Analytics for Hospitals Health-Care Data

Team ID	PNT2022TMID43551	
Project name	Analytics for Hospital Health Data	
Team Members	1.Subramanyam Shashikumar Ayyar (TL)	
	2.Anirudh NK	
	3.Niyas N	
	4.Vishnunathan R	

1. INTRODUCTION

1.1 Project Overview

The healthcare industry is multidimensional, with multiple data sources involving healthcare systems, health insurers, clinical researchers, social media, and govern-ment, generating different types and massive amounts of data. It is impossible to handle this big data with traditional software and hardware and the existing storage methods and tools. Data analytics is the process of the analysis of data to identify trends and patterns to gain valuable insights. The data generated in the health industry are characterized by the four Vs of big data, namely volume, velocity, variety, and veracity, which play crucial roles in health data analytics. Also, evidence-based decision making has gained importance, which involves the sharing of data among various data repositories. According to Deloitte Global Healthcare Outlook, it is expected that global healthcare expenditure will continue to increase at an annual rate of 5.4% between 2017 and 2022. This is due to the increased importance of personalized medicine, the use of advanced technologies, the demand for new payment models, improvement and expansion of care delivery sites, and competition. Various research attempts, based on big data, have provided strong evidence that the efficiency of healthcare applications is dependent upon the basic architecture, techniques, and tools used. Statistical data and reports can be generated with the use of patient records, aiding in knowledge discovery, and thereby influencing value-added services to the patients, improving healthcare quality, the making of timely decisions, and minimizing the costs incurred. Hence, there is a need to incorporate and integrate big data analytics into existing healthcare systems. Despite healthcare analytics having massive potential for value-added change, there are many technological, social, organizational, economic, and policy barriers associated with its application.

1.2 Purpose

The main aim of this paper is to provide a deep analysis on the research field of healthcare data analytics., as well as highlighting some of guidelines and gaps in previous studies. This study has focused on searching relevant papers about healthcare analytics by searching in seven popular databases such as google scholar and springer using specific keywords, in order to understand the healthcare topic and conduct our literature review. The paper has listed some data analytics tools and techniques that have been used to improve healthcare performance in many areas such as: medical operations, reports, decision making, and prediction and prevention system. Moreover, the systematic review has showed an interesting demographic of fields of publication, research approaches, as well as outlined some of the possible reasons and issues associated with healthcare data analytics, based on geographical distribution theme.

2. LITERATURE SURVEY

2.1 Existing Problem

The list below highlights a number of the major problems that we face today :-

- Data management, security and privacy issues. Issues such as data integrity and privacy lead to poor data management Privacy violation and discrimination.
 Disclosure of Personal Health Information is also a major risk.
- Technological issues, Lack of required infrastructure cannot produce safe conclusions Social inequality, as data are only open to a small elite of technical specialists who know how to interpret and use it, and to those who can employ them
- Skilled Resource set, There is a need to have a Data scientist and Data analyst to perform big data analysis. There is already a huge shortage in the required skill set for Big Data Analytics.
- Data Ownership, There is a lot of big data flowing which includes genomics, remote sensing, social media, mobile app and many other data types.
- Healthcare Models, There is a need to have sufficient business case evidence in health to measure investment return.
- Limited awareness and support, It will cause lack of funding and awareness.
 Dependency on private funding will support a few big players that will further lead to international economic competitiveness. Funding models have to be revisited to ensure better care.

2.2 References

- 1)Mohammad Alkhatib , Amir Talaei-Khoei (University of Nevada,Reno)Amir Talaei-Khoei University of Nevada, Reno | UNR · Department of Accounting and Information Systems PhD of Information Systems-Amir Ghapanchi
- 2)From:"Book of Data Analytics" Chandank Reddy(Wayne State University) Charu C.Aggarwal(Watson Research Center)

- 3) From: Hoyt,RE,Yoshihashi,A,Eds.(2014).Health Informatics:Practical Guide for Healthcare and formation Technology Professionals,Sixth Edition.Pensacola,FL,Lulu.com.
- 4)Panagiota Galetsia , Korina Katsaliakia , Sameer Kumarb,* a School of Economics, Business Administration & Legal Studies, International Hellenic University, 14th km Thessaloniki-N. Moudania, Thessaloniki, 57001, Greece b Opus College of Business, University of St. Thomas Minneapolis Campus, 1000 LaSalle Avenue, Schulze Hall 435, Minneapolis, MN 55403, USA 5)from"n book: Innovative Data Communication Technologies and Application (pp.83-96)" P. Nagaraj-Professor (Assistant) at Kalasalingam University

