Counting

- Basic counting principles
 - Product rule, sum rule, division rule
- Permutations and combinations
 - combinatorial proofs
- Binomial theorem, Pascal's identity
- Generalized permutations and combinations
 - permutations and combinations with repetition
 - permutations of indistinguishable objects
 - Distributing objects into distinguishable boxes

Advanced counting

- Solving linear recurrence relation
 - ullet Theorem 4: the general homogeneous case: degree k, roots with multiplicity
 - Theorem 5: the general form of solutions for the nonhomogenous case
 - Theorem 6: a particular form of solutions for the nonhomogenous case
- Divide-and-conquer algorithms
 - Master theorem: $f(n) = af(n/b) + cn^d$,
- Inclusion and exclusion: two forms

Relations

- Relations and their properties
 - reflexive, symmetric, and transitive relations
 - composition of relations
- Closure of relations
 - reflexive, symmetric and transitive closures
- Equivalence relations
 - equivalence classes
- Partial orderings
 - Hasse diagrams
 - maximal and minimal elements, upper and lower bounds

Graphs

- Basics of graphs
 - Handshaking theorem
 - Complete graphs, cycles, wheels, bipartie graphs
 - Adjacency matrices, incidence matrices
- Connectivity
 - Paths, connected component
 - Euler and Hamilton graphs
- Shortest path problem
 - Dijkstra's algorithm
- Plannar graphs
 - Euler's formula: r = e v + 2
 - $deg(R) \ge 3$, $\Sigma deg(R) = 2e$

Trees

- Properties of trees
 - e = v 1
 - A full m-ary tree with i internal vertices contains n = mi + 1 vertices.
 - ullet There are at most m^h leaves in an m-ary tree of height h.
- Tree traversal
 - Preorder, inorder, postorder traversal
 - Prefix, infix, postfix notation of expressions
- Application of trees
 - Decision trees
 - Prefix codes and Huffman coding
- Spanning trees
 - Prim's and Kruskal's algorithm

