

EP271 Heat, Kinetic Theory, and Thermodynamics
Final Examination

Department of Physics and Engineering Physics, University of Saskatchewan

Instructor: Alex Plyuhkin

April 19, 2005, Time: 2:00 pm-5:00 pm

Textbooks and notes are not allowed. You can use two pages formula sheet.

Each set of questions has the same weight.

Set 1:

1.1. Formulate the first law of thermodynamics

1.2. The internal energy of a gas depends on temperature and pressure as $U = a \ln(T/T_0) + b \ln(P/P_0)$, where a, b, T_0, P_0 are constants. Receiving the amount of heat Q , the gas is heated from temperature T_1 to temperature T_2 and does the work W . Find the ratio P_2/P_1 of pressure in the final and initial states.

1.3. A body (not necessarily an ideal gas) passes from state 1 to state 3 one time by means of the process $1 \rightarrow 2 \rightarrow 3$ and another by means of the process $1 \rightarrow 4 \rightarrow 3$. Using the data indicated in the figure below, find

a) the difference $\Delta Q = Q_{123} - Q_{143}$ between the amount of heat received by the body during two processes.

b) the corresponding differences for internal energy and entropy, ΔU and ΔS .

(Note $1 \text{ MPa} = 10^6 \text{ Pa}$, $1 \text{ L} = 10^{-3} \text{ m}^3$)

Set 2 :

2.1. Give the relationship between heat capacities C_P and C_V . Give quantitative explanation why $C_P > C_V$.

2.2. Two moles of diatomic ideal gas is confined to a container at atmospheric pressure and temperature $T = 273 \text{ K}$. How much heat energy is needed to double the pressure of the gas?

2.3. Find molar specific heat of an ideal gas as a function of volume, $c(V)$, for the process $P = aT^\alpha$. a and α are constants. Specific heat for constant volume, c_V , is supposed to be known.

Set 3:

3.1.

- a) What is the efficiency of a heat engine?
 - b) Give formulation(s) of the second law of thermodynamics making reference to a heat engine
- 3.2. In the course of a Carnot cycle, the working substance receives the heat $Q_h = 300 \text{ kJ}$ from a high temperature bath. The temperatures of the high and low temperature baths are $T_h = 450 \text{ K}$ and $T_c = 280 \text{ K}$, respectively. Find the work W done by the working substance during the cycle.
- 3.3.
- a) Find the work done by an ideal gas (with given $\gamma = c_p/c_v$) in expanding adiabatically from a state (p_1, V_1) to a state (p_2, V_2) .
 - b) Find the net work along two adiabats of the Carnot cycle.

Set 4:

- 4.1. What arguments you may suggest to support the statement that thermodynamic entropy is a function of state?
- 4.2. An ideal gas is confined to a cylinder by a piston. The piston is slowly pushed in so that the gas temperature remains at 20° C . During the compression, 730 J of work is done on the gas. Find the entropy change of the gas.
- 4.3. An ideal gas with given $\gamma = c_p/c_v$ performs a two-step process $1 \rightarrow 2 \rightarrow 3$. The initial volume and pressure P_1, V_1 , as well as the volume of the final state V_3 , are given. About the intermediate state 2 it is known only that the entropy change ΔS_{12} for the first step $1 \rightarrow 2$ and ΔS_{23} for the second step differ only by sign, $\Delta S_{12} = -|\Delta S_{23}|$. Find pressure in the final state, P_3 .

Set 5:

- 5.1. How entropy is defined in kinetic theory? Based on this definition, explain shortly how the entropy increase in irreversible processes can be interpreted in kinetic theory.
- 5.2. The average energy of the molecules of a diatomic ideal gas $\langle \epsilon \rangle = 5 \times 10^{-21} \text{ J}$. The pressure of the gas is $P = 2 \times 10^5 \text{ Pa}$. Find the concentration of molecules (the number of molecules in a unit volume).
- 5.3. An ideal gas of rigid diatomic molecules ($\gamma = 7/5$) expands adiabatically. Given the ratio of the initial and final volumes $\alpha = V_i/V_f$ and the initial temperature T_i , find the average kinetic energy of rotational motion of a molecule in the final state.