Package 'clickR'

September 17, 2024

Type Package
Title Semi-Automatic Preprocessing of Messy Data with Change Tracking for Dataset Cleaning
Version 0.9.43
Maintainer David Hervas Marin <ddhervas@yahoo.es></ddhervas@yahoo.es>
Imports beeswarm, future, future.apply, methods, stringdist
Description Tools for assessing data quality, performing exploratory analysis, and semi-automatic preprocessing of messy data with change tracking for integral dataset cleaning.
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.3.1
NeedsCompilation no
LazyData true
Author David Hervas Marin [aut, cre]
Depends R (>= $3.5.0$)
Repository CRAN
Date/Publication 2024-09-17 15:40:02 UTC
Contents
antimoda bivariate_outliers check_quality cluster_var descriptive extreme_values fix_all fix_concat fix_dates fix_factors

2 Contents

fix_NA	10
fix_numerics	10
forge	11
fxd	12
f_replace	12
GK_assoc	13
good2go	14
ipboxplot	14
kill.factors	15
kurtosis	15
manual_fix	16
may.numeric	16
mine.plot	17
moda	17
moda_cont	18
mtapply	18
mtcars_messy	19
nearest	19
nice_names	20
numeros	20
outliers	21
peek	21
prop_may	22
prop_min	22
remove_empty	23
restore_changes	23
scale_01	24
search_scripts	24
skewness	25
text_date	25
track_changes	26
ttrue	26
unforge	27
v_df_changes	27
workspace	28
workspace_sapply	28
%between%	29
%betweenNA%	29
%>NA%	30
%>=NA%	30
% <na%< td=""><td>31</td></na%<>	31
	31
	32

Index

antimoda 3

antimoda Get anti-mode

Description

Returns the least repeated value

Usage

antimoda(x)

Arguments

x A categorical variable

Value

The anti-mode (least repeated value)

Description

Checks for bivariate outliers in a data.frame

Usage

```
bivariate\_outliers(x, threshold\_r = 10, threshold\_b = 1.5)
```

Arguments

x A data.frame object

threshold_r Threshold for the case of two continuous variables

threshold_b Threshold for the case of one continuous and one categorical variable

Value

A data frame with all the observations considered as bivariate outliers

Examples

```
bivariate_outliers(iris)
```

4 check_quality

check_quality	Checks data quality of a variable
---------------	-----------------------------------

Description

Returns different data quality details of a numeric or categorical variable

Usage

```
check_quality(
    x,
    id = 1:length(x),
    plot = TRUE,
    numeric = NULL,
    k = 5,
    n = ifelse(is.numeric(x) | ttrue(numeric) | class(x) %in% "Date", 5, 2),
    output = FALSE,
    ...
)
```

Arguments

Х	A variable from a data.frame
id	ID column to reference the found extreme values
plot	If the variable is numeric, should a boxplot be drawn?
numeric	If set to TRUE, forces the variable to be considered numeric
k	Number of different numeric values in a variable to be considered as numeric
n	Number of extreme values to extract
output	Format of the output. If TRUE, optimize for exporting as csv
	further arguments passed to boxplot()

Value

A list of a data.frame with information about data quality of the variable

Examples

```
check_quality(airquality$0zone) #For one variable
lapply(airquality, check_quality) #For a data.frame
lapply(airquality, check_quality, output=TRUE) #For a data.frame, one row per variable
```

cluster_var 5

cluster_var

Clustering of variables

Description

Displays associations between variables in a data.frame in a heatmap with clustering

Usage

```
cluster_var(x, margins = c(8, 1))
```

Arguments

x A data.frame

margins Margins for the plot

Value

A heatmap with the variable associations

Examples

```
cluster_var(iris)
cluster_var(mtcars)
```

descriptive

Detailed summary of the data

Description

Creates a detailed summary of the data

Usage

```
descriptive(x, z = 3, ignore.na = TRUE, by = NULL, print = TRUE)
```

Arguments

x A data.frame

z Number of decimal places

ignore.na If TRUE NA values will not count for relative frequencies calculations

by Factor variable definining groups for the summary

print Should results be printed?

fix_all

Value

Summary of the data

Examples

```
descriptive(iris)
descriptive(iris, by="Species")
```

extreme_values

Extreme values from a numeric vector

Description

Returns the nth lowest and highest values from a vector

Usage

```
extreme_values(x, n = 5, id = NULL)
```

Arguments

x A vector

n Number of extreme values to return

id ID column to reference the found extreme values

Value

A matrix with the lowest and highest values from a vector

fix_all fix_all

Description

Tries to automatically fix all problems in the data.frame

Usage

```
fix_all(x, select = 1:ncol(x), track = TRUE)
```

Arguments

x A data.frame

select Numeric vector with the positions (all by default) to be affected by the function

track Track changes?

fix_concat 7

fix_concat

fix_concat

Description

Fixes concatenated values in a variable

Usage

```
fix_concat(x, varname, sep = ", |; | ", track = TRUE)
```

Arguments

x A data.frame varname Variable name

sep Separator for the different values

track Track changes?

Examples

fix_dates

Fix dates

Description

Fixes dates. Dates can be recorded in numerous formats depending on the country, the traditions and the field of knowledge. fix.dates tries to detect all possible date formats and transforms all of them in the ISO standard favored by R (yyyy-mm-dd).

Usage

```
fix_dates(
    x,
    max.NA = 0.8,
    min.obs = nrow(x) * 0.05,
    use.probs = TRUE,
    select = 1:ncol(x),
    track = TRUE,
    parallel = TRUE
)
```

fix_factors

Arg	um	ents

Х	A data.frame
max.NA	Maximum allowed proportion of NA values created by coercion. If the coercion to date creates more NA values than those specified in max.NA, then all changes will be reverted and the variable will remain unchanged.
min.obs	Minimum number of non-NA observations allowed per variable. If the variable has fewer non-NA observations, then it will be ignored by fix.dates.
use.probs	When there are multiple date formats in the same column, there can be ambiguities. For example, 04-06-2015 can be interpreted as 2015-06-04 or as 2015-04-06. If use.probs=TRUE, ambiguities will be solved by assigning to the most frequent date format in the column.
select	Numeric vector with the positions (all by default) to be affected by the function
track	Track changes?
parallel	Should the computations be performed in parallel? Set up strategy first with future::plan()

Examples

fix_factors

Fix factors imported as numerics

Description

Fixes factors imported as numerics. It is usual in some fields to encode factor variables as integers. This function detects such variables and transforms them into factors. When drop=TRUE (by default) it detects multiple versions of the same levels due to different capitalization, whitespaces or non-ASCII characters.

Usage

```
fix_factors(x, k = 5, select = 1:ncol(x), drop = TRUE, track = TRUE)
```

Arguments

X	A data.frame
k	Maximum number of different numeric values to be converted to factor
select	Numeric vector with the positions (all by default) to be affected by the function
drop	Drop similar levels?
track	Keep track of changes?

fix_levels 9

Examples

```
# mtcars data has all variables encoded as numeric, even the factor variables.
descriptive(mtcars)
# After using fix_factors, factor variables are recognized as such.
descriptive(fix_factors(mtcars))
```

fix_levels

Fix levels

Description

Fixes levels of a factor

Usage

```
fix_levels(
  data,
  factor_name,
  method = "d1",
  levels = NULL,
  plot = FALSE,
  k = ifelse(!is.null(levels), length(levels), 2),
  track = TRUE,
  ...
)
```

Arguments

data data.frame with the factor to fix factor_name Name of the factor to fix (as character) method Method from stringdist package to estimate distances Optional vector with the levels names. If "auto", levels are assigned based on levels frequency plot Optional: Plot cluster dendrogram? Number of levels for clustering Keep track of changes? track Further parameters passed to stringdist::stringdistmatrix function . . .

