Calcul de réserve

Notation

 $_tL$: Perte prospective de l'assuré au temps t;

- Le symbole représente la perte pour un assuré d'âge *x* à partir du temps *t* et peut donc être réécrit comme :

$$_{t}L=\{_{t}L|T_{x}>t\}$$

 $_{t}V$: Réserve de l'assureur au temps t;

- Le symbole représente la réserve pour un contrat d'assurance d'un assuré d'âge x à partir du temps t et peut donc être réécrit comme : $_tV = \mathrm{E}[\{_tL | T_x \geq t\}]$

 $VP_{@t}$: La valeur présente au temps t;

 $VPA_{@t}$: La valeur présente actuarielle au temps t; $VPA_{@t} = E[VP_{@t}]$

Termes

endowment: Mixte;

Calcul de réserves

Perte prospective: la perte prospective, ${}_{t}L$, actualise les transactions qui vont arriver dans le futur:

 $_{t}L = VP_{@t}(\text{prestations à payer}) - VP_{@t}(\text{primes à reçevoir}) + VP_{@t}(\text{frais à payer})$ S'il y a des frais pour les contrats, il suffit de l'ajouter à la perte.

Relation: $\{T_x - t | T_x > t\} \stackrel{d}{=} T_{x+t}$ où $\stackrel{d}{=}$ veut dire égale en distribution.

Réserve: La réserve, tV, est l'espérance du montant que l'assureur devra payer dans le futur—alias, l'espérance de la perte. Il y a donc plusieurs façons de calculer ces réserves mais on utilise surtout la méthode prospective.

Selon la méthode **prospective**,

$$_{t}V = E [_{t}L]$$
 $= VPA_{@t}(prestations à payer) - VPA_{@t}(primes à reçevoir) + VPA_{@t}(frais à payer)$

Remarque: Pour des primes **nivelées** établies selon le principe d'équivalence du portefeuille, on pose $_{0}V=0$. Donc :

 $VPA_{@t}(primes \ a \ reçevoir) = VPA_{@t}(prestations \ a \ payer) + VPA_{@t}(frais \ a \ payer)$

Relation récursive pour les réserves (discrètes)

$$(_{k}V + P)(1 + i) = q_{x+k}b_{x+k} + p_{x+kx+k}V$$

On ajout la prime P à la réserve $_kV$ au temps k et accumule pour un an. Ceci est équivalent à soit décéder à l'âge x+k et payer la prestation en cas de décès b_{x+k} ou survive et ajouter à la réserve x+kV au temps x+k.

Formule générale ¹ :

$$_{h+1}V=\frac{(_hV+G_h-e_h)(1+i)-(b_{h+1}-E_{h+1})q_{x+h}}{p_{x+h}}$$
 où G_h est la prime à recevoir à $t=h,e_h$ les frais relié à la collecte de la prime et E_h

les frais reliés aux paiement de la prestation.

Formules alternatives pour Contrat d'assurance-vie entière (si π^{PE})

$$_{h}V = MA_{x+h} - \pi \ddot{a}_{x+h} = M\left(1 - \frac{\ddot{a}_{x+h}}{\ddot{a}_{x}}\right) = M\left(\frac{A_{x+h} - A_{x}}{1 - A_{x}}\right)$$

Remarque: ces formules fonctionnent aussi dans le cas d'un contrat d'assurancevie entière continu.

Approximation classique pour les réserves à durées fractionnaires

$$_{h+s}V = (_{h}V + G_{h} - e_{h})(1-s) + (_{h+1}V)(s)$$

Profit de l'assureur

Profit de l'assureur en changeant les 3 composantes

$$k+1V^{A} - k+1V^{E} = N_{k}(kV + G - e'_{k})(1+i') - (b_{k+1} + E'_{k+1} - k+1V)N_{k}q'_{x+k} - [N_{k}(kV + G = e_{k})(1+i) - (b_{k+1} + E_{k+1} - k+1V)N_{k}q_{x+k}]$$

Profit de l'assureur en changeant une seule composante :

Intérêt (i)	$N_k(_kV+G-e_k)(i'-i)$
Frais e_k ou E_k	$N_k(e_k - e'_k)(1+i) + (E_{k+1} - E'_{k+1})N_kq_{k+1}$
Mortalité q_{x+k}	$(b_{k+1} + E_{k+1} - {}_{k+1}V)(N_k q_{x+k} - N_k q'_{x+k})$

^{1.} Si les frais ne sont pas applicables pour le problème, simplement poser $G_h = E_h = 0$.

Quote-Part de l'actif (Asset shares)

Alors que la réserve tV nous dit le montant que l'assureur doit avoir de côté, la quote-part de l'actif nous indique plutôt le montant réel que l'assureur a de côté pour le contrat donné.

$$AS_{K+1} = \frac{(AS_k + G_k - e_k')(1 + i') - (b_{k+1} + E_{k+1}')q_{x+k}'}{p_{x+k}'}$$

Équation de Thiele

Cette équation permet d'obtenir le *taux instantanné d'accroissement* de $_tV$.

$$\frac{\partial}{\partial t} (_t V) = \delta_{tt} V + G_t - e_t - (b_t + E_t) - _t V \mu_{[x]+t}$$
 on peut approximer $_t V$ avec la Méthode d'Euler:

$${}_{t}V = \frac{{}_{t+h}V - h(G_{t} - e_{t} - (b_{t} + E_{t})\mu_{[x]+t})}{1 + h\delta_{t} + h\mu_{[x]+t}}$$

Modification de contrat

Valeur de rachat (Cash value at surrender)