Exercice 1 – (Intégrale à paramètres)

Soit f continue et intégrable sur R. On suppose qu'il existe M>0 telle que, pour tout x>0, $\int_{-\infty}^{\infty}\frac{|e^{itx}-1|}{|x|}|f(t)|dt\leq M$

- 1. Montrer que $t \mapsto tf(t)$ est intégrable sur \mathbb{R} .
- 2. Limite en 0^+ de $h(x) = \int_{-\infty}^{\infty} \frac{e^{itx}-1}{x} f(t) dt$

Exercice 2 – (Théorème de Weierstrass trigonométrique)

Soit E l'ensemble des applications de \mathbb{R} dans \mathbb{C} continues et 2π -périodiques. Pour f et g dans E, on définit le produit de convulction par $f*g:=\int_0^{2\pi}f(x-t)g(t)dt$.

- 1. Montrer que f * g est un élément de E.
- 2. Que dire de f * g si f est C^{∞} ?

Pour $n \in \mathbb{N}$, on considère l'application $u_n : \mathbb{R} \to \mathbb{R}$ définie par $u_n(x) = c_n(1+cos(x))^n$ où $c_n \in \mathbb{R}$ est choisi tel que $\int_0^{2\pi} u_n(t) dt = 1$. On pose alors $f_n = f * u_n$. On va montrer que (f_n) CVU vers f sur \mathbb{R} .

- 3. Soit $\epsilon > 0$, on suppose qu'il existe $\eta \in]0, \pi[$ tel que si $|s-t| \le \eta$ alors $|f(s)-f(t)| \le \epsilon$. Montrer que $\forall x \in \mathbb{R}$, $\int_{-\pi}^{\pi} |f(x-t)-f(x)| u_n(t) dt \le \epsilon + 4 ||f||_{\infty} \int_{\eta}^{\pi} u_n(t) dt$
- 4. Justifier que $\int_0^{\pi} (1 + \cos(t))^n \sin(t) dt \le \int_0^{\pi} (1 + \cos(t))^n dt$.
- 5. Conclure.

Exercice 3 – (Intégrale de Gauss)

On pose $f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$

- 1. Montrer que f est de classe C^1 sur \mathbb{R} .
- 2. Relier f' à $F:x\mapsto \int_0^x e^{-t^2}dt$ et en déduire $\int_0^\infty e^{-t^2}dt$

Exercice 4 - (CVD et suite)

Soit d > 0. Soit $g \in C^0([0, d])$ telle que $g(0) \neq 0$

- 1. Rappeler la caractérisation séquentielle de la limite.
- 2. Construire une fonction g_t continue par morceaux sur $[0, +\infty[$, bornée, telle que $\int_0^d e^{-tx^2} g(x) dx = \frac{1}{t} \int_0^{+\infty} e^{-x} g_t(x) dx$
- 3. Montrer que $\int_0^d e^{-tx^2} g(x) dx \underset{t \mapsto +\infty}{\sim} \frac{g(0)}{t}$

Exercice 5 - (Convergence uniforme?)

On considère une fonction $f: \mathbb{R} \to \mathbb{C}$, continue et telle qu'il existe un réel C > 0 tel que, pour tout $t \in \mathbb{R}$,

$$|f(t)| \le \frac{C}{1 + t^2}.$$

Pour tout h > 0, on pose :

$$S(h) = h \sum_{n=0}^{\infty} f(nh).$$

On fixe h > 0, et on considère la fonction

$$\phi_h: \mathbb{R}^+ \longrightarrow \mathbb{C}$$

$$t \longmapsto f\left(\left\lfloor \frac{t}{h} \right\rfloor h\right)$$

- 1. Montrer que $S(h) = \int_0^{+\infty} \phi_h(t) dt$.
- 2. Montrer que, pour tous $h \in]0;1]$ et $t \in [1;+\infty[$, on a :

$$|\phi_h(t)| \le \frac{C}{1 + (t-1)^2}.$$

3. En déduire que

$$S(h) \xrightarrow[h \to 0]{} \int_0^{+\infty} f(t)dt.$$

Exercice 6 - (Intégrale à paramètres 2)

Soit $F(x) = \int_0^{+\infty} \frac{dt}{1+t^x}$.

- 1. Déterminer le domaine de définition D et démontrer que F est continue sur D.
- 2. Démontrer que F est de classe C^1 sur $]1,\infty[$ et que $\forall x>1,F'(x)=\int_0^{+\infty}\frac{t^x\ln(t)}{(1+t^x)^2}(\frac{1}{t^2}-1)dt$
- 3. Limite de F en $+\infty$
- 4. On suppose que F admet une limite l en 1^+ . Démontrer que pour tout A>0 et pour tout x>1, on a : $l\geq \int_1^A \frac{dt}{1+t^x}$
- 5. En déduire que $F(x) \underset{x \to 1^+}{\to} +\infty$