

LECTURE 5 INTRODUCTION TO PANDAS

INTRODUCTION

Pandas is an open source Python library for data analysis.

It gives Python the ability of fast data loading, manipulating, aligning, and merging, among other functions

DATA FRAMES AND SERIES

The DataFrame represents your entire spreadsheet or rectangular data

the Series is a single column of the DataFrame

A Pandas DataFrame can also be thought of as a dictionary or collection of Series objects.

- 1. Loading a simple delimited data file
- 2. Counting how many rows and columns were loaded
 - 3. Determining which type of data was loaded
- 4. Looking at different parts of the data by subsetting rows and columns

Installing Pandas

Install anaconda from https://www.continuum.io/downloads

Run:

conda install pandas jupyter

Run:

jupyter-notebook

X With the library loaded, we can use the **read_csv** function to load a CSV data file.

import pandas

- **X** by default the read_csv function will read a comma-separated file
- X The below Gapminder data that we are using is separated by tabs
- X We can use the sep parameter and indicate a tab with \t

```
df = pandas.read_csv('../data/gapminder.tsv', sep='\t')
```

Note: The repository can be found at: www.github.com/jennybc/gapminder.

X we use the head method so Python shows us only the first 5 rows

Note: The repository can be found at: www.github.com/jennybc/gapminder.

X we use the head method so Python shows us only the first 5 rows

	country	continent	year	lifeExp	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
1	Afghanistan	Asia	1957	30.332	9240934	820.853030
2	Afghanistan	Asia	1962	31.997	10267083	853.100710
3	Afghanistan	Asia	1967	34.020	11537966	836.197138
4	Afghanistan	Asia	1972	36.088	13079460	739.981106

X It is common to use pd as alias for pandas

```
import pandas as pd

df = pd.read_csv('../data/gapminder.tsv', sep='\t')

print(type(df))

<class 'pandas.core.frame.DataFrame'>
```


X The shape attribute returns a tuple in which the first value is the number of rows and the second number is the number of columns.

```
# get the number of rows and columns
print(df.shape)
(1704, 6)
```

Gapminder data set has 1704 rows and 6 columns.


```
# get column names
print(df.columns)
```


Question

What is the type of the column names?

get the dtype of each column

print(df.dtypes)

object country continent object int64 year lifeExp float64 int64 pop gdpPercap float64 dtype: object

get more information about our data

print(df.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 6 columns):
            1704 non-null object
country
continent
            1704 non-null object
year
            1704 non-null int64
            1704 non-null float64
lifeExp
            1704 non-null int64
pop
gdpPercap
           1704 non-null float64
dtypes: float64(2), int64(2), object(2)
memory usage: 80.0+ KB
None
```

Pandas Type	Python Type	Description
object	string	Most common data type
int64	int	Whole numbers
float64	float	Numbers with decimals
datetime64	datetime	datetime is found in the Python standard library (i.e., it is not loaded by default and needs to be imported)


```
# just get the country column and save it to its own variable

country_df = df['country']

# show the first 5 observations

print(country_df.head())
```

```
0 Afghanistan
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
Name: country, dtype: object
```


show the last 5 observations
print(country_df.tail())

1699	Zimbabwe
1700	Zimbabwe
1701	Zimbabwe
1702	Zimbabwe
1703	Zimbabwe
Name:	country, dtype: object


```
# Looking at country, continent, and year
subset = df[['country', 'continent', 'year']]
print(subset.head())
```

	country	continent	year
0	Afghanistan	Asia	1952
1	Afghanistan	Asia	1957
2	Afghanistan	Asia	1962
3	Afghanistan	Asia	1967
4	Afghanistan	Asia	1972


```
# Looking at country, continent, and year
subset = df[['country', 'continent', 'year']]
print(subset.tail())
```

	country	continent	year
1699	Zimbabwe	Africa	1987
1700	Zimbabwe	Africa	1992
1701	Zimbabwe	Africa	1997
1702	Zimbabwe	Africa	2002
1703	Zimbabwe	Africa	2007

SUBSETTING COLUMNS/ROWS BY INDEX POSITION

ightarrow use the loc attribute on the dataframe to subset rows based on the index label.

