NFA with epsilon transitions

Sipser pages 47-54

NFA's with ε –Transitions

- We extend the class of NFAs by allowing instantaneous (ε) transitions:
 - 1. The automaton may be allowed to change its state without reading the input symbol.
 - 2. In diagrams, such transitions are depicted by labeling the appropriate arcs with ε .
 - 3. Note that this does not mean that ε has become an input symbol. On the contrary, we assume that the symbol ε does not belong to any alphabet.

example

• { aⁿ | n is even or divisible by 3 }

Definition

• A ϵ -NFA is a quintuple $\mathbf{A}=(\mathbf{Q}, \mathbf{\Sigma}, \mathbf{\delta}, \mathbf{q}_0, \mathbf{F})$ where

- -Q is a set of states
- $-\Sigma$ is the alphabet of input symbols
- $-\mathbf{q}_0 \in \mathbf{Q}$ is the initial state
- $-\mathbf{F} \subset \mathbf{Q}$ is the set of *final states*
- $-\delta: \mathbf{Q} \times \Sigma_{\epsilon} \longrightarrow \mathbf{P}(\mathbf{Q})$ is the transition function
- Note ${f E}$ is never a member of ${f \Sigma}$
- $\Sigma_{\mathbf{\epsilon}}$ is defined to be $(\Sigma \cup \mathbf{\epsilon})$

ε-NFA

 ε -NFAs add a convenient feature but (in a sense) they bring us nothing new: they do not extend the class of languages that can be represented. Both NFAs and ε-NFAs recognize exactly the same languages.

- ε-transitions are a convenient feature: try to design an NFA for the even or divisible by 3 language that does not use them!
 - Hint, you need to use something like the product construction from union-closure of DFAs

ε-Closure

- ε-closure of a state
- The ϵ -closure of the state q, denoted ECLOSE(q), is the set that contains q, together with all states that can be reached starting at q by following only ϵ -transitions.

- In the above example:
- ECLOSE(P) ={P,Q,R,S}
- ECLOSE(R)={R,S}
- ECLOSE(x)={x} for the remaining 5 states {Q,Q1,R1,R2,R2}

Computing eclose

 Compute eclose by adding new states until no new states can be added

- Start with [P]
- Add Q and R to get [P,Q,R]
- Add S to get [P,Q,R S]
- No new states can be added

Elimination of ε-Transitions

- Given an ε-NFA N, this construction produces an NFA N' such that L(N')=L(N).
- The construction of N' begins with N as input, and takes 3 steps:
 - 1. Make p an accepting state of N' iff ECLOSE(p) contains an accepting state of N.
 - 2. Add an arc from p to q labeled a iff there is an arc labeled a in N from some state in ECLOSE(p) to q.
 - 3. Delete all arcs labeled ε.

Why does it work?

 The language accepted by the automaton is being preserved during the three steps of the construction: L(N)=L(N₁)=L(N₂)=L(N₃)

 Each step here requires a proof. A Good exercise for you to do!

Theorem

Any NFAe can be turned into an NFA

• How?