Exercice: Une étude de suite implicite.

1. (a) On désigne par f_n la fonction de \mathbb{R}^+ dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}^+, f_n(x) = x^n + x^{n-1} + \dots + x - 1.$$

Commençons par le cas n=1. pour tout réel x positif, $f_1(x)=x-1$ et admet 1 pour seul zéro. Cette solution appartient à [0,1]. Dans le cas $n \ge 2$, $f_n(0)=-1$ et $f_n(1)=n-1>0$. De plus, pour tout réel x strictement positif,

$$f'_n(x) = nx^{n-1} + (n-1)x^{n-2} + \dots + 1 > 0$$

La fonction f_n est alors continue et strictement croissante sur \mathbb{R}^+ . Elle prend une valeur strictement négative en 0 et une valeur strictement positive en 1, donc elle s'annule une et une seule fois sur \mathbb{R}^+ et cette annulation a lieu dans l'intervalle]0,1[.

(b) Soit n un entier naturel non nul. La fonction f_n étant strictement croissante sur \mathbb{R}^+ , elle est négative sur $[0,u_n]$ et positive sur $[u_n,1]$. On détermine la position de u_{n+1} par rapport à u_n en déterminant le signe de $f_n(u_{n+1})$. Par défiinition, u_{n+1} vérifie :

$$u_{n+1}^{n+1} + u_{n+1}^{n} + \dots + u_{n+1} - 1 = 0,$$

c'est-à-dire

$$u_{n+1}^{n+1} + f_n(u_{n+1}) = 0.$$

Il en résulte que $f_n(u_{n+1}) = -u_{n+1}^{n+1}$ est strictement négatif puisque u_{n+1} est strictement positif. Par conséquent, u_{n+1} appartient à $[0, u_n]$, donc la suite est strictement décroissante.

(c) Pour n = 1, on a $u_1 = 1$, ce qui vérifie la relation attendue. Pour $n \ge 2$, on peut exploiter l'expression de la somme des n premiers termes de la suite géométrique de premier terme 1 et de raison u_n différente de 1. Ainsi,

$$(u_n)^n + (u_n)^{n-1} + \dots + u_n + 1 = \frac{u_n^{n+1} - 1}{u_n - 1}$$

Le membre de gauche est égal à 2 d'après la relation définissant u_n , donc $u_n^{n+1}-1=2(u_n-1)$ ce qui équivaut à

$$u_n^{n+1} - 2u_n + 1 = 0$$

- (d) u_2 vérifie $u_2^2 + u_2 1 = 0$. Cette équation polynomiale du second degré a pour discriminant 5, et pour solutions $\frac{1}{2}(-1+\sqrt{5}), \frac{1}{2}(-1-\sqrt{5})$. Comme u_2 est positif, on obtient $u_2 = \frac{1}{2}(-1+\sqrt{5})$.
- (e) Comme la suite $(u_n)_{n\geq 1}$ est décroissante et minorée par 0, elle est convergente. De plus, pour tout entier $n\geq 2$, $0\leq u_n\leq u_2<1$ car $\sqrt{5}<3$. Par croissance de la puissance n+1-ième sur \mathbb{R}^+ , on en déduit que $0\leq u_n^{n+1}\leq u_2^{n+1}$ tend vers 0 quand n tend vers $+\infty$. Comme $0\leq u_2<1$, u_2^{n+1} tend vers 0 quand n tend vers $+\infty$. On en déduit par théorème d'encadrement que u_n^{n+1} tend vers 0. Par passage à la limite dans l'égalité démontrée en (1.c), on en déduit que la limite l de la suite vérifie -2l+1=0, soit l=1/2. En conclusion, la suite $(u_n)_{n\geq 1}$ tend vers 1/2.
- (f) D'après l'égalité démontrée (1.c) on a pour tout entier $n \ge 2$,

$$0 \le \delta_n = n \frac{1}{2} u_n^{n+1} \le \frac{n}{2} u_2^{n+1}$$

avec $u_2 < 1$. Par croissances comparées, le majorant de droite tend vers 0 quand n tend vers $+\infty$, donc par théorème d'encadrement $(\delta_n)_{n\geq 1}$ tend vers 0.

