Introdução à Árvores Estruturas de Dados I

Departamento de Computação

Universidade Federal de São Carlos (UFSCar)

Sumário

- Introdução
- 2 Fundamentos e Terminologia
- Representações Gráficas
- Arvores N-árias
- Exercícios

Introdução

- Estrutura de listas: organização linear dos dados, onde sua propriedade básica é a relação sequencial mantida entre seus elementos
- Estrutura de árvores: organização dos dados de forma não-linear mantendo um relacionamento hierárquico entre seus elementos

Listas Lineares

A1	A2	А3	A4	A5	A6	Α7		An	l
----	----	----	----	----	----	----	--	----	---

- Complexidade de tempo para os problemas
 - Listar os alunos do departamento Dx? O(n)
 - Listar os alunos do curso Cx? O(n)
 - Idade média dos alunos do curso Cx? O(n)

Estrutura de árvore: exemplos

- Algumas situações onde é necessária um representação baseada na relação hierárquica entre os elementos
 - Árvores genealógicas
 - Organização de um livro
 - Representação da estrutura organizacional de uma instituição

Estrutura de árvore: exemplo de árvore genealógica

Estrutura de árvore: exemplo de organização de um livro

```
1. Livro XYZ
1.1 Cap. 1
1.1.1 Seção 1
1.1.2 Seção 2
...
1.1.n Seção n
1.2 Cap. 2
...
1.m Cap. m
```

Justificativas/vantagens

 Observe que para extrair informações específicas de uma determinada ramificação da árvore não é necessário o percurso por toda a estrutura de informação, uma vez que o relacionamento entre os dados nos permite uma consulta seletiva em regiões específicas da árvore

Sumário

- 1 Introdução
- 2 Fundamentos e Terminologia
- Representações Gráficas
- 4 Árvores N-árias
- Exercícios

Definição

- Uma árvore enraizada é um conjunto finito de elementos denominados nós ou vértices tais que
 - $T = \emptyset$, a árvore é dita vazia
 - $T = \{r\} \cup \{T_1\} \cup \{T_2\} \cup \{T_3\} \cup \ldots \cup \{T_n\}$
- ullet Um nó especial da árvore, r, é chamado de raiz da árvore
- Os restantes constituem um único conjunto vazio ou são divididos em $n \geq 1$ conjuntos disjuntos não vazios, $T_1, T_2, T_3, \ldots, T_n$, as subárvores de r, cada qual por sua vez uma árvore

Definição

- Assim para denotar uma árvore T usamos $T=\{r,T_1,T_2,T_3,\ldots,T_n\}$, com r a raiz da árvore e T_v a subárvore T com raiz em v
- Note que a definição apresentada é recursiva!

Representação Aninhada

- Uma sequencia S de 2n chaves, com n "{" e n "}" é dita aninhada quando, em cada subsequencia de S, iniciada na posição 1 e com extremidade i < 2n, o número de "{" é maior do que o de "}"
- Por exemplo, a sequencia {{}}{} é aninhada, mas a sequencia {{}}{} não
- Uma sequencia desse tipo pode ser usada para representar uma árvore
 - As sequencias de chaves representam as relações entre os nós da árvore – o rótulo de cada nó é inserido imediatamente a direita da "{" correspondente

Representação Aninhada

Exemplo

- $T_a = \{A\}$
- $T_b = \{B, \{C\}\}$
- $T_c = \{D, \{E, \{F\}\}, \{G, \{H, \{I\}\}, \{J, \{K\}, \{L\}\}, \{M\}\}\}\}$

Representação Aninhada

Exercícios

- $T_d = \{2, \{1\}, \{3\}\}$
- $T_e = \{4, \{2, \{1\}, \{3\}\}, \{6, \{5\}, \{7\}\}\}\$
- $T_f = \{Joao, \{Daniel, \{Andres\}, \{Fernanda\}\}, \{Maria, \{Marcos\}, \{Rafael\}\}\}$

- Considerando a árvore T_c e a definição dada de árvores anteriormente vejamos algumas terminologias básicas
 - O grau de um nó é o número de sub-árvores relacionadas aquele nó. Por exemplo: em T_c o grau do nó D é 2, de G é 3 e dos nós K, L, I, F e M é 0 (zero)
 - Nós com grau igual a zero não possuem sub-árvores, portanto são chamados nós folhas ou terminais
 - Se cada nó de uma árvore possui um grau máximo e todos os demais nós possuem o mesmo grau máximo, podemos definir este grau como o grau da árvore

