F-învariant în cluster algebras

- V: a vector space over G with dim V = M.
- $f: V \rightarrow V$ linear map.
- · rank(f) < Zzo is an invariant of f and each choice of a basis (d,, ... dm) of V gives a way to calculate rank(f) via

 $f(\alpha_1, ..., \alpha_m) = (\alpha_1, ..., \alpha_m) A$ and rank(f) = rank(A).

· Some good choice of basis (d1, ..., dm) can make the calculation of rank(f) easier, for example, in the case that A is a Jordan matrix.

Today: Want to introduce F-invariant ($u \mid \mid u \mid$) $_F \in \mathcal{Z}_{\geq 0}$ in chuster algebras, which behaves like dim Ext'CM, M') in a 2-CY triangulated category C.

Vector space cluster alg $\subseteq \mathbb{Q}(z_1, ..., z_m)$ 2-Cf Δ -cat C.

basis (di, ..., dm) cluster tilting obj. $T = \frac{1}{12}, T_i$ cluster $X = (X_1, \dots, X_m)$ $\begin{cases} \text{calculate} & \begin{cases} \text{calculate} \end{cases} \text{ calculate} \end{cases} \text{ calculate} \begin{cases} \text{via} \frac{C}{TLJ} > \text{mod } \text{End}(T)^{PP} \\ \text{vank}(f) & \text{(u || u')}_{F} \end{cases} \text{ dim } \text{Ext'}(M, M') \end{cases}$

The calculation is independent of the choice of basis/cluster/cluster tilting obj.

plan: § 1. Cluster algebras.

\$2. F-invariant and Yesults.

F-invariant in cluster algebras

• Fix $m, n \in \mathbb{Z}$ with $m \ge n > 0$.

1: mxm integer matrix

• $F = Q(2_1, ..., 2_m)$ ($\geq A$ cluster algebra)

Def. Call (B, Λ) a compatible pair, if $B + \Lambda = (S/O)_{n \times m}$ for some

S = diag (S1, ... Sn) with Si & Z70, Vi.

Rmk: In this case, $\mathcal{B} = \begin{bmatrix} B \\ P \end{bmatrix}$ has the full rank n and $\mathcal{B}^T \Lambda \mathcal{B} = SB$ is Skow-symmetric. Thus B is skow-symmetrizable.

pef. (all $t_0 = (X, B, \Lambda)$ a seed in $F = Q(z_1, ..., z_m)$, if

 $D X = (X_1, ..., X_m)$ is a free generating set of IF.

Q (B, 1) is a compodible pair.

Call X a cluster, X1, ..., Xm cluster variables.

· We have mutations ly, ..., fun to produce new seeds

where $X' = (X_1, ..., X_k', ..., X_m)$ and the new cluster variable X_k' is given

by the k-th column of B = (bij):

 $\chi_{k}' = \chi_{k}^{-1} \left(\frac{T}{bik>0} \chi_{i}^{bik} + \frac{T}{bik<0} \chi_{i}^{-bik} \right) \longrightarrow mutation relation$

Rmk. (D $\mu_R^2 = id$ and $BT\Lambda = (5/0)_{n\times m} = B'T\Lambda' \longrightarrow mutation invariant$

 Θ For the case of m=n=2, $\mu_{R}(\mathcal{B}, N)=(-\mathcal{B}, -N)$.

B) Mutation relation is a generalization of $\frac{a}{x}$ Ptolemy relation: $x' = x^{-1} (ac + bd)$.

