МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

УТВЕРЖДАЮ Декан/Директор /Соболев В.В. 23. 06.2023 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Системы 3D моделирования и визуальные технологии 10/23 (2013) наименование – полностью направление (специальность) 01.04.04 «Прикладная математика» код, наименование - полностью направленность (профиль/ программа/специализация) «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта» наименование - полностью уровень образования: магистратура форма обучения: очная очная/очно-заочная/заочная общая трудоемкость дисциплины составляет: ___6 ____ зачетных единиц(ы)

Кафедра «Прикладная математика и информационные технологии»
полное наименование кафедры, представляющей рабочую программу
Составитель Нефедов Денис Геннадьевич, к.т.н., доцент
Ф.И.О.(полностью), степень, звание
Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования и рассмотрена на заседании кафедры
Протокол от <u>Д. Г. ОЧ.</u> 20 <u>33</u> г. № <u>5</u>
Заведующий кафедрой И.Г. Русяк 20 <i>43</i> г.
СОГЛАСОВАНО
Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану 01.04.04 «Прикладная математика» (программа «Разработка программног обеспечения и математических методов решения задач с использованием искусственного интеллекта»)
Протокол заседания учебно-методической комиссии по УГСН 010000 «Математика и механика» от
Председатель учебно-методической комиссии по УГСН $\frac{010000 \text{ «Математика и механика»}}{\text{код и наименование – полностью}}$ $\text{ $
Руководитель образовательной программы

Аннотация к дисциплине

Название дисциплины	Системы 3D моделирования и визуальные технологии
Направление	01.04.04 «Прикладная математика»
(специальность)	
подготовки	
Направленность	Разработка программного обеспечения и математических методов
(профиль/программа/	решения задач с использованием искусственного интеллекта
специализация)	
Место дисциплины	Часть, формируемая участниками образовательных отношений,
	Блока 1 «Дисциплины (модули)»
Трудоемкость (з.е. /	6 / 216
часы)	
Цель изучения	Обучение магистрантов навыкам создания трехмерных моделей и
дисциплины	графических приложений с использованием систем
	автоматизированного проектирования и визуальных технологий.
Компетенции,	ПК-1. Способен интегрировать программные модули и
формируемые в	компоненты при разработке программного обеспечения в области
результате освоения	профессиональной деятельности
дисциплины	ПК-3. Способен организовывать процессы управления разработкой
	наукоемкого программного обеспечения.
Содержание	Программные продукты для 3D моделирования и визуализации.
дисциплины	Построение 3D моделей с использованием систем
(основные разделы и	автоматизированного проектирования. Создание реалистичной
темы)	сцены средствами систем визуализации. Разработка
	интерактивных графических приложений с использованием
	интегрированных сред разработки программных продуктов
Форма	Зачет с оценкой, Курсовая работа
промежуточной	
аттестации	

1. Цели и задачи дисциплины:

Целью преподавания дисциплины является обучение магистрантов навыкам создания трехмерных моделей и графических приложений с использованием систем автоматизированного проектирования и визуальных технологий.

Задачи дисциплины:

- изучение систем 3D моделирования;
- развитие практических навыков использования интегрированных сред разработки графических приложений в профессиональной деятельности.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№ п/п	Знания
1	Назначение и функционал современных средств визуализации

Умения, приобретаемые в ходе освоения дисциплины

№ п/п	Умения									
1	Разрабатывать трехмерные модели объектов с использованием средств									
	автоматизированного проектирования									
2	Создавать графические приложения с использованием интегрированных сред									
	разработки программных продуктов									
3	Применять средства визуализации для решения прикладных задач									

Навыки, приобретаемые в ходе освоения дисциплины

№ п/п	Навыки
1	Разработка 3D моделей и графических приложений с использованием
	визуальных технологий

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ПК-1. Способен	ПК-1.1. Знать: процедуры			
интегрировать	интеграции программных			
программные модули	модулей и компонентов при	1		
и компоненты при	разработке программного			
разработке	обеспечения.			
программного	ПК-1.2. Уметь: использовать			
обеспечения в	стандартные программные			
области	модули и компоненты при			
профессиональной	разработке программного		1,2,3	
деятельности	обеспечения в области			
	профессиональной			
	деятельности.			

