W08D3 - NLP I

Instructor: Brian Lynch

Credit: Zain Hasan, Jeremy Eng

Outline

- Introduction to NLP
- Data Prep in NLP
 - Simplifying text
 - Punctuation removal, tokenization, stop words, stemming, lemmatization
- Representing Text with Numbers
 - Bag of Words (BoW), term frequency-inverse document frequency (TF-IDF)
 - Word2Vec
- Demo

Introduction to Natural Language Processing (NLP)

- NLP involves processing and analyzing large amounts of natural language speech/text.
 - Not solved; very hard problem.
- NLU = Natural language understanding
- Some well-known applications:
 - Virtual assistants (Siri, Alexa, Cortana)
 - Chat bots
 - Predictive text
 - Email filters
 - Sentiment analysis
 - Topic modeling
- NLP has been around for a while, we just now have better tools.
 - Deep learning, more data, stronger computing power, lower costs.

Simplifying Text

- Today will just focus on pre-processing text.
 - Simplifying text
 - Converting from text into numerical values
- Text simplification examples:
 - Remove punctuation
 - Remove common words (the, a, and)
 - Aka "stop words" or "glue words"
 - Remove capitalization
 - Tokenize
 - Stemming/lemmatization
- NLTK package (and others) in Python

Let's tokenize! Isn't this easy?

Simplifying Text

- Today will just focus on pre-processing text.
 - Simplifying text
 - Converting from text into numerical values
- Text simplification examples:
 - Remove punctuation
 - Remove common ("glue") words (the, a, and)
 - Aka "stop words"
 - Remove capitalization
 - Tokenize
 - Stemming/lemmatization
- NLTK package (and others) in Python

Simplifying Text

- Today will just focus on pre-processing text.
 - Simplifying text
 - Converting from text into numerical values
- Text simplification examples:
 - Remove punctuation
 - Remove common ("glue") words (the, a, and)
 - Aka "stop words"
 - Remove capitalization
 - Tokenize
 - Stemming/lemmatization
- NLTK package (and others) in Python

Stemming vs Lemmatization

- After simplifying our text, we can represent the text using vectors.
- Bag of Words
 - Simply count how often the word appears (problems?).
- Text Frequency—Inverse Document Frequency (TF-IDF)
 - Like BoW, but weighted by how rare the word is across all documents.
- Word2Vec: uses a neural network to learn word associations.
 - Each word is represented by a VECTOR
 - Similar words are close together. Direction between words can have meaning.

- After simplifying our text, we can represent the text using vectors.
- Bag of Words
 - Simply count how often the word appears (problems?).
- Text Frequency—Inverse Document Frequency (TF-IDF)
 - Like BoW, but weighted by how rare the word is across all documents.
- Word2Vec: uses a neural network to learn word associations.
 - Each word is represented by a VECTOR
 - Similar words are close together. Direction between words can have meaning.

$$W_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

tf_{x,y} = frequency of x in y
df_x = number of documents containing x
N = total number of documents

- After simplifying our text, we can represent the text using vectors.
- Bag of Words
 - Simply count how often the word appears (problems?).
- Text Frequency—Inverse Document Frequency (TF-IDF)
 - Like BoW, but weighted by how rare the word is across all documents.
- Word2Vec: uses a neural network to learn word associations.
 - Each word is represented by a VECTOR
 - Similar words are close together. Direction between words can have meaning.

Sentence A: The car is driven on the road.

Sentence B: The truck is driven on the highway.

Word	TF		IDF	TF*IDF	
	Α	В	IDI	Α	В
The	1/7	1/7	log(2/2) = 0	0	0
Car	1/7	0	log(2/1) = 0.3	0.043	0
Truck	0	1/7	log(2/1) = 0.3	0	0.043
Is	1/7	1/7	log(2/2) = 0	0	0
Driven	1/7	1/7	log(2/2) = 0	0	0
On	1/7	1/7	log(2/2) = 0	0	0
The	1/7	1/7	log(2/2) = 0	0	0
Road	1/7	0	log(2/1) = 0.3	0.043	0
Highway	0	1/7	log(2/1) = 0.3	0	0.043

- After simplifying our text, we can represent the text using vectors.
- Bag of Words
 - Simply count how often the word appears (problems?).
- Text Frequency—Inverse Document Frequency (TF-IDF)
 - Like BoW, but weighted by how rare the word is across all documents.
- Word2Vec: uses a neural network to learn word associations.
 - Each word is represented by a VECTOR
 - Similar words are close together. Direction between words can have meaning (add/subtract).

- Continuous Bag of Words (CBoW)
 - Tries to predict the target word (center) based on the surrounding words (context).

- Continuous Bag of Words (CBoW)
 - Tries to predict the target word (center) based on the surrounding words (context).

- Continuous Bag of Words (CBoW)
 - Tries to predict the target word (center) based on the surrounding words (context).
- Skip-gram
 - Tries to predict the surrounding words (context) based on the target word.

- Continuous Bag of Words (CBoW)
 - Tries to predict the target word (center) based on the surrounding words (context).
- Skip-gram
 - Tries to predict the surrounding words (context) based on the target word.

NLP Pre-processing Summary

- NLP involves processing and analyzing large amounts of natural language speech/text.
 - Not solved; very hard problem.
- Today we just focused on pre-processing text (simplifying, vectorizing)
 - Tomorrow: NLP applications (sentiment analysis and topic modeling)
- Simplifying:
 - Punctuation removal, tokenization, stop words, stemming, lemmatization
- Vectorizing:
 - BoW, TF-IDF, Word2Vec
- Jupyter notebook demo