Лекция 2

Ilya Yaroshevskiy

19 апреля 2021 г.

Содержание

1 Интуиционистская логика

3

Обозначение. Γ, Δ, Σ — списки высказываний

Определение. Следование: $\Gamma \vDash \alpha$, если

- $\Gamma = \gamma_1, \dots, \gamma_n$
- Всегда когда все $[\![\gamma_i]\!] = \mathcal{U}$, то $[\![\alpha]\!] = \mathcal{U}$

 $\Pi puмер. \models \alpha - \alpha$ общезначимо

Определение. Теория Исчисление высказываний корректна, если при любом α из $\vdash \alpha$ следует $\models \alpha$

Определение. Исчисление полно, если при любом α из $\models \alpha$ следует $\vdash \alpha$

Теорема 0.1 (о дедукции). $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$

Доказательство.

 (\Leftarrow) Пусть $\Gamma \vdash \alpha \to \beta$.

Т.е. существует доказательство $\delta_1,\dots,\delta_n,$ где $\delta_n=\alpha o \beta$

Построим новое доказательство: $\delta_1, \ldots, \delta_n, \alpha$ (гипотеза), β (М.Р.)

Эта новая последовательность — доказательство $\Gamma, \alpha \vdash \beta$

(⇒) Рассмотрим $\delta_1, \ldots, \delta_n$ — доказательство $\Gamma, \alpha \vdash \beta$

$$\sigma_1 \quad \alpha \to \delta_1$$

$$\sigma_n \quad \alpha \to \delta_n$$

Утвреждение: последовательность $\sigma_1, \dots, \sigma_n$ можно дополнить до доказательства, т.е. каждый σ_i — аксиома, гипотеза или получается по М.Р. Докажем по индукции:

База: n = 0

Переход: пусть $\sigma_0, \dots, \sigma_n$ — доказательсво. тогда $\sigma_{n+1} = \alpha \to \delta_{n+1}$ по трем вариантам:

- 1. δ_{n+1} аксиома или гипотеза $\not\equiv \alpha$
- 2. $\delta_{n+1} \equiv \alpha$
- 3. $\delta_k \equiv \delta_l \to \delta_{n+1}, \ k, l \le n$

Докажем каждый из трех вариантов

1.

$$\begin{array}{c|cccc} (\rm n+0.2) & \delta_{n+1} & (аксиома или гипотеза) \\ (\rm n+0.4) & {}_{n+1} \rightarrow \alpha \rightarrow \delta_{n+1} & (cx. akc. 1) \\ (\rm n+1) & \alpha \rightarrow \delta_{n+1} & (M.P. \ n+0.2, n+0.4) \end{array}$$

- 2. (n+0.2, n+0.4, n+0.6, n+0.8, n+1) доказательтво $\alpha \to \alpha$
- 3.

$$\begin{array}{lll} (k) & \alpha \rightarrow (\sigma_l \rightarrow \sigma_{n+1}) \\ (l) & \alpha \rightarrow \sigma_l \\ (n+0.2) & (\alpha \rightarrow \delta_l) \rightarrow (\alpha \rightarrow (\delta_l \rightarrow \delta_{n+1})) \rightarrow (\alpha \rightarrow \delta_{n+1}) & (\text{cx. 2}) \\ (n+0.4) & (\alpha \rightarrow \delta_l \rightarrow \delta_{n+1}) \rightarrow (\alpha \rightarrow \delta_{n+1}) & (\text{M.P. } n+0.2, l) \\ (n+1) & \alpha \rightarrow \delta_{n+1} & (\text{M.P. } n+0.4, k) \end{array}$$

Теорема 0.2 (о корректности). Пусть $\vdash \alpha$

Тогда $\models \alpha$

Доказательство. Индукция по длине доказательства: каждая $[\![\delta_i]\!] = \mathrm{И},$ если $\delta_1, \ldots, \delta_k$ — доказательство α

Пусть $[\![\delta_1]\!] = \mathrm{И}, \ldots, [\![\delta_n]\!] = \mathrm{И}.$ Тогда осн. δ_{n+1} :

