This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

EL 9 9 4 0 7 0 5 9 4 - US 2-19-04

Docket No.: 01641/000N083-US0

(PATENT)

THE UNITED STATES PATENT AND TRADEMARK OFFICE

ere Patent Application of:

Kar Hem Schuster

Application No.: 10/645,302

Confirmation No.: 7852

Filed: August 21, 2003

Art Unit: N/A

For: REFRACTIVE PROJECTION OBJECTIVE

Examiner: Not Yet Assigned

WITH A WAIST

CLAIM FOR PRIORITY AND SUBMISSION OF DOCUMENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims priority under 35 U.S.C. 119 based on the following prior foreign applications filed in the following foreign countries on the dates indicated:

Country	Application No.	Date	
Germany	102 212 43.0	May 13, 2002	
Germany	102 292 49.3	June 28, 2002	

Docket No.: 01641/000N083-US0

In support of this claim, a certified copy of each said original foreign application is filed herewith.

Dated: February 19, 2004

Respectfully submitted,

Melvin C. Garner

Registration No.: 26,272 DARBY & DARBY P.C.

P.O. Box 5257

New York, New York 10150-5257

(212) 527-7700

(212) 753-6237 (Fax)

Attorneys/Agents For Applicant

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 21 243.0

Anmeldetag:

13. Mai 2002

Anmelder/Inhaber:

Carl Zeiss SMT AG, Oberkochen/DE

(vormals: Carl Zeiss Semiconductor Manufacturing

Technologies AG)

Bezeichnung:

Verfahren zur Herstellung von mindestens zwei

Projektionsobjektiven

IPC:

G 02 B, G 03 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 15. Juli 2003

Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Agurks

A 9161

Beschreibung:

Verfahren zur Herstellung von mindestens zwei Projektionsobjektiven

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff den Patentanspruchs 1.

Es sind beispielsweise aus der US 5,990,926 und DE 189 18 444 A1 Projektionsobjektive mit Linsenanordnungen, die für die Wellenlänge 248 nm ausgelegt sind, bekannt.

Aus der US 6,088,171 ist eine Projektionsbelichtungsanlage für die Mikrolithographie bekannt. Aus dieser Schrift sind mehrere Linsenanordnungen für Projektionsobjektive bekannt, die für eine Beleuchtungswellenlänge von 193 nm ausgelegt sind.

Aus der EP 1 139138 Al sind verschiedene Projektionsobjektive für die Mikrolithographie bekannt, die Linsenanordnungen umfassen, die entweder für die Wellenlänge 193 nm oder für die Wellenlänge 157 nm ausgelegt sind.

Für den Aufbau solcher Projektionsobjektive mit derartigen Linsenanordnungen sind von der Struktur der jeweiligen Linsenanordnung bzw. von den einzelnen Linsendaten abhängige Montageaufbauten erforderlich. Auch sind auf die Linsendaten bzw. auf einzelne die Komponenten abgestimmte Prüfoptiken erforderlich.

Weiterhin sind unterschiedliche Justierverfahren in Abhängigkeit von dem spezifischen Aufbau der Linsenanordnung erforderlich, die zunächst entwickelt werden müssen und dann beim Aufbau der jeweiligen Linsenanordnung angewendet werden. Auch diese Justierverfahren sind von der Struktur der Linsenanordnung abhängig. Auch für die Entwicklung und die Bereitstellung der erforderlichen Prüfoptiken, Montageaufbauten und Justierverfahren ist ein beträchtlicher Entwicklungsaufwand erforderlich.

Aufgabe der Erfindung ist es, den Entwicklungsaufwand zur Bereitstellung bzw. Herstellung von Projektionsbelichtungsanlagen und insbesondere den Linsenanordnungen für die

د لايا

Mikrolithographie, die für verschiedene Beleuchtungswellenlängen ausgelegt sind, zu reduzieren.

Die Aufgabe der Erfindung wird durch die Merkmale des Patentanspruchs 1 gelöst. Durch die Maßnahme ein Verfahren bereitzustellen, durch das zwei Projektionsobjektive bzw. Linsenanordnungen, die für verschiedene Wellenlängen ausgelegt sind und die sich durch Maßnahme der speziellen Auswahl von unterschiedlichen Linsenmaterialien von der makroskopischen Struktur nur minimal unterscheiden, konnte der Herstellungs- und Entwicklungsaufwand erheblich reduziert werden.

Mit einzelnen Korrekturen ist es möglich, jeweils das Projektionsobjektiv auf das konkret vorgesehene Beleuchtungssystem, insbesondere auf die Wellenlänge der von dem Beleuchtungssystem abgegebenen Strahlung, abzustimmen.

Aufgrund der weitgehenden Übereinstimmung von einzelnen Komponenten, die in den Projektionsobjektiven für die verschiedenen Wellenlängen eingesetzt werden, ist es möglich identische Fassungsteile in den Projektionsobjektiven, bzw. in den Linsenanordnungen für die mindestens zwei verschiedenen Wellenlängen, zu verwenden. Dadurch wird der Entwicklungsaufwand für speziell angepaßte Fassungsteile reduziert.

Es hat sich insbesondere als vorteilhaft herausgestellt, wenn sich die Durchmesser von korrespondierenden Linsen der mindestens zwei Linsenanordnungen für die verschiedenen Wellenlängen weniger als 1 mm unterscheiden und die Krümmung der Linsenoberflächen, insbesondere im Randbereich, nicht mehr als 1 x 10-5 1/mm differieren, da dann gewährleistet werden kann, dass identische Linsenfassungen eingesetzt werden können.

Auch Prüfoptiken, die jeweils für die Überprüfung einzelner optischer Elemente oder Komponenten, insbesondere Linsen, entwickelt und aufgebaut werden müssen, können für die Überprüfung der korrespondierenden Linsen und Komponenten, die abgesehen vom verwendeten Material nahezu identisch sind, eingesetzt werden.

Da insbesondere die Prüfoptiken für asphärische Linsenoberflächen aufwendig sind, hat es sich als vorteilhaft herausgestellt, wenn gemäß den optischen Daten identische asphärische Linsenoberflächen vorgesehen sind.

Es ist weiterhin vorteilhaft, wenn sich die weiteren Linsenoberflächen der asphärischen Linsen weniger als 5 μm unterscheiden und/oder sich die Linsendicken der korrespondierenden Linsen nicht mehr als 5 mm, vorzugsweise nicht mehr als 1-2 mm bzw. nicht mehr als 5 % voneinander abweichen.

Es ist insbesondere vorteilhaft, wenn sich die Kehrwerte die Radien der korrespondierenden Linsen weniger als 1 x 10⁻⁴ mm⁻¹ unterscheiden. Sind die korrespondierenden Radien der Linsen kleiner als 10 000 mm, so hat es sich als vorteilhaft herausgestellt, wenn sich die Kehrwerte der Radien um weniger als 5 x 10⁻⁵ mm⁻¹ unterscheiden, damit gewährleistet werden kann, dass eine Prüfoptik für die Charakterisierung der korrespondierenden Linsen eingesetzt werden kann.

Es hat sich als vorteilhaft herausgestellt, wenn sich die Öffnungszahl der jeweiligen korrespondierenden Linsenflächen weniger als 3% unterscheiden.

Damit werden die benötigten Prüfoptiken zur Breitstellung der Linsenanordnungen für die mindestens zwei verschiedenen Wellenlänge erheblich reduziert. Daraus resultiert eine massive Reduzierung der Herstellungskosten der Linsenanordnung und damit auch des jeweiligen Projektionsobjektives, da sich natürlich auch die Kosten für die Prüfoptiken auf den Preis der Projektionsobjektive niederschlagen.

Es hat sich als vorteilhaft herausgestellt, die unterschiedlichen eingesetzten Linsenmaterialien der auszuwählen, dass die Brechzahl der eingesetzten Linsenmaterialien beim ersten Projektionsobjektiv für Strahlung einer ersten Wellenlänge der Brechzahl der im weiteren Projektionsobjektiv eingesetzten Materialien bei der weiteren Wellenlänge zumindestens nahezu entspricht. Sind verschiedene Medien für Linsen und Linsenzwischenräume vorgesehen, so ist der Quotient der Brechzahlen eines Objektives mit dem Quotient der Brechzahl des zweiten Objektives zu vergleichen.

Weiterhin hat es sich als vorteilhaft herausgestellt, identische Montageaufbauten und/oder Justierverfahren für den Aufbau des Projektionsobjektives bzw. der Projektionsbelichtungsanlagen für die Mikrolithographie einzusetzen.

Weitere vorteilhafte Maßnahmen sind in weiteren Unteransprüchen beschrieben. Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben. Es zeigt:

Figur 1:

13:19

Projektionsbelichtungsanlage;

Figur 2:

erstes Projektionobjektiv für die Wellenlängen 351 nm;

Figur 3:

Projektionsobjektiv für die Wellenlängen 248 nm;

Figur 4:

Projektionsobjektiv für die Wellenlänge 193 nm; und

Figur 5:

korrespondierendes Projektionsobjektiv für die Wellenlänge 157nm

Anhand von Figur 1 wird zunächst der prinzipielle Aufbau einer Projektionsbelichtungsanlage 101 beschrieben, wie sie in der Mikrolithographie eingesetzt werden. Die Projektionsbelichtungsanlage 101 weist ein Beleuchtungssystem 103 und ein erstes Projektionsobjektiv 105 auf. Das Projektionsobjektiv 105 umfasst eine Linsenanordnung 119 mit einer Aperturblende AP, wobei durch die Linsenanordnung 119, 219, 319, 419 eine optische Achse 107 definiert wird. Zwischen Beleuchtungseinrichtung 103 und Projektionsobjektiv 105 ist eine Maske 109 angeordnet, die mittels eines Maskenhalters 111 im Strahlengang gehalten wird. Solche in der Mikrolithographie verwendeten Masken 109 weisen eine Mikrometer- bis Nanometerstruktur auf, die mittels des Projektionsobjektives 105 bis zu einem Faktor von 10, insbesondere um den Faktor 4, verkleinert auf eine Bildebene 113 abgebildet wird. In der Bildebene 113 wird ein durch einen Substrathalter 117 positioniertes Substrat bzw. ein Wafer 115 gehalten. Die noch auflösbaren minimalen

Strukturen hängen von der Wellenlänge λ des für die Beleuchtung verwendeten Lichtes sowie von der bildseitigen Apertur des Projektionsobjektives 105 ab, wobei die maximal erreichbare Auflösung der Projektionsbelichtungsanlage 101 mit abnehmender Wellenlänge der Beleuchtungseinrichtung 103 und mit zunehmender bildseitiger Apertur des Projektionsobjektives 105 steigt.

In Figur 2 ist die Linsenanordnung 119 eines ersten Projektionsobjektives dargestellt. Die Linsenanordnung 119 ist für Strahlung einer ersten Wellenlänge von 351nm ausgelegt. Dazu im Vergleich ist in Figur 3 eine weitere Linsenanordnung 219 dargestellt, die für die Beleuchtungswellenlänge von 248 nm ausgelegt ist. Das in Fig. 3 dargestellte Projektionsobjektiv korrespondiert zu dem in Fig. 2 dargestellten Projektionsobjektiv. Korrespondierend bedeutet hier, dass sich die an der identischen Stelle im jeweiligen Objektiv 119 und 219 angeordneten Linsen L sowohl in der räumlichen Anordnung, als auch in der Oberflächenform nur geringfügig unterscheiden.

Der prinzipielle Aufbau einer Projektionsbelichtungsanlage 101 in der das in Fig. 3 dargestellte Projektionsobjektiv 219 eingesetzt werden kann, ist in Fig. 1 dargestellt.

Im folgenden wird der Aufbau der in Figur 2 und 3 dargestellten Linsenanordnungen 119, 219 detaillierter erläutert. Die numerische Apertur der für 351 mm und 248 mm ausgelegten Projektionsobjektive 105 beträgt 0,75. Die Baulänge von Objektebene 0 zu Bildebene 0′ beträgt bei beiden Linsenanordnungen 119, 219 jeweils 1000 mm. Beide Linsenanordnungen bestehen aus 31 Linsen, die in sechs Linsengruppen unterteilbar sind.

Die erste Linsengruppe LG1 umfasst jeweils die Linsen mit den Linsenoberflächen 1-11 und weist in ihrer Gesamtheit positive Brechkraft auf. Die jeweils zweite Linsengruppe LG2 umfasst die Linsen mit den Linsenoberflächen 12-19 und weist in ihrer Gesamtheit negative Brechkraft auf. Durch diese Linsengruppe LG2 wird eine Taille gebildet. Die dritte Linsengruppe LG3 umfasst jeweils die Linsen mit den Linsenoberflächen 20-31 und weist insgesamt positive Brechkraft auf. Durch diese Linsengruppe LG3 wird ein zweiter Bauch gebildet. An diese Linsengruppe LG3 schließt sich eine vierte Linsengruppe LG4 an, die

jeweils die Linsen mit den Linsenoberflächen 32/37 umfasst. Diese Linsengruppe LG4 weist insgesamt negative Brechkraft auf, wobei durch diese Linsengruppe eine zweite Taille gebildet wird.

Die fünfte Linsengruppe LG5 umfasst jeweils die Linsen mit den Linsenoberflächen 38-52. Diese Linsengruppe LG5 weist insgesamt positive Brechkraft auf. Durch diese Linsengruppe LG5 wird ein dritter Bauch gebildet. Nach der Linse mit den Linsenoberflächen 42 und 43 ist eine Blende angeordnet. Die letzte Linsengruppe LG6 umfasst jeweils die Linsen mit den Linsenoberflächen 53-64 und weist insgesamt positive Brechkraft auf. Diese Linsengruppe LG6 hat eine sammelnde Funktion.

Mit diesen Projektionsobjektiven ist ein Bildfeld mit einem Durchmesser von 27,203 mm belichtbar.

Bei der in Figur 3 dargestellten Linsenanordnung 219 bestehen alle Linsen aus Quarzglas, das bei einer vorbestimmten Temperatur, beispielsweise 22° C, eine Brechzahl von 1,50839641 zur Normalluft aufweist. Als Medium zwischen den Linsen ist Luft bei 950mbar vorgesehen, die bei der vorbestimmten Temperatur eine Brechzahl von 0,99998200 zur Normalluft aufweist. Für den Verlauf des Strahlenganges ist nur entscheidend, wie das Verhältnis der Brechzahlen der beiden Medien , Linsenmaterial zu dem Medium zwischen den Linsen, zueinander ist. Der bezug zur Normalluft ist ohne Bedeutung, sondern nur der Brechzahlquotient der Medien ist ausschlaggebend.

