

Hypergraphs and Information Fusion for Term Representation Enrichment. Applications to Named Entity Recognition and Word Sense Disambiguation

Ph.D. Thesis Defense

Pavel Soriano-Morales Supervised by Sabine Loudcher and Julien Ah-Pine February 7th, 2018

Why it is useful to we research written language understanding?

How do we extract meaning from written language?

We use Natural Language Processing (NLP), a field of computer science interested on making computers extract useful information from text

In this thesis, we focus on Feature Representation and **Knowledge Discovery**

How do we represent text for the machine to understand?

What techniques do we use to discover meaning from text?

Research work carried out in this thesis

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - · Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - · Multimedia fusion techniques to combine and densify representation spaces
- 3. How can we find and employ communities existing within the language networks?
 - An alternative network-based algorithm to discover semantically related words within a text

Approach Overview

February 7th, 2018 Pavel SORIANO-MORALES

First Contribution: Hypergraph
Linguistic Model

Work Overview

What type of model can we employ to represent textual features? Which textual features?

- Models used to represent textual information
 - Vector Space Models [MS+99]
 - Network Models [MTFo4]
- Generally used types of features
 - · Lexical: words as they appear in the text
 - Syntactic: the role a word plays in the text
 - · Semantic: the meaning of the word given the text

First Contribution: Hypergraph

Linguistic Model

Hypergraph Representation

State of the Art and Proposition

How to represent words in a network according to different language properties?

Existing representations

- Lexical Co-occurrence Networks [DMN11; Jur11; Qia+14]
- Syntactic Co-occurrence Networks [BP13]
- Semantic Networks [SP10; MRN14]
- · Heterogenous Networks [SN13]

Lexical Networks

Syntactic Networks

Semantic Networks

Pavel SORIANO-MORALES February 7th, 2018 8/79

State of the Art and Proposition

Limitations of existing representations

- · Language networks generally employ a single type of textual information
- · The edges of the network may relate maximum two words at each time

Proposition

- Represent together linguistic co-occurrences through a hypergraph model
 - · Link together three different types of networks, using lexical and syntactic data
 - · Get a semantic overview at three different levels: short range (with dependency functions), medium range (phrase constituency membership), and long range (lexical co-occurrence)

Proposed Model: Definitions

Hypergraph Linguistic Model

Hypergraph:

 A graph generalization, where edges may link more than 2 nodes at the same time. It can be seen as a set of sets

Pavel SORIANO-MORALES February 7th, 2018 10/79

Proposed Model: Definitions

Hypergraph Linguistic Model

- Linguistic Features:
 - 1. **CONSTITUENT** (M^N): noun phrase constituents memberships
 - 2. **DEPENDENCY** (MS) dependency relations. We consider all types of dependency functions between nouns and verbs,
 - 3. **SENTENCE** (M^L): lexical context, in this case the window considered is the whole sentence
- **Show image with the three different levels**

- Input: Set of linguistic features from an entry corpus
- Output: A network relating words according to the input features. Computationally, a key-value structure holding words and their descriptors for fast retrieval
- Example sentence S₁:

The report contains **copies** of the minutes of these meetings.

root(root, contains)
det(report, The)
dobj(contains, copies)
case(minutes, of)

Pavel SORIANO-MORALES February 7th, 2018 12/79

Proposed Model: Working example

		CONSTITUENT			DEPENDENCY		SENTENCE
		NP ₁	NP ₂	NP ₃	nsubj	dobj	S,
		DI:NN	NP:PP:PP	NNS	contains	contains	- 1
NN	report	1			1		1
	copies		1	1		1	1
	minutes		1				1
	meetings		1				1
VB	contains						1

Challenges of textual representations

Sparsity

Pavel SORIANO-MORALES February 7th, 2018 14/79

Second Contribution: Combining

Features and Dealing with

Sparsity

Work Overview

Second Contribution: Combining Features and Dealing with Sparsity

Term Representation Enrichment

Multimedia Fusion Techniques [Atr+10; ABL10]:

Definition

- · Set of techniques used in multimedia analysis tasks to integrate multiple media
- · The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

Main fusion operators:

- Early Fusion $E_{\alpha}(\cdot)$,
- Late Fusion $L_{\beta}(\cdot)$,
- Cross Fusion $X_{\gamma}(\cdot), X_{F}(\cdot)$
- α and β : Assign an importance weight to each of their operators
- γ : number of top similar items to take from the similarity space

