Lesson 4: SLR Inference and Prediction

Nicky Wakim 2025-01-15

Learning Objectives

- 1. Estimate the variance of the residuals
- 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
- 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
- 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Process of regression data analysis

Model Selection

- Building a model
- Selecting variables
- Prediction vs interpretation
- Comparing potential models

Model Fitting

- Find best fit line
- Using OLS in this class
- Parameter estimation
- Categorical covariates
- Interactions

Model Evaluation

- Evaluation of model fit
- Testing model assumptions
- Residuals
- Transformations
- Influential points
- Multicollinearity

Model Use (Inference)

- Inference for coefficients
- Hypothesis testing for coefficients

- ullet Inference for expected Y given X
- ullet Prediction of new Y given X

Let's remind ourselves of the model that we fit last lesson

- We fit Gapminder data with female literacy rate as our independent variable and life expectancy as our dependent variable
- We used OLS to find the coefficient estimates of our best-fit line

```
1 model1 <- gapm %>% lm(formula = LifeExpectancy
2 # Get regression table:
3 tidy(model1) %>% gt() %>%
4 tab_options(table.font.size = 40) %>%
5 fmt_number(decimals = 2)
```

term	estimate	std.error	statistic _l	o.value
(Intercept)	50.93	2.66	19.14	0.00
FemaleLiteracyRate	0.23	0.03	7.38	0.00

$$\widehat{Y} = \widehat{eta}_0 + \widehat{eta}_1 \cdot X$$

life expectancy = 50.9 + 0.232 · female literacy rate

Relationship between life expectancy and the female literacy rate in 2011

Fitted line is derived from the population SLR model

The (population) regression model is denoted by:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- β_0 and β_1 are **unknown** population parameters
- ϵ (epsilon) is the error about the line
 - It is assumed to be a random variable with a...
 - \circ Normal distribution with mean 0 and constant variance σ^2
 - \circ i.e. $\epsilon \sim N(0,\sigma^2)$

Poll Everywhere Question 1

Learning Objectives

1. Estimate the variance of the residuals

- 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
- 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
- 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

$\widehat{\sigma}^2$: Needed ingredient for inference

- ullet Recall our population model residuals are distributed by $\epsilon \sim N(0,\sigma^2)$
 - lacksquare And our estimated residuals are $\hat{\epsilon} \sim N(0, \widehat{\sigma}^2)$
- Hence, the variance of the errors (residuals) is estimated by $\widehat{\sigma}^2$

$$\widehat{\sigma}^2 = S_{y|x}^2 = rac{1}{n-2} \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2 = rac{1}{n-2} SSE = MSE$$

$\widehat{\sigma}^2$: I hope R can calculate that for me... (1/2)

- The standard deviation $\hat{\sigma}$ is given in the R output as the Residual standard error
 - ullet 4 line from the bottom in the summary () output of the model:

```
1 summary(model1)
Call:
lm(formula = LifeExpectancyYrs ~ FemaleLiteracyRate, data = .)
Residuals:
   Min 10 Median
                                Max
                          3Q
-22.299 -2.670 1.145 4.114 9.498
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                 50.92790 2.66041 19.143 < 2e-16 ***
(Intercept)
FemaleLiteracyRate 0.23220 0.03148 7.377 1.5e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.142 on 78 degrees of freedom
Multiple R-squared: 0.4109, Adjusted R-squared: 0.4034
F-statistic: 54.41 on 1 and 78 DF, p-value: 1.501e-10
```

$\widehat{\sigma}^2$: I hope R can calculate that for me... (2/2)

• It can!!

```
1 m1_sum = summary(model1)
2 m1_sum$sigma
[1] 6.142157

1 # number of observations (pairs of data) used to run the model
2 nobs(model1)
[1] 80
```

$\widehat{\sigma}^2$ to SSE

- Recall how we minimized the SSE to find our line of best fit
- SSE and $\widehat{\sigma}^2$ are closely related:

$$\widehat{\sigma}^2 = rac{1}{n-2} SSE$$
 $6.142^2 = rac{1}{80-2} SSE$ $SSE = 78 \cdot 6.142^2 = 2942.48$

• 2942.48 is the smallest sums of squares of all possible regression lines through the data

Learning Objectives

- 1. Estimate the variance of the residuals
 - 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
 - 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
- 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Do we trust our estimate $\widehat{\beta}_1$?

• So far, we have shown that we think the estimate is 0.232

ullet \widehat{eta}_1 (coefficient estimate) uses our sample data to estimate the population parameter eta_1

• Inference helps us figure out *mathematically* how much we trust our best-fit line

ullet Are we certain that the relationship between X and Y that we estimated reflects the true, underlying relationship?

Poll Everywhere Question 2

Inference for the population slope: hypothesis test and CI

Population model

line + random "noise"

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon$$

with $arepsilon \sim N(0,\sigma^2)$ σ^2 is the variance of the residuals

Sample best-fit (least-squares) line

$$\widehat{Y} = \widehat{eta}_0 + \widehat{eta}_1 \cdot X$$

Note: Some sources use b instead of \widehat{eta}

We have two options for inference:

1. Conduct the hypothesis test

$$H_0:eta_1=0$$

vs.
$$H_A: \beta_1 \neq 0$$

Note: R reports p-values for 2-sided tests

2. Construct a 95% confidence interval for the population slope β_1

Learning Objectives

- 1. Estimate the variance of the residuals
 - 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
- 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
- 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Reference: Steps in a Hypothesis Test

- 1. Check the assumptions
 - What sampling distribution are you using? What assumptions are required for it?
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - In symbols and/or in words
 - Alternative: one- or two-sided?
- 4. Specify the test statistic and its distribution under the null
- 5. Calculate the test statistic.
- 6. Calculate the p-value based on the observed test statistic and its sampling distribution
- 7. Write a conclusion to the hypothesis test
 - Do we reject or fail to reject H_0 ?
 - Write a conclusion in the context of the problem

Steps for hypothesis test for population slope eta_1 (using t-test)

- 1. Check the assumptions
- 2. Set the level of significance
 - Often we use lpha=0.05
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - Often, we are curious if the coefficient is 0 or not:

$$H_0:eta_1=0 \ ext{vs.}\ H_A:eta_1
eq 0$$

- 4. Specify the test statistic and its distribution under the null
 - The test statistic is t, and follows a Student's t-distribution.

- 5. Calculate the test statistic.
 - The calculated **test statistic** for $\widehat{\beta}_1$ is

$$t = rac{\widehat{eta}_1 - eta_1}{ ext{SE}_{\widehat{eta}_1}} = rac{\widehat{eta}_1}{ ext{SE}_{\widehat{eta}_1}}$$

when we assume $H_0: \beta_1 = 0$ is true.

- 6. Calculate the p-value
 - ullet We are generally calculating: $2 \cdot P(T > t)$
- 7. Write a conclusion
 - We (reject/fail to reject) the null hypothesis that the slope is 0 at the $100\alpha\%$ significiance level. There is (sufficient/insufficient) evidence that there is significant association between (Y) and (X) (p-value = P(T>t)).

Standard error of fitted slope $\widehat{\beta}_1$

$$ext{SE}_{\widehat{eta}_1} = rac{s_{ ext{residuals}}}{s_x \sqrt{n-1}}$$

 $\operatorname{SE}_{\widehat{\beta}_1}$ is the **variability** of the statistic $\widehat{\beta}_1$

- $ullet s_{
 m residuals}^2$ is the sd of the residuals
- variable x
- s_x is the sample sd of the explanatory n is the sample size, or the number of (complete) pairs of points

Calculating standard error for $\widehat{\beta}_1$ (1/2)

• Option 1: Calculate using the formula

```
1 glance(model1)
# A tibble: 1 × 12
 r.squared adj.r.squared sigma statistic p.value df logLik AIC
                                                                 BIC
     <dbl>
                 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                  0.403 6.14 54.4 1.50e-10 1 -258. 521. 529.
     0.411
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
 1 # standard deviation of the residuals (Residual standard error in summary() output)
 2 (s resid <- glance(model1)$sigma)</pre>
[1] 6.142157
 1 # standard deviation of x's
 2 (s x <- sd(gapm$FemaleLiteracyRate, na.rm=T))</pre>
[1] 21.95371
 1 # number of pairs of complete observations
 2 	 (n < - nobs(model1))
[1] 80
 1 (se_b1 <- s_resid/(s_x * sqrt(n-1))) # compare to SE in regression output
[1] 0.03147744
```

Calculating standard error for $\widehat{\beta}_1$ (2/2)

• Option 2: Use regression table

```
1 # recall model1_b1 is regression table restricted to b1 row
2 model1_b1 <-tidy(model1) %>% filter(term == "FemaleLiteracyRate")
3 model1_b1 %>% gt() %>%
4 tab_options(table.font.size = 45) %>% fmt_number(decimals = 4)
```

term estimate std.error statistic p.value

FemaleLiteracyRate 0.2322 0.0315 7.3766 0.0000

Some important notes

• Today we are discussing the hypothesis test for a **single** coefficient

- The test statistic for a single coefficient follows a Student's t-distribution
 - It can also follow an F-distribution, but we will discuss this more with multiple linear regression and multilevel categorical covariates

- Single coefficient testing can be done on any coefficient, but it is most useful for continuous covariates or binary covariates
 - This is because testing the single coefficient will still tell us something about the overall relationship between the covariate and the outcome
 - We will talk more about this with multiple linear regression and multi-level categorical covariates

Poll Everywhere Question 3

Life expectancy example: hypothesis test for population slope β_1 (1/4)

- Steps 1-4 are setting up our hypothesis test: not much change from the general steps
- 1. For today's class, we are assuming that we have met the underlying assumptions (checked in our Model Evaluation step)
- 2. State the null hypothesis.

We are testing if the slope is 0 or not:

$$H_0:eta_1=0$$

vs.
$$H_A: \beta_1 \neq 0$$

3. Specify the significance level.

Often we use lpha=0.05

4. Specify the test statistic and its distribution under the null

The test statistic is t, and follows a Student's t-distribution.

Life expectancy example: hypothesis test for population slope β_1 (2/4)

- 5. Compute the value of the test statistic
- Option 1: Calculate the test statistic using the values in the regression table

FemaleLiteracyRate

```
1 # recall model1 b1 is regression table restricted to b1 row
   model1 b1 <-tidy(model1) %>% filter(term == "FemaleLiteracyRate")
 3 model1 b1 %>% gt() %>%
     tab options(table.font.size = 40) %>% fmt number(decimals = 2)
                                        estimate std.error statistic p.value
                       term
                       FemaleLiteracyRate 0.23 0.03
                                                        7.38 0.00
 1 (TestStat_b1 <- model1 b1$estimate / model1 b1$std.error)</pre>
[1] 7.376557
```

• Option 2: Get the test statistic value (t^*) from R

```
1 model1 b1 %>% gt() %>%
    tab_options(table.font.size = 40) %>% fmt number(decimals = 2)
                                        estimate std.error statistic p.value
                       term
```

0.23 0.03

7.38 0.00

Life expectancy example: hypothesis test for population slope β_1 (3/4)

6. Calculate the p-value

- The p-value is the probability of obtaining a test statistic **just as extreme or more extreme** than the **observed** test statistic assuming the null hypothesis H_0 is true
- ullet We know the probability distribution of the test statistic (the null distribution) assuming H_0 is true
- Statistical theory tells us that the test statistic t can be modeled by a t-distribution with df=n-2.
 - We had 80 countries' data, so n=80
- Option 1: Use pt() and our calculated test statistic

```
1 (pv = 2*pt(TestStat_b1, df=80-2, lower.tail=F))
[1] 1.501286e-10
```

• Option 2: Use the regression table output

```
1 model1_b1 %>% gt() %>%
2 tab_options(table.font.size = 40)
```

term estimate std.error statistic p.value FemaleLiteracyRate 0.2321951 0.03147744 7.376557 1.501286e-10

Life expectancy example: hypothesis test for population slope β_1 (4/4)

7. Write conclusion for the hypothesis test

We reject the null hypothesis that the slope is 0 at the 5% significance level. There is sufficient evidence that there is significant association between female life expectancy and female literacy rates (p-value < 0.0001).

