Abstract Algebra and Fundamental Analysis

${\rm Jeremy\ Le-UNSW\ MATH2701\ 24T3}$

Contents

1	Transformations and Groups	2
2	Subgroups and the Group of Isometries	3
3	Reflections and Isometries	4
4	Translations and Rotations on \mathbb{R}^2	5
5	Classification of Plane Isometries	6
6	Similarities	7
7	Dilatations	8
8	Classification of Plane Similarities	8
9	Normal Subgroups	9
10	Collineations	9
11	Darboux's Theorem	9
12	Affine Transformations	10

1 Transformations and Groups

Definition 1.1. A transformation on \mathbb{R}^n is a **bijection** from \mathbb{R}^n to \mathbb{R}^n . We will denote $\mathscr{B}(\mathbb{R}^n)$ the set of all transformations on \mathbb{R}^n .

In particular, a transformation on the Euclidean plane \mathbb{R}^2 is called a **plane transformation**.

Definition 1.2 (Group). A group is a set G equipped with a map

$$*: G \times G \to G, (g,h) \mapsto g * h = gh,$$

that satisfies the following axioms:

- (G1) Associativity, i.e. $g, h, k \in G$, then (gh)k = g(hk).
- (G2) Existence of identity, i.e. there is an element denoted by e in G called the *identity* of G such that eg = g = ge for any $g \in G$. (Such e is unique; notation: 1_G .)
- (G3) Existence of inverse, i.e. for any $g \in G$, there is an element denoted by $h \in G$ called the inverse of g such that gh = hg = e. (h is also unique; notation: g^{-1} .)

A group G is called commutative or abelian if gh = hg for all $g, h \in G$.

Proposition 1.3. Examples of Transformation Groups

- (1) The set $\mathscr{B}(\mathbb{R}^n)$ of all transformations on \mathbb{R}^n together with the operation of composition forms a group.
- (2) The set $\mathcal{T}(\mathbb{R}^n)$ of all translations on \mathbb{R}^n together with the operation of composition forms a group.
- (3) The set $\mathscr{C}(\mathbb{R}^n)$ of collineations of \mathbb{R}^n together with the operation of composition forms a group.

Definition 1.4 (Subgroup). Let (G, *) be a group. A nonempty subset $H \subseteq G$ is said to be a subgroup of G, denoted by $H \subseteq G$, if (H, *) is a group.

Lemma 1.5 (Subgroup Lemma). A nonempty subset H of a group G is a subgroup if and only if the following two closure conditions are satisfied:

- **(SG1)** Closure under multiplication, i.e. if $h, k \in H$, then $hk \in H$;
- (SG2) Closure under inverse, i.e. if $h \in H$, then $h^{-1} \in H$.

In particular, $1_H = 1_G \in H$.

Definition 1.6 (Group Isomorphisms). For groups G, H, a map $f : G \to H$ is called a group homomorphism if f(xy) = f(x)f(y) for all $x, y \in G$. A bijective group homomorphism is called an isomorphism. In this case, we say that G is isomorphic to H. Notation $G \cong H$.

2 Subgroups and the Group of Isometries

Lemma 2.1. If S is a subset of a group (G, *), then $\langle S \rangle = \bigcap_{S \subseteq H \leq G} H$. In other words, $\langle S \rangle$ is the **smallest** subgroup of G that contains all the elements of S.

Definition 2.2. We call $\langle S \rangle$ the subgroup of G generated by S. A group generated by one element is called a cyclic group.

Notation:

- space: \mathbb{R}^n ;
- points: A, B, C, P, Q, R, \dots with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{p}, \mathbf{q}, \mathbf{r} \dots$;
- transformations: $\tau, \pi, \sigma, \delta, \ldots$;
- lines: l, m, n, \ldots ; line equations in $\mathbb{R}^n : \mathbf{x} = \mathbf{a} + \lambda \mathbf{v}$ for all $\lambda \in \mathbb{R}$;
- planes in $\mathbb{R}^n = \mathbf{x} = \mathbf{a} + \lambda \mathbf{u} + \mu \mathbf{v}$ for all $\lambda, \mu \in \mathbb{R}$;
- Hyperplanes through $\mathbf{a} \in \mathbb{R}^n$ with normal $\mathbf{n} \in \mathbb{R}^n = \mathbf{0}$:

$$\mathbb{H}_{\mathbf{n},\mathbf{a}} = \{ \mathbf{x} \in \mathbb{R}^n \mid (\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0 \} = \langle \mathbf{n} \rangle^{\perp} + \mathbf{a}.$$

- For points P, Q in \mathbb{R}^n , we may also define the **perpendicular bisector** of the line segment PQ to be the hyperplane \mathbb{H} that passes through the midpoint of PQ and perpendicular to PQ. So \mathbb{H} has the equation $(\mathbf{x} \mathbf{m}) \cdot (\mathbf{p} \mathbf{q}) = 0$ where $\mathbf{m} = \frac{1}{2}(\mathbf{p} + \mathbf{q})$.
- It is clear that, for all $X \in \mathbb{H}$,

$$d(X,P) = \sqrt{\left\|\mathbf{x} - \mathbf{m}\right\|^2 + \left\|\mathbf{p} - \mathbf{m}\right\|^2} = \sqrt{\left\|\mathbf{x} - \mathbf{m}\right\|^2 + \left\|\mathbf{q} - \mathbf{m}\right\|^2} = d(X,Q).$$

The Euclidean space \mathbb{R}^n

- Length of a vector: $\|\mathbf{a} = \sqrt{\mathbf{a} \cdot \mathbf{a}}\|$;
- Distance between two points $P, Q : d(P, Q) := ||\mathbf{p} \mathbf{q}||$;
- Projection of \mathbf{a} on \mathbf{b} : $\operatorname{proj}_{\mathbf{b}}(\mathbf{a}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}$;
- Angle between **a** and **b**: $\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$;
- Orthogonality: $\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0$;

Definition 2.3. An *isometry* on \mathbb{R}^n is a map $\tau: \mathbb{R}^n \to \mathbb{R}^n$ which preserves distance between points: $d(P,Q) = d(\tau(P), \tau(Q)), \forall P, Q \in \mathbb{R}^n$.

Lemma 2.4. The set of isometries which fix the zero vector is equal to the set of (linear) maps that represent multiplication by an orthogonal matrix.

Theorem 2.5. An isometry can be decomposed into a translation multiplied by a linear transformation, which can be represented by an orthogonal matrix. In other words, for every $\tau \in \mathscr{I}(\mathbb{R}^n)$, there exist an orthogonal $n \times n$ matrix Q and a vector $\mathbf{b} \in \mathbb{R}^n$ such that $\tau = T_{Q,\mathbf{b}} = T_{I,\mathbf{b}} \circ T_{Q,\mathbf{0}}$. In particular, an isometry is a **transformation**.

Theorem 2.6. The group of Isometries

- (1) The set $\mathscr{I}(\mathbb{R}^n)$ of all isometries forms a subgroup of the group $\mathscr{B}(\mathbb{R}^n)$ of all transformations.
- (2) The group $\mathscr{I} = \mathscr{I}(\mathbb{R}^n)$ contains two subgroups: the group \mathscr{T} of translations and the group \mathscr{O} of all orthogonal linear transformations. Moreover, we have $\mathscr{I} = \mathscr{T}\mathscr{O} := \{\tau\sigma \mid \tau \in \mathscr{T}, \sigma \in \mathscr{O}\}.$

3 Reflections and Isometries

Definition 3.1. Let \mathbb{H} be a hyperplane. The reflection $\sigma_{\mathbb{H}}$ in \mathbb{H} is the mapping defined by:

$$\sigma_{\mathbb{H}}(P) = \begin{cases} P & \text{if } P \in \mathbb{H}; \\ P' & \text{if } P \text{ is off } \mathbb{H} \text{ and } \mathbb{H} \text{ is the perpendicular bisector of } P\bar{P}'. \end{cases}$$

(in the sense that d(P, X) = d(P', X) for all $X \in \mathbb{H}$.)

Proposition 3.2. Let \mathbb{H} be a hyperplane.

- (1) A reflection $\sigma_{\mathbb{H}}$ is an isometry satisfying $\sigma_{\mathbb{H}}^2 = 1$.
- (2) $\sigma_{\mathbb{H}}$ fixes a line $m \nsubseteq \mathbb{H}$ if and only if $m \perp \mathbb{H}$.
- (3) $\sigma_{\mathbb{H}}$ fixes a line **pointwise** if and only if $m \subseteq \mathbb{H}$.

