In [1]: #Importing Libraries

```
In [2]: %matplotlib inline
        import pandas as pd
        import seaborn as sns
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from nltk.corpus import stopwords
        from scipy import stats
        from wordcloud import WordCloud,STOPWORDS
        from ast import literal eval
        from sklearn.feature extraction.text import TfidfVectorizer, CountVector
        from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
        from nltk.stem.snowball import SnowballStemmer
        from nltk.stem.wordnet import WordNetLemmatizer
        from nltk.corpus import wordnet
        from surprise import Reader, Dataset, SVD
        from surprise.model selection import cross validate
        import warnings; warnings.simplefilter('ignore')
```

In [3]: #Loading Data

Out[4]:

	adult	belongs_to_collection	budget	genres	homepage	id	imd
0	False	{'id': 10194, 'name': 'Toy Story Collection', 	30000000	[{'id': 16, 'name': 'Animation'}, {'id': 35, '	http://toystory.disney.com/toy- story	862	tt0114
1	False	NaN	65000000	[{'id': 12, 'name': 'Adventure'}, {'id': 14, '	NaN	8844	tt011(
2	False	{'id': 119050, 'name': 'Grumpy Old Men Collect	0	[{'id': 10749, 'name': 'Romance'}, {'id': 35,	NaN	15602	tt0118
3	False	NaN	16000000	[{'id': 35, 'name': 'Comedy'}, {'id': 18, 'nam	NaN	31357	tt0114
4	False	{'id': 96871, 'name': 'Father of the Bride Col	0	[{'id': 35, 'name': 'Comedy'}]	NaN	11862	tt011(

5 rows × 24 columns

In [5]: input_data.head().transpose()

Out[5]:

	1	0	
	False	False	adult
	NaN	{'id': 10194, 'name': 'Toy Story Collection',	belongs_to_collection
	65000000	30000000	budget
[{'id	[{'id': 12, 'name': 'Adventure'}, {'id': 14, '	[{'id': 16, 'name': 'Animation'}, {'id': 35, '	genres
	NaN	http://toystory.disney.com/toy-story	homepage
	8844	862	id
	tt0113497	tt0114709	imdb_id
	en	en	original_language
	Jumanji	Toy Story	original_title
A f	When siblings Judy and Peter discover an encha	Led by Woody, Andy's toys live happily in his	overview
	17.0155	21.9469	popularity
/6ksı	/vzmL6fP7aPKNKPRTFnZmiUfciyV.jpg	/rhIRbceoE9IR4veEXuwCC2wARtG.jpg	poster_path
[[{'name': 'TriStar Pictures', 'id': 559}, {'na	[{'name': 'Pixar Animation Studios', 'id': 3}]	production_companies
[{	[{'iso_3166_1': 'US', 'name': 'United States o	[{'iso_3166_1': 'US', 'name': 'United States o	production_countries
	1995-12-15	1995-10-30	release_date
	2.62797e+08	3.73554e+08	revenue
	104	81	runtime
[{'	[{'iso_639_1': 'en', 'name': 'English'}, {'iso	[{'iso_639_1': 'en', 'name': 'English'}]	spoken_languages
	Released	Released	status
S	Roll the dice and unleash the excitement!	NaN	tagline
	Jumanji	Toy Story	title
	False	False	video
	6.9	7.7	vote_average
	2413	5415	vote_count

