ON p-ADIC INTEGERS AND THE ADDING MACHINE GROUP

Bünyamin DEMİR* and Mustafa SALTAN[†]

Abstract

In this paper, we define a natural metric on $Aut(X^*)$ and prove that the closure of the adding machine group, a subgroup of the automorphism group, is both isometric and isomorphic to the group of p-adic integers. So, we show that the group of p-adic integers can be isometrically embedded into the metric space $Aut(X^*)$.

1 Introduction

In recent years, there are many works on self-similar automorphism groups of the rooted tree X^* ([2], [4], [6]). The adding machine group is a typical example for self-similarity. We denote this group by A. A is a cyclic group generated by

$$a = (\underbrace{1, 1, \dots, 1}_{p-1 \text{ times}}, a)\sigma$$

where a is an automorphism of the p-ary rooted tree and $\sigma = (012...(p-1))$ is a permutation on $X = \{0, 1, 2, ..., (p-1)\}$. Thus, A is isomorphic to \mathbb{Z} . On the other hand, one can consider the automorphism a as adding one to a p-adic integer. That is why the term adding machine is used ([4]). In [5], p-adic integers is pictured on a tree. This picture serves that any ultrametric space can be drawn on a tree.

In this paper, we equip $Aut(X^*)$ with a natural metric and prove that the group of p-adic integers is both isometric and isomorphic to the closure \overline{A} of the adding machine group, a subgroup of the automorphism group of the p-ary rooted tree.

First we recall basic definitions and notions. $p-adic\ integers$: A $p-adic\ integer$ is a formal series

$$\sum_{i>0} a_i p^i$$

where each $a_i \in \{0, 1, 2, \dots, (p-1)\}$ and the set of all p-adic integers is denoted by \mathbb{Z}_p .

Suppose that $a = \sum_{i \geq 0} a_i p^i$ and $b = \sum_{i \geq 0} b_i p^i$ be elements of \mathbb{Z}_p . Then a addition with b, $c = \sum_{i \geq 0} c_i p^i$, is determined for each $m \in \{0, 1, 2, \ldots\}$ by

$$\sum_{i=0}^{m} c_i p^i \equiv \sum_{i=0}^{m} (a_i + b_i) p^i \pmod{p^{m+1}}$$

where $c_i \in \{0, 1, \dots, (p-1)\}$. \mathbb{Z}_p is a group under this operation and is called the group of p-adic integers.

^{*}Department of Mathematics, Anadolu University, 26470, Eskişehir, Turkey, e-mails: bdemir@anadolu.edu.tr

[†]Department of Mathematics, Anadolu University, 26470, Eskişehir, Turkey, e-mails: mustafasaltan@anadolu.edu.tr Key words and phrases: p-adic integers, The adding machine group, Automorphism group, p-ary rooted tree. 2000 Mathematics Subject Classification: 20E08, 11E95.

Let $a = \sum_{i \geq 0} a_i p^i$ be an element of \mathbb{Z}_p and $a \neq 0$. Thus, there is a first index $v(a) \geq 0$ such that $a_v \neq 0$. This index is called the order of a and is denoted by $ord_p(a)$. If $a_i = 0$ for $i = 0, 1, 2, \ldots$ then $ord_p(a) = \infty$. On the other hand, the p-adic value of a is denoted by

$$|a|_p = \left\{ \begin{array}{ll} 0 & , & \text{if } a_i = 0 \text{ for } i = 0, 1, 2, \dots, \\ p^{-ord_p(a)} & , & \text{otherwise} \end{array} \right.$$

and $d_p = |a - b|_p$ for $a, b \in \mathbb{Z}_p$ is a metric on \mathbb{Z}_p (for details see [3], [7] and [8]). The automorphism group of the rooted tree: Let X be a finite set (alphabet) and let

$$X^* = \{x_1 x_2 \dots x_n \mid x_i \in X, n \geqslant 0 \}$$

be the set of all finite words. The length of a word $v = x_1 x_2 \dots x_n \in X^*$ is the number of its letters and is denoted by |v|. The product of $v_1, v_2 \in X^*$ is naturally defined by concatenation $v_1 v_2$. One can think of X^* as vertex set of a rooted tree.

Figure 1.1: The first three levels of the binary rooted tree X^* for $X=\{0,1\}$

The set $X^n = \{v \in X^* \mid |v| = n\}$ is called the *nth* level of X^* . The empty word \emptyset is the root of the tree X^* . Two words are connected by an edge if and only if they are of the form v, vx where $v \in X^*$ and $x \in X$.

A map $f: X^* \to X^*$ is an endomorphism of the tree X^* if it preserves the root and adjacency of the vertices. An automorphism is a bijective endomorphism. The group of all automorphisms of the tree X^* is denoted by $Aut(X^*)$.

If $G \leq Aut(X^*)$ is an automorphism group of the rooted tree X^* then for $v \in X^*$, the subgroup

$$G_v = \{ g \in G \mid g(v) = v \}$$

is called the vertex stabilizer. The nth level stabilizer is the subgroup

$$St_G(n) = \bigcap_{v \in X^n} G_v.$$

We need a useful way to express automorphisms of the rooted tree X^* . For this aim, we give a definition and a proposition from [6].

Definition 1.1 ([6]). Let H be a group acting (from the right) by permutations on a set X and let G be an arbitrary group. Then the (permutational) wreath product $G \wr H$ is the semi-direct product $G^X \rtimes H$, where H acts on the direct power G^X by the respective permutations of the direct factors.

Let |X|=d. The multiplication rule for the elements $(g_1,g_2,...,g_d)h\in G\wr H$ is given by the formula

$$(g_1, g_2, ..., g_d)\alpha(h_1, h_2, ..., h_d)\beta = (g_1h_{\alpha(1)}, g_2h_{\alpha(2)}, ..., g_dh_{\alpha(d)})\alpha\beta$$

where $g_i, h_i \in G, \alpha, \beta \in H$ and $\alpha(i)$ is the image of i under the action of α .

Proposition 1.2 ([6]). Denote by S(X) the symmetric group of all permutations of X. Fix some indexing $\{x_1, x_2, ..., x_d\}$ of X. Then we have an isomorphism

$$\psi: Aut(X^*) \to Aut(X^*) \wr S(X),$$

given by

$$\psi(g) = (g|_{x_1}, g|_{x_2}, ..., g|_{x_d})\alpha,$$

where α is the permutation equal to the action of g on $X \subset X^*$.

Thus, $g \in Aut(X^*)$ is identified with the image $\psi(g) \in Aut(X^*) \wr S(X)$ and it is written as

$$g = (g|_{x_1}, g|_{x_2}, ..., g|_{x_d})\alpha.$$

The adding machine group: Let a be the transformation on X^* defined by the wreath recursion

$$a = (\underbrace{1, 1, \dots, 1}_{p-1 \text{ times}}, a)\sigma$$

where $\sigma = (012...(p-1))$ is an element of the symmetric group on $X = \{0, 1, 2, ..., (p-1)\}$. The transformation a generates an infinite cyclic group on X^* . This group is called the adding machine group and we denote this group by A.

Figure 1.2: Portrait of the transformation a for $X = \{0, 1\}$ and $X = \{0, 1, ..., p-1\}$

For example, using permutational wreath product we obtain that

$$a^{p} = (1, \dots, 1, a)\sigma(1, \dots, 1, a)\sigma\dots(1, \dots, 1, a)\sigma$$
$$= (a, a, \dots, a)\sigma^{p}$$
$$= (a, a, \dots, a)$$

(for details see [2], [6]).

