

Summary of Verification and Validation (V&V) Activities

Tool Reference

RST Reference Number: RST24CV14.01

Date of Publication: 02/07/2024

Recommended Citation: U.S. Food and Drug Administration. (2024). *Mock Circulatory Loop to Generate Variable Adult Heart Conditions for Evaluating Mechanical Circulatory Support Devices* (RST24CV14.01). https://cdrh-rst.fda.gov/mock-circulatory-loop-generate-variable-adult-heart-conditions-evaluating-mechanical-circulatory

For more information

Catalog of Regulatory Science Tools to Help Assess New Medical Devices

Disclaimer

About the Catalog of Regulatory Science Tools

The enclosed tool is part of the Catalog of Regulatory Science Tools, which provides a peer-reviewed resource for stakeholders to use where standards and qualified Medical Device Development Tools (MDDTs) do not yet exist. These tools do not replace FDA-recognized standards or MDDTs. This catalog collates a variety of regulatory science tools that the FDA's Center for Devices and Radiological Health's (CDRH) Office of Science and Engineering Labs (OSEL) developed. These tools use the most innovative science to support medical device development and patient access to safe and effective medical devices. If you are considering using a tool from this catalog in your marketing submissions, note that these tools have not been qualified as Medical Device Development Tools and the FDA has not evaluated the suitability of these tools within any specific context of use. You may request feedback or meetings for medical device submissions as part of the Q-Submission Program.

For more information about the Catalog of Regulatory Science Tools, email <u>RST_CDRH@fda.hhs.gov</u>.

Summary of Verification and Validation (V&V) Activities

Blood analog fluid (BAF), used as the test fluid in the MCL, was prepared to mimic the viscous behavior of blood. BAF characterization involved fluid viscosity and density measurements. Acceptable. BAF properties closely match those of blood.	V&V Activity	Description	Result		
mimic the viscous behavior of blood. BAF characterization involved fluid viscosity and density measurements. Please refer to document, 'Preparation of Blood Analog Fluid (BAF)'. Pressure transducer calibration The LV, LA, and Ao pressure transducers were calibrated using a graduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Please refer to document, 'Pressure Transducer Calibration'. The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: Ao LV LA 60.1 59.6 57 mV/mmHg mV/mmHg mV/mmHg This is a characterization only test that is meant to verify the precision and reproducibility of the pressure sensors. Water: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – 100 mV/L/min (sensor gain: 85%)	Test fluid	Blood analog fluid (BAF), used as the	Dynamic viscosity: 3.95 mPa·s		
BAF characterization involved fluid viscosity and density measurements. Please refer to document, 'Preparation of Blood Analog Fluid (BAF)'. The LV, LA, and Ao pressure transducer calibration agraduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Please refer to document, 'Pressure Transducer Calibration'. The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min (sensor gain: Pe688 – 100 mV/L/min (sensor gain: Pe68	characterization	test fluid in the MCL, was prepared to	Density: 1.095 g/cm ³		
viscosity and density measurements. Please refer to document, 'Preparation of Blood Analog Fluid (BAF)'. Pressure transducer calibration The LV, LA, and Ao pressure transducers were calibrated using a graduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Please refer to document, 'Pressure Transducer Calibration'. The CO (EP688) and Ao (ME-25PXN) flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. ME-25PXN – 50 mV/L/min (sensor gain: BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain:		mimic the viscous behavior of blood.			
Please refer to document, 'Preparation of Blood Analog Fluid (BAF)'. Pressure transducer calibration The LV, LA, and Ao pressure transducers were calibrated using a graduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Please refer to document, 'Pressure Transducer Calibration'. The CO (EP688) and Ao (ME-25PXN) flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – 100 mV/L/min (sensor gain: BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain:		BAF characterization involved fluid	Acceptable. BAF properties closely		
Pressure transducer calibration The LV, LA, and Ao pressure transducer were calibrated using a graduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Please refer to document, 'Pressure Transducer Calibration'. Pressure Transducer Calibration'. The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. Please refer to document, 'Flow Sensor Calibration'. Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – 100 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min (sensor gain: PRESSURE PROME		viscosity and density measurements.	match those of blood.		
Pressure transducer transducers were calibrated using a graduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Ao		Please refer to document,			
Pressure transducer calibrated using a graduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Please refer to document, 'Pressure Transducer Calibration'. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min (sensor gain: 85%)		'Preparation of Blood Analog Fluid			
transducer calibrated using a graduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Please refer to document, 'Pressure Transducer Calibration'. This is a characterization only test that is meant to verify the precision and reproducibility of the pressure sensors. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min (sensor gain: 85%)		(BAF)'.			
calibration graduated (in mmHg) cylindrical tube containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. Flow Sensor Calibration'. Graduated (in mmHg) cylindrical tube containing a volumetric fluid collection method. Graduated (in mmHg) cylindrical tube containing a flow flow flow flow flow flow flow flow	Pressure	The LV, LA, and Ao pressure	Water:		
containing a 0-100 mmHg range of heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. End a limit wor/mmHg mV/mmHg mV/mmHg This is a characterization only test that is meant to verify the precision and reproducibility of the pressure sensors. Water: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: ME-25PXN – 50 mV/L/min (sensor gain	transducer	transducers were calibrated using a	Ao	LV	LA
heights of fluid column. Please refer to document, 'Pressure Transducer Calibration'. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: Ao LV LA 60.1 59.6 57 mV/mmHg mV/mmHg mV/mmHg Water: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: 9588 – 100	calibration	graduated (in mmHg) cylindrical tube	60	59	58
Please refer to document, 'Pressure Transducer Calibration'. Ao		containing a 0-100 mmHg range of	mV/mmHg	mV/mmHg	mV/mmHg
Please refer to document, 'Pressure Transducer Calibration'. Ao		heights of fluid column.		l	
Transducer Calibration'. Transducer Calibration'. 60.1 59.6 57 mV/mmHg mV			BAF:		
This is a characterization only test that is meant to verify the precision and reproducibility of the pressure sensors. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: ME-25PXN – 50 mV/L/min (senso		Please refer to document, 'Pressure	Ao	LV	LA
This is a characterization only test that is meant to verify the precision and reproducibility of the pressure sensors. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. ME-25PXN – 50 mV/L/min (sensor gain: 85%) Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: ME-25PXN – 50 mV/L/min		Transducer Calibration'.	60.1	59.6	57
is meant to verify the precision and reproducibility of the pressure sensors. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. ME-25PXN – 50 mV/L/min (sensor gain: 85%) Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: ME-25PXN – 50 mV/L/min (senso			mV/mmHg	mV/mmHg	mV/mmHg
is meant to verify the precision and reproducibility of the pressure sensors. Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. ME-25PXN – 50 mV/L/min (sensor gain: 85%) Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: ME-25PXN – 50 mV/L/min (senso					
Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min (sensor gain: ME-25PXN – 50 mV/L/min (sensor gain: ME-25PX			-		
Flow sensor calibration The CO (EP688) and Ao (ME-25PXN) flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. Mater: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min (sensor gain: ME-25PXN – 50 mV/L/min (sensor gain: ME-2					
flow sensors were calibrated using a traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – N/A (*can only be used with BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min (mE-25PXN – 50 mV/L/min (sensor gain: ME-25PXN – 50 mV/L/min (sensor gain: ME-25			reproducibilit	ty of the press	sure sensors.
traditional timed volumetric fluid collection method. Please refer to document, 'Flow Sensor Calibration'. BAF) ME-25PXN – 50 mV/L/min (sensor gain: 85%) BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: ME-25PXN – 5			Water:		
collection method. ME-25PXN – 50 mV/L/min (sensor gain: 85%) Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: 85%)	calibration		EP688 – N/A (*can only be used with		
Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 - 100 mV/L/min ME-25PXN - 50 mV/L/min (sensor gain:			ME-25PXN – 50 mV/L/min (sensor gain:		
Please refer to document, 'Flow Sensor Calibration'. BAF: EP688 - 100 mV/L/min ME-25PXN - 50 mV/L/min (sensor gain:		collection method.			
Sensor Calibration'. BAF: EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain:			85%)		
EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain:		,			
ME-25PXN – 50 mV/L/min (sensor gain:		Sensor Calibration'.	EP688 – 100 mV/L/min ME-25PXN – 50 mV/L/min (sensor gain: 98%) This is a characterization only test that is meant to verify the precision and		
98%)					
This is a characterization only test that					
reproducibility of the flow sensors.					

