

Redes de Computadores

Capítulo 4.5 – Algoritmos de Roteamento Capítulo 4.6 – Roteamento na Internet

> Profa. Cíntia B. Margi Outubro/2009

Rede

Roteamento

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

- Como as rotas são determinadas?
 - estaticamente;
 - através de algoritmos de roteamento.
- Como escolher um bom caminho?
 - aquele de menor "custo".

ACH2026 - 2009

Grafo

Grafo: G = (N,E)

 $N = conjunto de roteadores = \{ u, v, w, x, y, z \}$ $E = conjunto de enlaces = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,z), (y,z) \}$

Grafos: custo dos enlaces

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

• c(x,x') = custo do link (x,x')

- ex., c(w, z) = 5
- Custo poderia ser sempre 1, ou inversamente relacionado à largura de banda ou ao congestionamento.

Custo do caminho $(x_1, x_2, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

Questão: Qual é o caminho de menor custo entre u e z? Algoritmo de roteamento encontra o caminho de menor custo.

Exercício

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Qual o caminho de menor custo entre u e z?

Classificação quanto a informação

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ Global:

- todos os roteadores têm informações completas da topologia e do custos dos enlaces.
- o algoritmos de estado do enlace (link state).

∀ Descentralizada:

- roteadores só conhecem informações sobre seus vizinhos e os enlaces para eles;
- processo de computação interativo, troca de informações com os vizinhos;
- o algoritmos de vetor de distâncias (*distance* vector).

Classificação quanto ao tipo

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ Estático:

- as rotas não mudam ou mudam lentamente ao longo do tempo;
- o normalmente são criadas manualmente.

∀ Dinâmico:

- as rotas mudam mais rapidamente;
- podem responder a mudanças no custo dos enlaces;
- atualizações periódicas;
- osuscetíveis a problemas como *loops* de roteamento e oscilação em rotas.

Roteamento de vetor de distâncias (DV)

Roteamento de vetor de distâncias (DV)

- Iterativo, assíncrono: cada iteração local é causada por:
 - omudança no custo do enlace local;
 - o mensagem de atualização DV do vizinho.
- Distribuído: cada nó notifica os vizinhos apenas quando seu DV mudar:
 - os vizinhos então notificam seus vizinhos, se necessário.

Roteamento de vetor de distâncias (DV)

- Baseado na Equação de Bellman-Ford (programação dinâmica).
- □ Define $d_x(y) = custo do caminho de menor custo de x para y.$
- □ Então $d_x(y) = min \{c(x,v) + d_v(y)\}$ onde min é calculado sobre todos os vizinhos de x.

Exemplo da Equação de Bellman-Ford

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Para obter a distância entre u e z, temos:

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d(z) \}$$

$$= min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

O nó que atinge o mínimo é o próximo salto no caminho mais curto → tabela de roteamento

Algoritmo de vetor de distâncias

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ Idéia básica:

- Cada nó envia periodicamente sua própria estimativa de vetor de distância aos vizinhos.
- Quando o nó x recebe nova estimativa de DV do vizinho, ele atualiza seu próprio DV usando a equação B-F:

$$D_x(y) = min_v\{c(x,v) + D_v(y)\}$$

para cada nó $y \in N$

 \forall Em condições naturais, a estimativa $D_x(y)$ converge para o menor custo atual $d_x(y)$.

Tabelas de roteamento

		Ċ	isto	até	-	~~	Cu	isto	até			Cu	ısto	até	
		х	у	z			х	У	z			х	у	z	_
	х	0	2	7		Х	0	2	3		х	0	2	3	
De	у	∞	∞	∞	De	у	2	0	1	٥	у	2	0	T	
	z	~	∞	∞	1.	Z	7	1	0		Z A	3	1	0	

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

Tabela do nó y

Custo até			X	X		Custo até			1	X		Cu	isto	até			
		х	у	z	Λ	P	<u> </u>	х	у	z	1	14		х	у	z	
	Х	∞	∞	∞		l	х	0	2	7	1		х	0	2	3	
De	у	2	0	1		å	у	2	0	1	1	å	У	2	0	1	
	z	∞	∞	∞			z	7	1	0		١.	z	3	1	0	

$D_{x}(z)$	$= \min\{c(x,y)\}$	/) +
D_{i}	(z), $c(x,z) + L$	$D_z(z)$
	$\{2+1, 7+0\}$	

