# **Bachelorarbeit**

# mein thema

vorgelegt von

# **Maximilian Huber**

am

Institut für Mathematik der

Universität Augsburg

betreut durch

Prof. Dr. Marco Hien

abgegeben am

noch nicht

stand: 25. Januar 2013

# Inhaltsverzeichnis

| 1      | Mat                         | chematische Grundlagen                                | 1  |
|--------|-----------------------------|-------------------------------------------------------|----|
| 2      | Der                         | $Ring\ \mathcal{D}$                                   | 5  |
|        | 2.1                         | Weyl-Algebra und der Ring $\mathcal{D}$               | 5  |
|        | 2.2                         | (Links) $\mathcal{D}$ -Moduln                         | 7  |
|        | 2.3                         | Lokalisierung von $\mathbb{C}\{x\}$ -Moduln           | 8  |
|        | 2.4                         | Lokalisierung eines (holonomen) $\mathcal{D}$ -Moduls | 8  |
| 3      | Der Meromorphe Zusammenhang |                                                       |    |
|        | 3.1                         | Meromorpher Zusammenhang (Definition)                 | 9  |
|        | 3.2                         | Eigenschaften                                         | 9  |
|        | 3.3                         | Newton Polygon                                        | 12 |
|        | 3.4                         | Formale Meromorphe Zusammenhänge                      | 14 |
|        | 3.5                         | pull-back und push-forward                            | 14 |
|        | 3.6                         | Elementare Meromorphe Zusammenhänge                   | 22 |
| 4      | Levelt-Turrittin-Theorem    |                                                       | 23 |
|        | 4.1                         | Klassische Definition                                 | 23 |
|        | 4.2                         | Sabbah's Refined version                              | 24 |
| Anhang |                             | 28                                                    |    |
| Α      | A Aufteilung von            |                                                       | 29 |

# 1 Mathematische Grundlagen

Hier werde ich mich auf [Sab90] und [Cou95] beziehen.

In dieser Arbeit spielen die folgenden Ringe eine große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^{N} a_i x^i | N \in \mathbb{N} \}$
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$
- $\mathbb{C}[x] := \{\sum_{i=1}^{\infty} a_i x^i\}$
- $K:=\mathbb{C}(\{x\}):=\mathbb{C}\{x\}[x^{-1}]$  der Ring der Laurent Reihen.
- $\hat{K} := \mathbb{C}((x)) := \mathbb{C}[\![x]\!][x^{-1}]$  der Ring der formalen Laurent Reihen.

Wobei offensichtlich  $\mathbb{C}[x] \subsetneq \mathbb{C}\{x\} \subsetneq \mathbb{C}[x]$  und  $K \subsetneq \hat{K}$  gilt.

Es bezeichnet der Hut (^) das jeweils formale äquivalent zu einem konvergentem Objekt.

#### Lemma 1.1 (Seite 2). ein paar eigenschaften

1.  $\mathbb{C}[x]$  ist ein graduierter Ring, durch die Grad der Polynome. Diese graduierung induziert eine aufsteigende Filtrierung.

alle Ideale haben die form (x - a) mit  $a \in \mathbb{C}$ 

2. wenn  $\mathfrak{m}$  das maximale Ideal von  $\mathbb{C}[x]$  (erzeugt von x ist), so ist

$$\mathbb{C}[[x]] = \varprojlim_k \mathbb{C}[X] \backslash \mathfrak{m}^k$$

The ring  $\mathbb{C}[[x]]$  ist ein nöterscher lokaler Ring: jede Potenzreihe mit konstantem term  $\neq 0$  ist invertierbar.

Der ring ist ebenfalls ein diskreter ??? Ring (discrete valuation ring)

Die Filtrierung nach grad des Maximalen Ideals, genannt  $\mathfrak{m}$ -adische Fitration, ist die Filtrierung  $\mathfrak{m}^k = \{f \in \mathbb{C}[[x]] | v(f) \geq k\}$ 

und es gilt  $gr_{\mathfrak{m}}(\mathbb{C}[[x]]) = \mathbb{C}[x]$ 

**Definition 1.2** (Direkte Summe). [Sta12, 4(Categories).5.1] Seien  $x, y \in \text{Ob}(\mathcal{C})$ , eine *Direkte Summe* oder das *coprodukt* von x und y ist ein Objekt  $x \oplus y \in \text{Ob}(\mathcal{C})$  zusammen mit Morphismen  $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$  und  $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$  so dass die folgende universelle Eigenschaft gilt: für jedes  $w \in Ob(\mathcal{C})$  mit Morphismen  $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$  und  $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$  existiert ein eindeutiges  $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$  so dass das Diagram



kommutiert.

**Definition 1.3** (Tensorprodukt). [Sta12, 3(Algebra).11.21]

Faserprodukt: [Sta12, 4(Categories).6.1]

$$M \times N \longrightarrow M \otimes_R N$$

$$\downarrow \exists ! \gamma \\ \uparrow T$$

**Definition 1.4** (Exacte Sequenz). Eine Sequenz

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

heißt exact, wenn für alle i gilt, dass  $\operatorname{im}(f_{i-1}) = \ker f_i$ .

Definition 1.5 (Kurze exacte Sequenz). Eine kurze exacte Sequenz ist eine Sequenz

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

welche exact ist.

**Definition 1.6** (Filtrierung). [Sta12, Def 10.13.1.] Eine aufsteigende Filtrierung F von einem Objekt (Ring) A ist eine Familie von  $(F_iA)_{i\in\mathbb{Z}}$  von Unterobjekten (Unterring), so dass

$$0 \subset \cdots \subset F_i \subset F_{i+1} \subset \cdots \subset A$$

und definiere weiter  $gr_i^F A := F_i A / F_{k-1} A$  und damit  $gr^F A := \bigoplus_{k \in \mathbb{Z}} gr_i^F A$ .

 $gr_i^F$  als was??

**Definition 1.7.** [Ayo09] [Sab90, Def 3.2.1] Eine Filtrierung heißt gut, falls ...

**Definition 1.8** (Kommutator). Sei R ein Ring. Für  $a, b \in R$  wird

$$[a, b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

**Proposition 1.9.** Sei  $k \in \{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \hat{K}\}$ . Sei  $\partial_x : k \to k$  der gewohnte Ableitungs-operator nach x, so gilt

1. 
$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2.  $f\ddot{u}r \ f \in k \ ist$ 

$$[\partial_x, f] = \frac{\partial f}{\partial x}.$$

3. Es gelten die Formeln

$$\begin{aligned} [\partial_x, x^k] &= kx^{k-1} \\ [\partial_x^j, x] &= j\partial_x^{j-1} \\ [\partial_x^j, x^k] &= \sum_{i \ge 1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i} \end{aligned}$$

Beweis. 1. Klar.

