Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha}$	1
$\tau_{1}^{\#2\alpha} + 2ik \ \sigma_{1}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}+$	3
	$2 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}$) == $\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#_{1} \mathcal{U}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#1}{}^{\alpha} := \sigma_{1}^{\#2}{}^{\alpha}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha\beta} + ik \ \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta == 0$	$-i (4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} t^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3\partial_{\delta}\partial_{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi}$ - $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha}$ +	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta}$ -	
	$6 \ l \ k^{\chi} \ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} +$	
	$6ik^{\lambda}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\delta\beta}+$	
	$6\ i\ k^{\chi}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{\chi}_{\chi}$ -	
	$4 \bar{l} \eta^{\alpha\beta} k^X \partial_\phi \partial^\phi \partial_\epsilon \partial_\chi \sigma^{\delta\epsilon}{}_\delta) == 0$	
Total constraints/gauge generators:	ge generators:	19

Quadratic (free) action $S == \iiint (\frac{1}{\epsilon} (2t_1 \ \omega^{\alpha_{\alpha}} \ \omega_{\beta} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\nu} - 4 \ t_1 \ \omega_{\alpha\beta} \ \partial_{\beta} f^{\alpha\prime} +$	$4t_1 \omega_{,\theta}^{\theta} \partial' f^{\alpha}_{\alpha} - 2t_1 \partial_{,f}^{\theta} \partial' f^{\alpha}_{\alpha} - 24r_3 \partial_{\beta} \omega_{,\theta}^{\theta} \partial' \omega^{\alpha\beta}_{\alpha} - 2t_1 \partial_{,f}^{\alpha} \partial_{\theta} f^{\alpha}_{\alpha} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\alpha} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} + 4t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\beta} - 24r_3 \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega_{,\theta}^{\theta} \partial_{\theta} \partial_{$	$48 r_3 \partial' \omega^{\alpha \beta}{}_{\alpha} \partial_{\theta} \omega_{'\beta}^{\theta} - 6 t_1 \partial_{\alpha} f_{\beta} \partial^{\theta} f^{\alpha '} - 3 t_1 \partial_{\alpha} f_{\theta \beta} \partial^{\theta} f^{\alpha '} + 3 t_1 \partial_{\theta} f_{\beta} \partial^{\theta} f^{\alpha '} + 3 f_1 \partial_{\theta} f_{\beta} \partial^{\theta} f^{\alpha '} + 4 \partial_{\theta} f^{\alpha '} \partial^{\theta} f^{\alpha '} + 4 \partial_{\theta} f^{\alpha '} \partial^{\theta} f^{\alpha '}$	$4 r_2 \partial_{\beta} \omega_{\alpha \theta_I} \partial^{\theta} \omega^{\alpha \beta_I} + 4 r_2 \partial_{\beta} \omega_{I \theta \alpha} \partial^{\theta} \omega^{\alpha \beta_I} - 24 r_3 \partial_{\beta} \omega_{I \theta \alpha}$ $\partial^{\theta} \omega^{\alpha \beta_I} - 2 r_2 \partial_{I} \omega_{\alpha \beta \theta} \partial^{\theta} \omega^{\alpha \beta_I} + 2 r_2 \partial_{\theta} \omega_{\alpha \beta_I} \partial^{\theta} \omega^{\alpha \beta_I} -$ $4 r_2 \partial_{\theta} \omega_{\alpha I \beta} \partial^{\theta} \omega^{\alpha \beta_I}) [t, x, y, z] dz dy dx dt$
--	--	--	--

$ au_1^{\#2}$	0 0		0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1^-}^{\#1}\alpha$	0 0		0	0	0	0	0
$\sigma_{1}^{\#2}$	0		0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
${\mathfrak r}_1^{\#1}_+ _{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

0	0	0	0	0	0	0	-	+	 +	- + +	1 +			
0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	$\sigma_{0}^{\!\#1}$	C	r_{0}^{++0}	τ ₀ ⁺⁵ τ ₀ ⁺⁷	τ_{0}^{++}	$\sigma_{0}^{\sharp 1}$		
0	0	0	9 1 7	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$	$ au_{0}^{+}$ $ au_{0}^{+}$ $ au_{0}^{+}$ $ au_{0}^{+}$	t	$\frac{e^{k^2 r_3}}{0}$	0	0	0		
$-\frac{u\kappa\epsilon_1}{\sqrt{2}}$	0	0	0	0	0	0	$\sigma_0^{\#1}$		0	0	0	$\frac{1}{k^2 r_2 - t_1}$		
$-\frac{\epsilon_{\rm I}}{\sqrt{2}}$	0	0	0	0	0	0				$\sigma_{2}^{\#1}$		$ au_2^{\#1}_{lphaeta}$		$\sigma_2^{\sharp 1}$
- <u>[1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0		^L † ^{αμ}		$\frac{2}{(2k^2)^2}$		$-\frac{2i\sqrt{2}k^{2}}{(1+2k^{2})^{2}}$		C
$\dagger^{\alpha \beta}$	$+^{\alpha\beta}$	$+^{\alpha\beta}$	\perp_{α}	$+_{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$+_{\alpha}$	$ au_{2}^{#1}$	^L † ^{αμ}	$\frac{2}{(1+$	$2i\sqrt{2}$ $+2k^2$	$\frac{k}{2} t_1$	$\frac{4k^2}{(1+2k^2)^2}$	<u>t</u> 1	C
$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{\#1} + ^{\alpha \beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_1^{\#1}$	$f_{1}^{#2}$	$\sigma_2^{\sharp 1}$	† ^{αβ)}	(0		0		$\frac{2}{t_1}$

 $f_{0}^{\#1}$

0

 $6k^2r_3$

0 $\frac{2k^2t_1}{3}$

Massive and massless spectra

Massive particle

Pole residue:
$$-\frac{1}{r_2} > 0$$

Polarisations: 1

Square mass: $\frac{t_1}{r_2} > 0$

Spin: 0

Parity: Odd

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$