

Der Business Analytics Club für SAS User

Unser Programm für heute

Mathematische Optimierung und Visualisierung für ein Transportproblem

Dr. Gerhard Svolba, SAS-Austria

Neuigkeiten aus der SAS Forschungs- und Entwicklungsabteilung: "Time Series Data Mining" Dr. Mihai Paunescu, SAS-Austria

Der SAS Ansatz zu "Rapid Predictive Modeling"

Dr. Gerhard Svolba, SAS-Austria

Tipps & Tricks: Dynamischer Austausch von Daten zwischen SAS und MS-Excel

Mag. Bernadette Fabits, SAS-Austria

Dr. Gerhard Svolba

(credits to Ulrich Reincke SAS-Deutschland)

Inhalte

- 1. Forecasting: Wohin müssen die KSFE-Teilnehmer alle heute noch heimreisen?
- 2. Optimierung: Wie packen wir alle KSFE Teilnehmer sinnvoll in die Zuge der deutschen Bahn?
- 3. Visualisierung der Problemlösung: Zeitraffer Film mit JMP-Visual Data Disco
- 4. Simulation "Was wäre Wenn…": Unterschiedliche Heimreiseszenarien
- 5. (Erstellen von SAS Graphiken mit SGPLOT)

Forecasting-Optimierung-Simulation

- In Berlin findet eine SAS
 Konferenz mit 363 Teilnehmern statt
- Wie bringt man alle Teilnehmer mit der Deutschen Bahn in der kürzest möglichen Zeit zu ihren Heimat-Bahnhöfen
- Berücksichtigung von Heimatorten und Bahnhöfen, Zugfahrplänen, Kapazitäten pro Zug

Umsetzung des Streckennetzes in SAS

Wo liegen die Heimatorte der KSFE Teilnehmer?

Extraktion aus der Teilnehmerliste


```
Versicherungskammer Bayern
C1UC01
D-81539 München
Otto-von-Guericke-Universität Magdeburg
(Institut für Biometrie und Medizinische Informatik
D-39120 Magdeburg
Siemens Healthcare Diagnostics Products GmbH
Quality Assurance / Statistics/Validation
D-35001 Marburg
Condat AG
Business Intelligence & Data Quality
D-10559 Berlin
Freie Universität Berlin
Institut für Biometrie und Informationsverarbeitung
D-14163 Berlin
Accovion GmbH
Statistical Programming
D-65760 Eschborn
<del>(Aurich Consulting Gm</del>bH
CH-5405 Baden
ING-DiBa AG
Produkt- und Zielgrappenmanagement
D-60486 Frankfurt
```


Wo liegen die Heimatorte der KSFE Teilnehmer?

KSFE Anmeldungen

PLZ Tabelle

	PLZ5	X	Y
4920	68307	352874.31	258934.63
4921	68309	357254.05	254843.87
4922	68519	359536.26	258446.53
4923	68526	363325.49	249390.25
4924	68535	362351.51	246745.42
4925	68542	363158.53	254321.9
4926	68549	359835.77	249579.43
4927	68623	359619.89	266269.62
4928	68642	353279.19	268494.23
4929	68647	350912.73	273602.05
4930	68649	354704.25	276325.55
4931	68723	360786.11	238555.16
4932	68753	357301.22	222481.97
4933	68766	356984.87	233541.34
4934	68775	356871.02	237522.21
4935	68782	357426.1	240762.38
4936	68789	362555.93	225912.59
4937	68794	354258.06	226482.27
4938	68799	360017.99	230097.88
4939	68804	354768.89	229968.77
4940	68809	356521.24	229725.22
4941	69115	367789.83	241152.07
4942	69117	371673.35	240003.8
4943	69118	373595.03	243221.14

PLZ aus
Teilnehmerliste"
anreichern (Join) mit
geografischen x- und yKoordinaten

L	M
plz_z	ORT
68165	Mannheim
79111	Freiburg im Breisgau
04109	Leipzig
04109	Leipzig
85737	Ismaning
85737	Ismaning b. München
85737	Ismaning
85737	Ismaning
50354	Hürth
65760	Eschborn
45470	Mülheim an der Ruhr
60329	Frankfurt am Main
60329	Frankfurt am Main
20095	Hamburg
15366	Dahlwitz-Hoppegarten
50968	Köln
35039	Marburg
35039	Marburg
55116	Mainz
64293	Darmstadt
81379	München
68723	Schwetzingen
89077	Ulm

