Bayes Classification

- Based on
 - Quantifying tradeoffs between various classification decisions.
- Uses conditional probabilities and the costs associated with those decisions.
- State of nature:
 - Let ω denote the state of nature.
 - We have different "states", say $\omega_1, \omega_2, ..., \omega_c$
 - We call these states "classes".
- For example, in the fish classification problem:
 - ω_1 = "sea bass", ω_2 = "salmon"

- Let ω be a "random variable"
 with some probability distribution P(.)
- In the Bayesian context, P(.) is called a priori probability, where:
 - $P(\omega_1)$ is the prob. that next fish is a "sea bass"
 - $P(\omega_2)$ " "salmon"
- Then: $P(\omega_1) + P(\omega_2) = 1$
- These probs tell us how likely is a particular type of fish to appear before it actually appears.
- What is the classification problem?
 Decide on a type of fish by means of a decision rule

Bayes Classifier

- Suppose the only info we have is $P(\omega_1)$ and $P(\omega_2)$
- Decision rule:

$$\omega_1$$
 if $P(\omega_1) > P(\omega_2)$
 ω_2 otherwise

- Then, what if $P(\omega_1) = P(\omega_2)$?
 - we have a 50-50 chance of being right!
 - or... our PR system has a 50% accuracy rate! (the worst case)
- Can we do better?
 - Use the class-conditional information...
 - By means of the *class-conditional* probability density function: $p(x \mid \omega)$

- Say, what is the prob of x given it becomes from a certain class?
- If we use the *lightness* of the fish:

- This a posteriori information be used in our decision rule
- For class ω_j : $p(\omega_j, x) = P(\omega_j | x) \ p(x) = \ p(x | \omega_j) \ P(\omega_j)$
- Rearranging:

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$

where

$$p(x) = \sum_{j=1}^{c} p(x \mid \omega_j) P(\omega_j)$$

- This is Bayes formula!
- Go from $P(\omega_j)$ to a posteriori prob $P(\omega_i|x)$

- $p(x|\omega_j)$ is called the *likelihood* of ω_j wrt x
- p(x) is an evidence factor that only "scales" the final result.
- Example: Lightness, $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$

Interpretation of Bayes theorem

- What is the decision rule then?
- Consider prob. of error:

$$P(error \mid x) = \begin{cases} P(\omega_1 \mid x) & \text{if we decide } \omega_2 \\ P(\omega_2 \mid x) & \text{if we decide } \omega_1 \end{cases}$$

- How can we minimize it?
- Bayes decision rule:

Decide
$$\omega_1$$
 if $P(\omega_1|x) > P(\omega_2|x)$
 ω_2 otherwise

• Under this rule, the error becomes:

$$P(error \mid x) = \min\{P(\omega_1 \mid x), P(\omega_2 \mid x)\}$$

- Rule expressed in terms of conditional and a priori probs
- The evidence, p(x), is unimportant and omitted

- Thus, the decision rule is re-written: Decide ω_1 if $p(x|\omega_1)$ $P(\omega_1) > p(x|\omega_2)$ $P(\omega_2)$ ω_2 otherwise
- $p(x|\omega_1) = p(x|\omega_2)$ gives us no information about the class
- $P(\omega_1) = P(\omega_2)$ means the classes are equally likely
- In that case, decision based entirely on $p(x|\omega_i)$
- Rule can be generalized to 3+ classes and incorporate risk

Feature space:

 Instead of simply using a scalar x, each object represented by a vector:

$$\mathbf{X} = [X_1 \ X_2 \ \dots \ X_d]^t \in \Re^d$$

• \Re^d is the *d*-dimensional Euclidean space... called the *feature* space

Risk - Loss function

- Based on prob theory + utility theory
- How costly is an action?
- Let $\{\omega_1, \omega_2, ..., \omega_c\}$ be a set of classes, $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ be a set of possible actions
- Loss function: $\lambda(\alpha_i, \omega_i)$
 - loss incurred for taking action α_i when the state of nature is ω_i
- Bayes formula:

$$P(\omega_j \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_j) P(\omega_j)}{p(\mathbf{x})}$$

Given **x**, taking an action implies a risk:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

Called the *conditional risk*

 Aim: minimize the expected loss by taking the action that *minimizes* the risk

Decision rule:

- A function $\alpha(\mathbf{x})$ that tells us which action to take when **x** is given
- The Bayes decision rule minimizes the

overall risk:

$$R = \int_{\mathbf{x}} R(\alpha(\mathbf{x}) | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

