작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

연습문제(2) 풀이

작업준비

```
from pca import pca
from pandas import read_excel, DataFrame, merge, melt
from matplotlib import pyplot as plt
import seaborn as sb
from sklearn.preprocessing import StandardScaler

import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))
from helper import my_ols, scalling, get_best_features
```

문제 1

데이터 가져오기

```
df = read_excel("https://data.hossam.kr/E04/diabetes.xlsx")
df
```

23. 7. 27. 오전 10:09

연습문제(2) 풀이

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 꿰배치 견규르 시가

한由군세(Z)_걸 어.ipyrib							
	age	sex	bmi	bp	s1	s2	
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.0434
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.07441
2	0.085299	0.050680	0.044451	-0.005670	-0.045599	-0.034194	-0.0323
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.0360
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.00814
437	0.041708	0.050680	0.019662	0.059744	-0.005697	-0.002566	-0.0286
438	-0.005515	0.050680	-0.015906	-0.067642	0.049341	0.079165	-0.0286
439	0.041708	0.050680	-0.015906	0.017293	-0.037344	-0.013840	-0.0249
440	-0.045472	-0.044642	0.039062	0.001215	0.016318	0.015283	-0.0286
441	-0.045472	-0.044642	-0.073030	-0.081413	0.083740	0.027809	0.17381
4							>

442 rows × 11 columns

데이터 표준화

독립변수에 대한 표준화

```
x_train = df.drop(['target'], axis=1)
x_train_std = StandardScaler().fit_transform(x_train)
```

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

x_train_std_df = DataFrame(x_train_std, columns=x_train.columns)
x_train_std_df

	age	sex	bmi	bp	s1	s2	
0	0.800500	1.065488	1.297088	0.459841	-0.929746	-0.732065	-0.9124
1	-0.039567	-0.938537	-1.082180	-0.553505	-0.177624	-0.402886	1.56441
2	1.793307	1.065488	0.934533	-0.119214	-0.958674	-0.718897	-0.6802
3	-1.872441	-0.938537	-0.243771	-0.770650	0.256292	0.525397	-0.7576
4	0.113172	-0.938537	-0.764944	0.459841	0.082726	0.327890	0.17117
•••							
437	0.876870	1.065488	0.413360	1.256040	-0.119769	-0.053957	-0.6028
438	-0.115937	1.065488	-0.334410	-1.422086	1.037341	1.664355	-0.6028
439	0.876870	1.065488	-0.334410	0.363573	-0.785107	-0.290965	-0.5254
440	-0.956004	-0.938537	0.821235	0.025550	0.343075	0.321306	-0.6028
441	-0.956004	-0.938537	-1.535374	-1.711613	1.760535	0.584649	3.65426
4							•

442 rows × 10 columns

종속변수에 대한 표준화

```
y_train = df.filter(['target'], axis=1)
y_train_std = StandardScaler().fit_transform(y_train)
```

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

y_train_std_df = DataFrame(y_train_std, columns=y_train.columns)
y_train_std_df

	target
0	-0.014719
1	-1.001659
2	-0.144580
3	0.699513
4	-0.222496
•••	
437	0.335904
438	-0.625064
439	-0.261454
440	0.881318
441	-1.235408

442 rows × 1 columns

전체 요인에 대한 회귀분석

mdf = merge(x_train_std_df, y_train_std_df, left_index=True, right_index
xnames = list(x_train_std_df.columns)

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

model1 = my_ols(mdf, y='target', x=xnames)
model1.summary

OLS Regression Results

Dep. Variable:	target	R-squared:	0.518
Model:	OLS	Adj. R-squared:	0.507
Method:	Least Squares	F-statistic:	46.27
Date:	Thu, 27 Jul 2023	Prob (F-statistic):	3.83e-62
Time:	10:05:49	Log-Likelihood:	-466.00
No. Observations:	442	AIC:	954.0
Df Residuals:	431	BIC:	999.0
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.671e-16	0.033	-4.99e-15	1.000	-0.066	0.066
age	-0.0062	0.037	-0.168	0.867	-0.079	0.066
sex	-0.1481	0.038	-3.917	0.000	-0.222	-0.074
bmi	0.3211	0.041	7.813	0.000	0.240	0.402
bp	0.2004	0.040	4.958	0.000	0.121	0.280

