"Predicting fungal infection sensitivity of sepals in harvested tomatoes using Hyperspectral Imaging and Partial Least Squares Discriminant Analysis".

Mercedes Bertotto¹, Hendrik de Villiers¹, Aneesh Chauhan¹, Esther Hogeveen-van Echtelt¹, Manon Mensink¹, Zeljana Grbovic², Dimitrije Stefanovic², Marko Panic², Sanja Brdar²

¹Wageningen University and Research, Netherlands

²Biosense Institute, Serbia

Table of contents

- 1) Introduction
- 2) Materials and methods

Samples

Data description and analysis

- 3) Results
- 4) Conclusions

Introduction

Problem definition

Problem definition

- Motivation: tomato highly sensitive during harvest and post-harvest processes (transport, packaging and storage), susceptible to pathogenic fungi
- This leads to post-harvest losses, reaching up to 30% in some developing countries
- Early weakness of the sepals is not visible to the naked eye no method exists of detecting this automatically prior to the infection

It begins ...

... and it gets worse (after 5 days)

Objectives of this feasibility study

- Investigate if there is a correlation between the hyperspectral data captured at harvest and the fungal infection observed 3 and 4 days later by chemometrics
- Calibrate and validate a global model to grade the susceptibility to fungal infection, and to identify important wavelengths as input for the model

Materials and methods

Data description

Tomatoes origin

- The samples belong to 3 cultivars Brioso, Cappricia and Provine
- They all come from different greenhouses
- Tomatoes were harvested fresh on the 9th and the 10th of May.
- They arrived at Phenomea Laboratory, in Wageningen on Tuesday 10th May

Data set

- NIR dataset: hyperspectral images (SPECIM FX17 camera) of the tomatoes from the beginning of the experiment
- Reference values from the last day of the experiment, when the fungi have infected most of the sepals

Experiment flow

1

Hyperspectral imaging of tomato trusses using spectral cabinet*

2

Tomatoes in Hotbox environment for controlled humidity and temperature Relative humidity 100% 3

Taking phone images in controlled environment

General analysis steps

Ground truth observations were made by experts on day three and four, comprised of severity scores from zero (no fungus) to four (severe infection).

- Ratings of the two days, and 3 experts were averaged
- NIR spectra of sepals extracted from Hyperspectral images
- Exploration of sepals at a pixel level by Principal Component Analysis
- Removal of outlier pixels
- Creation of qualitative models by chemometrics analysis using R studio version 4.2.1 (2022-06-23 ucrt)

Chemometrics R version 4.2.1 (2022-06-23 ucrt)

Visualization of spectra

Exploration by PCA and outlier removal (at pixel and sepal level by tomato, by variety and by final dataset)

Data split 70/30 in a representative way for each class

Optimization of the number of important variables by CovSel algorithm

Optimization of the number of latent variables by PLSDA

Prediction using an independent test set

Evaluation of model according to usual classification parameters

Classification design scenarios

Global model

Segmentation and extraction of NIR spectra

15

Part 3: Spectra pretreatments

Where, A: Absorbance; λ : Wavelength; $A(\lambda)$: Absorbance at a particular wavelength k: multiplicative effect; ϵ : Molar absorption coefficient (M^{-1} cm⁻¹); L: Optical path length (cm) C: Molar concentration; Af (λ). Additive effect at a particular wavelength caused by a certain number of photons escaping from the sensor; $Ab(\lambda)$. Additive effect at a particular wavelength caused by random phenomena

Part 4: Sampling

Labelling scenarios:

1: 0/123, 2: 01/23, 3: 0.5/123

Variety	n	Healthy (Label 1)		Healthy (Label 2)	Diseased (Label 2)	Healthy (Label 3)	Diseased (Label 3)
Cappriccia	163	139	24	85	78	117	46
Brioso	153	145	8	78	75	126	27
Provine	152	137	15	72	80	129	23

Data split was carried out in a representative way for each class 70/30, at a sepal level

