Let
$$S = \emptyset$$
. Then $2^s = \{\emptyset\}$.
 $|S| = 0$, $|2^s| = |$
 $2^{|S|} = 2^s = | = |2^s|$
.: Basis holds.

Inductive Assumption)

Assume
$$|2^{s}| = \sum_{k=0}^{n} (n,k) = 2^{n} = 2^{|s|}$$
.

Inductive Step)

When 151 is not which is a finite integer,

$$\begin{aligned} |2^{5}| &= \sum_{k=0}^{n+1} C(n+1,k) = C(n+1,0) + C(n,0) + 2\sum_{k=1}^{n-1} C(n,k) + C(n,n) + C(n+1,n+1) \\ &= 2C(n,0) + 2\sum_{k=1}^{n-1} C(n,k) + 2C(n,n) \\ &= 2\sum_{k=0}^{n} C(n,k) = 2 \cdot 2^{n} = 2^{n+1} \text{ by inductive assumption.} \end{aligned}$$

$$(\cdot, \cdot) \subset (n+1, 0) = C(n, 0) = C(n+1, n+1) = 1)$$

We get
$$|2^{s}| = 2^{(s)} = 2^{n+1}$$
 when $|5| = n+1$.

.. If our claim is true for n, it must be also true for n+1. Since n can be any finite number, the statement must be true for any finite set S.

—

$$5 \Rightarrow a5a \Rightarrow aa5aa \Rightarrow aaa5aaa \stackrel{*}{\Longrightarrow} a^n5a^n \Rightarrow a^{2n+2}$$

$$(a^n a a a^n = a^{2n+2})$$

Thus,
$$L(G) = \{a^{2n+2} : n \ge 0\}$$

3.

4.

5.

= {a": n is not a multiple of 3}

L is regular if and only if there is a dfa M such that L=L(M). So, the dfa for $\Sigma=\{\alpha\}$ that accepts the of strings which length is not a multiple of 3 will make the language L regular.

Since we have constructed a dfa for the language L, the language L is regular.