

2008

TRIAL
HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks – 84

- Attempt questions 1-7
- · All questions are of equal value

1	2	3	4	5	6	7	Total	Total
1								
							/84	%

Question 1 (12 marks) Start a new sheet of writing paper. Marks

(a) Evaluate, $\lim_{x\to 0} \frac{3\sin\frac{x}{2}}{x}$, showing all working.

2
(b) Find the coordinates of the point, P, that divides the interval AB internally in the ratio of 4:5 if A(-2,3) and B(1,0).

2
(c) Find k if $x^{2k+3} = e^{9\ln x}$, where x>0.

2
(d) $\int \cos^2 4x \ dx$ 3
(e) Use the substitution $u = 1 + x^5$ to evaluate $\int_{-1}^{1} x^4 \sqrt{1 + x^5} dx$ 3

End of Question 1

Question 2 (12 marks) Start a new sheet of writing paper. Marks

(a) Solve
$$\frac{2}{x-1} \ge \frac{3}{x}$$
, $x \ne 0$, $x \ne 1$

(b) Given two roots of
$$2x^3 - kx + 8 = 0$$
 are equal, find k.

(c) Find the constant term in
$$(x^3 - \frac{1}{x})^8$$

- (d) A particle is moving in a straight line with its acceleration as a function of x given by $\ddot{x} = -8x^3$. It is initially at the origin and is travelling with a velocity of 4m/s.
 - i. Find the maximum speed of the particle.
 - ii. Show that $\dot{x} = 2\sqrt{4-x^4}$

End of Question 2

Qı	ıesti	on 3 (12 marks) Start a new sheet of writing paper.	Marks
(a)	i.	Show that $\cos 3x = 4\cos^3 x - 3\cos x$	2
	ii.	Hence, or otherwise, find $\int \cos x \sin^2 x \ dx$	2
(b)		An oven has been heated to a constant temperature of 180°C. A cake mixture, with a temperature of 20°C is placed in the oven and after 15 minutes its temperature is measured at 100°C. The heating rate is proportional to the difference between the cake temperature and the oven temperature.	
	i.	Show that the equation for the cake temperature is given by $T = 180 - 160e^{-0.046t}$.	2
	ii.	What will be the temperature of the cake after 30 minutes?	1
	iii.	How long will it take for the cake to reach 150 ° C?	1
	iv.	What would be the limiting temperature which could be achieved by the cake?	. 1

(c)

P and Q are the centres of the circles in the diagram above. PAX and QAY are straight lines. If $\angle PAY = x$, prove that P, Q, X and Y are concyclic.

End of Question 3

1

3

Question 4 (12 marks) Start a new sheet of writing paper. Marks

- The acute angle between the lines L_1 and L_2 is $\frac{\pi}{4}$ radians.

 The equation of L_1 is y = 3x 1. The equation of L_2 is y = mx + b. Find the equation of the line L_2 if it passes through (-1,-4).
- (b) The equation $e^x x 2 = 0$ has a root close to x = 1.2.

 Use Newton's method **once** to find a better approximation to this root, correct to 2 decimal places.
- Use mathematical induction to prove that for all positive integers n:

$$4(1^3+2^3+3^3+...+n^3)=n^2(n+1)^2.$$

ii. Hence, or otherwise, find the value of:

$$\lim_{n\to\infty} \left(\frac{1^3+2^3+3^3+...+n^3}{n^4}\right)$$

(d) Show that the chord of contact on the parabola $x^2 = 4ay$ is a focal chord if the external point lies on the directrix. The equation of the chord of contact is $xx_1 = 4a(y + y_1)$. Do NOT prove this result.

End of Question 4

Qu	ıesti	on 5 (12 marks) Start a new sheet of writing paper.	Marks
(a)	i.	If $g(x) = e^{x+1}$, find $g^{-1}(x)$, the equation of the inverse of $g(x)$.	2
	ii.	State the domain of $g^{-1}(x)$.	1
	iii.	On a number plane, sketch the graphs of $y = g(x)$ and $y = g^{-1}(x)$, showing intercepts and at least one other point on each curve.	3
	iv.	Using the graphs in iii, or otherwise, discuss the symmetry of the functions $y = g(x)$ and $y = g^{-1}(x)$.	1
(b)		Air is pumped into a spherical balloon at a constant rate of $12 \text{ cm}^3/\text{s}$. Find the rate of increase in its surface area when its radius is 8 cm .	3
(c)		Find the general solution of $\cos(2x - \frac{\pi}{4}) = 1$. 2

End of Question 5

3

Question 6 (12 marks) Start a new sheet of writing paper. Mark (a) Find the greatest coefficient in $(5+2x)^{12}$.

