# Assignment 1 - Shape Classification

### Bryon Kucharski

## January 2019

## 1 A

For this section I used the numpy *histogram* function. Input variables are the number of bins, the range, and the option to convert to a probability distribution which is everything I needed for this question.

## 2 B

The learned parameters for logistic regression with L1-norm regularization is

See Figure 1 for a plot of the loss

## 3 C

The output probabilities from the test set are

| t = [0.92141292] | 0.16372102 | 0.18819288 | 0.89925192 | 0.20931707 |
|------------------|------------|------------|------------|------------|
| 0.05392417       | 0.16529335 | 0.87324538 | 0.9356319  | 0.05324894 |
| 0.9263984        | 0.79940756 | 0.04066315 | 0.9185448  | 0.88499432 |
| 0.26501827       | 0.90437085 | 0.9072313  | 0.18304947 | 0.0417109  |
| 0.21356196       | 0.52805257 |            |            |            |

The accuracy of my script is 100 percent

#### 4 D

Without regularization, you can see that the weights are larger in magnitude.



Figure 1: Loss with l1-norm

| w = [0.17331586] | 0.14144335  | 0.35027896  |            |            |
|------------------|-------------|-------------|------------|------------|
| 0.85988518       | 2.3034102   | -3.15802307 |            |            |
| -6.1663501       | -3.63369077 | 16.907654   |            |            |
| -7.99334777]     |             |             |            |            |
| -                |             |             |            |            |
|                  |             |             |            |            |
| t = [0.96190863] | 0.10108647  | 0.12155461  | 0.94770721 | 0.15122165 |
| 0.02399014       | 0.1057323   | 0.92921473  | 0.96861961 | 0.02644465 |
| 0.96254968       | 0.8568999   | 0.01941399  | 0.95966559 | 0.93825926 |
| 0.20644969       | 0.95144644  | 0.95403118  | 0.12486605 | 0.01971255 |
| 0.16244636       | 0.52460177  |             |            |            |

The accuracy of my script is still 100 percent. See figure 2 for a plot of the loss.

## **5** E

The equation I used for the cross-entropy loss with L1-norm regularization can be written as

$$y \log(\sigma(W * X)) + (1 - y) \log(1 - \sigma(W * X)) + \sum |W|$$
 (1)



Figure 2: Loss with l1-norm

Where y is the true label, W is the weight matrix, and X is the input data. For now, I will ignore the L1-norm term.

$$y\log(\sigma(W*X)) + (1-y)\log(1-\sigma(W*X)) \tag{2}$$

Taking the derivative of the log terms yields

$$\left[\frac{1}{\sigma(W*X)}*y\right]*\frac{d}{dW}\sigma(X*W) + \left[\frac{1}{1-\sigma(W*X)}*1-y\right]*\frac{d}{dW}\sigma(X*W) \tag{3}$$

Pull out the derivative term

$$\left[\frac{1}{\sigma(W*X)}*y + \frac{1}{1-\sigma(W*X)}*1 - y\right]*\frac{d}{dW}\sigma(X*W) \tag{4}$$

Taking the derivative of the sigma term yields

$$\frac{d}{dW}\sigma(X*W) = \sigma(W*X)(1 - \sigma(W*X))\frac{d}{dW}W*X$$
 (5)

$$\frac{d}{dW}\sigma(X*W) = \sigma(W*X)(1 - \sigma(W*X))X \tag{6}$$

Plugging back into equation gives

$$\left[\frac{1}{\sigma(W*X)}*y + \frac{1}{1 - \sigma(W*X)}*1 - y\right]*\sigma(W*X)(1 - \sigma(W*X))X$$
 (7)

I will now focus on both the fractions inside the brackets. You can combine them into one fraction using algebra

$$\frac{y(1-\sigma(X*W)) + (1-y)\sigma(W*X)}{\sigma(W*X)(1-\sigma(W*X))} \tag{8}$$

distribute and simplify numerator

$$\frac{y - y\sigma(W * X) + \sigma(W * X) + y\sigma(W * X)}{\sigma(W * X)(1 - \sigma(W * X))} \tag{9}$$

$$\frac{y + \sigma(W * X)}{\sigma(W * X)(1 - \sigma(W * X))} \tag{10}$$

Plug back into original equation gives

$$\frac{y + \sigma(W * X)}{\sigma(W * X)(1 - \sigma(W * X))} * \sigma(W * X)(1 - \sigma(W * X))X \tag{11}$$

Cancel out terms to get

$$y + \sigma(W * X) * X \tag{12}$$

The only thing left is the l1-norm term. By definition

$$\mid x \mid = \frac{\mid x \mid}{x} \tag{13}$$

This is because if you have a negative number, it will have a negative slope. A positive number will still have a positive slope. The final equation can be written as

$$y + \sigma(W * X) * X + \frac{|x|}{x} \tag{14}$$

To achieve the desired values in my code, I used the numpy sign function, which turns all negative values to -1 and all positive values to 1. This is added to the derivative of the cross-entropy loss.