Krzysztof Pszeniczny nr albumu: 347208 str. 1/2 Seria: 7

Zadanie 1

Wystarczy pokazać, że wektory e_1, \ldots, e_n są liniowo niezależne, ze względu na porównanie wymiarów oraz niezależność założeń i tezy od permutacji wektorów.

Przypuśćmy, że $\sum\limits_{i=1}^n \alpha_i \mathbf{e}_i = \mathbf{0}$ dla nie wszystkich wyrazów α_i równych zeru, co możemy, poprzez usunięcie wyrazów z $\alpha_i = 0$ oraz przerzucenie wyrazów z $\alpha_i < 0$ na drugą stronę¹. Uzyskujemy wtedy $\sum_{i \in I_+} \alpha_i \mathbf{e}_i = \sum_{j \in I_-} b_j \mathbf{e}_j := \mathbf{S},$ gdzie wszystkie współczynniki są dodatnie (tj. $b_j := -\alpha_j$). Mamy oczywiście $I_+ \cap I_- = \varnothing$, a także $I_+ \cup I_- \neq \varnothing$ (bo nie wszystkie α_i były równe zeru).

Jeśli zachodzi warunek $I_+=\varnothing$ lub $I_-=\varnothing$, to oczywiście $\mathbf{S}=\mathbf{0}$. W przeciwnym wypadku mamy następującą równość: $\langle \mathbf{S},\mathbf{S}\rangle=\langle \sum_{i\in I_+}\alpha_i\mathbf{e}_i,\sum_{j\in I_-}b_j\mathbf{e}_j\rangle=\sum_{i\in I_+}\sum_{j\in I_-}\alpha_ib_j\langle \mathbf{e}_i,\mathbf{e}_j\rangle<0$, co jest sprzecznością. Zatem $I_+=\varnothing$ lub $I_-=\varnothing$. Załóżmy bez straty ogólności ten drugi przypadek. Wtedy ponieważ $I_+\cup I_-\neq\varnothing$, to $I_+\neq\varnothing$.

Mamy więc
$$0 = \langle \mathbf{S}, \mathbf{e}_{n+1} \rangle = \langle \sum_{i \in I_+} a_i \mathbf{e}_i, \mathbf{e}_{n+1} \rangle = \sum_{i \in I_+} a_i \langle \mathbf{e}_i, \mathbf{e}_{n+1} \rangle < 0$$
, co jest sprzecznością.

Zadanie 3

Musi być wtedy $m \leq n$. Niech A' będzie macierzą powstałą z macierzy A poprzez wzięcie przestrzeni rozpiętej na jej kolumnach, dopełnienie do bazy całego \mathbb{R}^n , a następnie zapisaniu tej nowej bazy jako kolumny macierzy A', przy czym te pierwotne wektory z macierzy A zajmują pierwszych m kolumn (m skrócie: uzupełniamy macierz m do macierzy odwracalnej m m poprzez dopisanie jakichś kolumn z prawej strony).

Ta macierz posiada rozkład A'=QR', gdzie Q jest macierzą ortogonalną, a R' górnotrójkątną z dodatnimi wyrazami na przekątnej, jak wynika z twierdzenia z wykładu. Teraz możemy uciąć ostatnie n-m kolumn macierzy R' i łatwo widać, że uzyskamy macierz górnotrójkątną prostokątną z dodatnimi wyrazami na przekątnej: oznaczmy ją R. Mamy teraz A=QR, co widać przez popatrzenie na to jako mnożenie blokowe macierzy: ucinając n-m kolumn z R', ucinamy n-m kolumn z A'.

Jednoznaczność rozkładu QR macierzy kwadratowej została pokazana na wykładzie.

Zadanie 4

Łatwo widać, że pole takiego rzutu to połowa sumy pól rzutów ścian: gdy ustalimy płaszczyznę, na którą rzutujemy, to mamy bijekcję między "przodem" a "tyłem" sześcianu i pola rzutów tego przodu i tyłu są równe. Bijekcję tę ustalamy wystawiając z płaszczyzny proste prostopadłe przecinające sześcian. Każda taka prosta odpowiada jednemu punktowi w rzucie i łatwo widzimy, że każda taka prosta przetnie sześcian dwa lub zero razy, za wyjątkiem pewnego zbioru prostych, który przetnie sześcian raz: ale jest to brzeg rzutu, więc ma miarę zero.

