"2" Let ME M₂(IR) = {ME M₂(IR) | M^T = SMS}

"2" Let ME M₂(IR) with M^T = SMS.

We want to vhow that for every the R. e Mt = Sp₂(IR).

M^T = SMS.
$$\Rightarrow$$
 e M^T = e S(MH)S = e S(-MH)S^T = Se - Mt S^T.

(=) e M^T + Se Mt = S =) e Mt = Sp₂(IR) Wt

"C" \Rightarrow ME T₂ Sp₂(IR)

Let Me T₂ Sp₂(IR). Thun e Mt = Sp₂(IR) Wt

 \Rightarrow e M^T + Se Mt = S

 \Rightarrow d (e M^T + Se Mt) = d (S) = 0

 \Rightarrow MT S + SM = O => MT = -SMS = SMS.

3.2 Xelie G, Yelie N \Rightarrow (X,Y) = lie N.

e Xt e G Wt e R, e Ys = N & Se R.

Normal \Rightarrow e Xt e Ys - Xt e N & Ys, te N.

 \Rightarrow d (e Xt e S - Xt) = e lie N =>

d (e Xt e S - Xt) = e lie N =>

d (e Xt e S - Xt) = e lie N =>

=)
$$\frac{d}{dt} \left(e^{xt} e^{ys} - xt \right) \Big|_{t=0} \in \text{lie } N = 0$$

=) $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} \in \text{lie } N = 0$

=) $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} \in \text{lie } N = 0$

=) $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} \in \text{lie } N = 0$

=) $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} \in \text{lie } N = 0$

=) $\frac{d}{ds} \left(x e^{ys} - e^{ys} e^{ys} \right) \Big|_{t=0} = 0 = 0$

=) $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0 = 0$

exp: $\frac{d}{ds} \left(x e^{ys} - e^{ys} x \right) \Big|_{s=0} = xy - yx = 0$

 $X,Y \in \text{lie}(G, -)$ $e \times e^{Y} = e^{X+Y}$ (n fact, if XY = YX we have)

$$\mathcal{L} = \underbrace{\left(\frac{X+Y}{M} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ M \geq 0}} \left(\frac{\sum_{k=0}^{M} \binom{M}{k} \frac{X^{k} y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0 \\ k \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{\sum_{k=0}^{M} \frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_{M!} = \underbrace{\sum_{\substack{M \geq 0}} \left(\frac{X^{k}}{M!} \frac{y^{m-k}}{M!} \right)}_$$

So exp is a group hom. If G connected

G is greated by exp(lie G), but since

exp(lie G) is a group, the group greated by exp(lie G)

is again exp(lie G). Hence G = exp(lie G)

G connected =) exp: lie G → G sujective group hom. =) G ≥ lie G/km(exp).

Now lie G = 11° as as group.

 $\Gamma:=\ker(\exp)$ is a distribution of \mathbb{R}^n .

In fact, exp is a diffeomorphism on a neighborhood $\int O \in \mathbb{R}^n$, so $\Gamma \cap U = hO$ maning that Γ is discrete.