Understanding Neural Network Architecture Using Evolutionary Algorithm Search

Ammar Mukadam

Neural Networks

Source: TIBCO

Weights and Biases

Focus on the connections between neurons:

- Weights: value of each neural connection to the final output
- **Bias:** threshold for a neuron to activate based on the input it receives.

Are we actually learning?

- Loss function: understanding the network's progress towards consistently outputting the expected result.
- How accurate is our neural network?

Back-propagation

Source: TIBCO

Investigating The Hidden Layers

- How many layers are in the hidden layers?
- How many neurons are in these layers?
- Plus the many other hyperparameters

Number of layers & neurons per layer

- Number of layers & neurons per layer
- Activation function

- Number of layers & neurons per layer
- Activation function
- Learning rate

Source: SaugatBhattara

- Number of layers & neurons per layer
- Activation function
- Learning rate
- Dropout layers

Source: SaugatBhattara

- Number of layers & neurons per layer
- Activation function
- Learning rate
- Dropout layers
- Cost Function

Source: SaugatBhattara

How do we find the optimal combination of hyperparameters?

Several methods, for example Grid Search

Source: FloydHub Source: ResearchGate

Evolutionary Algorithm Search

Evolution

Survival of the fittest

Source: Wikimedia Commons

Choosing the best individuals

• Fitness function:

Evaluated using TensorFlow

- Accuracy
- F1 Score
- Minimizing Loss
- Completion Time

How the search works

- All of these hyperparameter combinations = individuals
- Each individual made up of a chromosome that represents specific hyperparameters
- These individuals make up the population

Following Evolution

- Individuals are mated, chromosomes combined.
- Variable chance of mutation to increase diversity

Source: Manning.com

The process as a whole

Wait a minute...

- How many individuals do we start with?
- How many generations do we run?
- Plus the many other hyperparameters

We've been here before...

Genetic Search Hyperparameters

- # of starting indiv. & # of generations
- Mutation rate
- Death %
- # of parents mating

- Current model is a proof of concept
- Our chosen search hyperparameters have proven to be best for small datasets

For larger datasets with more hyperparameters:

```
† # of generations
```

† # of starting indiv.

Death rate%

20

Future Plans

• Bayesian optimization: method that learns from its guesses to find the optimal hyperparameters for the search.

Overview

Hyperparamters of genetic search

Hyperparameters of neural network

Neural network best set up to learn

Thank you!