Consider a single point charge at the origin. It will have ONLY a monopole contribution to the potential at a location $\mathbf{r} = \langle x, y, z \rangle$.

As we have seen, if we move the charge to another location (e.g., $\mathbf{r}' = \langle 0, 0, d \rangle$), the distribution now has a dipole contribution to the potential at \mathbf{r} !

What the hell is going on here?

- A. It's just how the math works out. Nothing has changed physically at **r**.
- B. There is something different about the field at **r** and the potential is showing us that.
- C. I'm not sure how to resolve this problem.

A stationary point charge +Q is near a block of polarization material (a linear dielectric). The net electrostatic force on the block due to the point charge is:

A. attractive (to the left)

B. repulsive (to the right)

+Q

C. zero

POLARIZATION

The sphere below (radius a) has uniform polarization \mathbf{P}_0 , which points in the +z direction. What is the total dipole moment of this sphere?

A. zero

B. **P** $_{0}a^{3}$

c. $4\pi a^3 \mathbf{P}_0/3$

 $D. \mathbf{P}_0$

E. None of these/must be more complicated

The cube below (side a) has uniform polarization \mathbf{P}_0 , which points in the +z direction. What is the total dipole moment of this cube?

B.
$$a^3$$
P₀

 $\mathbf{C}.\,\mathbf{P}_0$

D. **P**₀/
$$a^3$$

E. $2\mathbf{P}_0a^2$

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles

idealized dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B. $\sigma_b \neq 0, \rho_b \neq 0$
C. $\sigma_b = 0, \rho_b = 0$
D. $\sigma_b \neq 0, \rho_b = 0$

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles

idealized dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B.
$$\sigma_b \neq 0, \rho_b \neq 0$$

C.
$$\sigma_b = 0, \rho_b = 0$$

$$D. \sigma_b \neq 0, \rho_b = 0$$

A VERY thin slab of thickness d and area A has volume charge density $\rho=Q/V$. Because it's so thin, we may think of it as a surface charge density $\sigma=Q/A$.

The relation between ρ and σ is:

A.
$$\sigma = \rho$$

B.
$$\sigma = \rho d$$

C.
$$\sigma = \rho/d$$

D.
$$\sigma = V\rho$$

E.
$$\sigma = \rho/V$$

A dielectric slab (top area A, height h) has been polarized, with $\mathbf{P} = P_0$ in the +z direction. What is the surface charge density, σ_b , on the bottom surface?

B.
$$-P_0$$

$$\mathsf{C}.P_0$$

D.
$$P_0Ah$$

$$E. P_0A$$

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the surface charge density?

A. 0

B. Non-zero Constant

C. constant* $\sin \theta$

D. constant* $\cos \theta$

E. ??

Are ρ_b and σ_b due to real charges?

A. Of course not! They are as fictitious as it gets!

B. Of course they are! They are as real as it gets!

C. I have no idea

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the volume charge density?

A. 0

B. Non-zero Constant

C. Depends on r, but not θ

D. Depends on θ , but not r

E. ?

If we push this conductor inside the isolated capacitor, will it be drawn into the capacitor or repelled?

- A. It gets sucked into the capacitor
- B. It gets pushed out from the capacitor
- C. I just don't know.

If we push this dielectric inside the isolated capacitor, will it be drawn into the capacitor or repelled?

- A. It gets sucked into the capacitor
- B. It gets pushed out from the capacitor
- C. I just don't know.