PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classification ⁶ :		(11) International Publication Number:	WO 96/34873
C07H 15/12, C12P 21/06, A61K 39/00, 38/00, C07K 1/00	A1	(43) International Publication Date:	7 November 1996 (07.11.96)

(21) International Application Number:

PCT/US96/06134

(22) International Filing Date:

1 May 1996 (01.05.96)

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE).

(30) Priority Data:

08/431,517

1 May 1995 (01.05.95)

US

Published

With international search report.

(71) Applicant: INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors: SCOTT, Randal, W.; 13140 Sun-Mohr, Mountain View, CA 94040 (US). MARRA, Marian, N.; 3748 Bret Harte Drive, Redwood City, CA 94061 (US).

(74) Agent: GREGG, Valeta; Fish & Richardson P.C., Suite 100, 2200 Sand Hill Road, Menlo Park, CA 94025 (US).

(54) Title: RECOMBINANT ENDOTOXIN-NEUTRALIZING PROTEINS

(57) Abstract

In general, the invention features a recombinant endotoxin-neutralizing polypeptide (RENP) characterized by (i) an amino acid sequence, (ii) an amino acid sequence and structure that facilitates selective and specific binding to lipopolysaccharide and (iii) once bound to the lipopolysaccharide, provides endotoxin-neutralizing activity. Preferably, the RENP is composed of an amino acid sequence similar to, but not identical to, an amino acid sequence of BPI, LBP, or both. preferably, the RENP contains an LPS-binding domain derived from the amino acid sequence of BPI, LBP or both. Preferably, the RENPs are covalently bound to a molecule which enhances the half-life of the polypeptide. The RENPs of the invention can be used in pharmaceutical compositions for therapeutic and prophylactic regimens, as well as in various in vitro and in vivo diagnostic methods.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

RECOMBINANT ENDOTOXIN-NEUTRALIZING PROTEINS

Field of the Invention

This invention relates generally to the field of recombinant, endotoxin-neutralizing proteins, particularly to recombinant proteins which bind endotoxin and block endotoxin-mediated activation of biological systems.

10 Background of the Invention

Gram-negative infections are a major cause of morbidity and mortality, especially in hospitalized and immunocompromised patients. [Duma, Am. J. of Med., 78 (Suppl. 6A):154-164 (1985); and Kreger et al., Am. J.

- 15 Med., 68:344-355 (1980)]. Although available antibiotics are generally effective in inhibiting growth of Gram-negative bacteria, they do not neutralize the pathophysiological effects associated with endotoxins. Endotoxin is a heat stable bacterial toxin composed of
- 20 lipopolysaccharides (LPS) released from the outer
 membrane of Gram-negative bacteria upon lysis
 [Shenep et al., J. Infect. Dis., 150(3):380-388 (1984)],
 and is a potent stimulator of the inflammatory response.
 Endotoxemia occurs when endotoxin enters the bloodstream

25 resulting in a dramatic systemic inflammatory response.

- Many detrimental in vivo effects of LPS result from soluble mediators released by inflammatory cells. [Morrison et al., Am. J. Pathol., 93(2):527-617 (1978)]. Monocytes and neutrophils, which ingest and kill
- 30 microorganisms, play a key role in this process.

 Monocytes and neutrophils respond to endotoxin in vivo by releasing soluble proteins with microbicidal,

proteolytic, opsonic, pyrog nic, complement-activating and tissue-damaging effects. These factors mediate many of the pathophysiological effects of endotoxin. For example, tumor necrosis factor (TNF), a cytokine released by endotoxin-stimulated monocytes, causes fever, shock, and alterations in glucose metabolism and is a potent stimulator of neutrophils. Other cytokines such as IL-1, IL-6, and IL-8 also mediate many of the pathophysiologic effects of LPS, as well as other pathways involving endothelial cell activation by tissue factor, kininogen, nitric oxide and complement.

Endotoxin-associated disorders result from extra-gastrointestinal exposure to LPS, e.g. administration of LPS-contaminated fluids, or 15 Gram-negative infections. Endotoxin-associated disorders can also result when the natural epithelial barrier is injured and the normal Gram-negative flora breach this barrier. For example, endotoxin-associated disorders can occur (a) when there is ischemia of the gastrointestinal 20 tract (e.g., following hemorrhagic shock or during certain surgical procedures), or (b) when systemic or local inflammation causes increased permeability of the gut to endotoxin or Gram-negative organisms. presence of endotoxin and the resulting inflammatory 25 response may result, for example, in endotoxemia, systemic inflammatory response syndrome (SIRS), sepsis syndrome, septic shock, disseminated intravascular coagulation (DIC), adult respiratory distress syndrome (ARDS), cardiac dysfunction, organ failure, liver failure 30 (hepatobiliary dysfunction), brain failure (CNS dysfunction), renal failure, multi-organ failure and shock.

Examples of diseases which can be associated with Gram-negative bacterial infections or endotoxemia include bacterial meningitis, neonatal sepsis, cystic fibrosis,

- 3 -

inflammatory bow 1 dis as and liver cirrhosis,
Gram-negative pneumonia, Gram-negative abdominal abscess,
hemorrhagic shock and disseminated intravascular
coagulation. Subjects who are leukopenic or neutropenic,
including subjects treated with chemotherapy or
immunocompromised subjects (for example with AIDS), are
particularly susceptible to bacterial infection and the
subsequent effects of endotoxin.

Several therapeutic compounds have been developed 10 to inhibit the toxic effects of endotoxin, including antibacterial LPS-binding agents and anti-LPS antibodies, although each has met with limitations. For example, Polymyxin B (PMB) is a basic polypeptide antibiotic which binds to Lipid A, the most toxic and biologically active 15 component of endotoxin. PMB inhibits endotoxin-mediated activation of neutrophil granule release in vitro and is a potential therapeutic agent for Gram-negative infections. However, because of its systemic toxicity, this antibiotic has limited therapeutic use, and is 20 generally used topically. Combination therapy using antibiotics and high doses of methylprednisolone sodium succinate (MPSS) showed more promise as this regimen prevented death in an experimental animal model of Gram-negative sepsis. However, a clinical study using 25 MPSS with antibiotics in treatment of patients having clinical signs of systemic sepsis showed that mortality rates were not significantly different between the treatment and placebo groups [Bone et al., N. Engl. J. Med. 317:653 (1987)].

Antibodies that bind endotoxin have been used in the treatment of endotoxemia. For example, hyperimmune human antisera against *E. coli* J5 reduced mortality by 50% in patients with Gram-negative bacteremia and shock [Ziegl r et al., N. Engl. J. Med. 307:1225 (1982)].

35 Howev r, attempts to tr at Gram-n gative sepsis by

administration of anti-LPS monoclonal antibodies met with little or no success [Ziegler et al., N. Engl. J. Med. 324:429 (1991); Greenman et al., JAMA 266:1097 (1991); Baumgartner et al., N. Engl. J. Med. 325:279 (1991)].

Another approach to treating endotoxemia involves the use of cytokine blockers, such as IL-1 receptor antagonists and anti-TNF antibodies, as well as the soluble forms of the IL-1 and TNF receptors. However, any given cytokine blocker blocks only the cytokine for which it is specific, and fails to prevent the action of other cytokines. Furthermore, blocking cytokines may have other deleterious effects.

Two soluble endotoxin-binding proteins, lipopolysaccharide binding protein (LBP) and 15 bactericidal/permeability-increasing (BPI), play opposing roles in vivo in the physiological response to endotoxin. LBP is a soluble LPS receptor found in serum which binds LPS with high affinity via interaction with the Lipid A moiety [Tobias et al. (1986) J. Exp. Med. 164:777-793; 20 Tobias et al. (1989) J. Biol. Chem. 264:10867-10871]. LBP-LPS complexes stimulate monocyte activation through interaction with the CD14 receptor on the surface of monocytes, resulting in production of cytokines such as TNF and IL-1 [Wright et al. (1989) J. Exp. Med. 25 170:1231-1241; Wright et al. (1990) Science 249:1431]. Thus, LBP acts as a transfer protein in LPS-mediated stimulation of cytokine release. Moreover, LBP increases LPS activity in that a lower concentration of LPS is required to stimulate monocytes in the presence of LBP

In direct contrast to LBP, BPI binds and neutralizes ndotoxin, pr v nting inflammatory cell activati n. BPI, also known as CAP57 and BP [Shaf r et al., Inf ct. Immun. 45:29 (1984);

35 Hovde et al., Infect. Immun. 54:142 (1986)] is also

30 than in its absence.

bact ricidal by virtue of its interaction with the
Lipid A moiety of LPS in the bacterial cell wall. BPI
binds LPS, disrupts LPS structure and the cell wall, and
increases bacterial membrane permeability, resulting in
5 cell death [Weiss et al., J. Biol. Chem, 253:2664-2672
(1978); Weiss et al., Infection and Immunity 38:1149-1153
(1982)]. BPI retains its in vitro bactericidal activity
after protease cleavage, suggesting that BPI fragments
retain activity [Ooi et al., Clinical Research 33(2):567A
10 (1985)]. This observation was confirmed by Ooi et al.,
who showed that an N-terminal 25 kD fragment of BPI
exhibited both the in vitro bactericidal and permeability
increasing activities [Ooi et al., J. Biol. Chem.
262:14891 (1987)].

15 Molecular Structures of BPI and LBP

The genes encoding BPI and LBP have been cloned [Gray et al. (1989) J. Biol. Chem. 264:9505-9509;
Schumann et al., Science 249:1429-1431 (1990)]. BPI and LBP are immunologically cross-reactive, contain a

20 hydrophobic leader sequence, and share significant amino acid sequence homology over the entire length of the molecules, with an overall amino acid sequence identity of 44% [Tobias et al., J. Biol. Chem. 263:13479-13481 (1988); Schumann et al. supra]. BPI and LBP each contains three cysteine residues. BPI contains two glycosylation sites; LBP contains five potential glycosylation sites.

BPI is characterized by two distinct domains, an N-terminal domain and a C-terminal domain, which are separated by a proline-rich hinge region. The N-terminal domain of BPI has str ng LPS-n utralizing activity, while the C-terminal domain of BPI has m dest LPS-neutralizing activity. LBP can also be divided into N- and C-terminal domains, with the C-terminal domain being implicat d in

- 6 -

binding of LPS to macrophages and their subsequent activation.

The N- and C-terminal domains of BPI have a striking charge asymmetry that is not shared by LBP. The N-terminal domain of BPI, which is rich in positively charged lysine residues, imparts a predicted pI > 10 to the full-length molecule. In contrast, the C-terminal domain of BPI is only slightly negatively charged. LBP, which is a neutral protein, has no bactericidal activity [Tobias et al., J. Biol. Chem. 263:13479 (1988)]. This suggests that the bactericidal activity of BPI results from its overall cationicity.

Table 1 provides a comparison of BPI and LBP structure and function.

- 7 -

Table 1
Comparison of BPI and LBP Structure and Function

		BPI	LBP
	SYNTHESIS		
	Site of synthesis	Neutrophil	Liver
5	Blood concentration	1-10 ng/ml	1-10 μg/ml
	STRUCTURE		
	Molecular mass	55 kD	60 kD
	Glycosylation sites	2	5
	Cysteine	3	3
10	EFFECTS ON LPS MEDIATED:		
	neutrophil activation	Inhibits	Stimulates
	monocyte activation	Inhibits	Stimulates
	TNF release	Inhibits	Stimulates
	IL-1 release	Inhibits	Stimulates
15	IL-6 release	Inhibits	Stimulates

^{*} Four cysteines were reported by Schumann et al. [Science 249:1429-1431 (1990)]. Subsequent DNA sequence analysis by the present inventors determined that Schumann's sequence was erroneous and that LBP contains only three cysteine residues (see Figure 1).

Therapeutic intervention to block the inflammatory effects of LPS would ameliorate the morbidity and mortality associated with endotoxemia and septic shock. Unfortunately, although BPI binds LPS with high affinity, it has an extremely short half-life in vivo, thus limiting its use in therapy. Native LBP has a longer half-lif but, upon binding of LPS, elicits a brisk monocyte reaction which can facilitate release of del teri us quantities of cytokines.

- 8 -

Early and specific diagnosis of endotoxin-associated disorders is essential in the identification of patients who have or who are at risk of developing such disorders.

Precise identification of a site of Gram-negative infection in a patient would assist the clinician in the design and targeting of antibacterial therapy.

5

An ideal anti-endotoxin drug candidate and/or LPS detection reagent would have a longer half-life and effective, high-affinity endotoxin binding/inactivation without monocyte stimulation. There is a clear need in the field for specific diagnostic and therapeutic agents which neutralizes the effects of endotoxin and has an acceptably long half-life in vivo. The present invention addresses these problems.

Summary of the Invention

Recombinant proteins are genetically engineered to bind lipopolysaccharide (LPS) such that the endotoxin is inactivated, thus preventing the endotoxin from inducing the immunological cascade of events associated with endotoxin-related disorders (e.g., activation of monocytes, tumor necrosis factor (TNF) production).

In general, the invention features a recombinant endotoxin-neutralizing polypeptide (RENP) characterized by (i) an amino acid sequence, (ii) a sequence and structure that facilitate specific binding to lipopolysaccharide, (iii) provides endotoxin-neutralizing activity upon LPS binding, and (iv) a half-life that is enhanced relative to the half-life of BPI. Preferably, the RENP is composed of an amino acid sequence similar to, but not id ntical to, an amino acid sequence of BPI, LBP, or both. Preferably, the RENP contains an LPS-binding domain derived from the amino acid sequence of BPI, LBP, or both. Preferably ar fusion

- 9 -

proteins which bind LPS with the high affinity of BPI, but do not contain the BPI amino acid sequences associated with BPI's short half-life.

Preferably, the RENPs are covalently bound to a molecule which further enhances the half-life of the polypeptide. For example, the half-life enhancing molecule can be an immunoglobulin fragment, a half-life determining portion of LBP or LBP derivative, or polyethylene glycol. In related aspects, the invention features DNA encoding an RENP of the invention, vectors and transformed cells containing DNA encoding an RENP, a method for producing RENPs, and detectably labeled RENPs.

A primary object of the invention is to provide an RENP which binds and inactivates endotoxin, and has a 15 half-life suitable for administration to a patient.

Another object of the invention is to provide a pharmaceutical composition containing a therapeutically effective amount of an RENP for use in treatment of endotoxin-related disorders.

20 Still another object of the invention is to provide endotoxin-neutralizing proteins for use in the detection of LPS. The RENPs can be bound to a label which can be detected or can be bound to a support for use in LPS-detection assays. LPS can be detected in vivo to identify a site of infection in a subject or can be used in an in vitro assay to qualitatively or quantitatively detect LPS in a sample.

Another object of the invention is to provide endotoxin-neutralizing proteins that can be used to produce endotoxin-free solutions and tools for use in, for example, various medical applications.

An advantage of the present inv ntion is that the endotoxin-n utralizing prot ins have a half-life in serum which is enhanc d relativ to the half-lif of naturally-occurring LPS-binding proteins, and bind LPS

- 10 -

without triggering a significant, undesirable immune response.

Another advantage of the invention is that the RENPs can be administered to a patient immediately upon identification of a symptom of an endotoxin-associated disorder.

Another advantage is that the endotoxin-neutralizing proteins can be administered prophylactically to a patient at risk of endotoxic shock or other LPS-mediated condition.

An advantage of the invention is that various RENPs having binding specificity for LPS for detection of LPS either in vivo or in vitro.

Another advantage of the invention is that the 15 RENPs can be attached to a variety of detectable labels.

Yet another advantage of the invention is that the RENPs can be bound to a molecule which can interact with or which can be a portion of a solid support.

These and other objects, advantages and features
of the present invention will become apparent to those
persons skilled in the art upon reading the details of
the vectors, cell lines and methodology as more fully set
forth below.

Brief Description of the Drawings

Figures 1A-1D are a comparison of the amino acid sequences of human LBP as described by Schumann et al. (LBPa) and as used herein (LBPb).

Figure 2 is a schematic diagram showing the various combinations of BPI, LBP, BPI variants, and/or 30 LBP variants which can be used to generate an RENPs of the invention.

Figur s 3A-3D show the nucleotide and amino acid sequences of BPI.

- 11 -

Figur s 4A-4C show the nucleotide and amino acid sequences of LBP.

Figures 5A-5F are a comparison of the amino acid sequences of BPI and LBP from various species.

Figure 6 shows the amino acid sequence of $L_{1-197}B_{200-456}$ (NCY118).

Figure 7 is a graph showing the effects of BPI, LBP, $L_{1-197(143->V)}B_{200-456(N206->D)}$ (NCY103) and $B_{1-199}L_{200-456}$ (NCY104) on biotinylated BPI binding to LPS.

Figure 8 is graph showing the effects of BPI, LBP, $L_{1-197(I43->V)}B_{200-456(N206->D)}$ (NCY103), $B_{1-199}L_{200-456}$ (NCY104), or $B_{(8351->A)}$ (NCY105) protein on LPS activity in the chromogenic LAL assay.

Figure 9 is a graph showing FITC-LPS binding to 15 monocytes in the presence of BPI or $L_{1-197(143->V)}B_{200-456(N206->D)}$ (NCY103).

Figure 10 is a graph showing the effects of BPI, LBP, $L_{1-197(I43->V)}B_{200-456(N206->D)}$ (NCY103) or $B_{1-199}L_{200-456}$ (NCY104), on TNF release by LPS in whole blood.

20 Figure 11 is a graph showing clearance of BPI, LBP, $L_{1-197(143->V)}B_{200-456(N206->D)}$ (NCY103) or $B_{1-199}L_{200-456}$ (NCY104) from mouse serum after intravenous injection.

Figure 12 is a graph comparing the efficacy of BPI and $L_{1-197(143->V)}B_{200-456(N206->D)}$ (NCY103) in the protection 25 to endotoxin challenge.

Figures 13A-13C are graphs showing the effects of BPI, $L_{1-197(143->V)}B_{200-456(N206->D)}$ (NCY103), $L_{1-197}B_{200-456}$ (NCY118), $L_{1-198}B_{201-456}Fc$ (NCY144), $L_{1-59}B_{60-456}$ (NCY114), $L_{1-134}B_{135-456}$ (NCY115), $L_{1-359}B_{360-456}$ (NCY117), and B_{CAT9} 30 (NCY139) on biotinylated BPI binding to LPS.

Figures 14A-14B are graphs showing the effects of BPI, LBP, $L_{1-197(143-v)}B_{200-456(N206-v)}$ (NCY103) and $B_{1-199}L_{200-456}$ (NCY104) on FITC-labeled LPS binding to human periph ral blood monocytes in the presence of 10%

autologous s rum (14A) and in the absence f serum and presence of 0.5% human serum albumin (14B).

Figure 15 is a graph comparing the effects of LBP vs. $L_{1-197(143->V)}B_{200-456(N206->D)}$ (NCY103), $B_{1-199}L_{200-456}$ 5 (NCY104), $L_{1-359}B_{360-456}$ (NCY117) and PLL (poly-L-lysine) on the stimulation of TNF α release by phorbol ester-induced THP-1 cells in the absence of serum.

Figure 16 is a graph showing the effects of various recombinant-endotoxin neutralizing proteins upon 10 LPS-mediated TNF production in THP-1 cells cultured without serum.

Figures 17A-17H are graphs showing the clearance of: BPI, LBP, $L_{1-197(143-v)}B_{200-456(N206-v)}$ (NCY103), $B_{1-199}L_{200-456}$ (NCY104), and $L_{1-197}B_{200-456}$ (NCY118) (17A); BPI, $L_{1-59}B_{60-456}$ (NCY114), $L_{1-134}B_{135-456}$ (NCY115), and B_{CAT9} (NCY139) (17B); BPI, LBP, $L_{1-359}B_{360-456}$ (NCY117) and

 $L_{1-197}B_{200-456}$ (NCY118) (17C); and BPI, LBP and $L_{(1-198)}B_{(201-456)}$ Fc (NCY144) (assayed for both Fc and BPI) in CD-1 mice (17D); LBP, $L_{1-275}B_{278-456}$ (NCY116),

20 $L_{1-359}B_{360-456}$ (NCY117), $L_{1-197}B_{200-456}$ (NCY118) (17E); LBP, $L_{1-197}(143-v)^B_{200-456}(N206-v)$ (NCY103), $L_{1-134}B_{135-456}$ (NCY115), $L_{(1-198)}B_{(202-275)}L_{(274-458)}$ (NCY135), and $L_{(1-134)}B_{(136-275)}L_{(274-458)}$ (NCY134) (17F); LBP (NCY102), L_{CAT6} (NCY141), L_{CAT9} (NCY142), L_{CAT15} (NCY143) and BPI (17G);

25 and BPI, $L_{1-134}B_{135-456}$ (NCY115), and $L_{1-59}B_{60-456}$ (NCY114) (17H).

Figure 18 is Western blot of BPI and $L_{1-197}B_{200-456}$ (NCY118) produced in *Pichia pastoris*.

Figure 19 is a graph showing the effects of BPI and $L_{1-197(143-v)}B_{200-456(N206-v)}$ (NCY103) on endotoxin activation of monocytes.

Figure 20 is a graph showing the protectiv ffects of $L_{1-197}B_{200-456}$ (NCY118) to endotoxin challenge in mice.

- 13 -

Description of the Preferred Embodiments

endotoxin-neutralizing proteins, methods for providing therapy to a patient suffering from an endotoxin-related disorder, and compositions and method for diagnosis of a condition associated with LPS are described, it is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, vectors and reagents described as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a recombinant endotoxin-neutralizing protein" includes a plurality of such proteins and reference to "the DNA encoding the recombinant endotoxin-neutralizing protein" includes reference to one or more transformation vectors and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices and materials are now described.

All publications mentioned herein ar incorporated h rein by reference for the purpos of describing and disclosing the cell lines, v ctors, and methodologies

which are described in the publications which might be used in connection with the presently described invention.

Definitions

By "lipopolysaccharide" or "LPS" is meant a compound composed of a heteropolysaccharide (which contains somatic O antigen) covalently bound to a phospholipid moiety (lipid A). LPS is a major component of the cell wall of Gram-negative bacteria.

10 By "endotoxin" is meant a heat-stable toxin associated with the outer membranes of certain Gram-negative bacteria, including the enterobacteria, brucellae, neisseriae, and vibrios. Endotoxin, normally released upon disruption of the bacterial cells, is 15 composed of lipopolysaccharide molecules (LPS) and any associated proteins. The phospholipid moiety of LPS, lipid A, is associated with LPS toxicity. When injected in large quantities endotoxin produces hemorrhagic shock and severe diarrhea; smaller amounts cause fever, altered 20 resistance to bacterial infection, leukopenia followed by leukocytosis, and numerous other biologic effects. Endotoxin is a type of "bacterial pyrogen," which is any fever-raising bacterial product. The terms "endotoxin," "LPS," and "lipopolysaccharide" as used herein are 25 essentially synonymous.

