# Lab-2 Analog Circuits

## **Diodes: Experiment List**

In this session you will perform Diode based practical using components and equipments mentioned below. Based on the class lecture and 1<sup>st</sup> lab, perform the following exercises. Discuss with your group mates. If you have any difficulty, you may consult TAs.

### **Components required:**

- 1. 1N4007 Diode
- 2. LED (3mm and 5 mm)
- 3. Zener Diode 7.5 V
- 4. Electrolytic Capacitor 22 μF / 50 V
- 5. Resistor 1K  $\Omega$ , 3.3K  $\Omega$ , 5.6K  $\Omega$ , 7.5K  $\Omega$  and 10K  $\Omega$

#### **Equipments required:**

- 1. Function generator
- 2. Oscilloscope
- 3. Multimeter
- 4. DC power supply

#### First, test the diode (forward bias and reverse bias) using digital multimeter.

#### Plot the waveform for all the below exercises.

- 1. Perform diode I-V characteristics.
  - a) Design the circuit parameters to simulate for diode I-V characteristics, forward and reverse bias characteristics ( $R = 10K \Omega$ ).
  - b) Calculate diode's dynamic resistance.
  - c) How much reverse current is there, at -5 V?



Circuit to display I-V diagram of diode

- 2. Use a function generator and a diode to build a half-wave rectifier circuit with a 60 Hz, 10 V peak-to-peak input signal,  $R = 1K \Omega$ .
- a) Monitor the voltage across the resistor with the oscilloscope.
- b) Explain how the AC signal from the function generator is "rectified" by the diode.
- c) Now put a low pass filter on the output of your circuit by adding a capacitor, as shown in figure. This converts your AC signal to a DC voltage with some "ripple"
- d) Measure the maximum and the mean value of the voltage, and the peak-to-peak amplitude of the ripple at a frequency of 60 Hz for different values of resistor. (You can use 2 to 3 different values from 3.3K  $\Omega$ , 5.6K  $\Omega$ , 7.5K  $\Omega$  and 10K  $\Omega$  and compare the results).



Half wave rectifier

3. Measure the I-V curve of a standard LED to show that it is a diode. What is the highest forward voltage applied for which LED remains dark? What is the lowest voltage at which you see some light from LED? (You can use either 3 mm or 5 mm LED and compare the results with other groups).



Circuit to display I-V diagram of LED

4. Show how a Zener can be used to keep a circuit safe from big voltage swings. Describe the waveform that you see across the Zener.



Zener regulator