WWW Pades are MATHEWATTPECS

Binary Operation (or) closure-property

Ya, bes, axbis unique and axbes

properties

where s is any nonempty

axb

i) Commutative property

axb=bxa Vabes

G. KARTHIKEYAM THIRUVARUR DT

2) Associative Property

a*(b*c)=(a*b)*c Va,b,ces

3) Existence of identity property ees is an identity element

axe=exa=a Vacs

4) Existence of Inverse property

bes is said to be Inverse element of a

oxb=bxa=e "taes" b=a"

Exercise 12.1

i) Determine whether * is a binary operation on the sets given below i) axb = a 16100 R
1616R 33340 K

albier = (5-)xe

=> axber Ya, ber.

* is the binary operation on R.

(ii) axb=min(a,b) on A = \$ 12,3,4,53 GMAR OF LT

Let a, b ∈ A min (a, b) ∈ A For example

αχbeA min (1,2)=1 €A min (1,5)=1 €A min (2,3)=2 €A

... x is the binary operation on A.

20 71. + barry + bule +

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.Padasalai.Net binary on R www.TrbTnpsc.com

Let a,b $\in R$ root of negative numbers not in R a = a + b + R a =

2). On z, define \otimes by $(m\otimes n) = m^n + n^m \forall m_1 n \in \mathbb{Z}$ Is \otimes binary on \mathbb{Z}

Let $m_1 n \in \mathbb{Z}$ take m = 2 n = -2 $m^n + n^m = 2^{-2} + (-2)^2$ $= \frac{17}{4} + 4 = \frac{17}{4} \neq \mathbb{Z}$ $m^n + n^m \neq \mathbb{Z}$

m+n q- (8) is not binousy on Z.

2) Let * be defined on R by (a*b) = a+b+ab-7. Is * binary on R? If so find $3*(-\frac{7}{19})$

Let a ber a book er

∴a+b+ab-7 ER ⇒ a×beR

. * is binary operator on R

$$3*(\frac{7}{16}) = 3 - \frac{7}{16} + \frac{3}{16}(\frac{7}{16}) - 7$$

$$= \frac{45 - 7 - 21 - \frac{1}{105}}{15} = \frac{45 - \frac{1}{15}}{15} = -\frac{98}{15}$$

A) Let A= fa+15b; a,b=z, check whether the usual multiplication is a binary operation on A

Let x=a+15b. y=c+d15 x,yeA , a,b,c,dez

> xy=(a+15b)(c+13d) = ac+5bd+13ad+13bc =(ac+5bd)+13(ad+bc) &A

- xyen

multiplication is binary on R.

5) ci). Define an operation * on q as follows

 $a*b = \frac{a+b}{2}$; a, beg. Examine the closure, commutative and associative properties satisfied by

Octosure property

given a, bea ⇒ a, bea ⇒ a, bea desure on a.

© commutative property

*is closure on a.

a*p=p*a A a1p€@ = p+a = p+a 2-p

Commutative property is true. ** * is commutative associative property

 $a_{x}(b_{x}c) = a_{x}(b_{x}c)$ $= a_{x}(b_{x}c) = a_{x}(b_{x}c)$ $= a_{x$

 $= \frac{0.4b+2c}{4}c - 60$ From (08.2) (0.*b)**c \(\psi\) (0.*(b*c)

* is not associative on G.

(ii) Define an operation * on g as follows a*b=a+b a, be g. Examine the existence of identity and $\frac{1}{2}$ the existence of inverse for the operation * on g.

i) Existence of Identity

Let a eq., e be the identity element on q.

By definition of e a * e = a + eBy definition of e a * e = e

$$\frac{0+e}{2}=a$$

0+e=2a

C=20-0.

e=a. 4α∈Θ

This means every element is a identity element

This is not possible. No Identity element,

(11) Existence of Inverse

* has no Identity element

is connot defined as axai = aixa=e.

. * has no Inverse

6) Fill in the pollowing table so that the binary operation * on A= farb, c7 is commutative.

	· CANAN		
*	a	Ь	C
a	b	. 7 .	8886
ъ	b C	þ	a
c	CK		ς.

