Detecting ADS-B Signals with the RTL-SDR

Dayton Software Defined Radio Meetup May 2, 2016

Meetup Sponsorship

This Meetup is sponsored by PreTalen

Company is growing quickly. Check out all the new office space!

We need good engineers to fill these desks.

If you know anyone who might be interested, contact me at bhart@pretalen.com or visit http://www.pretalen.com/careers

Meetup Updates

Next meetup tentatively scheduled for Monday June 6th

Topic: TBD -- Any suggestions?

Visit: http://www.meetup.com/Dayton-Area-Software-Defined-Radio-Meetup for the latest updates

Want to speak or know someone who does? Get in touch: bhart@pretalen.com

Sister Meetup

Dayton Cyber Security Meetup: http://www.meetup.com/Dayton-Cyber-Security/

Last week's meetup: Identifying Hardware Vulnerabilities

Next meetup will be scheduled soon. Check the Meetup site for updates.

What is ADS-B?

ADS-B stands for Automatic Dependent Surveillance – Broadcast

Worldwide standard for aircraft to broadcast identification and position

Currently required in Australia and other countries

Required in Europe by 2017

Required in the US by 2020

Many US aircraft already broadcast ADS-B signals

RF Specifications

- Internationally, ADS-B is broadcast on 1090 MHz
 - Also called 1090ES (Extended Squitter)
- In the US, ADS-B supports dual frequencies: 978 MHz and 1090 MHz
 - 978 MHz service is called UAT
 - UAT only used below 18,000 feet in US airspace
- Ground stations in the US broadcast on both frequencies:
 - TIS-B (Traffic Information Service Broadcast) on 978 MHz and 1090 MHz
 - FIS-B (Flight Information Service Broadcast) includes weather and is only on 978 MHz

ADS-B In and ADS-B Out

- ADS-B In -- Incoming data to an aircraft about surrounding aircraft
- ADS-B Out -- Data broadcast out from an aircraft to the surrounding area
 - Can Be Received By:
 - Ground stations/Air Traffic Control
 - Other aircraft
 - Flight tracking services
 - Hobbyists with a basic SDR setup

ADS-B System Overview

ADS-B Ground Stations

Clusters of Ground Stations?

- Multilateration projects by the FAA
 - o Juneau, AK
 - Western Colorado
- Uses multiple ground stations to coordinate aircraft positions in areas where terrain obscure radar usage
- Techniques such as time-difference of arrival can be used to supplement
 ADS-B measurements

ADS-B Captures over Maryland

What's In an ADS-B Transmission?

- Aircraft identification -- ICAO aircraft address
 - Some aircraft hide their identification and broadcast things like "XXXXXXX"
 - Sites like FlightAware hide some tail numbers. You can see everything looking at the raw ADS-B transmissions.
- Altitude
- Position (Latitude/Longitude)
- Velocity
- Other less common transmissions
 - Aircraft operation status
 - Test messages
 - Surface system status
 - Target state and status

ADS-B Message Types

DF	TC	Content
17	1 to 4	Aircraft identification
17	5 to 8	Surface position
17	9 to 18	Airborne position (Baro Alt)
17	19	Airborne velocities
17	20 to 22	Airborne position (GNSS Height)
17	23	Test message
17	24	Surface system status
17	25 to 27	Reserved
17	28	Extended squitter AC status
17	29	Target state and status (V.2)
17	30	Reserved
17	31	Aircraft Operation status

ADS-B Pack Transmission Structure

ADS-B Message Structure

Bit from	Bit to	Abbr.	Name
1	5	DF	Downlink Format
6	8	CA	Message Subtype
9	32	ICAO24	ICAO aircraft address
33	88	DATA	Data frame
89	112	PC	Parity check

ADS-B Message Structure

Bit from	Bit to	Abbr.	Name
1	5	DF	Downlink Format
6	8	CA	Message Subtype
9	32	ICAO24	ICAO aircraft address
33	88	DATA	Data frame
89	112	PC	Parity check

