

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

SUMÁRIO

 ÂMBITO DE APLICAÇÃO DEFINIÇÕES DOCUMENTOS DE REFERÊNCIA COMPLEMENTARES RESPONSABILIDADES REGRAS BÁSICAS Considerações Gerais Queda de Tensão no Circuito Primário Queda de Tensão no Circuito Secundário 	FINALIDADE2							
 DEFINIÇÕES DOCUMENTOS DE REFERÊNCIA COMPLEMENTARES RESPONSABILIDADES REGRAS BÁSICAS Considerações Gerais Queda de Tensão no Circuito Primário 	2							
 DOCUMENTOS DE REFERÊNCIA COMPLEMENTARES RESPONSABILIDADES REGRAS BÁSICAS Considerações Gerais Queda de Tensão no Circuito Primário 	2							
 5. RESPONSABILIDADES 6. REGRAS BÁSICAS 6.1. Considerações Gerais 6.1.1 Queda de Tensão no Circuito Primário 								
6. REGRAS BÁSICAS 6.1. Considerações Gerais 6.1.1 Queda de Tensão no Circuito Primário								
6.1. Considerações Gerais	3							
6.1.1 Queda de Tensão no Circuito Primário	3							
	3							
6.1.2 Queda de Tensão no Circuito Secundário	3							
	3							
6.1.3 Planilha de Cálculo de Queda de Tensão	6							
6.1.4 Limites Térmicos dos Condutores para Redes de Distribuição	7							
6.1.5 Correntes Máximas Admissíveis								
6.2. Instalação de Equipamentos								
6.2.1 Transformadores Trifásicos	9							
6.2.2 Equipamentos de Proteção contra Sobrecorrente	10							
6.2.3 Equipamentos de Proteção contra Sobretensões								
6.2.4 Equipamentos de Manobra								
6.3. Instalação de Neutro e Aterramento na Rede de Distribuição								
6.4. Alimentadores								
6.5. Locais onde não existe neutro contínuo e multiaterrado								
6.6. Tipos de Aterramento								
6.7. Outros Aterramentos								
6.8. Valores Admissíveis de Resistência de Aterramento	14							
7. CONTROLE DE REGISTROS	14							
8. ANEXOS	14							
ANEXO 1 - Rede secundária trifásica - parâmetros dos cabos utilizados nos cá	lculos							
elétricos	14							
ANEXO 2 - Rede primária trifásica - parâmetros dos cabos utilizados nos cálcu elétricos	ılos 17							
N.Documento: Categoria: Versão: Aprovado por: Data	Página:							
3667 Operacional 21.0 Leandro Gaspari Publicação: Nodrigues 02/05/2024	1 de 29							

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

	EXO 3 – Cálculo de coeficientes de queda de tensão unitária e metodologia de culos de queda de tensão	19
ΑN	EXO 4 – Cálculo de corrente máxima admissível em condutores e corrente admiss ra condutores fora de padrão	ível
•	REGISTRO DE ALTERAÇÕES	

1. FINALIDADE

A presente norma tem como objetivo estabelecer os procedimentos básicos para a elaboração, pela CPFL ou por terceiros, do dimensionamento elétrico de condutores e equipamentos a serem instalados nas redes aéreas de distribuição urbanas das distribuidoras do Grupo CPFL.

2. ÂMBITO DE APLICAÇÃO

2.1. Empresa

Distribuidoras do Grupo CPFL Energia.

2.2. Área

Engenharia, Obras e Manutenção e Gestão de Ativos.

3. DEFINIÇÕES

Não se aplica

4. DOCUMENTOS DE REFERÊNCIA COMPLEMENTARES

- GED 119 Fornecimento de Energia Elétrica a Edifícios de uso Coletivo;
- GED 120 Projetos de Redes Aéreas de Distribuição Rural;
- GED 2912 Proteção de Redes Aéreas de Distribuição Sobrecorrente;
- GED 3613 Aterramento Montagem;
- GED 3650 Projeto de Rede de Distribuição Condições Gerais;
- GED 3668 Projeto de Rede de Distribuição Terminologia;
- GED 11234 Diretrizes para Carregamento de Transformadores de Distribuição;
- Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional PRODIST;
- NBR 11873 Cabos Cobertos com Material Polimérico para Redes de Distribuição Aérea de Energia Elétrica fixados em Espaçadores, em Tensões de 13,8 kV a 34,5 kV.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
			. · · · · .	Publicação:	
3667	Operacional	21.0	Leandro Gaspari	. abiicação:	2 de 29
			Rodrigues	02/05/2024	

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

5. RESPONSABILIDADES

A Engenharia de Normas e Padrões das distribuidoras do Grupo CPFL é a responsável pela publicação deste documento.

6. REGRAS BÁSICAS

6.1. Considerações Gerais

Para as redes de distribuição áreas urbanas, o cálculo elétrico dos projetos para os circuitos primários e secundários é sempre feito pelo método de máxima queda de tensão admissível, respeitando-se o limite térmico dos cabos.

6.1.1 Queda de Tensão no Circuito Primário

O circuito primário urbano é representado pelos troncos e laterais dos alimentadores com seus respectivos ramais e sub-ramais, delimitado pelo último transformador de distribuição;

Ramais de comprimentos normais e alimentando somente transformadores de distribuição não necessitam de cálculo de queda de tensão;

Somente ramais mais longos, ligação de cargas comerciais ou industriais de maior vulto (potência instalada igual ou superior a 300 kVA) ou a eletrificação de núcleos habitacionais e loteamentos (potência instalada de transformadores igual ou superior a 300 kVA) podem necessitar de cálculo de queda de tensão. Nesses casos, o projeto deve ser submetido à análise técnica das Gerências de Ativos e Gerência de Planejamento do Sistema Elétrico.

Os valores de tensão de atendimento adequadas na rede primária de distribuição são definidos pela Gerência de Planejamento do Sistema Elétrico do Grupo CPFL, em conformidade com o PRODIST – Módulo 8, que pode variar de acordo com a faixa:

0,93 TC ≤ TL ≤ 1,05 TC

sendo: TL = Tensão de Leitura

TC = Tensão Contratada no Ponto de Entrega

6.1.2 Queda de Tensão no Circuito Secundário

No caso de extensão de rede ou de reforma, deve ser feito o cálculo de queda de tensão para o circuito ou para a extremidade da rede secundária de maior queda. Havendo dúvida na identificação deste circuito, deverão ser feitos os cálculos de queda de tensão para tantos circuitos quantos forem necessários para garantir que o circuito de maior queda foi calculado.

O cálculo de queda de tensão deverá considerar somente a potência no horário de maior demanda (no caso do período ser noturno deve ser acrescido da iluminação pública).

