MATH 215/255: Elementary Differential Equations

Lecture 1: Differential Equations

- 1. What are they and why do we solve them?
- 2. Terminology

What is a Differential Equation?

A differential equation (DE) is an equation involving an unknown function y and atleast one derivative of y w.r.t. an independent variable.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -3y(t)$$
 Given: A DE with an unknown function $y(t)$. e.x., $\underline{\mathrm{or}}$

Task: Find the function(s)
$$y(t)$$
. Solution: $y(t) = Ce^{-3t}$

y' = -3y

DEs specify the rate of change of one variable (e.g., the position of an object) with respect to another (e.g., time).

Why do we solve/study DEs?

DEs provide an intuitive way to describe many types of interactions (e.g., mechanical, biochemical, social, economic, etc.).

Solving and analyzing DEs allows us to:

- 1. Make predictions about the future (forecasting).
 - Will some variable grow unboundedly? Oscillate? Decay to zero?
 - With what rate will those things happen?
- 2. Test mechanisms that may explain experimental data.
 - e.g., determine why a variable sometimes oscillates vs. equilibrates?

Example: Skydiving

Newton's Second Law:

$$F = ma$$

$$ma(t) = \underbrace{-mg}_{ ext{gravitational force}}$$

Rewrite as:

1st order linear ODE

sub.
$$a = v'$$

$$mv' = -mg - \mu v$$

2nd order linear ODE

sub.
$$a = x'', v = x'$$

$$mx'' = -mg - \mu x'$$

1st order linear system

 $-\mu v(t)$

drag force

$$x' = v$$

$$mv' = -mg - \mu v$$

We will learn different methods to solve these three types of DEs.

Example: Ecology

Lotka-Volterra Model

Predator-Prey Model, 2 variables:

x = prey population and y = predator population

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha x - \beta xy, \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = \delta xy - \gamma y \quad 1^{\mathrm{st}} \text{ order nonlinear system}$$

We can prove that only these two solutions types are possible

Mutual Extinction

$$\{\alpha = -1, \beta = -1, \delta = 1, v = 1\}$$

Predator-Prey Oscillations

 $\{\alpha = 1, \beta = 1, \delta = 1, \gamma = 1\}$ - Prey
- Predator t

Terminology: ODEs vs PDEs

- (covered in this course) Ordinary differential equation (ODE)
 - A DE with derivatives w.r.t. only one independent variable.

•
$$\underline{\text{ex}}$$
: $\frac{dy}{dt} = y(t) + 3$ or $\frac{dy}{dt} = \sin(y) + \cos(t)$

- Partial differential equation (PDE) (not covered in this course)
 - A DE with derivatives w.r.t multiple independent variables.
 - ex: Temperature of a metal rod, given by u(x, t).

Heat/Diffusion eq:
$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$
 - 2nd order linear PDE

Partial derivatives are necessary for solutions to agree when changing coordinate systems (e.g., switch from cartesian to polar coordinates)

Terminology: Order of a DE

The highest derivative that appears in the DE.

- y' = y + 3 first order
- $y' = y^2 + 9$ first order
- y'' = -y second order
- $\frac{d^4y}{dx^4} = ky$ fourth order

Terminology: Operator Form \Rightarrow L[v(t)] = f(t)

Everything that depends on the unknown function goes on one side of the equal sign and everything else on the other.

•
$$\frac{dy}{dt} = y(t) + 3 \rightarrow \frac{dy}{dt} - y(t) = 3$$

•
$$L[y] = y' - y$$
, $f(t) = 3$

•
$$\frac{dy}{dt} = \sin(y) + \cos(t)$$
 \rightarrow $\frac{dy}{dt} - \sin(y) = \cos(t)$

•
$$L[y] = y' - \sin(y)$$
, $f(t) = \cos(t)$

Terminology: Operator Form \Rightarrow L[y(t)] = f(t)

$$\Rightarrow$$

$$L[y(t)] = f(t)$$

The operator L[·] encodes the "intrinsic" dynamics that the ODE is modelling.

- Force-displacement relationship of a spring.
- Velocity-drag relationship of a viscous fluid.

In many physics-based applications, $L[\cdot]$ does not depend explicitly on the independent variable t.

f(t) is often called the (external) forcing term.

It typically accounts for external influences that could be varied or turned off.

Terminology: Linearity of DEs

L[y(t)] = f(t)

If the operator $L[\cdot]$ is linear, then the DE is linear.

Conditions for linearity:

Given any two functions f and g and a constant c, L[·] is linear if

1.
$$L[f + g] = L[f] + L[g]$$

2.
$$L[cf] = cL[f]$$

Terminology: Linearity of DEs

L[y(t)] = f(t)

If the operator L[·] is linear, then the DE is linear.

In practice:

Does the operator have either of the following:

- 1. any nonlinear functions of y (or its derivatives) or
- 2. any products of y and its derivatives

$$ex: L[y] = y'' + y$$

ex:
$$L[y] = y'' + y$$
 ex: $L[y] = y' + \sin(y'')$ ex: $L[y] = y' + y'y$

$$\underline{\mathsf{ex}} \colon \mathsf{L}\left[y\right] = y' + y'y$$

Linear

Nonlinear

Nonlinear

Terminology: Solution to an ODE

A solution of an ODE is a function that satisfies the ODE.

ex: Is
$$y = Ce^{-t} + t - 1$$
 a solution to $y' + y = t$?

compute derivative(s): $y' = -Ce^{-t} + 1$

evaluate ODE: $y' + y = Ce^{-t} + 1 + Ce^{-t} + t - 1 = t$

Here C is an arbitrary constant that can have any value.

Any solution with an arbitrary constant is called a general solution

A solution with no arbitrary constants is called a particular solution

We eliminate arbitrary constant by using constraints

Initial Value Problems

Add a constraint at $t = t_0$, e.g.

$$L[y] = f(t)$$
, with $y(t_0) = y_0$,

where t_0 and y_0 are numerical values (usually real-valued).

ex: Find the particular solution to
$$y' + y = t$$
 with $y(0) = 4$?

Start with the general solution

$$v(t) = Ce^{-t} + t - 1$$

evaluate at $t=t_0=0$, make that equal to $y_0=0$

$$y(0) = C - 1 = 4 \quad \Rightarrow C = 5$$

$$y(t) = 5e^{-t} + t - 1$$

Summary

1 What are DFs?

- Equations involving unknown function(s) and function derivatives.
- Specify rates of change of certain quantities.
- Useful for modelling many natural phenomena.

2. Terminology

- ODEs (& PDEs).
- Order of DEs, Linear DEs, Solutions to DEs.

3 Initial Value Problems

- A straightforward way to obtain a unique solution.
- Specify solution value at some initial time t_0 .