TFA per cambiamenti di coordinate

Filippo \mathcal{L} . Troncana

A.A. 2023/2024

1 Misure e σ -algebre indotte

Definizione 1.1: σ -algebra finale

Sia (X, A) uno spazio misurabile, sia Y un insieme e sia $f: X \to Y$ una funzione. La σ -algebra finale indotta da f rispetto a A è la famiglia

$$fA := \{ E \in 2^Y : f^{-1}(E) \in A \}$$

La struttura di σ -algebra segue banalmente dalla commutatività tra operatori insiemistici e preimmagine.

Osservazione 1.1

La σ -algebra finale di f rispetto a \mathcal{A} è la più grande σ -algebra Σ tale che $f:(X,\mathcal{A})\to (Y,\Sigma)$ sia misurabile.

Dimostrazione

Sia $\Sigma \subset 2^Y$ tale che $f:(X,\mathcal{A}) \to (Y,\Sigma)$ sia misurabile. Per definizione di funzione misurabile, abbiamo che per ogni $E \in \Sigma$, abbiamo che $f^{-1}(E) \in \mathcal{A}$, dunque $\Sigma \subset f\mathcal{A}$.

Definizione 1.2: Misura esterna indotta

Siano X e Y due insiemi, sia μ una misura esterna su X e sia $f:X\to Y$ una funzione. La $misura\ indotta$ da f rispetto a μ è la funzione

$$f\mu: 2^Y \to [0, +\infty]$$
 con $f\mu(E) := \mu(f^{-1}(E))$

Proposizione 1.1

 $f\mu$ è una misura esterna su Y.

Dimostrazione

Dimostriamo i tre assiomi di misura esterna.

- 1. $f^{-1}(\varnothing) = \varnothing \Rightarrow f\mu(\varnothing) = 0$.
- 2. Siano $E \subset F \subset Y$, allora $f^{-1}(E) \subset f^{-1}(F)$, dunque la monotonia di $f\mu$ segue dalla monotonia di μ .
- 3. Siano $A, B \subset Y$, allora $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ e la subaddittività segue da quella di μ

Proposizione 1.2

Se $f:(X,\mathcal{A},f\mu)\to Y$ è una funzione biettiva, allora $\mathcal{M}_{f\mu}=f\mathcal{M}_{\mu}$.

Dimostrazione

Sia $E \in M_{f\mu}$ e sia $A \in 2^Y$. Abbiamo che $f\mu(A) = f\mu(A \cap E) + f\mu(A \cap E) = \mu(f^{-1}(A \cap E)) + \mu(f^{-1}(A \cap E^c)) = \mu(f^{-1}(A) \cap f^{-1}(E)) + \mu(f^{-1}(A) \cap f^{-1}(E^c))$ dunque posto $B := f^{-1}(A)$ (possibile per ogni $B \in 2^X$ per biettività)

vale che $f^{-1}(E) \in \mathcal{M}_{\mu} \Rightarrow E \in f\mathcal{M}_{\mu}$.

TODO: credo sia possibile definire una duale costruzione iniziale, ma per la nostra trattazione è sufficiente la versione finale.

Lemma 1.1: Isomorfismo di σ -algebre indotte

Siano (X, A) uno spazio misurabile, Y un insieme e $f: (X, A) \to Y$ una funzione biettiva. Allora $fA \cong A$.

Dimostrazione

Banale dimostrazione di insiemistica.

2 Integrazione indotta

La situazione che studiamo in questa sezione è la seguente

Teorema 2.1: Integrazione indotta

Sia (X, \mathcal{A}, μ) uno spazio con misura, sia Y un insieme, sia $f: X \to Y$ una funzione biettiva e sia $g: (Y, f\mathcal{A}, f\mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{L}^1)$ una funzione $f\mathcal{A}$ -misurabile. Allora $g \in f\mu$ -integrabile se e solo se $g \circ f \in \mu$ -integrabile, e vale l'identità