Theorem 3.3. If $\mathbb{H} = \mathbb{H}_{\mathbf{n},\mathbf{a}}$, then there exist $Q = I - \frac{2}{\mathbf{n}.\mathbf{n}} \mathbf{n} \mathbf{n}^T \in O_n(\mathbb{R})$ and $\mathbf{b} = 2 \frac{\mathbf{a}.\mathbf{n}}{\mathbf{n}.\mathbf{n}} \mathbf{n}$ such that

$$\sigma_{\mathbb{H}}(\mathbf{x}) = Q\mathbf{x} + \mathbf{b}.$$

Corollary 3.4. In \mathbb{R}^2 , if line ℓ has equation aX + bY + c = 0, then the reflection σ_{ℓ} in ℓ has equation:

$$\sigma_{\ell}(\mathbf{x}) = \frac{1}{a^2 + b^2} \begin{bmatrix} b^2 - a^2 & -2ab \\ -2ab & a^2 - b^2 \end{bmatrix} \mathbf{x} + \frac{1}{a^2 + b^2} \begin{bmatrix} -2ac \\ -2bc \end{bmatrix}$$
$$= \binom{x}{y} - 2 \frac{(ax + by + c)}{a^2 + b^2} \binom{a}{b}.$$

Definition 3.5 (Points in Generic Position). We say that m points $P_1(\mathbf{p_1}), P_2(\mathbf{p_2}), \dots, P_m(\mathbf{p}_m)$ in \mathbb{R}^n are in **generic position** if the vectors $\mathbf{p}_i - \mathbf{p}_1$, for $i = 2, 3, \dots, m$, are linearly independent. In particular, n+1 points in \mathbb{R}^n are in generic position if every hyperplane contains at most n of the n+1 points.

Theorem 3.6. (1) An isometry on \mathbb{R}^n that fixes n+1 points in generic position is the identity map.

- (2) An isometry on \mathbb{R}^n that fixes n points in generic position is a reflection **or** the identity.
- (3) An isometry that fixes n-1 but not n points in generic position is a product of two **reflections**.
- (4) Every isometry (in \mathbb{R}^n) is a product of **at most** n+1 reflections.

Corollary 3.7. The group $\mathscr{I}(\mathbb{R}^n)$ is generated by reflections $\mathbb{H}_{\mathbf{n},\mathbf{a}}$ for all $\mathbf{0} \neq \mathbf{n}, \mathbf{a} \in \mathbb{R}^n$.

Corollary 3.8. (1) A plane isometry that fixes three vertices of a triangle is the identity map.

(2) Every plane isometry $\tau \in \mathscr{I}(\mathbb{R}^2)$ is a product of at most three reflections in three lines.

4 Translations and Rotations on \mathbb{R}^2

Theorem 4.1. An isometry τ in \mathbb{R}^n is a **translation** if and only if τ is the product of two reflections in parallel hyperplanes.

Corollary 4.2. A plane isometry is a translation if and only if it is a product of two reflections in parallel lines.

Definition 4.3. A **rotation** on \mathbb{R}^2 about a point C, through angle θ , is the transformation that fixes C and otherwise sends a point P to a point P', where d(C, P) = d(C, P'), and the angle from \vec{CP} to $\vec{CP'}$ is θ (in anti-clockwise direction) if $\theta > 0$, and clockwise if $\theta < 0$). We denote this transformation by $\rho_{C,\theta}$.

Theorem 4.4. A plane isometry is a **rotation** if and only if it is the product of two reflections in intersecting lines. Further we have

- (1) if lines l, m intersect at C, and the directed angle from l to m is $\frac{\theta}{2} \in (-\frac{\pi}{2}, \frac{\pi}{2}]$, then $\sigma_m \sigma_l = \rho_{C,\theta}$;
- (2) if lines p, q, r are concurrent, then there exists a line l such that $\sigma_r \sigma_q \sigma_p = \sigma_l$.

Corollary 4.5. (1) A non-identity rotation (on \mathbb{R}^2) fixes exactly one point.

