Homework #3

Assign date: 2015-06-21

Due date: 2015-07-01, 6pm

Submission:

1. Please submit your results <u>in email</u> to the grader: 130301039@svuca.edu Chi Zhang

- 2. Please separate the written answers from the python code: you should submit 2 files in your email cs596-29-hw2_yourID#.doc & cs596-29-hw2_yourID#.py
- 3. 30 pts per day will be deducted for late submission

Problem 1) K-means clustering (20 pts.)

You are given the following 10 data points of height & weight:

ID	1	2	3	4	5	6	7	8	9	10
Height	66	73	72	70	74	68	65	64	63	67
Weight	170	210	165	180	185	155	150	120	125	140

Manually apply k-means algorithms to get 2 clusters. Please produce the center and grouping step by step, using the following parameters:

- a) Initialize with ID=1 and ID=2
- b) Assume Euclidean distance

Problem 2) Agglomerative clustering (20 pts.)

Using the same 10 data points of height & weight as in Problem-1, apply agglomerative clustering manually. Produce the distance matrix and the resulting dendogram. Use the following assumptions:

- a) Euclidean distance
- b) Single linkage for cluster dissimilarity

Problem 3) Model Evaluation (20 pts.)

We are given the following classification results for a cancer screening test. Please derive the evaluation parameters:

- a) Accuracy
- b) Specificity
- c) Sensitivity
- d) Precision
- e) Recall

Actual / Prediction	test = positive	test = negative	Total	
cancer = yes	90	210	300	
cancer = no	140	9560	9700	
Total	230	9770	10000	

Problem 4) Python program (40 pts)

Take the sk-learn sample code *cluster_kmeans.py* discussed in the class that is used for clustering iris dataset. Make the following changes:

- 1. In addition to using PCA to reduce features from 4 to 2, also evaluate using the original feature pairs (1,2) and (3, 4).
- 2. For all the 3 clustering settings (original, (1,2), (3,4)), calculate the clustering quality CQ = IE / EV as defined in the class:

$$IV = \sum_{C} \sum_{x \in C} d(x, c) \quad \text{and} \quad EV = \frac{1}{N} \sum_{i} \sum_{j} \delta(C(x_i) \neq C(x_j)) d(x_i, x_j)$$

Output:

3 plots of k-means clustering results for PCA, features (1,2), and features (3,4).

3 CQ values for PCA, features (1,2), and features (3,4).