

Tutoriel et Instructions pour les Traitements

Felipe AGUIAR MARTIN

Analyses de Terrain

Paramètres Journal	Pente
Couche d'élévation MNT_1m [EPSG:2154]	Cet algorithme calcule l'angle d'inclinaison du terrain à partir d'une couche raster d'entrée, La pente est
Facteur Z	exprimée en degrés.
1,000000	
Pente	
[Enregistrer dans un fichier temporaire]	
▼ Ouvrir le fichier en sortie après l'exécution de l'algorithme	

MNT résolution x

MNT résolution x

Exposition QGIS

Paramètres Journal	Exposition
Couche d'élévation	Cet algorithme calcule l'exposition du
MNT_1m [EPSG:2154]	Modèle Numérique de Terrain en entrée.
Facteur Z	La couche raster d'aspect final contient
1,000000	des valeurs de 0 à 360 qui expriment la direction de la pente : en partant du
Exposition	Nord (0°) et en continuant dans le sens des aiguilles d'une montre.
[Enregistrer dans un fichier temporaire]	des agailes d'ane monder
✓ Ouvrir le fichier en sortie après l'exécution de l'algorithme	

alcule l'exposition du 0 à 360 qui expriment la pente : en partant du

Classification d'exposition :

("Exposition@1" >= 0 AND "Exposition@1" < 22.5)*1+

("Exposition@1" >= 22.5 AND "Exposition@1" < 67.5)*2 +

("Exposition@1" >= 67.5 AND "Exposition@1" < 112.5)*3 +

("Exposition@1" >= 112.5 AND "Exposition@1" < 157.5)*4 +

("Exposition@1" >= 157.5 AND "Exposition@1" < 202.5)*5 +

("Exposition@1" >= 202.5 AND "Exposition@1" < 247.5)*6+

("Exposition@1" >= 247.5 AND "Exposition@1" < 292.5)*7 +

("Exposition@1" >= 292.5 AND "Exposition@1" < 337.5)*8 +

("Exposition@1" >= 337.5 AND "Exposition@1" <= 360)*1

Analyse de terrain raster

* Exposition

Légende Exposition en Dégrées	
Orientation	Degrés (°)
Nord	0 l 22,5
Nord-Est	22,5 l 67,5
Est	67,5 l 112,5
Sud-Est	112,5 l 157,5
Sud	157,5 l 202,5
Sud-Ouest	202,5 l 247,5
Ouest	247,5 l 292,5
Nord-Ouest	292,5 l 337,5
Nord	337.5 360

Extra:

Profile tool	
Plots terrain profile	
This tool plots profile lines from raster layers o	

as well as graph export with elevation field. Supports multiple lines as well as graph exp to svg, pdf, png or csv file. Supports 3D polyline export to dxf.

1

Formation de MNT et MNS

Global Mapper

Importation du DEM

Classification automatique

Formation de MNS et MNT

Dénombrement

2

Création des Points

SAGA

Grid Difference

(Geoprocessing – Grid – Calculus – Grid Difference)

Grid System → -----

>> A → MNS

>> B **→** MNT

<< Difference (A-B) → Create

Gaussian Filter

(Geoprocessing – Grid – Filter – Gaussian Filter)

Grid System → ---->> Grid → Difference (A - B) << Filtered Grid → Create

Options
Standart Deviation \Rightarrow 5 – 50
Radius \Rightarrow 25 - ?

Watershed Segmentation

(Geoprocessing – Imagery – Segmentation – Watershed Segmentation)

Grid System
>> Grid → Difference (A - B)
<< Segmentation → Create

3

Correction des Points

SAGA

Select by Numerical Expression

(Geoprocessing – Table – Select – Select by Numerical Expression)

Table → Difference (A – B) (Seeds)
Attribute → VALUE
Expression → a = 0
CLICK DELETE

https://www.youtube.com/watch?v=1PcuiOFjaow

Données en Tuile (Généralisation)

Hauteur des Plantes

Calcules (Statistiques de Zone)

F LF Tools Raster

NDVI

Binary Thresholding

Création de vecteurs

Créer une grille

Calcules des indices de végétation (IV)

$$NDVI = \frac{(PIR + R)}{(PIR - R)}$$

$$CVI = PIR \times (\frac{R}{V \times V})$$

$$NDRE = \frac{(PIR + RE)}{(PIR - RE)}$$

Echantillon de végétation

Grille de la Echantillon de végétation zone d'intérêt

Tuile de Pourcentage d'Area Végétée

Flux des Traitements

Calibration de Réflectance

La calibration effectuée en utilisant les données du capteur de luminosité du drone est déjà suffisante pour obtenir de bons résultats lors d'analyses sur le même site au cours de la même saison. Cependant, si l'étude s'étend au-delà de la saison en cours, il est recommandé d'ajouter l'étalonnage au tableau de bord d'étalonnage.

(Alignement -> Nuage dense -> DEM -> Orthomosaïque)

Si une plus grande precision géographique est nécessaire, il est recommandé d'utiliser le processus de géoréférencement en utilisant des points préalablement collectés.

Les paramètres de traitement d'image à un niveau moyen pour chaque étape sont déjà suffisants pour obtenir de bons résultats.

Calcul des indices

L'insertion du fichier .tiff peut être réalisée de manière manuelle en important les fichiers, ou elle peut être effectuée en faisant glisser le fichier dans la fenêtre du logiciel.

Après l'importation, les calculs d'indices sont réalisés.

Normalized Difference Vegetation Index (NDVI)

$$NDVI = \frac{(PIR - R)}{(PIR + R)}$$

Green Normalized Difference Vegetation Index (GNDVI)

$$GNDVI = \frac{(PIR - V)}{(PIR + V)}$$

Soil-Adjusted Vegetation Index (SAVI)

$$SAVI = \frac{(PIR - R)}{(PIR + R + L)} \times (1 + L)$$

Normalized Difference Red Edge Index (NDRE)

$$NDRE = \frac{(PIR - BR)}{(PIR + BR)}$$

Green Chlorophyll Vegetation Index (GCI)

$$GCI = \left(\frac{PIR}{V}\right) - 1$$

Chlorophyll vegetation index (CVI)

$$CVI = \left(\frac{PIR \times R}{V^2}\right)$$

Classification de Nuage Dense

Il est simplement nécessaire de glisser le fichier .LAS sur la page du logiciel.

Dénombrements

Résultat

Création des Cartes

