

Realtek Ameba1 ADC Calibration

Version 1.2

Document Number: AP0047

Table of Contents

1	Intro	oduction	3
-	1.1	ADC transfer curve	
	1.2	GAIN and OFFSET	
		ADC transfer function	
2		C Calibration	
	2.1	ADC of Ameba DEV board	4
	2.2	AT Commands calibration and verification	4
	2.3	Set/Get gain and offset	5
3	App	lication Circuit	

1 Introduction

1.1 ADC transfer curve

Ameba ADC circuit converts an input voltage to a comparable digital code. The below curve describes the transfer function.

1.2 GAIN and OFFSET

- GAIN: the slope of the ADC transfer curve.
- OFFSET: the difference at 0V.

1.3 ADC transfer function

- AT commands: Voltage = $\frac{ATSA-OFFSET}{GAIN}$
- API:

$$Voltage = \frac{\frac{analogin_read_u16}{16} - OFFSET}{GAIN}$$

July 15, 2015

.....

2 ADC Calibration

2.1 ADC of Ameba DEV board

2.2 AT Commands calibration and verification

- Select A1 or A2.
- ATSA=1 (if A1)
- ATSA=2(if A2)

Verify ADC at 1000mV.

- 1) Select A2 as ADC, (ATSA=2).
- 2) Set DC power supply to 0V, set it to record the ADC output value.

AT commands ATSA=2, get ADC_A2_0v = 0x029D.

3) Set DC power supply to 3V, set it to record the ADC output value.

AT commands ATSA=2, get ADC_A2_3v = 0x0C74

July 15, 2015 4

4)

$$GAIN = \frac{(0x0C74 - 0x029D)}{3} = 0x347$$

- 5) OFFSET = 0x029D.
- 6) Set DC power supply to 1V(1000mV).

By ADC transfer function, the evaluated ADC_1V is 0x5E4.

7) To verify 1000 mV

AT commands ATSA=2, get ADC_1v = 0x05E0

The estimated voltage is 995mV.

8) The tolerance is (1000 mV - 995 mV) / 1000 mV = 0.5%

2.3 Set/Get gain and offset

Set gain and offset

• Get gain and offset

3 Application Circuit

- Voltage_abc ch range: 0~3.7V.
- SDK version: above SDK v3.4a
- Sample code is included
- ADC tolerance: +/- 25mV.

July 15, 2015