

Introdução à Inteligência Artificial

2024-2025

Questões Sobre Agentes Aprendizes - Simbólica

Perguntas Teóricas

Abordagem Simbólica

- 1. Comente as seguintes afirmações:
 - a. "O algoritmo de aprendizagem eliminação de candidatos, baseado no conceito de espaço de versões, é um algoritmo robusto, no sentido de se adaptar bem à ausência de informação nalguns exemplos ou à sua deficiente classificação.";
 - b. "O algoritmo de aprendizagem computacional conhecido por eliminação de candidatos permite convergir sempre para a solução desde que o número de exemplos seja suficientemente grande.";
 - c. "Os agentes aprendizes baseados no algoritmo de eliminação de candidatos ou em árvores de decisão (ID3) resolvem o mesmo tipo de problemas.";
 - d. "Se o primeiro exemplo fornecido ao algoritmo de eliminação de candidatos for negativo o algoritmo nunca pode aprender correctamente.";
 - e. "O algoritmo de eliminação de candidatos não consegue aprender conceitos disjuntivos.";
 - f. "No algoritmo de Eliminação de Candidatos a ordem pela qual os exemplos são apresentados é irrelevante.";
 - g. "E possível utilizar o algoritmo de Eliminação de Candidatos para dividir exemplos classificados em mais do que duas classes.";
 - h. "Seja um problema de classificação caracterizado por dois atributos binários, X1 e X2, definido pela tabela que se segue. Um algoritmo de aprendizagem que utilize uma árvore de decisão pode aprender a discriminar as duas classes."

X_1	X_2	Classe
0	0	A
0	1	В
1	0	В
1	1	A

2. Descreva de forma simples, mas rigorosa, a arquitectura de um agente aprendiz baseado num sistema classificador.

© Ernesto Costa, Penousal Machado, João Correia, Nuno Lourenço, Tiago Martins, Tiago Baptista, Sérgio Rebelo, Pedro Silva, Luís Gonçalo, João Macedo 2008-2024

- 3. Como sabemos o algoritmo ID3 constrói uma árvore de decisão a partir de um conjunto de elementos classificados. A construção da árvore baseia-se na escolha do atributo mais discriminante por recurso à noção de ganho informativo. ID3 está adaptado para distinguir entre duas classes de exemplos. Acontece que o algoritmo lida com classes cujos valores são discretos. Em que medida pode ser alargado de modo a poder lidar com valores contínuos?
- 4. O ID3 está adaptado para distinguir entre duas classes de exemplos. Em que medida pode ser alargado a mais do que duas classes? Se acha que sim apresente de modo rigoroso a sua solução. Se acha que não justifique de modo convincente.
- 5. Que soluções preconizaria para o caso de no algoritmo de eliminação de candidatos existirem valores de alguns atributos não definidos? Das soluções apresentadas qual lhe parece a melhor?
- 6. Defina de modo sintético mas rigoroso a eliminação de candidatos.
- 7. Diga o que entende por sistema classificador.
- 8. Explique como poderia adaptar o algoritmo ID3 para poder funcionar mesmo em situações em que alguns exemplos têm alguns valores dos atributos não definidos.

Perguntas Teórico-Práticas

Abordagem Simbólica

1. Considere a tabela seguinte:

Operador	Máquina	Tempo+	Classe
Ernesto	a	não	alto
Ernesto	b	sim	baixo
João	b	sim	baixo
Ernesto	b	não	alto
Anabela	c	não	alto
João	c	não	baixo
João	c	não	baixo
Ernesto	a	\sin	baixo

Admitindo que pretendemos descriminar entre as classes Alto e Baixo, use o algoritmo ID3 para construir a respectiva árvore de decisão. Mas atenção: apenas se pretende que construa o primeiro nível da árvore, isto é, que calcule o primeiro atributo mais descriminante e mostre a árvore resultante.

2. Considere um universo no qual os objectos são definidos com base em quatro atributos e respectivos valores:

© Ernesto Costa, Penousal Machado, João Correia, Nuno Lourenço, Tiago Martins, Tiago Baptista, Sérgio Rebelo, Pedro Silva, Luís Gonçalo, João Macedo 2008-2024

- Peso = {leve, moderado, pesado}
- Cor-cabelo = {louro, castanho, ruivo}
- Sexo = {masculino, feminino}
- Idade ={bebé, criança, adulto}

Se fossem fornecidos ao algoritmo de eliminação de candidatos os seguintes exemplos classificados:

```
ex-posit-1 = <leve, masculino, bebé, ruivo, +>
ex-posit-2 = <leve, feminino, bebé, louro, +>
ex-nega-1 = <moderado, feminino, adulto, louro, ->
ex-posit-3 = <leve, feminino, bebé, louro, +>
ex-posit-4 = <pesado, feminino, bebé, ruivo, +>
ex-nega-2 = <moderado, masculino, criança, castanho, ->
```

Como evolui o espaço de versões até chegar ao resultado final?

