Prove the following set-theoretic result related to the simple Vitali covering lemma. If $\mathcal{C} = \{Q\}$ is a collection of cubes all contained in a fixed bounded set in \mathbb{R}^n , then there is a countable subcollection $\{Q_k\}$ of disjoint cubes in \mathcal{C} such that every $Q \in \mathcal{C}$ is contained in some Q_k^* , where Q_k^* denotes the cube concentric with Q_k of edge length 5 times that of Q_k . Deduce the measure-theoretic consequence (cf. Lemma 7.4) that if a set E is covered by such a collection \mathcal{C} of cubes, then there exist $\beta > 0$, depending only on n, and a finite number of disjoint cubes Q_1, \ldots, Q_N in \mathcal{C} such that $\beta |E|_e \leq \sum_{k=1}^N |Q_k|$.

Formulate analogues of these facts for a collection of balls in \mathbb{R}^n .

Prove the following set-theoretic result related to the simple Vitali covering lemma. If $\mathcal{C} = \{Q\}$ is a collection of cubes all contained in a fixed bounded set in \mathbb{R}^n , then there is a countable subcollection $\{Q_k\}$ of disjoint cubes in \mathcal{C} such that every $Q \in \mathcal{C}$ is contained in some Q_k^* , where Q_k^* denotes the cube concentric with Q_k of edge length 5 times that of Q_k . Deduce the measure-theoretic consequence (cf. Lemma 7.4) that if a set E is covered by such a collection \mathcal{C} of cubes, then there exist $\beta > 0$, depending only on n, and a finite number of disjoint cubes Q_1, \ldots, Q_N in \mathcal{C} such that $\beta |E|_e \leq \sum_{k=1}^N |Q_k|$.

Formulate analogues of these facts for a collection of balls in \mathbb{R}^n .

Proof: Since $C = \{Q\}$ is contained in a fixed bounded set in \mathbb{R}^n , the following cases in Lemma 7.4 would not happen:

- (1) $t_i^* = \infty$.
- (2) $t_i^* \geq \delta > 0$, $\forall j \in \mathbb{N}^+$.

Therefore, either there exists N>0, s.t. $t_j^*=0$, for $j\geq N+1$ or $t_j^*\to 0$ as $j\to \infty$. In any case, the results follows from the same statement in Lemma 7.4.

Recall that: The idea is to pick a relatively large cube to cover $\mathcal C$ in Lemma 7.4.

Step 1: Define $\mathcal{C}_1=\mathcal{C}$, $t_1^*\triangleq\sup\{t:Q(t)\in\mathcal{C}_1\}$ and $t_1^*<\infty$. Choose $Q_1(t_1)\in\mathcal{C}_1$ with $t_1>\frac{1}{2}t_1^*$, and let $Q_1^*=5Q_1$ (the cube concentric with Q_1 and 5 times its edge length).

Step 2: Rewrite $C_1 = C_2 \cup C_2'$, where C_2 consists of cubes in C_1 that are disjoint from Q_1 and C_2' consists of those that intersect Q_1 . In the next, we chose $Q_2 \in C_2$ and C_2' can be covered by Q_1^* .

Step 3: Repeat the process for C_j , selecting $Q_j(t_j) \in C_j$ with $t_j > \frac{1}{2}t_j^*$ and $Q_j^* = 5Q_j$. We get $\{Q_j^*\}$ and $\{t_j^*\}$. We continue the proof in two cases .

- (1) If $\exists N > 0$, s.t. $t_i^* = 0$, for $\forall j \geq N + 1$. It is obvious .
- **(2)** If $t_j^* > 0$ and $t_j^* \to 0$ as $j \to \infty \Rightarrow K \subseteq \bigcup_j Q_j^*$. Else we can find a cube $Q(t) \in \mathcal{C}$ such that $Q \not\subset \bigcup_i Q_j^* \Rightarrow Q(t) \in \mathcal{C}_j$ for $\forall j \Rightarrow t \leq t_j^*$

for $\forall j \Rightarrow t = 0$.

