Answer to Problem Set 13

Student Name: Gaole DaiStudent ID: S01435587

Problem 1

Let K be the numbers of nodes in a graph G. Then, the Undirected Hamiltonian Path could be converted to Longest Path with input $G(V_1, V_n)$, and output $G(V_1, V_n, k)$.

Assume the original graph G(V,E) is provided with nodes V_1 and V_n has an Undirected Hamiltonian path, which traverses all the vertices, therefore G(V,E,K) is true because any two nodes in G will be connected by a path of length equal to its nodes (K therefore Longest Path problem holds).

Then, assume the graph $G'(V, E, V_s, V_e, K)$ has a Lpath of length K from V_s to V_e , which implies G' contains a simple path of length K from V_s to V_e .

But, G contains K vertices, hence traverses all vertices starting at V_s and ending at V_e forming a hamiltonian path, $G'(V_s, V_e)$.

```
Let V_1 \equiv B and V_n \equiv D
```

Now, G has an Undirected Hamiltonian Path \equiv BCAD of K=4.

Therefore, G contains an optimized path of length = 4, between B and D.

refer to https://www.geeksforgeeks.org/optimized-longest-path-is-np-complete/

Problem 2

a. We could use Dynamic Programming similar to Knapsack to solve this problem, the pseudocode for the algorithm is shown below:

```
def cut(P, L):
    if L = 0:
        return 0
    tmp = 0
    for i in range(1, L+1):
        tmp = max(tmp, P[i] + cut(L-i, P))
    return tmp
```

Python code for the algorithm is shown below:

```
import sys
# Returns the best obtainable price for a rod of length n and
# price[] as prices of different pieces
def cut(price, n):
    if n == 0:
        return 0
    val = [0 for x in range(n + 1)]
    val[0] = 0
    # Build the table val[] in bottom up manner and return
```

```
# the last entry from the table
for i in range(1, n + 1):
    max_val = -sys.maxsize - 1
    for j in range(i):
        max_val = max(max_val, price[j] + val[i-j-1])
        val[i] = max_val
return val[n]
```

b. The time complexity is $\mathcal{O}(n^2)$, since for outer loop, the range is between (1,n+1) and for inner loop, the range is (0,i), the total iterations are $1+2+\cdots+n+1$ times, thus the time complexity is $\mathcal{O}(n^2)$.

C.

```
# With the n = 4
arr = [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]
print("Maximum obtainable value for rod-cutting problem is " + str(cut(arr, 4)))
===> Output: Maximum obtainable value for rod-cutting problem is 10
```

i	j_i	val[i]	price[j] + val[i-j-1]
1	0	val[1] = 1	price[0] + val[0] = 1 + 0 = 1
2	0	val[2] = max(1, 2) = 2	price[0] + val[1] = 1 + 1 = 2
2	1	val[2] = max(2, 5) = 5	price[1] + val[0] = 5 + 0 = 5
3	0	val[3] = max(5, 6) = 6	price[0] + val[2] = 1 + 5 = 6
3	1	val[3] = max(6, 6) = 6	price[1] + val[1] = 5 + 1 = 6
3	2	val[3] = max(6, 8) = 8	price[2] + val[0] = 8 + 0 = 8
4	0	val[4] = max(8, 9) = 9	price[0] + val[3] = 1 + 8 = 9
4	1	val[4] = max(9, 10) = 10	price[1] + val[2] = 5 + 5 = 10
4	2	val[4] = max(10, 9) = 10	price[2] + val[1] = 8 + 1 = 9
4	3	val[4] = max(10, 9) = 10	price[3] + val[0] = 9 + 0 = 9