

Ant Colony Algorithm - Discussion

Dr. Kiran Manjappa Dept. of IT, NITK

Previous Session

- SI
 - Can not speak, still they communicate, coordinate and achieve the goal
 - Stigmergy Pheromone Indirect way of communication.
 - Ants, Termites, Bees
 - Foraging behavior, Nest Building, Finding Nectar Place.
- Ants, Termites, Bees and Bats

Ant Colony Algorithm

- The route discovery phase Two Stages
 - Reverse Route Setup Destination to Source Forward Ants
 - Forward Route Setup Source to Destination Backward Ants
- Source will release n ants to find the optimal path
- Along the path, ants will deposit pheromone (*p*) in each visited node.
- Pheromone Table Analogous to Routing Table

d - destination

n - next hop

p - pheromone concentration

d	n	р

Source S releases *n* ants to find the the optimal path to D

Each ant deposit an pheromone amount equal to 1

For simplicity, the decay concept is not used for route setup phase in this example.

@ node S		
n	p	

@	node	Α
---	------	---

d	n	p
S	S	2

@ node E

d	n	р
S	S	2

@ node B

d	n	p
S	Α	2

@ node F

d	n	р
S	Ε	2

@ node C

d	n	p
S	В	2

d	n	р
S	F	2

@ node D

d	n	р
S	F	2

Now from D, ants will traverse back to source

Forward Path Setup - Reverse Ants.

Ants checks the pheromone table entry in D

@ node D

d	n	p
S	F	2
S	С	2

@ node F

d	n	p
S	Ε	2
D	D	2

@ node F

d	n	p
S	E	2
D	D	2 4

@ node E

d	n	р
S	S	2
D	F	2

@ node E

d	n	р
S	S	2
D	F	2 4

@ node S

d	n	р
D	Ε	2

@ node S

d	n	p
D	Ε	2 4

Next Iteration

@ node S

d	n	р
D	E	4

@ node E

d	n	р
S	S	2 4
D	F	4

@ node F

d	n	р
S	Ε	2 4
D	D	4

d	n	р
S	F	2 4
S	С	2

@ node S

d	n	р
D	E	* 6

@ node E

d	n	р
S	S	4
D	F	4.6

@ node F

d	n	р
S	E	4
D	D	4 6

d	n	р
S	F	4
S	С	2

Pheromone Decays over time.

The routing table entries are removed once the pheromone becomes zero.

@ node A

d	n	р
S	S	0

@ node B

d	n	p
S	Α	0

@ node C

d	n	p
S	В	0

d	n	р
S	F	2
S	С	0

When Pheromone (p) becomes zero, the corresponding entry will be removed from the table

Route Maintenance- Part

Congestion?

ACA Optimization

- Two Types of Pheromone
 - Trail Pheromone Attracts
 - Danger Pheromone Attack / Escapes
- Every ants also adds a very small amount of danger pheromone in the pheromone table (0.1).
- tp = 1, dp = 0.1

- Once the dp reaches a threshold, the path is congested.
- Before anywhere near the threshold, the ants will divert the path sensing the danger.
- Change the table structure for the Congestion Avoidance
 - Avoidance Preventing congestion to happen.

d - destinationn - next hoptp - pheromone concentrationdp - danger pheromone

d	n	tp	dp

ACA Optimization

@ node S

d	n	tp	dp
D	E	4	

@ node E

d	n	tp	dp
S	S	2 4	0.2
D	F	4	

@ node F

d	n	tp	dp
S	Ε	2 4	0.2
D	D	4	

d	n	tp	dp
S	F	2 4	0.2
S	С	2	

Route Maintenance- Part

Congestion?

Route Maintenance- Part

Congestion?

Assignment 3 (10 Marks)

Detailed problem statement is given in the moodle.

Deadline is 13-11-2020, Friday 8 pm.