Now we find $\{Q_i^*\}$ which can cover C.

Use Exercise 18 to prove Lemma 7.9.

Use Exercise 18 to prove Lemma 7.9.

Proof:

Fix $\alpha>0$ and let $E=\{f^*>\alpha\}$. If $x\in E$, then by the definitions of E and f^* , there is a cube Q_x with center x such that $|Q_x|^{-1}\int_{Q_x}|f|>\alpha$. Equivalently,

$$|Q_{\mathsf{x}}| < \frac{1}{\alpha} \int_{Q_{\mathsf{x}}} |f|.$$

The collection of such Q_x covers E. For $k=1,2,\ldots$, the sets E_k defined by $E_k=E\cap\{x:|x|< k\}$ are also covered and have finite measure. By Exercise 18 applied to each E_k , there exist $\beta>0$ (depending only on n) and a finite number of points $\{x_j^{(k)}\}_j\subset E$ such that the cubes $Q_{x_j^{(k)}}$ are disjoint in j (for each k) and

$$|E_k| < \beta^{-1} \sum_j |Q_{x_j^{(k)}}|.$$

4□▶ 4₫▶ 4½▶ 4½▶ ½ 90

Therefore,

$$|E_k| < \frac{1}{\beta} \sum_j \frac{1}{\alpha} \int_{Q_{x_j^{(k)}}} |f| = \frac{1}{\beta \alpha} \int_{\bigcup_j Q_{x_j^{(k)}}} |f| \le \frac{1}{\beta \alpha} \int_{\mathbb{R}^n} |f|.$$

Since $E_k \nearrow E$ as $k \to \infty$, it follows from Le that

$$|E| \leq \frac{1}{\beta \alpha} \int_{\mathbb{R}^n} |f|,$$

which proves the lemma with $c = \beta^{-1}$.

(a) Let f(x) be defined for all $x \in \mathbb{R}^n$ by f(x) = 0 if every coordinate of x is rational, and f(x) = 1 otherwise. Describe the set of all x at which $\frac{1}{|Q|} \int_Q f$ has a limit as $Q \searrow x$ and describe all Lebesgue points of f.

(a) Let f(x) be defined for all $x \in \mathbb{R}^n$ by f(x) = 0 if every coordinate of x is rational, and f(x) = 1 otherwise. Describe the set of all x at which $\frac{1}{|Q|} \int_Q f$ has a limit as $Q \searrow x$ and describe all Lebesgue points of f.

The Proof for (a)

Since

$$f(x) = \begin{cases} 0, & \text{every coordinate of } x \text{ is rational} \triangleq \mathbb{Q}^n, \\ 1, & \text{otherwise}, \end{cases}$$

and $|\mathbb{Q}^n| = 0$, we have

$$\int_{Q} f = \int_{Q - \mathbb{Q}^n} f + \int_{\mathbb{Q}^n} f = \int_{Q - \mathbb{Q}^n} f = |Q - \mathbb{Q}^n| = |Q|.$$

Then, $\forall x \in \mathbb{R}^n$, $\frac{1}{|Q|} \int_Q f = 1$ for all Q with center at x.

Thus,

$$\lim_{Q\searrow x}\frac{1}{|Q|}\int_{Q}f=1,$$

and

$$\mathbb{R}^n = \{ x \in \mathbb{R}^n : \lim_{Q \searrow x} \frac{1}{|Q|} \int_Q f \text{ has a limit.} \}$$

Thus,

$$\lim_{Q\searrow x}\frac{1}{|Q|}\int_Q f=1,$$

and

$$\mathbb{R}^n = \{ x \in \mathbb{R}^n : \lim_{Q \searrow x} \frac{1}{|Q|} \int_Q f \text{ has a limit.} \}$$

