HAX501X – Groupes et anneaux 1

CM8 05/10/2023

Clément Dupont

Retour sur les exercices du cours

Exercice 35

Soit G un groupe et $H\subset G$ un sous-ensemble de G. Montrer que H est un sous-groupe de G si et seulement s'il vérifie les conditions suivantes :

- 1') $H \neq \emptyset$;
- 2') $\forall x, y \in H, xy^{-1} \in H.$
- ▶ Si H est un sous-groupe de G, montrons que H vérifie 1') et 2').
- 1') $H \neq \emptyset$ car $e \in H$.
- 2') Pour $x,y\in H,\ y^{-1}\in H$ car H est stable par passage à l'inverse, et donc $xy^{-1}\in H$ car H est stable par produit.

- ightharpoonup Si H vérifie 1') et 2'), montrons que c'est un sous-groupe de G.
- 1) Comme $H \neq \varnothing$ par 1'), il existe un élément $x \in H$. D'après 2'), $xx^{-1} \in H$, et donc $e \in H$.
- xx⁻¹ ∈ H, et donc e ∈ H.
 3) Si on applique 2') à x = e, on obtient alors : ∀y ∈ H, y⁻¹ ∈ H. Donc H est stable par passage à l'inverse
- est stable par passage à l'inverse.
 2) Soient x, y ∈ H. Alors par ce qu'on vient de voir y⁻¹ ∈ H, et donc en

Donc H est stable par produit.

appliquant 2') à x et y^{-1} on obtient $x(y^{-1})^{-1} \in H$ et donc $xy \in H$.

Montrer que \mathbb{U}_n et \mathbb{U} sont des sous-groupes de \mathbb{C}^* . Montrer que $\mathrm{SL}_n(\mathbb{R})$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.

Soit $n\in\mathbb{N}^*$. On montre que \mathbb{U}_n est un sous-groupe de \mathbb{C}^* . (On a bien $\mathbb{U}_n\subset\mathbb{C}^*$ car $0^n=0\neq 1$.)

- 1) Comme $1^n = 1$, on a $1 \in \mathbb{U}_n$.
- 2) Soient $z,w\in \mathbb{U}_n$, on a $z^n=1$ et $w^n=1$. Alors $(zw)^n=z^nw^n=1$ donc $zw\in \mathbb{U}_n$.
- 3) Soit $z\in\mathbb{U}_n$, on a $z^n=1$ et donc $(\frac{1}{z})^n=\frac{1}{z^n}=1$ donc $\frac{1}{z}\in\mathbb{U}_n.$

Remarque

Autre justification : \mathbb{U}_n est un sous-groupe de \mathbb{C}^* car c'est le noyau du morphisme de groupes

$$f: \mathbb{C}^* \to \mathbb{C}^*$$
, $z \mapsto z^n$.

(C'est bien un morphisme de groupes : pour $z,w\in\mathbb{C}^*$ on a $(zw)^n=z^nw^n.$)

On montre que $\mathbb U$ est un sous-groupe de $\mathbb C^*$. (On a bien $\mathbb U\subset\mathbb C^*$ car $|0|=0\neq 1$.)

- 1) Comme |1| = 1, on a $1 \in \mathbb{U}$.
- 2) Soient $z,w\in\mathbb{U}$, on a |z|=1 et |w|=1. Alors $|zw|=|z|\times|w|=1$ donc $zw\in\mathbb{U}$.
- 3) Soit $z \in \mathbb{U}$, on a |z| = 1 et donc $\left|\frac{1}{z}\right| = \frac{1}{|z|} = 1$ donc $\frac{1}{z} \in \mathbb{U}$.

Remarque

Autre justification : $\mathbb U$ est un sous-groupe de $\mathbb C^*$ car c'est le noyau du morphisme de groupes

$$f: \mathbb{C}^* \to \mathbb{R}^*, \ z \mapsto |z|.$$

(C'est bien un morphisme de groupes : pour $z,w\in\mathbb{C}^*$ on a $|zw|=|z|\,|w|$.)

On montre que $\mathrm{SL}_n(\mathbb{R})$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.

- 1) On a $det(I_n) = 1$ donc $I_n \in SL_n(\mathbb{R})$.
- 2) Soient $A, B \in \mathrm{SL}_n(\mathbb{R})$, alors $\det(A) = 1$ et $\det(B) = 1$ et donc $\det(AB) = \det(A) \det(B) = 1$. Donc $AB \in \mathrm{SL}_n(\mathbb{R})$.
- 3) Soit $A \in \mathrm{SL}_n(\mathbb{R})$, alors $\det(A) = 1$ et donc $\det(A^{-1}) = \frac{1}{\det(A)} = 1$. Donc $A^{-1} \in \mathrm{SL}_n(\mathbb{R})$.

Remarque

Autre justification : $\mathrm{SL}_n(\mathbb{R})$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$ car c'est le noyau du morphisme de groupes

$$\det: \operatorname{GL}_n(\mathbb{R}) \to \mathbb{R}^*, A \mapsto \det(A).$$

(C'est bien un morphisme de groupes : pour $A, B \in GL_n(\mathbb{R})$ on a det(AB) = det(A) det(B).)

Montrer que le groupe symétrique \mathfrak{S}_3 est engendré par les transpositions $(1\ 2)$ et $(1\ 3)$:

$$\mathfrak{S}_3 = \langle (1\ 2), (1\ 3) \rangle.$$

On montre que tous les éléments de \mathfrak{S}_3 peuvent s'écrire comme produit de $(1\ 2)$, $(1\ 3)$ et de leurs inverses (qui sont respectivement $(1\ 2)$ et $(1\ 3)...$).

- L'identité id est égale au produit de 0 élément par convention.
- ightharpoonup (12) = (12).
- ightharpoonup (1 3) = (1 3).
- \triangleright (23) = (12)(13)(12) (ou aussi (13)(12)(13)).
- (1 2 3) = (1 3)(1 2).
- $(1 \ 3 \ 2) = (1 \ 2)(1 \ 3).$

Montrer que $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ est un groupe cyclique.

▶ Le groupe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ est engendré par l'élément $(\widetilde{1},\widehat{1})$ car en ajoutant cet élément avec lui-même on trouve successivement :

$$(\widetilde{0},\widehat{0}), (\widetilde{1},\widehat{1}), (\widetilde{0},\widehat{2}), (\widetilde{1},\widehat{0}), (\widetilde{0},\widehat{1}), (\widetilde{1},\widehat{2}).$$

► Autre justification (en prenant un peu d'avance) : par le théorème chinois des restes, on a un isomorphisme de groupes :

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \simeq \mathbb{Z}/6\mathbb{Z}.$$

Comme $\mathbb{Z}/6\mathbb{Z}$ est un groupe cyclique (engendré par $\overline{1}$), on en conclut qu'il en est de même pour $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Montrer que $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ n'est pas un groupe cyclique.

Dans $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ on a :

- Donc aucun des éléments de $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ n'engendre $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, donc ce

groupe n'est pas cyclique.

Montrer que \mathfrak{S}_n n'est pas un groupe cyclique si $n \geqslant 3$.

▶ Un groupe cyclique

$$\langle x \rangle = \{x^k, k \in \mathbb{Z}\}$$

est nécessairement **abélien** : en effet, pour $k,l\in\mathbb{Z}$ on a

$$x^k x^l = x^{k+l} = x^{l+k} = x^l x^k.$$

▶ Pour tout $n \ge 3$ le groupe \mathfrak{S}_n n'est pas abélien et donc pas cyclique.

Montrer que \mathbb{U}_n est un groupe cyclique, pour tout $n \in \mathbb{N}^*$.

▶ On a (re)vu en exercice qu'on a

$$\mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}}, k \in \mathbb{Z} \right\} = \left\{ \left(e^{\frac{2i\pi}{n}} \right)^k, k \in \mathbb{Z} \right\}.$$

▶ Donc \mathbb{U}_n est un groupe cyclique, engendré par $e^{\frac{2i\pi}{n}}$.

Remarque

Cela explique la terminologie "cyclique".

Lister tous les morphismes de groupes de $\mathbb{Z}/3\mathbb{Z}$ dans $\mathbb{Z}/4\mathbb{Z}$. Lister tous les endomorphismes de $\mathbb{Z}/3\mathbb{Z}$.

Soit $f:\mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$ un morphisme de groupes. On a $f(\overline{0})=\widetilde{0}$. On s'intéresse à $f(\overline{1})$.

