Analyze transmission type influence on fuel efficiency

Evgeny Kuznetsov

Synopsis

This is Regression Models Course Project. In this project, we analyze transmission type (AM) influence on fuel efficiency (MPG) basing on mtcars dataset.

Exploratory analyses

```
data(mtcars) # load data

t.test(mpg ~ am, data = mtcars) # perform t.test
```

```
##
## Welch Two Sample t-test
##
## data: mpg by am
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean in group 0 mean in group 1
## 17.14737 24.39231
```

We have highly different means in these two groups. See also appendix A for means' graph.

Regression analyses

```
minimum_fit <- lm(mpg ~ am, data = mtcars) # calculate minimum model
full_fit <- lm(mpg ~ . , data = mtcars) # calculate full model
reduced_fit <- step(full_fit, trace = 0) # calculate reduced model
AIC(minimum_fit, full_fit, reduced_fit) # calculate An Information Criterion</pre>
```

```
## df AIC
## minimum_fit 3 196.4844
## full_fit 12 163.7098
## reduced_fit 5 154.1194
```

Our strategy is to use model with minimum on An Information Criterion. Reduced model has minimum on AIC - 154.12. So, let's use this model.

summary(reduced_fit)

```
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
  -3.4811 -1.5555 -0.7257 1.4110 4.6610
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                9.6178
                           6.9596
                                    1.382 0.177915
                           0.7112 -5.507 6.95e-06 ***
## wt
               -3.9165
                1.2259
                           0.2887
                                    4.247 0.000216 ***
## qsec
## am
                2.9358
                           1.4109
                                    2.081 0.046716 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

Our residual diagnose for chosen model that it explains 84.97% of variance with an adjustment to 83.36%. See also appendix B for residuals plots.

```
confint(reduced_fit) # take confidence interval
```

```
## 2.5 % 97.5 %

## (Intercept) -4.63829946 23.873860

## wt -5.37333423 -2.459673

## qsec 0.63457320 1.817199

## am 0.04573031 5.825944
```

Our quantitive value for manual transimission improvement is 2.94 ± 2.89 with 95% confidence interval.

Executive Summary

After analyses we conclude the following:

- manual transmission is better for MPG
- manual transmission increase MPG by 2.94 ± 2.89 with 95% confidence interval

Appendix A

```
boxplot(mpg ~ factor(am, labels = c("Automatic", "Manual")), data = mtcars,
  col = c("red", "blue"), main = "Overall means", xlab = "Transmission",
  ylab = "Miles per Gallon")
points(mpg ~ factor(am, labels = c("Automatic", "Manual")), data = mtcars)
legend("topleft", c("Automatic", "Manual"), lty = 1, col = c("red", "blue"))
```

Overall means

Transmission

Appendix B

```
par(mfrow = c(2, 2))
plot(reduced_fit)
```

