MAP REDUCE ASSIGNMENT

Task 4:

We have used 2 methods for executing Map Reduce

- 1. Commandline (question a,b,c)
- 2. Using hadoop streaming (questions d,e,f)

Qa. Which vendors have the most trips, and what is the total revenue generated by that vendor?

- Considering the part 1 file , vendor 2 (VeriFone Inc) had most trips with 525037658.14 as total revenue
- Command:
 - cat yellow_tripdata_2017-01.csv yellow_tripdata_2017-02.csv yellow_tripdata_2017-03.csv yellow_tripdata_2017-04.csv yellow_tripdata_2017-05.csv yellow_tripdata_2017-06.csv | python mappervendor.py | python reducervendor.py > output vendor

```
[root@ip-172-31-72-60 script]# cat output_vendor
1 26824089 430567016.43
2 32158202 525037658.14
```

Qb. Which pickup location generates the most revenue?

- pickup location ID 132 has produced most revenue.
- Command:
 - cat yellow_tripdata_2017-01.csv yellow_tripdata_2017-02.csv yellow_tripdata_2017-03.csv yellow_tripdata_2017-04.csv yellow_tripdata_2017-06.csv | python mapperlocation.py | python reducerlocation.py > output_location

Qc. What are the different payment types used by customers and their count? The final results should be in a sorted format.

• Most of the customer prefer payment type 1 i.e., credit card payment

Qd. What is the average trip time for different pickup locations?

We have used hadoop streamin for executing.

```
hadoop jar /lib/hadoop-mapreduce/hadoop-streaming-2.8.5-amzn-6.jar \
-file mapper_d.py -mapper 'python mapper_d.py' \
-file reducer_d.py -reducer 'python reducer_d.py' \
-input /user/hadoop/input \
-output /user/hadoop/output_d \
-file combiner_d.py -combiner 'python combiner_d.py'
```

Output screenshot:

```
215
        48.06
212
        20.64
218
        20.21
227
        14.07
131
        13.66
137
        13.29
134
        15.36
26
        11.57
224
        13.22
20
        13.66
23
        12.34
29
        21.45
        17.01
```

Complete Result is in output d folder

Qe. Calculate the average tips to revenue ratio of the drivers for different locations in sorted format.

```
hadoop jar /lib/hadoop-mapreduce/hadoop-streaming-2.8.5-amzn-6.jar \
-file mapper_e.py -mapper 'python mapper_e.py' \
-file reducer_e.py -reducer 'python reducer_e.py' \
-input /user/hadoop/input \
-output /user/hadoop/output_e \
-file combiner_e.py -combiner 'python combiner_e.py'
```

Sample output:

2	5.47	51.82
5	12.20	70.30
8	3.63	33.44
11	2.38	35.95
14	2.02	22.36
17	1.15	13.81
20	1.43	19.01
23	6.70	56.37
26	1.14	17.41
29	2.05	31.13
32	1.25	20.42
35	2.03	20.21
38	2.48	42.75
41	1.17	12.95
44	3.66	57.10
47	0.54	15.13
50	1.57	14.40
53	1.80	23.28

Complete output is in output e folder

Qe. How does revenue vary over time? Calculate the average trip revenue per month - analysing it by hour of the day (day vs night) and the day of the week (weekday vs weekend).

• From the pick up date and time, we have extracted month, day and night, day of the week using below scripts.

```
pickup = datetime.strptime(line[1],"%Y-%m-%d %H:%M:%S")
pickup_date =pickup.date()
month = pickup_date.strftime('%B')
day = calendar.day_name[pickup_date.weekday()]
hr = pickup.time().hour
daytime = ( "day" if hr<=20 and hr>=6 else "night")
```

below is the hadoop streaming command

hadoop jar /lib/hadoop-mapreduce/hadoop-streaming-2.8.5-amzn-6.jar -files mappermonth.py,reducermonth.py -mapper 'python mappermonth.py' -reducer 'python reducermonth.py' -input /user/hadoop/input -output /user/hadoop/output_month3 -numReduceTasks 3 -partitioner org.apache.hadoop.mapred.lib.HashPartitioner

Added index value 1 for month 2 for day of the week and 3 for day and night

Sample output:

```
1March 16.22

2Monday 16.43

2Tuesday 15.90

2Friday 16.52

2Wednesday 16.57

2Thursday 17.00

2Sunday 15.97

2Saturday 14.87

3day 16.00

3night 16.84
```