In the Claims:

Please amend the claims as follows:

 (Currently amended) A process for production of higher linear alpha olefins and/or alkyl-branched alpha olefins <u>having a chain length of from 4 to 100 carbon atoms</u> comprising:

co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine $MY_p.L_b^+$][NC]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_1
 R_2
 R_3
 R_5
 R_5
 R_7
 R_7

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC- is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b=0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal; said co-oligomerising being carried out under conditions comprising an ethylene pressure of less than 2.5 MPa from about 0.1 MPa to about 1.6 MPa and a temperature of from about -100°C to about 300°C.

2. (Original) The process of Claim 1 wherein said ligand is of the formula,

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{10}
 R_{10}

(II)

wherein R_1 - R_{10} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_6 - R_{10} vicinal to one another taken together may form a ring; R_6 may be taken together with R_4 to form a ring; R_{10} may be taken together with R_4 to form a ring; R_{10} may be taken together with R_4 to form a ring; R_{10} is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal.

3. (Original) The process of Claim 1 wherein said ligand is of the formula,

wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_7 or R_4 to form a ring; R_{10} is hydrogen, optionally

substituted hydrocarbyl, an inert functional group, or taken together with R_9 or R_4 to form a ring; R_{11} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_5 or R_{12} to form a ring; and R_{15} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_5 or R_{14} to form a ring.

4. (Original) The process of Claim 3 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 is a primary carbon group, a secondary carbon group or a tertiary carbon group; and provided that:

when R_6 is a primary carbon group none, one or two of R_{10} , R_{11} and R_{15} are primary carbon groups, and the remainder of R_{10} , R_{11} and R_{15} are hydrogen;

when R_6 is a secondary carbon group none or one of R_{10} , R_{11} and R_{15} is a primary carbon group or a secondary carbon group and the remainder of R_{10} , R_{11} and R_{15} are hydrogen;

when R₆ is a tertiary carbon group all of R₁₀, R₁₁ and R₁₅ are hydrogen; and any two of R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄ and R₁₅ vicinal to one another, taken together may form a ring.

- 5. (Original) The process of Claim 3 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_7 or R_4 to form a ring; R_{10} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_9 or R_4 to form a ring; R_{11} and R_{15} are, independently, hydrogen or an inert functional group.
- 6. (Original) The process of Claim 3 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 , R_{10} , R_{11} and R_{15} are identical and are each selected from fluorine or chlorine.
- 7. (Currently amended) A process for producing higher linear alpha olefins and/or alkyl-branched alpha olefins having a chain length of from 4 to 100 carbon atoms comprising:
- co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC-]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7
 R_7

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R₁-R₅ are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R₁-R₃ vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal; said co-oligomerizing being carried out under conditions comprising an ethylene pressure of less than 2.5 MPa from about 0.1 MPa to about 1.6 MPa and a temperature of about -100°C to about 300°C, wherein alpha olefin co-monomer is present in a concentration of greater than 1 mol.l⁻¹.

Please add the following new claims:

Claims 8-12 (canceled).

13. (Withdrawn) The process of claim 7 wherein said ligand is of the formula,

$$R_{4}$$
 R_{2}
 R_{3}
 R_{4}
 R_{7}
 R_{8}
 R_{10}
 R_{10}

(II)

wherein R_1 - R_{10} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_6 - R_{10} vicinal to one another taken together may form a ring; R_6 may be taken together with R_4 to form a ring; R_{10} may be taken together with R_4 to form a ring; Z is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal.

14. (Withdrawn) The process of claim 7 wherein said ligand is of the formula,

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{15}
 R_{14}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{11}

wherein R₁-R₅, R₇-R₉ and R₁₂-R₁₄ are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R₁-R₃, R₇-R₉ and R₁₂-R₁₄ vicinal to one another taken together may form a ring; R₆ is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R₇ or R₄ to form a ring; R₁₀ is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken

together with R_9 or R_4 to form a ring; R_{11} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_5 or R_{12} to form a ring; and R_{15} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_5 or R_{14} to form a ring.

15. (Withdrawn) The process of claim 14 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 is a primary carbon group, a secondary carbon group or a tertiary carbon group; and provided that:

when R_6 is a primary carbon group none, one or two of R_{10} , R_{11} and R_{15} are primary carbon groups, and the remainder of R_{10} , R_{11} and R_{15} are hydrogen;

when R₆ is a secondary carbon group none or one of R₁₀, R₁₁ and R₁₅ is a primary carbon group or a secondary carbon group and the remainder of R₁₀, R₁₁ and R₁₅ are hydrogen; when R₆ is a tertiary carbon group all of R₁₀, R₁₁ and R₁₅ are hydrogen; and any two of R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄ and R₁₅ vicinal to one another, taken together may form a ring.

- 16. (Withdrawn) The process of claim 14 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_7 or R_4 to form a ring; R_{10} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_9 or R_4 to form a ring; R_{11} and R_{15} are, independently, hydrogen or an inert functional group.
- 17. (Previously presented) The process of claim 14 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 , R_{10} , R_{11} and R_{15} are identical and are each selected from fluorine or chlorine.

Cancel claim 18.

19. (Previously presented) The process of claim 1 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 20.

21. (Previously presented) The process of claim 7 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

22. (Previously presented) The process of claim 7 wherein said conditions comprise a temperature of from about 50°C to about 150°C.

Cancel claim 23.

24. (Previously presented) The process of claim 13 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 25.

26. (Previously presented) The process of claim 14 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 27.

28. (Previously presented) The process of claim 15 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 29.

30. (Previously presented) The process of claim 16 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 31.

