

数学分析习题指南——课后习题

数分、数分、数分

作者: CharlesLC

组织: the stdio of LC

时间: February 2, 2020

版本: 1.00

确实,时 间和空间 是有限的。确实,我们总会有 分开的时候。但是正因为这样, 我们才会努力学习,我们才会 努力前进。我们的信仰是 享受数学。因为"数 学穿越时空"。

目 录

1	声明	2
2	分析基础	3
	2.1 实数共理、确界、不等式	3
	2.2 函数	3
	2.3 序列极限	5
	2.4 函数极限与连续概念	5
	2.5 闭区间上连续函数的性质	5
3	一元函数微分学	6
4	一元函数积分学	7
5	级数	8
6	多元函数积分学	9
7	多元函数积分学	10
8	典型综合题分析	11
9	附录及一些说明事项	12

第1章 声明

本产品不用与任何商业用途,最新版下载地址为: Github(点击即可下载),不保证题目和答案的正确性 (因为本人能力有限),但如有错误可通过 QQ(见图1.1) ¹或者邮箱²联系我。

Keep doing

扫一扫二维码,加我QQ。

图 1.1: 二维码

点击Github后,找到 main.ptf 后点击,点击 download 即可。

¹¹⁴¹¹²⁷⁹⁰⁵⁴

²1411279054@qq.com

第2章 分析基础

2.1 实数共理、确界、不等式

练习题

- $|\mathbf{x}| = |a + b + a - b| \le |a + b| + |a - b| \le 2\max\{a + b, |a - b|\} < 1$: $|a| < \frac{1}{2}$ $2|b| = |a+b-(a-b)| \le |a+b| + |a-b| \le 2\max\{a+b, |a-b|\} < 1 : |b| < \frac{1}{2}$
- 2. 求证: 对 $\forall a, b \in \mathbf{R}$, 有 $\max\{|a+b|, |a-b|, |1-b|\} \ge \frac{1}{2}$. $\mathbb{R} = |a+b-(a-b)+2(1-b)| \le |a+b|+|a-b|+2|1-b| \le 4\max\{|a+b|,|a-b|,|1-b|\}$ $\therefore \max\{|a+b|, |a-b|, |1-b|\} \ge \frac{1}{2}$
- 3. 求证: 对 $\forall a,b \in \mathbf{R}$, 有 $\max\{a,b\} = \frac{a+b}{2} + \frac{|a-b|}{2}, \min\{a,b\} = \frac{a+b}{2} - \frac{|a-b|}{2};$ 并解释其几何意义.
 - 解 易知, $\max\{a,b\} + \min\{a,b\} = a+b$ ① $\max\{a,b\} \min\{a,b\} = |a-b|$ ② 曲①、②得 $\max\{a,b\} = \frac{a+b}{2} + \frac{|a-b|}{2}$ $\min\{a,b\} = \frac{a+b}{2} - \frac{|a-b|}{2}$ 几何意义: $\max\{a,b\}$ 指的是 a,b 中较大的那个, $\min\{a,b\}$ 指的是 a,b 中较小的那个。
- 4. 设 f(x) 在集合 X 上有界,求证:

$$|f(x) - f(y)| \le \sup_{x \in X} f(x) - \inf_{x \in X} f(x) \quad (\forall x, y \in X)$$

 $\inf_{x \in X} f(x)$ 5. 设 f(x),g(x) 在集合 X 上有界, 求证:

- - $(1) \inf_{x \in X} \{f(x)\} + \inf_{x \in X} \{g(x)\} \le \inf_{x \in X} \{f(x) + g(x)\} \le \inf_{x \in X} \{f(x)\} + \sup_{x \in X} \{g(x)\}$

 - ① 易知, $\sup_{x \in X} \{f(x)\} + \inf_{x \in X} \{g(x)\} \le f(x) + g(x) \ (\forall x \in X)$, $\therefore \inf_{x \in X} \{f(x)\} + g(x)\}$ $\inf_{x \in X} \{g(x)\} \le \inf_{x \in X} \{f(x) + g(x)\}, \ \ \overrightarrow{X} : \inf_{x \in X} \{f(x) + g(x)\} \le f(x) + g(x) \le f(x) + \sup_{x \in X} \{g(x)\},$ $\sup_{x \in X} \{g(x)\}, \text{ fig. } \{f(x)\} + \inf_{x \in X} \{g(x)\} \le \inf_{x \in X} \{f(x) + g(x)\} \le \inf_{x \in X} \{f(x)\} + \sup_{x \in X} \{g(x)\}$ ② 类似上面做法.

2.2 函数

2.2 函数 -4/12-

- 1. $\mathfrak{P}(x) = |1 + x| |1 x|$.
 - (1) 求证: f(x) 是奇函数;
 - (2) 求证: $|f(x)| \le 2$.
 - $(3) \ \ \cancel{x} \underbrace{(f \circ f \circ \cdots \circ f)}_{}(x).$

解

(1) f(x) = f(-x), f(x) 是奇函数.

