- MER
$$^{2\times2}$$
 normal \Leftrightarrow M^t n = MM^t
- Want M s.t. MtM \neq MM^t
- Let M= $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $\begin{pmatrix} by & 0 \\ c & d \end{pmatrix}$

$$M^{\dagger} = (M^{*})^{T} = \begin{bmatrix} (\alpha b)^{*} \\ (c d)^{*} \end{bmatrix}^{T} = \begin{bmatrix} (\alpha b)^{T} \\ (c d)^{T} \end{bmatrix} = \begin{bmatrix} (\alpha c)^{T} \\ (b d)^{T} \end{bmatrix}$$

$$\forall X \in \mathbb{R}: X^{*} = X \text{ since } M(\alpha) = 0 \text{ } \forall \alpha \in \mathbb{R}$$

$$- m^{\dagger} n = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{bmatrix}$$

$$-\mu_{\perp} = \begin{bmatrix} \rho & \rho \end{bmatrix} \begin{bmatrix} \sigma & \rho \end{bmatrix} \begin{bmatrix} \sigma & \rho \end{bmatrix} \begin{bmatrix} \sigma & \rho \\ \sigma & \rho \end{bmatrix} \begin{bmatrix} \sigma & \rho \\ \sigma & \rho \end{bmatrix} \begin{bmatrix} \sigma & \rho \\ \sigma & \rho \end{bmatrix}$$

$$MMT = \begin{cases} a & b \\ c & d \end{cases} \begin{cases} a & c \\ b & d \end{cases} = \begin{bmatrix} a^2 + b^2 & ac+bd \\ ac+bd & c^2 + b^2 \end{cases}$$

$$Mtm = rmt \Leftrightarrow mtm - rmt = 0 \Leftrightarrow \begin{bmatrix} 0^2 + C^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{bmatrix} - \begin{bmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + b^2 \end{bmatrix} = 0 \Leftrightarrow$$

$$\begin{bmatrix} c^2 - b^2 & ab+cd-ac-bd \\ ab+cd-ac-bd & -(c^2+d^2) \end{bmatrix} = 0$$

$$=:M'$$

by picking
$$C^2 \neq b^2$$
, for instance $C=0,b=1$. Assign $\alpha=d=0$ randomly.

- We get
$$N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 which is not normal: $N \neq 0$

- We get
$$M = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 which is not normal: $M = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

$$\Rightarrow nnt = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq ntn = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

(c) — Let
$$M = [\cos(\theta) | \sin(\theta)]$$
 for $\theta \in \mathbb{R}$.

Complex conjugate: Let
$$x=ae^{ib}\in \mathbb{C}$$
, then $x^*=ae^{-ib}$ Def. complex conjugate e^{i00} ; $x^*=(ae^{ib})^*=(a(cos(b)+isin(b))^*=a\cdot(cos(b)+isin(b))^*=a\cdot(cos(b)+isin(b))^*=a\cdot(cos(b)+isin(b))^*=a\cdot(cos(b)+isin(b))^*=a\cdot(cos(b)+isin(b))^*=a\cdot(cos(b)+isin(b))^*=a\cdot(cos(b)+isin(b))^*=a\cdot(cos(a)+isin(b))^*=$

Let
$$n \in \mathbb{N}$$
, $o_j \in \mathbb{C}$ for $j \in \{1, ..., n\}$, then $\prod_{j=1}^{n} o_j * = \left(\prod_{j=1}^{n} a_j\right) *$

(B) Let
$$N=1$$
: $\prod_{j=1}^{N} Q_{j}^{*} = \prod_{j=1}^{N} Q_{j}^{*} = A_{j}^{*} = (Q_{j})^{*}$

$$= (\prod_{j=1}^{N} Q_{j}^{*})^{*} = (\prod_{j=1}^{N} Q_{j}^{*})^{*}$$

Let NEW, show (73) holds for n+1:

$$\frac{N+1}{\prod_{j=1}^{N} \alpha_j^*} = \alpha_{N+1}^* \frac{1}{\prod_{j=1}^{N} \alpha_j^*} = \alpha_{N+1}^* \left(\frac{1}{\prod_{j=1}^{N} \alpha_j} \right)^* = \left(\frac{n+1}{\prod_{j=1}^{N} \alpha_j} \right)^* =$$

