Analisi 1

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	T4	oduzione 3													
T															
	1.1	Numeri reali													
	1.2	Maggiorante													
	1.3	Minorante													
	1.4	Estremo superiore													
	1.5	Estremo inferiore													
	1.6	Massimo													
	1.7	Minimo													
	1.8	Funzioni													
		1.8.1 Dominio di una funzione													
2	Lim														
	2.1	Esempi													
	2.2	Osservazioni													
	2.3	Risultati utili per il calcolo dei limiti													
	2.4	Forme indeterminate													
	2.5	Esempi di calcolo di limiti													
	2.6	Limiti razionali													
	2.7	Limiti delle funzioni monotone													
		2.7.1 Variante													
	2.8	Limiti per $x \to -\infty$													
	2.9	Limiti per $x \to x_0$													
		Limiti unilateri													
		Limiti di funzioni continue													
	2.11	Elimiti di funzioni continue													
3	Not	azione o piccolo di Landau 24													
•	3.1	Proprietà													
	3.2	Sviluppi di alcune funzioni elementari per $x \to 0$													
	3.3	Funzioni continue													
	0.0	Tunzioni continuo													
4	Der	Derivate 2													
		4.0.1 Osservazioni													
	4.1	Proprietà delle funzioni differenziabili													
	4.2	Derivate delle funzioni inverse													
	1.2	Berryade delle fallizioni inverse													
5	Der	Derivate successive 3													
	5.1	Funzioni convesse e concave													
	5.2	Proprietà delle funzioni convesse (o concave)													
	-	· · · · · · · · · · · · · · · · · · ·													
6	Teo	remi 39													
	6.1	Teorema dei carabinieri													
	6.2	Teorema di Weiestrass													
		6.2.1 Osservazioni													
		6.2.2 Esempi													
	6.3	Teorema degli zeri													
	0.0	6.3.1 Esempi													
	6.4	Teorema di Fermat													
	0.4														
	e r	6.4.1 Dimostrazione													
	6.5														

		6.5.1	Dimostraz	ione														47
		6.5.2	Dimostraz	ione	del	core	olla	ric	٠.									48
	6.6	Teorer	na de l'Hop	$_{ m oital}$														48
		6.6.1	Esempi															49
7	Sviluppi di Taylor													5 0				
	7.1	Notazi	one															50
	7.2	Polino	mi di Tavlo	or .														50

1 Introduzione

1.1 Numeri reali

I numeri reali sono descritti tramite rappresentazioni decimali limitate o illimitate, periodiche o non periodiche, e sono tutti i numeri razionali e irrazioneli; questo insieme viene indicato con il simbolo $\mathbb R$

Proprietà necessarie dei numeri reali:

• 1^a proprietà (Eudosso-Archimede): due grandezze sono confrontabili quando esiste un multiplo della minore che supera la maggiore. Ciò significa che non possiamo confrontare linee con superfici, o superfici con volumi, ecc.

Questa proprietà veniva assunta come definizione di grandezze omogenee.

Assioma: dati due numeri reali positivi a, b con 0 < a < b esiste un intero n tale che na > b.

• 2^a proprietà (Intervalli inscatolati): date due serie di grandezze: a_1, a_2, \ldots, a_n e b_1, b_2, \ldots, b_n : la prima crescente (numeri della famiglia a) e la seconda decrescente (numeri della famiglia b), in cui ogni a_k è minore di b_k e tali che per ogni altra grandezza d si ha $b_k - a_k < c$ per qualche k, allora esiste una grandezza c tale che per ogni k $a_k \le c \le b_k$.

1.2 Maggiorante

Definizione 1.1

Sia $S \subseteq \mathbb{R}$ un sottoinsieme di numeri reali. Un numero $y \in \mathbb{R}$ ' è un maggiorante dell'insieme S se per ogni $x \in S$ si ha che $y \geq x$.

Se sommassimo un qualsiasi numero positivo a questo maggiorante si otterrebbe un altro maggiorante.

Se l'interballo tendesse verso $+\infty$ non si sarebbe alcun maggiorante poichè $+\infty$ non è un numero reale. Esempi:

- I = (1, 10]: tutti i maggioranti sono quelli per $y \ge 10$
- I = [0,3): tutti i maggioranti sono quelli per $y \ge 3$
- $\mathbb{R} = (-\infty, +\infty)$: non ha maggiorante

1.3 Minorante

Definizione 1.2

Sia $S \subseteq \mathbb{R}$ un sottoinsieme di numeri reali. Un numero $y \in \mathbb{R}$ è un minorante dell'insieme S se per ogni $x \in S$ si ha che $y \leq x$.

Se sottraessimo un qualsiasi numero negativo a questo minorante si otterrebbe un altro minorante.

Se l'intervallo tendesse verso $-\infty$ non ci sarebbe alcun minorante poichè $-\infty$ non è un numero reale. Esempi:

• I = (1, 10]: tutti i minoranti sono quelli per $y \leq 1$

- I = [9, 3): tutti i minoranti sono quelli per $y \le 9$
- $\mathbb{R} = (-\infty, +\infty)$: non ha minorante

1.4 Estremo superiore

Dato un insieme $S\subseteq\mathbb{R},\ S$ è un insieme limitato superiormente con $y\in\mathbb{R}$ estremo superiore di S se:

- \bullet y è un maggiorante di S
- $\bullet \;\; y$ è il più piccolo maggiorante di S

Se S è un insieme illimitato superiormente allora l'estremo superiore di S è $sup(S)=+\infty.$ Esempi:

- I = (1, 10]: sup(I) = 10
- $I = (-\infty, 0)$: sup(I) = 0
- $\mathbb{R} = (-\infty, +\infty)$: $sup(\mathbb{R}) = +\infty$

1.5 Estremo inferiore

Dato un insieme $S\subseteq\mathbb{R},\,S$ è un insieme limitato inferiormente con $y\in\mathbb{R}$ estremo inferiore di S se:

- \bullet y è un minorante di S
- $\bullet \;\; y$ è il più grande minorante di S

Se S è un insieme illimitato inferiormente allora l'estremo inferiore di S è $inf(S)=-\infty.$ Esempi:

- I = [1, 8): inf(I) = 1
- I = (-13, 0): inf(I) = -13
- $\mathbb{R} = (-\infty, +\infty)$: $in f(\mathbb{R}) = -\infty$

1.6 Massimo

Definizione 1.3

Sia $S\subseteq\mathbb{R}$ un sottoinsieme reale, dove $y\in\mathbb{R}$ è il massimo di S se y è l'estremo superiore di S e se $y\in S$.

Quindi se l'estremo superiore di un insieme appartiene all'insieme stesso, esso si chiamerà massimo indicato con Max(S) = y.

1.7 Minimo

Definizione 1.4

Sia $S \subseteq \mathbb{R}$ un sottoinsieme reale, dove $y \in \mathbb{R}$ è il minimo di S se y è l'estremo inferiore di S e se $y \in S$.

