

ETC3550/ETC5550 Applied forecasting

Ch8. Exponential smoothing OTexts.org/fpp3/

Outline

- 1 Exponential smoothing
- 2 Simple exponential smoothing
- 3 Models with trend
- 4 Models with seasonality
- 5 Innovations state space models
- 6 Forecasting with exponential smoothing

Outline

- 1 Exponential smoothing
- 2 Simple exponential smoothing
- 3 Models with trend
- 4 Models with seasonality
- 5 Innovations state space models
- 6 Forecasting with exponential smoothing

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.

Big idea: control the rate of change

α controls the flexibility of the **level**

- If α = 0, the level never updates (mean)
- If α = 1, the level updates completely (naive)

β controls the flexibility of the **trend**

- If β = 0, the trend is linear (regression trend)
- If β = 1, the trend updates every observation

γ controls the flexibility of the **seasonality**

- If γ = 0, the seasonality is fixed (seasonal means)
- If γ = 1, the seasonality updates completely (seasonal naive)

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$$

How do the level, trend and seasonal components evolve over time?

ETS models

```
General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

ETS models

```
General notation ETS: ExponenTial Smoothing

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

ETS models

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

Outline

- 1 Exponential smoothing
- 2 Simple exponential smoothing
- 3 Models with trend
- 4 Models with seasonality
- 5 Innovations state space models
- 6 Forecasting with exponential smoothing

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between these methods.
- Most recent data should have more weight.

Forecast equation

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1 - \alpha) y_{T-1} + \alpha (1 - \alpha)^2 y_{T-2} + \cdots$$

where $0 \le \alpha \le 1$.

Forecast equation

$$\hat{\mathbf{y}}_{T+1|T} = \alpha \mathbf{y}_T + \alpha (\mathbf{1} - \alpha) \mathbf{y}_{T-1} + \alpha (\mathbf{1} - \alpha)^2 \mathbf{y}_{T-2} + \cdots$$

where $0 \le \alpha \le 1$.

Observation	Weights assigned to observations for: $\alpha = 0.2$ $\alpha = 0.4$ $\alpha = 0.6$ $\alpha = 0.8$			
У т	0.2	0.4	0.6	0.8
у _{т-1}	0.16	0.24	0.24	0.16
y _{T-2}	0.128	0.144	0.096	0.032
У Т—3	0.1024	0.0864	0.0384	0.0064
У Т—4	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$
У Т—5	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$ 10

Component form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

- ℓ_t is the level (or the smoothed value) of the series at time t.
- $\hat{y}_{t+1|t} = \alpha y_t + (1 \alpha)\hat{y}_{t|t-1}$ Iterate to get exponentially weighted moving average form.

Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (\mathbf{1} - \alpha)^j \mathbf{y}_{T-j} + (\mathbf{1} - \alpha)^T \ell_0$$

Optimising smoothing parameters

- Need to choose best values for lpha and $\ell_{\mathbf{0}}.$
- Similarly to regression, choose optimal parameters by minimising SSE:

SSE =
$$\sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$
.

■ Unlike regression there is no closed form solution — use numerical optimization.

Optimising smoothing parameters

- Need to choose best values for lpha and $\ell_{\mathbf{0}}.$
- Similarly to regression, choose optimal parameters by minimising SSE:

SSE =
$$\sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$
.

- Unlike regression there is no closed form solution — use numerical optimization.
- For Algerian Exports example:
 - $\hat{\alpha}$ = 0.8400
 - $\hat{\ell}_0 = 39.54$

algeria economy %>%

```
alpha_static <- map_dfr(list(0, as.numeric(tio))</pre>
  fit <- algeria economy %>%
    model(ETS(Exports ~ error("A") + trend("N"
          beta_range = c(-1,1)) + season("N",
  fit %>%
    augment() %>%
    mutate(alpha = tidy(fit)$estimate[tidy(fit)
    as tibble()
}) %>%
```

mutate(alpha = factor(format(alpha)))

Models and methods

Methods

■ Algorithms that return point forecasts.

Models

- Generate same point forecasts but can also generate forecast distributions.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$

Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$

Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Component form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation
$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Forecast error:
$$e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$$
.

Error correction form

$$\begin{aligned} \mathbf{y}_t &= \ell_{t-1} + e_t \\ \ell_t &= \ell_{t-1} + \alpha (\mathbf{y}_t - \ell_{t-1}) \\ &= \ell_{t-1} + \alpha e_t \end{aligned}$$

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$\begin{aligned} \mathbf{y}_t &= \ell_{t-1} + e_t \\ \ell_t &= \ell_{t-1} + \alpha (\mathbf{y}_t - \ell_{t-1}) \\ &= \ell_{t-1} + \alpha e_t \end{aligned}$$

Specify probability distribution for e_t , we assume $e_t = \varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N)

Measurement equation
$$y_t = \ell_{t-1} + \varepsilon_t$$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t .
- Measurement equation: relationship between observations and states.
- State equation(s): evolution of the state(s) through time.

