Operaciones Aritméticas y Lógicas

IIC2343 - Arquitectura de Computadores

Nicolás Elliott B. (nicolas.elliott@uc.cl)

(II/2019)

Lógica Boole

George Boole

- 1815 1864
- Estudio matemática y la lógica
- Álgebra de Boole, usa solo variables del tipo V o F

George Boole

Álgebra de Boole

Operador No (\neg) :

Operador Y (∧):

Α	В	A and B
F	F	F
F	V	F
V	F	F
V	V	V

Operador O (V):

Α	В	A or B
F	F	F
F	V	V
V	F	V
V	V	V

Operador O exclusivo (\oplus) :

$$A \oplus B = (A \land \neg B) \lor (B \land \neg A)$$

Claude Shannon

- 1916 2001
- Aplica el álgebra de Boole al análisis y la síntesis de la conmutación y de los circuitos digitales

Relé

Compuertas Lógicas

NOT

No (¬):

Tabla de valores:

(

not_a = ~a;

VHDL:

not_a <= not a;</pre>

AND

Tabla de valores:

Α	В	A and B
0	0	0
0	1	0
1	0	0
1	1	1

OR

O (V):

Tabla de valores:

Α	В	A or B
0	0	0
0	1	1
1	0	1
1	1	1

C

a_or_b = a | b;

VHDL:

a_or_b <= a or b;

XOR

O Exclusivo (⊕):

Tabla de valores:

Α	В	A xor B
0	0	0
0	1	1
1	0	1
1	1	0

C

a_xor_b = a ^ b;

VHDL:

a_xor_b <= a xor b;

A xor B

Sumador

Sumador de 1 Bit

HalfAdder

Tabla de valores

Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Sumador de 1 Bit intermedio

Tabla de valores

Α	В	Cin	Cout	S
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

Sumador de 4 Bit

4-bit Adder

Restador

Sumador de 4 Bit

Multiplexor

Enabler de 1 Bit

Multiplexor de 2 entradas de 1 Bit

Multiplexor de 2 entradas de 4 Bit

4-bit x 2 Mux

Sumador - Restador

Sumador Restador de 4 Bit

4-bit Adder Substractor

Shifts

Operadores de Desplazamiento Lógicos

Shift Left:

a_shl_1 = a << 1;

Shift Right:

C

1

¹en C se aplica cuando el tipo de variable sobre el cual se opera no tiene signo, si lo tiene, entonces se hará un desplazamiento aritmético, que conservará el signo

ALU

Unidad Aritmético-Lógica

ALU

Tabla de valores

S2	S1	S0	М
0	0	0	Suma
0	0	1	Resta
0	1	0	And
0	1	1	Or
1	0	0	Not
1	0	1	Xor
1	1	0	Shift left
1	1	1	Shift right