```
# get the first row
# Python counts from 0
print(df.loc[0])
```

country	Afghanistan	
continent	Asia	
year	1952	
lifeExp	28.801	
pop	8425333	
gdpPercap	779.445	
Name: 0, dty	pe: object	

SUBSETTING COLUMNS/ROWS BY INDEX POSITION

 \rightarrow use the loc attribute on the dataframe to subset rows based on the index label.

get the 100th row

Python counts from 0

print(df.loc[99])

country	Bangladesh
continent	Asia
year	1967
lifeExp	43.453
pop	62821884
gdpPercap	721.186
Name: 99, d	type: object

Subsetting Columns/Rows by Index Position

```
# get the last row (correctly)
# use the first value given from shape to get the number of rows
number of rows = df.shape[0]
# subtract 1 from the value since we want the last index value
last row index = number of rows - 1
# now do the subset using the index of the last row
print(df.loc[last row index])
```

country	Zimbabwe	
continent	Africa	
year	2007	
lifeExp	43.487	
pop	12311143	
gdpPercap	469.709	
Name: 1703,	dtype: object	

SELECTING MULTIPLE ROWS

```
# select the first, 100th, and 1000th rows

# note the double square brackets similar to the syntax used to

# subset multiple columns

print(df.loc[[0, 99, 999]])
```

	country	continent	year	lifeExp	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
99	Bangladesh	Asia	1967	43.453	62821884	721.186086
999	Mongolia	Asia	1967	51.253	1149500	1226.041130

SELECTING MULTIPLE ROWS

```
# subset columns with loc

# note the position of the colon

# it is used to select all rows

subset = df.loc[:, ['year', 'pop']]

print(subset.head())
```

	year	pop
0	1952	8425333
1	1957	9240934
2	1962	10267083
3	1967	11537966
4	1972	13079460

SELECTING MULTIPLE ROWS

```
# using loc
print(df.loc[42, 'country'])
```

```
# using iloc
print(df.iloc[42, 0])
```

Angola

Grouped Means

- We first split our data into various parts, then apply a function of our choosing to each of the split parts.
- Finally we combine all the individual split calculations into a single dataframe.

Grouped/Aggregate Computations using Grouped Means

For each year in our data, what was the average life expectancy?

```
# To answer this question,
# we need to split our data into parts by year;
# then we get the 'lifeExp' column and calculate the mean
```

Grouped/Aggregate Computations using Groupby year

```
print(df.groupby('year')['lifeExp'].mean())
```

	65.694		
	64.160		
1555 N	63.212	155%	
1982	61.533	197	
1977	59.570	157	
1972	57.647	386	
1967	55.678	290	
1962	53.609	249	
1957	51.507	401	
1952	49.057	620	
year			

Grouped/Aggregate Computations using Grouped Means

```
grouped_year_df = df.groupby('year')
```

```
grouped_year_df_lifeExp = grouped_year_df['lifeExp']
```

```
mean_lifeExp_by_year = grouped_year_df_lifeExp.mean()
print(mean_lifeExp_by_year)
```

year	
1952	49.057620
1957	51.507401
1962	53.609249
1967	55.678290
1972	57.647386
1977	59.570157
1982	61.533197
1987	63.212613
1992	64.160338
1997	65.014676
2002	65.694923
2007	67.007423
Name:	lifeExp, dtype: float64

Grouped Means on Multiple Columns

