AIAP Question 3

A. Gradient Descent

- 1. $h\theta(x) = \theta 0 + \theta 1x1 + \theta 2x2$
- 2. MSE Cost function: $1/n \sum_{i=1}^{n} (h\theta(x^{(i)}) y^{(i)})^2$
- 3. We have 3 simultaneous equations:

$$30 = \theta 0 + 3\theta 1 + \theta 2$$
 ------ (1)
 $55 = \theta 0 + 6\theta 1 + \theta 2$ ------ (2)
 $70 = \theta 0 + 3\theta 1 + 3\theta 2$ ------ (3)
(3) - (2) = $3\theta 1 = 25$
Thus $\theta 1 = 25/3$ ----- (4)
Sub (4) into (3), we have $45 = 3\theta 2 + \theta 0$ ----- (5)
(1) X 3 - (5), we get $\theta 0 = -15$
Thus $\theta 2 = 10$

B. Regularization

- 1. Regularization refers to the process where we try to prevent overfitting the model by reducing the coefficient values towards 0. This fitting procedure includes a loss function that is known as residual sum of squares. Coefficients are chosen to minimize the loss function. Unregularized cost functions may not generalize well with future data. For example, a simple regression formula is y=a1x1+a2x2+b In this case if coefficient a1 is of a much higher value than a2, then variations in a2 may not be reflected accurately as the predictions will rely on changes in a1. λ as a parameter with which we decide on the how much we want to penalize the flexibility of the model. With λ = 0, there is no penalty and this gives a least squares estimate. But as $\lambda \to \infty$, the penalty grows and the coefficient values approach 0
- 2. L1 and L2 regularisation refer to Lasso and Ridge regression respectively. The difference is that Lasso penalizes only the high coefficients. Lasso can eliminate all the coefficients in comparison to Ridge.