3. Considere a tabela:

Número	Estatuto	Depart.	Dim.Gab.	Caixote Lixo
1	prof	inf	grande	não
2	func	inf	pequeno	não
3	prof	electro	médio	sim
4	aluno	inf	grande	sim
5	func	inf	médio	não
6	prof	electro	grande	\sin

Admita que ela contém dados que ajudam um robot de limpeza a aprender se um dado gabinete tem ou não um caixote do lixo. Admitindo que o robot se socorre do algoritmo ID3, diga, justificando a sua resposta com base na teoria da informação¹, qual a árvore de decisão a que chegaria o robot. Com base na árvore quais as regras que o robot passaria a utilizar?

- 4. Suponha que quer desenvolver um sistema que seja capa de distinguir homens de mulheres baseado apenas em dois atributos:
 - Veste = {calças, saias}

¹ Por teoria da informação entende-se o uso das noções de entropia e ganho para seleccionar os atributos mais discriminantes.

[©] Ernesto Costa, Penousal Machado, João Correia, Nuno Lourenço, Tiago Martins, Tiago Baptista, Sérgio Rebelo, Pedro Silva, Luís Gonçalo, João Macedo 2008-2024

Tem barba = {sim, não}

Admita que possui uma amostra com 12000 homens e 12000 mulheres com as seguintes características:

- Dois terços dos homens têm barba;
- Metade das mulheres usa saia;
- Nenhuma mulher tem barba:
- Nenhum homem usa saia.
- a. Use o algoritmo ID3 para construir uma árvore de decisão. Não se esqueça de calcular com rigor os atributos mais discriminantes.
- b. Em face do resultado anterior como seria classificada uma pessoa sem barba e com calças? Caso exista algum problema com a classificação como procederia?
- 5. Considere a seguinte sequência de exemplos de treino (positivos + e negativos -):

(<masculino, castanho, alto, americano>,<feminino, preto, baixo, americano>) [+]
(<masculino, castanho, baixo, francês>,<feminino, preto, baixo, americano>) [+]
(<feminino, castanho, alto, alemã>,<feminino, preto, baixo, indiano>) [-]
(<masculino, castanho, alto, irlandês>,<feminino, castanho, baixo, irlandês>) [+]

que pretendem descrever pares de pessoas que vivem na mesma casa. Os atributos e respectivos valores são:

- Sexo = {masculino, feminino}
- Cor de Cabelo = {preto, castanho, louro}
- Altura = {alto, normal, baixo}
- Nacionalidade = {americana, francesa, alemã, irlandesa, indiana, portuguesa}

Simule o algoritmo de eliminação de candidatos para a sequência de exemplos apresentada. Note que cada exemplo de treino descreve um par ordenado!

6. Suponha que pretende ensinar um conceito a uma agente apresentando-lhe cenas (exemplos) classificadas. Admita que as cenas são as figuras que se seguem.

Diga, justificando, que tipo de arquitectura de agente aprendiz utilizaria. Mostre, rigorosamente, como o seu agente chegaria ao resultado final. Lembre-se que terá que encontrar uma forma adequada de descrever as cenas.

7. Considere o seguinte conjunto de exemplos de treino dados a um agente aprendiz:

Exemplo	Cor	Forma	Tamanho	Classe
1	vermelho	quadrado	grande	+
2	azul	quadrado	grande	+
3	vermelho	círculo	pequeno	-
4	verde	quadrado	pequeno	-
5	vermelho	círculo	grande	+
6	verde	quadrado	grande	-

Apresente e justifique a árvore de decisão obtida por aplicação do algoritmo ID3.

8. Considere os seguintes exemplos que permitem determinar em que condições nos podemos divertir ou não.

Exemplo	País	Estação	Tipo	Duração	Classe
1	Itália	verão	repouso	2	+
2	Itália	inverno	desporto	1	+
3	Áustria	inverno	cultura	1	-
4	Áustria	inverno	repouso	3	-
5	Áustria	inverno	desporto	1	+
6	Portugal	verão	repouso	3	+
7	Portugal	verão	desporto	2	+
8	Portugal	inverno	repouso	2	-

Opte justificadamente pela arquitectura de agente aprendiz que lhe parecer mais conveniente para determinar as duas classes (diversão, não diversão) e apresente como chegou ao resultado da aprendizagem.

