V14

Tomographie mit -Strahlung

Tahir Kamcili Marina Andreß tahir.kamcili@udo.edu marina.andress@udo.edu

Durchführung: 11.04.2022 Abgabe: 15.04.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	3				
2	Theorie 2.1 Tomographie	3				
3	Aufbau und Durchführung	4				
	3.1 Aufbau 3.1.1 Szintillationsdetektor 3.1.2 Multichannelanalyzer 3.2 Durchführung	4				
4	Auswertung	Ę				
	4.1 Untersuchung des Spektrums 4.2 Bestimmung der Absorptionskoeffizienten 4.2.1 Würfel 2 4.2.2 Würfel 3 4.2.3 Würfel 4	6				
5	Diskussion	g				
Lit	iteratur 9					

1 Ziel

Ziel des Versuches war es die Zusammensetzung eines 3x3x3-Würfels in einer seiner Ebene zu bestimmen, wobei die einzelnen Teilwürfel aus unterschiedlichen Metallen besteht.

2 Theorie

2.1 Tomographie

Die Tomographie ist ein Bild-gebendes Verfahren, welches viel Anwendung in der heutigen Medizin findet. Besonders die so genannte Computertomographie, kurz CT, ist weit verbreitet. Durch dieses Verfahren werden Querschnitte erzeugt und durch die Untersuchung mehrerer Schichten kann so ein 3 Dimesnionales Bild generiert werden.

Im Allgemeinen wird für die Tomographie γ -Strahlung benutzt. Durch die unterschiedlichen Absorptionskoeffizienten und durch die Bestrahlung des Targets aus verschiedenen Winkeln kann ein Bild erzeugt werden.

2.2 Wechselwirkung von Materie mit Gamma-Strahlung

Die Quelle der γ -Strahlung ist im Versuch der Zerfall eines radioaktiven Isotops. In diesems zerfällt der Kern unter Aussendung eines γ -Quants in ein energetisch günstigeren Zustand. Dadurch ist das Spektrum der γ -Strahlung diskret.

 γ -Strahlung wechselt wirkt hauptsächlich in 3 Art und Weisen mit Materie. Diese sind der Photoeffekt, die Compton-Streuung, sowie die Paarerzeugung.

1. Photo-Effekt: Beim Photoeffekt wird ein Photon vollständig von einem gebundenen Elektron absorbiert so, dass dieses aus seiner Bindung herausgelöst wird. Dafür muss die Energie des γ -Quants ($E_{\gamma} = hf$) mindestens die Bindungsenergie E_B des Elektrons an den Kern betragen. Die kinetische Energie des Elektrons lässt sich somit bestimmen zu

$$E_{\rm e} = E_{\gamma} - E_{\rm B} \tag{1}$$

Der Wirkungsquerschnitt σ ist $\propto Z^5 E_{\gamma}^{-3,5}$, daher dominiert im Allgemeinen der Photoeffekt bei Energien <100keV und bei Kernen mit einer hohen Ladungszahl Z.

2. Comptonstreuung: Bei der Comptonstreuung, auch inelastische Streuung genannt, trifft ein Photon auf ein quasi-freies Elektron. Das Photon gibt dabei einen Teil seiner Energie δE ab, sodass die Wellenlänge um $\delta \lambda = \lambda' - \lambda$ verändert wird. Wichtig für den Energieübertrag ist dabei der Winkel in dem das Photon auf das Elektron trifft. Der Energieübertrag wird maximal für 180°. Zudem werden beide Teilchen von ihrer ursprünglichen Bahn abgelenkt , sodass eine Streuung statt findet.

Die Comptonstreuung dominiert für Energien im Bereicht von 100keV - 1MeV.

3. Paarerzeugung: Bei der Paarerzeugung zerfällt ein Photon in einem Coulombfeld eines Teilchens in ein Teilchen-Antiteilchen Paar. Die benötigte Mindestenergie für ein γ -Quant ist gesetzt durch die doppelte Masse des Elektrons (da diese identisch mit der Masse des Positrons ist), da dieses Pärchen das leichteste ist, in welches es Zerfall kann. Somit ist die Mindestenergie gegeben durch

$$E_{\gamma} = 2m_e c^2. \tag{2}$$

2.3 Fehlerbestimmung

3 Aufbau und Durchführung

- 3.1 Aufbau
- 3.1.1 Szintillationsdetektor
- 3.1.2 Multichannelanalyzer
- 3.2 Durchführung

4 Auswertung

Alle Berechnungen werden mit Python mithilfe des Pakets NumPy [5] durchgeführt und alle Plots mit matplotlib [1] erstellt. Die Fehlerrechnung erfolgt mit dem Paket uncertainties [3].

