山东大学	计算机科学与技术	学院

计算机组成与设计 课程实验报告

│学号: 202000130143 │姓名: 郑凯饶 │ 班级: 2020 级 1 班
实验题目:
基本逻辑门逻辑实验
합과소프라 2 · · · · · · · · · · · · · · · · · ·
实验学时: 2
实验目的:
1. 掌握 TTL 常用逻辑门输入与输出的逻辑关系;
2. 熟悉 TTL 中、小规模继承电路的外型、管脚和使用方法。
实验软件和硬件环境:
+6 /4-TT ÷
软件环境:
Quartus 软件
7.5. (4. T.7.1.3.
硬件环境:
1. 实验室台式机
2. 计算机组成与设计实验箱
实验原理和方法:
1. 二输入四异或门(74LS86)
1A 14 VCC
1B 🗖 2 13 🗖 4B
$Y=A \oplus B = A\overline{B} + \overline{A}B$ 1Y \square 3 12 \square 4A
2A 🗖 4 11 🗖 4Y
2B 口 5 10 口 3B
2Y
GND \square 7 8 \square 3Y
2. 三态门(TRI)
10 🗖 1 🗡 14 🗖 VCC
正逻辑 1A □ 2 13 □ 4C
Y = A C为高时输出截止 1Y 日 3 12 日 4A
2C
2A 5 10 3C
2Y
3. 四位二进制计数器 (74LS161)

CO 为进位输出端。

功能表:

			输		λ					ŧ	≙ N		出		
ĊŔ	ĪD	CTp	$\mathbb{C}T_{\overline{1}}$	CP	D ₃	D_2	D_1	D ₀	Q ₃	Q ₂	Qı	Q ₀		CO	说明
0	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0		0	异步洁零
1	0	Χ	Х	↑	d_3	d_2	\mathtt{d}_1	d_0	d ₃	d_2	${\tt d}_{l}$	d ₀			$CO=CT_TQ_3Q_2Q_1Q_0$
1	1	1	1	↑	Χ	Χ	Х	Χ		ਮੋ	数				CO=Q ₃ Q ₂ Q ₁ Q ₀
1	1	0	Χ	Х	Χ	Χ	Х	Χ		保	持				$CO=CT_TQ_3Q_2Q_1Q_0$
1	1	Χ	0	Χ	Χ	Х	Χ	Χ		保	持			0	

实验步骤:

1. 测试 74LS86

连接原理图:

编译, 引脚分配, 烧录, 测试。

2. 测试三态门连接原理图:

3. 测试 74LS161 连接原理图:

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pair
_ A	Input	PIN_34	2	B2_N0	PIN_34	2.5 V (default)		8mA (default)		
<u>}_</u> B	Input	PIN_75	5	B5_N0	PIN_75	2.5 V (default)		8mA (default)		
}_ C	Input	PIN_67	4	B4_N0	PIN_67	2.5 V (default)		8mA (default)		
S_ CLK	Input	PIN_52	3	B3_N0	PIN_52	2.5 V (default)		8mA (default)		
us co	Output	PIN_77	5	B5_N0	PIN_77	2.5 V (default)		8mA (default)	2 (default)	
<u> </u>	Input	PIN_66	4	B4_N0	PIN_66	2.5 V (default)		8mA (default)		
- ENP	Input	PIN_55	4	B4_N0	PIN_55	2.5 V (default)		8mA (default)		
S_ ENT	Input	PIN_64	4	B4_N0	PIN_64	2.5 V (default)		8mA (default)		
LDN	Input	PIN_84	5	B5_N0	PIN_84	2.5 V (default)		8mA (default)		
[™] QA	Output	PIN_60	4	B4_N0	PIN_60	2.5 V (default)		8mA (default)	2 (default)	
^{ut} QB	Output	PIN_65	4	B4_N0	PIN_65	2.5 V (default)		8mA (default)	2 (default)	
≝ QC	Output	PIN_70	4	B4_N0	PIN_70	2.5 V (default)		8mA (default)	2 (default)	
∰ QD	Output	PIN_74	5	B5_N0	PIN_74	2.5 V (default)		8mA (default)	2 (default)	
<new node="">></new>										

成功测试清零、预置数、保持和同步等功能。

结论分析与体会:

一开始我们没有注意到实验手册后附有元件引脚图,上网搜索资料存在许多版本差异,花了很多时间推究。这次实验回忆了 Quartus II 软件的使用方法,希望可以熟练使用仿真。

