SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS EXTENSION 1

YEAR 11 COMMON TEST

MAY 2006

Time allowed: 70 minutes

Instructions:

- Show all necessary working in every question
- Start each question on a new page
- Attempt all questions
- All questions are not of equal value
- Marks shown are approximate and may be changed
- Full marks may not be awarded for careless or badly arranged work
- Your sketches must be neat. Use a ruler to draw axes.
- Approved calculators may be used
- These questions are to be handed in with your answers.

Name:	 	
Class:		

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
/10	/10	/11	/9	/10	/10	/60

Question 1 (10 marks)

a) Find the value of x

(1)

- b) Find the exact value of cot(120°) (2)
- c) Write down the equation of the hyperbola shown on the Cartesian plane below

- d) If $\sin \alpha = \frac{-p}{q}$ and $\cos \alpha > 0$, find an expression for $\tan \alpha$ (2)
- e) Solve |2x-4|=x+2 (3)

Question 2 (10 Marks) Start a new page

- a) Find the largest possible domain for $f(x) = \sqrt{2+x} + \sqrt{2-x}$ (2)
- b) Simplify $a + \frac{1}{a}$ if $a = \sqrt{5} + 1$. Express your answer in its simplest form (2)
- c) Solve $\frac{1}{|x-3|} \ge \frac{1}{2}$ (3)
- d) Simplify $\tan A \cdot \sin A + \cos A$ (2)
- e) Simplify $\frac{\sin(90 \theta)}{\sin \theta}$ (1)

Question 3 (11 marks) Start a new page

a) Solve
$$\frac{2x+3}{x-4} > 1$$
 (3)

b) Find the exact value of m in triangle ABC (2)

- c) Find the range for the function $f(x) = 2x^2 + 4x + 5$ (2)
- d) Consider the curve $y = \frac{2-x}{2x+3}$ (4)
 - i. State the equation of the vertical asymptote
 - ii. Find the equation of the horizontal asymptote (hint: examine y as $x \to \pm \infty$)
 - iii. Find the x and y intercepts.
 - iv. Sketch the curve

Question 4 (9 marks) Start a new page

a) Solve
$$2\cos\theta = \sqrt{2}$$
 for $0 \le \theta \le 360^{\circ}$ (3)

b) Solve
$$\sin 2x = \frac{-1}{2}$$
 for $0 \le x \le 360^{\circ}$ (3)

c) Sketch the circle $x^2 + y^2 = 4x$. Showing any intercepts with the coordinate axes. (3)

Question 5 (10 marks) Start a new page

a) Simplify
$$\frac{18^n \times 6^{n+1}}{3^n}$$
 (2)

b) i. Sketch on separate diagrams
$$(\alpha)y = |x+2|$$
 (2)

$$(\beta)y = |x+2| + |x-2| \tag{2}$$

ii. Hence solve
$$|x+2| = 4 - |x-2|$$
 (2)

c) Sketch the region indicated by the intersection of
$$y \le \sqrt{4-x^2}$$
 and $x+y+2 \ge 0$

Question 6 (10 marks) Start a new page

a) y = f(x) represents a continuous <u>odd</u> function. Write down an expression for A. (1)

$$f(x) = x(2-x)$$
 where $x \ge 0$
= A where $x < 0$

b) Find x and y if

$$x - 2y + 2\sqrt{x - y} = 7 + \sqrt{20} \tag{3}$$

c) In the diagram below, triangle QRP has a right angle at R, $\angle RQS = 45^{\circ}, \angle SQP = 15^{\circ}$ and QR = RS = 2 cm.

- i. Using triangle QRS find the exact length of QS. (1)
- ii. Using triangle QRP find the exact length of PR and hence the exact length of PS. (2)

iii. Use the sine rule in an appropriate triangle to prove that

$$\sin 15^{\circ} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \tag{3}$$

Question 1

b)
$$\frac{1}{400120^{\circ}} = \frac{1}{\sqrt{3}}$$

c)
$$y = \frac{-1}{x - 2}$$

$$=\frac{-\rho}{\sqrt{2}}$$

$$2x - 4 = x + 2 - (2x - 4) = x + 2$$

$$-2x+4=x+2$$

$$-3x = -2$$

$$x = \frac{2}{3}$$

Question 2

a)
$$\sqrt{x+2}$$
 $x > -2$

$$x \leq 2$$

b)
$$\frac{1}{(5+1)} = \frac{5-1}{5-1}$$

$$a + 1 = \sqrt{5} + 1 + \sqrt{5} - 1$$

$$= 4\sqrt{5} + 4 + \sqrt{5} - 1$$

$$= 4\sqrt{5} + 4 + \sqrt{5} - 1$$

$$= 5\sqrt{5} + 3$$

c)
$$\frac{1}{|x-3|}$$
 $\Rightarrow \frac{1}{2}$

$$2 > |x-3|$$

$$|x-3| \leq 2$$

$$x - 3 \le 2$$
 $-x + 3 \le 2$

$$= S_{10}A + S_{10}A$$

$$= \frac{5.5^2A + \cos^2 A}{\cos A}$$

$$=\frac{1}{\cos A}$$

LIUITZYNXZI

a)
$$\frac{18^{n} \times 6^{n+1}}{3^{n}} = \frac{6^{n} \times 3^{n} \times 6^{n+1}}{3^{n}}$$

(2n+1

111.
$$|x+2| = 4 - |x-2|$$

 $|x+2| + |x-2| = 4$
 $|x+2| + |x-2| = 4$

Question 6

c)

$$A = \chi(x+2) \text{ or } x^2 + 2x$$

 $2-2y+\sqrt{4x-4y}=7+\sqrt{20}$ -2y-2y-7-2y-14 -4x-4y=20-7+x-4y=20 2x=6

2=3

1. $QS^2 = 2^2 + 2^2$ $QS = 2\sqrt{2}$

11.
$$\tan 30^{\circ} = 2/RP$$

$$1/3 = 2/RP$$

$$RP = 2/3$$

$$0^{\circ} PS = 2/3 - 2$$

III. ARSP

 $Sin15^{\circ} = PS \cdot Sin30^{\circ} C$ $= 2\sqrt{3} - 2 \cdot \frac{1}{2}$