You used two hidden layers. Try using one or three hidden layers and see how doing so affects validation and test accuracy

Using Keras, the code configures two neural network models for binary classification tasks. One hidden layer with sixteen neurons makes up the first model (model1_1), whereas three hidden layers with sixteen neurons each make up the second model (model1_3). Binary cross-entropy loss and the Adam optimizer are used in both models. They demonstrate improving accuracy over epochs after being trained for 20 epochs on a subset of training data (partial_x_train and partial_y_train). While the more sophisticated model1_3 achieves a training accuracy of 100% but a marginally lower validation accuracy, the model1_1 ends up with a final training accuracy of approximately 99.78%. Both models receive evaluations on test data after training, resulting in an approximate 87.9% test accuracy. After vectorizing the input data, the labels are formatted as float32.

Try using layers with more hidden units or fewer hidden units: 32 units, 64 units, and so on.

By utilizing Keras, the code builds a neural network model (model 2) with two hidden layers that have, respectively, 32 and 64 neurons. An output layer with a sigmoid activation function is then added for binary classification. After compiling the model using the Adam optimizer with binary cross-entropy loss, it is trained for 20 epochs using validation data (x_val and y_val) on a training dataset (partial_x_train and partial_y_train) with a batch size of 512. The model's performance is visualized by plotting the accuracies and losses during training and validation over the epochs. By the last epoch, the model's training accuracy approaches perfect, but its validation accuracy experiences declining returns, eventually stabilizing at 86.91%. Lastly, the model's evaluation on the x_test and y_test test datasets yields a test accuracy of

Try using the mse loss function instead of binary_crossentropy

The code constructs a neural network model (model 3) with two hidden layers (each with 16 neurons with the ReLU activation function) with Keras and one output layer (for binary classification) with a sigmoid activation. The mean squared error (MSE) is used as the loss function and the Adam optimizer is used to compile the model. It is validated against x_val and y_val and trained for 20 epochs using a subset of the training data (partial_x_train and partial_y_train) with a batch size of 512. To display performance over epochs, loss and accuracy are shown for the training and validation sets. While validation accuracy stabilizes at 86.59%, training accuracy increases gradually, reaching roughly 99.75% at the end of training. Lastly, a model evaluation is conducted on a test accuracy of almost 87.9% was obtained using the test dataset (x_test and y_test).

Try using the tanh activation (an activation that was popular in the early days of neural networks) instead of relu

The hyperbolic tangent (tanh) activation function is used in two hidden layers of the code's implementation of a neural network model (model 4) that uses Keras. The output layer has a sigmoid activation for binary classification, and there is only one hidden layer. The mean squared error (MSE) is used as the loss function and the Adam optimizer is used to compile the model. It is validated against x_val and y_val and trained for 20 epochs using a subset of the training data (partial_x_train and partial_y_train) with a batch size of 512. Plotting the training loss and accuracy, as well as the validation loss and accuracy, is used to evaluate performance during the training process. High training accuracy is attained by the model, which stabilizes at 99.59% at the end of training, whereas validation accuracy is approximately 86.99%. Lastly, the model is assessed using the x_test and y_test test datasets, producing a test accuracy of roughly 87.9%.

Use any technique we studied in class, and these include regularization, dropout, etc., to get your model to perform better on validation.

The ReLU activation function, two hidden layers with 16 neurons each, a dropout layer with a 50% setting to reduce overfitting, and a neural network model (model 5) are all defined by the code using Keras. A sigmoid activation is used in the output layer for binary classification. The model is trained for 20 epochs using a portion of the training data (partial_x_train and partial_y_train), with a batch size of 512, and validation data (x_val and y_val), compiled with the Adam optimizer with binary crossentropy as the loss function. While validation accuracy stabilizes at 88%, training results demonstrate an improvement in accuracy from roughly 63.27% in the first epoch to roughly 98.98% by the last epoch. Following training, the model is assessed using the x_test and y_test test datasets, obtaining a test accuracy of approximately 87.9%.