연습문제(2) 풀이

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 결과를 시가

s1	-0.4893	0.257	-1.901	0.058	-0.995	0.017
s2	0.2945	0.209	1.406	0.160	-0.117	0.706
s3	0.0624	0.131	0.475	0.635	-0.196	0.320
s4	0.1094	0.100	1.097	0.273	-0.087	0.305
s5	0.4640	0.106	4.370	0.000	0.255	0.673
s6	0.0418	0.041	1.025	0.306	-0.038	0.122

Omnibus:	1.506	Durbin-Watson:	2.029
Prob(Omnibus):	0.471	Jarque-Bera (JB):	1.404
Skew:	0.017	Prob(JB):	0.496
Kurtosis:	2.726	Cond. No.	21.7

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

결과표

model1.table

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 꿰배치 견규르 시가

		В	표준오차	β	t	유의확률	VIF
종속변수	독립변수						
target	age	-0.0062	0.037	0	-0.168*	0.867	1.217386
	sex	-0.1481	0.038	0	-3.917*	0.000	1.323571
	bmi	0.3211	0.041	0	7.813*	0.000	1.723237
	bp	0.2004	0.040	0	4.958*	0.000	1.542677
	s1	-0.4893	0.257	0	-1.901*	0.058	59.698989
	s2	0.2945	0.209	0	1.406*	0.160	39.373182
	s3	0.0624	0.131	0	0.475*	0.635	15.410233
	s4	0.1094	0.100	0	1.097*	0.273	8.915790
	s5	0.4640	0.106	0	4.370*	0.000	10.522501
	s6	0.0418	0.041	0	1.025*	0.306	1.488241

차원 축소 적용

PCA 분석

```
pca_model = pca()
fit = pca_model.fit_transform(x_train_std_df)
topfit = fit['topfeat']
topfit
```

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

[pca] >Extracting column labels from dataframe.

[pca] >Extracting row labels from dataframe.

[pca] >The PCA reduction is performed to capture [95.0%] explained varia

[pca] >Fit using PCA.

[pca] >Compute loadings and PCs.

[pca] >Compute explained variance.

[pca] >Number of components is [8] that covers the [95.00%] explained va

[pca] >The PCA reduction is performed on the [10] columns of the input of

[pca] >Fit using PCA.

[pca] >Compute loadings and PCs.

[pca] >Outlier detection using Hotelling T2 test with alpha=[0.05] and r

[pca] >Multiple test correction applied for Hotelling T2 test: [fdr bh]

[pca] >Outlier detection using SPE/DmodX with n std=[3]

	PC	feature	loading	type
0	PC1	s4	0.428834	best
1	PC2	s1	0.573027	best
2	PC3	bp	0.513571	best
3	PC4	sex	-0.679860	best
4	PC5	age	-0.686876	best
5	PC6	s6	0.805066	best
6	PC7	s5	0.647302	best
7	PC8	bp	-0.477360	best

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

	PC	feature	loading	type
8	PC7	bmi	-0.519874	weak
9	PC2	s2	0.455942	weak
10	PC2	s3	0.506239	weak

선정된 요인 이름 추출

```
best = topfit.query("type='best'")
feature = list(set(list(best['feature'])))
feature
```

선정된 요인을 사용하여 회귀분석 수행

```
mdf = merge(x_train_std_df, y_train_std_df, left_index=True, right_index
model2 = my_ols(mdf, y='target', x=feature)
model2.summary
```

OLS Regression Results

Dep. Variable:	target	R-squared:	0.439
Model:	OLS	Adj. R-squared:	0.430

연습문제(2) 풀이

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

Method:	Least Squares	F-statistic:	48.44
Date:	Thu, 27 Jul 2023	Prob (F-statistic):	1.06e-50
Time:	10:05:49	Log-Likelihood:	-499.57
No. Observations:	442	AIC:	1015.
Df Residuals:	434	BIC:	1048.
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.671e-16	0.036	-4.65e-15	1.000	-0.071	0.071
s5	0.3970	0.051	7.795	0.000	0.297	0.497
s1	-0.2216	0.046	-4.834	0.000	-0.312	-0.132
s4	0.2546	0.052	4.867	0.000	0.152	0.357
age	-0.0053	0.040	-0.135	0.893	-0.083	0.073
s6	0.0927	0.043	2.142	0.033	0.008	0.178
sex	-0.1796	0.040	-4.487	0.000	-0.258	-0.101
bp	0.2823	0.042	6.709	0.000	0.200	0.365

