A Text on functionality

THIS TEXT TO BE MOVED TO AUTOMATA PAPER

Definition A.1 An A-valuation $V: A \to \wp D$ is said to separate a set $B \subseteq A$ if $|V^{\flat}(d) \cap B| \le 1$, for every $d \in D$. A sentence $\varphi \in ME^{\infty}(A)$ is B-separating if for every valuation $V: A \to \wp D$ such that $(D, V) \models \varphi$ there is a B-separating valuation $U \le_B V$ such that $(D, U) \models \varphi$.

Intuitively, a formula φ is *B*-separating if its truth in a monadic model never requires an element of the domain to satisfy two distinct predicates in *B* at the same time, in the sense that any valuation violating this constraint can be reduced to a valuation satisfying it, without sacrificing the truth of φ .

Lemma A.2 With $B \subseteq A$, let $\varphi \in (\mathtt{ME}^{\infty})^+(A)$ be a disjunction of formulas of the shape $\nabla^+_{\mathtt{ME}^{\infty}}(\overline{\mathbf{T}}, \Psi \cup \Sigma, \Sigma)$, where $\Sigma \subseteq \wp A$, $\Psi, \overline{\mathbf{T}} \subseteq \wp B$ are such that (1) $B \cap \bigcup \Sigma = \varnothing$ and (2) each $S \in \overline{\mathbf{T}} \cup \Psi$ is either empty or a singleton from B. Then φ is both separating and continuous in B.

As a consequence, under the same conditions as in the lemma, for every valuation $V: A \to \wp D$ such that $(D, V) \models \varphi$ we may find a B-separating valuation U such that $(D, U) \models \varphi$ and (1) U(b) is a finite subset of V(b), for all $b \in B$, and (2) U(a) = V(a), for all $a \in A \setminus B$.

THE FOLLOWING IS LEFT OVER FROM THE SECTION ON MONOTONICITY

We isolate the case when basic forms enforce a semantic property called *functionality*. This will be useful when defining non-deterministic parity automata.

Definition A.3 We say that $\varphi \in \text{ME}(A)$ is functional in $B \subseteq A$ if whenever $(D, V A \rightarrow \wp(D)) \models \varphi$ then there is a restriction V' of V such that $(D, V'A \rightarrow \wp(D)) \models \varphi$ and $s \in V'(b)$ for $b \in B$ implies $s \notin V'(a)$ for all $a \in A \setminus \{b\}$.

The syntactic shape guaranteeing functionality is the following.

Proposition A.4 Suppose that $\varphi \in \text{ME}(A)$ is equivalent to a sentence in the basic form $\bigvee \nabla_{\text{ME}}^+(\overline{\mathbf{T}},\Pi)$ where T_1,\ldots,T_k and each $S \in \Pi$ are either \emptyset of singletons $\{b\}$ for some $b \in B$. Then φ is functional in B.

Proof. Let (D, V) be a model where φ is true. Thus one disjunct $\nabla_{\mathtt{ME}}^+(\overline{\mathbf{T}}, \Pi)$ is true, that means, there are elements s_1, \ldots, s_k of D witnessing types T_1, \ldots, T_k respectively and all the other elements witness some $S \in \Pi$. By pruning from V any other assignment of predicates to elements of D but for the types they witness according to this description, we obtain a restriction V' of V such that $(D, V) \models \varphi$. Because T_1, \ldots, T_k are either \emptyset of singletons $\{b\}$ for some $b \in B$, such V' assigns at most one $b \in B$ to each element of D. Therefore φ is functional in B.

As for ME, we record a syntactic criterion for functionality, which is defined as in Definition A.3 with ME^{∞} replacing ME.

Definition A.5 We say that $\varphi \in \text{ME}(A)$ is functionally continuous in $B \subseteq A$ if whenever $(D, V A \to \wp(D)) \models \varphi$ then there is a restriction V' of V such that $(D, V' A \to \wp(D)) \models \varphi$ and for all $b \in B$

functionality $s \in V'(b)$ implies $s \notin V'(a)$ for all $a \in A \setminus \{b\}$ continuity V'(b) is finite.

Proposition A.6 If $\varphi \in ME(A)$ is in the basic form $\bigvee \nabla_{ME^{\infty}}^+(\overline{\mathbf{T}}, \Pi, \Sigma)$ with all T_1, \ldots, T_k, Π either empty or singletons, then it is functional in A.

<1

THE FOLLOWING IS LEFT OVER FROM THE SECTION ON CONTINUITY

Putting together the above lemmas we obtain Theorem 5.9. Moreover, a careful analysis of the translation gives us the following corollary, providing normal forms for the continuous fragment of ME^{∞} . Point ii below is tailored for applications to parity automata, see Theorem ??. We call a formula $\varphi \in ME^{\infty}(A)$ functionally continuous in $B \subseteq A$ when, given a model (D, V), g where φ is true, a restriction V' of V can be found that both witnesses continuity in each $b \in B$ and also witnesses functionality in each $b \in B$, in the sense of Definition A.3.

Corollary A.7 Let $\varphi \in ME^{\infty}(A)$, the following hold:

- (i) The formula φ is continuous in $a \in A$ iff it is equivalent to a formula in the basic form $\bigvee \nabla^a_{\mathbb{ME}^{\infty}}(\overline{\mathbf{T}}, \Pi, \Sigma)$ for some types $\Sigma \subseteq \Pi \subseteq \wp A$ and $T_i \subseteq A$ such that $a \notin \bigcup \Sigma$.
- (ii) The formula φ is functionally continuous in $B \subseteq A$ iff it is equivalent to a formula in the basic form $\bigvee \nabla_{\mathtt{ME}^{\infty}}^+(\overline{\mathbf{T}}, \Psi \cup \Sigma, \Sigma)$ for some types $\Sigma \subseteq \wp A$, $\Psi \subseteq \wp B$ and $T_i \subseteq B$ such that (1) for all $b \in B$, $b \notin \bigcup \Sigma$ and (2) T_1, \ldots, T_k and each $S \in \Psi$ are either empty or singletons.
- (iii) If φ is monotone in every element of A (i.e., $\varphi \in ME^{\infty+}(A)$) then φ is continuous in $a \in A$ iff it is equivalent to a formula in the basic form $\bigvee \nabla_{ME^{\infty}}^+(\overline{\mathbf{T}}, \Pi, \Sigma)$ for some types $\Sigma \subseteq \Pi \subseteq A$ and $T_i \subseteq A$ such that $a \notin \bigcup \Sigma$.

Proof. For i and iii, the observation is that in order to obtain $\Sigma \subseteq \Pi$ in the above normal forms it is enough to use Proposition 3.16 before applying the translation. For ii, fix a model (D, V) where $\bigvee \nabla_{\mathtt{ME}^{+}}^{+}(\overline{\mathbf{T}}, \Psi \cup \Sigma, \Sigma)$ is true. This means that a certain disjunct $\nabla_{\mathtt{ME}^{+}}^{+}(\overline{\mathbf{T}}, \Psi \cup \Sigma, \Sigma)$, by definition unfolding as

$$\exists \overline{\mathbf{x}}. \Big(\mathrm{diff}(\overline{\mathbf{x}}) \wedge \bigwedge_{i} \tau_{T_{i}}^{+}(x_{i}) \wedge \forall z. (\neg \mathrm{diff}(\overline{\mathbf{x}}, z) \vee \bigvee_{S \in \Psi \cup \Sigma} \tau_{S}^{+}(z) \wedge \forall^{\infty} y. \bigvee_{S \in \Sigma} \tau_{S}^{+}(y) \Big) \wedge \bigwedge_{S \in \Sigma} \exists^{\infty} y. \tau_{S}^{+}(y),$$

is true. Because by assumption $B \cap \Sigma = \emptyset$, point i yields a restriction V' of V such that $(D, V') \models \nabla^+_{\mathtt{ME}^{\infty}}(\overline{\mathbf{T}}, \Psi \cup \Sigma, \Sigma)$ and V' witnesses continuity of φ in B. functionality, observe that $\nabla^+_{\mathtt{ME}^{\infty}}(\overline{\mathbf{T}}, \Pi, \Psi \cup \Sigma)$ is the conjunction of sub-formulas $\nabla^+_{\mathtt{ME}}(\overline{\mathbf{T}}, \Psi \cup \Sigma)$ (first line of (??)) and ψ (second line).

For functionality, the syntactic shape of $\nabla_{\mathtt{ME}^{\infty}}^+(\overline{\mathbf{T}},\Psi\cup\Sigma,\Sigma)$ implies that (D,V') can be partitioned in three sets D_1,D_2 and D_3 as follows: D_1 contains elements s_1,\ldots,s_k witnessing types $\tau_{T_1}^+,\ldots,\tau_{T_k}^+$, respectively; among the remaining elements, there are infinitely many witnessing τ_S^+ for each $S\in\Sigma$ (these form D_2), and finitely many not witnessing any such τ_S^+ but witnessing τ_R^+ for some $R\in\Psi$ (these form D_3). If we now prune any other assignment of predicates to elements of D but for the types they witness according to this description, we obtain a restriction V'' of V' which still makes $\nabla_{\mathtt{ME}^{\infty}}^+(\overline{\mathbf{T}},\Psi\cup\Sigma,\Sigma)$ true. Moreover because T_1,\ldots,T_k and each $S\in\Psi$ are empty or singleton subsets of B and $\Sigma\cap B=\emptyset$, it shows that $\nabla_{\mathtt{ME}^{\infty}}^+(\overline{\mathbf{T}},\Psi\cup\Sigma,\Sigma)$ is functional in B, and still witnesses its continuity because V' does and

V'' is a restriction of V'. Proposition A.6 yields a restriction V'' of V' such that $(D,V'') \models \nabla_{\mathtt{ME}}^+(\overline{\mathbf{T}},\Psi\cup\Sigma)$ and V'' witnesses functionality in B of $\nabla_{\mathtt{ME}}^+(\overline{\mathbf{T}},\Psi\cup\Sigma)$. In order for such V'' to witness continuity in B and make $\nabla_{\mathtt{ME}}^+(\overline{\mathbf{T}},\Psi\cup\Sigma,\Sigma)$ true, it must preserve the condition imposed by ψ , i.e. that infinitely many nodes are marked with each $S\in\Sigma$ and only finitely many are not marked with any $S\in\Sigma$. It can be checked by inspection of $\nabla_{\mathtt{ME}}^{\Psi\cup\Sigma}(\overline{\mathbf{T}},\Pi)+$ that such a V'' is definable by pruning the valuation V' only for finitely many elements of D. Therefore, ψ remains true, $(D,V'')\models\nabla_{\mathtt{ME}}^+(\overline{\mathbf{T}},\Psi\cup\Sigma,\Sigma)$ and thus also $(D,V'')\models\varphi$ as required.