Dostępna pamięć: 128MB

Sieć drogowa miasta *Goldshire* składa się ze skrzyżowań połączonych jednokierunkowymi drogami o określonych długościach. Zakładamy, że jeżeli **a** i **b** są skrzyżowaniami, to może istnieć co najwyżej jedna bezpośrednia droga z **a** do **b**, ale może istnieć jednocześnie droga z **a** do **b** i z **b** do **a**, oraz nie istnieje bezpośrednia droga z **a** do **a**. Przez *odległość* skrzyżowania **a** od **b** rozumiemy długość *najkrótszej* ścieżki z **a** do **b**.

Artur jest taksówkarzem w Goldshire. Każda jego trasa przejazdu zaczyna i kończy się na pewnych dwóch różnych skrzyżowaniach. Płacą mu od kilometra, więc nie idzie klientom na rękę i zawsze stara obrać się jak najdłuższą trasę do celu. Klienci są jednak sprytni i na każdym skrzyżowaniu na trasie sprawdzają pozostałą odległość do końcowego skrzyżowania. Jeżeliby dostrzegli, że na pewnych kolejnych skrzyżowaniach trasy ta odległość nie zmalała, to z pewnością donieśliby na Artura za oszustwo, a ten zostałby zwolniony, zatem nie może on dopuścić do takiej sytuacji.

Dla zadanej sieci drogowej, wraz z punktami startowym i końcowym trasy Artura, znajdź długość wyżej opisanej najdłuższej trasy przejazdu.

Wejście

Pierwsza linia wejścia zawiera cztery liczby całkowite n, m, s, t, oznaczające kolejno liczbę skrzyżowań, liczbę dróg, numer skrzyżowania startowego i numer skrzyżowania końcowego. Zachodzi $1 < n \le 2 \cdot 10^5, 1 \le m \le 4 \cdot 10^5, 1 \le s \le n, 1 \le t \le n, s \ne t$.

Kolejne m linii wejścia opisuje drogi Goldshire. Każda z nich zawiera trzy liczby całkowite a, b, w, oznaczające, że ze skrzyżowania a wychodzi droga do skrzyżowania b o długości w. Zachodzi $1 \le a \le n, \ 1 \le b \le n, \ a \ne b, \ 1 < w < 10^3$.

Zagwarantowane jest, że istnieje przynajmniej jedna ścieżka z s do t.

Wyjście

Na wyjście należy wypisać dokładnie jedną liczbę: długość najdłuższej trasy dla Artura zgodnej z warunkiem malejącej odległości.

Przykład

Dla danych wejściowych:

6814

 $1\ 2\ 2$

2 1 7

2 3 3

3 4 1

1 5 3

 $5\ 4\ 50$ $2\ 6\ 5$

 $6\ 4\ 3$

poprawnym wynikiem jest:

10

Objaśnienie do przykładu: Trasa wynikowa prowadzi kolejno przez skrzyżowania 1, 2, 6, 4. Trasa 1, 5, 4 jest dłuższa, ale odległość 1 od celu wynosi 6, a odległość 5 od celu wynosi 50, zatem nie spełnia warunku malejących odległości.