

Question 3 Résoudre dans \mathbb{C} : $z^2 + 4z + 13 = 0$.
$ z = -4 \pm \sqrt{13} $
$ z = -2 \pm \sqrt{13} $
$ z = -2 \pm 3i $
Question 4 Soit $z = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$. Écrire z sous forme algébrique $a + ib$.
$\boxed{}4\sqrt{3}+i$
\bigcirc 2\sqrt{3} + 2i
Question 5 Soit $f:\mathbb{C}\to\mathbb{C},\ f(z)=(1+i)z.$ Quelle est l'interprétation géométrique de f ?
Une translation de vecteur $1+i$
\searrow Une similitude directe de centre 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$
Une symétrie par rapport à l'axe réel
Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'échelle
2 Algèbre linéaire
Question 6 Soit une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ de rang 2. Quelle est la dimension de son noyau ker f ?
Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc $\det(A) = 0$). À propos du système $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vraie ?
Selon b, il y a soit aucune solution, soit une infinité de solutions; il n'y a jamais de solution unique.
Il y a toujours une unique solution pour tout b.
Il y a toujours une infinité de solutions pour tout b.
Il n'y a jamais de solution, quel que soit b.

10/10/2025

4 0	4 0	40	$\Box 0$
			\mathcal{U}_1
	$\square 2$	$\square 2$	$\square 2$
$\square 3$	3	$\square 3$	$\square 3$
$\boxed{}4$	$\Box 4$	4	
\Box 5	\Box 5	\Box 5	\Box 5
6	<u></u> 6	<u></u> 6	<u>6</u>
7	\Box 7	\Box 7	\Box 7
8	8	8	8
$\square 9$	9	$\square 9$	$\square 9$

← Codez votre numéro d'étudiant ci-contre et inscrivez votre nom et prénom ci-dessous.

			_		
Nom et prénom :					
DUPONT					
Marie					

Cours 1 - 3

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1 Calculer (1-2i)(3+i).

Question 2 Pour $z = -1 + i\sqrt{3}$, déterminer |z| et un argument principal de z.

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{3\pi}{4}$

$$|z|=2 \text{ et } \arg(z)=\frac{2\pi}{3}$$

$$|z| = 2 \text{ et } \arg(z) = \frac{\pi}{3}$$

Cours 1 - 3

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1	Calculer $(1-2i)(3+i)$	
5 - 5i		
X = 5i		
5 - 5i		

Question 2 Pour $z = -1 + i\sqrt{3}$, déterminer |z| et un argument principal de z.

7 1 - 5i

$$|z| = 2 \text{ et } \arg(z) = \frac{2\pi}{3}$$

$$|z| = 2 \text{ et } \arg(z) = -\frac{\pi}{3}$$

Question 3 Résoudre dans \mathbb{C} : $z^2 + 4z + 13 = 0$).
$ z = 2 \pm 3i $	
$ z = -2 \pm \sqrt{13} $	
$z = -4 \pm \sqrt{13}$	
Question 4 Soit $z = 4 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$. Écrire z	sous forme algébrique $a + ib$.
$2\sqrt{3} + 2i$	
$2 + 2 \operatorname{\sqrt{3}i}$	
Question 5 Soit $f: \mathbb{C} \to \mathbb{C}$, $f(z) = (1 + \epsilon)$ géométrique de f ?	i)z. Quelle est l'interprétation
Une similitude directe de centre 0, de rapport	t $\sqrt{2}$ et d'angle $\frac{\pi}{4}$
Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'é	
Une symétrie par rapport à l'axe réel	. **
Une translation de vecteur $1+i$	
2 Algèbre linéaire	
Question 6 Soit une application linéaire $f: \mathbb{R}^4$ dimension de son noyau $\ker f$?	$\to \mathbb{R}^3$ de rang 2. Quelle est la
Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc de $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vrai	
Il y a toujours une unique solution pour tout	b. **
Selon b, il y a soit aucune solution, soit une in de solution unique.	finité de solutions; il n'y a jamais
Il y a toujours une infinité de solutions pour	tout b .
Il n'y a jamais de solution, quel que soit b.	