Khôlles de Mathématiques

Kylian Boyet, George Ober, Hugo Vangilluwen, Jérémie Menard

27 novembre 2023

1 Si A admet un plus grand élément c'est aussi sa borne supérieure. Si A admet une borne supérieure dans A c'est sont plus grand élément.

Soit (E, \leq) un ensemble ordonné, et A une partie non-vide de E. S'il existe $M \in A$ tel que $M = \max A$ alors $\sup A$ existe et $\max A = \sup A$. S'il existe $S \in A$ tel que $S = \sup A$ alors $\max A$ existe et $\max A = \sup A$.

Démonstration. Soient un tel ensemble E et une telle partie A et notons M son plus grand élément. Posons $M(A) = \{m \in E \mid \forall a \in A, \ a \leq m\}$.

Par définition:

$$\forall m \in M(A), M \leq m,$$

car $M \in A$, mais comme $M \in M(A)$, on a directement que $M = \min M(A) = \sup A$. D'où:

$$\forall A \subset E, \ \exists M \in A : M = \max A \implies \exists \sup A \in E \land \sup A = \max A \in A.$$

Pseudo-réciproquement, soit A une partie de E admettant une borne supérieure dans elle même, notons cette borne S.

Il n'y a rien à prouver, si S est dans A, par définition, S est plus grand que tous les éléments de A mais est dans A, donc de tous les éléments de A, S est le plus grand :

$$\forall A \subset E, \ \exists S \in A \ : \ S = \sup A \implies \exists \max A \in A \ \land \ \sup A = \max A.$$

2 Théorème de la division Euclidienne dans \mathbb{Z}

Pour tout couple d'entiers relatifs a et b, b non nul, il existe un unique couple d'entiers relatifs q et r tel que a = bq + r et $0 \le r \le |b| - 1$

 $D\acute{e}monstration$. Soient deux tels couples ((q,r),(q',r')) et deux tels entiers (a,b). Directement,

$$b(q - q') = r' - r,$$

mais comme $-(|b|-1) \le r'-r \le |b|-1$, il vient en divisant par |b| l'inégalité suivante :

$$-1 < q - q' < 1$$
,

puisque q et q' sont dans \mathbb{Z} leur différence est obligatoirement 0, ainsi q = q' ce qui implique r = r' et donc on a unicité de ladite écriture de a.

Posons pour $b \geq 1$, $\Omega = \{k \in \mathbb{Z} \mid kb \leq a\}$, non-vide car $-|a| \in \Omega$ (\mathbb{Z} archimédien suffit...), ainsi $\Omega \subset \mathbb{Z}$. Supposons qu'il existe un k dans Ω tel que k > |a|, si tel est le cas alors $k \notin \Omega$ (multiplier par b). De fait, Ω est majoré par |a|, il admet donc un plus grand élément noté q. Posons r = a - bq. Par construction, a = bq + r et comme $q = \max \Omega$ et $\Omega \subset \mathbb{Z}$, $q \in \mathbb{Z}$ donc $r \in \mathbb{Z}$. Par suite, $q \in \Omega$ donc $bq \leq a$ d'où $0 \leq r$ et $q = \max \Omega$ donc b(q + 1) > a d'où b > r, c'est-à-dire, $r \in [0, |b| - 1]$. Si b < 1, il suffit de prendre $q \leftarrow -q$ dans la preuve précédente. C'est donc l'existence de ladite écriture de a.