Probabilidade e Estatística Aula 3 – Convergência estocástica

Luis A. F. Alvarez

24 de janeiro de 2025

VETORES ALEATÓRIOS

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade.
- Um vetor aleatório $\mathbf{Y}: \Omega \mapsto \mathbb{R}^k$ é uma função tal que cada coordenada $\mathbf{Y}_I: \Omega \mapsto \mathbb{R}, \ I=1,\ldots,k$, é uma variável aleatória real.
- Um vetor aleatório induz uma distribuição de probabilidade sobre $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$, dada por $\mathbb{P}_{\mathbf{Y}}[B] = \mathbb{P}[\mathbf{Y}^{-1}(A)]$, $A \in \mathcal{B}(\mathbb{R}^k)$.
- Pelo lema do π -sistema, essa distribuição de probabilidade é carectarizada pela função de distribuição $F_{\mathbf{Y}}: \mathbb{R}^k \mapsto [0,1]$, dada por:

$$F_{m{Y}}(m{c}) \coloneqq \mathbb{P}_{m{Y}}\left[\prod_{l=1}^k (-\infty, m{c}_k]\right], \quad m{c} \in \mathbb{R}^k.$$

Convergência quase-certa

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade, e $\mathbf{Y}_1, \mathbf{Y}_2, \ldots$ uma sequência de vetores aleatórios.
- Dizemos que Y_n converge quase-certamente para um vetor aleatório Y, denotado por $Y_n \stackrel{\text{q.c.}}{\longrightarrow} Y$, se:

$$\mathbb{P}[\{\omega: \mathbf{Y}_n(\omega) \nrightarrow \mathbf{Y}(\omega)\}] = 0.$$

- Sequência de funções \mathbf{Y}_n convergem (ponto a ponto), a não ser num conjunto de pontos de probabilidade zero.

LEMA

 $\mathbf{Y}_n \overset{q.c.}{\to} \mathbf{Y}$ se, e somente se, para todo $\epsilon > 0$:

$$\mathbb{P}\left[\limsup_{n}\{\omega:\|\boldsymbol{Y}_{n}(\omega)-\boldsymbol{Y}(\omega)\|>\epsilon\}\right]=0.$$

CONVERGÊNCIA EM PROBABILIDADE

- Dizemos que \boldsymbol{Y}_n converge em probabilidade para um vetor aleatório \boldsymbol{Y} , denotado por $\boldsymbol{Y}_n \overset{p}{\to} \boldsymbol{Y}$, se, para todo $\epsilon > 0$:

$$\lim_{n\to\infty} \mathbb{P}\left[\left\{\omega: \|\boldsymbol{Y}_n(\omega) - \boldsymbol{Y}(\omega)\| > \epsilon\right\}\right] = 0.$$

LEMA

Se $\mathbf{Y}_n \stackrel{q.c.}{\to} \mathbf{Y}$, então $\mathbf{Y}_n \stackrel{p}{\to} \mathbf{Y}$.

Convergência em distribuição

- Dizemos que \mathbf{Y}_n converge em probabilidade para um vetor aleatório \mathbf{Y} , denotado por $\mathbf{Y}_n \overset{p}{\to} \mathbf{Y}$, se, para todo $\epsilon > 0$:

$$\lim_{n\to\infty} \mathbb{P}\left[\left\{\omega: \|\boldsymbol{Y}_n(\omega) - \boldsymbol{Y}(\omega)\| > \epsilon\right\}\right] = 0.$$

LEMA

Se $\mathbf{Y}_n \stackrel{q.c.}{\to} \mathbf{Y}$, então $\mathbf{Y}_n \stackrel{p}{\to} \mathbf{Y}$.