- 1. The plane x=0 has a constant surface charge density σ_1 and the plane x=a has a constant charge density σ_2 . Find the electric field in the three regions $x<0, \quad 0< x< a$ and x>a by solving the Laplace's equation.
- 2. The points on the xy plane is maintained at potential $V_0 \sin(\alpha x + \beta)$. The potential goes to 0 as $z \to \pm \infty$. Find the potential at all the points above and below the xy plane.
- 3. A conducting sphere of radius R has an amount of charge Q over it. This sphere is placed in an otherwise uniform electric field \vec{E}_0 . The potential of the sphere is found to be V_0 . Find the potential in the region outside the sphere.
- 4. A sphere of radius R has a surface charge given by the surface charge density $\sigma = k \cos 3\theta$ where k is a constant. Find the potential inside and outside the sphere.
- 5. A ring of radius R has a charge Q uniformly spread along it. The ring is placed on the x-y plane with the z-axis coinciding with its axis. Find the potential $V(r,\theta)$ in the region surrounding the ring.

6. Solve Laplace's equation by separation of variables in cylindrical co-ordinates, assuming there is no dependence on z.