logo.png

Kontes Terbuka Olimpiade Matematika Kontes Bulanan September 2016

23 - 26 September 2016

Berkas Soal

Bagian A

Untuk setiap soal, tuliskan saja jawaban akhirnya. Setiap soal bernilai 1 angka. Tidak ada pengurangan nilai untuk jawaban yang salah atau dikosongkan. Jawaban soal-soal bagian A dipastikan merupakan bilangan bulat.

- 1. Misalkan x dan y adalah dua bilangan real berbeda yang memenuhi persamaan $y+6=(x-6)^2$ dan $x+6=(y-6)^2$ secara bersamaan. Tentukan nilai dari x^3+y^3 .
- 2. Terdapat dua koin identik yang lebih cenderung memunculkan angka daripada gambar. Kedua koin tersebut dilemparkan bersama-sama. Diketahui bahwa peluang munculnya tepat sebuah gambar dan sebuah angka adalah 0,48. Jika p adalah peluang munculnya tepat dua buah angka, tentukan nilai 100p.
- 3. Tentukan hasil penjumlahan semua bilangan asli n yang kurang dari 100 dan memenuhi 100 | $n^3 + n^2 + n + 1$.
- 4. Diberikan segitiga ABC. Garis bagi sudut A memotong BC di titik D. Garis bagi dalam $\angle ADB$ memotong AB di titik E. Jika BE = 7, AE = 14, dan $DE \parallel AC$, tentukan kuadrat dari panjang AD.
- 5. Tentukan banyaknya bilangan real positif x yang memenuhi persamaan

$$|x| = {x}^2 + 2016{x} + 2016,$$

di mana $\lfloor x \rfloor$ menyatakan bilangan bulat terbesar yang lebih kecil dari atau sama dengan x, dan $\{x\} = x - |x|$.

- 6. Tentukan banyaknya bilangan tiga-angka \overline{abc} sedemikian sehingga a dan c keduanya bukan nol dan bilangan tiga-angka \overline{abc} dan \overline{cba} keduanya habis dibagi 4.
- 7. Terdapat dua lingkaran Γ_1 dan Γ_2 yang bersinggungan dalam di titik A. Lingkaran Γ_2 terletak di dalam lingkaran Γ_1 . Misalkan P adalah sebuah titik pada lingkaran Γ_2 ($P \neq A$). Diketahui bahwa garis singgung lingkaran Γ_2 di titik P memotong lingkaran Γ_1 di titik P dan P0. Jika panjang P1 dan P2 dan P3 dan P4 dan P5 dan P5 dan P6 dan P7 dan P8 dan P9 dan
- 8. Diketahui bahwa suatu fungsi $f: \mathbb{R} \to \mathbb{R}$ memenuhi

$$f(x^2 + x + 3) + 2f(x^2 - 3x + 5) = 6x^2 - 10x + 17.$$

Tentukan nilai dari f(2016).

- 9. Misalkan N menyatakan banyaknya barisan berhingga $a_1, a_2, \ldots, a_{2016}$ dengan $a_i \in \{1, 2, 3\}$ untuk $i = 1, 2, \ldots, 2016$ dengan syarat bahwa angka 2 muncul sebanyak ganjil kali pada barisan tersebut. Jika 2N + 1 dapat dinyatakan dalam bentuk m^n , dengan m suatu bilangan prima dan n suatu bilangan bulat positif, tentukan nilai dari m + n.
- 10. Tentukan banyaknya tripel bilangan asli (a, b, c) yang memenuhi persamaan

$$abc = 3a + 3b + 3c + 24$$
.