Tabela do nó z

		Cu	isto .	até	l	Λ١		Cu	ısto	até	L	/ \		C	usto	até	
		х	у	Z		11	'	х	у	Z	[]	- 1		х	у	z	
	х	~	∞	∞	/		х	0	2	7	/		х	0	2	3	
Ö	У	∞	∞	∞		De	у	2	0	1		Ď	у	2	0	1	
	z	7	1	0			z	3	1	0)		z	3	1	0	

	2	(PS)
Tabela do nô x	•	
Custo até	Custo até	Custo até
Eusto ate X Y Z X S S S S S S S S S S S S S S S S S S	Custo até	Custo até
Custo até	Custo até	Custo até
		T

RIP (Routing Escola de Artes, Ciências e Humanidades nformation Protoco

ACH2026 - 2009

RIP (Routing rmation Protocol)

Escola de Artes, Ciências e Humanidades nformation Protoco)

- ∀ Protocolo de vetor de distâncias.
- ∀ Distribuído no BSD-UNIX em 1982.
- ∀ Métrica de distância: # de saltos
 - versão 1: máx. = 15 saltos [RFC1058]
 - versão 2: otimizações [RFC1723]

Destino	Saltos
u	1
v	2
W	2
Х	3
У	3
Z	2

RIP: Anúncios

- ∀ Vetores de distância:
 - trocados a cada 30 seg via Anúncio RIP.
- ∀ Anúncio contém:
 - lista de até 25 redes de destino dentro do AS;
 - distâncias entre remetente e rede destino.
- ∀ Utiliza segmentos UDP para troca de mensagens.
 - porta 520.

RIP: Exemplo

Figure 4.32 ♦ A portion of an autonomous system

Destination Subnet	Next Router	Number of Hops to Destination
W	А	2
У	В	2
Z	В	7
Х	_	1

RIP: Exemplo (continuação)

-Destination Subnet	Next Router	Number of Hops to Destination
Z	С	4
W	_	1
Х	_	1
		• • • •

Figure 4.34 ♦ Advertisement from router A

Destination Subnet	Next Router	Number of Hops to Destination
W	А	2
У	В	2
Z	А	5
	• • • •	• • • •

RIP: Falhas de enlace e recuperação

- ∀ Se não há um aviso depois de 180s, então o vizinho e o enlace são declarados mortos.
 - Rotas através do vizinho são anuladas;
 - novos anúncios são enviados aos vizinhos;
 - se necessário, os vizinhos por sua vez devem enviar novos anúncios;
 - Assim, a falha de um enlace se propaga rapidamente para a rede inteira.

RIP: loops

- ∀ Roteador x utiliza rota via y para chegar a roteador z (D=5).
- ∀ O que acontece se o custo do enlace entre x e y aumenta?

a. b.

Figure 4.28 ♦ Changes in link cost

RIP: loops (cont.)

- ∀ Cria loop de roteamento entre y e z... até que o custo desta rota seja equivalente ao custo da rota alternativa (mais "barata" agora).
- ∀ Solução: "reversão envenenada" (poisoned reverse):
 - se a rota de z para x passa por y, então z anuncia distância infinita para y (16 saltos na versão 1);
 - porém não resolve problemas de loops com 3 ou mais nós...

ACH2026 - 2009

EACH RIP: implementação Escola de Artes, Ciências e Humanidades em um gateway linux

Tabelas de roteamento: manipuladas por um *daemon* chamado route-d.

 Anúncios são enviados em pacotes UDP com repetição periódica.

EACH Roteamento de Escola de Artes, Ciências e Humanidades Stado de enlace (LS) da Universidade de São Paulo

ACH2026 - 2009

Roteamento de estado de enlace

- ∀ Algoritmo de Dijkstra
- ∀ Topologia de rede e custo dos enlaces são conhecidos por todos os nós:
 - o implementado via "link state broadcast";
 - o todos os nós têm a mesma informação.
- ∀ Computa caminhos de menor custo de um nó (fonte) para todos os outros nós:
 - cria uma tabela de roteamento para o nó onde o algoritmo foi aplicado.
- ∀ Convergência: após k iterações, conhece o caminho de menor custo para k destinos.

Notação

- ∀ C(i,j): custo do enlace do nó i ao nó j.
 Custo é infinito se não houver ligação entre i e j.
- \forall D(v): valor atual do custo do caminho da fonte ao destino v.
- \forall p(v): nó predecessor ao longo do caminho da fonte ao nó v.
- ∀ N': conjunto de nós cujo caminho de menor custo é definitivamente conhecido.
- ∀ u: nó onde está sendo executado o algoritmo.

