Dynamics of individual Brownian rods in a microchannel flow

Andreas Zöttl, Kira E. Klop, Andrew K. Balin, Yongxiang Gao, Julia M. Yeomans, and Dirk G. A. L. Aarts

Summary by Faustine Gomand

Abstract

This paper deals with the orientational dynamics of microrods ($\sim 3~\mu \text{m}$) in a horizontal Hele-Shaw channel (*i.e.* Poiseuille flow in xz plane). Highlights are:

- Rotational diffusion impacts particles' orbits (Brownian motion competes with Jeffery tumbling)
- Persistence of Jeffery orbits is quantifies using temporal correlation functions
- The rods lose their memory of their initial configurations after half a Jeffery period.

1. THE JEFFERY ORBIT

Jeffery described in 1922 that single, non-Brownian ellipsoidal rods in a simple shear flow undergo a periodic motion on "the unit sphere" (sphere of radius 1 centered on the object).

The orbit of a particle is determined by:

- Its aspect ratio λ ,
- The shear rate $\dot{\gamma}$,
- \bullet The Jeffery constant C such as defined in the figure below:

$$C = \frac{\sqrt{n_x^2 + n_z^2/\lambda^2}}{n_y}$$

$$C = 0 \Rightarrow \begin{array}{c} \text{Log rolling} \\ \text{on y axis} \end{array}$$

$$C \to \infty \Rightarrow \begin{array}{c} \text{Tumbling} \\ \text{on z axis} \end{array}$$

$$C \in \mathbb{R} \setminus \{0\} \Rightarrow \begin{array}{c} \text{Kayaking} \\ \text{x,y,z} \\ \text{components} \end{array}$$

Figure 1: Different Jeffery orbits for an ellipsoidal particle depending on its Jeffery constant value C.

The reproducibility and longevity of the orbits may be affected by many experimental parameters:

- Deviations,
- Proximity to the walls,
- Inertia,
- Viscoelasticity of the shearing fluid,
- Brownian noise (neglectable for $l \sim 30 \mu \text{m}$).

At small scale $(l \sim 3-30\mu\text{m})$, the orientational state undergoes a fast decorrelation due to a competition between the Jeffery rotation and the rotational Brownian motion.

2. EXPERIMENTS AND SIMULATIONS

Setup and input parameters	Output parameters
Hele-Shaw horizontal cell	Times and positions
S-shape channel (2 bends)	Orientation in xy plane
Plasma-cleaned channel	Length L_p projected to the xy plane
Bright field	Velocity (distance travelled in a frame)
Img series of 1,000 frames, 10 fps	Angle in xy $\phi = \arctan(n_y/ n_x)$
	Angle in xz $\theta = \arcsin(n_z) = \arcsin\left(\frac{\lambda L_p/(L-1)}{\lambda - 1}\right)$

Table 1: Experimental setup and output parameters recorded by Zöttl et al., 2019; λ aspect ratio, L average rod length.

- Most rods were able to **change sign of n_y** and tumble in the xy plane *i.e.* perform **kayaking** which is not possible for non-Brownian objects,
- Simple Jeffery motion in xz was **not observed**,
- Dynamics seem **aperiodic**: apparent random jumping between orbits characterized by different values of the Jeffery constant *C*.

Brownian dynamics simulations were performed to obtain the rod velocity $\dot{\mathbf{r}}$ and the orientation rate $\dot{\mathbf{n}}$:

$$\begin{cases} \text{Translational terms: } \dot{\mathbf{r}} = \mathbf{v}_f - v_s \hat{\mathbf{z}} + \mathcal{H} \cdot \xi \\ \text{Rotational terms: } \dot{\mathbf{n}} = \Omega_J(\mathbf{n}; z) + \sqrt{2D_r \xi_r} \end{cases}$$
 (1)

With \mathbf{v}_f Poiseuille flow (planar), v_s sedimentation velocity, \mathscr{H} translational diffusion of the rod, ξ translational Gaussian white noise, $\Omega(\mathbf{n}; z)$ Jeffery reorientation rate (linearly depending on the local shear rate $\dot{\gamma}_l(z) = \dot{\gamma}(1 - 2z/H)$, with H the channel height), D_r rotational diffusion coefficient, and ξ_r rotational Gaussian white noise. These simulations were in good agreement with experiments taking $\dot{\gamma} = 18s^{-1}$.

