ΘΕΜΑ 2

2.1. Μία θερμική μηχανή Carnot έχει συντελεστή απόδοσης $e_C=0.5$. Το καθαρό ποσό θερμότητας που απορροφά το ιδανικό αέριο της μηχανής ανά κύκλο λειτουργίας της είναι 1200 J. Η θερμότητα που απορροφά το ιδανικό αέριο από τη δεξαμενή υψηλής θερμοκρασίας, ανά κύκλο λειτουργίας της μηχανής είναι ίσο με:

(a) $1200 \, \text{J}$, (b) $2400 \, \text{J}$, (v) $2000 \, \text{J}$

2.1.Α. Να επιλέξετε την ορθή πρόταση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Ηλεκτρόνιο εισέρχεται τη χρονική στιγμή t=0 σε ομογενές ηλεκτρικό πεδίο έντασης \vec{E} , με αρχική ταχύτητα \vec{v}_0 ίδιας κατεύθυνσης με αυτήν των δυναμικών γραμμών. Θεωρήστε αμελητέες τις βαρυτικές αλληλεπιδράσεις.

Δίνονται: m η μάζα του ηλεκτρονίου και e το στοιχειώδες ηλεκτρικό φορτίο.

Το ηλεκτρόνιο επανέρχεται στο σημείο εκτόξευσης τη χρονική στιγμή t, που είναι ίση με:

(a)
$$\frac{m \cdot v_0}{E \cdot e}$$
 , (b) $\frac{m \cdot v_0}{2 \cdot E \cdot e}$, (c) $\frac{2 \cdot m \cdot v_0}{E \cdot e}$

2.2.Α. Να επιλέξετε την ορθή πρόταση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9