```
multi_group_var = df.\
    groupby(['year', 'continent'])\
    [['lifeExp', 'gdpPercap']].\
    mean()

print(multi_group_var)
```

		lifeExp	gdpPercap
year	continent		
1952	Africa	39.135500	1252.572466
	Americas	53.279840	4079.062552
	Asia	46.314394	5195.484004
	Europe	64.408500	5661.057435
	Oceania	69.255000	10298.085650
1957	Africa	41.266346	1385.236062
	Americas	55.960280	4616.043733
	Asia	49.318544	5787.732940
	Europe	66.703067	6963.012816
	Oceania	70.295000	11598.522455
1962	Africa	43.319442	1598.078825
	Americas	58.398760	4901.541870
	Asia	51.563223	5729.369625
	Europe	68.539233	8365.486814
	Oceania	71.085000	12696.452430

The output data is grouped by year and continent.

For each year-continent pair, we calculated the average life expectancy and average GDP.

There is some hierarchical structure between the year and continent row indices.

Flattening the Dataframe

```
flat = multi_group_var.reset_index()
print(flat.head(15))
```

	year	continent	lifeExp	gdpPercap
0	1952	Africa	39.135500	1252.572466
1	1952	Americas	53.279840	4079.062552
2	1952	Asia	46.314394	5195.484004
3	1952	Europe	64.408500	5661.057435
4	1952	Oceania	69.255000	10298.085650
5	1957	Africa	41.266346	1385.236062
6	1957	Americas	55.960280	4616.043733
7	1957	Asia	49.318544	5787.732940
8	1957	Europe	66.703067	6963.012816
9	1957	Oceania	70.295000	11598.522455
10	1962	Africa	43.319442	1598.078825
11	1962	Americas	58.398760	4901.541870
12	1962	Asia	51.563223	5729.369625
13	1962	Europe	68.539233	8365.486814
14	1962	Oceania	71.085000	12696.452430

CALCULATING FREQUENCIES

We can use the nunique and value_counts methods, respectively, to get

counts of unique values and frequency counts on Pandas Series.

```
# use the nunique (number unique)
# to calculate the number of unique values in a series
print(df.groupby('continent')['country'].nunique())
```

```
continent
Africa
            52
Americas
Asia
            33
Europe
            30
Oceania
Name: country, dtype: int64
```



```
global_yearly_life_expectancy = df.groupby('year')['lifeExp'].mean()
print(global_yearly_life_expectancy)
```

year	
1952	49.057620
1957	51.507401
1962	53.609249
1967	55.678290
1972	57.647386
1977	59.570157
1982	61.533197
1987	63.212613
1992	64.160338
1997	65.014676
2002	65.694923
2007	67.007423
Name:	lifeExp, dtype: float64

BASIC PLOTS

global_yearly_life_expectancy.plot()

Basic plot in Pandas showing average life expectancy over time

_			-
	year		
	1952	49.057620	
	1957	51.507401	
	1962	53.609249	
	1967	55.678290	
	1972	57.647386	
	1977	59.570157	
	1982	61.533197	
	1987	63.212613	
	1992	64.160338	
	1997	65.014676	
	2002	65.694923	
	2007	67.007423	
	Name:	lifeExp, dtype: float64	

DATA STRUCTURES : OBJECTIVES

- 1. Loading in manual data
- 2. The Series object
- 3. Basic operations on Series objects
- 4. The DataFrame object
- Conditional subsetting and fancy slicing and indexing
- 6. Saving out data

DATA STRUCTURES: SERIES

The Pandas Series is a one-dimensional container, similar to the built-in Python list.

It is the data type that represents each column of the DataFrame.

Each column in a dataframe must be of the same dtype.

DATA STRUCTURES : DATAFRAMES

A Dataframe can be thought of a dictionary of Series objects, where each key is the column name and the value is the Series

CREATING A SERIES

```
import pandas as pd

s = pd.Series(['banana', 42])
print(s)
```

0 banana
1 42
dtype: object

CREATING A SERIES

Person Wes McKinney
Who Creator of Pandas
dtype: object

CREATING A DATAFRAME

DataFrame can be thought of as a dictionary of Series objects

The key represents the column name, and the values are the contents of the column.

CREATING A DATAFRAME