Decoding Aircraft Identification in Python

```
math import log
def hex2bin(hexstr):
 scale = 16
 num of bits = len(hexstr)*log(scale, 2)
 binstr = bin(int(hexstr, scale))[2:].zfill(int(num of bits))
 return binstr
def bin2int(binstr):
 return int(binstr, 2)
charset = '#ABCDEFGHIJKLMNOPQRSTUVWXYZ##### #############0123456789######
msq = "8D4840D6202CC371C32CE0576098"
msqbin = hex2bin(msq)
databin = msqbin[32:88]
csbin = databin[8:]
callsign = ''
for i in range(0,8):
   callsign += charset[ bin2int(csbin[6*i:6*i+6]) ]
chars to remove = [' ', '#']
cs = callsign.translate(None, ''.join(chars to remove))
print cs
```

Aircraft Identification Message

'#ABCDEFGHIJKLMNOPQRSTUVWXYZ#####_############0123456789######

Airborne Position Message

MSG bits	# bits	Abbr	Content
1-5	5	DF	Downlink format
33-37	5	TC	Type code
38-39	2	SS	Surveillance status
40	1	NICsb	NIC supplement-B
41-52	12	ALT	Altitude
53	1	Т	Time
54	1	F	CPR odd/even frame flag
55-71	17	LAT-CPR	Latitude in CPR format
72-88	17	LON-CPR	Longitude in CPR format

Decoding CPR Format

- Step 1: Collect Odd and Even Frames
 - Frames are sent in pairs: "odd frames" and "even frames"
 - Bit 54 in the airborne position message specifies odd or even frame:
 - 0 odd frame / 1 even frame
- Step 2: Convert Binary to Decimal Value
 - Values are 17 bits
 - \circ Convert to decimal by dividing by 2^{17} (= 131072)
- Step 3: Calculate the Latitude Index j

$$j = floor \left(59*Lat_{CPR-E} - 60*Lat_{CPR-O} + 0.5\right)$$

Decoding CPR Format - Latitude

Step 4: Calculate Relative Latitudes

DLat_{Even} =
$$360.0 / 60.0 = 6.000$$

DLat_{Odd} = $360.0 / 59.0 = 6.102$

$$egin{aligned} Lat_E &= DLat_E * (mod(j,60) + Lat_{CPR-E}) \ Lat_E &= Lat_E - 360 \quad ext{if } (Lat_E \geq 270) \ Lat_O &= DLat_O * (mod(j,59) + Lat_{CPR-O}) \ Lat_O &= Lat_O - 360 \quad ext{if } (Lat_O \geq 270) \end{aligned}$$

Decoding CPR Format - Longitude

- Step 5: Compute Longitude
 - Step 5a : Define two functions:

```
def cprN(lat, is_odd):
   nl = cprNL(lat) - is_odd
    return nl if nl > 1 else 1
def cprNL(lat):
    try:
        nz = 60
        a = 1 - math.cos(math.pi * 2 / nz)
        b = math.cos(math.pi / 180.0 * abs(lat)) ** 2
        nl = 2 * math.pi / (math.acos(1 - a/b))
        return int(nl)
   except:
        # happens when latitude is +/-90 degree
        return 1
```

Decoding CPR Format - Longitude

Step 5b : Compute two interim variables m and ni

$$ni = \begin{cases} N(Lat_E, 0) & \text{if } (T_0 \geq T_1) \\ N(Lat_O, 1) & \text{else} \end{cases}$$

$$m = \begin{cases} floor \left[Lon_{CPR-E} * (NL(Lat_E) - 1) - Lon_{CPR-O} * NL(Lat_E) + 0.5 \right] & \text{if } (T_0 \geq T_1) \\ floor \left[Lon_{CPR-E} * (NL(Lat_O) - 1) - Lon_{CPR-O} * NL(Lat_O) + 0.5 \right] & \text{else} \end{cases}$$

Step 5c: Compute longitude

$$Lon = \begin{cases} rac{360.0}{ni} * (Mod(m, ni) + Lon_{CPR-E}) & \text{if } (T_0 \ge T_1) \\ rac{360.0}{ni} * (Mod(m, ni) + Lon_{CPR-O}) & \text{else} \end{cases}$$
 $Lon = Lon - 360 & \text{if } (Lon \ge 180)$

