1. Mit ért azon, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely helyen lokális minimuma van?

Az f függvénynek $a \in \text{int } D_f$ pontban lokális maximuma van, ha

$$\exists K(a) \subset D_f, \text{hogy } \forall x \in K(a) : f(x) \geq f(a)$$

Az $a \in \text{int } D_f$ pont f lokális maximumhelye, f(a) pedig f lokális maximuma.

2. Mit ért azon, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely helyen lokális maximuma van?

Az f függvénynek $a \in \text{int } D_f$ pontban lokális minimuma van, ha

$$\exists K(a) \subset D_f, \text{hogy } \forall x \in K(a) : f(x) \leq f(a)$$

Az $a \in \text{int } D_f$ pont f lokális minimumhelye, f(a) pedig f lokális minimuma.

3. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel?

TFH az f függvénynek az $a\in {\rm int}\ \mathcal{D}_f$ pontban lokális szélsőértéke van és $f\in D\{a\}$. Ekkor

$$f'(a) = 0$$

4. Adjon példát olyan $f \in \mathbb{R} \to \text{függvényre}$, amelyre valamely $a \in \mathbb{R}$ esetén $f \in D\{a\}, \ f'(a) = 0$ teljesül, de az f függvénynek az a pontban nincs lokális szélsőértéke!

$$f(x) = x^3$$

5. Milyen szükséges és elégséges feltételt ismer differenciálható függvény monoton növekedésével kapcsolatban?

Legyen $f:(a,b)\to\mathbb{R}$ differenciálható függvény. $f\uparrow$ ha

$$f'(x) \ge 0 \quad (\forall x \in (a, b))$$

6. Milyen elégséges feltételt ismer differenciálható függvény szigorú monoton növekedésével kapcsolatban?

Legyen $f:(a,b)\to\mathbb{R}$ differenciálható függvény. f szigorú monoton növekedvő ha

$$f'(x) > 0 \quad (\forall x \in (a, b))$$

7. Milyen szükséges és elégséges feltételt ismer differenciálható függvény szigorú monoton növekedésével kapcsolatban?

legyen $(a,b) \subset \mathbb{R}$ nyílt intervallum.

TFH $f \in D(a, b)$

Ekkor $f \uparrow [\downarrow] (a,b)$ -n $\iff f' \ge 0 [f' \le 0] (a,b)$ -n és (a,b)-nek nincs olyan részintervalluma, amelyen f' = 0 azonosan.

8. Mit ért azon, hogy egy függvény valamely helyen jelet vált?

Azt mondjuk hogy a h függvény a $c \in \text{int } \mathcal{D}_h$ negatívból pozitívba megy át (röviden h-nak c-ben előjelváltása van), ha h(c)=0 és $\exists \delta>0$ úgy, hogy

$$h(x) < 0$$
, ha $x \in (c - \delta, c)$ és $h(x) > 0$, ha $x \in (c, c + \delta)$

A h függvény c-beli (+,-) előjelváltását hasonlóan értelmezzük. Ekkor h a c pontban pozitívból negatívba megy át.

Azt mondjuk, hogy a h függvény c-ben előjelet vált, ha h-nak c-ben (-,+) vagy (+,-) előjelváltása van.

9. Hogyan szól a lokális minimumra vonatkozó elsőrendű elégséges feltétel?

legyen $-\infty < a < b < +\infty$ és $f:(a,b) \to \mathbb{R}$. TFH

- $f \in D(a,b)$,
- egy $c \in (a, b)$ pontban f'(c) = 0,
- az f' deriváltfüggvény előjelet vált c-ben

Ekkor ha az f' függvénynek c-ben (-,+) előjelváltása van, akkor c az f függvénynek szigorú lokális minimumhelye;

10. Hogyan szól a lokális maximumra vonatkozó elsőrendű elégséges feltétel?

legyen $-\infty < a < b < +\infty$ és $f:(a,b) \to \mathbb{R}$. TFH

- $f \in D(a,b)$,
- egy $c \in (a, b)$ pontban f'(c) = 0,
- az f' deriváltfüggvény előjelet vált c-ben

Ekkor ha az f' függvénynek c-ben (+,-) előjelváltása van, akkor c az f függvénynek szigorú lokális maximumhelye;

11. Írja le a lokális minimumra vonatkozó másodrendű elégséges feltételt!

legyen $-\infty < a < b < +\infty$ és $f:(a,b) \to \mathbb{R}$. TFH

- f kétszer deriválható egy $c \in (a, b)$ pontban, $f \in D^2\{c\}$
- f'(c) = 0
- $f''(c) \neq 0$

Ekkor c szigorú lokális szélsőértékhelye az f függvénynek ha f''(c) > 0, akkor c az f függvénynek szigorú lokális minimumhelye;

12. Írja le a lokális maximumra vonatkozó másodrendű elégséges feltételt!

legyen $-\infty < a < b < +\infty$ és $f:(a,b) \to \mathbb{R}$. TFH

- f kétszer deriválható egy $c \in (a, b)$ pontban, $f \in D^2\{c\}$
- f'(c) = 0
- $f''(c) \neq 0$

Ekkor c szigorú lokális szélsőértékhelye az f függvénynek ha f''(c) < 0, akkor c az f függvénynek szigorú lokális maximumhelye;

13. Fogalmazza meg a Weierstrass-tételt!

Korlátos és zárt $[a,b]\subset\mathbb{R}$ intervallumon folytonos f függvénynek léteznek abszolút szélsőértékei, azaz

$$\exists \alpha, \beta \in [a, b]$$
 úgy hogy $f(\beta) \le f(x) \le f(\alpha)$ $(\forall x \in [a, b])$