

TITLE OF THE INVENTION

3 Ebola Virion Proteins Expressed from Venezuelan Equine
4 Encephalitis (VEE) Virus Replicons

5 by

6 Mary Kate Hart

7 Julie A. Wilson

8 Alan L. Schmaljohn

9 Jonathan F. Smith

10 Peter Pushko

INTRODUCTION

13 Ebola viruses, members of the family
14 Filoviridae, are associated with outbreaks of highly
15 lethal hemorrhagic fever in humans and nonhuman
16 primates. The natural reservoir of the virus is
17 unknown and there currently are no available vaccines
18 or effective therapeutic treatments for filovirus
19 infections. The genome of Ebola virus consists of a
20 single strand of negative sense RNA that is
21 approximately 19 kb in length. This RNA contains seven
22 sequentially arranged genes that produce 8 mRNAs upon
23 infection (Fig. 1). Ebola virions, like virions of
24 other filoviruses, contain seven proteins: a surface
25 glycoprotein (GP), a nucleoprotein (NP), four virion
26 structural proteins (VP40, VP35, VP30, and VP24), and
27 an RNA-dependent RNA polymerase (L) (Feldmann et
28 al. (1992) *Virus Res.* **24**, 1-19; Sanchez et al., (1993)
29 *Virus Res.* **29**, 215-240; reviewed in Peters et al.
30 (1996) *In Fields Virology*; Third ed. pp. 1161-1176.
31 Fields, B. N., Knipe, D. M., Howley, P.M., et al. eds.
32 Lippincott-Raven Publishers, Philadelphia). The
33 glycoprotein of Ebola virus is unusual in that it is
34 encoded in two open reading frames. Transcriptional
35 editing is needed to express the transmembrane form
36 that is incorporated into the virion (Sanchez et al.
37 (1996) *Proc. Natl. Acad. Sci. USA* **93**, 3602-3607;

1 Volchkov et al, (1995) *Virology* **214**, 421-430. The
2 unedited form produces a nonstructural secreted
3 glycoprotein (sGP) that is synthesized in large
4 amounts early during the course of infection. Little
5 is known about the biological functions of these
6 proteins and it is not known which antigens
7 significantly contribute to protection and should
8 therefore be used to induce an immune response.

9 Recent studies using rodent models to evaluate
10 subunit vaccines for Ebola virus infection using
11 recombinant vaccinia virus encoding Ebola virus GP
12 (Gilligan et al., (1997) *In Vaccines* **97**, pp. 87-92.
13 Cold Spring Harbor Laboratory Press, Cold Spring
14 Harbor, N.Y.), or naked DNA constructs expressing
15 either GP or sGP (Xu et al. (1998) *Nature Med.* **4**, 37-
16 42) have demonstrated the protective efficacy of Ebola
17 virus GP in guinea pigs. (All documents cited herein
18 *supra* and *infra* are hereby incorporated in their
19 entirety by reference thereto.) Additionally, Ebola
20 virus NP and GP genes expressed from naked DNA
21 vaccines (Vanderzanden et al., (1998) *Virology* **246**,
22 134-144) have elicited protective immunity in BALB/c
23 mice. However, successful vaccination of nonhuman
24 primates with individual Ebola virus genes has not
25 been demonstrated. Therefore, there exists a need for
26 a vaccine which is efficacious for protection from
27 Ebola virus infection.

28

29 SUMMARY OF THE INVENTION

30 The present invention satisfies the need
31 discussed above. The present invention relates to a
32 method and composition for use in inducing an immune
33 response which is protective against infection with
34 Ebola virus.

35 Because the biological functions of the
36 individual Ebola virus proteins are not known and the
37 immune mechanisms necessary for preventing and

1 clearing Ebola virus infection are not well
2 understood, it was not clear which antigens
3 significantly contribute to protection and should
4 therefore be included in an eventual vaccine candidate
5 to induce a protective immune response. We evaluated
6 the ability of packaged Venezuelan equine encephalitis
7 (VEE) virus replicons expressing GP, NP, VP40, VP35,
8 VP30 and VP24 virion proteins of Ebola virus to elicit
9 protective immunity in two strains of mice which
10 differ at the major histocompatibility locus. There
11 are no published reports of the VP proteins having
12 been assayed as antigens for the production of an
13 immune response in a mammal.

14 The VEE virus replicon (Vrep) is a genetically
15 reorganized version of the VEE virus genome in which
16 the structural protein genes are replaced with a gene
17 from an immunogen of interest, such as the Ebola virus
18 virion proteins. This replicon can be transcribed to
19 produce a self-replicating RNA that can be packaged
20 into infectious particles using defective helper RNAs
21 that encode the glycoprotein and capsid proteins of
22 the VEE virus. Since the packaged replicons do not
23 encode the structural proteins, they are incapable of
24 spreading to new cells and therefore undergo a single
25 abortive round of replication in which large amounts
26 of the inserted immunogen are made in the infected
27 cells. The VEE virus replicon system is described in
28 U.S. Patent to Johnston et al., patent no. 5,792,462
29 issued on August 11, 1998.

30 For our purposes, each of the Ebola virus genes
31 were individually inserted into a VEE virus replicon
32 vector. The VP24, VP30, VP35, and VP40 genes of Ebola
33 Zaire 1976 (Mayinga isolate) were cloned by reverse
34 transcription of RNA from Ebola-infected Vero E6 cells
35 and viral cDNAs were amplified using the polymerase
36 chain reaction. The Ebola Zaire 1976 (Mayinga isolate)
37 GP and NP genes were obtained from plasmids already
38 containing these genes (Sanchez, A. et al., (1989)

1 *Virology* 170, 81-91; Sanchez, A. et al., (1993) *Virus*
2 *Res.* 29, 215-240) and were subcloned into the VEE
3 replicon vector.

4 After characterization of the Ebola gene
5 products expressed from the VEE replicon constructs in
6 cell culture, these constructs were packaged into
7 infectious VEE virus replicon particles (VRPs) and
8 subcutaneously injected into BALB/c and C57BL/6 mice.
9 As controls in these experiments, mice were also
10 immunized with a VEE replicon expressing Lassa
11 nucleoprotein (NP) as an irrelevant control antigen,
12 or injected with PBS buffer alone. The results of this
13 study demonstrate that VRPs expressing the Ebola GP,
14 NP, VP24, VP30, VP35 or VP40 genes induced protection
15 in mice and may provide protection in humans.

16
17 Therefore, it is one object of the present
18 invention to provide a DNA fragment encoding each of
19 the Ebola Zaire 1976 GP, NP, VP24, VP30, VP35, and
20 VP40 virion proteins (SEQUENCE ID NOS. 1-7).

21
22 It is another object of the present invention to
23 provide the DNA fragments of Ebola virion proteins in
24 a recombinant vector. When the vector is an
25 expression vector, the Ebola virion proteins GP, NP,
26 VP24, VP30, VP35, and VP40 are produced.

27
28 It is yet another object of the present
29 invention to provide a VEE virus replicon vector
30 comprising a VEE virus replicon and a DNA fragment
31 encoding any of the Ebola Zaire 1976 (Mayinga isolate)
32 GP, NP, VP24, VP30, VP35, or VP40 proteins. The
33 construct can be used as a nucleic acid vaccine or for
34 the production of self replicating RNA.

35
36 It is another object of the present invention to
37 provide a self replicating RNA comprising the VEE
38 virus replicon and any of the Ebola Zaire 1976

1 (Mayinga isolate) RNAs encoding the GP, NP, VP24,
2 VP30, VP35, and VP40 proteins described above. The
3 RNA can be used as a vaccine for protection from Ebola
4 infection. When the RNA is packaged, a VEE virus
5 replicon particle is produced.

6

7 It is another object of the present invention to
8 provide infectious VEE virus replicon particles
9 produced from the VEE virus replicon RNAs described
10 above.

11

12 It is further an object of the invention to
13 provide an immunological composition for the
14 protection of subjects against Ebola virus infection,
15 comprising VEE virus replicon particles containing the
16 Ebola virus GP, NP, VP24, VP30, VP35, or VP40
17 proteins, or any combination of different VEE virus
18 replicons each containing one or more different Ebola
19 proteins selected from GP, NP, VP24, VP30, VP35 and
20 VP40.

21

22 **BRIEF DESCRIPTION OF THE DRAWINGS**

23 These and other features, aspects, and
24 advantages of the present invention will become better
25 understood with reference to the following description
26 and appended claims, and accompanying drawings where:

27 Figure 1 is a schematic description of the
28 organization of the Ebola virus genome.

29 Figures 2A, 2B and 2C are schematic
30 representations of the VEE replicon constructs
31 containing Ebola genes.

32 Figure 3 shows the generation of VEE viral-like
33 particles containing Ebola genes.

34 Figure 4 is an immunoprecipitation of Ebola
35 proteins produced from replicon constructs.

36

37

1

2 DETAILED DESCRIPTION

3 In the description that follows, a number of
4 terms used in recombinant DNA, virology and immunology
5 are extensively utilized. In order to provide a
6 clearer and consistent understanding of the
7 specification and claims, including the scope to be
8 given such terms, the following definitions are
9 provided.

10 **Filoviruses.** The filoviruses (e.g. Ebola Zaire
11 1976) cause acute hemorrhagic fever characterized by
12 high mortality. Humans can contract filoviruses by
13 infection in endemic regions, by contact with imported
14 primates, and by performing scientific research with
15 the virus. However, there currently are no available
16 vaccines or effective therapeutic treatments for
17 filovirus infection. The virions of filoviruses
18 contain seven proteins: a membrane-anchored
19 glycoprotein (GP), a nucleoprotein (NP), an RNA-
20 dependent RNA polymerase (L), and four virion
21 structural proteins (VP24, VP30, VP35, and VP40).
22 Little is known about the biological functions of
23 these proteins and it is not known which antigens
24 significantly contribute to protection and should
25 therefore be used in an eventual vaccine candidate.

26 **Replicon.** A replicon is equivalent to a full-
27 length virus from which all of the viral structural
28 proteins have been deleted. A multiple cloning site
29 can be inserted downstream of the 26S promoter into
30 the site previously occupied by the structural protein
31 genes. Virtually any heterologous gene may be inserted
32 into this cloning site. The RNA that is transcribed
33 from the replicon is capable of replicating and
34 expressing viral proteins in a manner that is similar
35 to that seen with the full-length infectious virus
36 clone. However, in lieu of the viral structural
37 proteins, the heterologous antigen is expressed from

1 the 26S promoter in the replicon. This system does not
2 yield any progeny virus particles because there are no
3 viral structural proteins available to package the RNA
4 into particles.

5 Particles which appear structurally identical to
6 virus particles can be produced by supplying
7 structural protein RNAs *in trans* for packaging of the
8 replicon RNA. This is typically done with two
9 defective helper RNAs which encode the structural
10 proteins. One helper consists of a full length
11 infectious clone from which the nonstructural protein
12 genes and the glycoprotein genes are deleted. This
13 helper retains only the terminal nucleotide sequences,
14 the promoter for subgenomic mRNA transcription and the
15 sequences for the viral nucleocapsid protein. The
16 second helper is identical to the first except that
17 the nucleocapsid gene is deleted and only the
18 glycoprotein genes are retained. The helper RNAs are
19 transcribed *in vitro* and are co-transfected with
20 replicon RNA. Because the replicon RNA retains the
21 sequences for packaging by the nucleocapsid protein,
22 and because the helpers lack these sequences, only the
23 replicon RNA is packaged by the viral structural
24 proteins. The packaged replicon particles are released
25 from the host cell and can then be purified and
26 inoculated into animals. The packaged replicon
27 particles will have a tropism similar to the parent
28 virus. The packaged replicon particles will infect
29 cells and initiate a single round of replication,
30 resulting in the expression of only the virus
31 nonstructural proteins and the product of the
32 heterologous gene that was cloned in the place of the
33 virus structural proteins. In the absence of RNA
34 encoding the virus structural proteins, no progeny
35 virus particles can be produced from the cells
36 infected by packaged replicon particles.

37 The Venezuelan equine encephalitis (VEE) virus
38 replicon is a genetically reorganized version of the

1 VEE virus genome in which the genes encoding the VEE
2 structural proteins are replaced with a heterologous
3 gene of interest. In the present invention, the
4 heterologous genes are the GP, NP, or VP virion
5 proteins from the Ebola virus. The result is a self-
6 replicating RNA that can be packaged into infectious
7 particles using defective helper RNAs that encode the
8 glycoprotein and capsid proteins of the VEE virus. The
9 replicon and its use is further described in U.S.
10 Patent no 5,792,462 issued to Johnston et al. on
11 August 11, 1998.

12 **Subject.** Includes both human, animal, e.g.,
13 horse, donkey, pig, mouse, hamster, monkey, chicken,
14 and insect such as mosquito.

15 In one embodiment, the present invention relates
16 to DNA fragments which encode any of the Ebola Zaire
17 1976 (Mayinga isolate) GP, NP, VP24, VP30, VP35, and
18 VP40 proteins. The GP and NP genes of Ebola Zaire were
19 previously sequenced by Sanchez et al. (1993, *supra*)
20 and have been deposited in GenBank (accession number
21 L11365). A plasmid encoding the VEE replicon vector
22 containing a unique ClaI site downstream from the 26S
23 promoter was described previously (Davis, N. L. et
24 al., (1996) *J. Virol.* **70**, 3781-3787; Pushko, P. et
25 al. (1997) *Virology* **239**, 389-401). The Ebola GP and
26 NP genes from the Ebola Zaire 1976 virus were derived
27 from PS64- and PGEM3ZF(-)-based plasmids (Sanchez, A..
28 et al. (1989) *Virology* **170**, 81-91; Sanchez, A. et al.
29 (1993) *Virus Res.* **29**, 215-240). From these plasmids,
30 the BamHI-EcoRI (2.3 kb) and BamHI-KpnI (2.4 kb)
31 fragments containing the NP and GP genes,
32 respectively, were subcloned into a shuttle vector
33 that had been digested with BamHI and EcoRI (Davis et
34 al. (1996) *supra*; Grieder, F. B. et al.. (1995)
35 *Virology* **206**, 994-1006). For cloning of the GP gene,
36 overhanging ends produced by KpnI (in the GP fragment)
37 and EcoRI (in the shuttle vector) were made blunt by
38 incubation with T4 DNA polymerase according to methods

1 known in the art. From the shuttle vector, GP or NP
2 genes were subcloned as ClaI-fragments into the ClaI
3 site of the replicon clone, resulting in plasmids
4 encoding the GP or NP genes in place of the VEE
5 structural protein genes downstream from the VEE 26S
6 promoter.

7 The VP genes of Ebola Zaire were previously
8 sequenced by Sanchez et al. (1993, *supra*) and have
9 been deposited in GenBank (accession number L11365).
10 The VP genes of Ebola used in the present invention
11 were cloned by reverse transcription of RNA from
12 Ebola-infected Vero E6 cells and subsequent
13 amplification of viral cDNAs using the polymerase
14 chain reaction. First strand synthesis was primed with
15 oligo dT (Life Technologies). Second strand synthesis
16 and subsequent amplification of viral cDNAs were
17 performed with gene-specific primers (SEQ ID NOS:8-
18 16). The primer sequences were derived from the
19 GenBank deposited sequences and were designed to
20 contain a ClaI restriction site for cloning the
21 amplified VP genes into the ClaI site of the replicon
22 vector. The letters and numbers in bold print indicate
23 Ebola gene sequences in the primers and the
24 corresponding location numbers based on the GenBank
25 deposited sequences.

