

Titania as a Sintering Additive in Indium Oxide Ceramics

Nicolas Nadaud,† Doh-Yeon Kim,**‡ and Philippe Boch*,†

Ecole Superieure de Physique et de Chimie Industrielles, Paris, France; and Seoul National University, Seoul, Korea

The influence of TiO2 additives on the sintering behavior of In₂O₃ ceramics has been investigated. TiO₂ increases the densification rate, decreases the grain growth during the intermediate stage of sintering, and hinders the pore/ boundary breakaway that can affect the final stage of sintering. For a given grain size, TiO2 shifts the grain size/density trajectory toward higher densities. TiO2 mainly acts by a second-phase mechanism, but it also may decrease the decomposition rate of In₂O₃.

I. Introduction

RANSPARENT and conductive thin films made of indium tin A oxide (ITO) are used in electronic and optoelectronic applications.¹ Direct-current magnetron sputtering of sintered ITO targets is a common route for making ITO films. The quality of the film is better when the target is dense,² and, moreover, dense targets better resist sputtering erosion. In particular, the surfaces of ion-eroded targets are degraded by conical protrusions ("black spots" or "nodules"),3 whose number decreases when the target porosity decreases. Unfortunately, ITO ceramics do not densify easily.⁴ We have previously⁵ established the following.

- The typical density of ITO ceramics sintered at 1400°C for 3 h is only 90%. The microstructure is affected by small pores and large voids.
- (ii) ITO vaporizes during heat treatments when non-oxidizing atmospheres are used.
- (iii) TiO₂ is an efficient sintering additive. For instance, 0.5 wt% TiO₂-ITO ceramics densify to nearly theoretical density (TD) after a treatment at 1400°C for 3 h.

The influence of TiO₂ on the densification and grain growth of oxides such as Al₂O₃⁶ or Y₂O₃⁷ already has been investigated. Bagley et al.⁶ report that the sintering rate of Al₂O₃ gradually increases during the first stage of sintering when the TiO₂ content exceeds a value that is supposed to be the solubility limit (0.1 at.% at 1405°C). They assume that the densification of TiO2-containing Al2O3 is controlled by grain-boundary diffusion in coarse-grained (>2 μm) materials and volume diffusion in fine-grained ($<1 \mu m$) materials. Diffusion parameters increase according to a logarithmic law as the TiO₂ content increases. Brook⁸ postulates that vacancies $(V_{A1}^{""})$ are responsible for enhanced diffusion in TiO2-doped Al2O3. The addition of TiO₂ also increases the activation energy for boundary diffusion. Gasgnier observes that the influence of TiO₂ in Y₂O₃ is similar to that of MgO in Al₂O₃ and considers that TiO₂ favors densification by preventing the grain-size/density trajectory from crossing the pore/grain-boundary breakaway zone.

Information on the sintering behavior of In₂O₃ is required for a better understanding of the sintering behavior of ITO, and, therefore, the purpose of the present study is to investigate the role of TiO₂ as sintering additive in In₂O₃ ceramics.

II. Experimental Procedure

Starting powders were fine-grained (0.2 µm mean particle size and 1-3 µm mean agglomerate size), high-purity (99.99 wt%) In₂O₃ (Metaleurop Recherche, Trappes, France). The powders were ultrasonically dispersed in ethanol mixed with 0.8 wt% of a deflocculating agent. TiO₂ was added as a solution of titanium butoxide (Ti(O(CH₂)₃CH₃)₄, 99 wt% pure) previously dissolved in absolute ethanol. Hydrolytic polycondensation of the titanium butoxide was obtained by adding deionized water. In the remainder of the text, the materials doped with titanium are named TiO2-In2O3 and the titanium content is expressed as equivalent TiO₂. After they were stirred ultrasonically, the TiO₂-In₂O₃ powders were mixed with a binder (3 wt% of poly(vinyl butyral) dissolved in hot ethanol) and a plasticizer (0.5 wt% of dibutyl phtalate), vacuum dried, and pressed to pellets (8 mm in diameter and 3–8 mm in height) under a pressure of 150 MPa. The green density of the pellets was \sim 56% of TD.

Sintering was conducted at temperatures ranging from 1300° to 1550°C, in air, using an electric oven with MoSi₂ heating elements. Isothermal experiments were conducted by rapidly introducing a preheated (600°C for 10 min) specimen into the hot zone of the oven and heating it for various soaking times. Heating rates were very fast in comparison to those used for constant-heating-rate experiments. Dilatometry experiments were conducted in air, with heating rates ranging from 0.8° to 20°C⋅min⁻¹. The apparent density of the sintered ceramics was measured by the Archimedes method in water. The density of In_2O_3 was taken as 7.15 g·cm⁻³, and true densities of the TiO_2 -In₂O₃ materials were derived from a rule of mixtures, assuming that the solubility of TiO2 in In2O3 was very low, as confirmed by various experiments, in particular X-ray diffractometry (XRD), which showed that the lattice parameters of the TiO₂-In₂O₃ did not vary when the TiO₂ content varied. Microstructural observations were conducted by scanning electron microscopy (SEM; scattered electron and backscattered electron (BSE) modes) on polished and thermally etched samples, and they sometimes were conducted by transmission electron microscopy (TEM). Grain size was estimated using the linearintercept method of Wurst and Nelson,10 with a correction for the effect of porosity in the ceramics having a relative density <97%. Polystyrene spheres were used as calibrating marks to determine the grain size accurately, and the statistics were always established on ≥300 grains. Quantitative analysis of second-phase precipitates was done by energy-dispersive X-ray analysis (EDX).

III. Results and Discussion

Figure 1 shows the relative density of TiO₂–In₂O₃ ceramics versus sintering time, for various temperatures. Each dot corresponds to an independent sample treated as described above for isothermal experiments. TiO2 greatly favors densification. After sintering at 1400°C for 10 min, TiO₂-In₂O₃ materials densify to

M. P. Harmer-contributing editor

Manuscript No. 191807. Received May 21, 1996; approved November 11, 1996. Supported by Saint-Gobain Recherche, Aubervilliers, France.

Member, American Ceramic Society †Ecole Superieure de Physique et de Chimie Industrielles. ‡Seoul National University.

Fig. 1. Relative density versus sintering time for $x \text{TiO}_2\text{--In}_2\text{O}_3$ ceramics (x = 0 and 1 wt%) at various temperatures.

95% of TD, whereas untreated $\rm In_2O_3$ reaches only 82% of TD; the density of 1% $\rm TiO_2\text{--}In_2O_3$ is 98% of TD after 1 h of sintering, whereas the density of untreated $\rm In_2O_3$ is 88% of TD after 10 h.

Figure 2 shows the grain size/densification trajectories for In₂O₃ and 1% TiO₂–In₂O₃ sintered at 1400°C. Grain growth develops at early densification (80% of TD) in In₂O₃ and at much higher densification (93% of TD) in 1% TiO₂–In₂O₃. The beginning of grain growth in 1% TiO₂–In₂O₃ seems to correspond to the closure of porosity, which is estimated¹¹ to occur at ~91% of TD in a model with tetrakaidecahedron grains. There is usually a competition between densification and grain growth during the intermediate stage of sintering, and, therefore, one would believe that the beneficial influence of TiO₂ on densification is related to the flattening of the grain size/densification trajectory.

For sintering times >10 h (at 1400° C), In_2O_3 ceramics are affected by abnormal grain growth. Coarse grains ($20-30~\mu m$) progressively develop at the expense of normal grains, until the microstructure is entirely composed of such large grains for sintering times >50 h. However, the porosity does not change noticeably during the abnormal grain-growth process (see Fig. 2). In $1\%~TiO_2-In_2O_3$, the negligible grain growth during the intermediate stage of sintering prevents the trajectory from crossing the pore/grain breakaway zone 12,13 after porosity closure.

Figures 3(A) and (B) show micrographs of In_2O_3 and 1% TiO_2 – In_2O_3 sintered at 1400°C for 20 h. The microstructure of

Fig. 2. Grain size versus relative density for $x \text{TiO}_2\text{--In}_2\text{O}_3$ ceramics (x = 0 and 1 wt%) sintered at 1400°C.

 $\rm In_2O_3$ is characterized by a bimodal grain-size distribution, with spherical pores entrapped within coarse grains. In contrast, the microstructure of $\rm TiO_2$ – $\rm In_2O_3$ is fine and monomodal, with no pore entrapment. When the $\rm TiO_2$ content exceeds 0.5 wt%, one observes the presence of dark precipitates, mainly located along grain boundaries and at triple-grain corners. Chemical analysis by EDX shows a phase composition similar to that of $\rm In_2TiO_5$, as discussed later.

