Autômatos Finitos e Não-determinismo

Área de Teoria DCC/UFMG

Fundamentos de Teoria da Computação

2020/01

Autômatos Finitos e Não-determinismo: Introdução

• Como já discutimos, uma pergunta central da teoria da computação é:

"O que é um computador?"

- Mas computadores s\(\tilde{a}\) complexos demais para que desenvolvamos uma teoria matem\(\tilde{a}\) tica para eles diretamente.
- A solução é utilizar um modelo computacional, que é um computador idealizado em que apenas detalhes relevantes são representados.
- Vamos começar agora o estudo de um modelo computacional extremamente simples, a máquina de estados finitos, ou autômato finito.
- Em particular, vamos ver como incorporar a estes autômatos não-determinismo, uma poderosa ferramenta da teoria da computação.
- Os autômatos finitos definem a classe das linguagens regulares.

Autômatos Finitos: Motivação

 Autômatos finitos são bons modelos para computadores com uma quantidade muito limitada de memória.

Apesar de extremamente simples, tais computadores são muito relevantes.

• Exemplo 1 Considere um controlador de porta automática, que tem dois tapetes (frontal e posterior) para detectar a presença de pessoas.

O controlador está em um de dois estados:

OPEN: porta
 aberta.

 CLOSED: porta fechada.

Há quatro condições de entrada possíveis:

- FRONT: alguém está pisando no tapete da frente.
- REAR: alguém está pisando no tapete traseiro.

- BOTH: pessoas estão pisando em ambos os tapetes.
- NEITHER: ninguém está pisando em nenhum tapete.

Autômatos Finitos: Motivação

• Exemplo 1 (Continuação)

Podemos representar o funcionamento do controlador de várias formas:

• Diagrama de estados:

• Tabela de transição:

input signal

state | NEITHER FRONT REAR BOTH | CLOSED | CLOSED OPEN | CLOSED OPEN | CLOSED OPEN | O

- O controlador do exemplo anterior foi modelado como um autômato finito.
- Vamos introduzir os componentes de um autômato finito com um exemplo.
- Exemplo 2 Considere o **diagrama de estados** do autômato finito M_1 abaixo, que tem três estados.

- O autômato tem três **estados**: q_1 , q_2 e q_3 .
- ullet O **estado inicial** é q_1 , indicado pela seta apontando para ele vinda do nada.
- O estado de aceitação (ou estado final) é q_2 , indicado por um círculo duplo.
- As setas entre estados são transições.

• Exemplo 2 (Continuação)

Considere ainda o mesmo autômato finito M_1 :

 Quando o autômato recebe uma cadeia de entrada (como 1101), ele a processa e produz uma de duas saídas possíveis: aceita ou rejeita.

Se o autômato finito M_1 recebe a entrada 1101, o processamento é:

- 1. Começa no estado inicial q_1 .
- 2. Lê o símbolo 1 da entrada, e segue de q_1 para q_2 .
- 3. Lê o símbolo 1 da entrada, e segue de q_2 para q_2 .
- 4. Lê o símbolo 0 da entrada, e segue de q_2 para q_3 .
- 5. Lê o símbolo 1 da entrada, e segue de q_3 para q_2 .
- 6. Aceita porque M_1 está no estado de aceitação q_2 no final da entrada.

• Exemplo 2 (Continuação)

Considere ainda o mesmo autômato finito M_1 :

Experimentando com M_1 , esta máquina aceita ou rejeita as cadeias:

- 1: aceita
- 01: aceita

- 11: aceita
- 0101010101: aceita

Logo, podemos concluir que:

 M_1 aceita qualquer cadeia terminada com 1, porque a máquina sempre se move para o estado de aceitação q_2 ao ler o símbolo 1.

• Exemplo 2 (Continuação)

Considere ainda o mesmo autômato finito M_1 :

Experimentando com M_1 , esta máquina aceita ou rejeita as cadeias:

- 100: aceita
- 0100: aceita

- 110000: aceita
- 0101000000: aceita

Logo, podemos concluir que:

 M_1 também aceita qualquer cadeia que tem pelo menos um 1 e que termina com um número par de 0s seguindo o último 1.

• Exemplo 2 (Continuação)

Considere ainda o mesmo autômato finito M_1 :

Experimentando com M_1 , esta máquina aceita ou rejeita as cadeias:

• 0: rejeita

• 10: rejeita

• 101000: rejeita

• 1000: rejeita

Logo, podemos concluir que:

 M_1 rejeita qualquer cadeia que tem pelo menos um 1 e que termina com um número ímpar de 0s seguindo o último 1.

Qual a linguagem reconhecida por M_1 ?

Veremos a resposta em breve...

Autômatos Finitos: Definição formal

- Um autômato finito (determinístico) (AFD) é uma 5-tupla $(Q, \Sigma, \delta, q_0, F)$, onde:
 - 1. Q é um conjunto finito de **estados**,
 - 2. Σ é um conjunto finito chamado de **alfabeto**,
 - 3. $\delta: Q \times \Sigma \rightarrow Q$ é uma função de transição,
 - 4. $q_0 \in Q$ é o estado inicial, e
 - 5. $F \subseteq Q$ é o conjunto de estados de aceitação (ou estados finais).

