Du 18 au 22 mars

Programme n°20

MECANIQUE

M3 Bases de la dynamique newtonienne

Cours et exercices

M4 Approche énergétique du mouvement d'un point matériel

Cours et exercices

M5 Les oscillateurs (Cours et exercices)

- Oscillateur harmonique
- Le mouvement au voisinage de la position d'équilibre stable
- Exemples types
- → Une masse suspendue à un ressort
- → Le pendule simple
- Etude
- Aspect énergétique
- Analogies avec l'électricité
- Les oscillateurs libres amortis Mise en équation
 - Etude du régime libre
 - Analogies avec l'électricité
 - Graphes
- •Régime sinusoïdal forcé et résonance Mise en équation
 - La solution en régime forcé
 - La résonance en élongation
 - La résonance en vitesse

M6 Mouvement d'une particule chargée dans un champ électrique ou magnétique (Cours uniquement)

- Généralités
- Validité du modèle
 - Force de Lorentz
 - Ordre de grandeur et comparaison avec le poids
 - Puissance de la force de Lorentz
- Mouvement dans \vec{E} uniforme La vitesse initiale est parallèle au champ
 - La vitesse initiale n'est pas parallèle au champ
 - Bilan énergétique
- → Introduction du potentiel électrique
- → Conservation de l'énergie mécanique
- Application

3. Mouvement de particules chargées dans des champs électrique et magnétique, uniformes et stationnaires	
Force de Lorentz exercée sur une charge ponctuelle ; champs électrique et magnétique.	Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Savoir qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur-accélération constant.
	Effectuer un bilan énergétique pour calculer la vitesse d'une particule chargée accélérée par une différence de potentiel.
	Citer une application.

SOLUTIONS AQUEUSES

Dosages

Cours exercice d'analyse de courbes

TP

Dosage du Coca-cola, dosage à la goutte, pH d'un amphotère. Force de frottement fluide : mouvement d'une bile dans la glycérine