

ML in healthcare 336546 HW3 Answers Adi Alfassi 208929299

1. Clustering

a. The goal of K-medoid algorithm is to minimizes a sum of pairwise dissimilarities, while K-means algorithm minimizes the sum of squared Euclidean distances. Therefore K-medoid algorithm would be more robust to noises and outliers than K-means algorithm.

b.

Bonus:

Donus: To Find	Mnimum V	alue, we	need to	Find M	for Whic	h:	
2 / (Xi -	M) = 0						
Assuming X	; are ar	ranged 00	ther ther	value, or	and m is	s an even	number,
c the m	edian is	dsined	as Xm	4 C < X	<u>m</u>		
We'd live	to prove	that	C	MilliMizes	the gi	ven berm	, so for any a:
∑ Xi - C ²	ξ Y; - α	→ (a) ≥ 171	(\); - (al - 1 Xi - C	(1) ≥ 0		
Assuming a	c, we'	ll set 3	3 960	ps:			
A = S i : Xi <	eal, B	: [i : a2	2 Xi CC	3 C	: [:]	(; > C)	forA
A° → Xi - a -	χ _i - C =	α - χ	(i - C	+ Xi -	a - c		
B: -> X: - a -	χi - C	= \(\lambda_i - O\)	h - C	+ \(\chi_i \)-	9 Xi -	a - C	> 2a-a-c-a-c
(: - Xi - a -	χ _ί - C	= Xi - C	$\lambda - \chi_i$	t C =	C - a		
back to (8)							
5=1 (\(\chi_i - a - \chi_i \)	-C1)= 5	(a-c) +	E (a-	c) + 5	(c-a)	= (0-c)	(IAI+ IBI- CI)
Since c is the	median :	,		C = 8	n = [A/+	[B]	
(3) → S Xi-9	- \(\cdot \)	≥ (a-c)	CIAHBI	- (CI) =	(a-c)	(m - m)	= 0 =
lence the centro	id that n	ninmizes 1	the term	is C-	the med	ian of m	examples

2. SVM

- A and D are classified with a linear kernel SVM because of the linear line of the classifier.
 For large values of C, the classification line would have a small margin range.
 We notice that the margin in D is smaller. Furthermore, a small value of C may allow misclassifications, which occurs in A there are 2 purple dots inside the margin range. Therefore: D=2, A=1
- Since RBF stands for Radial Basis Function, I would expect that the classification would be
 with a radial shaped line- Images B and E are relevant.
 The gamma value represents the influence of a single example, when high gamma value
 means "close influence", and low value means "far influence". These are reflected in the
 size of the radial shapes caused by the classifier.
 - Therefore: B=6, E=5.
- The classification shape in C looks the most similar to a 2nd order polynomial function (parabola). Therefore, the kernel matches this image is 2nd order polynomial kernel: C=3.
- The classification shape in F doesn't resemble as a known/radial function and looks very complex. A complex shape for a classifier would imply a complex function for a kernel (and a risk of over-fitting), for example a 10th order polynomial kernel. F=4.

3. Capability of generalization

- a. This balance in the aspect of machine learning is the balance between model complexity and performance. The term for this balance is Generalization- As Einstein mentioned, we'd like a simple model but with enough complexity to make a good-performing model.
- b. The 2p term when p is the total number of learned parameters represents the complexity of the model. Therefore, and from the formula we can say that the bigger 2p is- the bigger the complexity and the bigger the AIC.
 - L is the estimated likelihood (varies from 0-1) and represents the performance of the model. Mathematically, $2\ln(L)$ can vary from $(-\infty)$ to 0. From the formula we can see that the bigger the likelihood, the bigger $2\ln(L)$ and the lower AIC. That's how and why these terms represent the balance mentioned earlier.
- c. In case of high complexity and high performance, there is a risk of over-fitting: If the model learns from a large number of parameters it may cause a high complexity. That model may have a very high performance with the specific examples given but wouldn't work that way for any other dataset. In case of low complexity there is a risk of under-fitting: If the model learns from a small number of parameters it may cause a low complexity, which leads to a model that with a low performance and won't be accurate enough.
- d. As mentioned in section b, low AIC means low 2p value- represents low complexity, and high 2ln(L) (high L value)- represents high performance. Since this is the balance we'd like to achieve (Best and most simple model), we would like to minimize the value of AIC.