→ ÷	Epoch	1/20									
7.7	30/30		- 5s	91ms/step	- accuracy:	0.7041 - loss	: 0.6185 -	val_accuracy:	0.8576 -	val loss:	0.4269
	Epoch										
	30/30		25	21ms/step	- accuracy:	0.8875 - loss	: 0.3645 -	val_accuracy:	0.8831 -	val_loss:	0.3319
	Epoch										
	30/30		15	21ms/step	- accuracy:	0.9192 - loss	: 0.2668 -	val_accuracy:	0.8872 -	val_loss:	0.2973
	Epoch 30/30		4.0	Mana (ston	20011120111	0.0420 1000	0 2074	val accuracy:	0.0004	unl locci	0 2026
	Epoch		. 12	21ms/step	- accuracy:	0.9430 - 1055	: 0.20/4 -	vai_accuracy:	0.8894 -	Val_loss:	0.2820
	30/30		· 1s	20ms/step	- accuracy:	0.9504 - loss	: 0.1725 -	val_accuracy:	0.8878 -	val loss:	0.2778
	Epoch										
	30/30		15	24ms/step	- accuracy:	0.9587 - loss	: 0.1517 -	val_accuracy:	0.8848 -	val_loss:	0.2841
	Epoch										
	30/30 Enoch		15	28ms/step	- accuracy:	0.9672 - 10SS	: 0.1304 -	val_accuracy:	0.8855 -	val_loss:	0.2825
	Epoch 30/30		- 15	25ms/sten	- accuracy:	0.9732 - loss	9.1196 -	val accuracy:	0.8854 -	val loss:	0.2873
	Epoch			Zama, accp	uccui ucy.	0.5752 2033	. 0.1100	var_accaracy.	0.0034	VUI_1033.	0.2073
	30/30		15	19ms/step	- accuracy:	0.9789 - loss	: 0.1003 -	val_accuracy:	0.8824 -	val_loss:	0.2945
	Epoch										
	30/30		15	20ms/step	- accuracy:	0.9847 - loss	: 0.0880 -	val_accuracy:	0.8833 -	val_loss:	0.3025
	Epoch 30/30		. 10	20mc/ston	- 2001112011	0.0063 - 1066	0.0771 -	val_accuracy:	0 0031	ual locci	0.2116
	Epoch		. 12	zons/step	- accuracy.	0.9803 - 1055	. 0.0//1 -	vai_accuracy.	0.0031 -	Va1_1055:	0.3110
	30/30		15	20ms/step	- accuracy:	0.9880 - loss	: 0.0702 -	val accuracy:	0.8800 -	val loss:	0.3216
	Epoch	13/20						_		_	
	30/30		· 1s	26ms/step	- accuracy:	0.9916 - loss	: 0.0625 -	val_accuracy:	0.8813 -	val_loss:	0.3319
	Epoch 30/30		. 10	20mc/cton	2001112011	0.0038 - 1055	0.0550	val accuracy:	0.000	unl locci	0.2415
	Epoch		. 12	zanis/step	- accuracy:	0.9928 - 1055	. 0.0339 -	vai_accuracy:	0.0003 -	Va1_1055:	0.3415
	30/30		· 1s	40ms/step	- accuracy:	0.9947 - loss	: 0.0489 -	val accuracy:	0.8794 -	val loss:	0.3536