In [6]: #Testing and understanding the dataset In [7]: input data.columns Out[7]: Index(['adult', 'belongs to collection', 'budget', 'genres', 'homepage ', 'id', imdb id', 'original language', 'original title', 'overview', 'popularity', 'poster path', 'production companies', 'production_countries', 'release_date', 'revenue', 'runtime', 'spoken languages', 'status', 'tagline', 'title', 'video', 'vote_average', 'vote_count'], dtype='object') In [8]: input data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 45466 entries, 0 to 45465 Data columns (total 24 columns): 45466 non-null object belongs to collection 4494 non-null object budget 45466 non-null object genres 45466 non-null object 7782 non-null object homepage id 45466 non-null object imdb id 45449 non-null object original language 45455 non-null object 45466 non-null object original title overview 44512 non-null object 45461 non-null object popularity poster path 45080 non-null object production companies 45463 non-null object production countries 45463 non-null object release date 45379 non-null object 45460 non-null float64 revenue runtime 45203 non-null float64 spoken languages 45460 non-null object status 45379 non-null object 20412 non-null object tagline title 45460 non-null object video 45460 non-null object 45460 non-null float64 vote average 45460 non-null float64 vote count dtypes: float64(4), object(20) memory usage: 8.3+ MB

In [9]: #Analysing data and building a wordCloud

```
In [10]:
         input data['title'] = input data['title'].astype('str')
         input data['overview'] = input data['overview'].astype('str')
         movie_title = ' '.join(input_data['title'])
In [11]:
         movieTitleWC = WordCloud(stopwords=STOPWORDS, background color='Yellow',
In [12]:
         plt.figure(figsize=(16,8))
         plt.imshow(movieTitleWC)
         plt.axis('off')
         plt.show()
            Road
In [13]:
         #Implementation of Simple Recommendation System
In [14]: data['genres'].fillna('[]').apply(literal eval).apply(lambda x: [i['name
         no of votes = input data[input data['vote count'].notnull()]['vote count
In [15]:
         avgVotes = input data[input data['vote average'].notnull()]['vote averag
         meanVotes = avgVotes.mean()
         meanVotes
Out[15]: 5.244896612406511
In [16]: | minVotes = no of votes.quantile(0.95)
         minVotes
Out[16]: 434.0
In [17]: datetime(input data['release date'], errors='coerce').apply(lambda x: st
```

```
In [18]: movies_qualified = input_data[(input_data['vote_count'] >= minVotes) & (
    movies_qualified['vote_count'] = movies_qualified['vote_count'].astype('
    movies_qualified['vote_average'] = movies_qualified['vote_average'].asty
    movies_qualified.shape
```

Out[18]: (2274, 6)

```
In [19]: def weighted_rating(a):
    noOfVotes = a['vote_count']
    avgRating = a['vote_average']
    return (noOfVotes/(noOfVotes+minVotes) * avgRating) + (minVotes/(minVotes/)
```

In [20]: movies_qualified['wr'] = movies_qualified.apply(weighted_rating, axis=1)

In [21]: movies_qualified = movies_qualified.sort_values('wr', ascending=False).h

In [22]: movies_qualified.head(20)

Out[22]:

	title	year	vote_count	vote_average	popularity	genres	wr
15480	Inception	2010	14075	8	29.1081	[Action, Thriller, Science Fiction, Mystery, A	7.917588
12481	The Dark Knight	2008	12269	8	123.167	[Drama, Action, Crime, Thriller]	7.905871
22879	Interstellar	2014	11187	8	32.2135	[Adventure, Drama, Science Fiction]	7.897107
2843	Fight Club	1999	9678	8	63.8696	[Drama]	7.881753
4863	The Lord of the Rings: The Fellowship of the Ring	2001	8892	8	32.0707	[Adventure, Fantasy, Action]	7.871787
292	Pulp Fiction	1994	8670	8	140.95	[Thriller, Crime]	7.868660
314	The Shawshank Redemption	1994	8358	8	51.6454	[Drama, Crime]	7.864000
7000	The Lord of the Rings: The Return of the King	2003	8226	8	29.3244	[Adventure, Fantasy, Action]	7.861927
351	Forrest Gump	1994	8147	8	48.3072	[Comedy, Drama,	7.860656