26 VP24: (1) forward primer is
27 5'-GGGATCGAT**CTCCAGACACCAAGCAAGACC**-3' (SEQ ID NO:8)
28 (10,311-10,331)

29 (2) reverse primer is
30 5'-GGGATCGAT**GAGTCAGCATATGAGTTAGCTC**-3' (SEQ ID
31 NO:9)
32 (11,122-11,145)

33 VP30: (1) forward primer is
34 5'-CCCATCGAT**CAGATCTGCGAACCGGTAGAG**-3' SEQ ID NO:10)
35 (8408-8430)

36 (2) reverse primer is
37 5'-CCCATCGAT**GTACCCCTCATCAGACCATGAGC**-3' (SEQ ID
38 NO:11)

(9347-9368)

VP35: (1) forward primer is
5'-GGGATCGATAGAAAAGCTGGTCTAACAGATGA-3' (SEQ ID NO:12)
(3110-3133)

(2) reverse primer is
5'-CCCATCGATCTCACAAAGTGTATCATTAAATGTAACGT-3' (SEQ ID NO:13) (4218-4244)

VP40: (1) forward primer is
5'-CCCATCGATCCTACCTCGGCTGAGAGAGTG-3' (SEQ ID NO:14)
(4408-4428)

(2) reverse primer is
5'-CCCATCGATATGTTATGCACTATCCCTGAGAAG-3' (SEQ ID NO:15)
(5495-5518)

VP30 #2:
(1) forward primer as for VP30 above
(2) reverse primer is
5'-CCCATCGATCTGTTAGGGTTGTATCATACC-3' (SEQ ID NO:16)

The Ebola virus genes cloned into the VEE replicon were sequenced. Changes in the DNA sequence relative to the sequence published by Sanchez et al. (1993) are described relative to the nucleotide (nt) sequence number from GenBank (accession number L11365).

The nucleotide sequence we obtained for Ebola virus GP (SEQ ID NO:1) differed from the GenBank sequence by a transition from A to G at nt 8023. This resulted in a change in the amino acid sequence from Ile to Val at position 662 (SEQ ID NO: 17).

The nucleotide sequence we obtained for Ebola virus NP (SEQ ID NO:2) differed from the GenBank sequence at the following 4 positions: insertion of a C residue between nt 973 and 974, deletion of a G residue at nt 979, transition from C to T at nt 1307, and a transversion from A to C at nt 2745. These changes resulted in a change in the protein sequence

1 from Arg to Glu at position 170 and a change from Leu
2 to Phe at position 280 (SEQ ID NO: 18).

3 The Ebola virus VP24 nucleotide sequence (SEQ ID
4 NO:3) differed from the GenBank sequence at 6
5 positions, resulting in 3 nonconservative changes in
6 the amino acid sequence. The changes in the DNA
7 sequence of VP24 consisted of a transversion from G to
8 C at nt 10795, a transversion from C to G at nt 10796,
9 a transversion from T to A at nt 10846, a transversion
10 from A to T at nt 10847, a transversion from C to G at
11 nt 11040, and a transversion from C to G at nt 11041.
12 The changes in the amino acid sequence of VP24
13 consisted of a Cys to Ser change at position 151, a
14 Leu to His change at position 168, and a Pro to Gly
15 change at position 233 (SEQ ID NO: 19).

16 Two different sequences for the Ebola virus VP30
17 gene, VP30 and VP30#2 (SEQ ID NOS: 4 and 7) are
18 included. Both of these sequences differ from the
19 GenBank sequence by the insertion of an A residue in
20 the upstream noncoding sequence between nt 8469 and
21 8470 and an insertion of a T residue between nt 9275
22 and 9276 that results in a change in the open reading
23 frame of VP30 and VP30#2 after position 255 (SEQ ID
24 NOS: 20 and 23). As a result, the C-terminus of the
25 VP30 protein differs significantly from that
26 previously reported. In addition to these 2 changes,
27 the VP30#2 nucleic acid in SEQ ID NO:7 contains a
28 conservative transition from T to C at nt 9217.
29 Because the primers originally used to clone the VP30
30 gene into the replicon were designed based on the
31 GenBank sequence, the first clone that we constructed
32 (SEQ ID NO: 4) did not contain what we believe to be
33 the authentic C-terminus of the protein. Therefore,
34 in the absence of the VP30 stop codon, the C-terminal
35 codon was replaced with 37 amino acids derived from
36 the vector sequence. The resulting VP30 construct
37 therefore differed from the GenBank sequence in that
38 it contained 32 amino acids of VP30 sequence

1 (positions 256 to 287, SEQ ID NO:20) and 37 amino
2 acids of irrelevant sequence (positions 288 to 324,
3 SEQ ID NO:20) in the place of the C-terminal 5 amino
4 acids reported in GenBank. However, inclusion of 37
5 amino acids of vector sequence in place of the C-
6 terminal amino acid (Pro, SEQ ID NO: 23) did not
7 inhibit the ability of the protein to serve as a
8 protective antigen in BALB/c mice. We are currently
9 examining the ability of the new VEE replicon
10 construct, which we believe contains the authentic C-
11 terminus of VP30 (VP30#2, SEQ ID NO: 23), to protect
12 mice against a lethal Ebola challenge.

13 The nucleotide sequence for Ebola virus VP35 (SEQ
14 ID NO:5) differed from the GenBank sequence by a
15 transition from T to C at nt 4006, a transition from T
16 to C at nt 4025, and an insertion of a T residue
17 between nt 4102 and 4103. These sequence changes
18 resulted in a change from a Ser to a Pro at position
19 293 and a change from Phe to Ser at position 299 (SEQ
20 ID NO: 21). The insertion of the T residue resulted
21 in a change in the open reading frame of VP35 from
22 that previously reported by Sanchez et al. (1993)
23 following amino acid number 324. As a result, Ebola
24 virus VP35 encodes a protein of 340 amino acids, where
25 amino acids 325 to 340 (SEQ ID NO: 21) differ from and
26 replace the C-terminal 27 amino acids of the
27 previously published sequence.

28 Sequencing of VP30 and VP35 was also performed
29 on RT/PCR products from RNA derived from cells that
30 were infected with Ebola virus 1976, Ebola virus 1995
31 or the mouse-adapted Ebola virus. The changes noted
32 above for the Vrep constructs were also found in these
33 Ebola viruses. Thus, we believe that these changes are
34 real events and not artifacts of cloning.

35 The Ebola virus VP40 nucleotide sequence (SEQ ID
36 NO:6) differed from the GenBank sequence by a
37 transversion from a C to G at nt 4451 and a transition
38 from a G to A at nt 5081. These sequence changes did

1 not alter the protein sequence of VP40 (SEQ ID NO: 22).
2 from that of the published sequence.

3 DNA or polynucleotide sequences to which the
4 invention also relates include sequences of at least
5 about 6 nucleotides, preferably at least about 8
6 nucleotides, more preferably at least about 10-12
7 nucleotides, most preferably at least about 15-20
8 nucleotides corresponding, i.e., homologous to or
9 complementary to, a region of the Ebola nucleotide
10 sequences described above. Preferably, the sequence of
11 the region from which the polynucleotide is derived is
12 homologous to or complementary to a sequence which is
13 unique to the Ebola genes. Whether or not a sequence is
14 unique to the Ebola gene can be determined by techniques
15 known to those of skill in the art. For example, the
16 sequence can be compared to sequences in databanks,
17 e.g., GenBank and compared by DNA:DNA hybridization.
18 Regions from which typical DNA sequences may be derived
19 include but are not limited to, for example, regions
20 encoding specific epitopes, as well as non-transcribed
21 and/or non-translated regions.

22 The derived polynucleotide is not necessarily
23 physically derived from the nucleotide sequences shown
24 in SEQ ID NO:1-7, but may be generated in any manner,
25 including for example, chemical synthesis or DNA
26 replication or reverse transcription or transcription,
27 which are based on the information provided by the
28 sequence of bases in the region(s) from which the
29 polynucleotide is derived. In addition, combinations
30 of regions corresponding to that of the designated
31 sequence may be modified in ways known in the art to
32 be consistent with an intended use. The sequences of
33 the present invention can be used in diagnostic assays
34 such as hybridization assays and polymerase chain
35 reaction assays, for example, for the discovery of
36 other Ebola sequences.

37 In another embodiment, the present invention
38 relates to a recombinant DNA molecule that includes a

1 vector and a DNA sequence as described above. The
2 vector can take the form of a plasmid, a eukaryotic
3 expression vector such as pcDNA3.1, pRcCMV2,
4 pZeoSV2, or pCDM8, which are available from Invitrogen,
5 or a virus vector such as baculovirus vectors,
6 retrovirus vectors or adenovirus vectors, alphavirus
7 vectors, and others known in the art.

8 In a further embodiment, the present invention
9 relates to host cells stably transformed or
10 transfected with the above-described recombinant DNA
11 constructs. The host cell can be prokaryotic (for
12 example, bacterial), lower eukaryotic (for example,
13 yeast or insect) or higher eukaryotic (for example,
14 all mammals, including but not limited to mouse and
15 human). Both prokaryotic and eukaryotic host cells may
16 be used for expression of the desired coding sequences
17 when appropriate control sequences which are
18 compatible with the designated host are used.

19 Among prokaryotic hosts, *E. coli* is the most
20 frequently used host cell for expression. General
21 control sequences for prokaryotes include promoters
22 and ribosome binding sites. Transfer vectors
23 compatible with prokaryotic hosts are commonly derived
24 from a plasmid containing genes conferring ampicillin
25 and tetracycline resistance (for example, pBR322) or
26 from the various pUC vectors, which also contain
27 sequences conferring antibiotic resistance. These
28 antibiotic resistance genes may be used to obtain
29 successful transformants by selection on medium
30 containing the appropriate antibiotics. Please see
31 e.g., Maniatis, Fisch and Sambrook, Molecular
32 Cloning; A Laboratory Manual (1982) or DNA Cloning,
33 Volumes I and II (D. N. Glover ed. 1985) for general
34 cloning methods. The DNA sequence can be present in
35 the vector operably linked to sequences encoding an
36 IgG molecule, an adjuvant, a carrier, or an agent for

1 aid in purification of Ebola proteins, such as
2 glutathione S-transferase.

3 In addition, the Ebola virus gene products can
4 also be expressed in eukaryotic host cells such as
5 yeast cells and mammalian cells. *Saccharomyces*
6 *cerevisiae*, *Saccharomyces carlsbergensis*, and *Pichia*
7 *pastoris* are the most commonly used yeast hosts.

8 Control sequences for yeast vectors are known in the
9 art. Mammalian cell lines available as hosts for
10 expression of cloned genes are known in the art and
11 include many immortalized cell lines available from
12 the American Type Culture Collection (ATCC), such as
13 CHO cells, Vero cells, baby hamster kidney (BHK) cells
14 and COS cells, to name a few. Suitable promoters are
15 also known in the art and include viral promoters such
16 as that from SV40, Rous sarcoma virus (RSV),
17 adenovirus (ADV), bovine papilloma virus (BPV), and
18 cytomegalovirus (CMV). Mammalian cells may also
19 require terminator sequences, poly A addition
20 sequences, enhancer sequences which increase
21 expression, or sequences which cause amplification of
22 the gene. These sequences are known in the art.

23 The transformed or transfected host cells can be
24 used as a source of DNA sequences described above.
25 When the recombinant molecule takes the form of an
26 expression system, the transformed or transfected
27 cells can be used as a source of the protein described
28 below.

29 In another embodiment, the present invention
30 relates to Ebola virion proteins such as GP having an
31 amino acid sequence corresponding to SEQ ID NO:17
32 encompassing 676 amino acids, NP, having an amino acid
33 sequence corresponding to SEQ ID NO:18 encompassing
34 739 amino acids, VP24, having an amino acid sequence
35 corresponding to SEQ ID NO:19 encompassing 251 amino
36 acids, VP30, having an amino acid sequence
37 corresponding SEQ ID NO:20 encompassing 324 amino
38 acids, VP35, having an amino acid sequence

1 corresponding to SEQ ID NO:21 encompassing 340 amino
2 acids, and VP40, having an amino acid sequence
3 corresponding to SEQ ID NO:22, encompassing 326 amino
4 acids, and VP30#2, having an amino acid sequence
5 corresponding to SEQ ID NO:23 encompassing 288 amino
6 acids, or any allelic variation of the amino acid
7 sequences. By allelic variation is meant a natural or
8 synthetic change in one or more amino acids which
9 occurs between different serotypes or strains of Ebola
10 virus and does not affect the antigenic properties of
11 the protein. There are different strains of Ebola
12 (Zaire 1976, Zaire 1995, Reston, Sudan, and Ivory
13 Coast). The NP and VP genes of these different viruses
14 have not been sequenced. It would be expected that
15 these proteins would have homology among different
16 strains and that vaccination against one Ebola virus
17 strain might afford cross protection to other Ebola
18 virus strains.

19 A polypeptide or amino acid sequence derived
20 from any of the amino acid sequences in SEQ ID NO:17,
21 18, 19, 20, 21, 22, and 23 refers to a polypeptide
22 having an amino acid sequence identical to that of a
23 polypeptide encoded in the sequence, or a portion
24 thereof wherein the portion consists of at least 2-5
25 amino acids, preferably at least 8-10 amino acids, and
26 more preferably at least 11-15 amino acids, or which
27 is immunologically identifiable with a polypeptide
28 encoded in the sequence.

29 A recombinant or derived polypeptide is not
30 necessarily translated from a designated nucleic acid
31 sequence, or the DNA sequence found in GenBank
32 accession number L11365. It may be generated in any
33 manner, including for example, chemical synthesis, or
34 expression from a recombinant expression system.

35 When the DNA or RNA sequences described above
36 are in a replicon expression system, such as the VEE
37 replicon described above, the proteins can be
38 expressed in vivo. The DNA sequence for any of the

1 GP, NP, VP24, VP30, VP35, and VP40 virion proteins can
2 be cloned into the multiple cloning site of a replicon
3 such that transcription of the RNA from the replicon
4 yields an infectious RNA encoding the Ebola protein or
5 proteins of interest (see Figure 2A, 2B and 2C). The
6 replicon constructs include Ebola virus GP (SEQ ID
7 NO:1) cloned into a VEE replicon (VRepEboGP), Ebola
8 virus NP (SEQ ID NO:2) cloned into a VEE replicon
9 (VRepEboNP), Ebola virus VP24 (SEQ ID NO:3) cloned
10 into a VEE replicon (VRepEboVP24), Ebola virus VP30
11 (SEQ ID NO:4) or VP30#2 (SEQ ID NO:7) cloned into a
12 VEE replicon (VRepEboVP30 or VRepEboVP30(#2)), Ebola
13 virus VP35 (SEQ ID NO:5) cloned into a VEE replicon
14 (VRepEboVP35), and Ebola virus VP40 (SEQ ID NO:6)
15 cloned into a VEE replicon (VRepEboVP40). The
16 replicon DNA or RNA can be used as a vaccine for
17 inducing protection against infection with Ebola.
18 Use of helper RNAs containing sequences necessary for
19 packaging of the viral replicon transcripts will
20 result in the production of virus-like particles
21 containing replicon RNAs (Figure 3). These packaged
22 replicons will infect host cells and initiate a single
23 round of replication resulting in the expression of
24 the Ebola proteins in said infected cells. The
25 packaged replicon constructs (i.e. VEE virus replicon
26 particles, VRP) include those that express Ebola virus
27 GP (EboGPVRP), Ebola virus NP (EboNPVRP), Ebola virus
28 VP24 (EboVP24VRP), Ebola virus VP30 (EboVP30VRP or
29 EboVP30VRP(#2)), Ebola virus VP35 (EboVP35VRP), and
30 Ebola virus VP40 (EboVP40VRP).

