Summary

Experience in software development and hardware design from processor architecture to physical implementation. Knowledge of computer architecture, FPGA/ASIC/VLSI, computer science, and machine learning fundamentals.

Experience

Intel Austin, Texas

SoC Performance Architect

2017-present

Provide workload performance at power analysis/workload projections for upcoming Xeon server SoCs.

Improved team efficiency and productivity through modeling and developing tools/automation.

Enhanced SoC modeling simulator capabilities, features, integration across tools/simulators (C++/SystemC). Conducted pre-silicon SoC performance tuning, analysis, and validation – interconnect/memory systems.

Design Automation Engineer

2016-2017

Provide timing, place/route solutions to deliver CPU physical implementation up to successful SoC tape-in.

Oualcomm Research

San Diego, California

Research Intern Summer 2013

Performed mixed-signal circuit design verification, post-silicon measurements, and FPGA prototyping.

Skills

Software/Programming
Advanced C++ and Python
Tcl, Java, Clojure, Unix, SQL, Node.js
Shell scripting, HTML, Javascript

Machine Learning/Data Science **PyTorch**, Scikit-learn, Pandas ETL Git, Docker, Spark, Dash, Streamlit XGBoost, Regressions, Efficient ML

ASIC Design/SoC Performance SystemC, Platform Architect, Simics RTL Design: SystemVerilog/Verilog Place-Route, DFT, Timing, DRC/LVS

Select Publications/Awards

A Logic-on-logic 3D-stacked Heterogeneous Multi-core Processor. IEEE ICCD 2017. Physical Design of a 3D-stacked Heterogeneous Multi-core Processor. IEEE 3D-IC 2016. Ranked 34th in USA, IEEExtreme 24-hour Programming Competition, 2014. Team of 2.

Best FPGA Implementation at International LSI Design Contest, Japan 2009. Xilinx Award. Team of 3.

Education

Duke University

North Carolina State University

Raleigh, North Carolina

Ph.D. in Computer Engineering

3.98/4.0. 2016

Dissertation: Three-Dimensional Integration of Heterogeneous Multi-Core Processors.

Research team built a functional 3D-IC processor chip. Developed custom 3D-IC physical implementation flow. Performed architecture analysis, verification, and entire RTL-GDS2 back-end flow up to deliverable layout.

Teaching Assistant (graduate-level): Design of Digital Systems, Computer Design & Technology.

Software Engineering
Computer Networks
Memory Systems
Embedded Systems Design
Advanced Microarchitecture
Parallel Computer Arch.
Computer Design & Tech.
Digital Electronics

ASIC Design ASIC Verification IC Technology & Fabrication Modern Comp. Algebra-AU Electronic Sys. Level Design Physical Design

VLSI Systems Design VLSI System Testing (Duke U.)

Visiting Scholar: coursework, research collaboration

Durham, North Carolina 2013

Bandung Institute of Technology

Indonesia

B.S. in Electrical Engineering (Computer Engineering track), with distinction

2009

Thesis: C implementation neural network and Kohonen SOM, training/inference, floating/fixed point, on a multi-core Parallax microcontroller. TA: Digital Systems, Microprocessor Lab.

Oita University Japan

Exchange Student, Research & Coursework

2007-2008

Implemented control of panning camera using neural networks (C). Used a neural network to track face location relative to center and provide control commands to the camera.

Project Experience

Machine Learning

PyTorch: Integrated and analyzed model quantization coupled with feedback alignment training algorithm (open-source libraries).

Experimented on developing custom learning algorithms (back-propagation algorithm alternatives), e.g binarized neural network with greedy training approach.

Benchmarking of MobileNet, SqueezeNet quantized/non-quantized models on Android using TensorFlow Lite.

Silicon Implementation / Tape-outs

Successful academic tape-out (functional 3D-IC processor chip) of a heterogeneous multi-core processor system with thread migration features at NCSU. Processor implementation has two stacked dies of $5.25 \text{ mm} \times 5.25 \text{ mm}$ on a 130 nm process.

RTL Design, FPGA Prototyping

Implemented "Sokoban" (moving box puzzle game) on FPGA: coded the game in MIPS assembly by hand (prototyped in C). Wrote MIPS processor RTL from scratch (team effort, 1 GHz clock in a commercial 180 nm process). Wrote the Verilog code to interface with FPGA buttons and render VGA graphics. Created game sprites.

Memory Systems

Performed modelling and performance comparison between ideal and non-ideal block placement policy for multi-core systems. Cache block placement policy: requestor core cache vs remote core cache. Analyzed experiment results from running SPEC2K benchmarks in SIMICS.

ESL & Physical Design

Performed TLM & ESL modelling of an SoC design that consists of an ARM Cortex core, DRAM model, and AMBA bus. Performed physical design optimizations, signal integrity analysis, power analysis, timing analysis. Tools: SystemC, Mentor Graphics Vista, Catapult, Python, C++, UML, Encounter, Primetime.

Parallel Computer Architecture

Implemented a MSI, MESI, MOESI cache coherence protocols simulator in C++.

Explored cache coherence protocols to reduce off-chip memory accesses.

Computer Design and Technology

Implemented a generic cache simulator, branch target buffer simulator, and Tomasulo superscalar processsor simulator in C++.

Implemented a checkpoint recovery mechanism for large fetch window processor within SimpleScalar simulator environment in C++.

Advanced Microarchitecture

Implemented and compared thread migration strategies within SimpleScalar simulator in C++.

ASIC Verification

Verified an out-of-order superscalar core (FabScalar) for tape-out, found design bugs in load-store unit and issue queue. Created a reusable SystemVerilog testbench executed in QuestaSim.

Digital Electronics

Designed a low power Hybrid Latch Flip-flop in academic 45 nm tech library. Operating clock frequency 4GHz, power consumption 19.9 uW, setup time 13.5ps, hold time 86ps, t_{DQ} of 63.64 ps.

Designed a voltage-mode and current-mode differential transmitter circuit. Tools: HSPICE.

VLSI Systems Design

Designed a full-custom 3x3 arbiter-crossbar CMOS unit, 2nd best performance and energy*delay-squared metric out of 27 teams. Customized power delivery network and clock tree design. Created custom standard cell library and top-level integration. Achieved 5.5 GHz clock frequency, 0.19 nW power, with FreePDK45 technology library. Tools: Cadence Virtuoso, HSPICE, Calibre DRC-LFD.

ASIC Design

Implemented a Viterbi Decoder in RTL Verilog. Optimized throughput and delay per unit area metric by designing a fast floating point unit, using dual port memory, and pipelining.

Online Courses

Startup Engineering (Coursera), Analysis of Algorithms, Scalable Machine Learning (edX).