_{ТЫК}

тык

8 Рекуррентности и Производящие функции

• Производящие функции (Generating Functions)

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

Функция выше задает последовательность a_0, a_1, a_2, \dots

Ex. Последовательность $(1,1,1,\dots)$ задает функцию $1+x+x^2+\dots=\sum_{n=0}^{\infty}x^n$

Пусть $S=1+x+x^2+\ldots$, тогда $xS=x+x^2+\ldots$, $(1-x)S=1\Longrightarrow S=\frac{1}{1-x}$ задает последовательность $(1,1,1,\ldots)$

$\frac{1-\lambda}{\text{Y}_{\text{TO}}?}$		Куда?
$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots$	$=\sum_{n=0}^{\infty}(-1)^nx^n$	$(1,-1,1,-1,\dots)$
$\frac{1}{1 - kx} = 1 + kx + k^2 x^2 + k^3 x^3 + \dots$	$=\sum_{n=0}^{\infty}k^nx^n$	$(1,k,k^2,k^3,\dots)$
$\frac{1}{1-kx} + \frac{1}{1-mx} = 1 + (k+m)x + (k+m)^2x^2 + \dots$	$. = \sum_{n=0}^{\infty} (k+m)^n x^n$	$(1, k+m, (k+m)^2, (k+m)^3, \dots)$
$\frac{k}{1-x} = 2 + 2x + 2x^2 + 2x^3 + \dots$	∞	(k,k,k,k,\dots)
$\frac{1}{1-x^2} = 1 + x^2 + x^4 + x^6 + \dots$	$=\sum_{n=0}^{n=0} x^{2n}$	$(1,0,1,0,\dots)$
$\frac{x}{1-x} = x + x^2 + \dots$	$=\sum_{n=0}^{\infty} x^{n+1}$	$(0,1,1,1,\dots)$
$\frac{1-x^k}{1-x} = 1 + x + x^2 + x^3 + \dots + x^{k-1}$	$=\sum_{k=1}^{n=0} x^n$	$(1,1,1,\ldots,1)$ k pas
$\frac{d}{dx}\frac{1}{1-x} = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots$	$=\sum_{n=0}^{\infty} (n+1)x^n$	

• Подсчет, используя производящие функции

Найти число решений для $x_1+x_2+x_3=6$, где $x_i\geq 0, x_1\leq 4, x_2\leq 3, x_3\leq 5$ Пусть $A_1(x)=1+x+\cdots+x^4, A_2(x)=1+x+\cdots+x^3, A_3(x)=1+x+\cdots+x^5$ Тогда: $A(x)=A_1\cdot A_2\cdot A_3=1+3x+6x^2+10x^3+14x^4+17x^5+\underline{18x^6}+17x^7+\ldots$ Ответ - 18

• Рекуррентные соотношения (Recurrence relations)

Решить рекуррентное соотношение - найти закрытую формулу

Ex. Арифметическая прогрессия $a_n = a_{n-1} + d$, $a_0 = const$ Решение: $a_n = a_0 + nd$ - анзац (Ansatz, догадка)

Проверка: $a_n = a_0 + nd = a_{n-1} + d = a_0 + (n-1)d + d = a_0 + nd$ —

• Решение при помощи производящих функций

Решить рекуррентное соотношение $a_n=3a_{n-1}-2a_{n-1}$, где $a_0=1,\,a_1=3$ Используем производящие функции:

$$\frac{A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots = A(x)}{3x(a_1 x + a_2 x^2 + \dots) = 3x(A(x) - a_0)}$$

$$-2x^2(a_0 + a_1 x + \dots) = -2x^2 A(x)$$

$$a_0 + a_1 x = a_0 + a_1 x$$

$$A(x) = a_0 + a_1 x + 3x(A(x) - a_0) - 2x^2 A(x) = 1 + 3x + 3xA(x) - 3x - 2x^2 A(x)$$

$$A(x)(2x^2 - 3x + 1) = 1 \Longrightarrow A(x) = \frac{1}{1 - 3x + 2x^2} = \frac{-1}{1 - x} + \frac{2}{1 - 2x} \Longrightarrow a_n = 2^{n+1} - 1$$

тык

тык

тык

• Метод характеристического уравнения

Рекуррентное соотношение $\stackrel{a_n \to r^n}{\leadsto}$ Характеристическое решение корни $\stackrel{магия}{\leadsto}$ Решение \leadsto Проверка

Ex.
$$a_n = a_{n-1} + 6a_{n-2}$$
, $a_0 = 1$, $a_1 = 8$
Xpy: $r^n - r^{n-1} - 6r^{n-2} = 0 \Longrightarrow r_{1,2} = -2, 3$

Если $r_1 \neq r_2$, то $a_n = ar_1^n + br_2^n$ - общее решение Если $r_1 = r_2 = r$, то $a_n = ar^n + bnr^n$

$$\begin{cases} a_n = a(-2)^n + b(3)^n \\ a_0 = 1 = a + b \\ a_1 = 8 = -2a + 3b \end{cases} \iff \begin{cases} a = -1 \\ b = 2 \\ a_n = -(-2)^n + 2 \cdot 3^n \text{ - решение} \end{cases}$$
• Разделяй и властвуй (Divide-and-Conquer)

$$T(n) = \underbrace{2T\left(rac{n}{2}
ight)}_{ ext{работа рекурсии}} + \underbrace{ heta(n)}_{ ext{работа разделения/слияния}}$$

