Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Chapter 4

Sets

Discrete Structures for Computing

TÀI LIÊU SƯU TẬP

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le Faculty of Computer Science and Engineering University of Technology - VNUHCM {htnguyen;trtanh}@hcmut.edu.vn

Contents

OR CHIKHOACNCD CO

Sets

2 Set Operation

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Course outcomes

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Sets

Set Operation

	Course learning outcomes
	140,.040
L.O.1	Understanding of logic and discrete structures
	L.O.1.1 – Describe definition of propositional and predicate logic
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs
L.O.2	Represent and model practical problems with discrete structures
	L.O.2.1 – Logically describe some problems arising in Computing
	L.O.2.2 – Use proving methods: direct, contrapositive, induction
	L.O.2.3 – Explain problem modeling using discrete structures
L.O.3	Understanding of basic probability and random variables
	L.O.3.1 – Define basic probability theory
	L.O.3.2 – Explain discrete random variables
	TAITIFICIPILTAP
L.O.4	Compute quantities of discrete structures and probabilities
	L.O.4.1 – Operate (compute/ optimize) on discrete structures
	L.O.4.2 – Compute probabilities of various events, conditional
	ones, Bayes theorem

Set Definition

- Set is a fundamental discrete structure on which all discrete structures are built
- Sets are used to group objects, which often have the same properties

Example

- Set of all the students who are currently taking Discrete Mathematics 1 course.
- Set of all the subjects that K2011 students have to take in the first semester.
- Set of natural numbers N

Definition

A set is an unordered collection of objects. The objects in a set are called the elements $(ph\hat{n} t t)$ of the set.

A set is said to contain (chứa) its elements.

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

ets

Set Operation

Notations

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Sets

Set Operation

Definition

- $a \in A$: a is an element of the set A
- $a \notin A$: a is not an element of the set A

Definition (Set Description)

- The set V of all vowels in English alphabet, $V = \{a, e, i, o, u\}$
- Set of all real numbers greater than 1????

$$\{ x \mid x \in \mathbb{R}, x > 1 \}$$

$$\{ x \mid x > 1 \}$$

$$\{ x : x > 1 \}$$

ÁI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Equal Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Definition

Two sets are equal iff they have the same elements.

• $(A = B) \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$

Example

- $\{1,3,5\} = \{3,5,1\}$
- $\{1,3,5\} = \{1,3,3,3,5,5,5,5,5\}$

BỞI HCMUT-CNCP

Venn Diagram

Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Set Operation

- John Venn in 1881
- Universal set (tập vũ trụ) is represented by a rectangle
- Circles and other geometrical figures are used to represent sets
- Points are used to represent

particular elements in set

Tap vu tru = U

BỞI HCMUT-CNCP

Special Sets

CHKHOACNCD

- Empty set $(t\hat{q}p \ r \tilde{o}ng)$ has no elements, denoted by \emptyset , or $\{\}$
- A set with one element is called a singleton set
- What is {∅}?
- Answer: singleton

BổI HCMUT-CNCP

BACHKHOACNCP.COM

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Sets

Set Operation

Subset

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Sets

Set Operation

Definition

The set A is called a subset $(t\hat{a}p\ con)$ of B iff every element of A is also an element of B, denoted by $A\subseteq B$.

If $A \neq B$, we write $A \subset B$ and say A is a proper subset ($t\hat{a}p$ con thực sự) of B.

$A = B \Rightarrow ONLY use A (- B)$

- $\forall x (x \in A \to x \in B)$
- For every set S, (i) $\emptyset \subseteq S$, (ii) $S \subseteq S$.

Cardinality

Definition

If S has exactly n distinct elements where n is non-negative integers, S is finite set ($t\hat{q}p$ $h\tilde{u}u$ han), and n is cardinality ($b\hat{a}n$ $s\hat{o}$) of S, denoted by |S|.

Example

- A is the set of odd positive integers less than 10. |A| = 5.
- S is the letters in Vietnamese alphabet, |S| = 29.
- Null set $|\emptyset| = 0$.

Definition

A set that is infinite if it is not finite.

BŐI HCMUT-CNCP

Example

Set of positive integers is infinite OACNCP.COM

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Power Set

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Definition

Given a set S, the power set $(t\hat{a}p\ l\tilde{u}y\ th\dot{u}a)$ of S is the set of all subsets of the set S, denoted by P(S).

Example

What is the power set of $\{0,1,2\}$? $P(\{0,1,2\}) = \{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$

Example

- What is the power set of the empty set? = { {} }
- What is the power set of the set $\{\emptyset\}$ = $\{\{\}, \{\{\}\}\}\}$

Power Set

Theorem

Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Set Operation

Prove using induction!

power Of A = power of B => A = B
TAILIEU SU'U TÂP BỞI HCMUT-CNCP

Ordered *n*-tuples

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Definition

The ordered n-tuple ($d\tilde{a}y$ sắp $th\acute{u}$ $t\acute{u}$) (a_1,a_2,\ldots,a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, \ldots , and a_n as its nth element.

Definition

Two ordered n-tuples $(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)$ iff $a_i = b_i$, for $i = 1, 2, \ldots, n$.

