MathTools HW 12

1. Let $x_0, x_1, \ldots, x_k \in \mathbb{R}^n$ be points. The set

$$V = \{x \in \mathbb{R}^n : \|x - x_0\|_2 \le \|x - x_i\|_2 \text{ for all } 1 \le i \le k\}$$

is called the **Voronoi region** around x_0 with respect to x_1, \ldots, x_k .

- (a) Prove that *V* is a polyhedron. That is, express it as $\{x : Ax \le b\}$ for appropriate *A* and *b*.
- (b) Let $\mathcal{P} = \{Ax \leq b\}$ be any polyherdron with a non-empty interior.¹ Prove that one can find points x_0, x_1, \ldots, x_k (for some k) such that \mathcal{P} is the Voronoi region of x_0 with respect to x_1, \ldots, x_k . Hint: Start with the case where \mathcal{P} is just a halfspace, $\mathcal{P} = \{x : a^{\top}x \leq b\}$. Given $x_0 \in \mathcal{P}$ in the interior, meaning that $a^{\top}x_0 < b$, show how to find a point x_1 such that \mathcal{P} is the Voronoi region of x_0 with respect to x_1 . Drawing this might help...
- 2. Suppose you are given two sets of points in \mathbb{R}^n , $\{x_1, \dots, x_K\}$ and $\{y_1, \dots, y_L\}$. Your goal is to find a hyperplane that separates these sets: that is, a non-zero vector $0 \neq a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that

$$a^{\top} x_i \ge b$$
 and $a^{\top} y_j \le b$ for all $1 \le i \le K$, $1 \le j \le L$.

Assume that the rank of the $(L + K) \times (n + 1)$ matrix

$$\left[\begin{array}{ccc} x_1^\top & 1 \\ \vdots & \\ x_L^\top & 1 \\ y_1^\top & 1 \\ \vdots & \\ y_L^\top & 1 \end{array}\right]$$

is n + 1. Formulate this as an LP feasibility problem.²

Remark: Be extra careful in formulating your LP, so to ensure that a = 0, b = 0 is not a solution!

Hint: Prove the following: under the assumption above, if there is a separating hyperplane, then there is also a separating hyperplane for which there exists a coordinate, either $1 \le i \le K$ or $1 \le j \le L$, for which $a^{\top}x_i \ge b+1$ or $a^{\top}y_j \le b-1$. By adding more optimization variables, build an LP for which (0,0) is not a solution, but this particular (a,b) is. To that end, consider the constraints of the form

$$a^{\top} x_i \geq b + t_i$$
, $a^{\top} y_j \leq b - s_j$,

¹That is, there is a point x_0 that satisfies all the constraints with strict inequalities: $Ax_0 < b$.

²An LP feasibly problem is the following: given a polytope \mathcal{P} (described via inequalities $Ax \leq b$), either return some $x \in \mathcal{P}$ or declare that $\mathcal{P} = \emptyset$.

where t_i , s_i are variables.

- 3. Consider the maximization problem $\max_{x \in \mathbb{R}^n} c^\top x$ subject to $||x||_{\infty} \le 1$, where $c = (c_1, \dots, c_n)$ is some given vector.
 - (a) Show that this is an LP.
 - (b) Write its dual. Show explicitly (without using strong duality) that the value of the dual is $||c||_1$ (as you should expect).
- 4. **Definition:** For a set of vectors u_1, \ldots, u_n , their **conic hull** is the set

$$cone(u_1,\ldots,u_n) = \left\{ \sum_{i=1}^n \alpha_i u_i : \alpha_i \ge 0 \right\},\,$$

(this is similar to a convex hull, where we drop the requirement $\sum_{i=1}^{n} \alpha_i = 1$).

Let $\mathcal{P} = \{x : Ax \leq b\}$ be a polyhedron, assumed to be non-empty. Denote by a_1, \ldots, a_m the rows of A. Show that \mathcal{P} is bounded **if and only if** $\operatorname{cone}(a_1, \ldots, a_m) = \mathbb{R}^n$.

Hint: Here is a possible approach: You can transform the question of whether \mathcal{P} is bounded to the question whether a bunch of LPs has finite value (meaning, their maximum is attained). Use duality.

5. Let $A \in \mathbb{R}^{m \times n}$. Show that if there exists $y \in \mathbb{R}^m$ such that $A^\top y \ge 0$ and $b^\top y < 0$, then the set

$${x : Ax = b, x > 0}$$

is empty.

6. (Complementary slackness in linear programming). Consider the following LP:

(P) maximize
$$c^{\top}x$$
 subject to $Ax \leq b$,

and its dual:

$$(D) \quad \text{minimize} \quad b^\top y \quad \text{subject to} \quad A^\top y = c \, , y \geq 0 \, .$$

Suppose both problems are feasible, and attain their optima in the points x, y respectively.

Prove that for *every* index *i*, *either* the primal constraint is tight, meaning $(Ax)_i = b_i$, or $y_i = 0$.