Zadání semestrální práce z předmětu SMSD pro prezenční studium, zimní semestr 2020

A) Vytvořte ve vývojovém prostředí LabVIEW aplikaci, která měří VA charakteristiku diody Pro splnění níže uvedeného zadání použijte simulátor sady přístrojů (DMM, PS) a v simulátoru ručně nastavte potřebné propojení mezi přístroji a typ propojení (VODIČ, DIODA).

- 1. Aplikace v nastaveném rozsahu (Umin, Umax, krok) měří VA charakteristiku zadané nelineární součástky. Napětí a proud součástky měřte digitálním multimetrem (DMM).
- 2. Po stisku tlačítka START zkontrolujte, zda vstupní parametry (Umin, Umax, krok) dávají smysl, pokud ne informujte uživatele a nedovolte start měření.
- 3. Postupně zvyšujte napětí PS dle nastaveného kroku od minimálního do maximálního napětí.
- 4. Aktuální průběh měření VA charakteristiky vizualizujte pomocí indikátorů "aktuální napětí" a "aktuální proud".
- 5. Získanou VA charakteristiku zobrazte v Grafu.

Realizujte část A i část B

- 6. Získanou VA charakteristiku uložte do textového souboru. Ukládání se bude iniciovat tlačítkem ULOŽ. Datový soubor bude obsahovat v prvním řádku informaci o typu součástky, datu a čase měření, autoru měření a konfiguraci měření (min. napětí, max. napětí, krok). V druhém řádku bude hlavička pro následující řádky s daty ("napětí", "proud"). Dále budou následovat řádky s naměřenými daty.
- 7. Po stisknutí tlačítka "NAČTI" načte již uložený datový soubor (viz. bod 5), nastaví se konfigurace měření aplikace ze zvoleného souboru a zobrazí se do grafu VA charakteristika.

B) Vytvořte ve vývojovém prostředí LabVIEW aplikaci, která měří frekvenční charakteristiku filtru

Pro splnění níže uvedeného zadání použijte simulátor sady přístrojů (FG, SCOPE) a v simulátoru ručně nastavte potřebné propojení mezi přístroji a typ propojení (VODIČ, FILTR).

- 1. V zadaném rozsahu (fmin, fmax, krok: např.10Hz-1kHz, 50 kroků) měří amplitudově frekvenční charakteristiku filtru. Parametry filtru lze v simulátoru ručně nastavit: řád, typ aproximace, frekvence řezu. (např. filtr 3. řádu, Čebyševova aproximace, frekvence řezu 100Hz).
- 2. Jako zdroj signálu použijte funkční generátor sinusového signálu s nastavitelnou amplitudou a frekvencí, odezvu měříte pomocí osciloskopu.
- 3. Pro ovládání funkčního generátoru i osciloskopu použijte funkce přístrojového ovladače, které vytvoříte dle standardu VXI PnP.
- 4. Po stisku tlačítka START postupně zvyšujte frekvenci dle nastavitelného počtu kroků od zadané počáteční do zadané koncové frekvence.
- 5. Aktuální průběh měření A/f charakteristiky vizualizujte pomocí indikátoru "aktuální frekvence"
- 6. Získanou A/f charakteristiku zobrazte v grafu.
- 7. Zajistěte možnost volby zobrazení X-osy grafu dle polohy přepínače na panelu: logaritmické souřadnice nebo lineární souřadnice.
- 8. Zajistěte možnost volby zobrazení Y-osy grafu ve voltech nebo dB (A/f charakteristiky nebo přenosové charakteristiky (dB)).
- 9. Získanou charakteristiku uložte na stisk tlačítka ULOŽ do textového souboru jako páry hodnot: frekvence + přenos v dB. Datový soubor bude v prvním řádku obsahovat informaci o typu filtru, datu a čase měření, autoru měření a konfiguraci měření (fmin, fmax, krok). Na druhém řádku bude hlavička pro následující řádky s daty ("frekvence, amplituda"). Dále již budou následovat řádky s naměřenými daty.

10. Aplikace dále po stištění tlačítka NAČTI načte uložený datový soubor (viz. bod 9), nastaví se konfigurace měření aplikace ze zvoleného souboru a zobrazí se do grafu A/f charakteristika.

Poznámka: body 9. a 10. týkající se ukládání do souboru a načítání ze souboru budou řešit pouze absolventi VI2

Při vytváření kódu použijte jako základ "Producer/Consumer Design Pattern (události, zprávy).

Příklad uspořádání předního panelu pro měření V/A charakteristiky.

Vypracoval: Doc.Ing. Petr Bilík, Ph.D. dne 19.10.2012. Přepracoval Ing. Martin Kryl dne 10.11.2020.

Příklad uspořádání předního panelu pro měření A/f charakteristiky.

Hodnocení

Hodnotí se:

- funkčnost
- přehlednost grafických panelů
- přehlednost a srozumitelnost blokových diagramů (účelné komentáře)
- využití vlastních subVI a vestavěných knihovních funkcí
- netradiční, ale funkční řešení.

Zásady k vypracování

- a) Postup řešení bude stručně zdokumentován (rozsah 10-20 významových stran).
-) Odevzdání projektu na síťové uložiště katedry ŠMAK do složky

/odevzdavani/SMSD/2020/Semestralni projekty

- Odevzdávat se bude archív (.rar/.zip) obsahující hlavní spouštěcí soubory LabVIEW v kořenovém adresáři a pomocné soubory (subvi) ve složce /src. Název spouštěcího programu bude vždy začínat LOGINem).
- Název archívu ve formátu **LOGIN_vX** (kde X je číslo odevzdané verze, číslováno od 1).