Econometric Analysis-1 (HS49002)

Factors Affecting Corruption in Developing and Emerging Countries

ByAayush Joshi, 18HS20001
Dipanshu, 18HS20014
Hritik Mehta, 18HS20018
Saket Mahajan, 18HS20028

1 INTRODUCTION

Underlying theory and motivation

- Economic and social indices of a country are becoming increasingly important in explaining a developing and emerging country's level of corruption.
- We aim to construct a model able to explain the level of corruption, dependent variable, in countries given a set of economic parameters as the independent variables.
- GDP per capita and corruption have always been thought to be correlated to each other, we further choose to add essential growth variables such as human development index (HDI), and the social progress index (SPI).
- We attempt to do so by taking in consideration 123 countries (developed, developing and underdeveloped) and creating cross-sectional datasets of the same and performing econometrics tests.

- We have constructed a model to explain the level of corruption (dependent variable), in developing and emerging countries given a set of economic parameters as the independent variables:
 - Country's gross domestic product (GDP) per capita
 - Human development index (HDI)
 - Social progress index (SPI)
 - The type of government in the country, included as a dummy variable,
 - The level of unemployment in the country
 - The income tax rate collected in the country
 - The Gini index which measures the degree of inequality in the distribution of family income in a country

2 DATASET DESCRIPTION

Variable Description And Descriptive Statistics

Variable Description

Control of Corruption (cpi)

GDP per Capita (ppp)

luman development Index (hdi, hdigrwoth)

According to the WGI, this index "reflects perception of the extent to which public power is exercised for private gain. The index ranges from -2.5(weak, very corrupt) to 2.5 (strong,

Expected Relation: Target Variable

transparent government).

Gross Domestic Product per capita from the year 2019, measured in US dollars, recorded by World Bank

Expected Relation: Positive

Measured by life expectancy at birth, education index, and GNI per capita. Growth rate is calculated using two consecutive years' HDI.

Expected Relation: Positive

Social Progress Index (SPI)

Unemployment (unemployment)

Gini index (gini)

Composed of 3 dimensions:

Basic Human Needs,

Foundations of Wellbeing, and

Opportunity.

Expected Relation: Target

Variable

Levels of unemployment from the year 2019 gathered from Trading Economics given as a percentage for each country included in the study.

Expected Relation: Negative

The Gini index (ranging from 0, being income distributed with perfect equality, to 100, being income distributed with perfect inequality) measures the degree of inequality in the distribution of family income in a country.

Expected Relation: Negativ

Government Type (constitutional form)

Government Type (head of state)

Personal Income Tax Rate (tax)

The four main government types for the list of countries are Constitutional Monarchy, Republic, Provisional, Absolute Monarchy. The two main types for the head of the state are ceremonial and executive. For eg. US have executive president while India have Ceremonial.

This variable represents the percent of income taxed in each of the developing countries.

Expected Relation: Positive

Dataset Description

. summarize cpi spi ppp unempolyment gini hdi hdigrowth tax, separator(10)

Max	Min	Std. Dev.	Mean	Obs	Variable
2.17	-1.42	1.016172	.0236585	123	cpi
92.73	31.29	14.89185	70.88577	123	spi
121293	988	23661.71	24675.9	123	ppp
33.89	.1	7.20796	9.153496	123	nempolyment
63	24.2	7.737482	37.66098	123	gini
. 957	.397	.1499248	.7480976	123	hdi
.019	.0003	.0038023	.0066195	123	hdigrowth
57.2	0	13.16779	30.03756	123	tax

. tabulate headofstate , generate (headofstate) Head of Frea. Percent Cum. state 50 40.65 40.65 Ceremonial 73 59.35 Executive 100.00 Total 123 100.00

. tabulate constitutionalfo	rm , genera	te(constitut	ionalform
Constitutional form	Freq.	Percent	Cum.
Absolute monarchy	2	1.63	1.63
Constitutional monarchy	21	17.07	18.70
Provisional	1	0.81	19.51
Republic	99	80.49	100.00
Total	123	100.00	

- Dummy variables were created for the most common government types and head of states for these countries.
- Our first dummy variable set, head of state has two values where ceremonial is headofstate1 and executive is headofstate 2.
- The second dummy variable set, which has four values Absolute monarchy, Constitutional monarchy, provisional, republic which are constitutionalform1, 2, 3 and 4 respectively.

