Lecture 3 - Ionic Conductivity

Lecture summary

- Recap of defect types
- Ionic conductivity
- Conduction mechanisms
- Ionic migration paths
- Energetics of conduction

Defect recap

Defect recap results

Join at menti.com | use code 4905 4669

Conductivity

- Many ionic solids conduct electricity; due to ionic and/or electronic motion.
- Most ionic solids are electrically insulating/semiconducting (localised electrons)

Conductivity

- Many ionic solids conduct electricity; due to ionic and/or electronic motion.
- Most ionic solids are electrically insulating/semiconducting (localised electrons)
- Ionic conductors are important!

Origin of ionic conduction

- Ionic conductivity is dominated by defects
 - In an ideal crystal, ions can't easily move
 - vacancies and/or interstitials are the main charge carriers

Origin of ionic conduction

- Ionic conductivity is dominated by defects
 - In an ideal crystal, ions can't easily move
 - vacancies and/or interstitials are the main charge carriers
- Conductivity, $\sigma=nq\mu$, where
 - ∘ *n* is number of charge carriers
 - ∘ *q* is charge
 - \circ μ is the mobility of charge carriers

Origin of ionic conduction

- Ionic conductivity is dominated by defects
 - In an ideal crystal, ions can't easily move
 - vacancies and/or interstitials are the main charge carriers
- Conductivity, $\sigma = nq\mu$, where
 - n is number of charge carriers
 - ∘ *q* is charge
 - $\circ \mu$ is the mobility of charge carriers
- In ionic solids, conductivity covers $10^{\,-16}~\mathrm{S~m^{-1}}$ $-10^{\,3}~\mathrm{S~m^{-1}}$
 - $\circ\,$ most solids are limited to around $10^{\,-2}~\mathrm{S~m^{-1}}$
 - \circ Liquid electrolytes typically $10^{\,-1} 10^{\,3} \; \mathrm{S} \; \mathrm{m}^{-1}$

Measuring Conductivity

- For electronic conductors, this is simple:
 - \circ Apply a voltage (V) and measure the resulting current (I)
 - \circ Resistance (in Ω) is found through Ohm's law; V = IR
 - \circ Resistivity (in Ω cm) of the material calculated from geometry
- Resistivity ρ (in Ω cm) = $\frac{1}{\text{Conductivity } \sigma \text{ (in S cm}^{-1)}}$

Measuring Ionic Conductivity

• Ions cannot flow round a circuit, so current drops with a constant applied voltage

Measuring Ionic Conductivity

• Ions cannot flow round a circuit, so current drops with a constant applied voltage

• Instead, we use an alternating voltage - this is called Impedance spectroscopy (see lecture 5)

Ion migration mechanisms

Three 'main' mechanisms of ionic migration

1. Vacancy mechanism

Vacancies move throughout the lattice (atoms move into vacancy)

2. Interstitial mechanism

lons hop between interstitial sites

3. Interstitialcy (knock-on) mechanism

Interstitial ions 'push' into a neighbouring site

Vacancy, Interstitial or Interstitialcy?

Suggestions

Join at menti.com | use code 1458 2331

Migration paths

Ion paths are rarely direct, but will take the lowest energy route.

Pathways can be complex

Migration pathways can be calculated and/or experimentally determined

e.g. NASICON $\mathrm{Na^{+}}$ conductor, $\mathrm{Na_{3}Zr_{2}(SiO_{4})_{2}(PO_{4})}$:

<u>Y. Deng, Chem. Mater., 2018, 2618.</u>

Migration energetics

• Defect mobility (μ) is a thermally-activated process:

$$\mu = \mu_0 \exp\!\left(-rac{\mathrm{E_a}}{\mathrm{RT}}
ight)$$

• interstitial sites are higher energy than vacancies, so will have be more mobile.

Variation with temperature

As $\sigma = nq\mu$ and μ is thermally-activated,

$$egin{aligned} \sigma &= n q \mu_0 \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \ &= A \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \end{aligned}$$

Variation with temperature

As $\sigma = nq\mu$ and μ is thermally-activated,

$$egin{aligned} \sigma &= n q \mu_0 \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \ &= A \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \end{aligned}$$

Plotting $\ln \sigma$ vs. $\frac{1}{T}$ should give a straight line

- more commonly we plot $\log_{10} \sigma$ vs. $\frac{1000}{T}$ for high temperature measurements
- gradient is $\frac{-E_a}{R}$ (or $\frac{-E_a}{2303R}$ using base 10).

Lecture recap

- Defects can give rise to ionic conduction
 - Occurs by three main mechanisms:
 - Vacancy hopping
 - Interstitial hopping
 - interstitialcy (knock-on) cooperation
- Ionic conductivity is thermally-activated
 - shows Arrhenius-like behaviour
- Different defects have different conduction energetics
 - Pathways can sometimes be determined experimentally

Feedback

Return to course contents

19