- 3.2. Визначення належності функції f4 до п'яти передцповних класів
- f(1111) = 1 => функція зберігає одиницю
- f(0000) = 0 => функція зберігає нуль
- f(0011) = f(1100) = piзнi => функція самодвоїста
- f(0001) > f(1110) => функція не монотонна
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний

3.3. Мінімізація функції f4

Метод Квайна-Мак-Класкі

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (КО), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4).

KO	K1	K2
<i>0001 (1</i>)	<i>0X01 (1</i>)	XX01 (1)
0101 (1)	X001 (1)	XX01 (1)
<i>0111 (1</i>)	01X1 (1)	X1X1 (1)
1001 (1)	X101 (1)	X1X1 (1)
-1100 (1)	X111 (1)	11XX (1)
-1101 (1)	1X01 (1)	11XX (1)
-1110 (1)	110X (1)	
-1111 (1)	11X0 (1)	
	11X1 (1)	
	111X (1)	

Рисунок 4.4 Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

Таблиця 4.3 Таблиця покриття

	0001(F1)	0101(F1)	0111(F1)	1001(F1)	1100(F1)	1101(F1)	1110(F1)	1111(F1)
XX01 (1)	+			+				
X1X1 (1)		+	+					
11XX (1)					+	+	+	+

Зм.	Арк.	№ докум.	Підп.	Дата

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {XXO1; X1X1; 11XX}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MH/I}\phi = (\overline{X2}X1) \ v \ (X3X1) \ v \ (X4X3)$

Метод невизначених коефіцієнтів

Ідея цього методу полягає у відкушанні ненульових коефіцієнтів при кожній імпліканті. Метод виконується у декілька етапів:

- 1. Рівняння для знаходження коефіцієнтів представляється у вигляді таблиці (таблиця 4.4).
- 2. Виконується відкреслення нульових рядків.
- 3. Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках.
 - 4. Імпліканти, що залишилися, поглинають імпліканти справа від них.

<i>X</i> ₄	<i>X</i> ₃	<i>X</i> ₂	X1	X_4X_3	X_4X_2	X_4X_1	X ₃ X ₂	X ₃ X ₁	X ₂ X ₁	$X_4X_3X_2$	X ₄ X ₃ X ₁	$X_4X_2X_1$	X ₃ X ₂ X ₁	X ₄ X ₃ X ₂ X ₁	f_4
Ð	Ð	Ð	Ð	00	-00	00	00	00	-00	000	000	000	000	0000	Ð
Ф	Ф	Ф	1	θθ	00	01	θθ	01	01	<i>-000</i>	<i>-001</i>	901	901	9001	1
Ф	Ф	1	Ф	θθ	0 1	00	0 1	00	10	<i>-001</i>	<i>-000</i>	<i>010</i>	<i>-010</i>	<i>0010</i>	Ð
Ф	Ф	1	1	<i>-00</i>	0 1	01	0 1	<i>-01</i>	-1 1	<i>-001</i>	<i>-001</i>	011	<i>-011</i>	<i>0011</i>	Đ
Ф	1	Ф	Ф	01	00	00	10	10	00	<i>-010</i>	<i>-010</i>	000	<i>-100</i>	<i>0100</i>	Ð
Ф	1	Ф	1	01	00	0 1	10	11	01	<i>-010</i>	911	_001	101	9101	1
Э	1	-1	Ф	01	01	00	-11	10	10	011	010	010	-110	0110	Ф
Ә	1	1	1	01	01	01	-11	11	-11	<i>011</i>	011	011	111	0111	1
1	Ф	Ф	Ә	10	10	10	00	00	00	-100	-100	-100	<i>-000</i>	1000	Ф
1	Ф	Ә	1	10	10	-1 1	00	0 1	01	-100	101	101	001	1901	1
1	Ф	-1	Ф	10	-11	10	0 1	<i>00</i>	10	-101	-100	-110	<i>010</i>	1010	Đ
1	Ф	-1	1	10	-1 1	-1 1	01	0 1	-1 1	-101	-101	-111	011	1011	Ф
1	1	Ф	Ф	11	10	10	10	10	<i>-00</i>	_110	110	-100	-100	1100	1
1	1	Ә	1	11	10	1 1	10	11	01	_110	111	101	101		1
1	1	1	Ф	11	1 1	10	-11	10	10	111	_110	-110	-110		1
1	1	1	1	11	1 1	1 1	1 1	11	-1 1	_111	111	-111	111		1

Таблиця 4.4 Метод невизначених коефіцієнтів

Зм.	Арк.	№ докум.	Підп.	Дата