НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 4.7.3 «Изучение поляризованного света»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2022 г.

Цель работы: ознакомление с методами получения и анализа поляризованного света.

В работе используются: оптическая скамья с осветителем; зеленый светофильтр; два поляроида; черное зеркало; полированная эбонитовая пластинка; стопа стеклянных пластинок; слюдяные пластинки разной толщины; пластинки в 1/4 и 1/2 длины волны; пластинка в одну длину волны для зеленого света (пластинка чувствительного оттенка).

Теоретические сведения

Естественный и поляризованный свет. Как известно, световые волны поперечны: электрический вектор E и магнитный вектор H (или B) взаимно перпендикулярны и располагаются в плоскости, перпендикулярной направлению распространения волны (лучу S). Во всякой данной точке пространства ориентация пары векторов E и H в плоскости, перпендикулярной лучу S, может, вообще говоря, изменяться со временем. В зависимости от характера такого изменения различают естественный и поляризованный свет.

Рис. 1. Представление световой волны в виду двух линейно поляризованных волн

Методы получения линейно поляризованного света. Для получения линейно поляризованного света применяются специальные оптические приспособления — поляризаторы. Направление колебаний электрического вектора в волне, прошедшей через поляризатор, называется разрешенным направлением поляризатора.

Всякий поляризатор может быть использован для исследования поляризованного света, т. е. в качестве анализатора. Интенсивность I линейно

поляризованного света после прохождения через анализатор зависит от угла, образованного плоскостью колебаний с разрешенным направлением анализатора по закону Малюса:

$$I = I_0 \cos^2 \alpha$$
.

Существует несколько способов получения плоскополяризованного света:

- 1. Отражение света от диэлектрической пластинки
- 2. Преломление света в стеклянной пластинке
- 3. Преломление света в двоякопреломляющих кристаллах
- 4. Поглощение света в дихроических пластинках

Получение эллиптически поляризованного света. Эллиптически поляризованный свет можно получить из линейно поляризованного с помощью двоякопреломляющих кристаллических пластинок. Например, пластинки $\lambda/4$.

Рис. 2. а) Разложение линейно поляризованного света по главным направлениям двоякопреломляющей пластинки; б) Поворот направления колебаний с помощью пластинки в $\lambda/2$

Анализ эллиптически поляризованного света. Анализ эллиптически поляризованного света сводится к нахождению главных осей

эллипса поляризации и к определению направления вращения электрического вектора. Главные оси эллипса поляризации определяются с помощью анализатора по максимуму и минимуму интенсивности проходящего света.

Пластинка чувствительного оттенка. Выше предполагалось известным, какому из двух главных направлений пластинки в четверть длины волны соответствует большая скорость распространения света. Установить это можно различными способами, например с помощью пластинки чувствительного оттенка (так называют пластинку в λ для зеленой спектральной компоненты, $\lambda = 560$ нм).

Пластинка имеет форму стрелы, вдоль оси которой расположено главное направление, соответствующее большей скорости распространения.

Если пластинка чувствительного оттенка помещена между скрещенными поляроидами и главные направления пластинки не параллельны направлениям разрешенных колебаний поляроидов, то при освещении белым светом пластинка кажется окрашенной в лилово-красный цвет.

Если между скрещенными поляроидами поместить пластинку чувствительного оттенка (λ) и пластинку в $\lambda/4$ так, чтобы их главные направления совпадали, цвет пластинки изменится.

Рис. 3. Пластинка чувствительного оттенка

Если у пластинки чувствительного оттенка и пластинки в $\lambda/4$ совпадут главные направления, соответствующие большей скорости распространения, то разность хода между E_ξ и E_η для зеленого света составит уже $5\lambda/4$. Это соответствует разности хода в λ для света с большей длиной волны, т. е. для «более красного» света. При освещении этих пластинок белым светом теперь погасится не зеленая, а красная часть спектра, и проходящий свет будет казаться зеленовато-голубым. Если же главные направления, соответствующие большей скорости распространения, у пластинки чувствительного оттенка и у пластинки в $\lambda/4$ окажутся перпендикулярными, то проходящий свет приобретет оранжево-желтую окраску (погасится фиолетово-голубая часть спектра).

