Descriptive Statistics

Descriptive Statistics

- These are used to describe the samples you are concerned with.
- They are used for Getting the 'feel' of the data; for use in the statistical tests themselves.
- Example When you guide a friend coming for the first time to your home about the time it would take to reach from his/her home is a 'mean' value of travel time. The more often you have taken the journey earlier, the better would be the estimate.
- Say, you suggest that it would take 50 minutes to reach, give or take 10 minutes either side, traffic permitting. This is an estimate of 'standard deviation'

Measures of central tendency

• Suppose the lengths of sample western painted turtles from a data set are – 28.5, 18.75, 22.9, 25.4, 25.4, 23.7, 23.9 cms.

• Mean: 24.078

• Median: 23.9

• Mode:25.4

Disadvantages of averages (Mean)

- Averages do not tell the whole story
- Averages are susceptible to outliers. Outliers skew the averages and pull them in their direction.
- Averages make us believe that data points are clustered around a point higher or lower than where they truly cluster.
- Averages do not account for segments in data.
- Another time when we should not use is the case where the data is skewed i.e the data is not symmetrical normally distributed.
- In skewed data the mean is dragged away from the central position because of the skewness.
- Mean cannot be used for categorical data as the values cannot be summed up

Disadvantages of averages (Mean) Contd....

 Let the salary(in thousand rupees) of the employee of an IT company are as follows:

Staff ID	1	2	3	4	5	6	7	8	9	10
Salary	15	18	16	14	15	15	15	17	95	95

- The mean is 31.5 thousand.
- But if we observe the data most of the employee have salary in the range of 14-18 thousands.
- This happened because of the last two values which are the outliers

Median

- It is the middle value of the data set when the data is arranged in ascending order.
- If any value of data is changed the median does not changes as the position is changed not the value, unlike mean.

Media	n Odd
	23
	21
	18
	16
	15
	13
	12
	10
	9
	7
	6
	5
	2

Median	Even
	40
	38
	35
	33
	32
	30
20	29
28	27
	26
	24
	23
	22
	19
	17

• Courtesy: https://statisticsbyjim.com/basics/measures-central-tendency-mean-median-mode

Median Contd..

• Outliers and skewed data have less effect on median.

Consider the same example with outliers

Staff ID	1	2	3	4	5	6	7	8	9	10
Salary	15	18	16	14	15	15	15	17	95	95

• Median is 15.

Measures of dispersion

- Range is the simplest measure of variation. It is the difference between the highest value and the lowest value in the data set.
- Interquartile range describes the middle 50% of the values when ordered from lowest to highest.
- To calculate the IQR, we find the median of lower half and upper half of data. These are quartile 1 and quartile 3. The IQR is the difference between quartile 3 and quartile 1. IQR is resistant to outliers.
- Variance is the summed average squared difference of values from the mean.
- Standard deviation is calculated is the square root of variance.

Skewness

• Skewness means lack of symmetry. In statistics, a distribution is called symmetric, if mean, mode and median coincide.

• If the right tail is longer, we get a positively skewed distribution.

• If the left tail is longer, we get a negatively skewed distribution

Symmetric and Skewed Distribution

Kurtosis

- Epistemology Kurtos is a Greek word meaning curve or arch
- Kurtosis is a statistical measure that identifies whether the tails of a given distribution contain extreme values.
- Data sets with high kurtosis tends to have heavy tails or outliers
- Data sets with low Kurtosis tends to have light tails or outliers

Kurtosis Terminologies

Economic Applications

- Financial Markets
- <u>Kurtosis</u> isn't just a theory confined to mathematical textbooks; it has real life applications, especially in the world of economics. Fund managers usually focus on risks and returns, <u>kurtosis</u> (in particular if an investment is lepto- or platy-kurtic). According to stock trader and analyst Michael Harris, a leptokurtic return means that risks are coming from <u>outlier</u> events. This would be a stock for investors willing to take extreme risks. For example, real estate (with a kurt of 8.75) and High Yield US bonds (8.63) are high risk investments while Investment grade US bonds (1.06) and Small cap US stocks (1.08) would be considered safer investments.
- Ref.: https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/kurtosis-leptokurtic-platykurtic/