NCERT Question 10.5.2.5

EE23BTECH11032 - Kaustubh Parag Khachane *

Question 10.5.2.5: Find the number of terms in each of the following APs:

(*i*) 7, 13, 19, ... 205 (*ii*) 18, $15\frac{1}{2}$, 13, ... -47

Solution : (i)

Parameter	Used to denote	Values
$x_1(n)$	n th term of 1 st series	7 + 6n
$x_2(n)$	n^{th} term of 2^{nd} series	$18 - 2\frac{1}{2}n$
$x_1(0)$	First term of 1 st AP	7
$x_2(0)$	First term of 2 nd AP	18
d_1	Common difference of 1 st AP	6
d_2	Common difference of 2 nd	-2 ¹ / ₂
$X_i(z)$	z transform of $x_i(n)$, i= 1 or 2	$\sum_{n=-\infty}^{\infty} x(n) z^{-n}$
u(n)	unit step function	$\begin{cases} 1 \text{ for } n \ge 0 \\ 0 \text{ for } n < 0 \end{cases}$
U(z)	z transform of u(n)	$\sum_{n=0}^{\infty} z^{-n} = \frac{1}{1 - z^{-1}}$
ROC	Region of Convergence	To find

TABLE 0 Parameter Table

$$x_1(n) = x_1(0) + nd_1$$

The common difference of the AP is given by the difference between successive terms.

 \therefore Common difference $(d_1) = 6$

First term $x_1(0) = 7$

If 205 is the *nth* term of the series, we have :

$$205 = 7 + (n) 6 \tag{1}$$

$$\implies 198 = 6n \tag{2}$$

$$\implies$$
 33 = n (3)

 \therefore n goes from 0 to 33.

Answer: There are 34 elements in the series.

$$x_2(0) = x_2(0) + nd_2$$

The common difference of the AP is given by the difference between successive terms.

∴Common difference $d_2 = -2\frac{1}{2}$

First term $x_2(0) = 18$

If -47 is the n^{th} term of the series, we have :

$$-47 = 18 + (n)\left(-2\left(\frac{1}{2}\right)\right) \tag{4}$$

$$\implies -65 = (n)\left(-2\left(\frac{1}{2}\right)\right) \tag{5}$$

$$\implies n = 26$$
 (6)

 \therefore n goes from 0 to 26.

Answer: There are 27 elements in the series.

Question: Express the n^{th} term in each case as x(n) and find its z transform.

Solution:

(i)

$$x_1(n) = x_1(0) + nd_1 \tag{7}$$

$$x_1(n) = 7 + (n) 6$$
 (8)

The Z transformation for x(n) is given by :

$$X(z) = \left[\sum_{n = -\infty}^{\infty} x(n) z^{-n}\right] \tag{9}$$

However, $x_1(n)$ cannot be summed from $-\infty$ to zero as the number of terms cannot be negative due to which the n^{th} will not be defined for this range of n.

So, we will modify $x_1(n)$ by multiplying it with unit step function u(n) so we have the value as zero for n<0.

$$x_1(n) = (7 + (n) 6) u(n)$$
 (10)

$$x_1(n) = \begin{cases} 0 & \text{for } n < 0 \\ 7 + (n) 6 & \text{for } n \ge 0 \end{cases}$$
 (11)

Now, using the above function in equation (9):

$$X_{1}(z) = \sum_{n=-\infty}^{\infty} x_{1}(n) u(n) z^{-n}$$
 (12)

$$=\sum_{n=0}^{\infty} (x_1(0) + nd_1) z^{-n}$$
 (13)

$$= \left[\sum_{n=0}^{\infty} 7z^{-n} \right] + \left[\sum_{n=0}^{\infty} 6nz^{-n} \right]$$
 (14)

using
$$U(z)$$
 from $Table 0$ (15)

$$=7\frac{1}{1-z^{-1}}+6\left[\sum_{n=0}^{\infty}nz^{-n}\right]$$
 (16)

Calculating the integral in the above expression:

$$S = \sum_{n=0}^{\infty} n z^{-n} \tag{17}$$

The z transform of nu(n) is
$$-z \frac{dU(z)}{dz}$$
 (18)

$$\therefore S = \frac{z^{-1}}{(1 - z^{-1})^2} \tag{19}$$

Using equations (16) and (19):

$$X_1(z) = \frac{7}{1 - z^{-1}} + \frac{6z^{-1}}{(1 - z^{-1})^2}$$
 (20)

$$=\frac{7-z^{-1}}{\left(1-z^{-1}\right)^2}\tag{21}$$

Answer: The z transformation for x(n) where x(n) is the n^{th} term of the AP is $\frac{7-z^{-1}}{(1-z^{-1})^2}$.

(ii)

Similar to how we wrote equation (30) in the previous case,

$$x_2(n) = \left(18 + n\left(-2\frac{1}{2}\right)\right)u(n)$$
 (22)

$$x_2(n) = \begin{cases} 0 & \text{for } n < 0\\ 18 + n\left(-2\frac{1}{2}\right) & \text{for } n \ge 0 \end{cases}$$
 (23)

using equation (9) for z transfrom and Table 0,

$$X(z) = \sum_{n=0}^{\infty} x_2(n) u(n) z^{-n}$$
 (24)

$$=\sum_{n=0}^{\infty} (x_2(0) + nd_2) z^{-n}$$
 (25)

$$= 18 \left[\sum_{n=0}^{\infty} z^{-n} \right] + \left(-2\frac{1}{2} \left[\sum_{n=0}^{\infty} nz^{-n} \right] \right)$$
 (26)

Using equation (19) and U(z),

$$X(z) = 18\frac{1}{1 - z^{-1}} - \left(2\frac{1}{2}\right)S\tag{27}$$

$$= \frac{18}{1 - z^{-1}} - \left(2\frac{1}{2}\right) \frac{z^{-1}}{\left(1 - z^{-1}\right)^2} \tag{28}$$

$$=\frac{18 - \left(20\frac{1}{2}\right)z^{-1}}{\left(1 - z^{-1}\right)^2} \tag{29}$$

Answer: The z transformation for x(n) where x(n) is the n^{th} term of the AP is $\frac{18-(20\frac{1}{2})z^{-1}}{(1-z^{-1})^2}$.

Question: Plot the graph of x(n) and find the ROC of X(z) in each case.

Solution:

(i) The graph of $x_1(n)$ is :

Fig. 0. Plot of x(n)

The ROC of x(n) is defined as the range of values of z for which X(z) will converge where

X(z) is the z transform of x(n).

Hence, for $X_2(z)$ to converge, we must have $|z^{-1}| < 1$ or |z| > 1.

$$|X(z)| = \sum_{n = -\infty}^{\infty} |x(n)z^{-n}| < \infty$$
 (30)

Answer: The ROC of $X_2(z)$ is |z| > 1

By equation (16):

$$X(z) = 7 \left[\sum_{n=0}^{\infty} z^{-n} \right] + 6 \left[\sum_{n=0}^{\infty} n z^{-n} \right]$$
 (31)

The sum $(\sum_{n=0}^{\infty} z^{-n})$ will converge only if z is not zero and $|z^{-1}| < 1$ as it is forming an infinite GP with common difference z^{-1} .

Similarly for $\sum_{n=0}^{\infty} nz^{-n}$ to converge, we must have $|z^{-1}| < 1$

Hence, for $X_1(z)$ to converge, we must have $|z^{-1}| < 1$ or |z| > 1.

Answer: The ROC of $X_1(z)$ is |z| > 1

(ii) The graph of $x_2(n)$ is:

Fig. 1. Plot of x(n)

By equation (26):

$$X(z) = 18 \left[\sum_{n=0}^{\infty} z^{-n} \right] - \left(2\frac{1}{2} \right) \left[\sum_{n=0}^{\infty} n z^{-n} \right]$$
 (32)

ROC is given by equation (30)

The sum $\left[\sum_{n=0}^{\infty} z^{-n}\right]$ will converge only if z is not zero and $\left|z^{-1}\right| < 1$ as it is forming an infinite GP with common difference z^{-1} .

Similarly for $\sum_{n=0}^{\infty} nz^{-n}$ to converge, we must have $|z^{-1}| < 1$