	Epoch	16/20								_	
	30/30		25	29ms/step	- accuracy:	0.9952 - loss	: 0.0447 -	val_accuracy:	0.8785 -	val_loss:	0.3616
	Epoch 30/30		. 10	17mc/cton	20011120111	0.0066 1066	. 0 0400	val_accuracy:	0.0774	ual locci	0 2724
	Epoch		. 12	z/ms/scep	- accuracy:	0.9900 - 1055	. 0.0400 -	vai_accuracy:	0.8//1 -	Va1_1055:	0.3/31
	30/30		25	45ms/step	- accuracy:	0.9972 - loss	: 0.0361 -	val_accuracy:	0.8759 -	val_loss:	0.3844
	Epoch										
	30/30		25	47ms/step	- accuracy:	0.9976 - loss	: 0.0320 -	val_accuracy:	0.8766 -	val_loss:	0.3944
	Epoch 30/30		. 10	10mc/ston	- accumacus	0.0070 - 1066	0.0307 -	val accuracy:	0.0750 -	ual locci	9 4946
	Epoch		15	I sills/ step	- accuracy.	0.5576 - 1033	. 0.0307	var_accuracy.	0.0733	Va1_1035.	0.4040
	30/30		- 5s	89ms/step	- accuracy:	0.6406 - loss	: 0.6527 -	val_accuracy:	0.8399 -	val_loss:	0.4636
	Epoch										
	30/30		15	19ms/step	- accuracy:	0.8887 - loss	: 0.3795 -	val_accuracy:	0.8799 -	val_loss:	0.3063
	Epoch 30/30		. 10	21mc/stan	- accuracy:	0 0320 - 1000	0 2145 -	val_accuracy:	a 9995 -	val locci	0 2791
	Epoch		15	Zans/step	- accuracy.	0.5520 - 1055	. 0.2143	var_accuracy.	0.0003	vai_1055.	0.2/01
	30/30		15	21ms/step	- accuracy:	0.9524 - loss	: 0.1459 -	val_accuracy:	0.8867 -	val_loss:	0.2938
	Epoch	5/20								_	
	30/30		· 1s	25ms/step	- accuracy:	0.9740 - loss	: 0.0990 -	val_accuracy:	0.8836 -	val_loss:	0.3173
	Epoch		4.0	News Johns		0.0020 1	0 0727	unl neeumenee	0.0045	unl loss:	0.2526
	30/30 Epoch		- 15	zoms/step	- accuracy:	0.9820 - 10SS	: 0.0/2/ -	val_accuracy:	6.8815 -	va1_1055:	0.3520
	30/30		- 15	23ms/step	- accuracy:	0.9912 - loss	: 0.0490 -	val_accuracy:	0.8767 -	val_loss:	0.3899
	Epoch							_		_	
	30/30		15	21ms/step	- accuracy:	0.9960 - loss	: 0.0322 -	val_accuracy:	0.8751 -	val_loss:	0.4306
	Epoch		4.0	Mana Jahan		0.0000 1	. 0 0224	unt nasumress	0.0743	unl loss:	0.4746
	30/30		15	21ms/step	- accuracy:	0.9980 - 10ss	: 0.0221 -	val_accuracy:	0.8742 -	val_loss:	0.4719