31 In another embodiment, the present invention
32 relates to RNA molecules resulting from the
33 transcription of the constructs described above. The
34 RNA molecules can be prepared by *in vitro* transcription
35 using methods known in the art and described in the
36 Examples below. Alternatively, the RNA molecules can be
37 produced by transcription of the constructs *in vivo*, and
38 isolating the RNA. These and other methods for

1 obtaining RNA transcripts of the constructs are known in
2 the art. Please see Current Protocols in Molecular
3 Biology. Frederick M. Ausubel et al. (eds.), John Wiley
4 and Sons, Inc. The RNA molecules can be used, for
5 example, as a direct RNA vaccine, or to transfect cells
6 along with RNA from helper plasmids, one of which
7 expresses VEE glycoproteins and the other VEE capsid
8 proteins, as described above, in order to obtain
9 replicon particles.

10 In a further embodiment, the present invention
11 relates to a method of producing the recombinant or
12 fusion protein which includes culturing the above-
13 described host cells under conditions such that the
14 DNA fragment is expressed and the recombinant or
15 fusion protein is produced thereby. The recombinant or
16 fusion protein can then be isolated using methodology
17 well known in the art. The recombinant or fusion
18 protein can be used as a vaccine for immunity against
19 infection with Ebola or as a diagnostic tool for
20 detection of Ebola infection.

21 In another embodiment, the present invention
22 relates to antibodies specific for the above-described
23 recombinant proteins (or polypeptides). For instance,
24 an antibody can be raised against a peptide having the
25 amino acid sequence of any of SEQ ID NO:17-25, or
26 against a portion thereof of at least 10 amino acids,
27 preferably, 11-15 amino acids. Persons with ordinary
28 skill in the art using standard methodology can raise
29 monoclonal and polyclonal antibodies to the protein(or
30 polypeptide) of the present invention, or a unique
31 portion thereof. Materials and methods for producing
32 antibodies are well known in the art (see for example
33 Goding, *In Monoclonal Antibodies: Principles and*
34 *Practice*, Chapter 4, 1986).

35 In a further embodiment, the present invention
36 relates to a method of detecting the presence of
37 antibodies against Ebola virus in a sample. Using

1 standard methodology well known in the art, a
2 diagnostic assay can be constructed by coating on a
3 surface (i.e. a solid support for example, a
4 microtitration plate, a membrane (e.g. nitrocellulose
5 membrane) or a dipstick), all or a unique portion of
6 any of the Ebola proteins described above or any
7 combination thereof, and contacting it with the serum
8 of a person or animal suspected of having Ebola. The
9 presence of a resulting complex formed between the
10 Ebola protein(s) and serum antibodies specific
11 therefor can be detected by any of the known methods
12 common in the art, such as fluorescent antibody
13 spectroscopy or colorimetry. This method of detection
14 can be used, for example, for the diagnosis of Ebola
15 infection and for determining the degree to which an
16 individual has developed virus-specific Abs after
17 administration of a vaccine.

18 In yet another embodiment, the present invention
19 relates to a method for detecting the presence of
20 Ebola virion proteins in a sample. Antibodies against
21 GP, NP, and the VP proteins could be used for
22 diagnostic assays. Using standard methodology well
23 known in the art, a diagnostics assay can be
24 constructed by coating on a surface (i.e. a solid
25 support, for example, a microtitration plate or a
26 membrane (e.g. nitrocellulose membrane)), antibodies
27 specific for any of the Ebola proteins described
28 above, and contacting it with serum or a tissue sample
29 of a person suspected of having Ebola infection. The
30 presence of a resulting complex formed between the
31 protein or proteins in the serum and antibodies
32 specific therefor can be detected by any of the known
33 methods common in the art, such as fluorescent
34 antibody spectroscopy or colorimetry. This method of
35 detection can be used, for example, for the diagnosis
36 of Ebola virus infection.

37 In another embodiment, the present invention
38 relates to a diagnostic kit which contains any

1 combination of the Ebola proteins described above and
2 ancillary reagents that are well known in the art and
3 that are suitable for use in detecting the presence of
4 antibodies to Ebola in serum or a tissue sample.
5 Tissue samples contemplated can be from monkeys,
6 humans, or other mammals.

7 In yet another embodiment, the present invention
8 relates to DNA or nucleotide sequences for use in
9 detecting the presence of Ebola virus using the
10 reverse transcription-polymerase chain reaction (RT-
11 PCR). The DNA sequence of the present invention can
12 be used to design primers which specifically bind to
13 the viral RNA for the purpose of detecting the
14 presence of Ebola virus or for measuring the amount
15 of Ebola virus in a sample. The primers can be any
16 length ranging from 7 to 400 nucleotides, preferably
17 at least 10 to 15 nucleotides, or more preferably 18
18 to 40 nucleotides. Reagents and controls necessary
19 for PCR reactions are well known in the art. The
20 amplified products can then be analyzed for the
21 presence of viral sequences, for example by gel
22 fractionation, with or without hybridization, by
23 radiochemistry, and immunochemistry techniques.

24 In yet another embodiment, the present invention
25 relates to a diagnostic kit which contains PCR primers
26 specific for Ebola virus and ancillary reagents for
27 use in detecting the presence or absence of Ebola in a
28 sample using PCR. Samples contemplated can be obtained
29 from human, animal, e.g., horse, donkey, pig, mouse,
30 hamster, monkey, or other mammals, birds, and insects,
31 such as mosquitoes.

32 In another embodiment, the present invention
33 relates to an Ebola vaccine comprising VRPs that
34 express one or more of the Ebola proteins described
35 above. The vaccine is administered to a subject
36 wherein the replicon is able to initiate one round of
37 replication producing the Ebola proteins to which a

1 protective immune response is initiated in said
2 subject.

3 It is likely that the protection afforded by
4 these genes is due to both the humoral (antibodies
5 (Abs)) and cellular (cytotoxic T cells (CTLs)) arms, of
6 the immune system. Protective immunity induced to a
7 specific protein may comprise humoral immunity,
8 cellular immunity, or both. The only Ebola virus
9 protein known to be on the outside of the virion is
10 the GP. The presence of GP on the virion surface
11 makes it a likely target for GP-specific Abs that may
12 bind either extracellular virions or infected cells
13 expressing GP on their surfaces. Serum transfer
14 studies in this invention demonstrate that Abs that
15 recognize GP protect mice against lethal Ebola virus
16 challenge.

17 In contrast, transfer of Abs specific for NP,
18 VP24, VP30, VP35, or VP40 did not protect mice against
19 lethal Ebola challenge. This data, together with the
20 fact that these are internal virion proteins that are
21 not readily accessible to Abs on either extracellular
22 virions or the surface of infected cells, suggest that
23 the protection induced in mice by these proteins is
24 mediated by CTLs.

25 CTLs can bind to and lyse virally infected cells.
26 This process begins when the proteins produced by
27 cells are routinely digested into peptides. Some of
28 these peptides are bound by the class I or class II
29 molecules of the major histocompatibility complex
30 (MHC), which are then transported to the cell surface.
31 During virus infections, viral proteins produced
32 within infected cells also undergo this process. CTLs
33 that have receptors that bind to both a specific
34 peptide and the MHC molecule holding the peptide lyse
35 the peptide-bearing cell, thereby limiting virus
36 replication. Thus, CTLs are characterized as being
37 specific for a particular peptide and restricted to a
38 class I or class II MHC molecule.

1 CTLs may be induced against any of the Ebola
2 virus proteins, as all of the viral proteins are
3 produced and digested within the infected cell. Thus,
4 protection to Ebola virus could involve CTLs against
5 GP, NP, VP24, VP30, VP35, and/or VP40. It is
6 especially noteworthy that the VP proteins varied in
7 their protective efficacy when tested in genetically
8 inbred mice that differ at the MHC locus. This,
9 together with the inability to demonstrate a role for
10 Abs in protection induced by the VP proteins, strongly
11 supports a role for CTLs. These data also suggest
12 that an eventual vaccine candidate may include several
13 Ebola virus proteins, or several CTL epitopes, capable
14 of inducing broad protection in outbred populations
15 (e.g. people). We have identified two sequences
16 recognized by CTLs. They are Ebola virus NP SEQ ID
17 NO:24 and Ebola virus VP24 SEQ ID NO:25. Testing is
18 in progress to identify the role of CTLs in protection
19 induced by each of these Ebola virus proteins and to
20 define the minimal sequence requirements for the
21 protective response. The CTL assay is well known in
22 the art.

23 An eventual vaccine candidate might
24 comprise these CTL sequences and others. These might
25 be delivered as synthetic peptides, or as fusion
26 proteins, alone or co-administered with cytokines
27 and/or adjuvants or carriers safe for human use, e.g.
28 aluminum hydroxide, to increase immunogenicity. In
29 addition, sequences such as ubiquitin can be added to
30 increase antigen processing for more effective CTL
31 responses.

32 In yet another embodiment, the present invention
33 relates to a method for providing immunity against
34 Ebola virus, said method comprising administering one
35 or more VRPs expressing any combination of the GP, NP,
36 VP24, VP30 or VP30#2, VP35 and VP40 Ebola proteins to
37 a subject such that a protective immune reaction is
38 generated.

1 Vaccine formulations of the present invention
2 comprise an immunogenic amount of a VRP, such as for
3 example EboVP24VRP described above, or, for a
4 multivalent vaccine, a combination of replicons, in a
5 pharmaceutically acceptable carrier. An "immunogenic
6 amount" is an amount of the VRP(s) sufficient to evoke
7 an immune response in the subject to which the vaccine
8 is administered. An amount of from about 10^4 - 10^8
9 focus-forming units per dose is suitable, depending
10 upon the age and species of the subject being treated.
11 The subject may be inoculated 2-3 times. Exemplary
12 pharmaceutically acceptable carriers include, but are
13 not limited to, sterile pyrogen-free water and sterile
14 pyrogen-free physiological saline solution.

15 Administration of the VRPs disclosed herein may
16 be carried out by any suitable means, including
17 parenteral injection (such as intraperitoneal,
18 subcutaneous, or intramuscular injection), *in ovo*
19 injection of birds, orally, or by topical application
20 of the virus (typically carried in a pharmaceutical
21 formulation) to an airway surface. Topical application
22 of the virus to an airway surface can be carried out
23 by intranasal administration (e.g., by use of dropper,
24 swab, or inhaler which deposits a pharmaceutical
25 formulation intranasally). Topical application of the
26 virus to an airway surface can also be carried out by
27 inhalation administration, such as by creating
28 respirable particles of a pharmaceutical formulation
29 (including both solid particles and liquid particles)
30 containing the replicon as an aerosol suspension, and
31 then causing the subject to inhale the respirable
32 particles. Methods and apparatus for administering
33 respirable particles of pharmaceutical formulations
34 are well known, and any conventional technique can be
35 employed. Oral administration may be in the form of
36 an ingestable liquid or solid formulation.

1 When the replicon RNA or DNA is used as a vaccine,
2 the replicon RNA or DNA can be administered directly
3 using techniques such as delivery on gold beads (gene
4 gun), delivery by liposomes, or direct injection, among
5 other methods known to people in the art. Any one or
6 more DNA constructs or replicating RNA described above
7 can be use in any combination effective to elicit an
8 immunogenic response in a subject. Generally, the
9 nucleic acid vaccine administered may be in an amount of
10 about 1-5 ug of nucleic acid per dose and will depend on
11 the subject to be treated, capacity of the subject's
12 immune system to develop the desired immune response,
13 and the degree of protection desired. Precise amounts
14 of the vaccine to be administered may depend on the
15 judgement of the practitioner and may be peculiar to
16 each subject and antigen.

17 The vaccine may be given in a single dose
18 schedule, or preferably a multiple dose schedule in
19 which a primary course of vaccination may be with 1-10
20 separate doses, followed by other doses given at
21 subsequent time intervals required to maintain and/or
22 reinforce the immune response, for example, at 1-4
23 months for a second dose, and if needed, a subsequent
24 dose(s) after several months. Examples of suitable
25 immunization schedules include: (i) 0, 1 months and 6
26 months, (ii) 0, 7 days and 1 month, (iii) 0 and 1
27 month, (iv) 0 and 6 months, or other schedules
28 sufficient to elicit the desired immune responses
29 expected to confer protective immunity, or reduce
30 disease symptoms, or reduce severity of disease.

31 The following examples are included to demonstrate
32 preferred embodiments of the invention. It should be
33 appreciated by those of skill in the art that the
34 techniques disclosed in the examples which follow
35 represent techniques discovered by the inventors and
36 thought to function well in the practice of the
37 invention, and thus can be considered to constitute
38 preferred modes for its practice. However, those of

1 skill in the art should, in light of the present
2 disclosure, appreciate that many changes can be made in
3 the specific embodiments which are disclosed and still
4 obtain a like or similar result without departing from
5 the spirit and scope of the invention.

6

7 The following MATERIALS AND METHODS were used in
8 the examples that follow.

9 Cells lines and viruses

10 BHK (ATCC CCL 10), Vero 76 (ATCC CRL 1587), and
11 Vero E6 (ATCC CRL 1586) cell lines were maintained in
12 minimal essential medium with Earle's salts, 5-10%
13 fetal bovine serum, and 50 µg/mL gentamicin sulfate.

14 For CTL assays, EL4 (ATCC TIB39), L5178Y (ATCC CRL
15 1723) and P815 (ATCC TIB64) were maintained in
16 Dulbecco's minimal essential medium supplemented with
17 5-10% fetal bovine serum and antibiotics.

18 A stock of the Zaire strain of Ebola virus
19 originally isolated from a patient in the 1976
20 outbreak (Mayinga) and passaged intracerebrally 3
21 times in suckling mice and 2 times in Vero cells was
22 adapted to adult mice through serial passage in
23 progressively older suckling mice (Bray et al., (1998)
24 *J. Infect. Dis.* **178**, 651-661). A plaque-purified
25 ninth-mouse-passage isolate which was uniformly lethal
26 for adult mice ("mouse-adapted virus") was propagated
27 in Vero E6 cells, aliquotted, and used in all mouse
28 challenge experiments and neutralization assays.

29 A stock of the Zaire strain of Ebola 1976 virus
30 was passaged spleen to spleen in strain 13 guinea pigs
31 four times. This guinea pig-adapted strain was used
32 to challenge guinea pigs.

33 Construction and packaging of recombinant VEE
34 virus replicons (VRPs)

35 Replicon RNAs were packaged into VRPs as
36 described (Pushko et al., 1997, *supra*). Briefly,
37 capped replicon RNAs were produced *in vitro* by T7 run-

1 off transcription of NotI-digested plasmid templates
2 using the RiboMAX T7 RNA polymerase kit (Promega).
3 BHK cells were co-transfected with the replicon RNAs
4 and the 2 helper RNAs expressing the structural
5 proteins of the VEE virus. The cell culture
6 supernatants were harvested approximately 30 hours
7 after transfection and the replicon particles were
8 concentrated and purified by centrifugation through a
9 20% sucrose cushion. The pellets containing the
10 packaged replicon particles were suspended in PBS and
11 the titers were determined by infecting Vero cells
12 with serial dilutions of the replicon particles and
13 enumerating the infected cells by indirect
14 immunofluorescence with antibodies specific for the
15 Ebola proteins.

16 Immunoprecipitation of Ebola virus proteins
17 expressed from VEE virus replicons

18 BHK cells were transfected with either the Ebola
19 virus GP, NP, VP24, VP30, VP35, or VP40 replicon RNAs.
20 At 24 h post-transfection, the culture medium was
21 replaced with minimal medium lacking cysteine and
22 methionine, and proteins were labeled for 1 h with
23 35 S-labeled methionine and cysteine. Cell lysates or
24 supernatants (supe) were collected and
25 immunoprecipitated with polyclonal rabbit anti-Ebola
26 virus serum bound to protein A beads. 35 S-labeled
27 Ebola virus structural proteins from virions grown in
28 Vero E6 cells were also immunoprecipitated as a
29 control for each of the virion proteins.

30 Immunoprecipitated proteins were resolved by
31 electrophoresis on an 11% SDS-polyacrylamide gel and
32 were visualized by autoradiography.

