[무료교육] 자율주행SW 개발전문가 교육생 모집 (상세 커리큘럼)

- 작성자관리자
- 작성일2019.04.01
- 조회수2,818

주차	구분	과정명	커리큘럼	세부 내용
1주(32h)			C프로그래밍 기법	• 데이터의 표현과 연산
				• 연산자, 제어문, 함수
				• 배열, 포인터, 함수
				• 문자열, 변수, 포인터 배열
				• 동적할당 함수, 구조체와 유사형
				• 파일 입출력, 전처리 지시자, 분할 컴파일
			임베디드 C 코딩 활용	• 임베디드 시스템 이해, 개발 환경, 컴파일의 정체
				• 데이터 타입, 기본 연산자, 하드웨어 제어 연산자 및 실습
2주(32h)				• 배열, 함수, 포인터
				• 배열, 함수, 포인터의 관계
				• 하드웨어 제어 방식 이해, Keypad 제어 실습
3주(32h)			C++ 프로그래밍	• 기본적인 C++의 입출력, 이름공간
	기본 교육 (128h)	7.0.7.11		• 함수 오버로딩, 기본 인수, Const변수, 포인터, 반환
		자율주행 프로그래밍 기본(128h)		• 참조변수, new, delete, 구조체와 동적할당
				• 객체지향 프로그래밍 개념, 클래스 선언, 분할 컴파일
				• 객체 포인터, 동적 객체, 객체 배열, 참조 객체
				• 디폴트 생성자, 복사 생성자
				• 연산자 오버로딩, 프렌드 관계, 특별한 클래스 멤버
				• 포함, 상속, 템플릿, 예외 처리
			파이썬 프로그래밍 및 활용	• 파이썬 프로그래밍 개요, 정수형, 실수형, 문자형,
				문자열형 데이터의 처리, 자료형변환
				• 숫자를 사용한 연산, RAW 입력, 논리표현 사용, 반복문
				• 함수의 선언, 사용자 정의 함수, 함수, 이름공간과 모듈,
4주(32h)				메서드와 프로그램 논리, 파일 위치 열기, 읽기, 이진
				파일 저장
				• try문과 finally문, 리스트, 집합, 딕셔너리
				• 시간 객체와 시뮬레이션, 그래픽 유저 인터페이스(GUI),
				이벤트 처리기 제어, 사운드 재생 및 음량 조절, 제어
5주(32h)	심화	자율주행	차량용 프로세서 디바이스	• 시스템초기화, C Run-Time Startup, Memory Controller, NAND Flash Controller
I		I	I	<u> </u>

	교육	펌웨어	제어	• I/O Ports / UART, PWM Timer, RTC
	(160h)	개발(96h)		WDT, IIC/IIS, Interrupt Controller, Vectored Interrupt
				Controller
				• SW DMA, Timer DMA, ADC 특성 및 활용, Touch Screen
				Interface
				Touch LCD, Palletized LCD, Non-Palletized LCD
				Controller Audio PCM Data, Audio device제어, AC97
				설정 및 응용
				• 개발환경 구축
				• GPIO 출력 제어
				• GPIO 입력 제어
			차량용 프로세서 이해 및	• 타이머 시간 제어, 인터럽트 입력 제어
6주(32h)				• UART 통신 제어
			활용	• 블루투스 통신 제어
				• ADC입력 제어
				• PWM 출력 제어
				• ARM Assembly, Startup code 분석
				Electric control system, SW build system, Automotive SW
				development environment
7주(32h)			자율주행 기능 구현을 위한 차량용SW개발	C language overview, AURIX C programming, AURIX
				assemble language
				Automotive device control, Device control practice
				• 리눅스 개요
0不/22に			차량용 OS 시스템	• 임베디드 리눅스 개발 환경 구축
8주(32h)		자율주행	프로그래밍	• 파일 연산 및 프로세스 개념
				• 시그널, SysV IPC, 쓰레드 개념, 동기화
		OS System		• 디바이스 드라이버 개요
9주(32h)		개발(64h)	차량용 OS 디바이스	• 커널서비스와 모델
			프로그래밍	• 캐릭터 디바이스
			• 블록 디바이스	
10주(32h)	응용	자율주행 기 능을 위한 visualization & Computer Vison (64h)	자율주행 개발을 위한 OpenCV	• OpenCV 개요
	교육			• 영상처리 준비, 화소 다루기, 컬러 처리
	(224h)			• 히스토그램으로 화소 세기, 형태학 연산으로 영상변환
				• 영상 필터링, 선, 외곽선, 성분 추출, 관심점 검출
				• 투영관계 추정, 3D장면 재구성, 비디오 시퀀스 처리
1	1	I		İ