2. Für ein Testobjekt  $g \in k$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f\partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g$$

3. Siehe [AV09, ???]

# 2 Der Ring $\mathcal{D}$

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Ab hier sei  $k \in \{\mathbb{C}[x], \mathbb{C}[x], K, \hat{K}\}.$ 

## 2.1 Weyl-Algebra und der Ring $\mathcal{D}$

Sei dazu  $\frac{\partial}{\partial x} = \partial_x$  der Ableitungsoperator nach x und sei  $f \in k$ . Man hat die folgende Kommutations-Relation zwischen dem *Ableitungsoperator* und dem *Multiplikations Operator* f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{2.1}$$

wobei die Rechte Seite die Multiplikation mit  $\frac{\partial f}{\partial x}$  darstellt. Dies bedeutet, für alle  $g \in \mathbb{C}[x]$  hat man

$$[\frac{\partial}{\partial x}, f] \cdot g = \frac{\partial fg}{\partial x} - f \frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g \,.$$

**Definition 2.1.** Definiere nun den Ring  $\mathcal{D}_k$  als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element  $\partial_x$ , erzeugt wird, Modulo der Relation (2.1). Wir schreiben diesen Ring als

- $A_1(\mathbb{C}):=\mathbb{C}[x]<\partial_x>$  falls  $k=\mathbb{C}[x],$  und nennen ihn die Weyl Algebra
- $\mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{falls } k = \mathbb{C}\{x\}$
- $\hat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x]$
- $\mathcal{D}_K := \mathbb{C}(\{x\}) < \partial_x > \text{falls } k = K \stackrel{\text{def}}{=} \mathbb{C}\{x\}[x^{-1}]$
- $\mathcal{D}_{\hat{K}} := \mathbb{C}((x)) < \partial_x > \text{falls } k = \hat{K} \stackrel{\text{def}}{=} \mathbb{C}[x][x^{-1}]$

Bemerkung 2.2. Es gilt  $\hat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\hat{K}}$ 

Beispiele und Alternative Definition:

Sergey-Arkhipov-MAT1191\_Lecture\_Notes.pdf Chapter 2.1

Lemma 2.3. Sei A einer der 3 soeben eingeführten Objekten, so definieren die Addition

$$+: A \times A \rightarrow A$$

und die Multiplikation

$$\cdot: A \times A \to A$$

 $eine\ Ringstruktur\ auf\ A.$ 

Beweis. [AV09, Kapittel 2 Section 1]

**Proposition 2.4.** [Sab90, Proposition 1.2.3] Jedes Element in  $\mathcal{D}_k$  kann auf eindeutige weiße als  $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$ , mit  $a_i(x) \in k$ , geschrieben werden.

Beweis. Siehe [Sab90, Proposition 1.2.3]

ein teil des Beweises ist "left as an exersice"

Besser?:

erst Filtrierung definieren und dadurch dann den Grad?

**Definition 2.5.** Sei  $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$ , wie in Proposition 2.4, gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

als den Grad von P.

In natürlicher Weise erhält man die aufsteigende Filtrierung  $F_N\mathcal{D} := \{P \in \mathcal{D} | \deg P \leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte  $gr_k^F \mathcal{D} \stackrel{=}{=} F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{P \in \mathcal{D} | \deg P = N\} \cong \mathbb{C}\{x\}.$ 

Beweis. Sei  $P \in F_N \mathcal{D}$  so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 2.6. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als \ grad. \ Ringe$$

also  $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$  als graduierte Ringe.

Beweis. TODO

Treffen?

## 2.2 (Links) $\mathcal{D}$ -Moduln

Da  $\mathcal{D}$  ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen links unr rechts  $\mathcal{D}$ -Moduln unterschiden. Wenn ich im folgendem von  $\mathcal{D}$ -Moduln rede, werde ich mich immer, wie auch [Ara, Chapter 1.6.], auf links  $\mathcal{D}$ -Moduln beziehen.

**Beispiel 2.7** (Einfachste links  $\mathcal{D}$ -Moduln). Sei  $X = \mathbb{A}^1$  und  $\mathscr{O}_X = \mathbb{C}[t]$ .

- 1.  $\mathcal{D}$  ist ein links und rechts  $\mathcal{D}$ -Modul
- 2.  $\mathcal{M} = \mathcal{O}_X$  durch
  - $\partial(f(t)) = \frac{\partial f}{\partial t}$  und  $t \cdot f(t) = tf$
  - oder [Gin98, Exmp 3.1.2]  $\mathcal{O}_X = \mathcal{D} \cdot 1 = \mathcal{D}/\mathcal{D} \cdot \partial$ .
- 3.  $\mathcal{M} = \mathscr{O}_X \exp(\lambda t) \text{ mit } \partial(f(t) \exp(\lambda t)) = \frac{\partial f}{\partial t} \exp(\lambda t) + f\lambda \exp(\lambda t)$
- 4.  $\mathcal{M} = \mathbb{C}[t, t^{-1}]$  mit  $t \cdot t^m = t^{m+1}$  und  $\partial(t^m) = mt^{m-1}$

## **2.3** Lokalisierung von $\mathbb{C}\{x\}$ -Moduln

[Sab90, Chap 4.1.] Sei M ein  $\mathbb{C}\{x\}$ -Modul. Wir schreiben  $M[x^{-1}]$  für den K-Vektor Raum  $M \otimes_{\mathbb{C}\{x\}} K$ . Im allgemeinen gilt, falls M von andlichen Typ über  $\mathbb{C}\{x\}$  ist, so ist  $C[x^{-1}]$  von endlichem Typ über K. Bemerke aber, dass  $M[x^{-1}]$  generell nicht von endlichem Typ über  $\mathbb{C}\{x\}$  ist.

# 2.4 Lokalisierung eines (holonomen) $\mathcal{D}$ -Moduls

[Sab90, Chap 4.2.] Sei  $\mathcal{M}$  ein links  $\mathcal{D}$ -Modul. Betrachte  $\mathcal{M}$  als  $\mathbb{C}\{x\}$ -Modul und definiere darauf

$$\mathcal{M}[x^{-1}] := \mathcal{M} \otimes_{\mathbb{C}\{x\}} K$$

als die Lokalisierung von  $\mathcal{M}$ .

