Sei M topologische Raum mit $M \neq \emptyset$, M erfüllt zweites Abzählbarkeitsaxiom und ist Hausdorffsch.

Dann heißt M topologische Mannigfaltikeit der Dimension n, falls es zu jedem Punkt $p \in M$ eine in M offene Umgebung U und eine offene Teilmenge $V \subset \mathbb{R}^n$ gibt, so dass ein Homöomorphismus $\varphi: U \to V$ existiert.

 (U,φ) nennt man eine Karte von M.

Sei M top. Mf. und $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha}) | \alpha \in A\}$ eine Familie von Karten von M.

Dann heißt \mathcal{A} ein (C^{∞}) -Atlas, falls folgendes gilt:

- 1. $\bigcup_{\alpha \in A} U_{\alpha} = M$
- 2. $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta} \text{ ist } C^{\infty} \text{ für alle } \alpha, \beta \in A.$

(Die Abbildungen $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ heißen Karten- oder Koordinatenwechsel.)

Sei \mathcal{A} ein C^{∞} -Atlas.

Dann heißt \mathcal{A} eine (C^{∞}) -differenzierbare Struktur, falls folgendes erfüllt ist:

3. \mathcal{A} ist maximal in dem Sinne, dass eine Karte (U, φ) bereits zu \mathcal{A} gehört, falls für alle $\alpha \in A$ folgende Abbildungen C^{∞}

$$\varphi \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U \cap U_{\alpha}) \to \varphi(U \cap U_{\alpha})$$

und $\varphi_{\alpha} \circ \varphi^{-1} : \varphi(U \cap U_{\alpha}) \to \varphi_{\alpha}(U \cap U_{\alpha})$

Defintion & Notiz (n-dim differenzierbare Mannigfaltigkeit)1.2 Differenzierbare Mf

Sei M eine n-dim. topologische Mf und \mathcal{A} eine differenzierbare Struktur.

Eine n-dimensionale Mannigfaltigkeit ist ein Paar (M, \mathcal{A}) .

NOTIZ 1: Zu jeder diffb. Mf gibt es stets einen abzählbaren Atlas. (Begründung: Abzählbare Basis von M)

Notiz 2: Ein C^{∞} Atlas induziert eine eindeutige differenzierebare Struktur.

Sei $M \subset \mathbb{R}^k$ eine nichtleere Teilmenge.

M heißt n-dim. Untermannigfaltigkeit von \mathbb{R}^k , wenn es

- 1. zu jedem Punkt $p \in M$ eine offene Umgebung $U \subset \mathbb{R}^k$ und
- 2. einen Diffeomorphismus $\varphi:U\to V\subset\mathbb{R}^k$ gibt, so dass

$$\varphi(M \cap U) = \{x = (x_i) \in \mathbb{R}^k | x_{n+1} = \dots = x_k = 0\} \cap V.$$

NOTIZ: Man kann eine Untermannigfaltigkeit des \mathbb{R}^k auch als differenzierbare Mf auffassen.

Seien $(M, \{(U_{\alpha}, \varphi_{\alpha}) | \alpha \in A\})$ und $(N, \{(V_{\beta}, \psi_{\beta}) | \beta \in B\})$ differenzierbare Mf und $f: M \to N$ stetig.

Dann heißt f differenzierbar oder auch glatt, wenn

$$\psi_{\beta} \circ f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap f^{-1}(V_{\beta})) \to \psi_{\beta}(V_{\beta})$$

für alle $\alpha \in A, \beta \in B$ C^{∞} ist.

Wir setzen:

$$C^{\infty} := \{ f : M \to N | f \text{ ist } C^{\infty} \}$$

Sei $f: M \to N$ eine bijektive Abbildung.

f heißt ein Diffeomorphismus, falls f und f^{-1} differenziert sind.

Existiert ein Diffeomorphismus zwischen zwei differenzierbaren MfM und N, so heißen M und N diffeomorph.

Es seien
$$U_i \subset M$$
, $p \in U_i$, $i = 1, 2$, $f_i \in C^{\infty}(U_i, \mathbb{R})$ beliebig.

Wir definieren für beliebig i, j = 1, 2 und $f_{i,j}$ wie oben eine Äquivalenzrelation

$$f_i \sim f_j : \Leftrightarrow \exists V \subset M, p \in V : f_i|_V = f_j|_V$$

Nun definieren wir folgendene Menge

$$\mathcal{F}_p := \{ f : U \to \mathbb{R} | U \subset M \text{ offen}, p \in U, f \text{ differenzierbar} \} / \sim$$

und bezeichnen ihre Elemente als Funktionskeime und schreiben für $f \in C^{\infty}(U, \mathbb{R})$, $p \in U$ für den Funktionskeim [f].

Bemerkung: \mathcal{F}_p ist eine \mathbb{R} -Algebra mit

$$[f] + [g] := [f + g], [f] \cdot [g] := [fg]$$

Zudem ist

$$v: \mathcal{F}_p \to \mathbb{R}, [f] \mapsto v([f]) := f(p)$$

ist wohldefiniert. Man kann ein Funktionskeim aber in keinen anderen Punkt außer p auswerten.

Es sei M eine diffb. Mf und sei

$$v: \mathcal{F}_p \to \mathbb{R},$$

eine lineare Abbildung, die die sogenannte Leibniz-Regel erfüllt, d.h.

$$v([f] \cdot [g]) = v([f]) \cdot g(p) + f(p) \cdot v([g]).$$

Dann nennen wir v einen Tangentialvektor an M von p.

Die Menge

 $T_pM := \{v \text{ ist Tangential vektor von } M \text{ in } p\}$

versehen mit der Vektorraumstuktur

$$(v+w)[f] := v([f]) + w([f]), \quad (\alpha v)[f] := \alpha \cdot v([f])$$

heißt Tangentialraum von M in p.

Ist $f \in C^{\infty}(U, \mathbb{R})$, so schreiben wir v(f) := v([f])

Sei M differenzierbar Mf, (U, φ) eine Karte um $p \in U$: $\varphi: U \to \mathbb{R}^n$.

Ist u_1, \ldots, u_n , so, dass

$$u_i: \mathbb{R}^n \to \mathbb{R}, \quad u_i(v_1, \dots, v_n) = v_i$$

ist, so heißen die u_1, \ldots, u_n Standardkoordinaten von \mathbb{R}^n .

Nun definieren wir durch

$$x_i := u_i \circ \varphi, \quad \text{also} \quad \varphi = (x_1, \dots, x_n)$$

die lokalen Koordinaten x_1, \ldots, x_n .

Sei M diffb. Mf, (U, φ) eine Karte um p mit lokalen Koordinaten $\varphi = (x_1, \dots, x_n)$.

Wir definieren

$$\frac{\partial}{\partial x_i}\bigg|_p : \mathcal{F} \to \mathbb{R}, \quad [f] \mapsto \frac{\partial}{\partial x_i}\bigg|_p [f] := \frac{\partial f}{\partial x_i}\bigg|_p := \frac{\partial f}{\partial x_i}(p) := \frac{\partial (f \circ \varphi^{-1})}{\partial u_i}(\varphi(p)).$$

Nun gilt: $\frac{\partial}{\partial x_i} \bigg|_{x}$ ist ein Tangentialvektor an p.

TODO: hier auch Bsp 1.4.5

Sei M eine n-dim diffb. Mf, $p \in M$.

Dann ist

$$\left\{ \frac{\partial}{\partial x_1} \Big|_p, \dots, \frac{\partial}{\partial x_n} \Big|_p \right\}$$

eine Basis von T_pM und für $v \in T_pM$ gilt:

$$v = \sum_{i=1}^{n} v(x_i) \cdot \frac{\partial}{\partial x_i} \bigg|_{p}.$$

Es folgt daraus $\dim(M) = \dim(T_pM)$.

Sei M diffb. Mf, $p \in M$, $F: M \to N$ differenzierbar.

Die lineare Abbildung

$$dF_p: T_pM \to T_{F(p)}N$$

gegeben durch

$$dF_p(v)(f) := v(f \circ F)$$

nennen wir das Differential von F in p

٠

Sei M,N n-dim bzw. m-dim diffb. Mf, $p \in M$, $F \in C^{\infty}(M,N)$. Weiter sei

- (U,φ) Karte um p mit lokalen Koordinanten $\varphi=(x_1,\ldots,x_n)$ und
- (V, ψ) Karte um F(p) mit lokalen Koordinaten $\psi = (y_1, \dots, y_m)$.

Dann gilt:

Die Matrix von dF_p bzgl der Basen $(\frac{\partial}{\partial x_i}|_p)$ und $(\frac{\partial}{\partial y_i}|_{F(p)})$ ist gleich der Jacobimatrix von $\psi \circ F \circ \varphi^{-1}$ in $\varphi(p)$.

Sei M, N, L differenzierbare Mf, $p \in M$ und $F \in C^{\infty}(M, N)$ und $G \in C^{\infty}(N, L)$.

Dann gilt:

$$d(G \circ F)_p = dG_{F(p)} \circ dF_p$$

Sei M differenzierbare Mf, $a, b \in \mathbb{R}$, I = (a, b). Zu $c \in C^{\infty}(I, M)$ sagen wir auch glatte Kurve in M.

Weiter definieren wir für $t \in (a, b)$:

$$c'(t) = \dot{c}(t) := dc_t(\frac{\partial}{\partial x}\Big|_t) \in T_{c(t)}M.$$

Mit $c:[a,b]\to M$ meinen wir:

$$\exists \varepsilon > 0, \ \overline{c} : (a - \varepsilon, b + \varepsilon) \to M : \overline{c}|_{(a,b)} = c$$

SATZ (KETTENREGEL UND KURVEN) DAS DIFFERENTIAL EINER ABBILDUNG

Sei M differenzierbare Mf, $F \in C^{\infty}(M, N)$, $p \in M$ und $v \in T_pM$. Weiter sei I = (a, b), $0 \in I$ und $c \in C^{\infty}(I, M)$ mit c(0) = p und c'(0) = v.

Dann gilt:

$$dF_p(v) = (F \circ c)'(0).$$

Sei M differenzierbare Mannigfaltigkeit. I,A beliebige Indexmengen, $\varphi_i \in C^{\infty}(M)$ für alle $i \in I$ und $(\varphi_i)_{i \in I}$ eine Familie. $\mathcal{U} = \{U_{\alpha} | \alpha \in A\}$ sei eine offene Überdeckung von M.

