

Logistic Regression

Machine Learning

Motivation

- Can you tell when something is political?
 - Consider two examples from Twitter:

has iced the sugar cookie pumpkins and gangrenous feet, and is handing out candy to adorable wee goblins. So sweet! All of it.

RT @ConserValidity: Why do ignorant Progressive Liberals believe Obama/Pelosi Care=reform?Do they know it has nothing to do w/ Health Care?

- How did you make the decision about what is political?
- Let's first figure out how to make a basic "yes/no" classification

Why Logistic Regression?

Pros

- Computationally inexpensive*
- Relatively easy to implement
- Easy to interpret

Cons

- Prone to underfitting (i.e. low performance)
- o Can misbehave with large numbers of features / variables, especially when not linear

Other stuff

- Three types of logistic regression: *binomial* (TRUE/FALSE); *multinomial* (many categories)
- Uses gradient ascent or a version of it usually stochastic gradient descent an iterative optimization algorithm

Transposing Matrices

Example matrix and its transpose

$$\begin{pmatrix} 5 & 4 \\ 4 & 0 \\ 7 & 10 \\ -1 & 8 \end{pmatrix}^{T} = \begin{pmatrix} 5 & 4 & 7 & -1 \\ 4 & 0 & 10 & 8 \end{pmatrix}_{2 \times 4}$$

Quiz:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}_{2x3}^{T} = ?$$

Multiplying Matrices

• Example matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

- Scalar multiplication (y = 3)
- Vector multiplication $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$
- Multiplication with another matrix

Odds (Ratio)

- Represents the likelihood of some event taking place (vs. not taking place)
 - Sometimes (especially for gambling) expressed as "odds on" and "odds against"
 - o NOT the same as probability, but related
- Odds ratio
 - Given two events, A and B:
 - What are the odds that B is seen with A?
 - What are the odds that (not B) is seen with A?
 - What is the ratio of the above?
 - Similar to conditional probability

odds (ratio)	o_f	o_a	p	q
1:1	1	1	50%	50%
0:1	0	00	0%	100%
1:0	00	0	100%	0%
2:1	2	0.5	67%	33%
1:2	0.5	2	33%	67%
4:1	4	0.25	80%	20%
1:4	0.25	4	20%	80%
9:1	9	0.1	90%	10%
10:1	10	0.1	90.90%	9.09%
99:1	99	0.01	99%	1%
100:1	100	0.01	99.0099%	0.90%

Step Function

- Need a function to decide the class of an instance
 - A step function allows us to do this
 - (There are issues with Heaviside)
 - Of the possibilities, we use the sigmoid function $f(x) = \frac{1}{1 + e^{-x}}$
 - \circ Any value above 0.5 = 1; otherwise = 0
- Objective of the Logistic Regression algorithm:
 - Establish values for weight matrix
 - Minimise the error / Maximise the accuracy

Gradient

Error curves

- Assume we can quantify the errors of a model as a continuous function of the feature weights
- Goal: find a point of minimal error by finding the lowest point on our error curve
- The contrapositive is true for accuracy
- Finding the minimal error point:
 - Quantify error in a consistent manner
 - Move in the direction of maximum error reduction
 - Practically: move slowly to avoid overshooting

From Linear Regression

- For training a linear regression model, we have:
 - \circ Y (target, a vector of real numbers) ... and $\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}$
- ... and we derive a vector of regression coefficients

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}$$

- We sometimes call this the weight matrix (w^T)
- We use B (weight vector) as our odds ratios

Logistic Regression — Algorithm

```
Set all weights to some default value (1?)
REPEAT until convergence:
   Calculate error and gradient
   Update the weight vector by constant (alpha) * gradient
# convergence criteria (either of):
   # a) Number of times through loop
   # b) Error does not improve by greater than threshold
```


Trivial Example

Assume two points:

```
Instance 1 = (1, 1) \Rightarrow 1
Instance 2 = (2, 2) \Rightarrow 0
```

- Initialise
 - alpha to some scalar (0.1 for this example?)
 - \circ $Y = Y^T$
 - \circ weights to $\begin{bmatrix} 1 & 1 \end{bmatrix}^{T}$
- Repeat:
 - h = sigmoid(X * weights)
 - \circ error = (Y h)
 - \circ weights += X^T * error * alpha

