Énoncé de la première épreuve écrite

Définitions et notations

Dans ce texte, C est identifié à R^2 . Pour x dans C on note $\operatorname{Im} x$ sa partie imaginaire.

Pour tout x dans C et tout réel positif r on note $\overline{D}(x,r) = \{y \in C, |x-y| \le r\}$ le disque fermé de C, de centre x et de rayon r.

Si M est une matrice carrée, tr(M) désigne sa trace.

Si A, B et C sont des parties d'un ensemble E, on convient d'écrire $C = A \coprod B$ lorsque $C = A \cup B$ et $A \cap B = \emptyset$.

Pour n=1 ou 2, on note \mathfrak{I}_n le groupe des isométries affines euclidiennes de \mathbb{R}^n . On note \mathfrak{I}_n^+ le sous-groupe des isométries affines euclidiennes directes.

Lorsque E est un ensemble, on note (\mathfrak{S}_E, \circ) le groupe des bijections de E sur lui-même. \mathfrak{I}_n est un sous-groupe de $(\mathfrak{S}_{\mathbb{R}^n}, \circ)$.

Soit E un ensemble non vide et G un sous-groupe de \mathfrak{S}_E ; on convient de dire qu'une partie non vide \mathcal{D} de E est G-dédoublable s'il existe des parties \mathcal{D}_1 et \mathcal{D}_2 de \mathcal{D} telles que

- (i) $\mathcal{D} = \mathcal{D}_1 \coprod \mathcal{D}_2$;
- (ii) il existe g_1 et g_2 dans G tels que $g_1(\mathcal{D}) = \mathcal{D}_1$ et $g_2(\mathcal{D}) = \mathcal{D}_2$.

Autrement dit, et de façon imagée, \mathcal{D} est G-dédoublable lorsque l'on peut la découper en deux parties, chacune étant superposable à \mathcal{D} sous l'action de G.

Objectifs du problème

Les trois premières parties étudient l'existence éventuelle d'une partie de C (resp. de R) \mathfrak{I}_{2} dédoublable (resp. \mathfrak{I}_{1} -dédoublable). Ces trois parties sont indépendantes.

La partie **IV** propose l'étude algébrique d'un sous-groupe de $SL_2(\mathsf{Z})$ engendré par deux matrices. Elle prépare aussi la partie **V** où l'on généralise le concept d'ensemble dédoublable en celui d'ensemble paradoxal sous l'action d'un groupe.

La partie V est dévolue à l'étude de deux ensembles qui se révèlent paradoxaux sous l'action du groupe étudié dans la partie IV.

Partie I : Parties dédoublables de C=R²

A. Étude d'un premier exemple

On considère le disque fermé $\overline{D} = \{x \in C, |x| \leq 1\}.$

1. On suppose l'existence de parties A et B de \overline{D} telles que

$$\overline{D} = A \coprod B$$
; $0 \in A$; $\exists \tau \in \mathfrak{I}_2, \ \tau(A) = B$.

- (a) Montrer que si deux points x et y de \overline{D} vérifient |x-y|=2 alors leur milieu est 0.
- (b) Montrer que pour w dans \overline{D} , la condition $|w \tau(0)| > 1$ entraı̂ne $w \in A$ (on pourra raisonner par contraposition).
- (c) En déduire l'existence d'un diamètre [u,v] de \overline{D} à extrémités u,v dans A.
- (d) Relever une contradiction.
- 2. En déduire que le disque fermé \overline{D} de C n'est pas \mathfrak{I}_2 -dédoublable.

B. Cas des parties bornées

Plus généralement on se propose de montrer que

Aucune partie bornée de
$$\mathsf{C}$$
 n'est $\mathfrak{I}_2\text{-dédoublable}.$

La preuve qui suit est due à H. Hadwiger et H. Debrunner [1964].

B 1. Disque enveloppant minimal

Soit \mathcal{B} une partie non vide et bornée de C. Pour r dans R_+ on pose $\mathcal{C}_r = \{x \in C, \mathcal{B} \subset \overline{D}(x,r)\}$ et $R = \{r \in R_+, \mathcal{C}_r \neq \emptyset\}$.

- 1. (a) Montrer que l'ensemble R admet une borne inférieure; on note ρ cette borne inférieure.
 - (b) Établir l'énoncé suivant :

$$\forall n \in \mathbb{N}^*, \ \exists x_n \in \mathbb{C}, \ \mathcal{B} \subset \overline{D}\left(x_n, \rho + \frac{1}{n}\right).$$

- 2. (a) Montrer que la suite $(x_n)_{n\geqslant 1}$ admet une sous-suite convergente.
 - (b) En déduire l'existence d'un nombre complexe a tel que $\mathcal{B} \subset \overline{D}(a, \rho)$.
 - (c) Démontrer l'unicité d'un tel a.

Autrement dit la partie \mathcal{B} est contenue dans un unique disque fermé de rayon minimum.

B 2. Conclusion

- 1. Dresser sans démonstration la liste des différents types de transformations géométriques qui constituent le groupe \mathfrak{I}_2 .
- 2. On suppose l'existence d'une partie bornée et non vide, \mathcal{B} , de C , qui est \mathfrak{I}_2 -dédoublable. On adopte alors les notations suivantes :

$$\mathcal{B} = \mathcal{B}_1 \coprod \mathcal{B}_2$$
, avec τ_1 et τ_2 dans \mathfrak{I}_2 vérifiant $\mathcal{B}_i = \tau_i(\mathcal{B})$ pour $i = 1, 2$.

On remarquera que, pour $i = 1, 2, \tau_i(\mathcal{B})$ est strictement contenu dans \mathcal{B} .

- (a) Montrer que les isométries τ_i ne peuvent être que des rotations différentes de l'identité. On note ω_i le centre de τ_i pour i=1,2.
- (b) En considérant l'unique disque $D(a, \rho)$ de rayon minimum contenant \mathcal{B} [voir la section **B1**], montrer que $\omega_1 = a = \omega_2$.
- (c) Montrer que $\tau_1(\tau_2(\mathcal{B})) \subset \mathcal{B}_1 \cap \mathcal{B}_2$, relever une contradiction, puis conclure.

Partie II: Le paradoxe de Sierpinski-Mazurkiewicz [1914]

On se propose de décrire une partie non bornée de C et \mathfrak{I}_2 -dédoublable.

Un nombre complexe ξ est dit transcendant si le seul polynôme à coefficients rationnels dont il est racine est le polynôme nul. On utilisera librement l'existence d'un nombre transcendant u de module égal à 1.

On note \mathcal{P}_N l'ensemble des polynômes à coefficients dans N, et l'on pose

$$\mathcal{D} = \{ P(u), P \in \mathcal{P}_{\mathsf{N}} \}.$$

Soient t et r les transformations du plan complexe définies pour x dans C par t(x) = x + 1 et r(x) = ux respectivement.

- 1. En exploitant le caractère transcendant de u, établir que $t(\mathcal{D}) \cap r(\mathcal{D}) = \emptyset$.
- 2. Montrer que l'ensemble \mathcal{D} est \mathfrak{I}_2 -dédoublable (on pourra commencer par montrer que tout polynôme P de \mathcal{P}_N peut être écrit sous l'une des deux formes suivantes : P=R+1 ou P=XS avec R et S dans \mathcal{P}_N).

Partie III : Parties dédoublables de R

On se propose d'établir le résultat suivant [W. Sierpinski]:

Aucune partie de R n'est \mathfrak{I}_1 -dédoublable.

Les sections A, B et C sont dévolues à la preuve de ce résultat.

A. La croissance d'un groupe

Soit G un groupe de loi interne notée multiplicativement et d'élément neutre noté 1. Soit S une partie finie de $G \setminus \{1\}$, supposée symétrique au sens suivant : $\forall x \in S, x^{-1} \in S$.

Le sous-groupe de G engendré par S est alors l'ensemble des produits finis d'éléments de S (on convient que le produit vide vaut 1); on le note < S >.

La longueur relativement à S, $\ell_S(x)$, d'un élément x de < S > est définie de la manière suivante : $\ell_S(1) = 0$, et, pour $x \neq 1$, $\ell_S(x)$ est le plus petit entier p tel que l'on puisse écrire $x = s_1 s_2 \cdots s_p$, avec s_k dans S pour $1 \leq k \leq p$.

Pour n entier strictement positif on pose $B_S(n) = \{x \in S >, \ell_S(x) \leq n\}, \gamma_S(n) = \operatorname{Card} B_S(n)$ [le cardinal de $B_S(n)$] et $c_S(n) = (\gamma_S(n))^{\frac{1}{n}}$.