Gilt:

1. die Träger der φ_i sind für alle $i \in I$ lokal endlich, d.h.

$$\forall p \in M \exists U \subset M, p \in U : U \cap \text{supp } \varphi_i \neq \emptyset$$
 für höchstens endliche viele $i \in I$

2. Summe der Funktionenswerte ist 1 in jedem Punkt, genauer:

$$\sum_{i \in I} \varphi_i(p) = 1 \forall p \in M \quad \text{und} \quad \varphi_i(p) \ge 0 \forall p \in M, \forall i \in I,$$

so heißt die Familie $(\varphi_i)_{i\in I}$ eine Zerlegung des Eines von M.

Gilt:

$$\forall i \in I \; \exists \alpha \in A : \text{supp } \varphi_i \subset U_\alpha,$$

so heißt die Familie $(\varphi_i)_{i\in I}$ der Überdeckung \mathcal{U} untergeordnet.

Sei M diffb Mf, \mathcal{U} eine offene Überdeckung von M.

Dann existiert eine abzählbare differenzierbare Zerlegung der Eins, der $\mathcal U$ untergeordnet ist.

Korollar:

Sei $U \subset M$ offen, $A \subset U$ abgeschlossen in $M, f \in C^{\infty}(U)$.

Dann gibt $g \in C^{\infty}(M)$ mit $g|_A = f|_A$ und $g|_{M \setminus U} = 0$.

Sei
$$U \subset \mathbb{R}^n$$
 offen, $f \in C^1(U, \mathbb{R}^n)$

Ist $df_p: \mathbb{R}^n \to \mathbb{R}^n$ für ein $p \in U$ invertierbar, dann gilt

- 1. es gibt eine Umgebung V von p und W von f(p), so dass $f|_V:V\to W$ in Diffeomorphismus ist.
- 2. Das Differential von f^{-1} in $q \in W$ ist gegeben durch

$$(df^{-1})_q = (df_{f^{-1}(q)})^{-1}$$

Dieser Satz gilt auch für $f \in C^{\infty}(U, \mathbb{R}^n)$.

Seien M,N differenzierbare Mf gleicher Dimension. $U\subset M$ offen, $f\in C^\infty(U,N)$.

Existiert ein $p \in U$, so dass $df_p : T_pM \to T_{f(p)}N$ invertierbar ist, so existiert eine Umgebung V um pund $W \subset N$ um f(p), so dass

$$f|_V:V\to W$$

ein Diffeomorphismus ist.

Sei
$$U \subset \mathbb{R}^n$$
 eine Umgebung von $0 \in \mathbb{R}^n$.
 $f \in C^{\infty}(U, \mathbb{R}^k)$ mit $f(0) = 0$.

1. Ist $n \leq k$ und das Differential df_0 injektiv, so gibt es ein Diffeomorphismus ψ um $0 \in \mathbb{R}^k$ und φ um $0 \in \mathbb{R}^n$, so dass

$$\psi \circ f \circ \varphi^{-1}(x_1, \dots, x_n) = (x_1, \dots, x_n, \underbrace{0, \dots, 0}_{k-n})$$

für (x_1, \ldots, x_n) in der entsprechenden Umgebung von $0 \in \mathbb{R}^k$.

2. Für $n \ge k$ analog Aussage für df_0 surjektiv.

M, N seien differenzierbare Mf. $F \in C^{\infty}(M, N)$.

Wenn $df_p: T_pM \to T_{f(p)}N$ für alle $p \in M$ injektiv ist, so heißt F eine Immersion.

Weiter nennen wir F(M) eine immersierte Untermannigfaltigkeit von N.

M, N seien differenzierbare MF. $F \in C^{\infty}(M, N)$ sei eine Immersion und injektiv. F(M) sei mit der Teilraumtopologie ausgestattet.

Falls $F: M \to F(M) \subset N$ ein Homöomorphismus ist, so heißt F eine Einbettung.

F(M) heißt dann eingebettete Untermannigfaltigkeit von N.

M,N seien n- bzw. k-dim. diffb. Mf, $F: M \to N$ eine Immersion und $p \in M$.

Dann gibt es eine Umgebung U von p in M und eine Karte (V, ψ) von N um F(p), wobei $\psi = (y_1, \ldots, y_k)$, so dass

- 1. $y_{n+1}(q) = \cdots = y_k(q) = 0$ für alle $q \in V \cap F(U)$ und
- 2. $F|_U$ ist eine Einbettung.

Die Karte (V, ψ) heißt Untermannigfaltigkeitskarte.

Seien M, N, P diffb. Mf.

- 1. Satz 1 liefert als Spezialfall: Für $F:M\to\mathbb{R}^k$ ist F(M) gerade eine Untermannigfaltigkeit von \mathbb{R}^k im Sinne der früheren Definition. (Kapitel 1.2, Begriff der differenzierbaren Mf)
- 2. Einschränkung des Abbildungsraum: Für $F \in C^{\infty}(M,N), i: P \to M$ eine Einbettung.

Dann heißt $F \circ i \in C^{\infty}(P,N)$ die Einschränkung von F auf P.

Man schreibt auch $F|_P:P\to N$. Dabei ist wegen $i(P)\subset M$, dies als Einschränkung des Abbildungsraum zu interpretieren.

M, N, P seien diffb Mf, $F \in C^{\infty}(M, N)$, $i : P \to N$ eine Einbettung.

Es sei weiter: $F(M) \subset i(P)$ und $G: M \to P$ durch F(p) = i(G(p)) definiert (wohldefiniert, da i injektiv).

Dann gilt:

- 1. Falls i eine Einbettung ist, so ist G stetig.
- 2. Falls G stetig ist, so ist G glatt.

M, N differenzierbare Mf, $F \in C^{\infty}(M, N)$.

Ist für $p \in M$ das Differential $df_p : T_pM \to T_{F(p)}N$ surjektiv, dann heißt p regulärer Punkt. Andernfalls kritischer Punkt.

Sind für $q \in N$ alle Punkte $p \in F^{-1}(q)$ regulär, so heißt q regulärer Wert.

Andernfalls kritischer Wert.

Satz 3 () Unter-Mf

Es seien M, N n- bzw. k-dim. Mf. $F \in C^{\infty}(M, N), q \in F(M)$ ein regulärer Wert. Es sei $F^{-1}(q) \subset M$ versehen mit Teilraumtopologie.

Dann gilt:

- 1. $F^{-1}(q)$ ist eine n-k-dim. topologische Mf.
- 2. Es existiert eine eindeutige differenzierbare Struktur auf $F^{-1}(q)$, so dass $i: F^{-1}(q) \to M$ ein Einbettung ist und damit insbesondere: $i(F^{-1}(q))$ ist eine eingebettete Unter-Mf von M.

SATZ 4 () UNTER-MF

N seien diffb. Mf. Es sei $M \subset N$ versehen mit der Teilraumtopologie eine topologische Mf.

Dann gilt:

Trägt M eine differenzierbare Sturktur bezüglich derer $i: M \to N$ eine Einbettung ist, so ist diese differenzierbare Struktur eindeutig.

BSP UND BEM () UNTER-MF

2 Bsp zum Satz vom regulären Wert.

und folgende Bem:

TODO, Auch falls $M \subset N$ gilt , ist T_pM nicht auf natürlicheweise ein Unterraum von T_pN . Betrachte: $di_p(T_pM) \subset N$.

TODO wie identifiziert man T_pM und $di_p(T_pM)$?

Sei M, E diffb Mf. Für eine $U \subset M$ sei $pr_1 : U \times \mathbb{R}^k \to U, (u, x_1, \dots, x_k) \mapsto u$. Es sei $\pi \in C^{\infty}(E, M)$ und surjektiv.

Falls für alle $p \in M$ gilt:

- 1. $E_p := \pi^{-1}(p)$ ist ein k-dimensionaler Vektorraum.
- 2. Es existiert eine Umgebung $U \subset M$ von p und ein Diffeomorphismus:

$$\varphi: \pi^{-1}(U) \to U \times \mathbb{R}^k,$$

so dass gilt:

$$\pi = pr_1 \circ \varphi \text{ und } \varphi|_{E_q} : E_q \to \{q\} \times \mathbb{R}^k \stackrel{\sim}{=} \mathbb{R}^k \text{ ist linear.}$$

Dann heißt das Paar (E,π) ein (C^{∞}) -Vektorbündel vom Rang k über M.

- Das Urbild eines(!) Punktes heißt auch Faser, also: $E_p := \pi^{-1}(p)$ heißt Faser von p.
- E heißt Totalraum.
- M heißt Basis des Vektorbündels E
- φ heißt lokale Trivialisierung.

Sei M,E diffb Mf. (E,π) ein C^{∞} -Vektorbündel. Es sei $s \in C^{\infty}(M,E)$.

Gilt:

$$\pi \circ s = id_M$$
, also $\pi(s(p)) = p \quad \forall p \in M$,

so heißt s ein Schnitt von E.

Die Menge aller Schnitte von E wird mit $\Gamma(E)$ bezeichnet.

Ist s nur auf einer offenen Teilmenge definiert, so spricht man von einem lokalen Schnitt von E.

Notiz: $\Gamma(E)$ ist ein \mathbb{R} -Vektorraum. Zudem ist für $s \in \Gamma(E)$, $f \in C^{\infty}(E)$, $(fs)(p) := f(p) \cdot s(p)$ auch $fs \in \Gamma(E)$. Wobei diese skalare Multiplikation in E_p zuverstehen ist.

Algebraisch ist $\Gamma(E)$ ein Modul über dem Ring $C^{\infty}(M)$.

Satz und Definition (Tangentialbündel.) 1.8 Tangentialbündel

TODO

Elemente in $\Gamma(TM)$ heißen (differenzierbare) Vektorfelder auf M.

Für $U \subset M$ offen und $X \in \Gamma(TU)$ spricht man von lokalen Vektorfeldern auf M.

Sei $X \in \Gamma(TM), p \in M, f \in C^{\infty}(M)$, so definieren wir

$$X(f): M \to \mathbb{R}, \quad p \mapsto X_p(f).$$

X(f) nennt man Richtungsableitung ???

TODO Bsp $(\frac{\partial}{\partial x_i})$

für eine Vektorfeld.

TODO

 $\Gamma(TU)$ ist ein freier Modul über $C^{\infty}(U)$ mit Basis $\left\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right\}$

 $\Gamma(TM)$ ist ein Modul über $C^{\infty}(M)$

 $X \in \Gamma(TM)$ sind Derivationen auf $C^{\infty}(M)$.

$$X(fg) = X(f)g + fX(g).$$

Sei V ein K-VR und $[\cdot,\cdot]:V\times V\to V$ eine Abbildung, für die gilt:

- 1. bilinear
- 2. antisymmetrisch ([v, w] = -[w, v])
- 3. Jacobiidentiät

$$[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0$$

Dann heißt $(V, [\cdot, \cdot])$ eine Liealgebra. Die Abbildung $[\cdot, \cdot]$ heißt die Lieklammer dieser Liealgebra.

