HNCO

Empirical cumulative distribution functions of the runtime of various black box optimization algorithms

November 23, 2020

Abstract

We partly follow the experimental procedure of the COCO framework for the performance assessment of black box optimization algorithms Hansen et al. [2016]. Each algorithm is run independently 20 times on each objective (or fitness) function. The dimension is fixed at n=100. Then 50 equally spaced targets are computed for each objective function. For each algorithm and each function we compute the empirical cumulative distribution function (ECDF) of the runtime, that is the proportion of targets reached as a function of the number of evaluations over all 20 runs. We also compute the global ECDF which takes into account the targets of all functions. The results are listed by function. For clarity reasons only 8 algorithms (hence 8 colors) are included in the study. It should be noted that the linear scale of targets does not fit the function EqualProducts.

Contents

1	Global results 1.1 All algorithms	 	3 4 4 4
2	Results for one-max 2.1 All algorithms 2.2 Groups 2.2.1 ec 2.2.2 eda	 	5 5 6
3	Results for lin 3.1 All algorithms 3.2 Groups 3.2.1 ec 3.2.2 eda	 	6 7 7 7
4	Results for leading-ones 4.1 All algorithms	 	8 8 8 8
5	Results for ridge 5.1 All algorithms 5.2 Groups 5.2.1 ec 5.2.2 eda	 	9 10 10 10
6	Results for jmp-5 6.1 All algorithms	 	11 11 11 11 12

7		0 1	12
	7.1		12
	7.2	1	13
			13
		7.2.2 eda	13
8	Res	ults for djmp-5	14
0	8.1	* -	14
	8.2	ů	14
		•	14
			15
9	Res		15
	9.1		15
	9.2	•	16
			16
		9.2.2 eda	16
10	Res	ults for fp-5	17
-0		-	17
		ů	17
		•	$\frac{17}{17}$
			18
11		±	18
			18
	11.2		19
			19
		11.2.2 eda	19
12	Res	alts for nk	20
12			20
			20
	12.2	•	20
			21
13			21
			21
	13.2	Groups	22
			22
		13.2.2 eda	22
14	Res	alts for labs	23
			23
			23
			23
		14.2.2 eda	24
15		r	24
			24
	15.2	1	25
			2525
		19.2.2 eda	20
16	Res	alts for cancel	26
			26
		ů	26
		•	26
		16.2.2 eda	27
	_		
17			27
			27
	17.2	1	28
			28
		17.2.2 eda	28

18	Results for hiff	2 9
	18.1 All algorithms	29
	18.2 Groups	29
	$18.2.\hat{1}~{ m ec}$	
	18.2.2 eda	
19	Results for plateau	30
	19.1 All algorithms	30
	19.2 Groups	
	$19.2.1~{ m ec}$	
	19.2.2 eda	
20	Results for walsh2	32
	20.1 All algorithms	32
	20.2 Groups	
	20.2.1 ec	
	20.2.2 eda	
\mathbf{A}	Plan	33
В	Default parameters	35

1 Global results

1.2.1 ec

1.2.2 eda

2 Results for one-max

2.1 All algorithms

2.2 Groups

2.2.2 eda

3 Results for lin

3.2.1 ec

3.2.2 eda

4 Results for leading-ones

4.1 All algorithms

4.2 Groups

4.2.2 eda

5 Results for ridge

5.2.2 eda

6 Results for jmp-5

6.1 All algorithms

6.2 Groups

7 Results for jmp-10

7.2.2 eda

8 Results for djmp-5

8.1 All algorithms

8.2 Groups

9 Results for djmp-10

9.2.1 ec

9.2.2 eda

10 Results for fp-5

10.1 All algorithms

10.2 Groups

11 Results for fp-10

11.2.1 ec

11.2.2 eda

12 Results for nk

12.1 All algorithms

12.2 Groups

13 Results for max-sat

13.2 Groups

13.2.2 eda

14 Results for labs

14.1 All algorithms

14.2 Groups

15 Results for ep

15.2.2 eda

Number of evaluations

16 Results for cancel

16.1 All algorithms

16.2 Groups

17 Results for trap

17.2 Groups

17.2.1 ec

17.2.2 eda

18 Results for hiff

18.1 All algorithms

18.2 Groups

19 Results for plateau

19.2 Groups

19.2.2 eda

20 Results for walsh2

20.1 All algorithms

20.2 Groups

References

Nikolaus Hansen, Anne Auger, Dimo Brockhoff, Dejan Tusar, and Tea Tusar. COCO: performance assessment. CoRR, abs/1605.03560, 2016. URL http://arxiv.org/abs/1605.03560.

