

80-VM151-26 Rev. A **Qualcomm Confidential and Proprietary**

Restricted Distribution. Not to be distributed to anyone who is not an employee of either Qualcomm or a subsidiary of Qualcomm without the express approval of Qualcomm's Configuration Management

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm.

QUALCOMM is a registered trademark of QUALCOMM incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners. CDMA2000 is a registered certification mark of the Telecommunications Industry Association, used under license. ARM is a registered trademark of ARM Limited. QDSP is a registered trademark of QUALCOMM Incorporated in the United States and other countries.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly

QUALCOMM Incorporated 5775 Morehouse Drive San Diego, CA 92121-1714 U.S.A.

opyright © 2009 QUALCOMM Incorporated. All rights reserved.

Terms and Conditions of Usage

This document may contain information regarding parts and products whose manufacture, use, sale, offer for sale, or importation into the United States is subject to restrictions under one or more U.S. injunctions against QUALCOMM Incorporated. This document is not to be construed as an offer to sell such parts or products for use or importation into the U.S. This document is intended solely to provide technical information regarding technical recommendations and/or requirements regarding uses and configurations of those parts or products inside and outside the United States that are permitted by such injunctions. Recipient's download and/or use of the information in this document constitutes agreement with these terms.

Revision History

Revision	Date	Description
Α	April 2009	Initial release

RF Transceiver IC Topics

Air interfaces	Operating bands	RFICs
WCDMA GSM GPS	Quad-band UMTS Quad-band GSM L1 band	RTR6285
CDMA GPS	Dual-band CDMA L1 band	RTR6500
CDMA WCDMA GSM GPS	Dual-band CDMA Quad-band UMTS Quad-band GSM L1 band	RTR6500 & RTR6285

- RF architectures
- RFIC introductions
- RFIC topics
 - RTR6500™ dual-band CDMA transceiver IC
 - RTR6285[™] quad-band WCDMA and quad-band GSM transceiver IC
- Other Mobile Station Modem™ (MSM™)/RF connections

RF Architectures and IC Introductions

RF Architectures and IC Introductions (continued)

Example RF Functional Block Diagram

Architecture Questions?

 Questions can also be submitted via service requests: https://support.cdmatech.com

RTR6500 Design Guidelines

- Functional block diagram and features
- Package and pin assignments
- Interfaces
 - Top-level
 - **MSM** interfaces
 - RTR6500 IC operating modes
 - Analog baseband Rx and Tx
 - Tx gain control
 - RF matching networks Rx and Tx
 - Tx power detector
- LO generation and distribution
- DC power supplies and bias setting resistors
- PCB layout guidelines
- **Performance specifications**

RTR6500 Introduction

• Plus S-GPS position location

TX_OUT_HB_A TX IN TX OP TX OUT HB B TX QN DAC_REF TX_OUT_LB_A VDDM SBI0 Quadrature TX_OUT_LB_B SBI1 TX_ON PWR_DET_IN VCO TXAGC_PDM VCO_TUNE_TX CHIPx16 PA_R1 PA_R0 Tx g' VCO_TUNE_SRX I O Generation RBIAS_1 & Distribution RBIAS_2 vco Quad RX_IN_LB_1 RX1 IP LPF RX_IN_HB_1 RX1_IM Quad RX_IN_GPS RX1 QP LPF RX1_QM JDET_INT MIX_INP_HB_0 RX0_IP NA_OUT_HB_0 RX_IN_HB_0 LPF RX0 IM MIX_INM_HB_0 Quad Primary Rx MIX INP LB 0 RX0_QP LPF RX_IN_LB_0 LNA OUT LB 0 RX0 QM MIX_INM_LB_0 LO Generation & Distribution VDDTXs VDDRXs VCO_TUNE_PRX RTR6500 document family: 80-VC467-x GND_SLUG 25 FALSA CAT VER Ca

ONATCO MAN

80-VM151-26 Rev. A April 2009

Qualcomm Confidential and Proprietary MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