33 Vaccination of Mice With VEE Virus Replicons

34 Groups of 10 BALB/c or C57BL/6 mice per experiment
35 were subcutaneously injected at the base of the neck
36 with 2×10^6 focus-forming units of VRPs encoding the
37 Ebola virus genes. As controls, mice were also

1 injected with either a control VRP encoding the Lassa
2 nucleoprotein (NP) or with PBS. For booster
3 inoculations, animals received identical injections at
4 1 month intervals. Data are recorded as the combined
5 results of 2 or 3 separate experiments.

6 Ebola Infection of Mice

7 One month after the final booster inoculation,
8 mice were transferred to a BSL-4 containment area and
9 challenged by intraperitoneal (ip) inoculation of 10
10 plaque-forming units (pfu) of mouse-adapted Ebola
11 virus (approximately 300 times the dose lethal for 50%
12 of adult mice). The mice were observed daily, and
13 morbidity and mortality were recorded. Animals
14 surviving at day 21 post-infection were injected again
15 with the same dose of virus and observed for another
16 21 days.

17 In some experiments, 4 or 5 mice from vaccinated
18 and control groups were anesthetized and exsanguinated
19 on day 4 (BALB/c mice) or day 5 (C57BL/6 mice)
20 following the initial viral challenge. The viral
21 titers in individual sera were determined by plaque
22 assay.

23 Passive Transfer Of Immune Sera to Naive Mice.

24 Donor sera were obtained 28 days after the third
25 inoculation with 2×10^6 focus-forming units of VRPs
26 encoding the indicated Ebola virus gene, the control
27 Lassa NP gene, or from unvaccinated control mice. One
28 mL of pooled donor sera was administered
29 intraperitoneally (ip) to naive, syngeneic mice 24 h
30 prior to intraperitoneal challenge with 10 pfu of
31 mouse-adapted Ebola virus.

32 Vaccination and Challenge of Guinea Pigs.

33 EboGPVRP or EboNPVRP (1×10^7 focus-forming units
34 in 0.5ml PBS) were administered subcutaneously to
35 inbred strain 2 or strain 13 guinea pigs (300-400g).
36 Groups of five guinea pigs were inoculated on days 0
37 and 28 at one (strain 2) or two (strain 13) dorsal

1 sites. Strain 13 guinea pigs were also boosted on day
2 126. One group of Strain 13 guinea pigs was
3 vaccinated with both the GP and NP constructs. Blood
4 samples were obtained after vaccination and after
5 viral challenge. Guinea pigs were challenged on day
6 56 (strain 2) or day 160 (strain 13) by subcutaneous
7 administration of 1000 LD₅₀ (1×10^4 PFU) of guinea
8 pig-adapted Ebola virus. Animals were observed daily
9 for 60 days, and morbidity (determined as changes in
10 behavior, appearance, and weight) and survival were
11 recorded. Blood samples were taken on the days
12 indicated after challenge and viremia levels were
13 determined by plaque assay.

14 Virus titration and neutralization assay. Viral
15 stocks were serially diluted in growth medium,
16 adsorbed onto confluent Vero E6 cells in 6- or 12-well
17 dishes, incubated for 1 hour at 37°C, and covered with
18 an agarose overlay (Moe, J. et al. (1981) *J. Clin.*
19 *Microbiol.* 13:791-793). A second overlay containing 5%
20 neutral red solution in PBS or agarose was added 6
21 days later, and plaques were counted the following
22 day. Pooled pre-challenge serum samples from some of
23 the immunized groups were tested for the presence of
24 Ebola-neutralizing antibodies by plaque reduction
25 neutralization assay. Aliquots of Ebola virus in
26 growth medium were mixed with serial dilutions of test
27 serum, or with normal serum, or medium only, incubated
28 at 37°C for 1 h, and used to infect Vero E6 cells.
29 Plaques were counted 1 week later.

30 Cytotoxic T cell assays. BALB/c and C57BL/6 mice
31 were inoculated with VRPs encoding Ebola virus NP or
32 VP24 or the control Lassa NP protein. Mice were
33 euthanized at various times after the last inoculation
34 and their spleens removed. The spleens were gently
35 ruptured to generate single cell suspensions. Spleen
36 cells (1×10^6 / ml) were cultured *in vitro* for 2 days
37 in the presence of 10-25 µM of peptides synthesized

1 from Ebola virus NP or VP24 amino acid sequences, and
2 then for an additional 5 days in the presence of
3 peptide and 10% supernatant from concanavalin A-
4 stimulated syngeneic spleen cells. Synthetic peptides
5 were made from Ebola virus amino acid sequences
6 predicted by a computer algorithm (HLA Peptide Binding
7 Predictions, Parker, K. C., et al. (1994) *J. Immunol.*
8 152:163) to have a likelihood of meeting the MHC
9 class I binding requirements of the BALB/c ($H-2^d$) and
10 C57BL/6 ($H-2^b$) haplotypes. Only 2 of 8 peptides
11 predicted by the algorithm and tested to date have
12 been identified as containing CTL epitopes. After *in*
13 *vitro* restimulation, the spleen cells were tested in a
14 standard $^{51}\text{chromium}$ -release assay well known in the
15 art (see, for example, Hart et al. (1991) *Proc. Natl.*
16 *Acad. Sci. USA* 88: 9449-9452). Percent specific lysis
17 of peptide-coated, MHC-matched or mismatched target
18 cells was calculated as:

19

$$\frac{\text{Experimental cpm} - \text{Spontaneous cpm}}{\text{Maximum cpm} - \text{Spontaneous cpm}} \times 100$$

20
21
22
23 Spontaneous cpm are the number of counts
24 released from target cells incubated in medium.
25 Maximum cpm are obtained by lysing target cells with
26 1% Triton X-100. Experimental cpm are the counts from
27 wells in which target cells are incubated with varying
28 numbers of effector (CTL) cells. Target cells tested
29 were L5178Y lymphoma or P815 mastocytoma cells (MHC
30 matched to the $H2^d$ BALB/c mice and EL4 lymphoma cells
31 (MHC matched to the $H2^b$ C57BL/6 mice). The
32 effector:target (E:T) ratios tested were 25:1, 12:1,
33 6:1 and 3:1.

34 **EXAMPLE 1**
35 Survival Of Mice Inoculated With VRPs Encoding
36 Ebola Proteins. Mice were inoculated two or three
37 times at 1 month intervals with 2×10^6 focus-forming

1 units of VRPs encoding individual Ebola virus genes,
 2 or Lassa virus NP as a control, or with phosphate
 3 buffered saline (PBS). Mice were challenged with 10
 4 pfu of mouse-adapted Ebola virus one month after the
 5 final immunization. The mice were observed daily, and
 6 morbidity and mortality data are shown in Table 1A for
 7 BALB/c mice and Table 1B for C57BL/6 mice. The viral
 8 titers in individual sera of some mice on day 4
 9 (BALB/c mice) or day 5 (C57BL/6 mice) following the
 10 initial viral challenge were determined by plaque
 11 assay.

12

13 **Table 1. Survival Of Mice Inoculated With VRPs**
 14 **Encoding Ebola Proteins**

15 **A. BALB/c Mice**

16 VRP	#Injections	S/T ¹ (%)	MDD ²	V/T ³	Viremia ⁴
17 EboNP	3	30/30 (100%)	5/5	5.2	
	2	19/20 (95%)	7	5/5	4.6
20 EboGP	3	15/29 (52%)	8	1/5	6.6
	2	14/20 (70%)	7	3/5	3.1
23 EboVP24	3	27/30 (90%)	8	5/5	5.2
	2	19/20 (95%)	6	4/4	4.8
26 EboVP30	3	17/20 (85%)	7	5/5	6.2
	2	11/20 (55%)	7	5/5	6.5
29 EboVP35	3	5/19 (26%)	7	5/5	6.9
	2	4/20 (20%)	7	5/5	6.5
32 EboVP40	3	14/20 (70%)	8	5/5	4.6
	2	17/20 (85%)	7	5/5	5.6
35 LassaNP	3	0/29 (0%)	7	5/5	8.0
	2	0/20 (0%)	7	5/5	8.4

37

1 none (PBS) 3 1/30 (3%) 6 5/5 8.3
 2 2 0/20 (0%) 6 5/5 8.7

3

4 B. C57BL/6 Mice

5

6	<u>VRP</u>	<u>#Injections</u>	<u>S/T¹ (%)</u>	<u>MDD²</u>	<u>V/T³</u>	<u>Viremia⁴</u>
7						
8	EboNP	3	15/20 (75%)	8	5/5	4.1
9		2	8/10 (80%)	9	ND ⁵	ND
10						
11	EboGP	3	19/20 (95%)	10	0/5	--
12		2	10/10 (100%)	-	ND	ND
13						
14	EboVP24	3	0/20 (0%)	7	5/5	8.6
15						
16	EboVP30	3	2/20 (10%)	8	5/5	7.7
17						
18	EboVP35	3	14/20 (70%)	8	5/5	4.5
19						
20	EboVP40	3	1/20 (5%)	7	4/4	7.8
21						
22	LassaNP	3	1/20 (5%)	7	4/4	8.6
23		2	0/10 (0%)	7	ND	ND
24						
25	none (PBS)	3	3/20 (15%)	7	5/5	8.6
26		2	0/10 (0%)	7	ND	ND
27						

28 ¹S/T, Survivors/total challenged.29 ²MDD, Mean day to death30 ³V/T, Number of mice with viremia/total number tested.31 ⁴Geometric mean of Log₁₀ viremia titers in PFU/mL. Standard
 32 errors for all groups were 1.5 or less, except for the group of
 33 BALB/c mice given 2 inoculations of EboGP, which was 2.2.34 ⁵ND, not determined.

35

36

37

EXAMPLE 2

2 VP24-Immunized BALB/c Mice Survive A High-Dose
 3 Challenge With Ebola virus.

4 BALB/c mice were inoculated two times with 2×10^6
 5 focus-forming units of EboVP24VRP. Mice were
 6 challenged with either 1×10^3 pfu or 1×10^5 pfu of
 7 mouse-adapted Ebola virus 1 month after the second
 8 inoculation. Morbidity and mortality data for these
 9 mice are shown in Table 2.

10

11 **Table 2. VP24-Immunized BALB/c Mice Survive A High-**
 12 Dose Challenge With Ebola virus

14 Replicon	Challenge Dose	Survivors/Total
16 EboVP24	1×10^3 pfu $(3 \times 10^4$ LD ₅₀)	5/5
19 EboVP24	1×10^5 pfu $(3 \times 10^6$ LD ₅₀)	5/5
22 None	1×10^3 pfu $(3 \times 10^4$ LD ₅₀)	0/4
25 None	1×10^5 pfu $(3 \times 10^6$ LD ₅₀)	0/3

EXAMPLE 3

31 Passive Transfer Of Immune Sera Can Protect
 32 Naive Mice From A Lethal Challenge Of Ebola Virus.

33 Donor sera were obtained 28 days after the third
 34 inoculation with 2×10^6 focus-forming units of VRPs
 35 encoding the indicated Ebola virus gene, the control
 36 Lassa NP gene, or from unvaccinated control mice. One
 37 mL of pooled donor sera was administered

1 intraperitoneally (ip) to naive, syngeneic mice 24 h
 2 prior to intraperitoneal challenge with 10 pfu of
 3 mouse-adapted Ebola virus.

4

5 **Table 3.** Passive Transfer of Immune Sera Can Protect
 6 Unvaccinated Mice from a Lethal Challenge of Ebola
 7 Virus

8

9 A. BALB/c Mice

10 Specificity of 11 <u>Donor Sera</u>	12 Survivors 13 /Total	14 Mean Day 15 of Death
16 Ebola GP	15/20	8
17 Ebola NP	1/20	7
18 Ebola VP24	0/20	6
19 Ebola VP30	0/20	7
20 Ebola VP35	ND ¹	ND
21 Ebola VP40	0/20	6
22 Lassa NP	0/20	7
23 Normal mouse sera	0/20	6

20

21 B. C57BL/6 Mice

22 Specificity of 23 <u>Donor Sera</u>	24 Survivors 25 /Total	26 Mean Day 27 of Death
28 Ebola GP	17/20	7
29 Ebola NP	0/20	7
30 Ebola VP24	ND	ND
31 Ebola VP30	ND	ND
32 Ebola VP35	0/20	7
33 Ebola VP40	ND	ND
34 Lassa NP	0/20	7
35 Normal mouse sera	0/20	7

36 ¹ND, not determined

37

38

39

40

41

1 **EXAMPLE 4**2 Immunogenicity and Efficacy of VRepEboGP and
3 VRepEboNP in Guinea Pigs.

4 EboGPVRP or EboNPVRP (1×10^7 IU in 0.5ml PBS) were
5 administered subcutaneously to inbred strain 2 or
6 strain 13 guinea pigs (300-400g). Groups of five
7 guinea pigs were inoculated on days 0 and 28 at one
8 (strain 2) or two (strain 13) dorsal sites. Strain 13
9 guinea pigs were also boosted on day 126. One group
10 of Strain 13 guinea pigs was vaccinated with both the
11 GP and NP constructs. Blood samples were obtained
12 after vaccination and after viral challenge.

13 Sera from vaccinated animals were assayed for
14 antibodies to Ebola by plaque-reduction
15 neutralization, and ELISA. Vaccination with VRepEboGP
16 or NP induced high titers of antibodies to the Ebola
17 proteins (Table 4) in both guinea pig strains.
18 Neutralizing antibody responses were only detected in
19 animals vaccinated with the GP construct (Table 4).

20 Guinea pigs were challenged on day 56 (strain 2)
21 or day 160 (strain 13) by subcutaneous administration
22 of 1000 LD_{50} (10^4 PFU) of guinea pig-adapted Ebola
23 virus. Animals were observed daily for 60 days, and
24 morbidity (determined as changes in behavior,
25 appearance, and weight) and survival were recorded.
26 Blood samples were taken on the days indicated after
27 challenge and viremia levels were determined by plaque
28 assay. Strain 13 guinea pigs vaccinated with the GP
29 construct, alone or in combination with NP, survived
30 lethal Ebola challenge (Table 4). Likewise,
31 vaccination of strain 2 inbred guinea pigs with the GP
32 construct protected 3/5 animals against death from
33 lethal Ebola challenge, and significantly prolonged
34 the mean day of death (MDD) in one of the two animals
35 that died (Table 4). Vaccination with NP alone did
36 not protect either guinea pig strain.

1 **Table 4.** Immunogenicity and efficacy of VRepEboGP
 2 and VRepEboNP in guinea pigs
 3 A. Strain 2 guinea pigs

4	VRP	ELISA ^a	PRNT ₅₀	Survivors/		Viremia ^c	
				total(MDD ^b)		d7	d14
6	GP	4.1	30	3/5	(13+2.8)	2.3	1.8
7	NP	3.9	<10	0/5	(9.2+1.1)	3.0	--
8	Mock	<1.5	<10	0/5	(8.8+0.5)	3.9	--

9
 10 B. Strain 13 guinea pigs

11	VRP	ELISA ^a	PRNT ₅₀	Survivors/		Viremia ^c	
				total(MDD ^b)		d7	d14
13	GP	4.0	140	5/5		<2.0	<2.0
14	GP/NP	3.8	70	5/5		<2.0	<2.0
15	NP	2.8	<10	1/5(8.3+2.2)	4.6	--	
16	Lassa NP	<1.5	<10	2/5(8.3+0.6)	4.8	--	

17
 18 ^aData are expressed as geometric mean titers, log₁₀.

19 ^bMDD, mean day to death

20 ^cGeometric mean of log₁₀ viremia titers in PFU/mL. Standard
 21 errors for all groups were 0.9 or less.