Frequency	The filter frequency response on the	Recommended filter for pressure:	
response filter	pressure amplifier and flowmeter		
characterization	modules were characterized using a	Pressure amplifier – 30 Hz low-pass	
	simplified flow loop.	filter (for LV, LA, and Ao pressure	
		transducer channels)	
	Please refer to document, 'Filter		
	Frequency Response Characterization'.	Recommended filter for flow:	
		T402 flowmeter – 10 Hz filter (for ME-	
		25PXN flow sensor)	
		FM501 flowmeter – 30 Hz pulsatile	
		frequency response (for EP688 flow	
		probe)	
		This is a characterization only test that	
		is meant to ensure measurement	
		accuracy.	
MCL simulations	The MCL was used to simulate the	Detailed test results are reported and	
of the	pathophysiologic hemodynamics	discussed in <u>D'Souza et al., JBME, 2024</u> .	
recommended	corresponding to the pre-defined five		
target test	target test conditions. Qualitative	The absolute difference between the	
conditions	pressure and flow pulses and	target and simulated hemodynamics	
	quantitative cardiac indices were	range between 3 – 9 mmHg for the SAP,	
	computed and compared against the	2 – 12 mmHg for the DAP, 0.3 – 1 L/min	
	target values for validation purposes.	for the mean CO, and 0.001 – 0.01 s for	
		the cardiac cycle time.	
	Please refer to documents: 'USER		
	MANUAL: Mock Circulatory Loop	Acceptable. The simulated	
	(MCL) Setup and Testing', D'Souza et	hemodynamics closely matched the set	
	al., JBME, 2024	target values.	
MCL	The repeatability of the MCL test	Detailed test results are reported and	
repeatability	system was characterized by	discussed in <u>D'Souza et al., JBME, 2024</u>	
testing	conducting ten replicate (or trial) tests	(sub-section: MCL Repeatability	
	at one of the recommended test	Testing) and Contarino et al., ASAIO	
	conditions, cardiogenic shock, and by	Journal, 2023.	
	keeping all MCL inputs constant among		
	the ten replicate tests.	The maximum uncertainty (95% CI) in	
		the pressure and CO pulses are: Ao	
	Please refer to documents: 'Mock	pressure = 1.4 mmHg, LV pressure =	
	Circulatory Loop (MCL) Repeatability		

Testing', D'Souza et al., JBME, 2024, Contarino et al., ASAIO Journal, 2023.	10.2 mmHg, LA pressure = 11.57 mmHg, and CO = 1.17 L/min.	
	Acceptable . Low uncertainty values demonstrate repeatability of the test system.	