2 The Metric Space $(Aut(X^*), d)$

We define a natural metric on the automorphism group of the p-ary rooted tree X^* where $X = \{0, 1, 2, ..., p-1\}$. This metric is used by [1].

Definition 2.1. Let $g_1, g_2 \in Aut(X^*)$.

$$d(g_1, g_2) = \begin{cases} \frac{1}{p^k} & for \ g_1^{-1}g_2 \in St_{Aut(X^*)}(k) \ and \ g_1^{-1}g_2 \notin St_{Aut(X^*)}(k+1), \\ 0 & for \ g_1 = g_2. \end{cases}$$

In other words, if g_1 and g_2 agree on all vertices of level k but do not agree at least one vertex of level (k+1) of the tree X^* then the distance between g_1 and g_2 is $\frac{1}{r^k}$.

 $(Aut(X^*), d)$ is a metric space. Moreover, it can easily be shown that the metric space $(Aut(X^*), d)$ is compact.

Proposition 2.2. $Aut(X^*)$ is a topological group.

Proof. First we prove that

$$\begin{array}{cccc} \psi & : & Aut(X^*) \times Aut(X^*) & \longrightarrow & Aut(X^*) \\ & (g,h) & \longmapsto & gh \end{array}$$

is a continuous map. We take an arbitrary $(g_0, h_0) \in Aut(X^*) \times Aut(X^*)$. Let U be a neighborhood of g_0h_0 . There exists an integer n such that

$$B\left(g_0h_0, \frac{1}{p^n}\right) = \left\{f \mid d(f, g_0h_0) < \frac{1}{p^n}\right\} \subseteq U.$$

We take an open set

$$V = V_1 \times V_2 = \{(g, h) \mid g \in V_1, h \in V_2\}$$

of $Aut(X^*) \times Aut(X^*)$ such that

$$V_1 = B\left(g_0, \frac{1}{p^n}\right) = \left\{g \mid d(g, g_0) < \frac{1}{p^n}\right\}$$

and

$$V_2 = B\left(h_0, \frac{1}{n^n}\right) = \left\{h \mid d(h, h_0) < \frac{1}{n^n}\right\}.$$

Now, we show that $\psi(V) \subseteq U$ where

$$\psi(V) = \psi(V_1 \times V_2) = \{ gh \mid g \in V_1, h \in V_2 \}.$$

Let $gh \in \psi(V)$. Thus, we have $g \in V_1$ and $h \in V_2$. Namely, we obtain that

$$g^{-1}g_0 \in St_{Aut(X^*)}(n+1) \text{ and } h^{-1}h_0 \in St_{Aut(X^*)}(n+1).$$
 (1)

Furthermore, we get

$$(gh)^{-1}g_0h_0 = h^{-1}(g^{-1}g_0)h_0 \in St_{Aut(X^*)}(n+1).$$

From (1), $gh \in U$. Thus, ψ is continuous. Similarly, we prove that

$$\begin{array}{cccc} \varphi & : & Aut(X^*) & \longrightarrow & Aut(X^*) \\ & g & \longmapsto & g^{-1} \end{array}$$

is continuous. We take an arbitrary $g_0 \in Aut(X^*)$. Let U be a neighborhood of g_0^{-1} . So, there exists an integer n such that

$$B\left(g_0^{-1}, \frac{1}{p^n}\right) = \left\{f \mid d(f, g_0^{-1}) < \frac{1}{p^n}\right\} \subseteq U.$$

We take a neighborhood V of g_0 in $Aut(X^*)$ such that

$$V = B\Big(g_0, \frac{1}{p^n}\Big) = \Big\{g \mid d(g, g_0) < \frac{1}{p^n}\Big\}.$$

Now, we show that $\varphi(V) \subseteq U$. Let $g^{-1} \in \varphi(V)$. Thus, we have $g \in V$. In other words,

$$gg_0^{-1} \in St_{Aut(X^*)}(n+1).$$

Due to the definition of $U, g^{-1} \in U$. That is, φ is continuous.

