WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ :		11) International Publication Number: WO 93/18178
C12P 19/34, C07H 21/04	A1	43) International Publication Date: 16 September 1993 (16.09.93)
(21) International Application Number: PCT/US (22) International Filing Date: 11 March 1993		Kurtz Mackiewicz & Norris, One Liberty Place, 46th
(30) Priority data: 07/850,704 13 March 1992 (13.03.92) ¹	(81) Designated States: AU, CA, JP, European patent (AT, BE CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL PT, SE).
(71) Applicant: THE CHILDREN'S HOSPITAL OF ELPHIA [US/US]; 34th Street & Civic Cent vard, Philadelphia, PA 19104 (US).		
(72) Inventors: FORTINA, Paolo; 2200 Franklin Apartment N-1804, Philadelphia, PA 19130 (UREY, Saul; 1107 Ridgeway Street, Philadel 19116 (US).	JS). SU	<u>-</u>

SYSTEM

(57) Abstract

The present invention provides methods of diagnosing diseases such as β-thalassemia using a multiplex amplification refractory mutation system. In addition, kits useful for diagnosing diseases such as β-thalassemia are provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Amtria	FR	France	MR	Mauritania
· AU	Australia	GA	Gabon	MW	Malawi
88	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guigea	NO	Norway
ßF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
8.J	Benin	ΙE	ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Cote d'Ivoire	KZ	Kazakhstan	SN	Scnegal
CM	Сапитоки	L.I	Liechtenstein	SU	Soviet Union
cz	Czechoslovakia -	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	1.11	Luxembourg	TG	Togo
DE	Germany	MC	Монасо	UA	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES	Spain	M1.	Mali	٧N	Vict Nam
FI	Finland	MN	Manualia		

DIAGNOSIS OF β -THALASSEMIA USING A MULTIPLEX AMPLIFICATION REFRACTORY MUTATION SYSTEM

CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. application

5 Serial No. 850,703 filed March 13, 1992 entitled "Diagnosis of Cystic Fibrosis using Allele Specific Multiplex Polymerase Chain Reactions", assigned to the assignee of the present application and incorporated by reference in its entirety.

(Attorney Docket No. CH-0224)

10 FIELD OF THE INVENTION

277941

This invention is directed to the diagnosis of β -thalassemia using a novel multiplex amplification refractory mutation system.

BACKGROUND OF THE INVENTION

- Beta thalassemia is a heterogenous genetic disease associated with defective expression of β chain human hemoglobin (Hb). Weatherall, et al., The Thalassemia Syndromes 3rd Ed., (Blackwell, Oxford 1981). Its distribution encompasses the Mediterranean basin including North Africa 20 and the Middle East, as well as China, India and South-East Asia. Kazazian, H.H., Semin Hematol 27: 209 (1990). More than 100 mutations have been defined which lead to aberrant
 - expression of the β -globin gene in humans. Stamatoyannopoulos, G., et al., The Molecular Basis of Blood
- 25 Disease (W.B. Sauders Co., Philadelphia PA 1987). Of the several different types, the IVS-1 nt 1, IVS-1 nt 6, codon 39, IVS-1 nt 110, IVS-2 nt 1, IVS-2 nt 745 changes are the

most common mutations among Mediterraneans, and account for approximately 92% of the β-thalassemia defects in this area. Cao, A., et al. Br. J. Haematol 71: 309 (1989). A wide variety of strategies and techniques are currently available to detect mutations. Orkin, et al., Nature 296: 627 (1982); Saiki, et al., N. Engl. J. Med 319: 537 (1988); Losekoot, M., et al., Br. J. Haematol. 76: 269 (1990). However, none appear ideal for rapid screening of large numbers of samples. Foremost issues are detection of as many mutations as possible, cost effectiveness, rapidity and accuracy in obtaining the diagnosis, and eventually, the ability to handle large numbers of samples by automated methods. Methodology should also be simple enough to be utilized in clinical laboratories.

15 Analyses of DNA frequently take the form of restriction fragment length polymorphism (RFLP) using Southern blotting techniques. While this technique has been useful, it is relatively slow and only allows for the detection of limited number of polymorphic base changes which 20 either create or destroy a restriction endonuclease recognition site.

In addition, β-thalassemia has been diagnosed by using denaturing gradient gel electrophoresis and direct sequencing of PCR amplified genomic DNA. This procedure is limited by the labor intensive nature of the procedure. Thereby increasing cost and decreasing the number of samples which can be tested.

The amplification refractory mutation system is another method which has been used to diagnose β -thalassemia.
30 Varawalla, et al., Brit. J. of Haematology 78: 242-247 (1991). This technique involves PCR primers having allele specific 3' nucleotides and corresponding "normal" primers having normal 3' nucleotides. In addition, because in some cases a single 3' allele specific base does not allow amplification to proceed, additional mismatches near the 3' end of appropriate primers are introduced. This procedure was used to screen individually for a number of different β -

thalassemia mutations including IVS1 nt110, IVS1 nt1, IVS1 nt6, codon 39, codon 6, and IVS2 nt 745. However, simultaneous detection of multiple mutant alleles has not been accomplished. The ability to detect multiple allelic mutations simultaneously is of utmost importance for the detection of as many mutations as possible and for cost effectiveness, rapidity and accuracy in obtaining diagnosis. Furthermore, the detection of multiple mutant alleles is important for the eventual automation of a diagnostic test.

- Multiplex PCR is another procedure which has been used for the diagnosis of diseases characterized by mutant alleles. Multiplex is useful for the simultaneous amplification of multiple target sequences permitting multiple mutant alleles to be scanned in a single lane of an agarose gel. This strategy involves appropriate choice of
 - primer pairs so that PCR fragments (either normal or mutant) are generated of different size which can be easily resolved by comparison of samples run in parallel lanes. In males, deletional forms of X-linked diseases such as Lesch-Nyhan
- syndrome and Duchenne muscular dystrophy are immediately obvious with this procedure, since missing exons are readily apparent in the amplification pattern. (Gibbs, et al., Genomics, 7: 235-244 (1990); Chamberlain, et al., Nucleic Acid Research 16: 11141-11156 (1988); Beggs, et al., Human
- 25 Genet. 86: 45-48 (1990). Such a diagnostic tool, effective for detecting multiple allelic mutations, quickly and accurately, is greatly desired for the detection of β -thalassemia.

In particular, a cost-effective, simple, rapid test that specifically detects the five prevalent mutations of the β -globin gene associated with β -thalassemia would be of major benefit, and could be applied to common mutations in other population groups as well.

