. ()

Wireless Access Reference Model

	Modi	ulation and Channel Coding		
Parameter	QPSK w/ R=4/5 Coding	16-QAM w/ R=4/5 Coding	64-QAM w/ R=4/5 Coding	
	(1.6 bits/sym)	(3.2 bits/sym)	(4.8 bits/sym)	
RF Channel Bandwidth	3.5 MHz	3.5 MHz	3.5 MHz	
Chip Rate	2.56 Mcps	2.56 Mcps	2.56 Mcps	
Communication Channel Bandwidth	4.096 Mbps	8.192 Mbps	12.288 Mbps	
Peak Data Rate	4.096 Mbps	8.192 Mbps	12.288 Mbps	
CDMA Channel Bandwidth (SF=1)	4.096 Mbps	8.192 Mbps	12.288 Mbps	
CDMA Channel Bandwidth (SF=16)	256 kbps	512 kbps	768 kbps	
CDMA Channel Bandwidth (SF=128)	32 kbps	64 kbps	96 kbps	
Modulation Factor	1.17 bps/Hz	2.34 bps/Hz	3.511 bps/Hz	

Fig.4 Hypothetical parameters for a 3.5 MHz RF channelization

Number of Elements	QPSK		16 QAM		64 QAM	
	Aggregate Capacity (Mbps)	Modulation Factor	Aggregate Capacity (Mbps)	Modulation Factor	Aggregate Capacity (Mbps)	Modulatio Factor
1 2	4.096 8.192	1.17 2.34	8.192 16.384	2.34 4.68	12.288 24.576	3.511 7.022
4	16.384	4.68	32.768	9.36	49.152	14.044
<u>8</u> 16	32.768 65.536	9.36 18.72	65.536 131.072	18.72 37.44	98.304 196.608	28.088 56.176

$$y_n(t) = \begin{bmatrix} w_{n,1}^* & w_{n,2}^* & \cdots & w_{n,M}^* \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_M(t) \end{bmatrix}$$
 Fig. 6B

. . . >

$$\mathbf{v} = \begin{bmatrix} \alpha_1 \exp(j\phi_1) \\ \alpha_2 \exp(j\phi_2) \\ \vdots \\ \alpha_M \exp(j\phi_M) \end{bmatrix} \qquad \boxed{\text{FIG. 10}}$$