Progetto Basi di Dati

A.A. 2021/22

Jonathan Frattacci Mattia Segreto

Sommario

Glossario	4
Area Generale	4
Area Geografica	4
Area Topologia	5
Area Costruzione	6
Area Monitoraggio	7
Descrizione del Diagramma E-R (Non Ristrutturato)	8
Area Generale	8
Area Geografica	8
Area Topologia	10
Area Costruzione	11
Area Monitoraggio	13
Ristrutturazione Diagramma E-R	16
Eliminazione delle generalizzazioni	16
Analisi Ridondanze (che non sono analizzate nelle operazioni)	18
Tavola dei Volumi	20
Area Geografica	20
Area Topologia	20
Area Costruzione	21
Area Monitoraggio	22
Operazioni Significative	23
Operazione1	23
Operazione2	24
Operazione3	24
Operazione4	25
Operazione5	25
Operazione6	26
Operazione7	27
Operazione8	27
Schema Logico	29
Area Generale	29
Area Geografica	29
Area Topologia	29
Area Costruzione	29
Area Monitoraggio	30
Vincoli d'integrità referenziale	31

Altri Vincoli	33
Dipendenze Funzionali e normalizzazione	34
Area Generale	34
Area Geografica	34
Area Topologia	34
Area Costruzione	
Area Monitoraggio	37
Data Analytics	39
Analytics 1	39
Analytics 2	42

Glossario

Si specificano di seguito, divisi per area di interesse, le entità presenti nello schema associate al loro significato.

Area Generale

Termine	Descrizione	Collegamenti	Sinonimi
SmartBuilding	Edificio che può essere sia in fase di costruzione, sia già costruito	Colpo, Piano, Vano, Accesso, Finestra, Utilizzo, ProgettoEdilizio, StadioAvanzamento, Lavoro, Turno, Ordine,	Edificio
		RilevamentoA, RilevamentoB, RilevamentoG, RilevamentoP, RilevamentoPO, RilevamentoT	

Area Geografica

Termine	Descrizione	Collegamenti	Sinonimi
Area Geografica	Porzione di territorio determinata da un codice e da un nome	AreaGeografica, Rischio, RischioAttuale, Colpo, Smartbuilding	Territorio, Zona, Ubicazione, Area
Calamità	Evento naturale dalle conseguenze anche disastrose a seconda dell'intensità	Calamità, Colpo, Rischio, RischioAttuale	Catastrofe, Disastro
Rischio	Coefficiente calcolato sulla base di rilevazioni effettuate in un AreaGeografica a seguito di una Calamità	AreaGeografica, RischioAttuale, Rischio	Pericolo, Probabilità della calamità
Colpo	Avvenimento di una Calamità in una determinata Area	Calamità, Smartbuilding	//

Area Topologia

Termine	Descrizione	Collegamenti	Sinonimi
Piano	Pianta orizzontale di	Smartbuilding,	Livello
	uno dei livelli di un Vano,		
	edificio	ProgettoEdilizio,	
		StadioAvanzamento,	
		Lavoro,	
		Impiego, Turno,	
		RilevamentoA,	
		RilevamentoB,	
		RilevamentoG,	
		RilevamentoP,	
		RilevamentoPO,	
		RilevamentoT	
Vano	Porzione di piano	Smartbuilding,	Stanza
	delimitata da quattro o	Piano,	
	più pareti	ProgettoEdilizio,	
		StadioAvanzamento,	
		Lavoro,	
		Impiego,	
		Turno,	
		RilevamentoA,	
		RilevamentoB,	
		RilevamentoG,	
		RilevamentoP,	
		RilevamentoPO,	
		RilevamentoT	
Accesso	Ingresso/uscita tra vani	Vano,	Porta
		Piano,	
		Smartbuilding	
Funzione	Utilizzi che si possano	Vano,	Utilizzo, Scopo
	fare di un vano	Piano,	
		Smartbuilding	
Finestra	Apertura nella parete di	Vano,	Lucernario
	un vano	Piano,	
		Smartbuilding	

Area Costruzione

Termine	Descrizione	Collegamenti	Sinonimi
Progetto Edilizio	Cantiere che può essere già avviato oppure essere ancora solo su carta	Responsabile, StadioAvanzamento, Lavoro, Turno, Ordine	Cantiere
Stadio Avanzamento	Intervento costruttivo composto da più lavori e che rappresenta una certa percentuale del progetto totale	Lavoro, Turno, Ordine	Stadio
Lavoro	Singolo intervento costruttivo essenziale (es. Stesura Intonaco)	Turno, Ordine	Fase Lavoro
Ordine	Singole ordinazioni di ogni materiale effettuate per un determinato Lavoro di un determinato Stadio, Di un certo Progetto	Lavoro, Materiale	Ordinazione, Fattura, Acquisto
Materiale	Materia Prima impiegata nei vari lavori	Ordine, Lavoro, Piastrella, Mattone, Intonaco, Pietra, Altro Materiale	Materia Prima
Piastrella	Materiale utilizzato per la copertura di pavimentazioni	Ordine, Lavoro, Materiale	Mattonella
Mattone	Materiale utilizzato per la costruzione di pareti	Ordine, Lavoro, Materiale	//
Intonaco	Materiale utilizzato per il rivestimento di pareti e soffitti	Ordine, Lavoro, Materiale	//
Pietra	Materiale utilizzato per la copertura di pavimentazioni	Ordine, Lavoro, Materiale	//
Altro Materiale	Materiale utilizzato per la copertura di pavimentazioni	Ordine, Lavoro, Materiale	//
Lavoratore	Impiegato che svolge una qualche mansione in uno o più cantieri	Progetto Edilizio, Stadio Avanzamento, Lavoro, Turno, Tipo Contratto	Impiegato
Responsabile	Colui che è a capo di un Progetto Edilizio	Progetto Edilizio, Stadio Avanzamento, Lavoro, Turno, Tipo Contratto	//
Capocantiere	Colui che è a capo di uno o più gruppi di operai	Progetto Edilizio, Stadio Avanzamento, Lavoro, Turno, Tipo Contratto	//
Operaio	Colui che svolge fisicamente il lavoro ed appartiene ad un certo gruppo di operai	Progetto Edilizio, Stadio Avanzamento, Lavoro, Turno, Tipo Contratto	Forza Lavoro
TipoContratto	Tipologia di contratto tra le cui si può scegliere all'atto di assunzione di un nuovo lavoratore	Lavoratore, Responsabile, Capocantiere, Operaio	Contratto
Turno	Abbinamento Impiegato- Lavoro	Lavoro, Operaio	//

Area Monitoraggio

Termine	Descrizione	Collegamenti	Sinonimi
Accelerometro	Sensore che rileva	RilevamentoA, Vano,	//
	accelerazioni lungo i tre	Piano, Edificio	
	assi x, y, z		
Barometro	Sensore che rileva la	RilevamentoB, Vano,	//
	pressione atmosferica	Piano, Edificio	
Giroscopio	Sensore che rileva torsioni	RilevamentoG, Vano,	//
	lungo i tre assi x, y, z	Piano, Edificio	
Sensore di Posizione	Sensore composto da due	RilevamentoPO, Vano,	//
	rilevatori che misurano il	Piano, Edificio	
	discostamento di due		
	estremi ad esempio di una		
	crepa		
Pluviometro	Sensore che rileva la	RilevamentoP, Vano,	//
_	quantità di pioggia caduta	Piano, Edificio	
Termometro	Sensore che rileva la	RilevamentoT, Vano,	//
	temperatura interna e/o	Piano, Edificio	
	esterna		,,
RilevamentoA	Insieme di rilevamenti	Accelerometro, Vano,	//
	effettuati dagli	Piano, Edificio	
	accelerometri con		
	rispettiva riparazione		
	suggerita in base ai dati rilevati		
RilevamentoB	Insieme di rilevamenti	Darametra Vana Diana	//
Kilevamentob	effettuati dai barometri	Barometro, Vano, Piano, Edificio	//
	con rispettiva riparazione	Edificio	
	suggerita in base ai dati		
	rilevati		
RilevamentoG	Insieme di rilevamenti	Giroscopio, Vano, Piano,	//
	effettuati dagli giroscopi	Edificio	"
	con rispettiva riparazione		
	suggerita in base ai dati		
	rilevati		
RilevamentoPO	Insieme di rilevamenti	Sensore di Posizione,	//
	effettuati dai sensori di	Vano, Piano, Edificio	
	posizione con rispettiva		
	riparazione suggerita in		
	base ai dati rilevati		
RilevamentoP	Insieme di rilevamenti	Pluviometro, Vano, Piano,	//
	effettuati dai pluviometri	Edificio	
	con rispettiva riparazione		
	suggerita in base ai dati		
	rilevati		
RilevamentoT	Insieme di rilevamenti	Termometro, Vano, Piano,	//
	effettuati dai termometri	Edificio	
	con rispettiva riparazione		
	suggerita in base ai dati		
	rilevati		

Descrizione del Diagramma E-R (Non Ristrutturato)

In questa parte andremo a descrivere la versione non ristrutturata del diagramma E-R, per specificare al meglio le decisioni progettuali prese. La fase di ristrutturazione verrà documentata successivamente. Le ridondanze inserite sono evidenziate in rosso.

Area Generale

Entità	Attributi	Chiave
SmartBuilding	idEdificio, Tipologia, LivelloSicurezza, Completato	idEdificio

Il Database si occupa della gestione di un sistema di edifici Smart, che ipotizziamo attivo da un anno, con le rispettive fasi di costruzione e monitoraggio.

