

DLS Lab annual seminar

Octavio Villarreal March 16, 2017

Istituto Italiano di Tecnologia

Table of contents

- 1. Introduction
- 2. Master thesis: "Dynamic control of 3D directional drilling systems using state estimation"
- 3. Research proposal: "Locomotion control of HyQ using max-plus algebra linear systems"

Introduction

About me

Octavio A. Villarreal Magaña

- MSc. Mechanical Engineering, track Control Engineering (TUDelft, The Netherlands)
 - Control Methods for Robotics
 - Robust Control

- BSc. Mechatronic Engineering (UNAM, Mexico)
 - Systems and Control
 - Robotics

Master thesis: "Dynamic control of 3D directional drilling systems

using state estimation"

Dynamic control of 3D directional drilling systems

• Challenging dynamic system

 Collaboration between researchers of TU Delft, TU Eindhoven and the University of Minnesota

Little research on this field

Applications of directional drilling

Extract oil, mineral and thermal energy resources

- Reach targets that need complex geometries such as:
 - Under a city or an ecosystem
 - Far from the drill rig
 - Relief for hazardous situations

General description of the system

BHA: Bottom hole assembly

Context and challenges

[Sugiura 2009]

• State-of-practice: Constant RSS force

Negative effects: kinking, rippling and spiraling

• Consequences of negative effects: reduced penetration rate and accuracy

Research goals

Main goal

Develop a control strategy for a 3D directional drilling system, that allows to drill boreholes with complex geometries.

Previous works

- Model of 3D directional drilling systems [Perneder 2013]
- Model-based decoupled control of a 3D directional drilling system [Monsieurs 2015]
 - State-feedback controller
 - Relies on availability of measurements of the states (not possible in practice)

Subgoals

- Control strategy that relies only on local measurements
- Robustness against parametric uncertainty

Model charateristics

- Function of (dimensionless) borehole length ξ
- Model form: nonlinear coupled delay differential equations (delays: BHA should fit in already drilled borehole)
- States: borehole inclination (Θ) and azimuth (Φ) at the bit
- No access to measurements of the states (output equations of sensors)

Available measurements

Control objectives

- Track a desired reference trajectory corresponding to a complex borehole geometry
- The response of the system should have favorable transient behavior (avoid kinking, rippling and spiraling)

Plant definition

Plant definition

Output-feedback strategy

• Focus of the research: Include observer in the control structure

- Challenges
 - Nonlinear coupling between states while $\Theta \neq \check{\Theta}$
 - Controller and observer gain design

$$e_i := i_r - i$$
 $\delta_i := i - \check{i}_i$ for $i = \Theta, \Phi$

Controller synthesis

- Define isolated systems e_{Θ} , δ_{Θ} , e_{Φ} and δ_{Φ}
- Synthesize K_{Θ} , L_{Θ} , K_{Φ} and L_{Φ} for each isolated system separately
- Favorable transient performance

Controller synthesis

- Infinite number of poles in delay systems (no pole-placement)
- Spectral approach [Michiels and Niculescu 2007]
- Optimize location of right-most pole over K_i (state-feedback gain) and L_i (observer-feedback gain)

Simulation results

Research proposal: "Locomotion control of HyQ using max-plus

algebra linear systems"

Motivation

• Provide versatility to the types of gaits that the robot can perform

 Have a unified and systematic way to generate motions of the legs according to the scenario

Can be applied to other legged systems

General picture

General picture

Supervisory controller

Main goal

Decide **geometrical** and **time** gait parameters, based on sensory data, to overcome the scenario that the robot is facing.

Geometrical parameters

 Not necessarily the same for all four legs

- Examples of trajectory parameters:
 - Oscillator shape parameters [Barasuol et.al. 2013]
 - Control points of a Bzier curve [Hyun et.al. 2014]

Supervisory controller (continue)

Time parameters:

• Duty factor D_f

• Step frequency S_f

• Gait parameterization G (e.g., $G_{trot} = \{1, 4\} \prec \{2, 3\}$)

ullet Time difference vector Δ

Max-plus gait scheduler

Main goal

Using the **time**-related gait parameters provided by the supervisory controller, generate the times that each leg has to touch or leave the ground.

Max-plus gait scheduler (continue)

$$G_{trot} = \{1, 4\} \prec \{2, 3\}$$

 $D_f = 0.58$
 $S_f = 0.42$
 $\Delta = [0.2, 0.2]$

k	$g_1(k)$	$g_2(k)$	g ₃ (k)	$g_4(k)$	$I_1(k)$	$l_2(k)$	$I_3(k)$	l4(k)
0	0	0	0	0	0	0	0	0
1	2.4	3.6	3.6	2.4,	1.4	2.6	2.6	1.4
2	4.8	6	6	4.8	3.8	5	5	3.8
3	7.2	8.4	8.4	7.2	6.2	7.4	7.4	6.2
4	9.6	10.8	10.8	9.6	8.6	9.8	9.8	8.6
5	12	13.2	13.2	12	11	12.2	12.2	11

Max-plus gait scheduler (continue)

- Systematic coordinated gait generation
- Total cycle time analysis (max-plus linear systems theory)
- Coupling time analysis ("settling time")
- Not computationally expensive

Continuous reference generator

Main goal

Making use of the **touchdown** and **lift-off** times of the max-plus gait scheduler, provide a reference trajectory for each of the legs.

Continuous reference generator

Possible alternatives:

- Oscillator with angular frequency modulation according to max-plus scheduler
- \bullet Parameterized velocity profile using lift-off l(k+1) and touchdown g(k+1) as initial and final times respectively

Simulations

Change gait parameters every 20 seconds

Duty factor

Animation

Thank you. Questions or comments?