Early Fusion

Late Fusion

Cross Fusion

Pavel SORIANO-MORALES February 7th, 2018 19/79

Levels of Fusion

In our work we distinguish three levels of fusion operators:

- First Degree Fusion (1F)
 - $E(M^L, M^S)$
 - $X_F(S^L, M^S)$
 - $X_S(S^S, S^L)$

Levels of Fusion

In our work we distinguish three levels of fusion operators:

- Second Degree Fusion (1F)
 - Cross Feature Early Fusion: $X_E(S^L, E(M^L, M^S))$
 - Cross Feature Cross Similarity Fusion: $X_F(X_S(S^T, S^S), M^T)$
 - Early Cross Feature Fusion: $E(M^T, X_F(S^L, M^T))$
 - Late Cross Feature Fusion: $L(M^T, X_F(S^T, M^T))$

Levels of Fusion

In our work we distinguish three levels of fusion operators:

- Higher Degree Fusion (HF)
 - $E(M^{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M_{L}, X_{F}(S^{S}, M^{L}))))$
 - **Show decomposition of operator graphically**

Work Overview

Pavel SORIANO-MORALES February 7th, 2018 23/79

SAEWD: A Wikipedia Enriched Hypergraph

Pavel SORIANO-MORALES February 7th, 2018 24/79

Wikipedia Feature Enriched Spaces

	Lexical Features (5.49%) M ^L	Syntactic Features (4.97%) M ^s	Early Fusion (5.23%) $E(M^{L}, M^{S})$	X _F Fusion (16.75%) X _F (S ^s , M ^L)	<i>X_F</i> Fusion (13.45%) <i>X_F</i> (<i>S</i> ^L , <i>M</i> ^S)
priest	priests	monk	sailor	vassal	sailor
	nun	regent	regent	regent	fluent
	canton	aedile	nuclei	nun	dean
	sailor	seer	nun	sailor	nuclei
	burial	meek	relic	monk	chorus

Wikipedia Similarity Enriched Spaces

	Lexical Similarity (75.25%) S ^L	Syntactic Similarity (60.64%)	Early Fusion (67.94%) $E(S^{L}, S^{S})$	Late Fusion (83.17%) $L(S^L, S^S)$	X _S Fusion (87.22%) X _S (S ^S , S ^L)	X _S Fusion (79.69%) X _S (S ^L , S ^S)
priest	wholly	regent	regent	regent	regent	sailor
	burial	coach	slang	slang	vassal	nuclei
	monk	broker	broker	seer	vizier	nun
	lingua	dream	rebel	tutor	leader	canton
	nuclei	tailor	tiger	cradle	result	burial

to Named Entity Recognition and

Third Contribution: Applications

Word Sense Disambiguation

Applications

- Use the proposed model to solve two NLP tasks:
 - · Named Entity Recognition
 - Word Sense Induction and Disambiguation
- These experiments have two main objectives:
 - Test the effectiveness of fusion enriched representations (heterogeneity + less sparse spaces)
 - · Leverage the structure of the network built following our proposed model

Third Contribution: Applications to Named Entity Recognition and

Word Sense Disambiguation

Named Entity Recognition (NER)

Definition and Objectives

- The goal is to automatically discover mentions that belong to a well-defined semantic category.
- The classic task of NER involves detecting among four types of entities and a non-entity class:
 - Location (LOC)
 - Organization (ORG)
 - Person (PER)
 - Miscellaneous (MISC)
 - None (0)
- We assess the effectiveness of the classic fusion methods and propose new hybrid combinations
- ** Show here graphical presentation of entities**

Experiment Flow Diagram

Pavel SORIANO-MORALES February 7th, 2018 30/79

Representation Spaces

Lexical Space (L)

Word	Features
Australian	word:Australian, word+1:scientist, word+2:discovers
scientist	word-1:Australian, word:scientist, word+1:discovers, word+2:star
discovers	word-2:Australian, word-1:scientist,, word+2:telescope
star	word-2:scientist, word-1:discovers, word:star,, word+2:telescope
with	word-2:discovers, word-1:star, word:with, word+1:telescope
telescope	word-2:star, word-1:with, word:telescope

Representation Spaces

Syntactic Space (S)

