Regelsysteme

Einführungsbeispiel Prädikatenlogik

Formeln der Prädikatenlogik		
Bezeichnung	Notation	Beispiele
Variablen	X	<i>x</i> , <i>y</i>
Prädikate	$P(\overrightarrow{x})$	x = 7, y < z + 3
Wahrheitswerte	true, false	
Konjunktion	$\varphi_1 \wedge \varphi_2$	$x < y \land \text{true}$
Disjunktion	$\varphi_1 \vee \varphi_2$	true ∨ false
Negation	$\neg \varphi$	¬ true
All-Quantor	$\forall x. \varphi$	$\forall x. \ x < 0 \ \lor \ y \leq x$
Existenz-Quantor	$\exists x. \varphi$	$\exists x. \ x < 0 \ \lor \ y \geq x$

Modell und Gültigkeit

Modell \mathcal{M}

- Definiert Universum M für Variablenwerte
- Interpretiert Prädikate

Gültigkeit $\mathcal{M} \models \varphi$, $\mathcal{M} \models \Psi$

 $\mathcal{M} \vDash \varphi$ gdw. Formel φ gilt im Modell \mathcal{M} gdw. \mathcal{M} Modell für φ . $\mathcal{M} \vDash \Psi$ gdw. $\mathcal{M} \vDash \varphi$ für alle $\varphi \in \Psi$.

Beispiele:

- $\blacksquare \mathbb{R} \vDash \forall x \ y. \ x + y = y + x$

Semantische Herleitbarkeit $\Psi \vDash \varphi$

 $\Psi \vDash \varphi$ gdw. für alle \mathcal{M} mit $\mathcal{M} \vDash \Psi$ gilt auch $\mathcal{M} \vDash \varphi$.

Regelsysteme

Frege'scher Schlussstrich

$$\frac{A_1 \quad A_2 \quad A_3 \quad \dots \quad A_n}{E}$$

 A_i Voraussetzungen, E Konklusion

Beispiel Prädikatenlogik: Syntaktische Herleitbarkeit ($\Psi \vdash \phi$)

Introduktionsregeln

$$\lor \text{-I1:} \ \overline{\varphi \vdash \varphi \ \lor \ \psi} \quad \lor \text{-I2:} \ \overline{\psi \vdash \varphi \ \lor \ \psi}$$

$$\exists$$
-I: $\frac{}{\varphi(x) \vdash \exists x. \ \varphi(x)}$

Eliminationsregeln

$$\vee\text{-E:}\ \frac{\varphi \vdash \xi \qquad \psi \vdash \xi}{\varphi \ \lor \ \psi \vdash \xi}$$

$$\exists -\mathsf{E} : \frac{\varphi[x \mapsto y] \vdash \xi}{\exists x. \ \varphi(x) \vdash \xi}$$

(Keine Variablenkonflikte

 $\mathsf{mit}\; y \; \mathsf{in}\; \varphi \; \mathsf{und}\; \psi !)$

Metavariablen (φ, ψ, ξ) implizit universell quantifiziert

Ableitungsbäume

Nachweis der Ableitbarkeit mit einem Ableitungsbaum.

Beispiel: Nachweis von $\exists x. (\varphi(x) \lor \psi) \vdash \psi \lor \exists x. \varphi(x)$

$$\frac{\frac{\overline{\varphi(y)} \vdash \exists x. \ \varphi(x)}{\varphi(y) \vdash \psi \ \lor \ \exists x. \ \varphi(x)} \ \lor - 12}{\frac{\varphi(y) \vdash \psi \ \lor \ \exists x. \ \varphi(x)}{\exists x. \ (\varphi(x) \lor \psi) \vdash \psi \ \lor \ \exists x. \ \varphi(x)}} \ \lor - 11}{\exists x. \ (\varphi(x) \lor \psi) \vdash \psi \ \lor \ \exists x. \ \varphi(x)} \ \exists - E$$

Regelinversion

Definitionen mit Regelsystem erlauben Fallunterscheidung durch Regelinversion:

Sei $\varphi \vdash \psi_1 \lor \psi_2$. Mögliche Fälle:

$$\vee$$
-I1 $\varphi = \psi_1$

$$\overline{\varphi \vdash \varphi \ \lor \ \psi}$$

$$\vee$$
-l2 $\varphi = \psi_2$

$$\overline{\psi \vdash \varphi \ \lor \ \psi}$$

$$\frac{\varphi \vdash \xi \qquad \psi \vdash \xi}{\varphi \ \lor \ \psi \vdash \xi}$$

$$\exists \text{-E} \qquad \varphi = \exists x. \ \varphi'(x), \\ \varphi'[x \mapsto y] \vdash \psi_1 \ \lor \ \psi_2$$

$$\frac{\varphi[x\mapsto y]\vdash \xi}{\exists x.\ \varphi(x)\vdash \xi}$$

Korrektheit und Vollständigkeit

Korrektheit

Jede durch das Regelsystems herleitbare Formel gilt auch semantisch: aus $\Psi \vdash \varphi$ folgt $\Psi \vDash \varphi$.

Vollständigkeit

Jede semantisch korrekte Aussage lässt sich durch das Regelsystem herleiten: aus $\Psi \vDash \varphi$ folgt $\Psi \vdash \varphi$.

Bemerkung: Regelsysteme sollten entscheidbar sein, d.h. ein Algorithmus muss stets entscheiden können, ob $\Psi \vdash \varphi$ oder $\Psi \not\vdash \varphi$.