Quindi se l'estremo inferiore di un insieme appartiene all'insieme stesso, esso si chiamerà minimo indicato con Min(S) = y.

Teorema 1 Ogni insieme di numeri reali che sia limitato superiormente ha estremo superiore.

1.8 Funzioni

Definizione 1.5

Una **funzione** è una corrispondenza che collega gli elementi di due insiemi dove tutti gli elementi del primo insieme hanno associati un solo elemento del secondo insieme:

$$f:A\to B$$

Questa è una funzione se e solo se a ogni elemento di A è associato uno e uno solo elemento di B.

Tradotto in simboli diventa:

$$\forall a \in A \exists ! b \in B \ tale \ che \ f : A \to B$$

Esempio di funzione corretta:

Figura 1: Esempio di funzione corretta

1.8.1 Dominio di una funzione

Definizione 1.6

Dato un insieme di partenza A gli elementi ai quali è applicata la funzione f sono il dominio stesso della funzione

Esempio:

$$x \to x^2 \text{ con } D = \mathbb{R}$$

 $x \to \sqrt{x} \text{ con } D = [0, +\infty)$

Si può dare un nome simbolico alla funzione scrivendo in questo modo:

$$f(x) = x^2 con D = \mathbb{R}$$
$$f(x) = \sqrt{x} con D = [0, +\infty)$$

2 Limiti

I limiti sono il calcolo infinitesimale, ovvero il calcolo che si occupa di studiare il comportamento di una funzione in un intorno di un punto.

Nelle definizioni che seguono, è data una funzione $f:A\to\mathbb{R}$ il cui dominio $A\subseteq\mathbb{R}$ è un insieme **non** limitato superiormente. (Questa ipotesi serve per definire i limiti per $x\to+\infty$)

Definizione 2.1

 $Sia\ L \in \mathbb{R}$. $Si\ dice\ che$

$$\lim_{x\to +\infty} f(x) = L$$

Se e solo se

$$\forall \epsilon > 0 \quad \exists k > 0 \ t.c. \ \forall x \subset A^a$$

$$x \ge k \to L - \epsilon \le f(x) \le L + \epsilon$$

(Notazione alternativa: $f(x) \to L \ per \ x \to +\infty$)

La condizione deve essere soddisfatta per ogni ϵ .

Figura 2: Definizione di limite

Per la definizione di limite, la funzione deve entrare in un intorno di L e non uscirne più. Questo vale per ogni ϵ , quindi anche per ϵ^1 .

^aIl dominio della funzione

Definizione 2.2

Si dice che

$$\lim_{x \to +\infty} f(x) = +\infty$$

Se e solo se

$$\forall M > 0 \ \exists k > 0 \ t.c. \ \forall x \in A,$$

$$x \ge k \to f(x) \ge M$$

(Notazione alternativa: $f(x) \to +\infty$ per $x \to +\infty$)

Figura 3: Definizione di limite a $+\infty$

2.1 Esempi

Esempio 2.1

$$\lim_{x\to +\infty}\frac{1}{x}=0 \quad Dominio=\mathbb{R}/\{0\}$$

Figura 4: Definizione di limite a $-\infty$

Figura 5: Esempio di limite

Sia dato $\epsilon>0$ arbitrario. Definisco $k:=\frac{1}{\epsilon}.$ Sia dato x>0 arbitrario, supponiamo $x\geq k.$ Allora

$$0-\epsilon \leq 0 \leq \frac{1}{x} \leq \frac{1}{k} = \frac{1}{\frac{1}{\epsilon}} = \epsilon$$

Quindi, ho dimostrato che la definizione di limite è soddisfatta (con L=0).

Esempio 2.2

$$\lim_{x\to +\infty} x = +\infty$$

Figura 6: Esempio di limite a $+\infty$

 $\label{eq:sigma} \begin{array}{l} \textit{Sia dato } M > 0 \ \textit{arbitrario. Definisco } k := M. \\ \textit{Sia dato } x \geq k. \ \textit{Allora } x \geq M. \\ \textit{Quindi è verificata la definizione di limite.} \end{array}$

2.2 Osservazioni

Non è detto che un limite esista.

$$\lim_{x \to +\infty} \sin(x)$$
$$\lim_{x \to +\infty} \cos(x)$$

Figura 7: Esempio di limite non esistente

La funzione non entra in un intevallo limitato senza poi uscirne, quindi non esiste il limite.

Figura 8: Esempio di limite non esistente

Tuttavia, se una funzione ammette limite, allora esso è unico. Questa funzione dovrebbe entrare in entrambe le strisce e non uscirne più, ma questo non è possibile.

2.3 Risultati utili per il calcolo dei limiti

Teorema 2 (Algebra dei limiti) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente, f e g due funzioni. $A \to \mathbb{R}$. Supponiamo che i limiti

$$F := \lim_{x \to +\infty} f(x)$$
$$G := \lim_{x \to +\infty} g(x)$$

esistano e siano finiti. Allora

$$\lim_{x \to +\infty} (f(x) + g(x)) = F + G$$

$$\lim_{x \to +\infty} (f(x) - g(x)) = F - G$$

$$\lim_{x \to +\infty} (f(x) \cdot g(x)) = F \cdot G$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{F}{G} \quad \text{se } G \neq 0$$

Il teorema si estende parzialmente nel caso F o G siano infiniti, secondo le regole seguenti:

- $\bullet \ F+\infty=+\infty, \ F-\infty=-\infty \ \forall F\in\mathbb{R}$
- $+\infty + \infty = +\infty$, $+\infty \infty = -\infty$
- $F \cdot \infty = \infty$, $\forall F \in \mathbb{R}, F \neq 0$
- $\bullet \ \infty \cdot \infty = \infty$
- $\frac{F}{\infty} = 0 \ \forall F \in \mathbb{R}$
- $\frac{F}{0} = \infty \ \forall F \in \mathbb{R}, \ F \neq 0$
- $\bullet \ \ \frac{0}{\infty} = 0$
- $\frac{\infty}{0} = \infty$

Il segno di ∞ è da determinare secondo la regola usuale.

2.4 Forme indeterminate

Sono dei casi in cui il teorema **non** si applica e tutto può succdere:

- $+\infty \infty$
- $0 \cdot \infty$
- \bullet $\frac{0}{0}$
- \bullet $\frac{\infty}{\infty}$
- 1[∞]
- 0⁰
- $\bullet \infty^0$

N.B.: in questo contesto, 0, ∞ e 1 sono da intendersi come abbreviazioni.

