

Discrete Semiconductor Products

Databook

A Corporate Dedication to Quality and Reliability

National Semiconductor is an industry leader in the manufacture of high quality, high reliability integrated circuits. We have been the leading proponent of driving down IC defects and extending product lifetimes. From raw material through product design, manufacturing and shipping, our quality and reliability is second to none.

We are proud of our success . . . it sets a standard for others to achieve. Yet, our quest for perfection is ongoing so that you, our customer, can continue to rely on National Semiconductor Corporation to produce high quality products for your design systems.

Charles E. Sporck

President, Chief Executive Officer National Semiconductor Corporation

Wir fühlen uns zu Qualität und Zuverlässigkeit verpflichtet

National Semiconductor Corporation ist führend bei der Herstellung von integrierten Schaltungen hoher Qualität und hoher Zuverlässigkeit. National Semiconductor war schon immer Vorreiter, wenn es galt, die Zahl von IC Ausfällen zu verringern und die Lebensdauern von Produkten zu verbesern. Vom Rohmaterial über Entwurf und Herstellung bis zur Auslieferung, die Qualität und die Zuverlässigkeit der Produkte von National Semiconductor sind unübertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die für andere erstrebenswert sind. Auch ihre Ansprüche steigen ständig. Sie als unser Kunde können sich auch weiterhin auf National Semiconductor verlassen.

La Qualité et La Fiabilité:

Une Vocation Commune Chez National Semiconductor Corporation

National Semiconductor Corporation est un des leaders industriels qui fabrique des circuits intégrés d'une très grande qualité et d'une fiabilité exceptionelle. National a été le premier à vouloir faire chuter le nombre de circuits intégrés défectueux et a augmenter la durée de vie des produits. Depuis les matières premières, en passant par la conception du produit sa fabrication et son expédition, partout la qualité et la fiabilité chez National sont sans équivalents.

Nous sommes fiers de notre succès et le standard ainsi défini devrait devenir l'objectif à atteindre par les autres sociétés. Et nous continuons à vouloir faire progresser notre recherche de la perfection; il en résulte que vous, qui êtes notre client, pouvez toujours faire confiance à National Semiconductor Corporation, en produisant des systèmes d'une très grande qualité standard.

Un Impegno Societario di Qualità e Affidabilità

National Semiconductor Corporation è un'industria al vertice nella costruzione di circuiti integrati di altà qualità ed affidabilità. National è stata il principale promotore per l'abbattimento della difettosità dei circuiti integrati e per l'allungamento della vita dei prodotti. Dal materiale grezzo attraverso tutte le fasi di progettazione, costruzione e spedizione, la qualità e affidabilità National non è seconda a nessuno.

Noi siamo orgogliosi del nostro successo che fissa per gli altri un traguardo da raggiungere. Il nostro desiderio di perfezione è d'altra parte illimitato e pertanto tu, nostro cliente, puoi continuare ad affidarti a National Semiconductor Corporation per la produzione dei tuoi sistemi con elevati livelli di qualità.

Charles E. Sporck

President, Chief Executive Officer National Semiconductor Corporation

harlie Sport

DISCRETE SEMICONDUCTOR PRODUCTS

DATABOOK

1989 Edition

Selection Guides and Cross References

Diodes

Bipolar NPN Transistors

Bipolar PNP Transistors

JFET Transistors

Surface Mount Products

Pro-Electron Series

Consumer Series

Power Components

Transistor Datasheets

Process Characteristics

Appendices, Packaging and Ordering Information

1

_

1

5

6

7

8

9

10

11

12

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseable™ FairtechTM MSTTM. SCXTM Anadig™ FAST® Naked-8TM SERIES/800TM ANS-R-TRAN™ 5-Star Service™ National® Series 900™ **APPSTM GENIXTM** National Semiconductor® Series 3000™ **ASPECT™ GNXTM** National Semiconductor Series 32000® Auto-Chem Deflasher™ **HAMRTM** Corp.® Shelf ✓ Chek™ NAX 800TM ВСРТМ HandiScan™ SofChekTM BI-FETTM HEX 3000™ Nitride Plus™ SPIRETM BI-FET IITM **НРС**ТМ Nitride Plus Oxide™ STARTM. BI-LINETM |3L® **NMLTM** StarlinkTM **BIPLANTM ICMTM NOBUSTM** STARPLEXTM **BLCTM** INFOCHEX™ NSC800™ SuperChipTM **BLXTM** Integral ISETM **NSCISETM** SuperScriptTM Brite-LiteTM Intelisplay™ NSX-16TM SYS32TM BTLTM **ISETM** NS-XC-16™ TapePak® CheckTrack™ ISE/06TM NTERCOM™ TDSTM СІМТМ ISE/08TM NURAM™ TeleGateTM **CIMBUSTM** ISE/16TM OXISSTM. The National Anthem® CLASICTM ISE32TM P2CMOSTM Time Chek™ Clock ✓ Chek™ **ISOPLANAR™** TINATM PC Master™ **COMBOTM** ISOPLANAR-ZTM Perfect Watch™ TLCTM Trapezoidal™ COMBO ITM KevScanTM Pharma/ChekTM COMBO IITM **LMCMOSTM PLANTM** TRI-CODE™ COPS™ microcontrollers M2CMOSTM **PLANARTM** TRI-POLY™ Datachecker® MacrobusTM PolycraftTM TRI-SAFETM **DENSPAKTM** MacrocomponentTM POSilink™ TRI-STATE® DIBTM MAXI-ROM® POSitalker™ TURBOTRANSCEIVER*M Digitalker® Meat/Chek™ Power + ControlTM VIPTM DISCERNIM MenuMasterTM POWERplanarTM VR32TM WATCHDOG™ DISTILLTM Microbus™ data bus QUAD3000TM DNR® MICRO-DACTM QUIKLOOKTM **XMOSTM DPVMTM XPUTM** utalker™ RATTM **ELSTARTM** MicrotalkerTM RTX16™ Z STARTM E-Z-LINKTM MICROWIRETM SABRTM 883B/RETSTM

LIFE SUPPORT POLICY

FACTTM

FAIRCADTM

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Script/Chek™

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

MICROWIRE/PLUSTM

MOLETM

A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

883S/RETSTM

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000 TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Introduction to the Discrete Semiconductor Products Data Book

For many years National Semiconductor has been a major supplier of discrete semiconductor devices for the wide ranging consumer, automotive, computer and industrial market-places. And now ... the acquisition of Fairchild by National Semiconductor has heralded in a new era for the NSC Discrete Product Line. The combined product lines have greatly magnified the product depth and have now also made Mil-Aero versions available.

This databook reflects the discrete products that were previously sold by Fairchild along with the NSC bi-polar and JFET transistors. These include:

- Commercial and Mil-Aero versions of small signal diodes
- Commercial and Mil-Aero versions of metal can, small signal bipolar transistors
- The combined Fairchild and NSC lines of general purpose, switching and power transistors in plastic encapsulated packages
- Commercial and Mil-Aero versions of monolithic diode arrays
- Quad transistor arrays
- N-Channel, P-Channel and Dual JFET transistors
- Power MOSFETs and ultrafast rectifiers

Many of the above devices are also available in surface mount packages:

- Leadless glass diodes
- SOT diodes and transistors
- SOIC guad transistor and diode arrays

The selection guides in this databook are designed to provide an easy reference to the many standard parts offered by NSC. If your needs are not satisfied by any of the devices listed, please contact your local NSC Sales Office or the factory for lead form options and for other special selections that are available.

Device	Page
1N3064	2-3
1N3064JAN	2-10
1N3064JANTX	2-10
1N3070	2-10
1N3070JAN	2-10
1N3070JANTX	2-10
1N3595	2-7
1N3595JAN	2-10
1N3595JANTX	2-10
1N3595JANTXV	2-10
1N3600	2-3
1N3600JAN	2-10
1N3600JANTX	2-10
1N3600JANTXV	2-10
1N4009	2-3
1N4146	2-3
1N4147	2-3
1N4148	2-3
1N4148-1JAN	2-10
1N4148-1JANTX	2-10
1N4148-1JANTXV	2-10
1N4149	2-3
1N4150	2-3
1N4150-1JAN	2-10
1N4150-1JANTX	2-10
1N4150-1JANTXV	2-10
1N4151	2-3
1N4152	2-3
1N4153	2-3
1N4154	2-3
1N4244	2-4
1N4244	2-5
1N4305	2-4
1N4305	2-5
1N4306	2-17
1N4306JAN	2-10
1N4306JANTX	2-10
1N4306JANTXV	2-10
1N4307	2-17
1N4307JAN	2-10
1N4307JANTX	2-10
1N4307JANTXV	2-10
1N4376	2-4
1N4376	2-5
1N4376JAN	2-10
1N4376JANTX	2-10
1N4446	2-4
1N4446	2-5
1N4447	2-4
1N4447	2-5
1N4448	2-4

Device	Page
1N4448	2-5
1N4449	2-4
1N4449	2-5
1N4450	2-4
1N4450	2-5
1N4454	2-4
1N4454	2-5
1N4454-1JAN 1N4454-1JANTX	2-10 2-10
1N4454-1JANTXV	2-10
1N456	2-7
1N456A	2-7
1N457	2-7
1N457A	2-7
1N457JAN	2-10
1N458	2-7
1N458A	2-7
1N458JAN	2-10
1N459	2-7
1N459A	2-7
1N459JAN	2-10
1N461A	2-9
1N462A 1N463A	2-9 2-9
1N482B	2-9 2-7
1N483B	2-7
1N483BJAN	2-10
1N483BJANTX	2-10
1N484B	2-7
1N485B	2-7
1N485BJAN	2-10
1N485BJANTX	2-10
1N486B	2-7
1N486BJAN	2-10
1N486BJANTX	2-10
1N4938	2-8
1N5226B	2-16
1N5227B 1N5228B	2-16 2-17
1N5229B	2-17
1N5230B	2-17
1N5231B	2-17
1N5232B	2-17
1N5233B	2-17
1N5234B	2-17
1N5235B	2-17
1N5236B	2-17
1N5237B	2-17
1N5238B	2-17
1N5239B	2-17
1N5240B	2-17

Device	Page
1N5241B	2-17
1N5242B	2-17
1N5243B	2-17
1N5244B	2-17
1N5245B 1N5246B	2-17 2-17
1N5246B 1N5247B	2-17 2-17
1N5247B	2-17
1N5249B	2-17
1N5250B	2-17
1N5251B	2-17
1N5252B	2-17
1N5253B	2-17
1N5254B	2-17
1N5255B	2-17
1N5256B	2-17
1N5257B	2-17
1N5282	2-4
1N5282	2-5
1N5768	2-12
1N5770	2-12
1N5772	2-12
1N5774 1N6099	2-12 2-7
1N6100	2-12
1N6100	2-12
1N625	2-3
1N625	2-8
1N626	2-8
1N627	2-8
1N628	2-8
1N629	2-8
1N6496	2-12
1N658	2-8
1N659	2-9
1N659	2-8
1N660	2-8
1N660 1N661	2-9 2-8
1N661	2-6 2-9
1N746A	2-9 2-15
1N747A	2-15
1N748A	2-15
1N749A	2-15
1N750A	2-15
1N751A	2-15
1N752A	2-15
1N753A	2-15
1N754A	2-15
1N755A	2-15
1N756A	2-15

Device	Page
1N757A	2-15
1N758A	2-15
1N759A	2-15
1N914	2-3
1N914A	2-3
1N914B	2-3
1N914JAN	2-10
1N914JANTX	2-10
1N916	2-3
1N916A	2-3
1N916B	2-3
1N957A	2-15
1N958A	2-15
1N959B	2-15
1N960B 1N961B	2-15 2-15
1N962B	2-15
1N963B	2-15
1N964B	2-15
1N965B	2-15
1N966B	2-15
1N967B	2-15
1N968B	2-15
1N969B	2-15
1N970B	2-15
1N971B	2-15
1N972B	2-15
1N973B	2-15
1S44	2-9
1S920	2-9
18921	2-9
1S922	2-9
1S923	2-9
2N1420	3-26
2N1566	3-26
2N1613 2N1711	3-32 3-32
2N1890	3-32
2N1893	3-32
2N2102	3-32
2N2192	3-32
2N2192A	3-33
2N2193	3-33
2N2193A	3-33
2N2218	3-26
2N2218A	3-26
2N2219	3-26
2N2219A	3-27
2N2221	3-27
2N2221A	3-27
2N2222	3-27

Device	Page
2N2222A	3-27
2N2243	3-33
2N2243A	3-33
2N2369	3-3
2N2369A	3-3
2N2484	3-8
2N2515	5-17
2N2605	4-6
2N2608	5-19
2N2609	5-19
2N2657	3-36
2N2658	3-36
2N2712	3-16
2N2714	3-16
2N2857	3-12
2N2890	3-36
2N2891	3-36
2N2904	4-8
2N2904A	4-8
2N2905	4-8
2N2905A	4-8
2N2906	4-8
2N2906A	4-9
2N2907	4-9
2N2907A	4-9
2N2923	3-16
2N2924	3-16
2N2925	3-16
2N2926	3-16
2N3009	3-5
2N3011	3-3
2N3013	3-5
2N3014	3-5
2N3019	3-33
2N3020	3-34
2N3053	3-34
2N3107	3-34
2N3108	3-34
2N3109	3-34
2N3110	3-34
2N3117	3-8
2N3244	4-4
2N3245	4-4
2N3246	3-8
2N3252	3-5
2N3253	3-5
2N3299	3-27
2N3300	3-28
2N3301	3-28
2N3302	3-28
2N3304	4-3

Device	Page
2N3329	5-19
2N3330	5-19
2N3331	5-19
2N3332	5-19
2N3369	5-9
2N3370	5-9
2N3390	3-16
2N3391	3-16
2N3392	3-16
2N3393 2N3394	3-16 3-16
2N3394 2N3395	3-16
2N3396	3-10
2N3397	3-17
2N3398	3-17
2N3414	3-17
2N3415	3-17
2N3416	3-17
2N3417	3-17
2N3439	3-37
2N3440	3-37
2N3451	4-3
2N3458	5-9
2N3459	5-9
2N3460	5-9
2N3467	4-4
2N3468	4-5
2N3478	3-12
2N3546	3-5
2N3550	4-6
2N3563	3-12
2N3564	3-12
2N3565	3-8
2N3566	3-36
2N3567	3-36
2N3568	3-34
2N3569	3-36
2N3600	3-12
2N3605	3-3
2N3606	3-3
2N3607	3-3
2N3638	4-9
2N3638A 2N3639	4-9 4-3
2N3639 2N3640	4-3 4-3
2N3640 2N3641	4-3 3-17
2N3642	3-17 3-17
2N3643	3-17
2N3644	4-9
2N3645	4-9
2N3662	3-12
	O-1E

Device	Page
2N3663	3-13
2N3665	3-34
2N3666	3-34
2N3684	5-9
2N3685	5-9
2N3686	5-9
2N3687	5-9
2N3691	3-28
2N3692	3-28
2N3693	3-17
2N3694	3-17
2N3700	3-34
2N3701	3-35
2N3702	4-9
2N3703	4-9
2N3704	3-23
2N3705	3-23
2N3706	3-23
2N3707	3-8
2N3708	3-8
2N3709	3-9
2N3710	3-9
2N3711	3-9
2N3721	3-17
2N3724	3-6
2N3724A	3-6
2N3725	3-6
2N3725A 2N3794	3-6 3-23
2N3819	5-23 5-5
2N3820	5-19
2N3821	5-19 5-9
2N3822	5-9 5-9
2N3823	5-5 5-5
2N3824	5-3
2N3825	3-13
2N3858A	3-13
2N3859	3-17
2N3859A	3-9
2N3860	3-17
2N3877	3-9
2N3877A	3-9
2N3900A	3-9
2N3901	3-9
2N3903	3-29
2N3904	3-29
2N3905	4-14
2N3906	4-14
2N3921	5-12
2N3922	5-12
2N3932	3-12

Device	Page
2N3933	3-12
2N3934	5-12
2N3935	5-12
2N3945	3-35
2N3946	3-29
2N3947	3-29
2N3954	5-12
2N3954A	5-12
2N3955	5-12
2N3955A	5-12
2N3956	5-12
2N3957	5-12
2N3958	5-12
2N3966	5-3
2N3967	5-9
2N3967A	5-9
2N3968	5-9
2N3968A	5-9
2N3969	5-9
2N3969A	5-9
2N3970	5-3
2N3971	5-3
2N3972	5-3
2N4030	4-18
2N4031	4-18
2N4032	4-18
2N4033	4-18
2N4036	4-18
2N4037	4-18
2N4047	3-6
2N4058	4-6
2N4059	4-6
2N4061	4-6
2N4062	4-6
2N4082	5-12
2N4083	5-12
2N4084	5-12
2N4085	5-12
2N4091	5-3
2N4092	5-3
2N4093	5-3
2N4117	5-8
2N4117A	5-8
2N4118 2N4118A	5-8 5-8
2N4118A 2N4119	5-8
	5-8 5-8
2N4119A 2N4121	5-6 4-14
2N4121 2N4122	4-14 4-14
2N4122 2N4123	4-14 3-29
2N4123 2N4124	3-29
-11-11-1	0 20

Device	Page
2N4125	4-14
2N4126	4-14
2N4134	3-14
2N4135	3-14
2N4140	3-17
2N4141	3-17
2N4142	4-9
2N4143	4-9
2N4208	4-3
2N4209	4-3
2N4220	5-9
2N4220A	5-9
2N4221	5-9
2N4221A	5-9
2N4222	5-9
2N4222A	5-9
2N4223	5-5
2N4224	5-5
2N4248	4-6
2N4249	4-6
2N4250	4-6
2N4250A	4-6
2N4258 2N4258A	4-3 4-3
2N4259 2N4274	3-12 3-3
2N4274 2N4275	3-3 3-3
2N4275 2N4286	3-9
2N4287	3-9 3-9
2N4288	4-6
2N4289	4-6
2N4299	4-9
2N4291	4-9
2N4292	3-13
2N4293	3-13
2N4294	3-3
2N4295	3-3
2N4314	4-18
2N4338	5-9
2N4339	5-9
2N4340	5-9
2N4341	5-9
2N4354	4-18
2N4355	4-18
2N4356	4-18
2N4381	5-19
2N4391	5-3
2N4392	5-3
2N4393	5-3
2N4393	5-7
2N4400	3-23

Device	Page
2N4401	3-24
2N4402	4-10
2N4403	4-10
2N4409	3-9
2N4410	3-9
2N4416	5-5
2N4416A	5-5
2N4424	3-17
2N48562	5-3
2N4856A	5-3
2N4857	5-3
2N4857A	5-3
2N4858	5-3
2N4858A	5-3
2N48592	5-3
2N4859A	5-3 5-3
2N4860	5-3 5-3
2N4860A	5-3 5-3
2N4861	5-3 5-3
2N4861A	5-3
2N4916	4-14
2N4910 2N4917	4-14
2N4917 2N4944	3-24
2N4944 2N4945	3-24
2N4945 2N4946	3-35
2N4946 2N4951	3-24
2N4951 2N4952	3-24 3-24
2N4952 2N4953	
2N4953 2N4954	3-24 3-24
2N4954 2N4964	
	4-6
2N4965 2N4966	4-6
	3-9
2N4967	3-9
2N4968	3-9
2N4969	3-17
2N4970	3-18
2N4971	4-10
2N4972	4-10
2N5018	5-18
2N5019	5-18
2N5020	5-19
2N5021	5-19
2N5022	4-5
2N5023	4-5
2N5030	3-3
2N5045	5-12
2N5046	5-12
2N5047	5-12
2N5078	5-5
2N5086	4-7
2N5087	4-7

Device	Page
2N5088	3-10
2N5089	3-10
2N5103	5-9
2N5104	5-9
2N5105	5-10
2N5103 2N5114	5-17
2N5114 2N5116	5-18
2N5110 2N5127	3-18
2N5127 2N5128	
	3-18
2N5129	3-18
2N5130	3-13
2N5131	3-18
2N5132	3-18
2N5133	3-10
2N5134	3-3
2N5135	3-18
2N5136	3-18
2N5137	3-18
2N5138	4-14
2N5139	4-14
2N5140	4-3
2N5142	4-10
2N5143	4-10
2N5148	3-37
2N5150	3-37
2N5172	3-18
2N5179	3-12
2N5180	3-12
2N5196	5-12
2N5197	5-12
2N5197 2N5198	5-12 5-12
2N5199	5-12
2N5209	3-10
2N5210	3-10
2N5219	3-18
2N5220	3-24
2N5221	4-10
2N5223	3-18
2N5224	3-4
2N5225	3-24
2N5226	4-10
2N5227	4-7
2N5228	4-3
2N5232	3-10
2N5232A	3-10
2N5245	5-5
2N5246	5-5
2N5247	5-5
2N5248	5-5
2N5305	3-48
2N5305 2N5306	3-48 3-48
ZINOJUO	3-48

Device	Page
2N5307	3-48
2N5308	3-48
2N5336	3-37
2N5338	3-37
2N5354 2N5355	4-10 4-10
2N5358	5-10
2N5359	5-10
2N5360	5-10
2N5361	5-10
2N5362	5-10
2N5363	5-10
2N5364	5-10
2N5365	4-10
2N5366 2N5397	4-10 5-5
2N5397 2N5398	5-5 5-5
2N5400	4-17
2N5401	4-17
2N5432	5-3
2N5433	5-3
2N5434	5-3
2N5447	4-10
2N5452	5-12
2N5453	5-12
2N5454 2N5457	5-12 5-10
2N5458	5-10 5-10
2N5459	5-10
2N5460	5-19
2N5461	5-19
2N5462	5-19
2N5468	5-5
2N5469	5-5
2N5470	5-5
2N5484 2N5485	5-5 5-5
2N5486	5-5 5-5
2N5515	5-14
2N5516	5-14
2N5517	5-14
2N5518	5-14
2N5519	5-14
2N5520	5-14
2N5521	5-14
2N5522	5-14 5-14
2N5523 2N5524	5-14 5-14
2N5524 2N5545	5-14 5-12
2N5546	5-12 5-12
2N5547	5-12

Device	Page
2N5550	3-25
2N5551	3-25
2N5552	5-3
2N5556	5-7
2N5556	5-10
2N5557	5-7
2N5557	5-10
2N5558	5-7
2N5558	5-10
2N5561	5-12
2N5562	5-12
2N5563	5-12
2N5584	5-15
2N5585	5-15
2N5586 2N5638	5-15 5-3
2N5638 2N5639	5-3 5-3
2N5640	5-3
2N5653	5-3 5-4
2N5654	5-4 5-4
2N5769	3-4
2N5770	3-13
2N5771	4-3
2N5772	3-4
2N5817	4-10
2N5830	3-25
2N5831	3-25
2N5833	3-25
2N5902	5-17
2N5903	5-17
2N5904	5-17
2N5905	5-17
2N5906	5-17
2N5907	5-17
2N5908	5-17
2N5909	5-17
2N5910	4-3
2N5911	5-15
2N5912	5-15
2N5949	5-5
2N5950	5-5
2N5951	5-5
2N5952	5-5
2N5953	5-5
2N5961	3-10
2N5962	3-10
2N6076	4-16
2N6426	3-48
2N6427	3-48
2N6483	5-14 5-14
2N6484	5-14

Device	Page
2N6485	5-14
2N6548	3-48
2N6549	3-48
2N6553	3-42
2N6554	4-22
2N6555	4-22
2N6556	9-15
2N6566	4-22
2N6591	3-37
2N6592	3-37
2N6593	3-37
2N6706 2N6709	4-23
2N6710	4-23 4-23
2N6710 2N6711	4-23 3-43
2N6711 2N6712	3-43
2N6712 2N6713	3-44
2N6714	3-39
2N6717	3-42
2N6717	3-42
2N6719	3-44
2N6720	3-37
2N6721	3-37
2N6722	3-38
2N6723	3-38
2N6724	3-48
2N6725	3-48
2N6726	4-20
2N6727	4-20
2N6728	4-24
2N6729	4-24
2N6730	4-24
2N6731	3-42
2N6732	4-24
2N6733	3-44
2N6734	3-44
2N6735	3-44
2N6737	3-7
2N6755	9-15
2N6757	9-15
2N6758	9-15
2N6759	9-16
2N6760	9-16
2N6761	9-17
2N6762	9-17
2N6763 2N6764	9-20
	9-20
2N6765 2N6766	9-20 9-20
2N6766 2N6767	9-20 9-21
2N6768	9-21 9-21
2110/00	9-21

Device	Page
2N6769	9-21
2N6770	9-21
2N696	3-25
2N697 2N699	3-26 3-32
2N7051	3-52
2N7052	3-51
2N7053	3-51
2N718	3-26
2N718A	3-26
2N915	3-28
2N916	3-28
2N917 2N918	3-12 3-12
2N918 2N929	3-12 3-8
2N929A	3-8
2N930	3-8
2N956	3-26
92PE487	3-44
92PE488	3-44
92PE489	3-44
92PU01	3-39
92PU01A 92PU05	3-40 3-40
92PU06	3-42
92PU07	3-42
92PU10	3-44
92PU10	3-45
92PU100	3-42
92P2U36	3-38
92PU36A 92PU36B	3-38 3-38
92PU36C	3-38
92PU391	3-44
92PU392	3-44
92PU393	3-45
92PU45	3-49
92PU45A	3-49
92PU51	4-20
92PU51A	4-21
92PU55 92PU56	4-24 4-24
92PU57	4-24 4-24
BA128	7-3
BA128	2-9
BA129	7-3
BA129	2-7
BA130	7-3
BA130	2-9
BA217 BA217	7-3 2-9
DAZII	۲-۵

BA218 7-3 BA218 2-9 BA316 7-3 BA317 7-3 BA317 2-9 BA318 7-3	
BA218 2-9 BA316 7-3 BA317 7-3 BA317 2-9	
BA317 7-3 BA317 2-9	
BA317 2-9	
BA318 7-3	
BA318 2-9	
BAS16 6-3	
BAS16 7-3	
BAS19 7-3	
BAS20 7-3	
BAS21 7-3	
BAS29 7-3	
BAS31 7-3	
BAS35 7-3	
BAV17 7-3	- 1
BAV17 2-9	- 1
BAV18 7-3	
BAV18 2-9	
BAV19 7-3	
BAV19 2-8	
BAV20 7-3	
BAV20 2-8	
BAV21 7-3	
BAV21 2-8	- 1
BAV70 6-3	- 1
BAV70 7-3	
BAV74 6-3	
BAV74 7-3	
BAV99 6-3	
BAV99 7-3	- 1
BAW56 6-3	
BAW56 7-3	
BAW62 7-3	
BAW75 7-3	- 1
BAW75 2-4	
BAW75 2-5	
BAW76 7-3	
BAW76 2-4	
BAX13 7-3	
BAX13 2-4	
BAX13 2-5	
BAX16 7-3	1
BAX16 2-9	- 1
BAX17 2-8	
BAY19 7-4	
BAY71 7-4	1
BAY71 2-4	
BAY71 2-5	
BAY72 7-4	
BAY72 2-8	1

Device	Page
BAY73 BAY73 BAY73 BAY74 BAY80 BAY80 BAY80 BAY82 BC27 BC327-10 BC327-16 BC327-25 BC327A BC328 BC328-10 BC328-16 BC328-25 BC337 BC337-16 BC338-16 BC338-25 BC337A BC338-16 BC337-25 BC337A BC338-16 BC337-25 BC337A BC338-16 BC337-25 BC37A BC338-16 BC337-25 BC37A BC338-16 BC337-25 BC37-10 BC373A-10 BC373A-10 BC373A-10 BC373B-10 BC37B-10 BC37B-10 BC37B-10 BC37B-10 BC37B-	7-4 2-7 7-4 2-6 7-4 2-8 7-4 2-8 7-5 7-5 7-5 7-5 7-5 7-5 7-5 7-5 7-6 7-6 7-6 7-6 7-22 7-22 7-22 7-22 7-2

Device	Page
BC549	7-7
BC549B	7-7
BC549C	7-7
BC550 BC550B	7-7 7-7
BC556	7-7
BC556A	7-8
BC556B	7-8
BC557	7-8
BC557A	7-8
BC557B	7-8
BC558	7-8
BC558A	7-8
BC558B BC558C	7-8 7-8
BC559	7-8
BC559B	7-9
BC559C	7-9
BC560	7-9
BC560B	7-9
BC635	7-9
BC636	7-9
BC637 BC638	7-9 7-9
BC639	7-9 7-9
BC640	7-9
BC807	7-9
BC807-16	7-10
BC807-25	7-10
BC807-40	7-10
BC808	7-10
BC808-16	7-10
BC808-25 BC808-40	7-10 7-10
BC817	7-10
BC817-16	7-10
BC817-25	7-10
BC817-40	7-10
BC818	7-10
BC818-16	7-10
BC818-25	7-10
BC818-40 BC846	7-11 7-11
BC846-A	7-11
BC846-B	7-11
BC847	7-11
BC847-A	7-11
BC847-B	7-11
BC848	7-11
BC848-A	7-11
BC848-B	7-11

Device	Page
BC848-C	7-11
BC849	7-12
BC849B	7-12
BC849C	7-12
BC850	7-12
BC850-B BC856	7-12
BC856-A	7-12 7-12
BC856-B	7-12 7-12
BC857	7-12
BC857-A	7-12
BC857-B	7-13
BC858	7-13
BC858-B	7-13
BC858-C	7-13
BC859	7-13
BC859-A	7-13
BC859-B	7-13
BC859-C	7-13
BC860	7-13
BC860-B	7-13
BCF29 BCF30	7-13 7-13
BCF32	7-13 7-13
BCF33	7-13 7-14
BCF70	7-14
BCV26	7-14
BCV27	7-14
BCV71	7-14
BCV72	7-14
BCW29	7-14
BCW30	7-14
BCW31	7-14
BCW32	7-14
BCW33	7-14
BCW60	7-14
BCW61 BCW65	7-14 7-14
BCW66	7-14 7-15
BCW68	7-15 7-15
BCW69	7-15 7-15
BCW03	7-15 7-15
BCW71	7-15 7-15
BCW72	7-15
BCW81	7-15
BCW89	7-15
BCX17	7-15
BCX18	7-15
BCX19	7-15
BCX20	7-15
BCX58	7-16

Device	Page
BCX58-10	7-16
BCX58-7	7-16
BCX58-8	7-16
BCX58-8 BCX58-9	7-16 7-16
BCX59	7-16 7-16
BCX59-10	7-17
BCX59-7	7-16
BCX59-9	7-17
BCX70G	7-17
BCX70H	7-17
BCX70J	7-17
BCX71G	7-17
BCX71H BCX71J	7-17 7-17
BCX713 BCX78	7-17 7-17
BCX78-10	7-18
BCX78-7	7-17
BCX78-8	7-18
BCX78-9	7-18
BCX79	7-18
BCX79-10	7-18
BCX79-7	7-18
BCX79-8	7-18
BCX79-9 BD370A	7-18 7-18
BD370A-10	3-19
BD370A-16	3-19
BD370A-25	3-19
BD370B	3-19
BD370B-10	3-19
BD370B-16	3-19
BD370B-25	3-19
BD370C	3-19
BD370C-10 BD370C-16	3-19 3-19
BD370C-10	3-19
BD370D	3-19
BD370D-10	3-19
BD370D-6	3-19
BD371A	3-19
BD371A-10	7-20
BD371A-16	7-20
BD371A-25	7-20
BD371B BD371B-10	7-20 7-20
BD371B-10 BD371B-16	7-20 7-20
BD371B-10	7-20 7-20
BD371C	7-20
BD371C-10	7-20
BD371C-16	7-20

Device	Page
BSR19	7-24
BSR20	7-24
BSR56	7-26
BSR57 BSR58	7-26
BSS38	7-26 7-24
BSS63	7-24 7-24
BSS64	7-24 7-24
BSS79-B	7-25
BSS79-C	7-25
BSS80-B	7-25
BSS80-C	7-25
BSV52	7-25
BSX39	7-25
CS9011	8-3
CS9012 CS9013	8-3
CS9013	8-3 8-3
CS9015	8-3
CS9016	8-3
CS9018	8-3
D40C1	3-49
D40C2	3-49
D40C3	3-49
D40C4	3-49
D40C5	3-49
D40C7 D40C8	3-49 3-49
D40C8 D40D1	3-49
D40D10	3-42
D40D11	3-42
D40D13	3-43
D40D14	3-43
D40D2	3-40
D40D3	3-40
D40D4	3-40
D40D5 D40D6	3-40 3-40
D40D6 D40D7	3-40 3-40
D40D7	3-40
D40E1	3-40
D40E5	3-41
D40E7	3-43
D40K1	3-49
D40K2	3-49
D40K3	3-49
D40K4	3-49
D40N1	3-45
D40N2 D40N3	3-45 3-45
D40N4	3-45 3-45
D70117	0-40

····	
Device	Page
D40P1	3-38
D40P3	3-38
D40P5	3-38
D41D1	4-21
D41D10	4-21
D41D11	4-22
D41D13	4-22
D41D14	4-22
D41D2	4-21
D41D4	4-21
D41D5	4-21
D41D7	4-21
D41D8	4-21
D41E1	4-22
D41E5	4-22
D41E7	4-22
D41K1	4-26
D41K2	4-26
D41K3	4-26
D41K4	4-26
D42C1	9-3
D42C1	3-40
D42C10	9-3
D42C11 D42C2	9-3 9-3
D42C2	3-40
D42C2 D42C3	9-3
D42C3	3-40
D42C4	9-3
D42C5	9-3
D42C5	3-41
D42C6	3-41
D42C7	9-3
D42C8	9-3
D42C9	9-3
D42D12	9-3
D42D4	3-41
D42D6	9-3
D43C1	9-5
D43C10	9-5
D43C11	9-5
D43C12	9-5
D43C2	9-5
D43C3	9-5
D43C4	9-5
D43C5	9-5
D43C6	9-5
D43C7	9-5
D43C8	9-5
D43C9	9-5
D44C1	9-3

Device	Page
D44C10	9-4
D44C12	9-4
D44C2	9-3
D44C3	9-3
D44C4	9-4
D44C5	9-4
D44C6	9-4
D44C7	9-4
D44C8	9-4
D44C9	9-4
D44H1	9-4
D44H10	9-4
D44H11	9-4
D44H4	9-4
D44H5	9-4
D44H7	9-4
D44H8	9-4
D45C1	9-5
D45C10	9-6
D45C12	9-6
D45C2	9-5 9-5
D45C3	9-5 9-6
D45C4 D45C5	9-6
D45C5 D45C6	9-6
D45C6 D45C7	9-6
D45C7 D45C8	9-6
D45C9	9-6
D4509 D45H1	9-6
D45H10	9-6
D45H11	9-6
D45H2	9-6
D45H4	9-6
D45H5	9-6
D45H7	9-6
D45H8	9-6
ED1402	8-3
ED1502	8-3
ED1602	8-3
ED1702	8-3
ED1802	8-3
FAS02501	6-12
FAS02503	6-12
FAS02509	8-3
FAS02510	6-12
FAS02563	6-12
FAS02564	6-12
FAS02565	6-12
FAS02566	6-12
FAS02619	6-12
FAS02620	6-12
1 7002020	0-14

FAS02719 6-12	
EAC00700 0.40	
FAS02720 6-12	
FD700 2-6	
FD777 2-6	
FDH1000 2-9	
FDH300 2-7	
FDH333 2-7	
FDH400 2-8	
FDH444 2-8	
FDH600 2-6	
FDH666 2-6	
FDH900 2-6	
FDH900 2-9	
FDH999 2-6	
FDH999 2-9	
FDLL300 6-10	
FDLL3064 6-7	
FDLL3070 6-11	
FDLL333 6-10	
FDLL3595 6-10	
FDLL3600 6-7	
FDLL400 6-11	
FDLL4009 6-7	
FDLL4148 6-7	
FDLL4149 6-7	
FDLL4150 6-7	
FDLL4151 6-8	
FDLL4152 6-8 FDLL4153 6-8	
FDLL4153 6-8	
FDLL4134 6-8	
FDLL4446 6-8	
FDLL4447 6-8	
FDLL4448 6-8	
FDLL4449 6-8	
FDLL4450 6-8	
FDLL4454 6-8	
FDLL456 6-10	
FDLL456A 6-10	
FDLL457 6-10	
FDLL457A 6-10	
FDLL458 6-10	
FDLL458A 6-10	
FDLL459 6-10	
FDLL459A 6-10	
FDLL461A 6-9	
FDLL462A 6-9	
FDLL463A 6-9	
FDLL482B 6-10	
FDLL483B 6-10	
FDLL484B 6-10	

Device	Page
FDLL485B	6-10
FDLL600 FDLL6099	6-7 6-10
FDLL6099	6-7
FDLL626	6-11
FDLL627	6-11
FDLL628	6-11
FDLL629 FDLL658	6-11 6-11
FDLL659	6-9
FDLL660	6-11
FDLL661	6-9
FDLL666 FDLL914	6-7 6-7
FDLL914 FDLL914A	6-7 6-7
FDLL914B	6-7
FDLL916	6-7
FDLL916A	6-7
FDLL916B FDLL920	6-7 6-9
FDLL921	6-9
FDLL922	6-9
FDLL923	6-9
FDS01201 FDS01202	6-3 6-3
FDS01202 FDS01203	6-3
FDS01204	6-3
FDS01205	6-3
FDS01301	6-4
FDS01401 FDS01402	6-4 6-4
FDS01403	6-4
FDS01404	6-4
FDS01405	6-4
FDS01501 FDS01502	6-4 6-4
FDS01502 FDS01503	6-4
FDS01504	6-4
FDS01505	6-4
FDS03070	6-4
FDS03595 FDS04148	6-4 6-3
FDS04448	6-3
FDS0914	6-3
FJT1100	2-7
FJT1101 FMP18N05	2-7 9-13
FMP18N06	9-13
FMP20N05	9-13
FMP20N06	9-13
FRK3205CC	9-10

Device	Page
FRK3210CC	9-10
FRK3215CC	9-10
FRK3220CC FRP1005	9-10 9-7
FRP1005	9-7 9-7
FRP1015	9-7
FRP1020	9-7
FRP1605	9-8
FRP1605CC	9-9
FRP1610	9-8
FRP1610CC	9-9
FRP1615	9-8
FRP1615CC	9-9
FRP1620 FRP1620CC	9-8 9-9
FRP1640CC	9-9 9-9
FRP1650CC	9-9
FRP1660CC	9-9
FRP2005CC	9-9
FRP2010CC	9-9
FRP2015CC	9-9
FRP2020CC	9-9
FRP805	9-7
FRP810	9-7
FRP815 FRP820	9-7 9-7
FRP840	9-7 9-7
FRP850	9-7
FRP860	9-7
FSA2002	2-12
FSA2003	2-12
FSA2500M	2-12
FSA2501M	2-12
FSA2501P	2-12
FSA2503M	2-12
FSA2503P FSA2504M	2-12 2-12
FSA2504M FSA2508P	2-12
FSA2509M	2-12
FSA2509P	2-12
FSA2510M	2-13
FSA2510P	2-13
FSA2563M	2-13
FSA2563P	2-13
FSA2564M	2-13
FSA2564P	2-13
FSA2565M	2-13
FSA2565P FSA2566M	2-13 2-13
FSA2566P	2-13 2-13
FSA2619M	2-13
. 5, 2510111	

Device	Page
FSA2619P	2-13
FSA2620M	2-13
FSA2620P	2-13
FSA2621M	2-13
FSA2621M	2-13
FSA2719M	2-13
FSA2719P	2-13
FSA2720M	2-13
FSA2720P	2-13
FSA2721M	2-13
IRF130	9-15
IRF131	9-15
IRF132	9-15
IRF133	9-15
IRF140	. 9-18
IRF141	9-18
IRF142	9-18
IRF143	9-18
IRF150	9-20
IRF151	9-20
IRF152	9-20
IRF153	9-20
IRF230	9-15
IRF231	9-15
IRF232	9-16
IRF233	9-16
IRF240	9-18
IRF241	9-18
IRF242	9-18
IRF243	9-18
IRF250	9-20
IRF251	9-20
IRF252	9-21
IRF253	9-21
IRF330	9-16
IRF331	9-16
IRF332	9-16
IRF333 IRF3340	9-16
IRF3340 IRF341	9-19
IRF341	9-19 9-19
IRF342	9-19
IRF350	9-19
IRF350	9-21 9-21
IRF351	9-21 9-21
IRF352	9-21 9-21
IRF430	9-21 9-17
IRF430	9-17 9-17
IRF431	9-17 9-17
IRF432 IRF433	9-17 9-17
IRF440	9-17 9-19
IF1F44U	J-18

Device	Page
IRF441	9-19
IRF442	9-20
IRF443 IRF450	9-20 9-21
IRF450	9-21 9-21
IRF452	9-21
IRF453	9-21
IRF510	9-12
IRF511	9-12 9-12
IRF512 IRF513	9-12 9-12
IRF520	9-13
IRF520	9-22
IRF521	9-13
IRF522	9-13
IRF523 IRF530	9-13 9-15
IRF530	9-15 9-22
IRF531	9-15
IRF532	9-15
IRF533	9-15
IRF540	9-18
IRF540 IRF541	9-22 9-18
IRF542	9-18
IRF543	9-18
IRF610	9-12
IRF611	9-12
IRF612	9-12
IRF613 IRF620	9-12 9-14
IRF620	9-22
IRF621	9-14
IRF622	9-14
IRF623	9-14
IRF630 IRF630	9-16 9-22
IRF631	9-22 9-16
IRF632	9-16
IRF633	9-16
IRF640	9-19
IRF640	9-23
IRF641 IRF642	9-19 9-19
IRF710	9-19 9-12
IRF711	9-12
IRF712	9-13
IRF713	9-13
IRF720 IRF720	9-14 9-22
IRF720 IRF721	9-22 9-14
1111 / 4 1	J-17

Device	Page
IRF722	9-14
IRF723	9-14
IRF730	9-16
IRF730	9-22
IRF731 IRF732	9-16 9-17
IRF732 IRF733	9-17 9-17
IRF740	9-19
IRF740	9-23
IRF741	9-19
IRF742	9-19
IRF743	9-19
IRF820	9-14
IRF820	9-22
IRF821	9-14
IRF822 IRF823	9-14 9-14
IRF830	9-17
IRF830	9-22
IRF831	9-17
IRF832	9-17
IRF833	9-17
IRF840	9-20
IRF840	9-23
IRF841	9-20
IRF842 IRF843	9-20 9-20
IRFP140	9-20 9-18
IRFP140CF	9-22
IRFP141	9-18
IRFP141CF	9-22
IRFP150	9-20
IRFP150CF	9-23
IRFP151	9-20
IRFP151CF	9-23
IRFP240	9-18
IRFP240CF IRFP241	9-23 9-18
IRFP241CF	9-23
IRFP250	9-20
IRFP250CF	9-23
IRFP251	9-21
IRFP251CF	9-23
IRFP340	9-19
IRFP340CF	9-23
IRFP341	9-19
IRFP341CF IRFP350	9-23 9-21
IRFP350CF	9-21 9-24
IRFP350CF	9-24
IRFP351CF	9-24

Device	Page
IRFP440	9-19
IRFP440CF	9-23
IRFP441	9-20
IRFP441CF	9-23
IRFP450	9-21
IRFP450CF	9-24
IRFP451	9-21
IRFP451CF	9-24
J105	5-4
J106	5-4
J107	5-4
J108	5-4
J109	5-4 5-4
J110	5-4
J111	5-4
J112	5-4
J113	5-4
J114	5-4
J174	5-18
J175	5-18
J176	5-18
J177	5-18
J201	5-10
J202	5-10
J203	5-10
J210	5-10
J211	5-10
J212	5-10
J270	5-19
J271	5-19
J300	5-5
J304	5-5
J305	5-5
J308	5-5
J309	5-5
J310	5-5
J401	5-13
J402	5-13
J403	5-12
J403 J404	5-12 5-13
J405	5-13
J406	5-13
J410	5-13
J411	5-13
J412	5-13
MMBF4391	6-36
MMBF4393	6-36
MMBF5911	6-37
MMBFJ113	6-36
MMBFJ174	6-38
MMBFJ175	6-38

Device	Page
MMBFJ176	6-38
MMBFJ177	6-38
MMBT100	6-18
MMBT100A	6-18
MMBT101	6-18
MMBT200	6-33
MMBT200A	6-34
MMBT201	6-34
MMBT2218	6-18
MMBT2218A	6-18
MMBT2219	6-18
MMBT2219A	6-19
MMBT2221	6-19
MMBT2221A	6-19
MMBT2222	6-19
MMBT2222A	6-19
MMBT2369	6-13
MMBT2369A	6-13
MMBT2484	6-16
MMBT2484	6-20
MMBT2710	6-14
MMBT2904	6-28
MMBT2904A	6-28
MMBT2905	6-28
MMBT2905A	6-28
MMBT2906 MMBT2906A	6-28
MMBT2907	6-28 6-29
MMBT2907A	6-29
MMBT2924	6-20
MMBT3013	6-14
MMBT3013	6-14
MMBT3117	6-16
MMBT3251	6-31
MMBT3392	6-20
MMBT3393	6-20
MMBT3414	6-20
MMBT3415	6-20
MMBT3416	6-20
MMBT3417	6-20
MMBT3467	6-35
MMBT3563	6-15
MMBT3565	6-16
MMBT3566	6-20
MMBT3567	6-24
MMBT3568	6-24
MMBT3569	6-24
MMBT3638	6-29
MMBT3638A	6-29
MMBT3639	6-26
MMBT3640	6-26

Device	Page
MMBT3641	6-20
MMBT3642	6-20
MMBT3643	6-20
MMBT3644	6-29
MMBT3645	6-29
MMBT3646	6-14
MMBT3693	6-23
MMBT3694	6-23
MMBT3700	6-24
MMBT3702	6-30
MMBT3703	6-30
MMBT3903	6-23 6-23
MMBT3904	
MMBT3905 MMBT3906	6-31 6-31
MMBT3946	6-23
MMBT3962	6-34
MMBT4121	6-31
MMBT4122	6-31
MMBT4123	6-23
MMBT4124	6-23
MMBT4125	6-32
MMBT4126	6-32
MMBT4143	6-34
MMBT4248	6-27
MMBT4249	6-27
MMBT4250	6-27
MMBT4250A	6-27
MMBT4258	6-26
MMBT4274	6-13
MMBT4275	6-13
MMBT4291	6-34
MMBT4354	6-32
MMBT4355	6-33
MMBT4356 MMBT4400	6-33 6-22
MMBT4401	6-22
MMBT4402	6-30
MMBT4403	6-30
MMBT4409	6-16
MMBT4410	6-16
MMBT4888	6-35
MMBT4889	6-35
MMBT4916	6-32
MMBT4917	6-32
MMBT5086	6-27
MMBT5087	6-27
MMBT5088	6-16
MMBT5089	6-16
MMBT5128	6-21
MMBT5130	6-15

Device Page	•
MMBT5133 6-17	
MMBT5134 6-13	
MMBT5135 6-21	
MMBT5136 6-21	
MMBT5137 6-21	ľ
MMBT5138 6-32	
MMBT5139 6-32	
MMBT5142 6-30	
MMBT5143 6-30	
MMBT5172 6-21	
MMBT5179 6-15	
MMBT5209 6-17	
MMBT5210 6-17	
MMBT5223 6-21	
MMBT5224 6-13	
MMBT5226 6-30	
MMBT5227 6-27	
MMBT5228 6-26	
MMBT5400 6-35	
MMBT5401 6-35	
MMBT5447 6-34	
MMBT5551 6-22	
MMBT5571-2 6-26	
MMBT5769 6-13	
MMBT5771 6-26	
MMBT5771-1 6-26	
MMBT5772 6-14	
MMBT5830 6-22 MMBT5831 6-22	
MMBT5833 6-22	
MMBT5855 6-33	
MMBT5857 6-33	
MMBT5910 6-26	
MMBT5961 6-17	
MMBT5961 6-17 MMBT5962 6-17	
MMBT5965 6-22	
MMBT6426 6-25	
MMBT6502 6-30	
MMBT6514 6-23	
MMBT6515 6-21	
MMBT6518 6-32	
MMBT6520 6-21	
MMBT6521 6-21	
MMBT6543 6-15	
MMBT6560 6-24	
MMBT6561 6-24	
MMBT6562 6-33	
MMBT706 6-13	
MMBT706A 6-13	
MMBT918 6-15	
MMBT930 6-16	

Device	Page
MMBT930A	6-16
MMBTA05	6-24
MMBTA06	6-24
MMBTA12 MMBTA13	6-25 6-25
MMBTA14	6-25
MMBTA20	6-21
MMBTA42	6-24
MMBTA43	6-24
MMBTA55	6-33
MMBTA56	6-33
MMBTA70	6-27
MMBTA92	6-35
MMBTA93	6-35
MMBTH10	6-15
MMBTH11 MMBTH20	6-15 6-14
MMBTH24	6-14 6-15
MMBTH30	6-15
MMBTH34	6-15
MMBTH81	6-35
MMBTL01	6-22
MMBTL51	6-35
MPAS92	4-20
MPF102	5-6
MPF103	5-10
MPF104	5-10 5-10
MPF105 MPF106	5-10 5-6
MPF107	5-6
MPF108	5-6
MPF109	5-10
MPF110	5-10
MPF111	5-10
MPF112	5-10
MPF256	5-6
MPF820	5-6
MPQ100 MPQ200	3-18 4-16
MPQ200 MPQ2222	4-16 3-18
MPQ2907	4-11
MPQ3467	4-5
MPQ3468	4-5
MPQ3724	3-7
MPQ3725	3-7
MPQ3904	3-29
MPQ3906	4-14
MPQ6426	3-50
MPQ6700	4-15
MPQ6700	4-16
MPQ6700	3-29

Device	Page
MPQA13	3-50
MPQA63	4-26
MPS2369	3-4
MPS2369A	3-4
MPS2711	3-29
MPS2712	3-29
MPS2713	3-4
MPS2714 MPS2716	3-4 3-30
MPS2923	3-30
MPS2923	3-18
MPS2925	3-18
MPS2926	3-19
MPS3392	3-19
MPS3393	3-19
MPS3394	3-19
MPS3395	3-19
MPS3396	3-19
MPS3397	3-19
MPS3398	3-19
MPS3563	3-13
MPS3638	4-11
MPS3638A	4-11
MPS3639	4-3
MPS3640	4-3
MPS3644	4-11
MPS3645	4-11
MPS3646	3-5
MPS3693	3-19
MPS3694	3-19
MPS3702	4-11
MPS3703 MPS3704	4-11 3-24
MPS3704 MPS3705	3-24 3-24
MPS3706	3-24
MPS3707	3-10
MPS3708	3-10
MPS3709	3-10
MPS3710	3-10
MPS3711	3-11
MPS3721	3-30
MPS3826	3-30
MPS3827	3-30
MPS3903	3-19
MPS3904	3-19
MPS3905	4-15
MPS3905	4-16
MPS3906	4-15
MPS3906	4-16
MPS4354	4-19
MPS4355	4-19

Device Page MPS4356 4-19 MPS5172 3-19 MPS5770 3-13 MPS6507 3-13 MPS6511 3-13 MPS6512 3-30 MPS6513 3-30 MPS6514 3-30 MPS6515 3-30 MPS6516 4-16 MPS6517 4-16 MPS6518 4-16 MPS6519 4-16 MPS6520 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6531 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6540 3-15		
MPS5172 3-19 MPS5770 3-13 MPS6507 3-13 MPS6511 3-13 MPS6512 3-30 MPS6513 3-30 MPS6514 3-30 MPS6515 3-30 MPS6516 4-15 MPS6516 4-15 MPS6517 4-15 MPS6517 4-16 MPS6517 4-16 MPS6518 4-16 MPS6518 4-16 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6521 3-20 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6531 3-25 MPS6533 4-11 MPS6534 4-11 MPS6539 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6544 3-15 MPS6545 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6559 3-14 MPS6564 3-14 MPS6564 3-10 MPS6565 3-30 MPS6566 3-20 MPS6560 3-20 MPS6561 3-11 MPS6560 3-14 MPS6560 3-14 MPS6560 3-14 MPS6560 3-14 MPS6560 3-14 MPS6560 3-20 MPS6561 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS65715 3-41 MPS6717 3-41	Device	Page
MPS5172 3-19 MPS5770 3-13 MPS6507 3-13 MPS6511 3-13 MPS6512 3-30 MPS6513 3-30 MPS6514 3-30 MPS6515 3-30 MPS6516 4-15 MPS6516 4-15 MPS6517 4-15 MPS6517 4-16 MPS6517 4-16 MPS6518 4-16 MPS6518 4-16 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6521 3-20 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6531 3-25 MPS6533 4-11 MPS6534 4-11 MPS6539 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6544 3-15 MPS6545 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6559 3-14 MPS6564 3-14 MPS6564 3-10 MPS6565 3-30 MPS6566 3-20 MPS6560 3-20 MPS6561 3-11 MPS6560 3-14 MPS6560 3-14 MPS6560 3-14 MPS6560 3-14 MPS6560 3-14 MPS6560 3-20 MPS6561 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS65715 3-41 MPS6717 3-41	MPS4356	4-19
MPS6507 3-13 MPS6511 3-13 MPS6512 3-30 MPS6513 3-30 MPS6514 3-30 MPS6515 3-30 MPS6516 4-15 MPS6516 4-15 MPS6517 4-16 MPS6517 4-16 MPS6518 4-15 MPS6518 4-15 MPS6518 4-15 MPS6518 3-20 MPS6520 3-20 MPS6521 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6534 4-11 MPS6534 3-14 MPS6534 3-14 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6544 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6544 3-15 MPS6540 3-15 MPS6564 3-14 MPS6554 3-14 MPS6554 3-14 MPS6564 3-14 MPS6564 3-14 MPS6564 3-14 MPS6564 3-14 MPS6564 3-14 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41	MPS5172	
MPS6507 3-13 MPS6511 3-13 MPS6512 3-30 MPS6513 3-30 MPS6514 3-30 MPS6515 3-30 MPS6516 4-15 MPS6516 4-15 MPS6517 4-16 MPS6517 4-16 MPS6518 4-15 MPS6518 4-15 MPS6518 4-15 MPS6518 3-20 MPS6520 3-20 MPS6521 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6534 4-11 MPS6534 3-14 MPS6534 3-14 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6544 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6544 3-15 MPS6540 3-15 MPS6564 3-14 MPS6554 3-14 MPS6554 3-14 MPS6564 3-14 MPS6564 3-14 MPS6564 3-14 MPS6564 3-14 MPS6564 3-14 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41	MPS5770	3-13
MPS6511 3-13 MPS6512 3-30 MPS6513 3-30 MPS6514 3-30 MPS6515 3-30 MPS6516 4-15 MPS6516 4-16 MPS6517 4-15 MPS6517 4-16 MPS6518 4-16 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6531 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6531 3-12 MPS6534 4-11 MPS6535 4-11 MPS6535 4-11 MPS6536 3-12 MPS6540 3-15 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6545 3-14 MPS6545 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6559 3-14 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41		
MPS6512 3-30 MPS6513 3-30 MPS6514 3-30 MPS6515 3-30 MPS6516 4-15 MPS6516 4-15 MPS6517 4-15 MPS6517 4-16 MPS6518 4-16 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 4-7 MPS6530 3-25 MPS6532 4-11 MPS6534 4-11 MPS6535 4-11 MPS6536 4-11 MPS6536 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6540 3-15 MPS6541 3-13 MPS6540 3-14 MPS6540 3-14 MPS6540 3-15 MPS6541 3-13 MPS6540 3-14 MPS6540 3-15 MPS6540 3-14 MPS6540 3-15 MPS6540 3-14 MPS6540 3-15 MPS6540 3-14 MPS6559 3-14 MPS6559 3-14 MPS6560 3-20 MPS6561 3-30 MPS6560 3-20 MPS6561 3-11 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS65715 3-41 MPS6717 3-41	MPS6511	
MPS6513 3-30 MPS6514 3-30 MPS6515 3-30 MPS6516 4-15 MPS6516 4-15 MPS6517 4-15 MPS6517 4-16 MPS6518 4-16 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 3-25 MPS6531 3-25 MPS6532 3-25 MPS6531 3-25 MPS6532 3-11 MPS6534 4-11 MPS6535 4-11 MPS6535 4-11 MPS6536 3-12 MPS6540 3-15 MPS6540 3-15 MPS6541 3-13 MPS6540 3-14 MPS6544 3-15 MPS6544 3-15 MPS6545 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6559 3-14 MPS6566 3-20 MPS6566 3-20 MPS6566 3-20 MPS6569 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41 MPS6571 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41		
MPS6514 3-30 MPS6515 3-30 MPS6516 4-15 MPS6516 4-15 MPS6517 4-15 MPS6517 4-15 MPS6518 4-15 MPS6518 4-15 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6522 3-24 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6536 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6540 3-15 MPS6540 3-14 MPS6540 3-15 MPS6540 3-14 MPS6540 3-15 MPS6540 3-14 MPS6550 3-14 MPS6540 3-15 MPS6564 3-14 MPS6554 3-14 MPS6564 3-14 MPS6564 3-14 MPS6564 3-14 MPS6565 3-30 MPS6566 3-20 MPS6566 3-20 MPS6570 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41 MPS6571 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41		
MPS6515 MPS6516 MPS6516 MPS6516 MPS6517 MPS6517 MPS6517 MPS6518 MPS6518 MPS6518 MPS6520 MPS6521 MPS6522 MPS6522 MPS6523 MPS6523 MPS6531 MPS6534 MPS6534 MPS6535 MPS6533 M-11 MPS6539 MPS6534 MPS6534 MPS6540 MPS6541 MPS6540 MPS6540 MPS6541 MPS6544 MPS6544 MPS6544 MPS6544 MPS6545 MPS6545 MPS6546 MPS6559 MPS6566 MPS6566 MPS6566 MPS6566 MPS6566 MPS6566 MPS6566 MPS65670 MPS6571		
MPS6516 4-15 MPS6516 4-16 MPS6517 4-15 MPS6517 4-16 MPS6518 4-16 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6521 3-20 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 4-11 MPS6534 4-11 MPS6539 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6544 3-14 MPS6544 3-14 MPS6545 3-14 MPS6545 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6547 3-14 MPS6548 3-12 MPS6549 3-14 MPS6549 3-14 MPS6560 3-10 MPS6560 3-20 MPS6560 3-20 MPS6560 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41 MPS6571 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS65715 3-41 MPS67717 3-41		
MPS6516 MPS6517 MPS6517 MPS6517 MPS6518 MPS6518 MPS6518 MPS6520 MPS6521 MPS6521 MPS6522 MPS6522 MPS6531 MPS6531 MPS6532 MPS6531 MPS6532 MPS6532 MPS6531 MPS6532 MPS6531 MPS6534 M-11 MPS6534 M-11 MPS6535 MPS6539 M-11 MPS6539 MPS6539 M-11 MPS6540 MPS6541 MPS6540 MPS6541 MPS6541 MPS6541 MPS6544 MPS6544 MPS6545 MPS6545 MPS6545 MPS6546 MPS6546 MPS6546 MPS6546 MPS6547 MPS6548 MPS6548 MPS6549 MPS6549 MPS6568 MPS6569 MPS6569 MPS6569 MPS6569 MPS6569 MPS6569 MPS6569 MPS6569 MPS6569 MPS6570 MPS6571		
MPS6517 4-15 MPS6517 4-16 MPS6518 4-15 MPS6518 4-16 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6522 3-24 MPS6522 3-24 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6539 3-12 MPS6539 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6540 3-14 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6545 3-14 MPS6544 3-15 MPS6546 3-14 MPS6546 3-14 MPS6559 3-14 MPS6564 3-30 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6569 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41 MPS6571 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41		
MPS6517 4-16 MPS6518 4-15 MPS6518 4-16 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6545 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6546 3-14 MPS6559 3-14 MPS6559 3-14 MPS6569 3-14 MPS6560 3-20 MPS6566 3-20 MPS6567 3-15 MPS6569 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41		
MPS6518 4-15 MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6533 4-11 MPS6534 4-11 MPS6539 3-12 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6540 3-15 MPS6540 3-14 MPS6541 3-13 MPS6540 3-15 MPS6541 3-13 MPS6540 3-14 MPS6540 3-14 MPS6540 3-15 MPS6540 3-14 MPS6540 3-15 MPS6540 3-14 MPS6550 3-14 MPS6550 3-14 MPS6560 3-20 MPS6560 3-20 MPS6560 3-20 MPS6560 3-11 MPS6570 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41		
MPS6518 4-16 MPS6520 3-20 MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6540 3-15 MPS6540 3-14 MPS6544 3-15 MPS6545 3-14 MPS6545 3-14 MPS6546 3-14 MPS6546 3-14 MPS6547 3-14 MPS6548 3-12 MPS6559 3-14 MPS6559 3-14 MPS6560 3-20 MPS6566 3-20 MPS6566 3-20 MPS6569 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6575 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-20 MPS6575 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41		
MPS6520 3-20 MPS6521 3-20 MPS6522 3-24 MPS6522 3-24 MPS6533 4-7 MPS6530 3-25 MPS6531 3-25 MPS6532 3-25 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6554 3-14 MPS6554 3-14 MPS6554 3-14 MPS6554 3-14 MPS6564 3-14 MPS6564 3-14 MPS6565 3-30 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41		
MPS6521 3-20 MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6540 3-15 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6564 3-14 MPS6554 3-14 MPS6554 3-15 MPS6564 3-14 MPS6556 3-10 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6569 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41		
MPS6522 3-24 MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6545 3-14 MPS6545 3-14 MPS6546 3-14 MPS6556 3-10 MPS6565 3-30 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6570 3-14 MPS6571 3-11 MPS6571 3-20 MPS6573 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41		
MPS6523 4-7 MPS6530 3-25 MPS6531 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6544 3-15 MPS6545 3-14 MPS6546 3-14 MPS6559 3-14 MPS6559 3-14 MPS6559 3-14 MPS6560 3-20 MPS6566 3-20 MPS6566 3-20 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6575 3-20 MPS6576 3-20 MPS65715 3-41		
MPS6530 3-25 MPS6531 3-25 MPS6531 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6544 3-15 MPS6546 3-14 MPS6546 3-14 MPS6559 3-14 MPS6565 3-30 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6569 3-14 MPS6571 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41		
MPS6531 3-25 MPS6532 3-25 MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6544 3-15 MPS6546 3-14 MPS6554 3-15 MPS6565 3-14 MPS6559 3-14 MPS6568 3-12 MPS6569 3-14 MPS6569 3-14 MPS6569 3-14 MPS6560 3-20 MPS6560 3-20 MPS6570 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41		
MPS6532 3-25 MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6546 3-14 MPS6548 3-12 MPS6559 3-14 MPS6559 3-14 MPS6569 3-14 MPS6560 3-20 MPS6566 3-20 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6717 3-41		
MPS6533 4-11 MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6546 3-14 MPS6546 3-14 MPS6548 3-12 MPS6559 3-14 MPS6559 3-14 MPS6565 3-30 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-11 MPS6571 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS65771 3-41		
MPS6534 4-11 MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6546 3-14 MPS6547 3-14 MPS6548 3-12 MPS6559 3-14 MPS6559 3-14 MPS6562 4-19 MPS6565 3-30 MPS6565 3-30 MPS6566 3-20 MPS6566 3-14 MPS6571 3-11 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-20 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS65775 3-41 MPS6771 3-41		
MPS6535 4-11 MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6564 3-14 MPS6546 3-14 MPS6559 3-14 MPS6559 3-14 MPS6562 4-19 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41		
MPS6539 3-12 MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6546 3-14 MPS65547 3-14 MPS6559 3-14 MPS6559 3-14 MPS6562 4-19 MPS6564 3-30 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6570 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-41 MPS6571 3-41		
MPS6540 3-15 MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6546 3-14 MPS6546 3-14 MPS65548 3-12 MPS6559 3-14 MPS6562 4-19 MPS6562 4-19 MPS6565 3-30 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6717 3-41		
MPS6541 3-13 MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6546 3-14 MPS6546 3-14 MPS6548 3-12 MPS6559 3-14 MPS6562 4-19 MPS6565 3-30 MPS6565 3-30 MPS6566 3-20 MPS6566 3-20 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS65776 3-20 MPS6771 3-41	MPS6539	3-12
MPS6542 3-14 MPS6543 3-14 MPS6544 3-15 MPS6546 3-14 MPS6547 3-14 MPS6548 3-12 MPS6559 3-14 MPS6562 4-19 MPS6564 3-30 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6717 3-41		3-15
MPS6543 3-14 MPS6544 3-15 MPS6546 3-14 MPS6547 3-14 MPS6548 3-12 MPS6559 3-14 MPS6562 4-19 MPS6564 3-30 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6570 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6571 3-41 MPS6717 3-41	MPS6541	3-13
MPS6544 3-15 MPS6546 3-14 MPS6547 3-14 MPS6548 3-12 MPS6559 3-14 MPS6562 4-19 MPS6564 3-30 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS65715 3-41 MPS6717 3-41	MPS6542	3-14
MPS6546 3-14 MPS6547 3-14 MPS6548 3-12 MPS6559 3-14 MPS6562 4-19 MPS6565 3-30 MPS6566 3-20 MPS6566 3-20 MPS6569 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41	MPS6543	3-14
MPS6547 3-14 MPS6548 3-12 MPS6559 3-14 MPS6562 4-19 MPS6564 3-30 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6570 3-14 MPS6571 3-11 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41	MPS6544	3-15
MPS6548 3-12 MPS6559 3-14 MPS6562 4-19 MPS6564 3-30 MPS6565 3-30 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6570 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-21 MPS6571 3-41 MPS6571 3-41	MPS6546	3-14
MPS6559 3-14 MPS6562 4-19 MPS6564 3-30 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41	MPS6547	3-14
MPS6562 4-19 MPS6564 3-30 MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41	MPS6548	3-12
MPS6564 3-30 MPS6565 3-30 MPS6566 3-20 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41	MPS6559	3-14
MPS6564 3-30 MPS6565 3-30 MPS6566 3-20 MPS65667 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41	MPS6562	4-19
MPS6565 3-30 MPS6566 3-20 MPS6567 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41	MPS6564	3-30
MPS6567 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6567 3-15 MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41	MPS6566	3-20
MPS6568A 3-14 MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6569 3-14 MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6570 3-14 MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6571 3-11 MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6573 3-20 MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6574 3-20 MPS6575 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6575 3-20 MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6576 3-20 MPS6715 3-41 MPS6717 3-41		
MPS6715 3-41 MPS6717 3-41		
MPS6717 3-41		
MP36/24 3-50		
	MPS6724	3-50

Device	Page
MPS6725	3-50
MPS6727	4-23
MPS6733	3-45
MPS6734	3-45
MPS6735	3-45
MPS706	3-4
MPS706A MPS8098	3-4
MPS8098	3-20 3-20
MPS834	3-20
MPS918	3-13
MPSA05	3-35
MPSA06	3-35
MPSA09	3-11
MPSA10	3-20
MPSA12	3-50
MPSA13	3-50
MPSA14	3-50
MPSA18	3-11
MPSA20	3-20
MPSA42	3-45
MPSA42	3-45
MPSA43	3-45
MPSA43	3-46 4-19
MPSA55 MPSA56	4-19 4-19
MPSA62	4-19
MPSA63	4-26
MPSA65	4-26
MPSA66	4-26
MPSA70	4-7
MPSA93	4-20
MPSH10	3-12
MPSH11	3-14
MPSH19	3-15
MPSH20	3-15
MPSH24	3-15
MPSH30	3-14
MPSH31	3-14
MPSH34	3-15
MPSH37	3-15
MPSL01	3-25
MPSL51	4-17
MPSW01 MPSW06	3-41 3-43
MPSW10	3-45 3-45
MPSW13	3-45 3-50
MPSW42	3-45
MPSW43	3-46
MPSW45	3-50
MPSW45A	3-50

Device	Page
Device MPSW63 MPSW92 MRF501 MRF502 MTP10N08 MTP10N10 MTP12N18 MTP12N20 MTP20N08 MTP20N10 MTP2N18 MTP2N40 MTP2N35 MTP2N40 MTP2N45 MTP2N40 MTP2N45 MTP2N45 MTP2N40 MTP4N68 MTP4N68 MTP4N68 MTP4N68 MTP4N10 MTP4N68 MTP4N10 MTP4N10 MTP4N10 MTP4N10 MTP4N10 MTP4N20 MTP5N35 MTP5N40 MTP7N12 NA31 NA32 NB111 NB121 NDF9406 NDF9407 NDF9408	Page 4-26 4-20 3-12 3-12 9-13 9-16 9-15 9-15 9-15 9-12 9-12 9-13 9-14 9-14 9-14 9-14 9-14 9-14 9-14 9-14
NDF9408 NDF9409 NDF9410 NF5011	5-15 5-16 5-16 5-15
NF5011C NF5012 NF5101 NF5102 NF5103 NF5301	5-15 5-15 5-7 5-7 5-7
NF5301-1 NF5301-2 NF5301-3 NPD5584 NPD5585 NPD5586 NPD8301	5-8 5-8 5-8 5-8 5-15 5-15 5-15

Device	Page
NPD8302	5-13
NPD8303	5-13
NPD8304	5-13
NR421	8-4
NR431	8-4
NS3903	3-31
NS3904	3-31
NSD102	3-41
NSD103	3-41
NSD104	3-43
NSD105	3-43
NSD106	3-43
NSD131	3-46
NSD132	3-46
NSD133	3-46
NSD134	3-46
NSD135	3-46
NSD151	3-50
NSD152	3-50
NSD153	3-50
NSD154	3-50
NSD202	4-21
NSD203	4-21
NSD204	4-24
NSD205	4-24
NSD206	4-25
NSD3429	3-39
NSD3440	3-39
NSD36	3-39
NSD36A	3-39
NSD36B	3-39
NSD36C	3-39
NSD457	3-46
NSD458	3-46
NSD459	3-46
NSD6178 NSD6179	3-43
NSD6179 NSD6180	3-41
NSD6180	4-23
NSDU01	4-23
NSDU01	3-40
NSDUUTA NSDU05	3-41 3-42
NSDU05 NSDU06	3-42 3-43
NSDU06 NSDU07	3-43 3-43
NSDU10	3-43 3-46
NSDU45	3-46 3-51
NSDU45A	3-51
NSDU51	4-21
NSDU51A	4-21
NSDU52	4-22
NSDU55	4-23

Device	Page
NSDU56	4-25
NSDU57	4-25
NSDU95	4-26
NSDU95A	4-26
NSE181 NSE457	3-42 3-46
NSE458	3-46
NSE459	3-47
P1086	5-18
P1087	5-18
PE4020	3-11
PE8550	4-23
PF5101	5-7
PF5301	5-8
PF5301-1	5-8
PF5301-2 PF5301-3	5-8 5-8
PN100	3-20
PN100A	3-20
PN101	3-21
PN200	4-16
PN200A	4-17
PN201	4-17
PN2221	3-21
PN2221A	3-21
PN2222	3-21
PN2222A	3-28
PN2369 PN2369A	3-4 3-4
PN2484	3- 4 3-11
PN2906	4-11
PN2906A	4-12
PN2907	4-12
PN2907A	4-12
PN3251	4-15
PN3251	4-16
PN3563	3-13
PN3564	3-13
PN3565	3-11
PN3566 PN3567	3-36 3-36
PN3568	3-35 3-35
PN3569	3-35 3-36
PN3638	4-12
PN3638A	4-12
PN3639	4-4
PN3640	4-4
PN3641	3-21
PN3642	3-21
PN3643	3-21
PN3644	4-12

Device	Page
PN3645	4-12
PN3646	3-5
PN3684	5-10
PN3685	5-10
PN3686	5-10
PN3687	5-11
PN3691	3-31
PN3692	3-31
PN3694	3-21
PN4091	5-4
PN4092	5-4
PN4093	5-4
PN4117	5-8
PN4117A	5-8
PN4118	5-8
PN4118A	5-8
PN4119	5-8
PN4119A	5-8
PN4120	5-8
PN4120A	5-8
PN4121	4-15
PN4121	4-16
PN4122	4-15
PN4122	4-16
PN4140	3-21
PN4141	3-22
PN4142	4-13
PN4143	4-13
PN4220	5-11
PN4221	5-11
PN4222	5-1.1
PN4223	5-6
PN4224	5-6
PN4248	4-7
PN4249	4-7
PN4250	4-7
PN4250A	4-7
PN4258	4-4
PN4258A	4-4
PN4274	3-4
PN4275	3-5
PN4302	5-11
PN4303	5-11
PN4304	5-11
PN4338	5-11
PN4339	5-11
PN4342	5-19
PN4354	4-19
PN4355	4-19
PN4356	4-19
PN4360	5-19

Device	Page
PN4391	5-4
PN4392	5-4
PN4393	5-4
PN4393	5-7
PN4416	5-6
PN4856	5-4
PN4857	5-4
PN4858	5-4
PN4859	5-4
PN4860	5-4
PN4861	5-4
PN4888	4-17
PN4889	4-17
PN4916	4-16
PN4917	4-16
PN5033	5-19
PN5102	5-7
PN5103	5-7
PN5127	3-22
PN5128	3-22
PN5129	3-22
PN5130	3-14
PN5131	3-22
PN5132	3-22
PN5133	3-11
PN5134	3-5
PN5135 PN5136	3-22
PN5136 PN5137	3-22 3-22
PN5137 PN5138	3-22 4-16
	4-16 4-16
PN5139 PN5140	4-16 4-4
PN5140 PN5142	4-4 4-13
PN5142 PN5143	4-13 4-13
PN5143 PN5163	5-11
PN5163 PN5179	3-12
PN5432	5-12 5-4
PN5433	5-4 5-4
PN5434	5-4 5-4
PN5449	3-25
PN5816	3-25 3-25
PN5855	3-25 4-19
FINODOD	4-19

Device	Page
PN5857	4-20
PN5910	4-4
PN5965	3-25
PN918	3-13
PN920	3-11
PN930	3-11
SA1015	8-3
SA733	8-3
SC1815	8-4
SC945	8-4
SE5020	3-14
SE5021	3-14
SE5022	3-14
SE5023	3-14
SE5024	3-14
SE5050	3-14
SE5051 SE5052	3-14 3-14
SND132	3-14 3-46
SS8050	8-4
SS8550	8-4
ST3904	3-31
ST3906	4-16
ST5771-1	4-4
ST5771-2	4-4
TIS58	5-10
TIS59	5-11
TIS73	5-4
TIS74	5-4
TIS75	5-4
TIS86	3-15
TIS87	3-15
TIS90	3-22
TIS91	4-13
TIS92	4-13
TIS92	3-22
TIS93	4-13
TIS97	3-22
TIS98	3-22
TIS99	3-22
TN1711	3-35
TN2102	3-35

Device Page TN2218A 3-23 TN2219 3-23 TN2904A 4-13 TN2905 4-13 TN2905A 4-14 TN3019 3-35 TN3020 3-36 TN3053 3-36 TN3440 3-39 TN3467 4-5 TN3724 3-7 TN3725 3-7 TN4033 4-20 TN4034 4-20 TN4037 4-20 TN4234 4-23 TN4235 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U231 5-13 U232 5-13 U235 5-13 U287 5-15 U308 5-6 U310 5-6 U311 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13		
TN2219 3-23 TN2219A 3-23 TN2219A 3-23 TN2904A 4-13 TN2905 4-13 TN2905A 4-14 TN3019 3-35 TN3020 3-36 TN3053 3-36 TN3440 3-39 TN3447 4-5 TN3724 3-7 TN3724 3-7 TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4037 4-20 TN4036 4-20 TN4037 4-20 TN4038 4-20 TN4039 5-4 U1899 5-4 U1899 5-4 U1899 5-4 U1899 5-4 U1899 5-4 U1898 5-4 U1899 5-4 U1898 5-4 U1899 5-6 U310 5-6 U312 5-6 U310 5-6 U310 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13	Device	Page
TN2219A 3-23 TN2904A 4-13 TN2905A 4-13 TN2905A 4-14 TN3019 3-35 TN3020 3-36 TN3053 3-36 TN3440 3-39 TN3440 3-39 TN3724 3-7 TN3725 3-7 TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4037 4-20 TN4037 4-20 TN4234 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U234 5-13 U235 5-13 U235 5-13 U236 5-6 U310 5-6 U310 5-6 U310 5-6 U310 5-6 U310 5-6 U310 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13	TN2218A	
TN2904A TN2905 TN2905A TN2905A TN2905A TN3019 TN3020 TN3053 TN3020 TN3467 TN3724 TN3724 TN3724 TN3725 TN3724 TN4033 TN4036 TN4036 TN4037 TN4036 TN4037 TN4234 TN4235 TN4236 TN4234 TN4235 TN4235 TN4236 TN4231 TN4236 TN4231 TN4236 TN4231 TN4236 TN4231 TN4236 TN4231 TN4236 TN4236 TN4236 TN4236 TN4236 TN4236 TN4236 TN4237 TN4236 TN3236 TN3236 TN3236 TN3246 TN326		
TN2905 4-13 TN2905A 4-14 TN3019 3-35 TN3020 3-36 TN3053 3-36 TN3440 3-39 TN3467 4-5 TN3724 3-7 TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4036 4-20 TN4037 4-20 TN4234 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U236 5-15 U308 5-6 U310 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13		
TN2905A 4-14 TN3019 3-35 TN3020 3-36 TN3053 3-36 TN3053 3-36 TN3440 3-39 TN3467 4-5 TN3724 3-7 TN3725 3-7 TN3725 3-7 TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4037 4-20 TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1898 5-4 U1899 5-4 U231 5-13 U231 5-13 U232 5-13 U231 5-13 U232 5-13 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U236 5-13 U237 5-15 U308 5-6 U309 5-6 U310 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13		
TN3019 3-35 TN3020 3-36 TN3053 3-36 TN3440 3-39 TN3440 3-39 TN3447 4-5 TN3724 3-7 TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4234 4-23 TN4236 4-24 TN4234 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U234 5-13 U235 5-13 U235 5-13 U236 5-6 U310 5-13 U404 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13 U406 5-13 U406 5-13		
TN3020 3-36 TN3053 3-36 TN3053 3-36 TN3440 3-39 TN3467 4-5 TN3724 3-7 TN3725 3-7 TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U233 5-13 U233 5-13 U233 5-13 U234 5-13 U235 5-13 U235 5-13 U236 5-6 U310 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13 U406 5-13		
TN3053 3-36 TN3440 3-39 TN3467 4-5 TN3724 3-7 TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4097 4-20 TN4234 4-23 TN4235 4-23 TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U233 5-13 U234 5-13 U235 5-13 U238 5-13 U238 5-13 U239 5-15 U308 5-6 U309 5-6 U310 5-6 U310 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13 U406 5-13 U406 5-13		
TN3467 4-5 TN3724 3-7 TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4036 4-20 TN4037 4-20 TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U234 5-13 U235 5-13 U237 5-15 U308 5-6 U310 5-13 U404 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13 U406 5-13		
TN3724 3-7 TN3725 3-7 TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U233 5-13 U233 5-13 U234 5-13 U235 5-13 U235 5-13 U236 5-6 U310 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13	TN3440	3-39
TN3725 3-7 TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U233 5-13 U234 5-13 U235 5-13 U235 5-13 U236 5-6 U309 5-6 U310 5-13 U401 5-13 U402 5-13 U403 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13		
TN3742 3-47 TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4037 4-20 TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U233 5-13 U234 5-13 U235 5-13 U238 5-13 U239 5-15 U308 5-6 U309 5-6 U310 5-13 U404 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13		
TN4033 4-20 TN4036 4-20 TN4037 4-20 TN4037 4-20 TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U234 5-13 U235 5-13 U236 5-6 U309 5-6 U309 5-6 U310 5-6 U310 5-6 U310 5-6 U312 5-6 U310 5-6 U312 5-6 U310 5-6 U312 5-6 U310 5-13 U404 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13 U406 5-13		
TN4036		
TN4037 4-20 TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U231 5-13 U232 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U236 5-15 U308 5-6 U309 5-6 U310 5-6 U310 5-6 U310 5-6 U310 5-6 U310 5-6 U310 5-13 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13 U406 5-13		
TN4234 4-23 TN4235 4-23 TN4236 4-24 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U236 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-13 U404 5-13 U405 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13		
TN4235 4-23 TN4236 4-24 TN4314 4-20 U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U236 5-6 U309 5-6 U310 5-13 U401 5-13 U402 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13		
TN4236		
U1897 5-4 U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13		
U1898 5-4 U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13	TN4314	4-20
U1899 5-4 U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13		
U231 5-13 U232 5-13 U233 5-13 U234 5-13 U235 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13 U406 5-13		
U232 5-13 U233 5-13 U234 5-13 U235 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13		
U233 5-13 U234 5-13 U235 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13		
U234 5-13 U235 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13		
U235 5-13 U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U406 5-13		
U287 5-15 U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U440 5-15		
U308 5-6 U309 5-6 U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U440 5-15		
U310 5-6 U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U440 5-15		
U312 5-6 U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U440 5-15	U309	5-6
U401 5-13 U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U440 5-15	U310	5-6
U402 5-13 U403 5-13 U404 5-13 U405 5-13 U406 5-13 U440 5-15		
U403 5-13 U404 5-13 U405 5-13 U406 5-13 U440 5-15		
U404 5-13 U405 5-13 U406 5-13 U440 5-15		
U405 5-13 U406 5-13 U440 5-15		
U406 5-13 U440 5-15		
U440 5-15		

Reliability and Quality

RELIABILITY VIS-A-VIS QUALITY

The words "reliability" and "quality" are often used interchangeably, as though they connote identical facets of a product's merit. However, reliability and quality are different, and discrete component users must understand the essential difference between the two concepts in order to properly evaluate the various vendors' programs for product integrity.

The concept of quality gives us information about the population of faulty components among good components, and generally relates to the number of faulty components that arrive at a user's facility. Looked at in another way, quality can instead relate to the number of faulty components that escape detection at the component vendor's facility.

It is the function of a vendor's Quality Control arm to monitor the degree of success of that vendor in reducing the number of faulty components that escape detection. QC does this by testing the outgoing parts on a sampled basis. The Acceptable Quality Level (AQL) determines the stringency of the sampling. As the AQL decreases, it becomes more difficult for bad parts to escape detection, thus the quality of the shipped parts increases.

The concept of reliability, on the other hand, refers to how well a part that is initially good will withstand its environment. Reliability is measured by the percentage of parts that fail in a given period of time.

QUALITY IMPROVEMENT

When purchasing a component or a system, it is expected that each item delivered has been thoroughly tested and will perform according to data sheet or detailed specifications.

Additional programs can be implemented to improve quality. To be effective, a program must not only reduce escapes but must also be tailored specifically to detect and remove the types of residual defects that are predicted by process and line monitor control data. The proper analysis and application of this data is a primary objective at National. With emphasis on "ship-to-stock" programs and the need to measure quality levels in ppm's, National Semiconductor has taken a leadership role in an on-going effort to strive for "zero defects".

In Discretes, the benefits derived as a result of this increased emphasis includes the following:

Escapes caused by mishandling are reduced significantly.

- Residual thermo-mechanical defects not detected during normal room temperature testing or high temperature lot buy-off are removed.
- Anomalous high temperature parametric effects that may have been created during wafer fabrication or in subsequent manufacturing are removed.
- An AQL of 0.05% or better is guaranteed.

RELIABILITY THROUGH DESIGN

With increased component density in modern electronic products has come an increased concern with component failures in such products. Virtually all equipment manufacturers thoroughly exercise their products before shipment. This is designed to simulate, as closely as possible, field operating conditions. A high failure rate of discrete components at this level can dramatically increase manufacturing costs.

The most important factor affecting a component's reliability is its construction; i.e., the materials used and the method by which they are fabricated and assembled.

NATIONAL'S ON-GOING RELIABILITY IMPROVEMENT PROGRAM

Transistor reliability improvement at National Semiconductor is a continuous program.

Implementation of a program for field reliability improvement requires knowledge of field ambient and electrical environments and their influence on device performance. National's broad experience in commercial reliability programs has led to the development of an extensive in-house reliability monitoring program that permits us to monitor device performance under combinations of the following stresses:

- Thermal
- Thermo-Mechanical
- Mechanical
- Voltage
- Humidity

The data generated by these monitors is continually ranked and analyzed to determine appropriate corrective action necessary for any failure mechanisms noted. Rigorous analysis of SPC data that is routinely generated at critical stages of the fabrication and manufacturing process is integrated into the corrective actions loop. This continuous cycle of testing, analysis, and corrective action assures the continued improvement of transistor field reliability.

Table of Contents

Section 1 Selection Guides and Cross References	
Diode Device Cross Reference Guide	1-3
Diode Device Selection Guide	1-19
Military Qualified Discrete Selection Guide	1-33
High Speed Transistor Selection Guide	1-34
RF Transistor Selection Guide	1-35
NPN Transistor GPA Selection Guide	1-37
PNP Transistor GPA Selection Guide	1-38
JFET Selection Guide	1-39
JFET Cross Reference Guide	1-41
Ultra-Fast Recovery Rectifier Cross Reference Guide	1-52
Ultra-Fast Recovery Rectifier Selection Guide	1-53
Planar Power Transistor Selection Guide	1-54
Power MOSFET Cross Reference Guide	1-62
	1-65
Section 2 Diodes	
Computer Diodes	2-3
Low Leakage Diodes	2-6
High Voltage Diodes	2-7
General Purpose Diodes	2-8 2-9
Military Qualified Diodes	2-9 2-10
Diode Arrays	2-10
Zener Diodes	2-11
Matched Pair and Quad Assemblies	2-14
Section 3 Bipolar NPN Transistors	2-10
Saturated Switches	3-3
Low Level Amplifiers	3-8
RF Amplifiers and Oscillators	3-12
General Purpose Amplifiers and Switches	3-16
Medium Power Transistors	3-32
Darlington Transistors	3-48
Section 4 Bipolar PNP Transistors	
Saturated Switches	4-3
Low Level Amplifiers	4-6
General Purpose Amplifiers and Switches	4-8
Medium Power Transistors	4-18
Darlington Transistors	4-26
Section 5 JFET Transistors	
N-CHANNEL JFETS	
Switches and Choppers	5-3
RF, VHF, UHF Amplifiers	5-5
Low Frequency-Low Noise Amplifiers	5-7
Ultra Low Input Current Amplifiers	5-8
General Purpose Amplifiers	5-9
General Purpose Dual JFETs	5-12
Low Frequency-Low Noise Dual JFETs	5-14
Wide Band-Low Noise Dual JFETs	5-15
Low Leakage-High CMRR-Wide Band Dual JFETs	5-16
Ultra Low Leakage Dual JFETs	5-17

Table of Contents (Continued) Section 5 JFET Transistors (Continued) **P-CHANNEL JFETS** Switches 5-18 Amplifiers 5-19 Section 6 Surface Mount Products SURFACE MOUNT DIODES 6-3 6-7 General Purpose—Leadless Glass Package 6-9 6-10 High Voltage Diodes—Leadless Glass Package 6-11 Surface Mount Monolithic Diode Arrays—Plastic Packages 6-12 SURFACE MOUNT TRANSISTORS 6-13 6-15 6-16 General Purpose Amplifiers and Switches—NPN 6-18 Medium Power Transistors—NPN 6-24 Darlington Transistors—NPN 6-25 Saturated Switches—PNP 6-26 6-27 General Purpose Amplifiers and Switches—PNP..... 6-28 SURFACE MOUNT JFETS N-Channel Switches and Choppers 6-36 6-37 P-Channel Switches and Choppers 6-38 Section 7 Pro-Electron Series Diode Pro-Electron Series 7-3 Bipolar Pro-Electron Series 7-5 . 7-26 Section 8 Consumer Series Consumer Series 8-3 **Section 9 Power Components** NPN Bipolar Power Transistors 9-3 9-5 **ULTRA-FAST RECTIFIERS** Single Rectifier per Package 9-7 Dual Rectifiers, Common Cathode 9-9 9-11 9-12 COOLFETsTM..... 9-22 Section 10 Transistor Datasheets PN100/MMBT100 NPN General Purpose Amplifier 10-4 10-5 PN101/MMBT101 NPN General Purpose Amplifier 10-6 PN200/MMBT200 PNP General Purpose Amplifier..... 10-7 10-8 10-9 10-10 2N2222/PN2222/MMBT2222/MPQ2222/2N2222A/PN2222A/MMBT2222A NPN 10-12

Section 10 Transistor Datasheets (Continued)	
2N2369/PN2369/MMBT2369/MPQ2369 NPN Switching Transistor	10-14
2N2907/PN2907/MMBT2907/MPQ2907/2N2907A/PN2907A/MMBT2907A/	
MPQ2907A PNP General Purpose Amplifier	10-16
2N3019/TN3019 NPN General Purpose Amplifier	10-18
2N3467/TN3467/MPQ3467 PNP Switching Transistor	10-20
PN3646/MMBT3646 NPN Switching Transistor	10-22
2N3725/TN3725/MPQ3725 NPN Switching Transistor	10-24
2N3904/MMBT3904/MPQ3904 NPN General Purpose Amplifier	10-26
2N3906/MMBT3906/MPQ3906 PNP General Purpose Amplifier	10-28
2N4033/TN4033 PNP General Purpose Amplifier	10-30
PN4258/MMBT4258 PNP Switching Transistor	10-32
2N4391/2N4392/2N4393/PN4391/PN4392/PN4393/MMBF4391/	
MMBF4392/MMBF4393 General Purpose N-Channel JFET Transistor	10-34
2N4401/MMBT4401 NPN General Purpose Amplifier	10-36
2N4403/MMBT4403 PNP General Purpose Amplifier	10-38
2N5086/2N5087/MMBT5086/MMBT5087 PNP General Purpose Amplifier	10-40
2N5088/2N5089/MMBT5088/MMBT5089 NPN General Purpose Amplifier	10-42
2N5179/PN5179/MMBT5179 NPN RF Transistor	10-44
2N5401/MMBT5401 PNP General Purpose Amplifier	10-46
2N5457/2N5458/2N5459/MMBF5457/MMBF5458/MMBF5459 N-Channel JFET	
Transistor	10-48
2N5484/2N5485/2N5486/MMBF5484/MMBF5485/MMBF5486 N-Channel RF JFET	
Transistor	10-50
2N5551/MMBT5551 NPN General Purpose Amplifier	10-52
2N5771/MMBT5771 PNP Switching Transistor	10-54
2N6427/MMBT6427/MPQ6427 NPN Darlington Transistor	10-56
2N6715/PN6715/MPS6715 NPN General Purpose Amplifier	10-58
2N6717/MPS6717 NPN General Purpose Amplifier	10-59
2N6724/2N6725/MPS6724/MPS6725 NPN Darlington Transistor	10-60
2N6727/PN6727/MPS6727 PNP General Purpose Amplifier	10-61
2N6729/MPS6729 PNP General Purpose Amplifier	10-62
2N7052/2N7053 NPN Darlington Transistor	10-63
MPSA06/MPSW06/MMBTA06 NPN General Purpose Amplifier	10-64
MPSA13/MPSW13/MMBTA13 NPN Darlington Transistor	10-65
MPSA42/MPSW42/MMBTA42 NPN High Voltage Amplifier	10-66
MPSA56/MPSW56/MMBTA56 PNP General Purpose Amplifier	10-67
MPSA64/MPSW64/MMBTA64 PNP Darlington Transistor	10-68
MPSA92/MPSW92/MMBTA92 PNP High Voltage Amplifier	10-69
MPSH10/MPSH11/MMBTH10/MMBTH11 NPN RF Transistor	10-70
MPSH20/MMBTH20 NPN RF Transistor	10-72
MPSH81/MMBTH81 PNP RF Transistor	10-73
J108/J109/J110 N-Channel JFET Switch	10-74
J309/U309/J310/U310/MMBFJ309/MMBFJ310 N-Channel JFET Transistor for RF	10-7-7
Amplifiers	10-75
Section 11 Process Characteristics	10-73
DIODE PROCESS CHARACTERISTICS D1 Family Part Number List	11-5
D1 Family Part Number List	11-5 11-6
D1 Product Family Curve Set	
D2 Family Part Number List	11-7
D2 Product Family Curve Set	11-8

Section 11 Process Characteristics (Continued)	
D3 Family Part Number List	11-9
D3 Product Family Curve Set	11-10
D4 Family Part Number List	11-11
D4 Product Family Curve Set	11-12
D6 Family Part Number List	11-13
D6 Product Family Curve Set	11-14
D13 Family Part Number List	11-16
D13 Product Family Curve Set	11-17
D14 Family Part Number List	11-18
D14 Product Family Curve Set	11-19
D15 Family Part Number List	11-20
D15 Product Family Curve Set	11-21
D18 Family Part Number List	11-23
D18 Product Family Curve Set	11-24
TRANSISTOR PROCESS CHARACTERISTICS	
Process 05 NPN Darlington	11-25
Process 06 NPN Darlington	11-28
Process 07 NPN Small Signal	11-30
Process 10 NPN Small Signal	11-33
Process 11 NPN Small Signal	11-35
Process 12 NPN Medium Power	11-37
Process 13 NPN Medium Power	11-41
Process 16 NPN High Voltage	11-43
Process 19 NPN General Purpose Amplifier	11-45
Process 21 NPN High Speed Switch	11-49
Process 22 NPN High Speed Switch	11-53
Process 23 NPN Small Signal	11-57
Process 25 NPN Memory Driver	11-61
Process 34 NPN Planar Power	11-65
Process 36 NPN High Voltage Planar Power	11-67
Process 37 NPN Medium Power	11-70
Process 38 NPN Medium Power	11-73
Process 39 NPN Medium Power	11-76
Process 40 NPN RF Amplifier	11-79
Process 42 NPN RF Amplifier	11-82
Process 43 NPN VHF/UHF Oscillator	11-87
Process 44 NPN AGC-RF Amplifier	11-91
Process 47 NPN RF-IF Amplifier	11-99
Process 48 NPN High Voltage Amplifier	11-104
Process 49 NPN RF Amplifier	11-107
Process 61 PNP Darlington	11-110
Process 62 PNP Small Signal	11-112
Process 63 PNP General Purpose Amplifier	11-115
Process 65 PNP High Speed Switch	11-119
Process 66 PNP Small Signal	11-123
Process 67 PNP Medium Power	11-126
Process 68 PNP Small Signal	11-120
Process 69 PNP Small Signal	11-129
Process 70 PNP Memory Driver	11-131
Process 74 PNP High Voltage	11-133
Process 75 PNP RF Amplifier	11-136
1 100699 / 3 FINE DE WITHINGTON	11-136

Section 11	Process Characteristics (Continued)	
	76 PNP High Voltage	
Process	77 PNP Medium Power	11-142
	78 PNP Medium Power	
Process	79 PNP Medium Power	11-148
	CESS CHARACTERISTICS	
Process	50 N-Channel JFET	11-151
Process	51 N-Channel JFET	11-155
		11-159
		11-161
Process	55 N-Channel JFET	11-163
		11-165
	59 N-Channel JFET	11-167
Process	83 N-Channel Monolithic Dual JFET	11-168
Process	84 N-Channel Monolithic Dual JFET	11-171
Process	88 P-Channel JFET	11-174
Process	89 P-Channel JFET	11-176
Process	90 N-Channel JFET	11-178
Process	92 N-Channel JFET	11-181
Process		11-184
Process	94 N-Channel Monolithic Dual JFET	11-187
		11-189
Process	96 N-Channel Monolithic Dual JFET	11-192
Process	98 N-Channel Monolithic Dual JFET	11-195
BIPOLAR	POWER PROCESS CHARACTERISTICS	
Process	4P NPN Planar Power	11-198
Process	4Q NPN Planar Power	11-201
Process	5P PNP Planar Power	11-204
Process	5Q PNP Planar Power	11-207
ULTRA-FA	AST RECTIFIER PROCESS CHARACTERISTICS	
Process	R4 Ultra Fast Rectifier	11-209
		11-212
Process	R6 Ultra Fast Rectifier	11-215
POWER M	OSFET PROCESS CHARACTERISTICS	
Process	A1 N-Channel Power MOSFET	11-218
	A2 N-Channel Power MOSFET	
	A3 N-Channel Power MOSFET	
Process	B1 N-Channel Power MOSFET	11-227
		11-230
		11-233
		11-236
	B5 N-Channel Power MOSFET	11-239
	C1 N-Channel Power MOSFET	
		11-245
	C3 N-Channel Power MOSFET	11-248
	E1 N-Channel Power MOSFET	11-252
	E2 N-Channel Power MOSFET	11-255
	E3 N-Channel Power MOSFET	11-258
	E4 N-Channel Power MOSFET	11-261
		11-264
		11-267
		11-270

Section 11 Process Characteristics (Continued)	
Process F4 N-Channel Power MOSFET	11-273
Section 12 Appendices, Packaging and Ordering Information	
Transistor Glossary of Symbols	12-3
Diode and Rectifier Glossary of Symbols and Terms	12-11
JFET Glossary of Symbols	12-14
JFET Application Guide	12-20
AN-556 Introduction to Power Supplies	12-25
AN-557 Optimizing the Ultra-Fast POWERPlanar™ Rectifier Diode for Switching	
Power Supplies	12-31
AN-558 Introduction to Power MOSFETs and Their Applications	12-37
Packaging Options and Ordering Information	12-51
Physical Dimensions	12-56
Bookshelf	
Distributors	

Section 1
Selection Guides and
Cross References

Section 1 Contents

Diode Device Cross Reference Guide	1-3
Diode Device Selection Guide	1-19
Military Qualified Discrete Selection Guide	1-33
High Speed Transistor Selection Guide	1-34
RF Transistor Selection Guide	1-35
NPN Transistor GPA Selection Guide	1-37
PNP Transistor GPA Selection Guide	1-38
JFET Selection Guide	1-39
JFET Cross Reference Guide	1-41
Ultra-Fast Recovery Rectifier Cross Reference Guide	1-52
Ultra-Fast Recovery Rectifier Selection Guide	1-53
Planar Power Transistor Selection Guide	1-54
Power MOSFET Cross Reference Guide	1-62
Power MOSFFTs—COOL FFT™ Selection Guide	1-65

Diode Device Cross Reference

Industry	NS
Device	Device
1N34A	1N4454
1N34AS	1N4148
1N35	1N4454
1N36	1N4148
1N38	1N4148
1N38A	1N3070
1N38B	1N3070
1N39	1N3070
1N39B	1N3070
1N39B	1N3070
1N40	1N4148
1N41	1N4454
1N42	1N3070
1N43	1N4148
1N44	1N3070
1N45	1N4454
1N46	1N4454
1N47	1N3070
1N48	1N4454
1N49	1N4148
1N50	1N4148
1N51	1N4454
1N52	1N4454
1N52A	1N4454
1N54	1N4148
1N54A	1N4148
1N55	1N3070
1N55A	1N3070
1N55B	1N3070
1N56	1N4148
1N56A	1N4148
1N57	1N4454
1N57A	1N4454
1N58	1N3070
1N58A	1N3070
1N61	1N3070
1N62	1N3070
1N63	1N4148
1N63A	1N4148
1N64	1N4148
1N64A	1N4148
1N65	1N4454
1N66	1N4454
1N66A	1N4454
1N67	1N4148
1N67A	1N4148

Industry	NS
Device	Device
1N68	1N3070
1N68A	1N3070
1N69	1N4454
1N69A	1N4454
1N70	1N3070
1N70A	1N4148
1N71	FDH900
1N74	1N4148
1N75	1N3070
1N81	1N4305
1N81	1N4148
1N84	1N4148
1N86	1N4148
1N87	1N4148
1N87A	1N4148
1N87S	1N4148
1N87T	1N4148
1N88	1N3070
1N89	1N4454
1N90	1N4454
1N95	1N4148
1N96	1N4447
1N96A	1N4148
1N97	1N4448
1N97A	1N4447
1N98	1N4454
1N98A	1N4448
1N99	1N4148
1N99A	1N4454
1N100	1N4447
1N100A	1N4448
1N101	1N3070
1N102	1N3070
1N103	1N4448
1N104	1N4448
1N107	FDH999
1N108	1N4448
1N111	1N4148
1N112	1N4148
1N113	1N4454
1N114	1N4454
1N115	1N4454
1N116	1N4454
1N116A	1N4454
1N117	1N4454
1N117A	1N4454

Industry		
1N118 1N4454 1N118A 1N4448 1N119 1N4148 1N120 1N4148 1N126 1N4148 1N127A 1N3070 1N127A 1N3070 1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138B 1N483B 1N138B 1N483B 1N138B 1N448 1N140 1N4448 1N141 1N4448 1N142 1N4938 1N143 1N4938 1N144 1N4454 1N145 1N4493 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N194 1N4148 1N195 1N4148 1N198 1N4148	-	
1N118A 1N4448 1N119 1N4148 1N120 1N4148 1N126 1N4148 1N126A 1N4148 1N127 1N3070 1N127A 1N3070 1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N4448 1N142 1N493B 1N143 1N493B 1N144 1N4454 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N194 1N4148 1N195 1N4148 1N198 1N4148		
1N119 1N4148 1N120 1N4148 1N126 1N4148 1N126A 1N4148 1N127 1N3070 1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138B 1N483B 1N138B 1N483B 1N138B 1N443B 1N141 1N4448 1N141 1N4448 1N142 1N493B 1N143 1N493B 1N144 1N444B 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N414B 1N192 1N414B 1N193 1N414B 1N194 1N414B 1N195 1N414B 1N196 1N414B 1N198 1N414B		
1N120 1N4148 1N126 1N4148 1N126A 1N4148 1N127 1N3070 1N127A 1N3070 1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N4148 1N142 1N493B 1N143 1N493B 1N144 1N4454 1N145 1N493B 1N145 1N493B 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148		
1N126 1N4148 1N126A 1N4148 1N127 1N3070 1N127A 1N3070 1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N137B 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N448 1N141 1N448 1N142 1N493B 1N143 1N493B 1N144 1N448 1N143 1N493B 1N144 1N448 1N195 1N4449 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4148 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 </td <td></td> <td></td>		
1N126A 1N4148 1N127 1N3070 1N127A 1N3070 1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N4454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N448 1N142 1N493B 1N143 1N493B 1N144 1N4454 1N143 1N493B 1N144 1N4454 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4148 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148		
1N127 1N3070 1N127A 1N3070 1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N4454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N448 1N142 1N493B 1N143 1N493B 1N144 1N4454 1N145 1N4493B 1N143 1N493B 1N144 1N4454 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4148 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N251 1N4148		
1N127A 1N3070 1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N4454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N448 1N142 1N493B 1N143 1N493B 1N144 1N4454 1N145 1N4493B 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4148 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N251 1N4148 1N252A 1N4148 1N265 1N4148		
1N128 1N4148 1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N4454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N448 1N141 1N448 1N142 1N4938 1N143 1N4938 1N144 1N4938 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N198 1N4148 1N198 1N4148 1N198 1N4148 1N251 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148 <		
1N128A 1N4148 1N132 1N4148 1N133 1N4148 1N134 1N4454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N448 1N142 1N4938 1N143 1N4938 1N144 1N4938 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198B 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148		
1N132 1N4148 1N133 1N4148 1N134 1N4454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N4148 1N142 1N4938 1N143 1N4938 1N144 1N4938 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148 <		
1N133 1N4148 1N134 1N4454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N448 1N142 1N4938 1N143 1N4938 1N144 1N4938 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148 <		
1N134 1N4454 1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N4148 1N142 1N4938 1N143 1N4938 1N144 1N4938 1N145 1N4938 1N145 1N4938 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4148 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N266 1N4148 1N266 1N4148		
1N135 1N4148 1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N43B 1N139 1N4148 1N140 1N4448 1N141 1N4148 1N142 1N4938 1N143 1N4938 1N144 1N4454 1N155 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198M 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N266 1N4148 1N266 1N4148 1N267 1N4148		
1N137A 1N483B 1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N493B 1N142 1N493B 1N143 1N493B 1N144 1N493B 1N145 1N493B 1N144 1N4454 1N175 1N3070 1N190 FDH999 1N191 1N414B 1N192 1N414B 1N193 1N414B 1N194 1N414B 1N195 1N414B 1N196 1N414B 1N198 1N414B 1N198 1N414B 1N198B 1N414B 1N251 1N414B 1N252 1N414B 1N252 1N414B 1N265 1N414B 1N266 1N414B 1N267 1N414B		
1N137B 1N483B 1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N448 1N141 1N493B 1N142 1N493B 1N143 1N493B 1N144 1N4454 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N414B 1N192 1N414B 1N193 1N4149 1N194 1N414B 1N195 1N414B 1N196 1N414B 1N198 1N414B 1N198 1N414B 1N198B 1N414B 1N251 1N414B 1N252 1N414B 1N252 1N414B 1N252 1N414B 1N265 1N414B 1N266 1N414B 1N267 1N414B		
1N138A 1N483B 1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N4148 1N142 1N4938 1N143 1N4938 1N144 1N4454 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N266 1N4148 1N266 1N4148 1N267 1N4148		
1N138B 1N483B 1N139 1N4148 1N140 1N4448 1N141 1N4148 1N142 1N4938 1N143 1N4938 1N144 1N4454 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N139 1N4148 1N140 1N4448 1N141 1N4148 1N142 1N4938 1N143 1N4938 1N144 1N4454 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4148 1N251 1N4148 1N251A 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N140 1N4448 1N141 1N4148 1N142 1N4938 1N143 1N4938 1N144 1N4454 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N141 1N4148 1N142 1N4938 1N143 1N4938 1N144 1N4454 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198 1N4148 1N198 1N4148 1N198 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N142 1N4938 1N143 1N4938 1N144 1N4454 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4149 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N143 1N4938 1N144 1N4454 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N144 1N4454 1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4454 1N251 1N4148 1N251A 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N145 1N4449 1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N175 1N3070 1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N266 1N4148		
1N190 FDH999 1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N266 1N4148		
1N191 1N4148 1N192 1N4148 1N193 1N4149 1N194 1N4148 1N194A 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N266 1N4148		
1N192 1N4148 1N193 1N4149 1N194 1N4148 1N194A 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N266 1N4148		
1N193 1N4149 1N194 1N4148 1N195 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251 1N4148 1N252 1N4148 1N252 1N4148 1N265 1N4148 1N266 1N4148 1N266 1N4148		l .
1N194 1N4148 1N194A 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251A 1N4148 1N252A 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N194A 1N4148 1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N195 1N4148 1N196 1N4148 1N198 1N4148 1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		1
1N196 1N4148 1N198 1N4148 1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		1
1N198 1N4148 1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N198A 1N4148 1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N198B 1N4454 1N198M 1N4148 1N251 1N4148 1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N198M 1N4148 1N251 1N4148 1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N251 1N4148 1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		1
1N251A 1N4148 1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		1
1N252 1N4148 1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N252A 1N4148 1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N265 1N4148 1N266 1N4148 1N267 1N4148		
1N266 1N4148 1N267 1N4148		1
1N267 1N4148		
· · · · · · · · · · · · · · · · · · ·		1

Diode Device Cross Reference (Continued))

Diode Devi	ce Cross Re
Industry	NS
Device	Device
1N270	FDH444
1N273	1N4448
1N276	1N4454
1N277	1N3070
1N277M	1N4448
1N278	1N4446
1N279	1N4448
1N281	1N4448
1N282	1N4449
1N283	FDH444
1N287	1N4148
1N288	1N4148
1N289	1N4148
1N290	1N3070
1N291	1N3070
1N292	1N4448
1N294	1N4148
1N294A	1N4148
1N295	1N4148
1N295A	1N4148
1N295S	1N4148
1N295X	1N4148
1N296	1N4148
1N297	1N4148
1N297A	1N4148
1N298	1N4148
1N298A	1N4148
1N299	1N4305
1N300	1N482B
1N300A	1N482B
1N301	1N457
1N301A 1N301B	1N457
1N301B	1N457 1N458
1N303A	1N484B
1N303A 1N303B	1N484B
1N303B	1N4148
1N304 1N307	1N4938
1N309	1N4148
1N310	1N4148
1N312	1N4448
1N313	1N4148
1N314	1N4148
1N330	1N456
1N331	1N458
1N337	2N2221
1N350	1N457
1N351	1N484B
1N352	1N485B
1N355	1N4148
1N373	1N5227A
1N375	1N5230A

Industry	nce (Continued))		
1N376 1N5233A 1N377 1N4148 1N378 1N5238A 1N385 1N4148 1N386 1N4148 1N387 1N4148 1N388 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N448 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433B 1N3070 1N433B 1N3070 1N433B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N450 1N4151 1N451 1N3070 1N452 1N4448 </th <th>Industry</th> <th>NS</th>	Industry	NS	
1N377 1N4148 1N378 1N5238A 1N385 1N4148 1N386 1N4148 1N387 1N4148 1N388 1N4148 1N389 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N432B 1N4448 1N433A 1N3070 1N433B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 <th>Device</th> <th>Device</th>	Device	Device	
1N378 1N5238A 1N385 1N4148 1N386 1N4148 1N387 1N4148 1N388 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N417 1N448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432 1N4148 1N432 1N4446 1N432 1N4448 1N432 1N4448 1N433 1N3070 1N433 1N3070 1N434 1N3070 1N434 1N3070 1N434 1N3070 1N434 1N3070 1N434 1N3070 1N435 1N4148 1N447 1N448 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070	1N376	1N5233A	
1N385 1N4148 1N386 1N4148 1N387 1N4148 1N388 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433A 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N448 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 1N456 1N456 1N456	1N377	1N4148	
1N386 1N4148 1N387 1N4148 1N388 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 1N456 1N456 1N456	1N378	1N5238A	
1N387 1N4148 1N388 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N4488 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432 1N4446 1N432 1N4446 1N432 1N4448 1N433 1N3070 1N433A 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N453 1N3070 1N454 FDH444	1N385	1N4148	
1N388 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432 1N446 1N432B 1N4446 1N433B 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N4070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N456	1N386	1N4148	
1N389 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432 1N4446 1N432 1N4448 1N433 1N3070 1N434 1N3070 1N434 1N3070 1N434 1N4070 1N448 1N4449 1N450 1N4148 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456	1N387	1N4148	
1N389 1N4148 1N390 1N4148 1N391 1N4148 1N392 1N4148 1N393 1N3070 1N417 1N4448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N448 1N432A 1N446 1N432B 1N4446 1N432B 1N4448 1N433A 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N4070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N456	1N388	1N4148	
1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433A 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N458 1N456 1N457 1N457 1N458 1N458 1N459A 1N459A </td <td>1N389</td> <td>1N4148</td>	1N389	1N4148	
1N391 1N4148 1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433A 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N458 1N456 1N457A 1N457A 1N458 1N458 1N459A 1N458 <	1N390	1N4148	
1N392 1N4148 1N393 1N3070 1N394 1N3070 1N417 1N4448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4448 1N432B 1N4448 1N432B 1N3070 1N433A 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N456 1N456 1N456 1N457 1N457 1N458 1N458 1N459 1N459 1N459A 1N459 <td>1N391</td> <td>1N4148</td>	1N391	1N4148	
1N393 1N3070 1N394 1N3070 1N417 1N4448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4446 1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N456 1N456 1N457A 1N457A 1N458 1N458 1N459A 1N458 1N459A 1N459 1N459A 1N459 1N459A 1N459 </td <td></td> <td>1N4148</td>		1N4148	
1N394 1N3070 1N417 1N4448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4446 1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N456 1N456 1N457A 1N457A 1N458 1N458 1N459A 1N458 1N459A 1N458 <		1N3070	
1N417 1N4448 1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N456 1N456 1N456 1N457 1N457 1N458 1N458 1N458 1N458 1N459 1N459 1N459 1N459 1N459 1N459 1N459 1N459	1N394	1N3070	
1N418 1N4148 1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N457 1N457 1N458 1N457 1N458 1N458 1N459 1N458 1N459 1N459 1N459 1N459 1N459 1N459 1N460 1N4148 1N460 1N4148	1N417	1	
1N419 FDH444 1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N449 1N448 1N449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N457 1N457 1N458 1N457 1N458 1N458 1N458 1N458 1N459 1N459 1N459 1N459 1N459 1N459 1N460 1N4148 1N460 1N4148			
1N431 1N3070 1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N448 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456 1N456 1N457 1N456 1N457 1N457 1N458 1N457 1N458 1N458 1N458 1N458 1N459 1N458 1N459 1N459 1N459 1N459 1N460 1N4148 1N460 1N4148 1N461 1N461A <		1	
1N432 1N4148 1N432A 1N4446 1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457B 1N457A 1N458A 1N458 1N458A 1N458 1N459 1N459 1N459 1N459 1N460 1N4148 1N460B 1N448 1N461 1N461A			
1N432A 1N4446 1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N445 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457A 1N457A 1N458 1N458 1N458A 1N458 1N459 1N459 1N459A 1N459 1N460 1N4148 1N460B 1N4488 1N461 1N461A	1N432		
1N432B 1N4448 1N433 1N3070 1N433B 1N3070 1N434 1N3070 1N434A 1N3070 1N434B 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N445 1N4151 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N456 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457 1N457 1N458 1N458 1N458 1N458 1N458 1N458 1N459 1N459 1N459 1N459 1N460 1N4148 1N460 1N4148 1N461 1N461A		Į.	
1N433 1N3070 1N433A 1N3070 1N433B 1N3070 1N434 1N3070 1N434A 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457A 1N457A 1N458 1N458 1N458A 1N458 1N458 1N458 1N459 1N459 1N459A 1N459 1N460 1N4148 1N460B 1N4448 1N461 1N461A			
1N433A 1N3070 1N433B 1N3070 1N434 1N3070 1N434A 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457A 1N457A 1N458 1N458 1N458 1N458 1N458 1N458 1N459A 1N459A 1N459A 1N459A 1N460 1N4148 1N460B 1N4448 1N461 1N461A		Į.	
1N433B 1N3070 1N434 1N3070 1N434A 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458A 1N458A 1N459A 1N459A 1N459A 1N459A 1N460 1N4148 1N460B 1N4448 1N461 1N461A		1	
1N434 1N3070 1N434A 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N456 1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458A 1N458A 1N459A 1N459A 1N459A 1N459A 1N459A 1N459A 1N460 1N4148 1N460B 1N4448 1N461 1N461A			
1N434A 1N3070 1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457A 1N457A 1N457A 1N457A 1N458A 1N458A 1N458A 1N458A 1N458A 1N458A 1N459A 1N459A 1N459A 1N459A 1N459A 1N459A 1N460 1N4148 1N460B 1N448 1N461 1N461A		í	
1N434B 1N3070 1N435 1N4148 1N447 1N4449 1N448 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457A 1N457A 1N457A 1N457A 1N458 1N458 1N458A 1N458A 1N458A 1N458A 1N459A 1N459 1N459A 1N459A 1N459A 1N459A 1N460 1N4148 1N460B 1N4448 1N461 1N461A		1N3070	
1N435 1N4148 1N447 1N4449 1N448 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N434B	J	
1N448 1N4449 1N450 1N4151 1N451 1N3070 1N452 1N448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N457 1N457 1N457A 1N457A 1N457A 1N457A 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N460 1N4148 1N460B 1N448 1N461 1N461A	1N435	1	
1N450 1N4151 1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456A 1N456A 1N457 1N457 1N457A 1N457A 1N457M 1N457A 1N458M 1N458 1N458M 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459A 1N459A 1N459M 1N459 1N459M 1N459 1N460 1N4148 1N460A 1N4148 1N460B 1N448 1N461A	1N447	1N4449	
1N451 1N3070 1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456A 1N456A 1N457 1N457 1N457A 1N457A 1N457B 1N457 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N448	1N4449	
1N452 1N4448 1N453 1N3070 1N454 FDH444 1N456 1N456 1N456A 1N456A 1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N450	1N4151	
1N453 1N3070 1N454 FDH444 1N456 1N456 1N456A 1N456A 1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458BA 1N458 1N459 1N459 1N459A 1N459A 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N451	1N3070	
1N454 FDH444 1N456 1N456 1N456A 1N456A 1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N4448 1N460B 1N4448	1N452	1N4448	
1N456 1N456 1N456A 1N456A 1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N459M 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N453	1N3070	
1N456A 1N456A 1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N454	FDH444	
1N457 1N457 1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N448 1N461 1N461A	1N456	1N456	
1N457A 1N457A 1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N456A	1N456A	
1N457M 1N457 1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N457	1N457	
1N458 1N458 1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N457A	1N457A	
1N458A 1N458A 1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460B 1N4448 1N461 1N461A	1N457M	1N457	
1N458M 1N458 1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460A 1N4148 1N460B 1N4448 1N461 1N461A	1N458	1N458	
1N459 1N459 1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460A 1N4148 1N460B 1N4448 1N461 1N461A	1N458A	1N458A	
1N459A 1N459A 1N459M 1N459 1N460 1N4148 1N460A 1N4148 1N460B 1N4448 1N461 1N461A	1N458M	1N458	
1N459M 1N459 1N460 1N4148 1N460A 1N4148 1N460B 1N4448 1N461 1N461A	1N459	1N459	
1N459M 1N459 1N460 1N4148 1N460A 1N4148 1N460B 1N4448 1N461 1N461A	1N459A	1N459A	
1N460A 1N4148 1N460B 1N4448 1N461 1N461A		1	
1N460B 1N4448 1N461 1N461A	1N460	1N4148	
1N461 1N461A	1N460A	1N4148	
	1N460B	1N4448	
1N461A 1N461A	1N461	1N461A	
	1N461A	1N461A	
1N462 1N462A	1N462	1N462A	
1N462A 1N462A	1N462A	1N462A	

* * .	
Industry Device	NS Device
1N463	1N463A
1N463A	1N463A
1N464	1N463A
1N464A	1N463A
1N478	1N4148
1N479	1N4148
1N480	1N4148
1N482	1N482B
1N482A	1N482B
1N482B	1N482B
1N482C	1N482B
1N483	1N483B
1N483A	1N483B
1N483B	1N483B
1N483C	1N483B
1N484	1N484B
1N484A	1N484B
1N484B	1N484B
1N484C	1N484B
1N485	1N485B
1N485A	1N485B
1N485B	1N485B
1N485C	1N485B
1N490	1N4148
1N497	1N4448
1N498	1N4448
1N499	1N4448
1N500	1N4448
1N501	1N4448
1N502	1N3070
1N520B	1N457
1N527	1N4305
1N541	1N4305
1N542	1N4305
1N566	1N3070
1N567	1N3070
1N568	1N4305
1N569	1N4305
1N571	FDH444
1N616	1N4148
1N617	1N4148
1N618	1N4148
1N619	1N4148
1N622	1N4938
1N625	1N625
1N625A	1N4148
1N625M	1N625
1N626	1N626
1N626A	1N4148
1N626M	1N626
1N627	1N627
1N627A	1N3070

Diode Device Cross Reference (Continued))

Diode Devi	ce Cross Re
Industry	NS
Device	Device
1N628	1N628
1N628A	1N3070
1N629	1N629
1N629A	1N3070
1N631	1N4148
1N632	1N4148
1N633	1N3070
1N634	1N3070
1N635	1N3070
1N636	1N4448
1N658	1N658
1N658A	1N658
1N659	1N659
1N659A	1N659
1N660	1N660
1N660A	1N660
1N661	1N661
1N661A	1N661
1N664	1N5237A
1N665	1N5242A
1N666	1N5245B
1N667	1N5248A
1N668	1N5251A
1N669	1N5245A
1N695	1N4148
1N695A	1N4148
1N696	1N4148
1N698	1N4305
1N699	1N4448
1N703	1N5227A
1N703A	1N5227B
1N704	1N5229A
1N704A	1N5229B
1N705	1N5230A
1N705A	1N5230B
1N706/1	1N5232A
1N706A	1N5232B
1N700A	1N5236A
1N707 1N707A	1N5236B
1N707A	1N5230B
1N708A	1N5232B
1N709A	1N5234A
1N709 1N709A	1N5234A 1N5234B
1N709A 1N710	1N5234B 1N5235A
1N710A	1N5235A 1N5235B
1N710A	1N5236A
1N711 1N711A	1N5236B
	1N5236B 1N5237A
1N712	1N5237A 1N5237B
1N712A	1N5237B 1N5239A
1N713	1N5239A 1N5239B
1N713A	1N5239B 1N5240A
1N714	NUP7CNII

nce (Continued))		
Industry	NS	
Device	Device	
1N714A	1N5240B	
1N715	1N5241A	
1N715A	1N5241B	
1N716	1N5242A	
1N716A	1N5242B	
1N717	1N5243A	
1N717A	1N5243B	
1N718	1N5245A	
1N718A	1N5245B	
1N719	1N5246A	
1N719A	1N5246B	
1N720	1N5248A	
1N720A	1N5248B	
1N721	1N5250A	
1N721A	1N5250B	
1N722	1N5251A	
1N722A	1N5251B	
1N723	1N5252A	
1N723A	1N5252B	
1N724	1N5254A	
1N724A	1N5254B	
1N725	1N5256A	
1N725A	1N5256B	
1N726	1N5257A	
1N726A	1N5257B	
1N746	1N746A	
1N746A	1N746A	
1N747	1N747A	
1N747A	1N747A	
1N748	1N748A	
1N748A	1N748A	
1N749	1N749A	
1N749A	1N749A 1N750A	
1N750 1N750A		
1N750A 1N751	1N750A 1N751A	
1N751A	1N751A 1N751A	
1N751A	1N751A 1N752A	
1N752A	1N752A	
1N752A	1N752A	
1N753A	1N753A	
1N754	1N754A	
1N754A	1N754A	
1N755	1N755A	
1N755A	1N755A	
1N756	1N756A	
1N756A	1N756A	
1N757	1N757A	
1N757A	1N757A	
1N758	1N758A	
1N758A	1N758A	
1N759	1N759A	

Industry		
1N759A 1N759A 1N761 1N5230A 1N762 1N5232B 1N763 1N5238B 1N764 1N5238A 1N765 1N5240A 1N766 1N5243A 1N767 1N5246A 1N768 1N5249A 1N769 1N5252A 1N770 1N4305 1N771 1N4448 1N772 1N4448 1N772 1N4448 1N773 1N4448 1N773 1N4448 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4448 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N793 1N4448 1N791 1N4448 <th></th> <th></th>		
1N761 1N5230A 1N762 1N5232B 1N763 1N5238B 1N764 1N5238A 1N765 1N5240A 1N766 1N5249A 1N767 1N5246A 1N768 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772 1N4448 1N773A FDH444 1N773 1N4448 1N774A FDH444 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4448 1N779 1N3070 1N781 1N4305 1N782 1N448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4448 1N792 1N4448 <th>Device</th> <th>Device</th>	Device	Device
1N762 1N5232B 1N763 1N5238B 1N764 1N5238A 1N765 1N5240A 1N766 1N5243A 1N767 1N5246A 1N768 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772 1N4448 1N773A FDH444 1N773 1N448 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4448 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N793 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4448 1N794 1N4448	1N759A	1N759A
1N763 1N5238B 1N764 1N5238A 1N765 1N5240A 1N766 1N5243A 1N767 1N5246A 1N768 1N5249A 1N769 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772 1N4448 1N773 1N4448 1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4448 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N799 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4148 1N794 1N4448 1N795 1N448	1N761	1N5230A
1N764 1N5238A 1N765 1N5240A 1N766 1N5243A 1N767 1N5246A 1N768 1N5249A 1N769 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772 1N4448 1N772A FDH444 1N773 1N4448 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N799 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N448 1N795 1N448	1N762	1N5232B
1N765 1N5240A 1N766 1N5243A 1N767 1N5246A 1N768 1N5249A 1N769 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772 1N4448 1N772A FDH444 1N773 1N4448 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N4448 1N795 1N448	1N763	1N5238B
1N766 1N5243A 1N767 1N5246A 1N768 1N5249A 1N769 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772A FDH444 1N773 1N4448 1N773A FDH444 1N774 1N448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N779 1N3070 1N781 1N4305 1N781A 1N4305 1N788 1N4448 1N799 1N4148 1N790 1N4148 1N791 1N448 1N792 1N4148 1N791 1N4448 1N792 1N4448 1N793 1N4448 1N793 1N4448 1N793 1N4448 1N794 1N448 1N795 1N3070 1N798 1N3070 1N801 1N3070	1N764	1N5238A
1N767 1N5246A 1N768 1N5249A 1N769 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772A FDH444 1N773 1N4448 1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781A 1N4305 1N781A 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N448 1N795 1N3070 1N801 1N3070 1N802 1N3070	1N765	
1N768 1N5249A 1N769 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772A FDH444 1N773A FDH444 1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4448 1N779 1N3070 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N794 1N448 1N795 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070	1N766	1N5243A
1N769 1N5252A 1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772A FDH444 1N773A FDH444 1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N793 1N4448 1N792 1N4448 1N793 1N4148 1N794 1N4448 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070	1N767	1N5246A
1N770 1N4305 1N771 1N4448 1N771A FDH444 1N772A FDH444 1N773A FDH444 1N773A FDH444 1N774A 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N448 1N779 1N3070 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N448 1N795 1N448 1N796 1N448 1N797 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 <td></td> <td>1N5249A</td>		1N5249A
1N771 1N4448 1N771A FDH444 1N772 1N4448 1N772A FDH444 1N773 1N4448 1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N448 1N795 1N448 1N796 1N448 1N797 1N3070 1N801 1N3070 1N802 1N3070 <td>1N769</td> <td>1N5252A</td>	1N769	1N5252A
1N771A FDH444 1N772 1N4448 1N772A FDH444 1N773 1N4448 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N4148 1N795 1N448 1N796 1N448 1N797 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 <td></td> <td></td>		
1N772 1N4448 1N772A FDH444 1N773 1N4448 1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N4448 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 </td <td>1N771</td> <td>1N4448</td>	1N771	1N4448
1N772A FDH444 1N773 1N4448 1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N777 1N4448 1N779 1N3070 1N781 1N4305 1N782 1N448 1N789 1N448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N448 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148	1N771A	FDH444
1N773 1N4448 1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N448 1N795 1N448 1N796 1N448 1N797 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148		1N4448
1N773A FDH444 1N774 1N4448 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781A 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N795 1N448 1N796 1N448 1N797 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070	1N772A	FDH444
1N774 1N4448 1N774A FDH444 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781A 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N448 1N792 1N4448 1N791 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070 <td>1N773</td> <td>1N4448</td>	1N773	1N4448
1N774A FDH444 1N775 1N4448 1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070	1N773A	FDH444
1N775 1N4448 1N776 1N4448 1N776 1N4448 1N777 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N791 1N4448 1N791 1N4448 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N796 1N4448 1N796 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N798 1N3070 1N800 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148		1N4448
1N776 1N4448 1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N807 1N3070	1N774A	FDH444
1N777 1N4448 1N778 1N4148 1N779 1N3070 1N781 1N4305 1N788 1N4448 1N789 1N4148 1N790 1N4148 1N790 1N4148 1N791 1N4448 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N807 1N3070	1N775	1N4448
1N778 1N4148 1N779 1N3070 1N781 1N4305 1N781A 1N4305 1N788 1N4448 1N789 1N4148 1N790M 1N4148 1N790M 1N4148 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070	1N776	1N4448
1N779 1N3070 1N781 1N4305 1N781A 1N4305 1N788 1N4448 1N789 1N4148 1N790M 1N4148 1N790M 1N4148 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N807 1N3070	1N777	1N4448
1N781 1N4305 1N781A 1N4305 1N788 1N4448 1N789 1N4148 1N789M 1N4148 1N790 1N4148 1N790M 1N4148 1N791M 1N4448 1N791M 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148		1N4148
1N781A 1N4305 1N788 1N4448 1N789 1N4148 1N789M 1N4148 1N790 1N4148 1N790M 1N4148 1N791 1N4448 1N791 1N4448 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N793 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148	1N779	
1N788 1N4448 1N789 1N4148 1N789M 1N4148 1N790 1N4148 1N790M 1N4148 1N791 1N4448 1N791M 1N4448 1N792 1N4448 1N793 1N4148 1N793 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N789 1N4148 1N789M 1N4148 1N790 1N4148 1N790M 1N4148 1N791M 1N4448 1N791 1N4448 1N792 1N4448 1N792 1N4448 1N793M 1N4148 1N793 1N4148 1N793 1N4148 1N795 1N4448 1N796 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N805 1N4148 1N806 1N4148		
1N789M 1N4148 1N790 1N4148 1N790M 1N4148 1N791 1N4448 1N791M 1N4448 1N792 1N4448 1N792M 1N4448 1N793 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N790 1N4148 1N790M 1N4148 1N791M 1N4448 1N791M 1N4448 1N792 1N4448 1N792 1N4448 1N793 1N4148 1N793M 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148	1N789	1N4148
1N790M 1N4148 1N791 1N4448 1N791M 1N4448 1N792 1N4448 1N792M 1N4448 1N793 1N4148 1N793M 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N799 1N3070 1N800 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148	1N789M	1N4148
1N791 1N4448 1N791M 1N4448 1N792 1N4448 1N792M 1N4448 1N793 1N4148 1N793M 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148		
1N791M 1N4448 1N792 1N4448 1N792M 1N4448 1N793 1N4148 1N793M 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148		
1N792 1N4448 1N792M 1N4448 1N793 1N4148 1N793M 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148		
1N792M 1N4448 1N793 1N4148 1N793M 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N793 1N4148 1N793M 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148		
1N793M 1N4148 1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N806 1N4148		
1N794 1N4148 1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148		
1N795 1N4448 1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148		
1N796 1N4448 1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148		•
1N797 1N3070 1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N798 1N3070 1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N799 1N3070 1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N800 1N3070 1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N801 1N3070 1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070	· ·	The state of the s
1N802 1N3070 1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070	1N800	
1N803 1N3070 1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N804 1N3070 1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N805 1N4148 1N806 1N4148 1N807 1N3070		
1N806 1N4148 1N807 1N3070		
1N807 1N3070		
1N808 1N4448		
	1N808	1N4448

Diode Device Cross Reference (Continued))

Diode Devic	e Cross Re
Industry	NS
Device	Device
1N809	1N3070
1N810	1N4148
1N811	1N4148
1N811M	1N4148
1N812	1N4149
1N812M	1N4149
1N813	1N4148
1N813M	1N4148
1N814	1N4148
1N814M	1N4148
1N815	1N4448
1N815M	1N4448
1N817	1N3070
1N818	1N4148
1N818A	1N4148
1N835	1N4305
1N837	FDH444
1N837A	FDH444
1N838 1N839	1N3070
1N840	1N3070 FDH444
1N840M	1N3070
1N841	1N3070
1N842	1N3070 1N3070
1N843	1N3070 1N3070
1N844	1N3070
1N845	1N3070
1N890	1N4447
1N891	1N4448
1N892	1N4448
1N893	1N3070
1N897	1N4148
1N898	1N4448
1N899	1N3070
1N900	1N3070
1N901	1N3070
1N902	1N3070
1N903	1N4148
1N903A	1N4154
1N903AM	1N4154
1N903M	1N4154
1N904	1N4154
1N904A	1N4154
1N904AM	1N4154
1N904M	1N4154
1N905	1N4151
1N905A	1N4154
1N905AM	1N4154
1N905M	1N4154
1N906	1N4149

ence (Continued))		
Industry	NS	
Device	Device	
1N906A	1N4447	
1N906AM	1N4447	
1N906M	1N4447	
1N907	1N4149	
1N907A	1N4448	
1N907AM	1N4447	
1N907M	1N4149	
1N908	1N4149	
1N908A	1N4447	
1N908AM	1N4447	
1N908M	1N4149	
1N909	1N4449	
1N910	1N4449	
1N911	1N4449	
1N914	1N914	
1N914A	1N914A	
1N914B	1N914B	
1N914M	1N914	
1N915	1N914B	
1N916	1N916	
1N916A	1N916A	
1N916B	1N916B	
1N918	1N914	
1N919	1N3070	
1N920	FDH400	
1N921	FDH400	
1N922	FDH400	
1N923	FDH400	
1N924	1N483B	
1N925	1N4148	
1N926	1N4148	
1N927	1N4148	
1N928	1N3070	
1N930	1N4446	
1N931	1N3070	
1N932	1N3070	
1N933	1N3070	
1N934	1N3070	
1N948	1N4448	
1N949	1N4305	
1N957	1N957	
1N957A	1N957A	
1N957B	1N857B	
1N958	1N958	
1N958A	1N958A	
1N958B	1N958B	
1N959	1N959	
1N959A	1N959A	
1N959B	1N959B	
1N960	1N960	

Industry	NS
Device	Device
1N960A	1N960A
1N960B	1N960B
1N960B	1N960B
1N961A	1N961A
1N961B	1N961B
1N962	1N961B
1N962A	1N962 1N962A
1N962B	1N962A 1N962B
1N963 1N963A	1N963
	1N963A
1N963B	1N963B
1N964	1N964
1N964A	1N964A
1N964B	1N964B
1N965	1N965
1N965A	1N965A
1N965B	1N965B
1N966	1N966
1N966A	1N966A
1N966B	1N966B
1N967	1N967
1N967A	1N967A
1N967B	1N967B
1N968	1N968
1N968A	1N968A
1N968B	1N968B
1N969	1N969
1N969A	1N969A
1N969B	1N969B
1N970	1N970
1N970A	1N970A
1N970B	1N970B
1N971	1N971
1N971A	1N971A
1N971B	1N971B
1N972	1N972
1N972A	1N972A
1N972B	1N972B
1N973	1N973
1N973A	1N973A
1N973B	1N973B
1N993	1N4447
1N994	1N4151
1N995	1N4305
1N997	1N4148
1N998	1N484B
1N999	1N914
1N1093	FDH999
1N1170	1N4148
1N1374	1N5229A

Diode Device Cross Reference (Continued)

Diode Device Cross Refer		
Industry	NS	
Device	Device	
1N1507	1N4730	
1N1507A	1N4730A	
1N1508	1N4732	ĺ
1N1508A	1N4732A	
1N1509	1N4734	
1N1509A	1N4734A	
1N1510	1N4736	
1N1510A	1N4736A	
1N1511	1N4738	
1N1511A	1N4738A	
1N1512	1N4740	
1N1512A	1N4740A	
1N1513	1N4742	
1N1513A	1N4742A	ĺ
1N1514	1N4744	
1N1514A	1N4744A	
1N1515	1N4746	
1N1515A	1N4646A	
1N1516	1N4748	
1N1516A	1N4748A	
1N1517	1N4750	
1N1517A	1N4750A	
1N1518	1N4730	
1N1518A	1N4730A	
1N1519	1N4732	
1N1519A 1N1520	1N4732A 1N4734	
1N1520 1N1520A	1N4734 1N4734A	
1N1520A	1N4734A 1N4736A	
1N1521A	1N4738A	
1N1522A	1N4738A	
1N1522A	1N4740	:
1N1523 1N1523A	1N4740A	
1N1524	1N4742	
1N1524A	1N4742A	
1N1525	1N4744	
1N1525A	1N4744A	
1N1526	1N4746	
1N1526A	1N4746A	
1N1527A	1N4748A	
1N1528	1N4750	
1N1528A	1N4750A	
1N1561	1N4305	
1N1562	1N4305	
1N1744	1N4740	
1N1744A	1N4743A	
1N1765A	1N4734A	
1N1766	1N4735	
1N1766A	1N4735A	
1N1767	1N4736	

1Ce (Continued))		
Industry Device	NS Device	
1N1767A	1N4736A	
1N1768	1N4737	
1N1768A	1N4737A	
1N1769	1N4738	
1N1769A	1N4738A	
1N1770	1N4739	
1N1770A	1N4739A	
1N1771	1N4740	
1N1771A	1N4740A	
1N1772	1N4741	
1N1772A	1N4741A	
1N1773	1N4742	
1N1773A	1N4742A	
1N1775	1N4744	
1N1775A	1N4744A	
1N1776	1N4745	
1N1776A	1N4745A	
1N1777	1N4746	
1N1777A	1N4746A	
1N1778	1N4747	
1N1778A	1N4747A	
1N1779	1N4748	
1N1779A	1N4748A	
1N1780	1N4749	
1N1780A	1N4749A	
1N1781	1N4750	
1N1781A	1N4750A	
1N1782	1N4751	
1N1782A	1N4751A	
1N1783	1N4752	
1N1783A	1N4752A	
1N1839	2N2218	
1N1875	1N4738	
1N1876	1N4740	
1N1877	1N4742	
1N1878	1N4744	
1N1879	1N4746	
1N1880 1N1881	1N4748	
1N1882	1N4750 1N4752	
1N1927	1N5228A	
1N1927 1N1928	1N5230A	
1N1929	1N5230A 1N5232A	
1N1930	1N5232A 1N5235A	
1N1931	1N5237A	
1N1932	1N5240A	
1N1933	1N5242A	
1N1934	1N5245A	
1N1935	1N5248A	
1N1936	1N5251A	
1111000	11102017	

Industry Device	NS Device
1i\1954	1N5228A
1N1954 1N1955	1N5226A 1N5230A
1N1955	1N5230A
1N1956 1N1957	1N5232A 1N5235A
1N1957 1N1958	1N5235A 1N5237A
1N1959	1N5240A
1N1960	1N5240A
1N1961	1N5245A
1N1962	1N5248A
1N1963	1N5251A
1N1981	1N5228A
1N1982	1N5230A
1N1983	1N5232A
1N1984	1N5235A
1N1985	1N5237A
1N1986	1N5240A
1N1987	1N5242A
1N1988	1N5245A
1N1989	1N5248A
1N1990	1N5251A
1N2032	1N4732
1N2033	1N4734
1N2034	1N4736
1N2035	1N4739
1N2036	1N4740
1N2037	1N4743
1N2038	1N4745
1N2039	1N4747
1N2040	1N4749
1N2146	FDH400
1N2629	1N4305
1N3016	1N4736
1N3016A	1N4736A
1N3016B	1N4736B
1N3017	1N4737
1N3017A	1N4737A
1N3017B	1N4737B
1N3018	1N4738
1N3018A	1N4738
1N3018B	1N4738A
1N3019	1N4739
1N3019A	1N4739
1N3019B	1N4739A
1N3020	1N4740
1N3020A	1N4740
1N3020B	1N4740A
1N3021	1N4741
1N3021A	1N4741
1N3021B	1N4741A
1N3022	1N4742

Diode Devic	ce Cross Re	
Industry	NS ·	
Device	Device	
1N3022A	1N4742	
1N3022B	1N4742A	
1N3023	1N4743	
1N3023A	1N4743	
1N3023B	1N4743A	
1N3024	1N4744	
1N3024A	1N4744	
1N3024B	1N4744A	
1N3025	1N4745	
1N3025A	1N4745	
1N3025B	1N4745A	
1N3026	1N4746	
1N3026A	1N4746	
1N3026B	1N4746A	
1N3027	1N4747	
1N3027A	1N4747	
1N3027B	1N4747A	
1N3028	1N4748	
1N3028A	1N4748	
1N3028B	1N4748A	
1N3029	1N4749	
1N3029A	1N4749	
1N3029B	1N4749A	
1N3030 1N3030A	1N4750	
1N3030A 1N3030B	1N4750 1N4750A	
1N3030B	1N4750A 1N4751	
1N3031 1N3031A	1N4751 1N4751	
1N3031B	1N4751A	
1N3031B	1N4751A	
1N3032A	1N4752 1N4752	
1N3032B	1N4752A	
1N3062	1N4305	
1N3063	1N4305	
1N3064	1N3064	
1N3065	1N4305	
1N3066	1N4305	
1N3067	1N4148	
1N3068	1N4148	
1N3069	1N4148	
1N3070	1N3070	
1N3071	1N3070	
1N3097	1N4305	
1N3110	1N4305	
1N3121	1N4305	
1N3122	1N4305	
1N3123	1N4305	
1N3124	1N4151	
1N3125	1N4305	
1N3144	1N4305	

nce (Continued))			
Industry	NS		
Device	Device		
1N3145	1N4305		
1N3146	1N4154		
1N3147	1N4448		
1N3160	1N4305		
1N3179	1N3070		
1N3180	1N3070 1N3070		
1N3181	1N3070 1N5237A		
1N3197	1N5237A 1N4148		
1N3203	1N4305		
1N3204	1N4305		
1N3206	1N4148		
1N3215	1N4152		
1N3223	1N3070		
1N3225	1N4148		
1N3257	1N4449		
1N3258	1N4448		
1N3298	FDH400		
1N3298A	FDH400		
1N3465	FDH444		
1N3266	FDH444		
1N3467	1N4446		
1N3468	1N4446		
1N3469	FDH400		
1N3470	FDH400		
1N3471	1N4148		
1N3483	1N4305		
1N3484	1N4305		
1N3485	1N3070		
1N3535	1N3070		
1N3536	1N457		
1N3550	1N3070		
1N3559	FDH444		
1N3564	1N4448		
1N3567	1N4448		
1N3568	1N4449		
1N3575	1N483B		
1N3576	1N484B		
1N3592	1N4305		
1N3593	1N4148		
1N3594	FDH600		
1N3595	1N3595		
1N3596	1N4449		
1N3597	1N3070		
1N3598	1N4152		
1N3599	1N4938		
1N3600	1N3600		
1N3601	1N4149		
1N3602	1N4151		
1N3603	1N4151		
1N3604	1N4151		

Industry	NS
Device	Device
1N3605	1N4152
1N3606	1N4153
1N3607	1N4151
1N3608	1N4152
1N3609	1N4153
1N3625	1N3070
1N3638B	1N4744A
1N3653	FDH400
1N3654	1N4448
1N3666	1N4305
1N3668	1N4305
1N3675	1N4736
1N3675A	1N4736
1N3675B	1N4736A
1N3676	1N4737
1N3676A	1N4737
1N3676B	1N4737A
1N3677	1N4738
1N3677A	1N4738
1N3677B	1N4738A
1N3678	1N4739
1N3678A	1N4739
1N3678B	1N4739A
1N3679	1N4740
1N3679A	1N4740
1N3679B	1N4740A
1N3680	1N4741
1N3680A	1N4741
1N3680B	1N4741A
1N3681	1N4742
1N3681A	1N4742
1N3681B	1N4742A
1N3682	1N4743
1N3682A	1N4743
1N3682B	1N4743A
1N3683	1N4744
1N3683A	1N4744
1N3684	1N4745
1N3684A	1N4745
1N3684B	1N4745A
1N3685	1N4746
1N3685A	1N4746
1N3685B	1N4746A
1N3686	1N4747
1N3686A	1N4747
1N3686B	1N4747A
1N3687	1N4748
1N3687A	1N4748
1N3687B	1N4748A
1N3688	1N4749

Diode Device Cross Re		
Industry	NS	
Device	Device	
1N3688A	1N4749	
1N3689	1N4750	
1N3689A	1N4750	
1N3689B	1N4750A	
1N3690	1N4751	
1N3690A	1N4751	
1N3690B	1N4751A	
1N3691	1N4752	
1N3691A	1N4752	
1N3691B	1N4752A	
1N3722	1N4148	
1N3731	1N4153	
1N3753	1N4148	
1N3769	1N4305	
1N3773	1N4305	
1N3821	1N4728	
1N3821A	1N4728A	
1N3822	1N4729	
1N3722A	1N4729A	
1N3823	1N4730	
1N3823A	1N4730A	
1N3824	1N4731	
1N3824A	1N4731A	
1N3825	1N4732	
1N3825A	1N4732A	
1N3826	1N4733	
1N3826A	1N4733A	
1N3827	1N4734	
1N3827A	1N4734A	
1N3828	1N4735	
1N3828A	1N4735A	
1N3929	1N4736	
1N3829A	1N4736A	
1N3830	1N4737	
1N3830A	1N4737A	
1N3864	1N458	
1N3865	1N4148	
1N3872	FDH444	
1N3873	FDH444	
1N3944	1N4305	
1N3952	1N3070	
1N3953	1N4148	
1N3954	1N4150	
1N3956	1N4305	
1N3991	1N4305	
1N4008	1N4305	
1N4009	1N4009	
1N4043	1N4154	
1N4086	FDH444	
1N4087	FDH900	
1117007	1 51 1000	

nce (Continued))			
Industry	NS		
Device	Device		
1N4088	1N4148		
1N4147	1N914		
1N4147A	1N4752		
1N4147B	1N4752A		
1N4148	1N4148		
1N4149	1N4149		
1N4150	1N4150		
1N4151	1N4151		
1N4152	1N4152		
1N4153	1N4153		
1N4154	1N4154		
1N4158	1N4736		
1N4158A	1N4736		
1N4158B	1N4736A		
1N4159	1N4737		
1N4161	1N4739		
1N4161A	1N4739		
1N4161B	1N4739A		
1N4162	1N4740		
1N4162A	1N4740		
1N4162B	1N4740A		
1N4163	1N4741		
1N4163A	1N4741		
1N4163B	1N4741A		
1N4164	1N4742		
1N4164A	1N4742		
1N4164B	1N4742A		
1N4165	1N4743		
1N4165A	1N4743		
1N4165B	1N4743A		
1N4166	1N4744		
1N4166A	1N4744		
1N4166B	1N4744A		
1N4167	1N4745		
1N4167A	1N4745		
1N4167B	1N4745A		
1N4168	1N4746		
1N4168A	1N4746		
1N4166B	1N4746A		
1N4169	1N4747		
1N4169A	1N4747		
1N4169B	1N4747A		
1N4170	1N4748 1N4748		
1N4170A			
1N4170B	1N4748A		
1N4171	1N4749		
1N4171A	1N4749		
1N4171B 1N4172	1N4749A 1N4750		
1N4172 1N4172A	1N4750 1N4750		
11141/2/	114750		

