Grundbegriffe der Informatik Aufgabenblatt 9

Matr.nr.:							
Nachname:							
Vorname:							
Tutorium:	Nr.			Name des Tutors:			
Ausgabe:	23. E	Dezem	nber :	2015			
Abgabe:	15. Januar 2015, 12:30 Uhr						
	im C	GBI-Br	iefka	aster	im	. Un	tergeschoss
	von	Gebäi	ude 5	50.34	L		
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet							
abgegeben werden.							
Vom Tutor auszufüllen:							
erreichte Pu	nkte						
Blatt 9:					/ 1	7	(Physik: 17)
Blätter 1 – 9:				/	159	9	(Physik: 136)

Aufgabe 9.1 (2 + 2 + 2 + 2 + 1 + 2 = 11) Punkte)

Für jede positive ganze Zahl $n \in \mathbb{N}_+$ sei $G_n = (V_n, E_n)$ der gerichtete Graph mit der Knotenmenge $V_n = \{0,1\}^n$ und der Kantenmenge

$$E_n = \{(x,y) \in V_n \times V_n \mid \exists i \in \mathbb{Z}_n \colon (x_i \neq y_i \land \forall k \in \mathbb{Z}_n \setminus \{i\} \colon x_k = y_k)\}.$$

- a) Zeichnen Sie G_1 , G_2 und G_3 jeweils in ein kartesisches Koordinatensystem der entsprechenden Dimension.
- b) Geben Sie einen geschlossenen arithmetischen Ausdruck für $|E_n|$ an. Dabei bedeutet *geschlossen*, dass in dem Ausdruck weder das Summenzeichen \sum noch das Produktzeichen \prod vorkommt.
- c) Geben Sie für jede positive ganze Zahl $n \in \mathbb{N}_+$ eine Einbettung f_n von G_n in G_{n+1} an, das heißt, eine injektive Abbildung $f_n \colon V_n \to V_{n+1}$ derart, dass

$$\forall x \in V_n \ \forall y \in V_n \colon \left((x,y) \in E_n \to (f_n(x), f_n(y)) \in E_{n+1} \right).$$

- d) Geben Sie einen Pfad $p = (v_0, v_1, v_2, v_3)$ von (0,0,0) nach (1,1,1) in G_3 an. Geben Sie außerdem einen Pfad q von (0,0,0,0) nach (1,1,1,1) in G_4 an, der den Pfad $(f_3(v_0), f_3(v_1), f_3(v_2), f_3(v_3))$ als Teilpfad enthält, wobei f_3 die Einbettung von G_3 in G_4 aus der vorangegangenen Teilaufgabe sei.
- e) Geben Sie für jede positive ganze Zahl $n \in \mathbb{N}_+$ einen geschlossenen arithmetischen Ausdruck für

$$\gamma_n = \min\{|p| \mid p \text{ ist Pfad in } G_n \text{ von } (0,0,\ldots,0) \text{ nach } (1,1,\ldots,1)\}$$

an.

f) Geben Sie für jede positive ganze Zahl $n \in \mathbb{N}_+$ einen Graph-Isomorphismus φ_n von G_n nach G_n an, der nicht die identische Abbildung ist.

Aufgabe 9.2 (1 + 1 + 2 + 2 = 6 Punkte)

Hinweis: Benutzen Sie in dieser Aufgabe die Definition von "Zyklus" aus dem aktualisierten Skript: Ein Zyklus ist ein geschlossener Pfad, dessen Länge größer als oder gleich 1 ist.

Ein sogenannter DAG (engl. *directed acyclic graph*) ist ein gerichteter Graph, der keine Zyklen enthält.

- a) Geben Sie einen DAG mit 4 Knoten an, der
 - kein Baum ist, und
 - einen Teilgraphen mit 4 Knoten enthält, der ein Baum ist.
- b) Geben Sie einen DAG mit 6 Knoten und 9 Kanten an, der keinen Pfad der Länge 2 enthält.
- c) Begründen Sie, warum jeder Baum ein DAG ist.
- d) Es sei G = (V, E) ein DAG und es seien $x, y \in V$ zwei Knoten von G mit der Eigenschaft: $(x, y) \in E^*$ und $(y, x) \in E^*$. Beweisen Sie: x = y.