IN THE CLAIMS

1-33 (Canceled)

- 34. (Currently amended) A nucleic acid molecule encoding a fusion protein comprising aa) the first N-terminal domain of the geneIII protein of filamentous phage and ab) a (poly)peptide which is encoded by a nucleic acid sequence comprised in a genomic DNA fragment or an expressed sequence tag (EST) from a eukaryotic cell, wherein said nucleic acid molecule does not comprise a nucleic acid sequence encoding a signal sequence for the transport of the fusion protein to the periplasm of a bacterial host cell, and wherein said genomic DNA fragment or expressed sequence tag (EST) is between 100 and 2000 base pairs in length and is derived from a eukaryotic organism.
- 35. (Previously presented) A vector comprising a nucleic acid molecule according to claim 34
- 36. (Previously presented) The vector according to claim 35 which is an expression vector.
- (Previously presented) A host cell comprising a nucleic acid according to claim
 34.
 - 38. (Previously presented) The host cell according to claim 37 which is an E.coli cell.
 - 39. (Canceled)
- 40. (Currently amended) A method for the expression of a (poly)peptide/protein comprising:
- a)—expressing a nucleic acid molecule encoding a fusion protein in a host cell under conditions that allow the formation of inclusion bodies comprising said fusion protein, <u>wherein</u> said nucleic acid molecule comprises a genomic DNA fragment or EST sequence derived

from a eukaryotic organism that is 100 to 2000 base pairs long linked to a nucleic acid sequence that encodes wherein said fusion protein comprises

aa) the first N-terminal domain of the geneIII protein of filamentous phage, and ab) said (poly)peptide/protein.

- 41. (Previously presented) The method of claim 40 further comprising the steps of
- b) isolating said inclusion bodies; and
- solubilising said fusion protein under suitable conditions.
- 42. (Previously presented) A host cell comprising a vector according to claim 35.
- 43. (Previously presented) A host cell comprising a vector according to claim 36.