Putting it All Together In Python

```
def cpr2position(cprlat0, cprlat1, cprlon0, cprlon1, t0, t1):
 cprlat even = cprlat0 / 131072.0
 cprlat odd = cprlat1 / 131072.0
 cprlon even = cprlon0 / 131072.0
 cprlon odd = cprlon0 / 131072.0
 air d lat even = 360.0 / 60
 air d lat odd = 360.0 / 59
 i = int(59 * cprlat even - 60 * cprlat odd + 0.5)
 lat even = float(air d lat even * (j % 60 + cprlat even))
 lat odd = float(air d lat odd * (j % 59 + cprlat odd))
 if lat even >= 270:
   lat even = lat even - 360
 if lat odd >= 270:
   lat odd = lat odd - 360
 if cprNL(lat even) != cprNL(lat odd):
    return None
```

```
f (t0 > t1):
 ni = cprN(lat even, 0)
 m = math.floor( cprlon even * (cprNL(lat even)-1) \
        cprlon odd * cprNL(lat even) + 0.5 )
 lon = (360.0 / ni) * (m % ni + cprlon even)
 lat = lat even
 ni = cprN(lat odd, 1)
 m = math.floor( cprlon even * (cprNL(lat odd)-1) \
    - cprlon odd * cprNL(lat odd) + 0.5 )
 lon = (360.0 / ni) * (m % ni + cprlon odd)
 lat = lat odd
f lon > 180:
 lon = lon - 360
eturn [lat, lon]
```

Computing Altitude

- Much easier than lat/long computation!
- Step 1: Look at the Q-bit (bit 48)
 - If value is 0 then altitude is encoded in multiples of 100 ft.
 - o If value is 1 then altitude is encoded in multiple of 25 ft.
- Step 2: Remove the Q bit

```
1100001 1 1000
Q-bit
N = 1100001 1000 => 1560 (in decimal)
```

Computing Altitude

Step 3: Compute the altitude

```
Altitude = N*100 - 1000 (feet) if Q = 0
Altitude = N*25 - 1000 (feet) if Q = 1
```

Example from previous slide:

```
N = 1560 , Q = 1 Altitude = 1560*25 - 1000 = 38,000 feet
```

Altitude Accuracy and Range

For Q = 0:

- Accuracy is +/- 100 feet
- Range is -1000 to 203,700 feet

For Q = 1:

- Accuracy is +/- 25 feet
- Range is -1000 to 50,175 feet

Airborne Velocity Messages

MSG Bits	N bits	Abbr	Content	Subtype 1 = Ground speed (subsonic)
33-37	5	TC	Type code	Subtype 2 = Ground speed (supersonic)
38-40	3	ST	Subtype	Subtype 3/4 = Airspeed (rarely used)
41	1	IC	Intent change flag	
42	1	RESV_A	Reserved-A	0 = Flying West to East
43-45	3	NAC	Velocity uncertainty (NAC)	1 = Flying East to West
46	1	S-WE	East-West velocity sign	Velocity component in knots
47-56	10	V-WE	East-West velocity	0 = Flying South to North
57	1	S-NS	North-South velocity sign	1 = Flying North to South
58-67	10	V-NS	North-South velocity	Velocity component in knots
68	1	VrSrc	Vertical rate source	_0 = Down / Descending
69	1	S-Vr	Vertical rate sign	1 = Up / Ascending
70-78	9	Vr	Vertical rate	Rate in ft/min
79-80	2	RESV_B	Reserved-B	
81	1	S-Dif	Diff from baro alt, sign	
82-88	7	Dif	Diff from baro alt	

Computing Speed and Heading

Speed is computed using the square root of the square of the components:

$$v = \sqrt{V_{we}^2 + V_{sn}^2}$$

Heading is the inverse tangent of the components

$$h = \arctan(\frac{V_{we}}{V_{sn}}) * \frac{360}{2\pi} \quad (\text{deg})$$

Dump1090 to the Rescue!

