

SUT | TGML Lab | Summer '04 | Maryam Rezaee

# ReAGent: A Model-agnostic Feature Attribution Method for Generative Language Models

AAAI Workshop RelM 2024 | AAAI24

**Zhixue Zhao & Boxuan Shan** 

## **TABLE OF CONTENTS**

01 02 03

Introduction Related Work Method

04 05 06

Experiments Discussion Conclusion

# 01

# Introduction

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitation
- Future Work

## 1.1 OVERVIEW

### **Core Problem: Explaining Generative Models**

- The Goal: Why did the model generate this specific word?
  - <u>Feature Attribution</u> (FA) methods try to answer this by assigning an importance score to each word in the input text
- **The Gap:** Most existing FA methods were designed for <u>classification</u> <u>tasks</u> (sentiment) with <u>encoder-only</u> models (like BERT).
  - Challenges include generative models needing scores for <u>each</u> <u>output token</u>, the need for access to <u>model internals</u>, and limitation based on <u>model type</u>.

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

#### Conclusion

- Limitations
- Future Work

### 1.1 OVERVIEW

### The Paper's Solution: ReAGent

- Purpose: To create a faithful and model-agnostic feature attribution method specifically for generative LMs, inspired by occlusion.
- Key Features of ReAGent:
  - Model-Agnostic: Can be applied to any generative model without needing to know its architecture.
  - No Internal Access: Does not require gradients or internal model weights. It only needs the model's prediction and probabilities.
  - No Fine-Tuning: Works on the original, pre-trained models without any additional training.

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

# 1.2 QUESTIONS

### **Driving Questions (Q)**

**How:** How can we design a feature attribution method that is both faithful to the model's reasoning and universally applicable to any generative LM, especially black-box ones?

**Effectiveness:** Does this new method (ReAGent) consistently provide more faithful explanations than existing popular methods when applied to a variety of modern, decoder-only LMs?

**Efficiency:** Can we do this without the prohibitive computational cost of gradient calculations or model fine-tuning?

# 02

# **Related Work**

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

# 2.1 POST-HOC FAS

### Propagation-based (Gradient-based) Methods

- Use the <u>gradient</u> (i.e., the rate of change) of the output with respect to the input. A large gradient means <u>high importance</u>.
- **Examples**: Input x Gradient , Integrated Gradients...

### **Attention-based Methods**

- Assume the model's <u>attention scores</u> already represent token importance.
- **Examples:** Using the last attention layer's weights or Attention Rollout.

### **Occlusion-based Methods**

 Remove or mask parts of the input and measure the drop in the model's prediction confidence. A large drop means the removed part was important.

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

# 2.2 FAS FOR GENERATIVE

### Vafa et al. (2021) - Greedy Search

- Method: Tries to find the <u>smallest possible subset</u> of input words that still produces the same generated output.
- **Limitations:** Binary (only tells you if a word is in the rationale or not). Requires Fine-Tuning (the model must be retrained to handle inputs with missing tokens, which is expensive and means you're explaining a modified model).

### Cífka and Liutkus (2023) - Context Probing

- Method: Estimates importance based on how <u>adding a token</u> changes the prediction probability distribution.
- **Limitation:** Measures how much "new information" a token adds to the context, which is different from how important it is for the final prediction.

# 

# Method

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

# 3.1 PRELIMINARIES

### **Generative Language Modeling**

- We have an input context, which is a sequence of tokens:  $oldsymbol{X} = [x_1, \dots, x_{t-1}]$
- We have a pre-trained language model,  $f_{\theta}$ , that predicts the probability of the next token,  $x_t$ , given the context.

$$p_{\theta}(x_1, \dots, x_{t-1}) = f_{\theta}(x_1) \prod_{t=2}^{T} f_{\theta}(x_t \mid x_1, \dots, x_{t-1})$$

### Input Importance (Our Goal)

- For a generated token  $x_t$ , we want to find the <u>importance of each token</u> in the input context that led to it.
- We define an FA function, that outputs an importance distribution:

$$e_t(f, \theta, x_1, \dots, x_{t-1}, x_t) \to S_t, t \in \{1, \dots, n\}$$

- Overview
- Questions

### **Related Work**

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

## 3.2 ALGORITHM

### Algorithm 1: Recursive Attribution Generator

**Input**: LM f, context  $x_1, \ldots, x_{t-1}$ , target token  $x_t$ 

Output:  $S_t = \{s_1, \dots, s_{t-1}\}$ 

- 1: Randomly initialize importance scores  $S_t$
- 2: while !StoppingCondition  $(S_t, x_t)$  do
- 3:  $\mathcal{R} \leftarrow \text{randomly select tokens } \mathcal{R} \in x_1, \dots, x_{t-1}$
- 4:  $\hat{x}_1, \dots, \hat{x}_{t-1} \leftarrow \text{replace } \mathcal{R} \text{ on } x_1, \dots, x_{t-1} \text{ with tokens}$  predicted by RoBERTa
- 5:  $\Delta p \leftarrow p(x_t|x_1, \dots, x_{t-1}) p(x_t|\hat{x}_{1\dots t-1})$
- 6: update importance scores  $s_1, \ldots, s_{t-1}$  by  $\Delta p$  and  $\mathcal{R}$
- 7: end while
- 8: return  $S_t$

- Ouestions

### **Related Work**

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

- Implications
- Pros & Cons

- Future Work

## 3.3 FORMULAS

### **Updating Importance Scores**

with a token from RoBERTa

Replaces each token in X 
$$igspace{} C(X) = [\hat{x}_1, \hat{x}_2, \dots \hat{x}_{t-1}]$$

$$\sim U(\mathcal{X}^{(g)}([x_1, x_2, \dots, x_{t-1}]))$$

Calculates replacement prob via constructing a perturbed input by replacing a random subset of X via C(X)

$$p_t^{(o)} = p(x_t | \mathbf{X})$$

$$\mathbf{p}_t^{(r)} = p(x_t | (\mathbf{M}(\mathbf{X}, \overline{\mathcal{R}}) + \mathbf{M}(\mathbf{C}(\mathbf{X}), \mathcal{R})))$$
(5)

$$p_t^* = p(x_t | (\mathbf{M}(\mathbf{X}, \mathcal{K}) + \mathbf{M}(\mathbf{C}(\mathbf{X}), \mathcal{K})))$$
 (5)

$$\Delta p_t = p_t^{(o)} - p_t^{(r)} \tag{6}$$

Assigns responsibility to X to reward replaced tokens for the damage caused

$$\longrightarrow \Delta S_t = M(\Delta p_t \cdot \mathbb{1}^{|X|}, \mathcal{R}) + M(-\Delta p_t \cdot \mathbb{1}^{|X|}, \overline{\mathcal{R}})$$
 (7)

$$\boldsymbol{S}_{t}^{(l)} = \boldsymbol{S}_{n-1}^{(l)} + \operatorname{logit}\left(\frac{\Delta \boldsymbol{S}_{t} + 1}{2}\right)$$
 (8)

$$\mathbf{S}_t = \operatorname{softmax}(\mathbf{S}_t^{(l)}) \tag{9}$$

(3)

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

## 3.3 FORMULAS

### **Stopping Condition**

The loop doesn't just run for a fixed time. It stops when the explanation is "good enough"—when we successfully separate important from unimportant tokens.

### How it works:

- At the end of an iteration, identify the least important 70% of the input tokens based on the current scores.
- Create a new test sentence by replacing only these unimportant tokens with RoBERTa predictions.
- Ask the model to make a prediction based on this highly corrupted input.
   Get its top-k (e.g., top-3) most likely next words.
- If the original target word <u>is still in the model's top-3 predictions</u>, we stop.

# Experiments

- Overview
- Questions

### **Related Work**

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

# 4.1 SETUP

### Settings

### Models:

- Six large, decoder-only models from two different families: GPT and OPT.
- Sizes ranged from ~350M to ~6.7B parameters to test for scalability.

### Datasets:

- LongRA (Token-Level): A task to test if the model can link <u>semantically</u>
   <u>related words</u> even with a distracting sentence in between.
- TellMeWhy (Sequence-Level): Answering "why" questions about a narrative, testing <u>contextual reasoning</u>.
- WikiBio (Sequence-Level): Open-endedly <u>continuing a biography</u>, a more creative task.

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

# 4.1 SETUP

### Settings

| Dataset   | Length | #Data  | Prompt Example                                                                                                                                                                                        |
|-----------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LongRA    | 36     | 37–149 | "When my flight landed in Japan, I converted my currency and slowly fell asleep. (I had a terrifying dream about my grandmother, but that's a story for another time). I was staying in the capital," |
| TellMeWhy | 50     | 200    | "Joe ripped his backpack. He needed a new one. He went to Office Depot. They had only one in stock. Joe was able to nab it just in time. Why did He need a new one?"                                  |
| WikiBio   | 35     | 238    | "Rudy Fernandez (1941–2008) was a labor leader and civil rights activist from the United States. He was born in San Antonio, Texas, and was the son of Mexican immigrants."                           |

- Overview
- Questions

### **Related Work**

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

## 4.1 SETUP

### **How Faithfulness Was Measured**

- **The Problem:** For generation, the output is a probability distribution over thousands of possible tokens. Just looking at one token is too noisy.
- The Solution: Instead of measuring the change in a single token's probability, they measure the <u>change in the entire probability distribution</u> over the vocabulary. They use Hellinger Distance to quantify this change.

