

Long Read Data Analysis

Richard Orton
Richard.Orton@glasgow.ac.uk
MRC-University of Glasgow Centre for Virus Research

Long Reads

Nanopore reads

not PacBio reads (I've never analysed them)

Practical

HCMV

- Not amplicons normal reads
- Downloaded from SRA
- Align the reads using minimap2, call medaka consensus
- Show how to process first sample (urine)
- Up to you to adapt commands for the other sample (lung)

SARS-CoV-2

- Amplicons
- ARTIC pipeline (conda)
- Show how to process first sample (barcode06)
- Up to you to adapt commands for another sample

Nanopore videos

https://nanoporetech.com/platform/technology

Oxford Nanopore Sequencing

- All Oxford Nanopore sequencing devices use flow cells which contain an array of tiny holes — nanopores embedded in an electro-resistant membrane.
- Each nanopore corresponds to its own electrode connected to a channel and sensor chip, which measures the electric current that flows through the nanopore.
- When a molecule passes through a nanopore, the current is disrupted to produce a characteristic 'squiggle'.
- The squiggle is then decoded using basecalling algorithms to determine the DNA or RNA sequence in real time.
- https://nanoporetech.com/how-it-works

By DataBase Center for Life Science (DBCLS) https://doi.org/10.7875/togopic.2020.01, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=86372818

Nanopore Basecalling

- The electrical signals or squiggles for each read are stored in the FAST5 format – NOW POD5 format
- Typically, each .fast5 file has the data for 4,000 reads in it
- Basecalling converts FAST5 into FASTQ
- guppy basecaller (available to download from Oxford Nanopore after registration) – NOW DORADO
- https://nanoporetech.com/how-it-works/basecalling
- You need a Graphical Processing Unit (GPU) on the computer running the MinION in order to perform basecalling in a reasonable amount of time
- Needs to be NVidia graphics card CUDA
- GridION & Mk1c have a GPU built in

By Marrabbio2 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1785530

By https://www.nvidia.com/object/io_1221568471314.html, Fair use, https://en.wikipedia.org/w/index.php?curid=53650345

Basecalling Modes

- Basecalling converts FAST5/POD5 into FASTQ modes:
- DNA fast: q-score 8
- DNA hac (high accuracy): q-score 9
- DNA super hac: q-score 10
- If sequencing error is random, then if you have enough depth, you will get the correct consensus
 - Does compound low frequency variants
- BUT errors (in particular) indels are much more likely at homopolymers – can still affect the consensus sequence

15	0.0316228
14	0.0398107
13	0.0501187
12	0.0630957
11	0.0794328
10	0.1000000
9	0.1258925
8	0.1584893
7	0.1995262
6	0.2511886
5	0.3162278
4	0.3981072
3	0.5011872
2	0.6309573
1	0.7943282
0	1.0000000

Nanopore is continually improving

Software, hardware, chemistry continually improving

https://nanoporetech.com/platform/accuracy

From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy

Rang et al. 2018

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1462-9/figures/10.1186/s13059-018-1460-9/figures/10.1186/s1305-018-1460-9/figures/10.1186/s186-9/figure

Flow cell	Kit	Sequencing & basecalling parameters	Sample	Raw read accuracy	Output
R10.4.1	Ligation Sequencing Kit V14	400 bps, 5 kHz, HAC basecalling	Human HG002	99.0% (Q20)	•••
R10.4.1	Ligation Sequencing Kit V14	400 bps, 5 kHz, SUP basecalling	Human HG002	99.5% (Q23)	•••
R10.4.1	Ligation Sequencing Kit V14	400 bps, 5 kHz, Duplex basecalling	Human HG002	>99.9% (Q30)	•

MinION Run Data Folder

- After basecalling
- fast5_pass
 - this folder contains all the raw FAST5 reads that **PASSED** the basic quality control filters of the guppy basecaller.
- fast5_fail
 - this folder contains all the raw FAST5 reads that FAILED the basic quality control filters of the guppy basecaller
- fastq_pass
 - · this folder contains all the FASTQ reads that were converted from the those within the fast5 pass fiolder
- fastq_fail
 - · this folder contains all the FASTQ reads that were converted from the those within the fast5 fail fiolder
- sequencing_summary_FAO14190_ad60b376.txt
 - the sequencing_summary file is produced by the basecaller and contains a summary of each read such as it's name, length, barcode and what FAST5 and FASTQ files it is located in.