Niech nasz sześcian będzie równoległościanem rozpiętym przez wektory bazy standardowej, które oznaczmy ${\bf a}, {\bf b}, {\bf c}$. Ustalmy płaszczyznę Π , na którą rzutujemy i niech ${\bf n}$ będzie znormalizowanym wektorem normalnym tej płaszczyzny. Niech ${\bf a}', {\bf b}', {\bf c}'$ będą rzutami odpowiednio ${\bf a}, {\bf b}, {\bf c}$ na Π . Mamy wtedy, że sześć ścian tego sześcianu to równoległoboki rozpięte przez pary wektorów spośród zbioru $\{{\bf a}, {\bf b}, {\bf c}\}$ (z dokładnością do znaku, ale on nie zmienia pola).

Połowa sumy pól rzutów to, jak łatwo widać, pola równoległoboków rozpiętych przez \mathbf{a}', \mathbf{b}' , przez \mathbf{a}', \mathbf{c}' oraz \mathbf{b}', \mathbf{c}' . Policzmy pierwsze z tych pól, pozostałe są analogiczne. Mamy $\mathbf{a}' = \mathbf{a} - \lambda \mathbf{n}$ oraz $\langle \mathbf{a}', \mathbf{n} \rangle = \mathbf{0}$, skąd łatwo $\langle \mathbf{a}, \mathbf{n} \rangle = \lambda \langle \mathbf{n}, \mathbf{n} \rangle = \lambda$, skąd $\mathbf{a}' = \mathbf{a} - \langle \mathbf{a}, \mathbf{n} \rangle \mathbf{n}$. Analogicznie $\mathbf{b}' = \mathbf{b} - \langle \mathbf{b}, \mathbf{n} \rangle \mathbf{n}$.

Mamy, że pole równoległoboku rozpiętego na \mathbf{a}', \mathbf{b}' to $\|\mathbf{a}' \times \mathbf{b}'\|$, lecz $\mathbf{a}', \mathbf{b}' \perp \mathbf{n}$, zatem $\mathbf{a}' \times \mathbf{b}'\|\mathbf{n}$, skąd ponieważ $\|\mathbf{n}\| = 1$, to

$$\|\mathbf{a}' \times \mathbf{b}'\| = |\langle \mathbf{a}' \times \mathbf{b}', \mathbf{n} \rangle| = |\det [\mathbf{a}' \mid \mathbf{b}' \mid \mathbf{n}]| =$$

$$= |\det [\mathbf{a} - \langle \mathbf{a}, \mathbf{n} \rangle \mathbf{n} \mid \mathbf{b} - \langle \mathbf{b}, \mathbf{n} \rangle \mathbf{n} \mid \mathbf{n}]| =$$

$$= |\det [\mathbf{a} \mid \mathbf{b} \mid \mathbf{n}]| = |\langle \mathbf{a} \times \mathbf{b}, \mathbf{n} \rangle| =$$

$$= |\langle \mathbf{c}, \mathbf{n} \rangle|$$

Analogicznie wyznaczając pole rzutu dla pozostałych równoległoboków uzyskujemy, że pole rzutu sześcianu na Π to $|\langle \mathbf{a}, \mathbf{n} \rangle| + |\langle \mathbf{b}, \mathbf{n} \rangle| + |\langle \mathbf{c}, \mathbf{n} \rangle| = ||\mathbf{n}||_1$.

Zapisując jednak $\mathbf{n}=x\mathbf{a}+y\mathbf{b}+z\mathbf{c}$ uzyskujemy, że chcemy zmaksymalizować wyrażenie |x|+|y|+|z| przy $x^2+y^2+z^2=1$.

Mamy jednak $\sqrt{\frac{1}{3}}=\sqrt{\frac{x^2+y^2+z^2}{3}}\geqslant \frac{|x|+|y|+|z|}{3}$, z równością osiąganą dla |x|=|y|=|z|. Zatem maksymalne pole wynosi $3\sqrt{\frac{1}{3}}=\sqrt{3}$.

