Accident and Intention: That is the Question (in the Noisy Iterated Prisoner's Dilemma)

Tsz-Chiu Au
University of Maryland, College Park
Department of Computer Science

Joint work with Prof. Dana Nau and Prof. Sarit Kraus

Social Games

- We are interested in modeling several *self-interested* parties (i.e., agents) that repeatedly interact with each other
 - » Governments
 - » Terrorist groups
 - » Crime organizations
 - » Civilians

- Performance of agents depends on how well they interact with each other
- Objective: decide how to interact with different parties so as to maximize the performance of an agent

Limitations of Existing Techniques

- Most existing game-theoretic research
 - » Studies problems at an abstract mathematical level
 - » Neglects many features that can occur in the real world
- This talk focuses mainly on one such feature: *noise* (*i.e.*, *errors in interaction*)
- feature: noise (i.e., errors in intera

- Two kinds of noise:
 - » Accidents: An agent intends to do X, but accidentally does Y instead
 - e.g., slippery hands, car accidents, sabotage by "invisible" spies
 - » *Misinterpretations*: One agent thinks another agent's action was different from what the other agent actually did
 - e.g., miscommunication due to poorly-written email, dirt on eye-glasses
- Noise can cause serious problems
- How to deal with noise?

I Will Discuss

- Iterated Prisoner's Dilemma (IPD)
 - » A game that is widely used for studying cooperation among agents.
- Noisy Iterated Prisoner's Dilemma
 - » IPD with error in the interaction
- Symbolic Noise Detection
 - » Ways to
 - Build model of the other player, based on their past behavior
 - Use the model to detect noise
- Derived Belief Strategy (DBS)
 - » A strategy for playing IPD in noisy environment
 - Minimize the effect of noise in the learning of opponent model using symbolic noise detection
 - More accurate opponent model \Rightarrow higher quality of decision
- Performance
 - » 20th Anniversary IPD Competition
- Generalizations
 - » Other games similar to IPD

Prisoner's Dilemma

- Two suspects are arrested by the police (and become prisoners)
- But the police does not have sufficient evidence for a conviction.
- The police want the prisoners to betray each other.

Prisoner ₂ Prisoner ₁	Cooperate (Not Betray)	Defect (Betray)
Cooperate		
(Not betray)	-	_
Defect		
(Betray)		

Prisoner's Dilemma (cont.)

- What will the prisoners do?
 - » Sadly, both prisoners betray each other
 - » because they are selfinterested and they do not completely trust each other.

No matter what the other prisoner does, I better defect

Prisoner ₂ Prisoner ₁	Cooperate	Defect	
Cooperate	1,1	5, 0	NT 1.
Defect	0, 5	3, 3 ←	Nash —— Equilibrium

Iterated Prisoner's Dilemma

- But this game is *not* a zero-sum game.
 - » The prisoners can think "win-win"
- How can the prisoners cooperate with each other?
- Solution: if the same prisoners play the game many many times...
 - "punish" the other prisoner if he does not cooperate in the past
- » Due to this threat of punishment, cooperation can (not must) emerge
- The new game is called *Iterated Prisoner's Dilemma* (IPD)

Wait a minute... If I betray my partner, he will betray me in future

Example:

- A real-world example of the IPD, described in Axelrod (1997):
 - » Trench warfare in World War I

- Incentive to cooperate:
 - » If I attack the other side, then they'll retaliate and I'll get hurt
 - » If I don't attack, maybe they won't either
- Result: emergence of cooperation
 - » Even though the two infantries were *supposed* to be enemies, they avoided attacking each other
- This was one of the reasons why World War I lasted so long

