STOR 415, Fall 2019 Solutions to Homework Assignment No. 9

2. (a) Let x_{ij} denote the amount to ship from city i to j, $(i, j) \in A$, where $A = \{(B, C), (B, A), (B, L), (R, C), (R, A), (R, L), (C, A), (C, L)\} \subset N \times N$, and $N = \{B, R, C, A, L\}$. Let c_{ij} be the corresponding shipping cost. The net supply is s = (400, 300, 0, -300, -400). The mathematical formulation is:

$$\min \sum_{(i,j)\in A} c_{ij}x_{ij},$$
s.t.
$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = s_i, \quad i \in N,$$

$$0 \le x_{ij} \le 200, \quad (i,j) \in A.$$

The graph is:

2. (b) The optimal solution is

		To	
From	Chicago	Austin	Los Angeles
Boston	200	200	0
Raleigh	0	100	200
Chicago	-	0	200

The minimal cost: \$118,000.

2. (**c**) Graph:

2. (d) The optimal solution:

То								
From	Chicago	Chicago2	Austin	Los Angeles				
Boston	100	-	200	100				
Raleigh	0	-	100	200				
Chicago	-	100	-	-				
Chicago2	-	-	0	100				

The minimal cost: \$133000.

3. (a) Add a dummy city with demand 2 (or equivalently, net supply -2). Let x_{ij} denote the amount to ship from city i to j, $(i, j) \in A$, where $A = \{(L, D), (L, H), (S, D), (S, H), (D, N), (D, C), (H, N), (H, C), (L, dummy), (S, dummy)\} \subset N \times N$, and $N = \{L, S, D, H, N, C\}$. Let c_{ij} be the corresponding unit shipping cost. If j has a refinery, then c_{ij} includes the refining cost. The net supply s = (4, 5, 0, 0, -4, -3, -2). The mathematical formulation is:

$$\min \sum_{(i,j)\in A} c_{ij}x_{ij},$$
s.t.
$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = s_i, \quad i\in N,$$

$$x_{ij} \ge 0, \quad (i,j)\in A.$$

The graph is:

3. (a) The optimal solution is:

	То						
From	Dallas	Houston	New York	Chicago	dummy		
Los Angeles	3	0	-	-	1		
San Diego	0	4	-	-	1		
Dallas	-	-	3	0	-		
Houston	-	-	0	4	-		

The optimal value: \$10470.