Uogólnienie

Można też zauważyć, że rozumowanie to uogólnia się na wyższe wymiary: gdy rozpatrzymy jednostkową kostkę n-wymiarową rozpiętą przez wektory bazy standardowej i zrzutujemy go prostopadle na przestrzeń (n-1)-wymiarową o znormalizowanym wektorze normalnym ${\bf n}$, to także analogiczny argument z wystawianiem prostych daje bijekcję między "przodem" a "tyłem" kostki i uzyskujemy, że (n-1)-objętość rzutu

¹Swoją drogą, ten proces był przez Arabów nazwany *al-ğabr*, a skoro przenoszę wyrazy liniowe, to to istotnie jest algebra liniowa

to połowa sumy (n-1)-objętości rzutów (n-1)-wymiarowych ścian.

Mamy, że każda taka (n-1)-wymiarowa ściana wyznaczona jest przez pewnych (n-1) wektorów bazowych, i każde (n-1) wektorów bazowych wyznacza dwie ściany, zatem połowa sumy (n-1)-objętości rzutów (n-1)-wymiarowych ścian to po prostu suma (n-1)-objętości rzutów (n-1)-wymiarowych ścian incydentnych z punktem 0.

Jednak znów ten sam argument z przekształcaniem iloczynu wektorowego używając postaci wyznacznikowej iloczynu mieszanego daje, że (n-1)-objętość rzutu (n-1)-wymiarowej ściany rozpiętej przez wszystkie wektory bazowe za wyjątkiem a, jest równa $|\langle \mathbf{a}, \mathbf{n} \rangle|$, stąd uzyskujemy, że sumaryczna (n-1)-objętość rzutu kostki to $\|\mathbf{n}\|_1$, przy czym ustaliliśmy $\|\mathbf{n}\|_2 = 1$, skąd znów dzięki nierówności między średnią kwadratową a arytmetyczną uzyskujemy, że szukana maksymalna objętość to \sqrt{n} .

Zadanie 5

Lemat 1. Dla dowolnych $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ zachodzi:

$$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c}) = \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle \mathbf{a}$$

Dowód. Na ćwiczeniach pokazaliśmy, że $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = \langle \mathbf{u}, \mathbf{w} \rangle \mathbf{v} - \langle \mathbf{v}, \mathbf{u} \rangle \mathbf{w}$. Wstawiając $\mathbf{u} = \mathbf{a} \times \mathbf{b}, \mathbf{v} = \mathbf{a}, \mathbf{w} = \mathbf{c}$, uzyskujemy $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c}) = \langle \mathbf{a} \times \mathbf{b}, \mathbf{c} \rangle \mathbf{a} - \langle \mathbf{a}, \mathbf{a} \times \mathbf{b} \rangle \mathbf{c}$, lecz $\langle \mathbf{a}, \mathbf{a} \times \mathbf{b} \rangle = \langle \mathbf{b}, \mathbf{a} \times \mathbf{a} \rangle = 0$, skąd teza.

Załóżmy, że $\mathbf{a} = \mathbf{u} \times \mathbf{v}$, $\mathbf{b} = \mathbf{v} \times \mathbf{w}$, $\mathbf{c} = \mathbf{w} \times \mathbf{u}$. Czyli na mocy własności iloczynu wektorowego, $\mathbf{a} \perp \mathbf{u}$, \mathbf{v} ; $\mathbf{b} \perp \mathbf{v}$, \mathbf{w} ; $\mathbf{c} \perp \mathbf{w}$, \mathbf{u} . Zatem ponieważ $\mathbf{u} \perp \mathbf{a}$, \mathbf{c} , a wektory \mathbf{a} , \mathbf{c} są liniowo niezależne, to $\mathbf{u} || \mathbf{a} \times \mathbf{c}$. Zatem $\mathbf{u} = \lambda \mathbf{a} \times \mathbf{c}$. Analogicznie $\mathbf{v} = \kappa \mathbf{a} \times \mathbf{b}$; $\mathbf{w} = \mu \mathbf{b} \times \mathbf{c}$.

