CENG 384 - Signals and Systems for Computer Engineers Spring 2024 Homework 3

Boloğur, Baran e2521292@ceng.metu.edu.tr Doğan, Alkım e2521482@ceng.metu.edu.tr

April 30, 2024

1. w_0 is $\frac{2\pi}{T} = \frac{\pi}{2}$. Using synthesis equation, we can write the x(t) as the following:

$$x(t) = \sum_{k = -\infty}^{\infty} e^{jk\frac{\pi}{2}t} - 2\sum_{-\infty}^{\infty} e^{j2k\frac{\pi}{2}t}$$

$$x(t) = \sum_{k=-\infty}^{\infty} e^{jk\frac{\pi}{2}t} - 2\sum_{-\infty}^{\infty} e^{jk\pi t}$$

For the first term, which is $\sum_{k=-\infty}^{\infty} e^{jk\frac{\pi}{2}t}$, all a_k 's are 1. This means this part represents an impulse train with all constants are 1. From the look-up table, we already know the fact that the coefficients of an impulse train is $\frac{1}{T}$ where T represents period. In our case $a_k = \frac{1}{T} = \frac{1}{4}$. To make it equal to one, we must multiple it by 4. Therefore, the first part becomes $\sum_{k=-\infty}^{\infty} 4\delta(t-4k)$.

As of the second term, which is $\sum_{-\infty}^{\infty} e^{jk\pi t}$. Again for this term all a_K 's are 1. However, this time period becomes 2 since $w_0 = \frac{2\pi}{T} = \pi$. Therefore, this time we have $a_k = \frac{1}{T} = \frac{1}{2}$. To make it equal to 1, we must multiply the term by 2. Therefore, the second term becomes (without the -2 coefficients in the above equation), $\sum_{k=-\infty}^{\infty} 2\delta(t-2k)$

Hence, the equation becomes

$$x(t) = \sum_{k=-\infty}^{\infty} 4\delta(t - 4K) - 2\sum_{k=-\infty}^{\infty} 2\delta(t - 2k)$$

$$x(t) = 4\sum_{k=-\infty}^{\infty} \delta(t - 4K) - 4\sum_{k=-\infty}^{\infty} \delta(t - 2k)$$

$$x(t) = 4\sum_{k=-\infty}^{\infty} \delta(t - 4K) - \delta(t - 2k)$$

$$x(t) = -4\sum_{k=-\infty}^{\infty} \delta(t - 4K + 2)$$

Finally, the result is shifted impulse train $x(t) = -4 \sum_{k=-\infty}^{\infty} \delta(t - 4K + 2)$

2. (a) The formula for a_k is $\frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt$. We basically put x(t) into the equation. We get the following. Period is T=4.

$$a_k = \frac{1}{4} \int_0^2 2t e^{-jkw_0 t} + \frac{1}{4} \int_2^4 (4-t)e^{-jkw_0 t} dt$$

Lets say $jkw_0 = m$ for the sake of easiness.

$$a_k = \frac{1}{4} \int_0^2 2te^{-mt} + \frac{1}{4} \int_2^4 (4-t)e^{-mt} dt$$

This integral requires integration by part. We apply it.

$$a_k = \frac{1}{4} \left[\int_0^2 2t e^{-mt} dt + \int_2^4 (4-t) e^{-mt} dt \right] dt$$

$$a_k = \frac{1}{4} \left[\frac{2t}{-m} e^{-mt} \Big|_0^2 - \frac{1}{-m} \int_0^2 2e^{-mt} dt + \int_2^4 4e^{-mt} dt - \frac{t}{-m} e^{-mt} \Big|_2^4 + \frac{1}{-m} \int_2^4 e^{-mt} dt \right]$$

$$a_k = \frac{1}{4} \left[\frac{4}{-m} e^{-2m} - \frac{2}{m} \frac{e^{-mt}}{m} \Big|_0^2 + 4 \frac{e^{-mt}}{-m} \Big|_2^4 + \frac{2e^{-2m}}{-m} - \frac{4e^{-4m}}{-m} + \frac{1}{m} \frac{e^{-mt}}{m} \Big|_2^4 \right]$$