Note on hypothesis testing using R

• We can basically skip Step 5 if we are using the "Option 2" route

- In our assignments: if you use Option 2, Step 5 is optional
 - Unless I specifically ask for the test statistic!!

Life expectancy ex: hypothesis test for population intercept β_0 (1/4)

- Steps 1-4 are setting up our hypothesis test: not much change from the general steps
- 1. For today's class, we are assuming that we have met the underlying assumptions (checked in our Model Evaluation step)
- 2. State the null hypothesis.

We are testing if the intercept is 0 or not:

$$H_0: eta_0=0$$

vs.
$$H_A:eta_0
eq 0$$

3. Specify the significance level

Often we use lpha=0.05

4. Specify the test statistic and its distribution under the null

This is the same as the slope. The test statistic is t, and follows a Student's t-distribution.

Life expectancy ex: hypothesis test for population intercept β_0 (2/4)

5. Compute the value of the test statistic

• Option 1: Calculate the test statistic using the values in the regression table

• Option 2: Get the test statistic value (t^*) from R

```
1 model1_b0 %>% gt() %>%
2 tab_options(table.font.size = 40) %>% fmt_number(decimals = 2)
```

term estimate std.error statistic p.value (Intercept) 50.93 2.66 19.14 0.00

Life expectancy ex: hypothesis test for population intercept β_0 (3/4)

6. Calculate the p-value

• Option 1: Use pt () and our calculated test statistic

```
1 (pv = 2*pt(TestStat_b0, df=80-2, lower.tail=F))
[1] 3.325312e-31
```

• Option 2: Use the regression table output

```
1 model1_b0 %>% gt() %>%
2 tab_options(table.font.size = 40)
```

term estimate std.error statistic p.value (Intercept) 50.9279 2.660407 19.1429 3.325312e-31

Life expectancy ex: hypothesis test for population intercept β_0 (4/4)

7. Write conclusion for the hypothesis test

We reject the null hypothesis that the intercept is 0 at the 5% significance level. There is sufficient evidence that the intercept for the association between average female life expectancy and female literacy rates is different from 0 (p-value < 0.0001).

• Note: if we fail to reject H_0 , then we could decide to remove the intercept from the model to force the regression line to go through the origin (0,0) if it makes sense to do so for the application.

Learning Objectives

- 1. Estimate the variance of the residuals
- 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
 - 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
- 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Inference for the population slope: hypothesis test and CI

Population model

line + random "noise"

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon$$

with $arepsilon \sim N(0,\sigma^2)$ σ^2 is the variance of the residuals

Sample best-fit (least-squares) line

$$\widehat{Y} = \widehat{eta}_0 + \widehat{eta}_1 \cdot X$$

Note: Some sources use b instead of \widehat{eta}

We have two options for inference:

1. Conduct the hypothesis test

$$H_0:eta_1=0$$

vs.
$$H_A:eta_1
eq 0$$

Note: R reports p-values for 2-sided tests

2. Construct a 95% confidence interval for the population slope β_1

Confidence interval for population slope eta_1

Recall the general CI formula:

$$\widehat{eta}_1 \pm t^*_{lpha,n-2} \cdot SE_{\widehat{eta}_1}$$

To construct the confidence interval, we need to:

- Set our α -level
- Find \widehat{eta}_1
- Calculate the t_{n-2}^{st}
- ullet Calculate $SE_{\widehat{eta}_1}$

Calculate CI for population slope β_1 (1/2)

$$\widehat{eta}_1 \pm t^* \cdot SE_{eta_1}$$

where t^{st} is the t-distribution critical value with df=n-2.

• Option 1: Calculate using each value

Save values needed for CI:

```
1 b1 <- model1_b1$estimate
2 SE_b1 <- model1_b1$std.error

1 nobs(model1) # sample size n

[1] 80

1 (tstar <- qt(.975, df = 80-2))

[1] 1.990847</pre>
```

Use formula to calculate each bound

```
1 (CI_LB <- b1 - tstar*SE_b1)
[1] 0.1695284
1 (CI_UB <- b1 + tstar*SE_b1)
[1] 0.2948619</pre>
```

Calculate CI for population slope β_1 (2/2)

$$\widehat{eta}_1 \pm t^* \cdot SE_{eta_1}$$

where t^{st} is the t-distribution critical value with df=n-2.

