

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 1 of 51

FCC TEST REPORT

Client Name : Lumen Labs(HK) Limited

Address 25/F, Two Harbour Square, 180 Wai Yip Street, Kwun

Tong, Hong Kong

Product Name : Lumos Kickstart Helmet

Date : Mar. 06, 2019

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190222005-01

FCC ID: 2AJKE-L1101L

Contents

1. General Information	by.		V Uporer	Vupe		WOYE'K	
General Information 1.1. Client Information	poter 1	Aupo rok		ek w	botto	Ans	!
1.2. Description of Device (EUT)	, otek	Mpore	An		V.Upofe _K	Anbo	
1.3. Auxiliary Equipment Used Durir	ng Test	bot	er An	0~	r cote	4 2000	
1.4. Description of Test Modes	Anbu	(······	otek	Pupore	Pur.	,,a ¹	potek
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used Durir 1.4. Description of Test Modes 1.5. List of channels 1.6. Description Of Test Setup 1.7. Test Equipment List	Anbore	N.	Yay	botek	Anb		
1.6. Description Of Test Setup	d _{fred} Ya	oten	Vuo.		ek b	nbor	Vila
1.7. Test Equipment List		apotek.	Anbore	Vu.	49,0	Kupotek	Þ
1 X Measurement I incertainty							11
1.9. Description of Test Facility	Mpote,	Anu	<i>y</i>	o_{fe_K}	Anbor	bu.	
2. Summary of Test Results	Mootek	Anbor			, pobote	Anbe	1
1.9. Description of Test Facility Summary of Test Results Conducted Emission Test	- Workey	1000	ole	Yun Yun		tek An	1
3.1. Test Standard and Limit	b71	No.	boter	DUPP		491	1
3.2. Test Setup	Anbe		Hotek	hopol	P.	u. Mak	1
3.3. Test Procedure	otek p	upore	An	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	optek	Anbo	1
3.4. Test Data	tek	Whoten	Anbo		Botek	hupore	1
4. Radiation Spurious Emission and Ban 4.1. Test Standard and Limit	nd Edge	2000	k bug	01-	Vr.	ATPO!	1
4.1. Test Standard and Limit	Anbor	by.	, vel	"pofer	AMP		18
4.2. Test Setup	<u> </u>	Ant		, notek	470b0	» V	1
4.3. Test Procedure	4	18K	Vupo.	h.,	<u> </u>	h _{ofer}	19
4.2. Test Setup	P.	Joseph .	hepore,	Ann		- Thotek	20
5.1. Test Standard and Limit	Wootek	Anbo	h	,tek	unbole.	Vur.	28
5.2. Test Setup	"potek	Ropoge	Yan	Ve)4	Vupute _K	Vupor.	2
5.2. Test Standard and Limit	P.L.	·····	oter D	Upo		ek pot	2
5.4. Test Data	Anbe		nbotek.	Pupore	N. D.		2
6. 6DB Occupy Bandwidth Test	r vopo,	- V-	notek	Allbote	A/O	D- 1	3:
6.1. Test Standard and Limit	, tok	Hofe.	Ann		otek	Wipo,	3:
6.2. Test Setup		s naotek	Mpor	ber.	X ₀ y ₀ ,	Allpoten	31
6.3. Test Procedure	nbo	n' notel			*Up	, note	3
6.4. Test Data	Aupore.	Am	// _{6/4}	npote ^k	Pupor	V. Pr.	32
7. Power Spectral Density Test	Antotek	Anbo	- A	Yajoda	Anhot	Anb	34
7.1. Test Standard and Limit		ρ. Α	pore	An		otek	34
7.2. Test Setup	P _U .	-01016	Amotek	Allbo	rok.		34
7.3. Test Procedure	ter An	rek.	, butek	hop.	010	An	34
7.4. Test Data	'Parek	Mport	P.u.	(6)4	"Heoten	Allpo	3
8. 100kHz Bandwidth of Frequency Band	d Edge Re	quiremen	it	· · · · · · · · · · · · · · · · · · ·	Josek	Mupote	3
9.1 Teet Standard and Limit							10%
o. i. iest Standard and Limit				W		,,,	3
6.2. Test Setup	Anbotek	- Anbo		Allbotek Allbotek	Anboth	Alle.	3