Word	Contexts
Australian	scientist/NN/amod_inv
scientist	Australian/JJ/amod, discovers/VBZ/nsubj_inv
discovers	scientist/NN/nsubj, star/NN/dobj, telescope/NN/nmod:with
star	discovers/VBZ/dobj_inv
telescope	discovers/VBZ/nmod:with_inv

Standard Features Space (T)

- Each word
- Whether it is capitalized
- Prefix and suffix (of each word their surroundings)
- Part of Speech tag

Experimental Protocol

Preprocessing

· Normalize numbers

Test Corpora

- CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
- Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words. Evaluated in a 5-fold CV
- Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words. Evaluated in a 5-fold CV

Annotation Scheme

· Beginning, Inside, Outside

· Learning Algorithm

Structured Perceptron [Colo2]

Evaluation Metrics

Precision, Recall, F-measure

F-measure on the three datasets using single features independently with the structured perceptron

A	Single Features					
	CONLL	WNER	WGLD			
M^{T}	77.41	77.50	59.66			
$M^{\scriptscriptstyle L}$	69.40	69.17	52.34			
Ms	32.95	28.47	25.49			

F-measure on the three datasets using First Degree (1F) fusion operators

A	В		Early	Fusion (El
		CONLL	WNER	WGLD
M^L	M^s	72.01	70.59	59.38
M^L	M^{T}	78.13	79.78	61.96
Ms	M^{T}	77.70	78.10	60.93
M^L	$E(M^S, M^T)$	78.90	80.04	63.20

			Late	Fusion (LF)
		CONLL	WNER	WGLD
$S^{\scriptscriptstyle L}$	S^s	61.65	58.79	44.29
$S^{\scriptscriptstyle L}$	S^{T}	55.64	67.70	48.00
S^s	S^{T}	50.21	58.41	49.81

		Cross Feature Fusion (X _F F)				
		CONLL	WNER	WGLD		
$S^{\scriptscriptstyle L}$	M^{\scriptscriptstyleT}	49.90	70.27	62.69		
S^s	\mathbf{M}^{T}	47.27	51.38	48.53		
S^{\scriptscriptstyleT}	$b_{x_FF}^{\ast}$	52.89	62.21	50.15		

Cross	Similarity	Fusion	(X _s F)
C1033	Jiiiiiiiiiiii	Lusion	(,,51)

	CONLL	CONLL WNER		
$S^L S^T$	27.75	59.12	38.35	
S^s $b_{x_SF}^*$	36.87	40.92	39.62	
$S^{\scriptscriptstyle T} b_{^{\scriptscriptstyle X}{}_S{}^{\scriptscriptstyle F}}^*$	41.89	52.03	39.92	

В

F-measure on the three datasets using Second Degree (2F) fusion operators

In $X_F X_S F$, \hat{a} corresponds to the best performing matrix in the set $\{X_{S}(S^{T}, S^{L}), X_{S}(S^{L}, S^{T}), X_{S}(S^{T}, S^{S})\}$

		CONLL	WNER	WGLD
â	$M^{\scriptscriptstyle T}$	37.69	59-44	41.71
â	M^L	38.31	58.73	41.56
â	Ms	29.31	52.06	34.91
			Cross Fea	ture Early Fusion (X _F EF)
		CONLL	WNER	WGLD
ST	$E(M^{\scriptscriptstyle L},M^{\scriptscriptstyle T})$	54-34	64.20	39-59
S ^L	$E(M^L, M^T)$	49.71	71.84	45.14
SS	$E(M^L, M^T)$	47-54	53-77	43-32

Cross Feature Cross Similarity Fusion (XFXsF)

In
$$EX_FF$$
, $b_{EX_FF}^* \in \{X_F(S^s, M^L), X_F(S^L, M^L), X_F(S^L, M^T), X_F(S^s, M^L), X_F(S^s, M^T)\}$

		Early Cross Feature Fusion (EX _F F)		
	CONLL	WNER	WGLD	
$M^{\scriptscriptstyle T} - b^*_{\scriptscriptstyle EX_FF}$	49.58	77-32	61.69	
M^L $b_{EX_FF}^*$	49-79	66.22	53-54	
$M^s = b^*_{EX_FF}$	51.53	70.94	53.70	
		Late C	Pross Feature Fusion (LX _F F)	
	CONLL	WNER	WGLD	
$M^{\scriptscriptstyle T}$ $\hat{b}_{\scriptscriptstyle LX_FF}$	54.82	75.70	54-73	
M^L \hat{b}_{LX_FF}	56.53	62.27	52.39	

Pavel SORIANO-MORALES February 7th, 2018 37/79

F-measure on the three datasets using Higher Degree (HF) fusion operators

In $EEELX_FLX_F$, $\hat{b}_{EEELX_FLX_F} \in E(E(M^T, L(M^L, X_F(S^S, M^L))),$ $L(M^L, X_F(S^T, M^L))), E(E(M^T, L(M^T, X_F(S^S, M^T))), L(M^L, X_F(S^S, M^L)))$ for CONLL, WNER and WGLD.

