STATS 310A: Theory of Probability I

Autumn 2016/17

Lecture 8: October 19

Lecturer: Persi Diaconis

Scribes: Kenneth Tay

8.1 The Basic Problem of Probability

With the tools developed in the past few weeks, we can state the basic problem of probability more precisely. Let's say we have:

- Some set Ω ,
- \mathcal{A} some collection of subsets of Ω ,
- $\mu: \mathcal{A} \to [0,1]$ some probability (as far as it can be).

Basic Problem: For any $B \in \sigma(A)$, compute or approximate $\mu(B)$.

8.2 Measurable Functions & Random Variables

Definition 8.1 Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be 2 measurable spaces. $T : \Omega \to \Omega'$ is **measurable** if for every $B' \in \mathcal{F}'$, $T^{-1}(B') := \{\omega \in \Omega : T(\omega) \in B'\} \in \mathcal{F}$.

Example: Let Ω = all permutations of $[1, \ldots, n]$, $\mathcal{F} = 2^{\Omega}$, and $\Omega' = [1, \ldots, n]$, $\mathcal{F}' = 2^{\Omega'}$. Then $T(\pi) = \pi(i)$ is measurable.

The proposition below has 3 useful tricks we can use to manipulate these "inverses":

Proposition 8.2 Let $\{B'_i\}_{i\in I}$ be a collection of sets in \mathcal{F}' .

1.
$$[T^{-1}(B')]^c = T^{-1}(B'^c)$$
.

2.
$$T^{-1}\left(\bigcup_{i \in I} B_i'\right) = \bigcup_{i \in I} T^{-1}(B_i').$$

3.
$$T^{-1}\left(\bigcap_{i \in I} B_i'\right) = \bigcap_{i \in I} T^{-1}(B_i').$$

Two easy facts about measurable functions:

1. If $\mathcal{F}' = \sigma(\mathcal{A}')$ for some \mathcal{A}' , then T is measurable iff $T^{-1}(A') \in \mathcal{F}$ for all $A' \in \mathcal{A}'$. (This means that we only have to check $T^{-1}(A')$ for generators of \mathcal{F}' .)

Proof: Say $T^{-1}(A') \in \mathcal{F}$ for all $A' \in \mathcal{A}'$. Consider the class of sets $S' \in \Omega'$ such that $T^{-1}(S') \in \mathcal{F}$. This class contains \mathcal{A}' , is closed under complements and countable unions, hence it contains $\sigma(\mathcal{A})$.

8-2 Lecture 8: October 19

2. If $T:\Omega\to\Omega'$ and $T':\Omega'\to\Omega''$ are measurable (with respect to the corresponding σ -algebras), then $T'\circ T$ is measurable.

Definition 8.3 A random variable is a measurable function $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, B(\mathbb{R}))$.

A random vector Y is a measurable function $Y:(\Omega,\mathcal{F})\to(\mathbb{R}^k,B(\mathbb{R}^k))$.

Proposition 8.4 Let Y_1, \ldots, Y_k be the coordinate functions of random vector Y, i.e. $Y(\omega) = (Y_1(\omega), \ldots, Y_k(\omega))$. Then Y is measurable iff Y_i is measurable for all i.

Proof: Assume that Y_i measurable for all i. Then

$$\{\omega: Y(\omega) \leq (x_1, \dots x_k) \text{ coordinate-wise}\} = \bigcap_{i=1}^k \{\omega: Y_i(\omega) \leq x_i\}.$$

The RHS is an intersection of measurable sets, so the LHS is a measurable set. Since the sets $\{\omega : Y(\omega) \le (x_1, \dots x_k) \text{ coordinate-wise}\}\$ generates the σ -algebra associated with Ω , Y is measurable.

Conversely, assume that Y is measurable. Then

$$\{\omega: Y_i(\omega) \le x\} = \bigcup_{n=1}^{\infty} \{\omega: Y(\omega) \le (n, \dots, n, x, n, \dots, n)\},$$

where x is in the i^{th} coordinate. Each of the sets on the RHS is measurable, hence there union is measurable too.

The next proposition relates continuity to measurability:

Proposition 8.5 If $T: \mathbb{R}^k \to \mathbb{R}^k$ is continuous, then T is measurable.

The next proposition shows that many of the functions of random variables that we work with are random variables too:

Proposition 8.6 • The sum, max and min of random variables are themselves random variables.

• The sup, inf, lim sup and lim inf of random variables are themselves random variables.

The set $\{\omega : \lim X_i \text{ exists}\}\ is measurable.$

But **not everything is measurable!** "Lebesgue's famous mistake": Let $f:[0,1]^2 \to [0,1]$ be a function which is Borel measurable. Consider $g(x) = \sup_y f(x,y)$. Lebesgue claimed that g is measurable, but Lusin showed that this is not always the case! Lusin found a Borel set in \mathbb{R}^2 whose projection to one axis is not measurable.

8.2.1 σ -Algebras from Random Variables

If $\{X_i\}_{i\in I}$ are random variables, we can define $\sigma(\{X_i\}_{i\in I})$ as the σ -algebra generated by the sets $X_i^{-1}(a,b]$, where (a,b] ranges over all intervals. This is a sub σ -algebra of \mathcal{F} , and is the smallest σ -algebra such that X_i is measurable for all $i\in I$.

