Radio Science: Lecture 2

Kshitij Thorat

February 12, 2015

- Radio Emission Mechanisms
 - Continuum Emission
 - Spectral Line Emission

Table of Contents

- Radio Emission Mechanisms
 - Continuum Emission
 - Spectral Line Emission

Figure: Radio Continuum Image of the Sky at 1.4 GHz, Calabretta et al. 2013

Common Types of Radio Sources

- AGN Powered Radio Sources
 - Radio Quasars
 - Radio Galaxies
 - ▶ BL-Lac Type Radio Sources
- Non-AGN powered radio sources
 - Supernova Remnants
 - Star-forming Galaxies
 - HI gas
 - Molecular Clouds
 - HII regions
 - etc

Figure: Image courtesy of NRAO/AULBILT
Saxton (NRAO/AUI/NSF); Hubble/NASA

Units and Typical Scales

- Flux density: Jansky 1 Jy = $10^{-26} Wm^{-2}Hz^{-1}$
- ▶ Typical Flux density ranges $\sim 10^{-9}$ Jy to ~ 100 Jy for radio sources in the sky.
- ▶ Distance: Parsec 1 pc = 3.08×10^{16} m
- ightharpoonup Typical Observational Frequencies: ~ 10 MHz to ~ 1000 GHz

Table of Contents

- Radio Emission Mechanisms
 - Continuum Emission
 - Spectral Line Emission

All we see is light!

Black Body Radiation I

- Emission conforming to the Planck spectrum.
- Wien approximation gives brightness temperature $T_b = \frac{\lambda^2}{2k}I_{\nu}$

9 / 25

Black Body Radiation II

- Cosmic
 Microwave
 Background
 (Roger's talk)
- $T \approx 2.725K$
- Anisotropies cosmological parameters.

Bremsstrahlung II

- ► Emission produced by accelerating charge in most cases in an electric field.
- Larmor's formula : $P = \frac{2q^2}{3c^3}a^2$
- lacktriangle With flat spectral density for the radiation below a frequency $\omega \propto rac{v}{b}$
- Velocity distribution determines the final spectrum for a collection of particles.

11 / 25

Bremsstrahlung II

- Thermal Bremsstrahlung : charged particles in thermodynamic equilibrium.
- Velocity distribution of charged particles given by Maxwellian distribution.
- ▶ HII regions around bright, young stars.

Synchrotron Emission I

- Synchrotron emission radiated by relativistic charged particles (e[−] and p⁺) accelerated in magetic fields.
- Relativistic charged particles in magnetic field: $\omega_c = \frac{qB}{mc}$.

Synchrotron Emission II

- ▶ In astrophysical scenarios, collections of charged particles participate to produce total emission.
- ightharpoonup E.g. $N(E)dE \propto E^{-lpha}dE$ cosmic rays
- Examples: SNRs, Radio galaxies.

Synchrotron Emission III: Radio Galaxies

February 12, 2015

Inverse Compton I

Inverse Compton II

17 / 25

Inverse Compton III - SZ effect

Galaxy clusters and CMB

Spectral Lines

- Originate from discrete energy level transitions
- Characterized by emission/absorption in a narrow range in frequencies.
- Defined by population numbers of different levels and *temperature*.

Recombination Line

- 'Recombination' of free electrons with nuclei.
- ► As tracers of electron temperature.

Molecular Lines

- Rotational transitions in molecules cold gas.
- ▶ Water masers, molecular clouds.
- ► CO line star-formation tracer.

HI 21cm

- Hyperfine transition in hydrogen atom.
- ► 'Forbidden' transition HI in astrophysical scenarios.
- ► Redshifted HI '21 cm'.

Hyperfine Transition Line from neutral H: 1420.405 MHz

HI 21cm: Rotation Curves

- Rotation curve and the mass of galaxies
- Rotation curves from neutral hydrogen
- ► Rotation curves and dark matter

Epoch of Reionization

- Epoch of Reionization (Roger's talk)
- Structure formation and EOR
- ▶ Brightness temperature of HI 21 cm emission from EOR.

⁰Can the reionization epoch be detected as a global signature in the cosmic background? - Shaver et.al. 1999

References

- ► Tools of Radio Astronomy, Thomas L. Wilson, Kristen Rohlfs, Susanne Httemeister
- Essential Radio Astronomy Course, NRAO : http://www.cv.nrao.edu/course/astr534/ERA.shtml