Autômatos Finitos: Definição formal

• Exemplo 3 Considere o diagrama de estados do autômato finito M_1 :

Formalmente, este autômato é uma 5-tupla $M_1 = (Q, \Sigma, \delta, q_0, F)$, onde:

- 1. o conjunto de estados é $Q = \{q_1, q_2, q_3\}$,
- 2. o alfabeto é $\Sigma = \{0, 1\}$,
- 3. A função de transição δ é descrita como

δ	0	1	
q_1	q_1	q_2	
q_2	q 3	q_2	,
q 3	q 2	q_2	

- 4. O estado inicial é $q_1 \in Q$, e
- 5. O conjunto de estados de aceitação é $F = \{q_2\}$.

Autômatos Finitos: Linguagem reconhecida

• Se A é o conjunto de todas as cadeias que uma máquina M aceita, dizemos que A é a linguagem reconhecida pela máquina M.

Denotamos a linguagem de uma máquina por L(M) = A.

• Uma máquina pode aceitar várias cadeias, mas ela só reconhece uma única linguagem (i.e., o conjunto de todas as cadeias aceitas).

Se uma máquina não aceita nenhuma cadeia, ela reconhece a linguagem vazia \emptyset .

• Exemplo 4 Retomando novamente o autômato M_1 , podemos dizer que a linguagem reconhecida por esta máquina é:

 $L(M_1) = \{w \in \{0,1\}^* \mid w \text{ cont\'em pelo menos um } 1 \text{ e}$ um número par de zeros segue o último $1\}$.

• Exemplo 5 Considere o diagrama de estados do autômato finito M_2 :

Podemos dizer que a linguagem reconhecida por este autômato é

$$L(M_2) = \{ w \in \{0,1\}^* \mid |w| > 0 \text{ e } w \text{ termina com } 1 \}.$$

• Exemplo 6 Considere o diagrama de estados do autômato finito M_3 :

A máquina M_3 é semelhante á máquina M_2 , exceto pelo estado de aceitação.

Podemos dizer que a linguagem reconhecida por este autômato é

$$L(M_3)=\{w\in\{0,1\}^*\mid w \text{ \'e a cadeia vazia, ou } w \text{ termina com } 0\}.$$

Note que a linguagem reconhecida por M_3 pode também ser descrita como:

$$L(M_3) = \{w \in \{0,1\}^* \mid w \text{ não termina com } 1\}.$$

• Exemplo 7 Considere o diagrama de estados do autômato finito M_4 :

Podemos dizer que a linguagem reconhecida por este autômato é

$$L(M_4) = \{w \in \{a, b\}^* \mid |w| > 0 \text{ e } w \text{ começa e termina com o mesmo símbolo}\}.$$

• Exemplo 8 Considere o diagrama de estados do autômato finito M_5 :

Podemos dizer que a linguagem reconhecida por este autômato é

 $\textit{L(M}_5) = \{w \in \{\langle \text{RESET} \rangle, 0, 1, 2\}^* \mid \text{a soma dos dígitos de } w \text{ após o último} \\ \langle \text{RESET} \rangle \text{ \'e m\'ultiplo de 3} \}.$

Exemplo 9 Considere uma generalização do autômato finito M_5 do exemplo anterior, usando o mesmo alfabeto de entrada $\Sigma = \{\langle \text{RESET} \rangle, 0, 1, 2\}.$

Para cada $i \geq 1$, seja A_i a linguagem de todas as cadeias em que a soma dos números é um múltiplo de i, exceto que a soma é reiniciada para 0 sempre que o símbolo $\langle \text{RESET} \rangle$ aparece.

Para cada linguagem A_i , damos um autômato finito B_i reconhecendo A_i da seguinte forma:

$$B_i = (Q_i, \Sigma, \delta_i, q_0, \{q_0\}),$$
 onde

- $Q_i = \{q_0, q_1, \dots, q_{i-1}\}$ é o conjunto de estados, e
- a função de transição δ_i é tal que para todo $q_j \in Q_i$:
 - $\delta_i(q_i,0)=q_i$
 - $\delta_i(q_i, 1) = q_k$, onde k = j + 1 módulo i,
 - $\delta_i(q_i, 2) = q_k$, onde k = j + 2 módulo i, e
 - $\delta_i(q_i, \mathbb{C}) = q_0$.

Autômatos Finitos: Definição formal de computação

- Até agora vimos, intuitivamente, como ocorre a computação de autômato finito. Agora vamos formalizar esta intuição do conceito de computação.
- Seja $M = (Q, \Sigma, \delta, q_0, F)$ um autômato finito, e suponha que $w = w_1 w_2 \dots w_n$ seja uma cadeia em que cada $w_i \in \Sigma$.

Então o autômato finito M aceita a cadeia w se existe uma sequência de estados $r_0, r_1, \ldots, r_n \in Q$ satisfazendo as três condições abaixo:

1. $r_0 = q_0$,

(Esta condição diz que a máquina começa no estado inicial.)

2. $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, 1, ..., n-1, e

(Esta condição diz que a máquina transita conforme a função de transição.)

3. $r_n \in F$.

(Esta condição diz que a máquina pára em estado de aceitação.)

Linguagens Regulares

• Dizemos que a máquina M reconhece a linguagem A se

$$A = \{ w \mid M \text{ aceita } w \}.$$

 Uma linguagem é chamada de linguagem regular se algum autômato finito a reconhece.