10

RTR6500 Features (1 of 2)

- CDMA Tx signal paths (low- and high-band)
 - Shared baseband Tx interface from MSM
 - Baseband buffers and filters
 - Low- and high-band ZIF quadrature upconverters
 - Low- and high-band RF AGC amplifiers and filters
 - Four driver amplifier outputs (PA bypass, each band)
- . CDMA Tx power detector and supporting circuits
- Tx VCO and PLL
- LO distribution for all Tx modes

- Configurable SBI for efficient status and control
- Tx power control range supports standards
- MSM-controlled power reduction features
- 2.1 V nominal supply voltage
- Allows SMPS source
- Higher overall efficiency
- DC power reduction
- Small, thermally efficient package (68 mQFN)

RTR6500 Features (2 of 2)

- IntelliCeiver® operation
 - PRx jammer detection
 - Adequate Rx linearity with minimal DC power

RX_IN_LB_1

LO Generation & Distribution

- Primary CDMA Rx signal paths (low- and high-band)
 - Dedicated gain-stepped LNA circuits (off-chip filters)
 - Shared ZIF quadrature downconverter
 - Shared baseband filters and RX0 interface to MSM
- Secondary CDMA Rx signal paths (low- and high-band)
 - Same as PRx but without external filters
 - RX1 interface to MSM (shared with GPS path)
- Secondary GPS Rx signal path
 - Same as SRx, but fixed-gain LNA

- Primary Rx VCO and PLL
 - Supports PRx plus MRD reception

VCO_TUNE_SRX

RX1 IP

- Secondary Rx VCO and PLL
 - For SHDR and S-GPS modes
- LO distribution for all Rx modes

RTR6500 Package and Pin Assignments

RTR6500 Interfaces

RTR6500/MSM7627 Connections

RTR6500 IC Operating Modes

Primary IC operating mode is determined by handset software via SBI programming.

Mode	TX ON	Description
	_	•
Sleep	Х	IC powerdown mode; all internal circuits are off.
Rx warm-up	Х	Rx PLL circuits are not locked; receiver is set to a low-power mode with only necessary Rx VCO, PLL, and LO circuits on.
Primary Rx	X	All necessary PRx signal path and LO circuits are on; Tx is off; SRx is off. All CDMA modes are supported on PRx (1x and DO).
Low- or high-band CDMA		is on. All Coma modes are supported on Phx (1x and bo).
Tx warm-up	X	Tx PLL circuits are not locked; transmitter is set to a low-power mode with only necessary Tx VCO, PLL, and LO circuits on.
Tx puncture	L	TX_ON = low forces Tx puncture mode – all Tx signal path circuits are off, but LO circuits are on. TX_ON = high \rightarrow active Tx.
Primary Rx/Tx Low- or high-band CDMA	Н	All necessary PRx signal path, Tx signal path, and LO circuits are on; SRx is off. All CDMA modes are supported.
PA bypass (see note)	Н	Each Tx band uses both of its driver amplifier outputs (one at a time). One drives the PA, the other bypasses the PA.
IntelliCeiver modes Low or high current	Х	PRx configuration is set based on detected jammer: • High-current modes optimize PRx linearity (IIP2 and IIP3). • Low-current modes minimize DC consumption while maintaining adequate linearity per existing jammers.
Secondary Rx modes MRD, SHDR, S-GPS	Х	All necessary SRx signal path and LO circuits are on, with LO configured to support the selected mode.

When SW is enabled, PA_R0 & PA_R1 help determine PA active or bypass mode and driver amp bias.

