14/15(二)浙江工业大学高等数学 B 考试试卷 A

学院:			_班级:		学号:_		姓名:			
任课	民教リ	币:		(请务》	公填上)			
	题得	号	_	=	三	四	五	六	总分	
	得	分								
<u> </u>	査空 機	择節	(太顯淵	☆ 30 分	,每小	駒3分)				
							0 则 k =	=	0	
					由正向夹					
3.	设 z =	y^x y	则 $dz = _{-}$				o			
4.	设 z =	= f(xy,	$\frac{x}{y}$), f	可微,见				o		
5.	己知	$z = \sqrt{z}$	$\frac{1}{xy} + \frac{x}{y}$,	则 $\frac{\partial^2 z}{\partial x^2}$	=			o		
6.	设 <i>D</i> :	$ x \leq 1$	1, 0≤ y	y ≤ 1.则	$\iint_D x^3 e^y dx$	<i>lxdy</i> =			o	
			• 0	• 0	$y)dy = _{}$					
8.	将函数	abla f(x)	$=\frac{1}{1+2x}$	-展开为	麦克劳林	级数,见	則该级数	的收敛半	· 径是	o
9.	微分	方程 <u>d</u> .	$\frac{y}{x} = xy$ fr	的通解是			o			
		.阶线性	生常系数	齐次微分	分 方程有同	两个特解	$: \cos x$	x , $2\sin x$,则这个微分	方程的
表达式	【为				o					
二、美	判断题	〔(本是	逐满分1	0分,每	F小题 2 :	分):	(正确的	打"√"	错误的打"	×")
1.	若 $\sum_{n=1}^{\infty}$	(u_{2n-1})	$+u_{2n})$ \downarrow	炇敛, 则	$\sum_{n=1}^{\infty} u_n \psi$	(敛	()			
2.	若∑	$(u_n + v_n)$	' _n)收敛,	,则 $\sum_{i=1}^{\infty} i$	u_n , $\sum_{n=1}^{\infty}$	ν _n 都收益	汝 ()		

- 3. 若存在非零常数 λ ,使得 $\lim_{n\to\infty} na_n = \lambda$,则正项级数 $\sum_{n=1}^{\infty} a_n$ 发散. ()
- 4. 级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充分必要条件是数列 $S_n = \sum_{i=1}^n u_i$ 的极限存在。 ()
- 5. 级数 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{\pi}{2^n}$ 、 $\sum_{n=1}^{\infty} \ln(1 + \frac{(-1)^n}{2n})$ 都是收敛的。 ()

三、试解下列各题(本题满分24分,每小题6分):

2. 设
$$x^2 + y^2 + z^2 - 4z = 0$$
, 求: $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

3. 求曲线
$$\begin{cases} x = y^2 \\ z = x^2 \end{cases}$$
 上点(1, 1, 1)处的切线方程与法平面方程。

4. 求函数 f(x, y) = xy 在闭区域 $x \ge 0, y \ge 0, x^2 + y^2 \le 1$ 上的最大最小值。

四、试解下列各题(本题满分24分,每小题6分):

1. 求
$$\iint_{D} (x+y)dxdy$$
, 其中区域 D 由曲线 $x^{2}-2y+y^{2}=0$ 所围成。

2.
$$\Re \int_{1}^{2} dx \int_{\sqrt{x}}^{x} \sin \frac{\pi x}{2y} dy + \int_{2}^{4} dx \int_{\sqrt{x}}^{2} \sin \frac{\pi x}{2y} dy$$

3. 求微分方程 $xdy - ydx = x^2 e^x dx$ 的通解。

4. 设 y(x) 在点 (0,1) 与抛物线 $y=x^2-x+1$ 相切,并满足方程 $y''-3y'+2y=2e^x$,求 y(x)。

五、 (8分) 求幂级数
$$\frac{x}{3} + \frac{x^2}{2 \cdot 3^2} + \frac{x^3}{3 \cdot 3^3} + \dots + \frac{x^n}{n \cdot 3^n} + \dots$$
 的收敛区间及和函数。

六、(4分)设
$$f(x)$$
 为连续函数, $F(t) = \int_1^t dy \int_y^t f(x) dx$, 求: $F'(2)$