Государственное учреждение образования "БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ"

Кафедра: Интеллектуальных информационных технологий Дисциплина: Обработка изображений в интеллектуальных системах

Отчет по лабораторной работе №3
"Лискретные преобразования сигналов и схемы их реализации"

Выполнил: студент гр.121702 Витковская С. И.

Проверил: Самодумкин С. А.

Содержание

Цель:	3
Задача:	
теоретические сведения:Теоретические сведения:	3
ход работы:	
Вывод:	4

Цель:

Получить навыки дискретного преобразования сигналов и изучить схемы их реализации.

Задача:

Выполнить программную реализацию алгоритма БПФ.

Теоретические сведения:

Алгоритм быстрого преобразования Фурье:

Пусть $\{X(m)\}$ обозначает последовательность X(m), m=0,1,N-1, получаемую в результате дискретизации сигнала x(t) с ограниченной полосой частот. Требуется получить алгоритм для вычисления

Полосой частот. Треоуется получить алгоритм для вычисления
$$C_x(k) = \frac{1}{N} \sum_{m=0}^{N-1} X(m) W^{km}, \ k = 0, 1, ..., N-1,$$
 где $W = e^{-i2\pi/N}$ и $i = \sqrt{-1}$.

Искомый алгоритм называется быстрым преобразованием Фурье. Ниже предполагается, что $N=2^{\rm n}$, ${\rm n=1,2,...,n_{\rm max}}$. При этом общность не теряется, так как N выбирается достаточно большим для того, чтобы удовлетворять теореме дискретизации (теорема Котельникова), т. е. N>2BL, где B — полоса частот сигнала x(t), а L — его длительность.

Дискретное преобразование Фурье от вектора, состоящего из N отсчетов, сводится к линейной композиции двух ДПФ от N/2 отсчетов, и если для первоначальной задачи требовалось N^2 операций, то для полученной композиции — $N^2/2$. Если М является степенью двух, то это разделение можно продолжать рекурсивно до тех пор, пока не дойдем до двух точечного преобразования Фурье, которое вычисляется по следующим формулам:

$$\begin{cases} X_0 = x_0 + x_1 \\ X_1 = x_0 - x_1 \end{cases}$$

Ход работы:

Вывод:

В данной лабораторной работы были рассмотрены основные аспекты преобразования Фурье, алгоритма быстрого предназначенного преобразование Фурье. дискретного быстрого вычисления Данный используется в области обработки сигналов и алгоритм активно электротехнике, нуждающейся применяется В В решении спектрального анализа. Была написана программная реализация БПФ и протестирована на функциях синуса и косинуса.