等价(equivalence)关系

- 定义
- 同余关系
- 等价类
- ■商集
- ■划分
- 划分的加细
- Stirling子集数

等价(equivalence)关系定义

定义 设 $R \subseteq A \times A$ 且 $A \ne$, 若R是自反的, 对称的, 传递的,则称R为等价关系.

例2.9: 判断下列关系是否等价关系(A是某班学生)?

$$R_1 = \{\langle x,y \rangle | x,y \in A \land x = y \text{ 同年生} \}$$

$$\mathbf{R}_2 = \{\langle x,y \rangle | x,y \in A \land x = y$$
同姓}

$$\mathbf{R}_3 = \{ \langle x,y \rangle | x,y \in A \land x$$
的年龄不比 y 小}

$$\mathbf{R}_4 = \{\langle x,y \rangle | x,y \in A \land x = y$$
 选修同门课程}

$$\mathbf{R}_{5} = \{\langle x,y \rangle | x,y \in A \land x$$
的体重比y重}

举例

判断下列关系中,哪些是等价关系?

- (1) R是实数集, T_1 ⊆ $R\times R$, aT_1b 当且仅当a-b是整数
- (2) R是实数集,T₂⊆R×R, xT₂y当且仅当|x-y|<1
- (3) 设n是正整数, S是字符串集合,在S上定义二元关系R_n, sR_nt 当且仅当s=t或者s与t的长度至少为n且s和t开头的n个字符相同。如n=3, S是所有二进制字符集合,那么01R310,0010R30011,0110与0011不相关。

$$(4)A = \{0,1,2,3\}, R_1 = \{<0,0>,<1,1>,<2,2>,<3,3>\},$$

$$R_2 = \{<0,0>,<0,2>,<2,0>,<2,2>,<2,3>,<3,2>,<3,3>\},$$

$$R_3 = \{<0,0>,<1,1>,<1,3>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>\},$$

例

例2.9(续)

	定义	自反	对称	传递	等价关系
R_1	x与y同年生	√	√	V	√
R_2	x与y同姓	√	√	V	√
R_3	x的年龄不比y 小	√	×	√	×
R_4	x与y选修同门 课程	√	√	×	×
R_5	x的体重比y重	×	×	V	×

例2.10

例2.10: 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$,对R依次求三种闭包共有6种不同顺序,其中哪些顺序一定导致等价关系?解对R依次求三种闭包共有6种不同顺序,产生的关系分别为: rst(R), rts(R), str(R), srt(R), trs(R). 由定理2.26可知,

$$tsr(R) = trs(R) = rts(R), str(R) = srt(R) = rst(R)$$

 $str(R) \subseteq tsr(R)$

因此6种不同顺序的闭包运算只产生两种可能不同的 关系(注意观察s与t的次序)

例2.10续1

下面tsr(R)是等价关系,而str(R)不一定是等价关系. 由定理2.25可知,

r(R)是自反的 $\Rightarrow sr(R)$ 是自反的且对称的 $\Rightarrow tsr(R)$ 也是自反的、对称的且是传递的

因此tsr(R)是等价关系.

同理,由定理2.25可知,

r(R)是自反的 $\rightarrow tr(R)$ 是自反的且传递的 $\rightarrow str(R)$ 是自反的、对称的但不一定是传递的

所以str(R)不一定是等价关系.

例2.10 续2

	tsr(R)=trs(R)=rts(R)	str(R)=srt(R)=rst(R)
自反	√	√
对称	√	√
传递	$\sqrt{}$	×
等价关系	√等价闭包	×

4

等价类(equivalence class)

定义: 设R是 $A\neq\emptyset$ 上等价关系, $\forall x \in A$, 令

$$[x]_R = \{ y \mid y \in A \land xRy \}$$

称 $[x]_R$ 为x关于R的等价类,简称x的等价类,简记为[x].

例: $A=\{1,2,3,4,5\}, R\subseteq A\times A, R=\{<1,2>,<2,1>,<2,3>,$

<3,2>,<1,3>,<3,1>,<4,5>,<5,4>} \cup I_A,[x],x∈A.

