I. kolo kategorie Z7

Z7-I-1

Trpaslíci si chodí k potoku pro vodu. Džbánek každého z trpaslíků je jinak velký: mají objemy 3, 4, 5, 6, 7, 8 a 9 litrů. Trpaslíci si džbánky mezi sebou nepůjčují a vždy je přinesou plné vody.

- Kejchal přinese ve svém džbánku víc vody než Štístko.
- Dřímal by musel jít pro vodu třikrát, aby přinesl právě tolik vody jako Stydlín v jednom svém džbánku.
- Prófův džbánek je jen o 2 litry větší než Štístkův.
- Sám Šmudla přinese tolik vody jako Dřímal a Štístko dohromady.
- Když jdou pro vodu Prófa a Šmudla, přinesou stejně vody jako Rejpal, Kejchal a Štístko.

Kolik vody přinesou dohromady Kejchal a Šmudla?

(M. Petrová)

Nápad. Začněte druhou podmínkou.

Možné řešení. Z druhé podmínky plyne, že Dřímalův džbánek má objem 3 litry a Stydlínův 9 litrů (platí $3 \cdot 3 = 9$, a kdyby měl Dřímal džbánek jiný, musel by být Stydlínův džbánek aspoň dvanáctilitrový).

Nyní ze čtvrté podmínky plyne, že Šmudlův džbánek je o 3 litry větší než Štístkův. Společně s třetí podmínkou tak víme, že Štístko, Prófa a Šmudla mají postupně džbánky s objemy buď 4, 6 a 7, nebo 5, 7 a 8 litrů.

Z první podmínky potom plyne, že jediné možnosti, jak měli trpaslíci džbánky rozděleny, jsou:

3	4	5	6	7	8	9
Dřímal	Štístko	Kejchal	Prófa	Šmudla	Rejpal	Stydlín
Dřímal	Štístko	Rejpal	Prófa	Šmudla	Kejchal	Stydlín
Dřímal	Rejpal	Štístko	Kejchal	Prófa	Šmudla	Stydlín

Ověříme-li poslední, pátou, podmínku, zjistíme, že první dvě vyznačené možnosti nevyhovují $(6+7 \neq 8+5+4)$, zatímco třetí ano (7+8=4+5+6). Kejchal se Šmudlou tedy dohromady přinesou 6+8=14 litrů vody.

Z7-I-2

Na obrázku je čtverec ABCD, ve kterém jsou umístěny čtyři shodné rovnoramenné trojúhelníky ABE, BCF, CDG a DAH, všechny šedě vybarvené. Strany čtverce ABCD jsou základnami těchto rovnoramenných trojúhelníků. Víme, že šedé plochy čtverce ABCD mají dohromady stejný obsah jako jeho bílá plocha. Dále víme, že $|HF|=12\,\mathrm{cm}$. Určete velikost strany čtverce ABCD. (L. Šimůnek)

Nápad. Vhodně si obrazec rozdělte.

Možné řešení. Ve čtverci ABCD vyznačíme obě úhlopříčky a spojnice středů protilehlých stran. Čtyři takto doplněné úsečky se protínají v jediném bodě S a rozdělují obrazec beze zbytku na osm shodných trojúhelníků. Jeden z nich jsme v obrázku označili STC.

Těchto osm trojúhelníků se shoduje i ve svých šedě vybarvených částech, a proto zadanou podmínku o obsazích můžeme užít pro každý tento trojúhelník zvlášť. V případě trojúhelníku STC proto platí, že jeho šedá a bílá plocha, tedy trojúhelníky FTC a SFC, mají stejný obsah. Oba trojúhelníky mají výšku TC. Aby měly stejný obsah, musejí být stejné i velikosti stran kolmých k této výšce, tedy |FT| = |SF|. Délka úsečky SF je poloviční vzhledem k délce uvedené v zadání, tudíž je 6 cm. Velikost úsečky ST je pak 6+6=12 (cm) a velikost strany čtverce ABCD je $2\cdot 12=24$ (cm).

