

Assignment #3

Last Name:	First Name and Initial:	
Course Name:	Number:	
Real Analysis 1	MATH 6301	
Instructor:	Due Date:	
Wieslaw Krawcewicz	September 29, 2022	
E-mail Address:	Student's Signature:	

Instructions:

- 1. Print this booklet
- 2. Use the space provided to write your solutions in this booklet
- 3. Hand in your assignment to your instructor on the due date during the class time.

Question	Weight	Your Score	Comments
1.	10		
2.	10		
3.	10		
4.	10		
5.	10		
Total:	50		

Problem 1. Consider the Banach space $\mathscr{E} :=]C([a,b];\mathbb{R})$ consisting of all continuous functions from the interval [a,b] to \mathbb{R} , equipped with the norm

$$\|\varphi\|_{\infty} := \sup_{t \in [a,b]} |\varphi(t)|, \quad \varphi \in \mathscr{E}.$$

Take c, d > 0 and define the set $A \in \mathscr{E}$ by

$$A := \left\{ \psi \in \mathscr{E} : \begin{cases} \text{(i)} & \psi \text{ is of class } C^1, \\ \text{(ii)} & \sup_{t \in [a,b]} |\psi(t)| < c, \\ \text{(iii)} & \sup_{t \in [a,b]} |\psi'(t)| < d. \end{cases} \right\}$$

Show that the set \overline{A} is compact in \mathscr{E} .

Problem 2: Consider $X := \mathbb{R}$ and the family $\mathscr{A} \subset \mathscr{P}(X)$ given by $\mathscr{A} := \{\{n\} : n \in \mathbb{N}\}$. Describe the σ -algebra $\mathscr{S}(\mathscr{A})$ generated by \mathscr{A} .

Problem 3: Let X be a given space.

- (a) Assume that $A \in \mathscr{P}(X)$ is a set such that $A \neq \emptyset$, X. Find $\mathscr{S}(\{A\})$.
- (b) For given sets $A_1, A_2, ..., A_n \in \mathscr{P}(X)$, find $\mathscr{S}(\{A_1, A_2, ..., A_n\})$.

${\bf SOLUTION:}$

Problem 4: For two given spaces X and Y and two sets $A \in \mathcal{P}(X)$ and $B \in \mathcal{P}(Y)$, describe the σ -algebra

$$\mathscr{S}_1 \times \mathscr{S}_2$$
, where $\mathscr{S}_1 := \mathscr{S}(\{A\}) \in \mathscr{P}(X), \mathscr{S}_2 := \mathscr{S}(\{B\}) \in \mathscr{P}(Y)$.

Problem 5: For two given spaces X and Y, $f: X \to Y$ a map and $\mathscr{S} \subset \mathscr{P}(Y)$ a σ -algebra in Y, define

$$f^{-1}(\mathscr{S}) := \left\{ A \subset X : \exists_{B \in \mathscr{S}} \ A := f^{-1}(B) = A \right\}.$$

Is $f^{-1}(\mathscr{S})$ a σ -algebra in X? Justify your answer.