SUMMARY OF THE INVENTION

WO 93/18178

WHATEH

Methods of diagnosing β -thalassemia which are effective for simultaneously detecting multiple allelic

mutations quickly and accurately are provided by the present The methods of the present invention comprise the steps of obtaining genomic DNA from a patient suspected of carrying a genetic mutation characteristic of β -thalassemia 5 and selecting at least two primer sets for detecting at least two mutations characteristic of β -thalassemia. Each primer set is comprised of two primer pairs, a first primer pair comprising a specific primer for a normal allele, and a second primer pair comprising a specific primer for a mutant 10 allele. Each pair further comprises a common primer. polymerase chain reaction is performed in accordance with methods of the present invention using said genomic DNA and said at least two primer sets whereby primer pairs comprising a specific primer for a normal allele are used simultaneously 15 and primer pairs comprising a specific primer for a mutant allele are used simultaneously. Two or more polymerase chain reaction products are detected whereby the detection of a polymerase chain reaction product of a specific primer for a mutant allele indicates the likelihood that said patient 20 carries a mutation characteristic of the phenotype β -In some embodiments of the present invention, thalassemia. each specific primer is differentially labeled. other embodiments of the present invention the genomic DNA and all differentially labeled primer sets are used 25 simultaneously to perform the polymerase chain reaction.

In another embodiment of the present invention kits are provided comprising four dNTPs and at least two primer sets selected from the group consisting of

IVS-1 nt1-N TTAAACCTGTCTTGTAACCTTGATACGAAC (SEQ ID NO: 1), 30 IVS-1 nt1-M TTAAACCTGTCTTGTAACCTTGATACGAAT (SEQ ID NO: 2), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);

IVS-1 nt6-N TCTCCTTAAACCTGTCTTGTAACCTTCATA (SEQ ID NO: 4), IVS-1 nt6-M TCTCCTTAAACCTGTCTTGTAACCTTCATG (SEQ ID NO: 5), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);

35 IVS-1 nt110-N ACCAGCAGCCTAAGGGTGGGAAAATAGTCC (SEQ ID NO: 6), IVS-1 nt110-M ACCAGCAGCCTAAGGGTGGGAAAATAGTCT (SEQ ID NO: 7), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);

Codon 39-N CAGATCCCCAAAGGACTCAAAGAACCTGTG (SEQ ID NO: 8),

HAMMAN

Codon 39-M CAGATCCCCAAAGGACCTCAAAGAACCTGTA (SEQ ID NO: 9), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3; and

IVS-2 nt 1-N AAGAAAACATCAAGGGTCCCATAGACTGAC (SEQ ID NO: 10), IVS-2 nt 1-M AAGAAAACATCAAGGGTCCCATAGACTGAT (SEQ ID NO: 11), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3).

It is therefore an object of the invention to provide methods of diagnosing β -thalassemia. It is a further object of the invention to provide kits useful for diagnosing β -thalassemia. These and other objects will become apparent by an examination of the detailed description and accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of the strategy for multiplex amplification of the areas 15 encompassing the most common β -thalassemia mutations in Mediterraneans. Approximate locations of the five most common β -thalassemia mutations are indicated (Δ) within the β -globin gene. Multiplex amplification is accomplished using a common upstream primer (β -CRP1) and a mixture selected from 20 five normal and/or five mutant primers in each polymerase chain reaction. The size of expected PCR products in base pairs is also shown.

Figure 2 shows PCR amplification of normal DNA using normal primers (lanes 2, 4, 6, 8 and 10) or mutant primers for the same regions (lanes 3, 5, 7, 9 and 11). Multiplex amplification of four regions in normal DNA encompassing IVS-2 nt 1, codon 39, IVS-1 nt 110 and IVS-1 nt 6 with normal primers (lane 12) or mutant primers (lane 13) is also shown. Lanes 14 and 15 show the same pattern of multiplex allele-specific PCR using the IVS-1 nt 6 normal and mutant primers, respectively. PCR products are sized relative to markers generated from a Hae III digest of \$\phi\$X174 Rf DNA (lane 1). Arrows show location of each PCR product using indicated primers.

35 Figure 3 shows the detection of common Mediterranean β -thalassemia mutations by a multiplex amplification refractory mutation system. All amplifications

were done with either normal (N) or mutant (M) primer pairs corresponding to the IVS-1 nt 1, IVS-2 nt 1, codon 39, IVS-1 nt 110 and IVS-1 nt 6 regions of the human β-globin gene. Multiplex amplification was done using separate reactions containing a mixture of either normal or corresponding mutant primer pairs with normal genomic DNA (lanes 10, 11, and 12), DNA from a heterozygote for the IVS-2 nt 1 mutation (lanes 2 and 3), DNA from a heterozygote for the IVS-1 nt 1 mutations (lanes 4 and 5), DNA from a compound heterozygote for the codon 39 and IVS-1 nt 1 mutations (lanes 6 and 7), DNA from a compound heterozygote for -29 and codon 24 mutations (lanes 8 and 9), respectively. PCR products are sized relative to markers generated from a Hae III digest of φX174 Rf DNA (lane 1).

15 DETAILED DESCRIPTION OF THE INVENTION

Rapid, simple, non-radioactive methods for detection of mutations causing a disease such as β-thalassemia are provided by the present invention. In some methods of the present invention, genomic DNA is obtained from a patient suspected of carrying a genetic mutation characteristic of a disease such as β-thalassemia. Genomic DNA may be extracted by methods described by Poncz, et al., Hemoglobin 6: 27-33 (1982) or with an automated extractor (Applied Biosystems, Inc., Foster City, CA). Other methods for extraction of genomic DNA known to those skilled in the art are also encompassed by the present invention.

More than 100 mutations have been defined which lead to aberrant expression of β -globin gene in humans. Stamatoyannopoulos, G., et al., The Molecular Basis of Blood 30 Disease (W.B. Sauders Co., Philadelphia PA 1987). Some of the most common, accounting for approximately 92% of the β -thalassemia defects in the Mediterranean, are IVS-1 nt 1, IVS-1 nt 6, IVS-1 nt 110, codon 39 and IVS-2 nt 1.

A multiplex amplification refractory mutation

35 system can be used to detect mutations such as the mutations described above by the appropriate choice of primers. In

some embodiments of the present invention a primer strategy such as the strategy set forth in Figure 1 can be used to detect at least two β -thalassemia mutations. Primers are designed so that the size of the resulting PCR products differ, thereby facilitating detection. Oligonucleotide primers of the present invention can be synthesized by procedures known to those skilled in the art such as by solid state phosphoramidite synthesis.

