

- 1. A protein derived from an enterically transmitted non-A/non-B viral hepatitis agent whose genome contains a region which is homologous to a coding region of the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in E. coli strain BB4 and having ATCC deposit no. 67717.
- 10 2. The protein of claim 1, which is encoded by a complete coding region within said 1.33 kb EcoRI insert.
- 3. A recombinant protein derived from an enterically transmitted nonA/nonB viral hepatitis agent whose genome contains a region which is homologous to a coding region of a DNA molecule having a first sequence (SEQ ID NO.1):

AGACCTGTCC CTGTTGCAGC TGTTCTAGCA CSCTGCCCCG AGCTCGAACA GGGCCTTCTC 60 20 TACCTGCCCC AGGAGCTCAC CACCTGTGAT AGTGTCGTAA CATTTGAATT AACAGACATT 120 GTGCACTGCC GCATGGCCGC CCCGAGCCAG CBCAAGGCCG TGCTGTCCAC ACTCGTGGGC 180 CGCTACGGCG GTCGCACAAA GCTCTACAAT GCTTCCGACT CTGATGTTCG CGACTCTCTC 25 240 GCCCGTTTTA TCCC GCCCAT TGGCCCCGTA CAGGTTACAA CTTGTGAATT GTACGAGCTA 300 GTGGAGGCCA TGGTCGAGAA GGGCCAGGAT GGCTCCGCCG TCCTTGAGCT TGATCTTTGC 360 30 AACCGTGACG TGTCCAGGAT CACCTTCTTC CAGAAAGATT GTAACAAGTT CACCACAGGT 420 GAGACCATTG CCCATGGTAA AGTGGGCCAG GGCATCTCGG CCTGGAGCAA GACCTTCTGC 480 35 GCCCTCTTTG GCCCTTGGTT CCGCGCTATT GAGAAGGCTA TTCTGGCCCT GCTCCCTCAG 540 GGTGTGTTTT ACGGTGATGC CTTTGATGAC ACCGTCTTCT CGGCGGCTGT GGCCGCAGCA 600 AAGGCATCCA TGGTGTTTGA GAATGACTTT TCTGAGTTTG ACTCCACCCA GAATAACTTT 660 40 TCTCTGGGTC TAGAGTGTGC TATTATGGAG GAGTGTGGGA TGCCGCAGTG GCTCATCCGC 720 CTGTATCACC TTATAAGGTC TGCGTGGATC TTGCAGGCCC CGAAGGAGTC TCTGCGAGGG 780 45 TTTTGGAAGA AACACTCCGG TGAGCCCGGC ACTCTTCTAT GGAATACTGT CTGGAATATG 840 GCCGTTATTA CCCACTGTTA TGACTTCCGC GATTTTCAGG TGGCTGCCTT TAAAGGTGAT 900

	GATTOSATAB TBNTTTBCAB TBABTATOBT CABABTOCAB BAGCTGCTGT CCTGATCGCC	960
,	GGCTGTGGGCT TGAAGTTGAA GGTAGATTTO CGCCCGATCG GTTTGTATGC AGGTGTTGTG	1020
5	GTGGCCCCCG GCCTTGGCGC GCTCCCTGAT GTTGTGCGCT TCGCCGGCCG GCTTACCGAG	1080
	AAGAATTSSS 3000TGSCOO TGAGCGGGGG GAGCAGCTCC GCCTCGCTGT TAGTGATTTC	1140
10	CTCCGCAAGO TCACGAATGT AGCTCAGATG TGTGTGGGATG TTGTTTCCCG TGTTTATGGG	1200
	GTTTCCCCTG GACTOSTTCA TAACCTGATT GGCATGCTAC AGGCTGTTGC TGATGGCAAG	1260
1.5	GCACATITCA STGAGTCAGT AAAAGCAGTG STGGA	1295
15	a second sequence (SEQ ID NO.5):	
	TOGAGOACTS STITTACTGA CTCASTSAAA TSTSCCTTGC CATCAGCAAC AGCCTGTAGC	60
20	ATGCCAATCA GGTTATGAAC GAGTCCAGGG GAAACCCCAT AAACACGGGA AACAACATCC	120
	ACACACATOT GAGOTACATT OGTGAGOTTG OGGAGGAAAT CACTAACAGO GAGGOGGAGO	180
	TGCTCCGCCC GCTCAGGGCC AGGGCCCCAA TTCTTCTCGG TAAGCCGGCC GGCGAAGCGC	240
25	ACAACATCAG GGAGCGCGCC AAGGCCGGGG GCCACCACAA CACCTGCATA CAAACCGATC	300
	GGGCGGAAAT CTACCTTCAA CTTCAAGCCA CAGCCGGCGA TCAGGACAGC AGCTCCTGGA	360
30	CTCTGACGAT ACTCACTGCA AAGCACTATC GAATCATCAC,CTTTAAAGGC AGCCACCTGA	420
30	AAATCGCGGA AGTCATAACA GTGGGTAATA ACGGCCATAT TCCAGACAGT ATTCCATAGA	480
	AGAGTGCCGG GCTCACCGGA GTGTTTCTTC CAAAACCCTC GCAGAGACTC CTTCGGGGCC	540
35	TGCAAGATCC ACGCAGACCT TATAAGGTGA TACAGGCGGA TGAGCCACTG CGGCATCCCA	600
	CACTOCTOCA TAATAGCACA TOCTAGACOO AGAGAAAAGT TATTOTGGGT GGAGTCAAAC	660
40	TCAGAAAAGT CATTCTCAAA CACCATGGAT GCCTTTGCTG CGGCCACAGC CGCCGAGAAG	720
40	ACGGTGTCAT CAAAGGCATC ACGGTAAAAC ACACCCTGAG GGAGCAGGGC CAGAATAGCC	780
	TTCTCAATAG CGCGGAACCA AGGGCCAAAG AGGGCGCAGA AGGTCTTGCT CCAGGCCGAG	840
45	ATGCCCTGGC CCACTTTACC ATGG3C44TG GTCTCACCTG TGGTGAACTT GTTACAATCT	900
	TTCTGGAAGA AGGTGATCCT GGACACGTCA CGGTTGCAAA GATCAAGCTC AAGGACGGCG	960
50	GAGCCATCCT GGCCCTTCTC GACCATGGCC TCCACTAGCT CGTACAATTC ACAAGTTGTA	1020
50	ACCTGTACGG GGCCAATGGC CGGGATAAAA CGGGCGAGAG AGTCGCGAAC ATCAGAGTGG	1080
	GAAGCATTGT AGAGCTTTGT GCGACCGCCG TAGCGGCCCA CGAGTGTGGA CAGCACGGCC	1140
55	TTGCGCTGGC TCGGGGCGGC CATGCGGCAG TGCACAATGT CTGTTAATTC AAATGTTACG	1200

	ACACTATCAC AGGTG3TGAG CTCCTG3GGC AGGTAGAGAA GGCCCTGTTC GAGCTCGGGG	1260
	CAGGGTGGTA GAACAGCTGC HACAGGGACA GGTCT	1295
5	a third sequence (SEQ ID NO.6):	
	AGGCAGACCA CATATGTGGT CGATGCC ATGGAGGCCC ATCAGTTTAT TAAGGCTCCT	57
	GGCATCACTA OTGOTATTBA GCAGGCTGOT OTAGCAGCGG CCAACTCTGC CCTGGCGAAT	117
10	GCTGTGGTAG ITAGGCCTTT TOTOTOTOAC CAGCAGATTG AGATCCTCAT TAACCTAATG	177
	CAACCTCGCC AGCTTGTTTT COGCCCCGAG GTTTTCTGGA ATCATCCCAT CCAGCGTGTC	237
15	ATCCATAACG AGCTGGAGCT TTACTGCCGC GCCCGCTCCG GCCGCTGTCT TGAAATTGGC	297
	GCCCATCCCC GCTCAATAAA TGATAATCCT AATGTGGTCC ACCGCTGCTT CCTCCGCCCT	357
	GTTGGGCGTG ATGTTCAGCS CTGGTATACT GCTCCCACTC GCGGGCCGGC TGCTAATTGC	417
20	CGGCGTTCCG CGCTGCGCGG GCTTCCCGCT GCTGACCGCA CTTACTGCCT CGACGGGTTT	477
	TOTGGCTGTA ACTITICO CO CGAGACTGGC ATCGCCCTTC ACTCCCTTCA TGATATGTCA	537
25	CCATCTGATG TCGCCGAGG CATGTTCCGC CATGGTATGA CGCGGCTCTA TGCCGCCCTC	597
23	CATCTTCCGC CTGAGGTCCT CCTGCCCCCT GGCACATATC GCACCGCATC GTATTTGCTA	657
	ATTCATGACG GTAGGCGCST TO GGTGACG TATGAGGGTG ATACTAGTGC TGGTTACAAC	717
30	CACGATGTET CCAACTTGEG CTECTEGATT AGAACCACCA AGGTTACEGG AGACCATECE	777
	CTCGTTATCG AGCEGGTTAG GGCCATTGGC TGCCACTTTG TTCTCTTGCT CACGGCAGCC	837
35	CCGGAGCCAT CACCTATGCC TTATGTTCCT TACCCCCGGT CTACCGAGGT CTATGTCCGA	897
33	TEGATETTEG GECEGGGTGG CACCECTTE TTATTECEAA CETEATGETE CACTAAGTEG	957
	ACCITCCATG CIGICCCIGC CCATATITG GACCGICTTA IGCTGITCGG GGCCACCTTG	1017
40	GATGACCAAG CCTTTTGCTG CTCCCGTTTA ATGACCTACC TTCGCGGCAT TAGCTACAAG	1077
	GTCACTGTTG GTACCCTTGT GGCTAATGAA GGCTGGAATG CCTCTGAGGA CGCCCTCACA	1137
45	GCTGTTATCA CTGCCGCCTA CCTTACCATT TGCCACCAGC GGTATCTCCG CACCCAGGCT	1197
43	ATATECAAGG GGATGCGTCG TCTGGAACGG GAGCATGCCC AGAAGTTTAT AACACGCCTC	1257
	TACAGCTGGC TCTTCGAGAA GTCCGGCCGT GATTACATCC CTGGCCGTCA GTTGGAGTTC	1317
50	TACGCCCAGT GCAGGCGCTS SCTCTCCGCC GGTTTTCATC TTGATCCACG GGTGTTGGTT	1377
	TTTGACGAGT CGGCCCCCTG CCATTGTAGG ACCGCGATCC GTAAGGCGCT CTCAAAGTTT	1437
55	TGCTGCTTCA TGAAGTGGCT TGGTGAGGAG TGCACCTGCT TCCTTCAGCC TGCAGAAGGC	1497
<i>.,</i>	GCCGTCGGCG ACCAGGGTCA TGATAATSAA GCCTATGAGG GGTCCGATGT TGACCCTGCT	1557