Let
$$n \in \mathbb{N}$$
, S be a set with $|S| = n$, f a function $f: S \to \mathbb{C}$, then $g \in S$

Proof: By induction over n:

(B) Let
$$n=1$$
 \Rightarrow Let who $C = \{\alpha\}$ with $|C|=1$ then
$$\sum_{\alpha \in C} f(\alpha) * = \sum_{\alpha \in \{\alpha\}} f(\alpha) * = f(\alpha) * = (f(\alpha)) * = (\sum_{\alpha \in \{\alpha\}} f(\alpha)) *$$

(15) with (14) assuming (74) holds for n: Let S with
$$|S|=n$$
:
$$\sum_{\theta \in S} f(\theta)^* = \left(\sum_{\theta \in S} f(\theta)\right)^*$$

$$= \left(\begin{array}{c} \Theta \in \mathcal{L} \cap \{P\} \\ \Theta \in \mathcal{L} \\ \Theta \in \mathcal{L} \end{array}\right)_{*} = \left(\begin{array}{c} \Theta \in \mathcal{L} \\ \Theta$$

(Ts)
$$x*y* = (xy)*$$
 for $x_1y \in C$

Proof: • Let x=a+bi, y=c+di With x*=a-bij y*=c-di

•
$$\times * y* = (a-bi)(c-di) = ac-bd-(ad+bc)i$$

= $(ac-bd+(ad+bc)i)* = ((a+bi)(c+di))* = (\times y)*$

Proof: Let x=a+bi, y=c+di With x*=a-bij y*=c-di

•
$$X*+y* = a-bi+c-di = a+c-(b+d)i = (a+c+(b+d)i)*$$

= $(a+bi+c+di)* = (x+y)*$

Proof: • Let x=a+bi with x* = a-bi

(a)
$$\begin{bmatrix} 2 & -i & 5 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ i \\ -3 \end{bmatrix} = \begin{bmatrix} 8 - i^2 - 15 \\ 12 & -3 \end{bmatrix} = \begin{bmatrix} 8 + 1 - 15 \\ 9 \end{bmatrix} = \begin{bmatrix} -6 \\ 9 \end{bmatrix}$$

•
$$\begin{bmatrix} -2 & 7 \\ 3 & 1+2i \end{bmatrix}$$
 $\begin{bmatrix} 5 & -4 \\ 6i & 0 \end{bmatrix}$ = $\begin{bmatrix} -10+42i & 8 \\ 15+6i+12i^2 & -12 \end{bmatrix}$ = $\begin{bmatrix} -10+42i & 8 \\ 3+6i & -12 \end{bmatrix}$

- ab = 3+4i + 2-i = (3+2)+(4-1)i = 5+3i• $ab = (3+4i)(2-i) = 6-3i+8i-4i^2 = 10+5i$ (a)

•
$$1/\alpha = \frac{1}{3+4i} = \frac{(3-4i)}{(3+4i)(3-4i)} = \frac{3-4i}{9-16i^2} = \frac{3-4i}{25} = \frac{3/25-4/25i}{25}$$

- a * = 3 4!
- $|a| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5$ $|arg(a) = arctan(4/3) \approx 53^\circ$
- $\gamma = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3+4i \\ 2-i \end{bmatrix}, ||\gamma|| = \sqrt{\langle \gamma, \gamma * \rangle} = \sqrt{\langle [3+4i \ 2-i]^{T}, [3+4i \ 2-i]^{T}*}$ $=\sqrt{(3+4)(3-4)^{T}(3-4)(3+4)(3-4)+(2-1)(2+1)}$ $= \sqrt{9 - 16i^2 + 4 - i^2} = \sqrt{9 + 16 + 4 + 1} = \sqrt{30}$

• for complex numbers u = x + yi, b = u + vi a + b = x + yi + u + Vi = x + u + (y + v)i \rightarrow Parallelogiam law of two vectors: (c)

for complex numbers $u = xe^{iy}$ b=ueight