Examples

```
mydata <- data.frame(factor1=factor(c("Control", "Treatment", "Tretament", "Tratment", "teatment", "contrl", "control", "CONTol", "not available", "na")))
fix_levels(mydata, "factor1", k=4, plot=TRUE)  #Chose k to select matching levels
fix_levels(mydata, "factor1", levels=c("Control", "Treatment"), k=4)</pre>
```

10 fix_numerics

fix_NA fix_NA

Description

Fixes miscoded missing values

Usage

```
fix_NA(
    x,
    na.strings = c("^$", "^ $", "^\\?$", "^-$", "^\\.$", "^NaN$", "^NULL$", "^N/A$"),
    track = TRUE,
    parallel = TRUE
)
```

Arguments

x A data.frame
na.strings Strings to be considered NA
track Track changes?

parallel Should the computations be performed in parallel? Set up strategy first with future::plan()

Examples

fix_numerics

Fix numeric data

Description

Fixes numeric data. In many cases, numeric data are not recognized by R because there are data inconsistencies (wrong decimal separator, whitespaces, typos, thousand separator, etc.). fix_numerics detects and corrects these variables, making them numeric again.

forge 11

Usage

```
fix_numerics(
    x,
    k = 8,
    max.NA = 0.2,
    select = 1:ncol(x),
    track = TRUE,
    parallel = TRUE
)
```

Arguments

X	A data.frame
k	Minimum number of different values a variable has to have to be considered numerical
max.NA	Maximum allowed proportion of NA values created by coercion. If the coercion to numeric creates more NA values than those specified in max.NA, then all changes will be reverted and the variable will remain unchanged.
select	Numeric vector with the positions (all by default) to be affected by the function
track	Keep track of changes?
parallel	Should the computations be performed in parallel? Set up strategy first with future::plan()

Examples

```
\label{eq:mydata-data} $$ mydata-data.frame(Numeric1=c(7.8, 9.2, "5.4e+2", 3.3, "6,8", "3..3"), $$ Numeric2=c(3.1, 1.2, "3.4s", "48,500.04 $", 7, "$ 6.4"))$$ descriptive(mydata)$$ descriptive(fix_numerics(mydata, k=5))$
```

forge Forge

Description

Reshapes a data frame from wide to long format

Usage

```
forge(data, affixes, force.fixed = NULL, var.name = "time")
```

Arguments

data data.frame

affixes Affixes for repeated measures

force.fixed Variables with matching affix to be excluded var.name Name for the new created variable (repetitions)

12 f_replace

Examples

```
#Data frame in wide format
df1 \leftarrow data.frame(id = 1:4, age = c(20, 30, 30, 35), score1 = c(2,2,3,4),
                   score2 = c(2,1,3,1), score3 = c(1,1,0,1))
df1
#Data frame in long format
forge(df1, affixes= c("1", "2", "3"))
#Data frame in wide format with two repeated measured variables
df2 \leftarrow data.frame(df1, var1 = c(15, 20, 16, 19), var3 = c(12, 15, 15, 17))
df2
#Missing times are filled with NAs
forge(df2, affixes = c("1", "2", "3"))
#Use of parameter force.fixed
df3 \leftarrow df2[, -7]
df3
forge(df3, affixes=c("1", "2", "3"))
forge(df3, affixes=c("1", "2", "3"), force.fixed = c("var1"))
```

fxd

Internal function to fix_dates

Description

Function to format dates

Usage

```
fxd(d, use.probs = TRUE)
```

Arguments

d A character vector

use.probs Solve ambiguities by similarity to the most frequent formats

f_replace

Find and replace

Description

Searches a data.frame for a specific character string and replaces it with another one

GK_assoc 13

Usage

```
f_replace(
    x,
    string,
    replacement,
    complete = TRUE,
    select = 1:ncol(x),
    track = TRUE
)
```

Arguments

x A data.frame

string A character string to search in the data.frame

replacement A character string to replace the old string (can be NA)

complete If TRUE, search for complete strings only. If FALSE, search also for partial

strings.

select Numeric vector with the positions (all by default) to be affected by the function

track Track changes?

Examples

```
iris2 <- f_replace(iris, "setosa", "ensata")
track_changes(iris2)</pre>
```

GK_assoc

Computes Goodman and Kruskal's tau

Description

Returns Goodman and Kruskal's tau measure of association between two categorical variables

Usage

```
GK_assoc(x, y)
```

Arguments

x A categorical variabley A categorical variable

Value

Goodman and Kruskal's tau

14 ipboxplot

Examples

```
data(infert)
GK_assoc(infert$education, infert$case)
GK_assoc(infert$case, infert$education) #Not the same
```

good2go

Good to go

Description

Loads all libraries used in scripts inside the selected path

Usage

```
good2go(path = getwd(), info = TRUE, load = TRUE)
```

Arguments

path Path where the scripts are located

info List the libraries found?