$$a_k = \frac{1}{4} \left[\frac{-4}{m} e^{-2m} - 2 \frac{e^{-2m}}{m^2} + \frac{2}{m^2} - 4 \frac{e^{-4m}}{m} + 4 \frac{e^{-2m}}{m} + 4 \frac{e^{-4m}}{m} - 2 \frac{e^{-2m}}{m} + \frac{e^{-4m}}{m^2} - \frac{e^{-2m}}{m^2} \right]$$

$$a_k = \frac{1}{4} \left[-2 \frac{e^{-2m}}{m^2} + \frac{2}{m^2} - 2 \frac{e^{-2m}}{m} + \frac{e^{-4m}}{m^2} - \frac{e^{-2m}}{m^2} \right]$$

We replace m by jw_0k . We can also replace w_0 by $\frac{2\pi}{4} = \frac{\pi}{2}$. So, we can replace it by $j\frac{\pi}{2}k$

$$a_k = \frac{1}{4} \left[-2\frac{e^{-j\pi k}}{m^2} + \frac{2}{m^2} - 2\frac{e^{-j\pi k}}{m} + \frac{e^{-2-j\pi k}}{m^2} - \frac{e^{-j\pi k}}{m^2} \right]$$

$$a_k = \frac{1}{4} \left[-2\frac{e^{-j\pi k}}{m^2} + \frac{2}{m^2} - 2\frac{e^{-j\pi k}}{m} + \frac{1}{m^2} - \frac{e^{-j\pi k}}{m^2} \right]$$

$$a_k = \frac{1}{4} \left[-3\frac{e^{-j\pi k}}{m^2} + \frac{3}{m^2} - 2\frac{e^{-j\pi k}}{m} \right]$$

Again using $m = j\frac{\pi}{2}k$.

$$a_k = \frac{1}{2j\pi k} \left[-6 \frac{e^{-j\pi k}}{j\pi k} + \frac{6}{j\pi k} - 2e^{-j\pi k} \right]$$

(b) Derivative property says

$$y(t) = x'(t)$$

$$x(t) \Leftrightarrow a_k$$

$$y(t) \Leftrightarrow b_k$$

$$b_k = jkw_0 a_k$$

$$b_k = jk \frac{\pi}{2} \frac{1}{2j\pi k} \left[-6\frac{e^{-j\pi k}}{j\pi k} + \frac{6}{j\pi k} - 2e^{-j\pi k} \right]$$

$$b_k = \frac{1}{4} \left[-6\frac{e^{-j\pi k}}{j\pi k} + \frac{6}{j\pi k} - 2e^{-j\pi k} \right]$$

3. (a) First, note that both x_1 and x_2 has period 4, means $w_0 = \frac{\pi}{2}$.

Let's find the spectral coefficients of x_1 $a_k = \frac{1}{4} \sum_{\leq 4 >} cos(\frac{\pi}{2}n) e^{-jk\frac{\pi}{2}n}$

Let's choose n from 0 to 3. $cos(\frac{\pi}{2})$ and $cos(\frac{3\pi}{2})$ are equal to 0. Then;

$$a_k = \frac{1}{4}[\cos(0)e^0 + \cos(\pi)e^{-jk\pi}] = \frac{1}{4}[1 - (-1)^{-k}]$$

We find that, spectral coefficients of x_0 are: $a_0 = 0$, $a_1 = \frac{1}{2}$, $a_2 = 0$, $a_3 = \frac{1}{2}$

Using the same method we can find that spectral coefficients of x_1 are:

$$b_k = \frac{1}{4} \left[\sin(\frac{\pi}{2}) e^{-jk\frac{\pi}{2}} + \sin(3\frac{\pi}{2}) e^{-jk3\frac{\pi}{2}} \right] = \frac{1}{4} \left[(-1)^{-\frac{k}{2}} - (-1)^{-\frac{3k}{2}} \right]$$

We find that, spectral coefficients of x_1 are: $b_0 = 0$, $b_1 = -\frac{j}{2}$, $b_2 = 0$, $b_3 = \frac{j}{2}$