Es ist $\Gamma(TM)$ ein \mathbb{R} -Vektorraum. Weiter sei

$$[\cdot,\cdot]:\Gamma(TM)\times\Gamma(TM)\to\Gamma(TM)$$

gegeben durch

$$[X,Y]: M \to T_p M, \ p \mapsto [X,Y]_p := [X,Y](p) = X_p Y - Y_p X.$$

Es ist zu zeigen, dass dies wohldefiniert ist, dass also

$$[X,Y]_p:\mathcal{F}_p\to\mathbb{R}, [f]\mapsto [X,Y]_p(f)=X_p(Y(f))-Y_p(X(f))$$

die Leibnisregel erfüllt.

Weiter gilt:

 $(\Gamma(TM), [\cdot, \cdot])$ ist eine reelle Lielalgebra.

Sei X ein Vektorfeld auf M, $\alpha:(a,b)\to M$ eine differenzierbare Kurve.

Dann heißt α eine Integralkurve von X, falls

$$\dot{\alpha}(t) = X_{\alpha(t)} \quad \forall t \in (a, b)$$

Sei
$$(U, \varphi)$$
, $\varphi = (x_1, \dots, x_n)$ und $\alpha_i = x_i \circ \alpha$.

Wir setzen

$$F_i: \varphi(U) \to \mathbb{R}, \quad F_i(\varphi(q)) = (Xx_i)(q) = X_q(x_i)$$

Dann gilt

 α ist Integralkurve von $X \Leftrightarrow \alpha'_i(t) = F_i(\alpha_1(t), \dots, \alpha_n(t)), i = 1, \dots, n$

Sei $V \subset \mathbb{R}^n$ offen und $F: V \to \mathbb{R}$ differenzierbar. I bezeichne Intervall.

Dann gilt:

1. Existenz:

$$\forall q \in V \; \exists I \ni 0, c \in C^{\infty}(I, V) \text{ mit } c(0) = q, c'(t) = F(c(t))$$

2. Eindeutigkeit: Gilt für $c_i \in C^{\infty}(I, V), i = 1, 2$ $c'_i(t) = F(c_i(t)) \quad (i = 1, 2)$

und

$$\exists t_0 \in I : c_1(t_0) = c_2(t_0)$$

Dann gilt $c_1 = c_2$.

Sei X ein Vektorfeld auf einer differenzierbaren Mf. I, J seien Intervall.

Dann gilt:

1. Existenz: Es gibt durch jeden $p \in M$ eine Integralkurve von X, d.h.:

$$\forall p \in M \ \exists I \ni 0, \alpha \in C^{\infty}(I, M) \ \text{mit} \ \alpha(0) = p, \alpha'(t) = X_{\alpha(t)}.$$

2. Eindeutigkeit: Sind $\alpha_i: I \to M$ mit i = 1, 2 zwei Integralkurven von X mit $\alpha_1(t_0) = \alpha_2(t_0)$ für ein $t_0 \in I$, dann gilt $\alpha_1 = \alpha_2$.

Weiter folgt:

Es gibt zu jedem $p\in M$ eine maximal definierte Integralkurve $\alpha\in C^\infty(I,M)$ mit $\alpha(0)=p,$ d.h.

$$\exists \beta \in C^{\infty}(J, M) \text{ mit } 0 \in J, \beta(0) = p, \beta'(t) = X_{\beta(t)},$$

so gilt

$$J \subset I \text{ und } \alpha|_{J} = \beta$$

Sei M diffb. Mf, X Vektorfeld auf M.

Dann existiert eine Umgebung U um $p \in M$, ein Intervall I mit $0 \in I$, sowie

$$\Phi \in \mathbb{C}^{\infty}(I \times U, M) :$$

so dass gilt

- 1. $\Phi(0,q) = q$ für alle $q \in U$.
- 2. $\alpha:I\to M,\,t\mapsto \Phi(t,q)$ ist eine Integralkurve von X mit Anfangsbedingun $\alpha(0)=q,$ d.h.

$$\alpha'(t) = \frac{\partial}{\partial t} \Phi(t, q) = X_{\alpha(t) = \Phi(t, q)}$$

Dann heißt $\Phi \in C^{\infty}(I \times U, M)$ lokaler Fluss von X.

Falls $I = \mathbb{R}$, U = M so heißt $\Phi \in C^{\infty}(\mathbb{R} \times M, M)$ globaler Fluss.

Es gilt weiterhin, dass wenn $t, s \in I, q \in U$, ist $\Phi(t, q) \in U$ und

$$\Phi(s, \Phi(t, q)) = \Phi(s + t, q)$$

Sei M diffb. Mf, X Vektorfeld auf M.

Dann heißt X vollständig, wenn durch jeden Punkt $p \in M$ eine Integralkurve läuft, die auf ganz \mathbb{R} definiert ist, wenn also

 $\forall p \in M \ \exists \alpha \in C^{\infty}(\mathbb{R}, M) \ \text{mit} \ \alpha(0) = p, \alpha'(t) = X_{\alpha(t)} \ \forall t \in \mathbb{R}$ erfüllt ist.

Sei M diffb. Mf.

Ist M kompakt, so ist jedes Vektorfeld auf M vollständig.

Sei M diffb. Mf.

Ist X ein vollständiges Vektorfeld, dann existiert ein globaler Fluss auf X.

DEFINITION (EINPARAMETERGRUPPE VON DIFFEOMORRHISMEN) FLÜSSE VON VEKTORFELDERN

Sei M diffb. Mf. X ein vollständiges Vektorfeld. $\Phi: \mathbb{R} \times M \to M$ der globale Fluss von X.

Wir definieren:

$$\Phi_t: M \to M, \ p \mapsto \Phi_t(p) := \Phi(t, p)$$

Dann ist

$$\Phi_{t+s}(p) = \Phi(t+s,p) = \Phi(t,\Phi(s,p)) = (\Phi_t \circ \Phi_s)(p)$$

also

$$\Phi_{t+s} = \Phi_t \circ \Phi_s, \quad \Phi_{-t} = \Phi_t^{-1}, \quad \Phi_0 = id_M$$

Damit definieren wir

Sei
$$\Psi \in C^{\infty}(\mathbb{R} \times M, M)$$
 und gilt für $\Psi_t : t \mapsto \Psi(t, p)$,
$$\Psi_0 = id_M \quad \text{und} \quad \Psi_{t+s} = \Psi_t \circ \Psi_s \ \forall t, s \in \mathbb{R}$$

so heißt Ψ Einparametergruppe von Diffeomorphismen.

Hier ausführen wie vollständige Vektorfelder und Einparametergruppen einandern zugeordnet werden können. TODO

Es sei V ein endlich-dim. \mathbb{R} -Vektorraum, $\langle \cdot, \cdot \rangle$ eine symmetrische Bilinearform auf V.

Dann heißt $\langle \cdot, \cdot \rangle$ nichtentartet, falls

$$\forall v \in V \setminus \{0\} \ \exists w \in V : \langle v, w \rangle \neq 0.$$

Oder gleich bedeutend damit:

- Die lineare Abbildung $V \to V^*, v \mapsto \langle v, \cdot \rangle$ ist injektiv, d.h.

$$\langle v, w \rangle = 0 \quad \forall w \in V \Rightarrow v = 0$$

- Für (beliebige) v_1, \ldots, v_n Basis von V gilt

$$\det(g_{ij}) \neq 0$$
 mit $g_{ij} = \langle v_i, v_j \rangle$

Sei V ein endlich-dim. \mathbb{R} -VR.

Und $\langle \cdot, \cdot \rangle$ sei eine nichtentartete symmetrische Bilinearform.

- Eine nichtentartete symmetrische Bilinearform $\langle \cdot, \cdot \rangle$ auf V heißt auch pseudo-Euklidisches Skalarprodukt.
- $(V,\langle\cdot,\cdot\rangle)$ heißt pseudo-Euklidscher Vektorraum.
- $(V, \langle \cdot, \cdot \rangle)$ sei ein n-dim. pseudo-Euklidscher Vektorraum und p die maximale Dimension eines Unterraums, auf dem $\langle \cdot, \cdot \rangle$ positiv-definit ist, so heißt (n-p,n) die Signatur von V.

Sei $\langle \cdot, \cdot \rangle$ zusätzlich positiv-definit, so ist die Signatur (0, n) und

- $\langle \cdot, \cdot \rangle$ heißt dann (Euklidsches) Skalarprodukt.
- $(V, \langle \cdot, \cdot \rangle)$ heißt ein Euklidscher Vektorraum.

Definition 3 und Notiz (pseudo-Riemmansche Metrik) 2.1 (pseudo-) Riem. Mf

Sei
$$M$$
 eine diffb. Mf, $g \in \Gamma(T_2^0(M))$.

Falls gilt

 $g(p):T_pM\times T_pM\to\mathbb{R}$ ist für alle $p\in M$ ein pseudo-Euklidisches Skalarprodukt auf $T_pM,$

so heißt, das symmetrische (0,2)-Tensorfeld g eine pseudo-Riemannsche Metrik.

Das Paar (M,g) heißt pseudo-Riemannsche Mannigfaltigkeit.

Sei nun $g_p := g(p)$ für alle $p \in M$ positiv-definit,

dann heißt g eine Riemannsche Metrik und (M,g) eine Riemannsche Mannigfaltigkeit.

Sei (M,g) eine zusammenhängende pseudo-Riemannsche Mf, so ist die Signatur aus stetigkeitsgründen von g_p konstant auf M.

Allgemein nennt man eine konstante Signatur, die Signatur von M.

Sei (M, g) eine pseudo-Riemannsche Mf der Signatur (1,p).

Dann heißt (M,g) eine Lorentz-Mannigfaltigkeit

TODO, per Hand insbesondere zu Untermannigfaltigkeiten und Produktmannigfaltigkeiten Auch wie man (g_{ij}) als Matrix auffassen kann und Satz von Sylvester

Auf jeder differenzierbaren Mannigfaltigkeiten M existiert eine Riemannsche Metrik.

Notiz: Diese Aussage gilt nicht für pseudo-Riemannsche Mf.

Sei M eine differenzierbare Mf. Weiter sei eine Abbildung gegeben durch

$$\nabla : \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM), \quad (X,Y) \mapsto \nabla_X Y,$$

die folgende Eigenschaften für alle $X,Y,Z\in\Gamma(TM)$ und für alle $f,g\in C^\infty(M)$ erfüllt:

1.
$$\nabla_{fX+gY}Z=f\nabla_XZ+g\nabla_YZ$$
 (C^{∞} -linear in 1. Komponente)

2.
$$\nabla_X(Y+Z) = \nabla_XY + \nabla_YZ$$
 (additiv in 2. Komponente)
$$\nabla_X(fY) = f\nabla_XY + X(f)Y$$
 (''Produktregel'' in 2. Komponente)

Dann heißt ∇ eine (affinier) Zusammenhang oder kovariante Ableitung.