Evolution of Cooperation

- **Question:** In general, under what conditions will cooperation emerge in a world of egoists without central authority?
- **Answer:** hard to tell
- IPD is the "fruit fly" in the study of evolution of cooperation
 - "The Selfish Gene" by Richard Dawkins (1976)
 - "The Evolution of Cooperation" by Robert Axelrod (1984)
 - His paper on IPD was cited 2000 times!
- A cross-disciplinary topic
 - » political science (foreign policy)
 - » economics and business (trading, auction)
 - » biology (evolution, animal behaviors),
 - » social science (group behaviors)
 - » and lately, computer science (peer-to-peer computing, bitTorrent)
 - » How about AI? (multi-agent system, computer games)

Strategies for the IPD

- But the threat of punishment (or the shadow of the future) does not necessarily result in cooperation.
 - » It still depends on how the other players treat you.
- There are many different strategies for playing IPD:
 - » *ALLC*: always cooperate
 - » *ALLD*: always defect
 - » *GRIM*: cooperate until the other player defects, then defect forever
 - >> **TESTER**: defect every other move if the other player does not retaliate for detection.
- Question: which strategy is the best?
 - » In general, there is no optimal strategy for IPD
 - Performance depends on the other player's strategy, which is not known beforehand
- A famous political scientist called Axelrod proposed to use computer simulation to study which strategy can usually perform well.
 - » The Iterated Prisoner's Dilemma Tournament
 - Ask people to submit programs to the tournament.
 - Every program plays with every other program.
 - Winning program is the one with the highest average score.

Results of the Axelrod's IPD tournaments

- A strategy called *Tit-for-Tat (TFT)* has been shown to cooperate extremely well with a wide variety of opponents
 - » Cooperate on the first move. On the *n*th move, repeat the other player's (n-1)-th move
 - It could establish and maintain cooperation with many other players
 - It could prevent malicious players from taking advantage of it
 - » TFT won several open IPD tournaments.
- Extremely influential: TFT becomes a key principle in foreign policy making

TFT	AllC	TFT	AllD	TFT	Grim	TFT	TFT	TFT	Tester
C	C	C	D	C	C	C	C	C	D
C	C	D	D	C	C	C	C	D	C
C	C	D	D	C	C	C	C	C	C
C	C	D	D	C	C	C	C	C	C
C	C	D	D	C	C	C	C	C	C
C	C	D	D	C	C	C	C	C	C
•	•	•	•	•	•	:	•	•	:

IPD with Noise

- But there is a serious problem with TFT...
- In noisy environments,
 - There is a nonzero probability that Cooperate (C) will become Defect (D), and vice versa
 - » e.g., 10% chance that a "noise gremlin" will change some of the actions
- Noise causes big problems for strategies like Tit-for-Tat
 - » Mutual defection occurs
- How can we survive if all foreign policies are based on TFT?

I see that he defected, so I'll defect next time Timeline Noise

Example of Noise

Story from a British army officer in World War I:

"I was having tea with a company when we heard a lot of shouting and went out to investigate. We found our men and the Germans standing on their respective parapets. Suddenly a bomb arrived but did no damage. Naturally both sides got down and our men started swearing at the Germans,...."

- If you were the British army officer, what would you do?
 - > Fight back (consider the bombing is intentional)
 - Don't fight back (consider the bombing is just an accident)

Existing Approach for Coping with Noise

- Principle: More forgiving, don't retaliate
- Tit-For-Two-Tats (TFTT)
 - » Retaliates only when it receives two defections in two previous iterations
 - » But susceptible to exploitation of its generosity
- Generous Tit-For-Tat (GTFT)
 - » Forgive randomly: randomly choose to cooperate with a small probability if the other player defects
 - avoided exploitation
- Pavlov
 - » Repeat previous move if I earn a lot of points in the previous iteration
 - » If the other player defects continuously, my agents will defect alternatively.
 - Punish less for mutual defections

Forgiving at will

- The existing approaches are not very effective.
 - » Forgiving at will
 - » Sometimes they forgive too often, sometimes, they forgive too little.
- We think a better approach should avoid forgiving too often or too little.
- Observation: if the players knew exactly which actions were affected by noise, the conflict could be avoided.
- Unfortunately, players can never be sure about which actions were actually affected by noise
- But what if players can actually make good guesses of which actions have been affected by noise?

