Shallow Intro to Deep Learning'19

Feed Forward, Chapters 6, 6.1, 4.3, 5.9

Lecturer: Jan van Gemert

What is the outcome of this Feed Forward net?

Book: chapter 6, 6.1

What is the outcome of this Feed Forward net?

Book: chapter 6, 6.1

- Approximate some function f^*
- Eg: classifier $y = f^*(x)$
- Learn parameters θ for mapping $y = f(x; \theta)$

- Approximate some function f^*
- Eg: classifier $y = f^*(x)$
- Learn parameters θ for mapping $y = f(x; \theta)$

Q: How many parameters?

- Approximate some function f^*
- Eg: classifier $y = f^*(x)$
- Learn parameters θ for mapping $y = f(x; \theta)$

Q: How many parameters? A: 8

- Approximate some function f^*
- Eg: classifier $y = f^*(x)$
- Learn parameters θ for mapping $y = f(x; \theta)$

Q: How many parameters? A: 8

Q: Are the two graphs the same?

- Approximate some function f^*
- Eg: classifier $y = f^*(x)$
- Learn parameters θ for mapping $y=f(x;\theta)$

Q: How many parameters? A: 8

Q: Are the two graphs the same?

A: $g(x1w1 + x2w2 + c1)w5 + g(x1w3 + x2w4 + c2)w6 = g(x^{\top}W + c^{\top})w$

- Approximate some function f^*
- Eg: classifier $y = f^*(x)$
- Learn parameters θ for mapping $y=f(x;\theta)$

Q: How many parameters? A: 8

Q: Are the two graphs the same?

A:
$$g(x1w1 + x2w2 + c1)w5 + g(x1w3 + x2w4 + c2)w6 = g(x^{\top}W + c^{\top})w$$

Networked in a function chain $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$

Q: For f, what is: first layer? Second? Output? Hidden? Depth?

- Approximate some function f^*
- Eg: classifier $y = f^*(x)$
- Learn parameters θ for mapping $y = f(x; \theta)$

Q: How many parameters? A: 8

Q: Are the two graphs the same?

A:
$$g(x1w1 + x2w2 + c1)w5 + g(x1w3 + x2w4 + c2)w6 = g(x^{\top}W + c^{\top})w$$

Networked in a function chain $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$

Q: For f, what is: first layer? Second? Output? Hidden? Depth?

A: first layer: $f^{(1)}$, Second: $f^{(2)}$, Output: $f^{(3)}$, Hidden: $f^{(2)}$, Depth: 3

- Approximate some function f^*
- Eg: classifier $y = f^*(x)$
- Learn parameters θ for mapping $y = f(x; \theta)$

Q: How many parameters? A: 8

Q: Are the two graphs the same?

A:
$$g(x1w1 + x2w2 + c1)w5 + g(x1w3 + x2w4 + c2)w6 = g(x^{\top}W + c^{\top})w$$

Networked in a function chain $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$

Q: For f, what is: first layer? Second? Output? Hidden? Depth?

A: first layer: $f^{(1)}$, Second: $f^{(2)}$, Output: $f^{(3)}$, Hidden: $f^{(2)}$, Depth: 3

Goal: drive f(x) to match $f^*(x)$

Chapter 4.3

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

• Minimize some criterion, an objective/cost/loss/error-function For example, the mean squared error $f(x,y) = \frac{1}{n} \sum_{i=1}^{n} (h(x_i) - y_i)^2$

- Minimize some criterion, an objective/cost/loss/error-function For example, the mean squared error $f(x,y) = \frac{1}{n} \sum_{i=1}^{n} (h(x_i) y_i)^2$
- Q: For f(x), If I make a small change to x, how does it change f(x)?

- Minimize some criterion, an objective/cost/loss/error-function For example, the mean squared error $f(x,y) = \frac{1}{n} \sum_{i=1}^{n} (h(x_i) y_i)^2$
- Q: For f(x), If I make a small change to x, how does it change f(x)?
- A: Derivative f' or $\frac{\partial f}{\partial x}$, tells you $f(x+\epsilon) \approx f(x) + \epsilon f'(x)$
- Q: How to reduce loss?