Heimatorte der KSFE Teil-nehmer

Heimatorte der KSFE Teilnehmer

```
OSchleswig
                                                            Dummerstort
                                                            Güstrow
                                    Quickborn
                        Bremen
                                                                        Eberswalde
                                                                   Fredersdorf-Vogelsdorf
                                                                   Berlin-WestO Berlin-Ost
                            Garbsen
                                  Hannover
                                                                       Kleinmachnow
                                                      OMagdeburg
           _Münster
                        _Detmold
                                    Göttingen
                                                          OHalle (Saale)
   O<sup>Essen</sup>
O Wuppertal
ON€uss Dusseldorf
  OMenheim am Rhein
  O<sub>Löin</sub> Leverkusen
                                                      Jena
Title 'Heimatorte';
ods graphics on
     / imagemap=on border=off imagefmt=staticmap
        width=1700 height=1600
        imagename="Scatterplot Heimatorte";
proc sgplot data=heimatort bhf(where=(Typ le 2));
scatter x=x y=y /datalabel=Ort;
vaxis display=None;
xaxis display=None;
run; quit;
ods graphics off;
```


Dichte der Geoverteilung der Heimatorte der **KSFE** Teilnehmer


```
Ssas & HHH GÜ

P,B

Ochte der D,E,DO
```

```
Title 'Schätzung der Diche der geografischen
       Verteilung SAS Nutzer auf deutschem Moder
ods graphics on
   / imagemap=on border=off imagefmt=staticmap
     width=1700 height=1600
     imagename="Dichte Heimatorte";
proc kde data=heimatort bhf(where=(Typ le 2));
               / bwm=.4 plots=all;
 bivar
           X A
run:
ods graphics off;
```


DB Download Fahrplan: (Station, Ankunft Abfahrt)

Bahn-

höfe

der

Zug-

verbin-

dungen

Routen der Zugver-bin-dungen

Routen der Zugverhindungen

ods graphics on

run; quit;

```
vvesterranu
                                                 Niebüll
                                                      Flensburg
                                                       Schleswig
                                                  Husum
                                                                                  Straisund
Velgast
                                                        Rendsburg
                                                                  Oldenburg
                                                   Heide
                                                                              Rostock
                                                           Neumünster
                                                                            Bützow
                                                                                            Anklam
                                                                 Lübeck
                                 Norden
                                                                       Schwerin
                                                          Hamburg
                                                                                              Pasewalk
                                  Emden
                                                                                             ₽fenzlau
                                                                                              Angermünde
                                   ₽apenburg
                                                Bremen
                                                                                             ⊌berswalde
                                                                                           Bernau
                                  leppen
                                  ingen
                                                                                 Brandenburgetsd
                                        Osnabrück
                                     Münster
                                                                                                   Cottbu#s<sub>irst</sub>
                                          <u>LippstadPad</u>Altenheken
                                 ecklinghaus Hamm
                                                          Göttingen
                                                                                           Elsterwerda
                                                                                         Riesa
     / imagemap=on border=off imagefmt=staticmap
        width=1700 height=1600
        imagename="Bahnverbindungen";
proc sgplot data=routes input(where=(substr(route,1,1) eq 'g'));
series x=x y=y /datalabel=stop group=routed
                          LINEATTRS=(pattern=solid Thickness=3);
vaxis display=None;
xaxis display=None;
keylegend /position=right;
ods graphics off;
```


Bahnhöfe und Heimatorte der KSFE Teilnehmer

count

typ

Wie finde ich zu jedem Heimatort den nächsten

Bahnhof?