RTR6500 Configurable Parameters

- Rx-related functions and parameters:
 - Internal circuit gains and bias conditions
 - Enabling and disabling circuit blocks
 - LNA parameters
 - Downconverter parameters
 - Rx VCO controls: primary and secondary VCOs
 - Rx PLL controls (PRx and SRx): counter values, charge-pump current, etc.
 - Rx LO generation and distribution controls: primary and secondary
 - Baseband parameters
 - Test and calibration functions
- Tx-related functions and parameters:
 - Internal circuit gains, bias conditions, and output drive levels
 - Enabling and disabling circuit blocks
 - Puncture controls
 - Tx VCO controls
 - Tx PLL controls: counter values, charge-pump current, etc.
 - . Tx LO generation and distribution controls
 - Tx power detector
 - Baseband parameters
 - Test and calibration functions

80-VM151-26 Rev. A
April 2009

AQUAICOMM Confidential and Proprietary

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

17

RTR6500 Rx Analog Baseband Outputs

Separate analog baseband interfaces for PRx (RX0) and SRx (RX1)

- Extremely sensitive I and Q baseband outputs are configured as differential pairs.
 - In-phase plus component is RX0_IP or RX1_IP, minus is RX0_IM or RX1_IM.
 - Quadrature plus component is RX0_QP or RX1_IP, minus is RX0_QM or RX1_QM.
- Route I/Q as phase-critical differential pairs.
 - Keep plus and minus lines parallel to one another and closely spaced.
 - Keep electrical lengths for the I-pair and Q-pair equal (preserve quadrature relationship).
- Load resistance and capacitance on each pair should be equal.
 - Minimize individual trace capacitance on each connection – do not exceed 8 pF to ground (short, direct traces).
 - No external shunt resistor! Only the MSM device should load these lines.
- Avoid crossing these traces; if necessary, cross them only near the MSM end points.

160

 Isolate from digital logic and clock traces (including TCXO signal) with ground on both sides, plus ground above and below if routed on internal layers. Treat similar to controlled impedance traces.

1 STORY

April 2009

RTR6500 Tx Analog Baseband Input

- Extremely sensitive I and Q baseband inputs are configured as differential pairs.
 - In-phase plus component is TX_IP, minus is TX_IM.
 - Quadrature plus component is TX_QP, minus is TX_QM.
- Route I/Q as phase-critical differential pairs.
 - Keep plus and minus lines parallel to one another and closely spaced.
 - Keep electrical lengths for the I-pair and Q-pair equal (preserve quadrature relationship).
- Avoid crossing these traces; if necessary, cross them only near the start or end points.
- Isolate from digital logic and clock traces (including TCXO signal) with ground on both sides, plus ground above and below if routed on internal layers. Treat this similar to controlled impedance traces.
- Treat the sensitive DAC_REF signal carefully also.
- Include 2200 pF bypass cap between the DAC_REF input and the TX DAC supply pin.

RTR6500 Tx Gain Control

Previous-generation off-chip filtering and analog gain control is replaced by RTR6500 digital gain control and on-chip digital filtering; external 2-pole RC filter is eliminated.

CS must leave pin 17 (CHIPx16) unconnected; this pin is only connected to the VCTCXO output for ES1 devices.

PA_R0 and PA_R1 Control Signals

- See the Application Note: PA Bypass Technique for CDMA2000 and EV-DO (80-VD656-1) for additional bypass details.
- See the Application Note: RTR6500 Tx AGC and PA Compatibility (80-VC467-10) for needed information on Tx state control.
- In all cases: PA_R0 and PA_R1 must be connected between the MSM and the RTR6500 pins.
- PA_R0 and PA_R1 functions and logic can be configured through API software.
- TX_OUT ports A and B are interchangeable; their assignments via SW should optimize PCB routing.

RTR6500 PRx Matching Networks

Include "DNI" components in initial layouts for matching flexibility.

Differential MIX configuration provides better isolation, higher common-mode rejection, and higher linearity (higher IM2).

If necessary, use high-Q, low-tolerance inductors throughout to reduce losses and improve performance.

Component values shown are suggested starting values only; each handset application and PCB layout will yield different results.

RTR6500 SRx and GPS Matching Networks

DC blocking capacitors are in several places to protect SAW devices and to avoid DC grounding of RTR pins.

Some intended components were altered during optimization; C48 became a 27 nH inductor, for example.

If necessary, use high-Q, low-tolerance inductors throughout to reduce losses and improve performance.

