

研究生学位论文中期报告

报告题目	叶层化代数簇对的 Sarkisov 纲领			
学生姓名	王延泽	学号	202028000206034	
指导教师	陈亦飞	职称	副研究员	
学位类别	J	理学硕士		
学科专业	- - ?	基础数学		
研究方向	1	代数几何		
培养单位	中国科学院	E数学与系 约	充研究员	
填表日期	2021	年11月30	Ħ	

中国科学院大学制

报告提纲

一 学位论文进展情况,存在的问题,已取得的阶段性成果 ····	1
1.1 论文进展情况 ······	1
1.2 存在的问题 · · · · · · · · · · · · · · · · · · ·	1
二 下一步工作计划的内容 · · · · · · · · · · · · · · · · · · ·	2
三 已取得的研究成果列表	2

一 学位论文进展情况,存在的问题,已取得的阶段性成果

1.1 论文进展情况

学位论文进展顺利,已如期完成研究目标。具体实现的研究进展和阶段性成果如下:

- 1. 学习了标量极小模型终结性定理,和极小模型有限性定理;
- 2. 学习了 Corti 的原始证明,和对 klt 奇点情况的推广;
- 3. 学习了 Hacon 提出的用有限模型方法;
- 4. 比较了三种方法的异同。

1.2 存在的问题

还有下列问题没有解决:

- 1. 首先是原始方法在高维的推广。这种方法的终结性分为两个部分; 其一是依赖于翻转 (flip) 的终结,目前只在低维数成立,或者运行关于某丰沛除子标量的 MMP。但是归纳地构造 Sarkisov 连接时,每一个连接都需要运行一次 MMP,即使每一个 MMP 中的翻转会终结,不同的 MMP 的翻转连在一起,就不再是同一标量 MMP,所以终结性不能保证。其二是在第一和第二型连接复合的终结性,此时需要局部算术典范阈值的有限性。对于没有边界的情况,在低维情况下是成立的。但是考虑有边界除子的代数簇对时,需要的不再是简单的算术典范阈值,而是更复杂的奇点条件。一个可能的方法是建立局部算术典范阈值的半连续性,然后通过拓扑空间的诺特性质来得到相应的结果,但这需要进一步学习相关知识。
- 2. 其次是例子的计算。前两种方法可以用相同的例子分别计算,相关计算量不算太大。但是第三种方法需要计算大量的公共解消的丰沛模型,计算量巨大,并且细节扰动太多,使得结果十分复杂,难以体现这种方法的中心思想。因此需要计算其他例子。
- 3. 叶层化代数簇的 MMP 还有一些结果没有被推广,因此不能简单的按照 普通的三种方法直接推广。可以尝试将叶层化代数簇对约化成普通的代数簇对,得到较弱的分解,但是会失去一些性质。

二 下一步工作计划的内容

接下来尝试为有限模型法构造新的例子,使得计算相对简单,结果相对清楚。可以考虑首先构造公共解消,然后计算它的丰沛模型,接着构造森纤维空间和双有理映射。

除此之外,继续学习叶层化 MMP 的细节,做两种尝试:其一是直接使用原方法,把叶层化 MMP 缺失的部分补上;其二是将问题约化为普通代数簇对的情况,然后还原出叶层化的结构。

预计答辩时间为5月中旬。

三 已取得的研究成果列表

无。