MinION Barcoding and demultiplexing

- ONT Native Barcoding Expansion kit allows up to 96 samples to be sequenced at once on a single flow cell.
- If given the appropriate information, the guppy basecaller will **demultiplex** reads into their different **barcodes**
- fastq pass
 - barcode06
 - barcode06 0.fastg, barcode06 1.fastg, barcode06 2.fastg, ...
 - barcode07
 - barcode07_0.fastq, barcode07_1.fastq, barcode07_2.fastq, ...
 - barcode12
 - barcode12 0.fastq
 - unclassified
 - unclassified_0.fastq, unclassified_1.fastq, unclassified_2.fastq, unclassified_3.fastq, ...
- Typically, each FASTQ files contains 4,000 reads
- Unclassified contains reads whose barcode could not been determined a large proportion of reads can end up here

1 - Combine reads

- fastq_pass
 - barcode06
 - barcode06_0.fastq, barcode06_1.fastq, barcode06_2.fastq, ...
- Typically, each FASTQ files contains 4,000 reads
- The initial step is often to combine all the FASTQ read files into one file:

```
cat barcode06*.fastq > barcode06.fastq
zcat barcode06*.fastq.gz > barcode06.fastq
```


2 - QC

- Average read quality filtering already applied during base calling
 - DNA fast: q-score 8
 - DNA hac (high accuracy): q-score 9
 - DNA super hac: q-score 10
- Quality doesn't tend to decrease along the read length like illumina, so trimming is not normally done
- Often you want an overview of read lengths and also to know what the longest read length is:
 - NanoPlot
 - prinseq
 - Assembly-stats
- · Size filtering is sometimes applied
 - Amplicons filter for expected size range

3 - Alignment

- Reads in FASTQ format, reference sequence to align to
- We need to use a nanopore capable aligner, that can cope with the elevated error rate:
 - minimap2
- Alignment creates a SAM file

```
minimap2 -x map-ont -a -o my.sam ref.fasta reads.fastq
samtools sort my.sam -o my.bam
samtools index my.bam
rm my.sam
```


As we now have a BAM most things from yesterday still apply:

- samtools to count the number of mapped/unmapped reads
- Coverage plots
- Tablet

4 – consensus

- As there is an elevated error rate, and as nanopore has a systematic bias (covered yesterday) around homopolymers
- We typically have to use a specialised consensus caller that takes nanopore error rates into account
 - nanopolish
 - medaka
- However, the latest r10 chemistry is improving things greatly

Delahaye C, Nicolas J (2021) Sequencing DNA with nanopores: Troubles and biases. PLoS ONE 16(10): e0257521.

https://doi.org/10.1371/journal.pone.0257521

medaka_consensus -i reads.fastq -d ref.fasta -m r941_min_high_g360

-m tells medaka the nanopore chemistry (r941), the hardware (minion or promethion), the base calling mode (high) and the guppy version (g360)

The -g (don't use ref seq to replace regions of 0 cov) and -r (use gap-filling character) options can be used to further optimize the consensus

ARTIC Amplicons – https://artic.network

- 98 ~400 base pair overlapping amplicons across the genomes
- Sequenced in two non-overlapping pools
- Quick et al (2017) Nat Protoc. 2017 Jun; 12(6): 1261–1276
- Tyson et al (2020) PMID: 32908977
- SARS-CoV-2 ARTIC Primer Versions: V1, V2, V3, V4 (delta), V4.1 (Omicron)

