	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
_ ///	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
决策树	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
以表中的西瓜数据集2.0为例,该	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
数据集包含17个训练样例,用以	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
学习一棵能预测没剖开的是不是好	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
瓜的决策树.	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
可计算出根结点的信息熵为:	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

于是,可计算出属性"色泽"的信息增益为

$$\begin{aligned} \operatorname{Gain}(D, 色泽) &= \operatorname{Ent}(D) - \sum_{v=1}^{3} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v}) \\ &= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right) \\ &= 0.109 \; . \end{aligned}$$

类似的,我们可计算出其他属性的信息增益:

$$Gain(D, 根蒂) = 0.143;$$
 $Gain(D, 祕声) = 0.141;$ $Gain(D, 纹理) = 0.381;$ $Gain(D, 脐部) = 0.289;$ $Gain(D, 触感) = 0.006.$

显然,属性"纹理"的信息增益最大,于是它被选为划分属性

我们要计算出当前属性集合{色泽,根蒂、敲声,纹理,脐部,触感}中每个属性的信息增益.以属性"色泽"为例,它有3个可能的取值:{青绿,乌黑,浅白}.若使用该属性对D进行划分,则可得到3个子集:分别记为:D1(色泽=青绿),D2(色泽=乌黑),D3(色泽=浅白).

子集D1包含编号为{1,4,6,10,13,17}的6个样例,D2包含编号为{2,3,7,8,9,15}的6个样例,D3包含编号为{5,11,12,14,16}的5个样例,根据公式:

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

可计算出用"色泽"划分之后所获得的3个分支结点的信息熵为:

$$\begin{aligned} & \operatorname{Ent}(D^1) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.000 \\ & \operatorname{Ent}(D^2) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918 \\ & \operatorname{Ent}(D^3) = -\left(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}\right) = 0.722 \end{aligned}$$

如图给出了基于"纹理"对根结点进行划分的结果,各分支结点所包含的样例子集显示在结点中.

然后,决策树学习算法将对每个分支结点做进一步划分.以图中第一个分支结点"纹理=清晰"为例,该结点包含的样例集合 D1中有编号为{1,2,3,4,5,6,8,10,15}的9个样例,可用属性集合为{色泽,根蒂,敲声,脐部,触感}("纹理"不再作为候选). 基于Di计算出各属性的信息增益:

$$Gain(D^1, 色泽) = 0.043;$$
 $Gain(D^1, 根蒂) = 0.458;$ $Gain(D^1, 敵声) = 0.331;$ $Gain(D^1, 脐部) = 0.458;$ $Gain(D^1, 触感) = 0.458.$

"根蒂"、"脐部"、"触感"3个属性均取得了最大的信息增益,可任选其中之一作为划分属性。

 $\Diamond \Diamond \Diamond \Diamond$

对每个分支结点进行上述操作,最终得到的决策树如图所示:

	4	編号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
•		1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.46	是
시 = DN HC		2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
朴素贝叶斯	;	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
		4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
下面我们用西瓜数据集3.0训	练	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
一个朴素贝叶斯分类器,对测	IJ (6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
试例"测1"进行分类		7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	0.481	0.149	是
		8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
首先估计类先验概率 P(c), §	显 :	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
然有:		10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
		11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	否
8		12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
$P($ 好瓜 = 是 $) = \frac{8}{17} \approx 0.47$ $P($ 好瓜 = 否 $) = \frac{9}{17} \approx 0.52$	1,	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
17		14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
$P(\text{好瓜} = \text{否}) = \frac{9}{} \approx 0.52$	9.	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	0.36	0.37	否
17		16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
		17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否
编号 色泽	根蒂	敲声	纹理	脐剖	触想	ķ	密度	含糖率	好瓜		
测 1 青绿	蜷缩	浊响	清晰	凹陷	硬 種 滑	} C	0.697	0.460	?		

◇

然后,为每个属性估计条件概率 $P(x_i|c)$

$$\begin{split} &P_{\dagger \otimes \mid |\mathcal{E}} = P(\texttt{色泽} = \texttt{青绿} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{3}{8} = 0.375 \;, \\ &P_{\dagger \otimes \mid |\mathcal{E}} = P(\texttt{\ThetaZ} = \texttt{青禄} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{7}{8} = 0.875 \;, \\ &P_{\dagger \otimes \mid |\mathcal{E}} = P(\texttt{EZ} = \texttt{青禄} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{3}{9} \approx 0.333 \;, \\ &P_{\dagger \otimes \mid |\mathcal{E}} = P(\texttt{QZZ} = \texttt{ੈ$\sharp} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{2}{9} \approx 0.222 \;, \\ &P_{\frac{1}{2}} \otimes \mathsf{B} = P(\texttt{R} = \texttt{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{5}{8} = 0.375 \;, \\ &P_{\underline{\mathsf{P}} \otimes \mathsf{B} \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\frac{1}{2}} \otimes \mathsf{B} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{Y} \texttt{M} = \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} = \mathsf{B} \otimes \mathsf{B} \mid \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} \otimes \mathsf{B} \otimes \mathsf{B} \mid \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} \otimes \mathsf{B} \otimes \mathsf{B} \otimes \mathsf{B} \mid \mathcal{E}) = \frac{6}{8} = 0.750 \;, \\ &P_{\underline{\mathsf{R}} \otimes \mid |\mathcal{E}} = P(\texttt{R} \otimes \mathsf{B} \otimes \mathsf{B}$$

