Link Stream Compression for Multiscale Analysis of Temporal Interactions

Hindol Rakshit, Tiphaine Viard, and Robin Lamarche-Perrin

complexnetworks.fr

Vertices $V = \{v_1, \ldots, v_n\}$

Directed Edges $E \subseteq V \times V$

Vertex Neighbourhood $N(v) = (\{v' : (v, v') \in E\}, \{v' : (v', v) \in E\})$

Vertices $V = \{v_1, \ldots, v_n\}$

Directed Edges $E \subseteq V \times V$

Vertex Neighbourhood $N(v) = (\{v': (v, v') \in E\}, \{v': (v', v) \in E\})$

Module $M \subseteq V \text{ s.t. } \forall (v, v') \in M^2, \ N(v) = N(v')$

Vertices $V = \{v_1, \ldots, v_n\}$

Directed Edges $E \subseteq V \times V$

Vertex Neighbourhood $N(v) = (\{v' : (v, v') \in E\}, \{v' : (v', v) \in E\})$

Module $M \subseteq V \text{ s.t. } \forall (v, v') \in M^2, \ N(v) = N(v')$

Vertices $V = \{v_1, \ldots, v_n\}$

Directed Edges $E \subseteq V \times V$

Vertex Neighbourhood $N(v) = (\{v' : (v, v') \in E\}, \{v' : (v', v) \in E\})$

Module $M \subseteq V \text{ s.t. } \forall (v, v') \in M^2, \ N(v) = N(v')$

Modular Partition $V = \{M_1, \dots, M_m\} \text{ s.t. } M_i \cap M_j = \emptyset \text{ and } \bigcup_i M_i = V$

Vertices $V = \{v_1, \ldots, v_n\}$

Directed Edges $E \subseteq V \times V$

Vertex Neighbourhood $N(v) = (\{v': (v, v') \in E\}, \{v': (v', v) \in E\})$

Module $M \subseteq V \text{ s.t. } \forall (v, v') \in M^2, \ N(v) = N(v')$

Modular Partition $V = \{M_1, ..., M_m\}$ s.t. $M_i \cap M_j = \emptyset$ and $\bigcup_i M_i = V$

Edge Compression $\mathcal{E} = \{(M_i, M_j) \in \mathcal{V}^2 : \forall (v, v') \in M_i \times M_j, (v, v') \in E\}$

	$\{\textit{v}_1,\textit{v}_2,\textit{v}_3\}$	$\{v_4,v_5\}$
³ €		
v_1, v_2, v_3		
Ź,		
V_5		
{V4, V5		

Vertices $V = \{v_1, \ldots, v_n\}$

Directed Edges $E \subseteq V \times V$

Vertex Neighbourhood $N(v) = (\{v' : (v, v') \in E\}, \{v' : (v', v) \in E\})$

Module $M \subseteq V \text{ s.t. } \forall (v, v') \in M^2, \ N(v) = N(v')$

Modular Partition $V = \{M_1, \dots, M_m\} \text{ s.t. } M_i \cap M_j = \emptyset \text{ and } \bigcup_i M_i = V$

Edge Compression $\mathcal{E} = \{(M_i, M_j) \in \mathcal{V}^2 : \forall (v, v') \in M_i \times M_j, (v, v') \in E\}$

Combinatorial Problem

Given a graph (V, E), find a modular partition \mathcal{V}^* with minimal size $|\mathcal{V}^*|$.

I. From Static to Dynamic Graphs

Vertices

$$V = \{v_1, \ldots, v_n\}$$

Time interval

$$T = [\alpha, \omega] \in \mathbb{R}$$

ST Edges

 $E\subseteq V\times V\times T$

ST Neighbours

$$N(v,t) = (\{v' : (v,v',t) \in E\}, \{v' : (v',v,t) \in E\})$$

Vertices

$$V = \{v_1, \dots, v_n\}$$

Time interval

$$T = [\alpha, \omega] \in \mathbb{R}$$

ST Edges

$$E\subseteq V\times V\times T$$

ST Neighbours

$$N(v,t) = (\{v' : (v,v',t) \in E\}, \{v' : (v',v,t) \in E\})$$

Vertices

$$V = \{v_1, \dots, v_n\}$$

Time interval

$$T = [\alpha, \omega] \in \mathbb{R}$$

ST Edges

$$E\subseteq V\times V\times T$$

ST Neighbours

$$N(v,t) = (\{v' : (v,v',t) \in E\}, \\ \{v' : (v',v,t) \in E\})$$

ST Module

$$\begin{split} &M\subseteq V, P = [\alpha', \omega'] \subseteq T,\\ &\text{s.t.} \ \forall ((v,t), (v',t')) \in \\ &(M\times P)^2, \ N(v,t) = N(v',t') \end{split}$$