Input Tabelle "heimatort_bhf"

Ort

Aachen Aalen

Amberg

Altenbeken

Andernach

Angermünde

	Optimierung	mit SAS/OR	(Optmodel):
--	-------------	------------	-------------

<pre>proc optmodel;</pre>	Anklam
	Ansbach
set <str, num=""> ORTE;</str,>	Augsburg
<pre>num x{ORTE},y{ORTE},count{Orte};</pre>	Aulendorf
str Typ{ORTE};	
read data heimatort_bhf into ORTE=[ort Typ] x y;	
num dist $\{\langle i, ii \rangle \text{ in Orte}, \langle j, jj \rangle \text{ in Orte}: ii = 1 and jj>1\}$	
= $sqrt((x[i,ii]-x[j,jj])**2+(y[i,ii]-y[j,jj])**2); <$	
<pre>num Min_dist{<i,ii> in Orte: ii<2 }=(min{<j,jj> in Orte: jj></j,jj></i,ii></pre>	1}
dist[i,ii,j ,jj]);	
create data Zubringer (where=(min_dist eq dist))	
<pre>from [Heimatort Typ_H Bahnhof Typ_B]=</pre>	

 $\{\langle i, ii \rangle \text{ in Orte}, \langle j, jj \rangle \text{ in Orte}: ii = 1 \text{ and } jj > 1 \}$

 $\min_{i,j} dist[i,ii] dist[i,ii,j,jj] x_h = x[i,ii] y_h = y[i,ii] x_b = x[j,jj] y_b = y[j,jj];$

The Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c).

quit:

		Heimatort	Bahnhof	dist	x_h	y_h	х_Ь	у_Ь
1	Ka	ufbeuren	Augsburg	60	508	70	529	127
2	Lar	ndsberg a. Lech	Augsburg	39	527	88	529	127
3	Tü	rkheim	Augsburg	41	510	90	529	127
4	Wi	ndach	Augsburg	37	539	91	529	127
5	Fre	eiburg im Breisgau	Basel	46	299	89	287	45

Output Tabelle "Zubringer"

Bahnhofszuordnungen der Heimatorte

run; quit;

```
    □ ROS-Dummerstorf

                                                                                  🗻 BÜT-Güstrow
                                                          HAM-Quickborn
                                                   HAM-Schenefeld
                                                   HAM-Wedel
                                                                                          BER-Fredersdorf-Voge
                                                                                        BER-Berlin-West
                                                HAN-Garbsen
                                                                                     POT-Kleinmachnow
                                 BIE-Halle (Westf.)
                                               ALT-Detmold
                                                                                → HAL-Halle (Saale)
                        📐 DÜS-Monheim am Rhein
                         1 KÖL-Leverkusen
                                       FUL-Marburg
                                  WIF-Idstein
                            SIE-Königswinter
                                      HAN-Gießen
                                  FRA-Bad Homburg v.d. N
                                                                BAY-Coburg
                                                                         BAY-Burgkunstadt
                                               HAN-Offenbach am Mai
Title 'Zuordnung Heimatort-Bahnhof (minimale Distanz)';
ods graphics on / imagemap=on border=off imagefmt=staticmap
                           width=1700 height=1600 imagename="Zubringer";
proc sgplot data=zubringer;
vector x=x h y=y h / xorigin=x b yorigin=y b datalabel=label;
yaxis display=None;
xaxis display=None;
ods graphics off;
```


Reisebedarf zu den Zielbahnhöfen

Gesamtanzahl

Personen

je

Bahnhof

Sas. THE POWER TO KNOW.

Reisebedarf zu den Zielbahnhöfen

Gesamtanzahl

Personen je

```
Schleswig(3)
                                                                                                                                          Rostock(4)
                                                                                     Hamburg(18)
                                                                                                                          Bützow(1)
                                                                                                                                                                       Eberswalde(3)
                                                       Bremen(4)
                                                                                                                                                                           Berlin(-299)
                                                                               Hannover(9)
                                                                                                                                                                           Bernau(1)
                                                                                                                                                       Potsdam(1)
                       Münster(15)
                                                                                                                              Magdeburg(3)
                                              Bielefeld(2)
Düsseldorf(17)
                                                                                                                                        Halle(6)
                                                         Altenbeken(1)
                                                                                   Göttingen(3)
       Essen(6) Dortmund(1)
                                                                                                                                                    Leipzig(3)
        Wuppertal(5)
                                                                                                                               Jena(1)
                                                                           Fulda(9)
```


