EXAMEN 2 DE RG

Fecha límite de entrega: POR DETERMINAR. Examen INDIVIDUAL..

- 1. Escribe tu nombre completo.
- 2. Sea el tensor $A_{\mu\nu}=A_{\nu\mu}$ cuya componente $A_{00}=0$ en todos los sistemas inerciales. Sea V^μ un vector temporaloide arbitrario. Calcule: $A_{\mu\nu}V^\mu V^\nu$.
- 3. La definición del tensor electromagnético, que es antisimétrico, es: $F^{0i}=E^i$ y $F^{xy}=B^z$, $F^{zx}=B^y$ y $F^{yz}=B^x$, donde E^i y B^i son las componentes cartesianas de los campos eléctrico y magnético. Defina el dual del tensor electromagnético $\tilde{F}^{\mu\nu}$ por el siguiente intercambio de los campos: $\mathbf{B}\to\mathbf{E}$ and $\mathbf{E}\to-\mathbf{B}$. Calcule: $\tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu}$.
- 4. La definición del tensor electromagnético, que es antisimétrico, es: $F^{0i}=E^i$ y $F^{xy}=B^z$, $F^{zx}=B^y$ y $F^{yz}=B^x$, donde E^i y B^i son las componentes cartesianas de los campos eléctrico y magnético. Defina el dual del tensor electromagnético por el siguiente intercambio de los campos: ${\bf B} \to {\bf E}$ and ${\bf E} \to {\bf B}$. Calcule: $F_{\mu\nu}\tilde{F}^{\mu\nu}$.
- 5. La definición del tensor electromagnético, que es antisimétrico, es: $F^{0i} = E^i$ y $F^{xy} = B^z$, $F^{zx} = B^y$ y $F^{yz} = B^x$, donde E^i y B^i son las componentes cartesianas de los campos eléctrico y magnético. Defina el dual del tensor electromagnético por el siguiente intercambio de los campos: $\mathbf{B} \to \mathbf{E}$ and $\mathbf{E} \to -\mathbf{B}$. Calcule: $\tilde{F}^{\mu\nu}_{,\nu} = 0$.
- 6. Para el tensor de energía-esfuerzos: $T^{\mu\nu}=\frac{1}{4\pi}\left(F^{\mu\lambda}F^{\nu}{}_{\lambda}-\frac{1}{4}\eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}\right),$ ¿cuál es el resultado de $T^{\mu}{}_{\mu}$ =?
- 7. Para el tensor de energía-esfuerzos: $T^{\mu\nu}=\frac{1}{4\pi}\left(F^{\mu\lambda}F^{\nu}{}_{\lambda}-\frac{1}{4}\eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}\right),$ ¿cuál es el resultado de $T^{\mu}{}_{\alpha}T^{\alpha}{}_{\mu}$ =?
- 8. Sea la métrica espacial $g_{\ell m} = {\rm diag}(1, \sin^2 r, \sin^2 r \sin^2 \theta)$, donde las coordenadas del espacio son r, θ y ϕ . ¿Cuáles de los siguientes símbolos de Christoffel es correcto?
- 9. Sea $B_{\mu\nu}$ un tensor arbitrario. ¿Qué condiciones debe cumplir el tensor $B_{\mu\nu}$ para que el siguiente resultado sea válido $B_{\mu\nu;\alpha}+B_{\nu\alpha;\mu}+B_{\alpha\mu;\nu}=B_{\mu\nu,\alpha}+B_{\nu\alpha,\mu}+B_{\alpha\mu,\nu}$?
- 10.Sea B_μ un vector arbitrario. ¿Qué condiciones debe cumplir el vector B_μ para que el siguiente resultado sea válido $B_{\mu;\alpha}-B_{\alpha;\mu}=B_{\mu,\alpha}-B_{\alpha,\mu}$?