Homework 9

ALECK ZHAO

April 14, 2017

1. Let F be a field, and define projective n-space $\mathbb{P}^n(F)$ to be the set of 1-dimensional F-subspaces in F^{n+1} . Give a group G and a G-set X such that the set of orbits for the action is in natural bijection with $\mathbb{P}^n(F)$. When F is a finite field with g elements, deduce from this that

$$\#\mathbb{P}^n(F) = \frac{q^{n+1} - 1}{q - 1}$$

Solution. Consider the group $G = F^{\times}$ and the set $X = F^{n+1} \setminus 0$. Then the orbits are exactly the 1-dimensional F subspaces of F^{n+1} . If #F = q, then by the orbit decomposition theorem, we have

$$\#X = \#X_f + \sum_{i=1}^n \#(G \cdot x_i)$$

Here, X_f is empty because nothing in $F^{n+1} \setminus 0$ is fixed by every element in F, and $\#X = q^{n+1} - 1$. Then $\#(G \cdot x_i) = q - 1$ because if $a, b \in G$ and $x_i = (g_1, \dots, g_{n+1})$, then

$$a \cdot (g_1, \dots, g_{n+1}) = (ag_1, \dots, ag_{n+1}) = (bg_1, \dots, bg_{n+1}) = b \cdot (g_1, \dots, g_{n+1})$$

$$\iff ag_i = bg_i, \forall i$$

$$\iff a = b$$

Thus, we have

$$q^{n+1} - 1 = 0 + \sum_{i=1}^{n} (q-1) = n(q-1)$$

$$\implies n = \frac{q^{n+1} - 1}{q-1}$$

where n is the number of orbits, which is equal to $\#\mathbb{P}^n(F)$, as desired.

Section 10.1: Galois Groups and Separability

2. Prove: If $E \supset F$ are fields, $G = \operatorname{Aut}_F(E)$, $u \in E$, and $\sigma \in G$, then

(1) $\sigma[f(u)] = f[\sigma(u)]$ for all $f \in F[x]$.

Proof. Let $f = a_0 + a_1x_1 + \cdots + a_nx^n$ with $a_0, \cdots, a_n \in F$. Then since $\sigma \in \operatorname{Aut}_F(E)$, it must fix F, so $\sigma(a_i) = a_i$ for all i. Then

$$\sigma[f(u)] = \sigma(a_0 + a_1u + \dots + a_nu^n) = \sigma(a_0) + \sigma(a_1u) + \dots + \sigma(a_nu^n)$$

$$= \sigma(a_0) + \sigma(a_1)\sigma(u) + \dots + \sigma(a_n)\sigma(u)^n$$

$$= a_0 + a_1\sigma(u) + \dots + a_n\sigma(u)^n$$

$$= f[\sigma(u)]$$

(2) In particular, if u is a root of f, then $\sigma(u)$ is also a root of f.

Proof. If u is a root of f, then f(u) = 0, so

$$f[\sigma(u)] = \sigma[f(u)] = \sigma(0) = 0$$

so $\sigma(u)$ is also a root of f.

(3) If u is algebraic over F, and $\sigma, \tau \in \operatorname{Aut}_F(F(u))$, then $\sigma = \tau$ if and only if $\sigma(u) = \tau(u)$.

Proof. (\Longrightarrow): This is trivial. If two maps are the same, then they send u to the same thing. (\Longleftrightarrow): Since $F(u) = \{ f(u) \mid f \in F[x] \}$, we have

$$\begin{split} \sigma\text{``}(F(u)) &= \{\, \sigma[f(u)] \mid f \in F[x] \,\} = \{\, f[\sigma(u)] \mid f \in F[x] \,\} \\ &= \{\, f[\tau(u)] \mid f \in F[x] \,\} = \{\, \tau[f(u)] \mid f \in F[x] \,\} \\ &= \tau\text{``}(F(u)) \end{split}$$

so $\sigma = \tau$.

13. If $E = \mathbb{Q}(\sqrt[4]{2}, i)$, show that $\operatorname{Aut}_{\mathbb{Q}}(E) \cong D_4$.

Proof. Let $u=\sqrt[4]{2}$. Then the minimal polynomials of u and i are x^4-2 and x^2+1 , respectively, with roots $\{u,-u,iu,-iu\}$ and $\{i,-i\}$, respectively. Then any $\sigma\in\operatorname{Aut}_{\mathbb{Q}}(E)$ must have $\sigma(u)\in\{u,-u,iu,-iu\}$ and $\sigma(i)\in\{i,-i\}$. So we may find $\sigma,\tau\in\operatorname{Aut}_{\mathbb{Q}}(E)$ such that $\sigma(u)=iu,\sigma(i)=i$ and $\tau(u)=u,\tau(i)=-i$. Then $o(\sigma)=4$ and $o(\tau)=2$, and

$$\sigma\tau\sigma(u) = \sigma\tau(iu) = \sigma\tau(i)\sigma\tau(u)$$

$$= \sigma(-i)\sigma(u) = -\sigma(i)\sigma(u) = (-i)(iu) = u$$

$$\tau(u) = u$$

so $\langle \sigma, \tau \rangle = \operatorname{Aut}_{\mathbb{Q}}(E) \cong D_4$, as desired.