Example

2-tuples, or **ordered pairs** $(c \check{a} p)$, (a, b) and (c, d) are equal iff a = c and b = d

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

• René Descartes (1596–1650) A

Definition

Let A and B be sets. The Cartesian product ($t\acute{c}ch$ $D\grave{e}$ - $c\acute{a}c$) of A and B, denoted by $A\times B$, is the set of ordered pairs (a,b), where $a\in A$ and $b\in B$. Hence,

$$\mathsf{U} \times \{\} = \{\} \qquad A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

Example

Cartesian product of $A=\{1,2\}$ and $B=\{a,b,c\}$. Then

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

Show that $A \times B \neq B \times A$

Cartesian Product

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Definition

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$$

Example

$$A = \{0,1\}, B = \{1,2\}, C = \{0,1,2\}. \text{ What is } A \times B \times C?$$

$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), \\ (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), \\ (1,2,1), (1,2,2)\}$$

Union

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Sets

Set Operation

Definition

The union $(h \phi p)$ of A and B

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

 $A \cup B$ $A \cup B$

LIÊ Example: UTÂP

BOIHCM
$$\{1,2,3\} \cup \{2,4\} = \{1,2,3,4\}$$

 $\{1,2,3\} \cup \emptyset = \{1,2,3\}$

Intersection

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Definition

The intersection (giao) of A and B

LIÊ LE SAMPLE L'U TÂP

BOIHCM
$$\{1,2,3\} \cap \{2,4\} = \{2\}$$

 $\{1,2,3\} \cap \mathbb{N} = \{1,2,3\}$

Union/Intersection

Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

 $\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \ldots \cup A_{n} = \left\{ x \mid x \in A_{1} \lor x \in A_{2} \lor \ldots \lor x \in A_{n} \right\}^{s}$

 $\bigcap A_i = A_1 \cap A_2 \cap \dots \cap A_n = \{x \mid x \in A_1 \land x \in A_2 \land \dots \land x \in A_n\}$

TÀI LIÊU SƯU TÂP

BỞI HCMUT-CNCP

Difference

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Definition

The difference (hiệu) of A and B

$$A - B = \{x \mid x \in A \land x \notin B\}$$

A - B $A \cap B$

LIÊLEXAMPLE UTÂP

Complement

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

ỆU SƯU TẬP

I HCMUT-CNCP

Set Identities

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

KHOACNCD

$A \cup \emptyset = A$	Identity laws
$A \cap U = A$	Luật đồng nhất
$A \cup U = U$	Domination laws
$A \cap \emptyset$ = \emptyset	Luật nuốt
$A \cup A = A$	Idempotent laws
$A \cap A = A$	Luật lũy đẳng
$\overline{(\bar{A})}$ = A	Complementation law
TAIL	Luật bù S

BỞI HCMUT-CNCP

Set Identities

 $A \cap (B \cup C)$

 $\overline{A \cup B}$

 $\overline{A \cap B}$

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

		KHIO	WCD.
$A \cup B$	= (,		Commutative laws
$A \cap B$	=	$B \cap A$	Luật giao hoán
$A \cup (B \cup C)$	€)		Associative laws
$A \cap (B \cap C)$	=	$(A \cap B) \cap C$	Luật kết hợp
$A \cup (B \cap C)$	$= (A \cup$	$B) \cap (A \cup C)$	Distributive laws

 $(A \cap B) \cup (A \cap C)$

BỞI HCMUT-CNCP

 $\overline{A} \cap \overline{B}$

 $\overline{A} \cup \overline{B}$

Luật phân phối

De Morgan's laws

Luât De Morgan

OACNA

Method of Proofs of Set Equations

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Sets

Set Operation

To prove A = B, we could use

- Venn diagrams
- Prove that $A \subseteq B$ and $B \subseteq A$
- Use membership table
- Use set builder notation and logical equivalences

Example (1)

Example

Verify the distributive rule $P \cup (Q \cap R) = (P \cup Q) \cap (P \cup R)$

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Example (2)

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Example

Prove: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

(1) Show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$

Suppose that $x \in \overline{A \cap B}$

By the definition of complement, $x \notin A \cap B$

So, $x \notin A$ or $x \notin B$

Hence, $x\in \bar{A}$ or $x\in \bar{B}$

We conclude, $\underline{x} \in \overline{A} \cup \overline{B}$

Or, $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$

(2) Show that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

BOI HCMUT-CNCP

ÊU SƯU TẬP

Example (3)

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

			JK	HOY	4 (NC.	5
Prove: $\overline{A \cap B}$	$= \overline{A}$	-			11		.0
	A ζ	$B \mid$	$A \cap I$	$B \mid \overline{A \cap}$	\overline{B}	$ar{A} \cup ar{B}$	3
	1	1	1	0		0	
	1	0	0				
	0	1	0	1		1	
	0	0	0	1		1	
	Т	ÀΙ	L	ÊU	S	ƯU	TÂP
			Вở	THCN	/I U 1	T-CNC	P

BACHKHOACNCP.COM

0 A O ...

Example (4)

Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Sets

Set Operation

Prove: $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cap B} = \{x | x \notin A \cap B\}$ $=\{x|\neg(x\in A\cap B)\}$ $= \{x | \neg (x \in A \land x \in B)\}$ $= \{x | \neg (x \in A) \lor \neg (x \in B)\}$ $= \{x | x \notin A \lor x \notin B\}$ $= \{x | x \in \overline{A} \lor x \in \overline{B}\}$ $= \{x | x \in \overline{A} \cup \overline{B}\}$

BACHKHOACNCP.COM

BỞI HCMUT-CNCP