2.5 Esempi di calcolo di limiti

Esempio 2.3

$$\lim_{x \to +\infty} (x^2 + \frac{1}{x})$$

$$\underbrace{x^2}_{+\infty} + \underbrace{\frac{1}{x}}_{0} \to +\infty$$

 $Per x \rightarrow +\infty$ (per il teorema dell'algebra dei limiti)

Esempio 2.4

$$\lim_{x \to +\infty} x^2 - x^3 = +\infty - \infty$$

$$\underbrace{x^3}_{+\infty}(\underbrace{\frac{1}{x}}_{0}-1) \to -\infty$$

 $Per \; x \to +\infty$

Esempio 2.5

$$\lim_{x \to +\infty} (5x^6 - 4x) = +\infty - \infty$$

$$\underbrace{x}_{+\infty}(\underbrace{5x^5}_{+\infty}-4) \to +\infty$$

2.6 Limiti razionali

Se P è un polinomio di grado pe Q è un polinomio di grado q,allora

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \begin{cases} \pm \infty & se \ p > q \\ 0 & se \ p < q \\ coefficiente \ denominante \ di \ P & se \ p = q \\ coefficiente \ denominante \ di \ Q & se \ p = q \end{cases}$$

2.7 Limiti delle funzioni monotone

Teorema 3 (di monotonia) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente e sia $f: A \to \mathbb{R}$ una funzione monotona¹. Allora

$$\lim_{x \to +\infty} f(x) \ esiste \ e$$

$$\lim_{x\to +\infty} f(x) = \begin{cases} \sup\{f(x): \ x\in A\} & se \ f \ cresce \ (nondecrescecnte) \\ \inf\{f(x): \ x\in A\} & se \ f \ decresce \ (noncrescente) \end{cases}$$

 $f:(0,+\infty)\to\mathbb{R}$

f è strettamente crescente e limitata (l'immagine di f è un insieme limitato).

Figura 9: Esempio di funzione monotona

$$\lim_{x \to +\infty} f(x) = 5$$

 $g:(0,+\infty)\to\mathbb{R}$ è strettamente crescente e non limitata

¹Le funzioni **monotone** sono funzioni che sono sempre crescenti o sempre decrescenti

Figura 10: Esempio di funzione monotona non limitata

$$\lim_{x \to +\infty} g(x) = +\infty$$

Figura 11: Esempio di funzione ristrettamente monotona

Questa funzione non è monotona, ma se guardiamo ciò che succede eprx>5 si ottiene una funzione monotona. Quindi la funzione globalmente non è monotona, ma è decrescente ristrettamente a partire da x=5.

Per il teorema di monotonia,

$$\lim_{x \to +\infty} f(x) = L$$

Esempio 2.6
$$\lim_{x \to +\infty} log(x) = +\infty$$

Figura 12: Esempio di funzione monotona non limitata

Per il teorema di monotonia:

$$\begin{split} &\lim_{x\to +\infty} log(x) = \sup\{log(x): x>0\} \\ &\geq \sup\{log(e^n): n\in \mathbb{Z}, n>0\} \ \ scelto \ arbitrariamente \\ &= \sup\{n\cdot log(e): n\in \mathbb{Z}, n>0\} = +\infty \end{split}$$

Abbiamo dimostrato (per il postulato di Eudosso - Archimede) che il limite di questa funzione è uguale $a + \infty$.

Esercizio 2.1

Dimostrare che:

$$\lim_{x \to +\infty} e^x = +\infty$$

Figura 13: Esempio di funzione monotona non limitata

 $E\ similmente\ che:$

$$\lim_{x \to +\infty} a^x = +\infty \quad \forall a \in (0, +\infty)$$

2.7.1 Variante

Sia $A\subseteq\mathbb{R}$ non limitato superiormente e siano $f,g:A\to\mathbb{R}$ t.c. $f(x)\leq g(x)$ $\forall x\in A$

Se $\lim_{x\to +\infty} f(x) = +\infty$ allora $\lim_{x\to +\infty} g(x) = +\infty$.

Figura 14: Teorema del confronto tra i limiti con 2 funzioni positive

Se $\lim_{x\to +\infty} f(x) = -\infty$ allora $\lim_{x\to +\infty} g(x) = -\infty$.

Figura 15: Teorema del confronto tra i limiti con 2 funzioni negative

2.8 Limiti per $x \to -\infty$

Sia $A\subseteq\mathbb{R}$ un insieme non limitato inferiormente, $f:A\to\mathbb{R}$, $L\in\mathbb{R}\cup\{+\infty,-\infty\}$. Diremo che:

$$\lim_{x \to -\infty} f(x) = L$$

se e solo se

$$\lim_{x \to +\infty} f(-t) = L$$

$$x = -t$$
se $x \to -\infty$
allora $t \to +\infty$

2.9 Limiti per $x \to x_0$

Sia $f:A\subseteq\mathbb{R},\ x_0\in\mathbb{R}$. Per definire il limite di f quando $x\to 0$, serve che f sia definita "vicino a x_0 ", in un senso opportuno. Noi supporremo, ad esempio, che il dominio A contenga almeno un intervallo del tipo $(x_0-\delta,x_0)$ oppure $(x_0,x_0-\delta)$, con $\delta>0$. **Non** è richiesto, invece, che f sia definita in x_0 .

$$A = (-\infty, 1) \cup (1, 2) \quad f: A \to \mathbb{R}$$

Figura 16: Limiti su una funzione non continua

Posso definire

$$\lim_{x \to -\infty} f(x), \ \lim_{x \to 2} f(x), \ \lim_{x \to 0} f(x), \ \lim_{x \to 0} f(x), \ \lim_{x \to 1} f(x)$$

Non è detto però che tali limiti esistano

Sotto le ipotesi precedenti su $f:A\subseteq\mathbb{R}\to\mathbb{R}$ e su $x_0\in\mathbb{R}$, dato $L\in\mathbb{R}$ diremo che

$$\lim_{x \to x_0} f(x) = L$$

se e solo se

$$\forall \epsilon > 0 \quad \exists \delta > 0 \ t.c. \ \forall x \in A,$$

$$x_0 - \delta \le x \le x_0 + \delta \ e \ x \ne x_0$$

$$\rightarrow L - \epsilon \le f(x) \le L + \epsilon$$

Figura 17: Limite a x_0

Sotto le ipotesi precedenti su $f:A\subseteq\mathbb{R}\to\mathbb{R}$ e su $x_0\in\mathbb{R},$ dato $L\in\mathbb{R}$ diremo che

$$\lim_{x \to x_0} f(x) = +\infty$$

se e solo se

$$\forall M>0 \quad \exists \delta>0 \ t.c. \ \forall x\in A,$$

$$x_0 - \delta \le x \le x_0 + \delta \ e \ x \ne x_0$$

 $f(x) \ge M$

Figura 18: Limite a x_0

Sotto le ipotesi precedenti su $f:A\subseteq\mathbb{R}\to\mathbb{R}$ e su $x_0\in\mathbb{R},$ dato $L\in\mathbb{R}$ diremo che

$$\lim_{x \to x_0} f(x) = -\infty$$

se e solo se

$$\forall M > 0 \quad \exists \delta > 0 \ t.c. \ \forall x \in A,$$
$$x_0 - \delta \le x \le x_0 + \delta \ e \ x \ne x_0$$
$$f(x) \le M$$

