Sistemas Operacionais

Gerenciamento de memória Prof. José Roberto Bezerra

Agenda

- Lei de Parkinson
- Gerenciamento de memória
- Relocação e proteção
- Grau de multiprogramação
- Swapping
- Memória virtual
- Memory Management Unit
- Paginação de memória
- Algoritmos de substituição de página

Lei de Parkinson

Programas tendem a se expandir ocupando toda a memória disponível

Gerenciamento de memória

Manter o controle das partes da memória em uso e em desuso, alocando memória aos processos quando necessário e liberando memória quando finalizam, além de gerenciar a troca de processos (swapping) entre a memória e o disco quando a memória principal não é suficiente

Abstração de memória

- Os primeiros computadores não possuíam nenhum tipo de abstração de memória
- Apenas a memória física era considerada
- Era composta por um conjunto de endereços numerados

Abstração de memória

- Desta maneira apenas um programa por vez poderia ser executado
- Toda a memória presente no sistema era disponibilizada para tal programa

Gerenciamento básico

- Monoprogramação sem troca de processos
- Multiprogramação com partição fixas

Monoprogramação sem troca de processos

- Sistemas de baixa complexidade
- Compartilhamento entre programas e SO

 Não há alternância entre processos, apenas um programa é executado por vez

Multiprogramação com partições fixas

- Divide-se a memória em n partições
- Cada tarefa é colocada em uma fila a uma partição que lhe caiba
- Se o processo não utiliza todo espaço da partição o excedente é perdido
- Uma abordagem alternativa utiliza uma fila única para todas as partições
- Exemplo: IBM/OS360

Espaço de endereçamento

Conjunto de endereços de memória que um processo pode utilizar para armazenar informações. Cada processo tem seu próprio espaço de endereçamento independente de outros processos

Espaço de endereçamento

- Em resumo, o EE tem o objetivo de fazer com que o endereço 28 de um programa seja apontado para um endereço físico diferente do endereço 28 de outro programa
- O mapeamento do EE de um processo em uma parte diferente da memória física é a chamada realocação dinâmica
- A RD é feita através de registradores

Realocação e proteção

- Diferentes processos são executados em diferentes áreas de memória
- Linker
- Registrador base e limite
 - É carregado com o endereço do início da partição
 - RL é carregado com o tamanho da partição
 - Cada troca estes registradores são atualizados

Grau de multiprogramação

- Supondo que um processo gaste uma fração p de seu tempo com aguardando E/S
- Com n processos na memória a probabilidade de todos estarem esperando por E/S é pⁿ
- A utilização de CPU é dada pela fórmula:
 - \circ U = 1 pⁿ
- n é chamado grau de multiprogramação

Grau de multiprogramação

- Se processos gastam 80% do tempo com E/S
- Pelo menos 10 processos devem estar na memória para um percentual de utilização da CPU de 90%

Exemplo

- Supondo um sistema com 32MB de memória
 - 16Mb para o SO
 - Cada programa do usuário ocupa 4MB
 - Considerando que cada processo gasta 80% do tempo esperando E/S, de quanto será a utilização da CPU?

Exemplo

- Acrescentando-se mais 16MB permite a utilização de 8 programas na memória (grau de multiprogramação 8)
 - De quanto será a utilização da CPU?
- Acrescentando-se mais 16MB de quanto será a utilização da CPU?

Conclusão

O modelo permite avaliar de maneira simplificada se a ampliação de memória apresentará uma significativa melhora no desempenho do sistema ou não

Disco como memória complementar

- Em geral, não há memória principal suficiente para manter todos os processos ao mesmo tempo
- Sistemas de tempo compartilhado e Interfaces Gráficas
- Assim, utiliza-se o disco como memória complementar a memória principal
 - Swapping
 - Memória Virtual

Swapping e Memória virtual

Swapping

 Consiste em carregar o processo na MP executá-lo durante um período, retirar da MP e em seguida levá-lo para o disco novamente. Quando o processo ganha tempo de CPU novamente, é copiado do disco para MP e o ciclo se repete

Memória Virtual

 Permite que programas possam ser executados mesmo que não totalmente carregados na MP, usa o disco como memória complementar

Swapping

Questões relacionadas ao Swapping

- Qual o espaço que deve ser alocado aos processos na memória?
- O espaço pode aumentar no decorrer da execução?