1. δ_{n+1} — аксиома

(а)
$$\delta_{n+1} \equiv \alpha \to \beta \to \alpha$$
 (Сущесвуют α, β , что) Пусть $\delta_{n+1} = A \to B \to A$. Тогда $\alpha \equiv A, \beta \equiv B$ $[\![\alpha] \to \beta \to \alpha]\!]$ $[\![\alpha] \to B \to A$

a			$\alpha \to \beta \to \alpha$
Л	Л	И	И
Л	И	Л	И
И	Л И Л И	И	И
И	И	И	И

2. δ_{n+1} — М.Р. $\delta_k = \delta_l \to \delta_{n+1}$ Фиксируем оценку $[\![\delta_l]\!] = [\![\delta_l]\!] = \mathrm{И}$, тогда $[\![\delta_l \to \delta_{n+1}]\!] = \mathrm{И}$

$[\![\delta_l]\!]$	$\llbracket \delta_{n+1} \rrbracket$	$[\![\delta_k]\!] = [\![\delta_l \to \delta_{n+1}]\!]$
$\overline{\mathcal{H}}$	\mathcal{H}	11
\mathcal{H}	\mathbf{H}	H
\mathbf{H}	\mathcal{H}	\mathcal{H}
И	И	И

T.e. $[\![\delta_{n+1}]\!] = H$

Теорема 0.3 (о полноте). Пусть $\models \alpha$, тогда $\vdash \alpha$

Обозначение.

$$[\beta]^{\alpha} \equiv \begin{cases} \alpha & [\![\beta]\!] = \mathbf{M} \\ \neg \alpha & [\![\beta]\!] = \mathbf{M} \end{cases}$$

 \mathcal{A} оказательство. Фиксируем набор перменных из α : P_1,\dots,P_n Рассмотрим $[\![\alpha]\!]^{P_1:=x_1,\dots P_n:=x_n}=$ И. \mathcal{A} окажем, что $\underbrace{[\![x_1]^{P_1},\dots,[\![x_n]^{P_n}]\!]}_{\lambda}$ $\vdash [\alpha]^{\alpha}$.

Индукция по длине формулы (по структуре)

 $\overline{\text{Baзa: } \alpha \equiv P_i \ [P_i]^{P_i} \vdash [P_i]^{P_i}}$

Переход: пусть η, ζ : $\Delta \vdash [\eta]^{\eta}, \Delta \vdash [\zeta]^{\zeta}$. Покажем, что $\Delta \vdash [\eta \star \zeta]^{\eta \star \zeta}$, где \star — все свзяки Используя лемму: $\vdash \alpha$, т.е. $[x_1]^{P_1}, \ldots, [x_n]^{P_n} \vdash [\alpha]^{\alpha}$. Но $[\![\alpha]\!] = \mathbb{N}$ при любой оценке, т.е. $[x_1]^{P_1}, \ldots, [x_n]^{P_n} \vdash \alpha$ при всех x_i

$$\begin{array}{c} [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}}, P_n \vdash \alpha \\ [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}}, \neg P_n \vdash \alpha \end{array} | \xrightarrow{\text{\tiny \tiny MEMMA}} [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}} \vdash \alpha$$

Лемма 1.

- $\Gamma, \eta \vdash \zeta$
- $\Gamma, \neg \eta \zeta$

 $Tor \partial a \ \Gamma \vdash \zeta$

Лемма 2. $[x_1]^{P_1},\ldots,[x_n]^{P_n}\vdash\alpha,\ mo\ [x_1]^{P_1},\ldots,[x_{n-1}]^{P_{n-1}}\vdash\alpha$

1 Интуиционистская логика

 $A \lor B -$ плохо

 $\Pi puмер.$ Докажем: существует a,b, что $a,b\in\mathbb{R}\setminus\mathbb{Q},$ но $a^b\in\mathbb{Q}$ Пусть $a=b=\sqrt{2}.$ Рассмотрим $\sqrt{2}^{\sqrt{2}}\in\mathbb{R}\setminus\mathbb{Q}$

- Если да, то ОК
- Если нет, то возьмем $a=\sqrt{2}^{\sqrt{2}}, b=\sqrt{2},\, a^b=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=\sqrt{2}^2=2$

ВНК-интерпретация. α, β

- $\alpha \& \beta$ есть α, β
- $\alpha \lor \beta$ есть α либо β и мы знаем какое
- $\alpha \to \beta$ есть способ перестроить α в β
- \bot конструкция без построения $\neg \alpha \equiv \alpha \rightarrow \bot$