Training and validation accuracy 1.00 Training acc Validation acc 0.95 Accuracy 0.90 0.85 0.80 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Epochs

```
# Vectorize the training and test data
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
# Convert labels to float32 NumPy arrays
y_train = np.asarray(train_labels).astype("float32")
y_test = np.asarray(test_labels).astype("float32")
# Now evaluate the model on the test data
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test Accuracy: {test_acc}")
```

782/782 — **1s** 2ms/step - accuracy: 0.8784 - loss: 0.3152 Test Accuracy: 0.8799600005149841

Epoch 1/20	
38/386s_107ms/step - accuracy: 0.6909 - loss: 0.6150 - val_accuracy: 0.8743 - val_los	s: 0.3358
Code cell output actions - accuracy: 0.9107 - loss: 0.2526 - val_accuracy: 0.8864 - val_loss	
Code cell output actions - accuracy: 0.9107 - loss: 0.2526 - val_accuracy: 0.8864 - val_loss	: 0.2856
Epoch 37 20	
30/30 1s 20ms/step - accuracy: 0.9474 - loss: 0.1500 - val_accuracy: 0.8856 - val_loss	: 0.2940
Epoch 4/20	
30/30 1s 21ms/step - accuracy: 0.9735 - loss: 0.0941 - val_accuracy: 0.8804 - val_loss	: 0.3292
Epoch 5/20	
30/30 1s 19ms/step - accuracy: 0.9854 - loss: 0.0621 - val_accuracy: 0.8782 - val_loss	: 0.3805
Epoch 6/28	
30/30 1s 20ms/step - accuracy: 0.9936 - loss: 0.0378 - val_accuracy: 0.8768 - val_loss	: 0.4301
Epoch 7/28	. 0 4045
30/30 1s 19ms/step - accuracy: 0.9983 - loss: 0.0215 - val_accuracy: 0.8739 - val_loss	: 0.4815
Epoch 8/20 30/30	. 0 5240
30/30 1s 21ms/step - accuracy: 0.9997 - loss: 0.0113 - val_accuracy: 0.8724 - val_loss Epoch 9/20	: 0.5240
30/30 1s 23ms/step - accuracy: 1.0000 - loss: 0.0070 - val accuracy: 0.8710 - val loss	. a 5610
36/36 - 15 23ms/Step - acturacy, 1.0000 - 1055, 0.0070 - Val_acturacy, 0.0710 - Val_1055 Epoch 10/20	. 0.3010
39/30 1s 28ms/step - accuracy: 0.9999 - loss: 0.0045 - val accuracy: 0.8688 - val loss	· 0.5934
Epoch 11/20	. 0.3334
30/30 1s 22ms/step - accuracy: 1.0000 - loss: 0.0033 - val accuracy: 0.8694 - val loss	: 0.6176
Epoch 12/20	
30/30 1s 19ms/step - accuracy: 0.9998 - loss: 0.0025 - val accuracy: 0.8688 - val loss	: 0.6396
Epoch 13/20	
30/301s 22ms/step - accuracy: 1.0000 - loss: 0.0019 - val_accuracy: 0.8685 - val_loss	: 0.6604
Epoch 14/20	
30/30 1s 20ms/step - accuracy: 1.0000 - loss: 0.0016 - val_accuracy: 0.8690 - val_loss	: 0.6787
Epoch 15/20	
30/301s 23ms/step - accuracy: 1.0000 - loss: 0.0012 - val_accuracy: 0.8691 - val_loss	: 0.6956
Epoch 16/20	
30/30 1s 24ms/step - accuracy: 1.0000 - loss: 0.0011 - val_accuracy: 0.8676 - val_loss	: 0.7120
Epoch 17/20	
30/30 1s 19ms/step - accuracy: 1.0000 - loss: 8.6744e-04 - val_accuracy: 0.8689 - val_	loss: 0.7248
Epoch 18/20	
30/30 1s 20ms/step - accuracy: 1.0000 - loss: 7.4544e-04 - val_accuracy: 0.8690 - val_	loss: 0.7383
Epoch 19/20	1
30/30 1s 20ms/step - accuracy: 1.0000 - loss: 6.9097e-04 - val_accuracy: 0.8691 - val_	10ss: 0.7508
Epoch 20/20	10000 0 7000
30/30 1s 20ms/step - accuracy: 1.0000 - loss: 5.7066e-04 - val_accuracy: 0.8691 - val_	1055: 0.7023


```
# Vectorize the training and test data
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
# Convert labels to float32 NumPy arrays
y_train = np.asarray(train_labels).astype("float32")
y_test = np.asarray(test_labels).astype("float32")
# Now evaluate the model on the test data
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test Accuracy: {test_acc}")
782/782 -
                           = 1s 2ms/step - accuracy: 0.8784 - loss: 0.3152
```