No caso de extensão de rede recomenda-se usar o método da superposição de efeitos.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
				Publicação:	
3667	Operacional	21.0	Leandro Gaspari	i dollodýdo.	3 de 29
			Rodrigues	02/05/2024	

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

Faz-se o cálculo das quedas de tensão do circuito completo, incluindo as novas cargas. A carga em kVA das novas cargas deve ser obtida conforme os critérios nas respectivas normas (Sistema de Iluminação e Ligação de Clientes).

Para consumidores residenciais, utilizar os coeficientes de queda de tensão com fator de potência unitário; para consumidores comerciais e industriais utilizar os coeficientes de QT para FP = 0,92.

Os coeficientes de queda de tensão unitária [%/(kVA/100m)] constam nas Tabelas 2, 3 e 4.

Deve ser verificada a tensão nominal do local para o qual será feito o cálculo e usar o valor da coluna correspondente.

De acordo com o PRODIST – Módulo 8, a tensão secundária, no ponto de entrega, pode variar de acordo com a **Tabela 1**.

Tabela 1 - Limites de Variação da Tensão Secundária

Tensão Nominal	Limites adequados de variação da tensão			
(V)	Mínimo (V)	Máximo (V)		
220/127	202/117	231/133		
380/220	350/202	399/231		
230/115	212/106	242/121		

Tabela 2 - Coeficientes de Queda de Tensão Unitária [%/(kVA/100m)] para rede secundária 380/220 e 220/127 V e condutores de alumínio nu CA – Circuito trifásico e bifásico

DEDE	SISTEMA	SISTEMA 380/220 V		220/127 V
REDE AWG-MCM	FP = 0,92	FP = 1,00	FP = 0.92	FP = 1,00
AVVG-IVICIVI	TRI	FÁSICO - 50°	C - ee = 252 r	nm
3A02(A02)	0,0691	0,0651	0,2062	0,1941
3A1/0(A04)	0,0465	0,0410	0,1386	0,1222
3A1/0(A02)	0,0465	0,0410	0,1386	0,1222
3A1/0(A1/0)	0,0465	0,0410	0,1386	0,1222
3A2/0(A10)	0,0384	0,0325	0,1146	0,0969
3A2/0(A2/0)	0,0384	0,0325	0,1146	0,0969
3A3/0(A1/0)	0,0350	0,0257	0,1045	0,0768
3A4/0(A1/0)	0,0269	0,0205	0,0802	0,0611
3A4/0(A2/0)	0,0269	0,0205	0,0802	0,0611
3A4/0(A4/0)	0,0269	0,0205	0,0802	0,0611
3A336(A3/0)	0,0193	0,0129	0,0576	0,0384
2A02(A02)	0,1555	0,1463	0,4641	0,4366

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	4 de 29
	•		Rodrigues	02/05/2024	

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

2A1/0(A04)	0,1485	0,1390	0,4429	0,4148
2A1/0(A02)	0,1216	0,1102	0,3627	0,3287
2A1/0(A1/0)	0,1046	0,0921	0,3120	0,2748
2A2/0(A1/0)	0,0925	0 ,0794	0,2760	0,2368
2A2/0(A2/0)	0,0864	0,0730	0,2580	0,2179
2A3/0(A1/0)	0,0829	0,0693	0,2472	0,2067
2A4/0(A1/0)	0,0752	0,0613	0,2243	0,1829
2A4/0(A2/0)	0,0691	0,0550	0,2063	0,1640
2A4/0(A4/0)	0,0605	0,0459	0,1805	0,1371
2A336(A3/0)	0,0530	0,0386	0,1582	0,1151

Tabela 3 - Coeficientes de Queda de Tensão Unitária [%/(kVA/100m)] para rede secundária 380/220 e 220/127 V e condutores de alumínio nu CA – Circuito monofásico

REDE	SISTEMA	380/220 V	SISTEMA	220/127 V
AWG-MCM	FP = 0.92	FP = 1,00	FP = 0.92	FP = 1,00
AVVG-IVICIVI	MON	OFÁSICO - 50	o C - ee = 200	mm
1A02(A02)	0,4117	0,3900	1,2284	1,1637
1A1/0(A04)	0,4514	0,4331	1,3467	1,2922
1A1/0(A02)	0,3438	0,3177	1,0257	0,9479
1A1/0(A1/0)	0,2758	0,2454	0,8229	0,7321
1A2/0(A1/0)	0,2517	0,2200	0,7510	0,6563
1A2/0(A2/0)	0,2276	0,1945	0,6791	0,5804
1A3/0(A1/0)	0,2325	0,1999	0,6938	0,5964
1A4/0(A1/0)	0,2172	0,1840	0,6480	0,5489
1A4/0(A2/0)	0,1931	0,1586	0,5760	0,4731
1A4/0(A4/0)	0,1585	0,1226	0,4730	0,3657
1A336(A3/0)	0,1512	0,1157	0,4511	0,3453

Onde: ee = distância média geométrica entre os condutores.

Obs: somente devem ser utilizados condutores de alumínio nus, para complementação de circuitos existentes.

Tabela 4 – Coeficientes de Queda de Tensão Unitária [%/(kVA/100m)] para rede secundária 380/220 e 220/127 V e condutores de alumínio isolado multiplexados

REDE	SISTEMA	380/220 V	SISTEMA 220/127 V		
(mm²)	FP = 0.92	FP = 1,00	FP = 0.92	FP = 1,00	
3P120(A70)	0,0213	0,0204	0,0635	0,0607	
3P70(A70)	0,0393	0,0388	0,1174	0,1156	

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	5 de 29
	-		Rodrigues	02/05/2024	

-					
Lina	മ	Document	O. NIOri	നവ 1 മ	COICO
LIDU	ue	DOCUMENT	O. INOH	ma re	tu iica

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

3P50(A50)	0,0515	0,0504	0,1537	0,1503
3P35(A35) (*)	0,0699	0,0674	0,2087	0,2012

^(*) para serem utilizados somente em circuitos exclusivos de iluminação pública

Os coeficientes de queda de tensão unitária da rede secundária foram calculados de acordo com o ANEXO 3.

6.1.3 Planilha de Cálculo de Queda de Tensão

Para cálculo da queda de tensão nos circuitos secundários de distribuição, utilizar a planilha do modelo da **Figura 2.**

As cargas devem ser distribuídas poste a poste, conforme a Figura 1.