GKOTTUKENUN TO TWINCH INTE

is from table bxa=c | x is commutative

=> a x b=c

$$\hat{w}$$
 $c*\alpha = \alpha \Rightarrow \alpha*c=\alpha$

$$\sin b*c=a \Rightarrow c*b=a$$
 given table

	*	a p c	
	a	р со	
	ь	СЬА	
,	C	laac	

7) consider the binary operation & defined on the set A=Fa, b, c,d2 by the following babbe,

L-		_	-	٠ _	
	- -	·O.	·b	Ç.,	d
	a	a	c	ь	d
	ь	d.			
	ے ا	C	oL	a	a
	d	g.	P.	O.	C

13 it commutative and associative?

w commutative property

a*b=c but $b*a=d \Rightarrow a*b\neq b*a$ a*c=b but $c*a=e \Rightarrow a*c+c*a$

.. * is not commutative.

2) associative Property

 $\neg (0*p)*c \neq 0*(p*c)$ $\neg (0*p)*c \neq 0*(p*c)$

* is not associative. I

8) Let
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

be any three boolean matrices of the same type find a AVB in AAB (ii) (AVB) AC (IV) (AAB) VC.

$$\begin{array}{c}
\dot{\omega} \\ \text{AVB} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}
\end{array}$$

$$\begin{array}{c} \text{(i) } AAB = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{\text{(iii) } (BVB) \land C = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \land \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} }{ \land \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} }$$

$$\begin{array}{c} (10) \ (AAB) \ VC = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \\ = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \end{array}$$

Send Your Questions & Answer Keys to our email id - padasalai.net@gmail.com Scanned by CamScanner www.Padasalai.Net

q (i) Let $M = \begin{cases} \begin{pmatrix} x & x \\ x & x \end{cases} : x \in R - \{0\} \end{cases}$ and let * be the matrix multiplication. Determine whether M18 closed under * . It so examine the commutative and associative properties satisfied by * on M.

Let
$$A = \begin{pmatrix} x & x \\ x & x \end{pmatrix}$$
, $B = \begin{pmatrix} y & y \\ y & y \end{pmatrix}$ where $x, y \in R - \{0\}$

A,Bem

i)<u>closture</u> property

$$= \begin{pmatrix} 3xA & 3xA \\ 3xA & 3xA \end{pmatrix} \in W \quad x^A A \in K - Jo_A^A$$

$$\Rightarrow WB = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{pmatrix} A & A \\ A & A \end{pmatrix}$$

$$\Rightarrow WB = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{pmatrix} A & A \\ A & A \end{pmatrix}$$

BB∈M.

A,BEM => AXBEM

. * is closed, on M

2) Commutative Property

$$R,B \in \mathbb{N}$$

$$R \times B = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{pmatrix} y & y \\ y & y \end{pmatrix}$$

$$= \begin{pmatrix} 2xy & 2xy \\ 2xy & 2xy \end{pmatrix} = \begin{pmatrix} 2yx & 2yx \\ 2yx & 2yx \end{pmatrix}$$

$$= \begin{pmatrix} y & y \\ y & y \end{pmatrix} \begin{pmatrix} x & x \\ x & x \end{pmatrix}$$

A*B = B*A

* is commutative on M.

3) associative property matrix multiplication is always associative. ie AX(B *c) = (B XB) *C Y AIB, C EM * is associative, on M.

(1) Let M= { (xx); xer-203 } and let * be the matrix multiplication. Determine whether mis closed under *. If so examine the existence of identity, inverse property for * on M.