	GAGTCCGCCA TTAGTGACAT ATCTGGGTCC TATGTCGTCC CTGGCACTGC CCTCCAACCG	1617
5	CTCTACCAGG CCCTCGATCT CCCCGCTGAG ATTGTGGCTC GCGCGGGCCG GCTGACCGCC	1677
	ACAGTAAAGG TCTCCCAGGT CGATGGGCGG ATCGATTGCG AGACCCTTCT TGGTAACAAA	173/
	ACCITIOGGA CONTESTIOGI TGACGGGGGG GIGITAGAGA CCAAIGGCCC AGAGCGCCAC	1797
10	AATCTCTCCT TCGATGCCAG TCAGAGCACT ATGGCCGCTG GCCCTTTCAG TCTCACCTAT	1857
	GCCGCCTCTG CAGCTGGGCT GGAGGTGCGC TATGTTGCTG CCGGGCTTGA CCATCGGGCG	1917
15	GITTITGCCC CCGGTGTTTC ACCCCGGTCA GCCCCCGGCG AGGTTACCGC CITCTGCTCT	1977
•3	GCCCTATACA GGTTTAACCG TGAGGCCCAG CGCCATTCGC TGATCGGTAA CTTATGGTTC	2037
	CATCCTGAGG GACTCATTGG CCTCFTCGCC CCGTTTTCGC CCGGGCATGT TTGGGAGTCG	2097
20	GCTAATCCAT TCTGTGGCGA GAGCACACTT TACACCCGTA CTTGGTCGGA GGTTGATGCC	2157
	GTCTCTAGTC CAGCCCGGCC TGACTTAGGT TITATGTCTG AGCCTTCTAT ACCTAGTAGG	2217
25	GCCGCCACGC CTACCCTGGC GGCCCCTCTA CCCCCCCCTG CACCGGACCC TTCCCCCCCT	2277
	CCCTCTGCCC CGGCGCTTGC TGAGCCGGCT TCTGGCGCTA CCGCCGGGGC CCCGGCCATA	2337
	ACTCACCAGA CGGCCCGGCA CCGCCGCCAG CTCTTCACCT ACCCGGATGG CTCTAAGGTA	2397
30	TTCGCCGGCT CGCTGTTCGA GTCGACATGC ACGTGGCTCG TTAACGCGTC TAATGTTGAC	2457
	CACCGCCCTG GCGGCGGGCT TTGCCATGCA TTTTACCAAA GGTACCCCGC CTCCTTTGAT	2517
35	GCTGCCTCTT TTGTGATGCO CGACGGCGCG GCGCGTACA CACTAACCCC CCGGCCAATA	2577
	ATTCACGCTG TCGCCCCTGA TTATAGGTTG GAACATAACC CAAAGAGGCT TGAGGCTGCT	2637
	TATCGGGAAA CTTGCTCCCG CCTCGGCACC GCTCCATACC CGCTCCTCGG GACCGGCATA	2697
40	TACCAGGTGC CGATCGGCCC CAGTTTTGAC GCCTGGGAGC GGAACCACCG CCCCGGGGAT	2757
	GAGTTGTACC TTCCTGAGCT TGCTGCCAGA TGGTTTGAGG CCAATAGGCC GACCCGCCCG	2817
45	ACTOTOACTA TAACTGAGGA TGTTGCACGG ACAGCGAATO TGGCCATCGA GCTTGACTCA	2877
	GCCACAGATG TCGGCCGGGC CTGTGCCGGC TGTCGGGTCA CCCCCGGCGT TGTTCAGTAC	2937
50	CAGTITACTG CAGGTGTGCC TGGATCCGGC AAGTCCCGCT CTATCACCCA AGCCGATGTG	2997
	GACGITGICG IGGICCCGAC GCGIGAGIIG CGIAAIGCCI GGCGCCGICG CGGCIIIGCI	3057
	GCTTTTACCC CGCATACTGC CGCCAGAGTC ACCCAGGGGC GCCGGGTTGT CATTGATGAG	3117
55	GCTCCATCCC TCCCCCCTCA CCTGCTGCTG CTCCACATGC AGCGGGCCGC CACCGTCCAC	3177
	CTTCTTGGCG ACCCGAACCA GATCCCAGGC ATCGACTTTG AGCACGCTGG GCTCGTCCCC	3237

	GCCATCAGGC COGACTTAGG COCCACCTCC TGGTGGCATG TTACCCATCG CTGGCCTGCG	3297
5	GATGTATGCG AGCTCATCCG TGGTGCATAC CCCATGATCC AGACCACTAG CCGGGTTCTC	3357
ý	CGTTCGTTGT TOTGGGGTGA GOOTGCOGTO GGGCAGAAAC TAGTGTTCAC CCAGGCGGCC	3417
	AAGCCCGCCA ACCCCGG ϕ TC AGTGACGGTE CACGAGGCGC AGGGCGCTAC CTACACGGAG	3477
10	ACCACTATTA TTGCCACAG AGATGCCCGG GGCCTTATTC AGTCGTCTCG GGCTCATGCC	3537
	ATTGTTGCTC TGACGCGCCA CACTGAGAAG TGCGTCATCA TTGACGCACC AGGCCTGCTT	3597
15	CGCGAGGTGG GCATCTCCGA TGCAATCGTT AATAACTTTT TEETCGCTGG TGGCGAAATT	3657
13	GGTCACCAGE GECEATEAGT TATTECEEST GGCAACCETG ACGCCAATGT TGACACCETG	3717
	GCTGCCTTCC CGCCSTCTTG COMGATTAGT GCCTTCCATC AGTTGGCTGA GGAGCTTGGC	3777
20	CACAGACCIG ICCCIGITGC AGCIGITCIA CCACCCIGCC CCGAGCICGA ACAGGGCCIT	3837
	CTCTACCTGC CCCAGGAGCT CACCACCTGT GATAGTGTCG TAACATTTGA ATTAACAGAC	3897
25	ATTGTGCACT GCCGCATGGC CGCCCCGAGG CAGCGCAAGG CCGTGCTGTC CACACTCGTG	3957
23	GGCCGCTACG GCGGTCGCAC AAAGCTCTAC ATGCTTCCC ACTCTGATGT TCGCGACTCT	4017
	CTCGCCCGTT TTATCCCGGC CATTGGCCCC GTACAGGTTA CAACTTGTGA ATTGTACGAG	4077
30	CTAGTGGAGG CCATGGTCGA GAAGGGCCAG CATGCTCCG CCGTCCTTGA GCTTGATCTT	4137
	TGCAACCGTG ACGTGTCCAG GATEACCTTC TTCCAGAAAG ATTGTAACAA GTTCACCACA	4197
35	GGTGAGACCA TTGCCCATGG TAAAGTGGGC CAGGGCATCT CGGCCTGGAG CAAGACCTTC	4257
33	TGCGCCCTCT TTGGCCCTTG GTTCCGCGCT ATTGAGAAGG CTATTCTGGC CCTGCTCCCT	4317
	CAGGGTGTGT TITACGGTGA TGCCTTTGAT GACACCGTCT TCTCGGCGGC TGTGGCCGCA	4377
40	GCAAAGGCAT CCATGGTGTT TGAGAATGAC TTTTCTGAG TTGACTCCAC CCAGAATAAC	4437
	TTTTCTCTGG GTCTAGAGTG TGCTATTATG G4GGAGTGTG GGATGCCGCA GTGGCTCATC	4497
45	CGCCTGTATC ACCITATAAG GTCTGCGTGG ATCTTGCAGG CCCGAAGGA GTCTCTGCGA	4557
	GGGTTTTGGA AGAAACACTO CGGTGAGCCC GGCACTCTTC TATGGAATAC TGTCTGGAAT	4617
	ATGGCCGTTA TTACCCACTS TTATGACTTC OGCGATTITC AGGTGGCTGC CTTTAAAGGT	4677
50	GATGATTEGA TAGTGETTTG CAGTGAGTAT EGTEAGAGTE CAGGAGETGE TGTEETGATE	4737
	GCCGGCTGTG GCTTGAAGTT GAAGGTAGAT TTCCGCCCGA TCGGTTTGTA TGCAGGTGTT	4797
55	GTGGTGGCCC CCGGCCTTGG CGCGCTCCCT GATGTTGTGC GCTTCGCCGG CCGGCTTACC	4857
	GAGAAGAATT GGGGCCCTGG CCCTGAGCGG GCGGAGCAGC TCCGCCTCGC TGTTAGTGAT	4917