In accordance with methods of the present invention 10 at least two primer sets for detecting at least two mutations characteristic of a disease such as β -thalassemia are selected. In some embodiments of the present invention four primer sets are selected useful for diagnosing four mutations characteristic of β -thalassemia. In still further preferred 15 embodiments of the present invention five primer sets are selected which are useful for detecting five mutations characteristic of β -thalassemia. Each primer set is comprised of two primer pairs. A first primer pair is comprised of a 3' primer specific for a normal allele. A second primer pair 20 is comprised of a 3' primer specific for a mutant allele such as an allele specific for β -thalassemia. A mismatched residue is incorporated at the third nucleotide in from the 3' nucleotide, Newton, et al., Nucleic Acid Research 17: 2503 (1989), in both normal and mutant 3' primers in order to 25 ensure selective amplification. The 3' primers differ from each other only at their terminal 3' nucleotide. example, the 3' nucleotide of the 3' primer of the first primer pair is substantially complementary to the nucleic acid sequence of a normal allele. The 3' nucleotide of the 3' 30 primer of the second primer pair may be substantially complementary to the nucleic acid sequence of a eta-thalassemia Each 3' primer has a mismatched incorporated at mutation. the third nucleotide in from its 3' nucleotide. Each primer pair further comprises a common primer. Thus, the nucleic 35 acid sequence of the common primer is the same for both primer pairs comprising a primer set. Under proper annealing temperatures and polymerase chain reaction conditions, these

HHAMMAN

primers pairs only direct amplification of their complementary allele. For example, normal genomic DNA will be amplified by the first primer pair which is specific for a normal allele. The second primer pair, specific for a mutant allele will not amplify genomic DNA from a normal patient.

In some preferred embodiments of the present invention, each 3' specific primer is differentially labeled, resulting in differentially labeled PCR products. Any label known to those skilled in the art which can be easily differentiated clinically are encompassed by the present invention. For example, dyes known to those skilled in the

- art may be useful to distinguish PCR products based upon color differentiation. In preferred embodiments of the present invention fluorescent dyes such as FAM™ (blue), JOE™ (green), TAMRA™ (yellow) and ROX™ (red) (Applied Biosystems, Inc., Foster City, CA) may be used. Differential labels may
 - be linked to oligonucleotide primers of the present invention by methods known to those skilled in the art, such as by linker molecules. Linker molecules useful in the present
- invention may be selected from any of a variety of linker molecules available to those skilled in the art, such as a reactive aminohexyl linker (Aminolink). In other embodiments of the present invention differential label may be incorporated during synthesis of the oligonucleotide primers.
- 25 In still other embodiments of the present invention, PCR products are labeled by differential recognition by a labeled probe or chemical moiety such as a rhodamine coupled antibody. For example, the specific primer for the IVS-1 nt 1 mutant allele may be labeled with yellow dye and the IVS-1 nt
- 30 1 normal allele labeled with blue dye. By detecting a yellow signal, one skilled in the art would be apprised that the patient has a IVS-1 nt 1 mutant allele. A blue signal would indicate a normal allele.

Some primer sets useful in the present invention 35 are set forth in Table I.

TABLE I

	Mq	90	06	06	_	10	10	10	10 10 20	10 10 90 20			<u>-</u>			- 9 - 10 6 - 10 6 - 10 6 0 10 0 0 10 0 0 10 0 0
		├			_	_										
SETS USED FOR MUTATION DETECTION	Sequence	TTAAACCTGTCTTGTAACCTTGATACGAAC	TTAAACCTGTCTTGTAACCTTGATACGAAT	ACCTCACCCTGTGGAGCCAC	TCTCCTTAAACCTGTCTTGTAACCTTCATA		TCTCCTTAAACCTGTCTTGTAACCTTCATG	TCTCCTTAAACCTGTCTTGTAACCTTCA' ACCTCACCCTGTGGAGCCAC	TCTCCTTAAACCTGTCTTGTAACCTTCATG ACCTCACCCTGTGGAGCCAC ACCAGCAGCCTAAGGGTGGGAAAATAGTCC	TCTCCTTAAACCTGTCTTGTAACCTTCATG ACCTCACCCTGTGGAGCCAC ACCAGCAGCCTAAGGGTGGGAAAATAGTCC	TCTCCTTAAACCTGTCTTGTAACCTTCAY ACCTCACCCTGTGGAGCCAC ACCAGCAGCCTAAGGGTGGGAAAATAGT	TCTCCTTAAACCTGTCTTGTAACCTTCATG ACCTCACCCTGTGGAGCCAC ACCAGCAGCCTAAGGGTGGGAAAATAGTCC ACCAGCAGCCTAAGGGTGGGAAAATAGTCT ACCTCACCCTGTGGAGCCAC CAGATCCCCAAAGGACTCAAAGAACCTGTG	TCTCCTTAAACCTGTCTTGTAACCTTCATG ACCTCACCCTGTGGAGCCAC ACCAGCAGCCTAAGGGTGGGAAAATAGTCC ACCAGCAGCCTAAGGGTGGGAAAATAGTCT ACCTCACCCTGTGGAGCCAC CAGATCCCCAAAGGACTCAAAGAACCTGTG	TCTCCTTAAACCTGTCTTGTAACCTTCAAAAAAAAAAAA	TCTCCTTAAACCTGTCTTGTAACCTTCATG ACCTCACCCTGTGGAGCCAC ACCAGCAGCCTAAGGGTGGGAAATAGTCC ACCAGCAGCCTAAGGGTGGGAAAATAGTCT ACCTCACCTAAGGGTGGGAAAATAGTCT CAGATCCCAAAGGACCTCAAAGAACCTGTG CAGATCCCCAAAGGACTCAAAGAACCTGTA ACCTCACCTGTGGAGCCAC AAGAAAACATCAAGGGTCCCATAGACTGAC	TCTCCTTAAACCTGTCTTGTAACCTTCATG ACCTCACCCTGTGGAGCCAC ACCAGCAGCCTAAGGGTGGGAAAATAGTCC ACCAGCAGCCTAAGGGTGGGAAAATAGTCT ACCTCACCCTAAGGGTGGGAAAATAGTCT ACCTCACCCTAAGGACTCAAAGAACCTGTG CAGATCCCCAAAGGACTCAAAGAACCTGTA ACCTCACCCTGTGGAGCCCAC AAGAAAACATCAAGGGTCCCATAGACTGAT
	ıe	-														
USED	Primer Type	normal	mutant	Common	normal		mutant	mutant	mutant common normal	mutant common normal mutant	mutant common normal mutant common	mutant common normal mutant common normal	mutant common normal mutant common normal	mutant common normal mutant common normal mutant	mutant common mutant common normal mutant common	mutant common mutant common normal mutant common normal
	ates	+172	to +172	-89	+178		+178	+178 -89	to +178 to -89 to +282	to +178 to -89 to +282 to +282	+178 -89 +282 +282 -89	to +178 to -89 to +282 to +282 to -89 to +327	+178 -89 +282 +282 -89 +327	+178 -89 +282 +282 -89 +327 -89	+178 -89 +282 +282 -89 +327 +327 +525	+178 -89 +282 +282 -89 +327 +327 +525
William I Total	Coordinates	to)9 to	ţ		to	t t								
	ŏ	+143	+143	-109	+149		+149	+149	+149 -109 +253	+149 -109 +253 +253	+149 -109 +253 +253 -109	+149 -109 +253 +253 -109 +298	+149 -109 +253 +253 -109 +298	+149 -109 +253 +253 -109 +298 +298	+149 -109 +253 +253 -109 +298 +298 +496	+149 -109 +253 +253 -109 +298 -109 +496
	Primer	IVS-1 nt 1-N	IVS-1 nt 1-M	β-CRP1	IVS-1 nt 6-N	: > : : :	IVS-1 nt 6-M	IVS-1 nt 6-M β-CRP1	t t	IVS-1 nt 6-M β-CRP1 IVS-1 nt 110-N IVS-1 nt 110-M	IVS-1 nt 6-M β-CRP1 IVS-1 nt 110-N β-CRP1	IVS-1 nt 6-M β-CRP1 IVS-1 nt 110-N IVS-1 nt 110-M β-CRP1 Codon 39-N	1VS-1 nt 6-M β-CRP1 IVS-1 nt 110-N IVS-1 nt 110-M β-CRP1 Codon 39-M Codon 3	IVS-1 nt 6-M β-CRP1 IVS-1 nt 110-N IVS-1 nt 110-M β-CRP1 Codon 39-N Codon 39-M	IVS-1 nt 6-M \$\beta\$-CRP1 IVS-1 nt 110-M \$\beta\$-CRP1 Codon 39-M \$\beta\$-CRP1 IVS-2 nt 1-N	IVS-1 nt 6-M β-CRP1 IVS-1 nt 110-M β-CRP1 Codon 39-M β-CRP1 IVS-2 nt 1-N IVS-2 nt 1-M
	SEQ. ID NO:	1	8	е	4	-	ស								0	
	Set No.	H			8				ю	ю	м					

