14) Gort an Array 0'8, 1'8 & 0'8 (DNF > Brute :- (B Direct Oorting) logic: use cort() TC: O(n logn) SC: O(1)

```
Gort (am begin ( ), am end ( ));
            (counting
         count 0, 1, 2 & overwrite
         O(n)
   SC?
          0(1)
   code!
         int cnt0=0, cnt1=0, cnt2=0;
         for (int num: am) &
              if (num = = 0) cnt 0+t;
              else if (num = = 1) cnt1+t;
              else coty++;
           3
         for (int i=0 \rightarrow cnt0) or (i)=0;
         for (int i=cnt0 -> cnt0+ cnt1) arrci] =1;
         for (in+ i=cn+0+cn+1 +> cn+0+cn+1+cn+2) arr(i)=0!
- optimal: ( Dutch National flag Algo)
  logic: use three pointers low, mid, high
  TC: OCN)
  SC: O(1)
```

$$am()=\{0,0,1,2,2,1,1,1,0,2\}$$
 mid
 $tigh$

$$a[mid] = = 1$$
 mid ++

$$[0---low-1] \rightarrow 0 \quad \text{extreme left}$$

$$[low---mid-1] \rightarrow 1$$

$$[high+1---n+] \rightarrow 2 \quad \text{extreme right}$$

Leaders in on Array: - everything Chould be Omater

$$ar(1 = [10, 22, 12, 3, 0, 6]$$

 $\rightarrow [22, 12, 6]$

→ Brute ?-

for (int
$$i=0 \rightarrow n)$$
?

$$lead = +rve;$$

$$for(j=i+1 \rightarrow n)$$
?

$$if(aCj) > aCi)$$
?

$$lead = -false$$

$$break$$
3

new add (arr [i]) if lead = true

-> optimal :-

```
Emplese Consecusive Gequence !- ( Goodie)
    arr( ) = [104, 4, 100, 1, 101, 3, 2, 1, 1]
                 F 11-02
      am[]= [100,4, 100,1, 101, 3,2,1,1]
  Cnt = 12 8
    2 = 100 )
       1010
       600)
        103
code 1-
   long =1
   for (1=0->n) &
       m=artil;
        Cnt = 1;
       While (Is (am, x+1) ==+true) &
           X= X+1;
           Cnt ++;
        0(n2)
  Sc:- 0(1)
```

```
* Better :
           am [ ]= [100, 102, 100, 101, 101, 4, 3, 2, 3, 2, 1, 1, 1, 2]
                           1 sort
                   水水布水水 华 木
          arr( )= [1,1,1,2,2,2,3,3, 4, 100, 100, 101, 101, 100]
 cnt= BXZZZY
                                                 longest = xx4
                      last smaller = INTHIN
     1 XX
-> code :-
     for (i=0 -> n) &
        if (am[i]-1 == last_smaller) &
                                              TC:- O(nlogn)
               m' cnt++;
                                               SC ?- O(1)
                 last smaller = arril;
      else it (arti] = last smaller) &
             Cnt =13
              last_amoller = am(i);
       3
     longest = tongest (longest, cnt);
>optimal ?-
                 1 1 1
        am[]=[102,4,100,1,101,3,2,1,1]
= 1 Cnt=1284
                     longest = x 4
         X 23
```

unordered aet

102

y Oce Matrix Ze noes ?-

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}$$

```
for (i=0→n) ¿
for (j=0→n) ¿
            mark Row(i);
          mark col(j);
```

for
$$(i=0 \rightarrow n) \in \{ for (j=0 \rightarrow$$

markRow (i) &

TC:-
$$O(n \times m) \times (o(n+m) + O(n \times m) \times O(m^3)^3$$

SC:- $O(1)$

	0	Ø	ø,	0
0			1	
91	1	0	١,	1
ØI	1	1	0	1
Ø,	1	0	0	

w - m size

=

	0	0	1
0	0	0	0,
0,	0	0	0
0	O.	0	0

nsize

code :-

int col(m] =
$$403$$
;
for (i-3n) {

int row[m] = 403 ;
for (j-3m) {

for (j-3m) {

if (row [i]

for (j-3m) {

mot

if (mat [i][j] = = 0) {

row [i] = 1;

col(j] = 1;

