A Survey and Refinement of Repairable Threshold Schemes

Thalia M. Laing and Douglas R. Stinson

Presented by Chelsea H. Komlo

Motivation

- Survey of existing repairable threshold schemes (RTSs)
- Introduce computational and efficiency improvements to several RTSs

Focus on Enrolment protocol

- ▶ The paper presents multiple schemes
- Here, we'll focus mainly on the Enrolment scheme

Overview

- 1. Background
- 2. Introduction to Repairable Threshold Schemes
- 3. Naive Repairable Threshold Scheme solution
- Enrolment Scheme and analysis
- 5. Reduced Enrolment Scheme and analysis

Threshold schemes

Definition

Suppose t and n are positive integers such that $2 \le t \le n$. A (t,n)-threshold scheme is a method in which a dealer chooses a secret s and distributes a share to each of the n players such that the following properties are satisfied:

- Recoverability: any subset of t players can compute the secret from the shares they collectively hold, and
- Secrecy: no subset of fewer than t players can determine any information about the secret

Threshold schemes algorithms

Consists of two algorithms:

- ▶ A Share algorithm run by the dealer that receives as input the secret s and parameters t, n and outputs n shares, and
- ▶ A **Recover** algorithm, which receives as input at least *t* distinct, valid shares and outputs the secret.

Shamir secret sharing

For a given secret $s \in \mathbb{Z}_p$, the Share and Recover algorithms are as follows:

▶ **Share**: Select t-1 values $r_1, r_2, \ldots, r_{t-1} \in \mathbb{Z}_p$ uniformly at random, and let f be the polynomial of degree at most t-1 defined by:

$$f(x) = r_{t-1}x^{t-1} + r_{t-2}x^{t-2} + \cdots + r_1x + s$$

The dealer gives each player P_i the share $v_i = f(i)$

Recover: A collection of t or more players perform polynomial interpolation on their shares to recover the polynomial f and determine the secret corresponding to the constant term s = f(0).

Background: Lagrange Interpolation

Shares in Shamir secret sharing $f(x_0), \ldots, f(n)$ can be characterized as follows:

$$f(x_k) = \sum_{i=1}^t \left(\prod_{1 \leq j \leq t, i \neq j} \frac{x_k - x_i}{x_i - x_j} \cdot f(x_i) \right)$$

Where x_k is the target value to find the corresponding $f(x_i)$, and $\frac{x_k - x_i}{x_i - x_j}$ is the Lagrange interpolation constant.

For Shamir secret sharing, this can be used to recover the secret, which is the constant term (0, f(0)).

Repairable Threshold Schemes (RTSs)

- RTSs are threshold schemes that enable a player to securely reconstruct a lost share.
- ▶ Repairability is a useful attribute when a player in a (t, n)-threshold scheme loses or corrupts their share and wishes to repair it.
- Not bound to the dealer to perform a repair- the repairing participant P_r can enlist their peers.
- Universal versus Restricted Repairability
 - Universal: Any participant can help in the repair for any other participant
 - Restricted: Only a subset of all participants can help

Security for RTSs

- 1. Assume a passive adversary that is honest-but-curious
- 2. Want P_r to be able to repair their share, but not reveal any information about the secret s.

(t, n, d)-Repairability Threshold Scheme

- ▶ Let $d \in \mathbb{N}$, $t \le d \le n 1$, where d is the repairing degree.
- ▶ A (t, n, d)-threshold scheme is defined by a **Repair** algorithm, as well as **Share** and **Recover** algorithms.
- ► The Repair algorithm allows a repairing player P_r to securely reconstruct their share with help from a set of d helping players.
- ▶ Additionally, the Repair algorithm could allow for adding *new* players, by extending the set to *n* + 1 players.

Bounds on RTSs

Bounds for the number of required helping players d

Lower Bound. t < d

If fewer than *t* players could reconstruct a share, they could iterative mint *t* shares and recover secret without performing the Recover algorithm.

▶ Upper Bound. $d \le n-1$

If one player lost their share, then there would be n-1 remaining players who could help recover the share.

Efficiency metrics to Evaluate RTSs

- 1. **Information rate**. The amount of information each player is required to store compared to the size of the secret.
- 2. **Communication complexity** The amount of bandwidth required for each execution of the repair algorithm.
- 3. **Repairability**. The ratio of d-subsets from the n-1 players that can help a repairing player P_r repair their share compared to all possible d-subsets.
- 4. **Computational complexity**. The computational complexity of the share, recover, and repair algorithms.

Naive RTS solution

- ▶ Split each share using a (d, n)-threshold scheme, and distribute the "shares of shares" to all other players.
- ▶ Each player stores one share for the secret s protected by the threshold scheme, and also n-1 "shares of shares" for other players.
- ➤ To recover a share, a player performs the Recover algorithm, requesting their corresponding sub-share from at least d other players.