Industry	NS	
Device	Device	
1N4172B	1N4750A	
1N4173	1N4751	
1N4173A	1N4751	
1N4173B	1N4751A	
1N4242	FDH900	
1N4243	FDH900	
1N4244	1N4244	
1N4254	1N4305	
1N4305	1N4305	
1N4306	1N4306	
1N4307	1N4307	
1N4308	1N4150	
1N4309	FDH400	
1N4310	FDH400	
1N4312	FDH444	
1N4313	1N4151	
1N4314	1N4150	
1N4315	FDH400	
1N4316	FDH400	
1N4318	FDH444	
1N4319	1N4151	
1N4322	1N4150	
1N4323	1N4736	
1N4323B	1N4736A	
1N4324	1N4737	
1N4324A	1N4737	
1N4324B	1N4737A	
1N4325	1N4738	
1N4325A	1N4738	
1N4325B	1N4738A	
1N4326	1N4739	
1N4326A	1N4739	
1N4326B	1N4739A	
1N4327	1N4740	
1N4327A	1N4740	
1N4327B	1N4740A	
1N4328	1N4741	
1N4328A	1N4741	
1N4328B	1N4741A	
1N4329	1N4742	
1N4329A	1N4742	
1N4329B	1N4742A	
1N4330	1N4743	
1N4330A	1N4743	
1N4330B	1N4743A	
1N4331	1N4744	
1N4331A	1N4744	
1N4331B	1N4744A	
1N4332	1N4745	
1N4332A	1N4745	

Diode Device	ce Cross Re
Industry	NS
Device	Device
1N4332B	1N4745A
1N4333	1N4746
1N4333A	1N4746
1N4333B	1N4746A
1N4334	1N4747
1N4334A	1N4747
1N4334B	1N4747A
1N4335	1N4748
1N4335A	1N4748
1N4335B	1N4748A
1N4336	1N4749
1N4336A	1N4749
1N4336B	1N4749A
1N4337	1N4750
1N4337A	1N4750
1N4337B	1N4750A
1N4338	1N4751
1N4338A	1N4751
1N4338B	1N4751A
1N4339	1N4752
1N4339A	1N4752
1N4339B	1N4752A
1N4362	1N484B
1N4363	1N3070
1N4373	1N4148
1N4375	1N4153
1N4376	1N4376
1N4389	1N4148
1N4390	FD700
1N4391	FD700
1N4392	FD700
1N4400	1N4736
1N4401	1N4737
1N4402	1N4738
1N4403	1N4739
1N4404	1N4740
1N4405	1N4741
1N4406	1N4742
1N4407	1N4743
1N4408	1N4744
1N4409	1N4745
1N4410	1N4746
1N4411	1N4747
1N4412	1N4748
1N4413	1N4749
1N4414	1N4750
1N4415	1N4751
1N4416	1N4752
1N4424A	1N4736
1N4442	FDH999

PNCE (Continued))		
industry Device	NS Device	
1N4443	1N4148	
1N4445	1N4151	
1N4446	1N4446	
1N4447	1N4447	
1N4448	1N4448	
1N4449	1N4449	
1N4450	1N4450	
1N4451	1N4151	
1N4453	1N4448	
1N4454	1N4454	
1N4455	1N4305	
1N4456	1N4150	
1N4457	1N4150	
1N4502	1N4305	
1N4523	1N4305	
1N4531	1N4148	
1N4532	FDH600	
1N4533	1N4152	
1N4534	1N4153	
1N4536	1N4154	
1N4547	1N4151	
1N4548	1N4154	
1N4608 1N4610	FDH400	
1N4610 1N4628	1N4150 1N4736A	
1N4629	1N4737A	
1N4639	1N4737A 1N4738A	
1N4631	1N4739A	
1N4632	1N4740A	
1N4633	1N4741A	
1N4634	1N4742A	
1N4635	1N4743A	
1N4636	1N4744A	
1N4637	1N4745A	
1N4638	1N4746A	
1N4639	1N4747A	
1N4640	1N4748A	
1N4641	1N4749A	
1N4642	1N4750A	
1N4643	1N4751A	
1N4644	1N4752A	
1N4649	1N4728A	
1N4650	1N4729A	
1N4651	1N4730A	
1N4652	1N4731A	
1N4653	1N4732A	
1N4654	1N4733A	
1N4655	1N4734A	
1N4656	1N4735A	
1N4657	1N4736A	

	r	
Industry	NS	
Device	Device	
1N4658	1N4737A	
1N4659	1N4738A	
1N4660	1N4739A	
1N4661	1N4740A	
1N4662	1N4741A	
1N4663	1N4742A	
1N4664	1N4743A	
1N4665	1N4744A	
1N4666	1N4745A	
1N4667	1N4746A	
1N4668	1N4747A	
1N4669	1N4748A	
1N4670	1N4749A	
1N4671	1N4750A	
1N4672	1N4751A	
1N4673	1N4752A	
1N4728	1N4728	
1N4728A	1N4728A	
1N4729	1N4729	
1N4729A	1N4729A	
1N4730	1N4730	
1N4730A	1N4730A	
1N4731	1N4731	
1N4731A	1N4731A	
1N4732	1N4732	
1N4732A	1N4732A	
1N4733	1N4733	
1N4733A	1N4733A	
1N4734	1N4734	
1N4734A	1N4734A	
1N4735	1N4735	
1N4735A	1N4735A	
1N4736	1N4736	
1N4736A	1N4736A	
1N4737	1N4737	
1N4737A	1N4737A	
1N4738	1N4738	
1N4738A	1N4738A	
1N4739	1N4739	
1N4739A	1N4739A	
1N4740	1N4740	
1N4740A	1N4740A	
1N4741	1N4741	
1N4741A	1N4741A	
1N4742	1N4742	
1N4742A	1N4742A	
1N4743	1N4743	
1N4743A	1N4743A	
1N4744	1N4744	
1N4744A	1N4744A	

DIODE Device Cross Reference (Continued))				
	Industry	NS	Industry	NS
	Device	Device	Device	Device
	1N4745	1N4745	1N5231B	1N5231B
	1N4745A	1N4745A	1N5232	1N5232
	1N4746	1N4746	1N5232A	1N5232A
	1N4746A	1N4746A	1N5232B	1N5232B
	1N4747	1N4747	1N5233	1N5233
	1N4747A	1N4747A	1N5233B	1N5233B
	1N4748	1N4748	1N5234	1N5234
	1N4748A	1N4748A	1N5234A	1N5234A
	1N4749	1N4749	1N5234B	1N5234B
	1N4749A	1N4749A	1N5235	1N5235
	1N4750	1N4750	1N5235A	1N5235A
	1N4750A	1N4750A	1N5235B	1N5235B
	1N4751	1N4751	1N5236	1N5236
	1N4751A	1N4751A	1N5236A	1N5236A
	1N4827	1N4448	1N5236B	1N5236B
	1N4828	FDH444	1N5237	1N5237
	1N4829	FDH444	1N5237A	1N5237A
	1N4830	FDH444	1N5237B	1N5237B
	1N4861	1N457	1N5238	1N5238
	1N4862	1N457	1N5238A	1N5238A
	1N4863	1N4148	1N5238B	1N5238B
	1N4864	1N4151	1N5239	1N5239
	1N4888	FD777	1N5239A	1N5239A
	1N4938	1N3070	1N5239B	1N5239B
	1N4949	FD777	1N5240	1N5240
	1N4950	1N4150	1N5240A	1N5240A
	1N4953	FD777	1N5240B	1N5240B
	1N5194	1N483B	1N5241	1N5241
	1N5195	1N485B	1N5241A	1N5241A
	1N5209	1N458	1N5241B	1N5241B
	1N5210	1N459	1N5242	1N5242
	1N5219	FDH900	1N5242A	1N5242A
	1N5220	FDH900	1N5242B	1N5242B
	1N5226	1N5226	1N5243	1N5243
	1N5226A	1N5226A	1N5243A	1N5243A
	1N5226B	1N5226B	1N5243B	1N5243B
	1N5227	1N5227	1N5244	1N5244
	1N5227A	1N5227A	1N5244A	1N5244A
	1N5227B	1N5227B	1N5244B	1N5244B
	1N5228	1N5228	1N5245	1N5245
	1N5228A	1N5228A	1N5245A	1N5245A
	1N5228B	1N5228B	1N5245B	1N5245B
	1N5229	1N5229	1N5246	1N5246
	1N5229A	1N5229A	1N5246A	1N5246A
	1N5229B	1N5229B	1N5246B	1N5246B
	1N5230	1N5230	1N5247	1N5247
	1N5230A	1N5230A	1N5247A	1N5247A
	1N5230B	1N5230B	1N5247B	1N5247B
	1N5231	1N5231	1N5248	1N5248
	1N5231A	1N5231A	1N5248A	1N5248A

Industry	NS	
Device	Device	
1N5248B	1N5248B	
1N5249	1N5249	
1N5249A	1N5249A	
1N5249B	1N5249B	
1N5250	1N5250	
1N5250A	1N5250A	
1N5250B	1N5250B	
1N5251	1N5251	
1N5251A	1N5251 1N5251A	
1N5251B	1N5251B	
1N5252	1N5252	
1N5252A	1N5252A	
1N5252B	1N5252B	
1N5253	1N5253	
1N5253A	1N5253A	
1N5253B	1N5253B	
1N5254	1N5254	
1N5254A	1N5254A	
1N5254B	1N5254B	
1N5255	1N5255	
1N5255A	1N5255A	
1N5255B	1N5255B	
1N5256	1N5256	
1N5256A	1N5256A	
1N5256B	1N5256B	
1N5257	1N5257	
1N5257	1N5257A	
1N5257A	1N5257B	
1N5282	1N5282	
1N5315	1N4153	
1N5316	1N4153	
1N5317	1N4150	
1N5317 1N5318	1N4150	
1N5318	1N4305	
1N5412	1N4305	
1N5412 1N5413	1N4305	
1N5414	1N4305	
1N5414 1N5427	1N4303 1N4148	
1N5427 1N5428	1N3070	
1N5249	1N485B	
1N5430	FDH400	
1N5431	FDH400	
1N5432	FD777	
1N5559	1N4736	
1N5559A	1N4736	
1N5559B	1N4736A	
1N5560	1N4737	
1N5561	1N4738	
1N5561A	1N4738	
1N5561B	1N4738A	

Diode Device Cross Re		
Industry	NS	
Device	Device	
1N5562	1N4739	
1N5562A	1N4739	
1N5562B	1N4739A	
1N5563	1N4740	
1N5563A	1N4740	
1N5563B	1N4740A	
1N5564	1N4741	
1N5564A	1N4741	
1N5564B	1N4741A	
1N5565	1N4742	
1N5565A	1N4742	
1N5565B	1N4742A	
1N5566	1N4743	
1N5566A	1N4743	
1N5566B	1N4743A	
1N5567	1N4744	
1N5567A	1N4744	
1N5567B	1N4744A	
1N5568	1N4745	
1N5568 1N4745 1N5568A 1N4745		
1N5568B	1N4745A	
1N5569	1N4746	
1N5569A	1N4746	
1N5569B	1N4746 1N4746A	
1N5570	1N4746A	
1N5570A	1N4747	
1N5570A 1N5570B	1N4747 1N4747A	
1N5570B		
1N5571 1N4748 1N5571A 1N4748		
1N5571A	1N4748 1N4748A	
1N5571B	1N4748A 1N4749	
1N5572 1N5572A	1N4749 1N4749	
1N5572A 1N5572B		
1N5572B 1N5573	1N4749A	
1N5573 1N5573A	1N4750	
	1N4750	
1N5573B	1N4750A	
1N5574	1N4751	
1N5574A	1N4751	
1N5574B	1N4751A	
1N5575	1N4752	
1N5575A	1N4752	
1N5575B	1N4752A	
1N5605	1N457	
1N5606	1N458	
1N5607	1N3070	
1N5608	1N3070	
1N5609	1N3070	
1N5660A	1N4737	
1N5660B	1N4737A	
1N5711	1N4446	

(Continued))			
Industry	NS		
Device	Device		
1N5712	1N4446		
1N5713	1N4446		
1N5719	1N484		
1N5720	1N4448		
1N5721	1N4448		
1N5726	FDH400		
1N5767	1N4448		
1N5768	1N5768		
1N5769	FSA2002M		
1N5770	1N5770		
1N5771	FSA2003M		
1N5772	1N5772		
1N5773	FSA2500M		
1N5774	1N5774		
1N5775	FSA2504M		
1N5913	1N4728		
1N5913A	1N4728		
1N5914	1N4729		
1N5914A	1N4729		
1N5914B	1N4729A		
1N5915	1N4730		
1N5915A	1N4730		
1N5915B	1N4730A		
1N5916	1N4731		
1N5916A	1N4731		
1N5916B	1N4731A		
1N5917	1N4732		
1N5917A	1N4732		
1N5917B	1N4732A		
1N5918	1N4733		
1N5918A	1N4733		
1N5918B	1N4733A		
1N5919	1N4734		
1N5919A	1N4734		
1N5919B	1N4734A		
1N5920	1N4735		
1N5920A	1N4735		
1N5920B	1N4735A		
1N5921	1N4736		
1N5921A	1N4736		
1N5921B	1N4736A		
1N5922	1N4737		
1N5922 1N5922A	1N4737 1N4737		
1N5922A 1N5922B	1N4737 1N4737A		
1N5922B	1N4737A 1N4738		
1N5923 1N5923A	1N4738 1N4738		
1N5923A 1N5923B			
1N5923B 1N5924	1N4738A		
	1N4739		
1N5924A 1N5924B	1N4739		
1140924D	1N4739A		

Industry	NS
Device	Device
1N5925	1N4740
1N5925A	1N4740
1N5925B	1N4740A
1N5926	1N4741
1N5926A	1N4741
1N5926B	1N4741A
1N5927	1N4742
1N5927A	1N4742
1N5927B	1N4742A
1N5928	1N4743
1N5928A	1N4743
1N5928B	1N4743A
1N5929	1N4744
1N5929A	1N4744
1N5929B	1N4744A
1N5930	1N4745
1N5930A	1N4745
1N5930B	1N4745A
1N5931	1N4746
1N5931A	1N4746
1N5931B	1N4728A
1N5932	1N4747
1N5932A	1N4747
1N5932B	1N4747A
1N5933	1N4748
1N5933A	1N4748
1N5933B	1N4748A
1N5934	1N4749
1N5934A	1N4749
1N5934B	1N4749A
1N5935	1N4750
1N5935A	1N4750
1N5935B	1N4750A
1N5936	1N4751
1N5936A	1N4751
1N5936B	1N4751A
1N5937	1N4752
1N5937A	1N4752
1N5937B	1N4752A
1N5988	1N5226
1N5988A	1N5226A
1N5989	1N5227
1N5989A	1N5227A
1N5989B	1N5227B
1N5990A	1N5228A
1N5990B	1N5228B
1N5991	1N5229
1N5991A	1N5229A
1N5991B	1N5229B
1N5992	1N5230

Diode Device C1022 Hei		
Industry	NS	
Device	Device	
1N5992A	1N5230A	
1N5992B	1N5230B	
1N5993	1N5231	
1N5993A	1N5231A	
1N5993B	1N5231B	
1N5994	1N5232	
1N5994A	1N5232A	
1N5994B	1N5232B	
1N5995	1N5234	
1N5995A	1N5234A	
1N5995B	1N5234B	
1N5996	1N5235	
1N5996A	1N5235A	ĺ
1N5996B	1N5235B	
1N5997	1N5236	
1N5997A	1N5236A	
1N5997B	1N5236B	
1N5998	1N5237	
1N5998A	1N5237A	
1N5998B	1N5226B	
1N5998B	1N5237B	
1N5999	1N5237B	
1N5999A	1N5239A	
1N5999B	1N5239B	
1N6000	1N5240	
1N6000A	1N5240 1N5240A	
1N6000A	1N5240A	
1N6000B	1N5240B	
1N6001A	1N5241 1N5241A	
1N6001A	1N5241A 1N5241B	
1N6001B	1N5241B	
1N6002 1N6002A	1N5242 1N5242A	
1N6002B 1N6003	1N5242B 1N5243	
1N6003 1N6003A	1N5243 1N5243A	
1N6003A	1N5243A 1N5243B	
1N6004	1N5245	
1N6004A	1N5245A	
1N6004B	1N5245B	
1N6005	1N5246	
1N6005A	1N5246A	
1N6005B	1N5246B	
1N6006	1N5248	
1N6006A	1N5248A	
1N6006B	1N5248B	
1N6007	1N5250	
1N6007A	1N5250A	
1N6007B	1N5250B	
1N6008	1N5251	
1N6008A	1N5251A	

nce (Continued))			
Industry	ustry NS		
Device	Device		
1N6008B	1N5251B		
1N6009	1N5252		
1N6009A	1N5252A		
1N6009B	1N5252B		
1N6010	1N5254		
1N6010A	1N5254A		
1N6010B	1N5254B		
1N6011	1N5256		
1N6011A	1N5256A		
1N6011B	1N5256B		
1N6012	1N5257		
1N6012A	1N5257A		
1N6012B	1N5257B		
1N6099	1N6099		
1N6100	1N6100		
1N6101	1N6101		
1N6496	1N6496		
1S44	1S44		
1S920	1S920		
1S921	1S921		
1S922	1S922		
1S923	1S923		
AA112	FDH999		
AA113	BA128		
AA114	BA130		
AA116	BA130		
AA129	BA130		
AA131	FDH900		
AA137	BA130		
AA138	BA130		
AA139 AAY10	BA129 BA130		
AAY48	BA130		
AAZ13	BA130		
AAZ18	BA130		
BA127	BA128		
BA128	BA128		
BA130	BA130		
BA136	BA128		
BA152	FDH900		
BA154	FDH900		
BA165	FDH900		
BA166	BA130		
BA167	BA130		
BA192	FDH400		
BA193	FDH400		
BA194	FDH400		
BA197	FDH400		
BA198	FDH400		
BA200	BA218		
D. 1200			

Industry		
BA217 BA217 BA218 BA218 BA316 BA316 BA317 BA317 BA318 BA318		
BA218 BA218 BA316 BA316 BA317 BA317 BA318 BA318		
BA316 BA316 BA317 BA317 BA318 BA318		
BA317 BA317 BA318 BA318		
BA318 BA318		
1		
BAS13 FDH400		
BAS19 BAS19		
BAS20 BAS20		
BAS21 BAS21		
BAS36 FA2320E		
BAS45 BAS45		
BAV17 BAV17		
BAV18 BAV18		
BAV19 BAV19		
BAV20 BAV20		
BAV21 BAV21		
BAV24 BAY74 BAV50 FSA2510M		
BAV68 BAY72		
BAV69 FDH400		
BAW10 BAY74		
BAW11 BAY72		
BAW12 FDH444		
BAW16 FDH300		
BAW17 FDH300		
BAW18 FDH300		
BAW24 BAY74		
BAW25 FDH600		
BAW26 FDH600		
BAW33 BAY72		
BAW43 BAY73		
BAW45 BAY71		
BAW46 BAY72		
BAW47 BAY72		
BAW48 BAY71		
BAW49 BAY73		
BAW50 FDH400		
BAW51 BAY72		
BAW52 FDH400		
BAW53 BAY74		
BAW54 BAY74		
BAW55 BAY72		
BAW62 BAW62		
BAW75 BAW75		
BAW76 BAW76	1	
BAW77 BAY72	l .	
BAX12 BAY74	1	
BAX13 BAX13		
BAX15 FDH400		
BAX16 BAX16		

Diode Devi	ce Cross Re	fe
Industry	NS	
Device	Device	
BAX17	BAX17	
BAX20	FDH444	l
BAX21	FDH444	
BAX33	FA2310E	
BAX34	FA2310E	
BAX35	FA2310E	
BAX37	FA2320E	
BAX38	FA2320E	
BAX39	FA4310E	
BAX40	FA4310E	
BAX41	FA4310E	
BAX42	FA4320E	
BAX43	FA4320E	
BAX44	FA4320E	
BAX83	BAY72	
BAX84	BAY71	
BAX85	BAY71	
BAX86A	BAY71	
BAX86B	BAY71	
BAX87	BAY71	
BAX89B	BAY71	
BAX89H	BAY71	
BAX90A	BAY71	
BAX90B	BAY71	
BAX91A	BAY71	
BAX91B	BAY71	
BAX91C	BAY71	
BAX92	BAY71	
BAX93	BAY71	
BAX94	BAY71	
BAY17	BAY72	
BAY18	BAY72	
BAY19	BAY72	l
BAY20	FDH400	
BAY38	BAY71	
BAY41	BAY71	
BAY42	BAY71	
BAY43	1N4148	
BAY60	BAY74	
BAY61	BAY74	
BAY63	BAY74	i
BAY68	BAY74	
BAY69	BAY74	
BAY71	BAY71	
BAY72	BAY72	
BAY73	BAY73	
BAY74	BAY74	
BAY80	BAY80	
BAY82	BAY82	
BAY93	BAY71	

1Ce (Continued))		
Industry Device	NS Device	
BAY94	BAY71	
BAY95	BAY71	
DA1701	1N4148	
DA1702	1N4148	
DA1703	1N4148	
DA1704	1N4148	
FA2310	FA2310	
FA2311	FA2311	
FA2312	FA2312	
FA2313	FA2313	
FA2320	FA2320	
FA2321	FA2321	
FA2322	FA2322	
FA2323	FA2323	
FA2324	FA2324	
FA2325	FA2325	
FA2330	FA2330	
FA2331	FA2331	
FA2332	FA2332	
FA2333	FA2333	
FA2334	FA2334	
FA2335	FA2335	
FA2360	FA2360	
FA2361	FA2361	
FA3310	FA3310	
FA3311	FA3311	
FA3312	FA3312	
FA3313	FA3313	
FA3320	FA3320	
FA3321	FA3321	
FA3322	FA3322	
FA3323	FA3323	
FA3324	FA3324	
FA3325	FA3325	
FA3330	FA3330	
FA3331	FA3331	
FA3332	FA3332	
FA3333	FA3333	
FA3334	FA3334	
FA3335	FA3335	
FA3360	FA3360	
FA3361	FA3361	
FA4310 FA4311	FA4310 FA4311	
FA4311 FA4312	FA4311	
FA4312 FA4313	FA4312 FA4313	
FA4320	FA4320	
FA4321	FA4321	
FA4322	FA4322	
FA4323	FA4323	

Industry	NS
Device	Device
FA4324	FA4324
FA4325	FA4325
FA4330	FA4330
FA4331	FA4331
FA4332	FA4332
FA4333	FA4333
FA4334	FA4334
FA4335	FA4335
FA4360	FA4360
FA4361	FA4361
FD300	FDH300
FD333	FDH333
FD400	FDH400
FD444	FDH444
FD600	FDH600
FD666	FDH666
FD700	FD700
FD777	FD777
FD1389	FD1389
FD2389	FD2389
FD3389	FD3389
FD6389	FD6389
FDH300	FDH300
FDH333	FDH333
FDH400	FDH400
FDH444	FDH444
FDH600	FDH600
FDH666	FDH666
FDH900	FDH900
FDH999	FDH999
FDH1000 FDN400	FDH1000
	FDH400
FDN444 FDN600	FDH444 FDH600
FDN666	FDH666
FDN700	FD700
FDN777	FD777
FJT1100	FJT1100
FJT1101	FJT1100
FSA2002M	FSA2002M
FSA2002M	FSA2002M
FSA2500M	FSA2500M
FSA2501M	FSA2501M
FSA2501M	FSA2501M
FSA2502M	FSA2502M
FSA2503M	FSA2503M
FSA2503P	FSA2503P
FSA2504M	FSA2504M
FSA2509M	FSA2509M
FSA2509P	FSA2509P
	. 0, .20001

O COS TECTE CON CONTRACTOR			
Industry	NS		
Device	Device		
FSA2510M	FSA2510M		
FSA2510P	FSA2510P		
FSA2563M	FSA2563M		
FSA2563P	FSA2563P		
FSA2564M	FSA2564M		
FSA2564P	FSA2564P		
FSA2565M	FSA2565M		
FSA2565P	FSA2565P		
FSA2566M	FSA2566M		
FSA2566P	FSA2566P		
FSA2619M	FSA2619M		
FSA2619P	FSA2619P		
FSA2620M	FSA2620M		
FSA2620P	FSA2620P		
FSA2621M	FSA2621M		
FSA2719M	FSA2719M		
FSA2719P	FSA2719P		
FSA2720M	FSA2720M		
FSA2720P	FSA2720P		
FSA2721M	FSA2721M		
FSA2721P	FSA2721P		
MC1103L	FSA2501M		
MC1103P	FSA2501		
MC1105F	FSA2502M		
MC1105L	FSA2563M		
MC1105P	FSA2563		
MC1106F	FSA2003M		
MC1106L	FSA2564M		

Industry Device	NS Device	
MC1106P	FSA2564	
MC1107F	FSA2504M	
MC1107L	FSA2503M	
MC1107P	FSA2503	
MC1103F	FSA2500M	
TID21A	FSA2002M	
TID22A	FSA2002M	
TID23A	FSA2003M	
TID24A	FSA2003M	
TID25A	FSA2500M	
TID26A	FSA2500M	
TID121	FSA2563M	
TID122	FSA2563M	
TID123	FSA2564M	
TID124	FSA2564M	
TID125	FSA2510M	
TID126	FSA2510M	
TID131	FSA2504M	
TID132	FSA2504M	
TID133	FSA2509M	
TID134	FSA2509M	
TID135N	FSA2510M	
TID136N	FSA2510M	
TID139F	FSA2721M	
TID139N	FSA2720M	
TID140F	FSA2721M	
TID140N	FSA2720M	
·	L	

$\begin{array}{l} \textbf{Diode Device Cross Reference} \\ \textbf{THRUHOLE} \rightarrow \textbf{SURFACE MOUNT} \end{array}$

[OURFACE MOUNT	
Industry	NS	NS
Device	LL-34	SO Outline
1N456	FDLL456	
1N456A	FDLL456A	
1N457	FDLL457	
1N457A	FDLL457A	
1N458	FDLL458	
1N458A	FDLL458A	
1N459	FDLL459	
1N459A	FDLL459A	
1N461A	FDLL461A	
1N462A	FDLL462A	
1N463A	FDLL463A	
1N482B	FDLL482B	
1N483B	FDLL483B	
1N484B	FDLL484B	
1N485B	FDLL485B	
1N625	FDLL625	
1N626	FDLL626	
1N627	FDLL627	
1N628	FDLL628	
1N629	FDLL629	
1N658	FDLL658	
1N659	FDLL659	
1N660	FDLL660	
1N661	FDLL661	
1N914A	FDLL914A	FDSO914
1N914B	FDLL914B	
1N916A	FDLL916A	
1N916B	FDLL916B	
1N920	FDLL920	
1N921	FDLL921	
1N922	FDLL922	
1N923	FDLL923	
1N3064	FDLL3064	
1N3070	FDLL3070	FDSO3070
1N3595	FDLL3595	FDSO3595
1N3600	FDLL3600	
1N4009	FDLL4009	
1N4148	FDLL4148	FDSO4148
1N4149	FDLL4149	
1N4150	FDLL4150	
1N4151	FDLL4151	
1N4152	FDLL4152	
1N4153	FDLL4153	
1N4154	FDLL4154	
1N4305	FDLL4305	
1N4446	FDLL4446	
1N4447	FDLL4447	
1N4448	FDLL4448	FDSO4448
1N4449	FDLL4449	
		L

Industry Device	NS LL-34	NS SO Outline
1N4450	FDLL4450	
1N4454	FDLL4454	
1N4938	FDLL4938	
1N5768	1 5224000	FASO5768
1N5770	·	FASO5770
1N5772		FASO5772
1N5774		FASO5774
1N6099	FDLL6099	1 7000174
1N6101	FASO6101	
BAS16	171000101	BAS16
BAV70		BAV70
BAV74		BAV74
BAV99		BAV99
BAW56		BAW56
FASO2501		FASO2501
FASO2503		FASO2503
FASO2509		FASO2509
FASO2510		FASO2510
FASO2563		FASO2563
FASO2564		FASO2564
FASO2565		FASO2565
FASO2566		FASO2566
FASO2618		FASO2618
FASO2619		FASO2619
FASO2620		FASO2620
FASO2718		FASO2718
FASO2719		FASO2719
FASO2720		FASO2720
FASO5768		FASO5768
FASO5770		FASO5770
FASO5772		FASO5772
FASO5774		FASO5774
FASO6101		FASO6101
FDH300	FDLL300	
FDH333	FDLL333	
FDH400	FDLL400	
FDH444	FDLL444	
FDH600	FDLL600	
FDH666	FDLL666	
FDH700	FDLL700	
FDH777	FDLL777	
FDH900	FDLL900	
FDH999	FDLL999	
FDH1000	FDLL1000	ļ
FDLL300	FDLL300	
FDLL333	FDLL333	
FDLL400	FDLL400	
FDLL444	FDLL444	
FDLL456	FDLL456	
FDLL456A	FDLL456A	

IRUHOLE → SURFACE MOUNT									
Industry	NS	NS							
Device	LL-34	SO Outline							
FDLL457	FDLL457								
FDLL457A	FDLL457A								
FDLL458	FDLL458								
FDLL458A	FDLL458A								
FDLL459	FDLL459								
FDLL459A	FDLL459A								
FDLL461A	FDLL461A								
FDLL462A	FDLL462A								
FDLL463A	FDLL463A								
FDLL482B	FDLL482B								
FDLL483B	FDLL483B								
FDLL484B	FDLL484B								
FDLL485B	FDLL485B								
FDLL600	FDLL600								
FDLL625	FDLL625								
FDLL626	FDLL626								
FDLL627	FDLL627								
FDLL628	FDLL628								
FDLL629	FDLL629								
FDLL658	FDLL658								
FDLL659	FDLL659								
FDLL660	FDLL660								
FDLL661	FDLL661								
FDLL666	FDLL666								
FDLL700	FDLL700								
FDLL777	FDLL777								
FDLL900	FDLL900								
FDLL914A	FDLL914A								
FDLL914B	FDLL914B								
FDLL916A	FDLL916A								
FDLL916B	FDLL916B								
FDLL920	FDLL920								
FDLL921	FDLL921								
FDLL922	FDLL922								
FDLL923	FDLL923								
FDLL999	FDLL999								
FDLL1000	FDLL1000								
FDLL3064	FDLL3064								
FDLL3070	FDLL3070								

Industry	NS	NS
Device	LL-34	SO Outline
FDLL3595	FDLL3595	
FDLL3600	FDLL3600	
FDLL4009	FDLL4009	
FDLL4148	FDLL4148	
FDLL4149	FDLL4149	
FDLL4150	FDLL4150	
FDLL4151	FDLL4151	
FDLL4152	FDLL4152	
FDLL4153	FDLL4153	
FDLL4154	FDLL4154	
FDLL4305	FDLL4305	
FDLL4446	FDLL4446	
FDLL4447	FDLL4447	
FDLL4448	FDLL4448	
FDLL4449	FDLL4449	
FDLL4450	FDLL4450	
FDLL4454	FDLL4454	
FDLL4938	FDLL4938	Ì
FDLL6099	FDLL6099	
FDSO1201		FDSO1201
FDSO1202		FDSO1202
FDSO1203		FDSO1203
FDSO1204		FDSO1204
FDSO1205		FDSO1205
FDSO1401		FDSO1401
FDSO1402		FDSO1402
FDSO1403		FDSO1403
FDSO1404		FDSO1404
FDSO1405		FDSO1405
FDSO1501		FDSO1501
FDSO1502		FDSO1502
FDSO1503		FDSO1503
FDSO1504		FDSO1504
FDSO1505		FDSO1505
FDSO1701		FDSO1701
FDSO1702		FDSO1702
FDSO1703		FDSO1703
FDSO1704		FDSO1704
FDSO1705		FDSO1705

SOT-23 General Purpose and Specialty Diodes

If you need the electrical characteristics for any of the listed industry standards, they are available and guaranteed by four device families. Each of these families are available in five configurations including: single, series, common cathode and common anode. Please see the appropriate data sheet for details.

EDCO1000 Family
FDSO1200 Family
1N659
1N916
1N916A
1N916B
1N3064
1N3600
1N4009
1N4149
1N4150
1N4151
1N4154
1N4305
1N4446
1N4449
1N4450
1N4455
FDH600
FDH666
MMBD2835
MMBD2836
MMBD2837
MMBD2838
MMBD6050
MMBD6100

FDSO1500 Family
1N625
1N626
1N627
1N628
1N629
1N658
1N660
1S920
1S921
1S922
1S923
FDH400
FDH444

FDSO1500 Family
1N456
1N456A
1N457
1N457A
1N458
1N458A
1N459
1N459A
1N461A
1N462A
1N463A
1N482B
1N483B
1N484B
1N485B
166099
FDH300
FDH333

FDSO1700 Family	
1N4244	
1N4376	
FDH700	

Diode Selection Guide

Computer Diodes (By Increasing t_{rr})Glass Package

Device No.	t _{rr} ns Max	V _{RRM} V Min	I _R nA Max	_@ V _R V	V _F V Max	@ I _F mA	C pF Max	Package No.
FD700	0.70	30	50	20	1.1	50	1.0	DO-7
1N4376	0.75	20	100	10	1.1	50	1.0	DO-7
1N4244	0.75	20	100	10	1.0	20	0.8	DO-7
BAY82	0.75	15	100	12	1.0	20	1.3	DO-7
FD777	0.75	15	100	8.0	1.0	20	1.3	DO-7
1N5282	2.0	80	100	55	1.3	500	2.5	DO-35
1N4153	2.0	75	50	50	0.88	20	4.0	DO-35
1N4151	2.0	75	50	50	1.0	50	4.0	DO-35
1N4305	2.0	75	100	50	0.85	10	2.0	DO-35
BAY71	2.0	50	100	35	1.0	20	2.0	DO-35
1N4152	2.0	40	50	30	0.88	20	4.0	DO-35
1N4154	2.0	35	100	25	1.0	30	4.0	DO-35
1N914	4.0	100	25	20	1.0	10	4.0	DO-35
1N914A	4.0	100	25	20	1.0	20	4.0	DO-35
1N914B	4.0	100	25	20	1.0	100	4.0	DO-35
1N916	4.0	100	25	20	1.0	10	2.0	DO-35
1N916A	4.0	100	25	20	1.0	20	2.0	DO-35
1N916B	4.0	100	25	20	1.0	30	2.0	DO-35
1N4148	4.0	100	25	20	1.0	10	4.0	DO-35
1N4149	4.0	100	25	20	1.0	10	2.0	DO-35
1N4446	4.0	100	25	20	1.0	20	4.0	DO-35
1N4447	4.0	100	25	20	1.0	20	4.0	DO-35
1N4448	4.0	100	25	20	1.0	100	2.0	DO-35
1N4449	4.0	100	25	20	1.0	30	2.0	DO-35
1N3600	4.0	75	100	50	1.0	200	2.5	DO-35
FDH600	4.0	75	100	50	1.0	200	2.5	DO-35
1N3064	4.0	75	100	50	1.0	10	2.0	DO-35
1N4150	4.0	75	100	50	1.0	200	2.5	DO-35
1N4454	4.0	75	100	50	1.0	10	2.0	DO-35
BAX13	4.0	50	200	50	1.0	20	3.0	DO-35

Computer Diodes (By Increasing t_{rr}) (Continued) Glass Package

Device No.	t _{rr} ns Max	V _{RRM} V Min	I _R nA @ Max	V _R V	V _F V @ Max	I _F mA	C pF Max	Package No.
BAY74	4.0	50	100	35	1.1	300	3.0	DO-35
FDH900	4.0	45	500	40	1.1	100	3.0	DO-35
FDH666	4.0	40	100	25	1.0	100	3.5	DO-35
1N4450	4.0	40	50	30	1.0	200	4.0	DO-35
1N4009	4.0	35	100	25	1.0	30	4.0	DO-35
1N625	4.0	30	1000	20	1.5	4.0		DO-35
FDH999	5.0	35	1000	25	1.0	10	5.0	DO-35
FDH1000	100	75	50	20	1.0	500	5.0	DO-35

Device No.	t _{rr} ns Max	V _{RRM} V Min	I _R nA @ Max	V _R V	V _F V @ Max	l _F mA	C pF Max	Package No.
FDLL4153	2.0	75	50	50	0.88	20	4.0	LL-34
FDLL4151	2.0	75	50	50	1.0	50	4.0	LL-34
FDLL4305	2.0	75	100	50	0.85	10	2.0	LL-34
FDLL4152	2.0	40	50	30	0.88	20	4.0	LL-34
FDLL4154	2.0	35	100	25	1.0	30	4.0	LL-34
FDLL914	4.0	100	25	20	1.0	10	4.0	LL-34
FDLL914A	4.0	100	25	20	1.0	20	4.0	LL-34
FDLL914B	4.0	100	25	. 20	1.0	100	4.0	LL-34
FDLL916	4.0	100	25	20	1.0	10	2.0	LL-34
FDLL916A	4.0	100	25	20	1.0	20	2.0	LL-34
FDLL916B	4.0	100	25	20	1.0	30	2.0	LL-34
FDLL4148	4.0	100	25	20	1.0	10	4.0	LL-34
FDLL4149	4.0	100	25	20	1.0	10	2.0	LL-34
FDLL4446	4.0	100	25	20	1.0	20	4.0	LL-34
FDLL4447	4.0	100	25	20	1.0	20	4.0	LL-34
FDLL4448	4.0	100	25	20	1.0	100	2.0	LL-34
FDLL4449	4.0	100	25	20	1.0	30	2.0	LL-34
FDLL3600	4.0	75	100	50	1.0	200	2.5	LL-34
FDLL600	4.0	75	100	50	1.0	200	2.5	LL-34
FDLL3064	4.0	75	100	50	1.0	10	2.0	LL-34
FDLL4150	4.0	75	100	50	1.0	200	2.5	LL-34
FDLL4454	4.0	75	100	50	1.0	10	2.0	LL-34
FDLL666	4.0	40	100	25	1.0	100	3.5	LL-34
FDLL4450	4.0	40	50	30	1.0	200	4.0	LL-34
FDLL4009	4.0	35	100	25	1.0	30	4.0	LL-34
FDLL625	50	30	1000	20	1.5	4.0		LL-34

Low Leakage Diodes (By Decreasing V_{RRM}) Glass Package

Device No.	V _{RRM} V Min	I _R nA Max	@ V _R V	V _F V Max	@ I _F mA	C pF Max	Package No.
1N485B	200	25	180	1.0	100		DO-35
1N459	200	25	175	1.0	3.0		DO-35
1N459A	200	25	175	1.0	100		DO-35
FDH300	150	1.0	125	1.0	200	6.0	DO-35
1N3595	150	1.0	125	1.0	200	8.0	DO-35
1N6099	150	1.0	125	1.0	200	8.0	DO-35
FDH333	150	3.0	125	1.05	200	6.0	DO-35
1N458A	150	5.0	125	1.0	100		DO-35
1N484B	150	25	130	1.0	100		DO-35
1N458	150	25	125	1.0	7.0	6.0	DO-35
BAY73	125	5.0	100	1.0	200	8.0	DO-35
1N483B	80	25	70	1.0	100		DO-35
1N457	70	25	60	1.0	20	8.0	DO-35
1N457A	70	25	60	1.0	100		DO-35
1N482B	40	25	36	1.0	100		DO-35
FJT1100	30	0.001	5.0	1.05	10	1.5	DO-7
1N456A	30	25	25	1.0	100		DO-35
1N456	30	25	25	1.0	40	10	DO-35

Device No.	V _{RRM} V Min	I _R nA Max	_@ V _R V	V _F V Max	@ I _F mA	C pF Max	Package No.
FDLL459	200	25	175	1.0	3.0		LL-34
FDLL459A	200	25	175	1.0	100		LL-34
FDLL485B	200	25	180	1.0	100		LL-34
FDLL300	150	1.0	125	1.0	200	6.0	ĽL-34
FDLL3595	150	1.0	125	1.0	200	8.0	LL-34
FDLL6099	150	1.0	125	1.0	200	8.0	LL-34
FDLL333	150	3.0	125	1.05	200	6.0	LL-34
FDLL458A	150	5.0	125	1.0	100		LL-34
FDLL484B	150	25	130	1.0	100		LL-34
FDLL458	150	25	125	1.0	7.0	6.0	LL-34
FDLL483B	80	25	70	1.0	100		LL-3,4
FDLL457	70	25	60	1.0	20	8.0	LL-34
FDLL457A	70	25	60	1.0	100		LL-34
FDLL482B	40	25	36	1.0	100		LL-34
FDLL456A	30	25	25	1.0	100		LL-34
FDLL456	30	25	25	1.0	40	10	LL-34

High Voltage Diodes (By Decreasing $V_{\mbox{\scriptsize RRM}}$) Glass Package

Device No.	V _{RRM} V Min	I _R nA Max	@ V _R V	V _F V Max	e IF mA	C pF Max	t _{rr} ns Max	Package No.
1N486B	250	50	225	1.0	100			DO-35
BAV21	250	100	200	1.0	100		50	DO-35
1N661	240	10000	200	1.0	6.0		300	DO-35
FDH400	200	100	150	1.0	200	2.0	50	DO-35
1N3070	200	100	175	1.0	100	5.0	50	DO-35
1N4938	200	100	175	1.0	100	5.0	50	DO-35
BAV20	200	100	150	1.0	100		50	DO-35
1N629	200	1000	175	1.5	4.0		1000	DO-35
FDH444	150	50	100	1.1	200	2.5	60	DO-35
1N628	150	1000	125	1.5	4.0		1000	DO-35
BAY72	125	100	100	1.0	100	5.0	50	DO-35
BAY80	120	100	120	1.0	150	6.0		DO-35
BAV19	120	100	100	1.0	100		50	DO-35
1N658	120	50	50	1.0	100		300	DO-35
1N660	120	5000	100	1.0	6.0		300	DO-35
1N627	100	1000	75	1.5	4.0		1000	DO-35
1N626	50	1000	35	1.5	4.0		1000	DO-35

Device No.	V _{RRM} V Min	I _R nA @ Max	V _R V	V _F V @ Max	l _F mA	C pF Max	t _{rr} ns Max	Package No.
FDLL486B	250	50	225	1.0	100			LL-34
FDLL400	200	100	150	1.0	200	2.0	50	LL-34
FDLL3070	200	100	175	1.0	100	5.0	50	LL-34
FDLL629	200	1000	175	1.5	4.0		1000	LL-34
FDLL444	150	50	100	1.1	200	2.5	60	LL-34
FDLL628	150	1000	125	1.5	4.0		1000	LL-34
FDLL658	120	50	50	1.0	100		300	LL-34
FDLL660	120	5000	100	1.0	6.0		300	LL-34
FDLL627	100	1000	75	1.5	4.0		1000	LL-34
FDLL626	50	1000	35	1.5	4.0		1000	LL-34

General Purpose Diodes (By Decreasing V_{RRM}) Glass Package

Device No.	V _{RRM} V Min	I _R nA @ Max	V _R V	V _F V Max	_@ I _F	C pF Max	t _{rr} ns Max	Package No.
1N661	240	10000	200	1.0	6.0		300	DO-35
1S923	200	100	200	1.2	200			DO-35
1N463A	200	500	175	1.0	100			DO-35
1S922	150	100	150	1.2	200			DO-35
BAX16	150	100	150	1.0	1.0	10	120	DO-35
1N660	120	5000	100	1.0	6.0			DO-35
1S921	100	100	100	1.2	200			DO-35
BA128	75	100	50	1.0	50	5.0		DO-35
1N462A	70	500	60	1.0	100			DO-35
BAV18	60	100	50	1.0	100		50	DO-35
1N659	60	5000	50	1.0	6.0			DO-35
1S920	50	100	50	1.2	200			DO-35
BA218	50	50	25	1.0	10	5.0		DO-35
1S44	50	50	10	1.0	10	4.0	8	DO-35
FDH900	45	500	40	1.0	100	3.0	4.0	DO-35
FDH999	35	1000	25	1.0	10	5.0	5.0	DO-35
1N461A	30	500	25	1.0	100	10		DO-35
BA217	30	50	10	1.0	10	5.0		DO-35
BA130	30	100	25	1.0	10	2.0		DO-35
BAV17	25	100	20	1.0	100		50	DO-35

Device No.	V _{RRM} V Min	I _R nA @ Max	V _R V	V _F V Max	e I _F mA	C pF Max	Package No.
FDLL661	240	10000	200	1.0	6.0		LL-34
FDLL923	200	100	200	1.2	200		LL-34
FDLL463A	200	500	175	1.0	100		LL-34
FDLL922	150	100	150	1.2	200		LL-34
FDLL921	100	100	100	1.2	200		LL-34
FDLL462A	70	500	60	1.0	100		LL-34
FDLL659	60	5000	50	1.0	6.0		LL-34
FDLL920	50	100	50	1.2	200		LL-34
FDLL461A	30	500	25	1.0	100	10	LL-34

Surface Mount Diodes Plastic Package

Device No.	Description	t _{rr} ns Max	V _{RRM} V Min	I _R nA @ Max	V _R V	V _F V @ Max	l _F	C pF Max	Configuration	Package No.
FDSO 1200 F	AMILY									
FDSO1201	Single	4.0	75	100	50	1.1	200	2.0	· 1	TO-236
FDSO1202	Single	4.0	75	100	50	1.1	200	2.0	2	TO-236
FDSO1203	Series	4.0	75	100	50	1.1	200	2.0	3	TO-236
FDSO1204	Common Cathode	4.0	75	100	50	1.1	200	2.0	4	TO-236
FDSO1205	Common Anode	4.0	75	100	50	1.1	200	2.0	5	TO-236
FDSO 1400 F	AMILY			,						
FDSO1401	Single	50	200	100	175	1.0	100	2.0	1	TO-236
FDSO1402	Single	50	200	100	175	1.0	100	2.0	2	TO-236
FDSO1403	Series	50	200	100	175	1.0	100	2.0	3	TO-236
FDSO1404	Common Cathode	50	200	100	175	1.0	100	2.0	4	TO-236
FDSO1405	Common Anode	50	200	100	175	1.0	100	2.0	5	TO-236
FDSO 1500 F	AMILY								,	
FDSO1501	Single		150	1.0	125	1.0	200	4.0	1	TO-236
FDSO1502	Single		150	1.0	125	1.0	200	4.0	2	TO-236
FDSO1503	Series		150	1.0	125	1.0	200	4.0	3	TO-236
FDSO1504	Common Cathode		150	1.0	125	1.0	200	4.0	4	TO-236
FDSO1505	Common Anode		150	1.0	125	1.0	200	4.0	5	TO-236
FSDO 1700 F	AMILY							,	-	
FDSO914	Single	4.0	100	25	20	1.0	10	4.0	1	TO-236
FDSO1701	Single	0.7	30	50	20	1.1	50	1.0	1	TO-236
FDSO1702	Single	0.7	30	50	20	1.1	50	1.0	2	TO-236
FDSO1703	Series	0.7	30	50	20	1.1	50	1.0	3	TO-236
FDSO1704	Common Cathode	0.7	30	50	20	1.1	50	1.0	4	TO-236
FDSO1705	Common Anode	0.7	30	50	20	1.1	50	1.0	5	TO-236
FDSO3070	Single	50	200	100	175	1.0	100	5.0	1	TO-236
FDSO3595	Single		150	1.0	125	1.0	200	8.0	1	TO-236
FDSO4148	Single	4.0	100	25	20	1.0	10	4.0	1	TO-236
FDSO4448	Single	4.0	100	25	20	1.0	100	2.0	1	TO-236
BAS16	Single	6.0	75	1000	75	1.1	50	2.0	1	TO-236
BAS19	Single	50	100	100	100	1.0	100	5.0	1	TO-236
BAS20	Single	50	150	100	150	1.0	100	5.0	1	TO-236
BAS21	Single	50	200	100	200	1.0	100	5.0	1	TO-236
BAS29	Single	50	90			0.84	50		1	TO-236
BAS31	Series	50	90			0.84	50		3	TO-236
BAS35	Common Anode	50	90			0.84	50		5	TO-236
BAV70	Common Cathode	6.0	70	5000	70	1.1	50	1.5	4	TO-236
BAV74	Common Cathode	4.0	50	100	50	0.84	50	2.0	4	TO-236
BAV99	Series	6.0	70	2500	70	1.1	50	1.5	3	TO-236
BAW56	Common Anode	6.0	70	2500	70	1.1	50	2.5	5	TO-236

Surface Mount Diode Configurations

Configuration	1	2	3	4	5
Pin Out Diagram TOP VIEW 1 2 TL/G/10012-6	2 N/C TL/G/10012-7	1 N/C TL/G/10012-8		TL/G/10012-10	3 1 2 TL/G/10012-11

Diode Arrays by V_{RRM} and t_{rr}

Device No.	V _{RRM} (V)	V _{FM} (V)	@ I _F (mA)	t _{rr} (ns) Max	Configuration	Package No.
FSA2002M	60	1.0	100	10	CC8	TO-85
FSA2003M	60	1.0	100	10	CA8	TO-85
FSA2500M	60	1.0	100	10	M16	TO-85
FSA2501M	60	1.0	100	10	M16S	TO-116-2
FSA2501P	60	1.0	100	10	M16S	TO-116
FSA2502M	60	1.0	100	10	M16M	TO-96
FSA2503M	60	1.0	100	10	2M8	TO-116-2
FSA2503P	60	1.0	100	10	2M8	TO-116
FSA2504M	60	1.0	100	10	2M8	TO-86
FSA2508P	60	1.3	500	10	2M8	9B
FSA2509M	60	1.3	500	10	2M8	TO-116-2
FSA2509P	60	1.3	500	10	2M8	TO-116
FSA2510M	60	1.3	500	10	M16S	TO-116-2
FSA2510P	60	1.3	500	10	M16S	TO-116
FSA2563M	60	1.3	500	10	CC8S	TO-116-2
FSA2563P	60	1.3	500	10	CC8S	TO-116
FSA2564M	60	1.3	500	10	CA8S	TO-116-2
FSA2564P	60	1.3	500	10	CA8S	TO-116
FSA2565M	60	1.3	500	10	CC13	TO-116-2
FSA2565P	60	1.3	500	10	CC13	TO-116
FSA2566M	60	1.3	500	10	CA13	TO-116-2
FSA2566P	60	1.3	500	10	CA13	TO-116
1N6496	60	1.5	500	10	2M16	20 Lead Cerpal
1N5768JAN	60	1.0	100	20	CC8	TO-85
1N5768JANTX	60	1.0	100	20	CC8	TO-85
1N5768JANTXV	60	1.0	100	20	CC8	TO-85
1N5770JAN	60	1.0	100	20	CA8	TO-85
1N5770JANTX	60	1.0	100	20	CA8	TO-85
1N5770JANTXV	60	1.0	100	20	CA8	TO-85

Device No.	V _{RRM} (V)	V _{FM} (V)	@ I _F (mA)	t _{rr} (ns) Max	Configuration	Package No.
1N5772JAN	. 60	1.0	100	20	M16N	TO-85
1N5772JANTX	60	1.0	100	20	M16N	TO-85
1N5772JANTXV	60	1.0	100	20	M16N	TO-85
1N5774JAN	60	1.0	100	20	2M8	TO-86
1N5774JANTX	60	1.0	100	20	2M8	TO-86
1N5774JANTXV	60	1.0	100	20	2M8	TO-86
1N6100	75	1.0	100	5.0	S 7	TO-86
1N6100JAN	75	1.0	100	5.0	S 7	TO-86
1N6100JANTX	75	1.0	100	5.0	S7	TO-86
1N6100JANTXV	75	1.0	100	5.0	S7	TO-86
1N6101	75	1.0	100	5.0	S8	6B
1N6101JAN	75	1.0	100	5.0	S8	6B
1N6101JANTX	- 75	1.0	100	5.0	S8	6B
1N6101JANTXV	75	1.0	100	5.0	S8	6B
FSA2719M	75	1.0	10	6.0	S8	6B
FSA2719P	75	1.0	10	6.0	S8	9B
FSA2720M	75	1.0	10	6.0	S7	TO-116-2
FSA2720P	75	1.0	10	6.0	S 7	TO-116
FSA2721M	75	1.0	10	6.0	S 7	TO-86
FSA2619M	100	1.0	10	5.0	S8	6B
FSA2619P	100	1.0	-10	5.0	S8	9B
FSA2620M	100	1.0	10	5.0	· S7	TO-116-2
FSA2620P	100	1.0	10	5.0	S7	TO-116
FSA2621M	100	1.0	10	5.0	S7	TO-86
FSA2621P	100	1.0	10	5.0	['] S7	TO-116

Diode Array Configurations

Diode Array Configurations (Continued)

TL/G/10012-3

TL/G/10012-5

TL/G/10012-17

TL/G/10012-18

TL/G/10012-16

TL/G/10012-19

Military Diode Products in Numerical Order by Part Number

Device No.	V _{RRM} (V)	I _{RRM} (nA)	V _{FM} (V)	@ I _F (mA)	t _{rr} (ns) Max	Package No.
1N3064JAN	75	100	1.0	10	4.0	DO-7
1N3064JANTX	75	100	1.0	10	4.0	DO-7
1N3070JAN	200	100	1.0	100	50	DO-35
1N3070JANTX	200	100	1.0	100	50	DO-35
1N3595JAN	150	1.0	1.0	200	3000	DO-7
1N3595JANTX	150	1.0	1.0	200	3000	DO-7
1N3595JANTXV	150	1.0	1.0	200	3000	DO-7
1N3600JAN	75	100	1.0	200	4.0	DO-7
1N3600JANTX	75	100	1.0	200	4.0	DO-7
1N3600JANTXV	75	100	1.0	200	4.0	DO-7
1N4148-1JAN	100	25	1.0	10	4.0	DO-35
1N4148-1JANTX	100	25	1.0	10	2.0	DO-35
1N4148-1JANTXV	100	25	1.0	10	4.0	DO-35
1N4150-1JAN	75	100	1.0	200	4.0	DO-35
1N4150-1JANTX	75	100	1.0	200	4.0	DO-35
1N4150-1JANTXV	75	100	1.0	200	4.0	DO-35
1N4306JAN	75	50	1.0	50	4.0	DO-7
1N4306JANTX	75	50	1.0	50	4.0	DO-7
1N4306JANTXV	75	50	1.0	50	4.0	DO-7
1N4307JAN	75	50	1.0	50	4.0	DO-7
1N4307JANTX	75	50	1.0	50	4.0	DO-7
1N4307JANTXV	75	50	1.0	50	4.0	DO-7
1N4376JAN	20	100	1.1	50	0.75	DO-7
1N4376JANTX	20	100	1.1	50	0.75	DO-7
1N4454-1JAN	75	100	1.0	10	4.0	DO-35
1N4454-1JANTX	75	100	1.0	10	4.0	DO-35
1N4454-1JANTXV	75	100	1.0	10	4.0	DO-35
1N4938-1JAN	200	100	1.0	100	50	DO-35
1N4938-1JANTX	200	100	1.0	100	50	DO-35
1N457JAN	70	25	1.0	100		DO-35
1N458JAN	150	25	1.0	7.0		DO-35
1N459JAN	200	25	1.0	3.0		DO-35
1N483BJAN	80	25	1.0	100		DO-35
1N483BJANTX	80	25	1.0	100		DO-35
1N485BJAN	200	25	1.0	100		DO-35
1N485BJANTX	200	25	1.0	100		DO-35
1N486BJAN	250	25	1.0	100		DO-35
1N486BJANTX	250	25	1.0	100		DO-35
1N914JAN	100	25	1.0	10	4.0	DO-35
1N914JANTX	100	25	1.0	10	4.0	DO-35

Surface Mount Monolithic Diode Arrays

Plastic Packages

Device No.	V _{RRM} V Min	V _F V Max	@ I _F mA	ΔV _F mV Max	t _{rr} ns Max	Configuration	Package No.
FASO2501	60	1.0	100	15	10	M16S	14-SOIC
FASO2503	60	1.0	100	15	10	2M8	14-SOIC
FASO2509	60	1.3	500	15	10	2M8	14-SOIC
FASO2510	60	1.3	500	15	10	M16S	14-SOIC
FASO2563	60	1.3	500	15	10	CC8S	14-SOIC
FASO2564	60	1.3	500	15	10	CA8S	14-SOIC
FASO2619	100	1.0	10	15	5.0	S8	16-SOIC
FASO2620	100	1.0	10	15	5.0	S7	14-SOIC
FASO2719	75	1.0	10	15	6.0	S8	16-SOIC
FASO2720	75	1.0	10	15	6.0	S7	14-SOIC
FASO5774	60	1.0	100		20	2M8	14-SOIC
FASO6101	75	1.0	100		5.0	S7	14-SOIC

Surface Mount Monolithic Diode Array Configurations

TL/G/10012-21

TL/G/10012-23

TL/G/10012-25

TL/G/10012-22

2M8

TL/G/10012-24

TL/G/10012-26

Zener Diodes (By Increasing V_z) Glass Package

Device No.	V _Z V Nom	Tol.* ± V _Z %	Z _Z Ω (_@ I _Z mA	I _R μ A @ Max	V _R V	T.C. %/°C Typ (Max)	P _D mW T _A = 25°C	Package No.
1N746A	3.3	5.0	28	20	10	1.0	-0.070	500	DO-35
1N5226B	3.3	5.0	28	20	25	1.0	(-0.070)	500	DO-35
1N4728A	3.3	5.0	10	76	100	1.0		1000	DO-41
1N747A	3.6	5.0	24	20	10	1.0	-0.65	500	DO-35
1N5227B	3.6	5.0	24	20	15	1.0	(-0.065)	500	DO-35
1N4729A	3.6	5.0	10	69	100	1.0	· · · · · · · · · · · · · · · · · · ·	1000	DO-41
1N748A	3.9	5.0	23	20	10	1.0	-0.60	500	DO-35
1N5228B	3.9	5.0	23	20	10	1.0	(-0.60)	500	DO-35
1N4730A	3.9	5.0	9.0	64	50	1.0		1000	DO-41
1N749A	4.3	5.0	22	20	2.0	1.0	(±0.055)	500	DO-35
1N5229B	4.3	5.0	22	20	5.0	1.0	(±0.055)	500	DO-35
1N4731A	4.3	5.0	9.0	58	10	1.0		1000	DO-41
1N750A	4.7	5.0	19	20	2.0	1.0	±0.043	500	DO-35
1N5230B	4.7	5.0	19	20	5.0	2.0	(±0.030)	500	DO-35
1N4732A	4.7	5.0	8.0	53	10	1.0		1000	DO-41
1N751A	5.1	5.0	17	20	1.0	1.0	±0.030	500	DO-35
1N5231B	5.1	5.0	17	20	5.0	2.0	(±0.030	500	DO-35
1N4733A	5.1	5.0	7.0	49	10	1.0		1000	DO-41
1N752A	5.6	5.0	11	20	1.0	1.0	+0.028	500	DO-35
1N5232B	5.6	5.0	11	20	5.0	3.0	(±0.038)	500	DO-35
1N4734A	5.6	5.0	5.0	45	10	2.0		1000	DO-41
1N5233B	6.0	5.0	7.0	20	5.0	3.5	(±0.038)	500	DO-35
1N753A	6.2	5.0	7.0	20	0.1	1.0	+0.045	500	DO-35
1N5234B	6.2	5.0	7.0	20	5.0	4.0	(+0.045)	500	DO-35
1N4735A	6.2	5.0	2.0	41	10	3.0		1000	DO-41
1N754A	6.8	5.0	5.0	20	0.1	1.0	+0.050	500	DO-35
1N957B	6.8	5.0	4.5	18.5	150	5.2	+0.050	500	DO-35
1N5235B	6.8	5.0	5.0	20	3.0	5.0	(+0.050)	500	DO-35
1N4736A	6.8	5.0	3.5	37	10	4.0		1000	DO-41
1N755A	7.5	5.0	6.0	20	0.1	1.0	+ 0.058	500	DO-35
1N958B	7.5	5.0	5.5	16.5	75	5.7	+ 0.058	500	DO-35
1N5236B	7.5	5.0	6.0	20	3.0	6.0	(+0.058)	500	DO-35
1N4737A	7.5	5.0	4.0	34	10	5.0		1000	DO-41
1N756A	8.2	5.0	8.0	20	0.1	1.0	+0.062	500	DO-35
1N959B	8.2	5.0	6.5	15	50	6.2	+0.062	500	DO-35
1N5237B	8.2	5.0	8.0	20	3.0	6.5	(+0.062)	500	DO-35
1N4738A	8.2	5.0	4.5	34	10	6.0		1000	DO-41

^{*}Tolerance: All zener diodes are also available in $\pm 1\%$, $\pm 2\%$, $\pm 10\%$ and $\pm 20\%$ tolerances.

Zener Diodes (By Increasing V_z)Glass Package (Continued)

Device No.	V _Z V Nom	Tol.* ± V _Z %	Z _Z Ω Max	_@ I _Z mA	I _R μΑ α	_@ V _R	T.C. %/°C Typ (Max)	P _D mW T _A = 25°C	Package No.
1N5238B	8.7	5.0	8.0	20	3.0	6.5	(+0.065)	500	DO-35
1N757A	9.1	5.0	10	20	0.1	1.0	+0.068	500	DO-35
1N960B	9.1	5.0	7.5	14	25	6.9	+0.068	500	DO-35
1N5239B	9.1	5.0	10	20	3.0	7.0	(+0.068)	500	DO-35
1N4739A	9.1	5.0	5.0	8	10	7.0	<u> </u>	1000	DO-41
1N758A	10	5.0	17	20	0.1	1.0	+0.075	500	DO-35
1N961B	10	5.0	8.5	12.5	10	7.6	+0.072	500	DO-35
1N5240B	10	5.0	17	20	3.0	8.0	(+0.075)	500	DO-35
1N4740A	10	5.0	7.0	25	10	7.6		1000	DO-41
1N962B	11	5.0	9.5	11.5	5.0	8.4	+0.073	500	DO-35
1N5241B	11	5.0	22	20	2.0	8.4	(+0.076)	500	DO-35
1N4741A	11	5.0	8.0	23	5.0	8.4		1000	DO-41
1N759A	12	5.0	30	20	0.1	1.0	+ 0.077	500	DO-35
1N963B	12	5.0	11.5	10.5	5.0	9.1	+0.076	500	DO-35
1N5242B	12	5.0	30	20	1.0	9.1	(+0.077)	500	DO-35
1N4742A	12	5.0	9.0	21	5.0	9.1		1000	DO-41
1N964B	13	5.0	13	9.5	5.0	9.9	+0.079	500	DO-35
1N5243B	13	5.0	13	9.5	0.5	9.9	(+0.079)	500	DO-35
1N4743A	13	5.0	10	19	5.0	9.9		1000	DO-41
1N5244B	14	5.0	15	9.0	0.1	10	(+0.082)	500	DO-35
1N965B	15	5.0	16	8.5	5.0	11.4	+0.082	500	DO-35
1N5245B	15	5.0	16	8.5	0.1	11	(+0.082)	500	DO-35
1N4744A	15	5.0	14	17	5.0	11.4		1000	DO-41
1N966B	16	5.0	17	7.8	5.0	12.2	+0.083	500	DO-35
1N5246B	16	5.0	17	7.8	0.1	12	+ (0.083)	500	DO-35
1N4745A	16	5.0	16	15.5	5.0	12.2		1000	DO-41
1N5247B	17	5.0	19	7.4	0.1	13	(+0.084)	500	DO-35
1N967B	18	5.0	21	7.0	5.0	13.7	+0.085	500	DO-35
1N5248B	18	5.0	21	7.0	0.1	14	(+0.085)	500	DO-35
IN4746A	18	5.0	20	14	5.0	13.7		1000	DO-41
1N5249B	19	5.0	23	6.6	0.1	14	(+0.086)	500	DO-35
1N968B	20	5.0	25	6.2	5.0	15.2	+0.086	500	DO-35
1N5250B	20	5.0	25	6.2	0.1	15	(+0.086)	500	DO-35
1N4747A	20	5.0	22	12.5	5.0	15.2		1000	DO-41
1N969B	22	5.0	29	5.6	5.0	16.7	+0.087	500	DO-35
1N5251B	22	5.0	29	5.6	0.1	17	(+0.087)	500	DO-35
1N4748A	22	5.0	23	11.5	5.0	16.7		1000	DO-41

^{*}Tolerance: All zener diodes are also available in $\pm 1\%$, $\pm 2\%$, $\pm 10\%$ and $\pm 20\%$ tolerances.

Zener Diodes (By Increasing V_z) Glass Package (Continued)

Device No.	V _Z V Nom	Tol.* ± V _Z %	Z _Z Ω Max	e IZ mA	I _R μA Max	_@ V _R V	T.C. %/°C Typ (Max)	P _D mW T _A = 25°C	Package No.
1N970B	24	5.0	33	5.2	5.0	18.2	+0.088	500	DO-35
1N5252B	24	5.0	33	5.2	0.1	18	(+0.088)	500	DO-35
1N4749A	24	5.0	25	10.5	5.0	18.2		1000	DO-41
1N5253B	25	5.0	5	5.0	0.1	19	(+0.089)	500	DO-35
1N971B	27	5.0	41	4.6	5.0	20.6	+0.090	500	DO-35
1N5254B	27	5.0	41	4.6	0.1	21	(+0.090)	500	DO-35
1N4750A	27	5.0	35	9.5	5.0	20.6		1000	DO-41
1N5255B	28	5.0	44	4.5	0.1	21	(+0.091)	500	DO-35
1N972B	30	5.0	49	4.2	5.0	22.8	+0.091	500	DO-35
1N5256B	30	5.0	49	4.2	0.1	23	(+0.091)	500	DO-35
1N4751B	30	5.0	40	8.5	5.0	22.8		1000	DO-41
1N973B	33	5.0	58	3.8	5.0	25.1	+0.092	500	DO-35
1N5257B	33	5.0	58	3.8	0.1	25	(+0.092)	500	DO-35
1N4752A	33	5.0	45	7.5	5.0	25.1		1000	DO-41

^{*}Tolerance: All zener diodes are also available in $\pm 1\%$, $\pm 2\%$, $\pm 10\%$ and $\pm 20\%$ tolerances.

Military Qualified Discrete Selection Guide

National Semiconductors' Discrete Product Group offers a complete line of Hi-Reliability devices produced in modern production facilities in Santa Clara, California, South Portland, Maine and Cebu, the Philippines. Although emphasis is placed on designing and built-in quality and reliability, a complete reliability screening program has been established. Many products offered in this data book are available in all of the following Hi-Rel configurations.

- Hi-Rel Wafers and Die
- Military Qualified Diodes & Transistors
- Source Controlled Devices (SCD)
- · Custom "Level S" Processing

Hi-Rel Wafers and Die

Refer to the DICE section of this databook for information on WAFER and DIE available in four standard configurations.

Military Qualified Diodes and Transistors

National Semiconductor maintains qualified status for all the devices listed in Table I. Most devices are available in three standard quality levels, JAN, JANTX, and JAN TXV, as defined by MIL-STD-19500.

Custom "Level S" Processing

Top of the line custom built and processed devices, requiring baseline documentation, wafer lot acceptance and traceability, clean room assembly and Level S process controls and screening are available. Consult the factory for details.

TABLE I. Military Qualified Transistors and Diodes

Qualified Produ	ucts List		
Device No.	JAN	TX	TXV
2N718A	×	Х	Х
2N930	X	x	
2N1613	x	×	X
2N2218A	x	×	×
2N2219A	×	×	×
2N2221A	X	ĺχ	×
2N2060	x	l x	
2N2222A	x	×	×
2N2369A	x	×	×
2N2484	l x	×	×
2N2904A	×	X	Х
2N2905A	X	Х	×
2N2906A	x	X	×
2N2907A	x	Х	Х
2N2920	x	×	×
2N3019S	x	×	Х
2N3700	X	X	Х
2N6756	×	×	Х
2N6758	X	X	X
2N6760	X	×	X
2N6762	X	×	Х
2N6768		Х	Х
2N6770		X	X
1N457	x		

Qualified Produ	Qualified Products List											
Device No.	JAN	TX	TXV									
1N458	×											
1N459	X	ļ										
1N483B	x	X	X									
1N485B	X	X	X									
1N486B	X	x	X									
1N914	X	(x										
1N3064	×	X										
1N3070	x	X										
1N3595	X	X	X									
1N3600	x	x	X									
1N4148-1	×	x	X									
1N4150-1	×	×	X									
1N4306	x	×	×									
1N4307	X	X	×									
1N4376	×	×										
1N4454-1	×	X	×									
1N4938-1	×	X										
1N5768	×	×	×									
1N5770	×	×	X									
1N5772	×	×	×									
1N5774	×	×	X									
1N6100	×	×	X									
1N6101	×	Х	X									

_

RF Selection Guide

	Bipolars							JFETs			
·:	40	42	43	44	47	49	75	50	90	92	
PREAMPLIFIERS											
> 500 MHz	•										
200 MHz-500 MHz	•	•						•	•		
200 MHz-500 MHz with AGC		*>	-	•	Ì						
50 MHz-250 MHz		•		•	•		•	•	•	•	
50 MHz-250 MHz with AGC				•		1			_	1	
20 MHz-120 MHz				•	-	•	•	•	•	•	
MIXERS	 									ļ	
Input > 500 MHz	•										
Input 200 MHz-500 MHz	•	•			•			•	•		
Input 50 MHz-250 MHz	•	•		•	•	•		•	•		
Input 20 MHz-120 MHz	 	•		•	•	•		•	•		
LOC OSC	ļ										
> 500 MHz Mech. Tuned	•	•	• '								
> 500 MHz Varactor	•	•									
200 MHz-500 MHz Mech. Tuned		•	•		•						
200 MHz-500 MHz Varactor	•	•			•						
50 MHz-250 MHz	1	•	•		•		•				
20 MHz-120 MHz	ļ		•		•		•				
IF AMPS	<u> </u>										
< 75 MHz	•	•				•		•	•		
< 15 MHz	ļ		•	•	•	•		•			
< 75 MHz with AGC				•							
< 15 MHz with AGC				•							
< 75 MHz Last Stage					•	•				'	
< 15 MHz Last Stage	 			ļ		<u> </u>	 	•	<u> </u>	<u> </u>	
SPECIAL USES	ļ					ļ					
200 MHz-500 MHz < 1.0 mA Bias	•	•									
50 MHz-250 MHz < 1.0 mA Bias	•	•			•		•				
200 MHz-500 MHz, 5 mA-15 mA Linear IF		1									
50 MHz-250 MHz, 5 mA-15 mA Linear IF	•				•					•	
< 120 MHz/15 mA Wideband RF		1			•	•	•	1		1	
VHF Freq. Generator and/or	11.		•			ŀ					
Multiplier to 75 mW Levels		L			l .	<u> </u>				1	

Choose the Proper FET

National Semiconductor utilizes 17 different FET geometries to cover, without compromise, the full spectrum of applications. Detailed data on each process, along with a list of all part numbers manufactured from each process, is to be found in Section 9.

To further simplify the selection procedure, the FET Family Tree is included for quick identification. After narrowing down the process types, it is suggested that the process sheets and specific part number characteristics be consulted.

TL/G/10013-6

JFET Process Comparison Curves

TL/G/10013-7

JFET Cross Reference Guide

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
2N2386-5	Р	TO-5		2N5462-5	8991	TO-92	2N3365	N	TO-18		2N4340	5202	TO-18
2N2386A	P	TO-5		2N5462-5	8991	TO-92	2N3368	N	TO-18	2N3368		5202	TO-18
2N2497	P	TO-5		2N3329-5	8923	TO-72	2N3369	N	TO-18	2N3369		5202	TO-18
2N2498	P	TO-5		2N3330-5	8923	TO-72	2N3370	N	TO-18	2N3370		5202	TO-18
2N2499	P	TO-5		2N3331-5	8923	TO-72	2N3376	Р	TO-72		2N3329	8923	TO-72
2N2500	P	TO-5		2N3332-5	8923	TO-72	2N3378	Р	TO-72		2N3330	8923	TO-72
2N2606	P	TO-18		2N5020	8911	TO-18	2N3380	Р	TO-72		2N3331	8923	TO-72
2N2607	P	TO-18		2N5020	8911	TO-18	2N3382	Р	TO-72		2N5116	8811	TO-72
2N2608	P	TO-18	2N2608		8911	TO-18	2N3384	Р	TO-72		2N5115	8811	TO-72
2N2609	Р	TO-18	2N2609		8911	TO-18	2N3386	Р	TO-72		2N5114	8811	TO-72
2N2843	Р	TO-18		2N5020	8911	TO-18	2N3436	N	TO-18		2N4222	5525	TO-72
2N2844	P	TO-18		2N5020	8911	TO-18	2N3437	N	TO-18		2N3968	5525	TO-72
2N3066	N	TO-18		2N4340	5202	TO-18	2N3438	N	TO-18		2N5358	5525	TO-72
2N3067	N	TO-18		2N4338	5202	TO-18	2N3453	N	TO-72		2N4119	5325	TO-72
2N3068	N	TO-18		2N4338	5202	TO-18	2N3454	N	TO-72		2N4117	5325	TO-72
2N3069	N	TO-18	2N3069		5202	TO-18	2N3457	N	TO-72		2N4117	5325	TO-72
2N3070	N	TO-18	2N3071		5202	TO-18	2N3458	N	TO-18	2N3458		5202	TO-18
2N3071	N	TO-18	2N3071		5202	TO-18	2N3459	N	TO-18	2N3459		5202	TO-18
2N3084	N	TO-5		2N4340-5	5202	TO-18	2N3460	N	TO-18	2N3460		5202	TO-18
2N3085	N	TO-18		2N4340	5202	TO-18	2N3578	Р	TO-18		2N2608	8911	TO-18
2N3086	N	TO-5		2N4340	5202	TO-18	2N3684	N	TO-72	2N3684		5225	TO-72
2N3087	N	TO-18		2N4340	5202	TO-18	2N3684A	N	TO-72		2N3684	5225	TO-72
2N3088	N	TO-5		2N4339-5	5202	TO-18	2N3685	N	TO-72	2N3685		5225	TO-72
2N3088A	N	TO-5		2N4339-5	5202	TO-18	2N3685A	N	TO-72		2N3685	5225	TO-72
2N3089	N	TO-18		2N4339	5202	TO-18	2N3686	N	TO-72	2N3686		5225	TO-72
2N3089A	N	TO-18		2N4339	5202	TO-18	2N3686A	N	TO-72		2N3686A	5225	TO-72
2N3329	P	TO-72	2N3329		8923	TO-72	2N3687	N	TO-72	2N3687		5225	TO-72
2N3330	P	TO-72	2N3330		8923	TO-72	2N3687A	N	TO-72		2N3687	5225	TO-72
2N3331	P	TO-72	2N3331		8923	TO-72	2N3819	N	TO-92	2N3819		5094	TO-92
2N3332	P	TO-72	2N3332		8923	TO-72	2N3820	Р	TO-92	2N3820		8994	TO-92

JFET	Cross	Reference	Guide ((Continued)
-------------	--------------	-----------	---------	-------------

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
2N3821	N	TO-72	2N3821		5525	TO-72	2N4118	N	TO-72	2N4118		5352	TO-72
2N3822	N	TO-72	2N3822		5525	TO-72	2N4118A	N	TO-72	2N4118A		5325	TO-72
2N3823	N	TO-72	2N3823		5505	TO-72	2N4119	N	TO-72	2N4119		5325	TO-72
2N3824	N	TO-72	2N3824		5525	TO-72	2N4119A	N	TO-72	2N4119A		5325	TO-72
2N3909	Р	TO-72		2N3820	8994	TO-92	2N4139	N	TO-18		2N5363	5525	TO-72
2N3909A	Р	TO-72		2N5462	8991	TO-92	2N4220	N	TO-72	2N4220		5525	TO-72
2N3921	N	TO-71		2N3921	8312	TO-71	2N4220A	N	TO-72	2N4220A		5525	TO-72
2N3922	N	TO-71	2N3922		8312	TO-71	2N4221	N	TO-72	2N4221		5525	TO-72
2N3954	N	TO-71	2N3954		8312	TO-71	2N4221A	N	TO-72	2N4221A		5525	TO-72
2N3955	N	TO-71	2N3955		8312	TO-71	2N4222	N	TO-72	2N4222		5225	TO-72
2N3955A	N	TO-71	2N3955A		8312	TO-71	2N4222A	N	TO-72	2N4222A		5225	TO-72
2N3956	N	TO-71	2N3956		8312	TO-71	2N4223	N	TO-72	2N4223		5025	TO-72
2N3957	N	TO-71	2N3957		8312	TO-71	2N4224	N	TO-72	2N4224		5025	TO-72
2N3958	N	TO-71	2N3958		8312	TO-71	2N4302	N	TO-106	PN4302-18		5292	TO-92
2N3966	N	TO-72	2N3966		5029	TO-72	2N4303	N	TO-106	PN4303-18		5292	TO-92
2N3967	N	TO-72	2N3967		5225	TO-72	2N4304	N	TO-106	PN4304-18		5292	TO-92
2N3967A	N	TO-72	2N3967A		5525	TO-72	2N4338	N	TO-18	2N4338		5202	TO-18
2N3968	N	TO-72	2N3968		5525	TO-72	2N4339	N	TO-18	2N4339		5202	TO-18
2N3968A	N	TO-72	2N3968A		5525	TO-72	2N4340	N	TO-18	2N4340		5202	TO-18
2N3969	N	TO-72	2N3969		5525	TO-72	2N4341	N	TO-18	2N4341		5202	TO-18
2N3969A	N	TO-72	2N3969A		5525	TO-72	2N4342	Р	TO-106	PN4342-18		8991	TO-92
2N3970	N	TO-18	2N3970		5102	TO-18	2N4360	P	TO-106	PN4360-18		8991	TO-92
2N3971	N	TO-18	2N3971		5102	TO-18	2N4381	Р	TO-18	2N4318		8991	TO-92
2N3972	N	TO-18	2N3972		5102	TO-18	2N4382	Р	TO-18	2N5115		8811	TO-18
2N3993	Р	TO-72		2N5116	8811	TO-72	2N4391	N	TO-18	2N4391		5102	TO-18
2N3993A	Р	TO-72		2N5116	8811	TO-72	2N4392	N	TO-18	2N4392	:	5102	TO-18
2N3994	Р	TO-72		2N5116	8811	TO-72	2N4393	N	TO-18	2N4393		5102	TO-18
2N3994A	Р	TO-72		2N5116	8811	TO-72	2N4416	N	TO-72	2N4416		5025	TO-72
2N4084	N	TO-71	2N4084		8312	TO-71	2N4416A	N	TO-72	2N4416A		5025	TO-72
2N4085	N	TO-71	2N4085		8312	TO-71	2N4445	N	TO-18		2N5432	5807	TO-52
2N4091	N	TO-18	2N4091		5102	TO-18	2N4446	N	TO-18		2N5433	5807	TO-52
2N4092	N	TO-18	2N4092		5102	TO-18	2N4447	N	TO-18		2N5432	5807	TO-52
2N4093	N	TO-18	2N4093		5102	TO-18	2N4448	N	TO-18		2N5433	5807	TO-52
2N4117	N	TO-72	2N4117		5325	TO-72	2N4856	N	TO-18	2N4856		5102	TO-18
2N4117A	N	TO-72	2N4117A		5325	TO-72	2N4856A	N	TO-18	2N4856A		5102	TO-18

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
2N4857	N	TO-18	2N4857		5102	TO-18	2N5197	N	TO-71	2N5197		8312	TO-18
2N4857A	N	TO-18	2N4857A		5102	TO-18	2N5198	N	TO-71	2N5198		8312	TO-18
2N4858	N	TO-18	2N4858		5102	TO-18	2N5199	N	TO-71	2N5199		8312	TO-18
2N4858A	N	TO-18	2N4858A		5102	TO-18	2N5245	N	TO-106	2N5245-18		9097	TO-92
2N4859	N	TO-18	2N4859		5102	TO-18	2N5246	N	TO-106	2N5246-18		9097	TO-92
2N4859A	N	TO-18	2N4859A		5102	TO-18	2N5247	N	TO-106	2N5247-18		9097	TO-92
2N4860	N	TO-18	2N4860		5102	TO-18	2N5248	N	TO-92	2N5248		5094	TO-92
2N4860A	N	TO-18	2N4860A		5102	TO-18	2N5358	N	TO-72	2N5358		5525	TO-72
2N4861	N	TO-18	2N4861		5102	TO-18	2N5359	N	TO-72	2N5359		5525	TO-72
2N4861A	N	TO-18	2N4861A		5102	TO-18	2N5360	N	TO-72	2N5360		5525	TO-72
2N4867	N	TO-72		2N4339	5202	TO-18	2N5361	N	TO-72	2N5361		5525	TO-72
2N4868	N	TO-72		2N3459	5202	TO-18	2N5362	N	TO-72	2N5362		5525	TO-72
2N4869	N	TO-72		2N4341	5702	TO-18	2N5363	N	TO-72	2N5363		5525	TO-72
2N4977	N	TO-18		2N5432	5807	TO-52	2N5364	N	TO-72	2N5364		5525	TO-72
2N4978	N	TO-18		2N5433	5807	TO-52	2N5397	N	TO-72	2N5397		9025	TO-72
2N4979	N	TO-18		2N5434	5807	TO-52	2N5398	N	TO-72	2N5398		9025	TO-72
2N5018	Р	TO-18	2N5018		8811	TO-18	2N5432	N	TO-18	2N5432		5807	TO-72
2N5019	Р	TO-18	2N5019		8811	TO-18	2N5433	N	TO-18	2N5433		5807	TO-72
2N5020	P	TO-18	2N5020		8811	TO-18	2N5434	N	TO-18	2N5434		5807	TO-72
2N5021	Р	TO-18	2N5021		8991	TO-92	2N5452	N	TO-71	2N5452		8312	TO-71
2N5033	P	TO-106	PN5033-18		8991	TO-92	2N5453	N	TO-71	2N5453		8312	TO-71
2N5045	N	TO-71	2N5045		8312	TO-71	2N5454	N	TO-71	2N5454		8312	TO-71
2N5046	N	TO-71	2N5046		8312	TO-71	2N5457	N	TO-92	2N5457		5592	TO-92
2N5047	N	TO-71	2N5047		8312	TO-71	2N5458	N	TO-92	2N5458		5592	TO-92
2N5078	N	TO-72	2N5078		5025	TO-72	2N5459	N	TO-92	2N5459		5592	TO-92
2N5103	N	TO-72	2N5103		5025	TO-72	2N5460	Р	TO-92	2N5460		8991	TO-92
2N5104	N	TO-72	2N5104		5025	TO-72	2N5461	Р	TO-92	2N5461		8991	TO-92
2N5105	N	TO-72	2N5105		5025	TO-72	2N5462	Р	TO-92	2N5462		8991	TO-92
2N5114	Р	TO-18	2N5114 '		8811	TO-18	2N5471	Р	TO-72		2N5020	8911	TO-18
2N5115	Р	TO-18	2N5115		8811	TO-18	2N5472	Р	TO-72		2N5020	8911	TO-18
2N5116	Р	TO-18	2N5116		8811	TO-18	2N5473	Р	TO-72		2N5020	8911	TO-18
2N5158	N	TO-18		2N5433	8807	TO-52	2N5474	Р	TO-72		2N5020	8911	TO-18
2N5159	N	TO-18		2N5432	5807	TO-52	2N5475	Р	TO-72		2N5020	8911	TO-18
2N5163	N	TO-106	PN5163-18		5072	TO-18	2N5476	Р	TO-72		2N5020	8911	TO-18
2N5196	N	TO-71	2N5196		8312	TO-18	2N5484	N	TO-92	2N5484		5092	TO-92

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
2N5485	N	TO-92	2N5485		5092	TO-92	2N5669	N	TO-92	2N5668		5092	TO-92
2N5486	N	TO-92	2N5486		5092	TO-92	2N5670	N	TO-92	2N5670		5092	TO-92
2N5515	N	TO-71	2N5515		9512	TO-71	2N5717	N	TO-92		PN3686	5292	TO-92
2N5516	N	TO-71	2N5516		9512	TO-71	2N5718	N	TO-92		PN4302	5292	TO-92
2N5517	N	TO-71	2N5517		9512	TO-71	2N5801	N	TO-92		J210	9092	TO-92
2N5518	N	TO-71	2N5518		9512	TO-71	2N5802	N	TO-92		J212	9092	TO-92
2N5519	N	TO-71	2N5519		9512	TO-71	2N5902	N	TO-78	2N5902		8424	TO-78
2N5520	N	TO-71	2N5520		9512	TO-71	2N5903	N	TO-78	2N5903		8424	TO-78
2N5521	N	TO-71	2N5521		9512	TO-71	2N5904	N	TO-78	2N5904		8424	TO-78
2N5522	N	TO-71	2N5522		9512	TO-71	2N5905	N	TO-78	2N5905		8424	TO-78
2N5523	N	TO-71	2N5523		9512	TO-71	2N5906	N	TO-78	2N5906		8424	TO-78
2N5524	N	TO-71	2N5524		9512	TO-71	2N5907	N	TO-78	2N5907		8424	TO-78
2N5545	N	TO-71	2N5545		8312	TO-71	2N5908	N	TO-78	2N5908		8424	TO-78
2N5546	N	TO-71	2N5546		8312	TO-71	2N5909	N	TO-78	2N5908		8424	TO-78
2N5547	N	TO-71	2N5547		8312	TO-71	2N5911	N	TO-78	2N5911		9324	TO-78
2N5549	N	TO-72		2N5397	9025	TO-72	2N5912	N	TO-78	2N5912		9324	TO-78
2N5555	N	TO-92	2N5555		5092	TO-92	2N5949	N	TO-106	2N5949-18		5097	TO-92
2N5556	N	TO-72	2N5556		5025	TO-72	2N5950	N	TO-106	2N5950-18		5097	TO-92
2N5557	N	TO-72	2N5557		5025	TO-72	2N5951	N	TO-106	2N5951-18		5097	TO-92
2N5558	N	TO-72	2N5558		5025	TO-72	2N5952	N	TO-106	2N5952-18		5097	TO-92
2N5561	N	TO-71	2N5561		9812	TO-71	2N5953	N	TO-106	2N5953-18		5097	TO-92
2N5562	N	TO-71	2N5562		9812	TO-71	2N6483	N	TO-71	2N6483		9512	TO-71
2N5563	N	TO-71	2N5563		9812	TO-71	2N6484	N	TO-71	2N6484		9512	TO-71
2N5564	N	TO-71	2N5564		9612	TO-71	2N6485	N	TO-71	2N6485		9512	TO-71
2N5565	N	TO-71	2N5565		9612	TO-71	2SK11	N	TO-72		2N3459	5202	TO-18
2N5566	N	TO-71	2N5566		9612	TO-71	2SK12	N	TO-72		2N4340	5202	TO-18
2N5592	N	TO-72		PN5163-18	5092	TO-92	2SK13	N	TO-72		2N4340	5202	TO-18
2N5593	N	TO-72		PN5163-18	5092	TO-92	2SK15	N	TO-72		2N4340	5202	TO-18
2N5594	N	TO-72		PN5163-18	5092	TO-92	2SK19	N	TO-106		2N5485-18	5092	TO-92
2N5638	N ·	TO-92	2N5638		5192	TO-92	2SK30	N	TO-92		PN4304	5292	TO-92
2N5639	N	TO-92	2N5639	-	5192	TO-92	2SK37	N	B-69		2N5484	5092	TO-92
2N5640	N	TO-92	2N5640		5192	TO-92	2SK48	N	TO-72		2N3686	5225	TO-72
2N5653	N	TO-92	2N5653		5192	TO-92	2SK68	N	TO-92		PF5101	5192	TO-92
2N5654	N	TO-92	2N5654		5192	TO-92	3SK22	N	TO-72		2N5078	5025	TO-72
2N5668	N	TO-92	2N5668		5092	TO-92	3SK23	N	TO-72		2N5397	9025	TO-72

1-44

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
3SK28	N	TO-72		2N5078	5025	TO-72	E103	N	TO-106	J203-18		5292	TO-92
A5T3821	N	TO-92	2N3821		5525	TO-72	E106	N	TO-106		J108-18	5892	TO-92
A5T3822	N	TO-92	2N3822		5525	TO-72	E107	N	TO-106		J108-18	5892	TO-92
A5T3823	N	TO-92	2N3823		5029	TO-72	E108	N	TO-106	J108-18		5892	TO-92
A5T3824	N	TO-92	2N3824		5525	TO-72	E109	N	TO-106	J109-18		5892	TO-92
A5T5460	Р	TO-92	2N5460		8991	TO-92	E110	N	TO-106	J110-18		5892	TO-92
A5T5461	P	TO-92	2N5461		8991	TO-92	E111	N	TO-106	J111-18		5192	TO-92
A5T5462	Р	TO-92	2N5462		8991	TO-92	E112	N	TO-106	J112-18		5192	TO-92
BC264A	N	TO-92	BC264A		5097	TO-92	E113	N	TO-106	J113-18		5192	TO-92
BC264B	N	TO-92	BC264B		5097	TO-92	E114	N	TO-106	J114-18		9092	TO-92
BC264C	N	TO-92	BC264C		5097	TO-92	E174	N	TO-106	J174-18		8894	TO-92
BC264D	N	TO-92	BC264D		5097	TO-92	E175	N	TO-106	J175-18		8894	TO-92
BF244A	N	TO-92	BF244A		5094	TO-92	E176	N	TO-106	J176-18		8894	TO-92
BF244B	N	TO-92	BF244B		5094	TO-92	E177	N	TO-106	J177-18		8894	TO-92
BF244C	N	TO-92	BF244C		5094	TO-92	E201	N	TO-106	J201-18		5292	TO-92
BF245A	N	TO-92	BF245A		5097	TO-92	E202	N	TO-106	J202-18		5292	TO-92
BF245B	N	TO-92	BF245B		5097	TO-92	E203	N	TO-106	J203-18		5292	TO-92
BF245C	N	TO-92	BF245C		5097	TO-92	E204	N	TO-106		PN4220-18	5592	TO-92
BF246A	N	TO-92	BF246A	1	5194	TO-92	E210	N	TO-106	J210-18		9092	TO-92
BF246B	N	TO-92	BF246B		5194	TO-92	E211	N	TO-106	J211-18		9092	TO-92
BF246C	N	TO-92	BF246C		5194	TO-92	E212	N	TO-106	J212-18		9092	TO-92
BF247A	N	TO-92	BF247A		5197	TO-92	E230	N	TO-106		PN3821-18	5292	TO-92
BF247B	N	TO-92	BF247B		5197	TO-92	E231	N	TO-106		PN3684-18	5292	TO-92
BF247C	N	TO-92	BF247C		5197	TO-92	E232	N	TO-106		J203-18	5292	TO-92
BF256A	N	TO-92	BF256A		5097	TO-92	E270	Р	TO-106	J270-18		8894	TO-92
BF256B	N	TO-92	BF256B		5097	TO-92	E271	Р	TO-106	J271-18		8894	TO-92
BF256C	N	TO-92	BF256C		5097	TO-92	E300	N	TO-106	J300-18		9092	TO-92
BFW10	N	TO-72		2N4224	5025	TO-72	E304	N	TO-106	J304-18		5092	TO-92
BFW11	N	TO-72		2N5558	5025	TO-72	E305	N	TO-106	J305-18		5092	TO-92
BFW61	N	TO-72		2N4224	5025	TO-72	E308	Ν	TO-106	J308-18		9292	TO-92
BSV78	N	TO-18		2N4856	5102	TO-18	E309	N	TO-106	J309-18		9292	TO-92
BSV79	N	TO-18		2N4857	5102	TO-18	E310	N	TO-106	J310-18		9292	TO-92
BSV80	N	TO-18		2N4858	5102	TO-18	E311	N	TO-106	J309		9292	TO-92
E101	N	TO-106	J201-18		5292	TO-92	E312	N	TO-106		J310-18	9292	TO-92
E102	N	TO-106	J202-18		5292	TO-92	E430	N	TO-71		2N5566	9612	TO-71

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
ESM4091	N	FO-18	2N4091		5102	TO-18	ITE4867	N	TO-106		PN3686-18	5292	TO-92
ESM4093	N	FO-18	2N4091		5102	TO-18	ITE4868	N	TO-106		PN3685-18	5292	TO-92
ESM4302	N	FO-18	PN4302-18		5292	TO-92	J108	N	TO-92	J108		5892	TO-92
ESM4303	N	FO-18	PN4303-18		5292	TO-92	J109	N	TO-92	J109		5892	TO-92
ESM4304	N	FO-18	PN4304-18		5292	TO-92	J110	N	TO-92	J110		5892	TO-92
FT0654A	N			2N3824	5525	TO-72	J111	N	TO-92	J111		5192	TO-92
FT0654B	N			2N3824	5525	TO-72	J111A	N	TO-92		PN4091	5192	TO-92
FT0654C	N			2N4221	5202	TO-18	J112	N	TO-92	J112		5192	TO-92
FT3820	Р	TO-18	2N3820-18		8994	TO-92	J112A	N	TO-92		PN4092	5192	TO-92
GET5457	N		2N5457		5592	TO-92	J113	N	TO-92	J113		5192	TO-92
GET5458	N		2N5458		5592	TO-92	J113A	N	TO-92		PN4093	5192	TO-92
GET5459	N		2N5459		5592	TO-92	J114	N	TO-92	J114		9092	TO-92
IMF3954	N	TO-71		2N3954	8312	TO-71	J174	N	TO-92	J174		8894	TO-92
IMF3954A	N	TO-71		2N3954A	8312	TO-71	J175	Р	TO-92	J175		8894	TO-92
IMF3955	N	TO-71		2N3955	8312	TO-71	J176	Р	TO-92	J176		8894	TO-92
IMF3956	N	TO-71		2N3956	8312	TO-71	J177	Р	TO-92	J177		8894	TO-92
IMF3957	N	TO-71		2N3957	8312	TO-71	J201	N	TO-92	J201		5292	TO-92
IMF3958	N	TO-71		2N3958	8312	TO-71	J202	N	TO-92	J202		5294	TO-92
IMF6485	N	TO-71		2N6485	9512	TO-71	J203	N	TO-92	J203		5292	TO-92
IT101	Р	TO-18		2N5114	8811	TO-18	J210	N	TO-92	J210		9092	TO-92
IT108	N			2N5486	5092	TO-92	J211	N	TO-92	J211		9092	TO-92
ITE3066	N	TO-106		2N4340	5202	TO-18	J212	N	TO-92	J212		9092	TO-92
ITE3067	N	TO-106		2N4338	5202	TO-18	J230	N	TO-92		J202	5292	TO-92
ITE3068	N	TO-106		2N4338	5202	TO-18	J231	N	TO-92		J202	5292	TO-92
ITE4117	N	TO-106	PN4117-18		5392	TO-92	J232	N	TO-92		J203	5292	TO-92
ITE4118	N	TO-106	PN4118-18		5392	TO-92	J270	Р	TO-92	J270		8894	TO-92
ITE4119	N	TO-106	PN4119-18		5392	TO-92	J271	Р	TO-92	J271		8894	TO-92
ITE4338	N	TO-106		2N4338	5202	TO-18	J300	N	TO-92	J300		9092	TO-92
ITE4339	N	TO-106		2N4339	5202	TO-18	J304	N	TO-92	J304		5092	TO-92
ITE4340	N	TO-106		2N4340	5202	TO-18	J305	N	TO-92	J305		5092	TO-92
ITE4341	N	TO-106		2N4391	5202	TO-18	J308	N	TO-92	J308		9292	TO-92
ITE4391	N	TO-106	PN4391-18		5192	TO-92	J309	N	TO-92	J309		9292	TO-92
ITE4392	N	TO-106	PN4392-18		5192	TO-92	J310	N	TO-92	J310		9292	TO-92
ITE4393	N	TO-106	PN4393-18		5192	TO-92	J401	N	MiniDIP	J401		9860	MiniDIP
ITE4416	N	TO-106	PN4416-18		5092	TO-92	J402	N	MiniDIP	J402		9860	MiniDIP

1-46

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
J403	N	MiniDIP	J403		9860	MiniDIP	J5105	N	TO-92		J304	5092	TO-92
J404	N	MiniDIP	J404		9860	MiniDIP	K114-18	N			J114	9092	TO-92
J405	N	MiniDIP	J405		9860	MiniDIP	K210-18	N		J210-18		9092	TO-92
J406	N	MiniDIP	J406		9860	MiniDIP	K211-18	N		J211-18		9092	TO-92
J410	N	MiniDIP	J410		8360	MiniDIP	K212-18	N		J212-18		9092	TO-92
J411	N	MiniDIP	J411		8360	MiniDIP	K300-18	N		J300-18		9092	TO-92
J412	N	MiniDIP	J412		8360	MiniDIP	K304-18	N		J304-18		5092	TO-92
J3970	N	TO-92		PN4391	5192	TO-92	K305-18	N		J305-18		5092	TO-92
J3971	N	TO-92		PN4392	5192	TO-92	K308-18	N		J308-18		9292	TO-92
J3972	N	TO-92		PN4393	5192	TO-92	K309-18	N		J308-18		9292	TO-92
J4091	N	TO-92	PN4091		5192	TO-92	K310-18	N		J310-18		9292	TO-92
J4092	N	TO-92	PN4092		5192	TO-92	KE510	N	TO-106		J111	5192	TO-92
J4093	N	TO-92	PN4093		5192	TO-92	KE511	N	TO-106		J111	5192	TO-92
J4220	N	TO-92	PN4220		5592	TO-92	KE3684	N	TO-106	PN3684-18		5292	TO-92
J4221	N	TO-92	PN4221		5592	TO-92	KE3685	N	TO-106	PN3685-18		5292	TO-92
J4222	N	TO-92	PN4222		5592	TO-92	KE3686	N	TO-106	PN3686-18		5292	TO-92
J4223	N	TO-92	PN4223		5092	TO-92	KE3687	N	TO-106	PN3687-18		5292	TO-92
J4224	N	TO-92	PN4224		5092	TO-92	KE3823	N	TO-106		PN4224-18	5092	TO-92
J4302	N	TO-92	PN4302		5292	TO-92	KE3970	N	TO-106		PN4391-18	5192	TO-92
J4303	N	TO-92	PN4303		5292	TO-92	KE3971	N	TO-106		PN4392-18	5192	TO-92
J4304	N	TO-92	PN4304		5292	TO-92	KE3972	N	TO-106		PN4393-18	5192	TO-92
J4338	N	TO-92		PN3687	5292	TO-92	KE4091	N	TO-106	PN4091-18		5192	TO-92
J4339	N	TO-92		PN3686	5292	TO-92	KE4092	N	TO-106	PN4092-18		5192	TO-92
J4391	N	TO-92	PN4391		5192	TO-92	KE4093	N	TO-106	PN4093-18		5192	TO-92
J4392	N	TO-92	PN4392		5192	TO-92	KE4220	N	TO-106	PN4220-18		5592	TO-92
J4393	N	TO-92	PN4393		5192	TO-92	KE4221	N	TO-106	PN4221-18		5592	TO-92
J4416	N	TO-92	PN4416		5092	TO-92	KE4222	N	TO-106	PN4222-18		5592	TO-92
J4856	N	TO-92	PN4856		5192	TO-92	KE4223	N	TO-106	PN4223-18		5092	TO-92
J4857	N	TO-92	PN4857		5192	TO-92	KE4224	N	TO-106	PN4224-18		5092	TO-92
J4858	N	TO-92	PN4858		5192	TO-92	KE4391	N	TO-106	PN4391-18		5192	TO-92
J4859	N	TO-92	PN4859		5192	TO-92	KE4392	N	TO-106	PN4392-18		5192	TO-92
J4860	N	TO-92	PN4860		5192	TO-92	KE4393	N	TO-106	PN4393-18		5192	TO-92
J4861	N	TO-92	PN4861		5192	TO-92	KE4416	N	TO-106	PN4416-18		5092	TO-92
J5103	N	TO-92		J305	5092	TO-92	KE4856	N	TO-106	PN4856-18		5192	TO-92
J5104	N	TO-92		J305	5092	TO-92	KE4857	N	TO-106	PN4857-18		5192	TO-92

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
KE4858	N	TO-106	PN4858-18		5192	TO-92	MPF161	Р	TO-92		2N5461	8991	TO-92
KE4859	N	TO-106	PN4859-18		5192	TO-92	MPF256	N	TO-92	MPF256		9092	TO-92
KE4860	N	TO-106	PN4860-18		5192	TO-92	MPF820	N	TO-92	MPF820		9292	TO-92
KE4861	N	TO-106	PN4861-18		5192	TO-92	MPF970	Р	TO-92		P1086	8891	TO-92
KE5103	N	TO-106		J305-18	5092	TO-92	MPF971	Р	TO-92		P1087	8891	TO-92
KE5104	N	TO-106		J305-18	5092	TO-92	MPF4391	N	TO-92	PN4391		5192	TO-92
KE5105	N	TO-106		J304-18	5092	TO-92	MPF4392	N	TO-92	PN4392		5192	TO-92
KK4416-18	N	PN4416-18			5092	TO-92	MPF4393	N	TO-92	PN4393		5192	TO-92
MFE2000	N	TO-72		2N4416	5025	TO-72	NDF9401	N	TO-78		NDF9406	9412	TO-71
MFE2001	N	TO-72		2N4416	5025	TO-72	NDF9402	N	TO-78		NDF9407	9412	TO-71
MFE2004	N	TO-18		2N4093	5102	TO-18	NDF9403	N	TO-78		NDF9408	9412	TO-71
MFE2005	N	TO-18		2N4092	5102	TO-18	NDF9404	N	TO-78		NDF9409	9412	TO-71
MFE2006	N	TO-18	2N4091		5102	TO-18	NDF9405	N	TO-78		NDF9410	9412	TO-71
MFE2007	N	TO-18	2N4857		5102	TO-18	NDF9406	N	TO-71	NDF9406		9412	TO-71
MFE2008	N	TO-18	2N4391		5102	TO-18	NDF9407	N	TO-71	NDF9407		9412	TO-71
MFE2009	N	TO-18	2N4856		5102	TO-18	NDF9408	N	TO-71	NDF9408		9412	TO-71
MFE2010	N	TO-18	2N4856		5102	TO-18	NDF9409	N	TO-71	NDF9409		9412	TO-71
MFE2011	N	TO-18	2N5433		5807	TO-52	NDF9410	N	TO-71	NDF9410	:	9412	TO-71
MFE2012	N	TO-18	2N5433		5807	TO-52	NF500	N	TO-72		2N4224	5025	TO-72
MFE4007	Р	TO-72	2N5020		8911	TO-18	NF501	N	TO-72		2N4224	5025	TO-72
MFE4008	Р	TO-72	2N2608		8911	TO-18	NF506	N	TO-72		2N3823	5025	TO-72
MFE4009	P	TO-72	2N3329		8923	TO-72	NF510	N	TO-18		2N4092	5102	TO-18
MFE4010	P	TO-72	2N3330		8923	TO-72	NF511	N	TO-18		2N4092	5102	TO-18
MFE4011	Р	TO-72	2N3331		8923	TO-72	NF520	N	TO-72		2N4224	5025	TO-72
MPF102	N	TO-92	MPF102		5092	TO-92	NF521	N	TO-72		2N4220	5525	TO-72
MPF103	N	TO-92	MPF103		5592	TO-92	NF522	N	TO-72		2N4224	5025	TO-72
MPF104	N	TO-92	MPF104		5092	TO-92	NF523	N	TO-72		2N4220	5525	TO-72
MPF105	N	TO-92	MPF105		5592	TO-92	NF530	N	TO-18		2N3822	5525	TO-72
MPF106	N	TO-92	MPF106		5092	TO-92	NF531	N	TO-18		2N3821	5525	TO-72
MPF107	N	TO-92	MPF107		5092	TO-92	NF532	N	TO-18		2N3822	5525	TO-72
MPF108	N	TO-92	MPF108		5092	TO-92	NF533	N	TO-18		2N3821	5525	TO-72
MPF109	N	TO-92	MPF109		5092	TO-92	NF3819	N	TO-18	2N3819-18		5094	TO-92
MPF110	N	TO-92	MPF110		5092	TO-92	NF4302	N	TO-18	PN4302-18		5292	TO-92
MPF111	N	TO-92	MPF111		5092	TO-92	NF4303	N	TO-18	PN4303-18		5292	TO-92
MPF112	N	TO-92	MPF112		5092	TO-92	NF4304	N	TO-18	PN4304-18		5292	TO-92

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
NF4445	N	TO-18		2N5432	5807	TO-52	PN4221	N	TO-92	PN4221		5592	TO-92
NF4446	N	TO-18		2N5433	5807	TO-52	PN4222	N	TO-92	PN4222		5592	TO-92
NF4447	N	TO-18		2N5432	5807	TO-52	PN4223	N	TO-92	PN4223		5092	TO-92
NF4448	N	TO-18		2N4856	5807	TO-52	PN4224	N	TO-92	PN4224		5092	TO-92
NF5101	N	TO-72	NF5101		5125	TO-72	PN4302	N	TO-92	PN4302		5292	TO-92
NF5102	N	TO-72	NF5102		5125	TO-72	PN4303	N	TO-92	PN4303		5292	TO-92
NF5103	N	TO-72	NF5103		5125	TO-72	PN4304	N	TO-92	PN4304		5292	TO-92
NF5163	N	TO-18	PN5163-18		5072	TO-72	PN4342	N	TO-92	PN4342		8991	TO-92
NF5457	N	TO-18	2N5457-18		5592	TO-92	PN4360	N	TO-92	PN4360		8991	TO-92
NF5458	N	TO-18	2N5458-18		5592	TO-92	PN4391	N	TO-92	PN4391		5192	TO-92
NF5459	N	TO-18	2N5459-18		5592	TO-92	PN4392	N	TO-92	PN4392		5192	TO-92
NF5484	N	TO-18	2N5484-18		5092	TO-92	PN4393	N	TO-92	PN4393		5192	TO-92
NF5485	N	TO-18	2N5485-18		5092	TO-92	PN4416	N	TO-92	PN4416		5092	TO-92
NF5486	N	TO-18	2N5486-18		5092	TO-92	PN4856	N	TO-92	PN4856		5192	TO-92
NF5555	N	TO-72	2N5555-18		5092	TO-92	PN4857	N	TO-92	PN4857		5192	TO-92
NF5638	N	TO-18	2N5638-18		5192	TO-92	PN4858	N	TO-92	PN4858		5192	TO-92
NF5639	N	TO-18	2N5639-18		5192	TO-92	PN4859	N	TO-92	PN4859		5192	TO-92
NF5640	N	TO-18	2N5640-18		5192	TO-92	PN4860	N	TO-92	PN4860		5192	TO-92
NF5653	N	TO-18	2N5653-18		5192	TO-92	PN4861	N	TO-92	PN4861		5192	TO-92
NF5654	N	TO-18	2N5654-18		5192	TO-92	PN5033	N	TO-92	PN5033		8991	TO-92
P1086E	Р	TO-106	P1086-18		8891	TO-92	PN5163	N	TO-92	PN5163		5092	TO-92
P1087E	P	TO-106	P1087-18		8891	TO-92	SU2000	N	TO-71		2N3822	5525	TO-72
PF510	P	TO-18		PN4392-18	5192	TO-92	SU2020	N	TO-71		2N5196	8312	TO-71
PF511	P	TO-18		PN4392-18	5192	TO-92	SU2021	N	TO-71		2N5196	8312	TO-71
PF5101	N	TO-92	PF5101		5192	TO-92	SU2022	N	TO-71		2N5196	8312	TO-71
PF5102	N	TO-92	PF5102		5192	TO-92	SU2023	N	TO-71		2N5196	8312	TO-71
PF5103	N	TO-92	PF5103		5192	TO-92	SU2024	N	TO-71		2N5196	8312	TO-71
PF3684	N	TO-92	PN3684		5292	TO-92	SU2025	N	TO-71		2N5196	8312	TO-71
PN3685	N	TO-92	PN3685		5292	TO-92	SU2026	N	TO-71		2N5196	8312	TO-71
PN3686	N	TO-92	PN3686		5292	TO-92	SU2027	N	TO-71		2N5196	8312	TO-71
PN3687	N	TO-92	PN3687		5292	TO-92	SU2028	N	TO-71		2N5196	8312	TO-71
PN4091	N	TO-92	PN4091		5192	TO-92	SU2029	N	TO-71		2N5196	8312	TO-71
PN4092	N	TO-92	PN4092		5192	TO-92	SU2030	N	TO-71		2N4082	8312	TO-71
PN4093	N	TO-92	PN4093		5192	TO-92	SU2033	N	TO-71		2N5561	8312	TO-71
PN4220	N	TO-92	PN4220		5292	TO-92	SU2034	N	TO-71		2N5561	8312	TO-71

V. — .	0.000			(Continued)									
Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
SU2035	N	TO-71		2N5561	8312	TO-71	TD5905	N	TO-18/8		2N5905	8424	TO-78
SU2076	N	TO-71		2N5561	8312	TO-71	TD5905A	N	TO-18/8		2N5905	8424	TO-78
SU2077	N	TO-71		2N5561	8312	TO-71	TD5906	N	TO-18/8	2N5906		8424	TO-78
SU2078	N	TO-71		2N3955	8312	TO-71	TD5906A	N	TO-18/8		2N5906	8424	TO-78
SU2079	N	TO-71		2N3956	8312	TO-71	TD5907	N	TO-18/8	2N5907	,	8424	TO-78
SU2080	N	TO-71		U404	9812	TO-71	TD5907A	N	TO-18/8		2N5907	8424	TO-78
SU2081	N	TO-71		U404	9812	TO-71	TD5908	N	TO-18/8	2N5908		8424	TO-78
SU2098	N	TO-71		2N3954	8312	TO-71	TD5908A	N	TO-18/8		2N5908	8424	TO-78
SU2098A	N	TO-71		2N3954	8312	TO-71	TD5909	N	TO-18/8	2N5909		8424	TO-78
SU2098B	N	TO-71		2N3954A	8312	TO-71	TD5909A	N	TO-18/8		2N5909	8424	TO-78
SU2099	N	TO-71		2N3955A	8312	TO-71	TD5910	N	TO-18/8	2N5910		8424	TO-78
SU2099A	N	TO-71		2N3955A	8312	TO-71	TD5910A	N	TO-18/8		2N5910	8424	TO-78
SU2365	N	TO-71		U401	9812	TO-71	TD5911	N	TO-18/8	2N5911		9324	TO-78
SU2365A	N	TO-71		U401	9812	TO-71	TD5911A	N	TO-18/8		2N5911	9324	TO-78
SU2366	N	TO-71		U402	9812	TO-71	TD5912	N	TO-18/8	2N5912		9324	TO-78
SU2366A	N	TO-71		U402	9812	TO-71	TD5912A	N	TO-18/8		2N5912	9324	TO-78
SU2367	N	TO-71		U403	9812	TO-71	TIS25	N	TO-5/6		U401	9812	TO-71
SU2367A	N	TO-71		U403	9812	TO-71	TIS26	N	TO-5/6		U402	9812	TO-71
SU2368	N	TO-71		U404	9812	TO-71	TIS27	N	TO-5/6		U403	9812	TO-71
SU2368A	N	TO-71	_	U404	9812	TO-71	TIS34	N	TO-92		2N5486	5092	TO-92
SU2369	N	TO-71		U405	9812	TO-71	TIS41	N	TO-18		2N4859	5192	TO-92
SU2369A	N	TO-71		U405	9812	TO-71	TIS42	N	TO-92	•	PN4392	5192	TO-92
SU2652M	N	MiniDIP		J401	9860	MiniDIP	TIS58	N	TO-92	TIS58		5094	TO-92
SU2653M	N	MiniDIP		J401	9860	MiniDIP	TIS59	N	TO-92	TIS59		5094	TO-92
SU2654M	N	MiniDIP		J401	9860	MiniDIP	TIS73	N	TO-18	TIS73		5197	TO-92
SU2655M	N	MiniDIP		J402	9860	MiniDIP	TIS74	N	TO-18	TIS74		5197	TO-92
SU2656M	N	MiniDIP		J404	9860	MiniDIP	TIS75	N	TO-18	TIS75		5197	TO-92
TD5452	N	TO-18/8		2N5452	8312	TO-71	TIS88A	N	TO-18		2N5486	5092	TO-92
TD5453	N	TO-18/8		2N5453	8312	TO-71	TP5114	Р	TO-18	2N5114		8811	TO-18
TD5454	N	TO-18/8		2N5454	8312	TO-71	TP5115	Р	TO-18	2N5115		8811	TO-18
TD5902	N	TO-18/8	2N5902		8424	TO-78	TP5116	Р	TO-18	2N5116		8811	TO-18
TD5902A	N	TO-18/8		2N5902	8424	TO-78	U110	Р	TO-18		2N5020	8911	TO-18
TD5903	N	TO-18/8	2N5903		8424	TO-78	U112	Р	TO-18		2N4318	8911	TO-18
TD5903A	N	TO-18/8		2N5903	8424	TO-78	U146	Р	TO-18		2N5020	8911	TO-18
TD5904	N	TO-18/8	2N5904		8424	TO-78	U147	Р	TO-18		2N5020	8911	TO-18
TD5904A	N	TO-18/8	1	2N5904	8424	TO-78	U148	P	TO-18		2N2608	8911	TO-18

ġ

Industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type	industry P/N	Polarity	Package	Direct Replacement	Closest Equivalent Replacement	Process Package	Package Type
U183	N	TO-72		2N3823	5025	TO-72	U1837E	N	TO-106		2N5486-18	5092	TO-92
U184	N	TO-72		2N4416	5025	TO-72	U1897	N	TO-106	U1897		5192	TO-92
U197	N	TO-18		2N4338	5202	TO-18	U1897E	N	TO-106		U1897-18	5192	TO-92
U198	N	TO-18		2N4340	5202	TO-18	U1898	N	TO-106	U1898		5192	TO-92
U199	N	TO-18		2N4341	5202	TO-18	U1898E	N	TO-106		U1898-18	5192	TO-92
U200	N	TO-18		2N4393	5102	TO-18	U1899	N	TO-106	U1899		5192	TO-92
U201	N	TO-18		2N4392	5102	TO-18	U1899E	N	TO-106		U1899-18	5192	TO-92
U202	N	TO-18		2N4391	5102	TO-18	U1994	N	TO-106		PN4416-18	5092	TO-92
U231	N	TO-71	U231		8312	TO-71	U1994E	N	TO-106		PN4416-18	5092	TO-92
U232	N	TO-71	U232		8312	TO-71	U2047	N	TO-92		PN4416	5092	TO-92
U233	N	TO-71	U233		8312	TO-71	U2047E	N	TO-106		PN4416-18	5092	TO-92
U234	N	TO-71	U234		8312	TO-71	UC155	N	TO-72		2N4416	5025	TO-72
U235	N	TO-71	U235		8312	TO-71	UC200	N	TO-72		2N4393	5102	TO-18
U257	N	TO-78	U257		9324	TO-78	UC201	N	TO-72		2N4416	5025	TO-72
U300	Р	TO-18		2N5114	8811	TO-18	UC220	N	TO-72		2N4220	5525	TO-72
U301	Р	TO-18		2N5145	8811	TO-18	UC241	N	TO-72		2N3822	5525	TO-72
U304	P	TO-18		2N5114	8811	TO-18	UC250	N	TO-18		2N4391	5102	TO-18
U305	P	TO-18		2N5116	8811	TO-18	UC251	N	TO-18		2N4392	5102	TO-18
U308	N	TO-52	U308		9207	TO-52	UC400	Р	TO-72		2N2609	8811	TO-18
U309	N	TO-52	U309		9207	TO-52	UC401	Р	TO-72		2N5019	8811	TO-18
U310	N	TO-52	U310		9207	TO-52	UC410	Р	TO-72		2N2609	8811	TO-18
U312	N	TO-18	U312		9007	TO-52	UC420	Р	TO-72		2N3329	8923	TO-72
U316	N	B-69	U309		9207	TO-52	UC588	N	TO-106		PN4416-18	5092	TO-92
U317	N	B-69	U310		9207	TO-52	UC703	N	TO-72		2N3822	5525	TO-72
U320	N	TO-5		2N5433	5807	TO-52	UC705	N	TO-72		2N3824	5525	TO-72
U321	N	TO-5		2N5433	5807	TO-52	UC707	N	TO-18		2N4391	5102	TO-18
U322	N	TO-5		2N5432	5807	TO-52	UC714	N	TO-72		2N4416	5025	TO-72
U401	N	TO-71	U401		9812	TO-71	UC734	N	TO-72		2N4416	5025	TO-72
U402	N	TO-71	U402		9812	TO-71	UC734E	N	TO-106		PN4416-18	5092	TO-92
U403	N	TO-71	U403		9812	TO-71	UC755	N	TO-18		2N4391	5102	TO-18
U404	N	TO-71	U404		9812	TO-71	UC756	N	TO-18		2N4224	5025	TO-72
U405	N	TO-71	U405		9812	TO-71	UC805	Р	TO-72		2N3331	8923	TO-72
U406	N	TO-71	U406		9812	TO-71	UC807	Р	TO-72		2N4861	5102	TO-18
U440	N	TO-71		2N5911	9324	TO-78	UC814	Р	TO-72		2N3331	8923	TO-72
U441	N	TO-71		2N5912	9324	TO-78	UC851	Р	TO-18		2N2608	8911	TO-18

Ultra-Fast Recovery Rectifier Cross Reference Guide

Ultra-Fast Reverse Recovery Rectifiers

industry	Part
Type	No.
BYV32-100	FRP2010CC
BYV32-150	FRP2015CC
BYV32-200	FRP2020CC
BYV32-50	FRP2005CC
BYV79-100	FRP1610
BYV79-150	FRP1615
BYV79-200	FRP1620
BYV79-50	FRP1605
BYW28-100	FRP810
BYW29-150	FRP815
BYW29-200	FRP820
BYW29-50	FRP805
BYW51-100	FRP1610CC
BYW51-150	FRP1615CC
BYW51-50	FRP1605CC
BYW80-100	FRP810
BYW80-150	FRP815
BYW80-200	FRP820
BYW80-50	FRP805
BYW99-100	FRK3210CC
BYW99-150	FRK3220CC
BYW99-50	FRK3205CC
FE16A	FRP1605
FE16B	FRP1610
FE16C	FRP1615
FE16D	FRP1620
FE8A	FRP805
FE8B	FRP810

r	
Industry	Part
Туре	No.
FE8C	FRP815
FE8D	FRP820
MUR1505	FRP1605
MUR1510	FRP1610
MUR1515	FRP1615
MUR1520	FRP1620
MUR1605CT	FRP1605CC
MUR1610CT	FRP1610CC
MUR1615CT	FRP1615CC
MUR1620CT	FRP1620CC
MUR805	FRP805
MUR810	FRP810
MUR815	FRP815
MUR820	FRP820
RUR810	FRP810
RUR815	FRP815
RUR820	FRP820
RURD1610	FRM3210CC
RURD1615	FRM3210CC
RURD1620	FRM3220CC
RURD810	FRP1610CC
RURD815	FRP1615CC
RURD820	FRP1620CC
UES1401	FRP805
UES1402	FRP810
UES1403	FRP815
UES1404	FRP820
UES1501	FRP1605

Industry	Part
Туре	No.
UES1502	FRP1610
UES1503	FRP1615
UES1504	FRP1620
UES2401	FRP1605CC
UES2402	FRP1610CC
UES2403	FRP1615CC
UES2404	FRP1620CC
UES2601	FRK3205CC
UES2602	FRK3210CC
UES2603	FRK3215CC
UES2604	FRK3220CC
VHE1401	FRP1005
VHE1402	FRP1010
VHE1403	FRP1015
VHE1404	FRP1020
VHE2401	FRP2005CC
VHE2402	FRP2010CC
VHE2403	FRP2015CC
VHE2404	FRP2020CC
VHE2601	FRK3205CC
VHE2602	FRK3210CC
VHE2603	FRK3215CC
VHE2604	FRK3220CC

Ultra-Fast Recovery Rectifier Selection Guide

TO-3P (40)

TO-220AB (38)

TO-220AC (41)

TL/G/10015-2

TL/G/10015-3

Single Rectifier Per Package

TL/G/10015-1

Part Number	V _{RSM} (V)	I _{F(AVG)} (A)	t _{rr} (ns) (Note 1)	V _F (V) (Note 2)	Package Style
FRP805	50	8	50	0.95	TO-220AC (41)
FRP810	100	8	50	0.95	TO-220AC (41)
FRP815	150	8	50	0.95	TO-220AC (41)
FRP820	200	8	50	0.95	TO-220AC (41)
FRP840	400	8	75	1.50	TO-220AC (41)
FRP850	500	8	75	1.50	TO-220AC (41)
FRP860	600	8	75	1.50	TO-220AC (41)
FRP1005	50	10	50	0.95	TO-220AC (41)
FRP1010	100	10	50	0.95	TO-220AC (41)
FRP1015	150	10	50	0.95	TO-220AC (41)
FRP1020	200	10	50	0.95	TO-220AC (41)
FRP1605	50	16	50	0.95	TO-220AC (41)
FRP1610	100	16	50	0.95	TO-220AC (41)
FRP1615	150	16	50	0.95	TO-220AC (41)
FRP1620	200	16	50	0.95	TO-220AC (41)

Dual Rectifiers, Common Cathode

Part	V _{RSM}	I _{F(AVG)} (A)	t _{rr} (ns)	V _F (V)	Package
Number	(V)		(Note 1)	(Note 2)	Style
FRP1605CC	50	16	50	0.95	TO-220AB (38)
FRP1610CC	100	16	50	0.95	TO-220AB (38)
FRP1615CC	150	16	50	0.95	TO-220AB (38)
FRP1620CC	200	16	50	0.95	TO-220AB (38)
FRP1640CC	400	8	75	1.50	TO-220AB (38)
FRP1650CC	500	8	75	1.50	TO-220AB (38)
FRP1660CC	600	8	75	1.50	TO-220AB (38)
FRP2005CC	50	20	50	0.95	TO-220AB (38)
FRP2010CC	100	20	50	0.95	TO-220AB (38)
FRP2015CC	150	20	50	0.95	TO-220AB (38)
FRP2020CC	200	20	50	0.95	TO-220AB (38)
FRK3205CC	50	32	50	0.95	TO-3P (40)
FRK3210CC	100	32	50	0.95	TO-3P (40)
FRK3215CC	150	32	50	0.95	TO-3P (40)
FRK3220CC	200	32	50	0.95	TO-3P (40)

Note 1: Pulsed Measurement = 300 μ s pulse width.

TL/G/10016-4

TO-226 Planar Power Transistor Selection Guide

Part Nu		lc	V _{CEO}		FE	(-	Max \	CE (SAT)	PD	f⊤	Process
NPN	PNP	(A)	(V)	Min	Max	I _C (mA)	V _{CE} (V)	(V)	@ I _C (mA)	(W)	(MHz)	(NPN/PNP)
2N7053		1.5	100	10k		100	5	1.5	250		125	06
MPSW01		1.5	30	55		10	1	0.5	1A		50	37
MPSW01A		1.5	40	55		10	1	0.5	1A	*	50	38
MPSW05		1.5	60	80		50	1	0.4	250		50	38
MPSW06		1	80	80		50	1	0.4	250		50	39
MPSW10		0.1	300	25		1	10	0.75	30		45	48
MPSW13		0.5	30	5k		10	5	1.5	100		125	05
MPSW14		0.5	30	10k		10	5	1.5	100		125	05
MPSW42		0.1	300	25		1	10	0.5	20	*	50	48
MPSW43		0.1	200	25		1	10	0.5	20		50	48
MPSW45		1	40	25k	150k	200	5	1.5	1A		100	05
MPSW45A		1	50	25k	150k	200	5	1.5	1A		100	05
	MPSW51	1.5	30	55		10	1	0.7	1A	*	50	77
	MPSW51A	1.5	40	55		10	1	0.7	1A		50	78
	MPSW55	1.5	60	80		50	1	0.5	250		50	78
	MPSW56	1	80	80		50	1	0.5	250		50	79
	MPSW63	0.5	30	5k		10	5	1.5	100		125	61
	MPSW64	0.5	30	10k		10	5	1.5	100	*	125	61
	MPSW92	0.1	300	40		10	10	0.5	20	1	50	76
	MPSW93	0.1	200	40		10	10	0.5	20		50	76

Pinout: EBC

*All TO-226AE: 1W, Free Air ($T_A = 25^{\circ}C$)

TL/G/10016-5

TO-237 Planar Power Transistor Selection Guide

Part Num	ber	lc	V _{CEO}	h	FE	(9	Max V	E (SAT)	PD	f _T	Process
NPN	PNP	(Ă)	(V)	Min	Max	I _C (mA)	V _{CE} (V)	(V) (lc (mA)	(W)	(MHz)	(NPN/PNP)
	2PE870 2PE872	0.1 0.1	250 300	50 50		25 25	20 20			*	60 60	48/76 48/76
2N6711	21 2072	0.1	160	30		30	10	1	30		50	48
92PE487 2N6733		0.1	200	40		10	10	2	20		50	48
92PU391 2N6712 92PE488		0.1	250	30		30	10	1	30	*	50	48
2N6734 92PU392		0.1	250	40		10	10	2	20		50	48
2N6773 92PE489		0.1	300	30		30	10	1	30		50	48
2N6735 92PU393		0.1	300	40		10	10	2	20	*	50	48
2N6719 92PU10		0.1	300	40		30	10	0.75	30		50	48
TN2219		0.5	30	100 30	300	150 500	10 10	0.4	150		250	19
TN2218A		0.5	40	40 25	120	150 500	10 10	0.3	150		250	19
TN2219A	TN2905	0.5	40	100	300	150	10	0.3 0.4	150	*	300	19/63
Т	N2904A	0.5	60	40 40	120	150 500	10 10	0.4	150		200	63
Т	N2905A	0.5	60	100 50	300	150 500	10 10	0.4	150		200	63
TN3053 T 2N6737	N4037	1	40 45	50 60 40	250 150	150 100 300	10 1	1.4 0.4	150 300	*	100 300	12/67 25
TN3467		1	40	40 40	120	150 500	1 1	0.4 0.6	150 500		175	70
TN3724		1	30	60 40	150	100 300	i 1	0.2 0.32	100 300		30	25
TN3725		1	50	60 40	150	100 300	1	0.4	300		300	25
TN2102 T	N4036	1	65	40 25	120	150 500	10 10	0.5 0.65	150		60	12/67
TN3019 TN3020		1	80 80	100 40	300 120	150 150	10 10	0.2 0.2	150 150	*	100 100	12 12
	N4033	1	80	100	300	100	5	0.15	150		150	67

*All TO-237: 850 mW, Free Air (T_A = 25°C) 2.0W, Collector Lead at 25°C 1W-1.2W Mounted Flush in PC Board Pinout: 92PE ECB 92PU, TN EBC

TO-237 Planar Power Transistor Selection Guide (Continued)

Part N	umber	lc	VCEO	h	FE	(9	Max	V _{CE (SAT)}	PD	fT	Process
NPN	PNP	(A)	(V)	Min	Max	I _C (mA)	V _{CE} (V)	(V)	@ lc (mA)	(W)	(MHz)	(NPN/PNP)
2N6714	2N6726	2	30	60		100	1	0.5	1000		50	37/77
92PU01	92PU51			55		1000	1					
2N6715	2N6727	2	40	60		100	1	0.5	1000		50	37/77
92PU01A	92PU51A			55		1000	1					
2N6724		1	40	25k		200	5	1	200	*	100	05
92PU45				4k		1000	5	1.5	1000			
2N6705	2N6708	2	45	40		500	2	0.5	500		50	38/78
92PE37A	92PE77A											
2N6725		1	50	25k		200	5	1	200		100	05
92PU45A	:			4k		1000	5	1.5	1000			
2N6706	2N6709	2	60	40		500	2	0.5	500		50	38/78
92PE37B	92PE77B									l		
2N6716	2N6728	2	60	20		*500	1	0.35	250		50	38/78
92PU05	92PU55											
2N6731	2N6732	1	80	100	300	350	2	0.35	350		50	39/79
92PU100	92PU200									*		
2N6707	2N6710	1	80	40		50	2	0.5	500		50	39/79
92PE37C	92PE77C											
2N6717	2N6720	1	80	20		500	1	0.35	250		50	39/79
92PU06	92PU56											
2N6720		0.5	150	30		100	10	0.5	100		10	36
92PU36				30	300	100	10					
2N6721		0.5	200	30		100	10				10	36
92PU36A				30	300	100	10					
2N6722		0.5	250	30		100	10	ĺ		*	10	36
92PU36B				30	300	100	10					
2N6723		0.5	300	30		100	10				10	36
92PU36C				30	300	100	10					

Pinout: 92PE ECB 92PU, TN EBC

*All TO-237: 850 mW, Free Air (T_A = 25°C) 2.0W, Collector Lead at 25°C 1W-1.2W Mounted Flush in PC Board

TL/G/10016-6

TO-202 Planar Power Transistor Selection Guide

Part N NPN	umber PNP	I _C	V _{CEO}	h Min	FE Max	I _C (A)	@ V _{CE} (V)	Max '	CE (SAT)	P _D * (W)	f _T (MHz)	Process (NPN/PNP)
NSD457		0.1	160	25		0.03	10	1	0.03	1.75	50	48
NSE457		0.1	160	25		0.03	10	1	0.03	1.75	50	48
NSD458		0.1	250	25		0.03	10	1	0.03	1.75	50	48
NSE458		0.1	250	25		0.03	10	1	0.03	1.75	50	48
D40N1		0.1	250	30	90	0.02	10			1.67	50	48
D40N2		0.1	250	60	180	0.02	10			1.67	50	48
NSD131		0.1	250	30	90	0.03	10	1	0.02	1.75		48
NSD132		0.1	250	60	180	0.03	10	1	0.02	1.75		48
NSE869	NSE870	0.1	250	50		25m	20			1.8	60	48/76
NSE871	NSE872	0.1	300	50		25m	20			1.8	60	48/76
D40N3		0.1	300	30	90	0.02	10			1.67	50	48
D40N4		0.1	300	60	180	0.02	10			1.67	50	48
NSD133		0.1	300	30	90	0.03	10	1	0.02	1.75	50	48
NSD134		0.1	300	60	180	0.03	10	1	0.02	1.75	50	48
NSD459		0.1	300	25		0.03	10	1	0.03	1.75	50	48
NSE459		0.1	300	25		0.03	10	1	0.03	1.75	50	48
NSDU10		0.1	300	40		0.03	10	1.5	0.02	1.75	60	48
D40N5		0.1	375	20		0.02	10			1.67	50	48
NSD135		0.1	375	30	90	0.03	10	1	0.02	1.75	50	48
D40C1		0.5	30	10k	60k	0.2	5	1.5	0.5	1.33	75	05
D40C2		0.5	30	40k		0.2	5	1.5	0.5	1.33	75	05
D40C3		0.5	30	90k		0.2	5	1.5	0.5	1.33	75	05
D40C4		0.5	40	10k	60k	0.2	5	1.5	0.5	1.33	75	05
D40C5		0.5	40	40k		0.2	5	1.5	0.5	1.33	75	05
D40C7		0.5	50	10k	60k	0.2	5	1.5	0.5	1.33	75	05
D40C8		0.5	50	40k		0.2	5	1.5	0.5	1.33	75	05
D40P1		0.5	120	40		0.08	10	1	0.1	1.67	50	36
D40P3		0.5	180	40		0.08	10	1	0.1	1.67	50	36
D40P5		0.5	225	40		0.08	10	1	0.1	1.67	50	36
D40D1	D41D1	1.5	30	50	150	0.1	. 2	0.5	0.5	1.67	200	38/78
D40D2	D41D2	1.5	30	120	300	0.1	2	0.5	0.5	1.67	200	38/78
D40D3		1.5	30	290		0.1	2			1.67	200	38
D40D4	D41D4	1.5	45	50	150	0.1	2	0.5	0.5	1.67	200	38/78
D40D5	D41D5	1.5	45	120	360	0.1	2	0.5	0.5	1.67	200	38/78
NSD102	NSD202	1.5	45	50	150	0.1	5	0.2	0.1	1.75	60	38/78
NSD103	NSD203	1.5	45	120	360	0.1	5	0.2	0.1	1.75	60	38/78

 $T_A = 25^{\circ}C$

TO-202 Planar Power Transistor Selection Guide (Continued) **Part Number** lc **VCEO** hFE PD Max V_{CE (SAT)} fτ **Process** NPN PNP (A) Min (MHz) (NPN/PNP) (V) Max I_C(A) V_{CE}(V) (V) @ Ic (A) (W) D40D7 D41D7 0.1 1.5 60 50 150 0.5 1.67 2 1 200 38/78 D40D8 D41D8 1.5 60 120 360 0.1 2 1 0.5 1.67 200 38/78 2N6551 2N6554 1.5 60 0.05 80 250 1 0.5 0.25 2.0 75 38/78 D40D10 D41D10 1.5 75 50 150 0.1 2 1 0.5 1.67 38/78 200 D40D11 D41D11 1.5 75 120 360 0.1 2 1 0.5 1.67 200 38/78 D40D13 D41D13 1.5 75 50 150 0.1 2 1 0.5 1.67 200 38/78 D40D14 D41D14 1.5 75 120 2 360 0.1 1 0.5 1.67 200 38/78 2N6552 2N6555 1 80 80 250 0.05 1 0.5 0.25 75 39/79 NSD104 NSD204 1 80 50 150 0.1 5 0.2 0.1 1.75 60 39/79 NSD105 **NSD205** 80 120 360 5 0.2 1 0.1 0.1 1.75 60 39/79 NSD106 **NSD206** 1 100 50 150 0.1 5 0.2 0.1 1.75 60 39/79 2N6553 2N6556 100 1 80 250 0.05 1 0.5 0.25 75 39/79 NSD36 0.5 150 10 1.75 30 300 0.1 0.5 0.1 10 36 NSD36A 200 0.5 30 300 0.1 10 0.5 0.1 1.75 10 36 NSD36B 0.5 250 30 300 0.1 10 0.5 0.1 1.75 10 36 NSD36C 0.5 300 30 300 0.5 0.1 1.75 36 0.1 10 10 NSDU01 NSDU51 2 30 60 0.1 1 0.5 1 1.75 50 37/77 100 NSD151 1 30 10k 250k 0.1 5 1.5 0.1 1.75 05 NSD153 1 30 5k 0.1 5 1.5 0.1 1.75 100 05 D40E1 D41E1 2 30 50 0.1 2 1 1 1.3 37/77 D40K1 D41K1 2 30 10k 0.2 5 1.67 75 1.5 1.5 37/77 2 D40K3 30 10k 5 75 D41K3 0.2 1.5 1.0 1.67 37/77 NSDU01A NSDU51A 2 40 60 0.1 1 0.5 1 1.75 50 37/77 NSDU02 NSDU52 2 40 50 300 0.15 10 0.4 0.15 1.75 50 37/77 2N6548 1 40 15k 0.2 5 1.5 1.75 100 05 1 5 05 2N6549 40 25k 0.2 100 1 1.5 1 1.75 NSDU45 40 25k 150k 0.2 5 0.2 1.75 100 05 1 1 NSD152 40 10k 250k 0.1 5 1.75 100 05 1 1.5 1 NSD154 40 5k 5 05 1 0.1 1.5 1 1.75 100 10k 5 D40K2 D41K2 1 50 0.2 1.5 1.5 1.67 75 05/61 D40K4 D41K4 1 50 10k 0.2 5 1.5 1.0 1.67 75 05/61 NSDU45A 50 25k 150k 0.2 5 0.2 1.75 100 05 1 1 NSDU05 NSDU55 2 60 80 0.05 1 0.5 0.25 1.75 50 38/78 2 D40E5 D41E5 60 50 0.1 2 1 1 1.3 38/78 NSDU06 NSDU56 2 80 80 0.05 1 0.5 0.25 1.75 39/79 50 D40E7 2 80 50 0.1 2 D41E7 1 1 1.3 38/78 NSDU07 NDSU57 2 100 80 0.05 0.5 0.25 1.75 50 1 39/79 D42C1 D43C1 3 30 25 0.2 1 0.5 1 2.1 50 4P/5P D42C2 D43C2 3 30 100 220 0.2 1 0.5 1 2.1 50 4P/5P D42C3 D43C3 3 30 40 2.1 4P/5P 120 0.2 1 0.5 1 50 D42C4 D43C4 3 45 25 0.2 1 0.5 1 2.1 50 4P/5P D42C5 D43C5 3 45 100 0.2 0.5 50 4P/5P 220 1 1 2.1 D42C6 D43C6 3 45 40 120 0.2 1 0.5 1 2.1 50 4P/5P D42C7 D43C7 3 60 25 0.2 1 0.5 1 2.1 50 4P/5P D42C8 D43C8 3 60 100 220 0.2 1 0.5 2.1 50 4P/5P 1 D42C9 D43C9 3 60 40 120 0.2 1 0.5 1 2.1 50 4P/5P D42C10 D43C10 3 80 25 0.2 1 0.5 1 2.1 50 4P/5P D42C12 D43C12 3 80 40 120 0.2 1 0.5 1 2.1 50 4P/5P

Pinout: NSDU, NSD, D40, D41 NSE, D42, D43 EBC BCE

TL/G/10016-7

TO-220 Planar Power Transistor Selection Guide

Part N	lumber	lc	V _{CEO}	h	FE		@	Max V	CE (SAT)	P _D *	f _T	Process
NPN	PNP	(A)	(V)	Min	Max	I _C (A)	V _{CE} (V)	(V)	® I _C (A)	(W)	(MHz)	(NPN/PNP)
D44C1	D45C1	3	30	25		0.2	1	0.5	1	30	50	4P/5P
D44C2	D45C2	3	30	40	120	0.2	1	0.5	1	30	50	4P/5P
D44C3	D45C3	3	30	40	120	0.2	1	0.5	11	30	50	4P/5P
D44C4	D45C4	3	45	25		0.2	1	0.5	1	30	50	4P/5P
D44C5	D45C5	3	45	40	120	0.2	1	0.5	1	30	50	4P/5P
D44C6	D45C6	3	45	40	120	0.2	1	0.5	1	30	50	4P/5P
D44C7	D45C7	3	60	25		0.2	1	0.5	1	30	50	4P/5P
D44C8	D45C8	3	60	40	120	0.2	1	0.5	1	30	50	4P/5P
D44C9	D45C9	3	60	40	120	0.2	1	0.5	1	30	50	4P/5P
D44C10	D45C10	3	80	25		0.2	1	0.5	1	30	50	4P/5P
D44C12	D45C12	3	80	40	120	0.2	1	0.5	1	30	50	4P/5P
D44H1	D45H1	10	30	35		2	1	1	8	50	50	4Q/5Q
D44H2	D45H2	10	30	60		2	1	1	8	50	50	4Q/5Q
D44H4	D45H4	10	45	35		2	1	1	8	50	50	4Q/5Q
D44H5	D45H5	10	45	60		2	1	1	8	50	50	4Q/5Q
D44H7	D45H7	10	60	35		2	1	1	8	50	50	4Q/5Q
D44H8	D45H8	10	60	60		2	1	1	8	50	50	4Q/5Q
D44H10	D45H10	10	80	35		2	1	1	8	50	50	4Q/5Q
D44H11	D45H11	10	80	60		2	1	1	8	50	50	4Q/5Q

Pinout: BCE

 $T_C = 25^{\circ}C$

Planar Power Process Selection Guide

1A

DARLINGTON

PLANAR (SUPER

HIGH BETA)

TL/G/10016-8

Dissipation (Watts)

0.6

0.8

1

Package

TO-92 (Note 1) TO-237 (Notes 1,2) TO-226 (Notes 1,2)

0.8 1 2 TO-237 (Note 3) TO-202 (Note 3) 8

TO-220 (Note 3)

2 2 10 15 10 15 40 60

0.6

0.8

1

2

0.8

1

0.6

0.6 0.7 2 2 10 12 0.8 0.85 1 1

Note 1: T_A = 25°C

Note 2: Will do 1W-1.2W in PC Board.