All the sepals that belong to the same tomatoes were kept together

Part 5: Feature selection

Most important variables for each variety
Label 2

Cappricia	937.3	944.25	951.1 6	965	1062.1	1083	1208.6	1320.9	1391.4	1426.7	1462.1	1561.4	1654.1	1704.1	1711.3
Provine	937.3	944.25	951.1 6	978.85	1089.9	1138.7	1201.6	1299.8	1370.2	1391.4	1440.8	1554.3	1654.1	1697	1718.4
Brioso	937.3	944.25	951.1 6	1089.9	1299.8	1391.4	1462.1	1589.9	1625.5	1661.2	1689.8	1697	1704.1	1711.3	1718.4
Global Model	937.3	944.25	958.0 8	1055.2	1089.9	1208.6	1278.7	1363.2	1405.5	1462.1	1589.9	1654.1	1704.1	1711.3	1718.4

Intravariety: Cappricia classification metrics according to different number of important variables as input for PLSDA

Classification metrics according to different number of important variables as input for PLSDA

Brioso Raw

Classification metrics according to different number of important variables as input for PLSDA

Classification metrics according to different number of important variables as input for PLSDA

Cappricia Raw

Intervariety Label 2 SNV + SG (2,17,2) LV=3

Cal: Cappricia Val1: Brioso Val2: Provine

Real/ predicte d	Heal thy	Disea sed	N A	SEN	SPE	PRE	AC	ВА
Healthy	66	11	0	0.86	0.55	0.63	0.70	0.71
Disease d	38	46	0	0.55	0.86	0.81	0.70	0.71
Healthy	67	7	0	0.91	0.22	0.54	0.56	0.57
Disease d	57	16	0	0.22	0.91	0.70	0.56	0.57
Healthy	80	0	0	1	0.03	0.54	0.54	0.52
Disease d	69	2	0	0.03	1	1	0.54	0.52
	Predicte d Healthy Disease d Healthy Disease d Healthy Disease	predicte thy d Healthy 66 Disease d Healthy 67 Disease 57 d Healthy 80 Disease 69 d	Predicte thy sed Healthy 66 11 Disease 38 46 Healthy 67 7 Disease 57 16 Healthy 80 0 Disease d 9 2	predicte d thy d sed A A Healthy 66 11 0 Disease d 38 46 0 Healthy 67 7 0 Disease d 57 16 0 Healthy 80 0 0 Disease d 69 2 0	predicte d thy d sed A A Healthy 66 11 0 0.86 Disease d 38 46 0 0.55 Healthy 67 7 0 0.91 Disease d 57 16 0 0.22 Healthy 80 0 0 1 Disease d 69 2 0 0.03	predicte d thy d sed A Healthy 66 11 0 0.86 0.55 Disease d d 38 46 0 0.55 0.86 Healthy 67 7 0 0.91 0.22 Disease d 57 16 0 0.22 0.91 Healthy 80 0 0 1 0.03 Disease d 69 2 0 0.03 1	predicte d thy d sed A A Healthy 66 11 0 0.86 0.55 0.63 Disease d 38 46 0 0.55 0.86 0.81 Healthy 67 7 0 0.91 0.22 0.54 Disease d 57 16 0 0.22 0.91 0.70 Healthy 80 0 0 1 0.03 0.54 Disease d 69 2 0 0.03 1 1	predicte d thy d sed d A Healthy 66 11 0 0.86 0.55 0.63 0.70 Disease d 38 46 0 0.55 0.86 0.81 0.70 Healthy 67 7 0 0.91 0.22 0.54 0.56 Disease d 57 16 0 0.22 0.91 0.70 0.56 Healthy 80 0 0 1 0.03 0.54 0.54 Disease d 69 2 0 0.03 1 1 0.54

Classification parameters for the global model "Cap&Pro" SNV + SG (2,17,2) according to the number of important variables as input for PLSDA

Global Model

Data set	Real/ predict ed	Heal thy	Disea sed	NA	Sensitiv ity	Specifi city	Precis ion	ВА
Calibrati on	Health Y	62	47	0	0.57	0.74	0.68	0.66
	Diseas ed	29	81	0	0.74	0.57	0.63	0.66
Validati on	Health Y	23	25	0	0.48	0.71	0.62	0.60
	Diseas ed	14	34	0	0.71	0.48	0.58	0.60

