监测与评价

济源市城市声环境质量评价

李利霞1,马诗院2,张军红3

(1.济源市环境监测站,河南 济源 459000;2.济源市环境科学研究所,河南 济源 459000;3.济源市环境监察支队,河南 济源 459000)

摘要:以《济源市环境质量报告书》(2006年~2010年度)的声环境监测数据为依据,对济源市各年度声环境噪声监测值进行了分析,运用 spearman 秩相关系数法对声环境污染程度的变化趋势进行了分析,并把"十一五"初与"十二五"初的声环境监测值进行了对比。结果表明,"十一五"期间声环境质量总体上保持基本稳定并有所好转,但是,随着车流量的不断增加,存在一定程度的噪声污染。最后,根据分析评价结果提出了改善声环境质量的对策和建议。

关键词:道路交通噪声;质量评价;噪声控制中图分类号:X827 文献标识码:A

济源市位于河南省西北部,是一座新兴的工业旅游城市,建城区面积达 30.8 平方公里,"十一五"期间,随着城市建设的快速发展,城市人口由 2006 年的 21.2 万人增加到 2011 年的 33.51 万人,汽车总量由 2006 年的 21 780 辆增加到 2011 年的 49 535 辆,天燃气消耗量 2011 年比 2006 年增长 121%,汽油消耗量 2011 年比 2006 年增长 34.4 %^[1]。由此造成声环境污染也日益突出,给人们的正常生活、工作、学习、休息环境带来了日趋严重的影响。本文对济源市"十一五"期间声环境质量现状及变化趋势的分析和评价,对做好"十二五"声环境污染防治工作具有重要的指导意义。

1 资料来源与评价方法

1.1 资料来源

数据来源于《济源市环境质量报告书》(2006~2010年度)中城市建成区环境噪声、交通噪声、功能区噪声监测数据。

1.2 评价方法[2]

1.2.1 功能区噪声计算方法

功能区噪声定期监测数据按下列公式分别计算昼间(Ld)和夜间(Ln)噪声平均等效声级。

收稿日期:2012-09-12

第一作者简介: 李利霞 (1975.5) 女 工程师 毕业于河南师范大学,本科,主要从事环境质量监测、评价及环境科研报告编制工作。

文章编号:1006-8759(2013)03-0055-03

$$Ld=101g\left[\frac{1}{16}\sum_{i=1}^{16}10^{0.lleq(i)}\right]$$

$$Ld=101g\left[\frac{1}{8}\sum_{i=1}^{8}10^{0.1leq(i)}\right]$$

式中:Leq(i)为白天(06:00-22:00)16 个小时中第 i 次的等效声级,分贝(A);Leq(j)为夜间(22:00-06:00)8 个小时中第 j 次的等效声级,分贝(A);1.2.2 交通噪声计算方法

道路交通噪声平均等效声级和累积百分声级 (Lx)分别用以下公式:

$$Lx = \sum_{i=1}^{n} (Lili)/l$$

式中:Li 为i 段干线测得的等效声级或累积百分声级,分贝(A);li 为 段干线的长度,米;l 为交通干线的总长度,米;i 为交通干线的路段总数, $I=1,2,3,\dots,n$ 。

平均车流量(Q)用下式表示:

$$Q = \sum_{i=1}^{n} (qili)/l$$

式中: qi 为 qi 段干线的车流量,小时/辆; li 为 i 段干线的长度,米; i 为交通干线的总长度, 米; 为交通干线的路段总数, $I=1,2,3,\cdots$ n。

交通噪声路段达标率计算:路段达标率=

1.2.4 多时段趋势分析

多时段趋势统计分析采用 Spearman 秩相关系数法^[3],计算公式如下:

$$Rs=1-\left[6\sum_{i=1}^{N}d^{2}/(N^{3}-N)\right], d_{i}=x_{i}-y_{i}$$

式中,Rs 为秩相关系数, d_i 为变量 x_i 与 y_i 的 差值,N 为时间周期, x_i 为周期 1 到 N 按浓度值从 小到大排列的序号, y_i 为按时间排列的序号。

将秩相关系数 Rs 的绝对值与 Spearman 相关系数统计表中的临界值 Wp 进行比较,如果 Rs>0 表示为上升趋势,Rs<0 表示为下降趋势,Rs 的绝对值大于临界值 Wp 时,表示变化趋势具有显著意义

1.3 评价标准

评价标准采用《城市区域环境噪声标准》(GB3096-2008),根据噪声监测结果,将城市声环境质量分为重污染、中污染、轻污染、较好和好5个等级,见表1。区域环境噪声、道路交能噪声按照平均等效声级进行评价,功能区环境噪声按照达标率进行评价。

表 1 建成区、道路交通噪声环境质量描述

单位·dB(A)

级别	好	较好	轻度污染	中度污染	重度污染
建成区噪声	≤50	50.1~55.0	55.1~60.0	60.1~65.0	>65.0
道路交通噪声	≤68.0	68.1~70.0	70.1~72.0	72.1~74.0	>74.0

2 声环境质量评价与变化趋势

分别将城市建成区环境噪声、道路交通噪声和功能区噪声在"十一五"期间噪声变化情况和spearman 秩相关系数法进行了分析,并把"十一五"初与"十二五"初的噪声监测结果进行了对比。

2.1 城市建成区噪声变化趋势分析

采用 Daniel 的 spearman 秩相关系数法对"十一五"期间区域环境噪声进行定量分析。从表 2 可以看出,平均等效声级秩相关系数 rs=-1,表明区域声环境质量在"十一五"期间呈下降趋势,区域环境噪声基本稳定。2010 年监测结果最低,2006年监测结果最高。2008年、2009年、2010年声环境质量为好,2006年、2007年声环境质量为较好。

2006 年至 2010 年济源市城市建成区环境噪

表 2 "十一五"期间济源市建成区区域环境噪声变化趋势

年度	2006	2007	2008	2009	2010	秩相关系 数 rs
平均等效声级 【dB(A)】	51.9	50.9	50.0	49.2	46.3	_1
级别	较好	较好	好	好	好	-1

表 3 "十一五"期间济源市建成区噪声声源构成

		_					生			_
年度	声源构	强度								
	成(%)	(dB)								
2006	33.9	48.2	19.2	54.3	7.9	50.7	12.4	55.7	26.6	53.4
2007	20.9	54.2	11.9	52.4	2.3	48.6	57.1	49.7	7.9	48.7
2008	20.9	54.2	11.9	52.4	2.3	48.6	57.1	49.7	7.9	48.7
2009	19.8	49.4	14.7	49.5	4.0	50.5	38.4	48.6	23.2	49.7
2010	46.3	45.6	11.9	48.5	0.6	53.7	35.6	46.4	5.6	45.9
秩相关 系数 rs	0.1	-0.4	-0.7	-0.8	-0.7	0.4	0.1	-1	-0.7	-0.7

声声源构成情况变化不大,仍以生活噪声影响最为广泛,见表 3。从监测的声源构成来看,2010 年与2006 年相比,其它噪声源构成比例减少 21 个百分点,生活噪声源增加 23.2 个百分点。声源强度有不同程度的减轻,特别是工业、生活声源强度下降明显,2010 年较 2006 年分别下降 5.8db(A)和 9.3db(A)。

2.2 功能区噪声变化趋势分析

"十一五"期间各功能区噪声变化趋势见表 4。"十一五"期间,各功能区噪声等效声级年均值 均低于标准值,达标率均达到95%以上,昼、夜噪 声均无明显变化。

								₩. 127. ÷α	$\mathbf{D}(\mathbf{A})$
年度 居民文		文教区 混·		区	T.)	工业区		交通干线区域	
平及	昼	夜	昼	夜	昼	夜	昼	夜	率(%)
2006年	41.8	38.9	51.7	44.1	50.9	51.8	58.2	52.0	95.6
2007年	47.2	40.7	51.1	46.4	1.1	52.9	57.6	50.4	97.1
2008年	45.9	41.4	51.3	44.6	51.1	51.4	59.4	51.8	96.9
2009年	47.1	41.7	54.0	47.3	52.1	50.9	59.0	51.6	96.1
2010年	45.0	42.4	52.2	44.5	52.5	52.2	58.0	53.5	96.4
秩相关系数 rs	0.1	0	0.6	0.3	0.8	-0.2	0.1	0.3	/
标准	55	45	60	50	65	55	70	55	/

由图 1 和图 2 可以看出,"十二五"初与"十一五"初相比,居民文教区昼、夜间声环境质量达标率没有变化;混合区昼、夜间声环境质量达标率分别下降 6.2、3.1 个百分点。

工业区昼、夜间声环境质量达标率分别下降 1.6、3.1 个百分点;交通干线区域昼间声环境质量 达标率没有变化,夜间声环境质量达标率上升 22.9 个百分点。

图 1 2011 年与 2006 年各功能区昼间噪声达标率比较

图 2 2011 年与 2006 年各功能区夜间噪声达标率比较

2.3 道路交通噪声对比分析

采用 Daniel 的 spearman 秩相关系数法对"十一五"期间环境噪声进行定量分析,平均等效声级 秩相关系数 rs=-0.7,无明显变化趋势;达标率秩相关系数 rs=+0.9,变化稳定,表明全市道路交通 声环境质量"十一五"期间呈平衡趋势。五年间交通干线噪声平均值在 63.9db(A)至 65.7db(A)之间,最大监测值出现在 2007 年,最小监测值出在

表 5 "十一五"期间城市道路交通噪声年均值与趋势分析

年份	监测路段	达标路段	平均车流	达标率	平均等效声
	总长度/m	长度/m	量/辆	1%	级[dB(A)]
2006	46602	43330	662	93	65.4
2007	46602	41738	587	89.6	65.7
2008	46602	44924	673	96.4	65.6
2009	46602	46602	774	100	65.1
2010	46602	46602	706	100	63.9
	秩相关		0.9	-0.7	

2010年。平均等效声级 2010年比 2006年下降 1.5db(A),见表 5。

3 结论与建议

3.1 结论

济源市"十一五"期间区域环境噪声、功能区环境噪声、道路交通环境噪声基本稳定,与"十一五"初相比较,"十二五"初区域环境噪声、道路交通噪声有明显好转,功能区混合区昼夜声环境质量达标率有所下降。

3.2 建议

- (1)制定城市交通噪声管理制度,实施机动车喇叭禁鸣措施,加快淘汰更新老旧车辆,禁止老旧车辆在城区行驶,控制大型车辆从城区通过的数量和时段。
- (2)按照城市道路系统规划,构建城市交通网络,控制人口分布密度和经济密度,结合旧城改造,把运量较大、干扰居民生活的工厂和停车场等迁出,调控私人汽车的盲目膨胀。合理进行城市建筑物布局,增大绿化面积。
- (3)优化城区现有功能布局,迁出与居民区混杂的噪声源企业,对搬迁困难的企业加大厂房、围墙隔声、吸声、减震和消声等措施,治理仍不能稳定达标的,要提前关闭,搬出城区。
- (4)加强建筑施工管理,提高施工人员环保意识,合理制定作业时间,夜晚作业不超过22h,早晨作业不早于6h,加强施工现场噪声监测,合理使用施工机械,改进施工方法。

参考文献

- [1] 济源市统计局.2011 济源统计年鉴[M],2011.
- [2] 河南省环境监测中心.河南省质量报告书编写技术导则,2004.

(上接第60页)

- [3] 中国环境科学研究院,中国环境监测总站.GB3095-2012 环境空气质量标准[s].北京,中国标准出版社,2016.
- [4] 包贞,冯银厂,焦荔,等.杭州市大气 PM2.5 和 PM10 污染特征及来源解析[J].中国环境监测,2010,26(2):44~48.
- [5] 杜荣光,齐冰,郭慧慧,等.杭州市大气逆温特征及对空气污染物浓度的影响[J].气象与环境学报,2011,27(4):50~52.
- [6] 张新刚,周斌,王珂.杭州市热岛效应的遥感监测[J].科技通报,

2004,20(6):501~505.

- [7] 陈雪琴.上海闸电地区水陆界面处大气扩散特征的研究[J].成都气象学院,1988,6(1):29~37.
- [8] 简根梅,朱韶峰.杭州市逆温与大气污染的关系[J].浙江气象科技,1997,18(3):42~44.
- [9] 杜荣光,齐冰.杭州大气逆温特征及对空气污染物浓度的影响 [J].气象与环境学报,2011,27(4):49~53.