- ▶ Si $f(\overline{1}) = \widetilde{0}$ alors $f(\overline{2}) = f(\overline{1} + \overline{1}) = f(\overline{1}) + f(\overline{1}) = \widetilde{0} + \widetilde{0} = \widetilde{0}$, et donc f est le morphisme trivial $\overline{k} \mapsto \widetilde{0}$.
- ▶ Si $f(\overline{1}) = \widetilde{1}$ alors $f(\overline{1} + \overline{1} + \overline{1}) = \widetilde{1} + \widetilde{1} + \widetilde{1} = \widetilde{3}$, et donc $f(\overline{0}) = \widetilde{3} \neq \widetilde{0}$, ce qui est impossible.
- ▶ Si $f(\overline{1}) = \widetilde{3}$ alors $f(\overline{1} + \overline{1} + \overline{1}) = \widetilde{3} + \widetilde{3} + \widetilde{3} = \widetilde{1}$, et donc $f(\overline{0}) = \widetilde{1} \neq \widetilde{0}$, ce qui est impossible.

Conclusion : le seul morphisme de groupes de $\mathbb{Z}/3\mathbb{Z}$ dans $\mathbb{Z}/4\mathbb{Z}$ est le morphisme trivial $\overline{k}\mapsto \widetilde{0}$.

Soit $f: \mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ un morphisme de groupes. On a $f(\overline{0}) = \overline{0}$. On s'intéresse à $f(\overline{1})$.

Sinteresse a
$$f(\overline{1})$$
.

Si $f(\overline{1}) = \overline{0}$ alors $f(\overline{2}) = f(\overline{1} + \overline{1}) = f(\overline{1}) + f(\overline{1}) = \overline{0} + \overline{0} = \overline{0}$, et donc f est le morphisme trivial $\overline{k} \mapsto \overline{0}$.

est le morphisme trivial
$$k\mapsto 0$$
.

Si $f(\overline{1})=\overline{1}$ alors $f(\overline{2})=f(\overline{1}+\overline{1})=\overline{1}+\overline{1}=\overline{2}$, et donc f est le morphisme identité $\overline{k}\mapsto \overline{k}$.

▶ Si $f(\overline{1}) = \overline{2}$ alors $f(\overline{2}) = f(\overline{1} + \overline{1}) = \overline{2} + \overline{2} = \overline{1}$. On vérifie que cela définit un morphisme de groupes. C'est le morphisme $\overline{k} \mapsto \overline{2k} = \overline{2} \times \overline{k}$

Conclusion : il y a trois endomorphismes de groupes de $\mathbb{Z}/3\mathbb{Z}$: le morphisme trivial $\overline{k}\mapsto \overline{0}$, l'identité $\overline{k}\mapsto \overline{k}$, et le morphisme $\overline{k}\mapsto \overline{2k}=\overline{2}\times \overline{k}$.

Montrer que les endomorphismes de $\mathbb Z$ sont les applications $k\mapsto ak$ avec $a\in\mathbb Z.$

▶ On montre que pour tout $a \in \mathbb{Z}$ l'application $f : \mathbb{Z} \to \mathbb{Z}$, $k \mapsto ak$ est un morphisme de groupes : pour $k, k' \in \mathbb{Z}$ on calcule

$$f(k + k') = a(k + k') = ak + ak' = f(k) + f(k').$$

▶ Soit $f: \mathbb{Z} \to \mathbb{Z}$ un morphisme de groupes. Notons a = f(1). On a

$$f(1) = a = a \times 1;$$

$$f(2) = f(1+1) = f(1) + f(1) = a + a = 2a = a \times 2;$$

$$f(3) = f(2+1) = f(2) + f(1) = 2a + a = 3a = a \times 3;$$
...

Une récurrence évidente montre que pour tout $k\geqslant 1$ on a f(k)=ak. Comme par ailleurs

$$f(-k) = -f(k) = -ak = a(-k)$$

cette formule est aussi valable pour $k \leqslant -1$. Elle est aussi valable pour k=0 car f(0)=0. Donc elle est valable pour tout $k \in \mathbb{Z}$.

Pour $n\in\mathbb{N}^*$, montrer que les endomorphismes de $\mathbb{Z}/n\mathbb{Z}$ sont les applications $\overline{k}\mapsto \overline{ak}=\overline{a}\times\overline{k}$, avec $\overline{a}\in\mathbb{Z}/n\mathbb{Z}$.

