Brain Tumor Segmentation

Alejandro Cortina Stela Lila Vladyslav Zalevskyi

Outline

Dataset description

Threshold based approaches

☐ Isodata/Otsu

Clustering (K-Means)

Voxel-wise classification models

- Support Vector Machines
- Random Forest Classifier

Dataset Description

The Problem: Segmentation of gliomas in pre-operative MRI scans.

- BraTS2020 Dataset (Training + Validation)
- 369 patients
- 4 modalities
- 240x240x155 ~ 8.5 million voxels
- 19 participating institutions

Continued...

4 different modalities

~

>35 million voxels per patient

BraTS Annotations & Structures

Challenges

Challenges

- Image quality
- Scarcity of data
- Heterogeneity

T1 60 slice

T1CE 60 slice

T1 80 slice

T1 120 slice

T2 120 slice

T1 80 slice

Complexity of brain cancer

Thresholding

Otsu Isodata

Thresholding Otsu Isodata

Advantages

- Quick (4s per patient)
- Straightforward
- Performs well on obvious cases
- Unsupervised

T1CE 95 slice

FALIR 95 slice

Original Mask

Predicted Mask

Predicted over Original Mask

Predicted mask over Flair

Thresholding

Otsu Isodata

Disadvantages:

- Low overall accuracy
- Doesn't work for not distinct tumors
- Doesn't use modalities information
- Requires manual post processing and pre processing

Otsu results dsc=0.51

Otsu after 3 closings dsc=0.58

True mask

Isodata results dsc=0.51

Isodata after 3 closings: dsc=0.57

Thresholding

Without

Results

Dice score Otsu: 0.46 ± 0.37

Dice score ISODATA: 0.34 ± 0.356

K-Means

Improvements

- utilizes information from all 4 modalities
- more flexible than thresholding

<u>Still</u>

- quick (12s per patient)
- unsupervised

However:

- requires manual post processing
- manual selection of # of clusters

T2 80 slice

T1CE 80 slice

FALIR 80 slice

Predicted Mask

Predicted over Original Mask

Predicted mask over Flair

Pipeline

Voxel-wise classification

Support Vector Machines

- 12 minutes per patient
- completely automated
- supervised

Pipeline

SVM

Pre-processing

Feature Extraction and Data Sampling

20 features total:

- 4 intensities
- 4 first order texture features
 - o mean
 - variance
 - skewness
 - > kurtosis

Results

Dice score SVM: 0.695 ± 0.22

Voxel-wise classification

Random Forest

- 2 minutes per patient
- completely automated
- supervised

Pipeline

Feature Extraction:

Made through spatial filtering in 3D volumes and 2D slices

Based on Low and high grade glioma segmentation in multispectral brain MRI data (Szilágyi et al, 2018)

Feature (12)	Window size	Modalities
Minimum value	3x3x3	T1,T1ce,T2,Flair
Maximum value	3x3x3	T1,T1ce,T2,Flair
Median value	11x11x11	T1
Median value	11x11	T1
Mean value	11x11	Flair
Mean value	9x9	Flair

Sampling voxels: Reducing training data size (~8.9 mill voxels/px) by selecting only brain voxels and then randomly sampling 800-2000 samples per patient.

Random Forest

Feature Extraction:

Feature Extraction:

Original image Flair

Final model evaluation

- Trained with 100 different patients (800 samples/px). [Approx time: 2 hours for FE and training]
- Test with 30 new different patients

Dice score RF: 0.58 ± 0.21

Some results

• Patient 63: DSC=0.2089, HD = 63.65

• Patient 165: DSC=0.92.14, HD = 53.56

Dice Score comparison

General conclusions

- High inter-patient tumor variability led to diverse results
- Each model has its own strengths and we can combine them in future work
- Traditional segmentation (thresholding, k-means):
 - Quicker but limited usability
- Voxel-wise classification (random forest, support vector machine):
 - Slower but better results

Video demo

Questions?

Thank you!