ABHISHEK DHANASETTY BANA 6043 PROJECT – REPORT 2/21/17

Background: Flight landing

Motivation: To reduce the risk of landing overrun

Goal: To study what factors and how they would impact the landing distance of a commercial flight.

Chapter-1 - Understanding:

Understanding the objectives:

- Based on the information given to us we must analyze the data, so that it can reduce landing overrun.
- Factor's such as wind, speed, pitch, weight, temperature might affect landing overrun.

Understanding the data provided:

- Two files FAA1.xls and FAA2.xls are given for analysis.
- Entire database contains two aircrafts they are "Airbus" and "Boeing".
- Factors that are given for analysis are speed of flight on ground and air, height of flight from ground, duration of flight, and pitch.

Determining the goals:

• Study and analyze the factors that might affect the distance of flights Airbus and Boeing.

Requirements:

- SAS
- MS Excel

Assumptions:

- Assuming, that speed of flight in air and ground is nearly the same.
- As it is a commercial flight I'm assuming that number of passengers does not affect our analysis.

Data Understanding:

Collecting Initial Data:

- Given two excel files FAA1.xls and FAA2.xls
 - FAA1.xls contains:
 - Variables: aircraft, duration, no_pasg, speed_ground, speed_air, height, pitch, and distance.
 - Number of rows: 800
 - FAA2.xls contains:
 - Variables: aircraft, no_pasg, speed_ground, speed_air, height, pitch, and distance.
 - Number of rows: 150

Importing data into SAS:

- I'm using SAS studio, university edition
- I created a folder locally in SAS studio and named it Project
- Uploaded files FAA1.xls and FAA2.xls in Project folder.
- Importing the files in SAS:

```
PROC IMPORT OUT= WORK.File1
```

DATAFILE= "~/Project/FAA1.xls"

DBMS=xls REPLACE;

GETNAMES=YES;

RUN;

PROC IMPORT OUT= WORK.File2

DATAFILE= "~/Project/FAA2.xls"

DBMS=xls REPLACE;

GETNAMES=YES;

RUN:

• Renamed the files as FLIGHT_LANDING_FILE1 and FLIGHT_LANDING_FILE2

DATA FLIGHT_LANDING_FILE1;

SET WORK.FILE1;

RUN;

DATA FLIGHT_LANDING_FILE2;

SET WORK.FILE2;

RUN;

Exploring the data:

- **Aircraft:** The make of an aircraft (Airbus or Boeing)
- **Duration:** Flight duration in minutes during takeoff and landing. The duration of a normal flight should always be greater than 40 mins
- **No_pasg:** The number of passengers in the flight
- **Speed_ground:** The ground speed of an aircraft in miles per hour when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal
- **Speed_air:** The air speed of an aircraft in miles per hour when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal
- **Height:** The height of an aircraft in meters when it is passing over the threshold of the runway. The landing aircraft is required to be at least 6 meters high at the threshold of the runway

- **Pitch:** Pitch angle in degrees of an aircraft when it is passing over the threshold of the runway.
- **Distance:** The landing distance of an aircraft in feet. More specifically, it refers to the distance between the threshold of the runway and the point where the aircraft can be fully stopped. The length of the airport runway is typically less than 6000 feet.

Chapter 2 – Data Preparation:

Merging the datasets:

 Using the SET statement to concatenate the data sets and named the merged file as FLIGHT_LANDING_FILE

```
DATA FLIGHT_LANDING_FILE;
```

SET FLIGHT_LANDING_FILE1 FLIGHT_LANDING_FILE2;

RUN;

Handling unknown values:

 Handling unknown numbers in the merged file and named it as FLIGHT_LANDING_UNK_NUMBERS.

```
DATA FLIGHT_LANDING_UNK_NUMBERS;
```

SET WORK.FLIGHT_LANDING_FILE;

ARRAY UNKNOWN_NUMBERS _NUMERIC_;

DO OVER UNKNOWN NUMBERS;

IF UNKNOWN_NUMBERS = . THEN UNKNOWN_NUMBERS

= 0:

END;

RUN;

 Handling unknown characters in the dataset and named it as FLIGHT_LANDING_UNK_CHARACTERS

DATA FLIGHT_LANDING_UNK_CHARACTERS; SET WORK.FLIGHT_LANDING_UNK_NUMBERS; ARRAY UNKNOWN_CHARS _CHARACTER_; DO OVER UNKNOWN_CHARS; IF UNKNOWN_CHARS = ''THEN UNKNOWN_CHARS = 'UNK'; END; RUN;

Removing duplicates:

• Using the keyword NODUP, I'm removing all the duplicates from the dataset.

