Data Mining

Chapter 5
Association Analysis: Basic Concepts

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

$$\{Milk, Diaper\} \Rightarrow \{Beer\}$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold

- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R=602 rules

Mining Association Rules

TID	Item s
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Reducing Number of Candidates

Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

If every subset is considered,
$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning, $6 + 6 + 4 = 16$

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

```
Itemset
{ Beer, Diaper, Milk}
{ Beer, Bread, Diaper}
{Bread, Diaper, Milk}
{ Beer, Bread, Milk}
```

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

$$6 + 15 + 20 = 41$$

With support-based pruning,

$$6 + 6 + 4 = 16$$

Triplets (3-itemsets)

Itemset	Count
{ Beer, Diaper, Milk}	2
{ Beer,Bread, Diaper}	2
{Bread, Diaper, Milk}	2
{Beer, Bread, Milk}	1

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread, Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

With support-based pruning,

$$6 + 6 + 4 = 16$$

$$6 + 6 + 1 = 13$$

Triplets (3-itemsets)

Itemset	Count
{ Beer, Diaper, Milk}	2
{ Beer,Bread, Diaper}	2
{Bread, Diaper, Milk}	2
{Beer, Bread, Milk}	1

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - ◆ Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - ◆ Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - ♦ Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Candidate Generation: Brute-force method

Figure 5.6. A brute-force method for generating candidate 3-itemsets.

Candidate Generation: Merge Fk-1 and F1 itemsets

Figure 5.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

 Merge two frequent (k-1)-itemsets if their first (k-2) items are identical

- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - Merge($\underline{AB}C$, $\underline{AB}D$) = $\underline{AB}CD$
 - Merge($\underline{AB}C$, $\underline{AB}E$) = $\underline{AB}CE$
 - Merge($\underline{AB}D$, $\underline{AB}E$) = $\underline{AB}DE$
 - Do not merge(<u>ABD</u>,<u>ACD</u>) because they share only prefix of length 1 instead of length 2

Candidate Pruning

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABCE,ABDE} is the set of candidate
 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABCE because ACE and BCE are infrequent
 - Prune ABDE because ADE is infrequent
- After candidate pruning: L₄ = {ABCD}

Candidate Generation: Fk-1 x Fk-1 Method

Figure 5.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Use of $F_{k-1}xF_{k-1}$ method for candidate generation results in only one 3-itemset. This is eliminated after the support counting step.

Alternate $F_{k-1} \times F_{k-1}$ Method

 Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.

- $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$
 - Merge(ABC, BCD) = ABCD
 - Merge(ABD, BDE) = ABDE
 - Merge(ACD, CDE) = ACDE
 - Merge(BCD, CDE) = BCDE

Candidate Pruning for Alternate $F_{k-1} \times F_{k-1}$ Method

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABDE because ADE is infrequent
 - Prune ACDE because ACE and ADE are infrequent
 - Prune BCDE because BCE
- After candidate pruning: L₄ = {ABCD}

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

 If |L| = k, then there are 2^k – 2 candidate association rules (ignoring L → Ø and Ø → L)

Rule Generation

 In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Association Analysis: Basic Concepts and Algorithms

Algorithms and Complexity

Factors Affecting Complexity of Apriori

Choice of minimum support threshold

Dimensionality (number of items) of the data set

Size of database

Average transaction width

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set

Size of database

Average transaction width

_

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Impact of Support Based Pruning

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support = 3

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

If every subset is considered,

$${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} + {}^{6}C_{4}$$

 $6 + 15 + 20 + 15 = 56$

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of itemsets
 - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
- Average transaction width

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of itemsets
 - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
 - run time of algorithm increases with number of transactions
- Average transaction width

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of itemsets
 - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
 - run time of algorithm increases with number of transactions
- Average transaction width
 - transaction width increases the max length of frequent itemsets
 - number of subsets in a transaction increases with its width, increasing computation time for support counting

Pattern Evaluation

 Association rule algorithms can produce large number of rules

- Interestingness measures can be used to prune/rank the patterns
 - In the original formulation, support & confidence are the only measures used

Computing Interestingness Measure

 Given X → Y or {X,Y}, information needed to compute interestingness can be obtained from a contingency table

Contingency table

	Y	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	N

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

f₀₁: support of X and Y

f₀₀: support of X and Y

Used to define various measures

 support, confidence, Gini, entropy, etc.