For $\forall x \in \mathbb{R}^n - R_q$,

$$\lim_{Q\searrow x}\frac{1}{|Q|}\int_{Q}|f(y)-f(x)|dy=\lim_{Q\searrow x}\frac{1}{|Q|}\int_{Q-R_{q}}|f(y)-f(x)|dy=0.$$

And for $x \in R_q$, f(x) = 0, we have

$$\lim_{Q\searrow x}\frac{1}{|Q|}\int_{Q}|f(y)-f(x)|dy=\lim_{Q\searrow x}\frac{1}{|Q|}\int_{Q}|f(y)|dy=1.$$

Therefore, the set of Lebesgue points of f is $\{x: x \in \mathbb{R}^n - R_q\}$.

(b) Give an example of a bounded function f on $(-\infty, \infty)$ with the following properties: f is continuous except at a single point x_0 ; $(d/dx) \int_0^x f = f(x)$ for all x (in particular when x = 0); x_0 is not a Lebesgue point of f.

The proof for (b)

Consider the function:

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

f is bounded, continuous except at $x_0=0$. We need to verify $\frac{d}{dx}\int_0^x f(t)dt=f(x)$ at x=0. By the definition of derivative,

$$\frac{d}{dx}\int_0^x f(t)dt = \lim_{x \to 0} \frac{1}{x} \int_0^x f(t)dt.$$

$$\int_{0}^{x} f(t)dt = \int_{0}^{x} \sin(\frac{1}{t})dt = \int_{\frac{1}{x}}^{\infty} \frac{\sin u}{u^{2}} du$$

$$= \frac{-\cos u}{u^{2}} \Big|_{\frac{1}{x}}^{\infty} + \int_{\frac{1}{x}}^{\infty} \cos u d(u^{-2})$$

$$|\int_{0}^{x} f(t)dt| \le |x^{2} \cos \frac{1}{x}| + |2 \int_{\frac{1}{x}}^{\infty} u^{-3} du| \le 2|x|^{2}.$$

Therefore,

$$\lim_{x\to 0} \left| \frac{1}{x} \int_0^x f(t)dt \right| \le \lim_{x\to 0} \frac{1}{x} \cdot 2|x|^2 = 0 = f(0).$$

Next , we prove 0 is not Lebesgue point. Let Q be a cube with center at 0, and the length is t,

$$\begin{aligned} \frac{1}{|Q|} \int_{Q} |f(y) - f(0)| dy &= \frac{1}{2t} \int_{-t}^{t} \left| \sin\left(\frac{1}{y}\right) \right| dy \\ &= \frac{1}{t} \int_{0}^{t} \left| \sin\left(\frac{1}{y}\right) \right| dy \\ &= \frac{1}{t} \int_{\frac{1}{t}}^{\infty} \left| \sin u \right| \cdot u^{-2} du. \end{aligned}$$

Take $t=\frac{1}{k}$, $k\in\mathbb{N}^+$, $Q=\left(-\frac{1}{k},\,\frac{1}{k}\right)$ and refer to above equation:

$$\frac{1}{|Q|} \int_{Q} |f(y) - f(0)| dy = k \int_{k}^{\infty} |\sin u| \cdot u^{-2} du$$

$$= k \sum_{n=0}^{\infty} \int_{k+n\pi}^{k+(n+1)\pi} |\sin u| \cdot u^{-2} du.$$

13-14周实变作业答案 11 / 21

Thus, it holds that

$$\frac{1}{|Q|} \int_{Q} |f(y) - f(0)| dy \ge k \sum_{n=0}^{\infty} (k + (n+1)\pi)^{-2} \int_{k+n\pi}^{k+(n+1)\pi} |\sin u| du.$$

$$\ge 2k \sum_{n=0}^{\infty} (k + (n+1)\pi)^{-2}.$$

For the series, we have,

$$\sum_{n=0}^{\infty} (k + (n+1)\pi)^{-2} \ge \frac{1}{\pi} \int_{k+\pi}^{\infty} u^{-2} du$$
$$= \frac{1}{\pi (k+\pi)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Therefore, we have

$$\frac{1}{|Q|}\int_{Q}|f(y)-f(0)|dy\geq\frac{2k}{\pi(k+\pi)},$$

and

$$\lim_{k\to\infty}\frac{1}{|Q|}\int_Q|f(y)-f(0)|dy\geq\frac{2}{\pi}.$$

Therefore, 0 is not a Lebesgue point.