By "recombinant endotoxin-neutralizing polypeptide", "RENP" or "recombinant LPS-neutralizing polypeptide" is meant a protein which has been genetically engineered and contains an LPS-binding domain. Preferably, such recombinant LPS-binding proteins bind endotoxin, have a relatively long half-life in serum (e.g., compared to bactericidal/permeability increasing (BPI) protein), and elicit no or relatively little of the undesirable inflammatory side effects

- 15 -

associat d with endotoxin and/or binding of LPS to particular naturally occurring endotoxin-binding proteins (e.g., lipopolysaccharide binding (LBP) protein).

"RENPs" of the invention do not occur naturally and are distinct from those endotoxin-binding proteins that do occur in nature, specifically BPI and LBP.

By "LPS-binding domain" is meant an amino acid sequence which confers specific and selective LPS binding upon a polypeptide.

By "high affinity LPS binding" is meant an LPS binding affinity greater than the LPS binding affinity of LBP, preferably about the same or greater than the LPS binding affinity of BPI.

By "endotoxin-neutralizing activity" is meant a
15 biological activity associated with inhibition of the
toxic effects of lipopolysaccharide, e.g., by binding LPS
and preventing interaction of LPS with proteins and/or
receptors which mediate an undesirable immunological
response associated with endotoxin in a mammalian host.

By "recombinant" or "genetically engineered" is meant a DNA sequence, or a polypeptide encoded thereby, generated using nucleic acid manipulation techniques (e.g., cloning, PCR, and/or fusion protein techniques). "Recombinant" or "genetically engineered" DNA, and thus the proteins encoded by such DNAs, do not occur in nature.

By "half-life" is meant the time required for a living tissue, organ, or organism to eliminate one-half of a substance introduced into it.

By "molecule which enhances the half-life" or "half-life enhancing molecule" is meant chemical moiety (.g., bound via a chemical modification) which enhanc s th biological half-life of a polypeptide with which it is associated relativ to the biological half-life of the parent polypeptide. Chemical moi ties includ an amino

acid sequenc or protein. For xample, wher a polyethylene glycol (PEG) moiety is covalently bound to a protein so as to increase the half-life of the protein relative to the un-PEGylated parent protein, the PEG moiety is the "molecule which enhances the half-life" of the protein.

By "half-life determining portion" of a polypeptide is meant an amino acid sequence which is associated with the biological half-life of the 10 polypeptide.

By "bactericidal/permeability increasing protein" or "BPI" is meant a naturally occurring or recombinantly expressed protein having the DNA and amino acid sequences shown in Figures 3A-3D.

By "lipopolysaccharide binding protein" or "LBP" is meant a naturally occurring or recombinantly expressed protein having the DNA and amino acid sequences shown in Figures 1A-1D and Figures 4A-4C.

By "BPI variant" is meant a protein having an amino acid sequence similar to, but not identical to, the amino acid sequence of BPI. "BPI variants" (a) bind LPS, (b) competitively bind LPS in the presence of BPI or LBP, and (c) inhibit the LPS-mediated production of TNFα by human monocytes. In general, "BPI variants" contain the amino acid sequence of BPI but with at least one of: 1) an amino acid substitution; 2) an amino acid deletion; or 3) an amino acid addition, relative to the BPI amino acid sequence.

By "LBP variant" is meant a protein having an amino acid sequence similar to, but not identical to, the amino acid sequence of LBP. "LBP variants" (a) bind LPS, (b) competitively bind LPS in the presenc of BPI or LBP, and (c) inhibits production of TNFα by human monocytes. In general, "LBP variants" contain the amino acid sequence of LBP but with at 1 ast one of: 1) an amino

- 17 -

acid substituti n; 2) an amino acid deletion; or 3) an amino acid addition, relative to the LPB amino acid sequence.

By "detectable label" is meant any molecule

5 recognized in the art as a means for identifying and/or
detecting a protein to which the detectable label is
bound. Exemplary "detectable labels" include
radionucleotides, fluorescent moieties, biotin, and
antigenic molecules (e.g., a polypeptide which is

10 specifically bound by an anti-polypeptide antibody).

"Detectable labels" include a portion of a chimeric
protein where a portion of the chimeric protein can be
detected by, for example, binding of a detectably labeled
antibody or other detectably labeled molecule which

15 specifically binds the chimeric protein portion.

By "support" is meant a surface to which LPS or an RENP of the invention can be bound and immobilized. Exemplary supports include various biological polymers and non-biological polymers.

20 By "condition associated with endotoxin", "endotoxin associated disorder", or "endotoxin-related disorder" is meant any condition associated with extra-gastrointestinal (e.g., mucosal, blood-borne, closed space) lipopolysaccharide, e.g., a condition 25 associated with bacteremia or introduction of lipopolysaccharide into the blood stream or onto an extra-gastrointestinal mucosal surface (e.g., the lung). Such disorders include, but are not limited to, endotoxin-related shock, endotoxin-related disseminated 30 intravascular coagulation, endotoxin-related anemia, endotoxin-related thrombocytopenia, endotoxin-related adult r spiratory distr ss syndrome, ndotoxin-related r nal failur , endotoxin-related liv r disease or hepatitis, syst mic immune r sponse syndrom (SIRS) 35 resulting from Gram-negative infection, Gram-negative

neonatal s psis, Gram-n gative meningitis, Gram-negativ pneumonia, neutropenia and/or leucopenia resulting from Gram-negative infection, hemodynamic shock and endotoxin-related pyresis.

By "transformation" is meant a permanent genetic change induced in a cell following incorporation of new DNA (i.e., DNA exogenous to the cell). Where the cell is a mammalian cell, the permanent genetic change is generally achieved by introduction of the DNA into the genome of the cell.

By "transformed cell" is meant a cell into which (or into an ancestor of which) has been introduced, by means of recombinant DNA techniques, a DNA molecule encoding a protein of interest.

By "promoter" is meant a minimal DNA sequence sufficient to direct transcription. "Promoter" is also meant to encompass those promoter elements sufficient for promoter-dependent gene expression controllable for cell-type specific, tissue-specific or inducible by external signals or agents; such elements may be located in the 5' or 3' regions of the native gene.

By "operably linked" is meant that a DNA sequence and a regulatory sequence(s) are connected in such a way as to permit gene expression when the appropriate 25 molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequence(s).

By "operatively inserted" is meant that the DNA of interest introduced into the cell is positioned adjacent a DNA sequence which directs transcription and translation of the introduced DNA (i.e., facilitates the production of, e.g., a polypeptide encoded by a DNA of

By "mammalian subject" r "mammalian pati nt" is meant any mammal for which the therapy of the invention

interest).

- 19 -

is desired, including human, bovine, equin, canine, and feline subjects.

The invention will now be described in further detail.

5 Nomenclature used to describe RENPs

In order to facilitate the discussion and description of the RENPs of the invention, each RENP is designated a specific formula to briefly describe the amino acid sequence of the protein, as well as the origin 10 of specific portions of the protein. The portion of BPI in the recombinant protein is designated with the letter B, followed by an amino acid sequence numbering assignment corresponding to that shown in Figures 5A-5F for human BPI, wherein the mature N-terminus is 15 designated as residue 1. The portion of LBP in certain LBP variants and chimeras is designated by the letter L, followed by an amino acid sequence numbering assignment corresponding to that shown in Figures 1A-1D for human LBP, wherein the mature N-terminus is designated as 20 residue 1. To avoid confusion between the erroneous LBP amino acid sequence published by Schumann et al., supra (designated LBP-a) and the correct LBP amino acid sequence used in the RENPs of the invention (designated LBP-b) and presented in Figures 1A-1D. The differences 25 between the DNA and amino acid sequences for "LBP-a" and "LBP-b" are presented in Table 2A below.

As an example of RENP nomenclature, L₁₋₁₉₇B₂₀₀₋₄₅₆ (NCY118) contains amino acid residues 1-199 of LBP fused at the C-terminus of the LBP portion to the N-terminus of amino acid residues 200-456 of BPI. L₁₋₁₉₇B₂₀₀₋₄₅₆, shown in Figur 6 has th N-t rminal domain of LBP (having a putative endotoxin-binding domain) fused to the C-t rminal domain of BPI (having a putative LPS-clearing domain).

- 20 -

In this application, single amino acid residue substitutions are noted in parentheses, wherein the original amino acid residue is indicated (using the standard one letter code for amino acids), followed by 5 the substitute amino acid residue. For example, the BPI variant having an alanine residue substituted for the original serine residue at position 351 (which substitution removes a glycosylation signal) is designated BPI_(8351->A). In another example, in 10 B_(DS200->DP), a proline residue is substituted for the serine residue at position 200. In this latter example, the amino acid substitution produces a formic acid-cleavable site.

As another example, the RENP LBP-BPI chimera

15 NCY103 is designated L_{1-198(I43->V)}B_{201-456(D206->N)}. In the recombinant protein, the original isoleucine residue at position 43 of the LBP portion is substituted with a valine residue, and the original asparagine residue at position 206 of the BPI portion is substituted with an 20 aspartate residue. The C-terminus of the LBP amino acid sequence 1-198 having isoleucine substituted at position 43 is covalently bound to the N-terminus of the BPI amino acid sequence 201-456 having valine substituted at position 206.

The amino acid substitutions may be substitutions wherein an original amino acid residue at a given position is substituted with the residue at the corresponding position in a different protein. BPI(xn->Y) is an example of such a substitution, wherein amino acid residue X at position n in BPI is substituted with residue Y which is found at position n in LBP (or rabbit or b vine LBP). "X" and "Y" denote amino acid positions in a primary amino acid s quence. "Y" as us d in this context is not to be confus d with the symbol "Y"

35 d noting th amino acid residue tyrosin . LBP(xn->Y) is

PCT/US96/06134 WO 96/34873

- 21 -

another example of such a substitution, wherein amino acid residue X at position n in LBP is substituted with residue Y which is found at position n in BPI (or rabbit or bovine BPI).

- 5 Amino acid residue insertion changes are noted in parentheses, by indicating the amino acid residue after which the insertion occurs, followed by the amino acid residue after which the insertion occurs together with the inserted residue or residues. For example,
- 10 B_{(D200papain}) indicates that an amino acid sequence for cleavage of the BPI variant by papain is inserted after the aspartic acid at residue position 200.

TABLE 2A Individual Sequence Differences Between Schumann et al. and LBP as Used Herein

		NUCLEIC ACID	PROTEIN		
A	l pha	Beta	Alpha	Beta	
A	42	C ₄₂	G ₁₂₉ YCL ₁₃₂	V ₁₂₉ TAS ₁₃₂	
c	318	T ₃₁₈	S ₁₄₉	F ₁₄₉	
) <u> </u>	488	(np)	A ₂₄₁	V241MSLP245	
(np)	C499	L411	F ₄₁₁	
T	546	C ₅₄₆			
c	548	T ₅₄₈			
(np)	T ₈₂₄ CATGAGCCTTC ₈₃			
5 C	1333	T ₁₃₃₃			

(np) = not present in the sequence

Table 2B describes some exemplary general classes of RENPs of the invention. In the formulas in Table 2B, n r pr sents an amino acid residue position in the mature 30 s quence of BPI or LBP, x represents an amino acid residu in a position which is C-terminal to n in the

15

- 22 -

sequenc of BPI or LBP, and y represents an amino acid residue in a position which is C-terminal to x in the sequence of BPI or LBP. The symbols n, x and y denote the amino acid residue positions as they occur in the mature sequence of the native protein, and not necessarily the positions as they occur in the variant protein.

Table 2B

10

Examples of RENPs

```
BPI variant (N-terminal frag.)
      LBP variant (N-terminal frag.)
                                                       L<sub>1-n</sub>
      BPI variant (C-terminal frag.)
                                                       B<sub>n-456</sub>
      LBP variant (C-terminal frag.)
                                                       L<sub>n-456</sub>
15 BPI variant (internal frag.)
                                                       B_{n-x}
      LBP variant (internal frag.)
                                                       L_{n-x}
      LBP-BPI chimera
                                                       \frac{L}{n}-x^{B}(x+1)-y
      BPI-LBP chimera
                                                       B_{n-x}^{L}(x+1)-y
                                                       Ln-xB(x+1)-456
Bn-xL(x+1)-456
L1-nB(n+1)-x
B1-nL(n+1)-x
      LBP-BPI chimera
 20 BPI-LBP chimera
      LBP-BPI chimera
      BPI-LBP chimera
                                                       L1-nB(n+1)-456
      LBP-BPI chimera
                                                       B<sub>1-n</sub>L<sub>(n+1)-456</sub>
L<sub>1-n</sub>B<sub>(n+1)-x</sub>L<sub>(x+1)-456</sub>
B<sub>1-n</sub>L<sub>(n+1)-x</sub>B<sub>(x+1)-456</sub>
      BPI-LBP chimera
 25 LBP-BPI-LBP chimera
      BPI-LBP-BPI chimera
```

All of the constructs in Table 2B can also contain additional molecules which confer an enhanced half-life 30 upon the RENP (e.g., the RENP can be covalently bound to a polyethylene glycol moiety, or a portion of an immunoglobulin protein or oth r amino acid sequence which conf rs a half-life increased relativ to th unmodified protein). The general sch me for generation of RENPs is outlined in Figure 2.

.- 23 -

Production of RENPs

The RENPs of the invention minimally have characteristics associated with (i) specific and high affinity binding to lipopolysaccharide and 5 (ii) endotoxin-neutralizing activity. In general, the amino acid sequence of RENPs is based upon an amino acid sequence of BPI, LBP, or both. However, the amino acid sequences of the RENPs are distinct from that of BPI and LBP, i.e. the RENPs contain amino acid substitutions, 10 deletions, and/or additions relative to the amino acid sequence of BPI or LBP. Thus, the RENPs of the invention contain: 1) amino acid sequences of a naturally-occurring LPS-binding protein (i.e., LBP and/or BPI); and/or 2) amino acid sequences which do not occur 15 within a single naturally-occurring LPS-binding protein (i.e., LBP or BPI). RENPs can thus be similar to, but not identical to, LBP or BPI. For example, the RENPs can be fragments of BPI and/or LBP, as the amino acid sequences of such RENPs are similar to, but not identical 20 to, naturally occuring BPI or LBP. Moreover, the RENPs of the invention generally have biological properties distinct from and advantageous to either BPI or LBP. RENPs of the invention include BPI variants, LBP variants, and chimeric proteins composed of amino acid 25 sequences derived from BPI, LBP, BPI variants, and/or LBP variants.

For example, RENPs can contain an amino acid sequence of BPI, where the BPI amino acid sequence 1) has been altered at a site of glycosylation (e.g., insertion or deletion of a glycosylation site); 2) contains a neutral or anionic amino acid substituted at a cationic residue of the BPI amino acid sequence (cationic substitution variants); 3) contains an amino acid substitution at a position normally occupied by cystein in the BPI s qu nc (cysteine substitution variants); 4)

contains an amino acid substitution where the substitut d amino acid is the amino acid at the corresponding position in the LBP amino acid sequence; and/or 5) contains an insertion or deletion of one or more 5 secondary structure-altering amino acid residues.

Exemplary BPI variants containing a glycosylation site alteration include BPI variants having an amino acid residue other than serine substituted for the serine residue at position 351 of the BPI amino acid sequence.

BPI variants of this type are of the formula
BPI(S351->X), wherein X is any amino acid other than
serine. Preferably, the amino acid substituted at
position 351 is alanine. Other BPI variants having a
glycosylation site deleted can be generated by, for
example, other amino acid substitutions within the
glycosylation site.

Additional exemplary BPI variants contain a neutral or anionic amino acid substituted at a cationic residue of the BPI amino acid sequence (cationic substitution variants). For example, one or more of the nonconserved positively-charged residues in BPI (i.e., those residues not found at the corresponding positions in LBP) can be substituted with the corresponding residue or residues in LBP, thus rendering BPI less cationic.

- 25 Preferably, the cationic substitution variant contains an amino acid substitution in at least one of BPI amino acid residue positions 27, 30, 33, 42, 44, 48, 59, 77, 86, 90, 96, 118, 127, 148, 150, 160, 161, 167, 169, 177, 185, or 198. The cationic substitution variant can contain
- 30 multiple amino acid substitutions. For example, the cationic substitution variant can contain a neutral or ani nic residu s at 1) BPI amino acid residue positions 27, 30, 33, 42, 44, 48, and 59; 2) BPI amino acid residue positions 77, 86, 90, 96, 118, and 127; 3) BPI amino acid residue positions 77, 86, 90, 96, 118, and 127; 3) BPI amino acid residue positi ns 148, 150, 160, 161, 167, 169, 177, 185,

and 198; r 4) BPI amino acid residu positions 27, 30, 33, 42, 44, 48, 59, 77, 86, 90, 96, 118, 127, 148, 150, 160, 161, 167, 169, 177, 185, and 198.

Further example BPI variants contain an amino acid substitution at a position normally occupied by cysteine in the BPI sequence (cysteine mutant). The amino acid selected for substitution at this site can be the amino acid in the corresponding position in LBP. For example, a cysteine residue in BPI (which is not conserved in LBP) may be substituted with an alanine residue (the corresponding residue in LBP). Preferably, the amino acid substitution is at a cysteine residue at BPI amino acid residue position 132, 135, or 175. Preferably, alanine or serine is substituted for cysteine. More preferably, alanine is substituted for the cysteine at position 132 of BPI. Cysteine substitution mutants of BPI can prevent aggregation of the resulting RENPs during their production or use.

Another example of a BPI variant includes a BPI

20 variant having an amino acid substitution where the
substituted amino acid is the amino acid at the
corresponding position in LBP. The amino acid at the
corresponding position is determined by aligning the BPI
and LBP amino acid sequences so as to maintain the

25 highest level of amino acid sequence identity between the
two sequences. For example, an RENP having the formula $B_{(Q329\rightarrow S)} \text{ contains a substitution of the glutamine at BPI}$ residue position 329 with the serine residue at the
corresponding LBP residue position 327 (see Figures

30 5A-5F).

Additional exemplary BPI variants contain an ins rtion r d letion of one or more secondary structur -alt ring amino acid residues. For example, n or more of the nonconserved proline residues in BPI may

- 26 -

be substituted with the corresponding non-prolin residue in LBP.

Alternatively, or in addition to the amino acid sequence of BPI and/or a BPI variant, the RENPs can 5 contain an amino acid sequence of LBP, where the LBP amino acid sequence 1) has been altered at a site of glycosylation (e.g., insertion or deletion of a glycosylation site); 2) contains a cationic amino acid substituted at a neutral or anionic amino acid of the LBP 10 amino acid sequence (cationic replacement mutant); 3) contains an amino acid substitution where the substituted amino acid is the amino acid at the corresponding position in the BPI amino acid sequence; and/or 4) contains an insertion or deletion of one or more 15 secondary structure-altering amino acid residues. LBP DNA and amino acid sequence used in the construction of particular RENPs exemplified herein is the amino acid sequence of human LBP in Figs. 5A-B.

Exemplary LBP variants contain a cationic amino 20 acid substituted at a neutral or anionic amino acid of the LBP amino acid sequence (cationic replacement variant). For example, one or more of the nonconserved amino acid residues in LBP (at a position which corresponds to a positively-charged residue in BPI) may 25 be substituted with the corresponding positively-charged residue in BPI, and thus result in an LBP variant having an increased positive charge, thus enhancing binding to the negatively charged phosphate groups in LPS, and/or facilitating interaction with the negatively charged 30 surfaces of Gram-negative bacteria. Positively-charged residues include, by way of example, lysine, arginine, and histidine. Pr ferably, the substituted cationic amino acid is at least on of LBP amino acid residu positions 77, 86, 96, 118, 126, 147, 148, 158, 159, 161, 35 165, 167, 175, 183, or 196. Cationic replacement

variants can contain multiple amino acid residue substitutions at any combination of the amino acid residues recited above.

Other exemplary LBP variants include an LBP

5 variant having an amino acid substitution where the substituted amino acid is the amino acid at the corresponding position in BPI. For example, L_(A401→D) contains a substitution of the alanine residue of LBP at position 401 with the aspartic acid residue at the corresponding BPI residue position 403.

Further exemplary LBP variants contain an insertion or deletion of one or more one or more secondary structure-altering amino acid residues. For example, one or more of the nonconserved amino acid residues in LBP (at a position which corresponds to a proline in BPI) may be substituted with a proline residue. Preferably, such amino acid alterations alter the secondary structure of the resulting LBP variant so that it is more like the secondary structure of BPI.

Preferably, the RENPs of the invention contain at least one LPS-binding domain of BPI, LBP, a BPI variant, and/or a LBP variant. For example, the LPS-binding domain can be derived from BPI and/or LBP amino acid sequences 17-45, 65-99, and/or 141-167. Preferably, the RENP has an LPS binding affinity that is greater than the LPS binding affinity of LBP, more preferably an LPS binding affinity that is the same or greater than the LPS binding affinity of BPI. Preferably, the RENP has an LPS binding affinity that is about 25-fold to 50-fold, preferably about 50-fold to 100-fold, more preferably about 100-fold to 300-fold greater than the LPS binding affinity of LBP as determin d by LPS binding or LPS

binding comp tition assays. The LPS binding affinity of

BPI is about 60-fold to 100-fold greater than the LPS

35 binding affinity of LBP.

The RENPs can contain multiple LPS-binding domains derived from any of these LPS-binding proteins. For example, an RENP can be a multivalent chimeric protein (i.e., a fusion protein) composed of an LPS-binding 5 domain of BPI covalently bound (i.e., as in a fusion protein) to an LPS-binding domain of LBP. As used herein, a chimera means a protein comprising all or a portion of a first protein fused to all or a portion of a second protein, which resulting fusion protein may in 10 turn be fused to all or a portion of a third protein. Examples of chimeras include, by way of example, (a) a protein comprising a portion of LBP fused to a portion of BPI, (b) a protein comprising a portion of LBP fused to a portion of BPI which portion of BPI is in turn fused to a 15 portion of an immunoglobulin protein, or (c) a protein comprising a portion of LBP fused to a portion of BPI, which is in turn fused to a portion of LBP. Each protein portion of the chimera may comprise a fragment of the protein, a point mutant of the protein (i.e., a variant), 20 a deletion mutant of the protein, or a point and deletion mutant of the protein.

