Замена непрерывного распределения на дискретное для применения на практике

Нагуманова Карина Ильнуровна, 19Б.04-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., доцент Голяндина Н.Э. Рецензент: лектор Кардиффского университета Пепелышев А.Н.

Санкт-Петербург 2023г.

Введение

В практических задачах нередко требуется заменить непрерывное распределение на дискретное с сохранением математического ожидания и дисперсии. Одним из методов нахождения такого распределения для трехточечной аппроксимации нормального распределения является метод Свонсона.

Аппроксимируемые случайные величины складывают и умножают.

Задача: находить аппроксимацию суммы и произведения логнормальных случайных величин по аппроксимациям исходных случайных величин.

Введение

План работы.

- Рассмотреть общий подход к трехточечной аппроксимации, трехточечную аппроксимацию нормального распределения, метод Свонсона и вывод правила 30-40-30.
- Рассмотреть трехточечную аппроксимацию логнормального распределения и её свойства.
- Построить алгоритм аппроксимации произведения двух логнормальных распределений.
- Построить алгоритм аппроксимации суммы двух логнормальных распределений.

Часть 1: Общий подход к трехточечной аппроксимации

Пусть ξ — непрерывная случайная величина, обозначим

$$m = \mathbf{E}(\xi), \qquad s^2 = \mathbf{D}(\xi),$$

F(x) — функция распределения, x_{π_1} , x_{π_2} , x_{π_3} — квантили ξ , $ilde{\xi}$ — дискретная случайная величина

$$\tilde{\xi} : \begin{pmatrix} x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ p_1 & p_2 & p_3 \end{pmatrix}$$

$$\tilde{m} = \mathbf{E}(\tilde{\xi}), \qquad \tilde{s}^2 = \mathbf{D}(\tilde{\xi}).$$

Задача: аппроксимировать распределение случайной величины ξ дискретным распределением $\tilde{\xi}$, то есть найти p_1 , p_2 , p_3 такие, что

$$\begin{aligned} p_1 + p_2 + p_3 &= 1,\\ \tilde{m} &= p_1 x_{\pi_1} + p_2 x_{\pi_2} + p_3 x_{\pi_3} &= m,\\ \tilde{s}^2 &= p_1 x_{\pi_1}^2 + p_2 x_{\pi_2}^2 + p_3 x_{\pi_3}^2 - m^2 &= s^2. \end{aligned}$$

Часть 1: Аппроксимация нормального распределения

Предложение (Swanson)

Пусть верно

$$\begin{pmatrix} 1 & 1 & 1 \\ \hat{x}_{\pi_1} & \hat{x}_{\pi_2} & \hat{x}_{\pi_3} \\ \hat{x}_{\pi_1}^2 & \hat{x}_{\pi_2}^2 & \hat{x}_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

где $\hat{x}_{\pi_i} = \hat{\mathsf{F}}^{-1}(\pi_i)$, $\hat{\mathsf{F}}(y) - \phi$ ункция распределения $\hat{\xi} = \frac{\xi - m}{\hat{\mathsf{F}}}$. Тогда $m=\tilde{m}$ и $s^2=\tilde{s}^2$

Рассмотрим частный случай
$$\xi \sim N(\mu, \sigma), \pi = 0.1$$
, имеем $\Phi^{-1}(0.1) = -\Phi^{-1}(0.9) \approx -1.28, \qquad \Phi^{-1}(0.5) = 0,$ $p_1 \approx 0.305, \qquad p_2 \approx 0.390, \qquad p_3 \approx 0.305.$

Эти вероятности примерно равны 0.3, 0.4, 0.3, поэтому это правило называют правилом 30-40-30.

Часть 2: Связь логнормального с нормальным

Пусть $\xi=\ln(\eta)$ и $\xi\sim N(\mu,\sigma)$. Параметры $m={\bf E}(\eta)$, $s^2={\bf D}(\eta)$ логнормального распределения выражаются как

$$m = \exp\left(\mu + \frac{\sigma^2}{2}\right), \qquad s^2 = \exp\left(2\mu + \sigma^2\right)(\exp(\sigma^2) - 1).$$

Обратная функция распределения η имеет вид

$$F_{\eta}^{-1}(p) = \exp(\mu + \sigma\sqrt{2}\text{erf}^{-1}(2p-1)).$$

Предложение

Параметр μ выражается как $\mu = \log(x_{\pi_i}) - \sigma\Phi^{-1}(\pi_i)$ и результат не зависит от i. Параметр σ выражается через любые два квантиля как

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}, \qquad \pi_1 \neq \pi_2.$$

Часть 2: Аппроксимация логнормального распределения

Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины η , $\ln(\eta) \sim N(\mu, \sigma)$.

- f 0 Выражаем параметры μ и σ математическое ожидание и дисперсию соответствующего нормального распределения через известные $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$.
- $oldsymbol{2}$ Вычисляем значения математического ожидания m и дисперсии s^2 случайной величины η , используя μ и σ .
- Опомощью системы уравнений находим значения весов p_1, p_2, p_3 , используя вычисленные m и s^2 .

Результат: веса p_1 , p_2 , p_3 для $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ случайной величины $\tilde{\mathcal{E}}$.

В реальных задачах в нефтяной промышленности используются следующие диапазоны параметров: $\mu < 12$, $\sigma < 1.5$.

Часть 2: Условие на параметр σ

Мною было доказано следующее предложение.

Предложение

Неотрицательные вероятности p_1 , p_2 , p_3 для аппроксимации логнормальной случайной величины η в точках π -, 0.5- и $(1-\pi)$ - квантилей существуют только при условии

$$\exp(\sigma^2) + \exp(-\sigma^2) - \exp\left(-\frac{\sigma^2}{2}\right) (\exp(c\sigma) + \exp(-c\sigma)) \le 0,$$

где
$$c = \Phi^{-1}(\pi)$$
.

Следствие

При уменьшении значения π диапазон существования дискретной вероятностной аппроксимации увеличивается.

Например, для $\pi = 0.1$ получаем ограничение $\sigma \leq 0.6913$.

Часть 2: Точность метода Свонсона для логнормального распределения

Проблема: метод Свонсона выведенный для аппроксимации нормального распределения используют для логнормального. Вопрос: какова точность аппроксимации m и s^2 ?

Предложение

Ошибка аппроксимации мат.ожидания логнормального распределения по методу Свонсона, выведенному для аппроксимации нормального распределения, равна

$$\frac{m-\widetilde{m}}{m} = \exp\left(\frac{\sigma^2}{2}\right) - \frac{1}{2c^2} \times$$

$$\times (\exp(c\sigma) - 1 + \exp(-c\sigma)) + 1/\exp\left(\frac{\sigma^2}{2}\right),$$

где $c = \Phi^{-1}(\pi)$, и не зависит от параметра μ .

Часть 2: Точность метода Свонсона для логнормального распределения

Предложение

Ошибка аппроксимации дисперсии логнормального распределения по методу Свонсона, выведенному для аппроксимации нормального распределения, равна

$$\frac{s^2 - \tilde{s}^2}{s^2} = \exp(\sigma^2)(\exp(\sigma^2 - 1)) -$$

$$-\frac{1}{2c^2} \exp(-2c\sigma) - \left(1 - \frac{1}{c^2}\right) \exp(2c\sigma) +$$

$$+ \left(\frac{1}{2c^2}(\exp(c\sigma) - 1 + \exp(-c\sigma)) + 1\right)^2 / \exp(\sigma^2)(\exp(\sigma^2 - 1)),$$

где $c = \Phi^{-1}(\pi)$, и не зависит от параметра μ .

Часть 2: Точность метода Свонсона для логнормального распределения

Рис.: Относительная ошибка аппроксимации математического ожидания и дисперсии

Часть 3: Произведение двух логнормальных распределений

Предложение (Swanson)

Зная квантили x_π , $x_{0.5}$, $x_{1-\pi}$ случайной величины ξ_1 и квантили y_π , $y_{0.5}$, $y_{1-\pi}$ случайной величины ξ_2 можно найти квантили z_π , $z_{0.5}$, $z_{1-\pi}$ случайной величины $\xi_1\xi_2$, как

$$z_{\pi} = \exp(b\Phi^{-1}(\pi) + a),$$

$$z_{0.5} = x_{0.5}y_{0.5},$$

$$z_{1-\pi} = \exp(b\Phi^{-1}(1-\pi) + a),$$

где a и b такие, что прямая $y=\frac{x-a}{b}$, проходит через точки $(\ln(x_\pi y_\pi),t)$ и $(\ln(x_{0.5}y_{0.5}),0)$ при

$$t = \frac{\Phi^{-1}(\pi)((\ln(x_{0.5}) + \ln(y_{0.5})) - (\ln(x_{\pi}) + \ln(y_{\pi})))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}$$

Часть 4: Сумма двух логнормальных распределений

Рассмотрим сумму двух логнормальных случайных величин

$$\ln(\xi_1) \sim N(\mu_1, \sigma_1^2),$$

$$\ln(\xi_2) \sim N(\mu_2, \sigma_2^2),$$

$$\xi = \xi_1 + \xi_2,$$

где ξ_1 и ξ_2 заданы своими квантилями.

