Fundamental Algorithms, Home work - 5

Tulsi Jain

1. First Problem

Algorithm 1 Modified Hash Insert Element function Hash Insert(T, k) \Rightarrow where T Hash, k key i = 0;while i < m do j = h(k, i);if T[j] == null||T[j] == DELETED then T[j] = k;return end if i = i + 1;end while "Error - Overflow" end function

Algorithm 2 Delete Hash Element

Second Problem

Do this question by Indicator random variable.

Let's ith element is just inserted now. Then random variable $X_{i,j}$ denoted the number of collision to be occurred when j is inserted.

$$I[X_{i,j}]$$
 is 1 if there is a collision otherwise 0.
 $E[I[X_{i,j}]] = \text{Probability of event} = \frac{1}{m}$

Expected number of collision is,
$$E[X] = \sum_{1}^{n} \sum_{i=1}^{n} X_{i,j}$$

 $E[X] = \sum_{1}^{n} \sum_{i=1}^{n} \frac{1}{2}$

$$E[X] = \sum_{1}^{n} \sum_{i=1}^{n} \frac{1}{m}$$

= $\sum_{1}^{n} X_{i} \frac{(n-i)}{m} = \frac{n^{2}}{m} - \frac{n(n+1)}{2m}$

$$E[X] = \sum_{1}^{n} \sum_{i+1}^{n} \frac{1}{m}$$

$$= \sum_{1}^{n} X_{i} \frac{(n-i)}{m} = \frac{n^{2}}{m} - \frac{n(n+1)}{2m}$$
Expected number of collision is $= \frac{n^{2}}{2m} - \frac{n}{2m}$

3. Third Problem

3.1

Probability that exactly k, elements goes to a particular slot is.

$$Q_k = \binom{n}{k} \left(\frac{1}{n}\right)^k \left(\frac{n-1}{n}\right)^{(n-k)}$$

 $\binom{n}{k}$ for choosing key

 $\left(\frac{1}{n}\right)^k$ for k keys go to a particular slot

 $\left(\frac{n-1}{n}\right)^{n-k}$ for n - k keys goes to other slots

3.2

 P_k is probability of maximum number of keys in any slot is exactly k, M = k, and there is only one such slot exist.

 $P_k \le$ Probability that some slot has k keys. (This implies k need not to be an maximum number of keys in a hash and it can be any slot. K is free of anything condition). There are n slots to select from probability is nQ_k

Hence $P_k \le nQ_k$

4. Fourth Problem

Let's view this as a 2-D array of dimension m(slots) X L (longest-chain).

Let's select a random slot, k with prob $(\frac{1}{m})$ and say it's length is L_k . Now select a random number, x from 1 to L. if $x > L_k$, it means selected location is empty hence we need to redo the step otherwise return the x element.

Above describe procedure return any key with uniform Probability. Now, let's calculate its running time. Running time is equal to the time until we able to return a key.

Probability of finding it in first attempt is, $p = \frac{n}{mL}$. Hence, total number of trial needed until find the slot is whose length, L_k is greater than randomly selected element, x is $\frac{1}{p} = \frac{mL}{n} = \frac{L}{\alpha}$.

After this, we need to traverse the selected slot-list to find the element x. It would be O(L). Hence expected time is $\frac{L}{\alpha} + O(L) = O(L + \frac{L}{\alpha}) = O(L \cdot (1 + \frac{1}{\alpha}))$