

Taller 4

Cálculo de predicados

Unificar las siguientes expresiones. Dar el unificador más general posible. a,b,c son constantes (*variable fijas*), mientras que x,y,z,w son *variables verdaderas*.

- a. Q(a,x,b,x,z) y Q(y,z,u,c,w).
- b. $P(a,y) \wedge R(x,z) y P(x,b) \wedge R(y,x)$
- c. $\neg (P(x,y,y) \rightarrow Q(z))$ con $\neg (P(a,c,z) \rightarrow Q(b))$

Dar una derivación formal para:

- a. Dados $\forall x \neg Q(x)$ y $\forall x(P(x) \rightarrow Q(x))$, entonces $\forall x \neg P(x)$.
- b. Dado que $\exists x \exists y P(x,y)$, entonces $\exists y \exists x P(x,y)$.
- c. $\exists x (P(x) \rightarrow Q(x)) \vdash \exists x (\neg Q(x) \rightarrow \neg P(x))$

Usando álgebra declarativa eliminar negaciones al frente de cuantificadores

- a. $\neg \forall x \ \neg \forall y \ \neg \forall z \ (P(x) \ \Lambda \ Q(y) \ \Lambda \ R(z))$
- b. $\neg \forall z \ (\ \neg \exists x \ (R(z) \ \land \ P(x,z)) \rightarrow \ \exists y \ Q(z,y) \)$
- c. $\neg \exists x (P(x) \land \neg \forall x Q(x)) \leftrightarrow R(x)$

Estandarizar por normalización las siguientes expresiones:

- a) $\exists x (\forall y \ P(y,x) \leftrightarrow \exists y \ Q(x,y))$
- b) $\forall x (\exists y P(x,y) \rightarrow \forall x Q(x,y))$
- c) $\forall x (\exists y P(x,y,z) v \forall x \exists z Q(z,x,y)) \land \exists z \forall y R(y,z,x)$
- d) $\neg \exists x (P(x) \land \neg \forall x Q(x)) \leftrightarrow R(x)$