Sei M differenzierbare Mf, $p \in M$ und ∇ eine affinier Zusammenhang.

Dann gilt für alle $X_1, X_2, Y \in \Gamma(TM)$:

Falls
$$X_1(p) = X_2(p)$$
, so folgt $(\nabla_{X_1} Y)(p) = (\nabla_{X_2} Y)(p)$

FOLGERUNG: $v \in T_pM$ kann zu einem beliebigen Vektorfeld $X \in \Gamma(TM)$ fortgesetzt werden. Sei $Y \in \Gamma(TM)$ so setzen wir:

$$(\nabla_v Y) := (\nabla_X Y)(p).$$

Die Wohldefiniertheit dieser Abbildung, d.h. dass sie unabhängig von der Wahl der Erweiterung ist, folgt gerade aus Satz 1.

$$s$$
-mal

Sei M diffb. Mf und $A: \Gamma(TM) \times \cdots \times \Gamma(TM) \to \Gamma(TM)$ eine s-multilineare Abbildung für die gilt, dass für alle $f \in C^{\infty}(M)$ und für alle $X_1, \ldots, X_s \in \Gamma(TM)$:

$$A(X_1,\ldots,fX_i,\ldots,X_s)=fA(X_1,\ldots,X_s)\quad\forall i\in\{1,\ldots,s\}.$$

Dann existiert ein (1, s)-Tensorfeld $B \in \Gamma(T_s^1(M))$ auf M, so dass

$$A(X_1,\ldots,X_s)(p)=B_p(X_1(p),\ldots,X_s(p))\quad\forall X_1,\ldots,X_s\in\Gamma(TM),\forall p\in M.$$

 \cdot Eine analoge Aussage gilt für $(r,s)\text{-}\mathsf{Tensorfelder}.$ Hier betrachtet man multilineare Abbildung

$$A: \underbrace{\Gamma(T^*M) \times \cdots \times \Gamma(T^*M)}_{r\text{-mal}} \times \underbrace{\Gamma(TM) \times \cdots \times \Gamma(TM)}_{s\text{-mal}} \to C^{\infty}(M),$$
 die $C^{\infty}(M)$ -linear in jedem Eintrag sind.

TODO Seite 36 $X \mapsto \nabla_X Y$ ist eine (1,1)-Tensorfeld.

Sei M eine diffb. Mf mit affinen Zusammenhang ∇ , $p \in M, v \in T_pM, Y_1, Y_2 \in \Gamma(TM)$.

Gilt, dass Y_1 und Y_2 in einer Umgebung übereinstimmen, so folgt $\nabla_v Y_1 = \nabla_v Y_2$.

Sei M diffb. Mf, (U, φ) , $\varphi = (x_1, \ldots, x_n)$ lokale Koordinaten auf M.

Als Konsequenz der Sätze dieses Abschnitts ist

$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} : U \to TU$$

wohldefiniert.

Als Element in $\Gamma(TU)$ können wir es in eine Basis schreiben

$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k}$$

und definieren darüber die Christoffel-Symbole $\Gamma_{ij}^k \in C^{\infty}(U)$, welche den Zusammenhang ∇ auf U bestimmen.

Definition 1 und Notizen (Vektorfeld längs c)2.4 Vektorfelder längs Kurven

Sei M diffb. Mf,
$$I = [a, b] \subset \mathbb{R}, c \in C^{\infty}(I, M)$$

Eine differenzierbare Abbildung

$$X: I \to TM, \ t \mapsto X_t := X(t) \text{ mit } X_t \in T_{c(t)}M \ \forall t \in I$$

heißt Vektorfeld längs c.

Wir bezeichnen den Raum der Vektorfelder längs c mit $\Gamma_c(TM)$.

Notiz: \dot{c} ist ein Vektorfeld längs c.

Genauso wie $X \circ c$ mit $X \in \Gamma(TM)$, $c \in C^{\infty}(I, M)$. Andersherum ist nicht jedes Vektorfeld längs einer Kurve Einschränkung eines Vektorfeldes auf M. Diese Aussage sollte jedoch lokal gelten.

NOTIZ: $\Gamma_c(M)$ ist ein Modul über $C^{\infty}(I)$.

Notiz: Für $X \in \Gamma(TM)$ ist $(\nabla_{\dot{c}}X)(t) := \nabla_{\dot{c}(t)}X \in \Gamma_c(TM)$.

Sei M diffb. Mf mit affinem Zusammenhang ∇ , $I = [a, b] \in \mathbb{R}$, $c \in C^{\infty}(I, M)$.

Dann existiert eine eindeutige Abbildung

$$\frac{\nabla}{dt}: \Gamma_c(TM) \to \Gamma_c(TM), \quad X \mapsto \frac{\nabla}{dt}X,$$

die folgende drei Eigenschaften erfüllt für alle $X,Y\in\Gamma_c(TM),\,f\in C^\infty(I)$:

1.
$$\frac{\nabla}{dt}(X+Y) = \frac{\nabla}{dt}X + \frac{\nabla}{dt}Y$$

2.
$$\frac{\nabla}{dt}(fX) = f'X + f\frac{\nabla}{dt}X$$
,

ist $X = Z \circ c$ für ein $Z \in \Gamma(TM)$, so gilt weiter

3.
$$\frac{\nabla}{dt}X = \nabla_{\dot{c}}Z$$
.

 $rac{
abla}{dt}$ heißt auch kovariante Ableitung längs c bzw. einer Kurve.

Weiter gilt in lokalen Koordinaten $(U, \varphi), \varphi = (x_1, \dots, x_n)$ und $f_i \in C^{\infty}(c^{-1}(U))$:

Für
$$X = \sum_{i=1}^{n} f_i \cdot \frac{\partial}{\partial x_i} \circ c$$
 ist $\frac{\nabla}{\partial t} X = \sum_{k} \left(f'_k + \sum_{ij} (x_i \circ c)' f_j \Gamma^k_{ij} \circ c \right) \cdot \frac{\partial}{\partial x_k} \circ c$

Sei M diffb. Mf, $I = [a, b] \subset \mathbb{R}, c \in C^{\infty}(I, M)$ und $X \in \Gamma_c(TM)$.

Falls $\frac{\nabla}{dt}X = 0$ gilt, so heißt das Vektorfeld X längs c parallel.

Sei M diffb. Mf mit affinen Zusammenhang ∇ , $I = [a, b] \subset \mathbb{R}$, $c \in C^{\infty}(I, M)$ und sei $v \in T_{c(a)}M$.

Dann existiert ein eindeutiges paralleles Vektorfeld X längs c, so dass X(a) = v.

$$\exists ! X \in \Gamma_c(TM) : X(a) = v \quad AWP$$

NOTIZ: $\Gamma_c(TM)$ ist ein Vektorraum und dieser Satz zeigt, eine Basis dieses Vektorraums zu jedem $t \in I = [a, b]$ eine Basis des Tangentialraums $T_{c(t)}M$ liefert. ((und) andersherum?)

Sei M diffb. Mf mit affinen Zusammenhang ∇ , $I=[a,b]\subset\mathbb{R},$ $c\in C^\infty(I,M)$ und sei $X\in\Gamma_c(TM) \text{ das eindeutige Vektorfeld mit } X(a)=v\in T_{c(a)}.$

Die Abbildung

$$c|_a^b: T_{c(a)} \to T_{c(b)}, \quad v = X(a) \mapsto X(b)$$

heißt Parallelverschiebung längs c von a nach b.

SATZ: $c|_a^b$ ist ein linearer Isomorphismus.

Sei M diffb. Mf mit affinen Zusammenhang ∇ , $I = [-\varepsilon, \varepsilon]$ wobei $\varepsilon > 0$ und $c \in C^{\infty}(I, M)$ mit $c(0) = p \in M$, $\dot{c}(0) = v$.

Dann gilt

$$\nabla_v X = \lim_{t \to 0} \frac{c||_t^0 X_{c(t)} - X_p}{t}$$

Sei M diffb. Mf mit affiner Zusammenhang ∇ .

Die folgende Abbildung T ist ein (1,2)-Tensorfeld:

$$T: \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM), \quad (X,Y) \mapsto T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y].$$

T heißt Torison oder Torsionstensor.

Falls T = 0, so heißt der Zusammenhang torisionsfrei.

Es sei $(M, \langle \cdot, \cdot \rangle)$ eine pseudo-Riem. Mf und ∇ ein Zusammenhang auf M.

Falls für alle $X, Y, Z \in \Gamma(TM)$ gilt, dass

$$X\langle Y,Z\rangle = \langle \nabla_X Y,Z\rangle + \langle Y,\nabla_X Z\rangle,$$

so heißt der Zusammenhang ∇ metrisch.

Sei
$$(M,\langle\cdot,\cdot\rangle)$$
 eine pseudo-Riem. Mf und ∇ ein affiner Zusammenhang von $M.$
$$I=[a,b]\subset\mathbb{R}.$$

Dann gilt

$$\nabla \text{ ist metrisch} \quad \Leftrightarrow \quad \frac{d}{dt}\langle X,Y\rangle = \langle \frac{\nabla}{dt}X,Y\rangle + \langle X,\frac{\nabla}{dt}Y\rangle \ \ \forall c \in C^{\infty}(I,M), \ \forall X,Y \in \Gamma_c(TM)$$

Sei
$$(M, \langle \cdot, \cdot \rangle)$$
 pseudo-Riem. Mf.

Dann exisiert genau ein torsionsfreier und metrischer Zusammenhang ∇ auf M.

Dieser ist durch die Koszul-Formel

$$2\langle \nabla_X Y, Z \rangle = X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle + \langle Z, [X, Y] \rangle + \langle Y, [Z, X] \rangle - \langle X, [Y, Z] \rangle$$

bestimmt.

DEFINITION: Dieser eindeutiger Zusammenhang heißt Levi-Civita-Zusammenhang.

Sei M eine diffb. Mf mit einem affinen Zusammenhang ∇ . Lokale Koordinaten: (U, φ) , $\varphi = (x_1, \dots, x_n)$.

Sei $\gamma:I\to M$ eine Kurve, $\dot{\gamma}$ ist dann ein Vektorfeld längs $\gamma.$ Diese $\dot{\gamma}$ sei parallel, es gilt also

$$\frac{\nabla}{dt}\dot{\gamma} = 0.$$

Dann heißt γ Geodätische.