Интерференция поляризованных лучей. Тонкие двоякопреломляющие пластинки, помещенные между поляроидами, кажутся окрашенными. Эта окраска может быть истолкована как результат интерференции поляризованных лучей.

Здесь p_1p_1' — разрешенное направление колебаний поляризатора (пер-

Рис. 4. Объяснение интерференции поляризованного света

вого поляроида); ξ , η — координатная система, связанная с главными направлениями двоякопреломляющей пластинки; p_2p_2' — разрешенное направление колебаний анализатора (второго поляроида). Волны E_ξ и E_η на выходе из пластинки когерентны, но не могут интерферировать, так как $E_\xi \perp E_\eta$ Волны E_1 и E_2 на выходе второго поляроида также являются когерентными и к тому же поляризованы в одной плоскости. Эти волны интерферируют между собой. Результат интерференции определяется зависящим от длины волны сдвигом фаз между E_1 и E_2 . В результате интерференции поляризованных лучей пластинка, освещаемая белым светом, кажется окрашенной.

Если поворачивать двоякопреломляющую пластинку, расположенную между скрещенными поляроидами, то соотношение амплитуд волн E_1 и E_2 и разность фаз между ними не изменяются. Это означает, что цвет пластинки при ее поворотах не меняется, а меняется только интенсивность света. За один оборот пластинки интенсивность четыре раза обращается в нуль, — это происходит при совпадении главных направлений ξ и η с разрешенными направлениями колебаний поляроидов.

Если же двоякопреломляющую пластинку оставить неподвижной, а второй поляроид повернуть так, чтобы разрешенные направления p_1p_1' и p_2p_2' совпали, то волны E_1 и E_2 приобретают дополнительный фазовый сдвиг на π для всех спектральных компонент; поэтому цвет пластинки изменится на дополнительный.

Ход работы

І. Определение разрешённых направлений поляроидов

1. Разместим на оптической скамье осветитель S, поляроид P_1 и чёрное зеркало (пластинку чёрного стекла) так, чтобы плоскость падения была горизонтальна.

Рис. 5. Определение разрешённого направления поляроида

2. Поворачивая поляроид вокруг направления луча, добьемся наименьшей яркости отражённого пятна. Оставим поляроид в этом положении и вращением зеркала вокруг вертикальной оси снова добьемся минимальной интенсивности отражённого луча. Уточним положения поляроида и зеркала, соответствующие минимуму интенсивности, и определим разрешённое направление поляроида:

$$\boxed{\alpha_1 = (138^\circ \pm 1^\circ)}$$

3. Разрешённое направление второго поляроида можно определить, скрестив поляроиды: после поляроида с известной поляризацией поставим второй поляроид и, глядя навстречу лучу, вращением второго поляроида добьемся минимальной яркости луча:

$$\alpha_2 = (36^\circ \pm 1^\circ)$$

II. Определение угла Брюстера для эбонита

- 1. Поставим на скамью вместо чёрного зеркала эбонитовую пластину с круговой шкалой.
- 2. Повернем эбонитовое зеркало вокруг вертикальной оси так, чтобы его плоскость была перпендикулярна лучу, и попытаемся совместить

отражённое от эбонита пятно с отверстием осветителя. Отметим начало отсчёта по лимбу. Дальше все записи идут уже вычисленные относительно этого отсчета.

3. Установим направление разрешённых колебаний поляроида P_1 горизонтально и найдем угол поворота эбонита $\varphi_{\rm B}$, при котором интенсивность отражённого луча минимальна:

$$\varphi_{\rm B} = (58^{\circ} \pm 1^{\circ})$$

Повторим измерения, добавив светофильтр Ф:

$$\varphi_{\rm B} = (57^{\circ} \pm 1^{\circ})$$

Нетрудно видеть, что эти два результата в пределах погрешностей совпадают.