3 REGRESSION MODELLING

Initial multiple Regression model and statistical tests

Model 1.1: $cpi = \beta_0 + \beta_1(spi) + \beta_2(ppp) + \beta_3(hdi) + \beta_4(unempolyment) + \beta_5(gini) + \beta_6(hdigrowth) + \beta_7(tax) + \beta_8(constitutional form 2) + \beta_9(constitutional form 3) + \beta_{10}(constitutional form 4) + \beta_{11}(head of state 2)$

Source		SS	df	MS		Number	of obs =	123
-						F(11,	111) = 52	.11
Model	105.	53932	11	9.5944836		Prob >	F = 0.0	000
Residual	20.43	85327	111	.184130925		R-squar	ed = 0.8	378
		DESTRUCTION.	r-manual			Adj R-s	quared = 0.8	217
Total	125.9	77852	122	1.03260535		Root MS	E = .4	291
	cpi	C	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	spi	.058	32794	.0110344	5.28	0.000	.036414	.0801448
	qqq	.000	00241	3.10e-06	7.75	0.000	.0000179	.0000302
unempolym	ent	.007	70352	.0061262	1.15	0.253	0051043	.0191747
g	ini	.001	1342	.0062125	0.18	0.855	0111762	.0134447
	hdi	-3.41	4467	1.123858	-3.04	0.003	-5.641467	-1.187466
hdigro	wth	20.9	98907	15.64057	1.34	0.182	-10.00376	51.98191
	tax	.009	2395	.0036173	2.55	0.012	.0020716	.0164074
headofsta	te2	028	33816	.0999802	-0.28	0.777	2264991	.169736
headofsta	tel		0	(omitted)				
constitutionalfo	rm2	039	3889	.3868375	-0.10	0.919	8059333	.7271555
constitutionalfo	rm3	68	32962	.5796401	-1.18	0.241	-1.831558	.4656336
constitutionalfo	rm4	376	66897	.3729671	-1.01	0.315	-1.115749	.3623695
С	ons	-2.33	88131	.601402	-3.89	0.000	-3.529849	-1.146413

Model 1.2: $cpi = \beta_0 + \beta_{01}(spi) + \beta_{02}(ppp) + \beta_{03}(hdi) + \beta_{04}(unempolyment) + \beta_{05}(gini) + \beta_{06}(hdigrowth) + \beta_{07}(tax)$

Source	SS	df		MS		Number of obs	=	123
						F(7, 115)	=	75.83
Model	103.54472	7	14.79	921029		Prob > F	=	0.0000
Residual	22.4331323	115	.1950	070715		R-squared	=	0.8219
			-			Adj R-squared	=	0.8111
Total	125.977852	122	1.032	260535		Root MSE	=	.44167
cpi	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
spi	.0547275	.0108	923	5.02	0.000	.0331519		0763031
ppp	.0000264	2.94e	-06	8.98	0.000	.0000206		0000323
nempolyment	.0069426	.0062	485	1.11	0.269	0054345		0193198
gini	.0009568	.0059	331	0.16	0.872	0107956		0127092
hdi	-3.156112	1.128	131	-2.80	0.006	-5.390723		9215011
hdigrowth	18.62057	15.93	686	1.17	0.245	-12.94729	5	0.18842
tax	.0109551	.0034	893	3.14	0.002	.0040434		0178668
cons	-2.698799	.5038	204	-5.36	0.000	-3.696771	-1	.700828

Variable	VIF	1/VIF
hdi	17.89	0.055894
spi	16.46	0.060771
ppp	3.03	0.329497
hdigrowth	2.30	0.435450
tax	1.32	0.757399
gini	1.32	0.758692
unempolyment	1.27	0.788227
Mean VIF	6.23	

The current model is exposed to multicollinearity and heteroscedasticity. We also conform these using other tests.

