Chapter 3

Le groupe fondamental

3.1 Chemins et lacets

Définition 3.1.1. a) Un chemin dans un espace topologique X est une application continue $\gamma: [0,1] \to X$.

Définition 3.1.2. Un espace topologique X est connexe par arc si et seulement si deux points x et y sont toujours connectés par un chemin $\gamma:[0,1]\to X, \,\gamma(0)=x,\,\gamma(1)=y.$

Définition 3.1.3. Si $\alpha, \beta : [0,1] \to X$ sont des chemins tels que $\beta(0) = \alpha(1)$, leur composition est le chemin noté $\alpha \cdot \beta$ tel que:

$$\begin{cases} \alpha \cdot \beta(t) = \alpha(2t) & \text{si } t \in [0, \frac{1}{2}, \\ \alpha \cdot \beta(t) = \beta(2t-1) & \text{si } t \in [\frac{1}{2}, 1]. \end{cases}$$

L'inverse d'un chemin α , noté α^{-1} , est défini par $\alpha^{-1}(t) = \alpha(1-t)$.

Remarque 3.1.4. La relation x est connecté à y par un chemin est une relation d'équivalence. Les classes d'équivalence sont les composantes connexes par arc.

Exercice 3.1.5. 1. Démontrer qu'un espace connexe par arc est connexe.

- 2. On suppose que X est une variété topologique.
 - (a) Démontrer que les composantes connexes par arc sont ouvertes.
 - (b) Démontrer que les composantes connexes par arc sont fermés.
 - (c) Démontrer que si la variété X est connexe, alors elle est connexe par arc.

Définition 3.1.6. Un espace topologique pointé (ou avec point de base) est un espace topologique X avec un point $x_0 \in X$. On note (X, x_0) l'espace pointé.

Définition 3.1.7. Un lacet dans X est un chemin γ tel que $\gamma(0) = \gamma(1)$. Un lacet pointé dans (X, x_0) est un lacet γ tel que $\gamma(0) = \gamma(1) = x_0$.

Définition 3.1.8. Une homotopie entre deux lacets pointés $\alpha, \beta : [0, 1] \to X$ est une application continue

$$\begin{array}{cccc} h: & [0,1] \times [0,1] & \rightarrow & X \\ & (s,t) & \mapsto & h(s,t) = h_s(t) \end{array}$$

telle que h_s est un lacet pointé pour tout $s \in [0, 1], h_0 = \alpha$ et $h_1 = \beta$.

Proposition 3.1.9. La relation d'homotopie des lacets pointés est une relation d'équivalence.

On note $[\gamma]$ la classe d'homotopie su lacet pointé γ . On peut maintenant définir le groupe fondamental (ou groupe de Poincaré).

Théorème 3.1.10. La composition des lacets munit l'ensemble des classes d'homotopie de lacets pointés dans l'espace topologique pointé (X, x_0) d'une structure de groupe.

Définition 3.1.11. Le groupe obtenu dans le théorème précédent s'appelle le groupe fondamental ou groupe de Poincaré de (X, x_0) , il est noté $\pi_1(X, x_0)$.

Exercice 3.1.12. Soit δ est un chemin de $\delta(0) = x_0$ à $\delta(1) = x_1$ dans l'espace topologique X. Démontrer qu'on obtient un isomorphisme $\tau : \pi_1(X, x_0) \to \pi_1(X, x_1)$ en associant à la classe d'un lacet γ pointé en x_0 la classe du lacet $\gamma' = \delta^{-1} \cdot \gamma \cdot \delta$.

3.2 Le cercle

Théorème 3.2.1. Le groupe $\pi_1(\mathbf{S}^1, 1)$ est infini cyclique (isomorphe à \mathbb{Z}), engendré par $g_1 = [t \mapsto e^{i2\pi t}].$

Lemme 3.2.2. On obtaint un homomorphisme $g: \mathbb{Z} \to \pi_1(\mathbf{S}^1, 1)$ avec l'application $n \mapsto g_n = [t \mapsto e^{i2\pi nt}].$

Théorème 3.2.3 (Relèvement des chemins). Soit $u:[0,1] \to \mathbf{S}^1$ un lacet pointé en 1 avec $u(0) = e^{i2\pi\theta_0}$. Il existe une unique application continue $\theta:[0,1] \to \mathbb{R}$, telle que $e^{i2\pi\theta(t)} = u(t)$ pour tout $t \in [0,1]$ et $\theta(0) = \theta_0$.

3.3 Fonctorialité et homotopie

Définition 3.3.1. Une homotopie entre deux applications continues $f, g: X \to Y$ est une application continues

$$\begin{array}{ccc} h: & [0,1] \times X & \to & Y \\ & (s,x) & \mapsto & h(s,x) = h_s(x) \end{array}$$

telle que $h_0 = f$ et $h_1 = g$.

Définition 3.3.2. a) Une application $f: X \to Y$ est une équivalence d'homotopie si et seulement s'il existe $g: Y \to X$ telle que $g \circ f$ est homotope à Id_X et $f \circ g$ est homotope à Id_Y .

Exemples 3.3.3. a) L'inclusion $i: \mathbf{S}^1 \to \mathbb{C}^*$ est une équivalence d'homotopie. b) L'inclusion $i: \{0\} \to \mathbb{C}$ est une équivalence d'homotopie.

Théorème 3.3.4. a) Soit $f: X \to Y$ une application continue, alors l'application

$$f_{\sharp}: \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$$

 $[\gamma] \mapsto [f \circ \gamma]$

définit un homomorphisme qui ne dépend que de la classe d'homotopie de f. b) L'homomorphisme f_{\sharp} est fonctoriel, ce qui veut dire $(g \circ f)_{\sharp} = g_{\sharp} \circ f_{\sharp}$.