Vertices

$$V = \{v_1, \ldots, v_n\}$$

Time interval

$$\mathcal{T} = [\alpha, \omega] \in \mathbb{R}$$

ST Edges

 $E \subseteq V \times V \times T$

ST Neighbours

$$N(v,t) = (\{v': (v,v',t) \in E\}, \{v': (v',v,t) \in E\})$$

ST Module

$$\begin{split} &M\subseteq V, P = \left[\alpha', \omega'\right] \subseteq T,\\ &\text{s.t. } \forall \left(\left(v,t\right), \left(v',t'\right)\right) \in \\ &(M\times P)^2, \ N(v,t) = N(v',t') \end{split}$$

ST Modular Partition

$$\mathcal{V} = \{ (M_1, P_1), \dots, (M_m, P_m) \}$$
s.t. $(M_i \times P_i) \cap (M_j \times P_j) = \emptyset$
and $\bigcup_i (M_i \times P_i) = (V \times T)$

Vertices

$$V = \{v_1, \ldots, v_n\}$$

Time interval

$$\mathcal{T} = [\alpha, \omega] \in \mathbb{R}$$

ST Edges

$E \subseteq V \times V \times T$

ST Neighbours

$$N(v,t) = (\{v' : (v,v',t) \in E\}, \{v' : (v',v,t) \in E\})$$

ST Module

$$\begin{split} &M\subseteq V, P=\left[\alpha',\omega'\right]\subseteq T,\\ &\text{s.t. }\forall \left(\left(v,t\right),\left(v',t'\right)\right)\in\\ &(M\times P)^2,\ N(v,t)=N(v',t') \end{split}$$

ST Modular Partition

$$\mathcal{V} = \{ (M_1, P_1), \dots, (M_m, P_m) \}$$
 s.t.
$$(M_i \times P_i) \cap (M_j \times P_j) = \emptyset$$
 and
$$\bigcup_i (M_i \times P_i) = (V \times T)$$

ST Edge Compression

$$\mathcal{E} = \{ ((M_i, P_i), (M_j, P_j)) \in \mathcal{V}^2 : \\ \forall (v, v', t) \in M_i \times M_j \times P_i \cap P_j, \\ (v, v', t) \in E \}$$

Vertices

$$V = \{v_1, \ldots, v_n\}$$

Time interval

$$\mathcal{T} = [\alpha, \omega] \in \mathbb{R}$$

ST Edges

$E \subseteq V \times V \times T$

ST Neighbours

$$N(v,t) = (\{v' : (v,v',t) \in E\}, \{v' : (v',v,t) \in E\})$$

ST Module

$$\begin{split} &M\subseteq V, P=\left[\alpha',\omega'\right]\subseteq T,\\ &\text{s.t. }\forall \left(\left(v,t\right),\left(v',t'\right)\right)\in\\ &(M\times P)^2,\ N(v,t)=N(v',t') \end{split}$$

ST Modular Partition

$$\mathcal{V} = \{ (M_1, P_1), \dots, (M_m, P_m) \}$$
s.t. $(M_i \times P_i) \cap (M_j \times P_j) = \emptyset$
and $\bigcup_i (M_i \times P_i) = (V \times T)$

ST Edge Compression

$$\mathcal{E} = \{ ((M_i, P_i), (M_j, P_j)) \in \mathcal{V}^2 : \\ \forall (v, v', t) \in M_i \times M_j \times P_i \cap P_j, \\ (v, v', t) \in E \}$$