Figure 4 shows the relative densities of $x \text{TiO}_2\text{-In}_2\text{O}_3$ samples (x from 0 to 2 wt%) versus temperature for heat treatments at constant rate (5°C·min⁻¹). The densification data have been derived from dilatometry experiments. Three comments are pertinent.

- (i) $\text{TiO}_2\text{-In}_2\text{O}_3$ ceramics sinter to almost full density when the TiO_2 content is ≥ 0.5 wt%, whereas lower contents are not very effective (for instance, 0.2 wt% of TiO_2 allows a density of only 85%, even if the sintering temperature is increased to 1550°C). On the other hand, adding substantially more than 0.5% of TiO_2 does not substantially increase the densification.
- (ii) In_2O_3 doped with ≥ 0.5 wt% TiO_2 can be sintered at low temperatures (~ 1300 °C).
- (iii) The presence of TiO₂ decreases the temperature where the densification rate is a maximum. For a heating rate of 5°C·min⁻¹, the densification rates are maximum at 1380°, 1350°, and 1290°C for 0, 0.2, and 1 wt% TiO₂, respectively.

Fig. 3. SEM micrographs (BSE mode) of (A) In₂O₃ and (B) 1% TiO₂–In₂O₃ ceramics sintered at 1400°C for 20 h, in air.

Fig. 4. Relative density versus temperature for $x \text{TiO}_2\text{-In}_2\text{O}_3$ ceramics (x = 0, 0.2, 0.5, 1, and 2 wt%) at a heating rate of $5^{\circ}\text{C} \cdot \text{min}^{-1}$.

Isothermal sintering experiments can be used for estimating the changes in diffusion coefficients and diffusion paths associated with the use of TiO_2 additives. Common sintering models ^{14,15} express the densification rate $\text{d}\rho/\text{d}t$ as

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{A_0 D_{\mathrm{d}}}{TG^n} f(\rho) \tag{1}$$

where A_0 is a constant, T the temperature, D_d the thermally activated diffusion coefficient that controls the densification process, G the mean grain size, n the grain-size exponent (which depends on the diffusion mechanism; e.g., n=3 for lattice diffusion and n=4 for grain-boundary diffusion), and $f(\rho)$ a term that is a function of density only and is equal to one when lattice diffusion is the operating mechanism.

Equation (1) indicates that an increase in $d\rho/dt$, at a given temperature and for a given mechanism, can be due to either an increase in D_d or a decrease in the grain-growth rate. D_d and n can be determined by plotting $\log d\rho/dt$ vs $\log G$, as shown in Fig. 5. The values of D_d and n that are derived from the intercepts and slopes of data lines in Fig. 5 are given in Table I. The contribution of $f(\rho)$ is assumed to be noticeable for the very short sintering times only, and, therefore, this contribution is generally neglected. A deviation from linearity is observed for long times, as in MgO-doped Al_2O_3 . ¹⁶ In all cases, $n \approx 4$, which suggests a control by grain-boundary diffusion. Table I shows that TiO_2 additions increase D_d by a factor of 6, in materials sintered at 1400° C.

Fig. 5. Logarithm of densification rate versus logarithm of grain size for $x \text{TiO}_2$ –In₂O₃ ceramics. (x is 0 and 1 wt%).

Table I. Least-Square Fits for Densification Kinetics[†]

	Temperature (°C)/TiO ₂ content (%)			
Parameter	1375/0	1400/0	1300/1	1400/1
n	3.88	4.28	3.95	4.40
$\ln A_0 D_{\rm d}/T$	-6.64	-4.14	-4.66	-2.34
Slope change		1		↑×6
Regression factor (R)	0.991	0.993	0.970	0.995

 $^{^{\}dagger}$ d ρ /d $t \approx A_0 D_d / TG^n$; plot: ln d ρ /dt vs ln G.

