

NTE2984 **Logic Level MOSFET** N-Channel, Enhancement Mode High Speed Switch TO220 Type Package

Features:

- Dynamic dv/dt Rating
- Logic Level Gate Drive
- R_{DS}(on) Specified at V_{GS} = 4V & 5V
- +175°C Operating Temperature
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements

Absolute Maximum Ratings:

Drain Current, I _D
Continuous (V _{GS} = 5V)
$T_{C} = +25^{\circ}C$ 17A
T _C = +100°C
Pulsed (Note 1)
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D
Derate Above 25°C 0.40W/°C
Gate-Source Voltage, V _{GS} ±10V
Single Pulsed Avalanche Energy (Note 2), E _{AS}
Peak Diode Recovery dv/dt (Note 3), dv/dt
Operating Junction Temperature Range, T _J –55° to +175°C
Storage Temperature Range, T _{stg} –55° to +175°C
Maximum Lead Temperature (During Soldering, 1.6mm from case, 10sec), T _L +300°C
Mounting Torque, 6–32 or M3 Screw
Thermal Resistance:
Maximum Junction-to-Case, R _{thJC}
Typical Case-to-Sink (Mounting surface flat, smooth, and greased), R _{thCS} 0.5K/W
Maximum Junction-to-Ambient (Free Air Operation), R _{thJA} 62K/W
Note 1. Repetitive Rating: Pulse width limited by maximum junction temperature.

Note 1. Repetitive Rating: Pulse width limited by maximum junction temperature. Note 2. L = $444 \le H$, $V_{DD} = 25V$, $R_G = 25 \ge$, Starting $T_J = +175$ °C.

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D = 250≤A	60	_	-	V	
Breakdown Voltage Temperature Coefficient	±V _{(BR)DSS} / ±T _J	Reference to +25°C, I _D = 1mA	_	0.06	-	V/°C	
Static Drain-Source ON Resistance	R _{DS(on)}	V _{GS} = 5V, I _D = 10A, Note 4	_	_	0.10	≥	
		V _{GS} = 5V, I _D = 8.5A, Note 4	_	_	0.14	≥	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250≤A	1.0	_	2.0	V	
Forward Transconductance	9fs	$V_{DS} \ge 25V$, $I_D = 10A$, Note 4	7.3	-	-	mhos	
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 60V, V _{GS} = 0	-	_	25	≤A	
		V _{DS} = 48V, V _{GS} = 0V, T _C = +150°C	_	_	250	≤A	
Gate-Source Leakage Forward	I _{GSS}	V _{GS} = 10V	_	_	100	nA	
Gate-Source Leakage Reverse	I _{GSS}	V _{GS} = -10V	-	_	-100	nA	
Total Gate Charge	Q_g	V _{GS} = 5V, I _D = 17A, V _{DS} = 48V	-	_	18	nC	
Gate-Source Charge	Q_{gs}		_	_	4.5	nC	
Gate-Drain ("Miller") Charge	Q_{gd}		_	_	12	nC	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 30V$, $I_D = 17A$, $R_G = 9.0 \ge$, $R_D = 1.7 \ge$	-	11	-	ns	
Rise Time	t _r		_	110	_	ns	
Turn-Off Delay Time	t _{d(off)}		_	23	_	ns	
Fall Time	t _f		_	41	_	ns	
Internal Drain Inductance	L _D	Between lead, 6mm (0.25") from package and center of die contact	-	4.5	-	nΗ	
Internal Source Inductance	L _S		_	7.5	-	nΗ	
Input Capacitance	C _{iss}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz	-	870	-	pF	
Output Capacitance	C _{oss}		_	360	-	pF	
Reverse Transfer Capacitance	C _{rss}		_	53	-	pF	
Source-Drain Diode Ratings and Characteristics							
Continuous Source Current	I _S	(Body Diode)	_	_	17	Α	
Pulse Source Current	I _{SM}	(Body Diode) Note 1	_	_	68	Α	
Diode Forward Voltage	V_{SD}	$T_J = +25^{\circ}C$, $I_S = 17A$, $V_{GS} = 0V$, Note 4	_	_	1.5	V	
Reverse Recovery Time	t _{rr}	T _J = +25°C, I _F = 17A, di/dt = 100A/≤s, Note 4	_	110	260	ns	
Reverse Recovery Charge	Q _{rr}		-	0.49	1.5	≤C	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is neglegible (turn-on is dominated by L _S + L _D)					

Note 1. Repetitive Rating: Pulse width limited by maximum junction temperature. Note 4. Pulse Test: Pulse Width \leq 300 \leq s, Duty Cycle \leq 2%.