▶ On montre que pour tout $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ l'application

$$f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, \ \overline{k} \mapsto \overline{a} \times \overline{k}$$

est un morphisme de groupes : pour $\overline{k}, \overline{k'} \in \mathbb{Z}/n\mathbb{Z}$ on calcule

$$f(\overline{k} + \overline{k'}) = \overline{a} \times (\overline{k} + \overline{k'}) = \overline{a} \times \overline{k} + \overline{a} \times \overline{k'} = f(\overline{k}) + f(\overline{k'}).$$

▶ Soit $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ un morphisme de groupes. Notons $\overline{a} = f(\overline{1})$. On a

$$\begin{split} f(\overline{0}) &= \overline{0} = \overline{a} \times \overline{0}; \\ f(\overline{1}) &= \overline{a} = \overline{a} \times \overline{1}; \\ f(\overline{2}) &= f(\overline{1} + \overline{1}) = f(\overline{1}) + f(\overline{1}) = \overline{a} + \overline{a} = \overline{2a} = \overline{a} \times \overline{2}; \\ f(\overline{3}) &= f(\overline{2} + \overline{1}) = f(\overline{2}) + f(\overline{1}) = \overline{2a} + \overline{a} = \overline{3a} = \overline{a} \times \overline{3}; \end{split}$$

Une récurrence évidente montre que pour tout $\overline{k}\in \mathbb{Z}/n\mathbb{Z}$ on a $f(\overline{k})=\overline{a}\times \overline{k}.$

- 4. Autour de la notion d'ordre
- 4.1 Ordre d'un élément dans un groupe
- 4.2 Retour sur les groupes cycliques
- 4.3 Le théorème de Lagrange
- 4.4 Application aux groupes d'ordre premier

4. Autour de la notion d'ordre

- 4.1 Ordre d'un élément dans un groupe
- 4.2 Retour sur les groupes cycliques4.3 Le théorème de Lagrange
- 4.4 Application aux groupes d'ordre premier

Ordre d'un élément dans un groupe

Définition

Soit G un groupe et soit $x \in G$. L'ordre de x dans G est le plus petit $n \in \mathbb{N}^*$ tel que $x^n = e$, avec la convention que x est d'ordre infini si pour tout $n \in \mathbb{N}^*$, $x^n \neq e$.

Remarque

En notation additive : l'ordre de x dans G est le plus petit $n\in\mathbb{N}^*$ tel que nx=0, avec la convention que x est d'ordre infini si pour tout $n\in\mathbb{N}^*$, $nx\neq 0$.

Exemple

Le seul élément d'ordre 1 dans un groupe G est l'élément neutre e. Un élément x est d'ordre 2 si et seulement si $x \neq e$ et $x^2 = e$.

Le cas d'un élément d'ordre infini

- ▶ Soit $x \in G$ un élément d'ordre infini.
- ► Alors dans

$$\langle x \rangle = \{x^k, k \in \mathbb{Z}\},\$$

tous les x^k , pour $k \in \mathbb{Z}$, sont deux à deux distincts.

lackbox La loi de groupe dans $\langle\,x\,
angle$ se calcule comme la somme dans $\mathbb Z$:

$$x^k x^{k'} = x^{k+k'}.$$

- ▶ Conclusion : le groupe $\langle x \rangle$ se comporte comme le groupe \mathbb{Z} .
- ▶ Plus formellement, le groupe $\langle x \rangle$ est isomorphe à \mathbb{Z} .

Le cas d'un élément d'ordre fini

- ▶ Soit $x \in G$ un élément d'ordre fini $n \in \mathbb{N}^*$.
- Alors on a

$$\langle x \rangle = \{x^k, k \in \mathbb{Z}\} = \{e, x, x^2, \dots, x^{n-1}\}\$$

et les x^k , pour $k \in \{0, \dots, n-1\}$, sont deux à deux distincts.

lackbox La loi de groupe dans $\langle x \rangle$ se calcule comme la somme dans $\mathbb{Z}/n\mathbb{Z}$:

$$x^k x^{k'} = x^{k+k'} \qquad \text{avec } x^n = e.$$

ightharpoonup Par exemple, si x est d'ordre 6 on a

$$\langle x \rangle = \{e, x, x^2, x^3, x^4, x^5\},\,$$

qui a 6 éléments et où la loi de groupe se calcule comme :

$$x^5x^4 = x^9 = x^6x^3 = ex^3 = x^3.$$

(Ça revient à calculer dans $\mathbb{Z}/6\mathbb{Z}$: $\overline{5} + \overline{4} = \overline{3}$.)

