获得的答案

Correct DFA which satisfy C constraints and in polynomial time Π can be guessed by Non Deterministic Turing Machine iff such DFA available or exist.

For showing that problem is NP complete reduce it to polynomial time.

Consider the formula $F = \bigwedge_{j=1}^m R_j$ where $R_j = (s_j \lor t_j \lor u_j)$ and construction some constraints C and \prod

- $C = \{c_T, c_F, c_1, c_2\}$ are states.
- ullet Creating pair $ig(arepsilon, c_{\scriptscriptstyle F} ig)$ in \prod for enforcing $\, c_{\scriptscriptstyle F} \,$ as starting state.
- Every variable s belongs to F will create the pairs $\left(s\overline{s},c_{\scriptscriptstyle T}\right)$ and $\left(\overline{s}s,c_{\scriptscriptstyle T}\right)$.
- Every clause R_j in formula F will have pair in \prod that is $\left(s\#_s,c_1\right)$ and $\left(\overline{s}\#_s,c_2\right)$ that enforces that when reading s and \overline{s} , DFA must be in different state.
- Choose any s in F . Now for \forall variable t create other three points in \prod : $\left(s\overline{s}t,c_{T}\right)$, $\left(s\#_{s}t,c_{1}\right)$, $\left(\overline{s}\#_{s}t,c_{2}\right)$.

F is satisfiable iff there is some DFA that satisfy C and R. Reduction is taking some polynomial time therefore given problem is NP-complete.