UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i:	MAT-INF 1100 — Modellering og
Eksamensdag:	beregninger. Torsdag 11. oktober 2007.
Tid for eksamen:	9:00-11:00.
Oppgavesettet er på 5	sider.
Vedlegg:	Formelark.
Tillatte hjelpemidler:	Ingen.
	ller at oppgavesettet er komplett før begynner å besvare spørsmålene.
Husk	å fylle inn kandidatnummer under.
	Kandidatnr:
poengsummen er altså 50. ett av disse som er riktig. I	ler 2 poeng hver, de siste 10 teller 3 poeng hver. Den totale Det er 5 svaralternativer for hvert spørsmål, men det er bare Dersom du svarer feil eller lar være å krysse av på et spørsmål altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!
	Oppgave- og svarark
	tallet 1010101 er det samme som det desimale tallet
	69 × 85 1 20201
□ 581 × 557 □	stemet blir det desimale tallet 367 $10010111 \Box 11233 \Box 4267$
□ 0.1111	et 0.3 kan skrives på binær form som
0.010011	
0.10101	
□ 1.1	
$\overline{\mathbf{x}}$ krever uendelig mange b	inære siffer
Oppgave 4. Tallet (1 –	$(i\sqrt{3})^3$, der i er den imaginære enheten, er
\square et irrasjonalt tall	
\square et rent imaginært tall	
(Fortsettes på side 2.)	

et naturlig tall		
et komplekst tall der både real- og imaginærdel er ulik null.		
x et rasjonalt tall.		
Oppgave 5. En mengde er definert ved $\{x \in \mathbb{N} \mid x^2 > 5\}$. Hvilket utsagn er riktig?		
\Box Største nedre skranke er $\sqrt{5}$.		
Mengden har ingen øvre skranke.		
Kompletthetsaksiomet gjelder ikke siden mengden bare består av hele tall.		
Største nedre skranke er 2.		
Mengden har verken øvre eller nedre skranker.		
Oppgave 6. Vi multipliserer ut uttrykket $(2-b)^{16}$. Hva blir da koeffisienten foran b^{14} ?		
Oppgave 7. Et av de følgende utsagn er feil; hvilket?		
\square Alle heltall er elementer i \mathbb{C} .		
Vi kan alltid tilnærme et komplekst tall, vilkårlig godt, med rasjonale tall.		
De rasjonale tallene oppfyller alle 11 aksiomer for reelle tall, unntatt ett.		
\sqrt{n} , der n er et naturlig tall, er enten et naturlig tall eller et irrasjonalt tall.		
$\hfill \square$ I numeriske beregninger på en datamaskin opererer vi bare med et endelig antall		
ulike tall.		
Oppgave 8. Vi definerer tallmengden $A = \{x_n\}$, for $n \ge 0$, der x_n er gitt rekursivt ved $x_0 = 2$, $x_{n+1} = \frac{1}{2}(1 + x_n)$. Ett av følgende utsagn om A er sant		
\square $\sup A = 1$ \boxtimes $\inf A = 1$ \square $\sup A = \frac{3}{2}$ \square $\inf A = 0$		
\Box A er ikke begrenset		
kommentar: Vi finner svaret enklest ved å løse differenslikningen. Dette er rett fram og gir $x_n = 1 + 2^{-n}$ vi ser at x_n er avtagende og gå r mot 1 når $n \to \infty$. Dvs. at 1 er den største nedre grense.		
Oppgave 9. Hvilken av de følgende differensligningene er lineær og homogen?		
$\mathbf{x} x_{n+1} + (-1)^n x_n = 0$		
Opporer 10. Vi digly town metaden for a finne leaning or av library $f(x) = 0$ den $f(x)$		

Oppgave 10. Vi diskuterer metoder for å finne løsninger av likningen f(x) = 0, der f er en kontinuerlig funksjon, i intervallet [a, b]. Hvilket av de følgende utsagn er korrekt?

Dersom $f(x)$ er et polynom av grad 4 eller høyere, finnes det bare numeriske løsninger.		
\square Halveringsmetoden gir en løsning bare dersom det bare er ett nullpunkt i $[a,b].$		
\square Sekantmetoden kan bare brukes når $f(x)$ har ulikt fortegn i $x=a$ og $x=b$.		
Dersom den virker, konvergerer Newtons metode raskere enn halveringsmetoden.		
\square Newtons metode vil alltid konvergere når f er deriverbar overalt.		
Oppgave 11. Taylorpolynomet $T_3f(x)$, av grad 3 om punktet null, for funksjonen $f(x) = \sin x - \sin 2x$ blir?		
Oppgave 12. Kondisjonstallet $\kappa(f;a) = \left \frac{af'(a)}{f(a)}\right $ beskriver relativ økning av feilen fra argumentet a til den beregnede funksjonsverdien $f(a)$. Vi skal beregne $f(x) = (x-10)^{10}$ for $x = 10.01$ i Python. Hvor mange desimale siffer mister vi i svaret i hht. kondisjonstallet?		
\square 10 \square 0 \square 2 \boxtimes 4 \square 8		
Kommentar: innsetting i kondisjonstall gir for $a = 10.01$.		
$\left \frac{af'(a)}{f(a)} \right = \frac{10a(a-10)^9}{(a-10)^{10}} = 1.001 \cdot 10^4$		
Altså øker feilen med ca 10^4 og vi mister 4 desimale siffere.		
Oppgave 13. Differensligningen		
$x_{n+2} - 6x_{n+1} + 8x_n = 2^n$		
har en partikulærløsning		
Oppgave 14. Vi har gitt en differensligning med initialbetingelser		
$x_{n+2} - 5x_{n+1} + 6x_n = 0$, $x_0 = 0$, $x_1 = 1$.		
Hva er løsningen?		
\mathbf{x} $x_n = 3^n - 2^n$		
Oppgave 15. Vi har gitt en differensligning med tilhørende startverdi:		

 $x_{n+1} = \sin(x_n), \quad n \ge 0, \quad x_0 = 1.$

Hvilket av de følgende utsagn er sant?

(Fortsettes på side 4.)

☐ Likningen er ikkelineær og har ingen løsning
$\square x_n$ vokser over alle grenser når n øker
$\ \!$
kommentar: Vi ser at $x_n > 0$ og vi bør vite at $\sin x < x$ for positive x . Det siste innebæret at $x_{n+1} < x_n$, dvs. at følgen $\{x_n\}$ er avtagende. Da må alle elementer ligge mellom 0 og 1 og mengden av elementene i følga er både oppad og nedad begrenset.
Oppgave 16. Differensligningen
$x_{n+1} + 2x_n = 3n, n \ge 0$
med startverdi $x_0 = 0$ har løsningen
$x_n = \frac{(-2)^n}{3} + n - \frac{1}{3}$
$\square x_n = (3^n - 2^n) + n$
Oppgave 17. En lineær, homogen, andreordens differensligning med konstante koeffisienter, har den generelle løsningen
$x_n = (C_1 + C_2 n)3^n, n \ge 0.$
Hva er differensligningen?
$\mathbf{x} x_{n+2} - 6x_{n+1} + 9x_n = 0$
Oppgave 18. $T_{11}f(x)$ for $f(x) = \cosh(x) = \frac{1}{2}(e^x + e^{-x})$, om punktet null, er
$ \begin{array}{ c c c c c c } \hline \mathbf{x} & \sum_{k=0}^{5} \frac{x^{2k}}{(2k)!} & \Box & \sum_{k=0}^{11} (-1)^k \frac{x^k}{k!} & \Box & \sum_{k=0}^{5} (-1)^k \frac{x^{2k}}{(2k)!} & \Box & \sum_{k=0}^{11} (-1)^k \frac{x^k}{k} \\ \hline \Box & \sum_{i=1}^{6} \frac{x^{2i-1}}{(2i-1)!} & & \\ \hline \end{array} $
Merkand: Noen lurte på cosh. Dette er en vanlig betegnesle på "cosinus hyperbolicus" Dette trengte en ike bry seg om under løsning av oppgaven.
Oppgave 19. Hvilken av følgende funksjoner har Taylorpolynomet $T_3f(x) = x + \frac{1}{2}x^2$ om $x = 0$?

(Fortsettes på side 5.)

Oppgave 20. For $f(x) = \frac{1}{1-x}$ har vi Taylorpolynomet $T_n f(x) = 1 + x + x^2 + ... + x^n$ (skal <u>ikke</u> vises). Hva er den minste verdien av n fra lista under som gir $|f(\frac{1}{4}) - T_n f(\frac{1}{4})| < 0.005$?

$$\square$$
 7 \square 3 \square 2 \square 11 \boxtimes 4

Kommentar: Her er $f^{(n)}(x) = n!(1-x)^{-(n+1)}$. Feileddet på Lagrangesform blir da

$$R_n f(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} = \frac{x^{n+1}}{(1-c)^{n+2}},$$

For $x=\frac{1}{4}$ ligger c mellom 0 og $\frac{1}{4}$. Vi får da begrensninger på feilleddet

$$R_n f(\frac{1}{4}) > \left(\frac{1}{4}\right)^{n+1} = 4^{-(n+1)}$$
 (1)

$$R_n f(\frac{1}{4}) < \frac{\left(\frac{1}{4}\right)^{n+1}}{\left(\frac{3}{4}\right)^{n+2}} = 4 \cdot 3^{-(n+2)}$$
 (2)

Vi skal velge den minste n slik at feilen blir mindre enn $0.005 = \frac{1}{200}$. La oss regne ut for noen n

$$\begin{array}{c|ccccc}
n & 4^{-(n+1)} & 4 \cdot 3^{-(n+2)} \\
1 & \frac{1}{16} & \frac{4}{27} \\
2 & \frac{1}{64} & \frac{4}{81} \\
3 & \frac{1}{256} & \frac{4}{243} \\
4 & \frac{1}{1024} & \frac{4}{729}
\end{array}$$

Vi kan med sikkerhet si at n=4 gir liten nok feil, men det er mulig at også n=3 er nok. Denne bruken Lagranges feilledd gir ikke et entydig svar. Akkurat her kan vi gjøre en bedre analyse ved hjelp av formelen for summen av en geometrisk rekke

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x^{n+1}}{1 - x}$$

der det aller siste leddet da er et eksakt mål for feilen. For n=3 blir absoluttverdien av den

$$\frac{4^{-4}}{\frac{3}{4}} = \frac{1}{4^3 \cdot 3} = \frac{1}{192}$$

Altså er n = 4 rett svar.

Er man ikke i stand til å reprodusere formelen for geometrisk rekke kan man feks. gjøre følgende:

Fra Lagrangesfeileddene vet vi at Taylorpolynomet konverger mot f(x) når $n \to \infty$ for $x = \frac{1}{4}$. Da kan vi sette f(x) lik summen av rekka og trikse litt

$$f(x) = 1 + x + x^{2} + \dots = 1 + x + \dots + x^{n} + x^{n+1} + x^{n+2} \dots$$

$$= 1 + x + \dots + x^{n} + x^{n+1} (1 + x + x^{2} + \dots)$$

$$= 1 + x + \dots + x^{n} + x^{n+1} f(x)$$

$$= 1 + x + \dots + x^{n} + x^{n+1} / (1 - x)$$

Her har vi da egentlig utledet formelen for en geometrisk rekke. Dette var den vanskelige oppgaven i settet!

Det var det!!