

Komplexität und Größe des Dokuments

Verfassen wissenschaftlicher Texte mit <u>ATFX</u>

Übersicht

Umfrage

Einführung

Grundlagen

Text erstellen

Error

Aufzählungen

Struktur

Formelsatz

Mathe-Umgebungen

Advanced

Zahlen und Einheiten

Chemische Formeln

Gleitumgebungen

Tabellen

Fußnoten

Literaturverzeichnis

Fortgeschritten

Links

Makros

Tricks

Ausblick

Umfrage

Betriebs system

Erfahrung mit LaTeX

Einführung

Was ist LATEX?

- Programmiersprache zum Setzen von Text
- Markup ⇒ kein What-You-See-Is-What-You-Get
- lacktriangle ATEX-Code o Kompiler o Ausgabedokument (meist PDF)
- Open-Source, große Erweiterungsmöglichkeit (Pakete)
- Standard-Werkzeug in der Wissenschaft

Warum LATEX?

- Hervorragender Text- und Formelsatz
- Automatisierte Erstellung von Inhalts- und Literaturverzeichnis
- TEX-Dateien sind reine Text-Dateien
 - ⇒ Gut für Versionskontrolle geeignet
- Sehr gute Vorlagen für wissenschaftliches Arbeiten

Warum LATEX?

- Ausgezeichnete Dokumentation
- Erweiterbar durch zahlreiche und mächtige Pakete
- Auf allen geläufigen Betriebssystemen verfügbar
- Ausgabe direkt als PDF mit Hyperlinks

Geschichte

TEX:

- Geschrieben von Donald E. Knuth 1978, um sein Buch "The Art of Computer Programming" zu setzen
- Auf Aussprache achten!
- Version (2014): $3.14159265 \rightarrow \pi$
- Viele Erweiterungen: ε -TEX, pdfTEX, X∃TEX, LuaTEX

LATEX:

- Geschrieben von Leslie Lamport 1984
- Version (1994): LATEX 2_{ε}
- LATEX3 seit Anfang der Neunziger in Arbeit...

Dieser Kurs

- In LATEX gibt es immer viele Möglichkeiten, ein Ziel zu erreichen
- Wir zeigen einen modernen Ansatz
- Wir erklären, warum wir diesen Ansatz gewählt haben
- Weitere Ansätze werden an manchen Stellen kurz erwähnt

Begriffe

TEX-Engine Implementierung von TEX, wird als Programm ausgeführt TEX-Format Paket, welches standardmäßig geladen wird, z.B. LATEX

Eine Kombination davon ist oft ein neues Programm.

 $\label{eq:beispiel:dvilualatex} Beispiel: {\tt dvilualatex} = {\tt LuaTEX} + {\tt LMTEX} + {\tt DVI-Output} \; ({\tt statt} \; {\tt PDF})$

Grundlagen

Das Dokument

Diese drei Zeilen braucht jedes LATEX-Dokument:

```
Code
\documentclass[optionen] {klasse
     }
     % Präambel
     % .
     % .
     \begin{document}
     % Inhalt des Dokuments
     % .
     % .
     \end{document}
```

\documentclass

Dokumentenklasse=Vorlage wählen, mit Optionen anpassen.

Präambel

Globale Optionen und zusätzliche Pakete

document-Umgebung

Inhalt des Dokuments.

Syntax: Befehle

LATEX-Befehle beginnen stets mit einem \ (Backslash). Obligatorische Argumente stehen in { }, optionale Argumente stehen in [].

Syntax

```
\befehl[optional]{obligatorisch}
\befehl*[optional]{obligatorisch}
```

* ruft häufg eine Alternativform des Befehls auf.

Code

% Kommentar

```
\documentclass[paper=a4]{scrartcl}
\frac{1}{2}
```

Erklärung

Dokumentenklasse scrartcl, Papierformat DIN A4. Zwei oder mehr Pflichtargumente, z.B. der Bruch. %-Zeichen für Kommentare.

Syntax: Umgebungen

- Einstellungen für Bereich des Dokuments
- extrem vielseitig
- Können ggfs. auch Optionen übergeben bekommen

```
Syntax
\begin{Umgebung*}[optional]{
    obligatorisch}
    % .
    % .
\end{Umgebung*}
```

```
Beispiel
\begin{flushright}
% .
\end{flushright}
```


Syntax: Umgebungen

Umgebungen können weitere Umgebungen enthalten, diese müssen aber in dieser Umgebung wieder geschlossen werden.

```
Geht nicht:
\begin{itemize}
  \begin{enumerate}
\end{itemize}
  \end{enumerate}
```


Standardpakete

Die hier aufgezählten Pakete sollten immer geladen werden, da sie wesentliche Funktionen bieten und wichtige Einstellungen vornehmen.

Paket

```
\usepackage{fixltx2e}
\usepackage[aux]{rerunfilecheck}
```

```
\usepackage{polyglossia}
\setmainlanguage{german}
\usepackage{fontspec}
% mehr Pakete hier
```

\usepackage[unicode] {hyperref}

\usepackage{bookmark}

Funktion

LATEX 2 korrigieren.