4.1 Untersuchung des Spektrums

Das Spektrum der Caesium-Quelle mit Würfel 1 im Durchgang ist in Abbildung 1 dargestellt. Zu erkennen ist die Anzahl der gemessenen Ereignisse in dem jeweiligen Channel, in dem sich die Ereignisse befinden.

Abbildung 1: Spektrum der Caesium-Quelle.

In dem Plot sind außerdem der Photopeak und die Comptonkante markiert. Bei Caesium liegen die Energien dieser Größen bei $E_P=662~{\rm keV}$ und $E_C=478~{\rm keV}.$

4.2 Bestimmung der Absorptionskoeffizienten

Im folgenden wird die Nullmessung ausgewertet, wobei sich bei der Messung nur die Aluminiumhülle (Würfel 1) im Strahlengang befindet, die Teil jedes Würfels ist. Die aufgenommenen Werte befinden sich in Tabelle $\ref{thm:prop:eq1}$. Die Intensitäten I werden durch

$$I = \frac{N}{t} \tag{3}$$

bestimmt.

Projektion	Counts	$\Delta t / s$	$I_0 / \frac{1}{s}$
1	1705	150	11.367 ± 0.275
2	1440	135	10.667 ± 0.281
3	1571	142	11.063 ± 0.279
4	2111	166	12.717 ± 0.277
5	1424	102	13.717 ± 0.369
6	2444	180	13.578 ± 0.275
7	1633	165	9.897 ± 0.245
8	1554	115	13.513 ± 0.343
9	1126	107	10.523 ± 0.314
10	1434	110	13.036 ± 0.344
11	1432	102	14.039 ± 0.371
12	1036	76	13.632 ± 0.424

Tabelle 1: Messwerte der I_0 Messung mit Würfel 1.

4.2.1 Würfel 2

Aus den Messdaten werden die Absorptionskoeffizienten μ_i nach

$$\mu_i = \frac{\ln(\frac{I_0}{I_i})}{d_i} \tag{4}$$

bestimmt. Dabei ist d_i die Strahlenlänge durch den Würfel je nach Projektion. Es gilt:

$$d_{1,2,3,4,5,6}=3\,\mathrm{cm}$$
 Senkrechte
$$d_{7,9,10,12}=2\sqrt{2}\,\mathrm{cm}$$
 Nebendiagonale
$$d_{8,11}=3\sqrt{2}\,\mathrm{cm}$$
 Hauptdiagonale

Im folgenden werden die negativen Absorptionskoeffizienten nicht betrachtet, da diese nicht physikalisch sind. Für Würfel 2 ergibt sich dann der gemittelte Absorptionskoeffizient $\mu_2 = 0.1029 \, \frac{1}{cm}$.

Projektion	Counts	$\Delta t / s$	$I_2 / \frac{1}{s}$	$\mu / \frac{1}{cm}$
1	1770	180	9.833 ± 0.234	0.048
2	1569	147	10.673 ± 0.269	-0.0002
3	1185	99	11.969 ± 0.348	-0.026
4	1731	150	11.54 ± 0.277	0.032
5	1477	141	10.475 ± 0.273	0.095
6	1417	123	11.52 ± 0.306	0.055
7	1094	170	6.435 ± 0.195	0.152
8	1580	150	10.533 ± 0.265	0.059
9	1126	94	11.979 ± 0.357	-0.045
10	1337	160	8.356 ± 0.229	0.157
11	1805	199	9.07 ± 0.213	0.103
12	1063	147	7.231 ± 0.222	0.224

Tabelle 2: Messwerte von Würfel 2.

4.2.2 Würfel 3

Analog zu Würfel 2 werden auch hier die Absorptionskoeffizienten bestimmt.

Projektion	Counts	$\Delta t / s$	$I_0 / \frac{1}{s}$	$\mu / \frac{1}{cm}$
1	199	300	0.663 ± 0.047	0.947
2	152	300	0.506 ± 0.041	1.016
3	165	300	0.55 ± 0.042	1.000
10	156	300	0.52 ± 0.042	1.130
11	95	300	0.316 ± 0.032	0.892
12	310	300	1.033 ± 0.059	0.911

Tabelle 3: Messwerte von Würfel 3.

