Introduction to Machine Learning Lecture 10: ML in Practice

Dr. Gabriel Stanovsky Slides adapted from Prof. Matan Gavish and Prof. Shai Shalev-Shwartz

May 31, 2022

Suggested reading:

Advanced Topics in ML

- Advanced topics
 - Last Week: Unsupervised learning
 - Last Week: Kernel methods
 - Today: ML in practice
- Modern ML
 - Gradient-based learning
 - Neural networks
- Summary and Ethics

Recap: Kernels

Kernel Trick: Learn in high dimension without paying the full price

- We discussed two kernels
 - Polynomial and Gaussian (RBF)
- Enable linear solvers to do non-linear separation in feature space
 - Complexity depends on m, instead of d
- Kernels lead to very expressive and powerful models
 - and they're an example of metric learning

Today: ML in Practice

- ML requires a dual set of skills
 - Mathematical understanding and formulation
 - Expertise in data processing, coding, presenting results
- This course aims to give you initial skills in both
 - Math in most lectures and recitations
 - Hands-on exercises (there's no other way)
- Today we'll focus on best practices for ML in practice
 - Back to math next week

This will be a different lecture

- Many examples
- (almost) No math
- Somewhat subjective advice from my experience
 - Much under current research
 - No proofs, you're welcome to question my suggestions

What do I mean by "in practice"?

- Mostly research projects in academia, and a little bit of tech
 - With strong bias towards NLP
- Luckily, applied ML is becoming more homogeneous
 - With a strong ties between fields and across academia and tech
- ML in practice require practice and expertise
 - You'll improve the more projects you take
 - E.g., our hackathon, data challenge, and others

Outline

- 1 Approaching a New Problem
 - Deciding on a Framework
 - Understanding the Features
 - Annotation Quality
 - Data Partitioning
- 2 Developing an ML Model
 - The 4 Stages of Model Development
 - Computational Considerations
- 3 Testing and Reporting Performance
 - Reproducible Research

- In this course we mostly ignored the approach to a new problem
 - Instead we focus on giving you an ML toolbelt
- Next, we'll acknowledge an assumption we made in the course
 - Then show how in practice things are more complicated
- We'll give a set of best practices and advise

Approaching a New Problem: Takeaways

- Define setup: Which elements of the problem require ML
- Understand the features: Feature and label types & possible ranges
- Question the labels: Estimate annotation quality and biases
- Make sensible partitions: Each part is representative of the whole

We started each lecture with a given setup.

$$S_m \in \mathbb{R}^{m \times d}, \mathcal{Y} = \mathbb{R}$$

 $\hat{w} = \operatorname*{arg\,min}_{w} \in \mathbb{R}^{d+1}[L_{train}(w) + \lambda \cdot \mathcal{R}(w)]$

- This hides much of the (interesting) work
 - In practice, there's a wide range for defining the setup
 - Can already decide the fate of the project

Do I need ML, and if so for which part?

- Hype around everything ML and AI
 - But what you learned before ML still holds
 - Often termed rule based
- There's nothing bad about using rule-based approaches
 - Explainability is a huge advantage
- Often a good approach would be a combination of ML and rules
 - Real-world problems are likely multi-faceted

Implementations of Entity Extraction

 Solutions that work in practice often need a combination of ML and rules Example: Identifying Punishment in Court Decisions (Wenger et al., 2021)

- Input: Court cases in natural language
- Output: Months of imprisonment given as punishment
- Approach: A combination of rules and ML
 - Write rules to identify the sentence in which the decision is given
 - Supervised learning to identify court decision in that sentence
- The bulk of research went into finding this paradigm

What constitutes a good ML problem?

- There's good signal in examples
 - But it's hard to come up with concrete rules
- There's some inherent variability...
 - E.g., the problem itself seems non-deterministic
 - Or there's noise in the instruments that is hard to model
- · ...but not too much of it
 - If there's no signal, we'll end up with bad results
- We can think of indicative features
 - That we think will generalize, but not overfit
- And which we have (or can get) good amount of
 - Small number of examples would lead to overfitting

Once we decide on scope

- What's the scientific/business context?
 - In which scenarios is the model expected to work?
 - How will performance be measured?
 - Is the training data representative?
- Answers will affect many design choices
 - E.g., Loss, or regularization term, evaluation metric
- Extensive knowledge of the domain is crucial
 - Often the job is to bridge between ML and the specific field
 - E.g., medicine, linguistics, biology, and more

We treated $\boldsymbol{\mathcal{X}}$ as numerical values, detached of physical meaning

- In practice, crucial to know what features represent
- Can help in building models
 - Identifying correlated features
 - Designing appropriate regularization
 - Detecting overfitting and overestimation

Example: Categorical vs. Continuous Features

	X_1	X_2	<i>X</i> ₃	<i>X</i> ₄
sample 1	2.0	3.0	2.5	yes
sample 2	1.7	3.8	9.1	no
:				

Ask each feature if it's . . .

