Predicting Asteroid Diameter Using Artificial Neural Networks Deep Learning

Cain Farnam

University of Central Arkansas

Outline

- Introduction
- 2 Data
- 3 Pre-Processing
- Deep Neural Network
- 6 Hyper-parameter Tuning
- 6 Feature Engineering
- Conclusion

Section 1

Introduction

Introduction

- The data set contains 27 features on asteroids
- The task is to predict the asteroid's diameter based on the features provided
- To predict the diameter of the asteroids, we will be creating an artificial neural network

Section 2

Data

Raw Data Structure

feature	observations	non-null	data type
full name	839736	non-null	object
a	839734	non-null	float64
e	839736	non-null	float64
G	119	non-null	float64
i	839736	non-null	float64
om	839736	non-null	float64
w	839736	non-null	float64
q	839736	non-null	float64
ad	839730	non-null	float64
per y	839735	non-null	float64
data arc	823947	non-null	float64
condition code	838743	non-null	object
n obs used	839736	non-null	int64
Н	837042	non-null	float64
diameter	137681	non-null	object
extent	18	non-null	object
albedo	136452	non-null	float64
rot per	18796	non-null	float64
GM	14	non-null	float64
BV	1021	non-null	float64
UB	979	non-null	float64
IR	1	non-null	float64
spec B	1666	non-null	object
spec T	980	non-null	object
neo	839730	non-null	object
pha	822814	non-null	object
moid	822814	non-null	float64

Data Cleaning

- The data set needs to be cleaned before it can be used
- Take the following steps:
 - Drop all observations that have missing values for diameter
 - Drop arbitrary features (asteroid name and condition code)
 - Drop features containing too many missing values
 - Encode categorical features
 - Fill remaining missing values with feature mean

Clean Data Structure

 The cleaned data set has 137,680 asteroids that can be used for training

f	observations	non-null	
feature name			data type
a	137680	non-null	float64
e	137680	non-null	float64
i	137680	non-null	float64
om	137680	non-null	float64
w	137680	non-null	float64
q	137680	non-null	float64
ad	137680	non-null	float64
per y	137680	non-null	float64
data arc	137680	non-null	float64
n obs used	137680	non-null	int64
Н	137680	non-null	float64
diameter	137680	non-null	float64
albedo	137680	non-null	float64
moid	137680	non-null	float64
neo N	137680	non-null	uint8
neo Y	137680	non-null	uint8
pha N	137680	non-null	uint8
pha Y	137680	non-null	uint8

Summary Statistics

Summary statistics of the numerical features

```
##
                                          i
                                                   diameter
                                                                 albedo
                                                                              moid
                  а
  count
          137680.00
                     137680.00
                                 137680.00
                                                  137680.00
                                                              137680.00
                                                                         137680.00
## mean
               2.81
                           0.15
                                     10.35
                                                       5.48
                                                                   0.13
                                                                              1.42
## std
               1.52
                           0.08
                                      6.84
                                                       9.37
                                                                   0.11
                                                                              0.51
## min
               0.63
                           0.00
                                      0.02
                                                       0.00
                                                                   0.00
                                                                              0.00
## 25%
               2.54
                           0.09
                                      5.12
                                                       2.77
                                                                   0.05
                                                                              1.08
## 50%
               2.75
                           0.14
                                      9.39
                                                       3.96
                                                                   0.08
                                                                              1.38
## 75%
               3.09
                           0.19
                                 13.74
                                                       5.74
                                                                   0.19
                                                                              1.70
## max
             389.15
                           0.98
                                    170.32
                                                     939.40
                                                                   1.00
                                                                             39.51
##
```

[8 rows x 14 columns]

Correlation

- Correlation coefficients between diameter and predictors
- The data doesn't appear to be highly correlated

feature	correlation
diameter	1.000000
Н	0.568580
data arc	0.493088
n obs used	0.386325
moid	0.333046
q	0.330317
a	0.145027
albedo	0.107493
ad	0.093622
i	0.052827
e	0.049180
per y	0.049053
neo Y	0.036215
neo N	0.036215
pha N	0.019629
pha Y	0.019629
w	0.002909
om	0.001191

Section 3

Pre-Processing

Pre-Processing

- Split the data into a train and test sets (80:20 split) and separate the targets from the predictors
- Normalize the predictors using a standard scaler
- Set aside 25,000 observations for hold-out validation to observe the performance during the training process (approx same as test set)

Section 4

Deep Neural Network

Model Architecture

- The following model structure remains constant:
 - Since this is a regression problem, use:
 - Loss function: mean square error (mse)
 - Optimizer: ADAM
 - Metric: mean absolute error (mae)
 - Layers (activation): dense (rectified linear unit function)
 - Output layer (activation): one unit (none)
- Tune the following:
 - batch size
 - number of hidden layers
 - size of hidden layers
 - dropout layers
 - epochs

Initial Model Parameters

- The first model needs to be large enough that it over-fits the train set
- The goal is to over-fit the data and then scale down until we achieve the optimal model that generalizes the data
- Use the following hyper-parameters:
 - batch size: 64
 - number of hidden layers: 4
 - size of hidden layers: 128, 128, 64, 64
 - dropout layers: none
 - epochs: 50

Model Summary

```
## Layer (type)
                  Output Shape
                                 Param #
 _____
## dense 1 (Dense)
                  (None, 128)
                                 2304
##
 -----
## dense 2 (Dense)
                 (None, 128)
                                 16512
##
## dense_3 (Dense)
                 (None, 64)
                                 8256
##
## dense 4 (Dense)
                 (None, 64)
                                 4160
 _____
## dense 5 (Dense)
              (None, 1)
                                 65
## Total params: 31,297
## Trainable params: 31,297
## Non-trainable params: 0
```

