2005학년도 2학	학기 (중간고사)	학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 험 일 시	2005.10.21.금 (오전10:00~11:40)	성 명	점 수

1번~12번의 문제는 단답형으로 각 문제당 배점은 5점이 며 부분점수가 없다. 주어진 상자 안에 적힌 답에 의해 <u>서만 채점이 되니 주의할</u> 것.

1번~5번의 문제는 주어진 특이적분이나 급수들 중에서 수렴하는 것을 모두 고르는 문제이다. 답란에 수렴하는 것의 번호를 모두 고르고, 만일 수렴하는 것이 없으면 "없다"라고 써라.

- 1. ① $\int_0^1 \frac{1}{\sqrt{x}} dx$
- ② $\int_{0}^{1} \frac{1}{x^{2}} dx$

답:

- 2. ① $\int_{-1}^{1} \frac{1}{x^3} dx$
- $2\int_{-\infty}^{\infty} \frac{1}{x^2+1} dx$

답:

- 3. ① $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$ ② $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)}$

답:

- 4. ① $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}}$ ② $\sum_{n=1}^{\infty} \frac{n \ln n}{n^2 + 1}$

답:

답:

6. 함수 $y = \sin(-2x)$ 의 MacLaurin급수를 구하여라.

답:

7. 멱급수 $\sum_{n=1}^{\infty} \frac{2+n}{2n^2+n+1} \left(-\frac{x}{3}\right)^n$ 의 수렴구간을 구하 여라.

답:

8. 다음 표에서 직교좌표가 주어진 점은 극좌표를, 극 좌표가 주어진 점은 직교좌표를 구하여라.

점	직교좌표	극좌표
P	$(-3,\sqrt{3})$	답:
Q	답:	$(2, -\frac{3\pi}{2})$
R	답:	$(-1,-\pi)$

2005학년도 2학	학기 (중간고사)	학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 험 일 시	2005.10.21.금 (오전10:00~11:40)	성 명	점 수

9.	벡터	3i	-5i	$-4m{k}$	의	방향코사인들을	구하여라.

13번~16번의 문제는 서술형으로 각 문제당 배점은 10점이다. 풀이의 완성도에 따라 부분점수가 주어지므로 풀이과정을 쓸 것.

$$\cos \alpha =$$
 달: $\cos \beta =$ $\cos \gamma =$

13. 함수 $f(x) = \frac{x}{x^2 + 1}$ 의 MacLaurin 급수를 구하여라.

10.	두	벡터	a =	< 1	2, -3, 4	>	와	b =	< 2, 0,	-1 >
에	대	해서	벡터곱	a	imes b 를	구	하여	라.		

답:

11. 두 점 $P_1 = (1,-1,0)$ 과 $P_2 = (0,1,1)$ 을 지나는 직선의 대칭방정식을 구하여라.

답:

12. 원점에서 평면 $3x + 4y + 5z = 2\sqrt{2}$ 에 이르는 거리를 구하여라.

답:

2005학년도 2학	학기 (중간고사)	학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 혐 일 시	2005.10.21.금 (오전10:00~11:40)	성 명	점 수

14. 다음 매개변수곡선	14.	개변수곡		다음	L4.	1
---------------	-----	------	--	----	-----	---

$$\begin{cases} x = t^2 - 4 \\ y = t^3 - 4t \end{cases}$$

에 대하여, t=1 일 때의 $\frac{dy}{dx}$ 와 $\frac{d^2y}{dx^2}$ 를 구하여라.

$$\begin{cases} x = 5\cos t + \cos 5t \\ y = 5\sin t + \sin 5t \end{cases} (0 \le t \le \frac{\pi}{3})$$

의 길이를 구하여라.

2005학년도 2학	학기 (중간고사)	학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 혐 일 시	2005.10.21.금 (오전10:00~11:40)	성 명	점 수

16 . 원점을 통과하는 원 $r=2\cos heta-\sin heta$ 의 내부와	
심장형 $r=1-\sin heta$ 의 외부에 놓인 영역의 넓이	
를 구하여라.	