```
scientists = pd.DataFrame({
    'Name': ['Rosaline Franklin', 'William Gosset'],
    'Occupation': ['Chemist', 'Statistician'],
    'Born': ['1920-07-25', '1876-06-13'],
    'Died': ['1958-04-16', '1937-10-16'],
    'Age': [37, 61]})
```

print(scientists)

Occupation	Name	Died	Born	Age	
Chemist	Rosaline Franklin	1958-04-16	1920-07-25	37	0
Statistician	William Gosset	1937-10-16	1876-06-13	61	1

Notice that the order is not guaranteed

CREATING A DATAFRAME

```
scientists = pd.DataFrame(
    data={'Occupation': ['Chemist', 'Statistician'],
          'Born': ['1920-07-25', '1876-06-13'],
          'Died': ['1958-04-16', '1937-10-16'],
    'Age': [37, 61]},
    index=['Rosaline Franklin', 'William Gosset'],
    columns=['Occupation', 'Born', 'Died', 'Age'])
```

We can set the columns parameter or specify the column order.

If we wanted to use the name column for the row index, we can use the index parameter.

print	(scientists)	١

	Occupation	Born	Died	Age	
Rosaline Franklin	Chemist	1920-07-25	1958-04-16	37	
William Gosset	Statistician	1876-06-13	1937-10-16	61	

CREATING A DATAFRAME

```
from collections import OrderedDict
# note the round brackets after OrderedDict
# then we pass a list of 2-tuples
scientists = pd.DataFrame(OrderedDict([
    ('Name', ['Rosaline Franklin', 'William Gosset']),
    ('Occupation', ['Chemist', 'Statistician']),
    ('Born', ['1920-07-25', '1876-06-13']),
    ('Died', ['1958-04-16', '1937-10-16']),
   ('Age', [37, 61])
                                                                      Occupation
                                                                                                           Died Age
                                                             Name
                                                                                            Born
   1)
                                             Rosaline Franklin
                                                                          Chemist 1920-07-25 1958-04-16
                                                                                                                   37
                                                William Gosset Statistician 1876-06-13 1937-10-16
                                                                                                                    61
print(scientists)
```

SUBSETTING THE FIRST ROW OF SCIENTISTS DATAFRAME

```
# create our example dataframe
# with a row index label
scientists = pd.DataFrame(
    data={'Occupation': ['Chemist', 'Statistician'],
          'Born': ['1920-07-25', '1876-06-13'],
          'Died': ['1958-04-16', '1937-10-16'],
    'Age': [37, 61]},
    index=['Rosaline Franklin', 'William Gosset'],
    columns=['Occupation', 'Born', 'Died', 'Age'])
print(scientists)
```

```
# select by row index label
first_row = scientists.loc['William Gosset']
print(type(first_row))
```

<class 'pandas.core.series.Series'>

SUBSETTING THE FIRST ROW OF SCIENTISTS DATAFRAME

```
# create our example dataframe
# with a row index label
scientists = pd.DataFrame(
    data={'Occupation': ['Chemist', 'Statistician'],
          'Born': ['1920-07-25', '1876-06-13'],
          'Died': ['1958-04-16', '1937-10-16'],
    'Age': [37, 61]},
    index=['Rosaline Franklin', 'William Gosset'],
    columns=['Occupation', 'Born', 'Died', 'Age'])
print(scientists)
```

```
print(first_row)
```

When a series is printed, the index is printed as the first "column," and the values are printed as the second "column."