Note 3: T_C = 25°C

Substitution Guide for Non-Listed Planar Power Part-Types

Industry Part. No.	Package	NS Part No.	Package
2N2102	TO-39	TN2102	TO-237
2N2218A	TO-39	TN2218A	TO-237
2N2219A	TO-39	TN2219A	TO-237
2N2905	TO-39	TN2905	TO-237
2N3019	TO-39	TN3019	TO-237
2N3020	TO-39	TN3020	TO-237
2N3053	TO-39	TN3053	TO-237
2N3467	TO-39	TN3467	TO-237
2N3724	TO-39	TN3724	TO-237
2N3725	TO-39	TN3725	TO-237
2N4032	TO-39	TN4032	TO-237
2N4033	TO-39	TN4033	TO-237
2N4037	TO-39	TN4037	TO-237
MPSU01	Mot 152	NSDU01	TO-202
MPSU01	Mot 152	92PU01	TO-237
MPSU01A	Mot 152	NSDU01A	TO-202
MPSU01A	Mot 152	92PU01A	TO-237
MPSU02	Mot 152	NSDU02	TO-202
MPSU02	Mot 152	TN2219A	TO-237
MPSU03	Mot 152	92PU391	TO-237
MPSU04	Mot 152	92PU319	TO-237
MPSU05	Mot 152	NSDU05	TO-202
MPSU05	Mot 152	92PU05	TO-237
MPSU06	Mot 152	NSDU06	TO-202
MPSU06	Mot 152	92PU06	TO-237

Industry Part. No.	Package	NS Part No.	Package
MPSU07	Mot 152	NSDU07	TO-202
MPSU07	Mot 152	92PU07	TO-237
MPSU10	Mot 152	NSDU10	TO-202
MPSU10	Mot 152	92PU10	TO-237
MPSU31	Mot 152	TN2102	TO-237
MPSU45	Mot 152	NSDU45	TO-202
MPSU45	Mot 152	NSDU45	TO-237
MPSU45A	Mot 152	NSDU45A	TO-202
MPSU51	Mot 152	NSDU51	TO-202
MPSU51	Mot 152	92PU51	TO-237
MPSU51A	Mot 152	NSDU51A	TO-202
MPSU52	Mot 152	NSPU52	TO-202
MPSU52	Mot 152	92PU51A	TO-237
MPSU55	Mot 152	NSDU55	TO-202
MPSU55	Mot 152	92PU55	TO-237
MPSU56	Mot 152	NSDU56	TO-202
MPSU56	Mot 152	92PU56	TO-237
MPSU57	Mot 152	NSDU57	TO-202
MPSU57	Mot 152	92PU57	TO-237

Power MOSFET Cross Reference

Power MOSFET Cross Reference

Industry Part No.	NS Part Number
2N6755	2N6755
2N6756	2N6756
2N6757	2N6757
2N6758	2N6758
2N6759	2N6759
2N6760	2N6760
2N6761	2N6761
2N6762	2N6762
2N6763	2N6763
2N6764	2N6764
2N6765	2N6765
2N6766	2N6766
2N6767	2N6767
2N6768	2N6768
2N6769	2N6769
2N6770	2N6770
2SK277	IRF333
2SK278	IRF332
2SK294	IRF522
2SK295	IRF522
2SK296	MTP3N35
2SK298	IRF332
2SK299	IRF431
2SK308	IRF243
2SK310	IRF710
2SK311	IRF823
2SK312	IRF342
2SK313	IRF441
2SK319	IRF720
2SK320	IRF723
2SK324	IRF352
2SK325	IRF453
2SK338	IRF730
2SK346	IRF523
2SK355	IRF241
2SK357	IRF623
2SK382	IRF822
2SK383	IRF530
2SK428	IRF543
2SK440	IRF630

Industry	NS Part
Part No.	Number
2SK512	IRF452
2SK552	IRF831
2SK553	IRF830
2SK554	IRF841
2SK555	IRF840
BUZ10	FMP18N05
BUZ10A	FMP18N05
BUZ20	IRF530
BUZ21	IRF540
BUZ21A	IRF540
BUZ23	IRF130
BUZ24	IRF150
BUZ25	IRF140
BUZ30	IRF632
BUZ31	IRF640
BUZ32	IRF630
BUZ32A	MTP12N20
BUZ34	IRF240
BUZ35	IRF230
BUZ35A	IRF230
BUZ36	IRF252
BUZ40	IRF822
BUZ41	IRF842
BUZ41A	IRF830
BUZ42	IRF832
BUZ42A	IRF832
BUZ43	IRF422
BUZ44	IRF442
BUZ44A	IRF430
BUZ44B	IRF430
BUZ45	IRF452
BUZ45B	IRF452
BUZ45C	IRF453
BUZ46	IRF432
BUZ46A	IRF430
BUZ60	IRF730
BUZ60A	IRF730
BUZ60B	IRF732
BUZ63	IRF330
BUZ63A	IRF330

Industry Part No.	NS Part Number
	
BUZ63B	IRF332
BUZ64	IRF352
BUZ64A	IRF352
BUZ71	FMP18N05
BUZ71A	FMP18N05
BUZ72	IRF530
BUZ72A	IRF532
BUZ73A	IRF632
BUZ74	IRF820
BUZ74A	IRF822
BUZ76	IRF720
BUZ76A	IRF722
D84BK2	IRF511
D84BL2	IRF510
D84BM2	IRF611
D84BQ1	IRF711
	-
D84BQ2	IRF710
D84CK1	IRF521
D84CK2	IRF521
D84CL1	IRF520
D84CL2	IRF520
D84CM1	IRF621
D84CM2	IRF621
D84CN1	MTP7N18
D84CN2	IRF620
D84CQ1	IRF721
D84CQ2	IRF720
D84CR1	IRF821
D84CR2	IRF820
D84DK1	IRF531
D84DK2	IRF531
D84DL1	IRF530
D84DL2	IRF530
D84DL2 D84DM1	IRF631
D84DM2	IRF631
D84DN1	MTP12N18
D84DN2	IRF630
D84DQ1	IRF731
D84DQ2 D84DR1	IRF730 IRF831

Power MOSFET Cross Reference (Continued)

Power MOSFET Cross F								
Industry	NS Part							
Part No.	Number							
D84DR2	IRF830							
D84EK1	IRF541							
D84EK2	IRF541							
D84EL1	MTP4N08							
D84EL2	IRF540							
D84EM1	IRF641							
D84EM2	IRF641							
D84EN1	IRF640							
D84EN2	IRF640							
D84EQ1	IRF741							
D84EQ2	IRF740							
D84ER1	IRF841							
D84ER2	IRF840							
D84MN2	IRF610							
D86DK1	IRF131							
D86DK2	IRF131							
D86DL1	IRF130							
D86DL2	IRF130							
D86DM1	IRF231							
D86DM2	IRF231							
D86DN1	IRF230							
D86DN2	IRF230							
D86DQ1	IRF331							
D86DQ2	IRF330							
D86DR1	IRF431							
D86DR2	IRF430							
D86EK1	IRF141							
D86EL1	IRF140							
D86EM1	IRF241							
D86EN1	IRF240							
D86EQ1	IRF341							
D86EQ2	IRF340							
D86ER1	IRF441							
D86ER2	IRF440							
D86FQ1	IRF351							
D86FQ2	IRF350							
D86FR1	IRF451							
D86FR2	IRF450							
IRFZ20	FMP18N05							
IRFZ22	FMP18N05							
MTP5N18	IRF520							
MTP5N20	IRF520							
MTP8N08	IRF522							
MTP8N10	IRF522							
MTP8N18	IRF630							
MTP8N20	IRF630							
MTP25N05	FMP20N05							
PM1006P	IRF522							

erence (Continued)					
NS Part Number					
IRF132 IRF532 IRF521 IRF633					
IRF231 IRF631 IRF611 IRF623					
IRF233 IRF633 IRF240 IRF643					
IRF523 IRF521 IRF131 IRF531					
IRF143 IRF513 IRF523 IRF521					
IRF523 IRF521 IRF131 IRF531					
IRF131 IRF531 IRF143 IRF543					
IRF512 IRF522 IRF520 IRF130					
IRF530 IRF152 MTP20N08 IRF140					
IRF540 IRF453 IRF452 IRF353					
IRF352 IRF252 IRF252 IRF251					
IRF251 IRF150 IRF150 IRF243					

Industry	NS Part
Part No.	Number
RFM10N15	IRF243
RFM12N08	IRF130
RFM12N10	IRF130
RFM12N18	IRF242
RFM12N20	IRF242
RFM15N05	IRF143
RFM15N06	IRF143
RFM15N12	IRF253
RFM15N15	IRF253
RFM18N08	IRF142
RFM18N10	IRF142
RFM25N05	IRF141
RFM25N06	IRF141
RFM4N35	IRF333
RFM4N40	IRF332
RFM6N45	IRF431
RFM6N50	IRF430
RFM7N35	MTM8N35
RFM7N40	MTM8N40
RFM8N18	IRF232
RFM8N20	IRF232
RFP10N12	IRF643
RFP10N15	IRF643
RFP12N08	IRF530
RFP12N10	IRF530
RFP12N18	IRF642
RFP12N20	IRF642
RFP15N05	IRF543
RFP15N06	IRF543
RFP18N08	IRF542
RFP18N10	IRF542
RFP25N05	FMP20N05
RFP25N06	IRF541
RFP2N08	IRF512
RFP2N10	IRF512
RFP2N12	IRF611
RFP2N15	IRF611
RFP2N18	IRF612
RFP2N20	IRF612
RFP4N05	IRF513
RFP4N06	IRF513
RFP4N35	IRF733
RFP4N40	IRF732
RFP6N45	IRF841
RFP6N50	IRF840
RFP7N35	IRF741
RFP7N40	IRF740
RFP8N18	IRF630

Power MOSFET Cross Reference (Continued)

TOWEI MOS	L 1 01033 1
Industry	NS Part
Part No.	Number
RFP8N20	IRF630
RRF320	IRF320
RRF321	IRF321
RRF322	IRF322
RRF323	IRF323
RRF330	IRF330
RRF331	IRF331
RRF332	IRF332
RRF333	IRF333
RRF420	IRF420
RRF421	IRF421
RRF422	IRF422
RRF423	IRF423
RRF430	IRF430
RRF431	IRF431
RRF432	IRF432
RRF433	IRF433
RRF510	IRF510
RRF511	IRF511
RRF512	IRF512
RRF513	IRF513
RRF520	IRF520
RRF521	IRF521
RRF522	IRF522
RRF523	IRF523
RRF610	IRF610
RRF611	IRF611
RRF612	IRF612
RRF613	IRF613
RRF620	IRF620
RRF621	IRF621
RRF622	IRF622
RRF623	IRF623
RRF710	IRF710
RRF711	IRF711
RRF712	IRF712
RRF713	IRF713
RRF720	IRF720
RRF721	IRF721
RRF722	IRF722

Industry Part No.	NS Part Number
RRF723	IRF723
RRF730	IRF730
RRF731	IRF731
RRF732	IRF732
RRF733	IRF733
RRF820	IRF820
RRF821	IRF821
RRF822	IRF822
RRF823	IRF823
RRF830	IRF830
RRF831	IRF831
RRF832	IRF832
RRF833 ·	IRF833
SD1002KD	IRF430
SD1005CD	IRF631
SD1005KD	IRF231
SD1011KD	IRF440
SD1012KD	IRF431
SD1014CD	IRF622
SD1021KD	IRF330
SD500CD	IRF833
SD500KD	IRF433
SD900KD	IRF442
STM3110	IRF341
STM3111	IRF340
STM3112	IRF453
STM360	IRF331
STM361	IRF330
STM362	IRF442
VN0800A	IRF130
VN0800D	IRF530
VN0801A	IRF132
VN0801D	IRF532
VN1000A	IRF130
VN1000D	IRF530
VN1001A	IRF132
VN1001D	IRF532
VN1106N5	IRF511
VN1110N5	IRF510
VN1116N5	IRF612

industry Part No.	NS Part Number
VN1120N5	IRF612
VN1200A	IRF641
VN1201A	IRF643
VN1210N5	IRF520
VN1216N5	IRF620
VN1220N5	IRF620
VN2306N1	IRF143
VN2310N1	IRF142
VN2310N5	IRF542
VN2316N1	IRF242
VN2316N5	IRF642
VN2320N1	IRF242
VN2320N5	IRF642
VN2335N1	IRF341
VN2335N5	IRF741
VN2340N1	IRF340
VN2340N5	IRF740
VN2345N1	IRF433
VN2345N5	IRF843
VN2350N1	IRF442
VN2350N5	IRF842
VN3500A	IRF331
VN3500D	IRF731
VN3501A	IRF333
VN3501D	IRF733
VN3502A	IRF430
VN4000A	IRF330
VN4000D	IRF730
VN4001A	IRF332
VN4001D	IRF732
VN4501A	IRF431
VN4501D	IRF831
VN4502A	IRF433
VN4502D	IRF833
VN5001A	IRF430
VN5001D	IRF830
VN5002A	IRF432
VN5002D	IRF832
VNL001A	IRF331
VNM001A	IRF330
VNN002A	IRF443
VNP002A	IRF430

Metal TO-204AA/TO-204AE Power MOSFETs

TL/G/10018-1

IRF450CF 500 0.320 14.5 TO-204AA F4 IRF450 0.400 13.0 TO-204AA F4 IRF452 0.500 12.0 TO-204AA F4 IRF440 0.850 8.0 TO-204AA E4 IRF442 1.100 7.0 TO-204AA C4 IRF430 1.500 4.5 TO-204AA C4 IRF432 2.000 4.0 TO-204AA C4 IRF453 0.500 12.0 TO-204AA F4 IRF451 450 0.400 13.0 TO-204AA F4 IRF441 0.850 8.0 TO-204AA F4 IRF441 0.850 8.0 TO-204AA E4 IRF443 1.100 TO-204AA F4 IRF431 1.500 4.5 TO-204AA E4 IRF433 2.000 4.0 TO-204AA E4 IRF433 2.000 4.0 TO-204AA E4 IRF433 2.000 4.0 TO-204AA C4 IRF433 2.000 4.0 TO-204AA C4 IRF350 0.300 15.0 TO-204AA F3 IRF350 0.300 15.0 TO-204AA F3 IRF340 0.550 10.0 TO-204AA E3 IRF340 0.550 10.0 TO-204AA C3 IRF330 1.000 5.5 TO-204AA C3 IRF330 1.000 5.5 TO-204AA C3 IRF332 1.500 4.5 TO-204AA C3 IRF331 1.500 4.5 TO-204AA C3 IRF332 1.500 4.5 TO-204AA C3 IRF3351 350 0.300 15.0 TO-204AA C3 IRF351 350 0.300 15.0 TO-204AA C3 IRF351 350 0.300 15.0 TO-204AA C3 IRF351 350 0.300 15.0 TO-204AA C3 IRF353 0.400 13.0 TO-204AA F3 IRF351 0.400 13.0 TO-204AA F3 IRF351 0.400 13.0 TO-204AA F3 IRF353 0.400 13.0 TO-204AA F3 IRF353 0.400 13.0 TO-204AA F3 IRF3541 0.660 10.00 10	Part Number	V _{DSS} (V)	R _{DS(on)} (Ω)	I _{DR} (A)	Package Style	Proc.
2N6770		500				
IRF452						
RF440						
IRF442						
RF430	1					
IRF432			1			
IRF451	2N6762		1.500	4.5	TO-204AA	C4
IRF453	IRF432		2.000	4.0	TO-204AA	C4
2N6769	1	450				
IRF441						
RF443						
IRF431	1					
IRF433	1					
2N6761						
IRF350						
IRF352	IRF350CF	400	0.240	16.8	TO-204AA	F3
2N6768	IRF350		0.300	15.0	TO-204AA	F3
IRF340						
RF342						1
IRF330	1					
2N6760						
IRF332						
IRF353						
IRF353	IRF351	350	0.300	15.0	TO-204AA	F3
	IRF353					
	IRF341		0.550	10.0	TO-204AA	F3
IRF343	1					
IRF331						
IRF333						

Part Number	V _{DSS} (V)	R _{DS(on)} (Ω)	I _{DR} (A)	Package Style	Proc.
IRF250CF 2N6766 IRF250 IRF252 IRF240 IRF242 2N6758 IRF230 IRF232	200	0.068 0.085 0.085 0.120 0.180 0.220 0.400 0.400 0.500	33.0 30.0 30.0 25.0 18.0 16.0 9.0 9.0 8.0	TO-204AE TO-204AE TO-204AE TO-204AA TO-204AA TO-204AA TO-204AA TO-204AA	F3 F3 F3 E2 E2 C2 C2
IRF251 2N6765 IRF253 IRF241 IRF243 IRF231 IRF233 2N6757	150	0.085 0.120 0.120 0.180 0.220 0.400 0.500 0.600	30.0 25.0 25.0 18.0 16.0 9.0 8.0 8.0	TO-204AE TO-204AE TO-204AA TO-204AA TO-204AA TO-204AA TO-204AA	F3 F2 F3 E2 E2 C2 C2
IRF150CF IRF150 2N6764 IRF152 IRF140 IRF142 2N6756 IRF130 IRF132	100	0.044 0.055 0.055 0.080 0.085 0.110 0.180 0.180 0.250	44.0 40.0 38.0 33.0 27.0 24.0 14.0 12.0	TO-204AE TO-204AE TO-204AE TO-204AE TO-204AE TO-204AA TO-204AA	F1 F1 F1 E1 E1 C1 C1
IRF151 2N6763 IRF153 IRF141 IRF143 IRF131 2N6755 IRF133	60	0.055 0.080 0.080 0.085 0.110 0.180 0.250 0.250	40.0 31.0 33.0 27.0 24.0 14.0 12.0	TO-204AE TO-204AE TO-204AE TO-204AE TO-204AE TO-204AA TO-204AA	F1 F3 F1 E1 C1 C1

Plastic Encapsulated TO-220AB/TO-3P Power MOSFETs

TO-220AB

TL/G/10018-2

TO-3P

TL/G/10018-3

Part Number	V _{DSS} (V)	R _{DS(on)} (Ω)	I _{DR} (A)	Package Style	Proc.
IRFP450CF	500	0.320	15.5	TO-3P	F4
IRFP450		0.400	14.0	TO-3P	F4
IRF840CF		0.680	8.9	TO-220AB	E4
IRFP440C		0.680	10.5	TO-3P	E3
IRF840		0.850	8.0	TO-220AB	E4
IRFP440		0.850	8.8	TO-3P	E3
IRF842		1.100	7.0	TO-220AB	E4
IRF830CF		1.200	5.0	TO-220AB	C4
IRF830		1.500	4.5	TO-220AB	C4
MTP4N50		1.500	4.0	TO-220AB	C4
IRF832 IRF820CF		2.000	4.0	TO-220AB	C4
IRF820		2.400 3.000	2.8 2.5	TO-220AB TO-220AB	B5 B5
IRF822		4.000	2.5	TO-220AB	B5
MTP2N50		4.000	2.5	TO-220AB	B5
IRFP451CF	450	0.320	15.5	TO-3P	F4
IRFP451	450	0.320	14.0	TO-3P	F4
IRFP441CF		0.680	10.5	TO-3P	F4
IRF841		0.850	8.0	TO-220AB	E4
IRFP441		0.850	8.8	TO-3P	E4
IRF843		1.100	7.0	TO-220AB	E4
MTP4N45		1.500	4.0	TO-220AB	C4
IRF831		1.500	4.5	TO-220AB	C4
IRF833		2.000	4.0	TO-220AB	C4
IRF821		3.000	2.5	TO-220AB	B5
IRF823		4.000	2.0	TO-220AB	B5
MTP2N45		4.000	2.5	TO-220AB	B5
IRFP350CF	400	0.240	18.0	TO-3P	F3
IRFP350		0.300	16.2	TO-3P	F3
IRF740CF IRFP340CF		0.440	11.0	TO-220AB	E3 E3
IRF740		0.440 0.550	12.0 10.0	TO-3P TO-220AB	E3
IRFP340		0.550	11.0	TO-220AB	E3
IRF742		0.800	8.0	TO-220AB	E3
IRF730CF		0.800	6.2	TO-220AB	C3
IRF730		1.000	5.5	TO-220AB	C3
MTP5N40		1.000	5.0	TO-220AB	C3
IRF720CF		1.440	3.8	TO-220AB	B4
IRF732		1.500	4.5	TO-220AB	C3
IRF720		1.800	3.0	TO-220AB	B4
IRF722		2.500	2.5	TO-220AB	B4
MTP3N40		3.300	3.0	TO-220AB	B4
IRF710		3.600	1.5	TO-220AB	А3
IRF712		5.000	1.3	TO-220AB	А3
MTP2N40		5.000	2.0	TO-220AB	А3

Part Number	V _{DSS} (V)	R _{DS(on)} (Ω)	I _{DR}	Package Style	Proc.
IRFP351CF	350	0.240	18.0	TO-3P	F3
IRFP351		0.300	16.2	TO-3P	F3
IRFP341CF		0.440	12.0	TO-3P	E3
IRF741		0.550	10.0	TO-220AB	E3
IRFP341		0.550	11.0	TO-3P	E3
IRF743		0.800	8.0	TO-220AB	E3
IRF731		1.000	5.5	TO-220AB	C3
MTP5N35		1.000	5.0	TO-220AB	C3
IRF733		1.500	4.5	TO-220AB	C3
IRF721		1.800	3.0	TO-220AB	B4
IRF723		2.500	2.5	TO-220AB	B4
MTP3N35		3.300	3.0	TO-220AB	B4
IRF711		3.600	1.5	TO-220AB	A3
IRF713		5.000	1.3	TO-220AB	A3
MTP2N35		5.000	2.0	TO-220AB	A3
IRFP250CF	200	0:068	35.9	TO-3P	F3
IRFP250		0.085	32.5	TO-3P	F3
IRF640CF		0.144	20.0	TO-220AB	E2
IRFP240CF		0.144	22.0	TO-3P	E2
IRF640		0.180	18.0	TO-220AB	E2
IRFP240		0.180	19.8	TO-3P	E2
IRF642		0.220	16.0	TO-220AB	E2
IRF630CF		0.320	10.0	TO-220AB	C2
MTP12N20		0.350	12.0	TO-220AB	C2
IRF630		0.400	9.0	TO-220AB	C2
IRF632		0.500	8.0	TO-220AB	C2
IRF620CF		0.640	5.6	TO-220AB	B3
MTP7N20	·	0.700	7.0	TO-220AB	B3
IRF620		0.800	5.0	TO-220AB	B3
IRF622		1.200	4.0	TO-220AB	B3
IRF610 MTP2N20		1.500 1.800	2.5 3.5	TO-220AB	A2
IRF612		2.400	2.0	TO-220AB	A2 A2
MTP12N18	180	0.350	12.0	TO-220AB	C2
MTP7N18		0.700	7.0	TO-220AB	B3
MTP2N18		1.800	3.25	TO-220AB	A2
IRFP251CF	150	0.068	35.9	TO-3P	F3
IRFP251		0.085	32.5	TO-3P	F3
IRFP241CF		0.144	22.0	TO-3P	E2
IRF641		0.180	18.0	TO-220AB	E2
IRFP241	l	0.180	19.8	TO-3P	E2
IRF643		0.220	16.0	TO-220AB	E2

Plastic Encapsulated TO-220AB/TO-3P (Continued)

TL/G/10018-3

Part Number	V _{DSS} (V)	R _{DS(on)} (Ω)	I _{DR} (A)	Package Style	Proc.
IRF631	150	0.400	9.0	TO-220AB	C2
IRF633		0.500	8.0	TO-220AB	C2
IRF621		0.800	5.0	TO-220AB	В3
IRF623		1.200	4.0	TO-220AB	B3
IRF611		1.500	2.5	TO-220AB	A2
IRF613		2.400	2.0	TO-220AB	A2
IRFP150CF	100	0.044	47.5	TO-3P	F1
IRFP150		0.055	43.0	TO-3P	F1
IRF540CF		0.068	30.0	TO-220AB	E1
IRFP140CF		0.068	33.0	TO-3P	E1
IRF540		0.085	27.0	TO-220AB	E1
IRFP140		0.085	29.5	TO-3P	E1
IRF542		0.110	24.0	TO-220AB	E1
IRF530CF		0.144	16.0	TO-220AB	C3

TL/G/10018-2

Part Number	V _{DSS} (V)	R _{DS(on)} (Ω)	I _{DR} (A)	Package Style	Proc.
MTP20N10		0.150	20.0	TO-220AB	C2
IRF530		0.180	14.0	TO-220AB	C3
IRF520CF		0.240	9.1	TO-220AB	B2
IRF532		0.250	12.0	TO-220AB	C3
IRF520		0.300	8.0	TO-220AB	B2
MTP10N10		0.330	10.0	TO-220AB	C2
IRF522		0.400	7.0	TO-220AB	B2
IRF510		0.600	4.0	TO-220AB	A1
IRF512	100	0.800	3.5	TO-220AB	A1
MTP4N10		0.800	5.0	TO-220AB	A1
MTP20N08	80	0.150	20.0	TO-220AB	C1
MTP10N08		0.330	10.0	TO-220AB	C2
MTP4N08		0.800	5.0	TO-220AB	A1
IRFP151CF	60	0.044	47.5	TO-3P	F1
IRFP151		0.055	43.0	TO-3P	F1
IRFP141CF		0.068	33.0	TO-3P	E1
IRF541		0.085	27.0	TO-220AB	E1
IRFP141		0.085	29.5	TO-3P	E1
FMP18N06		0.085	20.0	TO-220AB	B1
FMP20N06		0.100	18.0	TO-220AB	B1
IRF543		0.110	24.0	TO-220AB	E1
IRF531		0.180	14.0	TO-220AB	СЗ
IRF533		0.250	12.0	TO-220AB	C3
IRF521		0.300	8.0	TO-220AB	B2
IRF523		0.400	7.0	TO-220AB	B2
IRF511		0.600	4.0	TO-220AB	A1
IRF513		0.800	3.5	TO-220AB	A1
FMP20N05	50	0.085	20.0	TO-220AB	B1
FMP18N05		0.100	18.0	TO-220AB	B1

Section 2 **Diodes**

Section 2 Contents

Computer Diodes	
Low Leakage Diodes	
High Voltage Diodes	
General Purpose Diodes	
Military Qualified Diodes	
Military Qualified Diode Arrays	
Diode Arrays	
Zener Diodes	
Matched Pair and Quad Assemblies	

Diode Data

Computer Diodes (Glass Package)

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V	Min	V _F V « Max	[®] I _F	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
1N625	DO-35	30	1000	20		1.5	4		1000	(Note 1)	D4
1N914	DO-35	100	25 5000	20 75		1.0	10		4	(Note 2)	D4
1N914A	DO-35	100	25 5000	20 75		1.0	20		4	(Note 2)	D4
1N914B	DO-35	100	25 5000	20 75		0.72 1.0	5 100		4	(Note 2)	D4
1N916	DO-35	100	25 5000	20 75		1.0	10		4	(Note 2)	D4
1N916A	DO-35	100	25 5000	20 75		1.0	20		4	(Note 2)	D4
1N916B	DO-35	100	25 5000	20 75		0.73 1.0	5 30		4	(Note 2)	D4
1N3064	DO-35	75	100	50		0.575 0.650 0.710 1.0	0.250 1.0 2.0 10.0	2	4	(Note 3)	D4
1N3600	DO-35	75	100	50	0.54 0.66 0.76 0.82 0.87	0.62 0.74 0.86 0.92 1.0	1.0 10.0 50.0 100.0 200.0	2.5	4	(Note 4)	D4
1N4009	DO-35	35	100	25		1.0	30	4	2	(Note 2)	D4
1N4146	DO-35	See Dat	a for 1N914	A/914E	3			*	***************************************		
1N4147	DO-35	See Dat	a for 1N914	A/914E	3	· · · · · · · · · · · · · · · · · · ·					
1N4148	DO-35	See Dat	a for 1N914								
1N4149	DO-35	See Data	a for 1N916								
1N4150	DO-35	See Data	a for 1N360	0							
1N4151	DO-35	75	50	50		1.0	50	4	2	(Note 2)	D4
1N4152	DO-35	40	50	30	0.49 0.53 0.59 0.62 0.70 0.74	0.55 0.59 0.67 0.70 0.81 0.88	0.1 0.25 1.0 2.0 10.0 20.0	4	2	(Note 2)	D4
1N4153	DO-35	75	50	50		See 1N415		4	2	(Note 2)	D4
1N4154	DO-35	35	100	25		1.0	30	4	2	(Note 2)	D4

Computer Diodes (Glass Package) (Continued)

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V	Min	V _F V Max	@ IF mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
1N4244	DO-7	20	100 250	10 15		1.0	20	0.8	0.75	(Note 5)	D3
1N4305	DO-35	75	100	50		0.575 0.650 0.710 0.85	0.250 1.0 2.0 10.0	2	2 4	(Note 2) (Note 3)	D4
1N4376	DO-7	20	100	10	0.42 0.52 0.64 0.76 0.81 0.89	0.50 0.61 0.74 0.88 0.95 1.10	0.010 0.1 1.0 10.0 20.0 50.0	1.0	750	(Note 5)	D3

Note 1: I_F = 30 mA, V_R = 35V, Recovery to 400 k Ω .

Note 2: $I_{F}\,=\,10$ mA, $V_{R}\,=\,5V,\,R_{L}\,=\,100\Omega,$ Recovery to 1.0 mA.

Note 3: $I_F\,=\,I_R\,=\,10$ mA, $V_R\,=\,1.0V,\,R_L\,=\,100\Omega.$

Note 4: $I_F = \,I_R = \,10$ mA to 200 mA, $R_L = \,100\Omega.$

Note 5: $I_F = I_R = 10$ mA, $R_L = 100\Omega$, Recovery to 1.0 mA.

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V		V _F V @ Max	l _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
1N4446	DO-35	100	25	20		1.0	20	4.0	4.0	(Note 1)	D4
1N4447	DO-35	100	25	20		1.0	20	4.0	4.0	(Note 1)	D4
1N4448	DO-35	100	25	20		1.0	100	2.0	4.0	(Note 1)	D4
1N4449	DO-35	100	25	20		1.0	30	2.0	4.0	(Note 1)	D4
1N4450	DO-35	40	50	30	0.42 0.52 0.64 0.80	0.54 0.64 0.76 0.92 1.0	0.1 1.0 10 100 200	4.0	4.0	(Note 2)	D4
1N4454	DO-35	75	100	50		1.0	10	2.0	4.0	(Note 2)	D4
1N5282	DO-35	80	100	55	0.45 0.55 0.67 0.80 0.92 1.05	0.49 0.60 0.725 0.90 1.10 1.30	0.1 1.0 10.0 100.0 300.0 500.0	2.5	2.0	(Note 1)	D4
BAX13	DO-35	50	25 50 200	10 25 50		0.7 1.0 1.53	2.0 20.0 75.0	3.0	4.0	(Note 3)	D4
BAY71	DO-35	50	100	35	0.46 0.57 0.69 0.76	0.56 0.69 0.88 1.0	0.1 1.0 10.0 20.0	2.0	2.0	(Note 4)	D4
BAW75	DO-35	35	100	25		1.0	30		2.0	(Note 4)	D4
BAW76	DO-35	75	100	50		1.0	100		2.0	(Note 4)	D4

Computer Diodes (Glass Package) (Continued)

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V	V N Min	F / Max	_@ I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
BAY74	DO-35	50	100	35	0.54	0.65	1.0	3.0	4.0	(Note 5)	D4
		1			0.65	0.77	10.0				
					0.73	0.88	50.0				
					0.78	0.93	100.0				
]			0.82	1.0	200.0		}		
					0.85	1.10	300.0				
BAY82	DO-7	15	100	12	0.41	0.53	0.010	1.3	0.75	(Note 2)	D3
					0.53	0.66	0.1				
					0.64	0.79	1.0				
					0.77	0.94	10			1	
					0.80	1.00	20				
					0.90	1.35	50				
FD700	DO-7	30	50	20	0.42	0.50	0.01	1.0	0.70	(Note 2)	D3
					0.52	0.61	0.1				
		}			0.64	0.74	1.0				
					0.76	0.88	10				
					0.81	0.95	20		[
	l				0.89	1.10	50				
FD777	DO-7	15	100	8	0.42	0.53	0.01	1.3	0.75	(Note 2)	D3
					0.52	0.64	0.1			'	
					0.64	0.79	1.0				
					0.76	0.94	10				
					0.81	1.00	20				
					0.89	1.35	50			1	

Note 1: $I_F = 10$ mA, $V_R = 6V$, $R_L = 100\Omega$, Recovery to 1.0 mA.

Note 2: $I_F = I_R = 10$ mA, $R_L = 100\Omega$.

Note 3: I_F = 10 mA, I_R = 1 mA, V_R = 6V, R_L = 100 Ω .

Note 4: $I_F = 10$ mA, $I_R = 6$ mA, $V_R = 6V$, $R_L = 100\Omega$, Recovery to 1 mA.

Note 5: $I_F = 10$ mA to 200 mA, Recovery to 100% of I_F .

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V	V _F V Min Max	@ I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
FDH600	DO-35	75	100	50	0.65 0.79 0.86 0.92 1.0	1.0 10 50 100 200	2.5	4.0	(Note 2)	D4
FDH666	DO-35	40	100	25	0.65 0.79 0.86 1.0	1.0 10.0 50.0 100.0	3.5	4.0	(Note 1)	D4
FDH900	DO-35	45	500	40	1.0	100.0	3.0	4.0	(Note 2)	D4
FDH999	DO-35	35	1000	25	1.0	10.0	5.0	5.0	(Note 2)	D4

Note 1: $I_F = I_R =$ 10 mA, $R_L =$ 100 $\!\Omega$, Recovery to 0.1 $I_R.$

Note 2: $I_{\textrm{F}}=\,10$ mA, $I_{\textrm{R}}=\,10$ mA, $R_{\textrm{L}}=\,100\Omega,\,I_{\textrm{rr}}=\,1.0$ mA.

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R	Min	V _F V Max	@ ^l F mA	C pF Max	Proc No.
1N456	DO-35	30	25	25		1.0	40	10	D2
1N456A	DO-35	30	25	25		1.0	100		D2
1N457	DO-35	70	25	60		1.0	20	8.0	D2
1N457A	DO-35	70	25	60		1.0	100		D2
1N458	DO-35	150	25	125		1.0	7	6.0	D2
1N458A	DO-35	150	25	125		1.0	100		D2
1N459	DO-35	200	25	175		1.0	3	6	D2
1N459A	DO-35	200	25	175		1.0	100		D2
1N482B	DO-35	40	25	36		1.0	100		D2
1N483B	DO-35	80	25	70		1.0	100		D2
1N484B	DO-35	150	25	130		1.0	100		D2
1N485B	DO-35	200	25	180		1.0	100		D2
1N486B	DO-35	250	50	225		1.0	100		D2
1N3595	DO-35	150	1.0	125		See 1N60	99	8.0	D2
1N6099	DO-35	150	1.0	125	0.52 0.60 0.65 0.75 0.79 0.83	0.68 0.75 0.80 0.88 0.92 1.0	1.0 5.0 10.0 50.0 100.0 200.0	8.0	D2
BAY73	DO-35	125	5	100	0.60 0.67 0.69 0.78 0.81 0.85	0.68 0.75 0.80 0.88 0.94 1.00	1.0 5.0 10.0 50.0 100.0 200.0	8.0	D2
BA129	DO-35	200	10	180	0.51 0.60 0.69 0.78	0.60 0.71 0.83 1.00	0.1 1.0 10 100	6.0	D2
FDH300	DO-35	150	1.0	125		0.68 0.75 0.8 0.88 0.92 1.0	1.0 5.0 10.0 50.0 100.0 200.0	6.0	D2
FDH333	DO-35	150	3.0	125	0.80 0.83 0.86 0.87 0.88 0.90	0.89 0.94 0.97 1.05 1.08 1.15	50 100 150 200 250 300	6.0	D2
FJT1100	DO-7	30	0.001 0.010	5.0 15.0		1.05	50	1.5	D6
FJT1101	DO-7	20	0.005 0.015	5.0 15.0		1.10	50	1.8	D6

High Voltage Diodes (Glass Package)

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V	V _F V Min Max	_@ I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
1N625	DO-35	30	1000	20	1.5	4.0		1000	(Note 1)	D1
1N626	DO-35	50	1000	35	1.5	4.0		1000	(Note 1)	D1
1N627	DO-35	100	1000	75	1.5	4.0		1000	(Note 1)	D1
1N628	DO-35	150	1000	125	1.5	4.0		1000	(Note 1)	D1
1N629	DO-35	200	1000	175	1.5	4.0		1000	(Note 1)	D1
1N658	DO-35	120	50	50	1.0	100		300	(Note 2)	D1
1N659	DO-35	60	5000	50	1.0	6.0		300	(Note 2)	D1
1N660	DO-35	120	5000	100	1.0	6		300	(Note 3)	D1
1N661	DO-35	240	10000	200	1.0	6		300	(Note 3)	D1

Note 1: $I_F = 30$ mA, $V_R = 35V$, Recovery to 400 k Ω .

Note 2: V $_{R}\,=\,$ 40V, I $_{F}\,=\,$ 5.0 mA, R $_{L}\,=\,$ 2.0 k $\Omega,$ C $_{L}\,=\,$ 10 pF, Recovery to 80 k $\Omega.$

Note 3: V $_{R}$ = 35V, I $_{F}$ = 30 mA, R $_{L}$ = 2.0 k $\Omega ,$ C $_{L}$ = 10 pF, Recovery to 400 k $\Omega .$

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V		/F V Max	@ I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
1N3070	DO-35	200	100	175		1.0	100	5.0	50	(Note 1)	D1
1N4938	DO-35	200	100	175		1.0	100	5.0	50	(Note 1)	D1
BAV19	DO-35	120	100	100		1.0	100	5.0	50	(Note 2)	D1
BAV20	DO-35	200	100	150		1.0	100	5.0	- 50	(Note 2)	D1
BAV21	DO-35	250	100	200		1.0	100	5.0	50	(Note 2)	D1
BAX17	DO-35	200				1.2	200	10	120	(Note 2)	D1
BAY72	DO-35	125	100	100	0.51 0.63 0.73 0.78	0.64 0.78 0.92 1.0	1.0 10.0 50.0 100.0	5.0	50	(Note 3)	D1
BAY80	DO-35	150	100	120		1.0	150	6.0	60	(Note 3)	D1
FDH400	DO-35	200	100	150		1.1	300	2.0	50	(Note 4)	D1
FDH444	DO-35	150	50	100		1.2	300	2.5	60	(Note 4)	D1

Note 1: $I_F = I_R = 30$ mA, $R_L = 100\Omega$.

Note 2: $I_{F}\,=\,30$ mA, $I_{R}\,=\,30$ mA, $R_{L}\,=\,100\Omega,$ Recovery to $I_{R}\,=\,3$ mA.

Note 3: $I_{\textrm{F}}=\,I_{\textrm{R}}\,=\,30$ mA, $R_{\textrm{L}}\,=\,75\Omega.$

Note 4: $l_{\textrm{F}}$ = 30 mA, $R_{\textrm{L}}$ = 100 $\!\Omega$, $l_{\textrm{rr}}$ = 3.0 mA.

General Purpose Diodes (Glass Package)

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V	V Min		l _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
1N461A	DO-35	30	500	25		1.0	100				D2
1N462A	DO-35	70	500	60		1.0	100				D2
1N463A	DO-35	200	500	175		1.0	100				D2
1N659	DO-35	60	5000	50		1.0	6.0		300	(Note 1)	D4
1N660	DO-35	120	5000	100		1.0	6.0		300	(Note 1)	D1
1N661	DO-35	240	10000	200		1.0	6.0		300	(Note 1)	D1
1S44	DO-35	50	50	10	0.65 0.70	1.0 1.2	10 30	4.0	8	(Note 2)	D4
1S920	DO-35	50	100	50		1.2	200	6.5			D1
1S921	DO-35	100	100	100		1.2	200	6.5			D1
1S922	DO-35	150	100	150		1.2	200	6.5			D1
1S923	DO-35	200	100	200		1.2	200	6.5			D1
BA128	DO-35	75	100	50	0.40 0.51 0.63 0.73	0.52 0.64 0.79 1.00	0.1 1.0 10 50	5.0			D4
BA130	DO-35	30	100	25	0.34 0.45 0.56 0.69	0.47 0.58 0.71 1.00	0.01 0.1 1.0 10	2.0			D4
BA217	DO-35	30	200	30		1.5	50	3.0	4.0	(Note 5)	D4
BA218	DO-35	50	200	50		1.5	50	3.0	4.0	(Note 5)	D4
BA317	DO-35	30				0.85	10	2.0	4.0	(Note 4)	D4
BA318	DO-35	50				0.85	10	2.0	4.0	(Note 4)	D4
BAV17	DO-35	25	100	20		1.0	100	5.0	50	(Note 3)	D4
BAV18	DO-35	60	100	50		1.0	100	5.0	50	(Note 3)	D4
BAX16	DO-35	180	100	150		1.5	200	10	120	(Note 3)	D1
FDH900	DO-35	45	500	40		1.0	100	3.0	4.0	(Note 4)	D4
FDH999	DO-35	35	1000	25		1.0	10	5.0	5.0	(Note 4)	D4
FDH1000	DO-35	75	5000	50		1.0	500	5.0			D4

Note 1: V $_{R}$ = 35V, i $_{F}$ = 30 mA, R $_{L}$ = 2.0 k $\Omega ,$ C $_{L}$ = 10 pF, Recovery to 400 k $\Omega .$

Note 2: $I_F=I_f=10$ mA, Recovery to 1 mA. Note 3: $I_F=30$ mA, $I_R=30$ mA, $R_L=100\Omega$.

Note 4: $I_{\textrm{F}}=\,10$ mA, $I_{\textrm{R}}=\,10$ mA, $R_{\textrm{L}}=\,100\Omega,\,I_{\textrm{rr}}=\,1.0$ mA.

Note 5: If = 10 mA, IR = 60 mA; RL = 100 Ω ; Recovery to 1 mA.

Note 6: $I_{\textrm{F}}$ = 10 mA; $I_{\textrm{R}}$ = 60 mA; $R_{\textrm{L}}$ = 100 $\!\Omega$.

Military Qualified Diodes

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R	V _F V @ Max	[®] I _F	C pF Max	t _{rr} ns Max	Proc. No.
1N457JAN	DO-35	70	25	60	1.0	20	6.0		D2
1N458JAN	DO-35	150	25	125	1.0	7.0	6.0		D2
1N459JAN	DO-35	200	25	175	1.0	3.0	6.0		D2
1N483BJAN	DO-35	80	25	70	1.0	100			D2
1N483BJANTX	DO-35	80	25	70	1.0	100			D2
1N485BJAN	DO-35	200	25	180	1.0	100			D2
1N485BJANTX	DO-35	200	25	180	1.0	100			D2
1N486BJAN	DO-35	250	25	225	1.0	100			D2
1N486BJANTX	DO-35	250	25	225	1.0	100			D2
1N914JAN	DO-35	100	25	20	1.0	10	4.0	4.0	D4
1N914JANTX	DO-35	100	25	20	1.0	10	4.0	4.0	D4
1N3064JAN	DO-7	75	100	50	1.0	10	2.0	4.0	D4
1N3064JANTX	DO-7	75	100	50	1.0	10	2.0	4.0	D4
1N3595JAN	DO-7	150	1.0	125	1.0	200	8.0	3000	D2
1N3595JANTX	DO-7	150	1.0	125	1.0	200	8.0	3000	D2
1N3595JANTXV	DO-7	150	1.0	125	1.0	200	8.0	3000	D2
1N3600JAN	DO-7	75	100	50	1.0	200	2.5	4.0	D4
1N3600JANTX	DO-7	75	100	50	1.0	200	2.5	4.0	D4
1N3600JANTXV	DO-7	75	100	50	1.0	200	2.5	4.0	D4
1N4148-1JAN	DO-35	100	25	20	1.0	10	4.0	4.0	D4
1N4148-1JANTX	DO-35	100	25	20	1.0	10	4.0	4.0	D4
1N4148-1JANTXV	DO-35	100	25	20	1.0	10	4.0	4.0	D4
1N4150-1JAN	DO-35	75	100	50	1.0	200	2.5	4.0	D4
1N4150-1JANTX	DO-35	75	100	50	1.0	200	2.5	4.0	D4
1N4150-1JANTXV	DO-35	75	100	50	1.0	200	2.5	4.0	D4
1N4376JAN	DO-7	20	100	10	1.1	50	1.0	0.75	D3
1N4376JANTX	DO-7	20	100	10	1.1	50	1.0	0.75	D3
1N4454-1JAN	DO-35	75	100	50	1.0	10	2.0	4.0	D4
1N4454-1JANTX	DO-35	75	100	50	1.0	10	2.0	4.0	D4
1N4454-1JANTXV	DO-35	75	100	50	1.0	10	2.0	4.0	D4
1N3070JAN	DO-35	200	100	175	1.0	100	5.0	50	D1
1N3070JANTX	DO-35	200	100	175	1.0	100	5.0	50	D1
1N4306JAN	DO-7	75	50	50	1.0	50	2.0	4.0	D4
1N4306JANTX	DO-7	75	50	50	1.0	50	2.0	4.0	D4
1N4306JANTXV	DO-7	75	50	50	1.0	50	2.0	4.0	D4
1N4307JAN	DO-7	75	50	50	1.0	50	2.0	4.0	D4
1N4307JANTX	DO-7	75	50	50	1.0	50	2.0	4.0	D4
1N4307JANTXV	DO-7	75	50	50	1.0	50	2.0	4.0	D4

Military Qua	lified Diod	e Arrays (Cei	ramic Pa	ckage)	(Note 1)			
Device No.	Package No.	Configuration	V _{RRM} V Min	V _F V Max	@ I _F mA	t _{fr} ns Max	t _{rr} ns Max	C pF Max
1N5768JAN	TO-85	CC8	60	1.0	100	40	20	4.0
1N5768JANTX	TO-85	CC8	60	1.0	100	40	20	4.0
1N5768JANTXV	TO-85	CC8	60	1.0	100	40	20	4.0
1N5770JAN	TO-85	CA8	60	1.0	100	40	20	8.0
1N5770JANTX	TO-85	CA8	60	1.0	100	40	20	8.0
1N5770JANTXV	TO-85	CA8	60	1.0	100	40	20	8.0
1N5772JAN	TO-85	M16N	60	1.0	100	40	20	8.0
1N5772JANTX	TO-85	M16N	60	1.0	100	40	20	8.0
1N5772JANTXV	TO-85	M16N	60	1.0	100	40	20	8.0
1N5774JAN	TO-86	2M8	60	1.0	100	40	20	8.0
1N5774JANTX	TO-86	2M8	60	1.0	100	40	20	8.0
1N5774JANTXV	TO-86	2M8	60	1.0	100	40	20	8.0
1N6100JAN	TO-86	S7	75	1.0	100	15	5.0	3.0
1N6100JANTX	TO-86	S7	75	1.0	100	15	5.0	3.0
1N6100JANTXV	TO-86	S7	75	1.0	100	15	5.0	3.0
1N6101JAN	6B	S8	75	1.0	100	15	5.0	3.0
1N6101JANTX	6B	S8	75	1.0	100	15	5.0	3.0
1N6101JANTXV	6B	S8	75	1.0	100	15	5.0	3.0

Note 1: Refer to Process 15 for product family characteristics.

Note 2: t_{fr} test conditions: $I_f = 500$ mA; $R_s = 10\Omega$; $V_{fr} = 1.8V$, $t_r = 15$ ns Max.

Note 3: Capacitance is measured pin-to-pin across each diode and does not necessarily represent actual diode capacitance since other diode interconnections can contribute additional capacitance.

Configurations

Monolithic Diode Arrays (Plastic-Ceramic-Metal Packages) ۷F ΔV_F **V_{RRM}** t_{rr} Proc. Device Package Test l_F Configuration @ m۷ ns No. No. mΑ Cond. No. Min Max Max Max 1N5768 TO-85 CC8 60 1.0 100 20 (Note 1) D15 1N5770 TO-85 CA8 100 20 (Note 1) D15 60 1.0 1N5772 TO-85 M16N 60 1.0 100 20 (Note 1) D15 1N5774 TO-86 2M8 60 1.0 100 20 (Note 1) D15 1N6100 TO-86 S8 75 1.0 100 5 (Note 2) D15 TO-116-2 1N6101 S8 75 1.0 100 5 (Note 2) D15 1N6496 20 Lead 200 D15 2M16 60 1.0 10 (Note 3) Cerpak 1.2 250 1.5 500 FSA2002 TO-85 CC8 60 1.0 100 10 (Note 3) D15 1.1 200 1.5 500 TO-85 CA8 D15 FSA2003 60 1.0 100 10 (Note 3) 1.1 200 1.5 500 FSA2500M TO-85 M16 60 1.0 100 15 10 (Note 3) D15 1.1 200 1.5 500 FSA2501M TO-116-2 M16S 1.0 100 15 10 (Note 3) D15 60 200 1.1 500 1.5 FSA2501P TO-116 M16S See FSA2500M 15 10 (Note 3) D15 60 FSA2503M TO-116-2 2M8 60 1.0 100 15 10 (Note 3) D15 1.1 200 1.5 500 TO-116 100 FSA2503P 2M8 60 1.0 15 10 (Note 3) D15 1.1 200 1.5 500 FSA2504M TO-86 2M8 60 See FSA2503M 15 10 (Note 3) D15 FSA2508P 9B 2M8 60 See FSA2509M 15 10 (Note 3) D15 FSA2509M TO-116-2 2M8 60 1.0 100 15 10 (Note 3) D15 200 1.1 1.3 500 TO-116 60 D15 FSA2509P 2M8 1.0 100 15 10 (Note 3) 1.1 200 1.3 500

Monolithic Diode Arrays (Plastic - Ceramic - Metal Packages) (Continued)

Device No.	Package No.	Configuration	V _{RRM} V Min	V _F V Max	@ IF mA	ΔV _F mV Max	t _{rr} ns Max	Test Cond.	Proc. No.
FSA2510M	TO-116-2	M16S	60	See FS	SA2509	15	10	(Note 3)	D15
FSA2510P	TO-116	M16S	60	See FS	SA2509	15	10	(Note 3)	D15
FSA2563M	TO-116-2	CC8S	60	1.0 1.1 1.3	100 200 500	15	10	(Note 3)	D15
FSA2563P	TO-116	CC8S	60	1.0 1.1 1.3	100 200 500	15	10	(Note 3)	D15
FSA2564M	TO-116-2	CA8S	60	See F	SA2563	15	10	(Note 3)	D15
FSA2564P	TO-116	CA8S	60	See F	SA2563	15	10	(Note 3)	D15
FSA2565M	TO-116-2	CC13	60	See F	SA2563	15	10	(Note 3)	D15
FSA2565P	TO-116	CC13	60	See F	SA2563	15	10	(Note 3)	D15
FSA2566M	TO-116-2	CA13	60	See F	SA2563	15	10	(Note 3)	D15
FSA2566P	TO-116	CA13	60	See F	SA2563	15	10	(Note 3)	D15

Note 1: $I_F = 200$ mA, $I_R = 200$ mA, $R_L = 100\Omega$, $I_{rr} = 20$ mA.

Note 2: $I_F = \,I_R = \,10$ mA, $I_{rr} = \,1.0$ mA, $R_L = \,100\Omega.$

Note 3: $I_F = I_R = 100$ mA, $R_L = 100\Omega$, Recovery to 0.1 I_R .

Device No.	Package No.	Configuration	V _{RRM} V Min	V _F V Max	@ IF mA	ΔV _F mV Max	t _{rr} ns Max	Test Cond.	Proc. No.
FSA2619M	6B	S8	100	1.0	10	15	5	(Note 1)	D15
FSA2619P	9B	S8	100	1.0	10	15	5	(Note 1)	D15
FSA2620M	TO-116-2	S7	100	1.0	10	15	5	(Note 1)	D15
FSA2620P	TO-116	S7	100	1.0	10	15	5	(Note 1)	D15
FSA2621M	TO-86	S7	100	1.0	10	15	5	(Note 1)	D15
FSA2621M	TO-116	S 7	100	1.0	10	15	5	(Note 1)	D15
FSA2719M	6B	S8	75	1.0	10	15	6	(Note 1)	D15
FSA2719P	9B	S8	75	1.0	10	15	6	(Note 1)	D15
FSA2720M	TO-116-2	S7	75	1.0	10	15	6	(Note 1)	D15
FSA2720P	TO-116	S 7	75	1.0	10	15	6	(Note 1)	D15
FSA2721M	TO-86	S 7	75	1.0	10	15	6	(Note 1)	D15

Note 1: $I_F = I_R = 10 \text{ mA}$, $I_{rr} = 1.0 \text{ mA}$.

Configurations **S7** TL/G/10019-15 TL/G/10019-7 CC8 TL/G/10019-16 TL/G/10019-8 TL/G/10019-17 TL/G/10019-10 CA8 TL/G/10019-11 TL/G/10019-19 TL/G/10019-12 TL/G/10019-21 M16S M16N TL/G/10019-20 TL/G/10019-13 **CA13** TL/G/10019-14

Zener Diodes (Glass Package) ٧z Tol. $\mathbf{z}_{\mathbf{z}}$ l_R T.C. Pn **Device** Package @ Proc. Ιz ٧R %/°C $\pm V_{Z}$ μΑ @ mW Ω No. No. mΑ No. $T_A = 25^{\circ}C$ Nom % Max Max Typ (Max) 1N746A DO-35 3.3 5.0 28.0 20 10 1.0 -0.070500 D13 1N747A DO-35 20 500 3.6 5.0 24.0 10 1.0 -0.065D13 1N748A DO-35 3.9 5.0 23.0 20 10 1.0 -0.060500 D13 4.3 22.0 20 2 500 1N749A DO-35 5.0 1.0 -0.055D13 1N750A DO-35 4.7 5.0 19.0 20 2 1.0 -0.043 500 D13 DO-35 1N751A 1 500 5.1 5.0 17.0 20 1.0 -0.030D13 1N752A DO-35 5.6 5.0 11 20 1.0 1.0 +0.028500 D13 1N753A DO-35 6.2 5.0 7.0 20 0.1 1.0 +0.045500 D13 1N754A DO-35 6.8 5.0 5.0 20 0.1 1.0 +0.050500 D13 1N755A 7.5 500 DO-35 5.0 6.0 20 0.1 1.0 +0.058D13 1N756A DO-35 8.2 5.0 8.0 20 0.1 1.0 +0.062500 D13 1N757A DO-35 9.1 5.0 10 20 0.1 1.0 +0.068500 D13 1N758A DO-35 10 5.0 17 20 0.1 1.0 +0.075500 D13 1N759A DO-35 12 5.0 30 20 0.1 1.0 +0.077500 D13 1N957B DO-35 6.8 5.0 4.5 18.5 150 5.2 +0.050500 D13 1N958B DO-35 7.5 5.0 5.5 16.5 75 5.7 +0.058500 D13 1N959B DO-35 8.2 5.0 6.5 15 50 6.2 +0.062500 D13 1N960B DO-35 9.1 5.0 7.5 14 25 6.9 +0.068500 D13 1N961B 8.5 7.6 500 DO-35 10 5.0 12.5 10 +0.072D13 1N962B DO-35 5.0 9.5 5.0 8.4 +0.073500 D13 11 11.5 1N963B DO-35 12 5.0 11.5 10.5 5.0 9.1 +0.076500 D13 1N964B DO-35 +0.079500 D13 13 5.0 13 9.5 5.0 9.9 1N965B DO-35 5.0 8.5 5.0 11.4 +0.082500 D13 15 16 1N966B DO-35 16 5.0 17 7.8 5.0 12.2 +0.083500 D13 7.0 13.7 500 1N967B DO-35 18 5.0 21 5.0 +0.085D13 1N968B DO-35 20 5.0 25 6.2 5.0 15.2 +0.086500 D13 DO-35 1N969B 16.7 500 D13 22 5.0 29 5.6 5.0 +0.0871N970B DO-35 24 5.0 33 5.2 5.0 18.2 +0.088500 D13 1N971B DO-35 27 5.0 41 4.6 5.0 20.6 +0.090500 D13 1N972B DO-35 30 5.0 49 4.2 5.0 22.8 +0.091500 D13 1N973B DO-35 33 5.0 58 3.8 5.0 25.1 +0.092500 D13

Zener Diodes (Glass Package) (Continued) ٧z Tol. T.C. $\mathbf{Z}_{\mathbf{Z}}$ P_{D} l_R Device **Package** Proc. Ιz V_{R} ± **V**7 Ω @ %/°C μA mW No. No. mΑ No. T_A = 25°C Nom % Max Max Typ (Max) 1N4728A DO-41 3.3 5.0 10 76 100 1.0 1000 D14 1N4729A DO-41 3.6 5.0 10 69 100 1.0 1000 D14 1N4730A DO-41 3.9 5.0 9 64 50 1.0 1000 D14 1N4731A DO-41 4.3 5.0 9 58 10 1.0 1000 D14 1N4732A DO-41 4.7 D14 5.0 8 53 10 1.0 1000 1N4733A DO-41 5.0 7 1000 D14 5.1 49 10 1.0 1N4734A DO-41 D14 5.6 5.0 5 45 10 2.0 1000 1N4735A DO-41 6.2 5.0 2 41 10 3.0 1000 D14 1N4736A DO-41 6.8 5.0 3.5 37 10 4.0 1000 D14 1N4737A DO-41 D14 7.5 5.0 4 34 10 5.0 1000 1N4738A DO-41 8.2 5.0 4.5 34 10 6.0 1000 D14 1N4739A DO-41 1000 D14 9.1 5.0 5 8 10 7.0 1N4740A DO-41 10 5.0 7 25 7.6 1000 D14 10

23

21

19

17

15.5

14

12.5

11.5

10.5

9.5

8.5

7.5

20

20

5

5

5

5

5

5

5

5

5

5

5

5

25

15

8.4

9.1

9.9

11.4

12.2

13.7

15.2

16.7

18.2

20.6

22.8

25.1

1.0

1.0

(-0.070)

(-0.065)

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

500

500

D14

D13

D13

1N4741A

1N4742A

1N4743A

1N4744A

1N4745A

1N4746A

1N4747A

1N4748A

1N4749A

1N4750A

1N4751A

1N4752A

1N5226B

1N5227B

DO-41

DO-35

DO-35

11

12

13

15

16

18

20

22

24

27

30

33

3.3

3.6

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

8

9

10

14

16

20

22

23

25

35

40

45

28

24

Zener Diodes (Glass Package) (Continued)

Device No.	Package No.	V _Z V Nom	Tol. ± V _Z %	Z _Z @ Ω Max	l _Z mA	I _R μΑ Max	[®] V _R	T.C. %/°C Typ (Max)	P _D mW T _A = 25°C	Proc. No.
1N5228B	DO-35	3.9	5.0	23	20	10	1.0	(-0.060)	500	D13
1N5229B	DO-35	4.3	5.0	22	20	5	1.0	(±0.055)	500	D13
1N5230B	DO-35	4.7	5.0	19	20	5	2.0	(±0.030)	500	D13
1N5231B	DO-35	5.1	5.0	17 .	20	5	2.0	(±0.030)	500	D13
1N5232B	DO-35	5.6	5.0	11	20	5	3.0	(±0.038)	500	D13
1N5233B	DO-35	6.0	5.0	7	20	5	3.5	(±0.038)	500	D13
1N5234B	DO-35	6.2	5.0	7	20	5	4.0	(±0.045)	500	D13
1N5235B	DO-35	6.8	5.0	5	20	3	5.0	(+0.050)	500	D13
1N5236B	DO-35	7.5	5.0	6	20	3	6.0	(+0.058)	500	D13
1N5237B	DO-35	8.2	5.0	8	20	3	6.5	(+0.062)	500	D13
1N5238B	DO-35	8.7	5.0	8	20	3	6.5	(+0.065)	500	D13
1N5239B	DO-35	9.1	5.0	10	20	3	7.0	(+0.068)	500	D13
1N5240B	DO-35	10.0	5.0	1.7	20	3	8.0	(+0.075)	500	D13
1N5241B	DO-35	11	5.0	22	20	2	8.4	(+0.076)	500	D13
1N5242B	DO-35	12	5.0	30	20	1	9.1	(+0.077)	500	D13
1N5243B	DO-35	13	5.0	13	9.5	0.5	9.9	(+0.079)	500	D13
1N5244B	DO-35	14	5.0	15	9.0	0.1	11.0	(+0.082)	500	D13
1N5245B	DO-35	15	5.0	16	8.5	0.1	11.4	(+0.082)	500	D13
1N5246B	DO-35	16	5.0	17	7.8	0.1	12.0	(+0.083)	500	D13
1N5247B	DO-35	17	5.0	19	7.4	0.1	13.0	(+0.084)	500	D13
1N5248B	DO-35	18	5.0	21	7.0	0.1	14.0	(+0.085)	500	D13
1N5249B	DO-35	19	5.0	23	6.6	0.1	14.0	(+0.086)	500	D13
1N5250B	DO-35	20	5.0	25	6.2	0.1	15.0	(+0.086)	500	D13
1N5251B	DO-35	22	5.0	29	5.6	0.1	17.0	(+0.087)	500	D13
1N5252B	DO-35	24	5.0	33	5.2	0.1	18.0	(+0.088)	500	D13
1N5253B	DO-35	25	5.0	5	5.0	0.1	19.0	(+0.089)	500	D13
1N5254B	DO-35	27	5.0	41	4.6	0.1	21.0	(+0.090)	500	D13
1N5255B	DO-35	28	5.0	44	4.5	0.1	21.0	(+0.091)	500	D13
1N5256B	DO-35	30	5.0	49	4.2	0.1	23.0	(+0.091)	500	D13
1N5257B	DO-35	33	5.0	58	3.8	0.1	25.0	(+0.092)	500	D13

Pair & Quad Assemblies Diodes

Device No.	Package No.	V _{RRM} V Min	I _R nA @ Max	V _R V	Min	V _F V Max	@ I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
1N4306	DO-7	75	50	50	0.44	0.55	0.1	2	4	(Note 1)	D4*
1N4307	DO-7	75	50	50	0.56	0.67	1.0				D4*
					0.67	0.81	10.0				
			,-		0.75	1.00	50.0				

Note 1: $I_F = I_R = 10$ mA, $R_L = 100\Omega$, Recovery to 1 mA. *For test circuits, refer to Process Family Characteristics D18.

FA Series

Matched Pair and Quad Assemblies Diodes PACKAGE All Devices DO-7

MATCHING CHARACTERISTICS Apply over temperature range of -55°C to +100°C

Basic Diode (See Speci- fication	Forward Current Matching Range (Notes 4 & 6)	Reverse Current Match (∆I _R Maximum)	Forward Voltage Match (∆V _F Maximum)	Assembly T	ype Number
Below	,	(Note 3)	(= ·,,	Pair	Quad
FD1389	10 μA to 1.0 mA		3.0 mV	FA2310U	FA4310U
FD1389	10 μA to 1.0 mA		10 mV	FA2311U	FA4311U
FD1389	1.0 mA to 10 mA		5.0 mV	FA2312U	FA4312U
FD1389	1.0 mA to 10 mA		15 mV	FA2313U	FA4313U
FD2389	10 μA to 1.0 mA		3.0 mV	FA2320U	FA4320U
FD2389	10 μA to 1.0 mA		10 mV	FA2321U	FA4321U
FD2389	1.0 mA to 10 mA		5.0 mV	FA2322U	FA4322U
FD2389	1.0 mA to 10 mA		15 mV	FA2323U	FA4323U
FD2389	10 mA to 100 mA		10 mV	FA2324U	FA4324U
FD2389	10 mA to 100 mA		20 mV	FA2325U	FA4325U
FD3389	10 μA to 1.0 mA	(2.0 + 0.064 V _R) nA	10 mV	FA2330U	FA4330U
FD3389	1.0 mA to 10 mA	$(2.0 + 0.064 V_{R}) nA$	15 mV	FA2331U	FA4331U
FD3389	10 mA to 100 mA	$(2.0 + 0.064 V_{R}) nA$	20 mV	FA2332U	FA4332U
FD3389	10 μA to 1.0 mA	(4.0 + 0.128 V _R) nA	10 mV	FA2333U	FA4333U
FD3389	1.0 mA to 10 mA	(4.0 + 0.128 V _R) nA	15 mV	FA3334U	FA4334U
FD3389	10 mA to 100 mA	(4.0 + 0.128 V _R) nA	20 mV	FA2335U	FA4335U
FD6389	10 mA to 100 mA		10 mV	FA2360U	FA4360U
FD6389	10 mA to 100 mA		20 mV	FA2361U	FA4361U

BASIC DIODE ELECTRICAL CHARACTERISTICS 25°C Ambient Temperature unless otherwise noted

Symbol	Parameter	Test Conditions	FD	1389	FD	2389	FD	3389	FD	6389	Units
Symbol	Farameter	rest conditions	Min	Max	Min	Max	Min	Max	Min	Max	Oilles
V _{RRM}	Breakdown Voltage	I _R = 5.0 μA I _R = 100 μA	100		200		150		75		V V
1 _R	Reverse Current	$V_R = WIV$ $V_R = WIV, T_A = 150$ °C		100 100		100 100		1.0 3.0		100 100	nA μA
V _F	Forward Voltage	$\begin{split} I_F &= 200 \text{ mA} \\ I_F &= 100 \text{ mA} \\ I_F &= 50 \text{ mA} \\ I_F &= 20 \text{ mA} \\ I_F &= 10 \text{ mA} \\ I_F &= 5.0 \text{ mA} \\ I_F &= 2.0 \text{ mA} \\ I_F &= 1.0 \text{ mA} \end{split}$		1.000 0.875 0.800 0.725 0.670		1.000 0.925 0.860 0.790 0.740 0.700 0.620 0.610		1.000 0.930 0.880 0.840 0.810 0.770 0.730 0.710		1.000 0.920 0.880 0.790 0.750 0.710 0.670 0.630	>
С	Capacitance (Note 5)	V _R = 0, f = 1 MHz		2.0		5.0		6.0		3.0	pF
t _{rr}	Reverse Recovery Time	$I_F = I_R = 10 \text{ mA}$ Recover to 1.0 mA $I_F = I_R = 30 \text{ mA}$ Recover to 1.0 mA		4.0		50					ns ns
		I _F = I _R = 200 mA Recover to 20 mA				× .				4.0	ns

Note 1: These are Limiting values above which life or satisfactory performance may be impaired.

Note 2: These are steady state Limits. The factory should be consulted on applications involving pulsed or low duty-cycle operation.

Note 3: The Reverse Current Match (ΔI_R) is the difference in reverse current between the diode having the highest I_R and that having the lowest I_R in a given assembly. The reverse voltage (V_R) in the ΔI_R calculation can be any value up to 125V. For example, the maximum ΔI_R for an FA2330U at V_R of IO V is (2.0 + 0.064 × 10) nA or 2.64 nA.

Note 4: The Forward Current Matching Ranges between 10 µA and 10 mA may be applied either as a dc current or a pulse current. Above 10 mA, however, the matching characteristics are guaranteed only for low duty cycle (≤1%) pulse current. Conditions of test are shown in the characteristic curve and test circuit section of this book.

Note 5: For product family characteristics curves for the basic diodes used in the assemblies, refer to the following: FD1389 D4, FD2389 D1, FD3389 D2 and FD6389 D4.

Section 3 **Bipolar NPN Transistors**

Section 3 Contents

Saturated Switches
Low Level Amplifiers
RF Amplifiers and Oscillators
General Purpose Amplifiers and Switches
Medium Power Transistors
Darlington Transistors

Saturated Switches

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}		FE Max	(mA)	& V _{CE} (V)	V _{CE(SAT)} (V) 8 Max	V _{BE} (' Min	-,	$I_{C} \text{ (mA)} $ $(I_{B} = \frac{I_{C}}{10})$	C _{ob} (pF) Max	f _T (MH: Min I	z) [@] (mA) Max	t _(off) (ns) Max	Test Conditions	Process No.
2N2369	TO-18 (11)	40	15	4.5	400	20	20 40	120	100 10	2	0.25	0.7	0.85	10	4	500	10	18	(Note 1)	21
2N2369A also Avail. JAN/TX/V Versions	TO-18 (11)	40	15	4.5	400*	20	20 30 40 40	120 120 120 120	100 30 10 10	1 0.4 1 0.35	0.2 0.25 0.6	0.7	0.85 1.5 1.6	10 30 100	4	500	10	18	(Note 1)	21
2N3011	TO-18 (11)	30	12	5	400*	20	12 25 30	120	100 30 10	1 0.4 0.35	0.2 0.25 0.5	0.72	0.85 1.5 1.6	10 30 100	4	400	20	20	(Note 4)	21
2N3605	TO-92 (94)		14		500	18	30		10	1	0.25		0.85	10	6	300	10	45	(Note 2)	21
2N3606	TO-92 (94)		14		500	18	30		10	1	0.25		0.85	10	6	300	10	60	(Note 2)	21
2N3607	TO-92 (94)		14		500	18	30		10	1	0.25		0.85	10	6	300	10	70	(Note 2)	21
2N4274		Same a	s PN427	4																21
2N4275		Same a	s PN427	5																21
2N4294	TO-92 (94)	30	12	4.5	400	20	20 30	120	100 10	2 1	0.25	0.6	0.9	10	5	400	10	20	(Note 1)	21
2N4295	TO-92 (94)	40	15	5	100	20	20 40	120	100 10	2 1	0.25	0.6	0.9	10	4	500	10	15	(Note 1)	21
2N5030	TO-92 (94)	30	12	4	250	20	30		10	1	0.25	0.72	0.87	10	4	400	10	30	(Note 9)	21
2N5134		Same a	s PN513	4																21

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}		FE Max	[®] (mA)	& V _{CE} (V)	V _{CE(SAT)} (V) & Max		(SAT) V) Max	$(I_B = \frac{I_C}{10})$	C _{ob} (pF) Max	f _T (MHz) Min Max		t _(off) (ns) Max	Test Conditions	Process No.
2N5224	TO-92 (92)	25	12	5	500	15	15 40	100	100 10	1	0.35		0.9	10	4	250	10	60	(Note 11)	21
2N5769	TO-92 (92)	40	15	4.5	400	20	20 30 40	120	100 30 10	1 0.4 0.35	0.2 0.25 0.5	0.7	0.85 1.5 1.6	10 30 100	4	500	10	18	(Note 1)	21
2N5772	TO-92 (92)	40	15	5	500	20	15 25 30	120	300 100 30	1 0.5 0.4	0.2 0.28 0.5	0.75	0.95 1.2 1.7	30 100 300	5	350	30	28	(Note 3)	21
MPS706	TO-92 (92)	15	15	3	500	15	20		10	1	0.6		0.9	10	6	200	10	75	(Note 11)	21
MPS706A	TO-92 (92)	25	15	5	500	15	20 20	60	10 3	1	0.6		0.9	10	6	200	10	75	(Note 1)	21
MPS834	TO-92 (92)	40		5	500	20	26		10	1	0.25 0.4		0.9	10 50	4	350	10	30	(Note 2)	21
MPS2369	TO-92 (92)	40	15	4.5	400	20	20 40	120	100 10	2 1	0.25	0.7	0.85	10	4	500	10	18	(Note 7)	21
MPS2369A	TO-92 (92)	40	15	4.5	400	20	40 30 20	120	10 30 100	0.35 0.4 1	0.2 0.25 0.5		0.85	10	4	500	10	18	(Note 2)	21
MPS2713	TO-92 (92)	18	15	5	500	18	30	90	2	-4.5	0.3		1.3	50						21
MPS2714	TO-92 (92)	18	15	5	500	18	75	225	2	4.5	0.3	0.6	1.3	50						21
PN2369	TO-92 (92)	40*	15	4.5	400	20	20 40	120	100 10	2 1	0.25	0.7	0.85	10	4	500	10	18	(Note 1)	21
PN2369A	TO-92 (92)	40*	15	4.5	30	20	20 30 40 40	120	100 30 10 10	1 0.4 1 0.35	0.2 0.2 0.5	0.7	0.85 1.15 1.6	10 30 100	4	500	10	18	(Note 1)	21
PN4274	TO-92 (92)	30*	12	4.5	500	20	18 30 35	120	100 30 10	1 0.4 1	0.2 0.25 0.5	0.7	0.85 1.15 1.6	10 30 100	4	400	10	12	(Note 12)	21

4

Saturated Switches (Continued)

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE Max	I _C (mA)	& ^V CE (V)	V _{CE(SAT)} (V) (Max	} (\	(SAT) /) Max	I_{C} (mA) $(I_{B} = \frac{I_{C}}{10})$	C _{ob} (pF) Max	f _T (MHz) Min Ma		t _(off) (ns) Max	Test Conditions	Process No.
PN4275	TO-92 (92)	40*	15	4.5	500	20	18 30 35	120	100 30 10	1 0.4 1	0.2 0.25 0.5	0.72	0.85 1.15 1.6	10 30 100	4	400	10	12	(Note 12)	21
PN5134	TO-92 (92)	20*	10	3.5	100	15	15 20	150	30 10	0.4 1	0.25	0.7	0.9	10	4	250	10	18	(Note 12)	21
2N3009	TO-52	40	15	4	500*	20	15 25 30	120	300 100 30	1 0.5 0.4	0.18 0.28 0.5	0.75	0.95 1.2 1.7	30 100 300	5	350	30	25	(Note 3)	22
2N3013	TO-52	40	15	5	300*	20	15 25 30	120	300 100 30	1 0.5 0.4	0.18 0.28 0.5	0.75	0.95 1.2 1.7	30 100 300	5	350	30	25	(Note 3)	22
2N3014	TO-18	40	20	5	300*	20	30 25 25	120	30 10 100	0.4 0.4 1.0	0.18 0.18 0.35		0.8 0.95 1.2	10 30 100	5	350	30	25	(Note 4)	22
2N3646		Same a	s PN364	16																22
MPS3646		Same a	s PN364	16																22
PN3646	TO-92 (92)	40*	15	5	500*	20	15 20 30	120	300 100 30	1 0.5 0.4	0.2 0.28 0.5	0.75	0.95 1.2 1.7	30 100 300	5	350	30	28	(Note 3)	22
2N3252	TO-39	60	30	5	500	40	25 30 30	90	1A 500 150	5 1 1	0.3 0.5 1.0	0.7	1.0 1.3 1.8	150 500 1A	12	200	50	70	(Note 7)	25
2N3253	TO-39	75	40	5	500	60	20 25 25	75	750 375 150	5 1 1	0.35 0.6 1.2	0.7	1.0 1.3 1.8	150 500 1A	12	175	50	70	(Note 7)	25

Saturat	ted S	Switch	nes (Continued)	,
---------	-------	--------	-------	------------	---

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)		FE @ Max	I _C (mA)	& V _{CE} & (V)	V _{CE(SAT)} (V) & Max	. ^	(SAT) /) Max	I_{C} $(I_{B} = \frac{I_{C}}{10})$	C _{ob} (pF) Max	(M	T IC Hz) @ (mA) Max	t _(off) (ns) Max	Test Conditions	Process No.
2N3724	TO-39	50	30	6	1.7 μΑ	40	30		1A	5	0.32		1.1	300		300	50	60	(Note 7)	25
							25		800	2	0.40		4.0	500	12					
							35		500 300	1	0.42 0.65	0.9	1.2 1.5	800						
							40 60	150	100	1	0.65		1.5	800						
							30	150	10	1	0.75		1.7	1A						
2N3724A	TO-39	50	30	6	500	40	25		1.5A	5	0.32		1.1	300	12	300	50	50	(Note 8)	25
21101247	10-00	50	00	Ŭ	500	70	30		1A	5	0.02		•••	500					(
							30		800	2	0.42		1.2							
							35		500	1										1
							40		300	1	0.65		1.3	800				60	(Note 7)	
							60	150	100	1]
							30		10	1	0.75		1.4	1A						
2N3725	TO-39	80	50	6	1.7 μΑ	60	25		1A	5	0.4		1.1	300	10	300	50	60	(Note 7)	25
							20		800	2	0.52	0.9	1.2	500						
							35		500	1	0.0		1.5	800						
,							40 60	150	300 100	1 1	8.0		1.5	1A						
							30	130	100	1	0.95		1.7	1/1						
2N3725A	TO-39	80	50	6	500	60	20		1.5A	5	0.4		1.1	300	10		50	50	(Note 8)	25
ZN31Z3A	10-39	80	50	۰	500	00	25		1.5A	5	0.4			500	10		50 ,	00	(11010-0)	
							25		800	2	0.52		1.2	500						
							35		500	1	0.8		1.3	800						
							40		300	1										
							60	150	100	1	0.9		1.4	1A				60	(Note 7)	
							30		10	1										
2N4047	TO-39	80	50	6	1.7 μΑ	60	15		1A	5	0.4		1.1	300	10	250	50	60	(Note 7)	25
							15		800	2	0.50			500						İ
							20		500	1	0.52 0.8	0.9	1.2 1.5	500 800						
							30 40	150	300 100	1	0.8		1.5	800						
							20	150	100	1	0.95		1.7	1A						

ယှ

Saturated Switches (Continued)

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) Max	& ((SAT) V) Max	$ \begin{array}{c} I_{\mathbf{C}} \\ \text{(mA)} \\ (I_{\mathbf{B}} = \frac{I_{\mathbf{C}}}{10}) \end{array} $	C _{ob} (pF) Max	f _T (MHz) Min Ma	_@ (c (mA)	t _(off) (ns) Max	Test Conditions	Process No.
2N6737	TO-237 (91)	80	45	6	1.7 μΑ	60	35		500	1	0.52	0.8	1.1	500	10	300	50	60	(Note 7)	25
MPQ3724	TO-116 (39)	50*	36	6	1.7 μΑ	40	30 35 60	150	1A 500 100	5 1	0.75 0.45		1.7	500 1A	12	300	50	60	(Note 7)	25
MPQ3725	TO-116 (39)	80*	50	6	1.7 μΑ	60	25 35		1A 500	5 1	0.95		1.7	500	10	250	50	60	(Note 7)	25
TN3724	TO-237	50	30	6	1.7 μΑ	40	60 30	150	100 1A	1 5	0.52 0.25		1.2 0.76	1A 10	12	300	50	60	(Note 7)	25
	(91)						25 35 40		800 500 300	2 1 1	0.2 0.32 0.42	0.9	0.86 1.1 1.2	100 300 500						
							60 30	150	100 10	1 1 1	0.42 0.65 0.75	0.5	1.2 1.5 1.7	800 1A						
TN3725	TO-237 (91)	80	50	6	1.7 μΑ	60	25 20 35		1A 800 500	5 2 1	0.25 0.26 0.4		0.76 0.86 1.1	10 100 300	10	300	50	60	(Note 7)	25
		-					40 60 30	150	300 100 10	1 1 1	0.25 0.8 0.9	0.9	1.2 1.5 1.7	500 800 1A						

TEST CONDITIONS:

Note 1: $\rm V_{CC}=3V,\,I_{C}=10$ mA, $\rm I_{B}{}^{1}=3$ mA, $\rm I_{B}{}^{2}=1.5$ mA.

Note 2: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B^1 = 3$ mA, $I_B^2 = 1$ mA.

Note 3: $V_{CC} = 10V$, $I_C = 300$ mA, $I_B{}^1 = I_B{}^2 = 30$ mA.

Note 4: $V_{CC} = 2V$, $I_C = 30$ mA, $I_{B}^{1} = I_{B}^{2} = 3$ mA.

Note 5: $V_{CC} = 25V$, $I_C = 300$ mA, $I_B{}^1 = I_B{}^2 = 30$ mA. Note 6: $V_{CC} = 25V$, $I_C = 500$ mA, $I_B{}^1 = I_B{}^2 = 50$ mA.

Note 7: $V_{CC} = 30V$, $I_C = 500$ mA, $I_B{}^1 = I_B{}^2 = 50$ mA.

Note 8: $V_{CC} = 30V$, $I_C = 1A$, $I_{B}^1 = I_{B}^2 = 100$ mA.

Note 9: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B{}^1 = I_B{}^2 = 1$ mA.

Note 10: $V_{CC} = 10.7V$, $I_C = 1A$, $I_B^1 = I_B^2 = 100$ mA.

Note 11: $V_{CC} = 3V$, $I_C = 10$ mA, $I_{B}{}^1 = I_{B}{}^2 = 3$ mA.

Note 12: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B{}^1 = I_B{}^2 = 3.3$ mA.

Low Level Amplifiers

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB} (V)	h Min	FE Max	[@] I _C &	V _{CE} (V)	V _{CE(SAT)} (V) 8 Max	· ('	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Max		NF (dB) Max	Test Conditions	Process No.
2N929	TO-18	45	45	5	10	45	60 40	350 120	10 500 μΑ 10 μΑ	5 5 5	1.0	0.6	1.0	10	8	30	0.5	4	(Note 1)	07
2N929A	TO-18	60	45	6	2	45	60 40 25	350 120	10 500 μΑ 10 μΑ 1 μΑ	5 5 5 5	0.5	0.7	0.9	10	6	45	0.5	4		07
2N930 Avail. JAN/TX/V Versions	TO-18	45	45	5	10	45	150 100	600 300	10 500 μΑ 10 μΑ	5 5 5	1.0	0.6	1.0	10	8	30	0.5	3	(Note 1)	07
2N2484	TO-18	60	60	6	10	45	250 200 175 100 30	500	1 500 μΑ 100 μΑ 10 μΑ 1 μΑ	5 5 5 5	0.35			1	10	15	0.05	3	(Note 1)	07
2N3117	TO-18	60	60	6.	10	45	400 300 250 100		1 100 μΑ 10 μΑ 1 μΑ	5 5 5 5	0.35			1	4.5	60	0.5	1.5	(Note 2)	07
2N3246	TO-18	60	40	10	1	40	400 350 300 200 150	800	10 1 500 μΑ 100 μΑ 10 μΑ 1 μΑ	5 5 5 5 5	0.5	0.7	0.9	5	5	60 180	1	2	(Note 1)	07
2N3565		Same	as PN35	65																11
2N3707	TO-92 (94)	30	30	6	100	20	100	400	100 μΑ	5	1.0			10				5	(Note 1)	11
2N3708	TO-92 (94)	30	30	6	100	20	45	660	1	5	1.0			10						11

မှ

Low Level Amplifiers (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Max	_@ V _{СВ} (V)		FE Max	[®] (mA) &	V _{CE} (V)	V _{CE(SAT)} (V) & Max	٠ ((SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) @ Max	I _C (mA)	NF (dB) Max	Test Conditions	Process No.
2N3709	TO-92 (94)	30	30		100	20	45	165	1	5	1.0			10							11
2N3710	TO-92 (94)	30	30	6	100	20	90	330	1	5	1.0			10							11
2N3711	TO-92 (94)	30	30	6	100	20	180	660	1	5	1.0			10							11
2N3858A	TO-92 (94)	60	60	6	500	18	60 45	120	10 1	1					4	90	250	2			11
2N3859A	TO-92 (94)	60	60	6	500	18	100 75	200	10 1	1					4	90	250	2			11
2N3877	TO-92 (94)	70	70	4	500	70	20	250	2	4.5		0.5	0.9	10							11
2N3877A	TO-92 (94)	85	85	4	500	70	20	250	2	4.5		0.5	0.9	10							11
2N3900A	TO-92 (94)	18	18	5	100	18	250	500	2	4.5					12				5	(Note 4)	11
2N3901	TO-92 (94)	18	18	5	100	15	350	700	2	4.5									5	(Note 4)	11
2N4286	TO-92 (94)	30	25	6	50	25	150 100	600	1 100 μA	5 5	0.35		0.8	1	6	40		1			11
2N4287	TO-92 (94)	45	45	7	10	30	150 100	600	1 100 μA	5 5	0.35		0.8	1	6	40		1	5	(Note 1)	11
2N4409	TO-92 (92)	80	50	5	10	60	60 60	400	10 1	1 1	0.2		8.0	1	12	60	300	10			11
2N4410	TO-92 (92)	120	80	5	10	100	60 60	400	10 1	1 1	0.2		0.8	1	12	60	300	10			11
2N4966	TO-92 (92)	50	40	6	25	25	40 50	200	0.01 10	5 5	0.4			10	6	40		1			11
2N4967	TO-92 (92)	50	40	6	25	25	100 120	600	0.01 10	5 5	0.4			10	6	40		1			11
2N4968	TO-92 (92)	30	25	6	50	25	40 50	200	0.01 10	5 5	0.4			10	6						11

NPN Transistors

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB}	h _l Min	FE Max	[@] (mA) &	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{ob} (pF) Max	f _T lc (MHz) @ (mA) Min Max	NF (dB) Max	Test Conditions	Process No.
2N5088	TO-92 (92)	35	30		50	20	300 350 300	900	10 1 100 μΑ	5 5 5	, 0.5		10	4		3	(Note 3)	11
2N5089	TO-92 (92)	30	25		50	15	400 450 400	1200	10 1 100 μA	5 5 5	0.5		10	4		2	(Note 3)	11
2N5133		Same a	s PN51	33							•							11
2N5209	TO-92 (92)	50	50		50	35	150 150 100	300	10 1 100 μΑ	5 5 5	0.7		10	4	30 0.5	4	(Note 5)	11
2N5210	TO-92 (92)	50	50		50	35	250 250 200	600	10 1 100 μΑ	5 5 5	0.7		10	4	30 0.5	3	(Note 4)	11
2N5232	TO-92 (94)		50		30	50	250	500	2	5	0.125		10	4				11
2N5961	TO-92 (92)	60	60	8	2	45	100 120 135 150	700	0.01 0.1 1	5 5 5	0.2		10	4	100 10	6 3 3	(Notes 7 & 11) (Note 10) (Note 12)	11
2N5962	TO-92 (92)	45	45	8	2	30	450 500 550 600	1400	0.01 0.1 1	5 5 5	0.2		10	4	100 10	6 4 8 3 3	(Note 7) (Note 8) (Note 9) (Note 10) (Note 12)	11
2N5232A	TO-92 (94)		50		30	50	250	500	2	5	0.125		10	4		5	(Note 2)	11
MPS3707	TO-92 (92)		30		100	20	100	400	100 μΑ	5	1.0		10			5	(Note 4)	11
MPS3708	TO-92 (92)		30		100	20	45	660	1	5	1.0		10					11
MPS3709	TO-92 (92)		30		100	20	45	165	1	5	1.0		10					11
MPS3710	TO-92 (92)		30		100	20	90	330	1	5	1.0		10					11

3-10

		×		
4	п	ь	٦	
-	-	Ξ.		

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) (Max	(V)	h _i Min	FE Max	@(mA) &	V _{CE} (V)	V _{CE(SAT)} (V) & Max		SAT) ') @ Max	I _C (mA)	C _{ob} (pF) Max	(M	^f ⊤ 'Hz)	I _C (mA)	NF (dB) Max	Test Conditions	Process No.
MPS3711	TO-92 (92)		30		100	20	180	660	1	5	1.0			10			· ·				11
MPS6571	TO-92 (92)	25	20	3	50	20	250	1000	100 μΑ	5	0.5			10	4.5	50		0.5			11
MPSA09	TO-92 (92)	50	50		100	25	100	600	100 μΑ	5	0.9			10	5	600		0.5			11
MPSA18	TO-92 (92)	45	45	6.5	50	30	400 500 500 500	1500	0.01 0.1 1 10	5 5 5 5	0.3			50	3	100		1	1.5	(Note 4)	11
PE4020	TO-92 (92)	60	60	8	2	45	150 135 120 100	950	10 1 0.1 0.01	5 5 5	0.3			50	4	100	800	10	6 3 3	(Note 9) (Note 7) (Note 10)	11
PN930	TO-92 (92)	45	45	5	10	45	150 100	600 300	10 500 μΑ 10 μΑ	5 5 5	1.0	0.6	1.0	10	8	30		0.5	3	(Note 1)	11
PN2484	TO-92 (92)	60	60	6	10	45	250 200 175 100 30	600 500	10 1 500 μΑ 100 μΑ 10 μΑ 1 μΑ	5 5 5 5 5	0.35			10	6				3	1	11
PN3565	TO-92 (92)	30	25	6	50	25	150	600	1	10	0.35			1	4	40	240	1			11
PN5133	TO-92 (92)	20	18	3	50	15	60	1000	1	5	0.4			1	5	40	240	1			11

Note 1: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 10 Hz - 15.7 kHz.

Note 2: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 1 kHz.

Note 3: $I_C = 5 \mu A$, $V_{CE} = 5V$, f = 1 kHz.

Note 4: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 10 Hz - 15.7 kHz.

Note 5: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 10 kHz.

Note 6: $I_{\hbox{\scriptsize C}}=$ 100 $\mu\hbox{\scriptsize A},\,V_{\hbox{\scriptsize CE}}=$ 5V, f= 5 kHz.

Note 7: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 1 kHz, $R_S = 1 \text{ k}\Omega$.

Note 8: I_C = 100 μ A, V_{CE} = 5V, f = 1 kHz, R_S = 10 k Ω .

Note 11: $I_C/I_B = 20$.

Note 12: $I_C = 10~\mu\text{A}$, $V_{CE} = 5\text{V}$, f = 10~Hz - 10~kHz, $R_S = 10~\text{k}\Omega$.

Note 9: $I_{C}=$ 100 $\mu\text{A},\,V_{CE}=$ 5V, f= 1 kHz, $R_{S}=$ 100 $k\Omega.$

RF Amplifiers and Oscillators

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA)	[©] (V)	h Min	FE Max	[@] (mA) ⁸	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(S} (V) Min) ં @	l _C (mA)	C _{ob} , (p Min			T Hz) @ Max	I _C (mA)	NF (dB) Max	Freq (MHz)	Process No.
2N2857	TO-72	30	15	2.5	10	15	30	150	3	1						1	1000	1900	5	4.5	450	40
2N3478	TO-72	30	15	2	20	1	25	150	2	8						1	750	1600	5	4.5	200	40
2N3600	TO-72	30	15	3	10	15	20	150	3	1						1	850	1500	5	4.5	200	40
2N3932	TO-72	30	20	2.5	10	15	40	150	2	8						0.55	750	1600	2	4.5	200	40
2N3933	TO-72	40	30	2.5	10	15	60	200	2	8						0.55	750	1600	2	4	200	40
2N4259	TO-72	40	30	2.5	10	15	60	250	2	8						0.55	750	1600	2	5	450	40
2N5179	TO-72	20	12	2.5	20	15	25	250	3	1	0.4		1.0	10		1	900	2000	5	4.5	200	40
2N5180	TO-72	30	15	2	500	8	20	200	2	8						1	650	1700	2			40
MRF501	TO-72	25	15	3.5	50	1	30	250	1	6							600		5			40
MRF502	TO-72	35	15	3.5	20	1	40	170	1	6							800		5			40
PN5179	TO-92 (92)	20	15	2.5	2	15	25	250	3	1	0.4		1.0	10		1.0	900	2000	5	4.5	200	40
MPS6539	TO-92 (91)	20	20	3	50	15	20		4	10						0.7	500		4	4.5	100	42
MPS6548	TO-92 (91)	30	25	3	100	25	25		4	10	0.5		0.95	4		0.7	650		4			42
MPSH10	TO-92 (91)	30	25	3	100	25	60		4	10	0.5			4	0.35	0.65	650		4			42
2N917	TO-72	30	15	3	1	15	20		3	1	0.5		0.87	3		3	500		4	6	60	43
2N918	TO-72	30	15	3	10	15	20		3	1	0.4		1.0	10		3	600		4	6	60	43
2N3563		Same a	s PN356	3																		43
2N3564		Same a	s PN356	4																		43
2N3662	TO-92 (94)	18	12	3	500	15	20		8	10					0.8	1.7	700	2100	5	6.5	60	43

RF Amplifiers and Oscillators (Continued)

							,														
Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) (Max	[®] (V)	h Min	FE (I _C &	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Max	_@ I _C (mA)	C _{ob} (p Min	/C _{ro})F) Max		f _T Hz) @ Max	I _C (mA)	NF (dB) Max	Freq @(MHz)	Process No.
2N3663	TO-92 (94)	30	12	3	500	15	20		8	10				0.8	1.7	700	2100	5	6.5	60	43
2N3825	TO-92 (94)	30	15	4	100	15	20		2	10	0.25		2		3.5	200	800	2	5.5	1	43
2N4292	TO-92 (94)	30	15	3	500	15	20		3	1	0.6		10		3.5	600		4	6	60	43
2N4293	TO-92 (94)	30	15	3	500	15	20		3	1	0.6		10		3.5	600		4	6	60	43
2N5130		Same a	s PN513	0																	43
2N5770	TO-92 (92)	30	15	4.5	10	15	50 20	200	8 3	10 1	0.4	1.0	10	0.7	1.1	900	1800	8	6	60	43
MPS918	TO-92 (92)	30	12	3	10	15	20		3	1	0.4	1.0	10	3	,	600		4	6	60	43
MPS3563		Same a	s PN356	3																	43
MPS6507	TO-92 (92)	30*	20		5	15	25		2	10					2.5	700		10			43
MPS6511	TO-92 (92)	30*	20		50	15	25		10	10					2.5						43
MPS6541	TO-92 (92)	30*	20	4	50	15	25		4	10					1.7	600	1500	4			43
MPS5770	TO-92 (92)	30	15	4.5	10	15	50 80	200	8 3	1 1	0.4	1.0	10			800	1800	8			43
PN918	TO-92 (92)	30	15	3	10	15	20		3	1	0.4	1.0	10		1.7	600		4	6	60	43
PN3563	TO-92 (92)	30	15	2	50	15	20	200	8	10					1.7	600	1500	8			43
PN3564	TO-92 (92)	30	15	4	50	15	20	500	15	10	0.3	0.97	20		3.5	400	1200	15			43

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) (Max	V _{CB} (V)	h Min	FE (I _C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Max	e (mA)		/C _{ro} F) Max		T Hz) @ Max	I _C (mA)	NF (dB) Max	Freq @(MHz)	Process No.
PN5130	TO-92 (92)	30	12	1	50	10	15	250	8	10	0.6	1.0	10		1.7	450		8		-	43
2N4134	TO-72	30	30	3	50	10	25	200	4	5					0.5	350	800	4	2.5	60	44
2N4135	TO-72	30	30	3	50	10	25	200	4	5					0.5	425	800	4	5	450	44
MPS6568A	TO-92	20	20	3 :	50	10	20	200	4	5	0.3	0.96	10		0.65	375	800	4	3.3	200	44
MPS6569	TO-92	20	20	3	50	10	20	200	4	5	3	0.96	10	0.25	0.5	300	800	4	6	45	44
MPS6570	TO-92	20	20	3	50	10	20	200	4	5	3	0.96	10	0.25	0.5	300	800	4	6	45	44
MPSH30	TO-92	20	20	3	50	10	20	200	4	5	0.3	0.96	10		0.65	300	800	4	6	45	44
MPSH31	TO-92	20	20	3	50	10	20	200	4	5	0.3	0.96	10	-	0.65	300	800	4	6	45	44
SE5020	TO-72	20	20	3	50	10	20	200	4	-5	3.0	0.96	10	0.25	0.5	375	800	4	3.3	200	44
SE5021	TO-72	20	20	3	50	10	20	200	4	5	3.0	0.96	10	0.25	0.5	375	800	4	4	200	44
SE5022	TO-72	20	20	3	50	10	20	200	4	5	3.0	0.96	10	0.25	0.5	300	800	4		·	44
SE5023	TO-72	20	20	3	50	10	20	200	4	5	3.0	0.96	10	0.25	0.5	300	800	4	6	45	44
SE5024	TO-72	20	20	3	50	10	20	200	4	5	3.0	0.96	10	0.25	0.5	300	800	4	6	45	44
SE5050	TO-72	20	20	3	50	10	20	200	4	5	3.0	0.96	10	0.25	0.5	300		4	4	100	44
SE5051	TO-72	20	20	3	50	10	20	200	4	5	3.0	0.96	10	0.25	0.5	300		4			44
SE5052	TO-72	20	20	3	50	10			,		3.0		10			375		4	4	200	44
MPS6542	TO-92 (96)	30*	20	,	50	15	25		2	10					1.5	700		10			47
MPS6543	TO-92 (96)	35	20	3	100	25	25		4	10	0.35	0.05	10		1	750		4			47
MPS6546	TO-92 (96)	35	25	3	100	25	20		2	10	0.35		10		0.45	600		2			47
MPS6547	TO-92 (96)	35	25	3	100	25	20		2	5	0.35		10		0.35	600		2		-	47
MPSH11	TO-92 (96)	30	25	3	100	25	60		4	10	0.5		4	0.6	0.9	650	4				47

RF Amplifiers and Oscillators (Continued)

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Max	_@ V _{СВ} (V)	h Min	FE Max	[@] (mA) ^{&}	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} I _C (V) @ (mA)	C _{ob} /C _{ro} (pF) Min Max	(M	f _T I _C IHz) @ (mA) Max	NF (dB) Max	Freq @ (MHz)	Process No.
MPSH19	TO-92 (96)	30	25	3	100	15	45		4	10			0.65	300	4			47
MPSH24	TO-92 (96)	40	30	4	50	15	30		8	10			0.36	400	8			47
MPSH34	TO-92 (96)	45	45	4	50	30	15 40		20 7	2 15	0.5	20	0.32	500	15			47
TIS86	TO-92 (96)	30	30		100	15	40	200	4	10	0.5	15	0.45	500	4	5	200	47
TIS87	TO-92 (96)	45	45		100	15	30	150	12	12	0.5	15	0.45	500	12			47
MPS6540	TO-92 (96)	30	30	4	100	25	25		2	10	0.5	10	0.65	350	2			49
MPS6544	TO-92 (96)	60	45	4	500	35	20		30	10	0.5	30	0.65					49
MPS6567	TO-92 (96)		40	5	500	35	25		10	5	0.5	10	0.7					49
MPSH20	TO-92 (96)	40	30	4	50	15	25		4	10		0.95 10	0.65	400	4			49
MPSH37	TO-92 (96)		40	5	500	35	25		5	10	0.5	10	0.7	300	5			49

General Purpose Amplifiers and Switches

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) (Min	V _{CB} (V)	h Min	FE @ Max	I _C (mA)	& ^V CE (V)	V _{CE(SAT)} (V) & Max) ،	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max		f _T Hz) Max		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N2712	TO-92 (94)	18	18	5	500	18	75	225	2	4.5					12	90	300	2				10
2N2714	TO-92 (94)	18	18	5	500	18	75	225	2	4.5	0.3	0.6	1.2	50								10
2N2923	TO-92 (94)	25	25	. 5	100	25	90	180 (1 k	2 (Hz)	10					10							10
2N2924	TO-92 (94)	25	25	5	100	25	150	300 (1 k	2 (Hz)	10					10							10
2N2925	TO-92 (94)	25	25	5	100	25	235	470 (1 k	2 (Hz)	10					10							10
2N2926	TO-92 (94)	18	18	5	500	18	35	470 (1 k	2 (Hz)	10					10							10
2N3390	TO-92 (94)	25	25	5	100	18	400	800	2	4.5		·			10							10
2N3391	TO-92 (94)	25	25	5	100	18	250	500	2	4.5					10					5	(Note 5)	. 10
2N3392	TO-92 (94)	25	25	5	100	18	150	300	2	4.5		,			10						`	10
2N3393	TO-92 (94)	25	25	. 5	100	18	90	180	2	4.5					10							10
2N3394	TO-92 (94)	25	25	5	100	18	55	110	2	4.5		;			10							10
2N3395	TO-92 (94)	25	25	5	100	18	150	500	2	4.5	-				10						,	10

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) © Min	V _{CB} (V)		FE @ Max	I _C (mA)	& ^V CE (V)	V _{CE(SAT)} (V) 8 Max	V _{BE} (' Min	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	f- (Mi Min	- - z) @	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N3396	TO-92 (94)	25	25	5	100	18	90	500	2	4.5					10			·		·		10
2N3397	TO-92 (94)	25	25	5	100	18	55	500	2	4.5					10							10
2N3398	TO-92 (94)	25	25	5	100	18	55	800	2	4.5					10							10
2N3414	TO-92 (94)	25	25	5	100	25	75	225	2	4.5	0.3	0.6	1.3	50								10
2N3415	TO-92 (94)	25	25	5	100	25	180	540	2	4.5	0.3	0.6	1.3	50								10
2N3416	TO-92 (94)	50	50	5	100	25	75	225	2	4.5	0.3	0.6	1.3	50								10
2N3417	TO-92 (94)	50	50	5	100	25	180	540	2	4.5	0.3	0.6	1.3	50								10
2N3641		Same a	s PN364	41											•							10
2N3642		Same a	s PN364	1 2																		10
2N3643		Same a	s PN364	43							***************************************											10
2N3693		Same a	s PN369	93	****																	10
2N3694		Same a	s PN369	94			Market States I and Comme													-		10
2N3721	TO-92 (94)	18	18	5	500	18	60	660 (1 k	2 Hz)	10					12							10
2N3859	TO-92 (94)	30	30	4	500	18	100	200	2	4.5					4	90	250	2				10
2N3860	TO-92 (94)	30	30	4	500	18	150	300	2	4.5					4	90	250	2				10
2N4140		Same a	ıs PN414	40	-																	10
2N4141		Same a	s PN414	41																		10
2N4424	TO-92 (94)	40	40	5	100	25	180	540	2	4.5	0.3	0.6	1.3	50								10
2N4969		Same	s PN22	21																		10

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) [©] Min	V _{CB}	h Min	FE Max	@ I _C (mA) ⁸	V _{CE}	V _{CE(SAT} (V) Max		(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Ma	/mAl	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N4970	TO-92 (92)	50	30	5			100 70 50	350	150 10 150	10 10 1	0.4	0.6	1.2	150	8	200	20				10
2N5127		Same a	as PN51	27											_						10
2N5128		Same a	as PN51	28																	10
2N5129		Same a	as PN51	29																	10
2N5131		Same a	as PN51	31							·····										10
2N5132		Same a	as PN51	32												·					10
2N5135		Same a	as PN51	35					_												10
2N5136		Same a	as PN51	36									,								10
2N5137		Same a	s PN51	37		_														_	10
2N5172	TO-92 (94)	25	25	5	100	25	100	500	10	10	0.25			10	10						10
2N5219	TO-92 (94)	20	15	3	100	10	35	500	2	10	0.4		1.0	10	4	150	10				10
2N5223	TO-92 (92)	25	20	3	100	10	50	500	2	10	0.7		1.2	10	4	150	10				10
MPQ100	TO-116 (39)	75	45	6	50	60	80 100 100 100	450 350	0.1 10 100 150	1 1 1	0.2 0.4		0.85 1.0	10 200	4.5	250	20		4	(Note 12)	10
MPQ2222	TO-116 (39)	60	40	5	50	50	75 100 30		10 150 300	10 10 10	0.4 1.6		1.3 2.6	150 300	8	200	20				10
MPS2923	TO-92 (92)	25	25	5	500	25	90	180	2	10					12						10
MPS2924	TO-92 (92)	25	25	5	500	25	150	300	2	10					12					,	10
MPS2925	TO-92 (92)	25	25	5	500	25	235	470	2	10					12						10

3-18

ω
Ξ
6
_

General Purpose Amplifiers and Switches (Continued) V_{CBO} **VCEO VEBO** (nA) @ V_{CB} Ісво V_{CE(SAT)} V_{BE(SAT)} Cob toff Case h_{FE} $^{@}$ $^{I}_{C}$ $^{V}_{CE}$ Min Max (mA) * (V) Type Test **Process** (V) (V) (V) (V) (pF) (MHz) @ (dB) (ns) No. Style (V) **Conditions** No. Min Min Min Min Max Min Max Max Min Max Max Max TO-92 MPS2926 5 470 2 25 500 18 35 10 12 10 (92)(1 kHz) (5 Groups) MPS3392 TO-92 25 5 25 100 18 150 300 2 4.5 10 10 (92)MPS3393 TO-92 25 100 18 90 180 2 4.5 10 10 (92)MPS3394 TO-92 25 100 18 55 110 2 4.5 10 10 (92)MPS3395 TO-92 25 100 18 150 500 2 4.5 10 10 (92) MPS3396 TO-92 25 10 10 100 18 90 500 2 4.5 (92) MPS3397 TO-92 25 2 10 100 18 55 500 4.5 10 (92)MPS3398 TO-92 25 100 18 800 2 4.5 10 10 55 (92)MPS3693 TO-92 45 45 4 50 35 40 160 10 10 10 200 10 (Note 9) 10 (92) MPS3694 TO-92 45 45 4 50 35 100 400 10 10 10 200 10 (Note 9) 10 (92)MPS3903 TO-92 60 40 6 0.2 0.65 0.85 200 10 20 0.1 1 10 (Note 8) 10 35 (92)1 50 150 10 1 30 50 1 15 100 1 0.3 1.0 50 TO-92 40 6 40 0.1 0.2 200 10 (Note 8) 10 MPS3904 0.65 0.85 (92)70 1 100 300 10 1 60 50 1 10 100 1 0.3 1.0 50 MPS5172 TO-92 25 25 5 100 25 100 500 10 10 0.25 10 10 10 (92)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) (Min	_® (V)	h Min	FE Max	l _C &	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} k (V) @ Min Max	(mA)	C _{ob} (pF) Max	(M	T Hz) Max	/m / \	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MPS6520	TO-92 (92)		25	4	50	30	200 100	400	2 100 μA	10 10	0.5		50	4					3	(Note 10)	10
MPS6521	TO-92 (92)		25	4	50	30	200 150	600	2 100 μA	10 10	0.5		50	4					3	(Note 10)	10
MPS6566	TO-92 (92)	60	45	4	100	30	100	400	2	10	0.4		10	4	200		10				10
MPS6573	TO-92 (92)		35		100	35	100 200	500	100 μA 10	5 5	0.5		10	12	100	300	10				10
MPS6574	TO-92 (92)		35		100	35	100 (4 Gr	300 oups)	1	5	0.5		10	12	100	300	10				10
MPS6575	TO-92 (92)		45		100	45	100 200	500	100 μA 10	5 5	0.5		10	12	100	300	10		,		10
MPS6576	TO-92 (92)		45		100	45	100 (4 Gr	300 oups)	1	5	0.5		10	12	100	300	10				10
MPS8098	TO-92 (92)	60	60	6	100	60	100 100 75	300	1 10 100	5 5 5	0.3		100	6	150		10			,	10
MPS8099	TO-92 (92)	80	80	6	100	60	100 100 75	300	1 10 100	5 5 5	0.3		100	6	150		10				10
MPSA10	TO-92 (92)		40	4	100	30	40	400	5	10				4	50		5				10
MPSA20	TO-92 (92)		40	4	100	30	40	400	5	10				4	125		5			-	10
PN100	TO-92 (92)	75	45	6	50	60	80 100 100 100	450 350	0.1 10 100 150	1 1 1 5	0.2	0.85 1.0	10 200	4.5	250		20		4	(Note 12)	10
PN100A	TO-92 (92)	75	45	6	50	60	300 100 220	600	10 100 0.1	1 1 5	0.2	0.85		4.5	250		20		4	(Note 12)	10

General Purpose Amplifiers and Switches (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Min	_@ V _{CB} (V)	h _i Min	FE Max	[@] (mA) &	V _{CE}	V _{CE(SAT)} (V) Max	& ('	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	f _T (MH Min	lz) @ 'C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
PN101	TO-92 (92)		65	6	50										4	150	20				10
PN2221	TO-92 (92)	60	30	5	10	50	20 20 40 35 25 20	120	500 150 150 10 1 100 μΑ	10 1 10 10 10 10	0.4 1.6		1.3	150 500	8	250	20	285		(Note 2)	10
PN2221A	TO-92 (92)	75	40	6	10	60	25 20 40 35 25 20	120	500 150 150 10 1 100 μΑ	10 1 10 10 10 10	0.3 1.0	0.6	1.2 2.0	150 500	8	250	20	285		(Note 2)	10
PN2222	TO-92 (92)	60	30	5	10	50	30 50 100 75 50 35	300	500 150 150 10 1 100 μΑ	10 1 10 1 1	0.4 1.6		1.3 2.6	150 500	8	250	20				10
PN3641	TO-92 (92)	60	30	5	50*	50	15 40	120	500 150	10 10	0.22			150	8	250	50				10
PN3642	TO-92 (92)	60	45	5	50*	50	15 40	120	500 150	10 10	0.22			150	8	250	50				10
PN3643	TO-92 (92)	60	30	5	50*	50	20 100	300	500 150	10 10	0.22			150	8	250	50				10
PN3694	TO-92 (92)	45	45	4	50	30	100	400	10	1					6	200	10				10
PN4140	TO-92 (92)	60	30	5			20 20 40 35 25 20	120	500 150 150 10 1 100 μΑ	10 1 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	250	20	310		(Note 2)	10

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Min	_® (V)		FE Max	@ I _C &	V _{CE} (V)	V _{CE(SAT)} (V) & Max		(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max		T Hz) @ Max	l _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
PN4141	TO-92 (92)	60	30	5			30 50 100 75 50 35	300	500 150 150 10 1 100 μΑ	10 1 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	250		20	310		(Note 2)	10
PN5127	TO-92 (92)	20	12	3	50	10	15	300	2	10	0.3		1.0	10	4	150		2				10
PN5128	TO-92 (92)	15	12	3	50	10	35 20	350	50 10	10 10	0.25		1.1	150	10	200	800	50				10
PN5129	TO-92 (92)	15	12	3	50	10	35 20	350	50 10	10 10	0.25		1.1	150	10	200	800	50				10
PN5131	TO-92 (92)	20	15	3	50	10	35	500	10	1	1.0			10	6	100		10				10
PN5132	TO-92 (92)	20	20	3	50	10	30	400	10	10	2.0		0.9	10	4	200		10				10
PN5135	TO-92 (92)	30	25	4	300	15	50 15	60*	10 2	10 10	1.0		1.0	100	25	40	500	30				10
PN5136	TO-92 (92)	30	20	3	100	20	20 20	400	150 30	1	0.25		1.1	150	35	40	400	50				10
PN5137	TO-92 (92)	30	20	3	100	20	20 20	400	150 30	1 1	0.25		1.1	150	35	40	400	50				10
TIS90	TO-92 (94)	40	40	5	100	20	100	300	50	2	0.25	0.6	1	50								10
TIS92	TO-92 (97)	40	40	5	100	20	100	300	50	2	0.25	0.6	1	50								10
TIS97	TO-92 (97)		40		10	40	250	700	0.1	5										3	(Note 7)	10
TIS98	TO-92 (97)		60		10	40	100	300	. 1	5	0.5			100		2		10				10
TIS99	TO-92 (97)		65		10	40	55	300	100	5	0.5			100		2		10				10

General Purpose Amplifers and Switches (Continued)

				P					(CONTINUE	<u></u>												
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Min	(V) (V)		FE Max	[@] (mA) &	V _{CE} (V)	V _{CE(SAT)} (V) Max	& ((SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	(M Min	t Hz) Max	[@] (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
TN2218A	TO-237	75	40	6	10	60	25		500	10	0.3	0.6	1.2	150	8	250		20	285		(Note 2)	10
	(91)						20		150	1												
							40	120	150	10												
							35		10	10												
				ļ	l		25		1	10												
							20		100 μΑ	10											·	
TN2219	TO-237	60	30	5	10	50	30		500	10	0.4		1.3	150	8	250		20				10
	(91)		1				50		150	1												
							100	300	150	10	1.6		2.6	500								
					l		75		10	10												
							50 35		1	10												
									0.1	10												
TN2219A	TO-237	75	40	6	10	60	40		500	10	0.3	0.6	1.2	150	8	250		20		4	(Note 3)	10
	(91)				İ		50		150	1												
							100	300	150	10	1.0		2.0	500								
							75 50		10	10												
							35		1 0.1	10 10												
	=0.00						 															
2N3704	TO-92 (94)	50	30	5	100	20	100	300	50	2	0.6			100	12	100		50				13
2N3705	TO-92	50	30	5	100	20	50	150	50	2	8.0			100	12	100		50				13
	(94)																					
2N3706	TO-92 (94)	40	20	5	100	20	30	600	50	2	1.0			100	12	100		50				13
2N3794	TO-92	40	20	5	500	15	100		100	10	0.4			10	10	100	600	10				13
	(94)						100	600	10	10												
							35		1	10												
2N4400	TO-92	60	40	6			20		500	2	0.4	0.75	0.95	150	6.5	200		20	255		(Note 2)	13
	(92)			-	1		50	150	150	1											, ,	
	, ,						40		10	1	0.75		1.2	500								
							20		1	1												

Туре	Case	V _{CBO} (V)	V _{CEO}	V _{EBO} (V)	I _{CBO} (nA)	[®] ∧CB	h _i	FE	@ lc &	V _{CE}	V _{CE(SAT}		(SAT) V) @	lc	C _{ob} (pF)		f _T IHz)	_@ lc	t _{off} (ns)	NF (dB)	Test	Process
No.	Style	Min	Min	Min	Min	ິ (V) 	Min	Max	(mA) "	(V)	Max	Min	Max	(mA)	Max		Max	(mA)	Max	Max	Conditions	No.
2N4401	TO-92 (92)	60	40	6			40 100 80 40	300	500 150 10 1	2 1 1 1	0.4 0.75	0.75	0.95 1.2	150 500	6.5	250		20	255		(Note 2)	13
							20		100 μA	1												
2N4944	TO-92 (92)	80	40	5	50	40	40 40	120	150 30	1	0.25			150		60	900	50				13
2N4946	TO-92 (92)	80	40	5	50	40	100 100	300	150 30	1	0.25			150		60	900	50				13
2N4951	TO-92 (94)	60	30	5	50	40	60 40 20	200	150 10 1	10 10 10	0.3		1.3	150	8	250		20	400		(Note 2)	13
2N4952	TO-92 (94)	60	30	5	50	40	100 75 50	300	150 10 1	10 10 10	0.3		1.3	150	8	250		20	400		(Note 2)	13
2N4953	TO-92 (94)	60	30	5	50	40	200 150 75	600	150 10 1	10 10 10	0.3		1.3	150	8	250	,	20	400		(Note 2)	13
2N4954	TO-92 (94)	40	30	5	50	30	60 40 20	600	150 10 1	10 10 10	0.3		1.3	150	8	250		20	400		(Note 2)	13
2N5220	TO-92 (92)	15	15	3	100	10	30 25	600	50 10	10 10	0.5		1.1	150	10	100		20				13
2N5225	TO-92 (92)	25	25	4	300	15	30 25	600	50 50	10 10	0.8		1.0	100	20	50		20				13
MPS3704	TO-92 (92)	50	30	5	100	20	100	300	50	2	0.6			100	12	100		50				13
MPS3705	TO-92 (92)	50	30	5	100	20	50	150	50	2	0.8			100	12			50				13
MPS3706	TO-92 (92)	40	20	5	100	20	30	600	50	2	1.0			100	12	100		50				13
MPS6522	TO-92 (92)		25	4	50	20	100 200	400	0.1 2	10 10	0.5			50	4							13

General Purpose Amplifiers and Switches (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Min	[®] (V)	h Min	FE (Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) Max	V _{BE(SAT)} & (V) (Min Max	(mA)	C _{ob} (pF) Max	(M	T Hz) ⁽ Max		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MPS6530	TO-92 (92)	60	40	5	50	40	25 40 30	120	500 100 10	10 1 1	0.5	1.0	100	5							13
MPS6531	TO-92 (92)	60	40	5	50	40	50 90 60	270	500 100 10	10 1 1	0.3	1.0	100	5							13
MPS6532	TO-92 (92)	50	30	5	100	30	30		100	1	0.5	1.2	100	5							13
PN5449	TO-92 (92)	50	30	5	100	20	100	300	50	2	0.6		100		100		50				13
PN5816	TO-92 (92)	50	40	5	100	25	100	200	2	2	0.75	1.2	500		100		50				13
2N5550	TO-92 (92)	160	140	6	100	100	20 60 60	250	50 10 1	5 5 5	0.15 0.25	1.0 1.2	10 50	6	100	300	10		10	(Note 8)	16
2N5551	TO-92 (92)	180	160	6	50	120	30 80 80	250	50 10 1	5 5 5	0.15 0.2	1.0	10 50	6	100	300	10		8	(Note 8)	16
2N5830	TO-92 (92)	120	100	5	50	100	60 80 80	500	1 10 50	5 5 5	0.15 0.2 0.25	0.8 1 1	1 10 50		100	500	10				16
2N5831	TO-92 (92)	160	140	5	50	120	60 80 80	250	1 10 50	5 5 5	0.15 0.2 0.25	0.8 1.0 1.0	1 10 50	4	100	500	10				16
2N5833	TO-92 (92)	200	180	6	10	160	50 50 50	250	1 10 50	5 5 5	0.15 0.2 0.25	0.8 1.0 1.0	1 10 50	4	100	500	10				16
MPSL01	TO-92 (92)	140	120	6	1 μΑ	40	50	300	10	5	0.2 0.2	1.2 1.4	1.0 50	8	60		10				16
PN5965	TO-92 (92)	200	180	5	50	160	50 50 50	250	1 10 50	5 5 5	0.15 0.2 0.25	0.8 1.0 1.0		4							16
2N696	TO-5	60		5	1 μΑ	30	20	60	150	10	1.5	1.3	150	20	40		50				19

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) (Min	V _{CB} (V)	h _F Min		[@] (mA) &	V _{CE} (V)	V _{CE(SAT)} (V) & Max		SAT) /) @ Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz Min N) [©] (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N697	TO-5	60	45	5	1 μΑ	30	40	120	150	10	1.5		1.3	150	35	50	50				19
2N718	TO-18	60	30	5	1 μΑ	30	40	120	150	10	1.5		1.3	150	35	50	15				19
2N718A	TO-18	75		7	10	60	20 40 35 20	120	500 150 10 100 μΑ	10 10 10 10	1.5		1.3	150	25	60	50		12	(Note 1)	19
2N956	TO-18	75	35	7	10	60	40 100 75 35 20	300	500 150 10 100 μΑ 10 μΑ	10 10 10 10 10	1.5		1.3	150	25	70	50		8	(Note 1)	19
2N1420	TO-5	60	30	5	1 μΑ	30	100	300	150	10	1.5		1.3	150	35	50	50				19
2N1566	TO-5	80	60	5	1 μΑ	40	80 (1 k	200 Hz)	5	5	1.0			10	10	60	5				19
2N2218	TO-5	60	30	5	10	50	20 20 40 35 25 20	120	500 150 150 10 1 100 μΑ	10 1 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	250	20			(Note 2)	19
2N2218A	TO-5	75	40		10	60	25 20 40 35 25 20	120	500 150 150 10 1 100 μΑ	10 1 10 10 10 10	0.3	0.6	1.2	150	8	250	20	285		(Note 2)	19
2N2219	TO-5	60	30	5	10	50	30 50 100 75 50 35	300	500 150 150 10 1 100 μΑ	10 1 10 10 10 10	0.4 1.6		1.3	150 500	8	250	20			·	19

Gener	al Purpose	• Amplifiers	and Switches	(Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Min	_@ V _{CB} (V)	h Min	FE Max	[@] (mA) &	V _{CE} (V)	V _{CE(SAT)} (V) 8 Max	V _{BE} (\ Min	(SAT) /) @ Max	I _C (mA)	C _{ob} (pF) Max	f (MI Min	Hz) @ 'C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N2219A also Avail. JAN/TX/V Versions	TO-5	75	40	6	10	60	40 50 100 75 50 35	300	500 150 150 10 1 100 μΑ	10 1 10 10 10 10		0.6	1.2	150 500	8	300	20			(Note 2)	19
2N2221	TO-18	60	30	5	10	50	20 20 40 35 25 20	120	500 150 150 10 1 1	10 1 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	250	20				19
2N2221A	TO-18	75	40	6	10	60	25 40 35 25 20	120	500 150 10 1 100 μΑ	10 10 10 10 10	0.3 1.0	0.6	2.0	150 500	8	250	20	285		(Note 2)	19
2N2222	TO-18	60	30	5	10	50	30 50 100 75 50 35	300	500 150 150 10 1 100 μΑ	10 1 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	250	20				19
2N2222A also Avail JAN/TX/V Versions	TO-18	75	40	6	10	60	40 50 100 75 50 35	300	500 150 150 10 1 100 μA	10 1 10 10 10 10	0.3	0.6	1.2	150 500	8	250	20	285	4	(Notes 2 & 3)	19
2N3299	TO-5	60	30	5	10*	50	20 20 40 35 25 20	120	500 150 150 10 1 1	10 1 10 10 10 10	0.22		1.1	150 500	8	250	50	150		(Note 4)	19

Genera	I Purpose	Amplifiers :	and Switc	hes (Continued)
--------	-----------	--------------	-----------	-----------------

	lairt	POU	7 7 111																	r		
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) (Min	V _{CB} (V)	h Min	FE Max	[®] (mA) &	V _{CE} (V)	V _{CE(SAT)} (V) 8 Max	V _{BE(S} (V) Min I	@	I _C (mA)	C _{ob} (pF) Max	f ₇ (MH Min	iz) @	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N3300	TO-5	60	30	5	10*	50	50		500	10	0.22		1.1	1.50	8	250		50	150		(Note 4)	19
							50		150	1												
							100	300	150	10												
							75		10 1	10 10	0.6		1.5	500								
							50 35		ι 100 μΑ	10												
2N3301	TO-18	60	30	5	10*	50	20		500	10	0.22		1.1	150	8	250		50	150		() ()	40
2113301	10-18	60	30	9	10	50	20		150	1	0.22		1.1	150	٥	250		50	150		(Note 4)	19
							40	120	150	10	0.6		1.5	500								
							35		10	10	• • • • • • • • • • • • • • • • • • • •											
							25		1	10												
							20		100 μΑ	10												
2N3302	TO-18	60	30	5	10*	50	50		500	10	0.22		1.1	150	8	250		50	150		(Note 4)	19
							50		150	1	÷											
							100	300	150	10	0.6		1.5	500								
							75		10	10												
							50 35		100 4	10												
					<u> </u>				100 μΑ	10												
PN2222A	TO-92	75	40	6	10	60	40		500 150	10	0.3	0.6	1.2	150	8	300		20	285	·	(Note 2)	19
	(92)						50 100	300	150	1 10	1.0		2.0	500								
							75	000	10	1	1.0		2.0	500								
							50		1	1												
						,	35		100 μΑ	1												
2N915	TO-18	70	. 50	5	10	60	50	200	10	5	1.0		0.9	10	3.5	250		10				23
2N916	TO-18	45	25	5	10	30	50	200	10	1	0.5		0.9	10	6	300		10				23
2N3691		Same a	as PN36	91																		23
2N3692		Same a	as PN36	92				,														23

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Min	V _{CB}	h _F Min	E Max	[@] (mA) &	V _{CE} (V)	V _{CE(SAT)} (V) 8 Max	k (1	(SAT) (/) @ Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Max		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N3903	TO-92 (92)	60	40	6			15 30 50	150	100 50 10	1 1 1	0.2 0.3	0.6	0.85	10 50	4	250	10	225	6	(Notes 6 & 7)	23
							35 20	150	1 100 μA	1 1	0.3		0.33	30							
2N3904	TO-92 (92)	60	40	6		30	30 60 100	300	100 50 10	1 1 1	0.2 0.3	0.65	0.85	10 50	4	300	10	250	5	(Notes 6 & 7)	23
							70 40		1 100 μA	1										- 194 W	
2N3946	TO-18	60	40	6			20 50 45 30	150	50 10 1 100 μΑ	1 1 1	0.2	0.6	0.9 1.0	10 50	4	250	10	375	5	(Notes 6 & 7)	23
2N3947	TO-18	60	40	6			40 100 90 60	300	50 10 1 100 μA	1 1 1 1	0.2	0.6	0.9	10 50	4	300	10	450	5	(Notes 6 & 7)	23
2N4123	TO-92 (92)	40	30	5	50	20	25	150	50 2	1	0.3		0.95	50	4	250	10		6	(Note 7)	23
2N4124	TO-92 (92)	30	25	5	50	20	60 120	360	50 2	1	0.3		0.95	50	4	300	10		5	(Note 7)	23
MPQ3904	TO-116 (39)	60	40	6	50	40	30 50 75		0.1 1 10	1 1 1	0.2		0.85	10	4	250	10				23
MPQ6700	TO-116 (39)	40	40	5	50	30	30 50 70		0.1 1 10	1 1 1	0.25		0.1	10	4.5	200	10				23/66
MPS2711	TO-92 (92)	18	18	5	500	18	30	90	2	4.5					4						23
MPS2712	TO-92 (92)	18	18	5	500	18	75	225	2	4.5					4						23

Gene	ral Pu	ırpos	e Am	plifie	ers a	nd S	wite	ches	(Conti	nued)												
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Min	_@ V _{CB} (V)	h Min	FE (Max	I _C	& ^V CE (V)	V _{CE(SAT)} (V) Max	V _{BI} & Min	E(SAT) (V) (Max	(mA)	C _{ob} (pF) Max		,	e (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MPS2716	TO-92 (92)	18	18	5	500	18	75	225	2	4.5					3.5							23
MPS3721	TO-92 (92)				500	18	60	660 (1 kH:	2 z)	10					3.5				_			23
MPS3826	TO-92 (92)	60	45	4	100	30	40	160	10	10					3.5	200	800	10				23
MPS3827	TO-92 (92)	60	45	4	100	30	100	400	10	10					3.5	200	800	10				23
MPS6512	TO-92 (92)	40	30	4	50	30	30 50	100	100 2	10 10	0.5			50	3.5							23
MPS6513	TO-92 (92)	40	30	4	50	30	60 90	180	100 2	10 10	0.5			50	3.5							23
MPS6514	TO-92 (92)	40	25	4	50	30	90 150	300	100 2	10 10	0.5			50	3.5							23
MPS6515	TO-92 (92)	40	25	4	50	30	150 250	500	100 2	10 10	0.5			50	3.5							23
MPS6564	TO-92 (92)		45	5	500	40	25		10	5	0.5			10	4						-	23
MPS6565	TO-92 (92)	60	45	4	100	30	40	160	10	10	0.4			10	3.5							23

									- (
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Min	_@ V _{CB} (V)	h Min	FE Max	[®] (mA) &	V _{CE} (V)	V _{CE(SAT)} (V) Max	V _{BE} & (' Min	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	(M Min	T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Proces
NS3903	TO-18	60	40	5			15		100	1	0.2	0.65	0.85	10	4	250		10	225		(Note 6)	23
							30		50	1												
							50	150	10	1	0.3		0.95	50						ļ		
					l		35		1	1												
							20		100 μΑ	1												
NS3904	TO-18	60	40	6			30		100	1	0.2	0.65	0.85	10	4	300		10	250		(Note 6)	23
	ĺ	!					60		50	1						l						
							100	300	10	1	0.3		0.95	50								
							70		1	1						İ						
							40		100 μΑ	1												
PN3691	TO-92 (92)	35	20	4	50	15	40	160	10	1	0.7		0.9	10	3.5	200	500	10				23
PN3692	TO-92 (92)	35	20	4	50	15	100	400	10	1	0.7		0.9	10	3.5	200	500	10				23
ST3904	TO-92	60	40	6			40		0.1	1	0.2	0.65	0.85	10	4	300		10	285	8	(Notes 6, 7)	23
	(92)						70		1	1	J	2.00	2.00	. •	'	- 70		. •				
	`,						100	300	10	1												
							60	- / -	50	1												
							30		100	1	0.3		0.95	50	1							

TEST CONDITIONS:

Note 1: $I_C = 300 \mu A$, $V_{CE} = 10 V$, f = 1 kHz.

Note 2: $I_C = 150$ mA, $V_{CC} = 30V$, $I_B^1 = I_B^2 = 15$ mA.

Note 3: $I_C = 100 \mu A$, $V_{CE} = 10V$, f = 1 kHz.

Note 4: $I_C = 300 \text{ mA}$, $V_{CC} = 25 \text{V}$, $I_B^1 = I_B^2 = 30 \text{ mA}$.

Note 5: $I_C = 100 \mu A$, $V_{CE} = 4.5 V$, f = 15.7 kHz.

Note 6: $I_C = 10$ mA, $V_{CC} = 3V$, $I_B^1 = I_B^2 = 1$ mA.

Note 7: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 15.7 kHz.

Note 8: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 10 Hz - 15.7 kHz.

Note 9: $I_C = 3$ mA, $V_{CE} = 10V$, f = 1 MHz.

Note 10: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 15.7 kHz.

Note 11: $I_C/I_B = 20$.

Note 12: $I_{\mbox{\scriptsize C}}=$ 200 $\mu\mbox{\scriptsize A},\,V_{\mbox{\scriptsize CE}}=$ 5V, f= 1 kHz.

Medium Power

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{СВ} (V)		FE (I _C &	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min M	/mAl	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N699	TO-39	120	60	5	2	60	40	120	150	10	5.0	1.3	150	20	50	50				12
2N1613 also Avail. JAN/TX/V Versions	TO-5	75	35	7	10	60	20 40 35 20	120	500 150 10 100 μΑ	10 10 10 10	1.5	1.3	150	25	60	50		12	(Note 1)	12
2N1711	TO-5	75	35	7	10	60	40 100 75 35 20	300	500 150 10 100 μA 10 μA	10 10 10 10 10	1.5	1.3	150	25	70	50		8	(Note 1)	12
2N1890	TO-39	100	60	7	10	75	100	300	150	10	1.2 5.0	0.9 1.3	50 150	15	60	50				12
2N1893 also Avail. JAN/TX/V Versions	TO-39	100	80	7	10	90	40 35 20	120	150 10 0.1	10 10 10	1.2 5.0	0.9 1.3	50 150	15	50	50				12
2N2102	TO-39	120	65	7	2	60	10 20 35 40 25 10	120	0.01 0.1 10 150 500 1A	10 10 10 10 10 10	0.5	1.1	150	15	60	50				12
2N2192	TO-39	60	40	5	10	30	15 75 100 70 35 15	300	0.01 0.1 10 150 500 1A	10 10 10 10 10 10	0.35	1.3	150	10	50	50				12

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB}	h _i Min	E @ Max	I _C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(} ; (V Min	() @	I _C (mA)	C _{ob} (pF) Max	f (Mi Min	Hz)	_@ I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N2192A	TO-39	60	40	5	10	30	15 75 100 70 35 15	300	0.01 0.1 10 150 500 1A	10 10 10 10 10 10	0.25		1.3	150	20	50		50				12
2N2193	TO-39	80	50	8	10	80	15 30 40 30 20 15	120	0.01 0.1 10 150 500 1A	10 10 10 10 10	0.35	:	1.3	150	20	50		50				12
2N2193A	TO-39	80	50	8	10	60	15 30 40 30 20 15	120	0.1 10 150 150 500 1A	10 10 10 1 1 10	0.25		1.3	150	20	50		50				12
2N2243	TO-39	120	80	7	10	60	15 30 40 30 15	120	0.1 10 150 150 500	10 10 10 1 1	0.35		1.3	150	15	50		50				12
2N2243A	TO-39	120	80	7	10	60	15 30 40 30 15	120	0.1 10 150 150 500	10 10 10 1 1	0.25		1.3	150	15	50		50				12
2N3019 also Avail. JAN/TX/V Versions	TO-39	140	80	7	10	90	50 90 100 50 15	300	0.1 10 150 500 1A	10 10 10 10 10	0.2		1.1	150	12	100		50				12

NPN Transistors

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} ((nA) Max	ν _{CB} (V)	h _i Min		I _C 8	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{ob} (pF) Max	f (MI Min	Hz) @ IC	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N3020	TO-39	140	80	7	10	90	30 40 40	100 120 120	0.1 10 150	10 10 10	0.2 0.5	1.1	150 500	12	80	50			-	12
			_				30 15	100	500 1A	10 10 10	0.5		500							
2N3053	TO-39	60	40	5	250	30	25 50	250	150 150	2.5 10	1.4	1.7	150	15	100	50				12
2N3107	TO-39	100	60	7	. 10	60	35 100 40	300	0.1 150 500	10 10 10	0.25 1.0	1.1 2.0	150 1A	20	70	50	1000	7	(Notes 5 & 6)	12
2N3108	TO-39	100	60	7	10	60	20 40	120	0.1 150 500	10 10 10	0.25 1.0	1.1	150	20	60	50	600	7	(Notes 5 & 6)	12
2N3109	TO-39	80	40	7	10*	60	35 100	300	0.1 150	10 10	0.25	1.1	1A 150	25	70	50	1000	7	(Notes 5 & 6)	12
2N3110	TO-39	80	40	7	10*	60	20 40	120	0.1 150	10 10 10	0.25	1.1	1A 150	25	60	50	600	7	(Notes 5 & 6)	12
2N3568		Same a	s PN356] B			25		500	10	1.0	2.0	1A							12
2N3665	TO-39	120	80	10	50*	60	30 40 25	120	10 150 500	10 10 10	0.5	1.2 1.8	150 500	12	60	50				12
2N3666	TO-39	120	80	10	50*	60	70 100 50	300	10 150 500	10 10 10	0.5 1.2	1.2	150 500	12	60	50				12
2N3700	TO-18	140	80	7	10	90	50 90 100	300	1 10 150	10 10 10	0.2	1.1	150 500	12	100	200 5	_			12
							50 15	,	500 1A	10 10										

	Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO (} (nA) Max	V _{CB} (V)	h _i Min	FE @ Max	I _C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(}) (V Min	SAT) ') @ Max	I _C (mA)	C _{ob} (pF) Max	(M Min	T Hz) (Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
21	N3701	TO-18	140	80	7	10	90	40 40 30 30 15	120 120 100 100	150 10 0.1 500 1	10 10 10 10 10	0.2 0.5		1.1	150 500	12	80		50				12
	N3945	TO-39	70	50	8	40	60	25 40 20	250	10 150 500	10 10 10	0.5 1.8		1.2 1.8	150 500	12	60		50				12
21	N4945	TO-92 (92)	80	80	5	50	40	40 40	120	150 30	1	0.25			150		60	900	50				12
М	PSA05	TO-92 (92)		60	4	100	60	50 50		10 100	1 1	0.25			100		100		100				12
M	PSA06	TO-92 (92)		80	4	100	80	50 50		10 100	1 1	0.25			100		100		100				12
PI	N3568	TO-92 (92)	80	60	5	50	40	40 40	120	30 150	1 1	0.25			150	20	60	600	50				12
Т	N1711	TO-237 (91)	75		7	10	60	20 35 75 100 40	300	0.01 0.1 10 150 500	10 10 11 10 10	1.5 1.3			150 150	25							12
Т	N2102	TO-237 (91)	120	65	7	10	60	10 20 35 40 25 10	120	0.01 0.1 10 150 500 1A	10 10 10 10 10 10	0.5		1.1	150	15	60		50				12
TI	N3019	TO-237 (91)	140	80	7	10	90	50 90 100 50 15	300	1 10 150 500 1A	10 10 10 10 10	0.2		1.1	150 500	12	100		50				12

NPN Transistors

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) (Min Max	/m A \	C _{ob} (pF) Max	(M	f _T (Hz) Max	[®] (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
TN3020	TO-237 (91)	140	80	7	10	90	30 40 40 30 15	100 120 120 100	1 10 150 500 1A	10 10 10 10 10	0.2 0.5	1.1	150 500	12	80		50			-	12
TN3053	TO-237 (91)	60	40	5	250	30	25 50	250	150 150	2.5 10	1.4	1.7	150	15	100		50				12
PN3566	TO-92 (92)	40	30	5	50	20	150 80	600	10 2	10 10	1.0		100	25	4	100	30	r			13
PN3567	TO-92 (92)	80	40	5	50	40	40 40	120	150 30	1 1	0.25		150	20	60	600	50				13
PN3569	TO-92 (92)	80	40	5 -	50	40	100 100	300	150 30	1 1	0.25		150	20	60	600	50			-	13
2N3566	-	Same a	s PN356	6																,	13
2N3567		Same a	ıs PN356	7			. *		-												13
2N3569	,	Same a	s PN356	8																-	13
2N2657	TO-39	80	50	8	100	60	15 40	120	5A 1A	6 2	0.5 3.0	1.5 2.5	1A 5A	150	20		200	15		2	34
2N2658	TO-39	100	80	8	100	60	15 40	120	5A 1A	6 2	0.5 3.0	1.5 2.5	1A 5A		20		200	15		2	34
2N2890	TO-39	100	80	5	50 μΑ	60	25 30 20	90	2A 1A 100	5 2 2	0.5	1.2	1A	70	30		200	15		3	34
2N2891	TO-39	100	80	5	50 μΑ	60	50 35 80	300 150	50 100 1A	10	0.5 0.75	1.2	1A 2A	70	30		200	15		3	34
							40	100	2A	8	0.70	1.0	- 17								

	IV	16	a	u		۲	O	W	er	(Co	ntinu	ıe
_	_				_		_	_				_

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h Min	FE @ Max	I _C (mA)	& V _{CE} & (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) Max		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N5148	TO-39		80		1 μΑ	60	20 30 15	90	50 1A 2A	5 5 5	0.46 0.85	1.2 1.5	100 200	70	60		200				34
							5		3A	5	0.03	1.5	200								
2N5150	TO-39		80		1 μΑ	60	60 70	200	50 1A	5	0.46	1.2	100	70	60		200				34
							30 15		2A 3A	5 5	5.0		3A								
2N5336	TO-39	_	80		10 μΑ	80	30 30	120	600 2A	2	0.7	1.2	2A		30		500	2200		7	34
							20		5A	2	1.2	1.8	5A					ļ			
2N5338	TO-39		100		10 μΑ	100	30 30 20	120	600 2A 5A	2 2 2	0.7 1.2	1.2 1.8	2A 5A		30		500	2200		7	34
2N3439	TO-39	450	350	7	20 μΑ	360	40	160	20	10	0.5	1.3	50	10	15		10			10	36
2N3440	TO-39		250		20 μΑ*	300	40	160	20	10											36
2N6591	TO-202 (55)	150	150	5	200	100	40 40	250 200	10 100	10 10	0.8		200								36
2N6592	TO-202 (55)	200	200	5	200	150	30 40	250 200	10 100	10 10	0.8		200								36
2N6593	TO-202 (55)	250	250	5	200	200	30 30	250 200	10 100	10 10	0.8		200								36
2N6720	TO-237 (91)	175	150	6	1 μΑ	150	25 30 15 10	50	50 100 250 500	10 10 10 10	0.5		100		30	300	50				36
2N6721	TO-237 (91)	225	200	6	1 μΑ	200	25 30 15 10	50	50 100 250 500	10 10 10 10	0.5		100		30	300	50				36

Mediu	ım P	ower	(Continue	d)
		1		$\overline{}$

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE @ Max	I _C (mA)	V _{CE} & (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Ma	@ 'C	C _{ob} (pF) Max	(M	T Hz) @ Max		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N6722	TO-237 (91)	275	250	6	1 μΑ	250	25 30 15 10	50	50 100 250 500	10 10 10 10	0.5		100		30	300	50				36
2N6723	TO-237 (91)	325	300	6	1 μΑ	300	25 30 15 10	50	50 100 250 500	10 10 10 10	0.5		100		30	300	50				36
92PU36	TO-237 (91)	175	150	6	1 μΑ	150	25 30 15 10	300	50 100 250 500	10 10 10 10	0.5		100								36
92PU36A	TO-237 (91)	225	200	6	1 μΑ	200	25 30 15 10	300	50 100 250 500	10 10 10 10	0.5		100								36
92PU36B	TO-237 (91)	275	250	6	1 μΑ	250	25 30 15 10	300	50 100 250 500	10 10 10 10	0.5		100								36
92PU36C	TO-237 (91)	325	300	6	1 μΑ	300	25 30 15 10	300	50 100 250 500	10 10 10 10	0.5		100								36
D40P1	TO-202 (55)		120		10 μΑ	200	20 40	2 80		10 10	1.0		100	15	10		80				36
D40P3	TO-202 (55)		180		10 μΑ	250	20 40	2 80		10 10	1.0	1.5	100	15	10		80				36
D40P5	TO-202 (55)		225		10 μΑ	300	20 40	2 80		10 10	1.0	1.5	100	15	10		80				36

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE @ Max	I _C (mA)	& V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max		C _{ob} (pF) Max	(M	T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
NSD36	TO-202 (55)	175	150	6	1 μΑ	150	25 30 15 10	300	50 100 250 500	10 10 10 10	0.5			15	10		50				36
NSD36A	TO-202 (55)	225	200	6	1 μΑ	200	25 30 15 10	300	50 100 250 500	10 10 10 10	0.5			15	10		50				36
NSD36B	TO-202 (55)	275	250	6	1 μΑ	250	25 30 15 10	300	50 100 250 500	10 10 10 10	0.5			15	10		50				36
NSD36C	TO-202 (55)	325	300	6	1 μΑ	300	25 30 15 10	300	50 100 250 500	10 10 10 10	0.5			15	10		50				36
NSD3439	TO-202 (55)		350		20 μΑ	300	30 40	160	2 20	10 10	0.5	1.3	50	20	15		10				36
NSD3440	TO-202 (55)		250		500 μΑ	200	30 40	160	2 20	10 10	0.5	1.3	50	20	15		10				36
TN3440	TO-237 (91)		250		20 μΑ	250	30 40	160	2 20	10 10	0.5	1.3	50		15		10				36
2N6714	TO-237 (91)	40	30	5	100	40	55 60 50	250	10 100 1A	1 1 1	0.5		100		50	500	50				37
92PU01	TO-237 (91)		30	5	100	40	55 60 50		10 100 1A	1 1 1	0.5		1A	30	100		50				37
D40D1	TO-202 (55)		30		100*	45	50 10	150	100 1A		0.5	1.5	500								37

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h _i Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Max	@ 'C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Max		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
D40D2	TO-202 (55)		30		100*	45	120 20	360	100 1A		0.5	1.5	500							37
D40D3	TO-202 (55)		30		100*	45	290 10		100 1A			1.5	500							37
D40E1	TO-202 (55)		30		100*	40	50 10		100 1A	2 2	1.0	1.3	1A							37
D42C1	TO-202 (56)		30		1 μΑ	30	25 10		200 1A	1	0.5	1.3	1A	30						37
D42C2	TO-202 (56)		30		1 μΑ	30	40 20	120	200 1A	1 1	0.5	1.3	1A	30						37
D42C3	TO-202 (56)		30		1 μΑ	30	40 20		200 2A	1	0.5	1.3	1A	30						- 37
NSDU01	TO-202 (55)	40	30	5	100	30	55 60 50		10 100 1A	1 1 1	0.5	1.2	1A	30	50	50				37
92PU01A	TO-237 (91)		40	5	100	50	55 60 50		10 100 1A	1 1 1	0.5		1A	30	100	50				38
92PU05	TO-237 (91)	60	100 60	4	100	80	80 50 20	250	50 250 500	1 1 1	0.35		250	30	50	200				38
D40D4	TO-202 (55)		45		100*	60	50 10	150	100 1A		0.5	1.5	500							38
D40D5	TO-202 (55)		45		100*	60	120 10	360	100 1A		0.5	1.5	500							38
D40D6	TO-202 (55)		45		100*	60	50 10	150	100 1A		1.0	1.5	500							38
D40D7	TO-202 (55)		60		100*	60	50 10	150	100 1A		1.0	1.5	500							38
D40D8	TO-202 (55)		60		100*	75	120 10	360	100 1A	2 2	1.0	1.5	500							38

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h _i Min	E @ Max	I _C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) [©] Min Max	I _C (mA)	C _{ob} (pF) Max	f- (Mi Min	r Iz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
D40E5	TO-202 (55)		60		100*	70	50 10		100 1A	2 2	1.0	1.3	1A								38
D42C4	TO-202 (56)		45		1 μΑ	45	25 10		200 1A	1	0.5	1.3	1A	30							38
D42C5	TO-202 (56)		45		1 μΑ	45	40 20	120	200 1A	1	0.5	1.3	1A	30							38
D42C6	TO-202 (56)		45		1 μΑ	45	40 20		200 2A	1	0.5	1.3	1A	30							38
MPS6715	TO-237 TO-226 (99)		40	5	100	50	55 60 50		10 100 1A	1 1 1	0.5		1A	30		50					38
MPS6717	TO-226 (99)	80	80	5	100	60	80 50 20	250	50 250 500	1 1 1	0.35		250		50	500	200				38
MPSW01	TO-226 (99)		40	5	100	50	55 60 50		10 100 1A	1 1 1	0.5		1A	30	100		50				38
NSD102	TO-202 (55)	60	45	5	100	60	40 50 40 25	150	10 100 500 1A	5 5 5 5	0.2	0.9 1.2	100 500	30	60		50				38
NSD103	TO-202 (55)	60	45	5	100	60	50 120 50 30	360	10 100 500 1A	5 5 5 5	0.2 0.4	0.9 1.2	100 500	30	60		50				38
NSD6179	TO-202 (55)	-	50		500 μΑ	. 60	30 40 10	250	500 500 1A	2 2 2	0.5	1.2	500								38
NSDU01A	TO-202 (55)	50	40	5	100	40	55 60 50		10 100 1A	1 1 1	0.5	1.2	1A	30	50		50				38

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Max	_@ I _C (mA)	C _{ob} (pF) Max	f (MI Min	· Iz) (O (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
NSDU05	TO-202 (55)	60	60	4	100	60	80 50 20		50 250 500	1 1 1	0.35		250	30	50		200				38
NSE181	TO-202 (56)		60		100	80	50 30 12	250	10 500 1A	1 1 1.5	0.3	1.5	500 1.5A		50		200				38
2N6553	TO-202 (55)	100	100	5	100	80	60 80 60 25	250	10 50 250 500	1 1 1 1	1.0		1A		75	250	100				39
2N6717	TO-237 (91)	80	80	5	100	60	80 50 20	250	50 250 500	1 1 1	0.35		250		50	500	200				39
2N6718	TO-237 (91)	100	100	5	100	80	80 50 20	250	50 250 500	1 1 1	0.35		350		50	500	200				39
2N6731	TO-237 (91)	100	80	5	100	80	100 100	300	10 350	2 2	0.35		350		50	500	200				39
92PU06	TO-237 (91)	80	100 80	4	100	80	20 50 80	500 250 50	500 250 50	1 1 1	0.35		250	30	50		200				39
92PU07	TO-237 (91)	100	100	4	100	80	80 50 20		50 250 500	1 1 1	0.35		250	30	50		200				39
92PU100	TO-237 (91)	100	80		100	80	20 50 10	150	10 100 1A	5 5 5	0.35		350	20	50		100				39
D40D10	TO-202 (55)		75		100*	90	50 10	150	100 1A	2 2	1.0	1.5	500								39
D40D11	TO-202 (55)		75		100*	90	120 10	360	100 1A	2 2	1.0	1.5	500								39

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE @ Max	I _C	V _{CE} & (V)	V _{CE(SAT)} (V) & Max	V _{BE(SA} · (V) Min Ma	r) @ (I _C (mA)	C _{ob} (pF) Max		T Hz) Max	[@] (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
D40D13	TO-202 (55)		75		100*	90	50	150	100	2	1.0	1.	5	500								39
D40D14	TO-202 (55)		75		100*	90	120	360	100	2	1.0	1.	5	500								39
D40E7	TO-202 (55)		80		100*	90	50 10		100 1A	2	1.0	1.	3	1A								39
MPSW06	TO-226 (99)	80	80	4	100	80	80 50 20		50 250 500	1 1 1	0.35			250	30	50		200				39
NSD104	TO-202 (55)	100	80	7	100	100	20 50 10	150	10 100 1A	5 5 5	0.2 0.5	0. 1.		100 500	30	60		50				39
NSD105	TO-202 (55)	100	80	7	100	100	10 120 10	360	10 100 1A	5 5 5	0.2 0.5	0.		100 500	30	60		50				39
NSD106	TO-202 (55)	140	100	7	100	140	20 50 25	150	10 100 500	5 5 5	0.2 0.5	0.		100 500	30 50	60		50				39
NSD6178	TO-202 (55)		75		500 μΑ	80	30 40 10	250	50 500 1A	2 2 2	0.5	1.	2	500								39
NSDU06	TO-202 (55)	80	80	4	100	80	80 50 20		50 250 500	1 1 1	0.35	·· -		250	30	50		200				39
NSDU07	TO-202 (55)	100	100	4	100	100	80 50 20		50 250 500	1 1 1	0.35			250	30	50		200				39
2N6711	TO-237 (90)	160	160	7	50	100	15 15 30	200	1 10 30	10 10 10						40	200	10				48

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h _i Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(S} (V) Min) @	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) Max		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N6712	TO-237 (90)	250	250	7	50	200	15 15 30	200	1 10 30	10 10 10						40	200	10				48
2N6713	TO-237 (90)	300	300	7	50	250	15 15 30	200	1 10 30	10 10 10						40	200	10				48
2N6719	TO-237 (91)	300	300	7	100	200	25 40 40	200	1 10 30	10 10 10			,			30	300	15				48
2N6733	TO-237 (91)	200	200	6	100	160	25 40	200	1 10	10 10	2.0			20		50	200	10				48
2N6734	TO-237 (91)	250	250	6	100	200	25 40	200	1 10	10 10	2.0					50	200	10				48
2N6735	TO-237 (91)	300	300	6	100	260	25 40	200	1 10	10 10						50	200	10				48
92PE487	TO-237 (90)	160	160	7	50	100	15 15 30		1 10 30	10 10 10	1.0			30	3							48
92PE488	TO-237 (90)	250	250	7	50	100	15 15 30		10 10 30	10 10 10	1.0			30	3							48
92PE489	TO-237 (90)	300	300	7	50	200	15 15 30		1 10 30	10 10 10	1.0			30	3							48
92PU10	TO-237 (91)		300		100	200	25 40 40		1 10 30	10 10 10	0.75	-	-	30	3.5							48
92PU391	TO-237 (91)	200	200	6	100	160	25 40		1 10	10 10	2.0		2.0	20	2.5	50		10				48
92PU392	TO-237 (91)	250	250	6	100	200	25 40		1 10	10 10	2.0		2.0	20	2.5	50		10				48

3-45
5

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h _i Min	FE @ Max	I _C (mA)	& ^V CE (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Max	@ .C (mA\	C _{ob} (pF) Max	(M	f _T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
92PU393	TO-237 (91)	300	300	6	100	260	25 40		1 10	10 10	2.0	2.0	20	2.5	50		10				48
D40N1	TO-202 (55)		250		10 μΑ	250	20 30 20	90	4 20 40	10 10 10					50		20				48
D40N2	TO-202 (55)		250		10 μΑ	250	30 60 30	180	4 20 40	10 10 10					50		20				48
D40N3	TO-202 (55)		300		10 μΑ	300	20 30 20	90	4 20 40	10 10 10					50		20				48
D40N4	TO-202 (55)		300		10 μΑ	300	30 60 30	180	4 20 40	10 10 10					50		20				48
MPS6733	TO-226 (99)	200	200	6	100	160	25 40	200	1 10	10 10	2.0		20		50	200	10				48
MPS6734	TO-226 (99)	250	250	6	100	200	25 40	200	1 10	10 10	2.0				50	200	10				48
MPS6735	TO-226 (99)	300	300	6	100	260	25 40	200	1 10	10 10					50	200	10				48
MPSA42	TO-92 (92)	300	300	6	100	200	25 40 40		1 10 30	10 10 10	0.5	0.9	20	3	50		10				48
MPSA43	TO-92 (92)	200	200	6	100	160	25 40 50	200	1 10 30	10 10 10	0.4	0.9	20	4	50		10				48
92PU10 MPSW10	TO-226 (99)		300		100	200	25 40 40		1 10 30	10 10 10	0.75		30	3.5							48
MPSA42 MPSW42	TO-226 (99)	300	300	6	100	200	25 40 40		1 10 30	10 10 10	0.5	0.9	20	3	50		10				48

NPN Transistors

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	h Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	$\Lambda\Lambda$	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Ma	_@ I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MPSA43 MPSW43	TO-226 (99)	200	200	6	100	160	25 40 5	2000	1 10 30	10 10 10	0.4	0.9	20	4	50	10				48
NSD131	TO-202 (55)	250	250	7	100	150	15 15 30	90	1 10 30	10 10 10	1.0	0.85	20	3						48
NSD132	TO-202 (55)	250	250	7	100	150	15 30 60	180	1 10 30	10 10 10	1.0	0.85	20	3						48
NSD133	TO-202 (55)	300	300	7	100	150	15 15 30	90	1 10 30	10 10 10	1.0	0.85	20	3						48
NSD134	TO-202 (55)	300	300	7	100	150	15 30 60	180	1 10 30	10 10 10	1.0	0.85	20	3						48
NSD135	TO-202 (55)	375	375	7	100	150	15 30 30		1 10 30	10 10 10	1.0	0.85	20	3			,			48
NSD457	TO-202 (55)	160	160	5	50	100	25		.30	10	1.0		30			,			-	48
NSD458	TO-202 (55)	250	250	5	50	200	25		30	10	1.0		30							48
NSD459	TO-202 (55)	300	300	5	50	250	25		30	10	1.0		30							48
NSDU10	TO-202 (55)	300	300	8	200	200	25 40 40		1 10 30	15 15 10	1.5	0.8	20	3	60					48
NSE457	TO-202 (55)	160	160	5	50	100	25		30	10	1.0		30							48
NSE458	TO-202 (55)	250	250	5	50	200	25		30	10	1.0		30							48

ن-40

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
NSE459	TO-202 (55)	300	300	5	50	250	25		30	10	1.0		30							48
TN3742	TO-237 (91)	300	300	7	100	200	10 15 20 20	200	3 10 30 50	10 10 10 20	0.75 1.0	1.0	10 30	6	30	10				48

TEST CONDITIONS:

Note 1: $I_C = 50$ mA, $V_{CC} = 100V$, $I_B^1 = I_B^2 = 5$ mA. **Note 3:** $I_C = 500 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B^1 = I_B^2 = 50 \text{ mA}$.

