Índice general

6.	Función Racional	3
	6.1. ¿Cómo modelar una función racional?	9

Temas

- 1. ¿Qué es una función racional?
- 2. ¿Cómo obtener los puntos de corte y las asíntotas de una función racional?
- 3. ¿Cómo graficar una función racional?
- 4. ¿Cómo modelar una función racional?
- 5. Proposición de algunos ejercicios
- 6. Link en la Descripción del Video de las Aplicaciones de Cálculo Diferencial

Clase C Función Racional

Las funciones racionales tiene la forma

$$f\left(x\right) = \frac{p\left(x\right)}{q\left(x\right)}$$

donde p(x) y q(x) son dos polinomios de la forma

$$p(x) = p_n x^n + p_{n-1} x^{n-1} + \dots + p_1 x^1 + p_0 x^0$$

y

$$q(x) = q_n x^n + q_{n-1} x^{n-1} + \dots + q_1 x^1 + q_0 x^0$$

También se tiene la condición que

$$q(x) \neq 0$$

(el polinomio q(x) debe ser diferente de cero).

Luego la función racional se expresa como

$$f(x) = \frac{p_n x^n + p_{n-1} x^{n-1} + \dots + p_1 x^1 + p_0 x^0}{q_n x^n + q_{n-1} x^{n-1} + \dots + q_1 x^1 + q_0 x^0}$$

En la clase anterior se vio como graficar y obtener las raices de las **funciones polinómicas**. En las funciones racionales hay dos polinomios sobre los cuales pensar.

- O Por una parte esta $p\left(x\right)$ quien entrega a la función **todos los puntos de corte** como se vio en la función polinómica.
- O Por otra parte esta la función q(x) que a través de sus **puntos de corte** genera las asíntotas verticales.

Ejemplo

Graficar la función racional y determinar su dominio y rango

$$f(x) = \frac{x^6 - 30x^4 + 129x^2 - 100}{x^2 - 16}$$

Copiar y pegar este código para graficar en Geogebra

$$(x^6-30x^4+129x^2-100)/(x^2-16)$$

Solución

Se debe usar **división sintética** para encontrar los puntos de corte de la función $p\left(x\right)$

Para encontrar las raices del polinomio se uso el programa Divisores.html que se puede encontrar en la siguiente ruta: http://jprincon.com/programas/calculo-diferencial

O Los divisores del número 100 son: 1,2,4,5,10,20,25,50,100

$$\bigcirc$$
 Raices = -1,1,-2,2,-5,5

x^6	x^5	x^4	x^3	x^2	x^1	x^0	
1	0	-30	0	129	0	-100	x = 1
	1	1	-29	-29	100	100	
1	1	-29	-29	100	100	0	x = 2
	2	6	-46	-150	-100		
1	3	-23	-75	-50	0		x = 5
	5	40	85	50			
1	8	17	10	0			x = -1
	-1	-7	-10				
1	7	10	0				x = -2
	-2	-10					
1	5	0					x = -5
	-5						
1	0						

El polinomio q(x) se puede factorizar usando diferencia de cuadrados, donde

$$x^2 - 16 = (x+4)(x-4)$$

en la cual x=-4 y x=4. Con estos datos hacemos el siguiente análisis.

Cuadro 6.1: Análisis de la Gráfica

Figura 6.1: Gráfica de la función

En la barra de entrada de geogebra vamos a escribir

Figura 6.2: Gráfica de la función $f\left(x\right)=\frac{x^{6}-30x^{4}+129x^{2}-100}{x^{2}-16}$ Hecha en Geogebra

Ejemplo

Graficar la siguiente función racional, determinar su dominio y rango

$$f(x) = \frac{x^5 + 25x^4 + 230x^3 + 950x^2 + 1689x + 945}{x^3 - 9x^2 + 23x - 15}$$

Para graficar en Geogebra se debe escribir

$$(x^5+25x^4+230x^3+950x^2+1689x+945)/(x^3-9x^2+23x-15)$$

Solución

La función escrita en términos de JavaScript es:

```
Math.pow(x,5)+25*Math.pow(x,4)+230*Math.pow(x,3)
+950*Math.pow(x,2)+1689*x+945
```

- 1. Primero debemos determinar los divisores del 945
 - O Para encontrar las raices del polinomio se uso el programa Divisores.html que se puede encontrar en la siguiente ruta: http://jprincon.com/programas/calculo-diferencial

