פתרון תרגיל מספר 5 - חישוביות וסיבוכיות

שם: מיכאל גרינבאום, **ת.ז:** 211747639

2020 במאי 12

שאלה 3

 $L_1 \cdot L_2 \in coRE$ אזי $L_1, L_2 \in coRE$ סעיף 1 צ"ל: אם

בובחבי

 $\mathcal{M}_1, L(\mathcal{M}_1) = \overline{L_1}$ כך ש־ TM שהם $\mathcal{M}_1, \mathcal{M}_2$ כלומר קיימים קיימים $\overline{L_1}, \overline{L_2} \in RE$ אזי מתקיים $L_1, L_2 \in coRE$ שהם $L_1, L_2 \in coRE$ תחילה מהיות $L_1, L_2 \in coRE$

יעתה ניצור TM \mathcal{M} באופן הבא:

- 1. נחשב את כל הקומבינציות של w להיות מהצורה $u\cdot v$ (יש לכל היותר |w| כאלה) ולכל קומבינציה w להיות של w להיות מהצורה ברשימה, ולהפריד בין מילים עם w, הנחה על סרט חדש שהוא רק הרשימה, ראינו כיצד בתרגול, ולהפריד בין מילים עם w, הנחה ש" w לא בשפה אחרת נחליף בסימן אחר)
 - (נשמור את המשתנה n בסרט משלו ונריץ מכונות טיורינג כמו שראינו בתרגול) $n \in \{1,2,3\dots\}$
 - (TM מה־ מה־ לכל מילה סרט חדש לכל בתרגול, אפשר בתרגול, אפשר (כמו שראינו בתרגול :A
 - על nעל את \mathcal{M}_1 אעדים .i
 - על v, על את \mathcal{M}_2 אעדים .ii
- (ב) אם לכל קומבינציה בשלב הקודם \mathcal{M}_1 קיבל את ש־ \mathcal{M}_2 קיבל את u לכל u אם אחרת נמשיך לרוץ u

, $A = \{w_1 \# w_2 \mid w = w_1 \cdot w_2\}$ נשים לב כי

נשים לב ש־ $w_1 \in \overline{L_1} \lor w_2 \in \overline{L_2}$ מתקיים $w = w_1 \cdot w_2$ כלומר מתקיים לב ש־ $w \in \overline{L_1 \cdot L_2}$ נשים לב ש־

$$w \in L(\mathcal{M})$$

 $\Leftrightarrow (\forall (w_1 \# w_2) \in A) (w_1 \in L(\mathcal{M}_1) \lor w_2 \in L(\mathcal{M}_2))$

 $\Leftrightarrow (\forall (w_1 \# w_2) \in \{w_1 \# w_2 \mid w = w_1 \cdot w_2\}) (w_1 \in L(\mathcal{M}_1) \lor w_2 \in L(\mathcal{M}_2))$

 $\Leftrightarrow (\forall (w_1 \# w_2) \in \{w_1 \# w_2 \mid w = w_1 \cdot w_2\}) (w_1 \in \overline{L_1} \lor w_2 \in \overline{L_2})$

 $\Leftrightarrow w \in \overline{L_1 \cdot L_2}$

 $L\left(\mathcal{M}
ight)=\overline{L_{1}\cdot L_{2}}$ כלומר יצרנו \mathcal{M} שהוא TM וגם מתקיים

כלומר ב $L_1 \cdot L_2 \in coRE$ מההגדרה, כלומר מההג $\overline{L_1 \cdot L_2} \in RE$ כלומר

 $\mathcal{M}_1, \mathcal{M}_2$, $\overline{L_1 \cdot L_2}$ את מזהה שהיא לא בי יכול להיות מכריע אותה כי יכול להיות שעבור מילה שהיא לא בי $\overline{L_1 \cdot L_2}$ ולא בהכרח מכריע אותה כי יכול להיות שעבור מילה שלב לא נסיים את שלב לא יעצרו את ריצם ולכן לעולם לא נסיים את שלב ל

מ.ש.ל.א.©

$L^* \in RE$ אזי $L \in RE$ סעיף 2 צ"ל: אם

הוכחה:

 $L\left(\mathcal{M}
ight)=L$ כך ש
ד מהיות שהוא שהוא ליים, כלומר קיים לבת תחילה מהיות לבת לבת לבת לבת לבת באופן הבא:
 TM \mathcal{M}_{helper}

