Mohannad Elhamod

Language Modeling

What does a model mean?

Web search engine / ...

I saw a cat

Lena-voita

I grabbed the branch and broke it.

I went to the branch and deposited some money.

Context matters!

- I went to _____.
- I woke up at 7 am and went to ____.
- I woke up at 7 am, packed my book and notebook, and went to _____.

The more context, the more certain

I went to the branch and deposited some money.

I went to the bank and deposited some money.

I went to the ATM and deposited some money.

Words which frequently appear in similar contexts have similar meaning.

Lena-voita

I sat at the bank and ...

... watched the water flow.
... waited for my turn.

We process language sequentially*.

*We will talk about exceptions later...

Natural Language Processing (NLP)

Includes text generation:

- Text completion.
- Text summarization.
- Question answering.

But there are also many other tasks such as Text classification: (e.g., Sentiment analysis, Reviews, Fake news) or word classification.

Formalizing our thoughts

 So, language modeling is the chaining of word probabilities. How do we calculate these probabilities?

 $P(\mathbf{I} \quad \text{saw} \quad a \quad \text{cat} \quad \text{on} \quad \dots) = \\ P(\mathbf{I}) \cdot P(\text{saw}|\mathbf{I}) \cdot P(a|\mathbf{I} \text{ saw}) \cdot P(\text{cat}|\mathbf{I} \text{ saw a}) \cdot P(\text{on}|\mathbf{I} \text{ saw a cat}) \cdot \dots \\ \\ Probability of \mathbf{I} \text{ saw a cat on}$

counting...

$$P(\text{cat}) = \frac{N(\text{"cat" in corpus})}{N(\text{all words in corpus})}$$

$$P(\text{cat} \mid \text{my}) = \frac{N(\text{"my cat" in corpus})}{N(\text{"my" in corpus})}$$

Lena-voita

Can you foresee any problem with this calculation?...

N-grams

Instead, let's just use a context of fixed-length.

ullet n=3 (trigram model): $P(y_t|y_1,\ldots,y_{t-1})=P(y_t|y_{t-2},y_{t-1}),$

• n=2 (bigram model): $P(y_t|y_1,\ldots,y_{t-1})=P(y_t|y_{t-1}),$

• n=1 (unigram model): $P(y_t|y_1,\ldots,y_{t-1})=P(y_t)$.

Context is like a sliding window into the past.

Hugging Face is a startup based in New York City and Paris p(word)

Huggingface

Context size

 I went to the beach. My wife sat next to me. She was replying to some emails, and the bird stole our sandwich. Then it started raining suddenly and ____.

- Longer context: predictable outcome.
- Shorter context: Too unpredictable.

networks language modelina

General Model Architecture

Lena-voita

What is an embedding?

- embeddings = representation= features = latent space.
- It is a representation of your input.
- Example for images.

Word embeddings

- We ideally want words that have similar meanings to have smaller distances.
- Demo
- Examples:
 - 1. Word2Vec (Google)
 - 2. GloVe (Stanford)
 - 3. Train your own!

Tokenization

So, every time we have sentences to generate, we represent them as:

- A <u>batch</u> of sentences (i.e., batches)
- Each sentence is represented as a sequence of tokens (sequence length)
- Each token is represented as a vector (hidden size)

Why do word level?

Issues?

Issues?

Word-based tokenization

Very large vocabularies

Large quantity of out-of-vocabulary tokens

Loss of meaning across very similar words

Character-based tokenization

Very long sequences

Less meaningful individual tokens

Why do word level?

How about sub-words?

- Preserves word morphology.
- Can represent new words.
- Handles misspelling.
- Examples:

WordPiece Unigram Byte-Pair Encoding

Word embeddings

Word embeddings can also be used find directionality in the corpus:

- Demo 1 (semantics)
- Demo 2 (vector view)
- Demo 3 (dimensionality)

Word embeddings

Word embeddings can also be used find directionality in the corpus.

syntactic:
$$v(kings) - v(king) + v(queen) \approx v(queens)$$

Recurrent Neural Nets (RNNs)

 Combines the embeddings of previous context and current word
 → gives next word.

Text: I like the cat on a mat <eos>

Get new state from RNN

Recurrent Neural Nets (RNNs)

 We can add more layers and units per layer to increase complexity.

Lena-voita

Recurrent Neural Nets (RNNs)

Demo

Sampling The Distribution

- Always take top probability?
 - That makes the model deterministic (no creativity).
- Alternative?
 - Top-k or top-p.

Lena-voita

Sampling The Distribution

- Some words have way higher probability than others.
- This can be manually tuned through temperature.
- Demo

Measuring The Metric

- What are we looking for?
 - A model that is <u>not surprised</u> by the <u>new</u> text it seen.
- We use perplexity.
 - Takes values between 1 and number of possible tokens.
 - Smaller is better.
 - Demo

RNNs (issues)

- Gradient becomes insignificant for long contexts
 - The network forgets early words...
 - It is called the "vanishing gradient" or "memorization" problem.
 - RNNs have an issue memorizing long contexts.

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the gradient for the vanilla RNN unit.

distill.pub

Attempted solution: LSTM

- Instead of one representation, let's have two!
 - One for short-term memory
 - And one for long-term memory.
- Somewhat of an improvement.

There are other similar models

GRUs, CNNs...

But we will not talk about them here.

CNN

Question for next week...

What limitations are inherent in traditional NLP models, and how might they be addressed?

Assignment

