

Table of contents

03

Convolutions
Why use convolutiona

Why use convolutional network layers?

Experimental Design

Applying GCN's to a myriad of datasets.

Graph
Convolutions
How do convolutions generalize
to network data?

Results

How do GCN's perform?

Motivation Sami Supervised vs. Supe

Semi-Supervised vs. Supervised vs. Unsupervised Learning

- Supervised Learning X Y
- Unsupervised X
- Semi-Supervised X some Y

Efficient community detection

Only a portion of the data needs to be labeled

Traditional Neural Networks

28x28 Image

784 Input Parameters

Downsides:

Number of parameters quickly explodes (10 Nodes, 1 Hidden Layer) = 7000+ **Parameters**

- **High Training Costs**
 - Overfitting

Assumes all pixels are independent

Convolutional Neural Networks

28x28 Image

4x4 Image

Convolutional Neural Networks

Advantages

- Reduced parameters, less training time,
- Preserves correlation between neighboring pixels
- Greatly increased accuracy
- Literal breakthrough in image recognition technology

Instead of neighboring pixels, we'll assume that neighboring nodes contain useful information, this is the basis for GCN's

The Forward Pass

 $Z = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta$

Loss Function - Cross Entropy

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

$$Loss = 0.3677$$

Loss = 0.095

Backpropagation

 $\mathbf{a}_{n+1} = \mathbf{a}_n - \gamma
abla F(\mathbf{a}_n)$

Stochastic Gradient Descent

Experimental Design Applying GCN's to a myria of datasets.

Datasets and Design Datasets used include: Citation Networks: Citeseer (3.6%), Cora (5.2%), and Pubmed (0.3%) o NELL (0.1%) Random Graphs: Training time Two-layer GCNs are trained and evaluated on a test set of 1000 labeled examples, with comparisons against: ManiReg, DeepWalk, and Planetoid

Datasets

		Nodes	Edges	Classes	Features
)	Citeseer	3327	4732	6	3703
	Cora	2708	5429	7	1433
	Pubmed	19717	44338	3	500
	NELL	65755	266144	210	5414

Semi-Supervised Classification

		Citeseer	Cora	Pubmed	nell
+	ManiReg	60.1	59.5	70.7	21.8
	DeepWalk	43.2	67.2	65.3	58.1
	Planetoid	64.7	75.7	77.2	61.9
	™ GCN	70.3	81.5	79.0	66.0

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**