Algoritmo de Dijkstra

da Universidade de São Paulo

```
Inicialização:
   N' = \{u\}
   para todos os nós v
    se v for vizinho de u
5
      então D(v) = c(u,v)
6
      senão D(v) = \infty
8
   Loop
9
     encontre w não em N', tal que D(w) é um mínimo
10
     adicione w a N'
11
     atualize D(v) para cada vizinho v de w e não em N':
12
          D(v) = \min(D(v), D(w) + c(w,v))
13
    /* novo custo para v o custo anterior para v ou o menor
     custo de caminho conhecido para w mais o custo de w a v */
14
   até que todos os nós estejam em N'
```


Algoritmo de Dijkstra: Exemplo

Etapa	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux	2,u	4,x		2,x	∞
2	uxy	2,u	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw		ACH2026 - 2	2009		4,y ₂₈
5	11X\/\/\/7					

Complexidade do algoritmo

- ∀ Considere n nós.
- ∀ Cada iteração: precisa verificar todos os nós w, que não estão em N.
 - n(n+1)/2 comparações: O(n²).
- ∀ Implementação mais eficiente: O(n.logn).

OSPF (Open Shortest Path First)

OSPF (Open Shortest Path First)

- ∀ Open: publicamente disponível[RFC2178]
- ∀ Protocolo de estado de enlace:
 - disseminação de pacotes LS;
 - mapa topológico em cada nó;
 - algoritmo de Dijkstra para cálculo de rotas.
- ∀ Anúncios do OSPF transportam um registro para cada roteador vizinho.

OSPF (cont.)

- ∀ Anúncios são distribuídos para todo o AS (via flooding):
 - mensagens OSPF diretamente sobre IP (protocolo de camada superior 89).
- ∀ Atualização periódica a cada 30 min (adiciona robustez).
- ∀ Mensagem de HELLO para verificar se enlaces estão ativos.
- ∀ Custo do enlace é definido pelo administrador do roteador.

OSPF: avanços

- ∀ Segurança: todas as mensagens do OSPF são autenticadas.
- ∀ Múltiplos caminhos de mesmo custo são permitidos (o RIP só permite um caminho).
- ∀ Integra tráfego uni- e multicast:
 - multicast OSPF (MOSPF) usa a mesma base de dados de topologia do OSPF.
- ∀ OSPF hierárquico: OSPF para grandes domínios.

OSPF: hierarquia em Escola de Artes, Ciências e Humanidades da Universidade de São Paulo Comínio roteamento

Comparação entre LS

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

e DV

Complexidade da mensagem:

- ∀ LS: com n nós, E links, O(NE) mensagens enviadas
- ∀ DV: trocas somente entre vizinhos
 - Tempo de convergência varia

Velocidade de convergência

- \forall LS: algoritmo O(N²) exige mensagens O(NE).
 - pode ter oscilações.
- ∀ DV: tempo de convergência varia:
 - pode haver loops de roteamento;
 - o problema da contagema o infinito.

Comparação entre LS

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Robustez: o que acontece se um roteador funciona mal?

- □ LS:
 - ∀ nós podem informar custos de **link** incorretos;
 - ∀ cada nó calcula sua própria tabela de roteamento.
- DV:
 - ∀ nó DV pode informar custo de **caminho** incorreto
 - ∀ tabela de cada nó é usada por outros:
 - propagação de erros pela rede.

Roteamento Hierárquico

Roteamento Hierárquico

- · Até agora, situação ideal e simplista:
 - roteadores são todos idênticos;
 - rede plana (flat).
- Não funciona porque:
 - Escala: com 200 milhões de destinos:
 - tamanho da tabela de rotas é intratável!
 - mudanças na tabela -> congestionamento!
 - Autonomia administrativa:
 - Internet = rede de redes.
 - Cada administração de rede pode querer controlar o roteamento na sua própria rede.

Roteamento Hierárquico

- ∀ Agrega roteadores em regiões: "sistemas autônomos" (AS).
- ∀ Roteadores no mesmo AS rodam o mesmo protocolo de roteamento:
 - protocolo de roteamento "intra-AS"
 - roteadores em diferentes AS podem rodar diferentes protocolos de roteamento.
- ∀ Roteador de borda (gateway router):
 - enlace direto para um roteador em outro AS.

Sistemas Autônomos Interconectados

- Tabela de roteamento é configurada por ambos os algoritmos, intra e inter-AS:
 - Intra-AS estabelece entradas para destinos internos;
 - Inter-AS e intra-As estabélécém éntradas para destinos externos.

