# Software Project Management

Durga Prasad Mohapatra

**Professor** 

CSE Deptt.

NIT Rourkela



## Project Scheduling cont...



- Activities are represented by links/edges/arrows.
- Nodes represent activities (or group of activities) starting or finishing.

# Example

| Activity<br>Label | Activity Name           | Duration<br>(Weeks) | Precedence |  |
|-------------------|-------------------------|---------------------|------------|--|
| Α                 | Hardware Selection      | 6                   |            |  |
| В                 | System configuration    | 4                   |            |  |
| С                 | Install hardware        | 3                   | Α          |  |
| D                 | Data migration          | 4                   | В          |  |
| E                 | Draft office procedures | 3                   | В          |  |
| F                 | Recruit staff           | 10                  |            |  |
| G                 | User training           | 3                   | E,F        |  |
| Н                 | Install and test        | 2                   | C,D        |  |

## Corresponding AOE Network





- A project network may have only one start node.
  - This is a requirement of activity on edge networks rather than merely desirable as is the case with activity on node networks.
- A project network may have only one end node.
  - Again, this is a requirement for activity on edge networks.



- A link has duration
  - A link represents an activity and in general, activities take time to execute.
  - The links are not drawn in any way to represent the activity durations.
  - The network drawing merely represents the logic of the project
    - The rules governing the order in which activities are to be carried out.

- Nodes have no duration
  - Nodes are events and as such, are instantaneous points in time.
  - The source node is the event of the project becoming ready to start and
    - the sink node is the event of the project becoming completed.
  - Intermediate nodes represent two simultaneous events
    - The event of all activities leading into a node having been completed and
      - the event of all activities leading out of that node being in a position to be started.



- Node 3 is the event that both coding and data take-on have been completed and activity program test is free to start.
- Installation may be started only when event 4 has been achieved, that is as soon as program test has been completed.



- Time moves from left to right.
  - AOE networks are drawn, if at all possible, so that time moves from left to right.
- Nodes are numbered sequentially.
  - There are no precise rules about node numbering but
    - nodes should be numbered so that head nodes (those at the arrow end of an activity) always have a higher number than tail events (those at the non-arrow end of an activity).
- This convention makes it easy to spot loops.



- A network may not contain loops.
  - Loops are either an error of logic or a situation that must be resolved by itemizing iterations of activity groups.
  - A loop represents an impossible sequence.



- A network may not contain dangles.
  - A dangling activity cannot exist
    - · as it would suggest there are two completion points for the project.
- Node 5 represents the true project completion point and there are no activities dependent on activity Write user manual.



- Then the network should be redrawn so that activity Write user manual starts at node 2 and terminates at node 5.
- In practice, we would insert a dummy activity between nodes 3 and 5.
- In other words, all events, except the first and the last, must have
  - at least one activity entering them and
  - at least one activity leaving them and
  - all activities must start and end with an event.



- When two paths within a network have a common event although they are, in other respects, independent,
  - A logical error might occur.

- Suppose that, in a particular, it is necessary to specify a certain piece of hardware before placing an order for it and before coding the software.
- Before coding the software, it is also necessary to specify the appropriate data structures, although clearly we do not wait for this to be done before the hardware is ordered.

• The following figure models the situation.



#### The network is incorrect

 as it requires both hardware specification and data structure design to be completed before either an order may be placed or software coding may commence.

#### The problem is resolved by

separating the two (more or less) independent paths and introducing
a dummy activity to link the completion of specify hardware to the
start of the activity code software.

• This effectively breaks the link between data structure design and placing the order.



- Dummy activities, shown as dotted lines on the network diagram, have a zero duration and use no resources.
- They are often used to aid in the layout of network drawings.



- The use of a dummy activity where two activities share the same start and end nodes makes it easier to distinguish the activity end points.
- These problems do not occur with activity on node (AON) network.

## Representing lagged activities

- Activity on edge networks are less elegant when it comes to representing lagged parallel activities.
- We need to represent these with pairs of dummy activities as shown below.



• Where the activities are lagged because a stage in one activity must be completed before the other may proceed, it is likely to be better to show each stage as a separate activity.

## Activity labeling

- There are a number of conventions that have been adopted for entering information on an *activity on edge* network.
- Typically, the diagram is used to record information about the events rather than the activities
  - Activity based information (other than labels or description) is generally held on a separate activity table.



- One of the more common conventions for labeling nodes is
  - to divide the node circle into quadrants and
  - use those quadrants to show
    - the event number,
    - the latest and
    - earliest dates by which the event should occur, and
    - the event slack.



## Network Analysis

 Analysis proceeds in the same way as with activity on node networks, although the discussion places emphasis on the events rather than activity start and completion time.

# Example

| Activity<br>Label | Activity Name           | Duration<br>(Weeks) | Precedents |  |
|-------------------|-------------------------|---------------------|------------|--|
| Α                 | Hardware Selection      | 6                   |            |  |
| В                 | System configuration    | 4                   |            |  |
| С                 | Install hardware        | 3                   | Α          |  |
| D                 | Data migration          | 4                   | В          |  |
| E                 | Draft office procedures | 3                   | В          |  |
| F                 | Recruit staff           | 10                  |            |  |
| G                 | User training           | 3                   | E,F        |  |
| Н                 | Install and test        | 2                   | C,D        |  |



- The earliest start date for an event is
  - the earliest finish date for all the activities terminating at that event.
- Where more than one activity terminates at a common event
  - we take the latest of the earliest finish dates for those activities.

#### Forward Pass



### Forward Pass

| Activity | Duration<br>(weeks) | Earliest<br>start date | Latest<br>start<br>date | Earliest<br>finish date | Latest<br>finish<br>date | Total float |
|----------|---------------------|------------------------|-------------------------|-------------------------|--------------------------|-------------|
| A        | 6                   | 0                      |                         | 6                       |                          |             |
| В        | 4                   | 0                      |                         | 4                       |                          |             |
| С        | 3                   | 6                      |                         | 9                       |                          |             |
| D        | 4                   | 4                      |                         | 8                       |                          |             |
| E        | 3                   | 4                      |                         | 7                       |                          |             |
| F        | 10                  | 0                      |                         | 10                      |                          |             |
| G        | 3                   | 10                     |                         | 13                      |                          |             |
| н        | 2                   | 9                      |                         | 11                      |                          |             |

#### **Backward Pass**

- The latest finish date for an event is the latest start date for all the activities that may commence from that event.
- Where more than one activity commences at a common event we take the earliest of the latest start dates fro those activities.

#### **Backward Pass**



#### **Backward Pass**

| Activity | Duration<br>(weeks) | Earliest<br>start date | Latest<br>start<br>date | Earliest<br>finish date | Latest<br>finish<br>date | Total float |
|----------|---------------------|------------------------|-------------------------|-------------------------|--------------------------|-------------|
| A        | 6                   | 0                      | 2                       | 6                       | 8                        |             |
| В        | 4                   | 0                      | 3                       | 4                       | 7                        |             |
| С        | 3                   | 6                      | 8                       | 9                       | 11                       |             |
| D        | 4                   | 4                      | 7                       | 8                       | 11                       |             |
| E        | 3                   | 4                      | 7                       | 7                       | 10                       |             |
| F        | 10                  | 0                      | 0                       | 10                      | 10                       |             |
| G        | 3                   | 10                     | 10                      | 13                      | 13                       |             |
| н        | 2                   | 9                      | 11                      | 11                      | 13                       |             |

## Identifying the critical path

- The critical path is the path joining all nodes with a zero slack time.
- The critical path is the longest path in the network.





- A project involves three tasks:
  - task a takes 4 hours,
  - task b takes 5 hours
  - task c takes 8 hours.
  - task c cannot commence until task a is completed.
- What is the shortest time in which the project can be completed?





- Clearly, the project continues until task a and then task c complete:
  - which is 12 hours.
  - Task b takes only 5 hours.
  - Task b can have 7 hours of leeway to start and finish.



#### **CPM**

- CPM can be used to determine the minimum estimated duration of a project and the slack times associated with various non-critical tasks.
- Thus, any path whose duration equals MT is a critical path.
- There can be more than one critical path for a project.
- Tasks which fall on the critical path should receive special attention by both project manager and the personnel assigned to perform those tasks.



- One way is to draw the critical paths with a double line instead of a single line or the path may be coloured.
- The critical path may change as the project progresses.
- This may happen when tasks are completed either behind or ahead of schedule.



- We have discussed Activity-On-Edge Network.
- The rules for constructing Activity-On-Edge Network.
- Solved some examples for finding the critical path in Activity-On-Edge Networks.

#### References:

- 1. B. Hughes, M. Cotterell, R. Mall, *Software Project Management*, Sixth Edition, McGraw Hill Education (India) Pvt. Ltd., 2018.
- 2. R. Mall, *Fundamentals of Software Engineering*, Fifth Edition, PHI Learning Pvt. Ltd., 2018.

# Thank you