}

TC:- 0(mxn) + 0(mxn) ~ 00 (m×n)

SC:- O(m)+刚+O(n)

Arm Os. 53

$$col(0) \rightarrow row(n) \rightarrow mat(...](0)$$

$$sow(0) \rightarrow col(m) \rightarrow mat(0)[...]$$

	color 8	The second second			5
	1	Yo	No		
i	Xo	0	1	1	
Second	Xo	1	0	100	\rightarrow
	0		1	1	

				1
	0	D	0	1
el)	0	0	0	0
٠.	0	0	0	0
	0	0	0,	0

code !-

int
$$col0 = 1$$
;
for $(i=0 \rightarrow n)$?
for $(j=0 \rightarrow m)$?
if $(mat[i][j] = = 0)$?
Il mark the ith row
mot $(i][0] = 0$;

For
$$(i=1\rightarrow n)$$
 f

For $(j=1\rightarrow n)$ f

if $(mat(i)[j]] = 0$ f

if $(mat(0)[j] = 0)$

mat $(i)[j] = 0$

3,

code !-

ons [n7[n];

-for(i=0
$$\rightarrow$$
 n) {

for (j=0 \rightarrow n) {

anx (j] (n-1-i] = mat (i) (j');
}

$$TC := O(n^2)$$

 $SC := O(n^2)$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{bmatrix}$$

$$\begin{bmatrix}
13 & 9 & 5 & 1 \\
14 & 10 & 6 & 2 \\
15 & 11 & 7 & 3 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
13 & 9 & 5 & 1 \\
14 & 10 & 6 & 2 \\
15 & 11 & 7 & 3 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & 9 & 5 & 1 \\
16 & 12 & 8 & 4
\end{bmatrix}$$

$$(2)$$
 $(3) (3) (2)$

for (i=0
$$\rightarrow$$
 m)?

for (j=i+1 \rightarrow n)?

Swap (mat(i)(j), mat(j)(i));

 $+0$ (nxr

for (i=0 \rightarrow n)? \rightarrow n

reverse (mat(i), begin (), mat(i), end()); $\rightarrow n/2$

```
spiral matrix !-
                                                                    52
                                ( right -> bottom -> left -> top)
  19 32 33 34 95 6
                                     top=0 bottom=5

left=0 right=5
 18 31 36 35 46
 17 30 29 28 47 10
 16 15 14 13 12
                         11
code:-
 While (top<= bottom && left <= right) {
     for (i=left - sight)
       push(a([+op][i7])
     top++;
    for (i=top -> bottom)
         push (aci) [night])
     sight -- ;
     if (top <= bottom) &
         for ( i= right → left) &
              Push (a [bottom][i]) }}
         bottom-
     if ( left < = rig h+) &
        for (i = bottom -> top) &
           paska[i][left]
      3
      Jeft ++;
```

count Gubarrays Gum equals K:ar(1 = [1, 2, 3, -3, 1, 1, 1, 4, 2, -3] and = 8 * Bruk !--for (i=0 →n) & tor (j=1 =>n) & TC :- MO(n3) Sum =0 SC 2- 0 (1) for (Kai -)) & Sum = Sum + or [K]; } if (oum == k) count ++; 3 3 > Beller :for (1=0→n) } for Sum = 0; tor(j=i-n) { 12 =3 -> 6 Sum=sum+am (j); 123-3-3 if (sum == k) count ++; so on. 3 > TC:- 5 O(n2)

SC:- OCI)

```
optimal: (prefix (80m + mop))
amc 1 = [1, 2, 3, -3, 1, 1, 1, 4, 2, -3]
```

```
codel-
 mpp[0]=1;
 for(1=0→n)&
     Sum = Sum+arr[i];
     prefixsum = sum *K;
    Count = count + mpp [profix sum];
     mpp[sum] ++;
3
```

sum cht CUT= BXXXXXX B

TC:- > O (nx log n) 8C:-50(1)

return count;