

HCC/HCF4555B HCC/HCF4556B

DUAL BINARY TO 1 OF 4 DECODER/DEMULTIPLEXERS

4555B OUTPUTS HIGH ON SELECT 4556B OUTPUTS LOW ON SELECT

- EXPANDABLE WITH MULTIPLE PACKAGES
- STANDARD, SYMMETRICAL OUTPUT CHAR-ACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4555B, HCC4556B (extended temperature range) and the HCF4555B, HCF4556B (intermediate temperature range) are monolithic integrated circuits available in 16-lead dual in-line plastic or ceramic package and plastic micropackage.

The HCC/HCF4555B and HCC/HCF4556B are dual one-of-four decoders/demultiplexers. Each decoder has two select inputs (A and B), an Enable input (E), and four mutually exclusive outputs. On the HCC/HCF4555B the outputs are high on select; on the HCC/HCF4556B the outputs are low on select. When the Enable input is high, the outputs of the HCC/HCF4555B remain low and the outputs of the HCC/HCF4556B remain high regardless of the state of the select inputs A and B.

June 1989 1/14

FUNCTIONAL DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V
V_{i}	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T_{op} = Full Package-temperature Range	200	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
Vı	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	လူ

^{*} All voltages values are referred to V_{SS} pin voltage.

LOGIC DIAGRAMS

TRUTH TABLE

Inpu	ts Enable S	elect	Outputs 4555B				Outputs 4556B			
Ē	В	Α	Q 3	Q 2	Q1	Q0	Q 3	Q 2	Q 1	Q0
0	0	0	0	0	0	1	1	1	1	0
0	0	1	0	0	1	0	1	1	0	1
0	1	0	0	1	0	0	1	0	1	1
0	1	1	1	0	0	0	0	1	1	1
1	Х	Х	0	0	0	0	1	1	1	1

X = DON'T CARE, LOGIC 1 = HIGH, LOGIC 0 = LOW.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s				Value		_		
Symbol	Parame	ter	٧ı	٧o	I ₀	V_{DD}	ΤL	o w*		25°C		T _{Hi}	gh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		Турсз	0/15			15		80		0.04	80		600	
V_{OH}	Output High	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low		5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		1117 (
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I_{OL}	Output	1100	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	.,,,,,,,	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		LICE	0/ 5	0.4		5	0.52		0.44	1		0.36		шА
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		.,,,,,,,	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	nut	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	^
	Current	0/15	, ary iii		15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΑ	
Cı	Input Capa	citance		Any In	put					5	7.5			pF

^(*) $T_{LOW} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. (*) $T_{HIGH} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall times = 20ns)

Symbol	Parameter	Test Conditions			Value		Unit
Symbol	raidilletei		V_{DD} (V)	Min.	Тур.	Max.	Oilit
t _{PLH} ,	Propagation Delay Time		5		220	440	
t _{PHL}	(A or B input to any output)		10		95	190	ns
			15		70	140	
	Propagation Delay Time		5		200	400	
	(E input to any output)		10		85	170	ns
			15		65	130	
t _{TLH} ,	Transition Time		5		100	200	
t _{THL}			10		50	100	ns
			15		40	80	

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance (A or B input to any output).

Typical Propagation Delay Time vs. Supply Voltage.

Typical Dynamic Power Dissipation/per Device vs. Frequency.

Typical Propagation Delay Time vs. Load Capacitance (\overline{E} input to any input).

Typical Transition Time vs. Load Capacitance.

APPLICATIONS

1 of 4 Line Data Demultiplexer using HCC/HCF4555B

TRUTH TABLE

Sel Inp	ect uts	Outputs							
В	Α	Q 0	Q 1	Q 2	Q3				
0	0	DATA	0	0	0				
0	1	0	DATA	0	0				
1	0	0	0	DATA	0				
1	1	0	0	0	DATA				

1 of 8 Decoder using HCC/HCF 4555B

TRUTH TABLE

		S			Q Outputs							
С	В	Α	0	1	2	3	4	5	6	7		
0	0	0	1	0	0	0	0	0	0	0		
0	0	1	0	1	0	0	0	0	0	0		
0	1	0	0	0	1	0	0	0	0	0		
0	1	1	0	0	0	1	0	0	0	0		
1	0	0	0	0	0	0	1	0	0	0		
1	0	1	0	0	0	0	0	1	0	0		
1	1	0	0	0	0	0	0	0	1	0		
1	1	1	0	0	0	0	0	0	0	1		

APPLICATIONS (continued)

1 of 16 Decoder using HCC/HCF4555B and HCC/HCF4556B

TRUTH TABLE

	In	pu	ts								C) (Du	tpu	ts					
Е	D	С	В	Α	0	1	2	3	4	5	6	7	8	9	10	11	1 2	13	14	15
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	Х	Χ	Χ	Χ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

X = Don't care.

HCC/HCF4555B Input to Q3 Output Dynamic Signal Waveforms

HCC/HCF4556B Input to $\overline{\rm Q3}$ Output Dynamic Signal Waveforms

APPLICATIONS (continued)

TEST CIRCUITS

Quiescien tDevice Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch						
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.					
Α			1.75			0.068					
a1	0.1		0.2	0.004		0.007					
a2			1.65			0.064					
b	0.35		0.46	0.013		0.018					
b1	0.19		0.25	0.007		0.010					
С		0.5			0.019						
c1			45°	(typ.)							
D	9.8		10	0.385		0.393					
Е	5.8		6.2	0.228		0.244					
е		1.27			0.050						
e3		8.89			0.350						
F	3.8		4.0	0.149		0.157					
G	4.6		5.3	0.181		0.208					
L	0.5		1.27	0.019		0.050					
М			0.62			0.024					
S		8° (max.)									

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
D.III.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

