Week 10 Homework

Q1: perform Bayesian Logistic Regression

- For a binary outcome dataset you find interesting (perhaps from kaggle.com?)
- Model the outcome as a bernoulli random variable and use a logit link function
- Use pm.Normal('betas', mu=0, sigma=1, shape=p) rather than the pm.MvNormal version
- Provide inference with Bayesian posterior analysis and report MCMC diagnostics

```
import pymc as pm
import pandas as pd
import arviz as az
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, StandardScaler
import kagglehub
from kagglehub import KaggleDatasetAdapter
file_path = "Raisin_Dataset.csv"
# Load dataset from Kaggle
df = kagglehub.load_dataset(
    KaggleDatasetAdapter.PANDAS,
    "nimapourmoradi/raisin-binary-classification",
    file path,
)
# Encode binary target variable
le = LabelEncoder()
df["Class"] = le.fit_transform(df["Class"]) # Convert 'Class' to 0/1
# Standardize predictors
scaler = StandardScaler()
X = scaler.fit_transform(df.drop(columns=["Class"]))
y = df["Class"].values
# Define Bayesian logistic regression model
with pm.Model() as logistic_model:
    # Priors for coefficients (normal distribution)
    betas = pm.Normal("betas", mu=0, sigma=1, shape=X.shape[1])
    intercept = pm.Normal("intercept", mu=0, sigma=1)
    # Logit link function
    logits = intercept + pm.math.dot(X, betas)
    p = pm.math.sigmoid(logits)
```

```
# Likelihood (Bernoulli distribution)
y_obs = pm.Bernoulli("y_obs", p=p, observed=y)

# Inference using MCMC
trace = pm.sample(2000, tune=1000, cores=2, return_inferencedata=True)

# Posterior analysis
az.plot_trace(trace)
az.summary(trace)
```

3/18/25, 9:52 AM HW8.ipynb - Colab

<ipython-input-3-7c6b28fd588a>:12: DeprecationWarning: load_dataset is deprecated and wi
 df = kagglehub.load dataset(

ui = kaggienub.ioau_uataset(
Progress	s			Draws D	ivergences	Step siz	ze Grad	evals Sa	ampling Sp		
				3000 0 3000 0		0.12 0.17	15 15		7.24 draws		
4											
	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat		
betas[0]	-0.458	0.832	-1.997	1.127	0.015	0.013	3252.0	2478.0	1.0		
betas[1]	-0.573	0.728	-1.931	0.813	0.013	0.011	2943.0	2821.0	1.0		
betas[2]	0.683	0.611	-0.507	1.816	0.013	0.009	2217.0	2509.0	1.0		
betas[3]	-0.207	0.332	-0.818	0.408	0.007	0.005	2365.0	2523.0	1.0		
betas[4]	-0.386	0.870	-2.002	1.233	0.016	0.013	3048.0	2663.0	1.0		
betas[5]	0.134	0.138	-0.137	0.382	0.002	0.002	3708.0	2114.0	1.0		
betas[6]	-2.331	0.700	-3.702	-1.107	0.013	0.009	2844.0	2269.0	1.0		
intercept	-0.473	0.143	-0.729	-0.196	0.003	0.002	2695.0	2487.0	1.0		
betas					betas						
			A								
-5 -4	-3 -2	intercep	ot o i	2 3	0.00	250 500	750 integroe	pt1250 1500	1750		
		<i>J</i>			-0.25		الإمالمينة		The second secon		

-1.00

Q2: perform Bayesian Multivariate Regression

-0.8

_i.o

• For a data set for which modeling multiple continuous outcomes might be interesting (perhaps from kaggle.com?)

0.0

• Use pm.Normal('betas', mu=0, sigma=1, shape=(p,m)) rather than a pm.MvNormal alternative

-0.2

- Use y = pm.MvNormal('y', mu=X@betas, chol=L, observed=x) for (n,m) shaped y and (n,p) shaped X
- Downsample your dataset to tentatively explore the effect of different values of n,m,p and
 - report on your findings and based on that

file path = "student marks.csv"

beta_ = np.ones((p, m))

- choose a "reasonably small" sized data set to perform an actual analysis
- Provide inference with Bayesian posterior analysis and report MCMC diagnostics

```
# Load dataset from Kaggle
df = kagglehub.load_dataset(
    KaggleDatasetAdapter.PANDAS,
    "yapwh1208/students-score",
    file_path,
)
→ <ipython-input-10-8b6b338fd664>:4: DeprecationWarning: load_dataset is deprecated and wi
       df = kagglehub.load dataset(
# Select relevant continuous features for multivariate regression
features = ["Test_1", "Test_2", "Test_3"]
df = df.dropna(subset=features) # Drop missing values
X = df[features].values
# Define dimensions
n, p = X.shape # n = samples, p = predictors
m = 2 # Number of continuous outcomes
# Generate synthetic target variable (assuming two continuous outputs for demonstration)
```

x = X @ beta + stats.multivariate normal(mean=np.zeros(m), cov=a cov).rvs(size=n)

a_cov = stats.invwishart(df=m + 2, scale=np.eye(m)).rvs()

```
# Normal priors for betas
betas = pm.Normal("betas", mu=0, sigma=1, shape=(p, m))

# Covariance matrix
Sigma = pm.Deterministic("Sigma", L.dot(L.T))

# Multivariate Normal likelihood
y = pm.MvNormal("y", mu=X @ betas, chol=L, observed=x)

# MCMC sampling
idata = pm.sample(2000, tune=1000, cores=2, return_inferencedata=True)
```


