How to Prove It: A Structured Approach, Second Edition

Exercises for Section 1.2

- 1. 1. Make truth tables for the following formulas:
 - (a) $\neg P \lor Q$.

Solution.

(b) $(S \vee G) \wedge (\neg S \vee \neg G)$.

Solution.

- 2. Make truth tables for the following formulas:
 - (a) $\neg [P \land (Q \lor \neg P)]$.

(b) $(P \lor Q) \land (\neg P \lor R)$.

Solution.

P	Q	R	$\neg P$	$P \lor Q$	$\neg P \lor R$	$(P \lor Q) \land (\neg P \lor R)$
Т	Τ	Τ	F	Т	Т	Τ
Τ	Τ	F	F	Τ	F	F
Τ	F	Τ	F	Τ	Τ	T
Τ	F	F	F	Τ	F	F
F	Τ	Τ	Τ	Τ	Τ	T
F	Τ	F	Τ	Τ	Τ	Τ
F	F	Τ	Τ	F	Τ	F
F	F	F	Т	F	Т	F

- 3. In this exercise we will use the symbol + to mean exclusive or. In other words, P + Q means " P or Q, but not both."
 - (a) Make a truth table for P + Q.

Solution.

(b) Find a formula using only the connectives \land , \lor , and \neg that is equivalent to P+Q. Justify your answer with a truth table.

Solution.

4. Find a formula using only the connectives \wedge and \neg that is equivalent to $P \vee Q$. Justify your answer with a truth table.

Solution.

$$P \lor Q \equiv \neg(\neg P \land \neg Q)$$

Р	Q	$\neg P$	$\neg Q$	$\neg P \land \neg Q$	$\neg(\neg P \land \neg Q)$	$P \lor Q$
Т	Т	F	F	F	Т	Т
Τ	F	F	Τ	F	Т	Τ
F	Τ	Τ	F	F	Т	Τ
F	F	Τ	Т	Т	F	F

2

- 5. Some mathematicians use the symbol \downarrow to mean nor. In other words, $P \downarrow Q$ means "neither P nor Q."
 - (a) Make a truth table for $P \downarrow Q$.

Solution.

$$\begin{array}{cccc} P & Q & P \downarrow Q \\ \hline T & T & F \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

(b) Find a formula using only the connectives \land , \lor , and \neg that is equivalent to $P \downarrow Q$.

Solution.

$$P \downarrow Q \equiv \neg (P \lor Q)$$

$$P Q P \lor Q \neg (P \lor Q) P \downarrow Q$$

$$T T T F F F$$

$$F T F F F$$

$$F F F T T F$$

$$F T T F$$

$$F T T T F$$

$$F T T T T$$

(c) Find formulas using only the connective \downarrow that are equivalent to $\neg P$, $P \lor Q$, and $P \land Q$.

Solution.

$$\neg P \equiv \neg (P \land P) \equiv P \downarrow P$$

$$P \lor Q \equiv \neg (P \downarrow Q) \equiv (P \downarrow Q) \downarrow (P \downarrow Q)$$

$$P \land Q \equiv \neg \neg (P \land Q) \equiv \neg (P \downarrow Q) \equiv (P \downarrow Q) \downarrow (P \downarrow Q)$$

- 6. Some mathematicians write $P \mid Q$ to mean " P and Q are not both true." (This connective is called nand, and is used in the study of circuits in computer science.)
 - (a) Make a truth table for $P \mid Q$.

(b) Find a formula using only the connectives \land , \lor , and \neg that is equivalent to $P \mid Q$.

Solution.

$$P \mid Q \equiv \neg (P \land Q)$$

(c) Find formulas using only the connective | that are equivalent to $\neg P$, $P \lor Q$, and $P \land Q$.

Solution.

$$\neg P \equiv P \mid P$$

$$P \lor Q \equiv \neg P \mid \neg Q \equiv (P \mid P) \mid (Q \mid Q)$$

$$P \land Q \equiv \neg (P \mid Q) \equiv (P \mid Q) \mid (P \mid Q)$$

7. Use truth tables to determine whether or not the arguments in exercise 7 of Section 1.1 are valid.

(a)
$$\neg (P \land R) \land (P \lor Q) \land R \Rightarrow Q$$
.

Solution.

P	Q	R	$P \wedge R$	$\neg (P \land R)$	$P \lor Q$	$\neg (P \land R) \land (P \lor Q) \land R$
Т	Т	Т	Т	F	Т	F
Τ	Τ	F	F	Τ	Τ	F
Τ	F	Τ	Τ	F	Τ	F
Τ	F	F	F	Т	Τ	F
F	Τ	Τ	F	Т	Τ	Т
F	Τ	F	F	Т	Τ	F
F	F	Τ	F	Т	F	F
F	F	F	F	Т	F	F

where

P is the statement "Pete will win the math prize",

Q is the statement "Pete will win the chemistry prize",

R is the statement "Jane will win the math prize",

The result is true for all cases where the premises are true, hence the argument is valid.

(b)
$$(P \vee \neg P) \wedge (Q \vee \neg Q) \wedge \neg (\neg P \wedge \neg Q) \Rightarrow \neg (P \wedge Q)$$

where P is the statement "The main course will be beef", Q is the statement "The vegetable will be peas",

The conclusion is false but the premises are all true when P and Q are true, hence the argument is invalid.

(c) $(P \lor Q) \land (\neg R \lor Q) \land (P \lor \neg R) \Rightarrow (P \lor \neg R)$.

Solution.

Ρ	Q	R	$\neg R$	$P \lor Q$	$\neg R \lor Q$	$P \vee \neg R$	$(P \lor Q) \land (\neg R \lor Q) \land (P \lor \neg R)$
Т	Т	Т	F	Т	Т	T	T
Τ	Τ	F	Τ	Τ	Τ	Τ	Т
Τ	F	Τ	F	Τ	F	Τ	F
Τ	F	F	Т	Τ	Τ	Τ	Т
F	Τ	Τ	F	Τ	Τ	F	F
F	Τ	F	Τ	Τ	Τ	Τ	Т
F	F	Τ	F	F	F	F	F
F	F	F	Т	F	Т	Т	F

where P is the statement "John is telling the truth",

Q is the statement "Bill is telling the truth",

R is the statement "Sam is telling the truth",

The conclusion is true for all cases where the conjunction of premises are true, hence the argument is valid.

(d) $(P \land R) \lor (Q \land \neg R) \Rightarrow \neg (P \land Q)$

Solution.

Р	Q	R	$\neg R$	$P \wedge R$	$Q \wedge \neg R$	$\neg (P \land Q)$	$(P \land R) \lor (Q \land \neg R)$
Τ	Т	Τ	F	Т	F	F	T
Τ	Τ	F	Τ	F	Τ	F	T
Τ	F	Τ	F	Τ	F	Т	T
Τ	F	F	Τ	F	F	Т	F
F	Τ	Τ	F	F	F	Т	F
F	Τ	F	Τ	F	Τ	Т	T
F	F	Τ	F	F	F	Т	F
F	F	F	Τ	F	F	Т	F

where P is the statement "Sales will go up",

Q is the statement "Expenses will go up",

R is the statement "The boss will be happy",

there are cases where the conjunction of premises are true but the conclusion is false, hence the argument is invalid.

5

8. Use truth tables to determine which of the following formulas are equivalent to each other:

(a)
$$(P \wedge Q) \vee (\neg P \wedge \neg Q)$$
.

Solution.

Ρ	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg P \land \neg Q$	$(P \land Q) \lor (\neg P \land \neg Q)$
Т	Τ	F	F	Т	F	T
Τ	F	F	Τ	F	F	F
F	Τ	Τ	F	F	F	F
F	F	Τ	Τ	F	Т	Т

(b) $\neg P \lor Q$.

Solution.

(c) $(P \vee \neg Q) \wedge (Q \vee \neg P)$.

Solution.

(d) $\neg (P \lor Q)$.

Solution.

(e) $(Q \wedge P) \vee \neg P$.

Solution.

Hence, (a) and (c) are equivalent, (b) and (e) are equivalent.

9. Use truth tables to determine which of these statements are tautologies, which are contradictions, and which are neither:

(a)
$$(P \lor Q) \land (\neg P \lor \neg Q)$$
.

Solution.

Hence, the statement is neither a tautology nor a contradiction.

(b) $(P \vee Q) \wedge (\neg P \wedge \neg Q)$.

Solution.

Hence, the statement is a contradiction.

(c) $(P \lor Q) \lor (\neg P \lor \neg Q)$.

Solution.

Ρ	Q	$\neg P$	$\neg Q$	$P \lor Q$	$\neg P \lor \neg Q$	$(P \lor Q) \lor (\neg P \lor \neg Q)$
Т	Τ	F	F	Т	F	T
Τ	F	F	Τ	Τ	Т	T
F	Τ	Τ	F	Τ	Т	T
F	F	Τ	Τ	F	Т	T

Hence, the statement is a tautology.

(d) $[P \land (Q \lor \neg R)] \lor (\neg P \lor R)$.

Solution.

Р	Q	R	$\neg P$	$\neg R$	$Q \vee \neg R$	$P \wedge (Q \vee \neg R)$	$[P \land (Q \lor \neg R)] \lor (\neg P \lor R)$
Т	Т	Τ	F	F	T	Т	Т
Т	Τ	F	F	Τ	Τ	Τ	Т
Т	F	Τ	F	F	F	F	Т
Т	F	F	F	Τ	Τ	Τ	Т
F	Τ	Τ	Τ	F	Τ	F	Т
F	Τ	F	Τ	Τ	Τ	F	Τ
F	F	Τ	Τ	F	Τ	F	Τ
F	F	F	Τ	Τ	Τ	F	Т

Hence, the statement is a tautology.

- 10. Use truth tables to check these laws:
 - (a) The second DeMorgan's law. (The first was checked in the text.)

Solution.

P	Q	$P \lor Q$	$\neg (P \lor Q)$	$\neg P$	$\neg Q$	$\neg P \land \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Т	Τ	Т	F	F	F	F	Т
Τ	F	Τ	F	F	Τ	F	Т
F	Τ	Τ	F	Τ	F	F	Т
F	F	F	Т	Τ	Τ	Т	Т

(b) The distributive laws.

Р	Q	R	$Q \vee R$	$P \wedge (Q \vee R)$	P	Q	R	$P \wedge Q$	$P \wedge R$	$(P \wedge Q) \vee (P \wedge R)$
Т	Т	Τ	Т	Т	Т	Τ	Т	Т	Т	Т
Τ	Τ	F	Τ	Τ	Τ	Τ	F	Τ	F	T
Τ	F	Τ	Τ	Т	Τ	F	Τ	F	Τ	T
Τ	F	F	F	F	Τ	F	F	F	F	F
F	Τ	Τ	Τ	F	F	Τ	Τ	F	F	F
F	Τ	F	Τ	F	F	Τ	F	F	F	F
F	F	Τ	Τ	F	F	F	Τ	F	F	F
F	F	F	F	F	F	F	F	F	F	F

- 11. Use the laws stated in the text to find simpler formulas equivalent to these formulas. (See Examples 1.2.5 and 1.2.7.)
 - (a) $\neg (\neg P \land \neg Q)$.

Solution.

$$\neg (\neg P \land \neg Q) \equiv \neg \neg P \lor \neg \neg Q$$
 (DeMorgan's law)
$$\equiv P \lor Q$$
 (double negation law)

(b) $(P \wedge Q) \vee (P \wedge \neg Q)$.

$$(P \land Q) \lor (P \land \neg Q) \equiv P \land (Q \lor \neg Q)$$
 (distributive law)
 $\equiv P \land \top$ (complement law)
 $\equiv P$ (identity law)

(c)
$$\neg (P \land \neg Q) \lor (\neg P \land Q)$$
.

Solution.

$$\neg (P \land \neg Q) \lor (\neg P \land Q) \equiv (\neg P \lor Q) \lor (\neg P \land Q)$$
 (DeMorgan's law)
$$\equiv [(\neg P \lor Q) \lor \neg P] \land [(\neg P \lor Q) \lor Q]$$
 (distributive law)
$$\equiv (\neg P \lor \neg P \lor Q) \land (\neg P \lor Q)$$
 (associative law)
$$\equiv (\neg P \lor Q) \land (\neg P \lor Q)$$
 (idempotent law)
$$\equiv \neg P \lor Q$$
 (idempotent law)

12. Use the laws stated in the text to find simpler formulas equivalent to these formulas. (See Examples 1.2.5 and 1.2.7.)

(a)
$$\neg (\neg P \lor Q) \lor (P \land \neg R)$$
.

Solution.

$$\neg (\neg P \lor Q) \lor (P \land \neg R) \equiv (\neg \neg P \land \neg Q) \lor (P \land \neg R)$$
 (DeMorgan's law)
$$\equiv (P \land \neg Q) \lor (P \land \neg R)$$
 (double negation law)
$$\equiv P \land (\neg Q \lor \neg R)$$
 (distributive law)
$$\equiv P \land \neg (Q \land R)$$
 (DeMorgan's law)

(b)
$$\neg (\neg P \land Q) \lor (P \land \neg R)$$
.

