15

What is claimed is:

1. A compound of the formula:

$$R_4$$
 R_5
 R_1
 R_2
 R_1
 R_2
 R_1

or a pharmaceutically acceptable salt thereof, wherein

5 R₁ is H, halogen, NO₂, alkyl, carboxaldehyde, hydroxyalkyl, dihydroxyalkyl, arylalkoxy, arylalkyl, alkenyl, alkynyl, arylalkynyl, -CN, aryl, alkanoyl, alkoxy, alkoxyalkyl, haloalkyl, haloalkoxy, carboxyl, or arylalkanoyl,

wherein the aryl portion of arylalkoxy, arylalkyl, and arylalkanoyl is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, nitro, CN, haloalkyl, haloalkoxy or CO_2R ;

wherein the alkyl portion of the alkyl, hydroxyalkyl, dihydroxyalkyl, arylalkoxy, arylalkyl, alkanoyl, alkoxy, alkoxyalkyl and arylalkanoyl groups is unsubstituted or substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₄ alkoxy, C₁-C₄ alkoxycarbonyl, or C₃-C₇ cycloalkyl;

halogen, $-OSO_2-(C_1-C_6)$ alkyl, $-OSO_2$ -aryl, 20 is Η, OH, arylthio, arylalkoxy, aryloxy, arylthioalkoxy, arylalkynyl, alkoxy, aryloxy(C1-C6)alkyl, alkyl, alkynyl, -OC(O)NH(CH₂)_naryl, -OC(O)N(alkyl)(CH₂)_naryl, alkoxyalkoxy, dialkylamino, alkyl, alkoxy, aryl, arylalkyl, heteroaryl, 25 heteroarylalkyl, arylalkenyl, heterocycloalkyl, heterocycloalkylalkyl, alkoxyalkoxy, NR₈R₉, dialkylamino, or CO₂R, wherein

n is 0, 1, 2, 3, 4, 5 or 6;

each of which groups is unsubstituted or substituted with

1, 2, 3, 4, or 5 groups that are independently

halogen, $-(C_1-C_6)$ alkyl-N(R) $-CO_2R_{30}$, haloalkyl, heteroarylalkyl, $-NR_6R_7$, heteroaryl, $R_6R_7N - (C_1 - C_6)$ $alkyl) - , -C(O)NR_6R_7, -(C_1-C_4)alkyl-C(O)NR_6R_7, -(C_1-C_4)alkyl-C(O)NR_6R_7, -(C_1-C_4)alkyl-C(O)NR_6R_7$ alkyl)-NRC(0)NR₁₆R₁₇, haloalkoxy, alkyl, CN, 5 hydroxyalkyl, dihydroxyalkyl, alkoxy, alkoxycarbonyl, phenyl, -SO₂-phenyl wherein the phenyl and -SO₂-phenyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen or NO2, or -OC(O)NR6R7, wherein R_{16} and R_{17} are independently H or $C_1\text{-}C_6$ alkyl; or 10 R_{16} , R_{17} and the nitrogen to which they are attached form a morpholinyl ring; R₆ and R₇ are independently at each occurrence H, alkyl, hydroxyalkyl, dihydroxyalkyl, alkoxy, 15 alkanoyl, arylalkyl, arylalkoxy, alkoxycarbonyl, -SO₂-alkyl, OH, alkoxy, alkoxyalkyl, arylalkoxycarbonyl, $-(C_1-C_4)$ alkyl-CO2-alkyl, heteroarylalkyl, or arylalkanoyl, wherein each is unsubstituted or substituted with 1, 2, or 3 groups that are independently, 20 SH, heterocycloalkyl, halogen, OH, heterocycloalkylalkyl, C3-C7 cycloalkyl, alkoxy, NH(alkyl), N(alkyl)(alkyl), -O-alkanoyl, alkyl, haloalkyl, carboxaldehyde, 25 haloalkoxy; or R_6 , R_7 , and the nitrogen to which they are attached form morpholinyl, pyrrolidinyl, thiomorpholinyl, thiomorpholinyl S-oxide, thiomorpholinyl S,S-dioxide, piperidinyl, pyrrolidinyl, or piperazinyl ring which is 30 optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, alkoxycarbonyl,

 $C_1 - C_4$ alkoxy, hydroxyl, hydroxyalkyl, dihydroxyalkyl, or halogen; R at each occurrence is independently hydrogen or C1-C₆ alkyl optionally substituted with 1 or 2 5 groups that are independently OH, SH, halogen, amino, monoalkylamino, dialkylamino or C₃-C₆ cycloalkyl; R_{30} is C_1 - C_6 alkyl optionally substituted with 1 or 2 groups that are independently OH, SH, halogen, 10 amino, monoalkylamino, dialkylamino or cycloalkyl; each R₈ is independently hydrogen, alkyl, alkanoyl, arylalkyl and arylalkanoyl, wherein each of the above is optionally substituted with 1, 2, 3, 15 4, or 5 groups that are independently alkyl, alkoxy, alkoxycarbonyl, halogen, or haloalkyl; each R9 is hydrogen, alkyl, alkanoyl, arylalkyl, cycloalkyl, cycloalkylalkyl, alkenyl, aminoalkyl, monoalkylaminoalkyl, heteroaryl, 20 dialkylaminoalkyl, arylalkanoyl, -SO₂-phenyl, aryl wherein each of the above optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, alkoxycarbonyl, halogen, or haloalkyl; 25 R4 is hydrogen or R4 is alkyl unsubstituted or substituted with one or two groups that are independently CO2R, -CO2-(C1- $-C(0)R_{6}$ $-N(R_{30})C(O)NR_{16}R_{17}$ C_6) alkyl, $-C(0)NR_6R_7$ $N(R_{30})C(0) - (C_1-C_6)alkoxy$, or $-NR_6R_7$, arylalkoxy, arylalkyl, heteroarylalkyl, heteroaryl, hydroxyalkyl, dihydroxyalkyl, haloalkyl, $R_6R_7N-(C_1-C_6 \text{ alkyl})-$, $-NR_6R_7$, 30 alkoxy, hydroxyalkoxy-, (R_6R_7N) -alkoxy-, $R_6R_7NC(0)$ -alkoxy-, $R_6C(O)N(R_7)$ alkoxy-, carboxaldehyde, -C(O)NR₆R₇,

alkoxyalkyl, or alkoxyalkoxy, wherein the heteroaryl or

20

25

30 .

aryl portions of is the above are unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, hydroxy, alkoxy, alkyl, $-CO_2-(C_1-C_6)$ alkyl, $-CONR_6R_7$, $-NR_6R_7$, $R_6R_7N-(C_1-C_6)$ alkyl-, nitro, haloalkyl, or haloalkoxy; and R_5 is H, aryl, arylalkyl, arylthioalkyl, alkyl optionally substituted with 1, 2, or 3 groups that are independently arylalkoxycarbonyl, $-NR_8R_9$, halogen, $-C(O)NR_8R_9$,

alkoxycarbonyl, C₃-C₇ cycloalkyl, or alkanoyl, alkoxy, optionally 10 alkoxyalkyl substituted with trimethylsilyl group, amino, alkoxycarbonyl, $\label{eq:hydroxyalkyl, alkynyl, -SO2-alkyl, alkoxy} \ \ \ \text{hydroxyalkyl, alkynyl, -SO2-alkyl, alkoxy}$ optionally substituted with one trimethylsilyl group, heterocycloalkylalkyl, cycloalkyl, cycloalkylalkyl, 15 -alkyl-S-aryl, -alkyl-SO₂-aryl, heteroarylalkyl, heterocycloalkyl, heteroaryl, or alkenyl optionally

substituted with alkoxycarbonyl, wherein

each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, halogen, alkoxy, hydroxyalkyl, dihydroxyalkyl, arylalkoxy, thioalkoxy, alkoxycarbonyl, arylalkoxycarbonyl, CO₂R, CN, OH, hydroxyalkyl, dihydroxyalkyl, amidinooxime; -NR₆R₇, -NR₈R₉, R₆R₇N- $(C_1-C_6 \text{ alkyl})$ -, carboxaldehyde, SO_2 alkyl, $-SO_2H$, -SO₂NR₆R₇, alkanoyl wherein the alkyl portion is optionally substituted with OH, halogen or alkoxy, - $C(0)NR_6R_7$ - (C₁-C₄ alkyl)-C(0) NR_6R_7 amidino, haloalkyl, $-(C_1-C_4)$ alkyl) $-NR_{15}C(0)NR_{16}R_{17}$, $-(C_1-C_4)$ alkyl) $-NR_{15}C(O)R_{18}$, $-O-CH_2-O$, $-O-CH_2CH_2-O-$, haloalkoxy; wherein

 R_{15} is H or C_1 - C_6 alkyl; and

 R_{18} is C_1 - C_6 alkyl optionally substituted with -O-(C_2 - C_6 alkanoyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 dihydroxyalkyl,

 C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6 alkyl, amino C_1 - C_6 alkyl, mono or dialkylamino C_1 - C_6 alkyl.

2. A compound according to claim 1, of the formula:

$$\begin{array}{c|c}
R_2 \\
R_4 \\
R_5
\end{array}$$

5

10

15

20

25

30

or a pharmaceutically acceptable salt thereof, wherein

R₁ is H, halogen, alkyl, carboxaldehyde, hydroxyalkyl, dihydroxyalkyl, arylalkoxy, arylalkyl, alkenyl, alkynyl, arylalkynyl, CN, alkanoyl, alkoxy, alkoxyalkyl, haloalkyl, carboxyl, or arylalkanoyl,

wherein the aryl portion of arylalkoxy, arylalkyl, and arylalkanoyl is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, nitro, CN, haloalkyl, haloalkoxy or CO_2R ;

wherein the alkyl portion of the alkyl, hydroxyalkyl, dihydroxyalkyl, arylalkoxy, arylalkyl, alkanoyl, alkoxy, alkoxyalkyl and arylalkanoyl groups is unsubstituted or substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₄ alkoxy, C₁-C₄ alkoxycarbonyl, or cyclopropyl;

R₂ is H, OH, halogen, $-OSO_2-(C_1-C_6)$ alkyl, $-OSO_2$ -aryl, arylalkoxy, aryloxy, arylthioalkoxy, arylalkynyl, alkoxy, phenyloxy(C_1-C_6) alkyl, $-OC(O)NH(CH_2)_naryl$, $-OC(O)N(alkyl)(CH_2)_naryl$, alkyl, alkynyl, alkoxyalkoxy,

-OC(O)N(alkyl)(CH₂)_naryl, alkyl, alkynyl, alkoxyalkoxy, dialkylamino, heteroaryl, heterocycloalkyl, aryloxyalkyl, or CO_2R , wherein

each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, $-NR_6R_7$, haloalkyl, haloalkoxy, alkyl, heteroaryl,

heteroarylalkyl, $-(C_1-C_4)$ alkyl-C(0) NR₆R₇, R₆R₇N $-(C_1-C_6)$ alkyl) -, -C(O) NR_6R_7 , -(C_1 - C_4 alkyl) -NRC(O) $NR_{16}R_{17}$, CN, hydroxyalkyl, dihydroxyalkyl, $-OC(0)NR_6R_7$, or $-(C_1-C_1-C_1)$ C_6) alkyl-N(R)- CO_2R_{30} , wherein R₁₆ and R₁₇ are independently H or C₁-C₆ alkyl; or 5 R_{16} , R_{17} and the nitrogen to which they are attached form a morpholinyl ring; R₆ and R₇ are independently at each occurrence H, alkyl, hydroxyalkyl, dihydroxyalkyl, arylalkyl, arylalkoxy, alkoxyalkyl, alkanoyl, 10 arylalkoxycarbonyl, or arylalkanoyl, wherein of the above is unsubstituted each substituted with 1, 2, or 3 groups that are independently, halogen, alkoxy, alkyl, OH, SH, carboxaldehyde, haloalkyl, or haloalkoxy; or 15 R_6 , R_7 , and the nitrogen to which they are attached form morpholinyl, thiomorpholinyl, а thiomorpholinyl S-oxide, thiomorpholinyl S,Sdioxide, piperidinyl, pyrrolidinyl, 20 piperazinyl ring which is optionally substituted with 1 2 groups orthat independently C₁-C₄ alkyl, alkoxycarbonyl, hydroxyalkyl, dihydroxyalkyl, hydroxyl, halogen; n is 0, 1, 2, 3, 4, 5 or 6; 25 R at each occurrence is independently H or C1-C6 alkyl optionally substituted with 1 or 2 groups that are independently OH, SH, halogen, amino, monoalkylamino, dialkylamino or C3-C6 cycloalkyl; R_{30} is C_1 - C_6 alkyl optionally substituted with 1 or 2 30 groups that are independently OH, SH, halogen, amino, monoalkylamino, dialkylamino

cycloalkyl;