- 11. Misalkan $\triangle ABC$ memenuhi $\angle A=45^\circ$, $\angle B=60^\circ$, $\angle C=75^\circ$, dan AC=40. Misalkan pula D dan E terletak pada BC dan AC, berturut-turut, sehingga AD dan BE adalah garis tinggi $\triangle ABC$. Selanjutnya, misalkan DE memotong garis yang melewati C dan sejajar AB di titik F. Notasikan M sebagai titik tengah sisi AB. Jika CM memotong lingkaran luar $\triangle CDE$ di titik G, hitunglah kuadrat dari panjang FG.
- 12. Tentukan nilai terkecil dari fungsi

$$f(a,b,c,d) = \left| \frac{a+b+c+d}{a} \right| + \left| \frac{a+b+c+d}{b} \right| + \left| \frac{a+b+c+d}{c} \right| + \left| \frac{a+b+c+d}{d} \right|,$$

di mana a, b, c, dan d adalah bilangan real positif dan $\lfloor x \rfloor$ menyatakan bilangan bulat terbesar yang lebih kecil dari atau sama dengan x.

- 13. Misalkan S adalah himpunan semua bilangan bulat yang berbentuk $2^a + 2^b$, di mana $0 \le a < b < 40$. Jika peluang suatu bilangan bulat dari S yang dipilih secara acak habis dibagi 9 adalah $\frac{p}{q}$, di mana p dan q adalah bilangan bulat positif yang relatif prima, tentukan nilai dari p + q.
- 14. Sebutlah sebuah bilangan enam-angka \overline{abcdef} tubis jika bilangan tersebut habis dibagi 3, bilangan lima-angka \overline{bcdef} , bilangan empat-angka \overline{cdef} , bilangan tiga-angka \overline{def} , bilangan dua-angka \overline{ef} , dan bilangan satu-angka \overline{f} semuanya tidak habis dibagi 3, dan semua angka penyusun dari bilangan \overline{abcdef} tidak bernilai nol. Tentukan banyaknya bilangan enam-angka tubis.

Bagian B

Tuliskan jawaban beserta langkah pekerjaan Anda secara lengkap. Jawaban boleh diketik, difoto, ataupun di-scan. Setiap soal bernilai 7 angka. Tidak ada pengurangan nilai untuk jawaban yang salah.

- 1. Diberikan bilangan-bilangan real positif a, b, dan c.
 - (i) Tunjukkan bahwa $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$. (Petunjuk: manfaatkan ketaksamaan AM-GM)
 - (ii) Tunjukkan bahwa

$$\frac{a}{b} \ge \frac{2a}{1+b^2} \ge 2a - ab. \tag{*}$$

Perhatikan bahwa dengan menyubstitusi (a, b) dengan (b, c) dan (c, a) ke ketaksamaan (*), dan dilanjutkan dengan menjumlahkan kedua ketaksamaan yang didapat dengan ketaksamaan (*), kita peroleh

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge \frac{2a}{1+b^2} + \frac{2b}{1+c^2} + \frac{2c}{1+a^2} \ge 2(a+b+c) - (ab+bc+ca).$$
 (**)

- (iii) Perhatikan ketaksamaan (i) dan (**). Apakah dapat diambil kesimpulan bahwa $\frac{2a}{1+b^2} + \frac{2b}{1+c^2} + \frac{2c}{1+a^2} \geq 3$ untuk setiap bilangan real positif a,b, dan c? Jika dapat, buktikan. Jika tidak, berikan contoh a,b,c yang menyangkal pernyataan tersebut.
- (iv) Jika diketahui a+b+c=3, tunjukkan bahwa $\frac{2a}{1+b^2}+\frac{2b}{1+c^2}+\frac{2c}{1+a^2}\geq 3$. Kapan kesamaan terjadi?
- 2. Sebanyak $2n \ (n \ge 2)$ koin adil (seimbang dan identik) dilempar. Tunjukkan bahwa peluang munculnya tepat n sisi angka adalah lebih dari $\frac{1}{2^n}$.
- 3. Diberikan H adalah titik tinggi dari segitiga lancip ABC. Misalkan AD, BE, dan CF adalah garis-garis tinggi segitiga ABC, dan P dan Q merupakan perpotongan lingkaran luar segitiga DEF dengan lingkaran luar segitiga BHC. Buktikan bahwa AP = AQ.
- 4. Misalkan a dan b adalah bilangan bulat positif dengan a>b>1. Diketahui bahwa

$$a + b \mid ab + 1 \text{ dan } a - b \mid ab - 1.$$

Buktikan bahwa $a < b\sqrt{3}$.