- Categorical: how many levels? ordered or unordered?
- Continuous: what are the allowed values?

Example: mtcars dataset

```
> mtcars
                    mpa cvl disp hp drat
                                              wt asec vs am
Mazda RX4
                          6 160 0 110 3 90 2 620 16 46
Mazda RX4 Waa
                          6 160.0 110 3.90 2.875 17.02
Datsun 710
                          4 108.0 93 3.85 2.320 18.61
                          6 258.0 110 3.08 3.215 19.44
Hornet 4 Drive
Hornet Sportabout
                   18.7
                          8 360.0 175 3.15 3.440 17.02
Valiant
                          6 225.0 105 2.76 3.460 20.22
Duster 360
                          8 360.0 245 3.21 3.570 15.84
Merc 240D
                          4 146.7 62 3.69 3.190 20
Merc 230
                          4 140.8 95 3.92 3.150 22.
Merc 280
                          6 167.6 123 3.92 3.440 18.
Merc 2800
                          6 167.6 123 3.92 3.440 18.96
Merc 450SE
Merc 450SL
Merc 450SLC
                          8 275.8 180 3.07 3.780 18.
Cadillac Fleetwood 10.4
Lincoln Continental 10.4
                          8 460.0 215 3.00 5.424 17.82
                          8 440 0 230 3.23 5.345 17.42
Chrysler Imperial
Fiat 128
                          4 78.7 66 4.08 2.200 19.47
Honda Civic
                          4 75.7 52 4.93 1.615 18.52
Tovota Corolla
                          4 71.1 65 4.22 1.835 19.90
                          4 120.1 97 3.70 2.465 20.01
Toyota Corona
                          8 318.0 150 2.76 3.520 16.87
Dodge Challenger
                   15.5
AMC lovelin
                          8 304 0 150 3 15 3 435 17 30
Camaro Z28
                          8 350.0 245 3.73 3.840 15.41
Pontiac Firebird
                          8 400 0 175 3 08 3 845 17 05
Figt X1-9
                          4 79.0 66 4.08 1.935 18.
                          4 120.3 91 4.43 2.140 16.70
Porsche 914-2
Lotus Europa
                          4 95.1 113 3.77 1.513 16.98
Ford Pantera L
                          8 351.0 264 4.22 3.170 14.50
Ferrari Dino
                          6 145.0 175 3.62 2.770 15
Maserati Bora
                          8 301.0 335 3.54 3.570 14.60
Volvo 142E
                         4 121.0 109 4.11 2.780 18.60
```

- Which features are
 - Categorical? ordered (big vs small) / unordered (yellow vs red)
 - Continuous?

Understanding the Data

- Do we have meaningful feature names?
- What are the feature units?
- Who chose which features to collect?
- Can we ask for other features?

Annotation Quality

In this course we trust the labels ${\cal Y}$ as absolute truth

- labels Y are often noisy in practice
 - E.g., due to error in annotation or disagreement
 - Note this is different from noise in samples ${\mathcal X}$
 - May fail any learning algorithm
 - Look at train annotations, do you agree with them?
- Inter-annotator agreement is a common data quality measure in Al
 - Useful when the task itself may be subjective

Inter-Annotator Agreement

- For example, Sentiment analysis in text
 - This movie was terrible!
 - This movie was great!
 - Q: I like the leading actor, but the director was terrible
- Solution: measure agreement between two human annotators
 - For example, ask two annotators to annotate the same set
 - Measure % in which they agree

Cohen's Kappa as a Measure of Agreement

- Say we measure agreement on 80% of the data
- Q: More impressive if there were 1000 possible labels?
- Cohen's Kappa takes random chance into account

$$\kappa = \frac{p_o - p_e}{1 - p_e}$$

- Where:
 - $p_o = \text{observed agreement (e.g., } 80\%)$
 - p_e = expected agreement of a random coin toss
- So for balanced classes we get:
 - 2 classes $p_e = 0.5 \Rightarrow \kappa = 0.6$
 - 1000 classes $p_e = 0.5 \Rightarrow \kappa = 0.799$

Annotation Bias

- Beyond noise, labels are bound to introduce human biases
 - E.g., by the process

Or the world

- ML does not distinguish between these biases and signal
 - Instead, optimizes loss in whatever way possible
 - Crucial to align mathematical loss with our actual purpose

Mark Yatskar et al., Shahar Levy et al.