A New Approach for Coping with Noise

- Under what condition players can make good guesses about which actions have been affected by noise?
 - » The other player plays predictably.
 - » For example, if the other player used to cooperate in the past, there is a high chance that a sudden detection is due to noise.
- Our Approach: use a deterministic model of behavior to tell whether an action has been affected by noise
 - » For highly predictable actions, build a deterministic model to predict them
 - We it to tell whether an action has been affected by noise

Noise Detection based on Deterministic Model of Behavior

• Then the story went on:

"... our men started swearing at the Germans, when all at once a brave German got onto his parapet and shouted out: "We are very sorry about that; we hope no one was hurt. It is not our fault. It is that damned Prussian artillery""

- If you were the British army officer, did you believe the brave German?
 - > Do you believe the brave German if the bombing is not consistent with the German infantry's past behavior?

Change of Behavior

- However, there is a problem...
 - » What if German really attack us?
- If the other player genuinely changes its behavior, the deterministic model learnt from the past is no longer valid.
 - » Cannot be used to detect noise
- Changes of behavior occur because
 - » The player can change its strategy anytime
 - E.g., if noise affects one of Player 1's actions, this may trigger a change in Player 2's behavior
 - Player 1 does not know this
- How to distinguish noise from a real change of behavior?
 - » Is an anomaly of observed behavior accidental or intentional?

I am GRIM. If you ever betray me, I will never forgive you.

C C

C D

 \mathbf{C}

 \mathbf{C}

: D

: I

These moves are *not* noise

18

Detection of a Change of Behavior

Temporary Tolerance:

- When we observe unexpected behavior from the other player,
 - » Don't immediately decide whether it's noise or a real change of behavior
 - » Instead, defer judgment for a few iterations

• Why?

We can often distinguish noise from a change of behavior by observing moves in the next few iterations and gathering enough evidence

Temporary Tolerance

- If you were the British army officer, do you believe the brave German?
 - Don't believe *immediately* when the bombing occurs, even if this is not consistent with the German infantry's past behavior.
 - Temporary tolerate the bombing, as if it did not occur
 - After a short period of time,
 - ➤ If the German infantry's behavior continues to consistent with their past behavior, we consider this is an accident, as suggested by the brave German.
 - Otherwise, this means war.

Symbolic Noise Detection (SND)

A summary of SND:

- Build a deterministic model of how the other player behaves
- Watch for any *deviation* from the *deterministic behavior* predicted by the model
- If a deviation occurs, check to see if the inconsistency persists in the next few iterations
 - » If the inconsistency does not persist, assume the deviation is due to noise
 - » If the inconsistency persists, assume there is a change in the behavior

Why does SND be effective in IPD?

- Deterministic behavior is abundant in IPD
- » In IPD, it is useful to cooperate with other players
 - Most players are cooperative
- » Clarity of behavior is an important ingredient of long-term cooperation
 - To cooperate effectively, you need to give the other player a good idea how you will react
 - As observed by Axelrod in his analysis of TFT
- Therefore, we can often build a deterministic behavioral model of the other player easily.
- Thus, noise are often detectable by using SND.

Derived Belief Strategy (DBS)

- Derived Belief Strategy (DBS) is a strategy based on symbolic noise detection
 - » Learn and maintain a model π of the other player's behavior
 - π is partly deterministic, partly probabilistic
 - Initially, π is assumed to be TFT
 - π is updated as the game progresses
 - \gg π has two primary functions:
 - Use the deterministic part of π to do symbolic noise detection
 - Use π to predict the other player's future moves, for decision-making based on game-tree search
- Basic idea: use symbolic noise detection to detect and isolate noise so as to keep π as accurate as possible for decision-making
 - » High accurate $\pi \Rightarrow$ High quality decisions.

