

ANALISIS SENTIMEN MENGGUNAKAN MODEL NEURAL NETWORK DAN **LSTM**

Oleh: Andi, Atikah, dan Adi

Dalam era informasi digital saat ini, di mana data teks teridentifikasi dalam volume yang besar seperti email, comment social media, review (google, transkrip obrolan, dan ecommers) analisis sentimen menjadi sangat relevan untuk memahami pandangan, respons, dan perasaan pengguna terhadap berbagai topik, produk, layanan, atau kejadian.

Apa yang dimaksud dengan Analisis Sentimen?

Analisis sentimen adalah proses menganalisis teks digital untuk menentukan apakah nada emosional pesan tersebut positif, negatif, atau netral.¹

Manfaat Sentimen Analisis:

- 01 Memberikan wawasan yang objektif
- 02 Menemukan strategi marketing baru
- 03 Melacak performa kampanye
 - 04 Meningkatkan persepsi media

METODE PENELITIAN

Metode yang digunakan pada penelitian/challenge kali ini adalah sebagai berikut :

- **1. Cleansing data** pada dataset Analisis Sentimen menggunakan Pandas dan RegEx
- **2. Feature extraction** pada dataset Analisis Sentimen menggunakan Sklearn

3. Training

menggunakan 2 metode:

- **a. Neural network** (memakai tool Sklearn)
- **b. LSTM** (memakai tool Tensorflow)
- **4. Kalkulasi** analisis sentimen dari metode Neural Network

- **5. Evaluasi** pada model Neural Network dan LSTM yang sudah di-training dengan Sklearn
- **6. Visualisasi** evaluasi pada model Neural Network dan LSTM yang sudah di-training dengan menggunakan matplotlib dan seaborn

7. Membangun API untuk prediksi sentimen menggunakan model Neural Network dan LSTM dengan menggunakan Flask dan Swagger UI

Data

01

Cleansing

Menggunakan library Pandas dan Regex unutk melakukan clensing data **Feature**

02

Extraction

04

Menggunakan library Sklearn dengan metode BoW (Bag of Words **Training**

03

Menggunakan tool Sklearn untuk melakukan training dengan modul MLPClassifier

Evaluasi

Evaluasi menggunakan modul Classification_ Report kemudian melaukan Cross Validation Predict

n

Melakukan tes apakah model yang kita buat bisa "berjalan" dengan baik atau tidak.

Data Cleansing

Menggunakan library Pandas dan Regex Kemudian mebuat fungsi untuk raw text sehingga menghasikan text_clean

Text Cleansing

```
def cleansing(sent):
    string = sent.lower()
    string = re.sub(r'[^a-zA-Z0-9]',' ',string)
    return string

df['text_clean'] = df['text'].apply(cleansing)

df.head()
```

	text	sentiment	In_text	text_clean
0	warung ini dimiliki oleh pengusaha pabrik tahu	positive	404	warung ini dimiliki oleh pengusaha pabrik tahu
1	mohon ulama lurus dan k212 mmbri hujjah partai	neutral	102	mohon ulama lurus dan k212 mmbri hujjah partai
2	lokasi strategis di jalan sumatera bandung . t	positive	184	lokasi strategis di jalan sumatera bandung t
3	betapa bahagia nya diri ini saat unboxing pake	positive	93	betapa bahagia nya diri ini saat unboxing pake
4	duh . jadi mahasiswa jangan sombong dong . kas	negative	214	duh jadi mahasiswa jangan sombong dong kas

Feature Extraction

Menggunakan library Sklearn dengan metode BoW (Bag of Words)

Feature Extraction Bag of Word

```
data_preprocessed = df['text_clean'].tolist()

count_vect = CountVectorizer()
count_vect.fit(data_preprocessed)

x = count_vect.transform(data_preprocessed)

pickle.dump(count_vect, open("feature.p", "wb"))
```

Type Markdown and LaTeX: $lpha^2$

Data Training

Menggunakan tool Sklearn untuk melakukan training dengan modul MLPClassifier

Training(Splitting Dataset)

#berikut ini adalah split existing data menjadi 80% data trainning dan 20% data test

classes = df['sentiment']

x_train, x_test, y_train, y_test = train_test_split(x, classes, test_size = 0.2)

print(f"x_train size: {x_train.shape[0]}")
print(f"y_train size: {y_train.shape[0]}")
print(f"x_test size: {x_test.shape[0]}")
print(f"y test size: {y test.shape[0]}")

x_train size: 8800 y_train size: 8800 x_test size: 2200 y test f : 2200

model Musifier()
model.fit(x_train, y_train)

▼ MLPClassifier MLPClassifier()

Evaluasi

Evaluasi menggunakan modul Classification_ Report kemudian melaukan Cross Validation

Evaluasi Model

y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
negative neutral positive	0.77 0.74 0.89	0.78 0.68 0.90	0.78 0.71 0.89	682 218 1300
accuracy macro avg weighted avg	0.80 0.84	0.79 0.84	0.84 0.79 0.84	2200 2200 2200

Cross Validation

```
#KF ini adalah unutk melihat konsistensi nilai presisi, recall, dan fl
kf = KFold(n_splits=5, random_state=42, shuffle=True)
accuracies = []
for iteration, data in enumerate(kf.split(x), start=1):
    data_train = x[data[0]]
   target_train = y[data[0]]
    data_test = x[data[1]]
   target_test = y[data[1]]
   clf.fit(data_train,target_train)
   preds = clf.predict(data_test)
   # for the current fold only
    accuracy = accuracy_score(target_test,preds)
   print("Training ke-", iteration)
   print(classification_report(target_test,preds))
    accuracies.append(accuracy)
# this is the average accuracy over all folds
average accuracy = np.mean(accuracies)
print()
print("Rata-rata Accuracy: ", average_accuracy)
```

