

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

Faculdade de Matemática - Departamento de Matemática

Matemática Discreta - Profa. Ms. Vera Soeiro de Souza Nunes

Lista 6 - Funções

1) Verifique se:

- a) $f: IR \to IR \\ x \mapsto y = x^2 \qquad \text{\'e função}.$
- b) $f: IR \to IR$ definida por $f(x) = \sqrt{x}$ é função.
- c) $f: IR \to IR$ definida por $f(x) = \frac{1}{x}$ é função.
- d) $f:[0;+\infty) \to [0;+\infty)$ definida por $f(x) = \sqrt{x}$ é função.
- e) $x^2 + y^2 = 1$, $x \in [-1;1]$, $y \in R$ é função.
- f) $f: IR \to IR$ definida por $f(x) = e^x$ é função.
- 2) Faça um estudo das mesmas funções do exercício anterior, acima definidas, verificando sua bijeção.
- 3) A relação $T \subseteq IR^2$ onde $xTy \Leftrightarrow y + 2 = 3x$ é uma função? Caso afirmativo, verifica se ela é inversível.
- **4)** A relação $W \subseteq IR^2$ onde $xWy \Leftrightarrow x^2 + y^2 = 4$ é uma função? Caso afirmativo, verifica se ela é inversível.
- **5)** Verifica se f: IR \rightarrow IR tal que f(x) = x^2 é uma função inversível. Caso afirmativo, encontra a lei da f⁻¹.
- **6)** Verifica se g: $IR \rightarrow IR_+$ tal que $g(x) = x^2$ é uma função inversível. Caso afirmativo, encontra a lei da g^{-1} .
- 7) Verifica se h $IR_+ \rightarrow IR$ tal que h(x) = x^2 é uma função inversível. Caso afirmativo, encontra a lei da h⁻¹.
- 8) Verifica se p: $IR_+ \rightarrow IR_+$ tal que p(x) = x^2 é uma função inversível. Caso afirmativo, encontra a lei da p^{-1} .
- **9)**Verifica se g: IR \rightarrow IR tal que g(x) = x^3 é uma função inversível. Caso afirmativo, encontra a lei da g^{-1} .
- **10**) Verifica se f: IR \rightarrow IR tal que f(x) = 5x-3 é uma função inversível. Caso afirmativo, encontra a lei da f⁻¹.
- **11**)Encontre o maior domínio $A \subseteq IR$ de tal forma que f, definida por $f(x) = (x-1)(x+2)^{-2}$ seja uma função.
- 12) Encontre condições sobre os conjuntos A e B, subconjuntos de IR, de modo que $y=1/x^2$ seja uma função inversível.

- 13) Sejam os conjuntos A={1,2,3} e B = { a, b, c}. Determine, se existir:
 - a) uma bijeção de A em B
 - b) uma função sobrejetora e não injetora de A em B.
 - c) uma função injetora e não sobrejetora de A em B.
 - d) uma função não injetora e não sobrejetora de A em B.
- **14)** Sejam A e B conjuntos com m e n elementos, respectivamente.
 - a) Determine condições para m e n de forma que não seja possível encontrar uma função injetora de A em B.
 - b) Determine condições para m e n de forma que seja possível encontrar uma função bijetora de A em B.
- **15)** Verifique se f: $ZxZ \rightarrow Z$ definida por f(x,y) = x y é injetora, sobrejetora ou bijetora.