Week 1 (4) – Fundamental Data Structures

CST370 – Design & Analysis of Algorithms

Dr. Byun

Computer Science

Lecture Objectives

- After completion of this lecture, you will be able to
 - understand the basic terminologies of weighted graphs and trees in computer science.

Weighted Graphs

- Watch this video first
 - https://youtu.be/9r2yyJgFQxU
- A weighted undirected graph and a weighted directed graph are graphs with numbers (or cost) assigned to their edges.
- Example

Weighted Graphs Representation – Adjacency Matrix

// You can put 0's on the main diagonal.

Weighted Graphs Representation – Adjacency List

<<< Course Instruction >>>

- Read pages 30 31 (before "Trees") in the textbook before moving on to the next slide.
 - There are many terminologies of graphs in the section.
 - Read the section carefully to get the accurate meaning of the terminologies.

Exercise

 Represent the graph in adjacency matrix and adjacency list.

Important Note

 Do not see the solution immediately on the next page.

Solution (1 of 2)

Adjacency matrix

Solution (2 of 2)

Adjacency list

- Note our convention of alphabetical order.
 - For example, the vertex a has two edges to the vertexes b and d. When we represent it, we put the vertex b first and then put the vertex d.

Paths and Cycles

- Recall the terminologies mentioned in the textbook such as
 - Path
 - Length
 - Simple path
 - Connected
 - Connected component
 - Cycle
 - Acyclic graph

Question

• Is the graph connected? No.

Question

• Is the graph connected? Yes.

Trees

- Watch this video first
 - https://youtu.be/3n09brVyINI
- Note that a tree is actually a graph (= connected acyclic graph).
- Example

Free Tree, Rooted Tree, and Ordered Tree

- There are several different trees in computer science theory such as (free) trees, rooted trees, and ordered trees.
 - Our main interest in the class is the binary tree and binary search tree.
 - However, it would be great for you to know the general terminologies of trees mentioned in the textbook as a computer scientist.

<<< Course Instruction >>>

- Read pages 31 35 (before "Sets and Dictionaries") in the textbook before moving on to the next slide.
 - You don't need to understand the "first childnext sibling representation" in the textbook page 35. If you want, you can skip that part.

Puzzle: Palindrome Checking

- Let's assume that you have a very long character array.
- How can you determine if the character array is a palindrome or not?
 - Of course, your algorithm should be efficient.

Example

```
racecar // Yes, it's a palindrome.
abcdefghijihgfedcba // Yes, it's a palindrome.
CSUMB //No, it's not a palindrome.
```

Important Note

 Do not see the answer immediately on the next page.

Solution

- You can use two indexes i and j.
 - i starts from the index 0 (= first character).
 - j starts from the index n-1 (= last character).
 - Check the characters in the index i and j.
 - If they are not the same, return false.
 - Otherwise, i increases by 1 and j decreases by 1 and check again.
 - This way, you can keep checking the characters of i and j until they meet.
 - If they meet, the array is a palindrome.

<<< Course Instruction >>>

- This lesson is over.
 - If you have any questions, please contact your instructor.
- When you are done, study the next lecture (week_1_5.ppt) on the Canvas.