Figura 1 – Circuito Secundário com Distribuição de Cargas em kVA

Figura 2 - Planilha para Cálculo de Queda de Tensão em Circuitos Secundários

TRI	TRECHO		CARGA			QUE	DA DE TENSA	ÃΟ
DESIGNAÇÃO	COMPRIMENTO		ACUMULADA NO FIM DO TRECHO		CONDUTORES	UNITÁRIA	NO TRECHO (ExG)	TOTAL

N.Documento:	Categoria:	Versão: 21.0	Aprovado por: Leandro Gaspari	Data Publicação:	Página: 6 de 29
3007	Operacional	21.0	Rodrigues	02/05/2024	6 de 29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

А	В	С	D	E	F	G	Н	1
SECUNDÁRIA	100 m	KVA	KVA	KVAx100m	AWG / mm²	%	%	%
T-A	1,7	4,7	6,6	15,215	3A1/0	0,1222	1,86	1,86
A-E	1,9	4,1	2,1	7,885	3A1/0	0,1222	0,96	2,82
E-F	1,3	0,4	1,3	1,95	3A1/0	0,1222	0,24	3,06
						7		
T-B	1,2	3,4	9,4	13,32	3A02	0,1941	2,59	2,59
B-C	1,9	4,7	4,3	12,635	3A02	0,1941	2,45	5,04
C-D	1,6	2,9	1	3,92	3A02	0,1941	0,76	5,80

Os valores preenchidos na planilha da **Figura 2** são referentes ao circuito de rede secundária exemplificada na **Figura 1**.

O preenchimento dos campos da planilha deve ser realizado da seguinte maneira:

- Comprimento: Comprimento do circuito em lances de 100 metros. Ex: Para um circuito de 150 metros, preencher com "1,5".
- Carga distribuída no trecho: Carga em kVA compreendida entre os pontos inicial e final do circuito a ser calculado. Nesse campo a carga do início e final do circuito é desconsiderada.
- Carga acumulada no final do trecho: É a carga localizada exatamente no final do trecho a ser estudado acrescido das cargas posteriores ligadas no mesmo circuito.
- Carga total: Relação entre as cargas distribuídas no trecho a ser estudado e a carga acumulada no final do circuito, dada pela seguinte equação:

$$Carga\ Total = \left(\frac{Carga\ Distribu\'ida}{2} + Carga\ Acumulada\right) * Comprimento$$

- Queda de tensão unitária: Valor obtido nas tabelas 4.2, 4.3 e 4.4 desta norma.
- Queda de tensão no trecho: Multiplicação da queda de tensão unitária pela carga total.
- Queda de tensão total: Queda de tensão no trecho. Se houver queda de tensão à montante do circuito, esta deverá ser somada à queda de tensão total.

6.1.4 Limites Térmicos dos Condutores para Redes de Distribuição

As **Tabelas 5 a 12**, a seguir, contêm as correntes máximas admissíveis para cada bitola de condutor a ser utilizado nas redes de distribuição aéreas primárias e secundárias da Distribuidora.

Os cabos nus para circuitos secundários devem ser usados somente em situações específicas, previstas nesta Norma.

6.1.5 Correntes Máximas Admissíveis

As condições e parâmetros utilizados para os cálculos estão descritos no ANEXO 4.

Tabela 5 - Condutores de alumínio cobertos em XLPE - Classe 15 kV - Rede Primária

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
3667	Operacional	21.0	Leandro Gaspari	i ublicação.	7 de 29
			Rodrigues	02/05/2024	

Tipo	de	Documento	· Norma	Técnica
1100	u	Document		i i comoa

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

BITOLA (mm²)	I MAX (A)
35	206
70	310
185	575
300	788

Tabela 6 - Condutores de alumínio cobertos em XLPE - Classe 24,2 kV - Rede Primária

BITOLA (mm²)	I MAX (A)
35	206
70	309
150	496
300	781

Tabela 7 - Condutores Isolados Multiplexados (0,6/1kV) - Rede Secundária Isolada

BITOLA (mm²)	I MAX (A)
3P35(A35)	129
3P50(A50)	168
3P70(A70)	227
3P120(A70)	311

Tabela 8 - Condutores de Alumínio Nu (CA) - Rede Secundária

BITOLA (AWG ou MCM)	I MAX (A)
02	151
1/0	202
2/0	234
4/0	313
336,4	420

Tabela 9 - Condutores de Alumínio Nu (CA) – Rede Primária

BITOLA (AWG ou MCM)	I MAX (A)
02	151
1/0	202
4/0	313
336,4	420
477	522

Tabela 10 - Condutores de Alumínio Nu (CAA) - Rede Primária

BITOLA (AWG ou MCM)	I MAX (A)
---------------------	-----------

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari Rodrigues	Publicação: 02/05/2024	8 de 29

Tipo d	e Documento:	Norma	Técnica
I IDO U	E DOCUMENTO.	INUITIIA	i c uillea

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

04	116
02	153
1/0	202
4/0	302
336,4	431
477	537

OBS: Para cabo bimetálico consultar GED 11081.

A metodologia de cálculo e valores de ampacidade para cabos fora de padrão estão no ANEXO 4.

6.2. Instalação de Equipamentos

6.2.1 Transformadores Trifásicos

O cálculo do carregamento dos transformadores deve ser feito de acordo com o ANEXO 1 do GED 11234 – Diretrizes para Carregamento de Transformadores de Distribuição, assim como os parâmetros de sobrecarga para transformadores existentes e novos.

O parâmetro utilizado para avaliar o carregamento de transformadores de distribuição é a expectativa de vida (anos).

A expectativa de vida é aquela de um transformador novo, com as mesmas características do transformador existente ou a ser instalado.

As capacidades padronizadas para transformadores trifásicos para instalação em postes, nas tensões de 15 e 23 kV, são: 30; 45; 75; 112,5; 150; 225 e 300 kVA, porém a instalação de transformadores de 225 e 300 kVA na rede de distribuição fica condicionada ao atendimento de grandes blocos de carga que justifiquem a utilização dessas potências de transformadores, por exemplo: Ligação de Edifícios Residenciais ou Comerciais.

Obs: Para núcleos habitacionais e loteamentos, consultar a respectiva Norma Técnica.

 a) Os cabos de ligação dos transformadores à rede secundária existente deverão ser conforme indicado abaixo, com cabos de cobre com isolação para 0,6/1,0 kV XLPE.

Tabela 11 - Cabos de Ligação dos Transformadores

Transform	Cobo (mm²)	
Tensão secundária127 / 220 V	Tensão secundária 220 / 380 V	Cabo (mm²)
15 / 30 / 45	15 / 30 / 45 / 75	35
75	112,5 / 150	95
112,5	225	185
150	300	2 x 95
225 / 300		2 x 185

b) A proteção de transformadores para sobrecorrente é feita através de elos fusíveis, instalados em chaves fusíveis no lado da alta tensão de capacidade nominal de 300 A conforme GED

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	9 de 29
	•		Rodrigues	02/05/2024	

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

926. Para consultar a tabela de dimensionamento de elos utilizados, consultar o GED 16628 – Proteção de Transformadores de Distribuição.

6.2.2 Equipamentos de Proteção contra Sobrecorrente

A proteção contra sobrecorrente na rede primária aérea urbana está definida na Norma Técnica - GED 2912 - Proteção de Redes Aéreas de Distribuição - Sobrecorrente onde, em função do sistema, são estabelecidos critérios a serem observados para a aplicação, localização e dimensionamento dos equipamentos de proteção (chave fusível / elo fusível, disjuntor / relé e religador).