Ausgehend von dem Projektionsobjektiv gemäß Figur 3, das für die Wellenlänge 248,34 nm ausgelegt ist, war es möglich durch eine geschickte Materialwahl bzw. Wahl der Medien für die Linsen und die Linsenzwischenräume ein weiteres Projektionsobjektiv für eine andere Beleuchtungswellenlänge, hier von 351,14 nm, unter minimalem Entwicklungsaufwand bereitzustellen. In diesem konkreten Fall ist für eine gewünschte Beleuchtungswellenlänge von 351 nm das Material FK5 für die Linsen ausgewählt worden. Dieses Material FK5 weist bei einer Beleuchtungswellenlänge von 351,14 nm unter den vorbestimmten Bedingungen von Temperatur und Druck eine Brechzahl von 1,50623 zur Normalluft auf. Als Medium zwischen den Linsen ist wiederum Luft bei 950mbar gewählt worden. Zur Verbesserung der

Performance sind geringfügige Modifikation, die beim Vergleich der Linsenschnitte 119, 219 mit bloßem Auge nicht erkennbar sind, durchgeführt worden. Beide Linsenanordnungen 119, 219 haben vergleichbar gute optische Eigenschaften bei einer bildseitigen numerischen Apertur von 0,75.

Die Brechzahlen der jeweils bei den verschiedenen Beleuchtungswellenlängen, hier 248 mm und 351 nm, sollten sich nicht mehr als 0,2 % unterscheiden. Ein Angleichen der Brechzahlen kann auch dadurch erfolgen, dass die Brechzahl des Zwischenmediums zum Beispiel durch die Wahl eines anderen Gases oder eines anderen Druckes vorgenommen wird. Auch ist ein Angleichen der Brechzahlen durch die Wahl von unterschiedlichen Temperaturen, bei denen die Projektionsobjektive 105 zu betreiben sind bzw. die Linsenanordnungen 119, 219 eingesetzt werden, erreichbar. Ebenfalls ist es möglich ein leicht modifiziertes FK5 Material herzustellen, so dass die Brechzahldifferenz nahezu erfüllt ist.

Die genauen Linsendaten zu dem in Figur 2 dargestellten Projektionsobjektiv sind Tabelle 1 zu entnehmen.

TABELLE 1

	E RADIEN in mm	DICKEN in mm	GLAESER	BRECHZAHL 351,14nm	1/2 FREIER DURCHMESSER in mm
	0.00000000	32.000000000	L710	0.99998200	54,410
Ō,	0.00000000	0.700000011	L710	0.99998200	60.856
. 1	20171.061494100	.7.00000000	FK5	1.50623494	61.015
_	274.862578141	8.243542277	L710	0.99998200	62.878
3		25.060195686	FK5	1.50623494	63.386
<u>4</u> 5	3808.918487010 -228.428522573	0.700000000	L710	0.99998200	66.524
	435.745492795	16.056684607	FK5	1.50623494	69.268
6	-478.112035538	16.353427708	L710	0.99998200	69.572
7	529.331678187	19.904514134	FK5	1.50623494	69.834
8 9	-263.821228644	0.700000000	1710	0.99998200	69.609
	23282,498169000	14.659976027	PK5	1.50623494	67.528
11	-253.508572477	0.70000000	L710	0.99998200	66.767
12	1236.316706740	7.000000000	FK5	1.50623494	62.506
13	123 .898688861	27.103387249	L710	0.99998200	57.402
14	-166.658532023	6.000000000	FK5	1.50623494	56.993
15	198.518436958	21.255343495	L710	0.99998200	57.816
16	-173.935035119	6.000000000	FK5	1.50623494	58.369
17	249.820213025	0.700000000	1.710	0.99998200	64.827
18	246.676019244	10.000000000	FK5	1.50623494	65.477
19	292.483340500	26.855165198	L710	0.99998200	67.839
20	-171.865925454	8.000000000	FK5	1.50623494	70.213
21	-251.025293467AS	2.509004207	L710	0.99998200	76.458
22	-225.B04568115	18.646461616	FK5	1.50623494	76.949
23	-143.270386078	0.70000000	L710	0.99998200	80.977
24	3625.392543740	44.595359013	FK5	1.50623494	94.857
25	-157.737589802	0.70000000	L710	0.99998200	97.751
26	-420.967563380	14.957773828	FK5	1.50623494	99.840
27	-243.198586821	0.700000000	L710	0.99998200	100.581

•			FK5	1.50623494	100.005
29	165.193236705	47.741886929	L710	0.99998200	97.550
29	-1159 842254100	5.595621024	FK5	1.50623494	78.527
30	110.307932062	10.000000000	L710	0.99998200	74.984
31	112.492559125	41.843096171	FK5	1.50623494	71.177
32	-469.467899219	6.00000000	L710	0.99998200	64.427
33	133.301182056	34.222411777	FK5	1.50623494	64.112
34	-151.063137673	6.000000000	L710	0.99998200	66.816
35	275.827710042	34.096867713	FKS	1.50623494	67.B41
36	-114.249862736	8.226731253	1710	0.99998200	83.122
37	651.876699549	20.617351619	PK5	1.50623494	85.588
38	-297.234836065	24,223537835		0.99998200	92.165
39	-171.654831324	0:700000000	L710	1.50623494	110,757
40	40231.163153500	27.968890075	FK5	0.99998200	113.484
41	-316.966919534	0.70000000	L710	1.50623494	121.917
42	-4405.501622560	30.912155432	FK5	0.99998200	124.479
43	-319,361654252	7.00000000	L710	0.99998200	130.910
44	0.00000000	0.00000000	L710	1,50623494	136.459
45	1537.965140900	52.071933388	FK5	0.99998200	138,003
46	-276.714039389	0.700000000	L710	1.50623494	135.903
47	270.986297550	51.3B9253197	FK5	0.9998200	134.272
48	-1303.256287330	24.572854748	L710	1.50623494	133.465
49	-317.453603098	10.000000000	FK5	0.99998200	131.850
50	-622.960414950	9.847713346	1710	1.50623494	131.583
51	-392.405359032	15.000000000	PK5	0.99998200	131.473
52	-302.721174513	0.70000000	1710	1.50623494	112.326
53	. 204.579136022	28.721571518	FK5.	0.99998200	110.126
54	584.306652581	0.700000000	L710	1.50623494	94.729
55	131.983069163	34.121386139	PK5	0.99998200	91.048
56	364.960549287	12.871019450	L710	1.50623494	89.294
57	8014.361578480	9.852972273	PK5	0.99998200	79.474
58	340.652234569	1.170006786	L710	1.50623494	73.565
59	170.926001615	39.081177270	FK5	0.99998200	44.720
60	53.669971797	5 284072204	L710	1.50623494	43.516
61	53.328797128	43.228913394	FK5	0.99998200	30.631
62	744.215515704	2.037739402	1710	1,50623494	29.026
63	0.00000000	3.000000000	FK5	0.99998200	27.297
64	0.00000000	12.000000000	L710	Ų. 39330200	13.603
65	0.00000000				

L710 ist Luft bei 950 mbar, 22° C, zu Normluft

ASPHAERISCHE KONSTANTEN

FLAECHE NR. 21

ĸ	0.0000
C1	1.771827586-008
C2	-1.21094095e-012
Ċ3	-7.29868984e-017
C4	1.441793126-020
C5	3.59 1 66213a-024
Ç6	_8.80763457e-028
C7	1.02257701e-031
C8	-5.98604565e-036
~ 0	0.00+ 6 00000000

Die exakten Linsendaten des in Figur 3 dargestellten Projektionsobjektives sind Tabelle 2 zu entnehmen.

