```
In []:

In []:
```

Import The Relevant Libraries

In [1]: import numpy as np
import tensorflow as tf
from sklearn import preprocessing

Extract the data from CSV

In [3]: # Load the data

raw_csv_data = np.loadtxt('D:\Projects\python\Audiobooks\Audiobooks_data.csv', delimiter = ',')

The inputs are all columns in the csv, except for the first one [:,0]
(which is just the arbitrary customer IDs that bear no useful information),
and the last one [:,-1] (which is our targets)

unscaled_inputs_all = raw_csv_data[:,1:-1]

The targets are in the last column. That's how datasets are conventionally organized.

targets_all = raw_csv_data[:,-1]

<:!! SyntaxWarning: invalid escape sequence '\P'
</pre>

<:! SyntaxWarning: invalid escape sequence '\P'
</pre>

<:! SyntaxWarning: invalid escape sequence '\P'
</pre>

<: \Users\fambda{ada}\Appata\Loca\Temp\inp\end{adata} \temples \temples

Balance the dataset

In [4]: # Count how many targets are 1 (meaning that the customer did convert) num_one_targets = int(np.sum(targets_all)) # Set a counter for targets that are 0 (meaning that the customer did not convert) zero_targets_counter = 0 # We want to create a "balanced" dataset, so we will have to remove some input/target pairs. # Declare a variable that will do that: indices_to_remove = [] # Count the number of targets that are 0. # Once there are as many Os as 1s, mark entries where the target is O. for i in range(targets_all.shape[0]): if targets_all[i] == 0: zero_targets_counter += 1 if zero_targets_counter > num_one_targets: indices_to_remove.append(i) # Create two new variables, one that will contain the inputs, and one that will contain the targets. # We delete all indices that we marked "to remove" in the loop above. unscaled_inputs_equal_priors = np.delete(unscaled_inputs_all, indices_to_remove, axis=0) targets_equal_priors = np.delete(targets_all, indices_to_remove, axis=0)

Standardize the inputs

In [5]: # That's the only place we use sklearn functionality. We will take advantage of its preprocessing capabilities
It's a simple line of code, which standardizes the inputs, as we explained in one of the lectures.
At the end of the business case, you can try to run the algorithm WITHOUT this line of code.
The result will be interesting.
scaled_inputs = preprocessing.scale(unscaled_inputs_equal_priors)

Shuffle the data

In [6]: # When the data was collected it was actually arranged by date
 # Shuffle the indices of the data, so the data is not arranged in any way when we feed it.
 # Since we will be batching, we want the data to be as randomly spread out as possible
 shuffled_indices = np.arange(scaled_inputs.shape[0])
 np.random.shuffle(shuffled_indices)

Use the shuffled indices to shuffle the inputs and targets.
 shuffled_inputs = scaled_inputs(shuffled_indices)
 shuffled_targets = targets_equal_priors[shuffled_indices]

