第1章 绪论

教师: 任金波

邮箱: jren@xmu.edu.cn

作业每周二上课交

参考书:

1. E.stein Complex Analysis

2. L.Ahlfors Complex Analysis

内容: 余书前六章

成绩占比: 出勤 10, 作业 20, 期中 30, 期末 40。

1.1 一些断言

Example 1.1 设 $m, n \in \mathbb{N}$ 均为二整数平方和,则 mn 也是二整数的平方和。

Proof

Fake: 令 $m=a_1^2+b_1^2, n=a_2^2+b_2^2, a_i, b_j \in \mathbb{Z}$,观察到

$$mn = (a_1a_2 - b_1b_2)^2 + (a_1b_2 + a_2b_1)^2$$

Real: 设

$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2, m = |z_1|^2, n = |z_2|^2$$

则

$$mn = |z_1 z_2|^2 = |(a_1 a_2 - b_1 b_2) - i (a_1 b_2 + a_2 b_1)|^2$$

Example 1.2 设 $f: \mathbb{C} \to \mathbb{C}$ 可导,考虑 $C = \{z \in \mathbb{C} : |z - z_0| = r\}$,则

$$\int_{C} f(z) \, \mathrm{d}z = 0$$

并且

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

Example 1.3 设 $f: \mathbb{C} \to \mathbb{C}$ 是可导的,则 f 有任意阶导数。

Example 1.4 设 $0 < r_1 < r_2$, 令 $D_{r_1} = \{z \in \mathbb{C} : |z - z_0| < r_1\}$, $D_{r_2} = \{z \in \mathbb{C} : |z - z_0| < r_2\}$ 。考虑 $f, g : D_{r_2} \to \mathbb{C}$ 可导,那么若 f(z) = g(z) 对于任意的 $z \in D_{r_1}$ 成立,则 f(z) = g(z) 对于任意的 $z \in D_{r_2}$ 成立。

Example 1.5 (Liouville) 设 $g: \mathbb{C} \to \mathbb{C}$ 可导,若 g 在 \mathbb{C} 上有界,则 g 是常值函数。

1.2 复数的引入

自然界
$$\xrightarrow{\text{数数}} \mathbb{N} \xrightarrow{x+2=0} \mathbb{Z} \xrightarrow{5x=3} \mathbb{Q} \xrightarrow{x^2-2=0} \mathbb{R} \xrightarrow{x^2+1} \mathbb{C}$$

为什么要求解 $x^2 + 1$?

Example 1.6 考虑 $f(x) = x^3 + ax^2 + bx + c, a, b, c \in \mathbb{R}, \ f(x) = 0$ 一定有实根。问题是如何给出方程实根的根式解?

Solution 令 $x + \frac{a}{3} = y$,则方程化为

$$y^3 + py + q = 0, \quad p, q \in \mathbb{R}$$

我们令y = u + v, 其中u, v 待定, 带入方程得到

$$(u+v)^{3} + p(u+v) + q = 0$$

$$\iff u^{3} + v^{3} + q + (3uv + p)(u+v) = 0$$

可以考虑

$$\begin{cases} u^{3} + v^{3} = -q \\ uv = -\frac{p}{3} \end{cases} \implies \begin{cases} u^{3} + v^{3} = -q \\ u^{3}v^{3} = \left(-\frac{p}{3}\right)^{3} \end{cases}$$

由韦达定理, u^3 和 v^3 是方程

$$z^3 + qz - \frac{p^3}{27} = 0$$

的两个根, 从而

$$u^3, v^3 = \frac{q}{2} + -\sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$$

因此

$$x = u + v = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$

Example 1.7 对于

$$x^3 - 15x + 4 = 0$$

在形式上, 我们有

$$\sqrt{\frac{q^2}{4} + \frac{p^3}{27}} = 11\sqrt{-1}$$

则

$$x = \sqrt[3]{2 + 11\sqrt{-1}} + \sqrt[3]{2 - 11\sqrt{-1}} = (2 + \sqrt{-1}) + (2 - \sqrt{-1}) = 4$$