Report No.: SZAWW190222005-01	FCC ID: 2	2AJKE-L1101L		Page 3 of	51
8.3. Test Procedure		abote And		Anbo.	37
8.4. Test Data	Am	otek	upo. Ar.	494	37
9. Antenna Requirement	Anbor	A	aboter An		41
9.1. Test Standard and Requirement.	k anbote.	Anu	Pote _k	Aupor P	41
9.2. Antenna Connected Construction	Lekbotel	Anbo	· · · · · · · · · · · · · · · · · · ·	hopoter	41
APPENDIX I TEST SETUP PHOTOGRA	APH	etek kubote	Anv	, sotek	42
APPENDIX II EXTERNAL PHOTOGRA	PH	'da	otek Anbor	Pr.	44
ADDENDIY III INTEDNAL DHOTOGDAL	DU notek				10

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 4 of 51

TEST REPORT

Applicant : Lumen Labs(HK) Limited

Manufacturer : Lumen Labs(HK) Limited

Product Name : Lumos Kickstart Helmet

Model No. : L1101L, L1001L, L1101M

Trade Mark : N.A.

Rating(s) : Input: DC 5V, 500mA(with DC 3.7V, 800 mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a
Hotline
400-003-0500
www.anbotek.com

Report No.: SZAWW190222005-01

1. General Information

1.1. Client Information

Applicant	: Lumen Labs(HK) Limited
Address	: 25/F, Two Harbour Square, 180 Wai Yip Street, Kwun Tong, Hong Kong
Manufacturer	: Lumen Labs(HK) Limited
Address	: 25/F, Two Harbour Square, 180 Wai Yip Street, Kwun Tong, Hong Kong
Factory	: Lumen Labs(HK) Limited
Address	25/F, Two Harbour Square, 180 Wai Yip Street, Kwun Tong, Hong Kong

1.2. Description of Device (EUT)

Product Name	: Lumos Kickstart Helmet						
Model No.	L1101L, L1001L, L1101M (Note: All samples are the same "L1101L" for test only.)	e except the appearance, so we prepare					
Trade Mark	: N.A. otek						
Test Power Supply	AC 120V, 60Hz for adapter / AC DC 3.7V battery inside	C 240V, 60Hz for adapter/					
Test Sample No.	S1(Normal Sample), S2(Engine	S1(Normal Sample), S2(Engineering Sample)					
	Operation Frequency:	2402MHz~2480MHz					
	Transfer Rate:	1 Mbits/s					
Product	Number of Channel:	40 Channels					
Description	Modulation Type:	GFSK					
	Antenna Type:	PCB Antenna					
	Antenna Gain(Peak):	1 dBi Anbotek Anbotek Anbotek					

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

	Adapter	:	Manufacturer: ZTE
10			M/N: STC-A2050I1000USBA-C
0			S/N: 201202102100876
1			Input: 100-240V~ 50/60Hz, 0.3A
			Output: DC 5V, 1000mA

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 6 of 51

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Descr	iption
Mode 1	CH00	Anbotek Anbo tek anbotek
Mode 2	CH19	TX+ Charging Mode/TX Only
Mode 3	CH39	Anbotek Anbo otek An

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2)The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 7 of 51

1.5. List of channels

	V.	(a)	1111	104	~0~	Pr.	100		2172
Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
00	2402	09	2420	18	2438	27	2456	36	2474
01	2404	10	2422	19	2440	28	2458	37 N	2476
02	2406	11 Amb	2424	20	2442	29	2460	38	2478
03	2408	o ^{tek} 12	2426	21,000	2444	30	2462	39	2480
04	2410	13	2428	22	2446	31	2464		
05	2412	14	2430	23	2448	32	2466	N/hb0	
06	2414	15	2432	24	2450	33	2468		0000
07 ₁₀	2416	16 🗥	2434	25	2452	34	2470		
08	2418	otek 17 A	2436	26	2454	35	2472		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 8 of 51

1.6. Description Of Test Setup

CE

RE

www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 9 of 51

1.7. Test Equipment List

14 -	- O. C.	Manufal	No. d. I.N.	Operated	1 1 0 1	Cal.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Interval
nb9tek	L.I.S.N. Artificial Mains Rohde & Schwarz Network		ENV216 100055		Nov. 05, 2018	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5. te	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6. nb	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 05, 2018	1 Year
	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
potek 8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year
[×] 11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A Anto	N/A	N/A
13. Anbo	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
⁰ 16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.0°	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year
20. K	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80 B	N/A	Nov. 01, 2018	1 Year

