# 과제2에 대한 중요 업데이트

# 0. Weight와 bias 초기화 관련

1차 과제에서 쓴 np.random.random 함수가 아닌 weight는 np.random.randn bias는 np.zeros를 사용해 He 방법으로 초기화 해주십시오.

이유)

- 1) Np.random.randn은 가우시안 정규 분포에 따른 랜덤값 생성입니다. He 초기화는 가우시 안 정규분포를 기반으로 하기에 np.random.randn으로 초기화를 해야합니다.
- 2) Bias의 값은 보편적으로 초기화 값이 0으로 시작하는게 좋다고 알려져있습니다.

# 1. minibatch\_Optimizer 관련

먼저 minibatch\_Optimizer의 Accuracy가 1이 되지 않는다. 라는 질문을 받아서 확인해본 결과 제가 드린 코드와 제 테스트 환경의 차이가 있기에 생기는 문제였습니다. 이 부분에 대해 오해를 야기시킨 점, 그로 인해 과제로 고통받게 한 점에 대해 사과 드리겠습니다.(실제 제 환경은 batch\_size= 100, learning\_rate = 0.1 이었습니다. 이 부분에 대해 체크가 늦었습니다. Learning\_rate 가 0.01일땐 epoch을 400번정도 돌리면 training\_accuracy 가 1이 되긴 합니다.)

#### 실제로 코드 부분을

trained\_minibatch, tmb\_train\_acc\_list, tmb\_test\_acc\_list, tb\_loss\_list = minibatch\_Optimization(dataset, TNN\_minibatchOptimizer, 0.01, epoch=100, batch\_size=1000)

#### 이 부분에서

trained\_minibatch, tmb\_train\_acc\_list, tmb\_test\_acc\_list, tb\_loss\_list = minibatch\_Optimization(dataset, TNN\_minibatchOptimizer, **0.1**, epoch=100, **batch\_size=100**) 으로 바꾸어주세요.

## 2.Dropout 관련

Dropout과 관련되서 얘기를 드리자면 Dropout 관련 함수를 만드셔도 되고, Dropout 클래스를 만드셔도 됩니다. 실제로 드롭아웃의 구현방법은 여러 가지 있기에 어떤 방법을 다 써도 됩니다. 드롭아웃과 관련된 채점기준에 대해 말씀드리자면 위의 batchOptimization의 결과값 training\_accuracy와 test\_accuracy의 차이와 DropoutOptimization의 training\_accuracy와 test\_accuracy의 차이가 더 적으면 됩니다. (다만 조교는 현재 흔히 알려진 두 방법으로만 테스트해보았고 두 방식은 제 조건에 맞는 바운드 안에 들어갔습니다.) 단 구현방식에 따라 Accuracy의 차이가 줄어들지 않았다고 하여도 코드 구현방식이 틀리지 않는다면 만점입니다. 만약 Accuracy의 차이가 안 줄어들었다면 주석을 참고해서 채점을 할 것이기에 주석에 제대로 된 설명이 되어 있어야합니다.

(조교가 사용한 방법 1 은 LinearLayer 와 ReLU 사이에 Dropout 클래스를 만들어 LinearLayer의 결과값을 랜덤하게 죽이는 방법을 사용하였고, 사용한 방법 2는 Weight를 킬하는방법이었습니다.)

### 3. 보고서 관련

Document에 적혀진 것과 실제 2차 과제의 코드와 차이가 있는 부분은 수정을 해도 좋고 안해도 좋습니다.

보고서에는 지금 제공된(etc: if I % 10 ==0) 코드와 주석 그리고 트레이닝 할 때 나오는 프린트 문을 첨부하셔야 합니다.

물론 프린트 된 결과 전부를 보여줄 필요는 없습니다. Batch의 경우 epoch == 0, 10, 20, 980, 990, 1000에 해당하는 프린트된 값(Loss, Train Acc, Test\_acc)을(즉 제공해준 코드를 수정하셔야 합니다. Epoch이 1000번 돌아가게) dropout의 경우 똑같이 epoch == 0, 10, 20, 980, 990, 1000에 해당하는 프린트된 값을 스크린샷을 찍어 보고서에 첨부하시면 됩니다.(더 길게 첨부하셔도 문제는 없습니다), minibatch의 경우 Train\_Accuracy가 1이 되는 순간까지의 프린트된 값을 스크린샷에 찍어 보고서에 첨부하시면 됩니다.

