Yi Cui, 2758/72 Han Li, 2756970 Paul Galm, 2664282

Gruppe: 183

ه)	Stouring: divolute Kontrole auf Regelstreche, ohne Rückführung "Open Loop"
	Reglung: eine Regol crois, aus eine Richtichrung existiert. "Closed Loop"
	Szenavio: Inverse Pendel, da muss die Zustand vom System echtzeitig gereglt wind, um zu balancieven.
P)	nem, Linearisievung eines nichtlineaven Systemes hat zwei Voraussetzung: O die Funktion zi: f(x, u) um den Arbeitpunk differenzierbar ist O der Arbeitspunkt eine Gleichgewichteläsung ist
	1): $\underline{\dot{X}} = \underline{\underline{A}} \underline{X} + \underline{\underline{B}} \cdot (-\underline{\underline{L}}\underline{X})$ 3) Stabile Bedingung:
	= <u>A</u> x - (<u>B</u> · <u>k</u>)· <u>x</u> det (<u>A</u> - <u>B</u> · <u>k</u> - λ <u>Ι</u>) = 0
	July Alle λ , Re(λ) muss negative sein 3) Wenn Im { λ } =0 => monoton ablumgen Wenn Im { λ } \neq 0 => 05zillievent ablumgen Auber Stubilität sollen die Stationäre. Abhveidamen Insteinzeit und über uhwingen ausgewertet worden
	Außer Stubilität sollon die Stationare Abweichung , Ansteizzeit und Überschwingung ausgewortet werden
J)	$m \dot{x} + d\dot{x} + kx = f + mg$
	Annahme: $\underline{\mathcal{U}} = \begin{bmatrix} x \\ \dot{x} \end{bmatrix} \underline{g} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	$\Rightarrow \underline{M} = \underline{A}\underline{M} + \underline{G} \Rightarrow \begin{bmatrix} x \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & \frac{-1}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 9 & \frac{1}{m} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
e);) Wenn $f=0$, $\ddot{x}=0$, $\dot{x}=0$, $\dot{x}=\frac{m_0}{16}$ <= Ruhelagen
	2) wenn $(-30, \dot{x}=0, \dot{x}=0)$, $x=\frac{mg+1}{k}=0$
	3) Wenn $g=0$, $\ddot{x}=0$, $\dot{x}=0$, $\dot{x}=\frac{\pm}{k}$
]):	Ruhelagen: $\chi_{\infty} = \frac{m_0 + \frac{1}{k}}{k} = (P.81 + \frac{F}{k}) m$
	3) Wenn F=0 X=8.81 m 7 5 m => F muss negativ sein => noch oben gerichtete Kraft anzuwenden.

Annahne:
$$U: \begin{bmatrix} X \\ \dot{X} \end{bmatrix} \Rightarrow U = \underbrace{A} U \Rightarrow \begin{bmatrix} X \\ \dot{X} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ \dot{X} \end{bmatrix}} \begin{bmatrix} X \\ \dot{X} \end{bmatrix}$$

h) det
$$(\underline{A} - \lambda \underline{I}) \stackrel{!}{=} 0$$

$$\begin{vmatrix} -\lambda & 1 \\ -k - ky & -d - ky - \lambda \end{vmatrix} = \lambda \left(\lambda + \frac{d + ky}{m} \right) + \frac{k + ky}{m} = 0$$

$$\Rightarrow \lambda^2 + \frac{\sqrt{1+|ky|}}{m}\lambda + \frac{|k+kp|}{m} = 0$$

$$\Rightarrow \lambda_1 = -\frac{dtku}{2m} + \frac{\sqrt{(d+ku)^2 - 4 \cdot (k+kp)}}{2m}$$

$$\lambda_2 = -\frac{d+k_y}{2m} - \frac{\sqrt{(d+k_y)^2 - 4 \cdot (k+k_p)}}{2m}$$