2.10 Limiti unilateri

Si possono anche dare le definizioni di limiti unilateri, da destra o da sinistra:

$$\lim_{x \to x_0^+} f(x) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$$
$$\lim_{x \to x_0^-} f(x) = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$$

Esempio 2.8

$$\begin{split} f: \mathbb{R}/\{0\} &\to \mathbb{R} \\ f(x) &= \frac{1}{x} \ \forall x \in \mathbb{R}/\{0\} \\ \lim_{x \to 0^+} (\frac{1}{x}) &= +\infty \\ \lim_{x \to 0^-} (\frac{1}{x}) &= -\infty \\ \lim_{x \to 0} (\frac{1}{x}) & non \ esiste \end{split}$$

2.11 Limiti di funzioni continue

Sia $A\subseteq\mathbb{R}$ un intervallo oppure un'unione finita di intervalli.

Definizione 2.4

Sia $f: A \to \mathbb{R}$, $x_0 \in A$. Diremo che f è continua in x_0 se e solo se

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Diremo che f è continua se e solo se f è continua in ogni punto del suo dominio $x_0 \in A$.

Esempio 2.9

$$g: \mathbb{R} \to \mathbb{R}, \quad g(x) := x \ \forall x \in \mathbb{R}$$

 $\grave{e}\ continua,\ perch\grave{e}$

$$\lim_{x \to x_0} x = x_0 \ \forall x_0 \in \mathbb{R}$$

Figura 20: Eempio di funzione continua

Esempio 2.10

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) := \begin{cases} x & \text{se } x \neq 2 \\ 31 & \text{se } x = 2 \end{cases}$$

Non è continua perchè

$$\lim_{x \to 2} f(x) = 2 \neq f(2)$$

Però f è continua in tutti gli $x_0 \in \mathbb{R}$, $x_0 \neq 2$:

$$\lim_{x \to x_0} f(x) = f(x_0) = x_0$$

Figura 21: Eempio di funzione non continua

Esempio 2.11

$$h: \mathbb{R}/\{0\} \to \mathbb{R}$$

$$h(x) := \frac{1}{x} \quad \forall x \in \mathbb{R}/\{0\}$$

Il dominio è un unione di 2 intervalli:

$$(\mathbb{R}/0 = (-\infty, 0) \cup (0, +\infty))$$

 $\grave{E}\ una\ funzione\ continua$

Figura 22: Esmpio di funzione continua

Esempio 2.12

$$l: \mathbb{R} \to \mathbb{R}$$

$$l(x) := \begin{cases} \frac{1}{x} & \text{se } x \neq 0 \\ 5 & \text{se } x = 0 \end{cases}$$

Questa funzione non è continua perchè il limite a 0 non esiste:

$$\lim_{x\to 0} l(x) = \nexists$$

ma:

$$\lim_{x \to 0} |l(x)| = +\infty$$

Figura 23: Esmpio di funzione non continua

Esempio 2.13

$$m: \mathbb{R} \to \mathbb{R}$$

$$m(x) := \begin{cases} x^2 & \text{se } x \neq 0 \\ -2 & \text{se } x = 0 \end{cases}$$

Non è continua perchè:

$$\lim_{x \to 0} m(x) = \lim_{x \to 0} x^2 = 0 \neq m(0)$$

Figura 24: Esmpio di funzione non continua

3 Notazione o piccolo di Landau

Si dimostra che:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad (F.I. \frac{0}{0})$$

Considero x > 0

Figura 25: Grafico

Area del triangolo OHP:

- $\bullet \ \leq$ area del settore OUP
- $\bullet \ \leq$ area del triangoloOUQ

Area di $OHP = \frac{1}{2} sin(x) cos(x)$

Area di $OUQ = \frac{1}{2}tan(x) = \frac{1}{2}\frac{sin(x)}{cos(x)}$

Area di OUP: area del disco unitario = ampiezza dell'angolo $P\hat{O}U$: ampiezza dell'angolo giro

da cui:

$$Area\ di\ OUP = \frac{\pi x}{2\pi} = \frac{1}{2}x$$

Pertanto:

$$\frac{1}{2}sin(x)cos(x) \leq \frac{1}{2}x \leq \frac{1}{2}\frac{sin(x)}{cos(x)}$$

Moltiplico per $\frac{2}{\sin(x)}$ (assumendo che $0 < x < \frac{\pi}{2},$ così che $\sin(x) > 0)$:

$$cos(x) \le \frac{x}{sin(x)} \le \frac{1}{cos(x)}$$

da cui:

$$\underbrace{cos(x)}_{1} \le \frac{sin(x)}{x} \le \underbrace{\frac{1}{cos(x)}}_{1}$$

$$per \ x \to 0^+$$

Per il teorema del confronto, segue che

$$\lim_{x \to 0^+} \frac{\sin(x)}{x} = 1.$$

Il caso $x \to 0^-$ è analogo. \square

Se definiamo:

$$q(x) := \frac{\sin(x)}{x} - 1$$

posso concludere che:

$$\frac{\sin(x)}{x} = 1 + q(x) \Leftrightarrow \sin(x) = x + xq(x)$$

$$\lim_{x \to 0} q(x) = 0$$

Definizione 3.1

Notazione o piccolo di Landau.

Diremo che:

$$f(x) = o(g(x))$$
 per $x \to x_0$

se e solo se esiste una funzione q tale che:

$$f(x) = g(x)q(x) \qquad (\forall x)$$

$$\lim_{x \to x_0} q(x) = 0$$

Ad esempio, possiamo dire che:

$$sin(x) = x + \underbrace{o(x)}_{g(x)q(x)} per \ x \to 0$$

3.1 Proprietà

1.
$$f(x) = o(1)$$
 per $x \to x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = 0$

2.
$$o(g(x)) = g(x)o(1) \text{ per } x \to x_0$$

3.
$$o(g(x)) + o(g(x)) = o(g(x))$$
 per $x \to x_0$ Infatti,

$$o(g(x)) + o(g(x)) = g(x)q_1(x) + g(x)q_2(x)$$

dove

$$\lim_{x \to x_0} q_1(x) = \lim_{x \to x_0} q_2(x) = 0$$

e quindi

$$o(g(x)) + o(g(x)) = g(x) \underbrace{(q_1(x) + q_2(x))}_{0 \ per \ x \to x_0} = o(g(x))$$

4. Se $k \in \mathbb{R}$ è una costante,

$$ko(g(x)) = o(g(x))$$
 per $x \to x_0$

- 5. f(x)o(g(x)) = o(f(x)g(x)) per $x \to x_0$
- 6. In generale, **non** vale

$$o(g(x)) - o(g(x)) = 0$$
 per $x \to x_0$

Infatti,

$$o(g(x)) - o(g(x)) = g(x)q_1(x) - g(x)q_2(x)$$

dove

$$\lim_{x \to x_0} q_1(x) = \lim_{x \to x_0} q_2(x) = 0$$

ma **non** è detto che $q_1(x) = q_2(x)$.

