EJEMPLO 1. CREDITOS

Historia crédito. BAD: Moroso, no moroso

X₁,..,X₄ LOAN, MORTDUE, CLAGE, CLNO

~~Test de Igualdad de Medias~~

	Statistics	F	df1	df2	Pr
Wilks Lambda	0.377179	55.73007	4	135	0
Pillai Trace	0.622821	55.73007	4	135	0
Hoteling-Lawley Trace	1.651261	55.73007	4	135	0
Roy Greatest Root	1.651261	55.73007	4	135	0

~~Test de Mardia de Multinormalidad por grupos~~

grupos: Moroso

kappal pvalsim kappa2 pvalkurt n 16.4509769 0.6882819 -1.5057794 0.1321238 55.0000000

grupos: No moroso

kappal pvalsim kappa2 pvalkurt n 26.18812374 0.15968824 -1.83298187 0.06680527 85.00000000

DISCRIMINANTE LINEAL

Call:

lda(BAD ~ LOAN + MORTDUE + CLAGE + CLNO, data = credit1)

Prior probabilities of groups:

Moroso No moroso

0.3928571 0.6071429

Group means:

LOAN MORTDUE CLAGE CLNO

Moroso 13774.55 50982.20 142.0774 19.65455

No moroso 17929.41 62384.15 258.6129 19.58824

Coefficients of linear discriminants (ES LO QUE EN CLASE SE LLAMO FUNCION DE CLASIFICACION.:

LD1

LOAN 5.563021e-05

MORTDUE 1.832424e-05

CLAGE 1.859608e-02

CLNO -7.712388e-02

Predicción

Pred1

Moroso No moroso

Moroso 45 10

No moroso 0 85

~~Test de Homogeneidad de Variancias~~

Statistic df Pr

Box.M 47.88681 10 6.509141e-07

adj.M 46.29599 10 1.267556e-06

DISCRIMINANTE CUADRATICO

Call:

qda(BAD ~ LOAN + MORTDUE + CLAGE + CLNO, data = credit1)

Prior probabilities of groups:

Moroso No moroso

0.3928571 0.6071429

Group means:

LOAN MORTDUE CLAGE CLNO

Moroso 13774.55 50982.20 142.0774 19.65455

No moroso 17929.41 62384.15 258.6129 19.58824

Predicción

pred2

Moroso No moroso

Moroso 46 9

No moroso 0 85

DISCRIMINANTE LOGISTICO

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.076e+01 2.484e+00 -4.334 1.47e-05 ***

LOAN 1.453e-04 6.420e-05 2.262 0.02367 *

MORTDUE 5.992e-05 1.826e-05 3.281 0.00103 **

CLAGE 4.634e-02 9.145e-03 5.067 4.04e-07 ***

CLNO -2.369e-01 7.499e-02 -3.160 0.00158 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 187.603 on 139 degrees of freedom

Residual deviance: 68.497 on 135 degrees of freedom

AIC: 78.497

Number of Fisher Scoring iterations: 7

Predicción

pred3

0 1

Moroso 47 8

No moroso 2 83

EJEMPLO INVEST (YA USADO EN CLUSTER)

Grupo: el país tiene o no tiene Grado Inversor

 X_1 , X_2 , X_3 , X_4 , $X_{5....}$ INDICE PAIS, DEUDA/PBI, PBIPERCAPITA, INFLACION, CRECMIENTOPBI

~~Test de Igualdad de Medias~~

	Statistics	F	df1	df2	Pr
Wilks Lambda	0.3962623	16.97704	7	78	1.971756e-13
Pillai Trace	0.6037377	16.97704	7	78	1.971756e-13
Hoteling-Lawley Trace	1.5235808	16.97704	7	78	1.971756e-13
Roy Greatest Root	1.5235808	16.97704	7	78	1.971756e-13

~~Test de Homogeneidad de Variancias~~

Statistic df Pr

Box.M 388.5175 28 0

adj.M 352.2176 28 0

~~Test de Mardia de Multinormalidad por grupos~~

grupos: 0

kappa1	pvalsim	kappa2	pvalkurt	n	
2.307879e+02	1.221245e-15	5.909363e+00	3.434339e-09	34	

grupos: 1

kappal pvalsim kappa2 pvalkurt n 1.852117e+02 1.371679e-09 -4.400827e-01 6.598772e-01 52

LOGISTICO

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.368e+01 9.035e+00 -1.514 0.1301

IndicePais 1.857e-01 1.353e-01 1.372 0.1700

DPBI -3.234e-02 2.470e-02 -1.309 0.1904

PBIpercapita 1.080e-03 5.522e-04 1.956 0.0504.

Inflacion -4.277e-01 2.318e-01 -1.845 0.0650.

CrecimPBI 2.441e-01 3.045e-01 0.802 0.4227

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 115.426 on 85 degrees of freedom

Residual deviance: 23.771 on 80 degrees of freedom

AIC: 35.771

Number of Fisher Scoring iterations: 10

SALIDA CON MENOS VARIABLES

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.806e+01 6.477e+00 -2.788 0.00531 **

IndicePais 2.235e-01 9.395e-02 2.379 0.01738 *

PBIpercapita 6.607e-04 2.897e-04 2.280 0.02258 *

Null deviance: 115.426 on 85 degrees of freedom Residual deviance: 34.503 on 83 degrees of freedom

AIC: 40.503

Predicción

	Invo	InvGrade		
SCOR1	0	1		
0	0.89	0.12		
1	0.06	0 94		

EJEMPLO BAJO PESO DEL Niño AL NACER

Se desea explicar el bajo peso de los niños al nacer.