- (2) A rotation with centre C fixes every circle with centre C.
- (3) The set of all rotations about a particular point (i.e., with centre at a particular point) is a subgroup of the group $\mathscr{I}(\mathbb{R}^2)$ of isometries; further still, it is a **commutative** subgroup. In other words,

$$\mathscr{R}_C := \{ \rho_{C,\theta} : \theta \in \mathbb{R} \} \leq \mathscr{I}(\mathbb{R}^2) \text{ and } \rho \rho' = \rho' \rho, \forall \rho, \rho' \in \mathscr{R}_C.$$

Theorem 4.6 (Equation of a rotation). (1) The rotation $\rho_{\mathbf{0},\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ about the origin $\mathbf{0}$ and through angle θ is the linear isomorphism $T_{Q,\mathbf{0}}(\mathbf{x}) = Q\mathbf{x}$, where Q is the following matrix:

$$Q = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

(2) If **c** is the position vector of C, then $\rho_{C,\theta} = T_{\mathbf{c}}(\rho_{\mathbf{0},\theta})T_{-\mathbf{c}}$. Hence, $\rho_{\mathbf{C},\theta}$ has the equation $\rho_{C,\theta}(\mathbf{x}) = Q\mathbf{x} + \mathbf{b}$, where Q defines $\rho_{\mathbf{0},\theta}$ as in (1) and $\mathbf{b} = (I - Q)\mathbf{c}$. At the group level, we have $\mathscr{R}_C = T_{\mathbf{c}}\mathscr{R}_{\mathbf{0}}T_{-\mathbf{c}}$. Call the group \mathscr{R}_C is **conjugate** to the group $\mathscr{R}_{\mathbf{0}}$.

Half-turn A rotation of the form $\rho_C := \rho_{C,\pi}$ is called a half-turn. A half-turn has the equation

$$\mathbf{x}' = -\mathbf{x} + 2\mathbf{c},$$

where \mathbf{c} is the position vector of C.

Definition 4.7. A figure $F_1 \subseteq \mathbb{R}^n$ is **congruent** to a figure $F_2 \subseteq \mathbb{R}^n$ if one can be mapped onto the other by an isometry; i.e. if there exists an isometry τ such that $\tau(F_1) = F_2$. **Notation:** $F_1 \cong F_2$ means F_1 is congruent to F_2 .

Theorem 4.8. If $\triangle ABC \cong \triangle A'B'C'$ in \mathbb{R}^2 (same side lengths), then there exists a **unique** plane isometry τ such that

$$\tau(A) = A', \tau(B) = B', \tau(C) = C'.$$

5 Classification of Plane Isometries

Definition 5.1. A plane isometry τ is called a **glide reflection** with axis c (a line) if there exist distinct lines a, b which are perpendicular to c such that $\tau = \sigma_c \sigma_b \sigma_a (= \sigma_b \sigma_a \sigma_c)$.

Proposition 5.2. (1) A glide reflection is a composition of a reflection in line a and a halfturn centred at a point off a.

- (2) A glide reflection is a translation followed by a reflection.
- (3) A glide reflection fixes no points.
- (4) A glide reflection fixes exactly one line, the axis, c.
- (5) The midpoint of any point and its image under a glide reflection lies on its axis (c).

Theorem 5.3. Distinct lines p, q, r are neither concurrent, nor parallel, if and only if $\sigma_r \sigma_q \sigma_p$ is a glide reflection.

Definition 5.4. An isometry that is a product of an even (resp., odd) number of reflections is said to be even (resp., odd) isometry.

Theorem 5.5. 1. The set \mathscr{E} of even isometries in \mathbb{R}^n forms a subgroup of \mathscr{I} .

- 2. If \mathcal{E}' denotes the set of odd isometries, then $\mathcal{E} \cap \mathcal{E}' = \emptyset$.
- 3. If $\sigma = \sigma_{\mathbb{H}}$ is a reflection, then $\mathscr{E}' = \sigma\mathscr{E} := \{\sigma\pi | \pi \in \mathscr{E}\}.$
- 4. We also have $\sigma \mathcal{E} = \mathcal{E} \sigma$ and $\mathcal{I} = \mathcal{E} \mid |\sigma \mathcal{E}|$.

Corollary 5.6. For any non-identity plane isometries, it is either even or odd. All even isometries are either translations or rotations. All odd isometries are reflections or glide reflections.

Theorem 5.7. A product of 4 reflections in \mathbb{R}^2 is a product of 2 reflections.

Definition 5.8. Let $\Omega \subseteq \mathbb{R}^n$ be a geometric figure (or a subset). A **symmetry** of Ω si an isometry τ such that $\tau(\Omega) = \Omega$.

All the symmetries of Ω form a group sym(Ω), the **symmetry group** of Ω .

6 Similarities

Definition 6.1. A transformation $\alpha: \mathbb{R}^n \to \mathbb{R}^n$ is called a **similarity of ratio** r > 0 if

$$d(\alpha(P), \alpha(Q)) = rd(P, Q)$$
, for all $P, Q \in \mathbb{R}^n$.

Proposition 6.2. (1) An isometry is a similarity of ratio 1.

- (2) A similarity fixing two points is an isometry.
- (3) A similarity fixing n+1 points in generic position is the identity.
- (4) The set of all similarities in \mathbb{R}^n forms a group, denote this set by \mathscr{S} or $\mathscr{S}(\mathbb{R}^n)$.

Definition 6.3. A stretch of ratio r > 0 about point C is a transformation $\delta_{C,r}$ that fixes C and otherwise sends a point P to a point P', where P' is the unique point on the ray from C through P such that $d(C, P') = r \cdot d(C, P)$.

Theorem 6.4. Decomposition of a similarity If α is a similarity of ratio r > 0, and P is any **fixed** point, then $\alpha = \tau \delta_{P,r} = \delta_{P,r} \tau'$, for some isometries tau, τ' . Moreover, we have

$$\mathscr{S} = \bigsqcup_{r>0} \mathscr{I} S_{P,r} = \bigsqcup_{r>0} S_{P,r} \mathscr{I} \ (disjoint \ unions),$$

where $\mathscr{I}S_{P,r} = \{ \tau S_{P,r} \mid \tau \in \mathscr{I} \}$ and $\S_{P,r}\mathscr{I} = \{ S_{P,r}\tau \mid \tau \in \mathscr{I} \}.$

Corollary 6.5. A similarity is a collineation that preserves betweenness, midpoints, angles, perpendicularity, etc.

Definition 6.6. (1) A point reflection about $C(\mathbf{c})$ is the isometry $\rho_C : \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$\rho_C(\mathbf{x}) = -(\mathbf{x} - \mathbf{c}) + \mathbf{c} = -\mathbf{x} + 2\mathbf{c}.$$

(2) A dilation about the point C is a stretch transformation $\delta_{C,r}(r>0)$ about C, or it is a stretch transformation followed by a point reflection both about C (i.e., $\rho_C\delta_{C,r}$).

Lemma 6.7. (1) A point reflection is an isometry.

- (2) The product of two point reflections is a translation.
- (3) The product of a translation and a point reflection is a point reflection.

Proposition 6.8. All point reflections generate a subgroup $\mathcal{H}(of \mathcal{I})$. Moreover, \mathcal{H} is a (disjoint) union of the set \mathcal{T} of all translations and the set of all point reflections: for a fixed C,

$$\mathscr{H}=\mathscr{T}\sqcup\rho_{C}\mathscr{T}=\mathscr{T}\sqcup=\mathscr{T}\rho_{C}=\mathscr{T}\sqcup\{\rho_{P}\mid P\in\mathbb{R}^{n}\}.$$

Proposition 6.9. The dilation $\tau = \rho_C \delta_{C,r}(r > 0)$ has the following equation:

$$\tau(\mathbf{x}) = (-r)\mathbf{x} + (1+r)\mathbf{c}.$$

Lemma 6.10. Let $R^{\times} = \{r \in \mathbb{R} \mid r \neq 0\}$. For any $r, s \in \mathbb{R}^{\times}$, and any point $P(\mathbf{p})$, we have

- (1) $\delta_{P,-r} = \rho_O \delta_{P,r}$;
- (2) $\delta_{P,1} = 1, \delta_{P,-1} = \rho_P;$
- (3) $\delta_{P,r}\delta_{P,s}=\delta_{P,rs};$
- (4) $\delta_{P,r}^{-1} = \delta_{P,r^{-1}}$.

Proposition 6.11. The set $\{\delta_{C,r} \mid r \in \mathbb{R}^{\times} (:= \mathbb{R} - 0)\}$ forms a group that is isomorphic to the group $(\mathbb{R}^{\times}, \cdot)$.

7 Dilatations

Definition 7.1. A collineation δ on \mathbb{R}^n is called a **dilatation** if, for every line ℓ in \mathbb{R}^n , $\ell \parallel \delta(\ell)$.