Constant-heating-rate experiments were conducted to determine the influence of TiO₂ on the activation energy of densification, using the method described by Wang and Raj.⁹ For constant heating rates, Eq. (1) becomes

$$\alpha \frac{\mathrm{d}\rho}{\mathrm{d}T} = A \frac{\exp(-E_{\mathrm{d}}/RT)}{TG^{n}} f(\rho) \tag{2}$$

where $\alpha = dT/dt$ is the heating rate, E_d the activation energy, and A a constant independent of T. Taking the logarithm of both sides of the equation, we have

$$\ln \alpha T \frac{\mathrm{d}\rho}{\mathrm{d}T} = -\frac{E_{\mathrm{d}}}{RT} + \ln f(\rho) + \ln A - n \ln G \tag{3}$$

 $E_{\rm d}$ can be determined by plotting $\ln \alpha T({\rm d}\rho/{\rm d}T)$ vs 1/T at constant values of ρ and G. Figure 6 shows densification rates versus temperature in materials with 0% and 1% TiO2 treated at various heating rates (2°, 5°, 10°, and 20°C·min⁻¹). The temperature where the densification rate is a maximum increases with heating rate. Furthermore, final densities for titanium-free materials increase when the heating rate increases, whereas final densities for titanium-containing materials show no heating rate effect. Figure 7 shows Arrhenius plots derived from Eq. (3); each data line corresponds to a given density. To maintain the condition of constant grain size, the relative densities must be selected between 60% and 70% for In₂O₃ and between 70% and 80% for 1% TiO₂-In₂O₃. (Figure 2 shows there is no noticeable grain growth in these density domains.) For each relative density, four plots have been obtained using four different heating rates. The apparent activation energy for sintering of In_2O_3 has been found to be $580 \pm 40 \text{ kJ} \cdot \text{mol}^{-1}$ and that of $1\%~{\rm TiO_2\text{--}In_2O_3}$ to be $450~\pm~30~{\rm kJ\cdot mol^{-1}}.$ The decrease (of \sim 20%) in the apparent activation energy is believed to be partially responsible for the increase in the diffusion coefficient.

Fig. 6. Derivatives of densification $(d\rho/dT)$ versus temperature for $x\text{TiO}_2\text{-In}_2\text{O}_3$ ceramics (x=0 and 1 wt%) for sintering experiments at fixed heating rates.

Fig. 7. Arrhenius plots for the densification of $x \text{TiO}_2\text{-In}_2\text{O}_3$ (x=0 and 1 wt%).

To summarize, TiO_2 has an influence as a sintering additive in In_2O_3 ceramics.

- (i) TiO_2 strongly increases the densification rate and lowers the densification temperature.
- (ii) The critical amount of TiO_2 required to reach full densification is ~ 0.5 wt%.

- (iii) TiO_2 inhibits grain growth. In contrast, undoped In_2O_3 exhibits abnormal grain growth, and, therefore, its densification is blocked by pore entrapment.
- (iv) The densification process seems to be controlled by grain-boundary diffusion in both $\rm In_2O_3$ and $\rm TiO_2{\rm -}In_2O_3$. The presence of $\rm TiO_2$ decreases the apparent activation energy of densification.

The sudden increase in shrinkage that is observed in TiO₂- In_2O_3 (TiO₂ $\ge 0.5\%$, see Fig. 4) might suggest the presence of a liquid phase, and, therefore, this question has been investigated. However, both thermal analysis and TEM have provided a negative answer. Differential thermal analysis (DTA) experiments (between room temperature and 1450°C) on In₂O₃ to which various amounts of TiO₂ (up to 20%) have been added, show no endothermic peaks. TEM micrographs show that the triple points and grain boundaries (between In2O3 and In2O3 or between In₂O₃ and precipitates, Figs. 8(A) and (B), respectively) are free of exliquid residue. Moreover, the decrease in activation energy of sintering associated with the addition of TiO₂ does not favor a liquid phase, which generally increases the activation energy by adding a heat-of-solubility term to the initial activation energy.¹⁷ All this means that TiO₂-In₂O₃ densifies through solid-state sintering.

Although the influence of TiO_2 in In_2O_3 shows some similarities with that of MgO in Al_2O_3 , ^{16,18} there are at least three differences.

- (i) TiO_2 is effective at an early stage of sintering, whereas MgO has been reported to lower densification in the initial stage but to enhance it in the final stage.
- (ii) Untreated In_2O_3 exhibits very low densification and can vaporize, whereas undoped Al_2O_3 easily densifies to >95% of TD and does not vaporize at usual sintering temperatures.

Fig. 8. TEM microstructures of (A) homogeneous grain boundary and (B) heterogeneous grain boundary.

(iii) TiO₂ requires rather noticeable concentrations (>0.5 wt%) to be operative in In₂O₃, whereas MgO is operative in Al_2O_3 even in very low concentration (<0.025 wt%, i.e., below the solubility limit).

