Graph Neural Networks

GNN is a hot topic in recent years

Applications

Uber Eats recommendation system 20% ↑

Google Maps ETA accuracy 50% ↑

Google Maps ETA Improvements Around the World

Applications

DeepMind GraphCast Climate Predication

Baker Lab Protein Design 5x improvement

Setup

- **Graph** *G*:
- V is the vertex set
 - *v*: a node in *V*;
 - N(v): the set of neighbors of v
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features
 - Social networks: user profile
 - Biological networks: gene functional information
 - When there is no node feature in the graph dataset:
 - Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

Homophily: birds of a feather flock together

- Idea: transform information at the neighbors and combine it:
 - Transform "messages" h_i from neighbors: $W_i h_i$
 - Add them up: $\sum_i W_i h_i$

Example for the least homophily

Idea: Aggregate Neighbors

 Key idea: Generate node embeddings based on local network neighborhoods

Graph Neural Networks

 Intuition: Nodes aggregate information from their neighbors using neural networks

Key distinctions of different GNN are in how different approaches

aggregate information across the layers

Graph Neural Networks

Intuition: Network neighborhood defines a computation graph

Model Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node u is its input feature, x_u
 - Layer-k embedding gets information from nodes that are K hops away

Basic Neighborhood Aggregation

 Basic approach: Average information from neighbors and apply a neural network

The Math: Deep Encoder

Basic approach: Average neighbor messages and apply a neural

network Initial 0-th layer embeddings are equal to node features embedding of $h_{\nu}^{0} = x_{\nu}$ v at layer l $\mathbf{h}_{v}^{(l+1)} = \sigma \left(\mathbf{W}_{l} \sum_{u \in \mathbf{N}(u)} \frac{\mathbf{h}_{u}^{(l)}}{|\mathbf{N}(v)|} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)} \right), \forall l \in \{0, \dots, L-1\}$ **Total number of** layers Average of neighbor's **Non-linearity** previous layer

embeddings

of neighborhood aggregation

44

Model Parameters

$$\mathbf{h}_{v}^{(0)} = \mathbf{x}_{v} \qquad \qquad \text{what we learn}$$

$$\mathbf{h}_{v}^{(l+1)} = \sigma \left(\underbrace{\mathbf{W}_{l} \sum_{u \in \mathbf{N}(v)} \frac{\mathbf{h}_{u}^{(l)}}{|\mathbf{N}(v)|} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)}}_{\mathbf{h}_{v}^{(l)}} \right), \forall l \in \{0, \dots, L-1\}$$

 $z_v = h_v^{(L)}$ Final node embedding

We can feed these embeddings into any loss function and run SGD to train the weight parameters

- h_{v}^{l} : the hidden representation of node v at layer l
- W_l : weight matrix for neighborhood aggregation
- B_l : weight matrix for transforming hidden vector of self

Matrix Formulation

Many aggregations can be performed efficiently by matrix operations

• Let
$$H^{(l)} = \left[h_1^{(l)} \dots h_{|V|}^{(l)}\right]^{\mathrm{T}}$$

- Then: $\sum_{u \in N_n} h_u^{(l+1)} = A_{v_i} H^{(l)}$
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
 - The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$
- Therefore,

$$\sum_{u \in N(v)} \frac{h_u^l}{|N(v)|} \longrightarrow H^{(l+1)} = D^{-1}AH^{(l)}$$

Matrix Formulation

Re-writing update function in matrix form:

•
$$H^{(l+1)} = \sigma \left(\tilde{A} H^{(l)} W_l + H^{(l)} B_l \right)$$
 where $\tilde{A} = D^{-1} A$

- Red: neighborhood aggregation
- Green: self transformation

How to train a GNN

- Node embedding z_v is a function of input graph
- Supervised setting: we want to minimize the loss \mathcal{L} : $\min_{\mathbf{Q}} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$
 - y: node label
 - \mathcal{L} could be L2 if y is real number, or cross entropy if y is categorical
- Unsupervised setting:
 - No node label available
 - Use the graph structure as the supervision!

Supervised Training

• Directly train the model for a supervised task (e.g., node classification)

Supervised Training

- Directly train the model for a supervised task (e.g., node classification)
 - Use cross entropy loss

$$\mathcal{L} = -\left(\sum_{v \in V} \mathbf{y}_v \log\left(\sigma(\mathbf{z}_v^{\mathsf{T}}\boldsymbol{\theta})\right) + (1 - \mathbf{y}_v) \log\left(1 - \sigma(\mathbf{z}_v^{\mathsf{T}}\boldsymbol{\theta})\right)\right)$$

Safe or toxic

drug?

Encoder output: node embedding

Node class label

Classification weights

Unsupervised Training

"Similar" nodes have similar embeddings

$$\mathcal{L} = \sum_{z_u, z_v} CE(y_{u,v}, DEC(z_u, z_v))$$

- Where $y_{u,v} = 1$ when node u and v are similar
- CE is the cross entropy
- **DEC** is the decoder such as inner product
- Node similarity can be a loss based on:
 - Random walks (node2vec, DeepWalk, struc2vec)
 - Node proximity in the graph

Model Design: Overview

Model Design: Overview

Model Design: Overview

Inductive Capability

- The same aggregation parameters are shared for all nodes:
 - The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: New Graphs

- Many application settings constantly encounter previously unseen nodes:
 - E.g., Reddit, YouTube, Google Scholar
- Need to generate new embeddings "on the fly"

Inductive Capability: New Graphs

Inductive node embedding ——— Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B