- $w_1\#w_2\#\ldots\#w_k$ מהצורה מילה מילה.1
- בכל מקרה אוכן M על כל $w_i \in L = L\left(\mathcal{M}\right)$ ביל שיתקיים פה, כי נרצה מקביליות פה, אוכן w_i לכל ולכן w_i לכל w_i את w_i לכל מקרה יעצור על יעצור על יעצור על יעצור או
 - w את נקבל , $i \in [k]$ אכל w_i את קיבל הקודם \mathcal{M} נקבל את מכל הריצות בשלב הריצות בשלב הקודם
 - w אחרת גדחה את 4

יעתה ניצור TM \mathcal{M}' באופן הבא:

- 1. נחשב את כל הקומבינציות של w להיות מהצורה w להיות w לכל w לכל w לכל w לכל היותר w להיות של w להיות מהצורה את w להיות w לכל היותר w לשמור על סרט חדש שהוא רק קומבינציה w לשמור w להפריד בין מילים עם w , הנחה ש־ w לא בשפה אחרת נחליף בסימן אחר)
 - (נשמור את המשתנה שראינו מיורינג מו ונריץ מכונות את המשתנה וורא (נשמור המשתנה וורינג את המשתנה $i \in \{1,2,3\dots\}$
 - A אל כל מילה בקבוצה \mathcal{M}_{helper} על הצעדים הראשונים של i הצעדים (א)
 - (ב) אם \mathcal{M}_{helper} קיבל מילה ב־ A, נקבל את w, אחרת נמשיך לרוץ

תחילה נשים לב כי

$$w_1 \# w_2 \# \dots \# w_k \in L\left(\mathcal{M}_{helper}\right)$$

 $\Leftrightarrow (\forall i \in [k]) (w_i \in L\left(\mathcal{M}\right))$
 $\Leftrightarrow (\forall i \in [k]) (w_i \in L)$

נשים לב כי $A = \{w_1 \# w_2 \# \dots \# w_k \mid w = w_1 \cdot w_2 \cdot \dots \cdot w_k\}$ נשים לב כי

$$w \in L(\mathcal{M}')$$

$$\Leftrightarrow \exists w_1 \# w_2 \# \dots \# w_k \in \{w_1 \# w_2 \# \dots \# w_k \mid w = w_1 \cdot w_2 \cdot \dots \cdot w_k\} \text{ s.t. } w_1 \# w_2 \# \dots \# w_k \in L(\mathcal{M}_{helper})$$

$$\Leftrightarrow (\exists w_1 \# w_2 \# \dots \# w_k \in \{w_1 \# w_2 \# \dots \# w_k \mid w = w_1 \cdot w_2 \cdot \dots \cdot w_k\}) \ (\forall i \in [k]) \ (w_i \in L)$$

$$\Leftrightarrow (\exists w_1, w_2, \dots, w_k \text{ s.t. } w_1 \cdot w_2 \cdot \dots \cdot w_k = w) \ (\forall i \in [k]) \ (w_i \in L)$$

$$w \in L^*$$

 $L\left(\mathcal{M}'
ight)=L^*$ כלומר יצרנו TM שהוא \mathcal{M}' שהוא

כלומר $RE + \epsilon$ מההגדרה, כנדרש

לא \mathcal{M}_{helper} , L^* מזהה את M' מזהה את בהכרח מכריע אותה כי יכול להיות שעבור מילה שהיא לא ב־ \mathcal{M}' לא נשים לב שי w ולכן לעולם לא נסיים לרוץ ב־ w ולכן לעולם לא נסיים לרוץ ב' w

מ.ש.ל.ב.☺

$op\left(L_1,L_2 ight)\in RE$ אזי $L_1,L_2\in RE$ סעיף 3 סעיף 3

הוכחה:

תחילה נשים לב שהמילים הם בני מנייה ולכן נוכל להגדיר Σ^* פונקציה חחע"ל. $L\left(\mathcal{M}_2\right)=L_2$, $L\left(\mathcal{M}_1\right)=L_1$ כך ש־ TM שהם M_1,\mathcal{M}_2 קיימים בוער $L_1,L_2\in RE$ עתה ניצור TM באופן הבא:

בצד אפשהו את אפשהו בצד .1

- (נשמור את המשתנה n בסרט משלו ונריץ מכונות טיורינג כמו שראינו בתרגול) $n \in \{1,2,3\dots\}$
- # ונשמור את המילים בסרט חדש והמילים אונשמור את ונשמור את ונשמור את אונשמור $A_n = \{f\left(i\right) \mid i \leq n\}$ ואונחשב קבוצה
- ב־ M_1 בי שהתקבלו על ידי M_1 על כל מילה בקבוצה A_n ונשמור את כל המילים שהתקבלו על ידי M_1 בי ברט את הרילים בסרט חדש והמילים יהיו מופרדות על ידי B_n
- - C_n בקבוצה מילה כל על על של הראשונים הראשונים הצעדים הצעדים מילה נריץ את ניץ (ד)
 - (ה) נקבל את C_n אחרת המילים של \mathcal{M}_2 על מקבלת הייתה ריצה הייתה הייתה על אחת אחרת על אחת אחרת נמשיך לרוץ