10

 R_4 is H, alkyl optionally substituted with one or two groups independently CO₂R, -CO₂alkyl, $-C(0)NR_6R_7$ that are $-C(0)R_6$, $-N(R_{30})C(0)NR_{16}R_{17}$, $-N(R_{30})C(0)-(C_1-C_6)$ alkoxy, or -NR₆R₇, arylalkoxy, heteroaryl, arylalkyl, hydroxyalkyl, dihydroxyalkyl, haloalkyl, $-NR_6R_7$, $-C(0)NR_6R_7$, alkoxy, hydroxyalkoxy-, (R_6R_7N) -alkoxy-, $R_6R_7NC(0)$ -alkoxy-, $R_6C(0)N(R_7)$ alkoxy-, alkoxyalkyl, or alkoxyalkoxy, wherein the heteroaryl or aryl portions of the above are unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, hydroxy, alkoxy, alkyl, $-CO_2-(C_1-C_6)$ alkyl, $-CONR_6R_7$, $R_6R_7N-(C_1-C_6)$ alkyl-, nitro, haloalkyl, or haloalkoxy; and

 R_5 is H, arylalkyl, alkyl optionally substituted with 1, 2, or 15 3 groups that are independently arylalkoxycarbonyl, - NR_8R_9 , halogen, -C(0) NR_8R_9 , alkoxycarbonyl, or alkanoyl, alkoxyalkyl optionally substituted with one trimethylsilyl alkoxycarbonyl, amino, group, hydroxyalkyl, dihydroxyalkyl, alkenyl optionally 20 substituted with alkoxycarbonyl, alkynyl, -SO₂-alkyl, optionally substituted with aryl, alkoxy trimethylsilyl heterocycloalkylalkyl, group, heteroarylalkyl, heterocycloalkyl, or heteroaryl, wherein each of the above is unsubstituted or substituted with 1, 25 2, 3, 4, or 5 groups that are independently alkyl, halogen, alkoxy, arylalkoxy, hydroxyalkyl, dihydroxyalkyl, thioalkoxy, -SO₂alkyl, alkoxycarbonyl, arylalkoxycarbonyl, CO₂R, CN, OH, amidinooxime, NR_8R_9 , $R_6R_7N-(C_1-C_6 \text{ alkyl})-$, $-C(O)NR_6R_7$, amidino, 30 hydroxyalkyl, dihydroxyalkyl, carboxaldehyde, $-NR_6R_7$, haloalkyl, $-(C_1-C_4 \text{ alkyl})$ - $C(0)NR_6R_7$, $-(C_1-C_4 \text{ alkyl})-CO_2R$, $-(C_1-C_4 \text{ alkyl})-C_1-C_6$ alkoxycarbonyl, $-(C_1-C_4 \text{ alkyl})-CN$, $-(C_1-C_4 \text{ alkyl})-$

- $NR_{15}C(O)R_{18}$, $-O-CH_2-O-$, $-O-CH_2CH_2-O-$, phenyl or haloalkoxy;
- 5 R₉ is alkyl, alkanoyl, arylalkyl, heteroaryl, aminoalkyl, monoalkylaminoalkyl, dialkylaminoalkyl, and arylalkanoyl.
 - 3. A compound according to claim 2 wherein
- R₁ is H, halogen, alkyl optionally substituted with C₁-C₄ 10 alkoxycarbonyl, carboxaldehyde, hydroxyalkyl, dihydroxyalkyl, phenyl (C_1-C_6) alkoxy, phenyl (C_1-C_6) alkyl, CN, alkanoyl, alkoxy, C_2-C_4 alkynyl, C₂-C₆ alkenyl substituted optionally with $C_1 - C_4$ alkoxycarbonyl, 15 alkoxyalkyl, haloalkyl, or phenyl(C₁-C₆)alkanoyl,
 - wherein the phenyl groups are unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, nitro, CN, CF_3 , OCF_3 or CO_2R ;
- wherein the alkyl groups are unsubstituted or substituted with 1, 2, or 3 groups that are independently halogen, methoxy, or ethoxy;
- R_2 is OH, phenyl(C_1 - C_6)alkoxy, phenyloxy, phenyloxy(C_1 - C_6)alkyl, phenyl (C_1-C_4) thioalkoxy, C_1-C_8 alkoxy, alkoxyalkoxy, -0-25 SO₂phenyl, alkynyl, phenyl (C_2-C_4) alkynyl, alkyl, -OC(O)NH(CH₂)_nphenyl,-OC(O)N(alkyl)(CH₂)_nphenyl, dialkylamino, pyridyl, pyrimidyl, pyridazyl, pyrazolyl, tetrahydroquinolinyl, imidazolyl, pyrrolyl, tetrahydroisoguinolinyl, tetrazolyl, pyrazinyl, benzimidazolyl, triazinyl, tetrahydrofuryl, piperidinyl, 30

n is 0, 1, 2, 3, 4, 5 or 6;

hexahydropyrimidinyl, thiazolyl, thienyl, or CO₂R, wherein

each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, haloalkyl, haloalkoxy, hydroxyalkyl, NR_6R_7 , dihydroxyalkyl, alkyl, phenyl, pyridyl, piperidinyl, 5 piperazinyl, $-(C_1-C_6)$ alkyl $-N(R)-CO_2R_{30}$, $R_6R_7N - (C_1 - C_6)$ alkyl) -, -C(0) NR₆R₇, -(C_1 - C_4) alkyl-C(0) NR₆R₇, -(C_1 - C_4 alkyl)-NRC(O)NR₁₆R₁₇, or -OC(O)NR₆R₇, wherein R_6 and R_7 are independently at each occurrence H, $(C_1 - C_4)$ hydroxyalkyl, alkyl, 10 dihydroxyalkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkoxy (C_1-C_4) alkyl, (C_1-C_4) alkanoyl, phenyl (C_1-C_4) phenyl (C_1-C_4) alkoxy, phenyl alkyl, (C_1-C_4) alkoxycarbonyl, or phenyl (C_1-C_4) alkanoyl, wherein each of the above is unsubstituted or substituted with 1, 2, or 3 groups that are 15 independently, halogen, OH, SH, $C_3 - C_6$ cycloalkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkyl, CF_3 , carboxaldehyde, NH_2 , $NH(C_1-C_6)$ alkyl, C_6) alkyl (C_1 - C_6) alkyl, OCF₃; or 20 R_6 , R_7 , and the nitrogen to which they are attached morpholinyl, thiomorpholinyl, a piperidinyl, pyrrolidinyl, or piperazinyl ring which is optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, hydroxy 25 hydroxy, $C_1 - C_4$ alkyl, $C_1 - C_4$ dihydroxyalkyl, $C_1 - C_4$ alkoxycarbonyl, or halogen; and R4 is H, alkyl optionally substituted with one or two groups that independently CO₂R, -CO₂alkyl, $-C(0)NR_6R_7$ are $-C(O)R_6$, $-N(R_{30})C(O)NR_{16}R_{17}$, $-N(R_{30})C(O)-(C_1-C_6)alkoxy$, or 30 $-NR_6R_7$, arylalkoxy, heteroaryl, arylalkyl, hydroxyalkyl,

dihydroxyalkyl, haloalkyl, $-NR_6R_7$, $-C(0)NR_6R_7$,

alkoxy,

hydroxyalkoxy-, (R_6R_7N) -alkoxy-, $R_6R_7NC(O)$ -alkoxy-, $R_6C(O)N(R_7)$ alkoxy-, alkoxyalkyl, or alkoxyalkoxy, wherein the heteroaryl or aryl portions of the above are unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, hydroxy, alkoxy, alkyl, $-CO_2-(C_1-C_6)$ alkyl, $-CONR_6R_7$, $-NR_6R_7$, $R_6R_7N-(C_1-C_6)$ alkyl-, nitro, haloalkyl, or haloalkoxy; and

 R_5 is phenyl(C_1 - C_6)alkyl, (C_1 - C_6)alkyl optionally substituted with 1, 2, 3, 4, or 5 groups that are independently 10 phenyl C_1-C_4 alkoxycarbonyl, $-NR_8R_9$, halogen, $-C(0)NR_8R_9$, alkoxycarbonyl, or alkanoyl, phenyl, alkoxy, alkynyl, C_2 - C_6 alkenyl optionally substituted with alkoxycarbonyl, indolyl, quinolinyl, isoquinolinyl, 15 isoindolyl, dihydroindolyl, pyrazolyl, imidazolyl, dihydroisoindolyl, indolon-2-yl, indazolyl, benzimidazolyl, pyridyl, imidazolidine dione, pyrazolyl $(C_1-C_6 \quad alkyl)$, imidazolyl(C₁-C₆ alkyl), piperidinyl (C_1-C_6) alkyl, pyrrolidinyl (C_1-C_6) alkyl, imidazolidinyl (C_1-C_6) alkyl, tetrahydroisoguinolinyl(C₁-20 1H-indazolyl (C₁-C₆) alkyl, dihydroindolon-2- C_6) alkyl, $yl(C_1-C_6)$ alkyl), indolinyl $(C_1 - C_6)$ alkyl), dihydrobenzimidazolyl(C₁-C₆ alkyl), ordihydrobenzoimidazolonyl(C₁-C₆ alkyl), pyridyl $(C_1 - C_6)$ 25 alkyl, pyridazinyl (C₁-C₆) alkyl, pyrimidinyl $(C_1 - C_6)$ alkyl, pyrazinyl $(C_1 - C_6)$ alkyl, tetrahydrofuryl (C1- C_6) alkyl, naphthyl (C_1-C_6) alkyl, morpholinyl (C_1-C_6) alkyl, tetrahydrofuryl (C_1-C_6) alkyl, thienyl (C_1-C_6) alkyl, piperazinyl (C₁-C₆) alkyl, indolyl $(C_1 - C_6)$ alkyl, quinolinyl(C_1 - C_6) alkyl, isoquinolinyl(C_1 - C_6) 30 alkyl, isoindolyl(C_1 - C_6) alkyl, $dihydroindolyl(C_1-C_6)$ alkyl, $pyrazolyl(C_1-C_4)$ alkyl, $imidazolyl(C_1-C_4)$ alkyl, dihydroisoindolyl(C_1-C_6) alkyl, indoon-2-yl(C_1-C_6) alkyl,

10

15

indolon-2-yl(C_1 - C_6) alkyl, or morpholinyl C_1 - C_6 alkyl, wherein

each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently C_1 - C_6 alkyl, halogen, C_1 - C_6 alkoxy, phenyl C_1 - C_6 alkoxy, C_1 - C_6 thioalkoxy, C_1 - C_6 alkoxycarbonyl, CO_2R , CN, $-SO_2(C_1$ - $C_6)$ alkyl, amidinooxime, NR_8R_9 , $-NR_6R_7$, NR_6R_7 C_1 - C_6 alkyl, $-C(O)NR_6R_7$, $-(C_1$ - $C_4)$ alkyl- $-C(O)NR_6R_7$, amidino, C_1 - C_4 haloalkyl, hydroxy C_1 - C_6 alkyl, C_1 - C_6 dihydroxyalkyl, or C_1 - C_4 haloalkoxy; wherein

 R_8 is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkanoyl, phenyl C_1 - C_6 alkyl and phenyl C_1 - C_6 alkanoyl; and

 R_9 is aminoalkyl, mono $C_1\text{-}C_6$ alkylamino $C_1\text{-}C_6$ alkyl, di $C_1\text{-}C_6$ alkylamino $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkanoyl, phenyl $C_1\text{-}C_6$ alkyl, indazolyl, and phenyl $C_1\text{-}C_6$ alkanoyl.

- 4. A compound according to claim 3, wherein
- R_1 is H, halogen, C_1 - C_4 alkyl optionally substituted with C_1 - C_4 alkoxycarbonyl, C_2 - C_4 alkenyl optionally substituted with C_1 - C_4 alkoxycarbonyl, C_2 - C_4 alkynyl, or carboxaldehyde;
- R₂ is benzyloxy, OH, phenyloxy, phenyloxy(C₁-C₆)alkyl, phenyl
 (C₁-C₄) thioalkoxy, or pyridyl; wherein each of the above
 is optionally substituted with 1, 2, 3, 4, or 5 groups
 25 that are independently halogen, -(C₁-C₆)alkyl-N(R)-CO₂R₃₀,
 NR₆R₇, -(C₁-C₄)alkyl-C(O)NR₆R₇, (C₁-C₄) haloalkyl,
 -C(O)NR₆R₇, -(C₁-C₄ alkyl)-NRC(O)NR₁₆R₁₇, (C₁-C₄) haloalkoxy,
 hydroxyalkyl, C₁-C₆ dihydroxyalkyl, (C₁-C₆) alkyl, pyridyl,
 or R₆R₇N-(C₁-C₆ alkyl)-.