A Plan

```
{
    "exec": "hnco",
    "opt": "--log-improvement --map 1 --map-random -s 100",
    "budget": 500000,
    "num_runs": 20,
    "num_targets": 50,
    "parallel": true,
    "graphics": {
        "all": {
            "helper": true
        },
        "groups": [
            {
                "id": "ec",
                "algorithms": [ "ea-1p1", "ea-1p10", "ea-10p1", "ea-1c10", "ga" ],
                "helper": true
            },
                "id": "eda",
                "algorithms": [ "pbil", "umda" ],
                "helper": false
        ]
    },
    "functions": [
```

```
{
    "id": "one-max",
    "opt": "-F 0 --stop-on-maximum"
},
    "id": "lin",
    "opt": "-F 1 -p instances/lin.100"
},
{
    "id": "leading-ones",
    "opt": "-F 10 --stop-on-maximum"
},
    "id": "ridge",
    "opt": "-F 11 --stop-on-maximum"
},
{
    "id": "jmp-5",
    "opt": "-F 30 --stop-on-maximum -t 5"
},
    "id": "jmp-10",
    "opt": "-F 30 --stop-on-maximum -t 10"
},
    "id": "djmp-5",
    "opt": "-F 31 --stop-on-maximum -t 5"
},
    "id": "djmp-10",
    "opt": "-F 31 --stop-on-maximum -t 10"
},
    "id": "fp-5",
    "opt": "-F 40 --stop-on-maximum -t 5"
},
    "id": "fp-10",
    "opt": "-F 40 --stop-on-maximum -t 10"
},
    "id": "nk",
    "opt": "-F 60 -p instances/nk.100.4"
},
    "id": "max-sat",
    "opt": "-F 70 -p instances/ms.100.3.1000"
},
    "id": "labs",
    "opt": "-F 81"
},
    "id": "ep",
    "opt": "-F 90 -p instances/ep.100",
    "reverse": true,
    "logscale": true
},
    "id": "cancel",
    "opt": "-F 100 -s 99",
    "reverse": true
},
```

```
{
        "id": "trap",
        "opt": "-F 110 --stop-on-maximum --fn-num-traps 10"
    },
        "id": "hiff",
        "opt": "-F 120 --stop-on-maximum -s 128"
    },
        "id": "plateau",
        "opt": "-F 130 --stop-on-maximum"
    },
        "id": "walsh2",
        "opt": "-F 162 -p instances/walsh2.100"
    }
],
"algorithms": [
    {
        "id": "sa",
        "opt": "-A 200 --sa-beta-ratio 1.05 --sa-num-trials 10"
    },
        "id": "ea-1p1",
        "opt": "-A 300"
    },
        "id": "ea-1p10",
        "opt": "-A 310 --ea-mu 1 --ea-lambda 10"
    },
        "id": "ea-10p1",
        "opt": "-A 310 --ea-mu 10 --ea-lambda 1"
    },
        "id": "ea-1c10",
        "opt": "-A 320 --ea-mu 1 --ea-lambda 10 --allow-no-mutation"
    },
        "id": "ga",
        "opt": "-A 400 --ea-mu 100"
    },
        "id": "pbil",
        "opt": "-A 500 -1 5e-3"
    },
    {
        "id": "umda",
        "opt": "-A 600 -x 100 -y 10"
    }
]
```

B Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
```

}

```
# description_path = description.txt
\# ea_lambda = 100
\# ea_mu = 10
\# expression = x
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# fp_expression = (1-x)^2+100*(y-x^2)^2
# fp_lower_bound = -2
# fp_num_bits = 8
# fp_upper_bound = 2
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_bit_herding = 0
# hea_num_seq_updates = 100
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_weight = 1
# learning_rate = 0.001
# map = 0
# map_input_size = 100
# map_path = map.txt
# map_ts_length = 10
# map_ts_sampling_mode = 0
# mutation_rate = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = function.txt
# pn_mutation_rate = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# results_path = results.json
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
\# seed = 0
# selection_size = 1
# solution_path = solution.txt
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
\# version = 0.15
```

Generated from hnco.json