Machine Learning I 80-629A

Apprentissage Automatique I 80-629

Sequential Decision Making II

— Week #12

Introduction to Reinforcement Learning

Brief recap

- Markov Decision Processes (MDP)
 - Offer a framework for sequential decision making

$$\langle \mathsf{A}, \mathsf{S}, \mathsf{P}, \mathsf{R}, \gamma \rangle$$

- Goal: find the optimal policy
 - Dynamic programming and several algorithms (e.g., VI,PI)

In MDPs we assume that we know

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)
 - 2. Reward function: R(s)

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)
 - 2. Reward function: R(s)
- RL is more general

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)
 - 2. Reward function: R(s)
- RL is more general
 - In RL both are typically unknown

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)
 - 2. Reward function: R(s)
- RL is more general
 - In RL both are typically unknown
 - RL agents navigate the world to gather this information

Experience

- A. Supervised Learning:
 - Given fixed dataset
 - Goal: maximize objective on test set (population)
- B. Reinforcement Learning
 - Collect data as agent interacts with the world
 - Goal: maximize sum of rewards

• Key: decision making over time, uncertain environments

- Key: decision making over time, uncertain environments
- Robot navigation: Self-driving cars, helicopter control

- Key: decision making over time, uncertain environments
- Robot navigation: Self-driving cars, helicopter control
- Interactive systems: recommender systems, chatbots

- Key: decision making over time, uncertain environments
- Robot navigation: Self-driving cars, helicopter control
- Interactive systems: recommender systems, chatbots
- Game playing: Backgammon, go

- Key: decision making over time, uncertain environments
- Robot navigation: Self-driving cars, helicopter control
- Interactive systems: recommender systems, chatbots
- Game playing: Backgammon, go
- Healthcare: monitoring systems

Reinforcement learning and recommender systems

- Most users have multiple interactions with the system of time
- Making recommendations over time can be advantageous (e.g., you could better explore one's preferences)
- States: Some representation of user preferences (e.g., previous items they consumed)
- Actions: what to recommend (item 1, item 2, item 3, ...)
- Reward:
 - + user consumes the recommendation
 - user does not consume the recommendation

Algorithms for Reinforcement Learning

- Input: an environment
 - actions, states, discount factor
 - starting state, method for obtaining next state

- Input: an environment
 - actions, states, discount factor
 - starting state, method for obtaining next state
- Output: an optimal policy

- Input: an environment
 - actions, states, discount factor
 - starting state, method for obtaining next state
- Output: an optimal policy
- In practice: need a simulator or a real environment for your agent to interact

Algorithms for RL

Two main classes of approach

Algorithms for RL

- Two main classes of approach
 - 1. Model-based
 - Learns a model of the transition and uses it to optimize a policy given the model

P(s' | s, a)

Algorithms for RL

- Two main classes of approach
 - 1. Model-based
 - Learns a model of the transition and uses it to optimize a policy given the model

P(s' | s, a)

- 2. Model-free
- Learns an optimal policy without explicitly learning transitions

T

Model-free

- Model-free
- Assume the environment is episodic
 - Think of playing a card game (like poker). An episode is a hand.
 - Updates the policy after each episode

- Model-free
- Assume the environment is episodic
 - Think of playing a card game (like poker). An episode is a hand.
 - Updates the policy after each episode
- Intuition
 - Experience many episodes
 - Play many hands (of poker)
 - Average the rewards received at each state
 - What is the proportion of wins given your curent cards

Prediction vs. control

- 1. Prediction: evaluate a given policy
- 2. Control: Learn a policy
- Sometimes also called
 - passive (prediction)
 - active (control)

First-visit Monte Carlo

- Given a fixed policy (prediction)
- Calculate the value function V(s) for each state

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Initialize:

\pi \leftarrow \text{policy to be evaluated}

V \leftarrow \text{an arbitrary state-value function}

Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}

Repeat forever:

Generate an episode using \pi

For each state s appearing in the episode:

G \leftarrow \text{the return that follows the first occurrence of } s

Append G to Returns(s)