30

- 5. A compound according to claim 4, wherein
- R₅ is indolyl, pyridyl, pyridazinyl, pyrimidinyl, indazolyl, tetrahydroquinolyl, tetrahydroisoquinolyl, pyrazolyl,

imidazolyl, furanyl, quinolinyl, isoquinolinyl, isoindolyl, dihydroindolyl, dihydroisoindolyl, indolon-2yl, or pyrazinyl, each of which is unsubstituted or substituted with 1, 2, 3, 4 or 5 groups that are 5 independently C₁-C₄ alkyl, halogen, CF₃, OCF₃, -CO₂CH₃, C₁- C_4 hydroxyalkyl, dihydroxyalkyl, C_1-C_4 alkoxy, $-CO_2(C_1-C_5)$ alkyl), benzyloxy, $-NR_6R_7$, $-(C_1-C_4)$ alkyl-C(0) NR_6R_7 , $-NR_8R_9$, NR_6R_7 -(C_1 - C_4 alkyl), -C(O) NR_6R_7 , or amidinooxime; wherein R_6 and R_7 are independently at each occurrence H, C_1 - C_4 10 alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ dihydroxyalkyl, C₁-C₄ alkoxy, C_1-C_4 alkoxy C_1-C_4 alkyl, C_1-C_4 alkanoyl, phenyl C₁-C₄ alkyl, phenyl C₁-C₄ alkoxy, or phenyl C₁alkanoyl, wherein each is unsubstituted substituted with 1, 2, or 3 groups that independently, halogen, OH, 15 SH, C₃-C₆ cycloalkyl, aryl, C₁-C₄ alkoxy, C₁-C₄ alkyl, OH, CF₃, or OCF₃; or R_6 , R_7 , and the nitrogen to which they are attached form a morpholinyl, thiomorpholinyl, pyrrolidinyl, orpiperazinyl ring which is optionally substituted with 1 or 2 groups that are independently C1-C4 20 hydroxy, hydroxy alkyl, $C_1 - C_4$ alkyl, $C_1 - C_4$ dihydroxyalkyl, or halogen.

6. A compound according to claim 5, wherein
25 R₅ is indolyl, pyridyl, pyrimidinyl, pyrazolyl, furanyl, indazolyl, dihydroindolyl, dihydroisoindolyl, indolon-2-yl, or pyrazinyl, each of which is unsubstituted or substituted with 1, 2, 3, or 4 groups that are independently C₁-C₄ alkyl, halogen, CF₃, OCF₃, -CO₂CH₃, C₁-C₄ hydroxyalkyl, C₁-C₄ dihydroxyalkyl, C₁-C₄ alkoxy, -CO₂(C₁-C₅ alkyl), benzyloxy, -C(O)NR₆R₇, -NR₈R₉, -(C₁-C₄)alkyl-C(O)NR₆R₇, -NR₆R₇, NR₆R₇-(C₁-C₄ alkyl)-, and amidinooxime.

10

15

30

- 7. A compound according to claim 6, wherein
- R₅ is indolyl, pyridyl, pyrimidinyl, dihydroindolyl, dihydroisoindolyl, pyrazolyl, or pyrazinyl, each of which is unsubstituted or substituted with 1, 2, 3, or 4 groups that are independently C₁-C₄ alkyl, halogen, CF₃, OCF₃, -CO₂CH₃, C₁-C₄ hydroxyalkyl, C₁-C₄ dihydroxyalkyl, C₁-C₄ alkoxy, -CO₂(C₁-C₅ alkyl), benzyloxy, -C(O)NR₆R₇, NR₈R₉, (C₁-C₄)alkyl-C(O)NR₆R₇, -NR₆R₇, NR₆R₇-(C₁-C₄ alkyl)-, or amidinooxime; wherein
- R₆ and R₇ are independently at each occurrence H, C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ dihydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ alkanoyl, C₁-C₄ alkoxy C₁-C₄ alkyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently halogen, OH, SH, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkyl, OH, CF₃, or OCF₃.
 - 8. A compound according to claim 7, wherein
- - R₆ and R₇ are independently at each occurrence H, C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ dihydroxyalkyl, C₁-C₄ alkanoyl, or C₁-C₄ alkoxy, each of which is optionally substituted with 1, 2, or 3 groups that are independently halogen, OH, SH, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkyl, OH, CF₃, or OCF₃.

5

15

25

30

- 9. A compound according to claim 4, wherein

 R₅ is phenyl, phenyl(C₁-C₆)alkyl, or (C₁-C₆)alkyl, wherein

 each of the above is unsubstituted or substituted with 1,

 2, 3, 4, or 5 groups that are independently alkyl,

 halogen, alkoxy, benzyloxy, hydroxyalkyl,

 dihydroxyalkyl, thioalkoxy, -CO₂(C₁-C₅ alkyl), CO₂R,

 CN, amidinooxime, -NR₈R₉, -NR₆R₇, R₆R₇N-(C₁-C₆ alkyl)-,

 -C(O)NR₆R₇, -(C₁-C₄)alkyl-C(O)NR₆R₇, amidino, CF₃, or

 OCF₃;
- 10 R₈ is hydrogen, C₁-C₆ alkyl, C₁-C₆ alkanoyl, phenyl C₁-C₆ alkyl and phenyl C₁-C₆ alkanoyl; and
 R₉ is aminoalkyl, mono C₁-C₆ alkylamino C₁-C₆ alkyl, di C₁-C₆ alkylamino C₁-C₆ alkyl, C₁-C₆ alkanoyl, phenyl C₁-C₄ alkyl, indazolyl, and phenyl C₁-C₄
 - 10. A compound according to claim 4, wherein

alkanoyl.

- R₅ is phenyl or phenyl(C₁-C₆)alkyl, each of which is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, halogen, alkoxy, benzyloxy, thioalkoxy, -CO₂(C₁-C₅ alkyl), CO₂R, CN, amidinooxime, -NR₈R₉, -NR₆R₇, R₆R₇N-(C₁-C₆ alkyl)-, -C(O)NR₆R₇, -(C₁-C₄)-C(O)NR₆R₇, amidino, CF₃, or OCF₃; wherein
 - R₆ and R₇ are independently at each occurrence H, C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ dihydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ alkoxy C₁-C₄ alkyl, C₁-C₄ alkanoyl, phenyl C₁-C₄ alkyl, phenyl C₁-C₄ alkoxy, or phenyl C₁-C₄ alkanoyl, wherein each is unsubstituted or substituted with 1, 2, or 3 groups that are independently, halogen, OH, SH, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkyl, CF₃, or OCF₃; or
 - $R_6,\ R_7,$ and the nitrogen to which they are attached form a morpholinyl, thiomorpholinyl, or piperazinyl ring

which is optionally substituted with 1 or 2 groups that are independently C_1 - C_4 alkyl, hydroxy, hydroxy C_1 - C_4 alkyl, C_1 - C_4 dihydroxyalkyl, or halogen;

- R_8 is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkanoyl, phenyl C_1 - C_6 alkyl and phenyl C_1 - C_6 alkanoyl; and
- R_9 is aminoalkyl, mono C_1 - C_6 alkylamino C_1 - C_6 alkyl, di C_1 - C_6 alkylamino C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkanoyl, phenyl C_1 - C_4 alkyl, indazolyl, and phenyl C_1 - C_4 alkanoyl.

10

5

- A compound according to claim 10, wherein R_5 is phenyl, benzyl or phenethyl, wherein each is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently C_1 - C_6 alkyl, -NR₆R₇, -C(0)NR₆R₇, -(C_1 - C_4 alkyl)-C(O)NR₆R₇, -NR₈R₉, halogen, C_1 - C_6 alkoxy, CO_2R , -(C_1 -15 C₄ alkyl)-CO₂R, C₁-C₆ thioalkoxy, amidinooxime, C₁-C₆ alkoxycarbonyl, $-(C_1-C_4 \text{ alkyl})-C_1-C_6 \text{ alkoxycarbonyl}, C_1-C_6$ hydroxyalkyl, C₁-C₆ dihydroxyalkyl, -(C₁-C₄ alkyl)-CN, CN, phenyl C_1 - C_6 alkoxy, OH, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, 20 $R_6R_7N - (C_1 - C_6 \text{ alkyl}) - , - (C_1 - C_4 \text{ alkyl}) - NR_{15}C(0)R_{18},$ amidinooxime, $-SO_2(C_1-C_6 \text{ alkyl})$, $-O-CH_2-O-$, $-O-CH_2CH_2-O-$, phenyl C₁-C₄ alkoxy, or phenyl; wherein R_6 and R_7 are independently at each occurrence H, C_1 - C_4 alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ dihydroxyalkyl, C₁-C₄ 25 alkanoyl, or C₁-C₄ alkoxy, each of which is optionally substituted with 1, 2, or 3 groups that are independently halogen, OH, SH, C3-C6 cycloalkyl, C_1-C_4 alkoxy, C_1-C_4 alkyl, OH, CF_3 , or OCF_3 .
- 12. A compound according to claim 11, wherein R_5 is phenyl, benzyl or phenethyl, each of which is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently CN, halogen, C_1 - C_4 alkoxy, CF_3 ,

5

OCF₃, C_1 - C_4 alkyl, -NR₈R₉, -NR₆R₇, R₆R₇N-(C_1 - C_6 alkyl)-, or -C(0)NR₆R₇, wherein

R₆ and R₇ are independently at each occurrence H, C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ dihydroxyalkyl, C₁-C₄ alkanoyl, or C₁-C₄ alkoxy, each of which is optionally substituted with 1, 2, or 3 groups that are independently halogen, OH, SH, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkyl, OH, CF₃, or OCF₃.

10 13. A compound according to claim 4, wherein the R_5 group is of the formula:

$$z_1$$
 or z_2

wherein

 Z_1 and Z_2 are independently H, halogen, $C_1\text{-}C_4$ alkyl, or CO_2R ; and

Z is $-C(O)NR_6R_7$, $-(C_1-C_4)alkyl-C(O)NR_6R_7$, $-(C_1-C_4)alkyl-C(O)NR_6R_7$, $-(C_1-C_4)alkyl-C(O)NR_6R_7$, $-NR_6R_7$,

20 R_6 and R_7 at each occurrence are independently H, OH, C_1 - C_6 alkyl, amino C_1-C_4 alkyl, $NH(C_1-C_6$ alkyl) alkyl, $N(C_1-C_6)$ C_6 alkyl) (C_1 - C_6 alkyl) C_1 - C_6 alkyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 dihydroxyalkyl, C_1 - C_6 alkoxy C_1 - C_6 alkyl, or -SO₂ (C₁-C₆ alkyl) each of which is optionally substituted with 1, 2, or 3 groups that are 25 independently halogen, OH, SH, C3-C6 cycloalkyl, C1-C4 alkoxy, C₁-C₄ alkyl, OH, CF₃, or OCF₃;

or

30

 R_6 , R_7 , and the nitrogen to which they are attached form a piperidinyl, pyrrolidinyl, piperazinyl, or a

15

20

25

morpholinyl, thiomorpholinyl, ring optionally substituted with 1 or 2 groups that are independently alkyl, hydroxy, hydroxy C_1 - C_4 alkyl, C_1 - C_4 dihydroxyalkyl, or halogen; and

 R_{18} is C_1 - C_6 alkyl optionally substituted with -O-(C_2 - C_6 alkanoyl, C_1 - C_6 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6 alkyl, amino C_1 - C_6 alkyl, mono or dialkylamino C_1 - C_6 alkyl.

10 14. A compound according to claim 4, wherein

alkyl), $imidazolyl(C_1-C_6)$ R_5 pyrazolyl(C₁-C₆ thienyl(C_1 - C_6 alkyl), furanyl(C_1 - C_6 alkyl), piperidinyl(C_1 pyrrolidinyl (C_1-C_6) alkyl, C_6) alkyl, $imidazolidinyl(C_1$ piperazinyl (C_1-C_6) alkyl, pyridyl (C_1-C_6) alkyl, C_6) alkyl, $pyrimidyl(C_1-C_6)alkyl, pyridazyl(C_1-C_6)alkyl, pyrazinyl(C_1-C_6)alkyl, pyrazinyl(C_1-C_6)a$ C_6) alkyl, isoquinolinyl (C_1-C_6) alkyl, tetrahydroisoquinolinyl (C_1-C_6) alkyl, indolyl (C_1-C_6) alkyl, 1H-indazolyl (C_1 - C_6) alkyl, dihydroindolyl (C₁-C₆ dihydroindolon-2-yl(C_1 - C_6 alkyl), indolinyl(C_1 - C_6 alkyl), dihydroisoindolyl (C_1 - C_6 alkyl), dihydrobenzimdazolyl (C_1 - C_6 alkyl), or dihydrobenzoimidazolonyl(C₁-C₆ alkyl), wherein each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently $(C_1-$

> C_4 alkyl)-NR₁₅C(O)NR₁₆R₁₇, -(C_1 - C_4 alkyl)-NR₁₅C(O)R₁₈, -O-CH₂-O, -O-CH₂CH₂-O-, or (C_1 - C_4)haloalkoxy; wherein

> C_6) alkyl, halogen, (C_1-C_6) alkoxy, (C_1-C_6) hydroxyalkyl,

30

	R_6 and R_7 are independently at each occurrence H,
	(C_1-C_6) alkyl, (C_1-C_6) alkoxy, (C_1-C_6) alkoxy (C_1-C_6)
	C_6) alkyl, (C_1-C_6) alkoxycarbonyl, (C_1-C_6)
	C_6) hydroxyalkyl, C_1 - C_6 dihydroxyalkyl, - $(C_1$ -
5	C_4) alkyl- CO_2 - $(C_1$ - C_6) alkyl, $(C_1$ - C_6) alkanoyl,
	phenyl(C_1-C_6) alkyl, phenyl(C_1-C_6) alkoxy, or
	phenyl(C_1 - C_6)alkanoyl, wherein each of the above
	is unsubstituted or substituted with 1, 2, or 3
	groups that are independently, halogen, $(C_1-$
10	C_4) alkoxy, OH, SH, C_3 - C_6 cycloalkyl, NH ₂ , NH(C_1 -
	C_6 alkyl), $N(C_1-C_6$ alkyl)(C_1-C_6 alkyl), (C_1-C_6
	C ₄)alkyl, CF ₃ or OCF ₃ ; or
	R_6 , R_7 , and the nitrogen to which they are attached
	form a morpholinyl, thiomorpholinyl,
15	piperidinyl, pyrrolidinyl, or piperazinyl ring
	which is optionally substituted with 1 or 2
	groups that are independently C_1 - C_4 alkyl,
	hydroxy, hydroxy C_1-C_4 alkyl, C_1-C_4
	dihydroxyalkyl, or halogen; and
20	R_{18} is C_1 - C_6 alkyl optionally substituted with -O-(C_2 -
	C_6 alkanoyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6
	dihydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6
	alkyl; amino C ₁ -C ₆ alkyl, mono or dialkylamino
	C ₁ -C ₆ alkyl,
25	
_	15. A compound according to claim 14, wherein
R ₅	is pyrazolyl(C ₁ -C ₆ alkyl), imidazolyl(C ₁ -C ₆ alkyl),
	benzimidazolyl(C_1-C_6 alkyl), thienyl(C_1-C_6 alkyl),
	pyrimidyl(C_1-C_6) alkyl, indolyl(C_1-C_6 alkyl),
30	dihydroindolyl (C ₁ -C ₆ alkyl), dihydroisoindolyl (C ₁ -C ₆
	alkyl), dihydroindolon-2-yl(C ₁ -C ₆ alkyl), pyridinyl(C ₁ -C ₆
	alkyl), piperazinyl(C ₁ -C ₆ alkyl), or pyrazinyl(C ₁ -C ₆ alkyl)
	each of which is optionally substituted with 1, 2, or 3

groups that are independently C_1-C_4 alkyl, C_1-C_4 hydroxyalkyl, C_1-C_4 dihydroxyalkyl, halogen, $-C(0)NR_6R_7$, $-(C_1-C_4)$ alkyl) $-C(0)NR_6R_7$, C_1-C_6 alkoxycarbonyl, $-NR_6R_7$, $R_6R_7N-(C_1-C_6)$ alkyl) -, haloalkyl, C_1-C_6 alkanoyl,

R₆ and R₇ at each occurrence are independently H, C₁-C₆ alkyl optionally substituted with 1, 2, or 3 groups that are independently C₁-C₄ alkoxycarbonyl, halogen, C₃-C₆ cycloalkyl, OH, SH, or C₁-C₄ alkoxy;

or

10 R₆, R₇, and the nitrogen to which they are attached form a piperidinyl, pyrrolidinyl, piperazinyl, or a morpholinyl ring optionally substituted with 1 or 2 groups that are independently alkyl, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen.

15

30

5

16. A compound according to claim 15, wherein $\ensuremath{R_5}$ is of the formula:

wherein

Z₅ is C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, halogen, $-C(O)NR_6R_7$, $-(C_1$ - C_4 alkyl)- $C(O)NR_6R_7$, C_1 - C_6 alkoxycarbonyl, R_6R_7N - $(C_1$ - C_6 alkyl)-, $-NR_6R_7$, CF_3 , or C_1 - C_6 alkanoyl, wherein

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy;

or

R₆, R₇, and the nitrogen to which they are attached form a piperidinyl, pyrrolidinyl, piperazinyl, or a morpholinyl ring optionally substituted with 1 or 2

groups that are independently alkyl, hydroxy, hydroxy C_1 - C_4 alkyl, C_1 - C_4 dihydroxyalkyl, or halogen.

17. A compound according to claim 15, wherein R_5 is of the formula:

$$Z_{5}$$

wherein

10

15

20

 $Z_5 \quad \text{is } C_1-C_4 \quad \text{alkyl}, \quad C_1-C_4 \quad \text{hydroxyalkyl}, \quad C_1-C_4 \quad \text{dihydroxyalkyl}, \\ \quad \text{halogen,} \quad -\text{C(O)NR}_6\text{R}_7, \quad -\left(C_1-C_4 \quad \text{alkyl}\right)-\text{C(O)NR}_6\text{R}_7, \quad C_1-C_6 \\ \quad \text{alkoxycarbonyl,} \quad R_6\text{R}_7\text{N-}\left(C_1-C_6 \quad \text{alkyl}\right)-, \quad -\text{NR}_6\text{R}_7, \quad \text{CF}_3, \quad \text{or } C_1-C_6 \\ \quad \text{alkanoyl, wherein}$

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy;

or

- R_6 , R_7 , and the nitrogen to which they are attached form a piperidinyl, pyrrolidinyl, piperazinyl, or a morpholinyl ring optionally substituted with 1 or 2 groups that are independently alkyl, hydroxy, hydroxy C_1 - C_4 alkyl, C_1 - C_4 dihydroxyalkyl, or halogen.
- 18. A compound according to claim 16, wherein 25 Z_5 is C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, halogen, C_1 - C_6 alkoxycarbonyl, CF_3 , or C_1 - C_6 alkanoyl.
- 19. A compound according to claim 16, wherein $Z_5 \text{ is } C_1\text{-}C_4 \text{ alkyl}, \text{-}C(O)\,NR_6R_7, \text{-}(C_1\text{-}C_4 \text{ alkyl})\text{-}C(O)\,NR_6R_7, R_6R_7N\text{-}(C_1\text{-}30) \\ C_6 \text{ alkyl}, \text{-}, \text{ or } \text{-}NR_6R_7, \text{ CF}_3, \text{ or } C_1\text{-}C_4 \text{ alkanoyl}, \text{ wherein}$

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy;

5 or

R₆, R₇, and the nitrogen to which they are attached form a piperidinyl, pyrrolidinyl, piperazinyl, or a morpholinyl ring optionally substituted with 1 or 2 groups that are independently alkyl, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen.

20. A compound according to claim 19, wherein

 $Z_5 \text{ is } -C(O)\,NR_6R_7, -(C_1-C_4 \text{ alkyl}) -C(O)\,NR_6R_7, \ R_6R_7N-(C_1-C_6 \text{ alkyl}) -, \\ \text{or } -NR_6R_7, \text{ wherein}$

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, cyclopropyl, OH, SH, or C_1 - C_4 alkoxy.

20

10

21. A compound according to claim 15, wherein

$$Z_{10}$$
 N
 Z_{20} wherein

 R_5 is of the formula:

 Z_{10} is H or methyl; and

Z₂₀ is hydroxy(C_1 - C_4)alkyl, C_1 - C_4 dihydroxyalkyl, OH, halogen, haloalkyl, (C_1 - C_4)alkyl, OCF₃, -NR₆R₇, R₆R₇N-(C_1 - C_6 alkyl)-, -(C_1 - C_4 alkyl)-C(O)NR₆R₇, or -C(O)NR₆R₇, wherein

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups

15

20

25

that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

22. A compound according to claim 15, wherein

$$Z_{10}$$
 N
 Z_{20} wherein

5 R_5 is of the formula:

 Z_{10} is H or methyl; and

$$\begin{split} Z_{20} \quad &\text{is hydroxy}(C_1\text{-}C_4)\,\text{alkyl}, \quad C_1\text{-}C_4 \quad \text{dihydroxyalkyl}, \quad \text{OH}, \\ &\text{halogen}, \quad CF_3, \quad (C_1\text{-}C_4)\,\text{alkyl}, \quad \text{OCF}_3, \quad -\text{NR}_6R_7, \quad R_6R_7\text{N-}(C_1\text{-}C_6\\ &\text{alkyl})\text{-}, \quad -(C_1\text{-}C_4 \; \text{alkyl})\text{-}C(0)\,\text{NR}_6R_7, \quad \text{or } \text{-}C(0)\,\text{NR}_6R_7, \quad \text{wherein} \\ &R_6 \; \text{and} \; R_7 \; \text{at each occurrence are independently H, } &C_1\text{-}C_6\\ &\text{alkyl optionally substituted with 1, 2, or 3 groups} \\ &\text{that are independently } &C_1\text{-}C_4 \; \text{alkoxycarbonyl, halogen,} \end{split}$$

23. A compound according to claim 15, wherein

C₃-C₆ cycloalkyl, OH, SH, or C₁-C₄ alkoxy.

$$Z_{10}$$
 N
 Z_{20} where

 R_5 is of the formula:

 Z_{10} is H or methyl; and

$$\begin{split} Z_{20} \quad &\text{is} \quad \text{hydroxy}(C_1\text{-}C_4)\,\text{alkyl}\,, \quad C_1\text{-}C_4 \quad \text{dihydroxyalkyl}\,, \quad \text{OH}\,, \\ &\text{halogen}, \quad \text{haloalkyl}\,, \quad (C_1\text{-}C_4)\,\text{alkyl}\,, \quad \text{OCF}_3\,, \quad \text{-NR}_6R_7\,, \quad R_6R_7N\text{-}\,(C_1\text{-}C_6\,\\ &\text{alkyl})\text{-}\,, \qquad \qquad -(C_1\text{-}C_4 \quad \text{alkyl})\text{-}C\,(\text{O})\,\text{NR}_6R_7\,, \quad \text{or} \quad \text{-}C\,(\text{O})\,\text{NR}_6R_7\,, \\ &\text{wherein} \end{split}$$

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

24. A compound according to claim 15, wherein

Z₁₀ N Z₂₀

R₅ is of the formula:

Z₁₀ is H or methyl; and

Z₂₀ is hydroxy(C₁-C₄)alkyl, C₁-C₄ dihydroxyalkyl, OH, halogen, CF₃, (C₁-C₄)alkyl, OCF₃, -NR₆R₇, R₆R₇N-(C₁-C₆ alkyl)-, -(C₁-C₄ alkyl)-C(O)NR₆R₇, or -C(O)NR₆R₇, wherein R₆ and R₇ at each occurrence are independently H, C₁-C₆ alkyl optionally substituted with 1, 2, or 3 groups that are independently C₁-C₄ alkoxycarbonyl, halogen, C₃-C₆ cycloalkyl, OH, SH, or C₁-C₄ alkoxy.

10

5

25. A compound according to claim 15, wherein

$$Z_{10}$$
 Z_{20} wherein

 R_5 is of the formula:

Z₁₀ is H or methyl; and

$$\begin{split} Z_{20} \quad &\text{is hydroxy}(C_1-C_4)\,\text{alkyl}, \quad C_1-C_4 \quad dihydroxyalkyl, \quad \text{OH}, \\ &\text{halogen, haloalkyl}, \quad (C_1-C_4)\,\text{alkyl}, \quad \text{OCF}_3, \quad -\text{NR}_6R_7, \quad R_6R_7\text{N-}(C_1-C_6 \quad \text{alkyl})-, \\ &\quad -(C_1-C_4 \quad \text{alkyl})-C(O)\,\text{NR}_6R_7, \quad \text{or} \quad -C(O)\,\text{NR}_6R_7, \\ &\text{wherein} \end{split}$$

20

25

15

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

26. A compound according to claim 15, wherein

$$Z_{20}$$
, whereir

 R_5 is of the formula:

 Z_{10} is H or methyl; and

Z₂₀ is hydroxy(C_1 - C_4)alkyl, C_1 - C_4 dihydroxyalkyl, OH, halogen, CF_3 , (C_1 - C_4)alkyl, OCF₃, -NR₆R₇, R₆R₇N-(C_1 - C_6 alkyl)-, -(C_1 - C_4 alkyl)-C(O)NR₆R₇, or -C(O)NR₆R₇, wherein R₆ and R₇ at each occurrence are independently H, C₁-C₆ alkyl optionally substituted with 1, 2, or 3 groups that are independently C₁-C₄ alkoxycarbonyl, halogen, C_3 -C₆ cycloalkyl, OH, SH, or C₁-C₄ alkoxy.