Naive RTS solution analysis

- **Communication Complexity:** To perform a repair, d messages must be sent from each helping participant to P_r .
- ▶ **Information rate**: Each player is required to store n shares. One share to use when performing the Recover algorithm for s, and n-1 "shares of shares" to help other players recover lost shares.

Enrolment scheme

- Share and Recover algorithms are the same as Shamir secret sharing
- Within the Repair algorithm, any participant can help a peer recover a lost share without revealing their own share in the process.
- ▶ Enrolment RTS is a *oblivious protocol*, meaning the decision for player P_i to send a message to P_j in round h is determined by i, j, k (does not depend on input or random coins).

Enrolment scheme: High level intuition

Assume d = t, and $f \in \mathbb{Z}_q[x]$ is a polynomial of degree at most t - 1 whose constant term is s.

A share ϕ_r can be expressed as:

$$\phi_r = \sum_{i=1}^t \zeta_i \phi_i$$

Where ζ_i is the public Lagrange coefficients of P_i ,

We can use this to define a Recover mechanism for an individual share.

Enrolment Scheme: Repair Algorithm

1. Every helping player P_i computes t random values $\delta_{j,i}$ for $1 \le j \le t$, such that:

$$\zeta_i, \phi_i = \sum_{j=1}^t \delta_{j,i}$$

This effectively "splits" ϕ_i into t portions.

- 2. Participants exchanges the $\delta_{j,i}$ values to all other players $1 \ge j \ge t$, $j \ne i$ via a pairwise exchange.
- 3. All players P_j sum their received values: $\sigma_j = \sum_{i=1}^t \delta_{j,i}$
- 4. P_i transmits σ_i to P_r , the player whose share requires recovery.
- 5. P_r computes their share by adding the received σ_i values.

$$\phi_r = \sum_{j=1}^t \sigma_j$$

Enrolment Scheme analysis

- 1. **Information rate.** Optimal, as each player is required to only store their own share.
- 2. **Communication complexity.** Requires t^2 information to be transmitted relative to the secret size.
 - 2.a Step 2, each player sends one messages to t-1 other players, resulting in t(t-1) messages
 - 2.b Step 4, t players sends one message to the repairing player P_r

Enrolment Scheme analysis (cont'd)

- Repairability. Universally repairable inheriting from Shamir threshold scheme (any share can be used in combination with any other share)
- 4. **Computational complexity.** In total, $2t^2 t 1$ modular additions are required
 - 4.a Helping players computes 2(t-1) additions.
 - 4.b Repairing players computes t 1 additions.

Reduced Enrolment Scheme

1. Every player computes t random values $\delta_{j,i}$ for $1 \le j \le t$, such that:

$$\zeta_i, \phi_i = \sum_{j=i}^t \delta_{j,i}$$

- 2. For all $1 \le i \le t$, $i \le j \le t$, player P_i transmits $\delta_{j,i}$ to P_j
- 3. For all $1 \le j \le t$, player P_i computes

$$\sigma_{j} = \sum_{i=j}^{t} \delta_{j,i}$$

- 4. For all $1 \le j \le t$, player P_j transmits σ_j values to P_r
- 5. P_r computes their share

$$\phi_r = \sum_{j=1}^t \sigma_j$$

Reduced Enrolment Scheme Analysis

- 1. **Information rate**. Same as for the Enrolment Scheme, each player stores one share.
- 2. **Communication complexity.** Improvement as requires $\frac{t(t+1)}{2}$ relative to secret size.
- 3. **Repairability.** Same as for Enrolment Scheme, every share can be used to repair every other share.
- 4. **Computational complexity.** Improvement as requires $\frac{t(t+1)}{2}$ modular additions.

Optimal communication complexity of the Reduced Enrolment Scheme

- ▶ **Communication complexity**: Any scheme where a t+1th player computes the sum of t players values is lower-bounded by $\frac{t(t+1)}{2}$ messages sent (relative to size of secret).
- ▶ **Obliviousness**: The *t*-player coalition should not learn the other players' shares or the sum of shares. (cannot learn inputs to the sum and the output).
- ▶ **Security**: In the graph where nodes are $\zeta_i \phi_i$ shares and edges are players sending values corresponding to the share to each other, this graph must be a fully-connected clique and every node must have degree t. Knowledge of all inputs/outputs to a vertex will uniquely define the share.

Takeaways

- Repairable secret sharing schemes can be highly beneficial in a real-world setting due to the chance of share loss or damage.
- The Enrolment Scheme provides a Repair algorithm that is compatible with the Share and Recover algorithms in Shamir secret sharing.
- ► The communication complexity of the Enrolment scheme is high considering the number of exchanges players must perform.