	ПК-1.3. Владеть: практическими навыками интеграции программных модулей и компонентов при разработке программного обеспечения в области профессиональной деятельности.			1
ПК-3. Способен организовывать процессы управления разработкой	ПК-3.1. Знать: методологию управления разработкой наукоемкого программного обеспечения.	1		
наукоемкого программного обеспечения.	ПК-3.2. Уметь: применять методологию и средства управления разработкой наукоемкого программного обеспечения.		1,2,3	
	ПК-3.3. Владеть: практическими навыками управления разработкой наукоемкого программного обеспечения.			1

3. Место дисциплины в структуре ООП:

Дисциплина относится к части, формируемой участниками образовательных отношений, блока 1 "Дисциплины (модули)" ООП.

Дисциплина изучается на 2 курсе в 3 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Разработка приложений на С#.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): нет.

4. Структура и содержание дисциплины

4.1. Структура дисциплин

No	Раздел дисциплины. Форма	то часов на раздел		Распределение трудоемкости раздела (в часах) по видам учебной работы				Содержание самостоятельной	
Π/Π	промежуточной	ro pa	Семе		конт	гактная	F		работы
	аттестации (по семестрам)	Всего)	лек	пр	лаб	КЧА	CPC	1
1	2	3	4	5	6	7	8	10	11
1	Программные продукты для 3D моделирования и визуализации	48	3	_	8	8	_	32	Подготовка к защите практической работы; подготовка к защите лабораторной работы
2	Построение 3D	48	3		8	8	_	32	Подготовка к

	моделей с использованием систем автоматизированн ого проектирования								защите практической работы; подготовка к защите лабораторной работы
3	Создание реалистичной сцены средствами систем визуализации	40	3	_	_	8	_	32	Подготовка к защите лабораторной работы
4	Разработка интерактивных графических приложений с использованием интегрированных сред разработки программных продуктов	42	3	_	_	8	_	34	Подготовка к защите лабораторной работы
5	Курсовая работа	36	3	_	_	_	3	33	Выполнение курсовой работы
5	Зачет с оценкой	2	3	-	_	_	0,4	1,6	Зачет с оценкой выставляется по совокупности результатов текущего контроля успеваемости
	Итого:	216	3	_	16	32	3,4	164,6	
	в том числе часы практической подготовки							32	

4.2. Содержание разделов курса

№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма контроля
1	Программные продукты	ПК-1.1	1	1,2,3	1	Защита
	для 3D моделирования и	ПК-1.2				практической
	визуализации	ПК-1.3				работы;
		ПК-3.1				защита
		ПК-3.2				лабораторной
		ПК-3.3				работы
2	Построение 3D моделей	ПК-1.1	1	1,2,3	1	Защита
	с использованием	ПК-1.2				практической
	систем	ПК-1.3				работы;
	автоматизированного	ПК-3.1				защита

	проектирования	ПК-3.2				лабораторной
		ПК-3.3				работы
3	Создание реалистичной	ПК-1.1	1	1,2,3	1	Защита
	сцены средствами	ПК-1.2				лабораторной
	систем визуализации	ПК-1.3				работы
		ПК-3.1				
		ПК-3.2				
		ПК-3.3				
4	Разработка	ПК-1.1	1	1,2,3	1	Защита
	интерактивных	ПК-1.2				лабораторной
	графических	ПК-1.3				работы
	приложений с	ПК-3.1				
	использованием	ПК-3.2				
	интегрированных сред	ПК-3.3				
	разработки					
	программных продуктов					

4.3. Наименование тем лекций, их содержание и объем в часах

Не предусмотрены учебным планом

4.4. Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование практических работ	Трудоем- кость (час)
1.	1	Проектирование графических моделей	8
2.	2	Конструирование сборок и сцен	8
	Всего		16

4.5. Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудоем- кость (час)
1	1	Системы трехмерного моделирования	8
2	2	Разработка 3D моделей с использованием систем автоматизированного проектирования	8
3	3	Создание реалистичных сцен с использованием систем визуального моделирования	8
4	4	Разработка графических приложений для решения прикладных задач	8
	Всего		32

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся (формы текущего контроля приводятся согласно данным таблицы 4.2):

- защиты практических работ, защиты лабораторных работ:
- 1) Программные продукты для 3D моделирования и визуализации
- 2) Построение 3D моделей с использованием систем автоматизированного проектирования
- 3) Создание реалистичной сцены средствами систем визуализации

4) Разработка интерактивных графических приложений с использованием интегрированных сред разработки программных продуктов.

