Model Assessment & Selection

Data Mining

Prof. Sujee Lee

Department of Systems Management Engineering

Sungkyunkwan University

Performance Evaluation (revisited)

Evaluation Metrics for Regression

- Given a data set $D = \{(x_i, y_i)\}_{i=1}^n$
- Mean Squared Error (RMSE): $MSE = \frac{1}{n} \sum_{i} (y_i \hat{y}_i)^2$
- Root Mean Squared Error (RMSE): RMSE = $\sqrt{\frac{1}{n}\sum_i(y_i \hat{y}_i)^2}$
- Mean Absolute Error (MAE): $MAE = \frac{1}{n} \sum_{i} |y_i \hat{y_i}|$
- Coefficient of Determination (R^2): $R^2 = 1 \frac{\sum_i (y_i \widehat{y_i})^2}{\sum_i (y_i \overline{y})^2}$, $\overline{y} = \frac{1}{n} \sum_i y_i$

Performance Evaluation (revisited)

Evaluation Metrics for Classification

- Given a test set $D = \{(x_i, y_i)\}_{i=1}^n$
- Accuracy: the fraction of correctly classified data points

Accuracy =
$$\frac{1}{n} \sum_{i} \mathbb{I}(y_i = \hat{y}_i) \times 100\%$$

- Confusion Matrix
 - Precision: The proportion of true positives (TP) among the predicted positives (FP + TP).
 - assess the performance of positive predictions.
 - **Recall**: The proportion of true positives (TP) among the actual positives (FN + TP).
 - evaluate how well the model predicts actual positive cases (also called sensitivity or True Positive Rate, TPR).
 - F1-score: A metric that combines precision and recall.

positive negative

positive true positives (TP) false negative (FN)

negative (FP) true negatives (TN)

Actual Class

Data Splitting

Test Sets

- How can we get an unbiased estimate of the accuracy of a learned model?
 - The goal is to find a predictive model that not only fits well to our past data, but more importantly, one that predicts a future outcome accurately.
 - In the absence of new data, we can assess the performance of models by dividing our data into two sets

Training set: used to develop feature sets, train our models, tune hyperparameters, compare models, etc.

Test set: used to estimate an assessment of the final model's performance.

Data Splitting

Validation Sets

- Suppose we want unbiased estimates of accuracy during the learning process (e.g. to choose the best models among all)?
 - If a test set is used to assess model performance in the training phase, then the model that best fits the test set is selected, which violates the principle of finding a model that fits unknown future data well.

Data Splitting

Limitations of using a single training/validation/test partition

- We may not have enough data to make sufficiently large training and test sets
 - a larger test set gives us more reliable estimate of accuracy (i.e. a lower variance estimate)
 - a larger training set will be more representative of how much data we actually have for learning process
- a single training set doesn't tell us how sensitive accuracy is to a particular training sample

Cross Validation

Cross Validation

Cross Validation

- k-fold cross-validation (k-fold CV) is randomly divides the training data into k groups (folds) of approximately equal size.
 - In practice, typically use k = 5 or k = 10. When k = n, leave-one-out cross validation (LOOCV).

partition data into *k* subsamples

iteratively leave one subsample out for the test set, train on the rest

iteration	train on	test on
1	s ₂ s ₃ s ₄ s ₅	S ₁
2	S ₁ S ₃ S ₄ S ₅	s ₂
3	S ₁ S ₂ S ₄ S ₅	S ₃
4	S ₁ S ₂ S ₃ S ₅	S ₄
5	S ₁ S ₂ S ₃ S ₄	S ₅

Cross Validation

Cross Validation & Model Selection

- After cross-validation, the best-performing set of hyperparameters / algorithm is selected based on validation performance.
- The model is retrained on the entire training dataset using the best setting found during CV.

Confusion Matrix

Confusion matrices

How can we understand what types of mistakes a learned model makes?

predicted class

ROC Curve & AUC

• Metrics like accuracy can fail to provide a clear picture of the model's performance with imbalanced data. Additionally, metrics such as precision, recall, and F1-score are calculated based on a specific threshold, and changing this threshold can dramatically alter the model's evaluation.

ROC Curve

• A Receiver Operating Characteristic (ROC) curve plots the TPR vs. the FPR as a threshold for the confidence of an instance being positive is varied

ROC curves and misclassification costs

Algorithm for creating an ROC curve

- 1. sort test-set predictions according to confidence that each instance is positive
- 2. step through sorted list from high to low confidence
 - locate a threshold between instances with opposite classes (keeping instances with the same confidence value on the same side of threshold)
 - II. compute TPR, FPR for instances above threshold
 - III. output (FPR, TPR) coordinate

Plotting an ROC curve

instance	confidence positive		correct class
Ex 9	.99		+
Ex 7	.98	TPR= 2/5, FPR= 0/5	+
Ex 1	.72	TPR= 2/5, FPR= 1/5	_
Ex 2	.70		+
Ex 6	.65	TPR= 4/5, FPR= 1/5	+
Ex 10	.51		_
Ex 3	.39	TPR= 4/5, FPR= 3/5	-
Ex 5	.24	TPR= 5/5, FPR= 3/5	+
Ex 4	.11		-
Ex 8	.01	TPR= 5/5, FPR= 5/5	-

AUC

Area Under Curve (AUC)

- AUC represents the area under the ROC curve and summarizes the performance of a classification model as a single value.
- The closer the AUC is to 1, the better the model's performance.

