Криптосистема RSA (Rivest-Shamir-Adleman, 1977)

- Пусть p, q большие простые числа, n = pq.
- ullet Тогда arphi(n)=(p-1)(q-1). $ar{\gamma}$. $ar{\gamma}$. a
- ullet Пусть $e\in\mathbb{N}$, e<arphi(n) и (e,arphi(n))=1.
- ullet Пусть $d\in\mathbb{N}$ обратный вычет к e по модулю arphi(n) (d<arphi(n) и $ed\equiv 1\pmod{arphi(n)}.$
- Чаще всего числа e и d стараются выбирать так, чтобы число d было большим, а число e достаточно небольшим (но и не слишком маленьким).
- Пара (n,e) открытый ключ. Он используется для шифрования сообщений и публикуется в открытом доступе.
- Пара (n,d) секретный ключ. Он используется для дешифрования сообщений и должен храниться в секрете.
- Сообщение число от 0 до N-1 (более длинные сообщения разбиваются на блоки, которые шифруются по отдельности).
- ullet Шифрование функция P:[0..n-1] o [0..n-1], где $P(m) \equiv m^e \pmod n$.
- ullet Дешифрование функция S:[0..n-1] o [0..n-1], где $S(m) \equiv m^d \pmod n$.

Криптосистема RSA. Доказательство корректности

Теорема 1

$$S(P(m)) = P(S(m)) = m.$$

Доказательство. \bullet Нужно доказать, что $m^{ed} \equiv m \pmod{n}$.

- ullet Для этого достаточно доказать, что $m^{ed} \equiv m \pmod p$ и $m^{ed} \equiv m \pmod q$.
- ullet Заметим, что $ed\equiv 1\pmod{arphi(n)}$. То есть, ed=(p-1)(q-1)k+1, где $k\in\mathbb{N}$.
- Пусть $m \not / p$. Тогда $m^{p-1} \equiv 1 \pmod{p}$. Следовательно, $m^{ed} = m^{(p-1)(q-1)k+1} = (m^{p-1})^{(q-1)k} \cdot m \equiv 1^{(q-1)k} \cdot m \equiv m \pmod{p}$.
- ullet Если $m \ \dot{} \ p$, то $m^{ed} \equiv 0 \equiv m \pmod{p}$.
- Итак, во всех случаях получаем, что $m^{ed} \equiv m \pmod{p}$.
- ullet То, что $m^{ed} \equiv m \pmod{q}$, доказывается аналогично. \square

Немного об истории вопроса

- В 1977 году авторы алгоритма (R. L. Rivest, A. Shamir, L. M. Adleman) опубликовали тестовый пример, в котором число *п* состояло из 129 десятичных (425 двоичных) знаков.
- Тестовый пример был расшифрован в 1994 году при помощи распределенных вычислений: для этого потребовалось полгода работы сети из 1600 компьютеров.
- В настоящее время надежными считаются системы, в которых n содержит порядка 2000 двоичных знаков.

Криптосистема RSA. О выборе p и q

- Выбирая простые числа p и q стоит придерживаться некоторых ограничений.
- Числа p и q не должны быть близки друг к другу. Обычно их выбирают так, чтобы длина их записи отличалась на несколько разрядов.
- ullet Действительно, $pq=\left(rac{p+q}{2}
 ight)^2-\left(rac{p-q}{2}
 ight)^2.$
- ullet Если |p-q| мал, то $\left(\frac{p+q}{2}\right)^2$ точный квадрат, ненамного превосходящий n.
- Тогда перебирая точные квадраты, большие n, мы быстро найдем такое a, что $a^2 n$ точный квадрат.
- ullet Далее, положив $a=rac{p+q}{2}$ и $\sqrt{a^2-n}=rac{p-q}{2}$, мы легко найдем p и q.
- $\bullet (p-1, q-1)$ должен быть маленьким.
- ullet Каждое из чисел p-1,q-1 должно иметь большой простой делитель.

Тест Ферма

Вход: нечётное натуральное число n.

