LATTICES OF SETS OF DIVISORS

Let n be a natural number and let D_n be the set of (natural) divisors of n. It can be proved the following result:

Theorem 1. The ordered set $(D_n, |)$ (where | denotes the divisibility relation) is a lattice that is **distributive** and **bounded**. The minimum is 1 and the maximum is n.

Notice that, in general, not all the elements of D_n have complement. Therefore, $(D_n, |)$ is not always a Boolean lattice. We will see this in the following example.

Example 1. Consider the set D_{360} with the divisibility relation. The decomposition of 360 as a product of prime numbers is:

$$360 = 2^3 \cdot 3^2 \cdot 5 = 2^3 \cdot 3^2 \cdot 5^1$$

Then, the number of divisors of 360 is (3+1)(2+1)(1+1) = 24. In fact:

$$D_{360} = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360\}.$$

Since D_{360} is a lattice, we have the operations:

$$a + b = \sup(\{a, b\}) = \operatorname{lcm}(a, b)$$
$$a \cdot b = \inf(\{a, b\}) = \gcd(a, b)$$

Notice that 360 has 6 prime factors (2,2,2,3,3 and 5) distributed into 3 blocks:

- Block of 2's (or red block): $2 \cdot 2 \cdot 2 = 2^3$
- Block of 3's (or blue block): $3 \cdot 3 = 3^2$
- Block of 5's (or green block): 5

There are two types of elements in D_{360} :

• Type 1: Those divisors whose decompositions as a products of prime factors have only complete blocks of prime factors. For example:

```
1 \text{ (no block)}
2^3 = 8 \text{ (red block)}
3^2 = 9 \text{ (blue block)}
5 \text{ (green block)}
2^3 \cdot 3^2 = 72 \text{ (red block and blue block)}
2^3 \cdot 5 = 40 \text{ (red and green blocks)}
3^2 \cdot 5 = 45 \text{ (blue and green blocks)}
2^3 \cdot 3^2 \cdot 5 = 360 \text{ (red, blue and green blocks)}
```

• Type 2: Those divisors which are not of type 1. For example:

```
2^2 = 4 (the red block is not complete)
```

 $2^3 \cdot 3 = 24$ (the blue block is not complete)

 $2 \cdot 5 = 10$ (the red block is not complete)

 $2^2 \cdot 3 = 12$ (red and blue blocks are not complete)

It is very easy to deduce that the divisors of Type 1 have complement. For example:

• The complement of $8 = 2^3$ is $45 = 3^2 \cdot 5$ because:

$$8 + 45 = \text{lcm}(8, 45) = 360$$
 and $8 \cdot 45 = \gcd(8, 45) = 1$.

(Notice that the operations + and \cdot are those previously defined!!!)

• The complement of $72 = 2^3 \cdot 3^2$ is 5 because:

$$72 + 5 = \text{lcm}(72, 5) = 360$$
 and $72 \cdot 5 = \gcd(72, 5) = 1$.

However, the divisors of Type 2 have not complement!! For example, let's prove that $2 \cdot 5 = 10$ has not complement reasoning by contradiction. So, assume that it has a complement $\overline{10}$ and let us deduce a contradiction:

Since $\overline{10}$ is the complement of 10, the following conditions must be satisfied: $gcd(10, \overline{10}) = 1$ and $lcm(10, \overline{10}) = 360$. But $gcd(10, \overline{10}) = 1$ means that 10 and $\overline{10}$ have not common prime factors. In particular, 2 is not a prime factor of $\overline{10}$ (because 2 is a prime factor of 10). Therefore $lcm(10, \overline{10}) \neq 360$, which is a contradiction!! (notice that the least common multiple is the product of all prime factors appearing either in 10 or $\overline{10}$ with the maximum exponent; and the maximum exponent of 2 is 1 because 2 is not a prime factor of $\overline{10}$).

It is easy to deduce that a similar reasoning can be applied to any divisor of Type 2. Therefore these divisors have not complement in D_{360} .

This example shows a general behavior:

Theorem 2. The elements of lattice D_n that have complement are those whose decompositions into primes involve "complete blocks" of prime factors of n.

Then, if all the prime numbers in the decomposition of n have exponent 1, it is evident that every element of D_n has complement (for example, when $n = 2 \cdot 3 \cdot 5 \cdot 7$). Therefore we have the following consequence (that characterizes when D_n is a Boolean lattice):

Corollary 1. $(D_n, |)$ is a Boolean lattice if and only if all the prime numbers in the decomposition of n have exponent 1.