To support the third point, we can note that the existence of second-phase precipitates in TiO₂-In₂O₃ ceramics begin to be detected when the TiO₂ content exceeds 0.5%, which suggests that the solubility limit of TiO_2 in In_2O_3 is just below 0.5%. Quantitative EDX experiments on precipitates indicate an In:(In + Ti) ratio of about 2:3, which corresponds to the stoichiometry of In₂TiO₅. Moreover, titanium-rich In₂O₃ materials $(TiO_2 \text{ content } \ge 1 \text{ wt\%})$ have XRD patterns that show the presence of In₂TiO₅ peaks. The marked change in the sintering behavior when the TiO₂ content increases from 0.2% to 0.5% corresponds to a change from a single-phase to a two-phase system, as reported by Bagley et al.6 in TiO2-containing Al2O3 and Lu and De Jonghe¹⁹ in Nd₂O₃-containing BaCeO₃.

Solid-state sintering additives usually act through one or more of three mechanisms: solid-solution effect (diffusion enhancement); solute-segregation effect (segregation in the vicinity of grain boundaries and grain-growth hindrance by solutedrag mechanism); and second-phase effect (grain-boundary

Substituted to In³⁺, Ti⁴⁺ can lead to the formation of indium vacancies $(V_{\text{In}}^{""})$, which may promote cationic diffusion, as reported for TiO₂-Al₂O₃^{6,8} and TiO₂-Y₂O₃. However, the fact that TiO₂ is not effective below the solubility limit shows that a solid-solution mechanism is not predominant here. In contrast, the In₂TiO₅ precipitates appear to be important, seemingly by pinning the grain boundaries and, therefore, by impeding abnormal grain growth. Moreover, the titanium-enriched grainboundary zones may provide an easier diffusion path than the "clean" In₂O₃/In₂O₃ boundaries.

In addition to its role to form precipitates, TiO₂ may be effective by decreasing the decomposition rate of In₂O₃. As previously mentioned, undoped In₂O₃ exhibits the peculiar behavior that grain growth is very precocious: it begins in the intermediate stage of sintering, whereas in most poorly densified ceramics the pinning of grain boundaries by pores is strong enough for limiting grain growth until the porosity has been greatly reduced. In the present case, grain growth can be promoted by an evaporation-condensation mechanism,²⁰ associated with the easy decomposition of In₂O₃:

$$In2O3 \rightarrow In2O + O2 \tag{4}$$

The equilibrium partial pressure of In₂O₃ in air has been reported²¹ to be $\sim 10^{-5}$ atm (1 Pa) at 1500°C. We have studied the decomposition of In2O3 by weight-loss experiments,5 as shown in Fig. 9, where weight loss is plotted versus temperature for In₂O₃ and TiO₂-In₂O₃ powders. The addition of TiO₂ strongly reduces the decomposition. Moreover, TiO2-In2O3 ceramics begin to densify at lower temperatures (<1300°C), which decreases the area of solid-vapor interfaces and, therefore, limits the decomposition at high temperatures ($T > 1320^{\circ}$ to 1350°C), where the decomposition rate becomes fast. Another reason for the beneficial influence of TiO₂ in decreasing decomposition rate is found in Eq. (4): the partial substitution of indium by titanium (Ti_{A1}) can be balanced by either cationic vacancies (V'''_{Al}) or interstitial oxygens (O''_{i}) . In the latter case, the equilibrium is deplaced in the sense that it limits decomposition.

IV. Conclusions

TiO₂ is effective as a sintering additive in In₂O₃ ceramics. The minimum TiO₂ content that is required to sinter highdensity ceramics is 0.5 wt%, which corresponds to the precipitation of In₂TiO₅. There is no liquid phase. Grain size/density trajectories show that TiO₂ greatly enhances the densificationrate:grain-growth ratio. Three mechanisms can explain the beneficial role of TiO₂: decreased grain growth by pinning grain

Fig. 9. Thermogravimetric analysis of $x \text{TiO}_2 - \text{In}_2 \text{O}_3$ (x = 0 and 1 wt%) heated to 1400°C at a heating rate of 10°C⋅min⁻

boundaries by In₂TiO₅ precipitates (in the final stage of sintering); increased grain-boundary diffusion rate because of a decrease in the corresponding activation energy; and decreased decomposition of In₂O₃ (in the intermediate stage of sintering).