Logistic Regression: Implementation

- Classifier (Abstract) Base Class
 - Implemented as <u>classifier.py</u>
 - This will be the base class for all our classifiers
- Needs constructor + two functions:
 - Implemented as <u>logistic regression.pv</u>
 - o fit (self, train_x, train_y)
 - train_x: a matrix of feature values
 - train_y: a vector of target values 0 or 1 for binary logistic regression
 - Changes internal state of classifier; does not return any value
 - o predict (self, test_x)
 - test_x: a matrix of feature values
 - Returns h(test_x): a vector of target hypotheses for test_x

Logistic Regression in Python (1)

Establish some internal variables.

```
def __init__(self):
    self.alpha = 0.001
    self.maxcycles = 500
    self.weights = None # Placeholder for later
```

 Using numpy, the sigmoid step function is trivial (but maybe this function should be private/protected/"please don't touch"?)

```
def sigmoid(self, x):

return 1.0 / (1 + np.exp(-x))
```


Logistic Regression in Python (2)

```
def fit(self, Xin, Yin):
    X = np.mat(Xin)
    Y = np.mat(Yin).transpose()
   m, n = X.shape
    self.weights = np.ones((n, 1))
    for k in range(self.maxcycles):
        h = self.sigmoid(X * self.weights) # h = hypotheses
        error = (Y - h)
        self.weights = self.weights + self.alpha * \
            X.transpose() * error
    return self.weights
```


Example (not a lab, but...)

- This is not a lab, but perhaps a good exercise:
 - Import this synthetic dataset
 - Data has two classes (0, 1) and two features
 - Graph the data should look like this:
- Apply linear regression algorithm
 - The fit function as above
 - No need for predict function yet
 - Graph the line associated with the weights

Example — Results

- After 1 iteration
- After 10 iterations
- After 50 iterations
- After 100 iterations
- After 250 iterations
- After 500 iterations

Questions about the Example

- What is the effect of increasing the number of iterations?
- What is the effect of changing alpha?
 - Increasing to 1.0?
 - Decreasing to 0.00001?
- What is the effect of changing the initial values of the weight vector?
 - ... when the number of iterations is low (1? 10?)
 - ... when the number of iterations increases?

Stochastic Gradient

- Example is a toy dataset
 - \circ N = 100; p = 2
 - 500 iterations to converge
 - What if this were a big data problem?
- A step in the right direction: **stochastic** gradient [descent/ascent]
 - Updates weights based on the current instance
 - Algorithm:

```
Set all weights to some default value (1?) foreach x_i \in X:

Calculate error and gradient for x_i

Update the weight vector by constant (alpha) * gradient
```

Online learning algorithm

Checking Weights

- What is happening?
 - Happens to all weights
 - Especially for x1, x2
- Why is it happening?
- What can be done?

Hypotheses / Predictions

- With Logistic Regression, generating a hypothesis is simple:
 - o p(x) = sigmoid(sum(x*self.weights))
 - If p(x) > 0.5, x represents an instance of the class encoded as 1
- Normally, we want to generate a vector of predictions, one for each input:

```
def predict(self, X):
    hypotheses = []
    for x in X:
        prob = self.sigmoid(sum(x*self.weights))
        if prob > 0.5:
            hypotheses.append(1)
        else:
            hypotheses.append(0)
    return hypotheses
```


Model Performance

- How good is our model?
- Accuracy
 - Easy to calculate and understand
 - Does not show where the errors lie i.e. where the model can be improved
- Confusion Matrix
 - Table used to show performance of a classifier
 - Simple to understand
 - Terminology can be confusing
 - True Positive / True Negative
 - False Positive (Type I error)
 - False Negative (Type II error)

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Testing the Model

- Another good exercise:
 - Predict the classes of this subset of the synthetic dataset
 - Data has two classes (0, 1) and two features
 - Determine the accuracy
 - Show the confusion matrix
- Show solutions

Next Time

- Back to the Tweet Storm
 - Twitter Political Corpus data = https://www.usna.edu/Users/cs/nchamber/data/twitter/
 - o L1 & L2 norms
 - Cross Validation
- Multinomial Logistic Regression