2. (a) La fonction ψ est dérivable sur \mathbb{R}^{+*} et pour tout réel x strictement positif,

$$\psi'(x) = \ln(x+1) + 1 - \ln(x) - 1 - \ln(2) = \ln\left(\frac{x+1}{2x}\right).$$

L'étude du signe de ψ' se mène via, pour tout réel x strictement positif

$$\psi'(x) \ge 0 \iff \frac{x+1}{2x} \ge 1 \iff x+1 > 2x \iff 1 \ge x$$

Ainsi ψ est croissante sur]0,1] et décroissante sur $[1,+\infty[$. En outre, par croissances comparées, $x\ln(x)$ tend vers 0 quand x tend vers 0, donc $\psi(x)$ tend vers $-\ln(2)$ en 0. De plus, pour x tendant vers $+\infty$, $x\ln(1+1/x)$ tend vers 1 puisque $\ln(1+y)/y$ tend vers 1 quand y tend vers 0. Ainsi, pour tout réel x strictement positif, $\psi(x) - x\ln(1+1/x) = \ln(x+1) - (x+1)\ln(2)$. Par croissances comparées, $\ln(x+1) - (x+1)\ln(2)$ tend vers $-\infty$ quand x tend vers $+\infty$ puisque $\ln(2) < 0$. On en déduit que $\psi(x)$ tend vers $-\infty$ quand x tend vers $+\infty$. Enfin, $\psi(1) = 0$ est le maximum de ψ sur \mathbb{R}^+ , ce qui prouve que $\psi \le 0$ sur \mathbb{R}^+ .

(b) Ainsi, pour tout entier n non nul, on a $\psi(n) \le 0$, ce qui implique

$$-(n+1)\ln(2) \le n\ln(n) - (n+1)\ln(n+1)$$

soit encore

$$\ln\left(\frac{1}{2^{n+1}}\right) \le \ln\left(\frac{n^n}{(n+1)^{n+1}}\right).$$

Comme l'exponentielle est croissante, on en déduit que

$$\frac{1}{2^{n+1}} \le \frac{n^n}{(n+1)^{n+1}},$$

ce qui est l'inégalité attendue.

(c) D'après les sommes de séries géométriques, pour tout réel x strictement positif, $g_n(x) = (x - 1)\sum_{k=0}^{n} x^k - 2(x-1) = -1 + x^{n+1} - 2(x-1) = x^{n+1} - 2x + 1$. Mais alors pour tout entier naturel non pul n

$$g_n\left(\frac{1}{2} + \frac{1}{2n}\right) = 1 - 2\frac{1}{2} + 2\frac{1}{2n} + \left(\frac{1}{2} + \frac{1}{2n}\right)^{n+1} = \left(\frac{1}{2} + \frac{1}{2n}\right)^{n+1} - \frac{1}{n}$$

Or l'inégalité précédemment prouvée implique, puisque $((n+1)/n)^{n+1}$ est positif

$$\left(\frac{n+1}{2n}\right)^{n+1} \le \frac{1}{n}$$

Ainsi, $g_n(1/2 + 1/(2n))$ est bien négatif ou nul.

(d) Soit n un entier naturel non nul. Les fonctions g_n et f_n ont des signes contraires sur [0,1] d'après la définition de g_n . D'après ce qui précède, on a alors $f_n(1/2+1/(2n)) \ge 0$. D'après les variations de f_n , on en déduit que 1/2+1/(2n) appartient à $[u_n,1]$, donc que

2

$$u_n \le \frac{1}{2} + \frac{1}{2n}$$

Problème: Vers un théorème de Polya.

1. (a) Soit x un réel. Pour n = 1, on a $H_1(x+1) - H_1(x) = x+1-x=1 = H_0(x)$. Pour $n \ge 2$:

$$H_n(x+1) - H_n(x) = \frac{1}{n!} \left(\prod_{k=0}^{n-1} (x+1-k) - \prod_{k=0}^{n-1} (x-k) \right)$$
$$= \frac{1}{n!} (x+1-(x-n+1)) \prod_{k=0}^{n-2} (x-k)$$
$$= \frac{1}{(n-1)!} \prod_{k=0}^{n-2} (x-k) = H_{n-1}(x)$$

