Örnek

Giriş x(t) ve sistem impuls fonksiyonu h(t) aşağıdaki gibi tanımlanıyorsa sistem çıkışı y(t) yi hesaplayın.

Şekil 31. Sistem giriş ve impuls fonksiyonları

Çözüm

Verilen tanımlara göre y(t) ve h(t) nin değişimleri aşağıdaki gibi olacaktır.

$$x(t) = \begin{cases} 2, & -1 < 0 < 1 \\ 0, & -1 > t > 1 \end{cases} ; \quad h(t) = \begin{cases} -2t + 2, & 0 < t < 2 \\ 0, & 0 > t > 2 \end{cases}$$

Sistem çıkışy(t), giriş ve çıkışın konvolüsyonu olarak y(t) = x(t) * h(t) ile hesaplanacaktır.

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$

Kuralı gereğince impuls fonksiyonu üzerinde teknik olarak convolution prosesi ile ilgili arak arasıyla

1.
$$h(t) \rightarrow h(\tau)$$
, 2. $h(\tau) \rightarrow h(-\tau)$, 3. $h(-\tau) \rightarrow h(-\tau + t)$, 4. $h(-\tau + t) = h(t - \tau)$

Not : Yukarıda Şekil (b) de verilen üçgene ait h(t) = -2t + 2 denklemi aslında bir tür "doğru denklemi" dir. Koordinatları belli olan bir doğrunun belirlenmesini iyi bilmekteyiz :

1.
$$t < -1$$
 için

Bu durum Şekil (d) ye özdeş olacaktır.

 $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$ bağıntısına göre $x(\tau)$ ve $h(t - \tau)$ arasında bir örtüşme olmadığı için convolution, dolaysıyla çıkış sıfır olacaktır.

$$y(t) = 0, t < -1$$

2.
$$-1 < t < 0$$
 için

Bu koşul için iki fonksiyon aşağıdaki gibi bir kesişim oluşturaca. ordır.

burada taralı alanın hesaplanması gerekece ktir. Bunun için kullanılacak

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} \epsilon(\tau) h(t - \tau) d\tau$$

integrasyonda gerekli paran errelerin yerine yazılması gerekecektir. Integrasyondaki alt ve üst sınırın (-1, t) olduğu, $x(\tau) = 2$ (dörtgenin değeri), h(t) = -2t + 2 ise $h(t - \tau) = -2(t - \tau) + 2 = 2(-t + 1 + \tau)$ alınırsa integrasyon,

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau = \int_{-1}^{t} (2) [2(-t + 1 + \tau)] d\tau = 4 \int_{-1}^{t} [(1 - t) + \tau)] d\tau$$

$$= 4[(1 - t) \tau + \frac{\tau^{2}}{2}]_{-1}^{t} = 4 \left[[(1 - t)t + \frac{t^{2}}{2}] - [(1 - t)(-1) + \frac{(-1)^{2}}{2}] \right] = 4 \left[[t - t^{2} + \frac{t^{2}}{2}] - [-1 + t + \frac{1}{2}] \right]$$

$$= 4 \left[t - \frac{t^{2}}{2} + 1 - t - \frac{1}{2} \right] = 4 \left[-\frac{t^{2}}{2} + \frac{1}{2} \right] = (-2t^{2} + 2)$$

$$= 2(1 - t^{2})$$

3. 0 < t < 1 için

Bu koşul için iki fonksiyon aşağıdaki gibi oluşacaktır.

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$

integrasyonda gerekli parametrelerin yerine yazılması gerekecekir. Interasyondaki alt ve üst sınırın (t-1,t) olduğu, $x(\tau)=2$ (dörtgenin değeri), h(t)=-2 + 2 ise $h(t-\tau)=-2(t-\tau)+2=2(-t+1+\tau)$ alınırsa integrasyon,

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau = \int_{t-1}^{t} (2) [2(-t + 1 + \tau)] d\tau = 4 \int_{-1}^{t} [(1 - t) + \tau)] d\tau$$

$$= 4 [(1 - t) \tau + \frac{\tau^{2}}{2}]_{t-1}^{t} = 4 \left[[(1 - t)t + \frac{t^{2}}{2}] - [(1 - t)(t - 1) + \frac{(t - 1)^{2}}{2}] \right]$$

$$= 4 \left[[t - t^{2} + \frac{t^{2}}{2}] - [-(1 - 2t + t^{2}) + \frac{t^{2} - 2t + 1}{2}] \right] = 4 \left[[t - \frac{t^{2}}{2}] - [-1 + 2t - t^{2} + \frac{t^{2}}{2} - t + \frac{1}{2}] \right]$$

$$= 4 \left[[t - \frac{t^{2}}{2}] - [-\frac{t^{2}}{2} + t - \frac{1}{2}] \right] = 4 \left[t - \frac{t}{2} - t + \frac{1}{2} \right] = 4 \left[\frac{1}{2} \right]$$

$$= 2$$

4. 1 < t < 2 için

Bu koşul için iki fonksiyon aşağıdaki gibi oluşacaktır.

