

Laboratory equipment for photochemical reaction, prior to analysis

Patent number: DE19744940
Publication date: 1998-09-03
Inventor: MEYER ANDREAS DR (DE); JOHNE STEFFEN DIPLO
ING (DE); HERRMANN HEIDO DIPLO ING (DE); BIRUS
DIETRICH DR (DE)
Applicant: UMEX GES FUER UMWELTBERATUNG U (DE)
Classification:
- **International:** B01J19/12; H01J65/04; G01N1/44; B01L7/00
- **european:** B01J19/12D2; B01J19/12D2B; B01J19/12D6;
G01N1/44; H01J65/04A
Application number: DE19971044940 19971010
Priority number(s): DE19971044940 19971010; DE19971008150 19970228

Report a data error here

Abstract of DE19744940

The equipment has a vessel in which materials are reacted by UV radiation for analysis under laboratory conditions. The equipment operates through induced excitation, i.e. without electrodes. The quartz glass vessel is double-walled, the sample is placed in the inner portion (1) and the space between the walls (1,2) is evacuated and then filled with a gas to provide the discharge.

Data supplied from the esp@cenet database - Worldwide

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

Offenlegungsschrift

DE 197 44 940 A 1

(51) Int. Cl. 6:
B 01 J 19/12
H 01 J 65/04
G 01 N 1/44
B 01 L 7/00

(21) Aktenzeichen: 197 44 940.9
(22) Anmeldetag: 10. 10. 97
(13) Offenlegungstag: 3. 9. 98

DE 197 44 940 A 1

<p>(66) Innere Priorität: 197 08 150. 9 28. 02. 97</p> <p>(71) Anmelder: UMEX Gesellschaft für Umweltberatung u. Entsorgung mbH, 01217 Dresden, DE</p> <p>(74) Vertreter: Liedtke, K., Dr.-Ing., Pat.-Anw., 99089 Erfurt</p> <p>(72) Erfinder: Meyer, Andreas, Dr., 99099 Erfurt, DE; Johne, Steffen, Dipl.-Ing., 01109 Dresden, DE; Herrmann, Heido, Dipl.-Ing., 99097 Erfurt, DE; Birus, Dietrich, Dr., 01109 Dresden, DE</p> <p>(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften: DE 42 22 130 C2 DE 23 05 761 C3</p>	<p>DE-PS 9 09 292 DE 25 34 125 B2 DE 24 35 564 B2 DE 196 12 265 A1 DE 195 07 189 A1 DE 195 03 096 A1 DE 195 00 802 A1 DE 44 13 426 A1 DE 43 14 510 A1 DE 42 03 345 A1 DE 39 13 519 A1 DE 82 36 910 U1 DD 2 91 199 A5 EP 06 97 374 A1 EP 05 09 110 A1</p> <p>SAUR,D., SPAHN,E.: Die UV-Photolyse - ein nahezu reagenzienfreies Aufschlußverfahren für die Spurenanalytik. In: GIT Fachz. Lab., 2/94, S.103,104,106; JP Patents Abstracts of Japan: 60- 75327 A.,C-299,Aug. 22,1985,Vol.9,No.205; 60-197233 A;</p>
---	--

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Vorrichtung zur Durchführung fotochemischer Reaktionen, vorzugsweise von Aufschlüssen im Labor

(57) Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Durchführung fotochemischer Reaktionen mit UV-Bestrahlung anzugeben, die eine Bestrahlung mit hoher Bestrahlungsstärke und hoher Bestrahlungshomogenität ermöglicht und die sich durch eine gute Handhabbarkeit auszeichnet.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die UV-Strahlereinheit in Form eines Doppelwandgefäßes aus Quarzglas ausgebildet ist, wobei der Raum im Inneren der Strahlereinheit zur Probenaufnahme dient und der sich daran nach außen anschließende ringförmige Raum zwischen den beiden Quarzglasschichten evakuiert und mit einer Metalldampf-Edelgasfüllung versehen ist. Die Erfindung betrifft eine Vorrichtung zur Durchführung fotochemischer Reaktionen, vorzugsweise von Aufschlüssen im Labor, mit einer UV-Strahlereinheit, einer Erregereinheit für elektrodenlose Strahlerregung und Bauelementen zur Einkopplung von HF-Energie in die UV-Strahlereinheit.

DE 197 44 940 A 1

DE 197 44 940 A 1

1

Beschreibung

Die Erfindung betrifft eine Vorrichtung zur Durchführung fotochemischer Reaktionen, vorzugsweise von Aufschlüssen im Labor, mit einer UV-Strahlereinheit, einer Erregerseinheit für elektrodenlose Strahleranregung und Bauelementen zur Einkopplung von HF-Energie in die UV-Strahlereinheit.