						Romance]	
5814	The Lord of the Rings: The Two Towers	2002	7641	8	29.4235	[Adventure, Fantasy, Action]	7.851924
256	Star Wars	1977	6778	8	42.1497	[Adventure, Action, Science Fiction]	7.834205
1225	Back to the Future	1985	6239	8	25.7785	[Adventure, Comedy, Science Fiction, Family]	7.820813
834	The Godfather	1972	6024	8	41.1093	[Drama, Crime]	7.814847
1154	The Empire Strikes Back	1980	5998	8	19.471	[Adventure, Action, Science Fiction]	7.814099
46	Se7en	1995	5915	8	18.4574	[Crime, Mystery, Thriller]	7.811669
24860	The Imitation Game	2014	5895	8	31.5959	[History, Drama, Thriller, War]	7.811074
359	The Lion King	1994	5520	8	21.6058	[Family, Animation, Drama]	7.799175
18465	The Intouchables	2011	5410	8	16.0869	[Drama, Comedy]	7.795394
22841	The Grand Budapest Hotel	2014	4644	8	14.442	[Comedy, Drama]	7.764530
586	The Silence of the Lambs	1991	4549	8	4.30722	[Crime, Drama, Thriller]	7.760041

```
In [24]: a = input_data.apply(lambda z: pd.Series(z['genres']),axis=1).stack().re
a.name = 'genre'
gen_data = input_data.drop('genres', axis=1).join(a)
```

```
In [26]: def buildChart(genre, percentile=0.86):
    dataframe1 = gen_data[gen_data['genre'] == genre]
    no_of_votes = input_data[input_data['vote_count'].notnull()]['vote_c
    avgVotes = input_data[input_data['vote_average'].notnull()]['vote_av
    meanVotes = avgVotes.mean()
    minVotes = no_of_votes.quantile(percentile)

movies_qualified = input_data[(input_data['vote_count'] >= minVotes)
    movies_qualified['vote_count'] = movies_qualified['vote_count'].asty
    movies_qualified['vote_average'] = movies_qualified['vote_average'].

movies_qualified['wr'] = movies_qualified.apply(lambda z: (z['vote_count'] = movies_qualified].sort_values('wr', ascending=False)
    return movies qualified
```

In [27]: buildChart('Romance').head(20)

Out[27]:

	title	year	vote_count	vote_average	popularity	wr
10309	Dilwale Dulhania Le Jayenge	1995	661	9	34.457	8.545593
15480	Inception	2010	14075	8	29.1081	7.982302
12481	The Dark Knight	2008	12269	8	123.167	7.979716
22879	Interstellar	2014	11187	8	32.2135	7.977770
2843	Fight Club	1999	9678	8	63.8696	7.974336
4863	The Lord of the Rings: The Fellowship of the Ring	2001	8892	8	32.0707	7.972090
292	Pulp Fiction	1994	8670	8	140.95	7.971383
314	The Shawshank Redemption	1994	8358	8	51.6454	7.970326
7000	The Lord of the Rings: The Return of the King	2003	8226	8	29.3244	7.969855
351	Forrest Gump	1994	8147	8	48.3072	7.969566
5814	The Lord of the Rings: The Two Towers	2002	7641	8	29.4235	7.967574
256	Star Wars	1977	6778	8	42.1497	7.963501
1225	Back to the Future	1985	6239	8	25.7785	7.960393
834	The Godfather	1972	6024	8	41.1093	7.959000
1154	The Empire Strikes Back	1980	5998	8	19.471	7.958825
46	Se7en	1995	5915	8	18.4574	7.958256
24860	The Imitation Game	2014	5895	8	31.5959	7.958117
359	The Lion King	1994	5520	8	21.6058	7.955317
18465	The Intouchables	2011	5410	8	16.0869	7.954424
22841	The Grand Budapest Hotel	2014	4644	8	14.442	7.947051

```
In [31]: sns.distplot(input_data['vote_average'],kde=False,bins=50)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x1a25d100d0>


```
In [32]: #Content Based Recommender
```

```
In [33]: linksSmallDataSet = pd.read_csv('links_small.csv')
linksSmallDataSet = linksSmallDataSet[linksSmallDataSet['tmdbId'].notnul
```

