Capítulo 2

Exercícios de Método Simplex Enunciados

$$\max F = 10x_1 + 7x_2$$

suj. a:

Problema 2

$$\max F = 2x_1 + x_2$$

suj. a:

Problema 3

$$\max F = x_1 + 2x_2$$

suj. a:

Problema 4

$$\min z = x_1 + x_2 + x_3$$

suj. a:

Problema 5

$$\max F = x + 2y + 3z$$

suj. a:

Capítulo 2

Exercícios de Método Simplex Resoluções

$$\max F = 10x_1 + 7x_2$$

suj. a:

O problema proposto é um problema de programação linear: a função objectivo e as restrições são funções lineares das variáveis de decisão x_1 e x_2 . Este exemplo simples será usado para ilustrar a aplicação do método Simplex para resolver problemas de programação linear. Embora a resolução prática de problemas deste tipo seja (sempre) feita recorrendo a programas de computador que permitem obter a solução de problemas com milhares de restrições e variáveis, é conveniente a compreensão do funcionamento da técnica para facilitar a interpretação dos resultados obtidos.

Para se aplicar o método Simplex, é necessário que o problema satisfaça os requisitos seguintes (forma standard):

- (a) Todas as variáveis são não negativas (só podem assumir valores positivos ou nulos);
- (b) Todas as restrições são equações (ou restrições do tipo '=');
- (c) Todos os termos independentes são positivos.

No nosso exemplo, a primeira e última condição são satisfeitas. Para representar o problema na forma standard é necessário transformar as duas inequações em equações. Para isso, são introduzidas no primeiro membro das inequações novas variáveis (também não negativas) com coeficiente +1. Estas variáveis representam a "folga" entre o primeiro e o segundo membro das inequações, chamando-se por isso variáveis de folga e representando-se por s (de slack).

$$\max F = 10x_1 + 7x_2$$

suj. a:

A aplicação do método Simplex requer o conhecimento de uma solução básica admissível inicial, que servirá de ponto de partida para o processo iterativo. Em problemas que apenas contenham restrições do tipo \leq , a introdução das variáveis de folga conduz a uma solução básica admissível inicial imediata: fazem-se nulas as variáveis originais do problema (no nosso exemplo x_1 e x_2), e as variáveis de folga ficam iguais aos termos independentes das equações respectivas:

$$(x_1, x_2, s_1, s_2) = (0, 0, 5000, 15000)$$

Note-se que esta solução inicial corresponde à origem da região de soluções admissíveis, o que é sempre verdade se todas as restrições de um problema forem do tipo \leq com termos independentes positivos. Neste caso a origem é uma solução básica admissível obtida imediatamente com a introdução das variáveis de folga em todas as restrições. O método Simplex pode ser aplicado manualmente recorrendo a um quadro onde se representam de

forma condensada todos os parâmetros do problema (matriz dos coeficientes, termos independentes e função objectivo). Sobre esse quadro são aplicadas transformações algébricas de acordo com determinadas regras, que conduzem à obtenção da solução óptima.

variáveis básicas	x_1	x_2	s_1	s_2	termos independentes
					<u> </u>
s_1	2	1	1	0	5000
s_2	4	5	0	1	15000
$\overline{-F}$	10	7	0	0	0
7					\uparrow
custos marginais					simétrico do valor
					da função objectivo

Uma iteração consiste em trocar uma variável da base: das variáveis não básicas escolhe-se uma para entrar para a base (irá passar de zero a um valor positivo-eventualmente nulo), e das variáveis básicas é seleccionada uma para sair da base. Esta operação corresponde a "saltar" para uma solução básica admissível vizinha (ou adjacente). Matematicamente falando, duas soluções adjacentes são aquelas que diferem de apenas uma variável básica; geometricamente são dois "cantos" da região de soluções admissíveis que estão unidos por um "lado" do poliedro que representa no espaço essa região. As soluções básicas de um problema correspondem a todas as intersecções entre as restrições, considerando também as restrições $x_i \geq 0$. De entre estas, são admissíveis aquelas que são representadas apenas por variáveis não negativas:

includegraphics[scale=0.8]simplex/simplex1

variáveis básicas	x_1	x_2	s_1	s_2	termos independentes	
↓					\downarrow	
$ \sqsubseteq s_1 $	2	1	1	0	5000	$\frac{5000}{2}$ (menor quociente)
s_2	4	5	0	1	15000	$\frac{15000}{4}$
-F	10	7	0	0	0	
7	$\uparrow\uparrow$				↑	
custos marginais	o mais				simétrico do valor	
	positivo				da função objectivo	