V(s) \leftarrow \text{average}(Returns(s))
```

[Sutton & Barto, RL Book, Ch 5]

• Converges to $V_{\pi}(s)$ as the number of visits to each state goes to infinity

Laurent Charlin — 80-629

First-visit Monte Carlo

- Given a fixed policy (prediction)
- Calculate the value function V(s) for each state

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Initialize:

\pi \leftarrow \text{policy to be evaluated}

V \leftarrow \text{an arbitrary state-value function}

Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}

Repeat forever:

Generate an episode using \pi

For each state s appearing in the episode:

G \leftarrow \text{the return that follows the first occurrence of } s

Append G to Returns(s)

V(s) \leftarrow \text{average}(Returns(s))
```

[Sutton & Barto, RL Book, Ch 5]

• Converges to $V_{\pi}(s)$ as the number of visits to each state goes to infinity

15

 $V(s_t) = \max_{a_t} \left\{ R(s_t) + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) V(s_{t+1}) \right\}$

Policy π is given (gray arrows)

Episode: (1, →)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow$ policy to be evaluated $V \leftarrow$ an arbitrary state-value function $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

 $V(s) \leftarrow \text{average}(Returns(s))$

Repeat forever:

Generate an episode using π For each state s appearing in the episode: $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: (1, →)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: (1, →)

3 4 7 8 7 8 10 11 13 14

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow) \longrightarrow (3, \downarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow) \longrightarrow (3, \downarrow) \longrightarrow (7, \downarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow) \longrightarrow (3, \downarrow) \longrightarrow (7, \downarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

Episode: $(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow)$

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow) \longrightarrow (2, \longrightarrow) \longrightarrow (3, \downarrow) \longrightarrow (7, \downarrow) \longrightarrow (6, \longrightarrow)$$


```
\pi \leftarrow policy to be evaluated
                                                                                           V \leftarrow an arbitrary state-value function
                                                                                           Returns(s) \leftarrow \text{an empty list, for all } s \in S
    Bottom right is absorbing (end of episode)
                                                                                       Repeat forever:
                                                                                           Generate an episode using \pi
                                                                                           For each state s appearing in the episode:
                                                                                               G \leftarrow the return that follows the first occurrence of s
• Policy \pi is given (gray arrows)
                                                                                               Append G to Returns(s)
                                                                                               V(s) \leftarrow \text{average}(Returns(s))
```

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow)$$

- Policy π is given (gray arrows)

```
Initialize:
                                                                                             \pi \leftarrow policy to be evaluated
                                                                                             V \leftarrow an arbitrary state-value function
                                                                                             Returns(s) \leftarrow \text{an empty list, for all } s \in S
Bottom right is absorbing (end of episode)
                                                                                        Repeat forever:
                                                                                            Generate an episode using \pi
                                                                                             For each state s appearing in the episode:
                                                                                                 G \leftarrow the return that follows the first occurrence of s
                                                                                                 Append G to Returns(s)
                                                                                                 V(s) \leftarrow \text{average}(Returns(s))
```

First-visit MC prediction, for estimating $V \approx v_{\pi}$

```
Episode: (1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow)
```


- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize: $\pi \leftarrow \text{policy to be evaluated}$

 $V \leftarrow$ an arbitrary state-value function $Returns(s) \leftarrow$ an empty list, for all $s \in S$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow)$$

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize: $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$ Repeat forever: Generate an episode using π For each state s appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s$ Append G to Returns(s) $V(s) \leftarrow \text{average}(Returns(s))$

```
Episode: (1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow)
```


• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

 $V(s) \leftarrow average(Returns(s))$

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow)$$

16

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow)$$

16

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

 $V(s) \leftarrow average(Returns(s))$

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \longrightarrow)$$

9 10 11 12 13 14 15 16 17

16

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Initialize:

\pi \leftarrow \text{policy to be evaluated}

V \leftarrow \text{an arbitrary state-value function}

Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}

Repeat forever:

Generate an episode using \pi

For each state s appearing in the episode:

G \leftarrow \text{the return that follows the first occurrence of } s

Append G to Returns(s)
```



```
Episode: (1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \longrightarrow)
```


- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize: $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$ Repeat forever: Generate an episode using π For each state s appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s$ Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

For state 7:

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating
$$V \approx v_{\pi}$$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s

Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating
$$V \approx v_{\pi}$$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

$$V(7) = \gamma^6 * 10$$

Summary

- Introduced terminology:
 - model based, model-free
- First algorithm for policy evaluation (First-visit MC)
- Compared to MDPs
 - We the agent now has to explore the world to evaluate its value function

Algorithms for RL Control

We know about state-value functions V(s)

- We know about state-value functions V(s)
 - If state transitions are known then they can be used to derive an optimal policy [recall value iteration]:

$$\boldsymbol{\pi}^*(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}^*(\mathbf{s}') \right\} \ \forall \mathbf{s}$$

- We know about state-value functions V(s)
 - If state transitions are known then they can be used to derive an optimal policy [recall value iteration]:

$$\boldsymbol{\pi}^*(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}^*(\mathbf{s}') \right\} \ \forall \mathbf{s}$$

When state transitions are unknown what can we do?

- We know about state-value functions V(s)
 - If state transitions are known then they can be used to derive an optimal policy [recall value iteration]:

$$\boldsymbol{\pi}^*(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}^*(\mathbf{s}') \right\} \ \forall \mathbf{s}$$

- When state transitions are unknown what can we do?
 - Q(s,a) the value function of a (state,action) pair

$$\boldsymbol{\pi}^*(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{Q}^*(\mathbf{s}, \mathbf{a}) \right\} \ \forall \mathbf{s}$$

Monte Carlo ES (control)

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s,a) \leftarrow \text{empty list}$ Repeat forever: $\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability} > 0$ $\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi$ For each pair s, a appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s, a$ Append G to Returns(s,a) $Q(s,a) \leftarrow \text{average}(Returns(s,a))$ For each s in the episode: $\pi(s) \leftarrow \text{arg max}_a Q(s,a)$

[Sutton & Barto, RL Book, Ch.5]

First-visit MC prediction, for estimating $V \approx$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π For each state s appearing in the episode: $G \leftarrow$ the return that follows the first occurrence Append G to Returns(s) $V(s) \leftarrow average(Returns(s))$

Laurent Charlin — 80-629

Monte Carlo ES (control)

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*

Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):

Q(s,a) \leftarrow \text{arbitrary}
\pi(s) \leftarrow \text{arbitrary}
Returns(s,a) \leftarrow \text{empty list}

Repeat forever:

Choose S_0 \in \mathcal{S} and A_0 \in \mathcal{A}(S_0) s.t. all pairs have probability > 0
Generate an episode starting from S_0, A_0, following \pi

For each pair s, a appearing in the episode:

G \leftarrow \text{the return that follows the first occurrence of } s, a
Append G to Returns(s,a)

Q(s,a) \leftarrow \text{average}(Returns(s,a))

For each s in the episode:

\pi(s) \leftarrow \text{arg max}_a \ Q(s,a)
```

```
Initialize: \pi \leftarrow \text{policy to be evaluated} \\ V \leftarrow \text{an arbitrary state-value function} \\ Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S} \\ \text{Repeat forever:} \\ \text{Generate an episode using } \pi \\ \text{For each state } s \text{ appearing in the episode:} \\ G \leftarrow \text{the return that follows the first occurrence} \\ \text{Append } G \text{ to } Returns(s) \\ \end{cases}
```

 $V(s) \leftarrow \text{average}(Returns(s))$

First-visit MC prediction, for estimating $V \approx$

[Sutton & Barto, RL Book, Ch.5]

- Strong reasons to believe that it converges to the optimal policy
- "Exploring starts" requirement may be unrealistic

Laurent Charlin — 80-629

Learning without "exploring starts"

- "Exploring starts" insures that all states can be visited regardless of the policy
 - (Specific policy may not visit all states)
 - Unrealistic in real-world settings

Learning without "exploring starts"

- "Exploring starts" insures that all states can be visited regardless of the policy
 - (Specific policy may not visit all states)
 - Unrealistic in real-world settings
- Solution: inject some uncertainty in the policy

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
    Q(s, a) \leftarrow \text{arbitrary}
    Returns(s, a) \leftarrow \text{empty list}
    \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
Repeat forever:
    (a) Generate an episode using \pi
    (b) For each pair s, a appearing in the episode:
             G \leftarrow the return that follows the first occurrence of s, a
             Append G to Returns(s, a)
             Q(s, a) \leftarrow \text{average}(Returns(s, a))
    (c) For each s in the episode:
             A^* \leftarrow \arg\max_a Q(s, a)
                                                                                      (with ties broken arbitrarily)
             For all a \in \mathcal{A}(s):
                 \pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}
```

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
Q(s,a) \leftarrow \text{arbitrary}
\pi(s) \leftarrow \text{arbitrary}
Returns(s,a) \leftarrow \text{empty list}
Repeat forever:
\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability } > 0
\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi
\text{For each pair } s, a \text{ appearing in the episode:}
G \leftarrow \text{the return that follows the first occurrence of } s, a
\text{Append } G \text{ to } Returns(s,a)
Q(s,a) \leftarrow \text{average}(Returns(s,a))
\text{For each } s \text{ in the episode:}
\pi(s) \leftarrow \text{arg} \max_a Q(s,a)
```

