Wyznaczanie stałej siatki dyfrakcyjnej

Student Seweryn Wasilewski

Nr Albumu 160128 Kierunek Inforamtyka

Wydział Wydział Informatyki i Teleinforamtyki

Ćwiczenie 303

Wstęp Teoretyczny

Falowy charakter światła wiąże się z tym, że światło zachowuje się jak fala elektromagnetyczna, co przejawia się w zjawiskach takich jak interferencja, dyfrakcja i polaryzacja. Oznacza to, że światło przenosi energię w postaci drgań pola elektrycznego i magnetycznego, które rozchodzą się w przestrzeni.

Zasada Huyghensa tłumaczy rozchodzenie się fali: każdy punkt na fali działa jak nowe źródło fal kulistych. Suma tych "falelek" tworzy nowy kształt fali i wyjaśnia, jak światło omija przeszkody i tworzy obraz np. na ekranie.

Interferencaja Interferencja to nakładanie się fal prowadzące do wzmocnienia lub osłabienia w zależności od ich fazy:

- **Wzmocnienie** (maksimum) następuje, gdy fale są zgodne w fazie ich różnica drogi jest wielokrotnością długości fali.
- **Osłabienie** (minimum) występuje, gdy fale są w przeciwfazie różnica drogi wynosi niecałkowitą wielokrotność długości fali.

Spójność (koherencja) opisuje zdolność fal do trwałego tworzenia wzoru interferencyjnego. Fale koherentne mają stałą różnicę faz, co umożliwia przewidywalny obraz interferencyjny.

Dyfrakcja na pojedynczej szczelinie Zjawisko to polega na ugięciu fali, które staje się zauważalne, gdy fala przechodzi przez szczelinę w przeszkodzie o rozmiarach zbliżonych do długości fali. Jego istotę ilustruje rysunek (1). Charakterystyka fali po przejściu przez szczelinę zależy od relacji między szerokością szczeliny a długością fali światła.

Obraz dyfrakcyjny na ekranie za szczeliną zazwyczaj składa się z naprzemiennych prążków jasnych i ciemnych, co wynika z nakładania się fal elementarnych emitowanych z różnych części szczeliny. Najaśniejszy punkt, czyli centralne maksimum, znajduje się w przedłużeniu kierunku fal padających (dla kąta $\upsilon=0$). Położenia kolejnych ciemnych prążków, będących minimami dyfrakcyjnymi, określa odpowiedni wzór.

$$a \cdot \sin(v) = m\lambda \tag{1}$$

Maksima oświetlenia pojawiają się mniej więcej w połowie odległości między sąsiednimi minimami, a szerokość maksimum centralnego zależy od położenia pierwszego minimum (m=1). Dla szerokich szczelin ($a >> \lambda$) pierwsze minimum występuje przy małym kącie, co sprawia, że centralne maksimum jest wąskie i odzwierciedla kształt szczeliny. Gdy szerokość szczeliny równa się długości fali, pierwsze minimum pojawia się przy kącie 90°, a centralne maksimum obejmuje całą przestrzeń za szczeliną, dając wrażenie jednorodnego oświetlenia, jeśli ekran nie jest zbyt duży.

Rysunek 1: Przechodzenie światła przez otowry o różnch wielkościach. Źródło: Krzysztof Łapsa, Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Politechniki Poznańskiej, Poznań 2008 str. 175 Rys. 43.1.

Dwie szczeliny Obraz uzyskany na ekranie podczas przechodzenia światła przez dwie szczeliny (rys. 2) powstaje w wyniku jednoczesnego działania dwóch zjawisk: dyfrakcji światła na każdej szczelinie oraz interferencji fal pochodzących z sąsiednich szczelin. Maksima interferencyjne pojawiają się w miejscach, gdzie różnica dróg ΔS jest wielokrotnością długości fali. Z rysunku wynika, że $\Delta S = d \cdot sin(v)$, co pozwala określić położenie maksimów interferencyjnych za pomocą wzoru:

$$d \cdot \sin v = m\lambda, m = 1, 2, 3 \tag{2}$$

Kątowa odległość między prążkami interferencyjnymi zależy od stosunku d, czyli odległości między środkami szczelin. Natężenie tych prążków jest modulowane przez obraz dyfrakcyjny pojedynczej szczeliny i zależy od stosunku a, gdzie a to szerokość szczeliny. Innymi słowy, intensywność prążków interferencyjnych jest kształtowana przez dyfrakcyjną obwiednię. Przy bardzo wąskich szczelinach obraz dyfrakcyjny staje się szeroki, co powoduje, że wszystkie prążki interferencyjne mają zbliżone natężenie, a na ekranie widoczny jest wyłącznie obraz interferencyjny.

Siatka dydfakcyjna konstrukcja składa się z wielu równoległych szczelin, które wzmacniają interferencję:

- Szerokość maksimów głównych maleje wraz ze wzrostem liczby szczelin, co sprawia, że maksimów jest więcej, ale są węższe.
- **Zdolność rozdzielcza siatki**, czyli jej zdolność do rozróżniania blisko położonych długości fal, wzrasta wraz z liczbą szczelin.