**Proposition 2.8.** [Sab90, Prop 4.2.1.]  $\mathcal{M}[x^{-1}]$  bekommt in natürlicher weiße eine  $\mathcal{D}$ -Modul Struktur.

Beweis. [Sab90, Prop 4.2.1.] mit:

8

$$\partial_x(m\otimes x^{-k})=((\partial_x m)\otimes x^{-k})-km\otimes x^{-k-1}$$

beweis der  $\mathcal{D}$ -linearität ist als übung gelassen

# 3 Der Meromorphe Zusammenhang

- wofür sind die gut?
- wieso kommt man ursprünglich dazu

## 3.1 Meromorpher Zusammenhang (Definition)

**Definition 3.1** (Meromorpher Zusammenhang). Ein Meromorpher Zusammenhang  $(\mathcal{M}_K, \partial)$  besteht aus folgenden Daten:

- $\mathcal{M}_K$ , ein endlich dimensionaler K-Vektor Raum
- einer  $\mathbb{C}$ -linearen Abbildung  $\partial: \mathcal{M}_K \to \mathcal{M}_K$ , genannt Derivation oder Zusammenhang, welche für alle  $f \in K$  und  $u \in \mathcal{M}_K$  die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{3.1}$$

erfüllen soll.

- Bemerkung 3.2. 1. Später wird man auf die Angabe von  $\partial$  verichten und einfach  $\mathcal{M}_K$  als den Meromorphen Zusammenhang bezeichnen.
  - 2. Wir betrachten hier Meromorphe Zusammenhänge an x = 0 als Singularität.

# 3.2 Eigenschaften

[Sab90, 4.2] Let  $\mathcal{M}$  be a left  $\mathcal{D}$ -module. First we consider it only as a  $\mathbb{C}\{x\}$ -module and let  $\mathcal{M}[x^{-1}]$  be the localized module.

**Lemma 3.3** (Lemma vom zyklischen Vektor). [Sab90, Thm 4.3.3] [AV09, Satz 4.8] Sei  $\mathcal{M}_K$  ein Meromorpher Zusammenhang. Es Existiert ein Element  $m \in \mathcal{M}_K$  und eine ganze Zahl d so dass  $m, \partial_t m, \ldots, \partial_t^{d-1} m$  eine K-Basis von  $\mathcal{M}_K$  ist.

Beweis. [AV09, Satz 4.8] 
$$\Box$$

Satz 3.4. [Sab90, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein  $\mathcal{D}_K$ -Modul und andersherum.

Beweis. [Sab90, Thm 
$$4.3.2$$
]

**Lemma 3.5.** [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist  $\mathcal{M}_K$  ein Meromorpher Zusammenhang, dann existiert ein  $P \in \mathcal{D}_K$  so dass  $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$ .

Beweis. [AV09, Satz 4.12] 
$$\Box$$

Bemerkung 3.6. [Sab90, Proof of Theorem 5.4.7]

$$\dim_{\hat{K}} \mathcal{M}_{\hat{K}} = \deg P$$
wenn  $\mathcal{M}_{\hat{K}} = \mathcal{D}/\mathcal{D} \cdot P$ 

**Lemma 3.7.** Sei  $(\mathcal{M}_K, \partial)$  ein gegebener Meromorpher Zusammenhang, und  $\varphi$  ein Basisisomorphismus von  $K^r$  nach  $\mathcal{M}_K$ , also in der Situation

$$\mathcal{M}_{K} \xrightarrow{\partial} \mathcal{M}_{K} 
\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

gilt:  $(K^r, \varphi^{-1} \circ \partial \circ \varphi)$  ist ebenfalls ein Meromorpher Zusammenhang.

**Lemma 3.8.** Sei  $(\mathcal{M}_K, \partial)$  ein gegebener Meromorpher Zusammenhang, und  $\varphi : \mathcal{M} \to \mathcal{N}$  ein Isomorphismus so ist  $(\mathcal{N}, \varphi^{-1} \circ \partial \circ \varphi)$  ein zu  $(\mathcal{M}_K, \partial)$  isomorpher Zusammenhang.

$$\mathcal{M}_{K} \xrightarrow{\partial} \mathcal{M}_{K}$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow$$

$$\cong \varphi \qquad \qquad \varphi \cong \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{N} \xrightarrow{\varphi^{-1} \circ \partial \circ \varphi} \mathcal{N}$$

$$\mathcal{D}$$

$$Beweis. TODO, (3. Treffen)$$

**Lemma 3.9.** Sei  $\mathcal{M}_K \cong K^r$  ein endlich dimensionaler K-Vektor Raum mit  $\partial_1$  und  $\partial_2$  zwei darauf definierte Derivationen. So gilt, die differenz zweier Derivationen ist K-linear.

Beweis. Seien  $\partial_1$  und  $\partial_2$  zwei Derivationen auf  $\mathcal{M}_K$ . Da  $\partial_1$  und  $\partial_2$   $\mathbb{C}$ -linear, ist  $\partial_1 - \partial_2$   $\mathbb{C}$ -linear, also muss nur noch gezeigt werden, dass  $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$  und  $u \in \mathcal{M}_K$  gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

**Korollar 3.10.** Es sei  $(K^r, \partial)$  ein Meromorpher Zusammenhang. So ist  $\frac{d}{dz} - \partial : K^r \to K^r$  K-linear, also es existiert eine Matrix  $A \in M(r \times r, K)$  mit  $\frac{d}{dz} - \partial = A$ , also ist  $\partial = \frac{d}{dz} - A$ .

**Definition 3.11** (Transformationsformel). In der Situation



mit  $\varphi, \psi$  und T K-Linear und  $\partial, (\frac{d}{dz} + A)$  und  $(\frac{d}{dz} + B)$   $\mathbb{C}$ -Linear, gilt: Der Merom. Zush.  $\frac{d}{dz} + A$  auf  $K^r$  wird durch Basiswechsel  $T \in GL(r, K)$  zu

$$\frac{d}{dz} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dz} + B$$

**Definition 3.12** (Differenziell Äquivalent). Man nennt A und B differenziell Äquivalent ( $A \sim B$ ) genau dann, wenn es ein  $T \in GL(r, K)$  gibt, mit  $B = T^{-1} \cdot T' + T^{-1}AT$ .

$$1 = TT^{-1} \leadsto T'T^{-1} + T(T^{-1})' = 0$$
  
$$1 = T^{-1}T \leadsto (T^{-1})'T + T^{-1}T' = 0$$

## 3.3 Newton Polygon

Quelle: sabba?

sabbah mach alles formal, barbara mach alles konvergent

Jedes  $P \in \mathcal{D}$  lässt sich eindeutig als

$$P = \sum_{k=0}^{n} \sum_{l=-N}^{\infty} \alpha_{kl} t^{l} \partial_{t}^{k}$$

mit  $\alpha_{kl} \in \mathbb{C}$  schreiben. Betrachte das zu P dazugehörige

$$H(P) := \bigcup_{k,l \text{ mit } \alpha_{kl} \neq 0} \left( (k,l-k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

#### Bei Sabbah: $H \subset \mathbb{N} \times \mathbb{Z}$ und dann konvexe Hülle davon in $\mathbb{R}^2$

**Definition 3.13.** Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton Polygon von P und wird als N(P) geschrieben.

**Definition 3.14.** Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von  $\{0\} \times \mathbb{R}$  befinden.

- P heißt regulär singulär : $\Leftrightarrow$  slopes $(P) = \{0\}$ , sonst irregulär singulär.
- Schreibe  $\mathcal{P}(\mathcal{M}_K)$  für die Menge der zu  $\mathcal{M}_K$  gehörigen slopes

• Ein meromorpher Zusammenhang  $\mathcal{M}_K$  heißt regulär singulär, falls es ein regulär singuläres P gibt, mit  $\mathcal{M}_K \cong \mathcal{D}/\mathcal{D} \cdot P$ 

**Beispiel 3.15.** 1. Ein besonders einfaches Beispiel ist  $P_1 = t^1 \partial_t^2$ . Es ist leicht abzulesen, dass

$$k=2$$
  $l=1$ 

so dass

$$H(P_1) = \left( (2, 1 - 2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = \left\{ (u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1 \right\}.$$

In Abbildung 3.2a ist  $H(P_1)$  (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$  und damit ist  $P_1$  regulär singulär.

2. [AV09, Bsp 5.3. 2.] Sei  $P_2 = t^4(t+1)\partial_t^4 + t\partial_t^2 + \frac{1}{t}\partial_t + 1$  so kann man daraus das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung 3.2b visualisiert.

Abbildung 3.1: Zu Beispiel 3.15



#### Lemma 3.16. [Sab90, 5.1]

- 1.  $\mathcal{P}(\mathcal{M}_K)$  ist nicht Leer, wenn  $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exacte Sequenz  $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$  hat, so gilt  $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$ .

## 3.4 Formale Meromorphe Zusammenhänge

bei Zula Barbara ist  $\hat{\mathcal{D}}_{\hat{K}} = \mathbb{C}(\!(u)\!) < \partial_u > \text{hier} = \mathcal{D}_{\hat{K}}$ 

**Definition 3.17** (Formaler Meromorpher Zusammenhang). Ein formaler Meromorpher Zusammenhang  $(\mathcal{M}_{\hat{K}}, \partial)$  besteht, analog wie in Definition 3.1, aus folgenden Daten:

- $\mathcal{M}_{\hat{K}}$ , ein endlich dimensionaler  $\hat{K}$ -Vektor Raum
- einer  $\mathbb{C}$ -linearen Derivation  $\partial: \mathcal{M}_{\hat{K}} \to \mathcal{M}_{\hat{K}}$ , welche die Leibnitzregel (3.1) erfüllen soll.

Bemerkung 3.18. Alle bisher getroffene Aussagen stimmen auch für formale Meromorphe Zusammenhänge. Im besonderen existiert für jedes  $\mathcal{M}_{\hat{K}}$  ein ein  $P \in \mathcal{D}_{\hat{K}}$  mit  $\mathcal{M}_{\hat{K}} = \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P$ .

**Definition 3.19.** [Sab07, 1.a] Sei  $\varphi \in \mathbb{C}((u))$ . Wir schreiben  $\mathscr{E}^{\varphi}$  für den (formalen) Rang 1 Vektorraum  $\mathbb{C}((u))$  ausgestattet mit dem Zusammenhang  $\nabla = \partial_u + \partial_u \varphi$ , im speziellen also  $\nabla_{\partial_u} 1 = \partial_u 1 = \varphi'$ .

Also
$$\mathcal{E}^{\varphi} = \mathbb{C}((u)) \xrightarrow{\partial_u} \mathbb{C}((u))$$

$$1 \mapsto \varphi'(u)$$

$$f(u) \mapsto f'(u) + f(u)\varphi'(u)$$

Bemerkung 3.20. [Sab07, 1.a] Es gilt  $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$  genau dann wenn  $\varphi \equiv \psi \mod \mathbb{C}[\![u]\!]$ .

## 3.5 pull-back und push-forward

[HTT07, 1.3]

14

Nach [Sab07, 1.a]. Sei  $(\rho : \mathbb{C} \to \mathbb{C}, u \mapsto t := \rho(u)) \in u\mathbb{C}[\![u]\!]$  mit Bewertung  $p \geq 1$  und sei  $\mathcal{M}$  ein endlich dimensionaler  $\mathbb{C}(\!(t)\!)$  Vektorraum ausgestattet mit einem Zusammenhang  $\nabla$ .

**Definition 3.21** (pull-back). [Sab07, 1.a] Der pull-back (Inverses Bild)  $\rho^+\mathcal{M}$  ist der Vektorraum  $\rho^*\mathcal{M} = \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M}$  mit dem pull-back Zusammenhang  $\rho^*\nabla$  definiert durch

$$\partial_u(1\otimes m) := \rho'(u)\otimes \partial_t m. \tag{3.2}$$

**Lemma 3.22.** Es gilt  $\rho^* \mathcal{D}_{\mathbb{C}((t))} = \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \cong \mathcal{D}_{\mathbb{C}((u))}$  mittels

$$\Phi: \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\cong} \mathcal{D}_{\mathbb{C}((u))}$$
$$f(u) \otimes m(t, \partial_t) \longmapsto f(u) m(\rho(u), \rho'(u)^{-1} \partial_u)$$

Beweis.  $\Box$ 

Bemerkung 3.23. Das soeben, in Lemma 3.22, definierte  $\Phi$  erfüllt für  $1\otimes m$ 

$$\partial_{u}(1 \otimes m) \stackrel{\text{def}}{=} \rho'(u) \otimes \partial_{t}m$$

$$\stackrel{\Phi}{\mapsto} \underbrace{\rho'(u)\rho'(u)^{-1}}_{=1} \partial_{u}m(\rho(u), \rho'(u)^{-1}\partial_{u})$$

$$= \partial_{u}m(\rho(u), \rho'(u)^{-1}\partial_{u})$$

und somit (3.2) wie gewollt.

