

Tshwane University of Technology

We empower people

Department of Computer Systems Engineering
EL2116D/ELC211B – Electronics II
20 NOV 2021 Formative Assessment

Total Marks: 51
Full Marks: 45

Time: 2 Hours

Examiner: Mr. T Matshiba

Mr. A. Mpiana

Moderator: Mrs Z Mahlobogwane

MEMO

Surname, initials:	Student number:
	m E m D

Instructions:

- All exam rules stated by the Tshwane University of Technology applies.
- This is a **closed-book test**. You are not allowed to use any notes or text books to assist you to answer the questions.
- Write your answer in the space provided on the question paper. Show all calculations. Do all calculations on the counter clear page of the questionnaire if extra space is needed. Handwriting should be neat and readable. Untidy work will not be marked.
- Programmable calculators are not allowed.
- If needed, state all necessary assumptions clearly.

Question1 - Multiple Choice (10)

Each multiple choice question will count 2 mark. Choose the best suitable answer and mark with an "x" in the given table.

Multiple Choice Answer Sheet

	Α	В	С	D
1				X
2			X	
3				X
4		×		
5	×			dolle
6			×	
7				X
8		X		
9		X		
10				X

- 1. In a(n) _____, when the input voltage exceeds a specified reference voltage, the output changes state.
 - A. Integrator
 - B. Differentiator
 - C. Summing amplifier
 - (D) Comparator
- 2. The given circuit is known as

- A. A noninverting amplifier.
- B. A differentiator.
- (C.) An Integrator.
- D. A summing amplifier.
- 3. Refer to the given circuit. What is the output voltage?

- A. 2V
- B. -2V
- C. +Vsat
- (D.) -Vsat

4. Refer to the given circuit. What is the ouput voltage

- A. 0.5V
- B. -0.5V
- C. 2V
- D. -2V
- 5. Calculate the input voltage for this circuit if V_0 = -11V.

- (A.) 1.1V
- B. -1.1V
- C. -1V
- D. 1V
- 6. Calculate the output voltage if $V_1 = 33mV$ and $V_2 = 2mV$.

- A. OV
- B. -6.6V
- C. -0.4V
- D. 2V

- 7. How many op-amps are required to implement this equation? $V_0 = V_1$
 - A. 4
 - B. 3
 - C. 2
 - (D.) 1
- 8. The gain of a noninverting amplifier can be given as
 - A. $1 R_f/R_1$
 - B. $1 + R_f/R_1$ C. $1 R_1/R_f$

 - D. $1 + R_1/R_f$
- 9. The design of the circuit below represents?

- A. an integrator amplifier
- (B.) a summing amplifier
- C. inverting amplifier
- D. non-inverting amplifier
- 10. A certain noninverting amplifier has R_i of 1 k Ω and R_f of 100 k Ω . What is the closed-loop voltage gain?
 - A. 100,000
 - B. 1000
 - C. 100
 - (D.) 101

QUESTION 2 [7]

V1 = 1 Volt DC V2 = 2 Volt DC V3= 3 Volt DC

The operational amplifiers are supplied with a split supply of +15V and -15 V

Fill in: (Indicate polarities)

	T
	ANSWER
The voltage at point A	OV OR Virtual Ground
The voltage at point B	+ a V
The voltage at point C	+2,661
The voltage at point D	0 1
The voltage at point E	OV OR Virtual Ground
The voltage at point F	- 2V
The voltage at point G	0,34V

An npn transistor is used to design a common emitter amplifier such as in the figure above. The β value of the transistor is specified β = 100

$$V_{CC}=12~\mathrm{V};~R_S=100~\Omega;~R_L=10~\mathrm{k}\Omega;~R_C=1.5~\mathrm{k}\Omega;~R_E=2~\mathrm{k}\Omega;~R_1=33~\mathrm{k}\Omega;~R_2=22~\mathrm{k}\Omega$$

a) DRAW the ac small-signal equivalent circuit (π -parameters) or (h-parameters). (4)

- b) Calculate the value of Z_i
- c) Calculate the Voltage Gain $A_{V(NL)}$ with R_L disconnected (open circuit) (2)

(6)

d) Calculate the Voltage Gain A_V with R_L connected. (2)

Show all calculations

$$0 V_{R_2} = 12 + \frac{22k}{33k + 22k}$$
= 4,8V

(3)
$$R_B = R_1 || R_2$$

= 33× || 22×.

$$\frac{4}{4} I_{E} = \frac{V_{BB} - V_{BE}}{R_{E} + \frac{R_{B}}{B+1}}$$

$$= \frac{418 - 07}{2 + \frac{1372}{10011}}$$

$$= \frac{41}{213} V_{AB} V_{AB}$$

$$= \frac{41}{213} V_{AB}$$

$$= \frac{41}{213} V_{AB}$$

$$= \frac{41}{213} V_{AB}$$

$$6 F_{\Pi} = \frac{V_{T}B}{I_{c}}$$

$$= \frac{25 \text{ m y 100}}{1,925 \text{ m}} \checkmark$$

$$= 1298,752$$

E)
$$A_{V_{ML}} = -g_{m}R_{c}$$

but $+g_{m} = \frac{I_{c}}{V_{T}} = \frac{1,925m}{25m}$
 $= 0,077$
 $A_{V_{ML}} = -0,077 \times 1,5k$
 $= -115,5$

OR.
$$AV_{L} = AV_{L} \frac{RL}{RC+RL}$$

$$= -115, S \frac{10K}{1,5K+10K}$$

$$= 100, 4$$

710---

QUESTION 4 [12]

Assuming all capacitors and the DC power supply (Vcc) represent a zero ohm reactance at the ac signal,

r _π = 3657 S2 3,657 K S2		In what amplifier configuration is the circuit connected?	
Zi (include loading of RL) = 8859 SL 8,859 K.SL		Zo (exclude RL) = 45,8852	
Voltage gain between Vo and Vi:	0,966	Voltage gain between Vo and Vs:	*0,788
Voltage gain in dB between Vo and Vs: Given: dB = 20 log Vo / Vs			-2,069dB
If Vs = 100 mV RMS, what is the magnitude of Vo (in RMS)?		78,8mV	

QUESTION 5 [8]

Perform only the DC (steady state) analysis in the following circuit:

$$V_{BE}$$
 = 0,7 V, R_{B1} = 24k Ω , R_{B2} = 5k6, R_{E} = 1k5, R_{C} = 3k3, V_{CC} = 15V, β = 250

The average voltage across $R_{B2}(V_{RB2})$	2,838V
The average voltage across $R_E(\mathbf{V}_{RE})$	2,138 V
The average current through R_E (I_E)	1,425mA
The average voltage across $R_{B1}(V_{RB1})$	12,162 V
The average voltage across T_1 (V_{CE})	8,1791
The average voltage at the collector $ extsf{V}_{\text{c}} $	10,317V.
The average voltage across R _C (V _{RC})	4,683 V
The average current through collector (Ic)	1,419 mA