Math 100B: Homework 3

Merrick Qiu

Problem 1

- (a) If $r, s \in R$ and $r^n = 0$ for some n then $(rs)^n = r^n s^n = 0(s^n) = 0$ so $rs \in N$. If we have $s^m = 0$ for some m then $(r+s)^{nm} = r^{nm} + Prs + s^{nm} = Prs \in N$ since $rs \in N$ (P is some polynomial from the middle terms of the binomial expansion). Thus $(Prs)^p = 0$ for some p so $(r+s)^{nmp} = 0$ and $r+s \in N$. Therefore N is an ideal since it is closed under addition and closed under multiplication with an arbitrary element from the ring.
- (b) If $r \in R$ was a nonzero nilpotent element then r + N = 0 + N since $r \in N$ by definition.
- (c) Let $r \in N$ arbitrary with $r^n = 0$. Notice that $0 \in P$ so either $r \in P$ or $r^{n-1} \in P$. If $r^{n-1} \in P$ then either $r \in P$ or $r^{n-2} \in P$. Inducting over the exponent, we have that $r \in P$, but since r was arbitrary, $N \subset R$.

(a) If $f \in I_X$ and $g \in R$ then f(a) = 0 for all $a \in X$. Thus (fg)(a) = 0 for all a so $fg \in I_X$. If $f, g \in I_X$ then f(a) = 0 and g(a) = 0 for all $a \in X$. Thus (f+g)(a) = 0 for all a so $f+g \in I_X$. Therefore R is a ring. The function

$$f(a) = \begin{cases} 0 & a \in X \\ 1 & a \notin X \end{cases}$$

is the generator of the principal ideal R since any function $h \in R$ can be written as the product of f and some function $g \in R$ that matches h for all values not in X.

(b) I_X is a maximal ideal when $\mathbb{R} - X$ only contains a single point since the only other ideal that contains it is the entire ring R. If $\mathbb{R} - X$ contains more than one point then $I_X \subset I_Y$ where Y is X with an additional missing point added so I_X is not maximal.

 I_X is a prime ideal when X contains less than two points. If X is the empty set then $I_X = R$ which is trivally prime. If X contains a single point a and if $fg \in I_X$ then fg(a) = 0 implies either f(a) = 0 or g(a) = 0 so I_X is prime. If X contains two or more points $a, b \in X$ then it is possible for $fg \in I_X$ If f(a) = 0 and g(b) = 0 but $f(b) \neq 0$ and $g(a) \neq 0$.

- (a) If $r \in I \cap R$ and $s \in R$ then $rs \in I$ since I is an ideal and $rs \in R$ because $r \in R$ and $s \in R$. Thus $rs \in I \cap R$. If $r, s \in I \cap R$ then $r+s \in I$ and $r+s \in R$ since I and R are both subgroups under addition. Thus $r+s \in I \cap R$ and $I \cap R$ is an ideal of R.
- (b) If $a, b \in R$ and $ab \in I \cap R$ then either $a \in I$ or $b \in I$ because I is a prime ideal of S. However $a, b \in R$ so either $a \in I \cap R$ or $b \in I \cap R$, which means $I \cap R$ is a prime in R.
- (c) No. If I is a subring and R = I, then $I \cap R = R$ is definitionally is not maximal. For example if $I = R = \mathbb{R}$ and $S = \mathbb{C}$ then \mathbb{R} is not a maximal ideal of \mathbb{R} .

Suppose that I=(p) was a principal ideal generated by $p\in R$. This means that 2=pq for some $q\in R$, and so p must be a constant. It must also be that x=pr for some $r\in R$ so q must be a linear polynomial and p=-1,1 so that p divides 1(which is the coefficient of x). However neither -1 or 1 generate I so it cannot be that I is a principal ideal and R is not a principal ideal domain.

- (a) (\Longrightarrow) Let $f,g\in F[x]$ and $(f)\subseteq (g)$. Since $f\in (f)$ it is also $f\in (g)$. Therefore f=gh for some $h\in F[x]$.
 - (\Leftarrow) Let $f,g\in F[x]$ and f=gh for some $h\in F[x]$. From the definition of the principal ideal,

$$(f) = \{fr | \forall r \in F[x]\}$$

$$= \{ghr | \forall r \in F[x]\}$$

$$\subseteq \{gr | \forall r \in F[x]\}$$

$$= (g).$$

(b) The kernel of ϕ is ker $\phi = \{f(x) \in F[x] : f(a) = f(b) = 0\}$. Therefore ker $\phi = (x - a)(x - b)$ since it has roots a, b and no polynomial of degree ≤ 1 has a and b as roots.

The homomorphism ϕ is surjective since for arbitrary $(p,q) \in F \times F$, $\phi\left(\frac{(a-x)q+(x-b)p}{a-b}\right) = (p,q)$.

By the first isomorphism theorem, $F[x]/(f) \cong F \times F$.

(c) Since F is a field it only has the zero ideal and the unit ideal. So $F \times F$ only has the four ideals $\{0\} \times \{0\}$, $\{0\} \times F$, $F \times \{0\}$, $F \times F$. According to the correspondence theorem for quotient rings, the ideals of F[x]/(g(x)) are in correspondence with the ideals of F[x] that contain g(x), and since F[x] is a principal ideal domain its only ideals that contain g(x) are F[x], $((x-a)^2)$, and (x-a). Therefore $F \times F$ is not isomorphic to F[x]/(g(x)) since they have a different number of ideals.

If R is a ring with finitely many elements such that every element of R is idempotent, then R is isomorphic to n copies of $\mathbb{Z}/2\mathbb{Z}$. However since $A \cap A = A$ for all $A \in R$, all n elements of R are idempotent.