Compute the conditional risk:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

for every value of i = 1, ..., a

The resulting minimum risk is called the Bayes risk

Two-class Classification

- Two classes: ω_1 and ω_2 and two actions: α_1 and α_2
- Notation: $\lambda_{ij} = \lambda(\alpha_i | \omega_i)$ is the loss function
- The conditional risk is given by:

$$R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x})$$

$$R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} P(\omega_1 \mid \mathbf{x}) + \lambda_{22} P(\omega_2 \mid \mathbf{x})$$

- Aim: decide ω_1 if $(\lambda_{21} \lambda_{11})P(\omega_1 \mid \mathbf{x}) > (\lambda_{12} \lambda_{22})P(\omega_2 \mid \mathbf{x})$
- In practice:
 loss after making a mistake > loss
 after being correct
- Meaning that $\lambda_{21} \lambda_{11}$ and $\lambda_{12} \lambda_{22} > 0$

• Using Bayes rule, decide ω_1 if

$$(\lambda_{21} - \lambda_{11}) p(\mathbf{x} \mid \omega_1) P(\omega_1) >$$

$$(\lambda_{12} - \lambda_{22}) p(\mathbf{x} \mid \omega_2) P(\omega_2)$$

• Alternatively, decide ω_1 if

$$\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)}$$

 where the LHS is called the likelihood ratio

Example: Spam filter (email classification)

2 classes

2 actions

$$\omega_1 = \text{spam}$$

$$\alpha_1$$
 = delete

$$ham = good$$

$$\omega_2 = \text{ham}$$

$$\alpha_2 = \text{keep}$$

 $0 = \lambda_{11} = \lambda(\alpha_1, \omega_1) \equiv \text{Email is spam - delete it}$ $10 = \lambda_{12} = \lambda(\alpha_1, \omega_2) \equiv \text{Email is ham - delete it}$ $5 = \lambda_{21} = \lambda(\alpha_2, \omega_1) \equiv \text{Email is spam - keep it}$ $0 = \lambda_{22} = \lambda(\alpha_2, \omega_2) \equiv \text{Email is ham - keep it}$

Bayes rule that minimizes the risk:

$$\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} > \frac{(10-0)}{(5-0)} \frac{P(\omega_2)}{P(\omega_1)} = 2.0 \frac{P(\omega_2)}{P(\omega_1)}$$

Suppose that:

$$P(\omega_1) = 0.9$$

$$P(\omega_2) = 0.1$$

• Then, decide ω_1 if

$$\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} > 2.0 \frac{0.1}{0.9} \approx 0.22$$

Minimum-error-rate Classification

- Two loss values: "correct" and "incorrect"
- Symmetrical or 0-1 loss function

$$\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases} \quad i, j = 1, \dots, c$$

The conditional risk:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$
$$= \sum_{j \neq i} P(\omega_j \mid \mathbf{x})$$
$$= 1 - P(\omega_i \mid \mathbf{x})$$

- minimizing the risk is equivalent to maximizing $P(\omega_i | \mathbf{x})$
- General rule for minimizing the error:
 - Decide ω_i if $P(\omega_i|\mathbf{x}) > P(\omega_i|\mathbf{x})$ for all $j \neq i$.
- 2 classes: Decide

$$\omega_1$$
 if $P(\omega_1|x) > P(\omega_2|x)$

 ω_2 otherwise

Example

$$\begin{array}{ll} \lambda(\alpha_1,\omega_1) = \lambda(\alpha_2,\omega_2) = 0 & - \\ \lambda(\alpha_1,\omega_2) = \lambda(\alpha_2,\omega_1) = 1 & \text{ being correct!} \end{array}$$

$$\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} > \frac{(1-0)}{(1-0)} \frac{P(\omega_2)}{P(\omega_1)} = \frac{P(\omega_2)}{P(\omega_1)}$$

$$\equiv p(\mathbf{x} \mid \omega_1) P(\omega_1) > p(\mathbf{x} \mid \omega_2) P(\omega_2)$$

or

$$\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} > \frac{P(\omega_2)}{P(\omega_1)}$$

Suppose
$$P(\omega_1) = P(\omega_2)$$

$$\theta_a = \frac{P(\omega_2)}{P(\omega_1)} = 1$$
, since $P(\omega_1) = P(\omega_2)$

$$\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} > 1 = \theta_a$$

Classifiers: Multi-class case

- Common representation: in terms of discriminant functions g_i(x)
- Assign **x** to class ω_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 for all $j \neq i$

- If we let $g_i(\mathbf{x}) = -R(\alpha_i \mid \mathbf{x})$, the **maximum** discriminant corresponds to the one that **minimizes** the conditional risk
- For the minimum error rate:

$$g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x})$$

Different representations:

$$g_{i}(\mathbf{x}) = P(\omega_{i} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_{i})P(\omega_{i})}{p(\mathbf{x})}$$
$$g_{i}(\mathbf{x}) = p(\mathbf{x} \mid \omega_{i})P(\omega_{i})$$
$$g_{i}(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_{i}) + \ln P(\omega_{i})$$

- All equivalent
- Divide the feature space into c regions
- separated by decision boundaries
- 2 classes:
 - A discriminant function (also called *dichotomizer*): g(x)
- Decide ω_1 if $g(\mathbf{x}) = g_1(\mathbf{x}) g_2(\mathbf{x}) > 0$

Dichotomizer

- A machine that:
 - computes the sign of the result of $g(\mathbf{x})$
 - assigns a class depending on that sign
- Many forms for writing $g(\mathbf{x})$
- Two of them are: $g(\mathbf{x}) = P(\omega_1 | \mathbf{x}) P(\omega_2 | \mathbf{x})$

$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

Example

Linear discriminant functions:

$$g_1(\mathbf{x}) = \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 1$$

$$g_2(\mathbf{x}) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2$$

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x}) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 1$$

Rule:

decide ω_1 if $g(\mathbf{x}) > 0$

Classify
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$g(\mathbf{x}) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} - 1 = 0.5 + 0.5 - 1 = 0$$

decide arbitrarily

Classify
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.9 \\ 0.2 \end{bmatrix}$$

$$g(\mathbf{x}) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0.9 \\ 0.2 \end{bmatrix} - 1 = 0.9 + 0.2 - 1 = 0.1 > 0$$

(decide ω_1)

Classify
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 1.1 \end{bmatrix}$$

$$g(\mathbf{x}) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 1.1 \end{bmatrix} - 1 = -0.4 + 1.1 - 1 = -0.3 < 0$$
 (decide ω_2)

Example: Quadratic classifier

The Normal Distribution

Justification:

- Two parameters (moments) fully specify the distribution
- Uncorrelated iff independent
- Normal marginal densities and normal conditional densities
- Normal characteristic function
- Linear transformation ⇒ *normal* distribution
- Physical justification: The central limit theorem
- Maximum entropy distribution

$$p(\mathbf{x} \mid \omega_i) = \frac{1}{(2\pi)^{\frac{d}{2}}/\sum_i/2} e^{-\frac{1}{2}(\mathbf{x}-\mu_i)^t \sum_i^{-1}(\mathbf{x}-\mu_i)}$$

Discriminant function

$$p(\mathbf{x} \mid \omega_i) = \frac{1}{(2\pi)^{\frac{d}{2}} / \sum_{i}^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \mu_i)^t \sum_{i}^{-1} (\mathbf{x} - \mu_i)}$$

 Minimum error-rate achieved by: choose max of:

$$g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$

- Now, $p(\mathbf{x} \mid \omega_i)$ known: multivariate normal... That is, $p(\mathbf{x} \mid \omega_i) \sim N(\mu_i, \Sigma_i)$
- Thus, the discriminant function results in:

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

Two cases...

Case 1:
$$\Sigma_i = \sigma^2 \mathbf{I}$$

- Each feature has the same variance, σ^2
- The features are statistically independent (uncorrelated)
- The samples fall in equal-size hyperspherical clusters
- Points with the same prob. are in a *hypersphere*.
- The classification is based on the means only
- The discriminant function results in:

$$g_i(\mathbf{x}) = -\frac{(\mathbf{x} - \boldsymbol{\mu}_i)^t (\mathbf{x} - \boldsymbol{\mu}_i)}{2\sigma^2} + \ln P(\omega_i)$$

Expanding the quadratic term:

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} [\mathbf{x}^t \mathbf{x} - 2\mathbf{\mu}_i^t \mathbf{x} + \mathbf{\mu}_i^t \mathbf{\mu}_i] + \ln P(\omega_i)$$

- Looks like it is a quadratic function on x, but...
- $\mathbf{x}^t \mathbf{x}$ is the same for all *i*, and is omitted, obtaining:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

where (the direction of the hyperplane)

$$\mathbf{w}_i = \frac{1}{\sigma^2} \mathbf{\mu}_i$$

• and (the threshold or bias of the classifier)

$$w_{i0} = -\frac{1}{2\sigma^2} \mathbf{\mu}_i^t \mathbf{\mu}_i + \ln P(\omega_i)$$