2.3 Problem Statement Definition

- Collection dataset.
- Upload the dataset into cognos.
- Open the properties->data module.
- If null value is present in character field use mode method.
- If the null value is present in continuous field use average or medium.
- Display the data in respective charts.
- Create conclusion using summary.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

- An empathy map is a tool which aids in understanding another person's perspective.
- Empathy maps have up until now not been used in a medical education setting
- Objective: To assess the attitudes towards, applicability and usefulness of empathy maps as part of medical student's communication skills training.

3.2 Ideation and Brainstorming

To try to solve a problem or come up with new ideas by having a discussion that includes all members of a group : to discuss a problem or issue and suggest solutions and ideas.

3.3 Proposed Solution

S.No	Perameter	Description
1.	Problem Statement (Problem to be solved)	During the covid-19 pandemic, we have faced one of the difficult times of our life. Everyone seeks to survive from the great disaster. At the time of pandemic, no one get to know about which hospital has vacant beds (free beds) to admit themselves or others infected by covid. This situation made the death rate higher.
2.	Idea/Solution description	Predictive analytics can create patient journey dashboards and disease trajectories that helps us to know about the patient's period of stay. It improves effective allocation of beds and other resources, treatment delivery, improves efficiencies, and so on.
3.	Novelty / Uniqueness	Healthcare data frequently resides in several locations. The Collected data should be stored in central system (like centralized storage). This data becomes accessible and usable when it is combined into a single, central system, such as an enterprise data warehouse (EDW). Uniqueness of our project is that we can able to use data for different things such as which medicine is more effective and for understanding behavioural pattern of particular disease.

4.	Social Impact / Customer	Effective use of resource			
	Satisfaction	 Enhanced diagnosis 			
		 Improved Treatment 			
		Enhancing the overall quality			
		of treatment and life of			
		patients			
5.	Business Model (Revenue Model)	With the gathered data, redirecting			
		the patients to particular hospital			
		based on the vacancy, leading			
		retailers used methods like market-			
		basket analysis to discover insights			
		about consumer purchase behaviour			
		and used these insights to optimize			
		the physical store experience, target			
		relevant ads and streamline the			
		supply chain, among other strategic			
		initiatives			
6.	Scalability of the Solution	A variety of institutions must store,			
		evaluate, and take action on the			
		massive amounts of data being			
		produced by the health care sector			
		as it expands quickly. India is a vast,			
		culturally varied nation with a sizable			
		population that is increasingly able			
		to access centralised healthcare			
		services.			

3.4 Solution Fit

- ➤ The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem
- ➤ In an age where medical science has made noteworthy advancements, inefficiencies and healthcare errors are still persistent because of the healthcare industry's traditional technology for management.

- ➤ One specific area of concern is the exchange of patient data in case of patient transfer from one department or hospital to another. Patient record sharing, when done the traditional way, is time-consuming and inefficient and exposes patient information to a breach.
- ➤ To deliver a holistic and satisfactory patient experience, different parties involved in healthcare doctors, scheme providers, insurance providers, doctors, and patients should be able to exchange information among themselves securely.

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)				
1	User Registration	Utilizing a Form for Registration, Signing				
		up with Gmail				
2	User Confirmation	Email confirmation required				
3	Interoperability	A dashboard makes it possible to				
		quickly and inter-operably transmit				
		patient information with hospitals.				
4	Accuracy	Based on LOS (Length of Stay), th				
		dashboard accurately predicts th				
		patient's health risks.				
5	Compliance	The use of a dashboard for compliance				
		by hospitals is quite dynamic and takes				
		place in real time.				
6	Concise	These dashboards are easy to				
		understand, simple to customize, and				
		interactive.				

4.2 Non-functional Requirements

No.	Non-Functional Requirement	Description			
1	Usability	In order to provide a through visual			
		representation of the patient's LOS,			
		this dashboard makes use of data			
		visualization techniques including			
		charts and graphs.			
2	Security	The Dashboard aids in indicating the			
		level of threat that currently exists for			
		the hospitals, as well as past			
		occurrences and incidents,			
		authentication mistakes, scans,			
		probes, and unwanted access.			