Wir setzen $\gamma_i = x_i \circ \gamma$

$$\frac{\nabla}{dt}\dot{\gamma} = \sum_{k} \left(\gamma_k'' + \sum_{i,j} \gamma_i' \gamma_j' \Gamma_{ij}^k \circ \gamma \right) \cdot \partial_k \circ \gamma$$

Also

$$\gamma|_U$$
 ist Geodätische $\qquad\Leftrightarrow\qquad \gamma_k''+\sum_{i,j}\gamma_i'\gamma_j'\Gamma_{ij}^k\circ\gamma=0 \ \ orall k$

Sei M diffb Mf mit affinen Zusammenhang ∇ .

Dann gilt:

1. Existenz einer Geodäditschen γ :

$$\forall p \in M, v \in T_p M \; \exists \varepsilon > 0, \; \gamma : (-\varepsilon, \varepsilon) \to M \; \text{mit}$$

$$\gamma(0) = p, \quad \gamma'(0) = v \quad \text{und} \quad \frac{\nabla}{dt} \dot{\gamma} = 0$$

2. Eindeutigkeit: Jede weitere Geodätische $\eta:(-\delta,\delta)\to M$ mit denselben Anfangsbedingungen $\eta(0)=p$ und $\eta'(0)=v$ stimmt auf einem Intervall um 0 mit γ überein.

Unter Missachtung des Definitionsbereiches, sagt man, die Geodätische γ mit $\gamma(0)=p$, $\gamma'(0)=v$ ist eindeutig und schreibt γ_v .

2.7 Geodätische

Sei M diffb. $M, I \subset \mathbb{R}, \gamma \in C^{\infty}(I, M), (U, \varphi), \varphi = (x_1, \dots, x_n), \gamma_i := x_i \circ \gamma.$

Dann ist

$$\gamma|_U$$
 Geodätische $\Leftrightarrow \gamma|_U$ löst
$$\begin{cases} \dot{\gamma}_k = \eta_k \\ \dot{\eta}_k = -\sum_{i,j} \dot{\gamma}_i \dot{\gamma}_k \Gamma^k_{ij} \circ \gamma \end{cases}$$
#

Wir betrachten nun eine Kurve auf TM und zwar $\gamma \in C^{\infty}(I, TM)$, um damit zu arbeiten sammlen wir hier ein paar Abbildung und Eigenschaften:

- $\cdot \ \pi:TM\to M, (p,v)\mapsto p$
- $\cdot \ \psi : TU \to \varphi(U) \times \mathbb{R}^n, (p, v) \mapsto (\varphi(\pi(p, v)), v(x_1), \dots, v(x_n)) \ , \text{d.h. mit } y_i(p, v) = v(x_i) \text{ ist }$ für $\psi = (x_1 \circ \pi, \dots, x_n \circ \pi, y_1, \dots, y_n) \ (TU, \psi)$ eine Karte von TM.
- · Angewendet auf $(\gamma, \dot{\gamma})$ gilt mit $\gamma_i = x_i \circ \gamma$ und $\dot{\gamma}_i = x_i \circ \dot{\gamma}$

$$\psi(\gamma(t),\dot{\gamma}(t)) = (\gamma_1(t),\ldots,\gamma_n(t),\dot{\gamma}_1(t),\ldots,\dot{\gamma}_n(t))$$

· Nun sei $X \in \Gamma(T(\varphi(U) \times \mathbb{R}^n))$ für $a = (a_1, \dots, a_n) \in \varphi(U)$ und $b = (b_1, \dots, b_n) \in \mathbb{R}^n$ gegeben durch:

$$X(a,b) = (b_1, \dots, b_n, -\sum_{i,j} \Gamma^1_{ij} \circ \varphi^{-1}(a) \cdot b_i b_j, \dots, -\sum_{i,j} \Gamma^n_{ij} \circ \varphi^{-1}(a) \cdot b_i b_j)$$

· Dann gilt, dass eine Kurve $\alpha: I \to \varphi(U) \times \mathbb{R}^n$ genau dann eine Integralkurve von X ist wenn (γ_i, η_i) Lösung von # sind.

Sei
$$\alpha(t) = \psi(\gamma(t), \gamma'(t))$$
 und $(\dot{\alpha}(t) = (\dot{\gamma}_1(t), \dots, \dot{\gamma}_n(t), \dot{\eta}_1(t), \dots, \dot{\eta}_n(t)), i \in \{1, \dots, 2n\}$

$$\gamma \text{ ist Geodätiche} \Leftrightarrow u_i \circ \dot{\alpha}(t) = u_i \circ X(\alpha(t))$$

$$(\Leftrightarrow \text{z.B. } \dot{\gamma}_i = \eta_i \text{ oder } \dot{\eta}_i = -\sum_{i,j} \Gamma^i_{ij} \circ \gamma \cdot \dot{\gamma}_i \dot{\gamma}_j$$

· Betrachte nun: $Y \in \Gamma(TUU)$, ein Vektorfeld also, definiert über

$$Y = (d\psi^{-1}) \circ X \circ \psi : TU \to TUU, (p, v) \mapsto Y(p, v)$$

Wir holen also die Gleichung von oben zurück nach TU und die Integralkurve von Y ist genau $\dot{\gamma}:I\to TU$. Mit diesen Überlegung folgt dann der nächste Satz.

 \cdot Schließlich kann man dieses Resultat auf ganz M fortsetzen.

Siehe Konstruktion für Y.

Der lokale Fluss von $Y \in \Gamma(TUU)$ heißt geodätsicher Fluss.

Dies ist so zu verstehen:

Dann ist der lokale Fluss eine Abbildung
$$\Phi: I \times TU \to TU$$
 mit $\Phi(0, v) = v$ und $\Phi(t, v) = \gamma_v(t)$ ist Integralkurve von Y .

Sei M diffb Mf mit Zusammenhang ∇ . Sei Φ der geodätische Fluss um die Punkt $0 = 0_p \in T_pM$, so gilt:

$$\forall p \in M \ \exists 0_p \in V \stackrel{\text{off}}{\subset} TM, \delta > 0, \Phi \in C^{\infty}((-\delta, \delta) \times V, TM) : \exists ! \Phi_v : t \mapsto \Phi(t, v),$$

wobei Φ_v Integralkurve von Y ist.

Es $c:[a,b] \to M$ eine stetige Abbildung. Existiert eine Unterteilung $a=t_0 < t_1 < \dots < t_k = b$, so dass $c|_{[t_i,t_{i+1}]} \in C^\infty$ für alle $i=0,\dots,k-1$ ist, so heißt c stückweise differenzierbare Kurve.

Sei (M,g) eine Riemannsche Mf und $c:[a,b]\to M$ eine stückweise differenzierbare Kurve, so definieren wir durch

$$L(c) = \int_{a}^{b} ||\dot{c}(t)|| dt,$$

die Länge der Kurve c. Die Länge einer stückweise differenzierbaren Kurve ist endlich.

Weitere Definitionen:

- Für $p,q \in M$ sei Ω_{pq} die Menge aller stückweise diffb. Kurven in M von p nach q.
- Eine monotone, surjektive Abbildung $\varphi\in C^\infty([c,d],[a,b])$ heißt differenzierbare Umparametrisierung.
- Eine Kurve heißt zur Bogenlänge parametrisiert, falls $\|\dot{c}\|=1$ ist und (proportional) zur Bogenlänge parametrisiert, falls $\|\dot{c}\|$ konstant ist

Es gelten folgende Aussagen:

- 1. $L(c) \ge 0$;
 - L(c) = 0 genau dann, wenn c konstant ist.
- 2. Sind $c_1:[a,b]\to M,\,c_2:[b,c]\to M$ zwei stückweise differenzierbare Kurven mit $c_1(b)=c_2(b),$ so ist

$$L(c_1 \cup c_2) = L(c_1) + L(c_2),$$

wobei $c_1 \cup c_2$ die Konkatenation von c_1 und c_2 bezeichnet.

3. Es sei $\varphi:[c,d]\to [a,b]$ eine differenzierbare Umparametrisierung, $c:[a,b]\to M$ ein beliebiger stückweise differenzierbarer Weg. Dann gilt $L(c\circ\varphi)=L(c)$.

Es sei:

$$d(p,q) = \inf\{L(c)|c \in \Omega_{pq}\}.$$

Dann gilt

- 1. (M, d) ist ein metrischer Raum.
- 2. Die durch d induzierte Topologie auf M stimmt mit der ürsprünglichen Topologie von M als Mannigfaltikeit überein.

Sei $\gamma:[0,1]\to M$ eine stückweise differenzierbare, proportional zur Bogenlänge parametrisierte Kurve mit $\gamma(0)=:p,\,\gamma(1)=:q$ und gilt

$$L(\gamma) \le L(c) \quad \forall c \in \Omega_{pq}.$$

Dann ist γ Geodätische.

Sei (M,g) (pseudo)-Riemannsche Mf, $p \in M$. Sei $V \subset T_pM$ offene Umgebung von $0 \in T_pM$.

Ist \exp_p auf V ein Diffeomorphismus aufs Bild, so heißt $\exp_p(V)$ eine normale Umgebung von p.

Ist (M,g) Riemannsche Mf und ist $\varepsilon>0$ so, dass $B_{\varepsilon}(0)\subset V$. Dann heißt $\exp_p(B_{\varepsilon}(0))$ ein geodätsicher Ball um p.

Sei $p \in M, U$ eine normale Umgebung von $p, B \subset U$ ein geodätischer Ball um $p, \gamma : [0,1] \to M$ eine Geodätische mit $\gamma(0) = p$, die ganz in B verläuft und $\gamma(1) = p'$.

Dann gilt

$$L(\gamma) \leq L(c) \quad \forall c \in \Omega_{pp'}$$
 insbesondere: $L(\gamma) = d(\gamma(0), \gamma(1))$

Falls $L(\gamma) = L(c)$, dann gilt

- $\gamma([0,1]) = c([0,1])$ und c ist Umparametrisierung von γ .
- Insbesondere: Für jeden Punkt $q \in B$ gibt es bis auf Umparametrisierung genau eine minimierende Geodätische, die p mit q verbindet.

Bemerkung: die Parametrisierung auf [0,1] ist nicht relevant.

Es sei $f:(a,b)\times(c,d)\to M,\,(t,s)\mapsto f(t,s)$ eine differenzierbare Abbildung.

Dann gilt:

$$\frac{\nabla}{ds} \frac{\partial f}{\partial t} = \frac{\nabla}{dt} \frac{\partial f}{\partial s}$$

TODO: Vielleicht ein Wort dazu wie diese Ableitung zu verstehen sind

Es sei $p \in M$, $v \in T_pM$ so, dass $\exp_p v$ definiert ist und $w \in T_v(T_pM) \stackrel{\sim}{=} T_pM$.

Dann gilt:

$$\langle (d \exp_p)_v(v), (d \exp_p)_v(w) \rangle = \langle v, w \rangle$$

Voraussetzung weiter wie in HS2. Sei weiter $\gamma(t) = \exp_{p}(tw)$.

