C335 Computer Structures

ALU Design (I)

Dr. Liqiang Zhang

Department of Computer and Information Sciences

The Design is to Represent

(1) Functional Specification

Inputs: 2 x 16 bit operands- A, B; 1 bit carry input- Cin, 3 bit mode/function.

Outputs: 1 x 16 bit result- S; 1 bit carry output- Co.

Operations: SLT, ADD (A plus B plus Cin), SUB (A minus B

minus Cin), AND, XOR, OR, COMPARE (equality)

Performance: left unspecified for now!

(2) Block Diagram

Understand the data and control flows

Indiana University South Bend C335 Computer Structures

Review: Two's Complement Arithmetic

Decimal	Binary	Decimal	2's Complement
0	0000	0	0000
1	0001	-1	1111
2	0010	2_	_1110_
3	0011	-3	1101
4	0100	-4	1100
5	0101	5	_1011_
6	0110	6_	_1010_
7	0111	-7	1001
		-8	1000

Examples: 7 - 6 = 7 + (-6) = 1 3 - 5 = 3 + (-5) = -2

$$3 - 5 = 3 + (-5) = -2$$

Block Diagram of the ALU

- ALU Control Lines (ALUop)
 - 000
 - 001
 - 010
 - 110
 - 111

Function

And

Or

Add

Subtract

Set-on-less-than

4 Hardware Building Blocks

■ AND gate (c = a • b)

OR gate (c = a + b)
$$a \rightarrow c$$

- □ Inverter (c = a')

 a →
- □ Multiplexer if d==0, c=a; otherwise c= b $\stackrel{a}{b}$ $\stackrel{0}{\longrightarrow}$ $\stackrel{0}{\longrightarrow}$ c

a	b	c = a • b
0	0	0
1	0	0
0	1	0
1	1	1

a	b	c = a + b
0	0	0
1	0	1
0	1	1
1	1	1

a	c = a'
0	1
1	0

c	
a	
b	

A One Bit ALU

□ This 1-bit ALU will perform AND, OR, and ADD

Review: A One-bit Full Adder

□ 1 bit full adder: a switching circuit which add together two binary digits (bits), and a third bit called a CarryIn bit which may have come from a previous full adder.

Inputs			Outp	uts	
A	В	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0+0+0=00
0	0	1	0	1	0+0+1=01
0	1	0	0	1	0+1+0=01
0	1	1	1	0	0+1+1=10
1	0	0	0	1	1 + 0 + 0 = 01
1	0	1	1	0	1 + 0 + 1 = 10
1	1	0	1	0	1+1+0=10
1	1	1	1	1	1 + 1 + 1 = 11

C335 Computer Structures

Review: A One-bit Full Adder

- Sum = A ⊕ B ⊕ CarryIn
- □ CarryOut = B CarryIn + A CarryIn + A B

C335 Computer Structures Liqiang Zhang Indiana University South Bend

1-bit ALU

4-bit ALU

How About Subtraction?

- Keep in mind the followings:
 - (A B) is the that as: A + (-B)
 - 2's Complement: Take the inverse of every bit and add 1
- □ Bit-wise inverse of B is B':

$$\bullet$$
 A + B' + 1 = A + (B' + 1) = A + (-B) = A - B

Overflow

S	

Decimal	Binary	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	

Decimal	2's Complement
0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

□ Examples: 7 + 3 = 10 but ...

$$-4 - 5 = -9$$
 but ...

Overflow Detection

- Overflow: the result is too large (or too small) to represent properly
 - Example: 8 < = 4-bit binary number <= 7
- Can overflow happen when adding operands with different signs?
- Overflow occurs when adding:
 - 2 positive numbers and the sum is negative
 - 2 negative numbers and the sum is positive
- Exercise: Prove you can detect overflow by:
 - Carry into MSB! = Carry out of MSB

Overflow Detection Logic

- □ Carry into MSB! = Carry out of MSB
 - For a N-bit ALU: Overflow = CarryIn[N 1] XOR CarryOut[N 1]

Zero Detection Logic

- \Box A = B is the same as A B = 0
- Zero Detection Logic is just a one BIG NOR gate
 - Any non-zero input to the NOR gate will cause its output to be zero

The Disadvantage of Ripple Carry

- The adder we just built is called a "Ripple Carry Adder"
 - The carry bit may have to propagate from LSB to MSB
 - Worst case delay for a N-bit adder: 2N-gate delay

Carry Select Header

- Consider building a 8-bit ALU
 - Simple: connects two 4-bit ALUs in series

Carry Select Header (Continue)

Consider building a 8-bit ALU

Expensive but faster: uses three 4-bit ALUs

A[3:0]

The Theory Behind Carry Lookahead

- □ Recall: CarryOut = (B CarryIn) + (A CarryIn) + (A B)
 - Cin2 = Cout1 = (B1 Cin1) + (A1 Cin1) + (A1 B1)
 - Cin1 = Cout0 = (B0 Cin0) + (A0 Cin0) + (A0 B0)
- Substituting Cin1 into Cin2:
 - Cin2 = (A1 A0 B0) + (A1 A0 Cin0) + (A1 B0 Cin0) + (B1 A0 B0)
 + (B1 B0 Cin0) + (B1 A0 Cin0) + (A1 B1)
- Now define two new terms:
 - Generate Carry at Bit i
 gi = Ai Bi
 - Propagate Carry via Bit i pi = Ai + Bi

The Theory Behind Carry Lookahead (Continue)

Using the two new terms we just defined:

- Generate Carry at Bit i
 gi = Ai Bi
- Propagate Carry via Bit i pi = Ai + Bi

We can rewrite:

- Cin1 = $g0 + (p0 \cdot Cin0)$
- Cin2 = g1 + (p1 g0) + (p1 p0 Cin0)
- Cin3 = $g2 + (p2 \cdot g1) + (p2 \cdot p1 \cdot g0) + (p2 \cdot p1 \cdot p0 \cdot Cin0)$

Carry going into bit 3 is 1 if

- We generate a carry at bit 2 (g2)
- Or we generate a carry at bit 1 (g1) and bit 2 allows it to propagate (p2 & g1)
- Or we generate a carry at bit 0 (g0) and
 bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)
- Or we have a carry input at bit 0 (Cin0) and bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)

The Theory Behind Carry Lookahead (Continue)

A Partial Carry Lookahead Adder

- It is very expensive to build a "full" carry lookahead adder
 - Just imagine the length of the equation for Cin31
- Common practices:
 - Connects several N-bit Lookahead Adders to form a big adder
 - Example: connects four 8-bit carry lookahead adders to form a 32-bit partial carry lookahead adder

Summary

- An Overview of the Design Process
 - Design is an iterative process-- successive refinement
 - Do NOT wait until you know everything before you start
- Binary Arithmetics
 - If you use 2's complement representation, subtract is easy.
- ALU Design
 - Designing a Simple 4-bit ALU
 - How to implement SLT operation?
 - Other ALU Construction Techniques