DBS Example

Us

Them

Opponent model $\pi = TFT$ predicts C, so we do C too

These moves are what $\pi = TFT$ predicts, so don't change π

Opponent model still is $\pi = TFT$, so we still do C

These Ds are not what π predicted. Temporarily tolerate them, as if they were C instead

The new opponent model π' predicts D, so we do D too

Here, we decide the deviations are a change of behavior. Compute a new opponent model, π'

Representing the Opponent Model

• We model the opponent's behavior as a *policy* represented as a set of *rules* of such as

 $(my\ last\ move,\ their\ last\ move) \rightarrow p$

Moves in the previous iteration

Probability that the opponent will cooperate in this iteration

- » A rule is *deterministic* if *p* is 0.0 or 1.0
- » Otherwise the rule is *probabilistic*
- TFT can be modeled using deterministic rules:

$$\pi$$
 = {(C,C) → 1.0,
(C,D) → 1.0,
(D,C) → 0.0,
(D,D) → 0.0}

Suppose we have the rule $(C,C) \rightarrow 0.7$

C

 \mathbf{C}

D C

 \mathbf{C}

??

The rule predicts P(C) = 0.7, P(D) = 0.3

Move Generator in DBS

- Basic idea: game-tree search
 - » Use the policy π to predict probabilities of the other player's moves
 - » Compute expected utility EU(x) for move x
 - EU(x) is the estimated score after the player choose the move x
 - » Choose a move with the highest expected utility

Suppose we have the rules

- 1. $(C,C) \rightarrow 0.7$
- 2. $(C,D) \rightarrow 0.4$
- 3. $(D,C) \rightarrow 0.1$
- 4. $(D,D) \rightarrow 0.1$

C

 \mathbf{C} \mathbf{D}

D C

 \mathbf{C}

??

Rule 1 predicts P(C) = 0.7, P(D) = 0.3

Example

Suppose we search to depth 1

»
$$EU(C) = U(C,C) \times 0.7 + U(C,D) \times 0.3$$

= $3 \times 0.7 + 0 \times 0.3 = 2.1$

»
$$EU(D) = U(D,C) \times 0.7 + U(D,D) \times 0.3$$

= $5 \times 0.7 + 1 \times 0.3 = 3.8$

- » So D looks better
- Unwise to choose D
 - » On the move at depth 2, the opponent will retaliate with P=0.9
- If we search deeper, we'll see this and we'll choose C instead

How to Search Deeper

- Game trees grow exponentially with search depth
 - » How to search to the tree deeply?
- Assumption: the other player's future behavior will continue to be π
 - » Our opponent's decisions depend only on the previous moves as described in the policy π
- Then we can use dynamic programming
 - » Makes the search polynomial in the search depth
 - » Can easily search to depth 60
 - » This generates fairly good moves

The 20th-Anniversary IPD Competition

The Iterated Prisoner's Dilemma Competition: Celebrating the 20th Anniversary

http://www.prisoners-dilemma.com

- Category 2: Noisy IPD
 - » Play each program against all programs, including itself
 - \rightarrow Noise level = 10%
- 165 programs participated

DBS dominated the top ten places, but ...

DBS was beaten by two other programs: BWIN and IMM01

Rank	Program	Avg. score
1	(BWIN)	433.8
2	IMM01	$\boldsymbol{414.1}$
3 ,	DBSz	408.0
4 ,'	DBSy	408.0
5,'	DBSpl	407.5
6'	DBSx	406.6
,7	DBSf	402.0
18	DBStft	401.8
//9	DBSd	400.9
1 0	$lowESTFT_classic$	397.2
, 11	\mathbf{TFTIm}	397.0
12	Mod	396.9
13	\mathbf{TFTIz}	395.5
14	TFTIc	393.7
15	DBSe	393.7
16	\mathbf{TTFT}	393.4
17	TFTIa	393.3
18	TFTIb	393.1
19	\mathbf{TFTIx}	393.0
20	$mediumESTFT_classi$	c 392.9

