Задание I. «Поиск ассоциативных правил и выявление скрытых структур в данных»

- 1. Загрузите файл «assc_TRANSACTION.csv». В нем три колонки Customer ID клиента, Product покупка, Time временная метка (для задания не нужна). Определите (написав соответствующий код) сколько различных значений принимают переменные Product и Customer.
- 2. Найдите частые эпизоды с ограничением на размер правила равным 4, с использованием алгоритма и порога на поддержку согласно вашему варианту.
- 3. Найдите самый большой (где больше всего элементов) частый эпизод, содержащий продукт согласно вашему варианту. Какая у него поддержка?
- 4. На основе найденных частых эпизодов постройте ассоциативные правила с порогом на достоверность согласно вашему варианту. Найдите правило с максимальным лифтом, содержащем продукт из вашего варианта в левой части правила. Дайте ему письменную словесную интерпретацию, укажите и объясните его числовые показатели: поддержку, достоверность и подъем.
- 5. Используя только двухместные правила постройте ориентированный граф, где вершины элементы правила, их цвет (или размер) поддержка элемента (item support), дуги импликации (ориентированы в направлении от условия к следствию), веса дуги достоверности.
- 6. Для данного графа рассчитайте меры центральности согласно вашему варианту и найдите элемент с самой высокой мерой, а также какую меру имеет продукт из вашего варианта.
- 7. Постройте числовую матрицу со счетчиком числа покупок в ячейках, клиентами по строкам и продуктами по столбцам.
- 8. С помощью метода из вашего варианта постройте линейную проекцию набора данных на плоскость (2 компоненты) цветом укажите транзакции, содержащие продукт вашего варианта.
- 9. С помощью метода из вашего варианта постройте нелинейную проекцию набора данных на плоскость цветом укажите транзакции, содержащие продукт из вашего варианта. Не указанные в задании параметры (например, размер решетки для SOM или число слоев в автоэнкодере можно выбирать на свое усмотрение для получение наиболее удобной визуализации). Дайте письменный комментарий, чем с вашей точки зрения для вашего примера лучше или хуже нелинейная проекция).
- 10. Из исходной матрицы (из пункта 7) согласно вашему варианту отберите указанное число независимых переменных с использованием заданного метода.

Запишите и перешлите для проверки JN реализующий шаги 1-10.

ВАРИАНТ	ПУНКТ 2	ПУНКТ 3	ПУНКТ 4	ПУНКТ 6	ПУНКТ 8	ПУНКТ 9	ПУКНТ 10
1	Apriori, 2%	artichok	50%	Betweenness	PCA	tSNE	VarClus, 3
2	FPTree, 2%	baguette	40%	Closeness	NMF	SOM	GLasso, 3
3	Apriori, 3%	bourbon	30%	Clust. coef	PCA	AutoEncoder	VarClus, 4
4	FPTree, 3%	coke	20%	Authority	NMF	tSNE	GLasso, 4
5	Apriori, 4%	cracker	10%	Hub	PCA	SOM	VarClus, 5
6	FPTree, 4%	heineken	50%	Betweenness	NMF	AutoEncoder	GLasso, 5
7	Apriori, 5%	ice_crea	40%	Closeness	PCA	tSNE	VarClus, 6
8	FPTree, 5%	peppers	30%	Clust. coef	NMF	SOM	GLasso, 6
9	Apriori, 6%	soda	20%	Authority	PCA	AutoEncoder	VarClus, 7
0	FPTree, 6%	turkey	10%	Hub	NMF	tSNE	GLasso, 7