CMS Spread Option

T. Monedero Natixis Fixed Income Department: quantitative analysis

May 15, 2020

Abstract

The aim of this document is to provide some technical elements required for the reconstruction of Cms Spread Option implied correlation time series according to today's market conventions.

Contents

1	\mathbf{Intr}	roduction 2
	1.1	Notations
	1.2	Payoff
		1.2.1 SingleLook
		1.2.2 Cap Floor
2	$\mathbf{C}\mathbf{M}$	IS Spread Modelling
	2.1	Convexity Adjusted CMS
	2.2	Gaussian CMS Spread Model
	2.3	Smiled Implied Correlation
	2.4	Cap Floor Pricing
		2.4.1 Paylag Adjustment
		2.4.2 Term Structure Interpolation
3	$\mathbf{C}\mathbf{M}$	IS Spread Correlation Time series
	3.1	Butterfly Arbitrage condition
		Implied Correlation Parametrization

+

1 Introduction

1.1 Notations

D(t,T): Stochastic discount factor at time t for the maturity T.

P(t,T): T-maturity zero coupon bond value at time $t \leq T$.

 $L(T_R, T_S, T_S + \tau)$: Simply compounded Libor rate resetting at time T_R for the start date T_S and the tenor τ .

 $S(T_R, T_S, T_E)$: Swap rate resetting at time T_R for the start date T_S and the end date T_E .

1.2 Payoff

A CMS spread option is a financial instrument whose payoff is a function of the spread between two swap rates of different tenor.

1.2.1 SingleLook

For a given maturity T and a strike K, a single look CMS spread option is a one year basis caplet with fixing and payment in arrears

Its forward premium value at time t is therefore given by

$$V_{SL}^{SO}(t,T,K) = \frac{1}{P^{d}(t,T)} \mathbb{E}_{t}^{Q_{d}} \left[D^{d}(t,T) \left(S_{T}^{i} - S_{T}^{j} - K \right)_{+} \right] = \mathbb{E}_{t}^{Q_{d}^{T}} \left[\left(S_{T}^{i} - S_{T}^{j} - K \right)_{+} \right]$$

1.2.2 Cap Floor

A CMS spread cap is a strip of three month basis caplets with fixing in advance and in arrears payment.

Its value at time t is given by

$$V_{CAP}^{SO}(t) = \mathbb{E}_{t}^{Q_{d}} \left[\sum_{l=1}^{N} \tau_{l} D^{d}(t, T_{E}^{l}) \left(S_{T_{l}}^{i} - S_{T_{l}}^{j} - K \right)_{+} \right] = \sum_{l=1}^{N} \tau_{l} P^{d}(t, T_{E}^{l}) \mathbb{E}_{t}^{Q_{d}^{T_{E}^{l}}} \left[\left(S_{T_{l}}^{i} - S_{T_{l}}^{j} - K \right)_{+} \right]$$

Market quotes

Both types are quoted by brokers such as Tullet. Both products allow the investor a view on the shape of the yield curve.

and $S_T = S(T, T_S, T_E)$ the swap forward rate

2 CMS Spread Modelling

2.1 Convexity Adjusted CMS

The convexity adjusted constant maturity swap rate is classically defined by $CMS_t \stackrel{\Delta}{=} \mathbb{E}_t^{Q_d^T}[S_T]$. Using the fact that $CMS_T = S_T$, a single look CMS spread option value rewrites as

$$V_{SL}^{SO}(t,T,K) = \mathbb{E}_t^{Q_d^T} \left[\left(CMS_T^1 - CMS_T^2 - K \right)_+ \right]$$

2.2 Gaussian CMS Spread Model

Assuming that each convexity adjusted CMS rates is gaussian such that $dCMS_t^i = \sigma_N^i dW_t^i$ with $\forall i \neq j$, $\langle dW_t^i, dW_t^j \rangle = \rho_{ij}dt$, the \mathcal{F}_t conditional law of the convexity adjusted CMS spread $X_T = CMS_T^i - CMS_T^j$ is given by

$$X_T \stackrel{d}{=} \mathcal{N}\left(X_t, \sigma_N \sqrt{T-t}\right), \quad \sigma_N = \sqrt{\left(\sigma_N^i\right)^2 + (\sigma_N^j)^2 - 2\rho_{ij}\sigma_N^i\sigma_N^j}$$

The gaussian model provides a convenient common langage for quoting spread options and gives an analytical expression of the correlation ρ_{ij} between CMS^i and CMS^j which is the natural risk factor for this kind of product. In practice, $\sigma_N^{i,j}$ are choosen as atm swaption implied gaussian volatilities and the convexity adjusted CMS spread X_t is obtened by replication. If the CMS spread is assumed to have a Gaussian distribution, the price of a T-maturity caplet spread option with a strike K is given by the Bachelier's formula:

$$C_t^N(X_t, T, K, \sigma_N) = (X_t - K) \Phi\left(\frac{X_t - K}{\sigma_N \sqrt{T - t}}\right) + \sigma_N \sqrt{T - t} \phi\left(\frac{X_t - K}{\sigma_N \sqrt{T - t}}\right)$$

2.3 Smiled Implied Correlation

For a given maturity T, a natural cubic correlation spline $\rho(T, K_i)$ is used to fit a set of CMS Spread option market prices $(V_{SL}^{SO*})_{i=1..n}$, i.e such that

$$\forall i = 1...n, \ V_{SL}^{SO*}(t, T, K_i) = C_t^N(X_t, T, K_i, \sigma_N \ (K_i, T))$$

