TMA4315: Project 1

Jim Totland, Martin Gudahl Tufte

Problem 1

a)

Since the response variables $y_i \sim \text{Bernoulli}(\pi_i)$, where $\pi_i = \Pr(y_i = 1 \mid \boldsymbol{x}_i)$. The conditional mean is given by $Ey_i = \pi_i$, which is connected to the covariates via the following relationship:

$$\boldsymbol{x}_i^T \boldsymbol{\beta} =: \eta_i = \Phi^{-1}(\pi_i),$$

or equivalently: $\pi_i = \Phi(\eta_i)$. This results in the likelihood function

$$L(\beta) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$
$$= \prod_{i=1}^{n} \Phi(\eta_i)^{y_i} (1 - \Phi(\eta_i))^{1 - y_i}.$$

Thus, the log-likelihood becomes

$$l(\beta) := \ln(L(\beta)) = \sum_{i=1}^{n} \underbrace{y_i \ln(\Phi(\eta_i)) + (1 - y_i) \ln(1 - \Phi(\eta_i))}_{=l_i(\beta)} = \sum_{i=1}^{n} l_i(\beta).$$

To find the score function, we calculate

$$\begin{split} \frac{\partial l_i(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} &= \frac{y_i}{\Phi(\eta_i)} \frac{\partial \Phi(\eta_i)}{\partial \boldsymbol{\beta}} - \frac{1 - y_i}{1 - \Phi(\eta_i)} \frac{\partial \Phi(\eta_i)}{\partial \boldsymbol{\beta}} \\ &= \frac{y_i}{\Phi(\eta_i)} \phi(\eta_i) \boldsymbol{x}_i - \frac{1 - y_i}{1 - \Phi(\eta_i)} \phi(\eta_i) \boldsymbol{x}_i \\ &= \frac{y_i(1 - \Phi(\eta_i)) - (1 - y_i) \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i \\ &= \frac{y_i - \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i. \end{split}$$

Consequently, the score function is given by

$$s(\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{y_i - \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i.$$

Next, we find the expected Fisher information, $F(\beta)$. We find it by using the result

$$F(\boldsymbol{\beta}) = \operatorname{Var}(\boldsymbol{s}(\boldsymbol{\beta})) = \operatorname{Var}\left(\sum_{i=1}^{n} \frac{y_{i} - \Phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))} \phi(\eta_{i}) \boldsymbol{x}_{i}\right)$$

$$= \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \operatorname{Var}(y_{i} \boldsymbol{x}_{i}) = \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \boldsymbol{x}_{i} \operatorname{Var}(y_{i}) \boldsymbol{x}_{i}^{T}$$

$$= \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \pi_{i}(1 - \pi_{i}) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} = \sum_{i=1}^{n} \frac{\phi(\eta_{i})^{2}}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T},$$

Where in the third equality we have used that the y_i 's are independent. The expected Fisher information can also be verified to have this expression by the relationship

$$F(\beta) = \sum_{i=1}^{n} \frac{h'(\eta_i)^2}{\operatorname{Var}(y_i)} \boldsymbol{x}_i \boldsymbol{x}_i^T,$$

where $h'(\eta_i) = \Phi'(\eta_i) = \phi(\eta_i)$ and $\operatorname{Var}(y_i) = \pi_i(1 - \pi_i) = \Phi(\eta_i)(1 - \Phi(\eta_i))$.

b)

The expected Fisher information is given by

$$F(\beta) = \sum_{i=1}^{n} \frac{\phi(\eta_i)^2}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \boldsymbol{x}_i \boldsymbol{x}_i^T = \boldsymbol{x}^T W \boldsymbol{x},$$

where $W = \operatorname{diag}\left(\frac{\phi(\eta_i)^2}{\Phi(\eta_i)(1-\Phi(\eta_i))}\right)$.

The Fisher scoring algorithm states that the next iterate is given by

$$\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} + F(\boldsymbol{\beta}^{(t)})^{-1} \boldsymbol{s}(\boldsymbol{\beta}^{(t)}).$$

Inserting the expected Fisher information and the score function we get

$$\boldsymbol{\beta}^{(t+1)} = (\boldsymbol{x}^T W^{(t)} \boldsymbol{x})^{-1} \boldsymbol{x}^T W^{(t)} \tilde{\boldsymbol{y}}^{(t)},$$

where the working response vector $\tilde{\boldsymbol{y}}^{(t)}$ has element i given by

$$\tilde{y}_i^{(t)} = \boldsymbol{x}_i^T \boldsymbol{\beta}^{(t)} + \frac{y_i - h(\boldsymbol{x}_i^T \boldsymbol{\beta}^{(t)})}{h'(\boldsymbol{x}_i^T \boldsymbol{\beta}^{(t)})} = \eta_i^{(t)} + \frac{y_i - \Phi(\eta_i^{(t)})}{\phi(\eta_i^{(t)})}.$$

