

2. Calcule la loi a posteriori $\mathbb{P}(\theta|X_1,\ldots,X_n)$ avec le théorème de Bayes:

1. Considère que θ est une variable aléatoire à modéliser par une loi a priori $\mathbb{P}(\theta) \sim \pi$.

$$\mathbb{P}(\boldsymbol{\theta}|X_1,\ldots,X_n) = \frac{\mathbb{P}(X_1,\ldots,X_n|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(X_1,\ldots,X_n)}$$

4. On peut utiliser cette **distribution** pour:

3. Obtient toute une **distribution** sur θ .

- Estimer θ en prenant le maximum, la moyenne, la médiane de cette distribution.
 - Quantifier l'incertitude sur les valeurs possible de θ .
 - Générer des échantillons $\theta_1, \ldots, \theta_m$ à partir de cette distribution.

Modèle Bayésien:

Soit un phénomène dont on observe des variables aléatoires i.i.d X_1, \ldots, X_n modélisées par une loi paramétrée par θ .

loi a posteriori

Soit un phénomène dont on observe des variables aléatoires i.i.d X_1, \ldots, X_n modélisées par une loi paramétrée par θ .

Modèle Bayésien:

- 1. Considère que θ est une variable aléatoire à modéliser par une loi a priori $\mathbb{P}(\theta) \sim \pi$.
- 2. Calcule la loi a posteriori $\mathbb{P}(\theta|X_1,\ldots,X_n)$ avec le théorème de Bayes:

$$\mathbb{P}(\boldsymbol{\theta}|X_1,\ldots,X_n) = \frac{\mathbb{P}(X_1,\ldots,X_n|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(X_1,\ldots,X_n)}$$

- 3. Obtient toute une **distribution** sur θ .
- 4. On peut utiliser cette distribution pour:
 - Estimer θ en prenant le maximum, la moyenne, la médiane de cette distribution.
 - Quantifier l'incertitude sur les valeurs possible de θ .
 - Générer des échantillons $\theta_1, \ldots, \theta_m$ à partir de cette distribution.

- 1. Introduction
- 2. Les Bayésiens vs Les fréquentistes
- 3. Rappels de probabilités (exemples)
- 4. Loi a posteriori et modèles conjugués
- 5. Estimateur de Bayes

Probability theory reminders

En statistiques Bayésiennes, les variables aléatoires sont très souvent continues:

