(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-300492

(43)公開日 平成11年(1999)11月2日

(51) Int.Cl.⁸

酸別記号

FΙ

B 2 3 K 35/363

H 0 5 K 3/34

512

B 2 3 K 35/363

H 0 5 K 3/34

E

512C

審査請求 未請求 請求項の数2 OL (全 4 頁)

(21)出願番号	特顧平10-108820	(71) 出顧人 000111199
		ニホンハンダ株式会社
(22)出顧日	平成10年(1998) 4月20日	東京都墨田区太平1丁目29番4号
		(72) 発明者 浅見 英三郎
		東京都墨田区太平1丁目29番4号 ニホン
		ハンダ株式会社内
		(72)発明者 小林 慶三
		東京都墨田区太平1丁目29番4号 ニホン
		ハンダ株式会社内
		(74)代理人 弁理士 斉藤 武彦 (外1名)

(54) 【発明の名称】・ フラックスおよびクリームはんだ

(57)【要約】

【課題】 保管中や印刷中の品質変化がなく、搭載した電子部品を長時間粘着保持でき、リフロー時にはんだボールの発生がない、しかも臭気の弱いクリームはんだを提供する。

【解決手段】 クリームはんだのフラックス中に2-ターピニルオキシエタノールおよび/または2-ジヒドロターピニルオキシエタノールを含ませる。

1

【特許請求の範囲】

【請求項1】 2-ターピニルオキシエタノールおよび /または2-ジヒドロターピニルオキシエタノールを含 有するフラックス。

【請求項2】 2-ターピニルオキシエタノールおよび /または2-ジヒドロターピニルオキシエタノールを含 むフラックスと粉末はんだからなることを特徴とするク リームはんだ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主にプリント基板 に電子部品を実装する際に用いられるクリームはんだお よびそれに適するフラックスに関するものである。

[0002]

【従来の技術】電子部品がプリント基板に実装される時、はんだ付けが行われる。そのはんだ付けには、フラックスと粉末はんだからなるクリームはんだが用いられることが多い。クリームはんだはプリント基板に印刷され、その上に電子部品が搭載され、加熱接合される。これをリフローソルダリングという。このようなクリームはんだは、フラックスと粉末はんだが混練されたものである。フラックスは、樹脂、活性剤、溶剤などからなり、さらに印刷性を向上させるため、粘度調整剤が含まれており、粘ちょうな液体である。

【0003】クリームはんだの具備すべき特性としては、(1)長期間保管した場合、品質が安定であること、(2)取り扱いの時に異臭がなく、作業者に不快感を与えないこと、(3)スクリーンまたはステンシルを用いて長時間連続的にスムースな印刷ができること、

- (4) 印刷したクリームはんだの上に電子部品を搭載した時に、電子部品を長時間、粘着保持できること、
- (5) 電子部品を搭載した後、リフロー炉内で加熱してはんだ付けした時、はんだボールの発生がないこと、
- (6) はんだ付け後、はんだ付け残渣は腐食性がなく、 電気絶縁性がすぐれていること、などが挙げられる。

【0004】これらの特性を満足させるためには、フラックスを構成する成分を適切に選択する必要がある。特に溶剤の選択が重要であり、その選択によっては、前述の特性が悪くなる。従来から使用されている溶剤には、グリコールエーテル類(例えば、トリエチレングリコー 40ルモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、ジェチレングリコールモノブリコールモノブリコールモノブリコールモノブリコールモノブリコールモノブリコールモノブリコールモノブリコールモノブリコールでグロピアグリコールでグリンジオールので変がある。しかしながら、これら 50

のグリコールエーテル類や、多価アルコール類をフラックスの成分として用いた場合、クリームはんだを長時間保管の後クリームの品質が変化したり、印刷中に粘度が上昇してスムーズな印刷が不可能になったりすることがある。これらの溶剤は吸湿性であるものが多く、経時変化の原因は溶剤の吸湿性にあると考えられている。また、アルコール類のαーターピネオールなどは、臭気が

[0005]

【発明が解決しようとする課題】本発明の目的は、上に述べた欠点を解消したクリームはんだを提供することにある。より具体的には、保管中や印刷中の品質変化がなく、搭載した電子部品を長時間粘着保持でき、リフロー時にはんだボールの発生がない、しかも臭気の弱いクリームはんだを提供することにある。

強く、作業者には好まれない場合が多い。

[0006]

【課題を解決するための手段】本発明者らは、クリームはんだのフラックス中に2ーターピニルオキシエタノールおよび/または2ージヒドロターピニルオキシエタノクールを含ませることにより、前述の具備すべき特性を満足させられることを見出した。すなわち、本発明の第1は2ーターピニルオキシエタノールおよび/または2ージヒドロターピニルオキシエタノールを含有するフラックスであり、本発明の第2は該フラックスと粉末はんだからなることを特徴とするクリームはんだである。

【0007】2-ターピニルオキシエタノールは、ガムテレビン油とエチレングリコールから誘導されるテルペンエーテルであり、ほとんど匂いがない高沸点溶剤として、例えば香料の保留剤として使われている。化学名30 は、2-(1-methyl-1-(4-methyl-3-cyclohexen-1-yl)ethoxy)ーethanolという。構造式は次のとおりである。

[0008]