A	В	Cross	ate sion (ELX _F F)	
		CONLL	WNER	WGLD
M^{T}	$L(M^{\scriptscriptstyle L},X_F(S^{\scriptscriptstyle S},M^{\scriptscriptstyle L}))$	67.16	79-45	62.37
		Double l	Triple Ea Late Cross F (EEELX _F L	eature Fusion
		CONLL	WNER	WGLD
M ^L	ĥ	6E 01	78.02	62.24

Third Contribution: Applications to Named Entity Recognition and

Word Sense Disambiguation

Fusion Analysis

Decompose best fusion in four models:

- M^{\perp} used to train model M_1 .
- (2) $E(\alpha_1 M^1, \alpha_2 M^7)$ used to train model M_2 , with $\alpha_1 = 0.95, \alpha_2 = 0.05$
- $\mathfrak{F}_{\alpha}(\alpha_{1}\mathsf{M}^{\mathsf{L}},\alpha_{2}\mathsf{M}^{\mathsf{T}},\alpha_{3}\mathsf{L}(\mathsf{M}^{\mathsf{T}},\mathsf{X}_{\mathsf{F}}(\mathsf{S}^{\mathsf{s}},\mathsf{M}^{\mathsf{T}})))$ used to train model M_{3} , with $\alpha_1 = 0.95, \alpha_2 = \alpha_3 = 0.05$
- (4) $E_{\alpha}(\alpha_1 M^{\perp}, \alpha_2 M^{\dagger}, \alpha_3 L(M^{\dagger}, X_F(S^s, M^{\dagger})), \alpha_4 L(M^{\perp}, X_F(S^s, M^{\perp})))$ used to

Pavel SORIANO-MORALES February 7th, 2018 39/79

We focus on the word Kory, and its performance from model M_1 to M_2

Analyzing the Best Fusion Operator

We focus on the word *Green*, and its performance from model M_3 to M_4

Third Contribution: Applications to Named Entity Recognition and

Word Sense Disambiguation

Word Sense Disambiguation

00000

Experiment Flow Diagram

Pavel SORIANO-MORALES February 7th, 2018 42/79

Experimental Protocol

Pavel SORIANO-MORALES February 7th, 2018 43/79

Supevised Evaluation

Pavel SORIANO-MORALES February 7th, 2018 44/79

000000

Unsupevised Evaluation

Pavel SORIANO-MORALES February 7th, 2018 45/79

00000

Proposed Evaluation

Pavel SORIANO-MORALES February 7th, 2018 46/79

Third Contribution: Applications to Named Entity Recognition and Word Sense Disambiguation

Leveraging the Linguistic Network Structure

000000000

Introduction and State of the Art

How to exploit a linguistic network to solve word sense induction and disambiguation?

- Existing graph-based approaches
 - Hyperlex [Vó4]
 - University of York (UoY) [KMo7]
- Limitations of existing approaches
 - Single typed networks
 - Large number of parameters

Proposed Method

Features

- Automatically group words to induce senses and then assign them
- Be able to exploit different types of linguistic information (lexical or syntactic co-occurrence)
- Keep the number of parameters low and allow for their automatic adjusting according to the network's nature
- Use a robust and interpretable similarity measure

0000000000

Proposed Method

Pavel SORIANO-MORALES February 7th, 2018 49/79

Proposed Method: Step One

- Creation of the linguistic network
 - After preprocessing, we build a HLM G_{tw} that contains the co-occurrent (lexically and syntactically) words for a target word tw.

