DES PREUVES SANS MOT AUX PREUVES SANS DOUTE

CHRISTOPHE BAL

Document, avec son source L^AT_EX , disponible sur la page https://github.com/bc-writings/bc-public-docs/tree/main/visual-proof/polynomial-analytic-principles.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1. Et suivirent les fonctions séparablement analytiques

2

Date: 16 Juillet 2019 - 30 Mars 2025.

1. ET SUIVIRENT LES FONCTIONS SÉPARABLEMENT ANALYTIQUES

Que faire si nous avons des formules trigonométriques impliquant deux variables, ou plus? Par exemple, pour $(\alpha; \beta) \in (\mathbb{R}_+^*)^2$ tel que $0 < \alpha + \beta < \frac{\pi}{2}$, le dessin suivant nous donne $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ et $\sin(\alpha + \beta) = \cos\alpha\sin\beta + \sin\alpha\cos\beta$.

Le fait 3 ci-dessous, qui généralise le fait ??, implique la validité des formules trigonométriques précédentes sur \mathbb{C}^2 tout entier en choisissant $f_1(\alpha;\beta) = \cos(\alpha+\beta) - \cos\alpha\cos\beta + \sin\alpha\sin\beta$ et $f_2(\alpha;\beta) = \sin(\alpha+\beta) - \cos\alpha\sin\beta - \sin\alpha\cos\beta$. Nous voilà sauvés!

Définition 1. Soit $n \in \mathbb{N}^*$. Pour $f : \mathbb{C}^n \to \mathbb{C}$ et $k \in [1; n]$, la « k^e restriction » de f, relative à $(z_1; \ldots; z_{k-1}; z_{k+1}; \ldots; z_n) \in \mathbb{C}^{n-1}$, est définie sur \mathbb{C} par $f_k(z) = f(z_1; \ldots; z_{k-1}; z; z_{k+1}; \ldots; z_n)$.

Définition 2. Soit $n \in \mathbb{N}^*$. Une fonction $f : \mathbb{C}^n \to \mathbb{C}$ sera dite « séparablement analytique » $sur \mathbb{C}^n$, $si \forall k \in [1; n]$, toutes les k^{es} restrictions de f sont analytique $sur \mathbb{C}$.

Fait 3. Soient $n \in \mathbb{N}^*$ et $f : \mathbb{C}^n \to \mathbb{C}$ une fonction séparablement analytique. Si f s'annule sur un ouvert non vide Ω , alors f s'annule sur \mathbb{C}^n .

Démonstration. Raisonnons par récurrence sur $n \in \mathbb{N}^*$ pour démontrer la validité de la propriété $\mathcal{P}(n)$ définie par « Pour toute fonction séparablement analytique $f: \mathbb{C}^n \to \mathbb{C}$, si f s'annule sur un ouvert non vide Ω , alors f s'annule sur \mathbb{C}^n . ».

- Cas de base. $\mathcal{P}(1)$ découle directement du fait ??.
- **Hérédité.** Supposons $\mathcal{P}(n)$ valide pour un naturel n quelconque. Soit f une fonction séparablement analytique à (n+1) variables vérifiant les conditions de la propriété $\mathcal{P}(n+1)$. Notons Ω l'ouvert non vide sur lequel f est nulle. Quitte à réduire Ω , on peut supposer que $\Omega = \prod_{k=1}^{n+1} \mathcal{D}(\alpha_k; r[$ avec r > 0 et les α_k des complexes fixés.
 - (1) Pour $\omega \in \mathcal{D}(\alpha_{n+1}; r[$ fixé, posons $f_{\omega}: (z_1; \ldots; z_n) \in \mathbb{C}^n \mapsto f(z_1; \ldots; z_n; \omega) \in \mathbb{C}$. Comme f_{ω} vérifie les conditions de la propriété $\mathcal{P}(n)$, par hypothèse de récurrence, $\forall (z_1; \ldots; z_n) \in \mathbb{C}^n, f_{\omega}(z_1; \ldots; z_n) = 0$, soit $f(z_1; \ldots; z_n; \omega) = 0$.
 - (2) Pour z_1 , ..., z_n des complexes quelconques, posons $\ell(z) = f(z_1; ...; z_n; z)$. Le point précédent montre que ℓ vérifie $\mathcal{P}(1)$, donc, d'après le cas de base, $\forall z \in \mathbb{C}$, $\ell(z) = 0$, soit $f(z_1; ...; z_n; z) = 0$.
 - (3) Finalement, $\forall (z_1; ...; z_n; z) \in \mathbb{C}^{n+1}$, $f(z_1; ...; z_n; z) = 0$. Autrement dit, nous avons déduit la validité de $\mathcal{P}(n+1)$ à partir de celle de $\mathcal{P}(n)$.
- Conclusion. Par récurrence, $\mathcal{P}(n)$ est vraie pour tout naturel non nul n.

^{1.} L'ouvert d'annulation est l'intérieur d'un triangle.

^{2.} Avec des abus de notations évidents.

Exemple 4. L'implication $\left[\alpha + \beta + \gamma = \frac{\pi}{2} \implies \tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha = 1\right]$ est vraie pour $(\alpha; \beta; \gamma) \in (\mathbb{R}_+^*)^3$, comme le montre le dessin suivant. Il est naturel de se demander s'il est possible de partir, plus généralement, de $(\alpha; \beta; \gamma) \in (\mathbb{C} - \frac{\pi}{2}\mathbb{Z})^3$. Nous allons voir que c'est le cas. ³

Voici comment arriver à une généralisation pour $(\alpha; \beta; \gamma) \in (\mathbb{C} - \frac{\pi}{2}\mathbb{Z})^3$.

- XXX
- XXX
- XXX
- XXX
- XXX

^{3.} Pour une fois, la vérification directe est facile, mais cela sort de l'esprit de ce document, et est non généralisable. En effet, en multipliant par $\cos\alpha\cos\beta\cos\gamma$ l'égalité souhaitée, nous devons démontrer que $\sin\alpha\sin\beta\cos\gamma + \sin\beta\sin\gamma\cos\alpha + \sin\gamma\sin\alpha\cos\beta - \cos\alpha\cos\beta\cos\gamma = 0$. Dans le terme de gauche, les formules d'addition se cachent de façon ostentatoire. Nous obtenons $\sin\alpha\sin(\beta+\gamma) - \cos\alpha\cos(\beta+\gamma)$, puis $-\cos(\alpha+\beta+\gamma)$, soit $-\cos(\frac{\pi}{2})$ qui est bien nul.