CS 381 HW 7

Ankur Dhoot

November 14, 2016

Q1

(a) Finding a min-cut in G is simple. Suppose we run Edmonds-Karp on G. Look at the final residual graph, G_f , which doesn't contain any augmenting paths. Let S be the set of vertices reachable from s and let T = V - S. Clearly $s \in S$ and $t \in T$ and $S \cup T = V$ meaning (S,T) is a valid cut. As is shown in Theorem 26.6 in CLRS, the cut is a min-cut since the value of the flow equals the capacity of the cut. We can efficiently find the set S by running BFS or DFS in G_f from s and then the min-cut is simple (S, V-S). The time taken to run Edmonds-Karp is $O(VE^2)$ and the search to find the set S runs in time O(V+E). Thus, the run-time is dominated by Edmonds-Karp and is $O(VE^2)$.

Algorithm 1 Find a min-cut in G

- 1: **function** FINDMINCUT(G, s, t)
- 2: Run Ford-Fulkerson on G
- 3: BFS in G_f from s to get (S, V S)
- 4: return (S, V-S)
- 5: end function
- (b) I will prove the following claim which will result in an immediate algorithm for determining whether G has a unique min-cut.

Claim: Run Ford-Fulkerson on G and let G_f be the resulting residual graph. Let S be the set of vertices reachable from s in G_f and let T be the set of vertices that have a path to t in G_f . (Note that $S \cup T = V$ is not necessarily true, which is essentially the crux of the proof). Then $(S, V-S) \neq (V-T, T)$ if and only if there exists more than one min-cut in G.

Proof: \Longrightarrow Suppose (S, V-S) \neq (V-T, T). We know that (S, V-S) defines a min-cut. It's also clear that (V-T, T) defines a min-cut (Exact same proof as given in Theorem 26.6 in CLRS easily shows this). Thus, we have more than one min-cut in G.

 \Leftarrow Suppose there exists more than one min-cut in G. In G_f , we know there exists no residual edges from S to V-S, and we know (S, V-S) is a min-cut. Let (X,Y) be another min-cut of G. No vertices of Y can be in S. Why? A min-cut partitions the vertices such that there are no residual edges from X to Y in G_f meaning there exists no path from s to any vertex in Y in G_f . Thus, by the definition of S, no vertex in Y is a vertex in S. \Rightarrow $Y \subset V$ - S. We know $Y \neq V$ - S since $(X,Y) \neq (S, V-S)$. We also know that $T \subset V$ - S, since no vertex in T can be in S, else we'd have an augmenting path in G_f . Now we need to show that $T \neq V$ - S. Suppose, for the sake of contradiction that T = V - S. \Rightarrow all vertices in V - S have a path to t. But $Y \subset V$ - S and $Y \neq V$ - S \Rightarrow (X,Y) splits V - S such that not all vertices in V - S can have a path to t. Why? Suppose all vertices in V - S have a path to $t \Rightarrow$ some vertex $x \in X$ has a path to t. At some point, the path from x to t must go from a vertex in X to a vertex in Y (since $t \in Y$). But this contradicts the fact that (X, Y) is a min-cut meaning there are no residual edges from X to Y in G_f . Thus, not all vertices in V - S have a path to t \Rightarrow T \neq V - S.

Having proved both directions of the statement, the proof is complete. The procedure follows immediately:

Algorithm 2 Find and print two distinct min-cuts if they exist

```
1: function PRINTDISTINTMINCUTS(G, s, t)
2:
       Run Ford-Fulkerson on G
       BFS in G_f from s to get (S, V - S)
3:
      Reverse G_f to get G_f^R
4:
      BFS in G_f^R from t to get (V - T, T)
5:
       if (S,V-S) = (V-T, T) then
6:
          print("Min-cut is unique")
7:
8:
       else
9:
          print(S, V-S)
          print(V-T, T)
10:
       end if
11:
12: end function
```

The run-time of Ford-Fulkerson using Edmonds-Karp is $O(VE^2)$. Lines 3 and 5 runs in O(V+E) and line 4 can be done in O(V+E) as well. Thus, the run-time is dominated by Edmonds-Karp and is $O(VE^2)$.

$\mathbf{Q2}$

We'll reduce the problem to finding the median in a set of numbers which we know can be done in linear time.

Given the line y = mx + b, let $d_i = (mx_i + b) - y_i$, which represents the (signed) vertical distance between the ith point and the line. Find the median of these d_i values, and call it d^* and its associated point (x^*, y^*) . Let the new line that is parallel to the original line, but divides the points into equal-sized subsets pass through (x^*, y^*) . Using middle-school rules for lines, we get that the new line has equation $y = mx + (y^* - mx^*)$. Since the new line is simply a vertical shift of the original, it's clear that the relative ordering of the d_i values will remain the same when computed using the new line. Thus, the median, d^* and its associated point (x^*, y^*) , remain the same \Rightarrow half the points have d values $\geq d^*$ and half the points have d values $\leq d^*$. The line passes through $(x^*, y^*) \Rightarrow$ half the points lie on or above the line and half the points lie on or below the line.

The algorithm follows:

Algorithm 3 Find parallel line that divides points into equal-sized subsets

- 1: **function** FINDLINE(P)
- 2: compute the d values for all points in P
- 3: Let d^* be the median of the d values with corresponding point (x^*, y^*)
- 4: Compute the parallel line through (x^*, y^*)
- 5: **return** this new parallel line
- 6: end function

Line 2 takes O(n) time. Line 3 can be done in O(n) time. Line 4 takes constant time. Thus, the algorithm runs in O(n) time.