Quantifying Uncertainty

Belief States

■ Defintion ∨

Belief State

A representation of all possible world states with likelihoods for all of them

- Expensive to compute
- Only likely to be used for small systems

Decision Making

- Sometimes there is no "correct" answer or path
- Sometimes there is a qualification problem where there are factors hard to explain
- Decisions must still be made by the system based on rationality

Summarizing Uncertainty

■ Def

Probability Theory

A way to represent likelihoods of current states from a limited amount of information about the environment

- Explaining an effect from a list of causes can also be impossible
 - Must be represented with rules of uncertainty
 - Failure to correctly identify an effect could stem from
 - Laziness
 - Theoretical Ignorance
 - Practical Ignorance
- Degrees of belief must be used to represent likely effects from causes using probability theory

Rational Decisions

Utility Theory

A way to represent preferences based on their **relative** usefulness to each other.

Decision Theory

Probability Theory + Utility Theory

Rational Decisions are ones use the Maximum expected utility of a state.

Probability Lingo

Marginal Probability

Probability of a particular trait across all possible other trait combinations

Marginalization

Summing individual probabilities to get a marginal probability

Conditioning

Representing $P(X \cap Y)$ as P(X|Y)P(Y)

Independence

When P(X|Y) = P(X)

Bayes' Rule

$$P(Y|X\cap Z) = rac{P(X|Y\cap Z)P(Y|Z)}{P(X|Z)}$$

Conditional Independence

In A and B where

$$P(A \cap B|C) = P(A|C)P(B|C)$$

but not necessarily

$$P(A \cap B) = P(A)P(B)$$

Said to be A and B are independent, only given C

Naive Bayes' Rule

Assuming conditional independence across all other variables given one of them.

$$P(X_1,\ldots,X_n)=P(X_1)\prod\limits_{i=2}^n P(X_i|X_1)$$

Posterior, Likelihood, Prior, and Marginal Probabilities

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Posterior: P(A|B)Likelihood: P(B|A)

Prior: P(A)Marginal: P(B)