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 10 of 51

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	abotek	Anbotek	Anbou	Anbol
		Ur = 3.8 dB (Vertical)	nbotek	Anboten	Anb	V.
		Anbotek Anbo	A. abotel	Anbote	ak And	ek.
Conduction Uncertainty	:	Uc = 3.4 dB	· Anb	otek Anbo	Co. Aus	potek

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 11 of 51

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(3)	Conducted Peak Output Power	PASS
15.247(a)(2)	6dB Occupied Bandwidth	PASS
15.247(e)	Power Spectral Density	PASS
15.247(d)	Band Edge	PASS

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 12 of 51

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.2	207 Anbout Andrew					
	Francisco	Maximum RF Line Voltage (dBuV)					
	Frequency	Quasi-peak Level	Average Level				
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
	500kHz~5MHz	56	Androis 46				
	5MHz~30MHz	Mary 60 Mary	nbotek 50 nbot				

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

Code:AB-RF-05-a
Hotline
400-003-0500
www.anbotek.com

Report No.: SZAWW190222005-01

FCC ID: 2AJKE-L1101L

Page 13 of 51

During the test, pre-scan all the modes, and found Low channel(TX+Charging Mode) which is the worst case, only the worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

.

Code: AB-RF-05-a

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 14 of 51

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: CH00

Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.: 20.0℃ Hum.: 65%

(1411 12)	(dBuV)	(dB)	(dBuV)	dBuV	(dB)	Detector	Remark
0.1500	33.91	19.90	53.81	65.99	-12.18	QP	
0.1539	14.06	19.90	33.96	55.78	-21.82	AVG	
0.2260	30.18	19.89	50.07	62.59	-12.52	QP	
0.2260	12.58	19.89	32.47	52.59	-20.12	AVG	
0.3220	10.83	19.90	30.73	49.65	-18.92	AVG	
0.3780	19.64	19.93	39.57	58.32	-18.75	QP	
0.4500	5.00	19.96	24.96	46.87	-21.91	AVG	
0.8220	4.85	20.07	24.92	46.00	-21.08	AVG	
0.8460	16.02	20.08	36.10	56.00	-19.90	QP	
1.4180	15.35	20.13	35.48	56.00	-20.52	QP	
1.4180	4.52	20.13	24.65	46.00	-21.35	AVG	
3.8940	15.13	20.18	35.31	56.00	-20.69	QP	
	0.1539 0.2260 0.2260 0.3220 0.3780 0.4500 0.8220 0.8460 1.4180	0.1500 33.91 0.1539 14.06 0.2260 30.18 0.2260 12.58 0.3220 10.83 0.3780 19.64 0.4500 5.00 0.8220 4.85 0.8460 16.02 1.4180 15.35 1.4180 4.52	0.1500 33.91 19.90 0.1539 14.06 19.90 0.2260 30.18 19.89 0.2260 12.58 19.89 0.3220 10.83 19.90 0.3780 19.64 19.93 0.4500 5.00 19.96 0.8220 4.85 20.07 0.8460 16.02 20.08 1.4180 15.35 20.13 1.4180 4.52 20.13	0.1500 33.91 19.90 53.81 0.1539 14.06 19.90 33.96 0.2260 30.18 19.89 50.07 0.2260 12.58 19.89 32.47 0.3220 10.83 19.90 30.73 0.3780 19.64 19.93 39.57 0.4500 5.00 19.96 24.96 0.8220 4.85 20.07 24.92 0.8460 16.02 20.08 36.10 1.4180 15.35 20.13 35.48 1.4180 4.52 20.13 24.65	0.1500 33.91 19.90 53.81 65.99 0.1539 14.06 19.90 33.96 55.78 0.2260 30.18 19.89 50.07 62.59 0.2260 12.58 19.89 32.47 52.59 0.3220 10.83 19.90 30.73 49.65 0.3780 19.64 19.93 39.57 58.32 0.4500 5.00 19.96 24.96 46.87 0.8220 4.85 20.07 24.92 46.00 0.8460 16.02 20.08 36.10 56.00 1.4180 15.35 20.13 35.48 56.00 1.4180 4.52 20.13 24.65 46.00	0.1500 33.91 19.90 53.81 65.99 -12.18 0.1539 14.06 19.90 33.96 55.78 -21.82 0.2260 30.18 19.89 50.07 62.59 -12.52 0.2260 12.58 19.89 32.47 52.59 -20.12 0.3220 10.83 19.90 30.73 49.65 -18.92 0.3780 19.64 19.93 39.57 58.32 -18.75 0.4500 5.00 19.96 24.96 46.87 -21.91 0.8220 4.85 20.07 24.92 46.00 -21.08 0.8460 16.02 20.08 36.10 56.00 -19.90 1.4180 15.35 20.13 35.48 56.00 -20.52 1.4180 4.52 20.13 24.65 46.00 -21.35	0.1500 33.91 19.90 53.81 65.99 -12.18 QP 0.1539 14.06 19.90 33.96 55.78 -21.82 AVG 0.2260 30.18 19.89 50.07 62.59 -12.52 QP 0.2260 12.58 19.89 32.47 52.59 -20.12 AVG 0.3220 10.83 19.90 30.73 49.65 -18.92 AVG 0.3780 19.64 19.93 39.57 58.32 -18.75 QP 0.4500 5.00 19.96 24.96 46.87 -21.91 AVG 0.8220 4.85 20.07 24.92 46.00 -21.08 AVG 0.8460 16.02 20.08 36.10 56.00 -19.90 QP 1.4180 15.35 20.13 35.48 56.00 -20.52 QP 1.4180 4.52 20.13 24.65 46.00 -21.35 AVG

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 15 of 51

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: CH00

Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Tem.: 20.0℃ Hum.: 65%

1	0.1539	33.79	19.90	53.69	65.78	-12.09	QP	
2	0.2300	26.85	19.89	46.74	62.45	-15.71	QP	
3	0.3220	10.42	19.90	30.32	49.65	-19.33	AVG	
4	0.4540	6.38	19.96	26.34	46.80	-20.46	AVG	
5	0.4620	21.19	19.96	41.15	56.66	-15.51	QP	
6	0.6900	20.33	20.04	40.37	56.00	-15.63	QP	
7	0.8620	5.17	20.08	25.25	46.00	-20.75	AVG	
8	1.3140	19.64	20.13	39.77	56.00	-16.23	QP	
9	1.4060	4.89	20.13	25.02	46.00	-20.98	AVG	
10	1.9860	4.46	20.14	24.60	46.00	-21.40	AVG	
11	1.9940	21.73	20.14	41.87	56.00	-14.13	QP	
12	2.5140	2.76	20.15	22.91	46.00	-23.09	AVG	

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 16 of 51

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: CH00

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 20.0℃ Hum.: 65%

	No.	(MHz)	(dBuV)	Factor (dB)	(dBuV)	dBuV	(dB)	Detector	Remark
	1	0.1620	33.74	19.90	53.64	65.36	-11.72	QP	
	2	0.1660	18.96	19.90	38.86	55.15	-16.29	AVG	
1	3	0.2460	25.03	19.89	44.92	61.89	-16.97	QP	
-	4	0.3420	7.17	19.91	27.08	49.15	-22.07	AVG	
-	5	0.4100	15.63	19.94	35.57	57.65	-22.08	QP	
1	6	0.5860	2.54	20.01	22.55	46.00	-23.45	AVG	
	7	0.6580	14.81	20.03	34.84	56.00	-21.16	QP	
. [8	0.9220	0.17	20.10	20.27	46.00	-25.73	AVG	
1	9	1.2300	13.91	20.12	34.03	56.00	-21.97	QP	
Ē	10	1.3900	-0.46	20.13	19.67	46.00	-26.33	AVG	
	11	1.9460	-0.27	20.14	19.87	46.00	-26.13	AVG	
	12	2.8500	12.00	20.16	32.16	56.00	-23.84	QP	

