Лекция 3 Дискретная случайная величина

- 1. Понятие случайной величины. Функция распределения и ее свойства.
- 2. Дискретная случайная величина и ее закон распределения.
- 3. Числовые характеристики дискретной случайной величины.
- 4. Производящая функция случайной величины.

1. Понятие случайной величины. Функция распределения и ее свойства

Примеры:

- 1. Ω ={грань 1, грань 2, ..., грань 6}, с.в. X={1,2,3,4,5,6} число очков на грани.
- 2. $\Omega = \{\Gamma, \Pi\Gamma, \Pi\Pi\Gamma, \dots\},\$ $x_1 = X(\Gamma) = 0, x_2 = X(\Pi\Gamma) = 1, x_3 = X(\Pi\Pi\Gamma) = 2,\dots$
- с.в. $X=\{0,1,2,...\}$ число Ц, выпавших до первого появления Γ .

ITMO University

- 3. Эксперимент: на плоский экран падает частица. Пусть известна вероятность попадания частицы в любое, имеющее меру, множество на экране.
 - Случайные величины:
- *X* расстояние от центра экрана до точки падения;
- X^2 квадрат этого расстояния;
- Z угол в полярной системе координат.

Пусть ПЭС Ω – конечно.

Случайной величиной называется любая функция

$$X: \Omega \to \mathbf{R}$$

Замечание:

- Ω конечно \Rightarrow множество значений $X(\omega)$ конечно
- $X(\omega)$ принимает свои значения с некоторой вероятностью

$$P(X = x_0) = P(\{\omega \in \Omega : X(\omega) = x_0\})$$

Пусть $x \in \mathbb{R}$.

Множество $\{\omega : X(\omega) < x\} = \{X < x\}$ случайное событие:

- можно говорить о его вероятности
- через событие $\{X < x\}$, где $x \in (-\infty, +\infty)$ с помощью алгебры событий можно выразить сколь угодно сложное событие, связанное со с.в. X.

Определение 1

Случайной величиной называется функция $X(\omega)$, заданная на Ω , если $\forall x \in \mathbf{R}$ множество $\{\omega: X(\omega) < x\}$ элементарных событий, удовлетворяющих условию $X(\omega) < x$, является случайным событием.

Обозначение: X, Y, Z,...; ее значения x, y, z,...

Пусть (Ω, Σ, X) – вероятностное пространство.

Определение 2

Законом распределения (вероятностей) с.в. называется любое правило, позволяющее находить вероятность того, что с.в. примет свое значение из множества ее возможных значений.

Определение 3

Функцией распределения (вероятностей) с.в. X называется функция F(x), значение которой в точке x равно вероятности того, что с.в. примет значение, меньшее x:

$$F(x) = P(X < x) \quad \forall x \in \mathbf{R}.$$

$$P(X < x) = P(\{\omega \in \Omega : X(\omega) < x\})$$

Свойства функции F(x)

1.
$$0 \le F(x) \le 1$$

2.
$$x_1 < x_2 \implies F(x_1) \le F(x_2)$$

3.
$$F(-\infty)=\lim_{x\to -\infty} F(x)=0$$
, $F(+\infty)=\lim_{x\to +\infty} F(x)=1$

4.
$$P(\alpha \le X < \beta) = F(\beta) - F(\alpha)$$

5.
$$F(x) = F(x-0)$$
, где $F(x-0) = \lim_{y \to x-0} F(y)$

СР Докажите:

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$

CP Пусть
$$F(x) = P(X \le x) \quad \forall x \in \mathbb{R}$$
.

Какие из свойств F(x) изменятся?

Определение 4

Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая с.в.

Случайные величины:

- дискретные
- непрерывные
- смешанные

2. Дискретная случайная величина и ее закон распределения

Пусть (Ω, Σ, X) – вероятностное пространство.

Определение 5

Дискретной случайной величиной называется с.в., множество возможных значений которой конечно или счетно.

Говорят, что с.в. имеет дискретное распределение. © I.Krivtsova ITMO University

Ряд распределения вероятностей д.с.в.

X_i	x_1	x_2	•••	X_n	•••
p_i	p_1	p_2	•••	p_n	•••

где x_i расположены в порядке возрастания, $p_i = P(X = x_i)$, причем

$$\sum_{i=1}^{\infty} p_i = \sum_{i=1}^{\infty} P(X = x_i) = P(\sum_{i=1}^{\infty} \{X = x_i\}) = 1$$

Если одному и тому же x_l значению с.в. соответствует несколько элементарных событий ω_k , то

$$p_l = \sum_{k:X(\omega_k)=x_l} p(\omega_k)$$

Графическое изображение ряда распределения д.с.в. называется многоугольником распределения.

