X-Method Variational Function Sacle

icf

Novemberr 2017

1 X-Method Variational Function Scale

The problem will be solved in five steps:

- 1) Pre-analysis
- 2) Matlab Program Modification
- 3) Input/Output
- 4) Discussion

Notice:

Calculation used these parameters below if no special mention:

kx=0

ky=0;

kz=0;

tx=1;

ty=1;

tz=1; U=4:

1.1 Pre-analysis

Model:

$$|\varphi\rangle = \sum_{\overrightarrow{y}} W * \overrightarrow{y} * (e^{\sum_{i,j} y_i * a_{i,j} * n_j} |\phi_{up}\rangle) \bigotimes (e^{\sum_{i,j} -y_i * a_{i,j} * n_j} |\phi_{dn}\rangle)$$

where $|\phi_*\rangle$ is Slater determinant, n_i is particles number operators and a, w are variational parameters and the number of variational parameters is linear to $N_sites*N_y$. (the size of lattice: N_sites* , the number of walkers N_y .)

Many symmetry can be used in the calculation to accelerate this algorithm. In this report, "half-filled" is used.

N_{-y} is the number of walkers.

1.2 Matlab Program Modification

X_2.m; Energy_X_RBM3_2.m; X_RBM_update2_2.m;

X_RBM_Initialzation_2.m;

 $H_K.m;$

1.3 Input/Output

1.fig;

Figure 1: 1.fig; Half-filled; E_Nor1 is the Energy of Trivial K State (The initial state); E_ X4 is the results of X-Method with N_y=4; E_ X8 is the results of X-Method with N_y=8; E_CPMC is the results of CPMC; E_X2c2 is the results of Entangled X-Method with N_y=4; E_X3c3 is the results of Entangled X-Method with N_y=8.

1.4 Discussion

1. The number of walkers needed is still exponential to the system size.