• Critério de entrada na base:

Entra na base a variável que tiver um coeficiente mais positivo na linha F. Estes coeficientes (custos marginais) representam o peso relativo das variáveis não básicas (neste caso x_1 e x_2), no valor da função objectivo. Podemos dizer assim que, entrando a variável x_1 para a base, o valor de F cresce 10 unidades por unidade de crescimento x_1 . Note-se que isto apenas é verdade se na linha F existirem coeficientes nulos sob as variáveis básicas (porquê?). Na realidade, a linha de F é considerada como sendo uma equação adicional, onde F representa uma variável que nunca sai da base:

$$F = 10x_1 + 7x_2$$

pode ser representada como a equação seguinte:

$$-F + 10x_1 + 7x_2 + 0s_1 + 0s_2 = 0$$

Escrito desta forma, F aparece com o coeficiente -1; daí a razão de o valor que aparece no $2^{\underline{o}}$ membro da linha F ser igual ao simétrico do valor da função objectivo. Sendo interpretada como uma equação, podemos sempre eliminar variáveis (usando operações de pivotagem apropriadas) por forma a que os coeficientes de F sob as variáveis básicas sejam sempre nulos.

Para um problema de minimização o critério de entrada na base será obviamente o contrário: entra na base a variável não básica que provoca um maior decrescimento no valor de F, ou seja, a que tiver um coeficiente mais negativo na linha F.

• Critério de saída da base:

Sai da base a variável x_k (básica na equação i) que tiver um coeficiente $\frac{b_i}{a_{ij}}$ menor (sendo x_i a variável que entrou para a base).

As duas equações representadas no quadro acima podem-se escrever ($x_2 = 0$, não básica):

$$2x_1 + s_1 = 5000$$

 $4x_1 + s_2 = 15000$

ou:

Entrando x_1 para a base, isso significa que x_1 vai passar de zero para um valor positivo. A variável a sair da base vai ser aquela que primeiro se anular, limitando assim o crescimento de x_1 (note-se que todas as variáveis envolvidas só podem assumir valores positivos ou nulos).

Pela 1ª equação, x_1 pode subir até $\frac{5000}{2}=2500$ para s_1 se anular (sair da base); pela segunda equação, o valor máximo para x_1 é $\frac{15000}{4}=3750$. Logo, a variável a sair da base será s_1 , pois quando x_1 cresce é s_1 que primeiro se anula, impondo assim o limite no crescimento da variável x_1 em 2500. Como regra prática, basta calcular os quocientes entre os termos independentes e os coeficientes da matriz sob a variável que vai entrar para a base, retirando da base a variável básica da equação que tiver o menor quociente.

Analisemos com mais detalhe a 1ª equação acima:

5000 (termo independente) é o valor que a variável básica s_1 tomava na iteração anterior.

2 (coeficiente da matriz sob x_1) é o simétrico do peso da variável x_1 nessa equação. Por outras palavras, podemos dizer que s_1 decresce 2 unidades por unidade de crescimento de x_1 , anulando-se (i. e. saindo da base) quando x_1 atinge $\frac{5000}{2}$.

Podem assim ser tiradas algumas conclusões interessantes, em função do valor dos coeficientes da matriz, a_{ik} , sob a variável que foi escolhida para entrar para a base, x_k :

 $a_{ik} > 0$ x_{bi} , a variável básica na equação i, decresce a_{ik} unidades por unidade de crescimento de x_k , impondo assim um limite superior a x_k igual a $\frac{b_i}{a_{ik}}$ (b_i é o termo independente da equação i).

- $a_{ik}=0$ x_{bi} , a variável básica na equação i, não vê alterado o seu valor, quando x_k entra para a base. Isso significa que x_{bi} nunca sairá da base pois não limita de forma alguma o crescimento de x_k .
- $a_{ik} < 0$ x_{bi} , a variável básica na equação i, cresce a_{ik} unidades por unidade de crescimento de x_k . Assim, do mesmo modo que para o caso anterior, x_{bi} não limita o crescimento de x_k , logo nunca sairá da base.

variáveis básicas	x_1		x_k		x_m	b
x_{b1}		• • •	a_{1k}	• • •	• • •	b_1
:	:	÷	:	÷	:	÷
$ \leftarrow x_{bi} $		• • •	a_{ik}	• • •	• • •	b_i
:	:	÷	:	÷	:	÷
x_{bn}	• • •		a_{nk}	• • •	• • •	b_n
-F	• • •		f_k			$-F_0$
			$\uparrow\uparrow$			

Com base no que se disse, podemos concluir o seguinte: se todos os coeficientes da variável que se escolheu para entrar para a base forem negativos ou nulos, isso significa que nenhuma das variáveis básicas decresce com o crescimento da nova variável candidata a básica. Assim, se esta variável pode crescer sem que qualquer das básicas se anule, então pode-se concluir que o problema não tem uma solução óptima limitada. Situações destas ocorrem quando a região de soluções admissíveis é um domínio aberto no sentido de crescimento da função objectivo.

Continuando com a resolução do exemplo dado:

Solução óptima encontrada:

Não existe nenhuma variável não básica (s_1 ou s_2 , neste caso) que tenha um coeficiente positivo na linha F. Se uma dessas variáveis tivesse um coeficiente nulo, isso significava que ela poderia entrar para a base sem alterar o valor da função objectivo F (chamamse a estas soluções alternativas à solução óptima encontrada). Note-se que as soluções alternativas assim obtidas são igualmente óptimas, já que mantêm o mesmo valor para a função objectivo F.

O valor da solução óptima para este problema seria $F = \frac{85000}{3}$ e os valores das variáveis de decisão seriam:

$$x_1 = \frac{5000}{3}, \quad x_2 = \frac{5000}{3}$$

$$\max F = 2x_1 + x_2$$

suj. a:

Em primeiro lugar é necessário representar o problema na forma standard, introduzindo variáveis de folga para transformar as inequações em equações. A variável de folga da primeira restrição tem coeficiente -1 porque a inequação é do tipo \geq (note-se que todas as variáveis são positivas).

$$\max F = 2x_1 + x_2$$

suj. a:

Neste caso já não se obtém a solução básica inicial fazendo as variáveis de folga iguais aos termos independentes. Apesar dessa ser uma solução básica, não é admissível e como tal não pode ser usada como ponto de partida para o método Simplex.

Serão apresentados dois métodos para resolver esta questão, que permitem usar o próprio Simplex para encontrar uma solução básica admissível inicial. Os métodos são:

- método das duas fases
- método das penalidades

Antes de aplicar qualquer um dos métodos, é no entanto necessário acrescentar variáveis (chamadas **variáveis artificiais**) nas restrições que não têm variáveis básicas.

Introduzindo uma variável artificial na 1^a equação:

Seguidamente, ambos os métodos usam o método Simplex para anular (retirar da base) essas variáveis artificiais. Quando isso acontece, a solução que então se tem é uma solução básica admissível do problema original, que é usada como solução de partida para aplicar o método Simplex.

Descrição sucinta dos dois métodos:

Método das duas fases

 $1^{\underline{a}}$ fase minimizar a função objectivo artificial $W = \sum a_i$; o objectivo desta primeira fase é retirar todas as variáveis artificiais da base, situação em que W atinge o valor mínimo de zero. A solução básica admissível assim obtida é uma solução básica admissível inicial para se aplicar o método Simplex ao problema original.

 $2^{\underline{a}}$ fase Usando como solução básica inicial a obtida na primeira fase, resolver o problema normalmente usando o algoritmo do simplex, depois de eliminar do quadro a linha correspondente à função objectivo artificial W, e as colunas relativas às variáveis artificiais, a_i .

Método das penalidades

A função objectivo $\max F = 2x_1 + x_2$ é substituída pela função objectivo $\max F = 2x_1 + x_2 - M \sum a_i$, onde M tem um valor muito elevado. Dado que se trata de um problema de maximização, a melhoria da função objectivo implica que as variáveis artificiais passem a valer zero (sejam retiradas da base). A solução básica assim obtida é uma solução básica admissível para o problema original.

Aplicando o Método das duas fases ao exemplo apresentado:

$1^{\underline{a}}$ fase:

Pretende-se minimizar $W = \sum a_i = a_1$. Como nos interessa exprimir o W apenas em função de variáveis não básicas (porquê?), vamos substituir cada variável artificial pela expressão que a representa apenas em função de variáveis não básicas.

