- 1. Izračunaj vrednost izraza $\frac{(x^5-2x^2+3x+4)}{(x^5-2x-1)}$ pri x=1,2,3,4, tako da:
- (a) uporabiš ustrezna prepisovalna pravila in ukaz ReplaceAll (oz /.).
- (b) definiraš funkcijo in jo pokličeš na več vrednostih.

S pomočjo funkcije Table napiši izraz, ki izračuna seznam vrednosti funkcije za števila $x=1,2,\ldots,10$.

- 2. Definiraj seznam sez z elementi 10, 20, 30, 40, 50, 60, 70. Iz seznama sez tvori nove sezname, ki vsebujejo:
- (a) prve tri elemete,
- (b) zadnja dva elementa,
- (c) od vključno drugega do četrtega elementa,
- (d) natanko drugi, tretji in peti element,
- (e) vse elemente razen četrtega in petega.

Preuči funkcije Take, Drop in Part in jih ustrezno uporabi.

- 3. V seznamu sez z elementi x^6, x^2, a zamenjaj:
- (a) $x ext{ s } 3$,
- (b) $x z x^2$,
- (c) $x^2 z x$,
- (d) $x \in \{1, 2, 3\},\$
- (e) x z 3, a z x,
- (f) $x \ge 3$, $a \ge x$ in to ponavljaj dokler ni več nobenih x in a (poglej si funkcija ReplaceRepeated).

Tvori nov seznam seznamov, katerega elementi so seznami sez v katerih zaporedoma zamenjamo x z 1,2 in s 3.

- 4. Izračunaj odvode funkcij simbolično ter v navedenih točkah.
- (a) $f(x) = x^5 + 4x^3 9$, pri x = 1 in x = 5,
- (b) $f(x) = e^{\sqrt[4]{x}}$ pri x = 1 in x = 2,
- (c) f(x) = |x+1| (poskusi s FullSimplify, kjer domeno omejiš na realna števila različna od 0), pri x = 1, x = -1,
- (d) $f(x) = ax^2 + 3b$, kjer sta a in b neki neznani vredosti, pri x = 1 in x = 2.
- 5. Dana je funkcija $f(x) = x^3 \ln(4x + 5)$.
- (a) Zapiši definicijo funkcije v obliki f[x_] := ...
- (b) Nariši funkcijo na intervalu $x \in [1, 10]$.
- (c) Za dan $x_0 = 5$ izračunaj vrednost funkcije v tej točki.

- (d) Izračunaj vrednost smernega koeficienta k_0 tangente na graf funkcij v točki x_0 .
- (e) Izračunaj še odmik n_0 tangente $t[x] = k_0 * x + n_0$ na graf funkcije, v točki x_0 . Tangento definiraj kot funkcijo $t[x_{-}] = \dots$
- (f) Nariši na istem grafu hkrati funkcijo f(x) in njeno tangento.
- (g) S pomočjo kode napisane v prejšnjih točkah sestavi funkcijo narisi[f_, x0_, interval_], ki nariše graf funkcije f in tangente v točki x0. Npr. klic narisi[f[x], 5, x, 0, 10] nariše natanko isti graf kot prejšnja točka. Preizkusi funkcijo narisi[...] še na dveh drugih funkcijah, ki se jih izmisliš in jih sam definiraš.
- 6. Poračunaj limite:

(a)
$$\lim_{x\to 2} \frac{x^3 - 4x^2 + 2x + 4}{x^5 - 9x - 14}$$

(b)
$$\lim_{x\to 0} \frac{\arctan(7x)}{\arcsin(8x)}$$

(c)
$$\lim_{x\to 5} (x^2 - 25) \cot(\pi x)$$

(d)
$$\lim_{x\to\pi} \frac{1+\cos x}{2\sqrt{\pi x}-\pi-x}$$

(e)
$$\lim_{x\to 0^+} |x| \cot x$$

(f)
$$\lim_{x\to 0^-} |x| \cot x$$

- 7. Nariši graf funkcije $y = \frac{(x^2-1)}{(x^2-4)}$. Računsko pa pri tem določi (in se potem s sliko prepričaj) naslednje:
- (a) ničle funkcije
- (b) pole funkcije in obnašanje funkcije v okolicah polov
- (c) asimptote
- (d) ekstreme
- (e) prevoje
- (f) intervale konveksnosti in konkavnosti

Rezultate naloge komentiraj z vmesnimi tekstovnimi celicami. Slika mora biti dovolj velika, da so vse prejšnje točke vidne.

- 8. Reši enačbo $x^4 + x^3 x = 0$ pri pogoju x > 0 in in izračunaj vrednost te rešitve na kvadrat, brez da bi prepisoval vrednost v naslednjo vrstico.
- 9. Določi presečišča krivulj $3x^2 5y^2 = 5$ in $2x^2 + 3y^2 = 5$ ter izračunaj presečni kot.