27. A compound according to claim 15, wherein

$$Z_{10}$$
 Z_{20} where

10 R_5 is of the formula:

 Z_{10} is H or methyl; and

$$\begin{split} Z_{20} \quad &\text{is} \quad \text{hydroxy}\,(C_1-C_4)\,\text{alkyl}\,, \quad C_1-C_4 \quad dihydroxyalkyl\,, \quad OH\,, \\ &\text{halogen}\,, \quad \text{haloalkyl}\,, \quad (C_1-C_4)\,\text{alkyl}\,, \quad OCF_3\,, \quad -NR_6R_7\,, \quad R_6R_7N-\left(C_1-C_6\right)\\ &\text{alkyl}\,, \quad -\left(C_1-C_4 \quad \text{alkyl}\right)-C\left(O\right)NR_6R_7\,, \quad \text{or} \quad -C\left(O\right)NR_6R_7\,, \end{split}$$

15 wherein

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

20

5

28. A compound according to claim 15, wherein

R₅ is of the formula:

 Z_{10} is H or methyl; and

15

independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

29. A compound according to claim 4, wherein

5 R₅ is phenyl, which is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently C₁-C₄ alkyl, -C(O)NR₆R₇, -(C₁-C₄ alkyl)-C(O)NR₆R₇, -NR₆R₇, NR₆R₇(C₁-C₆ alkyl), C₁-C₆ hydroxyalkyl, dihydroxyalkyl, halogen, C₁-C₄ alkoxy, CO₂R, OH, C₁-C₆ alkoxycarbonyl, CF₃, -(C₁-C₄ alkyl)-NR₁₅C(O)NR₁₆R₁₇, -(C₁-C₄ alkyl)-NR₁₅C(O)R₁₈; wherein

 R_{15} is H or C_1 - C_6 alkyl;

 R_{16} and R_{17} are independently H or C_1 - C_6 alkyl; or

 R_{16} , R_{17} , and the nitrogen to which they are attached form a morpholinyl ring; and

- R_{18} is C_1 - C_6 alkyl optionally substituted with -O-(C_2 - C_6 alkanoyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 dihydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, mono or dialkylamino C_1 - C_6 alkyl.
- 20 30. A compound according to claim 29, wherein R_5 is of the formula:

$$Z_1$$
 or Z_2 Z_3 or Z_3 or Z_2 Z_3 Z_2 Z_3 Z_2 Z_3

Z₁ is H, halogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄

hydroxyalkyl, C₁-C₄ dihydroxyalkyl, or C₁-C₄ alkoxy; and

 $Z_2 \text{ is } C_1\text{-}C_4 \text{ alkyl}, \text{-}C(O) NR_6R_7, \text{-}(C_1\text{-}C_4 \text{ alkyl})\text{-}C(O) NR_6R_7, \text{-}NR_6R_7, \\ NR_6R_7(C_1\text{-}C_6 \text{ alkyl}), \quad C_1\text{-}C_6 \text{ hydroxyalkyl}, \quad C_1\text{-}C_6 \\ \text{dihydroxyalkyl}, \text{ halogen}, \quad C_1\text{-}C_4 \text{ alkoxy}, \quad CO_2R, \quad OH, \quad C_1\text{-}C_6 \\ \text{alkoxycarbonyl}, \text{ or } C_1\text{-}C_4 \text{ haloalkyl};$

 $Z_3 \text{ is H, } C_1\text{-}C_4 \text{ alkyl}, \text{-}C(O) NR_6R_7, \text{-}(C_1\text{-}C_4 \text{ alkyl})\text{-}C(O) NR_6R_7, \text{-}NR_6R_7, \\ NR_6R_7(C_1\text{-}C_6 \text{ alkyl}), \quad C_1\text{-}C_6 \text{ hydroxyalkyl}, \quad C_1\text{-}C_6 \\ \text{dihydroxyalkyl}, \text{ halogen, } C_1\text{-}C_4 \text{ alkoxy, } CO_2R, \text{ OH, } C_1\text{-}C_6 \\ \text{alkoxycarbonyl, or } C_1\text{-}C_4 \text{ haloalkyl};$

5 wherein

R₆ and R₇ at each occurrence are independently H, OH, C₁-C₆ alkyl, amino C₁-C₄ alkyl, NH(C₁-C₆ alkyl)alkyl, N(C₁-C₆ alkyl) (C₁-C₆ alkyl) C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ dihydroxyalkyl, C₁-C₆ alkoxy C₁-C₆ alkyl, -SO₂(C₁-C₆ alkyl), -SO₂NH₂, -SO₂NH(C₁-C₆ alkyl), -SO₂N(C₁-C₆ alkyl) (C₁-C₆ alkyl), or C₁-C₆ alkanoyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently halogen, OH, SH, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkyl, OH, CF₃, or OCF₃.

15

25

10

31. A compound according to claim 30, wherein $\ensuremath{R_5}$ is of the formula:

$$Z_1$$
 Z_2
 Z_3

wherein

- 20 Z_1 is H, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, or C_1 - C_4 alkoxy; and
 - $Z_2 \text{ is } C_1-C_4 \text{ alkyl}, -C(O)NR_6R_7, -(C_1-C_4 \text{ alkyl})-C(O)NR_6R_7, -NR_6R_7, \\ NR_6R_7(C_1-C_6 \text{ alkyl}), C_1-C_6 \text{ hydroxyalkyl}, C_1-C_6 \\ dihydroxyalkyl, halogen, C_1-C_4 \text{ alkoxy}, CO_2R, OH, C_1-C_6 \\ alkoxycarbonyl, or C_1-C_4 \text{ haloalkyl};$
 - Z₃ is H, C₁-C₄ alkyl, -C(O)NR₆R₇, -(C₁-C₄ alkyl)-C(O)NR₆R₇, -NR₆R₇, $NR_6R_7(C_1-C_6 \quad alkyl), \quad C_1-C_6 \quad hydroxyalkyl, \quad C_1-C_6 \quad dihydroxyalkyl, \quad halogen, \quad C_1-C_4 \quad alkoxy, \quad CO_2R, \quad OH, \quad C_1-C_6 \quad alkoxycarbonyl, \quad or \quad C_1-C_4 \quad haloalkyl, \quad wherein$
- 30 R_6 and R_7 at each occurrence are independently H, OH, C_1 - C_6 alkyl, amino C_1 - C_4 alkyl, NH(C_1 - C_6 alkyl)alkyl, N(C_1 - C_6

alkyl) (C_1 - C_6 alkyl) C_1 - C_6 alkyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 dihydroxyalkyl, C_1 - C_6 alkoxy C_1 - C_6 alkyl, $-SO_2(C_1$ - C_6 alkyl), $-SO_2NH_2$, $-SO_2NH(C_1$ - C_6 alkyl), $-SO_2N(C_1$ - C_6 alkyl) (C_1 - C_6 alkyl), or C_1 - C_6 alkanoyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently halogen, OH, SH, C_3 - C_6 cycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkyl, OH, CF_3 , or OCF_3 .

32. A compound according to claim 30, wherein $\ensuremath{R_5}$ is of the formula:

10

15

20

25

30

wherein

 Z_1 is H, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, or C_1 - C_4 alkoxy; and

 $Z_2 \text{ is } C_1-C_4 \text{ alkyl}, -C(O)NR_6R_7, -(C_1-C_4 \text{ alkyl})-C(O)NR_6R_7, -NR_6R_7, \\ NR_6R_7(C_1-C_6 \text{ alkyl}), C_1-C_6 \text{ hydroxyalkyl}, C_1-C_6 \\ dihydroxyalkyl, halogen, C_1-C_4 \text{ alkoxy}, CO_2R, OH, C_1-C_6 \\ alkoxycarbonyl, or C_1-C_4 \text{ haloalkyl};$

 Z_3 is H, C_1 - C_4 alkyl, -C(O)NR₆R₇, -(C_1 - C_4 alkyl)-C(O)NR₆R₇, -NR₆R₇, NR₆R₇, NR₆R₇ (C₁-C₆ alkyl), C₁-C₆ hydroxyalkyl, C₁-C₆ dihydroxyalkyl, halogen, C₁-C₄ alkoxy, CO₂R, OH, C₁-C₆ alkoxycarbonyl, or C₁-C₄ haloalkyl, wherein

R₆ and R₇ at each occurrence are independently H, OH, C₁-C₆ alkyl, amino C₁-C₄ alkyl, NH(C₁-C₆ alkyl)alkyl, N(C₁-C₆ alkyl)(C₁-C₆ alkyl) C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, C₁-C₆ dihydroxyalkyl, C₁-C₆ alkoxy C₁-C₆ alkyl, -SO₂(C₁-C₆ alkyl), -SO₂NH₂, -SO₂NH(C₁-C₆ alkyl), -SO₂N(C₁-C₆ alkyl)(C₁-C₆ alkyl), or C₁-C₆ alkanoyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently halogen, OH, SH, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkyl, OH, CF₃, or OCF₃.

10

15

20

30

33. A compound according to claim 29, wherein $R_{5} \mbox{ is either}$

$$Z_1$$
 Z_2
 Z_3
 Z_2
 Z_3
 Z_2
 Z_3
 Z_3

wherein

 Z_1 is H, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, or C_1 - C_4 alkoxy; and

 $Z_3 \text{ is H, } C_1\text{-}C_4 \text{ alkyl, } -C(0) NR_6R_7, -(C_1\text{-}C_4 \text{ alkyl}) -C(0) NR_6R_7, -NR_6R_7, \\ NR_6R_7(C_1\text{-}C_6 \text{ alkyl}), C_1\text{-}C_6 \text{ hydroxyalkyl, } C_1\text{-}C_6 \\ \text{dihydroxyalkyl, halogen, } C_1\text{-}C_4 \text{ alkoxy, } CO_2R, C_1\text{-}C_6 \\ \text{alkoxycarbonyl, } -(C_1\text{-}C_4 \text{ alkyl}) -NR_{15}C(0) NR_{16}R_{17}, \text{ or } -(C_1\text{-}C_4 \text{ alkyl}) -NR_{15}C(0) R_{18};$

R₆, R₇, and the nitrogen to which they are attached form a piperidinyl, pyrrolidinyl, piperazinyl, or a morpholinyl ring optionally substituted with 1 or 2 groups that are independently alkyl, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen;

 R_{15} is H or C_1 - C_6 alkyl;

R₁₆ and R₁₇ are independently H or C₁-C₆ alkyl; or

 R_{16} , R_{17} , and the nitrogen to which they are attached form a morpholinyl ring;

 R_{18} is C_1 - C_6 alkyl optionally substituted with -O-(C_2 - C_6 alkanoyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 dihydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, amino C_1 - C_6 alkyl, mono or dialkylamino C_1 - C_6 alkyl.

 $34\,.$ A compound according to claim 33, wherein R_5 is of the formula:

$$Z_1$$
 Z_3

5

10

15

20

25

 Z_1 is H, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, or C_1 - C_4 alkoxy; and

 $Z_3 \text{ is H, } C_1-C_4 \text{ alkyl}, -C(O)NR_6R_7, -(C_1-C_4 \text{ alkyl})-C(O)NR_6R_7, -NR_6R_7, \\ NR_6R_7(C_1-C_6 \text{ alkyl}), C_1-C_6 \text{ hydroxyalkyl}, C_1-C_6 \\ dihydroxyalkyl, \text{ halogen, } C_1-C_4 \text{ alkoxy, } CO_2R, C_1-C_6 \\ alkoxycarbonyl, -(C_1-C_4 \text{ alkyl})-NR_{15}C(O)NR_{16}R_{17}, \text{ or } -(C_1-C_4 \text{ alkyl})-NR_{15}C(O)R_{18};$

 R_6 , R_7 , and the nitrogen to which they are attached form a piperidinyl, pyrrolidinyl, piperazinyl, or a morpholinyl ring optionally substituted with 1 or 2 groups that are independently alkyl, hydroxy, hydroxy C_1 - C_4 alkyl, C_1 - C_4 dihydroxyalkyl, or halogen;

 R_{16} and R_{17} are independently H or C_1 - C_6 alkyl; or

R₁₅ is H or C₁-C₆ alkyl;

 R_{16} , R_{17} , and the nitrogen to which they are attached form a morpholinyl ring;

 R_{18} is C_1 - C_6 alkyl optionally substituted with -O-(C_2 - C_6 alkanoyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 dihydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, amino C_1 - C_6 alkyl, mono or dialkylamino C_1 - C_6 alkyl.

