

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2017

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
Mathématiques 2	C & D	Durée de l'épreuve 2 h 45 min
		Date de l'épreuve 26 . 05. 2017
		Numéro du candidat

Question I (2 + 4 = 6 points)

- 1) a est un réel strictement positif distinct de 1. Démontrer que pour tout réel x strictement positif et pour tout réel r, $\log_a x^r = r \cdot \log_a x$.
- 2) Démontrer que si f est continue sur un intervalle [a;b] et F est une primitive de f sur [a;b], alors, pour tout x de [a; b], $\int_a^x f(t)dt = F(x) - F(a)$. En particulier : $\int_a^b f(t)dt = F(b) - F(a)$, noté $[F(t)]_a^b$.

Question II (4 + 7 = 11 points)

Résoudre dans \mathbb{R} l'inéquation et l'équation suivantes :

1)
$$8e^{-3x} - e^{3x} \ge -7$$

2)
$$x + \log_2(2^x - 0.5) = \log_{0.5} 9$$

Question III (5+5+2+8=20 points)

Soit la fonction f définie par $f(x) = 1 - x - \ln \frac{x}{x-1}$.

- 1) Déterminer les domaines de définition et de dérivabilité de f et étudier l'existence d'asymptotes au graphe G_f .
- 2) Etudier le sens de variation de f et la concavité de G_f et dresser un tableau récapitulatif complet.
- 3) Tracer G_f dans un repère orthonormé du plan d'unité 2 cm.
- 4) Calculer l'aire $A(\lambda)$ de la partie du plan délimitée par G_f , l'asymptote oblique et les droites d'équation x=-1 et $x=\lambda$ où $\lambda\in]-1;0[$. Ensuite calculer

Question IV (3+6+6=15 points)

1) Calculer
$$\lim_{x \to +\infty} \left(\frac{3x+1}{3x} \right)^{2x-3}$$
. 2) Calculer $\int_{-2}^{2\sqrt{3}} \frac{3x+1}{\sqrt{16-x^2}} dx$.

2) Calculer
$$\int_{-2}^{2\sqrt{3}} \frac{3x+1}{\sqrt{16-x^2}} dx$$

3) Calculer
$$\int \frac{\sin 2x}{(1-2\sin^2 x)^4} dx$$
 sur un intervalle I de réels bien choisi.

Question V (8 points)

Calculer, dans un repère orthonormé de l'espace, le volume V du solide engendré par la rotation autour de l'axe des abscisses de la partie du plan délimitée par les graphes des fonctions f et g définies par $f(x) = \frac{1}{2}x - 3$ et $g(x) = x^2 - 4x - 1$.