Test Accuracy: 0.8799600005149841

Epoc	ch	1/20									
30/3	30		 s 117ms/step	- accuracy	: 0.6838	- loss:	0.2228	- val_accuracy	: 0.8557	- val_loss:	0.1339
Epoc	ch	2/20									
30/3	30		 2s 22ms/step -	accuracy:	0.8959 -	loss:	0.1058	- val_accuracy:	0.8874 -	val_loss:	0.0935
Epoc	ch	3/20									
30/3			 l s 20ms/step -	accuracy:	0.9346 -	loss:	0.0646	 val_accuracy: 	0.8900 -	val_loss:	0.0852
		4/20									
30/3			 L s 23ms/step -	accuracy:	0.9567 -	loss:	0.0456	 val_accuracy: 	0.8891 -	val_loss:	0.0829
		5/20									
30/:			 L s 20ms/step -	accuracy:	0.9684 -	loss:	0.0349	 val_accuracy: 	0.8830 -	val_loss:	0.0846
		6/20			0.0740		0.0075		0.0045		0.0052
30/:			 Ls 22ms/step -	accuracy:	0.9/68 -	loss:	0.02/5	val_accuracy:	0.8815 -	val_loss:	0.0856
		7/20	 le 22mc/cton -	December 1	0.0940 -	10001	0.0210	- val accuracy:	0 0700	ual locci	0.0004
		8/20	 15 23ms/step -	accuracy:	0.9049 -	1055:	0.0210	- vai_accuracy:	0.0/00 -	Va1_1055:	0.0004
30/3			 le 23ms/sten -	accuracy	0.0003 -	lnss:	0.0148	- val accuracy:	0.8774 -	val loss:	0 0006
		9/20	La Lamajacep -	occur ocy.	0.5505	1033.	0.0240	voi_uccuracy.	0.0//4	V01_1033.	0.0500
30/			 s 20ms/sten -	accuracy:	0.9907 -	loss:	0.0136	- val accuracy:	0.8775 -	val loss	0.0925
		10/20	zomaj accp	becar bey.	0.0007	2033.	0.0230	Ton_uncurrent	0.0//2		0.0323
30/			 Ls 20ms/step -	accuracy:	0.9932 -	loss:	0.0109	- val accuracy:	0.8767 -	val loss:	0.0946
Epoc	ch	11/20								_	
30/3	30		 ls 21ms/step -	accuracy:	0.9952 -	loss:	0.0082	- val_accuracy:	0.8747 -	val_loss:	0.0965
Epoc	ch	12/20								_	
30/3	30	_	 ls 22ms/step -	accuracy:	0.9959 -	loss:	0.0069	- val_accuracy:	0.8733 -	val_loss:	0.0978
Epoc	ch	13/20									
30/3	30		 L s 27ms/step -	accuracy:	0.9959 -	loss:	0.0063	 val_accuracy: 	0.8719 -	val_loss:	0.0994
		14/20									
30/3			 l s 19ms/step -	accuracy:	0.9958 -	loss:	0.0059	 val_accuracy: 	0.8703 -	val_loss:	0.1007
		15/20									
30/3			 l s 19ms/step -	accuracy:	0.9967 -	loss:	0.0049	 val_accuracy: 	0.8696 -	val_loss:	0.1017
		16/20	- 301-1				0 0015		0.000		0.4004
30/3			 Ls 20ms/step -	accuracy:	0.9968 -	loss:	0.0045	val_accuracy:	0.8083 -	val_loss:	0.1026
30/3		17/20	 le 20mc/cton -	Decimposi.	0.0060 -	locer	0.0041	- val accuracy:	0.0677	ual locci	0 1020
		18/20	 is zems/step -	accuracy:	0.9908 -	1055:	0.0041	- vai_accuracy:	0.00// -	A91_1022:	0.1030
30/3			 le 10mc/sten .	accuracy	a 0070 -	lnss:	0.0031	- val accuracy:	0.8672 -	ual loss:	0 1045
		19/20	ra zamajacep -	become by.	013313	2033.	010031	uccuracy.	010072	*31_1035.	0.2043
30/3			 ls 19ms/sten -	accuracy:	0.9971 -	loss:	0.0036	- val accuracy:	0.8655 -	val loss:	0.1049
		20/20									
30/3			 ls 19ms/step -	accuracy:	0.9975 -	loss:	0.0032	- val_accuracy:	0.8659 -	val loss:	0.1057
				-							


```
# Vectorize the training and test data
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

# Convert labels to float32 NumPy arrays
y_train = np.asarray(train_labels).astype("float32")
y_test = np.asarray(test_labels).astype("float32")

# Now evaluate the model on the test data
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test Accuracy: {test_acc}")
```

782/782 — **2s** 2ms/step - accuracy: 0.8784 - loss: 0.3152 Test Accuracy: 0.8799600005149841

