DATA CLEANING TUTORIAL

PETRA ISENBERG

Information

TIDY DATA PRINCIPLES

Tidy Data

Hadley Wickham RStudio

Abstract

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible. This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualise, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table. This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets. The advantages of a consistent data structure and matching tools are demonstrated with a case study free from mundane data manipulation chores.

Keywords: data cleaning, data tidying, relational databases, R.

TIDY DATA

= data structured to facilitate analysis

labelled columns

labelled rows

	${\it treatmenta}$	${\it treatmentb}$
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

= data structure

TIDY DATA

Data semantics

Attributes, variables

= column names

Items, observations = rows

name	trt	result
John Smith	а	
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

values

TIDY DATA

- Variables are columns
- Observations are rows
- Each observational unit in one table

In addition: put fixed variables first and then measured variables last

If you order, do so by the first variable

MESSY DATA - EXAMPLES

Column headers = values, not variables

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

MESSY DATA - EXAMPLES

Better (most of the time)

Process to produce this = melting

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100-150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

YOU!

This table is good for data entry but not analysis. How do we tidy it up?

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000 - 03 - 18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

year	artist	$_{ m time}$	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

MESSY DATA - EXAMPLES

Multiple variables in one column

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		_
${ m AE}$	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
\overline{AG}	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0	—	0
AO	2000	186	999	1003	912	482	312	194	—	247
AR	2000	97	278	594	402	419	368	330		121
AS	2000	_				1	1			

FIRST WE MELT

How do we do this...?

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		_
AE	2000	2	4	4	6	5	12	10	_	3
AF	2000	52	228	183	149	129	94	80		93
\overline{AG}	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0	—	0
AO	2000	186	999	1003	912	482	312	194	—	247
AR	2000	97	278	594	402	419	368	330	—	121
AS	2000					1	1		—	

country	year	column	cases
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
AE	2000	m014	2
AE	2000	m1524	4
AE	2000	m2534	4
AE	2000	m3544	6
AE	2000	m4554	5
AE	2000	m5564	12
AE	2000	m65	10
$\Delta \mathbf{E}$	2000	f014	3

NEXT: SPLIT COLUMNS

country	year	sex	age	cases
AD	2000	m	0-14	0
AD	2000	\mathbf{m}	15 - 24	0
AD	2000	\mathbf{m}	25 - 34	1
AD	2000	\mathbf{m}	35 - 44	0
AD	2000	\mathbf{m}	45-54	0
AD	2000	\mathbf{m}	55-64	0
AD	2000	\mathbf{m}	65 +	0
AE	2000	\mathbf{m}	0 - 14	2
AE	2000	\mathbf{m}	15-24	4
AE	2000	\mathbf{m}	25 - 34	4
AE	2000	\mathbf{m}	35 - 44	6
AE	2000	\mathbf{m}	45-54	5
AE	2000	\mathbf{m}	55 - 64	12
AE	2000	\mathbf{m}	65 +	10
AE	2000	\mathbf{f}	0 - 14	3

MESSY DATA - EXAMPLES

Multi observational units in the same table

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000 - 03 - 18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

TIDYER & MORE SPACE EFFICIENT

\overline{id}	artist	track	time	id	date	rank
1	2 Pac	Baby Don't Cry	4:22	1	2000-02-26	87
2	2Ge+her	The Hardest Part Of \dots	3:15	1	2000-03-04	82
3	3 Doors Down	Kryptonite	3:53	1	2000-03-11	72
4	3 Doors Down	Loser	4:24	1	2000-03-18	77
5	504 Boyz	Wobble Wobble	3:35	1	2000-03-25	87

BUT not all tools work well across multiple tables

8	Aaliyah	I Don't Wanna	4:15	2	2000-09-02	91
9	Aaliyah	Try Again	4:03	2	2000-09-09	87
10	Adams, Yolanda	Open My Heart	5:30	2	2000-09-16	92
11	Adkins, Trace	More	3:05	3	2000-04-08	81
12	Aguilera, Christina	Come On Over Baby	3:38	3	2000-04-15	70
13	Aguilera, Christina	I Turn To You	4:00	3	2000-04-22	68
14	Aguilera, Christina	What A Girl Wants	3:18	3	2000-04-29	67
15	Alice Deejay	Better Off Alone	6:50	3	2000-05-06	66

MORE EXAMPLES HERE

Tidy Data

Hadley Wickham RStudio

Abstract

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible. This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualise, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table. This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets. The advantages of a consistent data structure and matching tools are demonstrated with a case study free from mundane data manipulation chores.

Keywords: data cleaning, data tidying, relational databases, R.

LOADING DATA

CONFIGURE PARSING OPTIONS

Parse cell text into numbers, dates, ...

CLEAN UP COUNTY NAMES

What do you notice?

value.replace("+", "")

"Lumi%C3%A8re University Lyon 2" value.unescape('url')

REMOVING UNWANTED ROWS

ENDOWMENT

What do you notice?

ENDOWMENT

Probably not a good idea, but for now we assume everything is in \$

-> Edit cells -> Transform

value.replace("US \$","").replace("US\$", "")

CONVERT TO LC

CONVERT TO NUMBERS

\$13.8 million

What could we do here?

toNumber(value.replace(" million", ""))*1000000

DEDUPLICATION

Dataset has a lot of duplicate rows -> university names -> sort -> (image below)

DEDUPLICATION

Column with university names, **Edit cells -> Blank down**Then on the same column, **Facet -> Customized facets -> Facet by blank**

select **true**, then on the "**All**" column on the left, Edit rows -> Remove all matching rows