```
In [7]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.cluster import KMeans
```

```
In [8]: IRIS = pd.read_csv("E:/Data Sets/IRIS.csv")
    print(IRIS)
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
			• • •		• • •
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

[150 rows x 5 columns]

In [9]: IRIS.head(20)

Out[9]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa
10	5.4	3.7	1.5	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
12	4.8	3.0	1.4	0.1	Iris-setosa
13	4.3	3.0	1.1	0.1	Iris-setosa
14	5.8	4.0	1.2	0.2	Iris-setosa
15	5.7	4.4	1.5	0.4	Iris-setosa
16	5.4	3.9	1.3	0.4	Iris-setosa
17	5.1	3.5	1.4	0.3	Iris-setosa
18	5.7	3.8	1.7	0.3	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa

Out[10]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

Out[12]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
In [13]: IRIS.describe
Out[13]: <bound method NDFrame.describe of</pre>
                                                   sepal length sepal width petal length petal width species
                        5.1
                                      3.5
                                                     1.4
                                                                  0.2
                                                                              0
          0
                        4.9
                                                     1.4
                                                                  0.2
         1
                                      3.0
                                                                              0
                        4.7
                                      3.2
                                                     1.3
                                                                   0.2
          2
                                                                              0
                                                                  0.2
          3
                        4.6
                                      3.1
                                                     1.5
                                                                              0
                        5.0
                                      3.6
                                                     1.4
                                                                  0.2
          4
                                                                              0
                         . . .
                                      . . .
                                                                   . . .
                                                     . . .
          . .
                                                                            . . .
         145
                        6.7
                                      3.0
                                                     5.2
                                                                   2.3
                                                                              2
         146
                        6.3
                                      2.5
                                                     5.0
                                                                  1.9
                                                                              2
                        6.5
         147
                                      3.0
                                                     5.2
                                                                   2.0
                                                                              2
         148
                        6.2
                                      3.4
                                                     5.4
                                                                  2.3
                                                                              2
         149
                        5.9
                                      3.0
                                                     5.1
                                                                  1.8
                                                                              2
          [150 rows x 5 columns]>
In [14]: IRIS.isna().sum()
Out[14]: sepal length
                          0
          sepal width
                          0
          petal_length
                          0
          petal_width
                          0
          species
                           0
         dtype: int64
```

```
In [16]: from mpl_toolkits.mplot3d import Axes3D
    fig = plt.figure()
    ax = fig.add_subplot(111, projection = '3d')
    ax.scatter(IRIS.petal_length, IRIS.petal_width, IRIS.species)
    ax.set_xlabel('PetalLengthCm')
    ax.set_ylabel('PetalWidthCm')
    ax.set_zlabel('Species')
    plt.title('3D Scatter Plot Example')
    plt.show()
```

3D Scatter Plot Example


```
In [17]: from mpl_toolkits.mplot3d import Axes3D
    fig = plt.figure()
    ax = fig.add_subplot(111, projection = '3d')
    ax.scatter(IRIS.petal_length, IRIS.sepal_width, IRIS.species)
    ax.set_xlabel('SepalLengthCm')
    ax.set_ylabel('SepalWidthCm')
    ax.set_zlabel('Species')
    plt.title('3D Scatter Plot Example')
    plt.show()
```

3D Scatter Plot Example


```
In [18]: sns.scatterplot(data = IRIS, x = "sepal_length", y = "sepal_width", hue = "species")
```

Out[18]: <Axes: xlabel='sepal_length', ylabel='sepal_width'>


```
In [19]: sns.scatterplot(data = IRIS, x = "petal_length", y = "petal_width", hue = "species")
```

Out[19]: <Axes: xlabel='petal_length', ylabel='petal_width'>

- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
 it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)
- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP NUM THREADS=1.

warnings.warn(

- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
 it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super(). check params vs input(X, default n init=10)
- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP NUM THREADS=1.

warnings.warn(

- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
 it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super(). check params vs input(X, default n init=10)
- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP_NUM_THREADS=1.

warnings.warn(

- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
 it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super(). check params vs input(X, default n init=10)
- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP_NUM_THREADS=1.

warnings.warn(

- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
 it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super(). check params vs input(X, default n init=10)
- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP_NUM_THREADS=1.

warnings.warn(

- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
 it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super(). check params vs input(X, default n init=10)
- C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP NUM THREADS=1.

warnings.warn(

C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
super(). check params vs input(X, default n init=10)

C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP NUM THREADS=1.

warnings.warn(

C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
super(). check params vs input(X, default n init=10)

C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_in
it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super(). check params vs input(X, default n init=10)

C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en vironment variable OMP NUM THREADS=1.

warnings.warn(

```
In [22]: plt.xlabel('k_rng')
    plt.ylabel("Sum of Squared errors")
    plt.plot(k_rng, sse)
```

Out[22]: [<matplotlib.lines.Line2D at 0x26dd2d4bdd0>]


```
In [23]: sse
Out[23]: [550.8953333333334,
         86.39021984551397,
         31.37135897435897,
        19.48300089968511,
        13.916908757908757,
        11.088890437134374,
        9.185075914423741,
        7.667019523446295,
         6.709427885981594]
       km = KMeans(n clusters=3,random state=1)
       y predicted = km.fit predict(IRIS[['petal length','petal width']])
       v predicted
       C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n in
       it` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the warning
         super(). check params vs input(X, default n init=10)
       C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a me
       mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en
       vironment variable OMP NUM THREADS=1.
         warnings.warn(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
             2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2,
             2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
```

14/20

Out[28]:

	sepal_length	sepal_width	petal_length	petal_width	species	cluster
0	5.1	3.5	1.4	0.2	0	1
1	4.9	3.0	1.4	0.2	0	1
2	4.7	3.2	1.3	0.2	0	1
3	4.6	3.1	1.5	0.2	0	1
4	5.0	3.6	1.4	0.2	0	1
145	6.7	3.0	5.2	2.3	2	2
146	6.3	2.5	5.0	1.9	2	2
147	6.5	3.0	5.2	2.0	2	2
148	6.2	3.4	5.4	2.3	2	2
149	5.9	3.0	5.1	1.8	2	2

150 rows × 6 columns

```
In [30]: km = KMeans(n clusters = 3, random state = 0)
       v predicted = km.fit predict(IRIS[['petal length','petal width']])
       v predicted
       C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n in
       it` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress the warning
         super(). check params vs input(X, default n init=10)
       C:\Users\USER\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a me
       mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the en
       vironment variable OMP NUM THREADS=1.
         warnings.warn(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
             2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2,
             2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
In [31]: from sklearn.metrics import confusion matrix
       cm = confusion matrix(IRIS.species, IRIS.cluster)
Out[31]: array([[ 0, 50, 0],
             [48, 0, 2],
             [ 4, 0, 46]], dtype=int64)
```

```
In [33]: true labels = IRIS.species
         predicted labels = IRIS.cluster
         cm = confusion matrix(true labels, predicted labels)
         class labels = ['Setosa', 'versicolor', 'virginica']
         #Plot confusion matrix
         plt.imshow(cm, interpolation = 'nearest', cmap = plt.cm.Blues)
         plt.title('Confusion Matrix')
         plt.colorbar()
         tick marks = np.arange(len(class labels))
         plt.xticks(tick marks, class labels)
         plt.yticks(tick marks, class labels)
         #Fill matrix with values
         for i in range(len(class labels)):
             for j in range(len(class labels)):
                 plt.text(j, i, str(cm[i][j]), ha ='center', va ='center', color = 'white')
             plt.xlabel('Predicted label')
             plt.show()
```


In []: