Statistik I - Sitzung 9

Bernd Schlipphak

Institut für Politikwissenschaft

Sitzung 9

Statistik I - Sitzung 9

- Drittvariablenkontrolle
 - Theoretische Einführung
 - Drittvariablenkontrolle: Partialtabellen

Vorgriff - Multivariate Regression

 Die multivariate Regression enthält im Gegensatz zur bivariaten Regression mehr als eine unabhängige Variable.

$$y = \hat{y} + e = b_0 + b_1 * x_1 + b_2 * x_2 + b_3 * x_3 + \dots + e$$

- Dadurch soll kontrolliert werden für die Möglichkeit
 - des Einflusses von zwei oder mehr unabhängigen Variablen
 - des Einflusses durch Kontrollvariablen
- Die multivariate Regression ist also EINE Möglichkeit der Drittvariablenkontrolle

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

- **Drittvariablenkontrolle** = Überprüfung des Einflusses einer Variable auf einen bivariaten Zusammenhang
- Generell drei Modelle der und Begründungen für die Drittvariablenkontrolle
 - Grundlegend: Vorstellung von Multikausalität (Model 1)
 - Kontrolle: Vermeidung von Scheinkausalität (Model 2)
 - Einflussmoderation: Kontrolle von Interaktionseffekten (Model 3)

- Drittvariablenkontrolle (Modell 1)
 - Multikausalität, d.h., die Erklärung einer abhängigen Variable durch mehrere unabhängige Variablen ist die Regel in den Sozialwissenschaften
 - Drittvariablenkontrolle = grundsätzliche Kontrolle, ob eine monokausale Beziehung zwischen unabhängiger und abhängiger Variable existiert

- Drittvariablenkontrolle (Modell 1)
 - Durch Test für dritte Variable wird Effekt der unabhängigen auf die abhängige Variable oft kleiner => Messung eines bivariaten Zusammenhangs überschätzt die Wirkung einer einzelnen unabhängigen Variable
 - Korrektur der Überschätzung durch das Hinzufügen weiterer (theoretisch erklärungskräftiger Variablen) in das Modell!

- Drittvariablenkontrolle (Modell 2)
 - Drittvariable kann sowohl die unabhängige als auch die abhängige Variable beeinflussen=> Scheinkausalität

Abbildung: aus Diaz-Bone(2013): 115

- Drittvariablenkontrolle (Modell 2)
 - ACHTUNG selbst nach der Drittvariablenkontrolle kann ein statistischer Zusammenhang zwischen den kausal nicht verbundenen Variablen auftreten.
 - Dieser wird aber durch die Drittvariablenkontrolle deutlich geringer als vorher!

- Drittvariablenkontrolle (Modell 3)
 - Die Drittvariable tritt als interagierende Variable auf

- In diesem dritten Modell des Drittvariableneinflusses lassen sich zwei mögliche Formen unterscheiden
 - Interaktion = 'Eine Interaktion liegt vor, wenn je nach Ausprägung der Drittvariablen Z der statistische Zusammenhang [zwischen der abhängigen und der unabhängigen Variablen] verschieden ausfällt.' (Diaz-Bone 2006: 114)
 - **Suppression** = '[Die Suppression] besteht darin, dass eine Drittvariable Z den vorliegenden kausalen Zusammenhang zwischen zwei Variablen durch ihren Einfluss verdeckt.' (Diaz-Bone 2006: 117)

Die Interaktion

Abbildung: aus Wenzelburger et al. (2014): 48

4 D > 4 B > 4 B > 4 B > 9 Q P

• Die Suppression

• Die Suppression

- Unterscheidung der Durchführung (NICHT der Logik) der Drittvariablenkontrolle für nominal / ordinal skalierte Variablen einerseits und für metrisch skalierte Variablen andererseits
- Für nominale / ordinale Variablen: Berechnung sogenannter
 Partialtabellen und / oder entsprechender Zusammenhangsmaße getrennt für jede Ausprägung von Z
- Für metrische Variablen: Multivariate Regression (für Model 1 und 2)
 bzw. Regressionsmodelle mit Interaktionseffekten (für Model 3) =>
 Statistik II

- Ein kurzes Einleitungsbeispiel:
 - Befragung zeigt, dass Lanz-Anhänger*innen auch die CDU überdurchschnittlich gut finden
 - Führt Vorliebe für Markus Lanz (=X) zur Befürwortung der CDU (=Y)?
 - Antwort: Vermutlich Drittvariable (Z), die dazu führt, dass Menschen sowohl Markus Lanz als auch CDU-Regierung gut finden

- Zur Uberprüfung Aufteilung der Marginaltabelle (Beziehung zwischen X und Y) in Partialtabellen (Beziehung zwischen X und Y je nach Ausprägung von Z)
 - Demzufolge gibt es immer so viele Partialtabellen wie Ausprägungen von Z!