Zrzut ekranu 2024-11-17 164839.jpg

Rysunek 2: Dyfrakcja na pojedynczej szczelinie. Źródło: Krzysztof Łapsa, Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Politechniki Poznańskiej, Poznań 2008 str. 175 Rys. 43.2

Rysunek 3: Dyfrakcja na dwóch szczelinach. Źródło: Krzysztof Łapsa, Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Politechniki Poznańskiej, Poznań 2008 str. 175 Rys. 43.3

Stała siatki dyfrakcyjnej d jest odległością między środkami sąsiednich szczelin. W celu wyznaczenia tej stałej zastosowany zostanie wzór:

$$d = \frac{m\lambda}{\sin(\alpha)} \tag{3}$$

, gdzie: m - numer kolejnego prążka od prążka zerowego

 λ - długość fali danego światła

lpha - kąt ugięcia dla m-tego prążka

Spektometr to przyrząd do badania długości fal światła lub widm. Składa się z kolimatora (do równoległego ustawienia wiązki światła), siatki dyfrakcyjnej lub pryzmatu (rozszczepienie światła), oraz lunety (do obserwacji widma).

Noniusz to skala pomocnicza, która umożliwia dokładne odczytywanie kątów w spektrometrze, zwiększając precyzję pomiaru do ułamka stopnia.

Zestaw ćwiczeniowy

- Lampa sodowa
- Stolik spektrometryczny
- Stiaki Dyfrakcyjne (oznaczone A, B, C, D, E)

Wyniki pomiarów

$$\lambda = 589,60[nm]$$
 $v_0 = 0^{\circ}41' = 0,68333^{\circ}$ $\Delta \alpha = 0^{\circ}0'30''$

		Prawo										
	m	1	2	3	4	5	6	7	8	9	10	
_	α	358°0′	356°17′	352°37′	350°25′	347°12′	344° 30′	341°40′	338°48′	336°20′	333°0′	
^	Lewo											
	m	1	2	3	4	5	6	7	8	9	10	
	α	3°19′	6°0′	8°40′	11°20′	14°6′	17°20′	19°40′	22°57′	25°50′	-	

Tabela 1: Pomiary kolejnych prążków dla sitaki dyfrakcyjnej A

	Prawo							
	m	1	2	3				
В	α	354° 25′	347° 12′	340° 14′				
	Lewo							
	m	1	2	3				
	α	7° 55′	14° 46′	21° 50′				

Tabela 2: Pomiary kolejnych prażków dla siatki dyfrakcyjnej B

	Prawo					
	m	1	2			
C	α	347° 21′	332° 23′			
		Lewo)			
	m	1	2			
	α	14° 12′	28° 20′			

Tabela 3: Pomiary kolejnych prążków dla siatki dyfrakcyjnej C

		Prawo)
	m	1	2
D	α	340° 3′	316° 5′
		Lewo)
	m	1	2
	α	21° 17′	45° 19′

Tabela 4: Pomiary kolejnych prążków dla siatki dyfrakcyjnej D

	Prawo				
	m 1		2		
E	α 350° 50′		337° 54′		
-		Lewo)		
	m	1	2		
	α	11° 25′	24° 40′		

Tabela 5: Pomiary kolejnych prążków dla siatki dyfrakcyjnej E

Obliczenia

$$d = \frac{m\lambda}{\sin(\upsilon)}$$

$$\sin(\upsilon) \neq 0 \implies \upsilon \neq 0^{\circ} \land \upsilon \neq 180^{\circ}$$

d - stała siatki dyfrkacyjnej

m - numer kolejnego zmierzonego prążka

 α - kąt zmierzony dla prążka m

 v_0 - kąt prążka zerowego

v - kąt ugięcia dla danego prążka m, czyli kąt między v_0 , a α na spektrometrze wyliczany w sposób jak poniżej:

$$\forall_{x \in (0^{\circ}, 180^{\circ})} \ v = |v_0 - \alpha|$$

 $\forall_{x \in (180^{\circ}, 360^{\circ})} \ v = 360^{\circ} - |v_0 - \alpha|$

	Prawo										
	m	1	2	3	4	5	6	7	8	9	10
	$v[^{\circ}]$	2,68	4,40	8,07	10,27	13,48	16,18	19,02	21,88	24,35	27,68
,	d[nm]	12594,02	15370,37	12605,00	13232,36	12643,54	12692,68	12666,22	12655,15	12869,94	12690,91
^	Lewo										
	m	1	2	3	4	5	6	7	8	9	10
	$v[^{\circ}]$	2,63	5,32	7,98	10,65	13,42	16,65	18,98	22,27	25,15	-
	d[nm]	12832,97	12726,06	12735,71	12761,28	12705,21	12346,59	12687,63	12448,08	12485,95	-

Tabela 6: Obliczenia dla kolejnych prażków dla siatki dyfrakcyjnej A

	Prawo						
	m	1	2	3			
	$ u[^\circ]$	6,27	13,48	20,45			
В	d[nm]	5401,44	5057,42	5062,54			
	Lewo						
	m	1	2	3			
	$ u[^\circ]$	7,23	14,08	21,15			
	d[nm]	4682,69	4846,04	4902,29			