Note 4: $I_C = 150$ mA, $V_{CC} = 30V$, $I_B^1 = I_B^2 = 15$ mA.

Note 2: $I_C = 500 \mu A$, $V_{CE} = 10 V$, f = 1 kHz.

Note 5: $I_C = 100 \mu A$, $V_{CC} = 10V$, f = 1 kHz. **Note 6:** $I_C = 500 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B^1 = I_B^2 = 50 \text{ mA}$.

Note 7: $I_C = 2A$, $V_{CC} = 40V$, $I_B^1 = I_B^2 = 200$ mA.

Note 8: $I_C = 1$ mA, $V_{CE} = 6V$, f = 60 kHz.

Note 9: $I_C/I_B = 8$.

Note 10: $I_C/I_B = 12.5$.

Darlington

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (μA) Max	V _{CB} (V)	h Min	ⁿ fe @ Max	I _C @	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(} (V Min)	(mA)	C _{ob} (pF) Max		T Hz) Max	_@ (mA)	Process No.
2N5305	TO-92 (94)				0.1	25	2000	20,000	2	5	1.4			200	10	60		2	05
2N5306	TO-92 (94)				0.1	25	7000	70,000	2	5	1.4			200	10	60		2	05
2N5307	TO-92 (94)				0.1	40	2000	20,000	2	5	1.4			200	10	60		2	05
2N5308	TO-92 (94)				0.1	40	7000	70,000	2	5	1.4			200	10	60		2	05
2N6426	TO-92 (92)	40	40	12	0.05	30	20,000 30,000 20,000	200,000 300,000 300,000	10 100 500	5 5 5	1.2 1.5		2	50 500	7	150		10	05
2N6427	TO-92 (92)	40	40	12	0.05	30	10,000 20,000 14,000	100,000 200,000 140,000	10 100 500	5 5 5	1.2 1.5		2	50 500	7	130		10	05
2N6548	TO-202 (55)	50	40	12	0.1	30	25,000 15,000 5000	150,000	200 500 1A	5 5 5	,				7	1		200	05
2N6549	TO-202 (55)	50	40	12	0.1	30	15,000 10,000 3000	150,000	200 500 1A	5 5 5					7	1		200	05
2N6724	TO-237 (91)	50		12		:	25,000 15,000 4000	40,000	200 500 1A	5 5 5	1.0			200		100		200	05
2N6725	TO-237 (91)	50	ū	12	0.1	40	25,000 15,000 4000	40,000	200 500 1A	5 5 5	1.0			200		100		200	05

U	ļ	5	

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} _@ (μΑ) Max	V _{CB} (V)	h _F Min	FE @ Max	I _C @	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Max	[@] (mA)	C _{ob} (pF) Max	f _T (MH Min	l-7\	[®] (mA)	Process No.
92PU45	TO-237 (91)	50		12	0.1	30	4000 15,000 25,000		1A 500 200	5 5 5	1.5 1.0	2.0	1A 200		100		200	05
92PU45A	TO-237 (91)	60		12	0.1	40	4000 15,000 25,000		1A 500 200	5 5 5	1.5 1.0	2.0	1A 200		100		200	05
D40C1	TO-202 (55)		30		0.5*	30	10,000	60,000	200	5	1.5	2.0	500	10				05
D40C2	TO-202 (55)		30		0.5*	30	40,000		200	5	1.5	2.0	500	10				05
D40C3	TO-202 (55)		30		0.5*	30	90,000		200	5	1.5	2.0	500	10				05
D40C4	TO-202 (55)		40		0.5*	40	10,000	60,000	200	5	1.5	2.0	500	10				05
D40C5	TO-202 (55)		40		0.5*	40	40,000		200 ⁻	5	1.5	2.0	500	10				05
D40C7	TO-202 (55)		50		0.5*	50	10,000	60,000	200	5	1.5	2.0	500	10				05
D40C8	TO-202 (55)		50		0.5*	50	40,000		200	5	1.5	2.0	500	10				05
D40K1	TO-202 (55)		30				10,000 1000 3000		200 1.5A 1A	5 5 5				10				05
D40K2	TO-202 (55)		50				10,000 1000 3000		200 1.5A 1A	5 5 5								05
D40K3	TO-202 (55)		30				10,000 1000 3000		200 1.5A 1A	5 5 5								05
D40K4	TO-202 (55)		50		•		10,000 1000 3000		200 1.5A 1A	5 5 5								05

NPN Transistors

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (μΑ) Max	V _{CB} (V)	h _i Min	FE @ Max	I _C @	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Max	e (mA)	C _{ob} (pF) Max	f _T (MHz) Min M	_@ I _C (mA)	Process No.
MPQ6426	TO-116	40	30	12	100	30	5000 10,000		10 100	5 5	1.5		100	8	125	20	05
MPQA13	TO-116	30			0.1	30	10,000 5000		100 10	5 5	1.5		100		125	10	05
MPS6724	TO-226 (99)	50		12			25,000 4000	40,000	200 1A	5 5	1.0		200		100	200	05
MPS6725	TO-226 (99)	50		12	0.1	40	25,000 4000	40,000	200 1A	5 5	1.0		200		100	200	05
MPSA12	TO-92 (92)	20			0.1	15	20,000		10	5	1.0		10				05
MPSA13	TO-92 (92)	30			0.1	30	10,000 5000		100 10	5 5	1.5		100		125	10	05
MPSA14	TO-92 (92)	30			0.1	30	20,000 10,000		100 10	5 5	1.5		100		125	10	05
MPSW13	TO-226 (99)	30			0.1	30	10,000 5000		100	5 5	1.5		100		125	10	05
MPSW45	TO-226 (99)	50		12	0.1	30	4000 15,000		1A 500	5 5	1.5	2.0	1A		100	200	05
							25,000		200	5	1.0		200				
MPSW45A	TO-226 (99)	60		12	0.1	40	4000 15,000		1A 500	5 5	1.5	2.0	1A		100	200	05
							25,000		200	5	1.0		200				
NSD151	TO-202 (55)		30	12		-	5000 10,000	150,000	10 100	5 5	1.5		100	8	50	10	05
NSD152	TO-202 (55)			12			5000 10,000	25,000	10 100	5 5	1.5		100	8	50	10	05
NSD153	TO-202 (55)			12			20,000 5000		10 100	5 5	1.5		100	8	50	10	05
NSD154	TO-202 (55)			12			20,000		10 100	5 5	1.5		100	8	50	10	05

Darlington (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (μΑ) Max	V _{CB} (V)	h Min	PFE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(} k (V Min	SAT) /) (Max	I _C (mA)	C _{ob} (pF) Max	1	T Hz) Max	_@ I _C (mA)	Process No.
NSDU45	TO-202 (55)	50		12			25,000 15,000 4000	150,000	200 500 1A	5 5 5	1.0			200	8	100		200	05
NSDU45A	TO-202 (55)	60		12	0.1	10	25,000 15,000 4000	150,000	200 500 1A	5 5 5	1.0			200	8	100		200	05
2N7051	TO-92 (92)	100	100	12	100	80	20,000 1000	20,000	100 1A	5 5	1.4			200	10	100		100	06
2N7052	TO-92	100	100	12	100	80	10,000 1000	20,000	100 1A	5 5	1.5			100	8	100		100	06
2N7053		100	100	12	100	80	10,000 1000	20,000	100 1A	5 5	1.5	·		100	8	100		100	06

			ı
		`	
			. -

Section 4 **Bipolar PNP Transistors**

Section 4 Contents

Saturated Switches	4-3
Low Level Amplifiers	4-6
General Purpose Amplifiers and Switches	4-8
Medium Power Transistors	4-18
Darlington Transistors	4-26

Saturated Switches

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE @	I _C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	(1	(SAT) V) @ Max	I _C (mA)	C _{OB} (pF) Max	f ₁ (MH Min	iz) @ (n	c nA)	t _{OFF} (nA) Max	NF (dB) Max	Test Conditions	Process No.
2N3304	TO-52	6	6	4	10*	3	20 30 15	120	50 10 1	1 0.3 0.5	0.15 0.16 0.5	0.7 0.8	0.8 1.0 1.5	1 10 50	3.5	500	1	10	60		(Note 7)	65
2N3451	TO-52	6	6	4	10*	3	20 30	120	50 10	1 0.3	0.16 0.5	8.0	1.0 1.5	10 50	5.5	500	1	10	60		(Note 7)	65
2N3639		Same a	as PN36	39																		65
2N3640		Same a	as PN36	40						-												65
2N4208	TO-52	12	12	4.5	10*	6	30 30 15	120	50 10 1	1 0.3 0.5	0.13 0.15 0.5	0.8	0.8 0.95 1.5	1 10 50	3	700	1	10	20		(Note 5)	65
2N4209	TO-52	15	15	4.5	10*	8	40 50 35	120	50 10 1	1 0.3 0.5	0.15 0.18 0.6	0.8	0.8 0.95 1.5	1 10 50	3	850	1	10	20		(Note 5)	65
2N4258		Same a	s PN42	58																		65
2N4258A		Same a	as PN42	58A																		65
2N5140		Same a	as PN51	40																		65
2N5228	TO-92 (92)	5	5	3	100*	4	30 15		10 50	0.3 1.0	0.4	0.65	1.25	10		300	1	10				65
2N5771	TO-92 (92)	15	15	4.5	10	8	50 40 35	120	10 50 1	0.3 1.0 0.5	0.15 0.18 0.6	0.8	0.8 0.95 1.5	1 10 50	3	700	1	10	20		(Note 6)	65
2N5910		Same a	as PN59	10																		65
MPS3639	TO-92 (92)	Same a	as PN36	39																		65
MPS3640	TO-92 (92)	Same a	s PN36	40																		65

PNP Transistors

Satur	ated	Switc	:hes	(Continu	ied)							,									
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	_@ V _{CB}		FE Max	I _C	& V _{CE} & (V)	V _{CE(SAT)} (V) & Max	V _{BE} (' Min	(SAT) V) @ Max	I _C (mA)	C _{OB} (pF) Max	f _T (MHz) @ Min Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
PN3639	TO-92 (92)	6	6	4	10*	3	20 30	120	50 10	1.0 0.3	0.16 0.5	8.0	1.0 1.5	10 50	3.5	300	10	60		(Note 7)	65
PN3640	TO-92 (92)	12	12	4	10*	6	20 30	120	50 10	1.0 0.3	0.2 0.6	8.0	1.0 15	10 50	3.5	300	10	75		(Note 7)	65
PN4258	TO-92 (92)	12	12	4.5	10*	6	30 30 15	120	50 10 1	1 3 0.8	0.15 0.5	0.7	0.95 1.5	10 50	3	700	10	20		(Note 6)	65
PN4258A	TO-92 (92	12	12	4.5	10*	6	30 30 15	120	50 10 1	1 3 0.5	0.15 0.5	0.7	0.96	10 50	3	700	10	18		(Note 6)	65
PN5140	TO-92 (92)	5	5	4	50*	3	20	40	10	1	0.2 0.75		1.2	10 50	5	400	10	20		(Note 6)	65
PN5910	TO-92 (92)	20	20	4.5	10*	10	30 30 15	120	50 10 1	1 0.3 0.5	0.15 0.5	0.75	0.95 1.5	10 50	3	700	10	20		(Note 6)	65
ST5771-1	TO-92 (92)	15	15	4.5	10	8	30 30 20	150	10 1 50	0.3 0.5 1	0.15 0.18 0.6	0.8	0.8 0.95 1.5	1 10 50	3	700	10	30		(Note 6)	65
ST5771-2	TO-92 (92)	15	15	4.5	10	8	40 35 30	150	10 1 50	0.3 0.5 1	0.15 0.18 0.6	0.8	0.8 0.95 1.5	1 10 50	3	700	10	30		(Note 6)	65
2N3244	TO-39	40	40	5	50	30	25 50 60	150	750 500 150	5 1 1	0.3 0.5	0.75	1.1	150 500	25	175	50	185		(Note 4)	70
2N3245	TO-39	50	50	5	50	50	20 30 35	90	1A 500 150	5 1 1	0.35 0.6 1.2	0.75	1.1 1.5 2	150 500 1A	25	150	50	165		(Note 4)	70
2N3467	TO-39	40	40	5	100	30	40 40 40	120	1 500 150	5 1 1	0.3 0.5	0.8	1.0	150 500	25	175	50	90		(Note 4)	70

Saturated Switches (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h Min	FE @ Max	(mA)	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE} (' Min	(SAT) V) @ Max	l _C (mA)	C _{OB} (pF) Max	f _T (MHz Min M		t _{OFF} (nA) Max	NF (dB) Max	Test Conditions	Process No.
2N3468	TO-39	50	50	5	100	30	20 25 25	75	1 500 150	5 1	0.35 0.6	0.8	1.0	150 500	25	150	50	90		(Note 4)	70
2N5022	TO-39	50	50	5	100*	30	25 25 15	100	1A 500 100	5 1 1	0.2 0.4 0.8	0.8	1.0 1.4 1.75	100 500 1A	25	170	50	90		(Note 4)	70
2N5023	TO-39	30	30	5	100*	20	40 40 30	100	1A 500 100	5 1 1	0.17 0.35 0.7	0.8	1.0 1.4 1.75	100 500 1A	25	200	50	90		(Note 4)	70
MPQ3467	TO-116	40	40	5	100	30	40 40 40	120	1A 500 150	5 1 1	1.0 0.5 0.3	0.8	1.6 1.2 1.0	1A 500 150	25	175	50			(Note 4)	70
MPQ3468	TO-116	50	50	5	100	30	20 25 25	75	1A 500 150	5 1 1	1.2 0.5 0.36	8.0	1.6 1.2 1.0	1A 500 150	25	150	50			(Note 4)	70
TN3467	TO-237 (91)	40	40	5	100	30	40 40 40	120	150 500 1A	1 1 5	0.3 0.5 1.0	0.8	1.0 1.2 1.6	150 500 1A	25	175	50				70

TEST CONDITIONS:

Note 1: $I_C = 30$ mA, $V_{CC} = 3V$, $I_B{}^1 = 3$ mA, $I_B{}^2 = 1.5$ mA.

Note 2: $I_C = 30$ mA, $V_{CC} = 3V$, $I_B^1 = I_B^2 = 1.5$ mA.

Note 3: $I_C = 30 \text{ mA}$, $V_{CC} = 3V$, $I_B^1 = I_B^2 = 3 \text{ mA}$.

Note 4: $I_C = 500$ mA, $V_{CC} = 30V$, $I_B{}^1 = I_B{}^2 = 50$ mA.

Note 5: $I_C = 10$ mA, $V_{CC} = 3V$, $I_B^1 = I_B^2 = 1$ mA.

Note 6: $I_C = 10 \text{ mA}$, $V_{CC} = 1.5 \text{V}$, $I_B^1 = I_B^2 = 1 \text{ mA}$.

Note 7: $I_C = 10$ mA, $V_{CC} = 1.5V$, $I_B{}^1 = I_B{}^2 = 500$ μA .

Note 8: $I_C = 10$ mA, $V_{CC} = 2V$, $I_B{}^1 = I_B{}^2 = 1$ mA. Note 9: $I_C = 50$ mA, $V_{CC} = 3V$, $I_B{}^1 = I_B{}^2 = 5$ mA.

Note 10: $I_C = 1A$, $V_{CC} = 30V$, $I_B{}^1 = I_B{}^2 = 100$ mA.

Low Level Amplifiers

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) (Max	V _{CB} (V)		FE @ Max	l _C (mA)	& V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE} (1 Min	(SAT) I _C V) @ (mA) Max	C _{OB} (pF) Max		T Hz) Max	[@] (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N2605	TO-46	60	45	6	10	45	150 100	600	10 0.5 0.01	5 5 5	0.5	0.7	0.9	10	6	30		0.5	3	(Note 2)	62
2N3550	TO-18	60	45	8	1	45	300 250 200 125	800	10 1 0.1 0.01 0.001	5 5 5 5 5	0.5	0.7	0.9	5	8	60	150	1	4	(Note 1)	62
2N4058	TO-92 (94)	30	30	6	100	20	100	400	0.1	5	0.7			10					5	(Note 3)	62
2N4059	TO-92 (94)	30	30	6	100	20	45	660	1	5	0.7			10							62
2N4061	TO-92 (94)	30	30	6	100	20	90	330	1	5	0.7			10							62
2N4062	TO-92 (94)	30	30	6	100	20	180	660	1	5	0.7			10							62
2N4248		Same a	s PN42	48																	62
2N4249		Same a	s PN42	49															7.00		62
2N4250		Same a	s PN42	50																	62
2N4250A		Same a	s PN42	50A																	62
2N4288	TO-92 (94)	30	25	6	50	25	75 150 100	600	10 1 0.1	5 5 5	0.35		0.8	8	40		1				62
2N4289	TO-92 (94)	60	45	7	10	45	75 150 100	600	10 1 0.1	5 5 5	0.35		0.8 1	8	40		1		4	(Note 1)	62
2N4964		Same a	s MPSA	70															•		62
2N4965		Same a	s 2N508	36																	62

Low Level Amplifiers (Continued)

				•																		
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) Max	[®] (V)	h Min	FE Max	l _C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SA} (V) Min N	@	I _C (mA)	C _{OB} (pF) Max		f _T Hz) Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N5086	TO-92 (92)	50	50	5	50	35	150 150 150	500	10 1 0.1	5 5 5	0.3			10	4	40		0.5		3	(Note 4)	62
2N5087	TO-92 (92)	50	50	5	50	35	250 250 250	800	10 1 0.1	5 5 5	0.3			10	4	40		0.5		2	(Note 4)	62
2N5227	TO-92 (92)	30	30	3	100	10	50 30	700	2 0.1	10 10	0.4	1	1.0		10	5	100		10			62
MPSA70	TO-92 (92)		40	4	100	30	40	400	5	10	0.25				10	4	125		5			62
MPS6523	TO-92 (92)		25	4	50	20	300 150	600	2 0.1	10 10	0.5				5	4						62
PN4248	TO-92 (92)	40	40	5	10	40	50		0.1	5	0.25			10	10 6						-	62
PN4249	TO-92 (92)	60	60	5	10	40	100	300	0.1	5	0.25				10	6						62
PN4250	TO-92 (92)	40	40	5	10	40	250	700	0.1	5	0.25				10	6				2	(Note 4)	62
PN4250A	TO-92 (92)	60	60	5	10	50	250	700	0.1	5	0.25				10	6				2	(Note 4)	62

TEST CONDITIONS:

Note 1: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 10 Hz-15.7 kHz.

Note 2: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 10 kHz.

Note 3: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 10 Hz-15.7 kHz.

Note 4: $I_C = 20 \mu A$, $V_{CE} = 5V$, f = 10 Hz-15.7 kHz.

General Purpose Amplifiers and Switches

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)		FE Max	l _C (mA)	v (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{OB} (pF) Max	f _T I _C (MHz) @ (mA) Min Max	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N2904	TO-5	60	40	5	20	50	20		500	10	0.4	1.3	150	8	200 50	100		(Note 2)	63
							40	120	150	10									
							35		10	10	1.6	2.6	500						
							25		1	10									
	-						20		0.1	10									
2N2904A	TO-5	60	60	5	10	50	40		500	10	0.4	1.3	150	8	200 50	100		(Note 2)	63
							40		150	10									
	-						40	400	10	10	1.6	2.6	500						
							40 40	120	1 0.1	10 10									
							 							-					
2N2905	TO-5	60	40	5	20	50	30		500	10	0.4	1.3	150	8	200 50	100		(Note 2)	63
also							100 75	300	150 10	10 10	1.6	2.6	500						
Avail. JAN/TX/V							50		10	10	1.0	2.0	300						
Versions							35		0.1	10									
2N2905A	TO-5	60	60	5	10	50	50		500	10	0.4	1.3	150	8	200 50	100		(Note 2)	63
also	10-5	60	60	5	10	50	100	300	150	10	0.4	1.5	150	ľ	200 30	100		(14016 2)	00
Avail.		ĺ					100	500	10	10	1.6	2.6	500		•				
JAN/TX/V	İ						100		1	10									
Versions							75		0.1	10									
2N2906	TO-18	60	40	5	20	50	20		500	10	0.4	1.3	150	8	200 50	100		(Note 2)	63
2112300	10=10	00	70			-	40	120	150	10	•••							(
							35		10	10	1.6	2.6	500						
							25		1	10				1					
							20		0.1	10									

4

ᇫ	
$\overline{}$	
'n	
·	

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)		FE @ Max	I _C	V _{CE} (V)	V _{CE(SAT)} (V) & Max	٠,		I _C (mA)	C _{OB} (pF) Max	f _T (MH Min	z) @ ^{IC}	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N2906A	TO-18	60	60	5	10	50	40 40 40 40 40	120	500 150 10 1 0.1	10 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200	50	100		(Note 2)	63
2N2907 also Avail. JAN/TX/V Versions	TO-18	60	40	5	20	50	35 100 75 50 35	300	500 150 10 1 0.1	10 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200	50	100		(Note 2)	63
2N2907A also Avail. JAN/TX/V Versions	TO-18	60	60	5	10	50	50 100 100 100 75	300	500 150 10 1 0.1	10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200	50	100		(Note 2)	63
2N3638		Same a	s PN36	38																	63
2N3638A		Same a	s PN36	38A																	63
2N3644		Same a	s PN36	44							· · · · · · · · · · · · · · · · · · ·										63
2N3645		Same a	s PN36	45											-						63
2N3702	TO-92 (94)	40	25	5	100	20	60	300	50	5	0.25			50	12	100	50				63
2N3703	TO-92 (94)	50	30	5	100	20	30	150	50	5	0.25			50	12	100	50				63
2N4142		Same a	s PN41	42																	63
2N4143		Same a	s PN41	43																	63
2N4290	TO-92 (94)	30	20	5	500	20	50 40 20	300	100 10 0.1	10 10 10	0.4		1.5	100	10	100	10				63
2N4291	TO-92 (94)	40	30	6	200	30	100 50 30	300	100 10 0.1	10 10 10	0.4		1.5	100	10	100	10				63

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	h _i Min	E @ Max	I _C (mA)	& ^V CE (V)	V _{CE(SAT)} (V) & Max		(SAT) V) @ Max	I _C (mA)	C _{OB} (pF) Max	f _T (MHz) @ (Min Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N4402	TO-92 (94)	40	40	5			20 50 50 30	150	500 150 10 1	2 2 1 1	0.4 0.75	0.7	0.95	150 500	10	150	20	255		(Note 4)	63
2N4403	TO-92 (92)	40	40	5			20 100 100 60 30	300	500 150 10 1 0.1	2 2 1 1	0.4 0.75	0.75	0.95	150 500	10	200	20	255		(Note 4)	63
2N4971	-	Same a	Same as PN2906																63		
2N4972		Same a	Same as PN2907																63		
2N5142		Same a	Same as PN5142																63		
2N5143		Same a	Same as PN5143															63			
2N5221	TO-92 (92)	15	15	3	100	10	30 30	600	50 10	10 10	0.5		1.1	150	15	100	20				63
2N5226	TO-92 (92)	25	25	4	300	15	30 25	600	50 10	10 10	0.8		1.0	100	20	50	20				63
2N5354	TO-92 (94)	25	25	4	100	25	40	120	50	1	0.25			50	8						63
2N5355	TO-92 (94)	25	25	4	100	25	100	300	50	1	0.25			50	8		-				63
2N5365	TO-92 (94)	40	40	4	100	40	20 40 32	120	300 50 2	5 1 1	0.25 1.0		1.1 2.0	50 200	8						63
2N5366	TO-92 (94)	40	40	4	100	40	40 100 80	300	300 50 2	5 1 1	0.25		1.1	50 200	8						63
2N5447	TO-92 (97)	40	25	5			60	300	50	8	0.25		-	50	12	100	50				63
2N5817	TO-92 (97)	50	40	5	100	25	25 100	200	500 2	2	0.75		1.2	500	15	100	50				63

Į	>
	_

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h _i Min	FE @ Max	(mA)	& V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{OB} (pF) Max	f _T (MHz) @ Min Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MPQ2907	TO-116	60	40	5	50	50	75 100 50		10 150 300	10 10 10	0.4 1.6	1.3	150 300	8	200	20				63
MPS3638	TO-92 (92)	Same a	as PN36	38			30		300	10	1.0	2.0	300				1			63
MPS3638A	TO-92 (92)	Same a	as PN36	38A											-					63
MPS3644	TO-92 (92)	Same as PN3644																63		
MPS3645	TO-92 (92)	Same as PN3645																63		
MPS3702	TO-92 (92)	40	25	5	100	20	60	300	50	5	0.25		50	12	100	50				63
MPS3703	TO-92 (92)	50	30	5	100	20	30	150	50	5	0.25		50	12	100	50				63
MPS6533	TO-92 (92)	40	40	4	50	30	25 40 30	120	500 100 10	10 1 1	0.5	1.0	100	6						63
MPS6534	TO-92 (92)	40	40	4	50	30	50 90 60	270	500 100 10	10 1 1	0.3	1.0	100	6				·		63
MPS6535	TO-92 (92)	30	30	4	100	20	30		100	1	0.5	1.2	100	6						63
PN2906	TO-92 (92)	60	40	5	20	50	20 40 35 25 20	120	500 150 10 1 0.1	10 10 10 10 10	0.4 1.6	1.3 2.6	150 500	8	200	50	100		(Note 2)	63

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h _F Min		lc (mA)	V _{CE}	V _{CE(SAT)} (V) & Max		(SAT) V) @ Max	I _C (mA)	C _{OB} (pF) Max	(M	T I _C Hz) @ (mA) Max	^t OFF (ns) Max	NF (dB) Max	Test Conditions	Process No.
PN2906A	TO-92 (92)	60	60	5	10	50	40 40 40 40 40	120	500 150 10 1 0.1	10 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200	50	100		(Note 2)	63
PN2907	TO-92 (92)	60	40	5	20	50	30 100 75 60 35	300	500 150 10 1 0.1	10 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200	50	100		(Note 2)	63
PN2907A	TO-92 (92)	60	60	5	20	50	50 100 100 100 75	300	500 150 10 1 0.1	10 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200	50	100		(Note 2)	63
PN3638	TO-92 (92)	25	25	4	35*	15	20 20 30		300 50 10	2 1 10	0.25 1.0	0.8	1.1	50 300	20	100	50	170		(Note 1)	63
PN3836A	TO-92 (92)	25	25	4	25*	15	20 100 100 80		300 50 10 1	2 1 10 10	0.25 1/0	0.8	1.1 2.0	50 300	10	150	50	170		(Note 1)	63
PN3644	TO-92 (92)	45	45	5	35*	30	20 100 80 100 80 40	300 240	300 150 50 10 1 0.1	2 10 1 10 10 10	0.25 0.4 1.0	0.8	1.0 1.3 2.0	50 150 300	8	200	20	100		(Note 4)	63
PN3645	TO-92 (92)	60	60	5	35*	50	20 100 80 100 80 40	300 240	300 150 50 10 1	2 10 1 10 10	0.25 0.4 1.0	0.8	1.0 1.3 2.0	50 150 300	8	200	20	100		(Note 4)	63

General Purpose Amplifiers and Switches (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h _i Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	(1	SAT) /) @ Max	I _C (mA)	C _{OB} (pF) Max	f (Mi Min	iz) @	/m/\	^t OFF (ns) Max	NF (dB) Max	Test Conditions	Process No.
PN4142	TO-92 (92)	60	40	5			20 20 40 35 25 20	120	500 150 150 10 1 0.1	10 1 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200		50	100		(Note 12)	63
PN4143	TO-92 (92)	60	40	5			30 50 100 75 50 35	300	500 150 150 10 1 0.1	10 1 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200		50	100		(Note 12)	63
PN5142	TO-92 (92)	20	20	4	50*	12	15 30		300 50	10 1	0.5 0.2	0.8	1.5 2.5	50 300	10	100		50	200		(Note 1)	63
PN5143	TO-92 (92)	20	20	4	50*	12	15 30		300 50	10 1	0.5 0.2	0.8	1.5 2.5	50 300	10	100		50	200		(Note 1)	63
TIS91	TO-92 (94)	40	40	4	100	20	100	300	50	2	0.25	0.6	1.0	50								63
TIS92	TO-92 (97)	40	40	5	100	20	100	300	50	2	0.25	0.6	1.0	50								63
TIS93	TO-92 (97)	40	40	5	100	20	100	300	50	2	0.25			50								63
TN2904A	TO-237 (91)	60	60	5	10	50	40 40 40 40 40	120	0.1 1.0 10 150 500	10 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200		50	100		(Note 2)	63
TN2905	TO-237 (91)	60	40	5	20	50	30 100 75 50 35	300	500 150 10 1 0.1	10 10 10 10 10	0.4 1.6	7	1.3 2.6	150 500	8	200		50	100		(Note 2)	63

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB}	h Min	FE @ Max	l _C (mA)	& V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE} (' Min	(SAT) V) @ Max	I _C (mA)	C _{OB} (pF) Max	f _T I _C (MHz) @ (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
TN2905A	TO-237 (91)	60	60	5	10	50	50 100 100 100 75	300	500 150 10 1 0.1	10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200 50	100		(Note 2)	63
2N3905	TO-92 (92)	40	40	5			15 30 50 40 30	150	100 50 10 1	1 1 1 1	0.25	0.65	0.85 0.95	10 50	4.5	200 10	260	5	(Notes 5, 8)	66
2N3906	TO-92 (92)	40	40	5			30 80 100 80 60	300	100 50 10 1 0.1	1 1 1 1	0.25 0.4	0.65	0.85 0.95	10 50	4.5	250 10	300	4	(Notes 5, 8)	66
2N4121		Same a	as PN41	 21																66
2N4122		Same a	as PN41:	22					-									-,-,		66
2N4125	TO-92 (92)	30	30	4	50	20	25 50	150	50 2	1	0.4		0.95	50	4.5	200 10		5	(Note 8)	66
2N4126	TO-92 (92)	25	25	4	50	20	60 120	360	50 2	1	0.4		0.95	50	4.5	250 10		4	(Note 8)	66
2N4916		Same a	ıs PN49	16		-	-													66
2N4917		Same a	s PN49	17																66
2N5138		Same a	s PN51	38																66
2N5139		Same a	s PN51	39																66
MPQ3906	TO-116	60	40	6	50	30	40 60 75		0.1 1 10	1 1 1	0.25		0.85	10	4.5					66

General Purpose Amplifiers and Switches (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	[®] (V)	h _i Min	FE (lc (mA) ⁸	V _{CE} (V)	V _{CE(SAT)} (V) & Max	: ('	(SAT) V) @ Max	I _C (mA)	C _{OB} (pF) Max	f _T (MH Min	lz) @	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MPQ6700	TO-116	40	40	5	50	30	30 50 70		0.1 1 10		0.25		0.9	10	4.5	200		10				66 (2) 23 (2)
MPS3905	TO-92 (92)	40	40	5			30 40 50 30 15	150	0.1 1 10 50 100	1 1 1 1	0.25	0.65	0.85	10	4.5	200		10		5	(Note 8)	66
MPS3906	TO-92 (92)	40	40	5			60 80 100 60 30	300	0.1 1 10 50 100	1 1 1 1	0.25	0.65	0.85	10 50	4.5	250		10		4	(Note 8)	66
MPS6516	TO-92 (92)	40	40	4	50	30	30 50	100	100 2	10 10	0.5			50	4							66
MPS6517	TO-92 (92)	40	40	4	50	30	60 90	180	100 2	10 10	0.5			50	4							66
MPS6518	TO-92 (92)		40	4	500	30	90 150	300	100 2	10 10	0.5			50	4							66
PN3251	TO-92 (92)	50	40	5			80 90 100 30	300	0.1 0.001 10 50	1 1 1 1	0.25 0.5	0.6	0.9 1.2	10 50	6	300		10		6	(Note 6)	66
PN4121	TO-92 (92)	40	40	5	25*	30	15 70 60 40	200	50 10 1 0.1	1 1 1	0.13 0.14 0.3	0.7	0.75 0.9 1.1	1 10 50	4.5	400		10	150	4	(Notes 11, 8)	66
PN4122	TO-92 (92)	40	40	5	25*	30	30 150 150 100	300	50 10 1 0.1	1 1 1	0.13 0.14 0.3	0.7	0.75 0.9 1.1	1 10 50	4.5	450		10	150	4	(Notes 11, 8)	66

Gene	eral Pu	rpos	e Am	plifie	ers	and	S	witches	(Continued)
					-				

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h _i Min	FE (Max	I _C (mA)	& ^V CE (V)	V _{CE(SAT)} (V) & Max	V _{BE} (' Min	(SAT) V) @ Max	I _C (mA)	C _{OB} (pF) Max	f _T (MHz) @ Min Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
PN4916	TO-92 (92)	30	30	5	25*	15	15 70 60 40	200	50 10 1 0.1	1 1 1	0.13 0.14 0.3	0.7 0.75	0.75 0.9 1.1	1 10 50	4.5	400	10	150	4	(Notes 13, 8)	66
PN4917	TO-92 (92)	30	30	5	25*	15	30 150 150 100	300	50 10 1 0.1	1 1 1	0.13 0.14 0.3	0.7 0.75	0.75 0.9 1.1	1 10 50	4.5	450	10	150	4	(Notes 13, 8)	66
PN5138	TO-92 (92)	30	30	5	50	20	50 50 50	800	10 1 0.1	10 10 10	0.3		1.0	10	7	30	0.5				66
PN5139	TO-92 (92)	20	20	5	50*	15	15 40 40 30		50 10 1 0.1	10 1 10 10	0.2	0.7	1.0	10 50	5	300	10	200		(Note 13)	66
ST3906	TO-92 (92)	40	40	5			60 80 100 60 30	300	0.1 1 10 50 300	1 1 1 1	0.25 0.4	0.65	0.85 0.95	10 50	4.5	250	10				66
2N6076	TO-92 (94)	25	25	5	100	25	100	300	10	10	0.25		0.8	10							68
MPQ200	TO-116	60	45	6	50	50	80 100 100 100	450 350	0.1 10 100 150	1 1 1 5	0.2 0.4		0.85 1.0	10 200	6	250	20		4	(Note 8)	68
PN200	TO-92 (92)	60	45	6	50	50	80 100 100 100	450 350	0.1 10 100 150	1 1 1 5	0.2 0.4		0.85 1.0	10 200	6	250	20		4	(Note 8)	68

4-16

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} ((nA) Max	V _{CB} (V)	h _i Min	FE @ Max	l _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{OB} (pF) Max	(M	T Hz) @ Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
PN200A	TO-92 (92)	60	45	6	50	50	300 100 250	600	10 100 0.1	1 1 5	0.2 0.4	0.85	10 200	6	250		20		4	(Note 8)	68
PN201	TO-92 (92)	80	65	6	50	60	60 75 50	375	0.1 10 100	1 1 1	0.2	0.85	10	4.5	100		10		4	(Note 8)	69
2N5400	TO-92 (92)	130	120	5	100	100	40 40 30	180	50 10	5 5 5	0.2	1.0	10	6	100	400	10		8	(Note 9)	74
2N5401	TO-92 (92)	160	150	5	50	120	50 60 50	240	50 10	5 5 5	0.2	1.0	10	6	100	300	10		8	(Note 9)	74
MPSL51	TO-92 (92)	100	100	4	1 μΑ	50	40	250	50	5	0.25 0.3	1.2	10 50	8	60		10				74
PN4888	TO-92 (92)	150	150	6	50	100	40 30	400	10 1	10 10	0.5	0.9	10	4	30		60				74
PN4889	TO-92 (92)	150	150	6	10	100	80 70 60	300	10 1 0.1	10 10 10	0.5	0.9	10	4	40	160	1		4 10 3 3	(Note 15) (Note 16) (Note 17) (Note 18)	74

TEST CONDITIONS:

Note 1: $I_C = 300 \text{ mA}$, $V_{CC} = 10 \text{V}$, $I_B^1 = I_B^2 = 30 \text{ mA}$.

Note 2: $I_C = 150$ mA, $V_{CC} = 6V$, $I_B^1 = I_B^2 = 15$ mA.

Note 3: $I_C = 300 \text{ mA}$, $V_{CC} = 15V$, $I_B^1 = I_B^2 = 30 \text{ mA}$.

Note 4: $I_C = 300 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B{}^1 = I_B{}^2 = 30 \text{ mA}$.

Note 5: $I_C = 10 \text{ mA}$, $V_{CC} = 3V$, $I_B^1 = I_B^2 = 1 \text{ mA}$.

Note 6: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 100 Hz.

Note 7: $I_C = 30 \mu A$, $V_{CE} = 5V$, f = 1 kHz.

Note 8: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 1 kHz.

Note 9: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 1 kHz.

Note 10: $I_{\mbox{\scriptsize C}}=$ 10 $\mu\mbox{\scriptsize A},$ $V_{\mbox{\scriptsize CE}}=$ 5V, f= 1 kHz.

Note 11: $I_C = 50$ mA, $V_{CC} = 30V$, $I_B^1 = I_B^2 = 5$ mA.

Note 12: $I_C = 150$ mA, $V_{CC} = 30V$, $I_{B}^{1} = I_{B}^{2} = 15$ mA.

Note 13: $I_C = 50$ mA, $V_{CC} = 10V$, $I_B^1 = I_B^2 = 5$ mA.

Note 14: $I_C = 500 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B{}^1 = I_B{}^2 = 50 \text{ mA}$.

Note 15: $I_{\mbox{\scriptsize C}}=$ 100 $\mu\mbox{\scriptsize A},$ $V_{\mbox{\scriptsize CC}}=$ 10V, f= 1 kHz.

Note 16: $I_C = 200 \mu A$, $V_{CE} = 5V$, f = 1 kHz.

Note 17: $I_C/I_B = 40$.

Note 18: $I_C/I_B = 20$.

Medium Power

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)		FE @ Max	I _C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	. (V	SAT)) @ Max	I _C (mA)	C _{OB} (pF) Max	(M	T Hz) @ Max	I _C (mA)	^t OFF (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N4030	TO-39	60	60	5	50	50	15 25 40 30	120	1A 500 100 0.1	5 5 5	1.0 0.5 0.15		0.9	1A 500 150	20	100	400	50	400		(Note 3)	67
2N4031	TO-39	80	80	5	50	60	10 25 40 30	120	1A 500 100 0.1	5 5 5 5	0.5 0.15		0.9	500 150	20	100	400	50	400		(Note 3)	67
2N4032	TO-39	60	60	5	50	50	40 70 100 75	300	1A 500 100 0.1	5 5 5 5	1.0 0.5 0.15		0.9	1A 500 150	20	150	500	50	400		(Note 3)	67
2N4033 also Avail. JAN/TX/V Versions	TO-39	80	80	5	50	60	25 70 100 75	300	1A 500 100 0.1	5 5 5	0.5 0.15		0.9	500 150	20	150	500	50	400		(Note 3)	67
2N4036	TO-39	90	85	7	20	60	20 40 20	140	500 150 0.1	10 10 10	0.6		1.4	150	30	60		50	700		(Note 4)	67
2N4037	TO-39	60	40	7	250	60	50 15	250	150	10 10	1.4			150	30	60		50				67
2N4314	TO-39	90	65		250	60	50 15	250	150 1	10 10	1.4			150	30	60		50				67
2N4354		Same a	as PN43	54																		67
2N4355		Same a	as PN43	55																		67
2N4356		Same a	as PN43	56																		67

i	i		۰
		1	L
ċ	ć	•	,
		ď	<u>.</u>

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{СВ} (V)	h _F Min	E @ Max	I _C 8	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{OB} (pF) Max	f _T (MH Min	l z) @	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MPSA55	TO-92 (92)		60	4	100	60	50 50		100 10	1 1	0.25		100		50		100				67
MPSA56	TO-92 (92)		80	4	100	80	50 50		100 10	1 1	0.25		100		50		100				67
MPS4354	TO-92 (92)	Same a	s PN43	54								_									67
MPS4355	TO-92 (92)	Same a	s PN43	55																	67
MPS4356	TO-92 (92)	Same a	ıs PN43	56																	67
MPS6562	TO-92 (92)	25	25	5	100	20	50 50 35	200	500 100 10	1 1 1	0.5		500	30	60		10				67
PN4354	TO-92 (92)	60	60	5	50	50	30 40 50 40 25	500	500 100 10 1 1 0.1	10 10 10 10 10	0.15 0.5	0.9	150 500	30	100	500	50	400	3	14/15	67
PN4355	TO-92 (92)	60	60	5	50	50	75 75 100 75 60	400	500 100 10 1 1 0.1	10 10 10 10 10	0.15 0.5	0.9	150 500	30	100	500	50	400	3	14/15	67
PN4356	TO-92 (92)	80	80	5	50	50	30 40 50 40 25	250	500 100 10 1 1 0.1	10 10 10 10 10	0.15 0.5	0.9 1.1	150 500	30	100	500	50	400	3	14/15	67
PN5855	TO-92 (92)	60	60	5	100	40	50 50 50 15	300	150 10 500 1A	10 10 10 10	0.4	1.3	15	15	100		50		4		67

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Ma:	@ 'C	C _{OE} (pF) Max	(N	f _T IHz) @ Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
PN5857	TO-92 (92)	80	80	5	100	60	50 50 50 15	300	150 10 500 1A	10 10 10 10	0.4	1.3	15	15	100		50				67
TN4033	TO-237 (91)	80	80	5	50	60	75 100 70 25	300	0.1 100 500 1A	5 5 5 5	0.15 0.5	0.9	150 500		150	500	50				67
TN4036	TO-237 (91)	90	65	7	20	60	20 40 20	140	0.1 150 500	10 10 10	0.65	1.4	150	30	60	50					67
TN4037	TO-237 (91)	60	40	7	250	60	15 50	250	1 150	10 10	1.4		150	30	60	200	50				67
TN4314	TO-237 (91)	90	65		250	60	15 50	250	1 150	10 10	1.4		150	30	60		50				67
MPSA92	TO-92 (92)	300	300	5	250	200	25 40 25		1 10 30	10 10 10	0.5	0.9	20	6	50		10				76
MPSA93	TO-92 (92)	200	200	5	250	160	25 40 25	150	1 10 30	10 10 10	0.4	0.9	20	8	50		10				76
MPSW92	TO-92 (99)	200	200	5	250	200	25 40 25		1 10 30	10 10 10	0.5	0.9	20	6	50		10				76
2N6726	TO-237 (91)	40	30	5	100	40	55 60 50	200	10 100 1A	1 1 1	0.5		1A		50		50				77
2N6727	TO-237 (91)	50	40	5	100	50	55 80 50	250	10 100 1A	1 1 1	0.5		1A		50	500	50				77
92PU51	TO-237 (91)		30		100	40	50 60 55	-	1A 100 10	1 1 1	0.5		1A	30	50		50				77

Medium Power (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h Min	FE @ Max	(mA)	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{OB} (pF) Max	(M	f _T Hz)		t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
92PU51A	TO-237 (91)		40		100	50	50 60 55		1A 100 10	1 1 1	0.5		1A	30	80		50				77
NSD202	TO-202 (55)	60	45	5	100	60	25 40 50 40	150	1A 500 100 10	5 5 5 5	0.2	0.9	100	30	60		50				77
NSD203	TO-202 (55)	60	45	5	100	60	30 50 120 50	360	1A 500 100 10	5 5 5 5	0.2	0.9	100 500	30	60		50				77
NSDU51	TO-202 (55)	40	30	5	100	30	50 60 55		1A 100 10	1 1 1	0.7		1A	30	50		50				77
NSDU51A	TO-202 (85)	50	40	5	100	40	50 60 55		1A 100 10	1 1 1	0.7		1A	30	50		50				77
D41D1	TO-202 (55)		30		100*	45	10 50	150	1A 100	2	0.5	1.5	500								78
D41D2	TO-202 (55)		30		100*	45	20 120	300	1A 100	2 2	0.5	1.5	500								78
D41D4	TO-202 (55)		45		100*	60	10 50	150	1A 100	2 2	0.5	1.5	500								78
D41D5	TO-202 (55)		45		100*	60	20 120	360	1A 100	2 2	0.5	1.5	500								78
D41D7	TO-202 (55)	_	60		100*	75	10 50	150	1A 100	2 2	1.0	1.5	500								78
D41D8	TO-202 (55)		60		100*	75	20 120	360	1A 100	2 2	1.0	1.5	500								78
D41D10	TO-202 (55)		75		100*	90	10 50	150	1A 100	2	1.0	1.5	500								78

Process

No.

Test

Conditions

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h Min	FE @ Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{OB} (pF) Max	(M	i _T Hz) @ Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max
D41D11	TO-202 (55)		75		100*	90	20 120	360	1A 100	2 2	1.0	1.5	500						
D41D13	TO-202 (55)		75		100*	90	50	150	100	2	1.0	1.5	500						
D41D14	TO-202 (55)	-	75		100*	90	120	360	100	2	1.0	1.5	500						
D41E1	TO-202 (55)		30		100*	40	10 50		1A 100	2 2	1.0	1.3	1A						
D41E5	TO-202 (55)		60		100*	70	10 50		1A 100	2 2	1.0	1.3	1A						
D41E7	TO-202 (55)		80		100*	90	10 50		1A 100	2 2	1.0	1.3	1A						
NSDU52	TO-202 (55)	60	40	5	100	40	30 50 50	300	500 150 10	10 10 10	0.4	1.3	150	20	150		20		
2N6554	TO-202 (55)	60	60	5	100	40	25 60 80 80	300	500 250 50 10	1 1 1	1.0		1A 250	18	75	250	100		
2N6555	TO-202 (55)	60	60	5	100	60	25 60 80	300	500 250 50	1 1 1	1.0		1A	18	78	250	100		

8.0

1.0

0.5

1A

75 250

TO-202

(55)

2N6556

	2N6
	2N6
	MP
4-23	NSI
	NSI
	NSI
	PE

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE @ Max	I _C (mA)	& V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{OB} (pF) Max	f _T (MHz) @ Min Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
2N6706	TO-237 (90)	60	45	5	100	60	40 40 25	250	50 250 500	2 2 2	1.0 0.5		1A 500		50	50			ŧ	78
2N6709	TO-237 (90)	80	60	5	100	80	40 40 25	250	50 250 500	2 2 2	1.0		1A 500		50	50				78
2N6710	TO-237 (90)	100	80	5	100	100	40 40 25	250	50 250 500	2 2 2	1.0 0.5		1A 500		50	50				78
MPS6727	TO-92 (99)	50	40	5	100	50	60 50	250	100 1A	1	0.5	1.2	1A	30						78
NSD6180	TO-202 (55)		75		500	80	10 40 30	250	1A 500 50	2 2 2	0.5	1.2	500	30	50	50				78
NSD6181	TO-202 (55)		50		500	60	10 40 30	250	1A 500 50	2 2 2	0.5	1.2	500	30	50	50				78
NSDU55	TO-202 (55)	60	60	4	100	60	20 50 80		500 250 50	1 1 1	0.35		250	30	50	200				78
PE8550	TO-92 (92)	30	25	6	100	20	50 65 65 40	200 200 200 200	10 100 500 1A	1 1 1	0.15 0.5	0.9	200 1A	40	100	50				78
TN4234	TO-237 (91)	40	40	7	0.1 mA	40	40 30 20 10	150	100 250 500 1A	1 1 1 1	0.6	1.5	1A	100						78
TN4235	TO-237 (91)	60	60	7	0.1 mA	60	40 30 20 10	150	100 250 500 1A	1 1 1	0.6	1.5	1A	100						78

Med	ium Po	wer	(Contine	ied)													-			
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h Min	FE @ Max	I _C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{OB} (pF) Max	f _T (MHz) @ Min Max	I _C (mA)	t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
TN4236	TO-237 (91)	80	80	7	0.1 mA	80	40 30 20 10	150	100 250 500 1A	1 1 1	0.6	1.5	1A	100						78
2N6728	TO-237 (91)	60	60	5	100	40	80 50 20	250	50 250 500	1 1 1	0.35		250		50	50				79
2N6729	TO-237 (91)	80	80	5	100	60	80 50 20	250	50 250 500	1 1 1	0.35		250		50	50				79
2N6730	TO-237 (91)	100	100	5	100	80	80 50 20	250	50 250 500	1 1 1	0.35		250		50	50			·	79
2N6732	TO-237 (91)	100	80	5	100	80	100 100	300	10 350	2 2	0.35	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	350		50	50				79
92PU55	TO-237 (91)	·	60		100	40	20 50 80		500 250 50	1 1 1	0.35		250	30	50	200				79
92PU56	TO-237 (91)		80		100	60	20 50 80		500 250 50	1 1 1	0.35		250	30	50	200				79
92PU57	TO-237 (91)		100		100	80	20 50 80		500 250 50	1 1 1	0.35		250	30	50	200		,		79
NSD204	TO-202 (55)	100	80	7	100	100	10 50 20	150	1A 100 10	5 5 5	0.2 0.5	0.9	100 500	30	60	50				79
NSD205	TO-202 (55)	100	80	7	100	100	10 120 20	360	1A 100 10	5 5 5	0.2 0.5	0.9	100 500	30	60	50				79

Medium Power (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	h Min	FE «	I _C (mA)	V _{CE}	V _{CE(SAT)} (V) 8 Max		@ 'C	C _{OB} (pF) Max	f _T (MHz) Min Ma		t _{OFF} (ns) Max	NF (dB) Max	Test Conditions	Process No.
NSD206	TO-202 (55)	140	100	7	100	140	25 50 20	150	500 100 10	5 5 5	0.2 0.5	0.9		30	60	50				79
NSDU56	TO-202 (55)	80	80	4	100	80	20 50 80		500 250 50	1 1 1	0.35		250	30	50	200				79
NSDU57	TO-202 (55)	100	100	4	100	100	20 50 80		500 250 50	1 1 1	0.35		250	30	50	200				79

TEST CONDITIONS:

Note 1: $I_C = 50$ mA, $V_{CC} = 100V$, $I_B{}^1 = I_B{}^2 = 5$ mA.

Note 2: $I_C = 500 \mu A$, $V_{CE} = 10 V$, f = 1 kHz.

Note 3: $I_C = 500 \text{ mA}$, $I_B^1 = I_B^2 = 50 \text{ mA}$.

Note 4: $I_C = 150$ mA, $V_{CC} = 30V$, $I_B^1 = I_B^2 = 15$ mA.

Note 5: $I_C = 100 \mu A$, $V_{CC} = 10 V$, f = 1 kHz.

Note 6: $I_C = 500 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B{}^1 = I_B{}^2 = 50 \text{ mA}$.

Note 7: $I_C/I_B = 8$.

Darlington Transistors

Type No.	Case Style	V _{CBO} (V) Min	V _{CES} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CEX} † _@ (μΑ) Max	V _{CB} (V)	h _{FE} Min	E @ I _C Max (A)	& ^V CE (V)	V _{CE(SAT} (V) 8 Max	(SAT) V) @ Max	I _C (A)	C _{OB} (pF) Max	f (Mi Min	-	_@ I _C (A)	Process No.
D41K1	TO-202 (55)	,	30*	13	0.5	30	10,000 1000	0.2 1.5	5 5	1.5	2.5	1.5		100		0.02	61
D41K2	TO-202 (55)		50*	13	0.5	50	10,000 1000	0.2 1.5	5 5	1.5	2.5	1.5		100		0.02	61
D41K3	TO-202 (55)		30*	13	0.5	30	10,000 1000	0.2 1.5	5 5	1.5	2.5	1		100		0.02	61
D41K4	TO-202 (55)		50*	13	0.5	50	10,000 1000	0.2 1.5	5 5	1.5	2.5	1		100		0.02	61
MPSA62	TO-92 (92)		20*		0.1	15	20,000	10	5	1.0		10				0.01	61
MPSA63	TO-92 (92)		30*		0.1	30	10,000 5000	100 10	5 5	1.5		100		125		0.01	61
MPSA64	TO-92 (92)		30*		0.1	30	20,000 10,000	100 10	5 5	1.5		100		125		0.01	61
MPSA65	TO-92 (92)		30*		0.1	30	50,000 20,000	0.01 0.1	5 5	1.5				100		0.01	61 .
MPSA66	TO-92 (92)		30*		0.1	30	75,000 40,000	0.01 0.1	5 5	1.5				100		0.01	61
MPSW63	TO-226 (99)		30*		0.1	30	10,000 5000	100 10	5 5	1.5		100		125		0.01	61
MPQA63	TO-116		30*		0.1	30	10,000 5000	100 10	5 5	1.5		100		125		0.01	61
NSDU95	TO-202 (55)	50		10			25,000 15,000 4000	0.2 0.5 1	5 5 5	1.5		1		50		0.02	61
NSDU95A	TO-202 (55)	60		10			25,000 15,000 4000	0.2 0.5 1	5 5 5	1.5		1		50		0.02	61

4-26

Section 5

JFET Transistors

Section 5 Contents

M	\sim L	A N	JEFT	-

Switches and Choppers	5-3
RF, VHF, UHF Amplifiers	5-5
Low Frequency-Low Noise Amplifiers	5-7
Ultra Low Input Current Amplifiers	5-8
General Purpose Amplifiers	5-9
General Purpose Dual JFETs	5-12
Low Frequency-Low Noise Dual JFETs	5-14
Wide Band-Low Noise Dual JFETs	5-15
	5-16
Ultra Low Leakage Dual JFETs	5-17
P-CHANNEL JFETS	
Switches	5-18
Amplifiers	5-19

Switches/Choppers

1-																												
	Type No.	Case Style	В	V _{GSS} V _{GDO} () @ I _G (μ A)	I _{GS} *I _{DG} (nA) @ Max	GO	(nA) @ Max	D(off) V _{DS} (V)	V _{GS} (V)	(V) Min	V _i @ V _i Max		I _D (nA)	/ A	I _{DSS} () @ Max			(on) @ I _D (mA)	(pF) Max	C _{iss} @ V _{DS} (V)	V _{GS} (V)	(pF) @ Max	C _{rss} V _{DS} (V)		t _{on} (ns) Max	(113)	Process No.	Pkg. No.
21	13824	TO-72	50	1	0.1	30	0.1	15	-8		8	15	0.1				250		6	15	0	3	0	-8			55	25
21	13966	TO-72	30	1	1	20	0.1	10	-7	4		10	10	2		20	220		6	20	0	1.5	0	-7			50	25
21	13970	TO-18	40	1	0.25*	20	0.25	20	-12	4	10	20	1	50	150	20	30	1	25	20	0	6	0	-12	20	30	51	02
21	13971	TO-18	40	1	0.25*	20	0.25	20	-12	2	5	20	1	25	75	20	60	1	25	20	0	6	0	-12		60	51	02
21	13972	TO-18	40	1	0.25*	20	0.25	20	-12	0.5	3	20	1	5	30	20	100	1	25	20	0	6	0	-12	80	100	51	02
21	14091	TO-18	40	1	0.2*	20	0.2	20	-12	5	10	20	1	30		20	30	1	16	20	0	5	0	-20	25	40	51	02
21	14092	TO-18	40	1	0.2*	20	0.2	20	-8	2	7	20	1	15		20	50	1	16	20	0	5	0	-20	35	60	51	02
21	14093	TO-18	40	1	0.2*	20	0.2	20	-6	1	5	20	1	8		20	80	1	16	20	0	5	0	-20	60	80	51	02
	14391	TO-18		1	0.1	20	0.1	20	-12	4	10	20	1		150	20	30	1	14	20	0	3.5	0	-12	20	35	51	02
21	14392	TO-18	40	1	0.1	20	0.1	20	-7	2	5	20	1	25	75	20	60	1	14	20	0	3.5	0	-7	20	55	51	02
21	14393	TO-18	40	1	0.1	20	0.1	20	-5	0.5	3	20	1	5	30	20	100	1	14	20	0	3.5	0	-5	20	80	51	02
21	14856	TO-18	40	1	0.25	20	0.25	15	-10	4	10	15	0.5	50		15	25		18	0	-10	8	0	-10	9	25	51	02
21	14856A	TO-18	40	1	0.25	20	0.25	15	-10	4	10	15	0.5	50		15	25		10	0	-10	4	0	-10	9	20	51	02
	14857	TO-18		1	0.25	20	0.25	15	-10	2	6	15	0.5		100	15	40		18	0	-10	8	0	-10	10	50	51	02
21	14857A	TO-18	40	11	0.25	20	0.25	15	-10	2	6	15	0.5	20	100	15	40		10	0	-10	3.5	0	-10	10	40	51	02
21	14858	TO-18	40	1	0.25	20	0.25	15	-10	8.0	4	15	0.5	8	80	15	60		18	0	-10	8	0	-10	20	100	51	02
21	14858A	TO-18	40	1	0.25	20	0.25	15	-10	8.0	4	15	0.5	8	80	15	60		10	0	-10	3.5	0	-10	16	80	51	02
	14859	TO-18		1	0.25	15	0.25	15	-10	4	10	15	0.5	50		15	25		18	0	-10	8	0	-10	9	25	51	02
1	14859A			1	0.25	15	0.25	15	-10				0.5	50		15	25		10	0	-10	4	0	-10	8	20	51	02
21	14860	TO-18	30	1	0.25	15	0.25	15	-10	2	6	15	0.5	20	100	15	40		18	0	-10	8	0	-10	10	50	51	02
21	14860A	TO-18	30	1	0.25	15	0.25	15	-10	2	6	15	0.5	20	100	15	40		10	0	-10	3.5	0	-10	10	40	51	02
	14861	TO-18		1	0.25	15	0.25	15	-10		4	15	0.5	8	80	15	60		18	0	-10	8	0	-10	20	100	51	02
	14861A			1	0.25	15	0.25	15	-10				0.5	8	80	15	60		10	0	-10	3.5	0	-10		80	51	02
	15432	TO-52		1	0.2	15	0.2	5	-10		10	5	3	150		15	5	10	30	0	-10	15	0	-10	5	36	58	07
21	15433	TO-52	25	1	0.2	15	0.2	5	-10	3	9	5	3	100		15	7	10	30	0	<u>-10</u>	15	0	-10	5	36	58	07
	15434	TO-52		1	0.2	15	0.2	5	-10		4	5	3	30		15	10	10	30	0	-10	15	0	-10	5	36	58	07
	15555	TO-92		10	1	15	10	12	-10		(10)			15		15	150		5	15	0	1.2	0	-10	10	25	50	92
1	15638	TO-92		10	1	15	1	15	-12		(12)			50		20	30	1	10	0	-12	4	0	-12			51	92
	15639	TO-92		10	1	15	1	15	-8		(8)			25		20	60	1	10	0	-12	4	0	-8			51	92
21	N5640	TO-92	30	10	1 1	15	1	15	-6		(6)			5		20	100	1	10	0	-12	4	0	-6			51	92

Sı	vitche	es/C	Chopp	oers (Continue	d)															N-C	har	ne	IJF	ETs	
Type No.	Case Style	В١	/ _{GSS} / _{GDO}) @ I _G (μ A)	*10	iss DGO @ V _{DG} (V)	(nA) @ Max	I _{D(off)} V _{DS} (V)	V _{GS}	(V) Min	V _i @ V _I Max		I _D (nA)	(mA	l _{DSS}) @ V _{DS} Max (V)		s(on)) @ I _D (mA)	(pF) Max	C _{iss} @ V _{DS} (V)	V _{GS} (V)	(pF) Max	C _{rss} @ V _{DS} (V)		t _{on} (ns) Max	(118)	Process No.	Pkg. No.
2N569 J105 J106	70-92 70-92 70-92 70-92	25 25 25	10 10 1	1 1 3 3	15 15 15 15	1 10 3 3	15 15 5 5	-12 -8 10 10	4.5 2	6	5	1000	200	20 20 15 15	50 100 3 6 8	1 1 33 17 13	10 10	0	-12 -12	3.5 3.5	0	-12 -8	9 14	15 30	51 51 59 59 59	92 92 92 92 92
J107 J108 J109 J110 J111	TO-92 TO-92 TO-92 TO-92 TO-92	25 25 25 25 35	1 1 1 1 1	3 3 3 1 1	15 15 15 15 15 15	3 3 3 1	5 5 5 5 5	-10 -10 -10 -10 -10	3	10 6 4 10 5	5 5 5 5	1000 1000 1000 1000 1000 1000	80 40 10 20	15 15 15 15 15	8 12 18 30 50	10 10 10 10 1									58 58 58 51 51	92 92 92 92 92 92
PN40	TO-92 TO-92 TO-92 91 TO-92 92 TO-92	35 25 40 40	1 1 1 1 1	1 1 0.2* 0.2* 0.2*	15 15 20 20 20	1 1 0.2 0.2 0.2	5 5 20 20 20	-10 -10 -10 -12 -8 -6	0.5	3 10 10 7	5	1000 1000 1 1 1	2	15 15 20 20 20	100 150 30 50 80	1 1	16 16 16	20 20 20 20	0 0	5 5 5	20 20 20	0 0	25 35 60	40 60 80	51 90 51 51 51	92 92 92 92 92 92
PN439 PN439 PN439 PN489	91 TO-92 92 TO-92 93 TO-92 96 TO-92	40 40 40 40	1 1 1 1 1	0.1 0.1 0.1 0.25 0.25	20 20 20 20 20 20	0.1 0.1 0.1 0.25 0.25	20 20 20 20 15	-12 -7 -5 -10	4 2 0.5 4	10 5 3 10	20 20 20 20 15	1 1 1 0.5 0.5	50 25 5 50	150 20 75 20 30 20 15 100 15	30 60 100 25 40	5	14 14 14 18 18	20 20 20 20 0	0 0 0 -10 -10	3.5 3.5 3.5 8 8	0 0 0 0 0	-12 -7 -5 -10	20 40 55 9	35 80 130 25 50	51 51 51 51 51	92 92 92 92 92 92
PN48 PN48 PN48	58 TO-92 59 TO-92 50 TO-92 51 TO-92	40 30 30	1 1 1 1	0.25 0.25 0.25 0.25 0.25	20 15 15 15	0.25 0.25 0.25 0.25 0.25	15 15 15 15	-10 -10 -10 -10	0.8 4 2	4 10 6	15 15 15	0.5 0.5 0.5 0.5	8 50	80 15 15 100 15 80 15	60 25 40 60		18 18 18 18	0 0 0 0	-10 -10 -10 -10	8 8 8	0 0 0 0	-10 -10 -10 -10	20 9 10 20	100 25 50 100	51 51 51 51	92 92 92 92
PN54: PN54: TIS73		25 25 30	1 1 1 1	0.2 0.2 0.2 2	15 15 15 15	0.2 0.2 0.2 2	5 5 5 15	-10 -10 -10 -10	1 4		5 5 5 15	3 3 4	150 100 30 50	15 15 15 15	5 7 10 25	10 10 10	30 30 30 18	0 0 0	-10 -10 -10 -10	15 15 15 8	0 0 0	-10 -10 -10 -10	5 5 9	36 36 36 25	58 58 58 51	92 92 92 97
TIS74 TIS75 U1897 U1898 U1898	TO-92 TO-92 TO-92	30 40 40	1 1 1 1	2 2 0.2* 0.2* 0.2*	15 15 20 20 20	2 2	15 15	-10 -10	2 0.8 5 2 1	4 10 7	15 15 20 20 20	4 1 1 1	20 8 30 15 8	100 15 80 15 20 20 20	40 60 30 50 80	1 1 1	18 18 16 16 16	0 0 20 20 20	-10 -10 0 0 0	8 8 5 5 5	0 0 0 0	-10 -10 -20 -20 -20	35	50 40 60 80	51 51 51 51 51	97 97 92 92 92

RF, VHF, UHF Amplifiers

Type No.	Case Style	BV ₍	gss @ Ig	l _{GS} (nA) @		(V)	۷ @ ۷	P DS	ID	(m	I _{DSS}	'DS	R _e (mmho)			(Y _{os}) 10) @ f	(pF) @	C _{iss}	V _{GS}	(pF) @	C _{rss}	V _{GS}		IF R _G = 1k Freq.	Process No.	Pkg.
NO.	Style	Min	(μ A)	Max	(V)	Min	Max	(V) (nA)	Min	Max	(V)	Min	(MHz)	Max	(MHz)	Max	(V)	(V)	Max	(V)	(V)	Max	(MHz)	NO.	NO.
2N3819	TO-92	25	1	2	15		8	15	2	2	20	15	1.6	100			8	15	0	4	15	0			50	94
2N3823	TO-72	30	1	0.5	20	ĺ	8	15	0.5	4	20	15	3.2	200	200	200	6	15	0	2	15	0	2.5	100	50	25
2N4223	TO-72	30	10	0.25	20	0.1	8	15 (0.25	3	18	15	2.7	200	200	200	6	15	0	2	15	0	5	200	50	25
2N4224	TO-72	30	10	0.5	20	0.1	8	15	0.5	2	20	15	1.7	200	200	200	6	15	0	2	15	0			50	25
2N4416	TO-72	30	1	0.1	20		6	15	1	5	15	15	4	400	100	400	4	15	0	0.8	15	0	4	400	50	25
2N4416A	TO-72	35	1	0.1	20	2.5	6	15	1	5	15	15	4	400	100	400	4	15	0	0.8	15	0	4	400	50	25
2N5078	TO-72	30	1	0.25	20	0.5	8	15	i	4	25	15	4	200	150	200	6	15	0	2	15	0	3	200	50	25
2N5245	TO-92	30	1	1	20	1	6	15	10	5	15	15	4	400	100	400	4.5	15	0	1	15	0	4	400	90	97
2N5246	TO-92	30	1	1	20	0.5	4	15	10	1.5	7	15	2.5	400	100	400	4.5	15	0	1	15	0			90	97
2N5247	TO-92	30	1	1	20	1.5	8	15	10	8	24	15	4	400	150	400	4.5	15	0	1	15	0			90	97
2N5248	TO-92	30	1	5	20	1	8	15	10	4	20	15	3	200	200	200	6	15	0	2	15	0			50	94
2N5397	TO-72	25	1	0.1	15	1	6	10	1	10	30	10	5.5	450	200	450	5	10	10 mA	1.2	10	10 mA	3.5	450	90	29
2N5398	TO-72	25	1	0.1	15	1	6	10	1	5	40	10	5.0	450	400	450	5.5	10	0	1.3	10	0	3.2	450	90	29
2N5484	TO-92	25	1	1	20	0.3	3		10	1	5	15	2.5	100	75	100	5	15	0	1	15	0	3	100	50	92
2N5485	TO-92	25	1	1	20	1	4	15	10	4	10	15	3	400	100	400	5	15	0	1	15	0	4	400	50	92
2N5486	TO-92	25	1	1	20	2	6	15	10	8	20	15	3.5	400	100	400	5	15	0	1	15	0	4	400	50	92
2N5468	TO-92	25	10	2	15	0.2	4	14	10	1	5	15	1	100	50	100	7	15	0	3	15	0	2.5	100	50	92
2N5469	TO-92	25	10	2	15	1	6	15	10	4	10	15	1.6	100	100	100	7	15	0	3	15	0	2.5	100	50	92
2N5470	TO-92	25	10	2	15	2	8	15	10	8	20	15	2.5	100	150	100	7	15	0	3	15	0	2.5	100	50	92
2N5949	TO-92	30	1	1	15	3	7	15	100	12	18	15	3.0	100	75	100	6	15	0	2	15	00	5	100	50	97
2N5950	TO-92	30	1	1	15	2.5	6	15	100	10	15	15	3.0	100	75	100	6	15	0	2	15	0	5	100	50	97
2N5951	TO-92	30	1	1,	15	2	5	15	100	7	13	15	3.0	100	75	100	6	15	0	2	15	0	5	100	50	97
2N5952	TO-92	30	1	1	15	1.3	3.5	15	100	4	8	15	1.0	100	75	100	6	15	0	2	15	0	5	100	50	97
2N5953	TO-92	30	1	1	15	0.8	3		100	2.5	5	15	1.0	100	50	100	6	15	0	2	15	0	5	100	50	97
J300	TO-92	25	1	0.5	15	1	6	10	1	6	30	10	4.5	0.001	200	0.001	5.5	10	5 mA	1.7	10	5 mA			90	92
J304	TO-92	30	1	0.1	20	2	6	15	1	5	15	15	t4.2	400	t80	100									50	92
J305	TO-92	30	1	0.1	20	0.5	3	15	1	1	8	15 .	t3.0	400	t80	100									50	92
J308	TO-92	25	1	1	15	1	6.5	10	1	12	60	10	8	0.001	200	0.001	7.5	0	-10	2.5	0	-10			92	92
J309	TO-92	25	1	1	15	1	4.0	10	1	12	30	10	10	0.001	200	0.001	7.5	0	-10	2.5	0	-10			92	92
J310	TO-92	25	1	1	15	2	6.5	10	1	24	60	10	8	0.001	200	0.001	7.5	0	-10	2.5	0	-10			92	92

t = typical value

RF,	VHF	, Uł	HF A	\mpli	ifier	S (C	Conti	nued)														N-	Chani	nel JF	ETs	
Type No.	Case Style	BV ₍ (V) (Igg (nA) @ Max	VDG		@ V	/P 'DS ((V) (r	l _D	(m Min	I _{DSS} nA) @ V Max	DS (V)		Y _{fs} @ Freq. (MHz)	(µmh	Y _{os}) 10) @ f (MHz)		C _{iss} @ I _{DS} (V)	V _{GS} (V)	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS}		NF R _G = 1k Freq. (MHz)	Process No.	sPkg No.
MPF102	TO-92	25	1	2	15		8	15	2	2	20	15	1.6	100	100	200	7	15	0	3	15	0			50	92
MPF106	TO-92	25	1	1	20	0.5	4	15 ().5	4	10	15	2.5	0.001			5	15	0	2	15	0	4	400	50	92
MPF107	TO-92	25	1	1	20	2	6	15 ().5	8	20	15	4	0.001	1		5	15	0	1.2	15	0	4	400	50	92
MPF108	TO-92	25	10	1	15	0.5	8	15	10	1.5	24	15	1.6	100	200	100	6.5	15	0	2.5	15	0	3	100	50	92
MPF256	TO-92	25	10	5	15	0.5	7.5	15 20)0μ	3	18	15	6	0.001				_					2.0	100	90	92
MPF820	TO-92	25	10	5	15		5.0	15 20)0μ	10		15		0.001									4.0	100	51	92
PN4223	TO-92	30	1	0.25	20	0.1	8	15	1	3	18	15	2.7	200	200	200	6	15	0	2	15	0	5	200	50	92
PN4224	TO-92	30	1	0.5	20	0.1	8	15	5	2	20	15	1.7	200	200	200	6	15	0	2	15	0			50	92
PN4416	TO-92	30	1	0.1	20		6	15	1	5	15	15	4	400	100	400	4	15	0	8.0	15	0	4	400	50	92
U308	TO-52	25	1	0.15	15	1	6	10	1	12	60	10	10	0.001	150	100	5	0	10 mA	2.5	0	10 mA			92	07
U309	TO-52	25	1	0.15	15	1	4	10	1	12	30	10	10	0.001	150	100	5	0	10 mA	2.5	0	10 mA			.92	07
U310	TO-52	25	1	0.15	15	2.5	6	10	1	24	60	10	10	0.001	150	100	5	10	10 mA	2.5	10	10 mA			92	07
U312	TO-52	25	1	0.1	15	1	6	10	1	10	30	10	6	0.001			3.8	10	10 mA	1.2	10	10 mA			90	07

Low Frequency—Low Noise Amplifiers

Type No.	Case Style	(V)	GSS IG (μΑ)	I _G (nA) Max	ss V _{DG} (V)		V)	S(off) V _{DS} (V)	I _D (nA)		I _{DSS} nA) Max	V _{DS}	(mn	(R _e Y nho) Max	(fs) V _{DS} (V)	f (MHz)	G _{os:} (μmho) Max	s V _{DS} (V)	(pF) Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) Max	rss V _{DS} (V)	e nV/√l Max		Process No.	Pkg No.
2N4393	TO-18	40	1.0	0.1	20	0.5	3.0	20	1.0	5	30	20	t12		20	0.001			14	20	0	3.5	5(GS)	t8	10	51	02
2N5556	TO-72	30	10	0.1	15	0.2	4.0	15	1.0	0.5	2.5	15	1.5	6.5	15	0.001	20	15	6	15	0	3	15	35	10	50	25
2N5557	TO-72	30	10	0.1	15	0.8	5.0	15	1.0	2	5.0	15	1.5	6.5	15	0.001	20	15	6	15	0	3	15	35	10	50	25
2N5558	TO-72	30	10	0.1	15	1.5	6.0	15	1.0	4	10	15	1.5	6.5	15	0.001	20	15	6	15	0	3	15	35	10	50	25
NF5101	TO-72	40	1	0.2	15	0.5	1.1	15	1.0	1	12	15	3.5		15	0.001	25	15	t12	15	0	t4	15	3.5	1000	51	25
NF5102	TO-72	40	1	0.2	15	0.7	1.6	15	1.0	4	20	15	7.5		15	0.001	25	15	t12	15	0	t4	15	3.5	1000	51	25
NF5103	TO-72	40	1	0.2	15	1.2	2.7	15	1.0	10	40	15	7.5		15	0.001	25	15	t12	15	0	t4	15	3.5	1000	51	25
PF5101	TO-92	40	1	0.2	15	0.5	1.1	15	1.0	1	12	15	3.5		15	0.001	25	15	t12	15	0	t4	15	3.5	1000	51	92
PF5102	TO-92	40	1	0.2	15	0.7	1.6	15	1.0	4	20	15	7.5		15	0.001	25	15	t12	15	0	t4	15	3.5	1000	51	92
PF5103	TO-92	40	1	0.2	15	1.2	2.7	15	1.0	10	40	15	7.5		15	0.001	25	15	t12	15	0	t4	15	3.5	1000	51	92
PN4393	TO-92	40	1	0.1	20	0.5	3.0	20	1.0	5	30	20	t12		20	0.001			14	20	0	3.5	5(GS)	t8	10	51	92
t = typical v	ralue.					•				•			•							4						•	

Ultra Low Input Current Amplifiers

Туре	Case	Β _\	'gss @ lg	lgs (pF) @		(v)	@ V	P	ID	(µA	IDSS (@ V	\	/	G _{fs}	V	G _{os}		(pF) @	C _{iss}	V _{GS}	(pF) @	Crss	V _{GS}	Process	Pkg.
No.	Style	Min	(μ A)	Max	(V)	Min	Max	V _{DS} (V)	(nA)	Min			Min	Max	(V)	Max	(V)	Max	(V)	(V)	Max	(V)	(V)	No.	No.
2N4117	TO-72	40	1	10	20	0.6	1.8	10	1	30	90	10	20	210	10	3	10	3	10	0	1.5	10	0	53	25
2N4117A	TO-72	40	1	1	20	0.6	1.8	10	1	30	90	10	70	210	10	3	10	3	10	0	1.5	10	0	53	25
2N4118	TO-72	40	1	10	20	1	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1.5	10	0	53	25
2N4118A	TO-72	40	1	1	20	1	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1.5	10	0	53	25
2N4119	TO-72	40	1	10	20	2	6	10	1	200	600	10	100	330	10	10	10	3	10	0	1.5	10	0	53	25
2N4119A	TO-72	40	1	1	20	2	6	10	1	200	600	10	100	330	10	10	10	3	10	0	1.5	10	0	53	25
NF5301	TO-72	30	1	1	15	0.6	3	10	1	30	500	10	70	300	10			3	10	0	1.5	10	0	53	25
NF5301-1	TO-72	30	1	1	15	0.6	1.8	10	1	30	500	10	70	300	10			3	10	0	1.5	10	0	53	25
NF5301-2	TO-72	30	1	1	15	1.7	3	10	1	30	500	10	70	300	10			3	10	0	1.5	10	0	53	25
NF5301-3	TO-72	30	1	1	15	1.0	2.4	10	1	30	500	10	70	300	10			3	10	0	1.5	10	0	53	25
PF5301	TO-92	30	1	1	15	0.6	3_	10	1	30	500	10	70	300	10			3	10	0	1.5	10	0	53	92
PF5301-1	TO-92	30	1	1	15	0.6	1.8	10	1	30	500	10	70	300	10			3	10	0	1.5	10	0	53	92
PF5301-2	TO-92	30	1	1	15	1.7	3	10	1	30	500	10	70	300	10			3	10	0	1.5	10	0	53	92
PF5301-3	TO-92	30	1	1	15	1.0	3.4	10	1	30	500	10	70	300	10			3	10	0	1.5	10	0	53	92
PN4117	TO-92	40	1	10	20	0.6	2.8	10	1	30	90	10	20	210	10	3	10	3	10	0	1.5	10	0	53	92
PN4117A	TO-92	40	1	1	20	0.6	2.8	10	1	30	90	10	70	210	10	3	10	3	10	0	1.5	10	0	53	92
PN4118	TO-92	40	1	10	20	1	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1.5	10	0	53	92
PN4118A	TO-92	40	1	1	20	1	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1.5	10	0	53	92
PN4119	TO-92	40	1	10	20	2	6	10	1	200	600	10	100	330	10	10	10	3	10	0	1.5	10	0	53	92
PN4119A	TO-92	40	1	1	20	2	6	10	1	200	600	10	100	330	10	10	10	3	10	0	1.5	10	0	53	92
PN4120	TO-92	40	1.	20	20	0.6	3	10	1	30	300	10	70	300	10	20	10	3	10	0	1.5	10	0	53	92
PN4120A	TO-92	40	1	5	20	0.6	3	10	1	30	300	10	70	300	10	20	10	3	10	0	1.5	10	0	53	92

 $[\]blacksquare$ I_D = 1 mA; †I_D = 500 μA; ††I_D = 40 μA; **I_D = 100 μA; □I_D = 250 μA.

Ge	nera	l Pu	rpos	se Aı	mpli	ifie	rs	(Con	tinue	ed)													N	-Chan	nel JF	ETs	
Type No.	Case Style	BV ₍ *BV (V) (Min	GDO	I _{GS} (nA) @ Max			@ V	/P DS (V)	I _D (nA)	(m. Min	I _{DSS} A) @ V _I Max	os (V)	(mr Min	G _{fs} nho) @ Max	V _{DS} (V)	G _o (μmho) Max	ess @ V _{DS} (V)	(pF) @ Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS} (V)	(NV √Hz) Max	en @ Freq. (Hz)	Process No.	Pkg. No.
2N5105	TO-72	25	1	0.1	15	0.5	4	15	1	5	15	15	5	10	15	100	15	5	15	0	1	15	0			50	25
2N5358	TO-72	40	1	0.1	20	0.5	3	15	100	0.5	1	15	1	3	15	10	15	6	15	0	2	15	0	115	100	55	25
2N5359	TO-72	40	1	0.1	20	0.8	4		100	0.6	1.6	15	1.2	3.6	15	10	15	6	15	0	2	15	0	115	100	55	25
2N5360	TO-72	40	1	0.1	20	0.8	4		100	1.5	3.0	15	1.4	4.2	15	20	15	6	15	0	2	15	0	115	100	55	25
2N5361	TO-72	40	1	0.1	20	1	6	15	100	2.5	5	15	1.5	4.5	15	20	15	6	15	0	2	15	0	115	100	55	25
2N5362	TO-72	40	1	0.1	20	2	7	15	100	4	8	15	2	5.5	15	40	15	6	15	0	2	15	0	115	100	55	25
2N5363	TO-72	40	1	0.1	20	2.5	8	15	100	7	14	15	2.5	6	15	40	15	6	15	0	2	15	0	115	100	55	25
2N5364	TO-72	40	1	0.1	20	2.5	8		100	9	18	15	2.7	6.5	15	60	15	6	15	0	2	15	0	115	100	55	25
2N5457	TO-92	25	1	1	15	0.5	6	15	10	1	5	15	2	5	15	50	15	7	15	0	3	15	0			55	92
2N5458	TO-92	25	1	1_	15	1	7	15	10	2	9	15	1.5	5.5	15	50	15	7	15	0	3	15	0			55	92
2N5459	TO-92	25	1	1	15	2	8	15	10	4	16	15	2	6	15	50	15	7	15	0	3	15	0			55	92
2N5556	TO-72	30	1	0.1	15	0.2	4	15	1	0.5	2.5	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50	25
2N5557	TO-72	30	1	0.1	15	0.8	5	15	1	2	5	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50	25
2N5558	TO-72	30	1	0.1	15	1.5	6	15	1	4	10	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50	25
J201	TO-92	40	1	0.1	20	0.3	1.5	20	10	0.2	1	20	0.5		20											52	92
J202	TO-92	40	1	0.1	20	8.0	4	20	10	0.9	4.5	20	1		20											52	92
J203	TO-92	40	1	0.1	20	2	10	20	10	4	20	20	1.5		20											52	92
J210	TO-92	25	1	0.1	15	1	3	15	1	2	15	15	4	12	15	150	15									90	92
J211	TO-92	25	1	0.1	15	2.5	4.5	15	1	7	20	15	7	12	15	200	15									90	92
J212	TO-92	25	1	0.1	15	4	6	15	1	15	40	15	7	12	15	200	15									90	92
MPF103	TO-92	25	1	1	15		6	15	1	1	5	15	1	5	15	50	15	7	15	0	3	15	0			55	92
MPF104	TO-92	25	1	1	15		7	15	1	2	9	15	1.5	5.5	15	50	15	7	15	0	3	15	0			55	92
MPF105	TO-92	25	1	1	15	1	8	15	1	4	16	15	2	6	15	50	15	7	15	0	3	15	0			55	92
MPF109	TO-92	25	10	1	15	0.2	8	15	10	0.5	24	15	0.8	6	15	75	15	7	15	0	3	15	0	115	1000	55	92
MPF110	TO-92	20	10	100	10	0.5	10	10	1	0.5	20	10	0.5		10											50	92
MPF111	TO-92	20	10	100	10	0.5	10	10	1000	0.5	20	10	0.5		10	200	10									50	92
MPF112	TO-92	25	10	100	10	0.5	-10	10	1000	1 .	25	10	1	7.5	10											55	92
PN3684	TO-92	50	1	0.1	30	2	5	20	1	2.5	7.5	20	2	3	20	50	20	4	20	0	1.2	20	0	150	20	52	92
PN3685	TO-92	50	1	0.1	30	1	3.5	20	1	1	3	20	1.5	2.5	20	25	20	4	20	0	1.2	20	0	150	20	52	92
PN3686	TO-92	50	1	0.1	30	0.6	2	20	1	0.4	1.2	20	1	2	20	10	20	4	20	0	1.2	20	0	150	20	52	92

Type No.	Case Style	BV ₍ *BV (V) (Min	GDO	I _{GS} (nA) @ Max	V _{DG}	(V) Min	@ V		I _D (nA)	(m Min	I _{DSS} A) @ V _I Max	os (V)	(mr Min	G _{fs} nho) @ Max	V _{DS} (V)	G _c (μmho) Max		(pF) @ Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) © Max	C _{rss} [®] V _{DS} (V)	V _{GS} (V)	(NV √Hz) € Max	Freq. (Hz)	Process No.	Pkg. No.
PN3687	TO-92	50	1	0.1	30	0.3	1.2	20	1	0.1	0.5	20	0.5	1.5	20	5	20	4	20	0	1.2	20	0	150	20	52	92
PN4220	TO-92	30	10	0.1	15		4	15	1	0.5	3	15	1	4	15	10	15	6	15	0	2	15	0			55	92
PN4221	TO-92	30	10	0.1	15		6	15	1	2	6	15	2	5	15	20	15	6	15	0	2	15	0			55	92
PN4222	TO-92	30	10	0.1	15		8	15	1	5	15	15	2.5	6	15	40	15	6	15	0	2	15	0			55	92
PN4302	TO-92	30	1	1	10		4	20	10	0.5	5	20	1		20	50	20	6	20	0	3	20	0	100	1000	52	92
PN4303	TO-92	30	1	1	10	1	6	20	10	4	10	20	2		20	50	20	6	20	0	3	20	0	100	1000	52	92
PN4304	TO-92	30	1	1	10		10	20	10	0.5	15	20	1		20	50	20	6	20	0	3	20	0	125	1000	52	92
PN4338	TO-92	50	1	0.1	30	0.3	1	15	100	0.2	0.6	15	0.6	1.8	15	5	15	7	15	0	3	15	0			52	92
PN4339	TO-92	50	1	0.1	30	0.6	1.8	15	100	0.5	1.5	15	0.8	2.4	15	15	15	7	15	0	3	15	0			52	92
PN5163	TO-92	25	1	10	15	0.4	8	15	1000	1	40	15	2	9	15	200	15	12	15	0	3	15	0	50	1000	50	92
TIS58	TO-92	25	1	4	15	0.5	5	15	20	2.5	8	15	1.3	4	15			6	15	2 mA	3	15	2 mA			50	94
TIS59	TO-92	25	1	4	15	1	9	15	20	6	25	15	1.3		15			6	15	2 mA	3	15	2 mA			50	94

General Purpose Dual JFETs

				Operatir	g Condi	tions	for these C	haracte	eristics																			
Type No.	Case Style	V _{DG}	ar.	V _{GS1-2} V _{OS} (mV) Max	Drift (μV/°C) ΔV _{GS} Max	I _G (pA) Max	,	G _{oss} (μmho) M ax		V _{gs} (V) Min Ma	1	V _P (V) Maa	I _{DS} (m/	4)	G _{fs} (mmho) Min Max	G _{oss} (μmho) Max	I _{G:} (pA @ Max		(pF)	C _{rss} B (pF) (\ Max M	/) (nV	e _R 'f √Hz) @ x (Hz)	I _{DSS} Matc	G _{fs} h Match %	G _{osc1-2} η (μmho)	I _{G1} -I _{G2} 125°C (nA)	Process No.	Pkg. No.
2N3921 2N3922	TO-71 TO-71		700 700	5 5	10 25	250 250	1500 1500	20 20				−3. −3.	- 1		1.5 7.5 1.5 7.5	35 35	1000 1000	30 30	18 18	6 5 6 5				5 5			83 83	12 12
2N3934 2N3935	TO-71 TO-71	1	200 200	5 5	10 25	100 100	300 300	5 5							s an impi s an impi													12 12
2N3954A	TO-71	20	200	5	5	50				0.5 4	1	4.5	0.5	5	1 3	35	100	30	4	1.2 5	0 15	0 100	5	3		10	83	12
2N3954 2N3955A	TO-71 TO-71	20 20	200 200	5 5	10 15	50 50				0.5 4 0.5 4	1	4.5 4.5	0.5	5 5	1 3 1 3	35 35	100 100	30 30	4	1.2 5 1.2 5	0 15	0 100	5 5	3 3		10 10	83 83	12 12
2N3955 2N3956	TO-71 TO-71	20	200 200	10 15	25 50	50 50				0.5 4	1	4.5 4.5	0.5 0.5	5	1 3	35 35	100	30 30	4	1.2 5	0 15	0 100	5	5 5		10 10 10	83 83	12
2N3957 2N3958	TO-71		200	20 25	75 100	50 50				0.5 4	1	4.5	+	5	1 3	35 35	100	30	4	1.2 5	+		10	10 15		10	83 83	12
2N4082 2N4083	TO-71 TO-71	10	200 200	15 15	10 25	100 100	300 300	10 10			Ė	See	2N3954	1-6 a	s an impi s an impi	oved rep	olaceme											12 12
2N4084 2N4085	TO-71 TO-71	1	700 700	15 15	10 25	250 250	1500 1500	20 20		0.5 4		3	1		1.5 7.5 1.5 7.5	35 35	1000 1000	30 30	18 18	6 5 6 5	-			5 5			83 83	12 12
2N5045 2N5046	TO-71 TO-71	15	200 200	5.0 10	67 133						0.5	4.5	0.5	8	1.5 6 1.5 6	25 25	250 250	30 30	8	4 5	0 20	0 10		00	•		83 83 83	12 12 12
2N5047 2N5196 2N5197	TO-71 TO-71 TO-71	20	200 200 200	15 5 5	200 5 10	15 15	700 1500 700 1500	l		0.2 3.8 0.2 3.8		4.5	0.7	8 7 7	1.5 6 1 4 1 4	25 50 50	250 25 25	30 30 30	8 6 6	4 5 2 5 2 5	0 20	1000		20 3 3	3 1 1	5 5	83 83	12
2N5198 2N5199	TO-71 TO-71	20	200	10 15	20 40	15 17	700 1500 700 1500	4		0.2 3.8	3 0.7	4.5	0.7	7 7	1 4 1 4	50 50	25 25	30 30	6	2 5 2 5				3	1	5 5	83 83	12 12
2N5452 2N5453	TO-71	20	200 200	5 10	5 10		×	1		0.2 4.2 0.2 4.2 0.2 4.2	2 1	4.5 4.5 4.5	0.5	5	1 3 1 3 1 3	3 3 3	100 100 100	30 30 30	4 4 4	1.2 5 1.2 5 1.2 5	0 20	1000	5	3 3 3	0.25 0.25 0.25		83 83 83	12 12 12
2N5454 2N5545	TO-71	15	200	15 5	25 10	50		1		U.Z 4.2	0.5	4.5	0.5	8	1.5 6	25	100	30	6	2 5	0 18	0 10	5	3	1	5	83	12
2N5546 2N5547	TO-71	15	200 200 700	10 15 5	20 40 5	50 50	2000 3000	4		0.2 2.7	0.5	4.5	0.5	8 8 10	1.5 6 1.5 6	25 25	100 100 100	30 30 30	6 6 15	2 5 2 5 4 5	0		10 10 5	5 10 3	2 3 0.3	5 5 10	83 83 98	12 12 12
2N5561 2N5562 2N5563	TO-71 TO-71 TO-71	10	700 700 700	10 15	10 25		2000 3000 2000 3000 2000 3000	4		0.2 2.7 0.2 2.7 0.2 2.7	† 0.8	3	1	10 10			100 100	30 30	15 15	4 5	0 50	10	5	3	0.4 0.5	10 10	98 98	12

 $\dagger I_D = 100 \ \mu A$ for V_{GS} for 2N556/1/2/3 only.

25

40

15 1000 1600

15 1000 1600

15 1000 1600

Operating Conditions for these Characteristics

Type No.	Case Style	Cł V _{DG}	nar.	V _{GS1-2} V _{OS} (mV) Max	Drift (μV/°C) ΔV _{GS} Max	(PA)	G _{fs} μmhos Min Max	G _{oss} (μmho) Max	CMRF (dB) Min	(V	7)	(1		I _{DS} (m. Min i	A)	G _{f:} (mml Min N	ho)	G _{oss} (μmho) M ax	I _{Gs} (pA @ Max	VDG	C _{iss} (pF) Max	(pF)	(V)	(nVf√	e _R Hz) @ f (Hz)	I _{DSS} Match %	G _{fs} Match %	G _{osc1} (μmho	2 l _{G1} -l _G ;) 125°C (nA)	Process No.	Pkg. No.
J401		10	200	5	10	100	1000 1600	2	95		2.3	0.5	2.5	0.5	10	2	7	20	100	30	8	3	50	20	10					98	60
J402	8-Pin	10	200	10	10	100	1000 1600	2	95		2.3	0.5	2.5	0.5	10	2	7	20	100	30	8	3	50	20	10					98	60
J403	Mini-	10	200	10	25	100	1000 1600	2	95		2.3	0.5	2.5	0.5	10	2	7	20	100	30	8	3	50	20	10					98	60
J404	DIP	10	200	15	25	100	1000 1600	2	95		2.3	0.5	2.5	0.5	10	2	7	20	100	30	8	3	50	20	10					98	60
J405	Dir	10	200	20	40	100	1000 1600	2	90		2.3	0.5	2.5	0.5	10	2	7	20	100	30	8	3	50	20	10					98	60
J406		10	200	40	80	100	1000 1600	2			2.3	0.5	2.5	0.5	10	2	7	20	100	30	8	3	50	20	10					98	60
J410	8-Pin	20	200	10	10	250	800 1200	5		0.3	4	0.5	3.5	0.5	6	1	4	20	250	20	4.5	1.2	40	50	100					83	60
J411	Mini	20	200	25	25	250	800 1200	5		0.3	4	0.5	3.5	0.5	6	1	4	20	250	20	4.5	1.2	40	50	100					83	60
J412	DIP	20	200	40	80	250	800 1200	5		0.3	4	0.5	3.5	0.5	6	1	4	20	250	20	4.5	1.2	40	50	100					83	60
NPD8301	8-Pin	20	200	5	t5	100	700 1200	5	70	0.3	4	0.5	3.5	0.5	6	1	4	20	100	20	4.5	1.2	40	50	100					83	67
NPD8302	Mini	20	200	10	t10	100	700 1200	5		0.3	4	0.5	3.5	0.5	6	1	4	20	100	20	4.5	1.2	40	50	100					83	67
NPD8303	DIP	20	200	15	t15	100	700 1200	5		0.3	4	0.5	3.5	0.5	6	1	4	20	100	20	4.5	1.2	40	50	100					83	67
NPD8304	8-Pin	20	200	20	t20	100	700 1200	5		0.3	4	0.5	3.5	0.5	6	1	4	20	100	20	4.5	1.2	40	50	100					83	67
	Mini- DIP																														
U231	TO-71	20	200	5	10	50	600	10		0.3	4		See	2N39	54 a	s an ir	mpro	oved rep	laceme	nt										83	12
U232	TO-71	20	200	10	25	50	600	10		0.3	4		See	2N39	55 a	s an ir	mpro	oved repl	lacemei	nt										83	12
U233	TO-71	20	200	15	50	50	600	10		0.3	4		See	2N39	56 a	s an ir	mpro	oved repl	lacemei	nt						l				83	12
U234	TO-71	20	200	20	75	50	600	10		0.3	4		See	2N39	57 a	s an ir	mpro	oved repl	laceme	nt										83	12
U235	TO-71	20	200	25	100	50	600	10		0.3	4		See	2N39	58 a	s an ir	mpro	oved repl	laceme	nt										83	12
U401	TO-71	10	200	5	10	15	1000 1600	2	95		2.3	0.5	2.5	0.5	10	2	7	20	25	30	8	3	50	20	10					98	12
U402	1	10	200	10	10	15	1000 1600	2	95				2.5		10	2	7	20	25	30	8	3	50	20	10					98	12
11403	TO 71	10	200	10	25	15	11000 1600	1 2	QE.		22	O.E.	25	0.5	10	2	7 1	20	25	30	۵ ا	2	50	20	10	i				90	12

25 30

20 25 30 8 50

20

3 50

3 50

10

10

10

2.3 0.5 2.5 0.5 10 2 7

2.3 0.5 2.5 0.5 10 2 7

2.3 0.5 2.5 0.5 10 2 7

U404

U405

U406

TO-71 10 200

TO-71 10 200

TO-71 10 200

12

12

98 12

95

2

Low Frequency—Low Noise Dual JFETs

1	1	L		Operating	Condit	ions 1	or these (Characte	eristics														- [
Type No.		V _D	Op. Char. _G I _D) (μΑ)	V _{GS1-2} V _{OS} (mV) Max	Drift (μV/°C) ΔV _{GS} Max	I _G (pA) Max	G _{fs} μmhos Min Max	G _{oss} (μmho) Max		V _{gs} (V) Min M		V _P (V) lin M	.	I _{DS} (m/A Min N	1)	•	10)	G _{oss} (μmho) Max	I _{GS} (pA @ Max	V _{DG}	(pF)	C _{rss} I (pF) (Max I	V)	e (nVf √i Max		I _{DSS} Match %	G _{fs} Match %	G _{osc1-2} (μmho)	I _{G1} -I _{G2} 125°C (nA)	Process No.	Pkg. No.
2N551	5 TO-7	1 20	200	5	5	100	500 1000	1	100	0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	30	10	5	3	0.1	10	95	12
2N551	6 TO-7	1 20	200	5	10	100	500 1000	1	100	0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	30	10	5	3	0.1	10	95	12
2N551	7 TO-71	1 20	200	10	20	100	500 1000	1	90	0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	30	10	5	5	0.1	10	95	12
2N551	8 TO-71	1 20	200	15	40	100	500 1000	1		0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	30	10	5	5	0.1	10	95	12
2N551	9 TO-71	1 20	200	15	80	100	500 1000	1		0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	30	10	10	10	0.1	10	95	12
2N552	0 TO-71	1 20	200	5	5	100	500 1000	1	100	0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	15	10	5	3	0.1	10	95	12
2N552	1 TO-71	1 20	200	5	10	100	500 1000	1	100	0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	15	10	5	3	0.1	10	95	12
2N552	2 TO-71	1 20	200	10	20	100	500 1000	1	90	0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	15	10	5	5	0.1	10	95	12
2N552	3 TO-71	1 20	200	15	40	100	500 1000	1		0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	15	10	5	5	0.1	10	95	12
2N552	4 TO-71	1 20	200	15	80	100	500 1000	1		0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	250	30	25	5.0	40	15	10	10	10	0.1	10	95	12
2N648	3 TO-71	1 20	200	5	5	100	500 1500	1	100	0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	200	30	20	3.5	50	10	10	5	3	0.1	10	95	12
2N648	4 TO-71	1 20	200	10	10	100	500 1500	1	100	0.2 3	.8 0	.7	4	0.5	7.5	1 4	4	10	200	30	20	3.5	50	10	10	5	3	0.1	10	95	12
2N648	5 TO-71	1 20	200	15	25	100	500 1500	1	90	0.2 3	.8 0	.7	4 (0.5	7.5	1 4	4	10	200	30	20	3.5	50	10	10	5	3	0.1	10	95	12

Wide Band—Low Noise Dual JFETs

			Operati	ng Cond	itions	for these Ch	naracte	ristics																				
Type No.	Case Style	Op. Char V _{DG} I (V) (μ	(mV)	Drift (μV/°C ΔV _{GS} Max	(PA)	G _{fs} μmhos Min Max	G _{oss} (μmho) Max		V _{gs} (V) in Ma	(/ _P V) Max	(m	SS IA) Max	G _{fs} (mmho) Min Max	" ~1	I _{G:} (pA @ Max	V_{DG}	(pF)	C _{rss} (pF) Max	(V)	(nVf v	PR Hz) @ f (Hz)	I _{DSS} Match %	G _{fs} Match %	G _{osc1-2} Ι (μmho)	G1 ^{-l} G2 125°C (nA)	Process No.	Pkg. No.
2N5584	TO-71	15 20	00 5	10		7500 12,500	45			0.5	3	5	30			100	20	12	3	40	50	10	5	5			98	12
2N5585	TO-71	15 20	00 10	25		7500 12,500	45			0.5	3	5	30			100	20	12	3	40	50	10	5	10			98	12
2N5586	TO-71	15 20	00 20	50		7500 12,500	45			0.5	3	5	30			100	20	12	3	40	50	10	5	10			98	12
2N5911	TO-78	10 50	00 10	20	100	5000 10,000	100	0	.3 4	1	5	7	40			100	15	5	1.2	25	20	10,000	5	5	20	20	83	24
2N5912	TO-78	10 50	00 15	40	100	5000 10,000	100	0	.3 4	1	5	7	40			100	15	5	1.2	25	20	10,000	5	5	20	20	83	24
U440	TO-71	10 50	00 10		500	4500 9000	200			1	8.0	6	30			500	15	3.5	0.5	25							83	12
U441	TO-71	10 50	00 20		500	4500 9000	200			1	8.0	6	30			500	15	3.5	0.5	25							83	12
NPD5584	8-Pin	15 20	00 5			7500 12,500	45			0.5	3	5	30			100	20	12	3	40	50	10	5	5			98	67
NPD5585	Mini-	15 20	00 10			7500 12,500	45			0.5	3	5	30			100	20	12	3	40	50	10	5	10			98	67
NPD5586	DIP	15 20	00 20			7500 12,500	45			0.5	3	5	30			100	20	12	3	40	50	10	5	10			98	67
NF5011	TO-71	10 50	00 10	20	500	5000 10,000	100	0	.3 4	1	5	7	40			100	15	5	1.2	25	20	10,000	5	5	20	20	83	12
NF5012	TO-71	10 50	00 15	40	500	5000 10,000	100	0	.3 4	1	5	7	40			100	15	5	1.2	25	20	10,000	5	5	20	20	83	12
NF5011C	TO-71	10 50	00 40	40	500	5000 10,000	100	0	.3 4	1	5	7	40			100	15	5	1.2	25	20	10,000	5	5	20	20	83	12
U287	TO-78	10 50	00 100			5000 10,000	150			1	5	5	40			100	15	5	1.2	25	30	10,000	15	15	20		83	24

Low Leakage—High CMRR—Wide Band Dual JFETs

			Opera	ting Con	ditions	for the	se C	haracte	eristics																		
Type No.	Case Style	Op. Char V _{DG} Ι (V) (μ	o (mV	(μV/°(ΔV _G	C) @ ; V _D	μmi G Min	hos	G _{oss} (μmho Max) (dB)	V _{gs} (V) Min Max	V _P (V) Min N)		G _{fs} (mmho) Min Max		I _{GS} (pA) @ Max	V _{DG}	(pF	C _{rss} B ^v (pF) (V Max Mi	(nV	e _R f√Hz)@f x (Hz)	I _{DSS} Match %	G _{fs} Match %	G _{osc1-2} (μmho)	l _{G1} -l _{G2} 125°C (nA)	Process No.	Pkg. No.
NDF9406	TO-71	20 2	0 5	5	5	700	1800	1	120		0.5	4	0.5 10			50	20	8.0	0.1 50	30	10	5	3	0.1	1	94	12
NDF9407	TO-71	20 2	0 5	10	5	700	1800	1	120		0.5	4	0.5 10		1	50	20	8.0	0.1 50	30	10	5	3	0.1	1	94	12
NDF9408	TO-71	20 2	0 10	10	5	700	1800	1	110		0.5	4	0.5 10		ŀ	50	20	8.0	0.1 50	30	10	5	5	0.1	1	94	12
NDF9409	TO-71	20 2	00 15	10	5	700	1800	1	110		0.5	4	0.5 10			50	20	8.0	0.1 50	30	10	5	5	0.1	1	94	12
NDF9410	TO-71	20 2	0 25	25	5	700	1800	1	100		0.5	4	0.5 10			50	20	8.0	0.1 50	30	10	10	10	0.1	1	94	12

Ultra Low Leakage Dual JFETs

		Operatin	g Conditio	ns for thes	e Character	istics																		
Type No.	Case Style	O _l Coi V _{DG} (V)		V _{GS1-2} V _{OS} (mV) Max	ΔV _{GS} Drift (μV/°C) Max	I _G (pA) Max	G _{fs} (mmho) Min	G _{oss} (μmho) Max	V _{gs} (V) Max	V (N Min	P V) Max	I _D (m Min		(mn Min	,	G _{oss} (μmho) Max	I _{GS} (pA @ Max		C _{iss} (pF) Max	C _{rss} (pF) Max	BV _{GSS} (V) Min	I _{G1} -I _{G2} @125°C (nA) Max	Process No.	Pkg. No.
2N5902	TO-78	10	30	5	5	3	50µ	1	4	0.6	4.5	30μ	0.5	70µ	0.25	5	5	20	3	1.5	40	2	84	24
2N5903	TO-78	10	30	5	10	3	50μ	1	4	0.6	4.5	30μ	0.5	70µ	0.25	5	5	20	3	1.5	40	2	84	24
2N5904	TO-78	10	30	10	20	3	50μ	1	4	0.6	4.5	30μ	0.5	70µ	0.25	5	5	20	3	1.5	40	2	84	24
2N5905	TO-78	10	30	15	40	3	50μ	1	4	0.6	4.5	30μ	0.5	70µ	0.25	4	5	20	3	1.5	40	2	84	24
2N5906	TO-78	10	30	5	5	1	50µ	1	4	0.6	4.5	30µ	0.5	70µ	0.25	5	2	20	3	1.5	40	0.2	84	24
2N5907	TO-78	10	30	5	10	1	50μ	1	4	0.6	4.5	30µ	0.5	70µ	0.25	5	2	20	3	1.5	40	0.2	84	24
2N5908	TO-78	10	30	10	20	1	50μ	1	4	0.6	4.5	30µ	0.5	70μ	0.25	5	2	20	3	1.5	40	0.2	84	24
2N5909	TO-78	10	30	15	40	1	50µ	1	4	0.6	4.5	30μ	0.5	70µ	0.25	5	2	20	3	1.5	40	0.2	84	24

Switches

l																										
Type No.	Case Style	BV	/ _{GSS} / _{GDO} @ l _G (μA)	l _{G:} (nA) @ Max		I (nA) @ Max	D(off) V _{DS} (V)	V _{GS} (V)	(V) @ Min Ma	VDS ((mA		/DS	r _e (Ω) Max	_	(pF) Max	C _{iss} @ V _{DS} (V)	V _{GS} (V)	(pF) @ Max	C _{rss} V _{DS} (V)	'GS	(110)	t _{off} (ns) Max	Process No.	Pkg. No.
2N5018	TO-18	30	1	2	15	10	-15	12	10	-15	1	10		20	75		45	-15	0	10	0	12	35	65	88	11
2N5019	TO-18	30	1	2	15	10	-15	7	5	-15	1	5		20	150		45	-15	0	10	0	7	90	125	88	11
2N5114	TO-18	30	1	0.5	20	0.5	-15	12	5 10	-150	.001	30	90	18	75	1	25	-15	0	7	0	12	16	21	88	11
2N5115	TO-18	30	1	0.5	20	0.5	-15	7	3 6	-150	.001	16	90	18	100	1	25	-15	0	7	0	7	30	38	88	11
2N5116	TO-18	30	11	0.5	20	0.5	15	5	1 4	-150	.001	5	90	18	150	11	25	-15	0	7	0_	5	42	60	88	11
J174	TO-92	30	1	1	20	1	-15	10	5 10	-15 C	.01	20	100	15	85	1	11	0	10	5.5	0	10	2	5	88	94
J175	TO-92	30	1	1	20	1	-15	10	3 6	-15 C	.01	7	60	15	125	0.5	11	0	10	5.5	0	10	5	10	88	94
J176	TO-92	30	1	1	20	1	15	10	1 4	-15 C	.01	2	25	15	250	0.25	11	0	10	5.5	0	10	15	15	88	94
J177	TO-92	30	1	1	20	1	15	10	0.8 2.2	5 – 15 C	.01	1.5	20	15	300	0.1	11	0	10	5.5	0	10	20	20	88	94
P1086	TO-92	30	1	2	15	10	-15	12	10	-15	1	10		20	75	1	45	-15	0	10	0	12	35	65	88	92
P1087	TO-92	30	1	2	15	10	-15	7	5	-15	1	5		20	150	1	45	-15	0	10	0	7	90	125	88	92

Amplifiers

Type No.	Case Style	BV _{GS} : BV _{GD} (V) @ I Min (0	I _{GS} (nA) @ Max		(V Min) @ \		Ι _D (μ Α)	(m Min	I _{DSS} A) @ V _I Max	os (V)	(m Min	G _{fs} mho) (Max		G _c (μπhc M ax			C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) Max	C _{rss} V _{DS} (V)	V _{GS} (V)	(NV √Hz) ^e Max	n @ Freq (Hz)	Process No.	Pkg. No.
2N2608	TO-18	30	1	10	30	1	4	-5	1	0.9	4.5	5	1		5			17	-5	1				125	1000	89	11
2N2609	TO-18	30	1	30	30	1	4	-5	1	2	10	5	2.5		5			30	-5	1	l			125	1000	88	11
2N3329	TO-72	20	10	10	10		5	-15	10	1	3	10	1	2	10/1 mA	20	10	20	-10	1				125	1000	89	23
2N3330	TO-72	20	10	10	10		6	-15	10	2	6	10	1.5	3	10/2 mA	40	10	20	10	1	ł			125	1000	89	23
2N3331	TO-72	20	10	10	10		8	-15	10	5	15	10	2	4	10/5 mA	100	10	20	-10	1				155	1000	89	23
2N3332	TO-72	20	10	10	10		6	-15	10	1	6	10	1	2.2	10/1 mA	20	10	20	-10	1	l			65	1000	89	23
2N3820	TO-92	20	10	20	10		8.0	-10	10	0.3	15	10	0.8	5	10	200	10	32	-10	0	16	-10	0			89	94
2N4381	TO-18	25	1	1	15	1	5	-15	1	3	12	15	2	6	15	75	15	20	-15	0	5	-15	0	20	1000	89	11
2N5020	TO-18	25	1	1	15	0.3	1.5	-15	1	0.3	1.2	15	1	3.5	15	20	15	25	-15	0	7	-15	0	30	1000	89	11
2N5021	TO-18	25	1	1	15	0.5	2.5	-15	1	1	3.5	15	1.5	6	15	20	15	25	-15	0	7	-15	0	30	1000	89	11
2N5460	TO-92	40	10	5	20	0.75	6	-15	1	1	5	15	1	4	15	50	15	7	-15	0	2	-15	0	115	100	89	92
2N5461	TO-92	40	10	5	20	1	7.5	-15	1	2	9	15	1.5	5	15	50	15	7	-15	0	2	-15	0	115	100	89	92
2N5462	TO-92	40	10	5	20	1.8	9	-15	1	4	16	15	2	6	15	50	15	7	-15	0	2	-15	0	115	100	89	92
J270	TO-92	30	1	0.2	20	0.5	2.0	-15	0.001	2	15	15	6.0	15	15	200	15	t20	-15	0	t5	-15	0	t10	1000	88	94
J271	TO-92	30	1	0.2	20	1.5	4.5	-15	0.001	6	50	15	8.0	18		500	15	t20	-15	0	t5	-15	0	t10	1000	88	94
PN4342	TO-92	25	10	10	15		5.5	-10	1	4	12	10	2	6	10	75	10	20	-10	0	5	-10	0	80	100	89	92
PN4360	TO-92	20	10	10	15	0.7	10	-10	1	3	30	10	2	8	10	100	10	20	-10	0	5	-10	0	190	100	89	92
PN5033	TO-92	20	10	10	15	0.3	2.5	-10	1	0.3	3.5	10	1	5	10	20	10	25	-10	0	7	-10	0	100	100	89	92

t = typical value.

Section 6
Surface Mount Products

Section 6 Contents

	DIODES

General Purpose and Specialty Diodes—Plastic Package	6-3
Computer Diodes—Leadless Glass Package	6-7
General Purpose—Leadless Glass Package	6-9
Low Leakage Diodes—Leadless Glass Package	6-10
High Voltage Diodes—Leadless Glass Package	6-11
Surface Mount Monolithic Diode Arrays—Plastic Packages	6-12
SURFACE MOUNT TRANSISTORS	
Saturated Switches—NPN	6-13
RF Amplifiers and Oscillators—NPN	6-15
Low Level Amplifiers—NPN	6-16
General Purpose Amplifiers and Switches—NPN	6-18
Medium Power Transistors—NPN	6-24
Darlington Transistors—NPN	6-25
Saturated Switches—PNP	6-26
Low Level Amplifiers—PNP	6-27
General Purpose Amplifiers and Switches—PNP	6-28
SURFACE MOUNT JFETS	
N-Channel Switches and Choppers	6-36
N-Channel Wide Band-Low Noise Dual JFETs	6-37
P-Channel Switches and Choppers	6-38

Surface Mount Diodes

General Purpose & Specialty Diodes

PLASTIC PACKAGE

Device	Description	Pkg. No.	Pin Out	B _V (V) Min	I _R (nA) @ Max	V _R V	V _F (V) @ Max	I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. Family
FDSO 1000 FA	MILY											D4
BAS16	Single	TO-236	(1)	75	1000	75	0.715 0.855	1.0 10.0	2.0	6.0	(Note 1)	D4
BAV70	Common Cathode	TO-236	(4)	70	5000	70	1.1 1.3	50.0 100.0	1.5	6.0	(Note 2)	D4
BAV74	Common Cathode	TO-236	(4)	50	100	50	1.0	100	2.0	4.0	(Note 3)	D4
BAV99	Series	TO-236	(3)	70	2500	70	See BAS 16		1.5	6.0	(Note 4)	D4
BAW56	Common Anode	TO-236	(5)	70	2500	70	See BAS 16		2.5	6.0	(Note 4)	D4
FDSO 914	Single	TO-236	(1)	100	25	20	1.0	10	4.0	4.0	(Note 5)	D4
FDSO 4148	Single	TO-236	(1)	100	25	20	1.0	10	4.0	4.0	(Note 5)	D4
FDSO 4448	Single	TO-236	(1)	100	25	20	1.0	100	2.0	4.0	(Note 5)	D4
FSDO 1200 FA	AMILY											
FDSO 1201	Single	TO-236	(1)	100	25	20	1.0	100	2.0	4.0		D4
FDSO 1202	Single	TO-236	(2)	100	25	20	1.0	100	2.0	4.0		D4
FDSO 1203	Series	TO-236	(3)	100	25	20	1.0	100	2.0	4.0		D4
FDSO 1204	Common Cathode	TO-236	(4)	100	25	20	1.0	100	2.0	4.0		D4
FDSO 1205	Common Anode	TO-236	(5)	100	25	20	1.0	100	2.0	4.0		D4

TEST CONDITIONS:

Note 1: $I_F = I_R = 10 \text{ mA}, R_L = 100\Omega.$

Note 3: $I_F = I_B = 10 \mu A$, $R_L = 100 \Omega$, $I_{R (BEC)} = 1.0 \mu A$ measured at $I_B = 1.0 mA$. **Note 5:** $I_F = 10 mA$, $V_B = 6V$, $R_L = 100 \Omega$ Rec @ 1.0 mA.

Note 2: $I_F = I_R = 10$ mA, $V_R = 5.0$ V, $I_{R (REC)} = 1.0$ mA. Note 4: $I_F = I_R = 10$ mA, $I_{V (REC)} = 1.0$ mA.

General Purpose & Specialty Diodes (Continued)

PLASTIC PACKAGE

	, , , , , , , , , , , , , , , , , , ,											
Device	Description	Pkg. No.	Pin Out	B _V (V) Min	I _R (nA) @ Max	V _R	V _F (V) @ Max	I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. Family
FDSO 1300 FA	MILY											D6
FDSO 1301	Single	TO-236	(1)	30	Consult	Factory	1.1	50				D6
FDSO 1400 FA	MILY											D1
FDSO 1401	Single	TO-236	(1)	200	100	175	1.0	200	2.0	50		D1
FDSO 1402	Single	TO-236	(2)	200	100	175	1.0	200	2.0	50		D1
FDSO 1403	Series	TO-236	(3)	200	100	175	1.0	200	2.0	50		D1
FDSO 1404	Common Cathode	TO-236	(4)	200	100	175	1.0	200	2.0	50		D1
FDSO 1405	Common Anode	TO-236	(5)	200	100	175	1.0	200	2.0	50		D1
FDSO 3070	Single	TO-236		200	100	175	1.0	100	5.0	50	(Note 2)	D2
FDSO 1500 FA	MILY											D2
FDSO 1501	Single	TO-236	(1)	200	1.0	125	1.0	200	4.0			D2
FDSO 1502	Single	TO-236	(2)	200	1.0	125	1.0	200	4.0			D2
FDSO 1503	Series	TO-236	(3)	200	1.0	125	1.0	200	4.0			D2
FDSO 1504	Common Cathode	TO-236	(4)	200	1.0	125	1.0	200	4.0			D2
FDSO 1505	Common Anode	TO-236	(5)	200	1.0	125	1.0	200	4.0			D2
FDSO 3595	Single	TO-236		150	1.0	125	1.0 See 11	200 N6099	8.0			D2

TEST CONDITIONS:

Note 1: $I_F = I_R = 30$ mA, $R_L = 100\Omega$ Note 2: $I_F = I_R = 30$ mA, $R_L = 100\Omega$

4

General Purpose Diodes & Specialty Diodes (Continued)

PLASTIC PACKAGE

Device	Description	Pkg. No.	Pin Out	B _V (V) Min	I _R (nA) @ Max	V _R V	V _F (V) @ Max	l _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. Family
FDSO 1700 FAI	MILY						-					D3
FDSO 1701	Single	TO-236	(1)	30	50	20	1.1	50	1.0	0.7		D3
FDSO 1702	Single	TO-236	(2)	30	50	20	1.1	50	1.0	0.7		D3
FDSO 1703	Series	TO-236	(3)	30	50	20	1.1	50	1.0	0.7		D3
FDSO 1704	Common Cathode	TO-236	(4)	30	50	20	1.1	50	1.0	0.7		D3
FDSO 1705	Common Anode	TO-236	(5)	30	50	20	1.1	50	1.0	0.7		D3

TEST CONDITIONS:

Note 1: $I_F = I_R = 10$ mA, $R_L = 100\Omega$

General Purpose Diodes & Specialty Diodes (Continued)

The National "FDSO" Series provides the SOT-23 electrical equivalent of the standard devices listed. Each family is available in 5 configurations.

	FDSO1200 FAMILY		FDSO14	00 FAMILY	FDSO150	0 FAMILY	FDSO1700 FAMILY
1N914	1N4149	FDH600	1N625	1S922	1N456	1N463A	1N4244
1N914A	1N4150	FDH666	1N626	1S923	1N456A	1N482B	1N4376
1N914B	1N4151		1N627	FDH400	1N457	1N483B	FDH700
1N916	1N4154		1N628	FDH444	1N457A	1N484B	
1N916A	1N4305		1N629		1N458	1N485B	
1N916B	1N4446		1N658		1N458A	1N3595	
1N3064	1N4448		1N660		1N459	1N6099	
1N3600	1N4449		1N3070		1N459A	FDH300	
1N4009	1N4450		1S920		1N461A	FDH333	
1N4148	1N4455		1S921		1N462A		

Configuration	1	2	3	4	5
PIN OUT DIAGRAM 3 TOP VIEW 1 2 TL/G/10025-1	3 1 2 N/C TL/G/10025-2	1 N/C 2 TL/G/10025-3	3 1 2 TL/G/10025-4	3 1 2 TL/G/10025-5	3 1 2 TL/G/10025-6

Computer Diodes

LEADLESS GLASS PACKAGE

Device No.	Package No.	B _V (V) Min	I _R (nA) @ Max	V _R V	V _F (V) Max	_@ I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. Family
FDLL 600	LL-34	75	100	50	1.0 See FI	200 DH 600	2.5	4.0	(Note 1)	D4
FDLL 625	LL-34	30	1000	20	1.5	4.0		50		D4
FDLL 666	LL-34	40	100	25	1.0 See FI	100 DH 666	3.5	4.0	(Note 1)	D4
FDLL 914	LL-34	100	25	20	1.0	10	4.0	4.0	(Note 2)	D4
FDLL 914A	LL-34	100	25	20	1.0	20	4.0	4.0	(Note 2)	D4
FDLL 914B	LL-34	100	25	20	1.0	100	4.0	4.0	(Note 2)	D4
FDLL 916	LL-34	100	25	20	1.0	10	2.0	4.0	(Note 2)	D4
FDLL 916A	LL-34	100	25	20	1.0	20	2.0	4.0	(Note 2)	D4
FDLL 916B	LL-34	100	25	20	1.0	30	2.0	4.0	(Note 2)	D4
FDLL 3064	LL-34	75	100	50	1.0 See II	10 N3064	2.0	4.0	(Note 3)	D4
FDLL 3600	LL-34	75	100	50	1.0 See II	200 N3600	2.5	4.0	(Note 4)	D4
FDLL 4009	LL-34	35	100	25	1.0	30	4.0	4.0	(Note 2)	D4
FDLL 4148	LL-34	100	25	20	1.0	10	4.0	4.0	(Note 2)	D4
FDLL 4149	LL-34	100	25	20	1.0	10	2.0	4.0	(Note 2)	D4
FDLL 4150	LL-34	75	100	50	1.0	200	2.5	4.0	(Note 4)	D4

TEST CONDITIONS:

Note 1: Recovery to 0.1 I_R; I_F = I_R = 10 mA, R_L = 100Ω

Note 2: $I_F = 10$ mA, $V_R = 6.0$ V, $R_L = 100\Omega$, Recovery to 1.0 mA

Note 3: $I_F = I_R = 10$ mA, $R_L = 100\Omega$, Recovery to 1.0 mA

Note 4: $I_F = I_R = 10$ mA to 200 mA, $R_L = 100\Omega$, Recovery to 0.1 I_F

Computer Diodes (Continued)

LEADLESS GLASS PACKAGE

Surface Mount Diodes

Device No.	Package No.	B _V (V) Min	I _R (nA) @ Max	V _R V	V _F (V) @ Max	I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. Family
FDLL 4151	LL-34	75	50	50	1.0	50	4.0	2.0	(Note 2)	D4
FDLL 4152	LL-34	40	50	30	0.88 See IN	20 14152	4.0	2.0	(Note 2)	D4
FDLL 4153	LL-34	75	50	50	0.88	20	4.0	2.0	(Note 2)	D4
FDLL 4154	LL-34	35	100	25	1.0 See IN	30 14152	4.0	2.0	(Note 2)	D4
FDLL 4305	LL-34	75	100	50	0.85	10	2.0	2.0	(Note 2)	D4

TEST CONDITIONS:

Note 1: Recovery to 0.1 IR; IF = IR = 10 mA, RL = 100 Ω

Note 2: $I_F = 10$ mA, $V_R = 6.0V$, $R_L = 100\Omega$, Recovery to 1.0 mA

Note 3: $I_F = I_R = 10$ mA, $R_L = 100\Omega$, Recovery to 1.0 mA

Note 4: $I_F = I_R = 10$ mA to 200 mA, $R_L = 100\Omega$, Recovery to 0.1 I_F

LEADLESS GLASS PACKAGE

Device No.	Package No.	B _V (V) Min	I _R (nA) @ Max	V _R V	V _F (V) ⁽ Max	[®] I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. Family
FDLL 4446	LL-34	100	25	20	1.0	20	4.0	4.0	(Note 1)	D4
FDLL 4447	LL-34	100	25	20	1.0	20	4.0	4.0	(Note 1)	D4
FDLL 4448	LL-34	100	25	20	1.0	100	2.0	4.0	(Note 1)	D4
FDLL 4449	LL-34	100	25	20	1.0	30	2.0	4.0	(Note 1)	D4
FDLL 4450	LL-34	40	50	30	1.0 See If	200 N4450	4.0	4.0	(Note 2)	D4
FDLL 4454	LL-34	75	100	50	1.0	10	2.0	4.0	(Note 3)	D4

TEST CONDITIONS:

Note 1: $I_F = 10$ mA, $V_R = 6.0V$, $R_L = 100\Omega$, Recovery to 1 mA

Note 2: $I_F = I_R = 10$ mA to 200 mA, $R_L = 100\Omega$, Recovery to 0.1 I_F

Note 3: $I_F = I_R = 10$ mA, $R_L = 100\Omega$, Recovery to 1.0 mA

General Purpose Diodes

LEADLESS GLASS PACKAGE

Device No.	Package No.	B _V (V) Min	I _R (nA) @ Max	V _R V	V _F (V) Max	@ I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. Family
FDLL 461A	LL-34	30	500	25	1.0	100	10.0			D2
FDLL 462A	LL-34	70	500	60	1.0	100				D2
FDLL 463A	LL-34	200	500	175	1.0	6				D2
FDLL 659	LL-34	60	5000	50	1.0	6				D2
FDLL 661	LL-34	240	10,000	200	1.0	6				D2
FDLL 920	LL-34	50	100	50	1.2	200				D2
FDLL 921	LL-34	100	100	100	1.2	200				D1
FDLL 922	LL-34	150	100	150	1.2	200				D1
FDLL 923	LL-34	200	100	200	1.0	6				D1

Low Leakage Diodes (by Descending B_V)

LEADLESS GLASS PACKAGE

Device No.	Package No.	B _V (V) Min	I _R (nA) (Max	_@ V _R V	V _F (V) Max	@ I _F mA	C pF Max	Proc. Family
FDLL300	LL-34	150	1.0 See l	125 IN300	1.0	200	6.0	D2
FDLL333	LL-34	150	3.0 See l	125 IN333	1.05	200	6.0	D2
FDLL456	LL-34	30	25	25	1.0	40	10.0	D2
FDLL456A	LL-34	30	25	25	1.0	100		D2
FDLL457	LL-34	70	25	60	1.0	20	8.0	D2
FDLL457A	LL-34	. 70	25	, 60	1.0	100		D2
FDLL458	LL-34	150	25	125	1.0	7	6.0	D2
FDLL458A	LL-34	150	5.0	125	1.0	100		D2
FDLL459	LL-34	200	25	175	· 1.0	3.0		D2
FDLL459A	LL-34	200	25	175	1.0	100		D2
FDLL482B	LL-34	40	25	36	1.0	100		D2
FDLL483B	LL-34	80	25	70	1.0	100		D2 .
FDLL484B	LL-34	150	25	130	1.0	100		D2
FDLL485B	LL-34	200	25	180	1.0	100		D2
FDLL3595	LL-34	150	1.0	125	1.0	200	8.0	D2
FDLL6099	LL-34	150	1.0	125	1.0	200	8.0	D2

High Voltage Diodes

LEADLESS GLASS PACKAGE

Device No.	Package No.	B _V (V) Min	I _R (nA) @ Max	V _R V	V _F (V) Max	@ I _F mA	C pF Max	t _{rr} ns Max	Test Cond.	Proc. Family
FDLL 400	LL-34	200	100	150	1.0	200	2.0	50	(Note 1)	D1
FDLL 626	LL-34	50	1000	35	1.5	4		1000	(Note 2)	D1
FDLL 627	LL-34	100	1000	75	1.5	4		1000	(Note 2)	D1
FDLL 628	LL-34	150	1000	125	1.5	4		1000	(Note 2)	D1
FDLL 629	LL-34	200	1000	175	1.5	4		1000	(Note 2)	D1
FDLL 658	LL-34	120	50	50	1.0	100		300	(Note 3)	D1
FDLL 660	LL-34	120	5000	100	1.0	6		300	(Note 4)	D1
FDLL 3070	LL-34	200	100	175	1.0	100	5.0	50	(Note 5)	D1

TEST CONDITIONS:

Note 1: $I_F = 30$ mA, $I_R = 30$ mA, $R_L = 100\Omega$

Note 2: $I_F = 30$ mA, $V_R = 35V$, Recovery to $400 \text{ k}\Omega$

Note 3: $V_R=40V$, $I_F=5.0$ mA, $R_L=2.0$ k Ω , $C_L=10$ pF, Recovery to 80 k Ω

Note 4: VR = 35V, IF = 30 mA, RL = 2.0 k Ω , CL = 10 pF, Recovery to 400 k Ω

Note 5: $I_F = I_B = 30 \text{ mA}, R_L = 100\Omega$

Surface Mount Monolithic Diode Arrays

PLASTIC PACKAGES

Device No.	Config.	Pkg. No.	B _V V Min	V _F (V) Max	_© I _F mA	ΔV _F mV Max	t _{rr} ns Max	Test Cond.	Proc. Family
FASO2501	M16	14-SOIC	60	1.1 1.2 1.5	200 300 500	15	10	(Note 1)	D15
FASO2503	2M8	14-SOIC	60	1.0 1.1 1.5	100 200 500	15	10	(Note 1)	D15
FASO2509	2M8	14-SOIC	60	1.0	100	15	10	(Note 1)	D15
FASO2510	M16	14-SOIC	60	1.1 1.3	200 500	15	10	(Note 1)	D15
FASO2563	CC8	14-SOIC	60	1.0	100	15	10	(Note 1)	D15
FASO2564	CA8	14-SOIC	60	1.1 1.3	200 500	15	10	(Note 1)	D15
FASO2565	CC13	16-SOIC	60	See FASO	D2563/64	15	10	(Note 1)	D15
FASO2566	CA13	16-SOIC	60	See FASO	D2563/64	- 15	- 10	(Note 1)	D15
FASO2619	S8	16-SOIC	100	1.0	10	15	5.0	(Note 2)	D15
FASO2620	S7	14-SOIC	100	1.0	10	15	5.0	(Note 2)	D15
FASO2719	S8	16-SOIC	75	1.0	10	15	6.0	(Note 2)	D15
FASO2720	S7	14-SOIC	75	1.0	10	15	6.0	(Note 2)	D15

TEST CONDITIONS:

Note 1: $I_F = I_R = 10$ mA to 200 mA, $R_L = 100\Omega$, $I_{RR} = 0.1$ I_R

Note 2: $I_F = I_R = 10$ mA, $I_{RR} = 1.0$ mA

Note 3: $I_F = 200$ mA, $I_R = 200$ mA, $R_L = 100\Omega$, $I_{RR} = 20$ mA

Note 4: $I_F = I_R = 10$ mA, $I_{RR} = 1.0$ mA, $R_L = 100\Omega$

Saturated Switches—NPN

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}			@ I _C 8 (mA)		V _{CE(SAT)} (V) Max	V _{BE(} (\	(SAT) V) Max	$(I_B = \frac{I_C}{10})$	C _{ob} (pF) Max	f _T (MHz) @ (m Min Max		Test Conditions	Process No.
MMBT 706	TO-236 (49)	25	15	5	500	15	20		10	1	0.6	0.7	0.9	10	6	200 1	75	(Note 2)	21
MMBT 706A	TO-236 (49)	25	15	5	500	15	20	60	10	1	0.6	0.7	0.9	10	6	200 1	75	(Note 2)	21
MMBT 2369	TO-236 (49)	40	15	4.5	400*	20	20 40	120	100 10	2 1	0.25	0.7	0.85	10	4	500 1	18	(Note 1)	21
MMBT 2369A	TO-236 (49)	40	15	4.5	400*	20	40 30 20	120	100 30 100	0.35 0.4 1	0.2 0.25 0.5	0.7	0.85	10 30 100	4	500 1	18	(Note 1)	21
MMBT 4274	TO-236 (49)	30*	12	4.5	500	20	18 30 35	120	100 30 10	1 0.4 1	0.2 0.25 0.5	0.7	0.85 1.15 1.6	10 30 100	4	400 1	12	(Note 12)	21
MMBT 4275	TO-236 (49)	40*	15	4.5	500	20	18 30 35	120	100 30 10	1 0.4 1	0.2 0.25 0.5	0.72	0.85 1.15 1.6	10 30 100	4	400 1	12	(Note 12)	21
MMBT 5134	TO-236 (49)	20*	10	3.5	100	15	15 20	150	30 10	0.4 1	0.25	0.7	0.9	10	4	250 1	18	(Note 12)	21
MMBT 5224	TO-236 (49)	25	12	5	500	15	40 15	400	10 100	1	0.35		0.9	10	4	250 1	60	(Note 11)	21
MMBT 5769	TO-236 (49)	40	15	4.5	400	20	20 30 40	120	100 30 10	1 0.4 0.35	0.2 0.25 0.5	0.7	0.85 1.5 1.6	10 30 100	4	500 1	18	(Note 1)	21

Saturated Switches—NPN (Continued)

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h _i Min	FE Max		V _{CE} (V)	V _{CE(SAT)} (V) Max		(SAT) V) Max	$(I_B = \frac{I_C}{10})$	C _{ob} (pF) Max	f _T I _C (MHz) @ (mA Min Max	t _(off) (ns) Max	Test Conditions	Process No.
MMBT 2710	TO-236 (49)	40	20	5	30	20	40 40		10 50	1	0.25 0.4		0.9 1.3	10 50	4	500 10	35	(Note 2)	22
MMBT 3013	TO-236 (49)	40	40	5	300	20	30 25 15	120	30 100 300	0.4 0.5 1	0.18 0.28 0.5	0.75	0.95 1.2 1.7	30 100 300	5	350 30	25	(Note 3)	22
MMBT 3014	TO-236 (49)	40	40	5	300	20	30 25 25	120	30 10 100	0.4 0.4 1	0.18 0.18 0.35	0.7 0.75	0.8 0.96 1.2	10 30 100	5	350 30	25	(Note 3)	22
MMBT 3646	TO-236 (49)	40	15	5	500*	20	30 20 15	120	30 100 300	0.4 0.5 1	0.2 0.28 0.5	0.75	0.95 1.2 1.7	30 100 300	5	350 30	28	(Note 3)	22
MMBT 5772	TO-236 (49)	40	15	5	500*	20	30 25 15	120	30 100 300	0.4 0.5 1	0.2 0.28 0.5	0.75	0.95	30 100 300	5	350 30	28	(Note 3)	22

TEST CONDITIONS:

Note 1: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B^1 = 3$ mA, $I_R^2 = 1.5$ mA

Note 2: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B{}^1 = 3$ mA, $I_B{}^2 = 1$ mA

Note 3: $V_{CC} = 10V$, $I_{C} = 300$ mA, $I_{B}^{1} = I_{B}^{2} = 30$ mA

Note 4: $V_{CC} = 2V$, $I_C = 30$ mA, $I_{B}^{1} = I_{B}^{2} = 3$ mA

Note 5: $V_{CC} = 25V$, $I_C = 300$ mA, $I_B{}^1 = I_B{}^2 = 30$ mA

Note 6: $V_{CC} = 25V$, $I_C = 500$ mA, $I_B{}^1 = I_B{}^2 = 50$ mA

Note 7: $V_{CC} = 30V$, $I_C = 500$ mA, $I_{B}^1 = I_{B}^2 = 50$ mA

Note 8: $V_{CC} = 30V$, $I_C = 1$ mA, $I_B^1 = I_B^2 = 100$ mA

Note 9: $V_{CC} = 3V$, $I_C = 10$ mA, $I_{B}^1 = I_{B}^2 = 1$ mA

Note 10: $V_{CC} = 10V$, $I_C = 1A$, $I_B^1 = I_B^2 = 100$ mA

Note 11: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B^1 = I_B^2 = 3$ mA

Note 12: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B^1 = I_B^2 = 3.3$ mA

RF Amplifiers and Oscillators—NPN

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB}	h Min	FE Max	@ I _C 8 (mA)		V _{CE(SAT)} (V) Max	V _{BE(SAT)} (V) @ Min Max) ···	(F	ob F) Max	(M	T Hz) (Max	_® I _C (mA)	t _(off) (ns) Max	Test Conditions	Process No.
MMBT 5179	TO-236 (49)	20	12	2.5	20	15	25	250	3	1	0.4	1.0	10	1		650	1700	2			40
MMBT H10	TO-236 (49)	30	25	3	100	25	60		4	10	0.5	0.95	4	0.35	0.65	650		4			42
MMBT 918	TO-236 (49)	30	15	3	10	15	20		3	1	0.4	1.0	10		1.7	600	1500	4	6	60	43
MMBT 3563	TO-236 (49)	30	15	2	50	15	20	200	8	10					1.7	600	1500	4			43
MMBT 5130	TO-236 (49)	30	12	1	50	10	15	250	8	10	0.6	1.0	10		1.7	450		8			43
MMBT H30	TO-236 (49)	20	20	3	50	10	20	200	4	5	0.3	0.96	10		0.5	300	800	4	6	45	44
MMBT 6543	TO-236 (49)	35	20	3	100	25	20		2	10	0.35		10			750		4			47
MMBT H11	TO-236 (49)	30	25	3	100	25	60		4	10	0.5		4	0.6	0.9	650		4			47
MMBT H24	TO-236 (49)	40	30	4	50	15	30		8	10					0.36	400		8			47
MMBT H34	TO-236 (49)	45	45	4	50	30	15 40		20 7	2 15	0.5		20		0.32	500		15			47
MMBT H20	TO-236 (49)	40	30	4	50	15	25		4	10					0.65	400		4			49
MMBT H81	TO-236 (49)																	_			

Low Level Amplifiers—NPN

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{Ces} (nA) @ Max	V _{CB} (V)	h Min	FE [@] Max	I _C & (mA)	V _{CE} (V)	V _{CE(SAT)} (V) Max	V _{BE} (' Min	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	(M	f _T IHz) @ Max	I _C (mA)	NF (dB) Max	Test Conditions	Process No.
MMBT 930	TO-236 (49)	45	45	5	10	45	150 100	600 300	10 0.5 0.01	5 5 5	1.0	0.6	1.0	10	8	30		0.5	3	(Note 1)	11
MMBT 930A	TO-236 (49)	60	45	6	2	45	150 100 60	300 600	0.5 0.01 0.001 10	5 5 5 5	0.5	0.7	0.9	10	6	45		0.05	3	(Note 5)	11
MMBT 2484	TO-236 (49)	60	60	6	10	45	250 200 175 100 30	500	1 0.5 0.1 0.01 0.001	5 5 5 5	0.35			1	10	15		0.05	3	(Note 1)	11
MMBT 3117	TO-236 (49)	60	60	6	10	45	400 200 175 100 30	500	1 0.5 0.1 0.01 0.001	5 5 5 5 5	0.35			1	4.5	60		0.5	1	(Note 2)	11
MMBT 3565	TO-236 (49)	30	25	6	50	25	150	600	1	10	0.35			1	4	40	240	1			11
MMBT 4409	TO-236 (49)	80	50	5	10	60	60	400	10	1	0.2		8.0	1	12	60	300	10			11
MMBT 4410	TO-236 (49)	120	80	5	10	100	60 60	400	10 1	1	0.2		0.8	1	12	60	300	10			11
MMBT 5088	TO-236 (49)	35	30		50	20	300 350 300	900	10 1 0.1	5 5 5	0.5			10	4				3	(Note 3)	11
MMBT 5089	TO-236 (49)	30	25		50	15	400 450 400	1200	10 1 0.1	5 5 5	0.5			10	4				2	(Note 3)	11

Low Level Amplifiers—NPN (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB} (V)	h Min	FE [@] Max	I _C 8 (mA)	V _{CE}	V _{CE(SAT)} (V) Max	V _{BE(SAT)} I _C (V) @ (mA) Min Max	C _{ob} (pF) Max	f _T (MHz) @ Min Max	I _C (mA)	NF (dB) Max	Test Conditions	Process No.
MMBT 5133	TO-236 (49)	20	18	3	50	15	60	1000	1	5	0.4	1	5					11
MMBT 5209	TO-236 (49)	50	50		50	35	150 150 100	300	10 1 0.1	5 5 5	0.7	10	4	30	0.5	4	(Note 5)	11
MMBT 5210	TO-236 (49)	50	50		50	35	250 250 200	600	10 1 0.1	5 5 5	0.7	10	4	30	0.5	3	(Note 4)	11
MMBT 5961	TO-236 (49)	60	60	8	2	45	100 120 135 150	700	0.01 0.1 1 10	5 5 5 5	0.2	10	6	100	10	6 3 3	(Notes 7, 11) (Note 10) (Note 1)	11
MMBT 5962	TO-236 (49)	45	45	8	2	30	450 500 550 600	1400	0.01 0.1 1 10	5 5 5 5	0.2	10	6	100	10	6 4 8 3 3	(Notes 7, 11) (Note 8) (Note 9) (Note 10) (Note 1)	11

TEST CONDITIONS:

Note 1: $I_C = 10 \mu A$, $V_{CE} = 8V$, f = 10 Hz - 16.7 kHz

Note 2: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 3: $I_C = 5 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 4: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 10 Hz - 15.7 kHz

Note 5: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 10 kHz

Note 6: $I_C = 100 \mu A$, $V_{CE} = 6V$, f = 5 kHz

Note 7: $I_C = 100~\mu\text{A}$, $V_{CE} = 5\text{V}$, f = 1~kHz, $R_S = 1~\text{k}\Omega$

Note 8: I $_{C}=$ 100 μ A, V $_{CE}=$ 5V, f = 1 kHz, R $_{S}=$ 10 k Ω

Note 9: $I_{C}=$ 100 $\mu\text{A},\,V_{CE}=$ 5V, f= 1 kHz, $R_{S}=$ 100 $k\Omega$

Note 10: $I_{C}=$ 10 $\mu\text{A},\,V_{CE}=$ 5V, f = 1 kHz, $R_{S}=$ 10 $k\Omega$

Note 11: $I_C/I_B = 20$

General Purpose Amplifiers and Switches—NPN

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB} (V)	h _i Min	FE [@] Max		& V _{CE} (V)	V _{B(SAT)} (V) Max	V _{BE(} (\ Min	SAT) /) @ Max	I _C (mA)	C _{ob} (pF) Max	f (Mi Min	T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 100	TO-236 (49)	75	45	6	50	60	80 100 100 100	450 350	0.1 10 100 150	1 1 1 1	0.2		1.0	10	4.5	250		20		4	(Note 1)	10
MMBT 100A	TO-236 (49)	75	45	6	50	60	300 100 220	600	10 100 0.1	1 1 5	0.2		0.85	10 200	4.5	250		20		4	(Note 1)	10
MMBT 101	TO-236 (49)	75	45	6	50	60	60 75 50	375	0.1 10 100	1 1 1	0.2		0.85	10	4.5	250		20		4	(Note 1)	10
MMBT 2218	TO-236 (49)	60	30	6	10	50	20 20 40 35 25 20	120	500 150 150 10 1 0.1	10 1 10 10 10 10	0.4		1.3	150 500	8	250		20			-	10
MMBT 2218A	TO-236 (49)	75	40	6	10	60	25 20 40 35 25 20	120	500 150 150 10 1 0.1	10 1 10 10 10 10	0.3	0.6	1.2	150	8	250		20	285		(Note 7)	10
MMBT 2219	TO-236 (49)	60	30	5	10	50	30 50 100 75 50 35	300	500 150 150 10 1 0.1	10 1 10 10 10 10	0.4		1.3	150 500	8	300		20				10

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB}		FE [@] Max	I _C &	V _{CE} (V)	V _{CE(SAT)} (V) Max	()	SAT) /) @ Max	I _C (mA)	C _{ob} (pF) Max	(MI	T I _C Hz) @ (mA) Max	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 2219A	TO-236 (49)	75	40	6	10	60	40 50		500 150	10 1		0.6	1.2	150	8	300	20	285		(Note 2)	10
	(43)						100	300	150	10											
							75	000	10	10											
							50		1	10											
							35		0.1	10			2.0	500				j			
MMBT 2221	TO-236	60	30	5	10	50	20		500	10	0.4		1.3	150	8	250	20				10
	(49)						20		150	1											
							40	120	150	10											
							35		10	10											
							25		1	10											
							20		0.1	10	1.6		2.6	500							
MMBT 2221A	TO-236	75	40	6	10	60	25		500	10	0.3	0.6	1.2	150	8	300	20	285		(Note 2)	10
	(49)						40	120	150	10											
							35		10	10											
							25		1	10										!	
							20		0.1	10	1.0		2.0	500							
MMBT 2222	TO-236	60	30	5	10	50	35		0.1	10	0.4	0.6	1.2	150	8	250	20				10
	(49)						50		1	10											
					ĺ		75 100	300	10	10											
							30	300	150 500	10 10											
							50		150	1	1.6		2.6	500							
MMBT 2222A	TO-236	75	40	6	10	60	35		0.1	10	0.3	0.6	1.2	150	8	300	20		4	(Note 3)	10
WIND I EEEEA	(49)	, ,	10		'`	-	50		1	10	0.0	0.0				500	0		'	(
	(,						75		10	10											
							100	300	150	10											
							40		500	10											
				:			50		150	1	1.0		2.0	500							

										- (unaca,										
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)		FE [@] Max	I _C 8 (mA)		V _{CE(SAT)} (V) Max	V _{BE} (' Min	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Ma	∥ _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 2484	TO-236 (49)	60	60	5	10	45	250	800	1 10	5 5	0.35			1	6				3	(Note 13)	10
MMBT 2924	TO-236 (49)	25	25	5	100	25	150	300 (1 I	2 kHz)	10					10						10
MMBT 3392	TO-236 (49)	25	25	5	100	18	150	300	2	4.5					10						10
MMBT 3393	TO-226 (49)	25	25	5	100	18	90	180	2	4.5					10						10
MMBT 3414	TO-226 (49)	25	25	5	100	25	75	225	2	4.5	0.3	0.6	1.3	50							10
MMBT 3415	TO-226 (49)	25	25	5	100	25	180	540	2	4.5	0.3	0.6	1.3	50							10
MMBT 3416	TO-226 (49)	50	50	5	100	25	75	225	2	4.5	0.3	0.6	1.3	50							10
MMBT 3417	TO-226 (49)	50	50	5	100	25	180	540	2	4.5	0.3	0.6	1.3	50							10
MMBT 3566	TO-226 (49)	40	30	5	50	20	150 80	600	10 2	10 10	1.0			100	25	40	30				10
MMBT 3641	TO-226 (49)	60	30	5	50*	50	15 40	120	500 150	10 10	0.22			150	8	250	50				10
MMBT 3642	TO-226 (49)	60	45	5	50*	50	15 40	120	500 150	10 10	0.22	,		150	8	250	50				10
MMBT 3643	TO-226 (49)	60	30	5	50*	50	20 100	300	500 150	10 10	0.22			150	8	250	50				10

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB}		FE [©] Max	•	k V _{CE}	V _{CE(SAT)} (V) Max	V _{BE(S} (V) Min) @	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Proces No.
MMBT 5128	TO-236 (49)	15	12	3	50	10	35 20	350	50 10	10 10	0.25		1.1	150	10	150	800	50				10
MMBT 5135	TO-236 (49)	30	25	4	300	15	50 15	600	10 2	10 10	1.0		1.0	150	35	40	300	50				10
MMBT 5136	TO-236 (49)	30	20	3	100	20	20 20	400	150 30	1	0.25		1.0	150	35	40	400	50				10
MMBT 5137	TO-236 (49)	30	20	3	100	20	20 20	400	150 30	1	0.25		1.1	150	35	40	400	50				10
MMBT 5172	TO-236 (49)	25	25	5	100	25	100	500	10	10	0.25			10	10		-	-				10
MMBT 5223	TO-236 (49)	25	20	3	100	10	50	800	2	10	0.7		1.2	10	4	150		10				10
MMBT 6515	TO-236 (49)	40	25	4	50	30	250 150	500	2 100	10 10	0.5			5.0	3.5							10
MMBT 6520	TO-236 (49)	40	25	4	50	30	200 100	400	2 0.1	10 10	0.5			50	3.5					3	(Note 10)	10
MMBT 6521	TO-236 (49)	40	25	4	50	30	300 150	600	2 0.1	10 10	0.5				3.5					3	(Note 10)	10
MMBT A20	TO-236 (49)		40	4	100	30	40	400	5	10	0.25			10	4	125		5				10

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB}	h Min	FE [@] Max	I _C & (mA)	V _{CE}	V _{CE(SAT)} (V) Max	(1	(SAT) /) @ Max	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) @ Max	I _C	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 4400	TO-236 (49)	60	40	6			20 40		1 10	1 1	0.4 0.75	0.75	0.95 1.2	150 500	6.5							13
MMBT 4401	TO-236 (49)	60	40	6			20 40 80 100 40	300	0.1 1 10 150 500	1 1 1 1 2	0.4	0.75	0.95	150 500	6.5	250		20				13
MMBT L01	TO-236 (49)	140	120	5	100	75	50	300	10	5	0.2 0.3		1.2 1.4	10 50	8	60		10				16
MMBT 5551	TO-236 (49)	180	160	6	50	120	80 30	250	10 50	5 5	0.15 0.20		1.0	10 50	6	100	300	10				16
MMBT 5830	TO-236 (49)	120	100	5	50	100	60 80 80	500	1 10 50	5 5 5	0.15 0.2 0.25		0.8 1.0 1.0	1 10 50	4	100	500	10				16
MMBT 5831	TO-236 (49)	160	140	5	50	100	60 80 80	250	1 10 50	5 5 5	0.15 0.2 0.25		0.8 1.0 1.0	1 10 50	4	100	500	10				16
MMBT 5833	TO-236 (49)	200	180	6	10	160	50 50 50	250	1 10 50	5 5 5	0.15 0.2 0.25		0.8 1.0 1.0	1 10 50	4	100	500	10				16
MMBT 5965	TO-236 (49)	200	180	5	50	160	50 50 50	250	1 10 50	5 5 5	0.15 0.2 0.25		0.8 1.0 1.0	1 10 50	4	100	500	10				16

General Purpose Amplifiers and Switches—NPN (Continued)

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA) @ Max	V _{CB}	h _i Min	FE [@] Max	I _C 8 (mA)	k V _{CE} (V)	V _{CE(SAT)} (V) Max	V _{BE} (\ Min	(SAT) (/) @ Max	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 3693	TO-236 (49)	45	45	4	50	30	40	160	10	10					6	200	500	10				23
MMBT 3694	TO-236 (49)	45	45	4	50	30	100	400	10	10					6	200	500 .	10				23
MMBT 3903	TO-236 (49)	60	40	6			20 35 50 30 15	150	0.1 1 10 50 100	1 1 1 1 1	0.2	0.65	0.85	10 50	4	250		10		6	(Note 8)	23
MMBT 3904	TO-236 (49)	60	40	6			40 70 100 60 30	300	0.1 1 10 50 100	1 1 1 1	0.2	0.65	0.85	10 50	4	300		10		5	(Note 8)	23
MMBT 3946	TO-236 (49)	60	40	6			20 50 45 30	150	50 10 1 0.1	1 1 1	0.2	0.65	0.9	10 50	4	250		10	375	5	(Notes 6, 7)	23
MMBT 4123	TO-236 (49)	40	30	5	50	20	25 50	150	50 2	1	0.3		0.95	50	4	250		10		6	(Note 7)	23
MMBT 4124	TO-236 (49)	30	25	5	50	20	60 120	360	50 2	1	0.3		0.95	50	4	300		10		5	(Note 7)	23
MMBT 6514	TO-236 (49)	40	25	4	50	30	90 150	300	100 2	10 10	0.5			50	3.5							23

TEST CONDITIONS:

Note 1: $I_C = 300 \text{ mA}$, $V_{CC} = 10 \text{V}$, $I_B^1 = I_B^2 = 30 \text{ mA}$

Note 2: $I_C = 150 \text{ mA}$, $V_{CC} = 6V$, $I_B^1 = I_B^2 = 15 \text{ mA}$

Note 3: $I_C = 300 \text{ mA}$, $V_{CC} = 15 \text{V}$, $I_B{}^1 = I_B{}^2 = 30 \text{ mA}$

Note 4: $I_C = 300 \text{ mA}$, $V_{CC} = 30 \text{ V}$, $I_B^1 = I_B^2 = 30 \text{ mA}$

Note 5: $I_C = 10 \text{ mA}$, $V_{CC} = 3V$, $I_B^1 = I_B^2 = 1 \text{ mA}$

Note 6: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 100 Hz

Note 7: $I_C = 30 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 8: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 9: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 10: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 11: $I_C = 50 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B{}^1 = I_B{}^2 = 5 \text{ mA}$

Note 12: $I_C = 150 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B^1 = I_B^2 = 15 \text{ mA}$

Note 13: $I_C = 50 \text{ mA}$, $V_{CC} = 10V$, $I_B^1 = I_B^2 = 5 \text{ mA}$

Note 14: $I_C = 500 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B^1 - I_B^2 = 50 \text{ mA}$

Note 15: $I_C = 100 \mu A$, $V_{CE} = 10V$, f = 1 kHz

Note 16: $I_C = 200 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 17: $I_C/I_B = 40$

Note 18: $I_C/I_B = 20$

Note 19: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 10 Hz - 10 kHz

Note 20: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 100 Hz

Note 21: $I_C = 30 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 22: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 10 kHz

Note 23: $I_C = 1$ mA, $V_{CE} = 10V$, f = 1 MHz

Surface Mount Devices

Medium Power—NPN

Type No.	Case Style	V _{CBO} (V) Min	V _{CER} * V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB}	h _i Min	FE [@] Max	I _C & (mA)	V _{CE}	V _{CE(SAT)} (V) Max	V _{BE(SAT)} (V) (Min Max	I _C (mA)	C _{ob} (pF) Max	(M	f _T Hz) @ Max	-	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 3568	TO-236 (49)	80	60	5	50	40	40 40	120	30 150	1 1	0.25		150	20	60	600	50				12
MMBT 3700	TO-236 (49)	140	80	7	10	90	50 90 100 50	300	1 10 150 500	10 10 10 10	0.2	1.1	150 500	12	100	200	5				12
MMBT A05	TO-236 (49)	60	60	4	100	60	50 50		100 10	1 1	0.25		100		50		100				12
MMBT A06	TO-236 (49)	80	80	4	100	80	50 50		100 10	1	0.25		100		50		100				12
MMBT 3567	TO-236 (49)	80	40	5	50	40	40 40	120	30 150	1	0.25		150	20	60	600	50				13
MMBT 3569	TO-236 (49)	80	40	5	50	40	100 100	300	30 150	1	0.25		150	20	60	600	50				13
MMBT 6560	TO-236 (49)	25	25	5	100	20	35 50 60	200	10 100 500	1 1 1	0.5	1.2	500	30	60		10				38
MMBT 6561	TO-236 (49)	20	20	5	100	20	35 50 50	200	10 100 500	1 1 1	0.5	1.2	350	30	60		10				38
MMBT A42	TO-236 (49)	300	300	8	100	200	25 40 40		1 10 30	10 10 10	0.5	0.9	20		50		10				48
MMBT A43	TO-236 (49)	200	200	6	100	160	25 40 50	200	1 10 30	10 10 10	0.4	0.9	20		50		10				48

Darlington Transistors—NPN

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (μΑ) Max	V _{CB}	Min	PFE @ Max	PI _C 6	V _{CE} (V)	V _{CE(SAT)} (V) Max	V _{BE(SAT)} (V) Min Max	@ I _C	C _{ob} (pF) Max	f· (MI Min	-	I _C (mA)	Process No.
MMBT 6426	TO-236 (49)	40	40	12	0.05	30	20,000 30,000	200,000 300,000	10 100	5 5	1.2		50	7	150		10	05
							20,000	300,000	500	5	1.5	2	500					
MMBT A12	TO-236 (49)	20		10	0.1	15	20,000		10	5	1.0		10					05
MMBT A13	TO-236 (49)	30		10	0.1	30	5,000 10,000		10 10	5 5	1.5		100		125		10	05
MMBT A14	TO-236 (49)	30		10	0.1	30	10,000 20,000		10 100	5 5	1.5		100		125		10	05

Saturated Switches—PNP

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES*} I _{CBO@} (nA) Max	V _{CB}	h _i Min	FE [@] Max	_	V _{CE}	V _{CE(SAT)} (V) Max	(1	(SAT) V) Max	$I_{C} \text{(mA)}$ $(I_{B} = \frac{I_{C}}{10})$	C _{ob} (pF) Max	f _T (MHz) @ Min Max	-	t _{off} (ns) Max	Test Conditions	Process No.
MMBT 3639	TO-236 (49)	6	6	4	50*	3	30 20	120	10 50	0.3 1	0.16 0.5			10 50	5.5	300	10	60	(Note 7)	65
MMBT 3640	TO-236 (49)	12	12	4	50*	6	20 30	120	50 10	1 0.3	0.2 0.6			10 50	5.5	300	10	75	(Note 7)	65
MMBT 4258	TO-236 (49)	12	12	4.5	10*	6	30 15 30	120	10 1 50	3 0.5 1	0.15 0.5	0.75	0.95 1.5	10	3	500	10	20	(Note 6)	65
MMBT 5228	TO-236 (49)	5	5	3	100*	4	30		10	3	0.4	0.65	1.25	10	5	300	10			65
MMBT 5771	TO-236 (49)	15	15	4.5	10	8	50 40 35	120	10 50 1	0.3 1 0.3	0.15 0.18 0.6	0.8	0.8 0.95 1.5	1 10 50	3	700	10	20	(Note 6)	65
MMBT 5771-1	TO-236 (49)	15	15	4.5	10	8	30 20 30	150	10 50 1	0.3 1 0.5	0.15 0.18 0.6	0.8	0.8 0.95 1.5	1 10 50	3	700	10	30	(Note 6)	65
MMBT 5571-2	TO-236 (49)	15	15	4.5	10	8	40 30 35	150	10 50 1	0.3 1 0.5	0.15 0.18 0.6	0.8	0.8 0.95 1.5	1 10 50	3	700	10	30	(Note 6)	65
MMBT 5910	TO-236 (49)	20	20	4.5	10*	10	30 30 15	120	50 10 1	1 0.3 0.5	0.15 0.5	0.75	0.95 1.5	10 50	3	700	10	20	(Note 6)	65

TEST CONDITIONS:

Note 1: $V_{CC}=3V$, $I_{C}=10$ mA, $I_{B}^{1}=3$ mA, $I_{B}^{2}=1.5$ mA Note 2: $V_{CC}=3V$, $I_{C}=10$ mA, $I_{B}^{1}=3$ mA, $I_{B}^{2}=1$ mA

Note 3: $V_{CC} = 10V$, $I_C = 300 \text{ mA}$, $I_B^1 = I_B^2 = 30 \text{ mA}$

Note 4: $V_{CC} = 2V$, $I_C = 30$ mA, $I_B{}^1 = I_B{}^2 = 3$ mA

Note 5: $V_{CC} = 25V$, $I_C = 300$ mA, $I_B^1 = I_B^2 = 30$ mA

Note 6: $V_{CC} = 25V$, $I_C = 600$ mA, $I_B{}^1 = I_B{}^2 = 50$ mA

Note 7: $V_{CC} = 30V$, $I_C = 500$ mA, $I_B{}^1 - I_B{}^2 = 50$ mA

Note 8: $V_{CC} = 30V$, $I_C = 1A$, $I_B^1 = I_B^2 = 100 \text{ mA}$

Note 9: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B^1 = I_B^2 = 1$ mA

Note 10: $V_{CC} = 10.7V$, $I_C = 1A$, $I_{B}^1 = I_{B}^2 = 100 \text{ mA}$

Note 11: $V_{CC} = 3V$, $I_C = 10$ mA, $I_B{}^1 = I_B{}^2 = 3$ mA

Note 12: $V_{CC} = 3V$, $I_C = 10$ mA, $I_{B}^{1} = I_{B}^{2} = 3.3$ mA

Low Level Amplifiers—PNP

Type No.	Case Style	V _{CBO} (V) Mìn	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CBO} (nA)@ Max	V _{CB} (V)	h _i Min	FE Max	@ I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) Max	V _{BE(SAT)} (V) Min Max	_@ I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Max	[@] (mA)	NF (dB) Max	Test Conditions	Process No.
MMBT 4248	TO-236 (49)	40	40	5	10	40	50 50 50		0.1 1 10	5 5 5	0.25	0.9	10	6	40	0.5			69
MMBT 4249	TO-236 (49)	60	60	5	10	40	100 100 100	300	0.1 1 10	5 5 5	0.25	0.9	10	6	40	0.5	3 3 3	(Note 7) (Note 8) (Note 9)	69
MMBT 4250	TO-236 (49)	40	40	5	10	40	250 250 250	700	0.1 1.0 10	5 5 5	0.25	0.9	10	6	50	0.5	2 2 2	(Note 7) (Note 8) (Note 9)	69
MMBT 4250A	TO-236 (49)	60	60	5	10	50	250 250 250	700	0.1 1 10	5 5 5	0.25	0.9	10	6	50	0.5	2 2 2	(Note 7) (Note 8) (Note 9)	69
MMBT 5086	TO-236 (49)	50	50	5	10	10	150 150 150	500	0.1 1 10	5 5 5	0.3		10	4	40	0.5	3	(Note 4) (Note 3)	69
MMBT 5087	TO-236 (49)	50	50	3	10	10	250 250 250	800	0.1 1 10	5 5 5	0.3		10	4	40	0.5	2	(Note 4) (Note 3)	69
MMBT 5227	TO-236 (49)	30	30	3	100	10	30 50	700	0.1 2	10 10	0.4	1.0	10	5	100	10			69
MMBT A70	TO-236 (49)	40	40	4	100	30	40	400	5	10	0.25			50	4				69

TEST CONDITIONS:

Note 1: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 10 Hz-15.7 kHz

Note 2: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 10 kHz

Note 3: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 10 Hz-15.7 kHz

Note 4: $I_C = 20 \mu A$, $V_{CE} = 5V$, f = 10 Hz-15.7 kHz

Note 5: $I_C/I_B = 20$

Note 6: $I_C = 200 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 7: $I_C = 20 \mu A$, $V_{CE} = 5V$, f = 10 Hz-10 kHz

Note 8: $I_C = 20 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 9: $I_{\mbox{\scriptsize C}}=$ 250 $\mu\mbox{\scriptsize A},\, \mbox{\scriptsize V}_{\mbox{\scriptsize CE}}=$ 5V, f = 1 kHz

General Purpose Amplifiers and Switches—PNP

Type No.	Case Style	V _{CBO} * (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB} (V)	h _i Min	FE [@] Max	I _C & (mA)	V _{CE} (V)	V _{CE(SAT)} (V) Max	V _{BE(SAT)} (V) @ Min Max	l _C (mA)	C _{ob} (pF) Max	f _T (MH: Min I	z) @ I _C Max (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 2904	TO-236 (49)	60	40	5	20	50	30 100 75 50	300	500 150 10 1	10 10 10 10	0.4	1.3	150	8	200	50				63
							35		0.1	10	1.6	2.5	500						-	
MMBT 2904A	TO-236 (49)	60	40	5	10	50	50 100 100 100	300	500 150 10 1	10 10 10 10	0.4	1.3	150	8	200	50	100		(Note 2)	63
							75		0.1	10	1.6	2.6	500							
MMBT 2905	TO-236 (49)	60	40	5	- 20	50	30 100 75 50 35	300	500 150 10 1 0.1	10 10 10 10 10	1.6	1.3 2.6	150 500	8	200	50				63
MMBT 2905A	TO-236 (49)	60	40	5	10	50	50 100 100 100 75	300	500 150 10 1 0.1	10 10 10 10 10	0.4	1.3	150	8	200	50	100		(Note 2)	63
MMBT 2906	TO-236 (49)	60	40	5	20	50	30 100 75 50 35	300	500 150 10 1 0.1	10 10 10 10	0.4	1.3	150	8	200	50				63
MMBT 2906A	TO-236 (49)	60	40	5	10	50	50 100 75 50 35	300	500 150 10 1 0.1	10 10 10 10 10	0.4	1.3	150	8	200	500	100		(Note 2)	63

Type No.	Case Style	V _{CBO} * (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB} (V)		E [@] Max	I _C & (mA)		V _{CE(SAT)} (V) Max	V _{BE} (' Min	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max		Iz) @ Max (n		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 2907	TO-236 (49)	60	40	5	20	50	30 100 75 50	300	500 150 10	10 10 10 10	0.4		1.3	150	8	200	ŧ	50				63
							35		0.1	10	1.6		2.6	500								
MMBT 2907A	TO-236 (49)	60	40	5	10	50	50 100 100 100	300	500 150 10 1	10 10 10 10	0.4		1.3	150	8	200	ţ	50		100	(Note 2)	63
							75		0.1	10	1.6		2.6	500								
MMBT 3638	TO-236 (49)	25	25	4	35*	15	20 30 20		10 50 300	10 1 2	0.25 1.0	0.8	2.0	50 300	20	100	ŧ	50	170		(Notes 1, 18)	63
MMBT 3638A	TO-236 (49)	25	25	4	35*	15	100 80 100		10 1 50	10 10 1	0.25		1.1	50	10	150		50	170		(Notes 1, 18)	63
							20		300	2	1.0	0.8	2.0	300								
MMBT 3644	TO-236 (49)	45	45	5	35*	30	40 80 100		0.1 1 10	10 10 10	0.25		1.0	50	35	200	2	20	100		(Notes 4, 18)	63
	`						80 100 20	240 300	50 150 300	1 10 2	0.4 1.0	0.8	1.3 2.0	300								
MMBT 3645	TO-236 (49)	60	60	- 5	35*	50	40 80 100		0.I 1 10	10 10 10	0.25		1.0	50	35	200	2	20	100		(Notes 4, 18)	63
							80 100 20	240 300	50 150 300	1 1 2	0.4 1.0	0.8	1.3	150 300								

Type No.	Case Style	V _{CBO} * (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB}		FE [@] Max	I _C 8 (mA)		V _{CE(SAT)} (V) Max	V _{BE} (\	(SAT) (/) @ Max	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) @ M ax		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 3702	TO-236 (49)	40	25	5	100	20	60	300	50	5	0.25			50	12	100		50				63
MMBT 3703	TO-236 (49)	50	30	5	100	20	30	150	50	5	0.25			50	12	100		50				63
MMBT 4402	TO-236 (49)	40	40	5			20 50 50 30	150	500 150 10 1	2 2 1 1	0.4 0.75	0.75	0.95	150 500	8.5	150		20	255		(Note 4)	63
MMBT 4403	TO-236 (49)	40	40	5			20 100 100 60 30	300	500 150 10 1 0.1	2 2 1 1	0.4	0.75	0.95	150	8.5	200		20	255		(Note 4)	63
MMBT 5142	TO-236 (49)	20	20	4	50*	12	15 30		300 50	10 1	0.5 2.0	0.8	1.5 2.5	50 300	10	100	-	50	200		(Note 1)	63
MMBT 5143	TO-236 (49)	20	20	4	50*	12	15 30		300 50	10 1	0.5 2.0	0.8	1.5 2.5	50 300	10	100		50	200		(Note 1)	63
MMBT 5226	TO-236 (49)	25	25	4	300	15	30 25	600	50 10	10 10	0.8		1.0	100	20	50		20				63
MMBT 6502	TO-236 (49)	60	40	5	20	50	35 50 75 100 30	300	0.1 1 10 150 500	10 10 10 10 10	1.0			150 300	8	200		50				63

Type No.	Case Style	V _{CBO} * (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB}	h _i Min	FE [©] Max		V _{CE}	V _{CE(SAT)} (V) Max	(1	(SAT) /) @ Max	I _C (mA)	C _{ob} (pF) Max		T Hz) @ I _C Max (mA	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 3251	TO-236	50	40	5			30		50	1	0.25	0.6	0.9	10	6	300	10		6	(Note 6)	66
	(49)						100	300	10	1	1										
							80		0.1	1									Ì		
							90		0.001	1	0.5		1.2	50							
MMBT 3905	TO-236	40	40	5			30		0.1	1	0.25	0.65	0.85	10	4.5	200	10		5	(Note 8)	66
	(49)						40		1	1											1
							50	150	10	1					l						
							30		50	1								ı	I		
							15		100	1	0.4		0.95	50							
MMBT 3906	TO-236	40	40	5			60		0.1	1	0.25	0.65	0.85	10	4.5	200	10		4	(Note 8)	66
	(49)						80		1	1								1	1		
							100	300	10	1								i			
							60		50	1	ļ								1		
							30		100	1	0.4		0.95	50							
MMBT 4121	TO-236	40	40	5	25*	30	15		50	1	0.13		0.75	1	4.5	400	10	150	4	(Notes 8, 11)	66
	(49)						70	200	10	1	0.14	0.7	0.9	10					1		
							60		1	1									1		1
							40		0.1		0.3		1.1	50							
MMBT 4122	TO-236	40	40	5	25*	30	30		50	1	0.13		0.75	1	4.5	200	10		5	(Note 8)	66
	(49)						150	300	10	1					1						
							150		1	1	0.14	0.7	0.9	10							1
							100		0.1	1	0.3		1.1	50	l						1

Case Style	V _{CBO} * (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB} (V)					V _{CE(SAT)} (V) Max	(1	V) @	lc (mA)	C _{ob} (pF) Max	(M	•	•	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
TO-236 (49)	25	25	4	50	20	25 60	150	50 2	1 1	0.4		0.95	50	4.5	200		10		4	(Note 8)	66
TO-236 (49)	25	25	4	50	20	60 120	300	50 2	1 1	0.4		0.95	50	4.5	250		10		4	(Note 8)	66
TO-236 (49)	30	30	5	25*	15	15 70 60 40	200	50 10 1 0.1	1 1 1	0.13 0.14 0.3	0.7 0.75	0.75 0.9 1.1	1 10 50	4.5	400		10	150	4	(Notes 8, 13)	66
TO-236 (49)	30	30	5	25*	15	30 150 150 100	300	50 10 1 0.1	1 1 1	0.13 0.14 0.3	0.7 0.75	0.75 0.9 1.1	1 10 50	4.5	450		10	150	4	(Notes 8, 13)	66
TO-236 (49)	3Ò	30	5	50*	20	50 50 50	800	10 1 0.1	10 10 10	0.2	0.7 0.75	1.0 1.25	10 50	5	300		10	200		(Note 13)	66
TO-236 (49)	20	20	5	50*	15	15 40 40 30		50 10 1 0.1	10 1 10 10	0.2	0.75	1.0	10 50	5	300		10	200		(Note 13)	66
TO-236 (49)	40	40	4	50	30	150 90	300	2 0.1	10 10	0.5			50	4							66
TO-236 (49)	60	60	5	50	5	25 40 50 40	500	0.1 1 10 100	10 10 10 10	0.15		0.9	150	30	100	500	50	400	3	(Notes 8, 14)	67
	TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49)	TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (60 (49)	TO-236 (49) TO-236 (25 (25 (49)) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49)	Case (V) (V) (V) Min Min Min TO-236 25 25 4 TO-236 25 25 4 TO-236 30 30 5 TO-236 30 30 5 TO-236 30 30 5 TO-236 30 30 5 TO-236 20 20 5 TO-236 40 40 4 TO-236 40 40 4 TO-236 60 60 5 (49) 60 60 5	Case Style VCBO (V) Min VCEO (V) Min Min Max VCBO (N) Min Max TO-236 (49) 25 25 4 50 TO-236 (49) 25 25 4 50 TO-236 (49) 30 30 5 25* TO-236 (49) 30 30 5 25* TO-236 (49) 30 30 5 50* TO-236 (49) 20 5 50* TO-236 (49) 40 4 50 TO-236 (49) 60 60 5 50	Case Style VCBO (V) Min Min VCBO (V) Min Min Min Min Max VCBO (N) Min Max VCBO (N) Min Max VCB (NA) Max	Case Style VCBO (V) Min VCBO (V) Min VCBO (N) Min VCBO (NA) Min VCB (NA) Min Number (NA) Min	Case Style VCBO (V) Min Min Min Min Min Max VCB (NA) (V) Min Max VCB (NA) (V) Min Max VCB (NA) (V) Min Max NFE (MIN MAX) (V) MIN MAX TO-236 (49) 25 25 4 50 20 25 (60) 150 TO-236 (49) 25 25 4 50 20 60 (120) 300 TO-236 (49) 30 30 5 25* 15 15 (200) 70 (60) 40 TO-236 (49) 30 30 5 25* 15 30 (150) 300 (150) 300 (150) 300 (150) 300 TO-236 (49) 30 30 5 50* 20 50 (50) 800 TO-236 (49) 20 20 5 50* 15 15 (40) 40 (40) 40 (40) 30 TO-236 (49) 40 40 4 50 30 150 (300) 300 (300) 300 (300) 30 TO-236 (49) 60 60 60 5 50 5 25 (40) 50 (50) 500 (40) 50	Case Style	Case Style	Case Style	Case Style	Case Style Vol. Vol. Vol. Vol. Vol. Vol. Min Min Min Min Min Min Min Min Min Min Min Min Min Max (mA) (V) Max Min Min Max Min Max Min Min Max Min Min Max Min Min Max Mi	Case Style	Case Style Color	Case Style	Case Style V() Min	Case Style V	Case VCBO	Case YCBO	Case VeBO VeBO Win Min VeBO Win Min
Type No.	Case Style	V _{CBO} * (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB}	h _F Min		I _C &	V _{CE}	V _{CE(SAT)} (V) Max	V _{BE(SAT)} (V) @ Min Max	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) @ Max	(mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
-------------	----------------	----------------------------------	--------------------------------	--------------------------------	--	-----------------	----------------------------	------------	----------------------------	----------------------	------------------------------------	--	------------------------	--------------------------------	-----	-------------------	------	---------------------------------	-------------------	--------------------	----------------
MMBT 4355	TO-236 (49)	60	60	5	50	50	75 75 100	400	500 100 10	10 10 10	0.15 0.5	0.9	150 500	30	100	500	50	400	3	(Notes 8, 14)	67
							75 60	400	1 0.1	10 10 10	1.0	1.1	1A								
MMBT 4356	TO-236 (49)	60	60	5	50	50	30 40 50 40 25	250	500 100 10 1 1	10 10 10 10	0.15 0.5	0.9	150	30	100	500	50	400	3	(Notes 8, 14)	67
MMBT 5855	TO-236 (49)	60	60	5	100	40	50 50 50 15	300	10 150 500 1A	10 10 10 10	0.4	1.3	150	15							67
MMBT 5857	TO-236 (49)	80	80	5	100	60	50 50 50 15	300	10 150 500 1A	10 10 10 10	0.4	1.3	150	15	100		50				67
MMBT 6562	TO-236 (49)			5	100	20	50 50 35	200	500 100 10	1 1 1	0.5		500	30	60		10				67
MMBT A55	TO-236 (49)	60	60	4	100	60	50 50		10 100	1 1	0.25		100		50		100				67
MMBT A56	TO-236 (49)	80	80	4	100	80	50 50		10 100	1	0.25		100		50		100				67
MMBT 200	TO-236 (49)	60	45	6	50	50	80 100 100 100	450 350	0.1 10 100 150	1 1 1 5	0.2	0.85	10	6	250		20		4	(Note 8)	68

Type No.	Case Style	V _{CBO} * (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB}	h _i Min		l _C 8		V _{CE(SAT)} (V) Max	V _{BE(SAT)} (V) @ Min Max	C	C _{ob} (pF) Max	1	T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 200A	TO-236 (49)	60	45	6	· 50	50	300 100 250	600	10 100 0.1	1 1 1	0.2 0.4	0.85 1.0	10 200	6	250		20				68
MMBT 201	TO-236 (49)	100	80	6	50*	60	60 75 50	375	0.1 10 100	1 1 1	0.2	0.85	100	4.5	100		10		4	(Note 8)	68
MMBT 3962	TO-236 (49)	60		6	10*	50	100 90		10 50	5 5	0.4	0.95	50	6							68
MMBT 4143	TO-236 (49)	60	40	6			30 60 100 75 60 25	300	500 150 100 10 1 1 0.1	10 1 10 10 10 10	0.4	1.3	150 500	8	200		50	100		(Note 12)	68
MMBT 4291	TO-236 (49)	40	30	6	200	30	100 50 30	300	100 10 0.1	10 10 10 10	0.4	1.5	100	10	100		10				68
MMBT 5447	TO-236 (49)	40	25	5			50	300	50	5	0.25		50	12	100		50				68

General Purpose Amplifiers and Switches—PNP (Continued)

Type No.	Case Style	V _{CBO} * (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO@} (nA) Max	V _{CB}	h Min	FE [@] Max	I _C & (mA)	V _{CE} (V)	V _{CE(SAT)} (V) Max	V _{BE} (\ Min	(SAT) V) @ Max	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
MMBT 3467	(TO-236) (49)	40	40	5	100	30	40 40 40	100	1 500 150	5 1 1	0.3 0.5	0.8	1.0	150 500	25	175		50	90		(Note 4)	70
MMBT 4888	TO-236 (49)	150	150	6	50	100	30 40	400	1 10	10 10	0.5			10	4	30	160	1				74
MMBT 4889	TO-236 (49)	150	150	6	10	100	60 70 80	300	0.1 1 10	10 10 10	0.5			10	4	40	160	1		4 10 3 3 4	(Note 19) (Note 20) (Note 21) (Note 22) (Note 23)	74
MMBT 5400	TO-236 (49)	130	120	5	100	100	40 40 30	180	50 10 1	5 5 5	0.2 0.5		1.0	10 50	6	100	400	10		8	(Note 9)	74
MMBT 5401	TO-236 (49)	160	150	5	50	120	50 60 50	240	50 10 1	5 5 5	0.2 0.5		1.0	10 50	6	100	300	10		8	(Note 9)	74
MMBT L51	TO-236 (49)	100	100	4	1 μΑ	50	40	250	50	5	0.25 0.3		1.2 1.2	10 50	8	60		10				74
MMBT H81	TO-236 (49)	20	20	3	100	10	60		5	10	0.5			5	0.85	600		5				75
MMBT A92	TO-236 (49)	300	300	5	250	200	25 40 25		1 10 30	10 10 10	0.5		0.9	20	6	50		10				76
MMBT A93	TO-236 (49)	200	200	5	250	160	25 40 25	150	1 10 30	10 10 10	0.5		0.9	20	8	50		10				76

TEST CONDITIONS:

Note 1: $I_C = 300 \text{ mA}, V_{CC} = 10 \text{V}, I_{B^1} = I_{B^2} = 30 \text{ mA}$

Note 2: $I_C = 100 \text{ mA}$, $V_{CC} = 5V$, $I_B^1 = I_B^2 = 15 \text{ mA}$

Note 3: $I_C = 300 \text{ mA}$, $V_{CC} = 15V$, $I_B^1 = I_B^2 = 30 \text{ mA}$

Note 4: $I_C = 300 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B{}^1 = I_B{}^2 = 30 \text{ mA}$

Note 5: $I_C = 10 \text{ mA}, V_{CC} = 3V, I_B^{1} = I_B^{2} = 1 \text{ mA}$

Note 6: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 100 HzNote 7: $I_C = 30 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 8: $I_C = 100 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 9: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 10: $I_C = 10 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 11: $I_C = 50 \text{ mA}$, $V_{CC} = 30 \text{ V}$, $I_B^1 = I_B^2 = 5 \text{ mA}$

Note 12: $I_C = 150 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B^1 = I_B^2 = 15 \text{ mA}$

Note 13: $I_C = 50 \text{ mA}$, $V_{CC} = 10V$, $I_B^1 = I_B^2 = 5 \text{ mA}$

Note 14: $I_C = 500 \text{ mA}$, $V_{CC} = 30 \text{V}$, $I_B^1 = I_B^2 = 50 \text{ mA}$

Note 15: $I_C = 100 \mu A$, $V_{CE} = 10 V$, f = 1 kHz

Note 16: $I_{\mbox{\scriptsize C}}=$ 200 $\mu\mbox{\scriptsize A},\, V_{\mbox{\scriptsize CE}}=$ 5V, f= 1 kHz

Note 17: $I_C/I_B = 40$

Note 18: $I_C/I_B = 20$

Note 19: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 10 Hz-10 kHz

Note 20: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 100 Hz

Note 21: $I_C = 30 \mu A$, $V_{CE} = 5V$, f = 1 kHz

Note 22: $I_C = 250 \mu A$, $V_{CE} = 5V$, f = 10 kHz

Note 23: $I_C = 1 \text{ mA}, V_{CE} = 10V, f = 1 \text{ MHz}$

Surface Mount JFETs

N-Channel Switches/Choppers

Type No.	Case Style	BV _G BV _G (V) @ Min	DO	I _G *I _D (nA) @ Max		(nA)@ Max	I _{D(off)} PV _{DS} (V)	V _{GS} (V)	(V Min) @ V _[I _D (nA)	(m/	I _{DSS} A) @ V Max	DS (V)		(on) @ I _D (mA)	(pF) @ Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) (C _{rss} [®] V _{DS} (V)		t _{on} (ns) Max	(110)	Process No.
MMBF 4391	TO-236 (49)	40	1	0.1	20	0.1	20	12	4	10	20	1	50	150	20	30	1	14	20	0	3.5	0	12	20	35	51
MMBF 4393	TO-236 (49)	40	1	0.1	20	0.1	20	5	0.5	3	20	1	5	30	20	100	1	14	20	0	3.5	0	5	20	80	51
MMBF J113	TO-236 (49)	40	1	0.1	20	0.1	20	5	0.5	3	5	1000	5	30	20	100	0.10	10t	0	10	15	0	10	13t	35t	51
MMBF 4391	TO-236 (49)	. 40	1	0.1	20	0.1	20	-12	4	10	20	1	50	150	20	30		14	20	0	3.5	0	-12	20	35	51
MMBF 4393	TO-236 (49)	40	1	0.1	20	0.1	20	-5	0.5	3	20	1	5	30	20	100		14	20	0	3.5	0	-5	55	130	51
MMBF J113	TO-236 (49)	35	1	1	15	1	5	-10	0.5	3	5	1000	2		15	100	1	10t	0	-10	15	0	-10	13t	35t	51

t = typical

Surface Mount JFETs

N-Channel Wide Band—Low Noise Dual JFETs

			Operatin	g Condit	ions	for These Cl	naracte	ristics			_	T															\Box
Type No.		Op. Char. V _{DG} I _D (V) (μΑ)	(mv)	(μV/°C)		G _{fs} μmhos Min Max	G _{oss} (μmho) Max	, ,,	V _{gs} (V) Min M		V _P (V) Min M	ax F	I _{DSS} (mA) Vin Ma	G _{fs} (mmho) x Min Max		VDG	(pF)		(V)		R Hz) @ f (Hz)	I _{DSS} Match %	G _{fs} Match %	G _{osc1-2} (μmho)	l _{G1} -l _{G2} 125°C (nA)		Pkg. No.
MMBF 5911	8SOIC	10 5000	10	20	100	5000 10,000	100		0.3	4	1 :	5	7 40		100	16	5	1.2	25	20	10,000	5	5	20	20	93	S1
MMBF 5911	8SOIC	10 5000	10	20	100	5000 10,000	100		0.3	4	1 !	5	7 40		100	16	5	1.2	25	20	10,000	5	5	20	20	93	S1

P-Channel JFETs

P-Channel Switches and Choppers

Type No.	Case Style	BV,	GSS GDO @ l _G (μ A)	I _G *I _D (nA) @ Max		(nA)@ Max	I _{D(off)} V _{DS} (V)	V _{GS} (V)	(V Min	V ') @ V _[Max		I _D (nA)	(m/ Min	I _{DSS} A) @ V Max	DS (V)		(on) @ I _D (mA)	(pF) @ Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS} (V)	t _{on} (ns) Max		Process No.
MMBFJ174	TO-236 (49)	30	1	1	20	1	15	10	5	10	15	0.1	20	100	15	85	0.1	11	0	10	5.5	0	10	2	5	88
MMBFJ175	TO-236 (49)	30	1	1	20	1	15	10	3	6	15	0.1	7	60	15	125	0.1	11	0	10	5.5	0	10	5	10	88
MMBFJ176	TO-236 (49)	30	1	1	20	1	15	10	1	4	15	0.1	2	25	15	250	0.1	11	0	10	5.5	0	10	15	15	88
MMBFJ177	TO-236 (49)	30	1	1	20	1	15	10	0.8	2.25	15	0.01	0.5	20	15	300	0.1	11	0	10	5.5	0	10	20	20	88

Section 7 **Pro-Electron Series**

Section 7 Contents

Diode Pro-Electron Series	7-3
Bipolar Pro-Electron Series	7-5
JFET Pro-Electron Series	7-26

Diode Pro Electron Series

Part No.	V _{rrm} (V) Min	I _{rrm} (nA) Max	V _{fm} (V) Max	@ I _f (mA)	t _{rr} (ns) Max	Package
BA128	75	100	1.0	50		DO-35
BA129	200	50	1.0	100		DO-35
BA130	30	100	1.0	10		DO-35
BA217	30	50	1.0	10		DO-35
BA218	50	50	1.0	10		DO-35
BA316	10	200	0.85	10	4.0	DO-35
BA317	30	200	0.85	10	4.0	DO-35
BA318	50	200	0.85	10	4.0	DO-35
BAS16	75	1000	1.1	50	6.0	TO-236
BAS19	100	100	1.0	100	50	TO-236
BAS20	150	100	1.0	100	50	TO-236
BAS21	200	100	1.0	100	50	TO-236
BAS29	90		0.84	50		TO-236
BAS31	90		0.84	50		TO-236
BAS35	90		0.84	50		TO-236
BAV17	25	100	1.0	100	50	DO-35
BAV18	60	100	1.0	100	50	DO-35
BAV19	120	100	1.0	100	50	DO-35
BAV20	200	100	1.0	100	50	DO-35
BAV21	250	100	1.0	100	50	DO-35
BAV70	70	5000	1.1	50	6.0	TO-236
BAV74	50	100	1.0	100	4.0	TO-236
BAV99	70	2500	1.1	50	6.0	TO-236
BAW56	70	2500	1,1	50	6.0	TO-236
BAW62	75	25	1.0	100	4.0	DO-35
BAW75	35	100	1.0	30	2.0	DO-35
BAW76	75	100	1.0	100	2.0	DO-35
BAX13	50	200	1.0	20	4.0	DO-35
BAX16	180	100	1.5	200	120	DO-35

Diode Pro Electron Series

Part No.	V _{rrm} (V) Min	I _{rrm} (nA) Max	V _{fm} (V) Max	@ (n	l _f nA)	t _{rr} (ns) Max	Package
BAY19	120	100	1.0	1	00	50	DO-35
BAY71	50	100	1.0	2	20	2.0	DO-35
BAY72	125	100	1.0	1	00	50	DO-35
BAY73	125	1.0	1.0	2	00	3.0	DO-35
BAY74	50	100	1.1	3	00	4.0	DO-35
BAY80	150	100	1.0	1	50	50	DO-35
BAY82	15	100	1.0	2	20	0.75	DO-7

Bipolar Pro Electron Series

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h 1 k	FE fe Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)} * (V) Min Max	I _C (mA)	C _{ob} (pF) Max	f _T I _C (MHz) @ (mA) Min Max	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BC327	TO-92 (97)	50*	45	5	100*	45	40 100	600	300 100	1	0.7	1.2*	500 300						67
BC327A	TO-92 (97)	60*	60	5	100*	45	40 100	400	300 100	1	0.7	1.2*	300 500						67
BC327-10	TO-92 (97)	50*	45	5	100*	45	40 63	160	300 100	1	0.7	1.2*	500 300						67
BC327-16	TO-92 (97)	50*	45	5	100*	45	40 100	250	300 100	1	0.7	1.2*	500 300						67
BC327-25	TO-92 (97)	50*	45	5	100*	45	40 160	400	300 100	1	0.7	1.2*	500 300						67
BC328	TO-92 (97)	30*	25	5	100*	25	40 100	600	300 100	1	0.7	1.2	500 300						67
BC328-10	TO-92 (97)	30*	25	5	100*	25	40 63	160	300 100	1	0.7	1.2	500 300						67
BC328-16	TO-92 (97)	30*	25	5	100*	25	40 100	250	300 100	1	0.7	1.2	500 300						67
BC328-25	TO-92 (97)	30*	25	5	100*	25	40 160	400	300 100	1 1	0.7	1.2	500 300						67
BC337	TO-92 (97)	50*	45	5	100	20	100 40	600	100 500	1	0.7		500						12
BC337A	TO-92 (97)	60*	60	5	100	20	100 40	400	100 500	1	0.7		500						12
BC337-16	TO-92 (97)	50*	45	5	100	20	100 40	250	100 500	1	0.7		500						12
BC337-25	TO-92 (97)	50*	45	5	100	20	160 40	400	100 500	1	0.7		500						12

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	h	FE fe @ Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE} (' Min	(SAT) (ON) [*] @ V) Max	I _C (mA)	C _{ob} (pF) Max	f _T I _C (MHz) @ (mA) Min Max	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BC338	TO-92 (97)	30*	20	5	100	20	100 40	600	100 500	1 1	0.7	•		500						12
BC338-16	TO-92 (97)	30*	20	5	100	20	100 40	250	100 500	1	0.7			500						12
BC338-25	TO-92 (97)	30*	20	5	100	20	100 40	250	100 500	1	0.7			500						12
BC368	TO-92 (94)	25*	20	5	10 μΑ	25	60 85 60	375	5 500 1A	10 1 1	0.5			1A						37
BC369	TO-92 (94)	25*	20	5	10 μΑ	25	50 85 60	375	5 500 1A	10 1 1	0.5			1A						77
BC546	TO-92 (97)	80	65	6	15	30	110	800	2 ,	5	0.25 0.6			10 100				10	(Notes 1, 11)	11
BC546A	TO-92 (97)	80	65	6	15	30	110	220	0.01	5	0.25			100				10	(Notes 1, 11)	11
BC546B	TO-92 (97)	80	65	6	15	30	200	450	0.01	5 5	0.25 0.6			100				10	(Notes 1, 11)	11
BC547	TO-92 (97)	50	45	6	10	20	125	900*	2	5	0.25 0.6	0.55	0.77*	100 100 100 2	4.5			10	(Notes 1, 11)	10
BC547A	TO-92 (97)	50	45	6	10	20	125	260*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2	4.5			10	(Notes 1, 11)	10
BC547B	TO-92 (97)	50	45	6	10	20	240	500*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2	4.5			10	(Notes 1, 11)	10
BC547C	TO-92 (97)	50	45	5	15	30	420	900	2	5	0.25 0.6	0.55	0.77*	10 100 2	4.5			10	(Notes 1, 11)	10

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	h	FE fe Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE} V _{BE} (Min	(SAT) (ON) [*] @ V) Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Max	/m A \	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BC548	TO-92 (97)	30	20	5	10	20	125	900*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2	4.5				10	(Note 1)	10
BC548A	TO-92 (97)	30	20	5	10	20	125	260*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2	4.5				10	(Note 1)	10
BC548B	TO-92 (97)	30	20	5	10	20	240	500*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2	4.5				10	(Note 1)	10
BC548C	TO-92 (97)	30	20	5	10	20	450	900*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2	4.5				10	(Note 1)	10
BC549	TO-92 (97)	30	20	5	10	20	240	900*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2	4.5				4	(Note 1)	10
BC549B	TO-92 (97)	30	20	5	10	20	240	500*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2	4.5				4	(Note 1)	10
BC549C	TO-92 (97)	30	20	5	10	20	450	900*	2	5	0.25	0.55	0.77* 0.70*	10 100 2	4.5				4	(Note 1)	10
BC550	TO-92 (97)	50	45	5	10	45	240	900*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2					3	(Note 1)	10
BC550B	TO-92 (97)	50	45	5	10	45	240	500*	2	5	0.25 0.6	0.55	0.77* 0.70*	10 100 2					3	(Note 1)	10
BC556	TO-92 (97)	80	65	5	15	30	75	475	2	5	0.3			10 100					10	(Note 1)	69

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO (} (nA) Max	V _{CB} (V)	h	FE fe Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	VBE	(SAT) (ON)* _@ (V) Max	I _C (mA)	C _{ob} (pF) Max	fT I _C (MHz) @ (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BC556A	TO-92 (97)	80	65	5	15	30	125	250	2	5	0.3 0.65			10 100				10	(Note 1)	69
BC556B	TO-92 (97)	80	65	5	15	30	220	475	2	5	0.3 0.65			10 100				10	(Note 1)	69
BC557	TO-92 (97)	50	45	5	100	20	75	900*	2	5	0.3 0.65	0.6	0.82* 0.75*	10 100 2				10	(Note 1)	68
BC557A	TO-92 (97)	50	45	5	100	20	125	260*	2	5	0.3 0.65	0.6	0.82* 0.75*	10 100 2				10	(Note 1)	68
BC557B	TO-92 (97)	50	45	5	100	20	240	500*	2	5	0.3 0.65	0.6	0.82* 0.75*	10 100 2				10	(Note 1)	68
BC558	TO-92 (97)	30	25	5	100	20	75	500*	2	5	0.3 0.65	0.6	0.82* 0.75*	10 100 2		,		10	(Note 1)	68
BC558A	TO-92 (97)	30	25	5	100	20	125	260*	2	5	0.3 0.65	0.6	0.82* 0.75	10 100 2				10	(Note 1)	68
BC558B	TO-92 (97)	30	25	5	100	20	240	500*	2	5	0.3 0.65	0.6	0.82* 0.75	10 100 2				10	(Note 1)	68
BC558C	TO-92 (97)	30	25	5	100	20	450	900*	2	5	0.3 0.65	0.6	0.82* 0.75	10 100 2				10	(Note 1)	68
BC559	TO-92 (97)	25	20	5	100	20	125	500*	2	5	0.3 0.65	0.6	0.82*	10 100 2				4	(Note 1)	68

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	1 k	FE fe @ Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE}	(SAT) (ON) [*] @ (V) Max	I _C (mA)	C _{ob} (pF) Max	f _T I _C (MHz) @ (mA) Min Max	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BC559B	TO-92 (97)	25	20	5	100	20	240	500*	2	5	0.3 0.65	0.6	0.82* 0.75*	10 100 2				4	(Note 1)	68
BC559C	TO-92 (97)	25	20	5	100	20	450	900*	2	5	0.3 0.65	0.6	0.82* 0.75*	10 100 2				4	(Note 1)	68
BC560	TO-92 (97)	50	45	5	100	45	125	500*	2	5	0.3 0.65	0.6	0.82* 0.75*	10 100 2				3	(Note 1)	68
BC560B	TO-92 (97)	50	45	5	100	45	240	500*	2	5	0.3 0.65	0.6	0.82*	10 100 2				3	(Note 1)	68
BC635	TO-92 (94)	45	45	5			25 40 25	250	5 150 500	2 2 2	0.5			500						38
BC636	TO-92 (94)	45	45	5	100	30	25 40 25	250	5 150 500	2 2 2	0.5			500						78
BC637	TO-92 (94)	60	60	5			25 40 25	250	5 150 500	2 2 2	0.5			500						38
BC638	TO-92 (94)	60	60	5	100	30	25 40 25	250	5 150 500	2 2 2	0.5			500						78
BC639	TO-92 (94)	100	80	5			25 40 25	250	5 150 500	2 2 2	0.5			500						39
BC640	TO-92 (94)	100	80	5	100	30	25 40 25	250	5 150 500	2 2 2	0.5			500						79
BC807	TO-236 (49)	50*	45	5	100	20	100 40	600	100 500	1	0.7			500						67

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	H _i h 1 ki Min	ie _a	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	$\begin{array}{c} {\rm V_{BE(SAT)}} \\ {\rm V_{BE(ON)}^*} \\ {\rm (V)} \end{array} \begin{array}{c} {\rm I_C} \\ {\rm (mA)} \end{array}$ Min Max	C _{ob} (pF) Max	f _T I _C (MHz) @ I _C Min Max	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BC807-16	TO-236 (49)	50*	45	5	100	20	100 40	250	100 500	1 1	0.7	500						67
BC807-25	TO-236 (49)	50*	45	5	100	20	160 40	400	100 500	1	0.7	500						67
BC807-40	TO-236 (49)	50*	45	5	100	20	250 40	600	100 500	1 1	0.7	500						67
BC808	TO-236 (49)	30*	25	5	100	20	100 40	600	100 500	1 1	0.7	500						67
BC808-16	TO-236 (49)	30*	25	5	100	20	100 40	250	100 500	1	0.7	500						67
BC808-25	TO-236 (49)	30*	25	5	100	20	160 40	400	100 500	1 1	0.7	500						67
BC808-40	TO-236 (49)	30*	25	5	100	20	250 40	600	100 500	1 1	0.7	500						67
BC817	TO-236 (49)	30*	25	5	100	20	100 40	600	100 500	1	0.7	500						12
BC817-16	TO-236 (49)	30*	25	5	100	20	100 40	250	100 500	1	0.7	500						12
BC817-25	TO-236 (49)	30*	25	5	100	20	160 40	400	100 500	1	0.7	500						12
BC817-40	TO-236 (49)	30*	25	5	100	20	250 40	600	100 500	1	0.7	500						12
BC818	TO-236 (49)	30*	25	5	100	20	100 40	600	100 500	1	0.7	500						12
BC818-16	TO-236 (49)	30*	25	5	100	20	100 40	250	100 500	1	0.7	500						12
BC818-25	TO-236 (49)	30*	25	5	100	20	160 40	400	100 500	1	0.7	500						12

TO-236 (49)		Min	(V) Min	ICBO @ (nA) Max	V _{CB}	h 1 kl Min		l _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	VBE(SAT) VBE(ON)* (C (V) (MA) Min Max	C _{ob} (pF) Max	f _T I _C (MHz) @ (mA) Min Max	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
	30*	25	5	100	20	250 40	600	100 500	1 1	0.7	500						12
TO-236 (49)	80	65	6	15	30	110	800	0.01 2	5 5	0.25 0.6	10 100				10	(Note 1)	11
TO-236 (49)	80	65	6	15	30	110	220	0.01	5	0.25	10				10	(Note 1)	11
TO-236 (49)	80	65	6	15	30	200	450	0.01	5	0.25	10				10	(Note 1)	11
TO-236 (49)	50	45	6	15	30	110		0.01	5	0.25	10				10	(Note 1)	10
TO-236 (49)	50	45	6	15	30	110	220	0.01	5	0.25	10				10	(Note 1)	10
TO-236 (49)	50	45	6	15	30	200		0.01	5	0.25	10				10	(Note 1)	10
TO-236 (49)	30	30	5	15	30	110		0.01	5	0.25	10				10	(Note 1)	10
TO-236 (49)	30	30	5	15	30	110		0.01	5	0.25	10				10	(Note 1)	10
TO-236 (49)	30	30	5	15	30	200		0.01	5	0.25	10				10	(Note 1)	10
TO-236 (49)	30	30	5	15	30	420	+30	0.01	5	0.25	10				10	(Note 1)	10
	TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49)	(49) TO-236 80 (49) TO-236 50 (49) TO-236 50 (49) TO-236 30 (49) TO-236 30 (49) TO-236 30 (49)	(49) TO-236 80 65 TO-236 50 45 TO-236 50 45 TO-236 50 45 TO-236 30 30 TO-236 30 30 TO-236 30 30 TO-236 30 30 TO-236 30 30 TO-236 30 30	(49) TO-236 80 65 6 TO-236 50 45 6 TO-236 50 45 6 TO-236 50 45 6 TO-236 30 30 5 TO-236 30 30 5 TO-236 30 30 5 TO-236 30 30 5	(49) 80 65 6 15 TO-236 (49) 50 45 6 15 TO-236 (49) 50 45 6 15 TO-236 (49) 50 45 6 15 TO-236 (49) 30 30 5 15 TO-236 (30) 30 5 15 TO-236 (30) 30 5 15	(49) 80 65 6 15 30 TO-236 (49) 50 45 6 15 30 TO-236 (49) 50 45 6 15 30 TO-236 (49) 50 45 6 15 30 TO-236 (49) 30 30 5 15 30 TO-236 (30) 30 5 15 30	(49) 80 65 6 15 30 200 TO-236 (49) 50 45 6 15 30 110 TO-236 (49) 50 45 6 15 30 110 TO-236 (49) 50 45 6 15 30 200 TO-236 (49) 30 30 5 15 30 110 TO-236 (49) 30 30 5 15 30 110 TO-236 (49) 30 30 5 15 30 200 TO-236 (30) 30 5 15 30 200 TO-236 (49) 30 30 5 15 30 200	TO-236 (49) TO-236 (49) TO-236 (50) TO-236 (69) TO-236 (69) TO-236 (79) TO-23	TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (50) TO-236 (69) TO-236 (79) TO-23	TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (50) TO-236 (69) TO-236 (79) TO-23	TO-236 (49) 80 65 6 15 30 110 0.01 5 0.25 (49) 220 2 5 0.6 TO-236 (49) 80 65 6 15 30 200 0.01 5 0.25 (49) 800 2 5 0.6 TO-236 (49) 80 45 6 15 30 110 0.01 5 0.25 (49) 220 2 5 0.6 TO-236 (49) 220 2 5 0.6 TO-236 (49) 220 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 0.6 TO-236 (49) 800 2 5 6 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 (49) 800 2 5 6 TO-236 30 30 30 5 15 30 200 0.01 5 0.25 (49) 800 2 5 6	TO-236 (49) 80 65 6 15 30 110 0.01 5 0.25 10 TO-236 (49) 80 65 6 15 30 200 0.01 5 0.25 10 TO-236 (49) 80 65 6 15 30 110 0.01 5 0.25 10 TO-236 (49) 80 2 5 0.6 100 TO-236 (49) 80 2 5 0.6 100 TO-236 (49) 80 2 5 0.6 100 TO-236 (49) 80 2 5 0.6 100 TO-236 (49) 80 2 5 0.6 100 TO-236 (49) 80 2 5 0.6 100 TO-236 (49) 80 80 80 80 80 80 80 80 80 80 80 80 80	TO-236 (49) 80 65 6 15 30 110 0.01 5 0.25 10 TO-236 (49) 80 65 6 15 30 200 0.01 5 0.25 10 TO-236 (49) 80 65 6 15 30 110 0.01 5 0.25 10 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 0.6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 2 5 6 100 TO-236 (49) 800 5 15 30 800 0.01 5 0.25 10 (49)	TO-236 (49)	TO-236 (49) TO-236 80 65 6 15 30 110 0.01 5 0.25 10 TO-236 80 65 6 15 30 200 0.01 5 0.25 10 TO-236 (49) TO-236 50 45 6 15 30 110 0.01 5 0.25 10 TO-236 (49) TO-236 50 45 6 15 30 110 0.01 5 0.25 10 TO-236 (49) TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 420 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 420 0.01 5 0.25 10 TO-236 30 30 30 5 15 30 420 0.01 5 0.25 10	TO-236 80 65 6 15 30 110 0.01 5 0.25 10 10 10 TO-236 80 65 6 15 30 110 0.01 5 0.25 10 10 10 TO-236 80 80 65 6 15 30 110 0.01 5 0.25 10 10 10 10 10 10 10 10 10 10 10 10 10	TO-236 80 65 6 15 30 110 0.01 5 0.25 10 10 10 (Note 1) TO-236 (49) TO-236 50 45 6 15 30 110 0.01 5 0.25 10 10 10 (Note 1) TO-236 50 45 6 15 30 110 0.01 5 0.25 10 10 10 (Note 1) TO-236 49) TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 10 10 (Note 1) TO-236 49) TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 10 10 (Note 1) TO-236 49) TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 10 10 (Note 1) TO-236 49) TO-236 30 30 30 5 15 30 110 0.01 5 0.25 10 10 10 (Note 1) TO-236 49)

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	H _l h _t 1 kl Min	ie @ Hz*	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	VBE(SAT) VBE(ON)* Omega logation (V) (mA) Min Max	C _{ob} (pF) Max	f _T I _C (MHz) @ (mA) Min Max	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BC849	TO-236 (49)	30	30	5	15	30	200	800	0.01	5 5	0.25 6	10 100				4	(Note 1)	10
BC849B	TO-236 (49)	30	30	5	15	30	200	450	0.01	5	0.25	10				4	(Note 1)	10
BC849C	TO-236 (49)	30	30	5	15	30	420		0.01	5	0.25	10				4	(Note 1)	10
BC850	TO-236 (49)	50	45	5	15	30	200	800	2 0.01 2	5 5	0.6 0.25 0.6	100 10 100				3	(Note 1)	10
BC850-B	TO-236 (49)	50	45	5	15	30	200	450	0.01	5	0.25	10					(Note 1)	10
BC856	TO-236 (49)	80	65	5	15	30	75	475	2	5	0.3	10				10	(Note 1)	69
BC856-A	TO-236 (49)	80	65	5	15	30	125	250	2	5	0.3	10				10	(Note 1)	69
BC856-B	TO-236 (49)	80	65	5	15	30	220	475	2	5	0.3	10				10	(Note 1)	69
BC857	TO-236 (49)	50	45	5	15	30	75	475	2	5	0.3	10				10	(Note 1)	68
BC857-A	TO-236 (49)	50	45	5	15	30	125	250	2	5	0.3	10				10	(Note 1)	68

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	H _I h 1 ki Min	fe a	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	$egin{array}{cccc} oldsymbol{V_{BE(SAT)}} & oldsymbol{V_{BE(ON)}}^* & oldsymbol{I_C} \ (V) & (mA) \ oldsymbol{Min Max} \end{array}$	C _{ob} (pF) Max	f _T I _C (MHz) [@] (mA) Min Max	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BC857-B	TO-236 (49)	50	45	5	15	30	220	475	2	5	0.3 0.65	10 100				10	(Note 1)	68
BC858	TO-236 (49)	30	30	5	15	30	75	800	2	5	0.3 0.65	10 100				10	(Note 1)	68
BC858-B	TO-236 (49)	30	30	5	15	30	220	475	2	5	0.3 0.65	10				10	(Note 1)	68
BC858-C	TO-236 (49)	30	30	5	15	30	420	800	2	5	0.3	10				10	(Note 1)	68
BC859	TO-236 (49)	30	30	5	15	30	220	800	2	5	0.65	100				4	(Note 1)	68
BC859-A	TO-236 (49)	30	30	5	15	30	125	250	2	5	0.65	100				4	(Note 1)	68
BC859-B	TO-236 (49)	30	30	5	15	30	220	475	2	5	0.65	100				4	(Note 1)	68
BC859-C	TO-236 (49)	30	30	5	15	30	420	800	2	5	0.65	100				4	(Note 1)	68
BC860	TO-236 (49)	50	45	5	15	30	220	800	2	5	0.3 0.65	10				3	(Note 1)	68
BC860-B	TO-236 (49)	50	45	5	15	30	220	475	2	5	0.3 0.65	10 100				3	(Note 1)	68
BCF29	TO-236 (49)	32	32	5	100	32	120	260	0.01	5 5	0.3	10			i	4	(Note 1)	68
BCF30	TO-236 (49)	32	32	5	100	32	200	450	0.01 2	5 5	0.25	10				4	(Note 1)	68
BCF32	TO-236 (49)	50	45	5	100	20	215	500	0.01 2	5 5	0.3	10				4	(Note 1)	10

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	H _{FI} h _{fe} 1 kH Min	9	[@] (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(} V _{BE(} (\ Min	ON)* _@ /)	I _C (mA)	C _{ob} (pF) Max	f _T lc (MHz) @ lc Min Max (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BCF33	TO-236 (49)	50	45	5	100	20	200	450	0.01 2	5 5	0.3			10				4	(Note 1)	10
BCF70	TO-236 (49)	50	45	5	100	20	215	500	0.01 2	5 5	0.3			10				4	(Note 1)	10
BCV26	TO-236 (49)	40	30	16	100	30	4,000 10,000 20,000		1 10 100	5 5 5	1.0		1.5	100						61
BCV27	TO-236 (49)	40	30	10	100	30	4,000 10,000 20,000	-	1 10 100	5 5 5	1.0		1.5	100						05
BCV71	TO-236 (49)	80	60	5	100	20	110	220	2	5	0.25			10				10	(Note 1)	11
BCV72	TO-236 (49)	80	60	5	100	20	200	450	2	5	0.25			10				10	(Note 1)	11
BCW29	TO-236 (49)	32	32	5	100	32	120	260	0.01 2	5 5	0.3			10				10	(Note 1)	68
BCW30	TO-236 (49)	32	32	5	100	32	215	500	0.01 2	5 5	0.3			10				10	(Note 1)	68
BCW31	TO-236 (49)	32	32	5	100	32	150	270	0.01 2	5	0.25			10				10	(Note 1)	10
BCW32	TO-236 (49)	32	32	5	100	32	200	420	0.01 2	5	0.25			10				10	(Note 1)	10
BCW33	TO-236 (49)	32	32	5	100	32	450	800	0.01 2	5	0.25			10				10	(Note 1)	10
BCW60	TO-236 (49)	32*	32	5	20	32	50 120	630	50 2	1 5	0.35	0.6	0.85	50		125 10		6	(Note 1)	10
BCW61	TO-236 (49)	32*	32	5	20	32	50 120	630	50 2	1 5	0.25	0.6	0.85	50				6	(Note 1)	68
BCW65	TO-236 (49)	60	32	5	20*	32	35 75 100 35	220 250	0.1 10 100 500	10 1 1 1			2.0	500	12	100 20		10	(Note 1)	10

7
ᅩ
G

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	h 1 ki	fe fe @ Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)} * (V) Min Max	I _C (mA)	C _{ob} (pF) Max	f _T I _C (MHz) @ I _C Min Max ^(mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BCW66	TO-236 (49)	75	45	5	20*	45	35 75 100 35	250	0.1 10 100 500	10 1 1 1		2.0	500	12	100 20		10	(Note 1)	10
BCW68	TO-236 (49)	75	45	5	20*	45	35 75 100 35	250	0.1 10 100 500	10 1 1		2.0	500	12	100 20		10	(Note 1)	10
BCW69	TO-236 (49)	50	.45	5	100	20	120	260	2	5	0.3		10				10	(Note 1)	68
BCW70	TO-236 (49)	50	45	5	100	20	215	500	2	5	0.3		10				10	(Note 1)	68
BCW71	TO-236 (49)	50	45	5	100	20	110	220	2	5	0.25		10				10		68
BCW72	TO-236 (49)	50	45	5	100	20	200	450	2	5	0.25		10				10	(Note 1)	68
BCW81	TO-236 (49)	50	45	5	100	20	420	800	2	5	0.25		10				10	(Note 1)	10
BCW89	TO-236 (49)	80	60	5	100	20	120	260	2	5	0.3		10				10	(Note 1)	68
BCX17	TO-236 (49)	50*	45	5	100	20	100 70 40	600	100 300 500	1 1 1	0.62		500						67
BCX18	TO-236 (49)	30*	25	5	100	20	100 70 40	600	100 300 500	1 1 1	0.62		500						67
BCX19	TO-236 (49)	50*	45	5	100	20	100 70 40	600	100 300 500	1 1 1	0.62	1.2	500						12
BCX20	TO-236 (49)	30*	25	5	100	20	100 70 40	600	100 300 500	1 1 1	0.62	1.2	500						12

Bipolar Pro Electron Series

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	h 1 k	FE fe @ Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)*} (V) Min Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Max	_@ I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BCX58	TO-92 (97)		32	7	10	32	120 80 40	630 1000	2 10 100	5 1 1					125	10	800	6	(Notes 3 & 4)	10
BCX58-7	TO-92 (97)		32	7	10	32	120 80 40	220	2 10 100	5 1 1					125	10	800	6	(Notes 3 & 4)	10
BCX58-8	TO-92 (97)		32	7	10	32	20 180 120 45	310 400	0.01 2 10 100	5 5 1 1					125	10	800	6	(Notes 3 & 4)	10 10
BCX58-9	TO-92 (97)		32	7	10	32	40 250 160 60	460 630	0.01 2 10 100	5 5 1 1					125	10	800	6	(Notes 3 & 4)	10
BCX58-10	TO-92 (97)		32	7	10	32	100 380 240 60	630 1000	0.01 2 10 100	5 5 1 1					125	10	800	6	(Notes 3 & 4)	10
BCX59	TO-92 (97)		45	7			120 80 40	630 1000	2 10 100	5 1 1	0.5	1.0	100		125	10	800		(Note 5)	10
BCX59-7	TO-92 (97)		45	7			120 80 40	220	2 10 100	5 1 1	0.5	1.0	100		125	10	800		(Note 5)	10
BCX59-8	TO-92 (97)		45	7			20 180 120 45	310 400	0.01 2 10 100	5 5 1 1	0.5	1.0	100		125	10	800		(Note 5)	10

7	
ヹ	
$\overline{}$	

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	h 1 k	FE fe @ Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(}	(SAT) (ON)* _@ //) Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Ma	(ma)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BCX59-9	TO-92 (97)		45	7			40 250 160 60	460 630	0.01 2 10 100	5 5 1 1	0.5		1.0	100		125	10	800		(Note 5)	10
BCX59-10	TO-92 (97)		45	7			100 380 240 60	630 1000	0.01 2 10 100	5 5 1	0.5		1.0	100		125	10	800		(Note 5)	10
BCX70G	TO-236 (49)	45	45	5	20	32	120 60	220	2 50	5 1	0.55	0.7	1.05	50	4.5	125	10	800	6	(Notes 17, 19)	10
ВСХ70Н	TO-236 (49)	45	45	5	20	32	180 70 20	310	2 50 0.01	5 1 5	0.55	0.7	1.05	50	4.5	125	10	800	6	(Notes 17, 19)	10
BCX70J	TO-236 (49)	45	45	5	20	32	250 90 40	460	2 50 0.01	5 1 5	0.55	0.7	1.05	50	4.5	125	10	800	6	(Notes 17, 19)	10
BCX71G	TO-236 (49)	45	45	5	20	32	120 60	220	2 50	5 1	0.55	0.7	1.05	50	4.5	125	10	800	6	(Notes 17, 19)	68
BCX71H	TO-236 (49)	45	45	5	20	32	180 70 20	310	2 50 0.01	5 1 5	0.55	0.7	1.05	50	4.5	125	10	800	6	(Notes 17, 19)	68
BCX71J	TO-236 (49)	45	45	5	20	32	250 90 40	460	2 50 0.01	5 1 5	0.55	0.7	1.05	50	4.5	125	10	800	6	(Notes 17, 19)	68
BCX78	TO-92 (97)		32	5			120 80 40	630 1000	2 10 100	5 1 1	0.6		1.0	100	4.5	200	10		6	(Note 1)	68
BCX78-7	TO-92 (97)		32	5			120 80 40	220	2 10 100	5 1 1	0.6		1.0	100	4.5	200	10		6	(Note 1)	68

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	h	FE fe @ Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)* (} (V) Min Max	I _C (mA)	C _{ob} (pF) Max	f _T (MH Min	z) @ IC	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BCX78-8	TO-92 (97)		32	5			30 180 120 45	310 400	0.01 2 10 100	5 5 1 1	0.6	1.0	100	4.5	200	10		6	(Note 1)	68
BCX78-9	TO-92 (97)		32	5			40 250 160 60	460 630	0.01 2 10 100	5 5 1 1	0.6	1.0	100	4.5	200	10		6	(Note 1)	68
BCX78-10	TO-92 (97)		32	5			100 380 240 60	630 1000	0.01 2 10 100	5 5 1 1	0.6	1.0	100	4.5	200	10		6	(Note 1)	68
BCX79	TO-92 (97)		45	5			80 40 120	1000 630	10 100 2	1 1 5	0.6	1.0	100	4.5	200	10		6	(Note 1)	68
BCX79-7	TO-92 (97)		45	5			120	220	2	5	0.6	1.0	100	4.5	200	10		6	(Note 1)	68
BCX79-8	TO-92 (97)		45	5			120 45 30 180	400 310	10 100 0.01 2	1 1 5 5	0.6	1.0	100	4.5	200	10		6	(Note 1)	68
BCX79-9	TO-92 (97)		45	5			160 60 40 250	630 460	10 100 0.01 2	1 1 5 5	0.6	1.0	100	4.5	200	10		6	(Note 1)	68
BCX79-10	TO-92 (97)		45	5			240 60 100 380	1000	10 100 0.01 2	1 1 5 5	0.6	1.0	100	4.5	200	10		6	(Note 1)	68
BD370A	TO-237 (91)	80	45		100	45	25 40	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78

~
•.
=
σ

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB} (V)	H _i h 1 ki Mi n	fe Hz*	[@] (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)} * (V) Min Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) (Min Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BD370A-10	TO-237 (91)	80	45		100	45	25 63	160	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370A-16	TO-237 (91)	80	45		100	45	25 100	250	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370A-25	TO-237 (91)	80	45		100	45	25 160	400	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370B	TO-237 (91)	80	60		100	60	25 40	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370B-10	TO-237 (91)	80	60		100	60	25 63	160	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370B-16	TO-237 (91)	80	60		100	60	25 100	250	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370B-25	TO-237 (91)	80	60		100	60	25 160	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370C	TO-237 (91)	80	80		100	80	25 40	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370C-6	TO-237 (91)	80	80		100	80	25 40	100	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370C-10	TO-237 (91)	80	80		100	80	25 63	160	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370C-16	TO-237 (91)	80	80		100	80	25 100	250	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD370D	TO-237 (91)	80	100		100	80	25 40	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD370D-6	TO-237 (91)	80	100		100	80	25 40	100	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD370D-10	TO-237 (91)	80	100		100	80	25 63	160	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371A	TO-237 (91)	80	45		100	45	25 40	400	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	H _F h _f 1 kH Min	e a	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)* (V)} (V) Min Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min Ma	/m/\	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BD371A-10	TO-237 (91)	80	45		100	45	25 63	160	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371A-16	TO-237 (91)	80	45		100	45	25 100	250	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371A-25	TO-237 (91)	80	45		100	45	25 180	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371B	TO-237 (91)	80	60		100	60	25 40	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371B-10	TO-237 (91)	80	60		100	60	25 63	160	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371B-16	TO-237 (91)	80	60		100	60	25 100	250	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371B-25	TO-237 (91)	80	60		100	60	25 160	400	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371C	TO-237 (91)	80	80		100	80	25 40	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371C-6	TO-237 (91)	80	80		100	80	25 40	100	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371C-10	TO-237 (91)	80	80		100	80	25 63	160	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371C-16	TO-237 (91)	80	80		100	80	25 100	250	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD371D	TO-237 (91)	80	100		100	100	25 40	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	39
BD371D-6	TO-237 (91)	80	100		100	100	25 40	100	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	39
BD371D-10	TO-237 (91)	80	100		100	100	25 63	160	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	39
BD372A	TO-237 (90)	80	45		100	45	25 40	400	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78

ĸ٦
'n
_

Bipola	1																			
Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO @} (nA) Max	V _{CB}	H _F h _f 1 kH Min	– e (tz*	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)} * (V) Min Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) @ Min Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BD372A-10	TO-237 (90)	80	45		100	45	25 63	160	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372A-16	TO-237 (90)	80	45		100	45	25 100	250	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372A-25	TO-237 (90)	80	45		100	45	25 160	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372B	TO-237 (90)	80	60		100	60	25 40	400	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372B-10	TO-237 (90)	80	60		100	60	25 63	160	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372B-16	TO-237 (90)	80	60		100	60	25 100	250	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372B-25	TO-237 (90)	80	60		100	60	25 160	400	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372C	TO-237 (90)	80	80		100	80	25 40	400	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372C-6	TO-237 (90)	80	80		100	80	25 40	100	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372C-10	TO-237 (90)	80	80		100	80	25 63	160	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372C-16	TO-237 (90)	80	100		100	100	25 100	250	500 100	2 1	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	78
BD372D	TO-237 (90)	80	100		100	100	25 40	400	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	79
BD372D-6	TO-237 (90)	80	100		100	100	25 40	100	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	79
BD372D-10	TO-237 (90)	80	100		100	100	25 63	160	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	79
BD373A	TO-237 (90)	80	45		100	45	25 40	400	500 100	2	0.7	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	1 k	FE fe @ Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(S/} V _{BE(OI} (V) Min M	N) [*] @	I _C (mA)	C _{ob} (pF) Max	f _T (MHz Min N		t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BD373A-10	TO-237 (90)	80	45		100	45	25 63	160	500 100	2 1	0.7	1	1.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373A-16	TO-237 (90)	80	45		100	45	25 100	250	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373A-25	TO-237 (90)	80	45		100	45	25 160	400	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373B	TO-237 (90)	80	80		100	80	25 40	400	500 100	2	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373B-10	TO-237 (90)	80	60		100	80	25 63	160	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373B-16	TO-237 (90)	80	60		100	60	25 100	250	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373B-25	TO-237 (90)	80	60		100	60	25 160	400	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373C	TO-237 (90)	80	80		100	80	25 40	400	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373C-6	TO-237 (90)	80	80		100	80	25 40	100	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373C-10	TO-237 (90)	80	80		100	80	25 63	160	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373C-16	TO-237 (90)	80	80		100	80	25 100	250	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373D	TO-237 (90)	80	100		100	100	25 40	400	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373D-6	TO-237 (90)	80	100		100	100	25 40	100	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BD373D-10	TO-237 (90)	80	100		100	100	25 63	160	500 100	2 1	0.7	1	.2*	1A	30	50	200	420	6	(Notes 5 & 6)	38
BF240	TO-92 (98)	40	40	4	100	20	65 6	225	1 12	10 7		0.65 0.	74*	1	0.34		1		3.5	(Note 7)	47

~
N
ω

olar Pr	o Ele	ctror	Seri	es (Co	ontinue	d)								r			,			
Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO ((nA)} Max	V _{CB} (V)	h 1 k	fe Hz*	[@] (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE}	(ON)* _@ V)	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) @ Min Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
TO-92 (98)	40	40	4	100	20	35 6	125	1 12	10 7		0.65	0.74*	1	0.34		1		3.5	(Note 7)	47
TO-92 (98)	30	20	5			65	220	1	10											49
TO-92 (98)	30	20	5			35	250	1	10											49
TO-236 (49)	30	30	4	50	20	25		1	10											42
TO-236 (49)	40	40	4	100	20	65	220	1	10											47
TO-236 (49)	40	40	4	100	20	35	125	1	10											47
TO-92 (97)	30	20	4	50	20	25		1	10									6	(Note 7)	75
TO-236 (49)	30	30	5	100	20	35	125	1	10											49
TO-236 (49)	30	30	5	100	25	65	225	1	10											49
TO-236 (49)	60	30	5	30	50	35 50 75		0.1 1 10	10 10 10	0.4		1.3	150	8	250	20				19
					34//2	100 50 30	300	150 150 500	10 1 10	1.6		2.6	500							
TO-236 (49)	75	40	6	10	60	35 50 75 100 50	300	0.1 1 10 150 150	10 10 10 10 1	0.3 1.0	0.6	2.0	150 500	8	300	20				19
	Case Style TO-92 (98) TO-92 (98) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49)	Case Style Case Style Case Style Case Style Case VcBo (V) Min TO-92 (98) TO-92 (30 (98) TO-92 (30 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (49) TO-236 (50 (49) TO-236 (75	Case Style Vces* VcBO (V) Min VcEo (V) Min TO-92 (98) 40 40 40 40 40 40 40 40 40 40 40 40 40 4	Case Style VcEs* VcBO (V) Min VcEO (V) Min VEBO (V) Min TO-92 (98) 40 40 40 4 4 TO-92 (98) 30 20 5 5 TO-92 (98) 30 30 4 4 TO-236 (49) 40 40 40 4 4 TO-236 (49) 40 40 40 4 4 TO-236 (49) 30 30 5 5 TO-236 (49) 60 30 5 5 TO-236 (49) 60 30 5 6	Case Style Vces* VcBO (V) Min VcEO (V) Min VeBO (V) Min Min Min Min Min Max Ices* Ices (nA) Max TO-92 (98) 40 40 40 4 100 4 100 TO-92 (98) 30 20 5 5 TO-92 (98) 30 30 4 50 4 TO-236 (49) 40 40 4 100 4 TO-236 (49) 40 40 4 100 4 TO-92 (97) 30 20 4 50 5 TO-236 (49) 30 30 5 100 5 TO-236 (49) 30 30 5 100 5 TO-236 (49) 30 30 5 30 5 TO-236 (49) 30 30 5 30 5 TO-236 (49) 30 30 5 30 5 TO-236 (49) 60 30 5 30 5 TO-236 (49) 60 30 5 30 5	Case Style Vces* VcBO (V) Min VcEO (V) Min VeBO (V) Min Min Min Min Min Min Vces* IcBO (V) Min Min Min Min Min Min Min Min Min Min	Case Style VCBO (V) Min Min VCBO (V) Min Min Max VCBO (V) Min Min Max VCBO (NA) (V) Min Min Max No. Min Min Min Min Min Min Min Min Min Min	Case Style Vcgo (V) Min Max Vcgo (V) Min Max TO-92 (98) 40 40 4 100 20 35 125 TO-92 (98) 30 20 5 6 220 TO-92 (98) 30 20 5 35 250 TO-92 (98) 30 30 4 50 20 25 TO-236 (49) 40 40 4 100 20 25 220 TO-92 (97) 30 20 4 50 20 25 220 TO-936 (49) 30 30 5 100 20 35 125 TO-236 (49) 30 30 5 100 20 35 125 TO-236 (49) 60 30 5 30 50 50 75 TO-236 (49)	Case Style VCES (V) Min (V) Min VCEO (V) Min Min (M) Min Max VCES (V) Min Min Max VCES (NA) Min Max<	Case Style	Case Style VCES* VCBO (V) Min VCEO (V) Min VCEO (V) Min VCBO (V) Min VCBO (V) Min Max VCB (CBO) (V) Min Max VCB (CBO) (V) Min Max VCB (MA) Min Max VCE (MA) (V) Min Max VCE (MA) (MA) MAX VCE (MA) (MA) MAX VCE (MA) (MA) MAX VCE (MA) (MA) MAX VCE (MA) MAX	Case Style	Case Style VCES* VCBO (V) Min Min Min Min Min Min Min Min Min Max VCE (NA) (V) Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Min Max Min M	Case Style	Case VCES VCBO VCEO VCBO VCEO VCBO Case VCBs VCBO	Case VCBo VCBO	Case VCBV VCBO	Case VCES VCBO	Case VCES VCEO	

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB} (V)	H _{FE} h _{fe} 1 kHz* Min Ma	@ ^I C (mA)	V _{CE}	V _{CE(SAT)} (V) & Max	(1	ON)* @	I _C (mA)	C _{ob} (pF) Max	(M		I _C nA)	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BSR15	TO-236 (49)	60	40	5	20	50	35 50 75 100 300 30	0.1 1 10 150 500	10 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200		50	100		(Note 9)	63
BSR16	TO-236 (49)	60	60	5	10	50	75 100 100 100 300 50	0.1 1 10 150 500	10 10 10 10 10	0.4 1.6		1.3 2.6	150 500	8	200	,	50	100		(Note 9)	63
BSR17	TO-236 (49)	60	40	6	5 μΑ	50	20 35 50 15 30 15	0.1 1 0 10 50 100	1 1 1 1	0.2	0.65	0.85	10 50		250	;	20	250		(Note 5)	23
BSR18	TO-236 (49)	60	40	6	5 μΑ	50	20 35 50 15 30 15	0.1 1 0 10 50 100	1 1 1 1	0.2	0.65	0.85	10 50		200	:	20	300		(Note 5)	66
BSR19	TO-236 (49)	160	140	6	100	100	60 60 20 25	1 10) 50	5 5 5	0.15 0.25		1.0	10 50	6	100	300	10		10	(Note 16)	16
BSR20	TO-236 (49)	130	120	5	100	100	30 40 18 40) 10 50	5 5	0.2 0.5		1.0	10 50	6	100	400	10		8	(Note 16)	16
BSS38	TO-236 (49)	120	100	5	200	90	20	4	1	0.7 3.0		1.2	4 50		60		4	1000		(Notes 17, 18)	16
BSS63	TO-236 (49)	110	100	6	100	90	30 30	10 25	1	0.25		0.9	25		50	:	25				74
BSS64	TO-236 (49)	120	80	5	100	90	20	10	1	0.15 0.2		1.2	4 50		60		4	1000		(Note 5)	16

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} (nA) Max	V _{CB}	h	FE fe @ Hz* Max	I _C (mA)	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE} V _{BE} (Min	(SAT) (ON)* _@ V) Max	I _C (mA)	C _{ob} (pF) Max	f _T (MH Min	I 0	t _{off} (ns) Max	NF (dB) Max	Test Conditions	Process No.
BSS79-B	TO-236 (49)	60	40	5	10	50	40	120	150	10	0.4 1.6			150 500	6	200	20				19
BSS79-C	TO-236 (49)	60	40	5	100	50	100	300	150	10	0.4 1.6			150 500	6	200	20				19
BSS80-B	TO-236 (49)	60	40	5	10	50	40	120	150	10	0.4 1.6			150 500	8	200	20				63
BSS80-C	TO-236 (49)	60	40	5	100	50	100	300	150	10	0.4 1.6			150 500	8	200	20				63
BSV52	TO-236 (49)	20	12	5	100	10	25 40	120 25	1 10 50	1 1 1	0.3 0.25 0.4	0.7	0.85 1.2	10 10 50		400	10	18		(Note 18)	21
BSX39	TO-236 (49)		14		100	12	25 40 25	200	1 10 50	1 1 1	0.25 0.4	0.7	0.85	10 5				18		(Note 1)	21

TEST CONDITIONS:

Note 1: $I_C = 200 \mu A$, $V_{CE} = 5V$, f = 1 kHz.

Note 2: $I_C = 100 \text{ mA}$, $V_{CC} = 20V$, $I_B^1 = I_B^2 = 5 \text{ mA}$.

Note 3: $I_C = 200 \mu A$, $V_{CE} = 2V$, f = 1 kHz.

Note 4: $I_C = 100 \text{ mA}$, $V_{CC} = 10 \text{V}$, $I_B{}^1 = I_B{}^2 = 10 \text{ mA}$.

Note 5: $I_C = 10$ mA, $V_{CC} = 3V$, $I_B^1 = I_B^2 = 1$ mA.

Note 6: $I_{\mbox{\scriptsize C}}=$ 100 $\mu\mbox{\scriptsize A},$ $V_{\mbox{\scriptsize CE}}=$ 5V, f= 1 kHz.

Note 7: $I_C = 1$ mA, $V_{CE} = 10V$, f = 200 MHz.

Note 8: $I_C = 1$ mA, $V_{CE} = 5V$, f = 1 kHz.

Note 9: $I_C = 150 \text{ mA}$, $V_{CC} = 6V$, $I_B{}^1 = I_B{}^2 = 15 \text{ mA}$.

Note 10: $I_C=10~\mu\text{A},~V_{CE}=5\text{V},~f=\text{WB}.$

Note 11: $I_C/I_B = 20$.

Note 12: $I_C = 200 \mu A$, $V_{CE} = 5V$, f = 30 Hz to 15 kHz.

Note 13: $I_C/I_B = 40$. Note 14: $I_C/I_B = 1000$.

Note 15: $I_C/I_B = 33$.

Note 16: $I_C=250~\mu\text{A}$, $V_{CE}=5\text{V}$, f=10~Hz to 15.7 kHz.

Note 17: $I_C = 15 \text{ mA}$, $I_B^1 = I_B^2 = 1 \text{ mA}$.

Note 18: $I_C/I_B = 3.3$.

Note 19: $I_{CE} = 200 \mu A$, $V_{CE} = 5V$, f = 200 Hz.

JFET Pro Electron Series

Type No.	Case Style	BV. (V)	GSS GDO @ I _G (μ A)	ID	V _{GD}	(Min	V _P V) @ Max	V _{DS} (V)	I _D (nA)	(' Min	V _{GS} V) @ Max	V _{GS} (V)	Ι _D (μ A)	(n Min	I _{DSS} nA) @ Max	[®] V _{DS} (V)	(mr Min	R _e (Y _i nho) Max	FS) @ f (MHz)	(pF) Typ	C _{iss} @V _{DS} (V)	V _{GS} (V)	C _r (pF) Typ	rss ^{®V} DS (V)	l	NF (dB) @ R ₀ e _n * Max Typ	G = 1k f (Hz)*	Process No.	Pkg. No.
BF244A	TO-92	30	1	5	20	0.5	8	15	10	0.4	2.2	15	200	2	6.5	15	3	6.5	0.001	4	20	-1	1.1	20	-1	1.5	100	50	94
BF244B	TO-92	30	1	5	20	0.5	8	15	10	1.6	3.8	15	200	6	15	15	3	6.5	0.001	4	20	-1	1.1	20	-1	1.5	100	50	94
BF244C	TO-92	30	1	5	20	0.5	8	15	10	3.2	7.5	15	200	12	25	15	3	6.5	0.001	4	20	-1	1.1	20	-1	1.5	100	50	94
BF245A	TO-92	30	1 .	5	20	0.5	8	15	10	0.4	2.2	15	200	2	6.5	15	3	6.5	0.001	4	20	-1	1.1	20	-1			50	97
BF245B	TO-92	30	1	5	20	0.5	8	15	10	1.6	3.8	15	200	6	15	15	3	6.5	0.001	4	20	-1	1.1	20	-1			50	97
BF245C	TO-92	30	1	5	20	0.5	8	15	10	3.2	7.5	15	200	12	25	15	3	6.5	0.001	4	20	-1	1.1	20	-1			50	97
BF246A	TO-92	25	1	5	15	0.6	14.5	15	10	1.5	4.0	15	200	30	80	15	8		0.001	11	(Note 1)5	0	3.5	15	0			51	94
BF246B	TO-92	25	1	5	15	0.6	14.5	15	10	3.0	7.0	15	200	60	140	15	8		0.001	11	(Note 1)5	0	3.5	15	0			51	94
BF246C	TO-92	25	1	5	15	0.6	14.5	15	10	5.5	12	15	200	110	250	15	8		0.001	11	(Note 1)5	0	3.5	15	0			51	94
BF247A	TO-92	25	1	5	15	0.6	14.5	15	10	1.5	4.0	15	200	30	80	15	8		0.001	11	(Note 1)5	0	3.5	15	0			51	97
BF247B	TO-92	25	1	5	15	0.6	14.5	15	10	3.0	7.0	15	200	60	140	15	8		0.001	11	(Note 1)5	0	3.5	15	0			51	97
BF247C	TO-92	25	1	5	15	0.6	14.5	15	10	5.5	12	15	200	110	250	15	8		0.001	11	(Note 1)5	0	3.5	15	0			51	97
BF256A	TO-92	30	1	5	20					0.5	7.5	15	200	3	7	15	4.5		0.001				0.7	20	-1	7.5	800	50	97
BF256B	TO-92	30	1	5	20					0.5	7.5	15	200	6	13	15	4.5		0.001	l			0.7	20	-1	7.5	800	50	97
BF256C	TO-92	30	1	5	20	1				0.5	7.5	15	200	11	18	15	4.5		0.001	1			0.7	20	-1	7.5	800	50	97
BSR56	SOT23	40	1	1	20	4	10	15	1					50		15							5	10	0			51	49
	SOT23		1	1	20	2	6	15	1					20	100	15							5	10	0			51	49
	SOT23	40	1	1	20	0.8	4	15	1	l				8	80	15							5	10	0			51	49

Section 8

Consumer Series

Section 8 Contents

Consumer Series

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} ((nA) Max	V _{CB}	H Min	FE [@]	I _C &	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)} * @ (V) Min Max	I _C (mA)	C _{ob} (pF) Max	(M	T Hz) @ Max	I _C (mA)	t _{off} (ns) Max	NF (dB) Max	Test Condition	Process No.
CS9011	TO-92 (92)	40	30	5	100	30	39	198	1	5	0.3	0.75	10	3.5	150		1		4	(Note 4)	23
CS9012	TO-92 (92)	40	25	5	100	25	64	202	50	1	0.6	1.2	300								68
CS9013	TO-92 (92)	40	25	5	100	25	64	202	50	1	0.6	1.2	300								10
CS9014	TO-92 (92)	50	40	5	50	30	60	600	1	5	0.3	1	10	4.5	100		10		10	(Note 5)	07
CS9015	TO-92 (92)	50	40	5	50	30	60	600	1	5	0.3	1	10	6.0	100		10		10	(Note 5)	62
CS9016	TO-92 (92)	30	20	5	50	20	28	146	1	5	0.3	1	10	1.6	300		1		5	(Note 6)	49
CS9018	TO-92 (92)	30	15	5	50	20	28	146	1	5	0.3	1	10	1.7	400		2				43
ED1402	TO-92 (92)	35	30	4	10	10	110	810	2	5									10	(Note 7)	11
ED1502	TO-92 (92)	25	20	4	10	10	36	210	1	10					350		5				49
ED1602	TO-92 (92)	35	30	4	10	10	70	475	2	5									10	(Note 7)	69
ED1702	TO-92 (92)	30*	25	5	100*	20	40 106	300	0.5A 100	1	0.4		500								37
ED1802	TO-92 (92)	30*	25	5	100*	20	40 106	300	0.5A 100	1	0.4		500								77
SA733	TO-92 (94)	60	50	50	100	50	90	600	1	6	0.3		100	6	150		10		20		69
SA1015	TO-92 (94)	50	50	5	100	40	70 25	400	2 150	6 6	0.3		100	7					10		69

Consumers	Series	(Continued)
-----------	--------	-------------

Type No.	Case Style	V _{CES} * V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CES} * I _{CBO} ((nA) Max	V _{CB}	H Min	FE [@] Max	I _C &	V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} V _{BE(ON)} * [©] (V) Min Max	I _C (mA)	C _{ob} (pF) Max	f _T (MHz) Min M	@ I _C ax (mA)	t _{off} (ns) Max	NF (dB) Max	Test Condition	Process No.
SC945	TO-92 (94)	60	50	5	100	50	90	600	1	6	0.3		100	4	150	10		20		11
SC1815	TO-92 (94)	60	50	5	100	50	70 25	400	2 150	6 6	0.3		100	4				10		11
NA11	TO-92 *	25	20	5	1μΑ	20	30	350	100	3	0.5	1.0	400	4.5	50	100			(Note 2)	10
NA12	TO-92	25	20	5	1μΑ	20	30	350	100	3	0.5	1.0	400	7	50	100			(Note 2)	68
NA31	TO-92 *	35	30	5	1μΑ	30	30	350	300	5	0.5	1.2	1.2A 、	10	20	300			(Note 2)	37
NA32	TO-92 *	35	30	5	1μΑ	30	30	350	300	5	0.5	1.2	1.2A	17	20	300			(Note 2)	77
NB111	TO-92 *	40	35	6	100	35	100	350	15	5	0.4	0.95	20	4	100	15			(Note 3)	11
NB121	TO-92 *	40	35	6	100	35	100	350	15	5	0.4	0.95	20	6	100	15			(Note 3)	69
NR421	TO-92 (96)	35	30	3	100	30	20	240	2	5	0.3	0.95	10	1.3	450	2			(Note 1)	42
NR431	TO-92 *	18	15	3	100	15	20	240	1	5	0.3	0.95	10	1.7	350	1			(Note 1)	43
SS8050	TO-92 (92)	40	25	6	100	35	45 85 40	300	5 100 800	1 1 1	0.5	1.2	800	9	100	50				37
SS8550	TO-92 (92)	40	25	6	100	35	45 85 40	300	5 100 800	1 1 1	0.5	1.2	800	15	100	50			-	77

*Case style means available in EBC or ECB pinouts.

TEST CONDITIONS:

Note 1: $I_C/I_B = 20$

Note 5: $I_C = 100 \mu A$, f = 5 kHz

Note 2: $I_C/I_B = 40$

Note 6: $I_C = 1$ mA, f = 100 MHz

Note 3: $I_C/I_B = 50$

Note 7: $I_C = 200 \mu A$, f = 2 kHz

Note 4: $I_C = 1$ mA, f = 1 MHz

Consumers Series (Continued)

						HF	E Bins						
	A	В	С	D	E	F	G	Н	ı	К	L	М	N
CS9011					39-60*	54-80	72-108	97-146	132-198				
CS9012				64-91*	78-112	96-135	118-166	144-202*					
CS9013				64-91*	78-112	96-135	118-166	144-202*					
CS9014	60-150	100-300	200-600										
CS9015	60-150	100-300	200-600										
CS9016				28-45*	39-60	54-80	72-108	97-146*					
CS9018				28-45*	39-60	54-80	72-108	97-146*					
ED1402	110-165*	150-225	202-318	290-450	410-810*								
ED1502	36-55*	48-75	66-100	84-127	105-210*								
ED1602	70-105*	90-140*	125-190	170-260	223-475*								
ED1702										106-150*	132-188	170-233	213-300*
ED1802										106-150*	132-188	170-233	213-300*

^{*}Orders must contain at least two adjacent bins.

			H _{FE} Bins			
	OR	YE	GR	В	С	D
SA1015	70–140*	120-240	200-400			
SC1815	70-140*	120-240	200-400			
SS8050				85-160	120-200	160-300*
SS8550				85–160	120-200	160-300*

^{*}Orders must contain at least two adjacent bins.

Consumers Series (Continued)

					H _{FE} Bins	3				_
	R	Q	Р	К	G	Н	1	J	X	Y
SA733	90-180	135-270	200-400	300-600						
SC945	90-180	135–270	200-400	300-600						
NA11					68-110*	100-160	140-240	200-350*	30-110	100-350
NA12					68-110*	100-160	140-240	200-350*	30-110	100-350
NA31					68-110	100-160	140-240*		30-110	100-350
NA32					68-110	100-160	140-240*	-	30-110	100-350
NA111						100-160	140-240	200-350		100-350
NA121						100-160	140-240	200-350		100-350

^{*}Orders must contain at least two adjacent bins.

	H _{FE} Bins													
,	E	F	G	н		R	S	Т						
NR421	30-50*	45-75	68-110	100-160*		20-50*	45–110	100-240*						
NR431	30-50	45-75	68-110	100-160*		20-50*	45–110	100-240*						

^{*}Orders must contain at least two adjacent bins.

Section 9 **Power Components**

Section 9 Contents

NPN Bipolar Power Transistors	9-3
PNP Bipolar Power Transistors	9-5
ULTRA-FAST RECTIFIERS	
Single Rectifier per Package	9-7
Dual Rectifiers, Common Cathode	9-9
Power MOSFETs/COOLFETsTM—Introduction	9-11
N-Channel Power MOSFETs	9-12
COOLFETs TM	9-22

NPN Bipolar Power Transistors

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CEX} * I _{CBO} (μΑ) Max	_@ V _{СВ} (V)	h Min	FE @ Max	I _C (A)	& ^V CE (V)	V _{CE(SAT)} (V) & Max	V _{BE} ((\	SAT) /) @ Max	I _C (A)	C _{ob} (pF) Max	f- (Mi Min		Process No.
D42C1	TO-202 (56)		30	5	10*	40	25 10		0.2 1	1	0.5		1.3	1	100	3	0.02	4P
D42C2	TO-202 (56)		30	5	10*	40	40 20	120	0.2 1	1	0.5		1.3	1	100	3	0.02	4P
D42C3	TO-202 (56)		30	5	10*	40	40 20		0.2 2	1	0.5		1.3	1	100	3	0.02	4P
D42C4	TO-202 (56)		45	5	10*	55	25 10		0.2 1	1 1	0.5		1.3	1	100	3	0.02	4P
D42C5	TO-202 (56)		45	5	100	55	40 20	120	0.2 1	1 1	0.5		1.3	1	100	3	0.02	4P
D42C6	TO-202 (56)		45	5	10*	55	40 20		0.2 2	1 1	0.5		1.3	1	100	3	0.02	4P
D42C7	TO-202 (56)		60	5	100	75	25 10		0.2 1	1 1	0.5		1.3	1	100	3	0.02	4P
D42C8	TO-202 (56)		60	5	100	70	40 20	120	0.2 1	1 1	0.5		1.3	1	100	3	0.02	4P
D42C9	TO-202 (56)		60	5	10*	70	40 20		0.2 2	1	0.5		1.3	1	100	3	0.02	4P
D42C10	TO-202 (56)		80	5	100	90	25 10		0.2 1	1 1	0.5		1.3	1	100	3	0.02	4P
D42C12	TO-202 (56)		80	5	10*	90	40		0.2	1	0.5		1.3	1	100	3	0.02	4P
D44C1	TO-220 (37)		30	5	10*	40	25 10		0.2 1	1	0.5		1.3	1	100	3	0.02	4P
D44C2	TO-220 (37)		30	5	10*	40	40 20	120	0.2 1	1	0.5		1.3	1	100	3	0.02	4P
D44C3	TO-220 (37)		30	5	10*	40	40 20		0.2 2	1 1	0.5		1.3	1	100	3	0.02	4P

NPN	Bipolar	Powe	r Tran	sistor	S (Cont	inued)											
Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	I _{CEX} * I _{CBO} (μΑ) Max	_@ (V)	h _i Min	FE @ Max	lc (A)	& ^V CE (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) Min Max	_@ (A)	C _{ob} (pF) Max	f _T (MHz) @ Min Max	I _C (A)	Process No.
D44C4	TO-220 (37)		45	5	10*	55	25 10		0.2 1	1 1	0.5	1.3	1	100	3	0.02	4P
D44C5	TO-220 (37)		45	5	100	55	40 20	120	0.2 1	1	0.5	1.3	1	100	3	0.02	4P
D44C6	TO-220 (37)		45	5	10*	55	40 20		0.2 2	1 1	0.5	1.3	1	100	3	0.02	4P
D44C7	TO-220 (37)		60	5	100	75	25 10		0.2 1	1 1	0.5	1.3	1	100	3	0.02	4P
D44C8	TO-220 (37)		60	5	100	70	40 20	120	0.2 1	1	0.5	1.3	1	100	3	0.02	4P
D44C9	TO-220 (37)		60	5	10*	70	40 20		0.2 2	1	0.5	1.3	1	100	3	0.02	4P
D44C10	TO-220 (37)		80	5	100	90	25 10		0.2 1	1	0.5	1.3	1	100	3	0.02	4P
D44C12	TO-220 (37)		80	5	10*	90	40		0.2	1	0.5	1.3	1	100	3	0.02	4P
D44H1	TO-220 (37)		30	5	10	30	35 20		2 4	1	1.0	1.5	8				4Q -
D44H2	TO-220 (37)		30	5	10	30	60 40		2 4	1 1	1.0	1.5	8				4Q
D44H4	TO-220 (37)		45	5	10	45	35 20		2 4	1	1.0	1.5	8				4Q
D44H5	TO-220 (37)		45	5	10	45	60 40		2 4	1 1	1.0	1.5	8				4Q
D44H7	TO-220 (37)		60	5	10	60	35 20		2 4	1 1	1.0	1.5	8				4Q
D44H8	TO-220 (37)		60	5	10	60	60 40	-	2 4	1	1.0	1.5	8				4Q
D44H10	TO-220 (37)		80	5	10	80	35 20		2 4	1 1	1.0	1.5	8				4Q
D44H11	TO-220 (37)	-	80	5	10	80	60 40		2 4	1	1.0	1.5	8				4Q

PNP Bipolar Power Transistors

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	l _{CES} * (μΑ) Max	@ V _{CB} (V)	h Min	ife Max	I _C (A)	& V _{CE} (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (A)	C _{ob} (pF) Max	f _T (MHz) Min Max	@ (A)	Process No.
D43C1	TO-202 (56)		30	5	1 μΑ	1	10 25		1A 200	1 1	0.5	1.3	1A	30			5P
D43C2	TO-202 (56)		30	5	1 μΑ	30	20 40	120	1A 200	1 1	0.5	1.3	1A	30			5P
D43C3	TO-202 (56)		30	5	1 μΑ	30	20 40		1A 200	1 1	0.5	1.3	1A	30			5P
D43C4	TO-202 (56)		45	5	1 μΑ	45	10 25		1A 200	1 1	0.5	1.3	1A	30			5P
D43C5	TO-202 (56)		45	5	1 μΑ	45	20 40	120	1A 200	1 1	0.5	1.3	1A	30			5P
D43C6	TO-202 (56)		45	5	1 μΑ	45	20 40		2A 200	1 1	0.5	1.3	1A	30			5P
D43C7	TO-202 (56)		60	5	100	75	25 10		0.2 1	1 1	0.5	1.3	1	100	3	0.02	5P
D43C8	TO-202 (56)		60	5	100	70	40 20	120	0.2 1	1 1	0.5	1.3	1	100	3	0.02	5P
D43C9	TO-202 (56)		60	5	10*	70	40 20		0.2 2	1	0.5	1.3	1	100	3	0.02	5P
D43C10	TO-202 (56)		80	5	100	90	25 10		0.2 1	1 1	0.5	1.3	1	100	3	0.02	5P
D43C12	TO-202		80	5	10*	90	40		0.2	1	0.5	1.3	1	100	3	0.02	5P
D45C1	TO-220 (37)		30	5	10*	40	10 25		1 0.2	1	0.5	1.3	1	125	3	0.02	5P
D45C2	TO-220 (37)		30	5	10*	40	20 40	120	1 0.2	1 1	0.5	1.3	1	125	3	0.02	5P
D45C3	TO-220 (37)		30	5	10*	40	20 40		2 0.2	1	0.5	1.3	1	125	3	0.02	5P

Type No.	Case Style	V _{CBO} (V) Min	V _{CEO} (V) Min	V _{EBO} (V) Min	l _{CES} * (μΑ) Max	_@ V _{CB} (V)	h _F Min	E @ Max	I _C (A)	& ^V CE (V)	V _{CE(SAT)} (V) & Max	V _{BE(SAT)} (V) @ Min Max	I _C (A)	C _{ob} (pF) Max	f _T (MHz) Min Max	@ Ic (A)	Process No.
D45C4	TO-220 (37)		45	5	10*	55	10 25		1 0.2	1	0.5	1.3	1	125	3	0.02	5P
D45C5	TO-220 (37)		45	5	10*	55	20 40	120	1 0.2	1 1	0.5	1.3	1	125	3	0.02	5P
D45C6	TO-220 (37)		45	5	10*	55	20 40		2 0.2	1	0.5	1.3	1	125	3	0.02	5P
D45C7	TO-220 (37)		60	5	10*	70	10 25		1 0.2	1 1	0.5	1.3	1	125	3	0.02	5P
D45C8	TO-220 (37)		60	5	10*	70	20 40	120	1 0.2	1 1	0.5	1.3	1	125	3	0.02	5P
D45C9	TO-220 (37)		60	5	10*		20 40		2 0.2	1 1	0.5	1.3	1	125	3	0.02	5P
D45C10	TO-220		80	5	10*	90	10		1	1	0.5	1.3	1	125	3	0.02	5P
D45C12	TO-220 (37)		80	5	10*	90	40		0.2	1	0.5	1.3	1	125	3 -	0.02	5P
D45H1	TO-220 (37)		30	5	10	30	20 35		4 2	1	1.0	1.5	8				5Q
D45H2	TO-220 (37)		30	5	10	30	40 60		4 2	1 1	1.0	1.5	8				5Q
D45H4	TO-220 (37)		45	5	10	45	20 35		4 2	1	1.0	1.5	8				5Q
D45H5	TO-220 (37)		45	5	10	45	40 60		4 2	1	1.0	1.5	8		-		5Q
D45H7	TO-220 (37)		60	5	10	60	20 35		4 2	1	1.0	1.5	8		٠		5Q
D45H8	TO-220 (37)		60	5	10	60	40 60		4 2	1	1.0	1.5	8				5Q
D45H10	TO-220 (37)		80	5	10	80	20 35		4 2	1	1.0	1.5	8				5Q
D45H11	TO-220 (37)		80	5	10	80	40 80		4 2	1	1.0	1.5	8				5Q

Single Rectifier per Package

Device No.	Case Style	V _{RRM} (V) Min	I _{RRM} @ (μ A) Max	V _R (V)	V _{FM} (V) @ Max	I _F (A)	l _F Avg. A	t _{rr} (ns) Max	Test Cond.	Proc. Family
FRP805	TO-220AC (41)	50	10	50	0.95	8	8	35 50	(Note 1) (Note 2)	R4
FRP810	TO-220AC (41)	100	10	100	0.95	8	8	35 50	(Note 1) (Note 2)	R4
FRP815	TO-220AC (41)	150	10	150	0.95	8	8	35 50	(Note 1) (Note 2)	R4
FRP820	TO-220AC (41)	200	10	200	0.95	8	8	35 50	(Note 1) (Note 2)	R4
FRP840	TO-220AC (41)	400	10	400	1.5	8	8	75	(Note 2)	R6
FRP850	TO-220AC (41)	500	10	500	1.5	8	8	75	(Note 2)	R6
FRP860	TO-220AC (41)	600	10	600	1.5	8	8	75	(Note 2)	R6
FRP1005	TO-220AC (41)	50	5	50	1.0	10	10	35 50	(Note 1) (Note 3)	R4
FRP1010	TO-220AC (41)	100	5	100	1.0	10	10	35 50	(Note 1) (Note 3)	R4
FRP1015	TO-220AC (41)	150	5	150	1.0	10	10	35 50	(Note 1) (Note 3)	R4
FRP1020	TO-220AC (41)	200	5	200	1.0	10	10	35 50	(Note 1) (Note 3)	R4

TEST CONDITIONS:

Note 1: $I_F = 1.0A d_f/d_t = 50 A/\mu s$ Note 2: $I_F = 8.0A d_f/d_t = 100 A/\mu s$ Note 3: $I_F = 10A d_f/d_t = 100 A/\mu s$ Note 4: $I_F = 16A d_f/d_t = 100 A/\mu s$

Single Rectifier per Package (Co

Device No.	Case Style	V _{RRM} (V) Min	I _{RRM} @ (μΑ) Max	V _R (V)	V _{FM} (V) @ Max	l _F (A)	l _F Avg. A	t _{rr} (ns) Max	Test Cond.	Proc. Family
FRP1605	TO-220AC (41)	50	25	50	0.95	16	16	35 50	(Note 1) (Note 4)	R5
FRP1610	TO-220AC (41)	100	25	100	0.95	16	16	35 50	(Note 1) (Note 4)	R5
FRP1615	TO-220AC (41)	150	25	150	0.95	16	16	35 50	(Note 1) (Note 4)	R5
FRP1620	TO-220AC (41)	200	25	200	0.95	16	16	35 50	(Note 1) (Note 4)	R5

TEST CONDITIONS:

Note 1: $I_F = 1.0A d_f/d_t = 50 A/\mu s$

Note 2: $I_F = 8.0A d_f/d_t = 100 A/\mu s$

Note 3: $I_F = 10A d_f/d_t = 100 A/\mu s$

Note 4: $I_F = 16A d_f/d_t = 100 A/\mu s$

Dual Rectifiers, Common Cathode

Device No.	Case Style	V _{RRM} (V) Min	I _{RRM} @ (μΑ) Max	V _R (V)	V _F (V) @ Max	I _F (A)	I _F Avg. A	t _{rr} (ns) Max	Test Cond.	Proc. Family
FRP1605CC	TO-220AB (38)	50	10	50	0.95	8	16	35 50	(Note 1) (Note 2)	R4
FRP1610CC	TO-220AB (38)	100	10	100	0.95	8	16	35 50	(Note 1) (Note 2)	R4
FRP1615CC	TO-220AB (38)	150	10	150	0.95	8	16	35 50	(Note 1) (Note 2)	R4
FRP1620CC	TO-220AB (38)	200	10	200	0.95	8	16	35 50	(Note 1) (Note 2)	R4
FRP1640CC	TO-220AB (38)	400	10	400	1.5	8	8	75	(Note 2)	R6
FRP1650CC	TO-220AB (38)	500	10	500	1.5	8	8	75	(Note 2)	R6
FRP1660CC	TO-220AB (38)	600	10	600	1.5	8	8	75	(Note 2)	R6
FRP2005CC	TO-220AB (38)	50	5	50	1.0	10	10	35 50	(Note 1) (Note 3)	R4
FRP2010CC	TO-220AB (38)	100	5	100	1.0	10	10	35 50	(Note 1) (Note 3)	R4
FRP2015CC	TO-220AB (38)	150	5	150	1.0	10	10	35 50	(Note 1) (Note 3)	R4
FRP2020CC	TO-220AB (38)	200	5	200	1.0	10	10	35 50	(Note 1) (Note 3)	R4

TEST CONDITIONS:

Note 1: $I_F=\,1.0A~d_f/d_t=\,50~A/\mu s$

Note 2: I_F = 8.0A d_f/d_t = 100 A/ μ s

Note 3: $I_F = 10A d_f/d_t = 100 A/\mu s$

Note 4: $I_F = 16A d_f/d_t = 100 A/\mu s$

Dual Rectifiers, Common Cathode (Continued)

Device No.	Case Style	V _{RRM} (V) Min	I _{RRM} @ (μΑ) Max	V _R (V)	V _F (V) @ Max	I _F (A)	l _F Avg. A	t _{rr} (ns) Max	Test Cond.	Proc. Family
FRK3205CC	TO-247 (40)	50	25	50	0.95	16	32	35 50	(Note 1) (Note 4)	R5
FRK3210CC	TO-247 (40)	100	25	100	0.95	16	32	35 50	(Note 1) (Note 4)	R5
FRK3215CC	TO-247 (40)	150	25	150	0.95	16	32	35 50	(Note 1) (Note 4)	R5
FRK3220CC	TO-247 (40)	200	25	200	0.95	16	32	35 50	(Note 1) (Note 4)	R5

TEST CONDITIONS:

Note 1: $I_F = 1.0A d_f/d_t = 50 A/\mu s$

Note 2: $I_F = 8.0 \text{A d}_f / d_t = 100 \text{ A} / \mu \text{s}$

Note 3: $I_F = 10A d_f/d_t = 100 A/\mu s$

Note 4: $I_F = 16A d_f/d_t = 100 A/\mu s$

Power MOSFETs/COOLFETsTM

Introduction

COOLFETs are power MOSFETs with a 20% lower ($R_{DS(on)}$ rating than the current industry standard. The 20% reduction in $R_{DS(on)}$ means a 12% increase in the current rating. Since all other electrical and thermal characteristics remain the same, COOLFETs can be used as either drop in replacements for standard IRF parts or in new designs.

As drop in replacements COOLFETs offer less power loss, cooler operation, higher efficiency and better reliability because the major contributor to power dissipation within a MOSFET is I_D^2 $R_{DS(on)}$.

In new designs, the circuit designer can take advantage of the higher current ratings on COOLFETs to design power supplies with more output power.

This data book contains a selection guide to the COOLFET family and specification sheets for each COOLFET device. Please note that COOLFETs are differentiated by the addition of a "CF" suffix to the standard nomenclature, e.g. IRF450CF, IRF840CF. Because all MOSFETs are susceptible to damage from electrostatic discharge, there is a note on ESD handling precautions for COOLFETs. Package outlines and a listing of sales offices and authorized distributors are also included in Section 12.

N-Channel Power MOSFETs

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)	V _G (Min	S(th) V) Max	I _D @ (mA)	R _{DS(on)} (Ω) _@ Max	I _D (A)	Q _g (nC) Max	C _{iss} (pF) Min Max	C _{oss} (pF) Min Max	C _{rss} (pF) Min Max	Proc. No.
IRF510	TO-220 (37)	20	100	4	2.5	2	4	0.25	0.6	2	7.5	200	100	30	A1
IRF511	TO-220	20	60	4	2.5	2	4	0.25	0.6	2	7.5	200	100	30	A1
IRF512	(37) TO-220	20	100	3.5	2	2	4	0.25	0.8	2	7.5	200	100	30	A1
IRF513	(37) TO-220	20	60	3.5	2	2	4	0.25	0.8	2	7.5	200	100	30	A1
MTP4N08	(37) TO-220	50	80	5	3.5	2	4.5	1	0.8	2	7.5	200	100	30	A1
MTP4N10	(37) TO-220	50	100	5	3.5	2	4.5	1	0.8	2	7.5	200	100	30	A1
IRF610	(37) TO-220	20	200	2.5	1.5	2	4	0.25	1.5	1	7.5	200	80	. 25	A2
IRF611	(37) TO-220 (37)	20	150	2.5	1.5	2	4	0.25	1.5	1	7.5	200	80	25	A2
IRF612	TO-220 (37)	20	200	2.0	1.25	2	4	0.25	2.4	1	7.5	200	80	25	A2
IRF613	TO-220 (37)	20	150	2.0	1.25	2	4	0.25	2.4	1	7.5	200	80	25	A2
MTP2N18	TO-220 (37)	50	180	3.25	2.25	2	4.5	1	1.8	1	7.5	200	80	25	A2
MTP2N20	TO-220 (37)	50	200	3.25	2.25	2	4.5	1	1.8	1	7.5	200	80	25	A2
IRF710	TO-220 (37)	20	400	1.5	1	2	4	0.25	3.6	8.0	7.5	200	50	15	АЗ
IRF711	TO-220 (37)	20	350	1.5	1	2	4	0.25	3.6	0.8	7.5	200	50	15	А3

N-Channel Power MOSFETs (Continued)

Туре	Case	P_{D}	V _{DSS}	I _D @	I _{rD} @	VG	S(th)	ID	R _{DS(on)}	ID	Qg	C _{iss}	Coss	C _{rss}	Proc
No.	Style	(W) T _C = 25°C	(V) Min	T _C = 25°C (A)	T _C = 100°C (A)	Min	V) Max	@ (mA)	(Ω) Max	(A)	(nC) Max	(pF) Min Max	(pF) Min Max	(pF) Min Max	No
IRF712	TO-220 (37)	20	400	1.3	0.9	2	4	0.25	5	0.8	7.5	200	50	15	A3
IRF713	TO-220 (37)	20	350	1.3	0.9	2	4	0.25	5	8.0	7.5	200	50	15	AS
MTP2N35	TO-220 (37)	50	350	2.25	1.4	2	4.5	1	5	1.0	7.5	200	50	15	A
MTP2N40	TO-220 (37)	50	400	2.25	1.4	2	4.5	1	5	1.0	7.5	200	50	15	A
FMP18N05	TO-220 (37)	75	50	18	13	2	4	0.25	0.1	10	20	850	400	150	B.
FMP18N06	TO-220 (37)	75	60	18	13	2	4	0.25	0.1	10	20	850	400	150	B.
FMP20N05	TO-220 (37)	75	50	20	14	2	4	0.25	0.085	10	20	850	400	150	B-
FMP20N06	TO-220 (37)	75	60	20	14	2	4	0.25	0.085	20	20	850	400	150	B.
IRF520	TO-220 (37)	40	100	8	5	2	4	0.25	0.3	4	15	600	400	100	B
IRF521	TO-220 (37)	40	60	8	5	2	4	0.25	0.3	4	15	600	400	100	B
IRF522	TO-220 (37)	40	100	7	4	2	4	0.25	0.4	4	15	600	400	100	Ba
IRF523	TO-220 (37)	40	60	7	4	2	4	0.25	0.4	4	15	600	400	100	В
MTP10N08	TO-220 (37)	75	80	10	6.4	2	4.5	1	0.33	5	15	600	400	100	В
MTP10N10	TO-220 (37)	75	100	10	6.4	2	4.5	1	0.33	5	15	600	400	100	В

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)	V _G (\ Min	S(th) V) Max	I _D @ (mA)	R _{DS(on)} (Ω) _@ Max	I _D (A)	Q _g (nC) Max	C (p Min	iss F) Max	oss PF) Max	C _r (p Min		Proc. No.
IRF620	TO-220 (37)	40	200	5	3	2	4	0.25	0.8	2.5	15		600	300		80	В3
IRF621	TO-220 (37)	40	150	5	3	2	4	0.25	0.8	2.5	15		600	300		80	В3
IRF622	TO-220 (37)	40	200	4	2.5	2	4	0.25	1.2	2.5	15		600	300		80	В3
IRF623	TO-220 (37)	40	150	4	2.5	2	4	0.25	1.2	2.5	15		600	300		80	B3
MTP7N18	TO-220 (37)	75	180	7	4.5	2	4.5	1	0.7	3.5	15		600	300		80	B3
MTP7N20	TO-220 (37)	75	200	7	4.5	2	4.5	1	0.7	3.5	15		600	300		80	B3
IRF720	TO-220 (37)	40	400	3	2	2	4	0.25	1.8	1.5	15		500	100		40	В4
IRF721	TO-220 (37)	40	350	3	2	2	4	0.25	1.8	1.5	15		500	100		40	В4
IRF722	TO-220 (37)	40	400	2.5	1.5	2	4	0.25	2.5	1.5	15		500	100		40	В4
IRF723	TO-220 (37)	40	350	2.5	1.5	2	4	0.25	2.5	1.5	15		500	100		40	В4
MTP3N35	TO-220 (37)	75	350	3	2	2	4.5	1	3.3	1.5	15		500	100		40	В4
MTP3N40	TO-220 (37)	75	400	3	2	2	4.5	1	3.3	1.5	15		500	100		40	В4
IRF820	TO-220 (37)	40	500	2.5	1.5	2	4	0.25	3	1	15		400	100		40	B5
IRF821	TO-220 (37)	40	450	2.5	1.5	2	4	0.25	3	1	15		400	100		40	B 5
IRF822	TO-220 (37)	40	500	2.0	1.0	2	4	0.25	4	1	15		400	100		40	B5
IRF823	TO-220 (37)	40	450	2.0	1.0	2	4	0.25	4	1	15		400	100		40	B5
MTP2N45	TO-220 (37)	75	450	3.0	2.0	2	4.5	1	4	1	15		400	100		40	B5
MTP2N50	TO-220 (37)	75	500	3.0	2.0	2	4.5	1	4	1	15		400	100		40	B5

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)		S(th) V) Max	I _D @ (mA)	R _{DS(on)} (Ω) _@ Max	I _D (A)	Q _g (nC) Max		ss F) Max	C _c (p Min	ss F) Max		rss F) Max	Proc. No.
2N6755	TO-204AA	75	60	12	8	2	4	1	0.25	8	30	350	800	150	500	50	150	C1
2N6756	(42) TO-204AA (42)	75	100	14	9	2	4	1	0.18	9	(Note 1) 30 (Note 1)	350	800	150	500	50	150	C1
IRF130	TO-204AA (42)	75	100	14	9	2	4	0.25	0.18	8	30		800		500		150	C1
IRF131	TO-204AA (42)	75	60	14	9	2	4	0.25	0.18	8	30		800		500		150	C1
IRF132	TO-204AA (42)	75	100	12	8	2	4	0.25	0.25	8	30		800		500		150	C1
IRF133	TO-204AA (42)	75	60	12	8	2	4	0.25	0.25	8	30		800		500		150	C1
IRF530	TO-220 (37)	75	100	14	9	2	4	0.25	0.18	8	30		800		500		150	C1
IRF531	TO-220 (37)	75	60	14	9	2	4	0.25	0.18	8	30		800		500		150	C1
IRF532	TO-220 (37)	75	100	12	8	2	4	0.25	0.25	8	30		800		500		150	C1
IRF533	TO-220 (37)	75	60	12	8	2	4	0.25	0.25	8	30		800		500		150	C1
MTP20N08	TO-220 (37)	100	80	20	11.5	2	4.5	1	0.15	10	30		800		500		150	C1
MTP20N10	TO-220 (37)	100	100	20	11.5	2	4.5	1	0.15	10	30		800		500		150	C1
2N6757	TO-204AA (42)	75	150	8	5	2	4	1	0.6	5	30 (Note 1)	350	800	100	450	40	150	C2
2N6758	TO-204AA (42)	75	200	9	6	2	4	1	0.4	6	30 (Note 1)	350	800	100	450	40	150	C2
IRF230	TO-204AA	75	200	9	6	2	4	0.25	0.4	5	30		800		450		150	C2
IRF231	(42) TO-204AA (42)	75	150	9	6	2	4	0.25	0.4	5	30		800		450		150	C2

N-Channel Power MOSFETs (Continued)

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)		S(th) V) Max	I _D @ (mA)	R _{DS(on)} (Ω) Max	I _D (A)	Q _g (nC) Max		iss oF) Max	C _c (p Min	ss F) Max		rss F) Max	Proc. No.
IRF232	TO-204AA (42)	75	200	8	5	2	4	0.25	0.5	5	30		800		450		150	C2
IRF233	TO-204AA (42)	75	150	8	5	2	4	0.25	0.5	5	30		800		450		150	C2
IRF630	TO-220 (37)	75	200	9	6	2	4	0.25	0.4	5	30		800		450		150	C2
IRF631	TO-220 (37)	75	150	9	6	2	4	0.25	0.4	5	30		800		450		150	C2
IRF632	TO-220 (37)	75	200	8	5	2	4	0.25	0.5	5	30		800		450		150	C2
IRF633	TO-220 (37)	75	150	8	5	2	4	0.25	0.5	5	30		800		450		150	C2
MTP12N18	TO-220 (37)	100	180	12	8.5	2	4.5	1	0.35	6	30		800		450		150	C2
MTP12N20	TO-220 (37)	100	200	12	8.5	2	4.5	1	0.35	6	30		800		450		150	C2
2N6759	TO-204AA (42)	75	350	4.5	3	2	4	1	1.5	3.5	30 (Note 1)	350	800	50	300	20	80	C3
2N6760	TO-204AA (42)	75	400	5.5	3.5	2	4	1	1	3	30 (Note 1)	350	800	50	300	20	80	C3
IRF330	TO-204AA (42)	75	400	5.5	3.8	2	4	0.25	1	3	30	i	900		300		80	C3
IRF331	TO-204AA (42)	75	350	5.5	3.8	2	4	0.25	1	3	30		900		300		80	C3
IRF332	TO-204AA (42)	75	400	4.5	3.0	2	4	0.25	1.5	3	30		900		300		80	C3
IRF333	TO-204AA (42)	75	350	4.5	3.0	2	4	0.25	1.5	3	30		900		300		80	C3
IRF730	TO-220 (37)	75	400	5.5	3.8	2	4	0.25	1	3	30		900		300		80	C3
IRF731	TO-220 (37)	75	350	5.5	3.8	2	4	0.25	1	3	30		900		300		80	C3

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)	V _G ; (\	S(th) V) Max	I _D @ (mA)	R _{DS(on)} (Ω) _@ Max	I _D (A)	Q _g (nC) Max	1	iss oF) Max	C _c (p Min	oss F) Max	C _i (p Min	rss F) Max	Proc. No.
IRF732	TO-220	75	400	4.5	3.0	2	4	0.25	1.5	3	30		900		300		80	СЗ
IRF733	(37) TO-220	75	350	4.5	3.0	2	4	0.25	1.5	3	30		900		300		80	СЗ
MTP5N35	(37) TO-220 (37)	75	350	5	3.8	2	4.5	1.0	1	2.5	30		1200		300		80	СЗ
MTP5N40	TO-220 (37)	75	400	5	3.8	2	4.5	1.0	1	2.5	30		1200		300		80	СЗ
2N6761	TO-204AA (42)	75	450	4	2.5	2	4	1	2	2.5	30 (Note 1)	350	800	25	200	15	60	C4
2N6762	TO-204AA (42)	75	500	4.5	3	2	4	1	1.5	3	30 (Note 1)	350	800	25	200	15	60	C4
IRF430	TO-204AA (42)	75	500	4.5	3.0	2	4	0.25	1.5	2.5	30		800		200		60	C4
IRF431	TO-204AA (42)	75	450	4.5	3.0	2	4	0.25	1.5	2.5	30		800		200		60	C4
IRF432	TO-204AA (42)	75	500	4	2.7	2	4	0.25	2.0	2.5	30		800		200		60	C4
IRF433	TO-204AA (42)	75	450	4	2.7	2	4	0.25	2.0	2.5	30		800		200		60	C4
IRF830	TO-220 (37)	75	500	4.5	3.0	2	4	0.25	1.5	2.5	30		800		200		60	C4
IRF831	TO-220 (37)	75	450	4.5	3.0	2	4	0.25	1.5	2.5	30		800		200		60	C4
IRF832	TO-220 (37)	75	500	4	2.7	2	4	0.25	2.0	2.5	30		800		200		60	C4
IRF833	TO-220 (37)	75	450	4	2.7	2	4	0.25	2.0	2.5	30		800		200		60	C4

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)	V _{GS} (\ Min		I _D @ (mA)	R _{DS(on)} (Ω) _@ Max	I _D (A)	Q _g (nC) Max	iss oF) Max	C _o (p Min		C _{rss} (pF) Min Max	Proc. No.
MTP4N45	TO-220 (35)	75	450	4	3.0	2	4.5	1.0	1.5	2	30	1200		300	80	C4
MTP4N50	TO-220 (35)	75	500	4	3.0	2	4.5	1.0	1.5	2	30	1200		300	80	C4
IRF140	TO-204AA (42)	125	100	27	17	2	4	0.25	0.085	15	60	1600		800	300	E1
IRFP140	TO-3P (40)	150	100	29	19	2	4	0.25	0.085	15	60	1600		800	300	E1
IRF141	TO-204AA (42)	125	60	27	17	2	4	0.25	0.085	15	60	1600		800	300	E1
IRFP141	TO-3P (40)	150	60	29	19	2	4	0.25	0.085	15	60	1600		800	300	E1
IRF142	TO-204AA (42)	125	100	24	15	2	4	0.25	0.11	15	60	1600		800	300	E1
IRF143	TO-204AA (42)	125	60	24	15	2	4	0.25	0.11	15	60	1600		800	300	E1
IRF540	TO-220 (37)	125	100	27	17	2	4	0.25	0.085	15	60	1600		800	300	E1
IRF541	TO-220 (37)	125	60	27	17	2	4	0.25	0.085	15	60	1600		800	300	E1
IRF542	TO-220 (37)	125	100	24	15	2	4	0.25	0.11	15	60	1600		800	300	E1
IRF543	TO-220 (37)	125	60	24	15	2	4	0.25	0.11	15	60	1600		800	300	E1
IRF240	TO-204AA (42)	125	200	18	11	2	4	0.25	0.18	10	60	1600		750	300	E2
IRFP240	TO-3P (40)	150	200	20	13	2	4	0.25	0.18	10	60	1600		750	300	E2
IRF241	TO-204AA (42)	125	150	18	11	2	4	0.25	0.18	10	60	1600		750	300	E2
IRFP241	TO-3P (40)	150	150	20	13	2	4	0.25	0.18	10	60	1600		750	300	E2
IRF242	TO-204AA (42)	125	200	16	10	2	4	0.25	0.22	10	60	1600		750	300	E2
IRF243	TO-204AA (42)	125	150	16	10	2	4	0.25	0.22	10	60	1600		750	300	E2

N-Channel Power MOSFETs (Continued)

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	i _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)	V _G (' Min	S(th) V) Max	I _D @ (mA)	R _{DS(on)} (Ω) Max	I _D (A)	Q _g (nC) Max	C _{iss} (pF) Min Max	C _c (p M in	ss F) Max	C _r (pl Min	ss F) Max	Proc. No.
IRF640	TO-220 (37)	125	200	18	11	2	4	0.25	0.18	10	60	1600		750		300	E2
IRF641	TO-220 (37)	125	150	18	11	2	4	0.25	0.18	10	60	1600		750		300	E2
IRF642	TO-220 (37)	125	200	16	10	2	4	0.25	0.22	10	60	1600		750		300	E2
IRF643	TO-220 (37)	125	150	16	10	2	4	0.25	0.22	10	60	1600		750		300	E2
IRF340	TO-204AA (42)	125	400	10	6.7	2	4	0.25	0.55	5	60	1600		450		150	E3
IRFP340	TO-3P (40)	150	400	12	7.5	2	4	0.25	0.55	5	60	1600		450		150	E3
IRF341	TO-204AA (42)	125	350	10	6.7	2	4	0.25	0.55	5	60	1600		450		150	E3
IRFP341	TO-3P (40)	150	350	12	7.5	2	4	0.25	0.55	5	60	1600		450		150	E3
IRF342	TO-204AA (42)	125	400	8	5.5	2	4	0.25	0.8	5	60	1600		450		150	E3
IRF343	TO-204AA (42)	125	350	8	5.5	2	4	0.25	0.8	5	60	1600		450		150	E3
IRF740	TO-220 (37)	125	400	10	6.7	2	4	0.25	0.55	5	60	1600		450		150	E3
IRF741	TO-220 (37)	125	350	10	6.7	2	4	0.25	0.55	5	60	1600		450		150	E3
IRF742	TO-220 (37)	125	400	8	5.5	2	4	0.25	0.8	5	60	1600		450		150	E3
IRF743	TO-220 (37)	125	350	8	5.5	2	4	0.25	0.8	5	60	1600		450		150	E3
IRF440	TO-204AA (42)	125	500	8	5.3	2	4	0.25	0.85	4	60	1600		350		150	E4
IRFP440	TO-3P (40)	150	500	9.5	6.0	2	4	0.25	0.85	4	60	1600		350		150	E4
IRF441	TO-204AA (42)	125	450	8	5.3	2	4	0.25	0.85	4	60	1600		350		150	E4

'n
٣
N

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)	V _{GS} (\ Min	S(th) /) Max	I _D @ (mA)	${ m R_{DS(on)}} \ (\Omega) \ _{@}$	I _D (A)	Q _g (nC) Max		ss F) Max		oss oF) Max		rss oF) Max	Proc. No.
IRFP441	TO-3P (40)	150	450	9.5	6.0	2	4	0.25	0.85	4	60		1600		350		150	E4
IRF442	TO-204AA (42)	125	500	7	4.8	2	4	0.25	1.1	4	60		1600		350		150	E4
IRF443	TO-204AA (42)	125	450	7	4.8	2	4	0.25	1.1	4	60		1600		350		150	E4
IRF840	TO-220 (37)	125	500	8	5.3	2	4	0.25	0.85	4	60		1600		350		150	E4
IRF841	TO-220 (37)	125	450	8	5.3	2	4	0.25	0.85	4	60		1600		350		150	E4
IRF842	TO-220 (37)	125	500	7	4.8	2	4	0.25	1.1	4	60		1600		350		150	E4
IRF843	TO-220 (37)	125	450	7	4.8	2	4	0.25	1.1	4	60		1600		350		150	E4
2N6763	TO-204AE (43)	150	60	31	20	2	4	1	0.08	20	120 (Note 1)	1000	3000	500	1500	150	500	F1
2N6764	TO-204AE (43)	150	100	38	24	2	4	1	0.055	24	120 (Note 1)	1000	3000	500	1500	150	500	F1
IRF150	TO-204AE (43)	150	100	40	23	2	4	0.25	0.055	20	120		3000		1500		500	F1
IRFP150	TO-3P (40)	175	100	40	25	2	4	0.25	0.055	20	120		3000		1500		500	F1
IRF151	TO-204AE (43)	150	60	40	23	2	4	0.25	0.055	20	120		3000		1500		500	F1
IRFP151	TO-3P (40)	175	60	40	25	2	4	0.25	0.055	20	120		3000		1500		500	F1
IRF152	TO-204AE (43)	150	100	33	19	2	4	0.25	0.08	20	120		3000		1500		500	F1
IRF153	TO-204AE (43)	150	60	33	19	2	4	0.25	0.08	20	120		3000		1500		500	F1
2N6765	TO-204AE (43)	150	150	25	16	2	4	1	0.12	16	120 (Note 1)	1000	3000	450	1200	150	500	F2
2N6766	TO-204AE (43)	150	200	30	19	2	4	1	0.085	19	120 (Note 1)	1000	3000	450	1200	150	500	F2
IRF250	TO-204AE (43)	150	200	30	18.5	2	4	0.25	0.085	16	120		3000		1200		500	F2
IRFP250	TO-3P (40)	175	200	32	20	2	4	0.25	0.085	16	120		3000		1200		500	F2
IRF251	TO-204AE (43)	150	150	30	18.5	2	4	0.25	0.085	16	120		3000		1200		500	F2

	Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)	V _G (S(th) V) Max	I _D @ (mA)	R _{DS(on)} (Ω) Max	I _D (A)	Q _g (nC) Max	C _i (p Min	iss F) Max	C, (P Min	oss oF) Max		rss F) Max	Proc. No.
	IRFP251	TO-3P (40)	175	150	32	20	2	4	0.25	0.085	16	120		3000		1200		500	F2
	IRF252	TO-204AE (43)	150	200	25	15	2	4	0.25	0.12	16	120		3000		1200		500	F2
	IRF253	TO-204AE (43)	150	150	25	15	2	4	0.25	0.12	16	120		3000		1200		500	F2
	2N6767	TO-204AA (42)	150	350	12	7.75	2	4	1	0.4	7.75	120 (Note 1)	1000	3000	200	600	50	200	F3
	2N6768	TO-204AA (42)	150	400	14	9	2	4	1	0.3	9	120 (Note 1)	1000	3000	200	600	50	200	F3
ļ	IRF350	TO-204AA (42)	150	400	15	10	2	4	0.25	0.3	8	120		3000		600		200	F3
	IRFP350	TO-3P (40)	175	400	17	11	2	4	0.25	0.3	8	120		3000		600		200	F3
	IRF351	TO-204AA (42)	150	350	15	10	2	4	0.25	0.3	8	120		3000		600		200	F3
	IRFP351	TO-3P (40)	175	350	17	11	2	4	0.25	0.3	8	120		3000		600		200	F3
5	IRF352	TO-204AA (42)	150	400	13	8.5	2	4	0.25	0.4	8	120		3000		600		200	F3
	IRF353	TO-204AA (42)	150	350	13	8.5	2	4	0.25	0.4	8	120		3000		600		200	F3
	2N6769	TO-204AA (42)	150	450	11	7	2	4	1	0.5	7	120 (Note 1)	1000	3000	200	600	50	200	F4
	2N6770	TO-204AA (42)	150	500	12	7.75	2	4	1	0.4	7.75	120 (Note 1)	1000	3000	200	600	50	200	F4
	IRF450	TO-204AA (42)	150	500	13	8.5	2	4	0.25	0.4	7	120		3000		600		200	F4
	IRFP450	TO-3P (40)	175	500	15	9.5	2	4	0.25	0.4	7	120		3000		600		200	F4
	IRF451	TO-204AA (42)	150	450	13	8.5	2	4	0.25	0.4	7	120		3000		600		200	F4
	IRFP451	TO-3P (40)	175	450	15	9.5	2	4	0.25	0.4	7	120		3000		600		200	F4
	IRF452	TO-204AA (42)	150	500	12	7.5	2	4	0.25	0.5	7	120		3000		600		200	F4
	IRF453	TO-204AA (42)	150	450	12	7.5	2	4	0.25	0.5	7	120		3000		600		200	F4

COOLFETs™

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)	V _G ; (\ Min	S(th) /) Max	I _D @ (mA)	R _{DS(on)} (Ω) Max	I _D (A)	Q _g (nC) Max	C _{iss} (pF) Min Max	C _{oss} (pF) Min Max	C _{rss} (pF) Min Max	Proc. No.
IRF520CF	TO-220 (37)	40	100	9.1	5.8	2	4	0.25	0.24	4	15	600	400	100	B2
IRF620CF	TO-220 (37)	40	200	5.6	3.5	2	4	0.25	0.64	2.5	15	600	300	80	B3
IRF720CF	TO-220 (37)	40	400	3.35	2.15	2	4	0.25	1.44	1.5	15	500	100	40	B4
IRF820CF	TO-220 (37)	40	500	2.8	1.75	2	4	0.25	2.4	1	15	400	100	40	B5
IRF530CF	TO-220 (37)	75	100	16	10	2	4	0.25	0.144	8	30	800	500	150	C1
IRF630CF	TO-220 (37)	75	200	10	8.5	2	4	0.25	0.32	5	30	800	450	150	C2
IRF730CF	TO-220 (37)	75	400	6.2	3.9	2	4	0.25	0.8	3	30	900	300	80	СЗ
IRF830CF	TO-200 (37)	75	500	5	3.2	2	4	0.25	1.2	2.5	30	800	200	60	C4
IRFP140CF	TO-3P (40)	150	100	33	21	2	4	0.25	0.068	15	60	1600	800	300	E1
IRFP141CF	TO-3P (40)	150	60	33	21	2	4	0.25	0.068	15	60	1600	800	300	E1
IRF540CF	TO-220 (37)	125	100	30	19	2	4	0.25	0.068	15	60	1600	800	300	E1

COOLFETs™

Type No.	Case Style	P _D (W) T _C = 25°C	V _{DSS} (V) Min	I _D @ T _C = 25°C (A)	I _{rD} @ T _C = 100°C (A)		S(th) V) Max	I _D @ (mA)	R _{DS(on)} (Ω) _@ Max	I _D (A)	Q _g (nC) Max	C _{iss} (pF) Min Max	C _{oss} (pF) Min Max	C _{rss} (pF) Min Max	Proc. No.
IRFP240CF	TO-3P (40)	150	200	23	14	2	4	0.25	0.144	10	60	1600	750	300	E1
IRFP241CF	TO-3P (40)	150	150	23	14	2	4	0.25	0.144	10	60	1600	750	300	E1
IRF640CF	TO-220 (40)	125	200	20	13	2	4	0.25	0.144	10	60	1600	750	300	E2
IRFP340CF	TO-3P (40)	150	400	13	8	2	4	0.25	0.44	5	60	1600	450	150	E3
IRFP341CF	TO-3P (40)	150	350	13	8	2	4	0.25	0.44	5	60	1600	450	150	E3
IRF740CF	TO-220 (37)	125	400	11	7	2	4	0.25	0.44	5	60	1600	450	150	E3
IRF840CF	TO-200 (37)	125	500	8.9	5.6	2	4	0.25	0.68	4	60	1600	350	150	E4
IRFP440CF	TO-3P (40)	150	500	10.5	6.5	2	4	0.25	0.68	4	60	1600	350	150	E4
IRFP441CF	TO-3P (40)	150	450	10.5	6.5	2	4	0.25	0.68	4	60	1600	350	150	E4
IRF150CF	TO-204AE (40)	150	100	44	28	2	4	0.25	0.044	20	120	3000	1500	500	F1
IRFP150CF	TO-3P (40)	175	100	44.5	28	2	4	0.25	0.044	20	120	3000	1500	500	F1
IRFP151CF	TO-3P (40)	175	60	44.5	28	2	4	0.25	0.044	20	120	3000	1500	500	F1
IRF250CF	TO-204AE (40)	150	200	33	21	2	. 4	0.25	0.068	16	120	3000	1200	500	F2
IRFP250CF	TO-3P (40)	175	200	36	23	2	4	0.25	0.068	16	120	3000	1200	500	F2
IRFP251CF	TO-3P (40)	175	150	36	23	2	4	0.25	0.068	16	120	3000	1200	500	F2

COOLFETs™

Type No.	Case Style	P _D (W)	V _{DSS} (V)	I _D @ T _C = 25°C	I _{rD} @ T _C = 100°C	(S(th) V)	I _D @ (mA)	R _{DS(on)} (Ω) @	I _D (A)	Q _g (nC)	C _{is})	C _o	F)	C _r	F)	Proc.
	-	T _C = 25°C	Min	(A)	(A)	Min	Max		Max		Max	Min	Max	Min	Max	Min	Max	
IRF350CF	TO-204AE (42)	150	400	16.75	10.6	2	4	0.25	0.24	8	120	;	3000		600		200	F3
IRFP350CF	TO-3P (43)	175	400	19	12	2	4	0.25	0.24	8	120	;	3000		600		200	F3
IRFP351CF	TO-3P (43)	175	350	19	12	2	4	0.25	0.24	8	120	;	3000		600		200	F3
IRF450CF	TO-204AE (42)	150	500	14.5	9.2	2	4	0.25	0.32	7	120	;	3000		600		200	F4
IRFP450CF	TO-3P (43)	175	500	16.5	10.5	2	4	0.25	0.32	7	120	;	3000		600		200	F4
IRFP451CF	TO-3P (43)	175	450	16.5	10.5	2	4	0.25	0.32	7	120	;	3000		600		200	F4

Section 10 **Transistor Datasheets**

Section 10 Contents

PN100/MMBT100 NPN General Purpose Amplifier	10-4
PN100A/MMBT100A NPN General Purpose Amplifier	10-5
PN101/MMBT101 NPN General Purpose Amplifier	10-6
PN200/MMBT200 PNP General Purpose Amplifier	10-7
PN200A/MMBT200A PNP General Purpose Amplifier	10-8
PN201/MMBT201 PNP General Purpose Amplifier	10-9
2N918/PN918/MMBT918 NPN RF Transistor	10-10
2N2222/PN2222/MMBT2222/MPQ2222/2N2222A/PN2222A/MMBT2222A NPN General	
Purpose Amplifier	10-12
2N2369/PN2369/MMBT2369/MPQ2369 NPN Switching Transistor	10-14
2N2907/PN2907/MMBT2907/MPQ2907/2N2907A/PN2907A/MMBT2907A/MPQ2907A	
PNP General Purpose Amplifier	10-16
2N3019/TN3019 NPN General Purpose Amplifier	10-18
2N3467/TN3467/MPQ3467 PNP Switching Transistor	10-20
PN3646/MMBT3646 NPN Switching Transistor	10-22
2N3725/TN3725/MPQ3725 NPN Switching Transistor	10-24
2N3904/MMBT3904/MPQ3904 NPN General Purpose Amplifier	10-26
2N3906/MMBT3906/MPQ3906 PNP General Purpose Amplifier	10-28
2N4033/TN4033 PNP General Purpose Amplifier	10-30
PN4258/MMBT4258 PNP Switching Transistor	10-32
2N4391/2N4392/2N4393/PN4391/PN4392/PN4393/MMBF4391/MMBF4392/MMBF4393	10-02
General Purpose N-Channel JFET Transistor	10-34
2N4401/MMBT4401 NPN General Purpose Amplifier	10-34
2N4403/MMBT4403 PNP General Purpose Amplifier	10-38
2N5086/2N5087/MMBT5086/MMBT5087 PNP General Purpose Amplifier	10-30
2N5088/2N5089/MMBT5088/MMBT5089 NPN General Purpose Amplifier	10-40
· · · · · · · · · · · · · · · · · · ·	10-42
2N5179/PN5179/MMBT5179 NPN RF Transistor	10-44
2N5401/MMBT5401 PNP General Purpose Amplifier	
2N5457/2N5458/2N5459/MMBF5457/MMBF5458/MMBF5459 N-Channel JFET Transistor	10-48
2N5484/2N5485/2N5486/MMBF5484/MMBF5485/MMBF5486 N-Channel RF JFET	10.50
Transistor	10-50
2N5551/MMBT5551 NPN General Purpose Amplifier	10-52
2N5771/MMBT5771 PNP Switching Transistor	10-54
2N6427/MMBT6427/MPQ6427 NPN Darlington Transistor	10-56
2N6715/PN6715/MPS6715 NPN General Purpose Amplifier	10-58
2N6717/MPS6717 NPN General Purpose Amplifier	10-59
2N6724/2N6725/MPS6724/MPS6725 NPN Darlington Transistor	10-60
2N6727/PN6727/MPS6727 PNP General Purpose Amplifier	10-61
2N6729/MPS6729 PNP General Purpose Amplifier	10-62
2N7052/2N7053 NPN Darlington Transistor	10-63
MPSA06/MPSW06/MMBTA06 NPN General Purpose Amplifier	10-64
MPSA13/MPSW13/MMBTA13 NPN Darlington Transistor	10-65
MPSA42/MPSW42/MMBTA42 NPN High Voltage Amplifier	10-66
MPSA56/MPSW56/MMBTA56 PNP General Purpose Amplifier	10-67
MPSA64/MPSW64/MMBTA64 PNP Darlington Transistor	10-68
MPSA92/MPSW92/MMBTA92 PNP High Voltage Amplifier	10-69
MPSH10/MPSH11/MMBTH10/MMBTH11 NPN RF Transistor	10-70
MPSH20/MMBTH20 NPN RF Transistor	10-72

Section 10 Contents (Continued)	
MPSH81/MMBTH81 PNP RF Transistor	10-73
J108/J109/J110 N-Channel JFET Switch	10-74
J309/U309/J310/U310/MMBFJ309/MMBFJ310 N-Channel JFET Transistor for RF	
Amplifiers	10-75

PN100

MMBT100

TL/G/10100-5

TL/G/10100-1

NPN General Purpose Amplifier

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Min	Тур	Max	Units
CHARACTE	RISTICS				
BV _{CBO}	I _C = 10 μA	75			٧
BV _{CEO}	I _C = 1 mA, (Note 1)	45			٧
BV _{EBO}	I _E = 10 μA	6			٧
Ісво	$V_{CB} = 60V$			50	nA
ICES	V _{CE} = 40V			50	nA
I _{EBO}	V _{EB} = 4V			50	nA
CHARACTER	HISTICS				
h _{FE}	$I_{C} = 100 \mu A, V_{CE} = 1V$	80			
h _{FE}	$I_C = 10 \text{ mA}, V_{CE} = 1 \text{V}$	100		450	
h _{FE}	I _C = 100 mA, V _{CE} = 1V, (Note 1)	100			
h _{FE}	$I_C = 150 \text{ mA}, V_{CE} = 5V, (Note 1)$	100		350	
V _{CE(sat)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.2	V
V _{BE(sat)}	I _C = 10 mA, I _B = 1 mA			0.85	V
V _{CE(sat)}	I _C = 200 mA, I _B = 20 mA, (Note 1)			0.4	V
V _{BE(sat)}	I _C = 200 mA, I _B = 20 mA, (Note 1)			1.0	V
ALL-SIGNAL	CHARACTERISTICS				
C _{ob}	V _{CB} = 5V, f = 1 MHz			4.5	pF
f _T	V _{CE} = 20V, I _C = 20 mA	250			MHz
t _s	$I_C = 10 \text{ mA}, I_{B1} = I_{B2} = 1 \text{ mA}$		275		ns
t _{OFF}	$I_C = 150 \text{ mA}, I_{B1} = I_{B2} = 15 \text{ mA}$		225		ns
NF	$I_{C} = 100 \mu A$, $V_{CE} = 5V$, $R_{G} = 2 k\Omega$, $f = 1 kHz$			5.0	dB

Note 2: For characteristics curves, see Process 10.

