Aufgabenblatt 17

Unendliches Produkt

Bestimmen Sie $\lim_{n\to\infty} \sqrt{e} \cdot \sqrt[4]{e} \cdot \sqrt[8]{e} \cdot \sqrt[16]{e} \cdot \cdots \sqrt[2^n]{e}$.

Ableitungen

Leiten Sie die folgenden Funktionen ab.

$$\begin{split} f(x) &= \frac{1}{40}(x^4 - 26x^2 + 48x - 23) & g(x) &= \frac{x^3 - 5x^2 - x + 5}{3x^2} \\ h(x) &= \frac{3x^3}{3x^2 - 4} & k(x) &= x^2 e^x \\ \ell(x) &= e^{-3x + 2} & m(x) &= e^{-2x^2} \\ n(x) &= x e^{-x} & p(x) &= \sin(e^{2x^2}) \\ q(x) &= \frac{3(x - 1)^2}{x^3 - 2} & \cosh(x) &\coloneqq \frac{1}{2}(e^x + e^{-x}) \\ \sinh(x) &\coloneqq \frac{1}{2}(e^x - e^{-x}) & \tanh(x) &\coloneqq \frac{e^x - e^{-x}}{e^x + e^{-x}} \\ \cot(x) &= \frac{\cos(x)}{\sin(x)} & r(x) &= \frac{(x^2 + 1)e^x}{x - 1} \\ s(x) &= (x^3 - 8x^2)^8 & t(x) &= \frac{1}{(2x^3 + x)^3} \\ u(x) &= \sin(2x)\cos(x) & v(x) &= e^{-3x}\cos(x) \\ w(x) &= \frac{e^x \cos(x)}{e^x + \sin(x)} & z(x) &= \frac{e^{-3x}}{\cos(2x)} \end{split}$$

Eine Gleichung mit vielen Lösungen

Finden Sie alle Lösungen der Gleichung $cos(2x-1) = \frac{1}{2}$.

Hinweis: Wie löst man z. B. $\sin(3x - 1) = \frac{1}{2}$?

a) Man setzt 3x-1=z und sucht alle Lösungen z_k von $\sin(z)=\frac{1}{2}$. Dazu macht man sich eine Skizze, an der man die beiden Grundlösungen z_0 und z_0' ablesen kann:

Dann bildet man die beiden Lösungsfolgen $z_{\mathbf{k}}=z_0+\mathbf{k}\cdot 2\pi$ und $z_{\mathbf{k}}'=z_0'+\mathbf{k}\cdot 2\pi$, $\mathbf{k}\in\mathbb{Z}$.

b) Man löst $3x_k-1=z_k$ bzw. $3x_k'-1=z_k'$ nach x_k bzw. x_k' auf.

Kurvendiskussion

Führen Sie eine vollständige Kurvendiskussion für die Funktion

$$q(x) \coloneqq \frac{3x^3}{3x^2 - 4}$$

durch.

Bestimmen Sie alle Tangenten durch den Punkt A := [-1, 3].

Fertigen Sie eine sorgfältige Skizze an.

J. Hellmich 21. 6. 2024