You must show how you get your answer for a full credit in each problem. The final answer only will not get a full credit even if correct.

- 1. Represent the following decimal integers in the signed 2's complement binary number system which uses 9 bits for each number. And then express them in 12 bits through sign-extension.
 - 133
 - -200

	decimal	binary (9-bit)	binary (12-bit)	1					
	133	010000101	00010000101						
	-200	100111000	111100111008	9 700-	512-200=	3/2			
2) 133 2) 66 -12 -65 -13 -65	2)35	2/16 2/4 2/4	2/2 2/1	156 2/150 2/3/2 -14 -2 11 +6 -12	28 39 2 78 = 5	19	9 4 2/9 2/9 18 1	2 2 9 - 9 0	2/2 2/2
				12					
01000016	1			100	11100	0			
				# 5 0 -1	la de la companya de				

- 2. (a) Draw the memory map where the variables, V1, V2 and V3 with their starting addresses are shown.
 - (b) For each of the 6 highlighted instructions, derive the effective address (in hexadecimal) of the memory operand (source or destination) involved. Assume that all variables are initialized to zero.

	V1 V2 V3	ORG DS.B DS.W DS.B	\$900 4 1090/ 4 1090/ 100
#12 -> a #12 -> a #12 -> #0901 #80930 -> y #04 -> b #80931 -> y #80931 -> y #8090E -> X		/.ldaa	\$4000 \$ 09 04 71/2
# \$0 10 H 090F	instr	uction	effective address of memory operand
1509 →a V	mov	b #\$12,V	11 90 -> \$ 0900
#1090C->X7	ldaa	0,x	\$ 0 9 00
T10002->d	staa	1,x	pl=8090/
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	sty	b,x	#8 0930 -> \$0910
	sty	$^{2,+x}$	#\$0931 -> \$090E
1,2	ldaa	[d,x]	#0931
1-> x+d=#BO	90E		

EA \$1093/(\$0931)=\$00 -> a

3. For each of the arithmetic instructions, derive the result of arithmetic operation and determine if each flag is set ("1") or cleared ("0").

ldaa	#\$40
adda	#\$50
ldab	#\$70
-addb	#\$D0
ldaa	#\$A0
suba	#\$30
ldab	#\$30
subb	#\$70

1	7F	1	127
	1	1	
		1	
\$	80	1	-128

instruction	result of operation	Z	N	С	V
adda #\$50	\$90 -> a	0	1	0	1
addb #\$D0	#40 -> 6/	0	0	1/	0
suba #\$30	\$ 70 ->a	0	9	0	1
subb #\$70	\$ CO → 6	0	1	1	0

(1)
$$540 \Rightarrow a$$
 (1) $540 \Rightarrow b$ (1) $540 \Rightarrow b$ (1) $-500 \Rightarrow a$ (1) $540 \Rightarrow b$ (1) $-500 \Rightarrow a$ (1) $540 \Rightarrow b$ (1) $540 \Rightarrow b$

- 4. The stack pointer sp has been initialized to \$1FFF.
 - (a) Draw the stack right after the instruction pshb is executed, showing the top 4 bytes and their addresses.
 - (b) What are the contents of the registers a, b and x, and the stack pointer sp right after each of the pull instructions?

#10-2a #20->6 #3040->X

lds ldaa ldab	#\$1FFF #\$10 #\$20	# IFFB	#20	4	SP
ldx psha pshx	#\$3040	# IFFB	# 30		
pshb pula pulb		#IFFD #IFFE DIFFF	\$10		
pulx		DIFFF		100	

instruction	reg. a	reg. b	reg. x	stack pointer \mathbf{sp}
pula	\$20	\$20	\$3040	b/FFC
pulb	# 20	#30	#3040	# IFFD
pulx	\$20	\$30	\$ 4010	BIFFF

rts

5. The array VA has been loaded with three 1-byte numbers. Write a program which copies the three numbers in VA into the respective locations of the array VB, one byte at a time. You must use the constant-offset (indexed) addressing mode in copying. Minimize the number of instructions.

VA DS.B 3
DS.B 3
OR 6 ROMSTART

IJX #VA

MOV B Q,X, 3, X

MOV B 1,X, 4/X

MOV B 2,X, 5, X

\$ 0800 VAI \$ 0801 VA2 \$ 0802 VA3 \$ 0803 VBI \$ 0804 VB2 \$ 0805 VB3 \$ 0805 VB3 \$ 0800 > 20

6. Write a program which computes the total sum of the three 1-byte numbers in v1 and stores it in sum assuming no overflow. You must use the auto-increment/decrement (indexed) addressing mode in accessing the numbers in v1. Minimize the number of instructions.

DS.B 3
DS.B 1
ORG ROMSTART

Idx #VI

Idaa 1, x+

adda 1, x+

adda 1, x+

staa 0, x

rts

 $huml \rightarrow a$ $xt1 \rightarrow x$ $xt + num 2 \rightarrow a$ $x+1 \rightarrow x$ $x+1 \rightarrow x$ $x+1 \rightarrow x$

\$0800 | \$10 | V| \$0800 | \$10 | V| \$0800 | \$10 | V| \$0800 | \$10 | Sum \$0800 | > 7 | \$10 | > a \$0800 | > 7 | \$10 | > a \$0800 | > 7 | \$30 | > a \$0802 | > 7 | \$60 | > a

Name: Mark Gallagher magoo38

In this exam., the microcontroller HCS12 is assumed unless specified otherwise. You must show how you get your answer for a full credit in each problem. The final answer only will not get a full credit even if correct.