Linguagens Regulares

• Exemplo 10 Consideremos novamente o autômato M_5 .

Considere a cadeia:

$$w=10\langle \text{reset}\rangle 22\langle \text{reset}\rangle 012$$

 M_5 aceita w, pois a sequência de estados visita pela máquina ao computar w é:

$$q_0, q_1, q_1, q_0, q_2, q_1, q_0, q_1, q_0,$$

que satisfaz as 3 condições.

Além disso, a linguagem $L(M_5)$ é uma linguagem regular, pois é reconhecida por um autômato finito.

- Projetar um autômato finito, assim como projetar uma obra de arte, é um processo criativo.
- Apenas com prática, atenção e empenho podemos ser capazes de projetar autômatos finitos com facilidade.
- Vamos praticar isto agora!
 - Exemplo 11 Projete um autômato finito que reconheça a linguagem $L=\{w\in\{0,1\}^*\mid w ext{ tem um número ímpar de 1s}\}.$

Solução.

• Exemplo 12 Projete um autômato finito que reconheça a linguagem

$$L = \{w \in \{0,1\}^* \mid w \text{ cont\'em a subcadeia } 001\}.$$

Solução.

• Exemplo 13 Projete um autômato finito que reconheça cadeias binárias que, quando interpretadas como números, são divisíveis por 6. Ou seja,

$$L = \{w \in \{0,1\}^* \mid w \text{ representa um binário divisível por 6}\}.$$

Por exemplo:

- **1** 110 \in *L*,
- **②** 000000 ∈ *L*,

- **③** 1 ∉ *L*,
- **③** 00111 ∉ *L*.

Solução.

Para construir um autômato para L, vamos usar 6 estados correspondendo aos restos possíveis de um número na divisão por 6: 0, 1, 2, 3, 4, ou 5.

O estado inicial do autômato é 0, pois a cadeia vazia ϵ representa 0 e, portanto, tem resto 0 na divisão por 6.

O (único) estado final do autômato também é 0, pois a cadeia deve ser aceita se, e somente se, representa um binário divisível por 6.

• Exemplo 13 (Continuação)

Assuma agora que o AFD já processou um prefixo x de w, determinando que o resto da divisão de x por 6 é r.

Então, ao ler um novo símbolo de entrada:

 Se o símbolo for 0, o prefixo consumido passa a ser x0, que, em binário, é o dobro do número representado por x.

Logo o resto de x0 por 6 é o dobro do resto de x por 6 (mod 6).

Isto quer dizer que, ao ler um 0, o AFD deve transitar do estado r para o estado $2r \pmod{6}$.

 Se o símbolo for 1, o prefixo consumido passa a ser x1, que, em binário, é o dobro do número representado por x mais 1.

Logo o resto de x0 por 6 é o dobro mais 1 do resto de x por 6 (mod 6).

Isto quer dizer que, ao ler um 0, o AFD deve transitar do estado r para o estado $2r+1 \pmod 6$.

• Exemplo 13 (Continuação)

Assim, o AFD que reconhece a linguagem L é o seguinte:

- Quando projetamos um AFD, uma pergunta relevante é se construímos aquele com o menor número de estados possível.
- Dois AFDs M e M' são equivalentes se eles reconhecem a mesma linguagem, ou seja,

$$L(M) = L(M').$$

- Um **AFD mínimo** para uma linguagem é aquele que, dentre todos os AFDs equivalentes para a mesma linguagem, possui o menor número de estados.
- Para construir um AFD mínimo para uma linguagem L, nós podemos:
 - 1. Construir um AFD M que reconheça L.
 - 2. Aplicar um algoritmo de minimização a M, obtendo um AFD equivalente mínimo M^\prime para reconhecer L.

- O algoritmo de minimização de AFDs é baseado no conceito de estados equivalentes, ou seja, que se comportam identicamente.
- Dois estados e e e' são **equivalentes** se o resultado final (aceitação ou rejeição) do processamento de qualquer cadeia $w \in \Sigma^*$ é o mesmo se iniciado a partir e ou a partir de e'.

Mais formalmente, dois estados e e e' são equivalentes se

 $\forall w \in \Sigma^*$: w é aceita a partir de $e \Leftrightarrow w$ é aceita a partir de e'.

 O algoritmo de minimização funciona ao unir todos os estados equivalentes entre si (o que não altera o funcionamento do autômato, uma vez que estados equivalentes se comportam de maneira idêntica para toda cadeia).

Já estados não-equivalentes não podem ser unidos, e permanecem separados.

- A questão central do algoritmo de minimização é, então, determinar quais estados de um AFD são equivalentes.
- Note que, pela definição, se dois estados e e e' não são equivalentes, então existe pelo menos uma cadeia $w \in \Sigma^*$ tal que w é aceita ao ser processada a partir de e' (ou vice-versa).
- Para determinar quais estados não são equivalentes, o algoritmo:
 - Inicialmente assume que todos os estados s\u00e3o equivalentes entre si, e os agrupa.
 - 2. Iterativamente identifica cadeias $w \in \Sigma^*$ que atestam que alguns estados não são equivalentes, e separa estes estados.
 - 3. Quando nenhum estado mais pode ser separado, sabe-se que somente os estados equivalentes permanecem juntos, e com eles se constrói o autômato equivalente minimizado.