	Lanz negativ (x_1)	Lanz positiv (x_2)	\sum
CDU negativ (y_1)	310(68.89%)	240 (43.64%)	550
CDU positiv (y_2)	140 (31.11%)	310 (56.36%)	450
\sum	450 (100%)	550 (100%)	1000

$$OR = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{310}{140}}{\frac{240}{310}} = \frac{2.21}{0.77} = 2.87 \Rightarrow Yules' \ Q = 0.48$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

- Da Yules' Q = 0.48, mittelstarker Zusammenhang zwischen X und Y
 ⇒ Lanz-Liebhaber*innen finden auch die CDU besser!
 - Was passiert aber, wenn wir für die gesellschaftliche Vorlieben der Befragten kontrollieren?
 - Z = Drittvariable = gesellschaftliche Vorlieben
 - Ausprägungen: $Z_1 = \text{konservativ}, Z_2 = \text{progressiv}$

Konservativ (z_1)	Lanz negativ (x_1)	Lanz positiv (x_2)	\sum
CDU negativ (y_1)	30(30%)	120 (30%)	150
CDU positiv (y_2)	70 (70%)	280 (70%)	350
\sum	100 (100%)	400 (100%)	500

Progressiv (z_2)	Lanz negativ (x_1)	Lanz positiv (x_2)	\sum
CDU negativ (y_1)	280 (80%)	120 (80%)	400
CDU positiv (y_2)	70 (20%)	30 (20%)	100
\sum	350 (100%)	150 (100%)	500

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

•
$$OR_{kons} = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{30}{70}}{\frac{120}{280}} = \frac{0.43}{0.43} = 1$$

•
$$OR_{prog} = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{280}{70}}{\frac{120}{30}} = \frac{4.00}{4.00} = 1$$

 Da OR = 1 kein Zusammenhang zwischen Lanz-Vorliebe und CDU-Befürwortung!

20 / 35

Schlipphak (IfPol) Stat I - Sitzung 9 Sitzung 9

- Kontrolliert man also den Zusammenhang zwischen X und Y für die Drittvariable Z, so zeigt sich, dass der Zusammenhang verschwindet
- Stattdessen zeigt ein Blick auf die Partialtabellen, dass es unter Konservativen sehr viel mehr Lanz-Befürworter*innen und CDU-Befürworter*innen gibt als unter Progressiven.
- Wir können also annehmen, dass die gesellschaftliche Vorliebe beide anderen Variablen bedingt!

- Existiert ein Zusammenhang zwischen Alter und (traditionellen)
 Vorstellungen von Geschlechterrollen? (Diaz-Bone 2006: 115)
- Argument: Mit zunehmendem Alter steigt die Zustimmung zu traditionellen Positionen.
- ullet Test: Aufteilung der Fälle in Vierfeldtabelle nach Alter: <40 und >40 und nach Position: traditionell und progressiv

	$<40\ {\rm Jahre}$	>40 Jahre	\sum
Traditionell	65 (14.41%)	221 (32.79%)	286
Progressiv	386 (85.59%)	453 (67.21%)	839
\sum	451 (100%)	674 (100%)	1125

$$\bullet \ OR_{gesamt} = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{65}{386}}{\frac{221}{453}} \approx 0.35 \Rightarrow \text{Yule's Q} \approx -0.48$$

• Mittelstarker Zusammenhang!

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

- Zusätzliches Argument: Aufgrund (zumindest vordergründiger)
 Gleichstellung der Geschlechter in DDR schwächerer Zusammenhang in Ost als in West (Diaz-Bone 2006: 115)
- Uberprüfung: Berechnung desselben Zusammenhangs getrennt für Fälle aus Westdeutschland (Z_1) und aus Ostdeutschland (Z_2)
 - 1. Schritt: Erstellung der Kreuztabelle für Fälle getrennt nach West und Ost
 - 2. Schritt: Berechnung der OR / Yules' Q für die beiden neuen Kreuztabellen

West	$<40\ {\rm Jahre}$	>40 Jahre	\sum
Traditionell	57 (15.28%)	192 (36.23%)	249
Progressiv	316 (84.72%)	338 (63.77%)	654
\sum	373 (100%)	530 (100%)	903

$$\bullet \ OR_{West} = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{57}{316}}{\frac{192}{338}} \approx 0.32 \Rightarrow \text{Yule's Q} \approx \text{-0.52}$$

Starker Zusammenhang!

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Ost	$<40\ {\rm Jahre}$	>40 Jahre	\sum
Traditionell	8 (10.26%)	29 (20.14%)	37
Progressiv	70 (89.74%)	115 (79.86%)	185
\sum	78 (100%)	144 (100%)	222

•
$$OR_{Ost} = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{8}{70}}{\frac{29}{115}} \approx 0.44 \Rightarrow \text{Yule's Q} \approx \text{-0.39}$$

Mittelstarker / Mittlerer Zusammenhang!