(b) Pour n = 0, on a $H_0(j) = 1$ pour tout $j \in \mathbb{Z}$. Pour $n \in \mathbb{N}^*$, on a :

$$H_{n}(j) = \frac{1}{n!} \prod_{k=0}^{n-1} (j-k) = \begin{cases} 0 = \binom{j}{n} \text{ pour } 0 \le j \le n-1\\ \frac{j!}{n!(j-n)!} = \binom{j}{n} \text{ pour } j \ge n \end{cases}$$

et pour $j = -p \in \mathbb{Z}^{-,*}$:

$$H_n(j) = \frac{(-1)^n}{n!} \prod_{k=0}^{n-1} (p+k) = \frac{(-1)^n}{n!} \frac{(p+n-1)!}{(p-1)!} = (-1)^n \binom{p+n-1}{n}$$

- (c) Soit n un entier naturel, soit j un entier relatif. D'après ce qui précède, $H_n(j)$ est un entier relatif car les coefficients binomiaux sont entiers. On a donc $H_n(\mathbb{Z}) \subset \mathbb{Z}$, pour tout $n \in \mathbb{N}$.
- (d) Pour tout entier *j* compris entre 1 et *n*, on a :

$$P(j) = \sum_{k=0}^{n} (-1)^k H_k(j) = \sum_{k=0}^{n} (-1)^k {j \choose k} = \sum_{k=0}^{j} (-1)^k {j \choose k} = (1-1)^j = 0$$

d'après la formule du binôme.

(e) D'après ce qui précède, la fonction polynômiale $x \mapsto xP(x)$ a pour racines tous les entiers entre 0 et n. Donc il existe une fonction polynomiale Q telle que

$$\forall x \in \mathbb{R}, xP(x) = Q(x) \prod_{j=0}^{n} (x-j)$$

Mais alors, pour des raisons de degré, la fonction polynomiale $x \mapsto xP(x)$ est de degré n+1, tout comme le produit $x \mapsto \prod_{j=0}^{n} (x-j)$. Donc, il ne reste qu'à étudier leurs coefficients dominants (ceux du terme x^{n+1}). Le premier vaut $(-1)^n/n!$ et le second 1, donc

$$\forall x \in \mathbb{R}, x P(x) = \frac{(-1)^n}{n!} \prod_{j=0}^n (x-j) = \frac{(-1)^n}{n!} (n+1)! H_{n+1}(x) = (-1)^n (n+1) H_{n+1}(x)$$

2. La formule du binôme donne

$$(1-1)^{j-i} = \sum_{k=0}^{j-i} {j-i \choose k} (-1)^k$$
$$= \sum_{l=i}^{j} {j-i \choose l-i} (-1)^{l-i}$$

3

après changement de variable l = k + i. Or pour tout l dans [i, j],

$$\binom{l}{i}\binom{j}{l} = \frac{l!}{i!(l-i)!} \frac{j!}{l!(j-l)!} = \frac{j!}{i!(j-i)!} \frac{(j-i)!}{(l-i)!(j-l)!} = \binom{j}{i}\binom{j-i}{l-i}$$

Ainsi,

$$(1-1)^{j-i} = \frac{1}{\binom{j}{i}} \sum_{l=i}^{j} (-1)^{l-i} \binom{l}{i} \binom{j}{l}$$

Pour j = i, $(1-1)^{j-i} = 0^0 = 1$ et $\binom{j}{i} = 1$. Pour j > i, $(1-1)^{j-i} = 0$. Ainsi,

$$\sum_{k=i}^{j} (-1)^{k-i} \binom{k}{i} \binom{j}{k} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i < j \end{cases}$$

Il y avait une erreur dans l'énoncé.

3. (a) Soit $j \in [[0, n]]$. Alors d'après 1.b), pour tout k dans [[0, j]], $Q(k) = \sum_{l=0}^{n} \alpha_l H_l(k) = \sum_{l=0}^{n} \alpha_l \binom{k}{l}$. On en déduit que

$$\begin{split} \sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} Q(k) &= \sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} \sum_{l=0}^{n} \alpha_l \binom{k}{l} \\ &= \sum_{l=0}^{n} \alpha_l \sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} \binom{k}{l} \\ &= \sum_{l=0}^{n} \alpha_l \sum_{k=l}^{j} (-1)^{j-k} \binom{j}{k} \binom{k}{l} \end{split}$$

