Заняття 6. Електростатичне поле (принцип суперпозиції, теорема Гауса)

Аудиторне заняття

- 1. [1.2] В центр квадрату, у кожній вершині якого знаходяться однакові заряди q = 2 мкКл, вносять ще один заряд q_0 . Якою повинна бути величина цього заряду, щоб система знаходилась у стані рівноваги? Чи буде ця рівновага стійкою?
- 2. [1.8] Два точкових заряди q_1 та $(-q_2)$ знаходяться на відстані d один від одного. Визначити напруженість та потенціал φ електричного поля, що створюється цими зарядами у точці, розташованій на відстані r_1 від заряду q_1 та на відстані r_2 від заряду $(-q_2)$.
- 3. [1.12] Визначити напруженість та потенціал електричного поля E, яке створюється рівномірно зарядженою сферою радіусом R, на відстані r від її центра. Загальний заряд кулі дорівнює Q.
- 4. [1.14а] Знайти напруженість E електричного поля, що створюється нескінченно довгим циліндром радіусом R на відстані r від його осі, якщо циліндр заряджено лише на поверхні з лінійною густиною заряду λ . Розглянути випадки r < R та $r \ge R$.
- 5. [1.52] Двом концентричним тонким металевим сферам радіусами R_1 =10 см та R_2 =20 см надано електричні заряди Q_1 =3 мкКл та Q_2 =-12 мкКл відповідно? Визначити заряд q_1 внутрішньої сфери після її заземлення.

Домашнє завдання

- 1. [1.13] Визначити напруженість електричного поля E, яке створюється суцільною, рівномірно зарядженою з густиною заряду ρ кулею радіусом R на відстані r від її центра. Розглянути випадки r < R та r > R
- 2. [1.10] У кожній вершині квадрата із стороною a, знаходяться однакові точкові заряди q. Знайти напруженість E електростатичного поля в центрі квадрата.
- 3. [1.15] Відстань d між двома довгими зарядженими нитками, розміщеними паралельно один одному, дорівнює 10 см. Лінійна густина заряду ниток однакова та дорівнює $\lambda = 10^{-5}$ Кл/м. Знайти значення та напрямок вектору напруженості результуючого електричного поля в точці, що віддалена на відстань r = 10 см від кожної нитки.