Yoneda Lemma - Category Theory Reading Group (oid)

Conventions: always assume locally small, write C(a,b) = Home(a,b).

Defn: A fundam F: C- is representable if there exists a CEC s.t. $C(\zeta-)\cong F$ (or C(-,c) if F contravariant).

E.g. (a) Forgodyl $U: Top \rightarrow Set$ is represented by space $\{*\}$. $Top(*, X) \cong X$ as set. (6) AMMAGRAMONATES HANAM U. Grip -> Set is represented by Z.

Yonada generalizes a fact we know ...

Fig. Let G be a group, BG be G viewed as a one-object category. F: BG - Set sends * to some set X, and q to Fg: X > X, i.e. a g F X L) Figh) group action (F dotives a G-set.) The represented function BG(*,*) is G,

w/ being multiplication by 6.

- What is a natural transformation $\eta: BG(*, -)$ to F? It is a G-equiparint map n. G -> X. G. M. X - Any η is defined by $\eta(1)$, ble $\eta(g) = g \cdot \eta(1)$ gu J Fg G. N. X = Fq (n(1)).

- $\eta(1)$ can be any $x \in X$. So $Nat(BG(*,-), F) \cong X = F(*)$

Lemma: (Youeda) For any F: C >> Set and any C & C, there is a natural bijection $Nat(C(c,-),F)\cong Fc$, or $Nat(C(-,c),F)\cong Fc$.

Note: Cut is not locally small, so Nort-) need not be a set! But we will show it is

Proof: (Shorth) Define $\Phi: Nat(C(c,-),F) \rightarrow F_c$ by $\Phi(\alpha) = \alpha_c(1,-)$. $\Psi: F_c \rightarrow Nat(C(c, -) F)$ by $\Psi(x)_d(F) = F(F(x))$, $f \in C(c, d)$.

This is more than a generalization...

Corollery: (Yorseda Embedding) The Functor y: C -> Psh (C) is fully faithful embedding. Explanation: Psh(C) = Set COP = functors (contravarius) from C -> Set.

- y(c) = C(-,c) and $f: C \rightarrow d \mapsto f_*: C(-,c) \rightarrow C(-,d)$ (heft amp)
- * Full, faithful = surjective & injective on hom sets, so C(a,c) = Psh(C(-,a), C(-,c))(B/c Nat(C(-,a), C(-,c)) = C(a,c) by Yonda.)
- Embedding = ingestive on objects. $((-,c) \neq (-,d)$ unless c=d.

Covernant also holds.

E.g. Yoneda lets us "expand the universe" Knowing an object = knowing all maps into it.

Take (Q, \leq) . For any $g \in Q$, Q(p, q) is \emptyset if $p \geq g$. $\{*\}$ if $p \leq g$.

"Knowing $g = \text{knowing all verticals} \leq g$." Q(-,g) "picks out" g.

What about the preshoof $F: Q \to S = \text{by } F(p) = \{*\}$ if $p \neq 2$, \emptyset if $p \neq 2$?

Not representable. But "picks out" I_2 .

Psh(Q) = Dedeland cuts = R!

The "extended universe" is the "free cocompletion" of C (module clotis, size). Threw in all small colimits. (Thinh of IR as IR w/ all limits.)

Research: Met is a bod category. Does Psh(Met) work better? What is it? $M_1 \oplus M_2$ does not exist. The right answer is $M_1 \sqcup M_2 \sqcup M \sqcup M_1 = \infty$ if $m_1 \in M_1$, $m_2 \in M_2$. See Lowrere metric spaces.