How BWIN and IMM01 worked

- Each participant could submit up to 20 programs
- Some participants submitted20 programs that worked as a team
 - 1 *master* + 19 *slaves*
 - » When slaves play with master
 - they cooperate and master detects
 - master gets all the points
 - » When slaves play with anyone not in their team, they defect
- Analysis
 - The average score of each master-and-slaves team was much lower than DBSz's average score
 - » If BWIN and IMM01 each had ≤ 10 slaves, DBS would have placed 1st
 - » If BWIN and IMM01 had no slaves, they would have done badly

My strategy? I order my goons to beat them up

I order my goons to give me all their money

DBS cooperates, not coerces

- Unlike BWIN and IMM01, DBS had *no* slaves
 - » None of the DBS programs even knew the others were there
- DBS worked by establishing cooperation with *many* other agents
- DBS could do this *despite* the noise, because it could filter out the noise

Summary

- Noisy Environments
 - » Actions can be altered by noise
 - » Noise can induce changes of behavior
- Important question in maintaining cooperation in noisy environment
 - » Is an anomaly of observed behavior accidental or intentional?
- Our solution: symbolic noise detection
 - » Use deterministic behavior to detect noise
 - » Defer judgments until there is enough evidence
- DBS performed extremely well in the 20th-Anniversary IPD competition
- Observation: deterministic behavior is abundant in IPD
 - » That's why symbolic noise detection is effective

Would SND be effective in Other Games?

- Clarity of behavior is observed in some non-zero-sum games such IPD
 - » But what about other games?
- Consider zero-sum games such as chess and RoShamBo (i.e., Rock, Paper, Scissors)
 - >> There is no intention to play deterministically or predictably.
- Questions:
 - 1. In what type of games deterministic behavior can be abundant?
 - 2. Would SND be effective in those games?
- We believe:
 - » SND will be most effective in games in which strategies are likely to exhibit deterministic behavior.

SND-based Wrappers

- To study this question, we proposed a wrapper that can be put around any strategy
 - » Examine the input using symbolic noise detection
 - » Modify the input as follows
 - When we don't think there's any noise, make no change
 - When we think we've detected noise, replace it with what we think the other player actually did
 - » Output: whatever action that the strategy chooses for this modified input

- Advantages of the wrapper approach:
 - » can place around *any* existing strategy
 - » enable us to compare different strategies

Naïve Symbolic Noise Filter

- Naïve Symbolic Noise Filter (NSNF)
 - » A simple wrapper that can be easily implemented
 - » Based on SND, but doesn't defer judgment about whether an anomaly is due to noise or to a change of behavior
- NSNF has only one parameter: the promotion threshold T
 - » In each iteration,
 - If a behavior has occurred ≥ T times without contradiction, assume it's a deterministic behavior and record it
 - At the first violation of a deterministic behavior
 - 1. Correct the action
 - > assume the observed input (e.g, Defect) is due to noise
 - > change Defect to Cooperate or Cooperate to Defect before the input is fed into the strategy
 - 2. Drop the deterministic behavior
 - > assume the behavior has changed
 - should identify new behavior or re-identify the same behavior in future

The Skeleton of Naïve Symbolic Noise Filter

How does Naïve SNF work?

Naïve SNF vs Full-strength SND

- Naïve SNF does not defer judgment about whether a derivation (i.e., anomaly of behavior) is due to noise.
 - » All derivations from the opponent model, once observed, are considered due to noise.
- In contrast, DBS uses deferred judgment to increase the accuracy of noise detection
 - » If the opponent's behavior before and after a derivation are the same, the derivation is due to noise.
- The difference:
 - » Naïve SNF utilizes information before a derivation only
 - » Full-strength SND utilizes information before and after a derivation
- Full-strength SND is more accurate than Naïve SNF

Why Naïve SNF, not Full-Strength SND?

