Przedziały ufności dla wartości oczekiwanej

MODEL I - rozkład normalny $N(\mu, \sigma^2)$, σ znane

$$\left[\bar{X}_n - u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right],$$

MODEL II - rozkład normalny $N(\mu, \sigma^2)$, σ nieznane

$$\left[\bar{X}_n - t_{1-\frac{\alpha}{2},n-1} \frac{s}{\sqrt{n}}, \bar{X}_n + t_{1-\frac{\alpha}{2},n-1} \frac{s}{\sqrt{n}}\right],$$

MODEL III - rozkład dowolny, σ nieznane, $n \ge 50$.

$$\left[\bar{X}_n - u_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{X}_n + u_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right],$$

MODEL IV - rozkład Bernoulliego $B(1, p), p \in (0, 1), n \ge 50$

$$\left[\hat{p}_n - u_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}, \hat{p}_n + u_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}\right],$$

Przedziały ufności dla wariancji

MODEL I - rozkład normalny $N(\mu, \sigma^2)$, μ znane

$$\left[\frac{n\hat{\sigma}_{0}^{2}}{\chi_{1-\frac{\alpha}{2},n}^{2}}, \frac{n\hat{\sigma}_{0}^{2}}{\chi_{\frac{\alpha}{2},n}^{2}}\right],$$

MODEL II - rozkład normalny $N(\mu, \sigma^2)$, μ nieznane

(a) dla $n \leq 40$

$$\left[\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}, \frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right],$$

(b) dla n > 40

$$\left[\frac{2ns^2}{\left(\sqrt{2n-3}+u_{1-\frac{\alpha}{2}}\right)^2}, \frac{2ns^2}{\left(\sqrt{2n-3}-u_{1-\frac{\alpha}{2}}\right)^2}\right],$$

MODEL III - rozkład dowolny, μ nieznane, $n \ge 100$

$$\left[\frac{s^2}{1+\sqrt{\frac{2}{n}}\cdot u_{1-\frac{\alpha}{2}}}, \frac{s^2}{1-\sqrt{\frac{2}{n}}\cdot u_{1-\frac{\alpha}{2}}}\right],$$

 $\hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2, \quad s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2, \quad \hat{p}_n = \bar{X}_n, \text{ gdzie } \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$ $u_\alpha, \ t_{\alpha,n} \text{ oraz } \chi_{\alpha,n}^2 \text{ oznaczają kwantyle rzędu } \alpha \text{ rozkładów } N(0,1), \ t[n] \text{ oraz } \chi^2[n] \text{ odpowiednio.}$

Dla n > 40 stosujemy następujące przybliżenia:

$$\chi_{\alpha,n}^2 \approx \frac{1}{2} \left(\sqrt{2n-1} + u_\alpha \right)^2 \text{ oraz } t_{\alpha,n} \approx u_\alpha = t_{\alpha,\infty}.$$

Testy parametryczne dla wartości oczekiwanej $H_0: \mu = \mu_0$

(a) $H_1: \mu \neq \mu_0$ (b) $H_1: \mu > \mu_0$ (c) $H_1: \mu < \mu_0$.

MODEL I - rozkład normalny $N(\mu, \sigma^2)$, σ znane

Statystyka testowa:

$$U = \sqrt{n} \frac{\bar{X}_n - \mu_0}{\sigma} \sim_{|H_0} N(0, 1).$$

Odrzucamy H_0 **jeżeli:** (a) $|U| \geqslant u_{1-\frac{\alpha}{2}}$ (b) $U \geqslant u_{1-\alpha}$ (c) $U \leqslant u_{\alpha}$.

MODEL II - rozkład normalny $N(\mu, \sigma^2)$, σ nieznane

Statystyka testowa:

$$t = \sqrt{n} \frac{\bar{X}_n - \mu_0}{s} \sim_{|H_0} t[n-1].$$

Odrzucamy H_0 jeżeli: (a) $|t| \ge t_{1-\frac{\alpha}{\alpha},n-1}$ (b) $t \ge t_{1-\alpha,n-1}$ (c) $t \le -t_{1-\alpha,n-1}$.

MODEL III - rozkład dowolny, σ nieznane, $n \ge 50$.

Statystyka testowa:

$$Z = \sqrt{n} \frac{\bar{X}_n - \mu_0}{s} \approx_{|H_0} N(0, 1).$$

Odrzucamy H_0 **jeżeli:** (a) $|Z| \ge u_{1-\frac{\alpha}{2}}$ (b) $Z \ge u_{1-\alpha}$ (c) $Z \le u_{\alpha}$.

Test dla wskaźnika struktury $H_0: p = p_0$

(a)
$$H_1: p \neq p_0$$
 (b) $H_1: p > p_0$ (c) $H_1: p < p_0$.

MODEL IV - rozkład Bernoulli'ego $B(1, p), p \in (0, 1), n \ge 50.$

Statystyka testowa:

$$Z = \sqrt{n} \frac{\hat{p}_n - p_0}{\sqrt{p_0(1 - p_0)}} \approx_{|H_0} N(0, 1).$$

(a) $|Z| \geqslant u_{1-\frac{\alpha}{2}}$ (b) $Z \geqslant u_{1-\alpha}$ (c) $Z \leqslant u_{\alpha}$. Odrzucamy H_0 jeżeli:

Testy parametryczne dla wariancji $H_0: \sigma^2 = \sigma_0^2$ (a) $H_1: \sigma^2 \neq \sigma_0^2$ (b) $H_1: \sigma^2 > \sigma_0^2$ (c) $H_1: \sigma^2 < \sigma_0^2$.

(a)
$$H_1: \sigma^2 \neq \sigma_0^2$$
 (b) $H_1: \sigma^2 > \sigma_0^2$ (c) $H_1: \sigma^2 < \sigma_0^2$.

MODEL I - rozkład normalny $N(\mu, \sigma^2)$, μ znane

Statystyka testowa:

$$\chi_0^2 = \frac{n\hat{\sigma}_0^2}{\sigma_0^2} \sim_{|H_0} \chi^2[n]$$

Odrzucamy H_0 **jeżeli:** (a) $\chi_0^2 \ge \chi_{1-\frac{\alpha}{2},n}^2 \lor \chi_0^2 \le \chi_{\frac{\alpha}{2},n}^2$ (b) $\chi_0^2 \ge \chi_{1-\alpha,n}^2$ (c) $\chi_0^2 \le \chi_{\alpha,n}^2$.

MODEL II - rozkład normalny $N(\mu, \sigma^2)$, μ nieznane

Statystyka testowa:

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim_{|H_0} \chi^2[n-1]$$

Odrzucamy H_0 **jeżeli:** (a) $\chi_0^2 \geqslant \chi_{1-\frac{\alpha}{2},n-1}^2 \lor \chi_0^2 \leqslant \chi_{\frac{\alpha}{2},n-1}^2$ (b) $\chi_0^2 \geqslant \chi_{1-\alpha,n-1}^2$ (c) $\chi_0^2 \leqslant \chi_{\alpha,n-1}^2$.

MODEL III - rozkład dowolny, μ nieznane, $n \ge 100$

Statystyka testowa:

$$Z = \frac{s^2 - \sigma_0^2}{\sigma_0^2} \sqrt{\frac{n}{2}} \approx_{|H_0} N(0, 1).$$

Odrzucamy H_0 **jeżeli:** (a) $|Z| \geqslant u_{1-\frac{\alpha}{2}}$ (b) $Z \geqslant u_{1-\alpha}$ (c) $Z \leqslant u_{\alpha}$.