Index-Theorie Notizen WiSe22/23

Matthias Westenfelder

Contents

1	Vektorbündel und Chern-Weil Theorie		
	1.1	Vektorbündel und Differentialformen	2
	1.2	Zusammenhänge	2
	1.3	Bordismen und Charakteristische Klassen	5
2	Clif	ford-Algebras	8

Chapter 1

Vektorbündel und Chern-Weil Theorie

1.1 Vektorbündel und Differentialformen

1.2 Zusammenhänge

Definition 1.1 (E-wertige Differentialformen). Wir definieren den Ring der Vektor-wertigen Differentialformen als

$$\Omega^*(M, E) = C^{\infty}(M, \Lambda^* T^* M \otimes E)$$

Definition 1.2 (Zusammenhang). Sei E ein Vektorbündel auf M dann nenen wir eine \mathbb{R} -lineare Abbildung

$$\nabla: C^{\infty}(M, E) \longrightarrow C^{\infty}(M, T^*M \otimes E)$$

so dass gilt:

$$\nabla(fs) = df \otimes s + f\nabla(s)$$

Diese Abbildung lässt sich eindeutig erweitern zu:

$$\Omega^*(M,E) \xrightarrow{\nabla^*} \Omega^{*+1}(M,E)$$

 $via\ Leibnitz\text{-}Regel:$

$$\nabla^k(\omega \otimes s) = d\omega \otimes s + (-1)^{|\omega|} \omega \wedge \nabla(s)$$

wobei $\omega \in \Omega^{k-1}(M)$ und

$$\omega \wedge \nabla \begin{pmatrix} \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \omega \wedge (ds_1 + \sum_i \omega_{i1}) \\ \vdots \\ \omega \wedge (ds_n + \sum_i \omega_{in}) \end{bmatrix} \in \Omega^k(M, E)$$

Dies induziert eine kovariante Ableitung:

$$\nabla: \mathbf{C}^{\infty}(M, TM) \times \mathbf{C}^{\infty}(M, E) \longrightarrow \mathbf{C}^{\infty}(M, E)$$
$$(X, s) \longmapsto ev(\nabla(s), X) = \nabla_X(s)$$

Bemerkung. REVIEW THIS LATER! Lokal sieht ein Zusammenhang folgender Maßen aus, für lokalen Rahmen (b_1, \ldots, b_n)

$$\nabla(b_j) = \sum_i \omega_{ij} \otimes b_i$$

wobei $\omega_{ij} \in \Omega^1(M)$ also folgt insgesamt:

$$\nabla(s) = \nabla(\sum_{i} s_{i} b_{i}) = \sum_{i} ds_{i} \otimes b_{i} + \sum_{i} \sum_{j} \omega_{ij} \otimes b_{j} = \sum_{i} (ds_{j} + \sum_{i} \omega_{ij}) \otimes b_{j}$$

was zeigt dass $\nabla \in \Omega^1(M,\operatorname{End}(E))$ eine Endomorphismen-Wertige 1-Form ist sowie $\nabla = d^E + \omega$ mit $\omega \in \Omega^1(M) \otimes \operatorname{End}(E)$

Beispiel. $s = s_1b_1 + s_2b_2 \ und$

$$\nabla = d + \omega = \begin{bmatrix} d & 0 \\ 0 & d \end{bmatrix} + \begin{bmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{bmatrix}$$
$$\begin{pmatrix} \begin{bmatrix} d & 0 \\ 0 & d \end{bmatrix} + \begin{bmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{bmatrix} \end{pmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} ds_1 \\ ds_2 \end{bmatrix} + \begin{bmatrix} \omega_{11}s_1 + \omega_{12}s_2 \\ \omega_{21}s_1 + \omega_{22}s_2 \end{bmatrix}$$

Beispiel (Beispiel Rechnung auf $\mathbb{C}P^n$). ADD THIS LATER!!

Definition 1.3 (Krümmungstensor). Wir nennen $R = \nabla^2$ den Riemannschen Krümmungstensor und nennen ∇ flach falls $\nabla^2 = 0$

Satz 1.1. Sei $\nabla: C^{\infty}(M, E) \longrightarrow C^{\infty}(M, T^*M \otimes E)$ ein Zusammenhang dann ist R ein Tensor.

Proof.

$$\nabla^{2}(fs) = \nabla(\nabla(fs)) = \nabla(df \otimes s + f\nabla(s))$$
$$= d(df) \otimes s - df \otimes \nabla(s) + df \otimes \nabla(s) + f\nabla^{2}(s) = f\nabla^{2}(s)$$

Bemerkung (lokale Darstellung der Krümmung). Sei

 $\nabla = d + \omega \in \Omega^1(M, \operatorname{End}(E))$ Zusammenhangs 1-Form mit lokalem Rahmen $b = (b_1, \ldots, b_n)$ Dann gilt:

$$K(b_i) = \nabla(\sum_j \omega_{ij} \otimes b_j) = \sum_j d\omega_{ij} \otimes b_j - \sum_j \omega_{ij} \wedge \nabla(b_j)$$
$$= \sum_j d\omega_{ij} \otimes b_j - \sum_{jk} w_{ij} \wedge (\omega_{jk} \otimes b_k)$$
$$= ((d\omega) \otimes s - (\omega \wedge \omega))_i = ((d\omega - \omega \wedge \omega) \otimes b)_i$$

3

Wir nennen $\Omega = d\omega + \omega \wedge \omega \in \Omega^2(M, \operatorname{End}(E))$ dann eine **Krümmungs 2-Form** Als Konsequenz dessen: Da

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d\beta$$

und

$$\alpha \wedge \beta = (-1)^{|\alpha||\beta|} \beta \wedge \alpha$$

liefern

$$\implies d\Omega = d(d\omega - \omega \wedge \omega) = d^2\omega - d(\omega \wedge \omega) = -(d\omega \wedge \omega - \omega \wedge d\omega)$$
$$= -(d\omega \wedge w - (-1)^{2*1}d\omega \wedge \omega) = -(d\omega \wedge w - d\omega \wedge \omega) = 0$$

Satz 1.2. Sei E ein Vektorbündel, M eine Mannigfaltigkeit dann gilt: ∇ : $C^{\infty}(M, E) \longrightarrow C^{\infty}(M, T^*M \otimes E)$ Zusammenhang existiert und

$$\nabla, A \in \Omega^1(M, End(E)) \Longrightarrow \nabla + A \text{ ist Zusammenhang}$$

Definition 1.4 (Riemannsche Metrik). Wir nennen $g \in C^{\infty}(M, Sym^2(T^*M))$ eine Riemannsche Metrik falls:

- $\bullet \ g_{ij} = g_{ji}$
- $g(X,Y) = g_{ij}X^iY^j$
- $q(X,X) > 0 \forall X$

lokal gilt also $g = \sum_{ij} g_{ij} dx^i \otimes dx^j$

Definition 1.5 (Lie Klammer). Wir definieren die Lie Klammer als

$$\mathbf{C}^{\infty}(M, TM) \times \mathbf{C}^{\infty}(M, TM) \longrightarrow \mathbf{C}^{\infty}(M, TM)$$

$$(X, Y) \longmapsto [X, Y]$$

wobei [X, Y](f) = X(Y(f)) - Y(X(f))

Definition 1.6 (metrischer Zusammenhang). Sei

 $\nabla: C^{\infty}(M,TM) \longrightarrow C^{\infty}(M,T^*M \otimes TM)$ Zusammenhang, $X \in C^{\infty}(M,TM)$ falls gilt:

$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$

dann nennen wir ∇ metrisch

Definition 1.7 (torsionsfreier Zusammenhang). Sei

 $\nabla: C^{\infty}(M,TM) \longrightarrow C^{\infty}(M,T^*M \otimes TM)$ Zusammenhang, $X \in C^{\infty}(M,TM)$ falls gilt:

$$[X,Y] = \nabla_X Y - \nabla_Y X$$

 $dann\ hei\beta t\ \nabla\ torsions frei.$

Algebraische Konstruktionen von Zusammenhängen

- $\nabla^{E_1 \oplus E_2}(s_1 + s_2) = \nabla^{E_1}(s_1) + \nabla^{E_2}(s_2)$
- $\nabla^{E_1 \otimes E_2}(s_1 \otimes s_2) = \nabla^{E_1}(s_1) \otimes s_2 + s_1 \otimes \nabla^{E_2}(s_2)$

1.3 Bordismen und Charakteristische Klassen

Chern-Klassen

Definition 1.8 (Invariantes Polynom). Eine Abbildung

$$P:\mathbb{C}^{n\times n}\longrightarrow\mathbb{C}$$

heißt Invariantes Polynom falls: $P \in \mathbb{C}[X_{11} \dots X_{nn}]$ und

$$\forall X, Y \in \mathbb{C}^{n \times n} : P(XY) = P(YX)$$

Diese Definition ist genau das was notwendig ist um eine Basis unabhängige Abbildung von Matrizen zu bekommen:

$$P \ invariant \Leftrightarrow \forall T \in \mathrm{Gl}_n(\mathbb{C}) : P(X) = P(T^{-1}XT)$$

Bemerkung. P invariantes P olynom $\Longrightarrow P$ induziert wohldefinierte Abbildung

$$C^{\infty}(M, \operatorname{End}(E)) \xrightarrow{P_*} C^{\infty}(M, \underline{\mathbb{C}})$$

Definition 1.9 (Elementar Symmetrische Polynome). $P_i: \mathbb{C}^{n \times n} \longrightarrow \mathbb{C}$ mit $0 \leq i \leq n$ definiert durch

$$\det(t+X) = \sum_{i=0}^{n} t^{n-i} P_i(X)$$

heißt ites Elementar Symmetrisches Polynom.

