Network Layer Routing within an AS - IGP

Contents!

- Introduction to IGP. How routing decisions are made?
- Dynamic routing. RIP
- Dynamic routing. OSPF
- Lab! OSPF with Docker and Quagga

What is an Autonomous System(AS)?

One or more IP networks controlled by one or more operators with a clear policy that governs how routing decisions are made.

IGP: Interior gateway protocol

EGP: Exterior gateway protocol

How routing decisions are made?

Static Routing

Static Routing Quiz! - Which rule is going to match?

Source 192.168.2.5 Destination 192.168.1.6

				- Aller	
	1	S	192.168.1.0	/28	255.255.255.240
2	2	S	192.168.2.0	/29	255.255.255.248
4-4	3	S	192.168.1.0	/29	255.255.255.248
4	4	S	192.168.2.0	/30	255.255.255.252
	5	S	192.168.1.0	/30	255.255.255.252

https://www.menti.com/6a71d791

Dynamic routing

- Responds faster on link failure
- Does not rely on human intervention

Dynamic routing algorithms

Link State (centralized)

- Each node computes the least cost path using complete knowledge of the network.
- OSPF, ISIS

Distance Vector (decentralized)

- Each node maintains a vector with estimates of the costs to all other nodes.
- A node gradually calculates the least-cost path to a destination.
- RIP, BGP

RIP - Routing Information Protocol

Behaviour

- Route Advertisements are sent periodically (30sec)
- Advertised information is used to discover the best routes

Metrics

- Are used to measure the distance to a given network
- Based on hops, incremented by 1 before advertisement is forwarded
- Hop limit: 15

Versions

- RIPv1: uses broadcast in route updates
- RIPv2: uses multicast in route updates
- RIPng: next generation, for IPv6

- Active participants(R0, R2): advertise their routes
- Passive participants(R1): just listen to RIP messages and update their forwarding table

Problems

 Hop count, does not always yield ruote with the least delay.

OSPF - Open Shortest Path First

Behaviour

Each router have knowledge of the state of all the interfaces and adjacencies

RouterID

- Identifies the router within the AS
 - Assigned manually or,
 - Higher address loopback interface configured or,
 - Higher address physical interface configured

OSPF - Open Shortest Path First

Designated Router

- Act as a central point of communication to all other routers associated within an OSPF area:
 - Originate network link advertisements.
 - Participating in the synchronizing of the link-state databases.

Metric

Calculates the cost of an interface based on the bandwidth of the interface.

Docker & docker-compose

https://www.menti.com/6a71d791

What is Docker

How containers are connected ?

What is Quagga?

"The quagga (Equus quagga quagga) was a plains zebra that lived in South Africa until becoming extinct late in the 19th century."

What is **Quagga Router**?

"Quagga is free software that manages various IPv4 and IPv6 routing protocols. Currently Quagga supports BGP4, BGP4+, OSPFv2, OSPFv3, RIPv1, RIPv2, and RIPng as well as very early support for IS-IS."

Lab 1 - Environment Setup - IPv4 OSPF

Goals:

- Identify the topology in docker-compose file.
- Read quagga ospf configuration files
- Read IPv4 routing tables

Steps:

- Clone the repository. (https://github.com/maticue/docker_quagga.git)
- Go to ospf folder. Run docker-compose up
- Verify docker port mapping in order to access the daemons via telnet

Useful commands:

- telnet localhost <daemon_port>
- docker exec -ti <container name> ash

Lab 1 - Environment Setup - IPv6 OSPF

Goals:

- Identify the topology in docker-compose file.
- Read quagga ospf configuration files
- Read IPv6 routing tables

Steps:

- Uncomment ipv6 configuration in ospf/volumes/supervisord.conf and in Dockerfile
- docker-compose build in order to recreate the images

Useful commands:

- telnet localhost <daemon_port>
- docker exec -ti <container name> ash

Lab 2 - Add hosts to your infrastructure

Goals:

- Add one host attached to each router
- Feel free to choose your favorite docker image

Resources

- https://www.juniper.net/documentation/en_US/junos/topics/concept/ ospf-routing-designated-router-overview.html
- https://learningnetwork.cisco.com/blogs/vip-perspectives/2017/11/08/ /ospf-graphs-lsas-and-the-lsdb
- https://docs.cumulusnetworks.com/display/CL332/Configuring+Quag ga
- Configuring FRRouting (Similar to quagga): http://docs.frrouting.org/en/latest/index.html