 $B_n = \{f(i) \mid (i \leq n) \land \mathcal{M}_1 \text{ accepts } f(i) \text{ within n steps or less}\}$ תחילה נשים לב כי

$$C_n = \{x \cdot f(i) \cdot z \mid f(i) \in B_n \land x \cdot z = w\}$$

נשים לב כי \mathcal{M}_2 מקבל את אם"ם עבור $n\in\mathbb{N}$ כלשהו הייתה מילה מילה עד כל מקבל את מקבל את אם"ם עבור $n\in\mathbb{N}$ כלשהו הייתה מילה לכו נקבל כי

```
w \in L\left(\mathcal{M}\right)
\Leftrightarrow (\exists n \in \mathbb{N}) \left(\exists c \in C_n\right) \left(c \in L\left(\mathcal{M}_2\right)\right)
\Leftrightarrow (\exists n \in \mathbb{N}) \left(\exists c \in \left\{x \cdot f\left(i\right) \cdot z \mid f\left(i\right) \in B_n \land x \cdot z = w\right\}\right) \left(c \in L\left(\mathcal{M}_2\right)\right)
\Leftrightarrow (\exists n \in \mathbb{N}) \left((\exists w_f \in B_n) \land (\exists x, z \in \Sigma^* \text{ s.t. } w = x \cdot z)\right) \left(x \cdot w_f \cdot z \in L\left(\mathcal{M}_2\right)\right)
\Leftrightarrow (\exists x, z \in \Sigma^* \text{ s.t. } w = x \cdot z) \left(\exists n \in \mathbb{N}\right) \left(\exists w_f \in B_n\right) \left(x \cdot w_f \cdot z \in L\left(\mathcal{M}_2\right)\right)
\Leftrightarrow (\exists x, z \in \Sigma^* \text{ s.t. } w = x \cdot z) \left(\exists n \in \mathbb{N}\right)
(\exists w_f \in \left\{f\left(i\right) \mid (i \leq n) \land \mathcal{M}_1 \text{ accepts } f\left(i\right) \text{ within n steps or less}\right\}\right) \left(x \cdot w_f \cdot z \in L_2\right)
\Leftrightarrow (\exists x, z \in \Sigma^* \text{ s.t. } w = x \cdot z) \left(\exists n \in \mathbb{N}\right) \left(\exists i \in [n] \text{ s.t. } i \leq n \land f\left(i\right) \in L\left(\mathcal{M}_1\right)\right) \left(x \cdot f\left(i\right) \cdot z \in L_2\right)
\Leftrightarrow (\exists x, z \in \Sigma^* \text{ s.t. } w = x \cdot z) \left(\exists n \in \mathbb{N}\right) \left(f\left(n\right) \in L\left(\mathcal{M}_1\right)\right) \left(x \cdot f\left(n\right) \cdot z \in L_2\right)
\Leftrightarrow (\exists x, z \in \Sigma^* \text{ s.t. } w = x \cdot z) \left(\exists w_f \in L\left(\mathcal{M}_1\right)\right) \left(x \cdot w_f \cdot z \in L_2\right)
\Leftrightarrow (\exists x, z \in \Sigma^* \text{ s.t. } w = x \cdot z) \left(\exists w_f \in L\left(\mathcal{M}_1\right)\right) \left(x \cdot w_f \cdot z \in L_2\right)
\Leftrightarrow w \in op(L_1, L_2)
```

, $L\left(\mathcal{M}'
ight)=op\left(L_1,L_2
ight)$ כלומר יצרנו \mathcal{M} שהוא TM וגם מתקיים כלומר כלומר $op\left(L_1,L_2
ight)\in RE$ מההגדרה, כנדרש

 $op(L_1,L_2)$ ולא בהכרח מכריע אותה כי יכול להיות שעבור מילה שהיא לא בי $op(L_1,L_2)$ ולא בהכרח מכריע נשים לב ש־ \mathcal{M} נשים לב ש־ \mathcal{M} מזהה את המקיימת את הנדרש ללא תנאי עצירה ולעולם לא יימצא.

המילים הראשונות שמודפסות, אתרה2: במבט לאחור, אפשר היה לעשות אנומרטור במקום להגדיר את f ואת החריץ על n המילים הראשונות שמודפסות, להבא אעשה בדרך היותר פשוטה לקריאה :)

מ.ש.ל.ג.☺