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 17 of 51

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: CH00

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 20.0℃ Hum.: 65%

Code: AB-RF-05-a

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 18 of 51

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15	.209 and 15.205				
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	0.009MHz~0.490MHz	2400/F(kHz)	potek - Anbor	Vek by	300	
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Anh	or bu	30 AUDO	
	1.705MHz-30MHz	30	Anbotek	rupo otek	Model 30 M	
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3	
	88MHz~216MHz	150	43.5	Quasi-peak	An 3 stell	
	216MHz~960MHz	200	46.0	Quasi-peak	3 abotek	
	960MHz~1000MHz	500	54.0	Quasi-peak	otek 3 Anbot	
	Above 4000MHz	500	54.0	Average	nbotek 3 An	
	Above 1000MHz	or Am	74.0	Peak	3	

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 19 of 51

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a
Hotline
400-003-0500
www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 20 of 51

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan all the modes, and found the Middle channel(TX Only) which is the worst case, only the worst case is recorded in the report.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 21 of 51

Test Results (30~1000MHz)

Job No.: SZAWW190222005-01 Temp.(℃)/Hum.(%RH): 24.6℃/49%RH

Standard: FCC PART 15C Power Source: DC 3.7V battery inside

Test Mode: Mode 2 Polarization: Horizontal

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 22 of 51

Test Results (30~1000MHz)

Job No.: SZAWW190222005-01 Temp.(℃)/Hum.(%RH): 24.6℃/49%RH

Standard: FCC PART 15C Power Source: DC 3.7V battery inside

Test Mode: Mode 2 Polarization: Vertical

1	Vo.	Freq. (MHz)	(dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1		38.3462	31.50	-14.26	17.24	40.00	-22.76	QP	300	0	
2		43.9658	32.32	-14.52	17.80	40.00	-22.20	QP	300	74	
3		53.3179	32.48	-16.67	15.81	40.00	-24.19	QP	300	152	
4		114.1138	27.36	-15.92	11.44	43.50	-32.06	QP	300	217	
5		240.8304	28.16	-14.50	13.66	46.00	-32.34	QP	300	296	
6		508.2582	33.93	-10.81	23.12	46.00	-22.88	QP	300	360	

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 23 of 51

Test Results (1GHz-25GHz)

Test Mode:	CH00			Test	channel: Lov	vest		
			ſ	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	38.80	34.04	6.58	34.09	45.33	74.00	-28.67	Nupo Ck
7206.00	32.82	37.11	7.73	34.50	43.16	74.00	-30.84	An Vote
9608.00	32.35	39.31	9.23	34.79	46.10	74.00	-27.90	Val
12010.00	otek *	lbotek	Aupole	Ann	Anbotek	74.00	Abote	V
14412.00	notek.	Anbotek	Anbote	Anabote	k Anbote	74.00	lek vup	ote ^K V
4804.00	43.39	34.04	6.58	34.09	49.92	74.00	-24.08	nbolek
7206.00	34.71	37.11	7.73	34.50	45.05	74.00	-28.95	Anthre
9608.00	31.91	39.31	9.23	34.79	45.66	74.00	-28.34	Hab
12010.00	rek *	potek	Anbotes	Anbo	anbotek	74.00	And	Н
14412.00	pote*	anbotek	Aupoton	Amb	Anbotel	74.00	ek ab	re ^K H
	120	100	A۱	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	27.33	34.04	6.58	34.09	33.86	54.00	-20.14	V
7206.00	21.34	37.11	7.73	34.50	31.68	54.00	-22.32	V V
9608.00	20.32	39.31	9.23	34.79	34.07	54.00	-19.93	V
12010.00	Aup Ste.	Aug	Anbote Anbote	Anbe	rek by	54.00	oter A	Vek
14412.00	Anbote	K Ku	otek Ant	otek A	looz b	54.00	Kupoten K	Anbo
4804.00	31.72	34.04	6.58	34.09	38.25	54.00	-15.75	And.
7206.00	23.61	37.11	7.73	34.50	33.95	54.00	-20.05	A H
9608.00	20.17	39.31	9.23	34.79	33.92	54.00	-20.08	H
12010.00	Anbotek	Anbo	Anbote	k Anbo	bus.	54.00	otek Ar	Hek
14412.00	A/*botek	Anbo	otek Anb	otek Ar	pose, My	54.00	hotek	Aupo,

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 24 of 51

Test Results (1GHz-25GHz)