- Выбираем случайным образом параметр $a \in [2..n-2];$
- вычисляем a^{n-1} по модулю n;
- \bullet если $a^{n-1} \equiv 1 \pmod{n}$, то ответ "простое",
- если $a^{n-1} \not\equiv 1 \pmod{n}$, то ответ "составное".
- Из Теоремы Эйлера следует, что ответ "составное" не может быть ошибочным.
- В то же время, ответ "простое" ошибочным быть может.
- Отметим, что сравнение $a^{n-1} \equiv 1 \pmod{n}$ может быть выполнено только в случае (a,n)=1.
- К сожалению, существуют такие нечетные составные числа n, для которых $a^{n-1} \equiv 1 \pmod n$ при всех a взаимно простых с n.
- Такие числа называются числами Кармайкла. Они проходят тест Ферма почти при любом выборе a. Пример: n=561.
- В 1994 году доказано, что чисел Кармайкла бесконечно много. Встречаются они относительно редко.

Символ Якоби

Определение

Пусть $n=p_1^{k_1}\dots p_\ell^{k_\ell}$ — каноническое разложение нечетного числа, $a\in\mathbb{N}.$ Тогда Символ Якоби — это $\left(\frac{a}{n}\right):=\prod_{i=1}^\ell \left(\frac{a}{p_i}\right)^{k_i}$

- Из мультипликативности символа Лежандра следует, что $\left(\frac{ab}{a}\right)=\left(\frac{a}{a}\right)\cdot\left(\frac{b}{a}\right).$
- ullet Из $\left(rac{a}{n}
 ight)=1$ не следует, что существует квадрат, сравнимый с a по модулю n.

Лемма 1

Пусть
$$n \in \mathbb{N}$$
, $n \not | 2$. Тогда $\binom{2}{n} = (-1)^{\frac{n^2-1}{8}}$.

Доказательство. • Пусть
$$f(k) := (-1)^{\frac{k^2-1}{8}}$$
.

- Рассмотрев все пары остатков по модулю 8, можно сделать вывод, что для любых нечетных k_1 и k_2 выполнено $f(k_1k_2)=f(f_1)f(k_2)$.
- ullet По Лемме 4.7, $\left(\frac{2}{p}\right)=(-1)^{\frac{p^2-1}{8}}=f(p)$ для любого нечетного простого p.
- Теперь из определения символа Якоби следует утверждение леммы для нечетного $n=p_1^{k_1}\dots p_\ell^{k_\ell}$. $p_\ell^{k_\ell}$

Теорема 2

(Закон взаимности для символа Якоби.) Пусть $n,m\in\mathbb{N}$ нечетны. Тогда $\left(\frac{n}{m}\right)=(-1)^{\frac{n-1}{2}\cdot\frac{m-1}{2}}\cdot\left(\frac{m}{n}\right).$

Доказательство. • Если (m,n)>1, то $(\frac{n}{m})=(\frac{m}{n})=0$ и теорема доказана.

- ullet Далее (m,n)=1, пусть $n=p_1\dots p_k$ и $m=q_1\dots q_s$ их разложения на простые множители (не обязательно различные).
- \bullet Тогда $p_i \neq q_i$ для любых i, j,

$$\left(\frac{n}{m}\right) = \prod_{i=1}^k \prod_{j=1}^s \left(\frac{p_i}{q_i}\right)$$
 u $\left(\frac{m}{n}\right) = \prod_{i=1}^k \prod_{j=1}^s \left(\frac{q_j}{p_i}\right)$.

- \bullet Значит, чтобы перейти от $\left(\frac{n}{m}\right)$ к $\left(\frac{m}{n}\right)$, нам нужно перевернуть ks символов Лежандра вида $(\frac{p_i}{q_i})$, превратив их в $\left(\frac{q_j}{p_i}\right)$.
- Один такой переворот по закону взаимности Гуасса (Теореме 4.3) меняет знак символа Лежандра, если и только если оба простых числа $p_i, q_i \equiv 3 \pmod{4}$.
- Пусть в разложении n ровно k' простых, сравнимых с 3 по модулю 4, а в разложении m ровно s' таких простых.
- \bullet Тогда $\left(\frac{n}{m}\right)$ и $\left(\frac{m}{n}\right)$ имеют разный знак, если и только если k's' нечетно.
- ullet Отметим, что $k' \not \mid 2 \iff n \equiv 3 \pmod{4}$ и $s' / 2 \iff m \equiv 3 \pmod{4}$.
- Остается отметить, что

$$m \equiv n \equiv 3 \pmod{4} \iff \frac{n-1}{2} \cdot \frac{m-1}{2} / 2.$$

• Благодаря Лемме 1 и Теореме 2 вычислить символ Якоби $(\frac{m}{n})$ можно достаточно быстро, причем для этого не нужно знать разложение числа n на простые множители (а найти такое разложение для большого числа как раз — трудная задача).

