

Universidade de Itaúna - Faculdade de Engenharia

Departamento de Ciências da Computação

Universidade de Itaúna	Curso: Ciência da Computação	Disciplina: LABORATÓRIO DE ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES I						
Professor (a): Dayse Anselmo		Prática 9						
2º Período Turno: Noite	Semestre: 2°	Ano: 2020						
Nome: Davi Ventura Cardoso Perdigão								
Circuitos comparadores								

OBJETIVO

- Ambientar com um laboratório de circuitos digitais
- Observar o funcionamento de circuitos comparadores
- Aplicação de tabela verdade e simplificações
- Manuseio do data sheet

PARTE TEÓRICA 1:

A tabela a seguir apresenta um comparador de números com 2 bits. Os bits menos significativos (LSD) e os bis mais significativos (MSD) assumem a importância na medida em que,a posição dos bits é importante para a comparação.

1) Preencha a saída da tabela verdade a seguir, comparado o numero A com o numero B.

	ENTRADAS			SAÍDAS			
POSIÇÃO	А		В		SAÍDA 1	SAÍDA 2	SAÍDA 3
	A1	A0	B1	В0	A = B	A < B	A > B
0	0	0	0	0	1	0	0
1	0	0	0	1	0	1	0
2	0	0	1	0	0	1	0
3	0	0	1	1	0	1	0
4	0	1	0	0	0	0	1
5	0	1	0	1	1	0	0
6	0	1	1	0	0	1	0
7	0	1	1	1	0	1	0
8	1	0	0	0	0	0	1
9	1	0	0	1	0	0	1
10	1	0	1	0	1	0	0
11	1	0	1	1	0	1	0
12	1	1	0	0	0	0	1
14	1	1	0	1	0	0	1
14	1	1	1	0	0	0	1
15	1	1	1	1	1	0	0

Signature to de No.

Universidade de Itaúna - Faculdade de Engenharia

Departamento de Ciências da Computação

2) Apresente a expressão de saída, simplificada. Use Kaurnaugh para simplificar as expressões.

$$A>B: AC' + BC'D' + ABD' = (S1+S2)'$$

3) Faça o desenho esquemático do circuito gerado por você (pode ser printado).

4) A partir da consulta em data sheet, apresente no esquemático a pinagem do CI que será utilizado para a montagem do circuito gerado por você.