FoP 3B Part II

Dr Budhika Mendis (b.g.mendis@durham.ac.uk)
Room 151

Lecture 4: Extrinsic semiconductors

Summary of Lecture 3

Electron/hole concentrations:

$$n = \int f(E)g_e(E)dE$$
$$p = \int [1 - f(E)]g_h(E)dE$$

Law of mass action:

$$np = N_c N_v \exp\left(-\frac{E_g}{kT}\right)$$

Conductivity vs temp:

$$\mathbf{J} = (en\mu_{e} + ep\mu_{h})\mathbf{E} = \sigma\mathbf{E}$$

Temperature (K)

© Bart Van Zeghbroeck 2007

Aim of today's lecture

Q: How can we manipulate conductivity at room temperature?

A: 'doping' with foreign atoms

Key concepts:

- -Donor and acceptor doping
- -Role of temperature on doping
- -Carrier concentrations and..
- -Chemical potential in extrinsic semiconductors

* See supplementary information for purification and doping methods (non-examinable).

Donor impurities

Diamond cubic crystal structure

	5	6	7
	B	C	N
	boron	carbon	nitrogen
	10.81	12.011	14.007
	[10.806, 10.821]	[12.009, 12.012]	[14.006, 14.008]
12	13 AI aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974
30 Zn zinc 65.38(2)	31 Ga gallium	32 Ge germanium 72.630(8)	33 As arsenic 74.922
48	49	50	51
Cd	In	Sn	Sb
cadmium	indium	tin	antimony

Perfect crystal

Group V substitutional atom (e.g. N, P)

Donor electron energy level

Adapt Bohr's atomic model:

 $\begin{array}{c|c} E_c & & \text{minimum} \\ E_d & & & \text{meV} \end{array}$

 $E_v = \frac{\text{Valence band}}{\text{maximum}}$

Energy level diagram E_d : donor level

Energy level:

$$E_D = \frac{e^4 m_e^*}{2(4\pi\varepsilon_r \varepsilon_0 \hbar)^2} = \frac{m_e^*}{m\varepsilon_r^2} \left[\frac{e^4 m}{2(4\pi\varepsilon_0 \hbar)^2} \right]$$
13.6 eV

□ Typical energies meV

Orbit radius:

$$r = \frac{4\pi\varepsilon_r\varepsilon_0\hbar^2}{m_e^*e^2} = \frac{\varepsilon_r m}{m_e^*} \left(\frac{4\pi\varepsilon_0\hbar^2}{me^2}\right)$$

$$0.5 \text{ Å}$$

□ Typical radius nm

Temperature effects on donor ionisation

Electron, hole concentrations in saturation regime

Law of mass action:

$$np = N_c N_v \exp\left(-\frac{E_g}{kT}\right)$$

$$np = n_i(T)^2 \qquad \dots (1)$$

 $n_i(T)$ = electron/hole concentration for intrinsic semiconductor at temp T

Charge conservation:

$$n = p + N_D \qquad \dots (2)$$

 N_D = donor concentration

Combining (1) and (2):

$$n = \frac{N_D}{2} + \sqrt{\left(\frac{N_D}{2}\right)^2 + n_i^2}$$

Electron, hole concentrations in saturation regime

$$n = \frac{N_D}{2} + \sqrt{\left(\frac{N_D}{2}\right)^2 + n_i^2}$$

Assuming $N_D >> n_i(T)$ then:

$$n \sim N_D$$

 $p \sim n_i^2/N_D$ (law of mass action)

In other words $n > n_i$ and $p = n_i(n_i/N_D) < n_i$. Electrons are therefore the *majority* carriers and holes the *minority* carriers. The semiconductor is said to be doped n-type.

Chemical potential in *n*-type extrinsic semiconductor

$$E_{c} = E_{d}$$

$$E_v \longrightarrow \bullet \bullet \bullet \bullet \bullet$$

n-type semiconductor at 0K (Fermi level above E_d)

From

$$n = N_c \exp\left[-\frac{(E_c - \mu)}{kT}\right]$$

and substituting $n \sim N_D$

$$\mu = E_c - kT \ln \left(\frac{N_c}{N_D} \right)$$

$$p = [1-f(E)]D(E)$$

Acceptor impurities

Diamond cubic crystal structure

	5	6	7
	B	C	N
	boron	carbon	nitrogen
	10.81	12.011	14.007
	[10.806, 10.821]	[12.009, 12.012]	[14.006, 14.008]
12	13 AI aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974
30	31	32	33
Zn	Ga	Ge	As
zinc	gallium	germanium	arsenic
65.38(2)	69.723	72.630(8)	74.922
48	49	50	51
Cd	In	Sn	Sb
cadmium	indium	tin	antimony

Perfect crystal

Group III substitutional atom (e.g. B, Al)

Acceptor energy level

 E_c Conduction band minimum

 $E_a = ----$ meV $E_v = ---$ Valence band maximum

Energy level diagram E_a : acceptor level

Saturation regime:

 $p \sim N_A$ (acceptor concentration) $n \sim n_i^2/N_A$

Holes are *majority* carriers, electrons are *minority* carriers. Semiconductor is *p*-type.

Chemical potential in *p*-type extrinsic semiconductor

 E_c ————

$$E_a$$

$$E_v$$

p-type semiconductor at 0K (Fermi level below E_a)

From

$$p = N_v \exp\left[-\frac{(\mu - E_v)}{kT}\right]$$

and substituting $p \sim N_A$

$$\mu = E_v + kT \ln \left(\frac{N_v}{N_A} \right)$$