DATA FLIGHT_LANDING_NODUP;

SET FLIGHT_LANDING_UNK_CHARACTERS;

RUN;

PROC SORT DATA=FLIGHT_LANDING_NODUP NODUP OUT=FLIGHT_LANDING_NODUP;

BY AIRCRAFT;

RUN;

Selecting data:

- Assuming as it is a commercial flight the number of passengers does not affect landing overrun.
 - So, dropping no_pasg from the dataset and renaming the dataset as COMPLENESS_CHECK.

```
DATA COMPLETENESS_CHECK;

SET FLIGHT_LANDING_NODUP;

DROP NO_PASG;

RUN;
```

Deleting the missing values:

• Deleting the missing values if there are any from the dataset and renamed the dataset as *FILTERED_DATA*.

```
DATA FILTERED_DATA;

SET COMPLETENESS_CHECK;

IF CMISS(OF _ALL_) THEN DELETE;

RUN;
```

Find the count:

- Earlier in handling unknown values, we replaced missing integers with 0 and missing characters as 'UNK'
- Using procedure FREQ, we find the count of missing values.

```
PROC FORMAT;

VALUE ZEROF

0 = 'ZERO'

OTHER = 'NOT ZERO';

QUIT;

PROC FREQ DATA=FILTERED_DATA;

FORMAT _NUMERIC_ ZEROF.;

TABLES _NUMERIC_/MISSING;

RUN;
```

Duration:

	duration											
duration	Frequency	Percent	Cumulative Frequency	Cumulative Percent								
Zero	151	15.88	151	15.88								
Not Zero	800	84.12	951	100.00								

Speed_ground:

	speed_ground											
speed_ground	Frequency	Percent	Cumulative Frequency	Cumulative Percent								
Zero	1	0.11	1	0.11								
Not Zero	950	99.89	951	100.00								

Speed_air:

speed_air											
speed_air	Frequency	Percent	Cumulative Frequency	Cumulative Percent							
Zero	712	74.87	712	74.87							
Not Zero	239	25.13	951	100.00							

<u>Height:</u>

height											
height	Frequency	Percent	Cumulative Frequency	Cumulative Percent							
Not Zero	950	99.89	950	99.89							
Zero	1	0.11	951	100.00							

Pitch:

	pitch											
pitch	Frequency	Percent	Cumulative Frequency	Cumulative Percent								
Zero	1	0.11	1	0.11								
Not Zero	950	99.89	951	100.00								

- We see that most of the values in speed_air is missing.
- Finding the correlation value between speed of air and speed of ground.

PROC CORR DATA=FILTERED_DATA;

VAR SPEED_AIR;

WITH SPEED GROUND;

TITLE CO-RELATION COEFFIECIENT OF SPEED OF AIR WITH RESPECT TO SPEED OF GROUND;

RUN;

• As speed of ground is closely related to speed of ground, I'm replacing the missing values of speed of air with speed of ground.

```
DATA COMPLETENESS_CHECK_2;

SET FILTERED_DATA;

/*DROP SPEED_AIR; */

IF SPEED_AIR = 0.0 THEN SPEED_AIR = SPEED_GROUND;

RUN;
```

Validity Check:

• Based on the condition given to us I'm validating the given dataset.

```
DATA VALIDITY_DATA;

SET COMPLETENESS_CHECK_2;

IF DURATION <= 40 THEN DELETE; /* ALWAYS BE */

IF SPEED_GROUND > 140 THEN DELETE;
```

IF SPEED_GROUND < 30 THEN DELETE;

IF SPEED_AIR > 140 THEN DELETE;

