müsste, doch bewirkt die Trennung einen zusätzlichen Sicherheitsgewinn, da es grundsätzlich ausgeschlossen ist, dass der Austausch eines einzigen Bausteins unerkannt bleibt und die Funktionsfähigkeit des Systems bestehen bleibt. Dadurch ist es für einen Unbefugten erheblich schwieriger, durch Untersuchungen an dem Mikroprozessorsystem zu Informationen zu gelangen, die es ihm ermöglichen, die Sicherungsmaßnahmen zu verstehen und zu umgehen.

20

25

10

15

Um einem Unbefugten das Manipulieren der zum Berechnen der Seriennummer benötigten Information zu erschweren, ist der Speicherbaustein, der diese Information enthält, vorzugsweise untrennbar mit dem Mikroprozessorsystem verbunden, etwa durch Integration beider in einem Ein-Chip-Mikrocomputer.

Ein weiterer Sicherheitsgewinn ist dadurch erreichbar, dass, wenn das Mikroprozessorsystem mehrere jeweils mit einer Seriennummer gekennzeichnete Bausteine enthält, die Codenummern durch gemeinsames Verschlüsseln dieser Seriennummern erhalten ist. Wenn dies der Fall ist, genügt eine einzige Entschlüsselungsoperation, um bei allen Bausteinen,

deren Seriennummern in die Berechnung der Codenummer eingegangen sind, überprüfen zu können, ob sie ausgetauscht worden sind oder nicht.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die Figuren.

10 Figuren

Es zeigen:

Fig. 1 ein Blockdiagramm eines Mikroprozessor-15 systems, an dem die vorliegende Erfindung realisiert ist;

Fig. 2 ein Blockdiagramm eines zweiten solchen Mikroprozessorsystems.

20

Beschreibung der Ausführungsbeispiele

Fig. 1 zeigt ein Blockdiagramm eines erfindungsgemäßen Motorsteuergeräts. An einen Bus 1 auf einer
gedruckten Leiterplatte sind angeschlossen ein Mikroprozessor 2, ein nichtflüchtiger Speicherbaustein 3, ein Schreib-Lese-Speicherbaustein 4 sowie
eine Schnittstelle 5 für die Kommunikation mit
(nicht dargestellten) Sensoren und Aktoren des zu
steuernden Motors. Die Bausteine 2, 3, 4 sind jeweils durch voneinander getrennte ICs gebildet. Der
nichtflüchtige Speicherbaustein 3 verfügt über einen in herkömmlicher Weise adressierbaren Haupt-

speicherbereich 6, der vom Hersteller des Motorsteuergeräts mit Programminstruktionen und Parameterfeldern für den Mikroprozessor 2 beschrieben ist, und der zum Lesen in herkömmlicher Weise über den Bus 1 adressierbar ist, und eine Hilfsspeicherzelle 7, die bereits vom Hersteller des Speicherbausteins 3 selbst mit einer für jeden einzelnen Speicherbaustein eines gegebenen Typs spezifischen Seriennummer beschrieben ist. Auch der Inhalt der Hilfsspeicherzelle 7 ist über den Bus 1 lesbar, doch ist vorzugsweise das Format der zum Auslesen der Hilfsspeicherzelle 7 erforderlichen Adresssignale ein anderes als zum Adressieren des Hauptspeicherbereichs 6. So kann zum Auslesen der Hilfsspeicherstelle 7 z.B. erforderlich sein, dass zuvor über den Bus 1 ein Kennwort an den Speicherbaustein angelegt wird. Dadurch ist die Möglichkeit ausgeschlossen, den Speicherbaustein 3 durch einen pinkompatiblen, ab Hersteller seriennummerlosen Speicherbaustein zu ersetzen, bei dem lediglich die Seriennummer des Speicherbausteins 3 in eine normale adressierbare Speicherstelle kopiert worden Der Baustein 3 kann daher nur durch einen Baustein gleichen Typs, aber mit abweichender Seriennummer, ersetzt werden.

