Eli Griffiths Homework #8

11.1

$$\mathbb{Z}_2 \times \mathbb{Z}_4 = \left\{ \begin{array}{l} (0,0), (0,1), (0,2), (0,3) \\ (1,0), (1,1), (1,2), (1,3) \end{array} \right\}.$$

$$|(0,0)| = 1 \quad |(1,0)| = 2$$

$$|(0,1)| = 4 \quad |(1,1)| = 4$$

$$|(0,2)| = 2 \quad |(1,2)| = 2$$

$$|(0,3)| = 4 \quad |(1,3)| = 4$$

11.2

$$\mathbb{Z}_{3} \times \mathbb{Z}_{4} = \left\{ \begin{array}{l} (0,0), (0,1), (0,2), (0,3) \\ (1,0), (1,1), (1,2), (1,3) \\ (2,0), (2,1), (2,2), (2,3) \end{array} \right\}.$$

$$|(0,0)| = 1 \quad |(1,0)| = 3 \quad |(2,0)| = 3 \\
|(0,1)| = 4 \quad |(1,1)| = 12 \quad |(2,1)| = 12 \\
|(0,2)| = 2 \quad |(1,2)| = 6 \quad |(2,2)| = 6 \\
|(0,3)| = 4 \quad |(1,3)| = 12 \quad |(2,3)| = 12 \\
\end{aligned}$$

11.4

$$|(2,3)| = \operatorname{lcm}(3,5) = 15.$$

11.9

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \left\{ \begin{array}{l} (0,0), (0,1) \\ (1,0), (1,1) \end{array} \right\}.$$

The proper non-trivial subgroups will be those of order 2, hence

$$\{(0,0),(1,1)\}\$$

 $\{(0,0),(1,0)\}\$
 $\{(0,0),(0,1)\}.$

11.16

Yes they are isomorphic since

$$\mathbb{Z}_2 \times \mathbb{Z}_{12} \simeq \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \simeq \mathbb{Z}_4 \times \mathbb{Z}_6.$$

11.20

Yes they are isomorphic since

$$\mathbb{Z}_4 \times \mathbb{Z}_{18} \times \mathbb{Z}_{15} \simeq \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_9 \simeq \mathbb{Z}_3 \times \mathbb{Z}_{36} \times \mathbb{Z}_{10}.$$

Eli Griffiths Homework #8

11.24

Note that $720 = 2^4 \cdot 3^2 \cdot 5$. From the table in 11.29, there are 5 finite abelian groups of order 2^4 , 2 finite abelian groups of order 3^2 , and there is one finite abelian group of order 5^1 . Therefore there are $1 \cdot 2 \cdot 5 = 10$ finite abelian groups of order 720.

11.29

Part A

-
6
2

Part B

$$p^{3}q^{4}r^{7} \implies 3 \cdot 5 \cdot 15 = 225$$
$$q^{7}r^{7} \implies 15^{2} = 225$$
$$q^{8}r^{4} \implies 22 \cdot 5 = 110.$$

11.46

Proof. Let $G_1, G_2, \ldots G_n$ be a collection of abelian groups. Consider $G_1 \times G_2 \times \ldots \times G_n$. Let a, b be elements of the direct product and $*_n$ denote the binary operation of the nth group in the collection.

$$ab = (a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n)$$

$$= (a_1 *_1 b_1, a_2 *_2 b_2, \dots, a_n *_n b_n)$$

$$= (b_1 *_1 a_1, b_2 *_2 a_2, \dots, b_n *_n a_n)$$

$$= (b_1, b_2, \dots, b_n)(a_1, a_2, \dots, a_n) = ba$$

Therefore the direct product of abelian groups is abelian.

Eli Griffiths Homework #8

11.54