IF SPEED_AIR < 30 THEN DELETE;

IF HEIGHT <= 6 THEN DELETE; /* ATLEAST */

IF DISTANCE > 6000 THEN DELETE;

RUN;

So, after handling the missing vales and cleaning the data, we remain with the following data:

Obs	aircraft	duration	speed_ground	speed_air	height	pitch	distance
1	airbus	132.46942492	100.01055305	100.891677	41.033010684	4.2975016214	2554.8330623
2	airbus	109.19713407	82.483044979	82.483044979	30.140024889	4.0896284195	1321.0000654
3	airbus	93.952926911	96.878686347	98.085883143	29.178095121	3.987524021	2008.2207232
4	airbus	45.635423091	93.793862117	93.793862117	42.830935448	4.271324799	2003.4386496
5	airbus	99.148062915	97.096913917	96.913737767	33.144245658	3.5162975656	2060.1694249
6	airbus	199.43713308	58.10907688	58.10907688	24.20102213	3.6341657268	418.01946274
7	airbus	141.96833358	85.849362338	85.849362338	46.468182053	3.4015527555	1492.6717204
8	airbus	203.13135186	90.261004686	90.261004686	42.318923044	3.2745717105	1446.8557482
9	airbus	199.79840009	61.712054098	61.712054098	34.976545351	4.0805575423	643.85634155
10	airbus	112.87149908	104.45540038	103.6715358	23.783587114	3.9026553246	2488.9984842
11	airbus	148.49500413	99.874522521	98.724063607	39.520425649	3.9041206536	2404.7430929
12	airbus	89.075548734	74.212201979	74.212201979	25.747432194	3.6751924109	852.77611439
13	airbus	109.79101574	85.88079228	85.88079228	33.466314922	3.462927709	1408.5685921
14	airbus	209.19366153	50.812930767	50.812930767	38.841316346	4.0338980996	566.92692802
15	airbus	143.52069259	78.580289917	78.580289917	33.75012614	2.2844801423	1011.337258
16	airbus	147.81402601	84.685046724	84.685046724	45.643491432	3.6631635685	1454.2976548
17	airbus	217.12308376	94.81425838	97.631341718	33.058365517	3.8235547791	2017.6011486
18	airbus	142.46940356	63.918959665	63.918959665	30.153465712	3.0850903012	428.99182821
19	airbus	99.019165671	91.236709563	91.236709563	15.59892741	3.3688761342	1450.5750216
20	airbus	198.8694626	61.127025526	61.127025526	22.51924498	3.4452935393	397.54283343
21	airbus	131.73109556	131.03518222	131.3379485	28.277965541	3.6601936464	4896.2946083
22	airbus	274.21773493	84.136858635	84.136858635	28.401059676	3.593594411	944.66620396
23	airbus	160.39281504	103.27582495	105.18709549	54.198540346	3.95212311	2837.0808498
24	airbus	79.343951801	92.534347718	92.534347718	22.228410408	3.5995757116	1816.9775926
25	airbus	87.345969963	87.926511371	87.926511371	28.790896161	4.011354326	1555.4007483

