

• Example: Use the Interval Bisection method to find solutions accurate to within 10^{-3} for $f(x) = x^3 - 7x^2 + 14x - 6 = 0$ on the interval [1, 3.2].

Solution:

- \circ Here: $a_0 = 1$ and $b_0 = 3.2$.
- o Compute: $f(a_0) = f(1) = 1^3 7(1^2) + 14(1) 6 = 2 > 0$. And $f(b_0) = f(3.2) = -0.11 < 0$. Since, $f(a_0) > 0$ and $f(b_0) < 0$, \exists a solution in the interval $I_0 = [a_0, b_0]$.
- O Now, we use the formula: $m_k = \frac{a_k + b_k}{2}$ to compute the middle point for the iteration number k, and check where is the root by comparing $f(a_k)$, $f(m_k)$, $f(b_k)$, until we obtain $f(m_k)$ within $10^{-3} = 0.001$.
- Owe present the calculation in the following table:

