Review – The Perceptron

 The perceptron is a neuron with a bias and a threshold function

Review – Hebbian Algorithm

- **Step 0**: initialize all weights to 0
- Step 1: Given a training input, s, with its target output, t, set the activations of the input units: x_i = s_i
- **Step 2**: Set the activation of the output unit to the target value: y = t
- Step 3: Adjust the weights: $w_i(new) = w_i(old) + x_iy$
- Step 4: Adjust the bias (just like the weights): b(new) = b(old) + y

More on Hebbian Learning

OUTLINE · Heteroassociative Architecture

- **Backpropagation**

Alternative View

- Goal: Associate an input vector with a specific output vector in a neural net
- In this case, Hebb's Rule is the same as taking the outer product of the two vectors:

$$\mathbf{s} = (s_1, \dots, s_i, \dots s_n) \text{ and } \mathbf{t} = (t_1, \dots, t_i, \dots t_m)$$

$$\mathbf{s} = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} [t_1 \dots t_m] = \begin{bmatrix} s_1 t_1 & \cdots & s_1 t_m \\ \vdots & \ddots & \ddots \\ s_n t_1 & \cdots & s_n t_m \end{bmatrix} \quad \longleftarrow \text{Weight matrix}$$

Weight Matrix

- To store more than one association in a neural net using Hebb's Rule
 - Add the individual weight matrices
- This method works only if the input vectors for each association are orthogonal (uncorrelated)
 - That is, if their dot product is 0

$$\mathbf{s} = (s_1, \dots, s_i, \dots s_n) \text{ and } \mathbf{t} = (t_1, \dots, t_i, \dots t_m)$$

$$\mathbf{s} \bullet \mathbf{t} = [s_1 \dots s_n] \begin{bmatrix} t_1 \\ \vdots \\ \vdots \\ t_m \end{bmatrix} = 0$$

Heteroassociative Architecture

 There are n input units and m output units with each input connected to each output unit.

Example

 GOAL: build a neural network which will associate the following two sets of patterns using Hebb's Rule:

```
s_1 = (1 -1 -1 -1) t_1 = (1 -1 -1)

s_2 = (-1 1 -1 -1) t_2 = (1 -1 1)

s_3 = (-1 -1 1 -1) t_3 = (-1 1 -1)

s_4 = (-1 -1 1) t_4 = (-1 1 1)
```

The process will involve 4 input neurons and 3 output neurons

The algorithm involves finding the four outer products and adding them

Algorithm

Pattern pair 1:

$$\begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1$$

Pattern pair 2:

$$\begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix}$$

Pattern pair 3:

Pattern pair 4:

Weight Matrix

 Add all four individual weight matrices to produce the final weight matrix:

$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & -2 \\ 2 & -2 & 2 \\ -2 & 2 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

Example Architecture

General Structure

Example Run 1

• Try the first input pattern:

Example Run II

Try the second input pattern:

Example Run III

Try the Third input pattern:

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \\ -1 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = \begin{cases} 1 & \text{if } y_{i} = 0 \\ 0 & \text{if } y_{i} = 0 \end{cases}$$

Example Run IV

Try the fourth input pattern:

$$\mathbf{s}_{4} = (-1 \quad -1 \quad -1 \quad 1) \quad \mathbf{t}_{4} = (-1 \quad 1 \quad 1) \quad \mathbf{y}_{i} = \begin{cases} 1 \text{ if } y_{i} = 0 \\ 0 \text{ if } y_{i} = 0 \\ -1 \text{ if } y_{i} = 0 \end{cases}$$

$$\mathbf{y}_{i} = (-1 \quad -1 \quad 1) \quad \mathbf{y}_{i} = (-1 \quad 1 \quad 1) \quad \mathbf{y}_$$

Example Run V

Try a non-training pattern

Example Run VI

Try another non training pattern

Backpropagation

- Backpropagation is the most well know and widely used neural network system
- It is a multi-layered, feedfoward, perceptron-like structure
- Uses the backpropagation rule (or generalized delta rule) for training

Characteristics

- A multi-layered perceptron has three distinctive characteristics
 - The network contains one or more layers of hidden neurons
 - The network exhibits a high degree of connectivity
 - Each neuron has a smooth (differentiable everywhere) nonlinear activation function, the most common is the sigmoidal nonlinearity:

$$y_j = \frac{1}{1 + e^{s_j}}$$

General Structure

 The backpropagation algorithm provides a computational efficient method for training multi-layer networks

Architecture

• Typical backprop system (bias not shown)

Signal Direction

- Feedforward (for training and normal operation)
- Backpropagation (for error signals)

Activation Function

- The neurons in the BackProp system use a different activation function than the neurons we have studied up to this point
 - Continuous
 - Differentiable
 - Monotonically nondecreasing
- For example, the bipolar sigmoid:

$$f(x) = \frac{2}{1 + e^{-x}} - 1$$

Possible Quiz

What is backpropagation used for?

How do find the final weight matrix?

What kind of neurons are used in a backpropagation system?

SUMMARY

More on Hebbian Learning

Heteroassociative Architecture

Backpropagation