3	Reliability	Users will find this dashboard to be			
		consistent, dependable, and helpful in			
		using in an effective, efficient, and			
		dependable manner.			
4	Performance	This dashboard may scan backend			
		users, and examining how frequently			
		they visit the dashboard might reveal			
		relevant information about the jobs the			
		data is beneficial for.			
5	Availability	The dashboard is able to promptly			
		satisfy user needs and aids in giving			
		the user's dataset the relevant			
		information.			
6	Scalability	A hosted feature layer, feature layer			
		view, or hosted tile layer are the layers			
		that are used in the dashboard.			

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Number of patients

5.2 Solution & Technical Architecture

Table-1: Components & Technologies:

S.No	Component	Description Technology
1	User Interface	How user interacts with HTML, CSS, JavaScript /
		application e.g. Web UI, Angular Js / React Js
		Mobile App, Chatbot etc. etc
2	Application Logic-1	Logging in as a patient / Python
		user in the application
3	Application Logic-2	Logging in as an admin in IBM Watson Assistant
		the application
4	Database	All the data about MySQL, NoSQL, etc
		patients such as disease,
		address and etc.
5	Cloud Database	IBM Watson cloud is IBM DB2, IBM Cloudant

		used for storage, Cloud	etc.			
6	External API-1	Purpose of External API	Aadhar API, etc			
		used in the application				
7	Machine Learning	Purpose of Machine Regression Model, e				
	Model	Learning Model				
8	Infrastructure (Server	Application Deployment	Local, Cloud Foundry,			
	/ Cloud)	on Local System / Cloud	Kubernetes, etc.			
		Local Server				
		Configuration, Cloud				
		Server Configuration				

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology	
	Open-Source	List the open-source	Python	
	Frameworks	frameworks used		
	Security	List all the security /	Encryption.	
	Implementations	access controls		
		implemented, use of		
		firewalls etc.		
	Scalable Architecture	Justify the scalability of	Can supports higher	
		architecture (3 – tier, Micro-	workloads	
		services)		
	Availability	Justify the availability of	Highly available	
		application (e.g., use of		
		load balancers, distributed		
		servers etc.)		
	Performance	Design consideration for	It performs good uses	
		the performance of the	various tools and ideas	
		application (number of	in a scientific manner to	

requests per sec, use of	meet the desired
Cache, use of CDN's) etc.	outcomes

5.3 User Stories

User Type	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Administra tor (Admin)	Login		As an admin, I can add users details.	I can provide username and password for the users.	High	Sprint-1
User	Login	USN-1	As a user, I can login into the website/ application using username and password	I can access Dashboard and user account.	High	Sprint-1
	Dashboard	USN-2	As a user, I can add Patient Details like Patient name, contact number, age etc.	I can view and edit patient details	Medium	Sprint-1
	Dashboard	USN-3	As a user, I can add bed details, Doctor details and other hospital detail.	I can monitor Staff and hospital performance.	Medium	Sprint-1
	Dashboard	USN-4	As a user, I can upload patient medical reports.	I can upload and Modify patient reports	High	Sprint-1

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Total	Duration	Sprint Start	Sprint	Story Points	Sprint
	Story		Date	End Date	Completed (as	Release
	Points			(Planned)	on Planned	Date
					End Date)	(Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct	20	29 Oct
				2022		2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov	20	05 Nov
				2022		2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov	20	12 Nov
				2022		2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov	20	19 Nov
				2022		2022

6.2 Sprint Delivery Schedule

Sprint	Functional	User	User Story / Task	Story	Priority	Team
	Requireme	Story		Points		Members
	nt (Epic)	Number				
Sprint-1	Registrati	USN-1	As a health care	20	High	2 Members
	on		provider, I can			
			create account in			
			IBM cloud and the			
			data are collected.			
Sprint-2	Analyse	USN-2	As a health care	20	Medium	2 Members
			provider all the			
			data that are			
			collected is			
			cleaned and			
			uploaded in the			
			database or IBM			
			cloud.			