No caso do planejamento de novos alimentadores e estudos avaliativos de alimentadores existentes, a Gerência de Planejamento do Sistema Elétrico e as Gerências de Ativos definem os pontos para a instalação destes equipamentos, conforme critérios e procedimentos específicos.

Nas redes de distribuição de loteamentos e empreendimentos habitacionais, deve ser proposta a instalação de chaves (fusíveis ou de faca) para grupos de no máximo cinco transformadores, visando facilitar a futura operação das redes primárias.

6.2.3 Equipamentos de Proteção contra Sobretensões

Para proteção contra descargas atmosféricas, devem ser utilizados jogos de para-raios de invólucro polimérico, a óxidos metálicos, sem centelhador, providos de desligador automático, para uso em redes de distribuição aérea, corrente de descarga nominal 10 kA, tensão nominal 12 kV (para redes em 11,9 ou 13,8 kV) e 21 kV (para redes em 23 kV).

a) Transformador

Instalar um jogo de para-raios em todos os transformadores de distribuição, seguindo as seguintes orientações:

- I. Instalar o jogo de para-raios, no mesmo nível de cruzeta das chaves fusíveis ou na cruzeta de linha ou no "corpo do equipamento" dependendo da estrutura, em todos os transformadores de distribuição de obras novas.
- II. Instalar ou substituir o jogo de para-raios em transformadores de redes existentes, quando de reformas completas dos postos transformadores.

b) Reguladores de Tensão

Instalar dois jogos de para-raios, sendo um do lado da fonte e outro no lado da carga, na própria estrutura do regulador, conforme padrão de instalação específico.

c) Religadores

Instalar dois jogos de para-raios, sendo um do lado da fonte e outro no lado da carga, na própria estrutura do religador, conforme padrão de instalação específico.

d) Banco de Capacitores

Instalar um jogo de para-raios em todos os bancos de capacitores, conforme padrão de instalação específico.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
				Publicação:	
3667	Operacional	21.0	Leandro Gaspari	i abiloação.	10 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

e) Entradas Primárias Subterrâneas

Instalar um jogo de para-raios em toda entrada primária subterrânea.

f) Chaves Tripolares com operação em carga

Não instalar para-raios nas chaves "normalmente fechadas";

No caso de chaves "normalmente abertas", instalar para-raios nos postes adjacentes ao da chave;

Chaves "normalmente abertas" e em postes junto a derivações em meio de vão, deverão ser protegidas de acordo com a Figura 5.1.

g) Finais de redes primárias

Instalar um jogo de para-raios no final definitivo de redes primárias, ou seja, onde não houver continuidade da rede primária. No caso de cruzamento entre redes compactas, não devem ser instalados para-raios.

Figura 3 - Finais de Redes Primárias

NOTA: Para a proteção da chave a óleo ou seccionadora tripolar, deve-se instalar para-raios na posição 1 ou 2 ou 3, bem como na posição 4.

h) Cruzamento entre Redes Primárias Compactas e de Cabos Nus

Nos cruzamentos de rede primária compacta com rede primária com cabos nus, instalar um jogo de para-raios em cada um dos postes adjacentes ao cruzamento, na rede compacta.

N. Dogumento:	Cotogorio	Voroão:	Aprovado por:	Doto	Página:
N.Documento:	Categoria.	versau.	Aprovado por.	Data	ragina.
3667	Operacional	21.0	Leandro Gaspari	Publicação:	11 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

i) Nas transições de rede primária: nua para compacta, nua para pré-reunida, nua para subterrânea, compacta para pré-reunida, compacta para subterrânea, pré-reunida para subterrânea e convencional protegida para compacta.

Instalar um jogo de para-raios no poste onde ocorre a transição de rede.

Nos cruzamentos entre redes compactas, não devem ser instalados para-raios.

j) Ao longo da rede de distribuição urbana:

Deve-se instalar um jogo de para-raios a cada 500 metros, desde que dentro deste raio não existam nenhuma das estruturas citadas anteriormente.

- k) Ao longo da rede de distribuição rural
 - ➤ Linha tronco trifásica com postes de madeira ou fibra de vidro: instalar um jogo de três (3) para-raios (um por fase) a cada intervalo máximo de 2km de extensão. Não considerar os equipamentos instalados nos ramais, mas considerar os equipamento trifásicos da linha com para-raios instalado.
 - ➤ Linha tronco trifásica com postes de concreto: vale o mesmo critério utilizado no item anterior, devendo-se acrescentar também, a cada intervalo máximo de 500 metros, um para-raios somente na fase do meio. Se necessário redividir os pontos de instalação dos para-raios da fase do meio, de tal forma a garantir espaçamentos homogêneos entre eles, em intervalos nunca superiores a 500 metros.
 - ➤ Ramal trifásico: vale os mesmos critérios dos itens anteriores, iniciando-se o intervalo de aplicação de para-raios, a partir do transformador, sentido carga para a fonte, dispensando-se a instalação do jogo de 3 (três) para-raios junto a chave de saída do ramal, caso o intervalo tenha extensão inferior a 2km. E para instalação do para-raios na fase do meio, somente se for trecho tiver mais de 1 km.
 - Linhas bifásicas com qualquer tipo de poste: instalar um jogo de dois (2) para-raios (um por fase) a cada intervalo máximo de 2km de extensão. Não considerar os equipamentos instalados nos ramais, mas considerar os equipamentos bifásicos da linha com pararaios instalado. Neste caso, não se aplica a instalação de para-raios a cada 500 m.
 - ➤ Linhas monofásicas com postes de madeira ou fibra de vidro: instalar um para-raios a cada intervalo máximo de 2km de extensão. Não considerar os equipamentos instalados nos ramais, mas considerar os equipamentos monofásicos da linha com para-raios instalado.
 - ➤ Linhas monofásicas com postes de concreto: instalar um para-raios a cada intervalo máximo de 500 metros. Se necessário redividir os pontos de instalação dos para-raios, de tal forma a garantir espaçamentos homogêneos entre eles, em intervalos nunca superiores a 500 metros. Não considerar os equipamentos instalados nas derivações, mas considerar os equipamentos monofásicos da linha com para-raios instalado.
 - Para estruturas de redes rurais com poste estaiado deverá haver uma estrutura de pararaios a, no máximo, 300 metros de distância.

6.2.4 Equipamentos de Manobra

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	12 de
	•		Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

A definição de localização, tipo e capacidade das chaves a serem instaladas na rede de distribuição para manobras, é dada pelas Gerências de Ativos com a colaboração das Áreas de Gerências de Operação do Grupo CPFL.

Os critérios seguidos são os seguintes:

- Na saída de cada alimentador deve ser instalado um jogo de chaves faca. Estas chaves podem ser instaladas no primeiro poste ou, caso sejam melhoradas as condições para sua manobra, nos postes seguintes, antes, porém da ligação atual ou futura de qualquer carga na rede primária;
- Nas interligações de troncos de alimentadores, quando se prevê inversão do fluxo de carga por manobras entre alimentadores, no mesmo alimentador ou entre subestações, devem ser instaladas chaves trifásicas de abertura em carga;
- Não instalar equipamentos de manobra em postes que sustentam mais de um alimentador.
 Nesses casos deve-se instalar a chave no primeiro poste após a saída da derivação primária.

6.3. Instalação de Neutro e Aterramento na Rede de Distribuição

Informações sobre padrão de aterramento consultar o GED 185 - Aterramento da Distribuição e GED 3613 Aterramento Montagem Redes de Distribuição.

O padrão das Distribuidoras do Grupo CPFL determina a existência do neutro contínuo e multiaterrado em toda a área urbana com rede primária ou secundária.

6.4. Alimentadores

Deve ser instalado o neutro, com seção mínima de acordo com a Tabela 6.1, desde a subestação até uma distância de 500 m dela, na CPFL Paulista, CPFL Piratininga e CPFL Santa Cruz

O neutro deve ser interligado ao sistema de terra da subestação na CPFL Paulista, CPFL Piratininga e CPFL Santa Cruz. Na RGE não deve ser interligado.

Em locais onde ainda não existe a rede secundária instalada, em trechos urbanos, deve ser utilizado somente o neutro com cabo nu de alumínio, de acordo com a Tabela 6.1.

O neutro com condutores nus poderá ser utilizado para trechos de alimentadores ligando subestações fora das cidades ou que se estendam além da área urbanizada para alimentar indústrias ou urbanizações separadas das cidades de origem destes alimentadores;

Em alimentadores rurais ou linhas de distribuição rurais não é lançado o condutor neutro, com exceção de casos especiais indicados pela área de Gestão de Ativos.

Tabela 12 - Seção mínima do neutro em função da seção dos cabos da rede primária

REDE PRIMÁRIA 15, 25 ou 34,5 kV	NEUTRO DA REDE SECUNDÁRIA
1/0 AWG	1/0 AWG
4/0 AWG	2/0 AWG
336,4 MCM	2/0 AWG
477 MCM	2/0 AWG

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	13 de
			Rodrigues	02/05/2024	29

	_ ,	A 1	T / ·
Lina da	I locumonto:	Norma	Lachica
TIDO UE	Documento:	INUITIIA	I C UIIICA

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

35 mm² (rede compacta)	1/0 AWG ou 50 mm ²
70 mm ² (rede compacta)	1/0 AWG ou 50 mm ²
150 mm ² (rede compacta)	2/0 AWG ou 70 mm ²
185 mm ² (rede compacta)	2/0 AWG ou 70 mm ²
$3x240 + 1x120 \text{ mm}^2 \text{ (multiplexado)}$	2/0 AWG ou 70 mm ²

NOTAS:

- 1- As seções indicadas em mm² do neutro referem-se às seções dos condutores neutros dos cabos isolados multiplexados das redes secundárias;
- 2- O cabo de aço (mensageiro) de 9,5 mm da Rede Compacta não deve considerado como neutro.

6.5. Locais onde não existe neutro contínuo e multiaterrado

O aterramento local deve ser auto suficiente, utilizando-se aterramentos especiais, conforme documento técnico GED 185 – Aterramentos na Distribuição.

6.6. Tipos de Aterramento

Para saber os tipos de aterramento utilizados deve-se consultar o documento técnico GED 185 - Aterramentos na Distribuição.

6.7. Outros Aterramentos

- a) Aterramento de consumidores secundários: vide Norma Técnica para Fornecimento de Energia a Edificações Individuais (GED 13);
- b) Aterramento de quadros de medidores coletivos: vide Norma Técnica para Fornecimento de Energia em Edificações de Uso Coletivo (GED 119);
- c) Aterramento de cabinas, câmaras transformadoras e outras instalações com Fornecimento em tensão primária de distribuição: vide Norma Técnica (GED 2855);
- d) Aterramento de transformadores rurais: vide Norma Técnica para Projetos de Linhas de Distribuição Rural (GED 120).

6.8. Valores Admissíveis de Resistência de Aterramento

Consultar tabela no documento técnico GED 185 – Aterramentos na Distribuição.

7. CONTROLE DE REGISTROS

Não se aplica.

8. ANEXOS

ANEXO 1 - Rede secundária trifásica - parâmetros dos cabos utilizados nos cálculos elétricos

Material	Código	Bitola	R1	X1	R0	X0
iviateriai	Codigo	DilUia	(ohm/km)	(ohm/km)	(ohm/km)	(ohm/km)

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	14 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

		24.4344				
	A04	04 AWG	1,4950	0,3593	2,1658	1,9213
	A02	02 AWG	0,9395	0,3414	1,6196	1,6356
ALUMINIO SEM	A1/0	1/0 AWG	0,5914	0,3236	1,1804	1,3716
ALMA DE AÇO (*)	A2/0	2/0 AWG	0,4689	0,3147	0,9900	1,2673
	A4/0	4/0 AWG	0,2955	0,2969	0,6774	1,1187
	A336	336,4 MCM	0,1859	0,2752	0,4534	1,0169
	C06	06 AWG	1,4862	0,3808	2,1499	1,9381
COBRE NU	C02	02 AWG	0,5943	0,3393	1,1733	1,3975
COBILE NO	C1/0	1/0 AWG	0,3772	0,3233	0,8202	1,2203
	C2/0	2/0 AWG	0,3011	0,3146	0,6786	1,1577
	P120	120 mm ²	0,324	0,0911	1,3560	0,9618
MIII TIDI EVADO	P25	25 mm ²	1,539	0,1021	2,7624	2,0135
MULTIPLEXADO (**)	P35	35 mm ²	1,112	0,0809	2,3304	1,7954
	P50	50 mm ²	0,821	0,0834	2,0018	1,3665
	P70	70 mm ²	0,567	0,0929	1,6264	0,9713
TRIPLEX	M63	06 AWG /	2 655	0.0000		
IRIPLEA	IVIOS	16 mm ²	2,655	0,0999		
QUADRUPLEX	M64	06 AWG /	2.655	0.1190		
QUADRUPLEX	IVIO4	16 mm ²	2,655	0,1189		
TRIPLEX	MAS	04 AWG /	1 671	0.0063		
IRIPLEX	M43	25 mm ²	1,671	0,0963		

Parâmetros de cálculo para rede secundária nua trifásica:

- Vão de 40 metros;
- Temperatura do condutor e do neutro 50°C;
- Resistividade do solo 600 Ω/m;
- Flecha de 0,91 m;
- Altura dos condutores em relação ao solo:

Neutro: 7,3 m;

Fase A: 7,1 m;

Fase B: 6,9 m;

Fase C: 6,7 m.

