1,

Some issues:

- (1) There is a minor mistake in the paper that the input image should be 227 X 227 X 3 rather than 224 X 224 X 3.
- (2) The caption under Figure 2 is "The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000". The first number "253440" here is wrong.
- (3) Pay attention to the 2-tower architecture where feature maps are splited, the stride of convolutional filters and pooling and whether convolution is with padding or not.
 - (4) Do not count bias.

Conv layer:

```
# Units = f h * f w * N
# Weights = h * w * C * N
# Connections = h * w * C * N * X * Y
h: filter height, w: filter width, C: number of input channels, N: number of filters
H: input height, W: input width,
f h: height of feature map,
f w: width of feature map,
S_x: stride along width dimension,
S y: stride along height dimension,
X: number of possible positions for convolution along width dimension,
Y: number of possible positions for convolution along height dimension,
X = [(W - 1) / S x + 1]
                              (with padding)
Y = [(H - 1) / S_y + 1] (with padding)
X = [(W - [w/2] - [w/2] - 1) / S x + 1] (without padding)
Y = [(H - [h/2] - [h/2] - 1) / S y + 1] (without padding)
where [x] means taking the floor interger, e.g., [2.6] = 2, [3.1] = 3.
```

FC layer:

```
# Units = # Output
# Weights = # Input * # Output
# Connections = # Weights
```

	# Units	# Weights	# Connections
Convolution	55 * 55 * 96	11 * 11 * 3 * 96	11 * 11 * 3 * 96 * 55 * 55 = 105415200
Layer 1	= 290400	= 34848	(Single tower here!)
Convolution	27 * 27 * 256	5 * 5 * 48 * 256	5 * 5 * 48 * 128 * 2 * 27 * 27 = 223948800
Layer 2	= 186624	= 307200	(Two towers here!)
Convolution	13 * 13 * 384	3 * 3 * 256 *	3 * 3 * 128 * 384 * 2 * 13 * 13 =
Layer 3	= 64896	384 = 884736	149520384 (Single tower here!)
Convolution	13 * 13 * 384	3 * 3 * 192 *	3 * 3 * 192 * 192 * 2 * 13 * 13 =
Layer 4	= 64896	384 = 663552	112140288 (Two towers here!)
Convolution	13 * 13 * 256	3 * 3 * 192 *	3 * 3 * 192 * 128 * 2 * 13 * 13 = 74760192
Layer 5	= 43264	256 = 442368	(Two towers here!)
Fully Connected Layer 1	4096	9216 * 4096 = 37748736	9216 * 4096 = 37748736
Fully Connected Layer 2	4096	4096 * 4096 = 16777216	4096 * 4096 = 16777216
Output Layer	1000	4096 * 1000 = 4096000	4096 * 1000 = 4096000

2,

- (a) You can reduce the number of parameters by e.g., reducing the size of the fully connected layer. As you can tell from the above table, two FC layers occupy a lot of parameters, especially FC layer 1.
- (b) You can reduce the connections by use fewer number of filters for the convolutional layers. As you can see from the above table, the convolutional layers have a lot of connections and each of them is approximately one add-multiplication operation.