2.2操作系统

未安装操作系统的计算机(裸机)是无法使用的(裸机:未安装任何软件的计算机),操作系统是计算机中最重要的一种系统软件,由许多程序模块组成。他们能以有效、合理和安全的方式组织和管理计算机的软硬件资源,科学的为计算机安排工作流程,控制和支持应用程序的运行,并向用户提供用户界面(人机接口),使用户能容易、方便、有效、安全的使用计算机。

1.操作系统的作用

- 1. 为计算机中的应用程序的运行提供支持和服务。
- 2. 为计算机中运行中的应用程序管理和分配系统资源。
- 3. 为用户提供友善的人机接口(GUI界面)。
- 4. 为应用程序的开发提供高效率的平台。

2.操作系统的组成

操作系统内核+配套软件

1. 操作系统内核

内核(kernel)是提供任务管理、存储管理、文件管理、通信支持和设备管理等功能的一组软件模块,用于为其他软件(包括应用程序)提供服务。开机后常驻在内存中,以CPU的最高优先级运行,能执行指令系统中的所有指令,具有直接访问各种外设和全部主存空间的特权,负责对系统资源进行分配和管理。

常见的系统内核:

- 1. 微软的NT内核: Windows11、Windows10、Windows7...
- 2. Linux内核: GNU (GNU's Not Unix) / Linux(Redhat、Ubuntu、centos)、安卓 (andriod) 系统
- 3. Darwin内核: 类Unix系统, 如ios
- 4. 鸿蒙微内核: HarmonyOS
- 2. 其他配套软件
 - 1. 图形用户界面软件
 - 2. 常用应用程序(日历、计算器、资源管理器、浏览器)
 - 3. 实用程序(任务管理器、磁盘清理程序、杀毒软件、防火墙)
 - 4. 为支持应用软件开发和运行的软件构件(应用框架、编译器、程序库等)

3.操作系统的启动

操作系统安装后大多驻留在硬盘、nand闪存(如u盘启动盘)之类的辅助存储器中,计算机开机前内存中并没有操作系统。操作系统的启动流程如下:

- 1. 加电启动计算机后,CPU**首先执行BIOS中的自检程序POST**,测试计算机主要部件的工作状态是否正常。
- 2. 若无异常, cpu继续执行BIOS中的**引导装入程序(自举)BOOT**,按照cmos中预先设定的启动顺序,一次搜寻计算机的辅助存储器,若找到需要启动的操作系统所在的辅存,则将第一个扇区的内容(主引导记录)读到内存,然后将控制权交给其中的操作系统引导加载程序。
- 3. 由引导加载程序继续将硬盘中的操作系统装入内存。
- 4. 操作系统加载到内存后,整个计算机就处于操作系统的控制下,就可以正常使用操作系统了。

顺序: 1.加电自检程序POST -> 2.引导装入程序(自举)BOOT -> 3.引导加载程序 -> 4.运行操作系统

4.操作系统的管理功能

1. 多任务处理与处理器管理

- "任务"指的是要计算机做的一件事, 计算机执行一个任务通常就对应着运行一个应用程序(要点)
- "单任务处理"与"多任务处理"
 - 单任务处理: 前一个任务完成后才能启动后一个任务的运行, 任务是顺序执行的
 - 多任务处理(Multitasking): 允许计算机同时执行多个任务,任务是并发执行的(要点:现在使用的OS支持多任务处理)
 - 。 多任务处理的优点:
 - 大大提高了用户的工作效率
 - 大大提高了计算机的使用效率
- 任务有以下几种状态:
 - 1. 未运行状态:未启动,不使用cpu,也不占用内存资源。
 - 2. 前台状态: 加载到内存并被cpu执行, 显示屏上出现任务会话窗口, 可接受用户输入。
 - 3. 后台状态: 仍驻留在内存中,可能运行,可能不运行(挂起)。

Windows中的多任务处理

- 1. 前台任务:能接受用户输入的窗口只有一个,称为活动窗口,对应的任务为前台任务。前台任务通常只能有一个。
- 2.后台任务:启动或切换到另一个任务时,新任务进入前台状态,原先的任务变成后台任务。后台任务的数量理论上不受限制。

3. 并发多任务: 同时并发执行多个任务, 前台和后台任务均可分配到cpu资源。

宏观上这些任务是同时执行的, 微观上是轮流执行的。

多任务的目的是:提高cpu的利用率,提高用户的工作效率。

处理器管理

分时策略。

为支持多任务处理,Windows中的处理器调度程序负责把cpu分配给各个已经启动且具备运行条件的任务。一般采用按时间片轮转(如1/20秒)的策略,每个任务都能轮到1/20秒的cpu时间运行其程序,时间片用完后,调度程序再把cpu交给下一个任务,这样不断轮回。