Rata-rata Accuracy: 0.8447272727272728

Type Markdown and LaTeX: $lpha^2$

Evaluasi

Evaluasi menggunakan modul Classification_ Report kemudian melaukan Cross Validation

Evaluasi Model

<pre>y_pred = model.predict(x_test)</pre>						
<pre>print(classification_report(y_test, y_pred))</pre>						
	precision	recall	f1-score	support		
negative	0.77	0.78	0.78	682		
neutral	0.74	0.68	0.71	218		
positive	0.89	0.90	0.89	1300		
accuracy			0.84	2200		
macro avg	0.80	0.79	0.79	2200		
weighted avg	0.84	0.84	0.84	2200		

Training ke-	1			
	precision	recall	f1-score	support
negative	0.78	0.77	0.77	689
neutral	0.75	0.64	0.69	239
positive	0.73	0.89	0.88	1281
positive	0.07	0.03	0.00	1201
accuracy			0.83	2200
macro avg	0.80	0.77	0.78	2200
weighted avg	0.83	0.83	0.83	2200
=========	.========			
Training ke-	2			
	precision	recall	f1-score	support
negative	0.81	0.77	0.79	706
neutral	0.74	0.71	0.73	220
positive	0.88	0.91	0.90	1274
accuracy			0.85	2200
macro avg	0.81	0.80	0.80	2200
weighted avg	0.84	0.85	0.85	2200
weighted avg	0.04	0.03	0.03	2200
Training ke-	3			
iraining ke-	precision	recall	f1-score	support
	precision	recure	11 30010	Juppor c
negative	0.80	0.80	0.80	682
neutral	0.86	0.73	0.79	215
positive	0.89	0.91	0.90	1303
			0.86	2200
accuracy				
accuracy macro avo	0.85	0.82	0.83	2200

	precision	recall	f1-score	suppor
negative	0.78	0.81	0.79	69
neutral	0.79	0.65	0.71	22
positive	0.89	0.90	0.89	127
accuracy			0.84	220
macro avg	0.82	0.79	0.80	220
veighted avg	0.84	0.84	0.84	220
 Γraining ke-	======================================		=======	
	precision	recall	f1-score	suppor
negative	0.77	0.81	0.79	67
	0.79	0.67	0.72	24
neutral		0.90	0.90	128
neutral positive	0.90	0.90		
	0.90	0.90	0.85	220
positive	0.82	0.79	0.85 0.80	220 220

Rata-rata Accuracy: 0.8447272727272728

- Performa Keseluruhan:

Model menunjukkan kinerja yang baik dengan rata-rata akurasi sebesar 84.47%. Hal ini menunjukkan bahwa model secara umum mampu melakukan klasifikasi sentimen dengan tepat pada dataset yang digunakan.

- Konsistensi Performa:

Hasil evaluasi pada masing-masing fold menunjukkan konsistensi yang relatif baik dalam nilai precision, recall, dan F1-score. Variasi antara fold-fold tidak terlalu besar, yang menandakan bahwa model memiliki kemampuan yang stabil dalam melakukan klasifikasi sentimen.

Predict

Melakukan tes apakah model yang kita buat bisa "berjalan" dengan baik atau tidak. Dan hasilnya cukup akurat

Predict

```
# Melakukan prediksi dengan model yang telah dibuat
original_text = '''
saya mau makan
'''

text = count_vect.transform([cleansing(original_text)])

result = model.predict(text)[0]
print("Sentiment:")
print()
print(result)
```

Sentiment:

neutral

MODEL LSTM

03

Data

01

Cleansing

Menggunakan library Pandas dan Regex unutk melakukan clensing data **Feature**

Extraction

Menggunakan Tokenizer dan pad_sequences

04

Trainir

Training

Menggunakan tool Tensorflow untuk melakukan training

Evaluasi

Evaluasi menggunakan confusion matrix, accuracy, F1, recall, dan precision. Kemudian mekaukan cross validation **Predict**

02

Melakukan tes apakah model yang kita buat bisa "berjalan" dengan baik atau tidak.

Oi

MODEL LSTM

Training ke-	5 precision	recall	f1-score	support
0 1 2	0.84 0.81 0.89	0.81 0.77 0.92	0.82 0.79 0.91	685 233 1282
accuracy macro avg weighted avg	0.85 0.87	0.83 0.87	0.87 0.84 0.87	2200 2200 2200

Rata-rata Accuracy: 0.87145454545455

1/1 [======] - 0s 395ms/step Text:

orang itu seperti bajingan tolol

Sentiment: negative

- Performa Keseluruhan: Hasil nilai rat-rata accuracy pada angka 0.87. Hal ini menunjukkan model cukup

stabil di angka 0.87

Dari hasil model training bisa dilihat bahwa model yang dikembangkan tergolong underfitting, karena:

- •Data yang di-training terlalu sedikit
- •Proses training berhenti terlalu cepat.

MEMBANGUN API

MEMBANGUN API

Pada penelitian ini, telah dilakukan pembuatan model neural network menggunakan tensorflow dan sklearn. Pada saat dilakukan pembuatan model menggunakan neural network pada pustaka tensorflow, didapatkan accuracy sebesar <0.8, dan dengan sklearn didapatkan accuracy sebesar 0.77.

Selain itu, API untuk melakukan klasifikasi telah dibuat meggunakan swager ui.