	ACCAGTOCAC TRATGGOTOR TOGACTGGOO CAGITTATGT FROTGACTOR GTGACCTTGG	6647
5	TTAATGTTGC GACCGGCGCG CAGGCCGTTG CCCGGTCGCT CGATTGGACC AAGGTCACAC	6707
J	TTGACGGTCG CCCCCTCTCC ACCATCCAGC AGTACTCGAA GACCTTCTTT GTCCTGCCGC	6767
	TOOGOGGTAA 30 TOTOTTTO TOOGGAGSCAS SCACAACTAA AGCCGGGTAC CCTTATAATT	6827
10	ATAACACCAC TSATAGOGAC CAACTGOTTS TOGAGAATGO OGCOGGGCAC CGGGTCGCTA	6887
	TTTCCACTTA SACCACTAGO STAGATAGITA STOCOGTOTO SATTTCTGCG GTTGCCGTTT	6947
15	TAGCCCCCA CTOTGO CTA GCATTSCTTS AGGATACOTT GGACTACCCT GCCCGCGCCC	7007
13	ATACTITIGA TGATITET C CCAGAGTGCC GCCCCTTGG CCTTCAGGGC TGCGCTTTCC	7067
	AGTCTACTGT CGCTGAGCTT CAGCGCCTTA AGATGAAGGT GGGTAAAACT CGGGAGTTGT	7127
20	AG TITATTIGET TGTGCCCCCC TTCTTTCTGT TGCTTATTTC TCATTTCTGC	7179
	GTTCCGCGCT CCCTGA	7195
	a fourth sequence (SEQ ID NO.10):	
25	GCCATGGAGG CCCACCAGTT CATTA GGCT CCTGGCATCA CTACTGCTAT TGAGCAAGCA	60
	GCTCTAGCAG CGGCCAAGTC CGCCCTTGCG AATGCTGTGG T8GTCCGGCC TTTCCTTTCC	120
30	CATCAGCAGG TIGAGATOOT TATAAATOTO ATGEAACCTC GGCAGCTGGT GTTTCGTCCT	180
33	GAGGTTTTTT GGAATCACGETGATTCAACGT GTTATACATA ATGAGCTTGA GCAGTATTGC	240
	CGTGCTCGCT CGGGTCGCTG CCTTGAGATT GAGCCCACC CACGCTCCAT, TAATGATAAT	300
35	CCTAATGTCC TCCATCGCTG , OTTTCTCCAC COCGTCGGCC GGGATGTTCA GCGCTGGTAC	360
	ACAGCCCCGA CTAGGGGACC TGCGGCGAAC TGTCGCCGCT CGGCACTTCG TGGTCTGCCA	420
40	CCAGCCGACC GCACTTACTG TTTTGATGGC TTTGCCGGCT GCCGTTTTGC CGCCGAGACT	480
10	GGTGTGGCTC TCTATTCTCT CCATGACTTG CAGCCGGCTG ATGTTGCCGA GGCGATGGCT	540
	CGCCACGGCA TGACCCGCCT TTATGCAGCT TTCCACTTGC CTCCAGAGGT GCTCCTGCCT	600
45	CCTGGCACCT ACCGGACATO ATCCTACTTS STGATCCACG ATGGTAAGCG CGCGGTTGTC	660
	ACTIATGAGG GIGACACIAG CGCCGGITAC AATCAIGAI	720
50	ATCAGGACAA CTAAGGTTGT GGGTGAACAC CCTTTGGTGA TCGAGCGGGT GCGGGGTATT	780
	GGCTGTCACT TIGTGTTGTT GATCACTGCG GCCCCTGAGC CTCCCCGAT GCCCTACGTT	840
	CCTTACCOGO GTTC340GGA 3GTCTAT3TO 3GGTCTATOT TTAGGCCCGG CGGGTCCCCG	900
55	TOGOTGTTOO CGACCGCTTG TGCTGTTHAG TCCACTTTTC ACGCCGTCCC CACGCACATC	960

10

15

20

25

30

35

40

45

50

55

TGGGACCGTC TCATGCTSTT TGGGGCC4CC CTCGACGACC AGGCCTTTTG CTGCTCCAGG 1020 CTTATGACGT ACCTTCGTGG CATTAGCTAT AAGGTAACTG TGGGTGCCCT GGTCGCTAAT 1080 GAAGGCTGGA ATGCCACCGA GGATGCGCTC ACTGCAGTTA TTACGGCGGC TTACCTCACA 1140 ATATGTCATO AGGSTTATTT GGGSAGGGAG GGGATTTGTA AGGGCATGCG CCGGCTTGAG 1200 CTTGAACATG STCAGAAATT TATTTCAGGC STCTACAGGT GGCTATTTGA GAAGTCAGGT 1260 CGTGATTACA TOCCAGGOOG CCAGOTGCAG TTCTACGCTC AGTGCCGCCG CTGGTTATCT 1320 GCCGGGTTCC ATCTCGACCC CCGCACCTTA GTTTTTGATG AGTCAGTGCC TTGTAGCTGC 1380 CGAACCACCA TEEGGEGGAT EGETSGAAAA TITTGETGIT TIATGAAGTG GCTEGGTEAG 1440 GAGTGTTCTT GTTTCCTCCA GCCCGCCGAG GGGCTGGCGG GCGACCAAGG TCATGACAAT 1500 GAGGCCTATG AAGGCTCTGA TGTTGATACT GCTGAGCCTG CCACCCTAGA CATTACAGGC 1560 TCATACATCG TGGATGGTCG GTCTCTGCAA ACTGTCTATC AAGCTCTCGA CCTGCCAGCT 1620 GACCTGGTAG CTCGCGCAGC CCGACTGTCT GCTACAGTTA CTGTTACTGA AACCTCTGGC 1680 CGTCTGGATT GCCAAACAAT GATCGGCAAT AAGACTTTTC TCACTACCTT TGTTGATGGG 1740 GCACGCCTTG AGGTTAACEG GCCTGAGCAG CTTAACCTCT CTTTTGACAG CEAGCAGTGT 1800 AGTATGGCAG CCGGCCCGTT TTGCCTCACC TATGCTGCCG JABATGGCGG GCTGGAAGTT 1860 CATTITICCA CCGCTGGCCT CGAGAGCCGT GFTGTTTTCC CCCCTGGTAA TGCCCCGACT 1920 GCCCCGCCGA GTGAGGTCAC CCCTTCTGC TCAGCTCTTT ATAGGCACAA CCGGCAGAGC 1980 CAGCGCCAGT CGGTTATTGG TAGTTTGTGG CTGCACCCTG AAGGTTTGCT CGGCCTGTTC 2040 CCGCCCTTTT CACCCGGGCA TGAGTGGCGG TCTGCTAACC CATTTTGCGG CGAGAGCACG 2100 CTCTACACCC GCACTTGGTC CACAATTACA GACACACCCT TAACTGTCGG GCTAATTTCC 2160 GGTCATTTGG ATGCTGCTCC CCACTCGGGG GGGCCACCTG CTACTGCCAC AGGCCCTGCT 2220 GTAGGCTCGT CTGACTCTCC AGACCCTGAC CCGCTACCTG ATGTTACAGA TGGCTCACGC 2280 CCCTCTGGGG CCCGTCCGGC TGGCCCCAAC CCGAATGGCG TTCCGCAGCG CCGCTTACTA 2340 CACACCTACC CTGACGGCGC TAAGATCTAT GTCGGCTCCA TTTTCGAGTC TGAGTGCACC 2400 TGGCTTGTCA ACGCATCTAA CGCCGGCCAC CGCCCTGGTG GCGGGCTTTG TCATGCTTTT 2460 TITCAGCGTT ACCCTGATTC GTTTGACGCC ACCAAGTTTG TGATGCGTGA TGGTCTTGCC 2520 GCGTATACCI TTACACCCCG GCCGATCATT CATGCGGTGG CCCCGGACTA TCGATTGGAA 2580 CATAACCCCA AGAGGCTCGA GGCTGCCTAC CGCGAGACTT GCGCCCGCCG AGGCACTGCT 2640