例: 在Z上定义二元关系R: $aRb \Leftrightarrow a=b \lor a=-b$, R是 等价关系吗? 若是,求[7],[5],[0]

例2.11

例2.11: 设A \subseteq N \land A \neq Ø,令

 $R_n = \{\langle x,y \rangle | x,y \in A \land x \equiv y \pmod{n}\}, n \geq 2.$

- (1)证明 R_n 是A上的等价关系;
- (2) 设A={1,2,3,4,5,8}, 求

 $R_3 = \{ \langle x,y \rangle | x,y \in A \land x \equiv y \pmod{3} \}$ 的等价类,并画出 R_3 的关系图.

解: (1) 证明 $\forall x, x \in A$,显然 $x \equiv x \pmod{n}$,所以 $\langle x, x \rangle \in R_n$. 因此 R_n 是自反的.

例2.11 续

$$\forall \langle x,y \rangle, \langle x,y \rangle \subseteq R_n \Leftrightarrow x \equiv y \pmod{n} \Leftrightarrow y \equiv x \pmod{n}$$
$$\Leftrightarrow \langle y,x \rangle \subseteq R_n$$

因此 R_n 是对称的.

$$\forall \langle x,y \rangle, \langle y,z \rangle, \langle x,y \rangle \subseteq R_n \land \langle y,\underline{z} \rangle \subseteq R_n$$

$$\Leftrightarrow x-y=k_1n \land y-z=k_2n \Rightarrow x-z=(k_1+k_2)n \Leftrightarrow x\equiv z \pmod{n}$$

$$\Leftrightarrow \in R_n,k_1,k_2 \in \mathbb{Z}$$

因此 R_n 是传递的.

综上所述, R_n 是自反的,对称的,传递的,即 R_n 是等价关系.

例2.11 续

(2) \mathbf{M} : [1]=[4]={1,4}, [2]=[5]=[8]={2,5,8},[3]={3}.

同余(congruence)关系

同余关系: 设 $n \in \{2,3,4,...\}$, $x,y \in Z$,则x与y模n同余 (be congruent modulo n)

 $\Leftrightarrow x \equiv y \pmod{n} \Leftrightarrow n \mid (x-y) \Leftrightarrow x-y = kn \ (k \in \mathbb{Z})$

同余关系是等价关系

$$[0] = \{kn|k \in \mathbb{Z}\},\$$

$$[1] = \{1+kn|k \in \mathbb{Z}\},\$$

$$[2] = \{2+kn|k \in \mathbb{Z}\},...,\$$

$$[n-1] = \{(n-1)+kn|k \in \mathbb{Z}\}.$$

定理2.27(等价类的性质)

定理27:设R是 $A \neq \emptyset$ 上等价关系, $\forall x,y \in A$,

- $(1) [x]_R \neq \emptyset$
- (2) $xRy \Leftrightarrow [x]_R = [y]_R$;
- $(3) \neg xRy \Leftrightarrow [x]_R \cap [y]_R = \emptyset;$
- $(4) \cup \{ [x]_R \mid x \in A \} = A.$

证明: (1) R自反⇒ $\forall x,x \in A,xRx \Rightarrow x \in [x]_R \Rightarrow [x]_R \neq \emptyset$

定理2.27 续

(2) 证明: 先证明 $xRy \Rightarrow [x]_R = [y]_R$,

只需证明 $[x]_R \subseteq [y]_R$ 和 $[x]_R \supseteq [y]_R$.

- $(\subseteq) \ \forall z, z \in [x]_R \land xRy \Rightarrow zRx \land xRy \Rightarrow zRy \Rightarrow z \in [y]_R$.
 - $\therefore [x]_{\mathbf{R}} \subseteq [y]_{\mathbf{R}}.$
- (**○**) 同理可证[*y*]_R⊆[*x*]_R.

再证 $[x]_R=[y]_R \Rightarrow xRy$

$$x \in [x] \Rightarrow x \in [y] \Rightarrow xRy$$

定理2.27 续

(3) 证明: 先证 $\neg xRy \Rightarrow [x]_R \cap [y]_R = \emptyset$

(反证) 假设 $\exists z, z \in [x]_R \cap [y]_R \Rightarrow z \in [x]_R \land z \in [x]_R \land z \in [y]_R \Rightarrow z \in [x]_R \land z \in [x$

 $xRz \land zRy \Rightarrow xRy$

这与 $\neg xRy$ 矛盾 $\therefore [x]_R \cap [y]_R = \emptyset$.

