Math 259A Lecture 12 Notes

Daniel Raban

October 23, 2019

1 Spectral Scales

1.1 Spectral scales

Last time, we stated the following lemma.

Lemma 1.1. Let $x = x^* \in \mathcal{B}(H)_h$ and let $f_n, g_n \geq 0$ be increasing sequences of continuous functions on $\operatorname{Spec}(x)$ that are both uniformly bounded. If $\sup_n f_n(t) \leq \sup_n g_n(t)$ for all $t \in \operatorname{Spec}(x)$, then $\sup_n f_n(x) \leq \sup_n g_n(x)$.

Proof. We will prove that for any fixed n and $\varepsilon > 0$, there exists an m_n such that $f_n - \varepsilon \le g_{m_n}$; this will complete the proof because then $\sup_m g_m(x) \ge f_n(x) - \varepsilon$ for all n and $\varepsilon > 0$. If $t \in \operatorname{Spec}(x)$, then $f_n(t) - \varepsilon < f_n(t) < \sup_n f_n(t) \le \sup_m g_m(t)$. So there exists m_n such that $g_{m_n}(t) \ge f_n(t) - \varepsilon$. So there is a neighborhoof V_t of t such that $f_n(s) - \varepsilon < g_{m_n}(s)$ for all $s \in V_t$. By the compactness of $\operatorname{Spec}(x)$, there exist V_{t_1}, \ldots, V_{t_k} covering $\operatorname{Spec}(x)$ and corresponding m_{n_1}, \ldots, m_{n_k} . If we let $m_n := \max\{m_{n_j} : 1 \le j \le k\}$, then $f_n(s) - \varepsilon < g_{n_m}(s)$ for all $s \in \operatorname{Spec}(x)$.

Corollary 1.1. The spectral scales $e_{(-\infty,t]}(x) := \sup\{f(x) : f \in C(\operatorname{Spec}(x)), f \leq \mathbb{1}_{(-\infty,t)}\}$ are well-defined.

We have that $\mathbb{1}_{(-\infty,t]}(x) = \bigwedge_{s>t} e_s(x)$. If $Y \subseteq \operatorname{Spec}(x)$ is Borel, then $e_Y = \mathbb{1}_Y(x)$ exists and be called **spectral projections**. These are all contained in the von Neumann algebra generated by x.

Proposition 1.1. Let $e_{[t,\infty)} = 1 - e_t$. Then

- 1. $e_{[\alpha,\beta)} = e_{(-\infty,\alpha)}e_{[\beta,\infty)} = e_{\alpha}(1 e_{\beta}).$
- 2. $e_{Y_1}e_{Y_2}=e_{Y_1\cap Y_2}$.
- 3. $e_{Y_1} \vee e_{Y_2} = e_{Y_1 \cup Y_2}$.
- 4. $xe_t < te_t$, and $x(1 e_t) > t(1 e_t)$.

Corollary 1.2. If $t \leq s$, then

$$t(e_s - e_t) \le x(e_s - e_t) \le s(e_s - e_t).$$

Let $m = \inf \operatorname{Spec}(x)$ and $M = \sup \operatorname{Spec}(x)$. Given a partition $m = t_0 < t_1 < \cdots < t_n = M$, we can construct **Riemann-Darboux sums**

$$s(\Delta) = \sum_{i=1}^{n} t - i - 1(e_{t_i} - e_{t_{i-1}}), \qquad S(\Delta) = \sum_{i=1}^{n} t_i(e_{t_i} - e_{t_{i-1}})$$

If the mesh size is $< \varepsilon$, then $||S(\Delta) - s(\Delta)|| < \varepsilon$. Then we can define the **vector valued Stieltjes integral** which satisfies

$$x = \int_{-\infty}^{\infty} \lambda \, de_{\lambda}.$$

Remark 1.1. This integral takes values in $\mathcal{B}(H)$. Since $\operatorname{Spec}(x) \subseteq [m, M]$, this is really an integral over a compact set. The convergence is convergence in norm.

Corollary 1.3. If $x \in (\mathcal{B}(H)_+)_1$, then there exist projections $\{p_n\}_n$ in \mathcal{A} , the von Neumann algebra generated by x, such that $x = \sum_{n \geq 1} 2^{-n} p_n$.

This is called the **dyadic decomposition** of x.

Proof. Define the projections recursively: Start with $p_1 = e_{[1/2,1)}(x)$, so $||x - \frac{1}{2}p_1|| \le 1/2$. Then take $p_2 = e_{[1/4,1/2]}(1 - \frac{1}{2}p_1)$ to be this projection applied to the previous result. Continuing like this, we get all the projections.

So the von Neumann algebra is generated by x is generated by these projections, as well.

1.2 Cyclic and separating vectors

Definition 1.1. Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. $\xi \in H$ is a **cyclic vector** of M if $\overline{M\xi} = H$.

Definition 1.2. Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. $\xi \in H$ is a **separating** vector of M if when $x \in M$ satisfies $x\xi = 0$, x = 0.

Proposition 1.2. Let M = A be an abelian von Neumann algebra. Then ξ is separating if and only if it is cyclic.