Roteamento Intra-AS

da Universidade de São Paulo

- Também conhecido como Interior Gateway Protocols (IGP)
- Protocolos mais comuns:
 - RIP: Routing Information Protocol;
 - OSPF: Open Shortest Path First;
 - IGRP: Interior Gateway Routing Protocol (proprietário da Cisco, baseado no DUAL).

Roteamento Inter-AS:

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo **BGP**

- ∀ Roteamento inter-AS ou externo a AS.
- ∀ Padrão de fato para uso na Internet: BGP (Border Gateway Protocol).
- ∀ Versão 4: RFCs 1771, 1772 e 1773.

BGP (Border Gateway Protocol)

BGP

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ Provê a cada AS meios para:

- 1. obter informações de alcance de sub-rede dos ASs vizinhos;
- 2. propagar informações de alcance para todos os roteadores internos ao AS;
- 3. determinar rotas "boas" para as sub-redes baseado em informações de alcance e política.
- ∀ Permite que uma subnet comunique sua existência para o resto da Internet: "Eu existo e estou aqui".

BGP: Conceitos Básicos

- ∀ Pares de roteadores trocam informações de roteamento por conexões TCP semipermanentes na porta 179.
- ∀ Sessões BGP não correspondem aos enlaces físicos!

BGP: Conceitos Básicos

- ∀ No BGP, anúncios não tratam de hospedeiros, mas sim de prefixos.
- ∀ Quando AS2 comunica um prefixo ao AS1, AS2 está prometendo que encaminhará todos os datagramas destinados a esse prefixo em direção ao prefixo.
- ∀ AS2 pode agregar prefixos em seu comunicado.

Informações de alcance

- ∀ Em cada sessão eBGP entre 3a e 1c, AS3 envia informações de alcance de prefixo para AS1.
- ∀ 1c pode então usar iBGP para distribuir essa nova informação de alcance de prefixo para todos os roteadores em AS1.
- ∀ 1b pode recomunicar essa nova informação para AS2 por meio da sessão eBGP 1b-para-2a.
- ∀ Quando um roteador aprende um novo prefixo, ele cria uma entrada para o prefixo em sua tabela de roteamento.

Atributos de caminhos e roteadores BGP

- ASN: número do AS (registrado na ICANN)
- Anúncio inclui os atributos do BGP:
 - Prefixo + atributos = "rota"
- Dois atributos importantes:
 - ○AS-PATH: contém os ASs pelos quais o anúncio para o prefixo passou: AS 67 AS 17.
 - NEXT-HOP: indica o endereço IP da interface que leva ao roteador de borda (next-hop).
- Quando um roteador gateway recebe um comunicado de rota, ele usa política de importação para açeitar/rejeitar.

da Universidade de São Paulo

Escola de Artes, Ciências e Humanidad BGP: Seleção de Rota

∀ Um roteador pode aprender mais do que 1 rota para o mesmo prefixo, e então deve selecionar uma rota.

- ∀ Regras de eliminação (em ordem):
 - atributo de valor de preferência local: decisão de política;
 - AS-PATH (caminho) mais curto;
 - roteador do NEXT-HOP (próximo salto) mais próximo: roteamento da "batata quente";
 - identificadores BGP.

Mensagens BGP

- ∀ Utilizam TCP.
- ∀ Mensagens:
 - OPEN: abre conexão TCP para o par e autentica o transmissor;
 - UPDATE: comunica novo caminho (ou retira um antigo);
 - KEEPALIVE mantém a conexão ativa na ausência de atualizações (updates); e confirma requisição OPEN.
 - NOTIFICATION: reporta erros em mensagens anteriores; usado para fechar a conexão

BGP: Política de roteamento

∀ Rede stub: tráfego é destinado a ela e oriundo dela.

∀ X é uma rede stub com múltiplas interconexões:

Hogo X não deve rotear tráfego de B para C.

-então X não anuncia a B uma rota para C!

Por que diferenças Escola de Artes, Ciências e Humanidades en tre inter e intra-AS? Escola de Artes, Ciências e Humanidades en tre inter e intra-AS?

∀ Políticas:

 Inter-AS: a administração quer ter controle sobre como seu tráfego é roteado e sobre quem roteia através da sua rede.

∀ Escalabilidade:

 roteamento hierárquico poupa espaço da tabela de rotas e reduz o tráfego de atualização.

∀ Desempenho:

O preocupação maior é desempenho em intra-AS.

Dúvidas?