load Should the libraries found be loaded?

ipboxplot

Improved boxplot

Description

Creates an improved boxplot with individual data points

Usage

```
ipboxplot(formula, boxwex = 0.6, ...)
```

Arguments

formula Formula for the boxplot boxwex Width of the boxes

. . . further arguments passed to beeswarm()

Examples

```
ipboxplot(Sepal.Length ~ Species, data=iris)
ipboxplot(mpg ~ gear, data=mtcars)
```

kill.factors 15

kill.factors

Kill factors

Description

Changes factor variables to character

Usage

```
kill.factors(dat, k = 10)
```

Arguments

dat A data.frame

k Maximum number of levels for factors

Examples

```
d <- data.frame(Letters=letters[1:20], Nums=1:20)
d$Letters
d <- kill.factors(d)
d$Letters</pre>
```

kurtosis

Computes kurtosis

Description

Calculates kurtosis of a numeric variable

Usage

kurtosis(x)

Arguments

Х

A numeric variable

Value

kurtosis value

16 may.numeric

	_	
mar	ual	fix

Tracked manual fixes to data

Description

Tracks manual fixes performed on a variable in a data.frame

Usage

```
manual_fix(data, variable, subset, newvalues = NULL)
```

Arguments

data A data.frame

variable A character string with the name of the variable to be fixed subset A logical expression for selecting the cases to be fixed

newvalues New value or values that will take the cases selected by subset parameter.

Examples

```
iris2 <- manual_fix(iris, "Petal.Length", Petal.Length < 1.2, 0)
track_changes(iris2)</pre>
```

may.numeric

Checks if each value might be numeric

Description

Checks if each value from a vector might be numeric

Usage

```
may.numeric(x)
```

Arguments

Х

A vector

Value

A logical vector

mine.plot

mine.plot

Mine plot

Description

Creates a heatmap-like plot for exploring the data

Usage

```
mine.plot(
   x,
   fun = is.na,
   spacing = 5,
   sort = F,
   show.x = TRUE,
   show.y = TRUE,
   ...
)
```

Arguments

```
x A data.frame

fun A function that evaluates a vector and returns a logical vector

spacing Numerical separation between lines at the y-axis

sort If TRUE, variables are sorted according to their results

show.x Should the x-axis be plotted?

show.y Should the y-axis be plotted?

... further arguments passed to order()
```

Examples

```
mine.plot(airquality) #Displays missing data
mine.plot(airquality, fun=outliers) #Shows extreme values
```

moda

Get mode

Description

Returns the most repeated value

Usage

```
moda(x)
```

18 mtapply

Arguments

Χ

A categorical variable

Value

The mode

moda_cont

Estimates number of modes

Description

Estimates the number of modes

Usage

```
moda_cont(x)
```

Arguments

Χ

A numeric variable

Value

Estimated number of modes.

mtapply

Multiple tapply

Description

Modification of the tapply function to use with data.frames. Consider using aggregate()

Usage

```
mtapply(x, group, fun)
```

Arguments

x A data.framegroupGrouping variable

fun Function to apply by group

Examples

```
mtapply(mtcars, mtcars$gear, mean)
```

mtcars_messy 19

mtcars_messy

Messy Motor Trend Car Road Tests Dataset

Description

Modified version of the mtcars dataset with different types of errors in the data. The dataset has 13 variables and 32 observations.

Usage

```
mtcars_messy
```

Format

A data frame with 32 observations and 13 variables

Source

datasets package

References

Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391–411.

Examples

```
descriptive(mtcars_messy)
```

nearest

Internal function for descriptive()

Description

Finds positions for substitution of characters in Distribution column

Usage

```
nearest(x, to = seq(0, 1, length.out = 30))
```

Arguments

x A numeric value between 0-1 to Range of reference values

Value

The nearest position to the input value

20 numeros

nice_names Nice names

Description

Changes names of a data frame to ease work with them

Usage

```
nice_names(x, select = 1:ncol(x), tolower = TRUE, track = TRUE)
```

Arguments

x A data.frame

select Numeric vector with the positions (all by default) to be affected by the function

tolower Set all names to lower case?

track Track changes?