30

35. A compound according to claim 33, wherein $\ensuremath{R_{5}}$ is of the formula:

5 wherein

10

15

20

30

 Z_1 is H, halogen, C_1 - C_4 alkyl C_1 - C_4 haloalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, or C_1 - C_4 alkoxy; and

 $Z_3 \text{ is H, } C_1-C_4 \text{ alkyl, } -C(O) NR_6R_7, -(C_1-C_4 \text{ alkyl}) -C(O) NR_6R_7, -NR_6R_7, \\ NR_6R_7(C_1-C_6 \text{ alkyl}), C_1-C_6 \text{ hydroxyalkyl, } C_1-C_6 \\ \text{dihydroxyalkyl, halogen, } C_1-C_4 \text{ alkoxy, } CO_2R, C_1-C_6 \\ \text{alkoxycarbonyl, } -(C_1-C_4 \text{ alkyl}) -NR_{15}C(O) NR_{16}R_{17}, \text{ or } -(C_1-C_4 \text{ alkyl}) -NR_{15}C(O) R_{18};$

R₆, R₇, and the nitrogen to which they are attached form a piperidinyl, pyrrolidinyl, piperazinyl, or a morpholinyl ring, each of which is optionally substituted with 1 or 2 groups that are independently alkyl, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen;

 R_{15} is H or C_1 - C_6 alkyl;

 R_{16} and R_{17} are independently H or C_1 - C_6 alkyl; or R_{16} , R_{17} , and the nitrogen to which they are attached form a morpholinyl ring;

 R_{18} is C_1 - C_6 alkyl optionally substituted with -O-(C_2 - C_6 alkanoyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 dihydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, amino C_1 - C_6 alkyl, mono or dialkylamino C_1 - C_6 alkyl.

36. A compound of the formula

or a pharmaceutically acceptable salt thereof, wherein

L and M are indepedently selected from -O-, -CH₂-, -S-,-NR-, N(R)-N(R)-, C(=O)-, -SO₂-;

 R_5 is X_C or

wherein

 X_1 , X_2 , X_a , X_b , X_c , X_d , and X_e at are independently selected from $-C(O)NR_6R_7$, $-(C_1-C_4 \text{ alkyl})-C(O)NR_6R_7$, $-NR_6R_7$, hydroxy(C_1-C_4) 10 C_4) alkyl, C_1 - C_4 dihydroxyalkyl, H, OH, halogen, haloalkyl, alkyl, haloalkoxy, heteroaryl, heterocycloalkyl, C3-C7 $R_6R_7N-(C_1-C_6 \quad alkyl)-,$ $-CO_2$ - $(C_1$ - $C_6)$ alkyl, cycloalkyl, $-N(R)C(O)NR_6R_7$, $-N(R)C(O)-(C_1-C_6)alkoxy$, $CO_2R-(C_1-C_6)alkyl$)wherein the heteroaryl $-SO_2NR_6R_7$; heterocycloalkyl groups are optionally substituted with -15 NR_6R_7 , $-C(0)NR_6R_7$, $R_6R_7N-(C_1-C_6 \ alkyl)-, <math>C_1-C_6 \ alkyl$, C_1-C_6 alkoxy, or halogen; or

 R_5 is heteroaryl or heteroarylalkyl, wherein the heteroaryl and heteroaryl groups are optionally substituted with 1,2, 3, or 4 groups that are independently $-C(O)NR_6R_7$, $-(C_1-C_4)$ alkyl) $-C(O)NR_6R_7$, $-NR_6R_7$, hydroxy(C_1-C_4)alkyl, C_1-C_4 dihydroxyalkyl, H, OH, halogen, haloalkyl, alkyl, haloalkoxy, $R_6R_7N-(C_1-C_6)$ alkyl)-, $-CO_2-(C_1-C_6)$ alkyl, $-N(R)C(O)NR_6R_7$, or $-N(R)C(O)-(C_1-C_6)$ alkoxy; wherein

10

15

20

25

 R_6 and R_7 are independently at each occurrence H_1 , C_1 - C_6 alkyl, C_1-C_6 alkoxy, C_1-C_6 alkoxy C_1-C_6 alkyl, C_1-C_6 alkoxycarbonyl, OH, C1-C6 hydroxyalkyl, $C_1 - C_4$ dihydroxyalkyl, C_1-C_6 thiohydroxyalkyl, $-(C_1-C_4)$ alkyl- CO_2 -alkyl, pyridyl C_1 - C_6 alkyl, C_1 - C_6 alkanoyl, benzyl, phenyl C₁-C₆ alkoxy, or phenyl C₁-C₆ alkanoyl, wherein each of the above is unsubstituted or substituted with 1, 2, or 3 groups that are independently, halogen, C_3-C_6 cycloalkyl, C_1-C_6 alkoxy, piperidinyl C_1 - C_6 alkyl, morpholinyl C_1 - C_6 alkyl, piperazinyl C₁-C₆ alkyl, OH, NH(alkyl), N(alkyl)(alkyl), $-O-C_1-C_4$ alkanoyl, C_1-C_4 alkyl, CF3, or OCF3; or

R₆, R₇, and the nitrogen to which they are attached form a morpholinyl, thiomorpholinyl, piperidinyl, pyrrolidinyl, or piperazinyl ring which is optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen; R at each occurrence is independently H or C₁-C₆ alkyl; and

Y, Y₁, Y₂, Y₃, and Y₄ are independently selected from H, halogen, alkyl, carboxaldehyde, hydroxyalkyl, dihydroxyalkyl, alkenyl, alkynyl, CN, alkanoyl, alkoxy, alkoxyalkyl, haloalkyl, and carboxyl.

37. A compound according to claim 36 of the formula

$$X_1$$
 X_2
 X_2
 Y_1
 Y_2
 Y_2
 Y_3

or a pharmaceutically acceptable salt thereof.

38. A compound according to claim 37, wherein

$$Xa$$
 Xe
 Xb
 Xd
 Xb
 Xc
 Xb
 Xd
 Xc
 Xd
 Xd
 Xd
 Xd

5

- 39. A compound according to claim 31, wherein Y_2 , Y_4 , and Y are independently halogen; and Y_1 and Y_3 are both hydrogen.
- 10 40. A compound according to claim 39, wherein

$$Xa$$
 Xb
 Xb
 Xc
 Xd

 X_1 and X_2 are independently H, methyl, NR_6R_7 , $-(C_1-C_4$ alkyl)- $C(O)NR_6R_7$, $R_6R_7N-(C_1-C_6$ alkyl)-, $-C(O)NR_6R_7$, C_1-C_6 hydroxyalkyl, C_1-C_6 dihydroxyalkyl, or $-(C_1-C_4$ alkyl)- morpholinyl; and

 X_a and X_e are independently halogen, NH_2 , $NH(C_1-C_6 \ alkyl)$, $N(C_1-C_6 \ alkyl)$, methyl, or hydrogen.

41. A compound according to claim 40, wherein one of X_b and X_c is hydrogen and the other is $-NR_6R_7$, $R_6R_7N-(C_1-C_6 \text{ alkyl})-, -C(O)NR_6R_7$, $-SO_2NR_6R_7$, or halogen; where

 R_6 and R_7 are independently at each occurrence H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl, OH, C_1 - C_6 hydroxyalkyl, C_1 - C_6 dihydroxyalkyl, -(C_1 - C_4)alkyl- C_2 -alkyl, pyridyl C_1 - C_6 alkyl, C_1 - C_6 alkanoyl, benzyl, phenyl C_1 - C_6 alkoxy, or

25

15

10

phenyl C_1 - C_6 alkanoyl, wherein each of the above is unsubstituted or substituted with 1, 2, or 3 groups that are independently, halogen, C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy, piperidinyl C_1 - C_6 alkyl, morpholinyl C_1 - C_6 alkyl, piperazinyl C_1 - C_6 alkyl, OH, SH, NH₂, NH(alkyl), N(alkyl)(alkyl), -O- C_1 - C_4 alkanoyl, C_1 - C_4 alkyl, CF₃, or OCF₃; or

- R₆, R₇, and the nitrogen to which they are attached form a morpholinyl, thiomorpholinyl, piperidinyl, pyrrolidinyl, or piperazinyl ring which is optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen.
- 15 42. A compound according to claim 41, wherein R₆ and R₇ are independently at each occurrence H, C₁-C₆ alkyl, $C_1 - C_6$ alkoxy, $C_1 - C_6$ alkoxy $C_1 - C_6$ alkyl, C_1-C_6 alkoxycarbonyl, OH. $C_1 - C_6$ hydroxyalkyl, $C_1 - C_6$ dihydroxyalkyl, $-(C_1-C_4)$ alkyl $-CO_2$ -alkyl, pyridyl $C_1 - C_6$ alkyl, C₁-C₆ alkanoyl, benzyl, phenyl C₁-C₆ alkoxy, or 20 phenyl C₁-C₆ alkanoyl, wherein each of the above is unsubstituted or substituted with 1, 2, or 3 groups that are independently, halogen, C₃-C₆ cycloalkyl, C₁-C₆ alkoxy, piperidinyl C1 - C6 alkyl, morpholinyl $C_1 - C_6$ 25 piperazinyl $C_1 - C_6$ alkyl, OH, NH_2 , NH(alkyl), N(alkyl)(alkyl), $-O-C_1-C_4$ alkanoyl, C_1-C_4 alkyl, CF_3 , or OCF₃.

20

25

 R_6 and R_7 are independently at each occurrence H, C_1 - C_6 alkyl, C_1 - C_6 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6 alkyl, or C_1 - C_6 alkanoyl, wherein each of the above is optionally substituted with 1, 2, or 3 groups that are independently OH, SH, halogen, or C_3 - C_6 cycloalkyl.

44. A compound according to claim 39, wherein

X_a is H, fluoro, chloro, or methyl;
X_e is hydrogen, halogen, or methyl; and
X_b is H;
X_d is H or halogen;

45. A compound according to claim 44, wherein X_c is $-SO_2NR_6R_7$, or halogen; wherein

R₆ and R₇ are independently at each occurrence H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, C₁-C₆ alkoxycarbonyl, OH, C₁-C₆ hydroxyalkyl, C₁-C₆ dihydroxyalkyl, -(C₁-C₄)alkyl-CO₂-alkyl, pyridyl C₁-C₆ alkyl, C₁-C₆ alkanoyl, benzyl, phenyl C₁-C₆ alkoxy, or phenyl C₁-C₆ alkanoyl, wherein each of the above is unsubstituted or substituted with 1, 2, or 3 groups that are independently, halogen, C₃-C₆ cycloalkyl, C₁-C₆ alkoxy, piperidinyl C₁-C₆ alkyl, morpholinyl C₁-C₆ alkyl, piperazinyl C₁-C₆ alkyl, OH, SH, NH₂, NH(alkyl), N(alkyl)(alkyl), -O-C₁-C₄ alkanoyl, C₁-C₄ alkyl, CF₃, or OCF₃; or

R₆, R₇, and the nitrogen to which they are attached form a morpholinyl, thiomorpholinyl, piperidinyl, pyrrolidinyl, or piperazinyl ring which is optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen; or

 X_c is fluoro, chloro, -NH₂, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)(C₁-C₆ alkyl), -SO₂NH₂, -SO₂NH(C₁-C₆ alkyl), -SO₂N(C₁-C₆ alkyl), or piperazinyl, wherein the piperazinyl group is optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen.

15

5

46. A compound according to claim 44, wherein $X_c \text{ is } -C(O)\,NR_6R_7, \ -(C_1-C_6 \text{ alkyl}) -C(O)\,NR_6R_7, \ -NR_6R_7, \text{ or } R_6R_7N-(C_1-C_6 \text{ alkyl}) -; \text{ wherein }$

 R_6 and R_7 are independently at each occurrence H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6 alkyl, C_1 - C_6 20 alkoxycarbonyl, OH, C_1 - C_6 hydroxyalkyl, dihydroxyalkyl, C_1-C_6 dihydroxyalkyl, $-(C_1-C_4)$ alkyl- CO_2 -alkyl, pyridyl C_1 - C_6 alkyl, C_1 - C_6 benzyl, phenyl C_1 - C_6 alkoxy, or phenyl C_1 - C_6 alkanoyl, wherein each of the above is unsubstituted or 25 substituted with 1, 2, or 3 groups that are independently, halogen, $C_3 - C_6$ cycloalkyl, alkoxy, piperidinyl C1-C6 alkyl, morpholinyl C1-C6 alkyl, piperazinyl C₁-C₆ alkyl, OH, -NH₂, -NH(alkyl), -N(alkyl)(alkyl), $-O-C_1-C_4$ alkanoyl, C_1-C_4 alkyl, CF_3 , 30 or OCF3; or

 R_6 , R_7 , and the nitrogen to which they are attached form a morpholinyl, thiomorpholinyl, piperidinyl,

pyrrolidinyl, orpiperazinyl ring which optionally substituted with 1 or 2 groups that are independently C_1-C_4 alkyl, C_1-C_4 alkoxy, hydroxy, hydroxy C_1 - C_4 alkyl, C_1 - C_4 dihydroxyalkyl, or halogen.

