Structuri de Date Elementare

Liste Vectori Stive Cozi

Exercițiu

- Se citesc numere de la tastatură pană se citește 0. Sortați acele numere!
 - Opţiuni folosite:
 - Vector din STL în C++
 - Array din C++
 - Nu știm câtă memorie să alocăm
 - \circ 1.000 → probabil prea puţin \Rightarrow segmentation fault
 - o 10.000.000 → probabil prea mult ⇒ risipă de memorie
 - Array din C++ alocat dinamic
 - În cazul de față, nu e corect, pentru că nu știm câte elemente inserăm, dar în general ar putea fi o soluție bună
 - Liste în Python
 - Priority queue

Exercițiu

- Se citesc n <= 10⁶ numere, care fac parte din unul din cele m <= 10³ grupuri. La final se pun întrebări de tipul: care e al k-lea număr din grupul j?
- N = 8, M = 3
- 9 3
- 12 3
- 13 1
- 4 2
- 6 2
- 7 2
- 11 1
- 12 3
- Q
- 22 → 6
- $\bullet \quad 3.3 \rightarrow 12$
- $1.1 \rightarrow 13$ (nu în ordinea sortării, ci în ordinea citirii)

Exercițiu

- Se citesc n <= 10⁶ numere, care fac parte din unul din cele m <= 10³ grupuri. La final se pun întrebări de tipul: care e al k-lea număr din grupul j?
- Soluţii:
 - Matrice[n][m] \rightarrow 1GB
 - Ocupă foarte multă memorie și dacă m = 10⁵! Clar soluția nu merge
 - Risipă de 99.9%!!
 - Listă de liste sau vectori de liste...
 - Soluţie bună
 - Un vector lung care ține toate elementele cu un alt vector de next-uri

Alocare statică

```
o C++
```

- Array:
 - int v[1000]; int n = 733; \rightarrow Trebuie să reținem noi lungimea
 - int v[1000][1000000]; \rightarrow problematic
 - Static
- Vector
 - vector <int> v;
 for (int i = 0; i < n; ++i) {
 cin>> x;
 v.push_back(x);
 }
 - vector <int> matrix[1000];
 - Nu prea static (vom discuta mai mult)

- Alocare statică
 - Python
 - import array as arr Sau
 - \blacksquare a = arr.array('d', [1.1, 3.5, 4.5])
 - Sau direct: array_2 = np.array(["numbers", 3, 6, 9, 12])
 - Wrapper la array-ul din C++
 - Lumea folosește de obicei liste
 - Nu prea static...
 - a.append(45)

- Array vs Liste
 - o Păreri?
 - Array sunt mai rapizi
 - Pot cauza risipă de memorie, că nu tot timpul știm câtă memorie să alocăm de la început
 - Putem avea probleme să alocăm o secvență continuă lungă sau să o extindem

- Array vs Liste
 - o Păreri ?
 - Inserare

Insertion in Array and Linked List

Array vs Liste

- Array-ul ocupă poziții consecutive din memorie și reține informații de același fel.
 - Ocupare optimă a memoriei
 - Mai rapizi
 - o Probleme cu alocarea (trebuie să găsești un spațiu suficient de mare să aloci)...

Exemplu:

- În tabelul de mai jos, nu putem aloca un vector de 4 elemente
- Putem ocupa memorie degeaba V[1000][100000]...
- Putem șterge și adăuga doar în capătul din dreapta în complexitate constantă
- Putem accesa în O(1) elemente de pe anumite poziții...

	0		0		0		

Array vs Liste

- Lista permite alocarea memoriei când avem nevoie de ea
 - O(1) inserare/ștergere oriunde, dacă avem pointerul de care avem nevoie
 - Nu putem găsi ușor al k-lea element din listă
 - (skip lists can help)
 - Trebuie să avem grijă să alocăm/ștergem memoria (cel puțin în C++)

Array vs Liste

Complexitate:

	Liste	Array		
Inserare oriunde	în caz bun, O(1)	O(n)		
Inserare/ștergere la capăt	O(1)	O(1)		
Afișarea celui de-al k-lea element	O(k)	O(1)		
Sortare	O(n logn)	O(n logn)		
Căutare în structura sortată	O(n)	O(logn)		
Redimensionare	O(1)	O(n)		

Array vs Vector

- În array, alocăm de la început memoria
 - De obicei facem risipă
 - Trebuie să reținem noi câte elemente folosim
 - Foarte rapizi
 - Folosesc memoria eficient

Vector

- Alocăm **niște** memorie de la început
- Redimensionăm

Array vs Vector

- Vector
 - Array alocat dinamic
 - Putem aloca din start un număr de elemente: vector<double> values (500, 3.14);
 - Putem rezerva locuri
 - values.reserve(1000000);

```
vector <int> linie;
int n;
linie.reserve(n);
cin >>n;
for (int i = 0; i < n; ++i) {
   int x;
   cin>>x;
   linie[i] = x;
}
```

Array vs Vector

- Vector
 - Sau putem să adăugăm la final ... (de ce la final?)
 - Să nu mutăm toate elementele

```
vector <int> linie;
int n;
//linie.reserve(n);
cin >>n;
for (int i = 0; i < n; ++i) {
   int x;
   cin>>x;
   linie.push_back(x); // ce se intampla aici ?
}
```

Vector

- Redimensionare
 - Vectorul începe cu un număr de locuri rezervate
 - Dacă vrem să adăugăm un element și nu mai avem spațiu
 - Mărim vectorul
 - Cu cât?
 - Dublăm sau 1.5x sau 3x, ca să rămânem amortizat în O(1) pe operație
 - Ce se întâmplă dacă nu mai e loc în continuare?
 - Dacă tot eliminăm elemente
 - Trebuie să micșorăm vectorul
 - Când?
 - Cu cât?
 - Dacă dublăm, complexitatea amortizată e O(1) pe operație!
- Avantajele array-urilor, dar cu alocare dinamică
 - Viteza este totuși mai mică decât array-urile. Dacă viteza e vitală, folosiți array!

Python

- $my_list = ["mouse", [8, 4, 6], ['a']]$
- my_list.append("Primavara e frumoasa");
- Putem avea elemente de tipuri diferite
- Alocarea/dealocarea se fac behind the scenes

- Liste
 - Simplu înlănțuite
 - o Dublu înlănțuite
 - Circulare

Circular, singly linked list:

Circular, doubly linked list:

C++

- Două opțiuni:
 - Container din C++ similar cu vectorul
 - Alocate de mână

```
// list::begin
#include <iostream>
#include <list>

int main ()
{
    int myints[] = {75,23,65,42,13};
    std::list<int> mylist (myints,myints+5);

    std::cout << "mylist contains:";
    for (std::list<int>::iterator it=mylist.begin(); it != mylist.end(); ++it)
        std::cout << ' ' << *it;

    std::cout << '\n';
    return 0;
}</pre>
```

C++

- Două opțiuni:
 - Containere din STL
 - o <u>Liste alocate dinamic</u>

Final