	-						
752	boeing	92.450287837	101.5435039	101.84980019	18.169394071	4.8226833856	2573.0532475
753	boeing	106.10804784	97.174871746	98.637718197	38.441153122	3.5773087522	2628.536315
754	boeing	158.4190187	65.642893609	65.642893609	26.96473354	3.4595436201	1154.219917
755	boeing	146.54974486	58.288973718	58.288973718	27.968682076	4.3118895338	919.0474790
756	boeing	63.32952055	132.78467664	132.9114649	18.177030219	4.1106842414	5343.200953
757	boeing	213.98450886	80.394057703	80.394057703	16.962413199	4.0980200281	1531.287058
758	boeing	173.75152907	68.462817944	68.462817944	35.027645688	4.9566852937	1098.284874
759	boeing	141.64645173	64.99673603	64.99673603	12.720887595	4.3681656285	960.1847341
760	boeing	84.368450612	75.116022418	75.116022418	34.879568015	3.9307575129	1270.303178
761	boeing	146.18126345	65.334357647	65.334357647	32.666905195	4.4053438458	968.4368198
762	boeing	147.99216651	80.992495294	80.992495294	21.705147968	3.3636279418	1485.541258
763	boeing	177.62133285	65.570869498	65.570869498	8.8251728965	3.6673684977	839.2651693
764	boeing	192.27232801	71.753544367	71.753544387	15.870447594	4.4654794397	920.7156299
765	boeing	136.64928054	61.202449961	61.202449961	28.405156035	3.9999589106	1123.404081
766	boeing	160.33576673	78.270298206	78.270298206	32.732115723	3.9023897774	1346.541073
767	boeing	233.43123856	34.222063657	34.222063657	28.629155926	4.7888425657	955.909666
768	boeing	168.63061318	77.535257271	77.535257271	21.047219908	4.2192924831	1375.020062
769	boeing	94.319896766	83.635110177	83.635110177	23.466406143	3.5487071321	1499.724266
770	boeing	164.77438392	53.113984349	53.113984349	27.920433284	4.3227229045	819.2360016
771	boeing	130.75025897	65.760129141	65.760129141	28.666938655	4.4815795592	893.5779541
772	boeing	142.42032129	80.433449799	80.433449799	19.787504785	4.016768468	1445.865261
773	boeing	183.95750281	45.857193744	45.857193744	39.804470778	3.96076458	1050.55058
774	boeing	147.90533612	90.499523559	90.499523559	31.401174198	4.3570430758	1853.947970
775	boeing	134.21929344	43.124453971	43.124453971	36.98798361	3.8493425417	977.398054
776	boeing	137.92287323	47.148822575	47.148822575	46.42619482	5.1183234022	1128.96807
777	boeing	99.681502958	121.83713867	120.95340518	33.184596582	3.8674761307	4427.67076
778	boeing	68.201536698	67.955636835	67.955636835	39.479483513	4.7795649622	1344.340349
779	boeing	83.512569699	78.625488084	78.625488084	17.342190802	3.8634086267	1104.40422
780	boeing	212.29018	89.533713205	90.626181428	35.494742904	4.0010380484	2148.107928
781	boeing	153.8344532	126.83927854	126.11864818	20.547833848	4.3345575101	4738.604581

Completeness check:

```
proc means data=validity_data n nmiss min mean p1 p5 p10 p25 p50 p75 p95 p99;
     var duration speed_ground speed_air height distance;
run;
proc freq data=validity_data;
    tables aircraft/missing list;
run;
```


The final number of observations remaining are 781, after cleaning / pruning and the abnormal values are also removed.

Chapter 3 (Statistical Modeling):

 As our file goal is related to the distance I'm going to compare each and every variable with respect to distance.

Plotting distance vs duration:

proc plot data= validity_data;
 plot distance * duration;
 title Distance vs Duration;
run;

Plotting distance vs speed of flight on ground:

proc plot data= validity_data;

plot distance * speed_ground;

title Distance vs Speed of Ground;

Plotting distance vs speed of flight in air:

```
proc plot data= validity_data;
    plot distance * speed_air;
    title Distance vs Speed of air;
run;
```


Plotting distance vs height from the sea level:

proc plot data= validity_data;

plot distance * height;

title Distance vs Height;

run;

Plotting distance with respect to pitch:

proc plot data= validity_data;

plot distance * pitch;

title Distance vs Pitch;

run;

Univariate analysis:

proc sort data=validity_data;

by descending aircraft speed_air speed_ground height pitch distance;

run;

proc univariate data=validity_data normal;

histogram/normal;

qqplot;

Using the above univariate statement, we have performed a univariate analysis for each numeric variable in the data set.

