H5: Materiaalonderzoek met behulp van elektronen 5.1 elektronen: diffractie		
e ⁻ tov x-stralen	we weten dat e ook als golven kunnen beschouwd worden $\lambda = \frac{h}{mv}$	
	voor een e met lading e, massa m en versnelspanning V hebben we: $\lambda = \frac{h}{\sqrt{2meV}} = \frac{1,23}{\sqrt{V}}nm$ > voor typische V komen we een golflengte 0,00251 nm > zeer klein tov afstanden tss vlakken van atomen in kristallen > heeft een impact op de diffractiehoeken en toepassing van diffractievoorwaarden	
5.1.1 atomaire verstrooiingsfac	ctor	
elastische verstrooiing inelastische verstrooiing	= golflengte blijft dezelfde na verstrooiing = " NIET "	
verstrooiing van e	e interageren met materie via Coulomb-krachten > e worden elastisch verstrooid door interactie met potentiaal V(r) van het rooster > de atomaire verstrooiingsfactor f_{el} voor e is een maat voor de sterkte van interactie > via Poisson-vgl kunnen we voor een sferische e -wolk met dichtheid $\rho(r)$ stellen: $\nabla^2 V(r) = -\frac{\rho(r)}{\epsilon}$	
	en dus is f_{el} : $f_{el}\left(k\right) = \frac{me^2}{8\pi\epsilon_0h^2}\frac{1}{k^2}\left(Z - f_X\left(k\right)\right)$ met $k = \sin\theta/\lambda$ $Z = atoomnummer$	
f _{el} van e ⁻ tov f _x van X-stralen	f_{el} en f_x zijn niet evenredig, maar volgen wel dezelfde trend > we hebben echter wel: f_{el} is groter dan f_x	
	gevolgen: 1: meer dynamische verstrooiing > effecten van meervoudige reflecties kunnen niet verwaarloost worden	
	2: kleine verstrooiingsobjecten kunnen voldoende verstrooiing genereren voor e > e -diffractie kan toegepast worden op heel kleine samples	
5.1.2 inelastische verstrooiing v	van elektronen	
inelastische verstrooiing van e E Primary electrons AE Electron Seattered Electron E Elastic Scattered Electrons E Direct Electrons E Direct Electrons E Direct Energy-loss Electrons (Inelastic Scattering)	bij inval van e op een sample treedt er ook inelastische vertrooiing op seeft aanleiding tot: 1: creëren van een elektronengat in een diepe atoomschil sat wordt gevuld, wat gepaard kan gaan met uitzenden van straling of: energie wordt afgegeven aan een ander e	
	 2: opwekken van roostertrillingen -> opwarming 3: opwekken van collectieve oscillaties van zwak gebonden e in metalen 	
	>> echter: men zal voornamelijk elastische verstrooiing waarnemen bij diffractie anderzijds: inelastische verstrooiing geeft extra info over het materiaal	
Beam	verder; hoe dikker de sample, hoe meer inelastische verstrooiing	

verder: hoe dikker de sample, hoe meer inelastische verstrooiing

5.1.3 Ewald constructie voor een elektronenbundel

Ewaldsfeer en diffractievoorwaarden voor e

richting vd elastisch verstrooide bundels wordt bepaald door de diffractievoorwaarden

- > uit wet van Bragg: hoe kleiner de golflengte, hoe kleiner de diffractiehoeken
- > e hebben heel kleine diffractiehoeken
- > Ewaldsfeer met grote straal
- > verder zijn de roosterpunten breder uitgesmeerd in de reciproke ruimte
- >> minder beperkende diffractievoorwaarden nl: er liggen heel veel reciproke punten op de Ewaldsfeer:

5.1.4 Laue zones

Zero en hogere orde Laue spots

beschouw een éénkristal georiënteerd zodat de e invallen op de symmetrie-as

- > door Ewaldsfeer zien we dat het e diffractiepatroon verschillende reciproke roosterpunten uit de 000 laag bevat
- > noem deze set diffractiespots de Ode orde Laue zone
- > zien we op het diffractiepatroon als puntjes

Het patroon kan spots bevatten door hoger gelegen lagen

- > deze zijn de *hogere orde Laue zones*
- > zien we op het diffractiepatroon als concentrische cirkels

Laue wiskundig

De Laue zones voldoen aan de regel van Weiss:

$$hu + kv + lw = N$$

met N de orde vd Laue zone

[uvw] de richting vd invallende e bundel

hkl de coords van toegestane reflecties in de Nde orde Laue zone

beschouw een kristal volgens de [001] zone-as

> uit geometrie volgt:

$$d_{hk0} = \frac{ML\lambda}{D_{hk0}}$$

met L de cameralengte vd TEM

M de vergroting

D_{hk0} de afstand tss 000 en de hk0 reflecties in het diffractiepatroon

- > de reflecties in de ZOLZ voldoen aan: 0h+0k+1l = 0n
- > hebben de indices hk0

