We claim:

1. A compound represented by A:

$$\begin{pmatrix}
CH_{2} \\
N \\
R_{9} \\
R_{4}
\end{pmatrix}$$

$$\begin{pmatrix}
R_{8} \\
C \\
Y \\
Z \\
S \\
R_{1}$$

wherein

X represents $C(R_3)_2$, O, S, SO, SO₂, NR₂, NC(O)R₁, NC(O)OR₂, NS(O)₂R₁, or C=O;

Z represents N or CR;

m is 0, 1, 2, 3 or 4;

n is 1 or 2;

p is 1, 2, or 3;

y is 0, 1, or 2;

R represents H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

R₁ represents NR₂, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

R and R₁ may be connected through a covalent bond;

R₂ represents independently for each occurrence H, alkyl, fluoroalkyl, aryl, heteroaryl, or cycloalkyl;

R₃ represents independently for each occurrence H, alkyl, aryl, OR₂, OC(O)R₂, CH₂OR₂, or CO₂R₂; wherein any two instances of R₃ may be connected by a covalent tether whose backbone consists of 1, 2, 3, or 4 carbon atoms;

R₄ represents independently for each occurrence H, alkyl, aryl, heteroaryl, alkenyl, or cycloalkyl;

 R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, $(CH_2)_pY$, aryl, heteroaryl, F, OR_2 , and $OC(O)R_2$; or an instance of CR_5R_6 taken together is C(O);

 R_8 and R_9 are selected independently for each occurrence from the group consisting of H, alkyl, $(CH_2)_pY$, aryl, heteroaryl, F, OR_2 , and $OC(O)R_2$; or an instance of CR_8R_9 taken together is C(O);

Y represents independently for each occurrence OR_2 , $N(R_2)_2$, SR_2 , $S(O)R_2$, $S(O)_2R_2$, or $P(O)(OR_2)_2$;

any two instances of R₂ may be connected through a covalent bond;
a covalent bond may connect R₄ and an instance of R₅ or R₆;
any two instances of R₅ and R₆ may be connected through a covalent bond;
any two geminal or vicinal instances of R₈ and R₉ may be connected through a covalent bond; and

the stereochemical configuration at any stereocenter of a compound represented by A is R, S, or a mixture of these configurations.

- 2. The compound of claim 1, wherein X is $C(R_3)_2$, O, or NR_2 .
- 3. The compound of claim 1, wherein X is $C(R_3)_2$.
- 4. The compound of claim 1, wherein m is 2.
- 5. The compound of claim 1, wherein n is 1.
- 6. The compound of claim 1, wherein y is 1.
- 7. The compound of claim 1, wherein R represents aryl or heteroaryl.
- 8. The compound of claim 1, wherein R_1 represents alkyl or aryl.
- 9. The compound of claim 1, wherein R₃ represents independently for each occurrence H or alkyl.
- 10. The compound of claim 1, wherein R₄ represents cycloalkyl, aryl, or heteroaryl.
- 11. The compound of claim 1, wherein R₅ and R₆ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 12. The compound of claim 1, wherein R₈ and R₉ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 13. The compound of claim 1, wherein X is $C(R_3)_2$; and m is 2.

- 14. The compound of claim 1, wherein X is $C(R_3)_2$; and n is 1.
- 15. The compound of claim 1, wherein X is $C(R_3)_2$; and y is 1.
- 16. The compound of claim 1, wherein X is $C(R_3)_2$; m is 2; n is 1; and y is 1.
- 17. The compound of claim 1, wherein X is $C(R_3)_2$; m is 2; n is 1; y is 1; and R is aryl or heteroaryl.
- 18. The compound of claim 1, wherein X is $C(R_3)_2$; m is 2; n is 1; y is 1; R is aryl or heteroaryl; and R_1 represents alkyl or aryl.
- 19. The compound of claim 1, wherein X is $C(R_3)_2$; m is 2; n is 1; y is 1; R is aryl or heteroaryl; R_1 represents alkyl or aryl; and R_3 represents independently for each occurrence H or alkyl.
- 20. The compound of claim 1, wherein X is $C(R_3)_2$; m is 2; n is 1; y is 1; R is aryl or heteroaryl; R_1 represents alkyl or aryl; R_3 represents independently for each occurrence H or alkyl; and R_4 represents cycloalkyl, aryl, or heteroaryl.
- 21. The compound of claim 1, wherein X is $C(R_3)_2$; m is 2; n is 1; y is 1; R is aryl or heteroaryl; R_1 represents alkyl or aryl; R_3 represents independently for each occurrence H or alkyl; R_4 represents cycloalkyl, aryl, or heteroaryl; and R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F.
- 22. The compound of claim 1, wherein X is $C(R_3)_2$; m is 2; n is 1; y is 1; R is aryl or heteroaryl; R_1 represents alkyl or aryl; R_3 represents independently for each occurrence H or alkyl; R_4 represents cycloalkyl, aryl, or heteroaryl; R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F; and R_8 and R_9 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F.
- 23. A compound represented by **B**:

$$\begin{pmatrix}
R_9R_8C \\
y \\
R_1
\end{pmatrix} = 0$$

$$\begin{pmatrix}
R_9R_8C \\
y \\
R_1
\end{pmatrix} = 0$$

$$\begin{pmatrix}
CR_5R_6 \\
m
\end{pmatrix} = 0$$

wherein

Z represents N or CR;

m is 0, 1, 2, 3 or 4;

p is 1, 2, or 3;

y is 0, 1 or 2;

R represents H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

R₁ represents NR₂, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

R and R₁ may be connected through a covalent bond;

R₂ represents independently for each occurrence H, alkyl, fluoroalkyl, aryl, heteroaryl, or cycloalkyl;

 R_3 represents independently for each occurrence H, alkyl, aryl, OR_2 , $OC(O)R_2$, CH_2OR_2 , or CO_2R_2 ;

R₄ represents H, alkyl, aryl, heteroaryl, alkenyl, or cycloalkyl;

 R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, $(CH_2)_pY$, aryl, heteroaryl, F, OR_2 , and $OC(O)R_2$; or an instance of CR_5R_6 taken together is C(O);

 R_8 and R_9 are selected independently for each occurrence from the group consisting of H, alkyl, $(CH_2)_pY$, aryl, heteroaryl, F, OR_2 , and $OC(O)R_2$; or an instance of CR_8R_9 taken together is C(O);

Y represents independently for each occurrence OR_2 , $N(R_2)_2$, SR_2 , $S(O)R_2$, $S(O)_2R_2$, or $P(O)(OR_2)_2$;

any two instances of R₂ may be connected through a covalent bond;
a covalent bond may connect R₄ and an instance of R₅ or R₆;
any two instances of R₅ and R₆ may be connected through a covalent bond;
any two geminal or vicinal instances of R₈ and R₉ may be connected through a covalent bond; and

the stereochemical configuration at any stereocenter of a compound represented by $\bf B$ is R, S, or a mixture of these configurations.

- 24. The compound of claim 23, wherein m is 2.
- 25. The compound of claim 23, wherein y is 1.
- 26. The compound of claim 23, wherein R represents aryl or heteroaryl.
- 27. The compound of claim 23, wherein R_1 represents alkyl or aryl.
- 28. The compound of claim 23, wherein R₃ represents independently for each occurrence H or alkyl.
- 29. The compound of claim 23, wherein R₄ represents cycloalkyl, aryl, or heteroaryl.
- 30. The compound of claim 23, wherein R₅ and R₆ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 31. The compound of claim 23, wherein R₈ and R₉ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 32. The compound of claim 23, wherein m is 2; and y is 1.
- 33. The compound of claim 23, wherein m is 2; y is 1; and R represents aryl or heteroaryl.
- 34. The compound of claim 23, wherein m is 2; y is 1; R represents aryl or heteroaryl; and R₁ represents alkyl or aryl.
- 35. The compound of claim 23, wherein m is 2; y is 1; R represents aryl or heteroaryl; R₁ represents alkyl or aryl; and R₃ represents independently for each occurrence H or alkyl.

- 36. The compound of claim 23, wherein m is 2; y is 1; R represents aryl or heteroaryl; R₁ represents alkyl or aryl; R₃ represents independently for each occurrence H or alkyl; and R₄ represents cycloalkyl, aryl, or heteroaryl.
- 37. The compound of claim 23, wherein m is 2; y is 1; R represents aryl or heteroaryl; R_1 represents alkyl or aryl; R_3 represents independently for each occurrence H or alkyl; R_4 represents cycloalkyl, aryl, or heteroaryl; and R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F.
- 38. The compound of claim 23, wherein m is 2; y is 1; R represents aryl or heteroaryl; R_1 represents alkyl or aryl; R_3 represents independently for each occurrence H or alkyl; R_4 represents cycloalkyl, aryl, or heteroaryl; R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F; and R_8 and R_9 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F.