一个cpu任何时刻只能执行一个任务

2.存储管理

1.存储管理的任务

操作系统运行时,内存空间一般划分为两个部分:操作系统区(存放内核和相关数据)和用户区(存放正在执行的程序和数据)。

存储管理的任务:

- 1. 为每个任务分配内存空间,任务终止后回收内存空间。
- 2. 对内存空间进行保护。保护操作系统所在区域不被应用程序随意修改。
- 3. 提供内存空间共享。允许一些存储区域被多个任务共享访问,提高内存利用率。
- 4. 对内存空间进行扩充。

2. 虚拟存储技术

操作系统解决存储管理的有效方案是虚拟存储器(virtual memory, VM)技术。虚拟存储技术也称虚拟内存技术。

虚拟内存技术算法:

- 1. 先进先出(FIFO):根据页面进入内存的时间先后选择淘汰页面,先进入内存的页面先淘汰,后进入内存的后淘汰。此算法用的较少。
- 2. 最近最少使用(LRU):通常使用这种算法,常用于页面置换算法,是为虚拟页式存储管理器服务的。Windows中的虚拟内存文件(pagefile.sys)通常位于系统盘的根目录下。用户可自行设置虚拟内存的大小(一般为物理内存的1-2.5倍),也可以指定虚拟内存放在哪个硬盘或硬盘分区。

3.文件管理

文件是存储在外存中的一组相关信息的集合。计算机中的程序和数据都是以<mark>文件</mark>的形式存储在外存中,并以文件为单位进行存取。

操作系统对文件管理的主要职责:

- 1. 如何在外存中为创建或保存文件分配空间。
- 2. 为删除文件而回收空间。
- 3. 对空闲空间进行分配。

操作系统对磁盘进行读写操作的物理单位是扇区。

文件名命名的组成

文件名的命名规则

- 1. 主文件名中不可出现 ? 、\ / * " " < > | :
- 2. 主文件名不可以出现关键字CON、PRN
- 3. 文件名最多有255个中文或西文字符。linux中256个。
- 4. Windows中文件名不区分大小写。Linux中区分大小写。
- 5. 文件名中可使用空格,文件名开头不保留空格。
- 6. 应用程序扩展名: .exe(win)、.app(mac)、.apk(Android)

常见文件拓展名:

文件类型	拓展名	文件类型	拓展名
文本	.txt	声音	.wav .min .voc .mp3
Word文件	.doc .docx	图形、图像	.bmp .pcx .tif .wmf .jpg .png .gif .raw
Excel文件	.xls .xlsx	动画、视频	.flc .fli .avi .mp4 .mov .mkv .mpg .rmvb
PPT文件	.ppt .pptx	网页	.htm .html

文件的组成

文件内容+说明信息

- 说明信息包括: 主文件名、拓展名、在外存中的位置、文件大小、创建时间、文件属性等。
- 文件内容存放在磁盘的数据区内。
- 说明信息存放在文件所属的目录内。

文件目录

- 1. 文件目录也叫文件夹。
- 2. win、安卓、ios都采用多层次树状结构。
- 3. 每个磁盘或磁盘上的分区都有一个根目录(根文件夹)。
- 4. 每个磁盘分区都是一棵文件树。树干是根目录,树枝是子目录,树叶是文件。
- 5. 不同类型不同用途的文件分类存储,还允许不同文件夹下的文件名可以重复。

4.设备管理

- 1. 设备管理模块负责对用户或应用程序的I/O操作进行统一管理。
- 2. 设备管理模块通过驱动程序屏蔽和抽象了各种物理I/O设备的硬件操作细节。驱动程序是操作系统和硬件的接□。

5. 常用操作系统

1. PC机使用的操作系统一般都具有多任务处理功能。一般是单用户操作系统。如Windows。

- 2. 服务器上安装的操作系统一般是网络操作系统。具有如下特点:
 - 1. 多用户、多任务
 - 2. 支持多种网络通信功能,提供丰富的网络应用服务
 - 3. 安全性强, 可靠性好

如: Linux、Unix、Windows Server

3. 实时操作系统

军事指挥和武器控制系统、电网调度和工业控制系统、证券交易系统等, 安装运行的是"实时操作系统"。特点是

- 1. 对外部事件能快速作出响应
- 2. 具有很高的可靠性和安全性

4. 嵌入式操作系统

嵌入式计算机应用中运行的是"嵌入式操作系统"。

特点是:

- 1. 快速、高效、具有实时处理功能
- 2. 代码非常紧凑,存储需求小

如: HarmonyOS、安卓