Примечание: оценочные материалы (вопросы к проведению лабораторных занятий, задания для самостоятельной работы и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет с оценкой.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) Основная литература

а) Основная литература				
№	Наименование книги	Год		
п/п	Паименование книги			
1	Кознов, Д. В. Основы визуального моделирования : учебное пособие /	2020		
	Д. В. Кознов. — 3-е изд. — Москва : Интернет-Университет			
	Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. —			
	246 с. — ISBN 978-5-4497-0674-4. — Текст : электронный // Цифровой			
	образовательный ресурс IPR SMART : [сайт]. — URL:			
	https://www.iprbookshop.ru/97561.html (дата обращения: 26.06.2023). —			
	Режим доступа: для авторизир. пользователей			
2	Моделирование поверхностей в КОМПАС-3D : учебное пособие /	2019		
	составители И. В. Емельянова [и др.]. — Самара : Самарский			
	государственный технический университет, ЭБС АСВ, 2019. — 85 с. —			
	Текст : электронный // Цифровой образовательный ресурс IPR SMART :			
	[сайт]. — URL: https://www.iprbookshop.ru/105215.html (дата			
	обращения: 26.06.2023). — Режим доступа: для авторизир.			
	пользователей DOI: https://doi.org/10.23682/105215			

б) Дополнительная литература

№ п/п	Наименование книги	
1	Бумага, А. И. Трехмерное моделирование в системе проектирования	
	КОМПАС - 3D : учебно-методическое пособие / А. И. Бумага, Т. С.	
	Вовк. — Макеевка: Донбасская национальная академия строительства	
	и архитектуры, ЭБС АСВ, 2019. — 78 с. — Текст : электронный //	
	Цифровой образовательный ресурс IPR SMART : [сайт]. — URL:	
	https://www.iprbookshop.ru/92355.html (дата обращения: 26.06.2023). —	
	Режим доступа: для авторизир. пользователей	

в) методические указания для обучающихся по освоению дисциплины

- 1. Русяк И.Г., Кетова К.В., Касаткина Е.В., Вавилова Д.Д. Методические указания к оформлению и выполнению рефератов, лабораторных работ, курсовых работ и проектов, практик, выпускных квалификационных работ для студентов направления «Прикладная математика», 2021. -38 c.- Рег. номер МиЕН 1-1/2021.
- 2. Нефедов Д.Г. Методические указания к выполнению лабораторных работ по курсу «Системы 3D моделирования и визуальные технологии»: учеб.-метод. пособие для студ., обуч. по напр. 01.04.04 «Прикладная математика». Ижевск, 2021. 33 с. Рег. номер 1-38/2021.
- 3. Нефедов Д.Г. Методические указания к выполнению практических заданий и курсовых работ по дисциплине «Системы 3D моделирования и визуальные технологии»: учеб.-метод. пособие для студ., обуч. по напр. 01.04.04 «Прикладная математика». Ижевск, 2021. 23 с. –Рег. номер 1-38/2021.

г) перечень ресурсов информационно-коммуникационной сети Интернет

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks.
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi-
 - bin/irbis64r 12/cgiirbis 64.exe?LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS.
- 3. Национальная электронная библиотека http://нэб.pф.
- 4. Мировая цифровая библиотека http://www.wdl.org/ru/.
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp.
- 7. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/.

д) лицензионное и свободно распространяемое программное обеспечение:

- 1. Microsoft Office Standard 2007.
- 2. Среда программирования MS Visual Studio Community 2019.
- 3. Unity 3D
- 4. Autodesk AutoCAD.
- Компас-3D.

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебнонаглядные пособия, тематические иллюстрации).

2. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

3. Лабораторные работы.

Для лабораторных занятий используются аудитория №6-309, оснащенная следующим оборудованием: проектор, экран, компьютер/ноутбук

4. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201 корпус № 1, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.7);
- помещения для самостоятельной работы обучающихся (указать ауд. 309, корпус №6, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.48).

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психологомедико-педагогической комиссии (ПМПК).

Лист согласования рабочей программы дисциплины (модуля) на учебный год

Рабочая программа дисциплины (модуля) по направлению подготовки

01.04.04 Прикладная математика»

код и наименование направления подготовки (специальности)

по направленности (профилю/программе/специализации)

«Разработка программного обеспечения и математических методов решения задач

с использованием искусственного интеллекта»

наименование направленности (профиля/программы/специализации)

согласована на ведение учебного процесса в учебном году:

Учебный год	« Согласовано»: заведующий кафедрой, ответственной за РПД (подпись и дата)
2023 – 2024	MRUS 27.04.2023
2024 – 2025	

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине Системы 3D моделирования и визуальные технологии

наименование – полностью

направление (специальность) <u>01.04.04 «Прикладная математика»</u> код, наименование – полностью

направленность (профиль/ программа/специализация) «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»

наименование - полностью

уровень образования: магистратура

форма обучения: очная

общая трудоемкость дисциплины составляет: 6 зачетных единиц(ы)

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами

достижения компетенций, представлены ниже

№ п/п	Коды компетенции и и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1	ПК-1.1. Знать: процедуры интеграции программных модулей и компонентов при разработке программного обеспечения	31: назначение и функционал современных средств визуализации	Защита практической работы, защита лабораторной работы
2	ПК-1.2. Уметь: использовать стандартные программные модули и компоненты при разработке программного обеспечения в области профессиональной деятельности	У1: разрабатывать трехмерные модели объектов с использованием средств автоматизированного проектирования У2: создавать графические приложения с использованием интегрированных сред разработки программных продуктов У3: применять средства визуализации для решения прикладных задач	Защита практической работы, защита лабораторной работы
3	ПК-1.3. Владеть: практическими навыками интеграции программных модулей и компонентов при разработке программного обеспечения в области профессиональной деятельности	H1: разработка 3D моделей и графических приложений с использованием визуальных технологий	Защита практической работы, защита лабораторной работы
4	ПК-3.1. Знать: методологию управления разработкой наукоемкого программного обеспечения	31: назначение и функционал современных средств визуализации	Защита практической работы, защита лабораторной работы
5	ПК-3.2. Уметь: применять методологию и средства управления разработкой наукоемкого программного обеспечения	У1: разрабатывать трехмерные модели объектов с использованием средств автоматизированного проектирования У2: создавать графические приложения с использованием интегрированных сред разработки программных продуктов У3: применять средства визуализации для решения прикладных задач	Защита практической работы, защита лабораторной работы
6	ПК-3.3. Владеть: практическими навыками	H1: разработка 3D моделей и графических приложений с	Защита практической работы, защита

управления разработкой	использованием визуальных	лабораторной работы
наукоемкого программного	технологий	
обеспечения		

Наименование: зачет с оценкой

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения зачета:

- 1. Дайте определение САПР. Приведите примеры САПР, их достоинства и недостатки.
- 2. Графические форматы файлов. Особенности экспорта/импорта графических файлов в системах автоматизированного проектирования и визуализации.
- 3. Способы создания моделей объектов в системе AutoCAD.
- 4. Инструменты создания чертежей с использованием AutoCAD. Нанесение размеров
- 5. Примеры движков для визуального имитационного моделирования, их достоинства и недостатки.
- 6. Особенности конструирования объектов и сцен в среде Unity 3D.
- 7. Создание и расстановка геометрических моделей, осветителей и камер в системах визуализации. Назначение материалов, текстур.
- 8. Создание скриптов в Unity 3D для управления движением и анимацией.
- 9. Алгоритм использования расчетных модулей в среде Unity 3D.
- 10. Применение сред разработки графических приложений для решения прикладных задач. Пример визуализации движения объекта по баллистической траектории
- 11. Особенности моделирования физических процессов с использованием систем имитационного 3D моделирования

Критерии оценки:

Приведены в разделе 2

Наименование: защита лабораторных работ.

Представление в ФОС:

Примеры вопросов, представляемых студенту для защиты лабораторной работы

- 1. Приведите этапы 3D-моделирования.
- 2. Приведите виды 3D-моделирования.
- 3. Что такое рендеринг?
- 4. Назовите основные технологии 3D-моделирования.

