§4 电势

一、静电场力所做的功

1. 点电荷的电场

$$dA = q_0 \vec{E} \cdot d\vec{l} = \frac{q_0 q}{4 \pi \varepsilon_0 r^2} \vec{r}_0 \cdot d\vec{l}$$

$$\vec{r}_0 \cdot d\vec{l} = dl \cos \theta = dr$$

$$dA = \frac{q_0 q}{4 \pi \varepsilon_0 r^2} dr$$

$$A = \int_A^B dA = q_0 \int_A^B \vec{E} \cdot d\vec{l} = \frac{q_0 q}{4 \pi \varepsilon_0} \int_{r_A}^{r_B} \frac{dr}{r^2}$$

$$=\frac{q_0q}{4\pi\varepsilon_0}\left(\frac{1}{r_A}-\frac{1}{r_B}\right)$$

2. 任意电荷的电场(视为点电荷的集合)

$$\vec{E} = \sum_{i} \vec{E}_{i} \qquad A = q_{0} \int \vec{E} \cdot d\vec{l} = \sum_{i} q_{0} \int \vec{E}_{i} \cdot d\vec{l}$$

结论:静电场力做功与路径无关。

二、静电场的环路定理

$$q_0 \int_{A1B} \vec{E} \cdot d\vec{l} = q_0 \int_{A2B} \vec{E} \cdot d\vec{l}$$

$$q_0 \left(\int_{A1B} \vec{E} \cdot d\vec{l} + \int_{B2A} \vec{E} \cdot d\vec{l} \right) = 0$$

$$\oint_{l} \vec{E} \cdot d\vec{l} = 0$$

静电场是保守场

利用环路定理可以分析一些问题:

例1. 电场线闭合的电场 肯定不是静电场。

因为
$$\int \vec{E} \cdot d\vec{l} \neq 0$$

例2. 电场线为一系列 不均匀平行直线 的静电场 是不存在的。

例3. 平行板电容器必有边缘效应。

三、电势能

静电场是保守场,静电场力是保守力。静电场力所做的功应该等于电荷电势能增量的负值。

$$A_{AB} = \int_{A}^{B} q_{0}\vec{E} \cdot d\vec{l} = -(W_{B} - W_{A}) = -\Delta W$$

令 $W_{B\rightarrow\infty} = 0$ 则 $W_{A} = \int_{A}^{\infty} q_{0}\vec{E} \cdot d\vec{l}$
电势能零点

试验电荷 q_0 在电场中某点的电势能,在数值上就等于把它从该点移到零势能处静电场力所作的功。

电势能的大小是相对的,电势能的差是绝对的。

**点电荷电场中试验电荷的电势能

$$\vec{E} = \frac{q}{4 \pi \varepsilon_0 r^2} \vec{r}_0$$

$$\Rightarrow W_{\infty} = 0$$

$$W = \int_{r}^{\infty} \frac{q_0 q}{4 \pi \varepsilon_0 r^2} \vec{r}_0 \cdot d\vec{l}$$

$$= \int_{r}^{\infty} \frac{q_0 q \, \mathrm{d}r}{4 \, \pi \varepsilon_0 r^2}$$

$$W = \frac{q_0 q}{4 \pi \varepsilon_0 r}$$

四、电势

$$\int_{A}^{B} q_0 \vec{E} \cdot d\vec{l} = -(W_B - W_A)$$

$$W_A = \int_A^\infty q_0 \vec{E} \cdot d\vec{l} \quad (W_{B \to \infty} = 0)$$

$$\int_{A}^{B} \vec{E} \cdot d\vec{l} = -\left(\frac{W_{B}}{q_{0}} - \frac{W_{A}}{q_{0}}\right)$$

——此积分大小与 q_0 无关

定义电势:
$$U=rac{W}{q_0}$$

則:
$$U_A = \frac{W_A}{q_0}$$

$$U_B = \frac{W_B}{q_0}$$

$$U_B = \frac{W_B}{q_0}$$

$$U_A - U_B = \int_A^B \vec{E} \cdot d\vec{l}$$

 $(U_{R}$ 为参考电势,其值任选)

说明:

(1) 单位:
$$V$$
 (伏特); $1V = \frac{1J}{1C}$

(2) 电势零点的选择:有限带电体以无穷远为电势零点。

(实际问题中常常选择地球为零电势体)

- (3) 电势的物理意义: 把单位正试验电荷从点 *A* 移到无穷远时,静电场力所作的功。
 - (4) 静电场力的功 $A_{AB} = q_0 (U_A U_B)$

五、电势差

$$U_{AB} = U_A - U_B = \int_A^B \vec{E} \cdot d\vec{l}$$

- ——将单位正电荷从 A 移到 B 静电场力所做的功。
- ▲ 电势差是绝对的,与电势零点的选择无关;
- ▲ 电势大小是相对的,与电势零点的选择有关。

几种常见的电势差(V)

生物电		家用电器	
普通干电池	1.5	高压输电线	已达5.5×10 ⁵
汽车电源		闪电	$10^8 - 10^9$

六、电势的计算

1. 点电荷的电势

$$\vec{E} = \frac{q}{4 \pi \varepsilon_0 r^2} \vec{r}_0 \quad \Leftrightarrow U_{\infty} = 0$$

$$U = \int_r^{\infty} \frac{q}{4 \pi \varepsilon_0 r^2} \vec{r}_0 \cdot d\vec{l}$$

$$= \frac{q}{4 \pi \varepsilon_0} \int_r^{\infty} \frac{dr}{r^2}$$

$$U = \frac{q}{4 \pi \varepsilon_0 r}$$

——球对称性

2. 电势的叠加原理

点电荷系
$$\vec{E} = \sum_{i} \vec{E}_{i}$$

$$U_{A} = \int_{A}^{\infty} \vec{E} \cdot d\vec{l} = \int_{A}^{\infty} \sum_{i} \vec{E}_{i} \cdot d\vec{l}$$

$$=\sum_{i}\int_{A}^{\infty}\vec{E}_{i}\cdot\mathrm{d}\vec{l}=\sum_{i}U_{i}$$

对于点电荷——
$$U_i = \frac{q_i}{4\pi \varepsilon_0 r_i}$$

$$q_1$$
 \vec{r}_1
 \vec{E}_i
 \vec{E}_2
 q_i
 \vec{r}_i
 \vec{E}_1

对于点电荷系——
$$U_{A} = \sum_{i} U_{iA} = \sum_{i} \frac{q_{i}}{4\pi \varepsilon_{0} r_{i}}$$

3. 连续分布电荷的电势

$$\mathrm{d}U = \frac{\mathrm{d}q}{4 \ \pi \varepsilon_0 r}$$

$$U_P = \int dU = \int_q \frac{dq}{4 \pi \varepsilon_0 r}$$

求电势 的方法

$$ightharpoonup$$
 利用 $U_P = \int dU = \int_q \frac{dq}{4 \pi \varepsilon_0 r}$

——这一结果已选无限远处为电势零点。

 \triangleright 若已知在积分路径上 \bar{E} 的函数表达式,

则
$$U_A = \int_A^{U=0 \, \text{id}} \vec{E} \cdot d\vec{l}$$

例1 正电荷q均匀分布在半径为R的细圆环上。 求圆环轴线上距环心为x处点P的电势。

解:
$$\lambda = \frac{q}{2\pi R}$$
 $dq = \lambda dl = \frac{q dl}{2\pi R}$

$$U_{P} = \int_{(q)} dU_{p} = \frac{\lambda}{4 \pi \varepsilon_{0} r} \int_{0}^{2 \pi R} dl = \frac{q}{4 \pi \varepsilon_{0} r} = \frac{q}{4 \pi \varepsilon_{0} \sqrt{x^{2} + R^{2}}}$$

$$U_P = \frac{q}{4 \pi \varepsilon_0 \sqrt{x^2 + R^2}}$$

讨论:

若
$$x>>R$$
, $U_P = \frac{q}{4\pi\varepsilon_0 x}$

例2 求均匀带电薄圆盘轴线上的电势。

解:
$$dq = \sigma 2 \pi r dr$$

解:
$$dq = \sigma 2 \pi r dr$$
 $dU = \frac{dq}{4 \pi \varepsilon_0 l} = \frac{\sigma 2 \pi r dr}{4 \pi \varepsilon_0 \sqrt{x^2 + r^2}}$

$$U_{P} = \int_{(q)} dU = \frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{R} \frac{\sigma 2 \pi r dr}{\sqrt{x^{2} + r^{2}}} = \frac{\sigma}{2\varepsilon_{0}} (\sqrt{x^{2} + R^{2}} - x)$$

$$x >> R$$
 $\sqrt{x^2 + R^2} \approx x + \frac{R^2}{2x}$ $U \approx \frac{q}{4\pi\varepsilon_0 x}$

例3 真空中,有一带均匀带电球壳,带电量为q,半径为R。

- 试求(1)球壳外任意点的电势;(2)球壳内任意点的电势;
 - (3) 球壳外两点间的电势差; (4) 球壳内两点间的电势差。

解:

$$\begin{cases} r < R, \quad \vec{E}_1 = 0 \\ r > R, \quad \vec{E}_2 = \frac{q}{4 \pi \varepsilon_0 r^2} \vec{r}_0 \end{cases}$$

(1) r > R 时

$$U_{\text{gh}}(r) = \int_{r}^{\infty} \vec{E}_{2} \cdot d\vec{r} = \frac{q}{4\pi\varepsilon_{0}} \int_{r}^{\infty} \frac{1}{r^{2}} \vec{r}_{0} \cdot d\vec{r}$$

$$= \frac{q}{4\pi\varepsilon_0} \int_r^{\infty} \frac{\mathrm{d}r}{r^2} = \frac{q}{4\pi\varepsilon_0 r}$$

(2)
$$r < R$$
 时

$$U_{r}(r) = \int_{r}^{R} \vec{E}_{1} \cdot d\vec{r} + \int_{R}^{\infty} \vec{E}_{2} \cdot d\vec{r} = \frac{q}{4 \pi \varepsilon_{0} R}$$

$$(3) r > R$$

$$U_A - U_B = \int_{r_A}^{r_B} \vec{E}_2 \cdot d\vec{r}$$

$$= \frac{q}{4 \pi \varepsilon_0} \int_{r_A}^{r_B} \frac{\vec{r}_0 \cdot d\vec{r}}{r^2}$$

$$= \frac{q}{4 \pi \varepsilon_0} \int_{r_A}^{r_B} \frac{\mathrm{d}r}{r^2} = \frac{q}{4 \pi \varepsilon_0} \left(\frac{1}{r_A} - \frac{1}{r_B} \right)$$

(4)
$$r < R$$
 $U_{A'} - U_{B'} = \int_{r_{A'}}^{r_{B'}} \vec{E}_1 \cdot d\vec{r} = 0$

例4 求长为L的均匀带电q直线延长上一点P的电势。

解:
$$\lambda = \frac{q}{L}$$
 $dq = \lambda dy$ $\Rightarrow U_{\infty} = 0$
$$dU = \frac{dq}{4\pi\varepsilon_0(r-y)} = \frac{\lambda dy}{4\pi\varepsilon_0(r-y)}$$

$$U = \int dU = \int_{-L/2}^{L/2} \frac{\lambda dy}{4\pi\varepsilon_0 (r - y)}$$

$$= \frac{\lambda}{4\pi\varepsilon_0} \int_{-L/2}^{L/2} \frac{\mathrm{d}y}{r - y} = \frac{\lambda}{4\pi\varepsilon_0} \ln \frac{r + \frac{L}{2}}{r - \frac{L}{2}}$$