Proposed Method: Step Two

Computing the similarity between nodes

- G_{tw} is represented as a bipartite graph B_{tw} . Left nodes Urepresent words and right nodes W correspond to the hyperedges. An edge from a node u to a node w depicts the incidence of node u in hyperedge w.
- A similarity matrix S_{tw} of dimension $|U| \times |U|$ is calculated using the Jaccard similarity: given $n_{i,j} \in U$, then $Jaccard(i,j) = \frac{|N(i) \cap N(j)|}{|M(j) \cup M(j)|}$.
- Induce a new incidence matrix F_{tw} from S_{tw} containing only the closest neighbours to each word $n_i \in U$. Each of these hyperedges represent a set of words that are deemed similar between them according to their Jaccard index value, which must be equal or higher than an assigned threshold th_1 .

Proposed Method: Step Three

Clustering words together

• We select the top c-nodes in F_{tw} according to their degree. These nodes are candidate hubs, which must surpass a second threshold th_2 to be considered as proper hubs. We use the average Jaccard measure defined for each node *n* as:

$$AvgJaccard(n) = \frac{1}{|hedges(n)|} \sum_{h \in hedges(n)} \frac{\sum_{\substack{i \in h \\ j \in h: i \neq j}} Jaccard(i,j)}{|h+1|}$$

where hedeges(n) is the set of hyperedges n is incident in and its cardinality is defined as |hedges(n)|. |h| is the number of nodes in hyperedge h.

 Accepted hubs represent senses alongside with their co-occurrent words. The final set of senses is called SoS_{tw}.

Proposed Method: Step Four

Word Sense Disambiguation

 The assignation of a sense consists in looking at each tw instance represented by a context ct and simply determining which sense s in SoS_{tw} shares the highest amount of words with ct. The sense s is thus assigned to that instance.

Semeval Results

Unsupervised paired F-Score (FS) for Semeval-2007

FS (%)	all	nouns	verbs	#cl
1c1word	78.9	80.7	76.8	1.00
UBC-AS	78.7	80.8	76.3	1.32
DEP	74.9	80.2	69.0	3.27
LEX	61.4	62.6	60.1	4.26
UoY(2007)	56.1	65.8	45.1	9.28
Random	37.9	38.1	37.7	19.7
1c1instance	9.5	6.6	12.7	48.51

Semeval Results

Supervised Recall (SR) for Semeval-2007

	SR (%)	all	nouns	verbs	#cl
	I2R	81.6	86.8	75.7	3.08
	LEX	79.4	82.5	75.9	4.26
	DEP	79.1	81.5	76.4	3.27
	MFS	78.7	80.9	76.2	1
	UoY(2007)	77.7	81.6	73.3	9.28

Semeval Results

Discussion

- Both DEP and LEX beat the competition baselines
- They also beat the most similar approach UoY(2007)
- · Best result for verbs concerning supervised Recall
- · Possibility for features' combination: both seem to complement each other

Conclusions and Future Work

Conclusions

Future Work

References I

References

Christopher D Manning, Hinrich Schütze, et al. Foundations of statistical natural language processing. Vol. 999. MIT Press, 1999.

References II

Michael Collins. "Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms". In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10. EMNLP '02. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002, pp. 1–8. DOI: 10.3115/1118693.1118694.

Erik F. Tjong Kim Sang and Fien De Meulder. "Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition". In: CoNLL. ACL, 2003, pp. 142-147.

References III

Rada Mihalcea, Paul Tarau, and Elizabeth Figa. "PageRank on Semantic Networks, with Application to Word Sense Disambiguation". In: Proceedings of the 20th International Conference on Computational Linguistics. COLING '04. Geneva, Switzerland: Association for Computational Linguistics, 2004. DOI: 10.3115/1220355.1220517.

Jean Véronis. "HyperLex: lexical cartography for information retrieval". In: Computer Speech & Language 18.3 (2004), pp. 223 -252. ISSN: 0885-2308. DOI: 10.1016/j.csl.2004.05.002.

References IV

Ioannis P. Klapaftis and Suresh Manandhar. "UOY: A Hypergraph Model for Word Sense Induction & Disambiguation". In: Proceedings of the 4th International Workshop on Semantic Evaluations. SemEval '07. Prague, Czech Republic: Association for Computational Linguistics, 2007, pp. 414-417.

Dominic Balasuriva et al. "Named Entity Recognition in Wikipedia". In: Proceedings of the 2009 Workshop on The People's Web Meets NLP: Collaboratively Constructed Semantic Resources. People's Web '09. Suntec. Singapore: Association for Computational Linguistics, 2009, pp. 10-18. ISBN: 978-1-932432-55-8. URL: http: //dl.acm.org/citation.cfm?id=1699765.1699767.

