A REFERRAL-REWARD EMBEDDED, BI-PHASE INFORMATION DIFFUSION TECHNIQUE

Sneha Mondal

M.Sc. (Engg.) Thesis Defense Faculty Advisor : Prof. Y. Narahari

November 8, 2017

Department of Computer Science and Automation Indian Institute of Science, Bangalore

OUTLINE'

Introduction

Relevant Literature and Research Gap

Model and Problem Formulation

Experimental Evaluation

Summary and Future Work

INTRODUCTION

ADVERTISING CAMPAIGNS ON SOCIAL MEDIA

 Diffusion via word-of-mouth
 Identify initial adopters.
 Word-of-mouth influence propagation

ADVERTISING CAMPAIGNS ON SOCIAL MEDIA

- Diffusion via word-of-mouth
- Referral Rewards Refer product to friends and acquaintances. Get incentives for successful referral

PROBLEM SETTING

Given

- ⋄ Target consumer base
- Estimates for "influence" between individuals
- ⋄ Budget K as initial endowment

PROBLEM SETTING

Given

- ⋄ Target consumer base
- ♦ Estimates for "influence" between individuals
- ⋄ Budget K as initial endowment

■ Goal

- Trigger cascade of product adoptions
- Maximize set of eventual customers!

PROBLEM SETTING

■ Given

- ⋄ Target consumer base
- Estimates for "influence" between individuals
- ⋄ Budget K as initial endowment

■ Goal

- Trigger cascade of product adoptions
- Maximize set of eventual customers!

■ Design Problems

- Which advertising channels are most effective?
- How to spread initial budget across advertising channels?

DIFFUSION MODEL - INDEPENDENT CASCADE (IC)

- Social network graph G
- When node *u* becomes active, it has a single chance of activating each currently inactive neighbour *v*
- Activation attempt succeeds with probability puv
- Process terminates when no further nodes can be activated

COMPUTING INFLUENCE - LIVE GRAPH

COMPUTING INFLUENCE - LIVE GRAPH

Live Graph (\mathcal{X})	$f_{\mathcal{X}}(\{A\})$) P(X)
A B C	1	0.25
A B C	2	0.25
$A \longrightarrow B \longrightarrow C$	1	0.25
$A \longrightarrow B \longrightarrow C$	3	0.25

$$f(\{A\}) = \sum_{\mathcal{X}} P(\mathcal{X}) f_{\mathcal{X}}(\{A\})$$

= 0.25 * (1 + 2 + 1 + 3)
= 1.75

COMPUTING INFLUENCE - LIVE GRAPH

Live Graph (\mathcal{X})	$f_{\mathcal{X}}(\{A\}$) P(X)
A B C	1	0.25
$A \longrightarrow B$	2	0.25
$A \longrightarrow C$	1	0.25
$A \longrightarrow B \longrightarrow C$	3	0.25

$$P(\mathcal{X}) = \prod_{e \in \mathcal{X}} p_e \prod_{e \notin \mathcal{X}} (1 - p_e)$$
$$f(S) = \sum_{\mathcal{X}} P(\mathcal{X}) f_{\mathcal{X}}(S)$$

RELEVANT LITERATURE AND RESEARCH

GAP

■ Influence maximization in a network in a single phase using seed nodes 1 max $_{|S| \le K} f(S)$ sub-modular optimization, greedy algorithm

¹D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In ACM SIGKDD, pages 137–146, 2003.

²P. Dayama, A. Karnik, and Y. Narahari. Optimal incentive timing strategies for product marketing on social networks. In AAMAS, pages 703–710, 2012.

³S. Dhamal, K. J. Prabuchandran, and Y. Narahari. Information diffusion in social networks in two phases. IEEE TNSE, 3(4):197–210, 2016.

- Influence maximization in a network in a single phase using seed nodes ¹
- Influence maximization using referral incentives ² Optimal referral pricing, maximize profit to company

¹D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In ACM SIGKDD, pages 137–146, 2003.

²P. Dayama, A. Karnik, and Y. Narahari. Optimal incentive timing strategies for product marketing on social networks. In AAMAS, pages 703–710, 2012.

³S. Dhamal, K. J. Prabuchandran, and Y. Narahari. Information diffusion in social networks in two phases. IEEE TNSE, 3(4):197–210, 2016.

- Influence maximization in a network in a single phase using seed nodes ¹
- Influence maximization using referral incentives ²
- Influence maximization in a network in two phases using seed nodes ³

Given $K \to \text{select } k1 \text{ seeds for phase } 1 \to \text{observe spread} \to \text{select remaining } K - k1 \text{ seeds}$

¹D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In ACM SIGKDD, pages 137–146, 2003.

²P. Dayama, A. Karnik, and Y. Narahari. Optimal incentive timing strategies for product marketing on social networks. In AAMAS, pages 703–710, 2012.

³S. Dhamal, K. J. Prabuchandran, and Y. Narahari. Information diffusion in social networks in two phases. IEEE TNSE, 3(4):197–210, 2016.

- Influence maximization in a network in a single phase using seed nodes ¹
- Influence maximization using referral incentives ²
- Influence maximization in a network in two phases using seed nodes ³

Influence maximization with budget-split in two phases, using seed nodes, followed by referral incentives

¹D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In ACM SIGKDD, pages 137–146, 2003.

²P. Dayama, A. Karnik, and Y. Narahari. Optimal incentive timing strategies for product marketing on social networks. In AAMAS, pages 703–710, 2012.

³S. Dhamal, K. J. Prabuchandran, and Y. Narahari. Information diffusion in social networks in two phases. IEEE TNSE, 3(4):197–210, 2016.

MODEL AND PROBLEM FORMULATION

Phase 2 (
$$\alpha = \frac{1}{2}$$
)

Phase 1 (k = 1)

Phase 1 (k = 1)

Phase 2 ($\alpha = \frac{1}{2}$)

Phase 1 (k = 1)

Phase 2 ($\alpha = \frac{1}{2}$)

- Incentive to individual nodes
- Overall edge influence probabilities expected to increase!

- Incentive to individual nodes
- Overall edge influence probabilities expected to increase!

- Incentive to individual nodes
- Overall edge influence probabilities expected to increase!

- non-negative
- no reward \implies no increase in probability; h(0) = 0
- non-decreasing in [0,1]

- Incentive to individual nodes
- Overall edge influence probabilities expected to increase!

- non-negative
- no reward \implies no increase in probability; h(0) = 0
- non-decreasing in [0,1]
- $h(\alpha) = \log(1+\alpha)$ $p^{\alpha} = (1 + \log(1+\alpha))p$

- Incentive to individual nodes
- Overall edge influence probabilities expected to increase!

- non-negative
- no reward \implies no increase in probability; h(0) = 0
- non-decreasing in [0,1]
- $h(\alpha) = \log(1+\alpha)$ $p^{\alpha} = \min\{1, (1+\log(1+\alpha))p\}$

• \mathcal{X} : Live graph obtained after phase 1; $p(\mathcal{X})$

- \blacksquare \mathcal{X} : Live graph obtained after phase 1; $p(\mathcal{X})$
- $A_{diff}^{\mathcal{X}}$ = Nodes active after phase 1

$$A_{diff}^{\mathcal{X}} = \{v | v \text{ is reachable from } S^k \text{ in } \mathcal{X}\}$$

- \blacksquare \mathcal{X} : Live graph obtained after phase 1; $p(\mathcal{X})$
- $A_{diff}^{\mathcal{X}}$ = Nodes active after phase 1

$$A_{diff}^{\mathcal{X}} = \{ v | v \text{ is reachable from } S^k \text{ in } \mathcal{X} \}$$

■ \mathcal{Y} : Live graph obtained after phase 2; $p(\mathcal{Y}|\mathcal{X};\alpha)$

- \mathcal{X} : Live graph obtained after phase 1; $p(\mathcal{X})$
- $A_{diff}^{\mathcal{X}}$ = Nodes active after phase 1

$$A_{diff}^{\mathcal{X}} = \{v | v \text{ is reachable from } S^k \text{ in } \mathcal{X}\}$$

- \mathcal{Y} : Live graph obtained after phase 2; $p(\mathcal{Y}|\mathcal{X};\alpha)$
- A_{ref}^{y} = Additional nodes activated in phase 2

$$A_{ref}^{\mathcal{Y}} = \{ v | v \text{ is reachable from } A_{diff}^{\mathcal{X}} \text{ in } \mathcal{Y} \} \setminus A_{diff}^{\mathcal{X}}$$

- \mathcal{X} : Live graph obtained after phase 1; $p(\mathcal{X})$
- $A_{diff}^{\mathcal{X}}$ = Nodes active after phase 1

$$A_{diff}^{\mathcal{X}} = \{ v | \ v \ \text{is reachable from } S^k \ \text{in } \mathcal{X} \}$$

- \mathcal{Y} : Live graph obtained after phase 2; $p(\mathcal{Y}|\mathcal{X};\alpha)$
- $A_{ref}^{\mathcal{Y}}$ = Additional nodes activated in phase 2

$$\textit{A}_\textit{ref}^{\mathcal{Y}} = \{\textit{v}|~\textit{v}~\text{is reachable from}~\textit{A}_\textit{diff}^{\mathcal{X}}~\text{in}~\mathcal{Y}\} \setminus \textit{A}_\textit{diff}^{\mathcal{X}}$$

■ $f(S^k, \alpha)$ = Expected number of influenced nodes

$$f(S^{k}, \alpha) = \sum_{\mathcal{X}} p(\mathcal{X}) \left\{ |A_{diff}^{\mathcal{X}}| + \sum_{\mathcal{Y}} p(\mathcal{Y}|\mathcal{X}; \alpha) |A_{ref}^{\mathcal{Y}}| \right\}$$

- \blacksquare \mathcal{X} : Live graph obtained after phase 1; $p(\mathcal{X})$
- $A_{diff}^{\mathcal{X}}$ = Nodes active after phase 1

$$A_{\textit{diff}}^{\mathcal{X}} = \{ v | \ v \ \text{is reachable from} \ S^k \ \text{in} \ \mathcal{X} \}$$

- \mathcal{Y} : Live graph obtained after phase 2; $p(\mathcal{Y}|\mathcal{X};\alpha)$
- $A_{ref}^{\mathcal{Y}}$ = Additional nodes activated in phase 2

$$A_{ref}^{\mathcal{Y}} = \{ v | v \text{ is reachable from } A_{diff}^{\mathcal{X}} \text{ in } \mathcal{Y} \} \setminus A_{diff}^{\mathcal{X}}$$

■ $f(S^k, \alpha)$ = Expected number of influenced nodes

$$f(S^{k}, \alpha) = \sum_{\mathcal{X}} p(\mathcal{X}) \left\{ |A_{diff}^{\mathcal{X}}| + \sum_{\mathcal{Y}} p(\mathcal{Y}|\mathcal{X}; \alpha) |A_{ref}^{\mathcal{Y}}| \right\}$$

■ For a fixed α , $f(S, \alpha)$ is non-negative, monotone and sub-modular in S.

OPTIMIZATION PROBLEM

Select
$$(S_k, \alpha)$$
 to give

$$\max_{\substack{k \leq K, \alpha \in [0,1] \\ S_k \subset V}} f(S_k, \alpha) = \underbrace{\mathbb{E}\left[|A_{diff}(S_k)|\right]}_{\text{depends on } k} + \underbrace{\mathbb{E}\left[|A_{ref}(S_k; \alpha)|\right]}_{\text{depends on } k, \, h(\alpha)}$$

subject to

$$\mathbb{E}\left[|A_{ref}(S^k;\alpha)|\right] \leq \frac{K-k}{2\alpha}$$

Algorithm: A modified greedy algorithm for seed selection

```
Input: Graph G, budget K, split (k, \alpha)
Output: Optimal seed set S_k such that |S_k| < k
S_k \leftarrow \phi
for t \leftarrow 1 to k do
      for v \notin S_k do
        Compute f(S_k \cup \{v\})
      V_{valid} \leftarrow \{v \in V \setminus S_k : \mathbb{E}|A_{ref}(S_k \cup \{v\})| \leq \frac{K-k}{2\alpha}\}
      v_t \leftarrow \operatorname{arg\,max}_{v \in V_{\text{radial}}} f(S_k \cup \{v\}) - f(S_k)
      if \{v_t\} \neq \phi then
      S_k \leftarrow S_k \cup \{v_t\}
      else
             return S<sub>k</sub>
```

Algorithm: A modified greedy algorithm for seed selection

```
Input: Graph G, budget K, split (k, \alpha)
Output: Optimal seed set S_k such that |S_k| < k
S_k \leftarrow \phi
for t \leftarrow 1 to k do
      for v \notin S_k do
        Compute f(S_k \cup \{v\})
      V_{valid} \leftarrow \{v \in V \setminus S_k : \mathbb{E}|A_{ref}(S_k \cup \{v\})| \leq \frac{K-k}{2n}\}
      v_t \leftarrow \operatorname{arg\,max}_{v \in V_{\text{noted}}} f(S_k \cup \{v\}) - f(S_k)
      if \{v_t\} \neq \phi then
      S_k \leftarrow S_k \cup \{v_t\}
      else
            return S<sub>k</sub>
```

EXPERIMENTAL EVALUATION

DATASETS

- Les Miserables
 - ⋄ 77 nodes, 254 undirected edges
 - Suitable for running time and memory intensive algorithms

■ Les Miserables

- ⋄ 77 nodes, 254 undirected edges
- Suitable for running time and memory intensive algorithms

NetHEPT

- ♦ 15233 nodes, 31398 undirected edges
- Exhibits most structural properties of "social-network" graphs

PERFORMANCE OF 2-PHASE VS. SINGLE-PHASE

■ Budget-split detrimental for small *K*, yields significant gains for moderate-high *K*, relative gain increases with *K*

PERFORMANCE OF 2-PHASE VS. SINGLE-PHASE (LES MISERABLES)

- Budget-split detrimental for small *K*, yields significant gains for moderate-high *K*
- PMIA heuristic performs nearly as well as 2-phase greedy

■ Maximum spread observed at high k, low α pairs Optimal split for LM : (7, 0.15). Gain \approx 6% Optimal split for NetHEPT : (82, 0.15). Gain \approx 7%

■ Maximum spread observed at high k, low α pairs Optimal split for LM : (7, 0.15). Gain \approx 6% Optimal split for NetHEPT : (82, 0.15). Gain \approx 7% WHY?

■ Maximum spread observed at high k, low α pairs Optimal split for LM : (7, 0.15). Gain \approx 6% Optimal split for NetHEPT : (82, 0.15). Gain \approx 7% WHY?

Need enough active nodes after phase 1 to act as referring agents for phase 2!

- Maximum spread observed at high k, low α pairs
- \blacksquare Improved spread <code>never</code> attained at very high α

- lacktriangle Maximum spread observed at high k, low α pairs
- Improved spread never attained at very high α WHY?

- Maximum spread observed at high k, low α pairs
- Improved spread never attained at very high α WHY?

Higher $\alpha \implies$ fewer permissible active nodes in phase 2!

TEMPORAL PROGRESSION OF 2-PHASE MODEL

- Single phase saturates earliest
- Two-phase saturates after phase 1, shoots up on initiating phase 2
- Allocating sufficient budget for phase 1 is crucial!

SUMMARY AND FUTURE WORK

- In conclusion, we have:
 - Proposed a referral incentive based model
 - Analysed the mathematical properties of said model
 - Studied efficacy of the model on real-life datasets

SUMMARY AND FUTURE WORK

- In conclusion, we have:
 - Proposed a referral incentive based model
 - Analysed the mathematical properties of said model
 - Studied efficacy of the model on real-life datasets
- Future Work
 - \diamond Use real cascade data to infer appropriate $h(\alpha)$
 - Analyse the modified-greedy algorithm, and establish provable guarantee for constrained optimization problem

PUBLICATION BASED ON THIS THESIS

Sneha Mondal, Swapnil Dhamal, and Y. Narahari. Two-Phase Influence Maximization in Social Networks with Seed Nodes and Referral Incentives.

Proceedings of the 11th International AAAI Conference on Web and Social Media (ICWSM-17)