Practical 2

Aim: Write a VHDL code to implement 3x8 decoder using behavioral modelling

```
Code:
                                                  case(i) is
library IEEE;
                                                 when "000" => y<="00000001";
use IEEE.STD LOGIC_1164.ALL;
                                                 when "001" => y<="00000010";
                                                 when "010" => y<="00000100";
entity Decoder 3x8 is
                                                 when "011" \Rightarrow y<="00001000";
  Port (i : in STD_LOGIC_VECTOR (2 downto 0); when "100" => y<="00010000";
      y: out STD_LOGIC_VECTOR (7 downto 0))when "101" => y<="00100000";
end Decoder 3x8;
                                                 when "110" \Rightarrow y<="01000000";
                                                  when "111" \Rightarrow y<="10000000";
                                                 when others =>y<="10000000";
architecture Behavioral of Decoder 3x8 is
begin
                                                 end case;
process(i)
                                                 end process;
begin
                                                 end Behavioral;
```

RTL DIAGRAM:

Test bench Code:

library IEEE; i <="001"; use IEEE.STD LOGIC 1164.ALL; wait for 10ns; entity Tb_Decoder_3x8 is -- Port (); i <="010"; end Tb_Decoder_3x8; wait for 10ns; architecture Behavioral of Tb_Decoder_3x8 i <="011"; wait for 10ns; component Decoder_3x8 is Port (i:in STD_LOGIC_VECTOR (2 downto i <="100"; wait for 10ns; y: out STD_LOGIC_VECTOR (7 downto 0)); end component Decoder_3x8; i <="101"; signal i:std_logic_vector(2 downto 0); wait for 10ns; signal y:std_logic_vector(7 downto 0); i <="110"; begin wait for 10ns; x1:Decoder_3x8 port map(i,y); process i <="111"; begin wait; i <="000"; end process; wait for 10ns; end Behavioral;

SIMULATION WAVEFORM:

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1	00	3	4	8	i[0]	y[1]	5.377	3.778	1.599	00	input port clock
Path 2	00	3	4	8	i[0]	y[3]	5.377	3.778	1.599	00	input port clock
Path 3	00	3	4	8	i[0]	y[5]	5.377	3.778	1.599	00	input port clock
4 Path 4	00	3	4	8	i[2]	y[7]	5.377	3.778	1.599	00	input port clock
Path 5	00	3	4	8	i[1]	y[0]	5.351	3.752	1.599	00	input port clock
∿ Path 6	00	3	4	8	i[2]	y[2]	5.351	3.752	1.599	00	input port clock
Path 7	00	3	4	8	i[1]	y[4]	5.351	3.752	1.599	00	input port clock
Path 8	00	3	4	8	i[0]	y[6]	5.351	3.752	1.599	00	input port clock

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %
LUT	4	17600	0.02
10	11	100	11.00

Maximum Combinational Delay: 5.377nSec

<u>Aim</u>: Write a VHDL code to implement 8x3 encoder using structural modelling

Code:

```
y: out STD LOGIC);
library IEEE;
                                                  end component or gate;
use IEEE.STD_LOGIC_1164.ALL;
                                                  signal x: std logic vector(0 to 5);
                                                  begin
entity Encoder 8x3 is
  Port (i: in STD LOGIC VECTOR (7 downto 0);
      y: out STD_LOGIC_VECTOR (2 downto 0))µ1:or_gate port map(i(4),i(5),x(0));
                                                  u2:or_gate port map(i(6),i(7),x(1));
end Encoder 8x3;
                                                  u3:or gate port map(x(0),x(1),y(2));
architecture Behavioral of Encoder 8x3 is
                                                  u5:or gate port map(i(2),i(3),x(2));
                                                  u6:or gate port map(i(6),i(7),x(3));
component or gate
Port (a: in STD LOGIC;
                                                  u7:or gate port map(x(2),x(3),y(1));
                                                  u8:or gate port map(i(1),i(3),x(4));
     b: in STD LOGIC;
                                                  u9:or gate port map(i(5),i(7),x(5));
                                                  u10:or_gate\ port\ map(x(4),x(5),y(0));
```

end Behavioral;

