16. 7. 2004

日

JAPAN PATENT OFFICE

> REC'D 0 5 AUG 2004 WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

7月25日 2003年

出 Application Number:

特願2003-201704

[ST. 10/C]:

٠.,

[JP2003-201704]

出 願 人 Applicant(s):

出光石油化学株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 6月21日

【書類名】

特許願

【整理番号】

IP7603

【提出日】

平成15年 7月25日

【あて先】

特許庁長官 殿

【国際特許分類】

COSF 2/04

【発明の名称】

ラジカル重合体の製造方法及び微細化学反応装置

【請求項の数】

7

【発明者】

【住所又は居所】 千葉県市原市姉崎海岸1番地1

【氏名】

岩崎 猛

【発明者】

【住所又は居所】

京都市左京区吉田本町

【氏名】

吉田 潤一

【特許出願人】

【識別番号】

000183657

【氏名又は名称】 出光石油化学株式会社

【代理人】

【識別番号】

100078732

【弁理士】

【氏名又は名称】

大谷 保

【選任した代理人】

【識別番号】

100081765

【弁理士】

【氏名又は名称】 東平 正道

【手数料の表示】

【予納台帳番号】

003171

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0000937

【包括委任状番号】 0000761

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】 ラジカル重合体の製造方法及び微細化学反応装置

【特許請求の範囲】

【請求項1】 ラジカル重合開始剤とラジカル重合性単量体とを、内径が2mm以下の反応管に導入し、該反応管において均一液状状態で流通形式により重合反応を行うことを特徴とするラジカル重合体の製造方法。

【請求項2】 反応管の内径が1mm以下である請求項1記載のラジカル重合体の製造方法。

【請求項3】 反応管に重合温度を制御し得る複数の反応帯域を設け、各反応帯域の温度を制御し、生成する重合体の分子量の分布を制御する請求項1又は2記載のラジカル重合体の製造方法。

【請求項4】 反応管に2つの反応帯域を設け、ラジカル重合開始剤とラジカル重合性単量体とを導入する側の反応帯域の温度を、上記ラジカル重合開始剤が分解する温度に保持すると共に、重合液出口側の反応帯域の温度を、該反応帯域の通過時間内に上記ラジカル重合開始剤が実質的に分解しない温度に保持する請求項3記載のラジカル重合体の製造方法。

【請求項5】 温度制御流体を流通させることが可能なジャケットと、該ジャケット内に並列に配置された内径2mm以下の複数の円管を有し、前記ジャケットに温度制御流体を流通させることにより、複数の円管内における反応の温度を制御し得る微細化学反応装置。

【請求項6】 ジャケットが、円管の長さ方向に沿って複数に分割され、かつ分割されたそれぞれのジャケットに温度制御流体を独立して流通させることが可能な構造を有する請求項5記載の微細化学反応装置。

【請求項7】 ジャケット部本体と円管部分が着脱可能な構造を有する請求項5又は6記載の微細化学反応装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ラジカル重合体の製造方法及び微細化学反応装置に関する。さらに

詳しくは、本発明は、内径が2mm以下の微細反応管を用い、ラジカル重合性単量体の重合を流通形式により行い、かつ重合温度を所定の温度に精密に制御することにより、分子量の分布状態が制御されたラジカル重合体を短時間で効率よく製造する方法、及び容易に入手可能な部材を用いて、高度な加工技術を必要とせずに製作可能な微細化学反応装置に関するものである。

[0002]

【従来の技術】

最近、マイクロリアクターに対する関心が非常に高まってきている。このマイクロリアクターは、一般に内部構造が 1μ m ~ 1 mm程度の微細なマイクロチャンネルの中で反応を行う装置を指し、化学産業に大きな変革をもたらす可能性を有することが期待されている。

上記マイクロリアクターは、有機合成面から、例えば、(1) 微小量での合成が可能である、(2) 単位体積(流量) 当たりの表面積が大きい、(3) 温度制御が極めて容易である、(4) 界面での反応が効率よく起る、(5) 時間、コスト、環境負荷の低減が図れる、(6) 密封系での反応が可能であるので、毒性、危険性のある化合物が安全に合成できる、(7) 小スケール、閉鎖系によるコンタミネーションの防御が可能である、(8) マイクロチャンネルに特有の層流の活用により、効率的な混合、生成物の分離、精製に適用可能である、などの特徴を有している。