```
Occupation Statistician

Born 1876-06-13

Died 1937-10-16

Age 61

Name: William Gosset, dtype: object
```

```
print(first row.index)
Index(['Occupation', 'Born', 'Died', 'Age'], dtype='object')
print(first row.values)
['Statistician' '1876-06-13' '1937-10-16' 61]
 print(first row.keys())
 Index(['Occupation', 'Born', 'Died', 'Age'], dtype='object')
```

```
# get the first index using an attribute
print(first_row.index[0])
Occupation
# get the first index using a method
print(first_row.keys()[0])
Occupation
```

Series	Attributes Description
loc	Subset using index value
iloc	Subset using index position
ix	Subset using index value and/or position
dtype or dtypes	The type of the Series contents
Т	Transpose of the series
shape	Dimensions of the data
size	Number of elements in the Series
values	ndarray or ndarray-like of the Series

Series Methods	Description
append	Concatenates two or more Series
corr	Calculate a correlation with another Series*
cov	Calculate a covariance with another Series*
describe	Calculate summary statistics *
drop_duplicates	Returns a Series without duplicates
equals	Determines whether a Series has the same elements
get_values	Get values of the Series; same as the values attribute
hist	Draw a histogram

to_frame	Converts a Series to a DataFrame
transpose	Returns the transpose
unique	Returns a numpy.ndarray of unique values

isin	Checks whether values are contained in a Series
min	Returns the minimum value
max	Returns the maximum value
mean	Returns the arithmetic mean
median	Returns the median
mode	Returns the mode(s)
quantile	Returns the value at a given quantile
replace	Replaces values in the Series with a specified value
sample	Returns a random sample of values from the Series
sort_values	Sorts values

```
# get the 'Age' column
ages = scientists['Age']
print(ages)
Rosaline Franklin
                   37
William Gosset
               61
Name: Age, dtype: int64
```

```
print(ages.mean())
49.0
print(ages.min())
37
print(ages.max())
61
print(ages.std())
16.9705627485
```


1. Missing values are marked as NaN

```
# Read a dataset with missing values
flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv")
```

```
# Select the rows that have at least one missing value
flights[flights.isnull().any(axis=1)].head()
```


1. Missing values are marked as NaN

	year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	origin	dest	air_time	distance	hour	minute
330	2013	1	1	1807.0	29.0	2251.0	NaN	UA	N31412	1228	EWR	SAN	NaN	2425	18.0	7.0
403	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EHAA	791	LGA	DFW	NaN	1389	NaN	NaN
404	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EVAA	1925	LGA	MIA	NaN	1096	NaN	NaN
855	2013	1	2	2145.0	16.0	NaN	NaN	UA	N12221	1299	EWR	RSW	NaN	1068	21.0	45.0
858	2013	1	2	NaN	NaN	NaN	NaN	AA	NaN	133	JFK	LAX	NaN	2475	NaN	NaN

1. Missing values are marked as NaN

	year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	origin	dest	air_time	distance	hour	minute
330	2013	1	1	1807.0	29.0	2251.0	NaN	UA	N31412	1228	EWR	SAN	NaN	2425	18.0	7.0
403	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EHAA	791	LGA	DFW	NaN	1389	NaN	NaN
404	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EVAA	1925	LGA	MIA	NaN	1096	NaN	NaN
855	2013	1	2	2145.0	16.0	NaN	NaN	UA	N12221	1299	EWR	RSW	NaN	1068	21.0	45.0
858	2013	1	2	NaN	NaN	NaN	NaN	AA	NaN	133	JFK	LAX	NaN	2475	NaN	NaN

There are a number of values to deal with missing values in the data frame.

df.method()	description
dropna()	Drop missing observations
dropna(how='all')	Drop observations where all cells is NA
dropna(axis=1, how='all')	Drop column if all the values are missing
dropna(thresh = 5)	Drop rows that contain less than 5 non-missing values
fillna(0)	Replace missing values with zeros
isnull()	returns True if the value is missing
notnull()	Returns True for non-missing values

- 1. When summing the data, missing values will be treated as zero.
- 2. If all values are missing, the sum will be equal to NaN.
- cumsum() and cumprod() methods ignore missing while calculating values but preserve them in resulting array.
- 4. Missing values in GroupBy Method are excluded.
- 5. Many descriptive statistics methods have *skipna* option to control if missing data should be excluded.
- 6. By default, This value is set to true (unlike R).

1. Aggregation

- i. Computing a Summary Statistic about each group
 - 1. E.g., Compute group sums or means
 - 2. E.g., Compute group sizes/counts.

1. Common Aggregation Functions

- A. min, max
- B. count, sum, prod
- C. mean, median, mode, mad
- D. std. var

1. agg() method are useful when multiple statistics are computed per column