Using the same method we can find that spectral coefficients of x_3 are:

$$c_k = \frac{1}{4} \sum_{\leq 4 >} \cos(\frac{\pi}{2}n) \sin(\frac{\pi}{2}n) e^{-jk\frac{\pi}{2}n}$$

Clearly the right hand side is equal to 0 for all integer n values so all spectral coefficients of x_2 are equal to 0. $c_0 = 0$, $c_1 = 0$, $c_2 = 0$, $c_3 = 0$

(b) Using the multiplication property we know that:

$$c_k = \sum_{l=<4>} a_l b_{k-l}$$

$$c_k = a_0 * b_k + a_1 * b_{k-1} + a_2 * b_{k-2} + a_3 * b_{k-3} = \frac{1}{2} [b_{k-1} + b_{k-3}]$$

Clearly this is equal to 0 for all k values since $\frac{j}{2} + (-\frac{j}{2}) = 0 + 0 = 0$

Using multiplication property, we easily found the same result we found in part(a).

4. Note that x[n] has period 24 and, means $w_0 = \frac{\pi}{12}$.

$$a_k = \cos(k\frac{\pi}{3}) + \cos(k\frac{\pi}{4}) = \frac{1}{2}[e^{jk\frac{\pi}{3}} + e^{-jk\frac{\pi}{3}} + e^{jk\frac{\pi}{4}} + e^{-jk\frac{\pi}{4}}] = \frac{1}{24}\Sigma_{<24>}x[n]e^{-jk\frac{\pi}{12}n}$$

$$12[e^{jk\frac{\pi}{3}} + e^{-jk\frac{\pi}{3}} + e^{jk\frac{\pi}{4}} + e^{-jk\frac{\pi}{4}}] = \sum_{\leq 24 > } x[n]e^{-jk\frac{\pi}{12}n}$$

.

For the first term, $12e^{jk\frac{\pi}{3}}$, n=-4 in the summation. Therefore, x[-4]=12.

For the second term, $12e^{-jk\frac{\pi}{3}}$, n=4 in the summation. Therefore, x[4]=12.

For the second term, $12e^{jk\frac{\pi}{4}}$, n=-3 in the summation. Therefore, x[-3]=12.

For the second term, $12e^{-jk\frac{\pi}{4}}$, n=3 in the summation. Therefore, x[3]=12.

x[-4] = x[4] = x[-3] = x[3] = 12 and all other x[n] = 0 within the range [-4, 19] with respect to Period N = 24. This means $x[n] = x[n \pm 24]$

5. (a) $2\pi m = \frac{6\pi N}{13}$ Where m are N integers. Giving m = 3, we get N = 13. So, the fundamental period of the formula is

(b)
$$x[n] = \sum_{<13>} a_k e^{-jk\frac{2\pi}{13}n}$$

$$sin(\frac{6\pi}{13}n + \frac{\pi}{2}) = \frac{1}{2j} \left[e^{j(\frac{6\pi}{13}n + \frac{\pi}{2})} - e^{-j(\frac{6\pi}{13}n + \frac{\pi}{2})} \right] = \sum_{<13>} a_k e^{-jk\frac{2\pi}{13}n}$$

$$e^{j(\frac{6\pi}{13}n)} * \left(\frac{e^{\frac{j\pi}{2}}}{2j} \right) + e^{-j(\frac{6\pi}{13}n)} * \left(-\frac{e^{-\frac{j\pi}{2}}}{2j} \right) = \sum_{<13>} a_k e^{-jk\frac{2\pi}{13}n}$$

There are two terms that are non-zero. The first term is $\frac{1}{2j}e^{j\frac{\pi}{2}}$. This corresponds to the term where k=-3. The other term is $\frac{-1}{2j}e^{-j\frac{\pi}{2}}$. This corresponds to the term where k=3.

These values contains both real and imaginary part. The first value is $\frac{1}{2j}e^{j\frac{\pi}{2}}$. We know $e^{j\frac{\pi}{2}}=j$. So, the overall term is $\frac{1}{2}$.

These values contains both real and imaginary part. The first value is $\frac{1}{2j}e^{-j\frac{\pi}{2}}$. We know $e^{-j\frac{\pi}{2}}=-j$. So, the overall term is $\frac{1}{2}$. Below, there are plots for both magnitude and phase.