Solche Aufschlüsse werden vor allem bei der Probenvorbereitung in der chemischen Analytik benötigt, z. B. bei der Bestimmung von Schwermetallen mittels der Atomabsorptionspektroskopie.

Zum Aufschluß flüssiger Proben für die Spurenanalytik sind verschiedene Verfahren bekannt. Zunehmende Bedeutung gewinnt dabei die Bestrahlung des Probenmaterials mit UV-Licht. Hierfür ist neben der Leistungsfähigkeit dieses Verfahrens auch besonders deren Umweltfreundlichkeit maßgebend, da auf die Verwendung von konzentrierten Säuren und Oxidantien verzichtet werden kann.

Für die Durchführung von Aufschlüssen bei der Probenvorbereitung in der chemischen Analytik sind im Stand der Technik Vorrichtungen bekannt, bei denen mehrere Quarzglasgefäße, welche die aufzuschließenden Proben aufnehmen können, um einen stabsförmigen UV-Strahler angeordnet sind.

Bei dieser Anordnung ist nachteilig, daß die UV-Strahlung nur in geschwächter Form genutzt werden kann, da sie einen verhältnismäßig langen Weg zurücklegen muß, um bis zur Probe zu gelangen. Ferner gehen von dem Spektrum der ausgesendeten UV-Strahlung die kurzwelligen Anteile verloren, da diese durch die den Strahler umgebende Luft vollständig absorbiert werden. Sie können deshalb für die Spaltung der organischen Verbindungen nicht genutzt werden. Dies hat zur Folge, daß für den vollständigen Probenaufschluß eine verhältnismäßig lange Zeit benötigt wird.

Außerdem ist nachteilig, daß die Lebensdauer der Strahler und die Wellenlängeverteilung der abgegebenen UV-Strahlung der zum Einsatz kommenden Quecksilberhochdruckstrahler sehr begrenzt ist.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Durchführung fotochemischer Reaktionen mit UV-Bestrahlung anzugeben, die eine Bestrahlung mit hoher Bestrahlungsstärke und hoher Bestrahlungshomogenität ermöglicht und die sich durch eine gute Handhabbarkeit auszeichnet.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die UV-Strahlereinheit in Form eines Doppelwandgefäßes aus Quarzglas ausgebildet ist, wobei der Raum im Inneren der Strahlereinheit zur Probenaufnahme dient und der sich daran nach außen anschließende ringförmige Raum zwischen den beiden Quarzglasschichten evakuiert und mit einer Metalldampf-Edelgasfüllung versehen ist.

Vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung sind in den Unterransprüchen angegeben.

Die Vorrichtung beinhaltet eine Erregerseinheit mit allen erforderlichen Bauelementen für eine elektrodenlose Strahleranregung, wie Oszillator, Verstärker, Stromversorgung und induktiven und/oder kapazitiven Bauelementen zur Einkopplung der HF-Energie in den Strahler und eine Strahlereinheit in Form eines Doppelwandgefäßes aus Quarzglas zur Probenaufnahme.

Damit wird ein kompaktes Gerät geschaffen, das sich leicht handhaben läßt. Durch die unmittelbare Anordnung des zu bestrahlenden Materials innerhalb des Strahlers werden Verluste der abgestrahlten Energie fast vollständig vermieden.

Die erfindungsgemäße Anordnung wird damit höchsten Anforderungen an die Bestrahlungsstärke und die -homogeni-

2

nität gerecht.

Ein entscheidender Vorteil der erfindungsgemäßen Anordnung besteht darin, daß die Vorrichtung aus den beiden Baugruppen Erregerseinheit und Strahlungseinheit besteht, die leicht voneinander zu trennen sind. Die Strahlungseinheit dient gleichzeitig als Aufnahmegeräß für die zu bestrahlende Probe. Eine im Gehäuse angeordnete Führungshülse dient zur Aufnahme der Strahlereinheit in der Gesamtanordnung und verhindert das Eindringen der Probensubstanz in die Erregerseinheit bei einem eventuell auftretenden Bruch der Strahlereinheit.

Das Doppelwandgefäß kann unten geschlossen und dabei in Form eines doppelwandigen Rohres oder einer doppelwandigen Kugel ausgebildet sein. Es ist auch möglich, daß das Doppelwandgefäß in einem Gehäuse angeordnet ist, das mit einer nach oben offenen Führungshülse versehen ist, in die die UV-Strahlereinheit eingeschoben werden kann, wobei sich die Führungshülse in einer HF-Spule befindet, oder daß an den Außenflächen der Führungshülse Kondensatorelektroden angeordnet sind.

Eine vorteilhafte Ausführung sieht vor, daß ein oder mehrere Doppelwandgefäße in einem Mikrowellengerät angeordnet sind.

Dabei kann das Doppelwandgefäß unten geschlossen oder als durchgängiges Rohr ausgebildet sein. Im letzteren Fall weist es im Bereich der Doppelwandigkeit einen vergrößerten Durchmesser auf.

Damit ergibt sich eine besonders einfache und gleichzeitig sehr leistungsfähige Anregung für die UV-Strahlung. Die auf diese Weise angeregte UV-Strahlung führt zu einer wesentlichen Verkürzung der erforderlichen Aufschlußzeiten. Gegenüber den bekannten Anordnungen kann eine Verkürzung der Aufschlußzeit um bis zu 90% erreicht werden. Dadurch können auch Stoffe, die bisher mit den rein thermischen Methoden nicht oder nur sehr schwer aufzuschließen waren, in einfacher Weise aufgeschlossen werden.

Vorteilhaft ist hierbei außerdem, daß durch die Verwendung verschiedener Gasfüllungen im Entladungsraum sehr unterschiedliche Strahlungsspektren realisiert werden können. Bei hohen spektralen Anteilen an kurzwelliger Strahlung um 200 nm oder darunter kann auf die Verwendung eines Oxidationsmittels, wie Wasserstoffperoxid oder Peroxodisulfat, teilweise oder vollständig verzichtet werden, weil die erforderlichen Oxidationsradikale aus dem Wasser in ausreichender Menge gebildet werden.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispieles näher erläutert. In der zugehörigen Zeichnung zeigen:

Fig. 1 einen Schnitt durch eine unten geschlossene Strahlerseinheit in Form eines doppelwandigen Rohres,

Fig. 2 einen Schnitt durch eine unten geschlossene Strahlerseinheit in Form einer doppelwandigen Kugel,

Fig. 3 einen Schnitt durch eine Strahlerseinheit in Form eines durchgehenden doppelwandigen Rohres,

Fig. 4 einen Schnitt durch die Erregerseinheit,

Fig. 5 einen Schnitt durch eine Aufschlußeinheit im zusammengesetzten Zustand,

Fig. 6 einen Schnitt senkrecht zu der Fig. 5 dargestellten Schnittfläche und

Fig. 7 einen Schnitt durch eine Anordnung mit Mikrowellenanregung.

Fig. 1 zeigt die Strahlerseinheit im Schnitt. In diese kann die zu bestrahlende Probe in das innere Rohr 1 eingefüllt werden. Das innere Rohr 1 besteht aus einem hoch-UV-durchlässigen Quarz, beispielsweise aus Suprasil oder Ilmasil PS. Um das innere Rohr 1 ist ein weiteres Quarzglasrohr als äußeres Rohr 2 mit größerem Durchmesser angeordnet.

Der zwischen dem inneren Rohr 1 und dem äußeren Rohr 2

DE 197 44 940 A 1

3

bestehende ringförmige Raum ist gasdicht verschmolzen und mit einer Edelgas-Quecksilber-Füllung versehen.

Fig. 2 erläutert eine Ausführungsform, bei der die Strahlereinheit in Form einer doppelwandigen Kugel ausgebildet ist. Diese Ausführung ist zur Aufnahme größerer Probenmengen geeignet.

In Fig. 3 ist eine Gestaltungsform dargestellt, bei der die Strahlereinheit in Form eines doppelwandigen durchgehenden Rohres ausgeführt ist. Diese Strahlereinheit ermöglicht das Bestrahlen durchströmender Flüssigkeiten.

Fig. 4 zeigt einen Schnitt durch die Erregereinheit. In einem Gehäuse 3 sind alle für die elektrodenlose Anregung der Strahlereinheit erforderlichen Bauelemente enthalten. Eine im unteren Bereich geschlossene Führungshülse 4 dient zur Aufnahme der Strahlereinheit und verhindert gleichzeitig bei einem eventuell auftretenden Bruch der Strahlereinheit das Eindringen von Probensubstanz in die Erregereinheit. Ein hier nicht dargestellter HF-Generator erzeugt die zur Anregung der Strahlereinheit benötigte HF-Energie. Im dargestellten Ausführungsbeispiel wird diese über eine um die Führungshülse 4 gewickelte HF-Spule 5 in die Strahlereinheit eingekoppelt. Die Einkopplung kann jedoch auch kapazitiv erfolgen. Hierzu können an der Außenfläche der Führungshülse 4 Kondensatorelektroden angebracht werden.