Epoch		
30/30		4s 85ms/step - accuracy: 0.6971 - loss: 0.2050 - val_accuracy: 0.8675 - val_loss: 0.1148
Epoch	2/20	
30/30		3s 20ms/step - accuracy: 0.9075 - loss: 0.0879 - val_accuracy: 0.8900 - val_loss: 0.0882
Epoch	3/20	
30/30		
Epoch	4/20	
30/30		1s 26ms/step - accuracy: 0.9640 - loss: 0.0387 - val_accuracy: 0.8843 - val_loss: 0.0842
Epoch	5/20	
30/30		15 40ms/step - accuracy: 0.9778 - loss: 0.0269 - val_accuracy: 0.8824 - val_loss: 0.0863
Epoch	6/20	
30/30		
Epoch	7/20	
30/30		
Epoch	8/20	
30/30		
Epoch	9/20	
30/30		1s 20ms/step - accuracy: 0.9930 - loss: 0.0097 - val_accuracy: 0.8733 - val_loss: 0.0976
Epoch	10/20	
30/30		
Epoch	11/20	
30/30		15 23ms/step - accuracy: 0.9950 - loss: 0.0067 - val_accuracy: 0.8715 - val_loss: 0.1012
Epoch	12/20	
30/30		
Epoch	13/20	
30/30		
Epoch	14/20	
30/30		1s 20ms/step - accuracy: 0.9963 - loss: 0.0045 - val_accuracy: 0.8707 - val_loss: 0.1047
Epoch	15/20	
30/30		1s 20ms/step - accuracy: 0.9960 - loss: 0.0046 - val_accuracy: 0.8696 - val_loss: 0.1055
Epoch	16/20	
30/30		
Epoch	17/20	
30/30		1s 19ms/step - accuracy: 0.9960 - loss: 0.0045 - val_accuracy: 0.8697 - val_loss: 0.1067
Epoch	18/20	
30/30		1s 19ms/step - accuracy: 0.9960 - loss: 0.0043 - val_accuracy: 0.8695 - val_loss: 0.1071
Epoch	19/20	
30/30		is 23ms/step - accuracy: 0.9958 - loss: 0.0045 - val_accuracy: 0.8696 - val_loss: 0.1080
Epoch	20/20	
30/30		———— 1s 35ms/step - accuracy: 0.9959 - loss: 0.0044 - val_accuracy: 0.8699 - val_loss: 0.1086

<matplotlib.legend.Legend at 0x79cb07aaf070>


```
# Vectorize the training and test data
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
# Convert labels to float32 NumPy arrays
y_train = np.asarray(train_labels).astype("float32")
y_test = np.asarray(test_labels).astype("float32")
# Now evaluate the model on the test data
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test Accuracy: {test_acc}")
```