Or la somme $\sum_{k=l}^{j} (-1)^{j-k} \binom{j}{k} \binom{k}{l}$ est nulle sauf pour l=j d'après la question 2. Par conséquent,

$$\sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} Q(k) = \alpha_j$$

(b) On reprend les mêmes calculs que précédemment. Soit $j \ge n+1$ alors la somme qui s'annulait précédemment sauf en l=j sera toujours nulle, car $l \le n$ et $j \ge n+1$. Par conséquent, la somme entière sera nulle., i.e

$$\sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} Q(k) = 0.$$

4. Si (a) est vraie, alors en particulier Q prend des valeurs entières sur tous les entiers de [0,n], donc il existe bien n+1 entiers relatifs consécutifs en lesquels Q prend des valeurs entières. Ainsi, $(a)\Rightarrow (b)$. Montrons l'implication $(b)\Rightarrow (c)$ par récurrence sur n. Pour n=0, si (b) est vérifié, il existe alors $a\in \mathbb{Z}$ tel que $\forall x\in \mathbb{R}, P(x)=\alpha_0=P(a)\in \mathbb{Z}$, soit $P=\alpha_0H_0$ avec $\alpha_0\in \mathbb{Z}$. Pour n=1, on a $\forall x\in \mathbb{R}, P(x)=\alpha_0+\alpha_1x$ et si (b) est vérifié, il existe alors $a\in \mathbb{Z}$ tel que $P(a)=\alpha_0+\alpha_1a\in \mathbb{Z}$ et $P(a+1)=\alpha_0+\alpha_1(a+1)\in \mathbb{Z}$, donc $P(a)=P(a+1)-P(a)\in \mathbb{Z}$ et $P(a)=P(a)-\alpha_1a\in \mathbb{Z}$, soit $P=\alpha_0H_0+\alpha_1H_1$ avec $P(a)=\alpha_0H_0+\alpha_1H_1$ avec $P(a)=\alpha_0H_0+\alpha_1H_1$ avec $P(a)=\alpha_0H_0+\alpha_1H_1$ existe alors $P(a)=\alpha_0H_0+\alpha_1H_1$ avec $P(a)=\alpha_0H_0+\alpha_1H_1$ existe alors $P(a)=\alpha_0H_0+\alpha_1H_1$ avec $P(a)=\alpha_0H_0+\alpha_1H_1$ avec $P(a)=\alpha_0H_0+\alpha_1H_1$ existe alors $P(a)=\alpha_0H_0+\alpha_1H_1$ existe a

4

degré n pour lequel il existe $a \in \mathbb{Z}$ tel que $P(a+k) \in \mathbb{Z}$ pour tout k compris entre 0 et n. En utilisant l'écriture $P = \sum_{j=0}^{n} \alpha_j H_j$ et la fonction polynomiale Q définie par :

$$\forall x \in \mathbb{R}, Q(x) = P(x+1) - P(x) = \sum_{j=1}^{n} \alpha_{j} \left(H_{j}(x+1) - H_{j}(x) \right)$$
$$= \sum_{j=1}^{n} \alpha_{j} H_{j-1}(x) = \sum_{j=0}^{n-1} \alpha_{j+1} H_{j}(x)$$

est de degré n-1 et telle que $Q(a+k)=P(a+k+1)-P(a+k)\in\mathbb{Z}$ pour tout k compris entre 0 et n-1, ce qui implique que les α_{j+1} pour $0\leq j\leq n-1$ sont entiers et $\alpha_0=P(a)-\sum_{j=1}^n\alpha_jH_j(a)$ est aussi entier.

Si (c) est vraie, alors pour tout entier relatif j, $Q(j) = \sum_{k=0}^{n} \alpha_k H_k(j)$. D'après 1.c), pour tout entier k, $H_k(j) \in \mathbb{Z}$. Comme pour tout entier k, α_k est dans \mathbb{Z} , on en déduit que Q(j) appartient à \mathbb{Z} comme somme de produits d'entiers relatifs. Ainsi, $(c) \Rightarrow (a)$. Cette chaîne d'implications assure l'équivalence entre les trois assertions.

- 5. Comme H_0 est constant, on a $\Delta(H_0)=0$. Pour $k\geq 1$, on a $\Delta(H_k)=H_{k-1}$ (question 1.a). Par récurrence, on vérifie que $\Delta^j(H_k)=H_{k-j}$ pour $0\leq j\leq k$ et en conséquence, on a $\Delta^j(H_k)=0$ pour $j\geq k+1$.
- 6. D'après la linéarité admise des itérées de Δ , pour tout entier $j \leq n$,