Parâmetros de cálculo para rede secundária multiplexada trifásica:

- Vão de 40 metros;
- Temperatura do condutor e neutro 90°C;

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	15 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

- Resistividade do solo 600 Ω/m;
- Flecha de 1,45 m;
- Condutores de alumínio;
- Neutro da rede P25 de AL;
- Neutro das demais redes de CAL;
- Altura em relação ao solo na fixação 7,3 m.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	16 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

ANEXO 2 - Rede primária trifásica - parâmetros dos cabos utilizados nos cálculos elétricos

Cádina	Pitolo	R1	X1	Ro	Хо
Código	Bitola	(ohm/km)	(ohm/km)	(ohm/km)	(ohm/km)
		15kV, 24,2kV	V e 36,2kV		U
A04	04 AWG	1,4942	0,4703	1,9040	1,5371
A02	02 AWG	0,9387	0,4527	1,3485	1,5195
A1/0	1/0 AWG	0,5906	0,4352	1,0004	1,5021
A3/0	3/0 AWG	0,3716	0,4177	0,7814	1,4845
A4/0	4/0 AWG	0,2950	0,4089	0,7048	1,4757
A336	336,4 MCM	0,1855	0,3874	0,5953	1,4542
A477	477 MCM	0,1313	0,3742	0,5411	1,4410
C06	06 AWG	1,4854	0,4917	1,8952	1,5585
C04	04 AWG	0,9341	0,4743	1,3439	1,5411
C02	02 AWG	0,5935	0,4510	1,0033	1,5178
C1/0	1/0 AWG	0,3766	0,4352	0,7864	1,5020
C2/0	2/0 AWG	0,3006	0,4266	0,7104	1,4934
C4/0	4/0 AWG	0,1876	0,4088	0,5974	1,4756
U1/0 (*)	1/0 AWG	0,6912	0,151	1,711	0,9534
U750 (*)	750 MCM / 500 mm ²	0,0659	0,114	1,5194	0,754
P240	240 mm ²	0,1622	0,1142	0,64	0,435
P35	35 mm ²	1,1068	0,1515	1,5846	0,8946
E35 (**)	35 mm ²	1,1130	0,5543	1,6705	1,5303
E70 (**)	70 mm ²	0,5682	0,2920	1,2335	1,7257
E150 (**)	150 mm ²	0,2641	0,3439	0,7713	1,2217
E185 (**)	185 mm ²	0,2112	0,2510	0,8767	1,6847

^(*) cabos isolados em trechos subterrâneos

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	17 de
			Rodrigues	02/05/2024	29

^(**) rede primária compacta

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

Parâmetros de cálculo para rede primária nua trifásica:

- Neutro da secundária AL 1/0;
- Temperatura dos condutores e neutro 50°C;
- Flecha 0,91 m;
- Resistividade do solo 600 Ω/m;
- Cruzeta de 2 metros;
- Espaçamento meio beco;
- Poste padrão 11 metros.

Parâmetros de cálculo para rede primária compacta trifásica:

- Espaçador de 15 cm;
- Poste padrão 11 metros;
- Neutro + mensageiro;
- Neutro 2/0 (0,9477 Ω/km);
- Mensageiro: Cabo de aço 3/8 (3,580 Ω/km).

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	18 de
	-		Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

ANEXO 3 – Cálculo de coeficientes de queda de tensão unitária e metodologia de cálculos de queda de tensão

1) Coeficientes de queda de tensão unitária

O coeficiente de queda de tensão unitária (K) é o percentual de queda de tensão por 1 kVA a cada 100 metros, e é determinado pela equação 1:

$$K = \frac{|VaN - Va'N'|}{|VaN|} * 100\%$$
 (Eq. 1)

Onde:

 $|\dot{V}aN|$ = Tensão nominal (fonte)

 $|\dot{V}a'N'|$ = Tensão na carga

A queda de tensão de um circuito em percentual é dada pela equação 2:

$$\Delta V(\%) = (kVA.L).K$$
 (Eq. 2)

Onde:

L = Comprimento da rede em lances de 100 metros

K = Coeficiente de queda de tensão unitária (tabelas 4.2, 4.3 e 4.4)

kVA = Potência da carga

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	19 de
	•		Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

2) Metodologia de cálculos de queda de tensão

Rede Trifásica:

Para o cálculo de queda de tensão em redes trifásicas foram considerados os seguintes parâmetros:

- A carga é equilibrada, portanto, não há retorno de corrente no neutro;
- Carga = 1000 VA;
- Comprimento da linha = 100 metros;
- A componente imaginária foi desprezada, pois, para o sistema de distribuição é desprezível.

A queda de tensão para a fase "A" é representada pelo diagrama fasorial a seguir:

E é dada pela equação 3:

$$\Delta V(\%) = \frac{|\dot{V}_{AN} - \dot{V}_{A/N'}|}{|\dot{V}_{AN}|} * 100\%$$
 (Eq. 3)

 \dot{V}_{AN} = Tensão na fonte (V)

 $\dot{V}_{A'N'}$ = Tensão na carga (V)

Portanto:

$$\Delta V(\%) = \frac{s}{v_L^2} * (R_A cos\varphi + X_A sen\varphi) * 100$$
 (Eq. 4)

Onde:

S = Potencia da carga (VA)

 V_L = Tensão de linha (V)

Phi (φ) = Defasagem entre corrente e tensão (Fator de Potência)

 R_A = Resistência de sequência positiva do condutor (Ω /km)

 X_A = Reatância indutiva de sequência positiva do circuito (Ω /km)

N. Dogumento:	Catagoria	Voročo	Aprovado por	Doto	Dáging
N.Documento:	Categoria:	versao:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	20 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

Rede Bifásica:

Para o cálculo de queda de tensão em redes bifásicas foram considerados os seguintes parâmetros:

- Carga = 1000 VA;
- Comprimento da linha = 100 metros;
- A componente imaginária foi desprezada, pois, para o sistema de distribuição é desprezível.

A carga é bifásica e equilibrada, portanto, há retorno de corrente com a mesma amplitude da corrente das fases e defasada em 60° (figura acima).

A queda de tensão percentual é dada pela equação 5:

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	21 de
	•		Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

$$\Delta V(\%) = \frac{1.5 \, s}{V_L^2} * \left[(R + 0.5R_N) cos\varphi + (X + 0.5X_N) sen\varphi \right] * 100$$
 (Eq. 5)

Onde:

S = Potencia da carga (VA)

 V_L = Tensão de linha (V)

Phi (φ) = Defasagem entre corrente e tensão (Fator de Potência)

R e R_N = Resistência do condutor fase e neutro, respectivamente (Ω /km)

X e X_N = Reatância indutiva do condutor fase e neutro, respectivamente (Ω /km) e é dado pela equação 6:

$$X_1 = 7,5398 * 10^{-2} \ln \frac{DMG}{Ds}$$
 (\(\Omega/km\)) (Eq. 6)

Onde:

DMG = Distância média geométrica dos condutores (mm)

Ds = Raio médio geométrico do condutor (mm)

Rede monofásica:

Para o cálculo de queda de tensão em redes monofásicas foram considerados os seguintes parâmetros:

- Carga = 1000 VA;
- Comprimento da linha = 100 metros;
- A componente imaginária foi desprezada, pois, para o sistema de distribuição é desprezível.

