Определения из дифуров

Лектор: В. В. Басов Записал: taxus

3 марта 2017 г.

Глава 1: Дифуры, разрешённые относительно производной

§ 1 Основные определения

Определение 1 (Дифференциальное уравнение). Пусть $f \in C(G)$, $G \subset \mathbb{R}^2$. Тогда диффур — вот такая штука:

$$y' = f(x, y)$$

Определение 2. Решение — функция $y = \varphi(x)$, определённая на $\langle a,b \rangle$:

- 1. $\varphi(x)$ дифференцируема
- 2. $(x, \varphi(x)) \in G$
- 3. $\varphi'(x) = f(x, \varphi(x))$

Определение 3 (Задача Коши и вокруг неё). Основные понятия тут:

- 1. (x_0, y_0) начальные данные
- 2. Решение задачи Коши частное решение дифура + выполнение начальных условий
- 3. Решение задачи Коши существует, если $\exists (a, b) \ni x_0, y = \varphi(x) \colon y_0 = \varphi(x_0)$
- 4. Решение задачи Коши единственно, если любые 2 решения совпадают в окрестности x_0

Определение 4. $(x_0, y_0) \in G$ — тоска единственности, если решение задачи Коши в ней единственно.

Определение 5. $\widetilde{G} \in G$ — область единственности, если каждая её точка — точка единственности.

Определение 6. Пусть $f \in C(G)$, $G \subset \mathbb{R}^2$, $(x_0, y_0) \in G$, $x_0, x \in \langle a, b \rangle$ Тогда интегральным уравнением называется

$$y = y_0 + \int_{x_0}^{x} f(u, y) \, \mathrm{d}s$$

Определение 7. Решение — функция $y=\varphi(x)$, определённая на $\langle a,b \rangle$:

- 1. $\varphi(x)$ непрерывна
- 2. $(x, \varphi(x)) \in G$
- 3. $y = y_0 + \int_{x_0}^{x} f(u, y) ds$

Теорема 1. Пусть $f \in C(G)$. Тогда $y = \varphi(x)$ — решение 1.1.1 \Leftrightarrow решение 1.1.6.

Определение 8 (Отрезок Пеано).

$$P_h(x_0, y_0) = \{x \colon |x - x_0| \le h\}$$

$$h = \min\{a, b/M\}, \ M = \max_{(x,y) \in \overline{R}} |f(x,y)|$$

$$\overline{R} = \{(x,y) \colon |x - x_0| \le a, |y - y_0| \le b\} \subset G$$

Определение 9. Решение — частное, если всякая его точка — точка единственности.

Определение 10. Решение — особое, если всякая его точка — точка неединственности.

Определение 11 (Общее решение). Пусть G — область единственности. Тогда непрерывная по обеим аргументам функция $y = \varphi(x, C)$ — общее решение дифференциального уравнения в $A \subset G$, если $\forall (x_0, y_0) \in A$:

- 1. уравнение $y_0 = \varphi(x_0, C)$ однозначно разрешимо относительно C. /Наверное, локальная монотонность нужна/
- 2. $y = \varphi(x, C_0) \ (C_0 \text{корень } y_0 = \varphi(x_0, C))$ решение задачи Коши с начальными данными x_0, y_0

Тут кстати в самом конспекте что-то странное. Почему-то требуется, чтобы $\varphi(x, C_0)$ была решением в окрестности C_0 .

Определение 12. Решение дифура, определённое на $\langle a, b \rangle$ продолжимо за точку b, если

$$\exists \, \widetilde{\varphi}(x) \colon \widetilde{\varphi}|_{\langle a,b \rangle} = \varphi \wedge \widetilde{\varphi}'(x) \stackrel{\langle a,\widetilde{b} \rangle}{\equiv} f(x,\widetilde{\varphi}(x))$$

§ 2 Существование решения задачи Коши

Определение 1 (Ломаная Эйлера).

$$\begin{cases} \forall x \in (x_j, x_{j+1}], j \in 0 ... N - 1 \\ \forall x \in [x_{j-1}, x_j), j \in 1 - N ... 0 \end{cases} \psi(x) = \psi(x_j) + f(x_j, \psi(x_j))(x - x_j)$$

Теорема 1 (Теорема Пеано). Пусть $f \in C(G)$. Тогда

$$\forall (x_0, y_0), P_h(x) \exists y = \varphi(x) \colon \begin{cases} \varphi'(x) \stackrel{P_h}{\equiv} f(x, \varphi(x)) \\ y_0 = \varphi(x_0) \end{cases}$$
 (решение 1.1.3)

