CÁLCULO II - Agrupamento 4 Exame da Época de Recurso

11 de julho de 2022

Duração: 2h30

A prova é composta por 7 questões. O formulário encontra-se no verso. Justifique todas as respostas de forma clara e concisa.

- 1. [35] Considere a série de potências $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{4^n} (x-1)^n$.
 - (a) Determine o domínio de convergência da série dada, indicando os pontos onde a convergência é simples e absoluta.
 - (b) Justifique que f é integrável no intervalo [1,3] e calcule o integral $\int_1^3 f(x) dx$.
- 2. [20] Usando o resto na forma de Lagrange, determine um majorante para o erro absoluto cometido ao aproximar $f(x) = \cos(4x)$ pelo polinómio de MacLaurin de ordem 2 no intervalo [-0.01, 0.01].
- 3. [30] Considere a função f definida em $[0,\pi]$ por f(x)=x.
 - (a) Determine a série de Fourier de co-senos de f.
 - (b) Represente graficamente a soma da série obtida na alínea anterior no intervalo $[-2\pi, 2\pi]$.
- 4. [35] Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2 + 2y^2 x$.
 - (a) Determine e classifique os pontos críticos de f.
 - (b) Determine os extremos absolutos de f no conjunto $C=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leqslant 1\}.$
- 5. [45] Resolva as seguintes equações diferenciais:
 - (a) $y' + x^2y x^2 = 0$;
 - (b) $x e^{\frac{y}{x}} y' = x + y e^{\frac{y}{x}}, \quad x > 0;$ (Sugestão: Considere a mudança de variável z = y/x)
 - (c) $y'' + 4y' + 4y = \sin x$.
- 6. [20] Usando transformadas de Laplace, resolva o seguinte problema de Cauchy:

$$-y' + 2y = t e^t, \quad y(0) = -1.$$

7. [15] Considere a equação diferencial

$$h'(y) y' + p(x) h(y) = q(x),$$
 (1)

onde p,q são funções contínuas em $\mathbb R$ e h é uma função invertível. Mostre que a substituição z=h(y) converte a equação (1) numa equação diferencial linear cuja solução é

$$y(x) = h^{-1} \left(\frac{1}{\mu(x)} \int q(x) \,\mu(x) \,dx \right),$$

onde $\mu(x)$ denota um fator integrante para a referida equação linear.

FORMULÁRIO

Algumas fórmulas de derivação

(fg)' = f'g + fg'	$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
$(kf)' = kf' \qquad (k \in \mathbb{R})$	$(f^{\alpha})' = \alpha f^{\alpha - 1} f' \qquad (\alpha \in \mathbb{R})$
$(a^f)' = f' a^f \ln a \qquad (a \in \mathbb{R}^+)$	$(\log_a f)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$
$(\operatorname{sen} f)' = f' \cos f$	$(\cos f)' = -f' \operatorname{sen} f$
$(\operatorname{tg} f)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$	$(\cot f)' = -f' \csc^2 f = -\frac{f'}{\operatorname{sen}^2 f}$
$(\operatorname{arcsen} f)' = \frac{f'}{\sqrt{1 - f^2}}$	$\left(\operatorname{arccos} f\right)' = -\frac{f'}{\sqrt{1-f^2}}$
$\left(\operatorname{arctg} f\right)' = \frac{f'}{1+f^2}$	$(\operatorname{arccotg} f)' = -\frac{f'}{1+f^2}$

Integração por partes:
$$\int f'g = fg - \int fg'$$

Alguns desenvolvimentos em série de MacLaurin

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \quad x \in]-1,1[$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbb{R}$$

•
$$\operatorname{sen} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \quad x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbb{R}.$$

Algumas transformadas de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \quad s > s_f$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}, \ s>a$
	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $

função	transformada
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - s f(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{(k-1)}(0)$