```
ods html close;
ods html;
ods rtf file='c:\courses\courses\ma416\MultReg.rtf';
options nodate nonumber nocenter;
title1 'Multiple Regression of College GPA vs. Independent Variables';
data new;
   input CollegeGPA HighSchoolGPA SAT Quality;
/** Quality = Quality of letters of recommendation on a scale of 1-10 **/
/** with 10 being high quality.
cards;
2.04 2.01 1070
                5
2.56 3.40 1254
3.75 3.68 1466
                6
1.10 1.54
          706
                4
3.00 3.32 1160
                5
0.05 0.33
                3
          756
1.38 0.36 1058
                2
1.50 1.97 1008
                7
1.38 2.03 1104
4.01 2.05 1200
                7
1.50 2.13
                7
          896
1.29 1.34
                3
           848
1.90 1.51
          958
                5
3.11 3.12 1246
                6
1.92 2.14 1106 4
0.81 2.60 790
                5
1.01 1.90 954 4
3.66 3.06 1500
                6
2.00 1.60 1046
               5
2.05 1.96 1054
               4
2.60 1.96 1198
                6
2.55 1.56
          940 3
0.38 1.60
          456
                6
2.48 1.92 1150
                7
2.74 3.09
          636
                6
1.77 0.78
           744
                5
1.61 2.12
          644
                5
          842
0.99 1.85
                3
1.62 1.78 852
                5
2.03 1.03 1170 3
3.50 3.44 1034 10
3.18 2.42 1202
                5
2.39 1.74 1018
               5
1.48 1.89 1180
               5
1.54 1.43
          952 3
1.57 1.64 1038 4
2.46 2.69 1090
                6
2.42 1.79
                5
          694
2.11 2.72 1096
                6
2.04 2.15 1114
                5
1.68 2.22 1256
                6
                5
1.64 1.55 1208
2.41 2.34 820
                6
2.10 2.92 1222
                4
1.40 2.10 1120
                5
2.03 1.64
          886
1.99 2.83 1126
                7
2.24 1.76 1158
               4
0.45 1.81
          676
                6
                7
2.31 2.68 1214
2.41 2.55 1136
                6
2.56 2.70 1264
                6
2.50 1.66 1116
               3
```

```
2.35 2.01
              604
                     5
2.82
      1.24
              854
                     6
1.80
      1.95
                     6
              814
      1.73
              778
                     3
1.29
      1.08
              800
                     2
1.68
3.44
      3.46
             1424
                     7
1.90
      3.01
              950
                     6
2.06
      0.54
             1056
                     3
3.30
      3.20
              956
                     8
                     5
1.80
      1.50
             1352
                     5
2.00
      1.71
              852
                     5
1.68
      1.99
             1168
      2.76
              970
                     6
1.94
                     4
0.97
      1.56
              776
1.12
      1.78
              854
                     6
1.31
      1.32
             1232
                     5
1.68
      0.87
             1140
                     6
3.09
      1.75
             1084
                     4
                     2
1.87
      1.41
              954
2.00
      2.77
             1000
                     4
2.39
      1.78
             1084
                     4
1.50
      1.34
             1058
1.82
      1.52
                     5
              816
                     7
      2.97
1.80
             1146
2.01
      1.75
             1000
                     6
1.88
      1.64
              856
                     4
1.64
      1.80
              798
                     4
2.42
      3.37
             1324
                     6
0.22
      1.15
              704
                     6
2.31
      1.72
             1222
                     5
0.95
      2.27
              948
                     6
1.99
      2.85
             1182
                     8
1.86
      2.21
             1000
                     6
1.79
      1.94
              910
                     6
3.02
      4.25
             1374
                     9
1.85
      1.83
             1014
                     6
1.98
      2.75
             1420
                     7
2.15
      1.71
                     6
              400
      2.20
              998
                     7
1.46
2.29
      2.13
              776
                     6
                     7
2.39
      2.38
             1134
1.80
     1.64
              772
                     4
      1.87
                     6
2.64
             1304
      2.53
             1212
                     4
2.08
      1.78
0.70
              818
                     6
0.89
      1.20
              864
run;
proc reg data=new;
```

