The deep learning boom (2011---)

Success stories: vision

What changed with Deep Learning?

The ability to process huge amounts of data and continue to accrue accuracy gains from them.

Training a Feed-forward network

- To train a neural network, define a loss function $L(y, \hat{y})$: a function of the true output y and the predicted output \hat{y}
- L(y,ÿ) assigns a non-negative numerical score to the neural network's output, ŷ
- The parameters of the network are set to minimise <u>L</u> over the training examples (i.e. a sum of losses over different training samples)
- L is typically minimised using a gradient-based method

- Choose an arbitrary initial point: War ramdomly.
- $\lambda =$ Chosen learning rate
- Epoch t = 0
- While stopping criteria not reached $/* || \nabla_{\mathcal{F}}(w) || \leq \varepsilon$

Stochastic gradient descent

• Stochastic approximation to gradient descent optimization when applied over sum of errors on several i.i.d training examples identically and independently distributed samples.

• Typical training objective:

•
$$L(w) = \frac{1}{N} \sum_{i=1}^{N} L(f(x^i; w), y_i)$$

• Stochastic approximation:

randomly choose on
$$(x',y)$$
 from $D = \{(x',y'),\dots,y'\}$
 $VL(w) = VL(f(x',w),y')$

Nore securally sample $B = \{(x',y'),\dots,y'\}$

• More efficient than full batch

($\chi B, y'B$)

 Empirical found to be better at optimizing non-convex functions because of noisy nature of gradients.

Demo

- Difference between SGD and GD
- https://colab.research.google.com/drive/104UVC56ZKVAt0HDGQyqv 5lsg PsEewRK?usp=sharing

Stochastic Gradient Descent (SGD) for training NN

SGD Algorithm

Inputs:

Function NN(x; w), Training examples, $x_1 \dots x_n$ and outputs, $y_1 \dots y_n$ and Loss function L.

do until stopping criterion

Pick a training example x_i, y_i

Compute the loss $L(NN(x_i; w), y_i)$

Compute gradient of L, ∇ L with respect to w

 $w \leftarrow w - \eta \nabla L$

done

Return: w

© Alexander Amini and Ava Soleimany MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

Randomly pick an initial (θ_0, θ_1)

© Alexander Amini and Ava Soleimany MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

© Alexander Amini and Ava Soleimany MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

Take small step in opposite direction of gradient

Repeat until convergence

© Alexander Amini and Ava Soleimany MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

Computing gradients

Modern machine learning libraries come packaged with software for automatically computing gradients.

However, to get a deeper understanding of the working of neural networks we will study the well-known backpropagation algorithm for computing the gradients manually. Simple one neuron network: logistic regression

Training a Neural Network

Define the Loss function to be minimised as a node L

Goal: Learn weights for the neural network which minimise *L*

Gradient Descent: Find $\partial L/\partial w$ for every weight w, and update it as

$$w \leftarrow w - \eta \partial L / \partial w$$

How do we efficiently compute $\partial L/\partial w$ for all w?

Will compute $\partial L/\partial h$ for every node h in the network!

 $\partial L/\partial w = \partial L/\partial h \cdot \partial h/\partial w$ where h is the node which uses w

Computing the gradients

New goal: compute $\partial L/\partial h$ for every node h in the network

Simple algorithm: Backpropagation

Key fact: Chain rule of differentiation

If L can be written as a function of variables v_1, \ldots, v_n , which in turn depend (partially) on another variable h, then

$$\partial L/\partial h = \sum_{i} \partial L/\partial v_{i} \cdot \partial v_{i}/\partial h$$

Backpropagation

If L can be written as a function of variables v_1, \ldots, v_n , which in turn depend (partially) on another variable h, then

$$\partial L/\partial h = \sum_{i} \partial L/\partial v_{i} \cdot \partial v_{i}/\partial h$$

Consider $v_1,..., v_n$ as the layer above h, $\Gamma(h)$

Then, the chain rule gives

$$\partial L/\partial h = \sum_{v \in \Gamma(h)} \partial L/\partial v \cdot \partial v/\partial h$$

Backpropagation

$$\partial L/\partial h = \sum_{v \in \Gamma(h)} \partial L/\partial v \cdot \partial v/\partial h$$

Backpropagation

Base case: $\partial L/\partial L = 1$

For each *h* (top to bottom):

For each $v \in \Gamma(h)$:

Inductively, have computed $\partial L/\partial v$

Directly compute $\partial v/\partial h$

Compute $\partial L/\partial h$

Compute $\partial L/\partial w$ where $\partial L/\partial w = \partial L/\partial h \cdot \partial h/\partial w$

Forward Pass

First, in a forward pass, compute values of all nodes given an input (The values of each node will be needed during backprop)

Where values computed in the forward pass are needed