Jiné řešení. Ve všech šedých rovnoramenných trojúhelnících vyznačíme výšku kolmou k základně. Tím rozdělíme původní trojúhelníky na osm shodných pravoúhlých trojúhelníků, které uvnitř čtverce *ABCD* přemístíme tak, jak ukazuje obrázek.

Ve čtverci ABCD jsme dostali dva shodné šedé obdélníky a jeden obdélník bílý. Strany těchto tří obdélníků, které jsou na obrázku svislé, mají stejnou délku. Velikost strany bílého obdélníku, která je na obrázku vodorovně, je zadaných $12\,\mathrm{cm}$. Aby šedé plochy a bílá plocha měly stejný obsah, musejí mít vodorovné strany obou šedých obdélníků dohromady délku také $12\,\mathrm{cm}$. Velikost strany čtverce ABCD je tedy $24\,\mathrm{cm}$.

Z7-I-3

Sedm bezprostředně po sobě jdoucích celých čísel stálo v řadě, seřazeno od nejmenšího po největší. Po chvíli se čísla začala nudit, a tak se nejdřív první vyměnilo s posledním, potom se prostřední posunulo úplně na začátek řady a nakonec si největší z čísel stouplo doprostřed. Ke své veliké radosti se tak ocitlo vedle čísla se stejnou absolutní hodnotou. Kterých sedm čísel mohlo stát v řadě?

(S. Bednářová)

Nápad. Zjistěte rozdíl zmíněných dvou čísel se stejnou absolutní hodnotou.

Možné řešení. Čísla označíme podle velikosti vzestupně jako 1. až 7. Jejich rozmístění se postupně měnilo takto:

1.	2.	3.	4.	5.	6.	7.
7.	2.	3.	4.	5.	6.	1.
4.	7.	2.	3.	5.	6.	1.
4.	2.	3.	7.	5.	6.	1.

Dvě čísla se stejnou absolutní hodnotou mohou být buď 3. a 7., nebo 7. a 5. Protože jde o dvojici různých čísel, musí být jedno kladné a druhé záporné. Kladné je větší z nich, tedy 7. číslo.

Nejprve uvažujme, že stejnou absolutní hodnotu mají 3. a 7. číslo. Jejich rozdíl je 4, větší z nich je tedy rovno 4:2=2. Nejmenší číslo v řadě je o 6 menší než 7. číslo a je to tedy číslo 2-6=-4.

Nyní uvažujme, že stejnou absolutní hodnotu mají 7. a 5. číslo. Jejich rozdíl je 2, větší z nich je rovno 2:2=1. Nejmenší číslo v řadě je pak 1-6=-5.

V řadě mohla stát celá čísla od -4 do 2 nebo od -5 do 1.

Z7-I-4

Učitelka Smolná připravovala prověrku pro svou třídu ve třech verzích, aby žáci nemohli opisovat. V každé verzi zadala tři hrany kvádru a dala za úkol vypočítat jeho objem. Úlohy si ale dopředu nevyřešila, a tak netušila, že výsledek je ve všech třech verzích stejný. Do zadání žákům zapsala tyto délky hran: 12, 18, 20, 24, 30, 33 a 70, všechny v centimetrech. Z devíti délek hran, které učitelka Smolná zadala, jsme vám tedy prozradili pouze sedm a ani jsme nesdělili, které délky patří do téhož zadání. Určete zbylé dvě délky hran.

 $(L. \check{S}imůnek)$

Nápad. Rozložte si zadané délky na součin prvočísel.