	GCCTATCCAC TCTTAGGGGC TGGCATTTAG CAGGTGCCTG TTAGTTTGAG TTTTGATGCC	2700
	TGGGAGCGGA ACCACCGCCC STTTGACGAG CTTTACCTAA CAGAGCTGGC GGCTCGGTGG	2760
5	TTTGAATCCA ACCGCCCCGG TCAGCCCAGG TTGAACATAA CTGAGGATAC CGCCCGTGCG	2820
	GCCAACCTGG GCGTGGAGCT TGACTGGGGG AGTGAAGTAG GCGGGGCATG TGCCGGGTGT	2880
10	AAAGTCGAGC CTGGCGTTGT GCGGTATCAG TTTACAGCCG GTGTCCCCGG CTCTGGCAAG	2940
10	TCAAAGTCCG TGCAACAGGC GGATGTGGAT GTTGTTGTTG TGCCCACTCG CGAGCTTCGG	3000
	AACGCTTGGC GGCGCCGGGG CTTTGCGGCA TTCACTCCGC ACACTGCGGC CCGTGTCACT	3060
15	AGCGGCCGTA GGGTTGTCAT TGATGAGGCC CCTTCGCTCC CCCCACACTT GCTGCTTTTA	3120
	CATATGCAGO GIGOIGCATO IGIGOACOIO CIIGGGGACO CGAATCAGAI CCCCGCCAIA	3180
20	GATTTTGAGC ACACCGGTCT GATTCCAGCA ATACGGCCGG AGTTGGTCCC GACTTCATGG	3240
	TGGCATGTCA CCCACCGTTG CCCTGCAGAT GTCTGTGAGT TAGTCCGTGG TGCTTACCCT	3300
	AAAATCCAGA CTACAAGTAA GGTGCTCCGT TCCCTTTTCT GGGGAGAGCC AGCTGTCGGC	3360
25	CAGAAGCTAG TGTTCACACA GGCTGCTAAG GCCGCGCACC CCGGATCTAT AACGGTCCAT	3420
	GAGGCCCAGG GTGCCACTTT TACCACTACA ACTATAATTG CAACTGCAGA TGCCCGTGGC	3480
30	CTCATACAGT CCTCCCGGGC TCACGCTATA GTTGETCTCA CTAGGCATAC TGAAAAATGT	3540
	GTTATACTTG ACTOTOCOGG COTGTEREST GAGGTGGGTA TOTOAGATGO CATTGTTAAT	3600
	AATTTCTTCC TTTCGGGTGG CGAGGTTGGT CACCAGAGAC CATCGGTCAT TCCGCGAGGC	3660
35	AACCCTGACC GCAATGTTGA CGTGCTTGCG GCGTTTCCAC CTTCATGCCA AATAAGCGCC	3720
	TTCCATCAGC TTGCTGAGGA GCTGGGCCAC CGGCCGGCGC CGGTGGCGGC TGTGCTACCT	3780
40	CCCTGCCCTG AGCTTGAGCA GGGCCTTCTC TATCTGCCAC AGGAGCTAGC CTCCTGTGAC	3840
	AGTGTTGTGA CATTTGAGCT AACTGACATT GTGCACTGCC GCATGGCGGC CCCTAGCCAA	3900
	AGGAAAGCTG TTTTGTCCAC GCTGGTAGGC CGGTATGGCA GACGCACAAG GCTTTATGAT	3960
45	GCGGGTCACA CCGATGTCCG CGCCTCCCTT GCGCGCTTTA TTCCCACTCT CGGGCGGGTT	4020
	ACTGCCACCA CCTGTGAACT CTTTGAGCTT GTAGAGGCGA TGGTGGAGAA GGGCCAAGAC	4080
50	GGTTCAGCCG TCCTCGAGTT GGATTTGTGC AGCCGAGATG TCTCCCGCAT AACCTTTTTC	4140
	CAGAAGGATT GTAACAAGTT CACGACCGGC GAGACAATTG CGCATGGCAA AGTCGGTCAG	4200
	GGTATCTTCC GCTGGAGTAA GACGTTTTGT GCCCCTGTTTG GCCCCTGGTT CCGTGCGATT	4260
55	GAGAAGGCTA TTCTATCCCT TTTACCACAA GCTGTGTTCT ACGGGGATGC TTATGACGAC	4320

		TGCCCTTGGC	! !TACTGGACT	TTGCCTTAGA	GCTTGAGTTT	CGCAATCTCA	CCACCTGTAA	6060
		CACCAATACA	CGTGTGTCCC	GTTACTCCAG	CACTGCTCGT	CACTCCGCCC	GAGGGGCCGA	6120
5		CGGGACTGCG	GAGCTGACCA	CAACTGCAGC	CACCAGGTTC	ATGAAAGATC	TCCACTTTAC	6180
		CGGCCTTAAT	GGGGTAGGTG	AAGTCGGCCG	CGGGATAGCT	CTAACATTAC	TTAACCTTGC	6240
10		TGACACGCTC	0703 6 03630	TOCOGAÇAGA	ATTAATTTCG	TOGGOTGGOG	GGCAACTGTT	6300
10		TTATTCCCGC	CCGGTTGTCT	CAGCCAATGG	CGAGCCAACC	GTGAAGCTCT	ATACATCAGT	6360
	I	GGAGAATGCT	CAGCAGGATA	AGGGTGTTGC	TATOCCCCAC	GATATCGATC	TTGGTGATTC	6420
15	(GCGTGTGGTC	ATTCAGGATT	ATGACAACCA	GCATGAGCAG	GATCGGCCCA	CCCCGTCGCC	6480
		TGCGCCATCT	CGGCCTTTT	CTGTTCTCCG	AGCAAATGAT	GTACTTTGGC	TGTCCCTCAC	6540
20		TGCAGCCGAG	TATGACCAGT	CCACTTACGG	GTCGTCAACT	GGCCCGGTTT	ATATCTCGGA	6600
20	(CAGCGTGACT	TTGGTGAATG	TTGCGACTGG	CGCGCAGGCC	GTAGCCCGAT	CGCTTGACTG	6660
	(STCCAAAGTC	ACCCTCGACG	GGCGGCCCCT	CCCGACTGTT	GAGCAATATT	CCAAGACATT	6720
25	(CTTTGTGCTC	CCCCTTCGTG	GCAAGCTOTC	CTTTTGGGAG	GCCGGCACAA	CAAAAGCAGG	6780
	1	TATCCTTAT	AATTATAATA	CTACTGCTAG	TGACCAGATT	CTGATTGAAA	ATGCTGCCGG	6840
30	(CATCGGGTC	GCCATTTCAA	CCTATACCAC	CAGGCTTGGG	GCCGGTCCGG	TCGCCATTTC	6900
	Ţ	GCGGCCGCG	GTTTTGGCTC	CACGCTCCGC	ccreecters	CTGGAGGATA	CTTTTGATTA	6960
	T	CCGGGGCGG	GCGCACACAT	TTGATGACTT	CTGCCCTGA	TGCCGCGCTT	TAGGCCTCCA	7020
35	G	GGTTGTGCT	TTCCAGTCA	CTGTCGCTGA	GCTCCAGCGC ¹	CTTAAAGTTA	AGGTGGGTAA	7080
	A	ACTCGGGAG	TTGTAGTTTA	TTTGGCTGT G	CCCACCTACT	TATATCTGCT	GATTTCCTTT	7140
40	А	TTTCCTTTT	TCTCGGTCCC	GCGCTCCCTG	A .			7171
				SEQ ID		1		
				#CCTGTGAGT				60
45				GTCCTT3AGC				120
				TGCAATAAGT				180
	A.	AGTGGGCCA	GGGCATTTCG	GCCTGGAGTA	ASACCTTCTG	TGCCCTTTTC	GGCCCCTGGT	240
50	T	CCGTGCTAT	TGAGAAGGCT	ATTCTGGCCC	TGCTCCCTCA	GGGTGTGTTT	TATGGGGATG	300
	C	CTTTGATGA	CACCGTCTTC	TCGGCGCGTG	TGGCCGCAGC	AAAGGCGTCC	ATGGTGTTTG	360
55	A	GAATGACTT	TTCTGAGTTT	SACTOCACCO	AGAATAATTT	TTCCCTGGGC	CTAGAGTGTG	420
	C.	TATTATGGA	GAAGTGTGGG	ATGOOG44GT	GGCTCATCCG	CTTGTACCAC	CTTATAAGGT	480

	CTGCGTGGAT	CCTGCAGGCC	CCGAAGGAGT	CCCTGCGAGG	GTGTTGGAAG	AAACACTCCG	540
5	GTGAGCCCGG	CACTCTTCTA	TGGAATACTG	TCTGGAACAT	GGCCGTTATC	ACCCATTGTT	600
J	ACGATTTCCG	CGATTTGCAG	GTGGCTGCCT	TTAAAGGTGA	TGATTCGATA	GTGCTTTGCA	30ر
	GTGAGTACCG	TCAGAGTCCA	GGGGCTGCTG	TCCTGATTGC	TGGCTGTGGC	TTAAAGCTGA	720
10	AGGTGGGTTT	CCGTCCGATT	GGTTTGTATG	CAGGTGTTGT	GGTGACCCCC	GGCCTTGGCG	780
	CGCTTCCCGA	CGTCGTGCGC	TTGTCCGGCC	GGCTTACTGA	GAAGAATTGG	GGCCCTGGCC	840
15	CTGAGCGGGC	GGAGCA G CTC	CGCCTTGCTG	TGCG			874
12		.1	+ h	^+ ^			

- or a sequence complementary thereto.
- 4. A protein which is (a) immunoreactive with antibodies present in individuals infected with enterically transmitted nonA/nonB hepatitis and (b) derived from a viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZXFl(ET1.1) carried in E. coli strain BB4, and having ATCC Deposit Nno. 67717.
 - 5. The protein of claim 4, which is encoded by a coding region within said 1.33 kb EcoRI insert.
- 6. A protein which is (a) immunoreactive with antibodies present in individuals infected with enterically transmitted nonA/nonB hepatitis and (b) encoded by genetic sequence 406.3-2 or 406.4-2 or a fragment thereof.

- 7. A method of detecting infection by enterically transmitted nonA/nonB hepatitis viral agent in a test individual, comprising:
- providing a peptide antigen which is (a)

 immunoreactive with antibodies present in individuals infected with enterically transmitted nonA/nonB hepatitis and (b) derived from a viral hepatitis agent whose genome contains a region which is homologous to

the 1.33 kb DNA ECORI insert present in plasmid pTZKF1(ET1.1) carried in E. coli strain BB4, and having ATCC deposit no. 67717,

5

20

25

30

35

reacting serum from the test individual with such antigen, and

examining the antigen for the presence of bound antibody.

- 8. The method of claim 7, wherein the serum
 antibody is an IgM or IgG antibody, or a mixture of
 both, the antigen provided is attached to a support,
 said reacting includes contacting such serum with the
 support and said examining includes reacting the
 support and bound serum antibody with a reporterlabeled anti-human antibody.
 - 9. A kit for accertaining the presence of serum antibodies which are diagnostic of enterically transmitted nonA/nonB hepatitis infection, comprising

a support with surface-bound recombinant peptide antigen which is (a) immunoreactive with antibodies present in individuals infected with enterically transmitted nonA/nonB viral hepatitis agent and (b) derived from a viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in <u>E. coli</u> strain BB4, and having ATCC deposit no. 67717, and

a reporter-labeled anti-human antibody.

10. A DNA fragment derived from an enterically transmitted nonA/nonB viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in \underline{E} . \underline{coli} strain BB4 and having ATCC deposit no. 67717.

- 12. A DNA molecule comprising genetic sequence
 5 406.3-2 or 406.4-2 or a fragment thereof, wherein said
 fragment comprises at least 12 consecutive
 nucleotides.
- 13. A DNA fragment derived from an enterically transmitted nonA/nonB viral hepatitis agent whose genome contains a region which is homologous to a DNA fragment within a first sequence (SEQ ID NO.1):

AGACCTGTCC CTGTTGCAGC TGTTCTACCA CCCTGCCCCG AGCTCGAACA GGGCCTTCTC 60 15 TACCTGCCCC AGGAGCTCAC CACCTGTGAT AGTGTCGTAA CATTTGAATT AACAGACATT 120 GTGCACTGCC GCATGGCCGC CCCGAGCCAG CGCAAGGCCG TGCTGTCCAC ACTCGTGGGC 180 CGCTACGGCG GTCGCACAAA GCTCTACAAT GCTTCCCACT CTGATGTTCG CGACTCTCTC 240 20 GCCCGTTTTA TCCCGGCCAT TGGCCCCGTA CAGGTTACAA CTTGTGAATT GTACGAGCTA 300 GTGGAGGCCA TGGTCGAGAA GGGCCAGGAT GGCTCCGCCG TCCTTGAGCT TGATCTTTGC 360 25 AACCGTGACG TGTCCAGGAT CACCTTCTTC CAGAAAGATT GTAACAAGTT CACCACAGGT 420 GAGACCATTG CCCATGGTAA AGTGGGCCCAG GGCATCTCGG CCTGGAGCAA GACCTTCTGC 480 GCCCTCTTTG GCCCTTGGTT CCGCGCTATT GAGAAGGCTA TTCTGGCCCT GCTCCCTCAG 540 30 GGTGTGTTTT ACGGTGATGC CTTTGATGAC ACCGTCTTCT CGGCGGCTGT GGCCGCAGCA 600 AAGGCATCCA TGGTGTTTGA GAATGACTTT TCTGAGTTTG ACTCCACCCA GAATAACTTT 660 35 TCTCTGGGTC TAGAGTGTGC TATTATGGAG GAGTGTGGGA TGCCGCAGTG GCTCATCCGC 720 CTGTATCACC TTATAAGGTC TGCGTGGATC TTGCAGGCCC CGAAGGAGTC TCTGCGAGGG 780 TTTTGGAAGA AACACTCCGG TGAGCCCGGC ACTCTTCTAT GGAATACTGT CTGGAATATG 840 40 GCCGTTATTA CCCACTGTTA TGACTTCCGC GATTTTCAGG TGGCTGCCTT TAAAGGTGAT 900 GATTCGATAG TGCTTTGCAG TGAGTATCGT CAGAGTCCAG GAGCTGCTGT CCTGATCGCC 960 GGCTGTGGCT TGAAGTTGAA GGTAGATTTC CGCCCGATCG GTTTGTATGC AGGTGTTGTG 45 1020 GTGGCCCCG GCCTTGGCGC GCTCCCTGAT GTTGTGCGCT TCGCCGGCCG GCTTACCGAG 1080 AAGAATTGGG GCCCTGGCCC TGAGCGGGCG GAGCAGCTCC GCCTCGCTGT TAGTGATTTC 1140 50 96

	CTCCGCAAGO TCACGAATGT AGCTCAGATG TGTGTGGATG TTGTTTCCCG TGTTTATGGG	1200			
	GTTTCCCCTG SACTEGTTCA TAACCTGATT GGCATGCTAC AGGCTGTTGC TGATGGCAAG	1260			
5	GCACATTTCA CTGAGTCAGT AAAAACCASTS CTCGA	1295			
	a second sequence (SEQ ID NO.5):				
	TOGAGOACTG STETTACTGA CTCAGTSAAA TGTGCCTTGC CATCAGCAAC AGCCTGTAGC	60			
10	ATGCCAATCA GGTTATGAAC GAGTSCAGGG GAAAGGSCCAT AAACACGGGA AACAACATCC	120			
	ACACACATOT BAGGTACATT CGTGAGGTTG CGGAGGAAAT CACTAACAGC GAGGCGGAGC	180			
15	TGCTCCGCCC GCTCAGGGCC AGGGCCCCAA TTCTTCTCGG TAAGCCGGCC GGCGAAGCGC	240			
15	ACAACATCAG GGAGCGCGCC AAGGCCGGGG GCCACCACAA CACCTGCATA CAAACCGATC	300			
	GGGCGGAAAT CTACCTTCAA CTTCAAGCCA CAGCCGGCGA TCAGGACAGC AGCTCCTGGA	360			
20	CTCTGACGAT ACTCACTGCA AAGCACTATO GAATCATCAC CTTTAAAGGC AGCCACCTGA	420			
	AAATCGCGGA AGTCATAACA GTGGGT#ATA ACGGCCATAT TCCAGACAGT ATTCCATAGA	480			
25	AGAGTGCCGG GCTCACCGGA GTGTTTCTTC CAAAACCCTC GCAGAGACTC CTTCGGGGCC	540			
25	TGCAAGATCC ACGCAGACCT TATAAGGTGA TACAGGCGGA TGAGCCACTG CGGCATCCCA	600			
	CACTCCTCCA TAATAGCACA CTCTAGACCC AGAGAAAAGT TATTCTGGGT GGAGTCAAAC	660			
30	TCAGAAAAGT CATTCTCAAA CACCATGGAT GCCTTTGCTG CGGCCACAGC CGCCGAGAAG	720			
	ACGGTGTCAT CAAAGGCATC ACCGTAAAAC ACACCCTGAG GGAGCAGGGC CAGAATAGCC	780			
25	TTCTCAATAG CGCGGAACCA AGGGCCAAAG AGGGCGCAGA AGGTCTTGCT CCAGGCCGAG	840			
35	ATGCCCTGGC CCACTITACC ATGGGCAATG GTCTCACCTG TGGTGAACTT GTTACAATCT	900			
	TTCTGGAAGA AGGTGATCCT GGACACGTCA CGGTTGCAAA GATCAAGCTC AAGGACGGCG	960			
40	GAGCCATCCT GGCCCTTCTC GACCATGGCC TCCACTAGCT CGTACAATTC ACAAGTTGTA	1020			
	ACCTGTACGG GGCCAATGGC CGGGATAAAA CGGGCGAGAG AGTCGCGAAC ATCAGAGTGG	1080			
A.F.	GAAGCATTGT AGAGCTTTGT GCGACCGCCG TAGCGGCCCA CGAGTGTGGA CAGCACGGCC	1140			
45	TTGCGCTGGC TCGGGGCGGC CATGCGGCAG TGCACAATGT CTGTTAATTC AAATGTTACG	1200			
	ACACTATCAC AGGTGGTGAG CTCCTGGGGC AGGTAGAGAA GGCCCTGTTC GAGCTCGGGG	1260			
50	CAGGGTGGTA GAACAGCTGC AACAGGGACA GGTCT	1295			
	a third sequence (SEQ ID NO.6):				
	AGGCAGACCA CATATGTGGT CGATGCC ATGGAGGCCC ATCAGTTTAT TAAGGCTCCT	57			
55	GGCATCACTA CTGCTATTGA GCAGGCTGCT CTAGCAGCGG CCAACTCTGC CCTGGCGAAT	117			

	GCTGTGGTAG	S TTAGGOSTIT	7676767646	CAGCAGATTG	AGATCCTCAT	TAACCTAATG	177
5	CAACCTCGCC	CAGCTTGTTTT	CCGCCCCGAG	GTTTTCTGGA	ATCATCCCAT	CCAGCGTGTC	237
J	ATCCATAACC	AGCTGGAGCT	TTACTGCCGC	SCCCGCTCCG	GCCGCTGTCT	TGAAATTGGC	297
	GCCCATCCCC) GCTCAATAAA	TGATAATOCT	AATGTGGTCC	ACCGCTGCTT	CCTCCGCCCT	357
10	GTTGGGCGTG	ATSTTCAGCG	CIGGTATACT	GCTCCCACTC	GCGGGCCGGC	TGCTAATTGC	417
	CGGCGTTCCG	G CGCTGCGCGG	GCTTCCCGCT	GCTGACCGCA	CTTACTGCCT	CGACGGGTTT	477
15	TCTGGCTGTA	ACTITICCGC	CGAGACTGGC	ATCGCCCTCT	ACTCCCTTCA	TGATATGTCA	537
15	CCATCTGATG	TCGCCGAGGC	CATGTTCCGC	CATGGTATGA	CGCGGCTCTA	TGCCGCCCTC	597
	CATCTTCCGC	CTGAGGTCCT	GCTGCCCCCT	GGCACATATC	GCACCGCATC	GTATTTGCTA	657
20	ATTCATGACG	GTAGGCGCGT	TGTGGTGACG	TATGAGGGTG	ATACTAGTGC	TGGTTACAAC	717
	CACGATGTCT	CCAACTTGCG	CTCCTGGATT	AGAACCACCA	AGGTTACCGG	AGACCATCCC	777
25	CTCGTTATCG	AGCGGGTTAG	GGCCATTGGC	TGCCACTTTG	TTCTCTTGCT	CACGGCAGCC	837
23	CCGGAGCCAT	CACCTATGCC	TTATGTTCCT	TACCCCCGGT	CTACCGAGGT	CTATGTCCGA	897
	TCGATCTTCG	GCCCGGGTGG	CACCCCTTCC	TTATTCCCAA	CCTCATGCTC	CACTAAGTCG	957
30	ACCTTCCATG	статссстас	CCATATTTGG	GACCGTCTTA	TGCTGTTCGG	GGCCACCTTG	1017
	GATGACCAAG	CCTTTTGCTG	CT CC CGTTTA	ATGACCTACC	TTCGCGGCAT	TAGCTACAAG	1077
35	GTCACTGTTG	GTACCCTTGT	GGCTAATGAA	GGCTGGAATG	CCTCTGAGGA	CGCCCTCACA	1137
33	GCTGTTATCA	CTGCCGCCTA	CCTTACCATT	TGCCACCAGC	GGTATCTCCG	CACCCAGGCT	1197
	ATATCCAAGG	GGATGCGTCG	TCTGGAACGG	GAGCATGCCC	AGAAGTTTAT	AACACGCCTC	1257
40	TACAGCTGGC	TCTTCGAGAA	GTCCGGCCGT	GATTACATCC	CTGGCCGTCA	GTTGGAGTTC	1317
	TACGCCCAGT	GCAGGCGCTG	GCTCTCCGCC	GGCTTTCATC	TTGATCCACG	GGTGTTGGTT	1377
45	TTTGACGAGT	CGGCCCCCTG	CCATTGTAGG	ACCGCGATCC	GTAAGGCGCT	CTCAAAGTTT	1437
.5	TGCTGCTTCA	TGAAGTGGCT	TGGTCAGGAG	TGCACCTGCT	TCCTTCAGCC	TGCAGAAGGC	1497
	GCCGTCGGCG	ACCAGGGTCA	TGATAATGAA	GCCTATGAGG	GGTCCGATGT	TGACCCTGCT	1557
50	GAGTCCGCCA	TTAGTGACAT	ATCTGGGTCC	TATGTCGTCC	CTGGCACTGC	CCTCCAACCG	1617
	CTCTACCAGG	CCCTCGATCT	CCCCGCTGAG	ATTGTGGCTC	GC G CGGGCCG	GCTGACCGCC	1677
55	ACAGTAAAGG	TCTCCCAGGT	CGATGGGCGG	ATCGATTGCG	AGACCCTTCT	TGGTAACAAA	1737
J J	ACCTTTCGCA	CGTCGTTCGT	TGACGGGGGG	GTCTTAGAGA	CCAATGGCCC	AGAGCGCCAC	1797