$$\int g \, \mathrm{d}f \mu = \int g \circ f \, \mathrm{d}\mu$$

Dimostrazione

Assumiamo che g sia $f\mu$ -integrabile. Allora vale

$$\int g \, \mathrm{d}f\mu = \int_{*} g \, \mathrm{d}f\mu = \sup \left\{ I_{f\mu}(\varphi) : \varphi \in \Sigma_{-}(g) \right\} = \sup \left\{ \sum_{i} a_{i} f\mu(\varphi^{-1}(\{a_{i}\})) : \varphi \in \Sigma_{-}(g) \right\} =$$

$$= \sup \left\{ \sum_{i} a_{i} \mu(f^{-1}(\varphi^{-1}(\{a_{i}\}))) : \varphi \in \Sigma_{-}(g) \right\} = \sup \left\{ \sum_{i} a_{i} \mu((\varphi \circ f)^{-1}(\{a_{i}\})) : \varphi \circ f \in \Sigma_{-}(g \circ f) \right\}$$

$$\operatorname{con} \psi := \varphi \circ f, \quad \int_{*} g \, \mathrm{d}f\mu = \sup \left\{ I_{\mu}(\psi) : \psi \in \Sigma_{-}(g \circ f) \right\} = \int_{*} g \circ f \, \mathrm{d}\mu$$

La dimostrazione è assolutamente analoga per l'integrale superiore e nella direzione opposta assumendo l'integrabilità di $g \circ f$. Le varie uguaglianze seguono dalla biettività di f.

Osservazione 2.1: Girotondone per il TFA

L'obiettivo di questo scherzetto è dimostrare il TFA per cambiamenti di coordinate, ovvero

$$\int g \, \mathrm{d}\mathcal{L}^n = \int (g \circ f) \cdot J_f \, \mathrm{d}\mathcal{L}^n$$

Ma c'è un problema: noi abbiamo dimostrato un risultato dalla forma leggermente diversa, ovvero

$$\int g \, \mathrm{d}f\mu = \int g \circ f \, \mathrm{d}\mu$$

Osservando il TFA ci aspettiamo che la nostra d $f\mu$ corrisponda a J_f d \mathcal{L}^n , dunque dobbiamo fare un piccolo giretto usando la biettività di f:

$$\int g \, d\lambda = \int g \circ f \circ f^{-1} \, d\lambda = \int g \circ f \, df^{-1} \lambda$$

In questo modo ci basta riuscire a far corrispondere J_f d \mathcal{L}^n a d $f^{-1}\mathcal{L}^n$

3 Derivata di Radòn-Nikodym

Teorema 3.1: Teorema di Radòn-Nikodym

Sia (X, \mathcal{A}) uno spazio misurabile e siano ν, μ misure su (X, \mathcal{A}) tali che μ sia σ -finita e ν sia assolutamente continua rispetto a μ . Allora esiste una funzione \mathcal{A} -misurabile $f: X \to [0, +\infty[$ tale che per ogni $E \in \mathcal{A}$ si abbia

$$\nu(A) = \int_A f \, \mathrm{d}\mu$$

E per una funzione ν -integrabile $g:(X,\mathcal{A},\nu)\to\mathbb{R}$ vale

$$\int g \, \mathrm{d}\nu = \int g \cdot f \, \mathrm{d}\mu$$

Definizione 3.1: Derivata di Radòn-Nikodym

Nella situazione precedente, la funzione f si dice derivata~di~Radòn-Nikodym di ν rispetto a μ e si indica con

$$f = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$$

Definizione 3.2: Funzioni R-N

Siano (X, \mathcal{A}, μ) e (Y, \mathcal{B}, ν) due spazi con misure σ -finite. Una funzione $f: (X, \mathcal{A}, \mu) \to (Y, \mathcal{B}, \nu)$ si dice **funzione** R-N se:

- 1. f è misurabile
- 2. Per ogni $E \in \mathcal{B}$ tale che $\nu(E) = 0$ si ha $\mu(f^{-1}(E)) = 0$

Osservazione 3.1: Categoria degli spazi con misure σ -finite e delle funzioni R-N

La classe degli spazi con misure σ -finite con la classe delle funzioni R-N e l'usuale composizione di funzioni è una categoria, che chiamiamo \mathbf{Mea}_{R-N} .

3

${f Dimostrazione}$

Controlliamo le varie proprietà:

- Sia (X, \mathcal{A}, μ) uno spazio con misura σ -finita. La funzione identità id $_X$ è evidentemente una funzione R-N.
- Siano $f:(X,\mathcal{A},\lambda)\to (Y,\mathcal{B},\mu)$ e $g:(Y,\mathcal{B},\mu)\to (Z,\mathcal{C},\nu)$ due funzioni R-N. Notiamo che per ogni $E\in\mathcal{C}$ tale che $\nu(E)=0$ si ha $(g\circ f)^{-1}=f^{-1}(g^{-1}(E))$ e $\mu(g^{-1}(E))=0$, dunque $\lambda((g\circ f)^{-1}(E))=0$.
- La composizione eredita l'associatività dalla composizione di funzioni in Set.

Proposizione 3.1: Derivata di R-N per Lipschitziane

Sia (X, d, μ) uno spazio metrico di dimensione $n \in \mathbb{Z}_+$ con una misura μ di Radòn (rispetto alla σ -algebra Boreliana indotta dalla metrica) invariante per traslazioni (ovvero, $\mu(B_r(x)) = \mu(B_r(y))$ per ogni x, y in $X)^a$ e sia $F: X \to X$ una funzione biettiva di Lipschitz con costante di Lipschitz L > 0.

Allora $F^{-1}\mu \ll \mu$ e L^n e la derivata di Radòn-Nikodym di $F^{-1}\mu$ rispetto a μ è maggiorata μ -quasi ovunque da L^n .

Dimostrazione

È sufficiente dimostrarlo sulle palle aperte, dato che queste costituiscono una base della topologia e dunque della σ -algebra Boreliana.

Per ogni r > 0 e ogni $x \in X$ abbiamo che $F(B_r(x)) \subset B_{Lr}(F(x))$ che implica $\mu(F(B_r(x))) \leq \mu(B_{Lr}(F(x))) = L^n \mu(B_r(F(x)))$ il che implica che per ogni insieme, $F^{-1}(E) \leq \mu(E)$, dunque sappiamo che deve esistere $g: (X, d, \mu) \to [0, +\infty[$ tale che

$$F^{-1}\mu(E) = \int_E g \, \mathrm{d}\mu$$

Ancora una volta lavoriamo sulle palle

$$\forall r > 0, \forall x \in X, 0 \le \int_{B_r(x)} g(y) \, d\mu(y) \le \int_{B_r(x)} L^n \, d\mu(y) \Rightarrow g \le_{\mu} L^n$$

4 Il viaggio verso il TFA

Cercheremo di dimostrare il TFA per cambiamenti di coordinate *lineari* con la speranza di estendere questo ragionamento a cambiamenti di coordinate *differenziabili*, ovvero localmente lineari. Per fare questo, ci permetteremo di sostituire i plurirettangoli nella definizione della misura di Lebesgue ai pluriparallelogrammi

Lemma 4.1: Misura indotta da un cambiamento di coordinate lineare

Sia $F: (\mathbb{R}^n, \mathcal{M}_{\mathcal{L}}, \mathcal{L}^n) \to \mathbb{R}^n$ una mappa lineare invertibile. Allora $F^{-1}\mathcal{L}^n = |\det F| \cdot \mathcal{L}^n$ e dunque

$$F^{-1}\mathcal{L}^n(E) = \int_E |\det F| \, \mathrm{d}\mathcal{L}^n$$

^aOnestamente non so se questa "uniformità" vada codificata come una proprietà dello spazio o della misura, dato che il nostro fine è quello di applicarlo alla misura di Lebesgue su \mathbb{R}^n non ci poniamo troppi problemi in quanto \mathbb{R}^n è tutto piatto e \mathcal{L}^n è invariante per traslazioni.