• Option 2: Use the regression table

```
1 tidy(model1, conf.int = T) %>% gt() %>%
2 tab_options(table.font.size = 40) %>% fmt_number(decimals = 3)
```

term	estimate std.error statistic p.value conf.low conf.high							
(Intercept)	50.928	2.660	19.143	0.000	45.631	56.224		
FemaleLiteracyRate	0.232	0.031	7.377	0.000	0.170	0.295		

Interpreting the coefficient estimate of the population slope with CIs

- When we report our results to someone else, we don't usually show them our full hypothesis test
 - In an informal setting, someone may want to see it
- Typically, we report the estimate with the confidence interval
 - From the confidence interval, your audience can also deduce the results of a hypothesis test
- Once we found our CI, we often just write the interpretation of the coefficient estimate:

General statement for population slope inference

For every increase of 1 unit in the X-variable, there is an expected/average (pick one) increase of $\widehat{\beta}_1$ units in the Y-variable (95%: LB, UB).

• In our example: For every 1% increase in female literacy rate, life expectancy increases, on average, 0.232 years (95% CI: 0.170, 0.295).

Usually three options for your interpretations

• Option 1: For every 1% increase in female literacy rate, life expectancy increases, on average, 0.232 years (95% CI: 0.170, 0.295).

• Option 2: For every 1% increase in female literacy rate, average life expectancy increases 0.232 years (95% CI: 0.170, 0.295).

• Option 3: For every 1% increase in female literacy rate, expected life expectancy increases 0.232 years (95% CI: 0.170, 0.295).

Poll Everywhere Question 4

For reference: quick CI for β_0

• Calculate CI for population intercept $eta_0:\widehat{eta}_0\pm t^*\cdot SE_{eta_0}$

where t^st is the t-distribution critical value with df=n-2

• Use the regression table

FemaleLiteracyRate 0.232 0.031 7.377 0.000 0.170

General statement for population intercept inference

The expected outcome for the Y-variable is $(\widehat{\beta}_0)$ when the X-variable is 0 (95% CI: LB, UB).

• For example: The expected/average life expectancy is 50.9 years when the female literacy rate is 0 (95% CI: 45.63, 56.22).

Lesson 4: SLR 2

0.295

Learning Objectives

- 1. Estimate the variance of the residuals
- 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
- 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
 - 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Finding a mean response given a value of our independent variable

term	estimate std.error statistic p.value							
(Intercept)	50.928	2.660	19.143	0.000				
FemaleLiteracyRate	0.232	0.031	7.377	0.000				

life expectancy =
$$50.9 + 0.232$$
 · female literacy rate

• What is the expected/predicted life expectancy for a country with female literacy rate 60%?

life expectancy =
$$50.9 + 0.232 \cdot 60 = 64.82$$

$$1 (y_60 < 50.9 + 0.232*60)$$

[1] 64.82

- How do we interpret the expected value?
 - We sometimes call this "predicted" value, since we can technically use a literacy rate that is not in our sample
- How variable is it?

Mean response/prediction with regression line

Recall the population model:

line + random "noise"

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon$$

with $arepsilon \sim N(0,\sigma^2)$

ullet When we take the expected value, at a given value X^st , the average expected response at X^st is:

$$\widehat{E}[Y|X^*] = \widehat{eta}_0 + \widehat{eta}_1 X^*$$

Life expectancy vs. female literacy rate

- These are the points on the regression line
- ullet The mean responses have variability, and we can calculate a CI for it, for every value of X^*

CI for population mean response ($E[Y|X^*]$ or $\mu_{Y|X^*}$)

$$\widehat{E}[Y|X^*] \pm t_{n-2}^* \cdot SE_{\widehat{E}[Y|X^*]}$$

$$SE_{\widehat{E}[Y|X^*]} = s_{ ext{residuals}} \sqrt{rac{1}{n} + rac{(X^* - \overline{X})^2}{(n-1)s_X^2}}$$

