东南大学自动化学院

PLC 原理及课程设计 实验报告

实验一 输入输出回路

实验二 多种输入元件、输出元件;流水灯、数码管等;程序调试方法;

实验三 交通灯

实验四 电机控制 (小电机和大电机)

组长姓名学号:	_08022311 陈鲲龙
组员姓名学号:	61522509 钱思畅
	_61522214 周志铭
完成时间:	2024.12.30

一、实验要求

- 1、实验板上的直流小电机,实现:①电压分级启动;②触碰开关后,电机反转。注意:电机反转前先要停止,可以逐级降驱动电压直至0,也可以直接断电后等几秒直到停。为了看清楚转向和转速变化,可在电机轴上缠纸条并留尾。
 - 2、实验室地上的交流大电机,实现 PLC 控制电机启停。

二、直流小电机控制功能设计及实现

2.0 器件设备使用(附录贴上调研结果 器件型号、使用手册、接线方法等, 注明出处: 文献标题作者时间或网址信息等)(实验板上的继电器、小电机等) 详见附录

2.1 功能设计

小电机实验的综合功能包括电机正反转、数码管显示倒计时等,详见 08022311 陈鲲龙 PLC 考试验收通过,当时没有拍照记录。本报告中仅讨论降压启动的实现。

2.2 I/0 口分配表

І/0 □	功能描述	备注
10.0	普通常开按钮开关(常开)	开关输入信号可由 PLC 内
		IO.0 输入点状态 LED 体现
I0. 1	用金属靠近接近开关	开关输入信号可由 PLC 内
	(NPN)	IO.1 输入点状态 LED 体现
Q0. 0	作为控制继电器 KA1 (常	输出信号可由 PLC 内 Q0.0
	开)的信号	输出点状态 LED 体现
Q0. 1	作为控制继电器 KA2(常	输出信号可由 PLC 内 Q0.1
	开)的信号	输出点状态 LED 体现
Q0. 2	作为控制继电器 KA3(常	输出信号可由 PLC 内 Q0.2
	开)的信号	输出点状态 LED 体现

2.3 输入输出接线图

2.4 逻辑实现

1、电路整体的开断功能 KA1 (Q0.0): 按钮 I0.0 自锁上电,接近开关 I0.1 断电

2、定时器分别先后关断 KA2、KA3, 使 R1、R2 被短接,实现升压

符号	地址	注释	
A1ways_On	SM0.0	始终接通	
CPU_输出0	Q0.0	1	

输入注释

符号	地址	注释	
Always_On	SMO.0	始终接通	

程序段注释

这里 T44 计满 20 后 T43 才开始再计 20:

程序段注释

175	九岳九	(土)
Always_On	SMO.0	始终接通
CPU_输出0	Q0. 0	
10 1 12 200		
输入注释		
	m o	Yro 0

符号	地址	注释	
Always_On	SM0.0	始终接通	

程序段注释

降压启动原理:

2.5 实验结果及分析(文字+截图)

略。小电机实验的综合功能包括电机正反转、数码管显示倒计时等,详见 08022311 陈鲲龙 PLC 考试验收通过,当时没有拍照记录。本报告中仅讨论降压启动的实现。

三、交流大电机控制功能设计及实现

3.0 器件设备使用(附录贴上调研结果 器件型号、使用手册、接线方法等, 注明出处:文献标题作者时间或网址信息等)(实验板上的功率继电器、接触器、 交流大电机等)

详见附录

3.1 功能设计

先用功率继电器在 24V 直流回路里点亮一盏灯以验证程序功能:

LED1 用 PLC+24V (+V) -0V (-V) 回路供电,并将继电器串联在回路中以作为开关使用,继电器的控制由 PLC 的 Q0.0 实现,代码逻辑见下文 3.4。

再换到 220V 交流回路里控制接触器:

负载回路为三相交流电经过接触器主触点给交流大电机供电,并且再抽出一个单相给接触器的线圈供电,同样将继电器串联在此回路中,以控制接触器线圈的得电与失电。

3.2 PLC 的 I/0 口分配表

Ⅰ/0 □	功能描述	备注
10.0	普通常开按钮开关(常开)	开关输入信号可由 PLC 内
		IO.0 输入点状态 LED 体现
I0. 1	用金属靠近接近开关	开关输入信号可由 PLC 内
	(NPN)	IO.1 输入点状态 LED 体现
Q0. 0	作为控制继电器(常开)	输出信号可由 PLC 内 Q0.0
	的信号	输出点状态 LED 体现

3.3 PLC 的输入输出接线图 (PLC 控制的继电器记为 KM) 24V 直流回路里点亮一盏 LED 灯:

220V 交流回路交流大电机:

实物接线:

3.4 PLC 控制逻辑实现

本实验逻辑极简,梯形图中,I0.0 是普通的常开按钮开关,当它被按下时,Q0.0 有输出信号使继电器由常开变闭合以导通回路,并且并联一个 Q0.0 自己以实现 I0.0 的自锁,此外还串联接近开关 I0.1,用于关断电路。

3.5 实验结果及分析

24V 直流回路里点亮一盏 LED 灯验证:

按下按钮后,继电器闭合,小灯点亮:

螺丝刀触碰接近开关后,继电器断开,小灯熄灭:

电路功能通过验证,然后继电器换入 220V 交流回路,交流大电机也正常启、停。 四、小结

在经过一学期的 PLC 实验课后,对于 PLC 的编程、接线已经较为熟练了,对于 220V 交流主回路、24V 直流控制回路、弱点控制强电理解很深刻,比如在这次实验中,按钮和继电器的常闭常开端口疑似用反,通过观察 PLC 主机上的 LED 得知各输入输出状态后,很快的更换常开端口,解决了问题。

五、附录(所涉及元器件的资料)

1 小电机实验

1继电器: MYJ 一般通用继电器/样本 | OMRON Industrial Automation

2 直流小电机: ZHENGK DC Gear Motor ZGB37REE

2 大电机实验

1交流大电机: 辊道电机 | 供应产品 | 苏州阜源电机有限公司

2 接触器: $\underline{CJX1-}$ \square / \square \square N 系列交流接触器 (机械联锁)-产品概况 -正泰 电器

3 功率继电器:

实验板上继电器图片:

AGP2014F | DSP 继电器 | 松下电器 (中国) 有限公司 控制机器 | Panasonic

↑ 元器件产品及解决方案 > 产品中心 > 控制机器首页 > 控制·输入元器件 > 维电器 光电耦合器 > 功率继电器(2A超) > DSP继电器 > 订货产品号 > AGP2014F

AGP2014F | DSP继电器

规格详细

WIEVE PE	
项目	内容
订货产品号	AGP2014F
型 <mark>号</mark>	DSP1-DC24V-F
保护构造	塑料密封
动作机能	单稳态型
端子形状	印刷电路板端子
可选件	还备有插座。
包装数量内箱(个)	50
包装数量 外箱 (个)	500

线圈规格

项目	内容
线圈额定电压	24 V DC
吸合电压 (at20℃)	线圈额定电压的80% V以下 (初始)
释放电压 (at20℃)	线圈额定电压的10% V以上 (初始)
额定动作电流 [±10%] (at 20℃)	12.5 mA
线圈电阻 [±10%] (at 20℃)	1,920Ω
额定消耗功率	300 mW
最大施加电压 (at20℃)	线圈额定电压的130% V

性能概要

项目	内容
触点构成	1a1b
触点形状	单触点
接触电阻 (初始)	30 mΩ以下 (6 V DC 1 A 电压下降法)
触点材料	Au-flashed AgSnO ₂ type
触点容量 (电阻负载)	5 A 250 V AC, 5 A 30 V DC
触点最大允许电力 (电阻负载)	1,250VA, 150W
触点最大允许电压	250 V AC, 125 V DC (0.2 A)
触点最大允许电流	5 A (AC, DC)
最小适用负载(参考值)	10 mA 5 V DC
绝缘电阻 (初始)	1,000 MΩ以上 (使用500 V DC 绝缘电阻计,测量与耐电压项相同的位置)
耐电压 (初始): 触点间	1,000 V AC 1分钟 (检测电流: 10 mA)
耐电压 (初始) : 异极触点相互间	2,000 V AC 1分钟 (检测电流: 10 mA)
耐电压 (初始) : 触点与线圈间	3,000 V AC 1分钟 (检测电流: 10 mA)
耐浪涌电压(初始): 触点与线圈间	5,000 V
动作时间(初始) (at 20℃)	线圈额定电压 10 ms以下 (不含触点弹跳)
恢复时间(初始)(at 20℃)	线圈额定电压 5 ms以下 (不含触点弹跳、无二极管)
误动作冲击	196 m/s ² (正弦半波脉冲: 11 ms、检测时间: 10 μs)
耐久冲击	980 m/s ² (正弦半波脉冲: 6 ms)
误动作振动	10 ~ 55 Hz (双向振幅: 2 mm、检测时间: 10 μs)
耐久振动	10 ~ 55 Hz (双向振幅: 3.5 mm)
机械寿命	5,000万次以上 (通断频率: 180次/分钟)
使用条件	温度: -40°C ~ +65°C 湿度: 5% RH ~ 85% RH (应无结冰、凝露)
质量(重量)	约 4.5 g

电气寿命

项目	内容
电阻负载	[通断频率: 20次/分钟] 10万次以上 5 A 250 V AC 10万次以上 5 A 30 V DC