2. рп-СПОЈ И ДИОДИ

J. Косев, Т. Карталов, Електроника, 3ФЕИТ053018

Скоковит рп-спој

• Технолошки профил на *pn-*спојот:

- $N_A = N_D$ металуршка граница.
- особина на pn-спојот: насочувачко дејство

J.Косев, Т.Карталов, Електроника, 3ФЕИТ053018

"Металуршко спојување" p-type n-type semiconductor semiconductor region region electron The combining of electrons and holes negative ion depletes the holes from filled hole in the p-region and positive ion the electrons in the from removed n-regioin near the electron junction. depletion region Осиромашено подрачје Вградено ел. поле = потенцијална бариера J.Ќосев, Т.Карталов, Електроника, 3ФЕИТ053018

- Осиромашеното подрачје се нарекува **слој** на просторен полнеж, *pn* бариера или преоден слој.
- *d*_B дебелина на *pn* бариерата.
- На спојот се создава **потенцијална бариера** што ја запира дифузијата на мајоритетните носители.

J.Косев, Т.Карталов, Електроника, 3ФЕИТ053018

5

При услови на рамнотежа:
 директна струја + инверзна струја = 0

•
$$I_n = I_{Dn} + I_{Sn} = 0$$

•
$$I_p = I_{Dp} + I_{Sp} = 0$$

J.Ќосев, Т.Карталов, Електроника, 3ФЕИТ053018

• Рамнотежни концентрации:

На п-страната:

$$n_{on} = N_D$$

На р-страната:

$$n_{0p} = \frac{n_i^2}{p_{0p}} = \frac{n_i^2}{N_A}$$

– Оттука (р.2.1): $V_P - V_N = V_T \ln \frac{n_{0p}}{n_{0n}} = V_T \ln \frac{n_i^2}{N_A N_D}$

J.Косев, Т.Карталов, Електроника, 3ФЕИТ053018

7

- Е_К Контактна потенцијална енергија.
- $V_K = V_P V_N < 0$ Контактен потенцијал:

$$V_K = V_T \ln \frac{n_i^2}{N_A N_D}$$

- $|V_K| = 0,4$ до 0,9V за Si.
- $E_{K} < E_{G}$.

.Ќосев, Т.Карталов, Електроника, 3ФЕИТ053018

Шоклиева релација

$$I = I_{Dp}(0) + I_{Dn}(0) = qS(\frac{D_p p_{0n}}{L_p} + \frac{D_n n_{0p}}{L_n})(e^{\frac{V}{V_T}} - 1)$$

$$I_{S} = qS(\frac{D_{p}p_{0n}}{L_{p}} + \frac{D_{n}n_{0p}}{L_{n}})$$

$$I = I_{S}(e^{\frac{V}{V_{T}}} - 1)$$

$$I = I_S(e^{\frac{r}{V_T}} - 1)$$

Видови полупроводнички диоди

- Стандардна (насочувачка, сигнална)
- Зенерова диода
- Фотодиода
 - Фотоволтаици (соларни ќелии)
- Светлечка или *LED* диода.
 - За сигнализација индикатори
 - За осветление: LED lamp
- Ласерски диоди
- Енергетска диода

Косев Т Карталов Електроника ЗФЕИТ053018

Функционирање на фотодиода

- Во темнина pn-спојот не пропушта струја во инверзна насока (струјата на темно е I_s)
- Ако се осветли, фотоните избиваат електрони во бариерата, а полето во бариерата ги движи носителите (празнините кон р-страната и електроните кон n-страната) така што тече струја во инверзна насока

J. Косев, Т. Карталов, Електроника, 3ФЕИТ053018

21

Соларна ќелија

- Интересена е работата во четвртиот квадрант со поврзан отпорник меѓу А и К (I<0, U>0 ⇒ P=UI<0 !!)
- p-n спојот оддава моќност (генератор)
- Вградениот потенцијал има улога на електромоторна сила што ги раздвојува полнежите генерирани од светлинското зрачење
- Струјно-напонски карактеристики на ефикасна соларна ќелија:
 - Напон на отворено коло: 0.64 V,
 - густина на струја на куса врска: 35.5 mA/cm²
 - Макс. коефициент на полезно дејство 18.7%

22

J.Ќосев, Т.Карталов, Електроника, 3ФЕИТ05301

LED-светилки (информативно)						
Cost Comparison for 60 watt incandescent equivalent lightbulb (U.S. residential electricity prices)						
	Incandesce nt ^[26]	Halogen [27]	<u>CFL^[28]</u>	LED (Generic) ^[29]	LED (Philips)[30]	LED (Philips L-Prize)
Purchase price	\$0.36	\$1.50	\$1.75	\$8	\$16	\$30
Power used (watts)	60	43	14	10	9.5	10
lumens (mean)	860	750	775 ^[31]	800	806	940
lumens/watt	14.3	17.4	55.4	80	84.8	94
Color Temperature kelvin	2700	2900	2700	2700	2700	2700
<u>CRI</u>	100	100	82	82	>80	92
Lifespan (hours)	1,000	1,000	10,000	25,000	15,000	30,000
Bulb lifetime in years @ 6 hours/day	0.5	0.5	4.6	>11.4	6.8	>13.7
Energy cost over 10 years @ 12 cents/kWh	\$158	\$113	\$37	\$26	\$25	\$26
Total cost	\$167	\$146	\$42	\$34	\$57	\$56
Total cost per 860 lumens	\$167	\$167	\$47	\$35	\$61	\$51
Comparison based on 6 hours use per day (21,900 hours over 10 yrs)						
						27

Ласерска диода

J.Косев, Т.Карталов, Електроника, 3ФЕИТ053018

- http://www.youtube.com/watch?v=o8tHfNjiae4
- LASER = Light Amplification by Stimulated Emission of Radiation
- =светлинско засилување со стимулирана емисија на зрачење

.Ќосев, Т.Карталов, Електроника, 3ФЕИТ053018

Ласерска диода (информативно)

- Инјекција низ рп-спојот = "пумпање" енергија
- Рекомбинација \rightarrow светлосни кванти (спонтана емисија $hv = E_G$) [бранова должина $\lambda = c/v$]
- Оптичка резонанција (огледала на $n\lambda/2$) \rightarrow само кванти со иста фаза и бранова должина
- Стимулирана рекомбинација (од квантите што резонираат) → оптичко засилување
- Полупропусно огледало → ласерски сноп
- Колимациска леќа → тенок ласерски зрак
- Анимации: http://ecee.colorado.edu/~bart/book/movie/movies.htm

J.Ќосев, Т.Карталов, Електроника, 3ФЕИТ053018

29

Енергетска диода

 По функција, слична на обичната диода (сигнална / насочувачка)

- Разлика во дизајнот воведување на n-подрачје со пониска концентрација на примеси заради издржливост на повисоки инверзни напони.
- Напонска и струјна издржливост илјадници волти инверзен напон, стотици ампери директна струја.
- Можност за работа на повисоки номинални температури.
- Енергетските диоди најчесто се изведуваат во робусни метални куќишта

30

LÉOCER T KANTAROR EREKTRONIKA 30ENT05301