Upper and lower bounds for stochastic Bellman functions by nodal decomposition

Application to the decentralized optimization of urban micro-grids

Pierre Carpentier — Jean-Philippe Chancelier — <u>Michel De Lara</u> — François Pacaud

London

ENSTA ParisTech — ENPC ParisTech — Efficacity

Motivation

We consider a *peer-to-peer* community, where different buildings exchange energy

- Each node is a decision center
- Power flows through edges
- Multistage decisions
- Large-scale problem

Problem statement

Modeling exchanges between nodes

The grid is represented by a graph

Let $T \in \mathbb{N}^*$ be a horizon

At each time $t \in [0, T-1]$ we consider a coupling between the nodal subproblems

$$\sum_{i=1}^N \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$$

with $\Theta_t^i: \mathbb{X}_t^i \times \mathbb{U}_t^i \to \mathbb{R}^p$ inducing p coupling constraints

Production at each node of the grid

At each node i of the grid, at each time t, we have

- $\mathbf{X}_{t}^{i} \in \mathbb{X}_{t}^{i}$: state variable (battery, hot water tank)
- $\mathbf{U}_t^i \in \mathbb{U}_t^i$: control variable (energy production)
- \mathbf{W}_t^i : noise (consumption, renewable)

A stochastic optimization problem decoupled in space

At time t, we consider at node i

• An instantaneous cost

$$L_t(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}^i)$$

• A dynamic constraint

$$\mathbf{X}_{t+1}^i = f_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}^i)$$

• A non-anticipativity constraint

$$\sigma(\mathbf{U}_t^i) \subset \sigma(\mathbf{W}_0^i, \cdots, \mathbf{W}_t^i) = \mathcal{F}_t^i$$

Writing down the global optimization problem

We aim at minimizing the operational costs over the nodes $i \in \llbracket 1, N
rbracket$

$$\min_{\mathbf{X},\mathbf{U}} \mathbb{E} \Big[\sum_{i=1}^{N} \sum_{t=0}^{T-1} L_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}^i) + \mathcal{K}^i(\mathbf{X}_T^i) \Big]$$

subject to, for all $t \in \llbracket 0, T-1
rbracket$

i) The nodal dynamics constraints

$$\mathbf{X}_{t+1}^i = f_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}^i) \quad \forall i \in \llbracket 1, N
rbracket$$

ii) The non-anticipativity constraints

$$\sigma(\mathbf{U}_t^i) \subset \sigma(\mathbf{W}_0^i, \cdots, \mathbf{W}_t^i) \quad \forall i \in [1, N]$$

iii) The coupling constraint

$$\sum_{i=1}^{N} \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$$

What do we plan to do

- We have formulated a stochastic optimization problem
- Without coupling, the problem could be decomposed
- We will handle the coupling constraint by two methods: price and quantities decompositions
- We will show that decomposition leads to lower and upper bounds for the original problem
 - Price decomposition yields a lower bound
 - Quantities decomposition yields an upper bound
- Those bounds can be obtained by Dynamic Programming with nodal Bellman functions in low dimension

Lecture outline

Problem statement

Decomposition by prices and quantities

Decomposition of Bellman functions

Price nodal decomposition

Quantities nodal decomposition

Application to the management of microgrids

quantities

Decomposition by prices and

We consider an abstract problem

Let, for $i \in \llbracket 1, N \rrbracket$

- $u^i \in \mathbb{R}^{m_i}$ be a decision variable
- $J^i: \mathbb{R}^{m_i} \to \mathbb{R}, i \in [1, N]$ be a proper function
- ullet $\Theta^i:\mathbb{R}^{m_i} o\mathbb{R}^p$ be a coupling constraint