TABELLE 2

Shs2	009				BRECHZAHL	1/2 FREIER
	o i Ta	RADIEN	DICKEN	GLAESER	248.338nm	DURCHMESSER
FLAE	LRE	· in mm	in mm			in mun
		*** '			0.99998200	54.410
0.		0.00000000	32.000000000	L710	0.99998200	60.863
1		0.000000000	0.700000011	1710	1.50839641	61.022
2	2017	5.457244800	7.000000000	SIO2	0.99998200	62.873
3		7.883344909	8.090293137	L710 SIO2	1.50839641	63.375
4		0.563238620	25.354674485	L710	0.99998200	66.514
5	-22	5.783312940	0.700000000	5102	1.50839641	69.205
б		5.313266821	17 112242804 15 909012806	L710	0.99998200	69.545
. 7		2.320165779	20.103140298	SIQ2	1.50839641	69.654
B		5.226993478	0.700000000	L710	0.99998200	69.400
9		9.345360167 3.187634600	13.673381741	SIO2	1.50839641	67.233
10		7.718368187	0.70000000	L710	0.99998200	66.527
11 12		6.346614330	7.000000008	SIO2	1.50839641	62.465
13		4.749725153	27.140059272	L710	0.99998200	57.334 56.930
14		3.690255197	6.000000000	SIO2	1.50839641	57.855
15		2,531898479	20.901306736	L710	0.99998200	58.412
16	-17	76.801948200	6.00000000	\$102	1.50839641	64.851
17	24	19.892184690	0.70000000	L710	0.99998200 1.50839641	65.572
18	24	14.602278177	10.000000000	S102	0.99998200	67.932
19	28	39.241341476	26.702906199	L710	1.50839641	70.170
20		71.875114095	B.000000000	SIO2 L710	0.99998200	76.434
21		31.025293467AS	2.508859378	SIO2	1.50839641	77.033
22		28.789769119	18,612480678	L710	0.99998200	80.955
23		43.195814910	0.700000000 45.102499148	SIO2	1,50839641	94.935
.24		80.977188930	0.700000000	1710	0.99998200	97.919
25		58.298972158 19.713303713	15.823838371	SIO2	1.50839641	99.935
26 27	_	42.478468513	0.70000000	1710	0.99998200	100.778
28		64.456034351	47.686030818	SIO2	1.50839641	99.957
29		09.711942380	5.435521771	L710	0.99998200	97.463
30		09.810916052	10.000000000	\$1O2	1.50839641	78.308
31	1	11.666626647	40.547908549	L710	0.99998200	74.702 71.482
32	-4	77.384245652	6.00000000	SIO2	1.50839641	64.610
, 33	. 1	32.873206560	35.773830833	L710	0.99998200	. 64.143
34		52.144813103	6.000000000	SIO2	1.50839641	66.788
35		72.016762284	34.180248056	L710	1.50839641	67.916
36		14.348965599	8.093761783	SIO2 L710	0.99998200	82.973
37		59.875058074	20.529279496	SIO2	1.50839641	85.473
38		97.462150575	24,167105434	L710	0.99998200	92.079
39		72.288285236	27.947222163	SIO2	1.50839641	110.408
40 41		84.847755000 12.370808115	0.70000000	L710	0.99998200	113.140
41		69.316558570	30.625026266	SIO2	1.50839641	121.737
43		22.312609557	7.000000000	L710	0.99998200	124.284
44	•	. 0.000000000	0.000000000	L710	0.99998200	130.612
45	14	69.284361290	52.516366310	S102	1.50839641	136.273
46	-2	77.780119529	0.70000000	L710	0.99998200	137.874
47	2	72.627800011	51.203891635	SIO2	1,50839641	135.688 134.035
48		B5.596215530	24.595285650	L710	0.99998200	134.035
49		17.669960481	10.000000000	S102	1.50839641	131.506
50		19.124898158	9.868302513	1710	0.99998200 1.50839641	131.223
51		90.855591043	15.000000000	5102 1710	0.99998200	131.107
. 52		02.749053819	0.700000000 28.579532382	5102	1.50839641	111.974
53		03.239494165	0.700000000	1.710	0.99998200	109.769
54 55		72.027053578 32.130958551	33.928504743	SIO2	1.50839641	94.544
55 56		65.699231307	12.862309937	L710	0.99998200	90.867
20	3		20,00000,00,			

60 53.766 61 53.442 62 752.92 63 0.00 64 0.00	9.807130417 0591237 1.131821029 1198289 38.989801835 0793091 5.255257564 2053126 43.100364324 7357228 2.040801419 00000000 12.000000000 00000000 12.00000000	SIO2 L710 SIO2 L710 SIO2 L710 SIO2 L710	1.50839641 0.99998200 1.50639641 0.9998200 1.50839641 0.99998200 1.50839641 0.99998200	79.407 73.548 44.685 43.468 30.641 29.024 27.298 13.603
---	---	--	---	--

L710 ist Luft bei 950 mbar, 22° C, zu Normluft

ASPHAERISCHE KONSTANTEN

FLAECHE NR. 21

13:19

ĸ	0.0000
C1	1.771827586-008
C2	-1.21094095e-012
Č3	-7.29868984e-017
C4	-1.44179312e-020
C5	3.591662134-024
C6	-8.80753457e-028
C7	1.02257701a-031
C8	-5.98604565e-036
C9	0.00000000e+000

Spezielle Prüfanordnungen bzw. Prüfverfahren sind aus den deutschen Anmeldungen DE 1000 51 71.5, DE 1000 51 72.3 und DE 1000 71 70.7 bekannt, die ausdrücklich zum Offenbarungsinhalt dieser Anmeldung gehören.

Aus der nachfolgenden Tabelle sind die Abweichungen der Linsendaten der korrespondierenden Linsen, der in den Figuren 2 und 3 dargestellten Projektionsobjektive zu entnehmen.

Tabelle3:

Fläche	Differenz	Dickenvergleich	Vergleich der ½ freien
(IBUNO	des Kehrwertes der Radien x 100000 in 1/mm	in Promille	Durchmesser in Promille
		0.000	0,115
1		0,000	
2	0,0011	0,000	0,115
3	3,9549	18,942	0,080
4	-2,8108	11,751	0,174
5	5,1288	0,000	0,150
6	-0,2279	65,739	0,910
7	2,5648	27,935	0,388
8	-1,4764	9,979	2,584
9	6,5417	0,000	3,012
10	8,7567	72,154	4,388
11	-6,4435	0,000	3,608

	22,9596	0,000	0,656
12	5,5061	1,353	1,186
13	10,8806	0,000	1,107
14	9,9822	16,938	0,675
15		0,000	0,737
16	-9,3227	0,000	0,370
17	0,1153	0,000	1,451
18	-3,4369	5,702	1,371
19	-3,8322	0,000	0,613
20	-0,0311	0,058	0,314
21,AS	0,0000	1,826.	1,092
22	-5,7784	0,000	0,272
23	0,3635	11,372	0,822
24	-3,8537	0,000	1,719
25	-2,2483	57,901	0,952
26	0,7099	0,000	1,959
27	1,2212	1,171	0,480
28	-2,7136	29,454	0,893
29	-3,5543	0,000	2,797
30	-4,1032	31,942	3,775
31	-6,5750	0,000	4,285
32	-3,5322	45,333	2,840
33	-2,4163	0,000	0,484
34	-4,7063	2,445	0,419
35	-5,0792	16,429	0,369
36	-0,7586	4,290	1,796
37	1,8594	2,335	1,345
38	-0,2571		0,934
39	-2,1419	0,000	3,161
40	3,4749		3,040
41	4,6440	9,376	1,479
42	-0,8138	0,000	1,569
43	-2,8668	0,000	2,282
44,Blende	0,000		1,365
45	-3,0394	8,535	0,936
46	-1,3869	0,000	1,585
47	2,2219	3,620 0,913	1,768
48	1,0540		2,592
49	-0,2145	0,000	2,616
50	0,9945	2,091	2,743
51	1,0105	0,000	2,792
52	-0,0304	0,000	3,144
53	-3,2220	4,970	3,252
54	-3,6739	0,000	1,957
55	0,8939	5,685	1,992
56	0,5384	0,677	2,402
57	0,7143	4,674	0,844
5 8	7,0877	33,738	0,844
59	10,6468	2,344	0,783
60	3,1477	5,483	0,783
61	3,9739	2,983	U,U44

	1,5547	1,503	0,326
62	1,3547	0,000	0,069
<u> </u>		0,000	0,037

In der ersten Spalte ist die Nummerierung der Flächen angegeben, damit eine eindeutige Zuordnung zu den jeweiligen Flächen möglich ist.

In der zweiten Spalte ist die Differenz der Kehrwerte der Radien zueinander angegeben. Da die ermittelten Differenzen sehr klein sind, ist jeweils die ermittelte Differenz mit dem Faktor 100 000 multipliziert worden.

In der dritten Spalte ist ein Vergleich der Linsendicken angegeben. Zur Darstellung der Abweichung der Linsendicken ist der Quotient der Linsendicken gebildet worden, wobei immer der größere Wert der beiden zu vergleichenden Dicken in den Zähler gesetzt worden ist, so dass der Wert des so gebildeten Quotienten immer einen Wert ergibt, der größer als 1 ist. Von diesem Wert ist dann im Anschluss der Wert 1 subtrahiert worden. Da auch hier die so ermittelten Dickenunterschiede sehr klein waren, ist der Wert mit 1000 multipliziert worden.

In gleicher Weise wie die Dickenverhältnisse sind die Verhältnisse der ½ freien Durchmesser ermittelt worden. Die Werte der Dickenverhältnisse sind in Spalte 4 aufgeführt.

Wie aus der Tabelle 3 zu ersehen ist, ist die absolute Abweichung der Linsenkrümmung bei mindestens 95 % der Linsen kleiner als 10×10^{-5} mm⁻¹. Insbesondere wenn die Abweichung des freien Durchmessers der Linsen bzw. der Unterschied der absoluten Durchmesser kleiner als 1mm ist, so können in der Regel die gleichen Fassungen verwendet werden. Ist die Abweichung etwas größer so wird nur die Auflagefläche angepasst. Die Zwischenringe variieren dann je nach Linsenkrümmung der Linse.

Es hat sich insbesondere als vorteilhaft herausgestellt, in den korrespondierenden Linsenanordnungen identische asphärische Linsenoberflächen vorzusehen. Gerade die Asphären machen eine komplex aufgebaute Prüfanordnung erforderlich, so dass schon allein aufgrund dieser Maßnahme eine enorme Kostenreduzierung erreicht wird.

Weichen die Kehrwerte der Radien bei sphärischen Linsenoberflächen mit einem Radienbetrag < 1000 mm weniger als 5 x 10⁻⁵ mm⁻¹ voneinander ab, so können identische Prüfoptiken für die Überprüfung der Krümmung der Linsenoberfläche herangezogen werden. Die Prüfoptik wird dann für die bezüglich Öffnung und Schnittweite anspruchsvollere Linse ausgelegt.

Die Justierverfahren sind insbesondere von axialen und lateralen Empfindlichkeiten abhängig und müssen insbesondere in Abhängigkeit von Linsenkrümmungen stark variiert werden. Da in dem vorangegangenen Beispiel die Projektionsobjektive nur geringe Abweichungen in den für den Justierprozess relevanten Parametern aufweisen, sind identische Justierverfahren anwendbar.

In den Figuren 4 und 5 sind zwei sich makroskopisch nicht unterscheidende Linsenanordnungen 319, 419 dargestellt. Die in Figur 4 dargestellte Linsenanordnung 319 ist für die Beleuchtungswellenlänge von 193 nm ausgelegt. Die in Figur 5 dargestellte Linsenanordnung 419 ist für die Beleuchtungswellenlänge von 157 nm ausgelegt, wobei die Linsen dieses Designs in einer Stickstoffumgebung gelagert sind. Beide Linsenanordnungen 319, 419 weisen bei der jeweiligen Beleuchtungswellenlänge eine numerische Apertur von 0,85 auf. Die Baulänge von Bildebene 0' zur Objektebene 0 beträgt 1000 mm. Mit diesen Linsenanordnungen 319, 419 ist ein Bildfeld mit einem Durchmesser von 28,04 mm belichtbar. Diese Linsenanordnungen 319, 419 umfassen 29 Linsen, die in sechs Linsengruppen LG1 bis LG6 unterteilbar sind.

Die erste Linsengruppe LG1 umfasst die Positivlinsen mit den Linsenoberflächen 2-7. Die Linsenoberflächen 2 und 4 sind jeweils asphärisiert. Diese Linsengruppe weist insgesamt positive Brechkraft auf. An diese erste Linsengruppe LG1 schließt sich eine zweite Linsengruppe LG2 an, die negative Brechkraft aufweist und durch die eine erste Taille gebildet wird. Diese Linsengruppe LG2 umfasst die Linsen mit den Linsenoberflächen 8-13. Die Linsenoberflächen 8 und 13 sind jeweils asphärisiert. Die dritte Linsengruppe LG3 umfasst die Linsen mit den Linsenoberflächen 14-23, wobei die Linsenoberfläche 23 asphärisiert ist. Durch diese Linsengruppe LG3 wird ein Bauch gebildet. Diese Linsengruppe

LG3 weist insgesamt positive Brechkraft auf. Die sich daran anschließende vierte Linsengruppe LG4 weist insgesamt negative Brechkraft auf. Durch diese Linsengruppe LG4 wird eine zweite Taille gebildet. Diese Linsengruppe umfasst die Linsen mit den Linsenoberflächen 24-31. Die fünfte Linsengruppe LG5 umfasst die Linsen mit den Linsenoberflächen 31-39 und 41-48 in dieser Linsengruppe ist eine Blende 40 angeordnet. Diese Linsengruppe weist positive Brechkraft auf. Die letzte Linsengruppe LG6 weist ebenfalls positive Brechkraft auf und umfasst die Linsen mit den Linsenoberflächen 49-60.

Bei der in Figur 4 dargestellten Linsenanordnung 319 ist als Linsenmaterial Quarzglas vorgesehen. Der Raum zwischen den Linsen ist mit Luft bei 950 mbar gefüllt. Quarzglas hat bei der Beleuchtungswellenlängen von 193 nm eine Brechzahl von 1,56028895. Die Luft zwischen den Linsen hat bei den vorbestimmten Bedingungen eine Brechzahl von 0,99998200 gegenüber Normluft. Die Normalluft wird auf einen Druck von 1013,25 mbar und 20° bezogen.

Die Linsen der in Figur 5 dargestellten Linsenanordnung 419 sind aus dem Material Kalziumfluorid hergestellt, das bei einer Beleuchtungswellenlänge von 157,6 nm eine Brechzahl von 1,55929035 aufweist. Der Raum zwischen den Linsen ist mit Stickstoff gefüllt, das bei 157,6 nm eine Brechzahl von 1,00031429 gegenüber Normluft hat.

Durch diese gezielte Auswahl der Medien für die Linsen und die Zwischenraume, konnte das Design einer Linsenanordnung 319 für 193nm auf eine Beleuchtungswellenlänge von 157nm übertragen werden, wobei mittels minimale Modifikationen die optischen Eigenschaften der Linsenanordnung 419 noch verbessert worden sind.

