

ASSIGNMENT FOR DIMENSIONAL ANALYSIS

- 1. The dimensional formula for latent heat is
 - (a) $M^0L^2T^{-2}$
 - (b) MLT $^{-2}$
 - (c) ML^2T^{-2}
 - (d) ML^2T^{-1}
 - Ans: (a)
- 2. The dimensional formula of modulus of elasticity is
 - (a) T^{-1}
 - (b) MT^{-2}
 - (c) $ML^{-1}T^{-2}$
 - (d) $ML^{-1}T^{-1}$
 - Ans: (c)
- 3. The dimension of $\frac{1}{2}\epsilon_0 E^2$ (ϵ_0 = permittivity of free space and E = electric field) is
 - (a) MLT^{-1}
 - (b) ML^2T^{-2}
 - (c) $ML^{-1}T^{-2}$
 - (d) ML^2T^{-1}
 - Ans: (c)
- 4. If velocity (V), acceleration (A) and force (F) are taken as fundamental quantities instead of mass (M), length (L) and time (T), the dimensions of Young's modulus of elasticity would be [with M, L and T as fundamental quantities and Young's modulus = ML⁻¹T⁻²]
 - (a) $FA^{2}V^{-2}$
 - (b) FA^2V^{-3}
 - (c) FA^2V^{-4}

- (d) FA^2V^{-5}
- Ans: (c)
- 5. The number of particles crossing per unit area perpendicular to X-axis in unit time is

$$N = -D \frac{n_2 - n_1}{x_2 - x_1}$$

where n_1 and n_2 are number of particles per unit volume for the value of x_1 and x_2 respectively. The dimensions of diffusion constant D are

- (a) M⁰LT²
- (b) $M^0L^2T^{-4}$
- (c) M^0LT^{-3}
- (d) $M^0L^2T^{-1}$
- Ans: (d)
- 6. The ratios L/R and RC (L = inductance, R = resistance and C = capacitance) have the same dimension as that of
 - (a) Velocity
 - (b) Acceleration
 - (c) Time
 - (d) Force
 - Ans: (c)
- 7. A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity η flowing per second through a tube of radius r and length ℓ and having a pressure p across its end is $\left(\left[\eta\right] = \mathsf{ML}^{-1}\mathsf{T}^{-1}\right)$
 - (a) $V = \pi p r^4 / 8 \eta \ell$
 - (b) $V = \pi \eta \ell / 8 p r^4$
 - (c) $V = 8p\eta \ell / \pi r^4$
 - (d) $V = \pi p \eta / 8\ell r^4$
 - Ans: (a)

- 8. Which of the following relations can be derived by the method of dimensional analysis?
 - (i) $Q = Q_0 e^{-t/RC}$
 - (ii) $y = A \cos \frac{2\pi}{\lambda} (ct x)$
 - (iii) K = $\frac{1}{2}$ mv $^{2} + \frac{1}{2}I\omega^{2}$
 - (iv) V = $\frac{\pi Pr^4}{8\eta \ell}$
 - (a) (i) and (ii)
 - (b) (ii) and (iii)
 - (c) (iii) and (iv)
 - (d) None of these

Ans: (d)

- 9. The time dependence of a physical quantity P is given by $P = P_0 \exp(-\alpha t^2)$ [where α is a constant and t is time]. The constant α
 - (a) Is dimensionless
 - (b) Has dimensions T⁻²
 - (c) Has dimensions T⁻¹
 - (d) Has dimensions of P

Ans: (b)

- 10. The dimensional formula for Universal Gravitational Constant is
 - (a) $M^{-1}L^3T^{-2}$
 - (b) $M^{-1}L^3T^{-1}$
 - (c) M^0LT^{-3}
 - (d) $M^0L^2T^{-1}$

Ans: (a)

11. The viscous force depends on

- (a) η , r & v
- (b) η , P & v
- (c) η , r & P
- (d) P , r & v
- Ans: (a)