### • The Two Key Metrics:

- Soft-Comprehensiveness (Soft-NC): "If I remove the important words, does the model's prediction change significantly?" High score is better.
- Soft-Sufficiency (Soft-NS): "If I keep only the important words, is that enough for the model to still make the right prediction?" High is better.

- Overview
- Questions

### **Related Work**

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

#### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work



- Overview
- Questions

### **Related Work**

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

#### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work





- Ouestions

### **Related Work**

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

- Implications
- Pros & Cons

- Future Work







- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

#### Conclusion

- Limitations
- Future Work

# 4.2 RESULTS

|                      | Soft-NC |           |         | Soft-NS |           |         |
|----------------------|---------|-----------|---------|---------|-----------|---------|
|                      | LongRA  | TellMeWhy | WikiBio | LongRA  | TellMeWhy | WikiBio |
| Attention            | -0.28   | 2.161     | 1.176   | 0.099   | -0.3      | 0.302   |
| Attention Last       | 0.048   | 0.07      | 0.092   | -0.222  | -0.102    | -0.151  |
| Attention Rollout    | 0.209   | 0.047     | 0.211   | -0.099  | -0.085    | -0.023  |
| Gradient Shap        | 1.101   | 1.892     | 0.108   | -0.116  | -0.029    | 0.51    |
| Input X Gradient     | 1.423   | 1.463     | 0.49    | 0.03    | -0.22     | -0.081  |
| Integrated Gradients | 1.865   | 1.536     | 1.384   | 0.451   | 0.045     | 0.765   |
| Lime                 | 0.412   | 0.249     | 1.906   | -0.012  | -0.091    | 0.461   |
| ReAGent              | 5.402   | 4.504     | 1.982   | 1.136   | 1.024     | 1.087   |

Table 2: Soft-NS and Soft-NC averaged over tasks. The best FA on the model (column) is highlighted in bold.

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

#### Conclusion

- Limitations
- Future Work

# 4.2 RESULTS

| Soft-NC              | OPT-350M | OPT-1.3B | OPT-6.7B | GPT2-354M | GPT2-1.5B | GPT-J-6B |
|----------------------|----------|----------|----------|-----------|-----------|----------|
| Attention            | 0.011    | 0.865    | 1.167    | 1.142     | 1.542     | 1.387    |
| Attention Last       | -0.161   | 0.163    | 0.431    | -0.114    | 0.204     | -0.104   |
| Attention Rollout    | -0.059   | 0.241    | 0.457    | 0.192     | 0.138     | -0.034   |
| Gradient Shap        | -0.051   | 0.222    | -0.022   | 1.645     | 2.449     | 1.959    |
| Input x Gradient     | 0.243    | -0.12    | 0.188    | 1.939     | 2.64      | 1.86     |
| Integrated Gradients | 0.323    | 0.328    | 0.129    | 2.408     | 3.442     | 2.94     |
| Lime                 | 0.221    | -1.431   | -1.48    | 2.269     | 3.47      | 2.086    |
| ReAGent              | 2.187    | 3.753    | 5.247    | 3.202     | 5.471     | 3.916    |
| Soft-NS              | OPT-350M | OPT-1.3B | OPT-6.7B | GPT2-354M | GPT2-1.5B | GPT-J-6B |
| Attention            | 0.068    | 0.233    | 0.581    | 0.039     | 0.448     | -1.168   |
| Attention Last       | -0.085   | -0.173   | -0.397   | -0.21     | -0.005    | -0.079   |
| Attention Rollout    | 0.089    | -0.151   | -0.214   | -0.077    | 0.006     | -0.068   |
| Gradient Shap        | -0.334   | -0.035   | -0.107   | 0.586     | 0.026     | 0.593    |
| Input x Gradient     | -0.149   | -0.371   | -0.133   | -0.079    | -0.181    | 0.371    |
| Integrated Gradients | -0.384   | -0.002   | 0.134    | 0.657     | 0.971     | 1.147    |
| Lime                 | -0.16    | -0.649   | 0.01     | 0.377     | 0.523     | 0.614    |
| ReAGent              | 0.693    | 0.759    | 1.306    | 1.192     | 1.535     | 1.008    |

Table 3: Soft-NS and Soft-NC averaged over models. The best FA on the model (column) is highlighted in bold.