10

15

20

25

Der Hauptspeicherbereich 6 des Speicherbausteins 3 enthält neben für die Steueraufgaben des Motorsteuergeräts erforderlichen Programminstruktionen und Parametern eine Codenummer sowie Programminstruktionen, die der Mikroprozessor 2 ausführen kann, um aus der Codenummer die in der Hilfsspeicherzelle 7 gespeicherte Seriennummer zu berechnen. Diese Berechnung wird jedes Mal beim Start des Systems

und/oder in regelmäßigen Zeitabständen während seines Betriebs durchgeführt. Wenn ein Vergleich der aus der Codenummer berechneten Seriennummer mit der Seriennummer in der Hilfsspeicherzelle 7 ergibt, dass beide ungleich sind, so zeigt dies, dass der Speicherbaustein 3 ersetzt worden sein muss. In diesem Fall sehen die in dem Speicherbaustein 3 enthaltenen Programminstruktionen eine Sperrung des Betriebs des Steuergeräts oder zumindest einzelner für die Funktion des von ihm gesteuerten Motors wesentlicher Funktionen vor.

Wenn der Speicherbaustein 3 ein Flash-Speicher ist, kann eine solche Sperrung von Funktionen sehr einfach durchgeführt werden, indem der Mikroprozessor ein Resetsignal an den Speicherbaustein 3 anlegt, das die in ihm gespeicherten Daten löscht.

15

20

25

30

Ein Unbefugter, der den Speicherbaustein 3 durch einen anderen ersetzen möchte, in dem die Programminstruktionen oder Parameter für den Mikroprozessor 2 verändert sind, kann dies nur dann erfolgreich tun, wenn er den im Speicher 3 enthaltenen Programmcode analysiert und ihn entweder so abändert, dass alle Überprüfungen der Seriennummer unterbunden werden, oder indem er die Berechnung der Seriennummer aus der Codenummer nachvollzieht und in den als Ersatz einzusetzenden Speicherbaustein eine zu dessen Seriennummer passende Codenummer einträgt.

Ein erheblicher Zugewinn an Sicherheit ist zu erreichen, wenn in dem Steuergerät nach Fig. 1 der Mikroprozessor 2 durch einen Ein-Chip-Mikrocomputer

10 ersetzt wird, in dessen einem Chip ein Mikroprozessor 12 und nichtflüchtiger Programmspeicher 11 integriert sind, die über einen nicht aus dem Chip herausgeführten internen Bus kommunizieren. Zugriff auf den Inhalt des Programmspeichers 11 ist allenfalls möglich, wenn das Gehäuse des Chips geöffnet wird, was mit erheblichem Aufwand und der Gefahr der Zerstörung des Chips verbunden ist. Der Programmspeicher 11 enthält eine Bootprozedur für den Mikroprozessor 12, die zumindest das Berechnen der Seriennummer aus der im Speicherbaustein 3 gespeicherten Codenummer, das Lesen der Seriennummer des Speicherbausteins 3 und das vollständige oder teilweise Sperren des Steuergeräts bei Nichtübereinstimmung umfasst. In diesem Fall ist es ohne Zugriff auf den Mikrocomputer 10 selbst nicht möglich, die Überprüfung der Codenummer zu unterbinden, so dass Voraussetzung für einen erfolgreichen Austausch des Speicherbausteins 3 ist, dass man in der Lage ist, die zur Seriennummer des einzusetzenden Speicherbausteins passende Codenummer zu ermitteln. Dies wird einem Ungefugten praktisch unmöglich gemacht, wenn der Hersteller des Steuergeräts zum Berechnen der Codenummer aus der Seriennummer des Speicherbaustein 3 ein asymmetrisches Chiffrierverfahren verwendet hat. Derartige Verfahren sind in großer Zahl bekannt, z.B. unter den Namen RSA (Rivest, Shamir, Adelman), Polig-Hellman, Diffie-Hellman, ElGamal etc.. All diesen Algorithmen ist gemeinsam, dass sie zum Verschlüsseln einer Nachricht, hier der Seriennummer des Bausteins 3, einen geheimen und zum Entschlüsseln der Nachricht einen öffentlichen Schlüssel verwenden, der öffentliche Schlüssel keinen Rückschluss auf

15

20

25

den geheimen Schlüssel zulässt, also nicht gebraucht werden kann, um eine Nachricht zu verschlüsseln. D.h., selbst wenn der Unbefugte in der Lage ist, den im Programmspeicher 11 abgelegten Schlüssel und die Programminstruktionen für die Berechnung der Seriennummer aus der Codenummer anhand dieses Schlüssels zu lesen, ist er dadurch noch nicht in der Lage, zu der Seriennummer eines neu einzusetzenden Speicherbausteins 3 die passende Codenummer zu konstruieren, die den Mikrocomputer 10 dazu bringen würde, den ausgetauschten Baustein als echt zu akzeptieren.