20. Let F = K(t) denote the field of rational forms over a field K in an indeterminate t. Show that $x^2 - t$ is irreducible over F but is not separable if char K = 2.

Proof. Suppose $x^2 - t = (x - a)(x - b)$ for $a, b \in K(t)$. Then comparing coefficients, we have

$$a+b=0$$

$$ab=-t$$

$$\implies a^2=t$$

Now, if a=p/q for $p,q\in K[t]$, then $t=a^2=p^2/q^2\implies tq^2=p^2$. However, $\deg p^2$ is even and $\deg tq^2$ is odd, so this is impossible. Thus x^2-t is irreducible. If $\operatorname{char} K=2$, then $(x^2-t)'=2x\equiv 0$, so x^2-t would not be separable.

- 22. (a) Show that the following are equivalent for a polynomial $f \in F[x;]$.
 - (1) f has no repeated root in any extension field of f.
 - (2) f has no repeated root in some splitting field over F.
 - (3) f and f' are relatively prime in F[x].

Proof. $(1 \implies 2)$: This is trivial, since splitting fields are extension fields.

 $(2 \Longrightarrow 3)$: Suppose f splits in a splitting field E. If f and f' were not relatively prime in F[x], then there exists some $d \in F[x]$ such that $d \mid f$ and $d \mid f'$ where $\deg d \ge 1$. Since $d \mid f$, it must also split in E, so suppose d has a root $u \in E$. Then $(x - u) \mid d$ so $(x - u) \mid f$ and $(x - u) \mid f'$, so it must be the case that $(x - u)^2 \mid f$, and thus f has a repeated root. This is a contradiction, so f and f' are relatively prime.

 $(3 \Longrightarrow 1)$: If f has a repeated root u in some extension field E of f. Then $(x-u)^2 \mid f \iff (x-u) \mid f, f'$. If f and f' are relatively prime, then 1 = fg + f'h for some $g, h \in F[x]$. Since E is an extension field of F, this equation also holds in E. Now, we have 1 = f(u)g(u) + f'(u)h(u) = 0, a contradiction, so f has no repeated roots in any extension field.

(b) If f is as in (a), show that f is separable, but not conversely.

Proof. If f was not separable, then one of its irreducible factors is not separable, say $p \in F[x]$. If f = pg for $g \in F[x]$, then f' = pg' + p'g, and since p is not separable, p' = 0, so f' = pg'. Then gcd(f, f') = p, so f and f' are not relatively prime, which contradicts (3). Thus, f is separable. However, consider $f = (x-1)^2$. Then f is separable because its irreducible factors are both (x-1), which are both separable. However, f has a repeated root, contradicting (1).

25. If $E \supseteq F$ and $f \in F[x]$ is separable over F, show that f is separable over E.

Proof. Suppose f = pg for some irreducible $p \in E[x]$. Since f is separable over F, all of its irreducible factors must be separable. Suppose $f = q_1 \cdots q_r$ for irreducible and separable $q_i \in F[x]$. Then since E is an extension field of F, this factorization holds in E as well. Then $f = pg = q_1 \cdots q_r$ in E[x], and since p is irreducible in E[x] is it prime, so we must have $p \mid q_i$ for some i. If p was not separable, then it would have a repeated root in E, but then q_i would also have a repeated root in E, which is an extension field of F, which would mean q_i is not separable. This is a contradiction, so p is separable in E, so f is separable in E, as desired.

26. If $E \supseteq K \supseteq F$ and $E \supseteq F$ is a separable extension, show that both $E \supseteq K$ and $K \supseteq F$ are separable extensions.

Proof. Since $E \supseteq F$ is separable, every $u \in E$ has a separable minimal polynomial over F. Since $K \supseteq E$, it follows that every $u \in K$ also has a separable minimal polynomial over F, so $K \supseteq F$ is a separable extension.

For $u \in E$, let the minimal polynomial of u over F be f, and the minimal polynomial over K be k. Then it follows that $k \mid f$ in E[x], and since f is separable, k must also be separable, and thus $E \supseteq K$ is a separable extension.

27. Let F have characteristic p. If $f = x^p - a$ where $a \in F$, show that f is irreducible or a power of a linear polynomial. (Hint: Lemma 5 and Theorem 4)

Proof. Let f have a root u in some extension field E. Then $f(u) = u^p - a = 0 \implies u^p = a$, so we have $f = x^p - u^p = (x - u)^p$ since char F = p. If f is not irreducible, then this is its factorization in F[x], so then f is a power of a linear polynomial.

If f is not a power of a linear polynomial, then it must be that $u \notin F$, so F(u) is a splitting field of f over F. Suppose f has a nontrivial irreducible factor $g \in F[x]$. Then $g = (x - u)^q$ for some 1 < q < p, since $u \notin F$. Then since g has a repeated root u, we must have $g' \equiv 0$ by Lemma 5, so g is not separable, and thus $g = h(x^p)$ by Theorem 4, for some $h \in F[x]$. Since every irreducible factor of f takes this form, we have

$$f = h_1(x^p) \cdots h_r(x^p) = x^p - a$$

Thus we must have $h_i(x^p) = x^p - a$ for some i and the rest are 1, so f is irreducible.