Лемма 2 (Лемма Гронуолла). Пусть $h \in C(\langle a; b \rangle)$. Тогда

$$\exists \lambda, \mu \geqslant 0 \colon \forall x_0, x \in \langle a; b \rangle \quad 0 \leqslant h(x) \leqslant \lambda + \mu \left| \int_{x_0}^x h(s) \, \mathrm{d}s \right| \Rightarrow h(x) \leqslant \lambda e^{\mu |x - x_0|}$$

Глава 2: Диффуры в симметричной форме

Определение 2. Пусть G — область единственности. Тогда $U: G \to \mathbb{R}$, $U \in C(G)$ — допустимая функция, если $U(x,y) - U(x_0,y_0)$ задаёт единственную неявную функцию $y = \varphi(x)$ или $x = \psi(y)$.

Определение 3. Допустимая функция называется интегралом уравнения, если неявная функция которую она задаёт — решение 3K с начальными данными (x_0 ; y_0).

Теорема 3. Если допустимая функция постоянна вдоль любого решения в области единственности, то она — интеграл. Обратное тоже верно.

Определение 4. Гладкая допустимая функция — $U \in C^1(G)$: $(U_x')^2 + (U_y')^2 > 0$

Теорема 4. U- гладкий интеграл в области единственности $G\Leftrightarrow$

$$N(x,y)U'_x(x,y)-M(x,y)U'_y(x,y)\stackrel{G}{\equiv}0.$$

и U — гадкая допустимая функция.

Определение 5. Если U — интеграл, то U(x, y) = C — общий интеграл.

ещё теормемы:

Теорема 5. Все эти интегралы — существуют.

□ Ну, это же почти общее решение.

Теорема 6. Пусть U — интеграл, U_1 — допустимая функция. Тогда U_1 — интеграл \Leftrightarrow

$$\exists \Phi, A \colon U_1 \stackrel{A}{\equiv} \Phi(U)$$

Глава 3: Нормальные и не очень системы диффуров

§ 3 Условия Липшица

Лемма 1 (Лемма Адамара). Пусть $f(x,y) \colon \mathbb{R}^I \times \mathbb{R}^m \to \mathbb{R}^n$, G = Oбласть, выпуклая по y. Пусть также f(x,y), $\frac{\partial f}{\partial y^i} \in C(G)$. Тогда

$$\exists h(x, y_1, y_2) \colon \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^n \ f(x, y_2) - f(x, y_1) = h(x, y_1, y_2)^T (y_2 - y_1)$$

где
$$h(x, y_1, y_2) = \int\limits_0^1 \frac{\partial f(x, u(s))}{\partial y} \, \mathrm{d}s, \ a \ u(s) = y_1 + s(y_2 - y_1)$$

Лемма 2. Пусть $f(x,y) \in \operatorname{Lip}_{v}^{\operatorname{loc}}(G)$, $G - \operatorname{область}$. Тогда $\forall \overline{H} \subset G$ $f \in \operatorname{Lip}_{v}^{\operatorname{gl}}$.

§ 4 Пикаровские приближения

Определение 1 (Пикаровские приближения).

$$y^{(0)} \equiv y_0$$
$$y^{(k+1)} = y_0 + \int_{x_0}^{x} f(s, y^{(k-1)}(s)) ds$$

Теорема 1 (Пикара). Пусть $f(x,y) \in \operatorname{Lip}_{v}^{\mathsf{loc}}(G)$ и

$$\forall (x_0, y_0) \in G, k \ \exists \overline{H} \subset G, y^{(k)}(x) \colon [a; b] \to \mathbb{R}^n \colon (x, y^{(k)}(x)) \in \overline{H} \land y^{(k)}(x) \to y(x)$$

которое уже и является решением задачи Коши с НД (x_0, y_0) на [a; b]. Здесь $y^{(k)}$ — пикаровские приближения.

 \square В процессе последовательность заменяют рядом $arphi^{(k)}$, а потом доказывают, что

$$\|\varphi^{(k)}(x)\| \leqslant \frac{M}{L} \frac{(L|x-x_0|)}{k!}$$

Теорема 2. Пусть $f \in \text{Lip}_y^{\text{loc}}(G)$. Тогда отрезок Пеано покатит в качестве отрезка [a;b] в теореме выше, а компакт можно выбрать так : $\overline{H} = \{(x,y) \mid x \in [a;b], \|y-y_0\| \leqslant b\}$.

§ 5 Почти линейные системы

Определение 1. Пусть $f(x,y) \in C(G)$, $G=(a;b) \times \mathbb{R}^n$, L,M— непрерывны и неотрицательны. Тогда почти линейная система выглядит так:

$$\forall (x,y) \in G \quad ||f(x,y)|| \leqslant L(x) + M(x)||y||$$