(Però è vero che
$$o(g(x)) - o(g(x)) = o(g(x))$$
 $per x \to x_0$)

7. Allo stesso modo, **non** è detto che

$$\frac{o(g(x))}{o(g(x))} = 1 \quad per \ x \to x_0$$

(forma indeterminata)

È molto importante specificare $x \to x_0$.

Ad esempio:

Esempio 3.1

$$x^2 = o(x)$$
 $per x \to 0$
 $x = o(x^2)$ $per x \to +\infty$

- 3.2 Sviluppi di alcune funzioni elementari per $x \to 0$
 - $e^x = 1 + x + o(x)$
 - log(1+x) = x + o(x)
 - $(1+x)^{\alpha} = 1 + \alpha x + o(x)$ $(con \ \alpha \in \mathbb{R} \ costante)$
 - sin(x) = x + o(x)
 - $cos(x) = 1 \frac{x^2}{2} + o(x^2)$

3.3 Funzioni continue

Proprietà:

1. Se $f, g: A \subseteq \mathbb{R} \to \mathbb{R}$ sono funzioni continue, allora sono continue anche

$$f+g, f-g, fg, \frac{f}{g}$$

(quest'ultima definita su $\{x \in A : g(x) \neq 0\}$)

2. Se $f:A\to\mathbb{R},\ g:B\to\mathbb{R}$ con $A\subseteq\mathbb{R},\ B\subseteq\mathbb{R}$ sono funzioni continue tali che $f(A)\subseteq B$, allora è continua anche la funzione composta

$$g \circ f : A \to \mathbb{R}$$

$$(g \circ f)(x) := g(f(x)) \qquad \forall x \in A$$

Esempio 3.2

Sono funzioni continue:

- $\bullet \ \ tutti \ i \ polinomi$
- tutte le funzioni razionali (quozienti di polinomi)
- $x \to x^{\alpha}$, con $\alpha \in \mathbb{R}$ costante, laddove ben definito
- \bullet exp, log, sin, cos, tan, ...
- valore assoluto, $x \in \mathbb{R} \to |x| := \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$
- funzioni composte, ad esempio:

$$h_1: \mathbb{R} \to \mathbb{R}, \quad h_1(x) := \sin(x^3 + 5x^4) \quad \forall x \in \mathbb{R}$$

$$h_2: (2, +\infty) \to \mathbb{R}, \quad h_2(x) := log(x^2 - 4) \quad \forall x \in (2, +\infty)$$

4 Derivate

Sia A un intervallo aperto (del tipo A=(a,b) oppure $A=(a,+\infty), A=(-\infty,a), A=\mathbb{R}$), oppure un'unione di intervalli aperti.

Sia $f:A\to\mathbb{R}, \quad x_0\in A.$ Retta tangente al grafico di f nel punto $(x_0,f(x_0))$?

Preso $h \in \mathbb{R}$, $h \neq 0$, il coefficiente angolare (pendenza) della retta secante il grafico nei punti $(x_0, f(x_0))$, $(x_0 + h, f(x_0 + h))$ è:

$$\frac{f(x_0+h)-f(x_0)}{h}$$

Definizione 4.1

Una funzione $f: A \to \mathbb{R}$ si dice **differenziabile** (o derivabile) in $x_0 \in A$ se e solo se esiste ed è finito il limite:

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Tale limite è detto derivata di f in x_0 . f si dice differenziabile (o derivabile) se e solo se è differenziabile in ogni punto del suo dominio.

4.0.1 Osservazioni

1. La retta tangente al grafico di f in $(x_0, f(x_0))$ è definita come l'unica retta di pendenza $f'(x_0)$ passante per $(x_0, f(x_0))$. Essa ha equazione:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

2. f è differenziabile in x_0 se e solo se vale:

$$\frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + o(1) \quad per \ h \to 0$$

che equivale a dire:

$$f(x_0 + h) - f(x_0) = f'(x_0)h + h o(1)$$
 per $h \to 0$

Quindi, f è differenziabile in x_0 se e solo se:

$$f(x_0 + h) = f(x_0) + f'(x_0)h + o(h)$$
 per $h \to 0$

il che equivale (posto $x = x_0 + h$) a:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$
 per $x \to x_0$

Esempio 4.1

$$f = e^x, \quad x_0 = 0$$

Figura 26: Eempio di funzione continua

$$e^x = 1 + x + o(x)$$
 per $x \to 0$

dunque

$$e'^0 = 1$$

Che sarebbe il coefficiente di x nell'equazione $e^x = 1 + x + o(x)$

Si può anche scrivere (Notazione di Leibnitz):

$$f'(x_0) = \frac{df}{dx}(x_0)$$

Esempio 4.2

Una funzione costante è differenziabile con derivata

$$(5')(x_0) = \lim_{h \to 0} \frac{5-5}{h} = 0$$

4.1 Proprietà delle funzioni differenziabili

Dove non specificato, supporremo sempre che il dominio A sia un intervallo aperto o un'unione di intervalli aperti.

Proprietà: Se $f: A \to \mathbb{R}$ è differenziabile in x_0 , allora f è continua in x_0 . Dimostrazione:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)) = f(x_0) \square$$

 ${\bf Non}$ vale il viceversa: f può essere continua senza essere differenziabile.

Le derivate destra e sinistra in $x_0 = 0$ esistono e sono entrambe finite, ma sono **diverse** tra loro: f ha un **punto angoloso** in $x_0 = 0$.

Esempio 4.4

$$g: [0, +\infty) \to \mathbb{R}, \quad g(x) := \sqrt{x} \quad \forall x \ge 0$$

$$x_0 = 0$$

$$g' + (0) = \lim_{h \to 0^+} \frac{g(h) - g(0)}{h} = \lim_{h \to 0^+} \frac{\sqrt{h}}{h} = \lim_{h \to 0^+} \frac{1}{\sqrt{h}} = +\infty$$

Figura 28: Esempio di funzione continua e non differenziabile

Il limite (destro, in questo caso) del rapporto incrementale esiste, ma è infinito: g ha una cuspide o punto a tangente verticale in $x_0 = 0$.

I punti di massimo o minimo locale si chiamano anche estremi locali.