For $x \in \mathbb{R}^n$ and $0 < \alpha < n$, define $f(x) = |x|^{-\alpha} \chi_{\{|x| < 1\}}(x)$. Show that its maximal function $f^*(x)$ is bounded both above and below by positive constants (depending only on α and n) times $(|x|^{-\alpha} + |x|^{-n})$.

For $x \in \mathbb{R}^n$ and $0 < \alpha < n$, define $f(x) = |x|^{-\alpha} \chi_{\{|x| < 1\}}(x)$. Show that its maximal function $f^*(x)$ is bounded both above and below by positive constants (depending only on α and n) times $(|x|^{-\alpha} + |x|^{-n})$.

Proof: We know that, for

$$\begin{cases} (|x|^{\alpha} + |x|^{n})^{-1} \sim |x|^{-\alpha}, & \text{if } |x| \le 2; \\ (|x|^{\alpha} + |x|^{n})^{-1} \sim |x|^{-n}, & \text{if } |x| \ge 2, \end{cases}$$

in which \sim means that there exists constants C and c such that $c|x|^{-\alpha} \leq |x|^{\alpha} + |x|^n)^{-1} \leq C|x|^{-\alpha}$. Take cube $Q_r(x)$ with r>0, recall that

$$f^*(x) = \sup_r \frac{1}{|Q_r|} \int_{Q_r} |f(y)| dy,$$

in which $\frac{1}{|Q_r|}\int_{Q_r}|f(y)|dy=\frac{C_n}{r^n}\int_{Q_r\cap B(0,\ 1)}|y|^{-\alpha}dy.$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Case 1: $|x| \le 2$.

Upper bound estimate:

If $0 < r < \frac{1}{\sqrt{n}}|x|$, we have $0 \not\in Q_r(x)$ and $\forall y \in Q_r(x) \cap B(0,1)$,

$$|y| > |x| - \frac{\sqrt{n}}{2}r > \frac{1}{2}|x|, |Q_r(x) \cap B(0,1)| \le C_n r^n.$$

Hence, we know:

$$\frac{1}{|Q_r(x)|} \int_{Q_r(x) \cap B(0,1)} |f(y)| dy \le \frac{C_\alpha}{r^n} |x|^{-\alpha} r^n \le C_\alpha |x|^{-\alpha}.$$

If $r \geq \frac{|x|}{\sqrt{n}}$, we have

$$Q_r(x)\cap B(0,1)\subset B(0,|x|+\frac{\sqrt{nr}}{2}).$$

Therefore we have

$$\begin{split} \frac{1}{|Q_r(x)|} \int_{Q_r(x)} |f(y)| dy &\leq r^{-n} \int_{B(0,|x|+\sqrt{n}r)} |y|^{-\alpha} dy = \frac{C_{\alpha}}{r^n} |x + \sqrt{n}r|^{n-\alpha} \\ &\leq C_{\alpha} |x|^{-\alpha}, \quad (\mathsf{take} \ r = \frac{|x|}{\sqrt{n}}). \end{split}$$

Thus, for $|x| \leq 2$, $f^*(x) \leq C_{\alpha}|x|^{-\alpha}$.