Duration:

Good	iness-of-	Fit Tests	s for N	ormal D	istrib	ution	
Test		5	Statisti	c		p Valu	ie
Kolmogorov-S	mirnov	D 0.02877447		Pr>	D	0.116	
Cramer-von M	ises	W-Sq	0.094	126269	Pr>	W-Sq	0.137
Anderson-Darling		A-Sq	0.676	359005	Pr>	A-Sq	0.081
	Percent						
			Qua	ntile			
	Percent	Obse	erved	Estima	ated		
	1.0	54.	.2182	42.2	970		
	5.0		.4557	75.2	472		
	10.0	92	.6481	92.8	128		
	25.0	119.	.6315	122.1	642		
	50.0	154.	.2846	154.7	757		
	75.0	189.	.6629	187.3	872		
	90.0	214.	.7272	216.7	386		
	95.0	233.	.8025	234.3	043		

We can see that it is positively skewed, and we can see that few outliers are present as well.

Speed_ground:

	Paramet	ters f	or N	lormal	Distrib	ution		
	Paramet	ter	Sy	mbol	Est	imate		
	Mean		Mu	ı	79.6	3975		
	Std Dev		Sig	gma	18.8	39717		
Goo	dness-of-	Fit To	ests	for No	rmal E	istrib	ution	
Test			St	atistic			p Val	ue
Kolmogorov-S	mirnov	D		0.0183	6482	Pr>	D	>0.150
Cramer-von M	ises	W-S	q	0.0325	5509	Pr>	W-Sq	>0.250
Anderson-Dar	ling	A-S	q	0.2834	4119	Pr>	A-Sq	>0.250
				Quar	rtile			
	Percen	t O	bse	rved	Estim			
				IVCU	Esum	ated		
	1.0	0	39.	7257		8784		
	1.0 5.0				35.			
		0	47.	7257	35. 48.	8784		
	5.0	0	47.5 55.	7257 8821	35. 48. 55.	8784 5567		
	5.0	D D	47.5 55.6	7257 8821 0276	35. 48. 55. 68.	8784 5567 4221		
	5.0 10.0 25.0	D D D D D D D D D D D D D D D D D D D	47.55.66.79.	7257 8821 0276 1925	35. 48. 55. 68. 79.	8784 5567 4221 8938		
	5.0 10.0 25.0 50.0	D D D D D D D D D D D D D D D D D D D	47. 55. 66. 79.	7257 8821 0276 1925 7940	35.0 48.0 55.0 66.0 79.0 92.0	8784 5567 4221 8938 8397		
	5.0 10.0 25.0 50.0 75.0	D D D D D D D	47.55.68.79.92.104.1	7257 8821 0276 1925 7940 1314	35.7 48.55.66.79.92.103.	8784 5567 4221 8938 8397 3857		

We see that it is also positively skewed, and we also see that there are not many outliers. We can also observe that speed of ground passes all the normaility test as p value is greater that .05

Speed_air:

This parameter is almost similar to speed of ground.

Height:

It is positively skewed and it follows normal distribution as p value is greater than .05.

52

40

height Curve ——— Normal(Mu=30.455 Sigma=9.7396)

Pitch:

Fit							
	Parame	ters for	Normal	Distrib	oution		
	Parame	ter S	Symbol	Est	imate		
	Mean	n Mu	4.0	14129			
	Std Dev	8	Sigma	0.5	22369		
Good	dness-of	Fit Tes	ts for No	ormal [Distrib	ution	
Test			Statistic			p Valu	ue
Kolmogorov-S	mirnov	D	0.015	50720	Pr>	D	>0.150
Cramer-von Mi	ises	W-Sq	0.0220	01534	Pr>	W-Sq	>0.250
Anderson-Darling			A-Sq 0.1930		Pr > A-Sq		
Anderson-Dari		A-Sq				A-Sq	>0.250
Anderson-Dari			0.1930 Normal I	Distrib		A-Sq	>0.250
Anderson-Dari		es for l	Normal I	Distrib	ution	A-Sq	>0.250
Anderson-Oarl	Quanti	les for l	Normal I	Distribi ntile Estin	ution	A-Sq	>0.250
Anderson-Oarl	Quanti	t Obs	Normal I Qua served	Distribi ntile Estin 2.7	ution	A-Sq	>0.250
Anderson-Oarl	Quanti Percen	t Obs	Normal I Qua served .79873	Distributile Estim 2.7	ution nated 9892	A-Sq	>0.250
Anderson-Dari	Quantil Percen 1.	Obs.	Normal I Qua served .79673 .16798	Distributile Estim 2.7 3.1 3.3	ution nated 9892 5491	A-Sq	>0.250
Anderson-Dari	Quantii Percen 1.5	les for l	Qua served .79673 .16798 .31906	Distributile Estim 2.7 3.1 3.3 3.6	ution nated 9892 5491 4469	A-Sq	>0.250
Anderson-Dari	Quanti Percen 1. 5. 10. 25.	les for l Obs 0 2 0 3 0 3 0 3 0 4	Qua served .79673 .16798 .31906 .65330	Distributile Estim 2.7 3.1 3.3 3.6 4.0	ution 9892 5491 4469 6180	A-Sq	>0.250
Anderson-Dari	Quantii Percen 1.1 5.1 10.0 25.0 50.0	Des for less	Normal I Qua 5erved .79673 .16798 .31906 .65330 .01401	Distributile Estim 2.7 3.1 3.3 3.6 4.0 4.3	ution 9892 5491 4469 6180	A-Sq	>0.250
Anderson-Dari	Quantii Percen 1. 5. 10. 25. 50. 75.	Des for late of the late of th	Qua served .79673 .16798 .31906 .65330 .01401 .38229	Distributile Estim 2.7 3.1 3.3 3.6 4.0 4.3 4.6	nated 9892 5491 4469 6180 1413	A-Sq	>0.250

Finding the correlation of each of the other variables with distance:

With speed of flight on ground level:

proc corr data=validity_data;

var speed_ground;

with distance;

title Co-relation coefficcient of speed of ground with respect to distance;

run;

With respect to speed of flight in air:

proc corr data=validity_data;

var speed_air;

with distance;

title Co-relation coefficient of speed of air with respect to distance;

With respect to duration of the flight:

proc corr data=validity_data;

var duration;

with distance;

title Co-relation coefficient of duration with respect to distance;

With respect to height of the aircraft:

proc corr data=validity_data;

var height;

with distance;

title Co-relation coefficient of height with respect to distance;

With respect to pitch:

proc corr data=validity_data;

var pitch;

with distance;

title Co-relation coefficient of pitch with respect to distance;

To check which variables are highly correlated:

proc corr data=validity_data;

run;

	rea	arson Correlation Prob > r und				
	duration	speed_ground	speed_air	height	pitch	distance
duration duration	1.00000	-0.04897 0.1716	-0.04643 0.1950	0.01112 0.7564	-0.04675 0.1918	-0.05138 0.1514
speed_ground speed_ground	-0.04897 0.1716	1.00000	0.99918 <.0001	-0.05167 0.1491	-0.05167 0.1491	0.8677
speed_air speed_air	-0.04643 0.1950	0.99918 <.0001	1.00000	-0.05037 0.1596	-0.04938 0.1680	0.86883
height height	0.01112 0.7564	-0.05167 0.1491	-0.05037 0.1596	1.00000	0.03474 0.3323	0.10372
pitch pitch	-0.04675 0.1918	-0.05167 0.1491	-0.04938 0.1680	0.03474 0.3323	1.00000	0.06868
distance distance	-0.05138 0.1514	0.86771 <.0001	0.86883 <.0001	0.10372 0.0037	0.06868	1.00000

From the above histograms and this table we see that there exists a strong correlation between speed of ground and distance as well as speed of air and distance.

Pitch and height also have a significant correlation with distance, but there linear relationship is week.

Chapter 4: (Data Modelling)

Regression:

```
data final;
    set validity_data;
    if aircraft = 'boeing' then aircraft_type = 1;
    else aircraft_type = 0;
run;
proc reg data=final;
    model distance = aircraft_type speed_ground speed_air duration pitch height /vif;
```

output out=regression_output residual=residual_output;

From the above tables and figures we observe that:

- From the analysis of variance table, we know that there is some dependability between the independent and dependent variable.
- P value <0.05 implies rejection of null hypothesis.
- R and Adj. R square values are greater than 85 % which indicates significant variance in the dependent variable.
- From estimate table we can drop number of passengers, pitch and duration as they are not significant.
- The plot between standardized residuals and predicted value are not identically distributed.
- QQ plot shows us that the residuals are not following normality assumption

- Speed of ground and air is causing the nonlinearity as we see it in our residual vs predicted value.
- As speed of ground and speed of air are almost similar we observe a high variance inflation.