39. A compound represented by C:

$$\begin{pmatrix}
R_9R_8C \\
y \\
X \\
X \\
C
\end{pmatrix}_{x} S = 0$$

$$\begin{pmatrix}
R_9R_8C \\
y \\
C \\
C \\
C
\end{pmatrix}_{x} S = 0$$

$$\begin{pmatrix}
C \\
C \\
C \\
C
\end{pmatrix}_{x} S = 0$$

wherein

Z represents N or CR;

m is 0, 1, 2, 3 or 4;

p is 1, 2, or 3;

y is 0, 1 or 2;

R represents H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

R₁ represents NR₂, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

R and R_1 may be connected through a covalent bond;

R₂ represents independently for each occurrence H, alkyl, fluoroalkyl, aryl, heteroaryl, or cycloalkyl;

R₃ represents independently for each occurrence H, alkyl, aryl, OR₂, OC(O)R₂, CH₂OR₂, or CO₂R₂;

R₄ represents H, alkyl, aryl, heteroaryl, alkenyl, or cycloalkyl;

 R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, $(CH_2)_pY$, aryl, heteroaryl, F, OR_2 , and $OC(O)R_2$; or an instance of CR_5R_6 taken together is C(O);

 R_8 and R_9 are selected independently for each occurrence from the group consisting of H, alkyl, $(CH_2)_pY$, aryl, heteroaryl, F, OR_2 , and $OC(O)R_2$; or an instance of CR_8R_9 taken together is C(O);

Y represents independently for each occurrence OR_2 , $N(R_2)_2$, SR_2 , $S(O)R_2$, $S(O)_2R_2$, or $P(O)(OR_2)_2$;

any two instances of R₂ may be connected through a covalent bond;

a covalent bond may connect R₄ and an instance of R₅ or R₆;

any two instances of R₅ and R₆ may be connected through a covalent bond;

any two geminal or vicinal instances of R₈ and R₉ may be connected through a covalent bond; and

the stereochemical configuration at any stereocenter of a compound represented by C is R or S, or a mixture of these configurations.

- 40. The compound of claim 39, wherein m is 2.
- 41. The compound of claim 39, wherein y is 1.
- 42. The compound of claim 39, wherein R represents aryl or heteroaryl.
- 43. The compound of claim 39, wherein R_1 represents alkyl or aryl.
- 44. The compound of claim 39, wherein R₃ represents independently for each occurrence H or alkyl.
- 45. The compound of claim 39, wherein R₄ represents cycloalkyl, aryl, or heteroaryl.

- 46. The compound of claim 39, wherein R₅ and R₆ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 47. The compound of claim 39, wherein R₈ and R₉ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 48. The compound of claim 39, wherein m is 2; and y is 1.
- 49. The compound of claim 39, wherein m is 2; y is 1; and R represents aryl or heteroaryl.
- 50. The compound of claim 39, wherein m is 2; y is 1; R represents aryl or heteroaryl; and R₁ represents alkyl or aryl.
- 51. The compound of claim 39, wherein m is 2; y is 1; R represents aryl or heteroaryl; R₁ represents alkyl or aryl; and R₃ represents independently for each occurrence H or alkyl.
- 52. The compound of claim 39, wherein m is 2; y is 1; R represents aryl or heteroaryl; R₁ represents alkyl or aryl; R₃ represents independently for each occurrence H or alkyl; and R₄ represents cycloalkyl, aryl, or heteroaryl.
- 53. The compound of claim 39, wherein m is 2; y is 1; R represents aryl or heteroaryl; R_1 represents alkyl or aryl; R_3 represents independently for each occurrence H or alkyl; R_4 represents cycloalkyl, aryl, or heteroaryl; and R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F.
- 54. The compound of claim 39, wherein m is 2; y is 1; R represents aryl or heteroaryl; R₁ represents alkyl or aryl; R₃ represents independently for each occurrence H or alkyl; R₄ represents cycloalkyl, aryl, or heteroaryl; R₅ and R₆ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F; and R₈ and R₉ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 55. A compound represented by **D**:

$$\begin{array}{c|c}
X & R_{3} \\
R_{3} & C \\
R_{9} & C \\
R_{1} & C \\
R_{9} & C \\
R_{1} & C \\
R_{2} & C \\
R_{3} & C \\
R_{4} & C \\
R_{4} & C \\
R_{4} & C \\
R_{4} & C \\
R_{5} & C \\
R_{9} & C \\
R_{1} & C \\
R_{2} & C \\
R_{3} & C \\
R_{4} & C \\
R_{5} & C \\
R_{1} & C \\
R_{2} & C \\
R_{3} & C \\
R_{4} & C \\
R_{4} & C \\
R_{4} & C \\
R_{5} &$$

wherein

X represents $C(R_3)_2$, O, S, SO, SO₂, NR₂, NC(O)R₁, NC(O)OR₂, NS(O)₂R₁, or C=O;

Z represents N or CR;

m is 0, 1, 2, 3 or 4;

p is 1, 2, or 3;

y is 0, 1, or 2;

R represents H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

R₁ represents NR₂, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

R and R₁ may be connected through a covalent bond;

R₂ represents independently for each occurrence H, alkyl, fluoroalkyl, aryl, heteroaryl, or cycloalkyl;

 R_3 represents independently for each occurrence H, alkyl, aryl, OR_2 , $OC(O)R_2$, CH_2OR_2 , or CO_2R_2 ;

R₄ represents independently for each occurrence H, alkyl, aryl, heteroaryl, alkenyl, or cycloalkyl;

 R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, $(CH_2)_pY$, aryl, heteroaryl, F, OR_2 , and $OC(O)R_2$; or an instance of CR_5R_6 taken together is C(O);

 R_8 and R_9 are selected independently for each occurrence from the group consisting of H, alkyl, $(CH_2)_pY$, aryl, heteroaryl, F, OR_2 , and $OC(O)R_2$; or an instance of CR_8R_9 taken together is C(O);

Y represents independently for each occurrence OR_2 , $N(R_2)_2$, SR_2 , $S(O)R_2$, $S(O)_2R_2$, or $P(O)(OR_2)_2$;

any two instances of R₂ may be connected through a covalent bond;
a covalent bond may connect R₄ and an instance of R₅ or R₆;
any two instances of R₅ and R₆ may be connected through a covalent bond;
any two geminal or vicinal instances of R₈ and R₉ may be connected through a covalent bond; and

the stereochemical configuration at any stereocenter of a compound represented by \mathbf{D} is R, S, or a mixture of these configurations.

7

- 56. The compound of claim 55, wherein X is O or NR₂.
- 57. The compound of claim 55, wherein m is 2.
- 58. The compound of claim 55, wherein y is 1.
- 59. The compound of claim 55, wherein R represents aryl or heteroaryl.
- 60. The compound of claim 55, wherein R_1 represents alkyl or aryl.
- 61. The compound of claim 55, wherein R₃ represents independently for each occurrence H or alkyl.
- 62. The compound of claim 55, wherein R₄ represents cycloalkyl, aryl, or heteroaryl.
- 63. The compound of claim 55, wherein R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F.
- 64. The compound of claim 55, wherein R₈ and R₉ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 65. The compound of claim 55, wherein X is O or NR_2 ; and m is 2.
- 66. The compound of claim 55, wherein X is O or NR₂; and y is 1.
- 67. The compound of claim 55, wherein X is O or NR₂; m is 2; and y is 1.
- 68. The compound of claim 55, wherein X is O or NR₂; m is 2; y is 1; and R represents aryl or heteroaryl.

- 69. The compound of claim 55, wherein X is O or NR_2 ; m is 2; y is 1; R represents aryl or heteroaryl; and R_1 represents alkyl or aryl.
- 70. The compound of claim 55, wherein X is O or NR₂; m is 2; y is 1; R represents aryl or heteroaryl; R₁ represents alkyl or aryl; and R₃ represents independently for each occurrence H or alkyl.
- 71. The compound of claim 55, wherein X is O or NR_2 ; m is 2; y is 1; R represents aryl or heteroaryl; R_1 represents alkyl or aryl; R_3 represents independently for each occurrence H or alkyl; and R_4 represents cycloalkyl, aryl, or heteroaryl.
- 72. The compound of claim 55, wherein X is O or NR_2 ; m is 2; y is 1; R represents aryl or heteroaryl; R_1 represents alkyl or aryl; R_3 represents independently for each occurrence H or alkyl; R_4 represents cycloalkyl, aryl, or heteroaryl; and R_5 and R_6 are selected independently for each occurrence from the group consisting of H, alkyl, OR_2 , aryl, heteroaryl, and F.
- 73. The compound of claim 55, wherein X is O or NR₂; m is 2; y is 1; R represents aryl or heteroaryl; R₁ represents alkyl or aryl; R₃ represents independently for each occurrence H or alkyl; R₄ represents cycloalkyl, aryl, or heteroaryl; R₅ and R₆ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F; and R₈ and R₉ are selected independently for each occurrence from the group consisting of H, alkyl, OR₂, aryl, heteroaryl, and F.
- 74. The compound of claim 1, 23, 39, or 55, wherein said compound is a single stereoisomer.
- 75. The compound of claim 1, 23, 39, or 55, wherein said compound has an IC₅₀ less than 1 μ M in an assay based on a mammalian GPCR or ligand-gated ion channel.
- 76. The compound of claim 1, 23, 39, or 55, wherein said compound has an IC_{50} less than 100 nM in an assay based on a mammalian GPCR or ligand-gated ion channel.
- 77. The compound of claim 1, 23, 39, or 55, wherein said compound has an IC₅₀ less than 10 nM in an assay based on a mammalian GPCR or ligand-gated ion channel.
- 78. The compound of claim 1, 23, 39, or 55, wherein said compound has an IC₅₀ less than 1 μ M in an assay based on a mammalian GPCR.

79. The compound of claim 41, wherein said mammalian GPCR is an NMDA receptor, a norepinephrine transporter or a sigma receptor.

()

- 80. The compound of claim 1, 12, 20, or 28, wherein said compound has an IC_{50} less than 100 nM in an assay based on a mammalian GPCR.
- 81. The compound of claim 80, wherein said mammalian GPCR is an NMDA receptor, a norepinephrine transporter or a sigma receptor.
- 82. The compound of claim 1, 23, 39, or 55, wherein said compound has an IC₅₀ less than 10 nM in an assay based on a mammalian GPCR.
- 83. The compound of claim 82, wherein said mammalian GPCR is an NMDA receptor, a norepinephrine transporter or a sigma receptor.
- 84. A formulation, comprising a compound of claim 1, 23, 39, or 55; and a pharmaceutically acceptable excipient.
- 85. A method of treating an acute or chronic ailment, disease or malady in a mammal that is due to an abnormality in a biochemical or physiological process associated with a G-protein-coupled receptor or ligand-gated ion channel, comprising the step of administering to said mammal a therapeutically effective amount of a compound of claim 1, 23, 39, or 55.
- 86. The method of claim 85, wherein said mammal is a primate, equine, canine or feline.
- 87. The method of claim 85, wherein said mammal is a human.
- 88. The method of claim 85, wherein said compound is administered orally.
- 89. The method of claim 85, wherein said compound is administered intravenously.
- 90. The method of claim 85, wherein said compound is administered sublingually.
- 91. The method of claim 85, wherein said compound is administered ocularly.
- 92. The method of claim 85, wherein said compound is administered transdermally.
- 93. The method of claim 85, wherein said compound is administered rectally.
- 94. The method of claim 85, wherein said compound is administered vaginally.
- 95. The method of claim 85, wherein said compound is administered nasally.

- 96. A method of treating a psychiatric disorder in a mammal, comprising the step of:

 administering to said mammal a therapeutically effective amount of a compound of claim 1, 23, 39, or 55.
- 97. The method of claim 96, wherein said psychiatric disorder is a psychosis.
- 98. The method of claim 96, wherein said psychiatric disorder is schizophrenia.
- 99. The method of claim 96, wherein said psychiatric disorder is paranoia, manic depression, or depression.
- 100. The method of claim 96, wherein said mammal is a primate, equine, canine or feline.
- 101. The method of claim 96, wherein said mammal is a human.
- 102. The method of claim 96, wherein said compound is administered orally.
- 103. The method of claim 96, wherein said compound is administered intravenously.
- 104. The method of claim 96, wherein said compound is administered sublingually.
- 105. The method of claim 96, wherein said compound is administered ocularly.
- 106. The method of claim 96, wherein said compound is administered transdermally.
- 107. The method of claim 96, wherein said compound is administered rectally.
- 108. The method of claim 96, wherein said compound is administered vaginally.
- 109. The method of claim 96, wherein said compound is administered nasally.
- 110. A method of treating a mammal suffering from an anxiety disorder, a dissociative disorder, a mood disorder, a personality disorder, a psychosexual disorder, an eating disorder, drug addiction, drug dependence, depression, manic depression, paranoia, psychosis, schizophrenia, or inflammatory pain, comprising the step of:

administering to said mammal a therapeutically effective amount of a compound of claim 1, 23, 39, or 55.

- 111. The method of claim 110, wherein said mammal is a primate, equine, canine or feline.
- 112. The method of claim 110, wherein said mammal is a human.
- 113. The method of claim 110, wherein said compound is administered orally.

- 114. The method of claim 110, wherein said compound is administered intravenously.
- 115. The method of claim 110, wherein said compound is administered sublingually.
- 116. The method of claim 110, wherein said compound is administered ocularly.
- 117. The method of claim 110, wherein said compound is administered transdermally.
- 118. The method of claim 110, wherein said compound is administered rectally.
- 119. The method of claim 110, wherein said compound is administered vaginally.
- 120. The method of claim 110, wherein said compound is administered nasally.