- (b) An object is projected from the top of a vertical cliff 18 m above the horizontal ground at an angle θ where $\tan \theta = \frac{3}{4}$, with an initial speed of 25 m/s.
 - Show that the equations of motion of the object are: x = 20t $y = -\frac{1}{2}gt^2 + 15t + 18$

Neglecting air resistance, and taking $g=9.8 \text{ m/s}^2$

- ii. What is the greatest height reached by the particle (correct to 2 decimal places)?
- iii. Find the distance from the base of the cliff to where the object hits the ground (correct to 2 decimal places).

End of Question 6

Qú	esti	on 7 (12 marks) Start a new sheet of writing paper.	Marks
/(a)		A particle moves in a straight line and its position at time t is given by: $x = 1 + \sqrt{3}\cos 2t - \sin 2t$	
	i.	Show that $\sqrt{3} \cos 2t - \sin 2t = 2 \cos(2t + \frac{\pi}{6})$.	2
	ü.	Show that the particle with equation $x = 1 + \sqrt{3} \cos 2t - \sin 2t$ is undergoing simple harmonic motion.	3
	iii.	Describe the motion of the particle including the centre, amplitude and period of motion.	2
	iv.	Find the first time the particle is at the origin (i.e. when $x = 0$).	2
(b)		Given the fact that $\int_{0}^{\pi} \sin mx \sin nx \ dx = 0 \text{ and } \int_{0}^{\pi} \sin^{2} mx \ dx = \frac{\pi}{2}$ if m and n are any unequal positive integers, find the volume obtained when the area between the curve $y = \sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x$. 3
		and the x-axis from $x=0$ to $x=\pi$, is rotated about the x-axis	

End of Examination

2

Ver 1

PLC Sydney Maths Department

~ 1	•			•	
NOTITIONS	ナハヤ	PYSMe	and	assessment	+1
DOIGHOID	TOT	OVIUMO	and	COSCOSTITUTION	. Lasks

Solutions for exams	and assessment tasks	• • •		Ver 1
Academic Year	4-12	Calendar Year	2008	
Course .	Ext.I	Name of task/exam.	Total	-

Course	<u> </u>	Ext.1.]]
Question		Jays.	
a, l;m x→o	3 sin 2 -	3 lim si	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		3 × 1 1 1 2 5	X 2 2
• •		3 (1)	
		3 2	
ь, A (-:	2,3) B(1	1 ^y 2 m	· 5
x = m 12 + r	., y=	myz +ny,	-
	5(-2) , y =		(3)
	, y = 15	,	
P(- <u>2</u> ,	•		
C 22k+	3 glas		
x ^{2k+}	= elnx9		
· · 2k+			
2k =	6		
<u> </u>	3		
dy 5 cos2 4		cos 8x=20	
= 5(1/2 658x	1/2)dx	cos 8x+1)	= cos ² 4x
= 1 Si-8x	$+\frac{1}{1}\int_{0}^{2} dt + C$		

= 16 5/28x + 1x+c

$x^{2}(x-1) \ge 3(x-1)^{2}\chi$ $3(x-1)^2x-2(x-1)x^2 \neq 0$ $\chi(\chi_{-1})[3(\chi_{-1})-2\chi] \leq 0$ $(x^{-1})(x^{-3}) \leq 0$

PLC Sydney Maths Department

Solutions for exams at	id assessment task	S		
Academic Year	4,12	Calendar Year	300g	, .
Course .	Ext. 1.	Name of task/exam	Trial	

	Course .	Ext. 1.	Name of task/exam Trial
	. <u>.</u>	at:	$2x^3 - kx + 8 = 0$
OR	$: \frac{2}{x-1} > \frac{3}{x}$, x = 0, x = 1	by Let the roots be d, d and B.
			Sum of roots one at a time
	hical points: x=0), SC= 1	d+d+ = - b
:	2 = 3 x-1 x :		2×+β = 0
	2x = 3x - 3		β=-2-<
	-x = -3	•	Sum of roots two at a time
	x ≈ 3 		d 2 + αβ + αβ = - kc 2
∴ 1	Look at intervals	3	×2+2× = -k
	0 0	•	d (d+2β) = - k
		3 '	<(<+2[-2<]) = -k 2
	4: x = ½		
	$\frac{2}{\frac{1}{2}-1} > \frac{3}{\frac{1}{2}}$	•	~(-31) = - <u>L</u>
	-4 16		3 × 2 = <u>k</u>
Tes	t: x=2		2° = 12/6
	2 > 3		Product of roots
,	$2 \ge \frac{3}{2}$ Hrue	. -	$\alpha^2\beta = -4$
	-		$d^{2}(-2\lambda) \stackrel{?}{=} -4$ $-2\lambda^{3} = -4$
	<u>+</u>	•	∠³ = 2
•	² / ₃ ≯ ³ / ₄	•	∠ = ³ (2
Tes	+: X=-1		· k = 6 d ²
	2 > 3		= 6 (2 ^{1/3}) ²
	2 = -1 1 3-3 true		$= \zeta \left(2^{2J_3}\right)$ or $\frac{12}{3\sqrt{2}}$
			6 T 8- , pk/ ,8-b
•	. x < 0, 1 < x	€3	C Te+1 = EC (x3) k (-1/x2) 8- k
			= 8 (1) 8- k k-8
			-0 . 8-6

Calendar Year

Academic Year 12 Calendar Year 2008 / Course Ext.1. Name of task/exam. Triols	SOUTHOUR TO EVAUE OF	ic aggessiment tasks			 -
No. of to I form		12 .	Calendar Year	2008	
	Course .	Ext.1.	. Name of task/exam ·	Trials	

· for constant term: 4k-8=0 ·. k= 2. : Constant term is 802 (-1)6 = 28

 $d_{x} = -8x_{3}$ when t=0, x=0, v=4 m/s I max speed is when it = 0 is. 0=-8x3 X = 0 So when particle is at origin it has max speed. .. max speed = 4 mls.

 $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -8x^3$ $\frac{1}{2} v^2 = -8 \int x^3 dx$ $\frac{1}{2}v^2 = -8 \times \frac{4}{1} + c$ 1 y2 = - 2 x4 +c -, T. v = -2 x 4 + 8 V2 = -4x4+16 V2 = 4 (4-x4) V = + \(\frac{4}{4(4-\chi^4)} Since V=4 when x=0

 $V = 2\sqrt{4-x^4}$

Question 3: a i show $\cos 3x = 4\cos^3 x - 3\cos x$ LHS = COS (2x+x) = 605 2x 605 x- sin 2x sin 1 $= (2\cos^2 x - 1)\cos x - 2\sin x\cos x \sin x$ = 2 cos 3 x - cos x - 2 sin x cos x = 2 cos x - cosx - 2 (1-cos x) cos x = 2 co 3 x - co 3 x - 2 co 3 x + 2 co 3 x x 200 8 - x 200 4 = il Cosxsin2x dx (cos x (1-cos2x) dx $= \int (\cos x - \cos^3 x) dx$ $= \int \left(\cos x - \left[\frac{4}{4}\left(\cos 3x + 3\cos x\right)\right]\right) dx$ $= \int (\cos x - \frac{1}{4}\cos 3x - \frac{3}{4}\cos x) dx$ = \(\left(\frac{1}{4}\cos x - \frac{1}{4}\cos 3x \right) die " = 4 sinx - 12 sin 3x + c. Sf(x)[f(x)]"dx $= \underbrace{\left[f(x)\right]^{n+1}}_{+ < }$ ·· f cos x (sin x)2 dx