Proposition 2.3. \overline{A} is a subgroup of $Aut(X^*)$.

Proof. We show that $gh \in \overline{A}$ and $g^{-1} \in \overline{A}$ for all $g, h \in \overline{A}$.

Suppose that $g, h \in \overline{A}$. This means that there are sequences (g_n) , (h_n) in A such that

$$\lim_{n \to \infty} g_n = g \text{ and } \lim_{n \to \infty} h_n = h.$$

Thus, it follows that $\lim_{n\to\infty}(g_n,h_n)=(g,h)$. On the other hand, we proved that

$$\begin{array}{cccc} \psi & : & Aut(X^*) \times Aut(X^*) & \longrightarrow & Aut(X^*) \\ & & (g,h) & \longmapsto & gh \end{array}$$

is continuous. Hence, we have

$$\lim_{n \to \infty} g_n h_n = gh.$$

It follows that $gh \in \overline{A}$ since the sequence $g_n h_n \in A$. Similarly, because

$$\begin{array}{cccc} \varphi & : & Aut(X^*) & \longrightarrow & Aut(X^*) \\ & g & \longmapsto & g^{-1} \end{array}$$

is continuous we obtain

$$\lim_{n \to \infty} g_n^{-1} = g^{-1}.$$

That is, $g^{-1} \in \overline{A}$. Thus, \overline{A} is a subgroup of $Aut(X^*)$.

3 Embedding of the Group of p-adic Integers into the Automorphism Group of the p-ary Rooted Tree

Now we give a formula for the distance between two elements of the adding machine group. Notice that this expression is similar to the distance between two elements of p-adic integers.

Proposition 3.1. For $a^n, a^m \in A$, the distance $d(a^n, a^m)$ is

$$\begin{array}{cccc} d & : & A \times A & \to & A \\ & & (a^n, a^m) & \mapsto & d(a^n, a^m) = \left\{ \begin{array}{ll} 0 & & \textit{for } n = m, \\ \frac{1}{p^k} & & \textit{for } n - m = tp^k, \end{array} \right. \end{array}$$

where $t, k \in \mathbb{Z}$, p is prime number and (p, t) = 1.

Proof. First we compute $St_A(1)$. Using permutational wreath product we obtain that

$$a^{p} = (1, 1, \dots, a)\sigma(1, 1, \dots, a)\sigma\dots(1, 1, \dots, a)\sigma$$
$$= (a, a, \dots, a).$$

Thus, $St_A(1) = \langle a^p \rangle$. Moreover, we get

$$a^{p^2} = a^p a^p \dots a^p$$

= $(a, a, \dots, a)(a, a, \dots, a) \dots (a, a, \dots, a)$
= (a^p, a^p, \dots, a^p)

We have $a^{p^2} \in St_A(2)$ because $a^p \in St_A(1)$. Therefore, $St_A(2) = \langle a^{p^2} \rangle$. By proceeding in a similar manner, we compute $St_A(k) = \langle a^{p^k} \rangle$.

So, elements of A which are in $St_A(1)$ but are not in $St_A(2)$ can be expressed as

$$St_A(1) - St_A(2) = \{a^{tp} : (p, t) = 1\}$$

and in general, we have

$$St_A(k) - St_A(k+1) = \{a^{tp^k} : (p,t) = 1\}.$$

Let us take arbitrary $a^n, a^m \in A$. If n = m then $a^n = a^m$ and $d(a^n, a^m) = 0$. Assume $n \neq m$. So there is a unique expression $n - m = tp^k$ such that (p, t) = 1. Then we obtain

$$a^{-m}a^n = a^{n-m} = a^{tp^k} \in St_A(k) - St_A(k+1)$$

and $d(a^n, a^m) = \frac{1}{p^k}$.