4.2 Derivate delle funzioni inverse

Esempio 4.5

Consideriamo

$$tan: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$$

$$tan(x) = \frac{sin(x)}{cos(x)} \forall x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

Figura 30: Esempio di funzione continua e non differenziabile

La tangente è differenziabile

$$\begin{split} \frac{d}{dx}(tan(x)) &= \frac{(sin)'(x)cos(x) - (cos)'(x)sin(x)}{cos^2(x)} \\ &= \frac{cos^2(x) + sin^2(x)}{cos^2(x)} = \frac{1}{cos^2(x)} = 1 + tan^2(x) > 0 \forall x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \end{split}$$

- La tangente è strettamente crescente, quindi iniettiva
- La tangente è suriettiva: per ogni $y \in \mathbb{R}$, esiste

$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) tc tan(x) = y$$

Infatti la tangente è continua e

$$\lim_{x \to (-\frac{\pi}{2})^+} tan(x) = -\infty$$

$$\lim_{x \to (\frac{\pi}{2})^{-}} tan(x) = +\infty$$

Quindi il teorema degli zeri implica che esiste $x \in (\frac{-\pi}{2}, \frac{\pi}{2})$ tc tan(x) = y

 $tan: (\frac{-\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ è biettiva, quindi per ogni $y \in \mathbb{R}$ esiste un unico numero reale, che indicheremo arctan(y), tale che

$$\begin{cases} -\frac{\pi}{2} < arctan(y) < \frac{\pi}{2} \\ tan(arctan(y)) = y \end{cases}$$

Figura 31: Esempio di funzione continua e non differenziabile

La funzione arctan è differenziabile? Se sì, chi è la sua derivata? Supponiamo già di sapere che arctan è differenziabile (è vero, ma andrebbe dimostrato)

$$tan(arctan(y)) = y \quad \forall y \in \mathbb{R}$$

Deriviamo ambo i membri:

$$\frac{d}{dy}(tan(arctan(y))) = 1$$

$$\frac{d}{dy}(tan(arctan(y))) = tan'(arctan(y)) \cdot (arctan(y))'$$

$$tan'(x) = 1 + tan^{2}(x) = (1 + (tan(arctan(y))))^{2} \cdot (arctan(y))'$$

$$= (1 + y^{2}) \cdot (arctan(y))'$$

Dunque:

$$(1+y^2)arctan'(y) = 1$$

e quindi:

$$arctan'(y) = \frac{1}{1 + y^2}$$

Quanto fatto ha validità più generale:

Sia $I \subseteq \mathbb{R}$ un intervallo, $f: I \to \mathbb{R}$ una funzione fifferenziabile tale che $f'(x) \neq 0 \ \forall x \in \mathbb{R}$. Allora esiste la funzione inversa:

$$g:f(I)\to I$$

tale che $f(g(y)) = y \ \forall y \in f(I), \ g(f(x)) = x \ \forall x \in I$ Inoltre, g è differenziabile e vale:

$$g'(y) = \frac{1}{f'(g(y))}$$

per ogni $y \in f(I)$

Esercizio 4.1

Trovare le derivate delle funzioni:

$$arccos: [-1,1] \rightarrow [0,\pi]$$

$$arcsin: [-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$$

5 Derivate successive

Sia $A \subseteq \mathbb{R}$ un intervallo aperto, o un'unione di intervalli aperti. Sia $f: A \to \mathbb{R}$. Se (e solo se) f è differenziabile e f' è differenziabile, si dice che f è differenziabile due volte. Si scrive f'' per la derivata seconda di f (cioè la derivata di f).

Similmente si definiscono le funzioni differenziabili $3,4,5,\ldots$, infinite volte. Notazione per le derivate successive:

$$f' = f^{(1)} = \frac{df}{dx}$$

$$f'' = f^{(2)} = \frac{d^2f}{dx^2}$$

$$f''' = f^{(3)} = \frac{d^3 f}{dx^3}$$

$$f^{(n)} = \frac{d^n f}{dx^n}$$

5.1 Funzioni convesse e concave

Sia $I \subseteq \mathbb{R}$ intervallo. Una funzione $f: I \to \mathbb{R}$ si dice $\begin{cases} \text{convessa} & \text{se e solo se la} \\ \text{concava} & \text{sopra} \end{cases}$ corda tra due punti qualsiasi del grafico di f sta tutta $\begin{cases} \text{sopra} \\ \text{sotto} & \text{il grafico di } f. \end{cases}$

Figura 32: Funzione convessa

Figura 33: Funzione concava

In maniera equivalente, f è convessa se e solo se per ogni $x \in I$, ogni $\overline{x} \in I$ ed ogni $t \in [0,1]$, vale

$$f(tx + (1-t))\overline{x}) \le tf(x) + (1-t)f(\overline{x})$$

5.2 Proprietà delle funzioni convesse (o concave)

- 1. Se $I \subseteq \mathbb{R}$ è un intervallo, $f: I \to \mathbb{R}$ una funzione differenziabile due volte. Se $\begin{cases} f''(x) \geq 0 \\ f''(x) \leq 0 \end{cases}$ in ogni punto di I, allora f è $\begin{cases} \text{convessa} \\ \text{concava} \end{cases}$
- 2. Se $I \subseteq \mathbb{R}$ è un intervallo, $f: I \to \mathbb{R}$ è differenziabile e $\begin{cases} \text{convessa} \\ \text{concava} \end{cases}$ e $x_0 \in I$, allora la retta tangente a f nel punto $(x_0, f(x_0))$ sta tutta $\begin{cases} \text{sopra} \\ \text{sotto} \end{cases}$ il grafico di f.

3. Se $I \subseteq \mathbb{R}$ è un intervallo, $f: I \to \mathbb{R}$ una funzione differenziabile e $\begin{cases} \text{convessa} \\ \text{concava} \end{cases}$ e $x_0 \in I$ un punto critico di f ($f'(x_0) = 0$), allora x_0 è minimo

un punto di $\begin{cases} \text{minimo} \\ \text{massimo} \end{cases}$ di f.

4. Se $f: I \to \mathbb{R}$ è differenziabile due volte e $x_0 \in I$ è tale che $f'(x_0) = 0$ e $\begin{cases} f''(x_0) > 0 \\ f''(x_0) < 0 \end{cases}$ allora x_0 è un punto di $\begin{cases} \text{minimo} \\ \text{massimo} \end{cases}$ locale per f.

Esempio 5.1

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x^3 - x^2 \quad \forall x \in \mathbb{R}$$

$$f'(x) = 3x^2 - 2x$$

$$f''(x) = 6x - 2$$

$$f(x) = 0 \Leftrightarrow x^{2}(x - 1) = 0 \Leftrightarrow x = 0 \text{ oppure}$$

$$f(x) \ge 0 \Leftrightarrow x^{2}(x - 1) \ge 0 \Leftrightarrow x \ge 1 \text{ oppure } x = 0$$

$$f'(x) = 0 \Leftrightarrow x = 0 \text{ oppure } x = \frac{2}{3}$$

$$f'(x) \ge 0 \Leftrightarrow x \le 0 \text{ oppure } x \ge \frac{2}{3}$$

Quindi f è crescente in $(-\infty,0)$ e in $\frac{2}{3}$, $+\infty$; f è decrescente in $(0,\frac{2}{3})$. In x=0 ho un punto di massimo locale, in $x=\frac{2}{3}$ ho un punto di minimo locale.

$$f''(x) = 6x - 2$$
$$f''(x) = 0 \Leftrightarrow x = \frac{1}{3}$$
$$f''(x) \ge 0 \Leftrightarrow x \ge \frac{1}{3}$$

f è convessa in $(\frac{1}{3},+\infty)$ e concava in $(-\infty,\frac{1}{3});$ f ha $x=\frac{1}{3}$ è un punto di flesso di f.