```
flights[['dep_delay','arr_delay']].agg(['min','mean','max'])
```



```
flights[['dep_delay','arr_delay']].agg(['min','mean','max'])
```

	dep_delay	arr_delay
min	-16.000000	-62.000000
mean	9.384302	2.298675
max	351.000000	389.000000

Basic Descriptive Statistics

df.method()	description
describe	Basic statistics (count, mean, std, min, quantiles, max)
min, max	Minimum and maximum values
mean, median, mode	Arithmetic average, median and mode
var, std	Variance and standard deviation
sem	Standard error of mean
skew	Sample skewness
kurt	kurtosis

PANDAS READER AND WRITER FUNCTIONS

Format Type	Data Description	Reader	Writer
text	CSV	read_csv	to_csv
text	JSON	read_json	to_json
text	HTML	read_html	to_html
text	Local clipboard	read_clipboard	to_clipboard
binary	MS Excel	read_excel	to_excel
binary	HDF5 Format	read_hdf	to_hdf
binary	Feather Format	read_feather	to_feather
binary	Parquet Format	read_parquet	to_parquet
binary	Msgpack	read_msgpack	to_msgpack
binary	Stata	read_stata	to_stata
binary	SAS	read_sas	
binary	Python Pickle Format	read_pickle	to_pickle
SQL	SQL	read_sql	to_sql
SQL	Google Big Query	read_gbq	to_gbq

EXCEL FILES


```
# Returns a DataFrame
read_excel('path_to_file.xls', sheet_name='Sheet1')
```

```
xlsx = pd.ExcelFile('path_to_file.xls')
df = pd.read_excel(xlsx, 'Sheetl')
```

EXCEL FILES


```
with pd.ExcelFile('path_to_file.xls') as xls:
    df1 = pd.read_excel(xls, 'Sheet1')
    df2 = pd.read_excel(xls, 'Sheet2')
```

```
# Returns a DataFrame
read_excel('path_to_file.xls', 'Sheetl', index_col=None, na_values=['NA'])
```

```
# Returns a DataFrame
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])
```

EXCEL FILES


```
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
```

```
with ExcelWriter('path_to_file.xlsx') as writer:
    dfl.to_excel(writer, sheet_name='Sheet1')
    df2.to_excel(writer, sheet_name='Sheet2')
```

SAS FILES


```
df = pd.read_sas('sas_data.sas7bdat')
```

```
rdr = pd.read_sas('sas_xport.xpt', chunk=100000)
for chunk in rdr:
    do_something(chunk)
```

SQL QUERY

read_sql_table(table_name, con[, schema,])	Read SQL database table into a DataFrame.	
read_sq1_query(sql, con[, index_col,])	Read SQL query into a DataFrame.	
read_sq1(sql, con[, index_col,])	Read SQL query or database table into a DataFrame.	
DataFrame.to_sql(name, con[, schema,])	Write records stored in a DataFrame to a SQL database.	

SQL QUERY


```
with engine.connect() as conn, conn.begin():
    data = pd.read_sql_table('data', conn)
```

```
In [529]: data.to_sql('data', engine)
```



```
In [534]: pd.read sql table('data', engine, index col='id')
Out[534]:
   index
              Date Col_1 Col_2 Col_3
id
26
       0 2010-10-18 X 27.50 True
42
       1 2010-10-19 Y -12.50 False
       2 2010-10-20
                           5.73
63
                                 True
In [535]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2'])
Out[535]:
 Col 1 Col 2
     X 27.50
     Y -12.50
         5.73
```



