Principy počítačů a operačních systémů

Systémová architektura, připojení a komunikace s externími zařízeními

Zimní semestr 2010/2011

Uspořádání na úrovni systému

Funkční bloky

- procesory, paměti
- periferní zařízení

Propojovací systém

 přenos dat v rámci systému a mimo něj

Podpůrné obvody

- přidělování/řízení přístupu k prostředkům
- podpora přerušení a přímého přístupu do paměti

Zdroj: www.tomshardware.com

Periferní zařízení

K čemu je, kdo je na druhé straně, kolik dat přenáší

Zařízení	Použití	Partner	Datový tok (Mbit/s)
klávesnice	vstup	člověk	0.0001
myš	vstup	člověk	0.0038
hlasový vstup	vstup	člověk	0.2640
zvukový vstup	vstup	stroj	0.0882-18.4320
scanner	vstup	člověk	3.2000
hlasový výstup	výstup	člověk	0.2640
zvukový výstup	výstup	člověk	1.4112-18.4320
laserová tiskárna	výstup	člověk	3.2000
obrazový výstup	výstup	člověk	800.0000-8000.0000
modem	vstup/výstup	stroj	0.0160-0.0640
lokální síť	vstup/výstup	stroj	10.0000-10000.0000
bezdrátová síť	vstup/výstup	stroj	1.0000-54.0000
optický disk	úložiště	stroj	80.0000
magnetická páska	úložiště	stroj	32.0000
magnetický disk	úložiště	stroj	240.0000-2560.0000

Připojení/propojení periferií

Propojovací systém

- návrh ovlivněn mnoha faktory
 - rozšiřitelnost, odolnost, výkonnost
- určuje architekturu systému

Výkonnost propojovacího systému

- propustnost/šířka pásma (bandwidth)
 - množství dat přenesených za jednotku času
 - primárně mnoho "velkých" V/V operací
- zpoždění/latence
 - množství V/V operací za jednotku času
 - primárně mnoho "menších" V/V operací

Propojovací systémy v počítači

Dvoubodové spoje

- přímé spojení (port)
 - není nutné adresovat
- křížový přepínač (crossbar switch)
- propojovací síť (switch fabric)
 - blokující, neblokující, ...

Vícebodové spoje

- účastníci sdílejí přenosové médium
 - broadcast: 1 vysílač, více příjmačů
- sběrnice (bus)

Co je to sběrnice?

Sada vodičů propojující více zařízení

- vodiče pro řídící signály
 - řízení komunikace požadavky/potvrzení
 - indikace typu dat na datových vodičích
- vodiče pro datové signály
 - přenos dat mezi zdrojovým a cílovým zařízením
 - adresy, data, složitější příkazy

Typická (sběrnicová) architektura systému

Proč použít/nepoužít sběrnici?

Hlavní výhody sběrnice

- flexibilita (a kompatibilita)
 - jednoduché připojení nejrůznějších periferií
 - přenos periferií mezi (kompatibilními) systémy
- nízká cena
 - jedna sdílená sada vodičů pro mnoho zařízení

Hlavní nevýhody sběrnice

- potenciální úzké hrdlo v systému
- omezení délkou sběrnice a počtem zařízení
- omezení v důsledku rozmanitosti zařízení
 - odlišné rychlosti, zpoždění a objemy přenášených dat

Systém sběrnic v modením PC

Komunikace na sběrnici

Transakce na sběrnici

- požadavek
 - vyslání příkazu a adresy cílového zařízení
 - odezva cílového zařízení potvrzující požadavek
- přenos dat
 - směr přenosu určen příkazem

Účastníci (komunikace)

- master/initiator zahajuje sběrnicovou transakci
 - tj. určuje "co a s kým"
- slave/target posílá/přijímá data

Logická charakteristika sběrnice

Sběrnicový protokol

- definuje povolený průběh transakcí na sběrnici
 - logický význam signálů na vodičích
 - popis pomocí stavových a časových diagramů

Způsob řízení a přidělování sběrnice

- synchronní vs. asynchronní řízení
 - přechody mezi fázemi transakce určeny hodinovým signálem resp. změnou řídících signálů
- centralizované vs. distribuované přidělování
 - o přidělení sběrnice rozhoduje centrální arbitr resp. zařízení v rámci distribuovaného protokolu