【化1】

【0009】また、2-ジヒドロターピニルオキシエタノールは、同じくガムテレビン油とエチレングリコールから誘導されるテルペンエーテルであり、ほとんど匂いがない高沸点溶剤として、例えば香料の保留剤として使われている。化学名は、2-(1-methyl-1-(4-methyl-3-cyclohexan-1-yl)ethoxy)ーethanolという。構造式は次のとおりである。

0 [0010]

3

【化2】 OCH2 CH2 OH

【0011】本発明の溶剤は、吸湿性が低く、低粘度で あり、しかも種々の有機溶剤と親和性があり、溶解力が を含有するクリームはんだは、従来のクリームはんだの 欠点を克服し、次のような好ましい特性が付与されてい る。

- (1)常温で長時間保管しても、変質しない。
- (2)臭気が強くない。
- (3)長時間の連続印刷が可能である。
- (4) 搭載した電子部品を長時間にわたり、粘着保持す る。
- (5)リフロー時にはんだボールの発生がない。

【0012】本発明のクリームを構成するフラックス は、前述の溶剤のほか、基材樹脂(例えば、重合ロジ ン、水素添加ロジン、不均化ロジン、その他の合成樹 脂)、活性剤(例えば、含窒素塩基のハロゲン化水素酸 塩、有機酸、有機酸塩、アミノ酸)、粘度調整剤(例え ば、硬化ヒマシ油、酸アミド類)、その他の安定剤(例 えばBHT、1, 2, 3-ベンゾトリアゾール)を適宜 配合混和することにより調製される。また、該フラック

スには、本発明の溶剤成分に加えて、他の既知の溶剤を 添加混合して使用することもできる。このような溶剤と しては、トリエチレングリコールモノメチルエーテル、 ジエチレングリコールモノメチルエーテル、ジエチレン グリコールモノブチルエーテル、ジエチレングリコール モノヘキシルエーテル、ジエチレングリコールモノフェ ニルエーテル、エチレングリコールモノヘキシルエーテ ル、エチレングリコールモノフェニルエーテル、ジプロ ピレングリコール、ブタンジオール、ヘキサンジオー 強いという特徴を持っている。そのため、これらの溶剤 10 ル、2-エチル-1,3-ヘキサンジオール、ベンジル アルコール、α-ターピネオール、ジイソブチルアジペ ートなどが挙げられる。

4

【0013】本発明のクリームはんだ中の溶剤の配合量 は、特に限定されないが、通常はクリームはんだのフラ ックスの全重量に対して、約2~80重量%、好ましく は20~65重量%である。以上のようなフラックスと 粉末はんだを常法により混練配合することにより本発明 のクリームはんだが得られる。フラックスの配合量は、 通常はクリームはんだの全量に対して、6~20重量 20 %、好ましくは、8~12重量%である。

[0014]

【実施例】以下に、本発明の実施例および比較例を述べ る。

実施例1~4、比較例1および2

表1に示す配合組成のフラックスを常法により作った。

[0015]

【表 1 】

表 1 フラックス組成表

(単位:部)

	実施例	実施例 2	実施例 3	実施例 4	比較例 1	比較例 2
重合ロジン	50	50	50	50	50	50
2-タービニルオキシエタノール	46	_	23	_		_
2-ジヒドロタービニルオキシエタノール	_	46	23	23		_
ジエチレングリコールモノヘキシルエーテル	-	-	_	23	40	23
αーターピネオール	_	_	_	_	6	23
シクロヘキシルアミン・HBr塩	0. 2	0. 2	0. 2	0. 2	0.2	0.2
硬化ヒマシ油	4	4	4	4	4	4

【0016】表1のような組成からなるフラックス10 部と粉末はんだ (Sn63/Pb37、真球状、250 ~325メッシュ)90部をよく混練して、クリームは んだを得た。それらのクリームはんだを評価した結果を

表2に示した。

[0017]

【表 2】

6

5

表2 フラックス残渣の性質

	実権例 1	実施例 2	実施例	実施例 4	比較例 1	比較例		
常温保管性い	0	©	©	0	Δ	0		
臭気2)	©	0	0	0	Δ	×		
印刷性"	0	0	0	0	Δ	Δ		
粘着保持性 ⁴ '	©	0	0	0	0	Δ		
はんだボール**	0	0	0	0	Δ	0		

1) 密閉容器内に、30℃で30日間保管した場合の粘度変化

◎:全く上昇なし ○:わずか上昇あり △:上昇あり ×:上昇顕著

2) 容器の蓋を開けた時の臭気

◎:感じない ○:わずかにおう △:くさい ×:耐えられない

3) 連続印刷可能な時間

◎:24時間以上 ○:12時間 △:6時間 ×:6時間未満

4) JIS Z 3284の方法で粘着力を測定した場合、80g以上を保持で きる時間

◎:8時間以上 ○:4~8時間 △:1~4時間 ×:1時間未満

5) JIS Z 3284の方法で判定

◎: クラス1 ○: クラス2 △: クラス3 ×: クラス4

【0018】表2に示すように、本発明の実施例1~4 【発明の効果】本発明のクリームはんだは、保管安定 が分かる。これに対して比較例1および2については、 各特性がやや劣っている。

[0019]

のクリームはんだについては、各特性が優れていること 性、連続印刷性、粘着保持性に優れ、ハンダボールの発 生が少なく、しかも臭いがほとんどないので、エレクト ロニクス関係の表面実装において非常に取り扱い易く、

30 高い生産性をもたらすものである。