	(

	ACCACTATTA	V TTGGCACAGC	AGATSCSCGG	GGCCTTATTC	AGTCGTCTCG	GGCTCATGCC	3537
5	ATTGTTGCT	TGACGCGCCA	CACTGAGAAG	TGCGTCATCA	TTGACGCACC	AGGCCTGCTT	3597
5	CGCGAGGTG	GCATCTCCGA	TGCAATCGTT	AATAACTTTT	TCCTCGCTGG	TGGCGAAATT	3657
	GGTCACCAG	GCCCATCA G T	TATTCCCCGT	GGCAACCCTG	ACGCCAATGT	TGACACCCTG	3717
10	GCTGCCTTC	CGCCGTCTTG	CCAGATTAGT	GCCTTCCATC	AGTTGGCTGA	GGAGCTTGGC	3777
	CACAGACCTO	TCCCTGTTGC	AGCTGTTCTA	CCACCCTGCC	CCGAGCTCGA	ACAGGGCCTT	3837
15	CTCTACCTG	CCCAGGAGCT	CACCACCTGT	GATAGTGTCG	TAACATTTGA	ATTAACAGAC	3897
13	ATTGTGCAC	GCCGCATGGC	CGCCCCGAGC	CAGCGCAAGG	CCGTGCTGTC	CACACTCGTG	3957
	GGCCGCTACC	GCGGTCGCAC	AAAGCTCTAC	AATGCTTCCC	ACTCTGATGT	TCGCGACTCT	4017
20	CTCGCCCGT	TTATCCCGGC	CATTGGCCCC	GTACAGGTTA	CAACTTGTGA	ATTGTACGAG	4077
	CTAGTGGAG	CCATGGTCGA	GAAGGGCCAG	GATGGCTCCG	CCGTCCTTGA	GCTTGATCTT	4137
25	TGCAACCGT	ACGTGTCCAG	GATCACCTTC	TTCCAGAAAG	ATTGTAACAA	GTTCACCACA	4197
	GGTGAGACCA	TTGCCCATGG	TAAAGTGGGC	CAGGGCATCT	CGGCCTGGAG	CAAGACCTTC	4257
	TGCGCCCTCT	TTGGCCCTTG	GTTCCGCGCT	ATTGAGAAGG	CTATTCTGGC	CCTGCTCCCT	4317
30	CAGGGTGTGT	TTTACGGTGA	TGCCTTTGAT	GACACCGTCT	TCTCGGCGGC	TGTGGCCGCA	4377
	GCAAAGGCAT	CCATGGTGTT	TGAGAATGAC	TTTTCTGAGT	TTGACTCCAC	CCAGAATAAC	4437
35	TTTTCTCTGG	GTCTAGAGTG	TGCTATTATG	GAGGAGTGTG	GGATGCCGCA	GTGGCTCATC	4497
	CGCCTGTATO	ACCTTATAAG	GTCTGCGTGG	ATCTT G CAGG	CCCCGAAGGA	GTCTCTGCGA	4557
	GGGTTTTGGA	AGAAACACTC	CGGTGAGCCC	GGCACTCTTC	TATGGAATAC	TGTCTGGAAT	4617
40	ATGGCCGTTA	TTACCCACTG	TTATGACTTC	CGCGATTTTC	AGGTGGCTGC	CTTTAAAGGT	4677
	GATGATTCGA	TAGTGCTTTG	CAGTGAGTAT	CGTCAGAGTC	CAGGAGCTGC	TGTCCTGATC	4737
45	GCCGGCTGTG	GCTTGAAGTT	GAAGGTAGAT	TTCCGCCCGA	TCGGTTTGTA	TGCAGGTGTT	4797
	GTGGTGGCCC	CCGGCCTTGG	CGCGCTCCCT	GATGTTGTGC	GCTTCGCCGG	CCGGCTTACC	4857
	GAGAAGAATT	GGGGCCCTGG	CCCTGAGCGG	GCGGAGCAGC	TCCGCCTCGC	TGTTAGTGAT	4917
50	TTCCTCCGCA	AGCTCACGAA	TGTAGCTCAG	ATGTGTGTGG	ATGTTGTTTC	CCGTGTTTAT	4977
	GGGGTTTCCC	CTGGACTCGT	TCATAACCTG	ATTGGCATGC	TACAGGCTGT	TGCTGATGGC	5037
55	AAGGCACATT	TCACTGAGTC	AGTAAAACCA	GTGCTCGACT	TGACAAATTC	AATCTTGTGT	5097
	CGGGTGGAAT	GA ATAACATO	aro illitacia	GO COCATGGG	STT CGCGACC	ATG.	5149

	CGCCCTCGGC CTATIFIET GCTGCTCCTC ATGITTINGC CTATGCTGCC CGCGCCACCG	5209
5	CCCGGTCAGC CGTCT3GCCG SCSTSGT3G3 CGGCGCAGCG GCGGTTCCGG CGGTGGTTTC	5269
ÿ	TGGGGTGACC GGGTTGATTO TCAGCCTTTO GCAATCCCCT ATATTCATCC AACCAACCCC	5329
	TTCGCCCCCG ATATCACCGC TGCGGCCGGG GCTGGACCTC GTGTTCGCCA ACCCGCCCGA	5389
10	CCACTOGGOT COGCTIGGOG IGACCAGGOS CAGOGCOCOG COGTTGCCTC ACGTCGTAGA	5449
	CCTACCACAG CT3GGGCCGC GCCGCTAA CCGCGGTCGC TCCGGCCCAT GACACCCCGC	5507
15	CAGTGCCTGA TGTCGACTCC CGCGGCGCCA TCTTGCGCCG GCAGTATAAC CTATCAACAT	5567
*3	CTCCCCTTAC CTCTTCCGTG GCCACCGGCA CTAACCTGGT TCTTTATGCC GCCCCTCTTA	5627
	GTCCGCTTTT ACCCCTTCAG GACGGCACCA ATACCCATAT AATGGCCACG GAAGCTTCTA	5687
20	ATTATGCCCA GTACCGGGTT GCCCGTGCCA CAATCCGTTA CCGCCCGCTG GTCCCCAATG	5747
	CTGTCGGCGG TTACGCCATC TCCATCTCAT TCTGGCCACA GACCACCACC ACCCCGACGT	5807
25	CCGTTGATAT GAATTCAATA ACCTCGACGG ATGTTCGTAT TTTAGTCCAG CCCGGCATAG	5867
	CCTCTGAGCT TGTGATCCCA AGTGAGCGCC TACACTATCG TAACCAAGGC TGGCGCTCCG	5927
	TCGAGACCTC TGGGGTGGCT GAGGAGGAGG CTACCTCTGG TCTTGTTATG CTTTGCATAC	5987
30	ATGGCTCACT CGTAAATTCC TATACTAATA CACCCTATAC CGGTGCCCTC GGGCTGTTGG	6047
	ACTITGCCCT TGAGCTTGAG TTTCGCAACC TTACCCCCGG TAACACCAAT ACGCGGGTCT	6107
35	CCCGTTATTC CAGCACTGCT CGCCACCGCC TTCGTCGCGG TGCGGACGGG ACTGCCGAGC	6167
	TCACCACCAC GGCTGCTACC CGCTTTATGA AGGACCTCTA TTTTACTAGT ACTAATGGTG	6227
	TCGGTGAGAT CGGCCGCGGG ATAGCCCTCA CCCTGTTCAA CCTTGCTGAC ACTCTGCTTG	6287
40	GCGGCCTGCC GACAGAATTG ATTTCGTCGG CTGGTGGCCA GCTGTTCTAC TCCCGTCCCG	6347
	TTGTCTCAGC CAATGGCGAG CCGACTGTTA AGTTGTATAC ATCTGTAGAG AATGCTCAGC	6407
45	AGGATAAGGG TATTGCAATC CCGCATGACA TTGACCTCGG AGAATCTCGT GTGGTTATTC	6467
	AGGATTATGA TAACCAACAT GAACAAGATC GGCCGACGCC TTCTCCAGCC CCATCGCGCC	6527
	CTITCTCTGT CCTTCGAGCT AATGATGTGC TITGGCTCTC TCTCACCGCT GCCGAGTATG	6587
50	ACCAGTECAC TTATGGETET TEGACTGGEE CAGTTTATGT TTETGACTET GTGACETTGG	6647
	TTAATGTTGC GACCGGCGCG CAGGCCGTTG CCCGGTCGCT CGATTGGACC AAGGTCACAC	6707
55	TTGACGGTCG CCCCCTCTCC ACCATCCAGC AGTACTCGAA GACCTTCTTT GTCCTGCCGC	6767
	TCCGCGGTAA GCTCTCTTC TGGGAGGCAG GCACAACTAA AGCCGGGTAC CCTTATAATT	6827

	ATAACACCAC TGCTAGCGAC CAACTGCTTG TCGAGAATGC CGCCGGGCAC CGGGTCGCTA	6887					
5	TTTCCACTTA CASCACTAGE STGGGTGSTG GTCCCGTCTC CATTTCTGCG GTTGCCGTTT	6947					
	TAGCCCCCA CTCTGCGCTA GCATTGCTTG AGGATACCTT GGACTACCCT GCCCGCGCCC	7007					
	ATACITITGA IGATITICIGO CCAGAGISCO GCCCCCTIGG CCTTCAGGGC IGCGCTTTCC	7067					
10	AGTCTACTGT CGCTGAGCTT CAGCGCCTTA AGATGAAGGT GGGTAAAACT CGGGAGTTGT	7127					
	AG TTTATTIGCT TGTGCCCCCC TTCTTTCTGT TGCTTATTTC TCATTTCTGC						
1.5	GTTCCGCGCT CCCTGA	7195					
15	a fourth sequence (SEQ ID NO.10):						
	GCCATGGAGG CCCACCAGTT CATTAAGGCT CCTGGCATCA CTACTGCTAT TGAGCAAGCA	60					
20	GCTCTAGCAG CGGCCAACTC CGCCCTTGCG AATGCTGTGG TGGTCCGGCC TTTCCTTTCC	120					
	CATCAGCAGG TIGAGATCCT TATAAATCTC ATGCAACCTC GGCAGCTGGT GTTTCGTCCT	180					
	GAGGTTTTTT GGAATCACCC GATTCAACGT GTTATACATA ATGAGCTTGA GCAGTATTGC	240					
25	CGTGCTCGCT CGGGTCGCTG CCTTGAGATT GGAGCCCACC CACGCTCCAT TAATGATAAT	300					
	CCTAATGTCC TCCATCGCTG CTTTCTCCAC CCCGTCGGCC GGGATGTTCA GCGCTGGTAC	360					
30	ACAGCCCCGA CTAGGGGACC TGCGGCGAAC TGTCGCCGCT CGGCACTTCG TGGTCTGCCA	420					
	CCAGCCGACC GCACTTACTG TTTTGATGGC TTTGCCGGCT GCCGTTTTGC CGCCGAGACT	480					
	GGTGTGGCTC TCTATTCTCT CCATGACTTG CAGCCGGCTG ATGTTGCCGA GGCGATGGCT	540					
35	CGCCACGGCA TGACCCGCCT TTATGCAGCT TTCCACTTGC CTCCAGAGGT GCTCCTGCCT	600					
	CCTGGCACCT ACCGGACATC ATCCTACTTG CTGATCCACG ATGGTAAGCG CGCGGTTGTC	660					
40	ACTTATGAGG GTGACACTAG CGCCGGTTAC AATCATGATG TTGCCACCCT CCGCACATGG	720					
40	ATCAGGACAA CTAAGGTTGT GGGTGAACAC CCTTTGGTGA TCGAGCGGGT GCGGGGTATT	780					
45	GGCTGTCACT TTGTGTTGTT GATCACTGCG GCCCCTGAGC CCTCCCCGAT GCCCTACGTT	840					
	CCTTACCCGC GTTCGACGGA GGTCTATGTC CGGTCTATCT TTGGGCCCGG CGGGTCCCCG	900					
	TCGCTGTTCC CGACCGCTTG TGCTGTCAAG TCCACTTTTC ACGCCGTCCC CACGCACATC	960					
50	TGGGACCGTC TCATGCTCTT TGGGGCCACC CTCGACGACC AGGCCTTTTG CTGCTCCAGG	1020					
	CTTATGACGT ACCTTCGTGG CATTAGCTAT AAGGTAACTG TGGGTGCCCT GGTCGCTAAT	1080					
	GAAGGCTGGA ATGCCACCGA GGATGCGCTC ACTGCAGTTA TTACGGCGGC TTACCTCACA	1140					
55	ATATGTCATC AGCGTTATTT GCGGACCCAG GCGATTTCTA AGGGCATGCG CCGGCTTGAG	1200					