From Static to Dynamic Notations

Static	Gran	hs
Static	Siup	

$F \subset V \times V$

$$N(v) = (\{v' : (v, v') \in E\}, \\ \{v' : (v', v) \in E\})$$

Module

Edges

$$M \subseteq V$$
,
s.t. $\forall (v, v') \in M^2$,
 $N(v) = N(v')$

Modular **Partition**

$$V = \{M_1, \dots, M_m\},$$

s.t. $M_i \cap M_j = \emptyset$
and $\bigcup_i M_i = V$

Edge

$$\mathcal{E} = \{ (M_i, M_j) \in \mathcal{V}^2 : \\ \forall (v, v') \in M_i \times M_j, \\ (v, v') \in E \}$$

Dynamic Graphs

$$E \subseteq V \times V \times T$$

$$N(v, t) = (\{v' : (v, v', t) \in E\}, \{v' : (v', v, t) \in E\})$$

$$M \subseteq V, P = [\alpha', \omega'] \subseteq T,$$

s.t. $\forall ((v, t), (v', t')) \in (M \times P)^2,$
 $N(v, t) = N(v', t')$

$$\mathcal{V} = \{ (M_1, P_1), \dots, (M_m, P_m) \},$$

s.t. $(M_i \times P_i) \cap (M_j \times P_j) = \emptyset$
and $\bigcup_i (M_i \times P_i) = (V \times T)$

$$\mathcal{E} = \{ ((M_i, P_i), (M_j, P_j)) \in \mathcal{V}^2 : \\ \forall (v, v', t) \in M_i \times M_j \times P_i \cap P_j, \\ (v, v', t) \in E \}$$

II. From Lossless to Lossy Compression

Aggregate $M \subseteq V$

Partition $V = \{M_1, \dots, M_m\} \text{ s.t. } M_i \cap M_j = \emptyset \text{ and } \bigcup_i M_i = V$

Aggregate $M \subseteq V$

Partition $V = \{M_1, \dots, M_m\} \text{ s.t. } M_i \cap M_j = \emptyset \text{ and } \bigcup_i M_i = V$

Edge Compression $\mathcal{E} = \{(M_i, M_j) \in \mathcal{V}^2 : \delta(M_i, M_j) > \frac{1}{2}\}$

Aggregate $M \subseteq V$

Partition $V = \{M_1, ..., M_m\} \text{ s.t. } M_i \cap M_j = \emptyset \text{ and } \bigcup_i M_i = V$

Edge Compression $\mathcal{E} = \{(M_i, M_j) \in \mathcal{V}^2 : w(M_i, M_j) > 0\}$

Aggregate Weight $w(M_i, M_j) = \sum_{(v,v') \in M_i \times M_i} w(v, v')$

Aggregate Density $\delta(M_i, M_j) = \frac{w(M_i, M_j)}{|M_i| |M_j|}$

	$\{v_1,v_2,v_3\}$	$\{v_4,v_5\}$
$\{v_5, v_4\}\{v_3, v_2, v_1\}$	1	5
$\{v_5, v_4\}$	6	4

Aggregate $M \subseteq V$

Partition $V = \{M_1, ..., M_m\} \text{ s.t. } M_i \cap M_j = \emptyset \text{ and } \bigcup_i M_i = V$

Edge Compression $\mathcal{E} = \{(M_i, M_j) \in \mathcal{V}^2 : w(M_i, M_j) > 0\}$

Aggregate Weight $w(M_i, M_j) = \sum_{(v,v') \in M_i \times M_j} w(v, v')$

Aggregate Density $\delta(M_i, M_j) = \frac{w(M_i, M_j)}{|M_i| |M_j|}$

$\{v_1\}\{v_2,v_3,v_4,v_5\}$										
[N ₁]	0	1								
$\{v_5, v_4, v_3, v_2\}$	2	13								

Aggregate $M \subseteq V$

Partition $V = \{M_1, ..., M_m\} \text{ s.t. } M_i \cap M_j = \emptyset \text{ and } \bigcup_i M_i = V$

Edge Compression $\mathcal{E} = \{(M_i, M_j) \in \mathcal{V}^2 : w(M_i, M_j) > 0\}$

Aggregate Weight $w(M_i, M_j) = \sum_{(v,v') \in M_i \times M_j} w(v, v')$

Aggregate Density $\delta(M_i, M_j) = \frac{w(M_i, M_j)}{|M_i| |M_j|}$

Aggregate $M \subseteq V$

Partition $V = \{M_1, \dots, M_m\} \text{ s.t. } M_i \cap M_j = \emptyset \text{ and } \bigcup_i M_i = V$