Dann gilt:

$$d(p, \gamma(t)) = ||tw|| = L(\gamma|_{[0,t]}).$$

Insbesondere: Betrachten wir M als metrischen Raum, so gilt für den geodätischen Ball $B = \exp_p(B_{\varepsilon}(0))$, dass $B = B_{\varepsilon}(p)$.

Es sei

$$F: TM \to M \times M, \quad v \mapsto (\pi(v), \exp(v)).$$

Dann ist

$$\forall p \in M : dF_{0_p} : T_{0_p}TM \to T_{(p,p)}(M \times M) \stackrel{\sim}{=} T_pM \oplus T_pM$$
 ist eine Isomorphismus.

$$\forall p \in M \exists$$
 offene Umgebung U von $p, \varepsilon > 0 : \forall q \in U$

folgendes gilt:

- 1. Die Abbildung \exp_q , eingeschränkt auf $B_{\varepsilon}(0) \subset T_qM$ ist ein Diffeomorphismus aufs Bild.
- 2. $U \subset \exp_q(B_{\varepsilon}(0)) = B_{\varepsilon}(q)$.

Dies bedeutet:

U ist eine normale Umgebung eines jeden Punktes.

Bemerkung: Aus diesem Lemma und HS 2, folgt, dass für je zwei Punkte $q_1,q_2\in U$ bis auf Umparametrisierung eine eindeutige minimierende Geodätische γ (mit Länge $<\varepsilon$) existiert, die q_1 und q_2 miteinander verbindet. Man bezeichnet eine solche Umgebung als geodätisch konvex.

Aus Lemma 2 und HS 2, folgt, dass für je zwei Punkte $q_1, q_2 \in U$ bis auf Umparametrisierung eine eindeutige minimierende Geodätische γ (mit Länge $< \varepsilon$) existiert, die q_1 und q_2 miteinander verbindet.

Man bezeichnet eine solche Umgebung als geodätisch konvex.

Definition 1 ((Geodätisch) vollständig) 2.10 Satz von Hopf-Rinow

Sei (M,g) eine pseudo-Riem. Mf mit Levi-Civita-Zusammenhang ∇ .

Gilt, dass für alle $p \in M$ die Exponentialabbildung

$$\exp_p: T_pM \to M$$

auf ganz T_pM definiert ist, d.h. jede Geodätische von M kann auf ganz \mathbb{R} erweitert werden, dann nnen wir (M,g) (geodätisch) vollständig.

Satz und Bemerkungen (Satz von Hopf-Rinow) 10 Satz von Hopf-Rinow

Es sei (M, g) zusammenhängende Riem. Mf, $p \in M$.

Dann sind die folgenden Bedingungen äquivalent:

- 1. exp_p ist auf ganz T_pM definiert
- 2. Abgeschlossene und beschränkte Teilmengen von M sind kompakt.
- 3. M ist als metrischer Raum vollständig.
- 4. M ist geodätisch vollständig.

Außerdem implizieren obige Bedingungen

- 5. Zu jedem $q \in M$ gibt es eine Geodätische γ , die p und q verbindet, so dass $L(\gamma) = d(p,q)$.
 - (i) Bemerkung: Aus 5. \Rightarrow 3.: Betrachte konvexe offene Teilmenge des \mathbb{R}^n
 - (ii) KOROLLAR: Zwischen je zwei $p,q \in M$ (wie oben und vollständig) existiert eine Geodätische der Länge d(p,q). (Nicht eindeutig: Siehe S^n)
- (iii) KOROLLAR: M (wie oben & kompakt) ist vollständig.
- (iv) Bemerkung: Auf nichtkompakten Riemn. Mf kann die Vollständigkeit von der gewählten Metrik abhängen.

Sei (M,g), (N,h) pseudo-R. Mf und $\varphi: M \to N$ ein Diffeomorphismus.

Falls

 $h_{\varphi(p)}(d\varphi_p(v),d\varphi_p(w))=g_p(v,w)\quad \forall p\in M,v,w\in T_pM,$ heißt φ Isometrie. Diese Bedingung schreibt man auch $\varphi^*h=g.$

Existiert eine Isometrie zwischen M und N, heißen M und N isometrisch.

Sei (M,g), (N,h) pseudo-R. Mf und $\varphi: M \to N$ ein Isometrie.

Dann gilt für alle Vektorfelder X und Y auf M, dass

$$\varphi_* \nabla_X^M Y = \nabla_{\varphi_* X}^N \varphi_* Y$$

Eine pseudo-Riemannsche Mf heißt homogen, wenn es zu je zwei Punkten $p, q \in M$ eine Isometrie $\varphi: S^n \to S^n$ gibt, so dass $\varphi(p) = q$.

Ein Vektorfeld X auf einer pseudo-Riemannsche Mf heißt Killingfeld, falls die lokalen Flüsse von XIsometrien sind.

TODO Was heißt das konkret?

Sei M eine diffb. MF, X Vektorfeld auf M, A ein Tensorfeld auf M vom Typ (r, s).

Es sei Φ_t der lokale Fluss von X auf einer offenen Menge $U \subset M$, dann definieren wir für $p \in U$ durch

$$(L_X A)_p = \frac{d}{dt} \bigg|_{t=0} (\Phi_t^* A)_p$$

die Lie-Ableitung von A entlang X. Diese ist wieder ein Tensorfeld vom Typ (r, s).

TODO B10 Uebung 2

Sei (M, g) pseudo-Riemannsche Mf mit Levi-Civita-Zusammenhang ∇ , X Vektorfeld auf M.

Dann ist folgendes äquivalent:

- 1. X ist Killingfeld
- $2. L_X g = 0$
- 3. $\langle \nabla_v X, w \rangle + \langle \nabla_w X, v \rangle = 0$ für alle $v, w \in T_p M, p \in M$

Sei M differenzierbare Mf und ∇ ein affiner Zusammenhang auf M. Die Abbildung

$$R: \Gamma(TM) \times \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM); \quad (X,Y,Z) \mapsto R(X,Y)Z$$

definiert durch

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

ist ein (1,3)-Tensorfeld. Er wird der Riemannsche Krümmungstensor von ∇ genannt.

Ist (M,g) eine pseudo-Riem. Mf mit Levi-Civita-Zusammenhang ∇ , so nennt man R auch Riemannsche Krümmungstensor von g.

Mögliche Sichtweise auf den Riemannsche Krümmungstensor:

In lokalen Koordinaten eine beliebigen pseudo-Riem. Mf (M, g) gilt

$$R(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j})Z = \nabla_{\frac{\partial}{\partial x_i}} \nabla_{\frac{\partial}{\partial x_j}} Z - \nabla_{\frac{\partial}{\partial x_j}} \nabla_{\frac{\partial}{\partial x_i}} Z$$

d.h, R misst, inwieweit die obigen kovarianten Ableitungen miteinander kommutieren.

 $(M,g),\,(N,h)$ seien pseudo-Riem. Mf mit entsprechenden Levi-Civita-Zusammenhängen ∇^M und ∇^N und dazu assoziierten Riemannsche Krümmungstensoren R^M und R^N .

Ist $\varphi: M \to N$ eine Isometrie, so gilt für alle $X, Y, Z \in \Gamma(TM)$:

$$\varphi_*(R^M(X,Y)Z) = R^N(\varphi_*X,\varphi_*Y)\varphi_*Z$$

Riemmansche Krümmungstensor

Eine Riemannsche Mannigfaltikeit ist genau dann lokal isometrisch zu \mathbb{R}^n , wenn der Krümmungstensor verschwindet.

Sei $(M, \langle \cdot, \cdot \rangle)$ eine pseudo-Riem. Mf mit assoziiertem Krümmungstensor R.

Dann gilt für alle $X,Y,Z,W\in\Gamma(TM)$:

- 1. R(X,Y)Z = -R(Y,X)Z
- 2. R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0

(1. Bianchi-Identiät)

- 3. $\langle R(X,Y)Z,W\rangle = -\langle R(X,Y)W,Z\rangle$
- 4. $\langle R(X,Y)Z,W\rangle = \langle R(Z,W)X,Y\rangle$

 $(V, \langle \cdot, \cdot \rangle)$ sei ein endlich-dim. pseudo-Euklidscher VR.

Eine trilineare Abbildung

$$R: V \times V \times V \to V, \quad (u, v, w) \mapsto R(u, v)w,$$

welche die vier formalen Eigenschaften des Riemannschen Krümmungstensors erfüllt heißt algebraischer Krümmungstensor.

Für den Krümmungstensor Reiner pseudo-Riem. M
f(M,g)mit $p\in M$ sind also alle Abbildung:

$$R_p: T_pM \times T_pM \times T_pM \to T_pM$$

algebraischer Krümmungstensoren.

Sei $(V, \langle \cdot, \cdot \rangle)$ ein pseudo-Eukl. VR. $\sigma \subset V$ sei ein 2d-Unterraum, auch 2-Ebene genannt, und eine $\{u, v\}$ eine Basis.

Wir definieren

$$Q(u,v) = \langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^{2}.$$

Falls $\langle \cdot, \cdot \rangle$ eingeschränkt auf σ eine nichtentartete symmetrische Bilinearform ist, so nennen wir auch σ nichtentartet.

LEMMA 1: σ ist genau dann nichtentartet, wenn $Q(u, v) \neq 0$.

Sei $(M, \langle \cdot, \cdot \rangle)$ eine pseudo-Riem. Mf mit Levi-Civita-Zusammenhang ∇ mit assoziierten Krümmungstensor R. Sei $p \in M$ und $\sigma \subset T_pM$ eine nichtentartete 2-Ebene und $\{u,v\}$ eine Basis σ .

Die Zahl

$$K(\sigma) = \frac{\langle R(u, v)v, u \rangle}{Q(u, v)}$$

definieren wir als die Schnittkrümmung.

LEMMA 2: Diese Definition ist unabhängig von der Wahl der Basis $\{u, v\}$.

Sei (M, g) eine pseudo-Riemannsche Mf, $\kappa \in \mathbb{R}$ Gilt:

 $K(\sigma) = \kappa \quad \forall p \in M, \forall \text{ nichtentartete 2-Ebenen } \sigma \subset T_pM$ So sagen wir M hat konstante Schnittkrümmung.

BEISPIEL: Für $M = \mathbb{R}^n$ gilt R = 0 und damit $K(\sigma) = 0$ unabhängig von σ .

Gilt $\kappa = 0$ so heißt der Raum flach.

Es seien M, N pseudo-Riemannsche Mf, $p \in M$, $\varphi : M \to N$ eine Isometrie, $\sigma \subset T_pM$ eine 2-Ebene.

