I217E: Functional Programming

Nao Hirokawa JAIST

Term 2-1, 2022

http://www.jaist.ac.jp/~hirokawa/lectures/fp/

1217E: Functional Programming

1/1

Computational Model

Schedule			
10/12 10/14 10/19 10/21 10/26	introduction algebraic data types I algebraic data types II program reasoning applications	11/9 11/11 11/16 11/18 11/25	interpreters compilers termination confluence verification
10/28	data structures I	11/30	review
$\begin{array}{c} 11/2 \\ 11/4 \end{array}$	data structures II computational models	12/5	exam

Evaluation

exam
$$(60)$$
 + reports (40)

1217E: Functional Programming

2/1

Program as Equational System

Function Definition

$$A_1$$
: []++ ys = ys
 A_2 : (x:xs)++ ys = x:(xs++ ys)

Computation

l217E: Functional Programming 3/1 l217E: Functional Programming 4/1

Exercise

Correct next program:

-- myProduct [x1, ..., xn] = x1 * ... * xn myProduct [] = 0myProduct (x : xs) = x * myProduct xs

1217E: Functional Programming

5/1

Theorem

Proof.

We show the claim by **mathematical induction on** n.

■ If
$$n = 0$$
 then sum $n = 0 = \frac{0 \cdot (0 + 1)}{2}$

by S₁

■ If n = n' + 1 for some $n' \in \mathbb{N}$ then

sum
$$n = n + \text{sum } n'$$
 by S₂

$$= n + \frac{n'(n'+1)}{2}$$
 by I.H.
$$= \frac{n(n+1)}{2}$$

Induction

I217E: Functional Programming

Recall Definitions of List Operations

 $A_1: [] ++ ys = ys$

 A_2 : (x : xs) ++ ys = x : (xs ++ ys)

 L_1 : length [] = 0

 L_2 : length (x:xs) = 1 + length xs

 $\mathsf{R}_1\colon \ \mathsf{rev}\,[\,] \qquad = [\,]$

 R_2 : rev (x : xs) = rev xs ++[x]

6/1

Theorem

length (xs ++ ys) = length xs + length ys for all lists xs, ys

Proof.

We show the claim by **structural induction on** xs.

If
$$xs = x : xs'$$
 then

length
$$((x : xs') ++ ys) = \text{length } (x : (xs' ++ ys))$$
 by A₂

$$= 1 + \text{length } (xs' ++ ys)$$
 by L₂

$$= 1 + \text{length } xs' + \text{length } ys$$
 l.H.
$$= \text{length } xs + \text{length } ys$$
 by L₂

I217E: Functional Programming

9/1

Mirroring

 M_1 : mirror Leaf = Leaf

 M_2 : mirror (Node $\ell \times r$) = Node (mirror r) \times (mirror ℓ)

Theorem

rev(rev xs) = xs for all lists xs

Proof.

We show the claim by **structural induction on** xs.

■ If
$$xs = []$$
 then rev (rev $[]$) = rev $[] = []$

If xs = x : xs' for some x and xs' then

rev (rev
$$(x : xs')$$
) = rev $((rev xs') ++[x])$ by R_2
= $x : rev (rev xs')$ by Lemma
= $x : xs'$

Lemma

П

$$rev(xs++[x]) = x : rev xs$$
 for all lists xs

1217E: Functional Programming

10/1

by R₁

Theorem

mirror (mirror t) = t for all trees t

Proof.

We show the claim by **structural induction on** t.

■ If t = Leaf then

1217E: Functional Programming

$$\begin{array}{ll} \mbox{mirror (mirror Leaf)} = \mbox{mirror Leaf} & \mbox{by } \mbox{M}_1 \\ & = \mbox{Leaf} & \mbox{by } \mbox{M}_1 \end{array}$$

■ If $t = \text{Node } \ell \times r$ for some ℓ , x, and r then

mirror (mirror (Node
$$\ell \times r$$
))

= mirror (Node (mirror r) \times (mirror ℓ))

= Node (mirror (mirror ℓ)) \times (mirror (mirror r))

= Node $\ell \times r$

J.H.

Homework

- 1 Show that xs ++[] = xs holds for all lists xs.
- 2 Show that

$$xs ++(ys ++ zs) = (xs ++ ys) ++ zs$$

holds for all lists xs, ys, zs

3 Consider the two recursive functions on lists:

rev [] = []
rev
$$(x : xs)$$
 = rev $xs ++[x]$
revapp [] ys = ys
revapp $(x : xs)$ ys = revapp xs $(x : ys)$

Show rev xs = revapp xs [] for all lists xs.

Hint: Find a lemma of form revapp $xs \ ys = \cdots$.

1217E: Functional Programming