Omnibus:	2.903	Durbin-Watson:	2.082
Prob(Omnibus):	0.234	Jarque-Bera (JB):	2.906

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

Skew:	0.162	Prob(JB):	0.234
Kurtosis:	2.771	Cond. No.	3.12

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프레임 생성

```
rdf = DataFrame({
    's6': mdf['s6'],
    'y': mdf['target'],
    'y1': model1.fit.predict(x_train_std_df),
    'y2': model2.fit.predict(x_train_std_df)
})
rdf
```

	s6	у	y1	y2
0	-0.370989	-0.014719	0.701028	0.258085
1	-1.938479	-1.001659	-1.091639	-0.909635
2	-0.545154	-0.144580	0.321396	-0.062681

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견과르 시가

	s6	у	y1	y2
3	-0.196823	0.699513	0.191946	0.259033
4	-0.980568	-0.222496	-0.307396	-0.092375
•••				
437	0.151508	0.335904	0.530922	0.445548
438	0.935254	-0.625064	-0.663297	-0.702843
439	0.325674	-0.261454	-0.401357	-0.339855
440	-0.545154	0.881318	0.775597	0.568153
441	0.064426	-1.235408	-1.281543	-0.940337

442 rows × 4 columns

실제 값과 model1의 예측 결과를 재배치

mdf1 = melt(rdf, id_vars=['s6'], value_vars=['y', 'y1'])
mdf1

s6	variable	value
-0.370989	у	-0.014719
-1.938479	У	-1.001659
-0.545154	у	-0.144580
	-0.370989 -1.938479	-0.370989 y -1.938479 y

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 꿰배치 견규르 시가

	s6	variable	value
3	-0.196823	У	0.699513
4	-0.980568	у	-0.222496
•••			
879	0.151508	y1	0.530922
880	0.935254	y1	-0.663297
881	0.325674	y1	-0.401357
882	-0.545154	y1	0.775597
883	0.064426	y1	-1.281543

884 rows × 3 columns

실제 값과 model2의 예측 결과 재배치

mdf2 = melt(rdf, id_vars=['s6'], value_vars=['y', 'y2'])
mdf2

s6	variable	value
-0.370989	у	-0.014719
-1.938479	У	-1.001659
-0.545154	у	-0.144580
	-0.370989 -1.938479	-0.370989 y -1.938479 y

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 꿰배치 견규르 시가

	s6	variable	value
3	-0.196823	у	0.699513
4	-0.980568	у	-0.222496
879	0.151508	y2	0.445548
880	0.935254	y2	-0.702843
881	0.325674	y2	-0.339855
882	-0.545154	y2	0.568153
883	0.064426	y2	-0.940337

884 rows × 3 columns

각각의 재배치 결과를 시각화

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform == 'darwin'
plt.rcParams["font.size"] = 12
plt.rcParams["axes.unicode_minus"] = False

sb.lmplot(data=mdf1, x="s6", y="value", hue="variable", height=5, aspect
sb.lmplot(data=mdf2, x="s6", y="value", hue="variable", height=5, aspect
plt.show()
plt.close()
```

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 꿰배치 견규르 시가

문제 2

데이터 가져오기