Dann gilt:

$$K^{M}(\sigma) = K^{N}(d\varphi_{p}(\sigma)).$$

BEISPIEL: S^n , versehen mit Standardmetrik, hat konstante Krümmung.

Lemma 4 ($\frac{\text{Approximation}}{\text{teter Ebenen}}$ $\frac{\text{Nichtentar}}{\text{Nichtentar}}$) Schnittkrümmung & Co

Sei $(V, \langle \cdot, \cdot \rangle)$ pseudo-Eukl. VR. Seien u, v zwei linear unabhängige Vektoren, die eine entarte 2-Ebene aufspannen.

Dann existiert zu Umgebung U von v ein $z \in U$, so dass u und z eine nichtentartete Ebene aufspannen.

Es sei $(V,\langle\cdot,\cdot\rangle)$ ein pseudo-Eukl. VR mit zwei Krümmungstensoren $R,\,R'$ und dazugehörigen Schnittkrümmungen $K,\,K'$.

Gilt:

$$K(\sigma) = K'(\sigma) \quad \forall \text{ nichtentartete 2-Ebenen } \sigma \subset V,$$

dann ist

$$R = R'$$

Es $(M, \langle \cdot, \cdot \rangle)$ eine pseudo-Riem. Mf mit konstanter Schnittkrümmung κ .

Dann hat der Riemmansche Krümmungstensor von g folgende Gestalt:

$$R(u, v)w = \kappa \cdot (\langle v, w \rangle u - \langle u, w \rangle v).$$

Sei (M, g) pseudo-Riem. Mf, $p \in M$ und R ein Krümmungstensor.

Der Ricci-Tensor Ric ist ein (0,2) Tensorfeld, definiert durch

$$Ric(X,Y)(p) = Spur(v \mapsto R_p(v,X(p))Y(p)).$$

Ist $B := \{e_1, \dots, e_n\}$ eine Basis von T_pM für die gilt

$$\langle e_i, e_i \rangle = \pm \text{ für } i \in \{1, \dots, n\} \quad \text{und} \quad \langle e_i, e_j \rangle = 0 \text{ für } i \neq j$$

so heißt B pseudo-ONB von T_pM .

Für so ein B können wir Ric schreiben als

$$Ric(X,Y)(p) = \sum_{i=1}^{n} \langle e_i, e_i \rangle \cdot \langle R_p(e_i, X(p))Y(p), e_i \rangle.$$

Daraus liest man ab, das Ric symmetrisch ist.

Es gilt auch : $Ric = C_1^1(R)$ TODO

INTEPRETATION 1: Ist $v\in T_pM$, dann kann man Ric(v,v) als Mittel über die Schnittkrümmung aller 2-Ebenen, die v enthalten, verstehen.

DEFINITON 5 (SKALARKRÜMMUNG)

Sei $(M, \langle \cdot, \cdot \rangle)$ pseudo-Riem. Mf, $p \in M$, $\{e_1, \dots, e_n\}$ pseudo ONB von T_pM .

Die Skalarkrümmung $scal \in C^{\infty}(M)$ ist definiert durch

$$scal(p) = \sum_{i=1}^{n} \langle e_i, e_i \rangle Ric(e_i, e_i).$$

Interpretation 1: Mittel aller Schnittkrümmung in $p \in M$.

Sei (M,g) eine Riemannsche Mf, R der Krümmungstensor von $g,\,c\in C^\infty([a,b],M),\,\varepsilon>0.$

$$f: \underbrace{(-\varepsilon,\varepsilon)\times[a,b]}_{-t}\to M, \quad (s,t)\mapsto f(s,t)=f_s(t) \quad \text{mit} \quad f_0(t)=c(t) \ \forall t\in[a,b]$$

heißt Variation von c. Es ist $f \in C^{\infty}(I, M)$.

Sei
$$V \in \Gamma_f(TM)$$
, also $V: (-\varepsilon, \varepsilon) \times [a, b] \to TM$ ist glatt mit $V(s, t) \in T_{f(s, t)}M$.

Lemma: Es gilt
$$\frac{\nabla}{\partial s} \frac{\nabla}{\partial t} V = \frac{\nabla}{\partial t} \frac{\nabla}{\partial s} V + R(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}) V.$$

Sei nun für alle $s \in (-\varepsilon, \varepsilon)$ die Kurve f_s eine Geodätische. Insbesondere sei $f_0 =: \gamma$.

Wir definieren das Vektorfeld J längs γ namens Variationsvektorfeld von f mit

$$J:[a,b] \to TM, \ t \mapsto J(t) := \frac{\partial f}{\partial s}(s=0,t) = \frac{\partial f}{\partial s}|_{s=0}(t)$$

SATZ 1:
$$J$$
 erfüllt $\underbrace{\frac{\nabla}{dt}^2 J + R(J,\dot{\gamma})\dot{\gamma} = 0}_{(Jacobiglerichung)} \Leftrightarrow \exists$ Variation $f: I \to M$ mit J als Variationsvektorfeld.

DEFINITION: Allgemein heißt ein Vektorfeld längs einer Geodätischen γ , welches die Jacobigleichung erfüllt, Jacobifeld.

Sei (M,g) eine Riemannsche Mf, R der Krümmungstensor von g, $\gamma:[0,b]\to M$ sei eine Geodätische und J ein Jacobifeld längs γ mit J(0)=0, $v=\dot{\gamma}(0),\,w=\frac{\nabla}{dt}J(0)$.

Dann gilt

$$J(t) = (d \exp_n)_{tv}(tw)$$

Sei (M,g) n-dim. Riem. Mf, $\gamma:[a,b]\to M$ eine Geodätische in M.

Dann bilden die Jacobifelder längs γ einen 2n-dim Vektorraum. Genauer:

$$\forall v, w \in T_{\gamma(a)}M$$
 $\exists !$ Jacobifeld $J: J(a) = v, \frac{\nabla}{dt}J(b) = w$

$$I: \{\text{Jacobifelder längs } \gamma\} \to T_pM \oplus T_pM, \quad J \mapsto (J(a), \frac{\nabla}{dt}J(b))$$
 ist ein Isomorphismu

(TODO: Lösung von DGL bilden Vektorraum)

- 1. $\dot{\gamma}$ immer Jacobifeld
- 2. $J(t) = t\dot{\gamma}(t)$ Jacobifeld
- 3. $J(t) = f(t)\dot{\gamma}(t)$
- 4. Sei $\gamma \in C^{\infty}([0, a], M)$. Betrachte die Variation $f(s, t) = \exp_p(tv(s))$, wobei v(s) Kurve in T_pM ist. Setze v = v(0) und $w = v'(0) \in T_pM$. Für alle s ist $f_s \in C^{\infty}$ eine Geodätische, also folgt

$$J(t) = \frac{\partial f}{\partial s}(0, t) = (d \exp_p)_{tv}(tw)$$

ein Jacobifeld längs γ_v mit J(0) = 0 ist.

Sei M Riemannsche Mf mit konstanter Krümmung κ . Es sei $\gamma:[0,a]\to M$ eine nach Bogenlänge parametrisierte Geodätische in M. Weiter sei J ein Jacobifeld längs γ mit J(0)=0 und $J(t)\perp\dot{c}(t)$. Weiterhin sei X das eindeutige parallele Vektorfeld längs γ mit $X(0)=\frac{\nabla}{dt}J(0)$.

Dann gilt:

$$J(t) = \begin{cases} \frac{\sin(t\sqrt{\kappa})}{\sqrt{k}} X(t) & \kappa > 0\\ tX(t) & \kappa = 0\\ \frac{\sinh(t\sqrt{-\kappa})}{\sqrt{-k}} X(t) & \kappa < 0 \end{cases}$$

Sei (M,g) eine n-dim. Riemannsche Mf, $\gamma:[a,b]\to M$ eine nichtkonstante Geodätische in M mit $\gamma(a) = p$ und $\gamma(b) = q$.

Existiert ein Jacobifeld J entlang γ mit J(a) = 0 und J(b) = 0, das nirgends verschwindet, so sagen wir

q ist entlang γ zu p konjugiert oder auch p, q sind konjugierter Punkt entlang γ .

Sei γ wie oben, dann gilt:

 $\{J \text{ ist Jacobifeld entlang } \gamma \mid q \text{ ist entlang } \gamma \text{ zu } p \text{ konjugiert}\}$

ist ein (n-1)-dim. Vektorraum. Diese Dimension wird auch Vielfachheit des konjugierten Punktes q genannt.

Beipiel 1: S^n TODO

Beipiel 2: $\kappa \le 0$ TODO

(M,g)n-dim. Riemannsche Mf, $\gamma:[0,a]\to M$ eine Geodätische mit $p=\gamma(0),$ $v=\dot{\gamma}(0).$

Dann gilt

- 1. Der Punkt $\gamma(t_0)$ für $t_0 \in [0, a]$ ist genau dann entlang γ zu p konjungiert, wenn t_0v ein kritischer Punkt von \exp_p ist.
- 2. Die Vielfachheit von $\gamma(t_0)$ ist gleich der Dimension des Kerns von $(d\exp)_p(t_0v)$.

(M, g) sei vollständige Riemannsche Mannigfaltikeit mit nichtpositiver Schnittkrümmung, d.h. $K(\sigma) \leq 0$ für alle 2-Ebenen $\sigma \subset T_pM$, $\forall p \in M$.

Dann gibt es keine konjugierten Punkte in M, d.h.

$$\exp_p: T_pM \to M \quad \forall p \in M$$

ist ein lokaler Diffeomorphismus auf ganz T_pM .

Sei (M, g) zusammenhängende und vollständige Riem. Mf mit nichtpositiver Schnittkrümmung.

Dann ist

$$\exp_p: T_pM \to M \quad \forall p \in M$$

eine differenzierbare Überlagerung.

Sei (M, g) vollständige, einfach zusammenhängende Riem Mf mit nichtpositiver Schnittkrümmung.

Dann ist

$$\exp_p: T_pM \to M \quad \forall p \in M$$

ein Diffeomorphismus.

Insbesondere existiert für beliebige Punkt $p, q \in M$, genau eine Geodätische von p nach q.

Definition 1 & Notiz (Energiefunktional) 3.5 Variation der Energie

Sei (M,g) ein Riemannsche Mf, $c \in C^{\infty}([0,a],M)$ mit Länge

$$L(c) = \int_0^a \|\dot{c}(t)\| dt.$$

Sei weiter $\varepsilon > 0$ und $f: (-\varepsilon, \varepsilon) \times [a, b] \to M$ eine Variation von c.

Wir nennen die Abbildung E

$$E: \Omega_{0,a} \to \mathbb{R}, \ c \mapsto E(c) = \int_0^a ||\dot{c}(t)||^2 dt$$

das Energiefunktional.

