Cleaning Principle

Mechanism of Trash Liberation

- ✓ Loss of kinetic energy (scrubbing)
- ✓ Impulse (Beating)
- ✓ Centrifugal force
- **✓ Pneumatic force**

Loss of kinetic energy (scrubbing)

✓ The kinetic energy of trash particles after impact becomes almost zero and liberated from fibre tufts

What is separation mechanism?

The liberated particles fall down due to gravity and separated

Mechanism of Trash Liberation

Grid Bars

Cleaning action depends on:

- ✓ Distance of grid bars from beater
- ✓ Gaps between the bars
- ✓ Setting angle related to the beater

- ✓ Slotted sheets (a): Poor cleaning
- ✓ Perforated sheets (b): Poor cleaning
- ✓ Triangular section bars (c): Mostly used
- ✓ Angle bars (d): Moderate cleaning
- ✓ Blades (e): Strong and effective

Mechanism of Trash Liberation

Impulse (Beating)

- > Flocks are fed by feed rollers and are subjected to strong blows by the blades of a beater.
- Velocity of tufts changes instantly (in microseconds)

Impulse: change in momentum $= m(v_i - vf)$

m is the mass of tuft, v_i is the initial velocity, v_f is the initial velocity, i.e., feed roller surface speed, final velocity (surface speed of bater at the top of strikers)

How the trash will be separated?

Beating action

Mechanism of Trash Liberation

Centrifugal force

- ✓ Trash particles resting on the saw tooth, strikers or blades are subjected to a high centrifugal force.
- ✓ Trash particles have low attachment with the striking elements.

$$CF = mr\omega^2$$

What is the trash separating mechanism?

Mechanism of Trash Separation

Pneumatic force

- ✓ Trash with liberated trash particles are directed towards a moving perforated screen.
- ✓ Trash particles are sucked through the perforations

Separation by buoyancy difference

- ✓ Mixture of tufts and trash particles are directed downwards
- ✓ A stream of air flow cross the path horizontally.

Dust and Metal Removal

Dust Removal

Difficulties:

- ✓ Dust is lighter than fibres
- ✓ Strong adherence with fibres

Liberation mechanism:

- > High metal to fibre friction
- > Fibre to fibre friction

Separation Mechanism:

✓ Through suction

Metal Extractor

Cleaning Efficiency

Cleaning efficiency (CE %) =
$$\frac{Trash\ in\ feed\ (\%) - trash\ in\ delivery\ (\%)}{Trash\ in\ feed\ (\%)} \times 100$$

- **❖** The CE % of individual cleaner varies according to their type and position
- The beater or cleaner in the beginning of the blowroom line shows
 higher cleaning efficiency
- **❖** More cleaning means more waste and loss of good fibres (lint)
- **❖** Lint in the waste should be in the range of 20-30%.
- **❖** After opening and cleaning nep level in blowroom increases significantly

Opening and Cleaning Principle

What we have learnt so far.....

Importance of Yarn manufacturing in India

- India is the world's second largest cotton producing country
- India has the world's second largest spinning capacity after China
- Ample opportunities in Technical Textiles (NTTM), entrepreneurship, machine manufacturing, etc.

Different Steps in Yarn Manufacturing

Objectives and Principles of Opening and Cleaning

- What is opening?
- Why and how opening is done?
- Why and how cleaning is done?
- Why does a blowroom line need a specific opener and cleaner at a specific place?
- How opening and cleaning intensity are measured?
- What are the parameters which affect opening and cleaning intensity?

New Opening and Cleaning Principles.....

22-01-2024

Automatic Bale Opener: Unifloc (Rieter)

- ✓ Rotating tooth discs pluck out fibre flocks (micro tufts)
- **✓** Bale height is automatically detected
- ✓ Depth of penetration: 2-4 mm
- ✓ Can turn by 180° to process bales on the other side
- ✓ Production: up to 2000 kg/hr

Coarse Cleaner

Step Cleaner

- ✓ Consists of series of drums with four rows of striking elements
- ✓ Grid bars cover 25% of individual drum chamber
- ✓ Inclination angle 45 to 60°
- ✓ Beater speed: 500 to 600 rpm

Coarse Cleaner

- ✓ The drum surface is covered with 6-8 rows of striking elements
- ✓ The fibre tufts enters at right angle to the beater axis and receives strikes
- ✓ The guide plates ensure than the fibre tufts follow a spiral path. Why?

B 12 UNIclean Efficient and reliable pre-cleaning

Monocylinder Cleaner

Fine Cleaner

Cleaner CL-C3 (Trützschler)

RN Cleaner (Trützschler)

Fine Cleaner

ERM Cleaner (Rieter)

Uniflex (Rieter)

Filing chute (1)

Perforated drum (2)

Feed roll (3)

Grid bar (4)

Opening cylinder (5)