Warnung, falls nochmal kompiliert werden muss.

Deutsche Spracheinstellungen.

Für Fonteinstellungen

Für Hyperlinks (z.B. Inhaltsverzeichnis \rightarrow Kapitel).

Erweiterte Bookmarks im PDF.

Die Reihenfolge ist manchmal wichtig, z.B. damit Pakete die Spracheinstellung kennen

KOMA-Script-Klassen

Doku: KOMA-Skript

- scrartcl, scrreprt und scrbook
- Sehr gute Vorlagen
- Schnell global mit Klassenoptionen anpassbar

Fürs Praktikum empfohlenene Klasse

\documentclass[...] {scrartcl}

Fonteinstellungen

Standardeinstellung sind die Latin-Modern-Fonts.

Latin Modern \usepackage{fontspec}

```
Alternativ: Tex Gyre

\usepackage{fontspec}
\setmainfont{Tex Gyre Pagella}
\setsansfont{Tex Gyre Heros}
\setmonofont{Tex Gyre Cursor}
```

- Jede System-Schriftart kann genutzt
- Das ist i.A. nicht sinnvoll: Hallo Welt in Comic Sans MS!
- Schriften müssen zueinander passen
- Schriften müssen alle benötigten Sonderzichen enthalten
- lacksquare Bei Änderung auch Mathefont anpassen o später.

Gerüst

```
\documentclass{scrartcl}
\usepackage{fixltx2e}
\usepackage[aux]{rerunfilecheck}
\usepackage{polyglossia}
\setmainlanguage{german}
\usepackage{fontspec}
% mehr Pakete hier
\usepackage[unicode,pdfusetitle]{hyperref}
\usepackage{bookmark}
% Einstellungen hier, z.B. Fonts
\begin{document}
 % Text hier
\end{document}
```


Das Ausgabedokument erstellen

Es gibt verschiedene LaTEX-Kompiler, die verschiedene Ausgabeformate erzeugen können. Der modernste Kompiler, der PDF-Dateien erstellt, ist lualatex.

LATEX-Dokument kompilieren

Terminal öffnen:

lualatex MeinDokument.tex

Vorsicht!

- Es muss fast immer mindestens zweimal kompiliert werden.
- Es werden diverse Hilfs- und Logdateien erzeugt.
- Die Input-Dokumente müssen UTF-8 codiert sein.

texdoc

LETEX und (fast) alle Pakete sind hervorragend dokumentiert. Die Dokumentation wird automatisch mitinstalliert.

Dokumentation zu einem Paket

texdoc paket

Dabei ist paket ein Suchstring.

Nach Dokumentation suchen

texdoc -1 name

Es ist wichtig zu lernen, Dokumentationen zu lesen. Probiert es an den oben genannten Paketen aus.

Alternativ kann man das Paket bei Google suchen, dann findet man auch die Dokumentation auf CTAN.

Text erstellen

Text schreiben

Beispiel

```
% Präambel
\begin{document}
Hallo, Welt!
```

Dies ist ein dummer Beispieltext. Er soll zeigen, dass LaTeX sich nicht um Zeilenumbrüche im Code oder zuviele Leerzeichen kümmert.

Ein Absatz wird mit einer leeren Code-Zeile markiert.

```
\end{document}
```


Konventionen für Text

- Höchstens ein Satz pro Code-Zeile
- Absätze werden durch eine Leerzeile markiert
- Im Fließtext sollten keine Umbrüche mit \\ erzwungen werden

Sonderzeicher

Viele Sonderzeichen sind LATEX-Steuerzeichen. Damit diese im Text genutzt werden können, muss meist ein \ vorangestellt oder ein Befehl genutzt werden:

Textauszeichnung

Änderungen der Schrifteigenschaften sind mit diesen Befehlen möglich:

```
Code
\textit{kursiv} \emph{kursiv}
\textbf{fett}
\textbf{\textit{fett-kursiv}}
\textrm{Serifen-Schrift}
\texttt{Mono-Schrift}
\textsf{Sans-Serif-Schrift}
```

```
Ergebnis

kursiv kursiv

fett

fett-kursiv

Serifen-Schrift

Mono-Schrift
Sans-Serif-Schrift
```

Diese Befehle sollten sehr selten benutzt werden, semantischer Markup ist besser.

Schriftgrößen

Gelten immer für den aktuellen Block, z.B. in einer Umgebung oder zwischen { }

```
Code
{\tiny tiny}
{\small small}
{\normalsize normal}
{\large large}
{\huge huge}
```

Ergebnis

tiny small normal large huge

Alle Größen

```
\tiny, \scriptsize, \footnotesize, \small, \normalsize, \large,
\Large, \LARGE, \huge, \Huge
```

Auch diese Befehle sollten nur über semantischen Markup benutzt werden.