Component values shown are suggested starting values only; each handset application and PCB layout will yield different results.

RTR6500 Tx Matching and Tx Power Detect

- Component values shown are suggested starting values only; each handset application and PCB layout will yield different results.
- Design guidelines for all matching networks (PRx, SRx, and Tx) are available in the RTR6500 Multiband CDMA RF Transceiver Design Guidelines (80-VC467-5).
- PWR_DET_IN presents a nominal 50-ohm load – match not required.
- Use coupling ratio and attenuator to optimize PWR_DET_IN level.
 - Reference design uses 24 dB couplers and a 6 dB attenuator.

RTR6500 LO-Related Signals and Connections

Subregulation for Some RF Power Supplies

Subregulation of RX0, RX1, and TX supply voltages provides higher efficiency and higher regulation performance (clean power supplies for key RF circuits).

RTR6500 DC Power and Bias Resistors

Power Amplifiers' DC Power Supplies

Low-band PRx Layout Guidelines

- Clear areas below pads and traces of metal on at least one layer minimize parasitic capacitance!
- All RF traces are as short and direct as possible.
- Components are located very close to RFIC pins or close to filter.
- Differential paths are symmetrical plus and minus have equal length (preserves phase balance).
- · Long separations must use controlled-impedance techniques.
- Position inductors for low cross-coupling and mutual inductance.
- · Position ground vias at component pads to minimize trace inductance.
- DC-blocking capacitors are provided as mentioned on the schematic page.

29

80-VM151-26 Rev. A April 2009

High parasitic capacitance could

make optimal match impossible!

Qualcomm Confidential and Proprietary

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

High-band PRx Layout Guidelines

Dual-band SRx and GPS Layout Guidelines

Tx Layout Guidelines

Similar guidelines as Rx layouts, plus:

80-VM151-26 Rev. A

April 2009

- · Only series capacitors are absolutely required, but
 - Other shunt and series components should be included to allow flexibility.
- · If bypass PA is used, ensure adequate isolation between the bypass and active paths.

Qualcomm Confidential and Proprietary

Assign the 'A' and 'B' Tx outputs for the best possible RF routing.