Synchronní sběrnice

Obecná charakteristika

- řídící vodiče zahrnují hodinový signál
- pevně stanovený komunikační protokol
 - přechody mezi fázemi transakce určeny hodinovým signálem resp. změnou řídících signálů

Hlavní výhody

jednodušší řízení ⇒ vysoká rychlost

Hlavní nevýhody

- zpoždění hodin (clock skew) ⇒ omezená délka
- hodinový signál stejně rychlý pro všechna zařízení

Příklad: čtení z paměti na synchronní sběrnici ISA

Příklad: zápis do paměti na synchronní sběrnici ISA

Asynchronní sběrnice

Obecná charakteristika

- není řízena hodinovým signálem
- umožňuje připojit zařízení o různé rychlosti
- není tolik omezena délkou (nemá hodiny)
- vyžaduje handshaking protokol
- složitější řízení, větší délka ⇒ nižší rychlosti

Typické použití

externí V/V sběrnice (USB 2.0, FireWire)

Příklad: čtení dat na asynchronní sběrnici

Přidělování sběrnice

Základní princip

- master žádá a čeká na přidělení sběrnice
- arbitr přiděluje sběrnici žadatelům
 - při souběžných žádostech zohledňuje prioritu a fairness
- master informuje arbitra o uvolnění sběrnice

Přidělovací mechanizmy

- centralizované přidělování
- distribuované kolizní přidělování
- distribuované založené na "samovýběru"

Centralizované přidělování

Nezávislé žádosti

Cyklické výzvy (polling)

Prioritní zřetězení (daisy chain)

Ovládání periferních zařízení

Periferie ovládány programem

- kroky nutné k vykonání požadované operace
 - výběr zařízení
 - zápis příkazů k vykonání operace (specifických pro zařízení)
 - čtení stavové informace specifické pro zařízení

Rozhraní procesor/periférie

- sdílený adresový prostor zařízení a paměti
 - zařízení mapována do paměti (memory-mapped I/O)
 - přístup pomocí bežných instrukcí typu load/store
- oddělený adresový prostor zařízení a paměti
 - přístup pomocí speciálních instrukci typu in/out

Komunikace procesoru se zařízením

Informace o stavu zařízení

- polling
 - program periodicky kontroluje stav zařízení
 - značná režie v případě pomalých zařízení
- interrupt-driven I/O
 - zařízení signalizuje procesoru změnu stavu
 - obslužná rutina přerušení reaguje na stav zařízení

Přenos dat z/do zařízení (z/do paměti)

- s účastí procesoru (programmed I/O)
- bez účasti procesoru (DMA, bus mastering)

Podpora interrupt-driven I/O

Procesor musí podporovat

- signalizaci požadavku na přerušení
 - jeden nebo více vstupních signálů
- identifikaci zdroje přerušení
 - pevná identifikace odvozená od signálových vodičů
 - dynamická identifikace
- výběr obslužné rutiny přerušení
 - statická adresa vs. vektor přerušení

Systém musí podporovat

- doručení přerušovacích signálů od periferie procesoru
- řadič přerušení zdrojů více než má CPU vstupů
 - více přerušovacích signálů, vyhodnocení priority

Zpracování přerušení na procesoru MIPS

Vyvolání a obsluha přerušení

- 1. Periferie aktivuje signál INTx
- 2. Procesor nastaví registry Cause a EPC a skočí na obsluhu General Exception na adrese 0x80000180
- 3. Obslužná rutina OS pro GE uschová stav procesoru, zjistí příčinu a vyvolá specifickou obslužnou rutinu
 - pokud bylo přerušení požadováno více zdroji, jsou tyto obslouženy v pořadí určeném obslužnou rutinou
- 4.Obslužná rutina OS obnoví stav procesoru a skočí na adresu v EPC – procesor pokračuje ve vykonávání přerušeného programu

Systém s řadičem přerušení

Příklad řadiče přerušení (i8259)