Definition 8.7 Two random variables X and Y are independent if $\sigma(X)$ is independent of $\sigma(Y)$, i.e. for all x, y,

$$\mu\{\omega: X(\omega) \leq x, Y(\omega) \leq y\} = \mu\{\omega: X(\omega) \leq x\} \cdot \mu\{\omega: Y(\omega) \leq y\}.$$

Lecture 8: October 19 8-3

8.3 New Measures from Old

Definition 8.8 Suppose we have $(\Omega, \mathcal{F}, \mu)$ a measure space, (Ω', \mathcal{F}') a measurable space, $T: (\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ measurable.

Define, $\mu^{T^{-1}}$ by

$$\mu^{T^{-1}}(B') := \mu(T^{-1}(B'))$$

for $B' \in \mathcal{F}'$. This is called the **push-forward** of μ by T.

Note that $\mu^{T^{-1}}$ is a measure. **Proof:**

- $\mu^{T^{-1}}(\emptyset') = \mu(\emptyset) = 0.$
- If $A' \subseteq B'$, then $T^{-1}(A') \subseteq T^{-1}(B')$. Hence, $\mu^{T^{-1}}(A') \le \mu^{T^{-1}}(B')$.
- For any sets $B'_i \in \mathcal{F}'$, i = 1, 2, ...

$$\mu^{T^{-1}}\left(\bigcup_{i} B_{i}'\right) = \mu\left(T^{-1}\left(\bigcup_{i} B_{i}'\right)\right).$$

Note that $T^{-1}(\bigcup_i B_i') = \bigcup_i T^{-1}(B_i')$. If the B_i' 's are disjoint, then the $T^{-1}(B_i')$'s are disjoint, so

$$\mu^{T^{-1}} \left(\bigcup_{i} B'_{i} \right) = \sum_{i} \mu(T^{-1}(B'_{i}))$$
$$= \sum_{i} \mu^{T^{-1}}(B'_{i}).$$

Example ("Pick $m \in \mathcal{O}_n$ from Haar measure"). Consider the following algorithm:

- 1. Pick X_{ij} iid from $\mathcal{N}(0,1)$, i.e. on \mathbb{R}^{n^2} , build a measure with $F(x_{11},x_{12},\ldots,x_{nn}) = \prod \Phi(x_{ij})$, where $\Phi(x) = \int_{-\infty}^{x} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt$.
- 2. Map the X_{ij} 's deterministically by the Gram-Schmidt algorithm $T: \mathbb{R}^{n^2} \to \mathcal{O}_n$.

Then $F^{T^{-1}}$ is Haar measure.

8.4 How to Pick a Random Value from a Distribution F

8.4.1 Case 1: F continuous, strictly increasing CDF

Because F is continuous and strictly increasing, given any point y, there is x such that F(x) = y. (In fact, $F(F^{-1}(y)) = y$ and $F^{-1}(F(x)) = x$.)

8-4 Lecture 8: October 19

Now, let U be a uniform random variable, i.e. $P(U \le x) = x$ for $0 \le x \le 1$. Consider $Y = F^{-1}(U)$. We have

$$P(Y \le x) = P(F^{-1}(U) \le x)$$
$$= P(U \le F(x))$$
$$= F(x).$$

Thus, if you know how to pick from a uniform distribution, you can use that to pick from F.

Example (Exponential random variable): Let $F(x) = (1 - e^{-x})_+$. We wish to pick y from F.

$$y = 1 - e^{-x},$$

 $e^{-x} = 1 - y,$
 $x = -\log(1 - y).$

Thus, $-\log(1-U)$ will be distributed like an exponential random variable:

$$P(-\log(1-U) \le x) = P(-x \le \log(1-U))$$

= $P(e^{-x} \le 1-U)$
= $P(U \le 1 - e^{-x}).$

8.4.2 Case 2: F corresponds to a discrete measure

In this case, let's say that there are outcomes A_1, A_2, \ldots with outcome probabilities $P(A_1), P(A_2), \ldots$ Split the unit interval into parts of length $P(A_1), P(A_2), \ldots$

Pick from the uniform distribution and see which interval it lands in. If it lands in the part of length $P(A_i)$, assign the value i.

8.4.3 General CDFs

In general, for $F: \mathbb{R} \to [0,1]$, we can define $F^{-1}(y) = \inf\{x: y \leq F(x)\}$. Then we have the following:

Proposition 8.9 For all x,

$$P\{F^{-1}(U) \le x\} = F(x).$$

Example: Let X_1, \ldots, X_n be iid, exponential variables. Let $M_n = \max X_i$. Find the distribution function (and limit as $n \to \infty$) of M.

The distribution function of M_n is given by

$$P\{M_n \le x\} = P\{X_i \le x \text{ for all } i\}$$
$$= P\{X_1 \le x\}^n$$
$$= (1 - e^{-x})^n.$$

Lecture 8: October 19 8-5

Take $x = \log n + c$. Then for fixed $c \in (-\infty, \infty)$,

$$P\{M_n \le \log n + c\} = (1 - e^{-\log n - c})^n$$
$$= \left(1 - \frac{e^{-c}}{n}\right)^n$$
$$\to e^{-e^{-c}}$$

as $n \to \infty$.

Thus, $F(c) = e^{-e^{-c}}$ is a distribution function, and it is called the extreme value distribution, or Gumbel distribution.