Neural Archetecture Search with Reinforcement Learning

Bio-Medical Computing Laboratory

TAEHEUM, CHO

^{2th} May, 2019

Neural Archetecture Search with Reinforcement Learning – ICLR 2017

Under review as a conference paper at ICLR 2017

NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING

Barret Zoph, Quoc V. Le Google Brain {barretzoph, qv1}@qoogle.com

ABSTRACT

Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.

1 Introduction

The last few years have seen much success of deep neural networks in many challenging applications, such as speech recognition (Hinton et al., [2012), image recognition (LeCun et al., [1998; Krizhevsky et al., [2012) and machine translation (Sutskever et al., [2014] Bahdanau et al., [2015] [Wu] et al., [2016]). Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowel, [1999]), and HOG (Dalal & Triggs, [2005]), to AlexNet (Krizhevsky et al., [2012]), VGGNet (Simonyan & Zisserman, [2014]), GoogleNet (Szegedy et al., [2015]), and ResNet (He et al., [2016a)). Although it has become easier, designing architectures still requires a lot of expert knowledge and takes ample time.

Introduction

- Al Researcher can also be replaced Al
- A kind of AutoML algorithm

RTIFICIAL INTELLIGENCE

Google's New Al Is Better at Creating Al Than the Company's Engineers

This could open AI tech up to non-experts.

Tom Ward May 19th 2017

Motivation for Architecture Search

- Designing Neural Network must spend lots of time
- This research is first attempt for AutoML field

Related Work

- Hyperparameter optimization
- Modern neuro-evolution algorithms
- **7** Efficient Neural Architecture Search
- Learning to learn or Meta-Learning
- Bayesian optimization algorithm

Method

- Creating "configuration string" to represent network architecture
 - ["Filter Width: 5", "Filter Height: 3", "Num Filters: 24"] Caffe
- Overall architectures of the convolutional nets are manually predetermined
 - Normal Cell: convolutional cells that return a feature map of the same dimension

Reduction Cell: convolutional cells that return a feature map where the feature map height and

width is reduced by a factor of two

Using softmax classifier for selecting hyper-parameter

- Using RNN architecture for creating this representation string
- Updating parameter of Controller model by reinforcement learning
- Accuracy is used as Reward signal

Training with REINFORCE

Parameter of Controller

Accuracy from Child, Reward signal

$$J(\theta_c) = E_{P(a_{1:T};\theta_c)}[R]$$

number of hyperparameter predicted by Controller

Architecture predicted by the controller RNN viewed as a sequence of actions

$$\nabla_{\theta_c} J(\theta_c) = \sum_{t=1}^T E_{P(a_{1:T};\theta_c)} \left[\nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R \right]$$

- REINFORCE has a few of hyperparameter than compared with Q-learning.
- Accuracy is non-differential value.

NAS for CNN

$$\frac{1}{m} \sum_{k=1}^{m} \sum_{t=1}^{T} \nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R_k$$
 number of samples

$$\frac{1}{m} \sum_{k=1}^{m} \sum_{t=1}^{T} \nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) (R_k - b)$$

baseline for decreasing value

Number	Tag	Description				
1.	CC	Coordinating conjunction	15.	NNPS	Proper noun, plural	
2.	CD	Cardinal number	16.	PDT	Predeterminer	
3.	DT	Determiner	17.	POS	Possessive ending	
4.	EX	Existential there	18.	PRP	Personal pronoun	
5.	FW	Foreign word	19.	PRP\$	Possessive pronoun	
6.	IN	Preposition or subordinating conjunction	20.	RB	Adverb	
7.	IJ	Adjective	21.	RBR	Adverb, comparative	
8.	JJR	Adjective, comparative	22.	RBS	Adverb, superlative	
9.	JJS	Adjective, superlative	23.	RP	Particle	
10.	LS	List item marker				
11.	MD	Modal	24.	SYM	Symbol	
12.	NN	Noun, singular or mass	25.	TO	to	
13.	NNS	Noun, plural	26.	UH	Interjection	
14.	NNP	Proper noun, singular	27.	VB	Verb, base form	
15.	NNPS	Proper noun, plural	28.	VBD	Verb, past tense	
16.	PDT	Predeterminer	29.	VBG	Verb, gerund or present participle	
17.	POS	Possessive ending	30.	VBN	Verb, past participle	
18.	PRP	Personal pronoun	31.		Verb, non-3rd person singular present	
19.	PRP\$	Possessive pronoun	32.		Verb, 3rd person singular present	
20.	RB	Adverb				
21.	RBR	Adverb, comparative	33.			
22.	RBS	Adverb, superlative	34.	WP	Wh-pronoun	
23.	RP	Particle	35.	WP\$	Possessive wh-pronoun	
24.	SYM	Symbol	36.	WRB	Wh-adverb	

■ Dataset: CIFAR-10(CNN), Penn Treebank(RNN)

Distributed Training

- Parameters of Controller is saved in Parameter Servers. Parameter Servers distribute parameters to Controllers.
- **₹** Each Controller samples m Child .Childs work in parallel.
- Accuracy of each Child is a reward signal for Controller.