PN100A

MMBT100A

TL/G/10100-5

TL/G/10100-1

NPN General Purpose Amplifier

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Min	Тур	Max	Units
CHARACTE	ERISTICS				
BV _{CBO}	$I_C = 10 \mu\text{A}$	75			٧
BV _{CEO}	I _C = 1 mA, (Note 1)	45			>
BV _{EBO}	$I_{E} = 10 \muA$	6			V
I _{CBO}	V _{CB} = 60V			50	nA
I _{CES}	V _{CE} = 40V			50	nA
I _{EBO}	V _{EB} = 4V			50	nA
CHARACTE	RISTICS				
h _{FE}	I _C = 100 μA, V _{CE} = 1V	240			
h _{FE}	$I_C = 10 \text{ mA}, V_{CE} = 1 \text{V}$	300		600	
h _{FE}	I _C = 100 mA, V _{CE} = 1V, (Note 1)	100			
h _{FE}	$I_C = 150 \text{ mA}, V_{CE} = 5V, \text{(Note 1)}$	100			
V _{CE(sat)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.2	٧
V _{BE(sat)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.85	٧
V _{CE(sat)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}, \text{(Note 1)}$			0.4	V
V _{BE(sat)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}, \text{(Note 1)}$			1.0	٧
ALL-SIGNAL	CHARACTERISTICS				
C _{ob}	V _{CB} = 5V, f = 1 MHz			4.5	pF
f _T	$V_{CE} = 20V$, $I_C = 20$ mA	250			MHz
NF	$I_{C} = 100 \mu\text{A}, V_{CE} = 5V, R_{G} = 2 k\Omega, f = 1 k\text{Hz}$		1.5	4.0	dB

Note 2: For characteristics curves, see Process 10.

PN101

MMBT101

TL/G/10100-5

TL/G/10100-1

NPN General Purpose Amplifier

Electrical Characteristics TA = 25°C unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERI	STICS			
BV _{CBO}	I _C = 10 μA	100		٧
BV _{CEO}	I _C = 1 mA, (Note 1)	65		٧
BV _{EBO}	I _E = 10 μA	6		V
I _{CBO}	V _{CB} = 60V		50	nA
ICES	V _{CE} = 50V		50	nA
I _{EBO}	V _{EB} = 4V		50	nA
HARACTERIS	TICS			
h _{FE}	$I_{C} = 100 \mu\text{A}, V_{CE} = 1V$	60		
h _{FE}	$I_C = 10 \text{ mA}, V_{CE} = 1 \text{V}$	75	375	
h _{FE}	$I_C = 100 \text{ mA}, V_{CE} = 5V, \text{(Note 1)}$	50		
V _{CE(sat)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$		0.2	٧
V _{BE(sat)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$		0.85	٧
V _{CE(sat)}	I _C = 100 mA, I _B = 10 mA, (Note 1)		0.35	٧
V _{BE(sat)}	I _C = 100 mA, I _B = 10 mA, (Note 1)		0.95	V
L-SIGNAL CH	IARACTERISTICS			
C _{ob}	V _{CB} = 5V, f = 1 MHz		4.0	pF
-	V _{CE} = 10V, I _C = 10 mA	125		MHz
f _T				

Note 2: For characteristics curves, see Process 11.

PN200

MMBT200

TL/G/10100-5

TL/G/10100-1

PNP General Purpose Amplifier

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Min	Тур	Max	Units
F CHARACTE	RISTICS				
BV _{CBO}	$I_C = 10 \mu\text{A}$	60			٧
BV _{CEO}	I _C = 1 mA, (Note 1)	45			٧
BV _{EBO}	I _E = 10 μA	6			٧
Ісво	$V_{CB} = 50V$			50	nA
ICES	V _{CE} = 40V			50	nA
I _{EBO}	V _{EB} = 4V			50	nA
N CHARACTER	RISTICS				
h _{FE}	$I_{C} = 100 \mu\text{A}, V_{CE} = 1\text{V}$	80			
h _{FE}	$I_{C} = 10 \text{ mA}, V_{CE} = 1 \text{V}$	100		450	
h _{FE}	I _C = 100 mA, V _{CE} = 1V, (Note 1)	100			
h _{FE}	$I_C = 150 \text{ mA}, V_{CE} = 5V, \text{ (Note 1)}$	100		350	
V _{CE(sat)}	$I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$			0.2	V
V _{BE(sat)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.85	٧
V _{CE(sat)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}, \text{(Note 1)}$			0.4	٧
V _{BE(sat)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}, \text{(Note 1)}$			1.0	٧
IALL-SIGNAL	CHARACTERISTICS				
C _{ob}	V _{CB} = 5V, f = 1 MHz			6.0	pF
f _T	$V_{CE} = 20V, I_{C} = 20 \text{ mA}$	250			MHz
ts	$I_C = 10 \text{ mA}, I_{B1} = I_{B2} = 1 \text{ mA}$		275		ns
t _{OFF}	$I_C = 150 \text{ mA}, I_{B1} = I_{B2} = 15 \text{ mA}$		225		ns
NF	$I_{C} = 100 \mu A$, $V_{CE} = 5V$, $R_{G} = 2 k\Omega$, $f = 1 kHz$			5.0	dB

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 68.

PN200A

MMBT200A

TL/G/10100-5

TL/G/10100-1

PNP General Purpose Amplifier

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Тур	Max	Units
CHARACTE	RISTICS				
BV _{CBO}	$I_C = 10 \mu\text{A}$	60			٧.
BV _{CEO}	I _C = 1 mA, (Note 1)	45			٧
BV _{EBO}	I _E = 10 μA	6			٧
Ісво	V _{CB} = 50V			50	nA
ICES	V _{CE} = 40V			50	nA
IEBO	V _{EB} = 4V			50	nA
I CHARACTEF	RISTICS				
h _{FE}	$I_{C} = 100 \mu\text{A}, V_{CE} = 1V$	240			
h _{FE}	$I_C = 10 \text{ mA}, V_{CE} = 1 \text{V}$	300		600	
h _{FE}	I _C = 100 mA, V _{CE} = 1V, (Note 1)	100			
h _{FE}	$I_C = 150 \text{ mA}, V_{CE} = 5V, \text{(Note 1)}$	100			
V _{CE(sat)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.2	V
V _{BE(sat)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.85	V
V _{CE(sat)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}, \text{(Note 1)}$			0.4	٧
V _{BE(sat)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}, \text{ (Note 1)}$			1.0	V
IALL-SIGNAL	CHARACTERISTICS				
	V _{CR} = 5V, f = 1 MHz			6.0	pF
C _{ob}					
C _{ob}	V _{CE} = 20V, I _C = 20 mA	250			MHz

PN201

MMBT201

TL/G/10100-5

TL/G/10100-1

PNP General Purpose Amplifier

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERIS	STICS			
BV _{CBO}	I _C = 10 μA	80		٧
BV _{CEO}	I _C = 1 mA, (Note 1)	65		٧
BV _{EBO}	I _E = 10 μA	6		٧
I _{CBO}	V _{CB} = 60V		50	nA
I _{CES}	V _{CE} = 50V		50	nA
I _{EBO}	V _{EB} = 4V		50	nA
HARACTERIS	IC = 100 μ A, $V_{CE} = 1V$	60		
h _{FE}	$I_{C} = 10 \text{ mA, } V_{CE} = 1V$ $I_{C} = 10 \text{ mA, } V_{CE} = 1V$	75	375	
h _{FE}	I _C = 100 mA, V _{CE} = 5V, (Note 1)	50		
V _{CE(sat)}	I _C = 10 mA, I _B = 1 mA		0.2	٧
V _{BE(sat)}	I _C = 10 mA, I _B = 1 mA		0.85	٧
V _{CE(sat)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}, (Note 1)$		0.4	٧
V _{BE(sat)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}, \text{(Note 1)}$		1.0	٧
LL-SIGNAL CH	ARACTERISTICS			
C _{ob}	V _{CB} = 5V, f = 1 MHz		6.0	pF
f _T	$V_{CE} = 10V, I_{C} = 10 \text{ mA}$	100		MHz
NF	$I_C = 100 \mu A$, $V_{CE} = 5V$, $R_G = 2 k\Omega$, $f = 1 kHz$		8.0	dB

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 69.

2N918

PN918

MMBT918

TL/G/10100-5

TL/G/10100-1

NPN RF Transistor

TL/G/10100-12

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTER	RISTICS			
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage, (Note 2) (I _C = 3.0 mAdc, I _B = 0)	15		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 1.0 \mu Adc, I_E = 0$)	30		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	3.0		Vdc
I _{CBO}	Collector-Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$		0.010 1.0	μAdc
CHARACTERI	STICS			
h _{FE}	DC Current Gain (I _C = 3.0 mAdc, V _{CE} = 1.0 Vdc)	20		
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		0.4	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)		1.0	Vdc
ALL-SIGNAL C	CHARACTERISTICS			
f _T	Current-Gain—Bandwidth Product, (Note 1) (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	600		MHz
C _{obo}	Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz) (V _{CB} = 0, I _E = 0, f = 140 kHz)		1.7 3.0	pF
C _{ibo}	Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 140 kHz)		2.0	pF
NF	Noise Figure (I _C = 1.0 mAdc, V_{CE} = 6.0 Vdc, R_{G} = 400 Ω , f = 60 MHz)		6.0	dB

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted (Continued)

Symbol	Parameter	Min	Max	Units
UNCTIONAL TES	r			
G _{pe}	Amplifier Power Gain ($V_{CB} = 12 \text{ Vdc}$, $I_{C} = 6.0 \text{ mAdc}$, $f = 200 \text{ MHz}$)	15		dB
Po	Power Output $(V_{CB} = 15 \text{ Vdc}, I_C = 8.0 \text{ mAdc}, f = 500 \text{ MHz})$	30		mW
η	Collector Efficiency (V _{CB} = 15 Vdc, I _C = 8.0 mAdc, f = 500 MHz)	25		%

Note 1: fT is defined as the frequency at which |hfe| extrapolates to unity.

Note 2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 3: For characteristics curves, see Process 43.

2N2222 2N2222A

PN2222 PN2222A

MMBT2222 MMBT2222A

TL/G/10100-5

MPQ2222*

TL/G/10100-1

NPN General Purpose Amplifier

TL/G/10100-9

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		Min	Max	Units
CHARACTERIS	STICS				
V _(BR) CEO	Collector-Emitter Breakdown Voltage (Note 1) ($I_C = 10 \text{ mA}, I_B = 0$)	2222 2222A	30 40		٧
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C=10~\mu\text{A}, I_E=0$)	2222 2222A	60 75		٧
V _{(BR)EBO}	Emitter Base Breakdown Voltage ($I_E=10~\mu\text{A},I_C=0$)	2222 2222A	5.0 6.0		٧
I _{CEX}	Collector Cutoff Current (V _{CE} = 60V, V _{EB(OFF)} = 3.0V)	2222A		10	nA
Ісво	Collector Cutoff Current $(V_{CB} = 50V, I_E = 0)$ $(V_{CB} = 60V, I_E = 0)$ $(V_{CB} = 60V, I_E = 0)$ $(V_{CB} = 50V, I_E = 0, T_A = 150^{\circ}C)$ $(V_{CB} = 60V, I_E = 0, T_A = 150^{\circ}C)$	2222 2222A 222 2222A		0.01 0.01 10 10	μΑ
I _{EBO}	Emitter Cutoff Current (V _{EB} = 3.0V, I _C = 0)	2222A		10	nA
I _{BL}	Base Cutoff Current $(V_{CE} = 60V, V_{EB(OFF)} = 3.0)$	2222A		20	nA
CHARACTERIS	TICS				
h _{FE}	DC Current Gain $ \begin{aligned} &(I_C=0.1 \text{ mA, } V_{CE}=10 \text{V}) \\ &(I_C=1.0 \text{ mA, } V_{CE}=10 \text{V}) \\ &(I_C=10 \text{ mA, } V_{CE}=10 \text{V}) \\ &(I_C=10 \text{ mA, } V_{CE}=10 \text{V}, T_A=-55^{\circ}\text{C}) \\ &(I_C=150 \text{ mA, } V_{CE}=10 \text{V}) \text{ (Note 1)} \\ &(I_C=150 \text{ mA, } V_{CE}=1.0 \text{V}) \text{ (Note 1)} \\ &(I_C=500 \text{ mA, } V_{CE}=10 \text{V}) \text{ (Note 1)} \end{aligned} $	2222 2222A	35 50 75 35 100 50 30 40	300	

NPN General Purpose Amplifier (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

Symbol	F	Parameter		Min	Max	Units
ON CHARAC	TERISTICS (Continued)					
V _{CE(sat)}	Collector-Emitter Saturation Voltage	(Note 1)				
0_(0)	(I _C = 150 mA, I _B = 15 mA)		2222	ĺ	0.4	
			2222A		0.3	v
	$(I_C = 500 \text{ mA}, I_B = 50 \text{ mA})$		2222		1.6	v
			2222A		1.0	
V _{BE(sat)}	Base-Emitter Saturation Voltage (No	ote 1)				
` '	$(I_C = 150 \text{ mA}, I_B = 15 \text{ mA})$		2222	0.6	1.3	
			2222A	0.6	1.2	٧
	$(I_C = 500 \text{ mA}, I_B = 50 \text{ mA})$		2222		2.6	
			2222A		2.0	
SMALL-SIGN	AL CHARACTERISTICS					
f _T	Current Gain—Bandwidth Product (I	Note 3)				
•	$(I_C = 20 \text{ mA}, V_{CE} = 20 \text{V}, f = 100 \text{V})$	•	2222	250		
	, , , , , , , , , , , , , , , , , , , ,	•	2222A	300		MHz
Cobo	Output Capacitance (Note 3)					
-0D0	$(V_{CB} = 10V, I_{E} = 0, f = 100 \text{ kHz}$)			8.0	pF
	Input Capacitance (Note 3)					F:
C _{ibo}	(V _{FB} = 0.5V, I _C = 0, f = 100 kHz	- 1	2222		30	
	(VEB - 0.5V, IC - 0, I - 100 KHz	<u>-</u>)	2222A		25	pF
-1-10	O-W		LLLCT			
rb'C _C	Collector Base Time Constant	0.841.1-3	00004		450	
	$(I_E = 20 \text{ mA}, V_{CB} = 20V, f = 31.$	в мнz)	2222A		150	ps
NF	Noise Figure					
	$(I_C = 100 \mu A, V_{CE} = 10V, R_S =$	$1.0 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz})$	2222A		4.0	dB
Re(h _{ie})	Real Part of Common-Emitter					
	High Frequency Input Impedance					
	$(I_C = 20 \text{ mA}, V_{CE} = 20 \text{V}, f = 300 \text{V})$	O MHz)			60	Ω
WITCHING	CHARACTERISTICS					
t _D	Delay Time (V	$V_{CC} = 30V, V_{BE(OFF)} = 0.5V,$	except		10	ns
t _R	Rise Time	$= 150 \text{ mA}, I_{B1} = 15 \text{ mA})$	MPQ2222		25	ns
ts	Storage Time (V	_{CC} = 30V, I _C = 150 mA,	except		225	ns
t⊨	Fall Time	$_{1} = I_{B2} = 15 \text{ mA}$	MPQ2222		60	ns
	Tast: Bulso Width < 200s Duty Cyclo < 208			L		

Note 1: Pulse Test: Pulse Width < 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 19.

Note 3: f_{T} is defined as the frequency at which $\left|h_{\text{fe}}\right|$ extrapotates to unity.

Note 4: 2N also available in JAN/TX/V series.

2N2369

PN2369

MMBT2369

MPQ2369

TL/G/10100-5

TL/G/10100-1

NPN Switching Transistor

TL/G/10100-9

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Тур	Max	Units
CHARACTER	RISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 2) ($I_C = 10 \text{ mAdc}, I_B = 0$)	15			Vdc
V _{(BR)CES}	Collector-Emitter Breakdown Voltage ($I_C = 10 \mu Adc, V_{BE} = 0$)	40			Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	40			Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	4.5			Vdc
I _{CBO}	Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 125^{\circ}\text{C})$			0.4 30	μAdo
CHARACTER	ISTICS				
h _{FE}	DC Current Gain, (Note 1) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc, T _A = -55°C) (I _C = 100 mAdc, V _{CE} = 2.0 Vdc)	40 20 20		120	
V _{CE(sat)}	Collector-Emitter Saturation Voltage, (Note 1) (I _C = 10 mAdc, I _B = 1.0 mAdc)			0.25	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage, (Note 1) $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	0.70		0.85	Vdc
ALL-SIGNAL (CHARACTERISTICS				
C _{obo}	Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)			4.0	pF
h _{fe}	Small-Signal Current Gain	5.0			

NPN Switching Transistor (Continued)

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted (Continued)

Symbol	Parameter		Min	Тур	Max	Units
WITCHING	CHARACTERISTICS					
t _s	Storage Time $(I_{B1} = I_{B2} = I_C = 10 \text{ mAdc})$ (Figure 3)	*Except MPQ2369		5.0	13*	ns
t _{on}	Turn-On Time ($V_{CC} = 3.0 \text{ Vdc}$, $I_{C} = 10 \text{ mAdc}$, $I_{B1} = 3.0 \text{ mAdc}$) (Figure 1)	*Except MPQ2369		8.0	12*	ns
t _{off}	Turn-Off Time ($V_{CC} = 3.0 \text{ Vdc}$, $I_C = 10 \text{ mAdc}$, $I_{B1} = 3.0 \text{ mAdc}$, $I_{B2} = 1.5 \text{ mAdo}$) (Figure 2)	*Except MPQ2369		10	18*	ns

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 21.

2N2907 2N2907A

PN2907 PN2907A

MMBT2907 MMBT2907A

MPQ2907*

14 THE E B C
10-116
TL/G/10100-7

TL/G/10100-1

TL/G/10100-5

PNP General Purpose Amplifier

TL/G/10100-9

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter		Min	Max	Units
F CHARACTE	RISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 10 mAdc, I _B = 0)	2907 2907A	40 60		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	,	60		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		5.0		Vdc
ICEX	Collector Cutoff Current $(V_{CE} = 30 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$			50	nAdc
Ісво	Collector Cutoff Current $(V_{CB}=50~Vdc, I_{E}=0)$ $(V_{CB}=50~Vdc, I_{E}=0, T_{A}=150^{\circ}C)$	2907 2907A 2907 2907A		0.020 0.010 20 10	μAdc
lΒ	Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 0.5 Vdc)			50	nAdc

^{*16-}SOIC version also available. Contact factory.

PNP General Purpose Amplifier (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

		Parameter		Min	Max	Units
N CHARAC	TERISTICS					
h _{FE}	DC Current Gain					
	$(I_C = 0.1 \text{ mAdc, } V_{CE} =$	10 Vdc)	2907	35		
			2907A	75		
	$(I_C = 1.0 \text{ mAdc, } V_{CE} =$	10 Vdc)	2907	50	ļ	
			2907A	100		
	$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ mAdc})$	10 Vdc)	2907	75		
	(1 - 450 - 44-)/	401/4-1 (1)-4-41	2907A	100	000	
	(I _C = 150 mAdc, V _{CE} =	The state of the s	2907	100 30	300	
	$(I_C = 500 \text{ mAdc}, V_{CE} =$	To vac), (Note 1)	2907A	50		
			2907A	30		
V _{CE(sat)}	Collector-Emitter Saturatio	· ,				
	$(I_C = 150 \text{ mAdc}, I_B = 1)$	•		}	0.4	Vdc
	$(I_C = 500 \text{ mAdc}, I_B = 5)$	U MAGC)			1.6	
V _{BE(sat)}	Base-Emitter Saturation Vo	•			1	
	$(I_C = 150 \text{ mAdc}, I_B = 1)$	** *			1.3	Vdc
	$(I_C = 500 \text{ mAdc}, I_B = 5)$	o made)		l	2.6	
MALL-SIGN	AL CHARACTERISTICS		****			
,						
f _T	Current Gain—Bandwidth	Product		200		NALI→
īΤ	Current Gain—Bandwidth $I_{C} = 50$ mAdc, $V_{CE} = 2$			200		MHz
	$(I_C = 50 \text{ mAdc}, V_{CE} = 2$			200		
C _{obo}	(I _C = 50 mAdc, V _{CE} = 2 Output Capacitance	20 Vdc, f = 100 MHz)		200	8.0	MHz pF
C _{obo}	$(I_C = 50 \text{ mAdc}, V_{CE} = 20 \text{ mAdc}, $	20 Vdc, f = 100 MHz)		200	8.0	
	$(I_{C}=50 \text{ mAdc}, V_{CE}=2 \text{ output Capacitance}$ $(V_{CB}=10 \text{ Vdc}, I_{E}=0, \text{ Input Capacitance}$	20 Vdc, f = 100 MHz) f = 100 kHz)		200	8.0	
C _{obo}	$(I_C = 50 \text{ mAdc}, V_{CE} = 20 \text{ mAdc}, $	20 Vdc, f = 100 MHz) f = 100 kHz)		200		pF
C _{obo}	$(I_{C}=50 \text{ mAdc}, V_{CE}=2 \text{ output Capacitance}$ $(V_{CB}=10 \text{ Vdc}, I_{E}=0, \text{ Input Capacitance}$	20 Vdc, f = 100 MHz) f = 100 kHz)		200		pF
C _{obo}	$(I_{\text{C}} = 50 \text{ mAdc}, V_{\text{CE}} = 20 m$	20 Vdc, f = 100 MHz) f = 100 kHz) f = 100 kHz)	Except	200		pF
C _{obo}	$(I_{\rm C}=50~{ m mAdc}, V_{\rm CE}=20~{ m cm}$ Output Capacitance $(V_{\rm CB}=10~{ m Vdc}, I_{\rm E}=0, I_{\rm CE}=0, I_$	20 Vdc, f = 100 MHz) f = 100 kHz)	Except MPQ2907	200	30	pF pF
C _{obo} C _{ibo}	$(I_{C}=50 \mathrm{mAdc}, V_{CE}=2)$ Output Capacitance $(V_{CB}=10 \mathrm{Vdc}, I_{E}=0, I_{CB}=2.0 \mathrm{Vdc}, I_{C}=0, I_{CB}=2.0 \mathrm{Vdc}, $	20 Vdc, f = 100 MHz) f = 100 kHz) f = 100 kHz) (V _{CC} = 30 Vdc, I _C = 150 mAdc,	•	200	30	pF pF ns
C _{obo} C _{ibo} WITCHING ($(I_{\text{C}} = 50 \text{ mAdc}, V_{\text{CE}} = 20 \text{ output Capacitance}$ $(V_{\text{CB}} = 10 \text{ Vdc}, I_{\text{E}} = 0,$ $Input Capacitance$ $(V_{\text{EB}} = 2.0 \text{ Vdc}, I_{\text{C}} = 0,$ $CHARACTERISTICS$ $Turn-On Time$ $Delay Time$	20 Vdc, f = 100 MHz) f = 100 kHz) f = 100 kHz) (V _{CC} = 30 Vdc, I _C = 150 mAdc, I _{B1} = 15 mAdc)	MPQ2907	200	30 45 10	pF pF ns
C _{obo} C _{ibo} WITCHING ton t _d t _r	(I _C = 50 mAdc, V _{CE} = 2 Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, Input Capacitance (V _{EB} = 2.0 Vdc, I _C = 0, CHARACTERISTICS Turn-On Time Delay Time Rise Time	20 Vdc, f = 100 MHz) f = 100 kHz) f = 100 kHz) (V _{CC} = 30 Vdc, I _C = 150 mAdc,	•	200	30 45 10 40	pF pF ns ns

Note 1: Pulse Test: Pulse Width \leq 300 $\mu\text{s},$ Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 63.

Note 3: 2N also available in JAN/TX/V series.

TL/G/10100-8

NPN General Purpose Amplifier

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
F CHARAC	TERISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 30 mAdc, I _B = 0)	80		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	140		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	7.0		Vdc
ICBO	Collector Cutoff Current (V _{CB} = 90 Vdc, I _E = 0) (V _{CB} = 90 Vdc, I _E = 0, T _A = 150°C)		0.01 10	μAdo
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 5.0 \text{ Vdc}, I_{C} = 0)$		0.010	μAdo
N CHARACT	ERISTICS			
N CHARACT h _{FE}		50 90 100 40 50 15	300	
	DC Current Gain $ \begin{array}{ll} (I_C=0.1 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=150 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=150 \text{ mAdc, } V_{CE}=10 \text{ Vdc}, \\ (I_C=500 \text{ mAdc, } V_{CE}=10 \text{ Vdc}, \\ (I_C=500 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \end{array} $	90 100 40 50	300 0.2 1.5	Vdc

NPN General Purpose Amplifier (Continued)

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted (Continued)

Symbol	Parameter	Min	Max	Units
MALL-SIGNA	AL CHARACTERISTICS			
f _T	Current Gain—Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ MHz}$)	100	400	MHz
C _{obo}	Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		12	pF
C _{ibo}	Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$		60	pF
h _{fe}	Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	80	400	
rb′C _c	Collector Base Time Constant 2N3019, 2N3020 ($I_E = 10 \text{ mAdc}, V_{CB} = 10 \text{ Vdc}, f = 4.0 \text{ MHz}$)		400	ps
NF	Noise Figure (I _C = 100 mAdc, V_{CE} = 10 Vdc, H_{S} = 1.0 k Ω , f = 1.0 kHz)		4	dB

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

Note 2: For characteristics curves, see Process 12.

Note 3: 2N also available in JAN/TX/V series.

TN3467

MPQ3467

TL/G/10100-8

PNP Switching Transistor

Symbol	Parameter	Min	Max	Units
F CHARACTE	RISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 10 mAdc, I _B = 0)	40		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	40		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	5.0		Vdc
I _{BEV}	Base Cutoff Current (V _{CE} = -30 Vdc, V _{BE} = 3.0 Vdc)		120	nAdc
ICEX	Collector Cutoff Current (V _{CE} = -30 Vdc, V _{BE} = 3.0 Vdc)		100	nAdc
I _{CBO}	Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T _A = 100°C)		0.010 15	μAdc
CHARACTE	RISTICS			
h _{FE}	DC Current Gain, (Note 1) ($I_C = 150$ mAdc, $V_{CE} = 1.0$ Vdc) ($I_C = 500$ mAdc, $V_{CE} = 1.0$ Vdc) ($I_C = 1.0$ Adc, $V_{CE} = 5.0$ Vdc)	40 40 40	120	
V _{CE(sat)}	Collector-Emitter Saturation Voltage, (Note 1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)		0.3 0.5 1.0	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage, (Note 1) ($I_C = 150$ mAdc, $I_B = 15$ mAdc) ($I_C = 500$ mAdc, $I_B = 50$ mAdc) ($I_C = 1.0$ Adc, $I_B = 100$ mAdc)	0.8	1.0 1.2 1.6	Vdc

Electrical Characteristics $T_A = 25^{\circ}$ C unless otherwise noted (Continued)

Symbol	Parameter	Min	Max	Units
MALL-SIGNA	L CHARACTERISTICS			
f _T	Current Gain—Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	175		MHz
C _{obo}	Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		25	pF
C _{ibo}	Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 100 kHz)		100	pF

SWITCHING CHARACTERISTICS

t _d	Delay Time	$(I_C = 500 \text{ mA}, I_{B1} = 50 \text{ mA},$	10	ns
tr	Rise Time	$V_{BE} = 2.0V, V_{CC} = 30V)$	30	ns
t _s	Storage Time	$I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}, V_{CC} = 30V)$	60	ns
t _f	Fall Time		30	ns

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 70.

PN3646

MMBT3646

TL/G/10100-5

TL/G/10100-1

NPN Switching Transistor

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
F CHARACTE	RISTICS			
V _{(BR)CES}	Collector-Emitter Breakdown Voltage (I _C = 100 μ Adc, V _{BE} = 0)	40		Vdc
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage, (Note 1) (I _C = 10 mAdc, I _B = 0)	15		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu$ Adc, $I_E = 0$)	40		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)	5.0		Vdc
ICES	Collector Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 0) (V _{CE} = 20 Vdc, V _{BE} = 0, T _A = 65°C)		0.5 3.0	μAdc
N CHARACTER	RISTICS (Note 1)			
h _{FE}	DC Current Gain (I _C = 30 mAdc, V _{CE} = 0.4 Vdc) (I _C = 100 mAdc, V _{CE} = 0.5 Vdc) (I _C = 300 mA, V _{CE} = 1.0 Vdc)	30 25 15	120	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc) (I _C = 30 mA, I _B = 3.0 mA, T _A = 65°C)		0.2 0.28 0.5 0.3	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc)	0.75	0.95 1.2 1.7	Vdc

NPN Switching Transistor (Continued)

$\textbf{Electrical Characteristics} \ T_{A} = 25^{\circ}\text{C unless otherwise noted (Continued)}$

Symbol		Parameter	Min	Max	Units
MALL-SIGN	AL CHARACTERISTI	cs			
f _T	Current Gain—Ba (I _C = 30 mAdc	indwidth Product , V _{CE} = 10 Vdc, f = 100 MHz)	350		MHz
C _{obo}	Output Capacitan (V _{CB} = 5.0 Vdd	ce c, I _E = 0, f = 1.0 MHz)		5.0	pF
C _{ibo}	Input Capacitance (V _{BE} = 0.5 Vde	e c, I _C = 0, f = 1.0 MHz)			pF
WITCHING (CHARACTERISTICS				
t _{on}	Turn-On Time	(V _{CC} = 10 Vdc, V _{BE(off)} = 3.0 Vdc, I _C = 300 mAdc,		18	ns
t _d	Delay Time	$I_{B1} = 30 \text{ mAdc}$, (Figure 1)		10	ns
t _r	Rise Time			15	ns
t _{off}	Turn-Off Time	$(V_{CC} = 10 \text{ Vdc}, I_C = 300 \text{ mAdc}, I_{B1} = I_{B2} = 30 \text{ mAdc})$		28	ns
t _f	Fall Time	(Figure 1)		15	ns
t _s	Storage Time (V _{CC} = 10 Vdc	c, I _C = 10 mAdc, I _{B1} = I _{B2} = 10 mAdc) <i>(Figure 2)</i>		18	ns

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 22.

TN3725

MPQ3725

TL/G/10100-8

NPN Switching Transistor

Electrical Characteristics $T_A = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
F CHARACTE	RISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 10 mAdc, I _B = 0)	50		Vdc
V _{(BR)CES}	Collector-Emitter Breakdown Voltage ($I_C = 10 \mu Adc$, $V_{BE} = 0$)	80		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$	80		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	6.0		Vdc
I _{CBO}	Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0, T _A = 100°C)		1.7 120	μAdc
I _{CES}	Collector Cutoff Current (V _{CE} = 80 Vdc, V _{EB} = 0)		10	μAdc
I CHARACTE	RISTICS (Note 1)			
h _{FE}	DC Current Gain $ \begin{aligned} &(I_C = 10 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc, T}_{A} = -55^{\circ}\text{C}) \\ &(I_C = 300 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 500 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc, T}_{A} = -55^{\circ}\text{C}) \\ &(I_C = 500 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc, T}_{A} = -55^{\circ}\text{C}) \\ &(I_C = 800 \text{ mA, V}_{CE} = 2.0 \text{V}) \\ &(I_C = 1.0 \text{ Adc, V}_{CE} = 5.0 \text{V}) \end{aligned} $	30 60 30 40 35 20 20 25	150	

NPN Switching Transistor (Continued)

Electrical Characteristics $T_A = 25^{\circ}\text{C}$ unless otherwise noted (Continued)

Symbol	Para	meter	Min	Max	Units
N CHARACT	ERISTICS (Note 1) (Continued)				
VCE(sat)	Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 300 \text{ mAdc}$, $I_B = 30 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mA}$) ($I_C = 800 \text{ mAdc}$, $I_B = 80 \text{ mA}$) ($I_C = 1.0 \text{ mAdc}$, $I_B = 100 \text{ mA}$			0.25 0.26 0.40 0.52 0.80 0.95	Vdc
VBE(sat)	Base-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 100$ mAdc, $I_B = 10$ mAdc) ($I_C = 300$ mAdc, $I_B = 30$ mAdc) ($I_C = 500$ mAdc, $I_B = 50$ mAdc) ($I_C = 800$ mAdc, $I_B = 80$ mAdc) ($I_C = 1.0$ mAdc, $I_B = 100$ mAdc)			0.76 0.86 1.1 1.1 1.5	Vdc
MALL-SIGNA	AL CHARACTERISTICS				
f _T	Current Gain—Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 1	100 MHz)	300		MHz
C _{obo}	Output Capacitance (V _{CB} = 10 Vdc, l _E = 0, f = 1.0 MHz)		10	pF
C _{ibo}	Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	z)		55	pF
WITCHING C	CHARACTERISTICS				
t _d	Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = 3.8 \text{ Vdc},$		10	ns
t _r	Rise Time	I _C = 500 mAdc, I _{B1} = 50 mAdc)		30	ns
ton	Turn-On Time	(Figures 8, 10), except MPQ3725		35	ns
		MPQ3725		40	ns
t _s	Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_C = 500 \text{ mAdc},$		50	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 50 \text{ mAdc}$ (Figures 9, 10), except MPQ3725		25	ns
t _{off}	Turn-On Time	(<i>rigures 9, 10)</i> , except MPQ3725		60	ns

Note 2: For characteristics curves, see Process 25.

MMBT3904

MPQ3904*

TL/G/10100-5

TL/G/10100-1

NPN General Purpose Amplifier

Symbol	Parameter	Min	Max	Units
F CHARACTI	RISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 10 mAdc, I _B = 0)	40		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	60		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	6.0		Vdc
I _{BL}	Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		50	nAdc
I _{CEX}	Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		50	nAdc
CHARACTE	RISTICS			
h _{FE}	DC Current Gain, (Note 1) $(I_{C} = 0.1 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc})$ $(I_{C} = 1.0 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc})$ $(I_{C} = 10 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc})$ $(I_{C} = 50 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc})$	40 70 100 60	300	
	$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	30		<u> </u>
V _{CE(sat)}	Collector-Emitter Saturation Voltage, (Note 1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	30	0.2 0.3	Vdc

^{*16-}SOIC version also available. Contact factory.

NPN General Purpose Amplifier (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

Symbol		Parameter		Min	Max	Units
MALL-SIGNA	AL CHARACTERISTIC	S				
f _T	Current Gain—Ba (I _C = 10 mAdc	ndwidth Product , V _{CE} = 20 Vdc, f = 100 MHz)		300		MHz
C _{obo}	Output Capacitan (V _{CB} = 5.0 Vdd	ce c, I _E = 0, f = 1.0 MHz)			4.0	pF
C _{ibo}	Input Capacitance (V _{BE} = 0.5 Vdc	e c, I _C = 0, f = 1.0 MHz)			8.0	pF
NF	Noise Figure (I _C = 100 μAdd f = 10 Hz to 15	c, $V_{CE}=5.0$ Vdc, $R_S=1.0$ k Ω , i.7 kHz)	2N3904 MMBT3904		5.0	dB
WITCHING C	HARACTERISTICS					
t _d	Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,	2N3904		35	ns
t _r	Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc}$	MMBT3904		35	ns
t _s	Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc},$	2N3904		200	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mAdc}$	MMBT3904		50	ns

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 23.

MMBT3906

MPQ3906*

TL/G/10100-5

TL/G/10100-1

PNP General Purpose Amplifier

Symbol	Parameter	Min	Max	Units
F CHARACTE	ERISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	40		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	40		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	5.0		Vdc
I _{BL}	Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)		50	nAdc
I _{CEX}	Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 3.0 Vdc)		50	nAdc
LOUADAOTE				
N CHARACTE	RISTICS (Note 1)			
h _{FE}	RISTICS (Note 1) DC Current Gain, (Note 1) (I _C = 0.1 mAdc, V _{CE} = 1.0 Vdc) (I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc) (I _C = 100 mAdc, V _{CE} = 1.0 Vdc)	60 80 100 60 30	300	
	DC Current Gain, (Note 1) ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	80 100 60	300 0.25 0.4	Vdc

^{*16-}SOIC version also available. Contact factory.

PNP General Purpose Amplifier (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

Symbol		Parameter		Min	Max	Units
MALL-SIGNA	L CHARACTERISTIC	es				
f⊤	Current Gain—Ba (I _C = 10 mAdo	indwidth Product , V _{CE} = 20 Vdc, f = 100 MHz)		250		MHz
C _{obo}	Output Capacitan (V _{CB} = 5.0 Vde	ce c, I _E = 0, f = 100 MHz)			4.5	pF
C _{ibo}	Input Capacitance (V _{BE} = 0.5 Vde	e c, I _C = 0, f = 100 kHz)			10.0	pF
NF	Noise Figure (I _C = 100 μAd f = 10 Hz to 15	c, $V_{CE}=5.0$ Vdc, $R_S=1.0$ k Ω , 5.7 kHz)	2N3906 MMBT3906		4.0	dB
WITCHING C	HARACTERISTICS					
t _d	Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc},$	2N3906		35	ns
t _r	Rise Time	$I_C = 10 \text{ mAdc}$, $I_{B1} = 1.0 \text{ mAdc}$)	MMBT3906		35	ns
t _s	Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc},$	2N3906		225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mAdc}$	MMBT3906		75	ns

Note 1: Pulse Width \leq 300 $\mu\text{s},$ Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 66.

TN4033

TL/G/10100-8

PNP General Purpose Amplifier

Symbol	Parameter	Min	Max	Units
CHARACTERIS	TICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 10 mA)	80		٧
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _C = 10 μA)	80		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu A$)	5.0		٧
Ісво	Collector-Cutoff Current ($V_{CB} = 60V$) ($V_{CB} = 60V$, $T_{A} = 150^{\circ}C$)		50 50	nA μA
I _{EBO}	Emitter-Cutoff Current (V _{EB} = 5.0V)		10	μΑ
HARACTERIST	TICS (Note 1)			
h _{FE}	DC Current Gain $ \begin{array}{ll} \text{(I}_{C}=100 \text{ mA, V}_{CE}=5.0\text{V, }@-55^{\circ}\text{C)} \\ \text{(I}_{C}=100 \mu\text{A, V}_{CE}=5.0\text{V)} \\ \text{(I}_{C}=100 \text{ mA, V}_{CE}=5.0\text{V)} \\ \text{(I}_{C}=500 \text{ mA, V}_{CE}=5.0\text{V)} \\ \text{(I}_{C}=1.0\text{A, V}_{CE}=5.0\text{V)} \\ \end{array} $	40 75 100 70 25	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage ($I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$) ($I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$)		0.15 0.50	V
V _{BE(sat)}	Base-Emitter Saturation Voltage (I _C = 150 mA, I _B = 15 mA)		0.9	٧
V _{BE(on)}	Base-Emitter On Voltage (I _C = 500 mA, V _{CF} = 0.5V)		1.1	V

PNP General Purpose Amplifier (Continued)

Electrical Characteristics $T_A = 25^{\circ}\text{C}$ unless otherwise noted (Continued)

Symbol	Parameter	Min	Max	Units
ALL-SIGNAL CH	ARACTERISTICS			
C _{obo}	Output Capacitance (V _{CE} = 10V, f = 1.0 MHz)		20	pF
C _{ibo}	Input Capacitance (V _{EB} = 0.5V, f = 1.0 MHz)		110	pF
h _{fe}	Small Signal Current Gain (I _C = 50 mA, V _{CE} = 10V, f = 100 MHz)	1.0	4.0	
VITCHING CHAR	ACTERISTICS			
t _s	Storage Time (I _C = 500 mA, I _{B1} = I _{B2} = 50 mA)		350	ns
ton	Turn-On Time ($I_C = 500 \text{ mA}, I_{B1} = 50 \text{ mA}$)		100	ns
t _f	Fall Time (I _C = 500 mA, I _{B1} = I _{B2} = 50 mA)		50	ns

Note 1: Pulse Width = 300 μ s, Duty Cycle 1.0%.

Note 2: For characteristics curves, see Process 67.

PN4258

MMBT4258

TL/G/10100-5

TL/G/10100-1

PNP Switching Transistor

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
F CHARACTE	RISTICS			
V _{(BR)CES}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 100 μ Adc, V _{BE} = 0)	12		Vdc
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage, (Note 1) (I _C = 3.0 mAdc, I _B = 0)	12		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	12		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)	4.5		Vdc
ICES	Collector Cutoff Current (V _{CE} = 6.0 Vdc, V _{BE} = 0) (V _{CE} = 6.0 Vdc, V _{BE} = 0, T _A = 65°C)		0.01 5.0	μAdc
CHARACTER	IISTICS (Note 1)			
h _{FE}	DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 0.5 Vdc) (I _C = 10 mAdc, V _{CE} = 3.0 Vdc) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc)	15 30 30	120	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		0.15 0.5	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	0.75	0.95 1.5	Vdc
ALL-SIGNAL	CHARACTERISTICS			
f _T	Current Gain—Bandwidth Product, (Note 2) (I _C = 10 mAdc, V_{CE} = 5.0 Vdc, f = 100 MHz) (I _C = 10 mAdc, V_{CE} = 10 Vdc, f = 100 MHz)	700		MHz
C _{ibo}	Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		3.5	pF
C _{cb}	Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	,	3.0	pF

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted (Continued)

Symbol		Parameter	Min	Max	Units
TTCHING CHA	RACTERISTICS				
t _{on}	Turn-On Time	(Vcc = 1.5 Vdc Vpc(ett) = 0V		15	ns
t _d	Delay Time	$(V_{CC} = 1.5 \text{ Vdc}, V_{BE(off)} = 0V,$ $I_{C} = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$		10	ns
t _r	Rise Time			15	ns
t _{off}	Turn-Off Time	$(V_{CC} = 1.5 \text{ Vdc}, I_{C} = 10 \text{ mAdc},$		20	ns
ts	Storage Time	$I_{B1} = I_{B2} = 1.0 \text{ mAdc}$	1	20	ns
t _f	Fall Time			10	ns
t _s	Storage Time ($I_C \approx 10 \text{ mAdc}$,	$I_{B1} \approx 10 \text{ mAdc}, I_{B2} \approx 10 \text{ mAdc})$		20	ns

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: f_T is defined as the frequency at which $|h_{FE}|$ extrapolates unity.

Note 3: For characteristics curves, see Process 65.

TL/G/10100-9

2N4391 2N4392 2N4393 PN4391 PN4392 PN4393 MMBF4391 MMBF4392 MMBF4393

TL/G/10100-6

TL/G/10100-2

General Purpose N-Channel JFET Transistor

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		Min	Тур	Max	Units
F CHARACT	ERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage ($I_G = 1.0 \mu Adc, V_{DS} = 0$)		30			Vdc
I _{GSS}	Gate Reverse Current $ (V_{GS} = 15 \text{ Vdc}, V_{DS} = 0) $ $ (V_{GS} = 15 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C}) $				1.0 0.2	nAdc μAdc
I _{D(off)}	Drain-Cutoff Current $ (V_{DS} = 15 \text{ Vdc}, V_{GS} = 12 \text{ Vdc}) $ $ (V_{DS} = 15 \text{ Vdc}, V_{GS} = 12 \text{ Vdc}, T_A = 100^{\circ}\text{C}) $				1.0 0.1	nAdc μAdc
V _{GS}	Gate Source Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	4391 4392 4393	4.0 2.0 0.5		10 5.0 3.0	Vdc
N CHARACTE	RISTICS					
I _{DSS}	Zero-Gate-Voltage Drain Current, (Note 1) $(V_{DS}=15~\text{Vdc},~V_{GS}=0)$	4391 4392 4393	60 25 5.0		130 75 30	mAdc
V _{DS(on)}	Drain-Source On-Voltage $ \begin{aligned} &(I_D=12 \text{ mAdc, V}_{GS}=0) \\ &(I_D=6.0 \text{ mAdc, V}_{GS}=0) \\ &(I_D=3.0 \text{ mAdc, V}_{GS}=0) \end{aligned} $	4391 4392 4393			0.4 0.4 0.4	Vdc
r _{DS(on)}	Static Drain-Source On Resistance (I _D = 1.0 mAdc, V _{GS} = 0)	4391 4392 4393			30 60 100	Ω

General Purpose N-Channel JFET Transistor (Continued)

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted (Continued)

Symbol	Parameter		Min	Тур	Max	Units
MALL-SIGNA	AL CHARACTERISTICS					
y _{fs}	Forward Transfer Admittance $ \begin{array}{ll} (V_{DS} = 15 \ \text{Vdc}, I_D = 60 \ \text{mAdc}, f = 1.0 \ \text{kHz}) \\ (V_{DS} = 15 \ \text{Vdc}, I_D = 25 \ \text{mAdc}, f = 1.0 \ \text{kHz}) \\ (V_{DS} = 15 \ \text{Vdc}, I_D = 5.0 \ \text{mAdc}, f = 1.0 \ \text{kHz}) \end{array} $	4391 4392 4393		20 17 12		mmhos
^r DS(on)	Drain-Source On Resistance ($V_{GS}=0$, $I_D=0$, $f=1.0$ kHz)	4391 4392 4393			30 60 100	Ω
C _{iss}	Input Capacitance (V _{GS} = 15 Vdc, V _{DS} = 0, f = 1.0 MHz)			8.0	14	V
C _{rss}	Reverse Transfer Capacitance $ (V_{GS} = 12 \text{ Vdc}, V_{DS} = 0, f = 1.0 \text{ MHz}) $ $ (V_{DS} = 15 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ MHz}) $			2.5 3.2	3.5	pF
VITCHING C	HARACTERISTICS					
t _r	Rise Time (See <i>Figure 2</i>) (I _{D(on)} = 12 mAdc) (I _{D(on)} = 6.0 mAdc) (I _{D(on)} = 3.0 mAdc)	4391 4392 4393		1.2 2.0 2.5	5.0 5.0 5.0	ns
t _f	Fall Time (See Figure 4) (V _G S(off) = 12 Vdc) (V _G S(off) = 7.0 Vdc) (V _G S(off) = 5.0 Vdc)	4391 4392 4393		7.0 15 29	15 20 35	ns
t _{on}	Turn-On Time (See <i>Figures 1</i> and 2) (I _{D(on)} = 12 mAdc) (I _{D(on)} = 6.0 mAdc) (I _{D(on)} = 3.0 mAdc)	4391 4392 4393		3.0 4.0 6.5	15 15 15	ns
t _{off}	Turn-Off Time (See <i>Figures 3</i> and 4) (V _{GS(off)} = 12 Vdc) (V _{GS(off)} = 7.0 Vdc) (V _{GS(off)} = 5.0 Vdc)	4391 4392 4393		10 20 37	20 35 55	ns

Note 1: Pulse Width \leq 100 μ s, Duty Cycle \leq 1.0%.

Note 2: For characteristics curves, see Process 51.

MMBT4401

TL/G/10100-5

TL/G/10100-1

NPN General Purpose Amplifier

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
F CHARACTE	RISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	40		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	60		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$	6.0		Vdc
IL .	Base Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)		0.1	μAdc
I _{CEX}	Collector Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)		0.1	μAdc
CHARACTER	RISTICS (Note 1)			
h _{FE}	$\begin{array}{l} \text{DC Current Gain} \\ \text{(I}_{C} = 0.1 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc)} \\ \text{(I}_{C} = 1.0 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc)} \\ \text{(I}_{C} = 10 \text{ Adc, V}_{CE} = 1.0 \text{ Vdc)} \\ \text{(I}_{C} = 150 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc)} \\ \text{(I}_{C} = 500 \text{ mAdc, V}_{CE} = 2.0 \text{ Vdc)} \end{array}$	20 40 80 100 40	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)		0.4 0.75	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage	0.75	0.95	

NPN General Purpose Amplifier (Continued)

Electrical Characteristics $T_A = 25^{\circ}\text{C}$ unless otherwise noted (Continued)

Symbol		Parameter	Min	Max	Units
MALL-SIGNAL	CHARACTERISTICS				
f _T	Current Gain—Ban (I _C = 20 mAdc, V	dwidth Product V _{CE} = 10 Vdc, f = 100 MHz)	250		MHz
C _{cb}	Collector-Base Cap (V _{CB} = 5.0 Vdc,	pacitance $I_E = 0, f = 100 \text{ kHz}$		6.5	pF
C _{eb}	Emitter-Base Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 100 kHz)			30	pF
h _{ie}	Input Impedance (I _C = 1.0 mAdc,	ince nAdc, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		15	kΩ
h _{re}	Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		0.1	8.0	× 10 ⁻⁴
h _{fe}		Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		500	
h _{oe}	Output Admittance (I _C = 1.0 mAdc,	V _{CE} = 10 Vdc, f = 1.0 kHz)	1.0	30	μmhos
VITCHING CHA	RACTERISTICS				
t _d	Delay Time	(V _{CC} = 30 Vdc, V _{EB} = 0.2 Vdc,		15	ns
t _r	Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)		20	ns
t _s	Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$		225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$		30	ns

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 13.

MMBT4403

TL/G/10100-5

TL/G/10100-1

PNP General Purpose Amplifier

Symbol	Parameter	Min	Max	Units
F CHARACTE	RISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	40		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 0.1 \text{ mAdc}, I_E = 0$)	40		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage $(I_E=0.1 \text{ mAdc}, I_C=0)$	5.0		Vdc
<u> </u>	Base Cutoff Current (V _{CE} = 35 Vdc, V _{BE} = 0.4 Vdc)		0.1	μAdc
ICEX	Collector Cutoff Current (V _{CE} = 35 Vdc, V _{BE} = 0.4 Vdc)		0.1	μAdc
N CHARACTE	RISTICS			
h _{FE}	DC Current Gain $ \begin{aligned} &(I_C = 0.1 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc)} \\ &(I_C = 1.0 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc)} \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc)} \\ &(I_C = 150 \text{ mAdc, } V_{CE} = 2.0 \text{ Vdc), } \text{(Note 1)} \\ &(I_C = 500 \text{ mAdc, } V_{CE} = 2.0 \text{ Vdc), } \text{(Note 1)} \end{aligned} $	30 60 100 100 20	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage, (Note 1) ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)		0.4 0.75	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage, (Note 1) (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	0.75	0.95 1.3	Vdc
MALL-SIGNAL	CHARACTERISTICS			
f _T	Current Gain—Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	200		MHz
C _{cb}	Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)		8.5	pF
C _{eb}	Emitter-Base Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 140 kHz)		30	pF

PNP General Purpose Amplifier (Continued)

$\textbf{Electrical Characteristics} \ T_{A} = 25^{\circ}\text{C unless otherwise noted (Continued)}$

Symbol		Min	Max	Units	
WITCHING CHA	RACTERISTICS				
t _d	Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE} = 2.0 \text{ Vdc},$		15	ns
t _r	Rise Time	$I_C = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$		20	ns
t _s	Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$		225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$		30	ns

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 63.

2N5086 2N5087

MMBT5086 MMBT5087

TL/G/10100-5

TL/G/10100-1

PNP General Purpose Amplifier

Symbol	Parameter		Min	Max	Units
CHARACTER	RISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)		50		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage $(I_C = 100 \mu Adc, I_E = 0)$		50		Vdc
Ісво	Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 35 \text{ Vdc}, I_E = 0)$			10 50	nAdc
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 3.0 \text{ Vdc}, I_{C} = 0)$			50	nAdc
CHARACTER	ISTICS				
h _{FE}	DC Current Gain $ (I_C = 100 \ \mu Adc, V_{CE} = 5.0 \ Vdc) $ $ (I_C = 1.0 \ mAdc, V_{CE} = 5.0 \ Vdc) $ $ (I_C = 10 \ mAdc, V_{CE} = 5.0 \ Vdc), (Note 1) $	2N5086 2N5087 2N5086 2N5087 2N5086 2N5087	150 250 150 250 150 250	500 800	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)			0.3	Vdc
V _{BE(on)}	Base-Emitter On Voltage (I _C = 1.0 mAdc, V _{CF} = 5.0 Vdc)			0.85	Vdc

PNP General Purpose Amplifier (Continued)

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted (Continued)

Symbol	Parameter		Min	Max	Units
MALL-SIGNAI	L CHARACTERISTICS				
f _T	Current Gain—Bandwidth Product (I _C = 50 μ Adc, V _{CE} = 5.0 Vdc, f = 20 MHz)		40		MHz
C _{cb}	Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kHz)			4.0	pF
h _{fe}	Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	2N5086 2N5087	150 250	600 900	
NF	Noise Figure $ \begin{array}{l} \text{Noise Figure} \\ \text{(I}_{C} = 20~\mu\text{Adc, V}_{CE} = 5.0~\text{Vdc, R}_{S} = 10~\text{k}\Omega, \\ \text{f} = 10~\text{Hz to 15.7 kHz)} \\ \text{(I}_{C} = 100~\mu\text{Adc, V}_{CE} = 5.0~\text{Vdc, R}_{S} = 3.0~\text{k}\Omega, \\ \text{f} = 1.0~\text{kHz)} \end{array} $	2N5086 2N5087 2N5086 2N5087		3.0 2.0 3.0 2.0	dB

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 62.

2N5088 2N5089

MMBT5088 MMBT5089

TL/G/10100-5

TL/G/10100-1

NPN General Purpose Amplifier

Symbol	Parameter		Min	Max	Units
F CHARACTE	RISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	2N5088 2N5089	30 25		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	2N5088 2N5089	35 30		Vdc
ICBO	Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	2N5088 2N5089		50 50	nAdc
^I EBO	Emitter Cutoff Current $(V_{EB(off)} = 3.0 \text{ Vdc}, I_C = 0)$ $(V_{EB(off)} = 4.5 \text{ Vdc}, I_C = 0)$			50 100	nAdc
CHARACTER	IISTICS				
h _{FE}	DC Current Gain (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc) (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc), (Note 1)	2N5088 2N5089 2N5088 2N5089 2N5088 2N5089	300 400 350 450 300 400	900 1200	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 1.0 mAdc, I _B = 1.0 mAdc)			0.5	Vdc
V _{BE(on)}	Base-Emitter On Voltage (I _C = 10 mAdc, V _{CF} = 5.0 Vdc)			0.8	Vdc

NPN General Purpose Amplifier (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

Symbol	Parameter		Min	Max	Units
SMALL-SIGNAL	_ CHARACTERISTICS				
f _T	Current Gain—Bandwidth Product (I _C = 500 μAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)		50		MHz
C _{cb}	Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kHz)			4.0	pF
C _{eb}	Emitter-Base Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 100 kHz)			10	pF
h _{fe}	Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	2N5088 2N5089	350 450	1400 1800	
NF	Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 10 k Ω , f = 10 Hz to 15.7 kHz)	2N5088 2N5089		3.0 2.0	dB

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 07.

PN5179

MMBT5179

TL/G/10100-5

TL/G/10100-1

NPN RF Transistor

TL/G/10100-12

Symbol	Parameter	Min	Max	Units
F CHARACTER	ISTICS			
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage, (Note 2) $(I_C = 30 \text{ mAdc}, I_B = 0)$	12		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 0.001 \text{ mAdc}, I_E = 0$)	20	,	Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 0.01 \text{ mAdc}, I_C = 0$)	2.5		Vdc
Ісво	Collector Cutoff Current ($V_{CB} = 15 \text{ Vdc}$, $I_E = 0$) ($V_{CB} = 15 \text{ Vdc}$, $I_E = 0$, $T_A = 150$ °C)		0.02 1.0	μAdc
CHARACTERI	STICS			
h _{FE}	DC Current Gain (I _C = 3.0 mAdc, V _{CE} = 1.0 Vdc)	25	250	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)		0.4	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)		1.0	Vdc
ALL-SIGNAL C	HARACTERISTICS			
f _T	Current Gain—Bandwidth Product, (Note 1) (I _C = 5.0 mAdc, V _{CE} = 6.0 Vdc, f = 100 MHz)	900	2000	MHz
C _{cb}	Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 to 1.0 MHz)		1.0	pF
h _{fe}	Small-Signal Current Gain (I _C = 2.0 mAdc, V _{CE} = 6.0 Vdc, f = 1.0 kHz)	25	300	
rb′C _c	Collector Base Time Constant ($I_E = 2.0 \text{ mAdc}, V_{CB} = 6.0 \text{ Vdc}, f = 31.9 \text{ MHz}$)	3.0	14	ps
NF	Noise Figure (I _C = 1.5 mAdc, V_{CE} = 6.0 Vdc, R_S = 50 Ω , f = 200 MHz)		4.5	dB

NPN RF Transistor (Continued)

Symbol	Parameter	Min	Max	Units
FUNCTIONAL TEST	г			
G _{pe}	Common-Emitter Amplifier Power Gain <i>(Figure 1)</i> (V _{CE} = 6.0 Vdc, I _C = 5.0 mAdc, f = 200 MHz)	15		dB
P _{out}	Power Output (V _{CB} = 10 Vdc, I _E = 12 mAdc, f ≥ 500 MHz)	20		mW

Note 1: f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

Note 2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 3: For characteristics curves, see Process 40.

MMBT5401

TL/G/10100-5

TL/G/10100-1

PNP General Purpose Amplifier

Electrical Characteristics $T_A = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERIST	rics			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	150		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	160		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	5.0		Vdc
Ісво	Collector Cutoff Current $ (V_{CB} = 120 \text{ Vdc, I}_E = 0) $ $ (V_{CB} = 120 \text{ Vdc, I}_E = 0, T_A = 100^{\circ}\text{C}) $		50 50	nAdc μAdc
IEBO	Emitter Cutoff Current $(V_{EB} = 3.0 \text{ Vdc}, I_{C} = 0)$		50	nAdc
HARACTERIST	ICS (Note 1)			
h _{FE}	DC Current Gain $ \begin{aligned} &\text{(I}_{\text{C}} = 1.0 \text{ mAdc, V}_{\text{CE}} = 5.0 \text{ Vdc)} \\ &\text{(I}_{\text{C}} = 10 \text{ mAdc, V}_{\text{CE}} = 5.0 \text{ Vdc)} \\ &\text{(I}_{\text{C}} = 50 \text{ mAdc, V}_{\text{CE}} = 5.0 \text{ Vdc)} \end{aligned} $	50 60 50	240	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		0.20 0.5	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		1.0 1.0	Vdc

PNP General Purpose Amplifier (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

Symbol	Parameter	Min	Max	Units
SMALL-SIGNA	AL CHARACTERISTICS			
fτ	Current Gain—Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	100	300	MHz
c _{obo}	Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$		6.0	pF
NF	Noise Figure (I _C = 250 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 10 Hz to 15.7 kHz)		8.0	dB

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 74.

2N5457 2N5458 2N5459 MMBF5457 MMBF5458 MMBF5459

TL/G/10100-6

TL/G/10100-2

N-Channel JFET Transistor

Symbol	Parameter		Min	Тур	Max	Units
FF CHARACT	ERISTICS			•		
V _{(BR)GSS}	Gate-Source Breakdown Voltage $(I_G = -10 \mu Adc, V_{DS} = 0)$		-25			Vdc
Igss	Gate Reverse Current $ \begin{aligned} (V_{GS} = -15 \text{ Vdc}, V_{DS} = 0) \\ (V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C}) \end{aligned} $				-1.0 -200	nAdc
V _{GS(off)}	Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	2N5457 2N5458 2N5459	-0.5 -1.0 -2.0		-6.0 -7.0 -8.0	Vdc
V _{GS}	Gate Source Voltage $(V_{DS} = 15 \text{ Vdc}, I_D = 100 \mu\text{Adc})$ $(V_{DS} = 15 \text{ Vdc}, I_D = 200 \mu\text{Adc})$ $(V_{DS} = 15 \text{ Vdc}, I_D = 400 \mu\text{Adc})$	2N5457 2N5458 2N5459		-2.5 -3.5 -4.5		Vdc
N CHARACTE	ERISTICS					
DSS	Zero-Gate-Voltage Drain Current, (Note 1) (V _{DS} = 15 Vdc, V _{GS} = 0)	2N5457 2N5458 2N5459	1.0 2.0 4.0	3.0 6.0 9.0	5.0 9.0 16	mAdo

$\textbf{Electrical Characteristics} \ \textbf{T}_{A} = 25^{\circ} \textbf{C} \ \text{unless otherwise noted (Continued)}$

Symbol	Parameter		Min	Тур	Max	Units
MALL-SIGN	NAL CHARACTERISTICS					
y _{fs}	Forward Transfer Admittance Common Source, (Note 1) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	2N5457 2N5458 2N5459	1000 1500 2000		5000 5500 6000	μmhos
y _{os}	Output Admittance Common Source, (Note 1) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)			10	50	μmhos
C _{iss}	Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)			4.5	7.0	pF
C _{rss}	Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)			1.5	3.0	pF

Note 1: Pulse Width \leq 630 ms, Duty Cycle \leq 10%.

Note 2: For characteristics curves, see Process 55.

2N5484 2N5485 2N5486 MMBF5484 MMBF5485 MMBF5486

TL/G/10100-6

TL/G/10100-2

N-Channel JFET Transistors for RF Amplifiers

Electrical Characteristics $T_A = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter		Min	Max	Units
F CHARACT	ERISTICS				
V _{(BR)GSS}	Gate-Source Breakdown Voltage $(I_G = -1.0 \mu Adc, V_{DS} = 0)$		-25		Vdc
lgss	Gate Reverse Current $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -20 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$			1.0 0.2	nAdc μAdc
V _{GS(off)}	Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	2N5484 2N5485 2N5486	-0.3 -1.0 -2.0	-3.0 -4.0 -6.0	Vdc
CHARACTE	RISTICS				
loss	Zero-Gate-Voltage Drain Current (V _{DS} = 15 Vdc, V _{GS} = 0)	2N5484 2N5485 2N5486	1.0 4.0 8.0	5.0 10 20	mAdc
MALL-SIGNAL	CHARACTERISTICS			.	
y _{fs}	Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	2N5484 2N5485 2N5486	3000 3500 4000	6000 7000 8000	μmhos
Re(y _{is})	Input Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 400 MHz)	2N5484 2N5485, 2N5486		100 1000	μmhos
y _{os}	Output Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	2N5484 2N5485 2N5486		50 60 75	μmhos

N-Channel JFET Transistors for RF Amplifiers (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

Symbol	Parameter		Min	Max	Units
SMALL-SIG	NAL CHARACTERISTICS (Continued)				
Re(y _{os})	Output Transconductance $ (V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 100 \text{ MHz}) $ $ (V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 400 \text{ MHz}) $	2N5484 2N5485, 2N5486		75 100	μmhos
Re(y _{fs})	Forward Transconductance ($V_{DS}=15~Vdc,V_{GS}=0,f=100~MHz$) ($V_{DS}=15~Vdc,V_{GS}=0,f=400~MHz$)	2N5484 2N5485 2N5486	2500 3000 3500		μmhos
C _{iss}	Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)			5.0	pF
C _{rss}	Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)			1.0	pF
C _{oss}	Output Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)			2.0	pF
UNCTION	AL CHARACTERISTICS				
NF	Noise Figure $ \begin{array}{l} \text{Noise Figure} \\ \text{($V_{DS}=15$ Vdc, $V_{GS}=0$, $R_G=1.0$ M$\Omega, $f=1.0$ kHz)} \\ \text{($V_{DS}=15$ Vdc, $I_D=1.0$ mAdc, $R_G\approx1.0$ k$\Omega, $f=100$ MHz)} \\ \text{($V_{DS}=15$ Vdc, $I_D=4.0$ mAdc, $R_G\approx1.0$ k$\Omega, $f=100$ MHz)} \\ \text{($V_{DS}=15$ Vdc, $I_D=4.0$ mAdc, $R_G\approx1.0$ k$\Omega, $f=400$ MHz)} \end{array} $	2N5484 2N5485, 2N5486 2N5485, 2N5486		2.5 3.0 2.0 4.0	dB
G _{ps}	Common Source Power Gain (V _{DS} = 15 Vdc, I _D = 1.0 mAdc, f = 100 MHz) (V _{DS} = 15 Vdc, I _D = 4.0 mAdc, f = 100 MHz) (V _{DS} = 15 Vdc, I _D = 4.0 mAdc, f = 400 MHz)	2N5484 2N5485, 2N5486 2N5485, 2N5486	16 18 10	25 30 20	dB

Note 1: For characteristics curves, see Process 50.

MMBT5551

TL/G/10100-5

TL/G/10100-1

NPN General Purpose Amplifier

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERIS'	rics			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	160		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	180		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	6.0		Vdc
СВО	Collector Cutoff Current $(V_{CB} = 120 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 120 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$		50 50	nAdc μAdc
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0)$		50	nAdc
HARACTERIST	ics			
h _{FE}	DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	80 80 20	250	
V _{CE(sat)}	Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAde}$, $I_B = 1.0 \text{ mAde}$) ($I_C = 50 \text{ mAde}$, $I_B = 5.0 \text{ mAde}$)		0.15 0.25	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)		1.0 1.0	Vdc

NPN General Purpose Amplifier (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

Symbol	Parameter	Min	Max	Units
ALL-SIGNAL CI	HARACTERISTICS			
f _T	Current Gain—Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	100	300	MHz
C _{obo}	Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)		6.0	pF
C _{ibo}	Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		20	pF
h _{fe}	Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	50	200	
NF	Noise Figure (I _C = 250 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 10 Hz to 15.7 kHz)		8.0	dB

Note 1: Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

Note 2: For characteristics curves, see Process 16.

MMBT5771

TL/G/10100-5

TL/G/10100-1

PNP Switching Transistor

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTE	RISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage (I _C = 3.0 mAdc) (Note 1)	15		Vdc
V _{(BR)CES}	Collector-Emitter Breakdown Voltage ($I_C = 100 \mu$ Adc)	15		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu$ Adc)	15		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$)	4.5		Vdc
Ісво	Collector Cutoff Current (V _{CB} = 8.0 Vdc)		10	nA
ICES	Collector Cutoff Current ($V_{CE} = 8.0 \text{ Vdc}$) ($V_{CE} = 8.0 \text{ Vdc}$, $T_A = 125^{\circ}\text{C}$)		10 5.0	nA μA
I _{EBO}	Emitter Cutoff Current (V _{EB} = 4.5 Vdc)		1.0	μΑ
CHARACTER	RISTICS			
h _{FE}	DC Current Gain ($I_C = 1.0$ mAdc, $V_{CE} = 0.5$ Vdc) (Note 1) ($I_C = 10$ mAdc, $V_{CE} = 0.3$ Vdc) (Note 1) ($I_C = 50$ mAdc, $V_{CE} = 1.0$ Vdc) (Note 1) ($I_C = 10$ mAdc, $V_{CE} = 0.3$ Vdc, $T_A = -55$ °C)	35 50 40 20	120	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 1) ($I_C = 1.0 \text{ mAdc}$, $I_B = 0.1 \text{ mAdc}$) ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		0.15 0.18 0.6	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 1) (I _C = 1.0 mAdc, I _B = 0.1 mAdc) (I _C = 10 mAdc, I _B = 1.0 mAdc)	0.75	0.8 0.95	Vdc

PNP Switching Transistor (Continued)

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted (Continued)

Symbol	Parameter	Min	Max	Units
ALL-SIGNAL CH	HARACTERISTICS			
C _{cb}	Collector-Base Capacitance (V _{CB} = 5.0 Vdc, f = 140 kHz)		3.0	pF
C _{eb}	Emitter-Base Capacitance (V _{BE} = 0.5 Vdc, f = 140 kHz)		3.5	pF
h _{fe}	Small-Signal Current Gain (I _C = 10 mA, V _{CE} = 10 Vdc, f = 100 MHz)	8.5		
ITCHING CHAR	ACTERISTICS			
t _S	Storage Time (I _C = 10 mAdc, I _{B1} \approx I _{B2} \approx 10 mAdc)		20	ns
t _{on}	Turn-On Time ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)		15	ns
t _{off}	Turn-Off Time (I _C = 10 mAdc, $I_{B1} = I_{B2} = 1.0$ mAdc)		20	ns

Note 1: Pulse Length = 300 μ s, Duty Cycle = 1.0%.

Note 2: For characteristics curves, see Process 65.

MMBT6427

MPQ6427*

TL/G/10100-5

TL/G/10100-1

NPN Darlington Transistor

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Тур	Max	Units
F CHARACTE	RISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	40			Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	40			Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	12			Vdc
ICEO	Collector Cutoff Current (V _{CE} = 25 Vdc, I _B = 0)			1.0	μAdc
I _{CBO}	Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$			50	nAdc
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 10 \text{ Vdc}, I_C = 0)$			50	nAdc
CHARACTER	RISTICS				
h _{FE}	DC Current Gain, (Note 1) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc) (I _C = 100 mAdc, V _{CE} = 5.0 Vdc) (I _C = 500 mAdc, V _{CE} = 5.0 Vdc)	10,000 20,000 14,000		100,000 200,000 140,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage ($I_C = 50 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)		0.71 0.9	1.2 1.5	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage ($I_C = 500 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$)		1.52	2.0	Vdc
V _{BE(on)}	Base-Emitter On Voltage (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)		1.24	1.75	Vdc

NPN Darlington Transistor (Continued)

Electrical Characteristics T_A = 25°C unless otherwise noted (Continued)

Symbol	Parameter	Min	Тур	Max	Units
SMALL-SIGNAL	CHARACTERISTICS				
C _{obo}	Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		5.4	7.0	pF
C _{ibo}	Input Capacitance (V _{BE} = 1.0 Vdc, I _C = 0, f = 1.0 MHz)		10	15	pF

Note 1: Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 05.

PN6715

MPS6715

TL/G/10100-1

TL/G/10100-4

NPN General Purpose Amplifier

TL/G/10100-8

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERIS'	TICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 10 mAdc, I _B = 0)	40		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	50		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	5.0		Vdc
I _{CBO}	Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$		0.1	μAdc
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 5.0 \text{ Vdc}, I_{C} = 0)$		0.1	μAdc
CHARACTERIST	ics			
h _{FE}	DC Current Gain ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1000 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	60 50	250	
V _{CE(sat)}	Collector-Emitter On Voltage (I _C = 1000 mAdc, I _B = 100 mAdc)		0.5	Vdc
V _{BE(on)}	Base-Emitter On Voltage (I _C = 1000 mAdc, V _{CE} = 1.0 Vdc)		1.2	Vdc
LL-SIGNAL CHA	ARACTERISTICS			
C _{cb}	Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		30	pF
h _{fe}	Small-Signal Current Gain (I _C = 50 mAdc, V _{CF} = 10 Vdc, f = 20 MHz)	2.5	25	

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 38.

MPS6717

TL/G/10100-4

NPN General Purpose Amplifier

TL/G/10100-8

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter		Min	Max	Units
F CHARACTE	RISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	MPS6717	80		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	MPS6717	80		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		5.0		Vdc
ICBO	Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)	MPS6717		0.1	μAdc
I _{EBO}	Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)			10	μAdc
CHARACTER	RISTICS (Note 1)				
h _{FE}	DC Current Gain (I _C = 50 mAdc, V_{CE} = 1.0 Vdc) (I _C = 250 mAdc, V_{CE} = 1.0 Vdc)		80 50	250	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 250 mAdc, I _B = 10 mAdc)		,	0.5	Vdc
V _{BE(on)}	Base-Emitter On Voltage (I _C = 250 mAdc, V _{CE} = 1.0 Vdc)			1.2	Vdc
ALL-SIGNAL	CHARACTERISTICS				
C _{cb}	Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)			30	pF
h _{fe}	Small-Signal Current Gain (I _C = 200 mAdc, V_{CE} = 5.0 Vdc, f = 20 MHz)		2.5	25	

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 39.

2N6724 2N6725 MPS6724 MPS6725

NPN Darlington Transistor

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter		Min	Max	Units
OFF CHARAC	TERISTICS				
V _{(BR)CES}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	2N6724/MPS6724 2N6725/MPS6725	40 50		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _C = 1.0 μAdc, I _E = 0)	2N6724/MPS6724 2N6725/MPS6725	50 60		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		12		Vdc
ІСВО	Collector Cutoff Current ($V_{CB} = 30 \text{ Vdc}$, $I_E = 0$) ($V_{CB} = 40 \text{ Vdc}$, $I_E = 0$)	2N6724/MPS6724 2N6725/MPS6725		100 100	nAdc
I _{EBO}	Emitter Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)		r	100	nAdc
ON CHARACT	ERISTICS (Note 1)	•			
h _{FE}	DC Current Gain (I _C = 200 mAdc, V _{CE} = 5.0 Vdc) (I _C = 1000 mAdc, V _{CE} = 5.0 Vdc)		25,000 4,000	40,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 1000 mAdc, I _B = 2.0 mAdc)		}	1.5	Vdc
V _{BE(on)}	Base-Emitter On Voltage (I _C = 1000 mAdc, V _{CE} = 5.0 Vdc)			2.0	Vdc
MALL-SIGNA	AL CHARACTERISTICS				
f _T	Current-Gain—Bandwidth Product (I _C = 200 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		100	1000	MHz
C _{cb}	Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)			10	pF
	Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%. aracteristics curves, see Process 05.				

PN6727

MPS6727

TL/G/10100-1

TL/G/10100-4

PNP General Purpose Amplifier

TL/G/10100-8

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Min	Max	Units
F CHARACTE	RISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	40		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	50		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	5.0		Vdc
I _{CBO}	Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)		0.1	μAdc
I _{EBO}	Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		0.1 ´	μAdc
CHARACTER	RISTICS (Note 1)			
h _{FE}	DC Current Gain (I _C = 100 mAdc, V_{CE} = 1.0 Vdc) (I _C = 1000 mAdc, V_{CE} = 1.0 Vdc)	60 50	250	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 1000 mAdc, I _B = 100 mAdc)		0.5	Vdc
V _{BE(on)}	Base-Emitter On Voltage (I _C = 1000 mAdc, V _{CE} = 1.0 Vdc)		1.2	Vdc
ALL-SIGNAL	CHARACTERISTICS			
Ccb	Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		30	pF
h _{fe}	Small-Signal Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	2.5	25	

Note 1: Pulse Test: Pulse Width \leq 300 $\mu\text{s},$ Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 78.

MPS6729

PNP General Purpose Amplifier

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
F CHARACTE	RISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	80		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	80		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	5.0		Vdc
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 5.0 \text{ Vdc}, I_{E} = 0)$		10	μAdo
Ісво	Collector Cutoff Current (V _{CB} = 60 Vdc, I _C = 0)		0.1	μAdo
CHARACTER	RISTICS (Note 1)			,
h _{FE}	DC Current Gain (I _C = 50 mAdc, V _{CE} = 1.0 Vdc) (I _C = 250 mAdc, V _{CE} = 1.0 Vdc)	80 50	250	
	DC Current Gain (I _C = 50 mAdc, V _{CE} = 1.0 Vdc)		250 0.5	Vdc
h _{FE}	DC Current Gain (I _C = 50 mAdc, V _{CE} = 1.0 Vdc) (I _C = 250 mAdc, V _{CE} = 1.0 Vdc) Collector-Emitter Saturation Voltage			Vdc Vdc
V _{CE(sat)}	DC Current Gain (I _C = 50 mAdc, V _{CE} = 1.0 Vdc) (I _C = 250 mAdc, V _{CE} = 1.0 Vdc) Collector-Emitter Saturation Voltage (I _C = 250 mAdc, I _B = 10 mAdc) Base-Emitter On Voltage		0.5	
V _{CE(sat)}	DC Current Gain $ (I_C = 50 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc)} $ $ (I_C = 250 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc)} $ $ (I_{C} = 250 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc)} $ $ (I_{C} = 250 \text{ mAdc, } I_{B} = 10 \text{ mAdc)} $ $ \text{Base-Emitter On Voltage} $ $ (I_{C} = 250 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc)} $		0.5	

Note 2: For characteristics curves, see Process 79.

2N7053

TL/G/10100-1

TL/G/10100-4

NPN Darlington Transistor

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERIST	rics			
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _C = 100 μAdc)	100		v
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc), (Note 1)	100		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _E = 100 mAdc)	12		V
ICBO	Collector Cutoff Current (V _{CB} = 80 Vdc)		100	nA
ICES	Collector Cutoff Current (V _{CE} = 80 Vdc)		200	nA
I _{EBO}	Emitter Cutoff Current (V _{EB} = 7.0 Vdc)		100	nA
HARACTERIST	CS (Note 1)			
HARACTERIST	CS (Note 1) DC Current Gain, (Note 1) (V _{CE} = 5 Vdc, I _C = 100 mAdc) (V _{CE} = 5 Vdc, I _C = 1.0 Adc)	10,000 1,000	20,000	dc
	DC Current Gain, (Note 1) (V _{CE} = 5 Vdc, I _C = 100 mAdc)		20,000	dc V
h _{FE}	DC Current Gain, (Note 1) (V _{CE} = 5 Vdc, I _C = 100 mAdc) (V _{CE} = 5 Vdc, I _C = 1.0 Adc) Collector-Emitter Saturation Voltage			
NFE VCE(sat) VBE(on)	DC Current Gain, (Note 1) (V _{CE} = 5 Vdc, I _C = 100 mAdc) (V _{CE} = 5 Vdc, I _C = 1.0 Adc) Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc) Base-Emitter On Voltage		1.5	V
NFE VCE(sat) VBE(on)	DC Current Gain, (Note 1) $(V_{CE} = 5 \text{ Vdc}, I_{C} = 100 \text{ mAdc})$ $(V_{CE} = 5 \text{ Vdc}, I_{C} = 1.0 \text{ Adc})$ $\text{Collector-Emitter Saturation Voltage}$ $(I_{C} = 100 \text{ mAdc}, I_{B} = 0.1 \text{ mAdc})$ $\text{Base-Emitter On Voltage}$ $(V_{BE} = 5 \text{ Vdc}, I_{C} = 100 \text{ mAdc})$		1.5	V

MPSW06

MMBTA06

TO - 236 (SOT - 23)

TL/G/10100-5

NPN General Purpose Amplifier

 $\textbf{Electrical Characteristics} \ T_{A} = 25^{\circ}\text{C unless otherwise noted}$

CHARACTERIS	TICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	80		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	4.0		Vdc
ICEO	Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)		0.1	μAdc
I _{CBO}	Collector Cutoff Current (V _{CB} = 80 Vdc, I _E = 0)		0.1	μAdc
HARACTERIST	ics		-	
h _{FE}	DC Current Gain $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	50 50		
	(IC - 100 HAde, VCE - 1.0 vde)	50	1	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	50	0.25	Vdc
V _{CE(sat)}	Collector-Emitter Saturation Voltage	50	0.25	Vdc Vdc
V _{BE(on)}	Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc) Base-Emitter On Voltage	50		

Note 1: Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 12.

MPSW13

MMBTA13

TL/G/10100-5

TL/G/10100-1

TL/G/10100-4

NPN Darlington Transistor

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERI	STICS			
V _{(BR)CES}	Collector-Emitter Breakdown Voltage ($I_C = 100 \mu Adc, I_B = 0$)	30		Vdc
Ісво	Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$		100	nAdc
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 10 \text{ Vdc}, I_C = 0)$		100	nAdc
CHARACTERIS	TICS (Note 1)			
h _{FE}	DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	5000 10,000		
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)		1.5	Vdc
V _{BE(on)}	Base-Emitter On Voltage ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)		2.0	Vdc
ALL-SIGNAL CH	HARACTERISTICS			
f _T	Current-Gain—Bandwidth Product, (Note 2) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	125		MHz

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: $f_T = |h_{fe}| \times f_{test}$.

Note 3: For characteristics curves, see Process 05.

MPSW42

MMBTA42

TL/G/10100-4

TL/G/10100-5

NPN High Voltage Amplifier

TL/G/10100-1

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERIS	TICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	300		Vdc
V _(BR) CBO	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	300		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	6.0		Vdc
ICBO	Collector Cutoff Current $(V_{CB}=200\ V_{C}, _E=0)$ $(V_{CB}=160\ V_{C}, _E=0)$		0.1	μAdc
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 6.0 \text{ Vdc}, I_C = 0)$ $(V_{EB} = 4.0 \text{ Vdc}, I_C = 0)$		0.1	μAdc
CHARACTERIST	ICS (Note 1)			
h _{FE}	DC Current Gain (I _C = 1.0 mAdc, V_{CE} = 10 Vdc) (I _C = 10 mAdc, V_{CE} = 10 Vdc) (I _C = 30 mAdc, V_{CE} = 10 Vdc)	25 40 40		
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc)		0.5	Vdc
V _{BE(sat)}	Base-Emitter Saturation Voltage ($I_C = 20 \text{ mAdc}$, $I_B = 2.0 \text{ mAdc}$)		0.9	Vdc
LL-SIGNAL CHA	ARACTERISTICS			
f _T	Current-Gain—Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	50		MHz
C _{cb}	Collector-Base Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)		3.0	pF
te 1: Pulse Test: Pul	•	<u></u>	distinction of the second second	3.0

MPSW56

MMBTA56

TL/G/10100-5

TL/G/10100-1

TL/G/10100-4

PNP General Purpose Amplifier

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERIS	STICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	80		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	4.0		Vdc
ICEO	Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)		0.1	μAdc
ІСВО	Collector Cutoff Current (V _{CB} = 80 Vdc, I _E = 0)		0.1	μAdc
HARACTERIST	TICS			
h _{FE}	DC Current Gain	50 50		
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)		0.25	Vdc
V _{BE(on)}	Base-Emitter On Voltage ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)		1.2	Vdc
LL-SIGNAL CH	ARACTERISTICS			
f _T	Current-Gain—Bandwidth Product (I _C = 100 mAdc, V _{CE} = 1.0 Vdc, f = 100 MHz)	50		MHz

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 67.

MPSW64

MMBTA64

TL/G/10100-5

TL/G/10100-4

PNP Darlington Transistor

TL/G/10100-1

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERI	STICS			
V _{(BR)CES}	Collector-Emitter Breakdown Voltage ($I_C = 100 \mu$ Adc, $V_{BE} = 0$)	30		Vdc
ICBO	Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$		100	nAdc
I _{EBO}	Emitter Cutoff Current $(V_{BE} = 10 \text{ Vdc}, I_C = 0)$		100	nAdc
CHARACTERIS	STICS (Note 1)			
h _{FE}	DC Current Gain (I _C = 10 mAdc, V_{CE} = 5.0 Vdc) (I _C = 100 mAdc, V_{CE} = 5.0 Vdc)	10,000 10,000		
V _{CE(sat)}	Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.01 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 0.1 \text{ mAdc}$)		1.0 1.5	Vdc
V _{BE(on)}	Base-Emitter On Voltage $ \begin{aligned} \text{(I}_{\text{C}} &= \text{10 mAdc, V}_{\text{CE}} = 5.0 \text{Vdc)} \\ \text{(I}_{\text{C}} &= \text{100 mAdc, V}_{\text{CE}} = 5.0 \text{Vdc)} \end{aligned} $		1.4 2.0	Vdc
ALL-SIGNAL CI	HARACTERISTICS			
f _T	Current-Gain—Bandwidth Product (I _C = 100 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	125		MHz

Note 2: For characteristics curves, see Process 61.

MPSW92

MMBTA92

TL/G/10100-5

TL/G/10100-4

PNP High Voltage Amplifier

TL/G/10100-1

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Max	Units
CHARACTERIS	TICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	300		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	300		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage $(I_E = 100 \mu Adc, I_C = 0)$	5.0		Vdc
I _{CBO}	Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 160 \text{ Vdc}, I_E = 0)$		0.25	μAdc
l _{EBO}	Emitter Cutoff Current		0.1	μAdc
	$(V_{EB} = 3.0 \text{ Vdc}, I_{C} = 0)$		0.1	μ
HARACTERIST		<u></u>		ļ
		25 40 25		
HARACTERIST	DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc)	40	0.5	Vde
HARACTERIST	ICS (Note 1) DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 30 mAdc, V _{CE} = 10 Vdc) Collector-Emitter Saturation Voltage	40		,
HARACTERIST hFE VCE(sat) VBE(sat)	ICS (Note 1) DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 30 mAdc, V _{CE} = 10 Vdc) Collector-Emitter Saturation Voltage (I _C = 20 mAdc, I _B = 2.0 mAdc) Base-Emitter Saturation Voltage	40	0.5	Vdc
HARACTERIST hFE VCE(sat) VBE(sat)	PICS (Note 1) DC Current Gain $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ Collector-Emitter Saturation Voltage $(I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mAdc})$ Base-Emitter Saturation Voltage $(I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mAdc})$	40	0.5	Vdc

Note 2: For characteristics curves, see Process 76.

MPSH10 MPSH11

MMBTH10 MMBTH11

TL/G/10100-5

TL/G/10100-3

NPN RF Transistors

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Min	Max	Units
FF CHARAC	TERISTICS			
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage, (Note 1) (I _C = 1.0 mAdc, I _B = 0)	25		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)	30		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	3.0		Vdc
СВО	Collector Cutoff Current $(V_{CB} = 25 \text{ Vdc}, I_E = 0)$		100	nAdc
I _{EBO}	Emitter Cutoff Current $(V_{EB} = 2.0 \text{ Vdc}, I_{C} = 0)$		100	nAdc
N CHARACT	ERISTICS			
h _{FE}	DC Current Gain (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	60		
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _C = 4.0 mAdc, I _B = 0.4 mAdc)		0.5	Vdc
V _{BE(on)}	Base-Emitter On Voltage ($I_C = 4.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)		0.95	Vdc

NPN RF Transistors (Continued)

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted (Continued)

Symbol	Parameter	Min	Max	Units	
MALL-SIGN	AL CHARACTERISTICS				
f _T	Current-Gain—Bandwidth Product (I _C = 4.0 mAdc, V_{CE} = 10 Vdc, f = 100 MHz)		650		MHz
C _{cb}	Collector-Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)			0.7	pF
C _{rb}	Common-Base Feedback Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	MPS-H10 (Note 2) MPS-H11 (Note 3)	0.35 0.6	0.65 0.9	pF
rb′C _c	Collector-Base Time Constant (I _C = 4.0 mAdc, V _{CB} = 10 Vdc, f = 31.8 MHz)			9.0	ps

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 42.

Note 3: For characteristics curves, see Process 47.

MPSH20

MMBTH20

TL/G/10100-5

TL/G/10100-3

NPN RF Transistor

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min	Тур	Max	Units
F CHARACTE	RISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	30			Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	40			Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	4.0			Vdc
Ісво	Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)			50	nAdc
CHARACTER	ISTICS				
h _{FE}	DC Current Gain (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	25			
ALL-SIGNAL (CHARACTERISTICS				
f _T	Current-Gain—Bandwidth Product (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	400	620		MHz
C _{cb}	Collector-Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$		0.5	0.65	pF
rb′C _c	Collector-Base Time Constant I _E = 4.0 mAdc, V _{CB} = 10 Vdc, f = 31.8 MHz)		10		ps
	Conversion Gain (213 MHz to 45 MHz) (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, Oscillator Injection = 200 mVdc)	18	23		dB

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 49.

MPSH81

MMBTH81

TL/G/10100-5

TL/G/10100-1

PNP RF Transistor

Electrical Characteristics T_A = 25°C unless otherwise noted

CHARACTERISTICS			
$V_{(BR)CEO}$ Collector-Emitter Breakdown Voltage, (I $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	Note 1) 20		Vdc
$V_{(BR)CBO}$ Collector-Base Breakdown Voltage $(I_C=10~\mu Adc, I_E=0)$	20		Vdc
$V_{(BR)EBO}$ Emitter-Base Breakdown Voltage $(I_E=10~\mu Adc, I_C=0)$	3.0		Vdc
I_{CBO} Collector Cutoff Current $(V_{CB} = 10 \text{ Vdc}, I_{E} = 0)$		100	nAdc
I_{EBO} Emitter Cutoff Current $(V_{EB} = 2.0 \text{ Vdc}, I_{C} = 0)$		100	nAdc
CHARACTERISTICS			
h _{FE} DC Current Gain $(I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	60		
V _{CE(sat)} Collector-Emitter Saturation Voltage (I _C = 5.0 mAdc, I _B = 0.5 mAdc)		0.5	Vdc
V _{BE(on)} Base-Emitter On Voltage (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)		0.9	Vdc
ALL-SIGNAL CHARACTERISTICS			
f_T Current-Gain—Bandwidth Product $(I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 10 \text{ Vdc})$	100 MHz) 600		MHz
C_{cb} Collector-Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$)	0.85	pF
C_{ce} Collector-Emitter Capacitance (I _B = 0, V _{CB} = 10 Vdc, f = 1.0 MHz))	0.65	pF

Note 1: Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

Note 2: For characteristics curves, see Process 75.

J108 J109 J110

TL/G/10100-2

N-Channel JFET Switch

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Parameter		Min	Max	Units
STICS				
Gate-Source Breakdown Voltage $(V_{DS} = 0, I_G = -10 \mu Adc)$		-25		Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$			-3.0 -200	nAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	J108 J109 J110	-3.0 -2.0 -0.5	-10 -6.0 -4.0	Vdc
STICS			-	r
Zero-Gate-Voltage Drain Current, (Note 1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	J108 J109 J110	80 40 10		mAdc
Drain-Source-On-Resistance $(V_{DS} \le 0.1 \text{Vdc}, V_{GS} = 0)$	J108 J109 J110		8.0 12 18	Ω
HARACTERISTICS				
Drain Gate + Source Gate On-Capacitance (V _{DS} = 0 Vdc, V _{GS} = 0, f = 1.0 MHz)			85	pF
Drain Gate Off-Capacitance $(V_{DS} = 0 \text{ Vdc}, V_{GS} = -10\text{V}, f = 1.0 \text{ MHz})$			15	pF
Source Gate Off-Capacitance $(V_{DS} = 0 \text{ Vdc}, V_{GS} = -10\text{V}, f = 1.0 \text{ MHz})$			15	pF
on 300 μs, Duty Cycle ≤ 2.0%.				
	Gate-Source Breakdown Voltage $(V_{DS} = 0, I_{G} = -10 \mu \text{Adc})$ Gate Reverse Current $(V_{GS} = -15 \text{Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$ Gate Source Cutoff Voltage $(V_{DS} = 15 \text{Vdc}, I_{D} = 10 \text{nAdc})$ STICS Zero-Gate-Voltage Drain Current, (Note 1) $(V_{DS} = 15 \text{Vdc}, V_{GS} = 0)$ Drain-Source-On-Resistance $(V_{DS} \le 0.1 \text{Vdc}, V_{GS} = 0)$ HARACTERISTICS Drain Gate + Source Gate On-Capacitance $(V_{DS} = 0 \text{Vdc}, V_{GS} = 0, f = 1.0 \text{MHz})$ Drain Gate Off-Capacitance $(V_{DS} = 0 \text{Vdc}, V_{GS} = -10 \text{V}, f = 1.0 \text{MHz})$ Source Gate Off-Capacitance $(V_{DS} = 0 \text{Vdc}, V_{GS} = -10 \text{V}, f = 1.0 \text{MHz})$	Gate-Source Breakdown Voltage $(V_{DS} = 0, I_{G} = -10 \ \mu \text{Adc})$ Gate Reverse Current $(V_{GS} = -15 \ \text{Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \ \text{Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$ Gate Source Cutoff Voltage $(V_{DS} = 15 \ \text{Vdc}, I_{D} = 10 \ \text{nAdc})$ J108 J109 J110 STICS Zero-Gate-Voltage Drain Current, (Note 1) $(V_{DS} = 15 \ \text{Vdc}, V_{GS} = 0)$ J108 J109 J110 Drain-Source-On-Resistance $(V_{DS} \le 0.1 \ \text{Vdc}, V_{GS} = 0)$ J108 J109 J110 HARACTERISTICS Drain Gate + Source Gate On-Capacitance $(V_{DS} = 0 \ \text{Vdc}, V_{GS} = 0, f = 1.0 \ \text{MHz})$ Drain Gate Off-Capacitance $(V_{DS} = 0 \ \text{Vdc}, V_{GS} = -10V, f = 1.0 \ \text{MHz})$ Source Gate Off-Capacitance $(V_{DS} = 0 \ \text{Vdc}, V_{GS} = -10V, f = 1.0 \ \text{MHz})$ Source Gate Off-Capacitance $(V_{DS} = 0 \ \text{Vdc}, V_{GS} = -10V, f = 1.0 \ \text{MHz})$ Source Gate Off-Capacitance $(V_{DS} = 0 \ \text{Vdc}, V_{GS} = -10V, f = 1.0 \ \text{MHz})$ Source Gate Off-Capacitance $(V_{DS} = 0 \ \text{Vdc}, V_{GS} = -10V, f = 1.0 \ \text{MHz})$ Source Gate Off-Capacitance $(V_{DS} = 0 \ \text{Vdc}, V_{GS} = -10V, f = 1.0 \ \text{MHz})$ Source Gate Off-Capacitance $(V_{DS} = 0 \ \text{Vdc}, V_{GS} = -10V, f = 1.0 \ \text{MHz})$	STICS Gate-Source Breakdown Voltage $(V_{DS} = 0, I_{G} = -10 \mu \text{Adc})$ Gate Reverse Current $(V_{GS} = -15 \text{Vdc}, V_{DS} = 0) \\ (V_{GS} = -15 \text{Vdc}, V_{DS} = 0, T_{A} = 100^{\circ}\text{C})$ Gate Source Cutoff Voltage $(V_{DS} = 15 \text{Vdc}, I_{D} = 10 \text{nAdc})$ J108 J109 J109 J100 J100 J108 STICS Zero-Gate-Voltage Drain Current, (Note 1) $(V_{DS} = 15 \text{Vdc}, V_{GS} = 0)$ J109 J100 J	STICS $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

J309 J310

MMBFJ309 MMBFJ310

TL/G/10100-6

TL/G/10100-2

N-Channel JFET Transistor for RF Amplifiers

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter		Min	Тур	Max	Units
FF CHARACT	TERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage ($I_G = -1.0 \mu Adc, V_{DS} = 0$)		-25			Vdc
I _{GSS}	Gate Reverse Current $ (V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 25^{\circ}\text{C}) $ $ (V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 125^{\circ}\text{C}) $				-1.0 -1.0	nΑ μΑ
V _{GS(off)}	Gate Source Cutoff Voltage (V _{DS} = 10 Vdc, I _D = 1.0 nAdc)	J309 J310	−1.0 −2.0		-4.0 -6.5	Vdc
N CHARACTI	ERISTICS					
I _{DSS}	Zero-Gate-Voltage Drain Current, (Note 1) (V _{DS} = 10 Vdc, V _{GS} = 0)	J309 J310	12 24		30 60	mA
V _{GS(f)}	Gate-Source Forward Voltage $(V_{DS} = 0, I_G = 1.0 \text{ mAdc})$				1.0	Vdc
MALL-SIGNA	L CHARACTERISTICS		Α.			
Re y _{is}	Common-Source Input Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)	J309 J310		0.7 0.5		mmhos
Re y _{os}	Common-Source Output Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)			0.25		mmhos
G _{pg}	Common-Gate Power Gain (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)			16		dB
Relyfs	Common-Source Forward Transconductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)			12		mmhos

N-Channel JFET Transistor for RF Amplifiers (Continued)

Electrical Characteristics $T_A = 25^{\circ}\text{C}$ unless otherwise noted (Continued)

Symbol	Parameter		Min	Тур	Max	Units
MALL-SIGN	IAL CHARACTERISTICS (Continued)					
Relyig	Common-Gate Input Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)			12		mmhos
9fs	Common-Gate Forward Transconductance ($V_{DS} = 10 \text{ Vdc}$, $I_D = 10 \text{ mAdc}$, $f = 1.0 \text{ kHz}$)	J309 J310	10,000 8,000		20,000 18,000	μmhos
9 _{os}	Common-Gate Output Conductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310			150 200	μmhos
9fg	Common-Gate Forward Transconductance, (Note 1) (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)	J309 J310		13,000 12,000		μmhos
9 _{og}	Common-Gate Output Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)	J309 J310		100 150		μmhos
C _{gd}	Gate-Drain Capacitance (V _{DS} = 0, V _{GS} = -10 Vdc, f = 1.0 MHz)			1.8	2.5	pF
C _{gs}	Gate-Source Capacitance (V _{DS} = 0, V _{GS} = -10 Vdc, f = 1.0 MHz)			4.3	5.0	pF
UNCTIONA	L CHARACTERISTICS					
NF	Noise Figure ($V_{DS} = 10 \text{ Vdc}$, $I_D = 10 \text{ mAdc}$, $f = 450 \text{ MHz}$)			1.5		dB
ē _n	Equivalent Short-Circuit Input Noise Voltge (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 Hz)			10		nV/√Hz

Note 1: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 3.0%.

Note 2: For characteristics curves, see Process 92.

Section 11 **Process Characteristics**

Section 11 Contents

DIODE PROCESS CHARACTERISTICS	
D1 Family Part Number List	11-5
D1 Product Family Curve Set	11-6
D2 Family Part Number List	11-7
D2 Product Family Curve Set	11-8
D3 Family Part Number List	11-9
D3 Product Family Curve Set	11-10
D4 Family Part Number List	11-11
D4 Product Family Curve Set	11-12
D6 Family Part Number List	11-13
D6 Product Family Curve Set	11-14
D13 Family Part Number List	11-16
D13 Product Family Curve Set	11-17
D14 Family Part Number List	11-18
D14 Product Family Curve Set	11-19
D15 Family Part Number List	11-20
D15 Product Family Curve Set	11-21
D18 Family Part Number List	11-23
D18 Product Family Curve Set	11-24
TRANSISTOR PROCESS CHARACTERISTICS	
Process 05 NPN Darlington	11-25
Process 06 NPN Darlington	11-28
Process 07 NPN Small Signal	11-30
Process 10 NPN Small Signal	11-33
Process 11 NPN Small Signal	11-35
Process 12 NPN Medium Power	11-37
Process 13 NPN Medium Power	11-41
Process 16 NPN High Voltage	11-43
Process 19 NPN General Purpose Amplifier	11-45
Process 21 NPN High Speed Switch	11-49
Process 22 NPN High Speed Switch	11-53
Process 23 NPN Small Signal	11-57
Process 25 NPN Memory Driver	11-61
Process 34 NPN Planar Power	11-65
Process 36 NPN High Voltage Planar Power	11-67
Process 37 NPN Medium Power	11-70
Process 38 NPN Medium Power	11-73
Process 39 NPN Medium Power	11-76
Process 40 NPN RF Amplifier	11-79
Process 42 NPN RF Amplifier	11-82
Process 43 NPN VHF/UHF Oscillator	11-87
Process 44 NPN AGC-RF Amplifier	11-91
Process 47 NPN RF-IF Amplifier	11-99
Process 48 NPN High Voltage Amplifier	11-104
Process 49 NPN RF Amplifier	
Process 61 PNP Darlington	
Process 62 PNP Small Signal	
Process 63 PNP General Purpose Amplifier	

Section 11 Contents (Continued)

Process E1 N-Channel Power MOSFET	11-252
Process E2 N-Channel Power MOSFET	11-255
Process E3 N-Channel Power MOSFET	11-258
Process E4 N-Channel Power MOSFET	11-261
Process F1 N-Channel Power MOSFET	11-264
Process F2 N-Channel Power MOSFET	11-267
Process F3 N-Channel Power MOSFET	11-270
Process F4 N-Channel Power MOSFET	11-273

D1-Family Part Number List

Part No.	Package Style
1N628	DO-35
1N629	DO-35
1N658	DO-35
1N660	DO-35
1N661	DO-35
1N3070	DO-35
1N4938	DO-35
IS920	DO-35
IS921	DO-35
IS922	DO-35
IS923	DO-35
BAV19	DO-35
BAV20	DO-35
BAV21	DO-35
BAX16	DO-35
BAY72	DO-35
BAY80	DO-35
FDH400	DO-35
FDH444	DO-35

Part No.	Package Style
FDLL628	LL-34
FDLL629	LL-34
FDLL658	LL-34
FDLL660	LL-34
FDLL661	LL-34
FDLL920	LL-34
FDLL921	LL-34
FDLL922	LL-34
FDLL923	LL-34
FDLL3070	LL-34
FDLL4938	LL-34

Part No.	Package Style
FDSO 1401	TO-236
FDSO 1402	TO-236
FDSO 1403	TO-236
FDSO 1404	TO-236
FDSO 1405	TO-236
FDSO 3070	TO-236

Curve Set Number D1

D2-Family Part Number List

Part No.	Package Style
1N456	DO-35
1N456A	DO-35
1N457	DO-35
1N457A	DO-35
1N458	DO-35
1N458A	DO-35
1N459	D0-35
1N459A	DO-35
1N461A	DO-35
1N462A	DO-35
1N463A	DO-35
1N482B	DO-35
1N483B	DO-35
1N484B	DO-35
1N485B	DO-35
1N3595	DO-35
1N6099	DO-35
BAY73	DO-35
BAY129	DO-35
FDH300	DO-35
FDH333	DO-35

	Part No.	Package Style
	FDLL300	LL-34
	FDLL333	LL-34
	FDLL456	LL-34
	FDLL456A	LL-34
	FDLL457	LL-34
	FDLL457A	LL-34
İ	FDLL458	LL-34
	FDLL458A	LL-34
	FDLL459	LL-34
	FDLL459A	LL-34
	FDLL461A	LL-34
	FDLL462A	LL-34
	FDLL463A	LL-34
	FDLL482B	LL-34
	FDLL483B	LL-34
	FDLL484B	LL-34
	FDLL485B	LL-34
	FDLL3595	LL-34
	FDLL6099	LL-34

Part No.	Package Style
FDSO 1501	TO-236
FDSO 1502	TO-236
FDSO 1503	TO-236
FDSO 1504	TO-236
FDSO 1505	TO-236
FDSO 3595	TO-236

Curve Set Number D2

Typical Electrical Characteristic Curves

25°C Ambient Temperature unless otherwise noted (Continued)

TL/G/10033-2

D3-Family Part Number List

Part No.	Package Style
1N4244	DO-7
1N4376	DO-7
BAY82	DO-7
FD700	DO-7
FD777	DO-7
FDLL700	LL-34
FDLL777	LL-34

Part No.	Package Style
FDSO 1701	TO-236
FDSO 1702	TO-236
FDSO 1703	TO-236
FDSO 1704	TO-236
FDSO 1705	TO-236

Curve Set Number D3

Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted

TL/G/10033-3

D4-Family Part Number List

Part No.	Package Style
1N625	DO-35
1N626	DO-35
1N627	DO-35
1N659	DO-35
1N914	DO-35
1N914A	DO-35
1N914B	DO-35
1N916	DO-35
1N916A	DO-35
1N916B	DO-35
1N3064	DO-35
1N3600	DO-35
1N4009	DO-35
1N4146	DO-35
1N4147	DO-35
1N4148	DO-35
1N4149	DO-35
1N4150	DO-35
1N4151	DO-35
1N4152	DO-35
1N4153	DO-35
1N4154	DO-35
1N4305	DO-35
1N4446	DO-35
1N4447	DO-35
1N4448	DO-35
1N4449	DO-35
1N4450	DO-35
1N4454	DO-35
1N5282	DO-35
BA128	DO-35
BA130	DO-35
BA217	DO-35
BA218	DO-35
BAX13	DO-35
BAY71	DO-35 DO-35
FDH600 FDH666	DO-35 DO-35
FDH900	DO-35 DO-35
FDH900 FDH999	DO-35 DO-35
FDH1000	DO-35 DO-35
FDH 1000	DO-35

Part	Package
No.	Style
FDLL600	LL-34
FDLL625	LL-34
FDLL626	LL-34
FDLL627	LL-34
FDLL659	LL-34
FDLL666	LL-34
FDLL900	LL-34
FDLL914	LL-34
FDLL914A	LL-34
FDLL914B	LL-34
FDLL916	LL-34
FDLL916A	LL-34
FDLL916B	LL-34
FDLL999	LL-34
FDLL1000	LL-34
FDLL3064	LL-34
FDLL3600	LL-34
FDLL4146	LL-34
FDLL4147	LL-34
FDLL4148	LL-34
FDLL4149	LL-34
FDLL4150	LL-34
FDLL4151	LL-34
FDLL4152	LL-34
FDLL4153	LL-34
FDLL4154	LL-34
FDLL4305	LL-34
FDLL4446	LL-34
FDLL4447	LL-34
FDLL4448	LL-34
FDLL4449	LL-34
FDLL4450	LL-34
FDLL4454	LL-34

Part No.	Package Style
110.	Otyle
FDSO 914	TO-236
FDSO 1201	TO-236
FDSO 1202	TO-236
FDSO 1203	TO-236
FDSO 1204	TO-236
FDSO 1205	TO-236
FDSO 4148	TO-236
FDSO 4448	TO-236
BAS16	TO-236
BAV17	TO-236
BAV18	TO-236
BAV70	TO-236
BAV74	TO-236
BAV99	TO-236
BAW56	TO-236
BAW75	TO-236
BAW76	TO-236

Pair & Quad

*See Test Circuit D-18

1N4306 1N4307

Curve Set Number D4

Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted

TL/G/10033-4

D6-Family Part Number List

Part	Package
No.	Style
FJT1100	DO-7
FJT1101	DO-7

Part No.	Package Style
FDSO 1300 Family	TO-236
FDSO 1301	TO-236

Curve Set Number D6

Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted

Test Circuits

A Bound Circuit for Operational Amplifiers

TL/G/10033-6

The bound circuit prevents overloading and saturation of operational amplifiers. The circuit has negligible effect on the operational amplifier until overload conditions occur. The use of the low leakage picoampere diode permits realization of extremely high input impedance for normal input voltages.

MOS FET Protection Circuit

TL/G/10033-7

The picoampere diode affords excellent gate voltage protection while maintaining the DC input impedance at about one million megohms. In addition the very low capacity of the FJT1100 will have a relatively small effect on the circuit input capacity.

Peak Follower Circuit

Output Voltage of the Peak Follower Circuit vs Time

TL/G/10033-9

A nearly constant voltage peak follower circuit is available by using a picoampere diode. A comparison between the use of the FJT1100 and a "low leakage" FDH333 diode in the circuit is shown in the curves of V_{OUT} vs Time.

D13-Family Part Number List

Part	Package
No.	Style
1N746*	DO-35
1N747*	DO-35
1N748*	DO-35
1N749*	DO-35
1N750*	DO-35
1N751*	DO-35
1N752*	DO-35
1N753*	DO-35
1N754*	DO-35
1N755*	DO-35
1N756*	DO-35
1N757*	DO-35
1N758*	DO-35
1N759*	DO-35
1N957**	DO-35
1N958**	DO-35
1N959**	DO-35
1N960**	DO-35
1N961**	DO-35
1N962**	DO-35
1N963**	DO-35
1N964**	DO-35
1N965**	DO-35
1N966**	DO-35
1N967**	DO-35
1N968**	DO-35
1N969**	DO-35
1N970**	DO <u>-</u> 35
1N971**	DO-35
1N972**	DO-35
1N973**	DO-35

Part	Package
No.	Style
1N5226**	DO-35
1N5227**	DO-35
1N5228**	DO-35
1N5229**	DO-35
1N5230**	DO-35
1N5231**	DO-35
1N5232**	DO-35
1N5233**	DO-35
1N5234**	DO-35
1N5235**	DO-35
1N5236**	DO-35
1N5237**	DO-35
1N5238**	DO-35
1N5239**	DO-35
1N5240**	DO-35
1N5241**	DO-35
1N5242**	DO-35
1N5243**	DO-35
1N5244**	DO-35
1N5245**	DO-35
1N5246**	DO-35
1N5247**	DO-35
1N5248**	DO-35
1N5249**	DO-35
1N5250**	DO-35
1N5251**	DO-35
1N5252**	DO-35
1N5253**	DO-35
1N5254**	DO-35
1N5255**	DO-35
1N5256**	DO-35
1N5257**	DO-35

Note:

^{*1}N746-1N759 Type numbers with suffix "A" = $\pm 5\%$ tolerance nominal Vz.

^{**1}N957-1N973 Type numbers without suffix = $\pm 10\%$ tolerance to nominal Vz.

^{**1}N957-1N973 Type numbers and 1N5226-1N5257 Type numbers with suffix "A" = ±10% tolerance nominal Vz. With suffix "B" = ±5% tolerance to nominal Vz. No suffix = ±20% tolerance to nominal Vz.

Curve Set Number D13

Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted

Test Circuit

NOISE DENSITY MEASUREMENT CIRCUIT

1N4099-1N4121 1N4620-1N4627

D14-Family Part Number List

Part No.	Package Style
1N4728*	DO-41
1N4729*	DO-41
1N4730*	DO-41
1N4731*	DO-41
1N4732*	DO-41
1N4733*	DO-41
1N4734*	DO-41
1N4735*	DO-41
1N4736*	DO-41
1N4737*	DO-41
1N4738*	DO-41
1N4739*	DO-41
1N4740*	DO-41
1N4742*	DO-41
1N4743*	DO-41
1N4744*	DO-41
1N4745*	DO-41
1N4746*	DO-41
1N4747*	DO-41
1N4748*	DO-41
1N4749*	DO-41
1N4750*	DO-41
1N4751*	DO-41
1N4752*	DO-41

Note:

1N4728-1N4752 Type numbers.

With suffix "A" = $\pm 5\%$ tolerance to nominal Vz. Without suffix = $\pm 10\%$ tolerance to nominal Vz.

Curve Set Number D14

Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted

D15-Family Part Number List

Monolithic Air-Isolated Diode Arrays

Part No.	Package Style
1N5768	TO-85
1N5770	TO-85
1N5772	TO-85
1N5774	TO-86
1N6100	TO-86
1N6101	6B
FASO2501	14 SOIC
FASO2503	14 SOIC
FASO2509	14 SOIC
FASO2510	14 SOIC
FASO2563	14 SOIC
FASO2564	14 SOIC
FASO2565	16 SOIC
FASO2566	16 SOIC
FASO2619	16 SOIC
FASO2620	14 SOIC
FASO2719	16 SOIC
FASO2720	14 SOIC
FASO6101	14 SOIC

Part	Package		
No.	Style		
FSA1410M	TO-96		
FSA1411M	TO-96		
FSA2002M	TO-85		
FSA2003M	TO-85		
FSA2500M	TO-85		
FSA2501M	TO-116-2		
FSA2501P	TO-116		
FSA2502M	TO-96		
FSA2503M	TO-116-2		
FSA2503P	TO-116		
FSA2504M	TO-86		
FSA2508P	9B		
FSA2509M	TO-116-2		
FSA2509P	TO-116		
FSA2510M	TO-116-2		
FSA2510P	TO-116		
FSA2563M	TO-116-2		
FSA2563P	TO-116		
FSA2564M	TO-116-2		
FSA2564P	TO-116		
FSA2565M	TO-116-2		
FSA2565P	TO-116		
FSA2566M	TO-116-2		
FSA2566P	TO-116		
FSA2619M	TO-6B (Ceramic DIP)		
FSA2619P	TO-9B (Plastic DIP)		
FSA2620M	TO-116-2		
FSA2620P	TO-116		
FSA2621M	TO-86		
FSA2719M	6B		
FSA2719P	9B		
FSA2720M	TO-116-2		
FSA2720P	TO-116		
FSA2721M	TO-86		

Curve Set Number D15

Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted

TL/G/10033-13

Test Circuits

To measure reverse current of an individual diode, the following test circuits are used:

Common Cathode Diodes

Test Circuits (Continued)

Test requirement for V_{FM} and t_{fr} is as shown below: all leads should be as short as possible

Input Current Pulse

0UT OUT TL/G/10033-17

TL/G/10033-18

t_{rr} REVERSE RECOVERY TIME TEST CIRCUIT

TL/G/10033-16

To Oscilloscope $t_r \ge 0.4 \text{ ns}$ $Z_{|N} = 50\Omega$

I_F I_{rr} O_{mA}

TL/G/10033-21

Pulse Generator

 $\begin{array}{l} t_r \leq 5 \text{ ns} \\ Z_{IN} = 50\Omega \\ \text{P.W.} = 1 \ \mu\text{s} \\ \text{Duty Cycle} = 2\% \end{array}$

TL/G/10033-20

TL/G/10033-19

AVF BRIDGE MATCHING CIRCUIT

TL/G/10033-22

Note 1: R Varies depending on the current range. For the most often used current ranges, R is as follows:

Current Range (amperes)	R (ohms)
10 ⁻⁵ to 10 ⁻⁴	106
10 ⁻⁴ to 10 ⁻³	105
10 ⁻³ to 10 ⁻²	104
or 10 ⁻ⁿ to 10 ⁻ⁿ + 1	10n+1

Note 2: V indicates mismtch of assembly.

AIR BRIDGE MATCHING CIRCUIT

Note 1: $V_{R2} = V_{R1} \pm 1\%$.

Note 2: $I_{R2} - I_{R1} = \Delta I_R$ (difference in I_R between diodes D1 and D2). To measure diodes D3 & D4, reverse cathode-anode terminal connections. Note 3: A is a center reading pico ammeter. ΔI_R indicated directly on A.

D18-Family Part Number List

Part No.	Package Style
1N4306	DO-7
1N4307	DO-7
FA Series	

Curve Set Number D18

Test Circuits for 1N4306/7 and FA Series

AVF DIODE MATCHING CIRCUITS

a.

b.

TL/G/10033-24

TL/G/10033-26

INPUT VOLTAGE
PULSE CONDITIONS
FOR PULSE V_f MATCHED
ASSEMBLES

FORWARD VOLTAGE
IMBALANCE OBSERVED
ON OSCILLOSCOPE M

TI /G/10033-25

- Pulse Rise Time (10 to 90% Amplitude) = 1.0 μs Max.
- t_f Pulse Fall Time (90 to 10% Amplitude) = 1.0 μ s Max.
- t_W Pulse Width (50% Amplitude) = 10 $\pm 2.0 \mu s$
- t_t Transient Time = 1.0 μ s Min.
- t_p Period = 1.0 ms
- V Voltage Input to Cirtcuit "A or B" = 10V to 100V Adjustable
- ΔV_F Forward Voltage Difference Between Diodes

(Measured Between Transient Times) = As Specified.

Note 1: R varies depending on the current range. For the most often used current ranges, R is as follows:

Current Range (Amperes) R (omhs) 10-5 to 10-4 105 10-4 to 10-3 105 10-3 to 10-2 104 or 10-n to 10-n+1 10n+1

Note 2: The input voltage pulse conditions shown above are employed at National Semiconductor in testing. The user may deviate from the specific conditions above with no variation in results providing the following general conditions are met:

- $a. \frac{t_W}{t_p} \le 0.01$
- b. t_w < 10 ms

c. Transients occurring during pulse rise and fall times are ignored in observing $\Delta V_{\text{F}}.$

∆IR DIODE MATCHING CIRCUIT

TL/G/10033-27

Note 1: $V_{R2} = -V_{R1} \pm 1\%$.

Note 2: $I_{R2} - I_{R1} = \Delta I_{R}$ (difference in I_{R} between two diodes under test).

Note 3: A is a center reading pico ammeter.

Process 05 NPN Darlington

DESCRIPTION

Process 05 is a monolithic, double-diffused, silicon epitaxial Darlington. Complement to Process 61.

APPLICATION

This device was designed for applications requiring extremely high current gain at collector currents to 1A.

PRINCIPAL DEVICE TYPES

TO-92 EBC: MPSA13 TO-92 ECB: 2N5306 TO-116: MPQA13

TO-202 EBC: D40C1-8, NSDU45 **TO-226 EBC:** MPS6724, MPSW13

TO-236: MMBTA13 **TO-237 EBC:** 2N6724

TL/G/10034-1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$)

Symbol	Conditions	Min	Тур	Max	Units
NF	$I_{C} = 1 \text{ mA V}_{CE} = 5V,$ $R_{S} = 100k, f = 1 \text{ kHz}$		2		dB
C _{CB}	$V_{CB} = 10V, I_E = 0, f = 1 MHz$		4	6	pF
h _{FE}	$I_{C} = 10 \text{ mA}, V_{CE} = 5V$ $I_{C} = 100 \text{ mA}, V_{CE} = 5V$ $I_{C} = 1A, V_{CE} = 5V$	4,000 8,000 3,000	40,000	200,000	
V _{CE(SAT)}	$I_C = 10 \text{ mA}, I_B = 10 \mu\text{A}$ $I_C = 100 \text{ mA}, I_B = 100 \mu\text{A}$			1.0 1.5	V V
V _{BE(ON)}	$I_C = 10 \text{ mA}, V_{CE} = 5V$ $I_C = 100 \text{ mA}, V_{CE} = 5V$		1.2 1.3	1.4 1.8	V V
h _{fe}	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0V,$ f = 1 kHz		60,000		
BV _{CES}	I _C = 100 μA	40			V
BV _{EBO}	I _E = 10 μA	12			V
ICES	$V_{CE} = 15V, V_{BE} = 0$			100	nA
Ісво	$V_{CB} = 30V, I_{E} = 0$			100	nA
I _{EBO}	V _{EB} = 10V, I _C = 0			100	nA
P _{D(max)} TO-202	T _C = 25°C T _A = 25°C	10 2			W W
TO-226	T _A = 25°C	1			w

Symbol	Conditions	Min	Тур	Max	Units
TO-237	T _C = 25°C	2			w
	T _A = 25°C	850			mW
TO-92	T _A = 25°C	600			mW
TO-236	$T_C = 25^{\circ}C$	350			mW
$\theta_{\sf JC}$					
TO-202	T _C = 25°C			12.5	°C/W
TO-237	$T_C = 25^{\circ}C$			62.5	°C/W
θ_{JA}					
TO-202	T _A = 25°C			62.5	°C/W
TO-226	T _A = 25°C			125	°C/W
TO-237	T _A = 25°C			147	°C/W
TO-92	T _A = 25°C			208	°C/W
T _{J(max)}	All Plastic Parts	150			°C

Process 06 NPN Darlington

TL/G/10034-4

DESCRIPTION

Process 06 is a monolithic, double-diffused, silicon epitaxial Darlington.

APPLICATION

This device is designed for applications requiring extremely high current gain at collector currents up to 1.5A and high breakdown voltage.

PRINCIPLE DEVICE TYPES

TO-202 EBC: NSDU45A TO-226 EBC: 2N7053 TO-237 EBC: 92PU45A TO-92 EBC: 2N7052 TO-92 ECB: 2N7051

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	$I_{C} = 1 \text{ mA}, I_{B} = 0$	100	,.		V
BV _{EBO}	I _E = 1 mA, I _C = 0	12			V
Ісво	V _{CB} = 80V, I _E = 0			100	nA
ICES	$V_{CE} = 80V, V_{BE} = 0$			100	nA
I _{EBO}	V _{EB} = 7V			100	nA
h _{FE}	$I_{C} = 10 \text{ mA}, V_{CE} = 5V$ $I_{C} = 100 \text{ mA}, V_{CE} = 5V$ $I_{C} = 1A, V_{CE} = 5V$	1,000 10,000 500	40,000	20,000 200,000	
V _{CE(s)}	$I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$		0.75	1.1	V
V _{BE(s)}	$I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$		1.3	1.5	V
C _{cb}	$V_{CB} = 10V, I_{E} = 0, f = 1 MHz$		3	6	pF
C _{ib}	$V_{EB} = 0.5V$, $I_{E} = 0$, $f = 1 \text{ MHz}$		14	20	pF
h _{fe}	$I_{C} = 100 \text{ mA}, V_{CE} = 5V, f = 20 \text{ MHz}$		8		
P _{D(max)} TO-202 TO-226 TO-237	$T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	12 2 1 2 850 700			W W W MW mW
T _{J(max)}	All Plastic Parts	150			°C

Process 07 NPN Small Signal

DESCRIPTION

Process 07 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 62.

APPLICATION

This device was designed for low noise, high gain, general purpose amplifier applications from 1 μ A to 25 mA collector current.

PRINCIPAL DEVICE TYPES

TO-18: 2N930

TO-92 EBC: 2N5088, PN2484

TO-236: MMBT5088

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$)

Symbol	Conditions	Min	Тур	Max	Units
NF (spot)	$I_C = 10 \mu A, V_{CE} = 5V,$ $R_S = 10k, f = 100 \text{ KHz}$		3	10	dB
NF (spot)	$I_{C} = 10 \mu A, V_{CE} = 5V,$ $R_{S} = 10k, f = 1 kHz$		1.5	4	dB
NF (spot)	$I_C = 10 \mu A, V_{CE} = 5V,$ $R_S = 10k, f = 10 kHz$		1.5	4	dB
NF (wideband)	$I_{C} = 10 \mu A, V_{CE} = 5V,$ $R_{S} = 10k, P_{BW} = 15.7 \text{ kHz}$		1.5	4	dB
h _{fe}	$I_{C} = 500 \mu A, V_{CE} = 5V,$ f = 20 MHz	3	6		
C _{ob}	V _{CB} = 5V, f = 1 MHz		1.7	3.0	pF
C _{eb}	V _{EB} = 0.50V, f = 1 MHz		5.5	8.0	pF
h _{FE}	$\begin{split} I_{C} &= 1 \; \mu \text{A, V}_{CE} = 5 \text{V} \\ I_{C} &= 10 \; \mu \text{A, V}_{CE} = 5 \text{V} \\ I_{C} &= 100 \; \mu \text{A, V}_{CE} = 5 \text{V} \\ I_{C} &= 500 \; \mu \text{A, V}_{CE} = 5 \text{V} \\ I_{C} &= 1 \; \text{mA, V}_{CE} = 5 \text{V} \\ I_{C} &= 20 \; \text{mA, V}_{CE} = 5 \text{V} \end{split}$	35 50 70 80 100 50	360	1000	
V _{CE(SAT)}	$I_C = 1 \text{ mA}, I_B = 0.10 \text{ mA}$ $I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.10 0.15	V V
V _{BE(SAT)}	I _C = 1 mA, I _B = 0.1 mA I _C = 10 mA, I _B = 1 mA			0.75 0.85	V V

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 1 mA	60			V
BV _{CBO}	$I_C = 10 \mu\text{A}$	60			V
BV _{EBO}	I _E = 10 μA	8			V
I _{CBO}	V _{CB} = 45V			100	nA
I _{EBO}	V _{EB} = 6V			100	nA
P _{D(max)} TO-18 TO-92 TO-236	T _A = 25°C T _A = 25°C T _C = 25°C	600 600 350			mW mW mW

SMALL SIGNAL CHARACTERISTICS (f = 1.0 kHz)

Symbol	Parameter	Conditions	Тур	Units	
h _{ie}	Input Resistance	$I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{V}$	15	kΩ	
h _{oe}	Output Conductance	$I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{V}$	15	μmho	
h _{re}	Voltage Feedback Ratio	$I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{V}$	425	×10 ⁻⁶	
h _{fe}	Small Signal Current Gain	$I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{V}$	400		
h _{ib}	Input Resistance	$I_{\rm C} = 1.0 \rm mA, V_{\rm CE} = 5.0 V$	27	Ω	

TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)

Collector Saturation Base-Emitter Saturation Contours of Constant Gain Voltage vs Collector Current Bandwidth Product (fT) Voltage vs Collector Current 0.25 V_{BE (SAT)} — BASE-EMITTER SATURATION VOLTA - COLLECTOR VOLTAGE (V) 7.0 0.20 0.8 6.0 4.0 0.15 3.0 0.1 0.4 2.0 0.05 0.2 0 O 1.0 0.1 10 100 0.1 1.0 10 1.0 10 IC - COLLECTOR CURRENT (mA) Ic - COLLECTOR CURRENT (mA) I_C - COLLECTOR CURRENT (mA) **Input and Output Normalized Collector Cutoff Maximum Power** Capacitance vs Reverse **Current vs Ambient** Dissipation vs CHARACTERISTICS RELATIVE TO VALUE AT TA = 25°C Bias Voltage Temperature **Ambient Temperature** 6.0 1 MHz POWER DISSIPATION CAPACITANCE (pF) 100 500 3.0 TO-18 400 TO 92 2.6 300 10 200 1.0 8.0 12.0 16.0 -AMBIENT TEMPERATURE (°C) - AMBIENT TEMPERATURE (°C) REVERSE BIAS VOLTAGE (V) Wideband Noise Figure vs **Contours of Constant Contours of Constant Source Resistance** Narrow Band Noise Figure **Narrow Band Noise Figure** V_{CE} = 5.0V POWER BANDWIDTH RESISTANCE (\O) RESISTANCE (12) - NOISE FIGURE (4B) 2k 1k 18 BANDWI BANDWIDTH = 200 cms 100 100 1k 2k Ic - COLLECTOR CURRENT (µA) i_C - COLLECTOR CURRENT (μA) R_8 - SOURCE RESISTANCE (Ω) TL/G/10034-62 **Contours of Constant Contours of Constant** Narrow Band Noise Figure **Narrow Band Noise Figure** Noise Figure vs Frequency 10k - SOURCE RESISTANCE (Ω) - SDURCE RESISTANCE (Ω) - NOISE FIGURE = 10 kΩ 2k 1k BANDWIDT f = 10 kHz 200 kHz BANDWIDTH = 2 kHz 108 1000 100 10-4 10-2 10-1 10 0.01 1.0 I_C - COLLECTOR CURRENT (μA) Ic - COLLECTOR CURRENT (mA) f - FREQUENCY (MHz) TL/G/10034-63

Process 07

Process 10 NPN Small Signal

TL/G/10034-65

DESCRIPTION

Process 10 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 68.

APPLICATION

This device was designed for general purpose amplifier applications at collector currents to 500 mA.

PRINCIPAL DEVICE TYPES

TO-92 EBC: PN100, PN2222

TO-92 ECB: 2N3415 **TO-116:** MPQ100

TO-236: MMBT100, 100A

16-SOIC: MMPQ100

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CBO}	I _C = 10 μA	75			٧
BV _{CEO}	I _C = 1 mA	45			٧
BV _{EBO}	I _E = 10 μA	6			٧
I _{CBO}	V _{CB} = 60V			50	nA
ICES	V _{CE} = 40V			50	nA
I _{EBO}	V _{EB} = 4V			50	nA
h _{FE}	$\begin{split} & I_{C} = 100 \ \mu\text{A}, V_{CE} = 1\text{V} \\ & I_{C} = 10 \ \text{mA}, V_{CE} = 1\text{V} \\ & I_{C} = 100 \ \text{mA}, V_{CE} = 1\text{V} \\ & I_{C} = 150 \ \text{mA}, V_{CE} = 5\text{V} \\ & I_{C} = 300 \ \text{mA}, V_{CE} = 5\text{V} \end{split}$	80 100 100 100 60	250	600	
V _{CE(s)}	$I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$			0.2	v
V _{BE(s)}	$I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$			0.85	٧
V _{CE(s)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}$			0.4	>
V _{BE(s)}	I _C = 200 mA, I _B = 20 mA			1.0	٧
C _{ob}	V _{CB} = 5V, f = 1 MHz		3.5	4.5	ρF
f _T	V _{CE} = 20V, I _C = 20 mA	200	300		MHz
ts	$I_C = 10 \text{ mA}, I_{B_1} = I_{B_2} = 1 \text{ mA}$		275		ns
tOFF	I _C = 150 mA, I _{B1} = I _{B2} = 15 mA		225		ns
NF	$I_{C} = 100 \mu A$, $V_{CE} = 5V$, $R_{G} = 2 k\Omega$, $f = 1 kHz$		1.5		dB
P _{D(max)} TO-92 TO-236	T _A = 25°C T _C = 25°C	600 350			mW mW

Process 11 NPN Small Signal

TL/G/10034-8

DESCRIPTION

Process 11 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 69.

APPLICATION

This device was designed for general purpose amplifier applications at collector currents to 300 mA.

PRINCIPAL DEVICE TYPES

TO-92 EBC: PN101 **TO-236:** MMBT101

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C)

Symbol	Conditions	Min	Тур	Max	Units
C _{ob}	V _{CB} = 10V, f = 1 MHz		3.0	4.0	pF
C _{ib}	V _{EB} = 0.5V, f = 1 MHz		16	25	pF
NF	$I_{C} = 100 \mu A, V_{CE} = 5V$ $R_{S} = 2 k\Omega, f = 1 kHz$		2.0		dB
f _T	$V_{CE} = 10V, I_{C} = 20 \text{ mA}$	150	250		MHz
h _{FE}	$V_{CE} = 1.0V$, $I_{C} = 1 \text{ mA}$ $V_{CE} = 1.0V$, $I_{C} = 100 \text{ mA}$ $V_{CE} = 1.0V$, $I_{C} = 150 \text{ mA}$	40 100 75	200	400	
V _{CE(SAT)}	$I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$			0.5	V
V _{BE(SAT)}	$I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$			1.0	٧
BV _{CBO}	I _C = 10 μA	80			
BV _{CEO}	I _C = 1 mA	65			
BV _{EBO}	I _E = 10 μA	6.0			
I _{CBO}	V _{CB} = 60V			50	nA
I _{CES}	V _{CE} = 60V			50	nA
I _{EBO}	V _{EB} = 4.0V			50	nA
P _{D(max)} TO-92 TO-236	T _A = 25°C T _C = 25°C	600 350			mW mW

Process 12 NPN Medium Power

TL/G/10034-10

DESCRIPTION

Process 12 was a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 67.

APPLICATION

This device was designed for general purpose medium power amplifiers and switches requiring collector currents to 0.5A and collector voltages up to 80V.

PRINCIPAL DEVICE TYPES

TO-39 EBC: 2N3019
TO-92 EBC: MPSA06
TO-116: MPQA06
TO-202 EBC: NSDU06
TO-226 EBC: MPSW06
TO-236: MMBTA06
TO-237 EBC: TN3019

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
ton	I _C = 150 mA, I _{B1} = 15 mA (<i>Figure 1</i>)		50		ns
^t OFF	I _C = 150 mA, I _{B2} = 15 mA (<i>Figure 1</i>)		400		ns
h _{fe}	$I_{C} = 50 \text{ mA}, V_{CE} = 10V,$ f = 20 MHz	4.0	6.5		
Cob	V _{CB} = 10V, f = 1 MHz		6.5	10	pF
C _{eb}	V _{EB} = 0.5V, f = 1 MHz			60	pF
h _{FE}	$I_{C} = 1 \text{ mA}, V_{CE} = 10V$ $I_{C} = 10 \text{ mA}, V_{CE} = 10V$ $I_{C} = 150 \text{ mA}, V_{CE} = 10V$ $I_{C} = 500 \text{ mA}, V_{CE} = 10V$	30 50 75 30	175	350	
V _{CE(SAT)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			0.2 0.8	V V
V _{BE(SAT)}	I _C = 100 mA, I _B = 10 mA I _C = 500 mA, I _B = 50 mA			0.90 1.20	> >
BV _{CEO}	I _C = 10 mA	65			٧
BV _{CBO}	I _C = 100 μA	100		,	٧
BV _{EBO}	I _C = 10 μA	7			V
Ісво	V _{CB} = 80V			100	nA
I _{EBO}	V _{EB} = 6V			100	nA

Symbol	Conditions	Min	Тур	Max	Units
P _{D(max)}					
TO-202	$T_C = 25^{\circ}C$	10			W
	$T_A = 25^{\circ}C$	2			W
TO-39	T _C = 25°C	7			W
	$T_A = 25^{\circ}C$	1 1			W
TO-226	$T_A = 25^{\circ}C$	1 1			W
TO-237	$T_C = 25^{\circ}C$	2			W
	$T_A = 25^{\circ}C$	850			mW
TO-92	$T_A = 25^{\circ}C$	600			mW
TO-236	T _C = 25°C	350	·		mW
TO-116	T _A = 25°C				
	(Total)	900			mW
	(Each Transistor)	500			mW

* One square inch of copper run

TL/G/10034-11

SMALL SIGNAL CHARACTERISTICS (f = 1.0 kHz)

Symbol	Parameter	Conditions	Тур	Units
h _{je}	Input Resistance	$I_{\rm C} = 1.0$ mA, $V_{\rm CE} = 5.0$ V	3000	Ω
h _{oe}	Output Conductance	I _C = 1.0 mA, V _{CE} = 5.0V	8.0	μmhos
h _{re}	Voltage Feedback Ratio	I _C = 1.0 mA, V _{CE} = 5.0V	2.1	×10-4
h _{fe}	Small Signal Current Gain	I _C = 1.0 mA, V _{CE} = 5.0V	100	

TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)

TL/G/10034-13

FIGURE 1. t_{ON} , t_{OFF} Test Circuit

Process 13 NPN Medium Power

DESCRIPTION

Process 13 is a non-overlay, double-diffused, silicon epitaxial device.

APPLICATION

This device is designed for use as medium power amplifiers and switches requiring collector currents of 100 μA to 500 mA.

TL/G/10034-16

ELECTRICAL CHARACTERISTICS ($T_{\Delta} = 25^{\circ}C$)

Symbol	Conditions	Min	Тур	Max	Units
t _{ON}	$I_{\rm C} = 150 {\rm mA}, I_{\rm B1} = 15 {\rm mA}$		35		ns
t _{OFF}	$I_{\rm C} = 150 \rm mA, I_{\rm B2} = 15 \rm mA$		250		ns
h _{fe}	$I_C = 20$ mA, $V_{CE} = 20$ V, $f = 100$ MHz	2.0	3.0		
NF (spot)	$I_C = 100 \mu A$, $V_{CE} = 10V$, $R_S = 1 k\Omega$, $f = 1 kHz$		2.0		dB
C _{ob}	V _{CB} = 10V, f = 1 MHz		4.5	8.0	рF
C _{ib}	$V_{EB} = 0.5V, f = 1 MHz$			35	pF
h _{FE}	$\begin{array}{c} \rm V_{CE} = 1.0V, I_{C} = 1.0 mA \\ \rm V_{CE} = 1.0V, I_{C} = 10 mA \\ \rm V_{CE} = 1.0V, I_{C} = 100 mA \\ \rm V_{CE} = 1.0V, I_{C} = 500 mA \\ \end{array}$	30 40 50 25	150	300	
V _{CE(SAT)}	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			0.2 0.5	> >
V _{BE(SAT)}	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			1.0 1.2	V V
BV _{CBO}	I _C = 100 μA	60			V
BV _{CEO}	I _C = 10 mA	35			٧
BV _{EBO}	I _C = 10 μA	6.0			٧
I _{CBO}	V _{CB} = 40V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA

Process 16 NPN High Voltage

TL/G/10034-19

DESCRIPTION

Process 16 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 74.

APPLICATION

This device was designed for general purpose high voltage amplifiers and gas discharge display driving.

PRINCIPAL DEVICE TYPES

TO-92 EBC: 2N5551 TO-236: MMBT5551

ELECTRICAL	CHARACTERISTICS	/T. =	25°C)
ELECTRICAL	CHARACTERISTICS	(20 0)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 1.0 mA	120			٧
BV _{CBO}	I _C = 10 μA	140			>
BV _{EBO}	I _E = 10 μA	6			>
Ісво	V _{CB} = 100V			100	nA
I _{EBO}	V _{EB} = 4.0V			100	nA
h _{FE}	$I_{C} = 1.0$ mA, $V_{CE} = 5.0$ V $I_{C} = 10$ mA, $V_{CE} = 5.0$ V $I_{C} = 50$ mA, $V_{CE} = 5.0$ V	40 50 20	120	300	
V _{CE(SAT)}	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$			0.15 0.30	V V
V _{BE(SAT)}	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}$			0.90 1.2	> >
f _T	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{V}, f = 100 \text{ MHz}$	100	220		MHz
C _{ob}	V _{CB} = 10V, f = 1 MHz		3.0	5.0	pF
C _{ib}	V _{EB} = 0.5V, f = 1 MHz			30	pF
P _{D(max)} TO-92 TO-236	$T_A = 25^{\circ}C$ $T_C = 25^{\circ}C$	600 350			mW mW

Process 19 NPN General Purpose Amplifier

DESCRIPTION

Process 19 is a non-overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 63.

APPLICATION

This device was designed for use as a medium power amplifier and switch requiring collector currents up to 500 mA.

PRINCIPAL DEVICE TYPES

TO-5 EBC: 2N2219, 2219A TO-18 EBC: 2N2222, 2222A TO-92 EBC: PN2222A, 2N4401

TO-116: MPQ2222 TO-236: MMBT2222 16-SOIC: MMPQ2222

TL/G/10034-21

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
ton	I _C = 150 mA, I _{B1} = 15 mA		25	35	ns
t _{OFF}	I _C = 150 mA, I _{B2} = 15 mA		200	285	ns
h _{fe}	$I_{C} = 20 \text{ mA}, V_{CE} = 20V,$ f = 100 MHz	2.0	3.5		
C _{ob}	V _{CB} = 10V, f = 1 MHz		4.0	6.0	pF
C _{ib}	V _{EB} = 0.5V, f = 1 MHz			25	pF
NF (spot)	$I_C = 100 \mu A$, $V_{CE} = 10V$, $R_S = 1 k\Omega$, $f = 1 kHz$		2.0		dB
h _{FE}	$\begin{array}{c} I_{C} = 100~\mu\text{A}, V_{CE} = 10\text{V} \\ I_{C} = 1~\text{mA}, V_{CE} = 10\text{V} \\ I_{C} = 10~\text{mA}, V_{CE} = 10\text{V} \\ I_{C} = 150~\text{mA}, V_{CE} = 10\text{V} \\ I_{C} = 500~\text{mA}, V_{CE} = 10\text{V} \end{array}$	30 40 50 60 30	180	420	
V _{CE(SAT)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			0.50 1.0	V V
V _{BE(SAT)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			1.2 1.5	V V
BV _{CEO}	I _C = 10 mA	35			٧
BV _{CBO}	I _C = 100 μA	60			٧
BV _{EBO}	I _E = 10 μA	6			٧
Ісво	V _{CB} = 40V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA

SMALL SIGNAL CHARACTERISTICS (f = 1.0 kHz)

Symbol	Parameter	Conditions	Тур	Units
h _{ie}	Input Resistance	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{V}$	700	Ω
h _{oe}	Output Conductance	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	120	μmhos
h _{fe}	Small Signal Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	240	
h _{re}	Voltage Feedback Ratio	$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	460	× 10−6

TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)

TL/G/10034-24

Ambient Temperature

TA - AMBIENT TEMPERATURE (°C)

100

50

20

10

5.0

2.0

1.0

0.5

25

TL/G/10034-66
FIGURE 1. Saturated Turn On Switching Time Test Circuit

FIGURE 2. Saturated Turn Off Switching Time Test Circuit

Process 21 NPN High Speed Switch

TL/G/10034-25

DESCRIPTION

Process 21 is an overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 65.

APPLICATION

This device was designed for high speed saturated switching at collector currents of 10 mA to 100 mA.

PRINCIPAL DEVICE TYPES

TO-18 EBC: 2N2369, 2N2369A

TO-92 EBC: PN2369 TO-236: MMBT2369 16-SOIC: MMPQ2369

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
t _s	$I_{B1} = I_{B2} = I_{C} = 10 \text{ mA (Figure 1)}$		7	13	ns
ton	I _C = 10 mA, I _{B1} = 3 mA (Figure 2)		9	12	ns
tOFF	I _C = 10 mA, I _{B2} = 1.50 mA (Figure 2)		12	20	ns
h _{fe}	$I_{C} = 10 \text{ mA}, V_{CE} = 10V,$ f = 100 MHz	4.5	6.5		
C _{ob}	V _{CB} = 5V, f = 1 MHz		2.0	4.0	pF
C _{ib}	V _{EB} = 0.5V, f = 1 MHz			5.0	pF
h _{FE}	$\begin{split} I_{C} &= 1 \text{ mA, } V_{CE} = 1V \\ I_{C} &= 10 \text{ mA, } V_{CE} = 1V \\ I_{C} &= 50 \text{ mA, } V_{CE} = 1V \\ I_{C} &= 100 \text{ mA, } V_{CE} = 1V \\ I_{C} &= 10 \text{ mA, } V_{CE} = 0.35V \\ I_{C} &= 30 \text{ mA, } V_{CE} = 0.4V \end{split}$	30 35 30 20 30 30	70 55	150 150	
V _{CE(SAT)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$			0.2 0.5	V V
V _{BE(SAT)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$			0.85 1.5	V V
BV _{CEO}	I _C = 10 mA	12			٧
BV _{CBO}	I _C = 10 μA	30			٧
BV _{EBO}	l _E = 10 μA	4.5			٧
Ісво	V _{CB} = 20V			100	nA
I _{EBO}	V _{EB} = 3V			100	nA
P _{D(max)} TO-18 TO-92 TO-236	T _A = 25°C T _A = 25°C T _A = 25°C	600 600 350			mW mW mW

TL/G/10034-27

TL/G/10034-28

FIGURE 1. Charge Storage Time Measurement Circuit

FIGURE 2. t_{ON}, t_{OFF} Measurement Circuit

Process 22 NPN High Speed Switch

DESCRIPTION

Process 22 is an overlay, double-diffused, gold doped, silicon epitaxial device.

APPLICATION

This device was designed for high speed logic and core driver applications to 300 mA.

PRINCIPAL DEVICE TYPES

TO-52 EBC: 2N3013

TO-92 EBC: 2N5772, PN3646

Symbol	Conditions	Min	Тур	Max	Units
t _s	$I_C = 10 \text{ mA}, I_{B1} = I_{B2} = 10 \text{ mA} (Figure 1)$		12	18	ns
ton	$I_C = 300 \text{ mA}, I_{B1} = I_{B2} = 30 \text{ mA} (Figure 2)$		10	18	ns
t _{OFF}	$I_C = 300 \text{ mA}, I_{B1} = I_{B2} = 30 \text{ mA}$		18	30	ns
C _{ob}	$V_{CB} = 5V, f = 1 MHz$		3.0	5.0	pF
C _{ib}	V _{EB} = 0.5V, f = 1 MHz			8.0	рF
h _{fe}	$I_C = 30 \text{ mA}, V_{CE} = 10V,$ f = 100 MHz	3.5	7.0		
h _{FE}	$V_{CE} = 1V$, 10 mA $V_{CE} = 1V$, $I_{C} = 30$ mA $V_{CE} = 1V$, $I_{C} = 100$ mA $V_{CE} = 1V$, $I_{C} = 300$ mA $V_{CE} = 0.4V$, $I_{C} = 30$ mA $V_{CE} = 0.5V$, $I_{C} = 100$ mA	20 25 20 15 20 20	60 45	150 150	
V _{CE(SAT)}	$I_C = 30$ mA, $I_B = 3$ mA $I_C = 100$ mA, $I_B = 10$ mA $I_C = 300$ mA, $I_B = 30$ mA			0.20 0.30 0.50	V V V
V _{BE(SAT)}	$I_C = 30 \text{ mA}, I_B = 3 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$ $I_C = 300 \text{ mA}, I_B = 30 \text{ mA}$			0.95 1.2 1.7	> > >
BV _{CBO}	I _C = 10 μA	35			٧
BV _{CEO}	I _C = 10 mA	15			>
BV _{EBO}	I _E = 10 μA	5.0			٧
Ісво	V _{CB} = 25V			100	nA
I _{EBO}	V _{EB} = 3V			100	nA

TL/G/10034-40

Q VBB = -3.0V

Q Vcc = +10V

TL/G/10034-45 FIGURE 2. Charge Storage Time Measurement Circuit

Process 23 NPN Small Signal

TL/G/10034-47

DESCRIPTION

Process 23 is an overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 66.

APPLICATION

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier.

PRINCIPAL DEVICE TYPES

TO-92 EBC: 2N3904, 2N4124 **TO-236:** MMBT3904, MMBT4124

TO-116: MPQ3904 **16-SOIC:** MMPQ3904

Symbol	Conditions	Min	Тур	Max	Units
ton	I _C = 10 mA, I _{B1} = 1 mA (Figure 1)		30	70	ns
toff	I _C = 10 mA, I _{B2} = 1 mA (Figure 2)		150	250	ns
C _{ob}	V _{CB} = 5V, f = 1 MHz		2.7	4.0	pF
C _{ib}	$V_{EB} = 0.5V, f = 1 MHz$			8.0	pF
NF	$V_{CE} = 5V$, $I_{C} = 100 \mu A$, $R_{S} = 1 k\Omega$, $P_{BW} = 15.7 \text{ kHz}$		2.0		dB
h _{fe}	$I_{C} = 10 \text{ mA}, V_{CE} = 20V,$ f = 100 MHz	2.5	4.5		
h _{FE}	$I_{C} = 100 \ \mu A, V_{CE} = 5V$ $I_{C} = 1 \ mA, V_{CE} = 5V$ $I_{C} = 10 \ mA, V_{CE} = 5V$ $I_{C} = 50 \ mA, V_{CE} = 5V$ $I_{C} = 100 \ mA, V_{CE} = 5V$	40 90 60 40 20	150	360	
V _{CE(SAT)}	I _C = 10 mA, I _B = 1 mA			0.15	٧
V _{BE(SAT)}	I _C = 10 mA, I _B = 1 mA			0.80	٧
V _{CE(SAT)}	$I_{C} = 50 \text{ mA}, I_{B} = 5 \text{ mA}$			0.25	٧
V _{BE(SAT)}	I _C = 50 mA, I _B = 5 mA			0.85	٧
BV _{CBO}	I _C = 10 μA	60			٧
BV _{CEO}	I _C = 1 mA	30			٧
BV _{EBO}	I _E = 10 μA	6.0			٧
Ісво	V _{CB} = 30V			100	nA
I _{EBO}	V _{FR} = 4V			100	nA

Symbol	Conditions	Min	Тур	Max	Units
P _{D(max)} TO-92	T _A = 25°C	600			mW
TO-116	T _A = 25°C (Total)	900			mW
	(Each Transistor)	500			mW
TO-236	$T_C = 25^{\circ}C$	350			mW
T _{i(max)}	All Plastic Parts	150			° C

TRANSIENT CHARACTERISTICS

FIGURE 1. Delay and Rise Time Equivalent Test Circuit

TL/G/10034-53

FIGURE 2. Storage and Fall Time Equivalent Test Circuit

Process 25 NPN Memory Driver

DESCRIPTION

Process 25 is an overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 70.

APPLICATION

This device was designed for high speed core driver applications up to collector current of 1A.

PRINCIPAL DEVICE TYPES

TO-39 EBC: 2N3725 TO-237 EBC: TN3725 TO-116: MPQ3725

Symbol	Conditions	Min	Тур	Max	Units
ton	I _C = 500 mA, I _{B1} = 50 mA (Figure 1)		12	35	ns
t _{OFF}	I _C = 500 mA, I _{B2} = 50 mA (Figure 1)		50	60	ns
h _{fe}	$I_C = 50 \text{ mA}, V_{CE} = 10V,$ f = 100 MHz	2.5	4.25		
Cob	V _{CB} = 10V, f = 1 MHz		6	8	pF
C _{ib}	V _{EB} = 0.5V, f = 1 MHz			55	pF
h _{FE}	$\begin{split} & I_{C} = 10 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 100 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 300 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 500 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 800 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 1A, V_{CE} = 1V \\ & I_{C} = 800 \text{ mA, } V_{CE} = 2V \\ & I_{C} = 1A, V_{CE} = 5V \end{split}$	40 45 35 25 20 15 25 25	90	150	
VCE(SAT)	$I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$ $I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA}$ $I_{C} = 300 \text{ mA}, I_{B} = 30 \text{ mA}$ $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$ $I_{C} = 800 \text{ mA}, I_{B} = 80 \text{ mA}$ $I_{C} = 1A, I_{B} = 100 \text{ mA}$		``	0.20 0.20 0.40 0.50 0.80 1.20	V V V V
VBE(SAT)	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$ $I_C = 300 \text{ mA}, I_B = 30 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 800 \text{ mA}, I_B = 80 \text{ mA}$ $I_C = 1A, I_B = 100 \text{ mA}$			0.70 0.85 1.20 1.20 1.50 1.70	V V V V

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 10 mA	40			V
BV _{CBO}	I _C = 100 μA	80			v
BV _{EBO}	$I_C = 10 \mu\text{A}$	6			v
Ісво	V _{CB} = 40V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA
P _{D(max)} TO-39	T _C = 25°C T _A = 25°C	7			w w
TO-237 TO-116	T _A = 25°C T _A = 25°C	850			mW
	(Total) (Each Transistor)	600			W mW
T _{j(max)}	All Metal Can Parts All Plastic Parts	200 150			°C

TL/G/10034-58

I_C - COLLECTOR CURRENT (mA)

IB1 - TURN ON BASE CURRENT (MA)

Ic - COLLECTOR CURRENT (mA)

TL/G/10034-59

To sampling scope $t_r < 1$ ns $Z_{IN} \ge 100 \text{ k}\Omega$

TL/G/10034-60

FIGURE 1. $I_C = 500 \text{ mA}, I_{B1} = 50 \text{ mA}, I_{B2} = 50 \text{ mA}$

Process 34 NPN Planar Power

DESCRIPTION

This device is a nonoverlay, double-diffused, silicon epitaxial planar transistor.

APPLICATION

This device was designed for general purpose amplifier applications utilizing collector currents to 5A.

PRINCIPAL DEVICE TYPES

TO-39 EBC: 2N2891

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 10 mA	80			
BV _{CBO}	I _C = 100 μA	100			
BV _{EBO}	I _E = 10 μA	8			
Ісво	V _{CB} = 60V			100	nA
I _{EBO}	V _{EB} = 6V			100	nA
h _{FE}	$\begin{split} & I_{C} = 1 \text{ mA, } V_{CE} = 5V \\ & I_{C} = 10 \text{ mA, } V_{CE} = 5V \\ & I_{C} = 100 \text{ mA, } V_{CE} = 5V \\ & I_{C} = 500 \text{ mA, } V_{CE} = 5V \\ & I_{C} = 1A, V_{CE} = 5V \\ & I_{C} = 5A, V_{CE} = 5V \end{split}$	40 40 40 40 20 15	80	150	
V _{CE(SAT)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$ $I_C = 1A, I_B = 100 \text{ mA}$		0.05 0.20	0.10 0.30	٧
V _{BE(SAT)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$ $I_C = 1A, I_B = 100 \text{ mA}$		0.70 0.90	0.85 1.10	V
h _{FE}	$I_{CE} = 200 \text{ mA}, V_{CE} = 10 \text{V}, f = 20 \text{ MHz}$	4.0	5.0		
C _{ob}	V _{CB} = 10V, f = 1 MHz		60	70	pF
C _{ib}	V _{EB} = 0.5V, f = 1 MHz			500	pF
ton	I _C = 1A, I _{B1} = 0.1A		90	120	ns
t _{OFF}	$I_{C} = 1A, I_{B2} = 0.1A$		200	260	ns
P _{D(max)} TO-39	T _C = 25°C T _A = 25°C	7			w w
$\theta_{ m JC}$	T _C = 25°C			25	°C/W
$ heta_{JA}$	T _A = 25°C			175	°C/W
t _{J(max)}	TO-39		200		°C

TL/G/10037-2

Process 36 NPN High Voltage Power

TL/G/10037-4

DESCRIPTION

Process 36 is a non-overlay, double-diffused, silicon epitaxial planar device with a field plate.

APPLICATION

This device is designed for use in horizontal driver, class A off-line amplifier and off-line switching applications.

PRINCIPAL DEVICE TYPES

TO-202 EBC: D40P1, 3, 5 NSD36-36C

TO-237 EBC: 2N6720-23, TN3440

TO-39: 2N3440

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _{CE} = 1 mA (Note 1)	200	300		٧
BV _{CBO}	I _{CB} = 100 μA	225	325		٧
BV _{EBO}	I _{EB} = 10 μA	6			٧
ICEO	V _{CE} = 200V			10	μΑ
I _{CBO}	V _{CB} = 225V			0.5	μΑ
I _{EBO}	V _{EB} = 5V			0.1	μΑ
h _{FE}	$I_{C} = 50 \text{ mA}, V_{CE} = 10 \text{V (Note 1)}$ $I_{C} = 100 \text{ mA}, V_{CE} = 10 \text{V (Note 1)}$ $I_{C} = 250 \text{ mA}, V_{CE} = 10 \text{V (Note 1)}$ $I_{C} = 500 \text{ mA}, V_{CE} = 10 \text{V (Note 1)}$	30	110 120 60 25	300	
V _{CE(SAT)}	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA (Note 1)}$ $I_C = 500 \text{ mA}, I_B = 100 \text{ mA (Note 1)}$		0.2 0.3	0.5 0.7	٧
V _{BE(SAT)}	$I_C = 500 \text{ mA}, I_B = 100 \text{ mA (Note 1)}$		0.9	1.2	V
V _{BE(ON)}	I _C = 100 mA, V _{CE} = 10V (Note 1)		0.7	1.0	V
ft	$I_{C} = 50 \text{ mA}, V_{CE} = 10V$	20	60		MHz
C _{ob}	V _{CB} = 10V, f = 1 MHz			15	pF
C _{ib}	$V_{BE} = 0.5V, f = 1 MHz$			125	pF
P _{D(max)} TO-202	T _C = 25°C T _A = 25°C	15 2			w
TO-226	$T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$	2			w
TO-237	$T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	2 850			W mW
TO-39	T _C = 25°C T _A = 25°C	10			w

Symbol	Conditions	Min	Тур	Max	Units
$\theta_{\sf JC}$					
TO-202	T _C = 25°C			8.33	°C/W
TO-226	T _C = 25°C			62.5	°C/W
TO-237	T _C = 25°C		*	62.5	°C/W
TO-39	$T_C = 25^{\circ}C$			17.5	°C/W
θ_{JA}					
TO-202	T _A = 25°C			62.5	°C/W
TO-226	T _A = 25°C			125	°C/W
TO-237	T _A = 25°C			147	°C/W
TO-39	T _A = 25°C			175	°C/W
T _{J(max)}					
	All Plastic Parts	150			°C
	TO-39	200			•c

TL/G/10037~6

Process 37 NPN Medium Power

DESCRIPTION

Process 37 is a double-diffused, silicon epitaxial planar device. Complement to Process 77.

APPLICATION

This device was designed for general purpose medium power amplifiers and switching circuits that require collector currents to 2A.

PRINCIPAL DEVICE TYPES

TO-202 EBC: NSDU01

TO-237 EBC: 2N6714, 92PU01 **TO-226 EBC:** MPS6714

TO-92 EBC: PN6714

TL/G/10037-7

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 10 mA	25			٧
BV _{CBO}	I _C = 100 μA	40	*		V
BV _{EBO}	I _E = 10 μA	5			٧
I _{CBO}	V _{CB} = 20V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA
h _{FE}	I _C = 1 mA, V _{CE} = 1V I _C = 100 mA, V _{CE} = 1V I _C = 1A, V _{CE} = 1V	40 60 40	160	360	
V _{CE(SAT)}	I _C = 1A, I _B = 0.1A			0.5	٧
V _{BE(SAT)}	I _C = 1A, I _B = 0.1A			1.25	٧
f _T	I _C = 100 mA, V _{CE} = 10V	150	300		MHz
C _{ob}	V _{CB} = 10V, f = 1 MHz		17	20	pF
P _{D(max)} TO-202	T _C = 25°C T _A = 25°C	10 2 2			w
TO-226	T _C = 25°C T _A = 25°C	2			W
TO-237	T _C = 25°C T _A = 25°C	2 850			W mW
TO-92	T _A = 25°C	600			mW
θ _{JC} TO-202 TO-226 TO-237 TO-92	T _C = 25°C T _C = 25°C T _C = 25°C T _C = 25°C			12.5 62.5 62.5 125	°C/W °C/W °C/W

Symbol	Conditions	Min	Тур	Max	Units
$\theta_{\sf JA}$					
TO-202	T _A = 25°C			62.5	°C/W
TO-226	T _A = 25°C			125	°C/W
TO-237	T _A = 25°C			147	°C/W
TO-92	$T_A = 25^{\circ}C$			208	°C/W
T _{J(max)}	All Plastic Parts	150			°C

Typical Pulsed Current Gain vs Collector Current

Typical Pulsed Current Gain vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

TL/G/10037-8

Base-Emitter ON Voltage vs **Collector Current**

Base-Emitter Saturation Voltage vs Collector Current

Collector-Base Capacitance vs Collector-Base Voltage

Maximum Power Dissipation vs **Case Temperature**

Safe Operating Area TO-202

TL/G/10037-10

Safe Operating Area TO-237

Thermal Derating Curve

TL/G/10037-11

Thermal Response in TO-202 Package

Process 38 NPN Medium Power

DESCRIPTION

Process 38 is a double-diffused, silicon epitaxial planar device. Complement to Process 78.

APPLICATION

This device was designed for general purpose medium power amplifiers and switching circuits that require collector currents to 1.5A.

PRINCIPAL DEVICE TYPES

TO-202 EBC: D40D1-6, NSDU05 **TO-237 EBC:** 2N6715, 92PU05

TO-92 EBC: PN6715 **TO-226 EBC:** MPS6715

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 10 mA	40			٧
BV _{CBO}	I _C = 100 μA	65			٧
BV _{EBO}	I _E = 10 μA	5			٧
Ісво	V _{CB} = 40V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA
h _{FE}	$ \begin{array}{c} I_{C} = 1 \text{ mA, V}_{CE} = 1 V \\ I_{C} = 100 \text{ mA, V}_{CE} = 1 V \\ I_{C} = 1 \text{A, V}_{CE} = 1 V \end{array} $	40 60 20	160	360	
V _{CE(SAT)}	$I_{\rm C} = 500 {\rm mA}, I_{\rm B} = 50 {\rm mA}$			0.5	٧
V _{BE(SAT)}	$I_{\rm C} = 500 {\rm mA}, I_{\rm B} = 50 {\rm mA}$			1.25	٧
f _T	I _C = 100 mA, V _{CE} = 10V	125	250		MHz
C _{ob}	V _{CB} = 10V, f = 1 MHz		14	18	pF
P _{D(max)} TO-202 TO-226	T _C = 25°C T _A = 25°C T _C = 25°C	10 2 2			w w
TO-237 TO-92	$T_A = 25^{\circ}C$ $T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$	1 2 850 600			W W mW mW
θ _{JC} TO-202 TO-237	T _C = 25°C T _C = 25°C			12.5 62.5	°C/W
θ _{JA} TO-202 TO-226 TO-237 TO-92	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$			62.5 125 147 208	°C/W °C/W °C/W
T _{J(max)}	All Plastic Parts	150			°C

TL/G/10037-15

TL/G/10037-18

Process 39 NPN Medium Power

DESCRIPTION

Process 39 is a double-diffused, silicon epitaxial planar device. Complement to Process 79.

APPLICATION

This device was designed for general purpose medium power amplifiers and switching circuits that require collector currents to 1A.

PRINCIPAL DEVICE TYPES

TO-202 EBC: D40D7-14, NSDU06 **TO-237 EBC:** 2N6717, 92PU06 **TO-226 EBC:** MPS6717

TO-92 EBC: PN6717

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 10 mA	80			٧
BV _{CBO}	I _C = 100 μA	100			٧
BV _{EBO}	I _E = 10 μA	5			٧
ICBO	V _{CB} = 80V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA
h _{FE}	$I_{C} = 100 \text{ mA}, V_{CE} = 1V$ $I_{C} = 500 \text{ mA}, V_{CE} = 1V$	50 20		300	
V _{CE(SAT)}	$I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$			0.8	٧
V _{BE(SAT)}	$I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$			1.3	V
f _T	$I_{C} = 100 \text{ mA}, V_{CE} = 10V$	80	150		MHz
C _{ob}	V _{CB} = 10V, f = 1 MHz		10	15	pF
PD(max) TO-202 TO-226 TO-237 TO-92	$T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	10 2 2 1 2 850 600			W W W W mW
θ _{JC} TO-202 TO-237	T _C = 25°C T _C = 25°C			12.5 62.5	°C/W °C/W

Symbol	Conditions	Min	Тур	Max	Units
θ _{JA} TO-202 TO-226 TO-237 TO-92	T _A = 25°C T _A = 25°C T _A = 25°C T _A = 25°C			62.5 125 147 208	°C/W °C/W °C/W °C/W
T _{J(max)}	All Plastic Parts	150			°C

Typical Pulsed Current Gain vs Collector Current

Collector-Emitter Saturation

TL/G/10037-22

Base-Emitter ON Voltage

Base-Emitter Saturation Voltage vs Collector Current

Collector-Base Capacitance vs Collector-Base Voltage

TL/G/10037-76

Process 40 NPN RF Amplifier

DESCRIPTION

Process 40 is an overlay, double-diffused, silicon epitaxial device.

APPLICATION

This device was designed for use in low noise UHF/VHF amplifiers with collector current in the 100 μ A to 20 mA range in common emitter or common base mode of operation, and in low frequency drift, high output UHF oscillators.

PRINCIPAL DEVICE TYPES

TO-72: 2N5179 **TO-92:** MPS5179 **TO-236:** MMBT5719

TL/G/10037-26

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$)

Symbol	Conditions	Min	Тур	Max	Units
P_{G}	f = 450 MHz, V _{CE} = 10V, I _C = 2 mA (Figure 1)	12	16		dB
NF	$ f = 450 \text{ MHz, V}_{CE} = 10 \text{V, I}_{C} = 2 \text{ mA,} $ $ R_{G} = 50 \Omega \text{ (Figure 1)} $		3.0	5.0	dB
Роит	f = 500 MHz, V _{CB} = 15V, I _E = 10 mA (TO-92) <i>(Figure 2)</i>	40	65		mW
h _{fe}	f = 100 MHz, V _{CE} = 10V, I _C = 10 mA	10	15		
rb'Cc	f = 79.8 MHz, V _{CE} = 10V, I _C = 5 mA			10	ps
C _{CB}	f = 1.0 MHz, V _{CB} = 10V, I _E = 0 (TO-72)		0.5	0.6	pF
C _{CE}	f = 1.0 MHz, V _{CE} = 10V, I _B = 0 (TO-72)		0.2	0.3	pF
C _{EB}	f = 1.0 MHz, V _{EB} = 0.5V, I _C = 0 (TO-72)		0.8	1.5	pF
h _{FE}	$V_{CE} = 10V, I_{C} = 5 \text{ mA}$ $V_{CE} = 6V, I_{C} = 1 \text{ mA}$	40 30	90	200	
V _{CE(SAT)}	I _C = 10 mA, I _B = 5 mA			0.2	V
BV _{CEO}	I _C = 1 mA	20			V
BV _{CBO}	I _C = 10 μA	30			V
BV _{EBO}	I _E = 10 μA	4.0			V
I _{CBO}	V _{CB} = 20V			100	nA
I _{EBO}	V _{FB} = 3V			100	nA

TL/G/10037-27

TL/G/10037-28
Collector-Emitter Saturation
Voltage vs Collector Current

FIGURE 1. Neutralized 450 MHz Gain and Noise Figure Circuit

FIGURE 2. 500 MHz Oscillator Circuit

11

Process 42 NPN RF Amplifier

DESCRIPTION

Process 42 is an overlay, double-diffused, silicon epitaxial device.

APPLICATION

This device was designed for use in low noise UHF/VHF amplifiers with collector current in the 100 μ A to 10 mA range in common emitter or common base mode of operation, and in low frequency drift, high output UHF oscillators.

PRINCIPAL DEVICE TYPES

TO-92 BEC: MPSH10 **TO-236:** MMBTH10

TL/G/10037-32

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
P _G	f = 450 MHz, V _{CE} = 10V, I _C = 2 mA (Figure 1)	10	13		dB
NF	$f = 450 \text{ MHz}, V_{CE} = 10V, I_{C} = 2 \text{ mA},$ $R_{G} = 50\Omega$ (Figure 1)		3.0	5.0	dB
Pout	$f = 500 \text{ MHz}, V_{CB} = 15V, I_{E} = 8 \text{ mA}$ (TO-92) (Figure 3)	30	50		mW
P_{G}	$f = 200 \text{ MHz}, V_{CE} = 10V, I_{C} = 2 \text{ mA (Figure 2)}$	22	27		dB
NF	$f = 200 \text{ MHz}, V_{CE} = 10V, I_{C} = 2 \text{ mA},$ $R_{S} = 120\Omega \text{ (Figure 2)}$		2.0	3.5	dB
h _{fe}	$f = 100 \text{ MHz}, V_{CE} = 10V, I_{C} = 5 \text{ mA}$	6	10		
rb'Cc	$f = 79.8 \text{ MHz}, V_{CE} = 10V, I_{C} = 5 \text{ mA}$			10	ps
C _{CB}	$f = 1.0 \text{ MHz}, V_{CB} = 10V, I_{E} = 0 \text{ (TO-72)}$		0.4	0.5	pF
C _{CE}	$f = 1.0 \text{ MHz}, V_{CE} = 10V, I_B = 0 \text{ (TO-72)}$		0.2	0.3	pF
C _{EB}	$f = 1.0 \text{ MHz}, V_{EB} = 0.5 \text{V}, I_{C} = 0 \text{ (TO-72)}$		0.8	1.5	pF
h _{FE}	$V_{CE} = 10V, I_{C} = 5 \text{ mA}$ $V_{CE} = 6V, I_{C} = 1 \text{ mA}$	40 30	90	200	
V _{CE(SAT)}	$I_{C} = 10 \text{ mA}, I_{B} = 5 \text{ mA}$			0.2	V
BV _{CEO}	I _C = 1 mA	30			V
BV _{CBO}	I _C = 10 μA	35			V
BV _{EBO}	I _E = 10 μA	4			V
Ісво	V _{CB} = 30V			100	nA
I _{EBO}	V _{EB} = 3V			100	nA

COMMON BASE Y PARAMETERS VS FREQUENCY

TL/G/10037-34

COMMON EMITTER Y PARAMETERS VS FREQUENCY

FIGURE 1. Neutralized 450 MHz Gain and Noise Figure Circuit

TL/G/10037-37

FIGURE 2. Neutralized 200 MHz PF and NF Circuit

FIGURE 3. 500 MHz Oscillator Circuit

Process 43 NPN VHF/UHF Oscillator

TL/G/10037-39

DESCRIPTION

Process 43 is an overlay, double-diffused, silicon epitaxial device.

APPLICATION

This device was designed for use as RF amplifiers, oscillators and multipliers with collector current in the 1 mA to 20 mA range.

PRINCIPAL DEVICE TYPES

TO-72: 2N918

TO-92 EBC: PN918, PN3563, 2N5770

TO-236: MMBT918

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
G _{PE}	$f = 200 \text{ MHz}, I_C = 5 \text{ mA}, V_{CE} = 10 \text{V} \text{ (Neutralized)}$	14	18		dB
NF	$f = 60 \text{ MHz}, I_C = 1 \text{ mA}, V_{CE} = 10 \text{V}, R_S = 200 \Omega$		3.5	6.0	dB
PO	$f = 500 \text{ MHz}, I_C = 8 \text{ mA}, V_{CE} = 15V (Figure 1)$ $f = 900 \text{ MHz}, I_C = 8 \text{ mA}, V_{CE} = 15V$	20 3.0	35 8.0		mW
h _{fe}	$I_{C} = 5 \text{ mA}, V_{CE} = 10V, f = 100 \text{ MHz}$	6.0	9.0		
rb'Cc	f = 79.8 MHz, V _{CE} = 10V, I _E = 8 mA		10	25	ps
C _{CB}	$V_{CB} = 10V, I_{E} = 0$		1.2	1.7	pF
C _{EB}	$V_{EB} = 0.5V, I_{C} = 0$		1.4	2.0	pF
h _{FE}	$I_C = 1 \text{ mA, } V_{CE} = 1V$ $I_C = 5 \text{ mA, } V_{CE} = 10V$ $I_C = 30 \text{ mA, } V_{CE} = 10V$	25 40 30	80	200	
V _{CE(SAT)}	I _C = 10 mA, I _B = 1 mA		0.25		٧
V _{BE(SAT)}	I _C = 10 mA, I _B = 1 mA		0.9		V
BV _{CEO}	I _C = 3 mA	15			٧
BV _{CBO}	I _C = 10 μA	30			٧
BV _{EBO}	I _E = 10 μA	4			٧
Ісво	V _{CB} = 20V			100	nA
I _{EBO}	V _{CB} = 3V	_		100	nA

TL/G/10037-40

COMMON EMITTER Y PARAMETERS VS FREQUENCY

11

FIGURE 1. 500 MHz Oscillator Circuit

Process 44 NPN AGC-RF Amplifier

DESCRIPTION

Process 44 is an overlay, double-diffused, silicon device.

APPLICATION

This device was designed for use as a low noise VHF amplifier with forward AGC capability.

PRINCIPAL DEVICE TYPES

TO-92 BEC: MPS6568, MPSH30

TL/G/10037-44

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C)

Symbol	Conditions	Min	Тур	Max	Units
NF	$f = 200$ MHz, $I_C = 2$ mA, $V_{CE} = 10V$, $R_S = 50\Omega$ (Figure 1)		2.0	3.0	dB
P _G	$f = 200$ MHz, $I_C = 2$ mA, $V_{CE} = 10V$, $R_S = 50\Omega$ (Figure 1)	20	24		dB
NF	$f=45$ MHz, $I_C=4$ mA, $V_{CE}=10V$, $R_S=50\Omega$ (Figure 2)		3.0	5.0	dB
P _G	$ f = 45 \text{ MHz}, I_C = 4 \text{ mA}, V_{CE} = 10V, $ $ R_S = 50\Omega \text{ (Figure 2)} $	23	26		dB
AGC	f = 200 MHz, V _{AGC} at 30 dB Down <i>(Figure 1)</i> f = 45 MHz, V _{AGC} at 30 dB Down <i>(Figure 2)</i>	3.9 4.0	4.5 5.0	5.2 6.0	٧
C _{cb}	$V_{CB} = 10V, I_{E} = 0 \text{ (TO-72)}$ (TO-92)		0.35 0.45	0.50 0.55	pF pF
h _{fe}	$V_{CE} = 10V, I_{C} = 4 \text{ mA}, f = 100 \text{ MHz}$	4.0	5.5		
hFE	$I_C = 4 \text{ mA}, V_{CE} = 5V$	30	70	200	
V _{CE(SAT)}	$I_C = 10 \text{ mA}, I_B = 5 \text{ mA}$		0.5	2.0	٧
V _{BE(SAT)}	$I_{C} = 10 \text{ mA}, I_{B} = 5 \text{ mA}$		0.85	0.95	٧
BV _{CEO}	I _C = 1 mA	30			٧
BV _{CBO}	$I_C = 10 \mu A$	30			٧
BV _{EBO}	I _E = 10 μA	4.0			V
I _{CBO}	V _{CB} = 20V			100	nA
I _{EBO}	V _{EB} = 3V			100	nA

COMMON EMITTER PERFORMANCE

FIGURE 1. 200 MHz, AGC, Power Gain and Noise Figure Test Jig

TL/G/10037-48

 T_1 - Q_3 Toroid 4:1 ratio 8 turns - Pri. 2 turns - Sec. $\}$ No. 22 wire

FIGURE 2. 45 MHz, AGC, Power Gain and Noise Figure Test Jig

COMMON EMITTER Y PARAMETERS VS FREQUENCY

TL/G/10037~49

TL/G/10037~50

COMMON EMITTER Y PARAMETERS VS FREQUENCY (Continued)

TL/G/10037-52

TL/G/10037-53

COMMON BASE Y PARAMETERS VS FREQUENCY

4.0 6.0 8.0

Ic - COLLECTOR CURRENT (mA)

Input Admittance vs

Reverse Transadmittance vs

Common Base Configuration

Forward Transadmittance

FIGURE 3. 200 MHz Common Base Power Gain, Noise Figure, Automatic Gain Control Test Circuit

Process 47 NPN RF-IF Amplifier

DESCRIPTION

Process 47 is an overlay, double-diffused, silicon epitaxial device, with a Faraday shield diffusion.

APPLICATION

This device was designed for common-emitter low noise amplifier and mixer applications in the 100 μ A to 15 mA range to 300 MHz, and low frequency drift common-base VHF oscillator applications with high output levels for driving FET mixers.

PRINCIPAL DEVICE TYPES

TO-92 BEC: MPSH11, MPSH24

TO-237: MMBTH11

TL/G/10037-57

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
P _G	$f = 45 \text{ MHz}, V_{CE} = 10V, I_{C} = 4 \text{ mA } (Figure 1)$	29	33		dB
P _G	$f = 200 \text{ MHz}, V_{CE} = 10V, I_{C} = 2 \text{ mA}$ Unneutralized (<i>Figure 3</i>)	17	19.5		dB
NF	$f=200$ MHz, $V_{CE}=10V$, $I_{C}=2$ mA, $H_{S}=50\Omega$ (Figure 3)		2.0	3.5	dB
rb'Cc	$f = 79.8 \text{ MHz}, V_{CB} = 10V, I_{E} = 5 \text{ mA}$			15.0	ps
h _{fe}	$f = 100 \text{ MHz}, V_{CE} = 15V, I_{C} = 7 \text{ mA}$	6	10		
C _{ib}	$V_{EB} = 0.5V, I_{C} = 0 \text{ (TO-92)}$		2.0	3.0	pF
C _{CB}	$V_{CB} = 10V, I_{E} = 0 \text{ (TO-92)}$		0.33	0.40	pF
goe	$f = 45 \text{ MHz}, V_{CE} = 15V, I_{C} = 7 \text{ mA}$			125	μmho
roep	$f = 10.7 \text{ MHz}, V_{CE} = 10V, I_{C} = 2 \text{ mA}$	100k			Ω
h _{FE}	$V_{CE} = 15V, I_{C} = 7 \text{ mA}$	40	100	200	
V _{CE(SAT)}	$I_C = 20 \text{ mA}, I_B = 1 \text{ mA}$		0.3	1.0	V
V _{BE(SAT)}	$I_C = 10 \text{ mA}, I_B = 5 \text{ mA}$			0.95	V
BV _{CEO}	$I_C = 1 \text{ mA}$	35			V
BV _{CBO}	I _C = 10 μA	40			V
BV _{EBO}	I _E = 10 μA	4.0			V
Ісво	V _{CB} = 30V			100	nA
I _{EBO}	V _{EB} = 3V			100	nA

TL/G/10037-59

FIGURE 1. 45 MHz Power Gain Circuit

FIGURE 2. 200 MHz Conversion Gain Test Circuit

COMMON-EMITTER Y PARAMETERS

TL/G/10037-63

FIGURE 3. Unneutralized 200 MHz PG NF Test Circuit

11

Process 48 NPN High Voltage Amplifier

TL/G/10037-65

DESCRIPTION

Process 48 is a non-overlay, triple-diffused, silicon device with a field plate. Complement to Process 76.

APPLICATION

This device was designed for application as a video output to drive color CRT and other high voltage applications.

PRINCIPAL DEVICE TYPES

TO-202 EBC: D40N1-4

TO-237 EBC: 2N6719, 92PU10

TO-226 EBC: MPSW42 **TO-92 EBC:** MPSA42

FI FCTRICAL CHARACTERISTICS (T. = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 1 mA	300	370		٧
BV _{CBO}	$I_{\rm C} = 100 \mu {\rm A}$		500		٧
BV _{EBO}	I _E = 10 μA	7.0			٧
ICES	V _{CB} = 150V			100	nA
I _{EBO}	V _{EB} = 6V			100	nA
h _{FE}	$I_{C} = 1 \text{ mA}, V_{CE} = 10V$ $I_{C} = 10 \text{ mA}, V_{CE} = 10V$ $I_{C} = 100 \text{ mA}, V_{CE} = 10V$	30 40	90 20	200	
V _{CE(SAT)}	$I_C = 20 \text{ mA}, I_B = 2 \text{ mA}$		0.25	1.0	٧
V _{BE(SAT)}	$I_{C} = 20 \text{ mA}, I_{B} = 2 \text{ mA}$		0.74	1.0	٧
C _{CB}	$V_{CB} = 20V (TO-92)$		1.9	3.5	pF
C _{ib}	V _{EB} = 0.5V			70	pF
h _{fe}	$I_C = 15 \text{ mA}, V_{CE} = 100V,$ $I_C = 15 \text{ mA}, f = 20 \text{ MHz}$	2.5	4.0	,	
P _{D(max)} TO-202	T _C = 25°C T _A = 25°C	10 2			w w
TO-226	$T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	1			W W
TO-237	$T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$	2 850			W mW
TO-92	T _A = 25°C	600			mW
θ _{JC} TO-202 TO-237	T _C = 25°C T _C = 25°C			12.5 62.5	°C/W °C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C) (Continued)

Symbol	Conditions	Min	Тур	Max	Units
θ_{JA}					
TO-202	$T_A = 25^{\circ}C$			62.5	°C/W
TO-226	T _A = 25°C	1		125	°C/W
TO-237	$T_A = 25^{\circ}C$			147	°C/W
TO-92	$T_A = 25^{\circ}C$			208	°C/W
T _{J(max)}	All Plastic Parts	150			°C

TL/G/10037-75

TL/G/10037-67

Process 49 NPN RF Amplifier

DESCRIPTION

Process 49 is an overlay, double-diffused, silicon epitaxial device.

APPLICATION

This device was designed for general RF amplifier and mixer applications to 250 MHz with collector current in the 1 mA to 20 mA range.

PRINCIPAL DEVICE TYPES

TO-92 BEC: MPSH20 TO-236: MMBTH20

TL/G/10037-69

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
Pg	f = 45 MHz, V _{CE} = 10V, I _C = 10 mA	25	30		dB
f _T	V _{CE} = 10V, I _C = 10 mA	400	700		MHz
rb'Cc	$f = 79.8 \text{ MHz}, V_{CE} = 10V, I_{C} = 8 \text{ mA}$			20.0	ps
C _{CB}	f = 1.0 MHz, V _{CB} = 10V, I _E = 0		0.55	0.65	pF
h _{FE}	$V_{CE} = 10V, I_{C} = 10 \text{ mA}$ $V_{CE} = 10V, I_{C} = 4 \text{ mA}$	40 30	100	250	
V _{BE(ON)}	$V_{CE} = 10V, I_{C} = 10 \text{ mA}$		0.80	0.90	V
V _{CE(SAT)}	$I_C = 30 \text{ mA}, I_C = 3 \text{ mA}$		0.15	0.50	>
roep	$f = 4.5 \text{ MHz}, V_{CE} = 10V, I_{C} = 2 \text{ mA}$	80k			Ω
BV _{CEO}	I _C = 1 mA	35			٧
BV _{CBO}	I _C = 10 μA	45			>
BV _{EBO}	I _E = 10 μA	4.0			٧
I _{CBO}	V _{CB} = 30V			100	nA
I _{EBO}	V _{EB} = 3.0V			100	nA

TL/G/10037--71

TL/G/10037-72

TL/G/10037-73

FIGURE 1. 45 MHz Power Gain Circuit

FIGURE 2. 200 MHz Conversion Gain Test Circuit

11

Process 61 PNP Darlington

DESCRIPTION

Process 61 is a monolithic, double-diffused, silicon epitaxial Darlington. Complement to Process 05.

APPLICATION

16-SOIC:

This device is designed for applications requiring extremely high current gain at collector currents to 1A.

PRINCIPAL DEVICE TYPES

TO-202 EBC: D41K1-4, NSDU95

MMPQA63

TO-226 EBC: MPSW63
TO-92 EBC: MPSA63
TO-116: MPQA63
TO-236: MMBTA63

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
NF	$I_{C} = 1 \text{ mA, } V_{CE} = 5V, R_{S} = 100k, f = 1 \text{ kHz}$		2		dB
C _{CB}	$V_{CB} = 10V, I_{E} = 0, f = 1 MHz$		5	8	pF
h _{FE}	$I_C = 10 \text{ mA}, V_{CE} = 5V$ $I_C = 100 \text{ mA}, V_{CE} = 5V$ $I_C = 1A, V_{CE} = 5V$	5,000 5,000 1,500	40,000	200,000	
V _{CE(SAT)}	10 mA, 0.01 mA 100 mA, 0.1 mA			1.0 1.5	v
V _{BE(ON)}	10 mA, 5V 100 mA, 5V		1.2 1.25	1.4 2.0	V
h _{fe}	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{V}, f = 1 \text{ kHz}$		50,000		
BV _{CES}	I _C = 100 μA	40			٧
BV _{EBO}	I _E = 10 μA	12			٧
ICES	V _{CE} = 15V, V _{BE} = 0			100	nA
ICBO	$V_{CB} = 15V, I_{E} = 0$			100	nA
I _{EBO}	V _{EB} = 10V, I _C = 0			100	nA
P _{D(max)} TO-202	T _C = 25°C T _A = 25°C	10 2			w
TO-226	$T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$	2			w w
TO-237	$T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	2 850			W mW
TO-92 TO-236	T _A = 25°C T _C = 25°C	600 350			mW mW

ELECTRICAL CHARACTERISTICS (T_A = 25°C) (Continued)

Symbol	Conditions	Min	Тур	Max	Units
$ heta_{\sf JC}$					
TO-202	T _C = 25°C			12.5	°C/W
TO-237	$T_C = 25^{\circ}C$			62.5	°C/W
θ_{JA}					
TO-202	T _A = 25°C			62.5	°C/W
TO-226	T _A = 25°C			125	°C/W
TO-237	T _A = 25°C			147	°C/W
TO-92	T _A = 25°C			208	°C/W
T _{J(max)}	All Plastic Parts	150			°C

Process 62 PNP Small Signal

DESCRIPTION

Process 62 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 07.

APPLICATION

These devices are designed for low level, high gain, low noise general purpose amplifier applications to 20 mA collector current.

PRINCIPAL DEVICE TYPES

TO-18:

2N3550

TO-92 EBC: 2N5086, PN4250

TO-236:

MMBT5086

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
NF	$V_{CE} = 5V$, $I_{C} = 10 \mu A$, $R_{S} = 10 kΩ$, PBW = 15.70 kHz		1	3	dB
h _{fe}	$V_{CE} = 5V$, $I_{C} = 500 \mu A$, $f = 20 MHz$	3	6		
C _{ib}	V _{EB} = 0.5V			8	pF
C _{ob}	V _{CB} = 5V		3.5	5	pF
h _{FE}	$I_{C}=1~\mu A, V_{CE}=5V$ $I_{C}=10~\mu A, V_{CE}=5V$ $I_{C}=100~\mu A, V_{CE}=5V$ $I_{C}=500~\mu A, V_{CE}=5V$ $I_{C}=1~m A, V_{CE}=5V$ $I_{C}=10~m A, V_{CE}=5V$	45 60 75 90 90 75	270	630	
V _{CE(SAT)}	$I_{C} = 1 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$			0.10 0.15	V V
V _{BE(SAT)}	$I_C = 1 \text{ mA}, I_B = 0.1 \text{ mA}$ $I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.75 0.90	V V
BV _{CEO}	I _C = 1 mA	50			. V
BV _{CBO}	I _C = 10 μA	60			V
BV _{EBO}	I _E = 10 μA	8			V
Ісво	V _{CB} = 40V			100	nA
I _{EBO}	V _{EB} = 6V			100	nA
P _{D(max)} TO-18 TO-92 TO-236	T _A = 25°C T _A = 25°C T _C = 25°C	600 600 350			mW mW mW
T _{J(max)}	All Metal Can Parts All Plastic Parts	200 150			°C

TL/G/10038-6

SMALL SIGNAL CHARACTERISTICS (f = 1.0 kHz)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
h _{ie}	Input Resistance	$I_C = 1.0 \text{ mA}, V_{CE} = -5.0 \text{V}$	2.5	8.0	20	kΩ
h _{oe}	Output Conductance	$I_{\rm C} = 1.0$ mA, $V_{\rm CE} = -5.0$ V	5.0	19	50	μmho
h _{re}	Voltage Feedback Ratio	$I_{C} = 1.0 \text{ mA}, V_{CE} = -5.0 \text{V}$			10	×10-4
h _{fe}	Small Signal Current Gain	$I_C = 1.0 \text{ mA}, V_{CE} = -5.0 \text{V}$	100	250	800	

TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)

Process 63 PNP Medium Power

TL/G/10038-8

DESCRIPTION

Process 63 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 19.

APPLICATION

This device was designed for use as general purpose amplifiers and switches requiring collector currents to 500 mA.

PRINCIPAL DEVICE TYPES

TO-5 EBC: 2N2905 TO-18 EBC: 2N2907A TO-237 EBC: TN2905

TO-92 EBC: PN2907A, 2N4403

TO-116: MPQ2907 TO-236: MMBT2907 16-SOIC: MMPQ2907

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
ton	I _C = 150 mA, I _{B1} = 15 mA <i>(Figure 1)</i>		30	45	ns
toff	I _C = 150 mA, I _{B2} = 15 mA (Figure 2)		220	290	ns
C _{CB}	V _{CB} = 10V		6	8	pF
C _{EB}	V _{EB} = 0.50V			20	pF
h _{fe}	$I_C = 20 \text{ mA}, V_{CE} = 20 \text{V}, f = 100 \text{ MHz}$	1.5	2.5		
NF(spot)	$I_{C} = 100 \mu A$, $V_{CE} = 10V$, $R_{S} = 1k$, $f = 1 kHz$		1.5		dB
h _{FE}	$I_C = 1 \text{ mA}, V_{CE} = 10V$ $I_C = 10 \text{ mA}, V_{CE} = 10V$ $I_C = 150 \text{ mA}, V_{CE} = 10V$ $I_C = 500 \text{ mA}, V_{CE} = 10V$	50 50 50 30	150	400	
V _{CE(SAT)}	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			0.5 1.2	> >
V _{BE(SAT)}	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			1.3 1.6	V V
BV _{CEO}	I _C = 10 mA	35			V
BV _{CBO}	I _C = 100 μA	50			٧
BV _{EBO}	I _E = 10 μA	6			V
I _{CBO}	V _{CB} = 35V			100	nA
I _{EBO}	V _{FB} = 4V			100	nA

ELECTRICAL CHARACTERISTICS (T_A = 25°C) (Continued)

Symbol	Conditions	Min	Тур	Max	Units
P _{D(max)}	,				
TO-5	T _C = 25°C	3			W
	T _A = 25°C	800			mW
TO-18	T _C = 25°C	1.7			W
	T _A = 25°C	600			mW
TO-237	T _C = 25°C	2			W
	T _A = 25°C	850			mW
TO-116	T _A = 25°C				
	(Each Transistor)	500			mW
	(Total Dissipation)	900			mW
TO-236	$T_C = 25^{\circ}C$	350			mW
T _{J(max)}	All Metal Can Parts	200			°C
- //	All Plastic Parts	150			°C

SMALL SIGNAL CHARACTERISTICS (f = 1.0 kHz)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
h _{ie}	Input Resistance	$I_C = 10 \text{ mA}, V_{CE} = -10 \text{V}$		480	2000	Ω
h _{oe}	Output Conductance	$I_C = 10 \text{ mA}, V_{CE} = -10 \text{V}$		80	1200	μmhos
h _{re}	Voltage Feedback Ratio	$I_C = 10 \text{ mA}, V_{CE} = -10 \text{V}$		162	1500	×10−6
h _{fe}	Small Signal Current Gain	$I_C = 10 \text{ mA}, V_{CE} = -10V$	100			

TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)

TL/G/10038-9

T_C - CASE TEMPERATURE (°C)

Input and Output

FIGURE 1. Saturated Turn On Switching Time Test Circuit

TL/G/10038-11

FIGURE 2. Saturated Turn Off Switching Time Test Circuit

Process 65 PNP High Speed Switch

TL/G/10038-14

DESCRIPTION

Process 65 is an overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 21.

APPLICATION

This device was designed for very high speed saturate switching at collector currents to 50 mA.

PRINCIPAL DEVICE TYPES

TO-18 EBC: 2N4208

TO-92 EBC: PN3640, 2N5771
TO-236: MMBT3640
TO-116: MPQ3640
16-SOIC: MMPQ3640

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
toff	I _C = 10 mA, I _{B2} = 1 mA (Figure 1)		18	25	ns
ton	I _C = 10 mA, I _{B1} = 1 mA (Figure 1)		11	15	ns
ts	$I_C = I_{B1} = I_{B2} = 10 \text{ mA}$		15	20	ns
C _{ob}	V _{CB} = 5V		2	3	pF
C _{ib}	V _{EB} = 0.5V			3.5	pF
h _{fe}	V _{CE} = 10V, I _C = 10 mA, f = 100 MHz	6.5	9		
h _{FE}	$\begin{split} I_{C} &= 1 \text{ mA, } V_{CE} = 1 V \\ I_{C} &= 10 \text{ mA, } V_{CE} = 1 V \\ I_{C} &= 50 \text{ mA, } V_{CE} = 1 V \\ I_{C} &= 100 \text{ mA, } V_{CE} = 1 V \\ I_{C} &= 1 \text{ mA, } V_{CE} = 0.5 V \\ I_{C} &= 10 \text{ mA, } V_{CE} = 0.3 V \end{split}$	20 30 25 20 20 20	85 75	150	
V _{CE} (SAT)	$I_C = 1 \text{ mA}, I_B = 0.1 \text{ mA}$ $I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}$			0.15 0.20 0.50	V V V
V _{BE(SAT)}	$I_C = 1 \text{ mA}, I_B = 0.1 \text{ mA}$ $I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}$			0.8 0.95 1.5	V V V
BV _{CEO}	$I_C = 3 \text{ mA}$	15			٧
BV _{CBO}	I _C = 100 μA	15			٧
BV _{EBO}	I _C = 10 μA	4.5			V
I _{CBO}	V _{CB} = 10V			100	nA
I _{EBO}	V _{EB} = 3V			100	nA

Collector Saturation

Voltage vs Collector

Current

SATURATION VOLTAGE (V)

LECTOR 5

Base-Emitter ON Voltage

vs Collector Current

Collector Reverse Current

-1.0

Ic - COLLECTOR CURRENT (mA)

-10

12/0/10030-10

Fall Time vs Turn On and

FIGURE 1. t_{ON} and t_{OFF} Test Circuit

Process 66 PNP Small Signal

DESCRIPTION

Process 66 is an overlay, double-diffused, silicon epitaxial device. Complement to Process 23.

APPLICATION

This device was designed for general purpose amplifier and switching applications at collector currents of 10 μA to 100 mA.

PRINCIPAL DEVICE TYPES

TO-92 EBC: 2N3906, 4126

TO-236: MMBT3906 TO-116: MPQ3906 16-SOIC: MMPQ3906

TL/G/10038-19

ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}C)$

Symbol	Conditions	Min	Тур	Max	Units
toff	I _C = 10 mA, I _{B2} = 1 mA		150	300	ns
ton	$I_C = 10 \text{ mA}, I_{B1} = 1 \text{ mA}$		30	70	ns
C _{ob}	V _{CB} = 5V		3.0	4.5	pF
C _{ib}	V _{EB} = 0.5V			15	рF
h _{fe}	f = 100 MHz, V _{CE} = 20V, I _C = 10 mA	2.5	4.5		
NF (wideband)	$I_{C} = 100 \mu\text{A}, V_{CE} = 5\text{V}, R_{S} = 1 \text{k}\Omega$		2.0		dB
h _{FE}	$\begin{split} & I_{C} = 0.1 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 1 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 10 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 50 \text{ mA, } V_{CE} = 1V \\ & I_{C} = 100 \text{ mA, } V_{CE} = 1V \end{split}$	40 50 50 40 20	150	350	
V _{CE(SAT)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}$			0.25 0.40	V V
V _{BE(SAT)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}$			0.85 0.95	V V
BV _{CEO}	I _C = 1 mA	35			٧
BV _{CBO}	I _C = 10 μA	45			V
BV _{EBO}	I _C = 10 μA	5.0			V
ІСВО	V _{CB} = 25V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA

Maximum Power

Process 67 PNP Medium Power

TL/G/10038-22

DESCRIPTION

Process 67 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 12.

APPLICATION

This device is designed for general purpose amplifier and switching applications at currents to 1A and collector voltages up to 70V.

PRINCIPAL DEVICE TYPES

TO-39 EBC: 2N4033
TO-92 EBC: MPSA56
TO-116: MPQA56
TO-202 EBC: NSDU56
TO-226 EBC: MPSW56
TO-236: MMBT56
TO-237 EBC: TN4033

ELECTRICAL CHARACTERISTICS ($T_{\Delta} = 25^{\circ}C$)

Symbol	Conditions	Min	Тур	Max	Units
t _{ON}	$I_{\rm C} = 500$ mA, $I_{\rm B1} = 50$ mA		35		ns
t _{OFF}	$I_C = 500 \text{ mA}, I_{B2} = 50 \text{ mA}$		250		ns
C _{ob}	V _{CB} = 10V		11	15	pF
C _{ib}	V _{EB} = 0.50V			90	pF
h _{fe}	$V_{CE} = 10V, I_{C} = 50 \text{ mA, f} = 100 \text{ MHz}$	1	2		
NF (spot)	$I_C = 100 \mu A$, $R_S = 1 k$, $V_{CE} = 10 V$, $f = 1 kHz$		1		dB
h _{FE}	$\begin{array}{l} I_{C} = 0.10 \text{ mA, V}_{CE} = 10V \\ I_{C} = 1.0 \text{ mA, V}_{CE} = 10V \\ I_{C} = 10 \text{ mA, V}_{CE} = 10V \\ I_{C} = 100 \text{ mA, V}_{CE} = 10V \\ I_{C} = 500 \text{ mA, V}_{CE} = 10V \end{array}$	40 45 50 50 35	150	350	
V _{CE(SAT)}	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			0.2 0.6	V
V _{BE(SAT)}	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			1.0 1.2	V
BV _{CEO}	I _C = 10 mA	60			V
BV _{CBO}	I _C = 100 μA	70			V
BV _{EBO}	I _E = 10 μA	7			V
Ісво	V _{CB} = 50V			100	nA
I _{EBO}	V _{FB} = 5V			100	nA

ELECTRICAL CHARACTERISTICS (T_A = 25°C) (Continued)

Symbol	Conditions	Min	Тур	Max	Units
P _{D(max)}					
TO-202	T _C = 25°C	10			W
	T _A = 25°C	2			W
TO-237	T _C = 25°C	2			W
	T _A = 25°C	850			mW
TO-226	T _A = 25°C	1		Ì	W
TO-92	T _A = 25°C	600			mW
TO-39	T _C = 25°C	7			W
	T _A = 25°C	1			W
TO-236	T _C = 25°C	350			mW
TO-116	T _A = 25°C				
	(Each Device)	500			mW
	(Total Dissipation)	900			mW

Collector-Emitter Saturation Voltage

Noise Figure vs

Noise Figure vs Frequency

Switching Times vs **Collector Current**

Turn On and Turn Off Times

Process 68 PNP Small Signal

TL/G/10038-26

GENERAL DESCRIPTION

Process 68 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 10.

APPLICATION

This device was designed for general purpose amplifier applications at collector currents to 500 mA.

PRINCIPAL DEVICE TYPE

TO-92 EBC: PN200, PN2907

TO-92 ECB: 2N4061

TO-116: MPQ200

TO-236: MMBT200, 200A

16-SOIC: MMPQ200

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CBO}	I _C = 10 μA	60			V
BV _{CEO}	I _C = 1 mA	45			V
BV _{EBO}	$I_E = 10 \mu\text{A}$	6			V
Ісво	V _{CB} = 50V			50	nA
ICES	V _{CE} = 40V			50	nA
I _{EBO}	V _{EB} = 4V			50	nA
h _{FE}	$I_C = 100 \mu A, V_{CE} = 1V$ $I_C = 10 mA, V_{CE} = 1V$	80 100	250	600	
	I _C = 100 mA, V _{CE} = 1V I _C = 150 mA, V _{CE} = 5V I _C = 300 mA, V _{CE} = 5V	100 100 50		500	
V _{CE(s)}	$I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$			0.2	V
V _{BE(s)}	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$			0.85	V
V _{CE(s)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}$			0.4	V
V _{BE(s)}	$I_C = 200 \text{ mA}, I_B = 20 \text{ mA}$			1.0	V
C _{ob}	V _{CB} = 5V, f = 1 MHz		4.0	6.0	pF
f _T	V _{CE} = 20V, I _C = 20 mA	200	300		MHz
ts	$I_C = 10 \text{ mA}, I_{B_1} = I_{B_2} = 1 \text{ mA}$		275		ns
toff	I _C = 150 mA, I _{B1} = I _{B2} = 15 mA		225		ns
NF	$I_C = 100 \mu A$, $V_{CE} = 5V$, $R_G = 2 k\Omega$, $f = 1 kHz$		1.5		dB
P _{D(max)} TO-92 TO-236	T _A = 25°C T _C = 25°C	600 350			mW mW

Process 69 PNP Small Signal

DESCRIPTION

Process 69 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 11.

APPLICATION

These devices are designed for general purpose amplifier applications to 300 mA collector current.

PRINCIPAL DEVICE TYPES

TO-92 EBC: PN201 **TO-236:** MMBT201

TL/G/10038-26

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
C _{ob}	V _{CB} = 10V, f = 1 MHz		3.0	4.0	pF
C _{ib}	V _{EB} = 0.5V, f = 1 MHz		16	25	pF
NF	$I_{C} = 100 \mu A, V_{CE} = 5V$ $R_{S} = 2 k\Omega, f = 1 KHz$		2.0		dB
f _T	V _{CE} = 10V, I _C = 20 mA	150	250		MHz
h _{FE}	$V_{CE} = 1.0V, I_{C} = 1 \text{ mA}$ $V_{CE} = 1.0V, I_{C} = 100 \text{ mA}$ $V_{CE} = 1.0V, I_{C} = 150 \text{ mA}$	40 100 75	200	400	
V _{CE(SAT)}	$I_{\rm C} = 150 {\rm mA}, I_{\rm B} = 15 {\rm mA}$			0.5	V
V _{BE(SAT)}	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$			1.0	V
BV _{CBO}	$I_C = 10 \mu\text{A}$	80			
BV _{CEO}	I _C = 1 mA	65			
BV _{EBO}	l _E = 10 μA	6.0			
Ісво	V _{CB} = 40V			50	nA
ICES	V _{CE} = 30V			50	nA
I _{EBO}	V _{EB} = 4.0V			50	nA
P _{D(max)} TO-92 TO-236	T _A = 25°C T _C = 25°C	600 350			mW mW

Process 70 PNP Memory Driver

TL/G/10038-35

DESCRIPTION

Process 70 is a non-overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 25.

APPLICATION

This device was designed primarily for high speed saturated switching applications to currents of 1A.

PRINCIPAL DEVICE TYPES

TO-39 EBC: 2N3467 **TO-237 EBC:** TN3467 **TO-116:** MPQ3467

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
ton	I _C = 500 mA, I _{B1} = 50 mA (Figure 1)		20	40	ns
t _{OFF}	$I_C = 500 \text{ mA}, I_{B2} = 50 \text{ mA} (Figure 2)$		60	90	ns
C _{ob}	$V_{CB} = -10V$		15	20	pF
C _{ib}	$V_{EB} = -0.5V$			80	pF
h _{FE}	$I_{C} = 100 \text{ mA}, V_{CE} = -1V$ $I_{C} = 500 \text{ mA}, V_{CE} = -1V$ $I_{C} = 1A, V_{CE} = -1V$	40 30 15	100	200 120	
V _{CE(SAT)}	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 1A, I_B = 100 \text{ mA}$:	0.3 0.6 1.0	V V V
V _{BE(SAT)}	$I_C = 150 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 1A, I_B = 100 \text{ mA}$			1.2 1.2 1.7	V V V
BV _{CEO}	I _C = 10 mA	40			V
BV _{CBO}	I _C = 100 μA	50			V
BV _{EBO}	I _E = 10 μA	6			V
Ісво	V _{CB} = 30V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA
P _{D(max)} TO-39 TO-237 TO-116	$T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ (Total Dissipation) (Each Transistor)	7 1 2 850 1 600			W W W mW
T _{J(max)}	All Metal Can Parts All Plastic Parts	200			*C

Switching Times vs

Rise Time vs Collector Current and Turn On

Turn On and Turn Off Times vs Collector Current

Switching Times vs

Maximum Power Dissipation vs **Ambient Temperature**

* One square inch of copper run

Maximum Power Dissipation vs

Process 74 PNP High Voltage

TL/G/10038-40

DESCRIPTION

Process 74 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 16.

APPLICATION

This device was designed as a general purpose amplifier and switch for applications requiring high voltages.

PRINCIPAL DEVICE TYPES

TO-92 EBC: 2N5401 **TO-236:** MMBT5401

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
f _T	$I_C = 10 \text{ mA}, V_{CE} = 10V, f = 100 \text{ MHz}$	100	160		MHz
C _{ob}	V _{CB} = 10V, f = 1 MHz		6	10	pF
h _{FE}	I _C = 1 mA, V _{CE} = 5V	40			
	$I_C = 10 \text{ mA}, V_{CE} = 5V$ $I_C = 50 \text{ mA}, V_{CE} = 5V$	50 20	120	250	
V _{BE(SAT)}	I _C = 50 mA, I _B = 5 mA			0.95	٧
V _{CE(SAT)}	I _C = 50 mA, I _B = 5 mA			0.50	V
BV _{CEO}	I _C = 1 mA	120			٧
BV _{CBO}	I _C = 10 μA	140			٧
BV _{EBO}	l _E = 10 μA	6			٧
ICBO	V _{CB} = 100V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA
P _{D(max)} TO-92	T _A = 25°C	600		,	mW
TO-236	T _C = 25°C	350			mW

Process 75 PNP RF Amplifier

TL/G/10038-59

DESCRIPTION

Process 75 is an overlay, double-diffused, silicon epitaxial device. Complement to Process 43.

APPLICATION

This device was designed for radio frequency applications to collector currents to 20 mA.

PRINCIPAL DEVICE TYPES

TO-92 EBC: PN5208

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
C _{ob}	V _{CB} = 10V		1.6	2.0	pF
C _{ib}	V _{EB} = 0.5V			3.5	pF
h _{fe}	$V_{CE} = 10V, I_{C} = 10 \text{ mA}, f = 100 \text{ MHz}$	6.5	9.0		
h _{FE}	$I_{C} = 5 \text{ mA}, V_{CE} = 5V$ $I_{C} = 10 \text{ mA}, V_{CE} = 5V$	30 40	85	180	
V _{CE(SAT)}	I _C = 10 mA, I _B = 1 mA			0.20	٧
V _{BE(SAT)}	$I_{\rm C} = 10$ mA, $I_{\rm B} = 1$ mA			0.95	٧
BV _{CEO}	I _C = 3 mA	18			٧
BV _{CBO}	I _C = 100 μA	18			٧
BV _{EBO}	I _C = 10 μA	4.5			٧
I _{CBO}	V _{CB} = 10V			100	nA
I _{EBO}	V _{EB} = 3V			100	nA
P _{D(max)} TO-92 TO-236	T _A = 25°C T _C = 25°C	600 350			mW mW
T _{J(max)}	All Plastic Parts	150			°C

Process 76 PNP High Voltage Amplifier

TL/G/10038-42

DESCRIPTION

Process 76 is a non-overlay, planar epitaxial silicon transistor with a field plate. Complement to Process 48.

APPLICATION

This device was designed for high voltage driver applications.

PRIMARY DEVICE TYPES

TO-226 EBC: MPSW92 **TO-92 EBC:** MPSA92

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 1 mA (Note 1)	220	300		٧
BV _{CES}	I _C = 0.1 mA		350		٧
BV _{EBO}	I _E = 0.1 mA	6			V
I _{CES}	V _{CE} = 150V	,		200	nA
I _{EBO}	V _{EB} = 5V			100	nA
h _{FE}	$V_{CE} = 15V, I_{C} = 0.1 \text{ mA}$ $V_{CE} = 15V, I_{C} = 25 \text{ mA}$ $V_{CE} = 15V, I_{C} = 50 \text{ mA}$	40	70 80 50	200	
V _{CE(SAT)}	I _C = 10 mA, I _B = 1 mA		0.3	1.0	V
V _{BE(SAT)}	I _C = 10 mA, I _B = 1 mA		0.8		V
f _T	V _{CE} = 15V, I _C = 10 mA, f = 20 MHz	50	100		MHz
C _{ob}	V _{CB} = 10V, f = 1 MHz		8		pF
P _{D(max)} TO-226 TO-92	T _A = 25°C T _A = 25°C	1 600			W mW
T _{J(max)}	All Plastic Parts			150	°C

Process 77 PNP Medium Power

DESCRIPTION

Process 77 is a double-diffused, silicon epitaxial planar device. Complement to Process 37.

APPLICATION

This device was designed for geneal purpose medium power amplifier and switching circuits that require collector currents to 2A.

PRINCIPAL DEVICE TYPES

TO-202 EBC: NSDU51

TO-237 EBC: 2N6726, 92PU51 **TO-226 EBC:** MPS6726

TO-92 EBC: PN6726

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 10 mA	25			٧
BV _{CBO}	$I_{C} = 100 \mu A$	35			٧
BV _{EBO}	I _E = 10 μA	5			٧
I _{CBO}	V _{CB} = 20V			100	nA
I _{EBO}	V _{EB} = 4V		10	100	nA
h _{FE}	I _C = 100A, V _{CE} = 1V I _C = 1 mA, V _{CE} = 1V	50 35	150	300	
V _{CE(SAT)}	$I_{C} = 0.5A, I_{B} = 50 \text{ mA}$			0.5	٧
V _{BE(SAT)}	$I_C = 0.5A, I_B = 50 \text{ mA}$			1.3	٧
f _T	I _C = 100 mA, V _{CE} = 10V	100	. 200		MHz
C _{ob}	V _{CE} = 10V, f = 1 MHz		28	35	pF
P _{D(max)} TO-202 TO-226	$T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	10 2 1			W W W
TO-237 TO-92	T _C = 25°C T _A = 25°C T _A = 25°C	850 600			W mW mW
θ _{JC} TO-202 TO-237	$T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$			12.5 62.5	°C/W °C/W
θ _{JA} TO-202 TO-226 TO-237 TO-92	T _A = 25°C T _A = 25°C T _A = 25°C T _A = 25°C			62.5 125 147 208	*C/W *C/W *C/W *C/W
T _{J(max)}	All Plastic Parts	150			°C

TL/G/10038-46

Process 78 PNP Medium Power

TL/G/10038-49

DESCRIPTION

Process 78 is a double-diffused, silicon epitaxial planar device. Complement to Process 38.

APPLICATION

This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1.5A.

PRINCIPAL DEVICE TYPES

TO-202 EBC: D4101-6, NSDU55 **TO-237 EBC:** 2N6727, 92PU55

TO-226 EBC: MPS6727 **TO-92 EBC:** PN6727

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ **)**

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 10 mA	40			٧
BV _{CBO}	I _C = 100 μA	50			٧
BV _{EBO}	I _E = 10 μA	5			٧
I _{CBO}	V _{CB} = 40V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA
h _{FE}	$I_{C} = 1 \text{ mA}, V_{CE} = 1V$ $I_{C} = 100 \text{ mA}, V_{CE} = 1V$ $I_{C} = 500 \text{ mA}, V_{CE} = 1V$	40 50 35	150	300	
V _{CE(SAT)}	$I_{\rm C} = 500 {\rm mA}, I_{\rm B} = 50 {\rm mA}$			0.6	٧
V _{BE(SAT)}	$I_{\rm C} = 500 {\rm mA}, I_{\rm B} = 50 {\rm mA}$			1.3	٧
t _T	I _C = 100 mA, V _{CE} = 10V	80	150		MHz
C _{ob}	V _{CB} = 10V		20	25	pF
P _{D(max)} TO-202 TO-226 TO-237	$T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$	10 2 1 2			W W W
TO-92	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$	850 600			mW mW
θ _{JC} TO-202 TO-237	T _C = 25°C T _C = 25°C			12.5 62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C (Continued)

Symbol	Conditions	Min	Тур	Max	Units
θ_{JA}					
TO-202	$T_A = 25^{\circ}C$			62.5	°C/W
TO-226	$T_A = 25^{\circ}C$			125	°C/W
TO-237	$T_A = 25^{\circ}C$			147	°C/W
TO-92	$T_A = 25^{\circ}C$			208	°C/W
T _{J(max)}	All Plastic Parts	150			°C

TL/G/10038-51

Process 79 PNP Medium Power

TL/G/10038-54

DESCRIPTION

Process 79 is a double-diffused, silicon epitaxial planar device. Complement to Process 39.

APPLICATION

This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1A.

PRINCIPAL DEVICE TYPES

TO-202 EBC: D4107-14, NSDU56 TO-237 EBC: 2N6729, 92PU56 TO-226 EBC: MPS6729 TO-92 EBC: PN6729

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 10 mA	70			٧
BV _{CBO}	I _C = 100 μA	80			٧
BV _{EBO}	I _E = 10 μA	5			٧
I _{CBO}	V _{CB} = 60V			100	nA
I _{EBO}	V _{EB} = 4V			100	nA
h _{FE}	$I_{C} = 1 \text{ mA}, V_{CE} = 1V$ $I_{C} = 100 \text{ mA}, V_{CE} = 1V$ $I_{C} = 500 \text{ mA}, V_{CE} = 1V$	40 40 20	120	240	
V _{CE(SAT)}	$I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$			0.8	٧
$V_{BE(SAT)}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$				1.4	٧
f _T	$I_{C} = 100 \text{ mA}, V_{CE} = 10V$	70	125		MHz
C _{ob}	V _{CB} = 10V		14	18	pF
P _{D(max)} TO-202	T _C = 25°C T _A = 25°C	10 2			W W
TO-226 TO-237	T _A = 25°C T _C = 25°C T _A = 25°C	1 2 850			W W mW
TO-92	T _A = 25°C	600			mW
θ _{JC} TO-202 TO-237	T _C = 25°C T _C = 25°C			12.5 62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C) (Continued)

Symbol	Conditions	Min	Тур	Max	Units
θ_{JA}	6				
TO-126	T _A = 25°C			83.3	°C/W
TO-202	T _A = 25°C			62.5	°C/W
TO-226	T _A = 25°C			125	°C/W
TO-237	T _A = 25°C			147	°C/W
TO-92	T _A = 25°C			208	°C/W
T _{J(max)}	All Plastic Parts	150			°C

TL/G/10038-56

Process 50 N-Channel JFET

DESCRIPTION

Process 50 is designed primarily for RF amplifier and mixer applications. It will operate up to 450 MHz with low noise figure and good power gain. These devices offer outstanding performance at VHF aircraft and communications frequencies. Their major advantage is low crossmodulation and intermodulation, low noise figure and good power gain. The device is also a good choice for analog switching where low capacitance is very important.

Gate is also backside contact

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-25	-40		٧
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 15V, V _{GS} = 0V	1.0	10	20	mA
9fs	Forward Transconductance	V _{DS} = 15V, V _{GS} = 0V	3.0	5.5	7.0	mmhos
9fs	Forward Transconductance	$V_{DG} = 15V, I_D = 200 \mu\text{A}$		1.1		mmhos
Igss	Reverse Gate Leakage	$V_{GS} = -20V, V_{DS} = 0V$		-5.0	-100	pА
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	100	175	500	Ω
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 15V, I_{D} = 1 \text{ nA}$	-0.7	-3.5	-6.0	٧
gos	Output Conductance	$V_{DG} = 15V$, $I_D = 1$ mA, $f = 1$ kHz		10		μmhos
C _{rss}	Feedback Capacitance	$V_{DG} = 15V, V_{GS} = 0V$		0.7	0.9	pF
C _{iss}	Input Capacitance	$V_{DS} = 15V, V_{GS} = 0V$		3.5	4.0	pF
e _n	Noise Voltage	$V_{DG} = 15V, I_D = 1 \text{ mA}, f = 100 \text{ Hz}$		8.0		nV/√Hz
NF	Noise Figure	$V_{DG} = 15V$, $I_D = 5$ mA, $R_G = 1$ k Ω , $f = 400$ MHz		2.2	4.0	dB
G _{PS}	Power Gain	$V_{DG} = 15V, I_D = 5 \text{ mA}, f = 400 \text{ MHz}$		12		dB

This process is available in the following device types. *Denotes preferred parts.

TO-72 (NS Package 29)	TO-92 (NS Package 92)	TO-92 (NS Package 94)	TO-92 (NS Package 97)
2N3823	*2N5484	2N3819	2N5949
2N3966	*2N5485	2N5248	2N5950
2N4223	*2N5486	BF244A	2N5951
2N4224	2N5555	BF244B	2N5952
*2N4416	2N5668	BF244C	2N5953
*2N4416A	2N5669	TIS58	BF245A
2N5078	2N5670	TIS59	BF245B
2N5103	*J304		BF245C
2N5104	*J305		BF256A
2N5105	PN4223		BF256B
2N5556	PN4224		BF256C
2N5557	*PN4416		
2N5558	PN5163		
	MPF102		
	MPF106		
	MPF107		
	MPF110		
	MPF111		

TO-236/SOT23 (NS Package 48/49)

MMBFJ304

MMBFJ305

MMBF4416

MMBF5484

MMBF5485

MMBF5486

COMMON SOURCE

COMMON GATE

Forward Transadmittance

Forward Transadmittance

Output Admittance

Reverse Transadmittance

Reverse Transadmittance

Process 51 N-Channel JFET

TL/G/10035-4

Gate is also backside contact

DESCRIPTION

Process 51 is designed primarily for electronic switching applications such as low ON resistance analog switching. It features excellent C_{ISS} R_{DS(ON)} time constant. The inherent zero offset voltage and low leakage current make these devices excellent for chopper stabilized amplifiers, sample and hold circuits, and reset switches. Low feed-through capacitance also allows them to handle video signals to 100 MHz.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_{G} = -1 \mu A$	-30	-45		٧
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 20V, V_{GS} = 0V$ Pulse Test	5.0	65	170	mA
IGSS	Reverse Gate Leakage	$V_{GS} = -20V, V_{DS} = 0V$		-15	-200	pА
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	20	35	100	Ω
9fs	Forward Transconductance	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$			8.5	mmhos
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 20V, I_{D} = 1 \text{ nA}$	-0.5	-4.5	-9.0	٧
I _{D(OFF)}	Drain OFF Current	$V_{DS} = 20V, V_{GS} = -10V$		15	200	pА
C _{rss}	Feedback Capacitance	$V_{DG} = 15V, I_D = 5 \text{ mA}, f = 1 \text{ MHz}$		3.5	4.0	pF
C _{iss}	Input Capacitance	$V_{DG} = 15V, I_D = 5 \text{ mA}, f = 1 \text{ MHz}$		10	16	pF
e _n	Noise Voltage	V _{DG} = 15V, I _D = 1 mA, f = 100 Hz		6.0		nV/√Hz
t _{on}	Turn-On Time	V _{DD} = 10V, I _D = 6.6 mA		12	20	ns
t _{off}	Turn-Off Time	V _{DD} = 10V, I _D = 6.6 mA		40	80	ns

This process is available in the following device types. *Denotes preferred parts.

TO-18 (NS Pack	age 02)	TO-92 (NS Packa	age 92)	TO-92 (NS Package 94)
2N3970	2N4860	*2N5638	*PN4856	BF246A
2N3971	2N4860A	*2N5639	*PN4857	BF246B
2N3972	2N4861	*2N5640	*PN4858	BF246C
*2N4091	2N4861A	2N5653	*PN4859	
*2N4092		2N5654	*PN4860	
*2N4093		*J111	*PN4861	TO-92 (NS Package 97)
*2N4391		*J112	U1897	BF247A
*2N4392		*J113	U1898	BF247B
*2N4393-		*PF5101	U1899	BF247C
*2N4856		*PF5102	MPF820	TIS73
2N4856A		*PF5103		TIS74
*2N4857		*PN4091		TIS75
2N4857A		*PN4092		
*2N4858		*PN4093		
2N4858A		*PN4391		
*2N4859		*PN4392		
2N4859A		*PN4393		

Source and drain interchangeable.

TO-236/SOT23 (NS Package 48/49)

MMBFJ111

MMBFJ112

MMBFJ113

MMBF4391

MMBF4392

MMBF4393

Process 52 N-Channel JFET

DESCRIPTION

Process 52 is designed primarily for low level audio and general purpose applications. These devices provide excellent performance as input stages for piezoelectric transducers or other high impedance signal sources. Their high output impedance and high voltage breakdown lend them to high gain audio and video amplifier applications. Source and drain are interchangeable.

Gate is also backside contact

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-70		٧
IDSS	Drain Saturation Current	V _{DS} = 20V, V _{GS} = 0V	0.2	1.5	12	mA
9fs	Forward Transconductance	$V_{DS} = 20V, V_{GS} = 0V$	0.5	2.5	5.0	mmho
9fs	Forward Transconductance	$V_{DS} = 20V, I_{D} = 200 \mu A$		700		μmho
lgss	Reverse Gate Leakage Current	$V_{GS} = -30V, V_{DS} = 0V$		-10	-100	pA
rDS(ON)	Drain ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	250	400	2000	Ω
V _{GS(OFF)}	Gate Cutoff Voltage	V _{DS} = 15V, I _D = 1 nA	-0.3	1.0	-8.0	V
gos	Output Conductance	$V_{DG} = 15V, I_{D} = 200 \mu A$		2.0		μmho
C _{rss}	Feedback Capacitance	V _{DG} = 15V, V _{GS} = 0V, f = 1 MHz		1.3	1.8	pF
C _{iss}	Input Capacitance	V _{DG} = 15V, V _{GS} = 0V, f = 1 MHz		5	6	pF
θn	Noise Voltage	$V_{DG} = 15V, I_D = 200 \mu A, f = 100 Hz$		10		nV/√Hz

This process is available in the following device types. *Denotes preferred parts.

TO-18 (NS Package 02)	TO-72 (NS Package 25)	TO-92 (NS Package 92)
2N3070	*2N3684	*J201
2N3071	*2N3685	*J202
2N3368	*2N3686	*J203
2N3369	*2N3687	PN4338
2N3370		PN4339
2N3458		*PN3684
2N3459		*PN3685
2N3460		*PN3686
*2N4338		*PN3687
*2N4339	Source and drain interchangeable.	*PN4302
*2N4340		*PN4303
*2N4341		*PN4304

Process 53 N-Channel JFET

DESCRIPTION

Process 53 is designed primarily for low current DC and audio applications. These devices provide excellent performance as input stages for sub-picoamp instrumentation or any high impedance signal sources.

Gate is also backside contact

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-40	-60		٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 10V, V_{GS} = 0V$	0.02	0.25	1.0	mA
9fs	Forward Transconductance	$V_{DS} = 10V, V_{GS} = 0V$	80	250	350	μmho
9fs	Forward Transconductance	$V_{DG} = 15V, I_{D} = 50 \mu A$		120		μmho
Igss	Reverse Gate Leakage	$V_{GS} = -20V, V_{DS} = 0V$		-0.3	-10	pΑ
V _{GS(Off)}	Pinch Off Voltage	$V_{DS} = 10V, I_{D} = 1 \text{ nA}$	-0.5	-2.2	-6.0	V
C _{rss}	Feedback Capacitance	$V_{DG} = 15V, V_{GS} = 0V, f = 1 MHz$		0.85	1.0	pF
C _{iss}	Input Capacitance	$V_{DS} = 15V, V_{GS} = 0V, f = 1 MHz$		2.0	2.5	pF
gos	Output Conductance	$V_{DG} = 10V, I_D = 50 \mu A$		0.9	5.0	μmhos
en	Noise Voltage	$V_{DG} = 10V, I_D = 50 \mu A, f = 100 Hz$		45	150	nV/√Hz

This process is available in the following device types. *Denotes preferred parts.

TO-72 (NS Package 25)	TO-92 (NS Package 92)
2N4117	PN4117
*2N4117A	PN4117A
2N4118	PN4118
*2N4118A	PN4118A
2N4119	PN4119
*2N4119A	PN4119A
NF5301	PN4120
NF5301-1	PN4120A
NF5301-2	*PF5301
NF5301-3	PF5301-1
	PF5301-2
	PF5301-3

Process 55 N-Channel JFET

DESCRIPTION

Process 55 is a general purpose low level audio amplifier and switching transistor. Wafer processing is similar to process 52 but process 55 uses a larger geometry. This results in higher Y_{fs} , I_{DSS} , and capacitance and lower $R_{DS(ON)}$. It is useful for audio and video frequency amplifiers and RF amplifiers under 50 MHz. It may also be used for analog switching applications.

TL/G/10035-12

Gate is also backside contact

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-70		٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20V, V_{GS} = 0V$	0.5	5.0	20	mA
9 _{fs}	Forward Transconductance	$V_{DS} = 20V, V_{GS} = 0V$	2.0	4.5	7.0	mmho
9fs	Forward Transconductance	$V_{DG} = 15V, I_{D} = 200 \mu A$		1200		μmhos
I _{GSS}	Reverse Gate Leakage	$V_{GS} = -30V, V_{DS} = 0V$		-10	-100	pА
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	140	250	600	Ω
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 20V, I_{D} = 1 \text{ nA}$	-0.5	-2.0	-8.0	٧
C _{rss}	Feedback Capacitance	$V_{DG} = 15V, V_{GS} = 0V, f = 1 MHz$		1.5	2.0	pF
C _{iss}	Input Capacitance	$V_{DS} = 15V, V_{GS} = 0V, f = 1 MHz$		6.0	7.0	pF
9 _{os}	Output Conductance	$V_{DG} = 15V, I_{D} = 200 \mu A$		2		μmhos
θn	Noise Voltage	$V_{DG} = 15V, I_D = 200 \mu A, f = 100 Hz$		10		nV/√ Hz

TO-72 (NS Package 2	5)	TO-92 (NS Package 92)	TO-236/SOT23
2N3821	2N4221A	*2N5457	(NS Package 48/49)
2N3822	2N4222	*2N5458	MMBF5457
2N3824	2N4222A	*2N5459	MMBF5458
2N3967	*2N5358	MPF103	MMBF5459
2N3967A	*2N5359	MPF104	
2N3968	*2N5360	MPF105	
2N3968A	*2N5361	MPF108	
2N3969	*2N5362	MPF109	
2N3969A	*2N5363	MPF112	
2N4220	*2N5364	PN4220	
2N4220A		PN4221	
2N4221		PN4222	
Source and drain interchange	eable.		

Process 58 N-Channel JFET

Gate is also backside contact

DESCRIPTION

Process 58 was developed for analog or digital switching applications where very low $r_{DS(ON)}$ is mandatory. Switching times are very fast and $r_{DS(ON)}$ C_{iss} time constant is low. The 6Ω typical ON resistance is very useful in precision multiplex systems where switch resistance must be held to an absolute minimum. With r_{DS} increasing only 0.7% $^{\circ}\text{C}$, accuracy is retained over a wide temperature excursion.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_{G} = -1 \mu A$	-25	-30		٧
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 5V$, $V_{GS} = 0V$ Pulse Test	100	400	1000	mA
Igss	Reverse Gate Leakage	$V_{GS} = -15V, V_{DS} = 0V$		-50	-500	pА
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	3.0	6.0	20	Ω
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 5V$, $I_D = 3 \text{ nA}$	-0.5	-5.0	-12	٧
I _{D(OFF)}	Drain OFF Current	$V_{DS} = 5V, V_{GS} = -10V$		0.05	20	nA
C _{rss}	Feedback Capacitance	$V_{DG} = 15V, I_D = 2 \text{ mA}, f = 1 \text{ MHz}$		12	25	pF
C _{iss}	Input Capacitance	$V_{DG} = 15V, I_D = 2 \text{ mA}, f = 1 \text{ MHz}$		25	50	pF
9fs	Forward Transconductance	$V_{DG} = 10V$, $I_D = 2 \text{ mA}$		10		mmhos
gos	Output Conductance	V _{DG} = 10V, I _D = 2 mA		100		μmhos
en	Noise Voltage	$V_{DG} = 15V, I_D = 2 \text{ mA}, f = 100 \text{ Hz}$		6.0		nV/√Hz

This process is available in the following device types. *Denotes preferred parts.

TO-52 (NS Package 07)

*2N5432

*2N5433

*2N5434

TO-92 (NS Package 92)

*J108

*J109

*J110

PN5432

PN5433

PN5434

Process 59 N-Channel JFET

DESCRIPTION

Process 59 is provided for analog or digital switching applications where very low $R_{DS(ON)}$ is mandatory. The 4Ω typical ON resistance is very useful where switch resistance must be held to an absolute minimum.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_{G} = -1 \mu A$	25			٧
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 15V$, $V_{GS} = 0V$ Pulse Test	100	600	1500	mA
IGSS	Reverse Gate Leakage	$V_{GS} = -15V, V_{DS} = 0V$			1.0	nA
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	1.5	4.0	10	Ω
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 5V, I_{D} = 100 \text{ nA}$	0.5	5.0	10	>
I _{D(OFF)}	Drain OFF Current	$V_{DS} = 5V, V_{GS} = -10V$		1.0	10	nA
C _{rss}	Feedback Capacitance	$V_{DG} = 15V, I_{D} = 2 \text{ mA}, f = 1 \text{ MHz}$		25	35	pF
C _{iss}	Input Capacitance	$V_{DG} = 15V, I_{D} = 2 \text{ mA}, f = 1 \text{ MHz}$		50	80	pF
9fs	Forward Transconductance	$V_{DG} = 10V, I_D = 2 \text{ mA}$		10		mmho
gos	Output Conductance	$V_{DG} = 10V$, $I_D = 2 \text{ mA}$		200		μmho
e _n	Noise Voltage	$V_{DG} = 15V, I_D = 2 \text{ mA}, f = 100 \text{ Hz}$		6.0		nV/√Hz

This process is available in the following device types.

TO-92 (NS Package 92)

J105

J106

J107

Process 83 N-Channel Monolithic Dual JFET

DESCRIPTION

Process 83 is a monolithic dual JFET with a diode isolated substrate. It is intended for operational amplifier input buffer applications. Processing results in low input bias current and virtually unmeasurable offset current. Likewise matching characteristics are virtually independent of operating current and voltage, providing design flexibility. Most GP 2N types are sorted from this family.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-50	-70		٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 15V, V_{GS} = 0V$	0.5	2.5	8.0	mA
9fs	Forward Transconductance	$V_{DS} = 15V, V_{GS} = 0V$	1.0	2.5	5.0	mmho
V _{GS(OFF)}	Pinch Off Voltage	V _{DS} = 15V, I _D = 1 nA	-0.5	-2.0	-4.5	٧
lG	Gate Current	$V_{DG} = 20V, I_D = 0.2 \text{ mA}$		3.0	50	pА
9fs	Forward Transconductance	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$	600	850		μmhos
gos	Output Conductance	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$		1.0	5.0	μmhos
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$		450		Ω
e _n	Noise Voltage	$V_{DG} = 15V, I_D = 0.2 \text{ mA}, f = 100 \text{ Hz}$		10	50	nV/√ Hz
V _{GS1} -V _{GS2}	Differential Match	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$		7.0	25	mV
ΔV _{GS1} -V _{GS2}	Differential Match Drift	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$		10	50	μV/°C
CMRR	Common-Mode Rejection	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$	80	95		dB
C _{rs}	Feedback Capacitance	$V_{DG} = 15V, I_D = 0.2 \text{ mA}, f = 1 \text{ MHz}$		1.0	1.2	pF
C _{is}	Input Capacitance	$V_{DG} = 15V, I_D = 0.2 \text{ mA}, f = 1 \text{ MHz}$		3.4	4.0	pF

This process is available in the following device types. *Denotes preferred parts.

TO-71 (NS Package 12)

8-Pin MiniDIP (NS Package 60)

J410 J411 J412

TO-71 (NS P	ackage 12)		
*2N3954	*2N5196	U231	
*2N3954A	*2N5197	U232	
*2N3955	*2N5198	U233	
*2N3955A	*2N5199	U234	
*2N3956	2N5452	U235	
*2N3957	2N5453		
*2N3958	2N5454		
2N5045	*2N5545		
2N5046	*2N5546		
2N5047	*2N5547		

r ackage co,				
Pin	60			
1	NC			
2	S1			
3	D1			
4	G1			
5	S2			
6	D2			
7	G2			
8	NC			

8-Pin MiniDIP (NS Package 67)

*NPD8301
*NPD8302
*NPD8303
*NPD8304

	Pin	67
	1	S1
1	2	D1
١	3	NC
1	4	G1
١	5	S2
1	6	D2
Ì	7	NC
L	8	G2

Note: S0-8 to be announced.

Process 84 N-Channel Monolithic Dual JFET

TL/G/10035-20

DESCRIPTION

Process 84 is a monolithic dual JFET with a diode isolated substrate. It is designed for the most critical operational amplifier input stages or electrometer single ended preamp. Ideal for medical applications and instrumentation inputs where sub-picoamp inputs are important. Device design considered high CMRR, sub-picoamp leakage over wide input swings, low capacitance, and tight match over wide current range.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-60		٧
IDSS	Drain Saturation Current	$V_{DS} = 15V, V_{GS} = 0V$	20	300	1000	μΑ
9 _{fs}	Forward Transconductance	$V_{DS} = 15V, V_{GS} = 0V$	90	180	300	μmhos
9fs	Forward Transconductance	$V_{DS} = 15V, I_D = 30 \mu A$	50	120	150	μmhos
V _{GS(OFF)}	Gate Cutoff Voltage	$V_{DS} = 15V, I_{D} = 1 \text{ nA}$	0.5	2	4.5	V
I _{GSS}	Reverse Gate Leakage Current	$V_{DS} = 0V, V_{GS} = -20V$		1	5	pА
IG	Gate Leakage Current	$V_{DG} = 10V, I_D = 30 \mu A$		0.5	3	pА
C _{rss}	Feedback Capacitance	$V_{DS} = 15V, V_{GS} = 0V, f = 1 MHz$		0.3	0.4	pF
C _{iss}	Input Capacitance	$V_{DS} = 15V$, $V_{GS} = 0V$, $f = 1$ MHz		2	3	pF
e _n	Noise Voltage	$V_{DS} = 15V$, $I_D = 30 \mu A$, $f = 1 \text{ kHz}$		30	50	nV/√Hz
e _n	Noise Voltage	$V_{DS} = 15V, I_D = 30 \mu A, f = 10 Hz$		180		nV/√Hz
gos	Output Conductance	$V_{DS} = 10V, I_D = 30 \mu A$		0.01	0.1	μmhos
V _{GS1} -V _{GS2}	Differential Gate-Source Voltage	$V_{DS} = 10V, I_D = 30 \mu A$		12	25	mV
ΔV _{GS1} _V _{GS2}	Differential Gate-Source Voltage Drift	$V_{DS} = 10V, I_D = 30 \mu A$		10	50	μV/°C
CMRR	Common-Mode Rejection Ratio	$V_{DS} = 10V, I_D = 30 \mu A$		112		dB

This process is available in the following device types. *Denotes preferred parts.

TO-78 (NS Package 24)

2N5902	*2N5906
2N5903	*2N5907
2N5904	*2N5908
2N5905	*2N5909

TL/G/10035-21

Process 88 P-Channel JFET

DESCRIPTION

Process 88 is designed primarily for electronic switching applications where a P channel device is desirable. Inherent zero offset voltage, low leakage and low rDS(ON) Ciss time constant make this device excellent for low level analog switching, sample and hold circuits and chopper stabilized amplifiers. This device is the complement to Process 51.

TL/G/10035-25

Gate is also backside contact

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_G = 1 \mu A$	30	40		٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -15V, V_{GS} = 0V$	-5.0	-30	-90	mA
9 _{fs}	Forward Transconductance	$V_{DS} = -15V, V_{GS} = 0V$	4.0	13	17	mmhos
9fs	Forward Transconductance	$V_{DG} = -15V$, $I_D = -2 \text{ mA}$		3.5		mmhos
IGSS	Gate Leakage	$V_{GS} = 20V, V_{DS} = 0V$		0.05	1.0	nA
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	50	80	200	Ω
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = -15V, I_{D} = -1 \text{ nA}$	0.5	5.0	10	٧.
I _{D(OFF)}	Drain OFF Current	$V_{DS} = -15V, V_{GS} = 10V$		-0.05	-10	nA
C _{rss}	Feedback Capacitance	$V_{DG} = -15V, I_{D} = -2 \text{ mA}, f = 1 \text{ MHz}$		4.0	5.0	pF
C _{iss}	Input Capacitance	$V_{DS} = -15V, I_{D} = -2 \text{ mA}, f = 1 \text{ MHz}$		14	15	pF
gos	Output Conductance	$V_{DG} = -15V, I_{D} = -2 \text{ mA}$		100	300	μmhos
e _n	Noise Voltage	$V_{DG} = -15V, I_{D} = -2 \text{ mA}, f = 100 \text{ Hz}$		20		nV/√Hz

This process is available in the following device types. *Denotes preferred parts.

TO-18 (NS Package 11)	TO-92 (NS Package 92)	TO-92 (NS Package 94)	TO-236/SOT23
2N2609	*P1086	*J174	(NS Package 48/49)
2N5018	*P1087	*J175	MMBFJ174
2N5019		*J176	MMBFJ175
*2N5114		*J177	MMBFJ176
*2N5115		*J270	MMBFJ177
*2N5116		*J271	

Source and drain interchangeable.

Process 89 P-Channel JFET

DESCRIPTION

Process 89 is designed primarily for low level amplifier applications. This device is the complement to Process 52. Commonly used in voltage variable resistor applications.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_{G} = 1 \mu A$	20	40		٧
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = -15V, V_{GS} = 0V$	-0.3	-4.0	-20	mA
9fs	Forward Transconductance	$V_{DS} = -15V$, $V_{GS} = 0V$	1.0	2.5	4.0	mmhos
9fs	Forward Transconductance	$V_{DG} = -15V, I_D = -0.2 \text{ mA}$		700		μmhos
IGSS	Gate Leakage	$V_{GS} = 20V, V_{DS} = 0V$		0.02	1.0	nA
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = -15V, I_{D} = -1 \text{ nA}$	0.5	3.0	9.0	٧
C _{rss}	Feedback Capacitance	$V_{DG} = -15V, V_{GS} = 0V, f = 1 MHz$		2.0	2.5	pF
C _{is}	Input Capacitance	$V_{DS} = -15V$, $I_{D} = -2$ mA, $f = 1$ MHz		7.0	8.5	pF
r _{DS(ON)}	ON Resistance	$V_{DS} = -100 \text{ mV}, V_{GS} = 0 \text{V}$		450		Ω
g _{os}	Output Conductance	$V_{DG} = -15V, I_{D} = -0.2 \text{ mA}$		5.0	15	μmhos
en	Noise Voltage	$V_{DG} = -15V$, $I_{D} = -0.2$ mA, $f = 100$ Hz		30		nV/√Hz

This process is available in the following device types. *Denotes preferred parts.

TO-18 (NS Package 11)	TO-72 (NS Package 23)	TO-92 (NS Package 92)	TO-92 (NS Package 94)
2N2608	2N3329	*2N5460	2N3820
2N4381	2N3330	*2N5461	TO-236/SOT23
2N5020	2N3331	*2N5462	(NS Package 48/49)
2N5021	2N3332	PN4342	MMBF5460
		PN4360	MMBF5461
		PN5033	MMBF5462

Source and drain interchangeable.

Process 90 N-Channel JFET

Gate is also backside contact

DESCRIPTION

Process 90 is designed for VHF/UHF mixer/amplifier and applications where Process 50 is not adequate. Has sufficient gain and low noise, common gate configuration at 450 MHz, for sensitive receivers. The high transconductance and square law characteristics insures low crossmodulation and intermodulation distortions. Common-gate operation simplifies circuitry. Consider Process 92 for even higher performance.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-20	-30		٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 10V, V_{GS} = 0V$	3	18	40	mA
9fs	Forward Transconductance	$V_{DS} = 10V, V_{GS} = 0V$	5.5	8.0	10	mmhos
9fs	Forward Transconductance	$V_{DS} = 10V, I_D = 5 \text{ mA}$	4.5	5.8		mmhos
Igss	Reverse Gate Current	$V_{GS} = -15V, V_{DS} = 0V$		-5.0	-100	pА
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$		90		Ω
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 10V, I_D = 1 \text{ nA}$	-1.5	-3.5	-6.0	V
gos	Output Conductance	$V_{DG} = 10V$, $I_D = 5 \text{ mA}$		45	100	μmhos
C _{rs}	Feedback Capacitance	$V_{DG} = 10V$, $I_D = 5 \text{ mA}$		1.0	1.2	pF
C _{is}	Input Capacitance	$V_{DG} = 10V$, $I_D = 5 \text{ mA}$		4.0	5.0	pF
en	Noise Voltage	$V_{DG} = 10V, I_D = 5 \text{ mA}, f = 100 \text{ Hz}$		13		nV/√Hz
NF	Noise Figure	$V_{DG} = 10V, I_D = 5 \text{ mA}, f = 450 \text{ MHz}$		3.0		dB
G _{pg} (CG)	Power Gain	$V_{DG} = 10V, I_D = 5 \text{ mA}, f = 450 \text{ MHz}$		11		dB

This process is available in the following device types. *Denotes preferred parts.

TO-72 (NS Package 29)	TO-92 (NS Package 92)	TO-92 (NS Package 97)
*2N5397	J114	*2N5245
*2N5398	*J210	*2N5246
	*J211	*2N5247
	*J212	
	*J300	
	MPF256	

Common Drain-Source Characteristics

Transconductance vs

TL/G/10035-29

Leakage Current vs Voltage

Transfer Characteristics

Capacitance vs Voltage

Output Conductance vs Drain Current

COMMON SOURCE

TL/G/10035-31

TL/G/10035-33

TL/G/10035-35

TL/G/10035-37

COMMON GATE

TL/G/10035-32

TL/G/10035-34

TL/G/10035-36

Process 92 N-Channel JFET

DESCRIPTION

Process 92 is designed for VHF/UHF amplifier, oscillator, and mixer applications. As a common gate amplifier, 16 dB at 100 MHz and 12 dB at 450 MHz can be realized. Worst case 75Ω input impedance provides ideal input match.

Gate is also backside contact

Electrical Characteristics (TA = 25°C)

Symbol Parameter Conditions Min Typ Max Units **BVGSS** Gate-Source Breakdown $V_{DS} = 0V, I_{G} = -1 \mu A$ -20 -30 ν Voltage Zero Gate Voltage $V_{DS} = 10V$, $V_{GS} = 0V$, Pulsed Ipss 80 10 38 mΑ **Drain Current** Forward Transconductance $V_{DS} = 10V, V_{GS} = 0V, Pulsed$ 19 mmhos g_{fs} Forward Transconductance $V_{DG} = 10V, I_{D} = 10 \text{ mA}$ mmhos 10 13 18 9fs $V_{GS} = -15V, V_{DS} = 0V$ -15 -100IGSS Reverse Gate Current Αđ ON Resistance $V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$ 45 80 35 Ω r_{DS(ON)} Pinch Off Voltage $V_{DS} = 10V, I_{D} = 1 \text{ nA}$ -1.5-4.0-6.5V V_{GS(OFF)} **Output Conductance** $V_{DG} = 10V, I_D = 10 \text{ mA}$ 160 250 gos *μ*mhos Feedback Capacitance $V_{DG} = 10V, I_D = 10 \text{ mA}, f = 1 \text{ MHz}$ 2.0 2.5 pF C_{gd} $V_{DG} = 10V, I_{D} = 10 \text{ mA}, f = 1 \text{ MHz}$ 5.0 рF Input Capacitance 4.1 C_{gs} nV/√Hz Noise Voltage $V_{DG} = 10V, I_D = 10 \text{ mA}, f = 100 \text{ Hz}$ 6.0 en NF Noise Figure $V_{DG} = 10V, I_D = 10 \text{ mA}, f = 450 \text{ MHz}$ 3.0 dΒ Power Gain $V_{DG} = 10V, I_D = 10 \text{ mA}, f = 450 \text{ MHz}$ 12 dB G_{pg}

This process is available in the following device types. *Denotes preferred parts.

TO-52 (NS Package 07)

TO-92 (NS Package 92)

TO-236/SOT23 (NS Package 48/49)

U308 *U309 J308 *J309 MMBFJ309

*U310

*J310

MMBFJ310

Process 93 N-Channel Monolithic Dual JFET

DESCRIPTION

Process 93 is a monolithic dual JFET with a diode isolated substrate. It is intended for wide band, low noise, single ended video amplifier input stages, and high slew rate op amps. Monolithic structure eliminates thermal transient errors, and provides freedom to pick operating current and voltage.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_G = -1 \mu A$	-25	-30		٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 10V$, $V_{GS} = 0V$, Pulsed	3.0	18	40	mA
9fs	Forward Transconductance	$V_{DS} = 10V, V_{GS} = 0V, Pulsed$		8.0		mmhos
9fs	Forward Transconductance	$V_{DG} = 10V$, $I_D = 5 \text{ mA}$	5.0	6.0	10	mmhos
gos	Output Conductance	$V_{DG} = 10V$, $I_D = 5 \text{ mA}$		50	100	μmhos
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 10V, I_{D} = 1 \text{ nA}$	-1.5	-3.5	-6.0	٧
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$		100		Ω
lg	Gate Current	$V_{DG} = 10V$, $I_D = 5 \text{ mA}$		10	100	pА
e _n	Noise Voltage	$V_{DG} = 10V, I_D = 5 \text{ mA}, f = 100 \text{ Hz}$		9.0	30	nV/√Hz
V _{GS1} -V _{GS2}	Differential Match	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		9.0	30	mV
ΔV _{GS1} -V _{GS2}	Differential Match Drift	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		15	40	μV/°C
CMRR	Common-Mode Rejection	$V_{DG} = 10V$, $I_D = 5 \text{ mA}$		90		dB
C _{rs}	Feedback Capacitance	$V_{DG} = 10V$, $I_D = 5$ mA, $f = 1$ MHz		1.0	1.2	pF
C _{is}	Input Capacitance	$V_{DG} = 10V, I_D = 5 \text{ mA}, f = 1 \text{ MHz}$		4.2	5.0	pF

This process is available in the following device types. *Denotes preferred parts.

TO-78 (NS Package 24)

TO-71 (NS Package 12)

Note: SO-8 to be announced.

*2N5911 *2N5912 NF5911 NF5912

U257

NF5912C U440

U441

TL/G/10035-44

Process 94 N-Channel Monolithic Dual JFET

DESCRIPTION

Process 94 is a monolithic dual JFET. It is strictly intended for operational amplifier input buffer applications. Special processing results in extremely low input bias current and virtually unmeasurable offset current. It is important to note that the <5 pA bias current is measured at 35V. Typical CMRR is 125 dB. Performance superior to electrometer tubes can be readily achieved with low offset voltage and almost zero long term drift.

Electrical Characteristics (TA = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-40	-70		٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 15V, V_{GS} = 0V$	0.5	3.0	10	mA
9fs	Forward Transconductance	$V_{DS} = 15V, V_{GS} = 0V$	1.5	3.5	7.0	mmho
9fs	Forward Transconductance	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$	0.7	1.2	1.8	mmhos
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 15V, I_{D} = 1 \text{ nA}$	-0.5	-2.0	-6.0	V
lg	Gate Current	$V_{DG} = 35V, I_D = 0.20 \text{ mA}$		2.0	15	pΑ
C _{rss}	Feedback Capacitance	$V_{DS} = 15V, V_{GS} = 0V, f = 1 MHz$		0.01	0.02	pF
C _{iss}	Input Capacitance	$V_{DS} = 15V, V_{GS} = 0V, f = 1 MHz$		4.0	5.0	pF
en	Noise Voltage	$V_{DG} = 15V, I_D = 0.2 \text{ mA}, f = 10 \text{ Hz}$		12	50	nV/√Hz
gos	Output Conductance	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$		<0.1		μmhos
V _{GS1} -V _{GS2}	Differential Match	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$		5.0	25	mV
ΔV _{GS1} -V _{GS2}	Differential Match Drift	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$		6.0	50	μV/°C
CMRR	Common-Mode Rejection	V _{DG} = 15V, I _D = 0.2 mA		125		dB

This process is available in the following device types. *Denotes preferred parts.

TO-71 (NS Package 12)

- *NDF9406
- *NDF9407
- *NDF9408
- *NDF9409
- *NDF9410

Process 95 N-Channel Monolithic Dual JFET

DESCRIPTION

Process 95 is a monolithic dual JFET with a diode isolated substrate. It is intended for operational amplifier input buffer applications. Processing results in low input bias current and virtually unmeasurable offset current. Low noise voltage and high CMRR for critical 1/f applications.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_G = -1 \mu A$	-40	-70		٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 15V, V_{GS} = 0V$	0.5	3.0	8.0	mA
9 _{fs}	Forward Transconductance	$V_{DS} = 15V, V_{GS} = 0V$	1.0	2.5	4.0	mmhos
9 _{fs}	Forward Transconductance	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$	0.5	0.7		mmhos
IGSS	Gate Leakage	$V_{GS} = -20V, V_{DS} = 0V$		-5.0	-100	pА
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 15V, I_{D} = 1 \text{ nA}$	-0.5	-2.5	-4.0	V
C _{iss}	Input Capacitance	$V_{DS} = 15V$, $V_{GS} = 0V$, $f = 1 MHz$		10	14	pF
e _n	Noise Voltage	$V_{DS} = 15V, I_D = 0.2 \text{ mA}, f = 10 \text{ Hz}$		8.0	30	nV/√Hz
e _n	Noise Voltage	$V_{DS} = 15V, I_D = 0.2 \text{ mA}, f = 100 \text{ Hz}$		6.0	10	nV/√Hz
gos	Output Conductance	$V_{DG} = 15V, I_D = 0.2 \text{ mA}$		0.3	1.0	μmhos
C _{rss}	Feedback Capacitance	$V_{DS} = 15V$, $V_{GS} = 0V$, $f = 1 MHz$		3.5	5.0	рF
V _{GS1} -V _{GS2}	Differential Match	$V_{DG} = 20V, I_D = 0.2 \text{ mA}$		6.0	25	mV
ΔV _{GS1} -V _{GS2}	Differential Match Drift	$V_{DG} = 20V, I_D = 0.2 \text{ mA}$		9.0	60	μV/°C
CMRR	Common-Mode Rejection	$V_{DG} = 20V, I_{D} = 0.2 \text{ mA}$	86	115		dB

This process is available in the following device types. *Denotes preferred parts.

TO-71 (NS Package 12)

2N5515	*2N5522
2N5516	*2N5523
2N5517	*2N5524
2N5518	*2N6483
2N5519	*2N6484
*2N5520	*2N6485
*2N5521	

Process 96 N-Channel Monolithic Dual JFET

DESCRIPTION

Process 96 is a monolithic dual JFET with a diode isolated substrate. It is intended for wide band, low noise, single ended video amplifier input stages. Also ideal for matched voltage variable resistor applications over 60 dB tracking range.

Electrical Characteristics (TA = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V$, $I_G = -1 \mu A$	-40	-55		٧
Ipss	Zero Gate Voltage Drain Current	$V_{DS} = 15V, V_{GS} = 0V$	5.0	15	30	mA
9fs	Forward Transconductance	$V_{DS} = 15V, V_{GS} = 0V$	9.0	18	30	mmhos
9fs	Forward Transconductance	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$	7.5	9.0		mmhos
gos	Output Conductance	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$		15	45	μmhos
V _{GS(OFF)}	Pinch Off Voltage	V _{DS} = 15V, I _D = 1 nA	-0.5	-1.8	-3.0	V
r _{DS(ON)}	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	35	70	120	Ω
lgss	Gate Current	$V_{GS} = -20V, V_{DS} = 0V$		-8.0	-100	pА
lg	Gate Current	V _{DG} = 15V, I _D = 2 mA		15	200	pΑ
en	Noise Voltage	$V_{DG} = 15V, I_D = 2 \text{ mA, f} = 100 \text{ Hz}$		4.5	10	nV/√Hz
C _{rs}	Feedback Capacitance	V _{DG} = 15V, I _D = 2 mA, f = 1 MHz		2.5	3.0	pF
C _{is}	Input Capacitance	$V_{DG} = 15V, I_{D} = 2 \text{ mA}, f = 1 \text{ MHz}$		10	12	pF
V _{GS1} -V _{GS2}	Differential Voltage	V _{DG} = 15V, I _D = 2 mA		8.0	25	mV
ΔV _{GS1} -V _{GS2}	Differential Voltage Drift	$V_{DG} = 15V, I_D = 2 \text{ mA}$		9.0	50	μV/°C
CMRR	Common-Mode Rejection	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$	76	95		dB

This process is available in the following device types. *Denotes preferred parts.

TO-71 (NS Package 12)	8-Pin DIP (NS Package 67)
*2N5564	*NPD5564
*2N5565	*NPD5565
*2N5566	*NPD5566

Pin	67
1	S1
2	D1
3	NC
4	G1
5	S2
6	D2
7	NC
8	G2

Note: SO-8 to be announced.

Process 96

TL/G/10035-55

Process 98 N-Channel JFET

TL/G/10035-56

DESCRIPTION

Process 98 is a high gain, general purpose, monolithic dual JFET with a diode isolated substrate. It is intended for amplifier input stages requiring high gain, low noise and low offset drift over temperature. Strict processing controls result in low input bias currents and virtually immeasurable offset currents. Matching characteristics are essentially independent of operating current and voltage.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Breakdown Voltage	$V_{DS} = 0V, I_{G} = -1 \mu A$	50	75		٧
I _{GSS}	Gate Leakage Current	$V_{GS} = -30V, V_{DS} = 0V$		2.0	100	pА
V _{GS(OFF)}	Pinch-off Voltage	V _{DS} = 15V, I _D = 1 nA	0.5	1.3	3.0	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 10V, V_{GS} = 0V$	0.5	1.8	10	mA
9fs	Forward Transconductance	$V_{DS} = 10V, V_{GS} = 0V$	2.0	4.5	7.0	mmhos
gos	Output Conductance	$V_{DS} = 10V, V_{GS} = 0V$		8.0	20	μmhos
9fs	Forward Transconductance	$V_{DG} = 15V, I_D = 200 \mu\text{A}$	1.0	1.4	1.8	mmhos
gos	Output Conductance	$V_{DG} = 15V, I_D = 200 \mu\text{A}$		1.3	2.0	μmhos
V _{GS1} -V _{GS2}	Differential Offset Voltage	$V_{DG} = 10V, I_D = 200 \mu\text{A}$		10	40	mV
C _{rss}	Feedback Capacitance	$V_{DG} = 15V, I_D = 200 \mu A, f = 1 MHz$		1.7	3.0	pF
C _{iss}	Input Capacitance	$V_{DG} = 15V, I_D = 200 \mu A, f = 1 MHz$		6.0	8.0	pF
e _n	Noise Voltage	$V_{DS} = 15V$, $I_D = 200 \mu A$, $f = 10 Hz$		8.0	50	nV/√Hz
CMRR	Common-Mode Rejection Ratio	$V_{DG} = 5V - 10V, I_D = 200 \mu A$	90	108		dB

This process is available in the following device types. *Denotes preferred parts.

This process is av	anable in the	rollowing device types. De	<i>-</i> ,,,
TO-71 (NS Packag	ge 12)	8-Pin DIP (NS Package 6	0
2N5561	U402	J401	
2N5562	U403	J402	
2N5563	U404	J403	
2N3921	U405	J404	
2N3922	U406	J405	
U401		J406	

60
NC
S1
D1
G1
S2
D2
G2
NC

Process 98

Process 98

TL/G/10035-58

Process 4P NPN Planar Power

TL/G/10036-1

DESCRIPTION

Process 4P is a double-diffused silicon epitaxial planar device. Complement to Process 5P.

APPLICATION

This device was designed for power amplifier, regulator and switching circuits where speed is important.

Electrical Characteristics $(T_A = 25^{\circ}C)$

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 100 mA (Note 1)	50		120	٧
BV _{CES}	I _C = 1 mA	75			٧
BV _{EBO}	I _E = 1 mA	5	8		٧
ICES	V _{CE} = 50V			5	μΑ
I _{EBO}	V _{EB} = 5V			5	μΑ
h _{FE}	I _C = 20 mA, V _{CE} = 1V	30			
h _{FE}	I _C = 300 mA, V _{CE} = 1V	40	80	300	
h _{FE}	I _C = 4A, V _{CE} = 1V	10			
V _{CE(SAT)}	$I_{C} = 2A, I_{B} = 0.2A$		0.5	0.5	v
V _{BE(SAT)}	$I_C = 2A, I_B = 0.2A$		1	1.1	٧
f _t	V _{CE} = 5V, I _C = 0.5A	50			MHz
C _{OB}	V _{CB} = 10V		45		pF
C _{IB}	V _{EB} = 1V		400		pF
$\left. egin{array}{l} t_r \\ t_s \\ t_f \end{array} ight\}$	$I_C = 2A, V_{CE} = 30V$ $I_{B1} = I_{B2} = 0.2A$		60 750 80		ns ns ns
P _{D(max)} TO-220 TO-202	T _C = 25°C T _C = 25°C	40 15			W W
θ _{JC} TO-220 TO-202	T _C = 25°C T _C = 25°C			3.2 8.33	°C/W
θ _{JA} TO-220 TO-202	T _A = 25°C T _A = 25°C			62.5 62.5	°C/W
T _{J(max)}	All Plastic Parts	150			°C

Note 1: Pulsed measurement = 300 μ s pulse width.

Process 4P

This process is available in the following device types.

	V _{CEO} (V), Min	h _{FE}		@ I _C (A)	
	ACEO (A), MILL	Min	Max	9 IC (A)	
TO-202 (NS Pack	age 56)				
D42C1	30	25		0.2	
D42C2	30	40	120	0.2	
D42C3	30	40		0.2	
D42C4	45	25	1	0.2	
D42C5	45	40	120	0.2	
D42C6	45	40 25		0.2	
D42C7	60	25		0.2	
D42C8	60	40	120	0.2	
D42C9	60	40		0.2	
D42C10	80	25		0.2	
D42C11	80	40	120	0.2	
D42C12	80	40		0.2	
TO-220 (NS Pack	age 57)				
D44C1	30	25		0.2	
D44C2	30	40	120	0.2	
D44C3	30	40		0.2	
D44C4	45	25		0.2	
D44C5	45	40	120	0.2	
D44C6	45	40		0.2	
D44C7	60	25		0.2	
D44C8	60	40	120	0.2	
D44C9	60	40		0.2	
D44C10	80	25		0.2	
D44C11	80	40	120	0.2	
D44C12	80	40	1	0.2	

TL/G/10036-2

Process 4P

TL/G/10036-3

TL/G/10036-4

Process 4Q NPN Planar Power

DESCRIPTION

Process 4Q is a double-diffused silicon epitaxial planar device. Complement to Process 5Q.

APPLICATION

This device was designed for power amplifier, regulator and switching circuits where speed is important.

TL/G/10036-6

Electrical Characteristics (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 100 mA (Note 1)	50		120	V
BV _{CES}	I _C = 1 mA	75			٧
BV _{EBO}	I _E = 1 mA	5	8		V
ICES	V _{CE} = 50V			5	μΑ
I _{EBO}	V _{EB} = 5V			5	μΑ
h _{FE}	I _C = 30 mA, V _{CE} = 1V	30	-		
h _{FE}	I _C = 0.5A, V _{CE} = 1V	40		300	
h _{FE}	I _C = 8A, V _{CE} = 1V	10			
V _{CE(SAT)}	$I_{C} = 4A, I_{B} = 0.4A$			0.5	٧
V _{BE(SAT)}	$I_{C} = 4A, I_{B} = 0.4A$			1.1	٧
ft	$V_{CE} = 5V, I_{C} = 0.5A$	50			MHz
C _{OB}	V _{CB} = 10V		110		pF
C _{IB}	V _{EB} = 1V		730		pF
$\left. egin{array}{c} t_r \\ t_s \\ t_f \end{array} \right\}$	$I_C = 5A, V_{CE} = 30V$ $I_{B1} = I_{B2} = 0.5A$		30 500 60		ns ns ns
P _{D(max)} TO-220	T _C = 25°C	60			w
θ _{JC} TO-220	T _C = 25°C			2.08	°C/W
θ _{JA} TO-220	T _A = 25°C			62.5	°C/W
T _{J(max)}	All Plastic Parts	150			°C

Note 1: Pulsed measurement = 300 μ s pulse width.

Process 4Q

This process is available in the following device types.

	V _{CEO} (V), Min	h _{FE}		@ I _C (A)	
	CEO (*),		Max	○ .C (A)	
TO-220 (NS Pack	age 57)				
D44H1	30	35		2	
D44H2	30	60		2	
D44H4	45	35		2	
D44H5	45	60		2	
D44H7	60	35		2	
D44H8	60	60		2	
D44H10	80	35		2	
D44H11	80	60		2	

Process 4Q

TL/G/10036-8

Process 5P PNP Planar Power

DESCRIPTION

Process 5P is a double diffused silicon epitaxial planar device. Complement to Process 4P.

APPLICATION

This device was designed for power amplifier, regulator and switching circuits where speed is important.

TL/G/10036-9

Electrical Characteristics (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 100 mA (Note 1)	50		120	٧
BV _{CES}	I _C = 1 mA				٧
BV _{EBO}	I _E = 1 mA	5	8		٧
ICES	V _{CE} = 50V			5	μΑ
I _{EBO}	V _{EB} = 5V			5	μΑ
h _{FE}	$V_{CE} = 5V$, $I_{C} = 20$ mA	30			
h _{FE}	$V_{CE} = 5V, I_{C} = 0.5A$	50	80	200	
h _{FE}	$V_{CE} = 5V, I_{C} = 5A \text{ (Note 1)}$	10			
V _{CE(SAT)}	$I_C = 3A, I_B = 0.3A$		0.35	1	V
V _{BE(SAT)}	$I_{C} = 3A, I_{B} = 0.3A$		1.1		٧
f _t	$V_{CE} = 5V, I_{C} = 0.5A$	40			MHz
C _{OB}	V _{CB} = 10V		75		pF
C _{IB}	V _{EB} = 1V		400		pF
$\left. egin{array}{c} t_r \\ t_s \\ t_f \end{array} \right\}$	I _C = 2A, V _{CE} = 30V I _{B1} = I _{B2} = 0.2A		60 500 50		ns ns ns
P _{D(max)} TO-220 TO-202	T _C = 25°C T _C = 25°C	40 15			w w
θ _{JC} TO-220 TO-202	T _C = 25°C T _C = 25°C			3.2 8.33	°C/W °C/W
θ _{JA} TO-220 TO-202	T _A = 25°C T _A = 25°C			62.5 62.5	°C/W °C/W
T _{J(max)}	All Plastic Parts	150			ŝ

Note 1: Pulsed measurement = 300 μ s pulse width.

Process 5P

This process is available in the following device types.

	V _{CEO} (V), Min	Į h	FE	@ Ic (A)	
	ACEO (A), MIII	Min	Max	@ IC (A)	
TO-202 (NS Pack	age 56)				
D43C1	30	25		0.2	
D43C2	30	40	120	0.2	
D43C3	30	40		0.2	
D43C4	45	25	1	0.2	
D43C5	45	40	120	0.2	
D43C6	45	40		0.2	
D43C7	60	25		0.2	
D43C8	60	40	120	0.2	
D43C9	60	40		0.2	
D43C10	80	25		0.2	
D43C11	80	40	120	0.2	
D43C12	80	40		0.2	
TO-220 (NS Pack	age 57)				
D45C1	30	25		0.2	
D45C2	30	40	120	0.2	
D45C3	30	40	İ	0.2	
D45C4	45	25		0.2	
D45C5	45	40	120	0.2	
D45C6	45	40		0.2	
D45C7	60	25		0.2	
D45C8	60	40	120	0.2	
D45C9	60	40		0.2	
D45C10	80	25		0.2	
D45C11	80	40	120	0.2	
D45C12	80	40	1	0.2	

TL/G/10036-10

Process 5P

TL/G/10036-11

TL/G/10036-12

Process 5Q PNP Planar Power

TL/G/10036-14

DESCRIPTION

Process 5Q is a double-diffused silicon epitaxial planar device. Complement to Process 4Q.

APPLICATION

This device was designed for power amplifier, regulator and switching circuits where speed is important.

Electrical Characteristics (T_A = 25°C)

Symbol	Conditions	Min	Тур	Max	Units
BV _{CEO}	I _C = 100 mA (Note 1)	50		120	٧
BV _{CES}	I _C = 1 mA	60			٧
BV _{EBO}	I _E = 1 mA	5	8		٧
I _{CES}	V _{CE} = 50V			5	μΑ
I _{EBO}	V _{EB} = 5V			5	μΑ
h _{FE}	V _{CE} = 5V, I _C = 20 mA	30			
h _{FE}	V _{CE} = 5V, I _C = 1A (Note 1)	50	100	300	
h _{FE}	V _{CE} = 5V, I _C = 8A (Note 1)	20			
V _{CE(SAT)}	I _C = 8A, I _B = 0.8A (Note 1)		0.6	1	٧
V _{BE(SAT)}	I _C = 8A, I _B = 0.8A (Note 1)		1.2		٧
ft	V _{CE} = 5V, I _C = 0.5A	40			MHz
СОВ	V _{CB} = 10V		170		pF
C _{IB}	V _{EB} = 1V		870		pF
$\left. egin{array}{c} t_{r} \\ t_{s} \\ t_{f} \end{array} \right\}$	$I_C = 5A, V_{CE} = 30V$ $I_{B1} = I_{B2} = 0.5A$		40 500 60		ns ns ns
P _{D(max)} TO-220	T _C = 25°C	60			w
θ _{JC} TO-220	T _C = 25°C			2.08	°C/W
θ _{JA} TO-220	T _A = 25°C			62.5	°C/W
T _{J(max)}	All Plastic Parts	150			°C

Note 1: Pulsed measurement = 300 μ s pulse width.

Process 5Q

This process is available in the following device types.

	V _{CEO} (V), Min	h	FE	@ I _C (A)
	CEO (//	Min	Max	S 10 (A)
TO-220 (NS Pack	(age 57)			
D45H1	30	35		2
D45H2	30	60		2
D45H4	45	35		2
D45H5	45	60	4	2
D45H7	60	35	,	2
D45H8	60	60		2
D45H10	80	35		2
D45H11	80	60		2

Process R4 Ultra-Fast Rectifier

DESCRIPTION

These dice are designed especially for use in switching power supplies, inverters and PWM motor controls. These dice feature low reverse recovery current with soft recovery.

TL/G/10039-1

Note 1: Dimension Tolerances ± 0.0005 in. (0.013mm). **Note 2:** Thickness of all die types is 0.010 in. (250 μ).

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Max	Units
V _{RRM}	Peak Repetitive Reverse Voltage (Note 1)	I _R = 0.5 mA	200		٧
I _{RRM}	Maximum Instantaneous Reverse Current (Note 1)	$V_R = V_{RRM}$ $T_J = 125^{\circ}C$ $T_J = 25^{\circ}C$		5 10	mA μΑ
V _{FM}	Maximum Instantaneous Forward Voltage	I _F = 8.0A	0.95		٧
I _{R (rec)}	Maximum Reverse Recovery Current (Note 2)	$I_F = 8.0A; V_R = V_{RRM}$ $dI_F/dt = 100A/\mu s$		2.5	Α
t _{RR}	Maximum Reverse Recovery Time	I _F = 1A; dI _F /dt = 50A/μs I _F = 8A; dI _F /dt = 100A/μs		35 50	ns ns

TO-220AC (Case 41)

FRP1005

FRP1010

FRP1015

FRP1020

FRP805

FRP810

FRP815

FRP820

Note 1: Pulse Test: Pulse Width = 300 μ s. Duty Cycle \leq 2.0%.

Note 2: See Figure 10 for test conditions.

This process is available in the following device types:

TO-220AB (Ca	se 38)		
FRP1605CC	FRP2005CC		
FRP1610CC	FRP2010CC		
FRP1615CC	FRP2015CC		
FRP1620CC	FRP2020CC		

FRP#	805	810	815	820	1005	1010	1015	1020	Unit
V_{RRM} $(I_R = 0.5 \text{ mA})$	50	100	150	200	50	100	150	200	v
FRP#	1605CC	1610CC	1615CC	1620CC	2005CC	2010CC	20150CC	2020CC	Unit
V _{RRM} (I _R = 0.5 mA)	50	100	150	200	50	100	150	200	٧

Process R4

Performance Characteristics

TL/G/10039-2

FIGURE 1. Maximum Forward Voltage Drop

TL/G/10039-4

FIGURE 3. Maximum Transient Thermal Resistance

FIGURE 5. Power Derating

30 25 POWER DISSIPATION 20 15

10

AVERAGE CURRENT - A

TL/G/10039-3

20

FIGURE 2. Maximum Power Dissipation

TL/G/10039-5

FIGURE 4. Typical Reverse Leakage Current

TL/G/10039-7

FIGURE 6. Typical Reverse Recovery Charge

Process R4

Performance Characteristics (Continued)

TL/G/10039-8

FIGURE 7. Typical Reverse Recovery Time

TL/G/10039-10

FIGURE 9. Typical Reverse Recovery Softness

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips. These parameters are:

Thermal Resistance

Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current Surge Current

TL/G/10039-9

FIGURE 8. Maximum Reverse Recovery Current

TL/G/10039-11

FIGURE 10. Reverse Recovery Test Waveform

Process R5 Ultra-fast Rectifier

DESCRIPTION

These dice are designed especially for use in switching power supplies, inverters and PWM motor controls. These dice feature low reverse recovery current with soft recovery.

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Max	Units
V _{RRM}	Peak Repetitive Reverse Voltage (Note 1)	I _R = 0.5 mA	200		V
I _{RRM}	Maximum Instantaneous Reverse Current (Note 1)	V _R = V _{RRM} T _J = 125°C T _J = 25°C		10 25	mA μA
V _{FM}	Maximum Instantaneous Forward Voltage	I _F = 16A	0.8		V
I _{R (rec)}	Maximum Reverse Recovery Current (Note 2)	$I_F = 16A; V_R = V_{RRM}$ $dI_F/dt = 100A/\mu s$		2.5	А
t _{RR}	Maximum Reverse Recovery Time	I _F = 1A; dI _F /dt = 50A/μs I _F = 16A; dI _F /dt = 100A/μs		35 50	ns ns

Note 1: Pulse Test: Pulse Width = 300 μ s. Duty Cycle \leq 2.0%.

Note 2: See Figure 10 for test conditions.

This process is available in the following device types:

TO-247 (Case 40)

TO-220AC (Case 41) FRP1605

FRK3205CC FRK3210CC

FRP1605

FRK3210CC FRK3215CC FRP1615

FRK3220CC

FRP1620

FRP#	1605	1610	1615	1620	FRK#	3205CC	3210CC	3215CC	3220CC	Unit
V _{RM} (I _R = 0.5 mA)	50	100	150	200	V_{RM} (I _R = 0.5 mA)	50	100	150	200	٧

Process R5

Performance Characteristics

TL/G/10039-13

FIGURE 1. Maximum Forward Voltage Drop

TL/G/10039-15

FIGURE 3. Maximum Transient Thermal Resistance

FIGURE 5. Power Derating

TL/G/10039-17

TL/G/10039-14

FIGURE 2. Maximum Power Dissipation

TL/G/10039-16

FIGURE 4. Typical Reverse Leakage Current

TL/G/10039-18

FIGURE 6. Typical Reverse Recovery Charge

Process R5

Performance Characteristics (Continued)

TL/G/10039-19

FIGURE 7. Typical Reverse Recovery Time

TL/G/10039-21

FIGURE 9. Typical Reverse Recovery Softness

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips. These parameters are:

Thermal Resistance Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current Surge Current

TL/G/10039-20

FIGURE 8. Maximum Reverse Recovery Current

TL/G/10039-22

FIGURE 10. Reverse Recovery Test Waveform

Process R6 Ultra-Fast Rectifier

DESCRIPTION

These dice are designed especially for use in switching power supplies, inverters and PWM motor controls. These dice feature low reverse recovery current with soft recovery.

TL/G/10039-23

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Max	Units
V _{RRM}	Peak Repetitive Reverse Voltage	I _R = 0.5 mA	600		٧
I _{RRM}	Maximum Instantaneous Reverse Current (Note 1)	$V_R = V_{RRM}$ $T_J = 125^{\circ}C$ $T_J = 25^{\circ}C$		5 10	mA μA
V _{FM}	Maximum Instantaneous Forward Voltage (Note 1)	I _F = 8A		1.5	٧
I _{R (rec)}	Maximum Reverse Recovery Current (Note 2)	$I_F = 8A; V_R = 200V$ $dI_F/dt = 100A/\mu s$		5	Α
t _{RR}	Maximum Reverse Recovery Time	I _F = 8A; dI _F /dt = 100A/μs		75	ns

Note 1: Pulse width = 300 μs . Duty Cycle \leq 2.0%.

Note 2: See Figure 8 for test conditions.

This process is available in the following device types:

TO-220AB (Case 38)

TO-220AC Case (41)

FRP1640CC FRP1650CC FRP840 FRP850

FRP1660CC

FRP850 FRP860

FRP#	840	850	860	1640CC	1650CC	1660CC	Unit
V _{RRM} (I _R = 0.5 mA)	400	500	600	400	500	600	٧

Process R6

Performance Characteristics

TI /G/10039-24 FIGURE 1. Maximum Forward Voltage Drop

TL/G/10039-25 FIGURE 2. Maximum Energy Dissipation Per Pulse

TL/G/10039-26 FIGURE 3. Maximum Transient Thermal Resistance

TL/G/10039-27

FIGURE 5. Typical Reverse Recovery Current

FIGURE 4. Typical Reverse Leakage Current

TL/G/10039-29

FIGURE 6. Typical Reverse Recovery Charge

Process R6

Performance Characteristics (Continued)

TL/G/10039-30

FIGURE 7. Typical Reverse Recovery Time

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips. These parameters are:

Thermal Resistance Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current Surge Current

FIGURE 8. Reverse Recovery Test Waveform

Process A1 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-220 (Case 37)

IRF510

IRF511

IRF512

IRF513

MTP4N08

MTP4N10

TL/G/10040-1

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	100		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
I _{GSS}	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_D = 2.0A$		0.60	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_{D} = 2.0A$	1.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		200	pF
Coss	Output Capacitance			100	pF
C _{rss}	Reverse Transfer			30	pF
^t d(on)	Turn-On Delay Time (Note 3)	$V_{DD} = 50V; I_{D} = 2.0A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		20	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		25	ns
t _{d(off)}	Turn-Off Delay Time			25	ns
t _f	Fall Time			20	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 8.0A$ $V_{DD} = 40V$		7.5	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Process A1

Typical Performance Characteristics

TL/G/10040-2

FIGURE 1. Output Characteristics

TL/G/10040-4

FIGURE 3. Transfer Characteristics

TL/G/10040-6

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040-3

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040-5

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-7

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Process A1

Typical Performance Characteristics (Continued)

V_{DS} - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-8

FIGURE 7. Forward Blased Safe Operating Area for MTP4N08/4N10

TL/G/10040-10

FIGURE 9. Forward Biased Safe Operating
Area for IRF510-513

10¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴

TL/G/10040-9
FIGURE 8. Transient Thermal Resistance
vs Time for MTP4N08/4N10

TL/G/10040-11

FIGURE 10. Transient Thermal Resistance vs Time for IRF510-513

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process A2 N-Channel Power MOSFET

TL/G/10040-14

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-220 (Case 37)

IRF610

IRF611

IRF612

IRF613

MTP2N18

MTP2N20

Electrical Characteristics $T_C = 25^{\circ}C$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min -	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0V$	200		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
I _{GSS}	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 1.25A		1.5	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_{D} = 1.25A$	0.8		Siemens
C _{iss}	Input Capacitance	V _{DS} = 25V; V _{GS} = 0V f = 1 MHz		200	pF
Coss	Output Capacitance			80	pF
C _{rss}	Reverse Transfer			25	pF
t _{d(on)}	Turn-On Delay Time (Note 3)	$V_{DD} = 50V; I_{D} = 1.25A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		15	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		25	ns
t _{d(off)}	Turn-Off Delay Time			15	ns
t _f	Fall Time			15	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 3.0A$ $V_{DD} = 45V$		7.5	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Process A2

Typical Performance Characteristics

TL/G/10040-15 FIGURE 1. Output Characteristics

TL/G/10040-17 FIGURE 3. Transfer Characteristics

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040-16 FIGURE 2. Static Drain to Source Resistance

TL/G/10040-18

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-20

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Process A2

Typical Performance Characteristics (Continued)

V_{DS} - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-21

FIGURE 7. Forward Biased Safe Operating
Area for MTP2N18/2N20

TL/G/10040-23
FIGURE 9. Forward Biased Safe Operating
Area for IRF610-613

10¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴

TL/G/10040-22

FIGURE 8. Transient Thermal Resistance vs Time for MTP2N18/2N20

TL/G/10040-24

FIGURE 10. Transient Thermal Resistance vs Time for IRF610-613

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process A3 N-Channel Power MOSFET

TL/G/10040-27

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-220 (Case 37)

IRF710

IRF711

IRF712

IRF713 MTP2N35

VI I PZINS

MTP2N40

Electrical Characteristics $T_C = 25^{\circ}C$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu A; V_{GS} = 0V$	400		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
IGSS	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu A; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 2.0A		3.6	Ω
9FS	Forward Transconductance	V _{DS} = 10V; I _D = 2.0A	0.5		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		200	pF
Coss	Output Capacitance			50	pF
C _{rss}	Reverse Transfer			15	pF
t _{d(on)}	Turn-On Delay Time (Note 3)	$V_{DD} = 200V; I_{D} = 0.8A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		10	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		20	ns
t _{d(off)}	Turn-Off Delay Time			10	ns
t _f	Fall Time			15	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 2.0A V _{DD} = 200V		7.5	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 $\mu s,$ Duty Cycle \leq 1%.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Process A3

Typical Performance Characteristics

TL/G/10040-28

FIGURE 1. Output Characteristics

TL/G/10040-30

TL/G/10040-32

FIGURE 3. Transfer Characteristics

V_{DS} - DRAIN TO SOURCE VOLTAGE - V

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040-29

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040-31

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-33

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Process A3

Typical Performance Characteristics (Continued)

V_{DS} - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-34 FIGURE 7. Forward Blased Safe Operating Area for MTP2N35/2N40

FIGURE 9. Forward Biased Safe Operating
Area for IRF710-713

10¹ 10⁰ 10¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁻¹ IMEE/my Improvement of heating pulses 10⁻¹ 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁻¹ 10⁸
TL/G/10040-35
FIGURE 8. Transient Thermal Resistance
vs Time for MTP2N35/2N40

FIGURE 10. Transient Thermal Resistance
vs Time for IRF710-713

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process B1 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types: TO-220 (Case 37)

FMP18N05

FMP20N05

FMP18N06

FMP20N06

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	50		V
loss	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
I _{GSS}	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	V
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 10A		0.085	Ω
9FS	Forward Transconductance	V _{DS} = 10V; I _D = 10A	5		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		850	pF
Coss	Output Capacitance			400	pF
C _{rss}	Reverse Transfer			150	pF
^t d(on)	Turn-On Delay Time	$V_{DD} = 40V; I_{D} = 10A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		50	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		90	ns
t _{d(off)}	Turn-Off Delay Time			60	ns
t _f	Fall Time		_	75	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 25A$ $V_{DD} = 40V$		20	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Process B1

Typical Performance Characteristics

TL/G/10040-41

FIGURE 1. Output Characteristics

FIGURE 3. Transfer Characteristics

TL/G/10040-45 FIGURE 5. Capacitance vs Drain to Source Voltage

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040-44

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-46

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Process B1

Typical Performance Characteristics (Continued)

TL/G/10040-47
FIGURE 7. Forward Biased Safe Operating Area

TL/G/10040-48 FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Process B2 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types: TO-220 (Case 37)

IRF520

IRF521

IRF522

IRF523

MTP10N08 MTP10N10

TL/G/10040-51

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	100		٧
DSS	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
IGSS	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu A; V_{DS} = V_{GS}$	2	4	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 4A		0.30	Ω
9FS	Forward Transconductance	V _{DS} = 10V; I _D = 4A	1.5		Siemens
C _{iss}	Input Capacitance	V _{DS} = 25V; V _{GS} = 0V f = 1 MHz		600	pF
Coss	Output Capacitance			400	pF
C _{rss}	Reverse Transfer			100	pF
^t d(on)	Turn-On Delay Time (Note 3)	$V_{DD} = 50V; I_D = 4A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		40	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		70	ns
t _{d(off)}	Turn-Off Delay Time			100	ns
t _f	Fall Time			70	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 10A$ $V_{DD} = 50V$		15	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse width limited by T.J.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Characteristics

TL/G/10040-52

FIGURE 1. Output Characteristics

TL/G/10040-54

FIGURE 3. Transfer Characteristics

TL/G/10040-56

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040~53

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040~55

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-57

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

VDS - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-58

FIGURE 7. Forward Blased Safe Operating Area for IRF120-123 and IRF520-523

TL/G/10040-60

FIGURE 9. Forward Biased Safe Operating
Area for MTP10N08/10N10

TL/G/10040-59

FIGURE 8. Transient Thermal Resistance vs Time for IRF120-123 and IRF520-523

TL/G/10040-61

FIGURE 10. Transient Thermal Resistance vs Time for MTP10N08/10N10

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process B3 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-220 (Case 37)

IRF620

IRF621

IRF622

IRF623

MTP7N18

MTP7N20

TL/G/10040-64

Electrical Characteristics $T_C = 25^{\circ}C$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	200		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
lgss	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_D = 2.5A$		0.8	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_D = 2.5A$	1.3		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		600	pF
Coss	Output Capacitance			300	pF
C _{rss}	Reverse Transfer			80	pF
t _{d(on)}	Turn-On Delay Time (Note 3)	$V_{DD} = 100V; I_D = 2.5A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		40	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		60	ns
t _{d(off)}	Turn-Off Delay Time			100	ns
t _f	Fall Time			60	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 6.0A$ $V_{DD} = 45V$		15	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse width limited by TJ.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Characteristics

TL/G/10040-65 FIGURE 1. Output Characteristics

FIGURE 3. Transfer Characteristics

TL/G/10040-67

TL/G/10040-89
FIGURE 5. Capacitance vs Drain
to Source Voltage

TL/G/10040-66

FIGURE 2. Static Drain to Source Resistance
vs Drain Current

TL/G/10040-68

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-70

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

TL/G/10040-71

FIGURE 7. Forward Biased Safe Operating Area for IRF220-223 and IRF620-623

TL/G/10040-73

FIGURE 9. Forward Biased Safe Operating Area for MTP7N18/7N20

D = 0.50 D = 0.

TL/G/10040-72

FIGURE 8. Transient Thermal Resistance vs Time for IRF220-223 and IRF620-623

TL/G/10040-74

FIGURE 10. Transient Thermal Resistance vs Time for MTP7N18/7N20

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process B4 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-220 (Case 37)

IRF720

IRF721

IRF722

IRF723

MTP3N35

MTP3N40

TL/G/10040-77

Electrical Characteristics $T_C = 25^{\circ}C$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	400		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
I _{GSS}	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_D = 1.5A$		1.8	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_D = 1.5A$	1.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		500	pF
Coss	Output Capacitance			100	pF
C _{rss}	Reverse Transfer			40	pF
t _{d(on)}	Turn-On Delay Time (Note 3)	$V_{DD} = 200V; I_{D} = 1.5A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		40	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		50	ns
t _{d(off)}	Turn-Off Delay Time			100	ns
t _f	Fall Time			50	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 4.0A$ $V_{DD} = 200V$		15	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Characteristics

TL/G/10040-78

FIGURE 1. Output Characteristics

TL/G/10040-80

FIGURE 3. Transfer Characteristics

TL/G/10040-82

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040-79

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040-81

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-83

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

VDS - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-84

FIGURE 7. Forward Blased Safe Operating Area for IRF320-323 and IRF720-723

TL/G/10040-86

FIGURE 9. Forward Biased Safe Operating Area for MTP3N35/3N40

10¹ D=0.50 D=0

TL/G/10040-85
FIGURE 8. Transient Thermal Resistance
vs Time for IRF320-323 and IRF720-723

TL/G/10040-87

FIGURE 10. Transient Thermal Resistance vs Time for MTP3N35/3N40

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process B5 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42) TO-220 (Case 37)

IRF420 IRF820 IRF421 IRF821 IRF422 IRF822 IRF423 IRF823

> MTP2N45 MTP2N50

TL/G/10040-90

Electrical Characteristics $T_C = 25^{\circ}C$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	500		٧
IDSS	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
Igss	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu A; V_{DS} = V_{GS}$	2.0	4.0	V
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 1A		3.0	Ω
9FS	Forward Transconductance	V _{DS} = 10V; I _D = 1A	1.0		Siemens
C _{iss}	Input Capacitance	V _{DS} = 25V; V _{GS} = 0V f = 1 MHz		400	pF
Coss	Output Capacitance			100	pF
C _{rss}	Reverse Transfer			40	pF
t _{d(on)}	Turn-On Delay Time (Note 3)	$V_{DD} = 250V; I_D = 1A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		40	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		50	ns
t _{d(off)}	Turn-Off Delay Time			60	ns
t _f	Fall Time			60	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 3.0A$ $V_{DD} = 200V$		15	nC

Note 1: $T_{.1} = +25^{\circ}\text{C}$ to $+150^{\circ}\text{C}$.