Satz 1.3. Sei $K = \nabla^2$ Krümmung von ∇ auf \mathbb{C} -Vektorbündel und P Invariantes Polynom

$$\Longrightarrow P(K) \in \Omega^{2*}(M,\mathbb{C}) \ \mathit{mit} \ dP(K) = 0 \Longrightarrow \big[P(K)\big] \in H^{2*}(M;\mathbb{C})$$

Definition 1.10 (Chern Klasse). Sei E \mathbb{C} -Vektorbündel, ∇ Zusammenhang auf E, $K = \nabla^2$ Krümmung

$$c_k(E) = \left[P_k(\frac{i}{2\pi}K)\right] \in H^{2k}(M;\mathbb{C})$$

 $hei\beta t\ die\ kte\text{-}Chernklasse\ von\ E$

Satz 1.4 (Eigenschaften von Chernklassen). $\phi: M \longrightarrow N, E \to N$ dann gilt $\phi^*(E)$ ist Bündel über M

- $c_k(\phi^*E) = \phi^*(c_k(E))$
- $c_k(E_1 \oplus E_2) = \sum_{i+j=k} c_i(E_1)c_j(E_2)$
- $\int_{\mathbb{C}\mathrm{P}^1} c_1(\mathcal{O}_{\mathbb{C}\mathrm{P}^1}(1)) = 1$

Geschlechter

Definition 1.11 (stabile fast komplexe Struktur). Eine **stabile fast komplexe Struktur** auf einer kompakten orientierten Mannigfaltigkeit M ist ein Paar (n, J) with $n \in \mathbb{N}$ wobei

$$J \in \operatorname{End}(TM \oplus \mathbb{R}^n) \ mit \ J^2 = -id_{TM}$$

Die zu (n, J) konjugierte Struktur ist gegeben durch (n, -J) Zwei stabile fast komplexe Strukturen $(n_0, J_0), (n_1, J_1)$ sind äquivalent falls:

$$\exists m_0, m_1 \in \mathbb{N} : \exists \varphi \in \text{Hom}(TM \oplus \underline{\mathbb{R}}^{n_0} \oplus \mathbb{C}^{m_0}, TM \oplus \underline{\mathbb{R}}^{n_1} \oplus \mathbb{C}^{m_1})$$

$$mit \ \varphi \circ (J_0 \oplus i) \circ \varphi^{-1} = J_1 \oplus i$$

Oder in Worten die komplexe Stabilisierung von J_0 lässt sich per Konjugation in die komplexe Stabilisierung von J_1 verwandeln.

Beispiel. komplexe Mannigfaltigkeiten haben durch Faserweise Multiplikation mit i eine komplexe Struktur.

Bemerkung. Sei M kompakt, orientierte Mannigfaltigkeit mit Rand dann folgt ∂M ist (n-1) dimensionale Mannigfaltigkeit mit

$$TM|_{\partial M} \cong T(\partial M) \oplus \mathbb{R}\nu$$

wobei ν eine äußere Normale ist. Eine stabile fast komplexe Struktur auf M induziert eine stabile fast komplexe Struktur auf ∂M . Wir können also eine Äquivalenz von geschlossenen stabil fast komplexen Mannigfaltigkeiten definieren. Wir definieren:

$$(M, n, J) \sim (M', n', J')$$

$$\Leftrightarrow \exists (N, n_N, J_N) : \partial(N, n_N, J_N) = (M, n, J) \oplus (M', n', -J')$$

Wir nennen dann (M, n, J) und (M', n', J') bordant.

Definition 1.12 (Bordismen Ringe). Die Menge der Äquivalenz-Klassen von n dimensionalen stabil fast komplexen Mannigfaltigkeiten wird mit $\Omega_n^{\rm U}$ bezeichnet und besitzt Addition sowie graduierte Multiplikation.

$$[(M, n, J)] + [(M', n', J')] = [(M + M', ...)]$$
$$[(M, n, J)][(M', n', J')] = [(M \times M', ...)]$$

wir nennen Ω^{U} den Komplexe Bordismenring und Ω^{SO} den orientieren Bordismenring. (wobei Ω^{SO} das Bild des Vergissfunktors der die stfk Struktur vergisst ist.)

Definition 1.13 (Hirzebruch-Geschlecht). Ein orientiertes/komplexes - Hirzebruch Geschlecht ist ein Ring-Homomorphismus

$$\varphi: \Omega^{SO} \longrightarrow \mathbb{R}$$

$$\psi: \Omega^{U} \longrightarrow \mathbb{R}$$

Beispiel. Die Signatur ist ein Geschlecht. $[M] \longmapsto sign(M)$ für dim(M) = 4n und $[M] \longmapsto 0$ sonst

Satz 1.5.

$$\Omega^{SO} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^2, \dots, \mathbb{C}P^{2n}]$$

$$\Omega^{U} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^1, \dots, \mathbb{C}P^n]$$

Definition 1.14 (Multiplikative Sequenz).

Definition 1.15 (Charakteristische Folge).

Satz 1.6.

Satz 1.7.

Chapter 2

 ${\bf Clifford\text{-}Algebras}$