#### Lemma 3.24. In der Situation

$$\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P(t, \partial_{t})} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))}$$

$$\cong \downarrow \Phi \qquad \qquad \cong \downarrow \Phi$$

$$\mathcal{D}_{\mathbb{C}((u))} \xrightarrow{\alpha} \mathcal{D}_{\mathbb{C}((u))}$$

mit  $\Phi$  wie in Lemma 3.22 macht  $\alpha := \underline{\phantom{a}} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u)$  das Diagram kommutativ.

Beweis.  $\Box$ 

**Lemma 3.25.** Sie  $Q \in \mathcal{D}_{\mathbb{C}((u))} \setminus \{0\}$ . Eine Abbildung der Form  $\mathcal{D}_{\mathbb{C}((u))} \stackrel{\cdot Q}{\Longrightarrow} \mathcal{D}_{\mathbb{C}((u))}$  ist immer surjectiv.

#### Beweis. GEGENBEISPIEL:

$$Q := \partial_u, \ u \in \mathcal{D}_{\mathbb{C}((u))}$$

suche ein y so dass  $y\partial_u = u$ 

$$\_\cdot Q(y)=u$$
 
$$y\partial_u=u$$
 
$$y\partial_u u=uu$$
 [Sab90, Chap. 4.] links multiplikation mit  $u$  ist nicht bijektiv 
$$y=u^2$$

aber

$$u^{2}\partial_{u} = u \cdot u \cdot \partial_{u}$$

$$= u \cdot (\partial_{u} \cdot u - 1)$$

$$= u \cdot (1 - 1)$$

$$= 0$$

**Lemma 3.26.** In der Situation von Lemma 3.21, mit  $\mathcal{M} = \mathcal{D}_{\mathbb{C}((t))}/\mathcal{D}_{\mathbb{C}((t))} \cdot P(t, \partial_t)$  für ein  $P(t, \partial_t) \in \mathcal{D}_{\mathbb{C}((t))}$ , gilt

$$\rho^* \mathcal{M} \cong \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u)$$

also wird der Übergang beschrieben durch

$$t \to \rho(t)$$
  
 $\partial_t \to \rho'(t)^{-1} \partial_u$ 

Beweis. Sei  $P \in \mathcal{D}_{\mathbb{C}((t))}$  und  $\mathcal{M} := \mathcal{D}_{\mathbb{C}((t))}/\mathcal{D}_{\mathbb{C}((t))} \cdot P$ . Es ist

$$0 \longrightarrow \mathcal{D}_{\mathbb{C}((t))} \stackrel{-\cdot P}{\longrightarrow} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \mathcal{M} \longrightarrow 0$$

exact und flach, da über Körper. Deshalb ist auch

$$0 \longrightarrow \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \rho^{*} \mathcal{M} \longrightarrow 0$$

exact. Also mit  $\Phi$  wie in Lemma 3.22 und  $Q(u, \partial_u) := \rho^+ P(t, \partial_t) := P(\rho(u), \rho'(u)^{-1} \partial_u)$  nach Lemma 3.24 ergibt sich

$$0 \longrightarrow \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \rho^{*} \mathcal{M} \longrightarrow 0$$

$$\cong \downarrow \Phi \qquad \qquad \cong \downarrow \Phi$$

$$\mathcal{D}_{\mathbb{C}((u))} \xrightarrow{-\cdot Q} \mathcal{D}_{\mathbb{C}((u))}$$

nun lässt sich die untere Zeile zu einer exacten Sequenz fortsetzen (weil  $\_\cdot Q$  surjectiv)

$$0 \longrightarrow \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \rho^{*}\mathcal{M} \longrightarrow 0$$

$$\cong \downarrow_{\Phi} \qquad \cong \downarrow_{\Phi} \qquad \cong \downarrow_{\psi} \qquad \qquad \cong \downarrow_{\psi} \qquad \qquad 0$$

$$0 \longrightarrow \mathcal{D}_{\mathbb{C}((u))} \xrightarrow{-\cdot Q} \mathcal{D}_{\mathbb{C}((u))} \longrightarrow \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot Q \longrightarrow 0$$

und damit gilt dann

$$\rho^* \mathcal{M} \cong \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot Q$$
$$= \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u).$$

• warum sind die zusammenhänge isomorph?

Bemerkung 3.27 (versuch 1). Wieso sieht die Wirkung auf dem pull-back Zusammenhang so aus?

Betrachte ein Element der Form  $f(t)m = f(\rho(u))m$ .

$$\partial_t(f(t)m) = \partial_{\rho(u)}(f(\rho(u))m)$$

$$= f'(\rho(u)) \cdot \underbrace{\frac{\partial (f(u))}{\partial (f(u))}}_{-1} m + f(\rho(u)) \underbrace{\frac{\partial (\rho(u))}{\partial (\rho(u))}}_{=\partial_t} m = (\star)$$

$$\rho'(u)^{-1}\partial_u(f(t)m) = \frac{1}{pu^{p-1}}\partial_u(f(u^p)m)$$
$$= f'(u^p)m + f(u^p)\frac{1}{pu^{p-1}}\partial_u m = (\star)$$

Also gilt  $\partial_t(f(t)m) = \rho'(u)^{-1}\partial_u(f(t)m)$  und somit ist die Wirkung von  $\partial_t$  gleich der Wirkung von  $\rho'(u)^{-1}\partial_u$ .

**Lemma 3.28.** Ein pull-back mit  $u \mapsto u^p$  multipliziert alle slopes mit p.

Beweis.  $\Box$ 

Beispiel 3.29 (pull-back). Hier nun ein explizit berechneter pull-back.