Možné řešení. Rozložíme délky všech hran na součiny prvočísel:

$$12 = 2 \cdot 2 \cdot 3, \ 18 = 2 \cdot 3 \cdot 3, \ 20 = 2 \cdot 2 \cdot 5,$$

 $24 = 2 \cdot 2 \cdot 2 \cdot 3, \ 30 = 2 \cdot 3 \cdot 5, \ 33 = 3 \cdot 11, \ 70 = 2 \cdot 5 \cdot 7.$

V těchto součinech se nacházejí činitelé 7 a 11, tedy výsledný objem musí být násobkem čísla 77. Činitelé 7 a 11 jsou v zadaných délkách obsaženy každý pouze jednou, a to v hranách 33 a 70. Rozhodněme, zda tyto délky mohou patřit ke dvěma různým kvádrům.

Kdyby hrany 33 a 70 patřily k různým kvádrům, musel by kvádr s hranou 33 mít další hranu rovnu násobku sedmi, kvádr s hranou 70 by musel mít další hranu rovnu násobku jedenácti a poslední kvádr by musel mít mezi svými hranami násobek sedmi a násobek jedenácti. Právě jsme předpokládali existenci aspoň tří hran, které nejsou uvedeny v zadání, ale v něm přitom chybějí pouze dvě. Tím jsme ukázali, že hrany 33 a 70 patří ke stejnému kvádru. Nyní určíme třetí hranu tohoto kvádru.

Obě délky hran, které nejsou v zadání uvedeny, musejí být násobky čísla 77 a patřit ke zbylým kvádrům. Zbývající hranu našeho kvádru proto musíme hledat mezi zadanými hranami. Všimněme si hran 18 a 24. Podle první odvodíme, že výsledný objem je násobkem devíti (tj. $3 \cdot 3$), podle druhé jde zároveň o násobek osmi (tj. $2 \cdot 2 \cdot 2$). V součinech odpovídajících hranám 33 a 70 se nacházejí činitelé 2 a 3 každý pouze jednou. Třetí hrana uvažovaného kvádru proto musí mít ve svém rozkladu součin $2 \cdot 2 \cdot 3$. V zadání tak můžeme vybrat buď hranu 12, nebo 24.

Uvažujme nejprve o možnosti, že jeden z kvádrů má hrany 33, 70 a 12 a tedy že kvádry mají objem $2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 7 \cdot 11$. Pro druhý kvádr vybereme hranu 24 a vidíme, že ten už nesmí mít v délce žádné další hrany činitel 2. V zadání však zbývají pouze délky s činitelem 2. Možnost s kvádrem o hranách 33, 70 a 12 proto musíme zavrhnout.

Nyní uvažujme o možnosti, že jeden z kvádrů má hrany 33, 70 a 24 a tedy že kvádry mají objem

$$2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 7 \cdot 11$$
.

Na hrany zbylých dvou kvádrů snadno přijdeme, pokud se držíme poznatku, že kvádr musí mít v délkách svých hran právě jednou činitel 5 a právě dvakrát činitel 3: druhý kvádr má hrany

$$30 = 2 \cdot 3 \cdot 5$$
, $12 = 2 \cdot 2 \cdot 3$, $154 = 2 \cdot 7 \cdot 11$

a hrany třetího kvádru jsou

$$20 = 2 \cdot 2 \cdot 5$$
, $18 = 2 \cdot 3 \cdot 3$, $154 = 2 \cdot 7 \cdot 11$.

Délky zbylých dvou hran, které nejsou uvedeny v zadání, jsou shodně 154 cm.

Z7-I-5

Jeden vnitřní úhel v trojúhelníku měří 50° . Jak velký úhel svírají osy zbývajících dvou vnitřních úhlů? (L. Hozová)

Nápad. Nemusíte znát velikosti zbylých vnitřních úhlů, abyste úlohu dořešili.

Možné řešení. Uvažujme trojúhelník ABC s úhlem 50° u vrcholu A; neznámé úhly u vrcholů B a C označíme β a γ . Průsečík os vnitřních úhlů označíme O, úhel BOC označíme ω a úhel k němu vedlejší ψ .

