Lecture notes: Dynamic model of robots: Lagrangian approach

Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

RBE502, 2017

This lecture is based on

 Chapter 4 of Murray, Richard M., et al. A mathematical introduction to robotic manipulation. CRC press, 1994.

Dynamic model

To analyze robotic systems and control them, need to have

• The relation between **generalized forces** u(t) acting on the robot, and **robot motion**, i.e., configurations q(t) over time

a system of equations: $\Phi(q, \dot{q}, \ddot{q}) = u$.

Direct dynamics

direct relation from input to state.

- Experimentally, given the input trajectory u(t) (torque or force), can **measure the joint variables** with sensors q(t). Note: both u and q can be high-dimensional.
- Simulation: Given a second order model $\Phi(q, \dot{q}, \ddot{q}) = u$, can integrate numerically the differential equations to obtain $\hat{q}(t)$.

If the model is **perfect**, then $q(t) \approx \hat{q}(t)$. In reality, model is not perfect and there can be external noises too: Need closed-loop control.

Euler-Lagrange Method

An energy-based method to construct the dynamic model.

- Symbolic/closed form solutions of dynamic equations.
- Used commonly for control design.

Assumption: rigid body dynamics.

example: rigid robotic arm, bipedal robots.

not applicable for: soft robotics.

Euler-Lagrange Modeling

Generalized coordinates:

$$q = egin{bmatrix} q_1 \ q_2 \ dots \ q_n \end{bmatrix} \in \mathbb{R}^n$$

Generalized input:

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{R}^n$$

Euler-Lagrange Modeling

$$\phi(q,\dot{q},\dot{q}')=U$$

The Lagrangian

$$L(q,\dot{q}) = K(q,\dot{q}) - P(q)$$

- $K(q, \dot{q})$ the total kinetic energy.
- P(q) the potential energy.

Euler-Lagrange equation relates q, \dot{q} with the input u:

$$\phi(\hat{q},\hat{q},\hat{q}) = \frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = u_i. \quad i = 1,\ldots,n.$$

 u_i — generalized forces performing work on q_i .

Based on the principle of virtual work

Euler-Lagrange Modeling

A simple example:

$$L(x,y) = K - P$$

$$= \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - myy.$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = F_{x}.$$

$$\frac{\partial L}{\partial \dot{x}} = m\dot{x} \Rightarrow d_{x}(m\dot{x}) = m\dot{x}$$

- Generalized coordinates: x, y
- Potential energy: $P(x, y) = \sqrt{3}$
- Kinetic energy: $K(x, y) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$

$$\frac{\partial L}{\partial \dot{y}} = m\dot{y}$$
; $\frac{\partial L}{\partial y} = -mg$

$$\frac{\partial L}{\partial \dot{y}} = m\dot{y}$$
; $\frac{\partial L}{\partial \dot{y}} = -mg$ \Rightarrow $m\dot{y} - (-mg) = F_y$
 $m\dot{y} = F_y - mg$

Example: Pendulum

- Generalized coordinates: θ
- Potential energy: $P(x, y) = mg\ell(1 \cos \theta)$.
- Kinetic energy: $K(x, y) = \frac{1}{2}m\ell^2\dot{\theta}^2$.

Example: 2-DOF planner robot

1)
$$K_{T:} = \frac{1}{2} m_1 \|V_1\|^2 + \frac{1}{2} m_2 \|V_2\|^2$$
 $X_1 = Y_1 \cos \theta_1 = Y_1 C_1$
 $Y_1 = Y_1 \sin \theta_1 = Y_1 S_1$
 $X_2 = \frac{1}{6} \cos \theta_1 + T_2 \cos (\theta_1 + \theta_2) = \ell_1 C_1 + T_2 C_{12}$
 $Y_2 = \ell_1 \sin \theta_1 + T_2 \sin (\theta_1 + \theta_2) = \ell_1 S_1 + T_2 S_{12}$
 $V_1 = \begin{bmatrix} \dot{X}_1 \\ \dot{Y}_1 \end{bmatrix} = \begin{bmatrix} -Y_1 S_1 \dot{\theta}_1 \\ Y_1 C_1 \dot{\theta}_1 \end{bmatrix}$
 $V_2 = \frac{1}{6} \cos \theta_1 + \frac{1}{6} \cos \theta_1 = \frac{1}{6} \cos \theta_1 + \frac{1}{6} \cos \theta_1$

- Generalized coordinates: $\ddot{q} = [\theta_1, \theta_2]^{\mathsf{T}}$.
- Potential energy: 0 (moving in horizontal plane).
- Kinetic energy: $K(x,y) = K_T + K_R$ (translational kinetic energy = 129 M(9) 9 and rotational kinetic energy.)

$$k_R = \frac{1}{2}I_0\dot{l}^2 + \frac{1}{2}I_2(\dot{\theta}_1 + \dot{\theta}_3)^2$$
inertia I_i : moment of inertia about the axis
through the COM of link i , parallel
to the $\frac{1}{2}$ -axis
$$L = k - P$$

Summarizing ...

- Kinetic energy: $K(q, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q}$ where M(q) is the inertia matrix of the rigid body.
- Potential energy: P(q).
- Lagrangian: $L = K(q, \dot{q}) P(q)$.
- Euler-Lagrangian Equations:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = u_i. \quad i = 1, \dots, n.$$

where u_i is the generalized force performing work on the q_i -th coordinate.

Summarizing ...

Applying Euler-Lagrangian equation: Note that

$$L(q,\dot{q})=\frac{1}{2}\sum_{ij}m_{ij}(q)\dot{q}_i\dot{q}_j-P(q).$$

$$\frac{\partial L}{\partial \dot{q}_{k}} = \sum_{j} m_{kj}(q) \dot{q}_{j} \Rightarrow \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{k}} = \sum_{j} m_{kj}(\ell) \frac{\partial L}{\partial j} + \sum_{j} \sum_{i} \frac{\partial m_{kj}(\ell)}{\partial l_{i}} \frac{\dot{\ell}_{i}}{\ell} \frac{\dot{\ell}_{j}}{\ell}$$

and

$$\frac{\partial L}{\partial q_k} = \frac{1}{2} \sum_{ii} \frac{\partial m_{ij}(q)}{\partial q_k} \dot{q}_i \dot{q}_j - \frac{\partial P}{\partial q_k}$$

k-th dynamics

$$\sum_{j} m_{kj}(q) \ddot{q}_{j} + \sum_{i,j} (\frac{\partial m_{kj}(q)}{\partial q_{i}} - \frac{1}{2} \frac{\partial m_{ij}(q)}{\partial q_{k}}) \dot{q}_{i} \dot{q}_{j} + \frac{\partial P(q)}{\partial q_{k}} = u_{k}$$

denote $c_{kij}(q) = 1/2(\frac{\partial m_{kj}(q)}{\partial q_i} + \frac{\partial m_{ki}(q)}{\partial q_j} - \frac{\partial m_{ij}(q)}{\partial q_k})$, note $c_{kij}(q) = c_{kji}(q)$, called called the **Christoffel** symbols corresponding to the inertia matrix.

Finally,

$$\sum_{j} m_{kj}(q) \ddot{q}_{j} + \sum_{i,j} c_{kij}(q) \dot{q}_{i} \dot{q}_{j} + \frac{\partial P(q)}{\partial q_{k}} = u_{k}$$

Summarizing...

$$\sum_{j} m_{kj}(q) \ddot{q}_{j} + \sum_{i,j} c_{kij}(q) \dot{q}_{i} \dot{q}_{j} + \frac{\partial P(q)}{\partial q_{k}} = u_{k}$$

- $m_{kj}(q)$ inertia at joint k when joint j accelerates.
- c_{kij}(q) coefficient of Coriolis force at joint k when both joint i and joint j are moving.

Summarizing...

$$\sum_{j} m_{kj} \ddot{q}_{j} + \sum_{i,j} c_{kij}(q) \dot{q}_{i} \dot{q}_{j} + \frac{\partial P}{\partial q_{k}} = u_{k}$$
 (2)

is equivalently expressed as

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = u$$

- M is symmetric and positive definite.
- $\dot{M} 2C$ is a skew-symmetric matrix (matrix A is skew-symmetric iff $A^T = -A$.)

These properties are important for control design.