Beginne mit

$$\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$$



und gehe von  $\tau$  über zu t via  $\tau \to \frac{1}{t}$ :

• was passiert mit der Ableitung  $\partial_{\tau}$ ? Es gilt:

$$\partial_{\tau}(f(\frac{1}{\tau})) = \partial_{t}(f) \cdot (-\frac{1}{\tau^{2}}) = -\partial_{t}(f) \cdot t^{2} = -t^{2} \cdot \partial_{t}(f)$$

also:

$$\partial_{\tau} = -t^2 \partial_t$$

• was ist  $\partial_t(t^2\partial_t)$ ?

$$\partial_t t^2 \partial_t = (\partial_t t) t \partial_t$$

$$= (t \partial_t - 1) t \partial_t$$

$$= t (\partial_t t) \partial_t - t \partial_t$$

$$= t (t \partial_t - 1) \partial_t - t \partial_t$$

$$= t^2 \partial_t^2 - 2t \partial_t$$

• was passiert mit  $\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$ ?

$$\tilde{P} = \tau \partial_{\tau}^{2} + 2\partial_{\tau} - 1$$

$$\xrightarrow{\tau \to \frac{1}{t}} \frac{1}{t} (-t^{2}\partial_{t})^{2} + 2(-t^{2}\partial_{t}) - 1$$

$$= \frac{1}{t} t^{2} (\partial_{t} (t^{2}\partial_{t})) - 2t^{2}\partial_{t} - 1$$

$$= t(\partial_{t} (t^{2}\partial_{t})) - 2t^{2}\partial_{t} - 1$$

$$= t(t^{2}\partial_{t}^{2} - 2t\partial_{t}) - 2t^{2}\partial_{t} - 1$$

$$= t^{3}\partial_{t}^{2} - 4t^{2}\partial_{t} - 1 =: P$$

Wir wollen  $\mathcal{M} := \mathcal{D}/\mathcal{D} \cdot P$  bzgl.  $P := t^3 \partial_t^2 - 4t^2 \partial_t - 1$  betrachten. Unser Ziel ist es hier ganzzahlige slopes erhalte Es gilt slopes $(P) = \{\frac{1}{2}\}$  (siehe Abbildung 3.3a) und es ist 2 der Hauptnenner aller Slopes. Wende den pull-back  $\rho: t \to u^2$ , welcher alle slopes mit 2 Multipliziert, an. Zunächst ein paar Nebenrechnungen, damit wir Lemma 3.26 anwenden können.

$$\partial_t \to \frac{1}{\rho'} \partial_u = \frac{1}{2u} \partial_u$$
$$\partial_t^2 \to (\frac{1}{2u} \partial_u)^2$$
$$= \frac{1}{2u} \partial_u (\frac{1}{2u} \partial_u)$$

$$= \frac{1}{2u} \left( -\frac{1}{2u^2} \partial_u + \frac{1}{2u} \partial_u^2 \right)$$
$$= \frac{1}{4u^2} \partial_u^2 - \frac{1}{4u^3} \partial_u$$

also ergibt einsetzen

$$\rho^{+}P = u^{6} \left(\frac{1}{4u^{2}}\partial_{u}^{2} - \frac{1}{4u^{3}}\partial_{u}\right) - 4u^{4}\frac{1}{2u}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - u^{3}\frac{1}{4u^{3}}\partial_{u} - 4u^{3}\frac{1}{2}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - 2\frac{1}{4}u^{3}\partial_{u} - 1$$

Also ist  $\rho^+P = \frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1$  mit slopes $(\rho^+P) = \{1\}$  (siehe Abbildung 3.3b) und somit  $\rho^*\mathcal{M} = \mathcal{D}/\mathcal{D} \cdot (\frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1)$ .



Abbildung 3.2: Zu Beispiel 3.29

Sei  $\mathcal{N}$  ein  $\mathbb{C}((u))$ -VR mit Verknüpfung, so definiere den push-forward wie folgt.

**Definition 3.30** (push-forward). [Sab07, 1.a] Der push-forward (Direktes Bild)  $\rho_+\mathcal{N}$  ist

• der  $\mathbb{C}((t))$ -VR  $\rho_*\mathcal{N}$  ist der  $\mathbb{C}$ -Vektor Raum  $\mathcal{N}$  mit der  $\mathbb{C}((t))$ -Vektor Raum Struktur durch  $f(t) \cdot m := f(\rho(t))m$ 

• mit der Wirkung  $\partial_t$  beschrieben durch  $\rho'(u)^{-1}\partial_u$ .

Abbildung 3.3: Zu Beispiel 3.31



Beispiel 3.31 (push-forward). Für  $\rho:t\to u^2,\, \varphi=\frac{1}{u^2}$  betrachte

$$\mathscr{E}^{\varphi} \cong \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_u + \partial_u \frac{1}{u^2})$$
$$= \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\underbrace{\partial_u + \frac{2}{u^3}}_{=\cdot P})$$

mit slopes(P) = {2} (siehe Abbildung 3.4a). Bilde nun das Direkte Bild über  $\rho$ , betrachte dazu

$$\partial_u + \frac{2}{u^3} = 2u\left(\frac{1}{2u}\partial_u + \frac{1}{u^4}\right)$$
$$= 2u(\rho'(u)^{-1}\partial_u + \frac{1}{u^4})$$
$$= 2u(\partial_t + \frac{1}{t^2})$$

Also ist  $\rho_+ \mathscr{E}^{\varphi} \cong \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_t + \frac{1}{t^2})$  mit  $\rho_+ P = \partial_t + \frac{1}{t^2}$  und slopes $(\rho_+ P) = \{1\}$  (siehe Abbildung 3.4b)

Satz 3.32. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+} \mathcal{M}) \cong \rho_{+} \mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}. \tag{3.3}$$

Beweis.

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+}\mathcal{M}) = \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} (\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M}))$$

$$\cong \rho_{+}((\mathcal{N} \otimes_{\mathbb{C}((u))} \mathbb{C}((u))) \otimes_{\mathbb{C}((t))} \mathcal{M})$$

$$\cong \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M})$$

$$= \rho_{+}\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}$$

Sei  $\rho(u) = u^p = t$  und  $\varphi(t)$  gegeben.

$$\rho^{+}\mathcal{E}^{\varphi(t)} = \mathcal{E}^{\varphi(\rho(u))} = \mathcal{E}^{\varphi(u^{p})}$$
$$\rho^{+}\rho_{+}\mathcal{E}^{\varphi(u)} = \bigoplus_{\zeta \in \mu_{p}} \mathcal{E}^{\varphi(\zeta \cdot u)}$$

## 3.6 Elementare Meromorphe Zusammenhänge

**Definition 3.33** (Elementarer formaler Zusammenhang). [Sab07, Def 2.1] Zu einem gegebenen  $\rho \in u\mathbb{C}[\![u]\!], \varphi \in \mathbb{C}(\!(u)\!)$  und einem endlich dimensionalen  $\mathbb{C}(\!(u)\!)$ -Vektorraum R mit regulärem Zusammenhang  $\nabla$ , definieren wir den assoziierten Elementaren endlich dimensionalen  $\mathbb{C}(\!(t)\!)$ -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

[Sab07, nach Def 2.1] Bis auf isomorphismus hängt  $El(\rho, \varphi, R)$  nur von  $\varphi \mod \mathbb{C}[\![u]\!]$  ab.

