Información mutua y métodos contrastivos en el aprendizaje de representaciones

Doble Grado en Ingeniería Informática y Matemáticas

Francisco Javier Sáez Maldonado

8 de septiembre de 2021

Trabajo Fin de Grado

E.T.S. de Ingenierías Informática y de Telecomunicación Facultad de Ciencias

Índice

Teoría de la información

Entropía

Información mutua

Cotas inferiores

Aprendizaje contrastivo

Estimación del ruido contrastiva

Contrastive predictive coding

Pérdida usando tripletas

Marcos de trabajo

SimCLR

Bootstrap your own latent

Experimentación

Objetivos

Experimentos con SimCLR

Experimentos con BYOL

Introducción

Divergencia Kullback-Leibler

Definición (Divergencia Kullback-Leibler)

Sean P y Q dos distribuciones de probabilidad sobre el mismo espacio probabilístico, su divergencia de Kullback-Leibler $KL\Big(Q\mid\mid P\Big)$ mide la "diferencia" de Q a P

$$\mathit{KL}(P \mid\mid Q) = \mathbb{E}_P\left[\log \frac{P(x)}{Q(x)}\right].$$

La divergencia de Kullback-Leibler es siempre no negativa.

3

Teoría de la información

Entropía

Sean X,Y variables aleatorias discretas, con imágenes \mathcal{X},\mathcal{Y} .

Definición (Entropía y entropía relativa)

La entropía H(X) de X se define como

$$H(X) = E_X \left[\log \frac{1}{P_X(X)} \right] = \sum_{x \in \mathcal{X}} P_X(x) \log \frac{1}{P_X(x)}.$$

Definición

La entropía condicionada $H(X \mid Y)$ se define como

$$H(X \mid Y) = \sum_{x \in X, y \in \mathcal{Y}} P_{XY}(x, y) \log \frac{P_Y(y)}{P_{XY}(x, y)}.$$

4

Propiedades