8259 internal block diagram

Zpracování přerušení s využitím i8259

Vyvolání a obsluha přerušení

- 1. Aktivován signál IRx, nastaví bit v IRR
- 2. Řadič signalizuje přerušení procesoru pomocí INT
- 3. CPU potvrdí příjem INT pomocí #INTA
 - Řadič nastaví v ISR bit s nejvyšší prioritou, vynuluje odpovídající bit v IRR
- 4.CPU podruhé signalizuje #INTA
 - Řadič vyšle na sběrnici číslo vektoru přerušení
- 5. CPU zavolá obslužnou rutinu odpovídající vektoru
- 6.Ostatní přerušení blokována, dokud řadič neobdrží příkaz "Non-Specific EOI"

Přenos dat řízený programem (programmed IO)

Přenos iniciován při změně stavu zařízení

polling, interrupt-driven I/O

Přenos realizován cyklem v programu

- přečíst slovo z periferie/paměti do registru
- zapsat slovo do paměti/periferie z registru
- posun na následující slovo v paměti
- opakovat pro požadovaný počet slov

Rychlý přenos, ale zatěžuje procesor

procesor by měl dělat neco užitečnějšího

Přímý přístup do paměti (direct memory access)

Přenos iniciován při změně stavu zařízení

polling, interrupt-driven I/O

Přenos realizován řadičem nebo zařízením

program musí pouze nastavit parametry přenosu

Přenos zařízení/paměť

bus mastering, řadič DMA

Přenos zařízení/zařízení

bus mastering

Nezatěžuje procesor, vyšší latence

nevhodné pro malé objemy dat

Bus mastering

Sběrnici může řídit libovolný účastník

- nutno zažádat o přidělení sběrnice (arbitrace)
 - procesor v roli normálního účastníka

Přenos dat mezi libovolnými účastníky

- paměť/periferie, periferie/periferie
- stále je nutné přenos nastavit z programu

Efektivní přenos dat

- dávkový režim (burst mode)
 - 1 adresový cyklus na blok dat
- přenos nesouvislých bloků (scatter/gather)

Příklad: burst transakce na sběrnici PCI

Systém s řadičem DMA

Řadič DMA

Obvod pro řízení přenosů na sběrnici

- generuje adresy paměti a periferie, generuje řídící signály pro čtení/zápis
 - při programmed I/O toto dělá procesor
- generuje signály pro procesor, aby zajistil, že procesor nepřistupuje (nezapisuje) na sběrnici
- řadič sám se chová jako periferie
 - program nastavuje parametry přenosu, tj. odkud se bude přenášet, kam, a kolik (2 čítače, kanál DMA)
 - zařízení připojena na kanál DMA, při přenosu je cílové zařízení aktivováno řadičem, nikoliv vystavením adresy

Příklad řadiče DMA (i8237)

Přenos bloku dat pomocí DMA (i8237) (1)

Posloupnost událostí

- 1. program nastaví řadič a periferii a povolí přenos
- 2. aktivací signálu DREQx periferie požádá řadič DMA o přenos slova z/do paměti
- 3. řadič DMA zkontroluje nastavení kanálu vyhodnotí prioritu žádosti
- 4.aktivací signálu HOLD řadič DMA požádá CPU o přidělení sběrnice
- 5. pokud CPU nepotřebuje sběrnici, odpojí se od sběrnice a signalizuje HLDA
 - CPU testuje HOLD na začátku strojového cyklu

Přenos bloku dat pomocí DMA (i8237) (2)

Posloupnost událostí

- po přijetí HLDA řadič připraví sběrnici pro přenos
 - vystaví adresu v paměti a řídící signály pro čtení/zápis z/do paměti/periferie
- řadič DMA aktivuje signál DACKx, kterým vyzve periferii k vystavení/přečtení dat na/ze sběrnice
- v závislosti na režimu buď přenos končí, nebo pokračuje dalším slovem dokud je DREQx aktivní
- při posledním slově řadič aktivuje signál EOP
- při ukončení přenosu řadič uvolní signál HOLD
- procesor uvolní HLDA a připojí se ke sběrnici

Na co dát pozor u DMA/bus masteringu?

