DEUTSCHE DEMOKRATISCHE REPUBLIK

(12) Wirtschaftspatent

Erteilt gemäß § 17 Absatz 1 Patentgesetz

PATENTSCHRIFT

(19) DD (11) 243 930 A1

. 4(51) C 07 D 285/12

AMT FÜR ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veröffentlicht

(21)	WP C 07 D / 283 732 4	(22)	04.12.85	(44)	18.03.87					
(71) (72)	Akademie der Wissenschaften der DDR, 1080 Berlin, Otto-Nuschke-Straße 22/23, DD Graubaum, Heinz, Dr. rer. nat.; Nadolski, Karin; Seeboth, Helmuth, Prof. Dr. rer. nat. habil., DD									
(54)	Verfahren zur Herstellung von neuen 5,5-disubstituierten 4-Carbamoyl-4,5-dihydro-1,3,4-thiadiazol-2-yl- harnstoffen									

(57) Durch die erfindungsgemäße Umsetzung von substituierten Thiosemicarbazonen mit Isocyanaten in einem Lösungsmittel oder in der Schmelze vorzugsweise im Molverhältnis 1:2 bei Temperaturen zwischen 0 und 200°C entstehen die Zielprodukte, die in bekannter Weise isoliert werden. Sie sind als biologisch aktive Verbindungen auf dem PSM- und Pharmasektor verwendbar.

ISSN 0433-6461

4 Seiten

Ш

Erfindungsanspruch:

 Verfahren zur Herstellung von neuen 5,5-disubstituierten 4-Carbamoyl-4,5-dihydro-1,3,4-thiadiazol-2-yl-harnstoffen der allgemeinen Formel III,

in der

R Wasserstoff oder einen Alkylrest,

R¹ einen Alkylrest, einen Arylrest, der auch substituiert sein kann, oder einen heterocyclischen Ring,

R2 Wasserstoff, einen Alkyl- oder Arylrest, der gegebenenfalls auch substituiert sein kann, und

R³ einen Alkyl- oder Arylrest, der gegebenenfalls auch substituiert sein kann, oder

R1 und R2 gemeinsam einen cycloaliphatischen Rest

bedeuten,

gekennzelchnet dadurch, daß man substituierte Thiosemicarbazone der allgemeinen Formel I,

in der

R, R¹ und R² die oben genannten Bedeutungen haben, mit einem Isocyanat der allgemeinen Formel II,

in der R³ die oben genannte Bedeutung besitzt, in einem Lösungsmittel oder in der Schmelze umsetzt und das Reaktionsprodukt der allgemeinen Formel III in bekannter Weise isoliert.

- 2. Verfahren nach Punkt 1, gekennzeichnet dadurch, daß die Umsetzung des Thiosemicarbazons mit dem Isocyanat vorzugsweise im Molverhältnis 1:2 erfolgt.
- 3. Verfahren nach Punkt 1 und 2, gekennzeichnet dadurch, daß die Umsetzung bei Temperaturen zwischen 0 und 200°C durchgeführt wird.

Anwendungsgebiet der Erfindung

Zahlreiche Harnstoffe 5-substituierter 1,3,4-Thiadiazole haben in der Landwirtschaft eine breite Anwendung als Pestizide, vorwiegend als Herbizide, gefunden. Des weiteren sind 5,5-disubstituierte 2-Acylamino-4,5-dihydro-1,3,4-thiadiazole als Fungizide und Herbizide bekannt. Die Erfindung betrifft ein neues, rationelles Verfahren zur Herstellung von 5,5-disubstituierten 4-Carbamoyl-4,5-dihydro-1,3,4-thiadiazol-2-yl-harnstoffen, die neu sind und im Pflanzenschutzmittel- und Pharmasektor Verwendung finden können.