Edge Compression $\mathcal{E} = \{(M_i, M_j) \in \mathcal{V}^2 : w(M_i, M_j) > 0\}$

Aggregate Weight $w(M_i, M_j) = \sum_{(v,v') \in M_i \times M_j} w(v, v')$

Aggregate Density $\delta(M_i, M_j) = \frac{w(M_i, M_j)}{|M_i| |M_j|}$

Combinatorial Problem

Given a graph (V, E), an information measure f, and a threshold $\tau \in \mathbb{R}^+$, find a partition \mathcal{V}^* such that $f(\mathcal{V}^*) \leq \tau$ with minimal size $|\mathcal{V}^*|$.

Cosine Similarity on neighbours vectors

Pearson Coefficient on common neighbours

Jaccard Similarity Index on neighbourhoods

$$Q_{J}(M) = \min_{(v,v') \in M^{2}} \frac{|N(v) \cap N(v')|}{|N(v) \cup N(v')|} \in [0,1]$$

Average Squared Errors of densities

$$E_{\delta}(M_i, M_j) = \frac{1}{|M_i| |M_j|} \sum_{\substack{v \in M_i \\ v' \in M_j}} (\delta(v, v') - \delta(M_i, M_j))^2$$

Log-likelihood of the Stochastic Block Model

$$\log \mathcal{L}(\mathcal{V}) = \sum_{(M_{i}, M_{j}) \in \mathcal{V}} w(M_{i}, M_{j}) \log w(M_{i}, M_{j}) + (|M_{i}| |M_{j}| - w(M_{i}, M_{j})) \log(|M_{i}| |M_{j}| - w(M_{i}, M_{j})) - |M_{i}| |M_{j}| \log |M_{i}| |M_{j}|$$

Empirical Distribution: $X \in V^2$

$$p_X(v,v') = \frac{w(v,v')}{|E|}$$

Empirical Distribution: $X \in V^2$

$$p_X(v,v') = \frac{w(v,v')}{|E|}$$

Compression Variable:
$$\hat{X} \in \mathcal{V}^2$$

$$\rho_{\hat{X}|X}(M_i,M_j|v,v')=\mathbf{1}_{M_i\times M_j}(v,v')$$

Empirical Distribution: $X \in V^2$

$$p_X(v,v') = \frac{w(v,v')}{|E|}$$

Compression Variable:
$$\hat{X} \in \mathcal{V}^2$$

$$p_{\hat{X}|X}(M_i,M_j|v,v') = \mathbf{1}_{M_i \times M_j}(v,v')$$

$$p_{\hat{X}}(M_i, M_j) = \frac{w(M_i, M_j)}{|E|}$$

Empirical Distribution: $X \in V^2$

$$p_X(v,v') = \frac{w(v,v')}{|E|}$$

Compression Variable: $\hat{X} \in \mathcal{V}^2$

$$p_{\hat{X}|X}(M_i,M_j|v,v') = \mathbf{1}_{M_i \times M_j}(v,v')$$

$$\begin{cases}
 v_1, v_2, v_3 \\
 v_4, v_5 \\
 v_5 \\
 v_5 \\
 v_6 \\
 v_7 \\
 v_8 \\
 v_$$

Compressed Distribution

$$p_{\hat{X}}(M_i, M_j) = \frac{w(M_i, M_j)}{|E|}$$

Decompression Variable: $X^* \in V^2$

$$u_{X^*}(v,v')=\frac{1}{|V|^2}$$

 $\begin{cases}
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle \{ v_4, v_5 \rangle \\
 \langle v_1, v_2, v_3 \rangle$