Data Partitions

We assumed we have a train set S_m and sometimes a test set

- In practice, we often have a single annotated dataset
- We need to split it to achieve best generalization
 - and also be able to estimate the performance
 - Recall train-dev-test, cross-fold validation, bootstrap
- Each partition needs to be representative of the whole

For example: Imbalanced Classes

- Sometimes the data is uneven
 - E.g., most people won't have a heart attack
- Need to divide while keeping the original class balance
- Q: What happens if don't do this?
 - Q: Severe discrepancies between train and test performance

Approaching a New Problem: Takeaways

- Define setup: Which elements of the problem require ML
- Understand the features: Feature and label types & possible ranges
- Question the labels: Estimate annotation quality and biases
- Make sensible partitions: Each part is representative of the whole

The different stages of developing a model

Preprocessing -EDA - Baseline - model selection

The different stages of developing a model

Preprocessing -> EDA -> Baseline -> model selection

Preprocessing

- Large-scale data is bound to have errors and inconsistencies
- Preprocessing: preparing the data before doing ML
 - We'll see missing and corrupt values, and creating new features
 - All of these will be in the hackathon
 - As well as most other real-world problems
- Much of the success of ML relies on it
 - Give it plenty of time and thought

Preprocessing After Partitioning

- Always develop preprocessing on the training set
- Q: What if you develop preprocessing on the entire dataset?
 - You'll get acquainted with the test set
 - Thus contaminating it

Dealing with Missing Feature Values

- Several reasons for missing feature values:
 - Error in collection process (e.g., doctor forgot to mark)
 - Error in coding
- First, identify how a missing feature value is coded in your data
 - n/a, 0, -99, -1
 - Requires understanding of feature semantics
- Most models won't deal correctly with such values
- We need to choose whether
 - To guess missing values (termed imputation)
 - Discard features with many missing values

Data Imputation

- Data Imputation: replacing missing data with substituted values
- A broad field with many approaches
- Q: Can you think of an approach for data imputation?
 - Filling in with average values
 - Extrapolation
 - Many more (see numpy, pandas in python)

Outliers and Corrupt Values in the Data

- Corrupt values often appear in data
 - People who are 7000 or −3 years old
 - Can manifest in subtle, domain-specific ways
 - E.g., male patients with ovary conditions
- We need to choose a policy for corrupt values
 - Similarly to missing values impute or discard
- Some ML models are more robust to outliers
 - Think of the bias-variance tradeoff

Creating Features

- Some data is not naturally in \mathbb{R}^d (e.g. it's text or graph)
- Mapping it to \mathbb{R}^d is called Euclidean Embedding
 - E.g., in current NLP, word embedding is a must-have preprocessing step
- A topic for advanced ML courses

Preprocessing: Only in Code

- The same preprocessing steps must be applied to train-dev-test
 - But we only see the training
- Preprocessing should always be done in code, never manually
 - Apply same preprocessing to all data
 - Never impute missing values / correct outliers manually
- Q: What's the danger in applying manual preprocessing?
 - Over-estimation of performance
 - As other data partitions won't receive the same treatment

The different stages of developing a model

Preprocessing -> EDA -> Baseline -> model selection

Exploratory Data Analysis

- After preprocessing a dataset, we usually start exploring
- Exploratory Data Analysis (EDA): looking for patterns, with no specific hypotheses
- Q: Which data partition should we explore?
 - Only the training set

EDA: Summary Statistics

- Collect statistics to get a grasp on data behavior
 - Typical value: Mean, Median, Mode
 - Measure of variability: Standard deviation, IQR
 - Measure of relationship: Covariance, correlation between features

Example: Pima dataset

- Native Arizona women (Pima tribe) often suffer from type-II diabetes
- Dataset consists of 768 records with 9 features:

Pregnancies	Number of times pregnant
Glucose	Plasma glucose after 2 hours in tolerance test
Blood pressure	Diastolic blood pressure (mm Hg)
Skin thickness	Triceps skin fold thickness (mm)
Insulin	2-Hour serum insulin (mu Ú/ml)
BMI	Body mass index (weight in kg/(height in m) ²)
Diabetes pedigree	Family history function
Age	Age (years)
Sick	Class variable (0 or 1)

