Models And Contrasts In R And Deseq2

OUTLINE

- How to interpret linear models coefficients
 - o categorical variables & model matrix

How to specify models in R using the "formula syntax"

y ~ x

- How to interpret the results of different model designs
 - One factor, 3 levels
 - o Two factors, additive
 - Two factors, interaction

• How DESeq2 reports its results and how to interpret them

LINEAR MODEL

A model is a simplified representation of how we think different variables relate to each other.

Linear models are the most commonly used in statistical inference.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Intercept Slope Errors

X = Independent variable

Y = Dependent variable

LINEAR MODELS IN R | CATEGORICAL VARIABLES

LINEAR MODELS IN R | CATEGORICAL VARIABLES

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group

 $\beta_1 = difference$ to the reference group

LINEAR MODELS IN R | CATEGORICAL VARIABLES

Indicator / Dummy variable

Example:

$$eta_0 = 5; \ eta_1 = 3$$
 $Y = 5 + 3 * X_B$
 $Y = 5 + \begin{cases} 3 * \mathbf{0} = 5 \\ 3 * \mathbf{1} = 8 \end{cases}$ if "A"

if "B"

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

$$\beta_0$$
 = average of the reference group

$$\beta_1$$
 = **difference** to the reference group

LINEAR MODELS IN R | NULL HYPOTHESIS TESTING

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_1 = 0$

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Test statistic: $\beta_1 / \sigma_{\beta_1}$

(our estimate divided by the uncertainty in that estimate)

P-value calculated from the test statistic

 Low p-value indicates that the data are not very compatible with the null hypothesis.

THOUGHT EXPERIMENT

- Write a model compatible with the plot above which shows the effect of a drug on gene expression.
- Biologically speaking, what do each of the β coefficients in your model mean?
- What is the null hypothesis for testing for an effect of the treatment on the gene's expression?
- Write the values for the indicator variable for each sample (the numbers in the points are sample ID).

LINEAR MODELS IN R | MODEL SPECIFICATION

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 eta_0 = average of the reference group eta_1 = difference to the

reference group

Formula syntax in R:

outcome ~ predictors

LINEAR MODELS IN R | MODEL SPECIFICATION

outcome ~ predictors

Model:

$$Y = \beta_0 + \beta_1 X_B + \epsilon$$

 β_0 = average of the reference group

 β_1 = **difference** to the reference group

LINEAR MODELS IN R | MODEL SPECIFICATION

Formula syntax in R:

outcome ~ predictors

Model:

$$Y = \beta_0 + \beta_1 X_B$$

 β_0 = average of the reference group β_1 = difference to the reference group

COMMON DESIGNS

- Define our model with formula syntax
- Categorical variables are encoded as indicator variables in a model matrix
 - R does this for us
- Interpret coefficients to define hypothesis of interest

COMMON DESIGNS | ONE FACTOR, 3 LEVELS

	drug
sample1	Pink
sample2	Pink
sample3	Pink
sample4	Yellow
sample5	Yellow
sample6	Yellow
sample7	White
sample8	White
sample9	White

Null hypothesis:

Pink vs White $\beta_1 = 0$

Yellow vs White $\beta_2 = 0$

Yellow vs Pink $\beta_2 - \beta_1 = 0$

Design: Model matrix

drugPink

drugYellow

MODEL DESIGNS | TWO FACTORS - ADDITIVE MODEL

	drug	genotype
sample1	Pink	TW
sample2	Pink	∇T
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	∇T
sample6	White	∇T
sample7	White	MUT
sample8	White	MUT

Null hypothesis:

Pink vs White drug $\beta_1 = 0$

WT vs MUT genotype $\beta_2 = 0$

Design:

~ drug + genotype

Model Matrix:

(Intercept)	drugPink	genotypeMUT
1 1	1	0
2 1	1	0
3 1	1	1
4 1	1	1
5 1	0	0
6 1	0	0
7 1	0	1
3 1	0	1

MODEL DESIGNS | TWO FACTORS - INTERACTION MODEL

drug genotype sample1 Pink WTsample2 Pink WTPink sample3 MUT sample4 Pink MUT sample5 White WTsample6 White WTsample7 White MUT sample8 White MUT