EXAMPLE 5

23 Induction of murine CTL responses to Ebola virus
 24 NP and Ebola virus VP24 proteins.

26 BALB/c and C57BL/6 mice were inoculated with
 27 VRPs encoding Ebola virus NP or VP24. Mice were
 28 euthanized at various times after the last inoculation
 29 and their spleens removed. Spleen cells (1×10^6 / ml)
 30 were cultured *in vitro* for 2 days in the presence of
 31 10 to 25 µM of peptides, and then for an additional 5
 32 days in the presence of peptide and 10% supernatant
 33 from concanavalin A-stimulated syngeneic spleen cells.
 34 After *in vitro* restimulation, the spleen cells were
 35 tested in a standard ⁵¹chromium-release assay. Percent
 36 specific lysis of peptide-coated, MHC-matched or
 37 mismatched target cells was calculated as:

1

2 Experimental cpm- Spontaneous cpm x 100

3 Maximum cpm-Spontaneous cpm

4

5 In the experiments shown, spontaneous release did not
6 exceed 15%.

7

8 **Table 5. Induction of murine CTL responses to Ebola**
9 **virus NP and Ebola virus VP24 proteins.**

10	11	% Specific Lysis		
		Peptide ²	Cell ³	E:T ratio
Mice, VRP ¹		25		
BALB/c, VP24	None	P815	55	
BALB/c, VP24	SEQ ID NO:25	P815	93	
C57BL/6, EboNP	None	EL4	2	
C57BL/6, EboNP ⁴	SEQ ID NO:24	EL4	70	
C57BL/6, EboNP	Lassa NP	EL4	2	
C57BL/6, LassaNP	None	L5178Y	1	
C57BL/6, LassaNP	SEQ ID NO:24	L5178Y	0	
C57BL/6, LassaNP	None	EL4	2	
C57BL/6, LassaNP	SEQ ID NO:24	EL4	6	

22 ¹ Indicates the mouse strain used and the VRP used as the *in*
 23 *vivo* immunogen. *In vitro* restimulation was performed using SEQ
 24 ID NO:24 peptide for BALB/c mice and SEQ ID NO:23 for all
 25 C57BL/6 mice shown.

26 ² Indicates the peptide used to coat the target cells for the
 27 chromium release assay.

28 ³ Target cells are MHC-matched to the effector cells, except
 29 for the L5178Y cells that are C57BL/6 mismatched.

30 ⁴ High levels of specific lysis (>40%) were also observed using
 31 E:T ratios of 12, 6, 3, or 1:1.

32 RESULTS AND DISCUSSION

33 Ebola Zaire 1976 (Mayinga) virus causes acute
 34 hemorrhagic fever characterized by high mortality.
 35 There are no current vaccines or effective therapeutic
 36 measures to protect individuals who are exposed to
 37 this virus. In addition, it is not known which genes

1 are essential for evoking protective immunity and
2 should therefore be included in a vaccine designed for
3 human use. In this study, the GP, NP, VP24, VP30,
4 VP35, and VP40 virion protein genes of the Ebola Zaire
5 1976 (Mayinga) virus were cloned and inserted into a
6 Venezuelan equine encephalitis (VEE) virus replicon
7 vector (VRep) as shown in Figure 2A and 2B. These
8 VReps were packaged as VEE replicon particles (VRPs)
9 using the VEE virus structural proteins provided as
10 helper RNAs, as shown in Figure 3. This enables
11 expression of the Ebola virus proteins in host cells.
12 The Ebola virus proteins produced from these
13 constructs were characterized *in vitro* and were shown
14 to react with polyclonal rabbit anti-Ebola virus
15 antibodies bound to Protein A beads following SDS gel
16 electrophoresis of immunoprecipitated proteins (Figure
17 4).

18 The Ebola virus genes were sequenced from the VEE
19 replicon clones and are listed here as SEQ ID NO:1
20 (GP), 2 (NP), 3 (VP24), 4 (VP30), 5 (VP35), 6 (VP40),
21 and 7 (VP30#2) as described below. The corresponding
22 amino acid sequences of the Ebola proteins expressed
23 from these replicons are listed as SEQ ID NO: 17, 18,
24 19, 20, 21, 22, and 23, respectively. Changes in the
25 DNA sequence relative to the sequence published by
26 Sanchez *et al.* (1993) are described relative to the
27 nucleotide (nt) sequence number from GenBank
28 (accession number L11365).

29 The sequence we obtained for Ebola virus GP (SEQ
30 ID NO:1) differed from the GenBank sequence by a
31 transition from A to G at nt 8023. This resulted in a
32 change in the amino acid sequence from Ile to Val at
33 position 662 (SEQ ID NO: 17).

34 The DNA sequence we obtained for Ebola virus NP
35 (SEQ ID NO:2) differed from the GenBank sequence at
36 the following 4 positions: insertion of a C residue
37 between nt 973 and 974, deletion of a G residue at nt
38 979, transition from C to T at nt 1307, and a

1 transversion from A to C at nt 2745. These changes
2 resulted in a change in the protein sequence from Arg
3 to Glu at position 170 and a change from Leu to Phe at
4 position 280 (SEQ ID NO: 18).

5 The Ebola virus VP24 (SEQ ID NO:3) gene differed
6 from the GenBank sequence at 6 positions, resulting in
7 3 nonconservative changes in the amino acid sequence.
8 The changes in the DNA sequence of VP24 consisted of a
9 transversion from G to C at nt 10795, a transversion
10 from C to G at nt 10796, a transversion from T to A at
11 nt 10846, a transversion from A to T at nt 10847, a
12 transversion from C to G at nt 11040, and a
13 transversion from C to G at nt 11041. The changes in
14 the amino acid sequence of VP24 consisted of a Cys to
15 Ser change at position 151, a Leu to His change at
16 position 168, and a Pro to Gly change at position 233
17 (SEQ ID NO: 19).

18 We have included 2 different sequences for the
19 Ebola virus VP30 gene (SEQ ID NOS:4 and SEQ ID NO:7).
20 Both of these sequences differ from the GenBank
21 sequence by the insertion of an A residue in the
22 upstream noncoding sequence between nt 8469 and 8470
23 and an insertion of a T residue between nt 9275 and
24 9276 that results in a change in the open reading
25 frame of VP30 and VP30#2 after position 255 (SEQ ID
26 NOS:20 and SEQ ID NO:23). As a result, the C-terminus
27 of the VP30 protein differs significantly from that
28 previously reported. In addition to these 2 changes,
29 the VP30#2 gene in SEQ ID NO:23 contains a
30 conservative transition from T to C at nt 9217.
31 Because the primers originally used to clone the VP30
32 gene into the replicon were designed based on the
33 GenBank sequence, the first clone that we constructed
34 (SEQ ID NO:4) did not contain what we believe to be
35 the authentic C-terminus of the protein. Therefore,
36 in the absence of the VP30 stop codon, the C-terminal
37 codon was replaced with 37 amino acids derived from
38 the vector sequence. The resulting VP30 construct

1 therefore differed from the GenBank sequence in that
2 it contained 32 amino acids of VP30 sequence
3 (positions 256 to 287, SEQ ID NO:20) and 37 amino
4 acids of irrelevant sequence (positions 288 to 324,
5 SEQ ID NO:20) in the place of the C-terminal 5 amino
6 acids reported in GenBank. However, inclusion of 37
7 amino acids of vector sequence in place of the C-
8 terminal amino acid (Pro, SEQ ID NO:23) did not
9 inhibit the ability of the protein to serve as a
10 protective antigen in BALB/c mice. We are currently
11 examining the ability of the new VEE replicon
12 construct (SEQ ID NO:7), which we believe contains the
13 authentic C-terminus of VP30 (VP30#2, SEQ ID NO:23),
14 to protect mice against a lethal Ebola challenge.

15 The DNA sequence for Ebola virus VP35 (SEQ ID
16 NO:5) differed from the GenBank sequence by a
17 transition from T to C at nt 4006, a transition from T
18 to C at nt 4025, and an insertion of a T residue
19 between nt 4102 and 4103. These sequence changes
20 resulted in a change from a Ser to a Pro at position
21 293 and a change from Phe to Ser at position 299 (SEQ
22 ID NO:21). The insertion of the T residue resulted in
23 a change in the open reading frame of VP35 from that
24 previously reported by Sanchez et al. (1993) following
25 amino acid number 324. As a result, Ebola virus VP35
26 encodes for a protein of 340 amino acids, where amino
27 acids 325 to 340 (SEQ ID NO:21) differ from and
28 replace the C-terminal 37 amino acids of the
29 previously published sequence.

30 Sequencing of VP30 and VP35 was also performed
31 on RT/PCR products from RNA derived from cells that
32 were infected with Ebola virus 1976, Ebola virus 1995
33 or the mouse-adapted Ebola virus. The changes noted
34 above for the VRep constructs were also found in these
35 Ebola viruses. Thus, we believe that these changes are
36 real events and not artifacts of cloning.

37 The Ebola virus VP40 differed from the GenBank
38 sequence by a transversion from a C to G at nt 4451

1 and a transition from a G to A at nt 5081. These
2 sequence changes did not alter the protein sequence of
3 VP40 (SEQ ID NO:22) from that of the published
4 sequence.

5 To evaluate the protective efficacy of
6 individual Ebola virus proteins and to determine
7 whether the major histocompatibility (MHC) genes
8 influence the immune response to Ebola virus antigens,
9 two MHC-incompatible strains of mice were vaccinated
10 with VRPs expressing an Ebola protein. As controls for
11 these experiments, some mice were injected with VRPs
12 expressing the nucleoprotein of Lassa virus or were
13 injected with phosphate-buffered saline (PBS).
14 Following Ebola virus challenge, the mice were
15 monitored for morbidity and mortality, and the results
16 are shown in Table 1.

17 The GP, NP, VP24, VP30, and VP40 proteins of
18 Ebola virus generated either full or partial
19 protection in BALB/c mice, and may therefore be
20 beneficial components of a vaccine designed for human
21 use. Vaccination with VRPs encoding the NP protein
22 afforded the best protection. In this case, 100% of
23 the mice were protected after three inoculations and
24 95% of the mice were protected after two inoculations.
25 The VRP encoding VP24 also protected 90% to 95% of
26 BALB/c mice against Ebola virus challenge. In separate
27 experiments (Table 2), two or three inoculations with
28 VRPs encoding the VP24 protein protected BALB/c mice
29 from a high dose (1×10^5 plaque-forming units ($3 \times$
30 10^6 LD50)) of mouse-adapted Ebola virus.

31 Vaccination with VRPs encoding GP protected 52-
32 70% of BALB/c mice. The lack of protection was not
33 due to a failure to respond to the VRP encoding GP, as
34 all mice had detectable Ebola virus-specific serum
35 antibodies after vaccination.

36 Some protective efficacy was also observed in
37 BALB/c mice vaccinated two or three times with VRPs
38 expressing the VP30 protein (55% and 85%,

1 respectively), or the VP40 protein (70% and 80%,
2 respectively). The VP35 protein was not efficacious
3 in the BALB/c mouse model, as only 20% and 26% of the
4 mice were protected after either two or three doses,
5 respectively.

6 Geometric mean titers of viremia were markedly
7 reduced in BALB/c mice vaccinated with VRPs encoding
8 Ebola virus proteins after challenge with Ebola virus,
9 indicating an ability of the induced immune responses
10 to reduce virus replication (Table 1A). In this study,
11 immune responses to the GP protein were able to clear
12 the virus to undetectable levels within 4 days after
13 challenge in some mice.

14 When the same replicons were examined for their
15 ability to protect C57BL/6 mice from a lethal
16 challenge of Ebola virus, only the GP, NP, and VP35
17 proteins were efficacious (Table 1B). The best
18 protection, 95% to 100%, was observed in C57BL/6 mice
19 inoculated with VRPs encoding the GP protein.
20 Vaccination with VRPs expressing NP protected 75% to
21 80% of the mice from lethal disease. In contrast to
22 what was observed in the BALB/c mice, the VP35 protein
23 was the only VP protein able to significantly protect
24 the C57BL/6 mice. In this case, 3 inoculations with
25 VRPs encoding VP35 protected 70% of the mice from
26 Ebola virus challenge. The reason behind the
27 differences in protection in the two mouse strains is
28 not known but is believed to be due to the ability of
29 the immunogens to sufficiently stimulate the cellular
30 immune system. As with the BALB/c mice, the effects
31 of the induced immune responses were also observed in
32 reduced viremias and, occasionally, in a prolonged
33 time to death of C57BL/6 mice.

34 VRPs expressing Ebola virus GP or NP were also
35 evaluated for protective efficacy in a guinea pig
36 model. Sera from vaccinated animals were assayed for
37 antibodies to Ebola by western blotting, IFA, plaque-
38 reduction neutralization, and ELISA. Vaccination with

1 either VRP (GP or NP) induced high titers of
2 antibodies to the Ebola proteins (Table 4) in both
3 guinea pig strains. Neutralizing antibody responses
4 were only detected in animals vaccinated with the VRP
5 expressing GP (Table 4).

6 Vaccination of strain 2 inbred guinea pigs with
7 the GP construct protected 3/5 animals against death
8 from lethal Ebola challenge, and significantly
9 prolonged the mean day of death in one of the two
10 animals that died (Table 4). All of the strain 13
11 guinea pigs vaccinated with the GP construct, alone or
12 in combination with NP, survived lethal Ebola
13 challenge (Table 4). Vaccination with NP alone did not
14 protect either guinea pig strain from challenge with
15 the guinea pig-adapted Ebola virus.

16 To identify the immune mechanisms that mediate
17 protection against Ebola virus and to determine
18 whether antibodies are sufficient to protect against
19 lethal disease, passive transfer studies were
20 performed. One mL of immune sera, obtained from mice
21 previously vaccinated with one of the Ebola virus
22 VRPs, was passively administered to unvaccinated mice
23 24 hours before challenge with a lethal dose of mouse-
24 adapted Ebola virus. Antibodies to GP, but not to NP
25 or the VP proteins, protected mice from an Ebola virus
26 challenge (Table 3). Antibodies to GP protected 75% of
27 the BALB/c mice and 85% of the C57BL/6 mice from
28 death. When the donor sera were examined for their
29 ability to neutralize Ebola virus in a plaque-
30 reduction neutralization assay, a 1:20 to 1:40
31 dilution of the GP-specific antisera reduced the
32 number of viral plaque-forming units by at least 50%
33 (data not shown). In contrast, antisera to the NP and
34 VP proteins did not neutralize Ebola virus at a 1:20
35 or 1:40 dilution. These results are consistent with
36 the finding that GP is the only viral protein found on
37 the surface of Ebola virus, and is likely to induce
38 virus-neutralizing antibodies.

1 Since the NP and VP proteins of Ebola virus are
2 internal virion proteins to which antibodies are not
3 sufficient for protection, it is likely that cytotoxic
4 T lymphocytes (CTLs) are also important for protection
5 against Ebola virus. Initial studies aimed at
6 identifying cellular immune responses to individual
7 Ebola virus proteins expressed from VRPs identified
8 CTL responses to the VP24 and NP proteins (Table 5).
9 One CTL epitope that we identified for the Ebola virus
10 NP is recognized by C57BL/6 (H-2^b) mice, and has an
11 amino acid sequence of, or contained within, the
12 following 11 amino acids: VYQVNNLEEIC (SEQ ID NO:24).
13 Vaccination with EboNPVRP and *in vitro* restimulation
14 of spleen cells with this peptide consistently induces
15 strong CTL responses in C57BL/6 (H-2^b) mice. *In vivo*
16 vaccination to Ebola virus NP is required to detect
17 the CTL activity, as evidenced by the failure of cells
18 from C57BL/6 mice vaccinated with Lassa NP to develop
19 lytic activity to peptide (SEQ ID NO:24) after *in*
20 *vitro* restimulation with it. Specific lysis has been
21 observed using very low effector:target ratios (<2:1).
22 This CTL epitope is H-2^b restricted in that it is not
23 recognized by BALB/c (H-2^d) cells treated the same way
24 (data not shown), and H-2^b effector cells will not
25 lyse MHC-mismatched target cells coated with this
26 peptide.