The deviance is defined as

$$D = -2 l(\hat{\beta}) + 2 l(\text{saturated model}).$$

Implementing myglm in R:

```
Phi <- function(x) return (pnorm(x))
phi <- function(x) return (dnorm(x))

myglm <- function(formula, data, start = NULL){
    # response variable</pre>
```

```
resp <- all.vars(formula)[1]</pre>
y <- as.matrix( data[resp] )</pre>
# model matrix
X <- model.matrix(formula, data)</pre>
n \leftarrow dim(X)[1]
p <- dim(X)[2]
# starting beta
if (is.null(start)){
 beta = rep(0, p)
else {
 beta = start
# Fisher scoring algorithm
max_iter <- 50</pre>
tol <- 1e-10
iter <- 0
rel.err <- Inf
while (rel.err > tol & iter < max_iter){</pre>
  # calculate eta, y tilde, W
  eta <- X %*% beta
  y.tilde <- eta + (y - Phi(eta)) / (phi(eta))</pre>
  W <- diag( as.vector(phi(eta)^2 / (Phi(eta)*(1-Phi(eta)))), n, n )</pre>
  # update beta
  A <- t(X) %*% W %*% X
  b <- t(X) %*% W %*% y.tilde
  beta.new <- solve(A, b)</pre>
  iter <- iter + 1
  rel.err <- max(abs(beta.new - beta) / abs(beta.new))</pre>
  beta <- beta.new
Estimate <- beta
F.inv <- solve(A)</pre>
Std.Error <- sqrt(diag(F.inv))</pre>
return (list("coefficients" = data.frame(Estimate, Std.Error),
           "deviance" = NULL,
           "vcov" = F.inv))
```

c)

```
Simulation of 1000 bernoulli draws with a random probability.
```

```
# probability
x = runif(1000, 0, 1)
# draw n bernoulli with prob x
y <- rbinom(1000, 1, x)
df <- data.frame(y, x)</pre>
### fit using glm
model <- glm(y ~ x, family = binomial(link = "probit"), data = df)</pre>
# beta
model$coefficients
## (Intercept)
    -1.567633
                  3.135794
##
# se for beta
summary(model)
##
## Call:
## glm(formula = y ~ x, family = binomial(link = "probit"), data = df)
## Deviance Residuals:
                      Median
       Min
                 1Q
                                   3Q
                                           Max
## -2.2333 -0.7540
                     0.3502 0.7896
                                        2.2322
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.5676
                           0.1002 -15.64 <2e-16 ***
                                    17.59
## x
                 3.1358
                            0.1782
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1386.3 on 999 degrees of freedom
## Residual deviance: 1002.6 on 998 degrees of freedom
## AIC: 1006.6
## Number of Fisher Scoring iterations: 4
# υςου
vcov(model)
               (Intercept)
## (Intercept) 0.01004874 -0.01592284
## x
               -0.01592284 0.03176926
# deviance
model$deviance
## [1] 1002.63
### fit using myglm
mymodel <- myglm(y ~ x, data = df)</pre>
# beta
```

```
mymodel$coefficients
                Estimate Std.Error
## (Intercept) -1.567638 0.1002491
## x
                3.135802 0.1782494
# vcov
mymodel$vcov
               (Intercept)
## (Intercept) 0.01004989 -0.01592478
               -0.01592478 0.03177284
## x
# deviance
mymodel$deviance
## NULL
Problem 2
a)
#install.packages("ISwR")
library(ISwR) # Install the package if needed
data(juul)
juul$menarche <- juul$menarche - 1</pre>
juul.girl <- subset(juul, age>8 & age<20 & complete.cases(menarche))</pre>
model <- glm(menarche ~ age, family=binomial(link="probit"), data= juul.girl)</pre>
anova(model, test = "Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: probit
## Response: menarche
##
## Terms added sequentially (first to last)
##
##
        Df Deviance Resid. Df Resid. Dev Pr(>Chi)
##
                                   719.39
## NULL
                           518
                522
                           517
                                   197.39 < 2.2e-16 ***
## age
         1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
The low p-value suggests that age has an effect on the response variable.
```

b)

Relating to the juul data set, we define for each observation/individual

$$y_i = \begin{cases} 0, & \text{if menarche has occured.} \\ 1, & \text{if menarche has not occured.} \end{cases}$$

and t_i as the age at the time of examination, which corresponds to age in the data set. Let $T_i \sim N(\mu, \sigma)$, where T_i is the time until menarche occurs for the *i*'th individual. Furthermore, let

$$\pi_i := P(y_i = 1) = P(T_i \le t_i)$$

$$= P\left(\frac{T_i - \mu}{\sigma} \le \frac{t_i - \mu}{\sigma}\right) = \Phi\left(\frac{t_i - \mu}{\sigma}\right)$$

This, in turn, gives

$$\Phi^{-1}(\pi_i) = -\frac{\mu}{\sigma} + \frac{1}{\sigma}t_i = \beta_0 + \beta_1 t_i,$$

where $\beta_0 = -\mu/\sigma$ and $\beta_1 = 1/\sigma$.