As speed of ground and speed of air are almost similar I am going to consider only speed of ground for my further analysis.

So, speed of ground, height might affect landing distance.

The equation is as follows:

```
Y = a0+a1*x1+a2*x2+a3*x3+error
```

Y is distance.

```
a0 = -2592.03
```

a1 = 489.43

a2 = 0.81

a3=14.14

 $x1 = aircraft_type$

 $x2 = speed_ground$

x3 = height

 $distance = -2592.03 + 489.43(aircraft_type) + 0.81(speed_ground) + 14.14(height)$

As per the residual plots:

Squaring speed of ground:

data final_dataset;

set final;

speed_ground_squared = speed_ground * speed_ground;

run;

proc reg data=final_dataset;

model distance = aircraft_type speed_ground_squared height / vif;

output out=regression residual=residual_output2;

The REG Procedure Model: MODEL1 Dependent Variable: distance distance Number of Observations Read Number of Observations Used Analysis of Variance Sum of Mean DF F Value Pr > F Source Squares Square 593637596 197879199 3445.53 <.0001 Model 3 Error 777 44623663 57431 Corrected Total 780 638261260 Root MSE 239.64708 R-Square 0.9301 Dependent Mean 1541.20394 Adj R-Sq 0.9298 Coeff Var 15.54934 Parameter Estimates Variance Standard Parameter Variable Label DF Estimate Error t Value Pr > |t| Inflation -955.80518 35.81600 -26.69 <.0001 0 Intercept Intercept aircraft_type 462.32562 17.15888 26.94 <.0001 1.00090 speed_ground_squared 1 0.27390 0.00279 98.09 <.0001 1.00306 height 14.21832 0.88218 16.12 <.0001 1.00266

Observations:

- The R and Adj. R value is now 93 %
- All the variables are significant and have an intuitive sign.
- Variable inflation is almost equal to one which implies there no multi-collinearity.
- The standardized residual plot and predicted value are almost identical which implies the randomness in variance is reduced slightly.

The equation is as follows:

$$Y = a0 + a1*x1+a2*x2^2+a3*x3$$

Y is distance

$$a0 = -955.80$$

$$a1 = 462.32$$

$$a2 = 0.27$$

$$a3 = 14.21$$

Distance = -955.80 + 462.32*aircraft_type + 0.27*speed_ground^2 + 14.21* height.

Plotting normal plot:

proc univariate data=regression normal plot;

From the above data:

- Residuals do not have zero mean
- P value < .05 which means we reject the null hypothesis.
- Residuals are not normally distributed.

Conclusion:

Landing Distance is highly dependent on speed of aircraft on ground, aircraft type and height from the sea level.

Final equation is:

- For a particular aircraft type, the landing distance would be 462.32 times greater than the other.
 - o In this case 'Boeing' is 462.32 points greater than 'Airbus'.
- For every unit increase in speed of flight on the ground level, there will be 0.27 unit increase in the landing distance.
- For every unit increase in height, there will be 14.21 unit increase in the landing distance.

Questions:

1) How many observations (flights) do you use to fit your final model? If not all 950 flights, why?

After removing all the abnormal row values and after handling the missing values, I was left with 781 observations. I deleted almost 169 observations.

2) What factors and how they impact the landing distance of a flight?

- For a particular aircraft type, the landing distance would be 462.32 times greater than the other.
 - o In this case 'Boeing' is 462.32 points greater than 'Airbus'.
- For every unit increase in speed of flight on the ground level, there will be 0.27 unit increase in the landing distance.
- For every unit increase in height, there will be 14.21 unit increase in the landing distance.

3) Is there any difference between the two makes Boeing and Airbus?

Yes, there is a significant difference between the two aircrafts, in our case study, for 'Boeing' the predicted landing distance is 462.32 times greater than 'Airbus'