人的重识别

郭琦鹏

qpguo12@fudan.edu.cn

重识别是一个怎样的问题?

zero-shot one-shot multi-shot

zero-shot: 没有目标的照片,只有描述信息(戴帽子,戴眼镜,身材,性别等)

• 目标检索

one-shot: 只有一张目标的照片

• 目标检索

multi-shot: 拥有多张目标照片

。跨摄像头跟踪

最基本的问题——身份匹配

人是如何来判断同一个人的?

- 衣服颜色 底层的视觉特征
- 身材,性别 形状及与生物学相关的特征
- 背包,眼镜,帽子,手提包具有强烈先验知识的中层特征
- 衣服的细节 纹理特征......
- 走路的姿势 步态特征

衣服的颜色

身材

Hog ≠ 身材

中层特征

细节

细节 Vs. 中层特征

鸟或赤红山椒鸟?

流程

最简单的方法

两种思路

•寻找关键的区域(找重点)

•从特征入手(提高表达能力)

只有3个

更多的信息(颜色)

混淆

关注重点(头发 鞋子)

symmetry-driven accumulation of local features (SDALF)

symmetry-driven accumulation of local features (SDALF)

$$i_{TL} = \underset{i}{\operatorname{argmin}} (1 - C(i, \delta)) + S(i, \delta)$$

$$i_{HT} = \underset{i}{\operatorname{argmin}} (-S(i, \delta))$$

C pixel level S region level

Weighted Color Histograms (WCH)

Maximally Stable Color Regions (MSCR)

Figure 3. Illustration of evolution used in colour MSER detector. Left to right, top to bottom: $d_{\rm thr}=0.0065,\,0.011,\,0.023,\,0.038.$ Each region is painted in a different, random colour.

Recurrent High-Structured Patches(RHSP)

Articulated Appearance Matching

HOG+LDA Histogram of oriented gradients Linear discriminant analysis

Pose Estimation(PS)

Attributes-Based Re-identification

Table 5.1 Our attribute ontology for re-identification

Redshirt	Blueshirt	Lightshirt
Darkshirt	Greenshirt	Nocoats
Not light dark jeans colour	Dark bottoms	Light bottoms
Hassatchel	Barelegs	Shorts
Jeans	Male	Skirt
Patterned	Midhair	Darkhair
Bald	Has handbag carrier bag	Has backpack

Attributes-Based Re-identification

Attributes-Based Re-identification

Support vector machine (SVM)

Mid-level Filters

Mid-level Filters

Rank SVM

Linear SVM

 $a>b \rightarrow a-b>0$, b-a<0 \rightarrow pos: a-b neg: b-a

框架梳理

总结

•人重识别的任务

•人是如何解决的

•两种思路(更有效的特征与特征中的更有效的部分)

现有难题

色调相似,细节不同

没有充分利用视频的信息

- 跟踪提供的同一人的多张图像
- 步态信息

Person Re-Identification Gong, S., Cristani, M., Yan, S., Loy, C.C. (Eds.) 2014, Springer

Chapter 3 SDALF

Chapter 5 Attributes-based

Chapter 7 Articulated Appearance

Learning Mid-level Filters for Person Re-Identfiation,

R. Zhao, W. Ouyang and X. Wang.

IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

Unsupervised Salience Learning for Person Re-Identification,

R. Zhao, W. Ouyang and X. Wang.

IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

Maximally stable colour regions for recognition and matching.

Forssén, P.E

In: IEEE Conference on Computer Vision and Pattern Recognition (2007)

谢谢!

Our Project

in your carrier watch the delito video drilline prease click field to downlo

Quick Start

download data/ \$make \$./fudanvlideo_demo

omap.fudan.edu.cn/fvas