PESO: 1, SI TIENE BAJO PESO, 0 SI NO

Se tienen características de la madres: edad (AGE), peso(LWT), cantidad visitas al médico (FTV), fuma(SMOKE), historia de hipertensión (HT), molestias uterinas(UI)

Test apara discriminante lineal con 3 variable, edad, peso y cantidad visitas testes(peso[,c(2,3,9)], peso[,1])

~~Test de Igualdad de Medias~~

	Statistics	F	df1	df2	Pr
Wilks Lambda	0.96264931	2.39266	3	185	0.06997377
Pillai Trace	0.03735069	2.39266	3	185	0.06997377
Hoteling-Lawley Trace	0.03879990	2.39266	3	185	0.06997377
Roy Greatest Root	0.03879990	2.39266	3	185	0.06997377

No existe evidencia de que el vector de medias de los 2 grupos sea diferente. Esto lo podemos ver gráficamente

DISCRIMINANTE LOGISTICO CON TODAS LAS VARIABLES

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.480623	1.196888	0.402	0.68801	
age	-0.029549	0.037031	-0.798	0.42489	
lwt	-0.015424	0.006919	-2.229	0.02580	*
race2	1.272260	0.527357	2.413	0.01584	*
race3	0.880496	0.440778	1.998	0.04576	*
smoke	0.938846	0.402147	2.335	0.01957	*
ptl	0.543337	0.345403	1.573	0.11571	
ht	1.863303	0.697533	2.671	0.00756	**
ui	0.767648	0.459318	1.671	0.09467	
ftv	0.065302	0.172394	0.379	0.70484	

Predicción

SCOR1

low 0 1

0 0.9000000 0.1000000

1 0.6101695 0.3898305

Otra salida

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.056276 0.937853 0.060 0.95215

lwt -0.016732 0.006803 -2.459 0.01392 *

race2 1.324562 0.521464 2.540 0.01108 *

race3 0.926197 0.430386 2.152 0.03140 *

smoke 1.035831 0.392558 2.639 0.00832 **

ht 1.871416 0.690902 2.709 0.00676 **

ui 0.904974 0.447553 2.022 0.04317 *

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom Residual deviance: 204.22 on 182 degrees of freedom

Number of Fisher Scoring iterations: 4

Clasificación (punto corte 0.5)

SCOR2

low 0 1

AIC: 218.22

0 0.9000000 0.1000000

1 0.6440678 0.3559322

Clasificación (punto corte 0.33)

SCOR3

low 0 1

0 0.7538462 0.2461538

1 0.4237288 0.5762712

EJEMPLO VINO

Se tienen 3 grupos (3 cepas distintas de vino) y la concentración de 13 productos químicos diferentes (reflejado en 13 variables).

~~Test de Igualdad de Medias~~

```
      Statistics
      F
      df1 df2 Pr

      Wilks Lambda
      0.01934091 77.61987 26 326 0

      Pillai Trace
      1.70582080 73.15128 26 328 0

      Hoteling-Lawley Trace
      13.21020848 82.30976 26 324 0

      Roy Greatest Root
      9.08173944 114.56964 13 164 0
```

~~Test de Mardia de Multinormalidad por grupos~~

Coefficients of linear discriminants (FUNCIONES DE CLASIFICACION VISTAS EN CLASE)

```
LD1 LD2
V2 -0.403399781 0.8717930699
V3 0.165254596 0.3053797325
V4 -0.369075256 2.3458497486
V5 0.154797889 -0.1463807654
V6 -0.002163496 -0.0004627565
V7 0.618052068 -0.0322128171
V8 -1.661191235 -0.4919980543
V9 -1.495818440 -1.6309537953
V10 0.134092628 -0.3070875776
V11 0.355055710 0.2532306865
V12 -0.818036073 -1.5156344987
V13 -1.157559376 0.0511839665
V14 -0.002691206 0.0028529846
```

Predicción

Clasificación cross validation

~~Test de Homogeneidad de Variancias~~

Clasificación con funciones cuadráticas

OTRO EJEMPLO PRESTAMOS

~~Test de Igualdad de Medias~~

	Statistics	F	df1	df2	Pr
Wilks Lambda	0.7124707	39.89543	7	692	0
Pillai Trace	0.2875293	39.89543	7	692	0
Hoteling-Lawley Trace	0.4035665	39.89543	7	692	0
Roy Greatest Root	0.4035665	39.89543	7	692	0

~~Test de Homogeneidad de Variancias~~

Statistic df Pr

Box.M 563.2906 28 0

adj.M 554.9823 28 0

~~Test de Mardia de Multinormalidad por grupos~~

grupos: No

kappa1 pvalsim kappa2 pvalkurt n
3254.15537 0.00000 58.19759 0.00000 517

grupos: Yes

kappa1 pvalsim kappa2 pvalkurt n 3996.04829 0.00000 93.13884 0.00000 183