	cpi	spi	ppp 1	unempo~t	hdi l	hdigro~h	gini
cpi	1.0000						
spi	0.8122*	1.0000					
ppp	0.8282*	0.7498*	1.0000				
unempolyment	-0.0833	-0.0919	-0.2389*	1.0000			
hdi	0.7778*	0.9591*	0.8039*	-0.1536	1.0000		
hdigrowth	-0.5348*	-0.7205*	-0.5716*	0.2430*	-0.7179*	1.0000	
gini	-0.2901*	-0.3873*	-0.3245*	0.3245*	-0.3998*	0.3762*	1.0000
tax	0.4680*	0.3724*	0.2794*	-0.0186	0.2818*	-0.1683	-0.1082

HDI, SPI and Per Capita are collinear but we expect HDI-SPI collinearity is increasing the severity of multicollinearity.

Model 1.3: $cpi = \beta_0 + \beta_{01}(spi) + \beta_{02}(ppp) + \beta_{03}(hdi) + \beta_{04}(tax)$

. regress cpi	spi ppp hdi t	ax						
Source	SS	df		MS		Number of obs	=	123
650 1150 22		156	PROPERTY NAME	North Control		F(4, 118)	=	130.89
Model	102.8075	4	25.7	018751		Prob > F	=	0.0000
Residual	23.1703521	118	.196	358916		R-squared	=	0.8161
						Adj R-squared	=	0.8098
Total	125.977852	122	1.03	260535		Root MSE	=	.44312
cpi	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
spi	.0543684	.010	428	5.21	0.000	.0337182		0750186
ppp	.0000257	2.91e	-06	8.85	0.000	.00002		0000315
hdi	-3.454254	1.119	393	-3.09	0.003	-5.670956	-1	.237551
tax	.0113752	.0034	672	3.28	0.001	.0045093		0182411
_cons	-2.222953	.2964	467	-7.50	0.000	-2.809998	-1	. 635908

Variable	VIF	1/VIF
hdi	17.50	0.057145
spi	14.98	0.066741
ppp	2.94	0.340064
tax	1.30	0.772182
Mean VIF	9.18	-

```
. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
    Ho: Constant variance
    Variables: fitted values of cpi

chi2(1) = 4.05
    Prob > chi2 = 0.0441
```

The model is still exposed to multicollinearity and heteroscedasticity.

For now, we consider to drop either HDI or SPI

Corrective Measures

	regress cpi_	2 spi_4 ppp_4	hdi_4	4 tax_	4		ant til kan til flyndige om det en flytte flyn ei flyn		
	Source	SS	df		MS		Number of obs		123
	Model	102.807501	4	25.7	018754		F(4, 118) Prob > F		0000
	Residual	23.1703508	118	.196	358905		R-squared		8161
	Total	125.977852	122	1.03	260535		Adj R-squared Root MSE		8098 14312
	cpi_2	Coef.	Std.	Err.	t	P> t	[95% Conf.	Inter	rval]
	spi_4	.8096461	.1552	2915	5.21	0.000	.5021266	1.11	17166
	ppp_4	.6089966	.0687	7963	8.85	0.000	.4727612	.745	52319
	hdi_4	5178784	.1678	3247	-3.09	0.003	850217	185	55397
	tax_4	.1497866	.045	6547	3.28	0.001	.0593778	.240	1953
8	cons	-2.222953	.2964	4467	-7.50	0.000	-2.809998	-1.63	35908

Model is free from heteroscedasticity but multicollinearity problem persists

Model 1.4: $cpi = \beta_0 + \beta_1(\ln of \, spi) + \beta_2(\ln of \, ppp) + \beta_3(\ln of \, hdi) + \beta_4(\ln of \, tax)$

regress cp	i_3 lnspi_3 l	nppp_3 ln	hdi_3 lnta	x_3		1	1311031 1390 No 3013 VI
Source	SS	df	MS		Number of obs	=	119
-			-		F(4, 114)	=	84.86
Model	91.6850145	4 22	.9212536		Prob > F	=	0.0000
Residual	30.7906277	114 .2	70093225		R-squared	=	0.7486
					Adj R-squared	=	0.7398
Total	122.475642	118 1.	03792917		Root MSE	=	.5197
cpi_3	Coef.	Std. Err	. t	P> t	[95% Conf.	In	terval]
lnspi 3	4.538417	.7800237	5.82	0.000	2.993196	6	.083638
lnppp 3	.8405465	.1701302	4.94	0.000	.50352	1	.177573
lnhdi 3	-5.506323	1.254633	-4.39	0.000	-7.991741	-3	.020906
lntax 3	.5182982	.1080979	4.79	0.000	.3041571		7324394
_cons	-30.72871	4.204241	-7.31	0.000	-39.05728	-2	2.40014

Model is free from heteroscedasticity but multicollinearity problem persists and Mean VIF has increased.