Test Mode:	CH19			Test	channel: Mid	dle		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4880.00	38.14	34.38	6.69	34.09	45.12	74.00	-28.88	^{rup} o, ook
7320.00	32.38	37.22	7.78	34.53	42.85	74.00	-31.15	AnVote And
9760.00	31.96	39.46	9.35	34.80	45.97	74.00	-28.03	Valo
12200.00	otek *	botek	Aupolo	Am	Anbotek	74.00	Abote	V
14640.00	loc otek	Anbotek	Anbots	Anote	k Anbote	74.00	ek vup	otek V
4880.00	42.60	34.38	6.69	34.09	49.58	74.00	-24.42	npotek
7320.00	34.21	37.22	7.78	34.53	44.68	74.00	-29.32	An Hite
9760.00	31.46	39.46	9.35	34.80	45.47	74.00	-28.53	Hab
12200.00	*ek *	potek	Anbotek	Anbo	Anbotek	74.00	And	Н
14640.00	pote*	anbotek	Aupoton	Amb	Anbotel	74.00	ex ap	rek H
	1007	100	A۱	erage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4880.00	26.81	34.38	6.69	34.09	33.79	54.00	-20.21	V
7320.00	20.99	37.22	7.78	34.53	31.46	54.00	-22.54	V V
9760.00	20.01	39.46	9.35	34.80	34.02	54.00	-19.98	V
12200.00	Aup & co.	Anna	Anbote Anbote	Anbe	rek bu	54.00	oter A	Vek
14640.00	Anbote	K View	otek Ant	otek A	looz b	54.00	Yupolen K	Ambo
4880.00	31.14	34.38	6.69	34.09	38.12	54.00	-15.88	H
7320.00	23.22	37.22	7.78	34.53	33.69	54.00	-20.31	ek H
9760.00	19.81	39.46	9.35	34.80	33.82	54.00	-20.18	H
12200.00	Anbotek	Anbo	Anbote	k Anbo	bus.	54.00	Diek bu	Hek
14640.00	AI*DOLOR	Anbo	otek Anb	otek Ar	pose, My	54.00	hotek	Anbot H

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 25 of 51

Test Results (1GHz-25GHz)

Test Mode:	CH39			Test	channel: Hig	hest		
			I	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	36.89	34.72	6.79	34.09	44.31	74.00	-29.69	^{rup} o o o k
7440.00	31.55	37.34	7.82	34.57	42.14	74.00	-31.86	PuA,
9920.00	31.22	39.62	9.46	34.81	45.49	74.00	-28.51	V
12400.00	otek *	botek	Aupole	Annabotek	Anbotek	74.00	Abote	⁶ V
14880.00	lov kek	Anbotek	Anbote	And	k Anbote	74.00	ek enb	ote ^K V
4960.00	41.09	34.72	6.79	34.09	48.51	74.00	-25.49	nporek
7440.00	33.27	37.34	7.82	34.57	43.86	74.00	-30.14	anH1
9920.00	30.60	39.62	9.46	34.81	44.87	74.00	-29.13	H
12400.00	* * YU	botek	Anbotek	Anbo	Anbotek	74.00	And	Н
14880.00	Por Pr	abotek	Aupoton	Aribo	Anbotel	74.00	ek Vu	Kek H
	120	12.0	A	verage Valu	е	~		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4960.00	25.85	34.72	6.79	34.09	33.27	54.00	-20.73	V
7440.00	20.34	37.34	7.82	34.57	30.93	54.00	-23.07	V Yer
9920.00	19.43	39.62	9.46	34.81	33.70	54.00	-20.30	V
12400.00	Aup Sto.	And	Anbote	Anbo	rek bu	54.00	oter A	V
14880.00	Anbore	K KIN	losek Ant	otek Ar	Ipor Vi	54.00	Nupolen	Ambu
4960.00	30.05	34.72	6.79	34.09	37.47	54.00	-16.53	H
7440.00	22.49	37.34	7.82	34.57	33.08	54.00	-20.92	H Ye
9920.00	19.14	39.62	9.46	34.81	33.41	54.00	-20.59	H
12400.00	Aupotek	Anbo	Anbote Anbote	k Anbo	Vok Vuo	54.00	otek Ar	H
14880.00	AI*DOLOR	Anbo	otek Anh	otek Ar	bose, My	54.00	nbotek	Aupor

Remark:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 26 of 51

Radiated Band Edge:

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 27 of 51

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 28 of 51

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	47 (b)(3)	hotek	Anbotek	Anbo. stek
Test Limit	30dBm	Anbotek	Anboro	An	Anbotek	Anbo