• Mais precisamente, inicialmente o algoritmo particiona o conjunto de estados Q do AFD em um bloco de estados finais F, e um bloco de estados não-finais Q - F.

Note que cada estado em F não pode ser equivalente a nenhum estado em Q-F, porque a cadeia $\epsilon \in \Sigma^*$ é aceita a partir de qualquer estado em F, mas rejeitada a partir de qualquer estado em Q-F.

- Em seguida, o algoritmo particiona mais os estados, iterativamente.
- Dois estados e e e' são n-distinguíveis se existe uma cadeia $s \in \Sigma^*$ de tamanho n tal que s é aceita a partir de e, mas rejeitada a partir de e' (ou vice-versa).
- O algoritmo procura uma partição em que estados 1,2,3,...-distinguíveis ficam em blocos diferentes e que usa o número mínimo de blocos.

- O algoritmo de minimização funciona, então, assim:
 - 1. Produza uma partição $\mathcal{P}_0 = \{F, Q F\}$ do conjunto de estados Q, em que estados finais são separados dos não-finais.
 - 2. Para cada bloco de estados B na partição \mathcal{P}_i , cada símbolo s do alfabeto Σ , e cada par de estados e, e' contidos no bloco B:
 - a) Sejam $d=\delta(e,s)$ e $d'=\delta(e',s)$ os estados para os quais o AFD transita quando lê o símbolo s a partir dos estados e e e', respectivamente.
 - Se d e d' pertencem a blocos diferentes na partição \mathcal{P}_i , então os estados e e e' não são equivalentes e devem ser separados na partição \mathcal{P}_{i+1} .
 - 3. Se a partição \mathcal{P}_{i+1} for diferente da partição \mathcal{P}_i , repita o passo (2).
 - 4. O autômato mínimo é construído de tal forma que seus estados são os blocos da última partição \mathcal{P}_{i+1} produzida.

 Exemplo 14 Usando o algoritmo de minimização explicado acima, minimize o AFD para a linguagem dos binários divisíveis por 6.

Solução.

Vamos aplicar o algoritmo de minimização para identificar os estados equivalentes no AFD e, com isso, construir o AFD equivalente mínimo.

 Primeiro criamos a partição inicial dos estados, separando estados finais de não finais:

$$\mathcal{P}_0 = \{\{0\}, \{1, 2, 3, 4, 5\}\}.$$

- Exemplo 14 (Continuação)
 - 2. Agora, iterativamente, procuramos por estados não equivalentes.
 - a) Na partição $\mathcal{P}_0 = \{\{0\}, \{1,2,3,4,5\}\}$, notamos que o bloco $\{0\}$ não pode mais ser separado, logo só precisamos considerar o bloco $\{1,2,3,4,5\}$.

Aplicamos os símbolos 0 e 1 a cada estado do bloco e verificamos a qual bloco da partição \mathcal{P}_0 o resultado pertence:

0	1	2	3	4	5
	↓ 0	↓ 0	↓ 0	↓ 0	↓ 0
	2 ∈ {1,2,3,4,5}	4 ∈ {1,2,3,4,5}	0∈{0}	$2 \in \{1,2,3,4,5\}$	4 ∈ {1,2,3,4,5}
	↓ 1	↓ 1	↓ 1	↓ 1	↓ 1
	3∈{1,2,3,4,5}	$5 \in \{1,2,3,4,5\}$	$1 \in \{1,2,3,4,5\}$	$3 \in \{1,2,3,4,5\}$	5 ∈ {1,2,3,4,5}

Note que o estado 3 é distinguível dos estados 1, 2, 4 e 5 por palavras de tamanho 1, pois sob o símbolo 0 o estado 3 transita para o bloco $\{0\}$, enquanto sob o símbolo 0 os estados 1, 2, 4 e 5 transitam para o bloco $\{1, 2, 3, 4, 5\}$.

Logo precisamos separar o estado 3 dos demais no bloco $\{1,2,3,4,5\}$, fazendo com que a próxima partição seja

$$\mathcal{P}_1 = \{\{0\}, \{1, 2, 4, 5\}, \{3\}\}.$$

- Exemplo 14 (Continuação)
 - 2. Continuamos a, iterativamente, procurar por estados não equivalentes.
 - b) Na partição $\mathcal{P}_1 = \{\{0\}, \{1, 2, 4, 5\}, \{3\}\}$, notamos que os blocos $\{0\}$ e $\{3\}$ não podem mais ser separados, logo só precisamos considerar o bloco $\{1, 2, 4, 5\}$.

Aplicamos os símbolos 0 e 1 a cada estado do bloco e verificamos a qual bloco da partição \mathcal{P}_1 o resultado pertence:

0	1	2	4	5	3
	↓0	↓ 0	↓ 0	↓ 0	
	$2 \in \{1, 2, 4, 5\}$	$4{\in}\{1,2,4,5\}$	$2{\in}\{1,2,4,5\}$	$4{\in}\{1,2,4,5\}$	
	↓ 1	↓ 1	↓ 1	↓ 1	
	3∈{3}	$5{\in}\{1,2,4,5\}$	3∈{3}	$5{\in}\{1,2,4,5\}$	

Note que os estados 1 e 4 são distinguíveis dos estados 2 e 5 por palavras de tamanho 2, pois sob o símbolo 1 os estados 1 e 4 transitam para o bloco {3}, enquanto sob o símbolo 1 os estados 2 e 5 transitam para o bloco $\{1, 2, 4, 5\}$.