Das oben beschriebene Verfahren zum Erkennen des Austauschs eines Bausteins durch Berechnen einer Seriennummer aus einer dem Baustein zugeordneten Codenummer und Vergleichen der berechneten Seriennummer mit der tatsächlichen Seriennummer des Bausteins ist leicht auf mehrere gegen Austausch zu sichernde Bausteine verallgemeinerbar. Zum einen ist es natürlich möglich, zu jedem Baustein eine eigene Codenummer zu speichern, aus der die Seriennummer des Bausteins rückgerechnet werden kann. Ökonomischer ist jedoch, wenn der Hersteller eine Verkettung der Seriennummern sämtlicher zu sichernden Bausteine verschlüsselt und als eine einzige, für alle Bausteine gültige Codenummer in den Speicherbaustein 3 oder einen anderen geeigneten Speicher des Steuergeräts einträgt. Dann genügt eine einmalige Durchführung des Entschlüsselungsverfahrens, um die Seriennummern sämtlicher geschützter Bausteine zu berechnen. Da die Berechnung der Codenummer die Kenntnis aller Seriennummern der in dem Steuergerät verbauten zu schützenden Bausteine vor-

15

20

25

aussetzt, da es aber mit erheblichem Aufwand verbunden ist, diese Seriennummern vor dem Zusammenbau des Geräts herauszufinden, wird in diesem Falle das Steuergerät erst zusammengebaut, dann werden die Seriennummern aller zu schützenden Bausteine aus dem Steuergerät gelesen, die Codenummer wird berechnet und erst dann wird der Speicherbaustein 3 mit der Codenummer sowie mit allen anderen in ihm unterzubringenden Daten beschrieben. Wenn es sich bei dem Speicherbaustein 3 um einen elektrisch überschreibbaren Speicher wie etwa ein EEPROM oder einen Flash-Speicher handelt, so muss dieser in an sich bekannter Weise durch ein Passwort gesichert sein, um eine Manipulation der darin enthaltenen Daten durch einen Unbefugten ohne Austausch des Speicherbausteins 3 zu verhindern.

Patentansprüche

5

15

20

1. Mikroprozessorsystem mit einer Mehrzahl von Bausteinen (2 - 5), darunter einem Mikroprozessor (2, 12) und wenigstens einem Speicherbaustein (3) zum Speichern von Code und Daten für den Mikroprozessor, wobei in wenigstens einem der Bausteine eine Seriennummer dieses Bausteins in nicht veränderbarer Weise gespeichert ist, dadurch gekennzeichnet, dass in dem Mikroprozessorsystem ferner eine Codenummer, die aus der Seriennummer durch Anwendung eines Verschlüsselungsverfahrens erhalten ist, sowie zum Berechnen der Seriennummer aus der Codenummer benötigte Information gespeichert ist, und dass der Mikroprozessor (2 , 12) eingerichtet ist, aus der Codenummer anhand besagter Information eine Seriennummer zu berechmit der gespeicherten Seriennummer vergleichen und in Abhängigkeit vom gleichsergebnis wenigstens einen Teil des Codes auszuführen oder nicht auszuführen.

25

Mikroprozessorsystem nach Anspruch 1, dadurch gekennzeichnet, dass das Verschlüsselungsverfahren asymmetrisch ist, dass die Codenummer aus der Seriennummer mit Hilfe eines geheimen Schlüssels berechnet ist, und dass die besagte Information einen öffentlichen Schlüssel sowie Programmcode zum Berechnen der Seriennummer aus der Codenummer umfasst.

- 3. Mikroprozessorsystem nach Anspruch 2, dadurch gekennzeichnet, dass der mit der Seriennummer gekennzeichnete Baustein (3) oder einer der mit der Seriennummer gekennzeichneten Bausteine ein Speicherbaustein ist.
- 4. Mikroprozessorsystem nach Anspruch 3, dadurch gekennzeichnet, dass die Codenummer in dem gleichen Speicherbaustein (3) wie die Seriennummer gespeichert ist.