Définition 3.3.5. Une retraction r d'un espace topologique X sur $A \subset X$ est une application continue qui est l'identité sur A.

Corollaire 3.3.6. Il n'existe pas de retraction du disque D^2 sur le cercle S^1 .

Théorème 3.3.7. Si $f: X \to Y$ est une équivalence d'homotopie, alors $f_{\sharp}: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ est un isomorphisme.

Corollaire 3.3.8. Le groupe fondamental $\pi_1(\mathbb{C}^*, 1)$ est isomorphe à \mathbb{Z} .

Corollaire 3.3.9. S'il existe une équivalence d'homotopie entre X et un point (on dit que X est contractile), alors $\pi_1(X, x_0)$ est trivial (groupe à un élément).

Le disque D^2 , le plan complexe \mathbb{C} sont contractiles.

3.4 Groupe fondamental d'un produit

Théorème 3.4.1. Soit (X, x_0) et (Y, y_0) des espaces topologiques connexes par arc. Alors les projections induisent un isomorphisme entre $\pi_1(X \times Y, (x_0, y_0))$ et le produit de groupes $\pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Application: $\pi_1(\mathbf{S}^1 \times \mathbf{S}^1, (1, 1))$ est abélien, isomorphe à $\mathbb{Z} \times \mathbb{Z}$.

3.5 Présentation des groupes fondamentaux

Soit $A = \{a_1, \ldots, a_n\}$ un ensemble fini de symboles. On note L(A) l'ensemble des mots réduits en $a^{\pm 1}, \ldots, a_n^{\pm 1}$ (pas d'apparition d'un caractère suivi de son inverse). On définit sur L(A) un produit par la juxtaposition (concaténation) suivie de la réduction.

Proposition 3.5.1. L'ensemble des mots réduits L(A) avec le produit de juxtaposition/réduction est un groupe.

Définition 3.5.2. Le groupe libre engendré par A est le groupe L(A) défini dans la proposition précédente.

Théorème 3.5.3. a) Le groupe fondamental du plan complexe privé de n points, $\pi_1(\mathbb{C} - A_n, z_0)$ est isomorphe au groupe libre engendré par les n lacets formés par un petit cercle autour de chaque point enlevé, relié au point de base par un chemin.

b) Le groupe fondamental d'un bouquet de n cercles est isomorphe au groupe libre engendré par les lacets qui paramètrent les cercles.

Théorème 3.5.4. a) Pour $g \geq 1$, le groupe fondamental de la surface orientable Σ_g trouée (privée d'un disque) est libre à 2g générateurs.

b) Pour $g \geq 1$, le groupe fondamental de la surface non orientable P_g trouée est libre à g générateurs.

Présentation des groupes

Définition 3.5.5. Etant donné un ensemble fini A et un sous-ensemble $R \subset L(A)$, le groupe de présentation $\langle A, R \rangle$ est le quotient du groupe libre L(A) par le sous-groupe normal engendré par R. Une présentation d'un groupe G est un isomorphisme entre G et un groupe défini par une présentation.

Théorème 3.5.6 (Théorème de Van-Kampen). Soit X un espace topologique connexe par arc, réunion de deux ouverts U et V connexes par arc et d'intersection connexe par arc. Une présentation du groupe fondamental de X, pointé en $x_0 \in U \cap V$ est obtenu en prenant les générateurs et les relations de $\pi_1(U, x_0)$ et de $\pi_1(V, x_0)$ auxquelles on ajoute une relation pour chaque générateur de $\pi_1(U \cap V, x_0)$. Cette relation identifie l'image de ce générateur dans $\pi_1(U, x_0)$ avec son image dans $\pi_1(V, x_0)$.

Un cas particulier intéressant est celui où $\pi_1(V, x_0)$ est trivial et $\pi_1(U \cap V, x_0)$ a un seul générateur. Dans ce cas $\pi_1(X, x_0)$ est le quotient de $\pi_1(U, x_0)$ par une seule relation. Ce cas s'applique aux surfaces, qu'on obtient comme réunion de la surface trouée et d'un disque.

Théorème 3.5.7. Les groupes fondamentaux des surfaces modèles sont:

- a) $\pi_1(\mathbf{S}^2, x_0)$ est trivial.
- b) $\pi_1(\Sigma_g, x_0) \cong \langle a_1, b_1, \dots, a_g, b_g; a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}\rangle$.
- c) $\pi_1(P_q, x_0) \cong \langle a_1, \dots, a_q; a_1 a_1 \dots a_q a_q \rangle$.

Abélianisation

Définition 3.5.8. L'abélianisation d'un groupe G est le quotient de G par le sousgroupe normal engendré par les commutateurs, c'est à dire les éléments de la forme $aba^{-1}b^{-1}$.

Dans le cas où $G = \langle A; R \rangle$, il suffit d'ajouter à R les commutateurs des éléments de A. On note $\langle A; R \rangle^{ab}$ le groupe abélien avec les relation s additionnelles R.

Théorème 3.5.9. Les abélianisés des groupes fondamentaux des surfaces modèles sont: a) $\pi_1(\mathbf{S}^2)^{ab}$ est trivial.

- b) $\pi_1(\Sigma_g)^{\text{ab}}$ est isomorphe à \mathbb{Z}^{2g} . c) $\pi_1(P_g)^{\text{ab}}$ est isomorphe à $\mathbb{Z}^{g-1} \oplus \mathbb{Z}/2\mathbb{Z}$.

Ce théorème démontre que les surfaces modèles sont 2 à 2 non homéomorphes.