M239 Tutorial 1

Graham Cooper

May 12th, 2015

Alan Arroyo MC5486 amarroyo@uwaterloo.ca Tutorial Center Tuesday 10:30-12:30

$$\binom{n}{k} = \frac{n}{k(n-k)}$$

Number of ways we can choose k elements from a set of size n. n! is the number of ways to arrange n objects 2^n is the number of binary strings length n 2^n is the number of subsets of $\{1, 2, ... n\}$

Problem 1

Given $0 \le r \le k \le n$ how many subsets of $[n] = \{1, ...n\}$ have exactly r elements in common with $\{1,...k\}$ $\{1,2,3,4,...,k,k+1,k+2,...n\}$ Every considered set is of the form $R \cup S$ where $R \subseteq \{1,...k\}|R| = r$ and $S \subseteq \{k+1,...n\}$ Number of ways to construct $R = \binom{k}{r}$ Number of ways to construct $S = 2^{n-k}$ Answer $S = 2^{n-k}$

Problem 3

For integers $0 \le r \le k \le n$. Give a combinatorial proof of the following identity $\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}$ $S = \{(X,Y); X \le Y \le [n]; |Y| = k, |X| = r\}$ Lets count S into two different ways

- 1. Find all possible Y's and then consturct $X \leq Y$ Number of possible y's = $\binom{n}{k}$, once y is fixed, how many $X \leq Y$ have |X| = r, $\binom{k}{4}$. Total = $\binom{n}{k}\binom{k}{r}$
- 2. Find all possible $X \leq [n]$ with |X| = r, $\binom{n}{r}$. Then find all Y's $Y \leq [n]$ $X \leq$ and |Y| = k Total: $\binom{n}{r}\binom{n-r}{k-r}$

Problem 2

Define

 E_n = subsets of [n] with even cardinality O_n = subsets of [n] with odd cardinality

- (a) find a bijection between E_n and O_n $f: E_n \to O_n$ where $f(s) = S \cup \{n\} ifn \notin S$ and $S/\{n\} ifn \in S$ f(S) is in O_n because |f(S)| = |S| + / -1 $f^{-1}: O_n \to E_n \ f^{-1}(s) = S \cup \{n\} ifn \notin S \text{ or } S \ \{n\} ifn \in S$ $f^{-1}(f(S)) = S$
- (b) to determine $|E_n|, |O_n|$ $|E_n| = |O_n|$ $E_n \cup O_n = \{\text{subsets of [n]}\}$ $|E_n| = 1/2 \{\text{subsets of [n]}\}$ $= 1/2 \times 2^n = 2^{n-1}$
- (c) Using (a) show $\sum_{k=0}^{n} {n \choose k} = 2^n$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

$$\sum_{kiseven, 0 \le k \le n} \binom{n}{k} + \sum_{kodd, 0 \le k \le n} \binom{n}{k}$$

$$|E_n| = |O_n|$$