5

A compound according to claim 46, wherein

R₆ is hydrogen; and

- R_7 is C_1 - C_6 alkyl or C_1 - C_6 alkanoyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently 10 NH_2 , $NH(C_1-C_6 \text{ alkyl})$, $N(C_1-C_6 \text{ alkyl})(C_1-C_6 \text{ alkyl})$, OH, SH, cyclopropyl, or C₁-C₄ alkoxy;
 - A compound according to claim 47, wherein 48. X_c is $-C(0)NR_6R_7$.

15

- A compound according to claim 47, wherein X_c is NR_6R_7 , or $R_6R_7N-(C_1-C_6 \text{ alkyl})-.$
 - A compound according to claim 38, wherein
- 20 Xa is hydrogen;
 - two of X_b, X_c, and X_d are hydrogen and the other is -C(O)NR₆R₇, $-(C_1-C_6 \text{ alkyl})-C(0)NR_6R_7$, $-NR_6R_7$, $R_6R_7N-(C_1-C_6 \text{ alkyl})- or CO_2$ -(C_1 - C_6) alkyl; wherein

 R_6 and R_7 are independently at each occurrence H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6 alkyl, 25 $C_1 - C_6$ alkoxycarbonyl, OH, $C_1 - C_6$ hydroxyalkyl, C_1-C_6 dihydroxyalkyl, $-(C_1-C_4)$ alkyl $-CO_2$ -alkyl, pyridyl C_1-C_6 alkyl, C₁-C₆ alkanoyl, benzyl, phenyl C₁-C₆ alkoxy, or phenyl C₁-C₆ alkanoyl, wherein each of the above is 30 unsubstituted or substituted with 1, 2, or 3 groups that are independently, halogen, C3-C6 cycloalkyl, C₁-C₆ alkoxy, piperidinyl C₁-C₆ alkyl, morpholinyl C₁-C₆ alkyl, piperazinyl C₁-C₆ alkyl, OH, NH₂, NH(alkyl),

N(alkyl)(alkyl), $-O-C_1-C_4$ alkanoyl, C_1-C_4 alkyl, CF_3 , or OCF_3 ; or

R₆, R₇, and the nitrogen to which they are attached form a morpholinyl, piperidinyl, pyrrolidinyl, or piperazinyl ring which is optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, hydroxy C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen; and

 X_e is hydrogen, methyl, C_1 - C_2 alkoxy, or halogen.

10

5

51. A compound according to claim 50, wherein

 X_b is $-C(O)NR_6R_7$, $-(C_1-C_6$ alkyl) $-C(O)NR_6R_7$, $-NR_6R_7$, or $R_6R_7N-(C_1-C_6$ alkyl) - wherein

R₆ is hydrogen or C₁-C₄ alkyl;

15 R_7 is OH, C_1 - C_6 alkyl or C_1 - C_6 alkanoyl, wherein the alkyl and alkanoyl groups substituted with 1, 2, or 3 groups that are independently NH_2 , $NH(C_1$ - C_6 alkyl), $N(C_1$ - C_6 alkyl), C_3 - C_6 cycloalkyl, OH, or C_1 - C_4 alkoxy.

20 52. A compound according to claim 38, wherein

X_a is halogen or methyl;

 X_b is H, $-NR_6R_7$, $R_6R_7N-(C_1-C_6 \text{ alkyl})-$, $-C(O)NR_6R_7$, or $-CO_2-(C_1-C_6)$ alkyl;

X_c is -NR₆R₇, R₆R₇N-(C₁-C₆ alkyl)-, -C(O)NR₆R₇, halogen, -CO₂-(C₁-C₆)alkyl, NH₂, NH(C₁-C₆ alkyl), N(C₁-C₆ alkyl)(C₁-C₆ alkyl),
-SO₂NH₂, -SO₂NH(C₁-C₆ alkyl), -SO₂N(C₁-C₆ alkyl)(C₁-C₆
alkyl), or piperazinyl, wherein the piperazinyl group is optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, hydroxy
C₁-C₄ alkyl, C₁-C₄ dihydroxyalkyl, or halogen;

X_d is hydrogen;

 X_e is H, methyl, NH_2 , $NH(C_1-C_6$ alkyl) or $N(C_1-C_6$ alkyl)(C_1-C_6 alkyl).

53. A compound according to claim 38, wherein

 X_1 , X_2 , X_a , X_b , X_c , X_d , and X_e are independently selected from H, OH, halogen, CF_3 , alkyl, OCF_3 , pyridyl, pyridazinyl, pyrimidyl, pyrazinyl, thienyl, furyl, pyrrolyl, piperidinyl, piperazinyl, or C_3 - C_7 cycloalkyl, wherein each of the above is optionally substituted with $-NR_6R_7$, $-C(O)NR_6R_7$, $-(C_1-C_4$ alkyl)- $-C(O)NR_6R_7$, $R_6R_7N-(C_1-C_6$ alkyl)-, C_1-C_6 alkyl, C_1-C_6 alkoxy, or halogen.

10

5

54. A compound according to claim 37, wherein

 R_5 is a heteroaryl or heteroarylalkyl group, where each heteroaryl is pyrazolyl, imidazolyl, furanyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, pyrazolyl, imidazolyl, dihydroindolyl, dihydroisoindolyl, indolon-2-15 yl, quinolinyl, isoquinolinyl, tetrahydroisoquinolinyl, dihydroisoquinolinyl, or indolyl, each of which is optionally substituted with 1, 2, 3, or 4 groups that are independently $-C(0)NR_6R_7$, $-(C_1-C_4 \text{ alkyl})-C(0)NR_6R_7$, $-NR_6R_7$, hydroxy (C_1-C_4) alkyl, C_1-C_4 20 dihydroxyalkyl, hydrogen, hydroxy, halogen, haloalkyl, alkyl, haloalkoxy, R₆R₇N-(C₁- $-CO_2-(C_1-C_6)$ alkyl, alkyl)-, $-N(R)C(O)NR_6R_7$, $-N(R)C(0)-(C_1-C_6)$ alkoxy; wherein

> R_6 and R_7 are independently at each occurrence H, $C_1\text{-}C_6$ alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyl, OH, C_1-C_6 hydroxyalkyl, $C_1 - C_6$ dihydroxyalkyl, C_1 - C_6 thiohydroxyalkyl, - $(C_1$ - $C_4)$ alkyl-CO₂-alkyl, pyridyl C₁-C₆ alkyl, C₁-C₆ alkanoyl, benzyl, phenyl C_1 - C_6 alkoxy, or phenyl C_1 - C_6 alkanoyl, wherein each of the above is unsubstituted or substituted with 1, 2, or 3 groups that independently, halogen, $C_3 - C_6$ cycloalkyl, C_1-C_6 alkoxy, piperidinyl C1-C6 alkyl, morpholinyl C1-C6

01640/01/US

alkyl, piperazinyl C_1 - C_6 alkyl, OH, SH, NH₂, NH(alkyl), N(alkyl)(alkyl), -O- C_1 - C_4 alkanoyl, C_1 - C_4 alkyl, CF₃, or OCF

- 5 55. A compound according to claim 54, wherein Y_2 , Y_4 , and Y are independently halogen; and Y_1 and Y_3 are both hydrogen.
- 57. A compound according to claim 56, wherein

 R₅ is pyridyl C₁-C₆ alkyl, pyrimidinyl C₁-C₆ alkyl, or pyrazinyl

 C₁-C₆ alkyl, each of which is optionally substituted with

 1, 2, or 3 groups that are independently hydroxy(C₁
 C₄)alkyl, C₁-C₄ dihydroxyalkyl, OH, halogen, CF₃, (C₁
 C₄)alkyl, OCF₃, -NR₆R₇, -(C₁-C₄ alkyl)-C(O)NR₆R₇, R₆R₇N-(C₁
 C₆ alkyl)-, or -C(O)NR₆R₇.
 - 58. A compound according to claim 57, wherein $\ensuremath{R_5}$ is of the formula:

25

wherein

- Z_5 is hydroxy(C_1 - C_4)alkyl, C_1 - C_4 dihydroxyalkyl, OH, halogen, CF_3 , (C_1 - C_4)alkyl, OCF $_3$, -NR $_6$ R $_7$, R $_6$ R $_7$ N-(C_1 - C_6 alkyl)-, -(C_1 - C_4 alkyl)-C(O)NR $_6$ R $_7$, or -C(O)NR $_6$ R $_7$, wherein
- 30 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups

that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

 $$59.\,$ A compound according to claim 57, wherein $$5\,$ R5 is of the formula:

wherein

Z₅ is hydroxy(C₁-C₄)alkyl, C₁-C₄ dihydroxyalkyl, OH, halogen, $CF_3, \ (C_1-C_4)alkyl, \ OCF_3, \ -NR_6R_7, \ R_6R_7N-(C_1-C_6\ alkyl)-, \ -(C_1-C_4\ alkyl)-C(O)NR_6R_7, \ or \ -C(O)NR_6R_7, \ wherein$

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

15

1.0

60. A compound according to claim 57, wherein

$$Z_{10}$$
 N
 Z_{20} , where

R₅ is of the formula:

 Z_{10} is H or methyl; and

 Z_{20} is $-(C_1-C_4 \text{ alkyl})-C(O)NR_6R_7$, hydroxy (C_1-C_4) alkyl, C_1-C_4 dihydroxyalkyl, OH, halogen, CF₃, (C_1-C_4) alkyl, OCF₃, $-NR_6R_7$, $R_6R_7N-(C_1-C_6 \text{ alkyl})-$, or $-C(O)NR_6R_7$, wherein

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

25

20

61. A compound according to claim 57, wherein

$$Z_{10}$$
 N
 Z_{20} wherein

 R_5 is of the formula:

Z₁₀ is H or methyl; and

$$\begin{split} &Z_{20} \text{ is } - (C_1 - C_4 \text{ alkyl}) - C(O) \, NR_6 R_7, \text{ hydroxy} \, (C_1 - C_4) \, \text{alkyl}, \quad C_1 - C_4 \\ &\text{dihydroxyalkyl}, \quad OH, \quad \text{halogen}, \quad CF_3, \quad (C_1 - C_4) \, \text{alkyl}, \quad OCF_3, \\ &- NR_6 R_7, \quad R_6 R_7 N - (C_1 - C_6 \text{ alkyl}) -, \quad \text{or } - C(O) \, NR_6 R_7, \quad \text{wherein} \end{split}$$

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

10

5

62. A compound according to claim 57, wherein

$$Z_{10}$$
 N
 Z_{20} , wherein

 R_5 is of the formula:

Z₁₀ is H or methyl; and

$$\begin{split} &Z_{20} \text{ is } - (C_1 - C_4 \text{ alkyl}) - C(O) \, NR_6R_7, \quad hydroxy(C_1 - C_4) \, alkyl, \quad C_1 - C_4 \\ &\text{dihydroxyalkyl}, \quad OH, \quad halogen, \quad CF_3, \quad (C_1 - C_4) \, alkyl, \quad OCF_3, \\ &-NR_6R_7, \quad R_6R_7N - (C_1 - C_6 \text{ alkyl}) -, \quad \text{or } -C(O) \, NR_6R_7, \quad \text{wherein} \end{split}$$

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

20

15

63. A compound according to claim 57, wherein

$$Z_{10}$$
 N
 Z_{20} , wherein

 R_5 is of the formula: 5 Z_{10} is H or methyl; and

 Z_{20} is $-(C_1-C_4$ alkyl)- $C(0)NR_6R_7$, hydroxy(C_1-C_4)alkyl, C_1-C_4 dihydroxyalkyl, OH, halogen, CF_3 , (C_1-C_4)alkyl, OCF₃, $-NR_6R_7$, $R_6R_7N-(C_1-C_6$ alkyl)-, or $-C(0)NR_6R_7$, wherein R_6 and R_7 at each occurrence are independently H, C_1-C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1-C_4 alkoxycarbonyl, halogen, C_3-C_6 cycloalkyl, OH, SH, or C_1-C_4 alkoxy.