Example: Pima Indians dataset

```
> summary(d)
  times.preg
                plasma.glucose
                                    ΒP
                                                   skin
Min. : 0.000
                Min. : 0.0
                              Min.
                                     : 0.00
                                              Min. : 0.00
1st Qu.: 1.000
                              1st Qu.: 62.00
                                              1st Ou.: 0.00
                1st Qu.: 99.0
                Median :117.0
Median : 3.000
                              Median : 72.00
                                              Median:23.00
Mean : 3.845
                Mean
                      :120.9
                              Mean
                                     : 69.11
                                              Mean :20.54
                                              3rd Qu.:32.00
3rd Ou.: 6.000
                3rd Ou.:140.2
                               3rd Ou.: 80.00
Max. :17.000
                Max.
                      :199.0
                              Max.
                                     :122.00
                                              Max. :99.00
   insulin
                    BMI
                                pedigree
                                                  age
Min. : 0.0
               Min.
                     : 0.00
                              Min.
                                    :0.0780
                                             Min.
                                                    :21.00
1st Qu.: 0.0
               1st Qu.:27.30
                              1st Qu.:0.2437
                                             1st Qu.:24.00
Median: 30.5
               Median :32.00
                             Median :0.3725
                                             Median :29.00
Mean : 79.8
               Mean :31.99
                             Mean :0.4719
                                             Mean
                                                    :33.24
3rd Qu.:127.2 3rd Qu.:36.60
                              3rd Qu.:0.6262
                                             3rd Ou.:41.00
Max.
       :846.0
               Max.
                     :67.10
                              Max.
                                    :2.4200
                                             Max.
                                                    :81.00
sick
0:500
1:268
```

More EDA Methods

- Q: Did we already see EDA methods in the course?
- Clustering and dimensionality reduction can reveal patterns in data
 - E.g., by looking at principal components in PCA

The different stages of developing a model

Preprocessing -> EDA -> Baseline -> model selection

Baseline algorithm

- After exploring the data, we may have hypotheses regarding the data
 - E.g., which features are indicative of the label
 - What feature interactions are important
- Baseline algorithm: A naive approach against which we'll compare more complex models
 - Rule of thumb: Aim for either low bias or low variance baselines
 - E.g., deep vs. shallow decision trees
- Baselines should be easy and quick to implement

- The baseline gives us a sense of the problem complexity
- To estimate its performance we test it on a held out set
 - Either cross-validation or a predefined dev set
- If the baseline does very well the problem is relatively easy
 - And we don't need to invest much effort into modelling
- Otherwise, it serves as reference to more advanced approach

The different stages of developing a model

Preprocessing > EDA > Baseline > model selection

Insert Here Everything We Learned

- Goal: Improve over baseline
 - Bagging or boosting the baseline
 - Ensembeling different learners
 - Experimenting with the regularization term
 - Kernelizing the baseline model
 - Any combination of these approaches
- Tune hyperparameters on the development set set

4 Stages of Model Development: Recap

- In all 4 stages you'll need to deal with vast quantities of data
- E.g., millions of samples (Big Data)
- introduces a novel set of technical challenges

The Missing Semester of your Education

- Many tools and paradigms are crucial for everyday work
 - Software development, in general and ML specifically
 - Efficient coding, software packages, source control, shell scripting
- These usually don't fit the syllabus of any specific course
 - Including IML
- We'll give some pointers

The Missing Semester of your Education

- I strongly recommend to checkout The missing semester¹
- MIT Grad students initiative: a course covering these topics
- All material available online (lecture, handouts, exercises, etc.)

Schedule

- 1/13/20: Course overview + the shell
- 1/14/20: <u>Shell Tools and Scripting</u>
- 1/15/20: Editors (Vim)
- **1/16/20**: <u>Data Wrangling</u>
- 1/21/20: Command-line Environment
- 1/22/20: Version Control (Git)
- 1/23/20: Debugging and Profiling
- 1/27/20: <u>Metaprogramming</u>
- 1/28/20: Security and Cryptography
- 1/29/20: Potpourri
- 1/30/20: <u>Q&A</u>

Video recordings of the lectures are available on YouTube.

https://missing.csail.mit.edu/

For example, what's the problem with this code?

```
def preprocess_file(file_name):
    """
    Run through the lines of a file and preprocess them
    """
    preprocessed_lines = []
    for line in open(file_name):
        preproc_line = clean_line(line)
        preprocessed_lines.append(preproc_line)
    return preprocessed_lines
```

- Note we store all of the file contents in memory
- Q: What happens when the file contains millions of samples?
 - We'll quickly get an out-of-memory error

Prefer Lazy Evaluation

- Lazy evaluation: Delay evaluation until the value is needed
- In python this is done with the yield operator

```
def preprocess_file(file_name):
    """
    Run through the lines of a file and preprocess them
    """
    preprocessed_lines = []
    for line in open(file_name):
        preproc_line = clean_line(line)
        yield preproc_line
```

- Produces iterator evaluating the next value only when needed
- Aim to hold the minimal units in memory at any given time

Parallelization

- Performing math operations in parallel is key for time efficiency
- Q: What can we usually parallelize in algebraic computation?

