- (1) NICHTMETRISIERBARE HAUSDORFF-RÄUME: Wir wollen Beispiele für Hausdorff-Räume finden, deren Topologie nicht von einer Metrik erzeugt wird.
 - (a) Es sei $(X_i, \mathcal{T}_i)_{i \in I}$ eine Familie von Hausdorff-Räumen mit jeweils mindestens zwei Elementen. Zeigen Sie, dass auch das Produkt $\prod_{i \in I} X_i$ versehen mit der Produkttopologie hausdorffsch ist
 - (b) Zeigen Sie, dass wenn I überabzählbar ist kein Punkt in $\prod_{i \in I} X_i$ eine abzählbare Umgebungsbasis hat
 - (c) Schließen Sie aus (a)-(b), dass überabzählbare Produkte von Hausdorff-Räumen hausdorffsch sind aber ihre Topologie nicht von einer Metrik erzeugt wird.
- (2) VERGLEICH DER TRENNUNGSAXIOME: Wir untersuchen die Beziehung zwischen den Trennungsaxiomen.
 - (a) Zeigen Sie, dass ein topologischer Raum ein T_3 -Raum ist, genau dann wenn jede offene Umgebung eine Punktes $x \in X$ eine abgeschlossene Umgebung enthält.
 - (b) Zeigen Sie, dass $(\mathbb{R}, \mathcal{T}_{cco})$ ein T_1 -Raum ist.
 - (c) Geben Sie ein Beispiel eines T_3 -Raums an, der kein T_2 -Raum ist.
 - (d) Geben Sie ein Beispiel eines T_4 -Raums an, der kein T_2 -Raum ist.
- (3) URYSOHN IN METRISCHEN RÄUMEN: Sei (X, d) ein metrischer Raum. Zeigen Sie folgende Aussagen:
 - (a) Ist $x \in X$, $A \subset X$ und gilt d(x, A) = 0, so folgt $x \in \overline{A}$.
 - (b) Jeder metrische Raum ist normal.
 - (c) Für disjunkte, nichtleere, abgeschlossene Mengen $A, B \subset X$ ist die Funktion

$$f \colon X \to [0,1], \qquad x \mapsto \frac{d(x,A)}{d(x,A) + d(x,B)}$$

wohldefiniert und stetig. Es gilt f(x) = 0 für alle $x \in A$ und f(x) = 1 für alle $x \in B$.

- (4) SEPARABILITÄT UND ZWEITES ABZÄHLBARKEITSAXIOM: Ein topologischer Raum X heißt separabel, falls es eine abzählbare Teilmenge $A \subset X$ gibt, die dicht in X ist, also falls $\overline{A} = X$ gilt. Beweisen Sie folgende Aussagen:
 - (a) Erfüllt X das zweite Abzählbarkeitsaxiom, so ist X separabel.
 - (b) Ist X ein separabler metrischer Raum, so erfüllt X das zweite Abzählbarkeitsaxiom.
- (5) ZUSAMMENHÄNGENDE TOPOLOGISCHE RÄUME: Ein topologischer Raum X ist zusammenhängend, wenn er sich nicht in zwei disjunkte offene Teilmengen zerlegen lässt. X ist wegzusammenhängend, falls zu allen Punkten $x, y \in X$ ein Weg $\gamma \colon [0, 1] \to X$ mit $\gamma(0) = x$ und $\gamma(1) = y$ existiert.
 - (a) Zeigen Sie, dass [0, 1] zusammenhängend und die Cantor-Menge nicht zusammenhängend ist.
 - (b) Zeigen Sie, dass wegzusammenhängende Räume zusammenhängend sind.
 - (c) Es seien X, Y topologische Räume und $f: X \to Y$ ein Homöomorphismus. Zeigen Sie, dass X genau dann zusammenhängend ist, wenn Y zusammenhängend ist.
 - (d) Verwenden Sie (b) und (c), um zu zeigen, dass [0,1] und $[0,1]^2$ nicht homöomorph sind, indem Sie zeigen, dass $[0,1]\setminus\{\frac{1}{2}\}$ nicht zusammenhängend, $[0,1]^2\setminus\{z\}$ für jedes $z\in[0,1]^2$ jedoch wegzusammenhängend ist.