

Team #6

Course Project 26/10/2023

Prediction of Mechanical Properties of Steels

Team Project on the course "Introduction to Data Science" by **Kamil Garifullin**, **Pavel Bartenev**, and **Viktoriia Zinkovich**

Team VPK

Viktoriia Zinkovich
Data Science
MS-1

Pavel Bartenev
Data Science
MS-1

Problem

Calculating the mechanical properties of steels requires expensive experiments

So our aim is to make a model that will predict the **properties of steels** and **reduce the cost** of steel research

Namely, based on the dataset with chemical composition of steels (%C, %Si, %Mn, %P, %S...) we want to predict its tensile strength

Dataset
Dataset
Dataset
Dataset

Data pre-processing: search for outliers, missing data

Dataset
Dataset
Dataset
Dataset

Data

df = pd.read_csv('Steels_kaggle.csv')

	Alloy code	С	Si	Mn	P	s	Ni	Cr	Мо	Cu	v	AI	N	Ceq	Nb + Ta	Temperature (°C)	0.2% Proof Stress (MPa)	Tensile Strength (MPa)	Elongation (%)	Reduction in Area (%)
0	MBB	0.12	0.36	0.52	0.009	0.003	0.089	0.97	0.61	0.04	0.0	0.003	0.0066	0.0	0.0	27	342	490	30	71
1	MBB	0.12	0.36	0.52	0.009	0.003	0.089	0.97	0.61	0.04	0.0	0.003	0.0066	0.0	0.0	100	338	454	27	72
2	MBB	0.12	0.36	0.52	0.009	0.003	0.089	0.97	0.61	0.04	0.0	0.003	0.0066	0.0	0.0	200	337	465	23	69
3	MBB	0.12	0.36	0.52	0.009	0.003	0.089	0.97	0.61	0.04	0.0	0.003	0.0066	0.0	0.0	300	346	495	21	70
4	MBB	0.12	0.36	0.52	0.009	0.003	0.089	0.97	0.61	0.04	0.0	0.003	0.0066	0.0	0.0	400	316	489	26	79

915

steels

20

features

12

elements

Outliers

sns.heatmap(df[cols], cmap=color)

Outliers

sns.heatmap(df[cols], cmap=color)

outlier with a tensile strength

Team #6 **Prediction of Steels Properties**

exclude the outlier from the data

Pre-processing

1. Constant values

Removed columns that contain the same number in all rows

2. NaNs

Removed columns that contain unknown values

3. Categorical

Processed categorical columns with one-hot encoding (i.e. code of the alloy)

- 1. df = df.loc[:, df.nunique() != 1]
- 1. columns_with_nan = df.columns[df.isnull().any()].tolist()
- 1. df = pd.get_dummies(df, columns=categorical_columns, drop_first=True)

Training Training Models Training

Used models, results of training, accuracy of predictions

Training
Training
Training
Training

Used Models

We used **three different types** of models to compare prediction results

1st

2nd

3rd

Linear Regression

Random Forest Regression **Catboost**

Models Training

concentrations

Concentrations: Train

Concentrations: Test

Linear Regression

RMSE = 107.07 $R^2 = 0.21$

Random Forest Regression

$$RMSE = 110.44$$
$$R^2 = 0.16$$

Catboost

$$RMSE = 117.66$$

$$R^2 = 0.04$$

Models Training original dataset

Let's train models not only on concentrations, but also on all the features remaining in the dataset(e.g. reduction in area, elongation, temperature)

Original Dataset: Train

Original Dataset: Test

Linear Regression

800 True curve fit 700 800 700 800 Tensile Strength_{true}

Random Forest Regression

Catboost

RMSE = 38.51

 $R^2 = 0.90$

RMSE = 21.77

 ${
m R}^2 = 0.97$

RMSE = 14.53

 $R^2 = 0.99$

Models Training

magpie database

Data set expansion

1. MAGPIE

"Materials Aggregated Property Prediction

Engine"

maximumMeltingTemperature

- minimum CovalentRadius
- mean CovalentRadius
- maximum Electronegativity

Tool and dataset used in materials science and informatics for predicting materials properties based on the elemental composition of a material.

Magpie Dataset: Correlation

915

steels

192

features

Properties

Magpie Dataset: Train

original dataset + magpie

Properties

Magpie Dataset: Test

original dataset + magpie

Linear Regression

True curve Fit 700 600 700 800 700 800 700 800 700 800 700 800

$\mathrm{RMSE} = 39.36$

$$R^2 = 0.89$$

Random Forest Regression

$\mathrm{RMSE} = 21.61$

$$R^2 = 0.97$$

Catboost

$$RMSE = 16.20$$

$$R^2 = 0.98$$

Models Training

megnet database

Data set expansion

2. MEGNET embeddings

"The MatErials Graph Network"

Embeddings

Megnet provides element's embeddings that encode useful chemical information that can be transferred learned to develop models with smaller datasets.

Megnet Dataset: Correlation

915

steels

230

features

Megnet Dataset: Train

original dataset + magpie + megnet

Megnet Dataset: Test

original dataset + magpie + megnet

Linear Regression

700

600

500

Random Forest Regression

$$RMSE = 39.08$$

Tensile Strengthtrue

600

700

$$R^2 = 0.89$$

$$RMSE = 21.84$$

$$R^2 = 0.97$$

Catboost

$$RMSE = 15.10$$

$$R^2 = 0.98$$

Models Training top features

Finally, we train the model that performed best in the previous sections - **Catboost** with selection of the most important features

Top features

reminder

Top features

Model with **importance threshold = 0.5** is the best

Top features

230 features

12 features

Top 12 Features: Catboost

original dataset + magpie + megnet

RMSE = 7.48

$$RMSE = 14.42$$

$$R^2 = 0.99$$

Properties

Top 12 Features: Catboost

original dataset + magpie + megnet

original dataset

magpie

megnet

Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion

Results: RMSE

	Concentration s	Original Data	Original + Magpie	Original + Magpie +	
Linear Regression	107.075	38.517			
Random Forest Regressor	110.441	21.77			
Catboost	117.657	14.535	It ain't much,	but it's honest work	
Catboost Top 12 features	-	-	_	14.423	

Results: R^2

	Concentration s	Original Data	Original + Magpie	Original + Magpie + Megnet		
Linear Regression	0.21	0.9	0.89	0.89		
Random Forest Regressor	0.16	0.97	0.97	0.97		
Catboost	0.045	0.99	0.98	0.98		
Catboost Top 12 features	-	-	-	0.99		

Conclusion

 The developed model avoids expensive and time-consuming experiments

2. The best model turned out to be catboost trained on the top 12 features using two open databases (Megnet & Magpie)

13

models

0.99

R² score

Questions?

	Concentra tions	Original Data	Original + Magpie	Original + Magpie + Megnet
Linear Regression	107.075	38.517	39.364	39.078
Random Forest Regressor	110.441	21.77	21.611	21.845
Catboost	117.657	14.535	16.119	15.098
Catboost Top 12 features	-	-	-	14.423

Viktoriia Zinkovich
Viktoriia.Zinkovich@skoltech.ru
Data Science

Pavel Bartenev
Pavel.Bartenev@skoltech.ru

Data Science

Kamil Garifullin
Kamil.Garifullin@skoltech.ru
Data Science

RMSE for different models