Examples of BPI fragments which can be incorporated into the RENPs of the invention include the BPI amino acid sequences 1-25, 1-85, 1-137, 1-135, 1-147, 1-159, 88-100, 148-161, 137-199, 44-159, 44-199, 135-199, 100-199, 162-199, 100-147. Examples of LBP fragments which can be incorporated into the RENPs of the invention include LBP amino acid sequences 1-43, 1-87, 26-135, 26-134, 86-99, 101-146, 101-197, 135-197, 137-197, 158-197, 160-197, and/or 147-159. The amino acid sequences of BPI and/or LBP can be comined in any order from N- to C-terminus to provide an RENP having sequences derived from BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. For example, the RENPs can have the sequence of BPI and/or LBP. The sequence of BPI and/or LBP. BPI

134^B135-199, $L_{1-87}^{B}88-100^{L}101-146^{B}148-161^{L}160-197$, $B_{1-85}^{L}86-99^{B}100-199$, $B_{1-147}^{L}147-159^{B}162-199$, $B_{1-85}^{L}86-99^{B}100-147^{L}147-159^{B}162-199$, $L_{1-87}^{B}88-100^{L}101-197$, or various combinations of other BPI and/or LBP fragments.

For example, fusing the N-terminal domain of LBP to the C-terminal domain of BPI results in an RENP which differs from LBP in that the chimera neutralizes endotoxin in whole blood and differs from BPI in that the chimera has a longer circulating half-life in vivo. Such RENPs have significant diagnostic and therapeutic potential. As per the nomenclature described above, RENPs designated BPI-LBP contain all or a part of the N-terminal domain of BPI fused to all or a part of the C-terminal domain of LBP. Likewise, RENPS designated LBP-BPI contain all or a part of the N-terminal domain of BPI.

Where the RENP contains amino acid sequences derived from both BPI and LBP, the RENP is preferably 20 composed of a C-terminal fragment of BPI (or a BPI variant) and an N-terminal fragment of LBP (or an LBP variant). Preferably the C-terminal fragment of BPI (or a BPI variant) contains amino acid residues 60-456. 136-456, 199-456, 277-456, 300-456, 200-456, 136-361, 25 136-275, 200-275, or 200-361, more preferably 60-456, more preferably 199-359. The amino acid sequence of BPI from residue 199 to residue 359 contains a region required for neutralizing LPS, i.e., preventing LPS from stimulating an inflammatory response. Preferably, the N-30 -terminal fragment of LBP (or an LBP variant) contains amino acid residues 1-59, 1-134, 1-164, 1-175, 1-274, 1-359, 1-134, or 1-197, more preferably 1-175. addition to th sp cific amino acid sequences of BPI and LBP recited above, the RENP can also contain amino acid 35 residu s derived from the C-terminus of LBP (or an LBP)

variant), preferably LBP (or LBP variant) amino acid residues 360-456 or 274-456.

Polypeptides which bind LPS can be identified using any of several assays well known in the art such as the 1) chromogenic LAL competition assay, 2) binding to LPS immobilized on a surface, and 3) FITC-LPS assay for binding to macrophages. The ability of a polypeptide to neutralize endotoxin can also be determined using methods well known in the art. Endotoxin neutralization assays

- 10 include assays to examine the ability of a polypeptide to
 - 1) prevent LPS-induced TNF release in whole blood,
 - 2) inhibit or prevent TNF production by THP-1 cells,
 - 3) provide protection in a mouse endotoxin challenge assay, and 4) reduce or prevent LPS-induced cytokine
- 15 release and/or mortality in an animal model. Each of these assays are described in detail in the examples section below. The results of the *in vitro* and *in vivo* assays used herein are accepted in the art. The results of these assays are predictive of relevant biological
- 20 activity in vivo, e.g. in humans.

Preferably, the RENPs of the invention have a biological half-life (e.g., serum half-life) which is enhanced relative to the biological half-life of BPI. Preferabl, the half-life of the RENP is enhanced relative to BPI such that the clearance time of the RENP is at least 1.5-fold to 10-fold, preferably about 10-fold to 50-fold, more preferably about 50-fold to 100-fold, even more preferably about 100-fold to 350-fold slower than the clearance rate of BPI. The clearance rate values representing these ranges are from about 8 ml/min to 1.5 ml/min, preferably 1.5 ml/min to 0.26 ml/min, more preferably 0.26 ml/min to 0.13 ml/min, v n more

To enhance th RENP half-life, the RENP can b 35 covalently bound to a molecul which enhanc s the

pref rably about 0.13 ml/min to 0.03 ml/min.

- 31 -

half-lif of the polyp ptide. The half-life enhancing molecule can be any of a variety of half-life enhancing molecules. Exemplary half-life enhancing molecules include immunoglobulin fragments, a half-life determining 5 portion of LBP, a half-life determining portion of an LBP variant, or polyethylene glycol (PEG), preferably a half-life determining portion of LBP or an LBP variant. Preferably, where the half-life enhancing molecule is a portion of LBP or an LBP variant, the half-life enhancing 10 molecule is derived from the N-terminus of the LBP or LBP variant amino acid sequence, more preferably from amino acid residues 1-59, 1-134, 1-274, 1-359, 1-134, 1-164, 1-175, or 1-197, most preferably 1-164 or 1-175. Methods of attachment of PEG moieties to a protein (i.e., 15 PEGylation) are well known in the art and are exemplified in U.S. patent nos. 4,179,337; 5,166,322; 5,206,344; and PCT application serial no. PCT/US94/11624, published

As used herein, an RENP-Ig chimeric protein is an RENP which (i) contains a portion of BPI or LBP (at least 10 amino acid residues in length of (a) BPI, or (b) BPI variant, or (c) LBP, and/or (d) LBP variant) fused at the C-terminus to the N-terminus the Fc portion of an immunoglobulin molecule, and (ii) is capable of (a)

- binding to LPS, (b) competing with BPI or LBP for binding to LPS, and (c) inhibiting the production of TNFα by human monocytes. For example, the portion of the immunoglobulin molecule is derived from an IgG molecule, specifically from an IgG₁ heavy chain Fc domain. RENP-Ig
- of chimera is a fusion protein composed predominantly of sequences derived from BPI, variant BPI, LBP and/or variant LBP. The trm "LBP-BPI-IgG chimera" indicat sethat the RENP-Ig chimera contains amino acides quences derived from both BPI (or a BPI variant) and LBP (or an
- 35 LBP variant).

April 28, 1995.

- 32 -

Id ntification of a half-life enhancing polypeptide sequence (e.g., a polypeptide derived from an immunoglobulin, LBP, or LBP variant) can be accomplished using methods well known in the art. For example, the 5 test polypeptide with and without the half-life enhancing molecule bound to it are injected into an animal model to determine the effects of the putative half-life enhancing molecule. If the half-life of the polypeptide with the molecule is enhanced relative to the half-life of the 10 polypeptide without the molecule, then the molecule is a half-life enhancing molecule suitable for use in the RENPs of the invention. For example, a putative half-life enhancing amino acid sequence is incorporated into a fusion protein with BPI. Both native BPI and the 15 BPI fusion protein are injected into mice. If the BPI fusion protein has a half-life significantly greater than the half-life of native BPI, then the amino acid sequence in the BPI fusion has half-life enhancing characteristics, and thus can be incorporated into the 20 RENPs of the invention.

Vectors and constructs

Any nucleic acid vector can be used to express DNA encoding an RENP of the invention. The vectors containing the DNA sequence (or the corresponding RNA sequence) which may be used in accordance with the invention may be any prokaryotic or eukaryotic expression vector containing the DNA (e.g., cDNA) or the RNA sequence of interest. A variety of suitable vectors are publicly available and well known in the art. For example, a plasmid can be cleaved to provide linear DNA having ligatable t rmini. These termini are bound to xog nous DNA having complementary, like ligatable t rmini to provid a biologically functional r combinant

- 33 -

DNA molecul having an intact replicon and a desired phenotypic property.

A variety of techniques are available for DNA recombination in which adjoining ends of separate DNA 5 fragments are tailored to facilitate ligation. vector is constructed using known techniques to obtain a transformed cell capable of expression of the RENP. transformed cell is obtained by contacting a target cell with a RNA- or DNA-containing formulation permitting 10 transfer and uptake of the RNA or DNA into the target cell. Such formulations include, for example, plasmids, viruses, liposomal formulations, or plasmids complexed with polycationic substances such as poly-L-lysine or DEAC-dextran, and targeting ligands. Transformed cells 15 containing a construct encoding an RENP of the invention are also known in the art as "host vector systems". Vectors for use in the construction of constructs encoding the RENPs of the invention, as well as methods for molecular cloning, nucleic acid manipulation, and 20 transformation of both eukaryotic and prokaryotic host cells are well known in the art (see, for example, Sambrook et al. Molecular Cloning: A Laboratory Manual, 2nd Ed., 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; hereby incorporated by reference with 25 respect to bacterial and eukaryotic vectors, and methods and compositions for molecular cloning, nucleic acid manipulation, and transformation techniques).

The constructs of the invention may include promoter sequences to enhance expression of the 30 RENP-encoding DNA, as well as other sequences (e.g., enhancers) which facilitate or enhance DNA expression. In addition, the RENP-encoding constructs can contain ther components such as a marker (e.g., an antibiotic resistance g ne (such as an ampicillin resistance gene) or β-galactosidase) to aid in s l ction of cells

containing and/or expressing the construct, an origin f replication for stable replication of the construct in a bacterial cell (preferably, a high copy number origin of replication), a nuclear localization signal, or other 5 elements which facilitate production of the DNA construct, the protein encoded thereby, or both.

In general, the RENPs of the invention are constructed from a DNA sequence encoding BPI, a BPI variant, LBP, an LBP variant, as well as various

10 half-life enhancing molecules known in the art such as immunoglobulin fragments. Both BPI and LBP have been cloned and their DNA and amino acid sequences determined (Figures 3A-3B and 4A-4B, respectively). The DNA and amino acid sequences of numerous immunoglobulins are

15 known in the art. For example, the DNA sequence of IgG, IgG_{2a}, and IgG₄ are suitable for use to enhance the half-life of the RENPs of the invention.

Expression of recombinant endotoxin-neutralizing polypeptides

DNA or RNA sequences in a host cell are known in the art (see, for example, Sambrook et al., supra; hereby incorporated by reference with respect to methods and compositions for eukaryotic and prokaryotic expression of a DNA encoding an RENP). Where the transformed cell is a prokaryotic host cell, the preferred host is Escherichia coli. Where the transformed cell is a eukaryotic host cell, preferably the host cell is a mammalian cell or a yeast cell. Preferably, the mammalian host cell is a 30 Chinese Hamster Ovary (CHO) cell. Preferably, the yeast h st cell is of the g nus Pichia, mor preferably a strain of Pichia pastoris.

For prokaryotic xpr ssion, the construct should contain at a minimum a bacterial origin of replication

and a bacterial promoter operably link d to the RENP-encoding DNA. For eukaryotic expression, the construct should contain at a minimum a eukaryotic promoter operably linked to a DNA of interest, which is 5 in turn operably linked to a polyadenylation sequence. The polyadenylation signal sequence may be selected from any of a variety of polyadenylation signal sequences known in the art. Preferably, the polyadenylation signal sequence is the SV40 early polyadenylation signal 10 sequence. The eukaryotic construct may also include one or more introns, which can increase levels of expression of the DNA of interest, particularly where the DNA of interest is a cDNA (e.g., contains no introns of the naturally-occurring sequence). Any of a variety of 15 introns known in the art may be used. Preferably, the intron is the human β -globin intron and inserted in the construct at a position 5' to the DNA of interest.

Purification of RENPs

Purification of the RENPs of the invention can be
20 performed according to any of a variety of protein
purification techniques known in the art including gel
electrophoresis, immunoprecipitation, ion exchange
chromatography, affinity chromatography, or combinations
thereof (see, for example, <u>Guide to Protein Purification</u>,
25 Deutscher, ed., Academic Press, Inc., San Diego, CA,
1990). Preferably, purification of RENPs is accomplished
by a combination of column chromatographic techniques.
For example, RENPs can be purified using a four-step
purification procedure using 1) a cation exchange column
30 (e.g., CM Sepharose), 2) an anion exchange column (e.g.,
Fast Q Sepharose), 3) a s cond cation xchange column
(e.g., CM Sepharose), and 4) a gel filtration sizing
column (e.g., S pharose CL6B).

Pharmaceutical compositions

The RENPs of the invention can be formulated as an active ingredient in a pharmaceutical composition. general, the pharmaceutical composition contains a 5 therapeutically effective amount of an RENP and a pharmaceutically acceptable carrier. The pharmaceutical composition can contain one or more RENPs. The amount of RENP which constitutes a therapeutically effective amount will vary according to the time of administration (e.g., 10 therapeutic or prophylactic administration), the disease or condition to be treated, the route of administration, and various patient-dependent factors such as age, weight, gender, and severity of disease. therapeutically effective amounts appropriate for 15 administration are readily determined by one of ordinary skill in the art (see, for example, Remington's Pharmaceutical Sciences, 18th ed., Gennaro, ed., Mack

Pharmaceutically acceptable carriers suitable for use in the RENP-containing pharmaceutical compositions of the invention are well known to those skilled in the art. Selection of the pharmaceutically acceptable carrier will depend upon a variety of factors including the RENP to be administered, the route of administration, and the condition to be treated.

Publishing Company, Easton, PA, 1990).

Pharmaceutically acceptable carriers suitable for use with the RENPs of the invention include, but are not limited to, 0.01-0.1 M and preferably 0.05 M succinate buffer or 0.8% saline. Additionally, such

30 pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, and emulsions.

Furth r, pharmaceutically acc ptable carri rs may include d tergents, phospholipids, fatty acids, or other lipid carriers. Exampl s of non-aqueous solvents ar propylene

35 glycol, poly thylen glycol, vegetable oils such as olive

il, and injectable organic st rs such as ethyl oleate.
Aqueous carriers include water, alcoholic/aqueous
solutions, emulsions or suspensions, including saline and
buffered media. Parenteral vehicles include sodium

5 chloride solution, Ringer's dextrose, dextrose and sodium
chloride, lactated Ringer's or fixed oils.

Pharmaceutically acceptable carriers for use with the RENPs of the invention include lipid carriers. A lipid carrier is any lipid-soluble substance which 10 inhibits protein precipitation and in which the proteins of the subject invention are soluble. Lipid carriers can be in the form of sterile solutions or gels, or can be detergents or detergent-containing biological surfactants. Examples of nonionic detergents include 15 polysorbate 80 (also known as TWEEN 80 or polyoxyethylenesorbitan monooleate). Examples of ionic detergents include, but are not limited to, alykltrimethylammonium bromide. Exemplary lipid carriers and methods for solubilizing BPI, and thus which can be 20 used in pharmaceutical compositions containing an RENP of the invention, are described in USPN 5,234,912, incorporated herein by reference.

Where the pharmaceutically acceptable carrier is a lipid carrier, the lipid carrier may be a liposome. A liposome is any phospholipid membrane-bound vesicle capable of containing a desired substance, such as BPI or BPI variant, in its hydrophilic interior. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like. Preservatives, other pharmaceutically active compounds, and other additives may als be present, such as, for exampl, antimicrobials, antioxidants, ch lating agents, inert gases and the lik.

Disease conditions amenable to treatment with RENPs

Various disease conditions are amenable to treatment using the recombinant LPS-neutralizing proteins of the invention. In general, any condition of a

- 5 mammalian subject (e.g., human, canine, feline, or bovine, preferably a human) which is associated with a toxic effect of endotoxin can be treated by administration of the RENPs of the invention.

 Endotoxin-related disorders amenable to treatment
- include, but are not limited to, endotoxin-related shock, endotoxin-related disseminated intravascular coagulation, endotoxin-related anemia, endotoxin-related thrombocytopenia, endotoxin-related adult respiratory distress syndrome, endotoxin-related renal failure,
- endotoxin-related liver disease or hepatitis, systemic immune response syndrome (SIRS) resulting from Gram-negative infection, Gram-negative neonatal sepsis, Gram-negative meningitis, Gram-negative pneumonia, neutropenia and/or leucopenia resulting from
- 20 Gram-negative infection, hemodynamic shock and endotoxin-related pyresis. Endotoxin-related pyresis is associated with certain medical procedures, such as, for example, trans-urethral resection of the prostate, and gingival surgery. The presence of endotoxin may result
- 25 from infection at any site with a Gram-negative organism, or conditions which may cause ischemia of the gastrointestinal tract, such as hemorrhage, or surgical procedures requiring extracorporal circulation. The important role of endotoxin in hemorrhage (with
- 30 endogenous LPS translocation from the gut), trauma, and sepsis is well known. One skilled in the art can recognize additional conditions which can be treated using the th rapy of the invention.

Th recombinant, endotoxin-neutralizing proteins
35 of the invention can also be administered to a patient

prophylactically, e.g. to a pati nt at risk of an endotoxin-related disorder. For example, the RENPs can be administered to a patient who has a Gram-negative infection and is at risk of bacteremia, but who has not yet exhibited symptoms associated with the toxic effects of endotoxin. The RENPs can also be administered prior to surgery where the risk of introduction of endotoxin into the patient is substantial. One of ordinary skill in the art can readily recognize other instances in which prophylactic administration of a RENP is appropriate. The conditions which identify an individual as being at risk of an endotoxin-related disorder are well known in the art.

Administration of RENPS

The recombinant, LPS-binding protein of the invention may be administered using various methods well known in the art. U.S. Pat. Nos. 5,171,739; 5,308,834; and 5,334,584; each incorporated herein by reference, describe methods and compositions for administration of

- 20 BPI, and thus can provide additional guidance for administration of the RENPs of the invention. For example, the recombinant, LPS-binding protein can be administered by injection or inhalation. Administration by injection can be an intravenous, intramuscular, or
- subcutaneous route, or by direct injection directly into a site of infection (e.g., tissue or body cavity).

 Preferably, injection is intravenous. Administration by inhalation is accomplished by delivery of the RENP to the lungs via an aerosol delivery system or via direct
- instillation. The aerosol may be nebulized. Various devices and methods for aerosol drug delivery are well known in the art. Methods for determining th appropriate rout of administration and dosage ar g nerally d t rmin d on a case-by-cas basis by the

attending physician. Such d terminations are routine to one of ordinary skill in the art (see, for example, Remington's Pharmaceutical Sciences, 18th ed., Gennaro, ed., Mack Publishing Company, Easton, PA, 1990).

Therapeutically effective amounts of an RENP can be determined according to methods well known to those skilled in the art. Specific dosages will vary according to a variety of factors, including the time of administration (e.g., therapeutic or prophylactic 10 administration), the disease or condition to be treated, the route of administration, the RENP to be administered, and various patient-dependent factors such as age, weight, gender, and severity of disease. The specific dosage appropriate for administration is readily 15 determined by one of ordinary skill in the art according to the factors discussed above (see, for example, Remington's Pharmaceutical Sciences, 18th ed., Gennaro, ed., Mack Publishing Company, Easton, PA, 1990). In addition, the estimates for appropriate dosages in humans 20 may be extrapolated from determinations of the in vitro LPS binding affinity of the RENP used, the amount of the RENP effective to inhibit cytokine production by mononuclear cells in vitro, the amount of RENP effective to provide protection to LPS challenge, and/or various 25 other in vitro and in vivo assays indicative of the

In general, the amount of RENP administered is an amount effective to bind LPS and thereby inhibit the undesirable biological activities associated with LPS including monocyte and neutrophil activation, TNF production, cytokine production, and other biological phenomena triggered by LPS in endotoxin-related disorders. Pref rably, the amount of RENP administr d is an amount ffective to bind LBP and inhibit

35 LPS-m diated stimulation of neutrophils and mononuclear cells.

biological activity of the RENP.

- 41 -

In th rap utic administration of the RENPs of the invention, an effective amount of an RENP is an amount effective to bind to LPS and thereby inhibit LPS-mediated stimulation of neutrophils and mononuclear cells in a 5 subject having an endotoxin-related disorder. As used herein, "inhibit" means to inhibit at a level which is statistically significant and dose dependent. "statistically significant" and "dose dependent" are well known to those skilled in the art. In general, an 10 effective amount of an RENP in a pharmaceutical composition for treatment of a patient having an endotoxin-related disorder is an amount sufficient to deliver to the subject a recombinant protein of the subject invention at a concentration of between about 15 0.1 mg/kg of body weight and about 100 mg/kg of body weight, preferably between about 1 mg/kg of body weight and about 10 mg/kg of body weight. Preferably, the RENP(s) is administered by injection, infusion, or as an injected bolus so as to maintain a circulating RENP 20 concentration of about 1-10 μ g/ml. The preferred circulating RENP concentration can vary according to a variety of factors, including the LPS binding affinity of the specific RENP(s) administered.

As used herein, a prophylactically effective

25 amount of an RENP in a pharmaceutical composition for the
prevention of an endotoxin-related disorder is an amount
effective to bind LPS and prevent LPS-mediated biological
activity, e.g., LPS-mediated stimulation of monocytes and
neutrophils. In general, a prophylactically effective

30 amount of an RENP is an amount of a composition effective
to deliver between about 0.1 mg/kg of body weight and
about 100 mg/kg of body w ight, preferably betw en about
1 mg/kg of body weight and about 10 mg/kg of body weight,
to the patient at risk of an endotoxin-related disorder.

The invention also provides an article of manufacture comprising packaging material and a pharmaceutical composition contained within the packaging material. The packaging material includes a label which indicates that the pharmaceutical composition can be used for treating a subject suffering from an endotoxin-related disorder and/or for preventing an endotoxin-related disorder (e.g., inflammation) in a subject. The pharmaceutical composition contains a therapeutically effective and/or prophylactically effective amount of an RENP and a pharmaceutically acceptable carrier.

Assessment of therapy

The efficacy of the therapeutic or prophylactic 15 use of the RENPs of the invention can be determined by monitoring patient symptoms associated with an endotoxin-related disorder. Such symptoms, and methods for monitoring, are well known in the art. For example, where the RENP is used in the treatment of a patient 20 having an endotoxin-related disorder, the effectiveness of the RENP therapy can be assessed by monitoring fever, blood pressure, cytokine levels, and/or LPS levels in the patient's blood stream. The presence of LPS in the blood stream can be assayed as described above. Where the 25 patient is not responding, it may be desirable to increase the dosage of the RENP pharmaceutical composition or, where the patient is not responding favorably, discontinue the RENP regimen.

<u>Detectably-labeled RENPs</u>

Various detectable lab ls, as well as methods of attachm nt of such labels to a protein, ar well known in the art. Det ctable labels can be any mol cule recognized in the art as a means for identifying and/or

detecting a protein to which the detectable label is bound. Exemplary "detectable labels" include, but are not limited to radionucleotides, fluorescent moieties, biotin, and antigenic molecules (e.g., a polypeptide 5 which can be specifically bound by an anti-polypeptide antibody). Thus, detectable labels include a portion of a chimeric protein (e.g., a fusion protein or genetically engineered protein) where a portion of the chimeric protein can be detected by, for example, binding of a 10 detectably labeled antibody or other detectably labeled molecule which specifically binds the chimeric protein portion. For example, where the RENP contains a portion of the amino acid sequence of BPI, and an antibody which specifically binds that amino acid sequence of BPI in the 15 context of the RENP is available, the BPI amino acid sequence is the detectable label.

