Intensitatea și potențialul câmpului electric în condensatorul plan

Cuvinte cheie: condensator, intensitatea câmpului electric (\vec{E}) , potențial electric (V), tensiune (U), linii de câmp, linii echipotențiale

Principiu

Între plăcile încărcate ale unui condensator se produce un câmp electric uniform. Intensitatea câmpului electric (\vec{E}) este măsurată cu ajutorul unui senzor de intensitate, în funcție de distanța d dintre plăci, și în funcție de tensiunea aplicată la borne U. Potențialul electric (Φ) în cadrul câmpului este măsurat cu o sondă de măsură specifică.

Echipament

Condensator plan 283x283cm	2
Armătură de condensator cu apertură d=55cm	1
Dispozitiv de măsură a câmpului electric	
Dispozitiv de măsură a potențialului electric	1
Surse de alimentare CC:012V, 0,5A; CC 0650V, 50mA; 6,3V 2A	1
Rezistență de siguranță, $10 \mathrm{M}\Omega$	1
Lampă cu flacără cu rezervă de butan	1
rezervă de butan C206, fără valvă, 190g	1
Tuburi de legătură 6mm	1
Multimetru digital	2
Cablu de legătură, 100mm, galben-verde	1
Cablu de legătură, 32A, 750mm, roșu	5
Cablu de legătură, 32A, 750mm, albastru	5
Banc optic, l=600mm	1
Suport bază pentru banc	2
Suport glisabil h=80mm	2
Bară cilindrică suport l=250mm, d=10mm	2
Bară cilindrică, 500mm	1
Cleme cu unghi drept	3
Bază cilindrică	1
Riglă 200mm	1
Tub	1

Figura 1: Montaj pentru măsurarea intensității câmpului electric între plăcile condensatorului plan, în funcție de tensiune și poziție

Figura 2: Montaj pentru măsurarea potențialului câmpului electric între plăcile condensatorului plan, în funcție de poziție

Objective

- 1. Investigarea relației dintre tensiunea (U)și intensitatea câmpului electric (\vec{E}) , considerând constantă distanța dintre armături (d=const)
- 2. Investigația relației dintre intensitatea câmpului electric (\vec{E}) și distanța dintre armături (d), considerând constantă tensiunea electrică (U=const)
- 3. Investigarea, cu ajutorul sondei, a potențialului electric (Φ) în funcție de poziție (d)

Mod de lucru

- 1. Montajul experimental este reprezentat în Fig.1 Dispozitivul de măsurare a intensității câmpului electric trebuie setat inițial la zero cu o tensiune electrică 0V. Intensitatea câmpului electric este apoi măsurată la diferite tensiuni, la o distanță stabilită aleatoriu între plăci (aprox. 10cm).
- 2. Intensitatea câmpului electric este măsurată în funcție de distanță între cele două armături ale condensatorului plan, într-un domeniu de aproximativ 2-12 cm, păstrând montajul din Fig.1, și aplicând o tensiune constantă de 200V.
- 3. Măsurarea potențialului electric. Montajul experimental este prezentat în Fig.2. Distanța dintre armături este de 10 cm, iar tensiunea aplicată este de 250V.

Teoria lucrării

$$rot\vec{E} = -\vec{B}$$

$$div\vec{D} = \rho$$

Pentru cazul condensatorului plan se deduc din ecuațiile lui Maxwell ecuațiile de mai sus.

Pentru cazul electrostatic, în spațiul fără sarcini dintre plăci:

$$rot\vec{E} = 0$$

$$div\vec{D} = 0$$

Dacă una dintre plăci este așezată în plan y-z, iar cealaltă este așeazată paralel cu ea la o distanță d, și dacă efectele datorate marginilor finite sunt înlăturate, rezultă din ecuațiile de mai sus că vectorul de intensitate \vec{E} este situat în direcția x și este uniform. Pentru că acest câmp este irotațional $rot\vec{E}=0$, el poate să fie reprezentat ca un gradient al câmpului scalar Φ :

$$\vec{E} = -grad\Phi = -\frac{\partial \Phi}{\partial x}$$

Vectorul intensitate electrică \vec{E} poate fi exprimat, datorită uniformității, drept câtul diferențelor:

$$E = \frac{\Phi_1 - \Phi_2}{x_1 - x_2} = \frac{U}{d}$$

Unde diferența de potențial este egală cu tensiunea electrică U aplicată la bornele condensatorului, iar distanța d este distanța dintre cele două plăci.

Obiectivul 1. și 2. E(U) și E(d)

Funcția liniară a setului de valori măsurate din Fig.3, scrisă în formă exponențială:

$$E = A \cdot U^B$$

exponentul $B = 1,005 \pm 0,003$

Rezultă că la distanța d constantă între armături, E este direct proporțional cu tensiunea.

Figura 3: Intensitatea câmpului electric în funcție de tensiunea dintre plăcile condensatorului, d=const.

Dacă menținem constantă tensiunea U, intensitatea câmpului electric E variază invers proporțională cu distanța dintre armături d ca în Fig.4.

Figura 4: Intensitatea câmpului electric în funcție de distanța dintre plăcile condensatorului, U=const.

La o tensiune constantă U, intensitatea câmpului electric E variază invers proporțională cu distanța dintre armături d.

Dacă ambele axe din Fig.4 le prezentăm pe scală logaritmică $\log E, \log d$, graficul va arăta ca în Fig.5.

Figura 5: Valorile măsurate din Fig.4, reprezentate pe scală logaritmică

$$\log E = \log \frac{U}{d} = \log U - \log d$$
$$y = \log E$$
$$x = \log d$$

Se obține o funcție liniară, o dreaptă cu panta -1,02 și deviația standard 0.02.

Obiectivul 3 - $\Phi(d)$

Potențialul Φ al unei suprafețe echipotențale dintre plăcile condensatorului este dependent liniar de distanța x, de exemplu de pe placa unde este potențialul Φ_1 :

$$\Phi = \Phi_1 - E \cdot x = \Phi_1 - \frac{U}{d} \cdot x$$

La o tensiune constantă U = 250V și distanța dintre plăci d = 10cm, valorile măsurate ale potențialului arată o dependeță liniară a potențialului de poziție ca în Fig.7.

$$\Phi = \Phi_1 + E \cdot x$$

$$y = b + a \cdot x$$

$$b = \Phi_1 = 256V$$

$$a = E = -2, 86 \pm 0, 04kV/m$$

Figura 6: Măsurarea potențialului între placile condensatorului plan

Figura 7: Potențialul între plăcile condensatorului plan (U=250V, d=10cm)

U(V)	E(kV/m)
10	
20	
30	
40	
50	
75	
100	
150	
200	
250	

1. Investigați relația dintre tensiune
aU și intensitatea câmpului electric
 E $d=10cm=\,\mathrm{const.}$

d(cm)	E(kV/m)
2	
4	
6	
7	
8	
9	
10	
11	
12	

2. Investigați relația dintre intensitatea câmpului electric E și distanța dintre plăci d U=200V= const.

x(cm)	$\Phi(V)$
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

3. Investigați potențialul electric Φ la diferite distanțe între plăci d $U=250V={\rm const.}$ $d=10cm={\rm const.}$