Descriviamo di seguito con maggiore dettaglio le sezioni delle varie aree di interesse:

Area Geografica Entità

Entità	Attributi	Chiave
Area Geografica	idArea, Ubicazione, RischioTot	idArea
Calamità	idCalamità, Tipologia	idCalamità
Rischio	dataRilevazione, CoeffRischio, idCalamità, idArea	idCalamità, idArea
Colpo	Distanza, Timestamp, Livello, idCalamità, idEdificio	idCalamità, Timestamp, idEdificio

Relazione	Attributi	Entità Collegate	Cardinalità Massima
Incisione	idEdificio, idCalamità, Timestamp	SmartBuilding, Colpo	0,N
Caratterizzato	idEdificio, idCalamità, Timestamp	Calamità, Colpo	1,N
Storico1	idCalamità, dataRilevazione, idArea	Calamità, Rischio	1,N
Storico2	idCalamità, dataRilevazione, idArea	Rischio, AreaGeografica	1,N
RischioAttuale	dataRilevazione, CoeffRischio, idCalamità, idArea	Calamità, AreaGeografica	1,N
Operatività	idEdificio, idArea	SmartBuilding, AreaGeografica	1,N

Descrizione:

Ogni Smartbuilding è locato in una delle aree geografiche presenti che a sua volta ha, per ogni calamità registrata nel Database, un determinato coefficiente di rischio. Esso è calcolato sulla media dei livelli di gravità con cui sono colpiti i vari edifici in quella zona. Ad ogni nuovo colpo viene aggiornato il "Rischio Attuale" dell'area (con relativa data di rilevamento) mentre, il coefficiente precedente viene salvato in "Rischio" che quindi agisce da storico. Supponiamo che le rilevazioni di Rischio attuale avvengano nel mese corrente mentre in Rischio siano contenute tutte quelle dall'inizio dell'attività del database fino al mese scorso

Entità	Attributi	Chiave
Piano	idPiano, Forma, idEdificio	idEdificio, idPiano
Vano	idVano, Lunghezza,	idEdificio, idPiano, idVano
	Larghezza, minH, maxH,	
	idEdificio, idPiano	
Funzione	Nome	Nome
Finestra	idFinestra, Distanza,	idFinestra
	Orientamento, Lunghezza,	
	Larghezza	

Relazioni

Relazione	Attributi	Entità Collegate	Cardinalità Massima
Topologia	idEdificio, idPiano	SmartBuilding, Piano	1,N
Pianta	idEdificio, idPiano, idVano	Piano, Vano	1,N
Accesso	Lunghezza, Larghezza, Distanza, Tipo, Orientamento, , idVano, idPiano, idEdificio, idVano1, idPiano1, idEdificio1	Vano	1,N
Utilizzo	idEdificio, idPiano, idVano, Nome, Esterno	Funzione, Vano	1,N
Luce	idEdificio, idPiano, idVano, idFinestra	Finestra, Vano	1,1

Descrizione:

Ogni Edificio è composto da più piani che a loro volta sono suddivisi in più vani. Ogni edificio sarà identificato da un id, così come ogni piano e ogni vano, in modo tale che alla chiave (idEdificio, idPiano, idVano): 1,1,1 corrisponda il primo vano al primo piano dell'edificio numero 1. Un vano è connesso ad un altro tramite un accesso posto nella parete in comune tra i due. Ogni Vano può avere una o più funzioni e una o più finestre. Un vano può essere interno o esterno all'edificio (ad esempio un balcone oppure una cucina all'aperto).

Entità	Attributi	Chiave
Progetto Edilizio	CodProgetto, DataInizio, DataFine, DataApprov, DataPres, StimaDataFine, CostoTot, NumStadi, PercentLavori	CodProgetto
Stadio Avanzamento	idStadio, CodProgetto, DataInizio, DataFine, Costo, StimaDataFine	idStadio, CodProgetto
Lavoro	idLavoro, idStadio, CodProgetto, Tipologia, OreNecessarie	idLavoro, idStadio, CodProgetto
Ordine	CodLotto, idLavoro, idStadio, CodProgetto, Quantità, DataAcquisto, CostoTot	CodLotto, idStadio, idLavoro
Materiale	Nome, NomeFornitore, CostoAlDettaglio	Nome, NomeFornitore
Piastrella	Fuga, Materiale, Forma, Disegno, MisuraLato, Nome, NomeFornitore	Nome, NomeFornitore
Mattone	Isolante, Altezza, Alveolatura, Materiale, Lunghezza, Larghezza	Nome, NomeFornitore
Intonaco	Strato1, Strato2, Strato3, Spess1, Spess2, Spess3	Nome, NomeFornitore
Pietra	Tipo, AvgPeso, SupRicoperta, Disposizione	Nome, NomeFornitore
Altro Materiale	MetriCubi, PesoSpecifico	Nome, NomeFornitore
Lavoratore	CodFiscale, Nome, Cognome, DataAssunzione, Sesso, DataNascita	CodFiscale
Responsabile	NumCapocantMax, Esperienza	CodFiscale
Capocantiere	NumDipMax, Esperienza, CodFiscale	CodFiscale
Operaio	GruppoAppartenenza, Specializzazione	CodFiscale
TipoContratto	MaxOreSettiman, GiornoLibero, StipendioAnnuale	MaxOreSettiman, GiornoLibero, StipendioAnnuale
Turno	Oralnizio, OraFine, CodFiscale, idLavoro, idStadio, idProgetto	CodFiscale, idLavoro, idStadio, idProgetto

Relazione	Attributi	Entità Collegate	Cardinalità Massima
Costruzione	idEdificio, CodProgetto	Smartbuilding, ProgettoEdilizio	1,N
Sovrintendenza	CodProgetto, CodFiscale	ProgettoEdilizio, Responsabile	1,N
Procedimento	CodProgetto, idStadio	ProgettoEdilizio, StadioAvanzamento	1,N
Suddivisione	CodProgetto, idStadio, idLavoro	Stadio Avanzamento, Lavoro	1,N
Impiego	CodProgetto, idStadio, idLavoro	Lavoro, Ordine	1,N
Composizione	CodProgetto, idStadio, idLavoro, Nome, NomeFornitore	Ordine, Materiale	1,N
Formazione	CodProgetto, idStadio, idLavoro, CodFiscale	Lavoro, Materiale	1,N
Assegnamento	CodProgetto, idStadio, idLavoro, CodFiscale	Turno, Operaio	1,N
Firma	StipendioAnnuale, GiornoLibero, MaxOreSettiman, CodFiscale	TipoContratto, Lavoratore	1,N
Gestione	CodFiscale_Responsabile, CodFiscale_Capocantiere	Responsabile, Capocantiere	1,N
Coordinazione	CodFiscale_Operaio, CodFiscale_Capocantiere	Operaio, Capocantiere	1,N

Descrizione:

Ogni edificio può trovarsi in tre possibili fasi: in costruzione, in ristrutturazione oppure completato e non in ristrutturazione (e quindi nello storico delle costruzioni). In qualsiasi dei tre casi esisterà per ogni edificio almeno un progetto edilizio. Ogni Progetto è supervisionato da un Responsabile ed è composto da Stadi di Avanzamento, sulla quale è possibile calcolare, strada facendo, la percentuale di completamento. A sua volta uno stadio di avanzamento è suddiviso in più lavori di diverse tipologie e che necessitano un certo numero di ore per essere svolti.

Un lavoro avrà bisogno sia di materiali che di operai per essere completato. Per quanto riguarda i primi, esiste uno storico degli ordini che associa ad ogni lotto di materiale il lavoro, lo stadio di avanzamento e il progetto in cui saranno utilizzati. I materiali si dividono in Piastrelle, Mattoni, Intonaci, Pietre e Altri Materiali (come, ad esempio, plastica, vetro, ecc...).

Per quanto riguarda la forza lavoro, ad ogni lavoro sono associati dei turni che sono assegnati agli operai. Essi vengono a loro volta coordinati dai Capicantiere che sono gerarchicamente gestiti dai Responsabili.

Ogni Lavoratore firma all'assunzione un contratto di lavoro che stipula un massimo numero di ore annuali (sulla base di cui vengono calcolati gli straordinari), il giorno libero settimanale e lo stipendio annuo.

Entità	Attributi	Chiave
Accelerometro	Orientamento, Altezza,	Seriale
	Seriale	
Barometro	Orientamento, Altezza,	Seriale
	Seriale	
Giroscopio	Orientamento, Altezza,	Seriale
_	Seriale	
Sensore di Posizione	Orientamento, Altezza,	Seriale
D	Seriale	C : I
Pluviometro	Orientamento, Altezza,	Seriale
Termometro	Seriale Orientamento, Altezza,	Seriale
rermometro	Seriale	Seriale
RilevamentoA	Timestamp, Valore,	Seriale, idEdificio, idPiano,
Micvamentort	Stimato, Allarme,	idVano, Timestamp
	RiparazPrev, Seriale,	
	idEdificio, idPiano, idVano	
RilevamentoB	Timestamp, Valore,	Seriale, idEdificio, idPiano,
	Stimato, Allarme,	idVano, Timestamp
	RiparazPrev, Seriale,	
	idEdificio, idPiano, idVano	
RilevamentoG	Timestamp, Valore,	Seriale, idEdificio, idPiano,
	Stimato, Allarme,	id Vano, Timestamp
	RiparazPrev, Seriale,	
_,	idEdificio, idPiano, idVano	
RilevamentoPO	Timestamp, Valore,	Seriale, idEdificio, idPiano,
	Stimato, Allarme,	idVano, Timestamp
	RiparazPrev, Seriale,	
RilevamentoP	idEdificio, idPiano, idVano Timestamp, Valore,	Seriale, idEdificio, idPiano,
Kilevaillelitor	Stimato, Allarme,	idVano, Timestamp
	RiparazPrev, Seriale,	iavano, innestamp
	idEdificio, idPiano, idVano	
RilevamentoT	Timestamp, Valore,	Seriale, idEdificio, idPiano,
	Stimato, Allarme,	idVano, Timestamp
	RiparazPrev, Seriale,	
	idEdificio, idPiano, idVano	

