MAT300 CURVES AND SURFACES

Julia Sánchez Sanz

DigiPen Institute of Technology Europe julia.sanchez@digipen.edu

Spring 2020

B-splines

Most sequences

Motivation

Spaces of splines with different order of continuity are the most general piecewise polynomial spaces.

We may want to construct curves $\gamma:[a,b] o\mathbb{R}^2$

$$\gamma(t) = (p(t), q(t))$$

with $p, q \in P_{k,\vec{r}}^n[t_0, \ldots, t_n]$.

For that purpose the first thing we need to do is to code the information related to continuity conditions at the nodes t_1, \ldots, t_{n-1} .

This information is related to the number of shifted power functions that appear at the standard basis of $P_{k,\vec{r}}^n[t_0,\ldots,t_n]$ for a particular node t_j . Through this idea we now construct knot sequences.

Knot sequences

Definition

A knot sequence \vec{t} is a nondecreasing sequence $(\bar{t}_0, \bar{t}_1, \dots, \bar{t}_N)$, where $\bar{t}_i \in \mathbb{R}$ for $i = 0, 1, \dots, N$.

The multiplicity of a certain knot \bar{t}_i is the number of times it appears in the sequence.

A knot sequence has associated a set of shifterd power functions $sp_k(\vec{t})$ with which we can construct a basis for a vector space of splines $P_{k,\vec{r}}^n[t_0,\ldots,t_n]$.

If a knot \bar{t}_i has multiplicity c then:

- $\bar{t}_i = \bar{t}_{i+1} = \ldots = \bar{t}_{i+c-1}$
- the shifter power functions associated to \bar{t}_i are $(t \bar{t}_i)_+^k$, $(t \bar{t}_i)_+^{k-1}$, ..., $(t \bar{t}_i)_+^{k-c+1}$

Example

$$\vec{t} = (0, 1, 1, 2, 3, 3, 3)$$
 knot sequence, $k = 2$. Construct $sp_k(\vec{t})$

- knot 0 has multiplicity 1, then $(t-0)_+^2$
- knot 1 has multiplicity 2, then $(t-1)_+^2$, $(t-1)_+^1$
- knot 2 has multiplicity 1, then $(t-2)^2_+$
- knot 3 has multiplicity 3, then $(t-3)_+^2$, $(t-3)_+^1$, $(t-3)_+^0$

Then

$$sp_2(\vec{t}) = \{(t-0)_+^2, (t-1)_+^2, (t-1)_+^1, (t-2)_+^2, (t-3)_+^2, (t-3)_+^1, (t-3)_+^0\}$$

Example

$$\vec{t} = (0,0,0,2,3,3)$$
 knot sequence, $k = 2$. Construct $sp_k(\vec{t}\,)$

- knot 0 has multiplicity 3, then $(t-0)_+^2$, $(t-0)_+^1$, $(t-0)_+^0$
- knot 2 has multiplicity 1, then $(t-2)_+^2$
- knot 3 has multiplicity 2, then $(t-3)_+^2$, $(t-3)_+^1$

Then

$$sp_2(\vec{t}') = \{(t-0)_+^2, (t-0)_+^1, (t-0)_+^0, (t-2)_+^2, (t-3)_+^2, (t-3)_+^1\}$$

 $sp_2(\vec{t}')$ is a basis for $P_{2,\vec{r}}^3[0,2,3,a]$ with $\vec{r} = (1,0)$ and $a > 3$ a real number.

We can define bases of spaces through knot sequences and viceversa

Example

Find a knot sequence for the space $P_{3,\vec{r}}^4[0,2,3,5,8]$ with $\vec{r}=(1,2,0)$

$$B = \{(t-0)_{+}^{0}, (t-0)_{+}^{1}, (t-0)_{+}^{2}, (t-0)_{+}^{3}, (t-2)_{+}^{4}, (t-3)_{+}^{3}, (t-3)_{+}^{3},$$

by reordering B we obtain $sp_3(\vec{t})$

$$\vec{t} = (0, 0, 0, 0, 2, 2, 3, 5, 5, 5)$$

Continuity and multiplicity vectors

Definition

Let $P_{k\vec{r}}^{n}[t_0,...,t_n]$ with $\vec{r}=(r_1,...,r_{n-1})$.

 \vec{r} is the **continuity vector** of $P_{k,\vec{r}}^n[t_0,\ldots,t_n]$.

 $\vec{m} = (m_1, \dots, m_{n-1})$ is the **multiplicity vector** of $P_{k, \vec{r}}^n[t_0, \dots, t_n]$ where

$$m_i = k - r_i \tag{1}$$

for i = 1, ..., n - 1.

Remarks:

- For a knot \bar{t}_j with value t_i in a knot sequence, m_i is its multiplicity and so the corresponding number of shifted power functions.
- If at t_i the polynomials are not continuous then $r_i = -1$ and so $m_i = k + 1$.

Basis and dimension

Theorem

The dimension of $P_{k,\vec{r}}^n[t_0,\ldots,t_n]$ with $\vec{r}=(r_1,\ldots,r_{n-1})$ is

$$\dim(P_{k,r}^n[t_0,\ldots,t_n])=k+1+\sum_{i=1}^{n-1}(k-r_i)=k+1+\sum_{i=1}^{n-1}m_i \quad (2$$

We construct a basis for $P_{k,\vec{r}}^n[t_0,\ldots,t_n]$ with $\vec{r}=(r_1,\ldots,r_{n-1})$ as follows:

- Build a knot sequence \vec{t} satisfying:
 - The first k+1 knots $\bar{t}_0 \leq \bar{t}_1 \leq \ldots \bar{t}_k \leq t_0$
 - For i = 1, ..., n-1 add knots with value t_i and multiplicity m_i
- Construct $sp_k(\vec{t})$ which is a basis.

Examples

Find a basis for the space $P_{2,\vec{r}}^3[1,2,3,4]$ with $\vec{r}=(1,0)$

We have
$$\vec{m} = (1,2)$$

Construct
$$\vec{t} = (0, 0, 0, 2, 3, 3)$$

$$B = \{(t-0)^2_+, (t-0)^1_+, (t-0)^0_+, (t-2)^2_+, (t-3)^2_+, (t-3)^1_+\}$$

B is not the only basis for $P_{2,\vec{r}}^3[1,2,3,4]$

Construct
$$\vec{t} = (1, 1, 1, 2, 3, 3)$$

$$B = \{(t-1)^2_+, (t-1)^1_+, (t-1)^0_+, (t-2)^2_+, (t-3)^2_+, (t-3)^1_+\}$$

Construct
$$\vec{t} = (-1, 0, 1, 2, 3, 3)$$

$$B = \{(t+1)_+^2, (t-0)_+^2, (t-1)_+^2, (t-2)_+^2, (t-3)_+^2, (t-3)_+^1\}$$