Inhalt auslagern

```
Code
\input{header.tex}
\begin{document}
  \input{Teil1.tex}
  \input{Teil2.tex}
  % .
\end{document}
```

- Verschachtelung möglich
- Zur Aufteilung größerer Dokumente (z.B. diese Präsentation)
- Für häufig wiederverwendeten LATEX-Code (header, Erläuterungen zu Fehlerrechnung, ...)
- Für per Skript erzeugte Tabelleninhalte

Anführungszeichen

Die richtigen Anführungszeichen, wo die Satzzeichen hingehören und vieles mehr hängt von der Sprache ab. So macht man es richtig:

```
Benötigte Pakete
```

```
\usepackage[autostyle]{csquotes} % nach polyglossia
\setotherlanguages{english, french} % andere Sprachen laden.
```

Code

```
foo \enquote{bar} baz
\enquote{foo \enquote{bar} baz}
\textenglish{\enquote{foo}}
\textfrench{\enquote{foo}}
\textcquote{root}{foo}
```

Ergebnis

```
foo "bar" baz
"foo 'bar' baz"
"foo"
« foo »
"foo" [1]
```


Error

Errors

- Alles kaputt. Was nun?
- Fehlermeldungen anfangs (und teils auch später) etwas kryptisch.

Code

Ich begrüße euch mit einem \enquote{Hallo Welt}

```
(/usr/local/texlive/2014/texmf-dist/tex/generic/oberdiek/gettitlestring.sty))
(./test.out) (./test.out)
! Undefined control sequence.
l.16 Ich begrüße euch mit einem \enquote
{Hallo Welt}.
? ■
```


Errors

- Alles kaputt. Was nun?
- Fehlermeldungen anfangs (und teils auch später) etwas kryptisch.

Code

Ich begrüße euch mit einem \enquote{Hallo Welt}

```
(/usr/local/texlive/2014/texmf-dist/tex/generic/oberdiek/gettitlestring.sty))
(./test.out) (./test.out)
! Undefined control sequence.
l.16 Ich begrüße euch mit einem \enquote
{Hallo Welt}.
?
```

⇒ Vergessen csquotes zu laden.

Lösungsstrategien

- Angegebene Zeile und vorherige Zeilen kontrollieren
- Teile des Codes auskommentieren um Ort des Fehlers einzugrenzen
- Google → tex.stackexchange.com

Aufzählungen

Aufzählungen: Itemize

- LATEX drei Umgebungen für Aufzählungen
- Unnummerierte Listen: itemize
- Verschachteln

```
Code
\begin{itemize}
  \item Punkt 1
  \item Punkt 2
  \begin{itemize}
    \item Unterpunkt 1
    \item Unterpunkt 2
  \end{itemize}
  \item[→] Punkt 3
\end{itemize}
```

Ergebnis

- Punkt 1
- Punkt 2
 - Unterpunkt 1
 - \blacksquare Unterpunkt 2
- \rightarrow Punkt 3

Aufzählungen: Enumerate

Für nummerierte Listen wird enumerate genutzt.

```
Code
\begin{enumerate}
\item Punkt 1
\item Punkt 2
\begin{enumerate}
\item Unterpunkt 1
\item Unterpunkt 2
\end{enumerate}
\item Punkt 3
\end{enumerate}
```

```
Ergebnis

Punkt 1
Punkt 2
Unterpunkt 1
Unterpunkt 2
Punkt 3
```

Anpassung der Listen mit dem Paket enumitem.

Aufzählungen: Description

Zur Beschreibung von Stichwörtern wird description benutzt, dabei wird das Stichwort **\item** als optionales Argument übergeben.

```
Code
\begin{description}
  \item[\LaTeX] gut
  \item[Word] böse
\end{description}
```

```
Ergebnis

LATEX gut

Word böse
```


Struktur

Titelseite und Metadaten

LATEX erstellt automatisch eine Titelei aus den Metadaten.

Mit der Klassenoption titlepage=firstiscover wird diese als eigene Seite gesetzt.

Neue Klassenoption

\documentclass[..., titlepage=firstiscover, ...]{scrartcl}

Empfehlung fürs Praktikum:

```
\title{101 Titel des Versuchs}
% Mehrere Autoren mit \and:
```

) 1101110110 114101011 11110 (41141)

\author{Max Mustermann \and Maria Musterfrau}\date{Durchführung: 26.09.2014, Abgabe: 29.09.2014}

Titelseite generieren

\maketitle

Gliederung

LATEX bietet Befehle zum erstellen von Gliederungsebenen. Diese werden automatisch nummeriert und in entsprechend größerer und fetter Schrift gesetzt.

```
Gliederungsebenen für scrartcl

\section{Überschrift}
\subsection{Überschrift}
\subsubsection{Überschrift}
\paragraph{Überschrift} % wird nicht nummeriert
\subparagraph{Überschrift} % wird nicht nummeriert
```

```
Höhere Gliederungsebenen für scrreprt und scrbook

\part{Überschrift}

\chapter{Überschrift}
\section{Überschrift}
```


Inhaltsverzeichnis

Aus den Gliederungselementen kann automatisch das Inhaltsverzeichnis erzeugt werden.

Inhaltsverzeichnis generieren

\tableofcontents

\newpage