Dump 1090 is a Mode S decoder specifically designed for RTLSDR devices.

Features include:

- Robust decoding of messages from weak signals
- Network support: TCP stream, HTTP
- Embedded HTTP server with Google Map overlay
- Bit error correction using the 24 bit CRC
- Command line interface
- Ability to decode a wide variety of message types
- Can decode raw IQ samples from a file

Installation of Dump1090

First install librtlsdr:

sudo apt-get install \
 librtlsdr-dev

Also install git (if you haven't already):

sudo apt-get install git

```
bhart@ubuntu: ~/dump1090
bhart@ubuntu:~/dump1090$ sudo apt-get install librtlsdr-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 libusb-1.0-0-dev libusb-1.0-doc
The following NEW packages will be installed:
  librtlsdr-dev libusb-1.0-0-dev libusb-1.0-doc
 upgraded, 3 newly installed, 0 to remove and 10 not upgraded.
Weed to get 248 kB of archives.
After this operation, 1,810 kB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Get:1 http://mirrors.linode.com/ubuntu xenial/main amd64 libusb-1.0-0-dev amd64
2:1.0.20-1 [58.5 kB]
Get:2 http://mirrors.linode.com/ubuntu xenial/main amd64 libusb-1.0-doc all 2:1.
0.20-1 [160 kB]
Get:3 http://mirrors.linode.com/ubuntu xenial/universe amd64 librtlsdr-dev amd64
0.5.3-5 [29.8 kB]
Fetched 248 kB in 0s (4,711 kB/s)
Selecting previously unselected package libusb-1.0-0-dev:amd64.
(Reading database ... 85843 files and directories currently installed.)
Preparing to unpack .../libusb-1.0-0-dev 2%3a1.0.20-1 amd64.deb ...
Inpacking libusb-1.0-0-dev:amd64 (2:1.0.20-1) ...
Selecting previously unselected package libusb-1.0-doc.
Preparing to unpack .../libusb-1.0-doc 2%3a1.0.20-1 all.deb ...
Unpacking libusb-1.0-doc (2:1.0.20-1) ...
Selecting previously unselected package librtlsdr-dev.
Preparing to unpack .../librtlsdr-dev 0.5.3-5 amd64.deb ...
Inpacking librtlsdr-dev (0.5.3-5) ...
Setting up libusb-1.0-0-dev:amd64 (2:1.0.20-1) ...
Setting up libusb-1.0-doc (2:1.0.20-1) ...
Setting up librtlsdr-dev (0.5.3-5) ...
hart@ubuntu:~/dump1090$
```

Installation of Dump1090

Download the dump1090 repo from GitHub:

```
git clone https://github.com/antirez/dump1090.git
```

Or

```
git clone https://github.com/MalcolmRobb/dump1090.git
```

Open the directory and run make:

```
cd dump1090 && make
```

Run the program with interactive mode and web browser support:

```
./dump1090 --interactive --net --aggressive
```

Dump1090 Interactive CLI

ex	Mode	Sqwk	Flight	Alt	Spd	Hdg	Lat	Long	Sig	Msgs	Ti
BF8C	S			38000					5	163	1
10BD	S	4551	RHIN050	3100					17	89	1
5962	S			35000					15	89	1
3A0C	S			30975					5	65	30
9F80	S			35000					13	442	1
438F	S			38000					10	101	2
E279	S	2240	N220RA	24000	258	006	39.746	-84.436	7	181	1
3174	S	4114	NKS390	36975	444	178	39.198	-83.968	6	1570	6

Dump1090 Web Interface

Dump1090 in Action

Command line interface

Web interface

United Airlines Flight 796

American Airlines Flight 1169 (AAL1169)

Other Equipment to Improve Reception

1090 MHz RF Filter (\$20 on Amazon)

1090 MHz antenna (\$9 on Amazon)

Thank You!

Any questions?

Next Meetups for Dayton SDR and Dayton Cyber Security will be posted soon

Slides will be posted on the Meetup site tonight