Přenos pomocí DMA není nutně rychlejší než PIO

umožňuje procesoru dělat něco užitečnějšího

Systém musí zajistit platnost dat v cache

- write-back cache může mít novější data než paměť
- v paměti mohou být novější data než v cache
- procesor sleduje provoz z/do paměti

Historické

- PC Bus
 - 8bit datová, 20bit adresová sběrnice, 8MHz
- ISA Industry Standard Architecture (AT Bus)
 - 16bit datová, 24bit adresová sběrnice, 8MHz
- MCA MicroChannel Architecture
 - 16/32/64bit data, 24/32bit adresy, 10MHz
- EISA Extended Industry Standard Architecture
 - 32bit data, 32bit adresy, 8MHz, programová konfigurace
- VL Bus VESA Local Bus
 - 32bit data, 32bit adresy, až 50MHz, na syst. sběrnici

PCI – Peripheral Component Interconnect

- připojení k systémové sběrnici přes můstek
- synchronní, multiplex dat a adres
- 32bit data, 32/64bit adresy
- 1992 v1.0: 33MHz, 1995 v2.1: 66MHz
- podpora dávkových přenosů (burst mode)

PCI-X

- rozšíření na 64bit data, podpora ECC
- v1.0: 66 a 133MHz, v2.0: 266 a 533 MHz
- zpětná kompatibilita HW i SW

AGP – Advanced Graphics Port

- dvoubodový spoj
- 4x frekvence PCI, tj. 133MHz
- pro přenos dat využita náběžná i sestupná hrana
- pipelining

PCI Express (PCIe)

- sériová, paketový protokol
- 256 MB/s (PCIe x1) 8 GB/s (PCIe x16 duplex)
 - pro srovnání PCI/32bit/33MHz 133MB/s
- QoS, power management, hot-plug...

I²C – Inter IC

- dvouvodičová (SDA, SCL) sériová sběrnice
 - v klidovém stavu udržováno kladné napětí (pull-up)
- přenos dat po bajtech, potvrzení příjmu
- rychlosti o- 100/400/1000/3400 kbit/s
- master/slave řízení
- možnost multi-master konfigurace
 - synchronizace hodin + arbitrace
- www.philipslogic.com/i2c

Formát transakce na sběrnici I²C

- adresa zařízení, směr přenosu, potvrzení výběru
- data, potvrzení, data, potvrzení, ...

Přenos dat po sběrnici I²C

- master generuje SCL a provádí adresaci dat
- slave potvrzuje přijetí, může pozdržet hodiny

Arbitrace na sběrnici I²C

preference dominantního vysílače

Sběrnice pro připojování (nejenom) disků

ATA/ATAPI – AT Attachment/w Packet Interface

- řadič připojený k systémové sběrnici
 - přenos 16-bit dat: PIO, Multiword DMA, UltraDMA
 - 2.1 16.7/4.2 16.7/16.7 100MB/s
 - UltraDMA: přenos doplněn o CRC
- 2 zařízení na kanál (kabel)
 - omezená délka kabelů (nevhodné vlastnosti)

SATA – Serial ATA

- sériový přenos, 150MB/s, 300MB/s
- dvoubodový spoj, podpora hot-plug, ...

Sběrnice pro připojování (nejenom) disků

SCSI – Small Computer System Interface

- paralelní rozhraní, ANSI standard od r. 1986
- 8/16 bit data, až 640MB/s (160MHz, DDR)
- 15 zařízení na 1 sběrnici, podpora hot-plug
 - více logických jednotek na 1 zařízení
- inteligentní zařízení
- podmožinu příkazů používá i ATAPI

SAS – Serial Attached SCSI

- sériový přenos, dvoubodový spoj
 - 1bit, 8b/10b kódování
- 150 MB/s (1.0), 300 MB/s (1.1), 600 MB/s (2.0)

Sběrnice pro připojování externích periferií

Motivace pro nový typ sběrnice

- uživatel nemusí zařízení nijak konfigurovat
- uživatel nemusí otevřít počítač
- jeden typ kabelu pro všechna zařízení
 - napájení z připojovacího kabelu
- možnost připojení velkého počtu zařízení
- podpora real-time zařízení (zvuk, video)
- instalace zařízení za chodu, bez nutnosti restartovat operační systém
- levná výroba, "fool-proof" design

Sběrnice pro připojování externích periferií

USB – Universal Serial Bus

- 1,5/12/480 Mb/s
- Control, Bulk, Interrupt, Isochronous přenosy
- hvězdicová struktura koncová zařízení / hub
- plug-and-play

IEEE 1394 – FireWire (i.Link)

- stromová/zřetězená topologie
- 100/200/400 Mb/s (IEEE 1394b: ~800Mb/s)
- paketový přenos