SLOS058C - OCTOBER 1979 - REVISED DECEMBER 2002

- μA741 Operating Characteristics
- Low Supply-Current Drain . . . 0.6 mA Typ (per amplifier)
- Low Input Offset Voltage
- Low Input Offset Current
- Class AB Output Stage
- Input/Output Overload Protection
- Designed to Be Interchangeable With Industry Standard LM148, LM248, and LM348

description/ordering information

The LM148, LM248, and LM348 are quadruple, independent, high-gain, internally compensated operational amplifiers designed to have operating characteristics similar to the μ A741. These amplifiers exhibit low supply-current drain and input bias and offset currents that are much less than those of the μ A741.

LM148...FK PACKAGE (TOP VIEW)

NC - No internal connection

ORDERING INFORMATION

TA	V _{IO} max AT 25°C	PACK	AGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING				
0°C to 70°C		PDIP (N)	Tube of 25 LM348N		LM348N				
	01	0010 (D)	Tube of 50	LM348D					
	6 mV	SOIC (D)	Reel of 2500	LM348DR	LM348				
		SOP (NS)	Reel of 2000	LM348NSR	LM348				
−25°C to 85°C		PDIP (N)	Tube of 25	LM248N	LM248N				
	6 mV	0010 (D)	Tube of 50 LM248D		1.140.40				
		SOIC (D)	Reel of 2500	LM248DR	LM248				
–55°C to 125°C	5 m)/	CDIP (J)	Tube of 25	LM148J	LM148J				
	5 mV	LCCC (FK)	Tube of 50	LM148FK	LM148FK				

[†] Package drawings, standard packing quantities, thermal data, symboliztion, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS058C - OCTOBER 1979 - REVISED DECEMBER 2002

symbol (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage V = 7 (acc Note 1): 1M149
Supply voltage, V _{CC+} (see Note 1): LM148
LM248, LM348
Supply voltage, V _{CC} (see Note 1): LM148
LM248, LM348
Differential input voltage, V _{ID} (see Note 2): LM148
LM248, LM348
Input voltage, V _I (either input, see Notes 1 and 3): LM148
LM248, LM348
Duration of output short circuit (see Note 4)
Operating virtual junction temperature, T.J
Package thermal impedance, θ _{JA} (see Notes 5 and 6): D package
N package 80°C/W
NS package 76°C/W
Package thermal impedance, θ _{JC} (see Notes 7 and 8): FK package
J package 15.05°C/W
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: D, N, or NS package 260°C
Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or the value specified in the table, whichever is less.
 - 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
 - 5. Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperautre is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 6. The package thermal impedance is calculated in accordance with JESD 51-7.
 - 7. Maximum power dissipation is a function of $T_J(max)$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable ambient temperautre is $P_D = (T_J(max) T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 8. The package thermal impedance is calculated in accordance with MIL-STD-883.

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC+}	4	18	V
Supply voltage, V _{CC} _	-4	-18	V

	1		,,,	۸W	•	υA	•	ПA	۸			>		1100111	۷/۱۱۱۷	σM	MHz		٤	gp	Ę	gB	mA	V	ΨH	ВВ
		MAX	9	7.5	90	100	200	400																4.5		
	LM348	TYP	1		4		30			±13		±12		160		2.5	1	°09	06		96		±25	2.4		120
_		NIM							±12	±12	±12	±10	±10	25	15	0.8			20	20	77	77				
noted		MAX	9	7.5	20	125	200	200																4.5		
wise	LM248	TYP	1		4		30			±13		±12		160		2.5	1	$^{\circ}09$	06		96		±25	2.4		120
other		NIM							±12	±12	±12	±10	±10	25	15	0.8			20	20	77	77				
ness		MAX	2	9	25	75	100	325																	3.6	
2 V (u	LM148	TYP	1		4		30			±13		±12		160		2.5	1	°09	06		96		±25		2.4	120
<u>+</u> +1		N							±12	±12	±12	±10	±10	20	25	0.8			20	20	77	77				
ure, V _{CC}	st .		25°C	Full range	25°C	Full range	25°C	Full range	Full range	25°C	Full range	25°C	Full range	25°C	Full range	25°C	25°C	25°C	25°C	Full range	25°C	Full range	25°C	Colo	7.cz	25°C
ad free-air temperature, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)	PARAMETER TEST CONDITIONS T			0 = 0v		0 = 0v	0	0 = 0 ₀		R _L = 10 kΩ	$R_{L} \ge 10 \text{ k}\Omega$	R _L = 2 kΩ	R _L ≥ 2 kΩ	V _O = ±10 V,	$R_L = 2 \text{ k}\Omega$		AVD = 1	$A_{VD} = 1$	VIC = VICRMin,	$V_0 = 0$	$V_{CC+} = \pm 9 \text{ V to } \pm 15 \text{ V,}$	V ₀ = 0		0 = OV	No load Vo = VoM	f = 1 Hz to 20 kHz
electrical characteristics at specifie			31	Input offset voltage	4	Input offset current		Input blas current	Common-mode input voltage range		Maximum peak output voltage			Large-signal differential voltage	amplification	Input resistance [‡]	Unity-gain bandwidth	Phase margin		Common-mode rejection ratio	Supply-voltage rejection ratio	$(\Delta V_{CC\pm}/\Delta V_{IO})$	Short-circuit output current		Supply current (rour ampliners)	Crosstalk attenuation
electrica				OI _A	_	0	_	IIB	VICR			WO ₂		<	AVD	ľ	В1	φm	0,0	Z Z Z Z		KSVR	SOI	_	၁၁၂	VO1/VO2

†All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range for T_A is -55°C to 125°C for LM348, and 0°C to 70°C for LM348.

†This parameter is not production tested.

SLOS058C - OCTOBER 1979 - REVISED FEBRUARY 2002

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_{A} = $25^{\circ}C$

	PARAMETER	Т	EST CONDITIO	NS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 2 k\Omega$,	C _L = 100 pF,	See Figure 1		0.5		V/μs

PARAMETER MEASUREMENT INFORMATION

Figure 1. Unity-Gain Amplifier

Figure 2. Inverting Amplifier