Lezione_01

Problema computazionale

Un problema computazionale è costituito da

- ullet un insieme I di istanze (i $possibili\ input)$
- ullet un insieme S di soluzioni (i possibili output)
- una relazione Π che a ogni istanza $i \in I$ associa una o più soluzioni $s \in S$

Osservazione

 Π è un sottoinsieme del prodotto cartesiano I imes S

Esempi

```
Somma di Interi (\mathbb{Z})

• \mathcal{I} = \{(x,y) : x,y \in Z\};

• \mathcal{S} = Z;

• \Pi = \{((x,y),s) : (x,y) \in \mathcal{I}, s \in \mathcal{S}, s = x + y\}.

Ad es: ((1,9),10) \in \Pi; ((23,6),29) \in \Pi ((13,45),31) \not\in \Pi
```

Osservazioni

- Istanze diverse possono avere la stessa soluzione (come la somma)
- Un'istanza può avere diverse soluzioni (come l'ordinamento ver. 2)

Esercizi

Algoritmo e modello di calcolo

Definizione

Un algoritmo procedura computazionale ben definita che trasforma un dato input in un output eseguendo una sequenza finita di operazioni elementari.

L'algoritmo fa riferimento a un *modello di calcolo*, ovvero un'astrazione di computer che definisce l'insieme di operazioni elementari.

Le operazioni elementari sono: assegnamento, operazioni logiche, operazioni aritmetiche, indicizzazione di array, return di un valore da parte di un metodo, ecc.

Modello di calcolo RAM (Random Access Machine)

In questo modello input, output, dati intermedi (e il programma) si trovano in memoria.

Un algoritmo A risolve un problema computazionale $\Pi \subseteq I \times S$ se:

- 1. A calcola una funzione da I a S e quindi,
 - ullet riceve come input istanze $i\in I$
 - ullet produce come output soluzioni $s\in S$
- 2. Dato $i\in I$, A produce in output sinS tale che $(i,s)\in\Pi$. Se Π associa più soluzioni a una istanza i, per tale istanza A ne calcola una (quale, dipende da come è stato progettato).