对连续属性可考虑概率密度函数,假定 $P(x_i|c) \sim N(\mu_{e,i},\sigma_{e,i}^2)$ 其中 $\mu_{e,i}$ 和 $\sigma_{e,i}^2$ 分别是第c类样本在第i个属性上取值的均值和方差,则有

$$p(x_i \mid c) = \frac{1}{\sqrt{2\pi}\sigma_{c,i}} \exp\left(-\frac{(x_i - \mu_{c,i})^2}{2\sigma_{c,i}^2}\right)$$

$$\begin{split} p_{\text{密度: }0.697|\mathbb{B}} &= p(\text{密度} = 0.697 \mid \text{好瓜} = \mathbb{B}) \\ &= \frac{1}{\sqrt{2\pi} \cdot 0.129} \exp\left(-\frac{(0.697 - 0.574)^2}{2 \cdot 0.129^2}\right) \approx 1.959 \;, \\ p_{\text{密度: }0.697|\text{否}} &= p(\text{密度} = 0.697 \mid \text{好瓜} = \text{否}) \\ &= \frac{1}{\sqrt{2\pi} \cdot 0.195} \exp\left(-\frac{(0.697 - 0.496)^2}{2 \cdot 0.195^2}\right) \approx 1.203 \;, \end{split}$$

$$\begin{split} p_{\text{含糖: }0.460|\mathbb{E}} &= p(\text{含糖率} = 0.460 \mid \text{好瓜} = \mathbb{E}) \\ &= \frac{1}{\sqrt{2\pi} \cdot 0.101} \exp\left(-\frac{(0.460 - 0.279)^2}{2 \cdot 0.101^2}\right) \approx 0.788 \;, \\ p_{\text{含糖: }0.460|\text{否}} &= p(\text{含糖率} = 0.460 \mid \text{好瓜} = \text{否}) \\ &= \frac{1}{\sqrt{2\pi} \cdot 0.108} \exp\left(-\frac{(0.460 - 0.154)^2}{2 \cdot 0.108^2}\right) \approx 0.066 \;. \end{split}$$

于是,有:

$$\begin{split} P(\text{好瓜} = \mathbb{E}) \times P_{\text{青绿}|\mathbb{E}} \times P_{\text{蜷缩}|\mathbb{E}} \times P_{\text{浊响}|\mathbb{E}} \times P_{\text{清晰}|\mathbb{E}} \times P_{\text{凹陷}|\mathbb{E}} \\ \times P_{\text{硬滑}|\mathbb{E}} \times p_{\text{密度: 0.697}|\mathbb{E}} \times p_{\text{含糖: 0.460}|\mathbb{E}} &\approx 0.038 \;, \\ P(\text{好瓜} = \text{否}) \times P_{\text{青绿}|\text{否}} \times P_{\text{蟾蟾}|\text{否}} \times P_{\text{浊响}|\text{否}} \times P_{\text{清晰}|\text{否}} \times P_{\text{凹陷}|\text{否}} \\ \times P_{\text{硬滑}|\text{否}} \times p_{\text{密g: 0.697}|\text{否}} \times p_{\text{含糖: 0.460}|\text{否}} &\approx 6.80 \times 10^{-5} \;. \end{split}$$

由于0.038>6.80×10-5,因此,朴素贝叶斯分类器将测试样本"测1"判别为"好瓜".

假定聚类簇数k=3,算法开始时随机选取三个样本 x_6, x_{12}, x_{24} 作为初始均值向量,即

$$\mu_1 = (0.403; 0.237), \ \mu_2 = (0.343; 0.099), \ \mu_3 = (0.532; 0.472)$$

考察样本 x $_1$ =(0.697;0.460),它与当前均值向量 μ_0,μ_2,μ 的距离分别为0.369,0.506,0.166,因此 x $_1$ 将被划入簇 C,中.类似的,对数据集中的所有样本考察一遍后,可得当前簇划分为:

$$C_1 = \{ x_5, x_6, x_7, x_8, x_9, x_{10}, x_{13}, x_{14}, x_{15}, x_{17}, x_{18}, x_{19}, x_{20}, x_{23} \};$$

$$C_2 = \{ \boldsymbol{x}_{11}, \boldsymbol{x}_{12}, \boldsymbol{x}_{16} \};$$

$$C_3 = \{x_1, x_2, x_3, x_4, x_{21}, x_{22}, x_{24}, x_{25}, x_{26}, x_{27}, x_{28}, x_{29}, x_{30}\}.$$

根据公式: $\mu'_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$ 可从 C_1, C_2, C_3 分别求出新的均值向量:

$$\mu'_1 = (0.473; 0.214), \ \mu'_2 = (0.394; 0.066), \ \mu'_3 = (0.623; 0.388)$$

更新当前均值向量后,不断重复上述过程。

下面西瓜数据集4.0为例来演示k均值算法的学习过程.