Progress	Draws	Divergences	Step size	Grad evals	Sampling Sp
	3000	0	0.04	127	10.23 draws
	3000	0	0.04	63	10.09 draws

import arviz as az

az.plot_trace(idata, var_names="betas")

→ array([[<Axes: title={'center': 'betas'}>,

<Axes: title={'center': 'betas'}>]], dtype=object)


```
num_chains = len(idata.posterior.chain) # Get the actual number of chains
print(num_chains)
fig, ax = plt.subplots(1, num_chains + 1, figsize=(18, 4)) # Adjust the number of subplots
ax[-1].imshow(a_cov)
ax[0].set_title("Sigma used to generate y")

for chain in range(num_chains):
    ax[chain].imshow(idata.posterior["Sigma"].mean(dim=["draw"])[chain])
    ax[chain].set_title(f"Chain {chain} mean Sigma")
```


Probit Regression (as opposed to Logistic Regression)

- Φ is CDF of standard normal (and is also call the **inverse probit** function)
 - $\circ~$ The **probit** function is Φ^{-1}
- $ullet z_i \sim N(x_i^ op eta, 1)$

$$\int \Phi(z_i)^{y_i} (1-\Phi(z_i))^{1-y_i} d\Phi(z) = \Phi(x_i^ opeta)^{y_i} (1-\Phi(x_i^ opeta))^{1-y_i} = p_i^{y_i} (1-p_i)^{1-y_i}$$

- → Q3: perform Bayesian Multivariate Classification
 - For a data set for which modeling multiple binary outcomes might be interesting (perhaps from kaggle.com?)

- Use pm.Normal('betas', mu=0, sigma=1, shape=(p,m)) rather than a pm.MvNormal alternative
- Use y = pm.Bernoulli('y', p=pm.math.invprobit(X@betas), observed=x) for (n,m)
 shaped y and (n,p) shaped X
- Use latent z = pm.MvNormal('z', mu=X@betas, chol=L) as discussed in the "Generalized Linear Models (GLM)" section of the previous weeks lecture notes

This provides normally distributed latent variables connected to the observed binary outcomes on which a latent covariance dependency structure may be modelled and estimated on the basis of imputing the unobserved latent variables based on their connection with the observed binary outcome variables.

- Downsample your dataset to tentatively explore the effect of different values of n,m,p and
 - report on your findings and based on that
 - o choose a "reasonably small" sized data set to perform an actual analysis
- Provide inference with Bayesian posterior analysis and report MCMC diagnostics

```
import pymc as pm
import numpy as np
import arviz as az
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler
# Load dataset
file_path = "smoking_data.csv"
df = pd.read csv(file path)
# Preprocess dataset
binary_outcomes = ["gender", "hearing(right)"]
df["gender"] = df["gender"].map({"M": 1, "F": 0})
df["hearing(right)"] = df["hearing(right)"].map({1: 1, 2: 0})
# Select features (Reduced for faster computation)
features = ["age", "height(cm)"]
X = StandardScaler().fit_transform(df[features].values)
y = df[binary_outcomes].values
n, p = X.shape
m = y.shape[1]
```

 \rightarrow


```
with pm.Model() as GLM:
    L, R, std = pm.LKJCholeskyCov(
        "R", n=m, eta=2.0, sd_dist=pm.Exponential.dist(1.0, shape=m), compute_corr=True
    )
    betas = pm.Normal("betas", mu=0, sigma=1, shape=(p, m))
    z = pm.MvNormal("z", mu=pm.math.dot(X, betas), cov=R, shape=(n, m))
    y_obs = pm.Bernoulli("y", p=pm.math.invprobit(z), observed=y)
    idata = pm.sample(1000, tune=500, target_accept=0.85, cores=2, return_inferencedata=True
→ Auto-assigning NUTS sampler...
     Initializing NUTS using jitter+adapt_diag...
     Multiprocess sampling (4 chains in 4 jobs)
     NUTS: [R, betas, z]
                                             100.00% [8000/8000 02:21<00:00 Sampling 4 chains,
     1,424 divergences]
     Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) t
     The rhat statistic is larger than 1.01 for some narameters. This indicates problems duri
fig, ax = plt.subplots(2, 4, figsize=(18, 8))
for chain in range(4):
    ax[1, chain].imshow(idata.posterior["R corr"].mean(axis=1)[chain])
    for i in range(m):
```

i, j, str(round(idata.posterior["R_corr"].mean(axis=1)[chain].values[j, i]

c="w", ha="center", va="center"

for j in range(m):

ax[1, chain].text(

ax[1, chain].set_title(f"Chain {chain} Mean R")

az.plot_trace(idata, var_names=["betas", "R_corr"])