Prognostizierte

Gesamtanzahl
Personen je
Bahnhof &
Zubringer

Prognostizierte

Gesamtanzahl
Personen je
Bahnhof &
Zubringer

```
Schleswig(3)
                                                                                                                                         Rostock(4)
                                                                                    Hamburg(18)
                                                                                                                                           Dummerston
                                                                                                                                            Güstrow
                                                                       Quickborn
                                                                                                                                                                     Eberswalde(3)
                                                       Bremen(4)
                                                                                                                                                                         Berlin(-299)
                                                                                                                                                               Bernau(1)
                                                                               Hannover(9)
                                                                                                                                                           Berlin-West
                                                                                                                                                     Potsdam(1
                       Münster(15)
                                                                                                                             Magdeburg(3)
                                              Bielefeld(2)
                                                                                                                                                            Fredersdorf-Vogelsdorf
                                                                                                                                                                     Kleinmachnow
Düsseldorf(17)
                                                      Altenbeken(1)
                                                                                   Göttingen(3)
       Essen(6) Dortmund(1)
                                                                                                                                                   Leipzig(3)
                                                                                                                         Halle (Saale)
                                                                           Fulda(9)
```


2. Optimierungsaufgabe:

- Verteile die 363 KSFE Teilnehmer gemäß der so prognostizierten Nachfrage in ihren Heimatorten unter Nutzung der gegebenen Bahnverbindungen
- Minimiere Reisekosten/Reisezeiten
- Berücksichtige alle Kapazitäts-Beschränkungen:
 - Platz in Zügen, Bahnhöfen
 - Fahrplan
 - Mögl. Verbindungen
 - Netto Angebot (zum Zeitpunkt 1): 363 Personen in Berlin
 - Individuelle prognostizierte Nachfrage zum Zeitpunkt T=889 Minuten in den Heimatbahnhöfen aller Teilnehmer

Anfangsbedingung (T=1): Endbedingung T=(889):

Neben-Bedingungen: Routen der Zugverbindungen nutzen

Input Tabellen für die Nebenbedingungen (NB)

1. Netto_Demand_Supply (NB): 2. Bahnhofsinformationen (NB):

		stop	Time	net_ds
	1	Altenbeken	1440	-1
	2	Basel	1440	-6
	3	Bayreuth	1440	-4
l	4	Berlin	1	299
(5	Bernau	1440	-1
	6	Bielefeld	1440	-2
	7	Bingen	1440	-1
	8	Bremen	1440	-4
	9	Bützow	1440	-1
	10	Dortmund	1440	-1
	11	Düsseldorf	1440	-17
	12	Eberswalde	1440	-3
	13	Essen	1440	-6
	14	FRA Airport	1440	-20
	15	Fulda	1440	-9
	16	Göttingen	1440	-3
	17	Halle	1440	-6
	18	Hamburg	1440	-18

	stop	×	у	MinCap	InitStock	МахСар	Storage
1	Aachen	188759.5	401534	5	5	161	1
2	Aalen	469494.5	177203	5	9	167	1
3	Altenbeken	392195.6	500349	5	7	162	1
4	Andernach	277664.9	358393	5	5	150	1
5	Angermünde	734695	652621	5	6	154	1
6	Anklam	712357.6	738315	5	8	169	1
7	Ansbach	504181.1	226600	5	7	167	1
8	Augsburg	529094.6	124151	5	8	162	1
9	Aulendorf	436606.4	77738	5	5	162	1
10	Basel	286563.3	44554.6	5	5	155	1
11	Bayreuth	577277.8	300455	5	15	176	1
12	Bebra	451689	415301	5	14	186	1
13	Berlin	695729.5	591622	5	5	160	1
14	Bernau	708695.2	610900	5	5	158	1
15	Biberach	447426.2	93835.7	5	11	170	1
16	Bielefeld	365323.4	532863	5	5	144	1
17	Bingen	315844.5	303718	5	6	161	1
18	Binz	700164.9	802237	5	115	375	1