Coordinates are given relative to the cap site (+1) of the β -globin gene, with "N" indicating normal and "M" mutant primers, respectively. β -CRP1 refers to the common primer having a sequence common to both primer pairs. Bold letters identify 3' mutation and second base change at 3 nucleotides in from the 3' nucleotide. Picomoles (pM) of each primer used per primer pair is also indicated. Sequences are provided in the 5' to 3' direction.

Other primer sets useful to detect a particular disease such as β -thalassemia can be identified using methods known to those skilled in the art. The first member in each set is the specific primer for a normal allele, the second member of each set is the specific primer for the corresponding mutant allele, and the third member of each set is the common primer included in each primer pair.

At least two mutant alleles can be detected simultaneously by methods of the present invention. It is encompassed by some embodiments of the present invention to perform two polymerase chain reactions per diagnosis. In one 20 PCR reaction mixture, primer pairs for normal alleles from each primer set are used. In a second reaction mixture, all primer pairs for mutant alleles from each primer set are used. Thus each polymerase chain reaction in such a diagnostic test causes amplification of genomic DNA using 25 either primers specific for mutant or normal alleles, i.e. half of each primer set per reaction, an entire primer set per diagnosis. Resulting PCR products are run in parallel on gels to detect the presence or absence of bands. example, diagnosis of β -thalassemia is accomplished in some 30 embodiments of the present invention, by comparison of normal and mutant polymerase chain reaction products. Figure 3, for example, shows four, two PCR diagnoses using five primer sets In each diagnosis, one PCR reaction was performed with 3' primers specific for normal alleles (lanes 2,4,6 and 8) 35 and one PCR reaction was performed with primers specific for mutant alleles (lanes 3,5,7 and 9). PCR products run in parallel on a gel confirmed the following genotypes, a

Þ

heterozygote for the IVS-2 nt 1 mutation (comparison of lanes 2 and 3), heterozygote for the IVS-1 nt 1 mutation (comparison of lanes 4 and 5), compound heterozygote for the codon 39 and IVS-1 nt 1 mutations (comparison of lanes 6 and 5). Diagnosis, may be used in the context of the present invention to encompass a procedure whereby two or more primer sets are amplified and interpreted in order to determine the presence or absence of selected normal and mutant alleles in a particular genomic DNA sample. As has been exemplified above, a diagnosis may encompass one or more polymerase chain reactions.

In preferred embodiments of the present invention both members of each primer pair of at least two primer sets are used simultaneously in a single polymerase chain reaction which is run on a single lane of a gel. Differential labels, as described above, are useful herein for distinguishing polymerase chain reaction products, especially those having similar mobilities. Thus PCR products can be distinguished by mobility and label. In addition, labels, such as fluorescent labels may be particularly amenable to automated methods.

In some preferred embodiments of the present invention at least two of the primer sets provided in Table I are selected. It is still more preferred in some embodiments of the present invention to select all of the primer sets of Table I. In some embodiments of the present invention the primer sets 1 (IVS-1 nt 1 N and M), 3 (IVS-1 nt 110 N and M), 4 (Codon 39 N and M) and 5 (IVS-2 nt 1 N and M) are selected. In still other embodiments of the present invention the primer sets 1 (IVS-1 nt 1 N and M), 3 (IVS-1 nt 110 N and M) and 4 (Codon 39 N and M) in accordance with some embodiments of the present invention. In still other embodiments of the present invention the primer sets 3 (IVS-1 nt 110 N and M) and 4 (Codon 39 N and M) are selected.

Kits are also provided by the present invention comprising four dNTPs and at least two primer sets selected from the primer sets provided in Table I.

The following examples are illustrative, but should not be construed as limiting the present invention.

EXAMPLES

EXAMPLE 1

5 DNA Samples

DNA samples were obtained from normal controls and patients either homozygous or heterozygous for the common β-thalassemia Mediterranean mutations. Genomic DNA was extracted using protocols previously described in Poncz,

10 M.D., et al., Hemoglobin 6: 27-33 (1982) or with an automated extractor (ABI, Foster City, CA). Genotypes were confirmed either by DNA sequence analysis using PCR based, cyclesequencing approach employing laser-activated fluorescence-emission DNA sequencer; Tamary, et al., Amer. J. Hemat. in press (1992); Trifillis, et al., Blood 78: 3298 (1991); McBride, et al., Clin Chem 35: 2196 (1989); or by denaturing gradient gel electrophoresis. Diazani, et al., Genomics (in press), Losekoot, et al., Br. J. Haematol 76: 269 (1990).