Relazione	Attributi	Entità Collegate	Cardinalità Massima
Accelerazione	Seriale, TimeStamp, idEdificio, idPiano, idVano, accX, accY, accZ	Accelerometro, RilevamentoA	1,N
Umidità	Seriale, TimeStamp, idEdificio, idPiano, idVano, Percentuale, Estermo	Barometro, RilevamentoB	1,N
Precipitazione	Seriale, TimeStamp, idEdificio, idPiano, idVano, mL_metroCubo	Livello Precipitazioni, RilevamentoP	1,N
Posizione	Seriale, TimeStamp, idEdificio, idPiano, idVano, Distanza	RilevamentoPO, Sensore Di Posizione	1,N
Temperatura	Seriale, TimeStamp, idEdificio, idPiano, idVano, Esterno, Gradi	RilevamentoT, Termometro	1,N
Torsione	Seriale, TimeStamp, idEdificio, idPiano, idVano, vaX, vaY, vaZ	RilevamentoG, Giroscopio	1,N
Effettuazione 1	TimeStamp, Valore, Stimato, Allarme, RiparazPrev, Seriale, idEdificio, idPiano, idVano	Seriale, idEdificio, idPiano, idVano, Timestamp	1,N
Effettuazione 2	TimeStamp, Valore, Stimato, Allarme, RiparazPrev, Seriale, idEdificio, idPiano, idVano	Seriale, idEdificio, idPiano, idVano, Timestamp	1,N
Effettuazione 3	TimeStamp, Valore, Stimato, Allarme, RiparazPrev, Seriale, idEdificio, idPiano, idVano	Seriale, idEdificio, idPiano, idVano, Timestamp	1,N
Effettuazione 4	TimeStamp, Valore, Stimato, Allarme, RiparazPrev, Seriale, idEdificio, idPiano, idVano	Seriale, idEdificio, idPiano, idVano, Timestamp	1,N
Effettuazione 5	TimeStamp, Valore, Stimato, Allarme, RiparazPrev, Seriale, idEdificio, idPiano, idVano	Seriale, idEdificio, idPiano, idVano, Timestamp	1,N
Effettuazione 6	TimeStamp, Valore, Stimato, Allarme, RiparazPrev, Seriale, idEdificio, idPiano, idVano	Seriale, idEdificio, idPiano, idVano, Timestamp	1,N

Descrizione:

Per quanto riguarda il monitoraggio degli edifici, ipotizziamo che in ogni vano sia installato un sensore di ogni tipologia. Per ogni tipo di sensore esiste uno storico che registra il valore di ogni rilevazione verificando inoltre che essa sia sotto una certa soglia (che immaginiamo sia preimpostata dalla fabbrica). In caso il valore della rilevazione dovesse eccedere tale soglia, il sensore invierebbe il segnale di allarme che potrebbe essere concreto (causato da una calamità che colpisce l'edificio) oppure stimato nel caso in cui dovesse verificarsi un trend crescente di rilevazioni sopra la soglia nonostante nessuna calamità abbia ancora colpito l'edificio.

Ogni sensore analizza fattori diversi: l'accelerometro misura variazioni dell'accelerazione lungo i tre assi x/y/z, il barometro la pressione interna e/o esterna da cui si ricava la percentuale di umidità, i sensori di livello precipitazioni che misurano i ml/m³ di precipitazioni cadute, il termometro la temperatura interna e/o esterna, il giroscopio la variazione di velocità angolare lungo i tre assi x/y/z e i sensori di posizione che monitorano l'allontanarsi o l'avvicinarsi dei due o più punti a cui sono fissati

Ristrutturazione Diagramma E-R

Eliminazione delle generalizzazioni

Nello schema E-R iniziale abbiamo due generalizzazioni, entrambe riguardanti l'area costruzione.

Iniziamo commentando quella sui materiali:

Abbiamo optato per una ristrutturazione tramite relazioni piuttosto che per accorpamento, in quanto questo tipo di sostituzione conviene quando si effettuano accessi separati alle entità figlie e a quella madre. Non effettuiamo trasferimenti di attributi, poiché le due nuove entità sono identificate esternamente.

Infatti, nel nostro caso specifico accediamo alle entità figlie per recuperare dei dati che non sarebbero altrimenti accessibili dall'entità madre e gli attributi delle figlie non coincidono tra loro in modo da poterli accorpare nella madre.

Una volta ristrutturato si ottiene:

Proseguiamo con quella sui lavoratori:

Abbiamo optato per una ristrutturazione tramite relazioni piuttosto che per accorpamento, in quanto questo tipo di sostituzione conviene quando si effettuano accessi separati alle entità figlie e a quella madre. Non effettuiamo trasferimenti di attributi, poiché le due nuove entità sono identificate esternamente.

Anche in questo caso accediamo alle entità figlie per recuperare dei dati che non sarebbero altrimenti accessibili dall'entità madre e inoltre

sono presenti delle relazioni tra le entità figlie, cosa che causerebbe perdita di informazione in caso di accorpamento di esse nella madre.

Una volta ristrutturato si ottiene:

Analisi Ridondanze (che non sono analizzate nelle operazioni)

Analisi ProgettoEdilizio(NumStadi):

Immaginiamo di dover svolgere un'operazione che voglia classificare i progetti edilizi attivi sulla base del numero di stadi che li compongono per 100 volte al giorno, iniziamo dal caso in cui non sia presente la ridondanza:

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
ProgettoEdilizio	Lettura	270	Recuperiamo il CodProgetto
			dei progetti da classificare
StadioAvanzamento	Lettura	1350	Leggiamo tutti gli stadi di
			tutti i progetti
	Totale singola		1620
	esecuzione		
	Totale giornaliero		162000

Procediamo adesso con l'analisi che prevede la presenza della ridondanza "NumStadi".

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
ProgettoEdilizio	Lettura	270	Leggiamo per ogni Progetto, il numero di stadi
	Totale singola esecuzione		270
	Totale giornaliero		27000

Ciò dimostra un risparmio giornaliero di 135000 operazioni sottolineando quindi l'utilità della ridondanza.

Analisi Ordine(CostoTot)

Immaginiamo di dover svolgere un'operazione che voglia trovare l'ordine dal costo più elevato effettuato nell'ultimo mese, anch'essa per 100 volte al giorno, iniziamo dal caso in cui non sia presente la ridondanza:

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
Ordine	Lettura	421	Supponiamo che nell'ultimo
			mese vengano effettuati 421
			ordini
Materiale	Lettura	83	Leggiamo i costi al dettaglio
			dei materiali presenti
			nell'ordine
	Totale singola		504
	esecuzione		
	Totale giornaliero		50400

Procediamo adesso con l'analisi che prevede la presenza della ridondanza "CostoTot".

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
Ordine	Lettura	421	Supponiamo che nell'ultimo
			mese vengano effettuati 421
			ordini
	Totale singola		421
	esecuzione		
	Totale giornaliero		42100

Ciò dimostra un risparmio giornaliero di 8300 operazioni sottolineando quindi l'utilità della ridondanza

Tavola dei Volumi

Area Geografica

Entità

Entità	Volume	Motivazione
Smartbuilding	90	Per ogni AreaGeografica sono presenti 6 edifici
Colpo	1620	Ogni Edificio è colpito in media da 1.5 calamità al mese
Calamità	7	Per Ipotesi
Rischio	1260	Supponendo il database attivo da 1 anno, è l'insieme di tutte le
		rilevazioni mensili passate
AreaGeografica	15	Per Ipotesi

Relazioni

Relazione	Volume	Motivazione
RischioAttuale	105	Ogni AreaGeografica ha un coefficiente di rischio per ogni Calamità
Storico1	1260	Per cardinalità (1,1) con Rischio
Storico2	1260	Per cardinalità (1,1) con Rischio
Operatività	90	Per cardinalità (1,1) con SmartBuilding
Caratterizzato	1620	Per cardinalità (1,1) con Colpo
Incisione	1620	Per cardinalità (1,1) con Colpo

Area Topologia *Entità*

Entità	Volume	Motivazione
Piano	270	Ogni Edificio ha in media 3 Piani
Vano	810	Ogni piano ha in media 3 Vani
Finestra	1620	Ogni Vano ha in media 2 Finestre
Funzione	10	Per Ipotesi

Relazioni

Relazione	Volume	Motivazione
Topologia	270	Per cardinalità (1,1) con Piano
Pianta	810	Per cardinalità (1,1) con Vano
Accesso	1000	Per Ipotesi
Utilizzo	1215	Ogni 2 Vani ho in media 3 Funzioni
Luce	1620	Per Cardinalità (1,1) con Finestra

Entità	Volume	Motivazione
ProgettoEdilizio	270	Ad ogni Smartbuilding sono associati in media 3 Progetti Edilizi
StadioAvanzamento	1350	Ogni progetto ha in media 5 Stadi di Avanzamento
Lavoro	3375	Ogni Stadio di Avanzamento ha in media 2.5 Lavori
Turno	6750	Ogni Lavoro impiega 2 turni in media
Lavoratore	840	Per Ipotesi
TipoContratto	5	Per Ipotesi
Operaio	720	Per Ipotesi
Capocantiere	90	Per Ipotesi (5 sono anche Responsabili)
Responsabile	30	Per Ipotesi (5 sono anche Capocantieri)
Ordine	5062	Ogni Lavoro richiede in media 1,5 materiali
Materiale	83	Somma di Tutti i Materiali
Piastrella	12	Per Ipotesi
Mattone	12	Per Ipotesi
Intonaco	27	Per Ipotesi
Pietra	12	Per Ipotesi
AltroMateriale	20	Per Ipotesi

Relazioni:

Relazione	Volume	Motivazione
Costruzione	270	Per Cardinalità (1,1) con ProgettoEdilizio
Procedimento	1350	Per Cardinalità (1,1) con StadioAvanzamento
Suddivisione	3375	Per Cardinalità (1,1) con Lavoro
Firma	840	Per Cardinalità (1,1) con Lavoratore
Lavoratore1	30	Per Cardinalità (1,1) con Responsabile
Lavoratore2	90	Per Cardinalità (1,1) con Capocantiere
Lavoratore3	720	Per Cardinalità (1,1) con GruppoLavoratori
Sovrintendenza	270	Per Cardinalità (1,1) con ProgettoEdilizio
Gestione	540	Ogni ProgettoEdilizio è Supervisionato da un Responsabile che gestisce
		in media 2 Capocantieri
Coordinazione	2160	Ogni ProgettoEdilizio è Supervisionato da un Responsabile che gestisce
		in media 2 Capocantieri, ognuno dei quali coordina in media 4 Operai
Impiego	5062	Per Cardinalità (1,1) con Impiego
Composizione	5062	Per Cardinalità (1,1) con Ordine
Materiale1	12	Per Cardinalità (1,1) con Piastrelle
Materiale2	12	Per Cardinalità (1,1) con Mattoni
Materiale3	27	Per Cardinalità (1,1) con Intonaco
Materiale4	12	Per Cardinalità (1,1) con Pietre
Materiale5	20	Per Cardinalità (1,1) con AltroMateriale

Area Monitoraggio *Entità*

Relazione	Volume	Motivazione
		Ipotizzando il database attivo da 1 anno, una rilevazione
RilevamentoG	9720	al mese di Giroscopio
		Ipotizzando il database attivo da 1 anno, una rilevazione
RilevamentoT	9720	al mese di Termometro
		Ipotizzando il database attivo da 1 anno, una rilevazione
RilevamentoPO	9720	al mese di SensorePosizione
		Ipotizzando il database attivo da 1 anno, una rilevazione
RilevamentoP	9720	al mese di Pluviometro
		Ipotizzando il database attivo da 1 anno, una rilevazione
RilevamentoB	9720	al mese di Barometro
		Ipotizzando il database attivo da 1 anno, una rilevazione
RilevamentoA	9720	al mese di Accelerometro
Giroscopio	810	Ogni Vano ne ha uno
Termometro	810	Ogni Vano ne ha uno
SensoreDiPosizione	810	Ogni Vano ne ha uno
LivelloPrecipitazioni	810	Ogni Vano ne ha uno
Barometro	810	Ogni Vano ne ha uno
Accelerometro	810	Ogni Vano ne ha uno

Relazioni

Relazione	Volume	Motivazione
Accelerazione	9720	Per Cardinalità (1,1) con Rilevamento
Umidità	9720	Per Cardinalità (1,1) con Rilevamento
Precipitazione	9720	Per Cardinalità (1,1) con Rilevamento
Posizione	9720	Per Cardinalità (1,1) con Rilevamento
Temperatura	9720	Per Cardinalità (1,1) con Rilevamento
Torsione	9720	Per Cardinalità (1,1) con Rilevamento

Operazioni Significative

Operazione1

Descrizione:

Aggiorna il costo totale di un progetto edilizio ad ogni inserimento di un nuovo StadioAvanzamento. Nel file corrispondente alle Operazioni questa è commentata, il motivo di ciò è che avendo deciso di implementarla come trigger abbiamo deciso di inserirla nel file dei trigger così che all'atto di eseguire il popolamento il trigger possa avere la possibilità di attivarsi.

Analisi delle prestazioni:

Analizziamo innanzitutto le prestazioni dell'operazione immaginando che essa venga ripetuta 30 volte al giorno, valutando l'ipotesi che non sia presente la ridondanza "Costo" in StadioAvanzamento.

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
StadioAvanzamento	Scrittura	1 (vale 2)	Inseriamo il nuovo record
Lavoro	Lettura	3	In media uno
			StadioAvanzamento è
			composto da 2,5 lavori
Ordine	Lettura	5	In media ogni lavoro richiede
			l'utilizzo di 1,5 materiali, in
			questa lettura ne ricaviamo il
			costo
Turno	Lettura	2	Ogni Lavoro impiega circa 2
			turni
Operaio	Lettura	2	Ogni Turno impiega 2 operai
			per ipotesi
TipoContratto	Lettura	2	Si identifica lo stipendio ad
			ora dei lavoratori impiegati
Progetto Edilizio	Scrittura	1 (vale 2)	Aggiornamento CostoTot
	Totale singola		15
	esecuzione		
	Totale giornaliero		450

Procediamo adesso con l'analisi che prevede la presenza della ridondanza "Costo".

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
StadioAvanzamento	Scrittura	1(vale 2)	Inserimento nuovo
			stadio Avanzamento
StadioAvanzamento	Lettura	1	Lettura costo del nuovo
			stadio Avanzamento
ProgettoEdilizio	Scrittura	1(vale 2)	Aggiornamento CostoTot
	Totale singola		5
	esecuzione		
	Totale giornaliero		150

Ciò dimostra un risparmio giornaliero di 300 operazioni sottolineando quindi l'utilità della ridondanza.

Descrizione:

Calcola il numero medio di piani posseduti dagli edifici in relazione al loro livello di sicurezza

Analisi delle prestazioni

Analizziamo le prestazioni dell'operazione immaginando che essa venga ripetuta 10 volte al giorno.

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
SmartBuilding	Lettura	90	Andiamo a leggere
			l'idEdificio di tutti quelli
			contenuti nel database
Topologia	Lettura	270	Recuperiamo nella relazione
			il numero di piani associato
			ad ogni edificio
	Totale singola		360
	esecuzione		
	Totale giornaliero		3600

Operazione3

Descrizione:

Classifica per ogni area geografica le calamità da quella che si è verificata più spesso alla meno ricorrente

Analisi delle prestazioni

Analizziamo le prestazioni dell'operazione immaginando che essa venga ripetuta 30 volte al giorno.

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
Area Geografica	Lettura	15	Andiamo a leggere l'idArea
Operatività	Lettura	90	Recuperiamo nella relazione l'idEdificio di tutti gli edifici che si trovano in quell'area
Incisione	Lettura	1620	Individuiamo le calamità che hanno interessato i singoli edifici
Calamità	Lettura	7	Recuperiamo il nome della calamità associata a quell'id
	Totale singola esecuzione		1732
	Totale giornaliero		51960

Descrizione:

Classifica i Cantieri in base al maggior numero di operai per Area Geografica

Analisi delle prestazioni

Analizziamo le prestazioni dell'operazione immaginando che essa venga ripetuta 10 volte al giorno.

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
Progetto Edilizio	Lettura	270	Leggiamo il CodProgetto
Turno	Lettura	6750	Recuperiamo il numero di operai per ogni CodProgetto
	Totale singola esecuzione		7020
	Totale giornaliero		70200

Operazione5

Descrizione:

Calcola gli straordinari annui effettuati dagli operai

Analisi delle prestazioni

Analizziamo le prestazioni dell'operazione immaginando che essa venga ripetuta 10 volte al giorno. Per quanto l'operazione possa risultare poco articolata, l'abbiamo reputata rilevante in quanto il calcolo degli straordinari è un'attività che risulta essere necessaria sul luogo del lavoro da parte di un titolare e inoltre permette di attuare sistemi di premiazione e di analisi rendimento.

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
Turno	Lettura	6750	Recuperiamo i turni
			effettuati dai vari operai
	Totale singola		6750
	esecuzione		
	Totale giornaliero		67500

Descrizione:

Per ogni edificio calcola la spesa totale sostenuta in lavori di costruzione e ristrutturazione

Analisi delle prestazioni

Analizziamo innanzitutto le prestazioni dell'operazione immaginando che essa venga ripetuta 40 volte al giorno, valutando l'ipotesi che non sia presente la ridondanza "CostoTot" in ProgettoEdilizio.

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
Progetto Edilizio	Lettura	270	Leggiamo il CodProgetto
StadioAvanzamento	Lettura	5	Avendo il CodProgetto leggiamo solo gli stadi di avanzamento associati (abbiamo ipotizzato fossero in media 5) e ne sommiamo il costo
	Totale singola		275
	esecuzione		
	Totale giornaliero		11000

Procediamo adesso con l'analisi che prevede la presenza della ridondanza "CostoTot".

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
Progetto Edilizio	Lettura	270	Leggiamo per ogni CodProgetto, il costo totale delle spese sostenute
	Totale singola esecuzione		270
	Totale giornaliero		10800

Ciò dimostra un risparmio giornaliero di 200 operazioni sottolineando quindi l'utilità della ridondanza.

Descrizione:

Ricava, per ogni tipologia di lavoro, il materiale più utilizzato

Analisi delle prestazioni

Analizziamo le prestazioni dell'operazione immaginando che essa venga ripetuta 20 volte al giorno.

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
Lavoro	Lettura	3375	Leggiamo la tipologia di
			lavoro associata ad alla
			chiave
Ordine	Lettura	5062	Per ogni Lavoro leggiamo il
			quantitativo di materiale
			ordinato
	Totale singola		8437
	esecuzione		
	Totale giornaliero		168740

Operazione8

Descrizione:

Calcola la variazione (positiva o negativa) del coefficiente di rischio totale rispetto al mese precedente all'ultima rilevazione

Analisi delle prestazioni

Analizziamo innanzitutto le prestazioni dell'operazione immaginando che essa venga ripetuta 100 volte al giorno, valutando l'ipotesi che non sia presente la ridondanza "RischioTot" in AreaGeografica.

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione		
AreaGeografica	Lettura	15	Leggiamo gli idArea		
RischioAttuale	Lettura	105	Recuperiamo tramite gli idArea, i vari coefficienti di rischio attuale ne calcoliamo il rischioTot attuale		
Rischio	Lettura	105	Tramite gli idArea recuperiamo i coeficienti di rischio di ogni area con data corrispondente al mese precedente a quella attuale per calcolare il rischioTot passato.		

Totale singola esecuzione	225
Totale giornaliero	22500

Procediamo adesso con l'analisi che prevede la presenza della ridondanza "RischioTot".

