Report

Laboratory Work 3

Dmitry Ladutsko

August 11, 2022

1. Prerequisites

1.1. Passwords Index

Password Group	Login Name	Password	
Operation System	root	"rootadmin"	
	oracle	"oracleadmin"	
_			
Oracle System	sys	"sysadmin"	
	system	"sysadmin"	
Oracle Users	All DB users	"%PWD%"	

1.2. Folder Paths Index

Path Group	Path Description	Path	
Operation	Oracle RDBMS - BIN	/oracle/app/oracle	
System			
	Oracle Inventory	/oracle/app/oraInventory	
	Oracle Database Storage	/oracle/oradata	
	Oracle Install Directory	/oracle/install	
Oracle	ORACLE_BASE	/oracle/app/oracle	
	ORACLE_HOME	\$ORACLE_BASE/product/11.2	
FTP	ftp Incoming Folder	/ftp/incoming	

2. Business analysis tasks – Reports

2.1. Task 01: Export Geo Location Reference

The Main Task is to export Geo Location Reference on Denormalized table.

Create Denormalized export table on SB_MBackUp schema.

Required points:

- Create Denormalized table data using CONNENT_BY
- $\bullet \ \ Add \ Additional \ Columns \ to \ table: \backslash$

Geo_id types: Branch, ROOT, Leaf

Count of childs of Branch or Root, for Leafs this Field you have fill by NULL

Full path of Dependencies by Example: ROOT -> BRANCH -> BRANCH -> LEAF

Task Results:

Create required objects:

- Create New Schema SB_MBackUp and New Default TableSpace
- Put objects script to Git.

```
Worksheet
          Query Builder
     CREATE USER SB MBackUp
       IDENTIFIED BY "%PWD%"
         DEFAULT TABLESPACE ts_sa_customers_data_001;
  3
  4
     GRANT UNLIMITED TABLESPACE TO SB MBackUp;
  5
  6
  7
  8
  9
     alter session set current schema=u dw_references;
 11 select
 12
 13 from
          t_geo_object_links;
 14
Script Output × Query Result × Query Result 1 × Query Result 2 ×
📌 🥟 🔡 🖺 🔋 | Task completed in 0.375 seconds
User SB MBACKUP created.
Grant succeeded.
Session altered.
```

- Prepare Document with Screenshot of Data on Denormalized table
- Prepare load script and put it to GIT

2.2. Task 02: Analyze Business hierarchy Reference Analyses

The Main Task is to create hierarch analyses of any Dimension, according yours Solution Proposal and DWH Solution Concept from Module 6. Introduction to DWH

Required points:

- Create Denormalized table data using CONNENT_BY
- Use START WITH Clause
- Use CONNECT_BY_ROOT to analyses any Branch levels
- Analyze Main Root Branch, and 2 Sub Branches

```
CREATE TABLE SA EMPLOYEES (
                                           CREATE TABLE SA EMPLOYEES (
                                              employee id
                                                                 NUMBER(5) not null,
                    VARCHAR2 (40) NOT NULL,
    first name
                                              first_name_EMPLOYEE VARCHAR2 (40) NOT NULL,
                    VARCHAR2 (40) NOT NULL,
    last name
                    VARCHAR2 (40) NOT NULL, phone_EMPLOYEE VARCHAR2 (40) NOT NULL,
    email
                                             POSITION_NAME_ACTUAL VARCHAR2 (40) NOT NULL,
                   VARCHAR2 (40) NOT NULL, POSITION DEGREE VARCHAR2 (40) NOT NULL,
    phone
                                             SALES_TYPE
                                                                VARCHAR2 (40) NOT NULL,
    POSITION NAME VARCHAR2 (40) NOT NULL,
                                              HIRE_DATE
                                                                DATE NOT NULL,
                                                                 int not null,
                                              salarv
    POSITION GRADE VARCHAR2 (40) NOT NULL,
                                              chief id
                                                                 int not null,
                                               position_name_previous VARCHAR2(40) NOT NULL,
    HIRE DATE
                    DATE NOT NULL
                                               position_change_date
                                                                 DATE not null
```

Here, as you san see, I added more data into sa_employees table (Left - previous version, right - new)

In the pictures above you can see how **employees** related with **chiefs**. And who is a chief for every employee, who is a **grand chief** and their 4 - staged **hierarchy**.

Task Results:

Create required objects:

- Prepare Document with Screenshot of analyses Data result
- Prepare script and put it to GIT

Note. All scripts stored on GitHub.

Laboratory work summary:

At this lab we have learned how we can carry out a hierarchy schema using different statements, such as:

- Connect_by
- Connect_by_root

Specified with such clauses as **Start With** and **Level** pseudocolumn which shows parent and child rows. **Now we have** much more understanding about hierarchy usage.