De straal van de FOLZ (hk1 reflecties), R, geeft bijkomende info:

$$d_{001}=\frac{2M^2L^2\lambda}{R^2}$$

3D structuur bepalen

Kantel de sample tov de invallende e bundel

- > diffractiepatronen van verschillende oriëntaties
- > opbouwen van 3D beeld

5.1.5 Kikuchi lijnen	
Kikuchi lijnen	= patronen gevormd door inelastische verstrooiing van e nl: e met klein verlies aan kinetische energie vormen diffuse bundel rond de centrale bundel > kunnen opnieuw elastisch verstrooid worden > ontstaan van een stel schijnbaar rechte, parallelle lijnen in het TEM beeld
	Nu: elastische verstrooiing van eerder inelastisch verstrooide e zorgt voor een minimum, een donkere lijn, in het diffusiepatroon > er ontstaat een intensere lijn op een afstand die bepaald wordt door de afstand tss de
	vlakken waaraan diffractie optreedt
	5.2 elektronen: microscopie
transitie e microscoop TEM	lichtbron belicht een sample dat semitransparant is voor e > lenzensysteem vormt een vergrote afbeelding vh object op een fluorescerend scherm LM TEM Verlichting Verlichting Long Verlichting
	Glazer Less Condensorlens Preparaut Elektromagnehiste Object ieffens Less Discretes Projecturlens Elektromagnehiste Less Object ieffens Less Cog Cog
5.2.1 elektronen: productie	*** Ocular *****Fluoreszenad Söxen
productie van e	1: verhitte wolfram haarspeld > voeg stukje LaB ₆ toe als emitter voor betere resolutie
	2: veldemitters (FEG = field emission gun) = kathode die op een uiterst scherpe punt eindigt > door aanleggen van elektrisch veld worden e losgemaakt uit de punt
	3: niet-opgewarmde FEG > zeer hoge resolutie
5.2.2 elektromagnetische len	zen
lenzen in een e microscoop	1: condenserlens en apertuur > focussen invallende e op het specimen en bepalen diameter van e bundel
	2: objectieflens > vormt eerste geïnverteerde beeld > elastisch verstrooide e worden gefocusseerd in het achterste brandvlak vd objectieflens
	3: projectielens = vergroot beeld en projecteert het op het fluorescent scherm / camera > projectielens kan gefocusseerd worden op het tssbeeld gevormd door de objectieflens of het diffractiepatroon in het achterste brandvlak vd objectieflens
	e worden elastisch verstrooid onder zeer kleine hoeken > zowel directe e bundel als de elastisch verstrooide e bundel kunnen in focus gebracht worder > we kunnen wisselen tss beeld in reële ruimte en reciproke ruimte
vb: Select Area Electron Diffraction SAED	= parallelle e bundel valt in op de sample > volume vd sample dat bijdraagt bij tot diffractiepatroon kan aangepast worden met behulp van de apertuur
resolutie	voor 100keV zou een resolutie van 0,02nm mogelijk zijn

5.2.3 sample	
samples	samples moeten semitransparant zijn voor e > moeilijk om sample op juiste plaats te verdunnen voor TEM
5.2.4 contrast in TEM beelden	
contrast van TEM	1: Massa-dikte contrast = intensiteit vd doorgaande bundel is afh vd dikte vd sample
	diffractiecontrast = kies met de apertuur om het beeld op te bouwen met enkel directe, ongediffracteerde e of met e die onder een bepaalde hoek gediffracteerd zijn
	3: fasecontrast = contrast ontstaan door interferentie van meerdere gediffracteerde bundels
constructie van 3D beelden	resulterend beeld is altijd een 2D projectie vh inwendige vd sample > doe een serie 2D projecties onder versch hoeken om het 3D beeld op te bouwen
5.2.5 rastertransmissie-elektro	onenmicroscopie
scanning TEM	focus de e bundel in een spot ter hoogte vd sample > meet het doorgelaten signaal als een functie vd bundelpositie > scan de e bundel over de sample > beeld wordt punt per punt opgebouwd
high-angle annular dark field detector HAADF	= e worden onder grote hoeken verstrooid > contrast in het beeld wordt door inelastisch verstrooide e gegenereerd nl: elastisch verstrooide e kunnen de detector niet bereiken > we kunnen onderscheid maken tss chemische elementen op basis van signaalintensiteit
	5.3 elektronen: inelastische verstrooiing
spectroscopie	Voeg een spectrometer toe aan de TEM > geeft info over de chemische en elektronische structuur vh materiaal
	e kunnen energie verliezen aan - roostertrillingen - elektron-oscillaties - excitatie van discrete e overgangen in atomen - creatie van secundaire e
	> spectrometer meet hoeveel e en energieverlies ondergaan > geeft ons info over welke interactie het e heeft ondergaan