Methods for attaching (e.g., covalently binding) a detectable label to a protein are well known in the art. For example, methods for preparation of 125I-labeled 20 proteins, biotin-labeled proteins, and FITC-labeled proteins are well known. Methods for detectably labeling antibodies are also well known in the art. Methods for the production of antibodies for use in the subject invention (e.g., anti-BPI, anti-LBP, anti-BPI variant, anti-LBP variant, and anti-immunoglobulin fragment antibodies) are well known in the art (see, for example, Antibodies: A Laboratory Manual, Harlow and Lane, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).

30 Detection of LPS in vitro

The detectably labeled RENPs of the invention can be used in various methods for the detection of LPS either in vitro or in vivo. Samples for which in vitro LPS det ction is d sirable include sampl s from a patient

- 44 -

suspected of having a Gram-n gative inf ction, and samples from a product for use in a medical application (e.g., a recombinant protein solution where the protein was expressed in E. coli). Patient samples include samples of any body fluid, preferably blood or urine. Samples may be pre-treated prior to testing by, for example, concentrating the sample, or centrifugation to remove cells and cellular debris.

In general, in vitro detection of LPS in a sample suspected of containing LPS (test sample) is performed by contacting the test sample with an RENP of the invention for a time sufficient for the formation of RENP-LPS complexes, and the RENP-LPS complexes detected. The RENP-LPS complexes can be detected by virtue of a detectable label attached to the RENP, or by the binding of an anti-LPS antibody. Binding of the anti-LPS antibody can subsequently be detected by virtue of a detectable label bound to the antibody, or by the binding of a detectably labeled anti-anti-LPS antibody to the RENP-LPS-antibody complex.

The in vitro assay can be performed in solution by mixing the sample with a solution containing RENP, separation of RENP-LPS complexes (e.g., by immunoprecipitation), and detection of the RENP-LPS

25 complexes formed, e.g., by virtue of a detectable label bound to the RENP. Alternatively, the in vitro assay is performed with RENP bound to a support, e.g., a polymeric substrate such as a microtiter well or a latex bead.

Methods for binding proteins to a support are well known in the art. For example, an anti-RENP antibody can be bound to the support and the RENP subsequently bound to the support via binding to the anti-RENP antibody. After binding f the RENP to the support, the sampl is then contacted with the support-bound RENP and any LPS in the sampl allowed to bind to the RENP. Unbound mat rial is

- 45 -

then washed away, and th RENP-LPS complex s d tect d by the binding of detectably labeled RENP or detectably labeled anti-LPS antibody.

The in vitro assay can also be performed as a competition binding assay. For example, a sample suspected of containing LPS (test sample) and a known amount of detectably labeled RENP are incubated together with a support having LPS bound to its surface. The test sample and the RENP may be preincubated prior to contact 10 with the support-bound RENP. The level of detectably labeled RENP bound to the support in the test sample is compared to the level of detectably labeled RENP bound to the support in a negative control sample (detectably labeled RENP alone). A level of binding of detectably labeled RENP in the test sample which is lower than binding of detectably labeled RENP in the negative control sample is indicative of the presence of LPS in the sample.

In an alternative embodiment, the competition

20 binding assay is performed with support-bound RENP. In
this latter assay, detectably labeled LPS (e.g.,
radiolabeled LPS) is mixed with the test sample suspected
of containing LPS, and the samples contacted with the
support-bound RENP, and the amount of detectably labeled

25 LPS bound to the support bound RENP detected. A level of
detectably labeled LPS bound to the support in the test
sample which is significantly lower than the amount of
detectably labeled LPS in the negative control sample
(radiolabeled LPS alone) is indicative of the presence of
30 LPS in the test sample.

As is apparent from the description above, the in vitro LPS assays of the inv ntion can be perform d both qualitatively and quantitatively. For example, quantitative assays can be performed by comparing the results obtained with the test sample to results obtained

with parallel sampl s containing known amounts of LPS.

Quantitative in vitro assays are indicative of, for
example, the severity of Gram-negative infection in a
patient sample from whom the sample was obtained, or a

5 degree of contamination where the test sample is a fluid
for administration to a patient (e.g., where the assay is
performed as a step in quality control). One of ordinary
skill in the art will appreciate upon reading the
above-described in vitro assays that numerous variations

10 of these assays can be performed without departing from
the spirit or the scope of the invention.

Detection of LPS in vivo

Detectably labeled RENPs of the invention, preferably RENPs having an increased LPS binding affinity relative to LBP, can be used as a diagnostic to identify a site of Gram-negative bacterial infection in a patient. For example, a detectably labeled RENP is administered to a patient suspected of having a Gram-negative infection. Preferably, the detectable label is a radionucleotide such as 123I, 124I, 125I, 129I, 131I, or other beta-emitting radionuclide which can be readily detected with either a hand-held gamma radiation detection device or by nuclear medicine scan. Alternatively, the detectable label is a fluorescent molecule or other visually detectable label which can be visualized during, for example, endoscopy. Detection can be facilitated by increasing the ratio of detectable label to RENP.

The detectably labeled RENP is administered to the patient in an amount sufficient for binding of the RENP to the suspected infection site and detection of the det ctable label. The detectably labeled RENP can be administ red by injection, preferably by eith reintravenous injection or by direct injection into the body cavity or tissue suspected of containing the

- 47 -

infection sit . In general, the amount f d tectably labeled RENP administered will vary with according to numerous variables including the RENP and detectable label used, the location of the suspected site of infection, the route of administration, and various patient factors including size, weight, age, and suspected severity of the disease.

is allowed to circulate to reach the site of infection

10 and/or incubate over the suspected site of infection.

Bound detectably labeled RENP is detected using methods appropriate for the label used. For example, where the detectable label is a radionucleotide, bound RENP is detected using a radiation detecting device. Using this method, the site and the extent of a Gram-negative infection can be determined. Where desirable, the detectably labeled RENPs can be used to label a site or sites of infection which can then be imaged using any of a variety of imaging techniques known in the art (e.g.,

20 X-ray, CAT scan, MRI, or PET scan).

LPS decontamination using RENPs

The RENPs of the invention can also be used in the decontamination of a product prior to its medical application. For example, where a recombinant protein has been produced by expression in E. coli, a solution containing the recombinant protein can be applied to a support having bound RENP (e.g., an affinity column). LPS in the solution binds to the RENP bound to the support, and the LPS-free solution is collected. If necessary, the decontamination step can be repeated multipl tim s until an acceptably low amount f LPS (e.g. 0 to 0.001 ng/ml is det cted in th solution. Such decontamination procedur s using the RENPS of th

- 48 -

inventi n can be used as a final st p in quality c ntrol of, for example, recombinantly produced pharmaceuticals.

EXAMPLES

The following examples are put forth so as to

5 provide those of ordinary skill in the art with a
complete disclosure and description of how to carry out
the invention and is not intended to limit the scope of
what the inventors regard as their invention. Efforts
have been made to ensure accuracy with respect to numbers

10 used (e.g., amounts, temperatures, etc.), but some
experimental error and deviation should be accounted for.
Unless indicated otherwise, parts are parts by weight,
molecular weight is weight average molecular weight,
temperature is in degrees Centigrade, and pressure is at

15 or near atmospheric.

Example 1: Construction of RENPs

Specific examples of RENPs are described in Table 3, and are additionally designated by a construct name (e.g., NCY103) or lot number of the protein stock.

Table 3

Examples of RENPs

		xamples of REN	<u> </u>
	SEQUENCE	CONSTRUCT NAME OR LOT #	DESCRIPTION
5	BPI	NCY101	Native sequence
	L ₁₋₁₉₇ (I48->V) ^B 200-456(N208-> D)	NCY103	LBP-BPI chimera
	B ₁₋₁₉₉ L ₂₀₀₋₄₅₆	NCY104	BPI-LBP chimera
1Ò	B(S361->A)	NCY105	Glycosylation site deleted
	B(DS200->DP)	NCY106	Formic acid cleavage site inserted
	L ₁₋₁₉₉ B ₃₀₀₋₄₅₆ (S351->A)	NCY107	LBP-BPI chimera with glycosylation site deleted
	B ₁₋₁₉₉	NCY108	N-terminal domain of BPI
15	B ₍₁₋₁₉₀₎	Lot #159699	N-terminal BPI fragment
	B ₍₁₋₂₃₆₎	Lot #159695	N-terminal BPI fragment
	B ₍₁₋₂₁₂₎	Lot #159693	N-terminal BPI fragment
	B ₁₋₁₉₉ Fc	NCY110	N-terminal BPI-IgG chimera
	B ₂₀₀₋₄₅₆	NCY112	C-terminal fragment of BPI
	L ₁₋₅₉ B ₆₀₋₄₅₆	NCY114	LBP-BPI chimera
	L ₁₋₁₃₄ B ₁₃₅₋₄₅₆	NCY115	LBP-BPI chimera
20	L ₁₋₂₇₅ B ₂₇₈₋₄₅₆	NCY116	LBP-BPI chimera
	L ₁₋₃₅₉ B ₃₆₀₋₄₅₆	NCY117	LBP-BPI chimera
	L ₍₁₋₁₆₄₎ B ₍₂₀₀₋₄₅₆₎	Lot #164325	LBP-BPI chimera
	L ₍₁₋₁₇₅₎ B ₍₂₀₀₋₄₅₆₎	Lot #164326	LBP-BPI chimera
25	L ₁₋₁₉₇ B ₂₀₀₋₄₅₆	NCY118	LBP-BPI chimera
	B _(F61->C)	NCY119	Cysteine ins rtion
	B _(C132->A)	. NCY120	Cysteine substitution

		,	
	B _(C132->S)	NCY121	Cysteine substitution
	B _(C135->S)	NCY122	Cysteine substitution
	B _(C176->S)	NCY123	Cysteine substitution
	T	able 3 (continued)	
5	SEQUENCE	CONSTRUCT NAME OR LOT #	DESCRIPTION
	B(C132->A)(C135->S)(C175->S)	NCY124	Multiple cysteine substitution
	B _(1-132->A) (C135->S)(C175->S)	NCY125	Multiple cysteine substitution
	L ₍₁₋₁₃₄₎ B ₍₁₃₆₋₃₆₁₎ L ₍₃₆₀₋₄₅₆₎	NCY133	LBP-BPI chimera
	L ₍₁₋₁₃₄₎ B ₍₁₃₆₋₂₇₅₎ L ₍₂₇₄₋₄₅₆₎	NCY134	LBP-BPI chimera
10	L ₍₁₋₁₉₈₎ B ₍₂₀₂₋₂₇₅₎ L ₍₂₇₄₋₄₅₆₎	NCY135	LBP-BPI chimera
	L ₍₁₋₁₉₈₎ B ₍₂₀₂₋₃₆₁₎ L ₍₃₆₀₋₄₅₆₎	NCY136	LBP-BPI chimera
	B ₍₁₋₄₁₎ L ₍₄₂₋₁₉₉₎ B ₍₂₀₀₋₄₅₆₎	Lot #162303	BPI-LBP-BPI chimera
•	B ₍₁₋₁₉₀₎ (C173→A)	Lot #162305	N-terminal BPI fragment with cationic substitution
15	B(K27->S)(K30->L)(K33->T) (K42->R)(K44->P)(K48->R)(R59- >H) (B _{CA77})	NCY137	Cationic Substit. (7)
20	B(K77->S)(K86->R)(K90->R) (R96->S)(K118->L)(K127->R) (B _{CAT6})	NCY138	Cationic Substit. (6)
	B(K148->G)(K150->D)(K160->N) (K161->Q)(R167->Q)(K169->V) (K177->M)(K185->D)(K198->E) (B _{CAT9})	NCY139	Cationic Substit. (9)
30	$\begin{array}{l} B_{(K77->S)(K86->R)(K90>R)} \\ (K96->S)(K118->L)(K127->R)(K148->G) \\ (K160->D)(K160->N)(K161->Q)(R167->Q)(K169->V)(K177->M)(K185->D)(K198->E) \\ (B_{CAT15}) \end{array}$	NCY140	Cationic Substit. (15)
	L(S77->K)(R86->K)(R90- >K)(S96->K) (L118->K)(R126->K) (L _{TAT6})	NCY141	Cati nic Repl. (6)

	L(G147->K)(D148->K)(N158->K) (Q159->K)(Q165->R)(V167->K)(M 175->K)(D183->K)(E196->K) (L _{TAT9})	NCY142	Cationic Repl.(9)
5 10	L(S77->K)(R86->K)(R90- K)(S96->K) (L118->K)(R126->K)(G147->K)(D 148->K)(N158->K)(Q159->K)(Q16 5->R)(V167->K)(M175->K)(D183- >K)(E196->K)	NCY143	Cationic Repl. (15)
	L ₍₁₋₁₉₈₎ B ₍₂₀₁₋₄₅₆₎ Fc	NCY144	LBP-BPI-IgG chimera

- 52 -

		Table 3 (contin	ued)
	LBP	NCY102	native sequence
	L ₁₋₁₉₉	NCY109	N-terminal LBP fragment
	L ₁₋₁₉₉ Fc	NCY111	LBP-lg chimera
5	L ₂₀₀₋₄₅₈	NCY113	C-terminal LBP fragment
	L _(A132→C)	NCY126	Cysteine insertion
	L(C81→F)	NCY127	Cysteine substitution
10	L(C81→S)	NCY128	Cysteine substitution
	L(C135-S)	NCY129	Cysteine substitution
	L _(175→S)	NCY130	Cysteine substitution
	L(C61→F)(C135→S)(C175→S)	NCY131	Multiple cysteine substitution
	^L (C81→S)(C135→S)(C175→S)	NCY132	Multiple cysteine substitution

The proteins encoded by the LBP and L₁₋₃₅₉B₃₆₀₋₄₅₆ constructs facilitated the LPS-mediated cellular
15 response, indicating that LBP amino acid residues 275-359 are required for this LBP activity.

The cDNA sequences of BPI and LBP are shown in Figures 3A-3D and 4A-C, respectively, with each nucleotide designated numerically. DNA encoding the 20 RENPs can be prepared using a variety of techniques well known in the art, including protein fusion techniques, site-directed mutagenesis, and PCR (see, for example, Sambrook et al., supra; Zoller, M.J., et al., Methods Enzymol. 154:329 (1987)). For example, in the 25 construction of the RENP L₁₋₁₉₇B₂₀₀₋₄₅₆, the sequence "ATAGAT₇₂₃" and "ATTGAC₇₀₀" was chosen as a convenient sit to insert a ClaI r striction site (ATCGAT) by which to r combine portions of both BPI (form r) and LBP (latter). Oligonucleotide primers were designed which overlap this region but contain the ClaI sequence, and

were synthesized on an ABI 380B synthesizer (Applied Biosystems Inc., Foster City, CA). Additional primers were designed to bind to the 5' and 3'- ends of both molecules, which primers contained NheI (5') and XhoI 5 (3') restriction sites for insertion into the vector. These primers were used to amplify portions of the cDNA molecules encoding amino acid residues 1-199 (A) and 200-456 (B) of LBP and BPI by cyclic DNA amplification. The resulting DNA fragments were digested with the 10 appropriate restriction enzymes and then purified by gel electrophoresis.

Example 2: Mammalian Expression

In order to produce BPI, LBP, or RENPs of the invention in mammalian cells, the cDNA sequences were 15 inserted into a suitable plasmid vector. A suitable vector for such an application is pSE, which contains the origin of replication and early and late promoters of SV40, followed by multiple insert cloning sites, followed by the termination sequences from the hepatitis B surface 20 antigen gene. An origin of bacterial DNA replication, and the genes encoding ampicillin resistance and dihydrofolate reductase were also included in the plasmid for production of large amounts of DNA using bacterial host cells. Similar vectors have been used to express 25 other foreign genes (Simonsen et al., Biologicals 22:85 (1994). Another suitable vector, particularly for rapidly obtaining small quantities of RENPs was pCIP4 (Invitrogen Corp., San Diego, California). pCEP4 contains a CMV promoter, followed by multiple insert 30 cloning sites, followed by SV40 termination sequences. Also contained within the plasmid are an origin of bacterial DNA replication, and th genes encoding resistanc to ampicillin and hygromycin B. With pCEP4 and pSE, the same ins rt cloning sites as pSE for easy

insert shuttling b tween the vectors were used. Once introduced into mammalian cell hosts, this specialized plasmid replicates as an episome, allowing semistable amplification of introduced DNA sequences. The high gene copy number is maintained through the selective pressure of culture in the presence of hygromycin B.

A second expression system (EBV/293) was used to rapidly obtain small quantities of recombinant proteins of the subject invention when useful. This system was constructed to use the same insert cloning sites as pse for easy insert shuttling, but utilized the Epstein-Barr virus promoter (EBV) to drive heterologous expression (pcep4). Once introduced into mammalian cell hosts, this specialized plasmid replicates as an episome, allowing semistable amplification of introduced DNA sequences. The high gene copy number is maintained through the selective pressure of culture in the presence of hygromycin plus G418. Similar expression systems are commercially available (e.g., Invitrogen, Inc., San Diego, CA).

Vector DNA was prepared for acceptance of BPI cDNA by digestion with Nhe I and Xho I, and was subsequently dephosphorylated by treatment with alkaline phosphatase. The prepared fragments encoding BPI, LBP, or an RENP were ligated into pSE or pCEP4, and the resulting recombinant colonies were screened by agarose gel electrophoresis. Subsequently, the DNA sequences were confirmed by standard enzymatic sequencing methods (e.g., Sanger, 1974).

30 Expression plasmid DNA purified by either CsCl gradients with Plasmid or Midi Kits (Qiagen, Chatsworth, California) was used to transform Chinese hamster ovary strain DUXB11 (pSE) and 293-EBNA c lls (Invitrog n Corp., San Diego, California) (pCEP4). Transfection was performed using lipofectin (Bethesda, Research Labs.

Gaithersberg, MD) by standard methods. The resulting transformed cells were selected in GHT minus medium (DUKXB11s) or in REM and 10% calf serum (293s). For the DUKXB11s, clones were selected and were passed through sequential rounds of culture in increasing concentrations of methotrexate in order to amplify the DHFR gene and associated heterologous genes. Supernatants from transfected cells, either mixed populations or clones derived from the mixed population, were assayed for RENPs by ELISA using antibodies specific for BPI, LBP, or immunoglobulin as appropriate.

Example 3: Yeast Expression

BPI and L₁₋₁₉₇B₂₀₀₋₄₅₆ were successfully expressed in the methylotrophic yeast *Pichia pastoris*. Pichia was chosen as a suitable expression system for BPI and RENPs due to its lack of LPS (endotoxin to which BPI and RENPs bind) and its ability to produce high levels of mammalian proteins.

Pichia pastoris strain GS115 (Invitrogen, San

20 Diego, California) was transformed with plasmids encoding
BPI and L₁₋₁₉₇B₂₀₀₋₄₅₆, and transformed colonies were
selected according to the procedures outlined by
Invitrogen (A Manual of Methods for Expression of
Recombinant Proteins in Pichia pastoris, Version 1.5,

25 Invitrogen, San Diego, California). For both BPI and
L₁₋₁₉₇B₂₀₀₋₄₅₆, protein was secreted into the medium in a

 $L_{1-197}B_{200-456}$, protein was secreted into the medium in a small-scale batch fermentation run. 116 ng/ml were secreted for the one BPI construct assayed, and 14, 11, and 10 ng/ml were secreted for the three constructs

30 L₁₋₁₉₇B₂₀₀₋₄₅₆ constructs assayed. Secretion was assayed by enzyme-linked immunosorbant analysis (ELISA). The majority of protein for both constructs was not s cr ted, as shown by Western blot analysis with a polyclonal anti-BPI antibody (INVN 1-2) (prepared by conventional

t chniques by injecting rabbit with BPI) and alkaline phesphatase-conjugated goat anti-rabbit antibody. The Western blot is shown in Figure 18.

Purified BPI from Chinese Hamster ovary cells

5 (CHOs) was used as a positive control (lane 12). In lane
1 a sample from untransformed GS115 cells served as a
negative control. The antibodies did not recognize any
proteins from the untransformed GS115 cells. The next
three lanes (2-4) were samples from colonies transformed

10 with the construct for BPI and the last 6 lanes (5-10)
were samples from colonies transformed with the construct
for L₁₋₁₉₇B₂₀₀₋₄₅₆. The amount of intracellular BPI or
L₁₋₁₉₇B₂₀₀₋₄₅₆ expressed in the batch fermentation run,
based on the amount of standard BPI loaded, was roughly

15 100 μg/ml of medium for the BPI and L₁₋₁₉₇B₂₀₀₋₄₅₆
colonies.

Example 4: Protein Purification

BPI was purified from conditioned media using the following four-step purification. BPI was captured on CM Sepharose (Pharmacia LKB Biotechnology). The column was washed in 50 mM Tris pH 7.4, and protein was eluted with 50mM Tris buffer pH 7.4 + 1 M NaCl. The eluate was diluted 10X with 50mM Tris pH 8.5, run over Fast Q Sepharose, and the flow-through was collected. BPI was re-captured on CM Sepharose and again eluted as before. Buffer exchange into 10 mM Succinate + 110 mM NaCl pH 6 was performed using Sepharose CL6B (Pharmacia LKB Biotechnology). Finally, Tween 20 was added to the formulated material to a final concentration of 0.05%.

30 LBP (NCY102) was captured from cell culture medium on Fast S Sepharose (Pharmacia). The column was washed with 50 mM Tris pH 7.4, and protein was elut d using 50mM Tris pH 7.4 + 1 M NaC1. The eluate was diluted 10X in 50mM Tris pH 8.5 and run over HiLoad Q Sepharose

(Pharmacia). Pr tein was eluted with a 0-1 M NaC1 gradient in 50mM Tris pH 8.5. Appropriate fractions were pooled according to migration on SDS PAGE electrophoresis. LBP concentration was diluted to 4.0 mg/ml, and the pH was adjusted to 7.0 with 100 mM HCl.

 $L_{1-197(143->V)}B_{200-456(N206->D)}$ was purified from cell culture medium using the same method described for LBP.

 $B_{1-199}L_{200-456}$ and $B_{(8351->A)}$ were purified using the same protocol as for BPI, except that the size exclusion 10 step was omitted.

L₁₋₅₉B₆₀₋₄₅₆, L₁₋₁₃₄B₁₃₅₋₄₅₆ and B_{CAT6} were captured on a Poros II HS cation exchange column (PerSeptive Biosystems, Cambridge, MA) at pH 7.4. The column was washed with 20 mM HEPES buffer at pH 7.5, and eluted with 20 mM HEPES pH 7.5 with 1 M NaCl. The eluate was diluted 5% in 20 mM HEPES pH 7.5 and applied to a Poros HQ anion exchange column (PerSeptive) with the flow-through applied directly to a POROS II HS column. The POROS II HS column was eluted with 3.3 mM acetate, 3.3mM MES and 3.3 mM HEPES, pH 6.0 with a 0-1 M NaCl gradient.