Lemma 3.34. [Sab07, Lem 2.2]

# 4 Levelt-Turrittin-Theorem

Quellen:

sabbah\_cimpa90 seite 28 / 30

Ab hier werden wir nur noch formale Meromorphe Zusammenhänge betrachten.

Sei  $M_{\hat{K}} = \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P$  und nehme an, dass N(P) zumindes 2 nichttriviale Steigungen hat. Spalte  $N(P) = N_1 \dot{\cup} N_2$  in 2 Teile. Dann gilt:

**Lemma 4.1.** Es existiert eine Aufteilung  $P = P_1P_2$  mit:

- $N(P_1) \subset N_1 \ und \ N(P_2) \subset N_2$
- A ist eine kante von ...

#### 4.1 Klassische Definition

**Satz 4.2.** [Sab90, Thm 5.3.1] Sei  $\mathcal{M}_{\hat{K}}$  ein formaler Meromorpher Zusammenhang und sei  $\mathcal{P}(\mathcal{M}_{\hat{K}}) = \{L^{(1)}, \ldots, L^{(r)}\}$  die Menge seiner slopes. Es exisitiert eine (bis auf Permutation) eindutige Aufteilung  $\mathcal{M}_{\hat{K}} = \bigoplus_{i=1}^r \mathcal{M}_{\hat{K}}^{(i)}$  in formale Meromorphe Zusammenhänge mit  $\mathcal{P}(\mathcal{M}_{\hat{K}}^{(i)}) = \{L^{(i)}\}.$ 

Beweis. [Sab90, Thm 5.3.1]

Aussagen, die aus dem Beweis entstehen:

Wir erhalten die Exacte Sequenz

$$0 \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P_1 \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P_2 \to 0$$

**Korollar 4.3.** [Sab90, Thm 5.3.4]  $\mathcal{P}(P) = \mathcal{P}(P_1) \cup \mathcal{P}(P_2)$  und  $\mathcal{P}(P_1) \cap \mathcal{P}(P_2) = \emptyset$ 

[Sab90, Page 34] Sei  $\mathcal{M}_{\hat{K}}$  ein formaler Meromorpher Zusammenhang. Man definiert  $\pi^*\mathcal{M}_{\hat{K}}$  als den Vektor Raum über  $\hat{L}: \pi^*\mathcal{M}_{\hat{K}} = \hat{L} \otimes_{\hat{K}} \mathcal{M}_{\hat{K}}$ . Dann definiert man die Wirkung von  $\partial_t$  durch:  $t\partial_t \cdot (1 \otimes m) = q(1 \otimes (x\partial_x \otimes m))$  und damit

$$t\partial_t \cdot (\varphi \otimes m) = q(\varphi \otimes (x\partial_x \cdot m)) + ((t\frac{\partial \varphi}{\partial t}) \otimes m).$$

Satz 4.4. [Sab90, Thm 5.4.7] Sie  $\mathcal{M}_{\hat{K}}$  ein formaler Meromorpher Zusammenhang. So gibt es eine ganze Zahl q so dass der Zusammenhang  $\pi^*\mathcal{M}_{\hat{K}}=\mathcal{M}_{\hat{L}}$  isomorph zu einer direkten Summe von elementaren Meromorphen Zusammenhänge ist.

**Beispiel 4.5.** Sei hier  $P = \frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1$ , wie in Beispiel ??. Wir wollen  $\mathcal{D}/\mathcal{D} \cdot P$  mittels des Levelt-Turrittin-Theorems Zerlegen.

#### 4.2 Sabbah's Refined version

#### sabbah Fourier-local.pdf lemma 2.4

Sei  $\rho: u \mapsto u^p$  und  $\mu_{\xi}: u \mapsto \xi u$ .

Lemma 4.6. [Sab07, Lem 2.4] Für alle  $\varphi \in \mathbb{C}((u))$  gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}} .$$

Beweis. Wir wählen eine  $\mathbb{C}((u))$  Basis  $\{e\}$  von  $\mathscr{E}^{\varphi}$  und zur vereinfachung nehmen wir an, dass  $\varphi \in u^{-1}\mathbb{C}[u^{-1}]^{[1]}$ .

Dann ist die Familie  $e, ue, ..., u^{p-1}e$  eine  $\mathbb{C}((t))$ -Basis von  $\rho_+\mathscr{E}^{\varphi}$ .

Setze  $e_k = u^{-k} \otimes_{\mathbb{C}((t))} u^k e$ . Dann ist die Familie  $\mathbf{e} = (e_0, ..., e_{p-1})$  eine  $\mathbb{C}((u))$ -Basis von  $\rho^+ \rho_+ \mathscr{E}^{\varphi}$ . Zerlege nun  $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p) \in u^{-2}\mathbb{C}[u^{-1}]$  mit  $\psi_j \in \mathbb{C}[t^{-1}]$  für alle j > 0 und  $\psi_0 \in t^{-1}\mathbb{C}[u^{-1}]$  (siehe: Anhang A).

Sei P die Permutationsmatrix, definiert durch  $\mathbf{e} \cdot P = (e_1, ..., e_{p-1}, e_0)^{[2]}$ .

$$\begin{array}{l}
 \begin{bmatrix} 1 \end{bmatrix} \mathscr{E}^{\varphi} = \mathscr{E}^{\psi} \Leftrightarrow \varphi \equiv \psi \mod \mathbb{C}[[u]] \\
 \begin{bmatrix} 0 & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \\ \end{array}$$

Es gilt:

$$u\partial_u e_k = \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

denn:

$$u\partial_{u}e_{k} = u\partial_{u}(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= u(-ku^{-k-1} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k} \otimes_{\mathbb{C}((t))} \partial_{t}(\underbrace{u^{k}e}))$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k+1} \otimes_{\mathbb{C}((t))} (pu^{p-1})^{-1}(ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} (ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= \underbrace{-ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} ku^{k-1}e}_{=0} + u^{-k+1} \otimes_{\mathbb{C}((t))} u^{k}\varphi'(u)e$$

$$= \underbrace{u^{-k} \otimes_{\mathbb{C}((t))} u^{k+1}\varphi'(u)e}_{=0}$$

$$= \underbrace{\sum_{i=0}^{p-1} u^{-k} \otimes_{\mathbb{C}((t))} u^{k}u^{i}\underbrace{\psi_{i}(u^{p})e}_{\in\mathbb{C}((t))}}_{\in\mathbb{C}((t))}$$

$$= \underbrace{\sum_{i=0}^{p-1} u^{i}\psi_{i}(u^{p})(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)}_{=\mathbb{C}((t))}$$

$$= \underbrace{\sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=n-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}}_{=n-k}$$