Lower bound estimate:

Take r=4|x|, then $B(0,\frac{r}{8})\subset Q_r(x)\cap B(0,1)$, (cubes are bigger than the circles with the same center and radius.)

$$\begin{split} \frac{1}{Q_r(x)} \int_{Q_r(x)} |f(y)| dy &= \frac{1}{r^n} \int_{Q_r(x) \cap B(0,1)} |y|^{-\alpha} dy \ge \frac{1}{r^n} \int_{B(0,\frac{r}{8})} |y|^{-\alpha} dy \\ &= \frac{C_\alpha}{r^n} r^{n-\alpha} = \frac{C_\alpha}{r^\alpha} = \frac{C_\alpha}{|x|^\alpha}, \\ \Rightarrow f^*(x) \ge \frac{C_\alpha}{|x|^\alpha}. \end{split}$$

3-14周实变作业答案 17 / 21

Case 2: |x| > 2.

Upper bound estimate:

$$\mathsf{lf}^{\, \prime} < \tfrac{|x|}{\sqrt{n}}, \ Q_r(x) \cap B(0,1) = \emptyset^1, \ (r \geq 2(|x|-1) \Leftrightarrow Q_r(x) \cap B(0,1) \neq \emptyset)$$

$$\frac{1}{|Q_r(x)|}\int_{Q_r(x)}|f(y)|dy=0.$$

If $r \geq \frac{|x|}{\sqrt{n}}$, then $Q_r(x) \cap B(0,1) \subset B(0,1)$. In this case, we deduce that,

$$\begin{split} \frac{1}{|Q_r(x)|} \int_{Q_r(x)} |f(y)| dy &= \frac{1}{|Q_r(x)|} \int_{Q_r(x) \cap B(0,1)} |y|^{-\alpha} dy \\ &\leq \frac{1}{r^n} \int_{B(0,1)} |y|^{-\alpha} dy = \frac{C_{\alpha}}{r^n} \leq \frac{C_{\alpha}}{|x|^n}. \end{split}$$

¹This is why we divide R^n by $|x| \le 2$ and |x| > 2.

Lower bound estimate:

Take r = 4|x|, then it follows that : $B(0,1) \subset Q_r(x)$ and

$$\frac{1}{|Q_r(x)|} \int_{Q_r(x)} |f(y)| dy = \frac{1}{|Q_r(x)|} \int_{B(0,1)} |y|^{-\alpha} dy = C_\alpha |x|^{-n}.$$

Thus, $f^*(x) \ge C_{\alpha}|x|^{-n}$.

习题 5(13-14weeks)

Show that for any measurable f that is different from zero on a set of positive measure, there is a positive constant c such that

$$f^*(x) \ge \frac{c}{|x|^n}$$
 for $|x| \ge 1$.

习题 5(13-14weeks)

Show that for any measurable f that is different from zero on a set of positive measure, there is a positive constant c such that

$$f^*(x) \ge \frac{c}{|x|^n}$$
 for $|x| \ge 1$.

Proof:

Since f is non-zero on a set of positive measure, then

$$\exists \varepsilon, \delta > 0$$
 such that $E \triangleq \{x \in \mathbb{R}^n : |f(x)| \ge \varepsilon\}$ satisfies $m(E) \ge \delta$.

We take $R_0 > 0$ sufficiently large such that

$$E_{R_0} = E \cap B_{R_0}(0)$$
 has measure $|E_{R_0}| \ge \delta/2$.

For $|x| \ge 1$, let $Q_r(x)$ be a cube centered at x with side length $r = 2(|x| + R_0)$, so $E_{R_0} \subset Q_r(x)$.

习题 5(13-14weeks)

Then we have:

$$f^*(x) \ge \frac{1}{|Q_r|} \int_{Q_r} |f(y)| dy \ge \frac{1}{|Q_r|} \cdot \varepsilon \cdot \frac{\delta}{2} = \frac{\varepsilon \delta}{(|x| + R_0)^n}$$
$$= \frac{\varepsilon \delta}{|x|^n (1 + \frac{R_0}{|x|})^n} \ge \frac{c}{|x|^n},$$

where $|x| \ge 1$.