 $L_{1-359}B_{360-456}$ and $L_{(1-198)}B_{(201-456)}$ Fc were captured from conditioned medium at pH 7.4 on a Poros II HS column. The column was washed with 20mM HEPES buffer at pH 7.5, and eluted with 20mM HEPES pH 7.5 + 1 M NaCl.

25 The eluate was diluted 10X with 20mM HEPES pH 7.5, loaded on a second, smaller Poros II HS column, and eluted with 3.3 mM acetate, 3.3 mM MES and 3.3 mM HEPES, pH 6 with a 0-1 M NaCl gradient.

Example 5: BPI Activity Against N. meningitidis and N. 30 gonorrhoeae

BPI suppress s TNF r lease by human inflammatory cells in r spons to lipopolysaccharide (LPS) d rived from a wid range of Gram-n gative bacterial speci s. Ir ord r to test the activity of BPI against Gram-negativ

lipooligosaccharide (LOS) from the pathogenic bacteria

Neisseria meningitidis and N. gonorrhoeae, non-viable

bacteria were pre-treated with recombinant BPI and

incubated with human whole blood for 4 hours at 37°C.

5 Without BPI, N. meningitidis at 105 bacteria/ml

stimulated the release of 2.93 ± 0.53 ng/ml of TNF, while

N. gonorrhoeae was a more potent stimulator of TNF

release: 104 bacteria/ml induced 8.23 ± 0.32 ng/ml of

TNF. In both cases, 10 µg/ml BPI completely inhibited

10 TNF release. This indicates that BPI is able to bind and
detoxify LOS of these organisms, as well as bind LPS.

Thus, BPI can be useful as a therapeutic agent against
LOS-mediated tissue damage associated with these
pathogenic Neisseria species.

15 Example 6: biotinylated BPI Binding Competition Assays Competition assays for binding of LPS immobilized on microtiter plates was performed using a modified procedure described by Tobias et al., J. Biol. Chem. 264:10867 (1989). Briefly, Immulon 3 microtiter plates 20 (96-well, Dynatech Biotechnology Products, Chantilly, VA) were coated with 1 or 4 μg of <u>S. minnesota</u> R595 Re LPS (LIST Biological Labs, Inc., #304) in 50mM borate pH 9.5-9.8 + 20-25 mM EDTA overnight at 37°C. Blank, non-LPS coated wells were included on each plate and 25 binding to these wells was used to determine non-specific binding. Absorbance values from wells which were not pre-coated with LPS consistently gave optical density readings of less than 0.05. Plates were then washed extensively under running distilled deionized water, then 30 dried at 37°C. Assay wells were blocked for 60 minutes at 37°C with 1-2% very low endotoxin BSA (Sigma, St. Louis, MO) prepar d in pyrog n-free Tris-buffer d saline (50mM Tris pH 7.4 + 150 mM NaCl). The w lls w r emptied, and biotinylat d BPI was incubated in the

presenc or absence of unlabeled BPI or recombinant protein of the subject invention diluted in assay buffer (pyrogen-free TBS + 1 mg/ml low endotoxin BSA, and 0.05% Tween-20) was incubated in the LPS coated and uncoated 5 wells for 2-3 hours at 37°C in a total volume of 100 µl/well. After four washes in assay buffer, plates were developed with streptavidin conjugated to alkaline phosphatase (BioRad, Burlingame, California) followed by 100 µl of PNP substrate solution (Sigma) freshly prepared from two 5 mg tablets dissolved in 10 ml substrate buffer. Substrate buffer is prepared with 24.5 mg MgCl2, 48 ml diethanolamine, brought up to 400 ml, pH adjusted to 9.8 and volume brought up to 500 ml. Absorbances were read at 405 nm on a Vmax kinetic microplate reader 15 (Molecular Devices, Inc., Menlo Park, CA).

The relative LPS binding affinities of BPI, LBP and RENPs were tested in the competitive binding assay described above using 10 ng/ml biotinylatedBPI. In these experiments, BPI inhibited biotinylatedBPI binding to LPS in a concentration-dependent manner (Figure 7). Modest inhibition of biotinylatedBPI-binding was observed using NCY102 (LBP) and L_{1-197(I43->V)}B_{200-456(N206->D)}, suggesting that BPI has either a higher affinity for LPS bound to a surface or that LBP and L_{1-197(I43->V)}B_{200-456(N206->D)} bind to a different site on LPS. B₁₋₁₉₉L₂₀₀₋₄₅₆, which contains the N-terminal domain of BPI, competed with biotinylatedBPI at similar concentrations as unlabeled BPI, suggesting a similar affinity and binding site.

Competition between either $L_{1-197}B_{200-456}$ (NCY118)

30 or $L_{1-197(143->V)}B_{200-456(N206->D)}$ (NCY103) with biotinylated BPI occurred at similar concentrations, giving overlapping curves (Figure 13A) indicating that the two amino acid differenc s between these two molecules $[L_{1-197}B_{200-456->L_{1-197}(143->V)}B_{200-456(N206->D)}$: (I43->V) and 35 (N206->D)] had no ffect on affinity for immobilized LPS.

 $L_{(1-198)}^{B}$ (201-456)^{FC} (an IgG chimera consisting of L_{1-197}^{B} 200-456 linked to human IgG1 Fc constant region of the immunoglobulin molecule) does not have an altered ability to compete with biotinylated BPI (Figure 13A).

- 5 $L_{1-59}B_{60-456}$ and $L_{1-134}B_{135-456}$ showed a similar affinity for LPS which affinity was very similar to that observed for BPI, suggesting that the region between amino acid residues 1-59 (or 1-134) probably plays a minimal role in LPS binding (Figure 13B). Together with data showing the
- B₁₋₁₉₉L₂₀₀₋₄₅₆ competes effectively with BPI (Figure 7), these results indicate that amino acid residues 134-199 are important structural components of the high-affinity LPS-binding domain of BPI.

The importance of the region between amino acid 15 residues 134 to 197 in LPS affinity was further demonstrated by the markedly reduced affinity of B_{CAT9} , a mutant in which all of the cationic amino acids of the BPI molecule (particularly the cationic residues of BPI amino acids 134-200) are replaced with the corresponding 20 amino acid residues found in LBP. These changes resulted in a molecule with binding affinity for LPS which was more similar to that of LBP than BPI (Figure 13C, and Figure 7). Amino acid residues 360 to 456 of BPI are apparently not involved in LPS binding as demonstrated by 25 the relative inability of $L_{1-359}B_{360-456}$ to displace biotinylated BPI from LPS (Figure 13C). The apparent binding affinity of $L_{1-359}B_{360-456}$ for LPS is similar to that of LBP and B_{CAT9}, which affinity is approximately two orders of magnitude lower than the apparent affinity of 30 BPI for LPS.

Thus, the domain of BPI which participates in binding to immobilized LPS is localized in th N-terminal half of the BPI mol cule, since $B_{1-199}L_{200-456}$ has the greatest ability to displac native BPI from LPS coated onto microtit r plates. This domain of BPI has been more

. **- 61 -**

sp cifically localized to a region between amino acid residues 134-199.

Example 7: Chromogenic LAL Assay

To test the relative abilities of BPI, LBP and 5 RENPs to neutralize LPS in vitro, these proteins were tested for inhibitory activity in the chromogenic LAL assay. Briefly, BPI and RENPs (25 μl of 0-200 μg/ml) were pre-incubated for 1 hour at 37°C with 1 EU/ml of E. coli 0111:B4 LPS, (Whitaker Biologicals, Walkersville,

- 10 MD). The mixtures were then tested for LAL activity using the chromogenic LAL assay kit (Whitaker Biologicals, Walkersville, MD). The results are shown in Figure 8 and Table 4. LPS was neutralized by the various proteins tested in the order of:
- ¹⁵ $B_{(8351->A)} \ge BPI > L_{1-197(I43->V)}B_{200-456(N206->D)} > B_{1-199}L_{200-456} > LBP$. Several studies were carried out with different lots of each protein and the IC₅₀ values were determined. The averaged IC₅₀ values are shown in Table 4.

Table 4

LPS Inhibition in the Chromogenic LAL Assay

5	Product	IC ₅₀ (μg/ml)	No. of test
			·
	B _(8351->A)	1.5	(n=1)
10	BPI	5.2 ± 3.3	(n=10).
	L _{1-197(143->V)} B ₂₀₀₋₄	56(N206->D) 28.0	<u>+</u> 20.0 (n=4)
	B ₁₋₁₉₉ L ₂₀₀₋₄₅₆	40.0	(n=1)
	LBP	65.0 ± 31.0	(n=4)
4 =			

15

These results demonstrate that BPI neutralizes LPS activity in the LAL assay at lower concentrations than LBP. B₁₋₁₉₉L₂₀₀₋₄₅₆, which contains the N-terminal domain of BPI, effectively competes with BPI for binding to LPS (see Figure 7) but is a relatively poor inhibitor of LPS in the LAL assay. These results indicate that the N-terminal (LPS-binding) domain of BPI alone does not account for the neutralizing activity of BPI in the LAL assay. L₁₋₁₉₇(I43->V)B₂₀₀₋₄₅₆(N206->D) was a more potent inhibitor than LBP or B₁₋₁₉₉L₂₀₀₋₄₅₆, suggesting that the C-terminal domain of BPI plays a very important role in endotoxin neutralization in the LAL assay.

Additional results of LPS neutralizing activity in the chromogenic LAL assay are shown in Table 5.

 30 $^{L_{1-197(I43-V)}B_{200-456(N206-D)}$, $^{L_{1-59}B_{60-456}}$, and $^{L_{1-134}B_{135-456}}$ share the C-t rminal half of the BPI molecule, again indicating that this domain plays an important role in LPS-neutralizing activity. Also, thes data indicate that the 199-456 region is most important in LPS

- 63 -

neutralization since adding BPI amino acid residues between 136-456 or 60-456 did not improve LPS neutralizing activity. Together with the LPS binding data, these results further indicate that the C-terminal 5 half of BPI is important for neutralization, while the N-terminal sequence is more critical for LPS binding.

Table 5

LPS Inhibition in the Chromogenic LAL Assay

		•		
5	<u>Protein</u>		IC50	n
	BPI	Cumulative	1.58 ± 1.58	94
		Lot# 149718	1.57 ± 1.01	54
		Lot# 149719	1.69 ± 0.35	7
		Lot# 149722	1.70 ± 0.28	2
10		Lot# 149724	1.41 ± 0.45	45
		Lot# 155794	1.95 ± 0.92	2
			1.55 1 0.52	Z
	LBP	Cumulative	55.92 ± 30.53	8
		Lot# 151281	34.33 ± 7.45	6
		Lot# 151204	77.50 ± 24.45	2
				_
15		W206->D)	Cumulative	
	22.86\± 16.28	54		
		Lot# 151235	25.50 ± 0.71	2
		Lot# 151242	36.50 ± 2.12	2
•		Lot# 151274	3.46 ± 2.18	38
20		Lot# 159616	8.83 ± 4.91	4
	B ₁₋₁₉₉ L ₂₀₀₋₄₅₆	Cumulative	24.19 ± 6.42	9
	1-199 200-436	Lot# 151246	12.50 ± 0.26	3
		Lot# 152658	10.70	1
		Lot# 155737	40.18 ± 34.48	4
			40.20 _ 34.40	*
25	B ₁₋₁₉₉	Cumulative	5.52 ± 5.05	17
	1-199	Lot# 151285	1.12 ± 0.00	2
	·	Lot# 155709	9.73 ± 1.18	3
		Lot# 155779	2.13 ± 0.81	2
			2.10 7 0.01	
	L ₁₋₅₉ B ₆₀₋₄₅₆	Lot# 155754	3.64 ± 1.64	5
	1-39 00-436			,
30	L ₁₋₁₃₄ B ₁₃₅₋₄₅₆	Lot# 155756	5.02 ± 3.11	5
	1 134 133-430			•
	L ₁₋₂₇₅ B ₂₇₈₋₄₅₆	Lot# 155791	14.00 ± 2.65	3
	,			•
	L ₁₋₃₅₉ B ₃₆₀₋₄₅₆	Lot# 155733	>100	4
				•

.15

	Protein		<u>1C50</u>	n
	L ₁₋₁₉₇ B ₂₀₀₋₄₅₆	Cumulative Lot# 155758 Lot# 159619	12.75 ± 3.54 10.25 ± 30.9 15.25 ± 5.91	12 8 4
5	B _{CAT6}	Lot# 155785	1.97 ± 0.06	3
	B _{CAT9}	Lot# 155762	29.60 ± 23.23	5
	B _{CAT15}	Lot# 155788	7.87 ± 2.80	3
	$_{>100}^{L_{(1-198)}B_{(202-275)}L_{(274-456)}}$		Lot# 159649	
10	L ₍₁₋₁₉₈₎ B ₍₂₀₁₋₄₅₆₎ FC	Lot# 155760	12.15 ± 6.00	4 .
	L ₁₋₁₉₉		9.2	1
	B ₁₋₁₉₉		10.1 ± 0.92	5
	$^{L}_{22.00}^{(1-134)^{B}}_{\pm}^{(136-275)^{L}}^{(274-6)}_{(274-6)}^{(274-6)}$	456)	Lot# 159643	

B_{CAT9}, which contains the entire BPI sequence except for nine cationic residues between positions 148 and 197 showed very poor LPS-neutralizing activity,

20 suggesting that these residues are important in LPS-neutralizing activity. Similarly, this compound was relatively ineffective at competing with native BPI for binding to LPS. These cationic residues may permit correct structural conformation of the molecule, since

25 both L_{1-197(I43->V)}B_{200-456(N206->D)} and B_{CAT9} contain the C-terminal domain of BPI, yet L_{1-197(I43->V)}B_{200-456(N206->D)} has potent neutralizing activity while B_{CAT9} does not.

Example 8: Inhibition of FITC-labeled LPS binding to human monocytes

30 The relativ LPs-binding affinities of RENPs of the invention wer inv stigated by examining the abilities of th RENPs to inhibit LPS binding to human

peripheral blood monocytes. Blood collected in acid citrate dextrose-containing VACUTAINER tubes (Becton Dickinson, Rutherford, NJ) was diluted 1:4 in Hank's balanced salt solution (HBSS) minus calcium and magnesium (Gibco BRL, Grand Island, MD). Mononuclear cells were isolated using Ficol-Paque (Pharmacia Inc., Piscataway, NJ). Cells were washed three times in HBSS, then brought up to an appropriate volume of RPMI 1640 with glutamine and antibiotics to give approximately 1 x 10⁶ cells/ml.

- 10 To one ml aliquots of cells, FITC-LPS was added to a final concentration of 500 ng/ml. Tubes were closed and incubated at 37°C on a rocking platform. At the end of the incubation, cells were washed twice with PBS with 0.05% Human Serum Albumin and 0.02% sodium azide. FACS
- analysis of the cells was performed on a FACStar flow cytometer, Immunocytometry System, Becton Dickinson (Mountain View, CA). The monocyte portion of the cell population was determined by side scatter versus forward scatter gating and confirmed by staining a separate
- 20 aliquot of cells with phycoerythrin-conjugated anti-DR antibody (Becton Dickinson Immunocytometry Systems, Milpitas, CA). Results are reported as logarithmic scale mean fluorescence intensity.

To determine the relative abilities of BPI or

25 L_{1-197(I43->v)}B_{200-456(N206->D)} to inhibit LPS binding to human peripheral blood monocytes, isolated human peripheral blood mononuclear cells were incubated with 10% human serum containing 500 ng/ml FITC-conjugated E. coli 055:B5 LPS in the presence or absence of BPI or

- 30 $^{L_{1-197(143->v)}}_{B200-456(N206->D)}$. Binding of FITC-LPS to monocytes could be inhibited by increasing concentrations of both BPI and $^{L_{1-197(143->v)}}_{B200-456(N206->D)}$ (Figur 9). Thus $^{L_{1-197(143->v)}}_{B200-456(N206->D)}$ has BPI-like activity, despit the fact that $^{L_{1-197(143->v)}}_{B200-456(N206->D)}$ c ntains
- 35 the N-terminal domain of LBP. These data, al ng with the

results of the LPS n utralizati n studies shown in Figur 8, suggest that the C-terminal domains of BPI and LBP, and not the N-terminal domains, determine whether the proteins inhibit or mediate LPS activation of cells.

Further studies were undertaken to determine the effects of BPI, LBP, L₁₋₁₉₇(I43->v)B₂₀₀₋₄₅₆(N206->D) and B₁₋₁₉₉L₂₀₀₋₄₅₆ on FITC-labeled LPS binding to peripheral blood monocytes in the presence and absence of serum. In a serum-free FITC-labeled LPS binding system where no LBP is available, FITC-labeled LPS does not bind to cells. In contrast recombinant LBP facilitated LPS binding to cells at concentrations as low as 100 ng/ml.

B₁₋₁₉₉L₂₀₀₋₄₅₆ also facilitated binding, although to a lesser extent. Neither BPI or L₁₋₁₉₇(I43->v)B₂₀₀₋₄₅₆(N206->D) promoted significant binding of LPS to cells. These data indicate that the C-terminal domain of LBP is active in LPS binding to cells. The N-terminal domain of BPI may exert an inhibitory influence on LPS binding to cells mediated by the C-terminal domain of LBP because

20 $B_{1-199}L_{200-456}$ was less active than LBP.

Normal human serum contains about 1-10 μ g/ml LBP. In the presence of 10% autologous serum, BPI and $L_{1-197(143-v)}B_{200-456(N206-v)}$ potently inhibited FITC LPS binding to monocytes, with BPI showing slightly greater 25 potency. $B_{1-199}L_{200-456}$ had marginal activity, and LBP had no effect (Figure 14A). These data indicate the importance of the BPI C-terminus in this test of LPS neutralization. $B_{1-199}L_{200-456}$, which lacks the C-terminal domain of BPI, is approximately two orders of magnitude 30 less potent at blocking LPS binding. LBP, as expected, had no effect. Thus, BPI can intervene in the sepsis cascade by preventing LPS from binding to monocyt s and causing releas of TNFalpha.

- 68 -

Example 9: THP-1 Cell TNF Production Assay

THP-1 cells were obtained from the American Tissue Culture Collection (Rockville, MD) and were maintained in REM medium containing 10% fetal bovine serum, 2 mM 5 L-glutamine, 100 units penicillin and 100 μg/ml streptomycin. Cells were passed at 2 x 105 cells/ml every 3 days. Responsiveness of THP-1 cells to LPS was induced by culturing the cells for 48 hours in REM medium containing 10% fetal calf serum, 2 mM L-glutamine, 100 10 units penicillin, 100 μ g/ml of streptomycin and 100 nM PMA at 37°C in a humidified atmosphere with 5% CO2. Cells were cultured in 96-well flat-bottomed tissue culture plates at 1-2 x 105 cells per well in a final volume of 200 μ l. After 48 hours, adherent cells 15 were washed three times with 200 µl of medium without serum. To 180 μ l of medium without serum but with 0.5% HSA, LPS (10 μ l at 200 ng/ml) and/or BPI, LBP or other RENPs were added (10 μ l at 0-2 mg/ml) and the cells were cultured for an additional 4 hours. After 4 hours, 20 supernatants were transferred to a U-bottomed 96 well plate and the plate was centrifuged (500 x g, 12 min) to pellet any cell debris. Supernatants were then stored in a second plate at -20°C until assayed for TNF by ELISA.

To further identify the regions of BPI which

25 contribute to LPS-neutralizing activity, and the domains
of LBP which are responsible for transducing the LPS
signal to cells, the abilities of RENPs to replace LBP
were compared under serum-free conditions. In these
experiments, cells of the promonocytic cell line THP-1

30 were induced to respond to LPS by culturing for 48 hours
with phorbol ester. After induction, cells were
stimulat d with 19 ng/ml of LPS in the presenc or
absence of the recombinant protein. In this system, TNF
release r quires a sourc of LBP. Data from these

35 experiments (Figur 15) show that only LBP and

L₁₋₃₅₉B₃₆₀₋₄₅₆ stimulat d TNF r leas. Thus the domain f LBP responsible for facilitating LPS-induced TNF release is within amino acid residues 199-359. Interestingly, B₁₋₁₉₉L₂₀₀₋₄₅₆ did not mediate TNF release in a serum-free system. This may indicate that the N-terminal domain of BPI binds too tightly to LPS to allow transfer of LPS to CD14 on the macrophage surface. Figure 16 shows an additional comparison of TNF production. Because L₍₁₋₁₉₈₎B₍₂₀₂₋₂₇₅₎L₍₂₇₄₋₄₅₆₎ includes LBP domain 274-456 and has activity, the active domain may comprise only residues 274-359.

Example 10: LPS-Induced TNF Release In Whole Blood

Peripheral blood from normal human volunteers was collected in heparin-containing VACUTAINER tubes (Becton Dickinson). To one milliliter of whole blood, BPI, a protein of the subject invention, or buffer control was added, followed by 1 ng/ml E. coli 055:B5 refined standard endotoxin (RSE) (Whitaker Bioproducts). Samples were incubated in closed microtubes at 37°C for 4 hours on a rocking platform. At the end of the incubation, samples were centrifuged for 5 minutes at 500 x g at 4°C, the plasma collected and frozen on dry ice until assayed for the presence of cytokines. TNF levels were determined by ELISA using human recombinant TNF (Genentech Inc., South San Francisco, CA) as a standard.

In later studies it was determined that BPI activity in whole blood is inhibited by heparin, and the anticoagulant was changed to citrate. In these experiments, to 120 µl of citrated whole blood, 20 µl of BPI or an RENP (at 0-1 mg/ml) or buffer control, 20 µl of 100 ng/ml f E. coli O55:B5 LPS was added to stimulat c lls in whole blood sampl s. These xperiments wer performed in polypropylene microtiter plat s (Costar, Cambridg, MA). Aft r the 37°C incubation st p, the

plates w re c ntrifug d 15 min at 500 x g at 4°C and th plasma removed for assaying.

To test the effects of BPI, LBP, and RENPs on LPS activation of TNF production in whole blood, BPI, LBP,

- 5 L_{1-197(143->V)}B_{200-456(N206->D)}, or B₁₋₁₉₉L₂₀₀₋₄₅₆ was mixed with heparinized blood, and LPS was added to the resulting mixture. The blood was incubated for four hours at 37°C, and TNF in the plasma was measured as described, <u>supra</u>. Results are shown in Figure 10.
- L_{1-197(I43->V)}B_{200-456(N206->D)} was the most potent at blocking TNF release, followed by BPI as the next most potent blocker. B₁₋₁₉₉L₂₀₀₋₄₅₆ and LBP had essentially no effect. Thus, in whole blood, L_{1-197(I43->V)}B_{200-456(N206->D)} proved to be the most potent inhibitor of LPS-mediated
 cytokine stimulation.