Proposition 3.2. Let $\sum_{i>0} \alpha_i p^i \in \mathbb{Z}_p$. Then the sequence

$$a^{\alpha_0}, a^{\alpha_0+\alpha_1 p}, a^{\alpha_0+\alpha_1 p+\alpha_2 p^2}, \dots$$

is convergent.

Proof. For any $\varepsilon > 0$, there is a positive integer n_0 such that $\frac{1}{p^{n_0}} < \varepsilon$. If k > l and $k, l \ge n_0$ then it is obtained that

$$d(a^{\alpha_0+\alpha_1p+\ldots+\alpha_kp^k},a^{\alpha_0+\alpha_1p+\ldots+\alpha_lp^l}) = \frac{1}{n^l} < \varepsilon.$$

from Proposition 3.1. Thus, it is a Cauchy sequence. Because $Aut(X^*)$ is a complete metric space, this sequence is convergent.

Now we give our main proposition:

Proposition 3.3. We define

$$\varphi : \mathbb{Z}_p \to \overline{A}$$

such that $\varphi(\sum_{i\geq 0} \alpha_i p^i)$ is the limit of the sequence $a^{\alpha_0}, a^{\alpha_0+\alpha_1 p}, a^{\alpha_0+\alpha_1 p+\alpha_2 p^2}, \ldots$ Then φ is both an isometry and a group isomorphism.

Proof. From Proposition 3.2, φ is well-defined. Now we show that φ is an isometry. In other words, we show that $d_p(\alpha, \beta) = d(\varphi(\alpha), \varphi(\beta))$ for every $\alpha, \beta \in \mathbb{Z}_p$. Let $\alpha = \sum_{i>0} \alpha_i p^i$ and $\beta = \sum_{i>0} \beta_i p^i$.

If $d_p(\alpha, \beta) = 0$ then we obtain $d(\varphi(\alpha), \varphi(\beta)) = 0$ since $\alpha_i = \beta_i$ for $i = 0, 1, 2, \dots$

If $d_p(\alpha, \beta) = \frac{1}{p^k}$ then $\alpha_i = \beta_i$ for i < k and $\alpha_k \neq \beta_k$. We must show that $d(\varphi(\alpha), \varphi(\beta)) = \frac{1}{p^k}$. Because $\varphi(\alpha)$ and $\varphi(\beta)$ are the limits of the sequences $a^{\alpha_0}, a^{\alpha_0 + \alpha_1 p}, a^{\alpha_0 + \alpha_1 p + \alpha_2 p^2}, \ldots$ and $a^{\beta_0}, a^{\beta_0 + \beta_1 p}, a^{\beta_0 + \beta_1 p + \beta_2 p^2}, \ldots$ respectively, it is obtained that

$$\lim_{k \to \infty} (a^{\alpha_0 + \alpha_1 p + \dots + \alpha_k p^k}, a^{\beta_0 + \beta_1 p + \dots + \beta_k p^k}) = (\varphi(\alpha), \varphi(\beta)).$$

Since any metric function is continuous,

$$d(a^{\alpha_0}, a^{\beta_0}), d(a^{\alpha_0 + \alpha_1 p}, a^{\beta_0 + \beta_1 p}), \ldots \rightarrow d(\varphi(\alpha), \varphi(\beta)).$$

From Proposition 3.1, we get

$$0, 0, ..., 0, \frac{1}{p^k}, \frac{1}{p^k}, ..., \frac{1}{p^k}, ... \to \frac{1}{p^k}.$$

So, we get $d(\varphi(\alpha), \varphi(\beta)) = \frac{1}{p^k}$. Namely, φ is an isometry map. Moreover, φ is injective since φ is an isometry map.

Now we show that φ is surjective. Let $b \in \overline{A}$ be arbitrary. Thus, there exists a sequence

$$a^{n_0}, a^{n_1}, \dots, a^{n_k}, \dots \rightarrow b$$

whose elements are in A. Furthermore, every integer n_k can be expressed in \mathbb{Z}_p as

$$n_{0} = \alpha_{0}^{0} + \alpha_{1}^{0}p + \alpha_{2}^{0}p^{2} + \dots$$

$$n_{1} = \alpha_{0}^{1} + \alpha_{1}^{1}p + \alpha_{2}^{1}p^{2} + \dots$$

$$\vdots$$

$$n_{k} = \alpha_{0}^{k} + \alpha_{1}^{k}p + \alpha_{2}^{k}p^{2} + \dots$$

$$\vdots$$

$$\vdots$$

$$(2)$$

At least one of the numbers 0, 1, 2, ..., (p-1) occurs infinitely many times in the sequence $(\alpha_0^k)_k$. We choose one of them and denote it by β_0 . Let $(\alpha_1^{k_l})_l$ be a subsequence of $(\alpha_1^k)_k$ such that $\alpha_0^{k_l} = \beta_0$ for l = 0, 1, 2, ... Similarly, we denote by β_1 , any one of the numbers that appears infinitely many times in the sequence $(\alpha_1^{k_l})_l$. Proceeding in this manner, we obtain a sequence

$$a^{\beta_0}, a^{\beta_0+\beta_1 p}, \dots, a^{\beta_0+\beta_1 p+\dots+\beta_k p^k}, \dots$$

From Proposition 3.2, this sequence is convergent. Now we show this sequence converges to b. Due to the construction of (2), there exists a subsequence (n_k) of the sequence (n_k) whose p-adic expression of term sth such that

$$\beta_0 + \beta_1 p + \beta_2 p^2 + \ldots + \beta_s p^s + \gamma_{s+1} p^{s+1} + \gamma_{s+2} p^{s+2} + \ldots$$

Hence, because

$$\lim_{s \to \infty} d(a^{\beta_0 + \beta_1 p + \dots + \beta_s p^s}, a^{n_{k_s}}) = 0$$

and from the triangle inequality, the sequence $(a^{\beta_0+\beta_1p+...+\beta_kp^k})$ converges to b. So, $\varphi(\sum_{i\geq 0}\beta_ip^i)=b$ and φ is surjective.

Finally, we prove that φ is a homomorphism. In other words, we prove that

$$\varphi(\alpha + \beta) = \varphi(\alpha)\varphi(\beta)$$

for every $\alpha, \beta \in \mathbb{Z}_p$. Let $\alpha = \alpha_0 + \alpha_1 p + \alpha_2 p^2 + \dots$, $\beta = \beta_0 + \beta_1 p + \beta_2 p^2 + \dots$ and

$$\alpha + \beta = \gamma_0 + \gamma_1 p + \gamma_2 p^2 + \dots$$

From the definition of φ ,

$$a^{\gamma_0}, a^{\gamma_0 + \gamma_1 p}, a^{\gamma_0 + \gamma_1 p + \gamma_2 p^2}, \dots \rightarrow \varphi(\alpha + \beta).$$

Moreover, it follows that

$$a^{(\alpha_0+\beta_0)}$$
, $a^{(\alpha_0+\beta_0)+(\alpha_1+\beta_1)p}$, $a^{(\alpha_0+\beta_0)+(\alpha_1+\beta_1)p+(\alpha_2+\beta_2)p^2}$... $\rightarrow \varphi(\alpha)\varphi(\beta)$

since $Aut(X^*)$ is a topological group,

$$a^{\alpha_0}, a^{\alpha_0 + \alpha_1 p}, a^{\alpha_0 + \alpha_1 p + \alpha_2 p^2}, \dots \rightarrow \varphi(\alpha)$$

and

$$a^{\beta_0}, a^{\beta_0+\beta_1 p}, a^{\beta_0+\beta_1 p+\beta_2 p^2}, \ldots \rightarrow \varphi(\beta).$$