Logo precisamos separar os estado 1 e 4 dos estados 2 e 5 no bloco $\{1, 2, 4, 5\}$, fazendo com que a próxima partição seja

$$\mathcal{P}_2 = \{\{0\}, \{1,4\}, \{2,5\}, \{3\}\}.$$
Autômatos Finitos e Não determinismo. Área de Te

- Exemplo 14 (Continuação)
 - 2. Continuamos a, iterativamente, procurar por estados não equivalentes.
 - c) Na partição $\mathcal{P}_2=\{\{0\},\{1,4\},\{2,5\},\{3\}\}$, notamos que os blocos $\{0\}$ e $\{3\}$ não podem mais ser separados, logo só precisamos considerar os blocos $\{1,4\}$ e $\{2,5\}$.

Aplicamos os símbolos 0 e 1 a cada estado de cada bloco e verificamos a qual bloco da partição \mathcal{P}_2 o resultado pertence:

0	1	4	2	5	3
	↓ 0	↓ 0	↓ 0	↓ 0	
	2∈{2,5}	$2 \in \{2, 5\}$	4∈{1,4}	$4 \in \{1, 4\}$	
	↓ 1	↓ 1	↓ 1	$\downarrow 1$	
	3∈{3}	3∈{3}	5∈{2,5}	$5{\in}\{2,5\}$	

Note que os estados 1 e 4 não são distinguíveis entre si, nem os estados 2 e 5 são distinguíveis entre si.

Logo não precisamos separar nenhum estado de nenhum bloco, fazendo com que a próxima partição seja

$$\mathcal{P}_3 = \{\{0\}, \{1,4\}, \{2,5\}, \{3\}\}.$$

Minimização de AFDs

- Exemplo 14 (Continuação)
 - 3. Como a partição

$$\mathcal{P}_3 = \{\{0\}, \{1,4\}, \{2,5\}, \{3\}\},$$

é igual à partição anterior \mathcal{P}_2 , sabemos que o processo de procurar estados equivalentes acabou.

Logo, no AFD em questão o estado 1 é equivalente ao 4, e o estado 2 é equivalente ao 5.

4. Por fim, construímos o autômato mínimo de tal forma que seus estados sejam os blocos da última partição \mathcal{P}_3 produzida.

Operações Regulares

Operações regulares

- Até agora introduzimos autômatos finitos e linguagens regulares.
 - Agora vamos estudar suas propriedades que funcionarão como uma "caixa de ferramentas" para mais tarde construir autômatos e reconhecer linguagens mais complicadas usando elementos mais simples.
- Na aritmética, os objetos básicos são os números e as ferramentas são operações para manipulá-los, como + e x.
 - Na teoria da computação, os objetos básicos são as linguagens e as ferramentas incluem operações projetadas para manipulá-las.
- Vamos definir agora três operações chamadas de operações regulares.

Operações regulares

- Sejam A e B linguagens. Definimos as operações regulares união, concatenação, e fecho de Kleene (ou estrela) da seguinte forma:
 - **União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
 - Concatenação: $A \circ B = \{xy \mid x \in A \text{ e } y \in B\}.$
 - Estrela (ou fecho de Kleene): $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e cada } x_i \in A\}.$
- Exemplo 15 Suponha que o alfabeto $\Sigma = \{a,b,\ldots,z\}$ seja o alfabeto latino padrão de 26 letras.

Se $A = \{garoto, garota\}\ e\ B = \{legal, ruim\}$, então:

- $A \cup B = \{ garoto, garota, legal, ruim \}.$
- $A \circ B = \{\text{garotolegal}, \text{garotoruim}, \text{garotalegal}, \text{garotaruim}\}.$
- $\textbf{$A^*$} = \{\epsilon, \text{garoto}, \text{garota}, \text{garotogaroto}, \text{garotogaroto}, \text{garotagaroto}, \text{garotogarotogaroto}, \text{garotogarotogarota}, \text{garotogarotagaroto}, \ldots\}.$

Fechamento de um Conjunto sob uma Operação

- Dizemos que um conjunto A é fechado sob uma operação op se ao aplicarmos a operação op a elementos de A, o resultado é também um elemento de A.
- Exemplo 16 Exemplos de fechamento de operações:
 - lacktriangle O conjunto dos naturais $\mathbb N$ é fechado sob a operação de soma? SIM.
 - **2** O conjunto dos naturais \mathbb{N} é fechado sob a operação de subtração? NÃO.
 - lacktriangle O conjunto dos reais $\mathbb R$ é fechado sob a operação de multiplicação? SIM.
 - ${\color{red} \bullet}$ O conjunto dos reais ${\mathbb R}$ é fechado sob a operação de divisão? ${\color{red} {\sf N\~AO}}.$

 Vamos mostrar que o conjunto de todas as linguagens regulares é fechado sob as três operações regulares.

Isto vai ser extremamente útil num futuro próximo, porque vai nos possibilitar construir autômatos complexos a partir de autômatos mais simples.

<1

• <u>Teorema</u> A classe de linguagens regulares é fechada sob união.

