

Structure Inference in Sum-Product Networks Using Infinite Sum-Product Trees

Martin Trapp^{1,2}, Robert Peharz³, Marcin Skowron¹, Tamas Madl¹, Franz Pernkopf² and Robert Trappl¹

¹Austrian Research Institute for Artificial Intelligence ²Graz University of Technology ³Medical University of Graz

MOTIVATION

Sum-Product Networks (SPNs) are a highly efficient type of a deep probabilistic model that allows exact inference in time linear in the size of the network. Previous work on Bayesian sum-product networks neglected induced trees in their posterior construction and could not report quantitative results and comparisons to existing approaches. We introduce the first Bayesian nonparametric extension of sum-product networks with a posterior distribution based on induced trees. We show that our infinite Sum-Product Trees (SPTs) allow to discover structures with high modelling performance while maintaining a good generalisation behaviour.

SUM-PRODUCT NETWORKS

Sum-Product Networks (SPNs) can be defined recursively, as weighted sums and products of smaller SPNs, with univariate or multivariate probability distributions as leaf nodes. In a complete and decomposable SPN, all children of a sum node have the same variable scope as the sum, whereas the children of each product partition the product's scope into non-empty disjoint sub-scopes. Complete and decomposable SPNs can be represented as a sum of induced trees. The generative process of normalized SPNs can be described by:

- 1. Selecting an induced tree with probability proportional to its weights: $P(\mathcal{T}) \propto \prod_{w \in \mathcal{T}} w$
- 2. Sampling the observation from the leaf nodes of \mathcal{T} .

INFINITE SUM-PRODUCT TREES

Starting at the root node with scope V, for each observation $n=1,\ldots,N$

- 1. If the scope $V_S \subseteq V$ for the current node S is multivariate:
 - Draw weights $w_S \sim \text{Dir}(\alpha_S)$ to the group nodes directly below S.
 - Draw the latent assignments $c_{S,n} \sim \text{Multi}(\boldsymbol{w}_S)$ to the group nodes and draw the partition of each group node $u_{c_{S,n}} \sim \mathrm{U}(1, \left\{ { |V_S| \atop 2} \right\})$ without replacement.
 - For each selected group node, draw latent assignments $z_{c_{S,n}} \sim \text{CRP}(\beta_{c_{S,n}})$ for the observations to product nodes.
 - For each selected product, partition the scope into non-empty disjoint sub-scopes and for each child of the product, apply the infinite SPT process recursively.
- 2. Else for node S with univariate scope $d \in V$:
 - Draw latent leaf assignments $c_{S,n} \sim \text{CRP}(\gamma_S)$ and draw distribution parameters $\theta_{c_{S,n}}$ from an appropriate prior.
 - Generate the value of the d^{th} dimension for the n^{th} observation from an appropriate leaf node distribution parametrized with $\theta_{c_{S,n}}$.

Figure: Illustration of infinite sum-product trees. Note that $V_i \neq V_j \ \forall (i,j) \in \{a,b,c,d\}$ and all V_i with $i \in \{a,b,c,d\}$ are non-empty sub-scopes of V. Moreover, $V_a \cup V_b = V$, $V_a \cap V_b = \emptyset$ and $V_c \cup V_d = V$, $V_c \cap V_d = \emptyset$.

DENSITY ESTIMATION RESULTS

Infinite SPTs favour deep structures allowing the model to fit complex distributions more easily than shallow architectures.

Figure: Log density modelled on Old Faithful data by an infinite SPT and an infinite Gaussian mixture.

Infinite Gaussian mixture

Table: Average 10-fold cross-validation log predictive densities and Mann-Whitney U *p*-values.

Dataset	infinite Gaussian mixture	infinite SPT	<i>p</i> -values
Old Faithful Chemical Diabetes Iris	-1.737 -3.022 -3.943	-1.700 -2.879 -3.744	< 0.01 < 0.01 < 0.01

- A. Darwiche. A differential approach to inference in Bayesian networks. *Journal of the ACM (JACM)*, 50(3):280–305, 2003.
- H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In *UAI*, pages 337–346, 2011. S.W. Lee, C.J. Watkins, and B.T. Zhang. Non-parametric bayesian sum-product networks. In Workshop on LTPM, 2014.
- H. Zhao, T. Adel, G. Gordon, and B. Amos. Collapsed variational inference for sum-product networks. In ICML, pages 1310–1318, 2016.

VARIABLE DISCOVERY

In contrast to infinite Gaussian mixtures, observations are generated from induced trees. We therefore implicitly obtain an assignment hierarchy which can be analysed using a dendrogram constructed on the induced tree assignments.

 $V = \{1, ..., D\}$

Figure: Group assignments estimated by an infinite SPT on the Chemical Diabetes dataset. Colouring of the assignments encodes the induced trees mapped to a one dimensional embedding. The enlarged section illustrates the induced trees of two observations.

ACKNOWLEDGMENTS

Funded by the Austrian Science Fund, grant no. P 27530.