Cain Farnam Deep Learing 16 / 41

Model Loss

- The train and validation loss have quite a bit of noise
- Over-fitting the train set

Section 5

Hyper-parameter Tuning

Tuning Hyper-parameters

- Begin tuning the hyper-parameters of the model
- Eliminate the noise in the train loss
- Likely a result of high variance between batches
- Increase the batch size and re-run the same model (batch size: 512)

Model Loss

- Train loss is now much more smooth
- Still over-fitting the train set

Reducing Model Size

- Reduce the model size by halving the output size for each layer
- Use the following hyper-parameters:

• batch size: 512

• number of hidden layers: 4

• size of hidden layers: 64, 64, 32, 32

dropout layers: none

• epochs: 50

Model Summary

```
## Layer (type)
                  Output Shape
                                 Param #
 _____
## dense 6 (Dense)
                  (None, 64)
                                 1152
##
 -----
## dense 7 (Dense)
                 (None, 64)
                                 4160
##
## dense 8 (Dense)
                 (None, 32)
                                 2080
##
## dense 9 (Dense)
                 (None, 32)
                                 1056
 _____
## dense 10 (Dense)
              (None, 1)
                                 33
## Total params: 8,481
## Trainable params: 8,481
## Non-trainable params: 0
```

Cain Farnam Deep Learing 22 / 41

Model Loss

- Over-fitting is reduced, but still prevalent
- Train loss is converging fast (around 10 epochs)

Reducing Number of Layers

- Remove a large hidden layer and reduce the output for the last hidden layer
- Use the following hyper-parameters:
 - batch size: 512
 - number of hidden layers: 3
 - size of hidden layers: 64, 32, 16
 - dropout layers: none
 - epochs: 50

Model Summary

```
## _____
## Laver (type)
              Output Shape
## dense_11 (Dense)
            (None, 64)
            (None, 32)
## dense_12 (Dense)
           (None, 16)
## dense 13 (Dense)
## ______
## dense_14 (Dense)
           (None. 1)
## -----
## Total params: 3,777
## Trainable params: 3,777
## Non-trainable params: 0
## ______
```

Model Loss

- Over-fitting reduced
- Train loss is now converging much later, around 30 epochs

Adding Dropout Layers

- Rather than reducing the model size, add a dropout layer between each hidden layer
- Use the following hyper-parameters:

• batch size: 512

• number of hidden layers: 3

• size of hidden layers: 64, 32, 16

• dropout layers: 3 (rate: 0.25)

• epochs: 50

Model Summary

```
## Layer (type)
          Output Shape
                       Param #
## dense 15 (Dense) (None, 64)
                        1152
 _____
## dropout_1 (Dropout) (None, 64)
## ______
## dense 16 (Dense) (None, 32)
                         2080
## ______
## dropout_2 (Dropout) (None, 32)
 _____
## dense 17 (Dense)
          (None, 16)
                         528
## ______
## dropout_3 (Dropout) (None, 16)
## ______
## dense 18 (Dense) (None, 1)
## -----
## Total params: 3,777
## Trainable params: 3,777
## Non-trainable params: 0
 -----
```

Model Loss

- Train and validation loss are nearly the same
- The model begins to converge around 30 epochs

Results

- Train the last model again, but only for 30 epochs:
 - batch size: 512
 - number of hidden layers: 3
 - size of hidden layers: 64, 32, 16
 - dropout layers: 3 (rate: 0.25)
 - epochs: 30
- Evaluate the model on the test set
 - *mae* = 0.969
 - $R^2 = 0.895$

Section 6

Feature Engineering

Feature Engineering

- Increase model performance with feature engineering
- Log is a common transformation in astrophysics
- Use the log of diameter as the new target
- Add log transforms for all numeric predictors

Correlation

- Top 10 predictor correlation coefficients with the log of the diameter
- Correlation in the data has increased significantly

feature	correlatio
diameter	1.000000
log(H)	0.835468
Н	0.832306
log(a)	0.563592
log(per y)	0.563592
log(q)	0.543708
log(moid)	0.528661
q	0.522391
moid	0.521080
data arc	0.519099
n obs used	0.509806

Previous Model

- Train the model using the tuned hyper-parameters from the previous model:
 - batch size: 512
 - number of hidden layers: 3
 - size of hidden layers: 64, 32, 16
 - dropout layers: 3 (rate: 0.25)
 - epochs: 30

Model Loss

• The model converges within the first couple of epochs

Simpler Model

- Use a more basic model
- Reduce the model complexity
- Use the following hyper-parameters:
 - batch size: 64
 - number of hidden layers: 2
 - size of hidden layers: 16, 8
 - dropout layers: none
 - epochs: 10

Model Summary

```
_____
## Layer (type)
             Output Shape
(None, 16)
## dense 19 (Dense)
## ______
## dense_20 (Dense)
            (None, 8)
                       136
## ______
## dense 21 (Dense) (None, 1)
## Total params: 641
## Trainable params: 641
## Non-trainable params: 0
```

Model Loss

• The loss in converging extremely fast, even with such a small model

Results

- Train the last model again, but only with 4 epochs:
 - batch size: 64
 - number of hidden layers: 3
 - size of hidden layers: 64, 32, 16
 - dropout layers: 3 (rate: 0.25)
 - epochs: 4
- Evaluate the model on the test set:
 - *mae* = 0.078
 - $R^2 = 0.967$

Section 7

Conclusion

Conclusion

- Developed a deep neural network to predict asteroid diameter
- Used hold-out validation
- Tuned the hyper-parameters to generalize the data
- Evaluated the model on the test set and got $R^2 = 0.895$
- Engineered features to enhance model performance
- Developed a much more simple model
- Evaluated the model on the test set and got $R^2 = 0.967$

Deep Learing 41 / 41