Критерии оценки:

Приведены в разделе 2.

Наименование: защита практических работ.

Представление в ФОС:

Примеры вопросов, представляемых студенту для защиты практической работы

- 1. Виды математических моделей, используемых в системах проектирования графических моделей.
- 2. Методы проектирования сборки.

Критерии оценки:

Приведены в разделе 2.

Наименование: защита курсовых работ

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине

Примеры тем курсовых работ:

1. Трехмерное моделирование и визуализация распространения волн давления при

- испытаниях боеприпасов.
- 2. Пространственное моделирование и анализ показателей демографических процессов на примере УР.
- 3. Пространственное моделирование и анализ показателей демографических процессов на примере РФ.
- 4. Трехмерное моделирование и визуализация процессов внутренней баллистики

Критерии оценки:

Приведены в разделе 2

Наименование: тест

Представление в ФОС: набор вопросов для проведения тестирования

Варианты заданий:

Компетенция

ПК-1. Способен интегрировать программные модули и компоненты при разработке программного обеспечения в области профессиональной деятельности.

Компетенция

ПК-3. Способен организовывать процессы управления разработкой наукоемкого программного обеспечения.

Оценочные материалы

Компетенция ПК-1. Способен интегрировать программные модули и компоненты при разработке программного обеспечения в области профессиональной деятельности.

Проведение работы заключается в ответе на вопросы теста.

- 1. Какой из перечисленных 3D-движков является отечественным?
- A) Unity 3D.
- B) Unreal Engine.
- C) Unigine.
- D) Doom engine.
 - 2. Дайте определение 3D-моделированию:
- А) Область деятельности, в которой компьютерные технологии используются для создания изображений.
- В) Процесс создания трёхмерной модели объекта.
- С) Построение проекции в соответствии с выбранной физической моделью.
- D) Придание анимации или движения объектам.
 - 3. Автоматический расчёт взаимодействия частиц, твёрдых/мягких тел с моделируемыми силами гравитации, ветра, выталкивания, а также друг с другом, называется:
- А) Анимация
- В) Динамическая симуляция
- С) Текстурирование
- D) Построение проекции
 - 4. Что такое Рендеринг?

- А) Построение проекции в соответствии с выбранной физической моделью.
- В) Доработка изображения.
- С) Придание движения объектам.
- D) Придание анимации объектам.
 - 5. Первым этапом при оцифровке источника и создании 3D-модели является:
- А) моделирование.
- В) анимация.
- С) текстурирование.
- D) динамическая симуляция.

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	C	В	В	A	A

Компетенция ПК-3. Способен организовывать процессы управления разработкой наукоемкого программного обеспечения.

Проведение работы заключается в ответе на вопросы теста.

- 1. На каком этапе математическая пространственная модель превращается в плоскую картинку?
- А) алгоритмирование.
- В) текстурирование.
- С) моделирование.
- D) рендеринг.
 - 2. Простейшие геометрические фигуры, соединенные друг с другом общими сторонами это:
- А) полигоны
- В) примитивы
- С) сплайны
- D) слайды
 - 3. Раздел компьютерной графики, охватывающий алгоритмы и программное обеспечение для оперирования объектами в трехмерном пространстве это:
- А) векторная графика
- В) трехмерная графика
- С) растровая графика
- D) фрактальная графика.
 - 4. Технология наложения информации в форме текста, графики, аудио и других виртуальных объектов на реальные объекты в режиме реального времени называется ...:
- А) виртуальной реальностью.
- В) дополненной реальностью.
- С) смешанной реальностью.
- D) трехмерным моделированием.

5. К графическим АРІ не относится:

- A) Direct3D.
- B) OpenGL.
- C) Vulkan.
- D) GitHub.

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	D	В	В	В	D

Критерии оценки:

Приведены в разделе 2

2. Критерии и шкалы оценивания

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов
Практическая работа	Задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий. На защите практической работы даны правильные ответы не менее чем на 50% заданных вопросов
Лабораторная работа	Лабораторная работа выполнена в полном объеме; Представлен отчет, содержащий необходимые расчеты, выводы, оформленный в соответствии с установленными требованиями; Продемонстрирован удовлетворительный уровень владения материалом при защите лабораторной работы, даны правильные ответы не менее чем на 50% заданных вопросов.