Charakteristik der bekannten technischen Lösungen

Zur Herstellung von Harnstoffen 5-substituierter 1,3,4-Thiadiazole werden verschiedene Verfahren beschrieben.
Aus den entsprechenden Carbonsäurederivaten, wie Carbonsäurechloriden, Carbonsäureanhydriden oder Nitrilen, und Thiosemicarbaziden entstehen die 5-substituierten 2-Amino-1,3,4-thiadiazole, die anschließend mit Isocyanaten bzw.
Carbamoylchloriden zu den entsprechenden Harnstoffen umgesetzt werden (DE-OS 2712630 und 2623657; US-PS 3803164; DD-WP 105232 und 130622; R. Wegler "Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel" 5, 478 [1977]).
Bekannt ist auch die Reaktion von 5-substituierten 2-Amino-1,3,4-thiadiazolen mit 2 Mol Isocyanat, wobei 5-substituierte 3-Carbamoyl-2-carbamoylimino-2,3-dihydro-1,3,4-thiadiazole entstehen. Der 3-Carbamoylrest kann durch KOH/Methanol hydrolytisch entfernt werden und es entstehen die oben genannten Harnstoffe der 5-substituierten 1,3,4-Thiadiazole (DE-OS 2614842 und 2644426).

4-Acyl-4,5-dihydro- und 4-Acyl-2-acylamino-4,5-dihydro-1,3,4-thiadiazole können aus den entsprechenden Thiosemicarbazonen und Carbonsäurechloriden bzw. Carbonsäureanhydriden hergestellt werden (JP-OS 5879906; US-PS 4346225; S. Kubota, J. Org. Chem. 45, 1473 [1980]; S. Andreae, E. Schnmitz, Z. Chem. 23, 451 [1983]). Die genannten Verfahren liefern die Thiadiazole In zum Teil guten Ausbeuten. Das Substituentenmuster ist jedoch im ersten Falle auf die 5-Position begrenzt und im zweiten Fall fehlt die biologisch wirksame Harnstoffstruktur.

Ziel der Erfindung

Ziel der Erfindung ist es, neue 5,5-disubstituierte 4-Carbamoyl-4,5-dihydro-1,3,4-thiadiazol-2-yl-harnstoffe, ausgehend von ökonomisch vorteilhaften Startprodukten, in einer einstufigen, leicht durchzuführenden Reaktion herzustellen.

Darlegung des Wesens der Erfindung

Das Ziel der Erfindung wird erreicht durch ein Verfahren zur Herstellung von neuen 5,5-disubstituierten 4-Carbamoyi-4,5-dihydro-1,3,4-thiadiazol-2-yl-harnstoffen der allgemeinen Formel III, indem man erfindungsgemäß ein Thiosemicarbazon der allgemeinen Formel I,

$$R^{1} = N - NH - C - NHR^{2} + 2R^{3} - NCO$$

$$I \qquad III$$

$$CO - NHR^{3}$$

$$R = N - CO - NHR^{3}$$

in der

R Wasserstoff oder einen Alkylrest,

R¹ einen Alkylrest, einen Arylrest, der auch substituiert sein kann, oder einen heterocyclischen Ring und

R² Wasserstoff, einen Alkyl- oder Arylrest, der gegebenenfalls auch substituiert sein kann, oder

R¹ und R² gemeinsam einen cycloaliphatischen Rest

bedeuten, mit einem Isocyanat der allgemeinen Formel II, in der

R³ einen Alkylrest oder einen Arylrest, der gegebenenfalls auch substituiert sein kann,

bedeutet, in der Schmelze oder in einem Lösungsmittel umsetzt.

Das Molverhältnis von I und II sollte 1:2 betragen. III entsteht jedoch auch bei einem Molverhältnis von 1:1.

Die Temperatur sollte zwischen 0 und 200°C liegen, und das Reaktionsprodukt wird in bekannter Weise isoliert. Die Substituenten R, R¹, R² und R³ haben im Reaktionsprodukt III die oben genannten Bedeutungen. Die Reaktionen sind durch Zusammengeben der Komponenten einfach durchzuführen. Die Ausbeuten an den Harnstoffen betragen 61 bis 98%.

Die erhaltenen Produkte sind bisher nicht beschrieben. Ihre Struktur ist durch ¹H- und ¹³C-NMR-Spektroskopie sowie durch Elementarenalyse und Massenspektren abgesichert.

Ausführungsbeispiele

Methode A

2,07g (10 mmol) N⁴-Ethyl-N¹-benzylidenthiosemicarbazon und 2,38g (20 mmol) Phenylisocyanat werden 2,5 Stunden auf 100°C erwärmt. Nach dem Abkühlen wird der 1-Ethyl-3-phenyl-1-(5-phenyl-4-phenylcarbamoyl-4,5-dihydro-1,3,4-thiadiàzol-2-yl)harnstoff aus Dioxan/Wasser umkristallisiert, siehe Tabelle 1.

