

		Obj Epidemical N Existence Tl Simula	heory				
Conte							
	mm 40 -		- 60	80	1	00	120
1	Motivation						
2	Here to the state of the state						
	Epidemical Model Controlled Model 60						
4	xistence Theory						
	imulations						
	-80						
	Gabriel Adri	án Salcedo V	/arela				

Motivation

$$\begin{aligned} \frac{dS_{p}}{dt} &= -\beta_{p} S_{p} I_{v} + r(L_{p} + I_{p}), \\ \frac{dL_{p}}{dt} &= \beta_{p} S_{p} I_{v} - bL_{p} - rL_{p}, \\ \frac{dI_{p}}{dt} &= bL_{p} - rI_{p}, \\ \frac{dS_{v}}{dt} &= -\beta_{v} S_{v} I_{p} - \gamma S_{v} - (1 - \theta)\mu, \\ \frac{dI_{v}}{dt} &= \beta_{v} S_{v} I_{p} - \gamma I_{v} - \theta\mu, \\ S_{p}(0) &= S_{p_{0}}, L_{p}(0) = L_{p_{0}}, I_{p}(0) = I_{p_{0}}, \\ S_{v}(0) &= S_{v_{0}}, I_{v}(0) = I_{v_{0}}. \end{aligned}$$

Par. Value Descrip. 0.1 plant latent rate 0.01 plant remove rate plant infectious rate 0.075 vector die or depar rate 0.060.3 mmigration rate nfected vectors arrival 0.003 vector infected rate

Motivation

R 0= 0.0550074570718611

Plant Model with control

Tomato mmurl Virus Dianse Using an Foolemiological Model

 $\frac{dS_{p}}{dt} = -\beta_{p}S_{p}I_{v} + (r + u_{1})L_{p} + (r + u_{2})I_{p},$ $\frac{dL_{p}}{dt} = \beta_{p}S_{p}I_{v} - bI_{p} - (r + u_{1})I_{p},$

Gabriel Adrián Salcedo Varela

M	inin	nize																						
			m	m	u ₃) =		_с Т ₄	0 —			<u> </u>	0 —			— 8	0 —			- 10)0 –		0	- 12	20 –
		J(u	l_1, L	2,	<i>u</i> 3) =	- /	/	A_1I_p	(t)	+ /	A_2L	$_{p}(t)$	+	A_3I	$_{v}(t)$	+	$c_1 u$	$_1(t)$)^ +	- <i>C</i> ₂	$u_2($	t) ²		
						1	D																	
SU	bje	ct t	0			+ <i>C</i> 3	и ₃ (t) (at,															
				 .0,-																				
			_	Ľ	$\frac{dS_p}{dt}$	=	_	$\beta_p S$	$_{p}I_{v}$	+(<i>r</i> +	u_1	L_p	+(r +	u ₂)	I_p ,							
					di																			
					dt	=	β_{p}	S_p	v —	bL	p —	(r	+ <i>u</i>	₁)L	ים									
			- 6	.d –	$\frac{dI_p}{dt}$		1-1		(
			·	Į	dt		DL	-p —	- (<i>r</i>	+ 1	12)1	ο,												
					dS _v	_	_	B., S	/	_ ($\sim \pm$	- 112) <i>S</i>	_ (1 -	θ	и.							
							,	- / -	V·ρ) - v			- /	,							
			- 8		$\frac{dI_{v}}{dt}$	=	β_{ν}	S_{v}	_p	$(\gamma$	+ ι	13)1	, —	$\theta\mu$,										
			0	Ĭ																				
				l	$S_p($	0)		S_{p_0}	$, L_{\rho}$	(0)	=	L_{p_0}	$I_p($	0) =	$= I_p$	$_{o}, S$	$_{\nu}(0$) =	S_{ν_0}	I_{v}	(0)	= /	v ₀ ·	

$$T\in (0,\infty)$$
 be fixed. Consider the control system:

$$\begin{cases} \dot{x}(s) = f(s, u(s), x(s)) \ s \in [t_0, T], \\ x(t_0) = x_0, \end{cases}$$

with terminal state constraint $x(T; t_0, x_0, u(\cdot)) \in M,$

where $M \subseteq \mathbb{R}^n$ is fixed.