We consider the following problem

$$V^{\sharp} = \inf_{u^1, \cdots, u^N} \sum_{i=1}^N J^i(u^i)$$

s.t. $\sum_{i=1}^N \Theta^i(u^i) = 0$

Price decomposition

$$V^{\sharp} = \inf_{u^{1}, \dots, u^{N}} \sup_{\lambda} \sum_{i=1}^{N} J^{i}(u^{i}) + \langle \lambda, \Theta^{i}(u^{i}) \rangle$$

$$\geq \sup_{\lambda} \inf_{u^{1}, \dots, u^{N}} \sum_{i=1}^{N} \left(J^{i}(u^{i}) + \langle \lambda, \Theta^{i}(u^{i}) \rangle \right)$$

$$= \sup_{\lambda} \sum_{i=1}^{N} \inf_{\underline{u^{i}}} \left(J^{i}(u^{i}) + \langle \lambda, \Theta^{i}(u^{i}) \rangle \right)$$

$$\underbrace{\underbrace{\bigvee_{i=1}^{N} \inf_{\underline{u^{i}}} \left(J^{i}(u^{i}) + \langle \lambda, \Theta^{i}(u^{i}) \rangle \right)}_{\underline{V^{i}(\lambda)}}$$

Quantities decomposition

$$V^{\sharp} = \inf_{u^{1}, \dots, u^{N}} \sum_{i=1}^{N} J_{i}(u_{i})$$

$$= \inf_{\substack{q^{1}, \dots, q^{N} \\ q^{1} + \dots + q^{N} = 0}} \inf_{\substack{u^{1}, \dots, u^{N} \\ \Theta^{i}(u_{i}) = q^{i}}} \sum_{i=1}^{N} J_{i}(u_{i})$$

$$= \inf_{\substack{q^{1}, \dots, q^{N} \\ q^{1} + \dots + q^{N} = 0}} \sum_{i=1}^{N} \inf_{\substack{\Theta^{i}(u_{i}) = q^{i} \\ \overline{V}^{i}(q^{i})}} J_{i}(u_{i})$$

$$\leq \sum_{i=1}^{N} \overline{V}^{i}(q^{i}) \quad \text{s.t. } q^{1} + \dots + q^{N} = 0$$

Bounds on decomposed functions

Theorem

For any

- multiplier $\lambda \in \mathbb{R}^p$
- allocation $q=(q^1,\cdots,q^N)$ such that $q^1+\cdots+q^N=0$

we have

$$\sum_{i=1}^N \underline{V}^i(\lambda) \leq V^\sharp \leq \sum_{i=1}^N \overline{V}^i(q^i)$$

Decomposition of Bellman

functions

Global value functions

Let $x_t=(x_t^1,\cdots,x_t^N)$ be the global state, lying in $\mathbb{X}_t=\mathbb{X}_t^1\times\cdots\times\mathbb{X}_t^N$

The global value function $V_t: \mathbb{X}_t \to \mathbb{R}$ writes

$$\begin{split} V_t(\mathbf{x}_t) &= \min_{\mathbf{X},\mathbf{U}} \ \mathbb{E}\Big[\sum_{i=1}^{N} \Big(\sum_{s=t}^{\tau-1} L_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i, \mathbf{W}_{s+1}^i) + \mathcal{K}^i(\mathbf{X}_{\tau}^i)\Big)\Big] \\ \text{s.t.} \quad \mathbf{X}_{s+1}^i &= f_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i, \mathbf{W}_{s+1}^i) \ , \quad \mathbf{X}_t^i &= \mathbf{x}_t^i \quad \forall i \in [\![1,N]\!] \\ \sigma(\mathbf{U}_s^i) &\subset \mathcal{F}_s^i \quad \forall i \in [\![1,N]\!] \\ \sum_{i=1}^{N} \boldsymbol{\Theta}_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i) &= 0 \end{split}$$

Two decomposition schemes to decouple the problem

Nodal subproblems are coupled via the constraints

$$\sum_{i=1}^N \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$$

We decompose global optimization problem by

1. Price decomposition: we dualize the coupling constraint via a multiplier λ

$$\sum_{i=1}^N \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0 \quad \rightsquigarrow oldsymbol{\lambda}_t$$

2. Quantities decomposition: for any allocation $\mathbf{Q}_t = (\mathbf{Q}_t^1, \cdots, \mathbf{Q}_t^N)$ such that $\sum_{i=1}^N \mathbf{Q}_t^i = 0$ we put