Value

The input data.frame x with the fixed names

Examples

```
d <- data.frame('Variable 1'=NA, '% Response'=NA, ' Variable 3'=NA, check.names=FALSE)
names(d)
names(nice_names(d))</pre>
```

numeros

Brute numeric coercion

Description

If possible, coerces values from a vector to numeric

Usage

numeros(x)

Arguments

x A vector

Value

A numeric vector

outliers 21

outliers

outliers

Description

Function for detecting outliers based on the boxplot method

Usage

```
outliers(x, threshold = 1.5)
```

Arguments

...

A vector

threshold

Threshold (as multiple of the IQR) to consider an observation as outlier

Examples

```
outliers(iris$Petal.Length)
outliers(airquality$0zone)
```

peek

Peek

Description

Takes a peek into a data.frame returning a concise visualization about it

Usage

```
peek(x, n = 10, which = 1:ncol(x))
```

Arguments

x A data.frame

n Number of rows to include in output

which Columns to include in output

Examples

```
peek(iris)
```

prop_min

prop_may

Gets proportion of most repeated value

Description

Returns the proportion for the most repeated value

Usage

```
prop_may(x, ignore.na = TRUE)
```

Arguments

x A categorical variable

ignore.na Should NA values be ignored for computing proportions?

Value

A proportion

prop_min

Gets proportion of least repeated value

Description

Returns the proportion for the least repeated value

Usage

```
prop_min(x, ignore.na = TRUE)
```

Arguments

x A categorical variable

ignore.na Should NA values be ignored for computing proportions?

Value

A proportion

remove_empty 23

remove_empty

remove_empty

Description

Removes empty rows or columns from data.frames

Usage

```
remove_empty(x, remove_rows = TRUE, remove_cols = TRUE, track = TRUE)
```

Arguments

x A data.frame

remove_rows Remove empty rows?

remove_cols Remove empty columns?

track Track changes?

Examples

```
\label{eq:mydata} $$ \mbox{mydata} <-\ data.frame(a = c(NA, NA, NA, NA, NA), b = c(1, NA, 3, 4, 5), c = c(NA, NA, NA, NA, NA), d = c(4, NA, 5, 6, 3)) $$ remove_empty(mydata)
```

restore_changes

Restore changes

Description

Restores original values after using a fix function

Usage

```
restore_changes(tracking)
```

Arguments

tracking

A data.frame generated by track_changes() function

24 search_scripts

Examples

scale_01

Scales data between 0 and 1

Description

Escale data to 0-1

Usage

 $scale_01(x)$

Arguments

Х

A numeric variable

Value

Scaled data

search_scripts

Search scripts

Description

Searches for strings in R script files

Usage

```
search_scripts(string, path = getwd(), recursive = TRUE)
```

Arguments

string Character string to search

path Character vector with the path name

recursive Logical. Should the search be recursive into subdirectories?

skewness 25

Value

A list with each element being one of the files containing the search string

skewness

Computes skewness

Description

Calculates skewness of a numeric variable

Usage

```
skewness(x)
```

Arguments

Х

A numeric variable

Value

skewness value

 $text_date$

Internal function for dates with text

Description

Function to transform text into dates

Usage

```
text_date(date, format = "%d/%Y %b")
```

Arguments

date

A date

format

Format of the date

26 ttrue

track_changes

track_changes

Description

Gets a data.frame with all the changes performed by the different fix functions

Usage

```
track_changes(x, subset)
```

Arguments

Х

A data.frame

subset

Logical expression for subsetting the data.frame with the changes

Examples

ttrue

True TRUE

Description

Makes possible vectorized logical comparisons against NULL and NA values

Usage

```
ttrue(x)
```

Arguments

Х

A logical vector

Value

A logical vector

unforge 27

unforge	Un-Forge
uniorge	On-rorge

Description

Reshapes a data frame from long to wide format

Usage

```
unforge(data, origin, variables, prefix = origin)
```

Arguments

data data.frame

origin Character vector with variable names in data containing the values to be assigned