Součet vnitřních úhlů v libovolném trojúhelníku je 180°. Proto i v trojúhelnících ABC a OBC platí

$$50^{\circ} + \beta + \gamma = 180^{\circ},$$

$$\omega + \frac{\beta}{2} + \frac{\gamma}{2} = 180^{\circ}.$$

Z druhé rovnosti a z toho, že ω a ψ jsou vedlejší úhly, plyne

$$\psi = \frac{\beta}{2} + \frac{\gamma}{2}.$$

Z první rovnosti vyjádříme

$$\frac{\beta}{2} + \frac{\gamma}{2} = \frac{130^{\circ}}{2} = 65^{\circ},$$

tudíž odchylka os zbývajících dvou vnitřních úhlů je 65°.

Poznámka. Odpověď, že osy svírají úhel $\omega=180^\circ-65^\circ=115^\circ,$ považujte také za správnou.

Z7-I-6

Hledáme šestimístný číselný kód, o němž víme, že:

- žádná číslice v něm není vícekrát,
- obsahuje i 0, ta však není na předposledním místě,
- ve svém zápisu nemá nikdy vedle sebe dvě liché ani dvě sudé číslice,
- sousední jednomístná čísla se liší aspoň o 3,
- čísla, která získáme přečtením prvního a druhého dvojčíslí, jsou obě násobkem čísla vzniklého přečtením třetího, tedy posledního dvojčíslí.

Určete hledaný kód.

(M. Volfová)

Nápad. Zaměřte se na to, jak vypadají jednotlivá dvojčíslí, zvláště to poslední.

Možné řešení. Poslední číslice nemůže být 0 ani 5: kdyby tomu tak bylo, pak by podle páté podmínky první i druhé dvojčíslí končilo buď 0 nebo 5, takže číslice 0 nebo 5 by byla v kódu obsažena vícekrát, což odporuje podmínce první.

S tímto poznatkem spolu s ostatními podmínkami ze zadání začneme vypisovat všechna možná dvojčíslí, která se mohou vyskytovat na konci kódu. Navíc, aby byla splněna pátá a první podmínka, má smysl uvažovat pouze taková dvojčíslí, která mají alespoň dva různé násobky menší než 100. Všechny vyhovující možnosti jsou uvedeny v levém sloupci následující tabulky. Pravý sloupec pak obsahuje všechny jejich dvojmístné násobky, které případně mohou tvořit první a druhé dvojčíslí hledaného kódu.

14	28, 42, 56, 70, 84, 98
16	32, 48, 64, 80, 96
18	36, 54, 72, 90
27	54, 81
29	58, 87

Pokud vyřadíme všechna dvojčíslí, která nevyhovují třetí nebo čtvrté podmínce ze zadání, zůstává pouze:

14	70
16	96
18	36, 72, 90
27	81
29	58

Odtud je zřejmé, že poslední dvojčíslí musí být 18. Aby byla splněna druhá podmínka, musí být jedno ze zbylých dvojčíslí 90, a aby byla splněna čtvrtá podmínka, musí být 90 jako

první. Ze stejného důvodu nemůže jako druhé dvojčíslí být 72, zbývá už jen 36. Výsledný kód tedy může být jedině 903618 a kontrolou všech podmínek ze zadání zjistíme, že tomu tak skutečně je.

Poznámka. Vedle úvodního poznatku, že 0 nemůže být poslední číslicí, lze využít i toho, že 0 nemůže být na prvním ani na třetím místě. (Jinak by první nebo druhé dvojčíslí představovalo jednomístné číslo, tudíž podle páté podmínky by i poslední dvojčíslí muselo být jednomístné číslo a na pátém místě by musela být zase 0, což nelze.) Proto je 0 buď na druhém, nebo čtvrtém místě. Ze třetí podmínky potom plyne, že sudé číslice mohou být jen na sudých a liché na lichých místech. Následující diskuze se tak poněkud zjednoduší.