Matrices y Tableros

MATRICES Y TABLEROS

¿Qué es una Matriz?

Una matriz, en nuestro contexto, es simplemente un vector de dos dimensiones que tiene el mismo largo en cada uno de sus elementos.

¿Y QUE HACEMOS CON LAS MATRICES?

Muchas veces queremos utilizar matrices para representar estructuras como, por ejemplo:

- Matrices de verdad (esas de Algebra que tienen determinante y esas cosas)
- Tableros (de ajedrez, por ejemplo)
- Mapas (por ejemplo, en cada casillero guardamos la altura del territorio en esas coordenadas, o la cantidad de personas que viven en una determinada manzana)
- Imágenes
- Muchísimos etcéteras

OPERACIONES (QUE VAMOS A NECESITAR) SOBRE MATRICES

Declarar una matriz:

```
vector < vector < int >> m;
```

También pueden poner cualquier otro tipo (string, char, etc).

Inicializar una matriz de m filas x n columnas todas con el mismo valor (x):

```
vector < vector < int >> res(m, vector < int > (n, x));
```

Agregar una fila:

```
vector < vector < int >> m;
vector < int > v = {1,2,3};
m.push_back(v);
```

Inicializar una matriz con valores fijos:

• Acceder a un elemento en la posición (i, j):

```
m[i][j]
```

EJEMPLO: ROTACIÓN DE MATRICES

Implementar una función que cumpla con la siguientes especificación:

```
proc rotar (in mat: seg\langle seg\langle \mathbb{Z} \rangle \rangle, in d: \mathbb{Z}, in a: \mathbb{Z}, out res: seg\langle seg\langle \mathbb{Z} \rangle \rangle)
    Pre \{|mat| > 0 \land (\forall i : \mathbb{Z})(0 < i < |mat| \rightarrow_{L} |mat[i]| = |mat[0]|) \land a > L
               0 \land d > 0
    Post \{mismasDimensiones(res, mat) \land_L \}
               esLaMovidaParaAbajoYDerecha(res, mat)}
pred mismasDimensiones (m1: seg\langle seg\langle \mathbb{Z}\rangle\rangle, m2: seg\langle seg\langle \mathbb{Z}\rangle\rangle) {
        |m1| = |m2| \land_L (\forall i : \mathbb{Z}) (0 \le i < |m1| \rightarrow_L |m1[i]| = |m2[i]|)
pred esLaMovidaParaAbajoYDerecha (res: seg\langle seg\langle \mathbb{Z}\rangle\rangle, mat:
seg\langle seg\langle \mathbb{Z}\rangle\rangle) {
       (\forall i, j : \mathbb{Z}) (0 < i < |mat| \land_L 0 < j < |mat[i]| \longrightarrow_L res[(i + a)]
       mod |mat|[(i+d) \mod |mat[i]|] = mat[i][i])
```

EJEMPLO: ROTACIÓN DE MATRICES

```
vector<vector<int>> rotar(vector<vector<int> > mat, int a,
                            int d) {
    int n = mat.size();
    int m = mat[0].size();
    vector < vector < int >> res(n, vector < int > (m));
    int i = 0;
    while(i < n) {
        int j = 0;
        while (j < m) {
            res[(i + a) % n][(j + d) % m] = mat[i][j];
            j++;
        i++;
    return res;
```

Matrices y más matrices

Durante la carrera verán más ejercicios de matrices hasta el cansancio en:

- Organización del Computador 2: Verán como aplicar filtro a imágenes (como los de Instagram) pero en lenguaje ASM.
- Algoritmos y Estructuras de Datos 3: Ejercicios sobre grafos, programación dinámica, etc.
- Métodos Numéricos: mejor conocida como "Matrices: la materia" (verán algoritmos sobre matrices como las de Álgebra).