• Fix an initial seed to = (X, B, Λ) . Penote by Def. Cluster alg. A = 2 [all cluster variables in $\Delta J \subseteq F = a(z_1, ..., z_m)$. Example $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = 1$, $B^{T} \Lambda = (S | 0) = I_{2}$, $X = (X_{1}, X_{2})$ $t_{p} = (\chi, \beta, \Lambda) \xrightarrow{\mu_{1}} t_{1} \xrightarrow{\mu_{2}} t_{2} \xrightarrow{\mu_{1}} t_{3} \xrightarrow{\dots} x_{4}$ $\chi_{1}, \chi_{2} \qquad \chi_{3} \qquad \chi_{4} \qquad \chi_{5}$ 74 74 Zz Denote by $\hat{\mathcal{Y}}_1 = \chi' \tilde{\mathcal{B}} \tilde{\mathcal{E}}_1 = \chi_2^{-1}$, $\hat{\mathcal{Y}}_2 = \chi' \tilde{\mathcal{B}} \tilde{\mathcal{E}}_2 = \chi_1$ Mudation relation: $\gamma_{k+2} = \frac{\gamma_{k+1} + 1}{\gamma_k} \Longrightarrow$ γ_{13} γ_{2} γ_{4} γ_{5} $\chi_3 = \frac{\chi_2 + 1}{\chi_1} \stackrel{\text{YeWY, TP}}{=} \chi_1^{-1} \chi_2 \cdot (1 + g_1) = \chi_1^g \cdot F(g_1),$ $\chi_4 = \frac{\chi_1 + \chi_2 + 1}{\chi_1 \chi_2} = \chi_1^{-1} \cdot (H \mathcal{G}_1 + \mathcal{G}_1 \mathcal{G}_2), \quad \text{taking g-vector}$ $\gamma_5 = \frac{\gamma_1 + 1}{\gamma_2} = \gamma_2^{-1} \cdot (H \mathcal{G}_2), \quad \chi_6 = \chi_1, \quad \chi_7 = \chi_2.$ $\Rightarrow A = Z[\chi_1, \chi_2, \frac{\chi_2+1}{\chi_1}, \frac{\chi_1+\chi_2+1}{\chi_1\chi_2}, \frac{\chi_1+1}{\chi_2}] \subseteq Q(\chi_1, \chi_2).$ Clusters ? As, Ast ?; >> chambers in -Def. A cluster monomial of A is a monomial in cluster variables from the same cluster (chamber), e.g., $\chi_3 \chi_4 \sqrt{}$, $\chi_3 \chi_5 \chi$. Thm [FZ, GHKK] Let u be a cluster monomial and $t = (X_t, B_t, \Lambda_t)$ a seed of A. Then 11). The expansion of u w.r.t. It is a Lawent polynomial. (2). Set grit = Xt Billy. The expansion above can be uniquely written as $u = X_t^{\delta t} \cdot F_t(\hat{Y}_t)$, where $\underbrace{J_t \in Z^m}_{\text{g-vector}}$ and $\underbrace{F_t \in Z[y_1, ..., y_n]}_{\text{F-polynomial}}$ with $y_i \neq F_t$, $\forall j$.

(3). Ft has positive coefficients and constant term 1.

§ 2. Given a polynomial $F = \sum_{t | N} C_t Y \in Z[Y_t, ..., Y_n]$ and a vector $h \in Z^n$, denote by $F[h] := \max_t \{v + h \mid C_t \neq 0\} \in Z$.

Rink: If F has constant term I, then $F[h] \ge 0$, $\forall h \in Z^n$.

Def. Let $u = X_t^{g_t} \cdot F_t(Y_t)$ and $u' = X_t^{g_t} \cdot F_t'(Y_t)$ be two cluster monomials of A_t written their expansions in any seed $t = (X_t, B_t, \Lambda_t)$. Define an integer $(u, u')_t = g_t^T \Lambda_t g_t' + F_t \Gamma(\underline{S}/0) g_t' J$.

Thm. The integer $(u,u')_t$ only depends on u and u', not on the choice of t.

Pf. Consider the g-vectors of u' w.r.t. different seeds \sim $\{g'_w \in Z^m \mid w \in \Delta \}$ \sim $\{g'_w \in Z^m \mid w \in \Delta \}$.

Denote by $Q_{sf}(x_1, ..., x_m) = \S \frac{1}{6} \mid o \neq P, Q \in \mathbb{Z}_{\geq 0}[x_1, ..., x_m] \right\}$.

Clearly, Osf $(\chi_1, ..., \chi_m) = Osf(\chi_w)$ for any seed $w \in \Delta$.

claim: There exists a unique semifield homomorphism

$$\beta_{\mathsf{U}}:(\mathcal{Q}_{\mathsf{sf}}(x_1,...,x_{\mathsf{m}}), \cdot, +) \longrightarrow (Z, +, \mathsf{mar} \ \ \ \ \ \ \ \ \ \ \ \)$$

s.t. $\beta_{u'}(X_w) = (\Lambda_w g'_w)^T \in \mathbb{Z}_{row}^m$ for any seed $w \in \Delta$.