Empirical Distribution: $X \in V^2$

$$p_X(v,v') = \frac{w(v,v')}{|E|}$$

Compression Variable: $\hat{X} \in \mathcal{V}^2$

$$p_{\hat{X}|X}(M_i,M_j|v,v') = \mathbf{1}_{M_i \times M_j}(v,v')$$

$$p_{\hat{X}}(M_i, M_j) = \frac{w(M_i, M_j)}{|E|}$$

Decompression Variable: $X^* \in V^2$

$$u_{X^*}(v,v')=\frac{1}{|V|^2}$$

Decompressed Distribution

$$q_X(v,v') = \frac{w(M_i,M_j)}{|M_i| |M_j| |E|}$$

Empirical Distribution: $X \in V^2$

$$p_X(v,v') = \frac{w(v,v')}{|E|}$$

Compression Variable:
$$\hat{X} \in \mathcal{V}^2$$

$$p_{\hat{X}|X}(M_i, M_j|v, v') = \mathbf{1}_{M_i \times M_j}(v, v')$$

$$p_{\hat{X}}(M_i, M_j) = \frac{w(M_i, M_j)}{|F|}$$

Information Loss

Decompression Variable: $X^* \in V^2$

$$u_{X^*}(v,v')=\frac{1}{|V|^2}$$

Decompressed Distribution

$$q_X(v,v') = \frac{w(M_i,M_j)}{|M_i| |M_i| |E|}$$

Informat $D_{KL}(p_X)$

Information Loss using Kullback-Leibler Divergence

$$D_{KL}(p_X || q_X) = \frac{1}{|E|} \sum_{\substack{(M_i, M_j) \in \mathcal{V}^2 \\ (v, v') \in M \times M}} w(v, v') \log_2 \left(\frac{w(v, v')}{w(M_i, M_j)} |M_i| |M_j| \right)$$

Decompressed Distribution

Decompression Variable: $X^* \in V^2$

$$q_X(v,v') = \frac{w(M_i,M_j)}{|M_i||M_i||F|}$$

$$u_{X^*}(v,v')=\frac{1}{|V|^2}$$

istribution

 $v(M_i, M_i)$

|E|

Empirical Distribution: $X \in V^2$

$$p_X(v,v') = \frac{w(v,v')}{|E|}$$

Compression Variable:
$$\hat{X} \in \mathcal{V}^2$$

$$p_{\hat{X}|X}(M_i, M_j|v, v') = \mathbf{1}_{M_i \times M_j}(v, v')$$

$$p_{\hat{X}}(M_i, M_j) = \frac{w(M_i, M_j)}{|F|}$$

Information Loss $D_{KL}(p_X||q_X)$

Decompressed Distribution

$$q_X(v, v') = \frac{w(M_i, M_j)}{|M_i| |M_j| |E|}$$

Decompression Variable: $X^* \in V^2$

$$u_{X^*}(v,v')=\frac{1}{|V|^2}$$

$$u_{X^*}(v,v')=\frac{1}{|V|^2}$$

Empirical Distribution: $X \in V^2$

$$p_X(v,v') = \frac{w(v,v')}{|E|}$$

Compression Variable: $\hat{X} \in \mathcal{V}^2$

$$p_{\hat{X}|X}(M_i,M_j|v,v') = \mathbf{1}_{M_i \times M_j}(v,v')$$

Compressed Distribution

$$p_{\hat{X}}(M_i, M_j) = \frac{w(M_i, M_j)}{|E|}$$

Information Loss $D_{KI}(p_X || q_X)$

	v_1	V ₂	<i>V</i> ₃	<i>V</i> ₄	<i>V</i> ₅
v_1	1	2	2	14	10
v 2	2	2	2	16	11
<i>v</i> ₃	2	3	2	20	14
<i>V</i> ₄	8	12	9	23	16
		10	10	0.	17

 v1
 v2
 v3
 v4
 v5

 v1
 3
 4
 3
 12
 8

 v2
 3
 4
 3
 13
 9

 v3
 4
 6
 4
 17
 11

 v4
 6
 9
 7
 27
 19

 v5
 6
 10
 7
 29
 20

Decompressed Distribution

$$q_X(v, v') = \frac{w(M_i, M_j) w(v, .) w(., v')}{w(M_i, .) w(., M_j) |E|}$$

Decompression Variable: $X^* \in V^2$

$$u_{X^*}(v, v') = \frac{w(v, .) w(., v')}{|r|}$$

External Information

Information Loss in the Static case

$$D_{KL}(p_X || q_X) = \frac{1}{|E|} \sum_{\substack{M_i \in V \\ M_j \in V \\ (v,v') \in M_i \times M_j}} w(v,v') \log_2 \left(\frac{w(v,v')}{w(M_i,M_j)} |M_i| |M_j| \right)$$

