南京理工大学

2006年硕士学位研究生入学考试试题

试题编号: 200601003

考试科目: 机械原理 (満分 150 分)

考生注意: 所有答案(包括填空题)按试题序号写在答题纸上,写在试卷上不给分

一、计算下列机构的自由度;若机构中存在复合铰链、局部自由度、虚约束,请明确指出;说明机构具有确定运动时原动件的数目。(每题 10 分,共 20 分)

- 二、图示凸轮机构,凸轮为偏心轮,转向如图。已知: R=32mm, l_{OA}=10mm, e=15mm,
 - · (1) 取 μ=1mm/mm 作机构运动简图;
 - (2) 作图求出从动件与凸轮的速度瞬心 P, 若凸轮角速度为 10rad/s, 用瞬心法求从动件速度的大小和方向。 (15 分)

第1页 共4页

- 三、试用作图法设计图示型式的曲柄摇杆机构 ABCD,已知构件长度 l_{CD} =40mm, l_{AD} =32mm,摇杆摆角 ψ =60°,行程速度变化系数 K=1.5
 - 1) 求出曲柄和连杆长度(答题应列出设计步骤,保留设计中的作图线);
 - 2) 并在图中标出极位夹角 9:
 - 3)在图中标出摇杆 CD 在极限位置 C_2 点的压力角 α_{C_2} 。 (共 15 分)

- 四、设计一偏置直动滚子从动件盘形凸轮机构,凸轮回转方向及从动件初始位置 如图所示,已知:偏距 e=5mm,基圆半径 R=20mm,滚子半径 $r_{r}=5mm$,升程 h=15mm,从动件运动规律:升程运动角 $\phi=180^{\circ}$ 从动件以等加速等减速运动上升,远休止角 $\phi_{s}=30^{\circ}$,回程运动角 $\phi'=120^{\circ}$ 从动件以等速运动至最低点,近休止角 $\phi_{s}=30^{\circ}$,试:
 - 1) 绘出从动件位移线图:
 - 2)绘出凸轮实际轮廓曲线;

(共15分)

- 五、1)已知一对正常齿制的标准齿轮, Z_1 =20,模数 m_1 =5mm,压力角 α = 20°, 两轮正确安装中心距 a=150mm,a)求出齿轮 2 的模数 m_2 ,齿数 Z_2 ,分 度圆直径 d_2 ,齿项圆直径 d_{a2} ,齿根圆直径 d_{i2} ,分度圆齿厚 s,齿距 p,基节 p_b ,节圆直径 d'_2 ,传动比 i_{12} ; b) 若这对齿轮中心距 a 变大为 a'=151mm,试计算这时这对齿轮的啮合角 α' 。
 - 2)已知两只标准斜齿圆柱齿轮齿数分别为 Z_1 、 Z_2 ,压力角 α_{n1} 、 α_{n2} ,模数 m_{n1} 、 m_{n2} ,分度圆螺旋角 β_1 、 β_2 ,列出这对齿轮能够正确啮合的条件。
 - 3) 若一对齿轮的重合度 ε=1.4, 问轮齿在转过一个基圆齿距的时间里, 两对 齿啮合和一对齿啮合的时间各占百分之几? (共 20 分)
- 六、图示轮系中,蜗杆 1 为左旋,各轮齿数分别为 Z_1 、 Z_2 、 Z_2 、 Z_3 、 Z_4 、 Z_4 、 Z_5 、 Z_5 、 Z_6 、 Z_7 ,写出轮系传动比 i_{17} 的表达式,并确定 7 的转向(写出转向判别过程) (15 分)

七、在图示平面机构中, $l_{CE}=l_{DF}=32$ mm, $l_{CD}=l_{EF}=40$ mm, $l_{BE}=30$ mm, $l_{BC}=35$ mm, $l_{AD}=100$ mm, $l_{AG}=40$ mm,匀角速 $\omega_1=10$ rad/s(转向如图所示),在图示位置 CD 与 FD 垂直, $\phi_1=60^\circ$,用相对运动图解法,求构件 4 的角速度 ω_4 和角加速度 ε_4 。 (10 分)

第3页 共4页

八、图示曲柄滑块机构已知加于连杆质心 S_2 (位于杆中点)上的惯性力 F_{i2} (重力不再计)和惯性力矩 M_{i2} ,C 点作用外力 F_3 ,其中 L_{AB} =50mm, L_{BC} =150mm, ϕ_1 =45°, ω_1 =10 rad/s,要求应用速度多边形杠杆法(茹可夫斯基杠杆法),求铰链 B 点的切向平衡力 F_b (作图线要完整),其中: F_{i2} =100N、 M_{i2} =15N.m、 F_3 =200N。 (共 15 分)

九、图示偏心轮-杠杆机构,圆盘与杠杆接触点 B 处的摩擦角为 φ,铰链 A、C 处的摩擦圆如图示虚线圆,D 处作用一重物 Q,试在图上标出各运动副约束 反力的作用线位置及方向并简要说明理由。 (15 分)

十、图示盘形回转件,圆盘半径 R=40mm, 质量分布在三个质量块上,质量分别为 M₁=100g,M₂=140g,M₃=160g,M₁、 M₃ 质心在水平轴上,M₂ 质心在垂直轴 上,质量块质心的矢径大小分别为 r₁=50mm,r₂=100mm,r₃=75mm,试求 需加平衡质量块 M_b的质量和位置 r_b。 (10 分)