	CTTGAACATG CTOAGAAATT TATTTTATEC CYCTACAGCT GGCTATTTGA GAAGTCAGGT	1260
	CGTGATTACA TOCCAGGOOG COAGOTSCAG TTOTACGOTO AGTGCCGCCG CTGGTTATCT	1320
5	GCCGGGTTCC ATCTCGACCO CCGCACCTTA GTTTTTGATG AGTCAGTGCC TTGTAGCTGC	1380
	CGAACCACCA TOOGGOGGAT OBOTGSAAAA TITTGOTGIT TIATGAAGTG GCTCGGTCAG	1440
10	GAGTGTTCTT GTTTCCTCCA GCCCGCCSAG GGGCTGGCGG GCGACCAAGG TCATGACAAT	1500
	GAGGCCTATG AAGGCTSTGA TSTTSATACT GSTGAGGCTG CCACCCTAGA CATTACAGGC	1560
	TCATACATCG TGGATGGTCG GTCTCTGCAA ACTGTCTATC AAGCTCTCGA CCTGCCAGCT	1620
15	GACCTGGTAG STSGSGSGAGS SSGASTGTSTST GSTACAGTTA STGTTACTGA AACCTCTGGC	1680
	CGTCTGGATT GCCAAACAAT G- TGGGCAAT AAGACTTTTC TCACTACCTT TGTTGATGGG	1740
20	GCACGCCTTG AGGTTAACGG GCCTSAGCAG CTTAACCTCT CTTTTGACAG CCAGCAGTGT	1800
	AGTATGGCAG CCGGCCCGTT TTGCCTCACC TATGCTGCCG TAGATGGCGG GCTGGAAGTT	1860
	CATTITICCA COGCIGGOOT CGAGAGOOGT GIFGITITOO COCCIGGIAA IGCCCCGACT	1920
25	GCCCCGCCGA GTGAGGTCAC CGCCTTCTGC TCAGCTCTTT ATAGGCACAA CCGGCAGAGC	1980
	CAGCGCCAGT CGGTTATTGG TAGTTTGTGG CTGCACCCTG AAGGTTTGCT CGGCCTGTTC	2040
30	CCGCCCTTTT CACCCGGGCA TGAGTGGCGG TCTGCTAACC CATTTTGCGG CGAGAGCACG	2100
	CTCTACACCC GCACTTGGTC CACAATTACA GACACCCT TAACTGTCGG GCTAATTTCC	2160
	GGTCATITGG ATGCTGCTCC CCACTCGGGG GGGCCACCTG CTACTGCCAC AGGCCCTGCT	2220
35	GTAGGCTCGT CTGACTCTCC AGACCCTGAC CCGCTACCTG ATGTTACAGA TGGCTCACGC	2280
	CCCTCTGGGG CCCGTCCGGC TGGCCCCAAC CCGAATGGCG TTCCGCAGCG CCGCTTACTA	2340
40	CACACCTACC CTGACGGCGC TAAGATCTAT GTCGGCTCCA TTTTCGAGTC TGAGTGCACC	2400
	TGGCTTGTCA ACGCATCTAA CGCCGGCCAC CGCCCTGGTG GCGGGCTTTG TCATGCTTTT	2460
	TTTCAGCGTT ACCCTGATTC GTTTGAEGEC ACCAAGTTTG TGATGCGTGA TGGTCTTGCC	2520
45	GCGTATACCC TTACACCCCG GCCGATCATT CATGCGGTGG CCCCGGACTA TCGATTGGAA	2580
	CATAACCCCA AGAGGCTCGA GGCTGCCTAC CGCGAGACTT GCGCCCGCCG AGGCACTGCT	2640
50	GCCTATCCAC TCTTAGGCGC TGGCATTTAC CAGGTGCCTG TTAGTTTGAG TTTTGATGCC	2700
	TGGGAGCGGA ACCACCGCCC GTTTGACGAG CTTTACCTAA CAGAGCTGGC GGCTCGGTGG	2760
		2820
55	GCCAACCTGG CCCTGGAGCT TGACTCCGGG AGTGAAGTAG GCCGCGCATG TGCCGGGTGT	2880

AGGTGGGTTT	CCGTCCGATT	GGTTTST4T3	CAGGTGTTGT	GGTGACCCCC	GGCCTTGGCG	780
CGCTTCCCGA	CGTCGTGCGC	TTGTCCGGCC	GGCTTACTGA	GAAGAATTGG	GGCCCTGGCC	840
CTGAGCGGGC	GGAGCAGCTC	CGCCTTGCTG	TGCG			874

or a sequence complementary thereto.

5

- 14. A kit comprising, in a container or separate containers, a pair of single-strand primers derived from nonhomologous regions of opposite strands of a DNA duplex fragment derived from an enterically transmitted viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in E. coli strain BB4 and having ATCC deposit no. 67717.
- 20 15. The kit of claim 15, which are derived from opposite strands of the EcoRI duplex insert in said plasmid.
- 16. A method for detecting the presence of an enterically transmitted nonA/nonB hepatitis viral agent in a biological sample, comprising

preparing a mixture of duplex DNA fragments derived from the sample,

denaturing the duplex fragments,

adding to the denatured DNA fragments, a pair of single-strand primers derived from nonhomologous regions of opposite strands of a DNA duplex fragment derived from an enterically transmitted viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in E. coli strain BB4, and having ATCC deposit no. 67717,

hybridizing said primers to homologous-sequence region of opposite strands of such duplex DNA

fragments derived from enterically transmitted
nonA/non'B hepatitis agent,

reacting the primed fragment strands with DNA
polymerase in the presence of DNA nucleotides, to form
new DNA duplexes containing the primer sequences, and
repeating said denaturing, adding, hybridizing
and reacting steps, until a desired degree of

amplification of sequences is achieved.

5

30

- 17. The method of claim 16, wherein the primers are derived from opposite strands of the EcoRI duplex insert in said plasmid.
- 18. The method of claim 16, for detecting the presence of viral agent in a sample of cultured cells infected with the agent.
- 19. A vaccine for immunizing an individual against enterically transmitted nonA/nonB hepatitis viral agent comprising, in a pharmacologically acceptable adjuvant, a recombinant protein derived from an enterically transmitted nonA/nonB viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZ-RF1(ET1.1) carried in E. coli strain BB4, and having ATCC deposit no. 67717.
 - 20. The vaccine of claim 19, wherein the protein is derived from the EcoRI insert in said plasmid.
 - 21. A vaccine for immunizing an individual against HEV comprising, in a pharmacologically acceptable adjuvant, a protein encoded by genetic sequence 406.3-2 or 406.4-2 or a fragment thereof.
 - 22. In a method of isolating an enterically transmitted nonA/nonB viral agent or a nucleic acid fragment produced by the agent, an improvement which

comprises: utilizing, as a source of said agent, bile obtained from a human or cynomolgus monkey having an active infection of enterically transmitted non-A/non-B hepatitis.

23. The method of claim 22, wherein the bile is obtained from an infected cynomolgus monkey.

5

24. Human polyclonal anti-serum obtained from a human immunized with a protein derived form an enterically transmitted non-A/non-B viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in E. coli strain BB4 and having ATCC deposit no. 67717.