- 32. (Previously presented) The process of claim 17 wherein said conditions comprise a temperature of from about 0°C to about 200°C.
- 33. (Previously presented) The process of claim 17 wherein said conditions comprise a temperature of from about 50°C to about 150°C.

Cancel claims 34-45.

- 46. (Previously presented) The process of claim 1 wherein said alpha olefin co-monomer is present at a concentration of greater than 2.5 mol.l⁻¹.
- 47. (Previously presented) The process of claim 1 wherein said alpha olefin co-monomer is present at a concentration of greater than 5 mol.l⁻¹.
- 48. (Previously presented) The process of claim 2 wherein said alpha olefin co-monomer is present at a concentration of greater than 2.5 mol.l⁻¹.
- 49. (Previously presented) The process of claim 2 wherein said alpha olefin co-monomer is present at a concentration of greater than 5 mol.l⁻¹.
- 50. (Previously presented) The process of claim 3 wherein said alpha olefin co-monomer is present at a concentration of greater than 2.5 mol.l⁻¹.
- 51. (Previously presented) The process of claim 3 wherein said alpha olefin co-monomer is present at a concentration of greater than 5 mol.i⁻¹.
- 52. (Previously presented) The process of claim 4 wherein said alpha olefin co-monomer is present at a concentration of greater than 2.5 mol.l⁻¹.

- 53. (Previously presented) The process of claim 4 wherein said alpha olefin co-monomer is present at a concentration of greater than 5 mol.l⁻¹.
- 54. (Previously presented) The process of claim 5 wherein said alpha olefin co-monomer is present at a concentration of greater than 2.5 mol.l⁻¹.
- 55. (Previously presented) The process of claim 5 wherein said alpha olefin co-monomer is present at a concentration of greater than 5 mol.l⁻¹.
- 56. (Previously presented) The process of claim 1 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 57. (Previously presented) The process of claim 7 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 58. (Previously presented) The process of claim 13 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 59. (Previously presented) The process of claim 14 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 60. (Previously presented) The process of claim 15 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 61. (Previously presented) The process of claim 16 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 62. (Previously presented) The process of claim 17 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 63. (Previously presented) The process of claim 20 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 64. (Previously presented) The process of claim 23 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.

- 65. (Previously presented) The process of claim 46 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 66. (Previously presented) The process of claim 47 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 67. (Previously presented) The process of claim 1 wherein said conditions comprise an inert solvent.
- 68. (Previously presented) The process of claim 7 wherein said conditions comprise an inert solvent.
- 69. (Previously presented) The process of claim 46 wherein said conditions comprise an inert solvent.
- 70. (Previously presented) The process of claim 47 wherein said conditions comprise an inert solvent.
- 71. (Previously presented) The process of claim 65 wherein said conditions comprise an inert solvent.
- 72. (Previously presented) The process of claim 66 wherein said conditions comprise an inert solvent.
- 73. (Previously presented) The process of claim 67 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 74. (Previously presented) The process of claim 68 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 75. (Previously presented) The process of claim 69 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 76. (Previously presented) The process of claim 70 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 77. (Previously presented) The process of claim 71 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.

- 78. (Previously presented) The process of claim 72 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 79. (Previously presented) The process of claim 67 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.
- 80. (Previously presented) The process of claim 68 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.
- 81. (Previously presented) The process of claim 69 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.
- 82. (Previously presented) The process of claim 70 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.
- 83. (Previously presented) The process of claim 71 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.
- 84. (Previously presented) The process of claim 72 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.
- 85. (Previously presented) The process of claim 1 wherein said conditions comprise the absence of air and moisture.
- 86. (Previously presented) The process of claim 7 wherein said conditions comprise the absence of air and moisture.

Please add the following new claims:

91. (New) A process for production of higher alkyl-branched alpha olefins having a chain length of from 4 to 100 carbon atoms and having the general structure:

$$C = C[-C-C]_{0}[-C]_{m}(R_{1})-R_{2}$$

wherein R_1 is a methyl group; n = 0, 1, 2, etc.; m = 1; and R_2 is an optionally substituted hydrocarbyl, said process comprising:

co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC- is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -coordinated to the metal; said co-oligomerising being carried out under conditions comprising an ethylene pressure of from about 0.1 MPa to about 1.6 MPa.

92. (New) A process for production of higher alkyl-branched alpha olefins having a chain length of from 4 to 100 carbon atoms and having the general structure:

$$C = C[-C-C]_n(R_1)-R_2$$

wherein R_1 is an ethyl group; n = 0, 1, 2, etc.; and R_2 is an optionally substituted hydrocarbyl, said process comprising:

co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC- is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -coordinated to the metal; said co-oligomerising being carried out under conditions comprising an ethylene pressure from about 0.1 MPa to about 1.6 MPa.

93. (New) A process for producing higher linear alpha olefins and/or alkylbranched alpha olefins having a chain length of from 4 to 100 carbon atoms comprising: co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC-]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal; said co-oligomerizing being carried out under conditions comprising an ethylene pressure of from about 0.1 MPa to about 1.6 MPa, wherein alpha olefin co-monomer is present in a concentration of greater than 1 mol.l⁻¹.

94. (New) A process for production of higher alkyl-branched alpha olefins having a chain length of from 1 to 100 carbon atoms and having the general structure:

$$C = C[-C-C]_n(R_1)-R_2$$

wherein R_1 is an ethyl group; n = 0, 1, 2, etc.; and R_2 is an optionally substituted hydrocarbyl, said process comprising:

co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7
 R_7
 R_7
 R_7

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC- is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally

substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -coordinated to the metal; said co-oligomerising being carried out under conditions comprising an ethylene pressure of from about 0.1 MPa to about 1.6 MPa.