

PET-FÍSICA

SISTEMAS LINEARES

Aula 8 | BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ

AGRADECIMENTOS

Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento da Educação e do Programa de Educação Tutorial – PET, do MEC - Ministério da Educação – Brasil.

DOS AUTORES

Essa apostila foi construída para ser um material de apoio às atividades de tutoria, realizadas pelos bolsistas do Programa de Educação Tutorial – Física/UFRRJ, e não tem como pretensão a substituição de materiais tradicionais e mais completos.

O conteúdo aqui poderá ser compartilhado e reproduzido, desde que sejam dados os devidos créditos as pessoas responsáveis por compilar os temas aqui presentes.

Uma boa leitura!

SUMÁRIO

1.	Definição	05
2.	Representação matricial de um sistema linear	05
3.	Classificação de um sistema linear	06
4.	Resolução de um sistema linear	06
	4.1 Regra de Cramer	06
	4.2 Escalonamento de matrizes	07
	4.3 Eliminação de Gauss	10
5.	Exercícios de fixação	12
6.	Referências	12
7	Resposta dos exercícios de fixação	13

1. Definição

Um sistema linear é aquele composto por duas ou mais equações lineares, sendo uma equação linear descrita como (STEINBRUCH & WINTERLE, 1995):

$$a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n = k$$

onde os termos a_i e k são constantes, onde o primeiro são os coeficientes multiplicativos da equação e o último é denominado termo independente, e x_i são as incógnitas.

Exemplo 1.1: Representação de uma equação linear:

$$3x + v = 5$$

sendo x e y são incógnitas e 5 o termo independente.

Devido as suas características o sistema linear é também chamado de sistema de equações do primeiro grau, onde nenhuma das incógnitas pode ter expoente diferente de 0 ou 1.

Exemplo 1.2: Representação de um sistema linear:

$$\begin{cases} Ax + By + Cz = J \\ Dx + Ey + Fz = K \\ Gx + Hy + Iz = L \end{cases}$$

onde x, y e z são incógnitas, J, K e L são os termos independentes.

Se os termos independentes das equações do exemplo 1.2 forem zero, esse sistema será denominado sistema linear homogêneo e a sua solução será dada pela determinação dos valores das incógnitas que satisfazem todas as equações do sistema.

2. Representação matricial de um sistema linear

Uma forma de obter a solução de um sistema linear é escrevê-lo na forma de matrizes, tal que ele possa ser representado pela forma reduzida (ALEJANDRO et al, 1997):

$$Ax = B$$

onde A é uma matriz que representa os coeficientes, x é uma matriz que representa as incógnitas e B é uma matriz que representa os termos independentes de cada uma das equações que compõe o sistema.

Exemplo 2.1: Seja o sistema composto por três equações lineares não homogêneas, como mostrado abaixo:

$$\begin{cases} 3x + 2y + z = 5 \\ x + y + 2z = 4 \\ 2x + 3z = 7 \end{cases}$$

onde os coeficientes que comporão as matriz A serão: 3, 2, 1, 1, 1, 2, 2, 0 e 3, as matriz x será composta pelas incógnitas x, y e z e a matriz B será formada pelos termos 5, 4 e 7.

Na forma matricial o sistema de equações poderá ser escrito como:

$$\begin{bmatrix} 3 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 7 \end{bmatrix}$$

3. Classificação de um sistema linear

Em um sistema linear pode ser classificado de acordo com a possibilidade de ter ou não solução, sendo classificado de: solução única (SPD), infinitas soluções (SPI) e impossível (SI) (ATON & RORRES, 2012).

A possibilidade de obtenção de solução está ligada diretamente ao determinante da matriz formada pelas equações do sistema, tal que (STEINBRUCH & WINTERLE, 1995):

- Se a determinante da matriz A for igual à zero (det A = 0), o sistema é indeterminado ou impossível.
- Se a determinante da matriz A for diferente de zero (det $A \neq 0$), o sistema tem solução única.

4. Resolução dos sistemas lineares

Para a resolução de sistemas lineares utilizaremos três métodos, que são: "Regra de Cramer", "Escalonamento de Matrizes" e a "Eliminação de Gauss".

4.1. Regra de Cramer

Seja Ax = B, onde o número de equações é igual ao numero de incógnitas e det $A \neq 0$, temos que:

$$x = \frac{\det A_x}{\det A}$$
$$y = \frac{\det A_Y}{\det A}$$

$$z = \frac{\det A_z}{\det A}$$

onde A_x , A_y e A_z são composições da matriz A com suas colunas substituídas pela matriz B.

Exemplo 4.1: Seja um sistema linear, não homogêneo, mostrado abaixo:

$$\begin{cases} x + y + z = 6 \\ 4x + 2y - z = 5 \\ x + 3y + 2z = 13 \end{cases}$$

Para determinar as incógnitas utilizando a "Regra de Cramer", temos que determinar os determinantes de A_x , A_y e A_z , que são obtidos subsistindo a coluna de interesse pela coluna dos termos independentes k.