Notiz 1: Weiter gilt mit der Cauchy-Schwarz-Ungleichung:

$$\left(\int_0^a \|\dot{c}(t)\| \cdot 1dt\right)^2 = \left[L(c)^2 \le aE(c)\right] = \left(\int_0^a \|\dot{c}(t)\|^2 dt\right) \cdot \left(\int_0^a 1dt\right)$$

Mit Gleichheit genau dann, wenn c proportional zur Bogenlänge parametrisiert ist

Notiz 2: Aussagen in 3.5 gelten z.T. auch für L, falls c eine reguläre Kurve ist.

Sei (M,g) Riemannsche Mf, $p,q\in M$ sowie $\gamma:[a,b]\to M$ eine die Länge minimierende Geodätische von p nach q.

Dann gilt für alle $c \in C^{\infty}([0, a], M)$ von p nach q:

$$E(\gamma) \le E(c)$$
.

Mit Gleichheit genau dann, wenn c eine die Länge minimierende Geodätische ist.

Sei (M, g) Riemannsche Mf, $c \in C^{\infty}([0, a], M)$, $V \in \Gamma_c(TM)$ und $\varepsilon > 0$.

Dann existiert eine Variation f

$$f:(-\varepsilon,\varepsilon)\times[0,a]\to M$$

mit Variationsvektorfeld V.

Ist noch
$$V(0) = 0$$
 und $V(a) = 0$,

so können wir annehmen, dass

$$f(s,0) = c(0)$$
 und $f(s,a) = c(a)$ $\forall s \in (-\varepsilon, \varepsilon)$.

Wir sagen dazu, dass die Variation f eigentlich ist.

 $(M,\langle\cdot,\cdot\rangle)$ eine Riemannsche Mf, $c\in C^{\infty}([0,a],M), \varepsilon>0,f$ eine Variation von c mit $f_s(t)$ $C^{\infty}([0,a],M)$ für alle $s \in (-\varepsilon,\varepsilon)$. Es sei weiter

$$E(s) := E(f_s) = \int_0^a ||\dot{f}_s(t)||^2 dt$$

und V bezeichne das Variationsvektorfeld der Variation f.

Dann gilt:

$$\frac{1}{2}\dot{E}(0) = -\int_0^a \langle V(t), \frac{\nabla}{dt}\dot{c}(t)\rangle dt - \langle V(0), \dot{c}(0)\rangle + \langle V(a), \dot{c}(a)\rangle.$$

KOROLLAR: $c \in C^{\infty}([0, a], M)$ ist genau dann eine Geodätische, wenn für jede eigentliche Variation f von c gilt, dass E(0) = 0.

Satz 2 & Notiz (Zweite Variationsformel) Für die Energie

 $(M,\langle\cdot,\cdot\rangle)$ eine Riemannsche Mf mit R als Krümmungstensor von $\langle\cdot,\cdot\rangle$, $c\in C^{\infty}([0,a],M),\ \varepsilon>0,\ f$ eine Variation von c mit $f_s(t)$ $C^{\infty}([0,a],M)$ für alle $s\in (-\varepsilon,\varepsilon)$. V bezeichne das Variationsvektorfeld der Variation f.

Dann gilt:

$$\begin{split} \frac{1}{2}\ddot{E}(0) &= -\int_{0}^{a} \langle \frac{\nabla^{2}}{dt^{2}}V + R(V,\dot{c})\dot{c},V\rangle(t)dt \\ &- \langle \frac{\nabla}{ds}\frac{\partial f}{\partial s},\dot{c}\rangle(0,0) + \langle \frac{\nabla}{ds}\frac{\partial f}{\partial s},\dot{c}\rangle(0,a) \\ &- \langle V(0),\frac{\nabla}{dt}V(0)\rangle|_{t=0} + \langle V(a),\frac{\nabla}{dt}V(a)\rangle|_{t=a}. \end{split}$$

NOTIZ 1: Ist f eine eigentliche Variation von c, fallen alle bis auf den ersten Summanden weg.

NOTIZ 2: Der erste Eintrag in $\langle \cdot, \cdot \rangle$ im ersten Summanden ist gerade die Jacobigleichung.

Sei $(M, \langle \cdot, \cdot \rangle)$ eine vollständige Riemannsche Mannigfaltigkeit. Es gebe ein r>0, so dass

$$Ric_p(v,v) \ge \frac{n-1}{r^2} \langle v,v \rangle > 0 \quad \forall p \in M, \ \forall v \in T_pM$$

Dann ist M kompakt und der Durchmesser von M

$$\operatorname{diam}(M) := \sup_{p,q \in M} d(p,q)$$

erfüllt

$$diam(M) \leq \pi r$$
.

Weiterhin ist die Fundamentalgruppe $\pi_1(M)$ ist endlich.

Sei M n-dim. Mf, $(\overline{M}, \overline{g} = \langle \cdot, \cdot \rangle)$ Riemannsche Mf der Dimension n+k. Sei $i: M \to \overline{M}$ eine Immersion. Mittels

$$\langle v, w \rangle := \langle di_p(v), di_p(w) \rangle$$
 für $p \in M, v, w \in T_pM$

zieht man die Metrik von \overline{M} auf M zurück (isometrischen Immersion).

Alle Betrachtungen sind lokal und damit kann o.B.d.A. i als Einbettung angenommen werden. In diesem Sinn betrachten wir $M \subset \overline{M}$, da $i(M) \stackrel{\sim}{=} M$.

Sei (U,φ) Unter-Mfskarte mit $\varphi=(x_1,\ldots,x_{n+k})$ und $(U\cap M,\psi)$ mit $\psi:=(x_1,\ldots,x_n)$ eine Karte von M. φ sei sogewählt, das $\varphi(U)$ invariant unter der Projektion $\pi:\mathbb{R}^{n+k}\to\mathbb{R}^n$ ist. Mithilfe dieser Karten können wir eine gegebene Funktion $f:M\to\mathbb{R}$ auf U Fortsetzen der Einschränkung $f|_{U\cap M}$:

$$\overline{f} = f \circ \psi^{-1} \circ \pi \circ \varphi$$

Ähnlich kann man mit lokalen Vektorfelder auf M verfahren. Es seien $(\frac{\partial}{\partial x_1},\dots,\frac{\partial}{\partial x_{n+k}})$ die zu φ assoziierten lokalen Basisfelder. Schränken wir diese auf $U\cap M$ ein, so hat man die lokalen Basisfelder der Karte ψ von M. Für $X\in \Gamma(TU\cap M)$ können wir schreiben

$$X = \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i} \bigg|_{U \cap M}$$

Und erhalten für

$$\overline{X} := \sum_{i=1}^{n} \overline{f}_i \frac{\partial}{\partial x_i}$$
 ein $\overline{X} \in \Gamma(TU)$ mit $\overline{X}|_M = X$.

Dies kann auch so ausdrücken

$$\overline{X} \circ i = di(X),$$

d.h. X und \overline{X} sind i-verwandt.

Alles wie im setup. Sei $p \in M \subset \overline{M}$. Mittels Isomorphie sei $T_pM = di(T_pM)$

Wir definieren den Normalenraum von M in \overline{M} in p durch

$$\nu_p M := \{v \in T_p \overline{M} | v \perp T_p M\}.$$

Wir nennen $\nu M := \sqcup_{p \in M} \nu_p M$ das Normalenbündel.

Betrachte die Zerlegung:

e Zeriegung:
$$tang. \ Anteil \ normalen \ Anteil$$
 $T_p \overline{M} = T_p M \otimes \nu_p M \ und \ T_p M
ightharpoonup v =
v^ op +
v^\perp$

Seien $X,Y\in \Gamma(TU\cap M)$ beliebig fortgesetz zu $\overline{X},\overline{Y}\in \Gamma(TU)$ und betrachte

$$\overline{\nabla}_{\overline{X}}\overline{Y} = (\overline{\nabla}_{\overline{X}}\overline{Y})^\top + (\overline{\nabla}_{\overline{X}}\overline{Y})^\perp.$$

Wir definieren die zweite Fundamentalform α von M durch

$$\alpha(X,Y)(p) := (\overline{\nabla}_{\overline{X}_p} \overline{Y})^{\perp}$$

Lemma: Die zweite Fundamentalform α ist wohldefiniert, symmetrisch in X und Y und C^{∞} -linear.

Gauss-Formel:
$$(\overline{\nabla}_{\overline{X}}\overline{Y})(p) = (\overline{\nabla}_XY)(p) = (\nabla_XY)(p) + (\alpha(X,Y))(p)$$

DEFINITION: Eine Unter-Mf $M \subset \overline{M}$ heißt totalgeodätisch in \overline{M} , wenn $\forall p \in M, \ \forall v \in T_p M$ die Geodätische in \overline{M} durch p in Richtung v komplett in M verläuft. Dies gilt genau dann, wenn die zweite Fundamentalform verschwindet.

 $\frac{\overline{\nabla}}{dt}Y = \frac{\nabla}{dt}Y + \alpha(\dot{c}, Y)$

Weingarten-Abbildung: Für die Erweiterung $\overline{\xi} \in \Gamma(\nu U)$ gibt lokal folgendes Sinn $\langle \overline{\nabla}_X \xi, Y \rangle = -\langle \xi, \alpha(X,Y) \rangle.$

Gauss-Gleichung: Für alle $x, y, z, w \in T_pM$ gilt

$$\langle \overline{R}(x,y)z,w\rangle = \langle R(x,y)z,w\rangle - \langle \alpha(x,w),\alpha(y,z)\rangle + \langle \alpha(x,z),\alpha(y,w)\rangle$$

KOROLLAR: Hat \overline{M} kostanten Schnittkrümmung κ so gilt

$$K(\sigma) = \kappa + \langle \alpha(x, x), \alpha(y, y) \rangle - \|\alpha(x, y)\|^{2}$$

Ist M also totalgeodätisch in \overline{M} , dann hat M ebenfalls konst. Schnittk.

Wir definieren den Weingartenoperator $A_{\mathcal{E}}$ durch

$$A_{\xi}X = -(\overline{\nabla}_X \xi)^{\top}.$$

Damit wird aus der der Weingartengleichung

$$\langle A_{\xi}X, Y \rangle = \langle \xi, \alpha(X, Y) \rangle.$$

Zu dem ist $A_{\xi}: T_pM \to T_pM$ ein linearer selbstadjungierter Operator. Dieser ist orthogonal diagonalisierbar. Die Eigenvektoren nennen wir Hauptkrümmungsrichtung und die Eigenwerte Hauptkrümmung.

WAS FEHLT: Beispiel, Normalenzusammenhang, komische Abbildung, Codazzi-Gleichung, Bemerkung, 5.2.