	1	2	3	4	5	6	Σ
		'		•	'	'	
IMPAG				IME I DDESI	ME		
m JMBAG				IME I PREZI	ME		

Teorija brojeva

2. kolokvij, 26.6.2018.

NAPOMENE: Vrijeme rješavanja je 120 minuta. Ima ukupno šest zadataka. Zadaci se rješavaju na ovim papirima. Odmah se **čitljivo** potpišite. Dozvoljeno je korištenje kalkulatora i dva papira A4 s formulama.

1. Nađite reduciranu kvadratnu formu ekvivalentnu s $201x^2+101xy+13y^2.$

2. Odredite $h(-103)$, te nađite sve reducirane kvadratne forme s diskriminantom $d=-103$.

3. Dokažite ili opovrgnite:

(a) Neka je f multiplikativna funkcija takva da je $\lim_{m\to\infty} f(p^m)=0$, za svaki prosti broj p. Tada je

$$\lim_{n \to \infty} f(n) = 0.$$

(b) Neka je f multiplikativna funkcija i neka je S skup svih potencija prostih brojeva, tj

$$S = \{2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, \ldots\}$$

i neka je

$$\lim_{\substack{n \to \infty \\ n \in S}} f(n) = 0.$$

Tada je

$$\lim_{\substack{n \to \infty \\ n \in \mathbb{N}}} f(n) = 0.$$

4. Odredite razvoj u jednostavni verižni razlomak brojeva $\frac{559}{812}$ i $\frac{1+\sqrt{19}}{6}.$

5.	Nađite sve	Pitagorine	trokute u	ı kojima .	je jedna s	stranica j	ednaka 69	9.	

Rješenja:

- 1. $5x^2 3xy + 13y^2$
- 2. h(-103) = 5, $x^2 + xy + 26y^2$, $2x^2 xy + 13y^2$, $2x^2 + xy + 13y^2$, $4x^2 3xy + 7y^2$, $4x^2 + 3xy + 7y^2$ 3. (a) Neka je f multiplikativna funkcija, $f(p^m) = \frac{1}{m}$. Za nju je očito $\lim_{m \to \infty} f(p^m) = 0$, za svaki prost broj p. No, budući da je vrijednost of f u prostim brojevima jednaka f(p) = 1, za proizvoljno velik produkt n prostih brojeva s potencijama 1 vrijedi da je f(n) = 1, pa očito traženi limes nije jednak nuli.
- (b) Neka je $0 < \epsilon < 1$. Definiramo $S_0 = \{p_i^{a_i}: f(p_i^{a_i}) \ge 1\}$ (to je konačan skup zbog pretpostavke). Neka je sada $n_0 \in \mathbb{N}$ takav da $\forall p_i^{a_i} \ge n_0$ vrijedi

$$f(p_i^{a_i}) = \frac{\epsilon}{\prod_{x \in S_0} x}.$$

Stavimo

$$n_1 = \prod_{p_i^{a_i} < n_0} p_i^{a_i}.$$

Neka je sada $n_2=\max\{n_0,n_1\}$. Za $n\geq n_2$ imamo $n=p_1^{a_1}\cdot\ldots\cdot p_k^{a_k}$. Ne mogu si $p_i^{a_i}$ biti manji od n_0 zbog $n\geq n_1$. BSO neka je $p_1^{a_1}\geq n_0$. Sada koristeći multiplikativnost imamo

$$f(n) = f(p_1^{a_1}) \cdot f\left(\prod_{p_i^{a_i} \in S_0} p_i^{a_i}\right) \cdot f\left(\prod_{p_i^{a_i} \notin S_0} p_i^{a_i}\right) < f(p_1^{a_1}) \cdot \prod_{p_i^{a_i} \in S_0} f\left(p_i^{a_i}\right) \le f(p_1^{a_1}) \cdot \prod_{x \in S_0} x < \frac{\epsilon}{\prod_{x \in S_0} x} \cdot \prod_{x \in S_0} x = \epsilon.$$

4.
$$\frac{559}{812} = [0, 1, 2, 4, 1, 3, 2, 2, 2], \frac{1 + \sqrt{19}}{6} = [0, 1, \overline{8, 2, 1, 3, 1, 2}]$$

- 5. (69, 92, 115), (69, 792, 795), (69, 2380, 2381), (69, 260, 269)
- 6. (500, 53), (500001, 53000)

	1	2	3	4	5	6	Σ
							II .
JMBAG				IME I PREZI	MΕ		

Teorija brojeva

2. kolokvij, 26.6.2018.