- ullet $\widehat{E}[Y|X^*]$ is the predicted value at the specified point X^* of the explanatory variable
- $s_{
 m residuals}^2$ is the sd of the residuals
- ullet n is the sample size, or the number of (complete) pairs of points
- ullet \overline{X} is the sample mean of the explanatory variable x
- ullet s_X is the sample sd of the explanatory variable X

 \bullet Recall that t_{n-2}^* is calculated using <code>qt()</code> and depends on the confidence level (1 - α)

Example Option 1: CI for mean response $\mu_{Y|X^*}$

Find the 95% CI for the mean life expectancy when the female literacy rate is 60.

```
egin{aligned} \widehat{E}[Y|X^*] &\pm t_{n-2}^* \cdot SE_{\widehat{E}[Y|X^*]} \ 64.8596 &\pm 1.990847 \cdot s_{residuals} \sqrt{rac{1}{n} + rac{(X^* - ar{x})^2}{(n-1)s_x^2}} \ 64.8596 &\pm 1.990847 \cdot 6.142157 \sqrt{rac{1}{80} + rac{(60-81.65375)^2}{(80-1)21.95371^2}} \ 64.8596 &\pm 1.990847 \cdot 0.9675541 \ 64.8596 &\pm 1.926252 \ (62.93335, 66.78586) \end{aligned}
```

```
1 (n \le nobs(model1))
 1 (Y60 < -50.9278981 + 0.2321951 * 60)
[1] 64.8596
                                                         [1] 80
                                                          1 (mx <- mean(gapm$FemaleLiteracyRate, na.rm=5
 1 (tstar \leftarrow qt(.975, df = 78))
[1] 1.990847
                                                         [1] 81.65375
 1 (s resid <- glance(model1)$sigma)</pre>
                                                             (s x <- sd(gapm$FemaleLiteracyRate, na.rm=T</pre>
[1] 6.142157
                                                         [1] 21.95371
 1 (SE_Yx < - s_resid *sqrt(1/n + (60 - mx)^2/((n-1)*s_x^2)))
[1] 0.9675541
 1 (MOE_Yx <- SE_Yx*tstar)</pre>
                                      1 Y60 - MOE Yx
                                                                            1 \text{ Y}60 + \text{MOE Yx}
[1] 1.926252
                                                                           [1] 66.78586
                                     [1] 62.93335
```

Example Option 2: CI for mean response $\mu_{Y|X^*}$

Find the 95% Cl's for the mean life expectancy when the female literacy rate is 60 and 80.

- Use the base R predict() function
- Requires specification of a newdata "value"
 - The newdata value is X^*

64.85961 62.93335 66.78586

69.50351 68.13244 70.87457

- This has to be in the format of a data frame though
- with column name identical to the predictor variable in the model

```
1 newdata <- data.frame(FemaleLiteracyRate = c(60, 80))</pre>
2 newdata
FemaleLiteracyRate
               60
               80
  predict(model1,
          newdata=newdata,
           interval="confidence")
     fit
             lwr
```

upr

Interpretation

We are 95% confident that the average life expectancy for a country with a 60% female literacy rate will be between 62.9 and 66.8 years.

Poll Everywhere Question 5

Confidence bands for mean response $\mu_{Y|X^*}$

- Often we plot the CI for many values of X, creating confidence bands
- The confidence bands are what ggplot creates when we set se = TRUE within geom_smooth
- Think about it: for what values of X are the confidence bands (intervals) narrowest?

Life expectancy vs. female literacy rate

Width of confidence bands for mean response $\mu_{Y|X^*}$

ullet For what values of X^* are the confidence bands (intervals) narrowest? widest?

$$egin{aligned} \widehat{E}[Y|X^*] &\pm t_{n-2}^* \cdot SE_{\widehat{E}[Y|X^*]} \ \widehat{E}[Y|X^*] &\pm t_{n-2}^* \cdot s_{residuals} \sqrt{rac{1}{n} + rac{(X^* - ar{x})^2}{(n-1)s_x^2}} \end{aligned}$$

Relationship between life expectancy and female literacy rate in 2011

Lesson 4: SLR 2

50