ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

1	2	3	4	5	Σ

Для студентов 2-го курса МФТИ.

5 июня 2008 года

ВАРИАНТ А

1А. Интерферометр Маха-Цандера

состоит из двух «глухих» зеркал 3_2 и 3_4 , и двух полупрозрачных зеркал 3_1 и 3_3 . В оба плеча интерферометра помещены одинаковые кюветы длиной l=50 см, торцы которых закрыты одинаковыми плоскопараллельными стеклянными пластинами (рис. 1). В обеих кюветах находится воздух; давление в одной из них равно атмосферному $P_1=P_{\rm atm}$; в другой кювете можно изотермически создавать избыточное давление $\Delta P=P_2-P_{\rm atm}$. Интер-

Рис. 1

ференционная картина исследуется с помощью фотоприёмника, имеющего достаточно малые размеры. Интерферометр отъюстирован так, что при равных давлениях в кюветах фотоприёмник находится в максимуме интенсивности интерференционной полосы нулевого порядка. В эксперименте была получена зависимость силы тока i фотоприёмника от избыточного давления (рис. 2). Предполагая, что изменение Δn показателя преломления воздуха пропорционально изменению ΔN концентрации молекул ($\Delta n = \alpha \Delta N$, $\alpha = \mathrm{const}$), определите из экспериментальных данных:

- 1. Коэффициент пропорциональности α .
- 2. Показатель преломления воздуха при нормальных условиях ($P=10^5~\Pi a,~T=0~^{\circ}C$).
- 3. Оцените относительную ширину $\Delta \lambda / \lambda$ спектра источника света.

Постоянная Больцмана $k=1,38\cdot 10^{-23}$ Дж/К, число Лошмидта $\Lambda=2,7\cdot 10^{25}$ м $^{-3}$ (число молекул в 1 м 3 при нормальных условиях), длина волны света $\lambda=600$ нм.

2А. При использовании в интерференционных опытах протяжённых источников допустимая разность хода Δ_{\max} может зависеть не только от немонохроматичности света, но и от размеров источника. Аналогично радиусу поперечной пространственной когерентности ρ_{\perp} (в направлении, перпендикулярном лучу), можно ввести понятие продольного радиуса пространственной когерентности ρ_{\parallel} . Рассмотрим удалённый квазимонохроматический источник света с угловым размером $\varphi \ll \pi$. Выделим на пути луча две точки P_1 и P_2 на расстоянии ρ друг от друга и разместим в этих точках два небольших

Рис. 3

полупрозрачных зеркала (или просто два рассеивателя) так, чтобы отражённый свет падал на экран (рис. 3). Если колебания в точках P_1 и P_2 когерентны, то на экране возникнет интерференционная картина, причём разность хода в центре экрана будет равна ρ . Оцените ρ_{\parallel} , то есть расстояние между точками P_1 и P_2 , при котором исчезнет интерференционная картина в центре экрана. Оцените также степень монохроматичности $\Delta \lambda/\lambda$ излучения, при которой ρ_{\parallel} перестанет зависеть от $\Delta \lambda$.

3А. Во сколько раз изменится отношение интенсивностей нулевого (m=0) и третьего (m=3) главных дифракционных максимумов в картине дифракции, наблюдаемой в фокальной плоскости линзы, (рис. 4), если решётку с периодом d и шириной щелей b=d/6 заменить «обратной» решёткой с тем же числом штрихов $N\gg 1$ и тем же периодом d, но со щелями шириной $a=\frac{5}{6}d=(d-b)$?

4А. Дифракционная решётка с амплитудной прозрачностью $\tau(x)=a(1+m\cos^2\Omega x)$ $(m<1,\,a$ — постоянная величина) просвечивается плоской монохроматической волной с длиной волны λ . Амплитуду волны можно принять равной 1. Предполагая, что $\Omega\ll k=2\pi/\lambda$, определите зависимость комплексной амплитуды поля A(x) от координаты x на плоскости, расположенной на расстоянии $z_0=2$ см от решётки (рис. 5), если $\lambda=5\cdot10^{-5}$ см, $\Omega=\pi\cdot10^2$ см $^{-1}$. Будет ли в этой плоскости видно изображение решётки?

Рис. 5

5А. Предположим, что концентрация N_e электронов в атмосфере Земли изменяется с высотой h по линейному закону: $N_e = \alpha h$, достигая на высоте $h_0 = 40$ км значения $(N_e)_0 = 2,5\cdot10^6$ см⁻³. При радиозондировании атмосферы вертикально вверх посылается короткий электромагнитный импульс со средней частотой $f_0 = 10$ МГц. Найдите время, через которое импульс возвратится на Землю, отразившись от ионосферного слоя с критической концентрацией электронов. На какой высоте $h_{\rm kp}$ произойдёт отражение?