- 5. Mikroprozessorsystem nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Speicherbaustein (3) ein elektrisch beschreibbarer nichtflüchtiger Speicher ist, und dass der bei Nichtübereinstimmung der berechneten mit der gespeicherten Seriennummer auszuführende Code einen Befehl zum Löschen des Speicherbausteins (3) umfasst.
 - 6. Mikroprozessorsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
 der mit der Seriennummer gekennzeichnete Baustein oder einer der mit der Seriennummer gekennzeichneten Bausteine der Mikroprozessor
 (2, 12) ist.
- 7. Mikroprozessorsystem nach einem der vorherge30 henden Ansprüche, dadurch gekennzeichnet, dass
 die zum Berechnen der Seriennummer aus der Codenummer benötigte Information in einem anderen Speicherbaustein (11) als die Codenummer
 gespeichert ist.

- 8. Mikroprozessorsystem nach Anspruch 7, dadurch gekennzeichnet, dass der andere Speicherbaustein (11) untrennbar mit dem Mikroprozessor (12) verbunden ist.
- 9. Mikroprozessorsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
 mehrere Bausteine jeweils mit einer Seriennummer gekennzeichnet sind und dass die Codenummer durch gemeinsames Verschlüsseln der Seriennummern erhalten ist.
- 10. Verfahren zum Erfassen des Austauschs eines mit einer Seriennummer gekennzeichneten Bausteins in einem Mikroprozessorsystem mit den Schritten
 - a) Speichern einer Codenummer, die aus der Seriennummer durch Anwendung eines Verschlüsselungsverfahrens erhalten wird, sowie von zum Berechnen der Seriennummer aus der Codenummer benötigter Information in dem Mikroprozessorsystem,
 - b) Lesen der Codenummer und Berechnen einer unverschlüsselten Seriennummer aus der Codenummer anhand der besagten Information,
 - c) Vergleichen der so erhaltenen entschlüsselten Seriennummer mit der Seriennummer des Bausteins und
 - d) Erkennen eines Austauschs des Bausteins, wenn dessen Seriennummer nicht mit der entschlüsselten Seriennummer übereinstimmt.

5

20

25

- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass ein unsymmetrisches Verschlüsselungsverfahren verwendet wird, und dass ein öffentlicher Schlüssel des Verschlüsselungsverfahrens in der zum Berechnen der Seriennummer aus der Codenummer benötigten Information enthalten ist.
- 10 12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass es auf einen Speicherbaustein des Mikroprozessorsystems angewendet wird.

- 15 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Codenummer in dem gleichen Speicherbaustein wie die Seriennummer gespeichert wird.
- 20 14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Inhalt des Speicherbausteins gelöscht wird, wenn er als ausgetauscht erkannt worden ist.
- 25 15. Verfahren nach Anspruch nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass es auf einen Mikroprozessor des Mikroprozessorsystems angewendet wird.
- 30 16. Verfahren nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass wenigstens die zum Berechnen der Seriennummer benötigten Information in einem anderen Speicherbaustein als die Codenummer gespeichert wird.

- 17. Verfahren nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, dass es auf eine Mehrzahl von Bausteinen des Mikroprozessorsystems angewendet wird, und dass die Codenummer durch gemeinsames Verschlüsseln der Seriennummern der mehreren Bausteine erhalten wird.
- 18. Verfahren nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, dass es bei jedem Start des Mikroprozessorsystems ausgeführt wird.

 19. Verfahren nach einem der Ansprüche 10 bis 18,
 15 dadurch gekennzeichnet, dass es während des Betriebs des Mikroprozessorsystems periodisch ausgeführt wird.

Mikroprozessorsystem und Verfahren zum Erfassen des Austauschs von Bausteinen des Systems

Zusammenfassung

- 10 Um den Austausch eines mit einer Seriennummer gekennzeichneten Bausteins in einem Mikroprozessorsystem zu erfassen,
 - werden eine Codenummer, die aus der Seriennummer durch Anwendung eines Verschlüsselungsverfahrens
 - erhalten wird, sowie von zum Berechnen der Seriennummer aus der Codenummer benötigte Information in dem Mikroprozessorsystem gespeichert,
 - wird die Codenummer gelesen und eine unverschlüsselte Seriennummer aus der Codenummer anhand der
- 20 besagten Information berechnet, die so erhaltene entschlüsselte Seriennummer wird mit der Seriennummer des Bausteins verglichen und der Bausteins wird als ausgetauscht erkannt, wenn dessen Seriennummer nicht mit der entschlüsselten
- 25 Seriennummer übereinstimmt.