Proposition 7.2. The set $\mathcal{D}(\mathbb{R}^n)$ of all dilatations in \mathbb{R}^n forms a subgroup of $\mathcal{C}(\mathbb{R}^n)$.

Lemma 7.3. A dilatation that fixes two points is the identity map. Hence, for dilatations δ_1, δ_2 and distinct point A, B, if $\delta_1(A) = \delta_2(A)$ and $\delta_1(B) = \delta_2(B)$, then $\delta_1 = \delta_2$.

Lemma 7.4. (1) If A, B, C are collinear, distinct, with $\frac{CB}{CA} = r \neq 0$, then $\delta_{C,r}(A) = B$.

- (2) For collinear points A, B, P, P', if $\frac{AP}{PB} = \frac{AP'}{P'B}$, then P = P'.
- (3) Let τ be a dilatation and let $\tau(P) = P'$ for every point P. If there exist points A, B such that \overrightarrow{AB} and $\overrightarrow{A'B'}$ have the same (resp., opposite) direction, then, for any points $C, D, \overrightarrow{CD}$ and $\overrightarrow{C'D'}$ have the same (resp., opposite) direction.

Corollary 7.5. If points A, B, C are sent to A', B', C' under a dilatation, then

$$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}.$$

Theorem 7.6. A dilatation is either a translation or a dilation. Hence, every dilatation is a similarity.

8 Classification of Plane Similarities

Definition 8.1. We say that figure $f_1 \subseteq \mathbb{R}^n$ and figure $f_2 \subseteq \mathbb{R}^n$ are **similar** if there is a similarity α such that $\alpha(f_1) = f_2$.

Theorem 8.2. If $\triangle ABC \sim \triangle A'B'C'$ in \mathbb{R}^2 , then there exists a **unique** plane similarity α such that

$$\alpha(A) = A', \alpha(B) = B', \alpha(C) = C'.$$

Theorem 8.3 (Equations of Similarities). If α is a similarity in \mathbb{R}^n , then there exist $Q \in O_n(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^n$ and $r \in \mathbb{R}_{>0}$ such that

$$\alpha(\mathbf{x}) = rQ\mathbf{x} + \mathbf{b}, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n.$$

Lemma 8.4. A similarity without a fixed point is an isometry.

Definition 8.5. (1) A stretch reflection in \mathbb{R}^2 is a non-identity stretch about some point C followed by a reflection about a line through C.

(2) A stretch rotation in \mathbb{R}^2 is a non-identity stretch about some point C followed by a non-identity rotation about C.

Theorem 8.6. A non-identity plane similarity is exactly one of the following:

Isometry, Stretch of ratio $r \neq 1$, Stretch reflections, Stretch rotation.

Theorem 8.7. In the equation of similarities, the algebraic classification is as follows:

- 1. α is an isometry if r = 1;
- 2. α is a stretch (of ratio $r \neq 1$) if $r \neq 1$ and Q = I;
- 3. α is a stretch reflection if $r \neq 1, Q \neq I$ and det(Q) = -1;
- 4. α is a stretch rotation if $r \neq 1, Q \neq I$ and det(Q) = 1;

9 Normal Subgroups

Definition 9.1. A subgroup K of a group G is called a **normal subgroup** if $g^{-1}Kg \leq K$ (equivalently, $g^{-1}Kg = K$, or gK = Kg) for all $g \in G$. **Notation:** $K \leq G$.

Theorem 9.2. Suppose $\alpha \in \mathcal{S}$ is a similarity, and $G \in \{\mathcal{I}, \mathcal{E}, \mathcal{D}, \mathcal{H}, \mathcal{T}\}$. Then $\alpha \tau \alpha^{-1} \in G$, for all $\tau \in G$. In other words, each of the groups $\mathcal{I}, \mathcal{E}, \mathcal{D}, \mathcal{H}, \mathcal{T}$ is a normal subgroup of \mathcal{S} .

Corollary 9.3. For $\alpha \in \mathcal{S}$, a point C and a hyperplane \mathbb{H} in \mathbb{R}^n , we have

$$\alpha \sigma_{\mathbb{H}} \alpha^{-1} = \sigma_{\alpha(\mathbb{H})}, \quad \alpha \rho_C \alpha^{-1} = \rho_{\alpha(C)}, \quad \alpha \delta_{C,r} \alpha^{-1} = \delta_{\alpha(C),r}.$$

In particular, in \mathbb{R}^2 , $\alpha \rho_{C,\theta} \alpha^{-1} = \rho_{\alpha(C),\pm\theta}$.