Acknowledgment: The authors gratefully acknowledge Dr. X. Ripoche and Dr. M. Nanot for their help

References

- ¹J. L. Vossen, "Transparent Conducting Films," Phys. Thin Films, 9, 1-71 (1977).
- ²B. L. Gehman, S. Jonsson, T. Rudolph, M. Scherer, M. Weigert, and R. Werner, "Influence of Manufacturing Process of Indium Tin Oxide Sputtering Targets on Sputtering Behavior," Thin Solid Films, 220, 333-36 (1992)
- ³A. D. G. Stewart and M. W. Thompson, "Microphotography of Surfaces Eroded by Ion Bombardment," *J. Mater. Sci.*, **4**, 56–60 (1969).
- ⁴J. H. W. De Wit, "Grain Growth and Sintering of In₂O₃," Sci. Ceram., 9, 143-
- ⁵N. Nadaud, M. Nanot, and Ph. Boch, "Sintering and Electrical Properties of Titania- and Zirconia-Containing In₂O₃-SnO₂ (ITO) Ceramics," J. Am. Ceram. Soc., 77 [3] 843-46 (1994).
- ⁶R. D. Bagley, I. B. Cutler, and D. L. Johnson, "Effect of TiO₂ on Initial Sintering of Al₂O₃," *J. Am. Ceram. Soc.*, **53** [3] 136–41 (1970).
- G. Gasgnier, "Densification de l'Oxyde d'Yttrium" ("Sintering of Yttria"); Thesis. University of Limoges, 1991.
- ⁸R. J. Brook, "Effect of TiO₂ on the Initial Sintering of Al₂O₃," J. Am. Ceram. Soc., 55 [2] 114-15 (1972).
- ⁹J. Wang and R. Raj, "Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania," J. Am. Ceram. Soc., 73 [5] 1172-75 (1990).
- ¹⁰J. C. Wurst and J. A. Nelson, "Lineal Intercept Technique for Measuring Grain Size in Two-Phase Polycrystalline Ceramics," J. Am. Ceram. Soc., 55 [2] 109 (1972).
- 11W. C. Carter and A. M. Glaeser, "Dihedral Angle Effects on the Stability of Pore Channels," *J. Am. Ceram. Soc.*, **67** [6] C-124–C-127 (1984).

 12R. J. Brook, "Pore–Grain Boundary Interactions and Grain Growth," *J. Am.*
- Ceram. Soc., 52 [1] 56-57 (1969).

 13F. M. A. Carpay, "Discontinuous Grain Growth and Pore Drag," J. Am. Ceram. Soc., 60 [1-2] 82-83 (1977).
- ¹⁴R. L. Coble, "Sintering of Crystalline Solids, I. Intermediate and Final State Diffusion Models," *J. Appl. Phys.*, **32** [7] 787–92 (1961).
- ⁵C. Herring, "Effect of Change of Scale on Sintering Phenomena," J. Appl. Phys., 21, 301 (1950)
- ¹⁶K. A. Berry and M. P. Harmer, "Effect of MgO Solute on Microstructure
- Development in Al₂O₃," *J. Am. Ceram. Soc.*, **69** [2] 143–49 (1986).
 ¹⁷R. Raj and P. E. D. Morgan, "Activation Energies for Densification, Creep, and Grain-Boundary Sliding in Nitrogen Ceramics," *J. Am. Ceram. Soc.*, **64** [10] C-143-C-145 (1981)
- ¹⁸R. D. Bagley and D. L. Johnson, "Effect of Magnesia on Grain Growth in Alumina"; pp. 666–79 in *Structure and Properties of MgO and Al₂O₃ Ceramics*, Advances in Ceramics, Vol. 10. Edited by W. D. Kingery. American Ceramic Society, Columbus, OH, 1984.
- ¹⁹C.-H. Lu and L. C. De Jonghe, "Influence of Nd₂O₃ Doping on the Reaction Process and Sintering Behavior of BaCeO₃ Ceramics," J. Am. Ceram. Soc., 77 [10] 2523-28 (1994).
- ²⁰D. W. Readey, J. Lee, and T. Quadir, "Vapor Transport and Sintering of Ceramics," *Mater. Sci. Res.*, **16**, 115–36 (1984).

 ²¹J. H. W. De Wit, "The High-Temperature Behavior of In₂O₃," *J. Solid State*
- Chem., 13, 192-200 (1975).