Solution.

$$\neg(\neg P \land Q) \lor (P \land \neg R) \equiv (\neg \neg P \lor \neg Q) \lor (P \land \neg R)$$
 (DeMorgan's law)
$$\equiv (P \lor \neg Q) \lor (P \land \neg R)$$
 (double negation law)
$$\equiv [(P \lor \neg Q) \lor P] \land [(P \lor \neg Q) \lor \neg R]$$
 (distributive law)
$$\equiv (P \lor \neg Q \lor P) \land (P \lor \neg Q \lor \neg R)$$
 (associative law)
$$\equiv (P \lor P \lor \neg Q) \land (P \lor \neg Q \lor \neg R)$$
 (commutative law)
$$\equiv (P \lor \neg Q) \land (P \lor \neg Q \lor \neg R)$$
 (idempotent law)
$$\equiv P \lor \neg Q$$
 (absorption law)

(c) $(P \wedge R) \vee [\neg R \wedge (P \vee Q)]$.

$$(P \land R) \lor [\neg R \land (P \lor Q)] \equiv (P \land R) \lor (\neg R \land P) \lor (\neg R \land Q) \qquad \text{(distributive law)}$$

$$\equiv P \land (R \lor \neg R) \lor (\neg R \land Q) \qquad \text{(distributive law)}$$

$$\equiv P \land \top \lor (\neg R \land Q) \qquad \text{(complement law)}$$

$$\equiv P \lor (\neg R \land Q) \qquad \text{(identity law)}$$

13. Use the first DeMorgan's law and the double negation law to derive the second DeMorgan's law.

Solution.

$$\neg (P \lor Q) \equiv \neg (\neg \neg P \lor \neg \neg Q) \qquad \text{(double negation law)}$$

$$\equiv \neg \neg (\neg P \land \neg Q) \qquad \text{(first DeMorgan's law)}$$

$$\equiv \neg P \land \neg Q \qquad \text{(double negation law)}$$

14. Note that the associative laws say only that parentheses are unnecessary when combining three statements with \land or \lor . In fact, these laws can be used to justify leaving parentheses out when more than three statements are combined. Use associative laws to show that $[P \land (Q \land R)] \land S$ is equivalent to $(P \land Q) \land (R \land S)$.

Solution.

$$[P \land (Q \land R)] \land S \equiv [(P \land Q) \land R] \land S$$
$$\equiv (P \land Q) \land (R \land S)$$

15. How many lines will there be in the truth table for a statement containing n letters?

Solution.

According to permutation and combination that will be one of the topic in the syllabus of my final year exam tomorrow ;-;, the number of permutation for two letters T and F when they can be repeated every time is 2^n . Hence, the number of lines will be 2^n .

16. Find a formula involving the connectives \wedge , \vee , and \neg that has the following truth table:

Solution.

Take the disjunction of all the cases where the result is true.

$$(\neg P \land \neg Q) \lor (P \land \neg Q) \lor (P \land Q) \equiv \neg Q \land (\neg P \lor P) \lor (P \land Q)$$
 (distributive law)
$$\equiv \neg Q \land \top \lor (P \land Q)$$
 (complement law)
$$\equiv \neg Q \lor (P \land Q)$$
 (identity law)
$$\equiv (\neg Q \lor P) \land (\neg Q \lor Q)$$
 (distributive law)
$$\equiv (\neg Q \lor P) \land \top$$
 (complement law)
$$\equiv \neg Q \lor P$$
 (identity law)

17. Find a formula involving the connectives \land , \lor , and \neg that has the following truth table:

Solution.

Take the conjunction of all the cases where the result is true

$$(\neg P \land Q) \lor (P \land \neg Q) \equiv [(\neg P \land Q) \lor P] \land [(\neg P \land Q) \lor \neg Q]$$
 (distributive law)
$$\equiv [(\neg P \lor P) \land (Q \lor P)] \land [(\neg P \lor \neg Q) \land (Q \lor \neg Q)]$$
 (distributive law)
$$\equiv [\top \land (Q \lor P)] \land [(\neg P \lor \neg Q) \land \top]$$
 (complement law)
$$\equiv (P \lor Q) \land (\neg P \lor \neg Q)$$
 (identity law)