References V

Joel Nothman, Tara Murphy, and James R. Curran. "Analysing Wikipedia and Gold-standard Corpora for NER Training". In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics. EACL '09. Athens, Greece: Association for Computational Linguistics, 2009, pp. 612-620.

Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. "Link communities reveal multiscale complexity in networks". In: Nature 466.7307 (2010), pp. 761-764.

Pradeep K. Atrey et al. "Multimodal fusion for multimedia analysis: a survey". In: Multimedia Syst. 16.6 (2010), pp. 345-379.

References VI

Carina Silberer and Simone Paolo Ponzetto. "UHD: Cross-lingual Word Sense Disambiguation Using Multilingual Co-occurrence Graphs". In: Proceedings of the 5th International Workshop on Semantic Evaluation. SemEval '10. Los Angeles, California: Association for Computational Linguistics, 2010, pp. 134–137. URL: http: //dl.acm.org/citation.cfm?id=1859664.1859691.

References VII

Antonio Di Marco and Roberto Navigli. "Clustering Web Search Results with Maximum Spanning Trees". In: Proceedings of the 12th International Conference on Artificial Intelligence Around Man and Beyond. AI*IA'11. Palermo, Italy: Springer-Verlag, 2011, pp. 201-212. ISBN: 978-3-642-23953-3. URL: http: //dl.acm.org/citation.cfm?id=2041977.2042002.

Pavel SORIANO-MORALES February 7th, 2018 65/79

References VIII

David Jurgens. "Word Sense Induction by Community Detection". In: Proceedings of TextGraphs-6: Graph-based Methods for Natural Language Processing. TextGraphs-6. Portland, Oregon: Association for Computational Linguistics, 2011, pp. 24-28. ISBN: 978-1-937284-008. URL: http: //dl.acm.org/citation.cfm?id=2024277.2024282.

Antoon Bronselaer and Gabriella Pasi. "An approach to graph-based analysis of textual documents". In: Proceedings of the 8th conference of the European Society for Fuzzy Logic and Technology, EUSFLAT-13, Milano, Italy, September 11-13, 2013. 2013. DOI: 10.2991/eusflat.2013.96.

References IX

Avneesh Saluja and Jiri Navrátil. "Graph-Based Unsupervised Learning of Word Similarities Using Heterogeneous Feature Types". In: Graph-Based Methods for Natural Language Processing (2013), p. 29.

Andrea Moro, Alessandro Raganato, and Roberto Navigli. "Entity Linking meets Word Sense Disambiguation: a Unified Approach". In: Transactions of the Association for Computational Linguistics (TACL) 2 (2014), pp. 231–244.

Pavel SORIANO-MORALES February 7th, 2018 67/79

References X

Tao Qian et al. "Word Sense Induction Using Lexical Chain based Hypergraph Model". In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. Dublin, Ireland: Dublin City University and Association for Computational Linguistics, 2014, pp. 1601-1611. URL:

http://www.aclweb.org/anthology/C14-1152.

Appendix

Appendix

WSI/D Method in Detail

Proposed Method: Step One

- Creation of the linguistic network
 - After preprocessing, we build a HLM G_{tw} that contains the co-occurrent (lexically and syntactically) words for a target word tw.

Proposed Method: Step Two

Computing the similarity between nodes

- G_{tw} is represented as a bipartite graph B_{tw} . Left nodes Urepresent words and right nodes W correspond to the hyperedges. An edge from a node u to a node w depicts the incidence of node u in hyperedge w.
- A similarity matrix S_{tw} of dimension $|U| \times |U|$ is calculated using the Jaccard similarity: given $n_{i,j} \in U$, then $Jaccard(i,j) = \frac{|N(i) \cap N(j)|}{|M(j) \cup M(j)|}$.
- Induce a new incidence matrix F_{tw} from S_{tw} containing only the closest neighbours to each word $n_i \in U$. Each of these hyperedges represent a set of words that are deemed similar between them according to their Jaccard index value, which must be equal or higher than an assigned threshold th_1 .