27 A CTL epitope in the VP24 protein was also
28 identified. It is recognized by BALB/c (H-2^d) mice,
29 and has an amino acid sequence of, or contained
30 within, the following 23 amino acids:
31 LKFINKLDALLVVNYNGLLSSIF (SEQ ID NO:25). In the data
32 shown in Table 5, high (>90%) specific lysis of P815
33 target cells coated with this peptide was observed.
34 The background lysis of cells that were not peptide-
35 coated was also high (>50%), which is probably due to
36 the activity of natural killer cells. We are planning
37 to repeat this experiment using the L5178Y target

1 cells, which are not susceptible to natural killer
2 cells.

3 Future studies will focus on determining the
4 fine specificities of these CTL responses and the
5 essential amino acids that constitute these CTL
6 epitopes. Additional studies to identify other CTL
7 epitopes on Ebola virus GP, NP, VP24, VP30, VP35, and
8 VP40 will be performed. To evaluate the role of these
9 CTLs in protection against Ebola virus, lymphocytes
10 will be restimulated *in vitro* with peptides containing
11 the CTL epitopes, and adoptively transferred into
12 unvaccinated mice prior to Ebola virus challenge. In
13 addition, future studies will examine the CTL
14 responses to the other Ebola virus proteins to better
15 define the roles of the cell mediated immune responses
16 involved in protection against Ebola virus infection.

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Sequence ID NO.: 1 (Ebola GP DNA sequence in replicon):

ATCGATAAGC TCGGAATTG AGCTCGCCCCG GGGATCCTCT AGAGTCGACA ACAACACAAT
GGCGTTACA GGAATATTGC AGTTACCTCG TGATCGATTC AAGAGGACAT CATTCTTCT
TTGGGTAATT ATCCTTTCC AAAGAACATT TTCCATCCCA CTGGAGTC TCCACAATAG
CACATTACAG GTTAGTGATG TCGACAAACT AGTTTGTCGT GACAAACTGT CATCCACAAA
TCAATTGAGA TCAGTTGGAC TGAATCTCGA AGGGATGGA GTGGCAACTG ACGTGCCATC
TGCAACTAAA AGATGGGCT TCAGGTCCGG TGTCCCACCA AAGGTGGTC ATTATGAAGC
TGGTGAATGG GCTGAAAATC GCTACAATCT TGAAATCAA AAAACCTGACG GGAGTGAGTG
TCTACCAGCA GCGCCAGACG GGATTCGGGG CTTCCCCCGG TGCCGGTATG TGCACAAAGT
ATCAGGAACG GGACCGTGTG CCGGAGACTT TGCCCTCCAT AAAGAGGGTG CTTCTTCCT
GTATGATCGA CTTGCTTCCA CAGTTATCTA CCGAGGAACG ACTTCGCTG AAGGTGTCGT
TGCATTCTG ATACTGCCCT AAGCTAAGAA GGACTTCTTC AGCTCACACC CCTTGAGAGA
GCCGGTCAAT GCAACGGAGG ACCCGTCTAG TGGCTACTAT TCTACCACAA TAGATATCA
GGCTACCGGT TTTGGAACCA ATGAGACAGA GTACTTGTC GAGGTTGACA ATTGACCTA
CGTCCAACCT GAATCAAGAT TCACACCACA GTTCTGCTC CAGCTGAATG AGACAATATA
TACAAGTGGG AAAAGGAGCA ATACCAACGGG AAAACTAATT TGGAAGGTCA ACCCGAAAT
TGATACAACA ATCGGGGAGT GGGCCTCTG GGAAACTAAA AAAAACCTCA CTAGAAAAAT
TCGCAGTGAA GAGTTGTCTT TCACAGTTGT ATCAAACGGA GCCAAAAACA TCAGTGGTCA
GAGTCCGGCG CGAACCTCTT CCGACCCAGG GACCAACACA ACAACTGAAG ACCACAAAT
CATGGCTTCA GAAAATTCTT CTGCAATGGT TCAAGTGCAC AGTCAAGGAA GGGAGCTGC
AGTGTGCGAT CTAACAACCC TTGCCACAAT CTCCACGAGT CCCAATCCC TCACAACCAA
ACCAGGTCCG GACAACAGCA CCCATAATAC ACCCGTGTAT AAACCTGACA TCTCTGAGGC
AACTCAAGTT GAACAAACATC ACCGCAGAAC AGACAACGAC AGCACAGCCT CCGACACTCC
CTCTGCCACG ACCGCAGCCG GACCCCCAAA AGCAGAGAAC ACCAACACGA GCAAGAGCAC
TGACTTCCTG GACCCGCCA CCACAACAAG TCCCCAAAC CACAGCGAGA CCGCTGGCAA
CAACAAACACT CATCACCAAG ATACCGAGA AGAGAGTGCC AGCAGCGGG AGCTAGGCTT
AATTACCAAT ACTATTGCTG GAGTCGCAGG ACTGATCACA GGCGGGAGAA GAACTCGAAG
AGAAGCAATT GTCAATGCTC AACCCAAATG CAACCCTAAT TTACATTACT GGACTACTCA
GGATGAAGGT GCTGCAATCG GACTGGCTG GATACCATAT TTCGGGCCAG CAGCCGAGGG
AATTACATA GAGGGGCTAA TGCAACATCA AGATGGTTA ATCTGTGGGT TGAGACAGCT
GGCCAACGAG ACGACTCAAG CTCTTCAACT GTTCCTGAGA GCCACAACGT AGCTACGCAC
CTTTCAATC CTCAACCGTA AGGCAATTGA TTTCTGCTG CAGCGATGGG GCGGCACATG
CCACATTCTG GGACCGGACT GCTGTATCGA ACCACATGAT TGGACCAAGA ACATAACAGA
CAAAATTGAT CAGATTATTC ATGATTTGT TGATAAAACC CTTCCGGACC AGGGGGACAA
TGACAATTGG TGGACAGGAT GGAGACAATG GATACCGCA GGTATTGGAG TTACAGGCGT
TGTAATTGCA GTTATCGCTT TATTCTGTAT ATGCAAATTT GTCTTTAGT TTTCTTCAG
ATTGCTTCAT GGAAAAGCTC AGCCTCAAAT CAATGAAACC AGGATTTAAT TATATGGATT
ACTTGAATCT AAGATTACTT GACAAATGAT AATATAATAC ACTGGAGCTT TAAACATAGC
CAATGTGATT CTAACCTCTT TAAACTCACA GTTAATCATA AACAAAGGTTT GAGTCGACCT
GCAGCCAAGC TTATCGAT

Sequence ID NO: 2 (Ebola NP DNA sequence in replicon):

ATCGATAAGC TTGGCTGCAG GTCGACTCTA GAGGATCCGA GTATGGATTC TCGTCCTCAG
AAAATCTGGA TGGCGCCGAG TCTCACTGAA TCTGACATGG ATTACCACAA GATCTTGACA
GCAGGTCTGT CCGTTCAACA GGGGATTGTT CGGCAAAGAG TCATCCCAGT GTATCAAGTA
AACAACTTGT AAGAAATTG CCAACTTATC ATACAGGCCT TTGAAGCAGG TGTTGATTT
CAAGAGAGTG CGGACAGTTT CCTTCTCATG CTTTGTCTTC ATCATGCGTA CCAGGGAGAT
TACAAACTT TCTTGGAAAG TGGCGCAGTC AAGTATTG AAGGGCACGG GTTCCGTTT
GAAGTCAAGA AGCGTGATGG AGTGAAGCGC CTTGAGGAAT TGCTGCCAGC AGTATCTAGT
GGAAAAAACCA TTAAGAGAAC ACTTGCTGCC ATGCCGAAG AGGAGACAAC TGAAGCTAAT
GCCGGTCAGT TTCTCTCCTT TGCAAGTCTA TTCCCTCCGA AATTGGTAGT AGGAGAAAAG
GCTTGCCTTG AGAAGGTTCA AAGGCAAATT CAAGTACATG CAGAGCAAGG ACTGATACAA
TATCCAACAG CTTGGCAATC AGTAGGACAC ATGATGGTGA TTTTCCGTT GATGCGAAC
AATTTCTGA TCAAATTCTC CCTAATACAC CAAGGGATGC ACATGGTTGC CGGGCATGAT
GCCAACGATG CTGTGATTC AAATTCACTG GCTCAAGCTC GTTTTCAGG CTTATTGATT
GTCAAAACAG TACTTGATCA TATCCTACAA AAGACAGAAC GAGGAGTCG TCTCCATCCT
CTTGCAAGGA CCGCCAAGGT AAAAATGAG GTGAACCTCCT TTAAGGCTGC ACTCAGCTCC
CTGGCCAAGC ATGGAGAGTA TGCTCCTTC GCCCCACTTT TGAACCTTTC TGGAGTAAAT
AATCTTGAGC ATGGTCTTT CCCTCAACTA TCGGCAATTG CACTCGGAGT CGCCACAGCA
CACGGGAGTA CCCTCGCAGG AGTAAATGTT GGAGAACAGT ATCAACAAC CAGAGAGGCT
GCCACTGAGG CTGAGAACAA ACTCCAACAA TATGCAGAGT CTCGCGAATC TGACCATCTT
GGACTTGATG ATCAGGAAAA GAAAATTCTT ATGAACCTCC ATCAGAAAAA GAACGAAATC
AGCTTCCAGC AAACAAACGC TATGGTAACT CTAAGAAAAG AGCGCCTGGC CAAGCTGACA
GAAGCTATCA CTGCTGGCTC ACTGCCAAA ACAAGTGGAC ATTACGATGA TGATGACGAC
ATTCCCTTTT CAGGACCCAT CAATGATGAC GACAATCCTG GCCATCAAGA TGATGATCCG
ACTGACTCAC AGGATACGAC CATTCCCGAT GTGGTGGTTG ATCCCGATGA TGGAAAGCTAC
GGCGAATACC AGAGTTACTC GGAAAACGGC ATGAATGCAC CAGATGACTT GGTCCATTTC
GATCTAGACG AGGACGACGA GGACACTAAG CCAGTGCCTA ATAGATCGAC CAAGGGTGBA
CAACAGAAGA ACAGTCAAAA GGGCCAGCAT ATAGAGGGCA GACAGACACA ATCCAGGCCA
ATTCAAATG TCCCAGGCC CTCACAGAAC ATCCACCACG CCAGTGCGCC ACTCACGGAC
AATGACAGAA GAAATGAACC CTCCGGCTCA ACCAGCCTC GCATGCTGAC ACCAATTAAC
GAAGAGGCAG ACCCACTGGA CGATGCCGAC GACGAGACGT CTAGCCTTCC GCCCTTGGAG
TCAGATGATG AAGAGCAGGA CAGGGACGGA ACTTCCAACC GCACACCCAC TGTCGCCCA
CCGGCTCCCG TATACAGAGA TCACTCTGAA AAGAAAGAAC TCCCGCAAGA CGAGCAACAA
GATCAGGACC ACACCTAAGA GGCCAGGAAC CAGGACAGTG ACAACACCCA GTCAAGAACAC
TCCTTGAGG AGATGTATCG CCACATTCTA AGATCACAGG GGCCATTGGA TGCTGTTTG
TATTATCATA TGATGAAGGA TGAGCCTGTA GTTTTCAGTA CCAGTGTATGG CAAAGAGTAC
ACGTATCCAG ACTCCCTTGA AGAGGAATAT CCACCATGGC TCACTGAAA AGAGGCTATG
AATGAAGAGA ATAGATTGT TACATTGGAT GGTCAACAAT TTTATTGGCC GGTGATGAAT
CACAAGAATA AATTCACTGGC AATCCTGCAA CATCATCAGT GAATGAGCAT GGAACAAATGG
GATGATTCAA CCGACAAATA GCTAACATTA AGTAGTCCAG GAACGAAAAG AGGAAGAATT
TTTGATGCTC AAGGTGTGAA TTATTATCAC AATAAAAGTG ATTCTTATTT TTGAATTGG
GCGAGCTCGA ATTCCCGAGC TTATCGAT

Sequence ID NO: 3 (Ebola VP24 DNA sequence in replicon):

ATCGATCTCC AGACACCAAG CAAGACCTGA GAAAAAACCA TGGCTAAAGC TACGGGACGA
TACAATCTAA TATGCCCAA AAAGGACCTG GAGAAAGGGG TTGTCTTAAG CGACCTCTGT
AACTTCTTAG TTAGCCAAAC TATTCAAGGGG TGGAAGGTTT ATTGGGCTGG TATTGAGTTT
GATGTGACTC ACAAAAGGAAT GGCCCTATTG CATAGACTGA AAACTAATGA CTTTGCCCCCT
GCATGGTCAA TGACAAGGAA TCTCTTCCT CATTTATTC AAAATCCGAA TTCCACAAATT
GAATCACCGC TGTGGCATT GAGAGTCATC CTTGCAGCAG GGATACAGGA CCAGCTGATT
GACCAGTCTT TGATTGAACC CTTAGCAGGA GCCCTGGTC TGATCTCTGA TTGGCTGCTA
ACAACCAACA CTAACCATT CAACATGCAG ACACAACGTG TCAAGGAACA ATTGAGGCTA
AAAATGCTGT CGTTGATTG ATCCAATATT CTCAAGTTA TTAACAAATT GGATGCTCTA
CATGTCGTGA ACTACAACGG ATTGTGAGC AGTATTGAAA TTGGAACTCA AAATCATACA
ATCATCATAA CTCGAACTAA CATGGGTTT CTGGTGGAGC TCCAAGAAC CGACAAATCG
GCAATGAACC GCATGAAGCC TGGGCCGGCG AAATTTCCC TCCTTCATGA GTCCACACTG
AAAGCATTAA CACAAGGATC CTCGACACGA ATGCAAAGTT TGATTCTGA ATTTAATAGC
TCTCTTGCTA TCTAACTAAG GTAGAATACT TCATATTGAG CTAACTCATA TATGCTGACT
CATCGAT

Sequence ID NO: 4 (Ebola VP30 DNA sequence in replicon):

ATCGATCAGA TCTGCGAACCC GGTAGAGTTT AGTTGCAACC TAACACACAT AAAGCATTGG
TCAAAAAGTC AATAGAAATT TAAACAGTGA GTGGAGACAA CTTTTAAATG GAAGCTTCAT
ATGAGAGAGG ACGCCCACGA GCTGCCAGAC AGCATTCAAG GGATGGACAC GACCACCATG
TTCGAGCACG ATCATCATCC AGAGAGAATT ATCGAGGTGA GTACCGTCAA TCAAGGAGCG
CCTCACAAGT GCGCGTTCCCT ACTGTATTTC ATAAGAAGAG AGTTGAAACCA TTAACAGTTC
CTCCAGCACC TAAAGACATA TGTCGGACCT TGAAAAAAGG ATTTTGTTG GACAGTAGTT
TTTGCAAAAA AGATCACCAG TTGGAGAGTT TAACTGATAG GGAATTACTC CTACTAATCG
CCCGTAAGAC TTGTGGATCA GTAGAACAC AAC TAAATAT AACTGCACCC AAGGACTCGC
GCTTAGCAAA TCCAACGGCT GATGATTCC AGCAAGAGGA AGGTCCAAAA ATTACCTTGT
TGACACTGAT CAAGACGGCA GAACACTGGG CGAGACAAGA CATCAGAACC ATAGAGGATT
CAAATTAAG AGCATTGTTG ACTCTATGTG CTGTGATGAC GAGGAAATTTC TCAAAATCCC
AGCTGAGTCT TTTATGTGAG ACACACCTAA GGCGCGAGGG GCTTGGGCAA GATCAGGCAG
AACCCGTTCT CGAAGTATAT CAACGATTAC ACAGTGATAA AGGAGGCAGT TTGAAGCTG
CACTATGGCA ACAATGGGAC CTACAATCCC TAATTATGTT TATCACTGCA TTCTTGAAATA
TTGCTCTCCA GTTACCGTGT GAAAGTTCTG CTGTCGTTGT TTCAGGGTTA AGAACATTTGG
TTCCCTCAATC AGATAATGAG GAAGCTCAA CCAACCCGGG GACATGCTCA TGGTCTGATG
AGGGTACATC GAT

