# Tema 10 Sistemas iterativos II Sistemas Dinámicos Discretos y Continuos

Dra. Neus Garrido Sàez

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología



- 1 Introducción: método de Newton amortiguado
- Método de Newton amortiguado sobre polinomios cuadráticos
  - Conjugación topológica
  - Dinámica real sobre  $p_0(x) = x^2$
  - Dinámica real sobre  $p_1(x) = x^2 1$
  - Dinámica real sobre  $p_{-1}(x) = x^2 + 1$
- Métodos libres de derivadas
  - Conceptos previos
  - Composición de métodos
  - Comparativa de métodos

1

# Introducción: método de Newton amortiguado



## Introducción: método de Newton amortiguado

#### Método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad k = 0, 1, 2, \dots$$

■ Orden de convergencia: p=2

## Método de Newton amortiguado

$$x_{k+1} = x_k - \mu \frac{f(x_k)}{f'(x_k)}, \quad \mu \in \mathbb{R} - \{0\}, \qquad k = 0, 1, 2, \dots$$

- Orden de convergencia: **p=1**  $(\mu = 1 \Rightarrow \text{M\'etodo de Newton} \Rightarrow p = 2)$
- Magreñán, Á. (2013) Estudio de la dinámica del método de Newton amortiguado. Logroño: Universidad de La Rioja

2

# Método de Newton amortiguado sobre polinomios cuadráticos

- Introducción: método de Newton amortiguado
- 2 Método de Newton amortiguado sobre polinomios cuadráticos
  - Conjugación topológica
  - Dinámica real sobre  $p_0(x) = x^2$
  - Dinámica real sobre  $p_1(x) = x^2 1$
  - Dinámica real sobre  $p_{-1}(x) = x^2 + 1$
- Métodos libres de derivadas

## Conjugación topológica

## Conjugación topológica I

Los polinomios cuadráticos  $f(x)=x^2+ax+b$  y  $p_\lambda(x)=x^2-\lambda$  son conjugados topológicamente a partir de  $\varphi(x)=x-\frac{a}{2}$ .

## Operador de punto fijo

 $N_{\mu,p_{\lambda}}$  denota el operador de punto fijo del método de Newton amortiguado aplicado sobre el polinomio  $p_{\lambda}(x)=x^2-\lambda$ :

$$N_{\mu,p_{\lambda}}(x) = x - \mu \frac{p_{\lambda}(x)}{p'_{\lambda}(x)} = x - \frac{\mu (x^2 - \lambda)}{2x}$$

## Conjugación topológica II

Basta con estudiar la dinámica del operador para  $\lambda=\{0,-1,1\}$  para conocer el comportamiento dinámico de toda la familia cuadrática

- Introducción: método de Newton amortiguado
- 2 Método de Newton amortiguado sobre polinomios cuadráticos
  - Conjugación topológica
  - Dinámica real sobre  $p_0(x) = x^2$
  - Dinámica real sobre  $p_1(x) = x^2 1$
  - Dinámica real sobre  $p_{-1}(x) = x^2 + 1$
- Métodos libres de derivadas

# Dinámica real sobre $p_0(x) = x^2$

## Operador de punto fijo

$$N_{\mu,p_0}(x) = x - \mu \frac{p_0(x)}{p'_0(x)} = \frac{(2-\mu)x}{2}$$

- Puntos fijos:  $x^* = 0$
- **E**stabilidad del punto fijo  $x^*$ :
  - $\mu \in (0,4) \Rightarrow \mathsf{Atractor}$
  - $\mu \in (-\infty,0) \cup (4,+\infty) \Rightarrow \mathsf{Repulsor}$   $\mu = \{0;4\} \Rightarrow \mathsf{Neutro}$
- No existen puntos críticos libres

# Dinámica real sobre $p_0(x) = x^2$

#### Diagramas de Verhulst







- Introducción: método de Newton amortiguado
- 2 Método de Newton amortiguado sobre polinomios cuadráticos
  - Conjugación topológica
  - Dinámica real sobre  $p_0(x) = x^2$
  - Dinámica real sobre  $p_1(x) = x^2 1$
  - Dinámica real sobre  $p_{-1}(x) = x^2 + 1$
- Métodos libres de derivadas

# Dinámica real sobre $p_1(x) = x^2 - 1$

## Operador de punto fijo

$$N_{\mu,p_1}(x) = x - \mu \frac{p_1(x)}{p'_1(x)} = x - \frac{\mu(x^2 - 1)}{2x}$$

- Puntos fijos:  $x_1^* = -1$  y  $x_2^* = 1$
- Estabilidad de los puntos fijos:

$$N'_{\mu,p_1}(x_{1,2}^*) = 1 - \mu$$

- $\mu \in (0,2) \Rightarrow \mathsf{Atractores}$
- $\mu \in (-\infty,0) \cup (2,+\infty) \Rightarrow \text{Repulsores}$
- $\mu = \{0; 2\} \Rightarrow \mathsf{Neutros}$
- Puntos críticos libres:

$$x_1^C = -\sqrt{\frac{\mu}{2-\mu}}, \qquad x_2^C = \sqrt{\frac{\mu}{2-\mu}}$$

# Dinámica real sobre $p_1(x) = x^2 - 1$

#### Diagramas de Verhulst







- Introducción: método de Newton amortiguado
- 2 Método de Newton amortiguado sobre polinomios cuadráticos
  - Conjugación topológica
  - Dinámica real sobre  $p_0(x) = x^2$
  - Dinámica real sobre  $p_1(x) = x^2 1$
  - Dinámica real sobre  $p_{-1}(x) = x^2 + 1$
- Métodos libres de derivadas

Dinámica real sobre 
$$p_{-1}(x) = x^2 + 1$$

## Operador de punto fijo

$$N_{\mu,p_{-1}}(x) = x - \mu \frac{p_{-1}(x)}{p'_{-1}(x)} = x - \frac{\mu(x^2 + 1)}{2x}$$

- No existen puntos fijos
- Puntos críticos libres:

$$x_1^C = -\sqrt{\frac{\mu}{\mu - 2}}, \qquad x_2^C = \sqrt{\frac{\mu}{\mu - 2}}$$

#### Diagrama de bifurcación



# Dinámica real sobre $p_{-1}(x) = x^2 + 1$

### Diagramas de Verhulst





3

# Métodos libres de derivadas

- 1 Introducción: método de Newton amortiguado
- 2 Método de Newton amortiguado sobre polinomios cuadráticos
- Métodos libres de derivadas
  - Conceptos previos
  - Composición de métodos
  - Comparativa de métodos

## Conceptos previos

#### Diferencias finitas

Diferencias progresivas:

$$f'(z) pprox rac{f(z+f(z))-f(z)}{f(z)}$$

Diferencias regresivas:

$$f'(z) \approx \frac{f(z) - f(z - f(z))}{f(z)}$$

■ Diferencias centrales:

$$f'(z) \approx \frac{f(z + f(z)) - f(z - f(z))}{2f(z)}$$

#### Diferencias divididas

■ De orden uno:

$$f[x,y] = \frac{f(x) - f(y)}{x - y}$$

■ De orden dos:

$$f[x, y, z] = \frac{f[y, z] - f[x, y]}{z - x}$$

### Conceptos previos

## Índice de eficiencia

$$I = p^{1/d}$$

- $p \equiv \text{orden de convergencia}$
- $d \equiv \text{número de evaluaciones funcionales de } f \text{ en cada iteración}$

## Conjetura de Kung y Traub 🗐

El orden de convergencia de un método iterativo de orden p que realiza d evaluaciones funcionales de la función en cada iteración es menor que  $2^{d-1}$ .

#### Método óptimo

Los métodos iteratios óptimos satisfacen:

$$p = 2^{d-1}$$

Kung, H.T. y Traub, J.F.(1974) Optimal order of one-point and multi-point iteration. Applied Mathematics and Computation. Amsterdam: Elsevier

#### Uso de métodos libres de derivadas

#### Ejemplo 1. Método de Steffensen

- Se obtiene aproximando la derivada del método de Newton por la diferencia finita progresiva
- $f'(z) \approx \frac{f(z+f(z))-f(z)}{f(z)}$

$$x_{k+1} = x_k - \frac{[f(x_k)]^2}{f(x_k + f(x_k)) - f(x_k)}$$

- p = 2
- d=2
- $I = 2^{1/d} = \sqrt{2}$
- Es un método óptimo:

$$2^{d-1} = 2 = p$$

- 1 Introducción: método de Newton amortiguado
- 2 Método de Newton amortiguado sobre polinomios cuadráticos
- Métodos libres de derivadas
  - Conceptos previos
  - Composición de métodos
  - Comparativa de métodos

## Composición de métodos

■ Objetivo: mejorar el orden de convergencia de los métodos iterativos

#### Teorema 1

Si dos métodos iterativos tienen órdenes de convergencia  $p_1$  y  $p_2$ , el método compuesto tiene orden de convergencia  $p=p_1\cdot p_2$ .

