May 2013

TIL111M, TIL117M, MOC8100M General Purpose 6-Pin Phototransistor Optocouplers

Features

- UL Recognized (File # E90700)
- VDE Recognized (File #102497 for white package) - Add Option V (e.g., TIL111VM)

Applications

- Power Supply Regulators
- Digital Logic Inputs
- Microprocessor Inputs
- Appliance Sensor Systems
- Industrial Controls

General Description

The MOC8100M, TIL111M, and TIL117M optocouplers consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a 6-pin dual in-line package.

Schematic

ANODE 1 O-O 6 BASE CATHODE 2 O O 5 COLLECTOR O 4 EMITTER NC 3 O

Figure 1. Schematic

Package Outlines

Figure 2. Package Outlines

Safety and Insulation Ratings

As per IEC60747-5-2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Mains Voltage < 150 V _{RMS}		I–IV		
	For Rated Mains Voltage < 300 V _{RMS}		I–IV		
	Climatic Classification		55/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V_{PR}	Input to Output Test Voltage, Method b, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1594			
	Input to Output Test Voltage, Method a, $V_{IORM} \times 1.5 = V_{PR}$, Type and Sample Test with $t_m = 60$ s, Partial Discharge < 5 pC	1275			
V _{IORM}	Maximum Working Insulation Voltage	850			V _{peak}
V _{IOTM}	Highest Allowable Over Voltage	6000			V _{peak}
	External Creepage	7			mm
	External Clearance	7			mm
	Insulation Thickness	0.5			mm
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V	10 ⁹			Ω

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Device	Value	Units
Total Devi	ce				l
T _{STG}	Storage Temperature		All	-40 to +150	°C
T _{OPR}	Operating Temperature		All	-40 to +100	°C
T _{SOL}	Lead Solder Temperature		All	260 for 10 sec	°C
P _D	Total Device Power Dissipation @ T _A = 25°C		All	250	mW
	Derate Above 25°C			2.94	mW/°C
Emitter					
I _F	DC/Average Forward Input Current		All	60	mA
V _R	Reverse Input Voltage		TIL111M	3	V
		МО	C8100M, TIL117M	6	
I _F (pk)	Forward Current – Peak (300 µs, 2% Duty Cycle)		All	3	Α
P_{D}	LED Power Dissipation @ T _A = 25°C		All	120	mW
	Derate Above 25°C			1.41	mW/°C
Detector	7				
V_{CEO}	Collector-Emitter Voltage		All	30	V
V _{CBO}	Collector-Base Voltage		All	70	V
V _{ECO}	Emitter-Collector Voltage	TI	L111M, TIL117M	7	V
V _{EBO}	Emitter-Base Voltage		All	7	
P _D	Detector Power Dissipation @ T _A = 25°C		All	150	mW
	Derate Above 25°C			1.76	mW/°C

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Individual Component Characteristics

Symbol	Parameter	Test Conditions		Device	Min.	Тур.*	Max.	Unit
Emitter						•	'	
V _F	Input Forward	I _F = 16 mA	T _A = 25°C	TIL111M		1.2	1.4	V
	Voltage	I _F = 10 mA for	$T_A = 0$ °C to 70°C	MOC8100M,		1.2	1.4	
		MOC8100M,	T _A = -55°C	TIL117M		1.32		
		I _F = 16 mA for TIL117M	T _A = +100°C	_		1.10		
I _R	Reverse Leakage	V _R = 3.0 V		TIL111M, TIL117M		0.001	10	μΑ
	Current	V _R = 6.0 V		MOC8100M		0.001	10	μΑ
Detector								
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 1.0 mA, I _F :	= 0	All	30	100		V
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_F = 0$		All	70	120		V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_F = 0$		All	7	10		V
BV _{ECO}	Emitter-Collector Breakdown Voltage	I _F = 100 μA, I _F = 0		TIL111M, TIL117M	7	10		V
I _{CEO}	Collector-Emitter	V _{CE} = 10 V, I _F =	: 0	TIL111M, TIL117M		1	50	nA
D	Dark Current	V _{CE} = 5 V, T _A =	25°C	MOC8100M		0.5	25	nA
		V _{CE} = 30 V, I _F =	0, T _A = 70°C	TIL117M, MOC8100M		0.2	50	μΑ
I _{CBO}	Collector-Base Dark	V _{CB} = 10 V		TIL111M, TIL117M			20	nA
I _{CBO}	Current	V _{CB} = 5 V		MOC8100M			10	nA
C _{CE}	Capacitance	V _{CE} = 0 V, f = 1 MHz		All		8		pF

^{*}All Typical values at $T_A = 25$ °C

Electrical Characteristics (Continued)

 $T_A = 25$ °C unless otherwise specified.