Split the dataset into Train, Validation, and Test

```
In [7]: # Count the total number of samples
        samples_count = shuffled_inputs.shape[0]
        # Count the samples in each subset, assuming we want 80-10-10 distribution of training, validation, and test.
        # Naturally, the numbers are integers.
        train_samples_count = int(0.8 * samples_count)
        validation_samples_count = int(0.1 * samples_count)
        # The 'test' dataset contains all remaining data.
        test_samples_count = samples_count - train_samples_count - validation_samples_count
        # Create variables that record the inputs and targets for training
        # In our shuffled dataset, they are the first "train_samples_count" observations
        train_inputs = shuffled_inputs[:train_samples_count]
        train_targets = shuffled_targets[:train_samples_count]
        # Create variables that record the inputs and targets for validation.
        # They are the next "validation_samples_count" observations, following the "train_samples_count" we already assigned
        validation_inputs = shuffled_inputs[train_samples_count:train_samples_count+validation_samples_count]
        validation_targets = shuffled_targets[train_samples_count:train_samples_count+validation_samples_count]
        # Create variables that record the inputs and targets for test.
        # They are everything that is remaining.
        test_inputs = shuffled_inputs[train_samples_count+validation_samples_count:]
        test_targets = shuffled_targets[train_samples_count+validation_samples_count:]
        # We balanced our dataset to be 50-50 (for targets 0 and 1), but the training, validation, and test were
        # taken from a shuffled dataset. Check if they are balanced, too. Note that each time you rerun this code,
        # you will get different values, as each time they are shuffled randomly.
        # Normally you preprocess ONCE, so you need not rerun this code once it is done.
        # If you rerun this whole sheet, the npzs will be overwritten with your newly preprocessed data.
        # Print the number of targets that are 1s, the total number of samples, and the proportion for training, validation, and test.
        print(np.sum(train_targets), train_samples_count, np.sum(train_targets) / train_samples_count)
        print(np.sum(validation_targets), validation_samples_count, np.sum(validation_targets) / validation_samples_count)
        print(np.sum(test_targets), test_samples_count, np.sum(test_targets) / test_samples_count)
       1787.0 3579 0.4993014808605756
       235.0 447 0.5257270693512305
```

Save the three dataset in *.npz

215.0 448 0.4799107142857143

Save the three datasets in *.npz.
In the next lesson, you will see that it is extremely valuable to name them in such a coherent way!

np.savez('Audiobooks_data_train', inputs=train_inputs, targets=train_targets)

np.savez('Audiobooks_data_validation', inputs=validation_inputs, targets=validation_targets)

np.savez('Audiobooks_data_test', inputs=test_inputs, targets=test_targets)

