

Operative Produktionsplanung und -steuerung ("Prozessoptimierung")

Optimierung von Produktionsprozessen

Struktureller Rahmen der operativen Produktionsplanung

- Markt- und Produktionsstrategien
- Standorte/Logistikstruktur
- ► Infrastruktur/Materialflusssysteme
- ⇒ Schaffung von Leistungspotentialen/Aufbau von Kapazitäten

Gegenstand der operativen Produktionsplanung

- vom Kunden ausgehende Nachfrage
- vorhandener Bestand an Ressourcen
- ⇒ Ausschöpfen der Leistungspotentiale/Nutzung der Kapazitäten

Produktionsprogrammplanung

- ► Fokus auf das gesamte Produktprogramm (in ausreichend aggregierter Form) und die jeweiligen Produktionsstätten mit ihren logistischen Verflechtungen
- ▶ unternehmensweite (standort- und funktionsübergreifende) Koordination der erlös- und kostenwirksamen Entscheidungen für einen mittelfristigen Zeitraum
- ▶ **Abstimmung** der Vorstellungen des Absatz-, Beschaffungs- und Personalbereichs mit den Möglichkeiten und Erfordernissen der Produktion und der Logistik
- ► Berücksichtigung von

 - Beschäftigungsschwankungen, Arbeitszeitflexibilisierung

Synchronisation

(Günther/Tempelmeier (1991))

Nachfrage

Produktion

(Günther/Tempelmeier (1991))

Nachfrage Nachfrage

Produktion

Planungsproblem bei gegebenen Nachfrageschwankungen:

- ► Ziel:
 - ▶ kostenminimale Glättung der Kapazitätsnutzung im Zeitablauf
 (= ,, Beschäftigungsglättung")
- ► Entscheidungsvariable (primär): Produktionsmengen, Transportmengen, Beschaffungsmengen
- weitere Maßnahmen (sekundäre Entscheidungsvariable):

 - > saisonbedingte Überstunden, Sonderschichten, Freischichten, Betriebsferien, Kurzarbeit
 - Stillegung von Betriebseinheiten, Personalbestandsanpassung
 - ▷ Fremdvergabe von Aufträgen, Lohnfertigung
- ▶ weitere Variablen: Lagerbestände, Fehlmengen

Planungsproblem in einer funktionsübergreifenden Perspektive:

- ► Einsatz des absatzpolitischen Instrumentariums zur **Steuerung der Nachfrage** (Anheizen in schwachen Perioden, Drosselung in nachfragestarken Perioden, Verlagerung von Nachfragemengen)
- ▶ Portfoliobildung durch Produktpolitik

Ein Grundmodell zur Beschäftigungsglättung

Annahmen:

- ▶ 1 Fabrik
- mehrere (End-)Produktgruppen ("Produkttypen")
- ► Planungshorizont: T Perioden [Wochen/Monate/Quartale]
- produkt- und periodenspezifische Nachfragemengen (keine explizite Modellierung der Nachfrager; der Distributionsprozess bleibt daher außerhalb der Betrachtung)
- ► Zielfunktion: Lagerkosten, Überstundenkosten

Indexmengen:

 \blacktriangleright \mathcal{K} ... die Menge der betrachteten Produkttypen

Variable:

- $ightharpoonup x_{kt}$... die Produktionsmenge für Produkt k in Periode t
- $ightharpoonup y_{kt}$... der Lagerbestand für Produkt k in Periode t
- $ightharpoonup U_t \dots$ die einzuplandende Zusatzkapazität (Überstunden) in Periode t

Daten:

- $ightharpoonup d_{kt} \dots$ die Nachfragemenge für Produkt k in Periode t
- $lackbox{ } a_k^{\mathrm{C}} \ldots$ Produktionskoeffizient in bezug auf die technische Kapazität
- $lackbox{ } a_k^{
 m N}$... Produktionskoeffizient in bezug auf die personelle Kapazität
- $lackbox{b}_t^{
 m C_{max}}$... die maximale technische Kapazität in Periode t
- $lackbox{b}_t^{
 m N_{max}}$... die maximale personelle Kapazität in Periode t
- $lackbox U_t^{
 m max}$... die maximale Zusatzkapazität in Periode t

Daten — Fortsetzung —:

- $ightharpoonup h_k$... der Lagerkostensatz für Produkt k
- $ightharpoonup u_t \dots$ die Zusatzkapazitätskosten pro Kapazitätseinheit in Periode t

$$\text{Minimiere } Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} h_k \cdot y_{kt} + \sum_{t=1}^{T} u_t \cdot U_t$$

u. B. d. R.:

Anfangslagerbestand für Produkt k:

$$y_{k0} = y_k^{(0)}$$

für alle $k \in \mathcal{K}$

Nachfrage für Produkt k in Periode t:

$$y_{k,t-1} + x_{kt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Verfügbare technische Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} a_k^{\mathbf{C}} \cdot x_{kt} \le b_t^{\mathbf{C}_{\max}}$$

für alle $t = 1, 2, \dots, T$

Verfügbare personelle Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} a_k^{\mathrm{N}} \cdot x_{kt} - U_t \le b_t^{\mathrm{N}_{\mathrm{max}}}$$

für alle $t = 1, 2, \dots, T$

Maximale Zusatzkapazität in Periode t:

$$U_t \le U_t^{\max}$$

für alle
$$t = 1, 2, \ldots, T$$

Beispiel 2 Produkte, 4 Perioden

produktspezifische Daten

	Α	В
Lagerkostensatz h_k	4.0	4.0
Personalbedarf pro ME, $a_k^{ m N}$	1.0	0.5
technischer Kapazitätsbedarf pro ME, $a_k^{ m C}$	0.5	1.0
Anfangslagerbestand $\boldsymbol{y}_{k}^{(0)}$	36	220

periodenspezifische Daten

Periode $t =$	1	2	3	4
Nachfragemenge Produkt A, d_{At}	100	90	110	100
Nachfragemenge Produkt B, d_{Bt}	200	190	210	200
Überstundenzuschlagssatz u_t	5	5	5	5
maximale personelle Kapazität $b_t^{ m N_{max}}$	160	160	160	160
maximale Zusatzkapazität $U_t^{ m max}$	100	100	100	100
maximale technische Kapazität $b_t^{ m C_{max}}$	200	200	200	200

Hauptproduktionsprogrammplanung

Hauptproduktionsprogrammplanung

Ziele

- - (= ,, Hauptproduktionsprogrammplanung")
- ► Entscheidungsvariablen
 - ▶ Produktionsmengen

 - ▶ Lagerbestände
- Daten

 - ▶ Kapazitäten

Hauptproduktionsprogrammplanung

(vgl. Günther/Tempelmeier (2016))

Losgrößen- und Ressourceneinsatzplanung

Losgrößen- und Ressourceneinsatzplanung bei Werkstattproduktion

Losgrößenplanung

Losgrößen- bzw. Bestellmengenplanung

Ausgangspunkt:

Materialbedarfsplanung

Prognose oder Ableitung von terminierten Nettobedarfsmengen für die zu disponierenden Erzeugnisse

Planungsaufgabe:

- ► Losgrößen- bzw. Bestellmengenplanung
 - **Zusammenfassung von terminierten Nettobedarfsmengen** für einzelne Erzeugnisse zu einem größeren Produktions- bzw. Beschaffungsauftrag (Los)
 - □ um Rüstvorgänge bzw. Einzelbestellungen einzusparen
 - * Rüstkosten bzw. bestellfixe Kosten
 - * Rüstzeiten
 - unter Inkaufnahme von Lagerkosten durch Vorausproduktion bzw.
 Vorablieferung

Losgrößen- bzw. Bestellmengenplanung

Daten:

- ightharpoonup Bedarfsmenge d_t in Periode t
- ▶ durchschnittliche Bedarfsmenge = $\frac{1}{T}\sum_{t=1}^{T}d_{t}$ =: Bedarfsrate D
- \blacktriangleright bestellfixe bzw. Rüstkosten s [GE pro Bestell-/Rüstvorgang]
- ► Lagerkostensatz h [GE pro Mengeneinheit und Zeiteinheit]

Entscheidungsvariable:

- ightharpoonup Losgröße bzw. Bestellmenge q_t in Periode t
- ightharpoonup Lagerbestand y_t am Ende von Periode t
- ► Produktions- bzw. Bestellzeitpunkte

Das klassische dynamische Einprodukt-Losgrößen- bzw. -Bestellmengenproblem (SIULSP)

SIULSP: Wagner-Whitin-Problem

Modell SIULSP

Was muss festgelegt werden:

... Soll für das betrachtete Erzeugnis in Periode t ein Los aufgelegt bzw. eine Bestellung aufgegeben werden?

