科技訊息

超巨新星的發現——宇宙線爆發研究的突破

從太空深處射來的宇宙射線 (cosmic ray) 能量比最大加速器的粒子大得多:它可以達到 10¹⁷-10²⁰電子伏那麼驚人的數量級。這些射線的來源始終是個謎。直到1969年,美國軍方放出多枚人造衞星監測在太空進行的核武爆炸,因而意外地發現了大量 (平均大約每日兩三次) 從太陽系以外飛來的極短暫 (從數十毫秒到數十秒)γ射線爆發 (gamma-ray bursts,即GRB),才初次令這謎團露出端倪。然而,數十年來,這些短暫γ爆發的性質也仍然無人能解。

90年代初,由於康普頓號γ射線太空探測船升空,累積了大量有關γ爆發事例,我們才逐漸明白,γ爆發極可能是銀河系以外遠方的中子雙星互相接近,最後融合成黑洞的刹那所發出的閃爍。這一發現本欄已經報導過了①。

到最近一年,這方面的研究出現了一個重 要突破:由於發現了γ爆發必然伴隨着較為延 長的X-光爆發,而後者則可以用已經在運作 的Beppo SAX X-光衞星精確定位,然後有關 數據可以立即傳到地面,因此就有可能在一日 以內以巨型光學望遠鏡向γ爆發方位搜索,從 而測錄與爆發相關的其他低能量輻射,例如 可見光、紅內線、無線電等等。這些所謂 y 爆 發的「餘暉」(afterglow,又稱光瞬變 optical transient, OT)逐漸「褪色」的時間比 y 或 X-光 爆發長得多,一般有兩星期左右,因此容許仔 細的地面觀察和研究。這些研究最重要的結果 就是證實:γ爆發距離極遠,肯定在銀河系以 外,所以它的輻射能量大得驚人,甚至遠遠超 過所謂超新星 (supernova) 爆發。因此,它應當 稱為超巨新星(hypernova)。

1997年12月14日發現的γ爆發 (GRB 971214) 是最顯著的一個例子:以加州理工學院 為首的一組天文學家在15日晚上即已開始觀測 在同一位置的可見光餘暉,餘暉褪盡之後又在同位置找到一個主體星雲,並且從它光譜的驚人紅移 (z = 3.42) 推斷:這星雲的影像是宇宙只有目前壽命1/7時所發出的②。這極其遙遠的距離,意味着為時只數秒的γ爆發所釋出的能量達到3×10⁵³erg,亦即百倍於超新星、數十倍於太陽在其整個生命中所釋能量的總和。其他天文學組對這一爆發的可見光以及紅內線餘暉的研究,多少證實了這些結果③。

由於超巨新星出乎意外的距離和能量,它似乎是宇宙形成之初在星雲內雲氣特別濃厚的區域發生的現象。它也許仍然可以用中子星融合成為黑洞的過程加以解釋。但由於其所釋出能量之巨大,一個更自然的模型當是一顆巨型星體與一個巨大黑洞的融合。這是因為中子星的質量有限制,所以連帶其融合時所能釋出的能量也受限制,但在上述狀況則沒有這種限制。

今後數年間,γ爆發這一名詞行將為「超巨新星」所替代——這正如當年「脈衝星」pulsar之為「中子星」所替代一樣。而有關的觀測和理論突破當還會陸續出現吧。

- ① 《二十一世紀》29,58(1995年6月)。
- ② S. R. Kulkarni et al., *Nature* **393**, 35 (7 May 1998).
- J. P. Halpern et al., *Nature* 393, 41 (7 May 1998);
 A. N. Ramaprakash et al., *Nature* 393, 43 (7 May 1998).

罕見的魟狀星雲

質量低的恆星在演化末期會通過所謂新星 (nova) 爆發而形成一個所謂行星狀星雲 (planetary nebula) ,那其實是一個熾熱的氣體球殼,其中心則遺下一顆高密度的白矮星。下圖所示就是用哈勃太空望遠鏡攝得的正在形成中的這樣一個星雲,即「魟狀星雲」(Stingray Nebula) 。它的構造十分複雜,但最引人注目的,則是核心的

白矮星及其伴星,以及外殼的兩個極孔,殼內 氣體正透過極孔依極軸方向準直地外溢。行星 狀星雲的這一演化階段歷時極短,只有100年左 右,所以是極不容易捕捉時機仔細觀測的。

見M. Bobrowsky et al., Nature 392, 469 (2 April 1998).

神經細胞能再生嗎?

多年以來,我們總以為成年高等動物不能 長出新的神經細胞。其實,鳥類和齧齒類動物 終生都會產生新的腦細胞,而80年代中期用 十分接近人類的成年恆河猴 (rhesus monkey) 所作的實驗,則的確顯示牠腦中海馬區 (hippocampus) 沒有新生神經細胞的迹象。不 過,最近有一組研究者用更敏感的bromodeoxyuridine (BrdU) 試劑,卻在較低等的成年南美長 尾猴 (marmosets) 腦中海馬區的所謂鋸齒狀腦迴 (dentate gyrus) 中發現了大量只有三星期壽命的

分裂細胞(上圖箭頭所示)。因此,用同樣敏感 的方法,是否會發現成年恆河猴以至人類長出 新的神經細胞?這些細胞對其智力又會有何影 響?現在這些都成為極其重要的問題了。

見M. Barinaga, Science 279, 2041 (27 March 1998).

模糊的生物界線

下圖並非花朵或者類似海葵的化石照片,而 是全然相同的大腸桿菌聚成群體時所展現的精 巧、複雜和美妙圖形。從《作為多細胞有機體的 細菌》①這本書,我們知道單細胞細菌聚居的時候 不但可以互相溝通,而且能夠形成有意義和特殊 作用的種種空間模式。因此,可以説,單細胞和 多細胞生物之間的界線,其實已經有點模糊了。

J. A. Shapiro & M. Dworkin, eds., Bacteria as Multicellular Organisms (New York: Oxford University Press, 1997).

Press, 1997).