1. Établir l'inégalité:

$$\forall p, q \geqslant 1, \quad \gamma_S(p+q) \leqslant \gamma_S(p)\gamma_S(q).$$

- 2. Pour *n* dans N*, on pose $u_n = \ln \gamma_S(n)$ et $v_n = \frac{u_n}{n}$.
 - (a) Soient n et p dans N^* ; en effectuant la division euclidienne de n par p, établir la majoration

$$v_n \leqslant v_p + \frac{p}{n}v_1.$$

- (b) En déduire que la suite $(v_n)_{n\geqslant 1}$ converge vers $v=\inf_{n\geqslant 1}v_n$.
- 3. Démontrer la convergence de la suite $(c_S(n))_{n\geqslant 1}$ vers une limite C_S , et vérifier l'inégalité $C_S\geqslant 1$.

Le groupe G est dit à croissance sous-exponentielle lorsque, pour chaque S, partie finie symétrique de $G \setminus \{1\}$, on a $C_S = 1$.

Il est dit à croissance exponentielle dans le cas contraire.

- 4. Que dire de la croissance de G s'il contient un sous-groupe à croissance exponentielle?
- 5. Montrer qu'un groupe abélien est toujours à croissance sous-exponentielle.

B. La croissance du groupe \mathfrak{I}_1

On considère une partie S de $\mathfrak{I}_1 \setminus \{Id\}$, finie et symétrique.

- 1. Montrer que \mathfrak{I}_1 est formé des transformations $x \mapsto ux + v$, avec $u = \pm 1$ et $v \in \mathbb{R}$.
- 2. Soient $\varepsilon = \pm Id$ et s dans S; prouver l'existence et l'unicité de t dans \mathfrak{I}_1^+ et de $\varepsilon' = \pm Id$ tels que $\varepsilon \circ s = t \circ \varepsilon'$.

On note T_0 la partie finie de \mathfrak{I}_1^+ obtenue en collectant les divers éléments t lorsque le couple (ε, s) décrit l'ensemble $\{\pm Id\} \times S$. On pose alors

$$T = \left\{ \tau \in \mathfrak{I}_1^+, \tau \in T_0 \text{ ou } \tau^{-1} \in T_0 \right\}$$

puis on considère les parties $B_S(n)$ de \mathfrak{I}_1 et $B_T(n)$ de \mathfrak{I}_1^+ , pour n quelconque dans N^* .

3. Démontrer que

$$\forall \tau \in B_S(n), \quad \exists (\sigma, \varepsilon) \in B_T(n) \times \{\pm Id\}, \quad \tau = \sigma \circ \varepsilon.$$

4. En déduire que le groupe \mathfrak{I}_1 est à croissance sous-exponentielle.

C. Conclusion

On suppose ici l'existence d'une partie $\mathcal D$ de $\mathsf R,$ non vide et $\mathfrak I_1$ -dédoublable.

On adopte alors les notations :

$$\mathcal{D} = \mathcal{D}_1 \coprod \mathcal{D}_2$$
, avec τ_1 , τ_2 dans \mathfrak{I}_1 tels que $\tau_i(\mathcal{D}) = \mathcal{D}_i$ $(i = 1, 2)$.
Pour n dans N^* et $s = (s_1, s_2, \ldots, s_n)$ dans $\{\tau_1, \tau_2\}^n$ on pose $\gamma_s = s_1 \circ s_2 \circ \cdots \circ s_n$.

- 1. Montrer que, pour tout couple (s, s') de $\{\tau_1, \tau_2\}^n$ tel que $s \neq s'$, on a $\gamma_s(\mathcal{D}) \cap \gamma_{s'}(\mathcal{D}) = \emptyset$.
- 2. On pose $S = \{\tau_1, \tau_1^{-1}, \tau_2, \tau_2^{-1}\}$. Déduire de la question précédente une minoration de la constante C_S pour le groupe \mathfrak{I}_1 .
- 3. Relever une contradiction, et en déduire qu'aucune partie de R n'est \mathfrak{I}_1 -dédoublable.

D. La croissance du groupe \mathfrak{I}_2

La croissance du groupe \mathfrak{I}_2 est-elle exponentielle ou bien sous-exponentielle? (On pourra s'inspirer de la section**III.C**).

Partie IV: Un groupe « paradoxal »

Dans cette partie on se propose d'étudier un groupe Γ dont les propriétés seront exploitées dans la partie \mathbf{V} .

Soit $SL_2(\mathsf{Z})$ le groupe des matrices carrées d'ordre 2, à coefficients entiers et de déterminant égal à 1; son élément neutre est $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. On note E l'espace des matrices colonnes réelles $x \in \mathbb{Z}$. On s'intéresse au sous-groupe Γ de $SL_2(\mathsf{Z})$ engendré par les matrices $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$.

A. Calculs préliminaires

- 1. Calculer A^k et B^k pour k dans Z.
- 2. On pose:

$$\Gamma_1 = \left\{A^k, k \in \mathsf{Z}\right\}, \quad \Gamma_2 = \left\{B^k, k \in \mathsf{Z}\right\}, \quad E_1 = \left\{\begin{matrix} x \\ y \end{matrix} \in E, |x| > |y| \right\}, \quad E_2 = \left\{\begin{matrix} x \\ y \end{matrix} \in E, |x| < |y| \right\}$$

Démontrer les énoncés suivants :

(1)
$$\forall M \in \Gamma_1 \setminus \{I\}, \quad \forall X_2 \in E_2, \quad MX_2 \in E_1$$

(2)
$$\forall P \in \Gamma_2 \setminus \{I\}, \quad \forall X_1 \in E_1, \quad PX_1 \in E_2$$

B. Les éléments de Γ

Dans la suite, on convient des notations suivantes :

- ightharpoonup Les M_i sont dans $\Gamma_1 \setminus \{I\}$, et les P_i sont dans $\Gamma_2 \setminus \{I\}$.
- ightharpoonup Pour n dans \mathbb{N}^* , on note Π_n le produit $(M_1P_1)(M_2P_2)\cdots(M_nP_n)$.
- 1. Justifier qu'un élément de Γ est de l'un des types suivants :

(0)	$U_0 = I$	(1)	$U_1 = P_0$	(2)	$U_2 = M_0$	(3)	$U_3 = P_0 M_0$
(4)	$U_4 = \Pi_n, n \geqslant 1$	(5)	$U_5 = P_0 \Pi_r, r \geqslant 1$	(6)	$U_6 = \Pi_s M_{s+1}, s \geqslant 1$	(7)	$U_7 = P_0 \Pi_t M_{t+1}, t \geqslant 1$

- 2. On rappelle que les matrices M_i et P_j sont toutes différentes de I.
 - (a) Montrer que $U_3 \neq I$.
 - (b) En considérant U_6X_2 avec X_2 dans E_2 , montrer que $U_6 \neq I$.
 - (c) Montrer que $U_5 \neq I$ (on pourra considérer une matrice semblable à U_5 afin de se ramener au **b**.). Démontrer de même que $U_4 \neq I$.
 - (d) En déduire que $U_7 \neq I$.
- 3. On considère le produit

$$\Pi'_{n} = (M'_{1}P'_{1})(M'_{2}P'_{2})\cdots(M'_{n}P'_{n})$$

où $n \ge 1$, les M'_i sont dans $\Gamma_1 \setminus \{I\}$, et les P'_i sont dans $\Gamma_2 \setminus \{I\}$.

- (a) Établir que l'égalité $\Pi_n = \Pi'_n$ impose $M_i = M'_i$ et $P_i = P'_i$ pour tout $i, 1 \leq i \leq n$ (on pourra considérer la matrice $\Pi'_n \Pi_n^{-1}$).
- (b) En considérant $S = \{A, A^{-1}, B, B^{-1}\}$, en déduire que le groupe Γ est à croissance exponentielle. Quelle est la croissance du groupe $SL_2(\mathsf{Z})$?

C. Éléments d'ordre fini de Γ

On se propose de montrer que I est le seul élément d'ordre fini de Γ .

Soit $(U, k) \in \Gamma \times \mathbb{N}^*$ tel que $U^k = I$.

- 1. Montrer que U ne peut pas être du type U_4 , U_7 ou U_3 .
- 2. On suppose que U est du type U_6 .
 - (a) En considérant les éléments $V_1 = M_{s+1}U_6M_{s+1}^{-1}$, $V_2 = P_1^{-1}V_1P_1$, montrer que l'on a, successivement, $M_{s+1}M_1 = I$, puis $P_sP_1 = I$.
 - (b) Relever alors une contradiction.
- 3. En déduire que U ne peut pas être de type U_5 .
- 4. Conclure que U = I.

D. Conclusion

Grâce aux résultats du ${\bf B.2.}$ et par des calculs analogues à ceux du ${\bf B.3.}$ on pourrait montrer que :

- (1) Pour chacun des types rencontrés au **B.1.**, l'écriture est unique.
- (2) Un élément de Γ ne peut être que d'un seul type.