4. Теперь по найденному углу Брюстера рассчитаем показатель преломления эбонита $n=\operatorname{tg}\varphi_{\mathsf{B}}.$

Без фильтра:

$$n = (1, 60 \pm 0, 06)$$

C фильтром:

$$n = (1, 54 \pm 0, 06)$$

Видим, что опять же, в пределах погрешностей результаты совпадают. Причем, они даже совпадают с табличным значением n=1,6.

III. Исследование стопы

1. Поставим стопу стеклянных пластинок вместо эбонитового зеркала и подберем для неё такое положение, при котором свет падает на стопу под углом Брюстера.

Рис. 6. Исследование стопы

- 2. Осветим стопу неполяризованным светом (снимем поляризатор с оптической скамьи) и, рассматривая через поляроиды свет, отражённый от стопы, определим ориентацию вектора \boldsymbol{E} в отражённом луче:
 - Поляризация линейная и угол $\alpha = 142^\circ$ по поляризатору P_1 . Теперь определим характер поляризации света в преломлённом луче.
 - Поляризация линейная и угол $\alpha = 55^{\circ}$ по поляризатору P_1 .

IV. Определение главных плоскостей двоякопреломляющих пластин

1. Поставим кристаллическую пластинку между скрещенными поляроидами P_1 и P_2 .

Рис. 7. Определение главных направлений в пластинках

- 2. Вращая пластинку вокруг направления луча и наблюдая за интенсивностью света, проходящего сквозь второй поляроид, определим, когда главные направления пластинки совпадают с разрешёнными направлениями поляроидов:
 - \bullet Минимумы первой пластинки: 26°, 116°, 206°, 296°.

Повторим опыт для второй пластинки:

• Минимумы второй пластинки: 14° , 104° , 194° , 284° .

V. Выделение пластин $\lambda/2$ и $\lambda/4$

1. Добавим к предыдущей схеме зелёный фильтр; установим разрешённое направление поляроида горизонтально, а главные направления исследуемой пластинки — под углом 45° к горизонтали.

- 2. С помощью второго поляроида установим, какую поляризацию имеет свет, прошедший пластинку: круговую или линейную с переходом в другой квадрант.
 - У первой пластинки интенсивность не меняется с изменением угла, а значит, свет имеет круговую (эллиптическую) поляризацию. Таким образом, первая пластинка это $\lambda/4$.
- 3. Повторим то же для второй пластинки. Получаем, что при изменении угла второго поляроида свет имеет линейную поляризацию. Таким образом, вторая пластинка это $\lambda/2$.

VI. Определение направлений большей и меньшей скорости в пластинке $\lambda/4$

1. Поставим между скрещенными поляроидами пластинку чувствительного оттенка (λ для зелёного света), имеющую вид стрелки. Световой вектор, ориентированный вдоль направления стрелки, проходит с большей скоростью, перпендикулярный — с меньшей. Установим разрешённое направление первого поляроида горизонтально и убедимся с помощью второго поляроида, что эта пластинка не меняет поляризацию зелёного света в условиях предыдущего опыта.

Рис. 8. Определение направлений большей и меньшей скорости

- 2. Уберем зелёный фильтр и поставим между скрещенными поляроидами пластинку λ . Глядя сквозь второй поляроид на стрелку, убедимся, что она имеет пурпурный цвет (зелёный свет задерживается вторым поляроидом, а красная и синяя компоненты проходят).
- 3. Добавим к схеме пластинку $\lambda/4$, главные направления которой совпадают с главными направлениями пластины λ и ориентированы под углом 45° к разрешённым направлениям скрещенных поляроидов. При повороте рейтера со стрелкой на 180° вокруг вертикальной оси цвет стрелки меняется от зелёно-голубого до оранжево-жёлтого. «Быстрые оси» совпадают, когда пластинка имеет зеленый цвет.