where

$$w(v, v') = \mathbf{1}_{E}(v, v')$$

$$w(M_i, M_j) = \sum_{(v, v') \in M_i \times M_j} w(v, v')$$

Information Loss in the Dynamic case

$$D_{KL}(p_X || q_X) = \frac{1}{|E|} \sum_{\substack{(M_i, P_i) \in \mathcal{V} \\ (M_j, P_j) \in \mathcal{V} \\ (v, v') \in M_i \times M_j}} \int_{t \in P_i \cap P_j} w(v, v', t) \log_2 \left(\frac{w(v, v', t)}{w(M_i, M_j, P_i \cap P_j)} |M_i| |M_j| |P_i \cap P_j| \right) dt$$

where

w(
$$v, v', t$$
) = $\mathbf{1}_{E}(v, v', t)$

$$w(M_{i}, M_{j}, P_{i} \cap P_{j}) = \sum_{(v, v') \in M_{i} \times M_{j}} \int_{t \in P_{i} \cap P_{j}} w(v, v', t) dt$$

III. From Modular to Power Graph Compression

Constraints in Graph Compression

Initial graph

01000111 01110010 01100001 01110000 01101000 01100101 00100000 01111010 01101001 01110000 01110000 11000011 10101001 00100001

Unconstrained compression (no constraint)

Modular Decomposition (generic constraints)

Graph Rewriting (strong constraints)

	GB	CA	FR	TW	IT	KR	DE	JP	US
GВ		3	5	1	2	0	11	23	82
CA	3		3	2	1	0	6	15	89
FR	5	3		1	3	1	14	28	83
TW	2	3	2		1	3	4	22	62
IT	2	1	3	1		0	7	12	31
KR	2	1	2	2	1		3	47	44
DE	11	6	12	2	6	1		78	167
JP	24	14	23	9	9	14	66		504
US	86	87	75	37	29	16	161	519	

National Patent Citations. Unit: 100 patents; Period: 1990–1999;

	GB CA FR TW IT KR	DE JP	US
GB			
CA			
FR	50	192	391
тw	59		
IТ			
KR			
DE	404		
JР	131	144	671
US	330	680	

National Patent Citations. Unit: 100 patents; Period: 1990–1999;

Aggregate

 $M \subseteq V, N \subseteq V$

	GB	CA	FR	TW	IT	KR	DE	JP	US
GB		3	5	1	2	0	11	23	82
CA	3		3	2	1	0	6	15	89
FR	5	3		1	3	1	14	28	83
TW	2	3	2		1	3	4	22	62
IT	2	1	3	1		0	7	12	31
KR	2	1	2	2	1		3	47	44
DE	11	6	12	2	6	1		78	167
JP	24	14	23	9	9	14	66		504
US	86	87	75	37	29	16	161	519	

National Patent Citations. Unit: 100 patents; Period: 1990–1999;

Aggregate
$$M \subseteq V, N \subseteq V$$

Aggregate Weight
$$w(M_i, N_i) = \sum_{(v,v') \in M_i \times N_i} w(v, v')$$

	GB	CA	FR	TW	ΙΤ	KR	DE	JP	US	
GB		3	5	1	2					
CA	3		3	2	1	352				
FR	5	3		1	3					
TW	2	3	2		1	3	4	22	62	
IT	2	1	3	1		0	7	12	31	
KR	2	1	2	2	1		3	47	44	
DE	11	6	12	2	6	1		78	167	
JP	24	14	23	9	9	14	66		504	
US	86	87	75	37	29	16	161	519		

National Patent Citations. Unit: 100 patents; Period: 1990–1999;

Aggregate $M \subseteq V, N \subseteq V$

Aggregate Weight $w(M_i, N_i) = \sum_{(v,v') \in M_i \times N_i} w(v, v')$

Partition $\mathcal{V} = \{ (M_1, N_1), \dots, (M_m, N_m) \}$ s.t. $(M_i \times N_i) \cap (M_j \times N_j) = \emptyset$ and $\bigcup_i (M_i \times N_i) = V^2$

National Patent Citations. Unit: 100 patents; Period: 1990-1999;

Link Stream Compression for Multiscale Analysis of Temporal Interactions

Hindol Rakshit, Tiphaine Viard, and Robin Lamarche-Perrin

complexnetworks.fr

