```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\Admin\Downloads\4_drug200 - 4_drug200.csv")
 df

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

- 0. 0 0.	0020						
#	Column	Non-Null Count	Dtype				
0	Age	200 non-null	int64				
1	Sex	200 non-null	object				
2	BP	200 non-null	object				
3	Cholesterol	200 non-null	object				
4	Na_to_K	200 non-null	float64				
5	Drug	200 non-null	object				
<pre>dtypes: float64(1), int64(1), object(4)</pre>							
memory usage: 9.5+ KB							

```
In [4]: df.columns
```

Out[4]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x1e21adf93d0>

In [7]: sns.distplot(df['Na_to_K'])

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x1e21fde3a90>


```
In [8]: sns.heatmap(df.corr())
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1e21ffb84c0>


```
In [9]: x=df[['Age']]
y=df['Na_to_K']
```

Out[11]: LinearRegression()

```
In [12]: print(lr.intercept_)
```

17.31259028739985

```
In [13]:
         prediction= lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[13]: <matplotlib.collections.PathCollection at 0x1e220a9d760>
          16.5
          16.0
          15.5
          15.0
          14.5
                    10
                           15
                                 20
                                                     35
In [14]: print(lr.score(x_test,y_test))
          -0.0669626754972179
In [15]:
         print(lr.score(x_train,y_train))
         0.009988229995840037
In [16]: from sklearn.linear_model import Ridge,Lasso
In [17]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[17]: Ridge(alpha=10)
In [18]: |rr.score(x_test,y_test)
Out[18]: -0.0669561274313637
         la=Lasso(alpha=10)
In [19]:
         la.fit(x_train,y_train)
Out[19]: Lasso(alpha=10)
In [20]: la.score(x_test,y_test)
Out[20]: -0.05148619823265066
 In [ ]:
```