Design:

~ drug + genotype + drug:genotype

MUT

WT

Null hypothesis:

Pink vs White (<u>WT</u>) $\beta_1 = 0$

Pink vs White (<u>MUT</u>) $\beta_1 + \beta_3 = 0$

WT vs MUT (White) $\beta_2 = 0$

WT vs MUT (Pink) $\beta_2 + \beta_3 = 0$

Interaction ("Difference of differences"): $\beta_3 = 0$

MODEL SPECIFICATION IN DESEQ2

- Create DESeqDataSet object
- Add model design:

```
design(dds) ← ~ treatment
```

Fit the statistical model

```
dds ← DESeq(dds)
```

Check coefficients for hypothesis testing

```
resultsNames (dds)
```


Α

В

 C

MODEL SPECIFICATION IN DESEQ2

- Create DESeqDataSet object
- Add model design:

```
design(dds) ← ~ treatment
```

- Fit the statistical model

```
dds ← DESeq(dds)
```

Check coefficients for hypothesis testing

resultsNames (dds)

	Null Hypothesis
B vs A	$\beta_1 = 0$
C vs A	$\beta_2 = 0$
C vs B	$\beta_2 - \beta_1 = 0$

MODEL SPECIFICATION IN *DESEQ2* | INTERPRETING RESULTS

results(dds, contrast = list("treatment_B_vs_A"))

```
lfcSE
        baseMean log2FoldChange
                                                      pvalue
                                               stat
                                                                  padi
        <numeric>
                      <numeric> <numeric> <numeric> <numeric> <numeric>
        32.80405
                       0.359444 0.598072 0.601004 0.5478372 0.923764
gene1
gene2
         4.01072
                       3.407763 1.649827 2.065527 0.0388732 0.641407
                       0.743337 0.994100
                                          0.747749 0.4546118
gene3
         7.01837
                                                              0.923764
         1.51006
                       2.814822 2.464686 1.142061 0.2534287 0.923764
gene4
gene5
        11.23166
                       0.480522 0.894709
                                          0.537071 0.5912189
                                                              0.923764
gene96
        16.21864
                       0.684962
                                0.809892
                                          0.845745 0.3976952
                                                              0.923764
                                                              0.923764
gene97
         2.91349
                       1.784327 1.790046
                                          0.996805 0.3188590
                      -0.634070 0.768728 -0.824830 0.4094680
gene98
        13.29915
                                                              0.923764
        82.45653
gene99
                      -0.963147 0.505109 -1.906810 0.0565452 0.799710
         6.25763
gene100
                       1.673078 1.252839 1.335429 0.1817359 0.923764
```

```
baseMean → Mean across all samples
```

 $log2FoldChange \rightarrow log_2(B/A)$ i.e. the difference between treatments

IfcSE → the standard error of the log2FoldChange

stat → the test statistic = log2FoldChange/lfcSE

pvalue \rightarrow the p-value of the Wald test

padj → the p-value adjusted for multiple testing (false discovery rate)

LIKELIHOOD-RATIO TEST

- The default test in DESeq2 is the Wald test, testing for null hypothesis that LFC = 0
- The **Likelihood Ratio Test** is an alternative when evaluating expression change across more than two levels. Can be especially useful in analyzing time course experiments.
- The test determines if the increased likelihood of the data using the extra terms in the full model is more than expected if those extra terms are truly zero.
- Outputs can be used to identify gene clusters exhibiting particular patterns across samples.

Useful tutorials: 1, 2

CONCLUSIONS

- Differential expression tests are based on linear models, where the gene expression is modelled as an outcome of several variables of interest (e.g. treatment, genotype, infection status, etc.).
- Linear models use *indicator or dummy variables* to encode categorical variables in a model matrix.
- To define models in R/DESeq2 we use the formula syntax: ~ variables
- Some common models are:
 - Single factor: ~ variable1
 - Two factor, additive: ~ variable1 + variable2
 - Two factor, interaction: ~ variable1 + variable2 + variable1:variable2
- Interpreting our model coefficients allows us to define hypothesis/comparisons/contrasts of interest.
- In DESeq2 we use the `results()` function to obtain the log2(fold-change) in gene expression between groups of interest ("contrast").