- Overview
- Questions

### **Related Work**

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitation:
- Future Work



Figure 4: Importance distribution over the input: "As soon as I arrived in Tennessee, I checked into my hotel, and watched a movie before falling asleep. (I had a great call with my husband, although I wish it were longer). I was staying in my favorite city, ". The sentence in () is the distractor. The model predicts "Nashville" regardless of whether the input includes the distractor or not.

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### Experiments

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

| Dataset   | Full Output                                          | FA              | Input                                                                                                                                          |  |  |
|-----------|------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| WikiBio   | developed by Nintendo for the Nintendo Entertainment | ReAGent<br>Lime | Super Mario Land is a side sc rolling platform video game developed by  Super Mario Land is a side sc rolling platform video game developed by |  |  |
|           | System.                                              |                 |                                                                                                                                                |  |  |
| TellMeWhy | He went to see his old college.                      | ReAGent         | Jay took a trip to his old college Jay is an alumni He visited his friends Howent and got drunk He had a good time Why did He go? He           |  |  |
|           | 5                                                    | Lime            | Jay took a trip to his old college Jay is an alumni He visited his friends He went and got drunk He had a good time Why did He go? He          |  |  |

Table 4: Importance distribution is given by ReAGent and Lime, for Model GPT2–1.5B.

# 

# Discussion

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitation
- Future Work

## 5.1 IMPLICATIONS

### **What This Means**

- It powerfully validates that the simple, intuitive idea of <u>occlusion can be</u> <u>effectively scaled</u> to modern, massive language models.
- It provides a reliable, go-to tool for auditing and debugging generative models, even when source code is unavailable.
- The results show that different model families (GPT vs. OPT) react differently to explanation methods, suggesting their <u>internal reasoning may differ</u> significantly.
- It highlights the necessity of developing <u>custom evaluation metrics</u> that are tailored to the unique <u>challenges of generative tasks</u>.

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Advantages

### Conclusion

- Limitations
- Future Work

# 5.2 PROS & CONS

### **Further Analysis of Method**

### Pros:

- Universally Applicable: It's model-agnostic, making it future-proof.
- <u>Black-Box Friendly</u>: It only requires API-like forward passes.
- No Fine-Tuning Needed: This is cheaper, faster, and not a modified version.
- Superior Faithfulness: Consistently more reliable and faithful.

### Cons:

- o <u>Computationally Intensive</u>: The iterative process requires up to 1,000 loops per run.
- Relies on an External Model: Dependence on RoBERTa could influence results.
- Stochastic by Nature: Need to run it multiple times with different seeds and average the results to get a stable explanation, adding to the computational cost.

# 

# Conclusion

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

# 6.1 LIMITATIONS

### **Current Gaps in Research**

- The "Perturber" Model Dependency: No investigation of the sensitivity of the results to RoBERTa. Would using a different perturber produce significantly different explanations?
- The Cost vs. Faithfulness Trade-off: No detailed analysis of the trade-off between speed (fewer iterations) and accuracy (faithfulness): "How much faithfulness do I lose if I can only afford 100 iterations instead of 1000?" This cost-benefit curve is not explored.
- Generalization of Optimal Settings: This recommendation is based on a sensitivity analysis performed on only one model. There is no evidence that these settings are also optimal for larger models or for different tasks.

- Overview
- Questions

### Related Work

- Post-Hoc FAs
- FAs for Gen

### Method

- Preliminaries
- Algorithm
- Formulas

### **Experiments**

- Setup
- Results

### Discussion

- Implications
- Pros & Cons

### Conclusion

- Limitations
- Future Work

## 6.1 FUTURE WORK

### **Directions for Future Research**

- Expanding to New Models & Tasks: Apply ReAGent to different architectures like encoder-decoder and diffusion models, and to tasks like machine translation and summarization.
- <u>Improving Computational Efficiency</u>: Develop methods that are less intensive at inference and do not require thousands of passes for a single explanation.
- Reducing Methodological Dependencies: Investigate how the "perturber" model impacts explanations or create methods that are perturbation-agnostic.
- <u>Developing "Truly" Black-Box Methods</u>: Design explanation techniques for even more restrictive scenarios where only the final generated text is available, with no access to probabilities or logits.

# THANKS!

**Any questions?** 

Presentation by: Maryam Rezaee

TGML Lab | Summer 1404 Sharif University of Technology

Under the supervision of

Dr. Fatemeh SeyyedSalehi