Methode B

1,86g (11 mmol) N¹-Furfurylidenthiosemicarbazon und 1,31g (11 mmol) Phenylisocyanat werden in 40 cm³ abs. Aceton und 1 cm³ Triethylamin 3 Stunden zum Sieden erhitzt. Das Lösungsmittel wird im Vakuum abdestilliert und der 3-Phenyl-1-(5-furan-4-yl)-4-phenylcarbamoyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)harnstoff aus Methanol/Wasser umkristallisiert, siehe Tabelle 1.

Tab. 1: 5,5-disubstituierte 4-Carbamoyl-4,5-dihydro-1,3,4-thiadiazol-2-yl-harnstoffe

Bsp.	R.	R¹ · ·	R²	R ³ .	Ausb.	Fp.	Summenformel	Analyse	Ber./Gef.	
					(%)	(°C)	(Molmasse)	С	Н	N
8	н	C ₃ H ₇	Н	4-CI-C ₆ H ₄	89	199 bis 201	C ₁₉ H ₁₉ CI ₂ N ₅ O ₂ S	50,45	4,23	15,48
		•					(452,4)	50,55	4,40	14,95
b	н	C ₆ H ₅	Н	C₂H ₅	86	145 bis 146	C ₁₄ H ₁₉ N ₅ O ₂ S	52,32	5,96	21,79
							(321,4)	52,17	6,16	21,42
C	н	2-Furyl	Н	C ₆ H ₅	72	165 bis 166	$C_{20}H_{17}N_5O_3S$	58,96	4,21	17,19
						•	(407,5)			•
ď.	H	2-Furyl	H	3,4-Cl ₂ C ₆ H ₃	63	144 bis 146	C ₂₀ H ₁₃ Cl ₄ N ₅ O ₃ S	44,06	2,40.	12,85
	•	•					(544,2)	44,11	2,68	13,08
е	Н	3,4-	Н	3-CH ₃ -C ₆ H ₄	96	139 bis 141	C ₂₅ H ₂₃ N ₅ O ₄ S	61,34	4,74	14,31
		(O-CH ₂ O)C ₆ H ₃				•	(489,6)	60,73	4,78	14,17
f -	Н	C ₆ H ₅	C₂H₅	C₂H₅	90 .	188 bis 190	$C_{24}H_{23}N_5O_2S$	64,70	5,20	15,72
				•			(445,6) .		5,44	15,27
9	CH₃	CH₃	Н	C ₆ H ₅	95	178	C ₁₈ H ₁₉ N ₅ O ₂ S	58,52	5,18	18,96
					•	:	(369,5)	58,69	5,22	18,56
h	CH₃	. CH₃	Н	4-CI-C ₆ H ₄	82	173 bis 175	C ₁₈ H ₁₇ Cl ₂ N ₅ O ₂ S	49,32	3,91	15,98
					•		(438,4).	48,82	4,01	16,22
i,	. CH₂(C	H₂)₂CH₂	Н	4-CH ₃ OC ₆ H ₄	75	157 bis 159	C22H25N5O4S	58,01	5,53	15,37
							(455,5)	57,53	5,69	15,10
j	CH₂(C	CH ₂) ₃ CH ₂	Н	C ₆ H ₅	61	178 bis 179	$C_{21}H_{23}N_5O_2S$	61,59	5,66	17,10
				•		•	(409,5)	61,18	5,64	16,80
k	СН₃	C ₆ H ₅	Н	4-CH₃OC ₆ H₄	98	· 219 bis 221	$C_{25}H_{25}N_5O_4S$	61,08	5,13	14,25
							(491,6)		5,38	14,03
ı	CH₃	CH₃	CH³ .	C ₆ H ₅	79	148 bis 150	$C_{19}H_{21}N_5O_2S$	59,51	5,52	18,26
							(383,5)	59,04	5,62	18,35
m	CH₃	CH₃	C ₆ H ₅	C ₆ H ₅	78	167 bis 169	$C_{24}H_{23}N_5O_2S$	64,70	5,20	15,72
				•			(445,6)	64,53	5,19	15,33