[0003]

また、工業的応用面においては、潜在的に、①マイクロチャンネルの大きさを変えずに数を増やすことにより(ナンバーリングアップ)、生産量を増大させることが可能である(従来、実験室で得られた結果を工場に移管する場合に必要であった中間試製のためのステップが省略される。)ため、②低コストで生産を早期にスタートすることが可能となり、③実験結果を、そのまま素早く生産に移すことが可能となる。また、④工業生産のためのプラントが小さくてすむ、という利点も有している。

このようなマイクロリアクターを用いた化学反応の例としては、化学反応実施 方法(例えば、特許文献 1 参照)、微細構造化反応システムを使用するアルドー ル類の製造(例えば、特許文献2参照)、静止型マイクロミキサー内でのニトロ 化(例えば、特許文献3参照)、マイクロリアクターでのアリールホウ素及びア ルキルホウ素化合物の製造法(例えば、特許文献4参照)などが開示されている

[0004]

また、重合反応については、例えば直径1.27mmの流路内にて、層流条件 下で、メタロセン触媒を用いた加圧系におけるエチレンの重合反応が報告されて いる(例えば、非特許文献1参照)。しかしながら、この反応はメタロセン触媒 を用いる配位重合であり、本発明に係るラジカル重合とは根本的に異なる技術で ある。さらに、ラジカル重合性単量体と重合開始剤を、微細な流路を用いて混合 するマイクロミキサーにより混合したのち、重合を行うことで、得られる重合体 中の高分子量成分の生成が抑制され、管型重合反応器内の沈降物の形成が回避さ れるラジカル重合体の製造方法が開示されている (例えば、特許文献5参照)。 しかしながら、この技術は、単量体と重合開始剤の混合を微細な空間内で行うも ので、重合反応を行う反応器には、直径が c mオーダーの管型反応器が用いられ ている。

ラジカル重合は、極めて多くの単量体の重合が可能であり、多様な重合体の生 産手段として、産業上広く用いられている重要な技術である。しかしながら、こ のラジカル重合においては、重合時に大きな反応熱が発生するため、反応方式が バッチ式であっても、連続式であっても、反応熱の除去のために、温和な反応条 件でゆっくりと時間をかけて行われるのが常であり、生産効率が悪いという問題 があった。また、これまでの重合方法では、反応熱のために、反応場における重 合温度が不均一になりやすい上、連続式の場合には反応液は層流になりにくいた め、部分的に滞留時間に差が生じ、その結果、得られる重合体は、種々の分子量 をもつ重合体の混合物になりやすいという問題もあった。

ところで、微細化学反応装置(マイクロリアクター)の製作においては、一般 に微細流路の作製にフォトリソグラフィー、エッチング、精密機械加工といった 高度な加工技術が必要とされ、したがって、マイクロリアクターを用いた化学反 応は、簡便に実施することが困難であった。

[0005]

【特許文献1】

特表2001-521816号 公報

【特許文献2】

特開2002-155007号 公報

【特許文献3】

特表2003-506340号 公報

【特許文献4】

特開2003-128677号 公報

【特許文献5】

特表2002-512272号 公報

【非特許文献1】

「Anal. Chem.」、第74巻、第3112頁 (2002年)

[0006]

【発明が解決しようとする課題】

本発明は、このような状況下で、ラジカル重合性単量体のラジカル重合において、所望の分子量の分布状態を有するラジカル重合体を、短時間で効率よく製造する方法、及び容易に入手可能な部材を用いて、高度な加工技術を必要とせずに製作可能な微細化学反応装置を提供することを目的とするものである。

[0007]

【課題を解決するための手段】

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、リアクターとして、径がある値以下の微細反応管を用いることにより、熱交換の効率が極めて高く、温度制御が容易であると共に、流れが層流支配となり、滞留時間を厳密に制御することができ、短時間で効率よく、所望の分子量の分布状態を有するラジカル重合体が得られること、及び温度制御流体を流通させることが可能なジャケット内に、複数の微細な円管を並列に配置してなる装置が、微細化学反応装置としてその目的に適合し得ることを見出した。本発明はかかる知見に基づいて完成したものである。