- ▶ Conclusion : le groupe $\langle x \rangle$ se comporte comme le groupe $\mathbb{Z}/n\mathbb{Z}$.
- ▶ Plus formellement, le groupe $\langle x \rangle$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Une proposition importante

Soit $x \in G$ et considérons l'application

$$\varphi_x: \mathbb{Z} \to G , k \mapsto x^k.$$

C'est un morphisme de groupes : $\varphi_x(k+k')=x^{k+k'}=x^kx^{k'}=\varphi_x(k)\varphi_x(k')$.

Proposition

Soit G un groupe, soit $x \in G$.

ightharpoonup Si x est d'ordre infini, φ_x induit un isomorphisme de groupes

$$\mathbb{Z} \to \langle x \rangle$$
, $k \mapsto x^k$.

▶ Si x est d'ordre fini $n \in \mathbb{N}^*$, φ_x induit un isomorphisme de groupes

$$\mathbb{Z}/n\mathbb{Z} \to \langle x \rangle , \ \overline{k} \mapsto x^k$$

et notamment

$$\langle x \rangle = \{e, x, x^2, \dots, x^{n-1}\}.$$

En particulier, l'ordre de x est égal à l'ordre du groupe $\langle x \rangle$.

Début de la démonstration

$$\varphi_x: \mathbb{Z} \to G , k \mapsto x^k.$$

► Par définition :

$$\operatorname{Im}(\varphi_x) = \langle x \rangle.$$

▶ Comme φ_x est un morphisme de groupes, le noyau $\ker(\varphi_x)$ est un sous-groupe de \mathbb{Z} , et donc de la forme

$$\ker(\varphi_x) = \{k \in \mathbb{Z} \mid x^k = e\} = n\mathbb{Z}$$

pour un unique $n \in \mathbb{N}$.

▶ <u>Cas n=0</u>. Alors il n'existe aucun $k \in \mathbb{N}^*$ tel que $x^k=e$, donc x est d'ordre infini. De plus, $\ker(\varphi_x)=\{0\}$ donc φ_x est injective. Comme son image est $\langle \, x \, \rangle$, on obtient donc un isomorphisme de groupes

$$\mathbb{Z} \to \langle x \rangle$$
, $k \mapsto x^k$.

▶ Cas $n \ge 1$. Alors x est d'ordre n par définition. (À suivre.)

Et en notation additive...

▶ Si on utilise la **notation additive** pour la loi de groupe, alors on a

$$\langle x \rangle = \{kx, k \in \mathbb{Z}\}\$$

avec

$$kx = \underbrace{x + x + \dots + x}_{}$$
.

▶ On a alors

$$\varphi_x: \mathbb{Z} \to G, \ k \mapsto kx.$$

▶ On a alors, si x est d'ordre fini $n \in \mathbb{N}^*$:

$$\langle x \rangle = \{0, x, 2x, 3x, \dots, (n-1)x\}.$$

Une remarque

- ▶ Soit G un groupe fini, alors tout élément $x \in G$ est d'ordre fini.
- ▶ En effet, si x était d'ordre infini alors le sous-groupe $\langle x \rangle \subset G$ serait infini (en bijection avec \mathbb{Z}), ce qui contredirait la finitude de G.

Un exercice

Exercice 48

Dans chaque cas, donner l'ordre de x dans le groupe G et décrire $\langle x \rangle$.

- $ightharpoonup G = \mathbb{Z}, x = 1.$
- $ightharpoonup G = \mathbb{Z}, x = -1.$
- $ightharpoonup G=\mathbb{Z}$, x=2.
- $G = \mathbb{R}^*, x = 1.$
- $G = \mathbb{R}^*$, x = -1.
- $ightharpoonup G = \mathbb{R}^*$, x = 2.
- $ightharpoonup G = \mathfrak{S}_4, \ x = (1\ 2\ 3)(3\ 4).$

- $G = \mathbb{Z}/24\mathbb{Z}, \ x = \overline{14}.$

Plus d'exercices

Exercice 49

Dans $\mathbb{Z}/n\mathbb{Z}$, quel est l'ordre d'un élément \overline{k} ?