$$\Delta^{j}(Q) = \sum_{k=0}^{n} \alpha_{k} \Delta^{j}(H_{k})$$

D'après ce qui précède, on a alors

$$\Delta^{j}(Q) = \sum_{k=j}^{n} \alpha_{k} H_{k-j}$$

On évalue ces fonctions en 0. Or pour tout entier naturel n non nul, $H_n(0) = 0$ et $H_0(0) = 1$, donc

$$\Delta^j(Q)(0) = \alpha_j \times 1$$

On en déduit que

$$Q = \sum_{k=0}^{n} (\Delta^{k}(Q))(0)H_{k}$$

7. Soit x un réel,

$$H_1(x) + 6H_2(x) + 6H_3(x) = x + \frac{6}{2!}x(x-1) + \frac{6}{3!}x(x-1)(x-2)$$

$$= x + 3x(x-1) + x(x-1)(x-2)$$

$$= x + 3x^2 - 3x + x^3 - 3x^2 + 2x$$

$$= x^3$$

$$= R(x)$$

On propose alors $S = H_2 + 6H_3 + 6H_4$. Cette fonction polynomiale vérifie par linéarité de Δ ,

$$\Delta(S) = \Delta(H_2) + 6\Delta(H_3) + 6\Delta(H_4) = H_1 + 6H_2 + 6H_3 = R$$

d'après ce qui précède et la question 5. Mais alors, soit n un entier naturel,

$$\sum_{k=0}^{n} k^{3} = \sum_{k=0}^{n} R(k)$$

$$= \sum_{k=0}^{n} \Delta(S)(k)$$

$$= \sum_{k=0}^{n} (S(k+1) - S(k))$$

$$= S(n+1) - S(0)$$

par télescopage. On évalue alors

$$\begin{split} S(n+1) &= H_2(n+1) + 6H_3(n+1) + 6H_4(n+1) \\ &= \frac{1}{2!}(n+1)(n+1-1) + \frac{6}{3!}(n+1)(n+1-1)(n+1-2) + \frac{6}{4!}(n+1)(n+1-1)(n+1-2)(n+1-3) \\ &= \frac{1}{2}(n+1)n + (n+1)n(n-1) + \frac{1}{4}(n+1)n(n-1)(n-2) \\ &= \frac{n(n+1)}{4} \left[2 + 4(n-1) + (n-1)(n-2) \right] \\ &= \frac{n(n+1)}{4} \left[n^2 + n \right] \\ &= \left(\frac{n(n+1)}{2} \right)^2 \end{split}$$

Comme S(0) = 0, on retrouve la formule classique

$$\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

8. Supposons qu'il existe P de degré n tel que $u_j = P(j)$ pour tout $j \in \mathbb{N}$. Dans ce cas, on a vu en question 3) que :

$$\forall j \ge n+1, \sum_{k=0}^{j} (-1)^{j-k} {j \choose k} u_k = \sum_{k=0}^{j} (-1)^{j-k} {j \choose k} P(k) = 0$$

Réciproquement supposons cette condition vérifiée. Cherchant la fonction polynomiale P de degré n sous la forme $P = \sum_{k=0}^{n} \alpha_k H_k$, le résultat de la question 3) nous incite à définir la suite $\left(\alpha_j\right)_{j\in\mathbb{N}}$ par

$$\forall j \leq n, \alpha_j = \sum_{k=0}^{j} (-1)^{j-k} {j \choose k} u_k$$
 et pour $j \geq n+1, \alpha_j = 0$. Pour tout $j \in \mathbb{N}$, on a :

$$P(j) = \sum_{k=0}^{n} \alpha_k H_k(j) = \sum_{k=0}^{+\infty} \alpha_k H_k(j) = \sum_{k=0}^{j} \alpha_k \binom{j}{k}$$

(on a $H_k(j) = \binom{j}{k}$ pour $0 \le k \le j$ et $H_k(j) = 0$ pour $k \ge j+1$), soit :

$$P(j) = \sum_{k=0}^{j} \left(\sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} u_i \right) \binom{j}{k} = \sum_{0 \le i \le k \le j} (-1)^{k-i} \binom{k}{i} u_i \binom{j}{k}$$
$$= \sum_{i=0}^{j} \left(\sum_{k=i}^{j} (-1)^{k-i} \binom{k}{i} \binom{j}{k} \right) u_i$$

avec $\sum_{k=i}^{j} (-1)^{k-i} \binom{k}{i} \binom{j}{k} = 0$ si i différent de j et 1 sinon. (question 2), ce qui nous donne $P(j) = u_j$.

* * * * *