Campus: BAIXADA SANTISTA		
Curso (s): BACHARELADO INTERDISCIPLINAR EM CIÊNCIA E TECNOLOGIA DO MAR		
Unidade Curricular (UC): PROBABILIDADE E ESTATÍSTICA		
Unidade Curricular (UC): PROBABILITY AND STATISTICS		
Unidade Curricular (UC): PROBABILIDAD Y ESTADÍSTICA		
Código da UC: 5290		
Docente Responsável/Departamento: /Depto. de Ciências do Mar		Contato (e-mail):
Fabio Cop Ferreira		fcferreira@unifesp.br
Docente (s) Colaborador/a (es/as)/Departamento (s):		Contato (e-mail):
Gustavo Fernandes Camargo Fonseca		
Ano letivo: 2025	Termo: 3	Turno: VESPERTINO/NOTURNO
Nome do Grupo/Módulo/ Eixo da UC se houver): AMBIENTE MARINHO		Idioma predominante em que a UC será oferecida: (X) Português () English () Español () Français () Libras () Outro:
UC: (X) Fixa () Eletiva () Optativa	Oferecida como: () Disciplina (X) Módulo () Estágio () Outro:	Oferta da UC: (X) Semestral () Anual
Ambiente Virtual de Aprendizagem: (X) Moodle () Classroom () Outro: () Não se aplica		
Pré-Requisito (s):		
Carga horária total (em horas): 40	<u> </u>	I
Carga horária teórica (em horas): 28	Carga horária prática (em horas): 12	Carga horária de extensão (em horas, se houver): 0
Se houver atividades de extensão, indicar códig Cultura (ProEC):	o e nome do projeto ou programa vi	nculado na Pró-Reitoria de Extensão e

Ementa:

A Unidade Curricular (UC) explora os fundamentos da inferência estatística, com ênfase em modelos probabilísticos e suas aplicações na análise de dados e interpretação de fenômenos complexos relacionados às Ciências do Mar. A UC enfatiza a investigação de hipóteses sobre processos ambientais por meio da construção e análise de modelos probabilísticos, integrando conhecimentos prévios com evidências baseadas em dados. O curso promove uma abordagem prática, com foco na elaboração de modelos e na simulação computacional, integrando teoria e prática como suporte à tomada de decisão, de forma a oferecer uma compreensão ampla e aplicada dos conceitos teóricos e computacionais envolvidos.

Conteúdo programático:

1. Fundamentos da Inferência Estatística e Modelagem Probabilística

- Probabilidade como lógica e ferramenta para lidar com incertezas.
- Conceitos fundamentais: distribuições a *priori*, verossimilhança e distribuições *posteriori*.

2. Aplicações Computacionais e Ferramentas Analíticas

- Implementação de modelos utilizando R, Python e linguagens de programação probabilística.
- Exemplos práticos aplicados às Ciências do Mar.

3. Construção de Modelos Probabilísticos

- Hipóteses científicas, estruturas de dependência e relações causais.
- Desenvolvimento de modelos conceituais integrando conhecimento prévio.
- Simulação inicial para explorar predições com base no modelo.

4. Integração de Dados ao Modelo

- Incorporação de observações empíricas ao modelo conceitual.
- Atualização de predições após a integração de novos dados.
- Técnicas de ajuste e calibração de modelos baseadas em dados observados.

5. Avaliação e Refinamento de Modelos

- Predições e extrapolações baseadas no modelo ajustado.
- Comparação de modelos utilizando critérios de validação.
- Análise de sensibilidade a diferentes distribuições a priori.

6. Desenhos Experimentais e Relações Causais Complexas

- Modelos para classificação e contagem.
- Exploração de relações não lineares.
- Estruturas hierárquicas e suas aplicações.
- Modelagem de dependências espaciais e temporais.

Objetivos:

Gerais:

Capacitar os alunos a compreender e aplicar conceitos de inferência estatística e modelagem probabilística, utilizando ferramentas computacionais modernas para análise de dados e interpretação de fenômenos complexos nas Ciências do Mar, promovendo a integração entre teoria, prática e suporte à tomada de decisão.

Específicos:

- 1. Compreender os fundamentos da probabilidade como lógica, aplicando-os à comparação entre diferentes hipóteses científicas.
- Implementar modelos probabilísticos em contextos ambientais utilizando linguagens de programação e ferramentas computacionais.
- 3. Desenvolver e explorar modelos conceituais integrando conhecimentos prévios, representações causais e simulações iniciais.
- 4. Incorporar dados empíricos a modelos probabilísticos, ajustando e calibrando predições com base em observações reais
- 5. Comparar e refinar modelos utilizando critérios de validação e análise de sensibilidade.
- Aplicar modelos probabilísticos para descrever relações não lineares, dependências espaciais e temporais, e processos ambientais complexos.

Avaliação:

Serão atribuídas 5 Listas de Exercícios (Peso 40%) e 3 Avaliações (Peso 60%). A 3a avaliação consistirá em um trabalho final desenvolvido ao longo do semestre e apresentado ao final do curso. A nota final do período letivo (NL) será computada pela média ponderada das listas e avaliações. Para alunos com NL maior ou igual a 6,0, a nota final (NF) será NF = NL. O EXAME será aplicado apenas aos alunos não reprovados por falta e que obtiveram NL entre 3,0 e 5,9 ao final do período letivo regular. Para estes alunos, a nota final (NF) será NF = (NL + NE)/2; em que NE é a nota obtida no EXAME. Para estes alunos, NE = 0 no caso de não realização do EXAME.

Bibliografia:

Básica:

- 1. Fonseca, J.S., Martins, G.A. Curso de estatística 6ª Edição. Atlas, 2006.
- 2. Triola, MF. Introdução à estatística. Rio de Janeiro: LTC Editora, 2017
- 3. Gotelli, N. Princípios de estatística em ecologia. Artmed, 2010.

Complementar:

1.	Magnunsson, W. E.; Mourão, G. Estatística sem matemática. Editora Planta, 2005.
۷.	Vieira, Sonia; Wada, R. O que é estatística. 3ª edição. São Paulo: Brasiliense, 1991.
3.	Volpato, G.; Barreto, R. Estatística em dor!!!. Editora Best Writing, 2012.
Cronog	rama: