

Malhas/Equações governantes / Discretizações

Paulo(20min)	Aspectos gerais do núcleo dinâmico	Malhas/Equaçõesgovernante s/Discretizações
Paulo(20min)	parametrizações físicas do modelo	

Instituto Nacional de Pesquisas Espaciais Cachoeira paulista

Descrição geral Modelo para Previsão em Diferentes Escalas

Descrição geral

MONAN/MPAS

Modelo Atmosféricos Baseado sobre o Tessellation Centroide Voronoi (CVT) com grade deslocada C

Modelo para Previsão em Diferentes Escalas

O modelo MONAN Tem o Objetivo de Simular bem Todas as Escalas

Descrição geral Tesselação centroidal de Voronoi (CVTs)

(Estrutura das Malhas MPAS)

Uma característica definidora dos modelos MPAS é o uso de **Tesselação** centroidal de Voronoi (CVTs) com um deslocamento de grade C

 – Quando se restringe a ficar na superfície de uma esfera, geralmente os chamamos de **Tesselação** centroidal de Voronoi na esféra (SCVTs)

Tesselação é o recobrimento de uma superfície bidimensional, tendo, como unidades básicas, polígonos congruentes (mesmo tamanho e a mesma forma) ou não, sem que existam espaços entre eles e de modo que a superfície total seja igual ao espaço particionado.

- a) Adapta melhor a geometria esférica.
- b) Pode ajudar a reduzir ondas espúrias devido ao formato da grade
 - c) Menos difusão Numériça

Dinâmica – Como Gerar a Grade Voronoi?

Dado um conjunto inicial de pontos geradores, o método de Lloyd pode ser usado para chegar a um CVT

- 1. Inicia com qualquer conjunto de pontos iniciais(o conjunto de pontos geradores)
- 2. Constrói um diagrama de Voronoi para o conjunto de pontos.
- 3. Localiza o centro de Massa de cada célula Voronoi.
- 4. Move cada ponto gerador para o centroide de massa da sua célula Voronoi
- 5. Repita o processo de 2 a 4 vezes para convergência

From Du et al. (1999)

O Metodo de MacQueen's, uma alternativa randômica ao método de Lloyd que pode também ser utilizado.

Nenhum diagrama de Voronoi necessita ser construído, mas a convergência é geralmente mais lenta.

Dinâmica - Gerando SCVT esferical centroide de voronoi tesselletion

Para um SCVT quase uniforme, pode-se empregar sucessiva subdivisão de um <u>icosaedro</u>

Os vértices desta malha triangular pode ser utilizado como pontos geradores para um Esférico Voronoi tessellation

Para criar um esférico centroide de Voronoi tesselection algumas interações são necessárias (Método de LLoyd)

Dinâmica - Gerando SCVT Malha MPAS

A definição de aspectos do modelo MPAS é o uso de Tesselection Centroide de Voronoi com a grade-C deslocada

VORONOI => Cada Volume de grade (Células) V_i é associada com um único ponto gerador x_i de modo que todos os pontos dentro de V_i ~estão mais próximo de x_i do que de qualquer outro ponto x_i

Centroidal => o ponto gerador para cada célula Voronoi é *também o centroide de massa* daquela célula (wrt alguma função de densidade)

Velocidades prognóticas são velocidades normais as faces da células (aresta) no ponto onde a aresta cruza o arco que une as células em ambos os lados

Dinâmica Refinamento Local

Dinâmica - Refinamento Local in action

Os resultados de uma multi-resolução física-completa na simulação de aqua planet (MPAS hydrostatic atmosphere dentro do CCSM-CAM4) conduzida pelo LLNC

Um poucos detalhes sobre refinamento de malha

Vapor de água, nível 5, final de 15 meses de integração, a elipse define a região de refinamento (a resolução grossa é 120km e a resolução fina é 40km)

Versão grossa da malha usada na multi-resolução na simulação de aqua planet

Dinâmica - Flexibilidade na decomposição em blocos

A habilidade para particionar um malha em blocos em mais blocos do que processadores pode ser útil (balanceamento de carga)

Embora o protótipo correto da infraestrutura MPAS não lide com vários blocos por processo, pretende-se oferecer suporte a isso no futuro

Balanceamento de carga:

Atribua blocos de processo de diferentes partes do domínio para minimizar o desequilíbrio de carga.

- 1. De lados opostos da terra para equilibrar o dia e a noite.
- 2. De regiões tropicais, de latitude média e de alta latitude para balanceamento de carga física
- 3. Algoritmos para atribuir blocos de malhas não estruturadas podem ser interessantes!

Dinâmica – Função de Densidade – A Chave para o Refinamento de Malha

O método de Lloyd pode ser visualizado como a minimização de um funcional de energia. No plano, pode-se mostrar que as células hexagonais de Voronoi fornecem a configuração de energia mínima para densidade constante

Para criar regiões de refinamento da grade, simplesmente defini-se uma função de densidade não uniforme sobre o domínio e usa-se isso ao calcular os centróides de massa das células de Voronoi no método LLoyd.

Para uma função densidade $\rho(x)>0$, conjectura-se (Ju et al. (2010)) que, à medida que o número de Células de Voronoi aumenta, os diâmetros, h_i e h_j das células de Voronoi associadas aos pontos geradores x_i e x_j são relacionados por:

$$\frac{h_i}{h_j} \approx \left(\frac{\rho(x_j)}{\rho(x_i)}\right)^{\frac{1}{(d'+2)}} com \ d' = 2$$

Dinâmica – Possíveis direções para obter o refinamento de malha local

Uma abordagem simples para gerar uma malha de resolução variável:

- 1) Estabeleça as resoluções relativas desejadas no domínio das simulações.
- 2) Defina a função de densidade como a quarta potência de resolução relativa.
- 3) Começando com uma malha uniforme com número apropriado de células, execute o método de Lloyd para convergência.

A desvantagem desta abordagem é que a resolução abso da malha é difícil de prever com precisão.

Dinâmica – Possíveis direções para obter o refinamento de malha local

Uma estratégia alternativa que mantém a resolução original da malha grossa é adicionar

pontos de refinamento nas regiões de refinamento.

-manter as células na região grosseira fixas enquanto que a interação ocorre apenas nas regiões de refinamento.

- Mais aplicável onde existem regiões de densidade constante com transições entre regiões de densidade

Coordenadas das células de grade Voronoi

cellsOnCell(maxEdges, nCells) edgesOnCell(maxEdges, nCells) nEdgesOnCell(nCells) edgesOnVertex(3, nVertices) areaCell(nCells)

- the indices of cells adjacent to a cell

- the indices of edges of a cell

verticesOnCell(maxEdges, nCells) - the indices of vertices (corners) of a cell

- the number of edges of a cell

- the indices of edges incident with a vertex

- the area of a cell

- the length (vertex-to-vertex) of an edge

nEdgesOnCell(52) = 6cellsOnCell(1,52) = 51cellsOnCell(2,52) = 81cellsOnCell(3,52) = 87cellsOnCell(4,52) = 53cellsOnCell(5,52) = 123cellsOnCell(6,52) = 124

A malha representadas no MONAN/MPAS é composta por um conjunto de indexação e vector de geometria

"Esquema C-grid em uma grade poligonal arbitrária

As bordas primárias são mostradas por linhas contínuas

As bordas duais por linhas tracejadas;

 l_e é o comprimento da borda primária e; d_e é o comprimento da borda dual e;

 A_i é a área da célula primária i; $A_v^{(v)}$ é a área da célula dual v;

 n_e é a normal unitária na borda e indicando a direção correspondente a u_e positivo."

" x_i , o gerador da célula de Voronoi i,

 x_v , o centro circunscrito do triângulo v,

 x_e , é a $e-esima\ (eth)$ interseção entre as bordas das células de grades de Voronoi primária e a células de grades de Delaunay duais,

Dinâmica – Operadores na malha Voronoi Gradientes de pressão e KE

Operadores na malha Voronoi

Dinâmica – Operadores na malha Voronoi (Divergência)

Teorema da Divergência de Gaus
$$\iiint\limits_V \nabla \cdot \vec{F} dV = \iint\limits_S \vec{F} \cdot n dS$$

"tal que soma as contribuições de fluxo assinadas em cada coordenada de borda ao redor de uma célula específica ($e \in EC(i)$), é dividido pela área da célula de Voronoi (A_i). Usamos F_e para um campo de fluxo arbitrário, mas na prática isso será $F_e=\hat{h}_e u_e$ (onde \hat{h}_e é

uma média dos valores h_i vizinhos)."

$$\vec{A} \cdot \vec{B} = AB\cos(\theta)$$

 $\vec{A} \cdot \vec{B} = AB\cos(\theta)$ =AB

$$(\nabla \cdot F)_i = \frac{1}{A_i} \sum_{e \in CE(e)} -n_{e,i} F_e l_e$$

Dinâmica – Operadores na malha Voronoi (Gradiente)

$$\oint_{\partial S} \psi dl = \iint_{S} (\hat{n} \times \nabla \psi) dS \quad (Teorema \ de \ Stokes)$$

O operador de gradiente faz a média dos valores vinculados ao centro de Voronoi (h, b, K), levando em consideração a direção por meio da função indicadora $n_{e,i}$, para as duas células adjacentes a uma determinada borda $(i \in CE(e))$."

\hat{h}_e é uma média dos valores h_i vizinhos

$$(\nabla h)_e = \frac{1}{d_e} \sum_{i \in CE(e)} -n_{e,i} \, \hat{h}_{e_i}$$

Dinâmica – Operadores na malha Voronoi (Rotacional)

"Por último, temos o rotacional, usado para o termo de vorticidade absoluta na equação de momentum e para a velocidade perpendicular, u^{\perp} . Aqui, pelo Teorema de Stokes, somamos o fluxo em cada borda que cerca uma célula de Delaunay ($e \in EV(v)$), considerando o sinal através de $t_{e,v}$ e o comprimento da borda, d_e , depois dividimos pela área da célula de Delaunay, A_v "

$$\oint_{\partial V} (\hat{n} \times \nabla \psi) d\vec{S} = \iiint_{V} (\nabla \times \nabla \psi) dV \quad \text{(teorema de Gaus)}$$

$$\oint_{\partial S} \psi dl = \iint_{S} (\hat{n} \times \nabla \psi) dS \quad (Teorema \ de \ Stokes)$$

 $F_e=\hat{h}_e u_e$ (onde \hat{h}_e é uma média dos valores h_i vizinhos)."

$$k \cdot (\nabla \times F)_{v} = \frac{1}{A_{v}} \sum_{e \in FV(v)} t_{e,v} F_{e} d_{e}$$

Dinâmica – Operadores na malha Voronoi Gradientes de pressão e KE

Figure 7.2: The areas of interest in the MPAS model: A_t, the area of Voronoi cell i, A_v, the area of Delaunay cell v, and A_e, the area of the parallelogram formed by considering l_e and d_e as vectors for edge e.

"Na expressão para $w_{e,e'}$, v é o conjunto de vértices encontrados ao atravessar de e' para e, com v_1 sendo o primeiro vértice encontrado e v_2 o último encontrado, ou seja, $v=\{v_1,\ldots,v_2\}$. $R_{i,v}$ é a área de interseção entre a célula i e o vértice v, normalizada pela área da célula i."

Dinâmica – Equações Governantes

- MPAS Solver(Atmosfera Não Hidrostática)

Dinâmica – Equações Governantes - MPAS Solver(Atmosfera Não Hidrostática)

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \eta k \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + F_{V_H} \nabla_{\zeta} \cdot \vec{V} + \frac{\partial \Omega V_H}{\partial \zeta} - \frac{\partial \Omega V_H}{\partial \zeta} \right]$$

$$\frac{\partial W}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\frac{\partial P}{\partial \zeta} + g \tilde{\rho}_m \right] - \left(\nabla \cdot \vec{V} W \right)_{\zeta} + F_w$$

$$\frac{\partial \Theta_m}{\partial t} = -\left(\nabla \cdot \vec{V} \Theta_m\right)_{\zeta} + F_{\Theta_m}$$

$$\frac{\partial Q_j}{\partial t} = -\left(\nabla \cdot \vec{V}Q_j\right)_{\zeta} + F_{Q_j}$$

$$\frac{\partial \rho_d}{\partial t} = -(\nabla \cdot \vec{V})_{\zeta}$$

(1)Operador Gradiente

(2)Operador Divergência de Fluxo

(3)Termo de Coriolis Não Linear

Dinâmica - Operadores na malha Voronoi Gradientes de pressão e KE

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \eta k \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + F_{V_H} \nabla_{\zeta} \cdot \vec{V} + \frac{\partial \Omega V_H}{\partial \zeta} - \frac{\partial \Omega V_H}{\partial \zeta} \right]$$

$$(\nabla h)_e = \frac{1}{d_e} \sum_{i \in CE(e)} -n_{e,i} \, \bar{h}_i$$

"Na malha de Voronoi, $\overrightarrow{P_1P_2}$ é perpendicular a $\overrightarrow{v_1v_2}$ e é bissectada por $\overrightarrow{v_1v_2}$, portanto, $P_x \sim \frac{(P_2-P_1)}{\Delta x_e}$ é de segunda ordem de precisão."

Dinâmica – Operadores na malha Voronoi Gradientes de pressão e KE

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \eta k \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + F_{V_H} \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} \right]$$

"Operadores na avaliação da energia cinética do centro da célula da Malha de Voronoi"

"Energia Cinética no Centro da Célula: KE_i "

$$KE_i = (1 - \beta) \sum_{e_i} w_{e_i} u_{e_i}^2 + \beta \sum_{v_i} w_{v_j} KE_{v_j}$$

"Energia Cinética no Vértice: KE_{v_i} "

$$KE_{v_j} = \sum_{e_v}^3 w_{e_v} u_{e_v}^2$$

Dinâmica - Operadores na malha Voronoi Gradientes de pressão e KE

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \eta k \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + F_{V_H} \nabla_{\zeta} \cdot \vec{V} + \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + \frac{\partial \Omega V_H}{\partial \zeta} - \frac{\partial \Omega V_H}{\partial$$

"Operadores na avaliação da energia cinética do centro da célula da Malha de Voronoi"

"Energia Cinética no Centro da Célula: KE_i "

$$(KE_i) = (1 - \beta) \sum_{e_i} (w_{e_i} u_{e_i}^2) + \beta \sum_{v_j} w_{v_j} KE_{v_j}$$

"Energia Cinética no Vértice: KE_{v_i} "

$$KE_{v_j} = \sum_{e_v}^3 w_{e_v} u_{e_v}^2$$

Figure 7.2: The areas of interest in the MPAS model: A_t , the area of Voronoi cell i, A_v , the area of Delaunay cell v, and A_v , the area of the parallelogram formed by considering l_v and d_v as vectors for edge e.

Dinâmica - Operadores na malha Voronoi Gradientes de pressão e KE

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \eta k \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + F_{V_H} \nabla_{\zeta} \cdot \vec{V} + \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + \frac{\partial \Omega V_H}{\partial \zeta} - \frac{\partial \Omega V_H}{\partial$$

"Operadores na avaliação da energia cinética do centro da célula da Malha de Voronoi"

"Energia Cinética no Centro da Célula: KE_i "

$$(KE_i) = (1 - \beta) \sum_{e_i} w_{e_i} u_{e_i}^2 + \beta \sum_{v_j} w_{v_j} KE_{v_j}$$

"Energia Cinética no Vértice: KE_{v_i} "

$$KE_{v_j} = \sum_{e_v}^3 w_{e_v} u_{e_v}^2$$

Figure 7.2: The areas of interest in the MPAS model: A_t, the area of Voronoi cell i, A_v, the area of Delaunay cell v, and A_e, the area of the parallelogram formed by considering l_e and d_e as vectors for edge e.

$$\begin{array}{c|cccc}
u & u & u \\
\hline
V_1 & \Delta x_e & \downarrow \\
P_1 & U & U & u
\end{array}$$

$$w_{e,e'} = \frac{n_{e',i}}{t_{e',v_2}} \left(\left[\sum_{v} R_{i,v} \right] - \frac{1}{2} \right)$$

Dinâmica – Operadores na malha Voronoi Gradientes de pressão e KE

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \eta k \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + F_{V_H} \nabla_{\zeta} \cdot \vec{V} + \frac{\partial \Omega V_H}{\partial \zeta} - \frac{\partial \Omega V_H}{\partial \zeta} \right]$$

$$KE_i = (1 - \beta) \sum_{e_i} w_{e_i} u_{e_i}^2 + \beta \sum_{v_j} w_{v_j} KE_{v_j}$$

$$MONAN - MPAS usa \beta = \frac{3}{8}$$

Dinâmica – "Operadores na Força de Coriolis 'Não Linear' da Malha de Voronoi

$$k \cdot (\nabla \times F)_v = \frac{1}{A_v} \sum_{e \in EV(v)} t_{e,v} F_e d_e$$

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \mathbf{k} \cdot \mathbf{\eta} \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + F_{V_H} \nabla_{\zeta} \cdot \vec{V} \right] + \frac{\partial V_H}{\partial \zeta} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \mathbf{k} \cdot \mathbf{\eta} \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} \right] + \frac{\partial \Omega V_H}{\partial \zeta} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \mathbf{k} \cdot \mathbf{\eta} \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} \right] + \frac{\partial \Omega V_H}{\partial \zeta} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\partial Z_h P}{\partial \zeta} \right] + \frac{\partial Z_h P}{\partial \zeta} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\partial Z_h P}{\partial \zeta} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\partial Z_h P}{\partial \zeta} + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\partial Z_h P}{\partial \zeta} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\partial Z_h P}{\partial \zeta} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] - \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta_z} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta_z} \right] \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta_z} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta_z} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\rho_d}{\rho_m} \right] \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta_z} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial Z_h P}{\partial \zeta_z} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\rho_d}{\rho_m} \right] \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\rho_d}{\rho_m} \right] \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\rho_d}{\rho_m} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\rho_d}{\rho_m} \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) \right] + \frac{\rho_d}{\rho_m} \left[\nabla_{$$

"Reconstrução da Velocidade Tangencial:"

$$v_{e_i} = \sum_{j=1}^{n_{e_i}} w_{e_{i,j}} u_e$$

"Termo Não Linear:"
$$\left[\eta k \times \vec{V}_H\right]_{e_i} = \sum_{j=1}^{n_{e_i}} \frac{1}{2} \left(\eta_{e_i} + \eta_{e_{i,j}}\right) \rho_{e_{i,j}} w_{e_{i,j}} u_{e_{i,j}}$$

"A reconstrução geral da velocidade tangencial produz uma divergência consistente nas grades primal e dual, e permite a conservação de PV, enstrophy e energia no solucionador SW não linear."

Dinâmica – "Operadores na Força de Coriolis 'Não Linear' da Malha de Voronoi

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \eta k \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_{\alpha} \nabla_{z} K + F_{\alpha} \nabla_{z} V_{\beta} V_{\beta} + F_{\alpha} \nabla_{z} V_{\beta} V_{\beta$$

$$\left[\eta k \times \vec{V}_{H}\right]_{e_{i}} = \sum_{j=1}^{n_{e_{i}}} \frac{1}{2} \left(\eta_{e_{i}} + \eta_{e_{i,j}}\right) w_{e_{i,j}} \rho_{e_{i,j}} u_{e_{i,j}}$$

"Exemplo: vorticidade absoluta em e_{13} "

$$\eta_{13} = \frac{1}{2}(\eta_a + \eta_b)$$

$$[\eta k \times \vec{V}_H]_{e_a} = \sum_{i=1}^{n_{e_a}} \frac{1}{2} (\eta_{e_a} + \eta_{e_b}) w_{e_b} \rho_{e_b} u_{e_b}$$

Dinâmica – "Operadores na Força de Coriolis 'Não Linear' da Malha de Voronoi

$$\eta_a = f + k \cdot (\nabla \times \vec{V})$$

"o operador de rotacional (curl), usado para o termo de vorticidade absoluta na equação de momentum e para a velocidade perpendicular, u^{\perp} . Aqui, pelo Teorema de Stokes, somamos o fluxo em cada borda que cerca uma célula de Delaunay ($e \in EV(v)$), considerando o sinal através de $t_{e,v}$ e o comprimento da borda, d_e , e depois dividimos pela área da célula de Delaunay, A_v ."

$$k \cdot (\nabla \times F)_v = \frac{1}{A_v} \sum_{e \in EV(v)} t_{e,v} F_e d_e$$
 (7.7)

"As coordenadas e comprimentos de interesse no modelo MPAS: x_i , o gerador da célula de Voronoi i, x_v , o centro circunscrito do triângulo v, x_e , é a e — esima (eth) interseção entre as bordas das células de grades de Voronoi e a células de grades de Delaunay duais, l_e , a distância entre os circunscritos adjacentes à borda e, e d_e , a distância entre os centros de massa de Voronoi adjacentes à borda e."

Dinâmica – "Operadores na Força de Coriolis 'Não Linear' da Malha de Voronoi

$$\frac{\partial V_H}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\nabla_{\zeta} \left(\frac{P}{\zeta_z} \right) - \frac{\partial z_h P}{\partial \zeta} \right] - \frac{\eta k}{\rho_d} \times V_H - V_H \nabla_{\zeta} \cdot \vec{V} - \frac{\partial \Omega V_H}{\partial \zeta} - \rho_d \nabla_{\zeta} K + F_{V_H} \nabla_{\zeta} \cdot \vec{V} + \frac{\partial \Omega V_H}{\partial \zeta} - \frac$$

$$\left[\eta k \times \vec{V}_{H}\right]_{e_{i}} = \sum_{j=1}^{n_{e_{i}}} \frac{1}{2} \left(\eta_{e_{i}} + \eta_{e_{i,j}}\right) w_{e_{i,j}} \rho_{e_{i,j}} u_{e_{i,j}}$$

"Exemplo: vorticidade absoluta em e_{13} " $\eta_a = f + k \cdot (\nabla \times \vec{V})$

$$\eta_a = f + k \cdot (\nabla \times \overrightarrow{V})$$

$$\eta_{13} = \frac{1}{2} (\eta_a + \eta_b) \qquad \qquad k \cdot (\nabla \times F)_v = \frac{1}{A_v} \sum_{e \in EV(v)} t_{e,v} F_e d_e$$

"Exemplo: vorticidade absoluta no vértice $a\,$ e b "

$$\eta_a = f_a + \frac{\left(u_{13}|\overrightarrow{CA}| + u_{14}|\overrightarrow{AB}| + u_{15}|\overrightarrow{BC}|\right)}{AREA(ABC)}$$

$$\eta_b = f_b + \frac{\left(u_{13}|\overrightarrow{CA}| + u_1|\overrightarrow{AD}| + u_{12}|\overrightarrow{DC}|\right)}{AREA(ADC)}$$

Dinâmica – ""Operadores na Divergência de Fluxo e Transporte da Malha de Voronoi" $\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\vec{V} = \frac{m}{s}$$

$$\vec{V} = \frac{m}{s} \qquad \qquad \overline{\rho \vec{V} = \frac{kg}{m^2 s}}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \overrightarrow{\rho V} = \frac{S}{\Delta x \Delta y \Delta z}$$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot \overrightarrow{\rho V} = \frac{S}{\Delta x \Delta v \Delta z}$ ψ é a razão de mistura escalar $= \frac{kg}{kg} = admensional$

$$\frac{\partial \rho \psi}{\partial t} + \nabla \cdot \vec{V}(\rho \psi) = 0$$

"Equação de Transporte, Forma Conservativa:"

$$\frac{\partial \rho \psi}{\partial t} = -\nabla \cdot \vec{V}(\rho \psi)$$

"Formulação de Volume Finito, Integração sobre a Célula:"

$$\iiint\limits_{V} \left[\frac{\partial (\rho \psi)}{\partial t} = -\nabla \cdot \vec{V}(\rho \psi) \right] dV = \int\limits_{D} \left[\frac{\partial \rho \psi}{\partial t} = -\nabla \cdot \vec{V}(\rho \psi) \right] dV$$

$$\vec{F} = \vec{V}(\rho\psi)$$

teorema da divergência
$$\Rightarrow \iiint\limits_V \nabla \cdot \vec{F} dV = \iint\limits_{\partial V} \vec{F} \cdot n dS = \iint\limits_S \vec{F} \cdot n dS = \frac{1}{A} \sum_i^{n_surface} \vec{F} \cdot n_i x_i y_i$$

Aplicando o teorema da divergência:

$$\frac{\partial \overline{\rho \psi}}{\partial t} = -\frac{1}{V} \int_{\Sigma} (\rho \psi) \, \overrightarrow{V}. \, nd\sigma$$

Discretizando no espaço e no tempo

$$(\overline{\rho\psi})_i^{t+\Delta t} = (\overline{\rho\psi})_i^t - \Delta t \frac{1}{A_i} \sum_{n_{e_i}} d_{e_i} \overline{\left(\overline{\rho V} \cdot n_{e_i}\right) \psi}$$

Dinâmica – ""Operadores na Divergência de Fluxo e Transporte da Malha de Voronoi" $\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\vec{V} = \frac{m}{s}$$

$$\rho \vec{V} = \frac{kg}{m^2 s}$$

$$(\nabla \cdot F)_i = \frac{1}{A_i} \sum_{e \in EC(i)} n_{e,i} F_e l_e$$

"O operador de divergência de velocidade é de segunda ordem de precisão para velocidades centradas nas bordas."

Dinâmica – ""Operadores na Divergência de Fluxo e Transporte da Malha de Voronoi" $\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$

$$\vec{V} = \frac{m}{s}$$

$$\vec{V} = \frac{m}{s} \qquad \qquad \overline{\rho \vec{V} = \frac{kg}{m^2 s}}$$

Discretizando no espaço e no tempo

$$\begin{split} (\overline{\rho\psi})_i^{t+\Delta t} &= (\overline{\rho\psi})_i^t - \Delta t \, \frac{1}{A_i} \sum_{n_{e_i}} d_{e_i} \, \overline{\left(\overline{\rho \vec{V}} \cdot n_{e_i} \right) \psi} \\ (\overline{\rho\psi})_i^{t+\Delta t} &= (\overline{\rho\psi})_i^t - \Delta t \, \frac{1}{A_i} \sum_{n_{e_i}} d_{e_i} \vec{F} \, (\rho u, \psi) \end{split} \qquad \vec{A} \cdot \vec{B} = AB \cos(\theta) \\ (\overline{\rho\psi})_i^{t+\Delta t} &= (\overline{\rho\psi})_i^t - \Delta t \, \frac{1}{A_i} \sum_{n_{e_i}} d_{e_i} \vec{F} \, (\rho u, \psi) \end{split}$$

$$\overrightarrow{A}$$
 \overrightarrow{D} \overrightarrow{A} \overrightarrow{D} \overrightarrow{A}

$$(\overline{\rho\psi})_{i}^{t+\Delta t} = (\overline{\rho\psi})_{i}^{t} - \Delta t \frac{1}{A_{i}} \sum_{n_{e_{i}}} d_{e_{i}} \vec{F} (\rho u, \psi)$$

"No MPAS, o fluxo de massa é uma variável prognóstica na borda da célula. $ho \vec{V} = rac{kg}{m^2c}$ "

"Como determinamos a razão de mistura escalar na borda da célula $\psi = \frac{kg}{kg}$?"

Dinâmica – ""Operadores na Divergência de Fluxo e Transporte da Malha de Voronoi" $\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$

$$o = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\vec{V} = \frac{m}{s}$$

$$\rho \vec{V} = \frac{kg}{m^2 s}$$

"Como definimos a razão de mistura na borda na malha não estruturada do MPAS? Primeiro, considere uma malha estruturada - fluxos de 3ª e 4ª ordem do WRF."

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \frac{1}{12} (\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i) + sign(u) \frac{\beta}{12} (\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i) \right]$$

(Hundsdorfer et al, 1995; Van Leer, 1985)

Dinâmica – "Operadores na Divergência de Fluxo e Transporte da Malha de Voronoi"

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\vec{V} = \frac{m}{s}$$

$$\overrightarrow{\rho V} = \frac{kg}{m^2 s}$$

"Fluxos polinômios de terceira e quarta ordem do WRF:"

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \frac{1}{12} (\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i) + sign(u) \frac{\beta}{12} (\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i) \right]$$

"As coordenadas não são contínuas no MPAS."

Dinâmica – ""Operadores na Divergência de Fluxo e Transporte da Malha de Voronoi" $\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\vec{V} = \frac{m}{s}$$

$$\rho \vec{V} = \frac{kg}{m^2 s}$$

"Fluxos polinômios de terceira e quarta ordem do WRF:"

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \frac{1}{12} (\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i) + sign(u) \frac{\beta}{12} (\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i) \right]$$

Onde
$$\delta_x^2 \psi_i = \psi_i - 2\psi_i + \psi_{i+1}$$

Onde
$$\delta_x^2 \psi_i = \psi_i - 2\psi_i + \psi_{i+1}$$
 e $\delta_x^2 \psi_{i+1} = \psi_{i+2} - 2\psi_{i+1} + \psi_{i+2}$

(Hundsdorfer et al, 1995; Van Leer, 1985)

Reconhecendo $\delta_x^2 \psi_i = \Delta x^2 \frac{\partial^2 y}{\partial x^2} + O(\Delta x^4)$ "reformulamos o fluxo de 3ª e 4ª ordem como"

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right\} + sign(u) \Delta x_e^2 \frac{\beta}{12} \left(\left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right) \right]$$

"onde x é a direção normal à borda da célula e i e i+1 são os centros das células. Utiliza-se o polinômio de ajuste de mínimos quadrados para calcular as segundas derivadas."

Dinâmica – ""Operadores na Divergência de Fluxo e Transporte da Malha de Voronoi" $\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\overline{\rho \vec{V}} = \frac{kg}{m^2 s}$$

"Fluxos polinômios de terceira e quarta ordem do WRF:"

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \frac{1}{12} (\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i) + sign(u) \frac{\beta}{12} (\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i) \right]$$

Onde
$$\delta_x^2 \psi_i = \psi_i - 2\psi_i + \psi_{i+1}$$
 e $\delta_x^2 \psi_{i+1} = \psi_{i+2} - 2\psi_{i+1} + \psi_{i+2}$

(Hundsdorfer et al, 1995; Van Leer, 1985)

Reconhecendo $\delta_x^2 \psi_i = \Delta x^2 \frac{\partial^2 y}{\partial x^2} + O(\Delta x^4)$ "reformulamos o fluxo de 3ª e 4ª ordem como"

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right\} + sign(u) \Delta x_e^2 \frac{\beta}{12} \left(\left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right) \right]$$

"onde x é a direção normal à borda da célula e i e i+1 são os centros das células. Utilizamos o polinômio de ajuste de mínimos quadrados para calcular as segundas derivadas."

Dinâmica – "Divergência de fluxo, transporte e integração temporal de Runge-Kutta" $\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\vec{V} = \frac{m}{s}$$

$$\overline{\rho\vec{V}} = \frac{kg}{m^2s}$$

"Equação de transporte escalar para a célula i:"

$$\frac{(\overline{\rho\psi})_i^{t+\Delta t} - (\overline{\rho\psi})_i^t}{\Delta t} = L(\overrightarrow{V}, \rho, \psi) = -\frac{1}{A_i} \sum_{n_{e_i}} d_{e_i} \overline{\left(\overline{\rho \overrightarrow{V} \cdot n_{e_i}}\right) \psi}$$

- 1. O valor de fluxo escalar na borda ψ é a soma ponderada dos valores das células das células que compartilham a borda e todos os seus vizinhos.
- 2. Um fluxo de borda individual é usado para atualizar as duas células que compartilham a borda.
- 3. São necessárias três avaliações (iterações) de fluxo de borda e atualizações de célula para completar o passo de tempo de Runge-Kutta.
- 4. Os pesos são pré-calculados e armazenados para uso durante a integração.

$$(\overline{\rho\psi})_i^* = (\overline{\rho\psi})_i^t = \frac{\Delta t}{3} L(\overrightarrow{V}, \rho, \psi^t)$$

$$(\overline{\rho\psi})_i^{**} = (\overline{\rho\psi})_i^t = \frac{\Delta t}{2} L(\overrightarrow{V}, \rho, \psi^*)$$

$$(\overline{\rho\psi})_i^{t+\Delta t} = (\overline{\rho\psi})_i^t = \frac{\Delta t}{2} L(\overrightarrow{V},\rho,\psi^{**})$$

Dinâmica – "Divergência de fluxo, transporte e Conservação "

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2} \qquad \qquad \vec{V} = \frac{m}{s} \qquad \qquad \overline{\rho \vec{V} = \frac{kg}{m^2 s}}$$

$$\vec{V} = \frac{m}{s}$$

$$\overline{\rho \vec{V} = \frac{kg}{m^2 s}}$$

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right\} + sign(u) \Delta x_e^2 \frac{\beta}{12} \left(\left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right) \right]$$

Dinâmica – "Divergência de fluxo, transporte e Conservação "

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\vec{V} = \frac{m}{s}$$

$$\rho \vec{V} = \frac{kg}{m^2 s}$$

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right\} + sign(u) \Delta x_e^2 \frac{\beta}{12} \left(\left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right) \right]$$

Blossey and Durran Test Case

3rd order scheme, β =1 3rd order scheme, β =0.5 3rd order scheme, β =0.25 4th order scheme, β =0

Fig. 7. Deformational flow test case results at time T using (11) with different values of the filter parameter β . The simulations were performed on the 40962-cell grid.

Dinâmica – "Divergência de fluxo, transporte e Conservação "

$$\rho = \frac{kg}{m^3} = \frac{kg}{m} \frac{1}{m^2}$$

$$\vec{V} = \frac{m}{s}$$

$$\overline{\rho \vec{V} = \frac{kg}{m^2 s}}$$

$$F(u,\psi)_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} - \psi_i) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right\} + sign(u) \Delta x_e^2 \frac{\beta}{12} \left(\left(\frac{\partial^2 y}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 y}{\partial x^2} \right)_i \right) \right]$$

Dinâmica – "Configurando a dinâmica

(namelist.atmosphere)

```
&nhyd model
  eoning dt = 90.0
 config start time = '2010-10-23 00:00:00
 config run duration = '5 00:00:00'
 config split dynamics transport = true
 config number of sub steps = 2
 config dynamics split steps = 3
 config h mom eddy visc2 = 0.0
 config h mom eddy visc4 = 0.0
 config_v_mom_eddy_visc2 = 0.0
 config h theta eddy visc2 = 0.0
 config h theta eddy visc4 = 0.0
 config v theta eddy visc2 = 0.0
 config horiz mixing = '2d smagorinsky'
 config h ScaleWithMesh = true
 config len disp = 15000.0
 config visc4 2dsmag = 0.05
 config del4u div factor = 10.
 config_w_adv_order = 3
 config_theta_adv_order = 3
 config scalar adv order = 3
 config u vadv order=3
 config w vadv order = 3
 config theta vadv order = 3
 config_scalar_vadv_order = 3
 config scalar advection = true
 config positive definite = false
 config monotonic = true
 config_coef_3rd_order = 0.25
 config epssm = 0.1
 config smdiv = 0.1
```

config apvm upwinding = 0.5

Time and time-steps

Number of acoustic steps per timestep

Dinâmica – "Configurando a dinâmica "Opções de Integração Temporal da Dinâmica e Transporte Escalar"

```
Default configuration
        Default time integration
Call physics
                                                   config_split_dynamics_transport = true
                                                   config_dynamics_split_steps = 3
Do dynamics split steps •
    Do rk3\_step = 1, 3
         compute large-time-step tendency_
                                                   config number of sub steps = 2
         Do acoustic steps •
                                                         (acoustic steps)
              update u
              update rho, theta and w
                                                  Δt (dynamics) =
         End acoustic steps
                                                           config dt
    End rk3 step
                                                  config dynamics split steps
End dynamics split steps
                                                 ∆t (acoustic) =
                                                          ∆t (dynamics)
Do scalar rk3 step = 1, 3
                                                 config number of sub steps
    scalar RK3 transport
End scalar rk3 step
                                                 \Delta t (scalar transport) = config dt
Call microphysics
```


Dinâmica – "Configurando a dinâmica "Opções de Integração Temporal da Dinâmica e Transporte Escalar"

(namelist.atmosphere)

```
&nhyd model
  eonfig dt = 90.0
  config_start_time = '2010-10-23 00:00:00'
  config_run_duration = '5_00:00:00'
  config split dynamics transport = true
  config number of sub steps = 2
  config dynamics split steps = 3
  config h mom eddy visc2 = 0.0
  config h mom eddy visc4 = 0.0
  config v mom eddy visc2 = 0.0
  config h theta eddy visc2 = 0.0
  config h theta eddy visc4 = 0.0
  config v theta eddy visc2 = 0.0
  config horiz mixing = '2d smagorinsky'
 config h ScaleWithMesh = true
  config len disp = 15000.0
  config visc4 2dsmag = 0.05
  config del4u div factor = 10.
  config_w_adv_order = 3
 config theta adv order = 3
  config scalar adv order = 3
  config_u_vadv_order = 3
  config w vadv order = 3
  config theta vadv order = 3
  config_scalar_vadv_order = 3
  config scalar advection = true
  config positive definite = false
  config monotonic = true
  config coef 3rd order = 0.25
  config epssm = 0.1
  config smdiv = 0.1
 config apvm upwinding = 0.5
```

Time and time-steps

Similar to WRF, the model timestep (in seconds) should be initially set to be 6 times the finest nominal mesh spacing in km. For example – 15 km fine-mesh spacing would use a 90 second timestep.

Dinâmica – "Configurando a dinâmica "Opções de Integração Temporal da Dinâmica e Transporte Escalar"

(namelist.atmosphere)

```
&nhyd model
 config_dt = 90.0
 config start time = '2010-10-23 00:00:00'
 config_run_duration = '5_00:00:00'
 config_split_dynamics_transport = true
 config_number_of_sub_steps = 2
 config_dynamics_split_steps = 3
 config h mom eddy visc2 = 0.0
 config h mom eddy visc4 = 0.0
 config_v_mom_eddy_visc2 = 0.0
 config_h_theta_eddy_visc2 = 0.0
 config h theta eddy visc4 = 0.0
 config_v_theta_eddy_visc2 = 0.0
 config_horiz_mixing = '2d_smagorinsky'
 config h ScaleWithMesh = true
 config_len_disp = 15000.0
 config visc4 2dsmag = 0.05
 config_del4u_div_factor = 10.
 config_w_adv_order = 3
 config_theta_adv_order = 3
 config scalar adv order = 3
 config_u_vadv_order = 3
 config w vadv order = 3
 config theta vady order = 3
 config_scalar_vadv_order = 3
 config scalar advection = true
 config_positive_definite = false
 config monotonic = true
 config coef 3rd order = 0.25
 config epssm = 0.1
 config smdiv = 0.1
 config_apvm_upwinding = 0.5
```

Time and time-steps

&nhyd_model

config_epssm = 0.1 time-offcentering of the vertically implicit acoustic and gravity-wave integration.

config_smdiv = 0.1
3D divergence damping

config_apvm_upwinding = 0.5

Anticipated Potential Vorticity Method (APVM):
upwind-biased estimate of edge PV; provides an
enstrophy sink.

Dinâmica – "Configurando a dinâmica "Opções de Integração Temporal da Dinâmica e Transporte Escalar"

(namelist.atmosphere)

```
&nhyd model
  config dt = 90.0
  config start time = '2010-10-23 00:00:00'
  config_run_duration = '5_00:00:00'
  config_split_dynamics_transport = true
  config number of sub steps = 2
  config_dynamics_split_steps = 3
  config h mom eddy visc2 = 0.0
  config h mom eddy visc4 = 0.0
  config_v_mom_eddy_visc2 = 0.0
  config h theta eddy visc2 = 0.0
  config h theta eddy visc4 = 0.0
  config_v_theta_eddy_visc2 = 0.0
  config_horiz_mixing = '2d_smagorinsky'
  config h ScaleWithMesh = true
  config_len_disp = 15000.0
  config visc4 2dsmag = 0.05
  config del4u div factor = 10.
  config w adv order = 3
  config_theta_adv_order = 3
  config scalar adv order = 3
  config_u_vadv_order = 3
  config w vadv order = 3
  config theta vadv order = 3
  config_scalar_vadv_order = 3
  config scalar advection = true
  config positive definite = false
  config monotonic = true
  config coef 3rd order = 0.25
  config epssm = 0.1
  config smdiv = 0.1
```

config_apvm_upwinding = 0.5

Transport

```
&nhyd model
         config w adv order = 3
         config_theta_adv_order = 3
         config_scalar_adv_order = 3
         config_u_vadv_order = 3
         config w vadv order = 3
         config_theta_vadv_order = 3
         config_scalar_vadv_order = 3
         config_positive_definite = .false.
         config_monotonic = .true.
         config_coef_3rd_order = 0.25
Upwind coefficient (0 <-> 1), \rightarrow
  >0 increases damping
```

Advection scheme order (2, 3, or 4)

PD/Mono options for scalar transport

Dinâmica – "Configurando a dinâmica "Opções de Integração Temporal da Dinâmica e Transporte Escalar"

$$F(u,\psi)_{i+1/2} = u_{i+1/2} \left[\frac{1}{2} \left(\psi_{i+1} + \psi_i \right) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\}$$

config_coef_3rd_order (default = 0.25)

4th-order scheme = 0.

WRF scheme = 1.0

Dinâmica – "Configurando a dinâmica "Opções de Integração Temporal da Dinâmica e Transporte Escalar"

(namelist.atmosphere)

```
&nhyd model
  config dt = 90.0
  config start time = '2010-10-23 00:00:00'
  config run duration = '5 00:00:00'
  config_split_dynamics_transport = true
  config_number_of_sub_steps = 2
  config dynamics_split_steps = 3
  config_h_mom_eddy_visc2 = 0.0
  config h mom_eddy_visc4 = 0.0
  config v mom eddy visc2 = 0.0
  config_h_theta_eddy_visc2 = 0.0
  config h theta eddy visc4 = 0.0
  config_v_theta_eddy_visc2 = 0.0
  config horiz mixing = '2d smagorinsky'
  config h ScaleWithMesh = true
  config_len_disp = 15000.0
  config visc4 2dsmag = 0.05
  config del4u div factor = 10
  config w adv order = 3
  config theta adv order = 3
  config scalar adv order = 3
  config u vadv order = 3
```

config w_vadv_order = 3

config_monotonic = true

config epssm = 0.1

config_smdiv = 0.1

config theta vadv order = 3 config_scalar_vadv_order = 3

config scalar advection = true config positive definite = false

config coef 3rd order = 0.25

config apvm upwinding = 0.5

Scale viscosities, hyperviscosities with local

Dissipation

```
&nhyd model
                                                           fixed
                                                           viscosity
                  config h mom eddy visc2 = 0
                                                           m^2s^{-1}
                  config_h_mom_eddy_visc4 = 0
                                                           Fixed hyper-
                  config_v_mom_eddy_visc2 = 0
                                                           viscosity
                  config h theta eddy visc2 = 0
                                                           m^4s^{-1}
                  config h theta eddy visc4 = 0
                                                            Alternately
                  config_v_theta_eddy_visc2 = 0
                                                            "2d fixed"
                  config_horiz_mixing = "2d_smagorinsky" -
                  config_len_disp = 15000. \leftarrow \Delta x_fine
                  config visc4 2dsmag = 0.05
mesh spacing - config h ScaleWithMesh = .true.
                  config del4u div factor = 10.
                                               4th order background
                                               filter coef, used with
                                               2d smagorinsky
                                U_{\Delta}(m^4/s) = config len disp^3 x config visc4 2dsmag
```


