

Entraînement 4G24

1. Sans utiliser de calculatrice, encadrer $\sqrt{281}$ entre deux nombres entiers.

2. Sans utiliser de calculatrice, encadrer $\sqrt{232}$ entre deux nombres entiers.

3. Sans utiliser de calculatrice, encadrer $\sqrt{56}$ entre deux nombres entiers.

1. Encadrer $\sqrt{265}$ au centième près et en donner un arrondi au centième près.

2. Encadrer $\sqrt{166}$ à l'unité près et en donner un arrondi à l'unité près.

3. Encadrer $\sqrt{41}$ au dixième près et en donner un arrondi au dixième près.

4. Encadrer $\sqrt{182}$ au centième près et en donner un arrondi au centième près.

5. Encadrer $\sqrt{127}$ au dixième près et en donner un arrondi au dixième près.

6. Encadrer $\sqrt{30}$ à l'unité près et en donner un arrondi à l'unité près.

7. Encadrer $\sqrt{2}$ au centième près et en donner un arrondi au centième près.

8. Encadrer $\sqrt{47}$ à l'unité près et en donner un arrondi à l'unité près.

9. Encadrer $\sqrt{11}$ au dixième près et en donner un arrondi au dixième près.

4G20-6

4G20-6

Entraînement 4G24

Entraînement 4G24

Corrections -

- 1. $16^2 = 256$ et $17^2 = 289$. Or 256 < 281 < 289, donc $\sqrt{256} < \sqrt{281} < \sqrt{289}$, enfin $16 < \sqrt{281} < 17$.
- 2. $15^2 = 225$ et $16^2 = 256$. Or 225 < 232 < 256, donc $\sqrt{225} < \sqrt{232} < \sqrt{256}$, enfin $15 < \sqrt{232} < 16$.
- 3. $7^2 = 49$ et $8^2 = 64$. Or 49 < 56 < 64, donc $\sqrt{49} < \sqrt{56} < \sqrt{64}$, enfin $7 < \sqrt{56} < 8$.

MathALEA

Entraînement 4G24

1. $\sqrt{265} \simeq 16,278821$.

Or 16,27 < 16,278821 < 16,28,

et $16,278\,821$ est plus proche de 16,28 que de 16,27.

Donc l'arrondi au centième près de $\sqrt{265}$ est 16,28.

2. $\sqrt{166} \simeq 12,884\,099$.

Or 12 < 12,884099 < 13,

et 12,884099 est plus proche de 13 que de 12.

Donc l'arrondi à l'unité près de $\sqrt{166}$ est 13.

3. $\sqrt{41} \simeq 6{,}403124$.

Or 6.4 < 6.403124 < 6.5,

et 6,403124 est plus proche de 6,4 que de 6,5.

Donc l'arrondi au dixième près de $\sqrt{41}$ est 6,4.

4. $\sqrt{182} \simeq 13,490738$.

Or 13,49 < 13,490738 < 13,5,

et 13,490 738 est plus proche de 13,49 que de 13,5.

Donc l'arrondi au centième près de $\sqrt{182}$ est 13,49.

5. $\sqrt{127} \simeq 11,269428$.

Or 11.2 < 11.269428 < 11.3,

et 11,269 428 est plus proche de 11,3 que de 11,2.

Donc l'arrondi au dixième près de $\sqrt{127}$ est 11,3.

6. $\sqrt{30} \simeq 5.477226$.

Or $5 < 5{,}477\,226 < 6$,

et 5,477 226 est plus proche de 5 que de 6.

Donc l'arrondi à l'unité près de $\sqrt{30}$ est 5.

7. $\sqrt{2} \simeq 1{,}414214.$

Or 1,41 < 1,414214 < 1,42,

et 1,414 214 est plus proche de 1,41 que de 1,42.

Donc l'arrondi au centième près de $\sqrt{2}$ est 1,41.

8. $\sqrt{47} \simeq 6.855655$.

Or 6 < 6.855655 < 7,

et 6,855655 est plus proche de 7 que de 6.

Donc l'arrondi à l'unité près de $\sqrt{47}$ est 7.

9. $\sqrt{11} \simeq 3.316625$.

Or 3.3 < 3.316625 < 3.4,

et 3,316625 est plus proche de 3,3 que de 3,4.

Donc l'arrondi au dixième près de $\sqrt{11}$ est 3,3.