 $= \frac{\sin^3 x}{2} + c \quad \text{Page 3} \quad \text{of } 11$

Name of task/exam. Trial . - 80 = -160e 15 k Method 3 Let u= Sin x 1 = e 15 k du = cosx Ln = 15k du = cosx dx · S cosx sizx dx = Suzdu $k = \frac{1}{15} \ln \frac{1}{2}$ ··· k = -0.0462098.... · T = 180 - 160e - 0.046t $= \frac{S_1 x^3}{3} + C.$ 1 when t = 30 T = ? Note: 1 sinx - 12 sin 3k T = 180 - 160e -0.046x30 = 4 sinx - 12 [sin(2x+x)] T = 140 = 4 Sinx -1 [Sin2xcosx + cos 2x six] = 4 sink -12 [2 sink cos x + (1-25,2) sinx] = 1/4 Sink - 1/2 [2 Sink (1-sin2) + sink -2 sinx] = $\frac{1}{4}$ Sinx - $\frac{2}{12}$ Sinx + $\frac{2}{12}$ Sinx + $\frac{1}{12}$ Sinx + $\frac{2}{12}$ Sinx + $\frac{2}{12}$ Sinx = = 512x b 1 dT = k(N-P) T= P+ Aett t=0 T=20 when t=0 T=20 t=15 T=100 20 = 180 + Ac°

A = -160

when t=15 T=100

100 = 180 - 160 e 15 k

T = 180 - 160ekt

Solutions for exams and assessment tasks -

i temp will be 140°C " T=150 t= ? 150 = 180 -160 -0.046 ... t -30 = -160e-0.046...t -30 = e-0.046...t Ln 3 = -0.046...t t = 36 mins 13.5 sec. "> T=180-160, -0.046t .. limiting temp is 180° c

Solutions for exams and assessment tasks

DOIGHTOTH YOU AND A				
Academic Year	4012	Calendar Year	2008	<i>,</i> · ·
Course .	Ex+.	Name of task/exam	Trial	

If < PAY = X then < QAX=X (vertically opposite angles are equal)

Join Py and QX PA = Py (equal radii) QA = QX (equal radii)

:. < PYA = < PAY = x (angles opposite equal sides are

< QAX = < QXA (angles opposite equal sides are · · < PYA = < QXA

. PQXY are concyclic as angles subtended on the same · side of chord, PQ, are equal.

OR IF < PAY= x Hen < QAx = x (vertically opposite angles are

Join Py and QX PA=PY (equal rodii) ·QA = QX (equal radii)

· · < PYA = < PAY = x (angles opposite equal sides an and <QAX = <QXA = x (similarly)

.. s APY III s AQX (equiangular)

. In similar triangles, correspondie sides are in the same ratio

.. PA x XA = YA x QA Since the product of the intercepts on intersecting intervals is equal them? the endpoints of the intervals are conceplic

Question 4:

9 y=3x-1 m, = 3

4=mx+6

 $\therefore \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$

 $ten = \frac{3-m}{1+m(3)}$

1+3m=3-m. 4m = 2

Page 5 of 11

Solutions for exams a	nd assessment tasks	· · · · · · · · · · · · · · · · · · ·		
Academic Year	4012	Calendar Year	2008	<i>j</i> ·
Course	Ex1.1	Name of task/exam	Trial	

	Commo 1 del	Eul I	Name of task/exam Trial
	Course .	Ex4.1.	
. ÷.	egn of line	*	Step. 3: prove true for n= k+1
! +	$4 = \frac{1}{2}(x+i)$. y+ 4=-2(x+1)	1.c. prove 4 (13+23+ k3+(k+1)3)=(k+1)2(k+2)
•	8=X+1	y+4=-2x-2	LHS = 4(13+23+k3)+4(k+1)3
۲	24-7=0	21+4+6=0	
y =	2x-32	y = - 2x - 6	= k2(k+1)2 + 4(k+1)3 from assurpt.
·	•		$= (k+1)^{2} \left[k ^{2} + 4 (k+1) \right]$
٠٠,	let P(x)= ex		$= (k+1)^{2} [k^{2}+4k+4]$
	P(1.2) = C	1201169	$= \left(k+1\right)^{2} \left(k+2\right)^{2}$
	P'(x) = e'	-1	= RHS
	P'(1.2) = 2	. 3201169	·· true
··.	$\chi_2 = \chi_1 - \frac{\rho(\chi_1)}{\rho'(\chi_1)}$)	By the principle of mathematical
	ρ'(x,)	induction it is true for all positive
	$= 1 \cdot 2 - \frac{0}{2 \cdot 3}$	1201169	integers n.
	2.:	52011.64	3 2 3 3):
٠	= 1.148	:	$-\left \lim_{x \to \infty} \left(\frac{1^{3} + 2^{3} + 3^{3} + \dots + n^{3}}{n^{4}} \right) \right $
	= 1-15	1.15	
	a better approx and P(x) is co	entinuous.	$=\lim_{\chi\to\infty}\frac{n^2(n+1)^2}{4}$
c,			n ⁴ .
	Prove 4 (13+23+33+	+ n) = n (n+1)2	$=\lim_{x\to\infty}\frac{n^2\left(n+1\right)^2}{4n^4}$
5	Step 1: prove to	ve for n=1.	$=\lim_{x\to\infty}\frac{n^2(n^2+2n+1)}{4n^4}$
LH!	s=4 (1 ³)	RHS = 12 (1+1)2	x→∞ 4n4
	-4	= 1 (4) = 4	$= \lim_{x \to \infty} \frac{n^4 + 2n^3 + n^2}{4n^4}$
	true for	~=1	40
S-	tep 2: assume tr		= 1-4
	i.e. 4 (13+23+33+	k^3) = $k^2 (k+1)^2$	Page 6 of II