Elemento a cui si accede	Tipo di accesso	Numero di Accessi	Motivazione
AreaGeografica	Lettura	15	Leggiamo per ogni idArea il
			RischioTot attuale
Rischio	Lettura	105	Leggiamo i coefficienti di rischio del mese passato per ogni area e ne calcoliamo il RischioTot
	Totale singola		120
	esecuzione		
	Totale giornaliero		12000

Ciò dimostra un risparmio giornaliero di 10'500 operazioni sottolineando quindi l'utilità della ridondanza.

Schema Logico

Indichiamo in rosso le ridondanze e sottolineiamo le chiavi

Area Generale

SmartBuilding (idEdificio, Tipologia, idArea, LivelloSicurezza, Completato)

Area Geografica

AreaGeografica (idArea, Ubicazione, RischioTot)

Calamita (idCalamita, Tipologia)

Colpo (idCalamita, idEdificio, Distanza, TimeStamp, Livello)

RischioAttuale (idCalamita, idArea, dataRilevazione, CoeffRischio)

Rischio (idCalamita, idArea, dataRilevazione, CoeffRischio)

Area Topologia

Piano (idEdificio, idPiano, Forma)

Vano (<u>idEdificio, idPiano</u>, <u>idVano</u>, Lunghezza, Larghezza, MinimaAltezza, MassimaAltezza)

Accesso (<u>idEdificio</u>, idPiano, idVano, idVano1, idPiano1, idEdificio1, Lunghezza, Larghezza, Distanza, Tipo, Orientamento)

Funzione (Nome)

Utilizzo(idEdificio, idPiano, idVano, Funzione, Esterno)

Finestra(idEdificio, idPiano, idVano, idFinestra, Distanza, Orientamento, Lunghezza, Larghezza)

Area Costruzione

ProgettoEdilizio (<u>idEdificio, CodProgetto</u>, Modifica, PercentLavori, NumStadi, DataPres,
DataApprov, DataInizio, StimaDataFine, DataFine, CostoTot, Responsabile)

StadioAvanzamento (idEdificio, CodProgetto, idStadio, DataInizio, StimaDataFine, DataFine, Costo)

Lavoro (idEdificio, CodProgetto, idStadio, idLavoro, Tipologia, OreNecessarie)

TipoContratto (MaxOreAnnuali, GiornoLibero, StipendioAdOra)

Lavoratore (<u>CodFiscale</u>, Nome, Cognome, DataNascita, DataAssunzione, Sesso, <u>MaxOreAnnuali</u>, <u>GiornoLibero, StipendioAdOra</u>)

Turno (idEdificio, CodProgetto, idStadio, idLavoro, CodFiscale, Data, Oralnizio, OraFine)

Responsabile (<u>Responsabile</u>, <u>MaxOreAnnuali</u>, <u>GiornoLibero</u>, <u>StipendioAdOra</u>, NumCapocantMax, Esperienza)

Capocantiere (<u>Capocantiere</u>, <u>MaxOreAnnuali</u>, <u>GiornoLibero</u>, <u>StipendioAdOra</u>, NumDipMax, Esperienza)

Operaio (<u>Operaio</u>, <u>MaxOreAnnuali</u>, <u>GiornoLibero</u>, <u>StipendioAdOra</u>, GruppoAppartenenza, Specializzazione)

Gestione (Responsabile, MaxOreAnnuali R, GiornoLibero R, StipendioAdOra R, Capocantiere, MaxOreAnnuali C, GiornoLibero C, StipendioAdOra C)

Coordinazione (Capocantiere, MaxOreAnnuali C, GiornoLibero C, StipendioAdOra C, Operaio, MaxOreAnnuali O, GiornoLibero O, StipendioAdOra O)

Materiale (Nome, NomeFornitore, CostoAlDettaglio)

Ordine (CodLotto, idEdificio, CodProgetto, idStadio, idLavoro, NomeMateriale, NomeFornitore,

Quantita, CostoTot, DataAcquisto)

Piastrella (Nome, NomeFornitore, Fuga, Forma, Materiale, Disegno, MisuraLato)

Mattone (Nome, NomeFornitore, Isolante, Alveolatura, Materiale, Altezza, Lunghezza, Larghezza)

Intonaco (Nome, NomeFornitore, Strato1, Strato2, Strato3, Spessore1, Spessore2, Spessore3)

Pietra (Nome, NomeFornitore, Tipo, AvgPeso, SupRicoperta, Disposizione)

AltroMateriale (Nome, NomeFornitore, PesoSpecifico, MetriCubi)

Area Monitoraggio

Giroscopio (Seriale, Altezza, Orientamento)

RilevamentoG (Seriale, idEdificio, idPiano, idVano, TimeStamp, Stimato, Allarme, RiparazPrev, Valore, vaX, vaY, vaZ)

Accelerometro (Seriale, Altezza, Orientamento)

RilevamentoA (Seriale, idEdificio, idPiano, idVano, TimeStamp, Stimato, Allarme, RiparazPrev, Valore, accX, accY, accZ)

SensoreDiPosizione (Seriale, Altezza, Orientamento)

RilevamentoPO (<u>Seriale, idEdificio, idPiano, idVano, TimeStamp</u>, Stimato, Allarme, RiparazPrev, Valore, Distanza)

Termometro (Seriale, Altezza, Orientamento)

RilevamentoT (Seriale, idEdificio, idPiano, idVano, TimeStamp, Stimato, Allarme, RiparazPrev, Valore, Gradi, Esterno)

Pluviometro (Seriale, Altezza, Orientamento)

RilevamentoP (Seriale, idEdificio, idPiano, idVano, TimeStamp, Stimato, Allarme, RiparazPrev, Valore, mL_metroCubo)

Barometro (Seriale, Altezza, Orientamento)

RilevamentoB (Seriale, idEdificio, idPiano, idVano, TimeStamp, Stimato, Allarme, RiparazPrev, Valore, Percentuale, Esterno)

Vincoli d'integrità referenziale

ATTRIBUTO RIFERIMENTO

Colpo(idEdificio)	Smartbuilding(idEdificio)
ProgettoEdilizio(idEdificio)	Smartbuilding(idEdificio)
Piano(idEdificio)	Smartbuilding(idEdificio)
Vano(idEdificio)	Smartbuilding(idEdificio)
Accesso(idEdificio)	Smartbuilding(idEdificio)
Utilizzo(idEdificio)	Smartbuilding(idEdificio)
Finestra(idEdificio)	Smartbuilding(idEdificio)
StadioAvanzamento(idEdificio)	Smartbuilding(idEdificio)
Lavoro(idEdificio)	Smartbuilding(idEdificio)
Ordine(idEdificio)	Smartbuilding(idEdificio)
Turno(idEdificio)	Smartbuilding(idEdificio)
RilevamentoA(idEdificio)	Smartbuilding(idEdificio)
RilevamentoB(idEdificio)	Smartbuilding(idEdificio)
RilevamentoP(idEdificio)	Smartbuilding(idEdificio)
RilevamentoPO(idEdificio)	Smartbuilding(idEdificio)
RilevamentoT(idEdificio)	Smartbuilding(idEdificio)
RilevamentoG(idEdificio)	Smartbuilding(idEdificio)
Vano(idPiano)	Piano(idPiano)
RilevamentoA(idPiano)	Piano(idPiano)
RilevamentoB(idPiano)	Piano(idPiano)
RilevamentoP(idPiano)	Piano(idPiano)
RilevamentoPO(idPiano)	Piano(idPiano)
RilevamentoT(idPiano)	Piano(idPiano)
RilevamentoG(idPiano)	Piano(idPiano)
Accesso(idPiano)	Piano(idPiano)
Utilizzo(idPiano)	Piano(idPiano)
Finestra(idPiano)	Piano(idPiano)
RilevamentoA(idVano)	Vano(idVano)
RilevamentoB(idVano)	Vano(idVano)
RilevamentoP(idVano)	Vano(idVano)
RilevamentoPO(idVano)	Vano(idVano)
RilevamentoT(idVano)	Vano(idVano)
RilevamentoG(idVano)	Vano(idVano)
Accesso(idVano)	Vano(idVano)

Vano(idVano)
Vano(idVano)
Vano(idVano)
Progetto Edilizio (Cod Progetto)
ProgettoEdilizio(CodProgetto)
ProgettoEdilizio(CodProgetto)
ProgettoEdilizio(CodProgetto)
StadioAvanzamento(idStadio)
StadioAvanzamento(idStadio)
StadioAvanzamento(idStadio)
Responsabile(Responsabile)
Materiale(Nome)
Materiale(NomeFornitore)
Operaio(Operaio)
Lavoratore(CodFiscale)
Lavoratore(CodFiscale)
Lavoratore(CodFiscale)
TipoContratto(MaxOreAnnuali)
TipoContratto(GiornoLibero)
TipoContratto (StipendioAdOra)
TipoContratto(MaxOreAnnuali)
TipoContratto(GiornoLibero)
TipoContratto (StipendioAdOra)
TipoContratto(MaxOreAnnuali)
TipoContratto(GiornoLibero)
TipoContratto (StipendioAdOra)
TipoContratto(MaxOreAnnuali)
TipoContratto(GiornoLibero)
TipoContratto (StipendioAdOra)
TipoContratto(MaxOreAnnuali)
TipoContratto(GiornoLibero)
TipoContratto(StipendioAdOra)
TipoContratto(MaxOreAnnuali)
TipoContratto(GiornoLibero)
TipoContratto(StipendioAdOra)
Lavoratore(CodFiscale)
Lavoratore(CodFiscale)
Lavoratore(CodFiscale) Lavoratore(CodFiscale)
•

