Choosing an approximate identity $(\psi_n)_{n\in\mathbb{N}}\subset\mathfrak{D}$ we obtain $f=\mathtt{T}(0)\,f=\lim_{n\to\mathbb{N}}\mathtt{T}(\psi_n)\,f=0$

for every $f \in E$.

<u>Proof of Theorem</u> 7.4 (1st part). By the Spectral Inclusion Theorem 6.2 we have to show that every spectral value of T(t) can be approximated by exponentials of spectral values of A . In view of the rescaling procedure it suffices to prove this when $-1 \in \rho(T(\pi))$, provided that the following condition is satisfied.

(7.4) There exists $\varepsilon > 0$ such that $U_{k \in \mathbb{Z}}$ $i[2k+1-2\varepsilon,2k+1+2\varepsilon] \subset \rho(A)$. Assume now that (7.4) holds. Then each of the sets $\sigma_k := \{i_{\alpha} \in \sigma(A) : \alpha \in [2k-1,2k+1]\}$ is a spectral set of A with corresponding spectral projection P_k . If we choose $\phi_0 \in \mathcal{D}$ such that supp $\phi_0 \subset [-1+\varepsilon,1-\varepsilon]$ and $\phi_0(x) = 1$ for $x \in [-1+2\varepsilon,1-2\varepsilon]$ it follows from (7.3) and the integral representation of P_k (cf.(3.1)) that $P_0 = T(\phi_0)$. More generally, since $(e^{i2k} \cdot \phi_0)^+(\alpha) = \phi_0(\alpha-2k)$, the assertions (7.3) and (7.4) imply

(7.5)
$$P_{k} = \int_{-\infty}^{\infty} e^{i2ks} \oint_{O}(s) T(s) ds \text{ for } k \in \mathbb{Z}.$$

At this point we isolate another lemma.

<u>Lemma</u> 7.7. span $\bigcup_{k \in \mathbb{Z}} P_k E$ is dense in E.

<u>Proof.</u> The closure of span $\cup_{k\in\mathbb{Z}}$ P_kE is a 7-invariant subspace G of E. Consider the quotient group $(T(t)_i)_{t\in\mathbb{R}}$ induced on E/G. The spectrum of its generator A_i is contained in $\sigma(A)$ by Prop.4.2.iii. Moreover the spectral projection corresponding to $\sigma(A_i)$ \cap σ_k is the quotient operator P_k . Obviously P_k = 0 , therefore $\sigma(A_i)$ \cap σ_k = \emptyset for every $k\in\mathbb{Z}$ and $\sigma(A_i)$ = \emptyset . By Lemma 7.6 this implies E/G = {0}, i.e. G = E.

<u>Proof of Theorem</u> 7.4 (2nd part). We return to the situation of the first part. Using (7.5) the spectral projection P_k can be transformed into

$$\begin{split} P_k &= \int_{-\infty}^{\infty} e^{i2ks} \, \hat{\phi}_O(s) \, T(s) \, ds \\ &= \sum_{m \in \mathbb{Z}} \int_{(m-1/2)_{\pi}}^{(m+1/2)_{\pi}} e^{i2ks} \, \hat{\phi}_O(s) \, T(s) \, ds \\ &= \int_{-\pi/2}^{\pi/2} e^{i2ks} \, \sum_{m \in \mathbb{Z}} \hat{\phi}_O(s + m_{\pi}) \, T(s + m_{\pi}) \, ds \, , \end{split}$$