The Paired-Samples t Test

Chapter 10

- > So far, everything we've worked with has been *one* sample
 - One person = Z score
 - One sample with population standard deviation = Z test
 - One sample no population standard deviation = single t-test

- > So what if we want to study either *two* groups or the same group *twice*
 - Between subjects = when people are only in one group or another (can't be both)
 - Repeated measures = when people take all the parts of the study

- > Between subjects design = independent t test (chapter 11)
- > Repeated measures design = dependent t test (chapter 10)

- So what do you do when people take things multiple times?
 - Order effects = the order of the levels changes the dependent scores
 - >Weight estimation study
 - >Often also called fatigue effects
 - What to do?!

- > Counterbalancing
 - Randomly assigning the order of the levels, so that some people get part 1 first, and some people get part 2 first
 - Ensures that the order effects cancel each other out
 - So, now we might meet step 2!

Assumptions

Assumption	Solution
Normal distribution	N >=30
DV is scale	Nothing – do nonparametrics
Random selection (sampling)	Random assignment (to which counterbalance order! We can do this now!)

Paired-Samples t Test

- > Two sample means and a within-groups design
- > We have two scores for each person ... how can we test that?
 - The major difference in the paired-samples
 t test is that we must create difference
 scores for every participant

Paired-Samples t Test

> Distributions

- Z = Distribution of scores
- Z = distribution of means (for samples)
- t = distribution of means (for samples with estimated standard deviation)
- t = distribution of differences between means (for paired samples with estimated standard deviation)

Distribution of Differences Between Means

Distribution of Differences Between Means

- > So what does that do for us?
 - Creates a comparison distribution (still talking about *t* here ... remember the comparison distribution is the "population where the null is true")

Where the difference is centered around zero, therefore um = 0.

Distribution of Differences Between Means

- > When you have one set of scores by creating a difference score ...
 - You basically are doing a single sample t where um = 0.
 - Whew! Same steps.

Steps for Calculating Paired Sample *t* Tests

- > Step 1: Identify the populations (levels), distribution, and assumptions.
- > Step 2: State the null and research hypotheses.
- > Step 3: Determine the characteristics of the comparison distribution.
- > Step 4: Determine critical values, or cutoffs.
- > Step 5: Calculate the test statistic.
- > Step 6: Make a decision.

- > Let's work some examples: chapter 10 docx on blackboard.
- > List out the assumptions:
 - DV is scale?
 - Random selection or assignment?
 - Normal?

- > List the sample, population, and hypotheses
 - Sample: difference scores for the two measurements
 - Population: those difference scores will be zero (um = 0)

- > List the descriptive statistics
- > M difference:
- > SD difference:
- > SE difference:
- > N:
- > um = 0

- > You will have two sets of scores to deal with.
 - We can use these scores in wide format,
 - so let's enter them that way.
 - Excel file is online.

$\langle \downarrow \downarrow \rangle$	☐					
	old	÷	new	÷		
1		2		4		
2		1		2		
3		5		5		
4		3		5		
5		3		4		
6		2		3		
7		5		4		

- > We want to get a mean difference score first.
 - Important! Think about the hypothesis. If you pick a one-tailed test, the order of subtraction is important!

- > Create a difference score to calculate the numbers you need:
 - difference = data\$column data\$column

- > Get the mean, sd, and se in the same way we did in the last chapter:
 - summary(difference)
 - sd(difference)
 - sd(difference) / sqrt(length(difference))

- > Figure out the cut off score, t_{critical}
- > Less test:
 - qt(.05, df, lower.tail = T)
- > Greater test:
 - qt(.05, df, lower.tail = F)
- > Difference test:
 - qt(.05/2, df, lower.tail = T)

May also be .01 - remember to read the problem.

```
> Find t<sub>actual</sub>

t.test(data$column,

data$column,

paired = T,

alternative = "less" OR "greater" OR

"two.sided",

conf.level = .95 OR .99)
```

> Stop! Make sure your mean difference score, df, and hypothesis all match.

Paired t-test

- > Compare step 4 and 5 is your score more extreme?
 - Reject the null
- > Compare step 4 and 5 is your score closer to the middle?
 - Fail to reject the null

Confidence Interval

- > Lower = $M_{difference} t_{critical} *SE$
- > Upper = $M_{difference} + t_{critical} *SE$

- > A quicker way!
 - Use t.test() with a TWO tailed test to get the two tailed confidence interval.
 - Or use the effect size coding R script!

Effect Size

> Cohen's d:

- Note this S = s of the difference scores not s of either level.
- Remember, SD = s.

$$d = \frac{(M - \mu)}{s}$$

Effect Size

- > Run all the effsize.R to get the right functions.
- > d.deptdiff(mdiff = .857, sddiff = 1.07, n = 7, a = .05, k = 2)

$$M = 0.86$$
, $SD = 1.07$, $SE = 0.40$, $95\%CI[-0.13 - 1.85]$
 $t(6) = 2.12$, $p = 0.08$, $d = 0.80$, $95\%CI[-0.09 - 1.64]$

- Remember that t values here are always two-tailed, t will match but not necessarily p.