The CMS Spread distribution is then projected on a dynamic range - wrt the money - by building another relative correlation spline for a set of predefined moneyness strike $K_j^m \in [K_{\min}^m, K_{\max}^m]$:

$$\begin{array}{rcl} \rho_{Atm}^T & = & \rho(T,K=X_t) \\ \rho_m(T,K_j^m) & = & \rho(T,X_t+K_j^m) - \rho_{Atm}^T \end{array}$$

2.4 Cap Floor Pricing

2.4.1 Paylag Adjustment

2.4.2 Term Structure Interpolation

3 CMS Spread Correlation Time series

For Butterfly Arbitrage, maturity dependency can be omitted

- fit quickly
- compliant with the cubic spline
- compliant with the cubic splineproduce butterfly arbitrage free prices

3.1 Butterfly Arbitrage condition

Setting $\xi(K) = \frac{X_t - K}{\sigma_N(T, K)\sqrt{T - t}}$, Bachelier's formula rewrittes as

$$C_t^N(X_t, T, K, \sigma_N(K, T)) = \sigma_N(K, T)\sqrt{T - t}\left(\phi(\xi) + \xi\Phi(\xi)\right)$$

Assuming $\sigma_N : \mathbb{R} \to \mathbb{R}_+$ and $\sigma_N \in \mathcal{C}^2(\mathbb{R})$ CMS spread Cdf and Pdf can be deduced as follow:

$$\begin{split} \frac{\partial C_{t}^{N}}{\partial K} &= \frac{\sigma_{N}^{'}\left(K\right)}{\sigma_{N}\left(K\right)}C_{t}^{N} + \sigma_{N}\left(K\right)\Phi(\xi)\frac{\partial \xi}{\partial K} \\ \frac{\partial^{2}C_{t}^{N}}{\partial K^{2}} &= 2\sigma_{N}^{'}\left(K\right)\Phi(\xi)\frac{\partial \xi}{\partial K} + \sigma_{N}^{''}\left(K\right)\left(\phi(\xi) + \xi\Phi(\xi)\right) + \sigma_{N}\left(K\right)\phi(\xi)\left(\frac{\partial \xi}{\partial K}\right)^{2} + \sigma_{N}\left(K\right)\Phi(\xi)\frac{\partial^{2}\xi}{\partial K^{2}} \end{split}$$

Computing first and second derivatives of ξ

$$\frac{\partial \xi}{\partial K} = -\frac{1}{\sigma_N(K)} \left(1 + \sigma'_N(K) \xi \right)$$

$$\frac{\partial^2 \xi}{\partial K^2} = -\frac{1}{\sigma_N(K)} \left(\sigma''_N(K) \xi + 2\sigma'_N(K) \frac{\partial \xi}{\partial K} \right)$$

leads to the equivalence reliatioship between the price convexity and the gaussian volatility convexity for the butterfly arbitrage condition

$$\frac{\partial^{2}C_{t}^{N}}{\partial K^{2}} = \phi(\xi) \left(\sigma_{N}^{"}(K) + \frac{\left(1 + \sigma_{N}^{'}(K)\xi\right)^{2}}{\sigma_{N}(kK)} \right) \quad \text{and} \quad \frac{\partial^{2}C_{B}}{\partial K^{2}} > 0 \Leftrightarrow \sigma_{N}^{"}(K) > 0$$

3.2 Implied Correlation Parametrization

As seen before, the relationship between gaussian CMS spread implied volatility and gaussian CMS implied correlation is of the following form

$$\sigma_N(K) = \sqrt{\alpha^2 + \beta^2 - 2\alpha\beta\rho(K)}, \quad (\alpha, \beta) \in (\mathbb{R}_+)^2$$

then

$$\sigma_N(K) > 0 \Leftrightarrow \rho(K) < 1 + \frac{(\alpha - \beta)^2}{2\alpha\beta} \ \forall K$$

that is always true since $\forall K$, $|\rho(K)| < 1$. The Butterfly arbitrage condition in terms of implied correlation is addressed through the following equations

$$\sigma'_{N}(K) = -\alpha\beta \frac{\rho'(K)}{\sigma_{N}(K)}$$

$$\sigma''_{N}(K) = -\frac{\alpha\beta}{\sigma_{N}^{2}(K)} \left(\rho''(K)\sigma_{N}(K) + \alpha\beta \frac{\left(\rho'(K)\right)^{2}}{\sigma_{N}(K)}\right)$$

Obviously $\rho \in \mathcal{C}^2(\mathbb{R})$ implies that $\sigma_N \in \mathcal{C}^2(\mathbb{R})$ and the volatility convexity is equivalent to

$$\forall K, \quad \rho^{''}(K)\sigma_N(K)^2 + \alpha\beta\rho^{'}(K)^2 < 0$$

Given a parabolic parametrization of the correlation $\rho(K) = aK^2 + bK + \rho_{atm}$, this condition rewrittes as

$$2a\left(\alpha^2 + \beta^2 - 2\alpha\beta\rho_{atm}\right) + \alpha\beta b^2 < 0$$

that is strike independante and equivelent to $\rho_{\max} = \left(\rho_{atm} - \frac{b^2}{4a}\right) < \frac{\alpha^2 + \beta^2}{2\alpha\beta}$.

Remarque 1 As $|\rho_{atm}| \le 1$, $\alpha^2 + \beta^2 - 2\alpha\beta\rho_{atm} \ge \alpha^2 + \beta^2 - 2\alpha\beta = (\alpha - \beta)^2 > 0$ then inevitably a < 0.