1.3 复数的定义

以下给出复数的三种定义,此三种方式定义出的环是同构的。

1.3.1 通过定义乘法

设 $(\mathbb{R},+)$ 是加法群,则 $(\mathbb{R}^2,+) := (\mathbb{R},+) \times (\mathbb{R},+)$ 是一个加法群。

 \mathbb{R} 上还具有环结构,但若取环的直积,则 $(1,0)\times(0,1)=(0,0)$,得到的环结构具有零因子,不是整环。

事实上,我们定义 $(a_1,b_1)\cdot(a_2,b_2):=(a_1a_2-b_1b_2,a_1b_2+a_2b_1)$,此时 $(\mathbb{R}^2,+,\cdot)$ 成为一个交换环,加法单位元是 (0,0),乘法单位元是 (1,0) 。

记 i=(0,1),断言 $\left(\mathbb{R}^2,+,\cdot\right)$ 是一个域、事实上,取 $(a,b)\in\mathbb{R}^2$,a,b 不全为 0,则 $(a,b)\cdot\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)=(1,0)$,故 (a,b) 可逆。

称这个域 $(\mathbb{R}^2, +, \cdot)$ 为复数域,记作 \mathbb{C} 。

通过将 $\mathbb{R} \ni r \mapsto (r,0)$ 将 \mathbb{R} 嵌入到 \mathbb{C} 中。

1.3.2 通过商去 $x^2 + 1$

考虑以x为未定元的实系数多项式 $\mathbb{R}[x]$,它是 $\mathbb{P}[x]$,它是 $\mathbb{P}[x]$,它是 $\mathbb{P}[x]$ 。考虑环上的一个理想

$$I = \left(x^2 + 1\right)$$

我们知道 $x^2 + 1$ 在 $\mathbb{R}[x]$ 上是不可约的,又 $\mathbb{R}[x]$ 是 UFD,因此 I 是一个极大理想,故而

$$\mathbb{R}[x]/\left(x^2+1\right)$$

是一个域,称为复数域,记作 \mathbb{C} ,记 $i=\bar{x}$ 为单项式 x 所在的代表元。 通过将 $\mathbb{R}\ni r\mapsto \bar{r}$ 将 \mathbb{R} 嵌入到 \mathbb{C} 中。

1.3.3 矩阵环的子环

我们有

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

这个子环 A 中的元素称为复数,A 也记作 \mathbb{C} 。

通过将 $r \ni \mathbb{R} \mapsto rE$ 将 \mathbb{R} 嵌入到 \mathbb{C} 中。

1.4 复数的三种表述方式

- 1. 代数形式: $z=x+iy, x,y\in\mathbb{R}$, 其中 x 记作 Re z, y 记作 Im z。称 z 是纯虚数,若 Re z=0,且 Im $z\neq 0$ 。
- 2. 三角形式: $z = \rho(\cos \theta + i \sin \theta), \rho \in \mathbb{R}_{\geq 0}, \theta \in \mathbb{R}$, 称 ρ 为 z 的模长, $\theta = \operatorname{Arg} z$ 为 z 的辐角(当 $z \neq 0$ 时)。

对于任意的 $z \neq 0$,存在唯一的 $\theta \in \operatorname{Arg} z$,使得 $-\pi < \theta \leq \pi$,此 θ 称为 z 的辐角主值,记作 $\operatorname{arg} z$ 。以后每个确定的 $\operatorname{Arg} z$ 中的值也记作 $\operatorname{arg} z$ 。

3. 指数形式: $z = \rho \cdot e^{i\theta}, \rho \in \mathbb{R}_{>0}, \theta \in \mathbb{R}$, 我们有

$$z^{n} = \rho^{n} (\cos n\theta + i \sin \theta) = \rho^{n} e^{in\theta}$$

1.5 复数的开方

设 $z = \rho(\cos\theta + i\sin\theta), \rho \ge 0, \theta \in \mathbb{R}$, 定义

$$\omega = \sqrt[n]{z} = z^{\frac{1}{n}} = \{w \in \mathbb{C} : w^n = z\}$$

当 $n \ge 2$ 时, ω 为多值函数 (不是函数)。

回去读 3-8 页, 预习 p9-p13, 作业是第一章的 7,9,12,13

1.6 复球面

考虑 \mathbb{R}^3 上的坐标系 (x,y,u),将 xOy 平面 $\{u=0\}$ 等同于 \mathbb{C} ,即 $(x,y) \leftrightarrow x+iy$ 。设 S 是 \mathbb{R}^3 上的的球面

$$S := S^2 := \{(x, y, u) : x^2 + y^2 + u^2 = 1\}$$

设 N = (0,0,1) 是北极点,任取 xOy 平面上一点 A = (x,y,0),则直线 NA 与与球面交于一点 $A': NA \cap S = \{N,A'\}$ 。

