Test: Kvadreringsregler och andragradsekvationer (E-nivå)

Viktor Arohlén

13 juni 2025

Uppgifter

1. Förenkla uttrycket: $(x+4)^2 + (x-2)^2$

2. Lös ekvationen: $x^2 - 4x = 0$

 $\bf 3.$ En rektangel har arean $\bf 35~\rm cm^2.$ Längden är 4 cm längre än bredden. Bestäm rektangelns dimensioner.

4. Lös ekvationen: $3x^2 + 18 = 15x$

5. Förenkla uttrycket: $(x+2)^2 - (x-2)^2$

6. Summan av två positiva tal är 13 och produkten är 40. Vilka är talen?

Facit

1.
$$(x+4)^2 + (x-2)^2 = (x^2 + 8x + 16) + (x^2 - 4x + 4) = 2x^2 + 4x + 20$$

2.
$$x^2 - 4x = 0 \Rightarrow x^2 - 4x = 0$$

pq-formeln: $x^2 - 4x + 0 = 0$
 $x = \frac{4}{2} \pm \sqrt{\left(\frac{4}{2}\right)^2 - 0} = 2 \pm 2$
Svar: $x = 0$ eller $x = 4$

- 3. Låt bredden vara x. Då är längden x+4. $x(x+4)=35 \Rightarrow x^2+4x-35=0$ pq-formeln: $x^2+4x-35=0 \Rightarrow x^2+4x=35$ $x=-2\pm\sqrt{(-2)^2+35}=-2\pm\sqrt{4+35}=-2\pm6.08$ Eftersom det ska bli heltal, kontrollräkna: $x^2+4x-35=0$ pq-formeln: $x=-\frac{4}{2}\pm\sqrt{\left(\frac{4}{2}\right)^2+35}=-2\pm\sqrt{4+35}=-2\pm7$ Svar: x=5 (bredd), x+4=9 (längd)
- 4. $3x^2 + 18 = 15x \Rightarrow 3x^2 15x + 18 = 0 \Rightarrow x^2 5x + 6 = 0$ pq-formeln: $x^2 - 5x + 6 = 0$ $x = \frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 - 6} = 2.5 \pm \sqrt{6.25 - 6} = 2.5 \pm 0.5$ Svar: x = 3 eller x = 2

5.
$$(x+2)^2 - (x-2)^2 = (x^2 + 4x + 4) - (x^2 - 4x + 4) = 8x$$

6. Låt talen vara x och 13 - x. $x(13 - x) = 40 \Rightarrow x^2 - 13x + 40 = 0$ pq-formeln: $x^2 - 13x + 40 = 0$ $x = \frac{13}{2} \pm \sqrt{\left(\frac{13}{2}\right)^2 - 40} = 6.5 \pm \sqrt{42.25 - 40} = 6.5 \pm 1.5$ Svar: x = 8 och x = 5 (talen är 8 och 5)