

Introduction to OpenFOAM® Computational Library and Viscoelastic Fluid Flow Simulation

P2 - Mesh Generation and Post-Processing

This Presentation was adapted from Wagner Galuppo's Foam@Iberia 2023 Begginer Course C2 https://github.com/Computational-Rheology/Foam_Iberia_2023/blob/main/Beginner/C2/

Mohammadreza Aali & J. Miguel Nórbega

mohammadreza.aali@jku.at & mnobrega@dep.uminho.pt

Outline

9:00 - 10:30	Introduction to OpenFOAM (P1)
10:30 - 12:00	Mesh generation and post-processing (P2)
12:00 - 13:00	Lunch break
13:00 - 14:30	Case studies: Single- and two-phase flow solvers (P3)
14:30 – 16:00	Case studies: Viscoelastic fluid flow solvers (P4)

Introduction

- Geometry Creation
- Meshing Creation
- Meshing Tools
- Material Properties Setup
- Boundaries Definitions
- Convergence Checks
- ..

- · Data Retrieval and Visualization
- Derived Data Generation
- Trend Analysis
- Improving user's readability of calculated numerical data.
- A wise linkage that leads to enhance productive science for decision support and communication

(14.2 19.2 23.7) (3.2 8.5 12.8) (6.9 12.1 16.4) (1.4 6.7 11.0) (17.8 22.8 27.3) (16.0 21.0 25.5) (8.7 13.9 18.2) (19.7 24.6 29.1) (10.5 15.7 20.0) (12.4 17.4 21.9)

Introduction

Introduction to OpenFOAM® Computational Library and Viscoelastic Fluid Flow Simulation

- 1. Open WSL
- 2. >> of2206
- 3. >> run
- 4. >> cd case21
- 5. >> code . ## Open Vscode
- 6. Visualize blockMeshDict file ##in the System folder

Physical Problem: (Cavity tutorial)

BlockMesh Dictionary case21/system/blockMeshDict

```
../C2/tutorials/case01/system/blockMeshDict
                              OpenFOAM: The Open Source CFD Toolbox
    version
                2.0;
                ascii;
    format
                dictionary;
    class
               blockMeshDict;
    object
scale 0.1;
vertices
    (0\ 0\ 0)
    (1 0 0)
    (1\ 1\ 0)
    (0\ 1\ 0)
    (0 \ 0 \ 0.1)
    (1 0 0.1)
    (1\ 1\ 0.1)
    (0\ 1\ 0.1)
```


IPPD Institute of

Digital Transformation

```
../case01/system/blockMeshDict
     scale 0.1;
18.
     vertices
21.
          (0 \ 0 \ 0)
22.
          (100)
23.
          (1 \ 1 \ 0)
          (010)
24.
                        // id: 4
          (0\ 0\ 0.1)
          (1 0 0.1)
          (1 \ 1 \ 0.1)
          (0\ 1\ 0.1)
28.
     );
```



```
../case01/system/blockMeshDict
     scale 0.1;
     vertices
21
          (0 \ 0 \ 0)
22.
          (1 0 0)
          (1 \ 1 \ 0)
24
                        // id: 4
          (1 0 0.1)
          (1 \ 1 \ 0.1)
28.
          (0\ 1\ 0.1)
```



```
../case01/system/blockMeshDict

31. blocks
32. (
33. hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)
34. );
```



```
../case01/system/blockMeshDict
                                                                                                 6
                                                                                                             y '
   blocks
                     5 6 7) (20 20 1) simpleGrading (1 1 1)
                                                                                     0
                                                                        4
```


Slicing block

Extra Functionalities

13

Naming and Predefining Boundaries

PPS-39

Naming and Predefining Boundaries

PPS-39

 u_{x}

Naming and Predefining Boundaries

Naming and Predefining Boundaries

Naming and Predefining Boundaries

- 1. >> blockMesh
- 2. Check results in Paraview

Hands on (change and visualize)

- 1. Number of cells
- 2. Block height from 1 dm to 2 dm

- 1. >> run
- 2. >> cd case21/grading/
- Visualize blockMeshDict file in VSCode

Introduction to OpenFOAM® Computational Library and Viscoelastic Fluid Flow Simulation

- Mesh grading for stretching the mesh towards one or more Planes.
- icoFoam Cavity case

simpleGrading = edges' cells expansion ratios

$$f_i = \frac{l_i^n}{l_i^0}$$
 $f_{x'} = \frac{l_{x'}^n}{l_{x'}^0}$

21

Fig.E

Fig.A

Fig.B

Fig.D

22

Block 1

Block 3

- 1. >> blockMesh
- 2. Check results in Paraview

Hands on (change and visualize)

1. Test the different mesh grading configurations

blockMesh – Case 22 (General)

Geometry

Dimensions (in m)

blockMesh – Case 22 (General)

Geometry

M. Aali

blockMesh – Case 22 (General)