Models not shown

- "HDI" was dropped because dropping "SPI" was decreasing Adj R-square.
- Different combinations of variables after ratio transformation, log-transformation and squaring was tried.
- Use of ln(ppp) or ln(tax) was decreasing the Adj R-square.
- Use of ln(ppp) and ln(spi) simultaneously was increasing Mean VIF.

Final Model

Model 2:
$$cpi = \beta_0 + \beta_1(lnspi) + \beta_2(ppp) + \beta_3(tax)$$

. regress cpi_	2 ppp_4 lnspi	tax_4						
Source	SS	df		MS		Number of obs F(3, 119)		123 150.50
Model Residual	99.7000694 26.2777829	3 119		333565 321705		Prob > F R-squared	=	0.0000
Total	125.977852	122	1.032	260535		Adj R-squared Root MSE	=	0.7862
cpi_2	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	erval]
ppp 4	.5628419	.0601	1945	9.35	0.000	.4436508		682033
lnspi	1.341857	.2654	1914	5.05	0.000	.8161578	1.	867557
tax_4	.2159999	.0451	1832	4.78	0.000	.1265327	. 3	3054671
_cons	-6.740734	1.067	7496	-6.31	0.000	-8.854483	-4.	626986

Variable	VIF	1/VIF
lnspi	2.07	0.482723
ppp_4	2.00	0.499538
tax_4	1.13	0.886601
Mean VIF	1.73	

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of cpi 2

chi2(1) = 0.72Prob > chi2 = 0.3974 . estat imtest, white

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(9) = 6.71Prob > chi2 = 0.6671

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity	6.71	9	0.6671
Skewness	7.98	3	0.0463
Kurtosis	0.00	1	0.9973
Total	14.70	13	0.3267

As per Mean VIF Model is free from multicollinearity
Also Breusch-Pagan and White's test suggest absence of significant heteroskedastic.

Restricted f-test

```
Restricted Model #1:
cpi= ß0 + ß1lnSPI + u
```

```
. test ppp_4 tax_4

( 1) ppp_4 = 0
( 2) tax_4 = 0

F( 2, 119) = 58.52
Prob > F = 0.0000
```

```
Restricted Model #2:
cpi= ß0 + ß1ppp+ u
```

```
. test lnspi tax_4

( 1) lnspi = 0
( 2) tax_4 = 0

F( 2, 119) = 30.08
    Prob > F = 0.0000
```

Since the F-Statistic is greater than the critical value obtained, the collective contribution of these two variables is significant. there is a significant difference between the "full" model and the "reduced" models.

3 CONCLUSION

Findings and Caveats

Findings

- Our final model explains cpi using ln(spi), gdp per capita and personal income tax at 5% level of significance.
- ln(spi) is positively correlated with the Control of Corruption index in the simple regression model.
- Similar relationship can be seen with per Capita GDP and Personal Income Tax.
- In the past it's seen how corruption affects a nation's economy, our study found the opposite relationship is also true.

Learning Outcomes

Practical Application of using data from different sources and combining them for estimating a multiple regression model.

1

2

Application of statistical tests to check for different issues associated with estimating a regression model.

Severe
Multicollinearity can
be tackled using
dropping some variables
if log-transformation
doesn't work.

3

4

Heteroscedasticity can be tackled by standardising all the independent variables.

- We have also used developed countries in our dataset which usually aren't ideal for study on corruption.
- Only 123 countries were included in dataset out of cpi data available for 200+ countries.
- We didn't choose the model with "hdi", "unemployment" as our final model.

Thanks! ANY QUESTIONS?