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Schlipphak (IfPol)

Stat I - Sitzung 9

- Interpretation: Der Zusammenhang zwischen Alter und traditionellen Rollenbildern ist also in den westlichen Bundesländern stärker als in den östlichen Bundesländern
 - Das negative Vorzeichen bedeutet: Mit einem höheren Wert für X (also das Alter) wird der höhere Y-Wert (progressiv, y_2) unwahrscheinlicher!
 - Das Ergebnis bedeutet: Das Alter einer Person lässt uns im Westen besser vorhersagen / erklären, welche Einstellung diese Person gegenüber traditionellen Rollenbildern hat!

- Forschungsfrage: Hat Bildung von Befragten einen Einfluss auf die Einschätzung ihrer Partizipationsmöglichkeiten im politischen System?
- Argument: Je höher die Bildung, desto höher die Wahrnehmung politischer Einflussmöglichkeiten
- Datensatz: Hypothetisch

	Niedrige Bildung	Hohe Bildung	\sum
Wenig Partizipationsmöglichkeit	2400 (60%)	1200 (60%)	3600
Viel Partizipationsmöglichkeit	1600 (40%)	800 (40%)	2400
\sum	4000 (100%)	2000 (100%)	6000

$$OR_{gesamt} = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{2400}{1600}}{\frac{1200}{800}} = 1$$

- Kein Zusammenhang!
- ?

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- Mögliche Erklärung: Regime, in dem Befragte/r lebt, hat Einfluss auf den Zusammenhang
- Autoritäre Staaten: Höhere Bildung ⇒ Wahrnehmung von weniger Partizipationsmöglichkeiten
- Demokratische Staaten: Höhere Bildung ⇒ Wahrnehmung von mehr Partizipationsmöglichkeiten

Autoritäre Staaten	Niedrige Bildung	Hohe Bildung	\sum
Wenig Partizipationsmöglichkeit	800 (40%)	900 (90%)	1700
Viel Partizipationsmöglichkeit	1200 (60%)	100 (10%)	1300
\sum	2000 (100%)	1000 (100%)	3000

$$\bullet \ OR_{autoritaer} = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{800}{1200}}{\frac{900}{100}} = 0.07 \Rightarrow \text{Yule's Q} \approx -0.87$$

• Sehr starker Zusammenhang!

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Demokratische Staaten	Niedrige Bildung	Hohe Bildung	\sum
Wenig Partizipationsmöglichkeit	1600 (80%)	300 (30%)	1900
Viel Partizipationsmöglichkeit	400 (20%)	700 (70%)	1100
\sum	2000 (100%)	1000 (100%)	3000

$$\bullet \ OR_{demokratisch} = \frac{Odds_{y_1}}{Odds_{y_2}} = \frac{\frac{1600}{400}}{\frac{300}{700}} = 9.30 \Rightarrow \text{Yule's Q} \approx 0.81$$

Sehr starker Zusammenhang!

32 / 35

- Bildung hat also einen Einfluss auf die Wahrnehmung von Partizipationsmöglichkeiten, dieser variiert aber in der Richtung je nach Kontext (des politischen Systems)
- Ohne Drittvariablenkontrolle kein Aufschluss über diesen Zusammenhang!

Drittvariablenkontrolle - ACHTUNG!

- Bislang Durchführung sehr vereinfachter Drittvariablenkontrollen
 - Drittvariablen mit mehr Ausprägungen ⇒ wesentlich mehr Partialtabellen
 - Mehr Tabellen ⇒ weniger überschaubar!
- Scheinkausalität / Suppression kommen in Realität selten so eindeutig vor!
- Zudem: oft Kontrolle nicht nur für eine, sondern für mehrere Drittvariablen als potentielle Einflussfaktoren wünschenswert!

34 / 35

Schlipphak (IfPol) Stat I - Sitzung 9 Sitzung 9

Drittvariablenkontrolle - ACHTUNG!

- Berechnung bislang nur für nominalskalierte Dummy-Variablen
- Für ordinal skalierte Variablen: Berechnung der Zusammenhangsmaße ieweils für die einzelnen Kategorien von Z
 - D.h., für alle Werte von Z $(z_1, z_2, ...)$ Berechnung der jeweiligen Zusammenhänge zwischen X und Y anhand von Goodman und Kruskals Gamma. Kendalls tau b etc.
- In der Praxis daher meist direkt Anwendung multivariater Regressionsverfahren für nominal- oder ordinalskalierte (abhängige) Variablen
 - logistische Regression
 - ordered logit-Regression
 - Aber: das alles erst in ⇒ Statistik II!