Integration Documentation

Project Overview:

This project focuses on analyzing and reducing the high costs of renewable energy technologies, specifically under Sustainable Development Goal (SDG) 7: Affordable and Clean Energy. The project involves setting up a relational database, running data analysis using SQL, and creating an Excel-based dashboard to visualize the findings.

1. Database Integration:

Database Schema:

Database: RenewableEnergyDB

Tables:

- o EnergySources: Stores information about different energy sources (e.g., Solar, Wind).
- o Regions: Contains data about various regions (e.g., North America, Europe).
- CostData: Records the cost per megawatt (MW) of energy sources across different regions and years.
- o Projects: Details specific projects involving energy sources in different regions.

SQL Scripts:

a. Table Creation Scripts:

The SQL scripts provided earlier should be executed in the following order:

- 1. Create the EnergySources table.
- 2. Create the Regions table.
- Create the CostData table.
- 4. Create the Projects table.

These scripts establish the necessary database schema to store and manage data related to renewable energy costs and projects.

b. Data Insertion:

After creating the tables, insert initial data using the provided SQL INSERT statements. This will populate the database with sample records for energy sources, regions, cost data, and projects.

c. Data Analysis Queries:

The SQL queries provided can be used to analyze the cost data, such as comparing average costs across regions and tracking cost trends over time.

d. Integration with External Systems:

- ETL Processes: If integrating with external data sources (e.g., cost data from third-party APIs), use ETL (Extract, Transform, Load) processes to feed the data into the RenewableEnergyDB database.
- **Data Warehousing:** The database can serve as a data warehouse for centralized storage and analysis, with data feeds from various renewable energy data sources.

2. Excel Integration:

Excel Workbook:

An Excel workbook (SDG7_CostAnalysis_Dashboard.xlsx) has been created, containing the following:

Data Sheets:

- o EnergySources: Lists all energy sources with their types.
- o Regions: Lists all regions.
- o CostData: Contains cost information for each energy source by region and year.
- o Projects: Provides details of specific renewable energy projects.

Dashboard:

- o A pivot table that summarizes the average cost per MW by energy source and region.
- o A bar chart that visualizes the average cost across different regions.

Integration Points:

Data Import/Export:

- The Excel workbook can import data directly from the database using ODBC connections or SQL queries embedded in Excel.
- o Data from Excel can be exported back to the database if further processing is needed.

Automation:

- Use Excel's Power Query to automate data updates from the database.
- Automate the generation of the dashboard using VBA (Visual Basic for Applications) macros if needed.

Collaboration and Reporting:

• **Sharing:** The Excel dashboard can be shared with stakeholders via email or cloud platforms like SharePoint or Google Drive.

Presentation: The dashboard provides a clear visual representation of the cost analysis, making
it easier to present findings to decision-makers.

3. System Requirements and Dependencies:

Software:

- **Database Server:** MySQL, PostgreSQL, or any relational database management system (RDBMS) that supports SQL.
- **Excel:** Microsoft Excel 2016 or later, with Power Query enabled for advanced data import/export features.

Hardware:

- **Server:** Ensure the database server has sufficient storage and processing power to handle large datasets, especially if scaling up.
- Client: Standard workstations or laptops with Excel installed are sufficient for analysis and reporting.

4. Security and Access Control:

Database:

- **Authentication:** Use database authentication mechanisms, such as username and password, to control access.
- **Authorization:** Implement role-based access control (RBAC) to restrict permissions to specific tables or actions.
- Encryption: Ensure sensitive data (e.g., project costs) is encrypted both at rest and in transit.

Excel:

- **Protected Sheets:** Use Excel's sheet protection features to prevent unauthorized modifications to critical data or formulas.
- **File Encryption:** Encrypt the Excel file with a password to protect it from unauthorized access.

5. Maintenance and Future Enhancements:

Maintenance:

- **Database Backup:** Schedule regular backups of the RenewableEnergyDB database to prevent data loss.
- **Excel Updates:** Periodically update the Excel workbook to reflect new data or changes in the analysis requirements.

Future Enhancements:

- Integration with BI Tools: Integrate with Business Intelligence (BI) tools like Tableau or Power BI for advanced data visualization and analysis.
- **Real-Time Data Feeds:** Implement real-time data integration from IoT sensors or energy monitoring systems for up-to-date cost analysis.
- **Predictive Analytics:** Use machine learning models to predict future cost trends and identify potential cost-saving opportunities.