On the Feasibility of Fidelity- for Graph Pruning

Yong-Min Shin, Won-Yong Shin Yonsei Univeristy Seoul, South Korea

Introduction

XAI for graph neural networks (GNNs)

- Many XAI methods for GNNs highlight local edges that are highly relevant to the output.
- **Edge attribution**: How much can we attribute the model's output to each input edge?

Quantitative measurement: Fidelity-

- Output **difference** between two instances when the **original input graph** is used and when the **unimportant edges are removed**.
- If the explanation is valid, then <u>edges deemed less important</u> should have <u>less impact to the model's output</u> after <u>removal</u> from the input.

Research Question

Can we improve the efficiency of the GNN model by performing graph pruning graph graph pruning graph gra

Intuition: If an edge is frequently removed in Fidelity-, it may simply be removed from the original graph.

Overview: FiP (Fidelity-inspired Pruning)

Original graph

Attention

Saliency

Observations and Discussion

Obs.1: Can Explanation be used for Graph Pruning?

Obs.2: Does Graph Pruning and Fidelity- Scores Translate?

Method	BAShapes	Cora	Citeseer	Pubmed
Att	4.06×10^{-2}	3.67×10^{-2}	2.23×10^{-2}	2.46×10^{0}
SA	3.54×10^{-7}	2.21×10^{-7}	$\boldsymbol{8.90\times10^{-8}}$	2.46×10^{0}
IG	6.25×10^{0}	1.26×10^{0}	5.68×10^{-1}	$\boldsymbol{2.25\times10^0}$
GB	3.77×10^{0}	1.42×10^{0}	7.04×10^{-1}	2.40×10^{0}
GNNEx	3.44×10^{-7}	2.14×10^{-7}	3.52×10^{-1}	2.46×10^{0}
PGEx	3.83×10^{-7}	2.04×10^{-2}	7.11×10^{-3}	2.46×10^{0}
FDnX	1.41×10^{-1}	1.77×10^{-2}	7.05×10^{-3}	2.46×10^{0}

Discussions on Results

- 1) Explanations can be used for graph pruning.
- 2) Avoid GNN-tailored methods.
- 3) Graph pruning naturally improve efficiency for GNN.
- 4) Fidelity does not translate to graph pruning.
- 5) The problem likely resides in the practical problem of aggregating local explanation:
 - Scale of attribution score across nodes
 - Num. of edges for each explanation
- 6) Inherent limitation of graph pruning: Local explanation is unique for each node, creating a single (pruned) graph is always a lossy compression of information.