EXAMEN

Jeudi 19 Mai (durée 3h)

Exercice 1. \mathbb{R}^2 étant muni de sa structure d'espace affine euclidien orienté canonique, on considère la conique \mathcal{C} de \mathbb{R}^2 d'équation: p(x,y)=0 où

$$p(x,y) = x^2 + y^2 - 2xy - 4(x+y) + 4$$

dans le repère canonique $(O; e_1, e_2)$. Montrer que \mathcal{C} est une parabole dont on donnera le foyer et l'équation de sa directrice dans $(O; e_1, e_2)$. Donner l'allure de \mathcal{C} .

Exercice 2. Soient $D = \{(x,y) \in \mathbb{R}^2 / y \le x^2 \le \frac{1}{2}(y+1)\}$ et $I = \iint_D \frac{1}{1+x^2} dx dy$.

- 1. Dessiner D.
- 2. Montrer que $I=\int_{-1}^1 \frac{1-x^2}{1+x^2} \mathrm{d}x$ et en déduire la valeur de I.(On pourra commencer par caractériser D comme suit:

$$(x,y) \in D \iff x \in [a,b], \ u(x) \le y \le v(x)$$

où a, b, u, v restent à déterminer).

Exercice 3. Pour chaque entier $n \neq 0$ et $x \in \mathbb{R}_+$ on pose $u_n(x) = \frac{1}{n^{2x} + n^x}$.

- 1. (a) Montrer que la série numérique $\sum u_n(1)$ converge (dans \mathbb{R}).
 - (b) Montrer que la série de fonctions $\sum u_n$ converge normalement sur $[1, +\infty[$.(On pourra montrer tout d'abord que la fonction u_n est décroissante sur \mathbb{R}).
 - (c) Pour chaque $x \in [1, +\infty[$ on pose $f(x) = \sum_{n=1}^{\infty} u_n(x)$. Montrer que la fonction $f: x \mapsto f(x)$ est continue sur $[1, +\infty[$.
- 2. (a) Montrer que la série numérique $\sum \ln(n)u_n(1)$ converge dans \mathbb{R} .(On pourra la comparer à la série $\sum 1/n^{3/2}$).
 - (b) Montrer que $\forall x \in \mathbb{R}, |u'_n(x)| \leq 2\ln(n)u_n(x)$. En déduire que la série $\sum u'_n$ converge normalement sur $[1, +\infty[$.
 - (c) Montrer que f est dérivable sur $]1, +\infty[$ et que:

$$\forall x \in]1, +\infty[, f'(x) = -\sum_{n=1}^{\infty} \ln(n) \frac{2n^{2x} + n^x}{(n^{2x} + n^x)^2}$$

- 3. Montrer qu'en fait $\sum u_n$ converge sur $]1/2, +\infty[$ et que sa somme f est dérivable sur cet intervalle.(On pourra montrer la convergence normale de $\sum u'_n$ sur $]\alpha, +\infty[$, pour tout $\alpha > 1/2$).
- 4. (a) Montrer que f est strictement décroissante sur $]1/2, +\infty[$.
 - (b) Montrer que: $\lim_{x \to +\infty} f(x) = 1/2$.
 - (c) (Question hors barème). Montrer que: $\lim_{x\to 1/2+} f(x) = +\infty$.(On pourra s'inspirer de la preuve de $\lim_{x\to 1+} \zeta(x) = +\infty$).

Exercice 4.

1. Montrer que la fonction $x\mapsto (1+x)^{-1/2}$ est développable en série entière sur]-1,+1[et que:

$$\forall x \in]-1, +1[, (1+x)^{-1/2} = \sum_{n=0}^{\infty} (-1)^n \frac{(2n)!}{2^{2n}(n!)^2} x^n.$$

- 2. Rappelons que sinh et cosh sont les fonctions $\mathbb{R} \to \mathbb{R}$ définies par: $\sinh(x) = \frac{e^x e^{-x}}{2}$ et $\cosh(x) = \frac{e^x + e^{-x}}{2}$, qu'elles sont dérivables avec $\sinh' = \cosh$ et $\cosh' = \sinh$, et qu'on a l'identité suivante: $\forall x \in \mathbb{R}$, $\cosh(x)^2 \sinh(x)^2 = 1$.
 - (a) Montrer que sinh est strictement croissante sur \mathbb{R} , qu'elle vérifie: $\lim_{x\to-\infty}\sinh(x)=-\infty, \lim_{x\to+\infty}\sinh(x)=+\infty.$ (Moyennant la continuité de sinh c'est donc une application bijective $\mathbb{R}\to\mathbb{R}$). On note argsinh la fonction réciproque de sinh. (On a donc $\forall x,y\in\mathbb{R},y=\sinh(x)\iff x=\mathrm{argsinh}(y)$).
 - (b) La fonction argsinh est dérivable sur \mathbb{R} . (On n'en demande pas de preuve ici). Montrer que: $\forall x \in \mathbb{R}$, $\operatorname{argsinh}'(\sinh x) = \frac{1}{\cosh(x)}$. (On pourra dériver l'identité: $\operatorname{argsinh} \circ \sinh = Id$). En déduire que $\forall y \in \mathbb{R}$, $\operatorname{argsinh}'(y) = \frac{1}{\sqrt{1+y^2}}$. (Se servir des rappels).
 - (c) Montrer que argsinh' est développable en série entière sur]-1,+1[et calculer son développement. (On pourra utiliser la question (1)).
 - (d) Montrer enfin que argsinh est développable en série entière sur]-1, +1[. Calculer son développement ainsi que le rayon de convergence de celui-ci.