

# Introdução ao mundo da Internet das Coisas (IoT)

Prof. Me. Ronaldo Borges

## Conteúdo do minicurso



- Conceitos fundamentais de IoT:
- Programação de dispositivos conectados:
  - Configurar;
  - Programar;
  - Monitorar dispositivos IoT;
- Ferramentas de código aberto:
  - Arduino IDE;
  - Bibliotecas;
  - ThingsBoard;
- ✓ Compreensão básica de como funcionam os sistemas IoT. https://github.com/profRonaldoIFPI/IoT\_InovaIFPI\_2024

## Internet das Coisas



- Internet of Things (IoT):
  - Interconexão de dispositivos e objetos físicos à internet, permitindo que eles coletem, compartilhem e analisem dados. Essa tecnologia integra o mundo físico com o digital, possibilitando a automação e a otimização de processos em diversas áreas.



# Arquitetura de sistemas IoT



|       | 3 Camadas                                         | 4 Camadas                                   | 5 Camadas                                              | Baseado em SOA           | Baseado em<br>Middleware | 6 Camadas                             |
|-------|---------------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------|--------------------------|---------------------------------------|
| Cloud | <b>Aplicação</b> ,<br>Computação em<br>Nuvem      | Aplicação                                   | Empresarial                                            | Aplicação                | Aplicação                | Empresarial                           |
|       |                                                   | <b>Serviço</b> , Suporte, <i>Middleware</i> | Aplicação                                              | Composição de<br>Serviço | Middleware               | Aplicação                             |
|       |                                                   |                                             | Serviço, <i>Middleware</i> ,  Processamento            | Gestão de<br>Serviços    | Coordenação              | Serviço, Processamento, Armazenamento |
| Fog   | Rede,<br>Computação em<br>Névoa                   | Rede                                        | Rede, Transporte,<br>Enlace, Abstração                 | Abstração de<br>Objetos  | Backbone de Rede         | Rede                                  |
|       |                                                   |                                             |                                                        |                          | Acesso                   | Acesso,<br>Adaptação,<br>Observador   |
| Edge  | Percepção, Dispositivos, WSN, Computação de Borda | Percepção,<br>Sensor-Atuador,<br>Detecção   | Percepção, Dispositivos, Sensores e Atuadores, Objetos | Objetos                  | Tecnologia de<br>Borda   | Objetos,<br>Percepção                 |

# Arquitetura de sistemas IoT



3 Camadas

Cloud

**Aplicação**, Computação em Nuvem Software que permite o uso dos dados ou mesmo controle de um dispositivo IoT;

Fog

**Rede**, Computação em Névoa

Infraestrutura que permite a comunicação do dispositivo IoT com a aplicação em nuvem ou mesmo localmente.

**E**dge

Percepção,
Dispositivos,
WSN,
Computação de
Borda

Dispositivos IoT com sensores e/ou atuadores.

# **Dispositivos ESP**



- Placas de prototipação com microntroladores:
  - ESP 8266
  - ESP 32







## ESP8266 e ESP32 com Arduino IDE





#### • ESP8266:

 http://arduino.esp8266.com/stabl e/package\_esp8266com\_index.js on

#### • ESP32:

 https://raw.githubusercontent.co m/espressif/arduino-esp32/ghpages/package\_esp32\_index.json



# Variedade de dispositivos ESP



#### • ESP 8266



*v*0.9 *v*1.0

Node MCU ESP 8266

#### • ESP 32









ESP 32 DEV KI

m devkit Node MCU 325

rover Module
Al Thinker ES32. CAPY

# Diferenças







| Características |             | <b>Arduino UNO</b> | ESP8266      | ESP32         |
|-----------------|-------------|--------------------|--------------|---------------|
|                 | Clock       | 16MHz              | 80 - 160 MHz | 160 - 240 MHz |
| CPU             | Núcleo      | 1                  | 1            | 2             |
|                 | Arquitetura | 8 bits             | 32 bits      | 32 bits       |
| Momório         | RAM         | 2KB                | 160KB        | 520KB         |
| Memória         | FLASH       | 32KB               | 16Mb         | 16Mb          |
|                 | GPIO        | 14                 | 13           | 34            |
|                 | DAC         | 0                  | 0            | 2             |
|                 | ADC         | 6                  | 1            | 18            |
| luto "fo o o    | SPI         | <b>✓</b>           | <b>✓</b>     | <b>✓</b>      |
| Interfaces      | I2C         | ✓                  | <b>✓</b>     | <b>✓</b>      |
|                 | UART        | ✓                  | <b>✓</b>     | ✓             |
|                 | I2S         | ×                  | <b>✓</b>     | ✓             |
|                 | CAN         | ×                  | ×            | ✓             |
| Caractividada   | Bluetooth   | ×                  | ×            | 4.1 e BLE     |
| Conectividade   | WiFi        | X                  | <b>✓</b>     | <b>✓</b>      |