Demonstração (Intuição). Suponha que A_1 e A_2 sejam duas linguagens regulares. Então, pela definição de linguagem regular, sabemos que existem um autômato finito $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$ que reconhece A_1 , e um autômato finito $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$ que reconhece A_2 .

Para mostrarmos que $A_1 \cup A_2$ é regular, basta mostrar que existe um autômato finito que reconhece $A_1 \cup A_2$.

Vamos mostrar que tal autômato existe construindo a partir de M_1 e M_2 um novo autômato $M=\{Q,\Sigma,\delta,q_0,F\}$ para reconhecer $A_1\cup A_2$ da seguinte forma:

- 1. O conjunto de estados é $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ e } r_2 \in Q_2\}$, ou seja, o produto cartesiano $Q_1 \times Q_2$ dos estados de M_1 e M_2 .
- 2. O alfabeto Σ é o mesmo de M_1 e M_2 . (Se tivéssemos alfabetos diferentes, bastaria tomar a união dos dois).

- Demonstração. (Continuação)
 - 3. A função de transição δ é definida da seguinte forma. Para cada estado $(r_1, r_2) \in Q$ do novo autômato, e cada símbolo $a \in \Sigma$, faça

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)).$$

- 4. O estado inicial é o par (q_1, q_2) dos estados iniciais de M_1 e M_2 .
- 5. O conjunto de estados finais é

$$F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ ou } r_2 \in F_2\},$$

em que um dos elementos do par de estado é um estado de aceitação, seja em M_1 ou em M_2 .

Esta definição é equivalente a

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2).$$

• Exemplo 17 Sejam as linguagens

$$A = \{ w \in \{0,1\}^* \mid |w| > 0 \text{ e } w \text{ começa com } 0 \}, \quad \text{e}$$

$$B = \{ w \in \{0,1\}^* \mid |w| > 0 \text{ e } w \text{ termina com } 1 \}.$$

Usando o método do teorema anterior, construa um autômato finito para $A \cup B$.

Solução. Podemos construir autômatos finitos para as linguagens A e B como a seguir:

• Exemplo 17 (Continuação)

E podemos combinar os autômatos usando o método do teorema anterior, para obter o seguinte autômato.

Note que a linguagem reconhecida por este autômato é

$$A \cup B = \{w \in \{0,1\}^* \mid w \text{ começa com } 0 \text{ ou termina com } 1\}.$$

reparares	
 <u>Teorema</u> A classe de linguagens regulares é fechada sob a op- concatenação. 	eração de
Demonstração. Para fazer esta demonstração, vamos precisa conceito de não-determinismo.	r introduzir o
Vamos voltar para completar esta demonstração mais à frente	. □
• <u>Teorema</u> A classe de linguagens regulares é fechada sob a op de Kleene.	eração de fecho
Demonstração. Para fazer esta demonstração, vamos precisa conceito de não-determinismo.	r introduzir o
Vamos voltar para completar esta demonstração mais à frente	

- Não-determinismo é um conceito extremamente útil que tem grande impacto sobre a teoria da computação.
- Até agora lidamos com computação determinística: quando a máquina está num estado e lê um símbolo, só existe uma única opção para o próximo estado.
- Em uma computação não-determinística, quando a máquina está num dado estado e lê um símbolo, podem existir várias escolhas para o próximo estado.
- O não-determinismo é uma generalização do determinismo.
 - Todo autômato finito determinístico é automaticamente um autômato finito não-determinístico também.
- Daqui por diante, poderemos abreviar autômatos não-determinísticos como AFNs, para diferenciar dos autômatos finitos determinísticos (AFDs).

Exemplo 18 Considere o diagrama de estados do autômato finito não-determinístico N_1 abaixo.

Este AFN tem algumas fontes de não-determinismo:

- ullet Estando no estado q_1 e lendo o símbolo 1, o próximo estado pode ser q_1 ou q_2 .
- Estando no estado q_2 , o próximo estado pode ser q_3 ao ler o símbolo 0, mas o AFN pode pular para de q_2 para q_3 sem ler símbolo algum (pois há uma transição sob ϵ).

Não-determinismo: Interpretação

 Comparação entre computações determinísticas e não-determinísticas com um ramo de aceitação:

Não-determinismo: Interpretação

- Existem ao menos três interpretações para uma computação não-determinista de uma cadeia de entrada:
 - Oráculo: a cada ponto em que há mais de uma possibilidade, a máquina "adivinha" qual escolha leva ao reconhecimento da cadeia (se tal escolha existe) e segue esta escolha.

Ou seja: se existe uma maneira de aceitar a cadeia, a máquina "adivinha" a maneira e aceita a cadeia.

- Paralelismo: a cada ponto em que há mais de uma possibilidade, a máquina se divide em múltiplas cópias, e cada uma continua computando normalmente.
 - Ou seja: uma cadeia é aceita se pelo menos uma cópia da máquina aceita a cadeia.
- Backtracking: a cada ponto em que há mais de uma possibilidade, a máquina escolhe uma que ainda não foi testada e prossegue. Caso o escolha leve à rejeição da cadeia, a máquina retorna ao ponto da última escolha em aberto e faz uma nova opção.

Ou seja: se existe uma maneira de aceitar a cadeia, a máquina vai encontrá-la pois ela tenta todas as computações alternativas possíveis.

• Exemplo 19 Seja novamente o AFN N_1 abaixo.