Solutions for exams	and assessment tasks	•	·
Academic Year	Yr 12		Calenda

Solutions for exams and assessment rasks		<u></u>		
Academic Year	YC 12 .	Calendar Year	2008	
Course ·	Ext	Name of task/exam.	Trial	
Сошво				

d. xx, = 4a (y+y)

If external point lies on directrix, coordinates would be (x, -a)

If a focal chord (10, a) satisfie

. . LHS = RHS

.. xx = 4a (y-a) is a focal clord.

. If external point lies on directrix.

the chard of contact is a focal chard.

Question 5:

ie y = e x+1

inverse: x = e y+1

$$g^{-1}(x) = -1 + \ln x$$

is domain of g-1(x)=range of g(x)

irange of q(z) is y>0

· domain of g-1(x): x >0

ijĻ

IV The graphs are symmetrical about the line 4=x.

by Ysphue = 4π - 3

$$\frac{dV}{dC} = 4\pi \Gamma^2$$

$$\frac{dv}{dt} = 12 \text{ cm}^3/\text{s}$$

$$\frac{dS}{dt} = ?$$
 when $r = 8$

$$\frac{ds}{dt} = \frac{ds}{dt} \times \frac{dv}{dt} \times \frac{dr}{dt}$$

$$\frac{dS}{dt} = 8\pi r \times 12 \times \frac{1}{4\pi r^2}$$

Solutions for exams and assessment tasks

Academic Year	Yr 12 .	Calendar Year	2008	, .
Course .	Ext. I.	Name of task/exam	Trial	

 $\frac{dV}{dt} = 12$ $\frac{dS}{dt} = ? \text{ when } r = 8$ c $cos(2x - \frac{\pi}{4}) = 1$

$$V = \frac{4}{3} \pi r^3$$

$$\frac{dv}{dr} = 4\pi r^2$$

$$\frac{dv}{dt} = \frac{dv}{dr} \times \frac{dr}{dt}$$

$$12 = 4\pi r^2 \times \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{12}{4\pi r^2}$$

$$\frac{dr}{dt} = \frac{3}{\pi r^2}$$

$$\frac{ds}{dt} = \frac{24}{r}$$

$$\frac{dS}{dt} = \frac{24}{8}$$

$$\cos(2x - \frac{\pi}{4}) = 1$$

$$2x - \frac{\pi}{4} = 2\pi n$$

$$2\chi = 2\pi n + \frac{\pi}{4}$$

$$X = Tn + \frac{T}{8}$$
 , n integer

Question 6:

$$9 (5+2x)^{12}$$

$$T_{k+1} = {}^{12}C_k (5)^k (2x)^{12-k}$$

$$T_{k} = {}^{12}C_{k-1} (5)^{k-1}(2x)^{12-(k-1)}$$

$$\frac{T_{k+1}}{T_k} = \frac{{}^{12}C_k \cdot 5^k \cdot 2^{12-k}}{{}^{12}C_{k-1} \cdot 5^{k-1} \cdot 2^{13-k}}$$