编号	密度	含糖率	编号	密度	含糖率	编号	密度	含糖率	•
1	0.697	0.460	11	0.245	0.057	21	0.748	0.232	•
2	0.774	0.376	12	0.343	0.099	22	0.714	0.346	
3 .	0.634	0.264	13	0.639	0.161	23	0.483	0.312	
4	0.608	0.318	14	0.657	0.198	24	0.478	0.437	
5	0.556	0.215	15	0.360	0.370	25	0.525	0.369	
6	0.403	0.237	16	0.593	0.042	26	0.751	0.489	
7	0.481	0.149	17	0.719	0.103	27	0.532	0.472	
8	0.437	0.211	18	0.359	0.188	28	0.473	0.376	
9	0.666	0.091	19	0.339	0.241	29	0.725	0.445	
10	0.243	0.267	20	0.282	0.257	30	0.446	0.459	

 $\Diamond \Diamond \Diamond \Diamond$

⋘

如图所示,第五轮迭代产生的 结果与第四轮迭代相同、于是 算法停止,得到最终的簇划分。

感知机

如图所示的训练数据集,其正实例点是 $x_1 = (3,3)^T$, $x_2 = (4,3)^T$ 负实例点是 $x_3 = (1,1)^T$,试用感知机学习算法的原始形式求感知机模型 $f(x) = sign(w^Tx + b)$ 。

解 构建最优化问题:

$$\min_{w,b} L(w,b) = -\sum_{x \in M} y_i(w \cdot x + b)$$

求解w, b, 取学习率η =1。

- (1) 取初值 $w_0 = 0, b_0 = 0$
- (2) 对 $x_1 = (3.3)^T$, $y_1(w_0 \cdot x_1 + b_0) = 0$ 未能被正确分类, 更新 w, b:

$$w_1 = w_0 + y_1 x_1 = (3,3)^T$$
, $b_1 = b_0 + y_1 = 1$

得到线性模型:

$$w_1 \cdot x + b_1 = 3x^{(1)} + 3x^{(2)} + 1$$

迭代过程如下表所示

迭代次数	误分类点	w	Ь	$w \cdot x + b$
0		0	0	0
1	x_{1}	$(3,3)^{T}$	1	$3x^{(1)} + 3x^{(2)} + 1$
2	x_3	$(2,2)^{T}$	0	$2x^{(1)} + 2x^{(2)}$
3	x_3	$(1,1)^{T}$	-1	$x^{(1)} + x^{(2)} - 1$
4	x_3	$(0,0)^{T}$	-2	-2
5	x_1	$(3,3)^{T}$	-1	$3x^{(1)} + 3x^{(2)} - 1$
6	x_3	$(2,2)^{T}$	-2	$2x^{(1)} + 2x^{(2)} - 2$
7	x_3	$(1,1)^{T}$	-3	$x^{(1)} + x^{(2)} - 3$
8	0	$(1,1)^{T}$	-3	$x^{(1)} + x^{(2)} - 3$

(3) 对 x_1,x_2 , 显然, $y_i(w_i \cdot x_i + b_i) > 0$, 被正确分类,不修改 w , b ; 对 $x_3 = (l,l)^T$, $y_3(w_i \cdot x_3 + b_i) < 0$ 被误分类,更新 w , b 。

$$w_2 = w_1 + y_3 x_3 = (2, 2)^T$$
, $b_2 = b_1 + y_3 = 0$

得到线性模型:

$$w_2 \cdot x + b_2 = 2x^{(1)} + 2x^{(2)}$$

如此继续下去,直到:

$$w_2 = (1,1)^T$$
, $b_2 = -3$

$$w_7 \cdot x + b_7 = x^{(1)} + x^{(2)} - 3$$

对所有数据点 $y_i(w_i \cdot x_i + b_i) > 0$,没有误分类点,损失函数达到极小.

分离超平面为: $x^{(1)} + x^{(2)} - 3 = 0$

感知机模型为: $f(x) = sign(x^{(1)} + x^{(2)} - 3)$

 \iff

KNN

给定一个二维空间的数据集:

$$T = \{(2,3)^{\mathrm{T}}, (5,4)^{\mathrm{T}}, (9,6)^{\mathrm{T}}, (4,7)^{\mathrm{T}}, (8,1)^{\mathrm{T}}, (7,2)^{\mathrm{T}}\}\$$

构造一个平衡kd树。

解:根结点对应包含数据集T的矩形,选择 $x^{(1)}$ 轴,6个数据点的 $x^{(1)}$ 坐标的中位数是7,以平面 $x^{(1)}$ =7将空间分为左、右两个子矩形(子结点);接着,左矩形以 $x^{(2)}$ =4分为两个子矩形,右矩形以 $x^{(2)}$ =6分为两个子矩形,如此递归,最后得到下图所示的特征空间划分和kd树。