9. Considere o seguinte conjunto de exemplos de treino dados a um agente aprendiz:

Exemplo	Restaurante	Refeição	Dia	Custo	Reacção
1	O Polvo	Peq. Almoço	Sexta	Barato	Doente
2	O Gordo	Almoço	Sexta	Caro	OK
3	O Polvo	Almoço	Sábado	Barato	Doente
4	O Magro	Peq. Almoço	Domingo	Barato	OK
5	O Polvo	Peq. Almoço	Domingo	Caro	OK

Considerando como positiva a classe "Doente" simule o comportamento do algoritmo de eliminação de candidatos.

10. Considere o seguinte conjunto de exemplos de treino dados a um agente aprendiz:

Exemplo	Operador	Máquina	Atraso	Resultado
1	Ernesto	A	Não	Alto
2	Ernesto	В	Sim	Baixo
3	João	В	Sim	Baixo
4	Ernesto	В	Não	Alto
5	Patrícia	С	Não	Alto
6	João	С	Não	Baixo
7	João	С	Não	Baixo
8	Ernesto	A	Sim	Baixo

Utilizando o agente aprendiz que lhe pareça mais conveniente determine os instrumentos de separação das duas classes "Alto" e "Baixo".

11. A tabela seguinte classifica equipas de futebol que já foram campeãs da Europa e as condições em que o foram.

País	Vitórias	Idade	Ranking	Campeão
Alemanha	30	27	Alto	Sim
Dinamarca	15	29	Baixo	\mathbf{Sim}
França	25	30	Médio	\mathbf{Sim}
Irlanda	10	24	Baixo	Não
Itália	25	28	Médio	\mathbf{Sim}
Portugal	12	25	Médio	Não
Holanda	15	27	Médio	\mathbf{Sim}

Pelo método que achar mais conveniente, mas justificado, determine a regra que faz de uma equipa campeã. Nota: O tratamento dos valores numéricos pode ser feito por um processo de discretização.

12. Considere os exemplos presentes na seguinte tabela:

[©] Ernesto Costa, Penousal Machado, João Correia, Nuno Lourenço, Tiago Martins, Tiago Baptista, Sérgio Rebelo, Pedro Silva, Luís Gonçalo, João Macedo 2008-2024

Ex#	Equipa	Competição	Resultado	Classe
1	Benfica	L	Vitória	+
2	Porto	L	Derrota	+
3	Sporting	CL	Empate	+
4	Benfica	CL	Empate	-
5	Porto	L	Derrota	-
6	Benfica	CL	Vitória	+

Aplique o ID3 de forma rigorosa e indique qual a regra de pertença à classe positiva.

13. Considere a seguinte tabela de exemplos:

Exemplo	Cor	Peça	Padrão	Classe
1	Fúchsia	Camisa	Floral	+
2	Fúchsia	Camisa	Cornucópias	+
3	Mostarda	T-shirt	Cornucópias	-
4	Mostarda	T-shirt	Lisa	+
5	Mostarda	Camisa	Cornucópias	+
6	Fúchsia	T-shirt	Cornucópias	-
7	Fúchsia	Camisa	Lisa	-

Aplique o ID3 de forma rigorosa e indique qual a regra de pertença à classe positiva.

14. A tabela que se segue mostra um conjunto classificado de exemplos positivos (POS) e negativos (NEG) para uma situação de doença alérgica em função de três atributos (A,B,C) que podem assumir dois valores: presentes (S) ou ausentes (N).

Exemplo	A	В	C	CLASSE
1	N	S	N	POS
2	N	S	S	POS
3	N	S	N	POS
4	S	S	S	POS
5	S	S	N	NEG
6	N	N	S	NEG
7	S	N	N	NEG
8	N	N	S	NEG

Utilizando o algoritmo ID3 (árvores de decisão) determine com rigor qual o atributo mais determinante para o nó raiz da árvore.

- 15. Durante as aulas apresentámos o algoritmo de eliminação de candidatos usando um exemplo que envolvia a decisão de fazer ou não desporto. Cada exemplo envolvia a
- © Ernesto Costa, Penousal Machado, João Correia, Nuno Lourenço, Tiago Martins, Tiago Baptista, Sérgio Rebelo, Pedro Silva, Luís Gonçalo, João Macedo 2008-2024

caracterização das condições atmosféricas num dado dia através dos atributos: céu (limpo, com nuvens, frio), temperatura do ar (quente, frio), humidade (normal, alta), vento (forte, fraco), temperatura da água (quente, fria) e previsão meteorológica (mantém, muda). Qual a sequência mínima de exemplos para se alcançar a situação:

E: {< ?, Quente, Normal, Forte, Fria, ? >}

G: {< ?, ?, Normal, Forte ?,? >}

16. Considere os exemplos classificados da tabela que se segue.

Ex#	Atrib 1	Atrib 2	Atrib 3	Classe
1	b	d	c	A
2	c	d	b	В
3	c	a	c	A
4	b	a	b	В
5	a	b	a	A
6	a	b	a	В
7	d	c	c	A

Mostre, com rigor, como utiliza a Regra de Quinlan para encontrar o atributo mais discriminante.