6 Teoremi

6.1 Teorema dei carabinieri

Teorema 4 (del confronto tra i limiti, o dei carabinieri) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente e siano $f, g, h : A \to \mathbb{R}$. Supponiamo che

$$f(x) \le g(x) \le h(x) \quad \forall x \in A$$

 $Supponiamo\ inoltre\ che\ i\ limiti$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = L$$

esistano (e che siano uguali tra di loro). Allora

$$\lim_{x \to +\infty} g(x) = L$$

Figura 34: Teorema del confronto tra i limiti

Dobbiamo dimostrare che

$$\forall \epsilon > 0 \ \exists k > 0 \ t.c. \ \forall x \in A,$$

$$x \ge k \to L - \epsilon \le g(x) \le L + \epsilon$$

Prendiamo dunque $\epsilon > 0$ arbitrario. Poichè $\lim_{x \to +\infty} f(x) = L$, sappiamo che esiste $k_f > 0$ t.c.

$$\forall x \in A, \quad x \ge k_f \to L - \epsilon \le f(x) \le L + \epsilon$$

Allo stesso modo, poichè $\lim_{x\to+\infty} h(x) = L$, sappiamo che esiste $k_h > 0$ t.c.

$$\forall x \in A, \quad x \ge k_h \to L - \epsilon \le h(x) \le L + \epsilon$$

Definiamo $k := max\{k_f, k_h\}$. Comunque preso $x \in A$, se $x \ge k$ allora vale che

$$L - \epsilon < f(x) < q(x) < h(x) < L + \epsilon$$

6.2 Teorema di Weiestrass

Definizione 6.1

Teorema di Weierstrass

Sia [a,b] un intervallo chiuso e limitato, $f:[a,b]\to\mathbb{R}$ continua. Allora esistono

 $x_{max}, x_{min} \in [a, b]$ t.c. $f(x_{min}) \le f(x) \le f(x_{max}) \forall x \in [a, b]$

Figura 35: Teorema di Weiestrass

 $Ogni\ funzione\ continua,\ avrà\ quindi\ un\ punto\ di\ minimo\ e\ un\ punto\ di\ massimo$

6.2.1 Osservazioni

- $\bullet\,$ In particolare, f è limitata
- \bullet I punti x_{min}, x_{max} si dicono punti di minimo e di massimo **globali** di f
- $\bullet\,$ I punti di minimo e massimo globali possono essere non unici e coincidere con gli estremia,b dell'intervallo

Se vengono meno le ipotesi del teorema, può venir meno la conclusione.

6.2.2 Esempi

Esempio 6.2

$$f_1:(0,1)\to \mathbb{R}, \quad f_1(x):=x \ \forall x\in (0,1)$$

Figura 37: Esempio di funzione continua

Questa funzione è continua, ma per come è definita **non** ammette nè massimo nè minimo perchè il **dominio non è chiuso**.

Esempio 6.3

$$f_2:(0,+\infty)\to\mathbb{R},\quad f_2(x):=xsin(x)\quad \forall x\in(0,+\infty)$$

Figura 38: Esempio di funzione continua

Questa funzione è continua, ma non possiede nè punti di massimo, nè punti di minimo perchè la funzione ha ampiezza sempre crescente.

Esempio 6.4

$$f_3: [-1,1] \to \mathbb{R}$$

$$f_3(x) := \begin{cases} 1 - x & se \ 0 < x \le 1 \\ 0 & se \ x = 0 \\ -x - 1 & se \ -1 \le x < 0 \end{cases}$$

Figura 39: Esempio di funzione non continua

Questa funzione non ammette punti di massimo e di minimo perchè non è continua.

6.3 Teorema degli zeri

Definizione 6.2

Teorema degli zeri (o di Bolzano)

Sia [a,b] un intervallo chiuso e limitato, $f:[a,b]\to \mathbb{R}$ una funzione continua. Se

$$f(a)f(b) < 0$$

allora esiste $c \in (a, b)$ tale che f(c) = 0

Figura 40: Teorema degli zeri

Se vengono meno le ipotesi, può venir meno la conclusione.

6.3.1 Esempi

Esempio 6.5

$$g_1: [-1,1] \to \mathbb{R}$$

$$g_1(x) = \begin{cases} -1 & se - 1 \le x < 0 \\ 1 & se \ 0 \le x \le 1 \end{cases}$$

Figura 41: Esempio di funzione non continua

Questa funzione non è continua, quindi non si applica il teorema.

Esempio 6.6

$$g_2: [-1,1]/\{0\} \to \mathbb{R}$$

$$g_2(x):=\frac{1}{x} \ \forall x \in [-1,1]/\{0\}$$

Figura 42: Esempio di funzione continua

Questa funzione è continua, ma non si annulla mai perchè il dominio della funzione **non è un intervallo**, ma un intervallo privato di un valore, quindi non si applica il teorema.

6.4 Teorema di Fermat

Teorema 5 (di Fermat) Sia $x_0 \in A$ un estremo locale di una funzione $f: A \to \mathbb{R}$. Se f è differenziabile in x_0 e se x_0 è **interno** ad A (cioè, f è definita in un intorno di x_0), allora:

$$f'(x_0) = 0$$

(I punti dove $f'(x_0) = 0$ si dicono **punti critici di** f)

Figura 43: Teorema di Fermat

6.4.1 Dimostrazione

Supponiamo ad esempio x_0 minimo locale di f. Prendo $h \in \mathbb{R}, h \neq 0$. Se |h| è abbastanza piccolo,

$$f(x_0 + h) - f(x_0) \ge 0$$
 perchè x_0 è minimo locale

Se h > 0:

$$\frac{f(x_0+h)-f(x_0)}{h} \ge 0$$

Se h < 0:

$$\frac{f(x_0) - f(x_0)}{h} \le 0$$

Poichè f è differenziabile in x_0 , so che esistono:

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$

e i due limiti sono uguali tra loro e uguali a $f'(x_0)$. L'unica possibilità $f'(x_0) = 0$

6.5 Teorema di Lagrange

Definizione 6.3

Teorema di Lagrange o del valor medio. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua in [a,b] e differenziabile in (a,b). Allora esiste $c \in (a,b)$ tale che:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Figura 44: Teorema di Lagrange

Corollario: Sia I un intervallo, $f:I\to\mathbb{R}$ una funzione differenziabile se:

$$\begin{cases} f' = 0 \\ f' \ge 0 \\ f' > 0 \\ f' \le 0 \\ f' \le 0 \end{cases}$$

in tutti i punti di I, allora f è:

costante
non decrescente
strettamente crescente
non crescente
strettamente decrescente

Qui è importante assumere che il dominio sia un intervallo

Esempio 6.7

$$f: (0,1) \cup (2,3) \to \mathbb{R},$$

$$f(x) := \begin{cases} -1 & se \ 0 < x < 1 \\ \frac{1}{2} & se \ 2 < x < 3 \end{cases}$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = 0$$

Figura 45: Teorema di Lagrange

f è differenziabile e ha f'=0 ovunque, ma non è costante (il dominio non è un intervallo).

