Modeling Guide: Statistics and XGBoost for CO2 Prediction

This guide explains the core statistical concepts and key XGBoost functions used in this project.

The Core Approach: Supervised Learning for Time-Series

At its core, this project treats a time-series forecasting problem as a **supervised** regression problem.

Instead of using traditional time-series models like ARIMA, we engineer features from the time-stamped data to train a gradient boosting model (XGBoost). This approach is powerful because it allows the model to learn complex, non-linear relationships between the features and the target variable (CO2 level).

Why XGBoost is a Good Choice

- **Performance**: It is consistently a top performer in machine learning competitions, especially with structured/tabular data.
- **Flexibility**: It can capture complex, non-linear relationships and interactions between features (e.g., the effect of temperature on CO2 might be different at high vs. low occupancy).
- Robustness: It has built-in regularization techniques (learning_rate , subsample , etc.) that help prevent overfitting.

End-to-End Pipeline Architecture

This diagram provides a high-level overview of the entire MLOps workflow.

Pipeline Stages 1 & 2: Data and Training

- 1. Data & Baseline Generation: The pipeline starts by preparing the data using preprocess.py and creating statistical baselines for data quality.
- 2. Model Training & Tuning: It uses Hyperparameter Optimization (HPO) to find the best model configuration, then retrains that model on the full dataset to create the final artifact.

Pipeline Stages 3 & 4: Governance and Deployment

- 3. Model Governance: The model is checked for bias (using SageMaker Clarify) and evaluated for performance against the test set. These steps act as automated quality gates.
- **4. Conditional Deployment**: If the model passes the quality gates (e.g., R² > 0.75 and low bias), it is registered in the Model Registry and deployed to a live endpoint. Otherwise, the pipeline can trigger a cleanup process.

Pipeline Stage 5: The Closed Loop

• 5. Monitoring & Retraining: The live endpoint's traffic is monitored for data and bias drift. A drift detection event automatically triggers a new pipeline run, creating a self-healing system.

Detailed View: Monitoring & Retraining Loop

This diagram focuses on the autonomous, closed-loop system that runs after the model is deployed. We'll break it down into two parts.

Monitoring Loop Part 1: Data Capture & Analysis

- 1. Live Inference & Data Capture: The live SageMaker endpoint serves predictions and automatically logs all incoming requests and outgoing predictions to an S3 bucket.
- 2. **Scheduled Monitoring**: Hourly jobs are triggered to analyze the captured data.
 - Data Quality Monitor: Checks for drift in the feature distributions compared to the training data baseline.
 - Model Bias Monitor: Checks for drift in bias metrics compared to the baseline established during training.

Monitoring Loop Part 2: Automated Response

- 3. Automated Response: If any monitor detects a violation (drift), it emits an event to Amazon EventBridge.
- 4. **Trigger Actions**: The EventBridge rule triggers two actions in parallel:
 - Sends an email alert via SNS.
 - Invokes a Lambda function that starts a new execution of the entire training pipeline, thus "closing the loop."

Feature Engineering Part 1: Lag Features

- What they are: A lag feature is a value from a previous time step. For example, co2_lag_1 is the CO2 value from the previous measurement, and co2_lag_3 is from three measurements ago.
- Why they are important: Time-series data often exhibits autocorrelation, meaning the value at the present time is highly correlated with its recent past values. The CO2 level right now is a strong indicator of what the CO2 level will be in the next few minutes.
- In the Model: XGBoost can learn rules like: "If co2_lag_1 was high and occupancy just increased, then the current CO2 level is likely to be even higher."

Feature Engineering Part 2: Rolling Window Features

• What they are: These are statistics (like mean, standard deviation) calculated over a moving "window" of time. For example, temperature_rolling_mean_3 is the average temperature over the last 3 time steps.

• Why they are important:

- **Smoothing**: Rolling averages smooth out short-term noise and random fluctuations, giving the model a more stable signal of the recent trend.
- **Momentum**: A rolling standard deviation can indicate recent volatility. If the standard deviation of CO2 is high, it might mean the environment is unstable (e.g., doors opening and closing frequently).
- In the Model: These features help the model understand the recent context beyond a single point. It can learn rules like: "If the co2_rolling_mean is trending upwards, the current prediction should be higher than what the lag features alone suggest."

Feature Engineering Part 3: Cyclical Features

• What they are: Time-based features like hour_of_day or day_of_week are cyclical. For example, hour 23 is as close to hour 0 as hour 1 is. Simply using the numbers 0-23 doesn't capture this. We transform them using sine and cosine functions.

```
df['hour_sin'] = np.sin(2 * np.pi * df['hour']/24.0)
df['hour_cos'] = np.cos(2 * np.pi * df['hour']/24.0)
```

• Why they are important: This transformation places the cyclical data on a 2D circle, allowing the model to understand that morning and evening patterns repeat daily. It helps the model learn daily occupancy schedules or HVAC system behaviors.