$$\Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = \mathbf{Q}_t^i$$

Decomposition of Bellman functions

Price nodal decomposition

Price nodal value functions

Let $\lambda = (\lambda_0, \cdots, \lambda_{T-1})$ be a stochastic process

We define the price nodal value function at time t = 0

$$\begin{split} \underline{V}_0^i[\boldsymbol{\lambda}](\mathbf{x}_0^i) &= \min_{\mathbf{X}^i, \mathbf{U}^i} \ \mathbb{E}\big[\sum_{s=0}^{T-1} L_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i, \mathbf{W}_{s+1}^i) + \underbrace{\left\langle \boldsymbol{\lambda}_s \ , \boldsymbol{\Theta}_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i) \right\rangle}_{coupling} + \mathcal{K}^i(\mathbf{X}_T^i) \big] \\ \text{w.r.t.} \quad \mathbf{X}_{s+1}^i &= f_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i, \mathbf{W}_{s+1}^i) \\ \mathbf{X}_0^i &= x_0^i \\ \sigma(\mathbf{U}_s^i) \subset \mathcal{F}_s^i \end{split}$$

Price nodal value functions are lower bounds

Theorem

For all multipliers $\pmb{\lambda} = (\pmb{\lambda}_0, \cdots, \pmb{\lambda}_{T-1})$

$$\sum_{i=1}^{N} \underline{V}_{0}^{i}[\lambda](x_{0}^{i}) \leq V_{0}(x_{0}), \qquad \forall x_{0} = (x_{0}^{1}, \cdots, x_{0}^{N})$$

Proof

Adaptation of the previous proof, considering

$$\underline{V}_0[\lambda](x_0) = \sum_{i=1}^N \underline{V}_0^i[\lambda](x_0^i)$$

Solving price nodal value functions by Dynamic Programming

We are able to solve \underline{V}_0^i node by node by Dynamic Programming if

- noises $\mathbf{W}_0^i, \cdots, \mathbf{W}_T^i$ are independent
- ullet the random process $oldsymbol{\lambda} = (oldsymbol{\lambda}_0, \cdots, oldsymbol{\lambda}_{T-1})$ is
 - either a constant random process
 - or such that $\lambda_t = \phi_t(\mathbf{W}_{t+1})$ (supposing that $\mathbf{W}_{t+1}^i = \mathbf{W}_{t+1}$ for all i)

Then for all $t = T - 1, \dots, 0$ we define recursively the price nodal value functions at time t

$$\underline{\boldsymbol{V}}_t^i[\boldsymbol{\lambda}](\boldsymbol{x}_t^i) = \min_{\boldsymbol{u}_t^i} \mathbb{E}\Big[L_t^i(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i, \boldsymbol{\mathbf{W}}_{t+1}^i) + \left\langle \boldsymbol{\lambda}_t \;, \boldsymbol{\Theta}_t^i(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i) \right\rangle + \underline{\boldsymbol{V}}_{t+1}^i[\boldsymbol{\lambda}] \big(f_t(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i, \boldsymbol{\mathbf{W}}_{t+1}^i) \big) \Big]$$

Price nodal value functions are lower-bounds

Theorem

Let $\lambda = (\lambda_0, \cdots, \lambda_{T-1})$ be a multiplier among one of the two previous classes For all $t \in [0, T-1]$, we have

$$\sum_{i=1}^{N} \underline{V}_{t}^{i}[\lambda](x_{t}^{i}) \leq V_{t}(x_{t}), \qquad \forall x_{t} = (x_{t}^{1}, \cdots, x_{t}^{N})$$

Proof

By induction

Decomposition of Bellman functions

Quantities nodal decomposition

Quantities nodal value functions

Let $\mathbf{Q} = (\mathbf{Q}_0, \cdots, \mathbf{Q}_{T-1})$ be an allocation process such that

$$\mathbf{Q}_t^1 + \dots + \mathbf{Q}_t^N = 0$$

We define the quantities nodal value function at time t = 0

$$\begin{split} \overline{V}_0^i[\mathbf{Q}](x_0^i) &= \min_{\mathbf{X}^i, \mathbf{U}^i} \ \mathbb{E}\big[\sum_{s=0}^{I-1} L_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i, \mathbf{W}_{s+1}^i) + \mathcal{K}^i(\mathbf{X}_T^i)\big] \\ \text{w.r.t.} \quad \mathbf{X}_{s+1}^i &= f_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i, \mathbf{W}_{s+1}^i) \\ \mathbf{X}_0^i &= x_0^i \\ \sigma(\mathbf{U}_s^i) &\subset \mathcal{F}_s^i \\ \underbrace{\Theta_s^i(\mathbf{X}_s^i, \mathbf{U}_s^i) = \mathbf{Q}_s^i}_{coupling} \end{split}$$