Sequence ID NO: 5 (Ebola VP35 DNA sequence in replicon):

ATCGATAGAA AAGCTGGTCT AACAAAGATGA CAACTAGAAC AAAGGGCAGG GGCCATACTG
CGGCCACGAC TCAAAACGAC AGAATGCCAG GCCCTGAGCT TTGGGCTGG ATCTCTGAGC
AGCTAATGAC CGGAAGAATT CCTGTAAGCG ACATCTTCTG TGATATTGAG AACAAATCCAG
GATTATGCTA CGCATCCCAA ATGCAACAAA CGAAGCCAAA CCCGAAGACG CGCAACAGTC
AAACCCAAAC GGACCCAATT TGCAATCATA GTTTGAGGA GGTAGTACAA ACATTGGCTT
CATTGGCTAC TGTTGTGCAA CAACAAACCA TCGCATCAGA ATCATTAGAA CAACGCATTA
CGAGTCTTGA GAATGGTCTA AAGCCAGTT ATGATATGGC AAAACAATC TCCTCATTTGA
ACAGGGTTTG TGCTGAGATG GTTGCAGGAAAT ATGATCTTCT GGTGATGACA ACCGGTGGG
CAACAGCAAC CGCTGCGCA ACTGAGGCTT ATTGGGCCGA ACATGGTCAA CCACCACCTG
GACCATCACT TTATGAAGAA AGTGCAGATTG GGGGTAAGAT TGAATCTAGA GATGAGACCG
TCCCTCAAAG TGTTAGGGAG GCATTCAACA ATCTAAACAG TACCACTTCA CTAACTGAGG
AAAATTGGG GAAACCTGAC ATTTCGCAA AGGATTTGAG AACACATTAG TATGATCACT
TGCCTGGTTT TGGAACGTCT TTCCACCAAT TAGTACAAGT GATTTGTAAA TTGGGAAAG
ATAGCAACTC ATTGGACATC ATTCAATGCTG AGTTCAGGC CAGCCTGGCT GAAGGAGACT
CTCCTCAATG TGCCCTAATT CAAATTACAA AAAGAGTTCC AATCTTCCAA GATGCTGCTC
CACCTGTCA CCACATCCGC TCTCGAGGTG ACATTCCCCG AGCTTGCCAG AAAAGCTTGC
GTCCAGTCCC ACCATCGCCC AAGATTGATC GAGGTTGGGT ATGTGTTTT CAGCTTCAAG
ATGGTAAAC ACTTGGACTC AAAATTGAG CCAATCTCCC TTCCCTCCGA AAGAGGCGAA
TAATAGCAGA GGCTTCAACT GCTGAACAT AGGGTACGTT ACATTAATGA TACACTTGTG
AGATCGAT

Sequence ID NO: 6 (Ebola VP40 DNA sequence in replicon):

ATCGATCCTA CCTCGGCTGA GAGAGTGTGTT TTTCATTAAC CTTCATCTTG TAAACGTTGA
GCAAAATTGT TAAAAATATG AGGCGGGTTA TATTGCTAC TGCTCCTCCT GAATATATGG
AGGCCATATA CCCTGTCAGG TCAAATTCAA CAATTGCTAG AGGTGGCAAC AGCAATACAG
GCTTCCTGAC ACCGGAGTCA GTCAATGGGG ACACTCCATC GAATCCACTC AGGCAATTG
CCGATGACAC CATCGACCAT GCCAGCCACA CACCAGGCAG TGTGTCATCA GCATTCACTC
TTGAAGCTAT GGTGAATGTC ATATCGGGCC CCAAAGTGCT AATGAAGCAA ATTCAATT
GGCTTCCTCT AGGTGTCGCT GATCAAAAGA CCTACAGCTT TGACTCAACT ACCGGCCGCA
TCATGCTTGC TTCATACACT ATCACCCATT TCGGCAAGGC AACCAATCCA CTGTCAGAG
TCAATCGGCT GGGTCCCTGGA ATCCCCGATC ATCCCCTCAG GTCCTGCGA ATTGGAAACC
AGGCTTCCT CCAGGAGTTC GTTCTTCCGC CAGTCCAAC CACTGCTGC TGCAACATGG ACCGATGACA
ATTGACAGC ACTCAAACCTG ATCACCCAAAC CAGGAATTTC ATTTCATCCA AAACCTCGCC
CTCCAACAGG ATCAAATGGA GCGTTGCGTC AGGGGAACAG TGCCGATCTA ACATCTCCGG
CCATTCTTT ACCCAACAAA AGTGGGAAGA AGGGGAACAG TGCCGATCTA ACATCTCCGG
AGAAAATCCA AGCAATAATG ACTTCACTCC AGGACTTTAA GATCGTTCCA ATGATCCAA
CCAAAAATAT CATGGGAATC GAAGTGGCAG AACTCTGGT CCACAAGCTG ACCGGTAAGA
AGGTGACTTC TAAAAATGGA CAACCAATCA TCCCTGTTCT TTTGCCAAAG TACATTGGGT
TGGACCCGGT GGCTCCAGGA GACCTCACCA TGGTAATCAC ACAGGATTGT GACACGTGTC
ATTCTCCTGCA AAGTCTTCCA GCTGTGATTG AGAAGTAATT GCAATAATTG ACTCAGATCC
AGTTTTATAG AATCTTCTCA GGGATAGTGC ATAACATATC GAT

(2)

Sequence ID NO: 7 (new Ebola VP30 DNA sequence in replicon):

ATCGATCAGA TCTGCGAACCC GGTAGAGTTT AGTTGCAACC TAACACACAT AAAGCATTGG
TCAAAAAGTC AATAGAAATT TAAACAGTGA GTGGAGACAA CTTTTAAATG GAAGCTTCAT
ATGAGAGAGG ACGCCCACGA GCTGCCAGAC AGCATTCAAG GGATGGACAC GACCACCATG
TTCGAGCAGC ATCATCATCC AGAGAGAATT ATCGAGGTGA GTACCGTCAA TCAAGGAGCG
CCTCACAACT GCGCGTTCCCT ACTGTATTC ATAAGAAAGAG AGTTGAACCA TTAACAGTTC
CTCCAGCACC TAAAGACATA TGTCGGACCT TGAAAAAAAGG ATTTTTGTGT GACAGTAGTT
TTTGCAAAAA AGATCACCAG TTGGAGAGTT TAACTGATAG GGAATTACTC CTACTAATCG
CCCCGTAAGAC TTGTGGATCA GTAGAACAAAC AATTAAATAT AACTGCACCC AAGGACTCGC
GCTTAGCAAA TCCAACGGCT GATGATTTC GATGATTTC AGCAAGAGGA AGGTCCAAAA ATTACCTTGT
TGACACTGAT CAAGACGGCA GAACACTGGG CGAGACAAGA CATCAGAACCC ATAGAGGATT
CAAAATTAAG AGCATTGTTG ACTCTATGTG CTGTGATGAC GAGGAAATTC TCAAAATCCC
AGCTGAGTCT TTTATGTGAG ACACACCTAA GGCGCGAGGG GCTTGGGCAA GATCAGGCAG
AACCCGTTCT CGAAGTATAT CAACGATTAC ACAGTGATAA AGGAGGCAGT TTTGAAGCTG
CACTATGGCA ACAATGGGAC CGACAATCCC TAATCATGTT TATCACTGCA TTCTTGAAATA
TTGCTCTCCA GTTACCGTGT GAAAGTTCTG CTGTCGTTGT TTCAGGGTTA AGAACATTGG
TTCCTCAATC AGATAATGAG GAAGCTCAA CCAACCCGGG GACATGCTCA TGGTCTGATG
AGGGTACCCC TTAATAAGGC TGACTAAAAC ACTATATAAC CTTCTACTTG ATCACAATAC
TCCGTATACC TATCATCATA TATTTAATCA AGACGATATC CTTTAAAATC TATTCAAGTAC
TATAATCACT CTCGTTCAA ATTAATAAGA TGTGCATGAT TGCCCTAATA TATGAAGAGG
TATGATACAA CCCTAACAGA TCGAT

Sequence ID NO: 8 (Ebola VP24 forward primer):

5' -GGGATCGATCTCCAGACACCAAGCAAGACC-3'

Sequence ID NO: 9 (Ebola VP24 reverse primer):

5' -GGGATCGATGAGTCAGCATATATGAGTTAGCTC-3'

Sequence ID NO: 10 (Ebola VP30 forward primer):

5' -CCCATCGATCAGATCTGCGAACCGGTAGAG-3'

Sequence ID NO: 11 (Ebola VP30 reverse primer):

5' -CCCATCGATGTACCCCTCATCAGACCATGAGC-3'

Sequence ID NO: 12 (Ebola VP35 forward primer):

5' -GGGATCGATAGAAAAGCTGGTCTAACAAAGATGA-3'

Sequence ID NO: 13 (Ebola VP35 reverse primer):

5' -CCCATCGATCTCAAGTGTATCATTAAATGTAACGT-3'

Sequence ID NO: 14 (Ebola VP40 forward primer):

5' -CCCATCGATCCTACCTCGGCTGAGAGAGTG-3'

Sequence ID NO: 15 (Ebola VP40 reverse primer):

5' -CCCATCGATATGTTATGCACTATCCCTGAGAAG-3'

Sequence ID NO: 16 (Ebola VP30#2 reverse primer):

5' CCC ATC GAT CTG TTA GGG TTG TAT CATA CC -3'

Sequence ID NO: j7 (Ebola GP amino acid sequence from replicon):

Met Gly Val Thr Gly Ile Leu Gln Leu Pro Arg Asp Arg Phe Lys Arg Thr Ser
Phe Phe Leu Trp Val Ile Ile Leu Phe Gln Arg Thr Phe Ser Ile Pro Leu Gly
Val Ile His Asn Ser Thr Leu Gln Val Ser Asp Val Asp Lys Leu Val Cys Arg
Asp Lys Leu Ser Ser Thr Asn Gln Leu Arg Ser Val Gly Leu Asn Leu Glu Gly
Asn Gly Val Ala Thr Asp Val Pro Ser Ala Thr Lys Arg Trp Gly Phe Arg Ser
Gly Val Pro Pro Lys Val Val Asn Tyr Glu Ala Gly Glu Trp Ala Glu Asn Cys
Tyr Asn Leu Glu Ile Lys Lys Pro Asp Gly Ser Glu Cys Leu Pro Ala Ala Pro
Asp Gly Ile Arg Gly Phe Pro Arg Cys Arg Tyr Val His Lys Val Ser Gly Thr
Gly Pro Cys Ala Gly Asp Phe Ala Phe His Lys Glu Gly Ala Phe Phe Leu Tyr
Asp Arg Leu Ala Ser Thr Val Ile Tyr Arg Gly Thr Thr Phe Ala Glu Gly Val
Val Ala Phe Leu Ile Leu Pro Gln Ala Lys Lys Asp Phe Phe Ser Ser His Pro
Leu Arg Glu Pro Val Asn Ala Thr Glu Asp Pro Ser Ser Gly Tyr Tyr Ser Thr
Thr Ile Arg Tyr Gln Ala Thr Gly Phe Gly Thr Asn Glu Thr Glu Tyr Leu Phe
Glu Val Asp Asn Leu Thr Tyr Val Gln Leu Glu Ser Arg Phe Thr Pro Gln Phe
Leu Leu Gln Leu Asn Glu Thr Ile Tyr Thr Ser Gly Lys Arg Ser Asn Thr Thr
Gly Lys Leu Ile Trp Lys Val Asn Pro Glu Ile Asp Thr Thr Ile Gly Glu Trp
Ala Phe Trp Glu Thr Lys Lys Asn Leu Thr Arg Lys Ile Arg Ser Glu Glu Leu
Ser Phe Thr Val Val Ser Asn Gly Ala Lys Asn Ile Ser Gly Gln Ser Pro Ala
Arg Thr Ser Ser Asp Pro Gly Thr Asn Thr Thr Glu Asp His Lys Ile Met
Ala Ser Glu Asn Ser Ala Met Val Gln Val His Ser Gln Gly Arg Glu Ala
Ala Val Ser His Leu Thr Thr Leu Ala Thr Ile Ser Thr Ser Pro Gln Ser Leu
Thr Thr Lys Pro Gly Pro Asp Asn Ser Thr His Asn Thr Pro Val Tyr Lys Leu
Asp Ile Ser Glu Ala Thr Gln Val Glu Gln His His Arg Arg Thr Asp Asn Asp
Ser Thr Ala Ser Asp Thr Pro Ser Ala Thr Thr Ala Ala Gly Pro Pro Lys Ala
Glu Asn Thr Asn Thr Ser Lys Ser Thr Asp Phe Leu Asp Pro Ala Thr Thr
Ser Pro Gln Asn His Ser Glu Thr Ala Gly Asn Asn Asn Thr His His Gln Asp
Thr Gly Glu Glu Ser Ala Ser Ser Gly Lys Leu Gly Leu Ile Thr Asn Thr Ile
Ala Gly Val Ala Gly Leu Ile Thr Gly Gly Arg Arg Thr Arg Arg Glu Ala Ile
Val Asn Ala Gln Pro Lys Cys Asn Pro Asn Leu His Tyr Trp Thr Gln Asp
Glu Gly Ala Ala Ile Gly Leu Ala Trp Ile Pro Tyr Phe Gly Pro Ala Ala Glu
Gly Ile Tyr Ile Glu Gly Leu Met His Asn Gln Asp Gly Leu Ile Cys Gly Leu
Arg Gln Leu Ala Asn Glu Thr Thr Gln Ala Leu Gln Leu Phe Leu Arg Ala Thr
Thr Glu Leu Arg Thr Phe Ser Ile Leu Asn Arg Lys Ala Ile Asp Phe Leu Leu
Gln Arg Trp Gly Gly Thr Cys His Ile Leu Gly Pro Asp Cys Cys Ile Glu Pro
His Asp Trp Thr Lys Asn Ile Thr Asp Lys Ile Asp Gln Ile Ile His Asp Phe
Val Asp Lys Thr Leu Pro Asp Gln Gly Asp Asn Asp Asn Trp Trp Thr Gly Trp
Arg Gln Trp Ile Pro Ala Gly Ile Gly Val Thr Gly Val Val Ile Ala Val Ile
Ala Leu Phe Cys Ile Cys Lys Phe Val Phe *

Sequence ID NO.: 18(Ebola NP amino acid sequence from replicon):

