The Simplex Method or Solving Linear **Program**

Frédéric Giroire

Motivation

- Most popular method to solve linear programs.
- Principle: smartly explore basic solutions (corner point solutions), improving the value of the solution.

Start with a problem written under the standard form.

Maximize
$$5x_1 + 4x_2 + 3x_3$$

Subject to:
 $2x_1 + 3x_2 - x_3 \le 5$
 $4x_1 + x_2 - 2x_3 \le 11$
 $3x_1 + 4x_2 - 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$.

First step: introduce new variables, slack variables.

$$2x_1 + 3x_2 + x_3 \le 5$$

We note x_4 the slack (difference) between the right member and 5, that is

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$
.

The inequation can now be written as

$$x_4 \ge 0$$
.

Similarly, for the 2 others inequalities:

$$4x_1 + x_2 - 2x_3 \le 11$$

 $3x_1 + 4x_2 - 2x_3 \le 8$

We define x_5 and x_6 :

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$

And the inequalities can be written as

$$x_5 \ge 0, x_6 \ge 0.$$

To summarize, we introduce three slack variables x_4 , x_5 , x_6 :

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$
 $z = 5x_1 + 4x_2 + 3x_3$.

The problem can be written as:

Maximize z subject to $x_1, x_2, x_3, x_4, x_5, x_6 > 0$.

slack variables x_4 , x_5 , x_6 decision variables x_1 , x_2 , x_3 . The two problems are equivalent.

Second step: Find an initial solution.

In our example, $x_1 = 0$, $x_2 = 0$, $x_3 = 0$ is feasible.

We compute the value of x_4, x_5, x_6 .

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 = 5$$

Similarly, $x_5 = 11$ and $x_6 = 8$.

We get an initial solution

$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 5, x_5 = 11, x_6 = 8$$

of value z=0

Dictionary:

Basic variables: x_4 , x_5 , x_6 , variables on the left. Non-basic variable: x_1 , x_2 , x_3 , variables on the right.

A dictionary is feasible if a feasible solution is obtained by setting all non-basic variables to 0.

Dictionary:

Basic variables: x_4, x_5, x_6 , variables on the left. Non-basic variable: x_1, x_2, x_3 , variables on the right.

A dictionary is feasible if a feasible solution is obtained by setting all non-basic variables to 0.

Simplex strategy: find an optimal solution by successive improvements.

Rule: we increase the value of the variable of largest positive coefficient in z.

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3.$$

Here, we try to increase x_1 .

How much can we increase x_1 ?

We have $|x_4 \ge 0|$.

It implies
$$5-2x_1 \ge 0$$
,

that is
$$x_1 \leq \frac{5}{2}$$
.

How much can we increase x_1 ?

We have $|x_4 \ge 0|$.

It implies
$$5-2x_1 \ge 0$$
,

that is
$$x_1 \le 5/2$$
.

Similarly,

$$x_5 \ge 0$$
 gives $x_1 \le 11/4$.

$$x_6 \ge 0$$
 gives $x_1 \le 8/3$.

How much can we increase x_1 ?

We have $x_4 \ge 0$.

It implies
$$5-2x_1 \ge 0$$
,

that is $x_1 \le 5/2$

Strongest constraint

Similarly,

$$x_5 \ge 0$$
 gives $x_1 \le 11/4$.

$$x_6 \ge 0$$
 gives $x_1 \le 8/3$.

How much can we increase x_1 ?

We have $|x_4 \ge 0|$.

It implies
$$5-2x_1 \ge 0$$
,

that is
$$x_1 \leq 5/2$$

Strongest constraint

We get a new solution: $x_1 = 5/2$, $x_4 = 0$ with better value $z = 5 \cdot 5/2 = 25/2$.

We still have
$$x_2 = x_3 = 0$$
 and now $x_5 = 11 - 4 \cdot 5/2 = 1$,

$$x_6 = 8 - 3 \cdot 5/2 = 1/2$$

We build a new feasible dictionary.

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

 $x_5 = 11 - 4x_1 - x_2 - 2x_3$
 $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$
 $z = 5x_1 + 4x_2 + 3x_3$.

 x_1 enters the bases and x_4 leaves it:

$$x_1 = 5/2 - 3/2x_2 - 1/2x_3 - 1/2x_4$$

We replace x_1 by its expression in function of x_2, x_3, x_4 .

Finally, we get the new dictionary:

Finally, we get the new dictionary:

We can read the solution directly from the dictionary:

Non basic variables: $x_2 = x_3 = x_4 = 0$.

Basic variables: $x_1 = 5/2$, $x_5 = 1$, $x_6 = 1/2$.

Value of the solution: z = 25/2.

New step of the simplex:

- x₃ enters the basis (variable with largest positive coefficient).
- 3^d equation is the strictest constaint $x_3 \le 1$.
- x₆ leaves the basis.

New feasible dictionary:

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

 $x_1 = 2 - 2x_2 - 2x_4 + x_6$
 $x_5 = 1 + 5x_2 + 2x_4$
 $z = 13 - 3x_2 - x_4 - x_6$

With new solution:

$$x_1 = 2, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$$

of value z = 13.

New feasible dictionary:

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

 $x_1 = 2 - 2x_2 - 2x_4 + x_6$
 $x_5 = 1 + 5x_2 + 2x_4$
 $z = 13 - 3x_2 - x_4 - x_6$

With new solution:

$$x_1 = 2, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$$

of value z = 13.

This solution is optimal.

All coefficients in z are negative and $x_2 \ge 0, x_4 \ge 0, x_6 \ge 0$, so $z \le 13$.

Take Aways

- Most popular method to solve linear programs.
- Principle: smartly explore basic solutions (corner point solutions), improving the value of the solution.
- Complexity:
 - In theory, NP-complete (can explore a number of solutions exponentiel in the number of variables and constraints).
 - In practice, almost linear in the number of constraints.
- Polynomial methods exists: the ellipsoid method.