Neural Architecture Search for Convolutional Networks

- Skip connections extend searching space for building network.
- Controller uses skip connections to decide what layers it wants as inputs to the current layer.
- Controller uses anchor points, and set-selection attention to form skip connections.
- Goal: finding [skip connection, filter height-width, stride height-width, no. of filters]

Skip Connection ResNet and DenseNet

Figure 2. Residual learning: a building block.

DenseNets connects each layer to every other layer in a feed-forward fashion. They alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.

Generated Convolutional Network from Neural Architecture Search

Generated Convolutional Network from Neural Architecture Search

- There are lots of Skip Connection
- NAS like Rectangle filter

Generated Convolutional Network from Neural Architecture Search

Model	Depth	Parameters	Error rate (%)	_
Network in Network (Lin et al., 2013)	-	-	8.81	_
All-CNN (Springenberg et al., 2014)	-	-	7.25	
Deeply Supervised Net (Lee et al., 2015)	-	-	7.97	
Highway Network (Srivastava et al., 2015)	-	-	7.72	
Scalable Bayesian Optimization (Snoek et al., 2015)	-	-	6.37	_
FractalNet (Larsson et al., 2016)	21	38.6M	5.22	
with Dropout/Drop-path	21	38.6M	4.60	
ResNet (He et al., 2016a)	110	1.7M	6.61	_
ResNet (reported by Huang et al. (2016c))	110	1.7M	6.41	_
ResNet with Stochastic Depth (Huang et al., 2016c)	110	1.7M	5.23	_
	1202	10.2M	4.91	
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81	_
	28	36.5M	4.17	
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46	_
	1001	10.2M	4.62	
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24	-
DenseNet($L = 100, k = 12$) Huang et al. (2016a)	100	7.0M	4.10	
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74	
DenseNet-BC ($L = 100, k = 40$) Huang et al. (2016b)	190	25.6M	3.46	_
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50	-
Neural Architecture Search v2 predicting strides	20	2.5M	6.01	5% faste
Neural Architecture Search v3 max pooling	39	7.1M	4.47	
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65	_

800 GPU

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.

Best result of evolution (Real et al. 2017): 5.4% Best result of Q-learning (Baker et al. 2017): 6.92%

Recurrent Cell Prediction Method

Recurrent Cell Prediction Method

- Cell Search Space
- RNN cell Controller

cell represected by graph

- Predefined
- leaf node: 8
 - **7** (2 here)

Controller RNN decide which function to use referring to Cell Search Space (Tree)

Model	Parameters	Test Perplexity
Mikolov & Zweig (2012) - KN-5	2M [‡]	141.2
Mikolov & Zweig (2012) - KN5 + cache	2M [‡]	125.7
Mikolov & Zweig (2012) - RNN	6M [‡]	124.7
Mikolov & Zweig (2012) - RNN-LDA	7M [‡]	113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache	9M [‡]	92.0
Pascanu et al. (2013) - Deep RNN	6M	107.5
Cheng et al. (2014) - Sum-Prod Net	5M [‡]	100.0
Zaremba et al. (2014) - LSTM (medium)	20M	82.7
Zaremba et al. (2014) - LSTM (large)	66M	78.4
Gal (2015) - Variational LSTM (medium, untied)	20M	79.7
Gal (2015) - Variational LSTM (medium, untied, MC)	20M	78.6
Gal (2015) - Variational LSTM (large, untied)	66M	75.2
Gal (2015) - Variational LSTM (large, untied, MC)	66M	73.4
Kim et al. (2015) - CharCNN	19M	78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings	51M	73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium)	20M	80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium)	21M	70.9
Inan et al. (2016) - VD-LSTM + REAL (large)	51M	68.5
Zilly et al. (2016) - Variational RHN, shared embeddings	24M	66.0
Neural Architecture Search with base 8	32M	67.9 100% fast
Neural Architecture Search with base 8 and shared embeddings	25M	64.0
Neural Architecture Search with base 8 and shared embeddings	54M	62.4

400 CPU

Table 2: Single model perplexity on the test set of the Penn Treebank language modeling task Parameter numbers with [‡] are estimates with reference to Merity et al. (2016).

Conclusion

- NAS > Bayesian optimization
- NAS > Genetic Programming
- NAS > Random Search
- Cells created by NAS work well in other datasets.

