Wiktor Kuchta

4/9

Minimalnym podziałem wielokąta wypukłego nazywamy podział przekątnymi na trójkąty z najkrótszą najdłuższą przekątną.

Oznaczmy D[l][i] długość najdłuższej przekątnej w minimalnym podziale wielokąta wypukłego o wierzchołkach $v_i, v_{i+1}, \ldots, v_{i+l}$ (utożsamiamy v_{n+k} z v_k). Wtedy odpowiedź to D[n-1][i] (dla dowolnego i).

Dla $l \geqslant 3$ w podziale wielokąta wypukłego v_i, \ldots, v_{i+l} bok $v_i v_{i+l}$ jest bokiem pewnego trójkąta tego podziału. Niech trzeci wierzchołek tego trójkąta to v_{i+k} , mamy 0 < k < l. Figury wypukłe v_i, \ldots, v_{i+k} i v_{i+k}, \ldots, v_{i+l} . mają nie więcej niż l wierzchołków, a długość najdłuższej przekątnej w tym podziale to maksimum z tej długości najdłuższej przekątnej w podziałach tych podfigur i jeszcze przekątnych, które należą do trójkąta $v_i v_{i+k} v_{i+l}$.

$$D[l][i] = \min\{\max\{|v_{i+1}v_{i+l}|, D[l-1][i+1]\},$$

$$\dots,$$

$$\max\{|v_{i+k}v_{i}|, |v_{i+k}v_{i+l}|, D[k][i], D[l-k][i+k]\}$$

$$\dots,$$

$$\max\{|v_{i}v_{i+l-1}|, D[l-1][i]\}\}$$