* A Boolean lattice has an elis, n - no of atoms

Boolean functions

A function f: An -> A said to be a function if it can be specified by a boolean explession of n valiables:

Ex:-
$$f:A^3 \rightarrow A$$
 where $f(x_1x_2x_3) = (x_1 \vee x_2 \wedge x_3)$
 $f(b_0,0) = 1 \vee 0 \wedge 0 = 1$

Ex:- $f = (x, \Lambda \overline{x}) \vee x_2$ $f : \Lambda^2 \longrightarrow \Lambda$ where $\Lambda = \{0,1\}$ This is a boolean for over the boolean algebra $(\{0,1\}, V, \Lambda, -)$

(a) Let $f: A^3 \rightarrow A$ where $A = \{0,1\}$ $f(x_1, x_2, x_3) = (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3)$

∞_{I}	962	23	$(\overline{x}_{1} \wedge x_{2} \wedge \overline{x}_{3})$	$(x_1 \wedge x_2)$	$(x_1 \wedge x_3)$ (f)
		•		\bigcirc	
0	ſ	0			
		•			
1				[
	0				
\					

Mintegmo

A boolean expression of normaliables $x_1 x_2 ... x_n$ is said to be a mintern if its of the form $\tilde{x}_1 \wedge \tilde{x}_2 \wedge \tilde{x}_3 \wedge ... \wedge \tilde{x}_n$ where $\tilde{x}_1^2 - \tilde{x}_1^2 \otimes \tilde{x}_2^2$

Disjunctive Normal fom (DNF)

A boolean exp over (20,13, 1, v, -) is said to be in DNF if its join of minterns

ex: $(x_1 x_2 x_3) \vee (x_1 x_2 x_3) \vee (x_1 x_2 x_3)$ minter

minter

DNF: Join of minterns

maxteem

 $x_1 \times x_2 \times \cdots \times x_n$ where $x_i = x_i + x_i$

conjunctive Nômal fôm (CNF)

Meet of maxterms

ex: $(x_1 \sqrt{x_2} \sqrt{x_3}) / (x_1 \sqrt{x_2} \sqrt{x_3})$

tow to get a boolean express in DNF

viven ai fn fo, ign of o, ig , we can obtain the boolean exp in DNF corresp to this fn by having a mintern corresp to each ordered numple of o's 115 to which fnal value is 1.

For each nuple with functional value 1, we will the corresp mintum $\tilde{\chi}_{1} \Lambda \tilde{\chi}_{2} \Lambda \dots \Lambda \tilde{\chi}_{n}$

where $\Re = \int x^i \, dx$ ith component is $\int x^i \, dx$ ith component is $\int x^i \, dx$

f 1011

 $\left(\frac{1}{2} \Lambda \frac{1}{2} \right)$

How to get CNF (Meet of maxterns)

Pick the ordered nuple 18 which the functional Value is 0°

F& each ntuple with functional value zero, we white a maxter $x_1 y x_2 y \dots y x_n$

> where $x_i = x_i$ ith comp is 0 $\frac{1}{x^2}$

ONF: Boin of mintums CNF: Meet of maxtems

Olet $E(x_1 x_2 x_3) = (x_1 \Lambda x_2) V(x_1 \Lambda x_3) V(\overline{x}_2 \Lambda x_3)$ be a boolean expir a 2 valued boolean algebra write the given boolean exp is DNF 4 CNF Soffe

 $x_a x_3 (x_1 \land x_a) (x_1 \land x_3) (\overline{x}_a \land x_3)$

DNF: jour of mintiems Brite the minteems

ns $1 \rightarrow x^0$

0 -> 7;

 $(\overline{x_1},\overline{x_2},\chi_3) \bigvee (\chi_1,\chi_2,\chi_3) \bigvee (\chi_1,\chi_2,\chi_3)$

 $V\left(x_1 \wedge x_2 \wedge x_3 \right)$

CNF (Meet of maxtiems)

 $0 \rightarrow x$

 $4 \rightarrow \overline{\chi}$

 $(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3})$

2	ECX,	ာ(ဥ	M3)	$\frac{1}{2}\left(\frac{\pi}{2}\sqrt{\chi_{a}}\right)$	$I(X_1 \vee X_3)$		
	S0[M						
	\mathcal{X}_{I}) (a	λ3 \	(\mathcal{K}_{1})	(3(3))	$(\chi_1 \chi_3) \chi(\chi_1 \chi_3)$) }
	. :0	0	O	4			
		0		1.			
	.0	1					
	0	•					
		0	\bigcirc				
		0					
\		1	\bigcirc				
		-					

DNF: $(x_1 \sqrt{x_2} \sqrt{x_3}) \sqrt{(x_1 \sqrt{x_2} \sqrt{x_3})}$ CNF: $(x_1 \sqrt{x_2} \sqrt{x_3}) \sqrt{(x_1 \sqrt{x_2} \sqrt{x_3})} \sqrt{(x_1 \sqrt{x_2} \sqrt{x_3})}$ $\sqrt{(x_1 \sqrt{x_2} \sqrt{x_3})} \sqrt{(x_1 \sqrt{x_2} \sqrt{x_3})} \sqrt{(x_1 \sqrt{x_2} \sqrt{x_3})}$ $(\overline{x_1} \sqrt{x_2} \sqrt{x_3})$ POSET:

(Partially ordered set)

Relation saluspying Ovef 2) antisy

- 3) Ilansitive

ex:- (P(S), C) (27)

 (N, \leq)

(Sn, 1)

Sn -> Ave duces of s of n

Chain: Set where every 2 elements are comparable (Totally ordered set)

D(zt) is not a totally ordered set Take 2, 3 => Neithe 2/3, not 3/2 .. 24 3 au not comparable

2) (N' ≤) is a totally ordered set

Antichain: No 2 ette are comparable.

<u>Lattice</u>: Poset where every 2 ette have unique lub 8 unique glb

 $\mathbb{O} * (P(S), \subseteq) \longrightarrow V \rightarrow V$

2 (2+1) — J Cm $\Lambda \rightarrow gco$

1) min (3) (N, \le) - \rightarrow \nak

Ploperties of lattice: 10 commutation (2) Association (3) Absolution -> av(anb) = a an(avb) = a (4) 9d empotent y ava = a

Distributive laHice;
$$xv(ynz) = (xvy)n(xvx)$$

 $xn(yvz) = (xny)v(xnz)$

 $a \wedge a = a$

ex:-
$$(P(S), \subseteq)$$

complemented lattice

* Every elt of the lattice has a complement complement of an elt \rightarrow avb=1 anb=0 a is comp of b

* An elt may have more than I complement * In a distributive lattice, complement of an elt is unique

Boolean Cattice

Distribute + complemented

Boolean algebra (L, <, V, N,)

* flas 2º ells, n-) no of atoms

$$\frac{*}{(avb)} = \overline{a} \times \overline{b}$$

$$\overline{(anb)} = \overline{a} \times \overline{b}$$