So each choice of a cluster X_W gives a way to calculate $\beta_{u'}(u)$ by writting u as $u = X_W^{g_W} \cdot F_W \cdot (\hat{Y}_W) = X_W^{g_W} \cdot F_W \cdot (X_W^{g_W})$.

Thus
$$\beta_{u'}(u) = g_{w}^{T} \underbrace{1_{w}g_{w}'} + F_{w} \underbrace{\Gamma \mathcal{E}_{w}^{T} \underline{1_{w}g_{w}'}}$$

$$= g_{w}^{T} \underbrace{1_{w}g_{w}'} + F_{w} \underbrace{\Gamma (S/o)g_{w}'} \underbrace{1} = \langle u, u' \rangle_{w}.$$

Notice that the value of $\beta_{u'}(u)$ does not depend on the choice of w.

pef. The F-invariant between two cluster monomials u and u' is defined by $(u||u')_{\dagger} = \langle u, u' \rangle_{t} + \langle u', u \rangle_{t}$

 $= 3t^{T} \Lambda_{t} 3t' + F_{t} \Gamma(s | 0) 3t'] + 3t'^{T} \Lambda_{t} 3t' + F_{t'} \Gamma(s | 0) 3t]$

 $= F_{+}[(s|o)f_{+}] + F_{+}'[(s|o)f_{+}]$

Rmk. (1) Since F_t and F_t have constant term 1, $(u/|u'|_F \ge 0$.

(2). If u and u' are two (unfrozen) cluster variables, say $u=\chi_i,t$, $u'=\chi_j,w$. Then by using $g_t = \ell_i \in \mathbb{Z}^m$ and $F_t = 1$, we have

 $(\|\|\|'\|)_F = F_t \Gamma(s/o) \mathcal{G}_t' + F_t' \Gamma(s/o) \mathcal{G}_t' = F_t' \Gamma(s/o) \mathcal{G}_t' = S_t \mathcal{G}_t',$

where S_i is the (i,i)-entry of $S=diag(S_1,...,S_n)$ and f_i' is the max.

exponent of you in Ft. Thus

 $(\chi_i, t | \chi_i, w)_F = S_2 f_2' = S_2 (\chi_i, t | \chi_j, w)_f$ the f-compatibility degree

defined by Fu-Gyoda.

Thm. ΓFu -Gyoda] (Xi; + 1/ Ag; w) f = 0 iff X_2 ; $t \cdot X_3$; w is a chaster monomial.

Thm. For two cluster monomials u and u', their product u·u' is still a cluster

monomial iff $(U || U')_F = 0$.

 $pf: "\Rightarrow "$ Say $u \cdot u'$ is a cluster monomial in seed t. Then

 $F_t = I = F_t' \implies (u / | u' / F = F_t \Gamma J + F_t' \Gamma J = 0.$

"E" ... and use Fu-Gyoda's Thm

Back to the Az example.

 $\chi_4 = \chi_1^{-1} (H_g^2, + g_1^2 g_2)$ (S10) = I2.

We have $(x_3 | x_4)_F = F Eg'J + F'EgJ = (1+y_1) [-1] + (1+y_1 + y_1 y_2) [-1]$ $= \max \{ 0, -1 \} + \max \{ 0, -1, 0 \} = 0$

 $(23||8s)_F = (|+9|)[-1] + (|+9|)[-1] = \max\{0, 03 + \max\{0, 13 = 1 > 0.$

=> 1/2 1/4 is a cluster monomial, while 1/3 1/5 is not.

Rmk. $(731185)_F = 1 \iff$ the diagonals x_3 and x_5 have 1 intersection point in the interior of the 5-gon.

Rmk: F-invariant is related with

- O Fomin-Zelevinsky's compatibility degree defined on almost positive roots.
- @ Fu-Gyoda's f-compatibility degree defined on cluster variables.
- (3) Derksen-Weyman-Zelevinsky's E-invariant in the additive categorification of cluster algebras, which is related with dim Ext'(M,N).
- @ Kang-Kashiwara-Kim-Oh's d-invariant in the monoidal categorification of cluster algebras, which is related with of R-matrices rm, n and rn, m.

$$M \otimes N \xrightarrow{\Upsilon_{M,N}} N \otimes M$$