Test bench Code: end component i<="00000100"; library IEEE; wait for 10ns; Encoder 8x3; use i<="00001000"; signal i: IEEE.STD_LOGIC_1164.ALL; STD_LOGIC_VECTOR (7 wait for 10ns; entity Tb_Encoder_8x3 is downto 0); i<="00010000"; -- Port (); signal y: wait for 10ns; end Tb_Encoder_8x3; STD_LOGIC_VECTOR (2 i<="00100000"; wait for 10ns; downto 0); architecture Behavioral of i<="01000000"; begin Tb Encoder 8x3 is x:Encoder_8x3 port wait for 10ns; component Encoder_8x3 map(i,y); i<="10000000"; is process wait; Port (i:in begin end process; STD_LOGIC_VECTOR (7 downto 0); i<="0000001"; end Behavioral; y:out wait for 10ns; STD_LOGIC_VECTOR (2 i<="0000010"; downto 0)); wait for 10ns;

SIMULATION WAVEFORM:

Name	Slack	A1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1		00	3	4	2	i[5]	y[0]	5.351	3.752	1.599	00	input port clock
Path 2		00	3	4	2	i[6]	y[1]	5.351	3.752	1.599	00	input port clock
Path 3		00	3	4	2	i[6]	y[2]	5.351	3.752	1.599	00	input port clock

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %	
LUT	3	17600	0.02	
10	10	100	10.00	

Maximum Combinational Delay: 5.351nSec

Code:

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity Demux1x8 is
Port (i: in STD LOGIC;
y: out STD LOGIC VECTOR (0 to 7);
s: in STD LOGIC VECTOR (2 downto 0));
end Demux1x8;
architecture Behavioral of Demux1x8 is
begin
process(i,s)
begin
case(s) is
when "000" => y(0) \le i;
y(1 \text{ to } 7) \le "0000000";
when "001" => y(1) \le i;
y(0) \le 0';
y(2 to 7)<="000000";
when "010" \Rightarrow y(2)<=i;
y(0 \text{ to } 1) \le 00";
y(3 \text{ to } 7) \le "00000";
when "011" => y(3) <= i;
y(0 \text{ to } 2) \le 000";
y(4 \text{ to } 7) \le "0000";
when "100" => y(4) <= i;
y(0 \text{ to } 3) \le 0000";
y(5 \text{ to } 7) \le 000";
when "101" => y(5) \le i;
y(0 \text{ to } 4) \le "00000";
y(6 \text{ to } 7) \le 00";
when "110" => y(6) <= i;
y(0 \text{ to } 5) \le "000000";
y(7) \le 0';
when "111" => y(7) <= i;
y(0 \text{ to } 6) \le "0000000";
when others => y <= "000000000";
end case;
end process;
end Behavioral;
```

RTL DIAGRAM:


```
Test bench Code:
                                                  wait for 10 ns;
library IEEE;
                                                  s<="010";
use IEEE.STD LOGIC 1164.ALL;
                                                  wait for 10 ns;
entity Tb_Demux1x8 is
                                                  s<="011";
-- Port ();
                                                  wait for 10 ns;
end Tb_Demux1x8;
                                                  s<="100";
architecture Behavioral of Tb_Demux1x8 is
                                                  wait for 10 ns;
component Demux1x8 is
                                                  s<="101";
  Port (i: in STD_LOGIC;
                                                  wait for 10 ns;
     y: out STD_LOGIC_VECTOR (0 to 7);
                                                  s<="110";
     s: in STD_LOGIC_VECTOR (2 downto
                                                  wait for 10 ns;
0));
                                                  s<="111";
end component Demux1x8;
                                                  wait for 50 ns;
signal i : STD_LOGIC;
signal y: STD_LOGIC_VECTOR (0 to 7);
                                                  i<='1';
signal s: STD_LOGIC_VECTOR (2 downto 0);
                                                  s<="000";
begin
                                                  wait for 10 ns;
x1:Demux1x8 port map(i,y,s);
                                                  s<="001";
process
                                                  wait for 10 ns;
begin
                                                  s<="010";
i<='0';
                                                  wait for 10 ns;
s<="000";
                                                  s<="011";
wait for 10 ns;
                                                  wait for 10 ns;
s<="001";
                                                  s<="100";
```

 $\begin{array}{lll} \text{wait for 10 ns;} & \text{s}<="111";\\ \text{s}<="101"; & \text{wait;}\\ \text{wait for 10 ns;} & \text{end process;}\\ \text{s}<="110"; & \text{end Behavioral;}\\ \text{wait for 10 ns;} & \end{array}$

SIMULATION WAVEFORM:

	57.	92			132.000 ns						
#	Name	Value	110 ns	120 ns	130 ns	140 ns	150 ns	160 ns	170 ns	180 ns	190 ns
1	18 i	1									
2	∨ ⁰²⁰ y[0:7]	40	00	80	40	20	10	08	04	02	01
3	18 [0]	0									
4	18 [1]	1									
5	18 [2]	0									
6	18 [3]	0									
7	18 [4]	0									
8	18 [5]	0									
9	18 [6]	0									
10	18 [7]	0									
11	∨ 00 s[2:0]	1	7	0	1	2	3	4	5	6	7
12	18 [2]	0									
13	1 8 [1]	0									
14	18 [0]	1									

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1	00	3	4	8	s[1]	y[0]	5.379	3.780	1.599	00	input port clock
Path 2	00	3	4	8	s[0]	y[3]	5.379	3.780	1.599	00	input port clock
Path 3	00	3	4	8	s[2]	y[4]	5.379	3.780	1.599	00	input port clock
┡ Path 4	00	3	4	8	s[2]	y[7]	5.379	3.780	1.599	00	input port clock
Path 5	00	3	4	8	s[2]	y[1]	5.351	3.752	1.599	.00	input port clock
Path 6	00	3	4	8	s[2]	y[2]	5.351	3.752	1.599	00	input port clock
Path 7	00	3	4	8	i	y[5]	5.351	3.752	1.599	00	input port clock
Path 8	00	3	4	8	s[1]	y[6]	5.351	3.752	1.599	00	input port clock

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %
LUT	4	17600	0.02
10	12	100	12.00

Maximum Combinational Delay: 5.379nSec

Code:

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity Mux 8x1 is
  Port ( i : in STD_LOGIC_VECTOR (0 to 7);
      s: in STD LOGIC VECTOR (2 downto 0);
      y: out STD LOGIC);
end Mux 8x1;
architecture Behavioral of Mux 8x1 is
component or gate is
  Port (a: in STD LOGIC;
      b: in STD LOGIC;
      y: out STD LOGIC);
end component or gate;
component and 4input is
 Port (a1: in STD LOGIC;
      a2: in STD LOGIC;
      a3: in STD LOGIC;
      a4: in STD LOGIC;
      y: out STD LOGIC);
end component and 4input;
component not gate is
  Port (a: in STD LOGIC;
      y: out STD LOGIC);
end component not gate;
signal sb:std logic vector(0 to 2);
signal x:std logic vector(0 to 13);
u0:not gate port map(s(0),sb(0));
u1:not gate port map(s(1),sb(1));
u2:not gate port map(s(2),sb(2));
u3:and 4input port map(sb(0),sb(1),sb(2),i(0),x(0));
u4:and 4input port map(s(0),sb(1),sb(2),i(1),x(1));
u5:and 4input port map(sb(0),s(1),sb(2),i(2),x(2));
u6:and 4input port map(s(0), s(1), sb(2), i(3), x(3));
u7:and_4input port map(sb(0),sb(1),s(2),i(4),x(4));
u8:and 4input port map(s(0),s(1),s(2),i(5),x(5));
u9:and 4input port map(sb(0),s(1),s(2),i(6),x(6));
u10:and 4input port map(s(0), s(1), s(2), i(7), x(7));
u11:or gate port map(x(0),x(1),x(8));
u12:or gate port map(x(2),x(3),x(9));
```

```
u13:or_gate port map(x(4),x(5),x(10));
u14:or_gate port map(x(6),x(7),x(11));
u15:or_gate port map(x(8),x(9),x(12));
u16:or_gate port map(x(10),x(11),x(13));
u17:or_gate port map(x(12),x(13),y);
end Behavioral;
```