[Sutton & Barto, RL Book, Ch.5]

22

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
    Q(s, a) \leftarrow \text{arbitrary}
    Returns(s, a) \leftarrow \text{empty list}
    \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
Repeat forever:
    (a) Generate an episode using \pi
    (b) For each pair s, a appearing in the episode:
             G \leftarrow the return that follows the first occurrence of s, a
             Append G to Returns(s, a)
             Q(s, a) \leftarrow \text{average}(Returns(s, a))
    (c) For each s in the episode:
             A^* \leftarrow \arg\max_a Q(s, a)
                                                                                     (with ties broken arbitrarily)
             For all a \in \mathcal{A}(s):
                 \pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}
```

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
Q(s,a) \leftarrow \text{arbitrary}
\pi(s) \leftarrow \text{arbitrary}
Returns(s,a) \leftarrow \text{empty list}
Repeat forever:
\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability } > 0
\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi
\text{For each pair } s, a \text{ appearing in the episode:}
G \leftarrow \text{the return that follows the first occurrence of } s, a
\text{Append } G \text{ to } Returns(s,a)
Q(s,a) \leftarrow \text{average}(Returns(s,a))
\text{For each } s \text{ in the episode:}
\pi(s) \leftarrow \text{arg max}_a Q(s,a)
```

[Sutton & Barto, RL Book, Ch.5]

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
   Q(s, a) \leftarrow \text{arbitrary}
   Returns(s, a) \leftarrow \text{empty list}
   \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each pair s, a appearing in the episode:
            G \leftarrow the return that follows the first occurrence of s, a
            Append G to Returns(s, a)
            Q(s, a) \leftarrow \text{average}(Returns(s, a))
   (c) For each s in the episode:
            A^* \leftarrow \arg\max_a Q(s, a)
                                                                            (with ties broken arbitrarily)
            For all a \in \mathcal{A}(s):
                                1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| if a = A^*
                                                         if a \neq A^*
```

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s,a) \leftarrow \text{empty list}$ Repeat forever: $\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability } > 0$ $\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi$ For each pair s, a appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s, a$ Append G to Returns(s,a) $Q(s,a) \leftarrow \text{average}(Returns(s,a))$ For each s in the episode: $\pi(s) \leftarrow \text{arg} \max_a Q(s,a)$

[Sutton & Barto, RL Book, Ch.5]

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
   Q(s, a) \leftarrow \text{arbitrary}
   Returns(s, a) \leftarrow \text{empty list}
   \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each pair s, a appearing in the episode:
            G \leftarrow the return that follows the first occurrence of s, a
            Append G to Returns(s, a)
            Q(s, a) \leftarrow \text{average}(Returns(s, a))
   (c) For each s in the episode:
            A^* \leftarrow \arg\max_a Q(s, a)
                                                                            (with ties broken arbitrarily)
            For all a \in \mathcal{A}(s):
                                1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| if a = A^*
                                                         if a \neq A^*
```

[Sutton & Barto, RL Book, Ch.5]

Policy value cannot decrease

$$v_{\boldsymbol{\pi}'}(s) \geq v_{\boldsymbol{\pi}}(s), \forall s \in S$$

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s,a) \leftarrow \text{empty list}$ Repeat forever: $\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability} > 0$ $\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi$ For each pair s, a appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s, a$ Append G to Returns(s,a) $Q(s,a) \leftarrow \text{average}(Returns(s,a))$ For each s in the episode: $\pi(s) \leftarrow \text{arg} \max_a Q(s,a)$

 π : policy at current step π : policy at next step

Monte-Carlo methods summary

- Allow a policy to be learned through interactions
 - (Does not learn transitions)
- States are effectively treated as being independent
 - Focus on a subset of states (e.g., states for which playing optimally is of particular importance)
- Episodic (with or without exploring starts)

Temporal Difference (TD) Learning

• One of the "central ideas of RL" [Sutton & Barto, RL book]

• One of the "central ideas of RL" [Sutton & Barto, RL book]