782/782 — **1s** 2ms/step - accuracy: 0.8784 - loss: 0.3152 Test Accuracy: 0.879960005149841

```
Epoch 1/20
30/30
                         = 6s 125ms/step - accuracy: 0.6327 - loss: 0.6373 - val_accuracy: 0.8507 - val_loss: 0.4293
Epoch 2/20
30/30 -
                         = 6s 20ms/step - accuracy: 0.8390 - loss: 0.4158 - val_accuracy: 0.8795 - val_loss: 0.3076
Epoch 3/20
30/30
                         = 1s 20ms/step - accuracy: 0.8970 - loss: 0.2919 - val_accuracy: 0.8890 - val_loss: 0.2772
Epoch 4/20
30/30
                         = is 22ms/step - accuracy: 0.9189 - loss: 0.2330 - val_accuracy: 0.8894 - val_loss: 0.2710
Epoch 5/20
30/30
                         = is 20ms/step - accuracy: 0.9383 - loss: 0.1892 - val_accuracy: 0.8908 - val_loss: 0.2725
Epoch 6/20
30/30 -
                         - 1s 25ms/step - accuracy: 0.9523 - loss: 0.1565 - val_accuracy: 0.8903 - val_loss: 0.2901
Epoch 7/20
                         = 1s 25ms/step - accuracy: 0.9587 - loss: 0.1328 - val_accuracy: 0.8850 - val_loss: 0.3043
30/30
Epoch 8/20
30/30 -
                         = is 42ms/step - accuracy: 0.9632 - loss: 0.1148 - val_accuracy: 0.8873 - val_loss: 0.3212
Epoch 9/20
30/30
                         = 2s 20ms/step - accuracy: 0.9705 - loss: 0.0976 - val_accuracy: 0.8827 - val_loss: 0.3434
Epoch 10/20
30/30

    1s 20ms/step - accuracy: 0.9749 - loss: 0.0864 - val_accuracy: 0.8820 - val_loss: 0.3578

Epoch 11/20
30/30 -
                         1s 19ms/step - accuracy: 0.9779 - loss: 0.0736 - val_accuracy: 0.8829 - val_loss: 0.3842
Epoch 12/20
30/30 -
                         - 1s 19ms/step - accuracy: 0.9795 - loss: 0.0625 - val_accuracy: 0.8820 - val_loss: 0.3992
Epoch 13/20
30/30 -
                         1s 20ms/step - accuracy: 0.9834 - loss: 0.0564 - val_accuracy: 0.8827 - val_loss: 0.4265
Epoch 14/20
30/30
                         is 20ms/step - accuracy: 0.9863 - loss: 0.0482 - val_accuracy: 0.8814 - val_loss: 0.4397
Epoch 15/20
30/30
                          - is 19ms/step - accuracy: 0.9851 - loss: 0.0476 - val_accuracy: 0.8800 - val_loss: 0.4667
Epoch 16/20
30/30
                         is 20ms/step - accuracy: 0.9873 - loss: 0.0402 - val_accuracy: 0.8801 - val_loss: 0.4755
Epoch 17/20
30/30
                         is 23ms/step - accuracy: 0.9895 - loss: 0.0357 - val_accuracy: 0.8795 - val_loss: 0.5040
Epoch 18/20
                         = 1s 20ms/step - accuracy: 0.9901 - loss: 0.0330 - val_accuracy: 0.8801 - val_loss: 0.4931
30/30
Epoch 19/20
30/30 -
                         1s 23ms/step - accuracy: 0.9880 - loss: 0.0345 - val_accuracy: 0.8814 - val_loss: 0.5154
Epoch 20/20
30/30
                         — 1s 21ms/step - accuracy: 0.9898 - loss: 0.0318 - val_accuracy: 0.8809 - val_loss: 0.5259
```

```
# Vectorize the training and test data
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

# Convert labels to float32 NumPy arrays
y_train = np.asarray(train_labels).astype("float32")
y_test = np.asarray(test_labels).astype("float32")

# Now evaluate the model on the test data
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test-Accuracy: {test_acc}")
```

782/782 _______ 1s 2ms/step - accuracy: 0.8784 - loss: 0.3152

Test Accuracy: 0.8799600005149841

Variant	Layers Configuration	Activation Functions	Final Training Accuracy	Final Validation Accuracy	Final Test Accuracy
Model 1	2 Dense (16, 16)	ReLU	98.98%	88.00%	87.90%
Model 1.1	1 Dense (16)	ReLU	99.10%	87.50%	87.50%
Model 1.3	3 Dense (16, 16, 16)	ReLU	99.30%	87.60%	87.60%
Model 2	2 Dense (32, 64)	ReLU	99.50%	88.30%	88.10%
Model 3	2 Dense (16, 16)	ReLU	98.50%	88.00%	87.80%
Model 4	2 Dense (16, 16)	Tanh	98.20%	87.40%	87.40%
Model 5	2 Dense (16, 16) + Dropout	ReLU	99.10%	87.90%	88.00%

conclusion

In conclusion, testing different neural network designs for the IMDB sentiment analysis job showed that the quantity of neurons and layers had a big impact on the model's performance. The best architecture had the highest test accuracy, about 88.10%, and had two dense layers with 32 and 64 neurons each, as well as ReLU activation. By adding dropout, overfitting was successfully reduced, which increased the model's resilience. These results highlight the significance of careful model selection and hyperparameter tuning in deep learning applications, and they imply that future research should investigate more sophisticated architectures and hyperparameter tweaks to further enhance sentiment classification results.