Figure 1: Magnitude plot of spectral coefficients.

Figure 2: Angle plot of the coefficients

6. (a) First, we know the Fourier transform of h(t) (impulse response) is equal to H(jw). Since we know the formula of H(jw), we can find h(t) from the look up table.

The look up table says

$$e^{-at}u(t) \Leftrightarrow \frac{1}{a+jw}$$

In our case, $H(jw) = \frac{1}{4jw+3} = \frac{1}{4(jw+3/4)} = \frac{1}{4} \left[\frac{1}{jw+3/4} \right]$.

From the look up table equation and linearity property of Fourier Transformation, we can infer $h(t) = \frac{1}{4}e^{-3/4t}u(t)$ $h(t) = \frac{1}{4}e^{-3/4t}u(t)$ is the result. (b) Let's find the Y(jw) first. Using the look up table;

```
\begin{split} Y(jw) &= \frac{1}{jw+5} - \frac{1}{jw+10} \\ \text{We also know that } H(jw) &= \frac{Y(jw)}{X(jw)}, \text{ means } X(jw) = \frac{Y(jw)}{H(jw)} \\ X(jw) &= \frac{4jw+3}{jw+5} - \frac{4jw+3}{jw+10} = (4 - \frac{17}{jw+5}) - (4 - \frac{37}{jw+10}) = \frac{37}{jw+10} - \frac{17}{jw+5} \end{split}
```

Again, using look up table we can simply find that $x(t) = (37e^{-10t} - 17e^{-5t})u(t)$

```
Listing 1: Python
7. import numpy as np
       import matplotlib.pyplot as plt
       \mathbf{def} \ \mathbf{x(t)}:
                    return (\text{np.cos}(\text{np.pi} / 3 * t) + 2*\text{np.cos}(\text{np.pi} * t + \text{np.pi}/2))
       t = np.linspace(0, 6, 6000)
       def a(k):
                    return 1/6 * \text{np.trapz}(\mathbf{x}(t) * \text{np.exp}(-1j * k * \text{np.pi} / 3 * t), t)
       x_axis = [i \text{ for } i \text{ in } range(-20,21)]
       y_axis = []
       for i in x_axis:
                    y_axis.append(a(i))
       y_axis_mag = []
       y_axis_phase = []
       for i in y_axis:
                   mag = np.sqrt(i.real**2 + i.imag**2)
                    if round(mag,3) == 0:
                                y_axis_phase.append(0)
                    else:
                                 phas = np.arctan(i.imag / i.real
                                 y_axis_phase.append(phas / np.pi)
                    y_axis_mag.append(mag)
       print ("The period is 6, w_0 is pi/3")
       \mathbf{print} ("The `Fourier `series `representation `is `-j `**e `^{-j}*pi*t \} `+` 0.5 `**e `^{-j}*pi*t '/`3 \} `+` 0.5 `*e `^{-j}*pi*t '/`3 Pi*t '
      \# -3 \implies -j, -1 \implies 0.5, 1 \implies 0.5, 3 \implies j
      x1 = x_axis
      y1 = y_axis_mag
      x2 = x_axis
      y2 = y_axis_phase
       fig = plt.figure(figsize = (12, 5))
       plt.subplot(1, 2, 1)
       plt.\,plot\,(x1\,,\ y1\,,\ marker='o'\,,\ color='r'\,,\ linestyle=''\,,\ label='Plot-1'')\quad\#\ \textit{Customizing}\ linestyle=''
       plt.xlabel('X-axis')
       plt.ylabel('Y-axis')
       plt.title('Magnitude-')
       plt.grid(True)
       plt.legend()
```

```
plt.subplot(1, 2, 2)
plt.plot(x2, y2, marker='s', color='b', linestyle='', label='Plot-2') # Customizing line
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Phase')
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()
```


Figure 3: The plotting of the magnitude and phase of the Fourier series coefficients

Below is the standard output of the code above.

```
The period is 6, w_0 is pi/3 The Fourier series representation is -j * e ^{-j*pi*t} + 0.5 * e ^{-j*pi*t / 3} + 0.5 *e ^{j*pi*t/3} + j * e^{j*pi*t}
```