Поставим задачу аппроксимации суммы логнормальным распределением $\ln(\eta) \sim N(\mu,\sigma)$, так как нужно рассматривать сумму не обязательно двух, а произвольного числа случайных величин.

Задача: найти квантили z_{π} , $z_{0.5}$, $z_{1-\pi}$ случайной величины η .

Часть 4: Сумма двух логнормальных распределений

Дано: Квантили x_π , $x_{0.5}$, $x_{1-\pi}$ — квантили ξ_1 , y_π , $y_{0.5}$, $y_{1-\pi}$ — квантили ξ_2 .

- **1** $x_{\pi}, x_{0.5}, x_{1-\pi} \to \mu_1, \sigma_1$
- $y_{\pi}, y_{0.5}, y_{1-\pi} \rightarrow \mu_2, \sigma_2$
- $m = m_1 + m_2$
- $5 s^2 = s_1^2 + s_2^2$
- $\mathbf{0}$ m, $s^2 \to \mu$, σ
- \bullet μ , $\sigma \rightarrow z_{\pi}$, $z_{0.5}$, $z_{1-\pi}$
- **8** z_{π} , $z_{0.5}$, $z_{1-\pi} \rightarrow p_1$, p_2 , p_3

Результат: вероятности p_1 , p_2 , p_3 для квантилей $z_{\pi_1}, z_{\pi_2}, z_{\pi_3}$ случайной величины $\xi_1 + \xi_2$.

Ошибки аппроксимации квантилей q_{π} , $q_{0.5}$, $q_{1-\pi}$ случайной величины ξ равны

$$\frac{|q_{\pi}-z_{\pi}|}{q_{\pi}}, \qquad \frac{|q_{0.5}-z_{0.5}|}{q_{0.5}}, \qquad \frac{|q_{1-\pi}-z_{1-\pi}|}{q_{1-\pi}},$$

где

$$z_{100p} = F_{\eta}^{-1}(p) = \exp(\mu + \sigma\sqrt{2}\text{erf}^{-1}(2p-1)).$$

Значение квантилей q_i выражаются как $q_{100p} = F_{\xi}^{-1}(p)$, где

$$\begin{split} F_{\xi}(x) &= \int_0^x \left(\frac{1}{2} + \frac{1}{2}\mathrm{erf}\left(\frac{\ln(x-y) - \mu_1}{\sigma_1\sqrt{2}}\right)\right) \times \\ &\times \left(\frac{1}{\sqrt{2\pi}y\sigma_2}\exp\left(-\left(\frac{\ln(y) - \mu_2}{\sqrt{2}\sigma_2}\right)^2\right)\right) dy. \end{split}$$

Рассмотрим $\ln(\xi_1) \sim N(4,\sigma_1^2)$, $\ln(\xi_2) \sim N(4,\sigma_2^2)$ и найдем ошибки в зависимости от σ_1 (строка) и σ_2 (столбец) с помощью моделирования, объемы выборок равны 10^6 .

Таблица: Ошибка аппроксимации q_{10} (%) (слева) и q_{90} (%) (справа)

	0.5	1.5
0.5	0.67	67.15
1.5	66.62	26.01

	0.5	1.5
0.5	0.29	18.04
1.5	20.29	3.83

Таблица: Коэффициент асимметрии суммы (голубой) и аппроксимации (розовый)

	0.5	1.5
0.5	1.77	16.68
	1.53	29.70
1.5	11.18	23.61
	3.30	25.13

Построим оценки плотности для ξ и η при $\mu_1=\mu_2=4$ и вычислим ошибки аппроксимации. Получили $err_{med}=0.12\%$, $err_{q_{10}}=0.45\%$, $err_{q_{90}}=0.28\%$.

Рис.:
$$\sigma_1 = 0.5$$
, $\sigma_2 = 0.5$.

Теперь посмотрим на случай, когда ошибки аппроксимации достаточно большие. Получили $err_{med}=20.9\%$, $err_{q_{10}}=66.7\%$, $err_{q_{90}}=19.1\%$.

Рис.:
$$\sigma_1 = 1.5$$
, $\sigma_2 = 0.5$.

Заключение

Мною были получены следующие результаты:

- **1** Получено условие на σ для существования трехточечной симметричной вероятностной аппроксимации логнормального распределения.
- Численно оценена точность аппроксимации математического ожидания и дисперсии логнормального распределения с помощью метода Свонсона, применяемого к нормальному распределению.
- Формально и полно написано обоснование алгоритма для нахождения трехточечной симметричной аппроксимации произведения логнормальных распределений.
- Построен алгоритм для нахождения трехточечной симметричной аппроксимации суммы логнормальных распределений.
- Численно оценена точность трехточечной симметричной аппроксимации суммы логнормальных распределений.