$$= \frac{12!}{k! (12-k)!} 5^{k} 2^{12-k}$$

$$\frac{k! (12-k)!}{\frac{12!}{(k-1)!(13-k)!}} 5^{k-1} 2^{13-k}$$

$$\frac{T_{k+1}}{T_{1k}} = \frac{T_{2}!}{k!} \frac{5^{k} 2^{12-k}}{(12-k)!} \times \frac{(E-1)!}{5^{k+1}} \frac{(13-k)!}{5^{k+2}}$$

for greatest osefficient Text >1

Page & of II

Calendar Year

Solutions for exams a	nd assessment tasks	· · · ·		
Academic Year	Yr 12 .	Calendar Year	2008	, .
Course :	Ex+.1.	Name of task/exam	Trial	

2k >1	
Zk.	
65-5k >2k	
-7k>-65	
k < 65	
k < 9=	
. k=9	
: Greatest Coefficient is	
12 Cq 59 23 = 3437500000	
OR: (5+2x)12	
$T_{k+1} = {}^{12}C_{k}(2x)^{k}(5)^{12-k}$	
$T_{k} = {}^{12}C_{k-1}(2x)^{k-1} 5^{12-(k-1)}$	
Coeff:	
$\frac{T_{k+1}}{T_k} = \frac{{}^{12}C_{k}}{{}^{12}C_{k-1}} \cdot \frac{2^{\frac{k}{k}}}{5^{\frac{12-k}{k}}}$	
$= \frac{12-k+1}{k} \times \frac{2}{5}$	
= (13-k)2. 5k	
for greatest coefficient Text >	i
··· 2 (13-k) >1	
26-2k >5k	
26 > 7k	
k < 35	
I	

Page 9 of II

-. C2=0

∴x=20t

- 1.4	Course	Ex 4. 1	Name o
=		-	iii n
ů	1=-9.	•	
	1 = S-g dt		•
	$\dot{y} = -gt + C_3$	-	
	y= 5 3		
	5 = C3.		
	iy = -gt +15	•	1 .
	y= (-g++15)dt		
	y=-=gt2+15t	+ C4	
	Jen t=0 y=18	·	'
	18 = C4		Que
	$y = -\frac{1}{2}gt^2 + 15t + \frac{1}{2}gt^2 +$	+18	3
L	greatest height	t is when	13
	y = 0		V 3
ÿ	= -gt+15		1
0	=-9.8t+15		
9.	8 t = 15	•	
	$t = \frac{15}{9.8}$		\
	=1.5306.		
ule	n t = 1.53		
	y = ?		
	y = -1 (9.8)(1	.53)2+15(1.53)+	OR OR
	= 29.47959	••••	
	'. greatest keig	ht is 29.48 m.	
		-	
	•		
			ij

41 12

Academic Year

×4.1	Name of task/exam Trial
	iii when $y=0$ $t=?$ $0=-\frac{1}{2}gt^2+15t+18$ $t=-15 = \sqrt{225-4(-\frac{1}{2}g)(18)}$ $2(-\frac{1}{2}g)$
	t=3.9834 t >0
4	x = 20 t x = 20 (3.9834) x = 79.668 distance is 79.67 m
	Question 7: 9 1 13 cos 2t - Sin 2t = Rcos(2t+ x)
is when	13 cos 2t - sin 2t = Rcos2t cos d- Rsin 2t sin
	13 = R cos d 0 1 = R sin d 2
	$4 = R^{2} \left(\omega s^{2} + \sin^{2} \lambda \right) \mathbb{O}^{2} + \mathbb{E}^{2}$ $R = 2 \qquad R > 0$
	$tan d = \frac{1}{13}$
)2+15(1-53)+18	
is 29.48 m.	= $2 \left[\cos 2t \cos \frac{\pi}{6} - \sin 2t \sin \frac{\pi}{6} \right]$ = $2 \left[\cos 2t \left(\frac{\pi}{2} \right) - \sin 2t \left(\frac{1}{2} \right) \right]$
:	= 13 cos 2t - sin 2t = L#S

Solutions for exams and assessment tasks

			·	
Academic Yea	r Yr 12	. Calendar Year	2008	,
Course .	£×↓ 1.	Name of task/exam	Trial	