ย้อนเวลา (oct_c2_timemachine) 1sec, 32mb

บนโลกแห่งหนึ่งซึ่งมีพื้นที่เป็นตารางขนาด M x N ช่อง (2 < N,M < 1000) โดยที่แต่ละช่องถูกระบุด้วยพิกัด (x,y) (0 < x < N-1 และ 0 < y < M-1) คุณอยู่ที่ช่อง (0,0) และต้องการเดินทางไปยังช่อง (N-1,M-1) กำหนดให้การเดินทางจากช่อง (a,b) ไป (c,d) ใช้เวลาเป็น $\lceil t \rceil$ (t ปัดเศษขึ้น) เมื่อ $t = \sqrt{(a-c)^2 + (b-d)^2}$ แน่นอนว่าการเดินทางที่ใช้เวลาน้อยที่สุดคือการเดินทางจาก (0,0) ไปยัง (N-1,M-1) ตรง ๆ ซึ่งจะเสียเวลาเป็น $\lceil \sqrt{N^2 + M^2} \rceil$

อย่างไรก็ตาม บนโลกแห่งนี้มี time machine อยู่ K เครื่อง ($0 \le K \le 10$) ตั้งอยู่ที่ช่องต่าง ๆ การใช้ time machine นั้นเราจะต้องเดินทางไปยัง ช่องดังกล่าว และเลือกใช้ time machine โดยที่ time machine เครื่องที่ i นั้นจะอยู่ที่ช่อง (x,y) โดยที่ ($0 \le X_i \le N-1$ และ $0 \le y_i \le M-1$) และการใช้งาน time machine เครื่องดังกล่าวจะย้อนเวลาไปเป็นจำนวน p_i หน่วย ($1 \le p \le 1,000,000$) โดยไม่มีการเปลี่ยนตำแหน่ง เมื่อเราย้อนเวลาไปแล้ว time machine เครื่องนั้นจะหายไปทันที ไม่สามารถใช้งานซ้ำได้

หน้าที่ของคุณ

จงคำนวณเวลาน้อยสุดที่เป็นไปได้เมื่อเราไปถึงปลายทาง กำหนดให้เวลาเริ่มต้นเมื่อเราอยู่ที่ตำแหน่ง (0,0) นั้นเป็น 0

ข้อมูลนำเข้า

บรรทัดแรกประกอบด้วยเลขจำนวนเต็มสามจำนวนคือ N M และ K หลังจากนั้นอีก K บรรทัดจะเป็นข้อมูลของ time machine โดยที่แต่ละ บรรทัดจะมีข้อมูล 3 ตัวคือ x y p ซึ่งระบุถึงตำแหน่งของ time machine และเวลาที่ time machine ดังกล่าวย้อนไปได้ รับประกันว่า time machine ทุก เครื่องนั้นจะไม่อยู่ที่ตำแหน่ง (0,0) และ (N-1,M-1) และไม่อยู่ที่เดียวกันแน่นอน

ข้อมูลส่งออก

มีหนึ่งบรรทัดซึ่งระบุถึงเวลาน้อยสุดที่เป็นไปได้เมื่อเราเดินไปถึงตำแหน่ง (N-1,M-1) เวลาอาจติดลปได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
10 10 2 0 3 5 9 3 6	7
10 10 2 0 3 1 9 3 20	-4