#### Ejemplo 2. Método de Cordero - Torregrosa

Sean  $N_f$  y  $S_f$  los operadores de punto fijo de los métodos de Newton y Steffensen:

$$N_f(z) = z - \frac{f(z)}{f'(z)}, \qquad S_f(z) = z - \frac{[f(z)]^2}{f(z + f(z)) - f(z)}$$

Composición de los métodos de Newton y Steffensen:

$$CT_f(z) = y - \frac{f(y)f[z, v]}{f[z, y]f[y, v]},$$

donde 
$$v = z + f(z)$$
,  $y = z - \frac{[f(z)]^2}{f(v) - f(z)}$ .

- $p = 4, d = 3 \Rightarrow I = 3^{1/3} = 1.5874$
- Es un método óptimo:  $2^{3-1} = 4 = p$ .

- 1 Introducción: método de Newton amortiguado
- 2 Método de Newton amortiguado sobre polinomios cuadráticos
- Métodos libres de derivadas
  - Conceptos previos
  - Composición de métodos
  - Comparativa de métodos

## Comparativa de métodos

|        | NEW    | STF    | С-Т    |
|--------|--------|--------|--------|
| p      | 2      | 2      | 4      |
| d      | 2      | 2      | 3      |
| I      | 1.4142 | 1.4142 | 1.5874 |
| Óptimo | Sí     | Sí     | Sí     |

■ NEW: método de Newton

■ STF: método de Steffensen

■ C-T: método de Cordero-Torregrosa



|                              | NEW                                                                    | STF                                                                    | С-Т                                                                                                                               |
|------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Puntos<br>fijos              | $z_1^* = -i\sqrt{\lambda}$ Atractor $z_2^* = i\sqrt{\lambda}$ Atractor | $z_1^* = -i\sqrt{\lambda}$ Atractor $z_2^* = i\sqrt{\lambda}$ Atractor | $z_1^* = -i\sqrt{\lambda}$ Atractor $z_2^* = i\sqrt{\lambda}$ Atractor $z_3^*, z_4^*, z_5^*, z_6^*$                               |
| Puntos<br>críticos<br>libres | No tiene                                                               | $z_1^C = -2 - \sqrt{2 - \lambda}$ $z_2^C = -2 + \sqrt{2 - \lambda}$    | $z_1^c = -2 - \sqrt{2 - \lambda}$ $z_2^c = -2 + \sqrt{2 - \lambda}$ $z_3^c = -1 - i\sqrt{\lambda}$ $z_4^c = -1 + i\sqrt{\lambda}$ |

#### Planos de parámetros





#### Planos dinámicos $\lambda = 1$



#### Planos dinámicos $\lambda = i$



|                           | NEW                                   | STF                                            | С-Т                                            |
|---------------------------|---------------------------------------|------------------------------------------------|------------------------------------------------|
| Puntos fijos              | $z_1^* = -\lambda^{1/3} AT$           | $z_1^* = -\lambda^{1/3} \text{ AT}$            | $z_1^* = -\lambda^{1/3} AT$                    |
|                           | $z_2^* = (-1)^{1/3} \lambda^{1/3} AT$ | $z_2^* = (-1)^{1/3} \lambda^{1/3} \text{ AT}$  | $z_2^* = (-1)^{1/3} \lambda^{1/3} AT$          |
|                           | $z_3^* = -(-1)^{2/3} \lambda^{1/3}$   | $z_3^* = -(-1)^{2/3} \lambda^{1/3} \text{ AT}$ | $z_3^* = -(-1)^{2/3} \lambda^{1/3} \text{ AT}$ |
|                           | AT                                    |                                                | $z_k^*, k=4,\dots,21$                          |
| Puntos<br>críticos libres | No tiene                              | $z_k^C, k = 1, \dots, 9$                       | $z_k^c, k = 1,, 25$                            |

#### Planos dinámicos $\lambda = 1$



#### Planos dinámicos $\lambda = i$



#### Para finalizar...

- Lección magistral: Desarrollo de una herramienta gráfica ⇒ Aula Virtual
- 🚰 Grupo de investigación: DAMRES (UPV)
  - http://www.damres.webs.upv.es/



...Y por supuesto:

# **TEST DE APRENDIZAJE!!**

