3.

- a) The formula for a 95% confidence interval for μ when σ = 11 is known is $\bar{y} \pm a * \frac{\sigma}{\sqrt{n}}$, where a is given by $P(Z \le a) = \frac{1+p}{2}$, where $Z \sim G(0,1)$, \bar{y} is the sample mean, and n is the number of observed data. By evaluating the interval for the gasS data, we obtain 42.03903 and 51.68077.
- b) The formula for a 95% confidence interval for μ when σ is unknown is $\bar{y}\pm b*$ $\frac{s}{\sqrt{n}}$, where b is given by $P(T\leq b)=\frac{1+p}{2}$, where $T\sim t(n-1)$, \bar{y} is the sample mean, n is the number of observed data, and s is the sample standard deviation. By evaluating the interval for the gasS data, we obtain 41.77343 and 51.94637.
- c) The formula for a 95% confidence interval for σ^2 when μ is unknown and estimated by \overline{Y} is $[\frac{(n-1)s^2}{d},\frac{(n-1)s^2}{c}]$, where c and d are given by $P(W \le c) = \frac{1-p}{2} = P(W > d)$, where $W \sim \chi^2(n-1)$, s is the sample standard deviation, and n is the number of observed data. By evaluating the interval for the gasS data, we obtain 68.31286 and 251.9769.
- d) The formula for a 95% confidence interval for σ when μ is unknown and estimated by \overline{Y} is $[\sqrt{\frac{(n-1)s^2}{d}}, \sqrt{\frac{(n-1)s^2}{c}}]$, where c and d are given by $P(W \le c) = \frac{1-p}{2} = P(W > d)$, where $W \sim \chi^2(n-1)$, s is the sample standard deviation, and n is the number of observed data. Thus, we obtain 8.265159 and 15.87378.

f)

Using the relative likelihood from Assignment 1 to construct a 95% confidence interval for μ when σ = 11 is known, we get

$$\frac{1}{\sigma^2} \sum_{i=1}^{N} \left[(y_i - \mu)^2 - (y_i - \hat{\mu})^2 \right] \leq m$$

, where m is given by P(W \leq m) = 0.95, where $W \sim \chi^2(1)$. In this formula, σ = 11 and n = 20 and $\hat{\mu}$ = 46.8599.

The 95% confidence interval for μ is consisted of 42.03903 and 51.68076. This interval is approximately the same as the interval constructed in part a.