Teoria da Computação

Problemas Indecidíveis

Thiago Alves

- H = {"M"#"w" | M pára com w}
- Uma máquina de Turing M_H para essa linguagem deve receber uma outra máquina M e uma entrada w para M
- Será que é possível criar um programa que diz se outro programa vai parar?

- H = {"M"#"w" | M pára com w}
- Será que existe M_H que reconhece H?

- H = {"M"#"w" | M pára com w}
- Será que existe M_H que reconhece H?
- M_H pode ser a máquina de Turing universal
- Note que a máquina de Turing universal pode não parar
 - Basta M não parar com w

- H = {"M"#"w" | M pára com w}
- M_H pode ser a máquina de Turing universal
 - Pode não parar
- A linguagem H é r.e.
- Será que é recursiva?

- H não é recursiva
 - Prova: Suponha que existe uma máquina de Turing M_H que decide H
 - Vamos construir uma outra máquina de Turing M_D que tem como entrada máquinas de Turing "M"
 - M_D simula M_H com "M"#"M"
 - Se M_H aceita, fazemos M_D entrar em loop
 - Se M_H rejeita, M_D aceita

```
M<sub>D</sub>("M")
se M<sub>H</sub>("M"#"M") aceita
forçar entrar em loop
senão
rejeita
```

- Agora vamos executar M_D com "M_D"
- Suponha que M_D pára com "M_D"
 - M_H rejeita "M_D"#"M_D"
 - M_D não pára com "M_D"
- Suponha que M_D não pára com "M_D"
 - M_H aceita "M_D"#"M_D"
 - M_D pára com "M_D"
- Absurdo!!

- Logo, o problema da parada representado pela linguagem H = {"M"#"w" | M pára com w} não é recursivo
- H não é decidida por nenhuma máquina de Turing
- Isso significa que não existe algoritmo para este problema

Visão Geral

Linguagem Não R.E.

- Agora queremos uma linguagem que não tenha máquina de Turing qualquer
- Mesmo que seja uma máquina que não pára para algumas entradas

- Loop = {"M"#"w" | M não pára com w}
- Saber se uma máquina de entrada M com entrada w não pára

- Loop não é r.e.
- Prova:
 - Suponha que Loop é r.e.
 - Seja M₁ uma máquina que reconhece Loop
 - Seja M₂ uma máquina que reconhece H
 - Podemos construir uma máquina M_H que decide H

- Loop não é r.e.
- Prova:
 - Podemos construir uma máquina M_H que decide H
 - M_H simula M₁ e M₂ com entrada w alternadamente
 - Se M₁ aceitar, M_H aceita
 - Se M₂ aceitar, M_H rejeita

- Loop não é r.e.
- Prova:
 - Para toda string w, $w \in H$ ou $w \in Loop$
 - Para toda string w, M₁ aceita w ou M₂ aceita w
 - M_H pára pois pára quando M₁ aceita ou quando M₂ aceita
 - M_H decide H

- Loop não é r.e.
- Prova:
 - M_H decide H
 - Absurdo! Pois mostramos que H não é decidível!
 - Logo, Loop não é reconhecida por nenhuma máquina de Turing

Visão Geral Linguagens Não R.E. Loop Linguagens Recursivas Η Linguagens R.E.

- A prova de que Loop não é r.e. indica que
 - se uma linguagem L é r.e e não é recursiva, o seu complemento não é r.e.
- A intuição é que existiria uma máquina para decidir a linguagem L

Teorema: Uma linguagem L é recursiva se e somente se L é r.e. e \overline{L} é r.e.

- Teorema: Uma linguagem L é recursiva se e somente se L é r.e. e \overline{L} é r.e.
- Prova (ida):
 - Suponha L recursiva
 - \overline{L} é recursiva pois basta trocar os estados $\mathbf{q_a}$ e $\mathbf{q_r}$ nas transições da máquina de L
 - Se são recursivas são r.e.

- Prova (volta):
 - lacksquare Suponha L r.e. e \overline{L} r.e.
 - Temos M_1 que reconhece L e M_2 que reconhece \overline{L}
 - Podemos construir uma M_L para decidir L simulando M₁ e M₂ alternadamente
 - Logo, L é recursiva.

Mostre que a linguagem
 A = {"M"#"w" | M aceita w} é r.e. mas não é recursiva.

- Mostre que a linguagem
 A = {"M"#"w" | M aceita w} é r.e. mas não é recursiva.
- Para mostrar que A é r.e. basta usar a máquina universal M_H

- Mostre que a linguagem
 A = {"M"#"w" | M aceita w} não é recursiva
- Prova:
 - Seja M_A para decidir A
 - Vamos construir M_D:
 - Com entrada "M" simula M

 com "M"#"M"
 - M_D aceita se e somente se M_A rejeita

- Prova:
 - Seja M_A para decidir A
 - Vamos construir M_D:
 - Com entrada "M" simula M_A com "M"#"M"
 - M_D aceita se e somente se M_A rejeita
 - M_D com "M" aceita, se M não aceita "M"
 - M_D com "M" rejeita, se M aceita "M"

```
M<sub>D</sub>("M")
se M<sub>A</sub>("M"#"M") aceita
rejeita
senão
aceita
```

- Prova:
 - Seja M_A para decidir A
 - Vamos executar M_D com "M_D":
 - M_D aceita "M_D", se M_D rejeita "M_D"
 - M_D rejeita "M_D", se M_D aceita "M_D"
 - Absurdo!
 - A não é recursiva!