再证 $[x]_R \cap [y]_R = \emptyset \Rightarrow \neg xRy$

假设 $\langle x,y \rangle \in \mathbb{R} \Rightarrow x \in [y]_R \land x \in [x]_R$

 $\Rightarrow x \in [x]_R \cap [y]_R \Rightarrow [x]_R \cap [y]_R \neq \emptyset$

与 $[x]_R\cap [y]_R=\emptyset$ 矛盾.

定理2.27 续

- (4) 证明: (\supseteq) $\forall x, x \in A \Rightarrow x \in [x]_R \Rightarrow \{x\} \subseteq [x]_R$
- $\Rightarrow A = \bigcup \{ \{x\} \mid x \in A \} \subseteq \bigcup \{ [x]_R \mid x \in A \}$
- $(\subseteq) \ \forall x, [x]_R \subseteq A \Rightarrow \bigcup \{ [x]_R \mid x \in A \} \subseteq \bigcup \{A \mid x \in A \} = A$
 - $\therefore \cup \{ [x]_R \mid x \in A \} = A$

商集(quotient set)

定义: 设R是 $A \neq \emptyset$ 上等价关系, $A/R = \{ [x]_R | x \subseteq A \}$ 称为A关于R的商集,简称A的商集。

显然 $\bigcup A/R = A$.

例2.11: $A/R_3 = \{ \{1,4\}, \{2,5,8\}, \{3\} \}.$

例2.12

例12 设 $A = \{a_1, a_2, ..., a_n\}, n \ge 1.$

- (1) 验证 I_A , E_A , $R_{ij} = I_A \cup \{ \langle a_i, a_j \rangle, \langle a_j, a_i \rangle \}$ 都是A上等价关系,并求其对应的商集, 其中 $a_i, a_j \in A$, $i \neq j$. Ø是A上等价关系吗?
- (2) $A=\{a,b,c\}$,试求出A上的全体等价关系及其对应的商集.

解 (1) 显然 I_A , E_A , R_{ij} 是等价关系.

$$A/I_A = \{ \{a_1\}, \{a_2\}, \dots, \{a_n\} \}, A/E_A = \{ \{a_1, a_2, \dots, a_n\} \} \}$$
$$A/R_{ij} = A/I_A \cup \{ \{a_i, a_j\} \} - \{ \{a_i\}, \{a_j\} \} \}.$$

因为∅无自反性,所以∅不是Α上等价关系.

例2.12 续

(2) 根据(1)中n=3的情况, $A=\{a,b,c\}$ 上共有5种不同的等价关系:

$$E_A$$
,其商集为 A/E_A ={ { a,b,c }}
$$I_A$$
,其商集为 A/I_A ={ {{ $a\}$,{ $b\}$,{ $c\}$ }}
$$R_1$$
= I_A \cup { $<$ a,b>, $<$ b,a>},其商集为 A/R_1 ={ {{ $a,b\}$,{ $c\}$ }}
$$R_2$$
= I_A \cup { $<$ a,c>, $<$ c,a>},其商集为 A/R_1 ={ {{ $a,c\}$,{ $b\}$ }}
$$R_3$$
= I_A \cup { $<$ b,c>, $<$ c,b>},其商集为 A/R_1 ={ {{ $a\}$,{ $a\}$,{ $a\}$ }}

划分(partition)

■ 如何找出A上的全部等价关系呢?

定义 设 $B\neq\emptyset$, $B\subseteq P(A)$,若满足

- $(1) \varnothing \notin B$;
- (2) $\forall x,y (x,y \in B \land x \neq y \Rightarrow x \cap y = \emptyset)$
- (3) UB = A

则称B为A的一个划分, B中元素称为划分块(block).

如: $A=\{a,b,c\},B_1=\{\{a\},\{b\},\{c\}\}, B_2=\{\{a,b\},\{c\}\},$ $B_3=\{\{a,c\},\{b\},\{c\}\}, B_4=\{\{a,c\},\{c\}\}, 问 B_1, B_2, B_3, B_4$ 哪些是A的划分?

举例

设 $A_1,A_2,...,A_n \subseteq E$, 且 A_i 非空,则以下都是划分:

$$B_{i} = \{A_{i}, \sim A_{i}\}, (i=1,2,...,n)$$

$$B_{ij} = \{A_{i} \cap A_{j}, \sim A_{i} \cap A_{j}, A_{i} \cap \sim A_{j}, \sim A_{i} \cap \sim A_{j}\} - \{\emptyset\}$$

$$(i,j=1,2,...,n \land i\neq j) \dots$$

$$B_{12...n} = \{\sim A_{1} \cap \sim A_{2} \cap \dots \cap \sim A_{n}, \dots,$$

$$\sim A_{1} \cap \sim A_{2} \cap \dots \cap \sim A_{n-1} \cap A_{n}, \dots$$

$$A_{1} \cap A_{2} \cap \dots \cap A_{n}\} - \{\emptyset\}$$

等价关系与划分是一一对应的

定理2.28: 设*A≠Ø*,则

- (1) R是A上等价关系 $\Rightarrow A/R$ 是A的划分
- (2) π 是A的划分 $\rightarrow R_{\pi}$ 是A上等价关系,其中

 $x R_{\pi} y \Leftrightarrow \exists z (z \in \pi \land x \in z \land y \in z)$

 R_{π} 称为由划分 π 所定义的等价关系(同块关系).

例2.13

例2.13 给出 $A=\{1,2,3\}$ 上所有的等价关系。

解 先求出A的所有划分: $B_1 = \{\{1,2,3\}\}, B_2 = \{\{1\},\{2,3\}\},$ $B_3 = \{\{1,3\},\{2\}\}, B_4 = \{\{1,2\},\{3\}\}, B_5 = \{\{1\},\{2\},\{3\}\}\}$

每个划分对应一个等价关系:

$$R_1$$
={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>}, 即全域关系 E_A ,

$$R_2 = I_A \cup \{\langle 2,3 \rangle,\langle 3,2 \rangle\}, \quad R_3 = I_A \cup \{\langle 1,3 \rangle,\langle 3,1 \rangle\},$$

 $R_4 = I_A \cup \{\langle 1,2 \rangle,\langle 2,1 \rangle\}, \quad R_5 = I_A.$

Bell数(Bell number)

- 问题: 给n个对象分类, 共有多少种分法?
- 答案: Bell数 $B_n = \sum_{k=1}^n \begin{Bmatrix} n \\ k \end{Bmatrix} = \begin{Bmatrix} n \\ 1 \end{Bmatrix} + \begin{Bmatrix} n \\ 2 \end{Bmatrix} + \dots + \begin{Bmatrix} n \\ n \end{Bmatrix}$

(Eric Temple Bell, 1883~1960)

Stirling子集数(Stirling subset number): $\begin{bmatrix} n \\ k \end{bmatrix}$ 把n个对象分成k个非空子集的分法个数.

$${n \brace 0} = 0, {n \brace 1} = 1, {n \brace 2} = 2^{n-1} - 1, {n \brace n - 1} = C_n^2, {n \brace n} = 1.$$

■ 递推公式:

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}.$$

Stirling子集数

递推公式:
$${n \atop k} = k {n-1 \atop k} + {n-1 \atop k-1}.$$

例2.14

例2.14: 求出 $A=\{a,b,c,d\}$ 上有多少种等价关系?商集为 2元集的有几个?写出他们的集合表达式

$$B_{4} == \begin{cases} 4 \\ 1 \end{cases} + \begin{cases} 4 \\ 2 \end{cases} + \begin{cases} 4 \\ 3 \end{cases} + \begin{cases} 4 \\ 4 \end{cases}$$

$$= 1 + (2^{3} - 1) + c_{4}^{2} + 1 = 1 + 7 + 6 + 1 = 15$$

$$B_{4} = \begin{cases} 4 \\ 1 \end{cases} + \begin{cases} 4 \\ 2 \end{cases} + \begin{cases} 4 \\ 3 \end{cases} + \begin{cases} 4 \\ 4 \end{cases} = 1 + (2 \begin{cases} 3 \\ 2 \end{cases} + \begin{cases} 3 \\ 1 \end{cases}) + (3 \begin{cases} 3 \\ 3 \end{cases} + \begin{cases} 3 \\ 2 \end{cases}) + 1$$

$$= 2 + 3 \begin{cases} 3 \\ 2 \end{cases} + \begin{cases} 3 \\ 1 \end{cases} + 3 \begin{cases} 3 \\ 3 \end{cases} = 2 + 3 \times 3 + 1 + 3 \times 1 = 15$$

划分的加细(refinement)

 \mathbf{z} 定义: 设 π_1 和 π_2 都是集合A的划分,若 π_1 的每个划分块都包含于 π_2 的某个划分块中,则称 π_1 为 π_2 的加细.

例如: $A=\{1,2,3,4\}, \pi_i$ 都是A的划分, $\pi_i=\{\{1,2\},\{3\},\{4\}\},\pi_2=\{\{1,2,3\},\{4\}\},\pi_3=\{\{1,2,4\},\{3\}\},\pi_4=\{\{1\},\{2\},\{3,4\}\},\pi_5=\{\{1\},\{2,3\},\{4\}\},$ 令 $B=\{\pi_1,\pi_2,\pi_3,\pi_4,\pi_5\}$, $R=\{\langle x,y\rangle|x\in B,y\in B,x\in y\}$ 的加细},用集合表示出R.并分析R具有哪些性质? $R=\{\langle \pi_1,\pi_2\rangle,\langle \pi_1,\pi_3\rangle,\langle \pi_5,\pi_2\rangle\}\cup I_B$ R具有自反性、反对称性、传递性.

π_1 为 π_2 的加细 $\Leftrightarrow R_{\pi_1} \subseteq R_{\pi_2}$

证 先证 π_1 为 π_2 的加细 $\Rightarrow R_{\pi_1} \subseteq R_{\pi_2}$

$$\forall \langle x,y \rangle \in R_{\pi_1}, xR_{\pi_1}y \Leftrightarrow \exists A(A \in \pi_1 \land x \in A \land y \in A)$$

$$\Rightarrow \exists A \exists B \ (A \in \pi_1 \land B \in \pi_2 \land A \subseteq B \land x \in A \land y \in A)$$

$$\Rightarrow \exists A \exists B \ (A \in \pi_1 \land B \in \pi_2 \land A \subseteq B \land x \in B \land y \in B)$$

$$\Rightarrow \exists \mathbf{B} \ (\mathbf{B} \in \pi_2 \land x \in \mathbf{B} \land y \in \mathbf{B}) \Rightarrow xR_{\pi_2} y$$

所以
$$R_{\pi_1} \subseteq R_{\pi_2}$$

1

再证 $R_{\pi_1} \subseteq R_{\pi_2} \Rightarrow \pi_1 \to \pi_2$ 的加细

$$\forall X, X \in \pi_1 \Rightarrow X \neq \emptyset$$

$$\forall z, z \in X \Rightarrow \langle z, z \rangle \in R_{\pi_1}$$

$$\Rightarrow <\mathbf{z},\mathbf{z}>\in R_{\pi_2}$$

$$\Rightarrow \exists Y(Y \in \pi_2 \land z \in Y)$$

即 π_1 中任意的分块都是 π_2 中某个分块的子集,因此 π_1 是 π_2 的加细。

例2.13 续

- 例2.13 *A*={1, 2, 3}
- (1) 求出 $A = \{1, 2, 3\}$ 的全部划分及对应的等价关系.
- (2) 找出划分间的加细及关系中的包含关系.
- 解 (1)先求出A的所有划分: $B_1=\{\{1,2,3\}\}, B_2=\{\{1\},\{2,3\}\},$ $B_3=\{\{1,3\},\{2\}\}, B_4=\{\{1,2\},\{3\}\}, B_5=\{\{1\},\{2\},\{3\}\}\}$ 它们对应的等价关系为:

$$R_1 = E_A, R_2 = I_A \cup \{\langle 2,3 \rangle, \langle 3,2 \rangle\}, R_3 = I_A \cup \{\langle 1,3 \rangle, \langle 3,1 \rangle\}, R_4 = I_A \cup \{\langle 1,2 \rangle, \langle 2,1 \rangle\}, R_5 = I_A.$$

(2) 显然B₂,B₃,B₄,B₅都是B₁的加细, B₅是B₂, B₃, B₄的加细; R₂,R₃,R₄,R₅都是R₁的子集, R₅是R₂, R₃, R₄的子集;

总结

- * 等价关系,
- 等价类,商集,
- ■划分
- 作业: p56, 习题二, 34,35,37,39,41,43