A queda de tensão percentual é dada pela equação 7:

	_			_	
N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	22 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

$$\Delta V(\%) = \frac{3S}{V_L^2} * [(R + R_N)cos\varphi + (X + X_N)sen\varphi]$$
 (Eq. 7)

Onde:

S = Potencia da carga (VA)

 V_L = Tensão de linha (V)

Phi (φ) = Defasagem entre corrente e tensão (Fator de Potência)

R e R_N = Resistência do condutor fase e neutro, respectivamente (Ω /km)

X e X_N = Reatância indutiva do condutor fase e neutro, respectivamente (Ω /km) e é dado pela equação 8:

$$X_1 = 7,5398 * 10^{-2} \ln \frac{DMG}{Ds} (\Omega/km)$$
 (Eq. 8)

Onde:

DMG = Distância média geométrica dos condutores (mm)

Ds = Raio médio geométrico do condutor (mm)

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	23 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

ANEXO 4 – Cálculo de corrente máxima admissível em condutores e corrente admissível para condutores fora de padrão

1) Cálculo de corrente máxima admissível em condutores nus

Os parâmetros adotados para o cálculo de ampacidade são valores normalmente utilizados em normas técnicas, catálogos e NBRs.

Tanto para os cabos de alumínio nu (CA) quanto para os cabos de alumínio nu com alma de aço (CAA) foram considerados os seguintes parâmetros:

- Temperatura ambiente: 30°C;
- Temperatura do condutor: 55°C;
- Coeficiente de absorção da radiação solar: 0,5;
- Coeficiente de emissividade: 0,6;
- Vento: 1 m/s (3,6 km/h);
- Radiação solar: 1000 W/m^2.

O cálculo de ampacidade para condutores nus deste ANEXO foi feito de acordo com o método presente na norma IEC 1597 – Overhead electrical conductors – Calculation methods for stranded bare conductors, e será apresentado a seguir:

Calculo de corrente máxima admissível:

$$Imax = \sqrt{\frac{P_{RAD} + P_{CONV} - P_{SOL}}{R_T}}$$
 (Eq. 9)

Onde:

RT é a resistência do condutor em uma temperatura T (Ω /m).

Perda de Calor Irradiada: Prad (W)

$$P_{RAD} = s. \pi. D. K_e. (T_2^4 - T_1^4)$$
 (Eq. 10)

Onde:

s é a constante de Stefan-Boltzmann $(5,67 * 10^{-8})$ $W.m^{-2}.K^{-4}$;

Ke é o coeficiente de emissividade em relação ao corpo negro;

T é a temperatura (K);

T1 é a temperatura ambiente (K);

T2 é a temperatura final de equilíbrio (K).

N.D.		., ~	A 1	Б.,	D' :
N.Documento:	Categoria:	versao:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	24 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

Perda de Calor por Convecção: Pconv (W)

$$P_{CONV} = \lambda. Nu. (T2 - T1). \pi$$
 (Eq. 11)

Onde:

 λ é a condutividade térmica do ar em contato com o condutor. Assume-se que é constante igual a: $0,02585.W.m^{-1}.K^{-1}$

Nu é o número de Nusselt, dado pela equação: Nu = 0.65. $Re^{0.2} + 0.23$. $Re^{0.61}$, onde Re é o número de Reynolds, dado por:

Número de Reynolds

$$Re = 1,644.10^9. v. D. [(T_1 + 0,5(T_2 - T_1))]$$
 (Eq. 12)

Onde:

v é a velocidade do vento (m/s);

D é o diâmetro do condutor (m);

T é a temperatura (K);

T1 é a temperatura ambiente;

T2 é a temperatura final de equilíbrio.

Ganho de Calor Solar: Psol (W/m)

$$P_{SOL} = \gamma. D. S_I \tag{Eq. 13}$$

Onde:

γ é o coeficiente de absorção da radiação solar;

D é o diâmetro do condutor (m);

Si é a intensidade da radiação solar (W/m^2).

2) Cálculo de corrente máxima admissível em condutores protegidos

Para os cabos de alumínio coberto (PE ou XLPE) foram considerados os seguintes parâmetros:

- Temperatura ambiente: 30°C;
- Temperatura do condutor: 90°C (55°C para rede primária convencional com cabo protegido);
- Resistividade térmica do material de isolação: 3,5 (mK/W);
- Vento: 2,2 km/h;

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
				Publicação:	
3667	Operacional	21.0	Leandro Gaspari	i abiioação.	25 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

Radiação solar: 1000 W/m^2;

Condutividade térmica do ar: 0,02866 W/m.°C;

Densidade do ar: 1,0274 kg/m³;

Viscosidade do ar: 0,07275 kg/m.h.

O cálculo de ampacidade para condutores protegidos deste ANEXO foi feito de acordo com o método presente na norma ABNT NBR 11301 – Cálculo da capacidade de condução de corrente de cabos isolados em regime permanente (fator de carga 100%), e será apresentado a seguir:

- O cálculo é feito pelo método iterativo, onde é assumida uma temperatura qualquer para a capa de proteção do condutor para a primeira iteração.
- O cálculo com as equações 14 à 18 devem ser realizados até a elevação da temperatura do condutor com relação ao ambiente (Eq. 18) entre uma iteração e outra convergir (tender a zero).
- A cada iteração a temperatura da capa deve ser corrigida de acordo com as equações 19 e 20:
- Após convergir, utilizar a equação 21 para o cálculo de corrente admissível.

Dispersão do Calor por Convecção: Pconv (W/km)

$$P_{CONV} = 1000. (1,01+0.3710.\Re^{0.52}).\tau_{TERM}.\theta (W/km)$$
 (Eq. 14)

Onde:

R é o número de Reynolds;

 τ_{TERM} é a condutividade térmica do ar (W/m.°C);

 θ = Elevação da temperatura da capa do condutor em relação à temperatura ambiente (°C).

Número de Reynolds

O número de Reynolds para cabos protegidos deve ser calculado da seguinte forma:

$$\Re = \frac{\phi \delta v}{\mu}$$
 (Eq. 15)

Onde:

 ϕ é o diâmetro externo da capa de proteção;

 δ é a densidade do ar (kg/m³);

v é a velocidade do vento (km/h);

 μ é a viscosidade do ar (kg/m.h).

Dispersão do Calor por Irradiação: Pirrad (W/km)

$$P_{IRRAD} = 0.00017825. \phi. \varepsilon. (T_{CAPA}^4 - T_{AMB}^4)/1000 \quad (W/km)$$
 (Eq. 16)

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	26 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

Onde:

 ϕ é o diâmetro externo da capa de proteção;

 ε é o coeficiente de emissividade da superfície do condutor;

 $T_{CAPA}^4 - T_{AMB}^4$ são a temperatura da superfície da capa e do ambiente, respectivamente, elevadas à quarta potência (K).