Proposition 9.4. 1. If $H \leq G$, then G is a disjoint union of **cosets** $gH, g \in G$.

2. If $K \subseteq G$, then $G/K := \{gk \mid g \in G\}$ is a group with the subset multiplication. $(G/K \text{ is called the } quotient group of } G \text{ by } K)$.

10 Collineations

Theorem 10.1. A transformation is a collineation in \mathbb{R}^n if and only if the images of collinear points are themselves collinear.

Lemma 10.2. If α is a collineation in \mathbb{R}^n , and l, m are parallel lines, then $\alpha(l)$ and $\alpha(m)$ are parallel.

Theorem 10.3. A collineation takes the midpoint of points A, B to the midpoints of points $\alpha(A), \alpha(B)$.

Corollary 10.4. For a collineation α , if n+1 points P_0, P_1, \ldots, P_n divide the segment $\overline{P_0P_n}$ into n congruent segments $\overline{P_{i-1}P_i}$, and $P_i' = \alpha(P_i)$, then the n+1 points P_0', \ldots, P_n' divide the segment $\overline{P_0'P_n'}$ into n congruent segments $\overline{P_{i-1}P_i'}$.

In particular, if a point P is between A and B, and $\frac{AP}{PB} = r$ is **rational**, then $P' = \alpha(P)$ is between $\alpha(A)$ and $\alpha(B)$ and $\frac{A'P'}{P'B'} = r$.

11 Darboux's Theorem

Lemma 11.1. Let $t > 0, t \neq 1$, and P, Q be points on $\ell(A, B)$ such that $\frac{AP}{PB} = t, \frac{AQ}{QB} = -t$. Then C is the midpoint of P, Q if and only if $\frac{AC}{CB} = -t^2$.

Theorem 11.2. If α is a collineation, and point P is between points A, B then $\alpha(P)$ is between $\alpha(A), \alpha(B)$.

Corollary 11.3. A collineation on \mathbb{R}^n fixing two points on a line fixes the line pointwise.

12 Affine Transformations

Theorem 12.1. A collineation in \mathbb{R}^n fixing n+1 points in generic position is the identity.

Definition 12.2. An **affine transformation** $\alpha : \mathbb{R}^n \to \mathbb{R}^n$ is one that has an equation of the form $\alpha(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^n$, where $A \in GL_n(\mathbb{R}), \mathbf{b} \in \mathbb{R}^n$. (In other words, $\alpha = T_{A,\mathbf{b}}$.)

Lemma 12.3. The set \mathscr{A} of all affine transformations in \mathbb{R}^n forms a group. Moreover, it contains the similarity group \mathscr{S} as a subgroup of \mathscr{A} .

Theorem 12.4. Let τ be a transformation. Then the following are equivalent:

- 1. τ is an affine transformation;
- 2. τ is a collineation.

Proposition 12.5. A (non-degenerate) conic section

$$aX^2 + bXY + cY^2 + dX + eY + f = 0$$

is affine equivalent to one of the following affine standard form:

$$Y = X^2$$
, $X^2 + Y^2 = 1$, $XY = 1$.

Definition 12.6. An affine transformation α with equation $\alpha(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ is called an **equi-affine** transformation if $\det(\alpha) := \det(A) = \pm 1$. An equi-affine transformation in \mathbb{R}^2 is called an **equiareal** transformation.

Proposition 12.7 (The group of equi-affine transformations). The set \mathcal{Q} of all equi-affine transformations forms a subgroup of \mathcal{A} that has $\mathcal{Q}^+ = \{\alpha \in \mathcal{Q} \mid \det(\alpha) = 1\}$ as a normal subgroup.

Theorem 12.8. (1) Let α be an affine transformation in \mathbb{R}^2 with equation $\alpha(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ and let $\alpha(P) = P'$, etc., then $area(\Delta P'Q'R') = |\det A|area(\Delta PQR)$.

(2) If Ω is the parallelepiped spanned by the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbb{R}^3 and α is an affine transformation in \mathbb{R}^3 , then $\operatorname{vol}(\alpha\Omega) = |\det(A)| \operatorname{vol}(\Omega)$.