17. Suponha que tem um problema para classificar objectos que se dividem por duas classes. A classificação é feita com base nos valores de dois atributos, sendo que cada um deles toma valores no intervalo [0; 1]. A figura ilustra o caso concreto que queremos trabalhar, com 13 exemplos, 6 da classe preto e 7 da classe branco. Cada um deles é caracterizado por dois atributos, X e Y. Assim, o exemplo 5 é definido por <X=0.6, Y= 0.4, classe = branco>.

Diga, efectuando os cálculos, como poderia usar o algoritmo ID3 para separar as duas classes.

18. Como sabemos o Sporting Clube de Portugal foi campeão e o seu capitão, Seba Coates, teve um papel fundamental na conquista do título. Utilize os seus conhecimentos de IA para determinar quando é que o Coates marca golos. Aplique de forma rigorosa o ID3 com os exemplos que se seguem, desenhando a arvora de decisão e escrevendo a regra de pertença do momento em que o Coates Marca golos.

Exemplo	Resultado Actual	Tempo de Jogo	Livre	Golo
1	Vitória	Descontos	Canto	Não
2	Derrota	1 ^a Parte	Livre	Não
3	Empate	2 ^a Parte	Livre	Não
4	Empate	Descontos	Livre	Sim
5	Derrota	2 ^a Parte	Livre	Sim
6	Vitória	Descontos	Canto	Não
7	Derrota	Descontos	Canto	Sim

$log_2(n/d)$		n						
		1	2	3	4	5	6	7
	1	-						
	2	-1.00	-					
	3	-1.58	-0.58	-				
d	4	-2.00	-1.00	-0.42	-			
	5	-2.32	-1.32	-0.74	-0.32	-		
	6	-2.58	-1.58	-1.00	-0.58	-0.26	-	
	7	-2.81	-1.81	-1.22	-0.81	-0.49	-0.22	-

© Ernesto Costa, Penousal Machado, João Correia, Nuno Lourenço, Tiago Martins, Tiago Baptista, Sérgio Rebelo, Pedro Silva, Luís Gonçalo, João Macedo 2008-2024

19. Como sabe o DEI tem alunos de vários cursos. Aplique de forma rigorosa o ID3 com os exemplos que se seguem, desenhando a arvora de decisão e escrevendo a regra de pertença de uma aluno a um determinado curso.

Example	Sex	Type	Color	Course
1	M	Arial	Purple	LEI
2	M	Helvetica	Aubergine	LDM
3	\mathbf{F}	Verlag	Purple	LDM
4	\mathbf{F}	Verlag	Aubergine	LDM
5	\mathbf{F}	Arial	Aubergine	LEI
6	M	Helvetica	Purple	LEI
7	\mathbf{F}	Arial	Aubergine	LEI

20. Sabemos que é difícil escolher os jogadores para o 11 inicial da seleção nacional. Aplique o ID3 de forma rigorosa de maneira a ajudar ao Mister Roberto Martinez a escolher os jogadores para o 11 inicial.

Example	Agent	Championship	Beard	Starter
1	Mendes	Portugal	No	Y
2	Mendes	Saudi Arabia	Yes	Y
3	Mendes	Saudi Arabia	No	Y
4	Other	Saudi Arabia	Yes	N
5	Other	Saudi Arabia	No	N
6	Mendes	England	Yes	Y
7	Other	England	Yes	Y

21. Este foi um ano conturbado no futebol profissional português. Todos os dias assistimos a programas de ``especialistas" a comentarem as decisões do Vídeo Árbitro (VAR) sobre existência (ou não) de penalti a favor de uma equipa. Como está cansado de todo este clima, e é um especialista em Inteligência Artificial, decidiu utilizar os seus conhecimentos para auxiliar o VAR. Para isso tem acesso a um conjunto de exemplos com as seguintes características: Cor da Camisola, Jogo, e Prova. Tem ainda informação se nesse jogo houve uma situação de grande penalidade.

Exemplo	Cor Camisola	Jogo	Prova	Penalti?
1	Vermelho	Fora	Campeonato	Sim
2	Azul	Fora	Campeonato	Sim
3	Vermelho	Casa	Taça	Não
4	Verde	Casa	Campeonato	Não
5	Vermelho	Fora	Taça	Sim
6	Verde	Fora	Campeonato	Não