DAT1

20/2/16

Agenda

- Review: Naïve Bayes
- Clustering
- SVM

Review

BAYESIAN INFERENCE

Suppose we have a dataset with features $x_1, ..., x_n$ and a class label c. What can we say about classification using Bayes' theorem?

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Bayes' theorem can help us to determine the probability of a record belonging to a class, *given* the data we observe.

source: Data Analysis with Open Source Tools, by Philipp K, Janert, O'Reilly Media, 2011,

This term is the prior probability of c. It represents the probability of a record belonging to class c before the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the likelihood function. It represents the joint probability of observing features $\{x_i\}$ given that that record belongs to class c.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the normalization constant. It doesn't depend on c, and is generally ignored.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the posterior probability of c. It represents the probability of a record belonging to class c after the data is taken into account.

$$P(\operatorname{class} C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \operatorname{class} C) \cdot P(\operatorname{class} C)}{P(\{x_i\})}$$

The idea of Bayesian inference, then, is to update our beliefs about the distribution of c using the data ("evidence") at our disposal.

Q: What piece of the puzzle we've seen so far looks like it could intractably difficult in practice?

A: Estimating the full likelihood function.

$$P(\{x_i\}|C) = P(\{x_1, x_2, ..., x_n\})|C)$$

Observing this exactly would require us to have enough data for every possible combination of features to make a reasonable estimate.

Q: So what can we do about it?

A: Make a simplifying assumption. In particular, we assume that the features x_i are conditionally independent from each other:

$$P(\{x_i\}|C) = P(\{x_1, x_2, ..., x_n\}|C) \approx P(x_1|C) * P(x_2|C) * ... * P(x_n|C)$$

This "naïve" assumption simplifies the likelihood function to make it tractable.