... Wieviel soll ggf. bestellt bzw. produziert werden?

... Wieviel Lagerbestand ist damit verbunden?

Modell SIULSP

Was muss festgelegt werden — Entscheidungsvariable:

 $\gamma_t \in \{0,1\} \dots$

Binärvariable zur Kennzeichnung, ob das betrachtete Erzeugnis in Periode t produziert bzw. bestellt wird

 $\gamma_t = \left\{ \begin{array}{l} 1 \text{ , wenn ein Los aufgelegt bzw. bestellt wird} \\ 0 \text{ sonst} \end{array} \right.$

 q_t ...

Produktions-/Bestellmenge (Losgröße) in Periode t

 y_t ...

Lagerbestand am Ende von Periode t

Modell SIULSP

Was ist gegeben — Daten:

 d_t ... vorgegebene Bedarfsmenge in Periode t

 $y^{(0)}$... Anfangslagerbestand

s ... fixer Bestell- bzw. Rüstkostensatz

h ... Lagerkostensatz

M ... Hilfsgröße: eine große Zahl, die größer sein muss als die maximal mögliche Losgröße

SIULSP: Wagner-Whitin-Problem

Modell SIULSP

Minimiere die Summe aus fixen Bestell-/Rüstkosten und Lagerkosten

$$\mathsf{Kosten} = \sum_{t=1}^{T} \left(h \cdot y_t + s \cdot \gamma_t \right)$$

unter Beachtung von

Anfangslagerbestand

$$y_0 = y^{(0)}$$

Bedarfsdeckung in Periode *t*:

$$y_{t-1} + q_t - y_t = d_t$$

für alle $t = 1, 2, \ldots, T$

Fixe Kosten: Es muss bestellt bzw. gerüstet werden, wenn $q_t > 0$ ist:

$$q_t - M \cdot \gamma_t \le 0$$

für alle $t = 1, 2, \dots, T$

Wertebereich

$$q_t \ge 0; \ y_t \ge 0; \ \gamma_t \in \{0, 1\}$$

für alle $t = 1, 2, \ldots, T$

Heuristische Lösungsverfahren für das SIULSP

Beispiel Dynamische Losgrößen- bzw. Bestellmengenplanung

▶ s = 250, h = 2, Bedarfsmengen d_t : 100, 120, 80, 110, 80, 40

Auflageperiode	Bedarfsperiode	Kostenkriterium	Vergleich
au	t	$c_{ au t}$	$\stackrel{?}{\leq} c_{\tau,t-1}$
1	1	$\frac{250 + 2 \cdot 0 \cdot 100}{1} = 250$	
	2	$\frac{250 + 2 \cdot (0 \cdot 100 + 1 \cdot 120)}{2} = 245$	ja
	3	$\frac{250 + 2 \cdot (0.100 + 1.120 + 2.80)}{3} = 270$	nein
3	3	$\frac{250 + 2 \cdot (0.80)}{1} = 250$	
	4	$\frac{250 + 2 \cdot (0.80 + 1.110)}{2} = 235$	
	5	$\frac{250 + 2 \cdot (0.80 + 1.110 + 2.80)}{3} = 263.\overline{3}$	nein
5	5	$\frac{250 + 2 \cdot (0.80)}{1} = 250$	
	6	$\frac{250 + 2 \cdot (0 \cdot 80 + 1 \cdot 40)}{2} = 165$	ja

Silver-Meal-Verfahren

Beispiel Dynamische Losgrößen- bzw. Bestellmengenplanung

▶ s = 250, h = 2, Bedarfsmengen d_t : 100, 120, 80, 110, 80, 40

Heuristische Lösung mit dem Silver-Meal-Verfahren:

► Bestellmengen:

$$q_1 = 220$$

$$q_3 = 190$$

$$q_5 = 120$$

► Gesamtkosten im Planungszeitraum:

$$Z = 3 \cdot 250 + 2 \cdot (1 \cdot 120 + 1 \cdot 110 + 1 \cdot 40) = 1290 [GE]$$