Transfer Characteristics

Symbol	Parameter	Test Conditions	Device	Min	Тур*	Max	Unit
DC Chara	cteristics						
CTR _{CE}	Current Transfer Ratio,	I _F = 10 mA, V _{CE} = 10 V	TIL117M	50			%
	Collector to Emitter	I _F = 1 mA, V _{CE} = 5 V	MOC8100M	50			%
		I _F = 1 mA, V _{CE} = 5 V, T _A = 0°C to +70°C		30			
I _{C(ON)}	On-State Collector Current (Phototransistor Operation)	I _F = 16 mA, V _{CE} = 0.4 V	TIL111M	2			mA
	On-State Collector Current (Photodiode Operation)	I _F = 16 mA, V _{CB} = 0.4 V		7			μA
V _{CE (SAT)}	Collector-Emitter Saturation Voltage	$I_C = 500 \mu A, I_F = 10 mA$	TIL117M			0.4	V
		I _C = 2 mA, I _F = 16 mA	TIL111M			0.4	
		I _C = 100 μA, I _F = 1 mA	MOC8100M			0.5	
AC Charac	cteristics				•		
c _{ON}	Turn-On Time	$I_C = 2 \text{ mA}, V_{CC} = 10 \text{ V},$	MOC8100M			20	μs
		$R_L = 100 \Omega \text{ (Fig. 13)}$	TIL117M			10	
C _{OFF}	Turn-Off Time		MOC8100M			20	μs
			TIL117M			10	
t _r	Rise Time		MOC8100M		2		μs
t _f	Fall Time		TIL117M		2		
t _r	Rise Time (Phototransistor Operation)	$I_{C(ON)} = 2 \text{ mA}, V_{CC} = 10 \text{ V},$ $R_L = 100 \Omega \text{ (Fig. 13)}$	TIL111M			10	μs
t _f	Fall Time (Phototransistor Operation)						

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.*	Max.	Units
V _{ISO}	Input-Output Isolation Voltage	f = 60 Hz, t = 1 s	7500			V _{AC(PK)}
R _{ISO}	Isolation Resistance	V _{I-O} = 500 V _{DC}	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = 0$, $f = 1 MHz$		0.2		pF

^{*}All Typical values at $T_A = 25$ °C.

Typical Performance Characteristics

Figure 3. LED Forward Voltage vs. Forward Current

Figure 5. Normalized CTR vs. Ambient Temperature

Figure 7. CTR vs. RBE (Saturated)

Figure 4. Normalized CTR vs. Forward Current

Figure 6. CTR vs. RBE (Unsaturated)

Figure 8. Collector-Emitter Saturation Voltage vs Collector Current

Typical Performance Characteristics (Continued)

Figure 9. Switching Speed vs. Load Resistor

Figure 10. Normalized t_{on} vs. R_{BE}

Figure 11. Normalized toff vs. RBE

 T_A – AMBIENTTEMPERATURE (°C)

Figure 12. Dark Current vs. Ambient Temperature

TEST CIRCUIT

V_{CC} = 10 V OUTPUT Adjust IF to produce Ic = 2 mA

WAVEFORMS

Figure 13. Switching Time Test Circuit and Waveforms

Reflow Profile

Figure 14. Reflow Profile

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	No option TIL111M Standard Through-Hole Device	
S	TIL111SM	Surface Mount Lead Bend
SR2	TIL111SR2M	Surface Mount; Tape and Reel
Т	TIL111TM	0.4" Lead Spacing
V	TIL111VM	VDE 0884
TV	TIL111TVM	VDE 0884, 0.4" Lead Spacing
SV	TIL111SVM	VDE 0884, Surface Mount
SR2V	TIL111SR2VM	VDE 0884, Surface Mount, Tape and Reel

Marking Information

Definitions					
1	Fairchild logo				
2	Device number				
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	One-digit year code, e.g., '3'				
5	Two-digit work week ranging from '01' to '53'				
6	Assembly package code				

^{*}Note – Parts that do not have the 'V' option (see definition 3 above) that are marked with date code '325' or earlier are marked in portrait format.

Package Dimensions

NOTES:

0.76-1.14

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06BREV3.

Figure 15. 6-Pin DIP Through Hole

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06CREV3.

Figure 16. 6-Pin DIP Surface Mount

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Package Dimensions (Continued)

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06DREV3.

Figure 17. 6-Pin DIP 0.4" Lead Spacing

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Carrier Tape Specification

Figure 18. Carrier Tape Specification

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ F-PFS™ FRFET® AX-CAP® BitSiC™ Global Power Resource^S Build it Now™ GreenBridge™ Green FPS™ CorePLUS™ Green FPS™ e-Series™ CorePOWER™ CROSSVOLT™ Gmax™

GTO™ **CTL™** IntelliMAX™ Current Transfer Logic™ DEUXPEED[®] ISOPLANAR™ Making Small Speakers Sound Louder

Dual Cool™ EcoSPARK® EfficientMax™ **ESBC™**

•®

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT FAST®

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

QFET QS™ Quiet Series™

RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® **STEALTH™** SuperFET SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

Sync-Lock™ SYSTEM SYSTEM TinyBoost™

TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®*

uSerDes™ UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM

and Better™

MICROCOUPLER™

MegaBuck™

MicroFET

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1 Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

<u>MOC8100SR2VM_TIL111W_TIL111300_MOC8100M_MOC8100SR2M_MOC8100SVM_MOC8100VM_TIL111300W_MOC8100TVM_TIL1113S_TIL111S_MOC8100SM_TIL111SD_MOC8100TM_TIL1113SD_TIL111_MOC8100FR2VM_MOC8100FR2M_MOC8100FR2M_MOC8100FW_</u>