Node MCU 32S





#### **ESP 32 DEV KIT PINOUT**





#### Sensores

 Componente que detecta ou percebe algum tipo de entrada de um ambiente físico;

- luz, calor, movimento, umidade, pressão, ou qualquer outra condição ambiental.
- A **saída** do sensor é geralmente **um sinal** que é convertido para ser lido por um observador ou por um dispositivo eletrônico.



### **Atuadores**

 Permitem que dispositivos e sistemas interajam e respondam ao mundo físico;

- Convertem sinais ou energia elétrica em uma manifestação física:
  - Movimentos de rotação, Movimentos lineares, Luminosas/Visuais, Sonoras, etc...

Promovem algum nível de saída de um dispositivo



## Sensores e Atuadores

**Entrada** 

**Processamento** 

Saída



Higrômetro: Umidade do solo





Válvula solenoide: "Torneira eletrica"



## Sensores e Atuadores

**Entrada** 

**Processamento** 

Saída



Distancia







Buzzer Display LCD



## Sensores e Atuadores

#### **Entrada**

#### **Processamento**

#### Saída



LDR: luminosidade LM35: Temperatura





# Arquitetura de sistemas IoT



3 Camadas

Cloud

**Aplicação**, Computação em Nuvem Software que permite o uso dos dados ou mesmo controle de um dispositivo IoT;

Fog

Rede, Computação em Névoa

Infraestrutura que permite a comunicação do dispositivo IoT com a aplicação em nuvem ou mesmo localmente.

Edge

Percepção,
Dispositivos,
WSN,
Computação de
Borda

Dispositivos IoT com sensores e/ou atuadores.



## Pilha de protocolos TCP/IP



BitTorrent

TCP

IP

WIF

# Pilha de protocolos de comunicação IoT



Pilha de protocolos da Internet (Modelo TCP/IP)

Aplicação

Transporte

Rede

Enlace

Física

Protocolo IoT

AMQP, CoAP, DDS, HTTP, Matter, MQTT e XMPP

DTLS, SSL, SASL, TLS, QUIC e MRP

BTP, TCP e UDP

6LoWPAN, IPv4, IPv6 e RPL

BLE, Ethernet, GSM, HomePlugGP, LPWAN, LTE,

Thread, Wi-Fi ZigBee e Z-Wave

IEEE 802.3, IEEE 802.11 e IEEE 802.15.4 (cabos de cobre, fibras óticas e ondas eletromagnéticas)

Pilha de protocolos que usaremos

MQTT TLS

**TCP** 

IΡ

WiFi IEEE 802.11 (ondas de rádio)

(Sharma e Gondhi, 2018; Mishra e Kertesz, 2020; Kurose e Ross, 2021; Connectivity Standards Alliance, 2022)



# Comunicação IoT através da pilha de protocolos TCP/IP





# Modelo Publish/Subscribe (MQTT)



# Arquitetura de sistemas IoT



3 Camadas

Cloud

**Aplicação**, Computação em Nuvem Software que permite o uso dos dados ou mesmo controle de um dispositivo IoT;

Fog

Rede, Computação em Névoa

Infraestrutura que permite a comunicação do dispositivo IoT com a aplicação em nuvem ou mesmo localmente.

Edge

Percepção,
Dispositivos,
WSN,
Computação de
Borda

Dispositivos IoT com sensores e/ou atuadores.

# Aplicação



# ThingsBoard

• É uma plataforma de IoT de código aberto que permite rápido desenvolvimento, gerenciamento e dimensionamento de projetos de IoT.

 Fornece uma solução IoT pronta para uso na nuvem ou no local que habilita a infraestrutura do lado do servidor para seus aplicativos de IoT.