Sprint-3	Dashboard	USN-3	As a health care	10	Medium	2 Members
			provider, I can use			
			my account in my			
			dashboard for			
			uploading dataset.			
Sprint-3	Visualizati	USN-4	As a health care	10	High	2 Members
	on		provider, I can			
			prepare data for			
			Visualization.			
Sprint-4	Visualizati	USN-5	As a health care	10	High	2 Members
	on		provider, I can			
			present data in my			
			dashboard.			
Sprint-4	Prediction	USN-6	As a health care	10	High	2 Members
			provider, I can			
			predict the length			
			of stay			

6.3 Reports from JIRA

Road Map:

A roadmap is a strategic plan that defines a goal or desired outcome and includes the major steps or milestones needed to reach it. It also serves as a communication tool, a high-level document that helps articulate strategic thinking—the why—behind both the goal and the plan for getting there.

Kanban Board:

A kanban board is an agile project management tool designed to help visualize work, limit work-in-progress, and maximize efficiency (or flow). It can help both agile and DevOps teams establish order in their daily work.

7. CODING & SOLUTIONING

7.1 Feature 1

- Fetched the data from DB2 database.
- Creating responsive dashboard.
- Inserting filter for each chart
- Creating report
- Created reports using multiple graphs and charts

7.2 Feature 2

- Creating stories and performed.
- Perform animation render image from website.
- Included graphs and charts.
- Creating web application using bootstrap.
- Embedded the cognos with web application.

7.3 Database Schema

- case_id
- Hospital_code
- Hospital_type_code
- City_Code_Hospital
- Hospital_region_code
- Available Extra Rooms in Hospital
- Department
- Ward_Type
- Ward_Facility_Code
- Bed Grade
- Patient id
- City_Code_Patient
- Type of Admission

- Severity of Illness
- Visitors with Patient
- Age
- Admission_Deposit
- Stay

8. TESTING

8.1 Test Cases

- ➤ Verify user is able to see Home page.
- ➤ Verify user is able to see Dashboard page.
- ➤ Verify user is able to navigate to Report page.
- ➤ Verify user is able to navigate to story page.
- ➤ Verify filters are working

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	8	5	0	3	16
Duplicate	1	0	5	0	6
External	0	3	2	1	6
Fixed	13	4	3	16	36
Not Reproduced	0	1	0	0	1
Skipped	0	1	0	1	2
Won't Fix	1	4	2	1	8
Totals	23	18	12	22	75

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fall	Pass
Print Engine	9	0	0	9
Client Application	43	0	0	43
Security	1	0	0	1
Outsource Shipping	1	0	0	1

Exception Reporting	9	0	0	9
Final Report Output	10	0	0	10
Version Control	1	0	0	1

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES

- > Improved research efforts
- > Improved health outcomes
- > Obtain operational insights
- ➤ Improved staffing
- ➤ Informed strategic
- planning
- ➤ Higher-Quality Care

DISADVANTAGES

- ➤ Privacy
- ➤ Replacing Doctors
- > Frustration with poor implementation.
- ➤ Cybersecurity risks
- ➤ Healthcare Regulatory Changes.
- ➤ Healthcare Staffing Shortages

11. CONCLUSION

- ➤ It also means describing how health plans, health care organizations, and clinicians should be accountable to patients and society and conversely.
- ➤ How individuals can take appropriate responsibility for their own health.
- ➤ Data analytics is the science of analyzing raw datasets in order to derive a conclusion regarding the information they hold.
- ➤ It enables us to discover patterns in the raw data and draw valuable information from them.

12. FUTURE SCOPE

➤ Improved Decision Making: Data Analytics eliminates guesswork and manual tasks. Be it choosing the right content, planning marketing campaigns, or

developing products.

- ➤ Organizations can use the insights they gain from data analytics to make informed decisions. Thus, leading to better outcomes and customer satisfaction
- ➤ Data analytics to achieve business goals of pharmaceutical companies, payers, insurance companies, physicians, hospitals, medical equipment companies, sales reps, and other stakeholders in the healthcare business, need for this have only increased after the Affordable Act came into being.

13. APPENDIX

GitHub link:

https://github.com/IBM-EPBL/IBM-Project-49175-1660816520

Project Demo Link:

https://clipchamp.com/watch/f4XZRMQo9eT