EXAMPLE 2

20 Primer Synthesis

Unlabelled oligonucleotide primers were prepared on a 380B DNA Synthesizer (ABI, Foster City, CA) by the phosphoramidite method at 0.2 mmol scale with (2-0-cyano-ethyl)-phosphoramidites; Caruthers, M.H., et al., Methods in 25 Enzymol. 154: 287-313 (1987); and were then purified. Oligonucleotide primers were prepared for fluorescent labeling following standard phosphoramidite chemistry preparation by attachment of a reactive aminohexyl linker group (Aminolink) to the 5' end of the primer. Draper, D. and L.E. Gold, Biochemistry 19: 1774-1781 (1980). Following cleavage from the solid support, and deprotection, each modified primer was then reacted with an N-hydroxyl succinimide ester derivative of a distinct dye. ABI 370 user bulletin (1989). The dye labeled primer was then removed 35 from excess reactants via high performance liquid

chromatography purification. Sequences of the oligonucleotide primers are as provided in Table I.

EXAMPLE 3

Polymerase Chain Reaction

- PCR was performed according to methods previously described by Saiki, R.K., et al., Science 239: 487-489 (1988). Reaction mixtures (25μl) contained 100ng of genomic DNA, 1.5 μM of each dNTP, the common primer and normal and/or mutant primers in a buffer containing 6.7mM MgCl₂, 16.6 mM (NE) SO. 5.0 μM SWE 6.8 mM EDER 67.0 mM EDER 47.0 mM E
- 10 $(NF_4)_2SO_4$, 5.0 μ M β ME, 6.8 mM EDTA, 67.0 mM Tris HCl pH 8.8, 10% (v/v) DMSO. The mixture was heated at 95°C for 5 minutes to denature the DNA, and then quickly chilled on ice. Taq DNA polymerase (1.5 U, Perkin Elmer, Norwalk, CT) was added before overlaying the samples with 25 μ l of mineral oil. The
- samples were then subjected to 30 cycles on a DNA thermal cycler (Perkin-Elmer Cetus, Norwalk, CT) with denaturation at 95°C for 1 minute, annealing at 60°C for 1 minute, and extension at 72°C for 1 minute. The last cycle had a 5 minute extension at 72°C. Approximately 15µl of the PCR
- 20 product were then analyzed following electrophoresis on a 3% (w/v) agarose (NuSieve GTG) gel.

EXAMPLE 4

distriction

Selectivity of Oligonucleotide Primers

- Differently sized PCR products were produced based

 25 upon the strategy illustrated in Figure 1. Unlabelled normal
 and mutant PCR primers were synthesized so their terminal 3'
 nucleotide corresponds to either a normal or mutant sequence.
 An additional mismatched residue was also incorporated at 3
 nucleotides in from the 3' nucleotide, Newton, et al.,
- 30 Nucleic Acid Research 17: 2503 (1989), in both normal and mutant specific primers in order to ensure selective amplifications. Primers were tested with normal and available mutant DNA samples under stringent PCR conditions to ensure that selective amplification occurred with either normal or
- 35 mutant primers. The strategy for multiplex generation of

differently sized PCR products was accomplished using a single common primer located at -109 base pairs upstream of the β-globin gene. Sequence of this primer was identical to the normal sequence. Poncz, et al., J. Biol. Chem. 258: 11599 (1982). Normal and mutant products were scored by the presence or absence of correctly sized bands following electrophoresis on agarose gel. PCR was performed in accordance with Example 3.

Separate amplifications using normal primers for

each of the five regions in normal DNA gives single bands of
expected size (Figure 2, lanes 2,4,6,8 and 10). No
amplification products were seen with the mutant primer set
(Figure 2, lanes 3,5,7,9 and 11). Multiplex amplification of
4 regions in normal DNA encompassing IVS-2 nt 1, codon 39,

IVS-1 nt 110 and IVS-1 nt 6 with normal primers (lane 12) or
mutant primers (lane 13) yields the expected combined
pattern. Lanes 14 and 15 show the same pattern of multiplex
allele-specific PCR using the IVS-1 nt 6 normal and mutant
primers respectively.

20 EXAMPLE 5

Diagnosis of β -Thalassemia

Different known \(\beta\)-Thalassemia genotypes were used to test the accuracy of the method. Unlabeled mutant and normal PCR products IVS-1 nt 1 and IVS-1 nt 6 are too similar in size to be resolved using this multiplex method. Thus, in order to test the primers four separate PCR reactions were performed in accordance with Example 3. Four mutations were tested by doing two separate PCR reactions. Each reaction contained the common primer and either four mutant or four normal primers for the IVS-1 nt 1, IVS-1 nt 110, codon 39 and IVS-2 nt 1 mutations. Screening for the IVS-1 nt 6 mutations was done in two separate PCR reactions (with normal and mutant primer). Data are shown in Figure 3 confirming the following genotypes, a heterozygote for the IVS-2 nt 1 mutation (comparison of lanes 2 and 3), heterozygote for the IVS-1 nt 1 mutation (comparison of lanes 4 and 5), compound

说的编码研

heterozygote for the codon 39 and IVS-1 nt 1 mutations (comparison of lanes 6 and 7).

EXAMPLE 7

Diagnosis of Five Common β -Thalassemia Mutations using 5 Pluorescently Labeled Primers

Diagnosis is carried out as provided in Example 5, except that both normal and mutant allele primers are combined in a single PCR reaction mixture. Each reaction contains the common primer and five mutant and five normal 10 primers for the IVS-1 nt 1, IVS-2 nt 1, IVS-1 nt 6, codon 39 and IVS-1 nt 110 regions of the human β -globin gene. are labeled as follows: IVS-1 nt 1-N (blue), IVS-1 nt 1-M (green), IVS-1 nt 6-N (yellow), IVS-1 nt 6-M (red), IVS-1 nt 110-N (blue), IVS-1 nt 110-M (green) Codon 39-N (yellow), 15 Codon 39-M (red), IVS-2 nt 1-N (blue), IVS-2 nt 1-M (green). A fluorescently labeled marker lane in run in a separate lane to facilitate sizing PCR products. The PCR product is then analyzed following electrophoresis on a 3% (w/v) agarose (NuSieve GTG) gel using a multi-line argon ion laser such as 20 a GENE SCANNER™ (Applied Biosystems, Inc. Foster City, CA) to detect the fluorescently labeled PCR products. Multicolored bands indicate heterozygosity for an allele, while single colored bands indicate homozygosity for an allele.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Fortina, Paolo Surrey, Saul (11) TITLE OF INVENTION: DIAGNOSIS OF B-THALASSEMIA USING A MULTIPLEX AMPLIFICATION REFRACTORY MUTATION SYSTEM

(111) NUMBER OF SEQUENCES: 11

CORRESPONDENCE ADDRESS: (1v)

Washburn Kurtz Mackiewicz and Norris ADDRESSEE: Woodcock

Place - 46th Floor STREET: One Liberty <u>ပ</u>

CITY: Philadelphia

STATE: PA

COUNTRY: U.S.A. 9 (E) (E)

ZIP: 19103

COMPUTER READABLE FORM: 3

MEDIUM TYPE: Floppy disk (A) (B)