A representação do sistema de equações no formato matricial será:

$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & -1 \\ 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ 13 \end{bmatrix}$$

O determinante da matriz A, escrita como:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & -1 \\ 1 & 3 & 2 \end{bmatrix}$$

será oito ($\det A = 8$).

No caso de A_x teremos:

$$A_{x} = \begin{bmatrix} 6 & 1 & 1 \\ 5 & 2 & -1 \\ 13 & 3 & 2 \end{bmatrix}$$

onde o determinante será igual a trinta e cinco (det $A_x = 35$).

No caso de A_y teremos:

$$A_y = \begin{bmatrix} 1 & 6 & 1 \\ 4 & 5 & -1 \\ 1 & 13 & 2 \end{bmatrix}$$

onde o determinante será igual a dezesseis (det $A_x = 16$).

No caso de A_z teremos:

$$A_z = \begin{bmatrix} 1 & 1 & 6 \\ 4 & 2 & 5 \\ 1 & 3 & 13 \end{bmatrix}$$

onde o determinante será igual a vinte e quatro (det $A_x = 24$).

Aplicando a Regra de Cramer, temos que o valor das incógnitas que fornecem solução para essas equações serão:

$$x = \frac{\det A_x}{\det A} = \frac{35}{8} = 4,4$$

$$y = \frac{\det A_Y}{\det A} = \frac{16}{8} = 2$$

$$z = \frac{\det A_z}{\det A} = \frac{24}{8} = 3$$

4.2. Escalonamento de matrizes

Outra forma de solução de sistemas lineares é realizar o chamado de escalonamento de matrizes, que é baseado na ideia de simplificar o sistema por meio de operações sucessivas entre os elementos presentes na matriz (STEINBRUCH & WINTERLE, 1995).

Exemplo 4.2: Vamos considerar o sistema abaixo:

$$\begin{cases} 3x + 2y - z = 1 \\ 2x - 2y + 4z = -2 \\ x + \frac{y}{2} - z = 0 \end{cases}$$

Nesse sistema a ideia é construir uma nova matriz agrupando os coeficientes e os termos independentes, tal que:

$$\begin{bmatrix} 3 & 2 & -1 & 1 \\ 2 & -2 & 4 & -2 \\ 1 & 1/2 & -1 & 0 \end{bmatrix}$$

$$\longrightarrow \text{Representa a Matriz } B$$

$$\longrightarrow \text{Representa a Matriz } A$$

Para resolver esse sistema temos que transformar o lado esquerdo da matriz aumentada (ou seja, a matriz *A*) para a matriz identidade, fazendo manipulações do tipo:

 $l_i \leftarrow l_i - l_j$ Isso significa que a linha i recebera a linha i menos a linha j

$$l_i \leftarrow kl_i$$
$$l_i \leftrightarrow l_i$$

Isso significa que a linha i receberá a linha i vezes uma constante Isso significa que a linha i vai trocar com a linha j

Para ficar mais claro vamos fazer os seguintes passos:

• Matriz inicial:

$$\begin{bmatrix} 3 & 2 & -1 & 1 \\ 2 & -2 & 4 & -2 \\ 1 & \frac{1}{2} & -1 & 0 \end{bmatrix}$$

• Passo 1: $l_1 \leftrightarrow l_3$

$$\begin{bmatrix} 1 & \frac{1}{2} & -1 & 0 \\ 2 & -2 & 4 & -2 \\ 3 & 2 & -1 & 1 \end{bmatrix}$$

• Passo 2: $l_2 \leftarrow l_2 - 2l_1$

$$\begin{bmatrix} 1 & 1/2 & -1 & 0 \\ 0 & -3 & 6 & -2 \\ 3 & 2 & -1 & 1 \end{bmatrix}$$

• Passo 3: $l_3 \leftarrow l_3 - 3l_1$

$$\begin{bmatrix} 1 & \frac{1}{2} & -1 & 0 \\ 0 & -3 & 6 & -2 \\ 0 & \frac{1}{2} & 2 & 1 \end{bmatrix}$$

• Passo 4: $l_2 \leftarrow -\frac{l_2}{3}$

$$\begin{bmatrix} 1 & 1/2 & -1 & 0 \\ 0 & 1 & -2 & -2/3 \\ 0 & 1/2 & 2 & 1 \end{bmatrix}$$

• Passo 5: $l_3 \leftarrow l_3 - \frac{l_2}{2}$

$$\begin{bmatrix} 1 & 1/2 & -1 & 0 \\ 0 & 1 & -2 & -2/3 \\ 0 & 0 & 3 & 2/3 \end{bmatrix}$$

• Passo 6: $l_3 \leftarrow \frac{l_3}{3}$

$$\begin{bmatrix} 1 & \frac{1}{2} & -1 & 0 \\ 0 & 1 & -2 & -\frac{2}{3} \\ 0 & 0 & 1 & \frac{2}{9} \end{bmatrix}$$