5.2. Test Setup

5.3. Test Procedure

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW ≥DTS bandwidth.
- 2. Set the VBW≥3*RBW.
- 3. Set the span≥ 3*RBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

5.4. Test Data

Test Item : Max. peak output power Test Mode : CH Low ~ CH High Test Voltage : DC 3.7V Battery inside Temperature : 23.7° C Test Result : PASS Humidity : 49%RH

	Channel Frequency	Peak Power output	Limit	Desults
	(MHz)	(dBm)	(dBm)	Results
ek-	2402	-2.769	abotek 30 abote	PASS
potek	2440	-2.779	Anbotek 30 Anbote	PASS
Anbot	2480	-3.986	30 Aupon	PASS

Code:AB-RF-05-a
Hotline
400-003-0500
www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 29 of 51

CH: Low

CH: Middle

www.anbotek.com

Report No.: SZAWW190222005-01

FCC ID: 2AJKE-L1101L

Page 30 of 51

CH: High

Code:AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 31 of 51

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	47 (a)(2)	hotek	Anbotek	Anbo. atek
Test Limit	>500kHz	Anbotek	Anboto	An	Anbotek	Anbo

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, VBW≥3*RBW =300kHz,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH Low \sim CH High Test Voltage : DC 3.7V Battery inside Temperature : 23.7 $^{\circ}$ C

Test Result : PASS Humidity : 49%RH

Channel	Frequency(MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	690.4	stek anbotek	PASS
Middle	2440	689.6	>500	PASS
High	2480	690.9	Anbe hotek Anbe	PASS

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 32 of 51

CH: Low

CH: Middle

400-003-0500 www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 33 of 51

CH: High

Code: AB-RF-05-a

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 34 of 51

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	47 (e)	Am	Anbotek	Anbo. stek
Test Limit	8dBm	Anbotek	Anbore	Am	Anbotek	Anbo

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low ~ CH High Test Voltage : DC 3.7V Battery inside Temperature : 23.7° C

Test Result : PASS Humidity : 49%RH

Channel	Frequency	PSD	Limit	Results
	(MHz)	(dBm/3KHz)	(dBm/3KHz)	
Low notes	2402	-12.177	and 8.00 And other	PASS
Middle	2440	-12.246	8.00	PASS
High	2480	-13.411	8.00	PASS

Code: AB-RF-05-

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 35 of 51

CH: Low

CH: Middle

www.anbotek.com

Report No.: SZAWW190222005-01

FCC ID: 2AJKE-L1101L

Page 36 of 51

CH: High

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 37 of 51

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Standard Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

CH Low ~ CH High Test Item Band edge Test Mode

23.7℃ Test Voltage DC 3.7V Battery inside Temperature

Test Result **PASS** Humidity 49%RH

Frequency Band	Delta Peak to Band Emission	Limit	Desulte
(MHz)	(dBc)	(dBc)	Results
2400	49.784	>20	PASS
2483.5	51.594	>20	PASS

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2AJKE-L1101L Report No.: SZAWW190222005-01 Page 38 of 51

CH: Low

CH: High

Shenzhen Anbotek Compliance Laboratory Limited

400-003-0500 www.anbotek.com

Report No.: SZAWW190222005-01 Conducted Emission Method FCC ID: 2AJKE-L1101L

Page 39 of 51

CH: Low

CH: Middle

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L

Page 40 of 51

CH: High

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 41 of 51

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna

9.2. Antenna Connected Construction

The antenna is a PCB Antenna which permanently attached, and the best case gain of the antenna is 1 dBi. It complies with the standard requirement.

Code:AB-RF-05-a
Hotline
400-003-0500
www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 42 of 51

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Conducted Emission Measurement

Photo of Radiation Emission Test

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 43 of 51

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 44 of 51

APPENDIX II -- EXTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 45 of 51

Report No.: SZAWW190222005-01

FCC ID: 2AJKE-L1101L

Page 46 of 51

Report No.: SZAWW190222005-01

FCC ID: 2AJKE-L1101L

Page 47 of 51

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Code: AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 48 of 51

APPENDIX III -- INTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 49 of 51

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 50 of 51

Report No.: SZAWW190222005-01 FCC ID: 2AJKE-L1101L Page 51 of 51

--- End of Report