6.5.1 Dimostrazione

1. Sia $f:[a,b]\to\mathbb{R}$ continua, differenziabile in (a,b), tale che f(a)=f(b). Devo dimostrare che esiste

$$c \in (a, b) \ tc \ f'(c) = 0$$

Per il teorema di Weierstrass, f possiede un punto di massimo x_{max} e un punto di minimo x_{min} globali.

Se $x_{min} \in (a, b)$, allora scelgo $c := x_{min}$ e per il teorema di Fermat, so che f'(c) = 0.

Se $x_{max} \in (a, b)$, allora scelgo $c := x_{max}$ e per il teorema di Fermat, so che f'(c) = 0.

Altrimenti, ho $\{x_{max}, x_{min}\} = \{a, b\}$. Grazie all'ipotesi f(a) = f(b), posso allora dedurre che f è costante, dunque f' = 0 in tutto [a, b].

2. Caso generale: Definisco $g:[a,b] \to \mathbb{R}$,

$$g(x) := f(x) - \underbrace{\left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)}_{\text{Equazione della corda AB}} \quad \forall x \in [a, b]$$

Ora g è continnua, g è differenziabile, in (a, b),

$$g(a) = f(a) - f(a) = 0$$

$$g(b) = f(b) - f(b) = 0$$

Dunque, per quanto dimostrato nel passo precedente, esiste $c \in (a, b)$ tale

$$g'(c) = 0$$

perchè:

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

Dimostrazione del corollario

Prendo $a \in I, b \in I$ qualsiasi; devo dimostrare che f(a) = f(b). Se a = b, non c'è nulla da dimostrare. Suppongo ad esempio a < b (se no li scambio). Allora f è definita su tutto [a,b] (perchè I è un intervallo, dunque $[a,b]\supseteq I$).

Inoltre $f:[a,b]\to\mathbb{R}$ è continua (differenziabile \Rightarrow continua), differenziabile in (a, b) e quindi, per il teorema di Lagrange, esiste $c \in (a, b)$ t.c.

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Ma, per ipotesi, f'(c) = 0, da cioè f(b) - f(a) = 0, cioè f(b) = f(a).

6.6 Teorema de l'Hopital

Si applica al calcolo dei limiti della forma $\lim_{x\to x_0} \frac{f(x)}{g(x)}$, con f,g funzioni differenziabili, **purchè** il limite si presenti sotto la forma (indeterminata) $\frac{0}{0}$ oppure $\frac{\infty}{\infty}.$ Il teorema riduce il calcolo del limite dato al calcolo di:

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \quad \text{(purchè esista)}$$

48

Definizione 6.4

Siano $f,g:[a,+\infty)\to\mathbb{R}$ due funzioni differenziabili. Supponiamo che:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$$

oppure

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = \pm \infty$$

Supponiamo inoltre che $g'(x) \neq 0 \quad \forall x \in [a, +\infty)$ e che il limite

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

esista. Allora

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

Si possono scrivere varianti per il calcolo dei limiti quando $x \to x_0$ con $x \in \mathbb{R}$ oppure $x \to -\infty$.

6.6.1 Esempi

Esempio 6.8

$$\lim_{x\to +\infty}\frac{e^x}{x}$$

Considero il rapporto tra le derivate:

$$\lim_{x\to +\infty}\frac{e^x}{1}=+\infty$$

Per il teorema di de l'Hopital:

$$\lim_{x\to +\infty}\frac{e^x}{x}=+\infty$$

Esempio 6.9

$$\lim_{x \to +\infty} \frac{e^x}{x^2}$$

Considero il rapporto tra le derivate:

$$\lim_{x\to +\infty}\frac{e^x}{2x}=\frac{1}{2}\lim_{x\to +\infty}\frac{e^x}{x}=+\infty$$

Per il teorema di de l'Hopital:

$$\lim_{x\to +\infty}\frac{e^x}{x^2}=+\infty$$

Si può dimostrare che per ogni $\alpha > 0$,

$$\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty,$$

$$\lim_{x \to +\infty} \frac{\log(x)}{x^{\alpha}} = 0$$

Quando $x \to +\infty$, l'esponenziale cresce più velocemente di tutte le potenze (ad esponente positivo); il logaritmo più lentamente.

7 Sviluppi di Taylor

Sia $f: I \to \mathbb{R}$ (con $I \subseteq \mathbb{R}$ intervallo) una funzione differenziabile $x_0 \in I$. Per definizione di differenziabilità:

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\text{retta tangente valutata in } x_0} + o(x - x_0) \quad per \ x \to x_0$$

Se f è differenziabile due o più volte, si possono dare approssimazioni locali ancora migliori.

7.1 Notazione

Dato $n \in \mathbb{Z}, \ n \geq 0$, si definisce il fattoriale di n come:

$$\begin{cases} 0! := 1 & se \ n = 0 \\ n! := 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n & se \ n \ge 0 \end{cases}$$

7.2 Polinomi di Taylor

Sia $I \subseteq \mathbb{R}$ intervallo, $f: I \to \mathbb{R}$ differenziabile n volte, $x_0 \in I$. Si definisce il **Polinomio di Taylor** di f di centro x_0 ed ordine n come:

$$P(x) = \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j$$

Quando $x_0 = 0$, si parla anche di polinomio di McLaurin.

Esempio 7.1

Calcolare il polinomio di Taylor di exp di centro 0 e ordine 7.

$$exp: \mathbb{R} \to \mathbb{R}, \quad x_0 = 0, \quad n = 7$$

$$exp(x) = e^x$$

$$exp'(x) = exp$$

$$exp''(x) = exp' = exp$$

$$exp^{(j)} = exp \quad \forall j \in \mathbb{N}$$

$$exp(0) = 1$$

Polinomio di Taylor:

$$P(x) = \sum_{j=0}^{7} \frac{1}{j!} x^j = 1 + x + \frac{x^2}{2} + \dots + \frac{x^7}{7!}$$