Práctica 4: Variables aleatorias continuas

"All mathematicians share... a sense of amazement over the infinite depth and the mysterious beauty and usefulness of mathematics." Martin Gardner.

Ejercicio 1. El diámetro *D* expresado en decímetros del tronco de una cierta especie de árboles es una variable aleatoria continua (o absolutamente continua) con función de densidad

$$f_D(x) = k x \mathbb{1}_{(0,10)}(x)$$

- a) Hallar el valor de la constante k.
- b) ¿Cuál es la probabilidad de que el diámetro de un árbol de esa especie elegido al azar mida entre 4 y 6 decímetros?
- c) ¿Cómo se modifica la probabilidad anterior si se sabe que el diámetro mide más de 5 decímetros?
- d) En un área del bosque hay 3 árboles de esa especie. Calcular la probabilidad de que exactamente 2 de ellos tengan diámetro entre 4 y 6 decímetros.
- e) ¿Cuántos árboles habría que muestrear en el bosque para que la probabilidad de encontrar al menos uno cuyo diámetro mida entre 4 y 6 decímetros sea no menor a 0.99?

Ejercicio 2. El colectivo que toma Felipe para ir al trabajo llega a la parada en algún momento entre las 10 y las 10:30 de la mañana con distribución uniforme. Felipe llega a la parada a las 10 de la mañana.

- a) ¿Cuál es la probabilidad de que tenga que esperar más de 10 minutos?
- b) Si el colectivo no ha llegado todavía a las 10:15, hallar la probabilidad de que Felipe tenga que esperar por lo menos otros 10 minutos más.

Ejercicio 3. Se dice que una variable aleatoria X tiene distribución simétrica respecto de $\theta \in \mathbb{R}$ si $X - \theta \sim \theta - X$.

- a) Dar dos ejemplos de variables aleatorias con distribución simétrica, una discreta y otra continua.
- b) Sea X una variable aleatoria absolutamente continua. Probar que X tiene distribución simétrica respecto de θ si y sólo si f_X es simétrica respecto de θ , i.e. $f_X(\theta x) = f_X(\theta + x)$ para todo $x \in \mathbb{R}$.

Sugerencia: Si encuentra problemas técnicos, puede suponer que la densidad f_X es una función continua.¹

 $^{^{1}}$ Aunque puede mostrarse que el resultado vale para una densidad f_{X} arbitraria.

Ejercicio 4. Una fábrica produce pilas cuya duración en horas, cuando se las destina para un determinado uso, tiene distribución normal de parámetros $\mu_0 = 53$ y $\sigma_0^2 = 25$. No obstante, un desperfecto en un sector de la fábrica produjo un cambio en la calidad de las pilas: del total que se fabrica una proporción 0.7 de ellas tiene la duración correcta mientras que las restantes están falladas y tienen una duración en horas con distribución normal de parámetros desconocidos μ_1 y σ_1^2 . Desafortunadamente, no hay forma de distinguir entre una pila común y una fallada a simple vista. Sea D la duración en horas de una pila extraída al azar del lote de producción de la fábrica.

- a) Calcular μ_1 y σ_1^2 sabiendo que $P(D \geq 47) = 0.82688$ y $P(D \geq 60) = 0.05746$.
- b) Calcular la función de densidad de la duración en horas de una pila extraída al azar del lote de producción de la fábrica.
- c) Si se extrae una pilar al azar del lote de producción y se observa que dura más de 51 horas en funcionamiento, ¿cuál es la probabilidad de que sea una pila fallada?

Ejercicio 5. Definición. Una variable aleatoria X tiene la propiedad de falta de memoria si para todo par de números reales s y t se verifica $P(X > s + t \mid X > t) = P(X > s)$. Probar que una variable aleatoria X posee la propiedad de falta de memoria si y sólo si tiene distribución exponencial² de parámetro $\lambda = -\log(P(X > 1))$.

Ejercicio 6. Sean $\lambda > 0$ y X una variable aleatoria con distribución $\mathcal{E}(\lambda)$. Probar que Y = [X] + 1 tiene distribución geométrica de parámetro $p = 1 - e^{-\lambda}$, donde [x] denota la parte entera de x.

Ejercicio 7. Definimos la función Gamma $\Gamma: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ por la fórmula

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx.$$

- a) Probar que Γ está bien definida³.
- b) Mostrar que $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$ para todo $\alpha > 1$. Deducir que $\Gamma(n) = (n 1)!$ para todo $n \in \mathbb{N}$.
- c) Probar que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Sugerencia: Hallar la función de densidad de Z^2 para Z una variable aleatoria con distribución normal estándar. ¿Es la densidad obtenida la de una distribución conocida? ¿Cuál?

Ejercicio 8. Sean $n \in \mathbb{N}$ y Z una variable aleatoria con distribución $\Gamma(n, \lambda)$. Probar que para todo z > 0 se tiene

$$F_Z(z) = P(X_z \ge n)$$

donde X_z es una variable aleatoria con distribución $\mathcal{P}(z\lambda)$.

²Este ejercicio muestra que la distribución exponencial exhibe una propiedad de falta de memoria análoga a la de la distribución geométrica. Esto no es coincidencia, como lo muestra el ejercicio siguiente.

³Mostrar que la integral impropia converge para todo $\alpha > 0$.

Ejercicio 9. Sea X una variable aleatoria continua con función de distribución acumulada F. Mostrar que F(X) tiene distribución $\mathcal{U}[0,1]^4$.

Ejercicio 10. Sea U una variable con distribución $\mathcal{U}(0,1)$. Encontrar una función g tal que g(U) tenga distribución

- a) $\mathcal{E}(1)$
- b) Doble exponencial de parámetro uno, es decir, con función de densidad $f(x) = \frac{1}{2}e^{-|x|}$
- c) Bi(5, 1/3)
- d) Una distribución discreta con rango $R_X = (x_n)_{n \in \mathbb{N}}$ y respectivas probabilidades puntuales $(p_n)_{n \in \mathbb{N}}$.

Ejercicio 11. Don Zoilo tiene dos vacas, Aurora y Belinda. La cantidad de leche en litros que da Aurora en un día es una variable aleatoria X con distribución \mathcal{E} (0.2). Belinda, en cambio, da 5 litros el 20% de las veces que es ordeñada y el resto no da nada. Don Zoilo ordeña a Belinda solamente los días en que Aurora da menos de 6 litros.

- a) ¿Cuál es la probabilidad de que Aurora dé más de 6 litros en exactamente dos días de la próxima semana? Cabe aclarar que los fines de semana Don Zoilo no ordeña a sus vacas.
- b) ¿Cuál es la probabilidad de que Don Zoilo obtenga más de 8 litros en un día?
- c) Con la leche que obtiene de Aurora, Don Zoilo fabrica manteca. La cantidad de manteca en kilos que obtiene con X litros de leche es W = g(X) siendo

$$g(X) = \begin{cases} \sqrt[3]{X} & \text{si } X \le 8\\ \frac{1}{7}(X-1)^2 - 5 & \text{si } 8 < X \le 15\\ 2X - 7 & \text{si } 15 < X \end{cases}$$

Hallar la función de densidad de la cantidad de manteca fabricada.

⁴Recordar que la inversa generalizada se define por $F^{-1}(y) = \inf\{x : F(x) \ge y\}$.