Da $1^{\underline{a}}$ equação (onde a_1 é variável básica e as outras variáveis são não básicas):

$$x_1 + x_2 - s_1 + a_1 = 2$$

pode-se escrever a_1 em função de variáveis não básicas:

$$a_1 = 2 - x_1 - x_2 + s_1$$

Assim, a função objectivo artificial a minimizar será:

$$W = a_1 = 2 - x_1 - x_2 + s_1$$

O primeiro quadro Simplex está representado a seguir. Dado que se pretende minimizar W, teremos que escolher para entrar na base a variável com coeficiente mais negativo na linha W. Dado que as variáveis x_1 e x_2 têm o mesmo coeficiente (-1), podemos escolher uma das duas variáveis para entrar na base.

	base	x_1	x_2	s_1	s_2	a_1	b	
\	$= a_1$	1	1	-1	0	1	2	<u>2</u> 1
	s_2	1	1	0	1	0	4	$\frac{\overline{4}}{1}$
	-F	2	1	0	0	0	0	
	-W	-1	-1	1	0	0	-2	(simétrico de W)
		$\uparrow\uparrow$						

base	x_1	x_2	s_1	s_2	a_1	b
x_1	1	1	-1	0	1	2
s_2	0	0	1	1	-1	2
-F	0	-1	2	0	-2	-4
-W	0	0	0	0	1	0

O quadro apresentado corresponde ao fim da $1^{\underline{a}}$ fase do método das duas fases, dado que a função objectivo W foi minimizada até zero $(a_1=0)$. A solução básica admissível assim obtida é uma solução básica admissível inicial para se aplicar o método Simplex ao problema original.

$2^{\underline{a}}$ fase:

Nesta fase pretende-se maximizar a função objectivo inicial, F, tomando como quadro de partida o último quadro da $1^{\underline{a}}$ fase, depois de eliminar a linha correspondente a W e as colunas relativas às variáveis artificiais.

base	x_1	x_2	s_1	s_2	b
$\overline{x_1}$	1	1	-1	0	2
$\sqsubseteq s_2$	0	0	1	1	2
$\overline{-F}$	0	-1	2	0	-4
			$\uparrow\uparrow$		

Note-se que x_1 nunca poderia sair da base! Entrando s_1 para a base, x_1 cresce 1 unidade por unidade de crescimento de s_1 , logo nunca se iria anular (e consequentemente sair da base). s_2 sai da base limitando o crescimento de s_1 em $\frac{2}{1} = 2$.

base	x_1	x_2	s_1	s_2	b
x_1	1	1	0	1	4
s_1	0	0	1	1	2
-F	0	-1	0	-2	-8

Não existe nenhuma variável não básica (x_2 ou s_2 , neste caso) que tenha um coeficiente positivo na linha F. O valor da solução óptima para este problema seria F=8 e os valores das variáveis de decisão seriam:

$$x_1 = 4$$
, $x_2 = 0$, $s_1 = 2$, $s_2 = 0$

Aplicando o Método das penalidades ao exemplo apresentado:

Como nos interessa exprimir F apenas em função de variáveis não básicas (porquê?), vamos substituir cada variável artificial pela expressão que a representa apenas em função de variáveis não básicas.

Da $1^{\underline{a}}$ equação (onde a_1 é variável básica e as outras variáveis são não básicas):

$$x_1 + x_2 - s_1 + a_1 = 2$$

pode-se escrever a_1 em função de variáveis não básicas:

$$a_1 = 2 - x_1 - x_2 + s_1$$

Assim, a função objectivo a maximizar será:

$$F = 2x_1 + x_2 - Ma_1$$

= $2x_1 + x_2 - M(2 - x_1 - x_2 + s_1)$
= $-2M + (2 + M)x_1 + (1 + M)x_2 - Ms_1$

E o quadro seguinte é o primeiro quadro simplex.

Nota: A linha dos custos marginais está dividida em duas com a única finalidade de simplificar os cálculos. A soma das duas linhas é que representa o custo marginal (p.ex.:

2 + M).

base	x_1	x_2	s_1	s_2	a_1	b	
$ \sqsubseteq a_1 $	1	1	-1	0	1	2	$\frac{2}{1}$
s_2	1	1	0	1	0	4	$\frac{4}{1}$
-F	2	1		0	0	0	
	M	M	-M			2M	
	1						

A partir deste quadro, não é necessário manter a coluna correspondente a a_1 , dado que a_1 já saiu da base.

base	x_1	x_2	s_1	s_2	b
$\overline{x_1}$	1	1	-1	0	2
$ otin s_2 $	0	0	1	1	2
$\overline{-F}$	0	-1	2	0	-4
			$\uparrow \uparrow$		
base	x_1	x_2	s_1	s_2	b
x_1	1	1	0	1	4
s_1	0	0	1	1	2
-F	0	-1	0	-2	-8

Não existe nenhuma variável não básica (x_2 ou s_2 , neste caso) que tenha um coeficiente positivo na linha F. O valor da solução óptima para este problema seria F=8 e os valores das variáveis de decisão seriam:

$$x_1 = 4$$
, $x_2 = 0$, $s_1 = 2$, $s_2 = 0$

$$\max F = x_1 + 2x_2$$

suj. a:

Representação na forma standard:

$$\max F = x_1 + 2x_2$$

suj. a:

 x_1 pode entrar para a base (i. e., crescer a partir de 0), conseguindo um ganho de 9 unidades em F por unidade de crescimento de x_1 . No entanto, nem x_2 nem s_2 decrescem com o crescimento de x_1 , logo não limitam o crescimento de x_1 . Isto significa que a região de soluções admissíveis é um domínio aberto no sentido de crescimento de F (solução não limitada).

$$\min z = x_1 + x_2 + x_3$$

suj. a:

Representação na forma standard:

$$\min z = x_1 + x_2 + x_3$$

suj. a:

Aplicando o Método das duas fases ao exemplo apresentado:

$1^{\underline{a}}$ fase:

Pretende-se minimizar $W = \sum a_i = a_1 + a_2$. Como nos interessa exprimir o W apenas em função de variáveis não básicas (porquê?), vamos substituir cada variável artificial pela expressão que a representa apenas em função de variáveis não básicas.

Da $1^{\underline{a}}$ equação (onde a_1 é variável básica e as outras variáveis são não básicas):

$$-x_1 + x_2 - s_1 + a_1 = 1$$

pode-se escrever a_1 em função de variáveis não básicas:

$$a_1 = 1 + x_1 - x_2 + s_1$$

Da $2^{\underline{a}}$ equação (onde a_2 é variável básica e as outras variáveis são não básicas):

$$2x_1 - 2x_2 - x_3 + a_2 = 2$$

pode-se escrever a_2 em função de variáveis não básicas:

$$a_2 = 2 - 2x_1 + 2x_2 + x_3$$

Assim, a função objectivo artificial a minimizar será:

$$W = a_1 + a_2 = 1 + x_1 - x_2 + s_1 + 2 - 2x_1 + 2x_2 + x_3$$

$$W = 3 - x_1 + x_2 + x_3 + s_1$$

O primeiro quadro Simplex está representado a seguir. Dado que se pretende minimizar W, teremos que escolher para entrar na base a variável com coeficiente mais negativo na linha W, neste caso será x_1 .

base	x_1	x_2	x_3	s_1	a_1	a_2	b	
a_1	-1	1	0	-1	1	0	1	
$ \sqsubseteq a_2 $	2	-2	-1	0	0	1	2	
-F	1	1	1	0	0	0	0	
-W	-1	1	1	1	0	0	-3	(simétrico de W)
	11						•	
base	x_1	x_2	x_3	s_1	a_1	a_2	b	
a_1	0	0	$-\frac{1}{2}$	-1	1	$\frac{1}{2}$	2	
x_1	1	-1	$-\frac{1}{2}$	0	0	$\frac{1}{2}$	1	
$\overline{-F}$	0	2	$\frac{3}{2}$	0	0	$-\frac{1}{2}$	-1	
$\overline{-W}$	0	0	$\frac{1}{2}$	1	0	$\frac{1}{2}$	-2	(simétrico de W)

Atingiu-se o valor mínimo de W (não existindo nenhum coeficiente negativo na linha W, não se pode baixar mais o seu valor), mas esse mínimo não é zero. Quer isto dizer que não é possível encontrar uma solução básica admissível para o problema original, ou seja, a região de soluções admissíveis é um conjunto vazio.

Aplicando o Método das penalidades ao exemplo apresentado:

Como nos interessa exprimir F apenas em função de variáveis não básicas (porquê?), vamos substituir cada variável artificial pela expressão que a representa apenas em função de variáveis não básicas.

Da $1^{\underline{a}}$ equação (onde a_1 é variável básica e as outras variáveis são não básicas):

$$-x_1 + x_2 - s_1 + a_1 = 1$$

pode-se escrever a_1 em função de variáveis não básicas:

$$a_1 = 1 + x_1 - x_2 + s_1$$

Da $2^{\underline{a}}$ equação (onde a_2 é variável básica e as outras variáveis são não básicas):

$$2x_1 - 2x_2 - x_3 + a_2 = 2$$

pode-se escrever a_2 em função de variáveis não básicas:

$$a_2 = 2 - 2x_1 + 2x_2 + x_3$$

Assim, a função objectivo a minimizar será:

$$F = x_1 + x_2 + x_3 + M (a_1 + a_2)$$

$$= 2x_1 + x_2 - M (1 + x_1 - x_2 + s_1 + 2 - 2x_1 + 2x_2 + x_3)$$

$$= 3M + (1 - M)x_1 + (1 + M)x_2 + (1 + M)x_3 + Ms_1$$

E o quadro seguinte é o primeiro quadro simplex.

