
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Mon May 21 13:24:17 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10587023 Version No: 1.0

Input Set:

Output Set:

Started: 2007-05-17 15:33:58.036 **Finished:** 2007-05-17 15:33:58.574

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 538 ms

Total Warnings: 9
Total Errors: 0

No. of SeqIDs Defined: 21

Actual SeqID Count: 21

Error code		Error Description								
W	213	Artificial on	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial on	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial on	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial on	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial on	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial on	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial on	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial on	Unknown	found	in	<213>	in	SEQ	ID	(21)

SEQUENCE LISTING

<110>	Vereniging Het Nederlands Kanker Instituut
	Bernards, Rene
	Epping, Mirjam
	Wang, Liming
<120>	Combined Use of PRAME Inhibitors and HDAC Inhibitors
<130>	620-445
<140>	10587023
<141>	2007-05-17
<150>	10/587,023
<151>	2006-07-24
<150>	PCT/EP2005/000937
∠151 \	2005-01-27
<131>	2003-01-27
<1.F.O.>	CD 0401076 0
<150>	GB 0401876.8
<151>	2004-01-28
<160>	21
<170>	PatentIn version 3.1
<210>	1
<211>	2067
<212>	DNA
<213>	Homo sapiens

<400> 1

gggaaaccga ctcctgggag cagggaggaa cgcgcgctcc agagacaact tcgcggtgtg 60 gtgaactctc tgaggaaaaa cacgtgcgtg gcaacaagtg actgagacct agaaatccaa 120 180 gcgttggagg tcctgaggcc agcctaagtc gcttcaaaat ggaacgaagg cgtttgtggg 240 gttccattca gagccgatac atcagcatga gtgtgtggac aagcccacgg agacttgtgg agetggeagg geagageetg etgaaggatg aggeeetgge cattgeegee etggagttge 300 360 tgcccaggga gctcttcccg ccactcttca tggcagcctt tgacgggaga cacagccaga ccctgaaggc aatggtgcag gcctggccct tcacctgcct ccctctggga gtgctgatga 420 agggacaaca tetteacetg gagacettea aagetgtget tgatggaett gatgtgetee 480 ttgcccagga ggttcgcccc aggaggtgga aacttcaagt gctggattta cggaagaact 540 600 ctcatcagga cttctggact gtatggtctg gaaacagggc cagtctgtac tcatttccag 660 agccagaagc agctcagccc atgacaaaga agcgaaaagt agatggtttg agcacagagg cagagcagcc cttcattcca gtagaggtgc tcgtagacct gttcctcaag gaaggtgcct 720 gtgatgaatt gttctcctac ctcattgaga aagtgaagcg aaagaaaaat gtactacgcc 780 tgtgctgtaa gaagctgaag atttttgcaa tgcccatgca ggatatcaag atgatcctga 840 900 aaatggtgca gctggactct attgaagatt tggaagtgac ttgtacctgg aagctaccca 960 ccttggcgaa attttctcct tacctgggcc agatgattaa tctgcgtaga ctcctcctct 1020 cccacatcca tgcatcttcc tacatttccc cggagaagga agagcagtat atcgcccagt tcacctctca gttcctcagt ctgcagtgcc tgcaggctct ctatgtggac tctttatttt 1080 teettagagg eegeetggat eagttgetea ggeaegtgat gaaceeettg gaaaceetet 1140 caataactaa ctgccggctt tcggaagggg atgtgatgca tctgtcccag agtcccagcg 1200 1260 teagteaget aagtgteetg agtetaagtg gggteatget gaeegatgta agteeegage ccctccaage tetgetggag agageetetg ccaeceteca ggacetggte tttgatgagt 1320 gtgggatcac ggatgatcag ctccttgccc tcctgccttc cctgagccac tgctcccagc 1380 ttacaacctt aagcttctac gggaattcca tctccatatc tgccttgcag agtctcctgc 1440 1500 agcacctcat cgggctgagc aatctgaccc acgtgctgta tcctgtcccc ctggagagtt 1560 atgaggacat ccatggtacc ctccacctgg agaggcttgc ctatctgcat gccaggctca gggagttgct gtgtgagttg gggcggccca gcatggtctg gcttagtgcc aacccctgtc 1620

