Universidade Federal de Viçosa – Campus Florestal

Disciplina: CCF 211 - Algoritmos e Estrutura de Dados 1

Professora: Thais Regina de Moura Braga Silva

Alunos: Marcos Biscotto - 4236, Alan Araújo - 5096, Gabriel Marques - 5097

1. Introdução

Para esse Trabalho Prático, foi-nos solicitado avaliar o impacto causado pelo desempenho dos algoritmos em sua execução real. Tendo em vista a existência de problemas intratáveis de complexidade exponencial, criamos TAD's e utilizamos funções e comandos da Linguagem C para realizar combinações simultâneas de base 2 e partindo de um expoente 10 que iria dobrando a cada execução. Medimos o tempo de execução de cada caso separadamente até certo ponto e estipulamos a duração para valores do expoente os quais eram inviáveis deixar o programa executando. Através de um menu interativo, exibimos opções para o usuário.

2. Organização

Em relação à organização e arquitetura do repositório do projeto, consideramos deixá-los da forma mais organizada possível. Desta vez, colocamos a documentação do trabalho em uma pasta dentro do repositório do projeto e também deixamos alguns arquivos de entrada como exemplo dentro de uma pasta no repositório. Separamos os arquivos ".h" em uma pasta separada e deixamos na pasta geral os arquivos main.c e o makefile do projeto, como demonstrado na **Figura 1**.

Figura 1 - Repositório do Projeto

Como as funções e variáveis do programa estão nomeadas de forma autoexplicativa e o código do mesmo está devidamente comentado, não achamos necessário colocar um

descritivo ou um passo a passo em um arquivo "README". O arquivo makefile possui os comandos de compilação e execução do programa, estruturado de maneira a compilar e rodar ao introduzir o comando "make" no terminal ou IDE.

3. Desenvolvimento

Abaixo relatamos o processo de desenvolvimento do tp, desde sua interpretação até o que foi solicitado como produto final, além de descrições sobre as tomadas de decisões e complicações a respeito do desenvolvimento do programa.

3.1) Interpretação:

Logo de início, a primeira complicação que tivemos para realizar esse trabalho prático, foi a dificuldade de nossa parte na interpretação da especificação do mesmo, o que nos custou certo tempo. Após tirarmos dúvidas com os monitores e a professora, compreendemos que o tp era dividido em duas partes: a primeira era para realizarmos as combinações de espaços na árvore, exibirmos o tempo que tal combinação demorou para ser executada e conferir a permutação com uma tabela de adjacência. A segunda parte é referente à leitura de um arquivo de entrada que seria os espaços e suas adjacências já feitas, e informariamos a matriz de adjacências como saída.

3.2) Headers:

Com base em nossa interpretação, além do arquivo main.c, utilizamos 3 arquivos ".h", sendo eles responsáveis por gerar os arranjos de acordo com as cores e o tamanho, abertura e verificação do arquivo de entrada e um TAD que é o próprio Problema das Bolinhas de Natal em si. Não utilizamos outros arquivos ".c" pois deixamos o menu na própria main e as funções nos seus respectivos ".h".

3.3) Tomada de Decisões:

Assim como esperado, a "resolução" desse problema se dá por força bruta, uma vez que quanto maior o número de espaços na árvore, mais execuções serão realizadas e maior será o tempo de execução. Apesar de na especificação do tp estar pedindo um código de Arranjo com repetição, procuramos pela internet mas não conseguimos encontrar um código em C de determinado algoritmo e mesmo tendo encontrado um código em PHP que fizesse tal procedimento, não tivemos a habilidade de converter PHP em C, então utilizamos um algoritmo de Permutação com repetição.

4. Resultados

Como resultado, temos um menu interativo funcional (**Imagem 2**) que disponibiliza algumas opções para o usuário, recebe um comando do mesmo e realiza uma operação baseada na escolha. Com a execução do código para diversos casos de entrada, plotamos gráficos e estimamos tempos para operações que não convém de serem realizadas na prática, uma vez que levam um tempo absurdo para serem finalizadas.

PROBLEMA DAS BOLINHAS DE NATAL
COLORAÇÃO DE GRAFOS
Escolha um modo:
1. Gerar arranjos separadamente
2. Gerar tabela de adjacências
3. Verificar PBN
4. Instruções
5. Sair do programa
Opção desejada: 🗌

Figura 2 - Menu Interativo

Nas Figuras 3.1 e 3.2, podemos observar o gráfico do Número de Espaços na Árvore por Número de Operações Realizadas, que segue modelo 2ⁿ.

Figura 3.1 - Gráfico Entradas X Operações com

Figura 3.2 - Gráfico Entrada X Operações com zoom maior*

A **Figura 4** representa o gráfico Número de Entradas Disponíveis por Tempo de Execução em Minutos, que obedece a equação aproximada de 2^{n-23,97} + 0,02. Para uma árvore com 40 espaços para as bolinhas, foi estimado um tempo de 73.324 minutos ou 50,919 dias.

Figura 4 - Gráfico Espaços X Tempo em Minutos*

5. Conclusão

Por fim, com o término do trabalho, obtivemos um resultado que ao nosso ver atende às especificações anteriormente prescritas. Com a utilização de um código de terceiros e funções da linguagem C importadas de bibliotecas como time.h, conseguimos realizar as combinações necessárias e criar as matrizes para as comparações, juntamente com a captura do tempo de execução que é informado no término das combinações. Também lemos um arquivo e geramos sua respectiva matriz de adjacência. Como dito anteriormente, utilizamos força bruta para realizar os problemas resolvíveis, enquanto os demais foram calculados e obtidos resultados aproximados.

6. Referências

- [1] Github. Disponível em: </https://github.com/> Último acesso em: 05 de novembro de 2022
- [2] Gitlab. Disponível em: < https://gitlab.com/> Último acesso em 02 de novembro de 2022
- [3] Stack Overflow. Disponível em < https://stackoverflow.com/> Último acesso em 05 de novembro de 2022
- [4] Geeks for Geeks. Disponível em < https://www.geeksforgeeks.org/ Último acesso em 03 de outubro de 2022
- [5] ZIVIANI, Nivio. Projeto de Algoritmos com Implementações em Pascal e C.3ªEd. Cengage Learning, 23 junho 2010.
- [6] Daemonio Labs. Disponível em https://daemoniolabs.wordpress.com/2011/02/11/gerando-permutacoes-r-com-repeticao-em-c/ Último acesso em 03 de novembro de 2022.