3. COMPETITION BETWEEN JEFFERY ORBITS AND NOISE

Instantaneous Jeffery constants C(t) are calculated that map a modified Jeffery constant C':

$$C' = \frac{\text{sign}(C)}{1 + |C|} = \frac{\text{sign}(C)}{1 + \left| \frac{\sqrt{n_x^2 + n_z^2/\lambda^2}}{n_y} \right|}$$
(2)

Tumbles, xz plane:
$$C' = 0 \Leftrightarrow C \to \infty$$

Log rolls, xy plane: $C' = \pm 1 \Leftrightarrow C = 0$ (3)

Zöttl et al. obtained C' maxima for both simulations and experiments at $C' \pm 0.25$ (closer to Jeffery than to log rolling).

Computing the **autocorrelation function** $\langle C'(t)C'(0)\rangle$ (how fast the orbit characterized by C'(t) decorrelates from the initial orbit defined by C'(0)) that decays at $e^{-t/\tau}$ gives out the **Jeffery decay time** τ . This time can be compared to the **rotational diffusion (or relaxation) time** τ_r , which can be calculated in the ideal case of a sphere using:

$$\tau_r = \frac{1}{2D_r} = \frac{8\pi \eta R^3}{2k_B T}$$
 (Einstein–Smoluchowski relation) (4)

Where D_r is the rotational diffusion coefficient, η the dynamic viscosity, R the sphere radius, k_B the Boltzmann constant, and T the temperature in Kelvin.

In case of elongated bodies such as prolate ellipsoids, the relaxation time τ_r of the long principal axis around the width axis can be calculated using a different rotational diffusion coefficient D_r proposed by Perrin (1936) which adapted it from the Stokes-Einstein relationship (cf. Nuris' thesis, p.47) such as:

$$D_r^* = \frac{k_B T}{6\mu V g \perp} \tag{5}$$

Where $V = \frac{4\pi ab^2}{3}$ is the ellipsoid volume, and:

$$g \perp = \frac{2(\lambda^4 - 1)}{3\lambda((2\lambda^2 - 1)S - \lambda)},\tag{6}$$

$$S = \frac{1}{\sqrt{\lambda^2 - 1}} \ln \left(\lambda + \sqrt{\lambda^2 - 1} \right). \tag{7}$$

With a the half-length and b the half-width of the prolate ellipsoid, and $\lambda = a/b$ the prolate aspec ratio. Also note that for small average length L, $\tau_r \sim L^3$.

4. PERSISTENCE OF A JEFFERY ORBIT

The persistence of a Jeffery orbit is determined by comparing:

- 1. The **Jeffery decay time** obtained from the autocorrelation function $\langle C'(t)C'(0)\rangle$,
- 2. The **Jeffery oscillation period** of an ideal ellipsoid $t_J = \frac{2\pi(\lambda + \lambda^{-1})}{\dot{\gamma}}$.

The ratio $\frac{\tau}{t_J}$ is the number of Jeffery oscillations a rod performs before losing information about its Jeffery orbit state. It depends on:

- The wall shear rate $\dot{\gamma}$: $\dot{\gamma} \uparrow \Rightarrow \tau \downarrow$,
- The rod length: $\tau_r \sim L^3$.

The fact that at both small $\dot{\gamma}$ or small L dynamics are governed by Brownian fluctuations is captured by the **rotational Péclet number**, which compares the rotational diffusion time τ_r with the Jeffery reorientation time t_J and $f(\lambda)$ the shape function with λ aspect ratio.

$$\begin{cases}
Pe = \frac{\tau_r}{t_J} = \frac{f(\lambda)\dot{\gamma}}{D_r} \\
f(\lambda) = \left(4\pi(\lambda + \lambda^{-1})\right)^{-1}
\end{cases}$$
(8)

Zöttl et al. found $\frac{\tau}{t_J} \sim 0.5$ for rods of $3\mu\mathrm{m}$ which means that **decorrelation occurs before the** completion of even one Jeffery orbit. They also noticed that in their experiments, τ is smaller than the rotational diffusion time $\tau_r = 1/2D_r = 2.38$ and that τ approaches τ_r for really small $\dot{\gamma}$. Consequently, in their case Jeffery orbits can only be observed at large shear rates ($\dot{\gamma} \geq 10^2 \mathrm{\ s}^{-1}$).