Der Quotient der Brechzahl von Quarzglas und Luft ist bei 193nm 1,560317036. Der Quotient der Brechzahlen von Kalziumfluorid und Helium ist bei 157nm 1,558800435. Damit weichen die Brechzahlverhältnisse des Objektives für 193nm von dem für 157nm ausgelegten Objektiv um 0,0973 % voneinander ab.

Vorzugsweise sollten die Brechzahlen bzw. die Brechzahl von dem Linsenmaterial und dem zwischen den Linsen vorhandenen Gas im Bezug zueinander d.h. Brechzahl von Stickstoff im

P16

13:19

Bezug zu Kalziumfluorid im Verhältnis zu Brechzahl von Luft bei 950 mbar zur Brechzahl von Quarzglas nicht mehr als 0,2 % voneinander abweichen.

Dadurch wird gewährleistet, dass durch geringe Modifikationen auch die von der Linsenanordnung einer ersten Beleuchtungswellenlänge abgeleitete Linsenanordnung für einen Einsatz bei einer weiteren Beleuchtungswellenlänge mit ausgezeichneten optischen Eigenschaften aufweist.

Selbstverständlich ist es auch möglich eine größere Differenz der Brechzahlen zuzulassen, jedoch ist dies mit dem Nachteil verbunden, dass weitgehendere Abweichungen erforderlich sind bzw. die optischen Eigenschaften der abgeleiteten Linsenanordnung nicht ganz so gut sind. Daraus resultieren gegebenenfalls schlechtere optische Eigenschaften des Projektionsobjektivs, in dem die Linsenanordnung verwendet wird.

Im folgenden sind die exakten Linsendaten von dem in Figur 4 dargestellten Projektionsobjektiv der Tabelle 4 zu entnehmen.

TABELLE 4

Shs2006			٠.	BRECHŽANL	1/2 FREIER
		DICKEN	GLAESER	193.304rm	DURCHMESSER
FLAECHE F	RADIEN		GUAESEK		in mm
	in mm	in mm	•		
0 0.0	00000000	32,000000000	L710	0.99998200	39.650
	00000000	0.851665444	L710	0.99998200	46.099
	443339459AS	18.902628115	SIO2HL	1.56028895	47.254
	204885184	7.990734339	L710	0.99998200	47.711
	986743373AS	21.156483400	SIO2HL	1.56028895	47.984
	638616981	0.885239985	L710	0.99998200	47.830
	294926765	12.679864104	SIO2HL	1.56028895	47.308
	289072732	1.890287680	L710	0.99998200	46.778
	478885408AS	17.875702048	SIO2HL	1.56028895	46.431
	358229842	27.886329505	L710	0.99998200	44.597
	263084026	6.003317489	SIO2HL	1.56028895	45.475
	560286963	22.736268190	L710	0.99998200	48.731
	068593817	6.039786899	SIO2HL	1.56028895	51.463
	241322970AS	29.837144567	L710 ·	0.99998200	61.112
	112018368	35.798963610	SIO2HL	1.56028895	80.956
	677263990	0.840102060	L710	O.9999B200	87.797
	576508290	44.470885359	SIO2HL	1.56028895	101.792
	482173640	0.840000000	L710	0.99998200	106.342
	589240942	36.052969974	SIO2HL	1.56028895	111.117
	921250609	0.840000000	L710	0.99998200	111.823
	067226494	18.423124330	SIO2HL	1.56028895	110.927
	625744277	0.840000000	L710	0.99998200	110.857
	119899261	52.422613096	SIO2HL	1.56028895	98.788
	050194530AS	0.868962255	L710	0.99998200	92.689
	856261111	6.063623310	SIOZHL	1.56028895	89'.688

D17

	•		L710	0.99998200	79.586
25	158.400444753	33.555728918	SIO2HL	1.56028895	76.515
26	-519.765595866	6.000832469	L710	0.99998200	70.876
27	189.164958958	26.678216339	SIO2HL	1.56028895	70.231
28	-324.530633746	6.00000000		0.99998200	70.283
29	172.304221125	46.849332586	L710	1.56028895	72.350
30	-119.134196163	6.018406396	SIOZHL	0.99998200	88.094
31	717.189439071	15.991291944	L710	1.56028895	90.706
32	-517.047017896	34.354118486	SIO2HL	0.99998200	99.747
33	-192.058010739	0.840000000	L710	1.56028895	121.728
34	1291.317538549	42.273500068	SIO2HL		125.019
35	-310.798924459	11.477171421	L710	0.99998200	137.536
36	867.692554161	24.545476593	SIO2HL	1.56028895	136.415
37	-2004.155297072	4.174540106	L710	0.99998200	139.299
38	-6836.610823491	35,269094258	SIO2HL	1.56028895	140.423
39	-439.861711314	16.000000000	L710	0.99998200	
40	0.00000000	-11.000000000	L710	0.99998200	138.090
41	570.640816647	29.262128301	SIO2HL	1.56028895	138.271
42	-1794.883455987	0.840000000	L710	0.99998200	137.783
43	335.359423186	37.645395386	SIO2HL	1.56028895	132.611
44	-3122.467762558	27.603340639	1710	0.99998200	130.715
45	-317.201062161	10.000000000	SIO2HL	1.56028895	129.527
46	-877,077613315	8.174721431	L710	0.99998200	127.392
47	-506.355221788	19.307708293	SIO2HL	1 56028895	127.133
48	-320.633347115	0.844688503	L710	0:99998200	126.824
49	229.432515794	22.289609326	SIO2HL	1.56028895	100.814
50	481.176501745	0.842481672	L710	0.99998200	106.121
51	122.104388515	32.251426180	SIO2HL	1.56028895	90.935
⊋↓ 52	211.105624164	0.840922171	L710	0.99998200	84.474
	151.525085711	24.081258330	SIO2HL	1.56028895	79.452
53	624.720978673	6.652410912	L710	0.99998200	74.738
54 55	-4507.166287644	23.022537055	SIO2HL	1.56028895	71.950
	153.594131931	2.476892736	1710	0.99998200	50.806
56	180.139214327	26.871944719	: SIO2HL	1.56028895	50.004
57	558.407996047	0.840931345	L710	0.99998200	36.876
58		10.727177660	SIO2HL	1.56028895	35.368
59	395.441365534	0.000000000	£710	0.99998200	29.607
60	-2750.770482730	12.000000000	L710	0.99998200	29.349
61	0.00000000	12.00000000	11,10	0.52550200	9.913
62	0.00000000	x			3.725

L710 ist Luft bei 950mbar, 22°, gegenüber Normluft

ASPHAERISCHE KONSTANTEN

FLAECHE NR. 2

K 0.0000 C1 2.42738640e-007 C2 -2.11492234e-011 C3 2.45407928e-015 C4 -5.90067177e~019 C5 1.06869247e-022 C6 -1.48930498e-026 C7 6.72318698e-031 C8 0.00000000e+000 C9 0.00000000e+000

FLAECHE NR.

K 0.0000 C1 -2.31613956e-007 C2 6.19930414e-012 C3 -1.69508627e-015 C4 7.59426889e-019 C5 -1.41213673e-022 C6 2.59086460e-026 C7 -1.75570707e-030 C8 0.0000000e+000 C9 0.00000000e+000

FLAECHE NR. 8

V18

```
0.0000
         2.59867777e-007
        -1.49745939e-011
         2.02899597e-015
        -4.82580683e-019
C5
C6
C7
C8
C9
         9.3952719le-023
         -2.035229896-026
         1.69905046e-030
         0.00000000e+000
         0.00000000e+000
FLAECHE NR. 13
          0.0000
C1
C2
C3
C4
C5
C6
C7
C8
C9
          1.04415379e-007
         -1.01139709e-011
          6.04256166e-016
         -1.55479001e-021
         -3.70917434e-024
          3.72834292e-028
          -1.36535193e-032
          0.00000000e+000
          0.00000000e+000
 FLAECHE NR.
          0.0000
1.97971973e-008
         1.9/9/19/16-008
-1.270292546-012
1.565564926-017
-7.759711786-022
4.744277006-026
 C2
C3
C4
C5
```

-6.97623969e-031 4.59115076e-036

0.00000000e+000 0.00000000e+000

C6 C7 C8

Die exakten Linsendaten des in Figur 5 dargestellten Projektionsobjektives sind Tabelle 5 zu entnehmen.