Die Fig. 5 und 6 zeigen in zwei zueinander senkrecht angeordneten Schnitten die Gesamtanordnung der Vorrichtung im zusammengesetzten Zustand. An dem Gehäuse 3 befindet sich das Bedienfeld 6, in dem alle für die Bedienung der Vorrichtung erforderlichen Bauelemente, wie Ein/Aus-Schalter, Timer und dergleichen, zusammengefaßt sind. Die Strahlereinheit wird in der Führungshülse 4 in ihrer Lage fixiert und kann in einfacher Weise entnommen und eingesetzt werden.

In Fig. 7 ist eine Ausführung dargestellt, bei der die Anregung der UV-Strahlung in einem handelsüblichen Mikrowellengerät 7 erfolgt. Auf die Strahlereinheit mit dem inneren Rohr 1 und dem äußeren Rohr 2 treffen die von dem Mikrowellengenerator 8 erzeugten Mikrowellen auf und regen zwischen dem inneren Rohr 1 und dem äußeren Rohr 2 eine intensive UV-Strahlung an.

Bezugszeichenliste

- 1 inneres Rohr
- 2 äußeres Rohr
- 3 Gehäuse
- 4 Führungshülse
- 5 HF-Spule
- 6 Bedienfeld
- 7 Mikrowellengerät
- 8 Mikrowellengenerator

Patentansprüche

1. Vorrichtung zur Durchführung fotochemischer Reaktionen, vorzugsweise von Aufschlüssen im Labor, mit einer UV-Strahlereinheit, einer Erregereinheit für elektrodenlose Strahleranregung und Bauelementen zur Einkopplung von HF-Energie in die UV-Strahlereinheit, dadurch gekennzeichnet, daß die UV-Strahlereinheit in Form eines Doppelwandgefäßes aus Quarzglas ausgebildet ist, wobei der Raum im Inneren der Strahlereinheit zur Probenaufnahme dient und der sich daran nach außen anschließende ringförmige Raum zwischen den beiden Quarzglasschichten evakuiert und mit einer zur Entladung zubringenden Gasfüllung versehen ist.

4

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als Gasfüllung eine Metalldampf-Edelgasfüllung verwendet wird.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Doppelwandgefäß unten geschlossen ist.

4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der ringförmige Raum in Form eines doppelwandigen Rohres ausgebildet ist.

5. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der ringförmige Raum in Form einer doppelwandigen Kugel ausgebildet ist.

6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Doppelwandgefäß in einem Gehäuse (3) angeordnet ist, das mit einer nach oben offenen Führungshülse (4) versehen ist, in die die UV-Strahlereinheit eingeschoben werden kann, wobei sich die Führungshülse (4) in einer HF-Spule befindet.

7. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Doppelwandgefäß in einem Gehäuse (3) angeordnet ist, das mit einer nach oben offenen Führungshülse (4) versehen ist, in die die UV-Strahlereinheit eingeschoben werden kann, wobei an den Außenflächen der Führungshülse (4) Kondensatorelektroden angeordnet sind.

8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Doppelwandgefäß mit einem Verschluß versehen ist.

9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Doppelwandgefäß in einem Mikrowellengerät angeordnet ist.

10. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Doppelwandgefäß als durchgängiges Rohr ausgebildet ist, das im Bereich der Doppelwandigkeit einen vergrößerten Durchmesser aufweist, und daß der doppelwandige Bereich in einem Mikrowellengerät angeordnet ist.

11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß mehrere Doppelwandgefäße in dem Mikrowellengerät parallel angeordnet sind.

Hierzu 4 Seite(n) Zeichnungen

45

50

55

60

65

ZEICHNUNGEN SEITE 1

Nummer:

DE 197 44 940 A1

Int. Cl. 6

B 01 J 19/12

Offenlegungstag:

3. September 1998

Fig. 1

Fig. 4

ZEICHNUNGEN SEITE 2

Nummer:
Int. Cl. 6:
Offenlegungstag:

DE 197 44 940 A1
B 01 J 19/12
3. September 1998

Fig. 2

Fig. 3

ZEICHNUNGEN SEITE 3

Nummer:

DE 197 44 940 A1

Int. Cl. 6:

B 01 J 19/12

Offenlegungstag:

3. September 1998

Fig. 5

Fig. 6

ZEICHNUNGEN SEITE 4

Nummer:
Int. Cl. 6:
Offenlegungstag:

DE 197 44 940 A1
B 01 J 19/12
3. September 1998

Fig. 7