

Data Structure & Algorithm

Lecture 7

Abstract Data Types: Queues and Priority Queues

Chhoeum Vantha, Ph.D.

Telecom & Electronic Engineering

Content

- Abstract Data Types
 - o Stacks
 - Queues and Priority Queues
 - o Linked Lists
 - Abstract Data Types
 - Specialized Lists

What is the video all about?

Queues

- The word queue is British for line (the kind you wait in)
- In computer science a queue is a data structure that is similar to a stack but in a queue the First In, the First Out (FIFO)

Queues

- A queue works like a line at the movies
- The first person to join the rear of the line is the first person to reach the front of the line and buy a ticket
- The last person to line up is the last person to buy a ticket

Types of Queues

- Simple Queue
- Circular Queue
- Priority Queue
- Double-Ended Queue (Deque)

Types of Queues: Simple Queue

- It is the most basic queue in which the insertion of an item is done at the front of the queue and deletion takes place at the end of the queue.
- Ordered collection of comparable data kinds.
- Queue structure is FIFO (First in, First Out).

Types of Queues: Circular Queue

- A circular queue is a special case of a simple queue in which the last member is linked to the first.
- As a result, a circle-like structure is formed.
- The last node is connected to the first node.

 Insertion takes place at the front of the queue and deletion at the end of the queue.

Types of Queues: Priority Queue

- In a priority queue, the nodes will have some predefined priority in the priority queue.
- The node with the least priority will be the first to be removed from the queue.
- Insertion takes place in the order of arrival of the nodes.

Types of Queues: Double-Ended Queue (Deque)

• In a double-ended queue, insertion and deletion can take place at both the front and rear ends of the queue.

Queue: Insert and Remove Operations

26

59

<--Front

← Front

26

Two items removed from front of queue

Remove Front

Queue: Some Items Removed

Queue: The Empty and Full Error

Case of Empty Error:

• In case, there are no more items in the queue, you cannot remove an item from queue

Case of Full Error:

• In case, all the cells are already occupied, you cannot insert a new item to queue

- is a more specialized data structure than a stack or a queue
- It is useful tool in a surprising number of situations
- Like an ordinary queue, a priority queue has a front and a rear, and items are inserted in the rear and removed from the front

- A priority queue is a data structure that allows at least the following two operations:
- insert: inserts a data item into the priority queue.
- deleteMin: finds, returns, and removes the minimum element in the priority queue

- In a priority queue, items are ordered by key value, so that the item with the lowest key (or highest key) is always at the front
- Items are inserted in the proper position to maintain the order

Priority Queues: Inserting a New Item

- First, find the appropriate position by his value, insert a new item to the found position
- Notice that there is no wraparound in implementation of the priority queue
- Insertion is slow because the proper in-order position must be found, but deletion is fast

20

Priority Queues: Deleting an Item

- The item to be removed is always the front item (in both ascending and descending), thus removal is quick and easy
- The item is removed and the Front moves to the next item of the array
- No
 comparisons or
 shifting are
 necessary

Queue vs Priority Queue

- Queue, the first-in-first-out rule is implemented
- Priority queue, the values are removed on the basis of priority.
- The element with the highest priority is removed first

applications of the queue in real-life are:

- People on an escalator
- Cashier line in a store
- A car wash line
- One way exits

W7 – Lab 7

Exercise 1

- Create a Queue using Standard Template Library
 (STL) with a few operations:
 - o push(int newData)
 - \circ pop()
 - o size()
 - o front()
 - o back()

And make a function (showQ) to show all elements in the queue

Exercise 2

- Create a class of Queue with full operations:
 - o IsFull(),
 - InsertQ(int NewItem),
 - o RemoveQ(),
 - IsEmptyQ(),
 - o SizeQ(),
 - o PeekFrontQ().

Exercise 3

- Create a class of Priority Queue (ascending and descending) with full operations:
 - o IsFull(),
 - InsertPQ(int NewItem),
 - o RemovePQ(),
 - IsEmptyPQ(),
 - o SizePQ(),
 - o PeekFrontPQ().

Midterm Choice:

- 1. Oral: 5 min
- 2. Explain code, Code-Tree steps
- 3. Code-Tree steps, Code-Flow chart
- 4. Flow Chart-Code
- 5. Theory: close book exam

Thanks!