5.355 smooth

DESCRIPTION	LINKS	GRAPH	AUTOMATON
-------------	-------	-------	-----------

Origin Derived from change.

Constraint smooth(NCHANGE, TOLERANCE, VARIABLES)

Arguments NCHANGE : dvar TOLERANCE : int

VARIABLES : collection(var-dvar)

Restrictions $NCHANGE \ge 0$

 ${\tt NCHANGE} < |{\tt VARIABLES}|$

 $\mathtt{TOLERANCE} \geq 0$

required(VARIABLES, var)

Purpose

NCHANGE is the number of times that |X-Y| > TOLERANCE holds; X and Y correspond to consecutive variables of the collection VARIABLES.

Example

```
(1,2,\langle 1,3,4,5,2\rangle)
```

In the example we have one change between values 5 and 2 since the difference in absolute value is greater than the tolerance (i.e., |5-2| > 2). Consequently the NCHANGE argument is fixed to 1 and the smooth constraint holds.

Typical

```
\begin{aligned} & \texttt{TOLERANCE} > 0 \\ & | \texttt{VARIABLES} | > 3 \\ & \texttt{range}(\texttt{VARIABLES.var}) > 1 \end{aligned}
```

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

- Functional dependency: NCHANGE determined by TOLERANCE and VARIABLES.
- Prefix-contractible wrt. VARIABLES when NCHANGE = 0.
- Suffix-contractible wrt. VARIABLES when NCHANGE = 0.
- Prefix-contractible wrt. VARIABLES when NCHANGE = |VARIABLES| 1.
- Suffix-contractible wrt. VARIABLES when NCHANGE = |VARIABLES| 1.

Usage

This constraint is useful for the following problems:

Assume that VARIABLES corresponds to the number of people that work on consecutive weeks. One may not normally increase or decrease too drastically the number of people from one week to the next week. With the smooth constraint you can state a limit on the number of drastic changes.

20000128 2107

Assume you have to produce a set of orders, each order having a specific attribute.
You want to generate the orders in such a way that there is not a too big difference
between the values of the attributes of two consecutive orders. If you cannot achieve
this on two given specific orders, this would imply a set-up or a cost. Again, with the
smooth constraint, you can control this kind of drastic changes.

Algorithm

A first incomplete algorithm is described in [30]. The sketch of a filtering algorithm for the conjunction of the smooth and the stretch constraints based on dynamic programming achieving arc-consistency is mentioned by Lars Hellsten in [208, page 60].

Reformulation

The smooth constraint can be reformulated with the seq_bin constraint [310] that we now introduce. Given N a domain variable, X a sequence of domain variables, and C and B two binary constraints, seq_bin(N, X, C, B) holds if (1) N is equal to the number of C-stretches in the sequence X, and (2) B holds on any pair of consecutive variables in X. A C-stretch is a generalisation of the notion of stretch introduced by G. Pesant [305], where the equality constraint is made explicit by replacing it by a binary constraint C, i.e., a C-stretch is a maximal length subsequence of X for which the binary constraint C is satisfied on consecutive variables. smooth(NCHANGE, VARIABLES, TOLERANCE) can be reformulated as N = N1 - 1 \wedge seq_bin(N1, X, $|x_i - x_{i+1}| \leq TOLERANCE$, true), where true is the universal constraint.

See also

common keyword: change (number of changes in a sequence with respect to a binary constraint).

related: distance.

Keywords

characteristic of a constraint: automaton, automaton with counters, non-deterministic automaton, non-deterministic automaton.

constraint arguments: pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2),

Berge-acyclic constraint network.

constraint type: timetabling constraint.

filtering: glue matrix, dynamic programming.

modelling: number of changes, functional dependency.

modelling exercises: n-Amazons.

puzzles: n-Amazons.

Arc input(s)	VARIABLES	
Arc generator	$PATH \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$	
Arc arity	2	
Arc constraint(s)	${\tt abs(variables1.var-variables2.var)} > {\tt TOLERANCE}$	
Graph property(ies)	NARC= NCHANGE	

Graph model

Parts (A) and (B) of Figure 5.693 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the unique arc of the final graph is stressed in bold.