すなわち、本発明は、

- (1) ラジカル重合開始剤とラジカル重合性単量体とを、内径が2mm以下の反応管に導入し、該反応管内において均一液状状態で流通形式により重合反応を行うことを特徴とするラジカル重合体の製造方法。
- (2)反応管の内径が1mm以下である上記(1)のラジカル重合体の製造方法 、
- (3) 反応管に重合温度を制御し得る複数の反応帯域を設け、各反応帯域の温度 を制御し、生成する重合体の分子量の分布を制御する上記(1)又は(2)のラ ジカル重合体の製造方法、
- (4) 反応管に2つの反応帯域を設け、ラジカル重合開始剤とラジカル重合性単量体とを導入する側の反応帯域の温度を、上記ラジカル重合開始剤が分解する温度に保持すると共に、重合液出口側の反応帯域の温度を、該反応帯域の通過時間内に上記ラジカル重合開始剤が実質的に分解しない温度に保持する上記(3)のラジカル重合体の製造方法、
- (5)温度制御流体を流通させることが可能なジャケットと、該ジャケット内に並列に配置された内径2mm以下の複数の円管を有し、前記ジャケットに温度制御流体を流通させることにより、複数の円管内における反応の温度を制御し得る微細化学反応装置、
- (6) ジャケットが、円管の長さ方向に沿って複数に分割され、かつ分割された それぞれのジャケットに温度制御流体を独立して流通させることが可能な構造を 有する上記(5)の微細化学反応装置、及び
- (7) ジャケット部本体と円管部分が着脱可能な構造を有する上記 (5) 又は (6) の微細化学反応装置、

を提供するものである。

[0008]

【発明の実施の形態】

本発明のラジカル重合体の製造方法においては、リアクターとして、内径が 2 mm以下の微細反応管、好ましくは 1 mm以下、より好ましくは 1 $0\sim5$ 0 0 μ mのマイクロリアクターが用いられる。このリアクターの長さについては特に制

限はないが、通常 $0.01\sim100$ m、好ましくは $0.05\sim50$ m、より好ましくは $0.1\sim10$ m、の範囲である。

本発明においては、前記微細反応管に、ラジカル重合開始剤とラジカル重合性 単量体とを導入し、該反応管内において均一液状状態で流通形式により重合反応 を行う。

原料のラジカル重合性単量体としては、ラジカル重合可能な単量体であればよ く、特に制限されず、様々な単量体を用いることができる。このラジカル重合可 能な単量体としては、例えばエチレン、プロピレン、イソブチレンなどのオレフ イン類;アクリル酸、メタクリ酸などの不飽和モノカルボン酸類;マレイン酸、 フマル酸、無水マレイン酸、イタコン酸などの不飽和ポリカルボン酸類及びその 酸無水物類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリ ル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸2-ヒドロキシエチ ル、メタクリ酸メチル、メタクリ酸エチル、メタクリ酸ブチル、メタクリ酸2-エチルヘキシル、メタクリ酸ドデシル、メタクリ酸2-ヒドロキシエチルなどの (メタ) アクリル酸エステル類; アクリル酸ジメチルアミノエチル、メタクリ酸 ジメチルアミノエチル、アクリル酸ジメチルアミノエチル塩酸塩、メタクリ酸ジ メチルアミノエチル塩酸塩、アクリル酸ジメチルアミノエチルロートルエンスル ホン酸塩、メタクリル酸ジメチルアミノエチルpートルエンスルホン酸塩などの (メタ)アクリル酸ジアルキルアミノアルキル及びその付加塩;アクリルアミド 、メタクリルアミド、N-メチロールアクリルアミド、N.N-ジメチルアクリ ルアミド、アクリルアミドー2ーメチルプロパンスルホン酸及びそのナトリウム 塩などのアクリルアミド系単量体;スチレン、αーメチルスチレン、ρースチレ ンスルホン酸及びそのナトリウム塩、カリウム塩などのスチレン系単量体;その 他アリルアミン及びその付加塩、酢酸ビニル、アクリロニトリル、メタクリロニ トリル、Nービニルピロリドン、さらにはフッ化ビニル、フッ化ビニリデン、テ トラフルオロエチレンなどの含フッ素単量体等の油溶性又は水溶性の単量体を挙 げることができる。これらの単量体は一種を単独で用いてもよく、二種以上を組 み合わせて用いてもよい。

[0009]

本発明においては、微細反応管内において均一液状状態で重合反応を行うために、所望により重合溶媒を用いることができる。この重合溶媒は使用するラジカル重合性単量体の種類に応じて、水性溶媒や各種の有機溶媒の中から適宜選択して用いられる。水性溶媒としては、水、又は水及びそれと混和性のある有機溶剤(ギ酸、酢酸、プロピオン酸などの有機酸類、酢酸メチル、酢酸エチルなどのエステル類;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンなどのケトン類;メタノール、エタノール、プロパノールなどのアルコール類;ジメチルスルホキシド、ジメチルホルムアミドなど)との混合物などを挙げることができる。

一方、有機溶媒としては、前記の水との混和性有機溶剤;その他のエステル類、ケトン類、アルコール類;ジエチルエーテル、テトラヒドロフランなどのエーテル類;ヘキサン、シクロヘキサン、ヘプタン、オクタンなどの脂肪族・脂環式炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;塩化メチレン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン、ジクロロベンゼンなどの塩素化炭化水素類等を挙げることができる。これらの有機溶剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。

[0010]

ラジカル重合開始剤としては、特に制限はなく、従来ラジカル重合において使用されている公知のラジカル重合開始剤の中から、原料のラジカル重合性単量体や重合溶媒の種類などに応じて適宣選択して用いることができる。このようなラジカル重合開始剤としては、例えば有機過酸化物、アゾ化合物、ジスルフィド化合物、レドックス系開始剤、過硫酸塩などが挙げられる。一般的には、重合溶媒が水性媒体である場合には、水溶性有機過酸化物、水溶性アゾ化合物、レドックス系開始剤、過硫酸塩などが好ましく用いられ、重合溶媒が有機溶媒である場合には、油溶性有機過酸化物及び油溶性アゾ化合物などが好ましく用いられる。

上記水溶性有機過酸化物の例としては、t-プチルヒドロペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、p-メンタンヒドロペルオキシド、2, 5-ジメチルヘキサン-2, 5-ジヒドロペルオ

[0011]

レドックス系開始剤としては、例えば過酸化水素と還元剤との組合わせなどを 挙げることができる。この場合、還元剤としては、二価の鉄イオンや銅イオン、 亜鉛イオン、コバルトイオン、バナジウムイオンなどの金属イオン、アスコルゼ ン酸、還元糖などが用いられる。過硫酸塩としては、例えば過硫酸アンモニウム 、過硫酸カリウムなどが挙げられる。

これらの水溶性ラジカル重合開始剤は一種を単独で用いてもよく、二種以上を 組み合わせて用いてもよい。

一方、油溶性有機過酸化物の例としては、ジベンゾイルペルオキシド、ジー3,5,5ートリメチルヘキサノイルペルオキシド、ジラウロイルペルオキシドなどのジアシルペルオキシド類、ジイソプロピルペルオキシジカーボネート、ジーsecーブチルペルオキシジカーボネート、ジー2ーエチルヘキシルペルオキシジカーボネートなどのペルオキシジカーボネート類;tーブチルペルオキシピバレート、tーブチルペルオキシネオデカノエートなどのペルオキシエステル類;あるいはアセチルシクロヘキシルスルホニルペルオキシド、ジサクシニックアシッドペルオキシドなどが挙げられる。また、油溶性アゾ化合物の例としては、2,2'ーアゾビスイソブチロニトリル、2,2'ーアゾビスー2ーメチルブチロニトリル、2,2'ーアゾビス(2,4ージメチルバレロニトリル)などが挙げられる。これらの油溶性ラジカル重合開始剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。

[0012]

本発明においては、前記ラジカル重合開始剤の使用量は、用いる原料のラジカル重合性単量体やラジカル重合開始剤の種類、得られる重合体の所望分子量など

に応じて適宜選定されるが、通常ラジカル重合性単量体100質量部に対し、 $0.001\sim0.5$ 質量部、好ましくは $0.001\sim0.1$ 質量部の範囲で選定される。

本発明においては、必要に応じ連鎖移動剤を用いることができる。該連鎖移動剤としては、重合反応を阻害せず、生成する重合体の分子量を調節し得るものであればよく、特に制限はないが、メルカプタン類やαーメチルスチレン二量体などが好ましく用いられる。ここで、メルカプタン類としては、例えば、1ーブタンチオール、2ープタンチオール、1ードデカンチオール、2ーメチルー2ーペプタンチオール、2ーメチルー2ーペプタンチオール、2ーメチルー2ーペプタンチオール、メルカプト酢酸とそのエステル、3ーメルカプトプロピオン酸とそのエステル、2ーメルカプトエタノールとそのエステルなどが挙げられる。これらの連鎖移動剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。

本発明においては、反応形式として、(1)微細反応管を温度が均一な一つの 反応帯域とする反応形式、及び(2)該微細反応管に重合温度を制御し得る複数 の反応帯域を設け、各反応帯域の温度を制御する反応形式を採用することができ る。

前記(1)の反応形式の場合、例えば図1に示す反応装置を用いることができる。図1は、本発明の方法を実施するための反応装置の一例の概略断面図であり、反応装置10は、ジャケット1内に、内径2mm以下の微細反応管2が複数並列に設置された構造を有している。原料液(ラジカル重合開始剤、ラジカル重合性単量体及び必要に応じて用いられる重合媒体や連鎖移動剤の組合わせ)は入口3から導入され、複数の微細反応管2内を通って重合反応を行い、重合液が出口4から排出される。一方、温度制御流体(以下、熱媒体と称すことがある。)がジャケット1の入口5から導入され、出口6から排出される。

[0013]

このような反応装置においては、微細反応管を用いるため、単位体積当たりの 表面積が大きいことから、熱交換の効率が極めて高く、反応帯域の温度制御が容 易であり、また、重合時の発熱反応に伴うホットスポット (局所加熱) ができに くい。したがって、全反応帯域の温度を均一に保持することができる。なお、上 記熱媒体の温度は、使用する重合開始剤の分解温度以上に制御される。

また、このような反応装置を用いる場合、原料液として、ラジカル重合開始剤、ラジカル重合性単量体及び必要に応じて用いられる重合媒体や連鎖移動剤を、予め均質に混合したものを、反応装置10の入口3に導入してもよいし、ラジカル重合開始剤含有液とラジカル重合性単量体含有液を別々に、前記入口3に導入し、重合開始剤の分解が起こり、ラジカル重合性単量体の重合が進行する温度条件を与える前に合流させてもよい。しかし、微細反応管内の流れは層流が支配的になるため、該反応管内に導入される前に、ラジカル重合開始剤とラジカル重合性単量体は、均質に混合されていることが望ましく、したがって、ラジカル重合開始剤、ラジカル重合性単量体及び必要に応じて用いられる重合媒体や連鎖移動剤を、予め均質に混合したものを、反応装置10の入口3に導入するのがよい。

ラジカル重合用開始剤、ラジカル重合性単量体及び必要に応じて用いられる重合媒体や連鎖移動剤を、予め均質に混合する方法としては特に制限はなく、様々な方法、例えば機械攪拌や超音波攪拌などにより、回分式で混合する方法、あるいはスタティックミキサー、マイクロミキサーなどを用いて連続式で混合する方法などを用いることができる。

[0014]

一方、前記(2)の反応形式においては、微細反応管に重合温度を制御し得る複数の反応帯域を設け、各反応帯域の温度を精密に制御することにより、生成する重合体が、所望の分子量の分布状態を有するように制御することができる。例えば、該微細反応管に2つの反応帯域を設け、ラジカル重合開始剤とラジカル重合性単量体とを導入する側の反応帯域の温度を、上記ラジカル重合開始剤が分解する温度に保持すると共に、重合液出口側の反応帯域の温度を、該反応帯域の通時間内に上記ラジカル重合開始剤が実質的に分解しない温度に保持することにより、分子量分布において、2つのピークをもつ重合体を得ることができる。なお、ラジカル重合開始剤が分解する温度とは、該ラジカル重合開始剤の分解率が1%程度以下となる温度を指す。

図2は、本発明の方法を実施するための反応装置の異なる例の概略断面図であ

り、反応装置20は、断熱部7を介して二つに分割されたジャケット1a及び1b内に、内径2mm以下の微細反応管2が複数並列に設置された構造を有している。原料液(ラジカル重合開始剤、ラジカル重合性単量体及び必要に応じて用いられる重合媒体や連鎖移動剤の組合わせ)は入口3から導入され、複数の微細反応管2内を通って重合反応を行い、重合液が出口4から排出される。一方、ジャケット1aにおいては、熱媒体が入口5aから導入されると共に、出口6aから排出される。また、ジャケット1bにおいては、熱媒体が入口5bから導入されると共に、出口6bから排出される。ジャケット1a及び1bに導入される熱媒体は、たがいに異なる温度に制御される。例えばジャケット1aに導入される熱媒体は、たがいに異なる温度に制御される。例えばジャケット1aに導入される熱媒体は、たがいに異なる温度に制御される。例えばジャケット1aに導入される熱媒体の温度は、使用するラジカル重合開始剤が分解する温度に設定し、ジャケット1bに導入される熱媒体は、該反応帯域の通過時間内に上記ラジカル重合開始剤が実質的に分解しない温度に設定する。

[0015]

本発明はまた、温度制御流体を流通させることが可能なジャケットと、該ジャケット内に並列に配置された内径2mm以下の複数の円管を有し、前記ジャケットに温度制御流体を流通させることにより、複数の円管内における反応の温度を制御し得る微細化学反応装置を提供する。

このような微細化学反応装置としては、 前記図1に示すような構造を有する 反応装置を例示することができる。該微細化学反応装置は、フォトリソグラフィー、エッチング、精密機械加工といった高度な加工技術を要することなく、市販品として入手可能な内径2mm以下の円管を用いて容易に製作することができる。円管の材質としては、例えば各種の金属や合金、ガラス、プラスチックなどが 用いられる。

また、本発明の微細化学反応装置は、ジャケットが、円管の長さ方向に沿って複数に分割され、かつ分割されたそれぞれのジャケットに温度制御流体を独立して流通させることが可能な構造を有していてもよい。このような構造の微細化学反応装置としては、前記図2に示すような構造を有する反応装置を例示することができる(この図2においては、ジャケットは二つに分割されている。)。

さらに、本発明の微細化学反応装置においては、ジャケット本体と円管部分が

着脱可能な構造を有することが好ましい。これにより、円管内部で詰まりなどを 生じた際や、円管の内径を変更する際に、円管の交換が可能となる。

[0016]

【実施例】

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの 例によってなんら限定されるものではない。

実施例1

トルエン78.8ミリリットルに対して、重合開始剤2,2'ーアゾビス(2,4ージメチルバレロニトリル)0.50g、メタクリル酸メチル21.2ミリリットルを加えて原料溶液を調製した。メタクリル酸メチルは1モル/リットル水酸化ナトリウム水溶液で3回、蒸留水で3回洗浄後、硫酸ナトリウムで乾燥し、さらにアルゴンバブリングを30分間以上行ったものを用い、トルエンはモレキュラーシーブ4Aと十分接触の後、ろ別し、アルゴンで30分間以上バブリングしたものを用いた。なお、原料溶液の調製は、アルゴン雰囲気下で行った。

原料溶液を入れたシリンジポンプにステンレス鋼製で内径が1.0 mm、長さが3.5 mの管を接続し、始めの2.5 mを恒温槽に浸して恒温槽の温度を100 Cとし、残りの1 mを氷浴に浸し、管の出口では流れた溶液量が秤量できるようメスシリンダーで重合溶液が回収できるようにした。

シリンジポンプにより原料溶液を管内に導入し、7.5分間で15ミリリットルの重合溶液を回収した。回収溶液から溶媒を留去し、メタクリル酸メチル重合体を含む0.37gの固形物を得た。原料溶液中にもともと含有されたメタクリル酸メチルの質量(比重0.945g/ミリリットルで計算)に対する得られた固形物の質量割合を収率として算出した。

数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)測定にて決定した。ShodexK-804LとShodexK-805Lの 2本のカラムを直列に配置し、<math>40%、展開溶媒にクロロホルムを用いて、RI 検出器にて市販のメタクリル酸メチル重合体を標準サンプルとしてキャリブレーションを行い、試料を測定、分析した。結果を第1表に示す。重合体成分1及び重合体成分2の2つのピークが観察された。

実施例2

実施例1において、内径が0.5 mm、長さが2 mの管を使用し、始めの1 m を恒温槽に浸して恒温槽の温度を100 Cとし、残りの1 mを氷浴に浸した以外は、実施例1と同様に実施した。50 分間で10 ミリリットルの重合溶液を回収し、メタクリル酸メチル重合体を含む0.32 gの固形物を得た。2 つの重合体成分のピークの数平均分子量の結果を第1表に示す。

実施例3

実施例2において、100分間で10ミリリットルの重合溶液を回収した以外は、実施例2と同様に行った。メタクリル酸メチル重合体を含む0.45gの固形物を得た。2つの重合体成分のピークの数平均分子量の結果を第1表に示す。

[0018]

実施例4

実施例2において、125分間で5ミリリットルの重合溶液を回収した以外は、実施例2と同様に行った。メタクリル酸メチル重合体を含む0.39gの固形物を得た。2つの重合体成分のピークの数平均分子量の結果を第1表に示す。 実施例5

実施例2において、トルエン78.8ミリリットルに対して、2,2'ーアゾビスイソブチロニトリル0.33g、メタクリル酸メチル21.2ミリリットルを加えて調製した原料溶液を用い、50分間で18ミリリットルの重合溶液を回収した以外は、実施例2と同様に行った。メタクリル酸メチル重合体を含む0.29gの固形物を得た。2つの重合体成分のピークの数平均分子量の結果を第1表に示す。

[0019]

実施例 6

実施例 1 において、内径が 0 . 25 mm、長さが 3 mの管を使用し、始めの 2 mを恒温槽に浸して恒温槽の温度を 100 \mathbb{C} とし、残りの 1 mを氷浴に浸した以外は、実施例 1 と同様に実施した。 75 分間で 11 ミリリットルの重合溶液を回収し、メタクリル酸メチル重合体を含む 0 . 43 gの固形物を得た。 2 つの重合

実施例7

実施例6において、50分間で4ミリリットルの重合溶液を回収した以外は、 実施例6と同様に行った。メタクリル酸メチル重合体を含む0.18gの固形物 を得た。2つの重合体成分のピークの数平均分子量の結果を第1表に示す。

[0020]

実施例8

実施例6において、100分間で4ミリリットルの重合溶液を回収した以外は、実施例6と同様に行った。メタクリル酸メチル重合体を含む0.23gの固形物を得た。2つの重合体成分のピークの数平均分子量の結果を第1表に示す。 実施例9

実施例6において、トルエン78.8ミリリットルに対して、2,2'ーアゾビスイソブチロニトリル0.33g、メタクリル酸メチル21.2ミリリットルを加えて調製した原料溶液を用い、15分間で5ミリリットルの重合溶液を回収した以外は、実施例6と同様に行った。メタクリル酸メチル重合体を含む0.12gの固形物を得た。2つの重合体成分のピークの数平均分子量の結果を第1表に示す。

[0021]

実施例10

実施例9において、75分間で11ミリリットルの重合溶液を回収した以外は、実施例9と同様に行った。メタクリル酸メチル重合体を含む0.29gの固形物を得た。2つの重合体成分のピークの数平均分子量の結果を第1表に示す。

実施例11

実施例9において、50分間で4ミリリットルの重合溶液を回収した以外は、 実施例9と同様に行った。メタクリル酸メチル重合体を含む0.14gの固形物 を得た。2つの重合体成分のピークの数平均分子量の結果を第1表に示す。

実施例12

実施例9において、100分間で4ミリリットルの重合溶液を回収した以外は、実施例9と同様に行った。メタクリル酸メチル重合体を含む0.19gの固形

[0022]

比較例1

比較例1において、100 \mathbb{C} の恒温槽での反応時間を5 分間とした以外は、比較例1 と同様に行った。メタクリル酸メチル重合体を含む0.76 gの固形物を得た。数平均分子量の結果を第1 表に示す。なお、重合体のピークは1 つであった。

[0023]

【表1】

第1衰

	7711 A				T			
	開始剤の	流路	滞留	収率	望合体成分1		重合体成分2	
	種類	内径	時間	(%)	ピーク分子量	質量比	ピーク分子量	質量比
			(分)		(Mn)	(%)	(Mn)	(%)
実施例1	1	1mm	1.0	12.3	3.4×10 ³	82.3	3.0 × 10 ⁵	17.7
実施例2		0.5mm	1.0	16.0	3.1×10^{3}	58.7	4.3 × 10 ⁵	41.3
実施例3		0.5mm	2.0	22.5	3.4×10 ³	64.2	2.8 × 10 ⁵	35.8
実施例4		0.5mm	4.9	39.0	3.3×10^{3}	69.0	2.0 × 10 ⁵	31.0
実施例5	2	0.5mm	0.5	8.1	6.4×10 ³	64.9	4.0 × 10 ⁵	45.1
実施例6	1	0.25mm	0.7	19.5	3.2×10^{3}	40.6	1.5 × 10 ⁵	59.4
実施例7		0.25mm	1.2	22.5	3.3×10^{3}	59.0	1.7 × 10 ⁵	41.0
実施例8		0.25mm	2.5	28.8	3.7×10^{3}	78.3	2.0 × 10 ⁵	21.7
実施例9	2	0.25mm	0.3	12.0	7.1×10^{3}	21.0	2.4×10 ⁵	79.0
実施例10		0.25mm	0.7	13.2	6.3×10 ³	41.1	1.9 × 10 ⁵	58.9
実施例11		0.25mm	1.2	17.5	6.5×10^{3}	58.4	2.2 × 10 ⁵	41.6
実施例12		0.25mm	2.5	23.8	6.2×10^{3}	78.4	2.3 × 10 ⁵	21.6
比較例1.	1	_	2	4.3	1.2×10 ⁴	100		
比較例2			5	19.0	4.3 × 10 ³	100		

^{*1;2,2&#}x27;ーアゾビス(2,4ージメチルバレロニトリル)

[0024]

^{*2;2,2&#}x27;ーアゾビスイソブチロニトリル

第1表から明らかなように、実施例の滞留時間と比較例の反応時間がほぼ同じである場合、重合体の収率は、実施例の方がはるかに高いことが分かる。また、 実施例では、重合温度の異なる2つの反応帯域を設け、それぞれの帯域の重合温度を制御することにより、分子量の分布において、重合体成分1及び重合体成分2の2つのピークが出現していることが分かる。

[0025]

【発明の効果】

本発明によれば、内径が2mm以下の微細反応管を用い、ラジカル重合性単量体の重合を流通形式により行い、かつ重合温度を所定の温度に精密に制御することにより、分子量の分布状態が制御されたラジカル重合体を短時間で効率よく製造する方法を提供することができる。

また、本発明によれば、容易に入手可能な部材を用いて、高度な加工技術を必要とせずに製作可能な微細化学反応装置を提供することができる。

【図面の簡単な説明】

[図1]

本発明の方法を実施するための反応装置の一例の概略断面図である。

【図2】

本発明の方法を実施するための反応装置の異なる例の概略断面図である。

【符号の説明】

- 1、1a、1b ジャケット
- 2 微細反応管
- 3 原料液の入口
- 4 重合液の出口
- 5、5a、5b ジャケットの熱媒体入口
- 6、6a、6b ジャケットの熱媒体出口
- 7 断熱部
- 10、20 反応装置

【図1】

[図2]

【書類名】 要約書

【要約】

【課題】 ラジカル重合性単量体のラジカル重合において、所望の分子量の分布 状態を有するラジカル重合体を、短時間で効率よく製造する方法、及び簡単に製 作可能な微細化学反応装置を提供すること。

【解決手段】 ラジカル重合開始剤とラジカル重合性単量体とを、内径が2mm 以下の反応管に導入し、該反応管内において均一液状状態で流通形式により重合 反応を行うラジカル重合体の製造方法、並びに温度制御流体を流通させることが 可能なジャケットと、該ジャケット内に並列に配置された内径2mm以下の複数 の円管を有し、前記ジャケットに温度制御流体を流通させることにより、複数の 円管内における反応の温度を制御し得る微細化学反応装置である。

【選択図】 なし

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-201704

受付番号

5 0 3 0 1 2 3 2 8 5 7

書類名

特許願

担当官

小菅 博

2 1 4 3

作成日

平成15年 7月28日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000183657

【住所又は居所】

東京都墨田区横網一丁目6番1号

【氏名又は名称】

出光石油化学株式会社

【代理人】

申請人

【識別番号】

100078732

【住所又は居所】

東京都港区虎ノ門三丁目25番2号 ブリヂスト

ン虎ノ門ビル6階 大谷特許事務所

【氏名又は名称】

大谷 保

【選任した代理人】

【識別番号】

100081765

【住所又は居所】

東京都港区虎ノ門三丁目25番2号 ブリヂスト

ン虎ノ門ビル6階 大谷特許事務所

【氏名又は名称】

東平 正道

特願2003-201704

出願人履歴情報

識別番号

[000183657]

1. 変更年月日

2000年 6月30日

[変更理由]

住所変更

住所

東京都墨田区横網一丁目6番1号

氏 名

出光石油化学株式会社