11주(32h)		ROS활용 및 QT프로그래밍	• ROS 플랫폼 이해
			• ROS 메시지 통신과 실행
			• SLAM과 네비게이션
			• ROS용 안드로이드 어플 개발
			• QT 프로그래밍 기본
			• QT 프로그래밍 응용
			• QML과 C++연동하기
			• QT 멀티 쓰레드
	자율주행		Neural Network
	처리 및		Deep Learning
	인식 기술	사 : : 자나드리 하이킹 디	• Python Basic 실습
12주(32h)	(160h)	Nvidia TX보드를 활용한 딥 러닝의 이해	• Tensorflow 실습
			• Machine Learning 실습
			• Deep Learning 실습
			• Tensorflow 도제학습 실습
			• CNN 의 소개와 활용, 인공신경망의 개요
			딥러닝 프레임워크 (Caffe, tensorflow, digits, cudnn)
			DIGITS Image Classification
			• CNN 기초 개념, 구조, Alexnet, lenet,
13주(32h)		Digits서버와 Nvidia TX기반 의 영상처리 딥러닝	DIGITS Object Detection
		그 장장시디 답다당	• Localization, Detection, Image Segmentation CNN 실습,
			• Training Neural Network, Deployment with TX1실습
			• CuDNN 을 이용한 MNIST with TX1 실습
			• TensorRT 을 이용한 MNIST with TX1 실습
14주(32h)		Drive PX2 기반 딥러닝을 활	• RNN-LSTM 을 이용한 word2vec with TX1 실습 • Drive PX2 와 Driveworks SDK 소개와 활용 방안
177(3211)		용한 ADAS개발	• Driveworks PDK 와 샘플을 활용한 실습
			카메라를 이용한 Object Detection 실습
			CNN 기반 Object Detection 이론 및 training 실습
			Matlab 을 이용한 카메라 캘리브레이션
			• 칼만필터와 차량 제어로직과 Matlab 실습
			자율주행을 위한 센서 퓨전 방안
			• CAN 통신 시뮬레이션을 이용한 ACC 구현과 실습

				• training된 Object Detection 모델의 DrivePX2 Deployment 실 습
				• CNN 영상 분석 이론
				• Tensorflow Test 환경 설정
				• Object Detection 이론 (Fast RCNN / Yolo / SSD)
				• Kitti Dataset 소개, tfrecord 생성 변환 실습
15주(32h)			자율주행 상황인지를 위한 Tensorflow Object	• Yolo 트레이닝 및 실습
13-7-(3211)		Detection	• SSD 트레이닝 및 TensorBoard 모니터링	
				• Training 결과 배포 및 PB 만들기
			• Object Detection 테스트 : Open CV 로 이미지 파일 /	
				영상 파일 보기 실습
				• Cuda 와 TensorRT 를 이용한 SSD with TX1 실습
				• 자율주행모형차 활용 개발 환경 구축
16주(32h)				• 모터 제어를 이용한 차량의 driving 제어 실습
				• Usb 카메라를 이용한 차선인식과 주행 실습
			자율주행모형차를 활용한	• TX1 의 Object Detection 모델 inference
			자율주행 기술 구현	• Lidar 를 이용한 대상과의 거리 측정 실습
				• 장애물 충돌을 피하기 위한 긴급 제동 구현과 테스트
				• RNN-LSTM 기반의 앞차와의 거리 상황인지
				• 장애물을 피하기 위한 경로 생성 알고리즘 실습
				• 팀빌딩, 그라운드 룰 제정, 분석주제 선정
	프로젝 트 (448h)	자율주행차 구현을 위한 플랫폼 구축 및 S/W 개발	산학 프로젝트	• 이슈선정 배경, 주요 고통점 분석
				• 분석과제명과 분석목적 도출
				• 분석대상 객체와 속성, 성과, 예측, 조절변수간 관계설정
				• 가설설정과 액션방향수립
1주~24주				• 프로젝트 구현, 개발
(6개월)				• 수립된 가설 모델 검증과 성능평가
				• 분석결론 및 실무적 활용 액션 방안
				• 플젝 장애요소 및 극복방안, 향후 모델향상 방안
				• 팀별 분석결과 보고서 작성
				• 팀별 리허설발표와 파이널 수정·보완
				• 팀별 프로젝트 발표회외 피드백

다음글 △_[<u>한컴MDS아카데미] 자동차SW 교육과정 리스트</u>