

Approches neuromorphiques pour la vision par ordinateur

Christophe Piton

Avril 2014 à juillet 2014

- Présentations
 - Laboratoire et institut
 - Équipe
- 2 Activités
 - Objet
 - Travaux liés
 - Matériel et méthodes
 - Résultats
- 3 Conclusion et perspectives
 - Conclusion
 - Perspectives

Présentations laboratoire et institut

- UMR 8022
- Tutelles : CNRS et l'Université Lille 1
- Création en 1983
- Environ 300 personnes
- 3 grandes thématiques
- Création IRCICA

- USR 3380 du CNRS et de l'Université Lille 1
- Création en 2003
- Environ 120 personnes
- «Hôtel à projets interdisciplinaires»
- 4 laboratoires partenaires

Présentation équipe FOX

- Analyse du mouvement à partir de la vidéo
- Extraction du comportement humain à partir de flux vidéo
- 18 personnes
- 4 grands domaines de validation :
 - le regard,
 - l'évènement,
 - l'émotion,
 - la reconnaissance de personne.
- 2 niveaux d'échelle : l'individu et la foule
- 4 projets en cours

Activités

- Présentations
 - Laboratoire et institut
 - Équipe
- Activités
 - Objet
 - Travaux liés
 - Matériel et méthodes
 - Résultats
- Conclusion et perspectives
 - Conclusion
 - Perspectives

Objet de l'étude

Objectifs

- Prise en main et compréhension d'un réseau de neurones artificiels impulsionnels
 - Comprendre l'apprentissage
 - Comprendre l'usage de réseaux
- Utilisation du simulateur de neurones Brian
- Étude de cas : reconnaissance du maximum de trois nombres

Travaux liés

- Bases de neurobiologie
- 2 Réseaux de neurones artificiels
- 3 Application à la vision par ordinateur

Bases de neurobiologie

Figure: Neurone

Figure: Courbe STDP

Réseaux de neurones artificiels

- Classification et généralisation
- Apprentissage
 - supervisé
 - non supervisé
- Différents modèles de fonctionnement

Figure: Exemple de réseau de neurones

Exemple : le modèle Intègre et tire avec fuite

$$\tau \frac{dV}{dt} = -(V(t) - V_S) + I(t)$$
si $V \ge V_t$, alors $V = V_r$

- V(t) le potentiel de membrane du neurone,
- V_S le potentiel de repos en l'absence de courant I,
- V_t le potentiel de décharge,
- V_r le potentiel de retour,
- \bullet τ la constante de temps du neurone.

Application à la vision par ordinateur

• Extraction et apprentissage de trajectoires, Bichler *et al.*, 12 [2]

• Simulation de traitements visuels, Richert *et al.*, 11 [3]

Reconnaissance de chiffres manuscrits,
 Beyeler et al., 13 [1]

Matériel et méthodes

- Brian
- Maximum de trois nombres
- 3 Suivi de l'évolution du réseau
- Méthodologie

Brian

- Simulateur de réseaux neuromorphiques
- Langage Python
- Outil intuitif et flexible
- Utilisation dans le cadre de cours de neurosciences computationnelles de l'ENS

Maximum de trois nombres

Figure: Seconde version du réseau

Figure: Version finale

Suivi de l'évolution du réseau

Figure: Suivi de l'évolution des poids synaptiques avec Brian pour chaque neurone de sortie.

Temps (s) en abscisse.

Poids synaptiques (V) en ordonnée.

Suivi de l'évolution du réseau

Figure: Schéma de répartition des poids synaptiques. Blanc -> poids fort. Noir -> poids faible

Matériel et méthodes

Suivi de l'évolution du réseau (exemple)

Évolution poids

Méthodologie

```
n = 100
Tant que n < 2001:
   i = 0
   réussi = 0
   Tant que i < 100:
      Apprentissage avec n cas par maximum
      Test avec 200 cas par maximum
      Si 100% de reconnaissance:
         réussi += 1
      i += 1
   "réussi% de réussite avec n cas"
   n += 100
Moyenne des % de réussite
```

Maximum de trois nombres

Structure des cas d'apprentissage	Taux de réussite
Par blocs (aaa bbb ccc)	50%
Aléatoire (<i>bacbccaba</i>)	75 à 80%
Par triplets (bac abc acb)	25 à 35%

Figure: Tableau des pourcentages d'apprentissage pour différentes structures d'apprentissage. Une phase de test est réussie si le réseau ne commet aucune erreur.

Reconnaissance d'expressions faciales

- Quelques phases de test
- Différents petits réseaux
- Différentes méthodes pour alimenter le réseau
- Pas de résultats probants mais quelques pistes

Conclusion

- Piste STDP intéressante pour la classification
- Taux convenable d'apprentissage
- Résultats à discuter en cas d'apprentissage non réussi
- Modèles utilisés personnalisés

Perspectives

- Modèle Intègre et tire avec fuite en cours
- Résolution de problèmes 1D
- Reconnaissance d'expressions faciales :
 - Réseau plus grand pour plus de «mémorisation»
 - Première couche plus complexe, spécialisation

Approches neuromorphiques pour la vision par ordinateur Conclusion et perspectives Perspectives

Merci de votre attention

Bibliographie I

- Michael Beyeler, Nikil D. Dutt et Jeffrey L. Krichmar: Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Networks, 48:109–124, décembre 2013.
- Olivier Bichler, Damien Querlioz, Simon J. Thorpe, Jean-Philippe Bourgoin et Christian Gamrat: Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity. Neural Networks, 32:339–348, août 2012.
- Micah Richert, Jayram Moorkanikara Nageswaran, Nikil Dutt et Jeffrey L. Krichmar:
 - An efficient simulation environment for modeling large-scale cortical processing.

Frontiers in Neuroinformatics, 5, 2011.

Bibliographie II