- O **Divisores** 945 = 1,3,5,7,9,15,21,27,35,45,63,105,135,189,315,945
- \bigcirc **Raices** = -1,-3,-5,-7,-9

x^5	x^4	x^3	x^2	x^1	x^0	
1	25	230	950	1689	945	x = -1
	-1	-24	-206	-744	-945	
1	24	206	744	945	0	x = -3
	-3	-63	-429	-945		
1	21	143	315	0		x = -5
	-5	-80	-315			
1	16	63	0			x = -7
	-7	-63				
1	9	0				x = -9
	-9					
1	0					

2. Encontrar las raices para el polinomio $q(x) = x^3 - 9x^2 + 23x - 15$

$$_{1}$$
 Math.pow(x,3)-9*Math.pow(x,2)+23*x-15

- O **Divisores** de 15 = 1,3,5,15
- O **Raices** = 1,3,5

3. Análisis de los Intervalos

$$-\infty$$
 ··· -9 ··· -7 ··· -5 ··· -3 ··· -1 ··· 1 ··· 3 ··· 5 ··· $+\infty$ + 0 - 0 + 0 - 0 + 1 0 - 1 + 1 - 1 +

4. Un bosquejo de la función es el siguiente

Figura 6.3: Bosquejo de la función

Figura 6.4: Gráfica de la función

6.1 ¿Cómo modelar una función racional?

Ya vimos que la función racional tiene la forma

$$f\left(x\right) = \frac{p\left(x\right)}{q\left(x\right)}$$

entonces para modelar una función de este tipo debemos modelar dos funciones polinómicas y estas debe tener la siguiente condición:

O Los raices seleccionadas para p(x) deben ser diferentes a las tomadas para el polinomio q(x).

Ejemplo: Modelar una función racional que tenga asíntotas en x = -6, x = -3, x = 3 y x = 6 y puntos de corte en x = -8, x = -5, x = -4, x = 0, x = 4, x = 5 y x = 8.

El ejercicio tiene simetría en sus asíntotas y en sus puntos de corte.

Solución: Para encontrar los polinomios vamos a usar el proceso contrario a la división sintética (multiplicación sintética).

Polinomio p(x)

1							x+8
	8						
1	8						x+5
	5	40					
1	13	40					x+4
	4	52	160				
1	17	92	160				x-4
	-4	-68	-368	-640			
1	13	24	-208	-640			x-5
	-5	-65	-120	1040	3200		
1	8	-41	-328	400	3200		x-8
	-8	-64	328	2624	-3200	-25600	
1	0	-105	0	3024	0	-25600	x + 0

Por lo tanto el polinomio p(x) es $(x^6 - 105x^4 + 3024x^2 - 25600) \cdot x$

$$p(x) = x^7 - 105^5 + 3024x^3 + 25600x$$

Nota: Se muestra a continuación el proceso para la Multiplicación Sintética

Figura 6.5: Proceso de la Multiplicación Sintética

Polinomo q(x)

1					3
	3				
1	3				6
	6	18			
1	9	18			$\overline{-3}$
	-3	-27	-54		
1	6	- 9	-54		-6
	-6	-36	54	324	
1	0	-45	0	324	

por lo tanto el polinomio $q(x) = x^4 - 45x^2 + 324$.

Finalmente la función racional esta dada por

$$f(x) = \frac{x^7 - 105x^5 + 3024x^3 - 25600x}{x^4 - 45x^2 + 324}$$

¿Cómo graficar esta función?

Se debe analizar cada intervalo, usando la calculadora

Figura 6.6: Bosquejo de la función $f\left(x\right) = \frac{x^7 - 105^5 + 3024x^3 - 25600x}{x^4 - 45x^2 + 324}$

luego podemos graficar la función en Geogebra mediante el siguiente código.

Para graficar la función en geogebra se copia este código

$$|x^7-105x^5+3024x^3-25600x|/(x^4-45x^2+324)|$$

Figura 6.7: Gráfica de la función $f(x) = \frac{x^7 - 105^5 + 3024x^3 - 25600x}{x^4 - 45x^2 + 324}$

Ejercicios

Realizar la gráfica de las siguientes funciones racionales

1.
$$f(x)$$

$$\frac{x^3 + 4x^2 - 39x - 126}{x^7 - 11x^6 - 449x^5 + 3119x^4 + 60104x^3 - 142444x^2 - 1566096x - 2145024}$$

2.
$$f(x) = \frac{x^3 + 12x^2 - 151x - 342}{x^6 + 15x^5 - 473x^4 - 5511x^3 + 78628x^2 + 497364x - 4678128}$$