Tabela 7: Obliczenia dla kolejnych prażków dla siatki dyfrakcyjnej B

	Prawo					
	m	m 1				
	$ u[^{\circ}]$	346,67	331,70			
C	d[nm]	2556,63	2487,30			
	Lewo					
	m	1	2			
	$ u[^{\circ}]$	13,52	27,65			
	d[nm]	2522,59	2541,00			

Tabela 8: Obliczenia dla kolejnych prażków dla siatki dyfrakcyjnej C

	Prawo						
	m	1	2				
	$v[^{\circ}]$	20,63	44,60				
D	d[nm]	1673,16	1679,41				
	m	1	2				
	$v[^{\circ}]$	20,63	44,60				
	d[nm]	1673,16	1679,41				

Tabela 9: Obliczenia dla kolejnych prażków dla siatki dyfrakcyjnej D

	Prawo						
	m	1	2				
	$ u[^{\circ}]$	9,85	22,78				
E	d[nm]	3446,56	3045,08				
-							
	m	1	2				
	$ u[^{\circ}]$	10,73	23,98				
	d[nm]	3165,84	2901,07				

Tabela 10: Obliczenia dla kolejnych prażków dla siatki dyfrakcyjnej E

Siatka Dyfrakcyjna	n	X _S	σ	$T_{(n,0.68)}$	$\sigma \cdot T_{(n,0.68)}$	σ_s
А	19	12828,93	653,575	1,027	671,218	68,43
В	6	4992,07	268,70	1,11	298,26	121,76
С	4	2526,88	17,023	1,20	20,43	10,21
D	4	1676,69	1,29	1,20	1,55	0,78
E	4	3139,64	140,36	1,20	168,43	84,26

Tabela 11: Wyliczenia statystyczne, gdzie: n - liczba stopni swobody, x_s - śr. aryt., σ - odch. stand., $T_{(n,0.68)}$ współ. Studneta Fishera na poziomie ufnośći 68% dla n stopni swobody, σ_s - odch. stand. śr. aryt. wyliczane z $\frac{\sigma * T_{(n,0.68)}}{\sqrt{n}}$

Przykład Obliczeń

dla siatki dyfrakcyjnej A, prążka numer 1 na prawo od prążka zerowego.

$$\alpha = 358^{\circ}0'$$

$$m = 1$$

$$\lambda = 589, 60[nm]$$

$$v_0 = 0^{\circ}41'$$

$$v = 360^{\circ} - |358^{\circ} - 0^{\circ}41'| = 2^{\circ}41' \approx 2,68^{\circ}$$

$$d = \frac{m\lambda}{\sin(v)} = \frac{1 \cdot 589,60}{\sin(2,68^{\circ})} = \frac{589,60}{0,046816} \approx 12594,02[nm]$$

Wnioski

Na podstawie przeprowadzonych pomiarów kątów ugięcia kolejnych prążków światła po przejściu przez siatkę dyfrakcyjną oraz wykonanych obliczeń stałej siatki i analizy statystycznej można wyciągnąć następujące wnioski. Wyniki eksperymentu potwierdziły zależność kąta ugięcia od długości fali oraz rzędu widma, zgodnie z równaniem dyfrakcji $d \cdot sin(\alpha) = m\lambda$. Wyznaczone stałe siatki dyfrakcyjnej dla kolejnych prążków były zbliżone, co świadczy o poprawności wykonanych pomiarów i obliczeń. Obliczone odchylenia standardowe wskazały na dobrą powtarzalność

wyników, jednak pewne różnice między wynikami poszczególnych prążków mogą wynikać z niedokładności pomiarowych, takich jak nieidealne ustawienie kątomierza czy błędy odczytu. Eksperyment wykazał, że zastosowanie siatki dyfrakcyjnej jest skuteczne w precyzyjnym badaniu zjawiska dyfrakcji światła oraz wyznaczaniu charakterystycznych parametrów optycznych, takich jak długość fali(gdy znamy stałą siatki dyfrakcyjnej). Można więc uznać poprawność przeprowadzonego badania oraz zastosowanych metod obliczeniowych.

siatka	
dyfrakcyjna	d
Α	$(12828, 93 \pm 68)[nm]$
В	$(4992, 07 \pm 122)[nm]$
С	$(2526, 88 \pm 10)[nm]$
D	$(1676, 69 \pm 0, 78)[nm]$
Е	$(3139, 64 \pm 84)[nm]$

Tabela 12: Wyliczone stałe d badanych siatek dyfrakcyjnych

Bibliografia

- Krzysztof Łapsa, Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Politechniki Poznańskiej, Poznań 2008
- Wikipedia Wolna Encyklopedia, Zasada Huygensa: https://pl.wikipedia.org/wiki/Zasada Huygensa
- Tablica współczynników Studneta Fishera: https://www.ifiz.umk.pl/panel/wp-content/uploads/wspSF5cyf.pdf
- Wikipedia Wolna Encyklopedia, Siatka Dyfrakcyjna: https://pl.wikipedia.org/wiki/Siatka_dyfrakcyjna