Algo+index

6.12

transformation

- Normally, the tree can be encoded into one sequence, however, one sequence does not necessarily correspond to one unique tree.
- E.g., {a, b, c} can be converted by

• In our scenario:

- Each node in P-tree is unique, which means the position of each node is fixed.
- Thus one P-tree one-to-one corresponds to one sequence.
- A sequence $< a_1, a_2 \cdots a_n >$ is a subsequence of another sequence $< b_1, b_2 \cdots b_m >$ if there exists integers $i_1 < i_2 < \cdots < i_n$ such that $a_1 = b_{i_1}, a_2 = b_{i_2} \cdots a_n = b_{i_n}$. (m > n)
- Maximal common subtree \longleftrightarrow maximal common subsequence

Maximal common subsequence (MCS)

- SIGKDD-04[1]: "Maximal frequent subsequences" (MFS) is NP-hard.
- MCS has two similar steps to MFS: enumeration and counting.

- In our scenario:
 - One query node(corresponds to one unique sequence *S* of its P-tree) is required which is not defined in MFS.
 - However, in worst case, S is encoded by the complete taxonomy.
 - Thus, MCS is NP-hard.

basic algorithm $\, { m I\hspace{-.1em}I} \,$

- Longest common subsequence(lcs) between two sequence is solvable in polynomial time by dynamic programming.
- Lemma: sequences with same length are not subsequence of each other.

- Basic algorithm Steps:
 - K- \widehat{core} search for G'.
 - For each $v \in G'$, $l_i = l_i \cup lcs(v, q)$. i represents the length.
 - Mine MCS. (anti-monotonicity or hash-tree)
 - Recheck connectivity and etc.

Naïve Index

compressed index-mathematic preliminary

- The only divisors of a prime integer p (p>1) are 1 and p.
- Every positive integer n is either 1 or can be expressed as a product of several prime integers, and this factorization is unique with the order of prime integers. The *standard form* of n factorization of n: $n=p_1^{m_1}p_2^{m_2}\cdots p_n^{m_n}$, p_i is a distinct prime integer, m_i is called the multiplicity of p_i .
- Give two integers a and b, the great common divisor of a, b is gcd(a, b). E.g., $a = 2^3 \cdot 3^2 \cdot 7 = 504$, $b = 2^2 \cdot 3^1 \cdot 7 \cdot 11 = 924$, $gcd(a, b) = 2^2 \cdot 3^1 \cdot 7 = 84$.

• if we set m_i as 1. Then $n=p_1p_2\cdots p_n$. $\gcd(a,b)=\prod_{i=1}^m p_{x_i}$.

compressed index-mathematic preliminary

- $G = \{2,3,5,7\}$, $a = 2 \cdot 3 = 6$, $b = 5 \cdot 7=35$, gcd(a,b)=1.
- $S_a = 1100$, $S_b = 0011$, $S_a \cap S_b = 0000 = 1$.
- Set 4 bits as a block. $S_a = \{10, \dots\}$.

Then $S_a \cap S_b = \{ \gcd(S_{a_i}, S_{b_i}) | i \in number \ of \ blocks \}.$

• If G={2,3,5,7}, then gcd(a,b) has $2^4 \cdot 2^4 \cdot 0.5$ =128 types which can be pre-computed and stored in a table.

Compressed index