Teraz mamy, że

$$\begin{split} \mathbf{a} &= \lambda \kappa \left(\mathbf{a} \times \mathbf{c} \right) \times \left(\mathbf{a} \times \mathbf{b} \right) = \lambda \kappa \langle \mathbf{a}, \mathbf{c} \times \mathbf{b} \rangle \mathbf{a} = \\ &= -\lambda \kappa \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle \\ \mathbf{b} &= \kappa \mu \left(\mathbf{a} \times \mathbf{b} \right) \times \left(\mathbf{b} \times \mathbf{c} \right) = -\kappa \mu \left(\mathbf{b} \times \mathbf{a} \right) \times \left(\mathbf{b} \times \mathbf{c} \right) = \\ &= -\kappa \mu \langle \mathbf{b}, \mathbf{a} \times \mathbf{c} \rangle \mathbf{b} = \kappa \mu \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle \mathbf{b} \\ \mathbf{c} &= \lambda \mu \left(\mathbf{b} \times \mathbf{c} \right) \times \left(\mathbf{a} \times \mathbf{c} \right) = \lambda \mu \left(\mathbf{c} \times \mathbf{b} \right) \times \left(\mathbf{c} \times \mathbf{a} \right) = \\ &= \lambda \mu \langle \mathbf{c}, \mathbf{b} \times \mathbf{a} \rangle \mathbf{c} = -\lambda \mu \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle \mathbf{c} \end{split}$$

czyli musi być $1 = -\lambda \kappa \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle$, $1 = \kappa \mu \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle$, $1 = -\lambda \mu \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle$.

Wymnażając stronami uzyskane trzy warunki mamy $1=\lambda^2\kappa^2\mu^2\left(\langle \mathbf{a},\mathbf{b}\times\mathbf{c}\rangle\right)^3$. Stąd w szczególności uzyskujemy $\langle \mathbf{a},\mathbf{b}\times\mathbf{c}\rangle>0$, czyli rozpisując z definicji iloczynu wektorowego: det $\left[\begin{array}{c|c}\mathbf{b}&\mathbf{c}&\mathbf{a}\end{array}\right]>0$, czyli równoważnie det $\left[\begin{array}{c|c}\mathbf{a}&\mathbf{b}&\mathbf{c}\end{array}\right]>0$, czyli baza $\mathbf{a},\mathbf{b},\mathbf{c}$ jest pozytywnie zorientowana.

Teraz załóżmy, że $\langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle > 0$. Wtedy możemy określić $\lambda \kappa \mu = (\langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle)^{-\frac{3}{2}}$, skąd postulując $1 = -\lambda \kappa \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle$ uzyskujemy wartość μ . Stosując pozostałe uzyskane wyżej analogiczne równości uzyskujemy wartości λ , κ . Łatwo widać, że wtedy uzyskujemy, że istotnie spełnione są równości sprzed dwóch akapitów, zatem $\mathbf{a} = \mathbf{u} \times \mathbf{v}$, $\mathbf{b} = \mathbf{v} \times \mathbf{w}$, $\mathbf{c} = \mathbf{w} \times \mathbf{u}$.

Stąd odpowiedzią na pytanie z zadania jest pozytywna orientacja układu a, b, c.

Zadanie 6

Zadanie nie precyzuje, co rozumiemy przez "najlepiej pasująca", więc przyjmę interpretację, że chodzi o zminimalizowanie sumy kwadratów odległości tej prostej od punktów, ale "odległości" mierzonej w

pionie². Zapiszmy więc:
$$\mathbf{A} = \begin{pmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 4 \\ 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$. Mamy wtedy, że jeśli szukana prosta ma równanie

Mamy wtedy, że jeśli szukana prosta ma równanie y = ax + b, to $\left\| \mathbf{A} \begin{pmatrix} a \\ b \end{pmatrix} - \mathbf{b} \right\|$ jest błędem przybliżenia. Aby go zminimalizować, na mocy faktu z ćwiczeń należy rozwiązać równanie $\mathbf{A}^{\mathsf{T}}\mathbf{A} \begin{pmatrix} a \\ b \end{pmatrix} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$, czyli

 $\begin{pmatrix} 18 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} \alpha \\ b \end{pmatrix} = \begin{pmatrix} -5 \\ 9 \end{pmatrix}$. Wyznacznik macierzy kwadratowej po lewej stronie jest niezerowy, więc jest dokładnie jedno rozwiązanie, a łatwo widać, że $\alpha = -\frac{1}{2}$, b=2 spełniają go. Zatem szukaną prostą jest prosta $y=2-\frac{\varkappa}{2}$.

Termin: 2014-05-09

²Taką interpretację zdaje się przyjmować Wolfram Alpha