Harvard University Computer Science 20

Problem Set 1

PROBLEM 1

Prove by truth table the first of the two distributive laws:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

PROBLEM 2

A half dozen different operators may appear in propositional formulas, but just \land , \lor , and \neg are enough to express every proposition. That is because each of the operators is equivalent to a simple formula using only these three operators. For example, $A \to B$ is equivalent to $\neg A \lor B$. So all occurrences of \to in a formula can be replaced using just \neg and \lor .

- (A) Write a proposition using only \land , \lor , \neg that is equivalent to $A \oplus B$. Prove your answer.
- (B) Write a proposition using only \land , \lor , \neg that is equivalent to $A \iff B$. Prove your answer.
- (C) Prove that we don't even need \wedge , that is, write a proposition using **only** \vee and \neg that is equivalent to $A \wedge B$. Prove your answer.
- (D) Prove that we can get by with the single operator NAND, written \uparrow , where $A \uparrow B$ is equivalent by definition to $\neg (A \land B)$. To do so, write propositions using **only** \uparrow that are equivalent to 1) $\neg A$ and 2) $A \lor B$. Prove your answer. Because NAND is sufficient and easy to build in a digital circuit, in practice it is often actually the case that NAND is the only operator.

PROBLEM 3

For each of the following propositions:

- (A) $\forall x \exists y.2x y = 0$
- (B) $\forall x \exists y. x 2y = 0$
- (C) $\forall x.x < 10 \rightarrow (\forall y.y < x \rightarrow y < 9)$
- (D) $\forall x \exists y . [y > x \land \exists z . y + z = 100]$

determine which propositions are valid when the variables range over:

- 1. the nonnegative integers (i.e., the natural numbers, \mathbb{N})
- 2. the integers (\mathbb{Z})
- 3. the real numbers (\mathbb{R})

If the proposition is true in a domain, make an argument for its validity. If it is false, provide a counterexample.