- Minimize some criterion, an objective/cost/loss/error-function For example, the mean squared error $f(x,y) = \frac{1}{n} \sum_{i=1}^{n} (h(x_i) y_i)^2$
- Q: For f(x), If I make a small change to x, how does it change f(x)?
- A: Derivative f' or $\frac{\partial f}{\partial x}$, tells you $f(x+\epsilon) \approx f(x) + \epsilon f'(x)$
- Q: How to reduce loss? A: By moving in the opposite sign of the gradient

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$?

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$?

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$? A: Vector of all partial derivatives
- Q: What does this do: $\theta' = \theta \epsilon \nabla_{\theta} f(\mathbf{x}; \theta)$?

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$? A: Vector of all partial derivatives
- Q: What does this do: $\theta' = \theta \epsilon \nabla_{\theta} f(\mathbf{x}; \theta)$?
 A: Updates the parameters using gradient descent, where ϵ is the learning rate

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$? A: Vector of all partial derivatives
- Q: What does this do: $\theta' = \theta \epsilon \nabla_{\theta} f(\mathbf{x}; \theta)$? A: Updates the parameters using gradient descent, where ϵ is the learning rate
- The loss on all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$? A: Vector of all partial derivatives
- Q: What does this do: $\theta' = \theta \epsilon \nabla_{\theta} f(\mathbf{x}; \theta)$? A: Updates the parameters using gradient descent, where ϵ is the learning rate
- The loss on all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^m L(x^{(i)}, y^{(i)}, \theta)$
- Gradient for all samples: $\nabla_{\theta}J(\theta) = \frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}L(x^{(i)},y^{(i)},\theta)$

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$? A: Vector of all partial derivatives
- Q: What does this do: $\theta' = \theta \epsilon \nabla_{\theta} f(\mathbf{x}; \theta)$? A: Updates the parameters using gradient descent, where ϵ is the learning rate
- The loss on all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^m L(x^{(i)}, y^{(i)}, \theta)$
- Gradient for all samples: $\nabla_{\theta}J(\theta)=\frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}L(x^{(i)},y^{(i)},\theta)$ Q: Why *not* use all samples?

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$? A: Vector of all partial derivatives
- Q: What does this do: $\theta' = \theta \epsilon \nabla_{\theta} f(\mathbf{x}; \theta)$?
 A: Updates the parameters using gradient descent, where ϵ is the learning rate
- The loss on all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient for all samples: $\nabla_{\theta}J(\theta)=\frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}L(x^{(i)},y^{(i)},\theta)$ Q: Why *not* use all samples? A: Huge datasets are impractical
- Stochastic Gradient Descent (SGD) is an approximation of the gradient from a small number of samples m^\prime
- How does SGD update θ' ?

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$? A: Vector of all partial derivatives
- Q: What does this do: $\theta' = \theta \epsilon \nabla_{\theta} f(\mathbf{x}; \theta)$?
 A: Updates the parameters using gradient descent, where ϵ is the learning rate
- The loss on all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient for all samples: $\nabla_{\theta}J(\theta)=\frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}L(x^{(i)},y^{(i)},\theta)$ Q: Why *not* use all samples? A: Huge datasets are impractical
- Stochastic Gradient Descent (SGD) is an approximation of the gradient from a small number of samples m^\prime
- How does SGD update θ' ? $\theta' = \theta \epsilon \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$

Chapter 5.9

- If the loss/error/cost function is given by $y = f(\mathbf{x}; \theta)$
- Q: How many dimensions in partial derivative $\frac{\partial}{\partial \theta_i} f(\mathbf{x}; \theta)$? A: Single variable.
- Q: What is the gradient $\nabla_{\theta} f(\mathbf{x}; \theta)$? A: Vector of all partial derivatives
- Q: What does this do: $\theta' = \theta \epsilon \nabla_{\theta} f(\mathbf{x}; \theta)$?
 A: Updates the parameters using gradient descent, where ϵ is the learning rate
- The loss on all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient for all samples: $\nabla_{\theta}J(\theta)=\frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}L(x^{(i)},y^{(i)},\theta)$ Q: Why *not* use all samples? A: Huge datasets are impractical
- Stochastic Gradient Descent (SGD) is an approximation of the gradient from a small number of samples m^\prime
- How does SGD update θ' ? $\theta' = \theta \epsilon \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$

This is the procedure we've already seen.

Chapter 4.3

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

Questions?

• Q: What is the equation of the output unit?

• Q: What is the equation of the output unit? A: A linear model, $f(x, w, b) = x^{T}w + b$

- Q: What is the equation of the output unit?
 A: A linear model, f(x, w, b) = x^Tw + b
- Linear is good, but possibly too rigid

- Q: What is the equation of the output unit?
 A: A linear model, f(x, w, b) = x^Tw + b
- Linear is good, but possibly too rigid
- Extend to non-linear by applying a non-linear transformation $\phi(x)$ on the input

- Q: What is the equation of the output unit?
 A: A linear model, f(x, w, b) = x^Tw + b
- Linear is good, but possibly too rigid
- Extend to non-linear by applying a non-linear transformation $\phi(x)$ on the input
- ullet The non-linear equation of f is

- Q: What is the equation of the output unit?
 A: A linear model, f(x, w, b) = x^Tw + b
- Linear is good, but possibly too rigid
- Extend to non-linear by applying a non-linear transformation $\phi(x)$ on the input
- The non-linear equation of f is $y = f(x, \theta, w, b) = \phi(x, \theta)^{\top} w + b$

- Q: What is the equation of the output unit?
 A: A linear model, f(x, w, b) = x^Tw + b
- Linear is good, but possibly too rigid
- Extend to non-linear by applying a non-linear transformation $\phi(x)$ on the input
- The non-linear equation of f is $y = f(x, \theta, w, b) = \phi(x, \theta)^{\top} w + b$

Three ways to make the input non-linear:

- 1 Generic kernel function
- ② Designing feature extractors
- 3 Learn it..

- Q: What is the equation of the output unit?
 A: A linear model, f(x, w, b) = x^Tw + b
- Linear is good, but possibly too rigid
- Extend to non-linear by applying a non-linear transformation $\phi(x)$ on the input
- The non-linear equation of f is $y = f(x, \theta, w, b) = \phi(x, \theta)^{\top} w + b$

Three ways to make the input non-linear:

- 1 Generic kernel function
- ② Designing feature extractors
- **3** Learn it.. $y = f(x, \theta, w, b) = \phi(x, \theta)^{\top} w + b$

- Q: What is the equation of the output unit?
 A: A linear model, f(x, w, b) = x^Tw + b
- Linear is good, but possibly too rigid
- Extend to non-linear by applying a non-linear transformation $\phi(x)$ on the input
- The non-linear equation of f is $y = f(x, \theta, w, b) = \phi(x, \theta)^{\top} w + b$

Three ways to make the input non-linear:

- 1 Generic kernel function
- ② Designing feature extractors
- **3** Learn it.. $y = f(x, \theta, w, b) = \phi(x, \theta)^{\top} w + b$

Step 3 allows to add knowledge to restrict 1 but more flexible than 2.

- Q: What is the equation of the output unit?
 A: A linear model, f(x, w, b) = x^Tw + b
- Linear is good, but possibly too rigid
- Extend to non-linear by applying a non-linear transformation $\phi(x)$ on the input
- The non-linear equation of f is $y = f(x, \theta, w, b) = \phi(x, \theta)^{\top} w + b$

Three ways to make the input non-linear:

- Generic kernel function
- ② Designing feature extractors
- **3** Learn it.. $y = f(x, \theta, w, b) = \phi(x, \theta)^{\top} w + b$

Step 3 allows to add knowledge to restrict 1 but more flexible than 2. It learns the representation (features)

- Input: $\mathbb{X} = \{[0,0]^\top, [0,1]^\top, [1,0]^\top, [1,1]^\top\}$
- Labels: $\mathbb{Y} = \{0, 1, 1, 0\}$
- Model: $f(x, w, b) = x^{\top}w + b$

Can it learn this?

- Input: $\mathbb{X} = \{[0,0]^\top, [0,1]^\top, [1,0]^\top, [1,1]^\top\}$
- Labels: $\mathbb{Y} = \{0, 1, 1, 0\}$
- Model: $f(x, w, b) = x^{\top}w + b$

Can it learn this? Why not?

Result: $b = \frac{1}{2}, w = 0$; what does that do?

- Input: $\mathbb{X} = \{[0,0]^\top, [0,1]^\top, [1,0]^\top, [1,1]^\top\}$
- Labels: $\mathbb{Y} = \{0, 1, 1, 0\}$
- Model: $f(x, w, b) = x^{T}w + b$

Can it learn this? Why not?

Result: $b=\frac{1}{2}, w=0$; what does that do? everything $\frac{1}{2}$

Solution?

- Input: $\mathbb{X} = \{[0,0]^\top, [0,1]^\top, [1,0]^\top, [1,1]^\top\}$
- Labels: $\mathbb{Y} = \{0, 1, 1, 0\}$
- Model: $f(x, w, b) = x^{T}w + b$

Can it learn this? Why not?

Result: $b=\frac{1}{2}, w=0$; what does that do? everything $\frac{1}{2}$

Solution? Add a hidden layer $h = f^1(x, W, c)$ and $y = f^2(h, w, b)$

- Input: $\mathbb{X} = \{[0,0]^\top, [0,1]^\top, [1,0]^\top, [1,1]^\top\}$
- Labels: $\mathbb{Y} = \{0, 1, 1, 0\}$
- Model: $f(x, w, b) = x^{\top}w + b$

Can it learn this? Why not?

Result: $b = \frac{1}{2}, w = 0$; what does that do? everything $\frac{1}{2}$

Solution? Add a hidden layer $h = f^1(x, W, c)$ and $y = f^2(h, w, b)$

Complete model: $f(x, W, c, w, b) = f^2(f^1(x))$

Complete model: $f(x,W,c,w,b) = f^2(f^1(x))$

Complete model: $f(x, W, c, w, b) = f^2(f^1(x))$

ullet What function should f^1 compute? Linear?

Complete model: $f(x, W, c, w, b) = f^2(f^1(x))$

- What function should f^1 compute? Linear? no. $f^1(x) = W^\top x$ and $f^2(h) = w^\top h$ then $f(x) = w^\top W^\top x$,
- Make non-linear by 'activation' function. $h = g(W^{T}x + c)$
- Activation function applied element-wise $h_i = g(x^T W_{:,i} + c_i)$
- Rectified linear unit $g(z) = \max\{0, z\}$ (graph?)

Complete model: $f(x, W, c, w, b) = f^2(f^1(x))$

- What function should f^1 compute? Linear? no. $f^1(x) = W^\top x$ and $f^2(h) = w^\top h$ then $f(x) = w^\top W^\top x$,
- Make non-linear by 'activation' function. $h = g(W^{\top}x + c)$
- Activation function applied **element-wise** $h_i = g(x^\top W_{:,i} + c_i)$
- Rectified linear unit $g(z) = \max\{0, z\}$ (graph?)

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$
$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$
$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$W^{\top}X =$$

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$
$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$W^{\top}X = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$
$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$W^{\top}X = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$\max\{0, W^{\top}X + c\} =$$

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$
$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$W^{\top}X = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$\max\{0, W^{\top}X + c\} = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$\begin{split} W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0 \\ \text{Q: plot } \max\{0, W^\top X + c\} \text{ in 2d?} \\ X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \end{split}$$

$$W^{\top}X = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$\max\{0, W^{\top}X + c\} = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$

$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Q: can you validate this is a solution?

$$W^{\top}X = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$\max\{0, W^{\top}X + c\} = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$b = 0$$

Q: plot $\max\{0, W^{\top}X + c\}$ in 2d?

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$

$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Q: can you validate this is a solution?

$$W^{\top}X = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$\max\{0, W^{\top}X + c\} = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Q: plot $\max\{0, W^{\top}X + c\}$ in 2d?

Solution:

$$w^{\top} \max\{0, W^{\top}X + c\} + b =$$

Full model $f(x, W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$

$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Q: can you validate this is a solution?

$$W^{\top}X = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$\max\{0, W^{\top}X + c\} = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.00

0.75

1.25 1.50

Q: plot $\max\{0, W^{\top}X + c\}$ in 2d?

Solution:

$$\boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{X} + \boldsymbol{c}\} + \boldsymbol{b} = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$$

Questions?

Summary

- Feed forward networks
- How to train them using SGD
- How representations are learned (XOR example)