ĐỀ THI HỌC KỲ 1/2019-2020

Môn thi: **Tín hiệu và hệ thống - EE2005** Ngày thi: **27/12/2019 -** Thời lượng: **100 phút**

Luu ý:

- Sinh viên **không được phép** sử dụng tài liệu; **được** tham khảo bảng công thức ở mặt sau của đề thi.
- Đề thi có tất cả **04 câu**.

Câu 1. Cho hệ thống LTI nhân quả có hàm truyền H(s) với đồ thị các điểm cực – điểm không trên **H.1**. Biết rằng $H(s)|_{s=1} = \frac{10}{22}$, hãy thực hiện các yêu cầu sau đây:

a) (CĐR 2.6 – 1.5 điểm) Trình bày đầy đủ các bước để vẽ sơ đồ khối và từ đó vẽ sơ đồ mạch dùng Op-amp để thực hiện hệ thống.

b) (CĐR 2.8 – 2.0 điểm) Vẽ đáp ứng tần số (biểu đồ Bode) của hệ thống.

Câu 2. Cho tín hiệu tín hiệu $f(t)=2\cos(5t)+3\cos(6t)+3\cos(60t)+5\cos(70t)$

- a) (CĐR 3 2.0 điểm) Hãy giải thích để lựa chọn loại bộ lọc (thông thấp, thông cao, thông dải, chắn dải) và các thông số của nó (ω_p , ω_s , G_p , G_s) để từ đó, hãy xác định hàm truyền H(s) của bộ lọc Butterworth để xử lý f(t) tạo ngõ ra $y(t)=A_1\cos(5t+\phi_1)+A_2\cos(6t+\phi_2)+A_3\cos(60t+\phi_3)+A_4\cos(70t+\phi_4)$ thỏa điều kiên sau: $A_1 \le 0.01$; $A_2 \le 0.09$; $2.5 \le A_3 \le 3$; $4.5 \le A_4 \le 5$.
- b) (CĐR 2.7 1.0 điểm) Với H(s) ở câu a, hãy xác định lại ngõ ra y(t) của hệ thống khi ngõ vào là f(t).

Câu 4. (CĐR 2.3 - 1.5 điểm) Cho tín hiệu m(t) có phổ trên **H.2b** được lấy mẫu bằng chuỗi xung p(t) tuần hoàn trên **H.3**, để tạo tín hiệu ra y(t)=m(t)p(t). Trình bày đầy đủ các bước để xác định phương trình $Y(\omega)$ theo $M(\omega)$, từ đó vẽ phổ $Y(\omega)$ tương ứng với các trường hợp sau: (i) $T_s = \frac{\pi}{5}$; (ii) $T_s = \frac{\pi}{2}$. Hãy xác định điều kiện của T_s và sơ đồ khối của hệ thống khôi phục m(t) từ y(t).

(Cán bộ coi thi không giải thích gì thêm)

Duyệt của bộ môn

GV ra đề thi

Cho biết:

A. Các cặp biến đổi Fourier thông dụng:

$\delta(t) \leftrightarrow 1$	$rect\left(\frac{t}{T}\right) \leftrightarrow Tsinc\left(\frac{\omega T}{2}\right)$	$\Delta\left(\frac{t}{T}\right) \leftrightarrow \frac{T}{2}\operatorname{sinc}^{2}\left(\frac{\omega T}{4}\right)$	$e^{-at}u(t),a>0 \leftrightarrow \frac{1}{a+j\omega}$	$u(t) \leftrightarrow \pi \delta(\omega) + \frac{1}{j\omega}$
-------------------------------	---	--	---	---

B. Các tính chất của biến đổi Fourier:

$f(t-t_0) \leftrightarrow F(\omega)e^{-j\omega t_0}$	$F(t) \leftrightarrow 2\pi f(-\omega)$	$f(t)h(t) \leftrightarrow (1/2\pi)F(\omega) * H(\omega)$	
$f(t)e^{j\omega_0t} \leftrightarrow F(\omega - \omega_0)$	$f(-t) \leftrightarrow F(-\omega)$	$\frac{d^{n} f(t)}{dt^{n}} \longleftrightarrow (j\omega)^{n} F(\omega)$	$t^{n}f(t) \leftrightarrow (j)^{n} \frac{d^{n}F(\omega)}{d\omega^{n}}$
$f(at) \leftrightarrow \frac{1}{ a } F\left(\frac{\omega}{a}\right)$	$f(t) * h(t) \leftrightarrow F(\omega).H(\omega)$	$\int_{-\infty}^{t} f(\tau)d\tau \leftrightarrow \pi F(0)\delta(\omega) + \frac{F(\omega)}{j\omega}$	$f^*(t) \leftrightarrow F^*(-\omega)$

C. Các cặp biến đổi Laplace 1 phía thông dụng:

$\delta(t) \leftrightarrow 1$	$u(t) \leftrightarrow \frac{1}{s}$	$e^{-at}u(t) \leftrightarrow \frac{1}{s+a}$	$\cos(bt)u(t) \leftrightarrow \frac{s}{s^2 + b^2}$	$\sin(bt)u(t) \leftrightarrow \frac{b}{s^2 + b^2}$
-------------------------------	------------------------------------	---	--	--

D. Các mạch bậc 2 cơ bản dùng Op-amp:

E. Bộ lọc thông thấp Butterworth: $|H(j\omega)| = 1/\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}$

N	B _n (s)	N	$B_n(s)$
2	$s^2 + 1.41s + 1$	5	$(s+1)(s^2+0.62s+1)(s^2+1.93s+1)$
3	$(s+1)(s^2+s+1)$	6	$(s^2 + 0.52s + 1)(s^2 + 1.41s + 1)(s^2 + 1.93s + 1)$
4	$(s^2 + 0.76s + 1)(s^2 + 1.84s + 1)$	7	$(s+1)(s^2+0.44s+1)(s^2+1.24s+1)(s^2+1.80s+1)$

F. Thiết kế bộ lọc thông cao thông qua bộ lọc thông thấp mẫu: $\omega_{pp} = 1$; $\omega_{sp} = \omega_p/\omega_s$; $H(s) = \mathcal{H}_p(s)\Big|_{s=\frac{\omega_p}{s}}$