COMPUTER: IBM PC compatible

SOFTWARE: PatentIn Release #1.0, Version #1.25 OPERATING SYSTEM: PC-DOS/MS-DOS (O)(E)

CURRENT APPLICATION DATA: (vi)

APPLICATION NUMBER: 3

FILING DATE: (B)

CLASSIFICATION: <u>(</u>) (viii) ATTORNEY/AGENT INFORMATION:

REGISTRATION NUMBER: 27,200

REFERENCE/DOCKET NUMBER: CH-0225 (A) NAME: Johnson, Philip S.(B) REGISTRATION NUMBER: 27,(C) REFERENCE/DOCKET NUMBER: =

WHITE IN

TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 215-569-3100 (B) TELEFAX: 215-568-3439

(ix)

TELEFAX: 215-568-3439

30

30

(ii) MOLECULE TYPE: DNA (genomic)

LENGTH: 30 base pairs

TYPE: nucleic acid

€<u>@</u>00

SEQUENCE CHARACTERISTICS:

E

(2) INFORMATION FOR SEQ ID NO:1:

STRANDEDNESS: single

TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TTAAACCTGT CTTGTAACCT TGATACGAAC

(2) INFORMATION FOR SEQ ID NO:2:

LENGTH: 30 base pairs SEQUENCE CHARACTERISTICS: <u>:</u>

TYPE: nucleic acid

STRANDEDNESS: single TOPOLOGY: linear **a**0a

MOLECULE TYPE: DNA (genomic) (11)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TTAAACCTGT CTTGTAACCT TGATACGAAT

30

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:3:

(11) MOLECULE TYPE: DNA (genomic)

SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs

(Ţ)

(2) INFORMATION FOR SEQ ID NO:3:

TYPE: nucleic acid STRANDEDNESS: single

€£00

TOPOLOGY: linear

ACCTCACCCT GTGGAGCCAC

(2) INFORMATION FOR SEQ ID NO:4:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(11) MOLECULE TYPE: DNA (genomic)

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TCTCCTTAAA CCTGTCTTGT AACCTTCATA

(2) INFORMATION FOR SEQ ID NO:5: (1)

(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid SEQUENCE CHARACTERISTICS:

30

(2) INFORMATION FOR SEQ ID NO:6:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TCTCCTTAAA CCTGTCTTGT AACCTTCATG

(ii) MOLECULE TYPE: DNA (genomic)

STRANDEDNESS: single

(C) STRANDEDNESS: si
(D) TOPOLOGY: linear

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 base pairs

TYPE: nucleic acid STRANDEDNESS: single

TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ACCAGCAGCC TAAGGGTGGG AAAATAGTCC

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 base pairs TYPE: nucleic acid (B)

STRANDEDNESS: single TOPOLOGY: linear <u>(a)</u>

(ii) MOLECULE TYPE: DNA (genomic)

• ;

7

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ACCAGCAGCC TAAGGGTGGG AAAATAGTCT

(2) INFORMATION FOR SEQ ID NO:8:

30

30

(ii) MOLECULE TYPE: DNA (genomic)

LENGTH: 30 base pairs

TYPE: nucleic acid

€££0£

(1) SEQUENCE CHARACTERISTICS:

STRANDEDNESS: single

TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CAGATCCCCA AAGGACTCAA AGAACCTGTG

(2) INFORMATION FOR SEQ ID NO:9:

LENGTH: 30 base pairs

SEQUENCE CHARACTERISTICS:

(i)

STRANDEDNESS: single TYPE: nucleic acid

TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CAGATCCCCA AAGGACTCAA AGAACCTGTA

30

WHITE IN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

(ii) MOLECULE TYPE: DNA (genomic)

SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs

(ï)

(2) INFORMATION FOR SEQ ID NO:10:

STRANDEDNESS: single

TOPOLOGY: linear

TYPE: nucleic acid

AAGAAAACAT CAAGGGTCCC ATAGACTGAC

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

AAGAAAACAT CAAGGGTCCC ATAGACTGAT

PCT/US93/02260

5

10

15

25

What is claimed is:

1. A method of diagnosing β -thalassemia comprising the steps of:

obtaining genomic DNA from a patient suspected of carrying a genetic mutation characteristic of the phenotype β -thalassemia;

selecting at least two primer sets for detecting at least two mutations characteristic of β -thalassemia, each set being comprised of two primer pairs, a first primer pair comprising a specific primer for a normal allele, and a second primer pair comprising a specific primer for a mutant allele, each pair further comprising a common primer;

detecting two or more polymerase chain reaction products whereby the detection of a polymerase chain reaction product of a specific primer for a mutant allele indicates the likelihood that said patient carries a mutation characteristic of the phenotype β -thalassemia.

- 2. The method of claim 1 wherein at least four primer sets are selected.
- 3. The method of claim 1 wherein at least five primer sets are selected.
 - 4. The method of claim 1 wherein the step of selecting at least two primer sets further comprises selecting primer sets in which each specific primer is differentially labeled.
 - 5. The method of claim 4 wherein the step of performing a polymerase chain reaction further comprises using said genomic DNA and all differentially labeled primer sets simultaneously.
- 30 6. The method of claim 1 wherein the step of selecting further comprises selecting primer sets comprising

FTMBHBHI

40

a first, second and third member, the first member being a specific primer for a normal allele, the second member being a specific primer for a mutant allele, and the third member being a common allele from the group consisting of:

```
IVS-1 nt1-N
                   TTAAACCTGTCTTGTAACCTTGATACGAAC (SEQ ID NO: 1),
     IVS-1 nt1-M
                   TTAAACCTGTCTTGTAACCTTGATACGAAT (SEQ ID NO: 2),
     and \beta-CRP1
                   ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);
     IVS-1 nt6-N
                   TCTCCTTAAACCTGTCTTGTAACCTTCATA (SEQ ID NO: 4),
     IVS-1 nt6-M
                   TCTCCTTAAACCTGTCTTGTAACCTTCATG (SEQ ID NO: 5),
10
     and \beta-CRP1
                   ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);
    IVS-1 nt110-N ACCAGCAGCCTAAGGGTGGGAAAATAGTCC (SEQ ID NO: 6),
    IVS-1 nt110-M ACCAGCAGCCTAAGGGTGGGAAAATAGTCT (SEQ ID NO: 7),
    and \beta-CRP1
                 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);
    Codon 39-N
                  CAGATCCCCAAAGGACTCAAAGAACCTGTG (SEQ ID NO: 8),
15
    Codon 39-M
                  CAGATCCCCAAAGGACTCAAAGAACCTGTA (SEQ ID NO: 9),
    and \beta-CRP1
                  ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3); and
    IVS-2 nt 1-N AAGAAAACATCAAGGGTCCCATAGACTGAC (SEQ ID NO: 10),
    IVS-2 nt 1-M AAGAAAACATCAAGGGTCCCATAGACTGAT (SEQ ID NO: 11),
    and \beta-CRP1
                  ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3).
```