When experiments were performed in citrated rather than heparinized whole blood, endotoxin-neutralizing activity of BPI and $L_{1-197(I43->V)}B_{200-456(N206->D)}$ were equivalent (Table 6). In experiments in which

- 20 recombinant proteins were preincubated with endotoxin before addition to whole blood, the activities of these compounds fell roughly into two groups. BPI,
- LPS-neutralizing activity, while LBP, $B_{1-199}L_{200-456}$, L_{1-199} , $L_{1-359}B_{360-456}$ and B_{CAT9} were relatively inactive. Results with $L_{1-275}B_{278-456}$, B_{CAT9} , and $L_{(1-198)}B_{(201-456)}F_{C}$ were equivocal. When compounds were added to the blood samples immediately prior to LPS, the IC50 values were
- 30 higher, but the same group of proteins showed activity. These data further indicate the role of the C-terminal r gi n of BPI, demarcated by amino acid residues 200-359, in LPS neutralization in a physiological nvironm nt such as whol blood. Because L_{1-199} is not a potent
- 35 endotoxin-neutralizing prot in (see Tables 9 and 11), it

- 71 -

can b conclud d that the C-t rminal domain of BPI must significantly contribute to the endotoxin-neutralizing activity of L₁₋₁₉₇(I43->V)^B200-456(N206->D) and L₁₋₁₉₇B₂₀₀₋₄₅₆. All compounds which contain this sequence (201-359) are active except B_{CAT9}, which was also inactive in other assays possibly because the cationic amino acid residues which were replaced may be important in configuring the molecule. These data indicate that

L_{1-197(I43->V)}B_{200-456(M206->D)} is equivalent to L₁₋₁₉₇B₂₀₀₋₄₅₆
10 in activity, thus implying that the amino acid
differences between these two proteins have no affect
upon LPS binding affinity.

Table 6

LPS Inhibition in Human Whole Blood

5	Protein Pre- incubated	1C50 (μg/ml)	n	Not Pre- incubated	ΙC50 (μg/ml)	n
	L ₁₋₁₃₄ B ₁₃₅₋₄₅₆	0.15 ± 0.12	3	BPI	2.60 ± 1.52	5
	L ₁₋₁₉₇ B ₂₀₀₋₄₅₆	2.90 ± 3.59	1 2	L ₁₋₁₃₄ B ₁₃₅₋₄₅₆	3.7 ± 1.60	2
	L ₁₋₅₉ B ₆₀₋₄₅₆	0.28 ± 0.25	3	L ₁₋₁₉₉ \7(I43->V) ^B 200-456 (N206->D)	7.13 ± 5.92	4
10	L ₁₋₁₉₇ (I43->V) ^B 200-456(N206->D)	0.16 ± 0.11	1 7	L ₁₋₅₉ B ₆₀₋₄₅₆	15 ± 18.58	2
	BPI	0.43 ± 0.49	1 3	L ₁₋₁₉₇ B ₂₀₀₋₄₅₆	26.5 ± 0.71	2
	L ₍₁₋₁₉₈₎ B ₍₂₀₁₋₄₅₈₎ FC	18.00 ± 27.73	3	L ₁₋₃₅₉ B ₃₆₀₋₄₅₆	>100	1
	B ₁₋₁₉₉ L ₂₀₀₋₄₅₆	>100	3	B _{CAT9}	>100	2
	L ₁₋₃₅₉ B ₃₆₀₋₄₅₆	>100	3	L ₍₁₋₁₉₈₎ B ₍₂₀₁₋₄₅₆₎ Fc	>100	2
15	B _{CAT9}	11.50 ± 3.54	2	B ₁₋₁₉₉ L ₂₀₀₋₄₅₆	ND	
	B ₁₋₁₉₉	0.73 ± 0.48	6	B ₁₋₁₉₉	4.0	1
	L ₁₋₁₉₉	>100	2	L ₁₋₁₉₉	>100	1
	B _{CAT15}	0.21 ± 0.26	3			
	B _{CAT6}	0.27 ± 0.25	2			
20	L ₍₁₋₁₃₄₎ B ₍₁₃₆₋₂₇₅₎ L ₍₂₇₄₋₄₅₆₎	2.0	1			
	L ₍₁₋₁₉₈₎ B ₍₂₀₂₋₂₇₅₎ L ₍₂₇₄₋₄₅₆₎	5.27 ± 5.83	3			
	L ₁₋₂₇₅ B ₂₇₈₋₄₅₆	38.10 ± 53.64	3			

^{25 *}Two additional values for B_{CAT9} were >100.

- 73 -

Example 11: Mouse Serum Half-Life Assay

CD-1 mice weighing approximately 20 grams were injected with 5 mg/kg body weight BPI, LBP, or RENPS (1 mg/ml) at time zero. In heparinized (or later 5 EDTA-containing) tubes, blood was collected from the retroorbital plexus from three animals for each time point tested. A typical blood collection schedule was 5, 10, 15, 30, 45, 60, 90, 120, 240, and 360 minutes. The EDTA anticoagulated blood was centrifuged for about 10 min at 1000 x g and the supernatant plasma removed and stored frozen on dry ice until tested. Levels of BPI, LBP, or RENP in the plasma samples were determined by ELISA using the appropriate protein as the standard.

A potent anti-endotoxin therapeutic should not

only neutralize endotoxin, but should also have the
capacity to clear endotoxin from the circulation. The
circulating levels of radioactively labeled ¹²⁵I-BPI were
measured in the mouse in the presence and absence of
endotoxin (Table 7). In the absence of endotoxin, the

elimination (alpha) phase for ¹²⁵I-BPI was less than two
minutes. In the presence of LPS, the alpha phase was
extended to 6.2 minutes. ¹²⁵I-LPS alone has a single
phase distribution (beta) with a half-life of about 101
minutes. When ¹²⁵I-LPS and unlabeled BPI were

administered, a 6.2 minute elimination (alpha) phase was
observed, indicating that elimination was remarkably
facilitated by BPI.

PCT/US96/06134

Table 7
Serum Half-Life of BPI and LPS in the Mouse

5	Test Article	t _{1/2} alpha	t _{1/2} beta
	¹²⁵ I-BPI ¹²⁵ I-BPI + LPS	1.6 6.3	103.0 72.0
	125 _{I-LPS} 125 _{I-LPS} + BPI	6.2	101.0 114.0

10

In order to determine whether the very short circulating half-life of BPI could be extended by molecular engineering, the circulating half-lives of BPI,

- 15 LBP, B₁₋₁₉₉L₂₀₀₋₄₅₆ and L_{1-197(I43->V)}B_{200-456(N206->D)} were compared (Figure 11). Using both labeled and unlabeled material, it was observed that the circulating half-life of BPI in the mouse is remarkably short. This may be a result of the highly cationic nature of BPI having a
- 20 predicted pI of 10.6. LBP, normally present in the circulation at concentrations of 10 μg/ml, has a predicted pI of about 6.8. As expected,
 - $L_{1-197(143->V)}B_{200-456(N206->D)}$ (LBP-BPI chimera lacking BPI cationic residues) has a markedly longer circulating
- 25 half-life than $B_{1-199}L_{200-456}$ (BPI-LBP chimera having BPI cationic residues). Figure 11 shows that $L_{1-197(143->V)}B_{200-456(N206->D)}$ indeed has a longer half-life than BPI. $B_{1-199}L_{200-456}$, with the N-terminal domain of BPI, had an even shorter half-life than that of BPI.
- 30 Thus, the N-terminal domain of BPI appears to play a major role in its short circulating half-life.

Further pharmacokinetic studies were p rformed in which recombinant prot ins of the subject inv ntion were administered to CD-1 mice at a 5~mg/kg bolus dos .

35 Results of th s experim nts are shown in Figures

17A-17H. At 5 mg/kg, the circulating half life of $B_{1-199}L_{200-456}$ was similar to that of BPI.

 $L_{1-197(143->V)}^{B}_{200-456(N206->D)}$ and $L_{1-197}^{B}_{200-456}$ had overlapping elimination curves and again indicating that

- 5 these two molecules are equivalent with respect to their biological activities. $L_{1-197(143-v)}^{B}_{200-456(N206-v)}^{B}$ and B_{1-199} persisted in the circulation significantly longer than BPI or $B_{1-199}^{D}_{200-456}^{D}$, but not as long as the serum protein LBP. Comparison of the elimination curves of
- 10 $L_{1-59}B_{60-456}$, $L_{1-134}B_{135-456}$ and B_{CAT9} revealed that the N-terminus of LBP plays a role in extending circulating half-life. $L_{1-59}B_{60-456}$ circulates slightly longer than BPI, and contains the least LBP sequence of any of the recombinant proteins tested (amino acid residues 1-59).
- 15 L₁₋₁₃₄B₁₃₅₋₄₅₆ was cleared somewhat more slowly, indicating that LBP amino acid residues 60-134 of LBP impart a longer circulating half-life. In contrast, the cationic residues of BPI between 134-199 shorten the half-life, since in B_{C179}, where the cationic residues in this region
- were replaced with the corresponding residues of LBP, the half-life was similar to that of $L_{1-134}B_{135-456}$. Including more LBP residues in the N-terminal domain further extends the half life. If amino acid residues 199-359 of LBP are added ($L_{1-359}B_{360-456}$), the half-life is longer,
- but not quite as long as that of LBP. Likewise $L_{(1-198)}^{B}(202-275)^{L}(274-456)$ (with LBP domain 1-198 and 274-456) has a relatively long t1/2. These results indicate that the more "LBP-like" the molecule is, the longer it circulates. In addition, combining an Ig
- 30 fragment Fc with $L_{1-197(143->V)}^{B_{200-456(N206->D)}}$ gives the longest half life.

Example 13: Mouse Endotoxin Challenge Assay

Femal CD-1 mic w re inj cted in the lateral tail v in with a LD₁₀₀ dos (25-35 mg/kg) of Salmonella abortus

- 76 -

equi endot xin, which was follow d by an injecti n of BPI, RENP, or vehicle control into the opposite lateral tail vein at the indicated time. Protein injection concentrations varied and provided doses of 0.5, 1, and 5 mg/kg. Use of vehicle control illustrated the lethality of the endotoxin challenge in the test animal. Animals were observed for mortality at 24, 28, and 72 hours. Preliminary studies showed that mortality does not change from day three to day seven or beyond.

The efficacies of BPI, LBP,

 $L_{1-197(143->V)}$ $B_{200-456(N206->D)}$, B_{1-199} $L_{200-456}$ and $B_{(S351->A)}$ against lethal endotoxin challenge in mice were compared (Tables 8-10). The efficacies of

 $L_{1-197(143->V)}$ $B_{200-456(N206->D)}$, L_{1-197} $B_{200-456}$, L_{1-59} B_{60-456} , L_{1-134} $B_{135-456}$, $L_{(1-198)}$ $B_{(201-456)}$ Fc, L_{1-275} $B_{278-456}$, L_{1-359} $B_{360-456}$, B_{CAT9} , B_{CAT6} , and B_{CAT15} against lethal endotoxin challenge in mice were also compared (Table 11). When each protein was given within two minutes after lethal endotoxin challenge, BPI,

L_{1-197(I43->V)}B_{200-456(N206->D)} and B_(S351->A) had similar potency, whereas LBP and B₁₋₁₉₉L₂₀₀₋₄₅₆ showed minimal protection. The marginal protective effects of LBP and B₁₋₁₉₉L₂₀₀₋₄₅₆ since these agents do not block the inflammatory signal of LPS acting on human cells in vitro (Figure 10).

Table 8

Mouse Endotoxin Challenge

Comparison of BPI, LBP (NCY102),

and L₁₋₁₉₇(143->v)^B200-456(N206->D) (NCY103)

	Drug	Dose	<pre>\$ Survival (n=10)</pre>
	Control	0 mg/kg	0%
10	ВРІ	5 mg/kg 1 mg/kg	60% 40%
	LBP	5 mg/kg 1 mg/kg	30% 20%
15	L ₁₋₁₉₇ (143->v) ^B 200-456(B	1206->D) 1 mg/kg	5 mg/kg 60% 50%

Table 9

Mouse Endotoxin Challenge

Comparison of BPI, L_{1-197(I43->V)}B_{200-456(N206->D)} and B_(8351->A)

	Drug	Dose	% Surv	vival (n=10	T
	Control	0 mg/kg	0	8	
	BPI	5 mg/kg	8	0%	
25	L ₁₋₁₉₇ (143->V) ^B 200-456(1	N206->D)	5	mg/kg	100%
	B _(\$351->A)	5 mg/kg	9	0%	

5

20

Table 10

Mouse Endotoxin Challenge Comparison of BPI and B₁₋₁₉₉L₂₀₀₋₄₅₆ (NCY104)

	Drug	Dose	<pre>\$ Survival (n=10)</pre>
	Control	0 mg/kg	40%
10	BPI	10 mg/kg 2 mg/kg 0.4 mg/kg	100% 100% 70%
	B ₁₋₁₉₉ L ₂₀₀₋₄₅₆	10 mg/kg 2 mg/kg 0.2 mg/kg	60% 60% 50%
15		-	

Table 11

Survival in CD-1 Mice Following Lethal Endotoxin Challenge

Panel A

		Survivors/n	<pre>\$ Survival</pre>	p (vs.control)
	BPI	40/50	80.00	< 0.001
25	L ₁₋₁₉₇ (143->V) ^B 200-45	6 (N206->D)	17/20	85.00<
	L ₁₋₁₉₇ B ₂₀₀₋₄₅₆	16/20	80.00	< 0.001
	L ₁₋₅₉ B ₆₀₋₄₅₆	13/20	65.00	< 0.001
	L ₁₋₁₃₄ B ₁₃₅₋₄₅₆	13/20	65.00	< 0.001
30	L(1-198) B(201-456) FC	5/10	50.00	0.002
	L1-359B360-456	2/10	20.00	0.149
	B _{CAT6}	9/10	90.00	< 0.001
	BCAT9	1/10	10.00	0.442
	¹ 1−275 ¹ 278−456	0/10	0	
35	B _{CAT15}	6/10	60.0	< 0.05
	Control	1/30	3.30	

- 79 -

Panel B

		Dose mg/kg	Survivore (n=20)		p (vs. control) *
	BPI				
5		5	13	65	< 0.001
		1	9	45	0.001
		0.5	6	30	0.02
	L ₁₋₁₉₇₍₁₄₃	->V) ^B 200-	-456 (N206->I 18		
		5	18	' 90	<0.001
10		1	12	60	<0.001
		0.5	9	45	0.001
	B ₁₋₁₉₉				
		5 .	3	15	NS
		1	0	0	NS
15		0.5	1	5	ns

^{*} Fisher's Exact Test

Further experiments were performed to assess the LPS-neutralizing activities of recombinant proteins of the subject invention in vivo. In these experiments, a lethal LPS challenge was administered at time zero, followed immediately by a 5 mg/kg bolus injection of recombinant protein.

L_{1-197(I43->V)}B_{200-456(N206->D)} was markedly more effective than BPI when given more than an hour before or after LPS (Figure 12). These results indicate that the longer circulating half-life of

 $L_{1-197(143->V)}^{B}_{200-456(N206->D)}$, or perhaps the increased ability of $L_{1-197(143->V)}^{B}_{200-456(N206->D)}$ to inhibit endotoxin in whole blood, has a dramatic effect on $L_{1-197(143->V)}^{B}_{200-456(N206->D)}$ efficacy in vivo.

- 80 -

Example 12: BPI Reduction of LPS-Induced Cytokine Function and Mortality in Rats

The potential effect of BPI against LPS related cytokine formation and mortality was investigated in rats 5 with either (a) hemorrhagic shock (bled to lower pressure to 30-35 mmHg mean arterial pressure for 90 minutes, followed by reinfusion of shed blood and an equal volume of Ringer's over 30 minutes), or (b) endotoxic shock (caused by 100 µg LPS and 500 mg D-galactosamine/kg).

10 Similarly, recombinant BPI binds LPS and inhibits TNF formation in vitro. Treatment comprised 5 mg BPI/kg i.v. for the BPI group, or 1 ml saline i.v. for the control group.

The results of the investigation of BPI efficacy

15 in rats with either (a) hemorrhagic shock or (b)
endotoxic shock show that (a) in rats with hemorrhagic
shock, the mortality was decreased from 5/10 (50% control
group) to 2/10 (20% BPI group) at 48 hours; (b) in rats
with endotoxic shock, the 5-day mortality was

- significantly reduced (p = 0.055) by BPI treatment to 43%, as compared to 83% in the control group. Plasma LPS levels were at least partially neutralized at two hours (5.9 \pm 4.1 vs 10.8 \pm 4.1 ng/ml). Cytokine formation was concomitantly reduced in the BPI group as measured by
- 25 plasma TNF levels at two hours (3.9 ± 2.9 vs 10.3 ±
 6.3 ng/ml). Liver transaminases (GOT and GPT, whose
 elevation indicates hepatic dysfunction) and bilirubin
 still increased at eight hours; however, the increase was
 less with BPI. These data demonstrate that BPI has
- 30 utility as a therapeutic agent against endotoxin-related disorders in hemorrhagic as well as endotoxic shock.

Example 14: Protection against LPS challenge by intrapulmonary delivery of RENPS

Anesthetized male CD-1 mice were treated intra-nasally with 1 or 10 μg of either BPI or

- 5 $^{L_{1-197(143->v)}}^{B_{200-456(N206->D)}}$ in 50 μ l. Control animals received 50 μ l of saline for injection. After 20 minutes, animals were re-anesthetized, and challenged with 10 ng of <u>E. coli</u> 055:B5 LPS. One hour after endotoxin challenge, mice were re-anesthetized, and
- 10 0.7 ml of saline containing 1% human serum albumin was added to the lungs via the trachea. The lungs were gently kneaded. A 0.5 ml volume of BAL (bronchoalveolar lavage) fluid was aspirated, cells were pelleted by centrifugation, and the BAL sample was sorted at -70°C.
- 15 The TNF-alpha level in the BAL fluid was determined by ELISA (results shown in Figure 19).

Figure 19 shows that endotoxin-neutralizing proteins such as BPI and $L_{1-197(143->V)}^{B}_{200-456(N206->D)}$ (NCY103) can also neutralize endotoxin-mediated TNF

- release in the lung. These results indicate that these proteins are effective when delivered directly into the lung and thus may be useful for treatment of pneumonias and other endotoxin-related disorders of the lung, such as ARDS.
- 25 Example 15. Construction of L₁₋₁₉₇B₂₀₀₋₄₅₆

cDNA encoding $L_{1-197}B_{200-456}$ was constructed by creating a unique ClaI site at the junction between the nucleotide sequence coding for $Ile_{197}-Asp_{198}$ residues (ATA-GAT -> ATC-GAT). For $L_{1-197}B_{200-456}$, a 0.7 kb

NheI/ClaI DNA fragment (encoding amino acids 1-197) derived from the 5's quence of LBP and a 0.8 kb ClaI/XhoI fragment (ncoding amino acids 200-456) d rived from th 3' sequence of BPI w r generated by PCR. The chim ric cDNAs were spliced together by cloning the

fragments into pSE, a mammalian vector. The cDNAs for BPI, LBP and L₁₋₁₉₇B₂₀₀₋₄₅₆ were transfected into Chinese hamster ovary cells (strain DUXB11) using lipofectin. The resulting transformed cells were selected, and expression was amplified with methotrexate. Cell culture supernatants were screened for reactivity by ELISA. Recombinant BPI, LBP, and L₁₋₁₉₇B₂₀₀₋₄₅₆ were purified as described above.

Example 16. Pharmokinetics of L₁₋₁₉₇B₂₀₀₋₄₅₆

- Data for pharmacokinetic analysis were collected from healthy CD-1 mice given a single bolus injection (5 mg/kg) of recombinant protein at time=0. Blood was collected from three mice for each collection time point by retroorbital puncture at timepoints over three hours.
- Blood samples anticoagulated in EDTA were assayed by a double antibody sandwich ELISA for the presence of BPI, LBP or $L_{1-197}B_{200-456}$). Pharmacokinetic analysis was performed using a non-compartmental analysis (PharmK pharmacokinetic software, SoftRes, Inc.).
- Comparison of BPI and LBP shows that BPI was cleared rapidly with a clearance rate of 13.0 ml/minute (Table 12). LBP had the longest half life, with a clearance rate of 0.042 ml/min. Compared to BPI, LBP was cleared 310 times more slowly. L₁₋₁₉₇B₂₀₀₋₄₅₆ had an
- 25 intermediate half life (Clearance rate = 0.175 ml/min),
 being cleared 74 times more slowly than BPI.

Table 12: Clearance rate of L1-197B200-456

	CL (ml/min)	(vs. BPI)
BPI	13.000	-
LBP	0.042	(310 fold)
L ₁₋₁₉₇ B ₂₀₀₋₄₅₆	0.175	(74 fold)

30

- 83 -

Exampl 17. LPS protection by L₁₋₁₉₇B₂₀₀₋₄₅₆

Female CD-1 mice (n=10) were injected in the lateral tail vein with 35 mg/kg S. abortus equi LPS (Sigma, St. Louis, MO) at time=0. Recombinant protein 5 (5 mg/kg) was then administered intravenously into the opposite lateral tail vein immediately following (t=0) endotoxin challenge. Survival was monitored at 24, 48 and 72 hours post-challenge. Control animals received 0.1 ml saline instead of recombinant protein. The p values were determined by Fisher's exact test.

The results are shown in Figure 20. BPI and $L_{1-197}B_{200-456}$ provided 90% to 100% survival, respectively, at the 72 hour end point. No further mortality was noted at seven days post-challenge. The untreated control group had a survival rate of 20%. The survival rates of the treated groups were statistically significant compared to the control group (p<.001 for the $L_{1-197}B_{200-456}$ group and p=.003 for the BPI group determined by Fisher's exact test). These results indicate that $L_{1-197}B_{200-456}$ is as effective as BPI in this endotoxin challenge model in vivo.

Example 18. Protection Against Endotoxin Challenge in Mice

The ability of the recombinant,

25 endotoxin-neutralizing proteins $B_{(1-41)}L_{(1-199)}B_{(1-456)}$, $L_{(1-164)}B_{(200-456)}$, $B_{(1-175)}B_{(200-456)}$, $B_{(1-236)}$, and $B_{(1-190)}$ to protect mice against endotoxin challenge was carried out as described in Example 17 above. Protection by these proteins was compared to the protection provided by BPI

30 or saline. The results of these studies are shown in Tabl 13.