We already reviewed these two "test" statements. Recall they calculate F tests for testing if various sets of betas are equal 0. I just wanted to bring up here that these are called "Partial F tests".

```
model CollegeGPA=WighSchoolGPA SAT Quality/p r ss1 ss2 clb;
```

```
SAT: test SAT=0; 
SAT_Quality: test SAT=Quality=0;
plot residual.*CollegeGPA='*';
```

```
run;
title1;
ods rtf close;
```

This statement prints a plot of the residuals (note the SAS keyword "residual." -and please note the period at the end of the word residual - this is not a mistake and must be included in this statement) on the y-axis versus the dependent variable College GPA on the x-axis. The command ='*' simply tells SAS to use an asterisk (*) as the symbol to represent each point in the plot (though for some reason, SAS used a "+" instead of an asterisk in the graph below!).

This graph is of interest because if there's truly a linear relationship between Y and the X's and if all assumptions for linear regression hold, this scatter plot of the residuals vs. College GPA will have no distinct pattern (e.g., the plot will look like a bunch of asterisks were thrown in the air and landed randomly and haphazardly on the plot). However, if there is some sort of pattern in this plot, then that means the relationship between Y and the X's may not be linear, or an assumption such as homoscedasticity or independence of observations is not met, or that there are other independent variables that should be added to the regression.

For example, the plot for these data can be found below. As you can see, as CollegeGPA increases, the residual tends to increase. This is not good! We do not want the value of the residuals to depend on the Y value. Rather we would like the mean of the residuals to be 0 at every Y value, with of course about half of the residuals above 0 and about half of the residuals below 0 at every Y value. Since this is not happening, something must not be correct in our model. See graph below for further discussion.

Multiple Regression of College GPA vs. Independent Variables

The REG Procedure Model: MODEL1

Dependent Variable: CollegeGPA

Number of Observations Read	100
Number of Observations Used	100

Analysis of Variance							
Source	DF	Sum of Squares		F Value	Pr > F		
Model	3	22.21437	7.40479	21.31	<.0001		
Error	96	33.35831	0.34748				
Corrected Total	99	55.57268					

Root MSE	0.58948	R-Square	0.3997
Dependent Mean	1.98050	Adj R-Sq	0.3810
Coeff Var	29.76402		

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error		Pr > t	Type I SS	Type II SS	95% Conf Limi	
Intercept	1	-0.15326	0.32294	-0.47	0.6362	392.23803	0.07827	-0.79429	0.48776
HighSchoolGPA	1	0.37635	0.11426	3.29	0.0014	16.51847	3.76981	0.14954	0.60316
SAT	1	0.00123	0.00030322	4.05	0.0001	5.62710	5.68934	0.00062505	0.00183
Quality	1	0.02268	0.05098	0.44	0.6574	0.06879	0.06879	-0.07851	0.12388

This output comes out because of the "p" and "r" options in our model statement above. "p" gives us the "Predicted Value" below, and the "r" option gives us the "Residual". You can ignore the other columns here.

Output Statistics								
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	Residual	Std Error Residual	Student Residual	-2-1 0 1 2	Cook's D
1	2.0400	2.0294	0.0620	0.0106	0.586	0.0180		0.000
2	2.5600	2.8010	0.1353	-0.2410	0.574	-0.420	1 1	0.002
•••								
98	2.0800	2.3767	0.1212	-0.2967	0.577	-0.514	*	0.003
99	0.7000	1.6564	0.0970	-0.9564	0.581	-1.645	***	0.019
100	0.8900	1.4038	0.1415	-0.5138	0.572	-0.898	*	0.012

Sum of Residuals	0
Sum of Squared Residuals	33.35831
Predicted Residual SS (PRESS)	36.75093

Test SAT Results for Dependent Variable CollegeGPA						
Source	DF	Mean Square	F Value	Pr > F		
Numerator	1	5.68934	16.37	0.0001		
Denominator	96	0.34748				

Test SAT_Quality Results for Dependent Variable CollegeGPA						
Source	DF	Mean Square	F Value	Pr > F		
Numerator	2	2.84795	8.20	0.0005		