7. The method of claim 1 wherein the polymerase chain reaction is performed by using said genomic DNA and the primer sets:

```
IVS-1 nt1-N TTAAACCTGTCTTGTAACCTTGATACGAAC (SEQ ID NO: 1), IVS-1 nt1-M TTAAACCTGTCTTGTAACCTTGATACGAAT (SEQ ID NO: 2), and \beta-CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);
```

IVS-1 nt6-N TCTCCTTAAACCTGTCTTGTAACCTTCATA (SEQ ID NO: 4), IVS-1 nt6-M and β -CRP1 TCTCCTTAAACCTGTCTTGTAACCTTCATG (SEQ ID NO: 5), ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);

IVS-1 nt110-N ACCAGCAGCCTAAGGGTGGGAAAATAGTCC (SEQ ID NO: 6), 30 IVS-1 nt110-M ACCAGCAGCCTAAGGGTGGGAAAATAGTCT (SEQ ID NO: 7), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);

Codon 39-N CAGATCCCCAAAGGACTCAAAGAACCTGTG (SEQ ID NO: 8), CAGATCCCCAAAGGACTCAAAGAACCTGTA (SEQ ID NO: 9), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3); and

IVS-2 nt 1-N AAGAAAACATCAAGGGTCCCATAGACTGAC (SEQ ID NO: 10), IVS-2 nt 1-M AAGAAAACATCAAGGGTCCCATAGACTGAT (SEQ ID NO: 11), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3).

each of said primer sets being comprised of a first, second and third member, the first member being a specific primer for a normal allele, the second member being a specific

30

primer for a mutant allele, and the third member being a common allele.

- 8. The method of claim 7 wherein the polymerase chain reaction is performed by using said genomic DNA and said primer sets, the said first and second members of each primer set further being differentially labelled.
 - 9. The method of claim 8 wherein the polymerase chain reaction is performed by using said genomic DNA and all differentially labeled primer sets simultaneously.
- 10. The method of claim 1 wherein the polymerase chain reaction is performed by using said genomic DNA and the primer sets:

IVS-1 nt1-N TTAAACCTGTCTTGTAACCTTGATACGAAC (SEQ ID NO: 1), IVS-1 nt1-M TTAAACCTGTCTTGTAACCTTGATACGAAT (SEQ ID NO: 2), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);

IVS-1 nt110-N ACCAGCAGCCTAAGGGTGGGAAAATAGTCC (SEQ ID NO: 6), IVS-1 nt110-M ACCAGCAGCCTAAGGGTGGGAAAATAGTCT (SEQ ID NO: 7), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);

Codon 39-N CAGATCCCCAAAGGACTCAAAGAACCTGTG (SEQ ID NO: 8), 20 Codon 39-M CAGATCCCCAAAGGACTCAAAGAACCTGTA (SEQ ID NO: 9), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3); and

IVS-2 nt 1-N AAGAAAACATCAAGGGTCCCATAGACTGAC (SEQ ID NO: 10), IVS-2 nt 1-M AAGAAAACATCAAGGGTCCCATAGACTGAT (SEQ ID NO: 11), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3).

each of said primer sets being comprised of a first, second and third member, the first member being a specific primer for a normal allele, the second member being a specific primer for a mutant allele, and the third member being a common allele.

11. The method of claim 10 wherein the polymerase chain reaction is performed by using said genomic DNA and said primer sets, the said first and second members of each primer set further being differentially labelled.

B

HINNIN

20

25

- 12. The method of claim 11 wherein the polymerase chain reaction is performed by using said genomic DNA and all differentially labeled primer sets simultaneously.
- 13. The method of claim 1 wherein the polymerase chain reaction is performed by using said genomic DNA and the primer sets:

```
IVS-1 nt1-N TTAAACCTGTCTTGTAACCTTGATACGAAC (SEQ ID NO: 1), IVS-1 nt1-M TTAAACCTGTCTTGTAACCTTGATACGAAT (SEQ ID NO: 2), and \beta-CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);
```

- 10 IVS-1 ntllo-N ACCAGCAGCCTAAGGGTGGGAAAATAGTCC (SEQ ID NO: 6), IVS-1 ntllo-M ACCAGCAGCCTAAGGGTGGGAAAATAGTCT (SEQ ID NO: 7), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3); and
- Codon 39-N CAGATCCCCAAAGGACTCAAAGAACCTGTG (SEQ ID NO: 8), CODON 39-M CAGATCCCCAAAGGACTCAAAGAACCTGTA (SEQ ID NO: 9), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3).

each of said primer sets being comprised of a first, second and third member, the first member being a specific primer for a normal allele, the second member being a specific primer for a mutant allele, and the third member being a common allele.

- 14. The method of claim 13 wherein the polymerase chain reaction is performed by using said genomic DNA and said primer sets, the said first and second members of each primer set further being differentially labelled.
 - 15. The method of claim 14 wherein the polymerase chain reaction is performed by using said genomic DNA and all differentially labeled primer sets simultaneously.
- 16. The method of claim 1 wherein the polymerase
 30 chain reaction is performed by using said genomic DNA and the primer sets:

```
IVS-1 nt110-N ACCAGCAGCCTAAGGGTGGGAAAATAGTCC (SEQ ID NO: 6), IVS-1 nt110-M ACCAGCAGCCTAAGGGTGGGAAAATAGTCT (SEQ ID NO: 7), and \beta-CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3); and
```

35 Codon 39-N CAGATCCCCAAAGGACTCAAAGAACCTGTG (SEQ ID NO: 8),

and β -CRP1

Codon 39-M CAGATCCCCAAAGGACCTGTA (SEQ ID NO: 9), and β -CRP1 ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3).

each of said primer sets being comprised of a first, second and third member, the first member being a specific primer for a normal allele, the second member being a specific primer for a mutant allele, and the third member being a common allele.