Qual a computação de N_1 sobre a cadeia de entrada 010110?

Solução.

- Caminhos em negrito indicam computações de aceitação, os demais indicam computações de rejeição.
- Como há no mínimo uma computação de aceitação, a cadeia é aceita.

• Exemplo 20 Construa um AFN que reconheça a linguagem

$$L = \{w \in \{0,1\}^* \mid |w| \geq 3 \text{ e o antepenúltimo símbolo de } w \text{ \'e } 1\}.$$

Solução. Um AFN para *L* é o seguinte:

Para efeito de comparação, um AFD para a mesma linguagem seria:

• Exemplo 21 Construa um AFN que reconheça a linguagem

 $L = \{w \in \{a, b, c\}^* \mid o \text{ último símbolo de } w \text{ \'e igual ao primeiro}\}.$

Solução. Um AFN para *L* é o seguinte:

Para efeito de comparação, construa um AFD para a mesma linguagem.

• Exemplo 22 Seja o AFN N_3 a seguir, que possui transições ϵ (ou seja, transições que ocorrem sem que haja consumo de um símbolo da cadeia de entrada).

Qual a linguagem reconhecida por N_3 ?

Solução.

$$L(N_3) = \{0^k \mid k \text{ \'e m\'ultiplo de 2 ou de 3}\}.$$

• Exemplo 23 Seja o AFN N₄ abaixo.

Diga se ele aceita ou rejeita as cadeias abaixo:

- ϵ : aceita.
- a: <u>aceita</u>.
- baba: aceita.
- baa: <u>aceita</u>.

- b: rejeita.
- bb: <u>rejeita</u>.
- babba: rejeita.

Autômatos Finitos Não-determinísticos: Definição formal

 Para definir um autômato finito não-determinístico, vamos introduzir a notação

$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$

para indicar a extensão do alfabeto Σ com um símbolo correspondendo à cadeia vazia ϵ .

Lembre-se de que $\mathcal{P}(A)$ representa o conjunto potência de A.

- Um autômato finito não-determinístico (AFN) é uma 5-tupla $(Q, \Sigma, \delta, q_0, F)$, onde:
 - 1. Q é um conjunto finito de **estados**,
 - 2. Σ é o alfabeto de entrada,
 - 3. $\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ é a função de transição,
 - 4. $q_0 \in Q$ é o estado inicial, e
 - 5. $F \subseteq Q$ é o conjunto de estados de aceitação (ou estados finais).

Autômatos Finitos Não-determinísticos: Definição formal

Exemplo 24 Considere o diagrama de estados do autômato finito N_1 :

Formalmente, este autômato é uma 5-tupla $N_1=(Q,\Sigma,\delta,q_0,F)$, onde:

- 1. o conjunto de estados é $Q = \{q_1, q_2, q_3, q_4\}$,
- 2. o alfabeto é $\Sigma = \{0, 1\},\$
- 3. a função de transição δ é descrita como

δ	0	1	ϵ	
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø	
q_2	$\{q_3\}$	Ø	$\{q_3\}$,
q_3	Ø	$\{q_4\}$	Ø	
q_4	$\{q_4\}$	$\{q_4\}$	Ø	

- 4. o estado inicial é $q_1 \in Q$, e
- 5. o conjunto estados de aceitação é $F = \{q_4\}$.

Autômatos Finitos Não-determinísticos: Definição formal de computação

- A formalização do conceito de computação para AFNs é similar à dos AFDs.
- Seja $N = (Q, \Sigma, \delta, q_0, F)$ um AFN, e suponha que $w = w_1 w_2 \dots w_n$ seja uma cadeia em que cada $w_i \in \Sigma$.

Então o AFN N aceita a cadeia w se podemos escrever w como $w=y_1y_2\ldots y_m$, onde cada $y_i\in \Sigma_\epsilon$, e existe uma sequência de estados $r_0,r_1,\ldots,r_m\in Q$ satisfazendo as três condições abaixo:

1. $r_0 = q_0$,

(Esta condição diz que a máquina começa no estado inicial.)

2. $r_{i+1} \in \delta(r_i, y_{i+1})$, para i = 0, 1, ..., m-1, e

(Esta condição diz que o estado r_{i+1} é um dos próximos estados permissíveis quando N está no estado r_i e lendo y_{i+1} .)

3. $r_m \in F$.

(Esta condição diz que a máquina pára em estado de aceitação.)

- Os AFNs podem fazer tudo o que os AFDs fazem, e parecem poder fazer ainda mais (e.g., transitar sob ϵ , ter mais de um estado ativo ao mesmo tempo).
 - Pode parecer, a princípio, que os AFNs têm a capacidade de reconhecer linguagens que os AFDs não podem.
- Mas este não é o caso: os autômatos finitos determinísticos e não-determinísticos reconhecem a mesma classe de linguagens.
- Parar mostrar isso, vamos usar o conceito de máquinas equivalentes.
- Duas máquinas são **equivalentes** se elas reconhecem a mesma linguagem.

• <u>Teorema</u> Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Demonstração. Dada no livro-texto.

- A equivalência de AFDs e AFNs permite a seguinte reformulação da definição de linguagens regulares.
- <u>Corolário</u> Uma linguagem é regular se, e somente se, algum autômato finito não-determinístico a reconhece.