• Основная теорема о рекуррентных соотношениях (Master Theorem)

Пусть асимптотика алгоритма - $T(n) = aT\left(\frac{n}{L}\right) + f(n)$, из этого, $c_{crit} = \log_b a$, тогда:

Что? Когда? Что делать? І случай: слияние < рекурсия $f(n) \in O(n^c)$, где $c < c_{crit}$ $T(n) \in \Theta(n^{c_{crit}})$ ІІ случай: слияние \approx рекурсия $f(n) \in \Theta(n^{c_{crit}} \log^k n)$
II случай: слияние $pprox$ рекурсия $f(n) \in \Theta(n^{c_{crit}} \log^k n)$
\mathbf{r}
II.а случай - $k \ge 0$ $T(n) \in \Theta(n^{c_{crit}} \log^{k+1})$
II.b случай - $k = -1$ $T(n) \in \Theta(n^{c_{crit}} \log \log n)$
II.с случай - $k < -1$ $T(n) \in \Theta(n^{c_{crit}})$
III случай: слияние > рекурсия $f(n) \in \Omega(n^c)$, где $c > c_{crit} T(n) \in \Theta(f(n))$

• Метод Акра-Бацци (Akra-Bazzi method)

Пусть асимптотика алгоритма - $T(n) = f(n) + \sum_{i=1}^{K} a_i T(b_i n + h_i(n)),$

где $a_i > 0, \ 0 < b_i < 1, \ k = const, \ h_i(n) \in O\left(\frac{n}{\log^2 n}\right)$ - малые возмущения

Тогда
$$T(n) \in \Theta\left(n^p \cdot \left(1 + \int_1^n \frac{f(x)}{x^{p+1}} dx\right)\right)$$
, где p - решение для $\sum_{i=1}^k a_i b_i^p = 1$

Ex.
$$T(n) = T\left(\frac{3n}{4}\right) + T\left(\frac{n}{4}\right) + n$$

$$a_1 = a_2 = 1, b_1 = \frac{3}{4}, b_2 = \frac{1}{4}, f(n) = n, \quad \left(\frac{3}{4}\right)^p + \left(\frac{1}{4}\right)^p = 1 \Longrightarrow p = 1$$

$$\int_{1}^{n} \frac{x}{x^{1+1}} dx = \int_{1}^{n} \frac{dx}{x} = \ln x \Big|_{1}^{n} = \ln n$$

$$T(n) \in \Theta(n \cdot (1 + \ln n)) \quad T(n) \in \Theta(n \ln n)$$

• Линейные рекуррентности (Linear recurrences)

 $\underbrace{k_1a_n+k_2a_{n-1}+k_3a_{n-2}+\dots}_{$ динейная комб. рекуррентных членов функция от n

Линейное рекуррентное соотношение - $\begin{cases} f=0 \Longrightarrow \text{гомогенное (однородное)} \\ f \neq 0 \Longrightarrow \text{негомогенное (неоднородное)} \end{cases}$

$$F(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ F(n-1) + F(n-2) \end{cases}$$

$$F(n) - F(n-1) - F(n-2) = 0$$
 - однородное

• Операторы:

Y_{TO} ?	Как?
Сумма	(f+g)(n) = f(n) + g(n)
Умножение на число	$(\alpha \cdot f)(n) = \alpha f(n)$
Сдвиг	Ef(n) = f(n+1)
Сдвиг на k	$E^k f(n) = f(n+k)$
Композиция	(X+Y)f(n) = Xf(n) + Yf(n)
	(XY)f(n) = X(Yf(n)) = Y(Xf(n))

• Аннигилятор (Annihilator) - оператор, который трансформирует f в функцию, тождественную 0Nota. Любой составной оператор аннигилирует класс функций

Nota. Любая функция, составленная из полинома и экспоненты, имеет свой единственный аннигидотяп

Если X аннигилирует f, то X также аннигилирует

Что аннигилирует?
α
c^n
$\alpha a^n + \beta b^n$
$\alpha n + \beta$
$(\alpha n + \beta)a^n$
$P_{d-1}(n) \cdot c^n$

Если X аннигилирует f и Y аннигилирует q, то XY аннигилирует $f \pm q$

• Аннигилирование рекуррентностей:

- 1. Запишите рекуррентное соотношение в форме операторов
- 2. Выделите аннигилятор для соотношения
- 3. Разложите на множители (если понадобится)
- 4. Выделите общее решение из аннигилятора
- 5. Найдите коэффициенты используя базовые случаи (если даны)

Ex.
$$r(n) = 5r(n-1), r(0) = 3$$

1.
$$r(n+1) - 5r(n) = 0$$
 $(E-5)r(n) = 0$

2.
$$(E-5)$$
 аннигилирует $r(n)$

3.
$$(E-5)$$
 уже разложен

4.
$$r(n) = \alpha \cdot 5^n$$

5.
$$r(0) = 3 \Longrightarrow \alpha = 3$$

• Псевдонелинейные уравнения (Pseudo-non-linear equations)

Ex.
$$a_n = 3a_{n-1}^2, a_0 = 1$$

$$\log_2 a_n = \log_2(3a_{n-1}^2)$$

Пусть $b_n = \log_2 a_n$

$$b_n = 2b_{n-1} + \log_2 3, b_0 = 0$$

$$b_n = (2^n - 1) \log_2 3$$

$$b_n = (2^n - 1) \log_2 3$$

$$a_n = 2^{(2^n - 1) \log_2 3} = 3^{2^n - 1}$$