7. FS - Globale Operationen

Kosinus- und Sinusfunktionen

- Kosinusfunktion:
 - cos(x) hat den Wert **1** am Ursprung (cos(0) = 1)
 - Durchläuft von x=0 bis $x=2\pi$ eine volle Periode
- Sinusfunktion:
 - sin(x) hat den Wert **0** am Ursprung (sin(0) = 0)
 - Durchläuft ebenfalls von x=0 bis $x=2\pi$ eine volle Periode

7. Globale Operationen > Kosinus- und Sinusfunktionen

Frequenz und Periode

Für cos(x) innerhalb einer Strecke der Länge $T=2\pi$ ist die Anzahl der Perioden 1: $\omega=\frac{2\pi}{T}=1$

7. Globale Operationen > Frequenz und Perioden

Addition von Cos/Sin Funktionen

$$C=\sqrt{A^2+B^2}, \quad \phi= an^{-1}\left(rac{B}{A}
ight)$$

Erweiterung auf beliebige Funktionen

$$g(x) = \sum_{k=0}^{\infty} A_k \cos(k\omega_0 x) + B_k \sin(k\omega_0 x)$$

- Fourierkoeffizienten:
 - A_k , B_k : Bestimmen das Gewicht der jeweiligen Kosinus- und Sinusfunktionen.
 - Frequenzen der beteiligten Funktionen: Ganzzahlige Vielfache der Grundfrequenz ω_0 .
- **Fourieranalyse**: Berechnung der Fourierkoeffizienten aus der gegebenen Funktion g(x).

7. Globale Operationen > Addition von Kosinus- und Sinusfunktionen

Fourierintegral

• Fourierintegral: Erweiterung auf nicht periodische Funktionen, die ebenfalls als Summe von Sinus- und Kosinusfunktionen dargestellt werden können:

$$g(x) = \int_0^\infty A_\omega \cos(\omega x) + B_\omega \sin(\omega x) \, d\omega$$

- Koeffizienten A_{ω} und B_{ω} :
 - Beschreiben die Amplitude der entsprechenden **Kosinus- bzw. Sinusfunktion** bei der Frequenz ω .
 - Bestimmung der Koeffizienten:

$$A_{\omega}=rac{1}{\pi}\int_{-\infty}^{\infty}g(x)\cos(\omega x)$$

$$B_{\omega}=rac{1}{\pi}\int_{-\infty}^{\infty}g(x)\sin(\omega x)$$

- Spektrum der Funktion:
 - $A(\omega)$ und $B(\omega)$ sind **kontinuierliche Funktionen**, die das **Spektrum** der Frequenzen im Signal repräsentieren.

Fouriertransformation und Fourier-Spektrum

- Fouriertransformation:
 - Vereinfacht die Darstellung, indem die Ausgangsfunktion g(x) und das Spektrum als **komplexwertige Funktionen** betrachtet werden.
- Fourierspektrum $G(\omega)$:
 - Wird als komplexe Funktion dargestellt:

$$G(\omega) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\cos(\omega x) - i\sin(\omega x)) g(x)$$

7. Globale Operationen > Fourierintegral - Nicht periodische Funktionen

Diskrete Fourier-Transformationen

DFT: Vorwärtstransformation

Für ein diskretes Signal g(u) der Länge M (mit $u=0,\ldots,M-1$), wird das **Fourierspektrum** G(m) für $m=0,\ldots,M-1$ durch die **Vorwärtstransformation** berechnet:

$$G(m)=rac{1}{\sqrt{M}}\sum_{u=0}^{M-1}g(u)e^{-irac{2\pi mu}{M}}$$

DFT: Inverse Transformation

Die **inverse DFT** zur Rekonstruktion des Signals g(u) aus dem Spektrum G(m):

$$g(u)=rac{1}{\sqrt{M}}\sum_{m=0}^{M-1}G(m)e^{irac{2\pi mu}{M}}$$

• **Beide Transformationen sind identisch**: Vorwärts- und inverse DFT sind mathematisch symmetrisch.

Eigenschaften des Fourierspektrums

- Sowohl das Signal g(u) als auch das Fourierspektrum G(m) sind komplexwertige Vektoren der Länge M.
- Betrag des Fourierspektrums (Magnitude):

$$\|G(m)\| = \sqrt{G_{\mathrm{real}}^2(m) + G_{\mathrm{imag}}^2(m)}$$

7. Globale Operationen > Diskrete Fourier-Transformation (DFT)

Convolution Theorem

Faltung zweier Funktionen im Zeitbereich gleich der Punktweise-Multiplikation ihrer Fouriertransformierten im Frequenzbereich.

$$\mathcal{F}\{f*g\}(\omega) = F(\omega) \cdot G(\omega) Ff*g$$

7. Globale Operationen > Convolution Theorem

Hough Transformation

Andere Darstellung von Linien

Statt <u>5. FS - Rasterisierung > Linien</u> Darstellung wird hier die Hessesche Normalform verwendet:

$$r = x\cos(\theta) + y\sin(\theta)$$

- Parameter:
 - r: Normalabstand der Geraden zum Ursprung.
 - θ : Winkel des Normalabstands zur x-Achse.

zsmf by xmozz