Assignment 3

- 1. Using the extended Euclidean algorithm, find the multiplicative inverse of 1234 mod 4321
- 2. For polynomial arithmetic with coefficients in Z_{10} , perform the following calculations (7x+2) (x^2+5)
- 3. Determine which of the following are reducible over GF(2).

a.
$$x^3 + 1$$

b.
$$x^3 + x^2 + 1$$

c.
$$x^4 + 1$$
(be careful)

4. Determine the gcd of the following pairs of polynomials.

a.
$$x^3 + x + 1$$
 and $x^2 + x + 1$ over GF(2)

b.
$$x^3 - x + 1$$
 and $x^2 + 1$ over GF(3)

- 5. Compute [101^{4,800,000,002} *mod* 35] (by hand).
- 6. compute 46^{51} mod 55 (by hand) using the Chinese remainder theorem.
- 7. Formally define the CDH assumption. Prove that hardness of the CDH problem relative to \mathcal{G} implies hardness of the discrete-logarithm problem relative to \mathcal{G} , and that hardness of the DDH problem relative to \mathcal{G} implies hardness of the CDH problem relative to \mathcal{G} .
- 8. Describe a man-in-the-middle attack on the Diffie-Hellman protocol where the adversary shares a key k_A with Alice and a (different) key k_B with Bob, and Alice and Bob cannot detect that anything is wrong.
- 9. Show that any two-round key-exchange protocol (that is, where each party sends a single message) satisfying Definition 10.1 can be converted into a CPA-secure public-key encryption scheme.
- 10. Consider the following variant of El Gamal encryption. Let p = 2q + 1, let G be the group of squares modulo p (so G is a subgroup of Z_p^* of order q), and let g be a generator of G. The private key is (G,g,q,x) and the public key is (G,g,q,h), where $h = g^x$ and $x \in Z_q$ is chosen

uniformly. To encrypt a message $m \in Z_q$, choose a uniform $r \in Z_q$, compute $c_1 := g^r \mod p$ and $c_2 := h^r + m \mod p$, and let the ciphertext be $\langle c_1, c_2 \rangle$. Is this scheme CPA-secure? Prove your answer.

Note:

Definition 10.1: A key-exchange protocol \prod is secure in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that

$$Pr[KE^{eav}_{\mathcal{A}, \prod}(n) = 1] \leq \frac{1}{2} + negl(n).$$

- (1) Due date: Sunday, November 18, 2018, at 23:59. Send your assignment to the following email: 2821785913@qq.com
- (2) Assignment should be named by UNo+Name+A3.docx/doc/pdf.
- (3) Penalty for late submission: 15% of the total marks for every day after the deadline.
- (4) Answer ALL 10 questions.