Rischio(idCalamità)	Calamità(idCalamità)
RischioAttuale(idCalamità)	Calamità(idCalamità)
Rischio(idArea)	AreaGeografica(idArea)
RischioAttuale(idArea)	AreaGeografica(idArea)
RilevamentoA(Seriale)	Accelerometro(Seriale)
RilevamentoB(Seriale)	Barometro(Seriale)
RilevamentoP(Seriale)	LivelloPrecipitazioni(Seriale)
RilevamentoPO(Seriale)	Sensore di Posizione(Seriale)
RilevamentoT(Seriale)	Termometro(Seriale)
RilevamentoG(Seriale)	Giroscopio(Seriale)

Altri Vincoli

I vincoli in grassetto sono quelli che sono stati implementati

- Orientamento: nelle Tabelle dei Sensori, quindi: Acceleratore, Barometro, Termometro, Giroscopio, LivelloPrecipitazioni, Sensore di Posizione, si possono inserire nell'attributo "Orientamento" solo i 4 punti cardinali quindi "nord", "sud", "est", "ovest"
- **Ristrutturazione:** non si possono avviare lavori di ristrutturazione su edifici non ancora completati
- Date Progetti:La data di inizio deve essere successiva a quelle di approvazione e di presentazione, la data di presentazione deve essere antecedente a quella di approvazione, la data fine stimata deve essere successiva alla data inizio e la data fine deve essere successiva a quella di inizio
- **Esperienza:** L'Esperienza di responsabili e capocantieri è calcolata dalla data di asunzione alla data odierna
- **Dimensioni Vani:** Due vani comunicanti devono avere almeno una tra altezza minima e altezza massima in comune
- **Dimensioni Porte:** Le porte devono essere più basse del soffitto e più strette della parete in cui sono posizionate
- **Dimensioni Finestre:** Le finestre devono essere più basse del soffitto e più strette della parete in cui sono posizionate
- Nascita: La data nascita dei lavoratori deve essere antecedente alla data assunzione
- Calamità per edificio: Quando una calamità colpisce un'area, gli edifici vengono colpiti in modo diverso a seconda della loro distanza dall'epicentro
- Edificio Completato: Un edificio è completato quando la percentuale dei suoi lavori di costruzione è 100
- Forma: La forma di un piano deve essere regolare
- Numero Dipendenti: Il numero di operai coordinabili da un capocantiere dipende dalla sua esperienza e lo stesso vale tra responsabili e capicantiere
- Allarme: se la soglia rilevata da un sensore supera la soglia massima di fabbrica si genera un allarme

Dipendenze Funzionali e normalizzazione

Area Generale

SmartBuilding (<u>idEdificio</u>, Tipologia, idArea, LivelloSicurezza, Completato) idEdificio -> Tipologia, idArea, LivelloSicurezza, Completato idEdificio è chiave e la tabella è in BCNF

Area Geografica

AreaGeografica (idArea, Ubicazione, RischioTot) idArea -> Ubicazione, RischioTot idArea è chiave e la tabella è in BCNF

Calamita (<u>idCalamita</u>, Tipologia) idCalamità ->Tipologia idCalamità è chiave e la tabella è in BCNF

Colpo (<u>idCalamita</u>, <u>idEdificio</u>, Distanza, <u>TimeStamp</u>, Livello) idCalamità, idEdificio, TimeStamp -> Distanza, Livello idCalamità, idEdificio, TimeStamp è chiave e la tabella è in BCNF

RischioAttuale (<u>idCalamita</u>, <u>idArea</u>, dataRilevazione, CoeffRischio) idCalamita, idArea -> dataRilevazione, CoeffRischio idCalamità, idArea è chiave e la tabella è in BCNF

Rischio (<u>idCalamita, idArea, dataRilevazione</u>, CoeffRischio) idCalamita, idArea, dataRilevazione -> CoeffRischio idCalamità, idArea, dataRilevazione è chiave e la tabella è in BCNF

Area Topologia

Piano (<u>idEdificio</u>, <u>idPiano</u>, Forma) idEdificio, idPiano -> Forma idEdificio, idPiano è chiave e la tabella è in BCNF

Vano (<u>idEdificio</u>, <u>idPiano</u>, <u>idVano</u>, Lunghezza, Larghezza, MinimaAltezza, MassimaAltezza) idEdificio, idPiano, idVano -> Lunghezza, Larghezza, MinimaAltezza, MassimaAltezza idEdificio, idPiano, idVano è chiave e la tabella è in BCNF

Accesso (<u>idEdificio</u>, idPiano, idVano, idVano1, idPiano1, idEdificio1, Lunghezza, Larghezza, Distanza, Tipo, Orientamento)
idEdificio, idPiano, idVano, idEdificio1, idPiano1, idVano1 -> Lunghezza, Larghezza, Distanza, Tipo,
Orientamento
idEdificio, idPiano, idVano, idEdificio1, idPiano1, idVano1 è chiave e la tabella è in BCNF

Funzione (Nome)

Non ci sono dipendenze funzionali

Utilizzo(<u>idEdificio</u>, <u>idPiano</u>, <u>idVano</u>, <u>Funzione</u>, Esterno) idEdificio, idPiano, idVano -> Esterno idEdificio, idPiano, idVano è chiave e la tabella è in BCNF

Finestra(<u>idEdificio</u>, <u>idPiano</u>, <u>idVano</u>, <u>idFinestra</u>, Distanza, Orientamento, Lunghezza, Larghezza) idEdificio, idPiano, idVano, idFinestra -> Distanza, Orientamento, Lunghezza, Larghezza) idEdificio, idPiano, idVano, idFinestra è chiave e la tabella è in BCNF

Area Costruzione

ProgettoEdilizio (idEdificio, CodProgetto, Modifica, PercentLavori, NumStadi, DataPres,
DataApprov, DataInizio, StimaDataFine, DataFine, CostoTot, Responsabile)
idEdificio, CodProgetto -> Modifica, PercentLavori, NumStadi, DataPres, DataApprov, DataInizio,
StimaDataFine, DataFine, CostoTot, Responsabile
idEdificio, CodProgetto è chiave e la tabella è in BCNF

StadioAvanzamento (idEdificio, CodProgetto, idStadio, DataInizio, StimaDataFine, DataFine, Costo) idEdificio, CodProgetto, idStadio -> DataInizio, StimaDataFine, DataFine, Costo idEdificio, CodProgetto, idStadio è chiave e la tabella è in BCNF

Lavoro (<u>idEdificio</u>, <u>CodProgetto</u>, <u>idStadio</u>, <u>idLavoro</u>, Tipologia, OreNecessarie) idEdificio, CodProgetto, idStadio, idLavoro -> Tipologia, OreNecessarie idEdificio, CodProgetto, idStadio, idLavoro è chiave e la tabella è in BCNF

TipoContratto (MaxOreAnnuali, GiornoLibero, StipendioAdOra) Non ci sono dipendenze funzionali

Lavoratore (<u>CodFiscale</u>, Nome, Cognome, DataNascita, DataAssunzione, Sesso, <u>MaxOreAnnuali</u>, <u>GiornoLibero, StipendioAdOra</u>)

CodFiscale, MaxOreAnnuali, GiornoLibero, StipendioAdOra -> Nome, Cognome, DataNascita, DataAssunzione, Sesso

CodFiscale, MaxOreAnnuali, GiornoLibero, StipendioAdOra è chiave e la tabella è in BCNF

Turno (<u>idEdificio, CodProgetto, idStadio, idLavoro, CodFiscale</u>, Data, Oralnizio, OraFine) idEdificio, CodProgetto, idStadio, idLavoro, CodFiscale -> Data, Oralnizio, OraFine idEdificio, CodProgetto, idStadio, idLavoro, CodFiscale è chiave e la tabella è in BCNF

Responsabile (<u>Responsabile</u>, <u>MaxOreAnnuali</u>, <u>GiornoLibero</u>, <u>StipendioAdOra</u>, NumCapocantMax, Esperienza)

Responsabile, MaxOreAnnuali, GiornoLibero, StipendioAdOra -> Esperienza, NumCapocantMax Responsabile, MaxOreAnnuali, GiornoLibero, StipendioAdOra è chiave e la tabella è in BCNF

Capocantiere (<u>Capocantiere</u>, <u>MaxOreAnnuali</u>, <u>GiornoLibero</u>, <u>StipendioAdOra</u>, NumDipMax, Esperienza)

Capocantiere, MaxOreAnnuali, GiornoLibero, StipendioAdOra -> Esperienza, NumDipMax Capocantiere, MaxOreAnnuali, GiornoLibero, StipendioAdOra è chiave e la tabella è in BCNF

Operaio (<u>Operaio</u>, <u>MaxOreAnnuali</u>, <u>GiornoLibero</u>, <u>StipendioAdOra</u>, <u>GruppoAppartenenza</u>, Specializzazione)

Operaio, MaxOreAnnuali, GiornoLibero, StipendioAdOra -> GruppoAppartenenza, Specializzazione Operaio, MaxOreAnnuali, GiornoLibero, StipendioAdOra è chiave e la tabella è in BCNF

Gestione (Responsabile, MaxOreAnnuali R, GiornoLibero R, StipendioAdOra R, Capocantiere, MaxOreAnnuali C, GiornoLibero C, StipendioAdOra C)

Non ci sono dipendenze funzionali

Coordinazione (<u>Capocantiere, MaxOreAnnuali C, GiornoLibero C, StipendioAdOra C, Operaio, MaxOreAnnuali O, GiornoLibero O, StipendioAdOra O</u>)

Non ci sono dipendenze funzionali

Materiale (Nome, NomeFornitore, CostoAlDettaglio)

Nome, NomeFornitore -> CostoAl Dettaglio

Ordine (<u>CodLotto</u>, idEdificio, <u>CodProgetto</u>, idStadio, idLavoro, <u>NomeMateriale</u>, <u>NomeFornitore</u>, Quantita, <u>CostoTot</u>, <u>DataAcquisto</u>)

CodLotto, idEdificio, CodProgetto, idStadio, idLavoro, NomeMateriale, NomeFornitore -> Quantita, CostoTot, DataAcquisto