Proposed Method: Step Three

Clustering words together

• We select the top c-nodes in F_{tw} according to their degree. These nodes are candidate hubs, which must surpass a second threshold th_2 to be considered as proper hubs. We use the average Jaccard measure defined for each node *n* as:

$$AvgJaccard(n) = \frac{1}{|hedges(n)|} \sum_{h \in hedges(n)} \frac{\sum_{\substack{i \in h \\ j \in h: i \neq j}} Jaccard(i,j)}{|h+1|}$$

where hedeges(n) is the set of hyperedges n is incident in and its cardinality is defined as |hedges(n)|. |h| is the number of nodes in hyperedge h.

 Accepted hubs represent senses alongside with their co-occurrent words. The final set of senses is called SoS_{tw}.

Proposed Method: Step Four

Word Sense Disambiguation

 The assignation of a sense consists in looking at each tw instance represented by a context ct and simply determining which sense s in SoS_{tw} shares the highest amount of words with ct. The sense s is thus assigned to that instance.

Experiments

- Implementation Framework
 - Systems built and evaluated: DEP and LEX.
 - **DEP**: Syntactical dependencies
 - LEX: Lexical co-occurrences
 - Two datasets: Semeval-2007 Task 2 (100 words: 35 nouns, 65 verbs) and Semeval-2010 Task 14 (100 words: 50 nouns, 50 verbs). For brevity, only the results for the first dataset are discussed in this presentation.
 - Evaluation metrics: Unsupervised evaluation (Paired F-Score, V-Measure). Supervised evaluation (Recall).

Results Semeval 2010

VM (%)	all	nouns	verbs	#cl
Hermit	16.2	16.7	15.6	10.78
NMF_{lib}	11.8	13.5	9.4	4.80
LEX	11.6	8.8	11.9	10.5
Random	4.4	4.2	4.6	4.00
DEP	3.5	3.9	2.8	2.75
MFS	0.0	0.0	0.0	1.00

Table 1: Unsupervised V-Measure (VM) on the Semeval 2010 test set

Results Semeval 2010

FS (%)	all	nouns	verbs	#cl
MFS	63.5	57.0	72.4	1.00
Duluth-WSI-SVD-Gap	63.3	57.0	72.4	1.02
DEP	53.6	50.1	58.7	2.75
NMF_{lib}	45.3	42.2	49.8	5.42
LEX	38.4	46.7	28.5	10.5
Random	31.9	30.4	34.1	4.00

Table 2: Unsupervised Paired F-Score (FS) for the Semeval 2010 test set

Results Semeval 2010

SR (%)	all	nouns	verbs
NMF_{lib}	62.6	57.3	70.2
UoY(2010)	62.4	59.4	66.8
LEX	59.8	55.8	67.4
DEP	59.3	53.9	67.2
MFS	58.7	53.2	66.6
Random	57.3	51.5	65.7

Table 3: Supervised recall (SR) for Semeval 2010 test set (80% mapping, 20% evaluation)

Appendix

SAEWD

SAEWD: Syntactically Annotated English Wikipedia Dump

Building SAEWD

Pavel SORIANO-MORALES February 7th, 2018 77/79

SAEWD: Parsed sample

FILENAME wiki oo.parsed lemma POS constituency head dependency %%#PAGE Anarchism DT NP_22,S_97 great NP_22,S_97 amod brigand brigand NN NP_22,S_97 nsubi becomes become VBZ VP_44,S_97 root DT NP_18,NP_20,VP_44,S_97 NN NP_18,NP_20,VP_44,S_97 of IN PP_57,NP_20,VP_44,S_97 case DT NP_18,PP_57,NP_20,VP_44,S_97 9 det nation NN NP_18,PP_57,NP_20,VP_44,S_97 6 Nation nmod

Appendix

Ongoing Results

Ongoing Work: Results

Combining the hyperedges: cross fusion

Unsupervised paired F-Score (FS) for the Semeval 2007 test set

FS (%)	all	nouns	verbs	#cl
1c1word	78.9	80.7	76.8	1.00
UBC-AS	78.7	80.8	76.3	1.32
$CROSS_{k=75}$	78.6	80.7	76.3	1.70
DEP	74.9	80.2	69.0	3.27
$CLUST_{k=5,th=55}$	72.5	76.0	63.8	5.47
LEX	61.4	62.6	60.1	4.26
UoY(2007)	56.1	65.8	45.1	9.28
Random	37.9	38.1	37.7	19.7
1c1instance	9.5	6.6	12.7	48.51