Dans la suite, le candidat pourra utiliser librement ces résultats.

 \triangleright Lorsque $\mathcal{M} \subset \Gamma$ et $V \in \Gamma$, on pose $V\mathcal{M} = \{VU, U \in \mathcal{M}\}.$

Démontrer l'existence de quatre parties Q_1 , Q_2 , \mathcal{R}_1 , \mathcal{R}_2 de Γ , non vides et deux à deux disjointes, telles que

$$\Gamma = \mathcal{Q}_1 \cup A\mathcal{Q}_2$$
 et $\Gamma = \mathcal{R}_1 \cup B\mathcal{R}_2$.

Partie V: Ensembles G-paradoxaux

Rappels

- \triangleright Une opération ou action d'un groupe (G,\cdot) , de neutre noté 1, sur un ensemble non vide E est la donnée d'une application $\star: G \times E \to E$ telle que :
 - (i) $\forall (g', g, x) \in G \times G \times E$, $g' \star (g \star x) = (g'g) \star x$;
 - (ii) $\forall x \in E, 1 \star x = x$.
- \triangleright les G-orbites de E sont alors les ensembles $\mathcal{O}_x = \{g \star x, g \in G\}$ pour x dans E, elles constituent une partition de E.

Si le groupe G opère sur E on le fait aussi opérer de manière naturelle sur l'ensemble des parties de E en posant

$$\forall q \in G, \quad \forall X \subset E, \quad q \star X = \{q \star x, x \in X\}.$$

Définition

Avec les notations précédentes, on convient de dire qu'une partie \mathcal{P} de E est G-paradoxale lorsqu'elle contient des parties \mathcal{Q} et \mathcal{R} non vides et disjointes pour lesquelles il existe :

- 1. Des entiers $m, n \ge 1$;
- 2. des partitions de Q et \mathcal{R} , $(Q_i)_{1 \leq i \leq m}$, $(\mathcal{R}_j)_{1 \leq j \leq n}$;
- 3. des suites finies d'éléments de $G_i(g_i)_{1 \leq i \leq m}$, $(h_j)_{1 \leq j \leq n}$ vérifiant

$$\mathcal{P} = \bigcup_{1 \leq i \leq m} g_i \star \mathcal{Q}_i \text{ et } \mathcal{P} = \bigcup_{1 \leq j \leq n} h_j \star \mathcal{R}_j.$$

Autrement dit, et de façon imagée, \mathcal{P} est G-paradoxale lorsqu'elle contient des parties non vides et disjointes \mathcal{Q} et \mathcal{R} , chacune pouvant être découpée en un nombre fini de morceaux puis réarrangée sous l'action de G de manière à reconstituer \mathcal{P} .

A. Exemples

- 1. Définir une opération du groupe Γ de la partie \mathbf{IV} , sur l'ensemble Γ de sorte que Γ soit un ensemble Γ -paradoxal.
- 2. Soit E un ensemble non vide, et G un sous-groupe de \mathfrak{S}_E ; montrer que toute partie Gdédoublable de E est G-paradoxale pour une action de G qui est à préciser.

Commentaire : En adaptant de façon mineure l'argumentation proposée au III. on pourrait montrer le résultat suivant [W. Sierpinski 1954] :

R ne contient aucune partie
$$\mathfrak{I}_1$$
-paradoxale.

3. On suppose que le groupe Γ opère sur un ensemble non vide E, et que l'hypothèse suivante est vérifiée :

$$\forall U \in \Gamma \setminus \{I\}, \quad \forall x \in E, \quad U \star x \neq x.$$

Montrer que l'ensemble E est Γ -paradoxal.

Indication: On pourra considérer une partie T de E telle que l'intersection de T avec chacune des G-orbites est un singleton, et l'on ne soulèvera pas de difficulté relative à l'existence d'une telle partie.

B. Le plan hyperbolique est Γ -paradoxal

On note $H^2 = \{x \in \mathsf{C}, \mathrm{Im}(x) > 0\}$ (le demi-plan de POINCARÉ).

1. Soit $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice de $SL_2(\mathsf{Z})$; montrer que l'on définit une bijection h_M de H^2 sur lui-même en posant :

$$\forall x \in H^2, \quad h_M(x) = \frac{ax+b}{cx+d}.$$

Dans la suite on pourra utiliser sans justification le fait que l'application $M \mapsto h_M$ définit un morphisme du groupe $(SL_2(\mathsf{Z}),\cdot)$ vers le groupe symétrique $(\mathfrak{S}_{H^2},\circ)$.