```
from sqlalchemy import create engine
engine = create engine('postgresql://scott:tiger@localhost:5432/mydatabase')
engine = create engine('mysql+mysqldb://scott:tiger@localhost/foo')
engine = create engine('oracle://scott:tiger@127.0.0.1:1521/sidname')
engine = create engine('mssql+pyodbc://mydsn')
# sqlite://<nohostname>/<path>
# where <path> is relative:
engine = create engine('sqlite:///foo.db')
# or absolute, starting with a slash:
engine = create engine('sqlite:///absolute/path/to/foo.db')
```



```
from sqlalchemy import create_engine
```

```
# Parameters
ServerName = "DAVID-THINK"
Database = "BizIntel"
Driver = "driver=SQL Server Native Client 11.0"

# Create the connection
engine = create_engine('mssql+pyodbc://' + ServerName + '/' + Database + "?" + Driver)

df = pd.read_sql_query("SELECT top 5 * FROM data", engine)
df
```

	Date	Symbol	Volume
0	2013-01-01	Α	0.0
1	2013-01-02	A	200.0
2	2013-01-03	Α	1200.0
3	2013-01-04	Α	1001.0
4	2013-01-05	Α	1300.0


```
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D4', 'D5', 'D6', 'D7']},
                     index=[4, 5, 6, 71)
df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
                    'B': ['B8', 'B9', 'B10', 'B11'],
                    'C': ['C8', 'C9', 'C10', 'C11'],
                    'D': ['D8', 'D9', 'D10', 'D11']},
                    index=[8, 9, 10, 11])
```


$$frames = [df1, df2, df3]$$

result = pd.concat(frames)

Result

		QLT.				1	Result		
	Α	В	C	D					
(A0	B0	α	D0		Α	В	С	D
1	Al	B1	C1	D1	0	A0	BO	ω	D0
2	A2	B2	C2	D2	1	Al	B1	CI	D1
3	A3	B3	СЗ	D3	2	A2	B2	C2	D2
		df2				- 12			
	Α	В	С	D	3	A3	В3	СЗ	D3
- 4	A4	B4	C4	D4	4	A4	B4	C4	D4
- 5	A5	B5	C5	D5	5	A5	B5	C5	D5
6	A6	B6	C6	D6	6	A6	B6	C6	D6
7	A7	B7	C7	D7	7	A7	B7	C7	D7
		df3			- 3				
	Α	В	С	D	8	A8	B8	C8	DB
8	A8	B8	C8	DB	9	A9	B9	C9	D9
9	A9	B9	C9	D9	10	A10	B10	C10	D10
10	A10	B10	C10	D10	11	A11	B11	C11	D11
11	A11	B11	C11	D11	4	7			-