Exemplo 25 Usando o método da demonstração do teorema anterior, encontre um AFD equivalente para o AFN N_4 a seguir.

Solução. Aplicando o método da demonstração do teorema, obtemos o AFD abaixo:

Exemplo 25 (Continuação)

Notando que alguns estados do AFD encontrado são inúteis, podemos eliminá-los e obter o seguinte AFD simplificado, que é equivalente ao AFN original N_4 :

- Quanto estávamos tentando provar que a classe das linguagens regulares é fechada sob as operações regulares, nós:
 - Tivemos sucesso em provar o fechamento sob a operação de união.
 - Vimos que provar o fechamento sob as operações de concatenação e fecho de Kleene era muito complicado para fazer diretamente.
- Mas agora nossa tarefa vai ficar mais fácil, pois aprendemos a:
 - 1. Usar não-determinismo para construir AFNs.
 - 2. Transformar qualquer AFN em um AFD equivalente.

Com as habilidades acima, podemos encontrar demonstrações simples para todos os fechamentos acima.

• <u>Teorema</u> A classe de linguagens regulares é fechada sob a operação de união.

Demonstração. A demonstração formal encontra-se no livro texto. Aqui daremos uma ideia da demonstração.

 <u>Teorema</u> A classe de linguagens regulares é fechada sob a operação de concatenação.

Demonstração. A demonstração formal encontra-se no livro texto. Aqui daremos uma ideia da demonstração.

 <u>Teorema</u> A classe de linguagens regulares é fechada sob a operação de fecho de Kleene.

Demonstração. A demonstração formal encontra-se no livro texto. Aqui daremos uma ideia da demonstração.

- Mostramos até agora que a classe das linguagens regulares é fechada sob as operações regulares: <u>união</u>, concatenação e <u>fecho de Kleene</u>.
- Outras operações também são interessantes:
 - Complemento: $\overline{A} = \{ w \in \Sigma^* \mid w \notin A \}$, , onde Σ é o alfabeto de A.
 - Interseção: $A \cap B = \{x \mid x \in A \text{ e } x \in B\}.$
- Exemplo 26 Sejam $A = \{w \in \{0,1\}^* \mid w \text{ tem tamanho par}\}$ e $B = \{w \in \{0,1\}^* \mid w \text{ cont\'em a subcadeia } 101\}$ linguagens sob o alfabeto $\Sigma = \{0,1\}$.
 - $A \cap B = \{w \in \{0,1\}^* \mid w \text{ tem tamanho par e contém a subcadeia } 101\}.$
 - $\overline{A} = \{ w \in \{0,1\}^* \mid w \text{ tem tamanho impar} \}.$
 - $\overline{B} = \{ w \in \{0,1\}^* \mid w \text{ não contém a subcadeia } 101 \}.$

• **Teorema** A classe das linguagens regulares é fechada sob complemento.

Demonstração. Seja A uma linguagem regular com um AFD M que a reconheça. Um AFD M' que reconhece \overline{A} é o próprio AFD M, mas em que os estados de aceitação e de não-aceitação são invertidos.

Formalmente: se $M = (Q, \Sigma, \delta, q_0, F)$, então $M' = (Q, \Sigma, \delta, q_0, Q - F)$.

• Exemplo 27 Em um exercício anterior construímos um AFD M_4 para:

$$L = \{w \in \{a,b\}^* \mid |w| > 0 \text{ e}$$
 $w \text{ começa e termina}$
 $com \text{ o mesmo símbolo}\}$

Podemos transformar M_4 em um AFD para reconhecer:

$$\overline{L} = \{ w \in \{a, b\}^* \mid |w| = 0 \text{ ou}$$
 $w \text{ não } \text{começa e termina}$
 $\text{com o mesmo símbolo} \}$

• **Teorema** A classe das linguagens regulares é fechada sob interseção.

Demonstração. Sejam A e B duas linguagens regulares. Note que

$$A \cap B = \overline{\overline{A} \cup \overline{B}}.$$

Como sabemos que as linguagens regulares são fechadas sob complemento e união, deduzimos que o lado direito da igualdade acima é uma linguagem regular. Logo $A \cap B$ também é regular.

 Alternativamente, para criar um AFD para a interseção de duas linguagens regulares, podemos usar um método muito similar àquele para criar um AFD para a união de duas linguagens.

Basta fazer como estados de aceitação aqueles em que ambos os estados são finais nos autômatos originais.

• Exemplo 28 Sejam as linguagens

$$A = \{ w \in \{0,1\}^* \mid |w| > 0 \text{ e } w \text{ começa com } 0 \}, \quad \text{e}$$

$$B = \{ w \in \{0,1\}^* \mid |w| > 0 \text{ e } w \text{ termina com } 1 \}.$$

Adaptando o método do teorema sobre união de linguagens regulares, construa um autômato finito para $A \cap B$.

Solução. Já construímos autômatos finitos para as linguagens A e B como a seguir:

• Exemplo 28 (Continuação)

E podemos combinar os autômatos usando o método do teorema sobre união de linguagens regulares, com o cuidado de tornar estados finais aqueles em que ambos os componentes são finais nos autômatos originais.

Note que a linguagem reconhecida por este autômato é

$$A \cap B = \{ w \in \{0,1\}^* \mid |w| > 0 \text{ e } w \text{ começa com } 0 \text{ e termina com } 1 \}.$$