离散数学第三次作业

作业提交方式: 2022 年 11 月 24 前将电子版作业上传到 bb 系统

- 一. $(1 \, \mathcal{G})$ 设 G 为群, $H \triangleleft G$, 且 [G:H] = m. 证明: 对每个 $x \in G$, 都有 $x^m \in H$
- 二. (1 分) 设 H, K 为群 G 的两个正规子群. 证明: 如果 $H \cap K = \{e\}$, 则对任意的 $h \in H, k \in K$, 有 hk = kh.
- 三. (2分) 证明以下结论:
 - 1. 任何至少由两人构成的群体中,其中有两个人,他们的朋友数量一样多。
 - 2. $2n(n \ge 2)$ 人中,每个人至少与其中的n个人认识,则其中至少有四个人,使得这四个人围桌而坐时,每个人旁边都是他认识的人。
- 四. $(2 \, f)$ 以分量为 0 或 1 的 k 维向量集为顶集, 仅当两向量只一个同位分量相异时, 在相应二顶间连一边, 所得之图称为 k 维立方体, $k \in \mathbb{N}$ 。
 - 1. 证明: k 维立方体是 2^{k} 个顶, $k*2^{k-1}$ 条边的二分图。
 - 2. 构造一个二分图 G, 使得 G 不与任何 k 维立方体的子图同构。其中 k 为任意正整数。
- 五. (2 分) 我们将图 G 中所有顶点的度数按照从大到小的顺序排列, 称为图 G 的度数序列。证明:
 - 1. 7, 6, 5, 4, 3, 3, 2 和 6, 6, 5, 4, 3, 3, 1 都不是简单图的度数序列。
 - 2. 设 d_1, d_2, \dots, d_n 是简单图的度数序列, 则 $\sum_{i=1}^n d_i$ 是偶数, 且对任意 $1 \le k \le n$, 都有

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min \left\{ k, d_i \right\}$$

- 六. (2分) 证明以下结论:
 - 1. 如果一棵树只有两片树叶,则这棵树是一条轨。
 - 2. 如果 T 是树, 且 $\Delta(T) \geq n$, 则 T 至少有 n 片树叶。其中 $\Delta(G) = \max_{v \in V(G)} d(v)$ 。