TP NN (Neural Networks) Techniques of AI [INFO-H-410] Correction v1.0.0

Source files, code templates and corrections related to practical sessions can be found on the UV or on github (https://github.com/iridia-ulb/INFOH410).

Feed forward neural network

Question 1. Consider the following fully connected feed forward NN:

- a) Give the equation for the output value of the network, given the network is linear.
- b) Show that the output equation of the perceptron is the same as the one of the neural net shown above.
- c) Now add an activation function f to each neuron and rewrite the first equation.
- d) Using the following inputs and weights, compute the output of the network using the sigmoid activation function first, and then the ReLU activation function.

inputs		weights					
x_1	x_2	w_1	w_2	w_3	w_4	w_5	w_6
1	1.5	1	2	3	2	1	3

Answer:

a)
$$y_1 = w_5(x_1w_1 + x_2w_3) + w_6(x_1w_2 + x_2w_4)$$

$$y_1 = x_1w_5w_1 + x_2w_5w_3 + x_1w_6w_2 + x_2w_6w_4$$

$$y_1 = x_1(w_5w_1 + w_6w_2) + x_2(w_5w_3 + w_6w_4)$$

b) This shows that a perceptron with two inputs x_1 an x_2 and weights $(w_5w_1+w_6w_2)$ and $(w_5w_3+w_6w_4)$ has the same output function.

c)
$$y_1 = f(w_5(f(x_1w_1 + x_2w_3)) + w_6(f(x_1w_2 + x_2w_4)))$$

d) if f = sigmoid, y1 = 0.98, if f = ReLU, y1 = 20.5

Question 2. We will now implement, create, and train a 4 layer fully connected feed forward neural network to solve a classification problem. The dataset for this problem will be generated automatically by the create_dataset function in utils.py

- a) Using the provided templates, implement a simple neural network. Start by filling the nn_template.py to implement the forward pass, the backpropagation, and the training function.
- b) Train your network using the automatically generated dataset, use the template $ex2_template.py$
- c) Observe the effect when changing some of the hyperparameters

Answer: see github for implementation

Question 3. Use tensorflow with keras to instanciate, train and test the same network as in the previous question (use ex3_template.py).

Answer: see github for implementation