CodLotto, idEdificio, CodProgetto, idStadio, idLavoro, NomeMateriale, è chiave e la tabella è in BCNF

Piastrella (<u>Nome, NomeFornitore</u>, Fuga, Forma, Materiale, Disegno, MisuraLato) Nome, NomeFornitore -> Fuga, Forma, Materiale, Disegno, MisuraLato Nome, NomeFornitore è chiave e la tabella è in BCNF Mattone (Nome, NomeFornitore, Isolante, Alveolatura, Materiale, Altezza, Lunghezza, Larghezza) Nome, NomeFornitore -> Isolante, Alveolatura, Materiale, Altezza, Lunghezza, Larghezza Nome, NomeFornitore è chiave e la tabella è in BCNF

Intonaco (Nome, NomeFornitore, Strato1, Strato2, Strato3, Spessore1, Spessore2, Spessore3)
Nome, NomeFornitore -> Strato1, Strato2, Strato3, Spessore1, Spessore2, Spessore3
Nome, NomeFornitore è chiave e la tabella è in BCNF

Pietra (<u>Nome, NomeFornitore</u>, Tipo, AvgPeso, SupRicoperta, Disposizione) Nome, NomeFornitore -> Tipo, AvgPeso, SupRicoperta, Disposizione Nome, NomeFornitore è chiave e la tabella è in BCNF

AltroMateriale (Nome, NomeFornitore, PesoSpecifico, MetriCubi) Nome, NomeFornitore -> PesoSpecifico, MetriCubi Nome, NomeFornitore è chiave e la tabella è in BCNF

Area Monitoraggio

Giroscopio (<u>Seriale</u>, Altezza, Orientamento) Seriale -> Altezza, Orientamento Seriale è chiave e la tabella è in BCNF

RilevamentoG (<u>Seriale, idEdificio, idPiano, idVano, TimeStamp</u>, Stimato, Allarme, RiparazPrev, Valore, vaX, vaY, vaZ)

Seriale, idEdificio, idPiano, idVano, TimeStamp -> Stimato, Allarme, RiparazPrev, Valore, vaX, vaY, vaZ

Seriale, idEdificio, idPiano, idVano, TimeStamp è chiave e la tabella è in BCNF

Accelerometro (Seriale, Altezza, Orientamento)

Seriale -> Altezza, Orientamento Seriale è chiave e la tabella è in BCNF

RilevamentoA (Seriale, idEdificio, idPiano, idVano, TimeStamp, Stimato, Allarme, RiparazPrev, Valore, accX, accY, accZ)

Seriale, idEdificio, idPiano, idVano, TimeStamp -> Stimato, Allarme, RiparazPrev, Valore, accX, accY, accZ

Seriale, idEdificio, idPiano, idVano, TimeStamp è chiave e la tabella è in BCNF

SensoreDiPosizione (Seriale, Altezza, Orientamento)

Seriale -> Altezza, Orientamento Seriale è chiave e la tabella è in BCNF **RilevamentoPO** (<u>Seriale, idEdificio, idPiano, idVano, TimeStamp</u>, Stimato, Allarme, RiparazPrev, Valore, Distanza)

Seriale, idEdificio, idPiano, idVano, TimeStamp -> Stimato, Allarme, RiparazPrev, Valore, Distanza Seriale, idEdificio, idPiano, idVano, TimeStamp è chiave e la tabella è in BCNF

Termometro (<u>Seriale</u>, Altezza, Orientamento) Seriale -> Altezza, Orientamento Seriale è chiave e la tabella è in BCNF

RilevamentoT (Seriale, idEdificio, idPiano, idVano, TimeStamp, Stimato, Allarme, RiparazPrev, Valore, Gradi, Esterno)

Seriale, idEdificio, idPiano, idVano, TimeStamp -> Stimato, Allarme, RiparazPrev, Valore, Gradi, Esterno

Seriale, idEdificio, idPiano, idVano, TimeStamp è chiave e la tabella è in BCNF

Pluviometro (<u>Seriale</u>, Altezza, Orientamento) Seriale -> Altezza, Orientamento Seriale è chiave e la tabella è in BCNF

RilevamentoP (Seriale, idEdificio, idPiano, idVano, TimeStamp, Stimato, Allarme, RiparazPrev, Valore, mL_metroCubo)

Seriale, idEdificio, idPiano, idVano, TimeStamp -> Stimato, Allarme, RiparazPrev, Valore, mL_metroCubo

Seriale, idEdificio, idPiano, idVano, TimeStamp è chiave e la tabella è in BCNF

Barometro (<u>Seriale</u>, Altezza, Orientamento) Seriale -> Altezza, Orientamento Seriale è chiave e la tabella è in BCNF

RilevamentoB (<u>Seriale, idEdificio, idPiano, idVano, TimeStamp</u>, Stimato, Allarme, RiparazPrev, Valore, Percentuale, Esterno)

Seriale, idEdificio, idPiano, idVano, TimeStamp -> Stimato, Allarme, RiparazPrev, Valore, Percentuale, Esterno

Seriale, idEdificio, idPiano, idVano, TimeStamp è chiave e la tabella è in BCNF

Data Analytics

Analytics 1

La prima analytics che abbiamo implementato fornisce i seguenti dati all'utilizzatore: l'ultima data in cui è avvenuta una calamità e quindi la data del più recente danno, il minimo livello necessario di una calamità affiché avvenga un crollo (postcalamita), il periodo di tempo espresso in settimane per cui la parte danneggiata può resistere prima che il crollo avvenga anche in assenza di un evento calamitoso(nopostcalamita), la probabilità che si verifichi una calamità di livello pari o superiore a quello sopportabile dal danno, il tipo di intervento necessario per la riparazione, la spesa da sostenere e un livello di priorità classificato dal più urgente al meno urgente . Per fare ciò, abbiamo utilizzato una procedure con lo scopo di popolare una tabella con il seguente schema:

consiglidintervento (

`IDedificio`,
`idVano`,
`ultimadata`,
`postcalamita`,
`nopostcalamita`,
`probabilita`,
`tipologia`,
`spesa_necessaria`,
`priorita`)

IDedificio	idVano	ultimadata	postcalamita	nopostcalamita	probabilita	tipologia	spesa_necessaria	priorita
60	1	2022-04-22	NULL	7	22	Stesura Intonaco	4886059	1
75	3	2022-03-22	NULL	6	22	Stesura Intonaco	4886059	1
88	3	2022-04-15	NULL	7	22	Impianto Elettrico	4898210	1
84	3	2022-08-30	HULL	3	22	Impianto Elettrico	4898210	1
47	2	2022-09-06	NULL	0	22	Impianto Elettrico	4898210	1
88	3	2022-01-17	NULL	5	22	Posizionamento Mattoni	5081189	1
89	1	2022-08-26	NULL	7	22	Stesura Intonaco	4886059	1
24	1	2021-12-01	1	3	22	Stesura Intonaco	4886059	1
19	1	2022-01-15	NULL	4	22	Posizionamento Mattoni	5081189	1
40	3	2022-01-12	NULL	5	22	Stesura Intonaco	4886059	1
63	3	2022-06-13	NULL	3	22	Posizionamento Mattoni	5081189	1
21	1	2022-01-02	NULL	4	22	Impianto Elettrico	4898210	1
31	3	2022-10-10	NULL	4	22	Posizionamento Mattoni	5081189	1
56	2	2021-12-16	2	1	22	Impianto Elettrico	4898210	1
82	2	2022-10-06	NULL	2	22	Impianto Elettrico	4898210	1
84	2	2022-01-03	NULL	6	22	Isolamento da Muffa	4948856	1
57	2	2022-10-25	NULL	1	22	Impianto Elettrico	4898210	1
6	1	2022-03-27	NULL	7	22	Isolamento da Muffa	4948856	1
27	2	2022-06-24	NULL	5	22	Isolamento da Muffa	4948856	1
47	1	2022-05-04	NULL	4	22	Isolamento da Muffa	4948856	1
72	2	2021-12-02	NULL	6	22	Posizionamento Mattoni	5081189	1
88	2	2022-02-15	NULL	1	22	Isolamento da Muffa	4948856	1
40	1	2022-06-18	NULL	7	22	Stesura Intonaco	4886059	1

Passo1: Stima del Danno e previsioni

Si raccolgono tutti i rilevamenti effettuati dai vari sensori in un'unica tabella e si associano, quelli causati da una calamità, ad essa.