- 2. (a) Montrer que le noyau du morphisme cité ci-dessus est $\{\pm I\}$.
 - (b) Montrer que ce morphisme induit un isomorphisme du sous-groupe Γ sur son image, que l'on notera $\overline{\Gamma}$.
- 3. Soit M dans $SL_2(\mathsf{Z})$ tel que l'homographie h_M fixe au moins un point de H^2 .
 - (a) Établir l'alternative : $(|\operatorname{tr}(M)| < 2$ ou bien $h_M = Id)$.
 - (b) Prouver que h_M est d'ordre fini dans le groupe $(\mathfrak{S}_{H^2}, \circ)$.
- 4. Démontrer qu'aucun élément de $\overline{\Gamma} \setminus \{Id\}$ n'a de point fixe dans H^2 .
- 5. Prouver que le demi-plan de Poincaré est Γ -paradoxal pour une opération de Γ que l'on précisera.

38

C. Une partie de \mathbb{R}^2 bornée et Γ -paradoxale

 \triangleright On note Δ la partie $[0,1[^2$ de \mathbb{R}^2 . On rappelle que l'on définit une relation d'équivalence, notée \sim , en posant :

$$\forall p, q \in \mathbb{R}^2, \quad p \sim q \Longleftrightarrow p - q \in \mathbb{Z}^2.$$

De plus Δ rencontre chaque classe d'équivalence selon un singleton.

Lorsque $p \in \mathbb{R}^2$, on note \widehat{p} l'unique q de Δ tel que $p \sim q$.

 $\,\,\rhd\,\, {\rm Pour}\,\, U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ dans Γ et p = (x,y) dans $\mathsf{R}^2,$ on pose

$$U \star p = (ax + by, cx + dy).$$

On admettra sans justification que l'on définit ainsi une opération du groupe Γ sur l'ensemble \mathbb{R}^2 , et que , si l'on note γ_U la bijection $p \mapsto U \star p$ de \mathbb{R}^2 dans \mathbb{R}^2 , l'ensemble $\Gamma_g = \{\gamma_U, U \in \Gamma\}$ est un sous-groupe de $\mathfrak{S}_{\mathbb{R}^2}$, version géométrique du groupe Γ .

1. Établir que :

$$\forall \gamma \in \Gamma_g, \quad \forall p, q \in \mathbb{R}^2, \quad p \sim q \Longrightarrow \gamma(p) \sim \gamma(q).$$

2. Lorsque $\gamma \in \Gamma_g$, on définit une application $\widehat{\gamma}$ de Δ dans Δ en posant, pour tout p de Δ , $\widehat{\gamma}(p) = \widehat{\gamma(p)}$.

Montrer que l'application $\gamma \mapsto \widehat{\gamma}$ est un morphisme injectif du groupe (Γ_g, \circ) dans le groupe $(\mathfrak{S}_{\Delta}, \circ)$ des bijections de Δ . On note $\widehat{\Gamma_g}$ son image.

- 3. Démontrer que $\widehat{\Gamma_g}$ est un ensemble dénombrable.
- 4. On s'intéresse à l'ensemble $F = \left\{ p \in \Delta, \exists \widehat{\gamma} \in \widehat{\Gamma_g} \setminus \{Id\}, \widehat{\gamma}(p) = p \right\}$. On note C_0 un cercle donné contenu dans Δ , et de rayon strictement positif. On rappelle que R n'est pas dénombrable.
 - (a) Montrer que si $(\mathcal{D}_n)_{n\in\mathbb{N}}$ est une suite de droites affines de \mathbb{R}^2 , on a $\bigcup_{n\in\mathbb{N}} (C_0\cap\mathcal{D}_n)\neq C_0$.
 - (b) En discutant l'équation $\widehat{\gamma}(p)=p$ selon la nature de γ (élément de $\Gamma_g\setminus\{Id\}$), montrer que $C_0\cap F\neq C_0$.
- 5. En déduire que F est une partie d'intérieur vide dans R^2 .
- 6. Montrer que l'on peut faire opérer le groupe Γ sur la partie bornée non vide $\mathcal{P}=\Delta\setminus F$ de telle sorte que :

 \mathcal{P} soit un ensemble Γ -paradoxal.

39