

2020년 용인고 수학1 1학기 기말

DATE	
NAME	
GRADE	

- **1.** $\cos \frac{2}{3}\pi$ 의 값은?
- ① $-\frac{\sqrt{3}}{2}$ ② $-\frac{1}{2}$ ③ 1 ④ $\frac{1}{2}$ ⑤ $\frac{\sqrt{3}}{2}$

- **4.** 삼각형ABC에서 $\overline{AB}=6, \overline{BC}=9, \overline{CA}=5$ 일 때, $\frac{\sin A}{\sin C}$ 의 값은?
- ① $\frac{5}{9}$ ② $\frac{2}{3}$ ③ $\frac{5}{6}$ ④ $\frac{6}{5}$ ⑤ $\frac{3}{2}$

- ${f 2}$. $a_1=25, a_{10}-a_8=-6$ 을 만족시키는 등차수열 $\{a_n\}$ 에 대하여 $a_n>0$ 을 만족시키는 자연수 n의 최댓값은?
 - ① 7
- 2 8
- 3 9
- **4** 10
- ⑤ 11
- **5.** $0 < \theta < \frac{\pi}{2}$ 이고, $\sin\theta\cos\theta = \frac{5}{6}$ 일 때, $\sin^3\theta + \cos^3\theta$ 의 값은?

- ① $\frac{\sqrt{6}}{9}$ ② $\frac{2\sqrt{6}}{9}$ ③ $\frac{\sqrt{6}}{3}$ ④ $\frac{4\sqrt{6}}{9}$ ⑤ $\frac{5\sqrt{6}}{9}$

- **3.** $\sum_{k=1}^{10} a_k = 5$, $\sum_{k=1}^{10} (a_k)^2 = 50$ 일 때, $\sum_{k=1}^{10} (a_k + 2)(a_k 2)$ 의 값은?
- 10
- ② 20
- 30
- **4**0
- **⑤** 50
- **6.** 자연수 n에 대하여 n^2 을 3으로 나눈 나머지를 a_n 이라 할 때, $\sum_{n=1}^{50} a_n$ 의 값은?
- ① 16

- ② 26 ③ 28 ④ 32
- ⑤ 34

- **7.** 등비수열 $\{a_n\}$ 에 대하여 $a_1a_{10}=4$ 가 성립할 때, $a_1 \times a_2 \times a_3 \times \cdots \times a_{10}$ 의 값은?

- ① 2^8 ② 2^9 ③ 2^{10} ④ 2^{11}

- **8.** 등식 $\sum_{k=1}^{n} \frac{1}{1+2+3+\cdots+k} = \frac{8}{5}$ 을 만족시키는 자연수 n의 값은?
- ① 1 ② 2 ③ 3 4 4
- **⑤** 5

- **9.** 모든 실수 x에 대하여 $-3\sin^2 x + 6\sin x + k + 8 \ge 0$ 이 항상 성립하게 하는 실수 k의 최솟값은?
- 1
- ② 2
- ③ 3
- 4
- **⑤** 5

- **10.** x에 대한 이차방정식 $3x^2+2\sqrt{2}\cos\theta x+\sin\theta=0$ 의 실근이 존재하지 않도록 하는 모든 θ 의 값의 범위가 $\alpha < \theta < \beta$ 일 때, $6(\beta - \alpha)$ 의 값은? $(\mathfrak{t}, 0 \leq \theta < 2\pi)$
- ① 0 ② π ③ 2π ④ 3π
- \bigcirc 4π

- **11.** 모든 항이 양수인 수열 $\{a_n\}$ 에 대하여 $a_1=3$ 이고 $(a_{n+1})^2=a_n$ • a_{n+2} $(n=1,\,2,\,3,\,\cdots)$ 일 때, $\log_3 a_6=rac{5}{4}$ 이다. a_{21} 의 값은?
- 1 1
- ② 3 ③ 6
- **4** 9
- **12.** 모든 자연수 n에 대하여 등식 $1^3+2^3+3^3+\cdots+n^3=\left\{\frac{n(n+1)}{2}\right\}^2$ 이 성립함을 수학적 귀납법을 이용하여 증명하는 과정이다.

① n=1일 때, (좌변)= (가) , 우변= (가)

따라서 n=1일 때 주어진 등식이 성립한다.