Первообразные корни

- ullet Пусть $n\in\mathbb{N}$. Через \mathbb{Z}_n обозначается кольцо вычетов по модулю n, а через \mathbb{Z}_n^* — множество всех обратимых элементов этого кольца (то есть, вычетов, взаимно простых с n- из Пр.СВ по модулю n).
- ullet По Теореме Эйлера, для любого $a\in\mathbb{Z}_n^*$ мы знаем, что $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Определение

Пусть $a \in \mathbb{Z}_n^*$, $d \in \mathbb{N}$. Будем говорить, что вычет aпринадлежит к показателю d по модулю n, если $a^d=1$, но $a^s
eq 1$ при $s \in \mathbb{N}$, s < d. Обозначение: $a \in_n d$.

• Аналогично Лемме 4.1 несложно доказать, что если $a \in_n d$, то $d \mid \varphi(n)$.

Определение

Пусть $n\in\mathbb{N}$. Вычет $a\in\mathbb{Z}_n^*$ — первообразный корень по модулю n, если $a \in_n \varphi(n)$.

• По Теореме 4.1 существуют первообразные корни по модулю $p \in \mathbb{P}$. Кроме того, первообразные корни существуют по модулю p^n и $2p^n$, где $p\in\mathbb{P}$ нечетно, а также по модулю 4. По остальным модулям первообразных корней нет.

Теорема 3

Пусть $n \in \mathbb{N}$, а — первообразный корень по модулю р. Тогда $a, a^2, \ldots, a^{\varphi(n)} = 1 - \Pi p C B \pmod{n}$, то есть, в точности все вычеты из \mathbb{Z}_n^* .

 $oldsymbol{eta}$ оказательство. ullet Достаточно доказать, что $a^i
eq a^j$ при $1 \leq j < i \leq \varphi(n)$.

- Предположим противное, пусть $a^{i}=a^{j}\iff a^{j}(a^{i-j}-1)=0.$
- ullet Однако, $a^{j} \neq 0$ и $a^{i-j} \neq 1$, так как 0 < i j < arphi(n). Противоречие.
- \bullet Если a первообразный корень по модулю n, то любой вычет $b \in \mathbb{Z}_p^*$ представляется в виде $b = a^k$, где $1 \leq k \leq \varphi(n)$.

Теорема 4

Для простого $p \in \mathbb{P}$ существует первообразный корень по модулю p^2 .

Доказательство. • Напомним, что $\varphi(p^2) = p(p-1)$.

- ullet Достаточно найти такое $b\in\mathbb{N}$, что $b^{p(p-1)}\equiv 1\pmod{p}^2$, но $b^{s} \not\equiv 1 \pmod{p}^{2}$ при s < p(p-1).
- Так как существует первообразный корень по модулю р, существует и такое $a \in \mathbb{N}$, что $a^{p-1} \equiv 1 \pmod{p}$, но $a^s \not\equiv 1$ (mod p) при s .
- Тогда (a,p)=1, а значит, а и a+p разные вычеты вычеты из $\mathbb{Z}_{p^2}^*$. Сероброжищи, т.н. $(a,p^*)=(a+p,p^2)=$ Если $a^s\equiv 1\pmod{p^2}$, то $a^s\equiv 1$
- $(\bmod p) \Rightarrow s : p-1 \Rightarrow s \in \{p-1, p(p-1)\}.$
- Аналогичное верно и для a + p.
- Предположим, что ни a, ни a+p нам не подходит. Тогда $(a+p)^{p-1} \equiv a^{p-1} \equiv 1 \pmod{p^2}$.
- Но $(a+p)^{p-1}-a^{p-1}=\sum\limits_{k=1}^{p-1}\mathrm{C}_{p-1}^{k}\rho^{k}a^{p-1-k}\equiv p(p-1)\not\equiv 0$ (mod p), противоречие. Эйлеровы псевдопростые $1\sum\limits_{k=1}^{p-1}\zeta_{p}^{k}\rho^{k}a^{p-1-k}\equiv 0\ (\bmod\ p^{2})$