• Map reduce, Spark, Hadoop are paradigms for such operations

CPU vs. GPU

- Q: How many operations can we actually perform in parallel?
 - Just as many cores we have on our machine
- A few cores on laptop or PCs
- Small 100s on a high-capacity CPU server
- Graphical Processing Units (GPU) have 1000s of cores

GPU

- Originally developed for graphical rendering
 - Which also have a lot of parallelizable algebraic operations
- Ubiquitous in ML with the advent of parameter heavy models
 - Speeds training a model by a factor of 10 or 100
 - There are now processors developed speficially for ML
- Originally required a dedicated programming solution (CUDA)
 - Many abstractions developed in code packages

Don't write your own learner from scratch

- Finally, familiarize with popular packages
 - Pandas
 - sklearn
 - matplotlib
 - numpy
 - tqdm
 - logging

Use the Test Set Once

- We're ready to test our model against a truly held-out set item
 Goal: Understand where model works and where it doesn't
 - "all models are wrong, some are useful"
- Try to do this only once
 - The more you use your test set, the more you'll overfit
- We'll discuss best practices for reporting results

Reporting Results

Plot training and test error over model complexity and sample size

Reporting Results

Plot a confusion matrix to better understand performance

Perform Error Analysis

- Sample 100s of examples where your model was wrong
- Manually go over them and find recurring patterns

Phenomenon	Passage Highlights	Question	Answer	Our mode
Subtraction + Coreference	Twenty-five of his 150 men were sick, and his advance stalled	How many of Bartolom de Amsqueta's 150 men were not sick?	125	145
Count + Filter	Macedonians were the largest ethnic group in Skopje, with 338,358 inhabi- tants Then came Serbs (14,298 inhabitants), Turks (8,595), Bosniaks (7,585) and Vlachs (2,557)	How many ethnicities had less than 10000 people?	3	2
Domain knowledge	Smith was sidelined by a torn pec- toral muscle suffered during practice	How many quarters did Smith play?	0	2
Addition	culminating in the Battle of Vienna of 1683, which marked the start of the 15-year-long Great Turkish War	What year did the Great Turkish War end?	1698	1668

Table 5: Representative examples from our model's error analysis. We list the identified semantic phenomenon, the relevant passage highlights, a gold question-answer pair, and the erroneous prediction by our model.

Dua et al.

Compare Across all Models

Do all of these evaluation across all models you've tested

Create an Interactive Demo

- Interactive demo is an excellent way to test models on various inputs
 - and test different hyperparameter configurations
- Used to be very time consuming to create
- I strongly recommend learning streamlit²
 - Create useful demos in a few lines of code
- Q: See a few demos?

²https://streamlit.io

Reproducibility

- Results should replicate across different runs, computers, data
- This turns out to be a very hard problem

Write Reproducible Code

- Use command line arguments
 - For file names, hyperparameters, and anything configurable
 - Makes it easy to re-run your configuration again
- Don't use Jupyter Notebooks for model development
 - Great for teaching & visualization, terrible for reproducibility³

³https://www.youtube.com/watch?v=7jiPeIFXb6U

Reproducing Results is Hard: Controlling Randomness

- Some models depend on random initialization
 - Q: Which ones did we see in the course?
 - E.g., K-means clustering
 - Neural networks
- Make sure to set seeds
 - Lead to identical pseudo-random numbers over different runs
- Yet some stubborn randomness persists
 - GPUs are notorious for different results with same seed

Reproducing Results is Hard: Hardware Limitations

- Large models developed in big tech companies
 - E.g., BERT, GPT-3, Dall-e, ...
- Many labs can't train or even run these models
 - GPU memory just too low
- Green AI (Roy Schwartz et al.)
 - Initiative for small efficient models fitting small hardware budget

- We've covered 3 overarching themes
 - Approaching a new problem
 - Developing a model
 - Reporting results
- Discussed many pointers and good practices
 - Hopefully useful as a reference and study guide
- No replacement for experience
 - Try to implement these concepts in as many projects as possible
 - Including IML Hackathon 2022!