SARS-CoV-2 Genome = 29,903 bp

Pool 1

Pool2

98 ~400bp overlapping amplicons

https://www.lexogen.com/sars-cov-2-whole-genome-sequencing-artic-panel/

Primers need to be removed

de removed

- Primers are not the virus genome they bind to the viral genome to initiative amplification
- Amplicons therefore contain the primer sequences themselves
- The viral genome may have a mutation where the primer binds - so primers need to be removed
- This can be done post-alignment if you know where the primer binds to in relation to the genome

ARTIC Primer Versions

- SARS-CoV-2 ARTIC Primer Versions: V1, V2, V3, V4 (delta), V4.1 (Omicron)
- **V1:** systematic dropping out of amplicons 18 and 76: no more than 98% genome coverage
 - nCoV-2019_18_LEFT and nCoV-2019_76_RIGHT might form a dimer
- V2: substituting nCoV-2019_18_LEFT for nCoV-2019 18 LEFT alt2.
 - Users quickly reported that this change caused other amplicons to drop out instead resulting in a sort of amplicon whack-a-mole!
- This illustrates the unpredictable interactions between primers within a multiplex PCR reaction.
- V3: addition of alternative primers (alts) for amplicons 7, 9, 14, 15, 18, 21, 44, 45, 46, 76 and 89
- V4, V4.1: deletions/mutations in delta and omicron

https://community.artic.network/t/ncov-2019-version-3-amplicon-release/19

ARTIC SARS-CoV-2 Bioinformatics Protocol

ARTIC Consensus Sequences

- Medaka/ARTIC called and filtered variants pass VCF file
- Wuhan-Hu-1 Reference Sequence
- Modify the reference based on the passed variants (SNPs, indels) in the pass VCF
- Calculate depth flag genome positions with depth less than 40
- Replace all sites in the consensus that have a depth less than 40 with an N
- Ambiguity codes are not used
- Coverage/depth of 40 is the threshold used to create a reliable consensus with nanopore data
- Failed amplicon = genome positions with a depth less than 40
 - As nanopore sequences the whole amplicon on a single read this means there were less than 40 reads of that amplicon

ARTIC Commands – One line each

artic guppyplex

- --skip-quality-check
- --min-length 400
- --max-length 700
- --directory ./barcode06
- --prefix cvr124a

Creates: cvr124a_barcode06.fastq

artic minion

- --normalise 200 (how much to subsample each amplicon)
- --threads 4
- --scheme-directory ~/artic-ncov2019/primer_schemes
- --read-file cvr124a barcode06.fastq
- --medaka
- --medaka-model r941 min high g360

nCoV-2019/V2 (primer scheme to use, within the scheme directory)

barcode06 (output name to use)

Creates: barcode06.consensus.fasta, barcode06.sorted.bam, barcode06.primertrimmed.rg.sorted.bam, barcode06.pass.vcf.gz, ...

Conda - https://conda.io

- Conda is an open source package management system and environment management system
- A conda environment is a directory that contains a specific collection of conda packages that have been installed.
- The ARTIC pipeline comes as a conda environment and has been pre-installed on the course Ubuntu virtual machine, which installs all the other tools it needs (such as minimap2, nanopolish etc).
- conda activate artic-ncov2019
- conda deacticate

https://www.educative.io/answers/anaconda-vs-miniconda

https://mamba.readthedocs.io/en/latest/

Practical

HCMV

- Not amplicons normal reads
- Downloaded from SRA
- Align the reads using minimap2, call medaka consensus
- Show how to process first sample (urine)
- Up to you to adapt commands for the other sample (lung)

SARS-CoV-2

- Amplicons
- ARTIC pipeline (conda)
- Show how to process first sample (barcode06)
- Up to you to adapt commands for another sample