Выполнение и защита курсового проекта (курсовой работы) оценивается согласно шкале, приведенной ниже. На защите курсового проекта (курсовой работы) обучающемуся задаются 3 вопроса по теме курсового проектирования (курсовой работы); оцениваются формальные и содержательные критерии.

Критерии оценивания курсовой работы:

No॒	Показатель	Максимальное количество баллов
I.	Выполнение курсового проекта/курсовой работы	5
1.	Соблюдение графика выполнения	2
2.	Самостоятельность и инициативность при выполнении	3
II.	Оформление курсового проекта/курсовой работы 10	
5.	Грамотность изложения текста, безошибочность	3

No	Показатель	Максимальное количество баллов
6.	Владение информационными технологиями при оформлении	4
4.	Качество графического материала	3
III.	Содержание курсового проекта/курсовой работы	15
8.	Полнота раскрытия темы	10
9.	Качество введения и заключения	3
10.	Степень самостоятельности в изложении текста (оригинальность)	2
IV.	Защита курсового проекта/курсовой работы	70
11	Понимание цели	5
12	Владение терминологией по тематике	5
13	Понимание логической взаимосвязи разделов	5
14	Владение используемыми системами 3D моделирования и визуализации	5
15	Степень освоения рекомендуемой литературы	5
16	Умение делать выводы по результатам выполнения	5
17	Степень владения материалами, изложенными в работе (проекте), качество ответов на вопросы по теме	40
	Всего	100

Итоговая оценка выставляется с использованием следующей шкалы:

Оценка	Набрано баллов	
«отлично»	90-100	
«хорошо»	75-89	
«удовлетворительно»	60-74	
«неудовлетворительно»	0-60	

Промежуточная аттестация по дисциплине проводится в форме зачета с оценкой.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«отлично»	90-100
«хорошо»	75-89
«удовлетворительно»	60-74
«неудовлетворительно»	0-60

Eсли сумма набранных баллов менее 60 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 60 до 100 баллов, обучающийся допускается до зачета с оценкой.

Билет к зачету с оценкой включает 1 теоретическое и 1 практическое задание.

Промежуточная аттестация по дисциплине проводится в письменной форме.

Время на подготовку: 90 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки
«отлично»	Обучающийся показал всестороннее, систематическое и
	глубокое знание учебного материала, предусмотренного

	программой, умение уверенно применять на их практике
	при решении задач (выполнении заданий), способность
	полно, правильно и аргументировано отвечать на вопросы
	и делать необходимые выводы. Свободно использует
	основную литературу и знаком с дополнительной
	литературой, рекомендованной программой
«хорошо»	Обучающийся показал полное знание теоретического
	материала, владение основной литературой,
	рекомендованной в программе, умение самостоятельно
	решать задачи (выполнять задания), способность
	аргументировано отвечать на вопросы и делать
	необходимые выводы, допускает единичные ошибки,
	исправляемые после замечания преподавателя. Способен к
	самостоятельному пополнению и обновлению знаний в
	ходе дальнейшей учебной работы и профессиональной
	деятельности
«удовлетворительно»	Обучающийся демонстрирует неполное или фрагментарное
	знание основного учебного материала, допускает
	существенные ошибки в его изложении, испытывает
	затруднения и допускает ошибки при выполнении заданий
	(решении задач), выполняет задание при подсказке
	преподавателя, затрудняется в формулировке выводов.
	Владеет знанием основных разделов, необходимых для
	дальнейшего обучения, знаком с основной и
	дополнительной литературой, рекомендованной
	программой
«неудовлетворительно»	Обучающийся при ответе демонстрирует существенные
	пробелы в знаниях основного учебного материала,
	допускает грубые ошибки в формулировании основных
	понятий и при решении типовых задач (при выполнении
	типовых заданий), не способен ответить на наводящие
	вопросы преподавателя. Оценка ставится обучающимся,
	которые не могут продолжить обучение или приступить к
	профессиональной деятельности по окончании
	образовательного учреждения без дополнительных занятий
	по рассматриваемой дисциплине