Quantities nodal value functions are upper-bounds

Theorem

For all stochastic process $\mathbf{Q} = (\mathbf{Q}_0, \cdots, \mathbf{Q}_{T-1})$ such that $\mathbf{Q}_t^1 + \cdots + \mathbf{Q}_t^N = 0$

$$V_0(x_0) \le \sum_{i=1}^N \overline{V}_0^i[\mathbf{Q}](x_0^i), \qquad \forall x_0 = (x_0^1, \cdots, x_0^N)$$

Proof

Adaptation of the previous proof, considering

$$\overline{V}_0[\mathbf{Q}](x_0) = \sum_{i=1}^N \overline{V}_0^i[\mathbf{Q}](x_0^i)$$

Solving quantities nodal value functions by DP

With the same assumptions as in price nodal value functions (\mathbf{Q} is constant or such that $\mathbf{Q}_t = \psi_t(\mathbf{W}_{t+1})$) we are able to solve \overline{V}_0^i node by node by Dynamic Programming

We define recursively the quantities nodal value function at time t

$$\begin{split} \overline{V}_t^i[\mathbf{Q}](\mathbf{x}_t^i) &= \min_{u_t^i} \mathbb{E}\Big[L_t^i(\mathbf{x}_t^i, u_t^i, \mathbf{W}_{t+1}^i) + \overline{V}_{t+1}^i[\mathbf{Q}]\big(f_t(\mathbf{x}_t^i, u_t^i, \mathbf{W}_{t+1}^i)\big)\Big] \\ \text{s.t. } \Theta_t^i(\mathbf{x}_t^i, u_t^i) &= \mathbf{Q}_t^i \end{split}$$

Theorem

For all allocation $\mathbf{Q}=(\mathbf{Q}_0,\cdots,\mathbf{Q}_{T-1})$ such that $\mathbf{Q}_t^1+\cdots+\mathbf{Q}_t^N=0$ among the two previous classes. For all $t\in[\![0,T-1]\!]$, we have

$$V_t(x_t) \leq \sum_{i=1}^N \overline{V}_t^i[\mathbf{Q}](x_t^i), \qquad \forall x_t = (x_t^1, \dots, x_t^N)$$

We obtain upper and lower bounds for the original problem :)

Theorem

Let $t \in \llbracket 0, T \rrbracket$

- For all multiplier $\lambda = (\lambda_0, \cdots, \lambda_{T-1})$ such that λ_t is constant or $\lambda_t = \phi_t(\mathbf{W}_{t+1})$
- For all allocation $q = (\mathbf{Q}_0, \cdots, \mathbf{Q}_{T-1})$ such that \mathbf{Q}_t is constant or $\mathbf{Q}_t = \psi_t(\mathbf{W}_{t+1})$, satisfying $\mathbf{Q}_t^1 + \cdots + \mathbf{Q}_t^N = 0$

we have

$$\sum_{i=1}^{N} \underline{V}_{t}^{i}[\boldsymbol{\lambda}](x_{t}^{i}) \leq V_{t}(x_{t}) \leq \sum_{i=1}^{N} \overline{V}_{t}^{i}[\mathbf{Q}](x_{t}^{i}), \qquad \forall x_{t} = (x_{t}^{1}, \cdots, x_{t}^{N})$$

Where are we heading to?

 We have established upper and lower bounds for the global optimization problem

- Now we illustrate these results with numerical examples
 - We apply nodal decomposition to the management of urban microgrid
 - We obtain surprisingly tight bounds!

Application to the management

of microgrids

Each house owns different devices

- Stock variables $\mathbf{X}_t = \left(\mathbf{B}_t, \mathbf{H}_t, \boldsymbol{\theta}_t^i, \boldsymbol{\theta}_t^w\right)$
 - **B**_t, battery level (kWh)
 - \mathbf{H}_t , hot water storage (kWh)
 - θ_t^i , inner temperature (° C)
 - θ_t^w , wall's temperature (° C)
- $\bullet \ \ \text{Control variables} \ \ \textbf{U}_{t} = \left(\textbf{F}_{\textbf{B},t}, \textbf{F}_{T,t}, \textbf{F}_{\textbf{H},t}\right)$
 - **F**_{B,t}, energy exchange with the battery (kW)
 - F_{T,t}, energy used to heat the hot water tank (kW)
 - $\mathbf{F}_{\mathbf{H},t}$, thermal heating (kW)
- $\bullet \ \ \mbox{Uncertainties} \ \mbox{W}_t = \left(\mbox{D}_t^{\it el}, \mbox{D}_t^{\it hw}\right) \label{eq:weight}$
 - \mathbf{D}_t^{el} , electrical demand (kW)
 - D_t^{hw}, domestic hot water demand (kW)