Определение

 $\sum_{\kappa=1}^{p-1} \binom{\kappa}{p} \binom{\kappa}{n}^{p-1-\kappa} \equiv p(p-1)\alpha^{p-2} \equiv O \pmod{p^2} \iff c \Rightarrow p(p-1)\alpha^{p-1} \equiv O \cdot \alpha \equiv O \pmod{p^2} \iff p(p-1) \equiv 0$

Нечетное составное число n называется эйлеровым псевдопростым по основанию a, если (a,n)=1 и $a^{\frac{n-1}{2}} \equiv \left(\frac{a}{n}\right) \pmod{n}$.

Теорема 5

Нечетное составное число п является эйлеровым псевдопростым по основанию не более чем $\frac{\varphi(n)}{2}$ чисел, взаимно простых с п и меньших п.

Доказательство. ullet Пусть $b\in\mathbb{N}$, (b,n)=1. Назовем число b хорошим, если $b^{\frac{n-1}{2}} \not\equiv (\frac{b}{n}) \pmod{n}$ и плохим, если это сравнение выполнено.

• Наша цель — доказать, что не более чем половина вычетов из \mathbb{Z}_n^* — плохие.

Утверждение 1

Пусть $a,b \in \mathbb{Z}_n^*$, причем a- плохой вычет, ab- хороший. Тогда ab — хороший.

Доказательство. • Предположим, что ab — плохой вычет.

- ullet Тогда $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \pmod{n}$ и $\left(\frac{ab}{n}\right) \equiv (ab)^{\frac{n-1}{2}} \pmod{n}$.
- ullet Так как (a,n)=(b,n)=1, имеем $\left(rac{a}{n}
 ight),\left(rac{b}{n}
 ight),\left(rac{ab}{n}
 ight)\in\{1,-1\}$ и

ullet В последнем переходе мы использовали, что $a^{rac{n-1}{2}}\equiv \pm 1$ (mod n).

Утверждение 2

Eсли b- хороший вычет, то плохих вычетов не более чем $\frac{arphi(\mathsf{n})}{2}$.

Доказательство. \bullet Пусть a_1, \ldots, a_k — все плохие вычеты.

- ullet По Утверждению 1 тогда a_1b,\ldots,a_kb хорошие вычеты, и все они, очевидно, различны.
- Осталось доказать существование хорошего вычета. Разберем два случая.

Случай 1: $n otin p^2$, где $p \in \mathbb{P}$.

- По Теореме 4 существует первообразный корень по модулю p^2 — пусть это g.
- Пусть $n = p^k m$, где (m, p) = 1.
- ullet По KTO существует такое $b \in \{1, \dots, n-1\}$, что $b \equiv g$ $(\text{mod } p)^2 \text{ u } b \equiv 1 \text{ (mod } m).$
- Понятно, что (b, n) = 1. Пусть $b \in_n d$.
- ullet Тогда b^d-1 $h p^2$, откуда следует $d \varphi(p^2)=p(p-1) p$.
- Очевидно, $n-1 \not | p$. Поэтому, $b^{n-1} \not\equiv 1 \pmod{n}$.
- Если $b^{\frac{n-1}{2}} \equiv (\frac{b}{n}) \pmod{n}$, то

 $b^{\frac{n-1}{2}} \equiv \pm 1 \pmod{n} \Rightarrow b^{n-1} \equiv 1 \pmod{n}$, противоречие.

Случай 2: n свободно от квадратов.

