Chapter 11 Relations binaires sur un ensemble

Exercice 11.1

Déterminer les propriétés des relations binaires suivantes (réflexivité, symétrie, anti-symétrie, transitivité), et détecter les relations d'équivalence, d'ordre total ou partiel.

- **1.** \parallel sur \mathcal{D} , l'ensemble des droites du plan.
- **2.** \perp sur \mathcal{D} , l'ensemble des droites du plan.
- 3. $\leq \sup \mathbb{R}$.
- **4.** $\geq \sup \mathbb{R}$.
- **5.** # (avoir le même cardinal) sur $E = \mathcal{P}(F)$.
- **6.** \subset sur $E = \mathcal{P}(F)$.
- 7. «être multiple de» sur \mathbb{N} .
- **8.** «être multiple de» sur \mathbb{Z} .
- 9. $< sur \mathbb{R}$.
- **10.** \neq sur \mathbb{R} .
- 11. = sur \mathbb{R} .

Exercice 11.2

Pour $(a, b) \in \mathbb{N}^*$, on dira que

$$a\mathcal{R}b \iff (\exists n \in \mathbb{N}^*, a = b^n).$$

La relation \mathcal{R} est-elle réflexive? Symétrique? Antisymétrique? Transitive?

Exercice 11.3

Soit (E, \leq) un ensemble ordonné. On définit une relation \triangleleft sur E^2 par

$$\forall (x, y) \in E^2, \forall (x', y') \in E^2, (x, y) \triangleleft (x', y') \iff \left((x \le x' \text{ et } x \ne x') \text{ ou } (x = x' \text{ et } y \le y') \right)$$

On peut également écrire : $(x, y) \triangleleft (x', y') \iff (x \prec x' \text{ ou } (x = x' \text{ et } y \leq y')).$

- **1.** Montrer que \triangleleft est une relation d'ordre sur E^2 .
- **2.** La relation ⊲ s'appelle ordre lexicographique, pourquoi ?
- **3.** Est-ce une relation d'ordre total?

Exercice 11.4

Sur $\mathcal{F}(\mathbb{R}, [0, 1])$, on définit la relation \leq par

$$f \le g \iff \forall x \in \mathbb{R}, f(x) \le g(x).$$

- 1. Montrer que cette relation est une relation d'ordre.
- **2.** Montrer que l'ordre est partiel.
- **3.** Existe-t-il un plus grand et un plus petit élément ?

Exercice 11.5

Soit Q l'ensemble $\{1, 2, 3, 4\}$.

- 1. Écrivez les éléments de $\mathcal{P}(Q)$.
- **2.** Quels sont les majorants de $\{2,4\}$ pour la relation d'ordre \subset dans $\mathcal{P}(Q)$?
- **3.** Quels sont les majorants de { 1 } ?
- **4.** Quels sont les majorants de l'ensemble $\{\{1\}, \{2,4\}\}$?
- 5. La partie $\{\{1\},\{2,4\}\}\$ de $\mathcal{P}(Q)$ a-t-elle un maximum?
- **6.** Donnez un sous-ensemble à plusieurs éléments de $\mathcal{P}(Q)$ qui admette un maximum pour cette relation. Est-ce que $\mathcal{P}(Q)$ a un maximum ?
- 7. Reprenez pour minimum les questions posées ci-dessus pour maximum.
- **8.** Le sous-ensemble $\{\{1\}, \{2,4\}\}$ de $\mathcal{P}(Q)$ a-t-il une borne supérieure pour la relation d'ordre \subset ? Une borne inférieure?

Exercice 11.6 Problème des hussards

Soit $(a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$ une famille de np réels. Comparer

$$A = \min_{1 \le i \le n} \left(\max_{1 \le j \le q} a_{i,j} \right) \qquad \text{et} \qquad B = \max_{1 \le j \le q} \left(\min_{1 \le i \le n} a_{i,j} \right).$$

- 1. Comparer A et B.
- 2. Donner un exemple de non égalité.

Exercice 11.7 (***)

 (E, \leq) est un ensemble ordonné et f une application de E dans E telle que

- f est croissante;
- $\forall x \in E, f(x) \ge x$;
- $\forall x \in E, f(f(x)) = f(x)$.

On dit que f est une **fermeture**. Soit $F = \{ x \in E \mid f(x) = x \}$.

- 1. Montrer que, pour tout x de E, l'ensemble $F_x = \{ y \in F \mid y \ge x \}$ est non vide et admet un plus petit élément égal à f(x).
- 2. Soit G sous -ensemble de E tel que pour tout x de E, $G_x = \{ y \in G \mid y \ge x \}$ admette un plus petit élément noté g(x). Montrer que g ainsi définie est une fermeture et que l'ensemble de ses éléments invariants est G.

Exercice 11.8

Étant donné un ensemble E, on désigne par \mathcal{R} l'ensemble des relations d'équivalence définies sur E; dans un but de simplification on représentera par la même lettre une équivalence et son graphe.

1. R_1 et R_2 étant deux éléments de \mathcal{R} , on considère la relation R: « R_1 et R_2 » appelée intersection de R_1 et R_2 . Démontrer que R est une relation d'équivalence. Quel est son graphe ? Démontrer qu'une classe modulo R est l'intersection d'une classe modulo R_1 et d'une classe modulo R_2 .

Étudier les exemples suivants :

- (a) $E = \mathbb{Z}$, R_1 et R_2 étant les congruences de module respectifs p_1 et p_2 (p_1 et p_2 entiers strictement positifs distincts).
- (b) E est le plan de la géométrie élémentaire. MR_1M' et MR_2M' sont respectivement les relations «MM' est parallèle à d_1 », «MM' est parallèle à d_2 » (d_1 , d_2 étant deux directions distinctes du plan).
- **2.** Avec les mêmes notations que ci-dessus, la relation R_1 ou R_2 est-elle une relation d'équivalence ? Quel est son graphe ?
- **3.** (R_i) étant une famille de relations d'équivalences définies sur E et indexées par un ensemble I, on désigne par R la relation suivant, appelée *intersection* des (R_i) :

$$R(x, y) \iff \forall i \in I, R_i(x, y).$$

Démontrer que R est une relation d'équivalence. Quel est son graphe ? Démontrer qu'une classe C modulo R est contenue pour tout i dans une et une seule classe C_i modulo R_i et que C est l'intersection de la famille (C_i) .

Exercice 11.9

Étant donné un ensemble E, on désigne par R l'ensemble des relations d'équivalence définies sur E; dans un but de simplification on représentera par la même lettre une équivalence et son graphe. On dit que R est «plus fine» que R' si, et seulement si

$$\forall x, y \in E, xRy \implies xR'y.$$

- 1. Montrer que cette relation entre R et R' définit un ordre sur R; comparer les graphes de R et R'; cet ordre est-il total ou partiel ?
- 2. Montrer que R est plus fine que R' si, et seulement si toute classe d'équivalence modulo R' est une réunion de classes d'équivalence modulo R.
- 3. Y a-t-il un plus petit et un plus grand élément dans \mathcal{R} ordonnée par la relation d'ordre défini ci-dessus ?
- **4.** Lorsque $E = \mathbb{Z}$, déterminer toutes les congruences modulo un entier strictement positif qui sont plus fines que $x \equiv y \pmod{n}$ ou qui sont moins fines que cette relation.