# 21C3 Crashkurs Mathematik am Beispiel Biometrie

Jule P Riede Chaosnahe Gruppe Wien jriede@ap.univie.ac.at

29. Dezember 2004

## KEINE PANIK

Spaß Verstehen Nutzen



$$sin\alpha := \frac{e^{i\alpha} - e^{-i\alpha}}{2i}$$
 $cos\alpha := \frac{e^{i\alpha} + e^{-i\alpha}}{2}$ 

#### **Motivation:**

#### Finde die Iris im Bild





#### **Motivation:**

#### Finde die Iris im Bild

(Daugman) Sucht folgendes:

$$max_{(r,x_0,y_0)} |G_{\sigma}(r) * \frac{\partial}{\partial r} \oint \frac{I(x,y)}{2\pi r} ds|$$

Auf Deutsch: Wir suchen das Maximum eines weichgezeichneten Gradienten über bestimmte (normierte) Kurvenintegrale

→ viele (neue?) Begriffe:

Maximum, 'Weichzeichner', (partielle) Ableitung, Normierung,

Integral

In

#### Was ist ein Maximum?



a) Intuitiver Zugang: Ein Buckel, 'Da ist es eben am größten'

#### b) Exakter Zugang:

Eine auf  $D\subseteq R$  erklärte Funktion f hat in  $a\in D$  ein (globales) Maximum, wenn  $f(x)\leq f(a)$  für alle  $x\in D$ 

Wieder ein neuer Begriff: Funktion

#### Was ist eine Funktion?

#### Programmierer:

'Man wirft was rein und kriegt was raus' zusammen mit einem Codefragment der Art

```
float quadrat(float x) {
  return x*x;
}
```

#### Mathematiker:

eine Funktion auf einer Menge X ist eine Vorschrift f, die jedem Element  $x \in X$  in eindeutiger Weise eine Zahl f(x) zuordnet.

# Funktionen (cont.)

#### in eindeutiger Weise

Auf gut Deutsch: wirft man ein und dasselbe x zweimal in die Funktion rein, kommt auch zweimal das selbe wieder raus

# Fragen zu Funktionen?

# (partielle) Ableitung

Relevant für Funktionen in mehreren Variablen. Wir haben erst mal nur eine - vor den partiellen kommen die handelsüblichen ;)

Dazu brauchen wir Differentialrechnung

## Differentialrechnung

Eine Funktion  $f:I\to C$  auf einem Intervall I heißt differenzierbar in  $x_0\in I$ , wenn der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Dieser heißt dann *Ableitung* oder *Differentialquotient* von f in  $x_0$ . Die Funktion heißt *differenzierbar im Intervall* I, wenn sie in jedem Punkt  $x_0 \in I$  differenzierbar ist.

Eine schöne Definition. Aber was bedeutet das? Was ist dieses *lim*?

#### Limiten

*lim* steht für Limes (Grenzwert)

Folgengrenzwerte: Die Eulersche Zahl e (Beispiel)

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n$$

n=1: 
$$\left(1+\frac{1}{n}\right)^n = \left(1+\frac{1}{1}\right) = 2$$

n=5: 
$$\left(1+\frac{1}{5}\right)^5 \simeq 2.49$$

n=1000: 
$$\left(1 + \frac{1}{1000}\right)^{1000} \simeq 2.72$$

#### Limiten



## Steigung einer Geraden



$$k = \frac{\Delta y}{\Delta x} = \frac{y_1 - y_0}{x_1 - x_0}$$

andere Version der gleichen Sache:

$$y = kx + d$$

## Sekantensteigung

Eine Sekante ist eine Gerade, die mit einer Kurve zwei Schnittpunkte  $P_0$  und  $P_1$  gemeinsam hat



Auch eine Sekante ist eine Gerade  $\mapsto$  Wie vorher, nur mit Funktionswerten statt y-Werten

$$k_s = \frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

## **Tangentensteigung**

Fehlt nur noch der Limes;)



 $x_1 \rightarrow x$  (umbenennen - völlig egal wie man's benennt). Gehen mit x immer näher an  $x_0$  (bilden den Limes) und bekommen

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

(entspricht der Definition!) Ableitung von f(x) wird meist als f'(x) bezeichnet

## Ein Beispiel

Unsere Funktion: 
$$f(x) = x^2$$
,  $x = x_0 + \Delta x$ 

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{(x_0 + \Delta x)^2 - (x_0)^2}{\Delta x} =$$

$$= \lim_{x \to x_0} \frac{x_0^2 + 2\Delta x x_0 + \Delta x^2 - x_0^2}{\Delta x} = \lim_{x \to x_0} \frac{2\Delta x x_0 + \Delta x^2}{\Delta x}$$

$$= \lim_{x \to x_0} 2x_0 + \Delta x = 2x_0 = 2x$$

# Regeln

| Funktion | Ableitung      | Funktion | Ableitung |
|----------|----------------|----------|-----------|
| $x^n$    | $(n-1)x^{n-1}$ | c        | 0         |
| ln x     | $\frac{1}{x}$  | $\sin x$ | $\cos x$  |
| $e^{ax}$ | $ae^{ax}$      | $\cos x$ | -sin $x$  |