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

 - $\qquad \qquad \bullet_t = \mathsf{y}_t \hat{\mathsf{y}}_{t|t-1} = \ell_{t-1}\varepsilon_t$

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

 - $e_t = y_t \hat{y}_{t|t-1} = \ell_{t-1} \varepsilon_t$

Measurement equation
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:
 - $y_t = \ell_{t-1} + \ell_{t-1} \varepsilon_t$
 - $e_t = y_t \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$

Measurement equation
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(A,N,N): Specifying the model

```
ETS(y ~ error("A") + trend("N") + season("N"))
```

By default, an optimal value for α and ℓ_0 is used. α can be chosen manually in trend().

```
trend("N", alpha = 0.5)
trend("N", alpha_range = c(0.2, 0.8))
```

Example: Algerian Exports

```
algeria_economy <- global_economy %>%
  filter(Country == "Algeria")
fit <- algeria_economy %>%
  model(ANN = ETS(Exports ~ error("A") + trend("N") + season("N")))
report(fit)
```

```
## Series: Exports
## Model: ETS(A,N,N)
##
     Smoothing parameters:
##
       alpha = 0.84
##
##
    Initial states:
##
##
    39.5
##
##
     sigma^2: 35.6
##
##
    AIC AICC BIC
    447 447 453
##
```

Example: Algerian Exports

components(fit) %>% autoplot()

Example: Algerian Exports

components(fit) %>%

```
left_join(fitted(fit), by = c("Country", ".model", "Year"))
## # A dable:
                          59 x 7 [1Y]
                          Country, .model [1]
## # Key:
## # ETS(A,N,N) Decomposition: Exports = lag(level, 1) +
     remainder
## #
    Country .model Year Exports level remainder .fitted
##
##
     <fct> <chr>
                 <dbl>
                        <dbl> <dbl> <dbl>
                                             <dbl>
##
   1 Algeria ANN 1959 NA 39.5
                                     NA
                                             NA
   2 Algeria ANN 1960 39.0 39.1 -0.496
##
                                             39.5
   3 Algeria ANN 1961 46.2 45.1 7.12
                                             39.1
##
   4 Algeria ANN 1962 19.8 23.8 -25.3
                                             45.1
##
##
   5 Algeria ANN
                  1963 24.7 24.6 0.841
                                             23.8
##
   6 Algeria ANN 1964
                        25.1 25.0 0.534
                                             24.6
##
   7 Algeria ANN
                  1965 22.6 23.0 -2.39
                                             25.0
##
   8 Algeria ANN
                  1966
                         26.0 25.5 3.00
                                             23.0
   9 Algeria ANN
                         23.4 23.8
                                     -2.07
                                             25.5
##
                  1967
```

Example: Algerian Exports

```
fit %>%
  forecast(h = 5) %>%
  autoplot(algeria_economy) +
  ylab("Exports (% of GDP)") + xlab("Year")
```


Outline

- 1 Exponential smoothing
- 2 Simple exponential smoothing
- 3 Models with trend
- 4 Models with seasonality
- 5 Innovations state space models
- 6 Forecasting with exponential smoothing

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$,

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$,

- Two smoothing parameters α and β^* (0 < α , β^* < 1).
- ℓ_t level: weighted average between y_t and one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- b_t slope: weighted average of $(\ell_t \ell_{t-1})$ and b_{t-1} , current and previous estimate of slope.

ETS(A,A,N)

Holt's linear method with additive errors.

- Assume $\varepsilon_t = \mathsf{y}_t \ell_{t-1} b_{t-1} \sim \mathsf{NID}(\mathsf{0}, \sigma^2)$.
- Substituting into the error correction equations for Holt's linear method

$$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$$

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \alpha \beta^* \varepsilon_t$$

For simplicity, set $\beta = \alpha \beta^*$.

Exponential smoothing: trend/slope

Exponential smoothing: trend/slope

Exponential smoothing: trend/slope

ETS(M,A,N)

Holt's linear method with multiplicative errors.

- Assume $\varepsilon_t = \frac{y_t (\ell_{t-1} + b_{t-1})}{(\ell_{t-1} + b_{t-1})}$
- Following a similar approach as above, the innovations state space model underlying Holt's linear method with multiplicative errors is specified as

specified as
$$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$$

$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$$
 where again $\beta = \alpha \beta^*$ and $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,A,N): Specifying the model

```
ETS(y ~ error("A") + trend("A") + season("N"))
```

By default, optimal values for β and b_0 are used.

 β can be chosen manually in trend().

```
trend("A", beta = 0.004)
trend("A", beta_range = c(0, 0.1))
```

```
aus_economy <- global_economy %>% filter(Code == "AUS") %>%
 mutate(Pop = Population/1e6)
fit <- aus economy %>%
 model(AAN = ETS(Pop ~ error("A") + trend("A") + season("N")))
report(fit)
## Series: Pop
## Model: ETS(A,A,N)
##
    Smoothing parameters:
      alpha = 1
##
##
     heta = 0.327
##
## Initial states:
##
  l b
##
   10.1 0.222
##
    sigma^2: 0.0041
##
##
  AIC AICC BIC
##
## -77.0 -75.8 -66.7
```

components(fit) %>% autoplot()

components(fit) %>%

```
left_join(fitted(fit), by = c("Country", ".model", "Year"))
## # A dable:
                     59 x 8 [1Y]
## # Kev:
                           Country, .model [1]
## # ETS(A,A,N) Decomposition: Pop = lag(level, 1) +
## # lag(slope, 1) + remainder
##
     Country .model Year Pop level slope remainder .fitted
     <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##
   1 Austral~ AAN 1959 NA 10.1 0.222 NA
##
                                                   NA
   2 Austral~ AAN 1960 10.3 10.3 0.222 -0.000145 10.3
##
##
   3 Austral~ AAN 1961 10.5 10.5 0.217 -0.0159 10.5
##
   4 Austral~ AAN 1962 10.7 10.7 0.231 0.0418
                                                   10.7
   5 Austral~ AAN 1963 11.0 11.0 0.223 -0.0229
##
                                                   11.0
   6 Austral~ AAN 1964 11.2 11.2 0.221 -0.00641
##
                                                   11.2
##
   7 Austral~ AAN 1965 11.4 11.4 0.221 -0.000314
                                                   11.4
## 8 Austral~ AAN 1966 11.7 11.7 0.235 0.0418
                                                   11.6
   9 Austral~ AAN 1967 11.8 11.8 0.206 -0.0869
##
                                                   11.9
## 10 Austral~ AAN 1968 12.0 12.0 0.208 0.00350
                                                   12.0
```

```
fit %>%
  forecast(h = 10) %>%
  autoplot(aus_economy) +
  ylab("Population") + xlab("Year")
```


Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

- Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

Your turn

■ Write down the model for $ETS(A,A_d,N)$

```
aus_economy %>%
model(holt = ETS(Pop ~ error("A") + trend("Ad") + season("N"))) %>%
forecast(h = 20) %>%
autoplot(aus_economy)
```



```
fit <- aus_economy %>%
  filter(Year <= 2010) %>%
  model(
    ses = ETS(Pop ~ error("A") + trend("N") + season("N")),
    holt = ETS(Pop ~ error("A") + trend("A") + season("N")),
    damped = ETS(Pop ~ error("A") + trend("Ad") + season("N"))
)
```

```
tidy(fit)
accuracy(fit)
```

term	SES	Linear trend	Damped trend
α	1.00	1.00	1.00
eta^*		0.30	0.40
ϕ			0.98
ℓ_{O}	10.28	10.05	10.04
b_0		0.22	0.25
Training RMSE	0.24	0.06	0.07
Test RMSE	1.63	0.15	0.21
Test MASE	6.18	0.55	0.75
Test MAPE	6.09	0.55	0.74
Test MAE	1.45	0.13	0.18

Your turn

fma::eggs contains the price of a dozen eggs in the United States from 1900–1993

- Use SES and Holt's method (with and without damping) to forecast "future" data.

 [Hint: use h=100 so you can clearly see the differences between the options when plotting the forecasts.]
- Which method gives the best training RMSE?
- Are these RMSE values comparable?
- Do the residuals from the best fitting method look like white noise?

Outline

- 1 Exponential smoothing
- 2 Simple exponential smoothing
- 3 Models with trend
- 4 Models with seasonality
- 5 Innovations state space models
- 6 Forecasting with exponential smoothing

Holt-Winters additive method

Holt and Winters extended Holt's method to capture seasonality.

Component form

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$$

- k = integer part of (h-1)/m. Ensures estimates from the final year are used for forecasting.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

Holt-Winters additive method

- Seasonal component is usually expressed as $s_t = \gamma^*(y_t \ell_t) + (1 \gamma^*)s_{t-m}$.
- Substitute in for ℓ_t : $s_t = \gamma^* (1-\alpha)(y_t - \ell_{t-1} - b_{t-1}) + [1-\gamma^* (1-\alpha)]s_{t-m}$
- We set $\gamma = \gamma^*(1 \alpha)$.
- The usual parameter restriction is $0 \le \gamma^* \le 1$, which translates to $0 \le \gamma \le (1 \alpha)$.

Exponential smoothing: seasonality

Exponential smoothing: seasonality

```
gamma_static <- map_dfr(list(0, NULL, 1), func</pre>
  fit <- i07 %>%
    model(ETS(Cost ~ error("A") + trend("N", a
              beta_range = c(-1,1)) + season("
  fit %>%
    augment() %>%
    mutate(gamma = tidy(fit)$estimate[tidy(fit)
    as tibble()
}) %>%
```

mutate(gamma = factor(format(gamma)))

46

ETS(A,A,A)

Holt-Winters additive method with additive errors.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

Observation equation $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$
State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $b_t = b_{t-1} + \beta \varepsilon_t$
 $s_t = s_{t-m} + \gamma \varepsilon_t$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- k is integer part of (h-1)/m.

Your turn

■ Write down the model for ETS(A,N,A)

Holt-Winters multiplicative method

For when seasonal variations are changing proportional to the level of the series.

Component form

$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$

$$\ell_t = \alpha \frac{y_t}{s_{t-m}} + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

$$s_t = \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})} + (1 - \gamma)s_{t-m}$$

- k is integer part of (h-1)/m.
- With additive method s_t is in absolute terms: within each year $\sum_i s_i \approx 0$.
- With multiplicative method s_t is in relative terms: within each year $\sum_i s_i \approx m$.

ETS(M,A,M)

Holt-Winters multiplicative method with multiplicative errors.

Forecast equation
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$

Observation equation $y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
State equations $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
 $b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$
 $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

- Forecast errors: $\varepsilon_t = (y_t \hat{y}_{t|t-1})/\hat{y}_{t|t-1}$
- \blacksquare k is integer part of (h-1)/m.

Example: Australian holiday tourism

```
aus_holidays <- tourism %>%
  filter(Purpose == "Holiday") %>%
  summarise(Trips = sum(Trips))
fit <- aus_holidays %>%
  model(
    additive = ETS(Trips ~ error("A") + trend("A") + season("A")),
    multiplicative = ETS(Trips ~ error("M") + trend("A") + season("M"))
)
fc <- fit %>% forecast()
```

```
fc %>%
  autoplot(aus_holidays, level = NULL) + xlab("Year") +
  ylab("Overnight trips (thousands)") +
  scale_color_brewer(type = "qual", palette = "Dark2")
```


Estimated components

components(fit)

```
## # A dable:
                                       168 x 7 [1Q]
## # Key:
                                       .model [2]
## # ETS(A,A,A) & ETS(M,A,M) Decomposition: Trips = lag(level,
## # 1) + lag(slope, 1) + lag(season, 4) + remainder
##
     .model Quarter Trips level slope season remainder
##
     <chr> <qtr> <dbl> <dbl> <dbl> <dbl> <dbl>
                                               <dbl>
   1 additive 1997 01
                            NA NA 1512.
                                                NA
##
                       NA
##
   2 additive 1997 Q2 NA
                            NA NA -290.
                                                NA
   3 additive 1997 03 NA NA NA -684.
                                                NA
##
   4 additive 1997 Q4 NA 9899. -37.4 -538.
                                                NA
##
##
   5 additive 1998 Q1 11806. 9964. -24.5 1512. 433.
##
   6 additive 1998 02 9276. 9851. -35.6 -290.
                                              -374.
   7 additive 1998 Q3 8642. 9700. -50.2 -684.
##
                                              -489.
   8 additive 1998 04 9300. 9694. -44.6 -538. 188.
##
                                                        52
##
   9 additive 1999 01 11172. 9652. -44.3 1512. 10.7
## 10 additive 1000 02 0000 0070 25 0 200
```

Estimated components

```
components(fit) %>%
  gather("state", "value", -.model, -Quarter, factor_key = TRUE) %
  group_by(.model) %>%
  group_split() %>%
  purrr::map(
    ~ ggplot(., aes(x = Quarter, y = value)) +
      geom_line() +
      facet_grid(state ~ ., scales = "free") +
      xlab("Year") + ylab(NULL) +
      ggtitle(stringr::str_to_title(unique(.$.model)) %>% paste("s
  ) %>%
 wrap_plots(ncol=2)
```


Holt-Winters damped method

Often the single most accurate forecasting method for seasonal data:

$$\hat{y}_{t+h|t} = [\ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t]s_{t+h-m(k+1)}$$

$$\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$$

$$s_t = \gamma \frac{y_t}{(\ell_{t-1} + \phi b_{t-1})} + (1 - \gamma)s_{t-m}$$

Your turn

Apply Holt-Winters' multiplicative method to the Gas data from aus_production.

- Why is multiplicative seasonality necessary here?
- Experiment with making the trend damped.
- Check that the residuals from the best method look like white noise.

Outline

- 1 Exponential smoothing
- 2 Simple exponential smoothing
- 3 Models with trend
- 4 Models with seasonality
- 5 Innovations state space models
- 6 Forecasting with exponential smoothing

Exponential smoothing methods

		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	(N,N)	(N,A)	(N,M)
Α	(Additive)	(A,N)	(A,A)	(A,M)
A_d	(Additive damped)	(A _d ,N)	(A_d,A)	(A_d,M)

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method (A.A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

ETS models

Additive Error		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	A,N,N	A,N,A	A,N,M
Α	(Additive)	A,A,N	A,A,A	A,A,M
A_{d}	(Additive damped)	A,A_d,N	A,A_d,A	A,A_d,M

Multiplicative Error		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	M,N,N	M,N,A	M,N,M
Α	(Additive)	M,A,N	M,A,A	M,A,M
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A_d,M

Additive error models

Trend		Seasonal	
	N	A	M
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$
Α	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$
A_d	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$

Multiplicative error models

Trend			
	N	N A	
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
A	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t)$
A_d	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

Estimating ETS models

- Smoothing parameters α , β , γ and ϕ , and the initial states ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{-m+1} are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, not equivalent to minimising SSE.

Innovations state space models

Let
$$\mathbf{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$$
 and $\varepsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

$$y_{t} = \underbrace{h(\mathbf{x}_{t-1})}_{\mu_{t}} + \underbrace{k(\mathbf{x}_{t-1})\varepsilon_{t}}_{e_{t}}$$
$$\mathbf{x}_{t} = f(\mathbf{x}_{t-1}) + g(\mathbf{x}_{t-1})\varepsilon_{t}$$

Additive errok(x) = 1.
$$y_t = \mu_t + \varepsilon_t$$
.
Multiplicative (x_tro)'s= μ_t . $y_t = \mu_t (1 + \varepsilon_t)$.
 $\varepsilon_t = (y_t - \mu_t)/\mu_t$ is relative error.

Innovations state space models

Estimation

$$L^*(\boldsymbol{\theta}, \mathbf{x}_0) = T \log \left(\sum_{t=1}^{T} \varepsilon_t^2 \right) + 2 \sum_{t=1}^{T} \log |k(\mathbf{x}_{t-1})|$$
$$= -2 \log(\text{Likelihood}) + \text{constant}$$

Estimate parameters $\theta = (\alpha, \beta, \gamma, \phi)$ and initial states $\mathbf{x}_0 = (\ell_0, b_0, s_0, s_{-1}, \dots, s_{-m+1})$ by minimizing L^* .

Parameter restrictions

Usual region

- Traditional restrictions in the methods $0 < \alpha, \beta^*, \gamma^*, \phi < 1$ (equations interpreted as weighted averages).
- In models we set $\beta = \alpha \beta^*$ and $\gamma = (1 \alpha)\gamma^*$.
- Therefore $0 < \alpha < 1$, $0 < \beta < \alpha$ and $0 < \gamma < 1 \alpha$.
- $0.8 < \phi < 0.98$ to prevent numerical difficulties.

Parameter restrictions

Usual region

- Traditional restrictions in the methods $0 < \alpha, \beta^*, \gamma^*, \phi < 1$ (equations interpreted as weighted averages).
- In models we set $\beta = \alpha \beta^*$ and $\gamma = (1 \alpha)\gamma^*$.
- Therefore $0 < \alpha < 1$, $0 < \beta < \alpha$ and $0 < \gamma < 1 \alpha$.
- \blacksquare 0.8 < ϕ < 0.98 to prevent numerical difficulties.

Admissible region

- To prevent observations in the distant past having a continuing effect on current forecasts.
- Usually (but not always) less restrictive than the traditional region.
- For example for ETS(A,N,N): traditional $0 < \alpha < 1$ admissible is $0 < \alpha < 2$.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

AIC and cross-validation

Minimizing the AIC assuming
Gaussian residuals is asymptotically
equivalent to minimizing one-step
time series cross validation MSE.

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data.
 Optimize parameters and initial values using
 MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Example: National populations

```
fit <- global_economy %>%
 mutate(Pop = Population / 1e6) %>%
 model(ets = ETS(Pop))
fit
## # A mable: 263 x 2
## # Key: Country [263]
##
  Country
                                  ets
## <fct>
                              <model>
## 1 Afghanistan
                        \langle ETS(A,A,N) \rangle
## 2 Albania
                         <ETS(M,A,N)>
## 3 Algeria
                         <ETS(M,A,N)>
## 4 American Samoa
                         <ETS(M,A,N)>
## 5 Andorra
                         <ETS(M,A,N)>
## 6 Angola
                         <ETS(M,A,N)>
## 7 Antigua and Barbuda <ETS(M,A,N)>
## 8 Arab World
                         <ETS(M,A,N)>
##
   9 Argentina
                         <ETS(A,A,N)>
## 10 Armenia
                         <ETS(M,A,N)>
## # ... with 253 more rows
```

Example: National populations

fit %>%

```
forecast(h = 5)
## # A fable: 1,315 x 5 [1Y]
## # Key: Country, .model [263]
## Country .model Year
                                      Pop .mean
## <fct> <chr> <dbl>
                                   <dist> <dbl>
## 1 Afghanistan ets 2018
                              N(36, 0.012) 36.4
##
   2 Afghanistan ets 2019
                              N(37, 0.059) 37.3
   3 Afghanistan ets 2020
                               N(38, 0.16) 38.2
##
##
   4 Afghanistan ets
                      2021
                               N(39, 0.35) 39.0
##
   5 Afghanistan ets
                       2022
                               N(40, 0.64) 39.9
   6 Albania
                       2018 N(2.9, 0.00012) 2.87
##
               ets
## 7 Albania
               ets
                       2019
                             N(2.9, 6e-
04) 2.87
   8 Albania
                            N(2.9, 0.0017)
##
               ets
                       2020
```

```
holidays <- tourism %>%
 filter(Purpose == "Holiday")
fit <- holidays %>% model(ets = ETS(Trips))
fit
## # A mable: 76 x 4
##
  # Key: Region, State, Purpose [76]
##
      Region
                            State
                                           Purpose
                                                            ets
##
      <chr>>
                            <chr>
                                           <chr>
                                                      <model>
##
   1 Adelaide
                            South Austral~ Holiday <ETS(A,N,A)>
   2 Adelaide Hills
                            South Austral~ Holiday <ETS(A,A,N)>
##
   3 Alice Springs
##
                            Northern Terr~ Holiday <ETS(M,N,A)>
##
   4 Australia's Coral Co~ Western Austr~ Holiday <ETS(M,N,A)>
##
   5 Australia's Golden 0~ Western Austr~ Holiday <ETS(M,N,M)>
##
   6 Australia's North We~ Western Austr~ Holiday <ETS(A,N,A)>
##
   7 Australia's South We~ Western Austr~ Holiday <ETS(M,N,M)>
##
   8 Ballarat
                            Victoria
                                           Holiday <ETS(M,N,A)>
##
   9 Barkly
                            Northern Terr~ Holiday <ETS(A,N,A)>
  10 Barossa
                            South Austral~ Holiday <ETS(A,N,N)>
```

```
fit %>%
  filter(Region == "Snowy Mountains") %>%
  report()
```

```
## Series: Trips
## Model: ETS(M,N,A)
##
    Smoothing parameters:
##
       alpha = 0.157
       gamma = 1e-04
##
##
    Initial states:
##
##
    l s1 s2 s3 s4
##
   142 -61 131 -42.2 -27.7
##
##
    sigma^2: 0.0388
##
##
   ATC ATCC BTC
##
   852 854 869
```

```
fit %>%
  filter(Region == "Snowy Mountains") %>%
  components(fit)
```

```
## # A dable:
                             84 x 9 [10]
## # Kev:
                             Region, State, Purpose, .model
## #
      Γ17
    ETS(M,N,A) Decomposition: Trips = (lag(level, 1) +
## #
      lag(season, 4)) * (1 + remainder)
     Region State Purpose .model Quarter Trips level season
##
                                  <qtr> <dbl> <dbl>
##
     <chr> <chr> <chr> <chr> <chr>
                                                    <dbl>
   1 Snowy~ New ~ Holiday ets
                                1997 01 NA
                                               NA -27.7
##
##
   2 Snowy~ New ~ Holiday ets
                                1997 Q2 NA
                                               NA -42.2
                                1997 Q3 NA NA 131.
##
   3 Snowy~ New ~ Holiday ets
##
   4 Snowy~ New ~ Holiday ets
                                1997 Q4 NA
                                              142. -61.0
##
   5 Snowv~ New ~ Holiday ets
                                1998 Q1 101.
                                              140. -27.7
   6 Snowv~ New ~ Holidav ets
                                1998 Q2 112.
                                              142. -42.2
##
##
   7 Snowy~ New ~ Holiday ets
                                1998 03 310.
                                              148. 131.
##
   8 Snowy~ New ~ Holiday ets
                                1998 04 89.8
                                              148. -61.0
```

```
fit %>%
  filter(Region == "Snowy Mountains") %>%
  components(fit) %>%
  autoplot()
     ETS(M,N,A) decomposition
     Trips = (lag(level, 1) + lag(season, 4)) * (1 + remainder)
 300 -
 200 -
 100 -
 160 -
 150 -
 140 -
 130 -
 120 -
 110 -
 100 -
                                                                                              season
  50 -
   0 -
 -50 -
0.25 -
0.00 -
-0.25 -
```

fit %>% forecast()

```
## # A fable: 608 x 7 [10]
  # Key: Region, State, Purpose, .model [76]
##
##
     Region State Purpose .model Quarter Trips .mean
##
     <chr> <chr> <chr> <chr> <chr> <dist> <dbl>
##
   1 Adelaide South ~ Holiday ets
                                    2018 Q1 N(210, 457) 210.
##
   2 Adelaide South ~ Holiday ets
                                    2018 Q2 N(173, 473) 173.
##
   3 Adelaide South ~ Holiday ets
                                    2018 Q3 N(169, 489) 169.
##
   4 Adelaide South ~ Holiday ets
                                    2018 Q4 N(186, 505) 186.
   5 Adelaide South ~ Holiday ets
##
                                    2019 Q1 N(210, 521) 210.
##
   6 Adelaide South ~ Holiday ets
                                    2019 Q2 N(173, 537) 173.
##
   7 Adelaide South ~ Holiday ets
                                    2019 Q3 N(169, 553) 169.
   8 Adelaide South ~ Holiday ets
                                    2019 Q4 N(186, 569) 186.
##
   9 Adelaid~ South ~ Holiday ets
##
                                    2018 Q1 N(19, 36) 19.4
  10 Adelaid~ South ~ Holiday ets
                                    2018 Q2 N(20, 36) 19.6
## # ... with 598 more rows
```

```
fit %>%
  forecast() %>%
  filter(Region == "Snowy Mountains") %>%
  autoplot(holidays) +
  xlab("Year") + ylab("Overnight trips (thousands)")
```


Some unstable models

- Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state.
- These are: ETS(A,N,M), ETS(A,A,M), $ETS(A,A_d,M)$.
- Models with multiplicative errors are useful for strictly positive data, but are not numerically stable with data containing zeros or negative values. In that case only the six fully additive models will be applied.

Exponential smoothing models

Additive Error		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	A,N,N	A,N,A	<u> </u>
Α	(Additive)	A,A,N	A,A,A	<u> </u>
A_{d}	(Additive damped)	A,A _d ,N	A,A_d,A	<u> </u>

Multiplicative Error		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	M,N,N	M,N,A	M,N,M
Α	(Additive)	M,A,N	M,A,A	M,A,M
A_d	(Additive damped)	M,A_d,N	M,A_d,A	M,A _d ,M

Residuals

Response residuals

$$\hat{e}_t = y_t - \hat{y}_{t|t-1}$$

Innovation residuals

Additive error model:

$$\hat{\varepsilon}_t = \mathbf{y}_t - \hat{\mathbf{y}}_{t|t-1}$$

Multiplicative error model:

$$\hat{\varepsilon}_t = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$$

```
aus_holidays <- tourism %>%
  filter(Purpose == "Holiday") %>%
  summarise(Trips = sum(Trips))
fit <- aus_holidays %>%
  model(ets = ETS(Trips)) %>%
  report()
```

```
## Series: Trips
## Model: ETS(M,N,M)
## Smoothing parameters:
## alpha = 0.358
## gamma = 0.000969
##
## Initial states:
## 1 s1 s2 s3 s4
## 9667 0.943 0.927 0.968 1.16
```

```
residuals(fit)
residuals(fit, type = "response")
```


Outline

- 1 Exponential smoothing
- 2 Simple exponential smoothing
- 3 Models with trend
- 4 Models with seasonality
- 5 Innovations state space models
- 6 Forecasting with exponential smoothing

Forecasting with ETS models

Point forecasts: iterate the equations for

$$t = T + 1, T + 2, \dots, T + h$$
 and set all $\varepsilon_t = 0$ for $t > T$.

Forecasting with ETS models

Point forecasts: iterate the equations for t = T + 1, T + 2, ..., T + h and set all $\varepsilon_t = 0$ for t > T.

- Not the same as $E(y_{t+h}|\mathbf{x}_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,*,*) are identical to ETS(M,*,*) if the parameters are the same.

Example: ETS(A,A,N)

$$\begin{aligned} y_{T+1} &= \ell_T + b_T + \varepsilon_{T+1} \\ \hat{y}_{T+1|T} &= \ell_T + b_T \\ y_{T+2} &= \ell_{T+1} + b_{T+1} + \varepsilon_{T+2} \\ &= (\ell_T + b_T + \alpha \varepsilon_{T+1}) + (b_T + \beta \varepsilon_{T+1}) + \varepsilon_{T+2} \\ \hat{y}_{T+2|T} &= \ell_T + 2b_T \end{aligned}$$
 etc.

Example: ETS(M,A,N)

```
\begin{aligned} y_{T+1} &= (\ell_T + b_T)(1 + \varepsilon_{T+1}) \\ \hat{y}_{T+1|T} &= \ell_T + b_T. \\ y_{T+2} &= (\ell_{T+1} + b_{T+1})(1 + \varepsilon_{T+2}) \\ &= \left\{ (\ell_T + b_T)(1 + \alpha \varepsilon_{T+1}) + [b_T + \beta(\ell_T + b_T)\varepsilon_{T+1}] \right\} (1 + \varepsilon_{T+2}) \\ \hat{y}_{T+2|T} &= \ell_T + 2b_T \\ \text{etc.} \end{aligned}
```

Forecasting with ETS models

Prediction intervals: can only generated using the models.

- The prediction intervals will differ between models with additive and multiplicative errors.
- Exact formulae for some models.
- More general to simulate future sample paths, conditional on the last estimate of the states, and to obtain prediction intervals from the percentiles of these simulated future paths.