§ 5 电场强度与电势的微分关系

1. 等势面

空间电势相等点的集合所成曲面称为等势面。为了描述空间电势的分布,规定任意两相邻等势面间的电势差相等。

♣ 在静电场中,电荷沿等势面移动时,电场力做功;

$$A_{ab} = q_0(U_a - U_b) = \int_a^b q_0 \vec{E} \cdot d\vec{l} = 0$$

+ 在静电场中,电场强度 \vec{E} 总是与等势面垂直的,即电场线是和等势面正交的曲线簇;

$$A_{ab} = \int_a^b q_0 \vec{E} \cdot d\vec{l} = 0$$

$$\therefore q_0 \neq 0, \quad \vec{E} \neq 0, \quad d\vec{l} \neq 0$$

$$\vec{E} \perp d\vec{l}$$

♣ 规定: 电场中任意两相邻等势面之间的电势差相等, 即等势面的疏密程度同样可以表示场强的大小。

两平行带电平板的电场线和等势面

2. 电场强度与电势的微分关系

dn 的正向为电势增加的方向。

$$:: U_1 - (U_1 + dU) = \vec{E} \cdot d\vec{l}$$

$$:: (U_1 + dU) - U_1 = -\vec{E} \cdot d\vec{l}$$

$$=-E dl \cos \theta$$

$$\therefore dU = -E dl \cos \theta = -\vec{E} \cdot d\vec{l}$$

$$\therefore dU = -E dl \cos \theta = -\vec{E} \cdot d\vec{l}$$

$$\therefore dl \cos \theta = dn$$

$$\therefore dU = -E dn$$

$$\therefore E = -\frac{\mathrm{d}U}{\mathrm{d}n}$$

即:
$$\vec{E} = -\frac{\mathrm{d}U}{\mathrm{d}n} \vec{n}_0$$

或:
$$\vec{E} = -\nabla U$$

静电场中某点的电场强度等于该点的电势梯度的负值。

说明:

- (1) 空间某点电场强度的大小取决于该点邻域内电势 U 的 空间变化率。
 - (2) 电场强度的方向恒指向电势减小的方向。
 - 直角坐标系中

$$\vec{E} = -\left(\frac{\partial U}{\partial x}\vec{i} + \frac{\partial U}{\partial y}\vec{j} + \frac{\partial U}{\partial z}\vec{k}\right) = -\text{grad } U$$

$$\vec{E} = -\nabla U$$

(3) 电场线与等势面处处正交。

(即:在等势面上移动电荷,电场力不做功。)

(4) 等势面密处电场强度大; 等势面疏处电场强度小。

例: 求一均匀带电细圆环轴线上任一点的电场强度。

解:
$$\vec{E} = -\nabla U$$

$$U = \frac{q}{4 \pi \varepsilon_0 (x^2 + R^2)^{1/2}}$$

$$E = E_x = -\frac{\partial U}{\partial x}$$

$$= -\frac{\partial}{\partial x} \left[\frac{q}{4\pi \ \varepsilon_0 (x^2 + R^2)^{1/2}} \right]$$

$$=\frac{qx}{4\pi \ \varepsilon_0 (x^2+R^2)^{3/2}}$$

**补充例题: "无限长"带电直导线的电势.

解:
$$\diamondsuit U_R = 0$$

$$U_{P} = \int_{r}^{r_{B}} \vec{E} \cdot d\vec{r}$$

$$= \int_{r}^{r_{B}} \frac{\lambda}{2 \pi \varepsilon_{0} r} dr$$

$$= \frac{\lambda}{2 \pi \varepsilon_{0}} \ln \frac{r_{B}}{r}$$

讨论: 能否选 $U_{\infty}=0$?

λ

$$U = \int_{r}^{r_{B}} \frac{\lambda}{2\pi \varepsilon_{0} r} dr$$
$$= \frac{\lambda}{2\pi \varepsilon_{0}} \ln \frac{r_{B}}{r}$$

 $r > r_B$ 的点,电势为负, $r = r_B$ 的点,电势为零, $r < r_B$ 的点,电势为正。

可以看到,若选无限远为 电势零点, 会使积分发散。