Lecture 2.3: Demographic priors and model selection

Likelihood revisited

Likelihood of hypothesis H =

the probability of the data, given the hypothesis

Probability of?

Likelihood revisited

Likelihood revisited

Likelihood = sum of all possible scenarios

The Phylogenetic hierarchical model

- Bayesian molecular clocks estimate rates and chronograms.
 - Treat substitutions as the product of rates and times

The Phylogenetic hierarchical model

To specify a tree prior, we typically use a branching process

Birth-Death processes

Branching process

Birth-Death models

- ullet Speciation/Birth rate (λ)
- \mathbf{X} Death/Extinction rate (μ)
- Sampling probability of extant species (*P*)

These parameters are not identifiable. We typically fix ρ .

Lineages through time

Pure Birth / Yule $\lambda = 0.8$ $\mu = 0$ $\rho = 1$

Birth-Death

$$\lambda = 1$$
 $\mu = 0.8$
 $\rho = 1$

Coalescent Theory

Coalescent theory

- Coalescent model used to put a prior on the tree
- Time between coalescent events depends on population size
- Different demographic models:
 - Constant population
 - Exponential growth
- Usually used for within-species data
- The tree is sometimes called 'genealogy'

Shape of the genealogy

Exponential growth

Demographic history

- The demographic history of a population leaves a signature in the DNA of its modern representatives
- Reconstructing this history might be of interest
 - Testing correlations with abiotic factors
 - Examine factors driving population dynamics
 - Tracing transmission and spread of viruses

Example: Bison

Demographic models in BEAST

 Choose one of the models that are available

Demographic models in *BEAST*

- 2. Run the *BEAST* analysis under the assumed model
- Test between candidate models by:
 - Inspecting estimates of parameters
 (e.g. growth rate in exponential-growth model)
 - Bayes factors

Skyline-plot Methods

Skyine-plot methods

- In some cases it is inappropriate to limit our investigation to a small range of simple parametric models
- Skyline-plot methods enable the demographic history to be estimated from the sequence data

Data set

- Sequence data
 - One or more (informative) loci
 - Neutrally evolving
 - Non-recombining
 - High-quality sequences
- Sampling from population
 - Random sampling

Skyline-plot methods

- Given a sequence alignment, demographic reconstruction comprises two separable steps:
 - Estimation of the genealogy from the alignment
 - 2. Estimation of population history from the genealogy

Step 1: Estimation of genealogy

- Genealogy is estimated using a phylogenetic method
- Genealogy needs to be chronogram
 - Branch lengths in time units or in substitutions per site
- Uncertainty in the estimate is referred to as phylogenetic error

Step 2: Estimation of demo. history

- Based on coalescent theory
- Coalescent theory quantifies the relationship between the genealogy and demographic history of the sequences
- Uncertainty in the estimate is referred to as coalescent error

Classic skyline

 $N_i = \gamma_i i (i - 1) / 2$

i: number of lineages γ_i: coalescent intervals

Population effective size (N_e)

Time before present (kyr)

Generalised skyline

- Smaller coalescent intervals are grouped together
- Optimal number of groups determined statistically using the Akaike information criterion

Bayesian skyline

- There is often substantial uncertainty in the estimate of the genealogy (phylogenetic error)
- Bayesian skyline plot allows co-estimation of genealogy, node times, and demographic history
- Based on the generalised skyline plot, but the number of groups needs to be chosen a priori
- Successive population sizes have some degree of correlation
- Final demographic plot is averaged over phylogenetic uncertainty

Bayesian skyride

- Extension of the Bayesian skyline plot
- Assumes that population size changes gradually
 - 'Time-aware' prior on population size
 - Population-size changes between intervals are smoothed

Extended Bayesian skyline

- Substantial coalescent error associated with reconstructing demographic history from a single genealogy/locus
- Any single genealogy is only one realisation of a stochastic process

Extended Bayesian skyline

- Extended Bayesian skyline allows simultaneous analysis of multiple loci
 - Distinct substitution models
 - Distinct substitution rates
 - Distinct genealogies
- Advantages of multiple loci
 - Reduce coalescent error
 - Increase power to resolve bottleneck events

Evaluating support

- Is an inferred demographic pattern is meaningful?
 - Bayes factors
 - Visual inspection of skyline plot
 - Number of change points (eBSP)

Toscana virus Zehender et al. (2009) Infect Genet Evol, 9: 562-566

 Bayesian model selection is usually based on the marginal probability of the data, conditioned on the model:

Pr(D|M)

- This is a weighted average of the likelihood
- Weights are given by the prior distribution

Marginal likelihood of the model

- Compare marginal likelihoods of competing models
- Ratio of marginal likelihoods is known as the Bayes factor:

$$Log(BF) = Pr(D|M1) - Pr(D|M2)$$

- Models do not need to be nested
- No need to correct for the number of parameters

logBF = 4

Interpreting Bayes Factors

BF	log <i>BF</i>	Evidence against M ₂
1-3	0-1	Not worth mentioning
3 – 20	1-3	Positive
20 – 150	3-5	Strong
> 150	> 5	Very strong

Kass and Raftery (1995) J Am Stat Assoc

Harmonic mean estimator

- Can be calculated from likelihood values sampled from the MCMC
- Easy to calculate from standard MCMC output
- Sensitive to extreme values
- Does not sufficiently penalise excessive parameters

- The MCMC tends to sample more from regions with high likelihood
- But the marginal likelihood is integrated over the entire likelihood surface
- We need an accurate representations of regions with low likelihood
- Use methods to distort the acceptance ratio of the MCMC to explore regions with low likelihood
- Use a quantity, β, to weight the posterior

 Generate MCMC samples from a series of densities that lie between the prior and the posterior

- Three methods
 - Path sampling (thermodynamic integration)
 - Stepping-stone sampling
 - Generalised stepping-stone

- Very slow (each β value entails a whole MCMC analysis)
- More reliable than harmonic-mean estimators

Problems with Bayes factors

- Bayes factors are unreliable when there are improper priors
- Bayesian model selection can be sensitive to the choice of prior distributions

Lindely's paradox

- Occurs when frequentist and Bayesian approaches support different models
- One model is typically more specific than the other
- In phylogenetics, it is most commonly observed in topology testing

Lindely's paradox

Go to **Practical 3: Molecular dating using BEAST**