• Monte Carlo methods $\textbf{V}'(\textbf{s}_t) = \textbf{V}(\textbf{s}_t) + \alpha[\textbf{G}_t - \textbf{V}(\textbf{s}_t)]$ Step size

• One of the "central ideas of RL" [Sutton & Barto, RL book]

Monte Carlo methods

$$\mathbf{G_t} = \sum_{\mathbf{t}}^{\mathbf{T}} \gamma^{\mathbf{t}} \mathbf{R}(\mathbf{s_t})$$

First-visit MC prediction, for estima

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π For each state s appearing in the episode

 $G \leftarrow$ the return that follows the first

Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

- One of the "central ideas of RL" [Sutton & Barto, RL book]
- Monte Carlo methods

Observed returned: $V'(s_t) = V(s_t) + \alpha G_t - V(s_t)$

Step size

TD(0)

updates "instantly"

 $\mathbf{G_t} = \sum_{\mathbf{\cdot}} \gamma^{\mathbf{t}} \mathbf{R}(\mathbf{s_t})$

First-visit MC prediction, for estima

Initialize:

 $\pi \leftarrow$ policy to be evaluated $V \leftarrow$ an arbitrary state-value function $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π For each state s appearing in the episode $G \leftarrow$ the return that follows the first

Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

- One of the "central ideas of RL" [Sutton & Barto, RL book]
- Monte Carlo methods

Observed returned :
$$\mathbf{G_t} = \sum_{\mathbf{t}}^{\mathbf{t}} \gamma^{\mathbf{t}} \mathbf{R}(\mathbf{s_t})$$

$$\mathbf{V}'(\mathbf{s_t}) = \mathbf{V}(\mathbf{s_t}) + \alpha \mathbf{G_t} - \mathbf{V}(\mathbf{s_t})$$
Step size

- TD(0)
 - updates "instantly"

$$\mathbf{V}'(\mathbf{s_t}) = \mathbf{V}(\mathbf{s_t}) + \alpha [\underbrace{\mathbf{R}(\mathbf{s_t}) + \gamma \mathbf{V}(\mathbf{s_{t+1}})}_{\approx \mathbf{G_t}} - \mathbf{V}(\mathbf{s_t})]$$

First-visit MC prediction, for estima

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π For each state s appearing in the episode $G \leftarrow$ the return that follows the first

Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

TD(0) for prediction

[Sutton & Barto, RL Book, Ch.6]

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated

Initialize V(s) arbitrarily (e.g., V(s) = 0, for all s \in S^+)

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

A \leftarrow action given by \pi for S

Take action A, observe R, S'

V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]

S \leftarrow S'

until S is terminal
```

TD for control

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal,\cdot) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Loop for each step of episode:
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma Q(S',A') - Q(S,A) \big]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated

Initialize V(s) arbitrarily (e.g., V(s) = 0, for all s \in S^+)

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

A \leftarrow action given by \pi for S

Take action A, observe R, S'

V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]

S \leftarrow S'

until S is terminal
```

Comparing TD and MC

- MC requires going through full episodes before updating the value function. Episodic.
- Converges to the optimal solution

- TD updates each V(s) after each transition. Online.
- Converges to the optimal solution (some conditions on α)
- Empirically TD methods tend to converge faster

27

Extra material (Some will be used for this week's exercises)

Example: Black Jack

- Episode: one hand
- States: Sum of player's cards, dealer's card, usable ace
- Actions: {Stay, Hit}
- Rewards: {Win +1, Tie 0, Loose -1}
- A few other assumptions: infinite deck

> No usable ace

[Figure 5.1, Sutton & Barto]

Usable ace

No usable ace

[Figure 5.1, Sutton & Barto]

Usable ace

No usable ace

[Figure 5.1, Sutton & Barto]

[Figure 5.1, Sutton & Barto]

Practical difficulties

- Compared to supervised learning setting up an RL problem is often harder
 - Need an environment (or at least a simulator)
- Rewards
 - In some domains it's clear (e.g., in games)
 - In others it's much more subtle (e.g., you want to please a human)

Acknowledgements

- The algorithms are from "Reinforcement Learning: An Introduction" by Richard Sutton and Andrew Barto
 - The definitive RL reference
- Some of these slides were adapted from Pascal Poupart's slides (CS686 U.Waterloo)
- The TD demo is from Andrej Karpathy