Dimostrazione

Sia $E \in F\mathcal{M}_{\mathcal{L}}$. Per definizione di misura indotta, abbiamo che $F^{-1}\mathcal{L}^n(E) = \mathcal{L}^n(F(E))$ e che, come visto nel corso di Geometria A è uguale a $|\det F| \cdot \mathcal{L}^n(E)$.

Teorema 4.1: TFA per cambiamenti di coordinate lineari

Sia $F: \mathbb{R}^n \to \mathbb{R}^n$ una mappa lineare invertibile e sia $g: \mathbb{R}^n \to \mathbb{R}$ una funzione \mathcal{L}^n -integrabile. Vale il seguente fatto:

$$\int g \, d\mathcal{L}^n = \int (g \circ F) \cdot |\det F| \, d\mathcal{L}^n$$

Teorema 4.2: Derivata R-N di una misura finale di diffeomorfismi

Sia $\varphi: (\mathbb{R}^n, \mathcal{M}_{\mathcal{L}}, \mathcal{L}^n) \to \mathbb{R}^n$ un diffeomorfismo locale e sia $E \subset \mathbb{R}^n$ un aperto. Allora

$$\varphi^{-1}\mathcal{L}^n(E) = \int_E |\det D_{\varphi}| \, d\mathcal{L}^n$$

Equivalentemente

$$\frac{\mathrm{d}\varphi^{-1}\mathcal{L}^n}{\mathrm{d}\mathcal{L}^n} = |\det D_{\varphi}|$$

Nel senso della definizione 3.1 della derivata di Radòn-Nikodym.

Dimostrazione

Il fatto che $\varphi^{-1}\mathcal{L}^n \ll \mathcal{L}^n$ segue dalla proposizione 3.1, infatti se φ è un diffeomorfismo è almeno localmente lipschitziana e in ogni insieme limitato V ha costante di Lipschitz $\sup_V |\det D_{\varphi}|$. Poniamo $|\det D_{\varphi}(x)| =: J(x)$.

Sia $E \subset \mathbb{R}^n$ un aperto. Localmente la trasformazione φ agisce come una trasformazione lineare D_{φ} , dunque in intorni V_i sufficientemente piccoli di punti $x_i \in E$ indicizzati su un insieme numerabile I applichiamo il lemma 4.1 e abbiamo $\varphi^{-1}\mathcal{L}^n \sim D_{\varphi}\mathcal{L}^n = J(x) \cdot \mathcal{L}^n$. Dunque posti possiamo scrivere

$$\varphi^{-1}\mathcal{L}^n(E) = \sum_{i \in I} \int_{V_i} J(x_i) \, d\mathcal{L}^n = \sum_{i \in I} \int_E J(x_i) \chi_{V_i}(y) \, d\mathcal{L}^n(y)$$

Facendo una mossa alla Gottinga riconosciamo una regolarità sufficiente ad applicare uno strano genere di integrale di Riemann rendendo sempre più piccoli i nostri intorni aumentando il loro numero e otteniamo

$$\varphi^{-1}\mathcal{L}^n(E) = \int_E J \, d\mathcal{L}^n = \int_E |\det D_{\varphi}| \, d\mathcal{L}^n$$

Teorema 4.3: TFA

Sia $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ un diffeomorfismo locale e $g: \mathbb{R}^n \to \mathbb{R}$ una funzione \mathcal{L}^n -integrabile. Vale

$$\int g \, d\mathcal{L}^n = \int (g \circ \varphi) \cdot |\det D_{\varphi}| \, d\mathcal{L}^n$$

Dimostrazione

La dimostrazione è banale combinando i non banali teoremi 2.1, 3.1 e ??.

5 Delirio categorico

Questa nostra costruzione può essere formalizzata come $\Phi:(X,\bullet)\times \operatorname{mor}(X,\star)\to \mathsf{Meable}$ che mappa la coppia $((X,\mathcal{A}),f:X\to Y)$ in $(Y,f\mathcal{A})$, non credo sia più estensibile perchè è necessario che il supporto del primo spazio misurabile sia lo stesso insieme di partenza della funzione.