设 A'=(x',y',u'),则 $\vec{NA}=(x,y,-1)$, $\vec{NA}'=(x',y',u'-1)$,由于 N,A,A' 共线,可得 x:y:-1=x':y':u'-1,我们有

$$y' = y(1 - u'), x' = x(1 - u'), x'^2 + y'^2 + u'^2 = 1$$

写成

$$x^{2} (1 - u')^{2} + y^{2} (1 - u')^{2} + u'^{2} = 1$$

得到

$$(x^2 + y^2) (1 - u')^2 = 1 - u'^2$$

由于 $N \neq A'$, 可知 $u' \neq 1$, 于是

$$(x^2 + y^2) (1 - u') = 1 + u'$$

解出u',得到

$$u' = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1} = \frac{|z|^2 - 1}{|z|^2 + 1}$$

进而

$$x' = \left(1 - \frac{|z|^2 - 1}{|z|^2 + 1}\right)x = \frac{2x}{|z|^2 + 1} = \frac{z + \bar{z}}{|z|^2 + 1}$$

类似地有

$$y' = \frac{2y}{|z|^2 + 1} = \frac{z - \bar{z}}{i(|z|^2 + 1)}$$

以上表明存在 \mathbb{C} 到 $S\setminus N$ 的双射 $\varphi:\mathbb{C}\to S\setminus\{N\}$

$$\varphi(x,y) = (x', y', u')$$

注意到当 $|x+iy|\to\infty$ 时,即 $|OA|\to\infty$ 时,我们有 $A'\to N$ 。可以自然地约定一 $\infty\not\in\mathbb{C}$, $\mathbb{C}_\infty:=\mathbb{C}\cup\{\infty\}$ 称为扩充复数系或扩充复平面,记作 \mathbb{P}^1 或 $\mathbb{P}^1(\mathbb{C})$,并约定 $\varphi(\infty):=N$ 将 φ 扩张到 \mathbb{C}_∞ 上。

命题 1.1 (扩充复平面的性质)

对于扩充复平面 \mathbb{C}_{∞} , 以及它与复球面的对应 $\varphi: \mathbb{C}_{\infty} \to S$, 我们有

- 1. φ 在 $\{|z| > 1\}$ 上的限制,是其到 $\{x + x\} \setminus \{N\}$ 的一一对应; φ 在 $\{|z| > 0\} \cup \{\infty\}$ 上的限制与北半球一一对应。
- 2. φ 在 $\{|z| < 1\}$ 上的限制,是其到南半球的一一对应。
- 3. 对于直线 $L \subseteq \mathbb{C}$, φ 在 L 上的限制,是其到 "S 中过 N 的圆 \ $\{N\}$ "的一个一一对应。
- 4. φ 在 S 上的一个圆的限制,是其到 $\mathbb C$ 中某个圆,或 " $\mathbb C$ 中某直线 \cup {∞}"的一个一一对应。

Remark 也成上述的 S 是 Riemann 球面。

定义 1.1

对于 $\infty \in \mathbb{C}_{\infty}$,定义 $|\infty| := \infty := +\infty$

*

Remark 不定义 ∞ 的 Re, Im, Arg, arg。

定义 1.2

对于 $\infty \in \mathbb{C}_{\infty}$,做以下约定

- 1. $\forall \alpha \in \mathbb{C}, \ \alpha \pm \infty = \infty \pm \alpha = \infty, \ \frac{\alpha}{\infty} = 0;$
- 2. $\forall \in \mathbb{C}^*, \ \alpha \cdot \infty = \infty \cdot \alpha = \infty$

Remark不定义两个无穷间的运算。