ctcact	gtgg	ggacagaacc	ttctatgacc	cggagcccat	cctgtgcccc	tgtttcatgc	1680
ctaact	agct	gggtgcacat	atcaaatgct	tcattctgca	tacttggaca	ctaaagccag	1740
gatgtg	catg	catcttgaag	caacaaagca	gccacagttt	cagacaaatg	ttcagtgtga	1800
gtgagga	aaaa	catgttcagt	gaggaaaaaa	cattcagaca	aatgttcagt	gaggaaaaaa	1860
agggga	agtt	ggggataggc	agatgttgac	ttgaggagtt	aatgtgatct	ttggggagat	1920
acatcti	tata	gagttagaaa	tagaatctga	atttctaaag	ggagattctg	gcttgggaag	1980
tacatg	tagg	agttaatccc	tgtgtagact	gttgtaaaga	aactgttgaa	aataaagaga	2040
agcaato	gtga	aaaaaaaaa	aaaaaaa				2067
<210>	2						
<211>	21						
<212>	DNA						
<213>	Homo	o sapiens					
	2	atgaattgtt	C				21
ggegee	cycy	acgaaccgcc					21
<210>	3						
<211>	68						
<212>	DNA						
<213>	Arti	ificial sequ	uence				
<220>							
<223>	Olio	gonucleotide	9				
<400>	3	agat at ast a	aattgttctt	a22a2a2a2	gaatt gat ga	angan agt t	60
		geergraarg	aactgcccc	caayayayaa	Caattcatca	caygcaccii	
tttgga	ad						68
<210>	4						
<211>	68						

<212> DNA

<220>

<223> Oligonucleotide

<400> 4

agcttttcca aaaaggtgcc tgtgatgaat tgttctctct tgaagaacaa ttcatcacag

60

gcaccggg 68

<210> 5

<211> 509

<212> PRT

<213> Homo sapiens

<400> 5

Met Glu Arg Arg Leu Arg Gly Ser Ile Gln Ser Arg Tyr Ile Ser
1 5 10 15

Met Ser Val Trp Thr Ser Pro Arg Arg Leu Val Glu Leu Ala Gly Gln
20 25 30

Ser Leu Leu Lys Asp Glu Ala Leu Ala Ile Ala Ala Leu Glu Leu Leu 35 40 45

Pro Arg Glu Leu Phe Pro Pro Leu Phe Met Ala Ala Phe Asp Gly Arg 50 55 60

His Ser Gln Thr Leu Lys Ala Met Val Gln Ala Trp Pro Phe Thr Cys 65 70 75 80

Leu Pro Leu Gly Val Leu Met Lys Gly Gln His Leu His Leu Glu Thr
85 90 95

Phe Lys Ala Val Leu Asp Gly Leu Asp Val Leu Leu Ala Gl
n Glu Val 100 \$105\$ 110

Arg Pro Arg Arg Trp Lys Leu Gln Val Leu Asp Leu Arg Lys Asn Ser 115 120 125

His	Gln 130	Asp	Phe	Trp	Thr	Val 135	Trp	Ser	Gly	Asn	Arg 140	Ala	Ser	Leu	Tyr
Ser 145	Phe	Pro	Glu	Pro	Glu 150	Ala	Ala	Gln	Pro	Met 155	Thr	Lys	Lys	Arg	Lys 160
Val	Asp	Gly	Leu	Ser 165	Thr	Glu	Ala	Glu	Gln 170	Pro	Phe	Ile	Pro	Val 175	Glu
Val	Leu	Val	Asp 180	Leu	Phe	Leu	Lys	Glu 185	Gly	Ala	Cys	Asp	Glu 190	Leu	Phe
Ser	Tyr	Leu 195	Ile	Glu	Lys	Val	Lys 200	Arg	Lys	Lys	Asn	Val 205	Leu	Arg	Leu
Cys	Cys 210	Lys	Lys	Leu	Lys	Ile 215	Phe	Ala	Met	Pro	Met 220	Gln	Asp	Ile	Lys
Met 225	Ile	Leu	Lys	Met	Val 230	Gln	Leu	Asp	Ser	Ile 235	Glu	Asp	Leu	Glu	Val 240
Thr	Cys	Thr	Trp	Lys 245	Leu	Pro	Thr	Leu	Ala 250	Lys	Phe	Ser	Pro	Tyr 255	Leu
Gly	Gln	Met	Ile 260	Asn	Leu	Arg	Arg	Leu 265	Leu	Leu	Ser	His	Ile 270	His	Ala
Ser	Ser	Tyr 275	Ile	Ser	Pro	Glu	Lys 280	Glu	Glu	Gln	Tyr	Ile 285	Ala	Gln	Phe
Thr	Ser 290	Gln	Phe	Leu	Ser	Leu 295	Gln	Суз	Leu	Gln	Ala 300	Leu	Tyr	Val	Asp
Ser 305	Leu	Phe	Phe	Leu	Arg 310	Gly	Arg	Leu	Asp	Gln 315	Leu	Leu	Arg	His	Val 320
Met	Asn	Pro	Leu	Glu 325	Thr	Leu	Ser	Ile	Thr 330	Asn	Cys	Arg	Leu	Ser 335	Glu
Gly	Asp	Val	Met 340	His	Leu	Ser	Gln	Ser 345	Pro	Ser	Val	Ser	Gln 350	Leu	Ser