- ullet Пусть $n \cdot p$, где $p \in \mathbb{P}$. Тогда n = pm, где (m,p) = 1.
- ullet По KTO существует такое число $b \in [1..n-1]$, что $\left(\frac{b}{b}\right)=-1$ и $b\equiv 1\pmod{m}$.
- Ясно, что (b, n) = 1.
- ullet Тогда $\left(rac{b}{a}
 ight)=1$ для любого отличного от p простого делителя q числа n, откуда $\left(\frac{b}{n}\right) = -1$.
- \bullet Если $b^{\frac{n-1}{2}} \equiv (\frac{b}{n}) \equiv -1 \pmod{n}$, то $b^{\frac{n-1}{2}} \equiv -1 \pmod{m}$, что при $b \equiv 1 \pmod{m}$ невозможно.
- \bullet Значит, b хороший вычет.

Тест Соловея-Штрассена

Bход: нечётное натуральное число n.

- Выбираем случайным образом параметр $a \in [2..n-2]$;
- ullet вычисляем a^{n-1} по модулю n; $egin{array}{c} \mathcal{E}_{aux} & \left(rac{a}{2}
 ight)
 eq 0 \end{array}$, $eq 0 \ (a,r) = 0$
- вычисляем $\left(\frac{a}{n}\right)$ по модулю n.
- ullet Если $a^{n-1} \equiv \left(rac{a}{n}
 ight) \equiv \pm 1 \pmod{n}$, то ответ "простое",

- Из определений символа Лежандра и символа Якоби следует, что ответ "составное" не может быть ошибочным.
- В то же время, ответ "простое" ошибочным быть может.
- По Теореме 5, вероятность ошибки в тесте Соловея-Штрассена менее $\frac{1}{2}$.
- ullet Повторив тест с числом n независимо k раз, получим вероятность ошибки менее $\frac{1}{2^k}$.

Тест Миллера-Рабина

 $\mathsf{B}\mathsf{xo}\mathsf{g}$: нечётное натуральное число n.

- ullet Пусть $n-1=2^t\cdot u$, где $t,u\in\mathbb{N}$ и $u\not\mid 2$.
- Выбираем случайным образом параметр $a \in [2..n-2]$.
- Вычисляем $a^u, a^{2u}, \ldots, a^{2^t u}$ по модулю n (получившаяся последовательность называется последовательность Миллера-Рабина).
- Ответ "простое" дается в следующих двух случаях: – если $a^u \equiv 1 \pmod{n}$; – если $a^{2^k u} \equiv -1 \pmod{n}$ при некотором $k \in [0..t-1]$.
- Во всех остальных случаях, дается ответ "составное".
- Ответ "простое" при выполнении теста Миллера-Рабина может быть ошибочным.

Определение

Нечетное составное число n называется сильно псевдопростым по основанию а, если тест Миллера-Рабина для числа n с параметром a дает ответ "простое".

Лемма 2

Если $n \in \mathbb{P}$, то тест Миллера-Рабина выдаст ответ "простое".

Доказательство. • По теореме Эйлера $a^{2^t \cdot u} \equiv 1 \pmod{n}$, так что в последовательности Миллера-Рабина есть хотя бы одна единица.

- Рассмотрим такое наименьшее k, что $a^{2^k \cdot u} \equiv 1 \pmod{n}$.
- ullet Если k=0, то $a^u\equiv 1\pmod n$ и тогда дан ответ "простое".
- ullet Пусть k > 0. Тогда $a^{2^{k \cdot u}} \equiv 1 \pmod{n}$ и $a^{2^{k-1} \cdot u} \not\equiv 1 \pmod{n}$.
- Следовательно, $(a^{2^{k-1} \cdot u} 1)(a^{2^{k-1} \cdot u} + 1) = a^{2^k \cdot u} 1 \cdot n$.
- ullet Поскольку $n \in \mathbb{P}$ и $a^{2^{k-1} \cdot u} \not\equiv 1 \pmod{n}$, получаем, что $a^{2^{k-1}\cdot u}+1 \cdot n.$
- В этом случае тоже дан ответ "простое".
- Итак, тест Миллера-Рабина вероятностный тест с односторонней ошибкой.
- Можно доказать, что вероятность ошибки в тесте Миллера-Рабина не превосходит $\frac{1}{4}$, но доказательство весьма технически сложное.