Задача 1. Есть стакан воды 200мл. Найти:

- 1. Количество вещества (число молей воды) в этом стакане.
- 2. Число молекул воды.
- 3. Концентрацию молекул воды.
- 4. Если покрасить все молекулы в этом стакане и перемешать со всей водой мирового океана, а потом снова набрать стакан воды, сколько покрашенных молекул будет в стакане?

Задача 2. Перпендикулярно стене направлен пучок одинаковых точечных частиц массой m_0 , двигающихся со скоростью v. Концентрация частиц в пучке равна n. Найдите давление пучка на стену, если соударения частиц со стеной абсолютно упругие. Силу тяжести не учитывать.

Ответ:
$$p = 2\rho v^2 = 2m_0 n v^2$$

Задача 3. Идеальный газ с массой частиц m, концентрацией частиц n и средней квадратичной скоростью v движения частиц оказывает давление $p = \frac{1}{3} m_0 \, n \, \overline{v^2}$ (это — так называемое основное уравнение МКТ идеального газа).

Качественно объясните появление множителя 1/3 в данной формуле.

Задача 4.

- 1. Посчитать концентрацию молекул газа при нормальных условиях.
- 2. Оценить среднее расстояние между молекулами в идеальном газе при нормальных условиях.
- 3. Посчитать среднеквадратичную скорость молекул азота $\left(\mu = 28 \, \frac{\Gamma}{\text{моль}} \right)$ при нормальных условиях.

Ответ:
$$n = \frac{p}{kT} \approx 2.7 \cdot 10^{25} \text{ м}^{-3}$$
 $\bar{l} = \frac{1}{\sqrt[3]{n}} \approx 3.3 \cdot 10^{-9} \text{ м}$ $v_{\text{скв}} = \sqrt{\frac{3RT}{\mu}} \approx 493 \frac{\text{м}}{\text{c}}$

Изопроцессы

- **1.** Во сколько раз изменилось давление газа в сосуде, если его объем изменился в 3 раза? Температура во время процесса не менялась.
- **2.** U-образная трубка с открытыми в атмосферу вертикальными коленами заполнена частично ртутью. Одно из колен закрывают сверху, а в другое доливают слой ртути длиной l. После установления равновесия в закрытом колене остается воздушный слой длиной L. Найдите смещение уровня ртути в открытом колене относительно начального положения. Атмосферное давление $H_0 = 760 \ \mathrm{MM}$ рт ст.

Ответ:
$$\Delta h=lrac{p_0+
ho gL}{p_0+2
ho gL}=lrac{H_0+L}{H_0+2L}$$

- **3.** При неизменном давлении, объем воздуха в сосуде увеличился в 3 раза. Во сколько раз изменилась температура?
- **4.** Идеальный одноатомный газ в количестве ν моль находится в равновесии в вертикальном цилиндре под поршнем массой m. Трение между поршнем и стенками цилиндра отсутствует. Внешнее атмосферное давление равно $p_{\text{атм}}$. В результате нагревания газа поршень поднялся на высоту Δh , а температура газа поднялась на ΔT . Чему равна площадь поршня?
- 5. При неизменном объеме сосуда, температура уменьшилась в 3 раза. Во сколько раз изменилось давление?
- **6.** Один моль идеального газа находится в горизонтальном сосуде и отделен от атмосферы невесомым поршнем с площадью поперечного сечения S, начальное давление газа атмосферное. Температуру газа начинают медленно увеличивать. Найти во сколько раз необходимо увеличить температуру, чтобы поршень сдвинулся с места. Поршень начнет двигаться с места если к нему приложена сила F.
- **7.** В двух теплоизолированных сосудах с объемами V1 и V2 находятся одинаковые газы при давлениях p1 и p2 и температурах T1 и T2. Найдите давление и температуру, которые установится в сосудах после смешивания газов.

Краткая теоретическая сводка

	Идеальный газ	Настицы не взаимодействуют между собой. (то есть их размеры пренебрежимо малы). Удары о стенку абсолютно упругие.
	Основное уравнение МКТ	$p = \frac{1}{3}m_0n\overline{v^2}$
	Закон Дальтона	$p = p_1 + p_2 + \dots$
	Постоянные	$N_A = 6 \cdot 10^{23} \frac{1}{_{ m MO, Tb}}$ $k = 1.38 \cdot 10^{-23} \frac{\mbox{$\frac{D}{K}$}}{\mbox{K}}$ $R = k \cdot N_A = 8.31 \frac{\mbox{$\frac{D}{K}$}}{\mbox{$K \cdot MO, Tb$}}$
	Уравнение Менделеева- Клапейрона	$pV = \nu RT$

Абсолютная температура. Связь с кинетической энергией.	$T = t(^{\circ}C) + 273$ $\overline{E_{\kappa}} = \frac{i}{2}kT$
Нормальные условия	1. $p = p_{\text{atm}} = 10^5 \text{ Ha}$ 2. $T = 273 \text{ K}$
Изотермический процесс $(T = const, v = const)$	pV = const
Изобарный процесс $(p = const, v = const)$	$\frac{V}{T} = const$
Изохорный процесс $(V = const, v = const)$	$\frac{p}{T} = const$