• Passo 7: $l_2 + 2l_3$

$$\begin{bmatrix} 1 & \frac{1}{2} & -1 & 0 \\ 0 & 1 & 0 & -\frac{2}{9} \\ 0 & 0 & 1 & \frac{2}{9} \end{bmatrix}$$

• Passo 8: $l_1 \leftarrow l_1 + l_3$

$$\begin{bmatrix} 1 & 1/2 & 0 & 2/9 \\ 0 & 1 & 0 & -2/9 \\ 0 & 0 & 1 & 2/9 \end{bmatrix}$$

• Passo 9: $l_1 \leftarrow l_1 - \frac{l_2}{2}$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & \frac{-2}{9} \\ 0 & 0 & 1 & \frac{2}{9} \end{bmatrix}$$

Dessa forma obtemos as incógnitas que procurávamos:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/9 \\ 2/9 \end{bmatrix}$$

4.3. Eliminação de Gauss

A Eliminação de Gauss é muito parecida com o escalonamento de matrizes e também consiste em aplicar sucessivas operações elementares na matriz que representa o sistema linear e assim transformá-lo num sistema simples resolução (ATON & RORRES, 2012).

Exemplo 4.3: Considere o sistema de equações descrito abaixo:

$$\begin{cases} x + y + z = 1 \\ -x + y + 2z = 0 \\ x + 3y + 4z = 3 \end{cases}$$

Para resolver esse sistema podemos aplicar o seguinte conjunto de operações elementares, onde:

• Sistema original:

$$\begin{cases} x + y + z = 1 \\ -x + y + 2z = 0 \\ x + 3y + 4z = 3 \end{cases}$$

• Passo 1: $l_2 \leftarrow l_2 + l_1$

$$\begin{cases} x + y + z = 1 \\ 2y + 3z = 1 \\ x + 3y + 5z = 3 \end{cases}$$

• Passo 2: $l_3 \leftarrow l_3 - l_1$

$$\begin{cases} x + y + z = 1 \\ 2y + 3z = 1 \\ 2y + 4z = 2 \end{cases}$$

• Passo 3: $l_3 \leftarrow l_3 - l_2$

$$\begin{cases} x + y + z = 1 \\ 2y + 3z = 1 \\ z = 1 \end{cases}$$

• Passo 4: Substituindo z = 1 em l_1 e l_2 :

$$\begin{cases} x + y + (1) = 1 \\ 2y + 3(1) = 1 \\ z = 1 \end{cases} \rightarrow \begin{cases} x + y + (1) = 1 \\ 2y + 3 = 1 \\ z = 1 \end{cases} \rightarrow \begin{cases} x + y = 0 \\ y = -1 \\ z = 1 \end{cases}$$

• Passo 5: Substituindo y = -1 em l_1 :

$$\begin{cases} x + y = 0 \\ y = -1 \\ z = 1 \end{cases}$$

• Passo 6: Substituindo y = -1 em l_1 :

$$\begin{cases} x - 1 = 0 \\ y = -1 \\ z = 1 \end{cases} \rightarrow \begin{cases} x = 1 \\ y = -1 \\ z = 1 \end{cases}$$

que são as incógnitas do sistema.

5. Exercícios de fixação

1. (UFES) O valor da expressão x + y + z, onde $x, y \in z$ satisfazem o sistema que segue é:

$$\begin{cases}
-x + y - 2z = -9 \\
2x + y + z = 6 \\
-2x - 2y + z = 1
\end{cases}$$

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

2. Classifique o Sistema

$$\begin{cases} 3x + y = 9 \\ x + 2y = 8 \end{cases}$$

3. (FUVEST-SP) O sistema

$$\begin{cases} x + y = 1 \\ x - y = 1 \\ ax + by = a \end{cases}$$

Tem Solução se e somente se:

- a) $a \neq c$

- b) b = c c) a = c d) a = b e c = 1 e) b = 1 e a c = 1

4. (FUVEST-SP) O sistema linear

$$\begin{cases} x + y = 0 \\ x + z = 0 \\ y + mz = 0 \end{cases}$$

é indeterminado para:

- a) todo m real
- b) nenhum m real c) m = 1 d) m = -1 e) m = 0

5. (UEL) Se os sistemas

S1:

$$x + y = 1$$

$$x - 2y = -5$$

S2:

$$ax - by = 5$$

$$ay - bx = -1$$

São equivalentes, então o valor de $a^2 + b^2$ é igual a:

- a) 1

- b) 4 c) 5 d) 9 e) 10

6. Referências

ALEJANDRO, R. A. et al. Help! Sistema de consulta interativa - Matemática. São Paulo: Klick Editora, 1997.

ATON, H.; RORRES, C. Álgebra Linear com Aplicações. Porto Alegre: Editora Bookman, 2012.

STEINBRUCH, A.; WINTERLE, P. Álgebra Linear. Rio de Janeiro: Pearson, 1995.

7. Respostas dos exercícios de fixação

- 1. d
- 2. Sistema possível e determinado
- 3. c
- 4. d
- 5. e