- 1. >> run
- 2. >> cd case22/general
- 3. Visualize blockMeshDict file in VSCode
- 4. >> blockMesh
- 5. Visualize the Mesh in paraview

blockMesh – Case 22 (Parameterized) Geometry & Mesh

Dimensions W2=W W1=0.5*W

Number of cells

- 1. >> run
- 2. >> cd case22/parametrized/
- Visualize blockMeshDict file in VSCode

Parameterized Geometry and Mesh Generation

//Parameters				
	W	2;		
	Z1	0;		
	Z2	-2.0;		
	Z 3	4.0;		
	n0	4;		
	n 1	5;		
	n2	10;		
	n3	15;		

```
// Calculations
                #calc "-0.5*$W";
       X0
       Y0
                #calc "1*$X0";
       X1
                #calc "-1*$X0";
                #calc "1*$X0";
       Y1
                #calc "-1*$X0";
       X2
       Y2
                #calc "-1*$X0";
       X3
                #calc "1*$X0";
                #calc "-1*$Y0";
       Y3
       X4
                #calc "0.25*$X0";
       Y4
                #calc "0.25*$X0";
                #calc "-0.25*$X0";
       X5
       Y5
                #calc "0.25*$X0";
       X6
                #calc "-0.25*$X0";
                #calc "-0.25*$X0";
       Y6
                #calc "0.25*$X0";
       X7
                #calc "-0.25*$X0";
       Y7
```

PPS-39

Parameterized Geometry and Mesh Generation

```
vertices
    (-1 -1 0) //0
    (1 -1 0) //1
    (1\ 1\ 0)\ //2
    (-1\ 1\ 0)\ //3
    (-0.25 - 0.25 0) //4
    (0.25 - 0.25 0) //5
    (0.25 \ 0.25 \ 0) //6
    (-0.25 \ 0.25 \ 0) //7
    (-1 -1 4) //8
    (1 -1 4) //9
    (1 \ 1 \ 4) \ //10
     (-1\ 1\ 4)\ //11
    (-0.25 - 0.25 4) //12
    (0.25 - 0.25 4) //13
     (-0.25 0.25 4) //15
     (-0.25 - 0.25 - 2) //16
    (0.25 - 0.25 - 2) //17
    (0.25 \ 0.25 \ -2) //18
     (-0.25 \ 0.25 \ -2) //19
```

Normal Configuration of blockMeshDict

Parameterized Configuration of blockMeshDict

31

Parameterized Geometry and Mesh Generation

```
blocks
    hex (0 1 5 4 8 9 13 12) (5 4 15) simpleGrading (1 1 1) //B0
    hex (5 1 2 6 13 9 10 14) (4 5 15) simpleGrading (1 1 1) //B1
        (7 6 2 3 15 14 10 11) (5 4 15) simpleGrading (1 1 1) //B2
           4 7 3 8 12 15 11) (4 5 15) simpleGrading (1 1 1) //B3
    hex (4 5 6 7 12 13 14 15) (5 5 15) simpleGrading (1 1 1) //B4
    hex (16 17 18 19 4 5 6 7) (5 5 10) simpleGrading (1 1 1) //B5
blocks
          1 5 4 8 9 13 12) ($n1 $n0 $n3) simpleGrading (1 1 1) 1/B0
                            ($n0 $n1 $n3) simpleGrading (1 1 1) //B1
                             ($n1 $n0 $n3) simpleGrading (1 1 1) //B2
                            (\$n0 \$n1 \$n3) simpleGrading (1 1 1) //B3
                             ($n1 $n1 $n3) simpleGrading (1 1 1) //B4
                                         simpleGrading (1 1 1) //B5
                             ($n1 $n1 $n2)
```

```
n0 4;
n1 5;
n2 10;
n3 15;
```

Parameterized Geometry and Mesh Generation

No changes for the boundaries

```
May 19-23, 2024
Caragena de Indus. Colombia

CRINGO IPC

IPC

IPPD Institute of Polymer Processing and Digital Transformation
```

```
boundary
   inlet
       type patch;
       faces
   outlet
       type patch;
       faces
   tube
       type wall;
       faces
   tank
       type wall;
       faces
```

- 1. >> blockMesh
- 2. Visualize the Mesh in paraview

Hands on (change and visualize)

1. Change the parameters and check the result in paraview

cfMesh - Case 22 (STL based Meshing)

- 1. >> run
- 2. >> cd case22/cfMesh/
- 3. >> code.
- 4. >> cd STLBuilder
- 5. In VSCode check file myList contents
- 6. Open all the individual stl files in paraview
- 7. >> ./joinSTL.x
- 8. Open the total.stl file in paraview
- 9. >> cp total.fms ../ ## copy total.fms to the problem root folder
- 10. >> cd .. ##return to the problem root folder
- 11. In VSCode check file system/meshDict contents

cfMesh - Case 22 (STL based Meshing)

PPS-39

cfMesh - Case 22 (STL based Meshing)

- >> run #Return to the case root
- >> cartesianMesh
- Visualize the results in Paraview

Hands on (change and visualize)

- 1. Uncomment the 2 mesh refinement level methods, in meshDict file, and check the result in paraview
- 2. Change the parameters in meshDict file and check the results in paraview

Object Refinement as a box

37