Resistência Térmica da Isolação: Rtérm (°C/W.km)

$$R_{TERM} = \frac{\rho_{capa}}{2\pi} \ln \frac{d_{capa}}{d_{cond}} \ (^{\circ}C/W.km)$$
 (Eq. 17)

Onde:

 ρ_{capa} é a resistividade térmica do material da capa de proteção;

 d_{cana} é o diâmetro externo da capa de proteção;

 d_{cond} é o diâmetro do condutor.

Elevação da Temperatura do Condutor: θ_{cond} (°C)

$$\theta_{cond} = \theta_{capa} + (P_{CONV} + P_{IRRAD}).R_{TERM} \, {}^{\circ}C$$
 (Eq. 18)

Onde:

 θ_{capa} é a elevação da temperatura da capa em relação à temperatura ambiente.

Correção de temperatura da capa para iteração subsequente:

$$\Delta = T_{COND} - (T_{COND} + T_{AMB})$$
 (Eq. 19)

Onde:

 T_{COND} é a temperatura de operação do condutor (°C);

 T_{AMB} é a temperatura ambiente (°C).

Portanto, a nova temperatura da capa será:

$$TCi - (\Delta * 0, 5)$$
 (Eq. 20)

Onde:

TCi é a temperatura inicial (ou da iteração anterior) da capa de proteção.

A corrente máxima admissível é dada a partir da equação 19:

$$Imax = \sqrt{\frac{P_{IRRAD} + P_{CONV}}{R_T}}$$
 (Eq. 21)

3) Corrente admissível para condutores fora de padrão

Cabos de alumínio nu (CA)

	Res	istencia a 5	S'C Corrente Maxima Ad	amissivei (A)
J. Dogumento:	Cotogorio	Voroão:	Aprovado por:	Doto
N.Documento:	Categoria:	Versão:	Aprovado por:	Data

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	27 de
	•		Rodrigues	02/05/2024	29

Tipo	de	Documento:	Norma	Técnica
1 100	u	Documento.	INDITIO	i comoa

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

4 AWG CA	1,5509 Ω/km	113
3/0 AWG CA	0,3716 Ω/km	270

Obs: Mesmos parâmetros apresentados no item 1 do ANEXO 4.

Cabos de alumínio nu com alma de aço (CAA)

	Resistência a 55°C	Corrente Máxima Admissível (A)
2/0 AWG CAA	0,484 Ω/km	239
3/0 AWG CAA	0,3838 Ω/km	276

Obs: Mesmos parâmetros apresentados no item 1 do ANEXO 4.

Para cordoalha e fio de aço zincado CAZ verificar GED 16474.

9. REGISTRO DE ALTERAÇÕES

Este documento foi revisado com a colaboração dos seguintes profissionais das empresas do Grupo CPFL Energia.

Empresa	Colaborador
CPFL Paulista	Marcelo de Moraes
CPFL Piratininga	Sérgio Doarte da Silva
CPFL Piratininga	Celso Rogério Tomachuk dos Santos
CPFL Santa Cruz	Márcio de Castro Mariano Silva

Alterações efetuadas:

Versão anterior	Data da versão anterior	Alterações em relação à versão anterior
1.2	12/12/2003	■ Inclusão do item 7 – Registro de Revisão.
1.4	26/04/2007	 Incluído o transformador de 15 kVA
1.5	27/04/2010	 Alterada a tabela de cabos para ligação do transformador à rede secundária.
1.6	28/12/2009	Inclusão do item Meio Ambiente.
1.7	30/01/2012	 Alterada Resolução Normativa nº505 de 26 de novembro de 2001 para Resolução Normativa nº 469 de 13 de dezembro de 2011. Alterada a Tabela I - Limites de Variação da Tensão Secundária.
1.9	19/06/2012	 Unificação do documento com a RGE; Inclusão dos condutores de 35 mm² e 300 mm² na Tabela de Condutores de alumínio cobertos em XLPE (Rede Primária Compacta - "Spacer Cables"); Inclusão da Tabela de Condutores de Alumínio Nu (CAA) - (Rede Primária).
1.10	04/10/2012	 Atualização dos limites de variação da tensão secundária (tabela 4.1); Atualização dos valores dos coeficientes de queda de tensão unitária (tabelas 4.2, 4.3 e 4.4);

N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	28 de
			Rodrigues	02/05/2024	29

Área: REDN-GERENCIA DE NORMAS E PADROES

Título do Documento: Projeto de Rede de Distribuição - Cálculo Elétrico

		 Incluídos imagem ilustrativa de circuito secundário, exemplos de cálculo de queda de tensão na planilha da figura 4.1, e descritivo de cada campo da mesma; Atualização dos valores de ampacidade tabelas 4.7, 4.8 e 4.9; Inclusão das tabelas de ampacidade 4.10 e 4.11; Atualização do item 5 com a retirada da tabela 5.1 com parâmetro de vida de transformador com base em KVAS; Atualização dos valores de impedância dos ANEXOS 1 e 2, e inclusão dos parâmetros utilizados nos cálculos; Inclusão do ANEXO 3 – Cálculo de Coeficientes de Queda de Tensão; Inclusão do ANEXO 4 - Cálculo de Corrente Máxima Admissível em Condutores e Corrente Admissível para Condutores Fora de Padrão. 			
1.11	04/11/2015	- Para projetos de Loteamentos e Núcleos Habitacionais a solução para Aterramento consultar GED 185 Aterramento da Distribuição e GED 3613 Aterramento Montagem.			
1.12	17/10/2016	- Alteração na tabela de impedâncias do ANEXO 2.			
1.13	13/12/2016	 - Substituído o cabo de 185 mm2 para as redes de 25 kV pelo cabo de 150 mm2 - Adequação do critério de aplicação do neutro em redes de distribuição. 			
1.14	04/10/2018	A formatação foi atualizada conforme norma vigente. Incluído o critério de instalação de para raios nas redes rurais.			
1.15	01/09/2022	Alterada as expressões: estrutura de madeira e estrutura de concreto, por postes de madeira ou fibra e postes de concreto, no critério de instalação de para raios ao longo da rede de distribuição rural.			
1.16	13/02/2023	Inclusão de detalhamento da aplicação de para-raios na área rural para redes bifásicas e monofásicas, assim como a alteração para o distanciamento entre para-raios nas situações específicas de 450 m para 500 m.			
1.17	24/05/2023	Correção da Tabela 4 (As colunas estavam invertidas).			
20.0	23/02/2024	Exclusão das tabelas de capacidade de corrente de redes convencionais com cabos cobertos.			

	_				
N.Documento:	Categoria:	Versão:	Aprovado por:	Data	Página:
3667	Operacional	21.0	Leandro Gaspari	Publicação:	29 de
			Rodrigues	02/05/2024	29