 $M: \mathbb{R}_+ \to 2^{\mathbb{R}^n}$ is a moving target in \mathbb{R}^n if for any $t \in \mathbb{R}_+$, M(t) is a measurable.

$$J(t_0,x_0;u(\cdot))=\int_{t_0}^T g(s,u(s),x(s))ds+h(T,x(T))\equiv J^T(t_0,x_0,u(\cdot)).$$

Problem $(OC)^T$

Given $(t_0,x_0)\in\mathbb{R}_+ imes\mathbb{R}^n$ with $ilde{\mathcal{U}}^M_{x_0}[t_0,\,T]
eq\emptyset$, find a $ar{u}(\cdot)\in ilde{\mathcal{U}}^M_{x_0}[t_0,\,T]$ such that

$$J^{\mathcal{T}}(t_0,x_0;\bar{u}(\cdot))=\inf_{u(\cdot)\in\tilde{\mathcal{U}}_{x_0}^M[t_0,T]}J^{\mathcal{T}}(t_0,x_0;u(\cdot)).$$

 $\omega: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, increasing, and $\omega(r,0) = \emptyset$ for every $r \geq 0$.

(C1)

 $f: \mathbb{R}_+ \times U \times \mathbb{R}^n \to \mathbb{R}^n$ is measurable, satisfies a lipchitz condition in x, and $|f(t, u, 0)| \leq L$, for every $(t, u) \in \mathbb{R}_+ \times U$.

$$g:\mathbb{R}_+ imes U imes \mathbb{R}^n o \mathbb{R}$$
 and $h:\mathbb{R}^n o \mathbb{R}$ are measurable, and

$$|g(s, u, x_1) - g(s, u, x_2)| + |h(x_1) - h(x_2)| \le \omega(|x_1| \vee |x_2|, |x_1 - x_2|)$$

for every $(s, u) \in \mathbb{R}_+ \times U, x_1, x_2 \in \mathbb{R}^n$.

		vatio bjetiv	
Existe	nical nce Simu	Γheor	y

Existence Theorem

Let (C1)-(C3) hold. Let $M \subseteq \mathbb{R}^n$ be a non-empty closed set. Let $(t_0, x_0) \in [0, T] \times \mathbb{R}^n$ be given and $\tilde{\mathcal{U}}_x^M[t_0, T] \neq \emptyset$. Then problem $(OC)^T$ admits at least one optimal pair.

Pontryagin's Maximum Principle

If $u^*(t)$ and $x^*(t)$ are optimal for the problem $(OC)^T$, then there exists a piecewise differentiable adjoint variable $\lambda(t)$ such that

$$H(t,x^*(t),u(t),\lambda(t)) \leq H(t,x^*(t),u^*(t),\lambda(t))$$

for all controls u at each time t, where the Hamiltonian H is

$$H = g(t, x(t), u(t)) + \lambda(t)f(t, x(t), u(t)),$$

and

$$\lambda'(t) = -\frac{\partial H(t, x^*(t), u^*(t), \lambda(t))}{\partial x},$$
$$\lambda(T) = 0.$$

		Mot	vatio	n
	Epider	0	bjetiv	e
E	pider	nical	Mode	t
	Existe	nce -	Γheor	y
		Simu	lation	s
_			_	П

-40 + 100 + 100 + 120Step 1 Make an initial guess for # over the interval. Step 2. Using the initial condition $x_1 = x(t_0) = a$ and the values for \vec{u} , solve \vec{x} forward in time according to lits differential equation in the optimality system. Step 3. Using the transversality condition $\lambda_{N+1} = \lambda(t_1) = 0$ and the values for \vec{u} and \vec{x} , solve λ backward in time according to its differential equation in the optimality system. Step 4. Update \vec{u} by entering the new \vec{x} and $\hat{\lambda}$ values into the characterization of the optimal control. Step 5. Check convergence. If the values of the variables in this iteration and the last iteration and the last iteration are negligibly close, output the current values as solutions. If values are not close, return to Step 2.