```
In [34]: input_data = input_data.drop([19730, 29503, 35587])
```

```
In [35]: input_data['id'] = input_data['id'].astype('int')
```

In [36]: smallMovieDataset = input_data[input_data['id'].isin(linksSmallDataSet)]
 smallMovieDataset.shape

Out[36]: (9099, 25)

In [37]: #Description based recommender

In [38]: smallMovieDataset['tagline'] = smallMovieDataset['tagline'].fillna('')
 smallMovieDataset['description'] = smallMovieDataset['overview'] + small
 smallMovieDataset['description'] = smallMovieDataset['description'].fill

In [39]: termfrequency = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_d
tfIdfMatrix = termfrequency.fit_transform(smallMovieDataset['description

```
In [40]: tfIdfMatrix.shape
Out[40]: (9099, 268124)
         cosineSimilarity = linear kernel(tfIdfMatrix, tfIdfMatrix)
In [42]: | cosineSimilarity[0]
                           , 0.00680476, 0.
                                                   , ..., 0.
                                                                      , 0.00344913
Out[42]: array([1.
                 0.
                           1)
         smallMovieDataset = smallMovieDataset.reset index()
In [43]:
         movieTitles = smallMovieDataset['title']
         movieIndices = pd.Series(smallMovieDataset.index, index=smallMovieDatase
         def getRecommendation(name):
In [44]:
              indx = movieIndices[name]
              similarityScores = list(enumerate(cosineSimilarity[indx]))
              similarityScores = sorted(similarityScores, key=lambda z: z[1], reve
              similarityScores = similarityScores[1:31]
              movie Inds = [0[0] for o in similarityScores]
              return movieTitles.iloc[movie Inds]
In [45]:
         getRecommendation('Shanghai Triad').head(20)
Out[45]: 6773
                                                  Lust, Caution
         8209
                                                       Stowaway
                                                  The Godfather
         692
         3274
                                             Empire of the Sun
         8387
                                                     The Family
         7416
                                                   Soul Kitchen
         7571
                                                       Ip Man 2
         3669
                                                     Billy Liar
         2072
                                                           Life
         4196
                                            Johnny Dangerously
         985
                                                      The Sting
                                             The Addams Family
         1681
         8527
                                                Survival Island
         973
                                        The Godfather: Part II
                                                   Stormbreaker
         6528
         8753
                                                   Wicked Blood
         2761
                                National Lampoon's Last Resort
         2644
                  Black Tar Heroin: The Dark End of the Street
         3101
                                               Steal This Movie
         9065
                                                 The Handmaiden
         Name: title, dtype: object
```

```
In [46]:
         getRecommendation('Batman Forever').head(20)
Out[46]: 7931
                                    The Dark Knight Rises
         2579
                             Batman: Mask of the Phantasm
         6900
                                          The Dark Knight
         6144
                                            Batman Begins
         8165
                 Batman: The Dark Knight Returns, Part 1
         524
                                                    Batman
         1240
                                           Batman & Robin
         1113
                                           Batman Returns
         7565
                               Batman: Under the Red Hood
         7901
                                         Batman: Year One
         8227
                 Batman: The Dark Knight Returns, Part 2
         681
                                      Eyes Without a Face
         6206
                                                  Cry Wolf
         1135
                                 Night Falls on Manhattan
         2075
                                           Open Your Eyes
         149
                                                   Hackers
         8917
                       Batman v Superman: Dawn of Justice
         2696
                                                       JFK
         8680
                                        The Young Savages
                                The File on Thelma Jordon
         7242
         Name: title, dtype: object
In [47]:
         #Metadata Based recommender
         creditsData = pd.read csv('credits.csv')
In [48]:
         keywordsData = pd.read csv('keywords.csv')
         keywordsData['id'] = keywordsData['id'].astype('int')
In [49]:
         creditsData['id'] = creditsData['id'].astype('int')
         input data['id'] = input data['id'].astype('int')
In [50]: input data.shape
Out[50]: (45463, 25)
In [51]: input data = input data.merge(creditsData, on='id')
          input data = input data.merge(keywordsData, on='id')
In [52]: | smallMovieDataset = input data[input data['id'].isin(linksSmallDataSet)]
         smallMovieDataset.shape
Out[52]: (9219, 28)
```

