PREDICTION OF PRESENCE OF LIVER DISEASE IN INDIA USING INDIAN LIVER PATIENT DATASET

AKSHAY KUMAR VT

CW-Statistical Modelling and Machine Learning

CONTENT

INTRODUCTION

DATASET

PRE-PROCESSING

MODELLING

RESULTS & DISCUSSION

RECOMMENDATIONS

INTRODUCTION

WHAT & WHY

- Prediction model for liver cirrhosis
- Indian Liver Patient Dataset
- 3.17% of total deaths in India happens due to liver diseases
- 8th largest reason for deaths in India
- 83rd position in the world
- Lack of early symptoms and diagnosis

DATASET DESCRIPTION

WHICH & WHERE

- Indian Liver Patient Dataset
- Source : UCI machine learning Repository
- Collected from Andhra Pradesh, southern state in India
- 11 attributes and 583 records
- Target variable : "Selector"
- Categorical variable : "Gender"
- Rest are numerical blood test results
- "Selector": 416 with liver disease
- Highly imbalanced data, missing values (4),
 Duplicates (13), Multicollinearity, Outliers, varying scales

PRE-PROCESSING

- Missing values: only 4, removed using "na.omit(df)" function
- 2. Duplicate entries: 13, removed using "distinct(df)" function
- 3. Class balancing: Using "SMOTE-NC"
 - Before (1:2 = 71%:29%)
 - After (1:2 = 1:1)

```
: 4.00
               Female:142
                                                  : 0.100
                                                                    : 63.0
                                                                                                     : 10.0
                                  : 0.400
1st Qu.:33.00
                            1st Qu.: 0.800
                                             1st Qu.: 0.200
                                                                              1st Qu.: 23.00
                                                                                               1st Qu.: 25.0
Median :45.00
                                             Median : 0.300
      :44.75
3rd Qu.:58.00
                                                                                               3rd Qu.: 87.0
                            3rd Qu.: 2.600
                                            3rd Qu.: 1.300
                                                             3rd Qu.: 298.0
                                                                             3rd Qu.: 60.50
      :90.00
                                                   :19.700
                                                                    :2110.0
                                                                                    :2000.00
                                                                                                      :4929.0
     TP
                    ALB
                                 A.G.Ratio
                                                  Selector
      :2.700
                     :0.900
                                     :0.3000
                                                      :1.000
1st Ou.:5.800
               1st Ou.:2.600
Median :6.600
      :6.483
                      :3.142
                                      :0.9471
3rd Qu.:7.200
               3rd Qu.:3.800
                               3rd Qu.:1.1000
                                                3rd Qu.:2.000
      :9.600
                     :5.500
                                                      :2.000
                               Max.
                                     :2.8000
                               NA's
                                     : 4
```

Age.V1	Gender	TB.V1	DB.V1	Alkphos.V1	Sgpt.V1
Min. :-2.4514073	Female:167 Min.	:-0.419419	Min. :-0.431838	Min. :-0.942109	Min. :-0.361331
1st Qu.:-0.7248726	Male :641 1st	Qu.:-0.350707	1st Qu.:-0.390930	1st Qu.:-0.453906	1st Qu.:-0.283567
Median : 0.0583184	Medi	an :-0.326469	Median :-0.357937	Median :-0.325294	Median :-0.225244
Mean : 0.0000000	Mean	: 0.000000	Mean : 0.000000	Mean : 0.000000	Mean : 0.000000
3rd Qu.: 0.7550143	3rd	Qu.:-0.159159	3rd Qu.:-0.145483	3rd Qu.: 0.058502	3rd Qu.:-0.089157
Max. : 2.8515207	Max.	:13.448684	Max. : 7.586100	Max. : 8.410631	Max. :12.534523
Sgot.V1	TP.V1	ALB.V	1 A.G.Rati	o.V1 Selector	
Min. :-0.317862	Min. :-3.710611	Min. :-3.0	507498 Min. :-2.	269295 1:404	
1st Qu.:-0.264150	1st Qu.:-0.602304	1st Qu.:-0.6	719122 1st Qu.:-0.	596583 2:404	
Median :-0.214214	Median : 0.082383	Median :-0.0	111240 Median : 0.0	072502	
Mean : 0.000000	Mean : 0.000000	Mean : 0.0	000000 Mean : 0.0	000000	
3rd Qu.:-0.082958	3rd Qu.: 0.665920	3rd Qu.: 0.7	818218 3rd Qu.: O.	526126	
Max. :19.604407	Max. : 3.000070	Max. : 3.0	285017 Max. : 6.	094267	

PRE-PROCESSING

- Scaling: done using the function "scale(df)"
- 2. Multicollinearity: one pair of variables (DB & TB) showed a correlation of 88%, One of them can be removed
- Outlier detection : Done using boxplots (example given below, for more, check appendix (D) of report)

СТ		Actual		
		1	2	
ction	1	51	16	
Prediction	2	29	64	

MODELLING

Classification Tree

- Supervised classification algorithm
- Tree like structure with root node, internal nodes and leaf nodes (target classes)
- Highly tolerant towards outliers
- Non-Parametric
- Visualization
- Confusion matrix

SVM Actual 1 2 1 46 6 2 34 74

N-B Model		Actual		
		1	2	
ction	1	37	2	
Prediction	2	43	78	

MODELLING

Support Vector Machine

- Supervised classification algorithm
- Chooses hyperplane with the best margin between the boundaries and closest data points (Support vectors)
- Highly tolerant towards outliers
- Confusion matrix

Naïve-bayes Classification

- Supervised classification algorithm
- Classifies data points based on bayes theorem.
- Highly affected by outliers
- Chosen to compare the performance
- Confusion Matrix

Confusion Matrix		Actual		
		+	-	
Prediction	+	True Positive	False Positive	
		(TP)	(FP)	
	-	False negative	True Negatives	
		(FN)	(TN)	

RESULTS & DISCUSSION

Performance summary

- SVM performs the best in terms of accuracy
- Is 'accuracy' the best measure of performance in this context?
- Accuracy = (TP + TN)/ (TP+TN+FP+FN)
- Precision = (TP)/(TP+FP)
- Recall = (TP)/(TP+FN)
- F1Score= (2*Precision*Recall) / (Precision + Recall)
- Needs to reduce FN as much as possible
- Recall is the most suitable, CT performs the best

Try other methods like ANN

play:block;position:ab

- Trye SVMs with different Kernal functions
 - Gather data for alcohol consumption

FUTURE RECOMMENDATIONS

THANK YOU

Akshay Kumar VT

