CS258 Information Theory Homework 3.1

Zhou Litao 518030910407 F1803016

March 17, 2020

Exercise 1 (Run-length coding) Let $X_1, X_2, ..., X_n$ be (possibly dependent) binary random variables. Suppose that one calculates the run lengths $\mathbf{R} = (R_1, R_2, ...)$ of this sequence (in order as they occur). For example, the sequence $\mathbf{X} = 0001100100$ yields run lengths $\mathbf{R} = (3, 2, 2, 1, 2)$. Compare $H(X_1, X_2, ..., X_n), H(\mathbf{R})$ and $H(X_n, \mathbf{R})$. Show all equalities and inequalities, and bound all the differences..

Solution. When $X_1, X_2, ..., X_n$ is determined, their running length is determined. $H(\mathbf{R}|X_1, X_2, ..., X_n) = 0$, which implie that

$$H(\mathbf{R}, X_1, X_2, \dots, X_n) = H(X_1, X_2, \dots, X_n)$$

When one element X_i is determined, given the running length, the whole sequence will be determined. That is to say $H(X_1, X_2, \dots, X_n | X_i, \mathbf{R}) = 0$, which implies that

$$H(\mathbf{R}, X_1, X_2, \dots, X_i, X_i, X_i) = H(\mathbf{R}, X_1, X_2, \dots, X_n) = H(X_i, \mathbf{R})$$

Hence we have

$$H(X_1, X_2, ..., X_n) = H(X_i, \mathbf{R}) \qquad (\star)$$

$$= H(\mathbf{R}) + H(X_i|\mathbf{R})$$

$$\leq H(\mathbf{R}) + H(X_i)$$

$$\leq H(\mathbf{R}) + \log 2 = H(\mathbf{R}) + 1 \quad (\star)$$
(1)

On the other hand, since $H(X_i|R) \geq 0$, we have

$$H(X_1, X_2, \dots, X_n) = H(X_i, \mathbf{R}) = H(\mathbf{R}) + H(X_i | \mathbf{R}) \ge H(\mathbf{R}) \quad (\star)$$

The starred lines make up all the equalities and inequalities required by the problem.

Exercise 2 (Grouping rule for entropy) Let $\mathbf{p} = (p_1, p_2, \dots, p_m)$ be a probability distribution on m elements (i.e., $p_i \geq 0$ and $\sum_{i=1}^m p_i = 1$). Define a new distribution \mathbf{q} on m-1 elements as $q_1 = p_1, q_2 = p_2 \cdots, q_{m-2} = p_{m-2}$, and $q_{m-1} = p_{m-1} + p_m$ [i.e., the distribution \mathbf{q} is the same as \mathbf{p} on $\{1, 2, \dots, m-2\}$, and the probability of the last element in \mathbf{q} is the sum of the last two probabilities of \mathbf{p}] Show that

$$H(\mathbf{p}) = H(\mathbf{q}) + (p_{m-1} + p_m) H\left(\frac{p_{m-1}}{p_{m-1} + p_m}, \frac{p_m}{p_{m-1} + p_m}\right)$$
(3)

Proof. By unfolding the definition of entropy we have

 $H(\mathbf{p}) = -\sum_{i=1}^{m} p_{i} \log p_{i} = -\sum_{i=1}^{m-2} p_{i} \log p_{i} - p_{m-1} \log p_{m-1} - p_{m} \log p_{m}$ $= -\sum_{i=1}^{m-2} q_{i} \log q_{i} - q_{m-1} \log q_{m-1} + q_{m-1} \log q_{m-1} - p_{m-1} \log p_{m-1} - p_{m} \log p_{m}$ $= H(\mathbf{q}) + (p_{m-1} + p_{m}) \log(p_{m-1} + p_{m}) - p_{m-1} \log p_{m-1} - p_{m} \log p_{m}$ $= H(\mathbf{q}) + (p_{m-1} + p_{m}) \left(-\frac{p_{m-1}}{p_{m-1} + p_{m}} \log \frac{p_{m-1}}{p_{m-1} + p_{m}} - \frac{p_{m}}{p_{m-1} + p_{m}} \log \frac{p_{m}}{p_{m-1} + p_{m}} \right)$ $= H(\mathbf{q}) + (p_{m-1} + p_{m}) H\left(\frac{p_{m-1}}{p_{m-1} + p_{m}}, \frac{p_{m}}{p_{m-1} + p_{m}} \right)$ $= H(\mathbf{q}) + (p_{m-1} + p_{m}) H\left(\frac{p_{m-1}}{p_{m-1} + p_{m}}, \frac{p_{m}}{p_{m-1} + p_{m}} \right)$

Exercise 3 (Fano) We are given the following joint distribution on (X,Y):

Let $\hat{X}(Y)$ be an estimator for X (based on Y) and let $P_e = \Pr{\{\hat{X}(Y) \neq X\}}$

- 1. Find the minimum probability of error estimator $\hat{X}(Y)$ and the associated P_e
- 2. Evaluate Fano's inequality for this problem and compare.

Solution. 1. By observation, a feasible deterministic estimator for X can be defined as

$$\hat{X}(Y) = \begin{cases} 1 & Y = a \\ 2 & Y = b \\ 3 & Y = c \end{cases}$$
 (5)

In this case, the error probability is

$$P_e = \sum_{(x,y)\in X\star Y, x\neq y} p(x,y) = 6 \times \frac{1}{12} = \frac{1}{2}$$

2. The general Fano's inequality implies that

$$P_e \geqslant \frac{H(X|Y) - 1}{\log |\mathcal{X}|} \tag{6}$$

We can calculate the conditional entropy

$$H(X|Y) = \sum_{y} p(y)H(X|Y = y)$$

$$= 3 \cdot \frac{1}{3}H(\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$$
(7)

By substituting Equation 7 into Equation 6 we know

$$P_e \ge \frac{1.5 - 1}{\log_2 3} \approx 0.3155$$

If we assume $\hat{X}: y \to x$, then by the stronger Fano's inequality we have

$$P_e \ge \frac{H(X|Y) - 1}{\log(|\mathcal{X}| - 1)} \ge \frac{1.5 - 1}{\log_2 2} = 0.5$$

Hence, the estimator we have found is the best under condition that $\hat{X}: y \to x$. It may be improved by introducing randomness. However, the P_e will not be less than 0.3155.

Exercise 4 (Discrete entropies) Let X and Y be two independent integervalued random variables. Let X be uniformly distributed over $\{1, 2, ..., 8\}$, and let $\Pr\{Y = k\} = 2^{-k}, k = 1, 2, 3, ...$

- 1. Find H(X).
- 2. Find H(Y).
- 3. Find H(X+Y,X-Y)

Solution.

- 1. For uniform distribution of X, $H(X) = \log |\mathcal{X}| = \log 8 = 3$
- 2. By definiton $H(Y) = \sum_{k=1}^{\infty} 2^{-k} \log 2^k = \sum_{k=1}^{\infty} k 2^{-k} = 2$.
- 3. Since $(X,Y) \Leftrightarrow (X+Y,X-Y)$, we have H(X+Y,X-Y|X,Y)=0 and H(X,Y|X+Y,X-Y)=0. It follows that

$$H(X,Y) = H(X+Y,X-Y|X,Y) + H(X,Y)$$

$$= H(X+Y,X-Y,X,Y)$$

$$= H(X+Y,X-Y) + H(X,Y|X+Y,X-Y)$$

$$= H(X+Y,X-Y)$$
(8)

Since X and Y are independent,

$$H(X + Y, X - Y) = H(X, Y) = H(X) + H(Y) = 3 + 2 = 5$$