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

1	2	3	4	5	Σ

Для студентов 2-го курса МФТИ.

5 июня 2008 года

ВАРИАНТ Б

1Б. Для измерения модуля всестороннего сжатия некоторой жидкости, показатель преломления которой при нормальном атмосферном давлении $n_0=1,50$, кювету с этой жидкостью поместили в одно из плеч интерферометра Майкельсона (рис. 1). Длина кюветы l=10 см. С помощью компрессора в жидкости можно было создавать избыточное давление $\Delta P=P-P_{\rm atm}$. Фотоприёмник достаточно малого размера был установлен в фокальной плоскости объектива O_2 . При $\Delta P=0$ зеркала интерферометра были установлены так, что фотоприёмник находился в максимуме интенсивности интерференционной полосы нулевого порядка. В эксперименте был снят график зависимости тока

Рис. 1

i фотоприёмника от избыточного давления в жидкости (рис. 2).

- 1. Предполагая, что изменение Δn показателя преломления жидкости пропорционально изменению её плотности, определите из приведённых экспериментальных данных модуль K всестороннего сжатия.
- 2. Оцените относительную спектральную ширину $\Delta \lambda/\lambda$ излучения источника S. Средняя длина волны света источника $\lambda=500$ нм.

$$\frac{\Delta V}{V_0} = -\frac{1}{K} \Delta P,$$

где $\frac{\Delta V}{V_0}$ — относительное изменение объёма жидкости, ΔP — изменение давления.

2Б. Параллельный пучок света ($\lambda = 0.5$ мкм) круглого сечения (R = 0.5 cm) фокусируется линзой с фокусным расстоянием F = 10 см в точке A (рис. 3). На каком расстоянии L от точки A расположена на оси линзы точка B, в которой наблюдается первый минимум интенсивности световой волны (оценка продольного размера фокального пятна).

Рис. 3

- 3Б. Если, подойдя близко к окну, смотреть на уличный фонарь через капроновую, почти прозрачную занавеску (толщина нитей занавески, по-видимому, заметно меньше расстояния между ними), то можно увидеть характерную дифракционную картину: кроме собственно изображения фонаря наблюдается линейка (или крест) пятен-изображений. Оказалось, что линейка состоит примерно из десяти пятен, причём расстояние между пятнами приблизительно вдвое больше их размера, а угловой размер всей наблюдаемой дифракционной картины равен примерно $\varphi \approx 2 \cdot 10^{-2}$. Средняя длина волны света $\lambda = 5 \cdot 10^{-5}$ см, расстояние до фонаря L = 50 м, диаметр зрачка глаза $d_{\rm 3p} = 5$ мм.
- 1. Каково строение занавески: толщина нитей и «плотность» занавески (число нитей на 1 cm)?
 - 2. Оцените также размер светящейся колбы фонаря.
- 4Б. Фазовая решётка, прозрачность которой выражается формулой $\tau(x)=ae^{im\cos^2\Omega x}$ ($m\ll 1,\ a={\rm const}$), просвечивается плоской монохроматической волной с длиной волны λ . Амплитуду волны можно принять равной 1.
- 1. Предполагая, что $\Omega \ll k = 2\pi/\lambda$, определите зависимость комплексной амплитуды поля A(x) от координаты x на плоскости, расположенной на расстоянии $z=z_0$ от решётки (рис. 4).

- Рис. 4
- 2. Можно ли визуально наблюдать изображение фазовой решётки на экране, расположенном на расстоянии $z_0 = 2$ см от решётки, если $\lambda = 500$ нм, $\Omega = \pi \cdot 10^2 \text{ cm}^{-1}$?
- 5Б. При вертикальном зондировании ионосферы передатчик геофизической ракеты посылает сигнал на частоте $f_0 = 50 \text{ M}\Gamma$ ц, а приёмник, расположенный в точке старта, принимает сигнал на частоте f и фиксирует доплеровский сдвиг $\Delta f = f - f_0$. Из-за нестабильности ионизированной оболочки Земли интеграл электронной концентрации N_e в вертикальном столбе от точки старта до верхней точки подъёма испытывает медленные изменения. В момент запуска ракеты можно принять

$$\frac{d}{dt} \int_{0}^{h_{\text{max}}} N_e(h) dh = 5 \cdot 10^9 \text{ cm}^{-2} \cdot \text{c}^{-1}.$$

Какими будут сдвиг частоты Δf и кажущаяся скорость v ракеты в верхней точке траектории, где ракета остановится? Считать, что частота передатчика на всех участках траектории значительно превышает частоту плазменных колебаний.