64. A compound according to claim 57, wherein

$$Z_{10}$$
 Z_{20} , wherein

10

15

25

5

 R_5 is of the formula: Z_{20} , wherein Z_{10} is H or methyl; and Z_{20} is $-(C_1-C_4)-C(0)$ NR_6R_7 , hydroxy(C_1-C_4) alkyl, C_1-C_4

Z₂₀ is $-(C_1-C_4)$ alkyl) -C(O) NR₆R₇, hydroxy(C_1-C_4) alkyl, C_1-C_4 dihydroxyalkyl, OH, halogen, CF₃, (C_1-C_4) alkyl, OCF₃, $-NR_6R_7$, $R_6R_7N-(C_1-C_6)$ alkyl) -, or -C(O) NR₆R₇, wherein

- R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.
- 20 65. A compound according to claim 57, wherein

$$Z_{10}$$
 Z_{20} , wherein

 R_5 is of the formula:

 Z_{10} is H or methyl; and

 Z_{20} is $-(C_1-C_4$ alkyl)- $C(O)NR_6R_7$, hydroxy(C_1-C_4)alkyl, C_1-C_4 dihydroxyalkyl, OH, halogen, CF_3 , (C_1-C_4)alkyl, OCF₃, -NR₆R₇, R₆R₇N-(C_1-C_6 alkyl)-, or -C(O)NR₆R₇, wherein

 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups

01640/01/US

that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.

66. A compound according to claim 57, wherein

$$Z_{10}$$
 Z_{20} wherein

5 R_5 is of the formula:

 Z_{10} is H or methyl; and

$$\begin{split} &Z_{20} \text{ is } -(C_1-C_4 \text{ alkyl})-C(0)\,NR_6R_7, \text{ hydroxy}\,(C_1-C_4)\,\text{alkyl}\,, \quad C_1-C_4\\ &\text{dihydroxyalkyl}\,, \quad \text{OH}\,, \quad \text{halogen}\,, \quad CF_3\,, \quad (C_1-C_4)\,\text{alkyl}\,, \quad \text{OCF}_3\,,\\ &-NR_6R_7, \quad R_6R_7N-(C_1-C_6 \text{ alkyl})-, \quad \text{or } -C(0)\,NR_6R_7\,, \quad \text{wherein} \end{split}$$

- 10 R_6 and R_7 at each occurrence are independently H, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkoxycarbonyl, halogen, C_3 - C_6 cycloalkyl, OH, SH, or C_1 - C_4 alkoxy.
 - 67. A compound according to claim 57, wherein

$$Z_{10}$$
 Z_{20} wherein

 R_5 is of the formula:

 Z_{10} is H or methyl; and

$$\begin{split} &Z_{20} \text{ is } - (C_1 - C_4 \text{ alkyl}) - C(O) \, NR_6R_7, \quad hydroxy(C_1 - C_4) \, alkyl, \quad C_1 - C_4 \\ &\text{dihydroxyalkyl}, \quad OH, \quad halogen, \quad CF_3, \quad (C_1 - C_4) \, alkyl, \quad OCF_3, \\ &-NR_6R_7, \quad R_6R_7N - (C_1 - C_6 \text{ alkyl}) - , \quad \text{or } - C(O) \, NR_6R_7, \quad \text{wherein} \end{split}$$

 R_6 and R_7 at each occurrence are independently H, $C_1\text{-}C_6$ alkyl optionally substituted with 1, 2, or 3 groups that are independently $C_1\text{-}C_4$ alkoxycarbonyl, halogen, $C_3\text{-}C_6$ cycloalkyl, OH, SH, or $C_1\text{-}C_4$ alkoxy.

68. A method of treating a TNF mediated disorder, a p38 kinase mediated disorder, inflammation and/or arthritis in a subject, the method comprising treating a subject having or

25

20

10

15

susceptible to such disorder or condition with a compound of the formula:

$$R_4$$
 R_5
 R_1
 R_5

or a pharmaceutically acceptable salt thereof, wherein

5 R₁ is H, halogen, NO₂, alkyl, carboxaldehyde, hydroxyalkyl, dihydroxyalkyl, arylalkoxy, arylalkyl, alkenyl, alkynyl, arylalkynyl, -CN, aryl, alkanoyl, alkoxy, alkoxyalkyl, haloalkyl, haloalkoxy, carboxyl, or arylalkanoyl,

wherein the aryl portion of arylalkoxy, arylalkyl, and arylalkanoyl is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, nitro, CN, haloalkyl, haloalkoxy or CO_2R ;

wherein the alkyl portion of the alkyl, hydroxyalkyl, dihydroxyalkyl, arylalkoxy, arylalkyl, alkanoyl, alkoxy, alkoxyalkyl and arylalkanoyl groups is unsubstituted or substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₄ alkoxy, C₁-C₄ alkoxycarbonyl, or C₃-C₇ cycloalkyl;

20 OH, halogen, $-OSO_2-(C_1-C_6)$ alkyl, $-OSO_2$ -aryl, R_2 is Η, arylalkoxy, - aryloxy, arylthio, arylthioalkoxy, arylalkynyl, alkoxy, aryloxy(C₁-C₆)alkyl, alkyl, alkynyl, -OC(O)NH(CH₂)_naryl, -OC(O)N(alkyl)(CH₂)_naryl, alkoxyalkoxy, dialkylamino, alkyl, alkoxy, aryl, arylalkyl, heteroaryl, 25 heteroarylalkyl, arylalkenyl, heterocycloalkyl, heterocycloalkylalkyl, alkoxyalkoxy, NR₈R₉, dialkylamino, or CO₂R, wherein

each of which groups is unsubstituted or substituted with

1, 2, 3, 4, or 5 groups that are independently

n is 0, 1, 2, 3, 4, 5 or 6;

halogen, $-(C_1-C_6)$ alkyl-N(R) $-CO_2R_{30}$, haloalkyl, heteroaryl, heteroarylalkyl, $-NR_6R_7$, $R_6R_7N - (C_1 - C_6)$ $alkyl) - , -C(O)NR_6R_7, -(C_1-C_4 alkyl) - C(O)NR_6R_7, -(C_1-C_4)$ alkyl)-NRC(O)NR₁₆R₁₇, haloalkoxy, alkyl, CN, alkoxy, alkoxycarbonyl, phenyl, -SO2-phenyl wherein 5 and -SO₂-phenyl groups are phenyl optionally 3 groups that substituted with 1, 2, or independently halogen or NO_2 , or $-OC(O)NR_6R_7$, wherein R₁₆ and R₁₇ are independently H or C₁-C₆ alkyl; or R_{16} , R_{17} and the nitrogen to which they are attached 10 form a morpholinyl ring; R_6 and R_7 are independently at each occurrence H, alkyl, hydroxyalkyl, dihydroxyalkyl, alkoxy, alkanoyl, arylalkyl, arylalkoxy, 15

alkoxycarbonyl, -SO₂-alkyl, OH, alkoxyalkyl, arylalkoxycarbonyl, $-(C_1-C_4)$ alkyl-CO₂-alkyl, heteroarylalkyl, or arylalkanoyl, wherein each is unsubstituted or substituted with 1, 2, or 3 groups that are independently, halogen, OH, SH, heterocycloalkyl, heterocycloalkylalkyl, C₃-C₇ cycloalkyl, alkoxy, NH₂, NH(alkyl), N(alkyl)(alkyl), -O-alkanoyl, haloalkyl, carboxaldehyde, alkyl, haloalkoxy; or

 R_6 , R_7 , and the nitrogen to which they are attached form a morpholinyl, pyrrolidinyl, thiomorpholinyl, thiomorpholinyl S-oxide, thiomorpholinyl S,S-dioxide, piperidinyl, pyrrolidinyl, or piperazinyl ring which is optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkyl, alkoxycarbonyl, hydroxyl, hydroxyalkyl, $C_1 - C_4$ alkoxy, dihydroxyalkyl, or halogen;

30

20

5

10

15

20

R at each occurrence is independently hydrogen or C_1 - C_6 alkyl optionally substituted with optionally substituted with 1 or 2 groups that are independently OH, SH, halogen, amino, monoalkylamino, dialkylamino or C_3 - C_6 cycloalkyl;

i

 R_{30} is $C_1\text{-}C_6$ alkyl optionally substituted with 1 or 2 groups that are independently OH, SH, halogen, amino, monoalkylamino, dialkylamino or $C_3\text{-}C_6$ cycloalkyl;

each R₈ is independently hydrogen, alkyl, alkanoyl, arylalkyl and arylalkanoyl, wherein each of the above is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, alkoxycarbonyl, halogen, or haloalkyl;

each R₉ is hydrogen, alkyl, alkanoyl, arylalkyl, cycloalkyl, cycloalkylalkyl, aminoalkyl, heteroaryl, monoalkylaminoalkyl, dialkylaminoalkyl, arylalkanoyl, -SO₂-phenyl, wherein each aryl of the above optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, alkoxycarbonyl, halogen, or haloalkyl;

 R_4 is hydrogen or R_4 is alkyl unsubstituted or substituted with one or two groups that are independently CO₂R, -CO₂-(C₁-25 C_6) alkyl, $-C(0)NR_6R_7$, $-(C_1-C_4)$ alkyl) -C(0) NR_6R_7 , $-N(R_{30})C(O)NR_{16}R_{17}$, $-N(R_{30})C(O)-(C_1-C_6)alkoxy$, or $-NR_6R_7$ arylalkoxy, arylalkyl, heteroaryl, hydroxyalkyl, dihydroxyalkyl, haloalkyl, $R_6R_7N-(C_1-C_6 \text{ alkyl})-$, $-NR_6R_7$, carboxaldehyde, CO₂R, alkoxyalkyl, 30 alkoxy, alkoxyalkoxy, wherein the aryl portion of arylalkoxy and arylalkyl is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently halogen, hydroxy,

01640/01/US

alkoxy, alkyl, $-CO_2-(C_1-C_6)$ alkyl, $-CONR_6R_7$, $-NR_6R_7$, $R_6R_7N_7$ (C_1-C_6) alkyl-, nitro, haloalkyl, or haloalkoxy; and R₅ is H, aryl, arylalkyl, arylthioalkyl, alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, arylalkoxycarbonyl, -NR₈R₉, 5 $-C(O)NR_8R_9$, alkoxycarbonyl, C₃-C₇ cycloalkyl, or alkanoyl, alkoxy, alkoxyalkyl optionally substituted with one trimethylsilyl group, amino, alkoxycarbonyl, hydroxyalkyl, dihydroxyalkyl, alkynyl, -SO₂-alkyl, alkoxy 10 optionally substituted with one trimethylsilyl group, heterocycloalkylalkyl, cycloalkyl, cycloalkylalkyl, -alkyl-SO $_2$ -aryl, alkyl-S-aryl, heteroarylalkyl, heterocycloalkyl, heteroaryl, or alkenyl optionally substituted with alkoxycarbonyl, wherein 15 each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, halogen, alkoxy, hydroxyalkyl, dihydroxyalkyl, arylalkoxy, thioalkoxy, alkoxycarbonyl, arylalkoxycarbonyl, CO₂R, CN, OH, hydroxyalkyl, dihydroxyalkyl, amidinooxime, -NR₆R₇, -NR₈R₉, R₆R₇N-20 (C₁-C₆ alkyl)-, carboxaldehyde, SO₂alkyl, -SO₂H, -SO₂NR₆R₇, alkanoyl wherein the alkyl portion is optionally substituted with OH, halogen or alkoxy, - $-(C_1-C_4)$ alkyl) $-C(O)NR_6R_7$ $C(0)NR_6R_7$ $-(C_1-C_4)$ alkyl) $-NR_{15}C(O)NR_{16}R_{17}$, $-(C_1-C_4)$ 25 haloalkyl, alkyl) $-NR_{15}C(O)R_{18}$, $-O-CH_2-O$, $-O-CH_2CH_2-O-$, haloalkoxy; wherein R_{15} is H or C_1 - C_6 alkyl; R_{18} is C_1 - C_6 alkyl optionally substituted with -O-(C_2 - C_6 30 alkanoyl, C₁-C₆ hydroxyalkyl, C₁-C₆ dihydroxyalkyl, C_1-C_6 alkoxy, C_1-C_6 alkoxy C_1-C_6 alkyl; amino C_1-C_6 alkyl, mono or dialkylamino C₁-C₆ alkyl.

- 69. A compound according to claim 17, wherein Z_5 is C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 dihydroxyalkyl, halogen, C_1 - C_6 alkoxycarbonyl, CF_3 , or C_1 - C_6 alkanoyl.
- 70. A compound according to claim 17, wherein
 Z₅ is C₁-C₄ alkyl, -C(O)NR₆R₇, -(C₁-C₄ alkyl)-C(O)NR₆R₇, R₆R₇N-(C₁-C₆ alkyl)-, or -NR₆R₇, CF₃, or C₁-C₄ alkanoyl, wherein
 10 R₆ and R₇ at each occurrence are independently H, C₁-C₆ alkyl optionally substituted with 1, 2, or 3 groups that are independently C₁-C₄ alkoxycarbonyl, halogen, C₃-C₆ cycloalkyl, OH, SH, or C₁-C₄ alkoxy.