Create the machine learning algorithm

```
In [10]: # Set the input and output sizes
         input_size = 10
         output_size = 2
         # Use same hidden layer size for both hidden layers. Not a necessity.
         hidden_layer_size = 50
         # define how the model will look like
         model = tf.keras.Sequential([
             # tf.keras.layers.Dense is basically implementing: output = activation(dot(input, weight) + bias)
             # it takes several arguments, but the most important ones for us are the hidden_layer_size and the activation function
            tf.keras.layers.Dense(hidden_layer_size, activation='relu'), # 1st hidden layer
            tf.keras.layers.Dense(hidden_layer_size, activation='relu'), # 2nd hidden layer
            # the final layer is no different, we just make sure to activate it with softmax
            tf.keras.layers.Dense(output_size, activation='softmax') # output layer
         ### Choose the optimizer and the loss function
         # we define the optimizer we'd like to use,
         # the loss function,
         # and the metrics we are interested in obtaining at each iteration
         model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
         ### Training
         # That's where we train the model we have built.
         # set the batch size
         batch_size = 100
         # set a maximum number of training epochs
         max\_epochs = 100
         # set an early stopping mechanism
         # let's set patience=2, to be a bit tolerant against random validation loss increases
         early_stopping = tf.keras.callbacks.EarlyStopping(patience=2)
         # note that this time the train, validation and test data are not iterable
         model.fit(train_inputs, # train inputs
                  train_targets, # train targets
                  batch_size=batch_size, # batch size
                  epochs=max_epochs, # epochs that we will train for (assuming early stopping doesn't kick in)
                  # callbacks are functions called by a task when a task is completed
                  # task here is to check if val_loss is increasing
                  callbacks=[early_stopping], # early stopping
                  validation_data=(validation_inputs, validation_targets), # validation data
                  verbose = 2) # making sure we get enough information about the training process
```

```
Epoch 1/100
36/36 - 1s - 39ms/step - accuracy: 0.7706 - loss: 0.5606 - val_accuracy: 0.8591 - val_loss: 0.4403
Epoch 2/100
36/36 - 0s - 4ms/step - accuracy: 0.8815 - loss: 0.3629 - val_accuracy: 0.8591 - val_loss: 0.3698
Epoch 3/100
36/36 - 0s - 3ms/step - accuracy: 0.8894 - loss: 0.3165 - val_accuracy: 0.8725 - val_loss: 0.3425
Epoch 4/100
36/36 - 0s - 3ms/step - accuracy: 0.8921 - loss: 0.2943 - val_accuracy: 0.8770 - val_loss: 0.3201
Epoch 5/100
36/36 - 0s - 4ms/step - accuracy: 0.8961 - loss: 0.2807 - val_accuracy: 0.8859 - val_loss: 0.3062
Epoch 6/100
36/36 - 0s - 4ms/step - accuracy: 0.8986 - loss: 0.2719 - val_accuracy: 0.8881 - val_loss: 0.2961
Epoch 7/100
36/36 - 0s - 3ms/step - accuracy: 0.9016 - loss: 0.2665 - val_accuracy: 0.8881 - val_loss: 0.2905
Epoch 8/100
36/36 - 0s - 4ms/step - accuracy: 0.9042 - loss: 0.2599 - val_accuracy: 0.8926 - val_loss: 0.2832
Epoch 9/100
36/36 - 0s - 4ms/step - accuracy: 0.9044 - loss: 0.2552 - val_accuracy: 0.8971 - val_loss: 0.2793
Epoch 10/100
36/36 - 0s - 3ms/step - accuracy: 0.9064 - loss: 0.2503 - val_accuracy: 0.8971 - val_loss: 0.2762
Epoch 11/100
36/36 - 0s - 3ms/step - accuracy: 0.9053 - loss: 0.2475 - val_accuracy: 0.8949 - val_loss: 0.2744
Epoch 12/100
36/36 - 0s - 3ms/step - accuracy: 0.9061 - loss: 0.2438 - val_accuracy: 0.8971 - val_loss: 0.2693
Epoch 13/100
36/36 - 0s - 3ms/step - accuracy: 0.9078 - loss: 0.2451 - val_accuracy: 0.8949 - val_loss: 0.2691
Epoch 14/100
36/36 - 0s - 3ms/step - accuracy: 0.9089 - loss: 0.2398 - val_accuracy: 0.8993 - val_loss: 0.2638
Epoch 15/100
36/36 - 0s - 3ms/step - accuracy: 0.9106 - loss: 0.2404 - val_accuracy: 0.8926 - val_loss: 0.2806
Epoch 16/100
36/36 - 0s - 3ms/step - accuracy: 0.9092 - loss: 0.2417 - val_accuracy: 0.8971 - val_loss: 0.2638
Epoch 17/100
36/36 - 0s - 3ms/step - accuracy: 0.9111 - loss: 0.2356 - val_accuracy: 0.8971 - val_loss: 0.2676
Epoch 18/100
36/36 - 0s - 4ms/step - accuracy: 0.9111 - loss: 0.2343 - val_accuracy: 0.8971 - val_loss: 0.2626
Epoch 19/100
36/36 - 0s - 4ms/step - accuracy: 0.9128 - loss: 0.2318 - val_accuracy: 0.9016 - val_loss: 0.2593
Epoch 20/100
36/36 - 0s - 3ms/step - accuracy: 0.9120 - loss: 0.2302 - val_accuracy: 0.9038 - val_loss: 0.2643
Epoch 21/100
36/36 - 0s - 4ms/step - accuracy: 0.9123 - loss: 0.2316 - val_accuracy: 0.9016 - val_loss: 0.2596
```

Test The Model

14/14 -

In [11]: test_loss, test_accuracy = model.evaluate(test_inputs, test_targets)
print('\nTest loss: {0:.2f}. Test accuracy: {1:.2f}%'.format(test_loss, test_accuracy*100.))

- **0s** 1ms/step - accuracy: 0.8860 - loss: 0.2954

Out[10]: <keras.src.callbacks.history.History at 0x190dff22060>