Nota: A linha dos custos marginais está dividida em duas com a única finalidade de simplificar os cálculos. A soma das duas linhas é que representa o custo marginal (p.ex.: 1-M).

base	а	c_1 :	x_2 x_2	s	a_1	a_2	b
a_1	_	·1	1	0 -	1 1	. 0	1
$ \sqsubseteq a_2 $		2 -	-2 –	1	0 0	1	2
-F		1	1	1	0 0	0	0
	-I	M I	$M - \Lambda$	I = N	I = 0	0	-3M
		1					•
base	x_1	x_2	x_3	s_1	a_1	a_2	b
a_1	0	0	$-\frac{1}{2}$	-1	1	$\frac{1}{2}$	2
x_1	1	-1	$-\frac{1}{2}$	0	0	$\frac{\mathbb{I}}{2}$	1
$\overline{-F}$	0	2	$\frac{3}{2}$	0	0	$-\frac{1}{2}$	-1
	0	0	$\frac{1}{2}\bar{M}$	M	0	$\frac{1}{2}\bar{M}$	-2M

Atingiu-se o valor mínimo de F (todos os custos marginais são \geq zero) sem que tenham saído da base toda as variáveis artificiais. Isso significa que não é possível encontrar uma solução básica admissível para o problema original, ou seja, a região de soluções admissíveis é um conjunto vazio.

$$\max F = x + 2y + 3z$$

suj. a:

Como a variável x não é limitada apenas a valores não negativos, é necessário substituíla pela diferença de duas variáveis não negativas:

$$\begin{array}{rcl} x & = & x_1 & - & x_2 \\ & x_1 & , & x_2 & \geq & 0 \end{array}$$

A representação do problema na forma standard (depois de introduzidas as variáveis artificiais) será então:

$$\max F = x_1 - x_2 + 2y + 3z$$

suj. a:

Aplicando o Método das duas fases ao exemplo apresentado:

$1^{\underline{a}}$ fase:

Pretende-se minimizar $W = \sum a_i = a_1 + a_2$. Como nos interessa exprimir o W apenas em função de variáveis não básicas (porquê?), vamos substituir cada variável artificial pela expressão que a representa apenas em função de variáveis não básicas.

Da $1^{\underline{a}}$ equação (onde a_1 é variável básica e as outras variáveis são não básicas):

$$x_1 - x_2 - y - s_1 + a_1 = 0$$

pode-se escrever a_1 em função de variáveis não básicas:

$$a_1 = -x_1 + x_2 + y + s_1$$

Da $3^{\underline{a}}$ equação (onde a_2 é variável básica e as outras variáveis são não básicas):

$$-x_1 + x_2 + z + a_2 = 0$$

pode-se escrever a_2 em função de variáveis não básicas:

$$a_2 = x_1 - x_2 - z$$

Assim, a função objectivo artificial a minimizar será:

$$W = a_1 + a_2 = -x_1 + x_2 + y + s_1 + x_1 - x_2 - z = y + s_1 - z$$

O primeiro quadro Simplex está representado a seguir. Dado que se pretende minimizar W, teremos que escolher para entrar na base a variável com coeficiente mais negativo na linha W, neste caso será z.

base	x_1		y				a_1	a_2	b
a_1	1	-1	-1	0	-1	0	1	0	0
s_2	0	0	1	1	0	1	0	0	2
$ otag a_2 $	-1		$-1 \\ 1 \\ 0$			0	0	1	0
-F	1	-1	2	3	0	0	0	0	0
-W	0	0	1	-1	1	0	0	0	0
				$\uparrow \uparrow$					·

Note-se que embora W seja já zero (a solução básica é degenerada porque a_1 e a_2 são iguais a zero), ainda há variáveis artificiais na base que devem sair para se obter uma solução básica inicial do problema original.

base	x_1	x_2	y	z	s_1	s_2	a_1	a_2	b
	1	-1	-1	0	-1	0	1	0	0
s_2	1	-1	1	0	0	1	0	-1	2
z	-1	1	0	1	0	0	0	1	0
-F	4	-4	2	0	0	0	0	-3	0
$\overline{-W}$	-1	1	1	0	1	0	0	1	0
	 								