Results- Summary

Parameter/ Model	Cappricia Raw, 15v Label 3	Cappricia SNV + SG(2,15,2), 33v Label 2	Provine Raw, 14v Label 3	Provine SNV, 13v Label 2	Brioso Raw, 18v Label 2	Intervariety Cal: Cap, Val: Bri Raw, 10v	Global model SNV, (Cap+Pro) 6v Label 2
						Label 3	
Accuracy	0.83	<mark>0.84</mark>	0.71	0.71	0.66	0.61	<mark>0.70</mark>
Misclassification rate	0.17	0.11	0.29	0.29	0.34	0.39	0.30
Sensitivity or recall	0.89	0.71	0.08	0.76	0.43	0.32	0.81
Specificity	0.64	<mark>0.89</mark>	0.97	0.65	0.88	0.89	<mark>0.58</mark>
Precision	0.89	<mark>0.71</mark>	0.50	0.70	0.77	0.93	<mark>0.66</mark>
Balanced accuracy	0.77	0.80	0.52	0.71	0.65	0.61	0.70
Geometric mean	0.75	0.79	0.27	0.70	0.62	0.53	0.69
F-measure	0.89	0.71	0.14	0.73	0.55	0.48	0.73
Youden's Index	0.53	0.60	0.05	0.41	0.31	0.21	0.39
Positive likelihood ratio	2.47	6.45	2.67	2.17	3.58	2.91	1.93
Negative likelihood ratio	0.17	0.32	0.95	0.37	0.65	0.76	0.33

Classification metrics of the optimized models

Out of all the sepals that did not have the disease, how many got negative test results?

High proportion of actually healthy sepals that were correctly predicted out of all positive predictions made by the models

Cappricia: 0.71

Provine: 0.76

Global model: 0.81

Out of all the sepals that do have the disease, how many got positive results?

The ability of a test to correctly classify an individual sepal as diseased

Cappricia: 0.89

Provine: 0.65

Global model: 0.58

- A good performance on positive and negative classes respectively was found in Cappricia Intravariety model:
- High positive likelihood ratio of 6.45 (above 1: increased evidence for disease-free) for Healthy class
- Low negative likelihood ratio of 0.32 (increased evidence for disease) for Diseased class
- BA reduced to the traditional accuracy (0.70) in the global model showing that the classifier performed equally well on either classes
- The intervariety models calibrated in Cappricia showed high sensitivity in class one (0.91) and low specificity in class two; this was consistent in prediction for Brioso (0.03) and Provine (0.11)

Conclusions

Conclusions

- A new global model was calibrated on two different tomato cultivars:
 Cappricia and Provine; and evaluated in independent samples, using
 Standard Normal Variate and 6 important variables by CovSel
- The optimized model achieved a sensitivity of 0.81, specificity of 0.58 and balanced accuracy of 0.70
- The model presented potential as a fast alternative method to grade recently harvested tomatoes before the fungal infection is visually observed.

Conclusions

- Novelty of this work investigate HSI to capture the sepal susceptibility of fungal infection by chemometric analysis of different varieties of tomatoes
- The results from this research reaches to a strong conclusion that discrimination between more susceptible and less susceptible samples is feasible under controlled conditions

- Unanswered questions:
 - What is the information that the spectra captures in these samples to help discriminate the susceptibility to fungus?
 - How will the global model perform when predicting samples from another harvesting time?
- These questions are the likely to set the directions for new investigations on this subject

Thank you for your kind attention

Horizon 2020 Programme

References

- Brdar, S., Panić, M., Hogeveen-van Echtelt, E. *et al.* Predicting sensitivity of recently harvested tomatoes and tomato sepals to future fungal infections. *Sci Rep* **11**, 23109 (2021). https://doi.org/10.1038/s41598-021-02302-2
- Paper 942-2017 Predictive Accuracy: A Misleading Performance Measure for Highly Imbalanced Data Josephine S Akosa, Oklahoma State University https://support.sas.com/resources/papers/proceedings17/0942-2017.pdf
- Roger, J.-M.; Mallet, A.; Marini, F. Preprocessing NIR Spectra for Aquaphotomics. *Molecules* **2022**, *27*, 6795. https://doi.org/10.3390/molecules27206795

