EXAME DE INGRESSO — BOLSAS PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA

CÓDIGO	NOTA	

T1	
T2	
Т3	
T4	
T5	
Т6	

A1	
A2	
C1	
C2	

As respostas aos testes T1-T6 devem ser justificadas

T1 Se A e B são matrizes quadradas não nulas tais que AB = 0 (matriz nula) então:

- (a) A = 0 ou B = 0.
- (b) A e B são singulares.
- (c) A = 0 e B = 0.
- (d) Nada podemos afirmar.

T2 Sejam $S = \{x \in \mathbb{R}^4 \mid x_2 = x_1 - x_3 = 0\}$ e $T \subset \mathbb{R}^4$ um subespaço tal que $S + T = \mathbb{R}^4$. Considere as seguintes afirmações:

I. As dimensões de S e T são 3 e 1, respectivamente.

II. A dimensão de $S \cap T$ pode ser 1.

III. A dimensão de $S \cap T$ pode ser 2.

Está correto o que se afirma em:

- (a) I, apenas.
- (b) II, apenas.
- (c) II e III, apenas.
- (d) I. II e III.

T3 Para todo natural $n, n^3 - n$ é um número:

- (a) divisível por 3.
- (b) impar.
- (c) múltiplo de 9.
- (d) primo.

- T4 Complete a afirmação: "Se uma função $f: \mathbb{R} \to \mathbb{R}$ é contínua no intervalo [a,b] e $f(a)\cdot f(b)<0$ então f possui ______ neste intervalo".
 - (a) uma descontinuidade.
 - (b) um ponto crítico.
 - (c) um zero.
 - (d) uma inflexão.

- **T5** Sejam A e B duas matrizes quadradas de mesma ordem e semelhantes, isto é, existe uma matriz não singular T tal que TB = AT. Qual das proposições abaixo é falsa?
 - (a) $A \in B$ têm o mesmo traço.
 - (b) Os autovalores de A e B são os mesmos.
 - (c) O determinante de T é diferente de zero.
 - (d) A e B têm o mesmo determinante.

T6 [Teorema do Valor Médio] Se $f: \mathbb{R} \to \mathbb{R}$ é uma função contínua em [a,b] e diferenciável em (a,b) então existe $c \in (a,b)$ tal que

$$f(b) - f(a) = f'(c)(b - a).$$

Considere as seguintes afirmações:

I. Existe $d \in (a, b)$ tal que a tangente ao gráfico de f em x = d é paralela ao segmento de reta que une as extremidades do gráfico em x = a e x = b.

II. Se f'(x) = 0 para todo $x \in (a, b)$ então f é constante em (a, b).

III. Se f(a) = f(b) então f'(p) = 0 para algum $p \in (a, b)$.

Está correto o que se afirma em:

- (a) I, apenas.
- (b) II, apenas.
- (c) I e III, apenas.
- (d) I, II e III.

A1 Sejam $u, v \in w$ vetores em \mathbb{R}^n , linearmente independentes. Determine todos os valores de $\lambda \in \mathbb{R}$ para os quais $\lambda u + v, u + \lambda v + w \in \lambda u + v + \lambda w$ sejam linearmente independentes.

- A2 Seja A uma matriz quadrada de ordem 2 com dois autovalores reais e distintos, λ e μ , e considere os conjuntos $L = \{Ax \lambda x \mid x \in \mathbb{R}^2\}$ e $U = \{x \in \mathbb{R}^2 \mid Ax = \mu x\}$.
 - (a) Mostre que L e U são subcspaços vetoriais de \mathbb{R}^2 .
 - (b) Mostre que $L \subset U$.

- C1 Considere uma função de duas variáveis, $f: \mathbb{R}^2 \to \mathbb{R}$, diferenciável, e seja $(a, b) \in \mathbb{R}^2$ um ponto de mínimo local de f.
 - (a) A condição

$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0$$

é necessária ou suficiente?

(b) Analise o ponto $(0,\pi)\in I\!\!R^2$ em relação à função

$$f(x,y) = x^2 \sin y + x \sin 2y.$$

[C2] [Teorema de Green] Seja \mathcal{D} um domínio do plano xy e seja \mathcal{C} uma curva simples, fechada, lisa por partes, contida em \mathcal{D} e cujo interior também está em \mathcal{D} . Sejam as funções P = P(x,y) e Q = Q(x,y) definidas e contínuas em \mathcal{D} , possuindo derivadas parciais primeiras contínuas. Nestas condições vale

$$\oint_{\mathcal{C}} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{\mathcal{R}} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y,$$

onde \mathcal{R} é a região fechada limitada por \mathcal{C} .

(a) Calcule

$$\oint_{\mathcal{C}} y \sqrt{xy} \, dx + x(1 + \sqrt{xy}) \, dy,$$

onde \mathcal{C} é uma curva qualquer satisfazendo as condições acima.

(b) Justifique por que o teorema de Green não pode ser aplicado à integral

$$\oint_{\mathcal{C}} \frac{y \, \mathrm{d}x - x \, \mathrm{d}y}{x^2 + y^2},$$

onde C é o quadrado de vértices em (1,0), (0,1), (-1,0) e (0,-1).