Gemittelt ergibt sich für Würfel 3 $\mu_3 = 0.9827 \, \frac{1}{cm}$.

4.2.3 Würfel 4

Da Würfel 4 aus verschiedenen kleinen Würfeln besteht, werden die Absorptionskoeffizienten mit

$$\vec{\mu} = (A^{\top}WA)^{-1}(A^{\top}W\vec{I}) \tag{5}$$

bestimmt. Die Elemente der diagonalen Gewichtsmatrix W werden mithilfe der Gauß'schen Fehlerfortpflanzung nach

$$\begin{split} \sigma_{\rm j} = & \left(\sqrt{\left(\frac{\sigma_{I_0}}{I_0}\right)^2 + \left(\frac{\sigma_{I_j}}{I_j}\right)^2} \right) \\ W_{\rm jj} = & \sigma_{\rm j}^{-1} \end{split}$$

berechnet.

Projektion	Counts	$\Delta t / s$	$I_0 / \frac{1}{s}$	W_{jj}
1	987	300	3.29 ± 0.105	25.002
2	1048	300	3.493 ± 0.108	24.628
3	1132	300	3.773 ± 0.112	25.65
4	1607	141	11.397 ± 0.284	30.206
5	212	300	0.707 ± 0.049	13.584
6	1917	169	11.343 ± 0.259	32.776
7	1558	300	5.193 ± 0.132	28.237
8	669	300	2.23 ± 0.086	21.625
9	1248	300	4.16 ± 0.118	24.329
10	2018	268	7.529 ± 0.168	28.953
11	373	300	1.243 ± 0.064	17.202
12	1111	300	3.703 ± 0.111	23.153

Tabelle 4: Messwerte von Würfel 4.

Daraus ergeben sich nach Gleichung 5 folgende Absorptionskoeffizienten für Würfel 4.

j	$\mu_j / \frac{1}{cm}$
1	2.011
2	0.562
3	2.284
4	4.701
5	-3.650
6	3.661
7	2.779
8	-1.119
9	3.641

Tabelle 5: Absorptionskoeffizienten von Würfel 4.

5 Diskussion

Nun werden die experimentell bestimmten Absorptionskoeffizienten mit den Literaturwerten aus Tabelle 7 verglichen.

Eisen	Aluminium	Blei	Messing	Delrin
0.578	0.202	1.245	0.62	0.118

Tabelle 6: Literaturwerte der Absorptionskoeffizienten.

Dem homogenen Würfel 2 mit dem bestimmten Absorptionskoeffizient $\mu_2=0.1029\,\frac{1}{cm}$ ist mit einer relativen Abweichung von 12.79% das Material Delrin zuzuordnen.

ist mit einer relativen Abweichung von 12.79% das Material Delrin zuzuordnen. Würfel 3 kann mit dem bestimmten Wert $\mu_3=0.9827\frac{1}{cm}$ mit einer Abweichung von 21.07% das Material Blei zugeordnet werden.

Die bestimmten Absorptionskoeffizienten von Würfel 4 befinden sich in Tabelle ??. Im folgenden werden erneut die negativen Werte nicht berücksichtigt, da sie physikalisch nicht sinnvoll sind. In Tabelle ?? befinden sich die zugeordneten Materialien und relative Abweichungen der einzelnen Würfel.

Einzelwürfel	Material	rel. Abw. / $\%$
1	Blei	61.53
2	Eisen	2.75
3	Blei	83.48
4	Blei	277.57
5		
6	Blei	194.08
7	Blei	123.21
8		
9	Blei	192.46

Tabelle 7: Materialien der Elementarwürfel in Würfel 4.

Aufgrund der hohen Abweichungen und der fast ausschließlichen Zuordnung von Blei wird die Messung von Würfel 4 als nicht erfolgreich angesehen. Mögliche Fehler

Literatur

- [1] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [2] Eric Jones, Travis E. Oliphant, Pearu Peterson u. a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.

- [3] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [4] Literaturwert für spezifische Wärmekapazität von Wasser. 2020. URL: https://www.chemie.de/lexikon/Spezifische_W%5C%C3%5C%A4rmekapazit%5C%C3%5C%A4t.html (besucht am 01.11.2020).
- [5] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.
- [6] Versuchsanleitung zu Versuch V14. Fakultät Phyik, TU Dortmund. 2022.