1) (8 Punkte)

Gegeben ist das System

$$y'_1(t) = -y_1(t) y_2(t)$$

 $y'_2(t) = 1 - y_2^2(t)$

- a) Bestimmen Sie die Ruhelagen des Systems, ihre Stabilität sowie ihren Typ.
- b) Skizzieren Sie das Richtungsfeld.
- c) Für welche Anfangswerte $(y_1(0), y_2(0)) \in \mathbb{R}^2$ sind die Lösungen für $t \to \infty$ beschränkt?
- 2) (10 Punkte)
 - 2.1) Lösen Sie das Anfangswertproblem

$$\sqrt{y(x)} + x y'(x) = 0$$
, $y(1) = 0$.

2.2) Finden Sie die Lösung y(x) der Riccatischen Differentialgleichung

$$y'(x) e^{-x} + y^{2}(x) - 2y(x) e^{x} = 1 - e^{2x}$$

mit y(0) = 2.

3) (14 Punkte)

Sei

$$\mathbf{A} = \left(\begin{array}{rrr} -1 & -2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -3 \end{array} \right)$$

- a) Bestimmen Sie ein reelles Fundamentalsystem von $\boldsymbol{y}'(x) = \boldsymbol{A}\boldsymbol{y}(x)$.
- b) Begründen Sie, warum die Ruhelage $\bar{y}=0$ stabil ist.
- c) Bei Differentialgleichungen der Form y' = Ay kann man die Stabilität des Ursprungs auch mittels einer Ljapunovfunktion der Form $V(y) = y^T P y$ zeigen, wobei $P \in \mathbb{R}^{3\times 3}$ geeignet zu wählen ist. Finden Sie so eine Ljapunovfunktion.
- d) Lösen Sie die inhomogene Gleichung

$$m{y}' = m{A}m{y} + egin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \,.$$

4) (8 Punkte)

Gegeben ist das Eigenwertproblem

$$Ly = y'' + \lambda y = 0$$

mit den Randbedingungen y'(0) = 0 und y(l) = 0, l > 0.

- a) Zeigen Sie, dass es sich um ein Sturm-Liouville-Eigenwertproblem handelt.
- b) Zeigen Sie, dass alle Eigenwerte positiv sind, indem Sie die Gleichung $\lambda y(x) = -y''(x)$ mit y(x) multiplizieren und partiell integrieren.
- c) Bestimmen Sie die Eigenfunktionen $y_k(x)$, $k \in \mathbb{N}$.