Modelo con descuento en todas las Unidades Compradas - Supuestos

- Es posible estimar la demanda anual. El costo de almacenar y el costo de pedir un material.
- No hay inventario de seguridad
- Los pedidos se reciben todos de una vez
- Los materiales se utilizan a una tasa uniforme y al llegar el siguiente pedido se ha utilizado la totalidad de los materiales.
- Si existen descuentos por cantidad. Conforme se piden cantidades más grandes, se aplican descuentos en el precio para todas las unidades pedidas.

Modelo con descuento en todas las Unidades Compradas

A medida que la cantidad comprada supera ciertos umbrales el precio unitario va disminuyendo

Gráfico de este Modelo

Determinación del Lote Optimo Método de Boodman y Magee

- **a)**Se Calcula lote económico usando el precio unitario menor (p_5). Si el lote calculado está dentro del rango de admisibilidad ($Q > Q_4$) esta es la solución óptima.
- **b)**Si la Q calculada no está en el rango (Q < Q_4) se calculan los costos totales para cada rotura de precio (CT₅ para Q_4 , CT₄ para Q_3 , CT₃ para Q_2 , CT₂ para Q_1).

- c) Se calculan los lotes económicos para cada precio unitario.
- d) Se determinan los costos totales asociados a cada lote económico calculado en
- c) No se consideran las soluciones no admisibles.
- e) El lote óptimo es el asociado al menor costo entre los calculados en b y d, es decir, los de rotura y los óptimos admisibles.

Cantidad	Descuento	Costo de adquisición (Cu)
X < 1000	0	5
1000 - 2499	3%	4,85
X > 2500	5%	4,75

- Demanda = 5000
- Costo de pedir = 49 \$us.
- Costo de mantenimiento del inventario es del 20% (El veinte por ciento de lo que se tiene invertido, es decir, del Cu)

• Aplicando el modelo EOQ

Cantidad	Descuento	Costo de adquisición (Cu)		EOQ
X < 1000	0	5	700	700
1000 - 2499	3%	4,85	1000	710,742
X > 2500	5%	4,75	2500	718,185

• Aplicando el modelo EOQ

Cantidad	Descuento	Costo de adquisición (Cu)	EOQ MIN	Costo almacenamiento	Costo Pedido	Costo compra	COSTOS TOTALES	EOQ
X < 1000	0	5	700	350	392	25000	25742	700
1000 - 2499	3%	4,85	1000	485	245	24250	24980	710,742
X > 2500	5%	4,75	2500	1187,5	98	23750	25035,5	718,185

Modelo con Descuentos Según Incrementos de Cantidad

$$\begin{aligned} & Q < Q_1 & C_{adq} = p_0 x Q \\ & Q_1 < Q < Q_2 & C_{adq} = R_1 + p_1 x (Q - Q_1) & R_1 = p_0 x Q_1 \\ & Q_2 < Q < Q_3 & C_{adq} = R_2 + p_2 x (Q - Q_2) & R_2 = R_1 + p_1 x (Q_2 - Q_1) \end{aligned}$$

El mínimo no se producirá en una de las roturas de precios sino en uno de los mínimos de las curvas de Costos totales

• En este caso el costo de adquisición es el siguiente:

$$C_{adq.}$$
 = R_j + p_j x (Q - Q_j)
o unitario :
$$\frac{C_{adq.}}{Q}$$
 = $\frac{R_j}{Q}$ + p_j - p_j x $\frac{Q_j}{Q}$

Por lo que el costo total queda:

$$CT = D \times \frac{C_{adq.}}{Q} + C_a \times \frac{Q}{2} + C_e \times \frac{D}{Q}$$

$$CT = D \times p_j + C_a \times \frac{Q}{2} + \frac{D}{Q} \times [R_j - p_j \times Q_j + C_e]$$

Derivando obtenemos el óptimo:

$$Q_{j \text{ opt}} = \sqrt{\frac{2 \times D \times (R_j - p_j \times Q_j + C_e)}{C_a}}$$

Que se particulariza para cada umbral:

$$Q < Q_1 ; p_j = p_0 ; R_j = 0$$
 $Q_{0 \text{ opt}} = \sqrt{\frac{2 x D x C_e}{C_a}}$

$$Q_1 < Q < Q_2$$
; $p_j = p_1$; $R_j = R_1 = p_0 \times Q_1$

$$Q_{1 \text{ opt}} = \sqrt{\frac{2 \times D \times (R_1 - p_1 \times Q_1 + C_e)}{C_a}}$$

$$Q_2 < Q < Q_3$$
; $p_j = p_2$; $R_j = R2 = p_0 x Q_1 + p_1 x (Q_2 - Q_1)$

$$Q_{2^{\text{opt}}} = \sqrt{\frac{2 \times D \times (R_2 - p_2 \times Q_2 + C_e)}{C_a}}$$

La admisibilidad se comprueba verificando que :

$$Q_j < Q_{jopt} < Q_{j+1}$$

Finalmente se calculan los costos totales para los óptimos admisibles y la cantidad que entregue el mínimo será el óptimo del problema

Maliban tiene más de 200 tiendas en España. La empresa compra productos de un restringido número de proveedores y almacenes ubicados cerca de sus instalaciones en Sevilla. Maliban espera vender 3000 cajas de colores en este año. El costo de mantener este producto es, 30%. Colocar una orden cuesta €50. El proveedor ofrece una caja a €5, si la cantidad comprada es menos de 500 cajas. El precio se reduce en 10% si se compra entre 500 y 2000 cajas. Finalmente si se compra más de 2000 cajas son ordenadas se puede conseguir una rebaja adicional de 10%. Cual es la cantidad que se debe ordenar?

Solución

$$Q_{1} = \sqrt{\frac{2 \times 3000 \times 50}{0.3 \times 5}} = 447 \, cajas$$

$$Q_{2} = \sqrt{\frac{2 \times 3000 \left[50 + (5 \times 500) - (4.5 \times 500)\right]}{0.3 \times 4.5}} = 1154.7 \, cajas$$

$$Q_{3} = \sqrt{\frac{2 \times 3000 \left[50 + \left[(5 \times 500) + (4.5 \times 1500)\right] - 4.0 \times 2000\right]}{0.3 \times 4.0}} = 2549.5 \, cajas$$

Solución

$$CT_1 = 3000 \times 4 + 3000 \times \frac{448}{2} + \frac{50 \times 4.5}{448} = 15671\$ us$$

$$CT_2 = \frac{3000}{1154} \times \left(500 \times 5 + 4.5 \times (1155 - 500)\right) + 0.3 \times 4.5 \times \frac{1155}{2} + 50 \times \frac{3000}{1155} = 15058.82\$ us$$

$$CT_3 = \frac{3000}{2550} \times \left(500 \times 5 + 4.5 \times (2000 - 500)\right) + 4 \times \left(2550 - 2000\right)\right) + \frac{0.3 \times 4 \times 2550}{2} + \frac{50 \times 3000}{2550} = 15059.41\$ us$$