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

32

Example RTR6500 Receiver Performance Specs

RF input frequency range CoMA2000® band class 0 Cellular CDMA2000® band class 3 JCDMA CDMA2000 band class 10 New JCDMA CDMA2000 band class 10 Secondary 800 MHz Input VSWR (in-band) 50 Ω with external match Output VSWR (in-band) 50 Ω with external match High-current mode, gain mode G0 Power gain U.S. cell and new JCDMA JCDMA and BC10 Nolse figure Small signal U.S. cell and new JCDMA JCDMA and BC10 Input IP31 Reverse isolation \$12 High-current mode, gain mode G1 Power gain U.S. cell and new JCDMA U.S. cell and new JCDMA	869 843 860 851 15.5 15	16.8 16.7 1.6 1.6	894 870 875 869 2:1 2:1 18 17	MHz MHz MHz MHz dB dB
CDMA2000 band class 3, SC3 CDMA2000 band class 0, SC3 CDMA2000 band class 10 Secondary 800 MHz Input VSWR (in-band) Output VSWR (in-band) Figure U.S. cell and new JCDMA JCDMA and BC10 Noise figure U.S. cell and new JCDMA JCDMA and BC10 Input IP31 Reverse isolation S12 High-current mode, gain mode G7 Fower gain U.S. cell and new JCDMA JCDMA and BC10 Input IP31 Reverse isolation S12 High-current mode, gain mode G7 Fower gain	843 860 851 15.5 15	16.7	870 875 869 2:1 2:1 18 17	MHz MHz MHz dB dB dB
CDMA2000 band class 0, SC3 CDMA2000 band class 10 Secondary 800 MHz Input VSWR (in-band) 50 Ω with external match 50 Ω with external match 50 Ω with external match 60 Fower gain U.S. cell and new JCDMA JCDMA and BC10 U.S. cell and new JCDMA JCDMA and BC10 Input IP3¹ Reverse isolation S12 High-current mode, gain mode G1 Fower gain	860 851 15.5 15	16.7	875 869 2:1 2:1 18 17	MHz MHz dB dB dB
CDMA2000 band class 10 Secondary 800 MHz Input VSWR (in-band) 50 Ω with external match Output VSWR (in-band) 50 Ω with external match High-current mode, gain mode G0 Power gain U.S. cell and new JCDMA JCDMA and BC10 Input IP31 Reverse isolation S12 High-current mode, gain mode G1 Fower gain Secondary 800 MHz Secondary 800 MHz So with external match Mish external match Small signal	15.5 15	16.7	869 2:1 2:1 18 17	MHz dB dB dB
Input VSWR (in-band) 50 \(\Omega\) with external match Output VSWR (in-band) 50 \(\Omega\) with external match High-current mode, gain mode 60 Power gain U.S. cell and new JCDMA JCDMA and BC10 Noise figure U.S. cell and new JCDMA JCDMA and BC10 Input IP31 Input IP31 Reverse isolation S12 High-current mode, gain mode 61 Power gain	15.5 15	16.7	2:1 2:1 18 17	dB dB dB
Output VSWR (in-band) 50 \(\Omega\) with external match ###################################	15	16.7	2:1 18 17	dB dB
High-current mode, gain mode G0 Power gain U.S. cell and new JCDMA JCDMA and BC10 Noise figure U.S. cell and new JCDMA JCDMA and BC10 Input IP3 ¹ Reverse isolation S12 High-current mode, gain mode G1 Power gain	15	16.7	18 17	dB dB
Power gain U.S. cell and new JCDMA JCDMA and BC10 Noise figure U.S. cell and new JCDMA JCDMA and BC10 Input IP3 ¹ Reverse isolation S12 High-current mode, gain mode G1 Power gain	15	16.7	17	dB dB dB
U.S. cell and new JCDMA JCDMA and BC10 Noise figure U.S. cell and new JCDMA JCDMA and BC10 Input IP3¹ Reverse isolation S12 High-current mode, gain mode G1 Fower gain	15	16.7	17	dB dB dB
JCDMA and BC10 Noise figure Small signal U.S. cell and new JCDMA JCDMA and BC10 Input IP3¹ Reverse isolation \$12 High-current mode, gain mode G1 Fower gain	15	16.7	17	dB dB dB
Noise figure U.S. cell and new JCDMA JCDMA and BC10 Input IP31 Reverse isolation S12 High-current mode, gain mode G1 Fower gain		1.6	2.2	dB dB
U.S. cell and new JCDMA JCDMA and BC10 Input IP31 Reverse isolation S12 High-current mode, gain mode G1 Power gain	+8.0			dB
JCDMA and BC10 Input IP3 ¹ Reverse isolation S12 High-current mode, gain mode G1 Power gain	+8.0			dB
Input IP3 ¹ Reverse isolation S12 High-current mode, gain mode G1 Power gain	+8.0	1.6	2.3	
Reverse isolation \$12 High-current mode, gain mode G1 Power gain	+8.0			_
High-current mode, gain mode G1 Power gain				dBm
Power gain		20		dB
·				
LLS, coll and new ICDMA				
U.S. CEII AND NEW JODIWA	5.5	6.7	7.5	dB
JCDMA and BC10	4.5	5.6	6.5	dB
Noise figure Small signal		4.0	6.0	dB
Input IP3	+5.0			dBm
Reverse isolation S12		10		dB
Low-current mode, gain mode G0				
Power gain			_	
U.S. cell and new JCDMA	15	16	17.5	dB
JCDMA and BC10	15	16	17	dB
Noise figure Small signal		1.6	2.3	dB
Input IP3 ¹	-5.0			dBm
Reverse isolation S12		20		dB