```
result = pd.concat(frames, keys=['x', 'y', 'z'])
```


		df1					Res	ult		
1	Α	В	С	D						
0	A0	В0	α	D0			А	В	С	D
1	A1	B1	CI	D1	×	0	AD	В0	0	DX
2	A2	B2	(2	D2	×	1	A1	B1	а	D
3	A3	В3	СЗ	D3	×	2	A2	B2		Di
-99	- 6	df2	- 10	_		200	- 17	-	-	- 20
ſ	Α	В	С	D	×	3	A3	В3	в	D
4	A4	B4	C4	D4	У	4	A4	В4	C4	D
5	A5	B5	C5	D5	У	- 5	A5	B5	G	D
6	A6	B6	C6	D6	у	6	Aß	B6	G6	D
7	A7	В7	C7	D7	У	7	A7	B7		D
_	•	df3	-	_	4	- 55	- 6'			
ſ	A	В	С	D	z	8	AB	B8	CB	D
8	A8	B8	C8	DB	z	9	A9	B9	C9	D
9	A9	B9	C9	D9	z	10	A10	B10	G0	D1
10	A10	B10	C10	D10	z	11	A11	B11	C11	D1
11	A11	B11	C11	D11	****					

result = pd.concat([dfl, df4], axis=1, join='inner')

df1				df4				Result								
- 1	Α	В	С	D		В	D	F								
0	A0	B0	ω	D0	2	B2	D2	F2	ſ	Α	В	С	D	В	D	F
1	Al	B1	Cl	D1	3	В3	D3	F3	2	A2	B2	(2	D2	B2	D2	F2
2	A2	B2	(2	D2	6	B6	D6	F6	3	A3	В3	СЗ	D3	В3	D3	F3
3	A3	В3	C3	D3	7	B7	D7	F7				- 0	10			

result = dfl.append(df2)

		dt1		
	Α	В	С	D
0	A0	B0	ω	D0
1	A1	B1	a	D1
2	A2	B2	(2	D2
3	A3	В3	СЗ	D3
		df2		
. [А	В	С	D
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	A6	В6	C6	D6
7	A7	B7	C7	D7

Result

ſ	Α	В	С	D
0	A0	BO	œ	D0
1	A1	B1	Cl	D1
2	A2	B2	C2	D2
3	АЗ	В3	СЗ	D3
4	A4	В4	C4	D4
5	A5	B5	C5	D5
6	A6	B6	O5	D6
7	A7	В7	C7	D7

result = dfl.append(df4)

			df1					Res	ult		
		А	В	C	D	l i	А	В	с	D	F
	0	A0	В	0 0	D0						
=	1	A1	В	1 C	1 D1	0	A0	B0	0	D0	Nai
ı	2	A2	В	2 C	2 D2	1	Al	B1	Cl	D1	Nal
Т	3	A3	В	3 C	3 D3	2	A2	B2	C2	D2	Nal
_			df4			3	А3	В3	З	D3	Nal
		В		D	F	2	NaN	B2	NaN	D2	F
	2	E	32	D2	F2	3	NaN	В3	NaN	D3	F
Ī	3	E	33	D3	F3						
П	6	E	36	D6	F6	6	NaN	B6	NaN	D6	F
					12	7	NI- NI	D7	NI- NI	D7	

B7

D7

result = dfl.append([df2, df3])

			df1				
	- 1	Α	В	С	D		
ſ	0	A0	В0	ω	D0		Α
Ì	1	A1	B1	Cl	D1	0	-
Ī	2	A2	B2	C2	D2	1	-
Ī	3	A3	В3	C3	D3	2	-
	123		df2				_ 2
	- 1	A	В	C	D	3	-
ſ	4	A4	B4	C4	D4	4	1
Ì	5	A5	B5	C5	D5	5	- /
Ì	6	A6	B6	C6	D6	6	,
I	7	A7	В7	C7	D7	7	-
•		-	df3				
	- 1	A	В	C	D	8	,
ſ	8	A8	B8	C8	DB	9	1
Ì	9	A9	B9	C9	D9	10	Al
Ì	10	A10	B10	C10	D10	11	Al
		_	_			100000	

-		
R	es	ωt

- 1	Α	В	С	D
0	A0	В0	ω	D0
1	Al	B1	CI	D1
2	A2	B2	(2	D2
3	A3	В3	З	D3
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	Aб	B6	C6	D6
7	A7	В7	C7	D7
8	A8	B8	C8	DB
9	A9	В9	C9	D9
10	A10	B10	C10	D10
11	A11	B11	C11	D11

ADVANTAGES of PANDAS

- 1. Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
- 2. Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
- 3. ROBUST IO TOOLS FOR LOADING DATA FROM FLAT FILES (CSV AND DELIMITED), EXCEL FILES, DATABASES
- 4. INTUITIVE MERGING AND JOINING DATA SETS

Any questions?

You can find me at ankita.sinha@gmail

© All Rights Reserved | Ankita Sinha