- Simple implementation is available
 - » no need to maintain the opponent model
 - Just look at the history to identify noise
 - » no need to "rewind" the state of the underlying strategy
 - suitable to our wrapper approach
- As an example:
 - » promotion threshold = 2

Chicken Game

- To evaluate Naïve SNF, we use two games as the test beds
 - » Iterated Chicken Game
 - » Iterated Battles of the Sexes
- Chicken Game:
 - » Two players compete for a resource
 - » If neither player concedes, both of them will suffer
- Example
 - » Two groups need to divide a piece of land between them
 - » If they can't agree upon how to divide it, they'll fight
- Nash equilibrium strategies (with no iteration):
 - » Do the opposite of what the other player is doing
- Iterated Chicken Game (ICG)
 - » Mutual cooperation does not emerge
 - Each player wants to establish him/herself as the defector

TO CC	, •
Pavott	matrive
1 avon	matrix:

Player ₂ Player ₁	Cooperate	Defect
Cooperate	4, 4	3, 5
Defect	5, 3	0, 0

Battle of the Sexes

- Battle of the Sexes:
 - » Two players need to coordinate their actions to achieve some goal
 - » They each favor different actions
- Example
 - » Two nations must act together to win against a common enemy
 - Each of them wants the other nation to make the biggest effort

Payoff matrix:

Husband Wife	Opera	Football
Opera	2, 1	0, 0
Football	0, 0	1, 2

- Nash equilibrium strategies (with no iteration):
 - » Do what the other player is doing
- **Iterated** Battle of the Sexes (IBS)
 - Mutual cooperation does not emerge
 - Each player wants to take advantage of each other

Evaluation: Noisy Tournaments

- We organized two tournaments:
 - » The Noisy ICG tournament and The Noisy IBS tournament
- Agents:
 - » 37 agents for each tournament
 - written by 37 students in an advanced-level AI class
- What students knows:
 - » Payoff matrices
 - » Number of iterations in each game ≥ 50
 - » Noise level is 10%
 - » Robin-robin tournament
 - Every agent will play 1000 games with every other agents (including a copy of itself)
 - » The "internal memory" of the agents is "reset" at the beginning of every game

Experiments

- ullet For each program P, we ran two sets of tournaments
 - » P against the others
 - » An enhanced version of P against the others
 - The enhancement: use Naïve SNF to detect noise and correct action affected by noise.

Accuracy of Naïve SNF

- Naïve SNF is highly accurate in predicting a player's next move
 - » 96% in ICG, 93% in IBS
- When NSNF makes a correction, how accurate is the correction?
 - » True positive: corrected action was affected by noise
 - » False positive: corrected action wasn't affected by noise
- At 300 iterations with noise level of 10%,
 - » noise affects about 30 actions/game
- In ICG, about 25.4 corrections/game
 - » 71% were true positives
- In IBS, about 27.1 corrections/game
 - » 59% were true positives
- Baseline: random correction
 - » % of true positives = 10 %
 - » So Naïve SNF is much better than random correction

	ICG	IBS
Accuracy of predictions	96%	93%
Number of corrections	25.4 out of 300 moves	27.1 out of 300 moves
True pos.	71%	59%
False pos.	29%	41%

Naïve SNF in the Iterated Chicken Game

- On average:
 - » Naïve SNF improved each strategy's score by 0.9% (or 0.0068 in normalized score)
 - » Naïve SNF improved each strategy's ranking 1.51
- Difference in score of the best and worst strategies is only 0.144
 - » Thus a program's ranking can be changed by a small change in its score

Naïve SNF in the Iterated Battle of the Sexes

- On average, NSNF improved each strategy's score by 1.2% (or 0.0035 in normalized score)
 - » larger than ICG (0.9%), but doesn't change the rank as much
- Difference in score of the best and worst strategies is 0.262 (in ICG, it is 0.144)
 - » To change a program's ranking, need to change its score by about twice as much as in ICG

Naïve SNF on Strong, Average, and Weak Strategies

- But the benefit of SNF varies among different strategies
 - » In ICG, strong and average strategies benefit from Naïve SNF, but not weak strategies
 - » In IBS, average and weak strategies benefit from Naïve, but not the strong strategies
 - Some strategies perform even worse after using Naïve SNF