(2)
$$f(x) = |1 + x| - |1 - x| \le |1 + x + 1 - x| = 2$$

(1)
$$f(x) = f(-x)$$
, $f(x)$ 是奇函数.
(2) $f(x) = |1 + x| - |1 - x| \le |1 + x + 1 - x| = 2$
(3) 易知, $f(x)$ 是一个分段函数, $f(x) = \begin{cases} -2 & x < -1 \\ 2x & -1 \le x \le 1 \end{cases}$,下面当 $-1 \le x \le 1$
时, $f(x) = 2x$ $f(x)$ $f(x$

$$\begin{cases}
-2 & x < \frac{1}{2(n-1)} \\
2^{(n-1)}x & \frac{-1}{2(n-1)} \le x \le \frac{1}{2(n-1)} \\
2 & x \ge \frac{1}{2^{(n-1)}}
\end{cases}$$

- 2. 设 f(x) 在 $(0,+\infty)$ 上定义, a > 0, b > 0. 求证:

 - (1) 若 $\frac{f(x)}{x}$ 单调下降,则 $f(a+b) \le f(a) + f(b)$; (2) 若 $\frac{f(x)}{x}$ 单调上升,则 $f(a+b) \ge f(a) + f(b)$

解

- (1) 由己知得, $\frac{f(x)}{x}$ 单调下降 $\therefore \frac{f(a+b)}{a+b} \le \frac{f(a)}{a}, \frac{f(a+b)}{a+b} \le \frac{f(b)}{b}, \therefore af(a+b) \le (a+b)f(a), bf(a+b) \le (a+b)f(b),$ 可得 $f(a+b) \le f(a) + f(b)$.
- (2) 与第一小题类似.
- 3. 利用上题证明: 当 a > 0, b > 0 时,有
 - (1) $\stackrel{\text{d}}{=} p > 1$ $\stackrel{\text{d}}{=} p, (a+b)^p \ge a^p + b^p;$
 - (2) $\stackrel{\text{def}}{=} 0$

- (1) 令 $f(x) = x^p$, $\frac{f(x)}{x} = x^{p-1}$, $\therefore p > 1, p-1 > 0$ $\therefore x^{p-1}$ 单调递增, 由第二题可得 $f(a+b) \ge f(a) + f(b) : (a+b)^p \ge a^p + b^p$
- (2) 与第一小题类似
- 4. 设 f(x) 在 **R** 上定义, 且 $f(f(x)) \equiv x$.
 - (1) 问这种函数有几个?
 - (2) 若 f(x) 为单调增加函数, 问这种函数有几个?

解

- (1) 令 y = f(x), $x = f^{-1}(y)$: $f(f(x)) \equiv x$: $f(y) \equiv f^{-1}(y)$, 说明其原函数等于反 函数,说明函数图像关于直线 y = x 对称,其这样的函数有无数多个.
- (2) - \uparrow , f(x) ≡ x
- 5. 求证: 若 $y = f(x)(x \in (-\infty, +\infty))$ 是奇函数, 并且它的图像关于直线 x = b(b > 0) 对 称,则函数 f(x) 是周期函数并求其周期.

2.3 序列极限 -5/12-

解 : f(x) 是奇函数, : f(x) = -f(-x), 又 : f(x) 关于直线 x = b(b > 0) 对称, f(b+x) = f(b-x), 即 f(b+b+x) = f(-x) = -f(x), f(x+2b) = -f(x) = -f(x+2b-2b) = f(x-2b), : f(x+4b) = f(x), 因此 f(x) 是周期函数, 其周期是 4b.

6. 设 $f: X \to Y$ 时满射, $g: Y \to Z$. 求证: $g \circ f: X \circ Z$. 有反函数的充分必要条件为 f 和 g 都有反函数存在, 且 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

解 $g \circ f : X \circ Z$ 有反函数, 说明 $g \circ f$ 一一对应, 即 f 和 g 都一一对应, 所以, f 和 g 存在反函数, 令 $(g \circ f)$ 的反函数为 H, 假设 H(a) = b, 有 $(g \circ f)(b) = a$, 左乘 g^{-1} , 即 $f(b) = g^{-1}(a)$, 再左乘 f^{-1} , 即 $b = (f^{-1} \circ g^{-1})(x)$ $\therefore H = f^{-1} \circ g^{-1}, (g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

2.3 序列极限

练习题

1. $\mbox{if } x_n > 0, \lim_{n \to \infty} x_n = a.$

2.4 函数极限与连续概念

2.5 闭区间上连续函数的性质

第3章 一元函数微分学

第4章 一元函数积分学

第5章 级数

第6章 多元函数积分学

第7章 多元函数积分学

第8章 典型综合题分析

第9章 附录及一些说明事项

附录及一些说明事项

- 1. 本书参考此作者编写的内容Github,另外还有参考文档,其下载地址为Github。
- 2. 另外,由于本人能力有限,对于一些没有完成的习题,若你有能力帮助,敬请Fork Github。