355 360 365
Leu Gln Ala Leu Leu Glu Arg Ala Ser Ala Thr Leu Gln Asp Leu Val 370 375 380
Phe Asp Glu Cys Gly Ile Thr Asp Asp Gln Leu Leu Ala Leu Leu Pro 385 390 395 400
Ser Leu Ser His Cys Ser Gln Leu Thr Thr Leu Ser Phe Tyr Gly Asn 405 410 415
Ser Ile Ser Ile Ser Ala Leu Gln Ser Leu Leu Gln His Leu Ile Gly 420 425 430
Leu Ser Asn Leu Thr His Val Leu Tyr Pro Val Pro Leu Glu Ser Tyr 435 440 445
Glu Asp Ile His Gly Thr Leu His Leu Glu Arg Leu Ala Tyr Leu His 450 455 460
Ala Arg Leu Arg Glu Leu Leu Cys Glu Leu Gly Arg Pro Ser Met Val 465 470 475 480
Trp Leu Ser Ala Asn Pro Cys Pro His Cys Gly Asp Arg Thr Phe Tyr 485 490 495
Asp Pro Glu Pro Ile Leu Cys Pro Cys Phe Met Pro Asn 500 505
<210> 6
<211> 18
<212> PRT
<213> Homo sapiens
<400> 6
Phe Pro Glu Pro Glu Ala Ala Gln Pro Met Thr Lys Lys Arg Lys Val 1 5 10 15

Val Leu Ser Leu Ser Gly Val Met Leu Thr Asp Val Ser Pro Glu Pro

```
<211> 13
<212> PRT
<213> Homo sapiens
<400> 7
Cys Gly Asp Arg Thr Phe Tyr Asp Pro Glu Pro Ile Leu
                                 10
<210> 8
<211> 5
<212> PRT
<213> Homo sapiens
<400> 8
Leu Asp Val Leu Leu
<210> 9
<211> 5
<212> PRT
<213> Homo sapiens
<400> 9
Leu Arg Arg Leu Leu
<210> 10
<211> 5
```

<210> 7

<212> PRT

```
<213> Homo sapiens
```

<400> 10

Leu Asp Gln Leu Leu 1 5

<210> 11

<211> 5

<212> PRT

<213> Homo sapiens

<400> 11

Leu Gln Ala Leu Leu 1 5

<210> 12

<211> 5

<212> PRT

<213> Homo sapiens

<400> 12

Leu Leu Ala Leu Leu 1 5

<210> 13

<211> 5

<212> PRT

<213> Homo sapiens

<400> 13

Leu Gln Ser Leu Leu 1 5

```
<210> 14
<211> 5
<212> PRT
<213> Homo sapiens
<400> 14
Leu Arg Glu Leu Leu
<210> 15
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> PRAME-deltaLXXLL mutant
<400> 15
Leu Asp Val Val Val
<210> 16
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> PRAME-deltaLXXLL mutant
<400> 16
Val Arg Arg Leu Leu
```

```
<210> 17
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> PRAME-deltaLXXLL mutant
<400> 17
Leu Asp Gln Val Val
<210> 18
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> PRAME-deltaLXXLL mutant
<400> 18
Val Gln Ala Leu Leu
<210> 19
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> PRAME-deltaLXXLL mutant
<400> 19
```

Leu Leu Ala Val Val

1 5

<210> 20

<211> 5

<212> PRT

<213> Artificial sequence

<220>

<223> PRAME-deltaLXXLL mutant

<400> 20

Leu Gln Ser Val Val

<210> 21

<211> 5

<212> PRT

<213> Artificial sequence

<220>

<223> PRAME-deltaLXXLL mutant

<400> 21

Leu Arg Glu Val Val