Dinâmica – "Configurando a dinâmica "Opções de Integração Temporal da Dinâmica e Transporte Escalar"

(namelist.atmosphere)

```
&damping
    config_zd = 22000.0
    config_xnutr = 0.2

/

&physics
    config_sst_update = false
    config_sstdiurn_update = false
    config_deepsoiltemp_update = false
    config_radtlw_interval = '00:30:00'
    config_radtsw_interval = '00:30:00'
    config_bucket_update = 'none'
    config_physics_suite = 'mesoscale_reference'
```

Gravity-wave absorbing layer

&damping

config_zd = 22000.

Bottom of the gravity-wave absorbing layer (meters)

Note: WRF defines this parameter as the depth of the layer.

config_xnutr = 0.2

Gravity-wave absorbing layer damping coefficient

Opções de Parametrização do Modelo MONAN

/MPAS-Model/src/core_atmosphere:

```
build_options.mk inc mpas_atm_core_interface.F physics
diagnostics Makefile mpas_atm_dimensions.F Registry.xml
dynamics mpas_atm_core.F mpas_atm_threading.F utils
```

/MPAS-Model/src/core_atmosphere/Makefile:

```
#
# To build a dycore-only MPAS-Atmosphere model, comment-out or delete
# the definition of PHYSICS, below
#
#PHYSICS=-DDO_PHYSICS
PHYSICS =
```

```
ifdef PHYSICS
    PHYSCORE = physcore
    PHYS_OBJS = libphys/*.o
```

"Essa opção "PHYSICS" permite adicionar um pacote de física completamente separado das parametrizações de física atualmente disponíveis."

Release MPAS Version 8.0.1 · MPAS-Dev/MPAS-Model (github.com)

• Todas as opções de física estão disponíveis em ./src/core_atmosphere/Registry.xml no registro da lista de nomes "physics" e são lidas no namelist.atmosphere.

<nml_record name="physics" in_defaults="true">

- No Registry.xml, cada opção de física tem um valor padrão definido para previsões genéricas em escala global. Por exemplo:
- As opções de física são modificadas e adicionadas no namelist.atmosphere no registro da lista de nomes "&physics":
 - ·Note que o modelo de atmosfera será executado se você não especificar nenhuma opção de física. Ele simplesmente usará as opções padrão definidas em Registry.xml.
 - ·Em termos de parametrizações de física, o MPAS utiliza o conceito de conjunto de física.
- ·Algumas parametrizações não fazem parte de um conjunto de física, mas podem ser usadas em um conjunto.

- No MPAS, existem dois conjuntos separados:
- 1. o conjunto mesoscale_reference, mais adequado para resolução horizontal em mesoescala (> 20 km) e simulações de longo prazo.
- 2. o conjunto convection_permitting, mais adequado para alta resolução espacial, onde os movimentos convectivos são explicitamente resolvidos, pelo menos em parte da malha.

Parametrizações físicas utilizadas para modelagem de mesoescala

Table 6.1: The set of parameterization schemes used by the 'mesoscale_reference' physics suite.

Parameterization	Scheme
Convection	New Tiedtke
Microphysics	WSM6
Land surface	Noah
Boundary layer	YSU
Surface layer	Monin-Obukhov
Radiation, LW	RRTMG
Radiation, SW	RRTMG
Cloud fraction for radiation	Xu-Randall
Gravity wave drag by orography	YSU

Parametrizações físicas (convection_permiting) utilizadas para modelagem

Table 6.2: The set of parameterization schemes used by the 'convection_permitting' physics suite.

Parameterization	Scheme
Convection	Grell-Freitas
Microphysics	Thompson (non-aerosol aware)
Land surface	Noah
Boundary layer	MYNN
Surface layer	MYNN
Radiation, LW	RRTMG
Radiation, SW	RRTMG
Cloud fraction for radiation	Xu-Randall
Gravity wave drag by orography	YSU

Table 6.3: Possible options for individual physics parameterizations. Namelist variables should be added to the &physics namelist record.

Parameterization	Namelist variable	Possible options	Details
Convection	config_convection_scheme	cu_tiedtke	Tiedtke (WRF 3.8.1)
		cu_ntiedtke	New Tiedtke (WRF 4.5)
		cu_grell_freitas	Modified version of scale-aware Grell-Freitas (WRF 3.6.
		cu_kain_fritsch	Kain-Fritsch (WRF 3.2.1)
Microphysics	config_microp_scheme	mp_wsm6	WSM 6-class (WRF 4.5)
		mp_thompson	Thompson non-aerosol aware (WRF 3.8.1)
		mp_kessler	Kessler
Land surface	config_lsm_scheme	noah	Noah (WRF 4.5)
Boundary layer	config_pbl_scheme	bl_ysu	YSU (WRF 4.5)
		bl_mynn	MYNN (WRF 3.6.1)
Surface layer	config_sfclayer_scheme	sf_monin_obukhov	Monin-Obukhov (WRF 4.5)
		sf_mynn	MYNN (WRF 3.6.1)
Radiation, LW	config_radt_lw_scheme	rrtmg_lw	RRTMG (WRF 3.8.1)
		cam_lw	CAM (WRF 3.3.1)
Radiation, SW	config_radt_sw_scheme	rrtmg_sw	RRTMG (WRF 3.8.1)
		cam_sw	CAM (WRF 3.3.1)
Cloud fraction for radiation	config_radt_cld_scheme	cld_fraction	Xu and Randall (1996)
		cld_incidence	$0/1$ cloud fraction depending on $q_c + q_i$
Gravity wave drag by orography	config_gwdo_scheme	bl_ysu_gwdo	YSU (WRF 4.5)