Построение функции распределения д.с.в. по ряду распределения

$$F(x) = P(X < x)$$

- 1. При $x \le x_1$: событие $\{X < x\} = \emptyset$, F(x) = P(X < x) = 0.
- 2. При $x_1 < x \le x_2$: событие $\{X < x\} = \{X = x_1\}$, $F(x) = P(X = x_1) = p_1$.
- 3. При $x_2 < x \le x_3$: событие $\{X < x\} = \{X = x_1\} + \{X = x_2\},$

$$F(x) = P(X=x_1) + P(X=x_2) = p_1 + p_2$$

• © I.Krivtsova
ITMO University

При
$$x_{n-1} < x \le x_n$$
:
$$F(x) = p_1 + p_2 + \ldots + p_{n-1}.$$

При
$$x > x_n$$
: событие $\{X < x\} = \Omega$, $F(x) = P(X < x) = 1$.

$$F(x) = \begin{cases} 0, & npu \ x \in (-\infty, x_1] \\ p_1 + p_2 + \dots + p_i, & npu \ x \in (x_i, x_{i+1}], \ e \partial e \ 1 \le i \angle n \\ 1, & npu \ x \in (x_n, +\infty) \end{cases}$$

3. Числовые характеристики дискретной случайной величины

Определение 6

Математическим ожиданием д.с.в. X называется число

$$m_{x} = \sum_{i=1}^{n} x_{i} p_{i}$$

Обозначение: m_x , E(X), M[X].

Если д.с.в. X имеет счетное число значений, то математическое ожидание

$$m_{x} = \sum_{i=1}^{\infty} x_{i} p_{i}$$

если ряд сходится абсолютно; в противном случае м.о. не существует.

Вероятностный смысл м.о.

Пусть произведено n экспериментов. Значения д.с.в. X:

$$x_1$$
 появилось m_1 раз,

$$x_2 - m_2$$
 pas, ..., $x_k - m_k$ pas,

где
$$n = m_1 + m_2 + ... + m_k$$
.

Сумма всех значений с.в.:

$$x_1m_1 + x_2m_2 + \ldots + x_km_k$$

Среднее арифметическое значений с.в.:

$$\overline{X} = \frac{m_1 x_1 + m_2 x_2 + ... + m_k x_k}{n}$$
© I.Krivtsova
ITMO University

При
$$n \to \infty$$
 :
$$\overline{X} \approx p_1 x_1 + p_2 x_2 + \ldots + p_k x_k = m_x$$

Вывод: при $n \to \infty$

математическое ожидание с.в. приближенно равно среднему арифметическому значению с.в.

 m_{χ} называют средневероятностным значением с.в., а также центром распределения (рассеивания) с.в.

Свойства м.о.

- 1. M[c] = c, где c = const
- **2.** $M[aX+b] = a \cdot M[X] + b \quad \forall a,b \in \mathbb{R}$
- 3. $\forall X, Y \ M[X+Y] = M[X] + M[Y]$
- 4. X, Y независимы $\Rightarrow M[X \cdot Y] = M[X] \cdot M[Y]$

CP

Следствие:

$$\forall X \mid M[X] \mid ? M[X]$$

С.в. $\dot{X} = X - m_{\chi}$ называется центрированной с.в.

$$M[\dot{X}] = M[X - m_x] = M[X] - m_x = 0$$

Определение 7

Дисперсией с.в. X называется число

$$D[X] = M[(X - m_x)^2]$$

Обозначение: D_x , D[X]

Дисперсия д.с.в. X:

$$D_{x} = \sum_{i=1}^{n} (x_{i} - m_{x})^{2} p_{i}$$

$$D_x = \sum_{i=1}^{\infty} (x_i - m_x)^2 p_i$$

© I Krivtsova

ITMO University

если ряд сходится абсолютно; в противном случае дисперсия не существует.

По свойствам м.о.:

$$D[X] = M [(X - m_x)^2] = M [X^2 - 2m_x X + m_x^2] =$$

$$= M [X^2] - 2m_x^2 + m_x^2 = M [X^2] - m_x^2.$$

$$D[X] = M [X^2] - m_x^2$$

Формула для вычислений:

$$D_x = \sum_{i=1}^n x_i^2 p_i - m_x^2$$

Дисперсия с.в. X характеризует среднее значение квадрата разброса (рассеивания) с.в. вокруг своего м.о.

Свойства дисперсии

1.
$$D[c] = 0$$
, где $c = const$

2.
$$D[aX+b] = a^2 D[X] \quad \forall a,b \in \mathbb{R}$$

3.
$$X, Y$$
 – независимы \Rightarrow $D[X+Y] = D[X]+D[Y]$

Определение 8

Средним квадратическим отклонением с.в. X называется арифметический корень квадратный из ее дисперсии:

$$\sigma_{_{\mathcal{X}}} = \sqrt{D_{_{\mathcal{X}}}}$$

Обозначение: σ_{x} , $\sigma[X]$.

Свойства с.к.о.

1.
$$\sigma[c \cdot X] = /c / \sigma[X] \quad \forall c \in \mathbb{R}$$
.

2.
$$X$$
, Y – независимы \Rightarrow

$$\sigma[X+Y] = \sqrt{\sigma^2[X] + \sigma^2[Y]}$$

5. Производящая функция случайной величины

Пусть
$$X=\{0,1,2,...,m,...\}, p_m=P(X=m)$$

Определение 9

Производящей функцией для с.в. X называется функция вида:

$$f_{X}(z) = \sum_{m=0}^{\infty} p_{m} z^{m}$$
, где $0 < z \le 1$

Свойства производящей функции

1.
$$z_2 > z_1 \implies f_X(z_2) > f_X(z_1)$$

2.
$$f'_{X}(1) = m_{x}$$

3.
$$f_X''(1) + f_X'(1) - (f_X'(1))^2 = D_x$$
,

4.
$$\frac{f_X^{(k)}(0)}{k!} = p_k$$

5.
$$X,Y$$
 – независимые $\Rightarrow f_{X+Y}(z) = f_X(z) \cdot f_Y(z)$

