ANGIOGENESIS COMPULCELL3D VS MORPHEUS

Michael Kücken 19.09.2024

Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth

Roeland M. H. Merks^{1,2,3×a}*, Erica D. Perryn^{4×b}, Abbas Shirinifard³, James A. Glazier³

1 VIB Department of Plant Systems Biology, Ghent, Belgium, 2 Department of Molecular Genetics, Ghent University, Ghent, Belgium, 3 The Biocomplexity Institute and Department of Physics, Indiana University Bloomington, Bloomington, Indiana, United States of America, 4 The University of Kansas Medical Center, Department of Anatomy and Cell Biology, Kansas City, Kansas, United States of America

Abstract

Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg model (also called Cellular Potts Model) simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin-mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell-cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.

Citation: Merks RMH, Perryn ED, Shirinifard A, Glazier JA (2008) Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth. PLoS Comput Biol 4(9): e1000163. doi:10.1371/journal.pcbi.1000163

Editor: Philip E. Bourne, University of California San Diego, United States of America

Received December 13, 2006; Accepted July 18, 2008; Published September 19, 2008

Copyright: © 2008 Merks et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Idea of Model

- Cells secrete morphogen (VEGF) that diffuses and is degraded outside the cells
- Cells move towards the morphogen gradient
- Contact inhibition: only chemotactic movement in direction of the medium

Saturation Coefficient

$$\Delta H_{\text{chemotaxis}} = -\mu \left(\frac{c(\vec{x}')}{1 + sc(\vec{x}')} - \frac{c(\vec{x})}{1 + sc(\vec{x})} \right)$$

CompuCell3d

Morpheus

Chemotaxis strength

$$\Delta H_{\text{chemotaxis}} = -\mu \left(\frac{c(\vec{x}')}{1 + sc(\vec{x}')} - \frac{c(\vec{x})}{1 + sc(\vec{x})} \right)$$

CompuCell3d

Morpheus

VEGF Degradation

$$\frac{\partial c}{\partial t} = \alpha (1 - \delta(\sigma(\vec{x}), 0)) - \varepsilon \delta(\sigma(\vec{x}), 0) c + D\nabla^2 c$$

CompuCell3d

Morpheus

Cell-Cell Adhesion

CompuCell3d

Morpheus

Thank you!