- 17. The method of claim 16 wherein the polymerase chain reaction is performed by using said genomic DNA and said primer sets, the said first and second members of each primer set further being differentially labelled.
 - 18. The method of claim 17 wherein the polymerase chain reaction is performed by using said genomic DNA and all differentially labeled primer sets simultaneously.

```
15
                   A kit comprising four dNTPs and at least two
    primer sets selected from the group consisting of:
    IVS-1 nt1-N
                   TTAAACCTGTCTTGTAACCTTGATACGAAC (SEQ ID NO: 1),
    IVS-1 nt1-M
                   TTAAACCTGTCTTGTAACCTTGATACGAAT (SEQ ID NO: 2),
    and \beta-CRP1
                   ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);
20
    IVS-1 nt6-N
                   TCTCCTTAAACCTGTCTTGTAACCTTCATA (SEQ ID NO: 4),
    IVS-1 nt6-M
                   TCTCCTTAAACCTGTCTTGTAACCTTCATG (SEQ ID NO: 5),
    and \beta-CRP1
                   ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);
    IVS-1 nt110-N ACCAGCAGCCTAAGGGTGGGAAAATAGTCC (SEQ ID NO: 6),
    IVS-1 nt110-M ACCAGCAGCCTAAGGGTGGGAAAATAGTCT (SEQ ID NO: 7),
25
    and \beta-CRP1
                   ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3);
    Codon 39-N
                   CAGATCCCCAAAGGACTCAAAGAACCTGTG (SEQ ID NO: 8),
    Codon 39-M
                   CAGATCCCCAAAGGACTCAAAGAACCTGTA (SEQ ID NO: 9),
    and \beta-CRP1
                   ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3); and
    IVS-2 nt 1-N
                  AAGAAAACATCAAGGGTCCCATAGACTGAC (SEQ ID NO: 10),
30
    IVS-2 nt 1-M
                  AAGAAAACATCAAGGGTCCCATAGACTGAT (SEQ ID NO: 11),
```

ACCTCACCCTGTGGAGCCAC (SEQ ID NO: 3).

10

15

20

30

٥

20. A method of diagnosing a disease characterized by multiple allelic mutations comprising the steps of:

obtaining genomic DNA from a patient suspected of carrying a genetic mutation characteristic of the disease;

selecting at least two primer sets for detecting at least two mutations characteristic of the disease, each set being comprised of a first primer pair comprising a specific primer for a normal allele, a second primer pair comprising a specific primer for a mutant allele, each specific primer being differentially labeled, each pair further comprising a common primer;

performing a polymerase chain reaction by using said genomic DNA and said at least two primer sets whereby primer pairs comprising a specific primer for a normal allele are used simultaneously and primer pairs comprising a specific primer for a mutant allele are used simultaneously; and

detecting one or more polymerase chain reaction products wherein detection of a polymerase chain reaction product of a specific primer for a mutant allele indicates the likelihood that said patient carries a mutation characteristic of the disease.

- 21. The method of claim 20 wherein at least 4 primer sets are selected.
- 25 22. The method of claim 20 wherein at least 5 primer sets are selected.
 - 23. The method of claim 20 wherein the step of selecting at least two primer sets further comprises selecting primer sets in which each specific primer is differentially labelled.
 - 24. The method of claim 23 wherein the step of performing a polymerase chain reaction further comprises using said primer sets simultaneously.

Widdler

SUBSTITUTE SHEET

IN MARKE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIG.2

N M N M N M N M N M N M N 1 2 3 4 5 6 7 8 9 10 11 12

FIG.3

INTERNATONAL SEARCH REPORT

International application No. PCT/US93/02260

A. CI	ACCUMANTON			200		
IPC(5)	ASSIFICATION OF SUBJECT MATTER: C12P-19/34; CO7H 21/04					
US CL	:435/91: 536/24.33		•			
According	to International Patent Classification (IPC) or to	both national classification and	l IDC			
B. FIELDS SEARCHED						
Minimum	documentation searched (classification system for	llowed by classification as hale		·		
U.S. :	435/6, 91; 536/24.3, 24.33; 935/76, 77, 78	oy classification symbols	3)			
Document	ation searched other than minimum documentation	to the extent that such document		41 4 0 4		
		Table Gooding	re et e mendex	in the fields searched		
Electronic	data base consulted during the international search	h (name of data have and when	n americalia			
APS, CA	A, BIOSIS, MEDLINE	The same and, which	ie bracdeante	, search terms used)		
C. DOC						
c. Do	CUMENTS CONSIDERED TO BE RELEVAN	T				
Category*	Citation of document, with indication, when	re appropriate of the relevant				
. ,			1	Relevant to claim No.		
Y	Proc. Natl. Acad. Sci., Volume 8	6, issued April 1989	(I S A)	1-18, 20-24		
	D. 1. Wu et al., "Allele-Specific F	DZVmatic Amplification	of Data	1-10, 20-24		
	Proof Colour DIVA for Diagnosi	s of Sickle Cell Asserts	" nages			
	2757-2760, see page 2758 and Figure	re 1.	· , puges	•		
·	•		1			
'	Genomics, Volume 7, issued 1990,	R.A. Gibbs et al., "M	fultiplex	1-18, 20-24		
l	Deletion Delection and Exon !	Secure of the Dime.		1 10, 20-24		
	235-244, see page 236.	• ,	, [-8-5			
I						
Ì						
1	·		1			
j			1			
		·				
	•					
1						
1						
			ł			
Further	r documents are listed in the continuation of Box	C. See patent family	/ Annex			
	al categories of cited documents:	*T* Inter-decompose multi-base		· · · · · · · · · · · · · · · · · · ·		
docuz to be	ment defining the general state of the art which is not considered part of particular relevance	date and not in conflict w		ational filing date or priority a but cited to understand the		
	r document published on or after the international filing date	President designation	anymal and mixema	OG .		
docum	pent which may those doubt an artist to the	considered povel or can		simed invention cannot be to involve an inventive step		
	to entablish the publication date of another citation or other d reason (as specified)	" and document & di	ECE STODE	· I		
docum	sent referring to an oral disclosure, use, exhibition on attach	considered to involve		aimed invention cannot be p when the document is		
	•	peing opvious to a betsec				
	ent published prior to the international filing date but later than iority date claimed	"&" document member of the		i		
e of the act	tual completion of the international search	Date of mailing of the interna		·		
2 April 199	3	1 3 MAY 1993"	addian scalen	report		
		To will to				
ne and mail	ing address of the ISA/US of Patents and Trademarks	Authorized officer	11			
X PC1		441	1 KU	430 AN		
ashington, D simile No.	NOT APPLICABLE	PAUL B. TRAN, PH.D.	٠٦ ,	11 V		
PCT/ISA/	210 (second sheet) (July 1992)	Telephone No. (703) 308-0	0196	İ		

THE PARTY OF

INTERNATIONAL SEARCH REPORT

In national application No.
PCT/US93/02260

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	nt passages	Relevant to claim No.
Y	British Journal of Haemotology, Volume 78, issued 199 Varawalla et al., "The Spectrum of Beta-thalassaemia Mon the Indian Subcontinent: the Basis for Prenatal Diagrapages 242-247, see page 243 and Table 1.	1-24	
Y	Genomics, Volume 2, issued 1988, M.H. Skolnick et al "Simultaneous Analysis of Multiple Polymorphic Loci UAmplified Sequence Polymorphisms (ASPs)", pages 273 entire document.	Jsing	1-18, 20-24
	·		
	-		
	•		
	, .		

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*