## Dummit & Foote Ch. 3.2: More on Cosets and Lagrange's Theorem

Scott Donaldson

Oct. 2023

Let G be a group.

## 1. (10/1/23)

Which of the following are permissible orders of subgroups of a group of order 120: 1, 2, 5, 7, 9, 15, 60, 240? For each permissible order give the corresponding index.

*Proof.* From Lagrange's theorem, the order of a subgroup of a group of order 120 must divide 120. Then the permissible orders for subgroups are  $1 = \frac{120}{120}$ ,  $2 = \frac{120}{60}$ ,  $5 = \frac{120}{24}$ ,  $15 = \frac{120}{8}$ , and  $60 = \frac{120}{2}$ . For each of these orders the index is given by the corresponding denumerator.

## 2. (10/2/23)

Prove that the lattice of subgroups of  $S_3$  below is correct (i.e., prove that it contains all subgroups of  $S_3$  and that their pairwise joins and intersections are correctly drawn).



*Proof.* The symmetric group  $S_3$  contains 6 elements. By Lagrange's theorem, its proper subgroups must have order 2 or 3. Each of the subgroups in the lattice above have order 2 or 3, so there are no smaller or larger subgroups not depicted above.

From Corollary 10, a subgroup of order 2 must be isomorphic to  $Z_2$ , that is, cyclic and generated by a single element of order 2. The three subgroups generated by the three elements of order 2 (the 2-cycles of  $S_3$ ) are depicted above. Similarly, a subgroup of order 3 must be isomorphic to  $Z_3$  and generated by a single element of order 3. The subgroup generated by (1,2,3) contains (1,3,2), so there is only a single subgroup of order 3.

Next, again by Lagrange's Theorem, a subgroup of two different containing groups must have an order that divides the order of both of the containing groups. First consider a subgroup of order 2 and a subgroup of order 3. Only 1 divides 2 and 3, so the intersection must be the identity. Similarly, if a subgroup of order 2 and a subgroup of order 3 are contained in a larger group, then that group's order must have both 2 and 3 as divisors. The smallest integer for which this is possible is 6, which is the order of all of  $S_3$ .

Finally, consider a pair of subgroups of order 2. Their intersection is either the identity or else they are the same subgroup. Their join must have even order, but 4 does not divide 6 and any larger even number exceeds the order of  $S_3$ . Thus their join is all of  $S_3$ . This concludes the proof that the lattice of subgroups of  $S_3$  is correct.

## 3. (10/2/23)

Prove that the lattice of subgroups of  $Q_8$  below is correct.



*Proof.* The group  $Q_8$  has order  $8 = 2^3$ , so by Lagrange's theorem its proper subgroups must have order 2 or 4. We will start from the bottom and work toward the top: There is only one element of order 2 in  $Q_8$ , -1, and the cyclic subgroup generated by it is in the lattice.

For each of i, j, and  $k, \langle -1 \rangle$  is contained in the subgroup generated by them (ex.  $\langle i \rangle = \{\pm 1, \pm i\}$ ) and there are no intermediate subgroups, since there is no divisor of 4 that is strictly greater than 2. At this point, every element of  $Q_8$  is represented, so there are no cyclic subgroups missing. We might ask if there is a subgroup of order 4 missing. If so, it cannot be cyclic, and from Ch. 1.1, Exercise 36, it must be isomorphic to  $V_4$ . However,  $V_4$  contains three elements of order 2, and  $Q_8$  only has one, so there is no subgroup of  $Q_8$  isomorphic to  $V_4$ .

Finally, the join of any of the subgroups generated by i, j, or k must contain strictly more than 4 elements and its order must divide 8. Then any of their joins must have order 8, that is, be all of  $Q_8$ .