Beispiel Dynamische Losgrößen- bzw. Bestellmengenplanung

▶ s = 250, h = 2, Bedarfsmengen d_t : 100, 120, 80, 110, 80, 40

Auflage-	Anzahl zusätzlicher	Kostenkriterium	Vergleichskriterium
periode	Bedarfsperioden bis t		
au	$j = t - \tau$	$d_{\tau+j} \cdot j \cdot (j+1)$	$\stackrel{?}{\leq} 2 \cdot \frac{s}{h} = 250$
1	$t=1 \implies j=0$	$100 \cdot 0 \cdot 1 = 0$	ja
	$t=2 \implies j=1$	$120 \cdot 1 \cdot 2 = 240$	ja
	$t = 3 \implies j = 2$	$80 \cdot 2 \cdot 3 = 480$	nein
3	$t=3 \implies j=0$	$80 \cdot 0 \cdot 1 = 0$	ja
	$t = 4 \implies j = 1$	$110 \cdot 1 \cdot 2 = 220$	ja
	$t = 5 \implies j = 2$	$80 \cdot 2 \cdot 3 = 480$	nein
5	$t = 5 \implies j = 0$	$80 \cdot 0 \cdot 1 = 0$	ja
	$t = 6 \implies j = 1$	$40 \cdot 1 \cdot 2 = 80$	ja

Bestellmengen: $q_1 = 220$; $q_3 = 190$; $q_5 = 120$

Gesamtkosten im Planungszeitraum:

$$Z = 3 \cdot 250 + 2 \cdot (1 \cdot 120 + 1 \cdot 110 + 1 \cdot 40) = 1290 \,[GE]$$

Wagner-Whitin-Problem (SIULSP)

Heuristische Lösungsverfahren

- ▶ Silver-Meal-Verfahren
- ▶ Groff-Verfahren
- ► Verfahren der gleitenden wirtschaftlichen Losgröße (Least-unit-costs-Verfahren)
- Stückperiodenausgleichsverfahren (Part-period-Verfahren)

Wagner-Whitin-Problem (SIULSP)

Beispiel II Dynamische Losgrößenplanung

- ▶ Fixe Kosten pro Rüst- bzw. Bestellvorgang: s = 100
- ▶ Lagerkostensatz: h = 4
- ightharpoonup Bedarfsmengen d_t

t	1	2	3	4
d_t	10	10	30	15

Ein exaktes Lösungsverfahren für das SIULSP auf Basis der dynamischen Optimierung

Losgrößenplanung: Wagner-Whitin-Problem (SIULSP)

Interpretation als Kürzeste-Wege-Problem

- ► Transport von Produktionsmengen über die Zeit
- ightharpoonup "Transportkosten" = 1 · Rüstkosten + anfallende Lagerkosten
- ► Standorte sind die einzelnen Perioden

Losgrößenplanung: Wagner-Whitin-Problem (SIULSP)

Interpretation als Kürzeste-Wege-Problem

(Quelle: Günther/Tempelmeier (2012))

Losgrößenplanung: Wagner-Whitin-Problem (SIULSP)

Interpretation als Kürzeste-Wege-Problem

Gesamtkosten für den Weg von t=1 bis zur Senke E

		letzte Zwischenstation auf dem Weg nach t			
Folgeknoten		$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$
	Weg	$1 \rightarrow 2$	_	_	_
t=2	Kosten	100	_	_	_
	Summe	100	_	_	_
	Weg	$1 \rightarrow 3$	$1 \to 2 \to 3$	_	_
t=3	Kosten	140	100 + 100	_	_
	Summe	140	200	_	_
	Weg	$1 \rightarrow 4$	$1 \to 2 \to 4$	$1 \to 3 \to 4$	_
t=4	Kosten	380	100 + 220	140 + 100	_
	Summe	380	320	240	_
	Weg	$1 \to E$	$1 \to 2 \to E$	$1 \rightarrow 3 \rightarrow E$	$1 \to 3 \to 4 \to E$
t = E	Kosten	560	100 + 340	140 + 160	240 + 100
	Summe	560	440	300	340

Optimale Lösung: $\underline{\gamma} = (1, 0, 1, 0)^{\mathbf{T}}; \ \underline{q} = (20, 0, 45, 0)^{\mathbf{T}}$