Electrical and thermal demands are uncertain

Connecting house to the remaining graph

At each node, we consider injection flow f

$$f^i = \sum_{\ell \in \epsilon(i)} q^\ell$$

with $\epsilon(i)$ set of edges connected to i and q^{ℓ} flow through arcs ℓ

The load balance equation at node i writes

$$\underbrace{\mathbf{F}_{NE,t+1}^{i}}_{\text{Network}} = \underbrace{\mathbf{D}_{t+1}^{el}}_{\text{Demand}}^{i} + \underbrace{\mathbf{F}_{\mathbf{B},t}^{i}}_{\text{Battery}} + \underbrace{\mathbf{F}_{\mathbf{H},t}^{i}}_{\text{Heating}} + \underbrace{\mathbf{F}_{T,t}^{i}}_{\text{Tank}} - \underbrace{\boldsymbol{\phi}_{t}^{pv,i}}_{\text{Solar panel}}^{i} + \underbrace{\mathbf{F}_{t}^{i}}_{\text{Injection}}$$

We consider four different networks

Configurations

We consider three kinds of houses, with different devices

H1: Solar panels + battery + hot water tank

H2: Solar panels + hot water tank

H3: Hot water tank

Batteries are mutualized, thus favoring the exchanges between houses H1 and houses H2 and H3

The different graphs have growing state dimensions

Graph	N (nodes)	L (arcs)	$\mathit{dim}(\mathbb{X})$	$\mathit{dim}(\mathbb{W})$	$\mathit{card}(\mathbb{W})$
А	2	1	7	4	10 ²
В	3	3	10	6	10^{3}
C	6	7	20	12	10^{6}
D	12	15	40	24	10^{12}

Results on the two nodes graph

- $x_0 = (x_0^1, x_0^2) \in \mathbb{R}^7$ the initial position
- $V_0(x_0)$ the exact solution of the problem (unknown)

We get the following results

ALGO	Lower bound		Upper bound	Gap
NODAL	1.16	$\leq V_0(x_0) \leq$	1.18	1.7 %
SDDP	1.17	$\leq V_0(x_0) \leq$?	?

Displaying all results for nodal decomposition

Graph	$\mathit{dim}(\mathbb{X}_t)$	Lower bound	Upper bound	Gap
2 nodes	7	1.16	1.18	1.7 %
3 nodes	10	3.09	3.14	1.6 %
6 nodes	20	6.18	6.28	1.6 %
12 nodes	40	12.37	12.58	1.7 %

Computation time

We denote by \widehat{V}_t the value functions computed by SDDP (when possible)

Algo	Graph A	Graph B	Graph C	Graph D
$\sum_{i} \underline{V}_{0}^{i}(x_{0})$	1.16	3.09	6.18	12.37
	6'	11'	26'	42'
$\widehat{V}_0(x_0)$	1.17	3.11	?	?
	6'	37'	?	?
$\sum_i \overline{V}_0^i(x_0)$	1.18	3.14	6.28	12.58
	7'	10'	28'	79'

Conclusion

Conclusion

 With problems with state dimension up to 40, we obtain tight bounds (less than 2%) for a running time up to 1h

ullet Can we obtain tighter bounds? If we select properly the stochastic processes ${f Q}$ and ${f \lambda}$, we can obtain nodal value functions but with an extended local state

Battery level

Flow through arc

Comparing prices with quantities nodal value functions

Numerical results

Implementation

- Gradient descent is performed with IPOPT (L-BFGS-B)
- Dynamic Programming is solved by SDDP
- QP subproblems are solved with Gurobi 7.02
- The glue code is implemented with Julia 0.6

Convergence of multipliers

Displaying optimal multipliers