TABELLE 4

Sha2	005			BRECHZAHL	1/2 FREIER
FLAE	CHE RADIEN	DICKEN	GLAESER	157.629nm	DURCHMESSER
	in mm	in mm			in mun
٥	0.00000000	32.000000000	N2V157	1.00031429	56.080
ì	0.00000000	0.887871779	N2V157	1.00031429	63.331
2	290.443339459AS	18.966125754	CAF2V157	1.55929035	65.975
3	-767.080014459	7.971555123	N2V157	1.00031429	65.972
4	291.986743373AS	21.648946838	CAF2V157	1.55929035	65.253
5	-215.121625685	1.119700473	N2V157	1.00031429	64.864
6	-403.719380029	12.061272910	CAF2V157	1.55929035	63.1,74
7	-201.556927472	1.878506542	N2V157	1.00031429	62.382
8	-158.478885408AS	18.083995040	CAF2V157	1.55929035	61.392
ğ	154.262643414	27.795413693	N2V157	1.00031429	55.883
10	-112.153470630	6.000008817	CAF2V157	.1.55929035	55.851
īī	3011.802971000	22.776847074	N2V157	1.00031429	59.946
12 .	-99.805243678	6.049677738	CAF2V157	1.55929035	60.503
13	1470.241322970AS	29.972893092	N2V157	1.00031429	74.568
14	-517.180487505	35.872567894	CAF2V157	1.55929035	94.764
15	-142.448816024	0.961320829	N2V157	1.00031429	98.336
16	-3157.836852230	44.470387753 .	CAF2V157	1.55929035	119.386
				•	

	-197.929177763	0.840000000	N2V157	1.00031429	121.200
17	1155.352000930	36.237921216	CAF2V157	1.55929035	127.786
18	-385.297380743	0.B40000000	N2V157 '	1.00031429	128.107
1:9	-739.012665661	17.752766328	CAF2V157	1.55929035	126.551
20	-371.646474700	0.840000000	N2V157	1.00031429	126.419
21	132.141318367	52,515148211	CAF2V157	1.55929035	106.876
22	1066.050194530AS	0.891632332	N2V157	1.00031429	104.536
23	523.659034713	6.000000362	CAF2V157	1.55929035	100.052
24	158.943583646	33.550983029	N2V157	1.00031429	86.425
25	-522.134226147	6.00000000	CAF2V157	1.55929035	85.884
26	187.876020436	26.843003974	N2V157	1.00031429	77.697
27 .	-325.663940723	6.00000000	CAF2V157	1.55929035	77.581
28	172.349676407	46.946016112	N2V157	1.00031429	76.836
29	-119.271351250	6.081271814	CAF2V157	1.55929035	77.017
30	714.245585625	16.013412614	N2V157	1.00031429	95.494
31	-520.739662184	34.385726383	CAF2V157	1.55929035	96.207
32	-192.343762765	0.875075733	N2V157	1,00031429	104.523
33	1287.737612590	42.374153781	CAF2V157	1.55929035	130.541
34	-311.243334874	11.643899655	N2V157	1.00031429	132.580
35	864.133945793	24.077599918	CAF2V157	1.55929035	146.729
36	-2243.774482150	5.398041699	N2V157	1.00031429	147.391
37	-10968.060216600	33.586618522	CAF2V157	1.55929035	148.477
38	-440.431337567	16.000000000	N2V157	1.00031429	149.163
39	0.00000000	-11.000000000	N2V157	1.00031429	138.266
40	575.577788885	29.337680532	CAF2V157	1.55929035	145.376
41	-1735.403456440	0.840000000	N2V157	1.00031429	144.720 ^
42 43	335.331917275	37,629379650	CAF2V157	1.55929035	134.978
44	-3173.506234840	27.622891125	N2V157	1.00031429	132.832
45	-317.987738542	10.000000000	CAF2V157	1.55929035	131.725
46	-863.461595793	8.122573717	N2V157	1.00031429	127.922
47	-509.584881313	19.327981325	CAF2V157	1.55929035	127.563
48	-321.719600869	0.840000000	N2V157	1.00031429	126.930
49	228.769164185	22.304110078	CAF2V157	1.55929035	108.898
50	482.372906394	0.840000000	N2V157	1.00031429	106.250
51	122.322479043	32.270861886	CAF2V157	1.55929035	91.034
52	210.636922898	0.856549362	N2V157	1.00031429	84.518
53	151,265512551	24.104873575	CAF2V157	1.55929035	79.489
54	628,524766130	6,643712617	N2V157	1.00031429	74.824
55	-4441.839168760	23.046815296	CAF2V157	1.55929035	72.043
56	153.141983525	2.503750828	N2V157	1.00031429	- 51.050
57	178.929771608	26.900793731	CAF2V157	1:55929035	50.283
58	571.771732138	0.840000000	· N2V157	1.00031429	37.945
59	403.866563541	10.757643246	CAF2V157	1.55929035	36.559
60	-2738.040762530	0.00000000	N2V157	1.00031429	31.163
61	0.00000000	12.000000000	N2V157	1.00031429	30.914
62	0.00000000	•			14.020
-	2.000000		*		

Angabe Wellenlaenge gegen Vakuum Angabe Brechzahl gegen Vakuum

ASPHAERISCHE KONSTANTEN

FLAECHE NR.

K 0.0000 C1 2.42738640e-007 C2 -2.11492234e-011 C3 2.45407928e-015 C4 -5.90067177e-019 C5 1.06869247e-022 C6 -1.48930498e-026 C7 6.72318698e-031 C8 0.00000000e+000 C9 0.0000000e+000

FLAECHE NR. 4

K 0.0000 C1 -2.31613956e-007

D20

```
6.19930414e-012
-1.69508627e-015
 7.59426889e-019
-1.412136738-022
2.59086460e-026
-1.75570707e-030
 0.00000000e+000
 0.00000000e+000
```

FLAECHE NR.

K.	0.0000
Cl ·	2.59867777e-007
C2	-1.49745939e-011
Č3	2.02899597e-015
C4	-4.82580683e-019
C5	9.39527191e-023
C6	-2.03522989e-026
C7	1.69905046e-030
	0.00000000e+000
C8	0.0000000000000000000000000000000000000

FLAECHE NR.

K	0.0000
C1	1.04415379e-007
C2	-1.01139709e-011
C3	6.04256166e-016
C4	-1.55479001e-021
C5	-3.709174346-024
C6	3.72834292e-028
Ċ7	-1.36535193e-032
CB	0.00000000e+000
~	n nonnnnnne+000

FLAECHE NR.

ĸ	0.0000
Cl	1.979719730-008
C2	-1.27029254e-012
C3	1.56556492e-017
C4	-7.75971 17 8e-022
C5	4.74427700e-026
C6	-6.97623969e-031
C7	4.59115076e-036
CB	0.000000000+000
C9	0.000000000±+000

Aus der nachfolgenden Tabelle 6 sind die Radiendifferenzen und die Dickendifferenzen und die Abweichungen der freien Durchmesser zu entnehmen, die nach den selben Rechenvorschriften wie bei Tabelle 3 bestimmt worden sind, aufgeführt.