Prediction intervals

PI for most ETS models: $\hat{y}_{T+h|T} \pm c\sigma_h$, where c depends on coverage probability and σ_h is forecast standard deviation.

$$\begin{array}{lll} (\mathsf{A},\mathsf{N},\mathsf{N}) & \sigma_h = \sigma^2 \left[1 + \alpha^2 (h-1) \right] \\ (\mathsf{A},\mathsf{A},\mathsf{N}) & \sigma_h = \sigma^2 \left[1 + (h-1) \{ \alpha^2 + \alpha \beta h + \frac{1}{6} \beta^2 h (2h-1) \} \right] \\ (\mathsf{A},\mathsf{A}_d,\mathsf{N}) & \sigma_h = \sigma^2 \left[1 + \alpha^2 (h-1) + \frac{\beta \phi h}{(1-\phi)^2} \left\{ 2\alpha (1-\phi) + \beta \phi \right\} \right. \\ & \left. - \frac{\beta \phi (1-\phi^h)}{(1-\phi)^2 (1-\phi^2)} \left\{ 2\alpha (1-\phi^2) + \beta \phi (1+2\phi-\phi^h) \right\} \right] \\ (\mathsf{A},\mathsf{N},\mathsf{A}) & \sigma_h = \sigma^2 \left[1 + \alpha^2 (h-1) + \gamma k (2\alpha+\gamma) \right] \\ (\mathsf{A},\mathsf{A},\mathsf{A}) & \sigma_h = \sigma^2 \left[1 + (h-1) \{ \alpha^2 + \alpha \beta h + \frac{1}{6} \beta^2 h (2h-1) \} + \gamma k \{ 2\alpha + \gamma + \beta m (k+1) \} \right] \\ (\mathsf{A},\mathsf{A}_d,\mathsf{A}) & \sigma_h = \sigma^2 \left[1 + \alpha^2 (h-1) + \frac{\beta \phi h}{(1-\phi)^2} \left\{ 2\alpha (1-\phi) + \beta \phi \right\} \right. \\ & \left. - \frac{\beta \phi (1-\phi^h)}{(1-\phi)^2 (1-\phi^2)} \left\{ 2\alpha (1-\phi^2) + \beta \phi (1+2\phi-\phi^h) \right\} \right. \\ & \left. + \gamma k (2\alpha+\gamma) + \frac{2\beta \gamma \phi}{(1-\phi)(1-\phi^m)} \left\{ k (1-\phi^m) - \phi^m (1-\phi^{mk}) \right\} \right] \\ & 86 \end{array}$$

```
h02 <- PBS %>%
filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost))
h02 %>%
autoplot(Cost)
```



```
h02 %>%
 model(ETS(Cost)) %>%
 report()
## Series: Cost
## Model: ETS(M,Ad,M)
##
    Smoothing parameters:
      alpha = 0.307
##
   beta = 0.000101
##
   gamma = 0.000101
##
##
    phi = 0.978
##
##
    Initial states:
                  s1
                       s2 s3 s4
##
                                        s5
                                             s6 s7
                                                       s8
   417269 8206 0.872 0.826 0.756 0.773 0.687 1.28 1.32 1.18
##
##
     59 510 511 512
   1.16 1.1 1.05 0.981
##
    sigma^2: 0.0046
##
##
   ATC ATCC BTC
## 5515 5519 5575
```

244644 145368 130570 84458 39132 -11674

sigma^2: 3.5e+09

AIC AICC BIC ## 5585 5589 5642

##

##

##

```
h02 %>%
 model(ETS(Cost ~ error("A") + trend("A") + season("A"))) %>%
 report()
## Series: Cost
## Model: ETS(A,A,A)
##
    Smoothing parameters:
      alpha = 0.17
##
## beta = 0.00631
  gamma = 0.455
##
##
##
    Initial states:
##
       l b s1 s2 s3 s4
                                             s5
                                                   s6
   409706 9097 -99075 -136602 -191496 -174531 -241437 210644
##
      57 58 59 510 511 512
```

1995 Jan

2000 Jan Month 2005 Jan

2010 Jan

```
h02 %>%

model(
    auto = ETS(Cost),

    AAA = ETS(Cost ~ error("A") + trend("A") + season("A"))
) %>%

accuracy()
```

```
h02 %>%
  model(
    auto = ETS(Cost),
    AAA = ETS(Cost ~ error("A") + trend("A") + season("A"))
) %>%
  accuracy() %>%
  transmute(Model = .model, ME, MAE, RMSE, MAPE, MASE) %>%
  knitr::kable(booktabs = TRUE)
```

Your turn

- Use ETS() on some of these series: tourism, gafa_stock, pelt
- Does it always give good forecasts?
- Find an example where it does not work well.
 Can you figure out why?