- 84 -

TABLE 13

					·N			Surviv (hou		10	
		Compound	Lot #	0	12	18	24	36	48	60	7 2
	Group 1	native BPI	149724	10	10	10	10	10	9	9	9
5	Group 2	B ₍₁₋₄₁₎ L ₍₁₋₁₉₉₎ B ₍₁₋₄₅₆₎	162303	10	10	10	10	9	9	8	8
	Group 3	L ₍₁₋₁₆₄₎ B ₍₂₀₀₋₄₅₆₎	164325	10	10	9	9	8	8	7	7
	Group 4	L ₍₁₋₁₇₅₎ B ₍₂₀₀₋₄₅₆₎	164326	10	10	10	10	10	10	10	1
10	Group 5	B ₍₁₋₂₃₆₎	159695	8	7	5	4	1	0	0	0
	Group 6	B ₍₁₋₁₉₀₎	159699	10	9	8	6	6	6	5	5
15	Group 7	Saline		10	8	7	6	4	3	3	3

Each animal received 35 mg/kg LPS in 0.1 ml, followed immediately by 5 mg/kg of the indicated compound in 0.1 ml. Survival was monitored at each time point indicated.

20 Example 19: Detection of a Gram-negative infection in a patient

A blood sample of about 1 ml to 5 ml is drawn from a patient suspected of having a Gram-negative infection. The blood sample is treated with citrate anti-coagulant 25 and plasma is separated from the blood cells by centrifugation. The plasma is then diluted in a series of 10-fold dilutions in assay buffer (pyrogen-free TBS + 1 mg/ml low endotoxin BSA, and 0.05% Tween-20). The diluted plasma samples are then mixed with a known amount 30 f bi tinylated RENP. A seri s of control samples containing known amounts of biotinylated RENP in assay

- 85 -

buffer is includ d in th assay as quantitative and negative controls.

The test and control samples are then applied to the wells of a microtiter plate having bound LPS. The LPS-bound microtiter wells are prepared by incubation with 1 or 4 μg of <u>S. minnesota</u> R595 Re LPS (LIST Biological Labs, Inc., #304) in 50 mM borate pH 9.5-9.8 + 20-25 mM EDTA overnight at 37°C. Blank, non-LPS coated wells are included on each plate as controls for

- 10 non-specific binding. The plates are then washed extensively under running distilled deionized water, then dried at 37°C. The assay wells are subsequently blocked for 60 minutes at 37°C with 1-2% very low endotoxin BSA (Sigma, St. Louis, MO) prepared in pyrogen-free
- 15 Tris-buffered saline (50 mM Tris pH 7.4 + 150 mM NaCl).

The test and control samples are incubated for a time sufficient for binding of the RENP in the samples to the LPS bound to the microtiter wells, generally about 2-3 hours at 37°C in a total volume of 100 μ l/well.

- 20 After incubation, the wells are washed four times with assay buffer, and the plates are developed with streptavidin conjugated to alkaline phosphatase followed by 100 μ l of PNP substrate solution freshly prepared from two 5 mg tablets dissolved in 10 ml substrate buffer.
- 25 Substrate buffer is prepared with 24.5 mg MgCl₂, 48 ml diethanolamine, brought up to 400 ml, pH adjusted to 9.8 and volume brought up to 500 ml. Absorbances are read at 405 nm on a microplate reader.

If the level of biotinylated RENP bound to the

30 wells of the test sample is significantly less than the
level of biotinylated RENP bound to the negative control
sample, then the patient has endotoxin circulating in th
bloodstr am which is generally associated with a
Gram-n gativ inf ction. Moreov r, the level of RENP

35 binding in th test sample is compared to the lev ls f

- 86 -

RENP binding in th quantitative controls, each of which are representative of varying degrees of severity of Gram-negative infection in a patient. The level of binding of the test sample is thus compared to the levels of binding of the quantitative samples to determine a degree of severity of infection.

Example 20: Detection of a Gram-negative infection in vivo

RENP is detectably labeled with ¹²⁵I using methods
10 well known in the art. Approximately 100 μg of an
¹²⁵I-labeled RENP is injected intravenously into a patient
suspected of having a Gram-negative infection in an
organ, e.g., the liver. After allowing a time sufficient
for circulation of the ¹²⁵I-labeled RENP to the suspected
15 site of infection, the abdomen of the patient is
fluoroscoped or X-rayed 2 to 3 times so as to include
various perspectives. The X-ray is then examined to
identify sites of binding of the RENP by virtue of an
abnormally darkened section on the X-ray. Upon
20 identification of the site of infection, the clinician
designs an appropriate therapeutic regimen.

Following procedures similar to those described above, other recombinant, LPS-binding proteins can be produced and used in diagnostic methods and methods of treatment according to the invention.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended 30 claims.

CLAIMS

1. A method of d t cting a site of Gram-negative bacterial infection in a subject, said method comprising the steps of:

- 87 -

injecting into the patient's circulatory system an injectable formulation comprising an effective amount of a recombinant endotoxin-neutralizing polypeptide attached to a detectable label, wherein the polypeptide is characterized by (i) selective and specific binding to lipopolysaccharide and (ii) endotoxin-neutralizing activity, with the proviso that the amino acid sequence of the polypeptide is not identical to the amino acid sequences of BPI or LBP;

allowing the detectably labeled polypeptide sufficient time to circulate in the subject and bind to lipopolysaccharide in the patient; and

detecting a site of label binding in the patient, thereby detecting a site of Gram-negative bacterial infection.

- The method of claim 1, wherein the
 polypeptide is covalently bound to a molecule which enhances the half-life of the polypeptide.
 - 3. The method of claim 1, wherein the polypeptide contains an LPS binding domain of BPI, LBP, a BPI variant, or an LBP variant.
- 25 4. The method of claim 1, wherein the detectable label is a radionucleotide.

- 88 -

5. A method f d t cting a Gram-n gative bacterial infection in a subject, said method comprising the steps of:

obtaining a sample from a patient suspected of 5 having a Gram-negative bacterial infection;

contacting said sample with a detectably labeled recombinant endotoxin-neutralizing polypeptide for a time sufficient for binding of the polypeptide to lipopolysaccharide in the sample; and

10 detecting formation of lipopolysaccharide-polypeptide complexes by detection of a detectable label bound to the polypeptide;

wherein detection of a level of detectable label in said sample significantly greater than a level of detectable label in a negative control sample is indicative of a Gram-negative bacterial infection in the subject.

- The method of claim 5, wherein the polypeptide contains an LPS binding domain of BPI, LBP, a
 BPI variant, or an LBP variant.
 - 7. The method of claim 5, wherein said detection is quantitative.
- 8. The method of claim 7, wherein said quantitative detection is correlated with an 25 Gram-negative bacterial infection load.

- 89 -

- 9. A d t ctably label d recombinant endotoxin-neutralizing polypeptide characterized by (i) selective and specific binding to lipopolysaccharide and (ii) endotoxin-neutralizing activity, with the proviso that the amino acid sequence of the polypeptide is not identical to the amino acid sequences of BPI or LBP.
 - 10. A polypeptide according to claim 9, wherein the polypeptide contains an LPS binding domain of BPI, LBP, a BPI variant, or an LBP variant.
- 11. A detectably labeled polypeptide according to claim 9, wherein the polypeptide comprises a molecule which enhances the half-life of said polypeptide and is covalently bound to the polypeptide.
- 12. A detectably labeled polypeptide according to claim 11, wherein said molecule is an immunoglobulin fragment, a half-life enhancing porion of LBP, a half-life enhancing portion of an LBP variant, or polyethylene glycol.

- 90 -

14. A recombinant endotoxin-neutralizing polypeptide characterized by (i) selective and specific binding to lipopolysaccharide and

- (ii) endotoxin-neutralizing activity, with the provisothat the amino acid sequence of the polypeptide is not identical to the amino acid sequences of BPI or LBP.
- 15. A recombinant endotoxin-neutralizing polypeptide according to claim 14, wherein said polypeptide is of the formula L₁₋₁₉₇B₂₀₀₋₄₅₆ or a
 10 corresponding protein which (a) functions to bind lipopolysaccharide and (b) neutralizes endotoxin.
- 16. A recombinant endotoxin-neutralizing polypeptide according to claim 14, wherein the polypeptide is BPI(S351->X), wherein X is any amino acid other than serine.
 - 17. A recombinant endotoxin-neutralizing polypeptide according to claim 16, wherein X is alanine.
- 18. A recombinant endotoxin-neutralizing polypeptide according to claim 14, wherein the 20 polypeptide contains the amino acid sequence of BPI having a cationic amino acid substituted with a neutral or anionic residue.
- 19. A recombinant endotoxin-neutralizing polypeptide according to claim 18, wherein the cationic 25 amino acid is at BPI amino acid residue positions 27, 30, 33, 42, 44, 48, 59, 77, 86, 90, 96, 118, 127, 148, 150, 160, 161, 167, 169, 177, 185, or 198.

- 91 -

- 20. A recombinant endotoxin-neutralizing polypeptide according to claim 19, wherein the polypeptide contains neutral or anionic residues at BPI amino acid residue positions 27, 30, 33, 42, 44, 48, and 59.
- 21. A recombinant endotoxin-neutralizing polypeptide according to claim 19, wherein the polypeptide contains neutral or anionic residues at BPI amino acid residue positions 77, 86, 90, 96, 118, and 10 127.
- 22. A recombinant endotoxin-neutralizing polypeptide according to claim 19, wherein the polypeptide contains neutral or anionic residues at BPI amino acid residue positions 148, 150, 160, 161, 167, 15 169, 177, 185, and 198.
- 23. A recombinant endotoxin-neutralizing polypeptide according to claim 18, wherein the polypeptide contains neutral or anionic residues at BPI amino acid residue positions 27, 30, 33, 42, 44, 48, 59, 77, 86, 90, 96, 118, 127, 148, 150, 160, 161, 167, 169, 177, 185, and 198.
- 24. A recombinant endotoxin-neutralizing polypeptide according to claim 14, wherein the polypeptide contains the amino acid sequence of LBP
 25 having an amino acid substituted for an amino acid in a corresponding amino acid residue position of BPI.

- 92 -

- 25. A recombinant endotoxin-neutralizing polypeptide according to claim 24, wherein the amino acid substituted is at LBP amino acid residue positions 77, 86, 96, 118, 126, 147, 148, 158, 159, 161, 165, 167, 175, 5 183, or 196.
- 26. A recombinant endotoxin-neutralizing polypeptide according to claim 14, wherein the polypeptide contains the amino acid sequence of BPI having a cysteine residue substituted with an amino acid other than cysteine.
 - 27. A recombinant endotoxin-neutralizing polypeptide according to claim 26, wherein said cysteine residue is at BPI amino acid residue position 132, 135, or 175.
- 28. A recombinant endotoxin-neutralizing polypeptide according to claim 26, wherein the cysteine residues of BPI at positions 132, 135, and 175 are substituted with an amino acid other than cysteine.
- 29. A recombinant endotoxin-neutralizing
 20 polypeptide according to claim 14, wherein the
 polypeptide comprises a molecule which enhances the
 half-life of said polypeptide and is covalently bound to
 the polypeptide.
- 30. A recombinant endotoxin-neutralizing
 25 polypeptide according to claim 29, wherein said
 polypeptide contains a lipopolysaccharide-binding domain
 of BPI, LBP, a BPI variant, or an LBP variant.

- 93 -

- 31. A recombinant ndotoxin-neutralizing polypeptide according to claim 29, wherein said molecule is an immunoglobulin fragment, a half-life enhancing portion of LBP, a half-life enhancing portion of an LBP variant, or polyethylene glycol.
- 32. A recombinant endotoxin-neutralizing polypeptide according to claim 29, wherein the endotoxin-neutralizing polypeptide of (a) is a C-terminal fragment of BPI and the molecule of (b) is an N-terminal fragment of LBP.
- 33. A recombinant endotoxin-neutralizing polypeptide according to claim 32, wherein said C-terminal fragment of BPI is a fragment having an amino acid sequence contained in BPI amino acid residues 15 60-456.
- 34. A recombinant endotoxin-neutralizing polypeptide according to claim 33, wherein said C-terminal fragment of BPI is BPI amino acid residues 60-456, 136-456, 277-456, 300-456, 200-456, 136-361, 20 136-275, 200-275, or 200-361.
 - 35. A recombinant endotoxin-neutralizing polypeptide according to claim 32, wherein said N-terminal fragment of LBP is a fragment having an amino acid sequence contained in LBP amino acid residues 1-175.
- 25 36. A recombinant endotoxin-neutralizing polypeptide according to claim 21, wherein said N-terminal fragment of LBP is LBP amino acid residues 1-59, 1-134, 1-164, 1-175, 1-274, 1-359, 1-134, or 1-197.

- 94 -

- 37. A recombinant ndotoxin-n utralizing polypeptide of claim 18, wherein the polypeptide further comprises a C-terminal fragment of LBP.
- 38. A recombinant endotoxin-neutralizing
 5 polypeptide of claim 23, wherein the C-terminal fragment
 of LBP is LBP amino acid residues 360-456 or 274-456.
 - 39. An isolated DNA molecule encoding a recombinant endotoxin binding polypeptide according to claim 14.
- 10 40. A vector comprising the DNA of claim 39.
 - 41. A transformed host cell comprising the DNA of claim 39.
- 42. A method for producing a recombinant endotoxin-neutralizing polypeptide according to claim 14, 15 said method comprising the steps of:

culturing a transformed host cell comprising DNA encoding a recombinant endotoxin binding polypeptide according to claim 14, said DNA being operably linked to a promoter for expression of the polypeptide encoded by the DNA, said culturing being under conditions allowing expression of said polypeptide; and

isolating the recombinant endotoxin binding polypeptide produced.

- 43. A pharmaceutical composition comprising:
- a therapeutically effective amount of a recombinant endotoxin-neutralizing polyp ptide according to claim 14; and
 - a pharmac utically acc ptable carri r.

- 95 -

ט ט

FIGURE 1A

14	18	<u>10</u>	9
R	出	RE	RE
G	믕		9
正	正	正	正

-75

ΞΞ

		ୟ ମ		<u>.</u> `	<u>-</u> :		œ	~		ت	Ü
		ပ ပ		7	<u>.</u>		Ö	Ö		<u>د</u>	<u>۔</u>
		<u>a</u> a		Ö	Ü		>	>		>	>
			22	ш	m		Ξ	=	ş	ے 2	<u>۔</u>
		s s		0	O		<u>a</u>	ے		~	~
				4	<		_	_			_;
				<	<		~	~		∢	<
	10			>	>		_	_		S	S
	·			0	0	5	_	<u> </u>		Ξ	=
		a a		_	- :		Ö	Ü			_:
				Ö	Ö		-	<u>-</u>			- 2.
				¥	×		ت	ഥ		ш	<u></u>
		•		۵	۵		۵	<u> </u>		ပ	ບ
		s s	9	<u> </u>			ے	ے	(g v	S
		م م			-		<u>.</u>			=	=
<u>:</u>				~	~		—	:-		_	_
eta	_	a 4		<	<		-	-		z	z
a Z	- 20	= =		>	.>		~	~		-	<u>-</u>
رق)	·			<u>-</u>		30	<u>-</u>	- `.		S	S
nporkd by Schumannetal.) rect sequence)				C	Ü		<u>-</u>	_		=	=
ed by Seq		n ::		<u>-</u>	<u>-</u>		=	<u></u>		<u>:-</u>	<u>:-</u>
port ec.t		23 00		Z	Z		S	S		<u></u>	<u></u>
(corr				<	<		o	0		>	>
LBP-a (as r LBP-b (cor				LBP-a	1.8P-b					L.BP.a	1.88%
Homan				Hamm	11						Humm

2/39

FIGURE 1B

						8	_								٥v	Q									100	
		-		-	S			<u> </u>	S	S	_	~	>			~	_	×	>	. .	×	<u>:</u>	<u>=</u>		_	
		-	S	<u>-</u>	S		S	a	S	S	_	~		0												
											<u>0</u>									7						
110000	1.88°-a	⇒	Ü	S	<u></u>	<u>-</u>	>	S	>	×	C	_	S	_	s	>	z		<u> </u>		S U	<u>=</u>	S	S		
fl.m.m	1.181	°		s.	<u>:-</u>	=	>	S	>		ŋ	_														
	•																									
							<u> </u>	_								<u>`</u>	ð									
		Ü	×	ے	H	C	ပ		-	S	ပ	S			_		^ _	∨ E	>	ر ت	Σ	S	Ü	2		
		Ü	~	_	; -	>	[-		S	S			S	_		-										
						*	*	•	*																	
			150	0								_	9										0			
Human	1.18P-a	S	Ü	≩	-	-	z	<u>-</u> :	<u>.</u>	=			_		S	_	ت	∼	>	<u>~</u>	::	S		_	ິບ	
Hammel	1.181	'	Ü	≩	<u>-</u>	<u>-</u>	z	_	<u>-</u>	=	z	0		<u></u>			··						~	-	Ü	
								9	_								-	Ç						75	K / 30k	J.
		m	Σ	-	0	×	S	5 >	ุ่ง		۵		0	<u>-</u>	1 *	1	1 0		۵.	>	-	-		i	E _ D	l
		Ľ		-	, c	2		>	U	U		_					· -	-						_	=	

3/39

FIGURE 1C

# 200 IBPa S F A IBPb S F A	202	20 	< < <	~ ~		2 2		<u> </u>	>- >-	s s	<u></u>	> >	西田	2 4 <		≃ ≃	< <	- -	< ∢	25	2 2	<u> </u>	<u> </u>	220 2 2	ΣΣ	<u> </u>	× ×	
230	230	230	230	230	230	230	230	g										••	240	_								
GEIFHRNE	E H H H H	E H H H H	- F H R N	Z Z I	Z Z I	z æ	z		Ξ		~	S	<u>~</u>	>	-	_	_	∢	∢	∢			•		<u></u>	<u>=</u>	_	=
E F II R N	E F II R N	E F II R N	T I R	z =	z =	z z	z		=					>	—	_	-	4		>	2	S	<u>-</u> :	_	= :	<u></u>	=	
																				•		•	•	•				
													•	260	_		•						*	270	^			
> X X	A 7 V M	A 7 V M	A 7 V M	V Y F: A	Y F: A	∀ <u>:-</u>	⋖		-		S	<u>_</u>	>	>	ഥ	Z	:	∢	S	_;	>	> -	=	=	Ŧ	Ü	>	
M V Y F A	M V Y F A	M V Y F A	M V Y F A	v Y F A	Υ <u>:</u> Υ	۲ ۲	<		_				>	>	Ľ	z	÷	∢	S	_	>	>	=	==	<u>=</u>	C	>	
				280	280	280	280	80										•	290	_								
NFSITD	NFSITD	NFSITD	FSITD	SITD	I T D	T D	_		=		Σ	_	ے	ے	<u>_</u>	S	z	_	~	_:	:-	÷	¥	y,	<u>:</u>	~	-	
F S - T	A T S T N	A T S T N	FSITD	S I T D	- -	<u> </u>	<u> </u>	≘, ≘	_		Z		<u>-</u>	-	2	S	z	-	~	_:		-	¥	y.	<u>-</u>	=	<u>-</u>	
00 6	300	300	8											310			•							320				
LBP.a F V P R L A R	F V P R L A R	P R L A R	P R L A R	L A R	L A R	A	~						z	Z	z	_	ш	_	. 0	Ö	S	>	٩	S	<	- -		
A A A A A	8 4 3 A 3	P R L	P R L	A A	A A	8	~			_	>	۵	Z	2	Z	_	Ţ		C	C	v	>	_	v			_	

4/39

FIGURE 1D

	v.	v.		_	_	•					·	<u>:-</u>		Ξ	ij	
	· / .	sv.		¥	'				<u></u>		Ü	Ü		<u>-</u>	- .	
	<u>-</u>	<u>-</u>	^	S	s			<	<	<u> </u>	=	<u></u>		<u>:-</u>	<u>:-</u>	
	<u>-</u> :		340	-	:-			z	z	420	<	<		-	<u>-</u>	
	_	-		z	z			<u>-</u>	<u>:-</u>	•		<u>-</u> :		÷	÷	
	>	> .		Ŀ	<u>:</u>				<u></u>		¥	¥		=	-	
	<u>:</u>	<u> </u>		<u>-</u>	÷			Ü	ij		_	2		¥	4	
_	<	<		<u>-</u> :	_:			>	>		z	Z	٥	=	=	
340	<u>_</u>	=		Ξ	:-		390	×	¥		ت	<u>:</u>	440	-	-	
•	-	_		<	<		,	ဘ	s:		¥	¥		C	C	
	<u></u>	<u></u>		S	S			<u>:::</u>	<u></u>		ے	ے		<u>-</u>		
	Σ	Z		>	>			¥	¥		>	>		Ü	Ü	
	>	>			z			<u>-</u> :	<u>-</u>			<u>(-</u>		<u>-</u>	_	
	<u>-</u>	-	360	H	:			<u>ت</u>	<u></u>	9	-	:		2	٥	
	<u>_</u>	=	•		< <			>	>	•		z		>	>	
	>	>		>	>			¥	¥					-		
	'n	သ		V2	S			>	>		_	-		0	0	
_		- :		_	: <u>-</u>		_		¥		>	>	٥	>	>	
330	z	z		~	×		380	C	IJ		>	>	430	~	~	
	U	Ü		<u>:-</u>	. =			-	<u>-</u>		Z	Z			×	
	<u>-</u>	=		>	>			×	×			-			-	
	S	S		٥								-		<u>-</u>	-	
	<u></u>	<u> </u>	_	<u>:</u>				·	<u> </u>	,	_	<		2	<u>-</u>	
	Z	z	350	<u> </u>	. .~			Ü	Ü	(<u> </u>	=		_	-	
	_	-		y	းလ			:-	· ;-			: <u>-</u>		_	<u> </u>	
				:							181.	1.181-16				
,																

Figure 2

6/39

ထမ

144 38

192 54

288 86

AGC

TAC

TTC

AGC

TAT

CAT

666 617

MG

666 61y

Cer Leu

CAT

AAG Lyb

ATC Ile

AAG Lyb

TTT

AGC Ser

336

GTG

ATG

AGC

ATA Ile

TCC

AGT Ser

Pro

£3

CAG

TTC

GAA

CGT

ATC Ile

GAC

ATG Met

GURE 3A GURE 3B GURE 3C

FIGURE 3A

GCC
ATG
AAC Aed
GAG Glu
AGA
ATG Met
AGG
TGG
CIC
CAG
TGG
777
AGG
TTG
၁၁၅
CAG
~ -

Ala	GTC	GTC	GCC	GAC
Met	CTC Ley	GTG	ACG	TCA
ASD	GTG	GTC	666 61y	TAC
175 175	ATG Het	66C 61y	CAG	GAC
ACA	CTG Leu	CCT	CAG	CCT
Met	TCC	AAC	AGC	ATT
) (GTG	GTC	GCC	AAG Lys
2	166 170	GCC	TAC	ATC Ile
ָרְ ר	AGA	GCG	GAC	AGG
2	CCC	ACA	CTG	MAG
ממי ביון המי כייו	GCG	GTG	66C 61y	CTG
-	AAC Asd	GCC	AAG Lys	GAG
	TGC	ACC	CAG Gln	AAG Lys
2	CCT	718 265	TCC	CAG
511	715 299	ATA Ile	ATC II	CTG
	AGG	GCC	AGG	GCT
→	4 7	97	145 39	193 55