base	x_1	x_2	y	z	s_1	s_2	a_1	a_2	b
$\frac{\text{base}}{x_1}$	$\frac{x_1}{1}$	$x_2 - 1$	y -1	<i>z</i> 0	$\frac{s_1}{-1}$	$\frac{s_2}{0}$	$\frac{a_1}{1}$	$\frac{a_2}{0}$	<i>b</i>
			$\begin{array}{c} y \\ -1 \\ \hline 2 \end{array}$				a_1 1 -1	_	
$\overline{x_1}$	1	$\frac{\overline{-1}}{-1}$	-1	0	-1	0	1	0	0
$x_1 \Leftrightarrow s_2$	1 0	$-1 \\ 0$	-1	0	-1 1	0 1	1 -1	$0 \\ -1$	0 2
$ \begin{array}{c} x_1 \\ & = s_2 \\ & z \end{array} $	1 0 0	$ \begin{array}{ccc} -1 & & & \\ 0 & & & \\ 0 & & & \\ \end{array} $	$ \begin{array}{c c} -1 \\ \hline 2 \\ -1 \end{array} $	0 0 1	-1 1 -1	0 1 0	1 -1	$0\\-1\\1$	0 2 0

Note-se que embora a solução actual representada no quadro acima seja degenerada $(x_1 = 0 \text{ e } z = 0)$, o processo iterativo não entra em ciclo, uma vez que a próxima solução é necessariamente não degenerada. Com efeito, entrando y para a base as variáveis x_1 e z vão crescer (coeficientes a_{13} e a_{33} iguais a -1) uma unidade por unidade de crescimento de y, passando de zero para um valor positivo.

$2^{\underline{a}}$ fase:

Nesta fase pretende-se maximizar a função objectivo inicial, F, tomando como quadro de partida o último quadro da $1^{\underline{a}}$ fase, depois de eliminar a linha correspondente a W e as colunas relativas às variáveis artificiais.

base	x_1	x_2	y	z	s_1	s_2	b
$\overline{x_1}$	1	-1	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1
	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	1
z	0	0	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	1
-F	0	0	0	0	1	-3	-6
					$\uparrow\uparrow$	'	

base	x_1	x_2	y	z	s_1	s_2	b
x_1	1	-1	1	0	0	1	2
s_1	0	0	2	0	1	1	2
z	0	0	1 2 1	1	0	1	2
$\overline{-F}$	0	0	-2	0	0	-4	-8

Solução óptima encontrada.

Analisemos agora cuidadosamente as restrições do problema:

Da terceira equação pode-se retirar que z=x. Dado que $z\geq 0$ então $x\geq 0$. Podemos assim escrever o problema equivalente ao problema dado, mas de resolução muito mais simples (já na forma standard):

$$\max F = x + 2y + 3z = 4x + 2y$$

suj. a:

1ª fase:

Pretende-se minimizar $W = \sum a_i = a_1$. Como nos interessa exprimir o W apenas em função de variáveis não básicas (porquê?), vamos substituir cada variável artificial pela expressão que a representa apenas em função de variáveis não básicas.

Da $1^{\underline{a}}$ equação (onde a_1 é variável básica e as outras variáveis são não básicas):

$$x - y - s_1 + a_1 = 0$$

pode-se escrever a_1 em função de variáveis não básicas:

$$a_1 = -x + y + s_1$$

Assim, a função objectivo artificial a minimizar será:

$$W = a_1 = -x + y + s_1$$

O primeiro quadro Simplex está representado a seguir. Dado que se pretende minimizar W, teremos que escolher para entrar na base a variável com coeficiente mais negativo na linha W, neste caso será x.

base	x	y	s_1	s_2	a_1	b
$ \Leftarrow a_1 $	1	-1	-1	0	1	0
s_2	1	1	0	1	0	2
$\overline{-F}$	4	2	0	0	0	0
-W	-1	1	1	0	0	0
	$\uparrow \uparrow$					

base	x	y	s_1	s_2	a_1	b
\overline{x}	1	-1	-1	0	1	0
$ \sqsubseteq s_2 $	0	2	1	1	-1	2
-F	0	6	4	0	-4	0
-W	0	0	0	0	1	0
		$\uparrow \uparrow$				<u>.</u> ll

 $2^{\underline{a}}$ fase:

base	x	y	s_1	s_2	b
\overline{x}	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	1
$\sqsubseteq y$	0	1	$\frac{1}{2}$	$\frac{1}{2}$	1
-F	0	0	1	-3	-6
			$\uparrow\uparrow$		
	1				
base	x	y	s_1	s_2	b
$\frac{\text{base}}{x}$	$\frac{x}{1}$	<i>y</i> 1	$\frac{s_1}{0}$	$\frac{s_2}{1}$	b 2
	$\begin{bmatrix} x \\ 1 \\ 0 \end{bmatrix}$	y 1 2	s_1 0 1		2 2
\overline{x}	1	1	s_1 0 1 0	1	_

Solução óptima: $x = z = 2, y = 0, s_1 = 2, s_2 = 0, F = 8.$

Aplicando o **Método das penalidades** ao exemplo apresentado:

Como nos interessa exprimir F apenas em função de variáveis não básicas (porquê?), vamos substituir cada variável artificial pela expressão que a representa apenas em função de variáveis não básicas.

Da $1^{\underline{a}}$ equação (onde a_1 é variável básica e as outras variáveis são não básicas):

$$x_1 - x_2 - y - s_1 + a_1 = 0$$

pode-se escrever a_1 em função de variáveis não básicas:

$$a_1 = -x_1 + x_2 + y + s_1$$

Da $3^{\underline{a}}$ equação (onde a_2 é variável básica e as outras variáveis são não básicas):

$$-x_1 + x_2 + z + a_2 = 0$$

pode-se escrever a_2 em função de variáveis não básicas:

$$a_2 = x_1 - x_2 - z$$

Assim, a função objectivo a maximizar será:

$$F = x_1 - x_2 + 2y + 3z - M (a_1 + a_2)$$

= $x_1 - x_2 + 2y + 3z - M (-x_1 + x_2 + y + s_1 + x_1 - x_2 - z)$
= $x_1 + x_2 + (2 - M)y + (3 + M)z - Ms_1$

E o quadro seguinte é o primeiro quadro simplex.

Nota: A linha dos custos marginais está dividida em duas com a única finalidade de simplificar os cálculos. A soma das duas linhas é que representa o custo marginal (p.ex.: 2-M).

	base	x_1	x_2	y		z	s_1	s_2	a_1	a_2	b
	a_1	1	-1	-1		0	-1	0	1	0	0
	s_2	0	0	1		1	0	1	0	0	2
	$ age = a_2$	-1	1	0		1	0	0	0	1	0
_	-F	1	-1	2		3	0	0	0	0	0
		0	0	-M	+	$\cdot M$	-M	0	0	0	0
						$\uparrow\uparrow$					•'
	base	x_1	x_2	!	y	z	s_1	s_2	a_1	a_2	$\mid b$
ŧ	$= a_1$	1	-1	_	-1	0	-1	0	1	0	0
	s_2	1	-1		1	0	0	1	0	-1	2
	z	-1	1		0	1	0	0	0	1	0
	-F	4	-4	:	2	0	0	0	0	-3	0
		+M	-M	$-\Lambda$	M	0	-M	0	0	-M	0
		$\uparrow \uparrow$									·
	base	$e \mid x_1$	x_2	y	z	s_1	s_2	a_1		a_2	b
	x_1	1	-1	-1	0	-1	0	1	-	0	0
	$ otin s_2 $	0	0	2	0	1	1	-1		-1	2
	2	z = 0	0	$\overline{-1}$	1	-1	0	1	_	1	0
	-F	7 0	0	6	0	4	0	-4	Į .	-3	0
		0	0	0	0	0	0	-M	_	M	0
				$\uparrow\uparrow$						•	

Note-se que embora a solução actual representada no quadro acima seja degenerada $(x_1 = 0 \text{ e } z = 0)$, o processo iterativo não entra em ciclo, uma vez que a próxima solução é necessariamente não degenerada. Com efeito, entrando y para a base as variáveis x_1 e z vão crescer (coeficientes a_{13} e a_{33} iguais a -1) uma unidade por unidade de crescimento de y, passando de zero para um valor positivo.

base	x_1	x_2	y	z	s_1	s_2	b
$\overline{x_1}$	1	-1	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1
	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	1
z	0	0	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	1
$\overline{-F}$	0	0	0	0	1	-3	-6
					$\uparrow\uparrow$,	
base	x_1	x_2	y	z	s_1	s_2	b
x_1	1	-1	1	0	0	1	2
s_1	0	0	2	0	1	1	2
z	0	0	1	1	0	1	2
-F	0	0	-2	0	0	-4	-8

Solução óptima encontrada.

Analisemos agora cuidadosamente as restrições do problema:

Da terceira equação pode-se retirar que z=x. Dado que $z \ge 0$ então $x \ge 0$. Podemos assim escrever o problema equivalente ao problema dado, mas de resolução muito mais simples (já na forma standard):

$$\max F = x + 2y + 3z = 4x + 2y$$

suj. a:

$$F = 4x + 2y - M(a_1)$$

= $4x + 2y - M(-x + y + s_1)$
= $(4 + M)x + (2 - M)y - Ms_1$

A variável artificial foi retirada da base.

Solução óptima: $x = z = 2, y = 0, s_1 = 2, s_2 = 0, F = 8.$