Parameter	Condition	Min	Тур	Max	Unit
RF input frequency range					
CDMA2000 band class 0	Cellular	869		894	MHz
CDMA2000 band class 3	JCDMA	843		870	MHz
	New JCDMA	860		875	MHz
CDMA2000 band class 10	Secondary 800 MHz	851		869	MHz
Input VSWR (in-band)	100 Ω differential; ext match			2:1	
LO to RF leakage (LNA in)					
All gain modes	In-band (F _{VCO} /4)			-85	dBm
All gain modes	Out-of-band (F _{VCO})			-57	dBm
LO to RF leakage (D'conv in)1	Differential				
High-gain mode	In-band (F _{VCO} /4)			-79	dBm
Low-gain mode	In-band (F _{VCO} /4)			-63	dBm
All gain modes	Out-of-band (F _{VCO})			-48	dBm
Jammer detection threshold ²	100 Ω differential input		-50		dBm
Output load capacitance ³	I and Q, each differential			8	pF
Noise figure ⁴	Double sideband				
High-gain mode			8	10	dB
Low-gain mode			18	27	dB
Input IP35					
High-gain mode		+5.0	7.5		dBm
Low-gain mode		-5.0	8		dBm
Input IP2 ⁶					
High-gain mode		+50			dBm
Low-gain mode		+30			dBm

PRX downcoverter specification listed above

Some low-band receiver performance specifications are listed as an example.

See the RTR6500 Multiband CDMA RF Transceiver Device Specification (80-VC467-1) for complete performance specifications – all modes, all bands, etc.

80-VM151-26 Rev. A

April 2009

Qualcomm Confidential and Proprietary

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

33

Example RTR6500 Transmitter Performance Specs

Parameter	Condition	Min	Тур	Max	Unit
RF output					
RF output frequency range					
CDMA2000 band class 0	Cellular	824		849	MHz
CDMA2000 band class 3	JCDMA	898		925	MHz
CDMA2000 band class 0, SC3	New JCDMA	815		830	MHz
CDMA2000 band class 10	Secondary 800 MHz	806		824	MHz
Maximum rated output power (P _{rated}) ¹	Average channel power				
Low-current mode					
ACPR1 = -48.0 dBc/30 kHz		-3			dBm
ACPR1 = -42.5 dBc/30 kHz		-1			dBm
High-current mode					
ACPR1 = -48.0 dBc/30 kHz		+7			dBm
ACPR1 = -42.5 dBc/30 kHz		+9			dBm

Some low band transmitter performance specifications are listed as an example.

See the RTR6500 Multiband CDMA RF Transceiver Device Specification (80-VC467-1) for complete performance specifications – all modes, all bands, etc.

Minimum output power	Average channel power				
Low-current mode	All band classes			-74	dBm
m. High-current mode	BC0, BC10			-61	dBm
High-current mode THigh-current mode	BC3			-53	dBm
Driver amplifier isolation	Isolation between output pins	21			dB
Power detector isolation	Output pin to PWR_DET_IN	30			dB
Output VSWR	50 Ω nominal, external match		2:1		-
Baseband-to-RF signal path	•				
Gain flatness over frequency		-1.5		1.5	dB
ACPR1 ¹					
±885 kHz offsets					
Low-current mode					
P _{out} = -3 dBm				-48	dBc/30 kHz
P _{out =} -1 dBm				-42.5	dBc/30 Hz
High-current mode					
P _{out} = +7 dBm				-48	dBc/30 kHz
P _{out =} +9 dBm				-42.5	dBc/30 Hz
ACPR21					
±1.98 MHz offsets					
Low-current mode					
P _{out} = -3 dBm				-63	dBc/30 kHz
P _{out =} -1 dBm				-54.5	dBc/30 Hz
High-current mode					
P _{out} = +7 dBm				-63	dBc/30 kHz
P _{out} = +9 dBm				-54.5	dBc/30 kHz
In-band spurious signals					
Cellular band (BC0), 2nd 800 band	Offset > 4 MHz, 100 kHz BW			-43	dBm
Secondary 800 MHz band (BC10)	1.25 MHz ≤ offset ≤ 4 MHz, 30 kHz BW			-43	dBm
JCDMA band (BC3)	Offset > 1.98 MHz, 30 kHz BW			-60	dBc
New JCDMA band (BC0, SC3)	Offset > 4 MHz, 100 kHz BW			-43	dBm

RTR6500 Questions?