Taralı alanın benzer şekilde hesaplanması gerekecektir. Bunun için kullanılacak

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$

integrasyonda gerekli parametreler olarak alt ve üst sınırın (t-1,1) olduğu, $x(\tau)=2$ (dörtgenin değeri), h(t)=-2t+2 ise $h(t-\tau)=-2(t-\tau)+2=2(-t+1+\tau)$ alınırsa integrasyon,

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau = \int_{t-1}^{1} (2) [2(-t + 1 + \tau)] d\tau = 4 \int_{t-1}^{1} [(1 - t) + \tau)] d\tau$$

$$= 4 [(1 - t) \tau + \frac{\tau^{2}}{2}]_{t-1}^{1} = 4 \left[((1 - t) + \frac{1}{2}) - [((1 - t)(t - 1) + \frac{(t - 1)^{2}}{2})] \right]$$

$$= 4 \left[(1 - t) - \frac{1}{2} - ((1 - 2t + t^{2}) + \frac{t^{2} - 2t + 1}{2}) \right] = 4 \left[\frac{3}{2} - t \right] - [-1 + 2t - t^{2} + \frac{t^{2}}{2} - t + \frac{1}{2}]$$

$$= 4 \left[(\frac{3}{2} - t) - [-\frac{t^{2}}{2} + t - \frac{1}{2}] \right] = 4 \left[\frac{3}{2} - t + \frac{t^{2}}{2} - t + \frac{1}{2} \right] = 4 \left[\frac{t^{2}}{2} - 2t + 2 \right] = (2t^{2} - 8t + 8) = 2(t^{2} - 4t + 4)$$

$$= 2(t - 2)^{2}$$

5. 2 < t için

Bu koşul için iki fonksiyon aşağıdaki gibi oluşacaktır.

- g -

Son durumda $x(\tau)$ ve $h(t-\tau)$ arasında örtüşme olmadığından bir alan söz konusu olamayacağından convolution veya sistem çıkış fonksiyonu sıfır olacaktır.

$$y(t) = 0, t > 2$$

bulunan çıkışlar aşağıdaki tabloda ayrıca derlenmiştir.

Çıkış	t < -1	-1 < t < 0	0 < t < 1	1 < t < 2	2 < t
y(t)	0	$2(1-t^2)$	2	$2(t-2)^2$	0

Tablo nihai o arak a ağıdaki değişime gösterir.

Şekil 32. Örneğe ait çıkışın y(t) = x(t) * h(t) convolution ile hesaplanması

2.30. Evaluate y[n] = x[n] * h[n], where x[n] and h[n] are shown in Fig. 2-23, (a) by an analytical technique, and (b) by a graphical method.

Fig. 2-23

(a) Note that x[n] and h[n] can be expressed as

$$x[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$$

$$h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$$

Now, using Eqs. (2.38), (2.130), and (2.131), we have

$$x[n]*h[n] = x[n]*\{\delta[n] + \delta[n-1] + \delta[n-2]\}$$

$$= x[n]*\delta[n] + x[n]*\delta[n-1] + x[n]*\delta[n-2]\}$$

$$= x[n] + x[n-1] + x[n-2]$$
Thus,
$$y[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$$

$$+ \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$$

$$+ \delta[n-2] + \delta[n-3] + \delta[n-4] + \delta[n-5]$$
or
$$y[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 3\delta[n-3] + 2\delta[n-4] + \delta[n-5]$$
or
$$y[n] = \{1, 2, 3, 3, 2, 1\}$$

Fig. 2-24

(b) Sequences h[k], x[k] and h[n-k], x[k]h[n-k] for different values of n are sketched in Fig. 2-24. From Fig. 2-24 we see that x[k] and h[n-k] do not overlap for n < 0 and n > 5, and hence y[n] = 0 for n < 0 and n > 5. For $0 \le n \le 5$, x[k] and h[n-k] overlap. Thus, summing x[k]h[n-k] for $0 \le n \le 5$, we obtain

$$y[0] = 1$$
 $y[1] = 2$ $y[2] = 3$ $y[3] = 3$ $y[4] = 2$ $y[5] = 1$

or

$$y[n] = \{1, 2, 3, 3, 2, 1\}$$

which is plotted in Fig. 2-25.