- Para identificar os nós na estrutura, usamos denominações da relação hierárquica existente em uma árvore genealógica
 - Cada raiz r_i da sub-árvore T_i é chamada **filho** de r. O termo **neto** é usado de forma análoga
 - O nó raiz r da árvore T é o **pai** de todas as raízes r_i das sub-árvores T_i . O termo **avô** é definido de forma análoga
 - Duas raízes r_i e r_j das sub-árvores T_i e T_j de T são ditas **irmãs**

Definição

- Outras definições importantes são obtidas a partir da distância de um nó em relação aos outros nós da árvore
 - Caminho: sequência não vazia de nós, $P=\{r_1,r_2,\ldots,r_k\}\text{, onde o }i\text{-ésimo nó }r_i\text{ da sequência é pai de }r_{i+1}$
 - Comprimento: tomando a definição de caminho, o comprimento de um caminho P é igual a k-1

Definição

- Altura de um nó: a altura de um nó r_i é o comprimento do caminho mais longo do nó r_i a uma folha
 - As folhas têm altura 0 (zero)
- Altura de uma árvore: é igual a altura da raiz r de T
- Profundidade: a profundidade de um nó r_i de uma árvore T é o comprimento do único caminho em T entre a raiz r e o nó r_i
 - A raiz está no nível 0 (zero)
 - A maior profundidade de um nó, é a altura da árvore
- Nível: um conjunto de nós com a mesma profundidade é denominado nível da árvore

- Ascendência e descendência: considerando dois nós r_i e r_j , o nó r_i é uma ancestral de r_j se existe um caminho em T de r_i a r_j , tal que, o comprimento de P entre r_i e r_j seja diferente de 0 (zero)
 - De forma análoga se define o descendente de um nó

Sumário

- 1 Introdução
- 2 Fundamentos e Terminologia
- Representações Gráficas
- 4 Árvores N-árias
- Exercícios

Representações gráficas para árvores

- A estrutura de árvore pode ser representada graficamente de diversas maneiras, dentre elas temos
 - conjuntos aninhados
 - identação
 - grafos, sendo esta última a mais utilizada

Representação em conjuntos aninhados

Representação com identação

D		
		F
	.G	
		l
		J
		k
		L
		M

Representação utilizando grafos

Sumário

- Introdução
- 2 Fundamentos e Terminologia
- Representações Gráficas
- Arvores N-árias
- Exercícios

Árvores N-árias

- Uma árvore N-ária T é um conjunto finito de nós com as seguintes propriedades
 - O conjunto é vazio, $T = \emptyset$
 - O conjunto consiste de um nó especial r, que é a raiz de T, e os restantes podem ser sempre divididos em nsubconjuntos disjuntos, as i-ésimas subárvores de r, $1 \le i \le n$, as quais também são árvores N-árias
- A i-ésima subárvore de um nó v de T, se existir, é denominada i-ésimo filho de v

Sumário

- Pundamentos e Terminologia

- Exercícios

Exercícios

Considere a seguinte árvore:

$$T_e = \{a, \{b, \{c, \{d\}\}, \{e, \{f\}, \{g\}\}\}\}, \{h, \{i\}\}\}\}$$

- Obtenha as representações por conjunto, identação e grafos
- Encontre o grau, altura e profundidade de cada nó
- Encontre todos os caminhos possíveis a partir da raiz com seus respectivos comprimentos árvore binária
- Partindo da definição de árvores n-árias, encontre a definição para árvores binárias

Leitura complementar e Créditos

Leitura Complementar

1. Perfect binary tree

http://xlinux.nist.gov/dads//HTML/perfectBinaryTree.html

2. Binary tree

http://xlinux.nist.gov/dads//HTML/binarytree.html

Trees

http://www.gamedev.net/page/resources/_/technical/general-programming/...
trees-part-1-r1374

Créditos: aula baseada nos tópicos de aula e slides criados pelo prof. Fernando Vieira Paulovich, publicamente disponíveis em: http://wiki.icmc.usp.br/index.php/Scc-202(paulovich)

