$stat_helpR$

Guillaume Papuga

2023-10-26

Contents

1 Origine du projet						
	1.1	Qui suis je?	5			
	1.2	Pourquoi / pour qui écrire un livre sur les statistiques?	5			
	1.3	Pourquoi R	5			
	1.4	Plagiat & Sources	5			
	1.5	Report un bug	6			
	1.6	ToDoList	6			
2	Gestion des données					
	2.1	Les données sur R	7			
	2.2	Les jeux de données utilisés	7			
	2.3	Les fonctions de base	7			
	2.4	Créer une fonction	7			
	2.5	Data manipulation	7			
	2.6	Ma structure d'analyse (workflow)	7			
3	Util					
4	Data mining					
5	Les lois statistiques					
6	Test simples					
7	Le modèle linéaire généralisé					

4		CONTENTS

8	Le modèle mixte	19		
9	Statistiques multivariées	21		
10	0 Times series			
11	11 Analyses spatiales			
12	SDM	27		
13	Analyse de viabilité des populations chez les plantes	29		
14	Soutient de cours	31		
	14.1 L2 – écologie générale	31		
	14.2 L3 – écologie des communautés	31		
	14.3 Master	31		
15	References	33		

Origine du projet

1.1 Qui suis je?

- Botanist, plant ecologist, intêret pour l'analyse
- MCU
- Sites internet, github, etc.

1.2 Pourquoi / pour qui écrire un livre sur les statistiques?

- Moi futur moi (pense bete géant). J'accumule des notes ecrites (conf, etc) + scripts
- \bullet Etudiants support de cours
- N'importe qui
- Français

1.3 Pourquoi R

- Libre, puissant, mis à jour
- Github pour le partage

1.4 Plagiat & Sources

- Philo
- Livres

- Blog & internet
- Collaborateurs sur des chapitres

1.5 Report un bug

- Via github
- Mail

1.6 ToDoList

Gestion des données

- 2.1 Les données sur R
- 2.2 Les jeux de données utilisés
 - Via R
 - Perso en ligne sur le repo
 - JDD packages
 - Comment simuler un jdd?

 Lois

 Random
- 2.3 Les fonctions de base
- 2.4 Créer une fonction
- 2.5 Data manipulation
 - Apply
 - For
 - \circ Suite Tidy
- 2.6 Ma structure d'analyse (workflow)

Utilisation de R

- Couleurs (RColorBrewer)
- Fonctionnement (parallèle sur des cœurs différents)
- GitHub

Data mining

Décrire les données (pas de stat) représentation graphiques • Package de data mining • Matrix of scatter plot • Scatter plot 3D et interactif • GGplot2

Les lois statistiques

A faire

Test simples

- Tester la normalité
- Variances
- Paramétriques

Les différentes anova

- Non paramétriques
- Autre, Chi2, etc.
- Tester la corrélation entre variables
 - Pearson
 - Spearman

Inférences • bootstrap

Le modèle linéaire généralisé

Introduction \circ Lien (quasi) \bullet Modèle linéaire simple (lm) \circ Comment ecrire un modèle \bullet Introduction au GLM \bullet GLM sur données de comptage \bullet GLM sur loi binomiale \circ Données présence absence Fit validation \circ sur proportion \bullet Transformation des variables

Les contrastes

Le modèle mixte

- Effet mixtes (random y, random slope)
- comment ecrire le modèle
- Exemple sur loi normale
- Exemple sur loi poisson
- \bullet Exemple sur loi binomiale

Statistiques multivariées

- Introduction
- Les matrices de distance
- Analyses Descriptive
 - AFC
 - ACPP
 - Nmds
- CAH
- KMeans
- Discriminantes
- Quelques tests
- Couplage de tableaux

Times series

- Format
- Analyses de survie

Analyses spatiales

- Représentations spatiales
 - Données en ligne
 - Iintégrer des données Raster vecteurs
- Operations basiques d'analyse spatiale
 - Density kernel
 - \circ Spatial regression
- Détecter l'autocorrélation spatiale

SDM

- Les différents algorithmes
- Modèle averaging
- jointSDM

Analyse de viabilité des populations chez les plantes

- Introduction : la question du type de données
- Matrice classique
- Lme avec structuration temporelle (données comptages)
- Lme avec structuration temporelle (données p/a)

•

30CHAPTER 13. ANALYSE DE VIABILITÉ DES POPULATIONS CHEZ LES PLANTES

Soutient de cours

- $14.1 \quad L2-\acute{e}cologie~g\acute{e}n\acute{e}rale$
- 14.2 L3 écologie des communautés
- 14.3 Master

References