In \mathbb{Z}_p ,

$$\alpha_{0} + \beta_{0} = \gamma_{0} + \overline{\gamma_{0}}p + 0p^{2} + 0p^{3} + \dots
\alpha_{0} + \beta_{0} + (\alpha_{1} + \beta_{1})p = \gamma_{0} + \gamma_{1}p + \overline{\gamma_{1}}p^{2} + 0p^{3} + 0p^{4} + \dots
\vdots
\alpha_{0} + \beta_{0} + \dots + (\alpha_{k} + \beta_{k})p^{k} = \gamma_{0} + \gamma_{1}p + \dots + \gamma_{k}p^{k} + \overline{\gamma_{k}}p^{k+1} + 0p^{k+2} + 0p^{k+3} + \dots
\vdots
\vdots$$

Let $x = \alpha_0 + \beta_0 + \ldots + (\alpha_k + \beta_k)p^k$ and $y = \gamma_0 + \gamma_1 p + \ldots + \gamma_k p^k + \overline{\gamma_k}p^{k+1} + 0p^{k+2} + 0p^{k+3} + \ldots$ Then we have

$$d(a^x, a^y) = \begin{cases} \frac{1}{p^k} & \text{if } \overline{\gamma_k} \neq 0, \\ 0 & \text{if } \overline{\gamma_k} = 0. \end{cases}$$

So we get $\varphi(\alpha + \beta) = \varphi(\alpha)\varphi(\beta)$ since

$$d(a^{\alpha_0+\beta_0}, a^{\gamma_0}), d(a^{\alpha_0+\beta_0+(\alpha_1+\beta_1)p}, a^{\gamma_0+\gamma_1p}), \dots \to d(\varphi(\alpha)\varphi(\beta), \varphi(\alpha+\beta))$$

and

$$\lim_{k \to \infty} d(a^x, a^y) = 0.$$

Thus the proof is completed.

Consequently, the group of p-adic integers \mathbb{Z}_p can be isometrically embedded into the metric space $Aut(X^*)$ since $\overline{A} \subseteq Aut(X^*)$.

Example 3.4. We show $\varphi(-1)$ for p=2 in Figure 3.1. It is well-known that

$$-1 = 1 + 1.2^{1} + 1.2^{2} + \dots + 1.2^{k} + \dots \in \mathbb{Z}_{2}.$$

Due to the definition of φ , $\varphi(-1)$ is the limit of the sequence

$$a^1, a^{1+1.2^1}, a^{1+1.2^1+1.2^2}, \dots$$

in A for $X = \{0, 1\}$. This limit equals to $a^{-1} = (a^{-1}, 1)\sigma$ because of Proposition 3.1.

Figure 3.1: The image of $-1 \in \mathbb{Z}_2$ under the map φ

References

- [1] G. N. Arzhantseva and Z. Sunic, Construction of Elements in the Closure of Grigorchuk Group, arXiv:math/0607778v2.
- [2] L. Bartholdi, R. Grigorchuk and V. Nekrashevych, From Fractal Groups to Fractal Sets, Fractals in Graz, (Peter Grabner and Wolfgang Woess, eds.), Birkhëuser Verlag, Basel, (2003), 25-118.
- [3] F. Q. Gouvêa, p-adic Numbers, Springer-Verlag, Berlin, (1997).
- [4] R. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskii, Automata, Dynamical Systems and Infinite Groups, Proc. Steklov Inst. Math., 231 (2000), 134-214.

- [5] J. E. Holly, Pictures of Ultrametric Spaces, the p-adic Numbers, and Valued Fields, Amer. Math. Monthly, 108 (2001), 721-728.
- [6] V. Nekrashevych, Self-similar Groups, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, RI, 117 (2005).
- [7] A. M. Robert, A Course in p-adic Analysis, Springer, (2000).
- [8] W. H. Schikhof, Ultrametric Calculus an Introduction to p-adic Calculus, Cambridge University Press, New York, (1984).