$$\begin{array}{ll}
O & \underline{\text{Closurann}} & \underline{\text{proposebu}} & \underline{\text{I.Net}} & \underline{\text{Net}} & \underline{\text{www.TrbTnpsc.com}} \\
& \underline{\text{A_1B}} \in \underline{\text{M}} & \underline{\text{where}} & \underline{\text{A}} = \begin{pmatrix} \underline{x} & \underline{x} \\ \underline{x} & \underline{x} \end{pmatrix}, \underline{\text{B}} = \begin{pmatrix} \underline{y} & \underline{y} \\ \underline{y} & \underline{y} \end{pmatrix} \\
& \underline{\text{A_1B}} \in \underline{\text{A_1B}} & \underline{\text{A_2A_2}} & \underline{\text{A_2A_3}} \\
& \underline{\text{A_2A_3}} & \underline{\text{A_2A_3}} & \underline{\text{A_3A_3}} & \underline{\text{A_3A_3}} \\
& \underline{\text{A_2A_3}} & \underline{\text{A_2A_3}} & \underline{\text{A_3A_3}} & \underline{\text{A_3A_3}} & \underline{\text{A_3A_3}} & \underline{\text{A_3A_3}} & \underline{\text{A_3A_3}} \\
& \underline{\text{A_2A_3}} & \underline{\text{A_3A_3}} & \underline{\text{A$$

AIBGIVI => AXBEM :- X is closed on M.

Existence of Identity property

Let AEM, E=(ee) be the Identity element

AE=A
$$\begin{pmatrix} xx \\ xx \end{pmatrix} \begin{pmatrix} e & e \\ e & e \end{pmatrix} = \begin{pmatrix} xx \\ xx \end{pmatrix}$$

$$\begin{pmatrix} 2xe & 2xe \\ 2xe & 2xe \end{pmatrix} = \begin{pmatrix} xx \\ xx \end{pmatrix}$$

$$2xe = x!$$

$$2e = 1 \qquad e = 1_2 \in R - \{0\}$$
Identity element $E = \begin{pmatrix} x & y \\ y & y \end{pmatrix} \in M$

similarly element on M.

3) Excitence of Inverse property,

Let $A \in M$, $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ be the inverse of A = B

$$\begin{pmatrix} \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{pmatrix} \begin{pmatrix} \mathbf{x}^{\mathsf{T}} & \mathbf{x}^{\mathsf{T}} \\ \mathbf{x}^{\mathsf{T}} & \mathbf{x}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} h_2 & h_2 \\ h_2 & h_2 \end{pmatrix}$$

$$\begin{pmatrix} 2xx^{-1} & 2xx^{-1} \\ 2xx^{-1} & 2xx^{-1} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & \frac{1}{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix}$$

$$2xx^{-1}=k_2$$

 $\hat{A}^{1} = \frac{1}{4x} \in \mathbb{R} - \{0\}$ $\hat{A}^{1} = \begin{pmatrix} \frac{1}{4x} & \frac{1}{4x} \end{pmatrix} \in \mathbb{N}$ $\hat{A}^{1} = \begin{pmatrix} \frac{1}{4x} & \frac{1}{4x} \end{pmatrix} \in \mathbb{N}$ $\hat{A}^{1} = \frac{1}{4x} \in \mathbb{R} - \{0\}$ $\hat{A}^{1} = \frac{1}{4x} \in \mathbb{R}$

similarly we can find A-IA=E YACM

* Inverse on M.

__×--

(e) i) Let A be 9-919. Define * on A by x*y=x+y-xy

1s * binary on A? If so examine the commutative

and associative properties satisfied by * On A.

x=q-ii $x_iy\in A$ x=1 y=1 y=1

O closure peropertu

Let 2464 241, 441

x-1+0, y-1+0 (x-y(y-1)+0 xy+x-y+1+0

x*y+1 => x*y en

ҡ҉ӌѥҥ҇⇒ҳӿӥ҉ѥӊ҅҉

* is closed on A.

@ commutative property:

G. kanthikeyan Thirwanur DT

rop xinch xxi=xxi-xi

=y+x-yx

XXI = AXX

* is commutative on A.

3 pesociative property:

(x+y) x z = (x+y-xy) *z

xx(4xz)= x x (4+z-4x).

 $= x+(\underline{y+z-yz})-x(\underline{y+z-yz})$

xx(4xx)=x+4+x-xy-xx-4x+x4x ----@

From (DLE) (XXY)*Z= XX(YXZ) Y X141ZEA

* is associative on A

- (ii) examine the existence of identity, inverse properties for * on A.
 - O closume property (same as on above)
 - @ excitence of Identity property

'Let xaca , e bethe identity element

BANAGE WATERUL OF *

www.TrbTnpsc.com

By definition of e

X*6=X+6-X6 X*2=2

Xxe-xe=X $\mathcal{C}(1-x) = 0$

೯=೦೯₽

Identity element [e=0 ∈A]

* has Identity element on A 3 Impres brobarry:

Let xen, x be the inverse of x

By definition of \star x*x'=x+x'-xx'By definition of of xxx =e

> $\infty + \infty |-\infty \times |=0$ x¹(1-x)=-x x¹= -x en 1-x en

IMERSE OF I O I = 15 64

* has Inverse element por Vicea.

Mathematical Logic

Truth tables Truth table for NOT

Truth table for AND

3 Truth table for or

Truth table for conditional statement,

P & P-> q T F. F

www.Padasalai.Net 3 Truth table por Bi-conditional statement. 9 P4>9

F TI

www.TrbTnpsc.com 6 Truth table for Exclusive OR (EOR) V

Q PVQ

3 Tautology

A statement is said to be tautology if its truth values is always T irrespective of the truth values of its compound statements, (denoted by T)

8) contradiction

A statement is said to be contradiction if its truth value is always F irrespective of the truth. values of its compound statements. (denoted by (F)

9) contingency A statement which is neither a tautology nor a contradiction is called contingency.

10) Duality

The dual of a statement promula is obtained by replacing V by n T by F Fby T, F by T 1 by V

EXENCISE 12.2

1) Let p: Jupiter is a planet and q: India is an Island be any two simple statements. Give verbal sentence describing each of the following statements.

P: Jupiter is a planet q: India is an Island.

(1) -p: Jupiter is not a planet

(i) Pn-q: Jupiter is a planet and India is not an Island,

(iii) -pvq: Jupiter is not a planet or India is an Island

(1) P→79: If Jupiter is a planet then India is not Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner

www.TrbTnpsc.com

- (v) P ⇔ q: Jupiter is a planet if and only if India is an Island.
- 2) write each of the following sentences in symbolic form using statement variables P and q.

P: 19 is a prime number

q: All the angles of a triangle are equal,

is 19 18 not a prime number and all the angles of a triangle are equal.

7PA9

(11) 19 1s a prime number or all the angles of a triangle are not equal.

PV-19

(ii) 19 is a prime number and all the angles of a triangle are equal

PN9

(14) 19 is riot a prime rumber

-, P.

3) Determine the Truth value of each of the pollowing statements.

U If 6+2=5, then the milk is white.

P; 6+2=5 F

of q: The milk is white T

Symbolic form is

FIT Truth value is T

(ii) china is in Europe or J3 is an integer.

p: china is in Europe F q: 13 is an integer F

symbolic Form is PVQ

FVF Truth value is F

Ji) It is not true +hat 5+5=9 or Earth is a pland,

P: It is true that 5+5=9

q: Earth is a planet.

symbolic form is -pvq'

Touth value TVT

Truth value is T

(14) It is a prime number and all the sides of a rectangle are equal.

P: 11 is a prime number 2: all the sides of a rectangle are equal.

Symbolic form is PAQ.
Truth value TAF

Truth value is IF

4) which one of the pollowing sentences: is a proposition?

u 4+7=12 proposition

(ii) what one you doing? (not a proposition)

(iii) 31 = 81, NEN (proposition)

(11) Peacock is our national bird. (proposition)

v) How tall this mountain is! (not a proposition)

- with the one propositions,

- 5) write the commence, inverse, and contrapositive of each of the following implication:
 - ω If x and y are numbers such that x=y, then $x^2=y^2$

P: zandy one numbers such that zeg

given statement symbolic porm is P->q

(1) converse q >p

If x and y are numbers such that 22-y2

Send Your Questions & Answer Keys to our email id - padasalai net@gmail.com Scanned by CamScanner -② <u>Irwerse</u>: ¬p→¬q

If x and y ove numbers such that x + y then x + y2

- ③ contrapositive: $\neg q \rightarrow \neg p$ If x and y are numbers such that $x^2 + y^2$ then $x \neq y$
- ii) If a quadrilateral is a square then it is a rectangle.

P: A quadrilateral is a square.

q: A quadrilateral is a rectangle

given statement is P->9

O cowerse: 9>P

If a quadrilateral is a rectangle then it is a square.

2 Inwerse: -- p->-9

If a quadrilational is not a square. Then
It is not a rectangle.

3 Contrapositive:

If a quadrilateral is not a rectangle. then it is not a square.

6) construct the truth table for the following

U TPATE

V	P	2	-IP	79	1-7F	7-19	CHI.	2 (3)	orly in
A	*	T	F	F	101	F	F 19	G.KO	irthikoyan
	T	F	F	T	PPS	F			uvarur DT
A	F	Т	T	F	7	F	100	The same	1
0	F	F	T	·T	i i	T	dio-	T	T - 100
10.	- /	0.4	-01	0	0	-10	DA	40	- (DA-

(p ~ ¬q)	Р	9	72	P1-19	-1 (PA-19)
Filley adiabasi umdakat	1-1-1	1-1-1	444	F F	T F T T

iii) (PVq)V¬q	P	9	brd	79	(pva) V (79)
	T	T	T	F	T
	T	F	T	T	T
WANN.	F	T	T	F	T
. O	F	F	F	T	T

P	19	r	7P	7p->r	P4>9	(-p>r)∧(p>q)
T	T	т.	F	Т	T	T
T	T	F	F.I	no.T	T	T
T	F	T	F	T	F	F
1	F	F	F	T	F	F
F	T	T	T	on Trees	de ·	F
F	T	F	Т	FA	F	F
F	F	T	T	T	7	T
F	F	F	T	FS	T	F

To verify whether the following compound propositions are tautologies or contradictions or contingency,

in	(PAQ)	1	-1 (PVCL)
----	-------	---	-----------

12	12	P/9.	PVq_	7CPV2)	(Bud) V-1(7/d)
T	T	T	本	F	F
F	Ť	F	7	F	F
F	F	F	>F	T	F

Last column contains only F This is a contradiction

W (CPYQ) 1 ¬P)→q

P	9	PVQ	¬P	(END) V-L	~((PVQ)∧¬P)→Q
T	4	т	F	F	N. T.
T	OF-	T	F	F	1-
F	7	Typ	Tp	Time	0.0
F	F	F	TI	F	T

Last column. contains only T This is a Tautology.

 $(1) \quad (P \rightarrow Q) \iff (P \rightarrow Q) \qquad \text{www.TrbTnpsc.com}$

·P	9	P→q	-P	7P->92	(P→q) ←> (¬P>q)
Т	7	Т	F	Т	T.
Т	F	F	F	T	F
F	T	T	T	T	T
F	F	7	T	F	F

Last contains T and F

... This is a contingency,

UV) $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

P	9	r	P→q	q→r	p→r	(P→q)∧(q→r)	((p→q) \(q→n)) → (p→r
T	T	T	T	Ţ	T	145	T
T	T	F	1	-	-	100	Dist.
Т	F	T	P -	1		S	1
T	F	F	-	1	-		
F	T	T	T	51	1	5	To O
F	Т	F	T	F	T	F	180° T
F	F	-	T			T	UT
F	F	F	T	JT (T- kin	

Last contains only T _-This is a tautology;

8) show that is - (PAQ) = -PY-19

D	TAR	PAQ	T(PAQ)
丁	T	Т	(5)
Т	F	F	65
F	T	F	ST.

		Wa	TABLE	(2)
P	9	TP	79	TPVTQ
Т	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	$-\tau$

From Table Ole Last columns ove Identical.

-: -i(PAQ) = -PV-1Q.

8) ii) -	7	D-7	Q)三 P	
Mar and Darke	P	9	P->2	-(P->q)
Table	TT	TF	T	F
	+	0.1	T	F

79
2010

q) prove that $q \rightarrow p = \neg p \rightarrow \neg q$

		TR	BLEO			ABLE	- 10000		
3	P	q.	q → P	Naja P	P	q.	-1P	-1Q_	<u>¬p→¬q</u>
		1	्र	50.	T	7	F	F	T 000
	T	F	7		🛨	F	F	7	· //\ T
\$	∓	T	F	vala P.	F	T	Ŧ	F	2019 F
1	F	F		Paron.	<u></u>	F.	T	ा⊤	<u></u>

From table 020 The last columns are identical

10) show that p-79 and q->p are not equivalent.

