Задача А. Декомпозиция

Имя входного файла: decomposition.in Имя выходного файла: decomposition.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Рассмотрим дерево T. Назовем деревом декомпозиции корневое дерево D(T).

Выберем любую из вершин дерева T, назовем ее r. Рассмотрим все компоненты связности дерева T, после удаления вершины r: S_1, S_2, \ldots, S_k . Тогда корнем D(T) будет вершина r, а детьми r в D(T) будут $D(S_1), D(S_2), \ldots, D(S_k)$.

Вам задано T. Найдите дерево декомпозиции, высота которого не более 20. Высотой дерева называется максимальное число вершин, которые может содержать простой путь начинающийся в корне.

Формат входных данных

Первая строка содержит n — число вершин дерева T ($1 \leqslant n \leqslant 2 \cdot 10^5$).

Следующие n-1 строк содержат ребра дерева. Каждое ребро описывается парой чисел v_i, u_i — концы ребра $(1 \le v_i, u_i \le n)$.

Формат выходных данных

Выведите n чисел: i-е число — родитель вершины i в дереве декомпозиции, если вершина является корнем, выведите 0.

decomposition.in	decomposition.out
3	2 0 2
1 2	
2 3	
9	0 1 2 2 1 1 6 6 8
3 2	
4 2	
1 2	
5 1	
1 6	
7 6	
6 8	
8 9	

Задача В. Центроиды дерева

Имя входного файла: centroid.in Имя выходного файла: centroid.out Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Дано дерево из n вершин. У каждой вершины есть цвет. Нужно обработать q запросов (v_i, c_i) : найти расстояние от v_i до ближайшей к v_i вершины цвета c_i . Расстоянием между вершинами называется минимальное количество рёбер в пути между ними.

Формат входных данных

На первой строке число n ($1 \le n \le 10^5$), следующая строка содержит числа $p_1, p_2, \ldots, p_{n-1}$. $0 \le p_i < i$. p_i – отец вершины i в дереве. Далее строка с числами $a_0, a_1, \ldots, a_{n-1}$. $0 \le a_i < n$. a_i – цвет вершины i. Далее строка с числом q ($1 \le q \le 10^5$). Следующие q строк содержат запросы $v_i q_i$ ($0 \le v_i < n$, $0 \le c_i < n$).

Формат выходных данных

Для каждого запроса выведите одно число – расстояние до ближайшей вершины нужного цвета, или -1, если в дереве нет вершин такого цвета.

centroid.in	centroid.out
5	0 1 2 -1 2 1 2 1 1
0 1 1 3	
1 2 3 2 1	
9	
0 1	
0 2	
0 3	
1 0	
2 1	
2 2	
3 3	
3 1	
4 2	

Задача С. Дорешивание

Имя входного файла: upsolving.in Имя выходного файла: upsolving.out

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

В Летней Компьютерной Школе есть n параллелей, каждая из которых живёт в своём домике. Все параллели пронумерованы от 1 до n от младших к старшим. Периодически школьник, дорешивающий прошедшие практики у себя в домике, не справляется с задачей и идёт за помощью к товарищам из более старшей параллели.

Некоторые пары домиков соединены тропинками, всего есть n-1 такая тропинка. Все тропинки имеют одинаковую длину, по тропинке можно ходить между двумя домиками, которые она соединяет, и только между ними. От любого домика можно дойти до любого другого домика, используя только данные тропинки.

Если у школьника из параллели k не получается решить задачу, он из своего домика с номером k идёт просить помощи до какого-нибудь домика с номером, большим k. Поскольку ему не хочется тратить ни секунды драгоценного времени, он выбирает ближайший подходящий домик. Школьники из параллели n всегда решают свои задачи сами, так как им не к кому обратиться.

Вам дано описание тропинок между домиками. Для каждого k от 1 до n-1 определите минимальное расстояние, которое школьник из параллели k пройдёт в случае проблем с решением задачи.

Формат входных данных

Первая строка входных данных содержит целое число $n\ (1\leqslant n\leqslant 200\,000)$ — количество параллелей в ЛКШ.

В *i*-й из следующих n-1 строк содержатся два целых числа a_i и b_i $(1 \leqslant a_i, b_i \leqslant n, a_i \neq b_i)$ — номера домиков, которые соединяет *i*-я тропинка.

Гарантируется, что каждую пару домиков соединяет не более одной тропинки, и что из любого домика можно дойти до любого другого.

Формат выходных данных

Выведите n-1 строку, i-я из них должна содержать целое число d_i — расстояние до ближайшего домика с номером, большим i, от домика параллели i.

upsolving.in	upsolving.out
5	1
1 4	1
5 2	2
3 1	3
1 2	
5	1
4 3	2
3 5	1
5 1	2
1 2	

Задача D. Пути в дереве

Имя входного файла: tree-paths.in Имя выходного файла: tree-paths.out

Ограничение по времени: 10 секунд Ограничение по памяти: 512 мегабайт

Дано дерево из n вершин. Найдите для каждого d от 1 до n-1 число путей длины d.

Формат входных данных

Первая строка содержит n — число вершин дерева $(1 \le n \le 50000)$.

Следующие n-1 строк содержат ребра дерева. Каждое ребро описывается парой чисел v_i, u_i — концы ребра $(1 \leq v_i, u_i \leq n)$.

Формат выходных данных

Выведите n-1 число: i-е число — число путей длины i.

tree-paths.in	tree-paths.out
3	2
1 2	1
2 3	
9	8
3 2	10
4 2	10
1 2	6
5 1	2
1 6	0
7 6	0
6 8	0
8 9	