### Mehr Regeln

$$[f(x)+g(x)]'=f'(x)+g'(x)$$
 
$$[c*f(x)]'=c*f'(x)$$
 
$$[f(x)*g(x)]'=f(x)'g(x)+f(x)g(x)' \text{ (Produktregel)}$$
 
$$[\frac{f(x)}{g(x)}]'=\frac{f(x)'g(x)-f(x)g(x)'}{g(x)^2} \text{ (Quotientenregel)}$$
 
$$[f(g(x))]'=f'(g(x))+g'(x) \text{ (Kettenregel)}$$

## Beispiele: Linearität

$$[f(x) + g(x)]' = [x^2 + \sin(x)]' = 2x + \cos(x)$$
$$[c * f(x)]' = [4x^3]' = 3 * 4 * x^2 = 12x^2$$

## Beispiele: Produktregel

$$[f(x) * g(x)]' = f(x)'g(x) + f(x)g(x)'$$
$$[f(x) * g(x)]' = [x^3 * sin(x)]' = 3x^2 * sin(x) + x^3 * cos(x)$$

## Beispiele: Quotientenregel

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f(x)'g(x) - f(x)g(x)'}{g(x)^2}$$
$$\left[\frac{f(x)}{g(x)}\right]' = \left[\frac{3x}{x+1}\right]' = \frac{3(x+1) - 3x}{(x+1)^2}$$

## Beispiele: Kettenregel

$$[f(g(x))]' = f'(g(x))g'(x)$$
$$[f(g(x))]' = [e^{2x}]' = 2e^{2x}$$

### partielle Ableitungen

Bei Funktionen in mehreren Variablen hat man mehrere

Möglichkeiten: z.B. 
$$f(r,\varphi) = rsin(\varphi)$$
 
$$\frac{d}{dx}f(x) = f'(x)$$

Partielle Ableitung:  $\frac{\partial}{\partial r}f(r,\varphi)$  oder  $\frac{\partial}{\partial \varphi}f(r,\varphi)$ 

# partielle Ableitungen (cont.)

 $rac{\partial}{\partial r}f(r,arphi)$  heißt: leite nur nach r ab und lasse den Rest in Ruhe

$$\frac{\partial}{\partial r}f(r,\varphi) = \frac{\partial}{\partial r}(rsin(\varphi)) = sin(\varphi)$$

#### Zwischenstand

$$max_{(r,x_0,y_0)} | G_{\sigma}(r) * \frac{\partial}{\partial r} \oint \frac{I(x,y)}{2\pi r} ds |$$

#### Weichzeichner?

$$max_{(r,x_0,y_0)} |G_{\sigma}(r)* \frac{\partial}{\partial r} \oint \frac{I(x,y)}{2\pi r} ds|$$

Gaussian Blur: eigentlich Faltung der aktuellen Funktion mit einer Gaussverteilung

Theorie: Faltung zweier Funktionen via Produkt der fouriertransformierten Funktionen, danach Rücktrafo des Ergebnisses

#### Sorry

Heute keine Fouriertrafos;)

$$f(t) = \int_{-\infty}^{\infty} F(\omega)e^{i\omega t}d\omega$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt$$

### Numerischer Zugang

Wir müssen eigentlich nur glätten - Durchschnitt pro je 5 Funktionswerten z.B. nehmen reicht aus

```
for (i=start;i<stop;i++) {
    newy=1/5 * (f(i-2)+f(i-1)+f(i)+f(i+1)+f(i+2))
}</pre>
```



### Integralrechnung

$$max_{(r,x_0,y_0)} \Big| G_{\sigma}(r) * \frac{\partial}{\partial r} \oint \frac{I(x,y)}{2\pi r} ds \Big|$$

Hier: Ringintegral (Integral über geschlossene Kurve)

Man braucht nicht unbedingt ein Ringintegral. My humble

opinion: Anschaulicher mit Flächenintegralen

Davor: erst mal handelsübliche Integrale;)

#### Fläche unter einer Kurve



Suchen die Fläche unter der Kurve zwischen x=0 und x=2 Idee: wir zerschneiden die Fläche in Rechtecke

#### Fläche unter einer Kurve



$$\sum_{n=1}^{N} (a_i) * (x_n - x_{n-1})$$

#### Fläche unter einer Kurve

Für 
$$N \to \infty$$
 (Limes!)

$$\int_{c}^{d} f(x)dx := \lim_{N \to \infty} \sum_{n=1}^{N} (a_{i}) * (x_{n} - x_{n-1})$$