RTL DIAGRAM:

Test bench Code:

library IEEE;	wait for 10ns;	s1<="001";
use	s1<="111";	wait for 10ns;
IEEE.STD_LOGIC_1164.ALL;	wait for 50ns;	s1<="010";
entity Tb_Mux_8x1 is		wait for 10ns;
Port ();	i1<="01000000";	s1<="011";
end Tb_Mux_8x1;	s1<="000";	wait for 10ns;
architecture Behavioral of	wait for 10ns;	s1<="100";
Tb_Mux_8x1 is	s1<="001";	wait for 10ns;
component Mux_8x1 is	wait for 10ns;	s1<="101";
Port (i : in	s1<="010";	wait for 10ns;
STD_LOGIC_VECTOR (0 to	wait for 10ns;	s1<="110";
7);	s1<="011";	wait for 10ns;
s : in	wait for 10ns;	s1<="111";
STD_LOGIC_VECTOR (2	s1<="100";	wait for 50ns;
downto 0);	wait for 10ns;	i1<="00001000";
y : out STD_LOGIC);	s1<="101";	s1<="000";
end component Mux_8x1;	wait for 10ns;	wait for 10ns;
signal	s1<="110";	s1<="001";
i1:STD_LOGIC_VECTOR (0	wait for 10ns;	wait for 10ns;
to 7);	s1<="111";	s1<="010";
signal y: std_logic;	wait for 50ns;	wait for 10ns;
signal s1:	·	s1<="011";
std_logic_vector(2 downto	i1<="00100000";	wait for 10ns;
0);	s1<="000";	s1<="100";
begin	wait for 10ns;	wait for 10ns;
u1:Mux_8x1 port	s1<="001";	s1<="101";
map(i1,s1,y);	wait for 10ns;	wait for 10ns;
process	s1<="010";	s1<="110";
begin	wait for 10ns;	wait for 10ns;
i1<="10000000";	s1<="011";	s1<="111";
s1<="000";	wait for 10ns;	wait for 50ns;
wait for 10ns;	s1<="100";	i1<="00000100";
s1<="001";	wait for 10ns;	s1<="000";
wait for 10ns;	s1<="101";	wait for 10ns;
s1<="010";	wait for 10ns;	s1<="001";
wait for 10ns;	s1<="110";	wait for 10ns;
s1<="011";	wait for 10ns;	s1<="010";
wait for 10ns;	s1<="111";	wait for 10ns;
s1<="100";	wait for 50ns;	s1<="011";
wait for 10ns;	,	wait for 10ns;
s1<="101";	i1<="00010000";	s1<="100";
wait for 10ns;	s1<="000";	wait for 10ns;
s1<="110";	wait for 10ns;	s1<="101";
	· · · · · · · · · · · · · ·	,

wait for 10ns; s1<="100"; wait for 10ns; s1<="110"; wait for 10ns; s1<="011"; wait for 10ns; s1<="101"; wait for 10ns; s1<="111"; s1<="100"; wait for 10ns; wait for 50ns; s1<="110"; wait for 10ns; wait for 10ns; s1<="101"; i1<="00000010"; s1<="111"; wait for 10ns; s1<="000"; wait for 50ns; s1<="110"; wait for 10ns; wait for 10ns; s1<="001"; i1<="00000001"; s1<="111"; s1<="000"; wait for 10ns; wait; s1<="010"; wait for 10ns; end process; wait for 10ns; s1<="001"; end Behavioral; s1<="011"; wait for 10ns; wait for 10ns; s1<="010";

SIMULATION WAVEFORM:

Name	Slack ^	1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1	0	0	4	5	1	i[4]	y	5.770	4.171	1.599	00	input port clock

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %
LUT	2	17600	0.01
Ю	12	100	12.00

Maximum Combinational Delay: 5.77nSec