Figure 5.693: Initial and final graph of the smooth constraint

20000128 2109

Automaton

Figure 5.694 depicts a first automaton that only accepts all the solutions to the smooth constraint. This automaton uses a counter in order to record the number of satisfied constraints of the form $(|VAR_i - VAR_{i+1}|) > TOLERANCE$ already encountered. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a 0-1 signature variable S_i . The following signature constraint links VAR_i , VAR_{i+1} and S_i : $(|VAR_i - VAR_{i+1}|) > TOLERANCE \Leftrightarrow S_i = 1$.

Figure 5.694: Automaton (with one counter) of the smooth constraint and its glue matrix

Figure 5.695: Hypergraph of the reformulation corresponding to the automaton (with one counter) of the smooth constraint

Since the reformulation associated with the previous automaton is not Berge-acyclic, we now describe a second counter free automaton that also only accepts all the solutions to the smooth constraint. Without loss of generality, assume that the collection of variables VARIABLES contains at least two variables (i.e., $|VARIABLES| \ge 2$). Let n, min, max, and $\mathcal D$ respectively denote the number of variables of the collection VARIABLES, the smallest value that can be assigned to the variables of VARIABLES, and the union of the domains of the variables of VARIABLES. Clearly, the maximum number of changes (i.e., the number of times the constraint $(|VAR_i - VAR_{i+1}|) > TOLERANCE$ $(1 \le i < n)$ holds) cannot exceed the quantity $m = \min(n-1, \overline{NCHANGE})$. The $(m+1) \cdot |\mathcal D| + 2$ states of the automaton that only accepts all the solutions to the smooth constraint are defined in the following way:

- We have an initial state labelled by s_I .
- We have $m \cdot |\mathcal{D}|$ intermediate states labelled by s_{ij} $(i \in \mathcal{D}, j \in [0, m])$. The first subscript i of state s_{ij} corresponds to the value currently encountered. The second

subscript j denotes the number of already encountered satisfied constraints of the form $(|VAR_k - VAR_{k+1}|) > TOLERANCE$ from the initial state s_I to the state s_{ij} .

• We have an accepting state labelled by s_F .

Four classes of transitions are respectively defined in the following way:

- 1. There is a transition, labelled by i from the initial state s_I to the state s_{i0} , $(i \in \mathcal{D})$.
- 2. There is a transition, labelled by j, from every state s_{ij} , $(i \in \mathcal{D}, j \in [0, m])$, to the accepting state s_F .
- 3. $\forall i \in \mathcal{D}, \ \forall j \in [0, m], \ \forall k \in \mathcal{D} \cap [\max(\min, i \texttt{TOLERANCE}), \min(\max, i + \texttt{TOLERANCE})]$ there is a transition labelled by k from s_{ij} to s_{kj} (i.e., the counter j does not change for values k that are too closed from value i).
- 4. $\forall i \in \mathcal{D}, \ \forall j \in [0, m-1], \ \forall k \in \mathcal{D} \setminus [\max(\min, i \texttt{TOLERANCE}), \min(\max, i + \texttt{TOLERANCE})]$ there is a transition labelled by k from s_{ij} to s_{kj+1} (i.e., the counter j is incremented by +1 for values k that are too far from i).

We have $|\mathcal{D}|$ transitions of type 1, $|\mathcal{D}| \cdot (m+1)$ transitions of type 2, and at least $|\mathcal{D}|^2 \cdot m$ transitions of types 3 and 4. Since the maximum value of m is equal to n-1, in the worst case we have at least $|\mathcal{D}|^2 \cdot (n-1)$ transitions. This leads to a worst case time complexity of $O(|\mathcal{D}|^2 \cdot n^2)$ if we use Pesant's algorithm for filtering the regular constraint [306].

Figure 5.696 depicts the corresponding counter free non deterministic automaton associated with the smooth constraint under the hypothesis that (1) all variables of VARIABLES are assigned a value in $\{0,1,2,3\}$, (2) |VARIABLES| is equal to 4, and (3) TOLERANCE is equal to 1.

20000128 2111

The sequence of variables $\mathtt{VAR}_1~\mathtt{VAR}_2~\mathtt{VAR}_3~\mathtt{VAR}_4$ NCHANGE is passed to the automaton

Figure 5.696: Counter free non deterministic automaton of the smooth(NCHANGE, $1, \langle \text{VAR}_1, \text{VAR}_2, \text{VAR}_3, \text{VAR}_4 \rangle)$ constraint assuming $\text{VAR}_i \in [0,3]$ $(1 \leq i \leq 3)$, with initial state s_I and accepting state s_F