NAPOMENE: Vrijeme rješavanja je 120 minuta. Ima ukupno šest zadataka. Zadaci se rješavaju na ovim papirima. Odmah se č**itljivo** potpišite. Dozvoljeno je korištenje kalkulatora i dva papira A4 s formulama.

1. Nađite reduciranu kvadratnu formu ekvivalentnu s $199x^2-93xy+11y^2.$

2. Odredite $h(-104)$, te nađite sve reducirane kvadratne forme s diskriminantom $d=-104$.

3. Dokažite ili opovrgnite:

(a) Neka je f multiplikativna funkcija takva da je $\lim_{m\to\infty} f(p^m)=0$, za svaki prost broj p. Tada je

$$\lim_{n \to \infty} f(n) = 0.$$

(b) Neka je f multiplikativna funkcija i neka je S skup svih potencija prostih brojeva, tj.

$$S = \{2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, \ldots\}$$

i neka je

$$\lim_{\substack{n \to \infty \\ n \in S}} f(n) = 0.$$

Tada je

$$\lim_{\substack{n \to \infty \\ n \in \mathbb{N}}} f(n) = 0.$$

- 4. Odredite razvoj u jednostavni verižni razlomak brojeva $\frac{947}{351}$ i $\frac{1+\sqrt{11}}{8}.$

5. Nađite sve Pitagorine trokute u kojima je jedna stranica jednaka 57.

Rješenja:

- 1. $3x^2 + xy + 9y^2$
- 2. h(-104) = 6, $x^2 + 26y^2$, $2x^2 + 13y^2$, $3x^2 + 2xy + 9y^2$, $3x^2 2xy + 9y^2$, $5x^2 + 4xy + 6y^2$, $5x^2 4xy + 6y^2$
- 3. (a) Neka je f multiplikativna funkcija, $f(p^m) = \frac{1}{m}$. Za nju je očito $\lim_{m\to\infty} f(p^m) = 0$, za svaki prost broj p. No, budući da je vrijednost of f u prostim brojevima jednaka f(p) = 1, za proizvoljno velik produkt n prostih brojeva s potencijama 1 vrijedi da je f(n) = 1, pa očito traženi limes nije jednak nuli.
- (b) Neka je $0 < \epsilon < 1$. Definiramo $S_0 = \{p_i^{a_i} : f(p_i^{a_i}) \ge 1\}$ (to je konačan skup zbog pretpostavke). Neka je sada $n_0 \in \mathbb{N}$ takav da $\forall p_i^{a_i} \ge n_0$ vrijedi

$$f(p_i^{a_i}) = \frac{\epsilon}{\prod_{x \in S_0} x}.$$

Stavimo

$$n_1 = \prod_{p_i^{a_i} < n_0} p_i^{a_i}.$$

Neka je sada $n_2 = \max\{n_0, n_1\}$. Za $n \ge n_2$ imamo $n = p_1^{a_1} \cdot \dots \cdot p_k^{a_k}$. Ne mogu si $p_i^{a_i}$ biti manji od n_0 zbog $n \ge n_1$. BSO neka je $p_1^{a_1} \ge n_0$. Sada koristeći multiplikativnost imamo

$$f(n) = f(p_1^{a_1}) \cdot f\left(\prod_{p_i^{a_i} \in S_0} p_i^{a_i}\right) \cdot f\left(\prod_{p_i^{a_i} \notin S_0} p_i^{a_i}\right) < f(p_1^{a_1}) \cdot \prod_{p_i^{a_i} \in S_0} f\left(p_i^{a_i}\right) \le f(p_1^{a_1}) \cdot \prod_{x \in S_0} x < \frac{\epsilon}{\prod_{x \in S_0} x} \cdot \prod_{x \in S_0} x = \epsilon.$$

4.
$$\frac{947}{351} = [2, 1, 2, 3, 4, 1, 2, 2], \frac{1+\sqrt{11}}{8} = [0, 1, \overline{1, 5, 1, 4, 2, 4}]$$

- 5. (57, 76, 95), (57, 540, 543), (57, 1624, 1625), (57, 176, 185)
- 6. (68, 5), (9249, 680)