② n=k일 때, 주어진 등식이 성립한다고 가정하면

$$1^3 + 2^3 + 3^3 + \cdots + k^3 = \left\{\frac{k(k+1)}{2}\right\}^2$$

이 식의 양변에 (나) 을 더하면

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + \boxed{(ப)} = \left\{\frac{k(k+1)}{2}\right\}^{2} + \boxed{(ப)}$$
$$= \{\boxed{(じ)}\}^{2}$$

위 등식은 주어진 등식에 n=k+1을 대입한 것과 같다. 따라서 n = k + 1일 때도 주어진 등식이 성립한다.

①, ②에서 모든 자연수 n에 대하여 주어진 등식이 성립한다.

위의 과정에서 (가)에 알맞은 수를 a, (나), (다)에 알맞은 식을 각각 f(k), g(k)라 할 때, f(a) + g(3)의 값은?

- ① 14 ② 18 ③ 44 ④ 108 ⑤ 120

 $\mathbf{13}$. 모든 항이 양수인 등비수열 $\{a_n\}$ 의 첫째항부터 제 n항까지의 합을 S_n 이라 하자. $a_1 + a_2 = 15$, $a_1 + a_2 + a_3 = 63$ 일 때, S_{10} 의 값은?

- ① 2^5-1 ② $2^{10}-1$ ③ $2^{20}-1$ ④ $2^{30}-1$ ⑤ $2^{40}-1$

14. 2와 97사이에 n개의 수를 넣어 만든 등차수열 $2, a_1, a_2, a_3, \dots, a_n, 97$ 의 공차 d가 소수이고, d < n일 때, $a_1 + a_2 + a_3 + \cdots + a_n$ 의 값은?

① 801

- ② 891
- ③ 981
- ④ 990
- (5) 1089

15. 등차수열 $\{a_n\}$ 과 등비수열 $\{b_n\}$ 이 다음 조건을 만족한다.

 $(7\dagger) \quad a_1 = b_1, a_2 = b_2, a_4 = b_4$

 $(\Box +) b_3 = 20$

이 때, 등비수열 $\{b_n\}$ 의 첫째항 b_1 과 공비 r의 합 b_1+r 의 값은? (단, 수열 $\{a_n\}$ 의 공차는 0이 아니다.)

- ① 0 ② 1 ③ 3 ④ 6
- **⑤** 9

16. 자연수 n에 대하여 $0 < x < \frac{n}{24}\pi$ 일 때, 방정식 $|\sin 2x| = \frac{1}{2}$ 의 실근의 개수를 f(n)이라 하자. f(n) = 29가 되도록 하는 n의 최솟값과 최댓값의 합은?

① 346

- ② 347
- ③ 348
- ④ 349
- **⑤** 350

[**논술형1**] 그림과 같이 $\overline{AB} = 6$, $\overline{AC} = 4$ 인 삼각형ABC가 원Q에 내접하고 있다. 삼각형ABC는 넓이가 $3\sqrt{15}$ 인 둔각삼각형이라고 할 때, 원Q위의 점P에 대하여 삼각형PBC의 넓이의 최댓값을 구하는 과정이다. 물음에 답하시오. (단 점P는 점B도 아니곡 점C도 아니다.)

[1-1] \overline{BC} 의 길이를 구하는 풀이과정과 답을 쓰시오.

[1-2] 삼각형PBC의 넓이의 최댓값을 $\frac{k}{\sqrt{15}}$ 라 할 때, k의 값을 구하는 풀이과정과 답을 쓰시오.

[논술형2] 수열 $\{a_n\}$ 의 첫째항부터 제 n항까지의 합 S_n 이 $S_n=2n^2+n+1\ (n=1,2,3,\cdots)$ 일 때, $a_1+a_3+a_5+\cdots+a_{25}$ 의 값을 구하는 풀이과정과 답을 쓰시오.

[논술형3] 그림과 같이 크기가 같은 정육면체를 빈틈없이 쌓아서 피라미드 모양의 입체도형을 만들 때, n단의 입체도형을 만드는 데 사용된 정육면체의 개수를 a_n 이라 하자. 예를 들어 $a_1=1, a_2=5$ 이다. a_{24} 의 값을 구하는 풀이과정과 답을 쓰시오.

- 1) ②
- 2) ③
- 3) ①
- 4) ⑤
- 5) ①
- 6) ⑤
- 7) ③
- 8) ④
- 9) ①
- 10) ⑤
- 11) ④
- 12) ②
- 13) ③ 14) ③
- 15) ③
- 16) ④
- 17) [논술형1] (1) 8 (2) 80
- 18) [논술형2] 663
- 19) [논술형3] 4900