CMPT 365 Multimedia Systems

Lossless Compression

Fall 2023

Outline

- Why compression?
- Entropy
- □ Variable Length Coding
 - Shannon-Fano Coding
 - Huffman Coding
 - LZW Coding
 - Arithmetic Coding

Compression

Compression: the process of coding that will effectively reduce the total number of bits needed to represent certain information.

Why Compression?

- Multimedia data are too big
 - "A picture is worth a thousand words!"

File Sizes for a One-minute QCIF Video Clip

Frame Rate	Frame Size	Bits / pixel	Bit-rate (bps)	File Size (Bytes)
30 frames/sec	176 x 144 pixels	12	9,123,840	68,428,800

Approximate file sizes for 1 sec audio

Channels	Resolution	Fs	File Size
Mono	8bit	8Khz	64Kb
Stereo	8bit	8Khz	128Kb
Mono	16bit	8Khz	128Kb
Stereo	16bit	16Khz	512Kb
Stereo	16bit	44.1Khz	1441Kb*
Stereo	24bit	44.1Khz	2116Kb

1CD 700M 70-80 mins

Lossless vs Lossy Compression

- If the compression and decompression processes induce no information loss, then the compression scheme is lossless; otherwise, it is lossy.
- Compression ratio:

$$compression \ ratio = \frac{B_0}{B_1}$$

 B_0 – number of bits before compression

 B_1 – number of bits after compression

E.g., original file of size 100KB; after compression, 20KB. Then compression ratio = 5

Why is Compression possible?

□ Information Redundancy

Question: How is "information" measured?

Outline

- Why compression?
- Entropy
- □ Variable Length Coding
 - Shannon-Fano Coding
 - Huffman Coding
 - LZW Coding
 - Arithmetic Coding

Self-Information

Information is related to probability Information is a measure of uncertainty (or "surprise")

\square Intuition 1:

- I've heard this story many times vs This is the first time I hear about this story
- Information of an event is a function of its probability:

$$i(A) = f(P(A))$$
. Can we find the expression of $f()$?

Intuition 2:

- Rare events have high information content
 - Water found on Mars!!! Covid-19 case confirmed! (Feb 2020)
- Common events have low information content
 - It's raining in Vancouver. Covid-19 case confirmed! (Feb 2021)
- →Information should be a decreasing function of the probability: Still numerous choices of f().

\square Intuition 3:

- Information of two independent events = sum of individual information: If $P(AB)=P(A)P(B) \rightarrow i(AB) = i(A) + i(B)$.
- → Only the logarithmic function satisfies these conditions.

Self-information

- Shannon's Definition [1948]:
 - Self-information of an event:

$$i(A) = \log_b \frac{1}{P(A)} = -\log_b P(A)$$

If b = 2, unit of information is bits

Entropy

- Suppose:
 - a data source generates output sequence from a set $\{A_1, A_2, ..., A_N\}$
 - P(Ai): Probability of Ai
- □ First-Order Entropy (or simply Entropy):
 - the average self-information of the data set

$$H = \sum_{i} -P(A_i) \log_2 P(A_i)$$

The first-order entropy represents the minimal number of bits needed to losslessly represent one output of the source.

- \square X is sampled from $\{a, b, c, d\}$
- □ Prob: {1/2, 1/4, 1/8, 1/8}
- ☐ Find entropy.

- \square The entropy η represents the average amount of information contained per symbol in the source S
- \square η specifies the lower bound for the average number of bits to code each symbol in S, i.e.,

$$\eta \leq \overline{l}$$

- the average length (measured in bits) of the codewords produced by the encoder.

- □ A binary source: only two possible outputs: 0, 1
 - Source output example: 000101000101110101......
 - P(X=0) = p, P(X=1) = 1 p.
- □ First order entropy:
 - \rightarrow H = p (-log₂(p)) + (1-p) (-log₂(1-p))
 - OH = 0 when p = 0 or p = 1
 - Fixed output, no information
 - \circ H is largest when p = 1/2
 - Largest uncertainty
 - H = 1 bit in this case

- (a) histogram of an image with uniform distribution of gray-level intensities, i.e., $p_i = 1/256$. Entropy = $log_2256=8$
- (b) histogram of an image with two possible values. Entropy=0.92.

Entropy in Physics

The Second Law of Thermodynamics

Entropy is a measure of the disorder in a system. All systems gain entropy over time.

The Second Law of Thermodynamics says that the total entropy of both a system and its surrounding will NEVER decrease.

Order

Arrow of Time

Entropy Disorder