Three Key Variables and Their Relationships

- To explain the difference among strong, average, and weak strategies, we identify three key variables and compare them
 - » Average score (X)
 - normalized to the range [0,1]
 - \rightarrow Accuracy of correction (Δ)
 - » Increase in average scores (γ)
- Objective: identify the factors that would affect the effectiveness of Naïve SNF.
 - » Under what conditions would Naïve SNF be effective?
 - » The explanations can help us to determine when we should use Naïve SNF, and when we should not use Naïve SNF

- ICG: strong positive linear correlation
- IBS: weak negative linear correlation (with outliners)
- Correction Accuracy in ICG > Correction Accuracy in IBS

Average Scores X vs Increases in Avg. Scores Δ

Normalized Average Scores

- ICG: No obvious correlation; but most strategies have an increase in average scores after using Naïve SNF
- IBS: weak negative linear correlation (with outliners); about half of the strategies have an decrease in average scores after using Naïve SNF.

49

Accuracy of Correction γ vs Increase in Avg. Scores Δ

- ICG and IBS: no obvious correlation
- Low correction accuracy → decrease or no increase in average score

Experimental Explanation

- We explain the relationships among the variables experimentally, via two variables concerning the decisions made by players
 - » The frequency of choosing defect (D)
 - » The frequency of "flip-flop"--- changing decisions (from cooperate to defect or vice versa) between two consecutive iterations. (F)
- We will explain the relationships between
 - » average scores and accuracy of correction
 - » average scores and increases in average scores
- We can deduce the relationship between the accuracy of correction and increases in average scores

Average Scores X vs Frequency of Defection D

- ICG: Strong positive linear correlation (i.e., top strategies often defects)
- IBS: no obvious correlation

Average Scores X vs Freq. of Flip-Flop F

Normalized Average Scores

- ICG: no obvious correlation
- IBS: strong negative linear correlation (with outliners) (i.e., top strategies does not change decisions frequently)

- First, let us explain why there is a strong positive linear correlation in ICG
 - » Top players have higher accuracy of correction

- In ICG
 - strong players often defect
 - weak players often cooperate
 - average players often flip-flop (changing cooperate to defect, or vice versa)
- When facing strong players, it is better to cooperate to earn 3 points instead of defect to earn 0 point
 - » strong players force the average players to cooperate
 - → average players often exhibit a clear deterministic behavior
 - → High correction accuracy
- When facing weak players who cooperates, there is little difference between cooperate and defect (4 points \cong 5 points)
 - » Weak players fails to force the average players to cooperate
 - → Average players continue to flip-flop
 - → Low correction accuracy

Player ₂ Player ₁	Cooperate	Defect
Cooperate	4,4	3,5
Defect	5/3	0,0

Second, we explain why there is a weak negative linear correlation in IBS

- In IBS
 - » strong players often defect
 - » weak players often flip-flop
- When facing strong players, there is little difference between cooperate and defect (1 points ≅ 0 points)
 - » Strong players less successfully in forcing other players to cooperate
 - → Other Players exhibit less clear deterministic behavior
 - → Lower correction accuracy
- When facing weak players who flipflop, it is better to defect than to cooperate in long run
 - » Weak players causes other players to defect more often
 - → Higher correction accuracy

Player ₂ Player ₁	Cooperate	Defect
Cooperate	0,0	1,2
Defect	2,1	0,0

Average Scores X vs Increases in Avg. Scores A

• Third, we explain the relationship between the increase in average score and the average scores

- Very similar!
- The larger the amount of flip-flops, the higher the increases in average scores after using Naïve SNF

Average Scores X vs Increases in Avg. Scores γ

• The increases in average scores seems to be less dependent to the accuracy of correction.