so dass gilt:

$$u\partial_u \mathbf{e} = \mathbf{e} \left[ \sum_{j=0}^{p-1} u^j \psi_j P^j \right]$$

denn:

$$u\partial_{u}\mathbf{e} = (u\partial_{u}e_{0}, ..., u\partial_{u}e_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}\right)_{k \in \{0, ..., p-1\}}$$

$$= \mathbf{e} \begin{pmatrix} u^{p-1}\psi_{p-1}(u^p) & \cdots & u^3\psi_3(u^p) & u^2\psi_2(u^p) & u^1\psi_1(u^p) \\ u^1\psi_1(u^p) & u^{p-1}\psi_{p-1}(u^p) & & \ddots & u^2\psi_2(u^p) \\ u^2\psi_2(u^p) & u^1\psi_1(u^p) & \ddots & & u^3\psi_3(u^p) \\ u^3\psi_3(u^p) & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & u^1\psi_1(u^p) & u^{p-1}\psi_{p-1}(u^p) \\ u^{p-2}\psi_{p-2}(u^p) & \cdots & u^3\psi_3(u^p) & u^2\psi_2(u^p) & u^1\psi_1(u^p) & u^{p-1}\psi_{p-1}(u^p) \end{pmatrix}$$

$$= \mathbf{e} [\sum_{j=0}^{p-1} u^j\psi_j(u^p)P^j]$$

Die Wirkung von  $\partial_u$  auf die Basis von  $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$  ist also Beschrieben durch:

$$\partial_u \mathbf{e} = \mathbf{e} \left[ \sum_{j=0}^{p-1} u^{j-1} \psi_j P^j \right]$$

Diagonalisiere nun 
$$TPT^{-1} = D = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix}^{[3]}$$
, mit  $\xi^p = 1$  und  $T \in Gl_p(\mathbb{C})$ .

So dass gilt:

$$T[\sum_{j=0}^{p-1} u^{j-1}\psi_{j}(u^{p})P^{j}]T^{-1} = [\sum_{j=0}^{p-1} u^{j-1}\psi_{j}(u^{p})(TPT^{-1})^{j}]$$

$$= [\sum_{j=0}^{p-1} u^{j-1}\psi_{j}(u^{p})D^{j}]$$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1}\psi_{j} \\ & \sum_{j=0}^{p-1} u^{j-1}\psi_{j} (\xi^{1})^{j} \\ & & \ddots \\ & & \sum_{j=0}^{p-1} u^{j-1}\psi_{j} (\xi^{p-1})^{j} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1}\psi_{j} \\ & & \ddots \\ & & \sum_{j=0}^{p-1} (u\xi^{1})^{j-1}\psi_{j}\xi^{1} \\ & & \ddots \\ & & & \sum_{j=0}^{p-1} (u\xi^{p-1})^{j-1}\psi_{j}\xi^{p-1} \end{pmatrix} [4]$$

<sup>[3]</sup> Klar, da mipo  $X^p - 1$ 

$$= \begin{pmatrix} \varphi'(u) & & & \\ & \varphi'(\xi u)\xi^1 & & \\ & & \ddots & \\ & & & \varphi'(\xi^{p-1}u)\xi^{p-1} \end{pmatrix}$$

Wie sieht denn die Wirkung auf die Basis von  $\bigoplus_{\xi^p=1} \mathscr{E}^{\varphi \circ \mu_{\xi}} \stackrel{\Phi}{\cong} \mathbb{C}((u))^p$  aus?

$$\partial_{u} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\partial_{u} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 0 \\ \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xrightarrow{\Phi} \begin{pmatrix} 0 \\ \varphi'(u)\xi \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Also kommutiert das Diagram:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \stackrel{\cong}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{T}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{\Phi}{\longrightarrow} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi \circ \mu_{\xi}}$$

$$\downarrow \qquad \downarrow$$

$$\partial_{u} \qquad \qquad \sum_{j=0}^{p-1} u^{j-1} \psi_{j} P^{j} \qquad \qquad \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \stackrel{\longleftarrow}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{T}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{\longrightarrow}{\longrightarrow} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi \circ \mu_{\xi}}$$

Und deshalb ist klar ersichtlich das auf  $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$  und  $\sum_{j=0}^{p-1}u^{j-1}\psi_jD^j$  ein Äquivalenter Meromorpher Zusammenhang definiert ist.

**Proposition 4.7.** [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale Meromorphe Zusammenhang  $\mathcal{M}_{\hat{K}}$  ist isomorph zu  $\rho_{+}(\mathscr{E}^{\varphi} \otimes L)$ , wobei  $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$ ,  $\rho: u \mapsto t = u^{p}$  mit grad  $p \geq 1$  minimal bzgl.  $\varphi$  (siehe [Sab07, Rem 2.8]), und L ist ein Rang 1  $\mathbb{C}((u))$ -Vektor Raum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1]

Satz 4.8 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale Meromorphe Zusammenhang  $\mathcal{M}_{\hat{K}}$  kann in eindutiger weiße geschrieben werden als direkte Summe  $\bigoplus El(\rho, \varphi, R) = \rho_+(\mathscr{E}^{\varphi}) \otimes R$ , so dass jedes  $\rho_+\mathscr{E}^{\varphi}$  irreduzibel ist und keine zwei  $\rho_+\mathscr{E}^{\varphi}$  isomorph sind.

Beweis. [Sab07, Cor 3.3]

# A Aufteilung von ...

Sei  $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$ , so ist  $\varphi' =: \sum_{i=2}^N a_{-i}u^{-i} \in u^{-2}\mathbb{C}[u^{-1}]$  also  $u\varphi'(u) = \sum_{i=1}^N a_{-i-1}u^{-i} \in u^{-1}\mathbb{C}[u^{-1}]$ , welches wir zerlegen wollen. Zerlege also  $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p)$  mit  $\psi_j \in \mathbb{C}[t^{-1}]$  für alle j > 0 und  $\psi_0 \in t^{-1}\mathbb{C}[t^{-1}]$ :



also:

$$\psi_0(u^p) = a_{-(p+1)}u^{-p} + a_{-(2p+1)}u^{-2p} + \dots$$

$$\psi_1(u^p) = a_{-p}u^{-p} + a_{-2p}u^{2p} + \dots$$

 $\psi_{p-1}(u^p) = a_{-2}u^p + a_{-(p+2)}u^{2p} + \dots$ 

# Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory, Notizen?
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [MR89] H. Matsumura and M. Reid, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] \_\_\_\_\_\_, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.