```
In [53]:
         smallMovieDataset['cast'] = smallMovieDataset['cast'].apply(literal eval
         smallMovieDataset['crew'] = smallMovieDataset['crew'].apply(literal eval
         smallMovieDataset['keywords'] = smallMovieDataset['keywords'].apply(lite
         smallMovieDataset['cast size'] = smallMovieDataset['cast'].apply(lambda
         smallMovieDataset['crew size'] = smallMovieDataset['crew'].apply(lambda
In [54]:
         def getDirector(z):
             for a in z:
                  if a['job'] == 'Director':
                      return a['name']
             return np.nan
In [55]:
         smallMovieDataset['director'] = smallMovieDataset['crew'].apply(getDirector')
         smallMovieDataset['cast'] = smallMovieDataset['cast'].apply(lambda z: [a
In [56]:
         smallMovieDataset['cast'] = smallMovieDataset['cast'].apply(lambda z: z[
In [57]: aset['keywords'] = smallMovieDataset['keywords'].apply(lambda z: [a['name'])
         smallMovieDataset['cast'] = smallMovieDataset['cast'].apply(lambda z: [s
In [58]:
In [59]: smallMovieDataset['director'] = smallMovieDataset['director'].astype('st
         smallMovieDataset['director'] = smallMovieDataset['director'].apply(lamb
In [60]:
         abc = smallMovieDataset.apply(lambda z: pd.Series(z['keywords']),axis=1)
         abc.name = 'keyword'
         abc = abc.value counts()
In [61]:
         abc[:5]
Out[61]: independent film
                                  610
         woman director
                                  550
         murder
                                  399
         duringcreditsstinger
                                  327
         based on novel
                                  318
         Name: keyword, dtype: int64
In [62]: | abc = abc[abc > 1]
In [66]: | stemming = SnowballStemmer('english')
         stemming.stem('Big Datas')
Out[66]: 'big data'
```

```
In [67]:
         def filterKeywords(a):
             words = []
             for p in a:
                 if p in abc:
                     words.append(p)
             return words
In [68]: allMovieDataset['keywords'] = smallMovieDataset['keywords'].apply(filterK
        allMovieDataset['keywords'] = smallMovieDataset['keywords'].apply(lambda
        allMovieDataset['keywords'] = smallMovieDataset['keywords'].apply(lambda
In [69]:
         smallMovieDataset['soup'] = smallMovieDataset['keywords'] + smallMovieDa
         smallMovieDataset['soup'] = smallMovieDataset['soup'].apply(lambda z: '
         num = CountVectorizer(analyzer='word',ngram range=(1, 2),min df=0, stop
In [70]:
         numMatrix = num.fit transform(smallMovieDataset['soup'])
         cosineSimilarity = cosine similarity(numMatrix, numMatrix)
In [71]:
         smallMovieDataset = smallMovieDataset.reset index()
In [72]:
         movieTitles = smallMovieDataset['title']
         movieIndices = pd.Series(smallMovieDataset.index, index=smallMovieDatase
In [73]:
         getRecommendation('Inception').head(5)
Out[73]: 6623
                          The Prestige
         3381
                               Memento
         4145
                               Insomnia
         2085
                             Following
         8031
                 The Dark Knight Rises
         Name: title, dtype: object
```