XGBoost: The Core Class

This project uses the xgboost Python library, specifically its scikit-learn compatible API, which makes it easy to integrate into ML workflows.

Core Class: xgboost.XGBRegressor

This is the main object used in train.py. It's a wrapper that makes the powerful XGBoost library behave like a standard scikit-learn model, allowing us to use familiar methods like .fit() and .predict().

XGBoost: The Training Method

Core Method: model.fit()

This is the function that initiates the model training process. The key arguments used in this project are:

- eval_set=[(X_val, y_val)]: Used during hyperparameter tuning. The model evaluates its performance on this separate validation set after each boosting round, which allows us to monitor for overfitting.
- early_stopping_rounds=10: A crucial parameter for performance and cost-saving. If the model's performance on the validation set does not improve for 10 consecutive rounds, training is automatically stopped.
- sample_weight=weights: Essential for bias mitigation. This tells XGBoost to pay more attention to certain data points during training by assigning them higher weights.

XGBoost: Key Hyperparameters

These are the "control knobs" for the XGBoost algorithm, defined in

launch_pipeline.py and passed to the XGBRegressor.

Hyperparameter	What It Is	Impact on Model
objective	The loss function the model tries to minimize. Set to 'reg:squarederror'.	Tells the model its goal is to minimize the mean squared error between its predictions and the true values. This is standard for regression.
eval_metric	The metric used to evaluate performance on the eval_set. Set to 'rmse'.	RMSE (Root Mean Squared Error) is in the same units as the target (CO2 PPM), making it more interpretable than MSE.
n_estimators	The total number of decision trees to build sequentially.	Too few trees will underfit; too many can overfit. This is balanced by learning_rate and early_stopping_rounds.
learning_rate	A value (0-1) that scales the contribution of each new tree.	Crucial for anti-overfitting. A low value (e.g., 0.05) requires more trees but makes the model more robust. A high value learns faster but can overfit.
max_depth	The maximum depth of any individual tree.	Controls the complexity of each tree. Deeper trees (e.g., 8+) can capture complex interactions but are prone to overfitting. Shallower trees (3-6) are more generalized.
subsample	The fraction of training data rows to be randomly sampled for each tree.	Setting this to 0.8 means each tree is built on a different 80% of the data. This randomness helps prevent overfitting.
colsample_bytree	The fraction of columns (features) to be randomly sampled for each tree.	Similar to subsample, this adds randomness. If you have many features, it prevents the model from relying too heavily on a few dominant ones.

The Importance of Hyperparameter Optimization (HPO)

Finding the right combination of hyperparameters manually is slow and often ineffective. HPO automates this search.

- What it is: The process of automatically running many training jobs with different hyperparameter values to find the combination that results in the best model.
- Why it's important:
 - Improves Performance: Directly leads to more accurate models with lower prediction errors.
 - Saves Time: Frees up data scientists from the tedious, manual task of trial-and-error tuning.
 - **Provides Deeper Insights**: Shows which parameters have the biggest impact on model performance.
- In this Project: The TuningStep in launch_pipeline.py uses Bayesian

 Optimization, an intelligent search strategy that finds the best model faster than random guessing

Reporting During Training: Monitoring for Overfitting

During the HPO process, it's crucial to monitor how each model variation is learning.

- SageMaker Experiments / MLflow: Each training job within the HPO step is logged as an "experiment". This creates a leaderboard where you can compare the performance (e.g., RMSE) of all model variations.
- Learning Curves: By tracking the eval_metric (rmse) on both the training and validation sets at each step, we can plot learning curves.
 - Good Fit: Both training and validation error decrease and converge.
 - Overfitting: The training error continues to decrease, but the validation error starts to increase. This is the exact signal that early_stopping_rounds uses to halt training, saving time and preventing a bad model.

Reporting After Training: Evaluating the Final Model

Once the best model is trained, the pipeline generates several critical reports to ensure its quality before deployment.

- Evaluation Report (evaluation.json):
 - **Purpose**: To score the final model on the unseen test set.
 - Key Metrics: Contains r2_score and mse . The R2 score is used by the ConditionStep in the pipeline as a quality gate decide if the model is good enough to be registered.
- Bias and Explainability Report (SageMaker Clarify):
 - **Bias Report**: Checks if the model makes systematically different predictions for different groups (e.g., based on occupancy). This is crucial for responsible AI.
 - Explainability (SHAP) Report: Explains why the model makes its predictions by showing which features (e.g., temperature co2 lag 1) have the most influence.

Summary

By transforming the time-series data into a rich set of features, you enable a powerful regression algorithm like XGBoost to learn complex temporal patterns. The hyperparameters you've configured in your pipeline provide a robust framework for finding an accurate and well-generalized model, while the fit method's parameters ensure that training is efficient and can be adapted for advanced techniques like bias mitigation.