```
df = read_excel("https://data.hossam.kr/E04/manhattan.xlsx")
df
```

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 꿰배치 견규르 시가

	rent	bedrooms	bathrooms	size_sqft	min_to_subway	floor	building
	Terre	bearooms	Butili Collis	3120_3911	mm_to_sabway	11001	ballallig
0	2550	0.0	1	480	9	2.0	17
1	11500	2.0	2	2000	4	1.0	96
2	4500	1.0	1	916	2	51.0	29
3	4795	1.0	1	975	3	8.0	31
4	17500	2.0	2	4800	3	4.0	136
	•••						•••
3534	4210	1.0	1	532	3	8.0	16
3535	6675	2.0	2	988	5	10.0	9
3536	1699	0.0	1	250	2	5.0	96
3537	3475	1.0	1	651	6	5.0	14
3538	4500	1.0	1	816	4	11.0	9
4 □							•

3539 rows × 17 columns

데이터 전처리

명목형 변수 확인

값의 종류가 지나치게 많으므로 이 변수는 제외하기로 함

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

df['neighborhood'].value_counts()

neighborhood	
Upper West Side	579
Upper East Side	500
Midtown East	460
Midtown West	314
Financial District	268
Chelsea	182
Flatiron	132
Midtown	119
Tribeca	119
East Village	108
Battery Park City	104
Midtown South	85
Central Harlem	82
West Village	67
Greenwich Village	66
Gramercy Park	61
Soho	58
Washington Heights	54
East Harlem	41
Lower East Side	41
Central Park South	23
Hamilton Heights	16
Morningside Heights	13
Inwood	12
Nolita	9

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

Chinatown 8
Roosevelt Island 5
Long Island City 4
Stuyvesant Town/PCV 3
Little Italy 3
West Harlem 2
Manhattanville 1

Name: count, dtype: int64

값의 종류가 없으므로 이 변수도 제외하기로 함

df['borough'].value_counts()

borough

Manhattan 3539

Name: count, dtype: int64

불필요한 변수를 제거

df2 = df.drop(['neighborhood', 'borough'], axis=1)
df2.head()

	rent	bedrooms	bathrooms	size_sqft	min_to_subway	floor	building_age
0	2550	0.0	1	480	9	2.0	17
1	11500	2.0	2	2000	4	1.0	96

연습문제(2) 풀이

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 결과를 시가

	rent	bedrooms	bathrooms	size_sqft	min_to_subway	floor	building_age	
2	4500	1.0	1	916	2	51.0	29	
3	4795	1.0	1	975	3	8.0	31	
4	17500	2.0	2	4800	3	4.0	136	

데이터 표준화

x_train_std_df, y_train_std_df = scalling(df2, 'rent')

x_train_std_df.head()

	bedrooms	bathrooms	size_sqft	min_to_subway	floor	building_age_yr
0	-1.397410	-0.611790	-0.962011	0.730862	-0.904097	-0.888763
1	0.669863	1.056257	2.218694	-0.176116	-0.995343	1.117593
2	-0.363774	-0.611790	-0.049651	-0.538908	3.566974	-0.584000
3	-0.363774	-0.611790	0.073811	-0.357512	-0.356619	-0.533206
4	0.669863	1.056257	8.077886	-0.357512	-0.721604	2.133470
4						•

y_train_std_df.head()

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

	rent
0	-0.818669
1 2.011480	
2	-0.202044
3	-0.108760
4	3.908786

PCA

주성분 분석 시행

feature, topfeat_df = get_best_features(x_train_std_df)

[pca] >Extracting column labels from dataframe.

[pca] >Extracting row labels from dataframe.

[pca] >The PCA reduction is performed to capture [95.0%] explained varia

[pca] >Fit using PCA.

[pca] >Compute loadings and PCs.

[pca] >Compute explained variance.

[pca] >Number of components is [12] that covers the [95.00%] explained ν

[pca] >The PCA reduction is performed on the [14] columns of the input of

[pca] >Fit using PCA.

[pca] >Compute loadings and PCs.

[pca] >Outlier detection using Hotelling T2 test with alpha=[0.05] and r

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견과르 시가

[pca] >Multiple test correction applied for Hotelling T2 test: [fdr_bh]
[pca] >Outlier detection using SPE/DmodX with n_std=[3]

topfeat_df

	PC	feature	loading	type
0	PC1	has_elevator	0.453207	best
1	PC2	size_sqft	0.573482	best
2	PC3	building_age_yrs	-0.638744	best
3	PC4	has_patio	0.743626	best
4	PC5	min_to_subway	0.624977	best
5	PC6	min_to_subway	0.672089	best
6	PC7	no_fee	0.666304	best
7	PC8	building_age_yrs	0.673353	best
8	PC9	has_roofdeck	0.801673	best
9	PC10	has_dishwasher	-0.650467	best
10	PC11	has_gym	0.834446	best
11	PC12	has_elevator	0.675102	best
12	PC2	bedrooms	0.556271	weak
13	PC2	bathrooms	0.564578	weak

연습문제(2) 풀이

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

	PC	feature	loading	type
14	PC8	floor	0.546436	weak
15	PC10	has_washer_dryer	0.617406	weak
16	PC12	has_doorman	-0.619009	weak

feature