Exercice 50

Soit G un groupe, soit $x \in G$ un élément d'ordre fini n. Pour un élément $k \in \mathbb{Z}$, quel est l'ordre de x^k ?

Une proposition importante

Proposition

Soit G un groupe et soit $x \in G$ un élément d'ordre fini n. Alors pour tout $r \in \mathbb{Z}$ on a l'équivalence :

$$x^r = e \iff n|r.$$

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \ \text{Avec les notations ci-dessus, } x^r = e \ \text{si et seulement si} \\ r \in \ker(\varphi_x). \ \ \text{Or} \ \ker(\varphi_x) = n\mathbb{Z} \ \text{et donc c'est \'equivalent \`a} \ n|r. \end{array}$

Remarque

On a tendance à faire l'erreur de dire que si $x^r=e$ alors x est d'ordre r, ce qui est évidemment faux.

4. Autour de la notion d'ordre

- 4.1 Ordre d'un élément dans un groupe
- 4.2 Retour sur les groupes cycliques
- 4.3 Le théorème de Lagrange
- 4.4 Application aux groupes d'ordre premier

Classification des groupes cycliques

Proposition

Soit G un groupe. Alors G est cyclique si et seulement s'il est isomorphe à \mathbb{Z} ou à un $\mathbb{Z}/n\mathbb{Z}$ avec $n\in\mathbb{N}^*$.

 $Dcute{emonstration}$. Comme $\mathbb Z$ et tous les $\mathbb Z/n\mathbb Z$ sont des groupes cycliques, tout groupe isomorphe à un de ces groupes est cyclique. Réciproquement, si G est cyclique alors il existe $x\in G$ tel que $G=\langle x\rangle$, et une proposition vue plus haut dit que G est isomorphe à $\mathbb Z$ ou à un $\mathbb Z/n\mathbb Z$.

Classification des sous-groupes d'un groupe cyclique

Proposition

Soit G un groupe cyclique d'ordre fini $n \in \mathbb{N}^*$, et soit x un générateur de G. Pour chaque diviseur d de n, il existe exactement un sous-groupe de G d'ordre d, qui est le groupe cyclique engendré par $x^{n/d}$. Ce sont tous les sous-groupes de G.

 $Dcute{emonstration}$. D'après une proposition vue plus haut, on a un isomorphisme $\mathbb{Z}/n\mathbb{Z}\simeq G$ qui envoie \overline{k} sur x^k . Le résultat est alors une conséquence de la classification des sous-groupes de $\mathbb{Z}/n\mathbb{Z}$.

Classification des générateurs d'un groupe cyclique

Proposition

Soit G un groupe cyclique d'ordre fini $n \in \mathbb{N}^*$, et soit x un générateur de G. Les générateurs de G sont les x^a avec $a \wedge n = 1$.

 $Dcute{emonstration}$. D'après une proposition vue plus haut, on a un isomorphisme $\mathbb{Z}/n\mathbb{Z}\simeq G$ qui envoie \overline{k} sur x^k . Le résultat est alors une conséquence de la classification des générateurs de $\mathbb{Z}/n\mathbb{Z}$.

4. Autour de la notion d'ordre

- 4.1 Ordre d'un élément dans un groupe
- 4.2 Retour sur les groupes cycliques
- 4.3 Le théorème de Lagrange4.4 Application aux groupes d'ordre premier

Le théorème de Lagrange

Théorème (Théorème de Lagrange)

Soit G un groupe fini et soit H un sous-groupe de G. Alors |H| divise |G|.

Définition

Soit G un groupe fini et soit H un sous-groupe de G. Le quotient $\frac{|G|}{|H|}$ est appelé l'**indice** de H dans G.

Le théorème de Lagrange pour l'ordre d'un élément

Théorème

Soit G un groupe fini et soit $x \in G$. Alors l'ordre de x divise |G|.

Démonstration. C'est une conséquence du théorème de Lagrange et du fait que l'ordre de x est égal à $|\langle x \rangle|$.

▶ Une autre formulation, complètement équivalente :

Théorème

Soit G un groupe fini. Alors pour tout $x \in G$ on a :

$$x^{|G|} = e$$