Observation and Prediction

- What strategies do not get a better performance when using Naïve SNF?
 - » Strategies which are insensitive to the other player's moves
 - e.g., almost always choose defects no matter what.
- What strategies can potentially get a performance boost when using Naïve SNF?
 - » Strategies which are sensitive to the other player's moves.
 - e.g, TFT
 - e.g., ICG strategies which often change their decisions (flip-flops).
- The increase of average scores seems to be less dependent of the accuracy of correction.
 - » But there are still some effects
- For strategies that works with Naïve SNF, our prediction:

Change of average scores =
$$K \times (\alpha - \beta) \times (\gamma - 50\%)$$

Where

- α = average score in noise-free environment
- β = average score in noisy environment
- γ = accuracy of correction
- K is a constant

Other Results: Distribution of Decision Pairs

ICG:

Player ₂ Player ₁	Cooperate	Defect
Cooperate	4, 4	3, 5
Defect	5, 3	0, 0

IBS:

Player ₂ Player ₁	Cooperate	Defect
Cooperate	0, 0	1, 2
Defect	2, 1	0, 0

Summary

- Noisy Environments
 - » Actions can be altered by noise
 - » Noise can induce changes of behavior
- Important question in maintaining cooperation in noisy environments
 - » Is an anomaly in observed behavior accidental or intentional?
- Our solution: symbolic noise detection
 - » Use deterministic behavior to detect noise
 - » Defer judgments until there is enough evidence
- DBS performed extremely well in the 20th-Anniversary IPD competition
- We propose to use SND as a general technique for detection and correction of errors in interaction among agents in multi-agent systems
 - » Wrapper-based approach to equip existing strategies with symbolic noise detection
 - » Naïve Symbolic Noise Filter
 - can be put around any strategy for 2×2 normal-form games

Summary (cont.)

- Hypothesis: SND is effective in situations where strategies often exhibit deterministic behavior
 - » We have experimentally verified this hypothesis in
 - The Iterated Chicken Game (ICG)
 - The Iterated Battles of the Sexes (IBS)
- SND is effective in noise detection in ICG and IBS
 - » Accuracy of prediction: 96% in ICG, 93% in IBS
 - » Accuracy of correction: 71% in ICG, 59% in IBS
- Overall scores of all strategies increased in both games after using SND
 - » +0.0068 in ICG, +0.0035 in IBS
- Our hypothesis seems valid:
 - » SND is indeed effective in situations where strategies often exhibit deterministic behavior
 - But in ICG and IBS, this deterministic behavior is often a threat rather than an expression of cooperation

Summary (cont.)

- But if we look at strategies individually
 - » Most programs benefited from noise detection, but not all
 - » High accuracy in noise detection \neq high score
 - » Some strategies, especially in IBS, did better with uncorrected inputs
- To see why, we conducts experiments to explain the relationships between
 - » Average scores
 - » Increases in average scores
 - » Accuracy of noise correction
- Conclusion:
 - » Strategies that are insensitive to the other player's moves do not get a better performance when using Naïve SNF
 - e.g., almost always choose defects no matter what (e.g., strong players in both ICG and IBS)
 - » Strategies that are sensitive to the other player's moves potentially get a performance boost when using Naïve SNF
 - e.g, TFT
 - e.g., ICG strategies which often change their decisions (flip-flops).
 - » The increase of average scores seems to be less dependent of the accuracy of correction.
 - » Change of average scores = $K \times (\alpha \beta) \times (\gamma 50\%)$

Future Work

- Noise can occur in nearly all kind of multi-agent systems in which agents has to interact as with each other.
 - » How to deal with noise is an important issue, especially in situations where the success of agents greatly depends on the robustness of interaction (i.e., IPD-like situations)
 - » Can SND be used to deal with errors in interaction in those real-world situations?
 - Need to modify SND to handle more actions, more agents, and more complicated situations.
- Open questions:
 - » Which type of games can benefit from using SND?
 - » Which type of programs can benefit from using SND?

Conclusion

Noise is less problematic when the incentive for cooperation is strong

Thank you!

Any Questions?