PODCAST SUMMARIZER

Abhishek Shah

 $R \cdot I \cdot T$

OVERVIEW

- Developed and fine-tuned an extractive summarization model that will automatically generate summaries of audio podcasts in approximately 4 to 5 sentences
- Implemented a sentiment analysis script to detect the sentiment of the summarized text
- Designed a web app using Flask for publishing the summarized text along with its sentiment

AWS TECHNOLOGIES

S3

LAMBDA

TRANSCRIBE

TERRAFORM

EC2

IAM

COMPREHEND

HIGH LEVEL ARCHITECTURE

FRONTEND - USER INTERFACE

FRONTEND - FLASK APPLICATION

- Our Flask application runs within an EC2 instance
- Packages that we downloaded to create our shared AMI image include Python3, pip3, Flask, gunicorn3, Boto3
- Our application uploads mp3 file to S3 and gets summarized text and sentiment from S3 bucket that stores the output file
- □ Handles routes such as upload podcast MP3 files and retrieve their summary/sentiment

FRONTEND - VALIDATION

Choose a file to upload to AWS S3

Choose File No file chosen

Upload

Get Summary

Please upload a mp3 file that is shorter than 10 minutes

Incorrect file type

Uploaded MP3 longer than 10 mins

FRONTEND - VALIDATION

Choose a file to upload to AWS S3

Choose File No file chosen

Upload

Get Summary

Please select a valid mp3 file

Clicking on Get Summary without uploading a file first

Clicking the Upload button without choosing a file

TRANSCRIBE LAMBDA

SUMMARY LAMBDA

- □ NLTK:
 - Tokenizing & stemming text
 - Get a list of stopwords to pass to Luhn Summarizer
- Luhn summarizer:
 - ☐ Get list of most significant words via word frequency
 - Sentence ranking
 - □ Score=(n^2) /m (n: number of significant words, m: max window span)
- AWS comprehend is called via boto3 to determine summary's sentiment

ESTIMATED MONTHLY COSTS

- **☐** Assumptions:
 - □ 10,000 users/month
 - 2 podcasts/user per day
 - □ 600,000 podcasts/month
 - ☐ Each podcast ~ 10mins
 - Each podcast ~1200-1500

words

Monthly cost

26,384.08 USD

Total 12 months cost

316,608.96 USD

Includes upfront cost

Service Name	▽	Upfront cost ▲	Monthly cost ▽	Description ▼
Amazon EC2	ß	0.00 USD	64.54 USD	-
Amazon Simple Storage Service (S3)	ß	0.00 USD	3.26 USD	input bucket
Amazon Comprehend	ß	0.00 USD	900.00 USD	sentiment analysis
Amazon Simple Storage Service (S3)	ß	0.00 USD	3.26 USD	transcribe-output
AWS Lambda	ß	0.00 USD	0.00 USD	Transcribe
Amazon Transcribe	ß	0.00 USD	25,410.00 USD	-
Amazon Simple Storage Service (S3)	ß	0.00 USD	3.02 USD	summary bucket
AWS Lambda	ß	0.00 USD	0.00 USD	Backend Model

CONCLUSION

- Recommendations/Findings
 - Effective Podcasts Management
 - Marketing
 - Tag Generation
 - Content Generation
 - Personalization