to the different new variables

variables Variable in data containing the variable names to be created

prefix Vector with prefixes for the new variable names

Examples

v_df_changes

Internal function to track_changes

Description

Function to track_changes

Usage

```
v_df_changes(x, y)
```

Arguments

x Original data.framey New data.frame

28 workspace_sapply

workspace

Explores global environment workspace

Description

Returns information regarding the different objects in global environment

Usage

```
workspace(table = FALSE)
```

Arguments

table

If TRUE a table with the frequencies of each type of object is given

Value

A list of object names by class or a table with frequencies if table = TRUE

Examples

```
df1 <- data.frame(x=rnorm(10), y=rnorm(10, 1, 2))
df2 <- data.frame(x=rnorm(20), y=rnorm(20, 1, 2))
workspace(table=TRUE) #Frequency table of the different object classes
workspace() #All objects in the global object separated by class</pre>
```

workspace_sapply

Applies a function over objects of a specific class

Description

Applies a function over all objects of a specific class in the global environment

Usage

```
workspace_sapply(object_class, action = "summary")
```

Arguments

object_class Class of the objects where the function is to be applied

action Name of the function to apply

Value

Results of the function

%between% 29

Examples

```
df1 <- data.frame(x=rnorm(10), y=rnorm(10, 1, 2))
df2 <- data.frame(x=rnorm(20), y=rnorm(20, 1, 2))
workspace_sapply("data.frame", "summary") #Gives a summary of each data.frame</pre>
```

%between%

between operator

Description

Operator equivalent to $x \ge lower.value & x \le upper.value$

Usage

x %between% y

Arguments

x Vector for the left side of the operator

y A vector of length two with the lower and upper values of the interval

Value

A logical vector of the same length as x

%betweenNA%

between operator & not NA

Description

Operator equivalent to $x \ge lower.value & x \le lower.value & lis.na(x)$

Usage

x %betweenNA% y

Arguments

x Vector for the left side of the operator

y A vector of length two with the lower and upper values of the interval

Value

A logical vector of the same length as x

30 %>=NA%

%>NA%

greater & NA

Description

'>' operator where NA values return FALSE

Usage

```
x %>NA% y
```

Arguments

x Vector for the left side of the operator

y A Scalar or vector of the same length as x for the right side of the operator

Value

A logical vector of the same length as x

%>=NA%

geq & not NA

Description

'>=' operator where NA values return FALSE

Usage

```
x %>=NA% y
```

Arguments

x Vector for the left side of the operator

y A Scalar or vector of the same length as x for the right side of the operator

Value

A logical vector of the same length as x

%<NA%

%<NA% less & NA

Description

'<' operator where NA values return FALSE

Usage

```
x %<NA% y
```

Arguments

x Vector for the left side of the operator

y A Scalar or vector of the same length as x for the right side of the operator

Value

A logical vector of the same length as x

%<=NA% leq & not NA

Description

'<=' operator where NA values return FALSE

Usage

```
x %<=NA% y
```

Arguments

x Vector for the left side of the operator

y A Scalar or vector of the same length as x for the right side of the operator

Value

A logical vector of the same length as x

Index

* datasets mtcars_messy, 19	mine.plot, 17 moda, 17
%<=NA%, 31	moda_cont, 18
% <na%, 31<="" th=""><th>mtapply, 18</th></na%,>	mtapply, 18
%>=NA%, 30	mtcars_messy, 19
%>NA%, 30	
%betweenNA%, 29	nearest, 19
%between%, 29	nice_names, 20
	numeros, 20
antimoda, 3	outliers, 21
bivariate_outliers,3	1. 01
	peek, 21
<pre>check_quality, 4</pre>	prop_may, 22
cluster_var,5	prop_min, 22
descriptive, 5	remove_empty, 23
descriptive, s	restore_changes, 23
extreme_values, 6	
	scale_01, 24
f_replace, 12	search_scripts, 24
fix_all, 6	skewness, 25
fix_concat, 7	
fix_dates, 7	text_date, 25
fix_factors, 8	track_changes, 26
fix_levels, 9	ttrue, 26
fix_NA, 10	unforge, 27
fix_numerics, 10	uniorge, 27
forge, 11	v_df_changes, 27
fxd, 12	
07.	workspace, 28
GK_assoc, 13	workspace_sapply, 28
good2go, 14	
ipboxplot, 14	
kill.factors, 15 kurtosis, 15	
manual_fix, 16 may.numeric, 16	