

SIFT descriptor to set landmarks on biological images

Van Linh LE¹, Marie BEURTON-AIMAR¹, Adrien KRAHENBUHL², Nicolas PARISEY³ ¹LaBRI - UMR 5800, Univ. Bordeaux; ²ICube - UMR 7357, Univ. Strasbourg; ³INRA - IGEPP UMR 1349

Context

Morphometry analysis is a way to distinguish the characteristics of organisms, i.e shape, size, form,.... It is used to appreciate the covariances between the ecological factors and the organisms. Landmark-based morphometry is known as one of the approaches to analyze the characteristics of organisms. Finding enough landmarks can give to biologists a comprehensive description of the organism. This work focuses on the automatic identification of landmarks on 2D biological images.

Landmarks

- ▶ Landmarks characterize specificities through the shape most often linked to biological information,
- ► They are usually **defined manually** by biologists,
- ▶ Images at the right side show manual landmarks in **beetle mandibles** belonging to our sample: 16 and 18 manual landmarks have been defined for each left mandible and right mandible, respectively.

How to locate the landmarks automatically?

Mandibles and manual landmarks

(b) Right mandible Figure: Example of beetle mandibles from the studied data set with manual landmarks.

► Input:

- ► A model image
- ► The manual landmarks of model image
- ► A scene image

► Output:

► Landmarks of scene image

► Steps:

- ► Shape identification: segmentation and registration
- ▶ SIFT and landmarks: Extract the patches, calculate the SIFT descriptors and

estimate the coordinates of landmarks on the scene image.

Segmentation

- . Converting the image to binary one by applying a threshold determined by histogram analysis [1],
- 2. Contours points are extracted by Canny algorithm [2]. The thresholds ratio in Canny: $T_{lower} = (1/3) \times T^{upper}$, in which T^{lower} equals to the threshold value in step 1.

Registration

Model and scene images are segmented to extract the contours points. The contours points are registered by applying Principal Component Analysis [3] Iteration (PCAI).

- 1. Compute the centroid point and principal axis of each list of contour points,
- 2. Compute the translation and rotation values between two lists of contour points,
- 3. Register the two lists of contour points,
- 4. Sort the contour points of scene image followed y-direction,
- 5. Select a subset of contour points of scene image and repeat step 1,
- 6. PCAI stop automatically when the angle difference between two lists of contour points is less than 1.5 degree.

SIFT and landmarks L2 distance \mathbf{P}' extract descriptor P

- 1. A patch P_s is initialized at each manual landmark of model image (size of 9×9),
- 2. Calculating the SIFT[4] descriptor for P_s ,
- 3. At the same position in the scene image, a patch P_t is created (size of 36×36),
- 4. For each pixel in P_t , a patch P'_t is extracted with the same size than P_s ,
- 5. Calculating the SIFT descriptor for all P'_t ,
- 6. Computing the distance between the descriptor of P_s and each P'_t ,
- 7. At the end, the pixel that has the **minimum distance** with P_s is kept.

Results on right mandibles

- ► Highest accuracy: 1st landmark with 98.62%
- ▶ Lowest accuracy: 13^{th} , 14^{th} landmark with app. 75%

Results on left mandibles

- ► Highest accuracy: 1st landmark with 93.01%
- ▶ Lowest accuracy: 11^{th} , 12^{th} and 16^{th} landmark from 60% to app. 63%

Conclusion

- ▶ A solution based on SIFT descriptor for landmark estimation is presented,
- ▶ The results show that method **succeed in locating** all landmarks in request images,
- ▶ The accuracy of method is sufficient to be proposed to biologists as a replacement of manual positioning, and to characterize the shape.

[1] Marie Beurton-Aimar, Adrien Krähenbühl, Nicolas Parisey, et al. Maelab: a framework to automatize landmark estimation.

[2] John Canny.

In WSCG 2017, 2017.

A computational approach to edge detection.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):679-698, 1986.

References

[3] Ian Jolliffe.

Principal component analysis. Wiley Online Library, 2002.

[4] David G Lowe.

Object recognition from local scale-invariant features.

In Computer vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2, pages 1150–1157. leee, 1999.