Met Asp Ser Arg Pro Gln Lys Ile Trp Met Ala Pro Ser Leu Thr Glu Ser Asp
Met Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln Gln Gly Ile Val
Arg Gln Arg Val Ile Pro Val Tyr Gln Val Asn Asn Leu Glu Glu Ile Cys Gln
Leu Ile Ile Gln Ala Phe Glu Ala Gly Val Asp Phe Gln Glu Ser Ala Asp Ser
Phe Leu Leu Met Leu Cys Leu His His Ala Tyr Gln Gly Asp Tyr Lys Leu Phe
Leu Glu Ser Gly Ala Val Lys Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Val
Lys Lys Arg Asp Gly Val Lys Arg Leu Glu Glu Leu Leu Pro Ala Val Ser Ser
Gly Lys Asn Ile Lys Arg Thr Leu Ala Ala Met Pro Glu Glu Glu Thr Thr Glu
Ala Asn Ala Gly Gln Phe Leu Ser Phe Ala Ser Leu Phe Leu Pro Lys Leu Val
Val Gly Glu Lys Ala Cys Leu Glu Lys Val Gln Arg Gln Ile Gln Val His Ala
Glu Gln Gly Leu Ile Gln Tyr Pro Thr Ala Trp Gln Ser Val Gly His Met Met
Val Ile Phe Arg Leu Met Arg Thr Asn Phe Leu Ile Lys Phe Leu Leu Ile His
Gln Gly Met His Met Val Ala Gly His Asp Ala Asn Asp Ala Val Ile Ser Asn
Ser Val Ala Gln Ala Arg Phe Ser Gly Leu Leu Ile Val Lys Thr Val Leu Asp
His Ile Leu Gln Lys Thr Glu Arg Gly Val Arg Leu His Pro Leu Ala Arg Thr
Ala Lys Val Lys Asn Glu Val Asn Ser Phe Lys Ala Ala Leu Ser Ser Leu Ala
Lys His Gly Glu Tyr Ala Pro Phe Ala Arg Leu Leu Asn Leu Ser Gly Val Asn
Asn Leu Glu His Gly Leu Phe Pro Gln Leu Ser Ala Ile Ala Leu Gly Val Ala
Thr Ala His Gly Ser Thr Leu Ala Gly Val Asn Val Gly Glu Gln Tyr Gln Gln
Leu Arg Glu Ala Ala Thr Glu Ala Glu Lys Gln Leu Gln Tyr Ala Glu Ser
Arg Glu Leu Asp His Leu Gly Leu Asp Asp Gln Glu Lys Lys Ile Leu Met Asn
Phe His Gln Lys Lys Asn Glu Ile Ser Phe Gln Gln Thr Asn Ala Met Val Thr
Leu Arg Lys Glu Arg Leu Ala Lys Leu Thr Glu Ala Ile Thr Ala Ala Ser Leu
Pro Lys Thr Ser Gly His Tyr Asp Asp Asp Asp Ile Pro Phe Pro Gly Pro
Ile Asn Asp Asp Asn Pro Gly His Gln Asp Asp Asp Pro Thr Asp Ser Gln
Asp Thr Thr Ile Pro Asp Val Val Asp Pro Asp Asp Gly Ser Tyr Gly Glu
Tyr Gln Ser Tyr Ser Glu Asn Gly Met Asn Ala Pro Asp Asp Leu Val Leu Phe
Asp Leu Asp Glu Asp Asp Glu Asp Thr Lys Pro Val Pro Asn Arg Ser Thr Lys
Gly Gly Gln Gln Lys Asn Ser Gln Lys Gly Gln His Ile Glu Gly Arg Gln Thr
Gln Ser Arg Pro Ile Gln Asn Val Pro Gly Pro His Arg Thr Ile His His Ala
Ser Ala Pro Leu Thr Asp Asn Asp Arg Arg Asn Glu Pro Ser Gly Ser Thr Ser
Pro Arg Met Leu Thr Pro Ile Asn Glu Glu Ala Asp Pro Leu Asp Asp Ala Asp
Asp Glu Thr Ser Ser Leu Pro Pro Leu Glu Ser Asp Asp Glu Glu Gln Asp Arg
Asp Gly Thr Ser Asn Arg Thr Pro Thr Val Ala Pro Pro Ala Pro Val Tyr Arg
Asp His Ser Glu Lys Lys Glu Leu Pro Gln Asp Glu Gln Gln Asp Gln Asp His
Thr Gln Glu Ala Arg Asn Gln Asp Ser Asp Asn Thr Gln Ser Glu His Ser Phe
Glu Glu Met Tyr Arg His Ile Leu Arg Ser Gln Gly Pro Phe Asp Ala Val Leu
Tyr Tyr His Met Met Lys Asp Glu Pro Val Val Phe Ser Thr Ser Asp Gly Lys
Glu Tyr Thr Tyr Pro Asp Ser Leu Glu Glu Tyr Pro Pro Trp Leu Thr Glu
Lys Glu Ala Met Asn Glu Glu Asn Arg Phe Val Thr Leu Asp Gly Gln Gln Phe
Tyr Trp Pro Val Met Asn His Lys Asn Lys Phe Met Ala Ile Leu Gln His His
Gln *

Sequence ID NO: 19 (Ebola VP24 amino acid sequence from replicon):

Met Ala Lys Ala Thr Gly Arg Tyr Asn Leu Ile Ser Pro Lys Lys Asp Leu Glu Lys Gly Val Val Leu Ser Asp Leu Cys Asn Phe Leu Val Ser Gln Thr Ile Gln Gly Trp Lys Val Tyr Trp Ala Gly Ile Glu Phe Asp Val Thr His Lys Gly Met Ala Leu Leu His Arg Leu Lys Thr Asn Asp Phe Ala Pro Ala Trp Ser Met Thr Arg Asn Leu Phe Pro His Leu Phe Gln Asn Pro Asn Ser Thr Ile Glu Ser Pro Leu Trp Ala Leu Arg Val Ile Leu Ala Ala Gly Ile Gln Asp Gln Leu Ile Asp Gln Ser Leu Ile Glu Pro Leu Ala Gly Ala Leu Gly Leu Ile Ser Asp Trp Leu Leu Thr Thr Asn His Phe Asn Met Arg Thr Gln Arg Val Lys Glu Gln Leu Ser Leu Lys Met Leu Ser Leu Ile Arg Ser Asn Ile Leu Lys Phe Ile Asn Lys Leu Asp Ala Leu His Val Val Asn Tyr Asn Gly Leu Leu Ser Ser Ile Glu Ile Gly Thr Gln Asn His Thr Ile Ile Ile Thr Arg Thr Asn Met Gly Phe Leu Val Glu Leu Gln Glu Pro Asp Lys Ser Ala Met Asn Arg Met Lys Pro Gly Pro Ala Lys Phe Ser Leu Leu His Glu Ser Thr Leu Lys Ala Phe Thr Gln Gly Ser Ser Thr Arg Met Gln Ser Leu Ile Leu Glu Phe Asn Ser Ser Leu Ala Ile *

Sequence ID NO: 20 (Ebola VP30 amino acid sequence from replicon):

Met Glu Ala Ser Tyr Glu Arg Gly Arg Pro Arg Ala Ala Arg Gln His Ser Arg Asp Gly His Asp His His Val Arg Ala Arg Ser Ser Arg Glu Asn Tyr Arg Gly Glu Tyr Arg Gln Ser Arg Ser Ala Ser Gln Val Arg Val Pro Thr Val Phe His Lys Lys Arg Val Glu Pro Leu Thr Val Pro Pro Ala Pro Lys Asp Ile Cys Pro Thr Leu Lys Lys Gly Phe Leu Cys Asp Ser Ser Phe Cys Lys Lys Asp His Gln Leu Glu Ser Leu Thr Asp Arg Glu Leu Leu Leu Ile Ala Arg Lys Thr Cys Gly Ser Val Glu Gln Gln Leu Asn Ile Thr Ala Pro Lys Asp Ser Arg Leu Ala Asn Pro Thr Ala Asp Asp Phe Gln Gln Glu Glu Gly Pro Lys Ile Thr Leu Leu Thr Leu Ile Lys Thr Ala Glu His Trp Ala Arg Gln Asp Ile Arg Thr Ile Glu Asp Ser Lys Leu Arg Ala Leu Leu Thr Leu Cys Ala Val Met Thr Arg Lys Phe Ser Lys Ser Gln Leu Ser Leu Leu Cys Glu Thr His Leu Arg Arg Glu Gly Leu Gly Gln Asp Gln Ala Glu Pro Val Leu Glu Val Tyr Gln Arg Leu His Ser Asp Lys Gly Gly Ser Phe Glu Ala Ala Leu Trp Gln Gln Trp Asp Leu Gln Ser Leu Ile Met Phe Ile Thr Ala Phe Leu Asn Ile Ala Leu Gln Leu Pro Cys Glu Ser Ser Ala Val Val Val Ser Gly Leu Arg Thr Leu Val Pro Gln Ser Asp Asn Glu Glu Ala Ser Thr Asn Pro Gly Thr Cys Ser Trp Ser Asp Glu Gly Thr Ser Ile Gln Gln Gln Leu Ala Ser Cys Leu His Arg Thr Arg Gly Asp Trp His Ala Ala Leu Lys Phe Leu Phe Tyr Phe Ser Phe Leu Phe Arg Ile Gly Phe Cys Phe *

Sequence ID NO.: 21 (Ebola VP35 amino acid sequence from replicon) :

Met Thr Thr Arg Thr Lys Gly Arg Gly His Thr Ala Ala Thr Thr Gln Asn Asp Arg Met Pro Gly Pro Glu Leu Ser Gly Trp Ile Ser Glu Gln Leu Met Thr Gly Arg Ile Pro Val Ser Asp Ile Phe Cys Asp Ile Glu Asn Asn Pro Gly Leu Cys Tyr Ala Ser Gln Met Gln Gln Thr Lys Pro Asn Pro Lys Thr Arg Asn Ser Gln Thr Gln Thr Asp Pro Ile Cys Asn His Ser Phe Glu Glu Val Val Gln Thr Leu Ala Ser Leu Ala Thr Val Val Gln Gln Thr Ile Ala Ser Glu Ser Leu Glu Gln Arg Ile Thr Ser Leu Glu Asn Gly Leu Lys Pro Val Tyr Asp Met Ala Lys Thr Ile Ser Ser Leu Asn Arg Val Cys Ala Glu Met Val Ala Lys Tyr Asp Leu Leu Val Met Thr Thr Gly Arg Ala Thr Ala Ala Ala Thr Glu Ala Tyr Trp Ala Glu His Gly Gln Pro Pro Pro Gly Pro Ser Leu Tyr Glu Glu Ser Ala Ile Arg Gly Lys Ile Glu Ser Arg Asp Glu Thr Val Pro Gln Ser Val Arg Glu Ala Phe Asn Asn Leu Asn Ser Thr Thr Ser Leu Thr Glu Glu Asn Phe Gly Lys Pro Asp Ile Ser Ala Lys Asp Leu Arg Asn Ile Met Tyr Asp His Leu Pro Gly Phe Gly Thr Ala Phe His Gln Leu Val Gln Val Ile Cys Lys Leu Gly Lys Asp Ser Asn Ser Leu Asp Ile Ile His Ala Glu Phe Gln Ala Ser Leu Ala Glu Gly Asp Ser Pro Gln Cys Ala Leu Ile Gln Ile Thr Lys Arg Val Pro Ile Phe Gln Asp Ala Ala Pro Pro Val Ile His Ile Arg Ser Arg Gly Asp Ile Pro Arg Ala Asp Cys Gln Lys Ser Leu Arg Pro Val Pro Ser Pro Lys Ile Asp Arg Gly Trp Val Cys Val Phe Gln Leu Gln Asp Gly Lys Thr Leu Gly Leu Lys Ile *

Sequence ID NO.: 22 (Ebola VP40 amino acid sequence from replicon) :

Met Arg Arg Val Ile Leu Pro Thr Ala Pro Pro Glu Tyr Met Glu Ala Ile Tyr Pro Val Arg Ser Asn Ser Thr Ile Ala Arg Gly Gly Asn Ser Asn Thr Gly Phe Leu Thr Pro Glu Ser Val Asn Gly Asp Thr Pro Ser Asn Pro Leu Arg Pro Ile Ala Asp Asp Thr Ile Asp His Ala Ser His Thr Pro Gly Ser Val Ser Ser Ala Phe Ile Leu Glu Ala Met Val Asn Val Ile Ser Gly Pro Lys Val Leu Met Lys Gln Ile Pro Ile Trp Leu Pro Leu Gly Val Ala Asp Gln Lys Thr Tyr Ser Phe Asp Ser Thr Thr Ala Ala Ile Met Leu Ala Ser Tyr Thr Ile Thr His Phe Gly Lys Ala Thr Asn Pro Leu Val Arg Val Asn Arg Leu Gly Pro Gly Ile Pro Asp His Pro Leu Arg Leu Leu Arg Ile Gly Asn Gln Ala Phe Leu Gln Glu Phe Val Leu Pro Pro Val Gln Leu Pro Gln Tyr Phe Thr Phe Asp Leu Thr Ala Leu Lys Leu Ile Thr Gln Pro Leu Pro Ala Ala Thr Trp Thr Asp Asp Thr Pro Thr Gly Ser Asn Gly Ala Leu Arg Pro Gly Ile Ser Phe His Pro Lys Leu Arg Pro Ile Leu Leu Pro Asn Lys Ser Gly Lys Lys Gly Asn Ser Ala Asp Leu Thr Ser Pro Glu Lys Ile Gln Ala Ile Met Thr Ser Leu Gln Asp Phe Lys Ile Val Pro Ile Asp Pro Thr Lys Asn Ile Met Gly Ile Glu Val Pro Glu Thr Leu Val His Lys Leu Thr Gly Lys Lys Val Thr Ser Lys Asn Gly Gln Pro Ile Ile Pro Val Leu Leu Pro Lys Tyr Ile Gly Leu Asp Pro Val Ala Pro Gly Asp Leu Thr Met Val Ile Thr Gln Asp Cys Asp Thr Cys His Ser Pro Ala Ser Leu Pro Ala Val Ile Glu Lys *

f.2

Sequence ID NO: 23 (new Ebola VP30 amino acid sequence from replicon):

Met Glu Ala Ser Tyr Glu Arg Gly Arg Pro Arg Ala Ala Arg Gln His Ser Arg Asp Gly His Asp His His Val Arg Ala Arg Ser Ser Arg Glu Asn Tyr Arg Gly Glu Tyr Arg Gln Ser Arg Ser Ala Ser Gln Val Arg Val Pro Thr Val Phe His Lys Lys Arg Val Glu Pro Leu Thr Val Pro Pro Ala Pro Lys Asp Ile Cys Pro Thr Leu Lys Lys Gly Phe Leu Cys Asp Ser Ser Phe Cys Lys Lys Asp His Gln Leu Glu Ser Leu Thr Asp Arg Glu Leu Leu Leu Ile Ala Arg Lys Thr Cys Gly Ser Val Glu Gln Gln Leu Asn Ile Thr Ala Pro Lys Asp Ser Arg Leu Ala Asn Pro Thr Ala Asp Asp Phe Gln Gln Glu Gly Pro Lys Ile Thr Leu Leu Thr Leu Ile Lys Thr Ala Glu His Trp Ala Arg Gln Asp Ile Arg Thr Ile Glu Asp Ser Lys Leu Arg Ala Leu Leu Thr Leu Cys Ala Val Met Thr Arg Lys Phe Ser Lys Ser Gln Leu Ser Leu Leu Cys Glu Thr His Leu Arg Arg Glu Gly Leu Gly Gln Asp Gln Ala Glu Pro Val Leu Glu Val Tyr Gln Arg Leu His Ser Asp Lys Gly Gly Ser Phe Glu Ala Ala Leu Trp Gln Gln Trp Asp Arg Gln Ser Leu Ile Met Phe Ile Thr Ala Phe Leu Asn Ile Ala Leu Gln Leu Pro Cys Glu Ser Ser Ala Val Val Val Ser Gly Leu Arg Thr Leu Val Pro Gln Ser Asp Asn Glu Glu Ala Ser Thr Asn Pro Gly Thr Cys Ser Trp Ser Asp Glu Gly Thr Pro

Sequence ID NO: 24 (Ebola NP CTL epitope):

VYQVNNLEEIC

Sequence ID NO: 25 (Ebola VP24 CTL epitope):

LKFINKLDALLVVNYNGLLSSIF