Computer Vision hw_3

By R01922124 許彥彬

1. Histogram Equalization:

$$s_k = 255 \times \sum_{j=0}^k \frac{n_j}{n}$$

 $k = 0$ to 255, n_j : number of pixels with intensity j
 n : total number of pixels(rows * cols)
for \forall pixel, if $I(im, i, j) = k$ then $I(imhe, i, j) = s_k$

2. Implementation

note: Opency io function are used.

Functions pixel_set, pixet_get are both defined in my first homework.

```
int * histogram_equlization(Mat *image){
        int *intensity=histogram(image, "he_histogram.bmp");
        int s[256];
        float he[256];
        for(int i=0;i<256;i++){
                s[i]=0;
                he[i]=0;
                for(int j=0;j<=i;j++){</pre>
                        he[i]+=(float)intensity[j];
                s[i]=255*he[i]/(image->rows*image->cols);
        for(int i=0;i<image->rows;i++){
                for(int j=0;j<image->cols;j++){
                        pixel_set(image, i, j, s[(int)pixel_get(image, i, j)]);
        delete []intensity;
        return histogram(image, "he_histogram.bmp");
}
```

- 3. Result:
 - i. Original Lena.bmp and it's histogram:

ii. After histogram equalization:

4. Appendix

- i. R01922124_HW3.cpp
- ii. R01922124_HW3.pdf
- iii. lena.bmp
- iv. eq_lena.bmp
- v. histogram.bmp
- vi. eq_histogram.bmp
- vii. build_all.sh