 Questions can also be submitted via service requests: https://support.cdmatech.com

RF Status and Controls – Group 1 of 2

- RTR6500 IC see earlier pages within this section of slides
- TCXO controls see pages within the RF Subsystem slides

RF Status and Control – Group 2 of 2

Questions?

Multimode Configuration

- Conventions used
 - 2G multimode: CDMA + GSM
 - 3G multimode: CDMA + WCDMA/UMTS + GSM
- Naming conventions
 - Rename external document (reference schematic) title to reflect the band configuration supported.
 - For example, <u>UCG124</u> 3G Multimode FTS-3: Using MSM7600TM/MSM7625TM with RTR6500 and RTR6285 Reference Schematic (80-VC467-46)

U -> UMTS/WCDMA band (U - > 1)
C -> CDMA (C -> 2)

G -> GSM (G -> 4)

124 - > # of bands supported in U/C/G respectively

QRF7600 FFA Block Diagram

QRF7600 FFA Band Support

- 3G multimode configuration
 - 1X/GSM/UMTS/EVDO.A/EDGE/GPRS/EGPRS/S-GPS
- Chipset involved
 - MSM7600 device
 - RTR6500 device with diversity enabled
 - RTR6285 devicewith diversity enabled
 - PM7540 device
- Band configuration
 - Dual-band CDMA (1X, EV-DO Rev.A, SHDR)
 - ♦ U.S. cell band BC0
 - ♦ U.S. PCS BC1
 - Quad-band GSM (GPRS and EGPRS)
 - ♦ GSM 850
 - GSM 900
 - DCS 1800
 - PCS 1900
 - Single-band UMTS/WCDMA
 - ♦ UMTS IMT 2100 B1
 - GPS
 - S-GPS MUST be through the RTR6285 device
- Supports PA bypass on the RTR6500 device
- Please refer to: UCG124 3G Multimode FTS-3: MSM7600/MSM7625 with RTR6500 and RTR6285 Reference Schematic (80-VC467-46).

UCG424 3G MM Configuration

- 3G multimode configuration
 - 1X/GSM/UMTS/EVDO.A/EDGE/GPRS/EGPRS/S-GPS "Concept ONLY", not a reflection of Qualcomm FFA
- Chipset involved
 - MSM76XX[™] device
 - RTR6500 device with diversity enabled; supports PA bypass
 - RTR6285 device with diversity enabled
 - PM7540 device
- Band configuration
 - Dual-band CDMA (1X, EV-DO Rev.A, SHDR)
 - U.S. cell band BC0
 - U.S. PCS BC1
 - Quad-band GSM (GPRS and EGPRS)
 - GSM 850
 - ◆ GSM 900
 - DCS 1800
 - PCS 1900
 - Quad-band UMTS/WCDMA (2H/2L)
 - ♦ UMTS IMT B1
 - UMTS PCS B2
 - UMTS cell B5/6
 - ♦ UMTS 900 B8
 - GPS
 - S-GPS MUST be through the RTR6285 device
- Please refer to: UCG424 FTS-3 for MSM7K 3G Multimode Phone using RTR6500 and RTR6285 (Concept Only) Design Example (80-VC467-47).

HMA Implementation for US (non-Verizon) Carriers

- For all EVDO-capable devices intended for the US market (except Verizon), hybrid mode alternative (HMA) configuration must be included in the design implementation.
- HMAs include:
 - FTS (full-time SHDR)
 - Or DCM (dedicated C2K mode)
 - Or HHO (HDR hybrid-off)
- Please refer to *Documentation Definition for HMA README* (80-VH591-9) for a list of HMA documents to begin with when working on an HMA design.

Questions?