CDNA

FIGURE 3B

384 118	432	480 150	528 166	576 182	624 198	672	720	768 246
ATC Ile	AAT	CTC	TGC	GTC	CGA	TCC	ATA Ile	Acc
AAG Lys	660 61y	AAG Lys	AGC	AAA Lys	Cen	GTA	AAA Lys	GCA
ATC Ile	AGC	CTG	TCC	AGC	GCG	TCT	ACC	CCA
AAT	ATG	GAT	TGC Cys	AAG	TCT	AAT	ATG Met	CCT
GCC	AAA	GCT	ACC	TCA	GAG	ACC	GTA	GCA Ala
AAC	TTA	TCG	ATC IIe	ATC	ATT	GTG	CCA	GTG
AGC	TTC	ATT IIe	Acc	CAC	AAA Lys	AAA Lys	Crc	23
ATC Ile	AGA	TCC	CCC	GTG	AAA Lyb	GAG	ACT	ccr cly
TCC	AAG	ATG	AAG	CAC	CAC	TGC Cys	CAG	TAT
TTC	CAA	66c 61y	GGC Gly	GTC	TTC	GTC	TTC	AAC
AAG Lys	GCA	GM Glu	TCA	AGT	Sec.	CAG	TAT Tyr	ATC Ile
Cen Len	AAG Lys	ATA Ile	Acg Thr	AAC	CAA Gln	AGC	CCT	GGA
66C 61y	TGG	AGC	CCC	ATC Ile	ATC Ile	AAC	CAN Glu	GCT
GTG Val	AAA Lys	7.5 Fee	AAC	CAC His	CTG	ATG	CTG	GTG
AAT	666 61y	GAC	AGT	AGC	TGG Trp	AAG	AAG Lys	TCT
CCC	AGC	TTT	66C 61y	AGC	666 61y	AAC	TCC	GAT
337 103	385 119	433 135	481	529 167	577 183	625	673 215	721

FIGURE 3C

8 2 6 9	86,	913	310	1008	1056	1104	1152	1200	1248
GAG Glu	CCC	TTC	Acc Thr	Acc	AAC	TCT Ser	GCC	66c 61y	CTT
AGT	TTT	TTC	ATG	ACA	CCC	CTG	CAG Gln	ATT	AGG
TAC	GAG Glu	TAC	AAG Lys	CTG Leu	TTT	CAC	GTC	CTG	AAC
TTT	ATG Met	GAC	TTG	CGA	AAG Lys	CCA	GAT	TTC	TCC
GAG Glu	GTG	TCA	GTC	TTT	AAG	CCG	GTG	CTC	GAG
666 61y	CCA	Cro Leu	666 61y	AAA Lys	GCC	Acc	GCC	TCC	GCC
AAG Lys	CCA	GGC	GCT	TCC	GTG	Ser	CCT	GCT	AGC
ATG	GCT	Crea Lea	GAG	GAG Glu	GAG Glu	GCC	TAC	CTG	GTC
CAG	TIT	TAC	GIN	AAG Lys	CCT Pro	TCA	TTC	TCC	GAG
GTA	CCC	GTA	TAC	CCA	CTA	GTC	ACC	TCC	ATG
GAT	CCT Pro	ATG	GTA	ATT	TTC	CAT	E a	AAC Asn	TCC
CTG Leu	CCA	CGC	53	ATG	ACC	ATC Ile	GGC	CCC	GGT
ACC	AAT	GAC	666 61y	GAC	GGA G1y	CAG	ACC	CTC	ACT
GAG	CAC	CAT	GCC	GAT	TTT	ATA	CCC	GTC	ACA
GCT	CAC	GCC	ACA	AGA	TTC Phe	AAG	CAG Gln	GCC	CAC
ACG	AAC	GCT	AAC	Cit	AAG Lys	ATG	GTG	Crr Len	ATG
769	817 263	865 279	913 295	961 311	1009	1057	1105	1153 375	1201

FIGURE 3D

1296	1344	1392	1440	1488 486	1536 488	1584	1632	1680	1728	1776	1813
TCA	TAC	AAA Lys	GTG Val	TAT	CCT	CAG	YYY	GTG	ATA	TTG	
CAC His	AAC Asn.	CAG	GTA	GTC	GTT	CTC	CAG	GGT	GAG	CAT	
AAG	ATG	CTA	AAC	GTT	t)	CCT	ATT	CAT	GCA	TTC	
CTG	ATC	AAA Lys	TAC	GAC	G CA	AAT	CAG	GTG	وري	AAT	u
GNA	GAT	GAG	CTC	GCA	225	999	ACT	YYY	AAG	AGA	TGT
reg Egg	CAG Gln	AAC	CAG	GGT	ŢĊĀ	CCA	TCG	GGA	GCT	S	TCA
Crc Lea	23	GTT	GTC	TTC	CIG	TCC	TCT	ATT	AGG	TY	TIT
Cre	TTG	AGG	AGA	Cic Lin	999	E C	ACT	TTC	TCA	TTG	TIL
AGG	GAA	CCC	GCC	CTC	990	TGC	3	TTA	CIT	3	TGG
GAT	GTT	CTG	CCG	TTC	TGC	၁၅၅	TTG	ACA	E	TI	TTC
Cre	CCG	GTG	ACG	AAC	999	ACC	CCC	GAA	GAG	GTG	MAC
AAG Lys	TTC	t s	CCG	CAG Gln	CAG	ວອອ	AGC	GAG	TAT	ATC	*
Crc	CCC	ATT	CTC	CAC	CAC	TGG	MG	CAC	GAT	CGA	3
GAG	66C G1y	CCC	CCT	CCT	AGG	CTG	ACC	MA	AGG	Y U	ATG
GGA	ATT Ile	GTA	TTC Phe	CAG Gln	TGA	999	TIA	TCT	TIT	CCT	TTC
GTT	AAT	ATT	GGC	CTT	AAA Lys	GAT	ATC	TGA	TAT	TIT	TGC
249	297	145 419	191 455	441	189 187	537	585	633	681	729	נננ

4**A**

FIGURE 4A FIGURE 4B FIGURE 4C

Human LBP Expression clone

48	96	144	192 55	240	288 87	336 103	384 119	432	480
GCC	GCT	org Leu	CTC	GTC	GAG Glu	crc Leu	CGC	66C 61y	AGG
AGA	GAG	GGA G1y	CTG	CAC	TGT	AGT	GTG	AAG Lys	GGG G1y
GCC Ala	CCA	AAG Lys	GAG	CCC	AGC	CTG	AAG Lys	GTC	TCC
TTG	ACC	GAC	AGT	ATC	CAC	GGC	TGG	AGT	TCC
GCC	TCC	ACC	CAG Gln	AGG	ATC	CAG Gln	AGG	GTC	GAG
666 617	Acg	ATC Ile	CTC	TTG	AAC	66c 61y	66C 61y	GAT	AGC
ATG Met	E 3	AGG	GCT	GAC	CTG Leu	CCL	CAG	TTT	66C
AGG	Cig	GCC	176 182	666 617	AGC	GTC	GTC	TCC	170
TOT.	TTG	GTC	Zg Zg	Acc	CAC	CCT	CGG	66c 61y	Cre
Y	GCA	77G	666 61y	TTC	TTC	AGG	ATC Ile	CAG	CTC
16 6	7.5cm	GGC	GAG	GAC	GAG	CTG	TCC	CTA	AAC
CAC	CTG Lea	CCC	CAG Gln	CCT	TAT	GCG	TCC	AAA	GTC
CTG	ATA Ile	AAC	GCC	CTG	CGC	TCT	GAC	TTC	TCG
CCA	TCC	GCC	GCG	ACG	666 61y	CAC H18	TCC	TTC	ATT
GCT AGC Nhel	CCG	GGT	TAT Tyr	ATC Ile	CGT	CT Cen	ATC Ile	TCA	AGC
GCT P	CTG	CTG Lau	CAG	AGG	66C 61y	CTG Leu	AGC	AAG	ATC Ile
	4 6 8	97	145	193 56	241	289 88	337	385 120	433 136

FIGURE 4B

528 167	576 183	624 199	672 215	720	768	816 263	864	912 295	960	1008
GAG	AAC	GAA	ACT	AGC	TTT	CIT	TTT	GAG	GAC	CGG
GTG	CAC	TGC	CAA	TAT	ATG Het	CTC	TAC	CAT	CCT	CCA
GAC	TTC	ATT	CTC	GAT	GTG	ACC	GTC	TAT	CCG	GTC
GCT	CTC	AGG	TAT	ATT	GAG	GTT	ATG	GTT	ATA Ile	TTC
ATC Ile	AAC	AGC	CCT	GAC	CTG	CCA	LYS	CTG	ATG Het	CCC 7
GAC	13 23 23	GAG	CAG	GCC	ATG	TCT	ASD	AGC	GAC	CGA
AGT	CTC	CTC	CTA	Phe	CAG	CGT	CAC	GCC	GAT	TTC
AGC	TGG	GTA	GAT	AGT	GCC	CAC	GAA	Acg	ACA	TCC
TGC Cys	666 61y	AAA	TCC	GAC	ACA	AAC	GAG	AAC	ATC	AAG
AGC	TIC Phe	CAG G1n	TCC	ATT	GCA	CGT	CCT Pro	TTC	TCC	Acc
ICC	GAC	TTC	GTG	GAG	CGG	CAT	CTT (GTC	TTC	ACC
GCC Ala	GGA G1y	AAG	TCG	ACA	CCT	TTT	AGC (Ser	TAT	AAC	CTC
ACT	TCG	TCC	AAA	ACA	GCC	ATC Ile	ATG	GAT	rea Lea	CGA
GII Val	ATG	GAG Glu	CAG	GTT Val	GAA	GAA	GIC	TCG	TAT	ATC Ile
ACA	GAC	ATT Ile	ATC	CCA	GTG	GGT	GCA (ATC Ile	GGA G1y	AAT
CCC	GTG	CAG	ATG	CTG	TTA	AAG	GCT	GCC	GAA	TCT
481 152	529 168	577 184	625	673 216	721	769 248	817 264	865 280	913 296	961

FIGURE 4C

1056	1104	1152	1200	1248	1296 423	1344	1392	1440	1488	1500
GTG Val	GAC	AAG Lys	TTG	GTA Val	crc	AAG Lys	CGT	TTC	TGA	
TCA	GTG	AGC	ACC	AAG Lys	GAG Glu	CCC	AAG	CTG	AGA	
GGA G1y	TCT	TCC	GCC	GGA	GCA	TAC	CTG	TTC	CAA	
CAG	CTG	AGC	TCC	CCA	AAT	TTC Phe	CTG	GAC	CAA	
CTC Leu	AAT	CCC	GTG	AAG	TTC	Acc	CCT	AAG	GGA	
GAA Glu	666 61y	CTC	AAT	CTC Lea	Cor.	AAC	E 3	CAT	TGA	
CTG	CCT Pro	Cic Fee	Act	TTC	GGA	53	CCC	ATC	CIT	
AAC	AGC	GTG	GCC	666 61y	GTT Val	ATC	TTC	CAG	AGA	
ATG	TTC Phe	Phe	GTG	ACT	AAA	TAC	66C 61y	CTG	ATG	
AAC Asn	AAC	GCC	AGT	ATC	TCC	TAT	GM	666 61y	TAC	
CCC	Cig	GAT	CTC Leu	AAG	GAA	AAC	GCC	Cert	Glu	
TAC	CTC	ATA	CGG	AGC	AAA	CTC	TTC	GAC	GTC	•
CTC	CCG	GAG Glu	TTC	ACC	CTG	Cic	AAG	TAC	AAT	GAG
AGG	GCT	ATG	GTC	AAT	GAA	GCG	GAT	CTC	GCC	S S S S S
GCC	TCT	TAT	CCT	TTC	GTG	GAA	AAT	CAG	GGT	TTG (
TTA	CCC	CCC	GAG	ACC	AAA	77G	TTC	GTT	TTG	AGC
1009	1057 344	1105	1153 376	1201	1249	1297	1345	1393 456	1441	1489

			=	= .		: E			3	a 1	29	п п				•	Α.	- -	Α Ι.	۸ ا.
			•		=				_	5	==	_	_				>	_:	ئ	4
			٠	•	Ð				ಎ	29	ย	>	>				<u>.</u>	-	_	H
	-30		٠	•	_				=	_	=	=	=	- .		•	IJ	Ü	Ü	ŋ
			•	•	E					G	_	-	_		20		ш	u	ш	0
									v:	=	×	29	20				¥	~	O	0
									-	=	_		_				4	<	∢	S
SISTEM									_	-	_	=	=			•	<	∢	∢	<
	unhil						01-		-	_	_	>	e			•	>	>	>	>
<u> </u>								*	-		-	-	-				4	'n	ď	۵
									co	v:	G	>	>			*	_	_	7	ם
4									-	-	-	Ε	>			*	Ö	Ü	ט	Ü
: 5A								*	-	-	-	-	-			*		¥		
FIGURE									-	-	-	s	-		0	•		Ω	Ω	С
គ្ន									S	S	s	>	a		<u> </u>		-	-	H	V.
IT.									۵,	60	C.	3	3			*	_			_
									_	_	_	_				•		T R		~
							-20			_		G.	_				` >	_	` >	>
							`,'			_	 _	··	_	_			>	ı	_	-
										G	_	Ü	73			•	Ö	ŋ	ט	ָט
										3	_	c.	_			*	ے	<u>م</u>		
										_	G	29	20			•	z	z	z	z
										8	55	_	.	<u></u>			>	-	4	>
		487	=======================================	18.	1.18	1.151											1.82	1.18.	LBP	BPI
		louse	tabbit		11111111	ovine											ouse	abbit	mam	neun

FIGURE 5B

20

14/39

00220 5 --4 4 2 4 S S S --3 3 3 3 * 9-222 x z UZZSZ - 5 5 5 5 5 - m m m O Z 6 + 5 Z Z S E C 04 = 20 **→ → → ≥ ≥ −** 犯!とししと日 • 8 8 8 8 8 8 サイエント aaaaa

> 1.8P 1.8P 1.8P 1.8P fouse abbit luman (uman

```
ししMM-
      IZOU
                    Z C S F
                    0 < Z Z --
FIGURE 5C
                                  □ □ □ □ □
                  * U U U U * 8
                                0 Z Z Z Z -
      0 0 0 - > > - >
                  • 0000•
                                 inman
inman
ovine
      abbit
                                 abbit
nman
uman
wine
```

```
- Z Z O -
    -· > > > >
      о <u>н</u> с о –
  220
                ZSEA
                         270 + 7 + 7 + 4
    - 2 2 <del>-</del> 2
             - 222
      COMZ
    * TTTT * 290 - NNXX -
FIGURE SD
               - v v z v
                 azz <
    ---->
                 9 = 8 S -
                            ZZZZ *
     1.81
1.81
1.81
1.81
1.81
```

ibbit man man vine

tabbit fuman fuman avine

```
-- 00==
                                              --->+ - < < \bar{\pi} > \quad \text{\sigma} 
     □ □ > -
                                                                                                - < < = Z
-----
             Z X X X -- - Z Z O 0 -- X X -- --
        v → C E · × × × × ·
       - S S S X
                                                                                               - m m < c °
```

Dhie man sinc

iman uman ovine

```
Rabbit
Dunan
Heman
Fovinc
                                          Rabbit
Homan
Homan
Bovine
```

FIGURE 5F

ပု QSELLRITLP 360 SGDLGWLLNL RVQGRWKVRK LVYQEAGVLK LKHSNIGPFP LFGADVVYK* GLVAPPA YAAQEGLLAL WLQPHQNFL SDIADVEVDM 25/30 230 EIDSVAGINY LSDYFFNTAG VSASTPPHLS 410 ELKLDRLLLE ISISISISI /30 SALRPVPGQG VARITDKGLQ AAHDRMYYLG VSAESNRLVG KFPNMKIQIH PTPARVOLYN PYLOTLPVIT NLLLGSESSG 10 210 1QKSVSSDLQ 1270 PEALGANPGL PFAPPVMEFP 330 LNIHSCELLH IGMHTTGSME 450 FGTFLPEVAK 390 NEKLOKGFPL 20 ILLALLTET **VSVKGISISV** KVLESRICEM 260 VGRGRYEFHS FYSENHHNPP PNSSLASLFL ESKFRLTTKF 380 IVPILVLPRV MGALARALPB 70 DFTGDLRIPH SFFKLQGSFD FHNQIESKFQ 250 ETLDVQMKGE **MTLRDDMIPK** AVDVQALAVL VELLQDIMNY

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 12

FIGURE 13A

FIGURE 13B

FIGURE 13C

PCT/US96/06134

29/39

WO 96/34873

FIGURE 15

FIGURE 16

FIGURE 17B

FIGURE 17C

FIGURE 17D

FIGURE 17E

FIGURE 17F

FIGURE 17G

5mg/kg compound injected i.v. at t=0

FIGURE 17H

FIGURE 18

Lane Number

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 19

J

•

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/06134

A. CL.	ASSIFICATION OF SUBJECT MATTER :C07H 15/12; C12P 21/06; A61K 39/00, 38/00; (707F 1/00					
US CL	:530/300, 350; 435/69.1, 320.1, 252.3; 536/22.1,	22.3; 514/2					
	to International Patent Classification (IPC) or to bo	th national classification and IPC					
	LDS SEARCHED						
	documentation searched (classification system follow	•					
U.S. ;	530/300, 350; 435/69.1, 320.1, 252.3; 536/22.1,	22.3; 514/2					
Documents	ation searched other than minimum documentation to t	ha aytant that ayah dagumanta aga ingludu	Lia de Calia a a a a la				
Document	and searched other than minimum documentation to	he extent that such documents are included	in the fields searche				
Electronic	data base consulted during the international search (name of data base and, where practicable	, search terms used)				
DIALOG	, APS	•					
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim				
X	WO,94/25476 A (SCOTT et al)	10 November 1994, see	1-38, 42				
	entire document.	, 13 HOTOMBOI 1007, 366	1 00, 72				
X	WO 94/18323 A (THEOFAN et	al) 18 August 1994, see	14, 31, 32,				
•	entire document.						
x	LISE 240 040 A WITTIE . DOG						
^	US 5,348,942 A (LITTLE et al) 20 5, lines 40-45, column 7, lines 3-	September 1994, column	14, 31, 32,				
	5, mies 40-49, column 7, lines 3-	-23.					
	•	·					
	•						
Furth	er documents are listed in the continuation of Box (C. See patent family annex.					
	cial categories of cited documents:						
'A' doc	nument defining the general state of the art which is not considered	"T" later document published after the inte- date and not in conflict with the applica principle or theory underlying the inve	tion but cited to understand				
to t	se of particular relevance lier document published on or after the international filing date	"X" document of particular relevance; the					
'L' doc	ument which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider when the document is taken alone	ed to involve an inventive				
Cilo	d to establish the publication date of another citation or other cial reason (as specified)	"Y" document of particular relevance; the	claimed invention cannot				
O° doc	ument reterring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	step when the document documents, such combinate				
P doc	ument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent i					
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report				
08 JUNE	1996	16 JUL 1996					
Name and m	ailing address of the ISA/US	Authorized officer CTS~	2.22				
COmmission	ner of Patents and Trademarks	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	YELV				

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/06134

Box I Observati ns where certain claims were f und unsearchable (C ntinuati n of item	1 f first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for	or the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, no	nmely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the pan extent that no meaningful international search can be carried out, specifically:	orescribed requirements to such
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and	third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sh	ieet)
This International Searching Authority found multiple inventions in this international application	, as follows:
Please See Extra Sheet.	
1. As all required additional search fees were timely paid by the applicant, this international claims.	l search report covers all searchable
2. As all searchable claims could be searched without effort justifying an additional fee, the of any additional fee.	is Authority did not invite payment
3. X As only some of the required additional search fees were timely paid by the applicant, the only those claims for which fees were paid, specifically claims Nos.: 14-38, 42	is international search report covers
•	
4. No required additional search fees were timely paid by the applicant. Consequently restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	, this international search report is

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/06134

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-4, 9-13, 43, drawn to method of in vivo detection of a site of Gram-negative bacterial infection, labelled endotoxin neutralizing polypeptide, composition, classified in Classes 514, subclass 2.

Group II, claim(s) 5-8, drawn to a method of in vitro detection of a Gram-negative bacterial infection, classified in Class 436, subclass 517.

Group III, claim(s) 14-38, 42 drawn to endotoxin-neutralizing polypeptides, method of making the polypeptides classified in Classes 530 and 435, subclasses 300, 350; 69.1.

Group IV, claims 39-41, drawn to DNA encoding a recombinant endotoxin binding polypeptide, vector and host cells, classified in Classes 536 and 435, subclasses 22.1, 23.1, 23.5 and 320.1 and 69.1.

Group V, claims 44, 45, drawn to methods of treatment using an endotoxin neutralizing polypeptide, classified in Class 514, subclass 2.

The inventions listed as Groups I, II, III, IV, IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Group I is directed to a labelled endotoxin neutralizing polypeptide which is not defined. The polypeptide may be a variant of BPI or LPS in that the amino acid must not be identical to the amino acid sequences of either BPI or LPS. The methods of Group I and II are in vitro or in vivo, the method steps will differ in parameter, reagents and method steps.

The invertions of Group III are directed to polypeptides which are different from that required in Groups I and II to preform the methods of detection. The polypeptide of Group III is not the special technical feature set forth in the inventions of Group I and II. Group IV is directed to DNA which encodes a an endotoxin neutralizing polypeptide. However, variants of BPI and LPS occur spontaneously or may be achieved by chemical modifications. Group V is directed to other methods which use the endotoxin neutralizing polypeptide, but not one which is labeled as of Groups I and II.

The special technical feature which links the inventions is known in the art, for Groups I, II and III, as SCOTT et al WO 94-25476, discloses an endotoxin neutralizing polypeptide wherein the serine at 351 has been changed to alanine. (see page 18, lines 22-27. Other variants of BPI are disclosed by SCOTT et al at page 35.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be examined, the appropriate additional examination fees must be paid. The species are as follows:

(a) species of BPI variants which are chimeric: claims 29-35 (b) species of BPI variants which have substitutions: 14-28, 36-38.

٦

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: the first species are directed to constructs comprising BPI or LPS and/or an immunoglobulin fragment. The second species is directed to BPI variants which have substitutions in the amino acid sequence. The variants have only substitutions. The chimeras are comprised of the LPS or the immunoglobulin fragment and thus are comprise an element not need in the variant BPI proteins.