```
['building_age_yrs',
  'has_patio',
  'no_fee',
  'has_gym',
  'size_sqft',
  'has_roofdeck',
  'has_elevator',
  'min_to_subway',
  'has_dishwasher']
```

```
mdf = merge(x_train_std_df, y_train_std_df, left_index=True, right_index
ols_result = my_ols(mdf, y='rent', x=feature)
ols_result.summary
```

OLS Regression Results

Dep. Variable:	rent	R-squared:	0.757
----------------	------	------------	-------

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

Model:	OLS	Adj. R-squared:	0.756
Method:	Least Squares	F-statistic:	1221.
Date:	Thu, 27 Jul 2023	Prob (F-statistic):	0.00
Time:	10:05:53	Log-Likelihood:	-2519.3
No. Observations:	3539	AIC:	5059.
Df Residuals:	3529	BIC:	5120.
Df Model:	9		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-9.346e-17	0.008	-1.13e-14	1.000	-0.016	0.016
building_age_yrs	-0.1476	0.009	-16.969	0.000	-0.165	-0.131
has_patio	0.0015	0.008	0.180	0.857	-0.015	0.018
no_fee	-0.0095	0.009	-1.086	0.278	-0.027	0.008
has_gym	-3.013e-05	0.012	-0.003	0.998	-0.023	0.023
size_sqft	0.8594	0.008	102.273	0.000	0.843	0.876
has_roofdeck	0.0040	0.010	0.383	0.701	-0.016	0.024
has_elevator	0.0036	0.012	0.310	0.756	-0.019	0.026
min_to_subway	-0.0251	0.008	-2.970	0.003	-0.042	-0.009

연습문제(2) 풀이

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 꿰배치 견규르 시가

has_dishwasher 0.0008	0.009	0.088	0.930	-0.017	0.019	1
-----------------------	-------	-------	-------	--------	-------	---

Omnibus:	885.741	Durbin-Watson:	2.058
Prob(Omnibus):	0.000	Jarque-Bera (JB):	11081.768
Skew:	0.831	Prob(JB):	0.00
Kurtosis:	11.508	Cond. No.	2.71

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

실제 임대료와 예측된 임대료 비교

```
rdf = DataFrame({
    'x': mdf['building_age_yrs'],
    'rent': mdf['rent'],
    'y': ols_result.fit.predict(x_train_std_df)
})
rdf
```

	х	rent	У
0	-0.888763	-0.818669	-0.709297
1	1.117593	2.011480	1.749272

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 견규르 시가

	Х	rent	у
	^	10110	,
2	-0.584000	-0.202044	0.081194
3	-0.533206	-0.108760	0.164098
4	2.133470	3.908786	6.649321
•••			
3534	-0.914160	-0.293747	-0.584661
3535	-1.091938	0.485729	0.252526
3536	1.117593	-1.087770	-1.388796
3537	-0.964953	-0.526167	-0.387902
3538	-1.091938	-0.202044	-0.028321

3539 rows × 3 columns

melt_df = melt(rdf, id_vars=['x'], value_vars=['rent','y'])
melt_df

	х	variable	value	
0	-0.888763	rent	-0.818669	
1	1.117593	rent	2.011480	
2	-0.584000	rent	-0.202044	
3	-0.533206	rent	-0.108760	

연습문제(2) 풀이

작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 꿰배치 견규르 시가

	х	variable	value
4	2.133470	rent	3.908786
7073	-0.914160	у	-0.584661
7074	-1.091938	у	0.252526
7075	1.117593	у	-1.388796
7076	-0.964953	у	-0.387902
7077	-1.091938	у	-0.028321

7078 rows × 3 columns

```
sb.lmplot(data=melt_df, x="x", y="value", hue="variable", height=7, aspe
plt.show()
plt.close()
```


작업준비

문제 1

데이터 가져오기

데이터 표준화

독립변수에 대한 표준화

종속변수에 대한 표준화

전체 요인에 대한 회귀분석

결과표

차원 축소 적용

PCA 분석

선정된 요인 이름 추출

선정된 요인을 사용하여 회 귀분석 수행

두 가지 모델의 결과 비교

결과 비교를 위한 데이터프 레임 생성

실제 값과 model1의 예측 결과를 재배치

실제 값과 model2의 예측 결과 재배치

가가이 재배치 결과르 시가