보고서에 들어갈 것은 코드 전체와 거기에 해당하는 주석 그리고 각 Optimization에 대한 프린트 된 값의 스크린샷이 있어야합니다.

### 4. Linux Submit 관련

리눅스에 제출하는 코드는 서버과부하 방지와 채점을 용이하게 하기 위해 Optimization 함수들의 출력부분(print문, list 삭제)과 Learning\_rate, batch\_size, epoch를 수정하였습니다. 이 코드에 작업하시거나 원래 코드를 copy한 후 이 부분의 양식에 맞게 수정을 하고 hw2.py로 변환시킵니다.



[수정부분 : epoch, learning\_rate, print문을 바꾸었고, accuracy를 저장하는 list 삭제(append 삭제)]

Submit 방식은 자신의 리눅스 계정 접속 후 hw2 디렉토리를 만들고(mkdir hw2) 그 안에 hw2.py 와 mnist.csv 파일 넣은 후

submit K2019AIS hw2 로 하면 됩니다.

#### 예시)

주의) 현재 학교 리눅스계정에서는 pip를 바로 사용이 불가능합니다. 즉 numpy 라이브러리를 받을 수 없기에 코드가 돌아가는지에 대해 바로 컴파일 해보는 것이 불가능 합니다. 그렇기에 pip를 사용할 수 있는 가상환경을 설정해야 합니다.

자신의 리눅스 계정에 로그인 후 python3 -m virtualenv venv 로 가상환경을 만듭니다.

그 후 source venv/bin/activate 를 실행하면 가상환경으로 설정이 바뀌고 그 후 pip install numpy 로 numpy 라이브러리를 다운받으신 후 submit할 코드를 테스트 하시면 됩니다.

예시)[예시이기에 실제코드를 다 돌린 것이 아닙니다. 여러분들의 hw2.py는 아래와는 다르게 나와 야 합니다.]

```
[K2019AIS@linux2 ~]$ source venv/bin/activate
(venv) [K2019AIS@linux2 ~]$ pip install numpy
Collecting numpy
 Using cached https://files.pythonhosted.org/packages/cl/e2/4db8df8f6cddc98
dl7bf0c3177ab3cc6beac7f/numpy-1.16.3-cp36-cp36m-manylinuxl x86 64.whl
Installing collected packages: numpy
Successfully installed numpy-1.16.3
(venv) [K2019AIS@linux2 ~]$ cd hw
-bash: cd: hw: 그런 파일이나 디렉터리가 없습니다
(venv) [K2019AIS@linux2 ~]$ cd hw2
(venv) [K2019AIS@linux2 hw2]$ ls
       mnist.csv
(venv) [K2019AIS@linux2 hw2]$ python3 hw2.py
8000 Trainset and 2000 Testset
50
       번째 Loss = 0.00553
       번째 Train_Accuracy: 1.0
50
       번째 Test_Accuracy: 0.956
```

# 5. 과제제출기한

업데이트가 늦어진 관계로 과제 제출 기간을 금요일에 말했던 것 보다 조금 더 연장하여 수요일 오후 6시(05/22 18:00) 까지로 하겠습니다. 클래스넷에 수요일 오후 6시까지 .ipynb(처음 제공하 엿던 if i%10==0) 파일과 보고서를 자신의 학번\_hw2.zip(예시 B211073\_hw2.zip)으로 압축해 클래스넷에 올려주시면 되고, hw2.py와 mnist.csv를 위 방식에 맞게 submit 하시면 됩니다. 질문은 화요일 오후 9시 전까지 클래스넷과 메일로 오는 질문에 대해 답해드리겠습니다. 1차과제와 마찬가지로 Late는 없습니다.

마치며: 과제를 만들어보는 것이 처음이었기에 과제부분과 관련해서 꼼꼼하지 못했던 점 그렇기에 학우분들에게 본의 아닌 고생시킨 점에 대해 다시 한 번 사과드리겠습니다. 3차 과제는 더더욱 꼼꼼히 체크해 이런 문제가 없게 하겠습니다.