```
In [74]: f impRecommendations(name):
          indx = movieIndices[name]
          similarityScores = list(enumerate(cosineSimilarity[indx]))
          similarityScores = sorted(similarityScores, key=lambda z: z[1], reverse
          similarityScores = similarityScores[1:26]
          movie Inds = [p[0] for p in similarityScores]
          movieNames = input data.iloc[movie Inds][['title', 'vote count', 'vote
          no_of_votes = movieNames[movieNames['vote_count'].notnull()]['vote_coun
          avgVotes = movieNames[movieNames['vote average'].notnull()]['vote average']
          meanVotes = avgVotes.mean()
          minVotes = no of votes.quantile(0.60)
          movies qualified = movieNames[(movieNames['vote count'] >= minVotes) &
          movies qualified['vote count'] = movies qualified['vote count'].astype(
          movies qualified['vote average'] = movies qualified['vote average'].ast
          movies qualified['wr'] = movies qualified.apply(weighted rating, axis=1
          movies qualified = movies qualified.sort values('wr', ascending=False).
          return movies qualified
```

In [75]: impRecommendations('Batman Forever')

Out[75]:

title	vote_count	vote_average	year	wr
The Mummy	2796	6	1999	5.898540
Shallow Grave	247	7	1994	5.881476
The Big Sleep	244	7	1946	5.876527
Hard Boiled	169	7	1992	5.736791
Beauty and the Beast	133	7	1946	5.656588
The Rules of the Game	109	7	1939	5.597210
Searching for Bobby Fischer	100	7	1993	5.573568
Suicide Kings	86	6	1997	5.369779
Earthquake	76	5	1974	5.208402
Anger Management	937	5	2003	5.077524
	Shallow Grave The Big Sleep Hard Boiled Beauty and the Beast The Rules of the Game Searching for Bobby Fischer Suicide Kings Earthquake	The Mummy 2796 Shallow Grave 247 The Big Sleep 244 Hard Boiled 169 Beauty and the Beast 133 The Rules of the Game 109 Searching for Bobby Fischer 100 Suicide Kings 86 Earthquake 76	The Mummy 2796 6 Shallow Grave 247 7 The Big Sleep 244 7 Hard Boiled 169 7 Beauty and the Beast 133 7 The Rules of the Game 109 7 Searching for Bobby Fischer 100 7 Suicide Kings 86 6 Earthquake 76 5	The Mummy 2796 6 1999 Shallow Grave 247 7 1994 The Big Sleep 244 7 1946 Hard Boiled 169 7 1992 Beauty and the Beast 133 7 1946 The Rules of the Game 109 7 1939 Searching for Bobby Fischer 100 7 1993 Suicide Kings 86 6 1997 Earthquake 76 5 1974

```
In [76]: #Collaborative Filtering
```

```
In [77]: | read = Reader()
```

```
In [78]: movieRatings = pd.read_csv('ratings_small.csv')
movieRatings.head()
```

Out[78]:

	userId	movield	rating	timestamp
0	1	31	2.5	1260759144
1	1	1029	3.0	1260759179
2	1	1061	3.0	1260759182
3	1	1129	2.0	1260759185
4	1	1172	4.0	1260759205

```
In [79]: inputData = Dataset.load_from_df(movieRatings[['userId', 'movieId', 'rat
In [80]: singleVD = SVD()
```

```
cross_validate(singleVD, inputData, measures=['RMSE', 'MAE'])

Out[80]: {'test_rmse': array([0.89707477, 0.88324853, 0.90921328, 0.89043196, 0.90354828]),
    'test_mae': array([0.69212425, 0.68049989, 0.69980372, 0.68921543, 0.69242386]),
    'fit_time': (5.8468077182769775,
        6.20166802406311,
```