Note 2: Pulse width limited by T_J.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Characteristics

TL/G/10040-91

FIGURE 1. Output Characteristics

TL/G/10040-93

FIGURE 3. Transfer Characteristics

TL/G/10040-95

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040-92

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040-94

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-96

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

TL/G/10040-97

FIGURE 7. Forward Biased Safe Operating
Area for IRF320-323 and IRF720-723

TL/G/10040-99

FIGURE 9. Forward Biased Safe Operating
Area for MTP3N35/3N40

D=0.50 D=

TL/G/10040-98

FIGURE 8. Transient Thermal Resistance vs Time for IRF320-323 and IRF720-723

TL/G/10040-A0

FIGURE 10. Transient Thermal Resistance vs Time for MTP3N35/3N40

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process C1 N-Channel Power MOSFET

TL/G/10040-A3

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42) TO-220 (Case 37)

IRF130

IRF530

IRF131

IRF531

IRF132 IRF133 IRF532 IRF533

MTP20N08

MTP20N10

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0V$	100		٧
IDSS	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
IGSS	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_D = 8A$		0.18	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_{D} = 8A$	4.0		Siemens
C _{iss}	Input Capacitance	V _{DS} = 25V; V _{GS} = 0V f = 1 MHz		800	pF
Coss	Output Capacitance			500	pF
C _{rss}	Reverse Transfer			150	pF
t _{d(on)}	Turn-On Delay Time (Note 3)	$V_{DD} = 25V; I_D = 10A$ $V_{GS} = 10V; R_{GEN} = 15\Omega$		50	ns
t _r	Rise Time	$R_{GS} = 15\Omega$		450	ns
t _{d(off)}	Turn-Off Delay Time			100	ns
t _f	Fall Time			200	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 18A$ $V_{DD} = 80V$		30	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$. Note 2: Pulse width limited by T_J .

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Characteristics

TL/G/10040-A4

FIGURE 1. Output Characteristics

TL/G/10040-A6

FIGURE 3. Transfer Characteristics

TL/G/10040-A8

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040-A5

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040-A7

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-A9

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

OLINOL - V

FIGURE 7. Forward Blased Safe Operating Area for IRF130-133 and IRF530-533

FIGURE 9. Forward Blased Safe Operating
Area for MTP20N08/20N10

10¹ 10⁰ D=0.50 Duty Factor, D= 1/2 10³ 10⁴ t=TIME-ms

FIGURE 8. Transient Thermal Resistance vs Time for IRF130-133 and IRF530-533

FIGURE 10. Transient Thermal Resistance vs Time for MTP20N08/20N10

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process C2 N-Channel Power MOSFET

DESCRIPTION

IRF233

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42) TO-220 (Case 37)

IRF230 IRF630

IRF231 IRF631 IRF632 IRF232

> IRF633 MTP12N18

> > MTP12N20

Electrical Characteristics $T_C = 25^{\circ}C$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	200	,	٧
IDSS	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
Igss	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 5A		0.4	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_{D} = 5A$	3.0		Siemens
C _{iss}	Input Capacitance	V _{DS} = 25V; V _{GS} = 0V f = 1 MHz		800	pF
Coss	Output Capacitance			450	pF
C _{rss}	Reverse Transfer			150	pF
^t d(on)	Turn-On Delay Time (Note 3)	$V_{DD} = 25V; I_D = 6A$ $V_{GS} = 10V; R_{GEN} = 15\Omega$		50	ns
t _r	Rise Time	$R_{GS} = 15\Omega$		250	ns
t _{d(off)}	Turn-Off Delay Time			100	ns
t _f	Fall Time			120	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 12A V _{DD} = 120V		30	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse width limited by TJ.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Characteristics

TL/G/10040-B7

FIGURE 1. Output Characteristics

TL/G/10040-B9

FIGURE 3. Transfer Characteristics

TL/G/10040-C1

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040-B8

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040-C0

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-C2

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

TL/G/10040-C

FIGURE 7. Forward Blased Safe Operating Area for IRF230-233 and IRF630-633

VDS - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-C5
FIGURE 9. Forward Biased Safe Operating
Area for MTP12N18/12N20

10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴

TL/G/10040-C4

FIGURE 8. Transient Thermal Resistance vs Time for IRF230-233 and IRF630-633

TL/G/10040-C6

FIGURE 10. Transient Thermal Resistance vs Time for MTP12N18/12N20

Typical Electrical Characteristics

FIGURE 11. Switching Test Circuit

FIGURE 12. Switching Waveforms

Process C3 N-Channel Power MOSFET

TL/G/10040-C9

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42) TO-220 (Case 37)

IRF330 IRF730 IRF331 IRF731 IRF332 IRF732 IRF333 IRF733

> MTP5N35 MTP5N40

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	400		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
Igss	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 3A		1.0	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_D = 3A$	3.0		Siemens
C _{iss}	Input Capacitance	V _{DS} = 25V; V _{GS} = 0V f = 1 MHz		900	pF
Coss	Output Capacitance			300	pF
C _{rss}	Reverse Transfer			80	pF
t _{d(on)}	Turn-On Delay Time (Note 3)	$V_{DD} = 175V; I_D = 3A$ $V_{GS} = 10V; R_{GEN} = 15\Omega$		30	ns
t _r	Rise Time	$R_{GS} = 15\Omega$	_	35	ns
t _{d(off)}	Turn-Off Delay Time			55	ns
t _f	Fall Time			35	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_{D} = 7A$ $V_{DD} = 180V$		30	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Note 3: Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Characteristics

Figures 4-6 for IRF332/333/732/733 only.

TL/G/10040-D0

FIGURE 1. Output Characteristics

TL/G/10040-D2

TL/G/10040-D4
FIGURE 5. Static Drain to Source On-Resistance
vs Drain Current

TL/G/10040-D1

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10040-D3

FIGURE 4. Output Characteristics

TL/G/10040-D5

FIGURE 6. Transfer Characteristics

Typical Performance Characteristics (Continued)

TL/G/10040-D6

FIGURE 7. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10040-D8

FIGURE 9. Gate to Source Voltage vs Total Gate Charge

TL/G/10040-D7

FIGURE 8. Capacitance vs Drain to Source Voltage

VDS - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-D9

FIGURE 10. Forward Biased Safe Operating Area

FIGURE 11. Transient Thermal Resistance

TL/G/10040-E0

Typical Electrical Characteristics

FIGURE 12. Switching Test Circuit

FIGURE 13. Switching Waveforms

Process E1 N-Channel Power MOSFET

DESCRIPTION

IRF143

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42)

IRF140

IRF540CF

IRF141

IRF540

IRF541

IRF542 IRF543

TL/G/10041-1

Electrical Characteristics $T_C = 25^{\circ}C$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	100		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
IGSS	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		± 100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	V
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 15A		0.085	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_D = 15A$	6.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		1600	pF
C _{oss}	Output Capacitance			800	pF
C _{rss}	Reverse Transfer			300	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 45V; I_D = 15A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		60	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		450	ns
t _{d(off)}	Turn-Off Delay Time			150	ns
t _f	Fall Time			200	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 34A V _{DD} = 35V		60	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$. Note 2: Pulse Width limited by T_J .

Typical Performance Characteristics

TL/G/10041-2 FIGURE 1. Output Characteristics

VGS - GATE TO SOURCE VOLTAGE - V

TL/G/10041-4

TL/G/10041-6

FIGURE 3. Transfer Characteristics

VDS - DRAIN TO SOURCE VOLTAGE - V

FIGURE 5. Capacitance vs Drain to Source Voltage

Process E1

TL/G/10041-3

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10041-5

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10041-7

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Process E1

Typical Performance Characteristics (Continued)

FIGURE 7. Forward Biased Safe Operating Area

TL/G/10041-9

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

Process E2 N-Channel Power MOSFET

TL/G/10041-12

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42)

TO-220 (Case 37)

IRF240

IRF640CF

IRF241

IRF640

IRF242 IRF243 IRF641 IRF642

IRF643

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	I _D = 250 μA; V _{GS} = 0V	200		٧
IDSS	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
lgss	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		± 100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 10A		0.18	Ω
g _F s	Forward Transconductance	$V_{DS} = 10V; I_{D} = 10A$	6.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		1600	pF
Coss	Output Capacitance			750	pF
C _{rss}	Reverse Transfer			300	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 75V; I_D = 10A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		60	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		300	ns
t _{d(off)}	Turn-Off Delay Time			200	ns
t _f	Fall Time			150	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 22A V _{DD} = 120V		60	nC

Note 1: $T_J = +25^{\circ}\text{C}$ to $+150^{\circ}\text{C}$. Note 2: Pulse Width limited by T_J .

Process E2

Typical Performance Characteristics

TL/G/10041-13

FIGURE 1. Output Characteristics

TL/G/10041-15

FIGURE 3. Transfer Characteristics

TL/G/10041-17 FIGURE 5. Capacitance vs **Drain to Source Voltage**

TL/G/10041-14

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10041-16

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10041-18

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Process E2

Typical Performance Characteristics (Continued)

FIGURE 7. Forward Biased Safe Operating Area

TL/G/10041-20

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips.

These parameters are:

Thermal Resistance

Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current

Surge Current

Process E3 N-Channel Power MOSFET

TL/G/10041-23

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42)
IRF340
IRF740CF
IRF341
IRF740
IRF741
IRF342
IRF741
IRF343
IRF742
IRF743

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	400		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
I _{GSS}	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu A; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_D = 5A$		0.55	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_{D} = 5A$	4.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		1600	pF
Coss	Output Capacitance			450	pF
C _{rss}	Reverse Transfer			150	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 175V; I_{D} = 5A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		35	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		15	ns
t _{d(off)}	Turn-Off Delay Time			90	ns
t _f	Fall Time			35	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 12A V _{DD} = 400V		60	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Process E3

Typical Performance Characteristics

TL/G/10041-24 FIGURE 1. Output Characteristics

TL/G/10041-26 FIGURE 3. Transfer Characteristics

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10041-25

TL/G/10041-27

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10041-29

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

TL/G/10041-28

Process E3

Typical Performance Characteristics (Continued)

TL/G/10041-30 FIGURE 7. Forward Biased Safe Operating Area

10¹ 10⁰ 0.5 10¹ 10

TL/G/10041-31

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips.

These parameters are:

Thermal Resistance

Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current

Surge Current

Process E4 N-Channel Power MOSFET

TL/G/10041-34

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42) IRF440 TO-220 (Case 37)

IRF440 IRF441 IRF840CF IRF840

IRF442 IRF443 IRF841 IRF842

IRF843

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	I _D = 250 μA; V _{GS} = 0V	500		٧
IDSS	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
IGSS	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	V
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_D = 4.0A$		0.85	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_{D} = 4.0A$	4.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		1600	pF
Coss	Output Capacitance			350	pF
C _{rss}	Reverse Transfer			150	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 220V; I_D = 4A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		35	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		15	ns
t _{d(off)}	Turn-Off Delay Time			90	ns
t _f	Fall Time			30	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 12A V _{DD} = 400V		60	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Process E4

Typical Performance Characteristics

TL/G/10041-35

FIGURE 1. Output Characteristics

TL/G/10041-37

FIGURE 3. Transfer Characteristics

TL/G/10041-39

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10041-36

FIGURE 2. Static Drain to Source
Resistance vs Drain Current

TL/G/10041-38

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10041-40

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

Process E4

Typical Performance Characteristics (Continued)

TL/G/10041-41

FIGURE 7. Forward Biased Safe Operating Area Curves

TL/G/10041-42

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips.

These parameters are:

Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

Process F1 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 43) TO-247 (Case 40)
IRF150CF IRFP150CF
IRF150 IRFP150
IRF151 IRFP151
IRF152 IRFP152
IRF153 IRFP153

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	100		٧
loss	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
Igss	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 20A		0.055	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_{D} = 20A$	9.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		3000	pF
Coss	Output Capacitance			1500	pF
C _{rss}	Reverse Transfer			500	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 48V; I_D = 20A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		75	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		450	ns
t _{d(off)}	Turn-Off Delay Time			300	ns
t _f	Fall Time			200	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 50A V _{DD} = 55V		120	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Process F1

Typical Performance Characteristics

TL/G/10041-46

FIGURE 1. Output Characteristics

TL/G/10041-48

FIGURE 3. Transfer Characteristics

TL/G/10041-50

FIGURE 5. Capacitance vs **Drain to Source Voltage**

TL/G/10041-47

FIGURE 2. Static Drain to Source **Resistance vs Drain Current**

TL/G/10041-49

FIGURE 4. Temperature Variation of **Gate to Source Threshold Voltage**

TL/G/10041-51

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

TL/G/10041-52
FIGURE 7. Forward Biased Safe Operating Area

TL/G/10041-53

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips.

These parameters are:

Thermal Resistance

Forward Voltage Drop at Rated Current

Reverse Recovery Characteristics at Rated Current

Surge Current

Process F2 N-Channel Power MOSFET

TL/G/10041-56

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 43)
IRF250CF
IRF250CF
IRF250
IRF251
IRF251
IRF252
IRF253
IRF253
IRF253
IRF253
IRF253

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0V$	200		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
I _{GSS}	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 16A		0.085	Ω
9FS	Forward Transconductance	V _{DS} = 10V; I _D = 16A	8.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		3000	pF
Coss	Output Capacitance			1200	pF
C _{rss}	Reverse Transfer			500	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 95V; I_D = 16A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		75	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		300	ns
t _{d(off)}	Turn-Off Delay Time			275	ns
t _f	Fall Time			150	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 38A V _{DD} = 100V		120	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 $\mu s,$ Duty Cycle \leq 1%.

Typical Performance Characteristics

TL/G/10041-57

FIGURE 1. Output Characteristics

TL/G/10041-59

TL/G/10041-61

FIGURE 3. Transfer Characteristics

FIGURE 5. Capacitance vs **Drain to Source Voltage**

TL/G/10041-58

FIGURE 2. Static Drain to Source **Resistance vs Drain Current**

TL/G/10041-60

FIGURE 4. Temperature Variation of **Gate to Source Threshold Voltage**

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

TL/G/10041-62

Typical Performance Characteristics (Continued)

TL/G/10041-63

FIGURE 7. Forward Biased Safe Operating Area

10¹ D=0.5 D=

TL/G/10041-64

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

TL/G/10041-65

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips. These parameters are:

Thermal Resistance Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current Surge Current

Process F3 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42)

TO-247 (Case 40)

IRF350CF

IRFP350CF

IRF350

IRFP350

IRF351

IRFP351 IRFP352

IRF352 IRF353

11 1 002

IRFP353

Electrical Characteristics T_C = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	400		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
IGSS	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 8A		0.3	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_D = 8A$	8.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		3000	pF
Coss	Output Capacitance			600	pF
C _{rss}	Reverse Transfer			200	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 180V; I_D = 8A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		35	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		65	ns
t _{d(off)}	Turn-Off Delay Time			150	ns
t _f	Fall Time			75	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 16A V _{DD} = 400V		120	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Typical Performance Characteristics

TL/G/10041-68 FIGURE 1. Output Characteristics

TL/G/10041-70 FIGURE 3. Transfer Characteristics

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10041-69 FIGURE 2. Static Drain to Source

TL/G/10041-71

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10041-73

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

FIGURE 7. Forward Blased Safe Operating Area

TI /G/10041-75

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips. These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

Process F4 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42) TO-247 (Case 40) IRF450CF IRFP450CF IRF450 IRFP450 IRF451 IRFP451 IRF452 IRFP452 IRF453 IRFP453

Electrical Characteristics $T_C = 25$ °C (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu A; V_{GS} = 0V$	500		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
I _{GSS}	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_D = 7.0A$		0.4	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_D = 7.0A$	6.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		3000	pF
Coss	Output Capacitance			600	pF
C _{rss}	Reverse Transfer			200	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 210V; I_D = 7.0A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		35	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		50	ns
t _{d(off)}	Turn-Off Delay Time			150	ns
t _f	Fall Time			70	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 16A V _{DD} = 400V		120	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 20 μ s, Duty Cycle \leq 1%.

Typical Performance Characteristics

TL/G/10041-79

FIGURE 1. Output Characteristics

TL/G/10041-81

FIGURE 3. Transfer Characteristics

TL/G/10041-83

FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10041-80

FIGURE 2. Static Drain to Source Resistance vs Drain Current

TL/G/10041-82

FIGURE 4. Temperature Variation of Gate to Source Threshold Voltage

TL/G/10041-84

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Typical Performance Characteristics (Continued)

FIGURE 7. Forward Biased Safe Operating Area

TL/G/10041-86

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

FIGURE 9. Switching Test Circuit

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips.

These parameters are:

Thermal Resistance Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current Surge Current

			I I
	,		

Section 12 **Appendices, Packaging and Ordering Information**

Section 12 Contents

Transistor Glossary of Symbols	12-3
Diode and Rectifier Glossary of Symbols and Terms	12-11
JFET Glossary of Symbols	12-14
JFET Application Guide	12-20
AN-556 Introduction to Power Supplies	12-25
AN-557 Optimizing the Ultra-Fast POWERPlanar™ Rectifier Diode for Switching Power	
Supplies	12-31
AN-558 Introduction to Power MOSFETs and Their Applications	12-37
Packaging Options and Ordering Information	12-51
Physical Dimensions	12-56
Bookshelf	
Distributors	

Transistor Glossary of Symbols

DC PARAM	ETERS	
BV _{CBO}	Collector-Base Breakdown Voltage with Emitter Open-Circuited The breakdown voltage of the collector-base junction, measured at a specified current, with the emitter open-circuited.	V _{CBO} V _C
BV _{CEO}	Collector-Emitter Breakdown Voltage with the Base Open-Circuited The collector-emitter breakdown voltage, measured at a specified collector current, with the base open-circuited.	BV _{CEO} , BV _{CER} , BV _{CES}
BV _{CER}	Collector-Emitter Breakdown Voltage with Resistance between Emitter and Base The collector-emitter breakdown voltage measured at a specified current with a specified resistance R connected between the base and the emitter.	BV _{CEO} O BV _{CEO}
BV _{CES}	Collector-Emitter Breakdown Voltage with Base Shorted to Emitter The collector-emitter breakdown, measured at a specified current, with the base shorted to the emitter.	BV _{CES} V _{CE} I _C TL/XX/0125-3
BV _{CEX}	Collector-Emitter Breakdown Voltage at a Specified Condition The collector-emitter breakdown voltage measured at a specified current with the base-emitter junction forward or reverse biased by a specified voltage or current.	V _{EB} TL/XX/0125-4
BV _{EBO}	Emitter-Base Breakdown Voltage with Collector Open-Circuited The emitter-base breakdown voltage, measured at a specified current, with the collector open-circuited.	BVEBO VEBO TL/XX/0125-5

DC PARAME	TERS (Continued)	
h _{FE}	Common-Emitter DC Current Gain The ratio of DC collector current to DC base current measured at a specified collector-emitter voltage and a specified collector current.	$\beta = \frac{I_{B}}{I_{B}}$ $\alpha = \frac{\beta}{\beta + 1}\beta = \frac{\alpha}{1 - \alpha}$ I_{C} I_{C} I_{C} I_{C} I_{C} I_{C} I_{C} I_{C} I_{C} I_{C} I_{C} I_{C}
ICBO	Inverse Collector-Base Current The collector-base current with the junction reverse biased by a specified voltage, with the emitter open-circuited.	TL/XX/0125-7 V _{CB} TL/XX/0125-8 I _{CEO} = (β + 1) I _{CBO}
I _{CEX} , I _{CES}	Inverse Collector-Emitter Current at a Specified Condition The collector-emitter current measured at a specified collector-emitter voltage with the base forward or reverse biased by a specified voltage or current, or with the base shorted to the emitter.	ICEX/ICES VCE VCE VCE VCE VCE VCE VCE
I _{EBO}	Inverse Emitter-Base Current The emitter-base current with the junction reverse biased by a specified voltage with the collector open-circuited.	V _{EB} = V _{EB} TL/XX/0125-10
LVCEO, LVCER, LVCES, LVCEX, or VCEO (sust) VCER (sust) VCEX (sust)		LV _{CEO} , LV _{CER} , LV _{CES} , LV _{CEX} C
		VEB R PULSED

C _{te} , C _{ib} , C _{EB}	Base-Emitter Capacitance The capacity of the base-emitter junction at a specified inverse voltage with the collector open.	E O CCB CCB
C _{CB}	Collector-Base Capacitance Collector-base capacitance measured at some specified collector-base voltage.	$C_{ob} = C_{CB} + \frac{C_{CE} C_{EB}}{C_{CE} + C_{EB}} = C_{CB} + C_{CE}$ 2) C_{CB} $C_{CB} = C_{ob}$ (WITH EMITTER GUARDED)
CG _e , CG _b	Conversion Gain, Common-Emitter or Common-Base The ratio of the output power of a mixer, at one specified frequency, to its input power, at another specified frequency. This parameter is a function of oscillator injection voltage and the mixer operating point.	CONVERSION GAIN 1) SPECIFY I _C , VoE 2) f _{RF} , f _{IF} LO LEVEL, CIRCUIT TUNED TO f _{RF} TUNED TO I _F TUNED TO I _F TL/XX/0125-21
f _{αb} , f _{hfb} f _β , f _{hfe}	Common-Base Cut Off Frequency The frequency at which the h_{fb} (α) is reduced to 0.707 of its low frequency value. Common-Emitter Cut Off Frequency The frequency at which the h_{fe} (β) is reduced to 0.707 of its low frequency value. Gain Band-Width Product The common-emitter current gain bandwidth product in the frequency range where the current gain is falling at approximately 6 db/octave. Transition Frequency The frequency at which the h_{fe} (β) is equal to 1.0. This is a device figure of merit that is often specified at a Very and λ	f_{ab}, f_{β}, f_{t} f_{ab}, f_{β}, f_{t} f_{ab}, f_{β}, f_{t} f_{ab}, f_{β}, f_{t} f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$ f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$ f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$ f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$ f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$ f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$ f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$ f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$ f_{ab}, f_{β}, f_{t} $f_{ab} = f_{ab}$
f _{MAX}	specified at a V _{CE} and I _C . Maximum Frequency of Oscillation This parameter is a device figure of merit that is calculated from ft and rb'Cc.	$f_{MAX} = \begin{array}{l} \text{MAX FREQUENCY OF OSCILLATION} \\ \text{FREQUENCY AT WHICH MAG} = 1 \\ \\ f_{MAX} = \sqrt{\frac{f_t}{8\pi \text{ rb Cc}}} = f\sqrt{PG} \end{array}$

GP _e PG	Common-Emitter Power Gain Power Gain Can be common-emitter or common-base. Usually stability-limited gains involved, thus are effectively a transducer gain measurement.	POWER GAIN, TRANSCONDUCER GAIN 1) SPECIFY I _C , V _{CE} 2) fo, βω, CIRCUIT, NEUTRALIZED?
		GEN Rs-580) Voc TL/XX/0125-23
G _{TE}	Common-Emitter Transducer Gain A test fixture must be specified.	$G_{TE} = \frac{POWER\ DELIVERED\ TO\ THE\ LOAD}{POWER\ AVAILABLE\ FROM\ THE\ SOURCE}$
GMA	Stability Limited Gain or Gain Maximum Available This parameter is a device figure of merit and must be calculated from the two port "y" parameters.	GMA = 10 LOG $\left[\frac{ Y_{fe} }{ Y_{re} }\left(k - \sqrt{K^2 - 1}\right)\right]$ NOT DEFINED FOR K < 1
	h Parameters	h-PARAMETERS ILAN TL/XX/0125-24 WHERE e ₁ , i ₁ , e ₂ , i ₂ ARE SMALL SIGNAL VOLTAGES AND CURRENTS THE h - (HYBRID) PARAMETERS ARE DEFINED BY e ₁ = h ₁₁ i ₁ + h ₁₂ e ₂ i ₂ = h ₂₁ i ₁ + h ₂₂ e ₂ AND FOR COMMON EMITTER OPERATION THESE E Q BECOME e ₁ = h ₁₆ i ₁ + h ₇₆ e ₂ i ₂ = h ₁₆ i ₁ + h ₉₆ e ₂
h _{fe}	Common-Emitter Current Gain The common-emitter forward current transfer ratio with output ac shorted. This is a complex quantity.	h - PARAMETERS-COMMON EMITTER $h_{fe} = \frac{ c }{i_b} \Big _{V_{Ce}} = 0$
h _{ie}	Common-Emitter Input Impedance The common-emitter input impedance with the output ac shorted. This is a complex quantity.	$h_{ie} = \frac{V_{be}}{I_b} _{V_{ce} = 0}$

h _{oe}	Common-Emitter Output Admittance The common-emitter output admittance with the input ac open. This is a complex quantity.	$\mathbf{v_{ce}} = \frac{\mathbf{i_c}}{\mathbf{v_{ce}}} \Big _{\mathbf{i_b} = 0}$
h _{re}	Common-Emitter Reverse Voltage Transfer Ratio The common-emitter reverse voltage transfer ratio with input ac open. This is a complex quantity.	$\mathbf{v_{be}} = \frac{\mathbf{v_{be}}}{\mathbf{v_{co}}} _{\mathbf{b}} = 0$
MAG	Maximum Available Gain Device figure of merit that must be calculated from the two port "y" parameters.	MAG = 10 LOG $\frac{ Y_{21} ^2}{4 \text{ Re}(Y_{11}) \text{ Re}(Y_{22})}$
MSG	Maximum Stable Gain This parameter is a device figure of merit that is calculated from the two port "y" parameters.	$MSG = 10 LOG \frac{ Y_{fe} }{ Y_{re} }$
NF	Noise Figure Noise figure = 10 log ₁₀ F, where F is the ratio of total output noise power to the output power due solely to the thermal noise of the source impedance.	NOISE FIGURE MUST SPECIFY 1) V _{CE} , I _C 2) R _S , I _O , PBW WHITE NOISE SOURCE IMPEDANCE WIDE BAND AMP AMPLIFIER AND DETECTOR AMPLIFIER SETS BAND WIDTH TL/XX/0125-29
r _{bb} ', r _b '	Base < Spreading > > Resistance Equivalent to the real part of h _{ie} at some specified very high frequency.	r_{b}' MEASUREMENT w_{1} w_{2} $w_{3} > w_{2} > w_{1}$ $w_{3} > w_{2} > w_{1}$
rb'Cc	Collector Base Time Constant This parameter is a device figure of merit and is measured in a specified test circuit.	$r_{b}' C_{c} = {\scriptsize \begin{array}{c} \text{COLLECTOR BASE TIME CONSTANT} \\ \text{SPECIFY} - I_{C}, V_{CE}, \text{FREQUENCY} \end{array}}$
	· · ·	

SMALL SIGNAL PARAMETERS (Continued) Common-Emitter Input Admittance Y PARAMETERS-COMMON EMITTER The common-emitter input admittance with output AC shorted. This is a complex quantity $(g_{ie} + ib_{ie}).$ TL/XX/0125-35 Yoe **Common-Emitter Output Admittance** The common-emitter output admittance with input AC shorted. This is a complex quantity (goe + jb_{oe}).

Common-Emitter Reverse Transfer Y_{re} Admittance The common-emitter reverse transfer admittance with input AC shorted. This is a complex quantity (gre + jbre).

TL/XX/0125-36

Diode and Rectifier Glossary of Symbols and Terms

- **BV Breakdown Voltage:** Figure 1 shows the reverse characteristic of a typical silicon diode. Breakdown voltage is generally the reverse voltage at a point beyond the "knee" of the reverse characteristic. In Figure 1, the breakdown voltage is specified at a reverse current of Ing.
- **C Capacitance:** Diode capacitance is measured at a specified reverse voltage using an AC signal of specified frequency. When capacitance is measured at $V_R=0$, this is sometimes denoted by the symbol C_{Ω} .
- C_c Case Capacitance: This is that part of a diode's total capacitance which is attributable to the diode package.
- f_o Series Resonant Frequency: The frequency of oscillation of the tuned circuit formed by the capacitance and inherent series inductance of the diode.
- I_F Continuous Forward Current (Rating): The maximum direct current that can be safely passed through a diode in the forward direction.
- **IF** Forward Current: The direct current passing through a diode in the forward direction.
- If Forward Current: The forward current passing through a diode operated under switching conditions. See Figure 3.
- If Peak Repetitive Forward Current: The maximum value of the peak point of a current that can safely be passed through a diode in the forward direction. This is a continuous (i.e. repetitive) rating.
- If surge Peak Forward Surge Current: The maximum value of the peak point of a single cycle of current that can safely be passed through a diode in the forward direction. This is not a continuous rating.
- ${\bf l_{FSM}}$ **Peak Forward Surge Current:** This rating is the same as ${\bf l_{f(surge)}}$ but is more generally applied to rectifiers.
- Io Average Rectified Current: The average value of the forward current passing through a diode; as a rating, the maximum value of such current that can safely be passed.
- I_R Reverse Current: The leakage current which flows in the reverse direction through a diode when a reverse voltage is applied to the diode. Referring to *Figure 1*, I_R is usually measured at a specified reverse voltage at a point below the "knee" on the reverse characteristic.
- I_r Reverse Current: The peak value of reverse curent which occurs immediately after switch-off. The value of I_r is limited by the circuit, which determines that rate at which stored charge can be dissipated. See *Figure 3*.
- I_{rr} Reverse Current: The steady value of reverse current at equilibrium after switch-off. See Figure 3.
- I_{RAV} Average Reverse Current: The average reverse current which flows when AC voltage is applied across a diode.

- I_{RM} Reverse Recovery Current: The peak value of reverse current which flows immediately after switching applied voltage from the forward to the reverse direction. I_{RM} is the same as I_r, generally used for rectifiers.
- I_{RX} Reverse Current: I_{RX} is the symbol used to denote the reverse current of a single diode in an array at a time when all other diodes in the array are passing forward current. It is a measure of cross-talk between diodes.
- Iz Zener Current: The reverse current which flows in a zener diode at a point beyond the knee in the reverse characteristic. See *Figure 2*.
- Iz_{surge} Maximum Zener Surge Current: The maximum value of the peak point of a single cycle of current that can safely be passed through a zener diode in the reverse direction. This is not a continuous rating.
- I_{ZM} Maximum Zener Current: The maximum value of direct current that can safely be passed through a zener diode in the reverse direction.
- Ls Series Inductance: Series inductance that is inherent in the construction of a diode, normally measured between two specified points on the diode leads.
- N_D Noise Density: A measurement of the noise generated within a zener diode, both due to zener breakdown and internal resistance. Noise density, measured in microvolts rms per square root cycle, can be used to calculate rms noise over any frequency range.
- **NF Noise Figure:** This is a ratio used to measure the noise generated within a diode. The ratio used is total output noise compared to that part of output noise due to input noise This ratio, when multiplied by 10 log₁₀, is known as noise figure and is measured in decibels (dB).
- **Q Figure of Merit:** Generally used as a measure of the "quality" of varactor diodes, Q, the figure of merit, is defined as the ratio of energy stored to energy dissipated.
- **Qs** Stored Charge: The charge stored in a diode when passing current in the forward direction. Stored charge is usually measured by switching the diode off and measuring the area of the I versus t curve from switchoff to equilibrium. See *Figure 3*.
- **R_D Dynamic Resistance:** Small signal resistance of a diode operating in the reverse direction determined by the small signal or AC values of reverse current and reverse voltage. This parameter is of particular importance in varactor diodes.
- **r_{diff} Differential Resistance:** Small signal resistance of a diode operating in the forward direction determined by the small signal or AC values of forward current and forward voltage.
- **RE Rectification Efficiency:** The ratio of DC load voltage to peak RF input voltage to a detector.

Diode and Rectifier Glossary of Symbols and Terms (Continued)

Reverse Characteristic

TL/XX/0122-1

FIGURE 1 Reverse Recovery Characteristic

TL/XX/0122-3

R_S Series Resistance: Small signal resistance of a diode operating in the forward direction determined by the small signal or AC values of forward current and forward voltage. Same as r_{diff}.

TC Temperature Coefficient: A coefficient which determines the variation of various parameters (e.g. Capacitance, Zener voltage, forward voltage) with temperature. A subscript is often used to denote the parameter to which the temperature coefficient refers.

t_{fr} Forward Recovery Time: The time interval between the point at which a diode is turned on and the point at which the forward voltage comes to within 10% of its equilibrium level. See *Figure 4*.

t_{rr} Reverse Recovery Time: The time interval between the point at which a diode is turned off and the point at which the reverse current comes to within 10% of its equilibrium level. See *Figure 3*.

V_F Forward Voltage: The voltage applied across a diode in the forward direction (anode more positive than cathode).

Zener Diode Reverse Characteristic

FIGURE 2

iURE 2

Forward Recovery Characteristic

V_{FAV} Average Forward Voltage: The average value of forward voltage when current is being passed through a diode in the forward direction.

 V_{fr} Forward Recovery Voltage: The peak value of forward voltage reached immediately after switch-on. The value of V_{fr} is limited by the circuit in which the diode is operating.

 ${f V_{FX}}$ Forward Voltage: ${f V}_{FX}$ is the symbol used to denote the forward voltage of a single diode in an array at a time when the condition of the other diodes in the array is defined. It can be used as a measure of cross-talk between diodes.

 V_{PK} Peak Forward Voltage: The peak value of forward voltage reached immediately after switch-on. Same as V_{fr} .

V_R DC Blocking Voltage Rating: The continuous reverse voltage at which a rectifier can be safely operated without going beyond the "knee" in the reverse characteristic (Figure 1).

Diode and Rectifier Glossary of Symbols and Terms (Continued)

V_R Reverse Voltage: The voltage applied across a diode in the reverse direction (anode more negative than cathode).

V_{RRM} Peak Repetitive Reverse Voltage: The maximum value of the peak point of a reverse voltage that can be safely applied to a diode. This is a continuous (i.e. repetitive) rating and includes all repetitive transient voltages.

 ${f V_{Rrms}}$ rms Reverse Voltage: The maximum rms value of a reverse voltage that can be safely applied to a diode.

V_{RWM} Working Peak Reverse Voltage: The maximum value of the peak point of a reverse voltage that can be safely applied to a diode. This is not a continuous rating and does not include transient voltages.

Vz Zener Voltage: The reverse voltage across a zener diode at a point where zener current is flowing. See *Figure 2*.

WIV Working Inverse Voltage: The maximum reverse voltage at which a diode can be operated below the "knee" on the reverse characteristic. See *Figure 1*.

ZZ Zener Impedance: The small signal impedance of a zener diode operating in the zener region, determined by the small signal or AC values of zener current and zener voltage.

Z_{ZK} **Zener Knee Impedance**: Zener impedance measured at a defined point on the "knee" of the zener characteristic (See *Figure 2*).

 ΔI_R Reverse Current Match: The difference in reverse current between any two diodes measured under the same condition for each.

 ΔV_F Forward Voltage Match: The difference in forward voltage between any two diodes measured under the same conditions for each.

JFET Glossary of Symbols

BV _{DGO} (V)	Drain-Gate Breakdown Voltage with	<u> </u>
or BV _{GDO}	Source Open Circuited The breakdown voltage of the drain-gate junction, measured at a specified current	s V _{DGO} V _{DGO}
· · · · · · · · · · · · · · · · · · ·	with the source open-circuit.	TL/XX/0126
BV _{SGO} (V) or BV _{GSO}	Source-Gate Breakdown Voltage with Drain Open-Circuited The breakdown voltage of the source- gate junction, measured at a specified current, with the drain open-circuited.	U S VSGO IG
BV _{GSS} (V) or BV, V _(BR) GSS	Source-Gate Breakdown Voltage with Drain-Source Shorted The breakdown voltage of the source- gate and drain-gate junctions, measured at a specified current with the drain- source shorted.	S VGS VGS TL/XX/0126
I _{DGO} (pA) or I _{GDO}	Drain-Gate Leakage Current, Source Open-Circuited The leakage current of the drain-gate junction, measured at a specified voltage, with the source open-circuited.	V _{DG} V _{DG}
I _D (μΑ) or I _{D(ON)}	Drain ON Current The drain current, measured at a specified drain-source voltage and gate-source voltage.	
I _{D(OFF)} (pA)	Drain Cutoff Current The drain cutoff current, measured at a specified drain-source voltage and gate-source voltage.	V _{GS} V _{DS} V _{DS} T _{L/XX/0126}
I _{DSS} (mA)	Drain Saturation Current The drain current, measured at a specified drain-source voltage with the source shorted to the gate (V _{GS} = 0)	V _{DS} + V _{DS} TL/XX/0126

DC Parameters (C	Continued)	
I _G (pA) or I _{G(ON)}	Gate Leakage Current with Drain Current Flowing The gate leakage current, measured at a specified drain current and drain-gate voltage.	VDG D + VDG TL/XX/012
I _{GSS} (pA)	Gate-Source Reverse Leakage Current with Drain-Source Shorted The gate-source reverse leakage current measured at a specified gate-source voltage.	S VGS Z VGS
Isgo(nA) or Igso	Source-Gate, Reverse Leakage Curent with Drain Open-Circuited The leakage current of the source-gate junction, measured at a specified voltage, with the drain open-circuited.	V _{SG} V _{SG} TL/XX/012
DS(Ω) or r_{ds} , R _{DS} , $r_{DS(ON)}$	Drain-Source ON Resistance The drain-source ON resistance, measured at a specified gate-source voltage and drain current.	s v _{DS}
V _{DS(ON)} (mV)	Drain-Source ON Voltage The drain-source ON voltage, measured at a specified gate-source voltage and drain current.	TL/XX/012
$V_{GS}(V)$ or $V_{GS(ON)}$, V_{G}	Operating Gate-Source Voltage The gate-source voltage, measured at a specified drain current and drain-source voltage.	V _{GS} V _{GS} V _{DS} V _{DS} TL/XX/012
V _{GS(F)} (V)	Forward Gate-Source Voltage The forward gate-source voltage, measured at specified current.	IG V _{GS(F)}
V _{GS(OFF)} (V) or V _P	Gate-Source Cutoff (Pinch-Off) Voltage The gate-source cutoff voltage, measured at a specified drain current and drain- source voltage.	V _{GS} V _{DS} V _{DS}

Small Signal Para		·
C _{iss} (pF) or C _{is} , C _{gss}	Common-Source Input Capacitance The common-source input capacitance measured between the gate and source with the drain A-C shorted to the source at specified drain-source and gate-source voltages.	R _{fc} V _{GS} TL/XX/012
C _{oss} (pF) or C _{os} , C _{dss}	Common-Source Output Capacitance The common-source output capacitance, measured between the drain and source with the source A-C shorted to the gate at specified drain-source and gate-source voltages.	RFC Coss + VDS
C _{rss} (pF) or C _{rs} , C _{dg}	Common-Source Reverse Transfer Capacitance The common-source reverse transfer capacitance, measured between the drain and gate at specified drain-source and gate source voltages.	C _{rss} C S A FC TL/XX/012
e_n (nV/ \sqrt{Hz} or e_n , V_n , E_n	Equivalent Input Noise Voltage The equivalent input noise voltage per unit bandwidth, measured with the input A-C shorted to the source at a specified operating condition.	0 e _n
g_{fg} (mV) (m Ω) or y_{fg}	Common-Gate Forward Transconductance The common-gate forward transconductance with the output A-C shorted. This is a complex quantity (gfg + jbfg).	$V_{GS} = \frac{S}{G} V_{DS} = 0$ $V_{fg} = \frac{I_D}{V_{GS}} V_{DS} = 0$
$g_{fs}(mV)(m\Omega)$ or g_m , Y_{fs} , $Re Y_{fs} $	Common-Source Forward Transconductance The common source forward transconductance with the output A-C shorted. This is a complex quantity (gfs + jbfs).	$Y_{fs} = \frac{I_D}{V_{GS}} \Big _{V_{DS} = 0}$
$g_{iss}\left(\mu V\right)\left(\mu \Omega\right)$ or Y_{is}	Common-Source Input Conductance The common-source input conductance with the output A $-$ C shorted. This is a complex quantity ($g_{is} + j_{bis}$).	$Y_{is} = \frac{I_G}{V_{GS}} \Big _{V_{DS} = 0}$

Small Signal Para	ameters (Continued)	
g _{oss} (μV)(μΩ) or Y _{os}	Common-Source Output Conductance The common source output conductance with the input A-C shorted. This is a complex quantity (gos + jbos).	$Y_{os} = \frac{I_{D}}{V_{DS}} \Big _{V_{GS}} = 0$ $V_{DS} = \frac{I_{D}}{V_{DS}} \Big _{V_{GS}} = 0$
G _{pg} (dB)	Common-Gate Power Gain The common-gate power gain is the ratio of output power to input power.	$G_{p} = 10 \log_{10} \left \frac{P_{O}}{P_{I}} \right $
G _{ps} (dB)	Common-Source Power Gain The common-source power gain is the ratio of output power to input power.	P ₁
i _n (pA/√ Hz)	Equivalent Input Noise Current The equivalent input noise current measured with the input open-circuited under specified operating conditions.	in
NF (dB)	Spot Noise Figure Noise figure = 10 log ₁₀ F were F is noise factor which is the ratio of the total output noise power to the output noise power of the source. Measured at specified operating conditions and source resistance.	$F = \frac{TotalOutputNoisePower}{SourceOutputNoisePower}$
Common-Source	Switching Parameters	
conditions must b	rive circuit conditions and drain circuit e specified. The transition times of the input compared to the measured times.	V _{DD} O V _{OUT}
t _d (ns)	Turn-On Delay Time The time interval during turn-on from the point when the input pulse at the gate reaches 10% of its full amplitude to the point when the drain pulse changes from 0% to 10% of its maximum amplitude.	VIN OF STATE OF THE ACTION OF
t _r (ns)	Rise Time The time interval during turn-on in which the drain current pulse changes from 10% to 90% of its maximum amplitude.	$I_{D(ON)} = \frac{V_{DD} - V_{DS(ON)}}{R_L}$
t _d (ns)	Turn-Off Delay Time The time interval during turn-off from the point when the turn-off pulse at the gate changes from 100% to 90% of its full amplitude to the time when the drain current has changed from 100% to 90% of its maximum amplitude.	I _{D(ON)} (%)
t _f (ns)	Fall Time The time interval during turn-off in which the drain current pulse decreases from 90% to 10% of its maximum amplitude.	t _d (ON) - t _r - t _d (OFF)

BV _{G1} , _{G2} (V) or BV _{G1-2}	Gate to Gate Breakdown Voltage The breakdown voltage of the gate to gate junctions, measured at a specified current.	BV G1, G2 SI SI SUB OF TL/XX/01
CMRR (dB) or CMR	Common-Mode Rejection Ratio The common-mode rejection ratio is the ratio of the change in differential gate voltage with a change in the drain to gate voltage. $CMRR = 20 \log_{10} \frac{\Delta V_{DG}}{\Delta V_{OS}}$	TL/XX/01
9fs1-2(%) or 9fs1/9fs2	Common-Source Forward Transconductance Ratio (Match) The transconductance ratio = gfs1/gfs2 × 100% measured at specified drain-gate voltage and drain current.	
g _{oss1-2} (μV) or g _{os1-2}	Common-Source Output Conductance (Match) Output conductance match = gos1-gos2 measured at specified drain-gate voltage and drain current.	
I _{DSS1-2} (%) or I _{DS1-2} , I _{DSS1} /I _{DSS2}	Drain Saturation Current Ratio (Match) The drain saturation current ratio = DSS1/IDSS2 × 100% measured at specified drain-source voltages.	
I _{G1-2} (pA)	Differential Gate Leakage Current Differential gate leakage current = I _{G1} - I _{G2} measured at specified drain-gate voltage and drain current.	
I _{G1, G2} (pA)	Gate to Gate Reverse Leakage Current The gate to gate reverse leakage measured at a specified voltage monolithic dual with diode isolation shown.	D2 S2 VG1,G2 TL/XX/0

V_{GS1-2} (mV) or ΔV_{GS} , V_{Os} , $ V_{GS1}-V_{GS2} $	Differential Gate-Source Voltage The differential gate-source voltage, measured at a specified drain-gate voltage and drain current.	T VDG T VDG T VDG
$\Delta V_{\rm GS1-2}(\mu V/^{\circ} C)$ or $\Delta V_{\rm GS1}-V_{\rm GS2} /\Delta T$ $\Delta V_{\rm OS}/\Delta T$	Differential Gate-Source Voltage Drift The differential gate-sorce voltage drift is the change in the differential gate-source voltage with a change in device temperature at a specified operating condition. $\frac{\Delta V_{OS}}{\Delta T} = \frac{ (V_{GS1} - V_{GS2}) T_1 - (V_{GS1} - V_{GS2}) T_2}{T_1 - T_2}$	TL/XX/0126-

Choose the Proper FET

National Semiconductor utilizes 17 different FET geometries to cover, without compromise, the full spectrum of applications. Detailed data on each process, along with a list of all part numbers manufactured from each process, is to be found in Section 11.

To further simplify the selection procedure, the FET Family Tree is included for quick identification. After narrowing down the process types, it is suggested that the process sheets and specific part number characteristics be consulted.

Typical Performance Characteristics

Dual FET Drain

Single FET **Transconductance** vs Cutoff Voltage 100 50

V_{GS(OFF)} - GATE-SOURCE CUTOFF VOLTAGE (V)

ON Resistance vs Cutoff Voltage 1000

V_{GS(OFF)} - GATE-SOURCE CUTOFF VOLTAGE (V)

Single FET Drain Satturation Current vs Cutoff Voltage

V_{GS(OFF)} - GATE-SOURCE CUTOFF VOLTAGE (V)

Dual FET Gate Leakage Current vs Drain-Gate Voltage

Single P-Channel **FET Process**

Monolithic Dual FET Process

Dual FET Transconductace

VGS(OFF) - GATE-SOURCE CUTOFF VOLTAGE (V)

Single FET Gate **Leakage Current** vs Drain-Gate Voltage

Single N-Channel **FET Process** Distribution I_{DSS} vs g_{fs}

gfe - TRANSCONDUCTANCE (mmho)

FET Application Guide

National Semiconductor manufactures a broad line of silicon Junction Field Effect Transistors (JFETs). National's JFETs provide excellent performance in many areas such as RF amplifiers, analog switching, low input current amplifiers, low noise high impedance amplifiers and outstanding matched duals for operational amplifiers input applications.

The following FET guides enable the user to determine when to use FETs and where to look for the best choice.

Popular Product Types	2N4416, 2N5485, 6 PN4416, PN4302-4	2N4856-61, 2N4391-3 PN4856-61, PN4391-3	2N4338-41, 2N3684-7	2N4117-9, 2N3452-4 2N4117A-19A	2N3821-2, 2N4221-2 2N5457-9	2N5432-4	7-901	2N5196-9, 2N5545-7 2N3954-8	2N5902-9	2N5018-21, P1086-7E 2N5114-6	2N2608-9, 2N5460-62	2N5397, J300	U308-10, J308-10	2N5911-12	NDF9401-10	2N5515-24, 2N6483-5	2N5564-6	2N5561-63
PROCESS DESIGNATION					·						T	-	-					
Law Owner Area life	50	51	52	53	55	58	59	83	84	88	89	90	92	93	94	95	96	98
Low Current Amplifier	<u> </u>			Ρ		<u> </u>	-	P	-			_			P	_		-
Low Freq Ampli ≤ 100 Hz	<u> </u>	ļ	s		S	-	_	Р	-	S	S	_	P	_	Р	Р		Р
High Freq Ampli > 100 MHz	P		<u> </u>			<u> </u>	-		-		P	P	P	Р			Р	<u> </u>
General Purpose Amplifier			Р		P S	-	s				1				P	Р	P	P
Low Noise Amp (10 Hz (en)	S	S	-		 	S	3	Р			<u> </u>	_	_	_	Р	-		F
Low Noise Amp > 50 MHz	P		_		S	├	-		 	ļ	├-	P	P	Р		-	Р	├
High Frequency Mixer	P		-			-	_	P	P		├	Р		P	P		P	_
Dual Diff Pair	<u> </u>	<u> </u>				├	-	Ρ	Р		-		-	Р	Р	s	1	P
AGC Amplifier	Р				P	-	-		_		-	-		_	_	_	-	_
Electrometer Preamp			-	P		-			P		-	<u> </u>	_		P	_		S
Microvolt Amplifier				P		-	-		Р		┼	├	-	<u> </u>	Р	_	\vdash	P
Low Leakage Diode		ļ	-	P		-			_		-	├-		_	_		_	_
Diff/Angle Ended Inp. Stag.			-					Р	Р	ļ	Ļ	<u> </u>		Р	Р	<u> </u>	Р	P
Active Filter	P		S		P	├-	-		-		S	<u> </u>	P	-	_	-		-
Oscillator	<u> </u>		S			<u> </u>			_		S	P		-		-	_	_
Voltage Variable Resistor	P	P	s		P	 			_	P	P				_	 	-	P
Hybrid Chips	Р	P	ļ	Р	Р	<u> </u>		Р	Р	P	P	├	_		Р	-	<u> </u>	<u> </u>
Analog/Digital Switch		P	}_			P	Р			P	┼	├	├			├	s	S
Multiplexing	P	P	<u> </u>	ļ	S	S	S			P	}—	-	<u> </u>	<u> </u>	<u> </u>	 	H	<u> </u>
Choppers		Р	├	<u> </u>	-	Р	P		-	Р	4_	-		-		-	P	<u> </u>
Nixie Drivers		ļ	├—	ļ		<u> </u>	<u> </u>		<u> </u>		 	ļ	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Reed Relay Replacement			<u> </u>	ļ	ļ	P	Р		_	ļ		ļ	┞—	<u> </u>		├	₩	
Sub pA Dual Diff Pair		ļ	_		ļ	ـــ	ļ		Р		ـ		<u> </u>	<u> </u>		┞—	<u> </u>	├-
Sample-Hold	P	Р	<u> </u>		S	ऻ	-		<u> </u>	Р	+	_	_	<u> </u>	<u> </u>	ـــ	ـــ	P
Buffer Interface to CMOS		ļ	<u> </u>			-	<u> </u>		<u> </u>	P	P	1	 	<u> </u>	_	<u> </u>	ـــ	<u> </u>
Matched Switch					ļ		_	s	<u> </u>	<u> </u>	↓	<u> </u>	<u> </u>	s	S	<u> </u>	P	P
HF > 400 MHz Prime		<u> </u>	<u> </u>			<u> </u>	_	<u> </u>	_			Р	P	-	_		<u> </u>	<u> </u>
Current Limiter		P	ļ				_		<u> </u>	P	 		ـــ	ļ	_	ـــ	ـــ	ـــ
Current Source	<u></u>	<u> </u>	Р	S	P	<u></u>	L	<u></u>	<u></u>	<u></u>	s		<u></u>	L		<u> </u>	<u></u>	<u> </u>

P- Prime Choice

S- Secondary (Alternate) Choice

FET Application Guide (Continued) Advantages of Using Field-Effect Transistors (Continued)

Application	Advantages	Final Assembly Where Used
DC Amplifiers	High Z _{in}	Transducers, Military Guidance
	Low Drift Duals	Systems, Control Systems, Temp
	Low Noise	Indicators, Multimeters
Low Frequency	Small Coupling Capacitors	Sound Detection, Microphones,
Amplifiers	Low Noise, Distortion	Inductive Transducers, Hearing Aids,
	High Input Impedance	High Impedance Transducers
Operational	Summing Point Essentially	Control Systems, Potted Op Amps,
Amplifiers	Zero. Low Device Noise.	Test Equipment, Medical Electronics
	Less Loading of Transducers	
Medium and High	Low Cross Modulation	FM Tuners, Communication Received
Frequency	Low Device Noise	Scope Inputs, Most Instrumentation
Amplifiers		Equipment, High Impedance Inputs
Mixer—100 MHz	Low Mixing Noise	FM Tuners, Communication Receivers
and Up	Low Cross Modulation	
Oscillators	Low Drift	Transmitters, Receivers, Organ
Logic Gates	Virtually Infinite Fan in	Guidance Controls, Computer Market
	Simplified Circuitry	Mini Military Teaching Aids, Traffic
	Zero Storage Time	Control, Telemetry
	Symmetrical	
Choppers	Zero Offset	Op Amp Modules Guidance Controls
	Low Leakage Currents	Instrumentation Equipment
	Simplified Circuitry	
	Eliminates Input Transformers	
AD Converters	Improved Isolation of Input	Control System, DVM's and Any Read-
Multiplex Switching	and Output. Zero Offset.	out Equipment, Medical Electronics
(Arrays) and Sample Hold	Symmetrical. Low Resistance	
	Simplified Circuitry	
Relay Contact	Solid State Reliability	Test Equipment, Airborne Equipment
Replacement	Zero Offset, High Isolation	Instrumentation Market
	Symmetrical	
	No Inductive Spring	
	No Contact Bounce	
	High Repetition Rate	
Voltage Variable	Symmetrical	Organ, Tone Controls, Control Circuits to
Resistor	Solid State Reliability	Input Operational Amplifiers
	Functions as Variable Resistor.	
	Low Noise. High Isolation	
	Improved Resolution	
Current Limiters	Two Lead Simplicity	Hybrid Circuits, Amplifiers, Power Supply
Sources	Wide Selection Range	Protection, Timing Circuits, Voltage
	Low Voltage Operation	Regulators

Important Parameters by Application

Listed in Approxmiate Order of Importance

Low Frequency Amplifier	Source Follower	Electrometer Amplifier	Drift Noise Frequency C		Oscillator	Differential Amplifier	Analog and Digital Switch	
Yfs	Yfs	IG	l _{DZ}	en	Re(yfs)	yfs	V _{GS1} - V _{GS2}	R _{DS(on)}
I _{DSS}	lg	yfs	yfs @ I _{DZ}	lG	Re(yfs)	I _{DSS}	$\frac{\Delta V_{GS1} - V_{GS2} }{\Delta T}$	I _{D(off)}
V _{GS(off)} C _{iss} C _{rss} e _n BV _{GSS}	C _{rss} C _{iss} I _{DSS} V _{GS(off)} BV _{GSS}	I _{DZ} e _n 9os	V _{GS} @ I _{DZ} I _G BV _{GSS}	i _n yfs I _{DSS} V _{GS(off)}	NF C _{rss} Re(y _{os}) I _{DSS} V _{GS(off)}	C _{rss} C _{iss} V _{GS(off)} BV _{GSS}	I _{G1} — I _{G2} I _G yfs yfs1/yfs2 Y _{0s1} — Y _{0s2} CMRR V _{GS(0ff)}	C _{iss} C _{rss} V _{GS(off)} BV _{GSS}

Introduction to Power **Supplies**

National Semiconductor Application Note 557 Ralph E. Locher

INTRODUCTION

Virtually every piece of electronic equipment, e.g., computers and their peripherals, calculators. TV and hi-fi equipment, and instruments, is powered from a DC power source. be it a battery or a DC power supply. Most of this equipment requires not only DC voltage but voltage that is also well filtered and regulated. Since power supplies are so widely used in electronic equipment, these devices now comprise a worldwide segment of the electronics market in excess of \$5 billion annually.

There are three types of electronic power conversion devices in use today which are classified as follows according to their input and output voltages: 1) the AC/DC power supply; 2) DC/DC converter; 3) the DC/AC inverter. Each has its own area of use but this paper will only deal with the first two, which are the most commonly used.

A power supply converting AC line voltage to DC power must perform the following functions at high efficiency and at low cost:

- 1. Rectification: Convert the incoming AC line voltage to DC
- 2. Voltage transformation: Supply the correct DC voltage level(s).
- 3. Filtering: Smooth the ripple of the rectified voltage.
- 4. Regulation: Control the output voltage level to a constant value irrespective of line, load and temperature changes.

- 5. Isolation: Separate electrically the output from the input voltage source.
- 6. Protection: Prevent damaging voltage surges from reaching the output; provide back-up power or shut down during a brown-out.

An ideal power supply would be characterized by supplying a smooth and constant output voltage regardless of variations in line voltage, load current or ambient temperature at 100% conversion efficiency. Figure 1 compares a real power supply to this ideal one and further illustrates some power supply terms.

LINEAR POWER SUPPLIES

Figure 2 illustrates two common linear power supply circuits in current use. Both circuits employ full-wave rectification to reduce ripple voltage to capacitor C1. The bridge rectifier circuit has a simple transformer but current must flow through two diodes. The center-tapped configuration is preferred for low output voltages since there is just one doide voltage drop. For 5V and 12V outputs, Schottky barrier diodes are commonly used since they have lower voltage drops than equivalently rated ultra-fast types, which further increases power conversion efficiency. However, each diode must withstand twice the reverse voltage that a diode sees in a full-wave bridge for the same input voltage.

FIGURE, 1, Idealized Power Supply

FIGURE 2. Linear Voltage Regulator

The linear voltage regulator behaves as a variable resistance between the input and the output as it provides the precise output voltage. One of the limitations to the efficiency of this circuit is due to the fact that the linear device must drop the difference in voltage between the input and output. Consequently the power dissipated by the linear device is $(\mathsf{V_i}-\mathsf{V_0})\times\mathsf{I_0}.$ While these supplies have many desirable characteristics, such as simplicity, low output ripple, excellent line and load regulation, fast response time to load or line changes and low EMI, they suffer from low efficiency and occupy large volumes. Switching power supplies are becoming popular because they offer better solutions to these problems.

SWITCHING POWER SUPPLIES

Pulse Width Modulation

In the early 60's, switching regulators started to be designed for the military, who would pay a premium for light weight and efficiency. One way to control average power to a load is to control average voltage applied to it. This can be done by opening and closing a switch in rapid fashion as being done in Figure 3.

The average voltage seen by the load resistor $\ensuremath{\mathsf{R}}$ is equal to:

$$V_{o(avg)} = (t_{(on)}/T) \times V_i$$
 (A)

Reducing $t_{(on)}$ reduces $V_{o(avg)}$. This method of control is referred to as pulse width modulation (PWM).

Buck Regulator

As we shall see, there are many different switching voltage regulator designs. The first one to be considered because of its simplicity is the buck regulator (Figure 4), also known as a step-down regulator since the output voltage as given by equation (A) is less than the input voltage. A typical application is to reduce the standard military bus voltage of 28V to 5V to power TTL logic.

At time $t_{(0)}$ in *Figure 4*, the controller, having sensed that the output voltage V_0 is too low, turns on the pass transistor to build up current in L, which also starts to recharge capacitor C. At a predetermined level of V_0 , the controller switches off the pass transistor Q, which forces the current to free wheel around the path consisting of L, C, and the ultra-fast rectifier D. This effectively transfers the energy stored in the inductor L to the capacitor. Inductor and capacitor sizes are inversely proportional to switching frequency, which accounts for the increasing power density of switching power supplies. Power MOSFETs are rapidly replacing bi-polar transistors as the pass transistor because of their high frequency capability. Since the pass transistor must not only carry load current but reverse recovery current of diode D, an ultra-fast recovery diode is mandatory.

TL/G/10061-3

FIGURE 3. Example of Pulse Width Modulation

FIGURE 4. Buck Regulator Circuit with Voltage and Current Waveforms

FIGURE 5. Boost Regulator and Associated I/V Waveforms

TL/G/10061-6

Boost Regulator

A second type of regulator shown in *Figure 5* is capable of boosting the input voltage. Applications for this circuit would be to increase 5V battery sources to 15V for CMOS circuits or even to 150V for electro-luminescent displays.

The concept of this circuit is still the same as the previous, namely to transfer the energy stored in the inductor into the capacitor. The inductor current can ramp up quickly when the transistor switch is closed at time $\mathfrak{t}_{(0)}$ since the full input voltage is applied to it. The transistor is turned off at time $\mathfrak{t}_{(1)}$ which forces the inductor current to charge up the capacitor through the ultra-fast diode D. Since the energy stored in the inductor is equal to L x I x 1/2, the PWM IC can increase V_0 by increasing its own on-time to increase the peak inductor current before switching. The transfer function is:

$$V_0 = V_{1N} (T/(T - t_{(0n)}))$$
 (B)

Inverting Regulator

Figure 6 shows a switching circuit which produces an output voltage with the opposite polarity of the input voltage. This circuit works in the same fashion as the boost converter but has achieved the voltage inversion by exchanging positions of the transistor and inductor. The circuit is also known as a buck-boost regulator since the absolute magnitude of the

output voltage can be higher or lower than the input voltage, depending upon the ratio of on-time to off-time of the pass transistor.

TL/G/10061-7

FIGURE 6. Inverting Regulator and I/V Waveforms

Flyback Converter

The three previous regulators are suitable for low voltage control when no electrical isolation is required. However in off-line switchers operating from 110V/220V mains, electrical isolation is an absolute must. This is achieved by using a transformer in place of the inductor. The flyback converter shown in *Figure 7* is commonly used in power supplies up through 150W, which is sufficient for most personal computers, many test instruments, video terminals and the like.

TL/G/10061-8

FIGURE 7. Flyback Converter

C IN PRIDGE PWM ISOLATION FEEDBACK

FIGURE 8. Complete Flyback Switching Supply

Since the transformer operates at high frequency, its size is much smaller than a 50 Hz/60 Hz transformer shown in *Figure 2*. Within certain frequency limits, transformer size is inversely proportional to frequency.

Inspection of the switching waveforms in Figure 7 shows that the circuit behaves very similarly to the boost regulator. The transformer should be regarded as an inductor with two windings, one for storing energy in the transformer core and the other for dumping the core energy into the output capacitor. Current increases in the primary of the transformer during the on-time of the transistor ($t_{(0)}-t_{(1)}$) but note that no secondary current flows because the secondary voltage reverse biases diode D. When the transistor turns off, the transformer voltage polarities reverse because its magnetic field wants to maintain current flow. Secondary current can now flow through the diode to charge up the output capacitor. The output voltage is given by the basic PWM equation times the transformer turns ration (N2/N1):

$$V_0 = V_{IN} \times (t_{(on)}/(T - t_{(on)}) \times (N2/N1)$$
 (C)

Voltage control is achieved by controlling the transistor ontime to control the peak primary current.

The flyback converter is well suited for multiple output and high voltage power supplies since the transformer inductance replaces the filter inductor(s). The major disadvantages which limit its use to lower wattage supplies are:

- The output ripple voltage is high because of half-wave charging of the output capacitor.
- 2. The transistor must block 2 \times V_{IN} during turn-off.
- The transformer is driven in only on direction, which necessitates a larger core, i.e., more expensive, in a flyback design than for an equivalent design using a forward or push-pull design.

Off-Line Switching Supply

Based on the flyback regulator circuit, a complete off-line switching supply is shown in *Figure 8*. The supply is called "off-line" because the DC voltage to the switch is developed right from the AC line.

The circuit also shows the feedback loop completed from the output back to the switching transistor. This feedback loop must have isolation in order for the DC output to be isolated from the AC line. This is normally accomplished by a small transformer or opto-coupler.

Switching power supplies designed for international usage must have selectable AC input voltage ranges of 115V and 230V. *Figure 9* shows how this is accomplished for many switching power supplies.

TL/G/10061-10

FIGURE 9. Selector Switch for 115V/230V inputs

Forward Converter

Although the forward converter is not as well-known as the flyback converter, it is becoming increasingly popular for power supplies in the 100W–500W range. Figure 10 shows the basic circuit of the forward converter. When the transistor is switched on, current rises linearly in the primary and secondary current also flows through diode D1 into the inductor and capacitor. When the transistor switch is opened, inductor current continues to free-wheel through the capacitor and diode D2. This converter will have less ripple since the capacitor is being continuously charged, an advantage of particular interest in high current supplies.

The relationship between input and output for this circuit configuration is:

$$V_{o} = V_{IN} \times (N2/N1) \times (t_{(on)}/T)$$
 (D)

Note that the transformer shown in the above figure has been wound with a third winding and series diode D3. The purpose of this winding is to transfer the magnetizing energy in the core back to the DC supply so it does not have to be dissipated in the transistor switch or some other voltage suppressor. The turns ratio N3/N1 limits the peak voltage seen by the transistor and is normally chosen equal to 1 so that the forward converter can run at 50% duty cycle. Under this condition, the transistor must block 2 \times V_{IN} during turnoff

FIGURE 10. Forward Converter

SYMMETRICAL CONVERTERS

Push-Pull Converter

The circuit for this best-known and widely used converter is shown in Figure 11.

Transistors Q1 and Q2 are alternately switched on for time period $t_{(on)}$. This subjects the transformer core to an alternating voltage polarity to maximize its usefulness. The transfer function still follows the basic PWM formula but there is the added factor 2 because both transistors alternately conduct for a portion of the switching cycle.

$$V_0 = 2 \times V_{IN} \times (N2/N1) \times (t_{(on)}/T)$$
 (E)

The presence of a dead time period $t_{(d)}$ is required to avoid having both transistors conduct at the same time, which would be the same as turning the transistors on into a short circuit. The output ripple frequency is twice the operating frequency which reduces the size of the LC filter components. Note the anti-parallel diodes connected across each transistor switch. They perform the same function as diode D3 in the forward converter, namely to return the magnetization energy to the input voltage whenever a transistor turns off.

Compared to the following symmetrical converters, this circuit has the advantage that the transistor switches share a common signal return line. Its chief disadvantages are that the transformer center-tap connection complicates the transformer design and the primary windings must be tightly coupled in order to avoid voltage spikes when each transistor is turning off.

Half-Bridge Converter

This converter (Figure 12) operates in much the same fashion as the previous push-pull circuit.

The input capacitors C1 and C2 split the input voltage equally so that when either transistor turns on, the transformer primary sees $V_{in}/2$. Consequently note no factor of "2" in the following transfer equation:

$$V_0 = V_{|N|} \times (N2/N1) \times (t_{(on)}/T)$$
 (F

Since the two transistors are connected in series, they never see more than the input voltage $V_{\rm IN}$ plus the inevitable switching transient voltages. The necessity of a dead time is even more obvious here since the simultaneous conduction of both transistors results in a dead short across the input supply. Anti-parallel ultra-fast diodes return the magnetization energy as in the push-pull circuit but alternately to capacitors C1 and C2. This circuit has the slight inconvenience of requiring an isolated base drive to Q1, but since most practical base drive circuits use a transformer for isolation, this shortcoming is hardly worth noting.

Full-Bridge Converter

Because of its complexity and expense, the full-bridge converter circuit of *Figure 13* is reserved for high power converters. Ideally, all voltages are shared equally between two transistors so that the maximum voltage rating of the device can approach V_{IN} .

FIGURE 11. Push-Pull Converter

TL/G/10061-12

TL/G/10061-13

FIGURE 12. Half-Bridge Converter Circuit

112

FIGURE 13. Full-Bridge Converter Circuit

.._

Switching vs Linear Power Supplies

Switching power supplies are becoming popular due to high efficiency and high power density. Table I compares some of the salient features of both linear and switching power supplies. Line and load regulation are usually better with linear supplies, sometimes by as much as an order of magnitude, but switching power supplies frequently use linear post-regulators to improve output regulation.

DC-DC CONVERTERS

DC-DC converters are widely used to transform and distribute DC power in systems and instruments. DC power is usually available to a system in the form of a system power supply or battery. This power may be in the form of 5V, 28V, 48V or other DC voltages. All of the previously discussed circuits are applicable to this type of duty. Since voltages are low, isolation is not usually required.

TABLE I. Linear vs Switching Power Supplies

Specification	Linear	Switcher	
Line Regulation	0.02%-0.05%	0.05%-0.1%	
Load Regulation	0.02%-0.1%	0.1%-1.0%	
Output Ripple	0.5 mV-2 mV RMS	25 mV-100 mV _{P-P}	
Input Voltage Range	±10%	±20%	
Efficiency	40%-55%	60%-80%	
Power Density	0.5 W/cu. in.	2W-5W/cu. in.	
Transient Recovery	50 μs	300 μs	
Hold-Up Time	2 ms	30 ms	

Optimizing the Ultra-Fast POWERplanar™ Rectifier Diode for Switching Power Supplies

National Semiconductor Application Note 557 Ralph E. Locher

INTRODUCTION

A key device in all high voltage AC-DC power supplies is the ultrafast, reverse recovery rectifier diode. These diodes (D1 and D2 in Figure 1) not only play a major role in power supply efficiency but also can be major contributors to circuit electromagnetic interference (EMI) and even cause transistor failure if they are not selected correctly. One would assume that by now, this rectifier diode should approximate the behavior of an ideal switch, i.e., zero on-state voltage, no reverse leakage current and instanteous turnon. At first glance, the design of this single pn-junction device would appear to be quite straight forward but a review of the device equations reveals that many compromises must be made to optimize its performance. An understanding of these tradeoffs will allow the circuit designer to select the most appropriate rectifier diode.

TL/G/10062-1

FIGURE 1a. Buck Regulator to Step-Down Input Voltage V_{IN}

FIGURE 1b. Forward Converter

Consider how the non-ideal behavior of rectifier D2 affects the circuit performance of the buck regulator in *Figure 1a*. The solid lines in *Figure 2a* depict the switching behavior of the transistor switch and rectifier in comparison to the waveforms (dashed lines) that represent an ideal rectifier. There are four differences between the two cases:

- 1. The most significant difference is that the peak collector current of the transistor switch (I_T in Figure 2a) at the end of turn-on (time t₂) has been increased by the magnitude of the peak reverse recovery current of the rectifier (I_{R(REC)}). Correspondingly, the peak power dissipation within the transistor has increased from P_T to P_T as shown in Figure 2c.
- 2. The maximum transistor voltage V_T at turn-off $(t_4-t_6$ in Figure 2a) has been increased by the dynamic voltage drop of the rectifier during turn-on. Since buck regulators generally run at low voltages, this increase has a minimal effect. However, it is more significant in the forward converter circuit of Figure 1b and in bridge circuits operating from high bus voltages where the voltage margins cannot be as generous.
- Since the rectifier is not ideal, its power dissipation consists of the following components:
 - a. Conduction loss (VF x IF) during the on-time.
 - b. Turn-off loss during time t_2-t_3 and turn-on loss during time t_5-t_6 (Figure 2d).
 - c. Reverse blocking loss (VR x I_R) during period t_3 - t_5 .
- The rectifier regains its reverse blocking capability at time t₂. A "snappy" rectifier that quickly turns off I_{R(REC)} will contribute much more EMI than a "soft", fast recovery rectifier.

A better transistor switch will intensify rather than improve the shortcomings of the fast recovery rectifier, so it is necessary to consider more fully the conduction and switching behavior of the rectifier diode.

FIGURE 2. Transistor and Rectifier Voltage and Current Waveforms for the Buck Regulator in *Figure 1a*

- a) Transistor and Rectifier Voltage Waveforms
- b) Transistor and Rectifier Current Waveforms
- c) Transistor Power Dissipation
- d) Rectifier Power Dissipation

POWER LOSSES IN THE ULTRA-FAST RECTIFIER DIODE

Consider the idealized rectifier current and voltage waveforms in *Figure 3* for a 50 kHz buck regulator. Power dissipation within the rectifier for a 50% duty factor is:

$$P = \frac{1}{2}(V_FI_F + V_RI_R) + V_{RM}I_{R(REC)}t_bf$$

Typical values for a 200V, 8A rectifier are:

$$f = 50 \text{ kHz}$$

 $V_F = 0.9V$

$$I_{R} = 1 \text{ mA}$$

$$t_B = 25 \text{ ns (assuming } t_b = t_{rr}/2)$$

$$I_{R(REC)} = 2.0A$$

$$V_{RM} = 200V$$

$$P = \frac{1}{2}[(8A) (0.9V) + (50V) (1 mA)]$$

+ (200V) (2A) (25 ns) (50 kHz)

$$P = 3.6W + 0.025W + 0.5W = 4.125W$$

CONDUCTION LOSSES

DC conduction or on-state losses occur whenever the rectifier is conducting forward current and consists simply of the integration of $I_F \times V_F$ during the on-time. Literature has dealt extensively with the computation of V_F for many different rectifier structures (Reference 1). The National Semiconductor POWERplanar $^{\rm TM}$ line of fast recovery diodes are planar passivated, P+N-N+ epitaxial type, for which a cross-sectional view can be found in Figure 4. It can be shown that V_F is inversely proportional to minority carrier lifetime and directly proportional to epitaxial thickness (Wi in Figure 4.).

Figure 5 plots theoretical curves of normalized V_F vs minority carrier lifetimes for rectifiers with 250V and 500V avalanche voltage breakdown. Since $t_{\Gamma\Gamma}$ is approximately equal to minority carrier lifetime, it is apparent that high current pn-junction rectifiers are limited to 20 ns–50 ns reverse recovery times because V_F dramatically increases for minority carrier lifetimes less than these. It is also apparent that the V_F curves have a broad minima around 10 ns–30 ns so that another reason to select this value of minority carrier lifetime is that V_F becomes independent of small changes in minority carrier lifetime due to manufacturing tolerances.

It is immediately obvious that the key to maximizing current through the rectifier is to minimize V_F . However at 200 kHz, reverse recovery losses will quadruple to 4W, so that increasing attention must be paid to this parameter as operating frequency is raised.

FIGURE 3. Representative Current and Voltage Waveforms for the Rectifier in the Buck Regulator Found in *Figure 1a*

TL/G/10062-5

FIGURE 4. Cross-Sectional View of a POWERplanar™
P + N - N+, Fast Recovery Rectifier

TL/G/10062-6

FIGURE 5. Normalized V_F for 250V and 500V Rated Rectifiers as a Function of Minority Carrier Lifetime

REVERSE BLOCKING LOSSES

Planar passivation techniques have reduced surface leakage currents (I_R) to a negligible amount so that the principle reverse leakage current is recombination current in the space charge region. Some of the many methods to control minority carrier lifetimes are electron or neutron irradiation and gold or platinum diffusion, each with its own advantages and disadvantages. For 200V, ultrafast recovery rectifiers, gold diffusion still represents the best compromise between speed, V_F , I_R and "soft" recovery.

A drawback to gold diffusion is its relatively high reverse leakage current. It should be pointed out that the reliability of the gold-diffused product is the same as other rectifiers (all other factors being equal), since this leakage current is a bulk and not a surface phenomenon. Figure 6 illustrates the dependency of recombination current on junction temperature and minority carrier lifetime, which is inversely proportional to the amount of gold in the depletion region. Experimental leakage test results have been plotted in Figure 6 for the National Semiconductor 8A and 16A series of rectifiers (FRP820 and FRP1620 respectively) at 100°C, 125°C and 150°C. These points indicate that the low current injection level lifetime ranges from 20 ns-30 ns and is relatively independent of T_.I. Since reliability design guidelines specify that the rectifiers be operated at one-half their voltage rating and 25°C-50°C below their maximum junction temperature, the expected leakage currents in well designed power supplies will run less than 1 mA.

REVERSE RECOVERY LOSSES

All pn-junction rectifiers, operating in the forward direction, store charge in the form of excess minority carriers. The amount of stored charge is proportional to the magnitude of the forward current. The process by which a rectifier diode is brought out of conduction and returned to its block state is called commutation. Figure 7 shows an expanded view of current commutation, also called reverse recovery. Starting at time to, the rectifier is switched from its forward conducting state at a specified current ramp rate (-dl_F/d_t). The current ramp rate will be determined by the external circuit (E/L) or the turn-on time of a transistor switch. During the time t₁-t₂, the store charge within the rectifier is able to supply more current than the circuit requires, so that the rectifier behaves like a short circuit. Stored charge is depleted both by the reverse recovery current and recombination within the rectifier. Eventually the stored charge dwindles to the point that a depletion region around the junction starts to grow, allowing the rectifier to regain its reverse blocking voltage capability (t2). From a circuit-design standpoint, the most important parameters are the peak reverse recovery current and "S", the softness factor, A "snappy" rectifier will produce a large amplitude voltage transient and contribute significantly to electro-magnetic interference. Figure 8 illustrates the actual reverse recovery of two rectifier diodes. The peak voltage of the snappy rectifier is 175V compared to 142V peak for the FRP820, the higher voltage resulting from both the higher IR(REC) and the fact that the reverse recovery current decays to zero in a shorter time.

MINORITY CARRIER LIFETIME - ns

FIGURE 6. Regeneration Current for Gold-Doped, P+N-N+ Rectifier Diodes

TL/G/10062-8

FIGURE 7. Expanded View of Current Commutation in a Rectifier Diode

The relative snappiness of a rectifier may be defined quantitatively by dividing the reverse recovery time $t_{\rm rr}$ into two subperiods, t_a and t_b , as shown in Figure 7. The softness factor "S" is simply the ratio t_b/t_a . A rectifier with a low value S factor will be more likely to produce dangerous voltage transients, but it will also dissipate less reverse recovery energy than a high S factor rectifier. A reasonable compromise between these two conflicting constraints would be to design a rectifier with $S=1\ (t_a=t_b).$ The S factors of the FRP820 rectifier and the competitive device in Figure 8 are 0.55 and 0.31 respectively.

Only recently has it become possible to model the ramp recovery in p-i-n rectifiers (References 2, 3) and the following equations have proved useful in predicting reverse recovery parameters.

$$\begin{split} t_{rr} &= \frac{Wi\sqrt{\tau/Da}}{8} \\ S &= \frac{Wi}{4\sqrt{Da\tau}} \\ I_{R(REC)} &= \left(\frac{dI_F}{dt}\right)\tau\left(1 + \frac{Wi}{8\sqrt{Da\tau}}\right) - 1 \\ Q_{R(REC)} &= 0.5 \ \tau^2\left(\frac{dI_F}{dt}\right) \end{split}$$

where:

τ = minority carrier lifetime

Wi = epitaxial thickness

Da = ambipolar diffusion constant

The blocking voltage rating of the rectifier primarily determines Wi; but for a given Wi, note that a short minority lifetime not only decreases $I_{R(REC)}$ but happily increases S. These two key parameters are plotted as a function of minority carrier lifetime in Figure 9 for dIp/dt = 100 A/ μs and $T_J=25^{\circ}C.$ As has been noted before, the minority carrier lifetime had been targetted for 20 ns–30 ns to minimize V_F and this choice has resulted in a typical value of S=0.65 and $I_{R(REC)}=1.5A.$

TL/G/10062-9

Test Conditions:

TL/G/10062-10

Test Conditions:

 $T_j = 25^{\circ}C \qquad \qquad I = 50 \text{ VA/DIV}$ $I_F = 8A \qquad \qquad T = 10 \text{ ns/DIV}$

dl_F/dt = 100 A/μs FIGURE 8. Comparison of Reverse Recovery

to a Snappy Rectifier REVERSE RECOVERY CHARACTERIZATION

of the FRP820 Series Rectifier

Figures 10–13 plot $Q_{R(REC)}$, $I_{R(REC)}$, t_{rr} and S versus dI_F/dt for the FRP1600 series of rectifiers and typical use conditions of $I_F=16A$ and $V_R=200V$ and for two different junction temperatures of 25°C and 125°C. Theory not only predicts, but it has also been experimentally verified, that these parameters are relatively independent of I_F so only one value of the latter suffices. Any three of the four Figures 10–13 completely specifies the reverse recovery behavior of the rectifier. Since S and T_{rr} vary the least over the plotting dI_F/dt range, it is convenient to formulate reverse recovery energy loss P in microwatts in terms of the circuit parameters V_R and dI_F/dt :

$$P = \frac{V_R \left(\frac{dI_F}{dt}\right)^f}{2S} \left(\frac{St_{ff}}{1+S}\right)^2 10^{-3} \left(\mu W\right)$$

where

V_R = peak reverse voltage

 $dl_F/dt = ramp rate (A/\mu s)$

f = operating frequency (kHz)

TL/G/10062-11

FIGURE 9. Theoretical Plots of I_{R(REC)} and S vs Minority Carrier Lifetime

TL/G/10062-12

FIGURE 10. Reverse Recovery Current for the FRM/FRP1620 Series Rectifiers

TL/G/10062-13
FIGURE 11. Reverse Recovery Charge for the FRM/FRP1600 Series Rectifier Diodes

TL/G/10062-14

FIGURE 12. Reverse Recovery Time of the FRM/FRP1600 Series Rectifier Diodes

TL/G/10062-15

FIGURE 13. Softness Factor S for the FRM/FRP1600 Series Rectifier Diodes

Example: Calculate the reverse recovery power loss for the FRP1620 rectifier running at:

$$I_F=$$
 16A $V_R=$ 100V $dI_F/dt=$ 100 A/ μs $T_J=$ 125°C

f = 75 kHz

From Figures 12 and 13 $\rm t_{rr}=56$ ns and S = 0.29. Substituting these values in the above equation:

$$P = \frac{(100V) (100 \text{ A/}\mu\text{s})(75 \text{ kHz})}{(2)(0.29)} \left[\frac{(0.29)(56 \text{ ns})}{1 + 0.29} \right]^2 10^{-3} \mu\text{W}$$

P = 0.205W

There are may ways to shape the reverse recovery voltage spike. The most simple and still most popular is the RC snubber circuit connected across the primary of the transformer in *Figure 1b*. This serves the dual purpose of suppressing voltage ringing and EMI due to the switching action of both the transistor and rectifier. William McMurray has shown how to design an RC snubber to minimize voltage transients and/or dV/dt ramps just due to the diode reverse recovery current (Reference 4) and also how to de-

sign snubbers to minimize transistor power dissipation (Reference 5). But to date, because the RC snubber plays a major role in reducing EMI, its design tends to be empirical rather than theoretical.

CONCLUSION

This application note has pointed out the major considerations in designing an ultrafast reverse recovery rectifier and shown that the control of minority carrier lifetime is the key in arriving at an optimum device. Because the diode contributes to EMI, its reverse recovery behavior must be carefully controlled and characterized in order to guarantee similar performance from lot to lot.

REFERENCES

- 1. S. K. Ghandhi, *Semiconductor Power Devices*, (NYC), John Wiley and Sons, p. 110 ff.
- 2. F. Berz, "Ramp Recovery in p-i-n Diodes", *Solid-State Electronics*, Vol. 23, pp. 783-792.
- 3. C. M. Hu, Private Communication
- W. McMurray, "Optimum Snubbers for Power Semiconductors", *IEEE Trans. on Industry Applications*, Vol. 1A–8, No. 5, Sept./Oct. 1972, pp. 593–600.
- W. McMurray, "Selection of Snubbers and Clamps to Optimize the Design of Transistor Switching Converters", PESC 1979 Conference Record, pp. 62–74.

Introduction to Power MOSFETs and Their Applications

National Semiconductor Application Note 558 Ralph Locher

INTRODUCTION

The high voltage power MOSFETs that are available today are N-channel, enhancement-mode, double diffused, Metal-Oxide-Silicon, Field Effect Transistors. They perform the same function as NPN, bipolar junction transistors except the former are voltage controlled in contrast to the current controlled bi-polar devices. Today MOSFETs owe their ever-increasing popularity to their high input impedance and to the fact that being a majority carrier device, they do not suffer from minority carrier storage time effects, thermal runaway, or second breakdown.

MOSFET OPERATION

An understanding of the operation of MOSFETs can best be gleaned by first considering the later MOSFET shown in *Figure 1*.

With no electrical bias applied to the gate G, no current can flow in either direction underneath the gate because there will always be a blocking PN junction. When the gate is forward biased with respect to the source S, as shown in Figure 2, the free hole carriers in the p-epitaxial layer are repelled away from the gate area creating a channel, which allows electrons to flow from the source to the drain. Note that since the holes have been repelled from the gate channel, the electrons are the "majority carriers" by default. This mode of operation is called "enhancement" but it is easier to think of enhancement mode of operation as the device being "normally off", i.e., the switch blocks current until it receives a signal to turn on. The opposite is depletion mode, which is a normally "on" device.

FIGURE 1. Lateral N-Channel MOSFET Cross-Section

The advantages of the lateral MOSFET are:

- Low gate signal power requirement. No gate current can flow into the gate after the small gate oxide capacitance has been charged.
- 2. Fast switching speeds because electrons can start to flow from drain to source as soon as the channel opens. The channel depth is proportional to the gate volage and pinches closed as soon as the gate voltage is removed, so there is no storage time effect as occurs in bipolar transistors.

The major disadvantages are:

- 1. High resistance channels. In normal operation, the source is electrically connected to the substrate. With no gate bias, the depletion region extends out from the N+drain in a pseudo-hemispherical shape. The channel length L cannot be made shorter than the minimum depletion width required to support the rated voltage of the device.
- Channel resistance may be decreased by creating wider channels but this is costly since it uses up valuable silicon real estate. It also slows down the switching speed of the device by increasing its gate capacitance.

Enter vertical MOSFETs!

The high voltage MOSFET structure (also known as DMOS) is shown in *Figure 3*.

TL/G/10063-2
FIGURE 2. Lateral MOSFET Transistor Biased for Forward Current Conduction

FIGURE 3. Vertical DMOS Cross-Sectional View

The current path is created by inverting the p-layer underneath the gate by the identical method in the lateral FETs. Source current flows underneath this gate area and then vertically through the drain, spreading out as it flows down. A typical MOSFET consists of many thousands of N+sources conducting in parallel. This vertical geometry makes possible lower on-state resistances (R_{DS(on)}) for the same blocking voltage and faster switching than the lateral FET.

There are many vertical construction designs possible, e.g., V-groove and U-groove, and many source geometries, e.g., squares, triangles, hexagons, etc. All commercially available power MOSFETs with blocking voltages greater than 300V are manufactured similarly to *Figure 3*. The many considerations that determine the source geometry are R_{DS(on)}, input capacitance, switching times and transconductance.

PARASITIC DIODE

Early versions of MOSFETs were very susceptible to voltage breakdown due to voltage transients and also had a tendency to turn on under high rates of rise of drain-to-source voltage (dV/dt), both resulting in catastrophic failures. The dV/dt turn-on was due to the inherent parasitic NPN transistor incorporated within the MOSFET, shown schematically in *Figure 4a*. Current flow needed to charge up junction capacitance C_{DG} acts like base current to turn on the parasitic NPN.

The parasitic NPN action is suppressed by shorting the N+ source to the P+ body using the source metallization. This now creates an inherent PN diode in anti-parallel to the MOSFET transistor (see Figure 4b). Because of its extensive junction area, the current ratings and thermal resistance of this diode are the same as the power MOSFET. This parasitic diode does exhibit a very long reverse recovery time and large reverse recovery current due to the long minority carrier lifetimes in the N-drain laver, which precludes the use of this diode except for very low frequency applications, e.g., motor control circuit shown in Figure 5. However in high frequency applications, the parasitic diode must be paralleled externally by an ultra-fast rectifier to ensure that the parasitic diode does not turn on. Allowing it to turn on will substantially increase the device power dissipation due to the reverse recovery losses within the diode and also leads to higher voltage transients due to the larger reverse recovery current.

CONTROLLING THE MOSFET

A major advantage of the power MOSFET is its very fast switching speeds. The drain current is strictly proportional to gate voltage so that the theoretically perfect device could switch in 50 ps-200 ps, the time it takes the carriers to flow from source to drain. Since the MOSFET is a majority carrier device, a second reason why it can outperform the bipolar junction transistor is that its turn-off is not delayed by minority carrier storage time in the base. A MOSFET begins to turn off as soon as its gate voltage drops down to its threshold voltage.

TL/G/10063-41

a. MOSFET Transistor Construction Showing Location of the Parasitic NPN Transistor

TI /G/10063-42

b. Parastic Diode

TL/G/10063~43

c. Circuit Symbol FIGURE 4

FIGURE 5. Full-Wave Motor Control Circuit

SWITCHING BEHAVIOR

Figure 6 illustrates a simplified model for the parasitic capacitances of a power MOSFET and switching voltage waveforms with a resistive load.

There are several different phenomena occurring during turn-on. Referring to the same figure:

Time interval $t_1 < t < t_2$:

The initial turn-on delay time $t_{d(on)}$ is due to the length of time it takes V_{GS} to rise exponentially to the threshold voltage $V_{GS(th)}$. From Figure 6, the time constant can be seen to be $R_S \times C_{GS}$. Typical turn-on delay times for the National Semiconductor IRF330 are:

$$t_{d(on)} = R_S \times C_{GS} \times In (1 - V_{GS(th)}/V_{PK})$$

For an assumed gate signal generator impedance of R_S of 50Ω and C_{GS} of 600 pF, t_d comes to 11 ns. Note that since the signal source impedance appears in the t_d equation, it is very important to pay attention to the test conditions used in measuring switching times.

Physically one can only measure input capacitance C_{iss} , which consists of C_{GS} in parallel with C_{DG} . Even though $C_{GS} >> C_{DG}$, the latter capacitance undergoes a much larger voltage excursion so its effect on switching time cannot be neglected.

Plots of C_{iss} , C_{rss} and C_{oss} for the National Semiconductor IRF330 are shown in *Figure 7* below. The charging and discharging of C_{DG} is analogous to the "Miller" effect that was first discovered with electron tubes and dominates the next switching interval.

Time interval $t_2 < t < t_3$:

Since V_{GS} has now achieved the threshold value, the MOSFET begins to draw increasing load current and V_{DS} decreases. C_{DG} must not only discharge but its capacitance value also increases since it is inversely proportional to V_{DG} , namely:

$$C_{DG} = C_{DG}(0)/(V_{DG})^n$$
 (2)

Unless the gate driver can quickly supply the current required to discharge C_{DG}, voltage fall will be slowed with the attendant increase in turn-on time.

Time interval $t_3 < t < t_4$:

The MOSFET is now on so the gate voltage can rise to the overdrive level.

Turn-off interval $t_4 < t < t_6$:

Turn-off occurs in reverse order. V_{GS} must drop back close to the threshold value before R_{DS} (on) will start to increase. As V_{DS} starts to rise, the Miller effect due to C_{DG} re-occurs and impedes the rise of V_{DS} as C_{DG} recharges to V_{CC} .

Specific gate drive circuits for different applications are discussed and illustrated below.

TL/G/10063-5

a. MOSFET Capacitance Model for Power MOSFET

TL/G/10063-6

b. Switching Waveforms for Resistive Load FIGURE 6

FIGURE 7. Typical Capacitances of the National IRF330

MOSFET CHARACTERIZATION

The output characteristics (I_D vs V_{DS}) of the National Semiconductor IRF330 are illustrated in *Figures 8* and *9*.

The two distinct regions of operation in Figure 8 have been labeled "linear" and "saturated". To understand the difference, recall that the actual current path in a MOSFET is horizontal through the channel created under the gate oxide and then vertical through the drain. In the linear region of operation, the voltage across the MOSFET channel is not sufficient for the carriers to reach their maximum drift velocity or their maximum current density. The static $R_{DS(on)}$, defined simply as V_{DS}/I_{DS} , is a constant.

As V_{DS} is increased, the carriers reach their maximum drift velocity and the current amplitude cannot increase. Since the device is behaving like a current generator, it is said to have high output impedance. This is the so-called "saturation" region. One should also note that in comparing MOSFET operation to a bipolar transistor, the linear and saturated regions of the bipolar are just the opposite to the MOSFET. The equal spacing between the output I_D curves for constant steps in V_{QS} indicates that the transfer characteristic in *Figure 9* will be linear in the saturated region.

IMPORTANCE OF THRESHOLD VOLTAGE

Threshold voltage $V_{GS(th)}$ is the minimum gate voltage that initiates drain current flow. $V_{GS(th)}$ can be easily measured on a Tektronix 576 curve tracer by connecting the gate to the drain and recording the required drain voltage for a specified drain current, typically 250 μ A or 1 mA. ($V_{GS(th)}$ in Figure 9 is 3.5V. While a high value of $V_{GS(th)}$, can apparently lengthen turn-on delay time, a low value for power MOSFET is undesirable for the following reasons:

- 1. V_{GS(th)} has a negative temperature coefficient -7 mV/°C.
- The high gate impedance of a MOSFET makes it susceptible to spurious turn-on due to gate noise.
- One of the more common modes of failure is gate-oxide voltage punch-through. Low V_{GS(th)} requires thinner oxides, which lowers the gate oxide voltage rating.

TL/G/10063-8
FIGURE 8. Output Characteristics

TL/G/10063-9

FIGURE 9. Transfer Characteristics

POWER MOSFET THERMAL MODEL

Like all other power semiconductor devices, MOSFETs operate at elevated junction temperatures. It is important to observe their thermal limitations in order to achieve acceptable performance and reliability. Specification sheets contain information on maximum junction temperature $(T_{J(max)}),$ safe areas of operation, current ratings and electrical characteristics as a function of T_J where appropriate. However, since it is still not possible to cover all contingencies, it is still important that the designer perform some junction calculations to ensure that the device operate within its specifications.

Figure 10 shows an elementary, stead-state, thermal model for any power semiconductor and the electrical analogue. The heat generated at the junction flows through the silicon pellet to the case or tab and then to the heat sink. The junction temperature rise above the surrounding environment is directly proportional to this heat flow and the junction-to-ambient thermal resistance. The following equation defines the steady state thermal resistance R_{(th)JC} between any two points x and y:

$$R_{(th)JC} = (T_v - T_x)/P \tag{3}$$

where:

 T_x = average temperature at point x (°C)

T_v = average temperature at point y (°C)

P = average heat flow in watts.

Note that for thermal resistance to be meaningful, two temperature reference points must be specified. Units for $R_{(th)JC}$ are ${}^{\circ}C/W$.

The thermal model show symbolically the locations for the reference points of junction temperature, case temperature, sink temperature and ambient temperature. These temperature reference define the following thermal references:

R(th)JC: Junction-to-Case thermal resistance.

R(th)CS: Case-to-Sink thermal resistance.

R_{(th)SA}: Sink-to-Ambient thermal resistance.

Since the thermal resistances are in series:

$$R_{(th)JA} = R_{(th)JC} + R_{(th)CS} + R_{(th)SA}.$$
 (4)

FIGURE 10. MOSFET Steady State Thermal Resistance Model

The design and manufacture of the device determines $R_{(th),JC}$ so that while $R_{(th),JC}$ will vary somewhat from device to device, it is the sole responsibility of the manufacturer to guarantee a maximum value for $R_{(th),JC}$. Both the user and manufacturer must cooperate in keeping $R_{(th),CS}$ to an acceptable maximum and finally the user has sole responsibility for the external heat sinking.

By inspection of Figure 10, one can write an expression for T_J :

$$T_{J} = T_{A} + Px \left[R_{(th)JC} + R_{(th)CS} + R_{(th)SA} \right]$$
 (5)

While this appears to be a very simple formula, the major problem in using it is due to the fact that the power dissipated by the MOSFET depends upon T_J . Consequently one must use either an iterative or graphical solution to find the maximum $R_{(th)SA}$ to ensure stability. But an explanation of transient thermal resistance is in order to handle the case of pulsed applications.

Use of steady state thermal resistance is not satisfactory for finding peak junction temperatures for pulsed applications. Plugging in the peak power value results in overestimating the actual junction temperature while using the average power value underestimates the peak junction temperature value at the end of the power pulse. The reason for the discrepancy lies in the thermal capacity of the semiconductor and its housing, i.e., its ability to store heat and to cool down before the next pulse.

The modified thermal model for the MOSFET is shown in Figure 11. The normally distributed thermal capacitances have been lumped into single capacitors labeled C_{J1}, C_{C2},

and C_S . This simplification assumes current is evenly distributed across the silicon chip and that the only significant power losses occur in the junction. When a step pulse of heating power P is introduced at the junction, Figure 12a shows that T_J will rise at an exponential rate to some steady state value dependent upon the response of the thermal network. When the power input is terminated at time t_2 , T_J will decrease along the curve indicated by T_{cool} in Figure 12a back to its initial value. Transient thermal resistance at time t is thus defined as:

$$Z_{(th)JC} = \frac{\Delta T_{JC}(t)}{D}$$
 (6)

The transient thermal resistance curve approaches the steady state vaule at long times and the slope of the curve for short times is inversely proportional to C_J . In order that this curve can be used with confidence, it must represent the highest values of $Z_{(th)JC}$ for each time interval that can be expected from the manufacturing distribution of products.

While predicting T_J in response to a series of power pulses becomes very complex, superposition of power pulses offers a rigorous numerical method of using the transient thermal resistance curve to secure a solution. Superposition tests the response of a network to any input function by replacing the input with an equivalent series of superimposed positive and negative step functions. Each step function must start from zero and continue to the time for which T_J is to be computed. For example, *Figure 13* illustrates a typical train of heating pulses.

FIGURE 11. Transient Thermal Resistance Model

a. Junction Temperature Response to a Step Pulse of Heating Power

b. Transient Thermal Resistance Curve for National Semiconductor IRF330 MOSFET FIGURE 12

b. Equivalent Heat Input by Superposition of Power Pulses

c. Junction Temperature Response to Individual Power Pulses of b

d. Actual T_J
FIGURE 13. Use of Superposition to Determine Peak T_J

T_J at time t is given by:

$$T_{J}(t) = T_{J}(0) + \sum_{i=0}^{\eta} P_{i}$$
 (7)

$$[Z_{(th)JC}(t_n - t_i) - Z_{(th)JC}(t_n - t_{i+1})]$$

The usual use condition is to compute the peak junction temperature at thermal equilibrium for a train of equal amplitude power pulses as shown in *Figure 14*.

To further simplify this calculation, the bracketed expression in equation (G) has been plotted for all National Semiconductor power MOSFETs, as exemplified by the plot of $Z_{\text{(th)JC}}$ in *Figure 14b*. From this curve, one can readily calculate T_J if one knows P_M , $Z_{\text{(th)JC}}$ and T_C using the expression:

$$T_{J} = T_{C} + P_{M} \times Z_{(th)JC}$$
 (8)

Example: Compute the maximum junction temperature for a train of 25W, 200 μs wide heating pulses repeated every 2 ms. Assume a case temperature of 95°C.

Duty factor = 0.1

From Figure 14b: $Z_{(th)JC} = 0.55$ °C/W

Substituting into Equation (H):

 $T_{J(Max)} = 95 + 25 \times 0.55 = 108.75 \,^{\circ}C$

a. Train of Power Pulses

b. Normalized Z_{(th)JC} for National Semiconductor IRF330 for Power Pulses Typified in *Figure 14a* FIGURE 14

SAFE AREA OF OPERATION

The power MOSFET is not subject to forward or reverse bias second breakdown, which can easily occur in bipolar junction transistors. Second breakdown is a potentially catastrophic condition in bi-polar transistors caused by thermal hot spots in the silicon as the transistor turns on or off. However in the MOSFET, the carriers travel through the device much as if it were a bulk semiconductor, which exhibits a positive temperature coefficient of 0.6%/°C. If current attempts to self-constrict to a localized area, the increasing temperature of the spot will raise the spot resistance due to the positive temperature coefficient of the bulk silicon. The ensuing higher voltage drop will tend to redistribute the current away from the hot spot. Figure 15 delineates the safe areas of operation of the National Semiconductor IBF330 device.

Note that the safe area boundaries are only thermally limited and exhibit no derating for second breakdown. This shows that while the MOSFET transistor is very rugged, it may still be destroyed thermally by forcing it to dissipate too much power.

VDS - DRAIN TO SOURCE VOLTAGE - V

TL/G/10063-20

FIGURE 15. Safe Area of Operation of the National Semiconductor IRF330 MOSFET Transistor

ON-RESISTANCE RDS(on)

The on-resistance of a power MOSFET is a very important parameter because it determines how much current the device can carry for low to medium frequency (less than 200 kHz) applications. After being turned on, the on-state voltage of the MOSFET falls to a low value and its $R_{\text{DS}(\text{on})}$ is defined simply as its on-state voltage divided by on-state current. When conducting current as a switch, the conduction losses P_{C} are:

$$P_{C} = I^{2}_{D(RMS)} \times R_{DS(on)}$$
 (9)

To minimize $R_{DS(on)}$, the applied gate signal should be large enough to maintain operation in the linear or ohmic region as shown in *Figure 8*. All National Semiconductor MOSFETs will conduct their rated current for $V_{GS}=10V$, which is also the value used to generate the curves of $R_{DS(on)}$ vs I_D and T_J that are shown in *Figure 16* for the National Semiconductor IRF330. Since $R_{DS(on)}$ increases with T_J , *Figure 16* plots this parameter as a function of current for room ambient and elevated temperatures.

TL/G/10063-21

FIGURE 16. R_{DS(on)} of the National Semiconductor IRF330

Note that as the drain current rises, $R_{DS(on)}$ increases once I_D exceeds the rated current value. Because the MOSFET is a majority carrier device, the component of $R_{DS(on)}$ due to the bulk resistance of the N- silicon in the drain region increases with temperature as well. While this must be taken into account to avoid thermal runaway, it does facilitate parallel operation of MOSFETs. Any inbalance between MOSFETs does not result in current hogging because the device with the most current will heat up and the ensuing higher on-voltage will divert some current to the other devices in parallel.

TRANSCONDUCTANCE

Since MOSFETs are voltage controlled, it has become necessary to resurrect the term transconductance g_{fs} , commonly used in the past with electron tubes. Referring to Figure 8, g_{fs} equals the change in drain current divided by the change in gate voltage for a constant drain voltage. Mathematically:

$$g_{fs} \text{ (Siemens)} = \frac{dI_D(A)}{dV_{GS}(V)} \tag{10}$$

Transconductance varies with operating conditions, starting at 0 for $V_{GS} < V_{GS(th)}$ and peaking at a finite value when the device is fully saturated. It is very small in the ohmic region because the device cannot conduct any more current. Typically g_{fs} is specified at half the rated current and for $V_{DS} = 20V$. Transconductance is useful in designing linear amplifiers and does not have any significance in switching power supplies.

GATE DRIVE CIRCUITS FOR POWER MOSFETS

The drive circuit for a power MOSFET will affect its switching behavior and its power dissipation. Consequently the type of drive circuitry depends upon the application. If onstate power losses due to R_{DS(on)}, will predominate, there is little point in designing a costly drive circuit. This power dissipation is relatively independent of gate drive as long as the gate-source voltage exceeds the threshold voltage by several volts and an elaborate drive circuit to decrease switching times will only create additional EMI and voltage ringing. In contrast, the drive circuit for a device switching at

200 kHz or more will affect the power dissipation since switching losses are a significant part of the total power dissipation.

Compare to a bi-polar junction transistor, the switching losses in a MOSFET can be made much smaller but these losses must still be taken into consideration. Examples of several typical loads along with the idealized switching waveforms and expressions for power dissipation are given in Figures 17 to 19.

Their power losses can be calculated from the general expression:

$$P_{D} = \left(\frac{1}{\tau} \int_{0}^{\tau} I_{D}(t) \cdot V_{DS}(t) dt\right) \cdot f_{S}$$
 (11)

where: f_s = Switching frequency.

For the idealized waveforms shown in the figures, the integration can be approximated by the calculating areas of triangles:

Resistive load:

$$P_{D} = \frac{V_{DD}^{2}}{R} \left[\frac{t_{(on)} + t_{(off)}}{6} + R_{DS(on)} \bullet T \right] \bullet f_{S}$$

Inductive load

$$P_D = \frac{V_{CL} I_m t_{(off)} f_s}{2} + P_c$$

where:

P_C = conduction loss during period T.

Capacitive load:

$$P_{D} = \left(\frac{CV^{2}_{DD}}{2} + \frac{V^{2}_{DD}R_{DS(on)}}{R^{2}}T\right)f_{s}$$

Gate losses and blocking losses can usually be neglected. Using these equations, the circuit designer is able to estimate the required heat sink. A final heat run in a controlled temperature environment is necessary to ensure thermal stability.

FIGURE 17. Resistive Load Switching Waveforms

FIGURE 18. Clamped Inductive Load Switching Waveforms

FIGURE 19. Capacitive Load Switching Waveforms

Since a MOSFET is essentially voltage controlled, the only gate current required is that necessary to charge the input capacitance C_{iss}. In contrast to a 10A bipolar transistor, which may require a base current of 2A to ensure saturation, a power MOSFET can be driven directly by CMOS or opencollector TTL logic circuit similar to that in Figure 20.

Turn-on speed depends upon the selection of resistor R₁, whose minimum value will be determined by the current sinking rating of the IC. It is essential that an open collector TTL buffer be used since the voltage applied to the gate must exceed the MOSFET threshold voltage of 5V. CMOS devices can be used to drive the power device directly since they are capable of operating off 15V supplies.

Interface ICs, originally intended for other applications, can also be used to drive power MOSFETs, as shown below in *Figure 21*.

Most frequently switching power supply applications employ a pulse width modulator IC with an NPN transistor output stage. This output transistor is ON when the MOSFET should be ON, hence the type of drive used with open-collector TTL devices cannot be used. Figures 22 and 23 give examples of typical drive circuits used with PWM ICs.

FIGURE 20. Open Collector TTL Drive Circuit

FIGURE 21. Interface ICs Used to Drive Power MOSFETs

FIGURE 22. Circuit for PWM IC Driving MOSFET. The PNP Transistor Speeds Up Turn-Off

FIGURE 23. Emitter Follower with Speed-Up Capacitor

Isolation: Off-line switching power supplies use power MOS-FETs in a half-bridge configuration because inexpensive, high voltage devices with low R_{DS(on)} are not available.

Since one of the power devices is connected to the positive rail, its drive circuitry is also floating at a high potential. The most versatile method of coupling the drive circuitry is to use a pulse transformer. Pulse transformers are also normally used to isolate the logic circuitry from the MOSFETs operating at high voltage to protect it from a MOSFET failure.

The zener diode shown in *Figure 25* is included to reset the pulse transformer quickly. The duty cycle can approach 50% with a 12V zener diode. For better performance at turn-off, a PNP transistor can be added as shown in *Figure 26*.

Figure 27 illustrates an alternate method to reverse bias the MOSFET during turn-off by inserting a capacitor in series with the pulse transformer. The capacitor also ensures that the pulse transformer will not saturate due to DC bias.

FIGURE 24. Half-Bridge Configuration

FIGURE 25. Simple Pulse Transformer Drive Circuit. The Transistor May Be a Part of a PWM IC if Applicable.

FIGURE 26. Improved Performance at Turn-Off with a Transistor

FIGURE 27. Emitter Follower Driver with Speed-Up Capacitor

Opto-isolators may also be used to drive power MOSFETs but their long switching times make them suitable only for low frequency applications.

SELECTING A DRIVE CIRCUIT

Any of the circuits shown are capable of turning a power MOSFET on and off. The type of circuit depends upon the application. The current sinking and sourcing capabilities of the drive circuit will determine the switching time and switching losses of the power device. As a rule, the higher the gate current at turn-on and turn-off, the lower the switching losses will be. However, fast drive circuits may produce ringing in the gate and drain circuits. At turn-on, ringing in the gate circuit may produce a voltage transient in excess of the maximum $V_{\rm GS}$ rating, which will puncture the gate oxide and destroy it. To prevent this occurrence, a zener diode of the appropriate value may be added to the circuit as shown in Figure 28. Note that the zener should be mounted as close as possible to the device.

At turn-off, the gate voltage may ring back up to the threshold voltage and turn on the device for a short period. There is also the possibility that the drain-source voltage will exceed its maximum rated voltage due to ringing in the drain circuit. A protective RC snubber circuit or zener diode may be added to limit drain voltage to a safe level.

Figures 29–34 give typical turn-on and turn-off times of various drive circuits for the following test circuit:

Device: National Semiconductor IRF450, $V_{DD}=200V$, Load $=33\Omega$ resistor.

FIGURE 28. Zener Diode to Prevent Excessive Gate-Source Voltages

DRIVE CIRCUIT TURN-ON/TURN-OFF TIMES

Note: Voltage Fall Time = 17 ns, Voltage Rise Time = 20 ns FIGURE 29. Emitter Follower PWM

Note: Voltage Fall Time = 50 ns, Voltage Rise Time = 112 ns

FIGURE 30. Simple Pulse Transformer

Note: Voltage Fall Time = 50 ns, Voltage Rise Time = 16 ns

FIGURE 31. Pulse Width Modulator

Note: Voltage Fall Time = 63 ns, Voltage Rise Time = 74 ns

FIGURE 32. Pulse Transformer with Speed-Up Capacitor

TL/G/10063-39

TL/G/10063-38

Note: Voltage Fall Time = 200 ns, Voltage Rise Time = 84 ns

FIGURE 33. Interface Drive

Note: Voltage Fall Time = 70 ns, Voltage Rise Time = 30 ns

FIGURE 34. Interface Drive

Packaging Options and Ordering Information for Small Signal Diodes and Transistors

This brochure outlines the many packaging options for small signal discrete devices. The packaging options are:

A. Diode

- 1. Bulk
- 2. Tape and reel (Figure 1)
- B. Transistor
 - 1. Bulk
 - 2. Tape and reel (Figure 2)
 - 3. Ammo pack (Figure 3)
- C. Surface Mount devices-tape and reel (Figure 4)
- D. Diode and transistor arrays in P-DIP or ceramic tubes.
- E. SOIC transistor or diode arrays—tape and reel (Figure 5)

Ordering information for axial lead diodes.

No suffix indicates bulk packaging.

Package quantity: DO-35 = 2,000 min

DO-7 = 1,000 min

Package quantities for Zener Diodes: DO-35 = 5,000

DO-41 = 3,000

Ordering Information for Tape & Reel Options for Axial Lead Diodes

- .TR suffix indicates axial Tape & Reel (50mm tape spacing) package. (Example: 1N4148.TR). See Figure 1.
- .PS suffix indicates axial Tape & Reel (26mm tape spacing) package. (Example: 1N4148.PS). See Figure 1.

Reel quantities for .TR and .PS options:

Signal Diodes

Zener Diodes DO-35 = 5,000

DO-35 = 10,000DO-7 = 7,000

DO-41 = 3.000

TL/00/3706-1

FIGURE 1

Note: All dimensions in millimeters with inches in parenthesis.

Ordering information for transistors.

No suffix indicates bulk packaging. Package quantities are:

TO-18 = 500

TO-39 = 400

TO-92 = 2,000

Transistor Tape & Reel for TO-92

1. Choose the appropriate option from the eight listed in Figure 2.

- 3. Standard pack and minimum order quantities apply.
 - A. Tape and Reel = 2,000 pieces.
 - B. Ammo Pack = 2,000 pieces.

Scheduled orders must be in multiples of 2,000.

4. Ordering example:

2N3904/D26Z (flat side down, tape on left, large arbor hole)

D26Z = flat side down, tape left side of reel, adhesive on top side, large arbor hole.

D11Z = reverse wound version of option D26Z, adhesive on bottom side, large arbor hole.

TL/00/3706-2

D10Z = reverse wound version of option D28Z, adhesive on bottom side, large arbor hole.

TI /00/3706-4

D27Z = flat side up, tape left side of reel, adhesive on top side, large arbor hole.

0

D81Z = reverse wound version of option D27Z, adhesive on bottom side, large arbor hole.

TL/00/3706-7

D29Z = flat side up, tape right side of reel, adhesive on top side, large arbor hole.

D89Z = reverse wound version of option D29Z, adhesive on bottom side, large arbor hole.

TL/00/3706-9

TL/00/3706-8

FIGURE 2. Transistor Tape and Reel Options

Transistor Ammo Pack Options

1. Two ammo pack options can replace the eight tape and reel options illustrated in Figure 2 because the tape can be fed out of either the top or the bottom of the box and the box can be oriented either front or back with respect to a feeder.

D75Z Radial Ammo Pack

Ammo Pack equivalent to options D26Z, D28Z, D10Z, D11Z. Specific option dependent on feed orientation from the cartridge. Round side of transistor on adhesive side of tape.

TL/00/3706-14

D74Z Radial Ammo Pack

Ammo Pack equivalent to options D27Z, D29Z, D89Z, D81Z. Specific option dependent on feed orientation from the cartridge. Flat side of transistor on adhesive side of tape.

The drawings show package TO-92 transistors, which is the most common product selected for tape and reel; however, the same information applies for other package styles, such as TO-237 and tall TO-92.

FIGURE 3. Transistor Ammo Pack Options

2. The two ammo pack options are:

D74Z Radial Ammo Pack

Ammo Pack equivalent to options D27Z, D29Z, D89Z, D61Z. Specific option dependent on feed orientation from the cartridge. Flat side of transistor on adhesive side of tape.

D75Z Radial Ammo Pack

Ammo Pack equivalent to options D26Z, D28Z, D10Z, D11Z. Specific option dependent on feed orientation from the cartridge. Round side of transistor on adhesive side of tape.

TL/00/3706-18

Symbol	Symbol MM Value Dec (Min/Max) (I		
Α	3.2/9.0	0.126/0.354	
A1	6.0 Max	0.236 Max	
Т	6.0 Max	0.236 Max	
В	2.5 Max	0.098 Max	
н	27.0/29.21	1.063/1.150	
HO	15.5/16.5	0.610/0.650	
H1	18.5/19.5	0.728/0.768	
ΔΡ	±0.8	±0.031	
Δh	±0.8	±0.031	
Р .	12.2/13.2	0.480/0.520	
P0	12.5/12.9	0.492/0.508	
P1	3.55/4.04	0.140/0.159	
P2	6.05/6.50	0.240/0.254	
F1	2.4/2.6	0.094/0.102	
d	0.45/0.55	0.018/0.022	
L	10.9 Max	0.429 Max	
L1	4.0/6.6	0.157/0.260	
t	0.66/0.96	0.026/0.038	
t1	0.38/0.68	0.015/0.027	
w	17.5/18.5	0.689/0.728	
wo	5.7/6.3	0.224/0.248	
W1	0.5 Max	0.020 Max	
W2	8.5/9.75	0.026/0.038	
D0	3.8/4.2 0.150/0.165		
s	±0.1	±0.004	
S1	4.69/5.28	0.185/0.208	
S2	2.36/2.62 0.093/0.103		

^{*}From tape center

^{**}Spring after cut

Surface Mount Diodes and Transistors in SOT-23/TO-236 package and LL-34 packages; (See Figure 4)

1. Transistors

- a. No suffix denotes low profile package (TO-236AB) on 7" diameter reel. (Example: MMBT2222A) Reel quantity = 3,000
- Suffix -HIGH is used to order the profile package (TO-236AA) on 7" diameter reel. (Example: MMBT2222A-HIGH) Reel quantity = 2,500
- 2. Diodes encapsulated in TO-236 package
 - a. .SA suffix denotes high profile package (TO-236AA) on 7" diameter reel. (Example: FDSO1201.SA). See Figure 4. Reel quantity = 2,500

- b. .LA suffix indicates low profile package (TO-236AB) on 7" diameter reel. (Example: FDSO1201.LA). Reel quantity = 3,000
- 3. Leadless Diodes in LL-34 package

Suffix characters .TR indicates 7" diameter Tape & Reel (Example: FDLL4148.TR) See *Figure 6*. Reel quantity = 2.500

- 4. SOIC Packages (14-SOIC, 16-SOIC) See Figure 5.
 - a. T suffix letter indicates a 7" diameter reel with 700 devices. (Example: FSAO2509T)
 - b. X suffix letter indicates a 13" diameter reel with 2,500 devices. (Example: FSAO2509X)

LL-34 Style A

FIGURE 4. TO-236 and LL-34 Taping Specification

FIGURE 5. SOIC Taping Specification

PACKAGE OUTLINES

Dimensions are in $\frac{\text{inches}}{\text{(millimeters)}}$

Numbers in parentheses behind package titles are NS internal package

Dimensions and package codes shown are applicable at time of printing. Factory should be consulted to confirm dimensions, package codes, and other information given.

NS Package	JEDEC	NS Package	JEDEC
Code	Code	Code	Code
01	TO-116 14-Lead Plastic DIP	42	TO-204 Power MOSFET 30 Mil Lead
02	TO-18 Glass	43	TO-204 Power MOSFET 60 Mil Lead
03	16-Lead Plastic DIP	44	TO-247 Rectifier 2-Lead Plastic
04	TO-5 Glass	48	TO-236 (SOT-23) High Profile SMD
06	TO-46 Solid Kovar	49	TO-236 (SOT-23) Standard Profile SMD
07	TO-52 Solid Kovar	51	TO-202 Molded Plastic
08	TO-71 Glass TO-18 (6 Leads)	55	TO-202 Molded Plastic
09	TO-05 Solid Kovar	56	TO-202 Molded Plastic
10	TO-39 Solid Steel	60	8-Lead Molded Mini-DIP
11	TO-18 Glass	67	8-Lead Molded Mini-DIP
12	TO-71 Glass TO-18 (6 Leads)	87	TO-96 10-Lead TO-5
14	TO-85 10-Lead Flat Pack	90	TO-237 Plastic
17	TO-39 Solid Steel Low Profile	91	TO-237 Plastic
18	TO-52 Solid Kovar	92	TO-92 Plastic
19	TO-18 Glass	94	TO-92 Plastic
23	TO-72 Glass (4-Lead TO-18) P Channel FET	95	TO-226 Plastic (Tall TO-92)
24	TO-78 Glass TO-5 Diff Amp 8-Lead FET	96	TO-92 Faraday Shield Plastic
25	TO-72 Glass (4-Lead TO-18) 4-Lead FET	97	TO-92 Plastic
26	TO-86 14-Lead Flat Pack	98	TO-92 Faraday Shield Plastic
27	16-Lead Ceramic Dual-In-Line	99	TO-226 (Tall TO-92) Plastic
29	TO-72 Glass (4-Lead TO-18)	S1	SOIC 8-Lead SMD
30	TO-78 Glass TO-5 (8 Leads)	S2	SOIC 14-Lead SMD
35	TO-116-2 14-Lead DIP	S3	SOIC 16-Lead SMD
37	TO-220 3-Lead	D1	DO-7 Axial Diode
38	TO-220 Multiple Rectifier 3-Lead	D2	DO-35 Axial Diode
39	TO-116 14-Lead Molded DIP	D3	LL-34 Diode SMD
40	TO-247 Power 3-Lead Plastic	D4	DO-41 Axial Diode
41	TO-220 Rectifier 2-Lead	4L	16-Lead Flat Pack

TO-72 (23, 25, 28, 29)

TL/G/10336-10

Pin	T(25)	FET N(25, 29)
1	Ε	s
2	В	D
3	С	G
4	GND	CASE

Pin	T(28)	FET P(23)
1	В	s
2	E	G
3	С	D
4	GND	CASE

TO-85 (14) (Diode Arrays) 0.050 (1.270) 0.015 - 0.019 (0.381 - 0.483) 0.240 - 0.260 (6.096 - 6.604)0.250 - 0.370 0.250 - 0.370 (6.350 - 9.398) (6.350 - 9.398) $\frac{0.004 - 0.006}{(0.102 - 0.152)}$ $\frac{0.075 - 0.085}{(1.905 - 2.159)}$ 0.035 0.240 - 0.260(0.889) (6.096 - 6.604)

TL/G/10336-12

TO-86 (26) (Diode Arrays)

TO-92 (92, 94, 96, 97, 98)

Pin	(92) STD	
	Т	FET
1	С	G
2	В	s
3	E	D

Pin	(94)	
	Т	FET
1	В	s
2	С	G
3	E	D

Pin	(96) T FET	
1	С	G
2	E	D
3	В	S

Pin	(97)*		(98)*
- 111	Т	FET	Т
1	Ε	D	В
2	В	s	Е
3	С	G	С

TL/G/10336-14

^{*}Leadformed to TO-18 configuration prior to bulk shipment. For in-line leads, order option L342. Drain-Source Interchangeable on most JFET Devices.

TO-92 (92, 94, 96) TO-18 Lead Form

-18 Option

TL/G/10336-15

TO-92 (92, 94,96) TO-5 Lead Form

-5 Option

TL/G/10336-16

TO-92 (97, 98) TO-18 Lead Form STD*

*Note: All package 97 or 98 transistors are leadformed to this configuration prior to bulk shipment. Order L34Z option if in-line leads preferred on these package codes.

TO-92 (92, 94, 96) 0.100" Spacing Lead Form J61Z Option

TL/G/10336-18

TO-92 (92, 94, 96) TO-18 Lead Form and J14Z Option Crop

TL/G/10336-19

TO-92 (92, 94, 96) **TO-18 Lead Form and J22Z Option** Crop

TO-92 (92, 94, 96) TO-5 Lead Form and Crop J25Z Option

TO-96 (87)

TO-116 (01)

TL/G/10336-24

TO-116-2 (35) (Diode Arrays)

TO-202 (51, 55, 56)

Pin	T(51)	T(55)	T(56)
1	Ε	Е	В
2	С	В	С
3	В	С	Ε

TL/G/10336-26

TO-202 (51, 55, 56) TO-5 Lead Form, Crop and Tab Shear J46Z Option

TO-202 (51, 55, 56) TO-5 Lead Form and Crop J41Z Option

ᆓփ

TL/G/10336-28

0.065-0.075

(1.651-1.905)

TO-202 (51, 55, 56) Lead Form J52Z Option

TO-202 (51, 55, 56) TO-66 Lead Form, Crop and Tab Form J45Z Option

TO-202 (51, 55, 56) TO-5 Lead Form for Flush Mount J68Z Option

TO-204AA (42) 1.550 (39.37) 0.830 (21.08) $\frac{0.055 - 0.070}{(1.397 - 1.778)}$ MAY 0.250 - 0.300 (6.350 - 7.620)0.440 - 0.480 0.038 - 0.043(11.18 - 12.19)(0.965 - 1.092)1.187 (30.15) BSC 0.665 (16.89) 0.150 - 0.165 0.150 - 0.165(3.810 - 4.191)(3.810 - 4.191)0.430 (10.92) BSC (26.67) 0.215 (5.461) BSC 0.190 - 0.210(4.826 - 5.334)TL/G/10336-32

TO-220 (41) (Rectifier Package)

TO-220 (37)

 Pin
 T (37)
 F (37)

 1
 B
 G

 2
 C
 D

 3
 E
 S

TL/G/10336-35

TO-220 (38) (Rectifier Package)

TO-220 (37, 41)
TO-66 Lead Form and Crop J48Z Option

TO-220 (37, 38) TO-5 Lead Form

J69Z Option

TO-220 (37, 38) TO-5 Lead Form for Flush Mount

J67Z Option

TL/G/10336-39

TO-226 (95, 99)

Pin	T(95)	T(99)
1	В	С
2	c	В
3	E	E

TO-226 (95, 99) TO-5 Lead Form -5 Option

TO-226 (95, 99) TO-18 Lead Form -18 Option

TO-226 (95, 99) 0.100" Spacing Lead Form J61Z Option

TL/G/10336-43

TO-237 (90, 91)

Pin	T(90)	T(91)
1	В	С
2	С	В
3	Ε	E

TO-237 (90, 91) 0.100" Spacing Lead Form J61Z Option

TL/G/10336-45

TO-237 (90, 91) TO-18 Lead Form

- 18 Option

- 05 Option

TL/G/10336-47

TO-247/DO-3P (44) (Rectifier Package)

Pin	R (44)
1	Α
2	Cut
9	1 0

TO-247/TO-3P (40)

Moided Dual-in-Line Package (39) (Diode Arrays)

Molded Mini-DIP (60, 67)

Pin	(60)	(67)
1	NC	S1
2	S1	D1
3	D1	NC
4	G1	G1
5	S2	S2
6	D2	D2
7	G2	NC
8	NC	G2

TL/G/10336-51

8-SOIC (S1)

<u></u>		
Pin	T(S1)	D(S1)
1	S1	See
2	D1	Part
3	NC	Num-
4	G1	ber
5	S2	
6	D2	
7	NC	
8	G2	

14-SOIC (S2) (Diode Arrays)

TL/G/10336-53

16-SOIC (S3)

TL/G/10336-54

LL-34 (D3)

12

TO-236AA (48) (SOT-23)

Note 1: Meets all JEDEC dimensional requirements for TO-236AA.

Note 2: Controlling dimension: millimeters.

TO-236AB (49) (SOT-23)

HIGH(48) STANDARD (49)

TL/G/10336-58

NOTE: FOOTPRINT IS THE SAME FOR STANDARD AND HIGH PROFILE PACKAGES.

16-Lead Flat Pack (4L) (Diode Arrays)

Bookshelf of Technical Support Information

National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.

Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf.

We are interested in your comments on our technical literature and your suggestions for improvement.

Please send them to:

Technical Communications Dept. M/S 23-200

2900 Semiconductor Drive

P.O. Box 58090

Santa Clara, CA 95052-8090

For a recorded update of this listing plus ordering information for these books from National's Literature Distribution operation, please call (408) 749-7378.

ALS/AS LOGIC DATABOOK-1987

Introduction to Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELLS—1987

SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging

CMOS LOGIC DATABOOK-1988

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

DATA COMMUNICATION/LAN/UART DATABOOK—Rev. 1—1988

LAN IEEE 802.3 ● High Speed Serial/IBM Data Communications ● ISDN Components ● UARTs Modems ● Transmission Line Drivers/Receivers

DRAM MANAGEMENT HANDBOOK—1988

Dynamic Memory Control • Error Detection and Correction • Microprocessor Applications for the DP8408A/09A/17/18/19/28/29 • Microprocessor Applications for the DP8420A/21A/22A

F100K DATABOOK—1989

Family Overview • F100K Datasheets • 11C Datasheets • 10K and 100K Memory Datasheets

Design Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System Considerations

Power Distribution and Thermal Considerations • Testing Techniques • Quality Assurance and Reliability

FACTTM ADVANCED CMOS LOGIC DATABOOK

Reprint of Fairchild 1987 Databook

Description and Family Characteristics ● Ratings, Specifications and Waveforms Design Considerations ● 54AC/74ACXXX ● 54ACT/74ACTXXX

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK—1988

Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations • 54F/74FXXX

GRAPHICS DATABOOK—1988

Advanced Graphics Chipset • Application Notes

INTERFACE DATABOOK—1988

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers

Memory Support • Microprocessor Support • Level Translators and Buffers • Frequency Synthesis • Hi-Rel Interface

LINEAR APPLICATIONS HANDBOOK—1986

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.

Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LINEAR 1 DATABOOK—1988

Voltage Regulators ● Operational Amplifiers ● Buffers ● Voltage Comparators ● Instrumentation Amplifiers ● Surface Mount

LINEAR 2 DATABOOK—1988

Active Filters • Analog Switches/Multiplexers • Analog-to-Digital • Digital-to-Analog • Sample and Hold Sensors • Voltage References • Surface Mount

LINEAR 3 DATABOOK—1988

Audio Circuits ◆ Radio Circuits ◆ Video Circuits ◆ Motion Control ◆ Special Functions ◆ Surface Mount

LS/S/TTL DATABOOK—1987

Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • Low Power

MASS STORAGE HANDBOOK—1988

Winchester Disk Preamplifiers • Winchester Disk Servo Control • Winchester Disk Pulse Detectors Winchester Disk Data Separators/Synchronizers and ENDECs • Winchester Disk Data Controller SCSI Bus Interface Circuits • Floppy Disk Controllers

MEMORY DATABOOK—1988

PROMs, EPROMs • Flash EPROMs and EEPROMs • TTL I/O SRAMs ECL I/O SRAMs • ECL I/O Memory Modules

MICROCONTROLLER DATABOOK—1988

COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Display/Terminal Management Processor (TMP) Microcontroller Development Tools

PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL—1989

Product Line Overview ● Datasheets ● Designing with PLDs ● PLD Design Methodology ● PLD Design Development Tools Fabrication of Programmable Logic ● Application Examples

SERIES 32000 MICROPROCESSORS DATABOOK—1988

Series 32000 Overview • Central Processing Units • Slave Processors • Peripherals • Board Level Products Development Systems and Tools • Software Support • Application Notes • NSC800 Family

RELIABILITY HANDBOOK—1986

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices
Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program
883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products
Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging
Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms
Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

TELECOMMUNICATIONS—1987

Line Card Components ● Integrated Services Digital Network Components ● Modems Analog Telephone Components ● Application Notes

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS

NATIONAL SEMIC	CONDUCTOR
ALABAMA	Sunnyvale
Huntsville	Arrow Electronics
Arrow Electronics	(408) 745-6600
(205) 837-6955 Bell Industries	Bell Industries (408) 734-8570
(205) 837-1074	Hamilton/Avnet
Hamilton/Avnet	(408) 743-3355
(205) 837-7210	Time Electronics
Pioneer (205) 837-9300	(408) 734-9888 Thousand Oaks
ARIZONA	Bell Industries
Phoenix	(805) 499-6821
Arrow Electronics	Torrance
_ (602) 437-0750	Time Electronics (213) 320-0880
Tempe Anthem Electronics	(213) 320-0660 Tustin
(602) 966-6600	Arrow Electronics
Bell Industries	(714) 838-5422
(602) 966-7800	Yorba Linda Zeus Components
Hamilton/Avnet	(714) 921-9000
(602) 961-6400	COLORADO
CALIFORNIA Agora Hills	Englewood
Zeus Components	Anthem Electronics
(818) 889-3838	(303) 790-4500
Anaheim	Arrow Electronics (303) 790-4444
Time Electronics (714) 934-0911	Hamilton/Avnet
Zeus Components	(303) 799-9998
(714) 921-9000	Wheatridge
Chatsworth	Bell Industries
Anthem Electronics (818) 700-1000	(303) 424-1985 CONNECTICUT
Arrow Electronics	Cheshire
(818) 701-7500	Time Electronics
Hamilton Electro Sales	(203) 271-3200
(818) 700-6500	Danbury
Time Electronics (818) 998-7200	Hamilton/Avnet (203) 797-2800
Costa Mesa	Meridan
Avnet Electronics	Anthem Electronics
(714) 754-6050	(203) 237-2282
Hamilton Electro Sales	Norwalk
(714) 641-4159 Garden Grove	Pioneer Northeast (203) 853-1515
Bell Industries	Wallingford
(714) 895-7801	Arrow Electronics
Gardena	(203) 265-7741
Bell Industries (213) 515-1800	FLORIDA
Hamilton Electro Sales	Altamonte Springs Arrow/Kierulff Electr
(213) 217-6751	(305) 682-6923
Irvine	Pioneer
Anthem Electronics (714) 768-4444	(305) 834-9090
Ontario	Deerfield Beach
Hamilton/Avnet	Arrow Electronics (305) 429-8200
(714) 989-4602	Bell Industries
Rocklin	(305) 421-1997
Bell Industries (916) 969-3100	Pioneer
Roseville	(305) 428-8877 Fort Lauderdale
Bell Industries	Hamilton/Avnet
(916) 969-3100	(305) 971-2900
Sacramento Anthem Electronics	Lake Mary
(916) 922-6800	Arrow Électronics (407) 323-0252
Hamilton/Avnet	Largo
(916) 925-2216	Bell Industries
San Diego	(813) 541-4434
Anthem Electronics (619) 453-9005	Orlando Chia Supply
Arrow Electronics	Chip Supply (305) 298-7100
(619) 565-4800	Oviedo
Hamilton/Avnet	Zeus Components
(619) 571-7510 Time Electronics	(407) 365-3000
(619) 586-1331	Palm Bay Arrow Electronics
San Jose	(305) 725-1480
Anthem Electronics	2.12.7.7.7.

Anthem Electronics

Zeus Components

(408) 295-4200

(408) 998-5121

St. Petersburg

Hamilton/Avnet

(813) 576-3930

```
ctronics
```

```
MASSACHUSETTS
  Winter Park
    Hamilton/Avnet
                                         Lexington
                                           Pioneer Northeast
    (407) 628-3888
                                           (617) 861-9200
GEORGIA
                                           Zeus Components
  Norcross
                                           (617) 863-8800
    Arrow Electronics
                                         Norwood
    (404) 449-8252
                                           Gerber Electronics
    Bell Industries
                                           (617) 769-6000
    (404) 662-0923
                                         Peabody
    Hamilton/Avnet
                                           Hamilton/Aynet
    (404) 447-7500
                                           (617) 531-7430
    Pioneer
    (404) 448-1711
                                           Sertech Laboratories
                                           (617) 532-5105
ILLINOIS
                                           Time Electronics
  Bensenville
                                           (617) 532-6200
    Hamilton/Avnet
                                         Wilmington
    (312) 860-7780
                                           Anthem Electronics
  Elk Grove Village
                                           (617) 657-5170
    Anthem Electronics
                                           Arrow Electronics
    (312) 640-6066
                                           (617) 935-5134
    Bell Industries
                                           Lionex Corporation
    (312) 640-1910
                                           (617) 657-5170
  Itasca
                                       MICHIGAN
    Arrow Electronics
                                         Ann Arbor
    (312) 250-0500
                                           Arrow Electronics
                                           (313) 971-8220
    Bell Industries
                                           Bell Industries
    (217) 328-1077
                                           (313) 971-9093
INDIANA
                                         Grand Rapids
  Carmel
                                           Arrow Electronics
    Hamilton/Avnet
                                           (616) 243-0912
    (317) 844-9333
                                           Hamilton/Avnet
  Fort Wayne
                                           (616) 243-8805
    Bell Industries
                                           Pioneer Standard
    (219) 423-3422
                                           (616) 698-1800
  Indianapolis
                                         Livonia
    Advent Electronics Inc.
                                           Hamilton/Avnet
    (317) 872-4910
                                           (313) 522-4700
    Arrow Electronics
                                           Pioneer
    (317) 243-9353
                                           (313) 525-1800
    Bell Industries
                                         Wyoming
R. M. Michigan, Inc.
    (317) 634-8202
    Pioneer
                                           (616) 531-9300
    (317) 849-7300
                                       MINNESOTA
IOWA
                                         Eden Prairie
  Cedar Rapids
                                           Anthem Electronics
    Advent Electronics
                                           (612) 944-5454
    (319) 363-0221
                                           Pioneer-Twin Cities
    Arrow Electronics
                                           (612) 944-3355
    (319) 395-7230
                                         Edina
    Bell Industries
                                           Arrow Electronics
    (319) 395-0730
                                           (612) 830-1800
    Hamilton/Avnet
                                         Minnetonka
    (319) 362-4757
                                           Hamilton/Avnet
KANSAS
                                           (612) 932-0600
  Lenexa
                                       MISSOURI
    Arrow Electronics
                                         Earth City
    (913) 541-9542
                                           Hamilton/Avnet
  Overland Park
                                           (314) 344-1200
    Hamilton/Avnet
                                         St. Louis
    (913) 888-8900
                                           Arrow Electronics
MARYLAND
                                           (314) 567-6888
  Columbia
                                           Time Electronics
    Anthem Electronics
                                           (314) 391-6444
    (301) 995-6640
                                       NEW HAMPSHIRE
    Arrow Electronics
                                         Hudson
    (301) 995-0003
                                           Bell Industries
    Hamilton/Avnet
                                           (603) 882-1133
    (301) 995-3500
                                         Manchester
    Lionex Corp.
                                           Arrow Electronics
    (301) 964-0040
                                           (603) 668-6968
    Time Electronics
                                           Hamilton/Avnet
    (301) 964-3090
                                           (603) 624-9400
    Zeus Components
    (301) 997-1118
  Gaithersburg
    Pioneer
    (301) 921-0660
```

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

			•
NEW JERSEY	Durham .	Pittsburgh	WISCONSIN
Cherry Hill	Pioneer Technology	Hamilton/Avnet	Brookfield
Hamilton/Avnet	(919) 544-5400	(412) 281-4150	Arrow Electronics
(609) 424-0100	Raleigh	Pioneer	
Fairfield			(414) 792-0150
	Arrow Electronics	(412) 782-2300	Mequon
Hamilton/Avnet	(919) 876-3132	CAM/RPC Ind. Elec.	Taylor Electric
(201) 575-3390	Hamilton/Avnet	(412) 782-3770	(414) 241-4321
Lionex Corporation	(919) 878-0810	TEXAS	Waukesha
(201) 227-7960	Winston-Salem	Addison	Bell Industries
Mariton	Arrow Electronics	Quality Components	(414) 547-8879
Arrow Electronics	(919) 725-8711	(214) 733-4300	Hamilton/Avnet
(609) 596-8000	OHIO	Austin	(414) 784-4516
Parsippany	Centerville		
Arrow Electronics		Arrow Electronics	CANADA
(201) 538-0900	Arrow Electronics	(512) 835-4180	WESTERN PROVINCES
Pine Brook	(513) 435-5563	Hamilton/Avnet	Burnaby
Nu Horizons Electronics	Cleveland	(512) 837-8911	Hamilton/Avnet
(201) 882-8300	Pioneer	Pioneer	(604) 437-6667
	(216) 587-3600	(512) 835-4000	Semad Electronics
Pioneer	Dayton	Quality Components	(604) 438-2515
(201) 575-3510	Bell Industries	(512) 835-0220	Calgary
NEW MEXICO	(513) 435-8660	Minco Technology Labs	Hamilton/Avnet
Albuquerque	Bell Industries	(512) 834-2022	(403) 250-9380
Alliance Electronics Inc.	(513) 434-8231	Carrollton	
(505) 292-3360			Semad Electronics
	Hamilton/Avnet	Arrow Electronics	(403) 252-5664
Arrow Electronics	(513) 439-6700	(214) 380-6464	Zentronics
(505) 243-4566	Pioneer	Dallas	(403) 272-1021
Bell Industries	(513) 236-9900	Pioneer	Edmonton
(505) 292-2700	Zeus Components	(214) 386-7300	Zentronics
Hamilton/Avnet	(914) 937-7400	Houston	(403) 468-9306
(505) 765-1500	Highland Heights	Arrow Electronics	Richmond
NEW YORK	CAM/Ohio Electronics	(713) 530-4700	Zentronics
	(216) 461-4700	Pioneer	(604) 273-5575
Amityville	Solon	(713) 988-5555	
Nu Horizons Electronics	Arrow Electronics	(713) 988-3333 Irving	Saskatoon
(516) 226-6000		irving	Zentronics
Binghamton	(216) 248-3990	Hamilton/Avnet	(306) 955-2207
Pioneer	Hamilton/Avnet	(214) 550-7755	Winnipeg
(607) 722-9300	(216) 831-3500	Richardson	Zentronics
Buffalo	Westerville	Anthem Electronics	(204) 694-1957
Summit Distributors	Hamilton/Avnet	(214) 238-0237	EASTERN PROVINCES
(716) 887-2800	(614) 882-7004	Zeus Components	Brampton
Fairport	OKLAHOMA	(214) 783-7010	
		Stafford	Zentronics
Pioneer Northeast	Tulsa	Hamilton/Avnet	(416) 451-9600
(716) 381-7070	Arrow Electronics	(713) 240-7733	Mississauga
Hauppauge	(918) 252-7537		Hamilton/Avnet
Anthem Electronics	Hamilton/Avnet	Sugarland	(416) 677-7432
(516) 273-1660	(918) 252-7297	Quality Components	Nepean
Arrow Electronics	Quality Components	(713) 240-2255	Hamilton/Avnet
(516) 231-1000	(918) 664-8812	UTAH	(613) 226-1700
Hamilton/Avnet	Radio Inc.	Midvale	Zentronics
(516) 434-7413	(918) 587-9123	Bell Industries	(613) 226-8840
Lionex Corporation		(801) 972-6969	Ottawa
(516) 273-1660	OREGON		
Time Electronics	Beaverton	Salt Lake City	Semad Electronics
	Almac-Stroum Electronics	Anthem Electronics	(613) 727-8325
(516) 273-0100	(503) 629-8090	(801) 973-8555	Pointe Claire
Port Chester	Anthem Electronics	Arrow Electronics	Semad Electronics
Zeus Components	(503) 643-1114	(801) 973-6913	(514) 694-0860
(919) 937-7400	Arrow Electronics	Bell Industries	St. Laurent
Rochester	(503) 645-6456	(801) 972-6969	Hamilton/Avnet
Arrow Electronics		Hamilton/Avnet	(514) 335-1000
(716) 427-0300	Lake Oswego	(801) 972-4300	Zentronics
Hamilton/Avnet	Bell Industries		(514) 737-9700
(716) 475-9130	(503) 241-4115	WASHINGTON	(514) /3/-9/00
Summit Electronics	Hamilton/Avnet	Bellevue	Waterloo
	(503) 635-7850	Almac-Stroum Electronics	Zentronics
(716) 334-8100	PENNSYLVANIA	(206) 643-9992	(800) 387-2329
Ronkonkoma	Horsham	Hamilton/Avnet	Willowdale
Zeus Components		(206) 453-5844	ElectroSound Inc.
(516) 737-4500	Anthem Electronics	Kent	(416) 494-1666
Syracuse	(215) 443-5150		, ,
Hamilton/Avnet	Lionex Corp.	Arrow Electronics	
(315) 437-2641	(215) 443-5150	(206) 575-4420	
Time Electronics	Pioneer	Redmond	
(315) 432-0355	(215) 674-4000	Anthem Electronics	
(315) 432-0355 Westbury	King of Prussia	(206) 881-0850	
	Time Electronics	Hamilton/Avnet	
Hamilton/Avnet	(215) 337-0900	(206) 867-0148	
(516) 997-6868	Monroeville	*****	
NORTH CAROLINA	Arrow Electronics		

Arrow Electronics (412) 856-7000

Charlotte Pioneer (704) 527-8188

National Semiconductor

2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: (408) 721-5000 TWX: (910) 339-9240

SALES OFFICES (Continued)

INTERNATIONAL **OFFICES**

Electronica NSC de Mexico SA Juventino Rosas No. 118-2

Mexico, 01020 D.F. Mexico Tel: 52-5-524-9402

National Semicondutores Do Brasil Ltda.

Av. Brig. Faria Lima, 1383 6.0 Andor-Conj. 62 01451 Sao Paulo, SP, Brasil Fax: (55/11) 211-1181 NSBR BR

National Semiconductor GmbH

Industriestrasse 10 D-8080 Furstenfeldbruck West Germany Tel: 49-08141-103-0 Telex: 527 649

National Semiconductor (UK) Ltd.

301 Harpur Centre Horne Lane Bedford MK40 ITR United Kingdom Tel: (02 34) 27 00 27 Telex: 826 209

National Semiconductor Benelux

Vorstlaan 100 B-1170 Brussels Belgium Tel: (02) 6725360 Telex: 61007

National Semiconductor (UK) Ltd.

1, Bianco Lunos Alle DK-1868 Fredriksberg C Denmark Telex: 15179

National Semiconductor France

Centre d'affaires la boursidiere Route nationale 186 F-92357 Le Plessis Robinson Frankreich France Telex: 631065

National Semiconductor S.p.A.

Strada 7, Palazzo R/3 20089 Rozzano Milanofiori

Tel: (02) 8242046/7/8/9 National Semiconductor AB

Box 2016 Stensatravagen 13 S-12702 Skarholmen Sweden Tel: (08) 970190

Telex: 10731

National Semiconductor

Calle Agustin de Foxa, 27 28036 Madrid Telex: 46133

National Semiconductor

Switzerland Alte Winterthurerstrasse 53 Postfach 567 Ch-8304 Wallisellen-Zurich Switzerland Tel: (01) 830-2727 Telex: 59000

National Semiconductor

Kauppakartanonkatu 7 SF-00930 Helsinki Finland Telex: 126116

National Semiconductor Japan

Ltd. Sanseido Bldg. 5F 4-15 Nishi Shinjuku Tokyo 160 Japan Tel: 3-299-7001 Fax: 3-299-7000

National Semiconductor Hong Kong Ltd.

Suite 513, 5th Floor Chinachem Golden Plaza. 77 Mody Road, Tsimshatsui East, Kowloon, Hong Kong Tel: 3-7231290 Telex: 52996 NSSEA HX Fax: 3-3112536

National Semiconductor

(Australia) PTY, Ltd. 1st Floor, 441 St. Kilda Rd. Melbourne, 3004 Victory, Australia Tel: (03) 267-5000 Fax: 61-3-2677458

National Semiconductor (PTE),

200 Cantonment Road 13-01 Southpoint Singapore 0208

National Semiconductor (Far East) Ltd.

Taiwan Branch P.O. Box 68-332 Taipei 7th Floor, Nan Shan Life Bldg. 302 Min Chuan East Road, Taipei, Taiwan R.O.C. Tel: (86) 02-501-7227 Telex: 22837 NSTW Cable: NSTW TAIPEI

National Semiconductor (Far East) Ltd.

Korea Branch

13th Floor, Dai Han Life Insurance 63 Building, 60, Yoido-dong, Youngdeungpo-ku, Seoul, Korea 150-763 Tel: (02) 784-8051/3, 785-0696/8 Telex: 24942 NSPKLO Fax: (02) 784-8054