87

1. Write a program which copies the number in N into ODD only if it is an odd number, or into EVEN only otherwise (if it is an even number).

	N DS.B 1 N ODD A $LSB = 1$ ODD DS.B 1 EVEN DS.B 1
	BRSET N, % 0000 0001, isodd
	MOVB N, EVEN
	BRA Lone
73 Odd:	MOVB N,ODD
lone:	RTS

2. The array samples holds 100 unsigned 1-byte numbers. Write a program which adds all of the numbers in samples and stores the total sum in TOTAL. The 1-word total sum stored in TOTAL must be a valid result. Minimize the number of instructions.

	samples DS.B TOTAL DS.W	100 de la resta que la transferio de la resta de la re
	1daa #10 1dx #5an 1dy #10	nples
100P:	addy a, x inca cmpa #100 bne 100p	; add to Y element in samples increment offset ; see if $\alpha = 100$ (Leamal) ; if $\alpha \neq 100$ continue 100p
	Sty TOTI	AL ; store y into mem

3. The variable TEST holds a one-byte number which is one of the 10 different numbers (patterns) in the array PATTERNS. Write a program which consists of a main program and a subroutine find_index. The main program passes the address and size of the array PATTERNS to the subroutine through the stack. The subroutine finds the index of the pattern matching the number in TEST and returns it through the stack. The subroutine can access TEST directly. The main program stores the index in the variable INDEX. The indices of the first through the last patterns are 0 through 9, respectively. Minimize the number of instructions.

PATTERNS	DS.B 1 DS.B 10 DS.B 1		Jan J	load return	farray
	\$2000 ; m? !		alx il	ood parasion	of array
	PATTERNS	p	C- NU	i 4 holds	same as)
pshX	; push X of	40 STACK / E	laa TES	TIB	psh a
Hab #1	push X on	100	p: cmpa	tound	PSh y
DIAD			mcx	10 1	rts
9	_mdex	found:	sub x	'	,
pula 5taa IN	VOEX /		ttr x,	ar K	

n of

4. An input device generates bytes to be input through the port A. The control signal NEW from the device goes high ("1") when the device has a new byte to be input and is connected the MSB of the port B. Once the new byte is input, the control signal NEW is automatically lowered (to "0"). Write a program which reads in two new bytes from the device and stores them in in_data. Minimize the number of instructions.

PORTA EQU EQU 2 Le fault: DDRA 1 PORTB EQU **DDRB** EQU in_data DS.B 2

|dx # n-data MSB - |
|dy # 80002

|das # 800 Spin: brc/r PORTB, 20000 0001, Spin Idaa PORTA 5+aa b, X incb dbne y, spin movb prond, 1, XT r +5

5. There is a keyboard which generates the level-6 interrupt whenever a key on the keyboard is pressed. The interrupt request (signal) from the keyboard is connected to the IRQ pin and the ASCII code of a key is input through the port B. Write a program which inputs the ASCII codes of the first 10 keys pressed and stores them in the array KEYS. The interrupt service routine reads in each code and the main program stores it in the array.

	reads in each code and t	me mam program stor	es it in the array.	
	PORTB EQU	\$ 000 ·	Key_1sr:	
	INTCR EQU	\$001E	Key-101.	2-2-0
	ORG Buffer DS.B	\$800 1	Idaa stoa	PORTB Buffer
	KEYS DS.B	TROPIN.	rti	
	ORG lds #\$4000	\$2000	101	
	bet FNTCR,	% 0000 0010	; interrupt	ver fors
	1 .		ORG	BFFFZ
	1dy #8000 A		DC. W	key_isr
	Ida #KEYS			
00p:	Wai			
	Idoa Buffer			
	Staa b, x			
	inc b			
	16 ne 4,100 P			

6. Write a program which generates a delay of 2 seconds (use polling). The frequency of the clock applied to the timer counter (TCNT) is $2^{16} \times 100 \text{ Hz}$

applied to the timer cor	unter (1CN1) is $2^{16} \times 100$ Hz.	1
TCNT EQUITATION TO TSCR1 EQUITAGE TSCR2 EQUITAGE TFLAG1 EQUITAGE EQUITAGE TFLAG2 EQUITAGE EQU	U \$0046 U \$004D / 70F Z	$= \frac{16}{2^{16} \times 100} 5 \#$ $= \frac{16}{2^{16} \times 200} \frac{16}{100} = \frac{16}{2^{16} \times 200} \frac{1}{100} = \frac{1}{$
hset TSCR1, \$ 86 1dy #200 movb #\$ \$0,7FLAGIN	i enable Timber i countly i clear TOF	or 200 TOF
Spin: brok TFLAG1 %	sow oolo, spln ; walt	for TOF set
MOND # \$30, TFLA	94 ; clear 70F	
dbre y, Spin	; derenget coan	t and report
rts	13	