Je kleiner die Rechtecke (also desto mehr), desto näher kommt unsere Summe dem wahren Wert - dem bestimmten Integral

## Was heißt integrieren?

Mit der Integration löst man das Umkehrproblem, aus der Ableitung f'(x) die Funktion f(x) zu bestimmen – also zu einer Funktion f'(x) die Stammfunktion f(x) zu finden

$$f(x) = \int f'(x)dx$$

## Regeln?

Differenzieren funktioniert immer - integrieren nicht! Es gibt nicht immer eine Stammfunktion

| Funktion         | Stammfunktion         | Funktion | Stammfunktion       |
|------------------|-----------------------|----------|---------------------|
| $x^n$            | $\frac{x^{n+1}}{n+1}$ | c        | c*x                 |
| $-\frac{1}{x^2}$ | $\frac{1}{x}$         | $e^{ax}$ | $\frac{1}{a}e^{ax}$ |
| $\frac{1}{x}$    | ln x                  | $\cos x$ | $\sin x$            |

## **Exkurs: Koordinatensysteme**

Kartesische Koordinaten: x, y

Polarkoordinaten: Dazu brauchen wir etwas Trigonometrie

#### Winkelfunktionen



 $sin(\alpha) = \frac{GK}{HYP}$ ,  $cos(\alpha) = \frac{AK}{HYP}$ ,  $tan(\alpha) = \frac{GK}{AK}$ 

# Winkelfunktionen (cont.)

Weg mit Grad, her mit Radiant: 360 deg =  $2\pi$  rad  $deg = \frac{\pi rad}{180}$ 

$$sin(0) = 0$$
,  $sin(\frac{\pi}{2}) = 1$ ,  $sin(\pi) = 0$ ,  $sin(\frac{3\pi}{2}) = -1$   
 $cos(0) = 1$ ,  $cos(\frac{\pi}{2}) = 0$ ,  $cos(\pi) = -1$ ,  $cos(\frac{3\pi}{2}) = 0$ 

# Exkurs: Koordinatensysteme (cont.)

Kartesische Koordinaten: x, y Polarkoordinaten:

$$x = r\cos(\varphi)$$

$$y = rsin(\varphi)$$

(Kugelkoordinaten, Zylinderkoordinaten, ...)

## Ein Tip

Nicht versteifen auf Integrale als Flächen unter einer Kurve! Besser: Integration und Differentation als Einheit sehen

### Flächenintegrale

Flächeninhalt in einer Variable hatten wir schon. x war das Funktionsargument

Aber wie berechnet man den Flächeninhalt eines Kreises? Dazu brauchen wir mehr als eine Variable und somit ein Flächenintegral

## **Exkurs: Baby-Fubini**

Satz von Fubini: Vertauschung der Reihenfolge der Integration

$$\int_{a}^{b} \left( \int_{c}^{d} f(x, y) dx \right) dy = \int_{c}^{d} \left( \int_{a}^{b} f(x, y) dy \right) dx$$

#### Blödes Beispiel: Rechteck



#### nützliches Beispiel: Kreis



Mit kartesischen oder (viel besser) Polarkoordinaten

$$A = \int_{0}^{r} \int_{0}^{2\pi} r dr d\varphi = \int_{0}^{r} 2\pi r dr = r^{2}\pi$$

## Beispiel: Kreisring

$$A = \int_{r_i}^{r_a} \int_0^{2\pi} r dr d\varphi = 2\pi \int_{r_i}^{r_a} r dr = \pi (r_a^2 - r_i^2)$$

# **Exkurs: Normierung**



f(x) normiert auf 1 heißt

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

#### **Endlich!**

Wir haben soweit alle Mathe die wir brauchen, um das Problem (endlich) anzupacken :)

Nochmal zur Erinnerung:

$$max_{(r,x_0,y_0)} |G_{\sigma}(r) * \frac{\partial}{\partial r} \oint \frac{I(x,y)}{2\pi r} ds|$$

Das Ringintegral schenken wir uns - wir nehmen einfach einen 'unendlich dünnen' Kreisring

### Suchs, Struppi



Für alle P=(x,y): Bilde den Durchschnitt der Helligkeitswerte (Graustufen) entlang Kreisringen mit Breite 1 Pixel von r=0 bis  $r=r_{max}$ 

### Suchs, Struppi



Für alle P=(x,y): Bilde den Durchschnitt der Helligkeitswerte (Graustufen) entlang Kreisringen mit Breite 1 Pixel von r=0 bis  $r=r_{max}$ 

#### So siehts aus

Auftragen der Durchschnittswerte der Helligkeit gegen  $\it r$ 



## **Implementierung**

C und libSDL - fpc2.c

#### Sourcen

www.anorganic.org/21C3/

#### Literatur

Meyberg, Vachenauer: Höhere Mathematik 1

Bronstein: Taschenbuch der Mathematik