VII. Определение направления вращения светового вектора в эллиптически поляризованной волне

1. Нарисуем эллипс поляризации для вектора E, вышедшего из пластинки $\lambda/4$, и укажем на нём направления большей и меньшей скорости. На рисунке x – большая скорость, а y – меньшая. Рядом нарисуем две вышедших из пластинки синусоиды: x(t) и y(t) со сдвигом фаз в четверть периода. По рисунку направление вращения электрического вектора в эллиптически поляризованной волне против часовой стрелки.

Рис. 9. Эллипс поляризации и синусоиды

- 2. Снова поставим зелёный фильтр, а за ним между скрещенными поляроидами пластинку $\lambda/4$ с соседней установки.
- 3. Получим эллиптически-поляризованный свет. Для этого установим разрешённое направление первого поляроида под углом 10– 20° к горизонтали так, чтобы вектор E падающего на пластинку света был расположен в первом квадранте. Установим разрешённое направление второго поляроида вертикально и, вращая пластинку, найдем минимальную интенсивность света, прошедшего второй поляроид. Вращая второй поляроид, убеждаемся, что свет поляризован эллиптически, а не линейно. Таким образом, был получен эллипс поляризации с вертикально ориентированной малой осью.
- 4. Для определения направления вращения светового вектора в эллипсе установим между поляроидами дополнительную пластинку $\lambda/4$ с известными направлениями «быстрой» и «медленной» осей, ориентированными по осям эллипса поляризации анализируемого света. В этом случае вектор E на выходе будет таким, как если бы свет прошёл две пластинки $\lambda/4$: свет на выходе из второй пластинки будет линейно поляризован. Если пластинки поодиночке дают эллипсы,

вращающиеся в разные стороны, то поставленные друг за другом, они скомпенсируют разность фаз, и вектор E на выходе останется в первом и третьем квадрантах. Если же световой вектор перешёл в смежные квадранты, значит, эллипсы вращаются в одну сторону.

По эксперименту получили, что эллипсы вращаются в одну сторону. Таким образом, световой вектор в эллиптически поляризованной волне имеет направление вращения против часовой стрелки.

VIII. Интерференция поляризованных лучей

1. Расположим между скрещенными поляроидами мозаичную слюдяную пластинку. Она собрана из 4-х узких полосок слюды, лежащих по сторонам квадрата (две полоски «толщиной» $\lambda/4$ и по одной — $\lambda/2$ и $3\lambda/4$). Что-то похожее на это:

Рис. 10. Мозаичная пластинка

- 2. В центральном квадратике слюды нет. Главные направления всех пластинок ориентированы параллельно сторонам квадрата.
- 3. Вращая пластинку и второй поляроид будем наблюдать за изменениями интенсивности и цвета в отдельном квадратике.

Вращаем пластинку:

Центральный квадратик всегда черный. Это объясняется тем, что он не покрыт слюдой, а свет проходит через него и скрещенные поляроиды, поэтому интенсивность нулевая.

Боковые квадратики изменяют как свой цвет, так и свою интенсивность. Периодичность $\frac{\pi}{4}$.

Вращаем поляроид:

Теперь и центральный квадратик изменяет интенсивность и цвет. Это потому, что теперь разрешенные направления поляроидов не являются скрещенными.

Вывод

В данной работе мы познакомились с методами получения поляризованного света и способами его анализа. Были определены разрешенные направления конкретных поляроидов, использованных в этой работе: $\alpha_1 = (138^\circ \pm 1^\circ)$ и $\alpha_2 = (36^\circ \pm 1^\circ)$. Был определен угол Брюстера для эбонита: $\varphi_{\rm B} = (58^\circ \pm 2^\circ)$, откуда был найден и показатель преломления: $n = (1, 57 \pm 0, 09)$. Была исследована стопа Столетова, определены главные плоскости двоякопреломляющих пластин, а также направления большей и меньшей скорости в пластинке в четверть длины волны. Мы пронаблюдали эллиптическую поляризацию и интерференцию поляризованных лучей. Хотя большинство экспериментов носило качественный характер, численные значения найденных величин имеют погрешности. Они связаны с неточностью измерений – как минимум с неточностью выставления зеркала, стопы или пластин.