Fläche	Differenz des Kehr- wertes der Radien	Dickenvergleich	Vergleich der ½ freien Durchmesser
	x 100000 in 1/mm	in Promille	in Promille
:	•		
		0,000	414,376
1		42,512	373,804
2,A\$	0,000	3,359	396,178
. 3	-1.3663	2,406	382,742
4.AS	0,000	23,277	359,891
5	-3,2551	264,855	356,136
6	-3,3742	67,871	335,377

D21

7	0,6602	6,272	333,576
B,AS	0,0000	11,652	322,220
9	0,4014	3,271	253,066
10	-0,8706	0,551	228,169
11	-1,0265	1,785	230,141
12	-2,6368	1,638	175,660
	0,0000	4,550	220,186
13.AS	-2,9205	2,057	170,562
14	-1,1240	144,291	120,038
15	-0,7130	0,011	172,843
16	-1,4076	0,000	139,719
17	4,9603	5,130	150,013
18		0,000	145,623
19	2,2943	37,761	140,849
20	-2,5254	0,000	140,379
21	-1,4254	1,765	81,872
22	-0,1227	26,089	127,815
23,AS	0,0000	10,604	115,556
24	-1,7677	0,141	85,932
25	-2,1573		122,447
26	0,8728	0,139	96,239
27	3,6268	6,177	104,655
28	1,0723	0,000	93,237
29 .	-0,1531	2,064	
30	0,9652	10,446	64,506
31	0.5747	1,383	84,001
32	1,3715	0,920	60,646
33	0,7735	41,757	47,881
34	0,2153	2,381	72,399
35	0,4594	14,527	60,479
36	0,4746	19,432	66,841
37	5,3286	293,087	64,848
38	5,5097	50,094	65,887
39	0,2940	0,000	62,241
40,Blende	0,000	0,000	1,275
41	-1,5031	2,582	51,385
42	-1,9096	0,000	50,347
· 43	0,0245	0,426	17,849
44	0,5151	0,708	16,196
45	0,7799	0,000	16,969
46	0,8239	6,420	4,160
47	1,2517	1,050	3,382
48	1,0530	5,582	0,836
49	1,2638	0,651	0,772
50	-0,5155	2,954	1,216
51	-1,4602	0,603	1,089
52	1,0541	18,583	0,521
53	1,1325	0,981	0,466
54	-0,9687	1,309	1,151
55	-0,3263	1,055	1,293
56	1,9223	10,643	4,803
		20	

57	3,7523	1,074	5,580
58	-4,1856	1,109	28,989
59	-5,2755	2,840	33,675
60	-0,1690		52,555
61		0,000	53,324
62			414,304
 	 		

Die durch die Figuren 2 bis 4 gezeigten Ausführungsbeispiele dienen zur Verdeutlichung der Erfindung, wobei die Erfindung nicht eingeschränkt auf diese Ausführungsbeispiele zu verstehen ist.

Anhand diesen Ausführungsbespielen lässt sich insbesondere erkennen, dass es vorteilhaft ist, wenn der Radius der asphärischen Linsenoberfläche der korrespondierenden Linsen nicht mehr als 0,1 mm voneinander oder der Kehrwert der Radien nicht mehr als 1.10⁻⁶ 1/mm voneinander abweichen. Für die sphärische Linsenoberfläche der asphärischen Linse weicht der Kehrwert des Radius nicht mehr als 5 x 10⁻⁶ mm⁻¹ voneinander ab. Die Dicken der korrespondierenden asphärischen Linsen weichen weniger als 0,5 mm absolut bzw. weniger als 3 % voneinander ab.

D23

Patentansprüche:

- 1. Verfahren für die Bereitstellung von mindestens zwei Linsenanordnungen für ein Projektionsobjektiv, wobei eine erste Linsenanordnung für Strahlung einer ersten Wellenlänge und mindestens eine weitere Linsenanordnung für Strahlung einer anderen Wellenlänge ausgelegt ist, dadurch gekennzeichnet, dass die Linsenanordnungen (105) in ihrer Grundstruktur identisch sind und sich, abgesehen von einzelnen Linsen, durch das eingesetzte Linsenmaterial unterscheiden.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zwei Linsenanordnungen in ihrer Grundstruktur bezüglich der Oberflächenkrümmung identisch sind, wenn die sich in der Grundstruktur entsprechenden Linsen der ersten (219, 319) und weiteren Linsenanordnung (119, 419) im Kehrwert ihres Radiuses weniger als 5,5 x 10⁻⁵ mm⁻¹ unterscheiden.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwei Linsenanordnungen (219, 319 und 119, 419) in ihrer Grundstruktur bezüglich der Mittendicken der Linsen dann identisch sind, wenn die jeweils korrespondierenden Linsen sich nicht mehr als 5 %, vorzugsweise um weniger als 1 %, unterscheiden.
- 4. Verfahren nach einem der Ansprüche 1 3, dadurch gekennzeichnet, dass mindestens 60 % der in der Linsenanordnung (119, 219, 319, 419) eingesetzten Linsen (L), abgesehen vom verwendeten Linsenmaterial, in ihrer Grundstruktur identisch sind.
- 5. Verfahren nach einem der Ansprüche 1 4, dadurch gekennzeichnet, dass speziell angepasste Fassungsteile in der ersten Linsenanordnung (219, 319), als auch in der weiteren Linsenanordnung (119, 419) eingesetzt werden.
- 6. Verfahren nach mindestens einem der vorangegangen Ansprüche, dadurch gekennzeichnet, dass die erste Linsenanordnung (219, 319) und die weitere Linsenanordnung (119, 419) unter Verwendung von identischen Montageaufbauten und/oder Justierverfahren aufgebaut werden.

D24

- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die optischen Eigenschaften von 95 % der optischen Elementen (L), die in den Linsenanordnungen (119, 219, 319, 419) eingesetzt werden, unter Verwendung derselben Prüfoptik charakterisiert werden können.
- 8. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass sich die Linsendaten von asphärischen Linsenoberflächen der sich entsprechenden Linsenanordnungen (219, 119 und 319,4) übereinstimmen.
- 9. Herstellverfahren eines ersten und eines weiteren Projektionsobjektives oder einer ersten und einer weiteren Projektionsbelichtungsanlage für die Mikrolithographie, die jeweils auf unterschiedliche Wellenlängen ausgelegt sind und für die Bereitstellung der Strahlung unterschiedliche Beleuchtungssystemen (103)aufweisen, dadurch gekennzeichnet, dass die den Beleuchtungssystemen (103) jeweils Linsenanordnungen (119, 219, 319, 419) für die jeweilige Beleuchtungswellenlänge zugeordnet sind, die gemäß einem der Ansprüche 1 - 8 generiert worden sind.

P25

Zusammenfassung:

13:19

Verfahren zur Herstellung von mindestens zwei Projektionsobjektiven (Fig.2)

Verfahren zur Herstellung von mindestens zwei Projektionsobjektiven, wobei ein erstes Projektionsobjektiv für Strahlung einer ersten Wellenlänge und mindestens ein weiteres Projektionsobjektiv für Strahlung einer anderen Wellenlänge ausgelegt ist und wobei sich die diesen Objektiven zugrunde liegenden optischen Designs sich nur, abgesehen von geringfügigen Modifikationen, durch das bei den Projektionsobjektiven verwendete Linsenmaterial unterscheiden.

P26

F/G. 1

D27

P29

