Computing Steady States with Stan's Nonlinear Algebraic Solver

Charles Margossian

Columbia University, Department of Statistics (formally Metrum Research Group LLC)

January 11th 2018

Root-finding

Given a function f(x, ...),

find x^* such that $f(x^*,...) = 0$.

Solving $f(x^*,...) = 0$ has applications in:

- physics
- astronomy
- biomedicine
- econometrics
- ecology
- and more.

Solving $f(x^*,...) = 0$ has applications in:

- physics
- astronomy
- biomedicine: characterizing patients at steady states.
- econometrics
- ecology
- and more.

Drug diffusion in the body:

• ODEs describing the drug diffusion model:

$$\frac{dy_{\mathrm{gut}}}{dt} = -k_{a}y_{\mathrm{gut}}$$

$$\frac{dy_{\rm cent}}{dt}\!=\!k_{\!a}y_{\rm gut}\!-\!(\frac{CL}{V_{\rm cent}}\!+\!\frac{Q}{V_{\rm cent}})y_{\rm cent}\!+\!\frac{Q}{V_{\rm peri}}y_{\rm peri}$$

$$\frac{dy_{\mathrm{peri}}}{dt} = \frac{Q}{V_{\mathrm{cent}}} y_{\mathrm{cent}} - \frac{Q}{V_{\mathrm{peri}}} y_{\mathrm{peri}}$$

Treatment Cycle

Time	Event
t_0^-	Beginning of the cycle.
t_0^+	Patient receives a dose.
t_0^+ to $t_0+ au$	Drug distributes in the body and partially gets cleared.
$t_0 + au$	Next cycle begins.

Concentration at the beginning of the treatment

Concentration at steady state

- Let y(t) be the drug mass vector in the patient's body (i.e. in all compartments of the model).
- Let τ be the interdose-interval.
- Steady state is reached when:

$$\mathbf{y}(t+\tau)=\mathbf{y}(t)$$

$$\mathbf{y}(t+\tau) = \mathbf{y}(t)$$

$$\iff \mathbf{y}(t+\tau) - \mathbf{y}(t) = 0$$

The drug mass **y** depends on:

- y₀ (initial drug mass)
- *t*: time
- \bullet θ : the model parameters
- x: fixed data

Need to find y^* such that:

$$\mathbf{f}(y^*, t, ...) = \mathbf{y}(y^*, t, ...) - \mathbf{y}(y^*, t + \tau, ...) = 0$$

Augmented root-finding problem

For Hamilton Monte Carlo sampling [1, 2, 3] need:

- y*
- *J*: the Jacobian of the solution with respect to the parameters θ .

$$J^* = \left[egin{array}{cccc} rac{\partial y_1^*}{\partial heta_1} & ... & rac{\partial y_1^*}{\partial heta_n} \ ... & ... & ... \ rac{\partial y_n^*}{\partial heta_1} & ... & rac{\partial y_n^*}{\partial heta_n} \end{array}
ight]$$

A glimpse at the algorithms I

- y* is computed using a modification of Powell's Hybrid method [4], as implemented in Eigen [5], which is itself based on the MINPACK-1 implementation [6].
- Three tuning parameters:
 - relative tolerance
 - max number of steps
 - Function tolerance: how close is $||f(y^*)||$ to 0?

A glimpse at the algorithms II

 The sensitivities is obtained using a lemma of the implicit function theorem:

$$J^* = -[J_y]^{-1}J_\theta$$

.

- Need J_V to be invertible.
 - Hence the number of unknowns and equations must be the same.

Coding the algebraic equation

Code for the algebraic equation II

```
vector f(vector y, vector theta, real[] x_r, int[] x_i)
  real amt = x_r[2]:
  int cmt = x_i[1]:
  real y_ii[3] = to_array_1d(y);
  y_{ii}[cmt] = y_{ii}[cmt] + amt;
  y_ii = integrate_ode_rk45(twoCptModelODE, y_ii, 0,
                            rep_array(x_r[1], 1),
                            to_array_1d(theta),
                            rep_array(0.0, 1),
                            rep_array(0, 1))[1];
 // return difference between evolved and initial state
 return to_vector(y_ii) - y;
```

Example code for algebraic solver

Acknowledgment

- Individuals:
 - Bill Gillespie (Metrum Research Group)
 - Bob Carpenter (Columbia)
 - Michael Betancourt (Columbia)
 - Ben Goodrich (Columbia)
- Institutions:
 - Office of Naval Research, Bill & Melinda Gates Foundation
 - Columbia University, Metrum Research Group, AstraZeneca

References I

- [1] Radford M. Neal.
 - MCMC using Hamiltonian Dynamics.

Handbook of Markov Chain Monte Carlo. Chapman & Hall / CRC Press, 2010.

- [2] Michael Betancourt.
 - A conceptual introduction to hamiltonian monte carlo.

arXiv:1701.02434v1, January 2017.

- [3] Matthew D. Hoffman and Andrew Gelman.
 - The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. *Journal of Machine Learning Research*, pages 1593–1623, April 2014.
- [4] Michael J. D. Powell.
 - A hybrid method for nonlinear equations.
 - In P. Rabinowitz, editor, *Numerical Methods for Nonlinear Algebraic Equations*. Gordon and Breach, 1970.
- [5] Gaël Guennebaud, Benoît Jacob, et al.
 - Eigen v3.
 - http://eigen.tuxfamily.org, 2010.

References II

[6] Kenneth E. Hillstrom Jorge J. More, Burton S. Garbow. User Guide for MINPACK-1. Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, August 1980.