•							
TAGLEO	P	Qì	₽->9	TRELE.	Ρ	2	q->P
30	Т	ा	<u>;</u>	ا	3 1	1	т
. 100	Ŧ	F	ļ F	MMM.	Τ	F	T
	F	Τ.	To	9 .	F	. Т	%9 F '
18/21	F	F	8/5	'	F	F	Т '

rot identical : P->9 = 9->P.

1). show that -- (p => 4) = p -- 19

	Р	9.	₽≪≫વ	¬(₽ ←> ٩)	[,,		9	79	p⇔¬qj
TABLE	Ψ,	+	Table	: F	TABLE	-	Τ	F	F
0	7	F	F	T	80.0	Ţ.	F	T	4
	F	T	€ }	1	•	;⊩ L∉⊹	.; ()⊏.	' <u>F</u>	
	F	F	1 2/2/	% [™]		10:			

From table (1) Les Last columns are Identical $-(p \Leftrightarrow q) = p \Leftrightarrow \neg q$

12) check whether the Statement $p \rightarrow (q \rightarrow p)$ is a tautology or a contradiction without using the truth table.

$$p \rightarrow (q \rightarrow p) \equiv p \rightarrow (\neg q \vee p)$$

 $\equiv \neg p \vee (\neg q \vee p)$
 $\equiv \neg p \vee (p \vee \neg q)$ (... commutative
 $\equiv (\neg p \vee p) \vee \neg q$ [... associative Law]

= T V 79

ET

.. P → (q → P) is a Tauto logy.

13) using truth table check whether the statements - (pvq) v (-prq) and -p are logically equivalent

F	9	PVQ	T(PVQ)	¬P	(JPAQ)	-(pvq) V(-1P19)
7	Т	Т	F	F	F	F
Т	F	т	F	F	F.	F
F	T	Т	F	S	Т	Tinaut
F	F,	VIE)T	pr-T.gc	TTT	NF9	T

From the table Last column and the Fifth columns one Identical:

-(CPVQ) V (-1PAQ) = -1P

14) Prove $p \rightarrow (q \rightarrow r) \equiv (pnq) \rightarrow r$ with out using truth table.

 $p \rightarrow (q \rightarrow r) \equiv p \rightarrow (\neg q \vee r)$

= ¬pv(¬qvr)

Law)

THE (EVPE -CPAQ) VY

(push or = (6 va) - na bus and bus)

Hence proved,

15) prove that $p \rightarrow (\neg q vr) \equiv \neg p v (\neg q vr)$ using truth table.

TABLE (P> (-19 vr)

P	9	r	79	(gvr)	P>(-1qvr)
Т	Т	Т	F		T
Т	Т	F	F	F	F
T	F	T	T	T	The terms
T	F	F	Ť	· T	~ i T
F	T	Ţ	F	TIN	E T
F	T	F	F	EX	Τ
F	F	T	T	\$	T
F	F	F	T 1	AT I	TI

TABLE (2)

INPLE	41						Land a MANA and a second
	P	9	2	TP	79	(T9V7)	JPV(JQVI)
	T	T	7	F	#F24	7. 700	TO
	T	T	FO	FF.	F=	Family	FINNS
2 1 2 1 1 C	7	F	T	F	1	T	T
	T	F	F	F		T	
0019	F	T	TO	7	F'	7	一十二
Salaran I	F	T	\$	Ţ,	F	F	Fred T
5 L-20 K-	F	FA	5	T	T	丁	T _
salalah Unang	F	F	- The	E		T	T

From Table (1)20 Last column are Identical.

P > $(\neg q v r) \equiv \neg P \lor (\neg q v r)$ (Using one table is also good)

Need Suggestions G. Karthikeyan Thiruvarur(DT) 9715634957