Si calcola il dato "postcalamita" ipotizzando 10 come livello massimo di un evento calamitoso e allo stesso tempo si calcola il dato "nopostcalamita" ovvero il numero di settimane necessarie al crollo, se il trend delle rilevazioni stimate dovesse continuare a rimanere oltre la soglia massima. Tutti i dati ricavati fino ad ora riguardano le singole rilevazioni, che però vengono messe in relazione tramite un raggruppamento e delle somme (quelle riguardanti postcalamita e nopostcalamita vengono svolte in modulo 10 supponendo appunto che ogni 10 livelli si verifichi il crollo).

```
TRUNCATE TABLE consiglidintervento;
INSERT INTO consiglidintervento
WITH allarme AS (SELECT seriale, idedificio,idPiano,idVano,timestamp,stimato,allarme,riparazprev,valore
                FROM rilevamentoa
                SELECT seriale, idedificio,idPiano,idVano,timestamp,stimato,allarme,riparazprev,valore
                FROM rilevamentob
                SELECT seriale, idedificio, idPiano, idVano, timestamp, stimato, allarme, riparazprev, valore
                FROM rilevamentop
                SELECT seriale, idedificio,idPiano,idVano,timestamp,stimato,allarme,riparazprev,valore
                SELECT seriale, idedificio,idPiano,idVano,timestamp,stimato,allarme,riparazprev,valore
                SELECT seriale, idedificio,idPiano,idVano,timestamp,stimato,allarme,riparazprev,valore
partial1 AS( SELECT a.idvano,a.IDedificio, a.seriale, a.timestamp ,a.riparazprev, IF((c.livello IS NOT NULL),(10-c.livello), NULL) AS postcalamita,
                   ((10-a.valore)*7) AS nopostcalamita
            FROM allarme a LEFT OUTER JOIN colpo c ON a.timestamp=c.timestamp AND a.IDedificio=c.IDedificio),
partial2 AS( SELECT idvano.IDedificio.seriale.riparazprev, LAST VALUE(timestamp) OVER (PARTITION by seriale ORDER BY timestamp) AS ultimadata.
               sum(postcalamita)%10 AS postcalamita
                                                        -- modulo10 ovvero ogni volta si raggiunge 10 il crollo si concretizza
            FROM partial1
            GROUP BY seriale, riparazprev),
partial3 AS( SELECT idvano, IDedificio, seriale, riparazprev, LAST VALUE(timestamp) OVER (PARTITION by seriale ORDER BY timestamp) AS ultimadata, sum(nopostcalamita)%10 AS nopostcalamita
            GROUP BY seriale, riparazprev),
```

Passo2: Probabilità

Il passo successivo è quello di calcolare la probabilità che una certa calamità si verifichi e , per fare ciò, bisogna innanzitutto collocare ogni edificio nella rispettiva Area Geografica e poi calcolare la probabilità che si verifichi quella rispettiva calamità piuttosto che altre.

La proporzione utilizzata è: il coefficiente di rischio della calamità interessata sta al rischio totale dell'area come x sta a 100

```
partial4 AS( SELECT*
            FROM partial2 NATURAL JOIN partial3),
area1 AS (SELECT*
         FROM allarme NATURAL JOIN smartbuilding),
area2 AS (SELECT*
         FROM area1 NATURAL JOIN areageografica),
tot AS (SELECT count(*) AS totale, idarea
       FROM colpo NATURAL JOIN smartbuilding
       GROUP BY idArea),
prob AS (SELECT (count(*)*100)/totale AS prob, idcalamita, idarea
        FROM colpo NATURAL JOIN smartbuilding NATURAL JOIN tot
        GROUP BY idCalamita, idArea),
area3 AS (SELECT idcalamita, seriale, prob
         FROM area2 NATURAL JOIN prob
         GROUP BY idcalamita, seriale, prob),
                                                               -- coeeffrischio :rischiotot= x :100 ----> (coeffrischio*100)/rischiotot
parte123fuse AS (SELECT*
                FROM partial4 NATURAL JOIN area3),
```

Passo3: Costo

Ogni rilevazione che viene effettuata è associata ad un lavoro di riferimento, per questo se il crollo dovesse verificarsi sapremmo automaticamente che tipo di intervento dover andare ad effettuare. Questo ci permette, tramite il calcolo degli stipendi dei lavoratori e dei costi dei materiali utilizzati si può effettuare una stima media di quello che è il costo medio di ogni tipologia di lavoro Nei passaggi precedenti abbiamo quindi ricavato tutte le informazioni necessarie, perciò, basta unire tutto per ultimare l'analisi

Ultima cosa da aggiungere infine è la priorità che appunto altro non è che una classifica basata sul risultato ottenuto al Passo2.

```
costo1 AS ( SELECT idlavoro,tipologia,sum((orafINe-oraINizio)*stipENDioadora) AS costoa
           FROM turno NATURAL JOIN lavoratore NATURAL JOIN lavoro
            WHERE tipologia IN(SELECT riparazprev FROM allarme)
            GROUP BY tipologia, idlavoro),
costo2 AS ( SELECT idlavoro, tipologia, sum(costotot) AS costob
            FROM ordINe NATURAL JOIN lavoro
            GROUP BY tipologia, idlavoro),
costofINale AS (SELECT tipologia, AVG(costoa+costob) AS spesa necessaria -- +% IN bASe a livello
               FROM costo1 NATURAL JOIN costo2
               GROUP BY tipologia).
tuttofuso AS (SELECT*
             FROM parte123fuse Inner joIN costofINale ON riparazprev=tipologia)
SELECT idedificio, idvano, ultimadata, postcalamita, nopostcalamita, prob AS probabilita, tipologia, spesa necessaria, rank() OVER(ORDER BY prob desc) AS priorita
GROUP BY idedificio, idvano, tipologia;
END$$
delimiter ;
CALL analytics1;
SELECT *
FROM consiglidintervento:
```

Analytics 2

La seconda analytics svolge la funzione di effettuare una stima dei danni causati agli edifici da potenziali eventi sismici, basandosi sullo stato dell'edificio (ovvero le condizioni in cui versa) e sullo storico dei sismi che hanno colpito tali edifici in passato. Svolge tale compito comunicando all'utente le seguenti informazioni: il livello minimo necessario di sisma affinché l'edificio crolli, il livello massimo sopportabile, la soglia rimasta intesa come integrità e resistenza dell'edificio (massimo 100, minimo 0), l'ultima data in cui si è verificato un evento sismico, la data più prossima in cui l'edificio crollerà se dovessero verificarsi sismi di valore massimo, la data massima di resistenza in caso dovessero verificarsi sismi di valore minimo, un livello di priorità bassato sulla soglia rimasta e il livello di urgenza intervento suggerita. Per fare ciò, abbiamo utilizzato una procedure con lo scopo di popolare una tabella con il seguente schema:

previsionedanni (

'IDedificio',
'valore_minimo',
'valore_massimo',
'soglia_rimASta',
'ultima_data',
'data_minima',
'data_massima',
'priorita',
'stato')

	IDedificio	valore_minimo	valore_massimo	soglia_rimasta	ultima_data	data_minima	data_massima	priorita	stato
	70	1	10	0	2021-12-14	2021-12-14	2021-12-14	1	richiesto intervento immediato
	78	1	9	0	2021-12-02	2021-12-03	2021-12-10	2	richiesto intervento immediat
	86	3	10	7	2021-11-26	2022-01-08	2022-04-17	3	intervenire quanto prima
	34	1	10	12	2021-12-21	2022-02-24	2023-05-21	4	intervenire quanto prima
	20	2	10	15	2021-11-22	2022-02-19	2023-01-09	5	intervenire quanto prima
	10	1	10	19	2021-12-28	2022-05-05	2024-11-08	6	intervenire quanto prima
-	87	3	9	21	2021-11-30	2022-04-12	2023-01-13	7	intervenire quanto prima
	14	2	10	22	2021-12-01	2022-04-09	2024-01-23	8	intervenire quanto prima
	26	2	10	22	2021-11-22	2022-04-18	2023-11-11	9	intervenire quanto prima
	28	1	10	25	2021-11-26	2022-04-13	2025-04-21	10	intervenire quanto prima
	32	2	9	25	2021-11-24	2022-05-22	2024-07-07	11	intervenire quanto prima
	44	2	10	25	2021-12-14	2022-05-10	2024-07-28	12	intervenire quanto prima
	1	2	10	25	2021-12-05	2022-04-28	2024-02-24	13	intervenire quanto prima
	37	2	9	26	2022-01-07	2022-06-09	2024-04-27	14	intervenire quanto prima
	23	4	9	28	2022-01-29	2022-07-07	2023-03-04	15	intervenire quanto prima
	56	1	10	30	2021-12-21	2022-07-22	2026-09-05	16	intervenire quanto prima
1	67	1	10	34	2021-12-10	2022-06-08	2026-04-29	17	danni da considerare
	54	1	10	36	2021-11-25	2022-06-25	2027-09-13	18	danni da considerare
	80	2	9	36	2022-01-24	2022-10-07	2026-03-23	19	danni da considerare
	49	2	9	37	2021-12-13	2022-07-02	2024-11-26	20	danni da considerare
	75	1	10	37	2021-12-10	2022-08-15	2028-09-03	21	danni da considerare
	74	1	10	40	2021-12-19	2022-08-02	2027-01-09	22	danni da considerare
	82	2	10	40	2021-11-25	2022-08-22	2025-09-04	23	danni da considerare
	53	1	8	40	2021-12-12	2022-11-19	2028-05-09	24	danni da considerare
	72	1	9	41	2021-12-10	2022-09-14	2027-10-11	25	danni da considerare

Passo1: Calcolo Intermedi

Si inizia calcolando l'intervallo di tempo medio tra un sisma ed un altro per ogni area. Inoltre si estrapolano dati come: data primo sisma, data ultimo sisma, somma dei valori dei sismi che hanno colpito un singolo edificio, il valore massimo registrato e il valore minimo registrato.

Passo2: Calcolo soglia rimasta

In questo passo avviene il calcolo della soglia rimasta (100-sommavalori).

Essa viene divisa sia per il valore minimo (ottenendo quanti sismi di valore massimo servono affinché il danno si verifichi) che per il valore minimo (ottenendo quanti sismi di valore minimo servono affinché il danno si verifichi).

Passo3: Calcolo delle Date

Si moltiplicano i numeri trovati al passo 2 per l'intervallo medio di giorni trascorsi tra due sismi calcolato al passo1, tale intervallo viene sommato alla data dell'ultimo sisma trovando una data stimata minima e una data stimata massima entro cui è possibile si verifichi il danno.

Passo4: Risultato Finale

Facendo una classifica degli edifici in base alla soglia rimasta e alla data minima, si ottiene la priorità d'intervento.

```
SELECT idedificio, minv, maxv, sogliarimasta, ultima_data, dataminima, datamassima,rank() OVER (ORDER BY sogliarimasta, dataminima)AS priorita,

IF(sogliarimasta>=60,'danni lievi/trascurabili',

IF(sogliarimasta<60 AND sogliarimasta>=30,'danni da considerare',

IF(sogliarimasta<30 AND sogliarimasta>=1,'intervenire quanto prima','richiesto intervento immediato'))) AS stato

FROM partial6;
```