MIT OpenCourseWare http://ocw.mit.edu

18.701 Algebra I Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1. The slope of a subspace.

Since $V = \mathbb{C}^2$ is a two-dimensional complex vector space, every proper subspace has dimension 1, and consists of the complex multiples of a nonzero vector v. Distinct 1-dimensional subspaces have only the zero vector in common. So if we agree to delete zero, then V is partitioned into one dimensional subspaces, each of which is a complex plane with zero deleted. This is analogous to the fact that the real vector space \mathbb{R}^2 is partitioned into its one dimensional subspaces, the lines through the origin (again deleting zero).

We can describe a one-dimensional subspace W by its *slope*. Say that $W = \operatorname{Span}(v)$, and that the coordinate vector of v is the complex vector $(x_1, x_2)^t$. The slope of W is defined to be $\lambda = x_2/x_1$. It is independent of the choice of the nonzero vector v in W, and it can be any complex number, or, when $x_1 = 0$, it is defined to be infinity.

The special value ∞ for a slope is an unpleasant artifact of our choice of coordinates. Using the inverse of stereographic projection, all slopes, including ∞ , correspond to points on a two dimensional sphere S^2 .

The equation of the unit sphere S^2 is $u_0^2 + u_1^2 + u_2^2 = 1$. We let u_0 denote the vertical axis in \mathbb{R}^3 . The north pole is the point p = (1, 0, 0), and we identify the locus $\{u_0 = 0\}$ with the complex λ -plane Λ :

$$(0, u_1, u_2) \longleftrightarrow u_1 + u_2 i = \lambda.$$

Stereographic projection $\pi: S^2 \to \Lambda$ is defined as follows: To obtain the image $\pi(u)$ of a point $u \in S^2$, one draws the line that passes through p and u. Then $\pi(u)$ is the intersection of this line with Λ . The projection is defined at all points of S^2 except at the pole p, which is "sent to ∞ ".

The formula for stereographic projection is not difficult to compute by 18.02 methods. It is

(1.1)
$$\pi(u_0, u_1, u_2) = \left(0, \frac{u_1}{1 - u_0}, \frac{u_2}{1 - u_0}\right) \leftrightarrow \lambda_1 + \lambda_2 i = \lambda,$$

where $\lambda_{\nu} = \frac{u_{\nu}}{1-u_0}$. The inverse function is

(1.2)
$$\sigma(\lambda) = \left(\frac{\overline{\lambda}\lambda - 1}{\overline{\lambda}\lambda + 1}, \frac{2\lambda_1}{\overline{\lambda}\lambda + 1}, \frac{2\lambda_2}{\overline{\lambda}\lambda + 1}\right) = (u_0, u_1, u_2).$$

The slope map $\Sigma: V - \{0\} \longrightarrow S^2$ is defined by $\Sigma(v) = \sigma(\frac{x_2}{x_1})$.

Exercise. Prove that two nonzero vectors v, w are orthogonal if and only if $\Sigma(v)$ and $\Sigma(w)$ are antipodal points of the sphere.

2. The Hopf fibration.

Let x_1, x_2 be the coordinates in V, and say that we write $x_{\nu} = a_{\nu} + b_{\nu}i$. The locus of unit length vectors in V is defined by the equation $\overline{x}_1x_1 + \overline{x}_2x_2 = 1$, or by $a_1^2 + b_1^2 + a_2^2 + b_2^2 = 1$. This locus is called the three-dimensional *unit sphere* in \mathbb{C}^2 , and we denote it by S^3 .

The intersection of the unit sphere S^3 with a one-dimensional (complex) subspace W is the unit circle C_W in W. Since \mathbb{C}^2 is partitioned into subspaces, the three-sphere is partitioned into the unit circles C_W . This peculiar partition, called the *Hopf fibration*, is somewhat hard to visualize.

We may also map $S^3 \to \mathbb{R}^3$ by a stereographic projection analogous to (1.1). The images in \mathbb{R}^3 of the circles making up the Hopf fibration become a fibration of real 3-space. The image of the circle containing the north pole is a line in \mathbb{R}^3 , and the images of the other circles are linked circles, though not unit circles, in \mathbb{R}^3 . There is a Matlab program to visualize this projected Hopf fibration on the web. It was made a few years ago by Huan Yao.

When restricted to the unit sphere, the slope map Σ defines a map $S^3 \longrightarrow S^2$ whose fibres are the circles C_W : again the Hopf fibration.

Exercise. Compute formulas for stereographic projection $\pi: S^3 \to \mathbb{R}^3$ and its inverse $\sigma: \mathbb{R}^3 \to S^3$.