Memória virtual

- Relaciona-se com a capacidade de executar programas maiores do que a própria memória disponível
 - Exemplo: programa de 16MB executar em uma máquina com 4MB de memória
- Programas eram subdivididos pelo próprio programador em camadas chamadas, overlays
 - O SO era responsável pela carga de cada overlay
- Atualmente o SO faz a divisão e gerenciamento das partes (páginas)

Endereços virtuais e físicos

- Endereços virtuais
 - São endereços gerados pelos programas e não coincidem com os endereços físicos da memória
 - O espaço de endereçamento virtual é maior que a capacidade de endereçamento físico
- Endereços físicos
 - São os endereços reais onde são armazenadas as informações
 - Computadores que não utilizam memória virtual possuem espaços de endereçamento físico e virtual idênticos

MMU

- Memory Management Unit
- Responsável por fazer o mapeamento entre os endereços virtuais e físicos

addresses to the memory

Mapeamento

Exemplo

- Computador que gera endereços virtuais de 16bits (0 a 64K)
- Memória física de 32K
- Embora seja possível alocar programas de 64K, não é possível carregá-los totalmente na memória física
- A cópia completa do programa deve permanecer no disco e carregada dinamicamente (paginação)

Paginação

- Divide-se o espaço de endereçamento virtual em Páginas (pages)
- Cada página é associada com uma outra correspondente no espaço de endereçamento físico chamadas
 Molduras de Página (page frames)
- Páginas e Molduras de Página são sempre do mesmo tamanho

Paginação

- Comandos na CPU
 - MOV REG, 0
 - MOV REG, 8192
 - Que endereços reais estão sendo acessados?
- O que acontce no comando
 - MOV REG, 24676
- Page fault
 - Interrupção trap

Trap

- A interrupção trap força um desvio para o SO
- O SO escolhe uma moldura de página pouco utilizada e a salva em disco
- Em seguida, carrega a página referenciada pela instrução na moldura de página recém liberada
- Atualiza o mapeamento da tabela de páginas e reinicia a instrução causadora da interrupção trap

Exemplo de trap

- No caso da moldura de página 1 ser escolhida para substituição
- A página 8 deverá ser carregada a partir do endereço físico 4K

Exemplo de trap

- A página virtual 1
 passará a não
 mapeada, acessos
 futuros causarão
 uma interrupção
 trap
- A página virtual 8 passará de X para 1

Algoritmos de substituição de páginas

- Ótimo
- NRU (Não Usada Recentemente)
- FIFO (First In First Out)
- Segunda Chance (SC Second Chance)
- Menos Recentemente Usada
- Working Set (WS)

Regras gerais

- Faltas de Página geram necessidade de reposição
- Páginas modificadas devem ser salvas (no disco) antes que sejam substituídas
- O ideal é não escolher páginas frequentemente utilizadas, pois a probabilidade desta ser requisitada novamente é alta

Regras gerais

- Bits de status: R (referenciada) e M (modificada)
 - R é colocado em 1 sempre que a página for referenciada (lida ou escrita)
 - M é colocado em 1 sempre que a página for modificada

Algoritmo ótimo

- Consiste em rotular as páginas com a quantidade de instruções que serão executadas antes da página ser referenciada (10, 20, 100, 200 instruções)
 - Quando ocorrer falta de página aquela que possuir o maior rótulo deve ser removida
- Algoritmo Ótimo é irrealizável, pois não é possível prever quantas instruções serão executadas antes de uma página ser referenciada

Algoritmo ótimo

- Usado como referência para desempenho de outros algoritmos
 - Executando inicialmente em um simulador e guardando as referências às páginas pode-se implementar o algoritmo ótimo em uma segunda execução do mesmo programa com os mesmos dados iniciais
 - Em uma segunda execução o AO poderia ser implementado e seu desempenho considerado o mais eficiente
 - Assim todos os outros algoritmos poderiam ser comparados tendo este resultado como referência

Não recentemente usado (NRU) - Quando um processo é iniciado os bits R

- Quando um processo é iniciado os bits R é e M de suas páginas recebem 0 dado pelo SO
 - A cada ciclo de clock R é limpo para diferenciar as páginas utilizadas recentemente
- A cada falta de página o SO inspeciona as páginas e classifica em:
 - Classe 0 não referenciada, não modificada

O algorithms NDII rams ava algorithms anto

- Classe 1 não referenciada, modificada
- Classe 2 referenciada, não modificada
- Classe 3 referenciada, modificada

FIFO

- Simples e de baixo custo computacional
- O SO mantém uma lista de todas as páginas ordenada por ordem de utilização
 - As menos usadas no início, as mais recentemente utilizadas no final da lista
- Quando uma falta de página ocorre, a primeira da lista é substituída

Segunda chance

- Semelhante ao FIFO com uma pequena modificação:
 - Elimina a mais antiga com R=0, caso não exista:
 - Verifica na lista a mais antiga, se R=1
 - Faz R=0 e checa a próxima da lista
 - Faz isto até encontrar uma página com R=0

Menos recentemente usada

- Cria um buffer para cada página com uma determinada quantidade de bits
- A cada ciclo de clock, indica se cada página foi referenciada ou não
 - Caso tenha sido o buffer é incrementado
- Quando houver necessidade de troca, utiliza-se a página com menor valor no buffer, a menos utilizada

Working set

- Cria conjuntos de páginas de um processo carregado
- Verifica qual o WS é o mais importante baseado na utilização de suas páginas
- O algoritmo consiste em trazer para memória o WS de um processo antes que ele seja executado, evitando as faltas de página

Perguntas / Dúvidas

Dúvidas/Perguntas

Referências

TANENBAUM, A.S. - Sistemas
Operacionais Modernos (Capítulo 4)

FIM