2015 株洲二中高二 6 月模拟赛

一、题目概况

中文题目名称	摇头数学牛	三元数对	出栈序列统计	捉迷藏
子目录名	tinkle	three	stack1	hideseek
可执行文件名	tinkle.exe	three.exe	stack1.exe	hideseek.exe
每个测试点时限	1000 毫秒	1000 毫秒	1000 毫秒	1000 毫秒
测试点数目	15	10	20	10
每个测试点分值	7	10	5	10
附加样例文件	无	无	无	无
结果比较方式	全文比较			
题目类型	传统	传统	传统	传统
运行内存上限	128 兆字节	128 兆字节	128 兆字节	128 兆字节

二、提交源程序文件名

对于 C 语言	tinkle.C	three.c	stack1.c	hideseek.c
对于 C++语言	tinkle.cpp	three.cpp	stack1.cpp	hideseek.cpp

三、编译命令

对于 C 语言	gcc -Wall -std=c99 -O2 -DOJ -o foo src.c -lm
对于 C++语言	g++ -Wall -std=c++11 -O2 -DOJ -o foo src.cpp -lm

注意事项:

- 1、比赛使用标准输入输出。
- 2、文件名必须使用英文小写。
- 3、 C/C++中函数 main 的返回值类型必须是 int,程序正常结束时返回值必须是 0。
- 4、 评测时采用的机器配置为: Intel Core i5-3470 3.2 GHz × 2 处理器, 8GB 内存。上述时限以此配置为准。
- 5、特别提醒:评测在 Ubuntu Server 14.04 LTS x64 操作系统上进行,各语言的编译器版本以其为准。GCC 版本目前为 4.8.2。

1、喜欢摇头的数学牛

【问题描述】

贝西特别喜欢数学,尤其喜欢素数。她得到了一对具有数学功能的魔法铃,当她把魔法铃带在头上,用劲摇头,就会听到数字铃声。数字铃声是由素数组成的,喜欢数学的贝西记得很多素数,并且知道这些素数的编号(素数是从小到大编号的,2 是 1 号素数,3 是 2 号素数,5 是 3 号素数等等)。当贝西唱出一个素数的编号 n,并左右摇头时,魔法铃会自动奏出素数来。当贝西向左摇头时,听到小于 n 号素数的最大素数,也就是 n-1 号素数,当贝西向右摇头时,听到大于 n 号素数的最小素数,也就是 n+1 号素数,当贝西再向左摇头时,魔法铃不会奏出重复的铃声,但会奏出最接近 n 号的素数,向右摇头也是一样。贝西还是个喜欢对称的牛,向左摇头一次必然马上再向右摇头一次,完成一次完整的摇头动作。

你是贝西的录音师,请你记录所有魔法铃声,并刻成 CD.记住,刻 CD 的规矩是从小到大刻。

【输入】

只有一行,包含两个整数 n,m.

n 是贝西唱出的素数编号, m 是贝西摇头的次数。

【输出】

共 1 行,有 2*m 个素数,中间用空格隔开。

【输入输出样例】

Input	Output
3 2	2 3 7 11

样例输出说明:

编号为 3 的素数是 5, 摇头 2 次, 小于 5 并且最接近 5 的 2 个素数是 2 和 3, 大于 5 并且最接近 5 的 2 个素数是 7, 11

【数据说明】

对于 30%的数据, 2<=n<=1000,1<=m<=10;

对于 100%的数据, 2<=n<=1000000,1<=m<=100;

2、三元数对

【问题描述】

Chineselyl 最近对一种叫做"三元数对"的东西非常感兴趣。在含有 n 个整数的序列 A1,A2,...An 中,三个数被称作"三元数对"当且仅当 i<j<k 且 Ai<Aj<Ak 。现在 Chineselyl 正忙着准备会考呢,他想请你帮忙统计一下一个整数序列中"三元数对"的个数。

【输入】

第一行一个整数 n

接下来有 N 行,分别表示这个整数序列的每一项

【输出】

输出这个整数序列中三元数对的个数

【输入输出样例】

Input	Output
5	7
1	
2	
2	
3	
4	

样例说明:

这7个三元数对分别是

- 123
- 124
- 123
- 124
- 134
- 234
- 234

【数据说明】

30%的数据中 n<=100

60%的数据中 n<=2000

100%的数据中 n<=30000 , 0<=Ai<=maxlongint

3、出栈序列统计

【问题描述】

栈是常用的一种数据结构,有 n 令元素在栈顶端一侧等待进栈,栈顶端另一侧是出栈序列。你已经知道栈的操作有两·种: push 和 pop,前者是将一个元素进栈,后者是将栈顶元素弹出。现在要使用这两种操作,由一个操作序列可以得到一系列的输出序列。请你编程求出对于给定的 n,计算并输出由操作数序列 1,2,...,n,经过一系列操作可能得到的输出序列总数。

【输入】

一个整数 n(1<=n<=15(50%), 1<=n<=1000(100%))

【输出】

一个整数,即可能输出序列的总数目。

【输入输出样例】

Input	Output
3	5

【数据说明】

50%数据 1<=n<=15 100%数据 1<=n<=1000

4、捉迷藏

【问题描述】

Bessie 正在玩捉迷藏游戏。(捉迷藏是这样玩的:在制定了奖罚规则后,玩家分为"捉"和"藏"两种,"藏"者有多个,在他们都藏起来后,由单独的一个"捉"者去找他们,这个游戏玩起来真是其乐无穷!)

Bessie 正在盘算她要藏到哪个牛棚里,一共有 N(2 <= N <= 20,000)个牛棚,编号为 $1 \sim$ N。她知道"捉"者 FJ 会从 1 号牛棚开始找。有 M(1<= M <= 50,000)条无向通路连接着所有的牛棚,其中通路 i 的两个端点分别为 A_i 和 B_i(1<= A_i <= N; 1 <= B_i <= N; A_i != B_i),任意两个牛棚之间都可互达。

Bessie 觉得藏到跟 1 号牛棚距离最远的牛棚里会比较安全,(这里两个牛棚之间的距离是指从一个牛棚到另一个牛棚的最短路径),请帮 Bessie 算一下最佳躲藏位置。

【输入】

第1行:两个空格隔开的整数 N, M;

第 2~M+1 行: 第 i+1 行有两个整数 A i,B i, 即第 i 条路的两个端点;

【输出】

一行,三个空格隔开的整数,分别为: 离 1 号牛棚最远的牛棚编号(如果最远的有多个,输出编号最小的那个);最远的牛棚与 1 号牛棚的最短路径;拥有此最短路径的牛棚个数。

【输入输出样例】

Input	Output
6 7	4 2 3
3 6	
4 3	
3 2	
1 3	
1 2	
2 4	
5 2	

输入数据如图所示:

1--2--5 | /| |/ | 3--4 | 6

输出样例解释:

4,5,6号牛棚距1号牛棚的最短路径均为2,选4号输出是因为它的编号最小。

【数据说明】

2 <= N <= 20,000,1<= M <= 50,000 1<= A_i <= N; 1 <= B_i <= N; A_i != B_i 任意两个牛棚之间都可互达