```
6.20166802406311,
5.724970817565918,
5.793152093887329,
```

5.855086088180542), 'test_time': (0.18041586875915527,

0.37017107009887695,
0.1652078628540039,

0.18491697311401367,

0.20931696891784668)}

In [81]: sns.distplot(movieRatings['movieId'],kde=False,bins=50)

Out[81]: <matplotlib.axes._subplots.AxesSubplot at 0x1a6d247410>

In [82]: sns.pairplot(movieRatings)

Out[82]: <seaborn.axisgrid.PairGrid at 0x1a6d29f790>

In [83]: sns.pairplot(movieRatings, hue='rating', palette='coolwarm')

Out[83]: <seaborn.axisgrid.PairGrid at 0x1a6d881550>

In [84]: trainsetData = inputData.build_full_trainset()
 singleVD.fit(trainsetData)

In [85]: movieRatings[movieRatings['userId'] == 1]

Out[85]:

	userld	movield	rating	timestamp
0	1	31	2.5	1260759144
1	1	1029	3.0	1260759179
2	1	1061	3.0	1260759182
3	1	1129	2.0	1260759185
4	1	1172	4.0	1260759205
5	1	1263	2.0	1260759151
6	1	1287	2.0	1260759187
7	1	1293	2.0	1260759148
8	1	1339	3.5	1260759125
9	1	1343	2.0	1260759131
10	1	1371	2.5	1260759135
11	1	1405	1.0	1260759203
12	1	1953	4.0	1260759191
13	1	2105	4.0	1260759139
14	1	2150	3.0	1260759194
15	1	2193	2.0	1260759198
16	1	2294	2.0	1260759108
17	1	2455	2.5	1260759113
18	1	2968	1.0	1260759200
19	1	3671	3.0	1260759117

```
In [86]: singleVD.predict(1, 300, 5)
```

```
In [87]: #Hybrid
```

```
In [89]:
         idMap = pd.read csv('links small.csv')[['movieId', 'tmdbId']]
         idMap['tmdbId'] = idMap['tmdbId'].apply(convertInt)
         idMap.columns = ['movieId', 'id']
         idMap = idMap.merge(smallMovieDataset[['title', 'id']], on='id').set ind
In [90]: indicesMap = idMap.set index('id')
In [91]:
         def hybridRecommendation(usernum, name):
             indx = movieIndices[name]
             tdbId = idMap.loc[name]['id']
             movieId = idMap.loc[name]['movieId']
             similarityScores = list(enumerate(cosineSimilarity[int(indx)]))
             similarityScores = sorted(similarityScores, key=lambda d: d[1], reve
             similarityScores = similarityScores[1:26]
             movie_Inds = [h[0] for h in similarityScores]
             movieNames = smallMovieDataset.iloc[movie Inds][['title', 'vote coun']
             movieNames['est'] = movieNames['id'].apply(lambda w: singleVD.predic
             movieNames = movieNames.sort values('est', ascending=False)
             return movieNames.head(10)
```

In [92]: hybridRecommendation(1, 'The Terminator')

Out[92]:

	title	vote_count	vote_average	year	id	est
7488	Avatar	12114.0	7.2	2009	19995	3.018819
974	Aliens	3282.0	7.7	1986	679	2.981203
522	Terminator 2: Judgment Day	4274.0	7.7	1991	280	2.954099
6967	Doomsday	374.0	5.8	2008	13460	2.927908
6394	District B13	572.0	6.5	2004	10045	2.819424
1376	Titanic	7770.0	7.5	1997	597	2.747625
7403	Gamer	778.0	5.6	2009	18501	2.706491
7502	The Book of Eli	2207.0	6.6	2010	20504	2.694188
5296	Zardoz	106.0	5.8	1974	4923	2.683079
7991	In Time	3512.0	6.7	2011	49530	2.658243

In [93]: hybridRecommendation(100, 'The Terminator')

Out[93]:

	title	vote_count	vote_average	year	id	est
974	Aliens	3282.0	7.7	1986	679	3.899735
7991	In Time	3512.0	6.7	2011	49530	3.727733
7502	The Book of Eli	2207.0	6.6	2010	20504	3.707291
522	Terminator 2: Judgment Day	4274.0	7.7	1991	280	3.657294
922	The Abyss	822.0	7.1	1989	2756	3.618038
6622	Children of Men	2120.0	7.4	2006	9693	3.599097
6394	District B13	572.0	6.5	2004	10045	3.511455
7296	Terminator Salvation	2496.0	5.9	2009	534	3.448091
344	True Lies	1138.0	6.8	1994	36955	3.436736
2412	RoboCop	1494.0	7.1	1987	5548	3.411205

In [94]:

#End