3. Verbindungsrouten und Routenabschnittsinformationen (NB):

	TrainID	Route0	stop	TotCostA	DietCoet∆	StorageCost	BookingCostT	MaxCapT	ShipTimeA	ShipDistA			arr	don 🔺
	Halfillo	nouteo	stob	TOLCOSIA	DISCOSIA	StorageCost	BOOKINGCOSCI	махсарт	Subtilled	SHIPDISM	*	У	all	dep <u></u> ▲
3568	g-WI_DD4	WI_DD	Mainz	11.97	10.88	1.00	0.09	153	4	39.6	340679.02	308432.62	223	225
3569	g-WI_DD4	WI_DD	FRA Airport	23.53	22.44	1.00	0.09	153	17	168.3	358063.98	314104.61	242	243
3570	g-WI_DD4	WI_DD	Fulda	45.96	44.87	1.00	0.09	153	68	673.2	442210.15	368277.34	311	312
3571	g-WI_DD4	WI_DD	Eisenach	38.79	37.70	1.00	0.09	153	48	475.2	484788.99	416190.77	360	362
3572	g-WI_DD4	WI_DD	Gotha	21.45	20.36	1.00	0.09	153	14	138.6	514224.28	410839.75	376	378
3573	g-WI_DD4	WI_DD	Erfurt	22.17	21.07	1.00	0.09	153	15	148.5	536981.91	414613.58	393	394
3574	g-WI_DD4	WI_DD	Weimar	20.71	19.62	1.00	0.09	153	13	128.7	558106.16	415151.27	407	409
3575	g-WI_DD4	WI_DD	Leipzig	40.33	39.24	1.00	0.09	153	52	514.8	632116.43	455677.09	461	471
3576	g-WI_DD4	WI_DD	Riesa	30.89	29.80	1.00	0.09	153	30	297.0	693302.76	454349.71	501	503

Mathematische Formulierung des Optimierungsproblems in Gleichungen

- Index Objekte (Dimensionen):
 - STOPS (Bahnhöfe)
 - ARCS(Punkt-zu-Punkt-Zugverbindungen im Raum-Zeit-Netzwerk)
 - TIME (Zeit in Minutenschritten von 0...1440=24*60 Minuten)

```
*Entscheidungsvariablen (Wieviele Personen Fahren entlang welcher Verbindung zu welcher Zeit durch welchen Ort);
var Ship{ARCS} >=0 init 0, Stock{STOPS,TIME}>=0 init 0;
min total cost = sum{<ORIG, DEST, arr, dep> in ARCS} TotCostA[ORIG, DEST, arr, dep]*Ship[ORIG, DEST, arr, dep]
                +SUM{i in STOPS, j in TIME} (stock[i, j] *StorageCostS[i]);
*Nebenbedingung Typ 1: (Erhaltung der SFD Teilnehmer im Raum-Zeit-Netzwerk. Niemand kann verloren gehen!);
constraint MaterialBalance{i in STOPS, j in TIME}: Stock[i,j]=
                                      (if j >1 then Stock[i,j-1] else InitStockS[i])
                                     +SUM\{<0, d,ar,de> in ARCS: ar = j and i = d\} Ship[o, d, ar, de]
                                     -SUM\{<0, d, ar, de > in ARCS: de = j and i = o \} Ship[o, d, ar, de]
                                     +net DS[i, j];
*Nebenbedingung Typ 2: (Die Maximalkapazitäten der Züge dürfen nicht überschritten werden);
constraint CapacityT{<ORIG, DEST, arr, dep> in ARCS}:
                                     Ship[ORIG, DEST, arr, dep] <= MaxCapT[ORIG, DEST, arr, dep];</pre>
*Nebenbedingung Typ 3: (Die Maximalkapazitäten der Bahnhöfe dürfen beim Umsteigen nicht überschritten werden);
constraint CapacityS{i in STOPS, j in TIME}:
                                    MinCapS[i] <= Stock[i, j] <= MaxCapS[i];</pre>
solve:
```

```
proc optmodel printlevel=2 presolver=none ;
set <string, string, num, num> ARCS;
set<string> STOPS;
set <num> TIME=1..1440;
num MaxCapT{ARCS}, MinCapT{ARCS}=0, TotCostA{ARCS}, ShipDistA{ARCS}, ShipTimeA{ARCS},
    InitStockS{STOPS}, x{STOPS}, y{STOPS}, MaxCapS{STOPS}, MinCapS{STOPS} , StorageCostS{STOPS} , Net DS{STOPS,TIME};
str TrainID{ARCS}, RouteO{ARCS};
read data sfd09.arcs into ARCS = [Oriq Dest arr dep] ShipTimeA ShipDistA TotCostA TrainID MaxCapT route0;
read data sfd09.stops into STOPS = [STOPS=stop] InitStockS MaxCapS MinCapS StorageCostS x y;
read data sfd09.net DS(rename=(stop=STOPS)) into [STOPS TIME] Net DS;
set <str,num> SPACETIMEO= UNION {<ORIG, DEST, arr, dep> in ARCS} { <ORIG, dep-1>, <ORIG, dep> , <ORIG, dep+1>, <DEST, arr-1>
set \langle \text{str}, \text{num} \rangle SPACETIME1=UNION {i in STOPS, j in TIME: net ds[i,j] ne 0} {\langle i,j-1 \rangle, \langle i,j \rangle, \langle i,j+1 \rangle};
set <str,num> SPACETIME2=SPACETIME0 UNION SPACETIME1;
set <str, num> SPACETIME={<i, j> in SPACETIME2: j le 1440 and j qe 1};
var Ship{ARCS} >=0 init 0, Stock{STOPS,TIME}>=0 init 0;
min total cost = sum{<ORIG, DEST, arr, dep> in ARCS} TotCostA[ORIG, DEST, arr, dep]*Ship[ORIG, DEST, arr, dep]
                +SUM(i in STOPS, j in TIME) (stock[i, j] *StorageCostS[i]);
constraint MaterialBalance(i in STOPS, j in TIME): Stock[i,j]=
                                              (if j >1 then Stock[i,j-1] else InitStockS[i])
                                              +SUM{\langle 0, d, ar, de \rangle in ARCS: ar = j and i = d} Ship[0, d, ar, de]
                                              -SUM{\langle o, d, ar, de \rangle in ARCS: de = j and i = o \} Ship[o, d, ar, de]
                                              +net DS[i, j];
constraint CapacityT{<ORIG, DEST, arr, dep> in ARCS}: Ship[ORIG, DEST, arr, dep] <= MaxCapT[ORIG, DEST, arr, dep];
constraint CapacityS{i in STOPS, j in TIME}:
                                                            MinCapS[i] <= Stock[i, j] <= MaxCapS[i];</pre>
solve:
       inflow(i in STOPS, j in TIME) = SUM(<o , d , ar , de > in ARCS: ar = j and i = d } Ship[o , d , ar, de ].sol;
num
      outflow(i in STOPS, j in TIME) = SUM(<o , d ,ar ,de > in ARCS: de = j and i = o } Ship[o , d , ar , de ].sol;
set <str, num> SPACETIME6=setof {i in STOPS, j in TIME : inflow[i,j] ne 0 or outflow[i,j] ne 0 or Net DS[i,j] ne 0 } <i
                          union
                          setof {i in STOPS, j in TIME : inflow[i,j] ne 0 or outflow[i,j] ne 0 or Net DS[i,j] ne 0 } <i
create data RESULT SHIP from [Origin Destination arr dep]={<ORIG, DEST, arr, dep> in ARCS}
                                     TrainID[ORIG, DEST, arr, dep]
                                     RouteO[ORIG, DEST, arr, dep]
                                     Ship[ORIG, DEST, arr, dep]
```


Die Konkreten Gleichungen, werden durch Befüllen der Inputtabellen erstellt:

Bsp. Mannheim zum Zeitpunkt 2

Constraint MaterialBalance(Mannheim,2): - Stock(Mannheim,1) + Stock(Mannheim,2) = 0

Bsp. Mannheim zum Zeitpunkt x(erste Zugabfahrt nach KL)

Constraint MaterialBalance[Mannheim,39]: Ship[Mannheim,Kaiserslautern,79,39] - Stock[Mannheim,38] + Stock[Mannheim,39] = 0

Bsp. Heidelberg zum Zeitpunkt 1

Constraint MaterialBalance[Heidelberg,1]: Stock[Heidelberg,1] = 0

Bsp. Heidelberg zum Zeitpunkt 2

Constraint MaterialBalance[Heidelberg,1440]: - Stock[Heidelberg,1439] + Stock[Heidelberg,1440] = -38

The OPTMODEL Procedure

Problem Summary

Objective Sense	Minimization
Objective Function	total_cost
Objective Type	Linear
Number of Variables	224630
Bounded Above Bounded Below Bounded Below and Above Free Fixed	224630 0 0 0
Number of Constraints	442070
Linear LE (<=)	7190
Linear EQ (=)	217440
Linear GE (>=)	0
Linear Range	217440

Solver Options

User

Specified

Option	Value
SOLVER	DS
BASIS	SLACK
FEAS T OL	1E-6
118	OFF
MAXITER	2147483647
MAXTIME	Infty
OPTTOL	1E-6
PRESOLVER	AUTOMATIC
PRICE TYPE	STEEPESTEDGE
PR INTFREQ	(DEFAULT)
SCALE	AUTOMATIC
TIMETYPE	CPU

Solution Summary

Solver	Dual Simplex
Objective Function	total_cost
Solution Status	Optimal
Objective Value	898435.64396
Iterations	9537
Primal Infeasibility Dual Infeasibility Bound Infeasibility	0 5.684342E-14
bodila iliicasibility	•

Optimization Statistics

Problem Generation Time
Code Generation Time
Presolver Time
Solver Time

2.78
0.00
2.92
1.52
∑ =8 SEK

1/4 Mio. Variablen

½ Mio. Nebenbedingungen

Rechenzeit 8 Sek. Auf einem Laptop

Lösung:

• Beladungsplan eines jeden genutzten Zuges

	Origin	Destination	arr	dep	TrainID	Ship	MaxCapT	ShadowPriceCapT
440	Köln	Düsseldorf	1418	1397	g-BS_AM_20	40	236	0
441	Düsseldorf	Duisburg	1430	1420	g-BS_AM_20	2	236	0
442	Duisburg	Oberhausen	1438	1433	g-BS_AM_20	1	236	0
446	Mannheim	FRA Airport	186	154	g-BS_AM1	100	100	-12.27818509
455	Mannheim	FRA Airport	246	214	g-BS_AM2	123	123	-2.385719361
464	Mannheim	FRA Airport	306	274	g-BS_AM3	89	207	0
580	Berlin	Hannover	1167	1070	g-B_BN_18	18	100	0
587	Berlin	Hannover	1227	1130	g-B_BN_19	84	363	0
588	Hannover	Bielefeld	1280	1231	g-B_BN_19	144	363	0
589	Bielefeld	Hamm	1308	1282	g-B_BN_19	138	363	0
590	Hamm	Hagen	1342	1313	g-B_BN_19	129	363	0
591	Hagen	Wuppertal	1358	1344	g-B_BN_19	125	363	0
592	Wuppertal	Köln	1389	1361	g-B_BN_19	121	363	0

 Bahnhofsplan (Anzahl der Passagiere die zu bestimmten Zeiten ankommen abfahren oder umsteigen

	STOP	TIME	Stock	inflow	outflow	Net_DS
34	FRA Airport	1329	0	0	5	0
35	Siegburg	1367	5	5	0	0
36	Köln	1397	44	0	40	0
37	Düsseldorf	1418	40	40	0	0
38	Düsseldorf	1420	38	0	2	0
39	Duisburg	1430	2	2	0	0
40	Duisburg	1433	1	0	1	0
41	Oberhausen	1438	1	1	0	0
42	Mannheim	154	534	0	100	0
43	FRA Airport	186	100	100	0	0
44	Karlsruhe	178	7	7	0	0
45	Mannheim	214	100	0	123	0

Copyright © 2010, SAS Institute Inc

Ausgangssituation

Endsituation

3. Simulation: Was Wäre Wenn

3. Simulation/"Was wäre Wenn"

Szen ario	Definition	Dauer (Minuten)
1	Keine Einschränkung	889
2	Ausfall: Berlin-Nürnberg-München	1102
3	Ausfall: Dresden-Wiesbaden	1212
4	Ausfall: Berlin-Nürnberg-München Dresden-Wiesbaden Berlin-Frankfurt	1428

Visualisierung beider Szenarien mit JMP /VDD

Zusammenfassung:

- Prognose Simulation Optimierung
 - Spannende Themen
 - mit teilweise große Einsparungspotentialen
 - auch sehr komplexe Fragestellungen lassen sich relativ schnell umsetzen
 - Wichtige Voraussetzungen für Optimierungsprojekte:
 - Wille etwas zu verändern
 - 2. Ein Anwenderkreis der der Veränderung gegenüber positiv eingestellt ist
 - 3. Gesicherte Datenlage
 - 4. Eine Software Lösung, die DI, Analytics, und BI sinnvoll bündelt und das Knowhow eine Komplexe Fragestellung mathematisch und Modeltechnisch zu formulieren.