Drawback of Confidence

Custo mers	Tea	Coffee	
C1	0	1	
C2	1	0	•••
C3	1	1	
C4	1	0	

	Coffee	\overline{Coffee}	
Tea	150	50	200
\overline{Tea}	650	150	800
	800	200	1000

Association Rule: Tea → Coffee

Confidence \cong P(Coffee|Tea) = 150/200 = 0.75

Confidence > 50%, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

Drawback of Confidence

	Coffee	Coffee	
Tea	150	50	200
Tea	650	150	800
	800	200	1000

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 150/200 = 0.75

but P(Coffee) = 0.8, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!

 \Rightarrow Note that P(Coffee|Tea) = 650/800 = 0.8125

Drawback of Confidence

Custo mers	Tea	Honey	
C1	0	1	
C2	1	0	•••
C3	1	1	• • •
C4	1	0	
			_

	Honey	\overline{Honey}	
Tea	100	100	200
\overline{Tea}	20	780	800
	120	880	1000

Association Rule: Tea → Honey

Confidence \cong P(Honey|Tea) = 100/200 = 0.50

Confidence = 50%, which may mean that drinking tea has little influence whether honey is used or not

So rule seems uninteresting

But P(Honey) = 120/1000 = .12 (hence tea drinkers are far more likely to have honey Introduction to Data Mining, 2nd Edition

Measure for Association Rules

- So, what kind of rules do we really want?
 - Confidence(X → Y) should be sufficiently high
 - ◆ To ensure that people who buy X will more likely buy Y than not buy Y
 - Confidence($X \rightarrow Y$) > support(Y)
 - ◆ Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction
 - Is there any measure that capture this constraint?
 - Answer: Yes. There are many of them.

Statistical Relationship between X and Y

 The criterion confidence(X → Y) = support(Y)

is equivalent to:

- P(Y|X) = P(Y)
- $P(X,Y) = P(X) \times P(Y)$ (X and Y are independent)

If $P(X,Y) > P(X) \times P(Y) : X \& Y$ occur with more expectation

If $P(X,Y) < P(X) \times P(Y) : X \& Y$ occur with low expectation

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$
 lift is used for rules while interest is used for itemsets
$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	150	50	200
Tea	650	150	800
	800	200	1000

Association Rule: Tea \rightarrow Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.8

 \Rightarrow Interest = 0.15 / (0.2×0.8) = 0.9375 (< 1, therefore is negatively associated)

So, is it enough to use confidence/Interest for pruning?

There are lots of measures proposed in the literature

Measure (Symbol)	Definition
Correlation (ϕ)	$\frac{Nf_{11} - f_{1+} f_{+1}}{\sqrt{f_{1+} f_{+1} f_{0+} f_{+0}}}$
Odds ratio (α)	$(f_{11}f_{00})/(f_{10}f_{01})$
Kappa (κ)	$\frac{Nf_{11} + Nf_{00} - f_{1+}f_{+1} - f_{0+}f_{+0}}{N^2 - f_{1+}f_{+1} - f_{0+}f_{+0}}$
Interest (I)	$(Nf_{11})/(f_{1+}f_{+1})$
Cosine (IS)	$(f_{11})/(\sqrt{f_{1+}f_{+1}})$
Piatetsky-Shapiro (PS)	$\frac{f_{11}}{N} - \frac{f_{1+}f_{+1}}{N^2}$
Collective strength (S)	$\frac{f_{11} + f_{00}}{f_{1+} + f_{+1} + f_{0+} + f_{+0}} \times \frac{N - f_{1+} + f_{+1} - f_{0+} + f_{+0}}{N - f_{11} - f_{00}}$
Jaccard (ζ)	$f_{11}/(f_{1+}+f_{+1}-f_{11})$
All-confidence (h)	$\min\left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$