When dealing with two classes:

$$g_1(\mathbf{x}) = \frac{1}{\sigma^2} \boldsymbol{\mu}_1^t \mathbf{x} - \frac{1}{2\sigma^2} \boldsymbol{\mu}_1^t \boldsymbol{\mu}_1 + \ln P(\omega_1)$$

$$g_2(\mathbf{x}) = \frac{1}{\sigma^2} \boldsymbol{\mu}_2^t \mathbf{x} - \frac{1}{2\sigma^2} \boldsymbol{\mu}_2^t \boldsymbol{\mu}_2 + \ln P(\omega_2)$$

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x}) = \frac{1}{\sigma^2} (\mathbf{\mu}_1 - \mathbf{\mu}_2)^{\mathsf{t}} \mathbf{x} + \frac{1}{2\sigma^2} (\mathbf{\mu}_2^{\mathsf{t}} \mathbf{\mu}_2 - \mathbf{\mu}_1^{\mathsf{t}} \mathbf{\mu}_1) + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

Decide ω_1 if $g(\mathbf{x}) > 0$, else decide ω_2 when $g(\mathbf{x}) \le 0$

Ties are decided arbitrarily

Example - 2D

$$\mu_{1} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \qquad \mu_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \sigma^{2} = 1$$

$$P(\omega_{1}) = P(\omega_{2}) = 0.5$$

$$g(\mathbf{x}) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}^t \mathbf{x} + \frac{1}{2}(2 - 13) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \mathbf{x} - \frac{11}{2}$$

Classify
$$\mathbf{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$g(\mathbf{x}) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} - \frac{11}{2} = 8 - \frac{11}{2} = \frac{5}{2} = 2.5 > 0$$
 (decide ω_1)

Examples for different dimensions:

Figure from Duda et al.

© Luis Rueda, 2019 COMP-4730/8740 -- Ch. 2

- What if $P(\omega_i)$ changes ...
- 1D:

• 2D:

• 3D:

Figure from Duda et al.

Case 2: Σ_i arbitrary

- The covariance matrices are different for all classes
- The only term that can be cancelled out is $\frac{d}{2} \ln 2\pi$
- The resulting classifier is a **quadratic** function:

$$g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

where

$$\mathbf{W}_i = -rac{1}{2} \mathbf{\Sigma}_i^{-1}$$
 , $\mathbf{w}_i = \mathbf{\Sigma}_i^{-1} \mathbf{\mu}_i$

and

$$W_{i0} = -\frac{1}{2} \mathbf{\mu}_i^{t} \mathbf{\Sigma}_i^{-1} \mathbf{\mu}_i - \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(\omega_i)$$

For two classes

- Decide ω_1 if $g_1(\mathbf{x}) > g_2(\mathbf{x})$ or $g(\mathbf{x}) = g_1(\mathbf{x}) g_2(\mathbf{x}) > 0$ ω_2 otherwise
- Decision boundary:

$$g_1(\mathbf{x}) = g_2(\mathbf{x})$$

$$\mathbf{x}^t \mathbf{W}_1 \mathbf{x} + \mathbf{w}_1^t \mathbf{x} + w_{10} = \mathbf{x}^t \mathbf{W}_2 \mathbf{x} + \mathbf{w}_2^t \mathbf{x} + w_{20}$$

Resulting in:

$$g(\mathbf{x}) = \mathbf{x}^{t} \left(\mathbf{\Sigma}_{2}^{-1} - \mathbf{\Sigma}_{1}^{-1} \right) \mathbf{x} + 2 \left(\mathbf{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1} - \mathbf{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \right)^{t} \mathbf{x}$$

$$- \boldsymbol{\mu}_{1}^{t} \mathbf{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{2}^{t} \mathbf{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} - \ln \frac{|\mathbf{\Sigma}_{1}|}{|\mathbf{\Sigma}_{2}|} + 2 \ln \frac{P(\omega_{1})}{P(\omega_{2})} = 0$$

... a *hyperquadric* in the *d*-dimensional space

Shapes - various types

- Hyperplane
- Hypersphere
- Hiperellipsoid
- Hyperparaboloid
- Hyperhyperboloid
- Pair of Hyperplanes
- Pair of lines
- A single point
- ... and many more

Examples: 2D

© Luis Rueda, 2019 COMP-4730/8740 -- Ch. 2

Examples: 3D feature space

Luis Rueda, 2019

COMP-4730/8740 -- Ch. 2

Examples: 3D... (cont'd)

© Luis Rueda, 2019 COMP-4730/8740 -- Ch. 2 30

Example: 4 classes, 2D feature space

Example: Linear vs Quadratic Classifier

Parameter Estimation

We studied how to obtain the Bayesian classifier.

Assumptions:

Known:

- $P(\omega_i)$, the a priori probabilities
- $p(\mathbf{x} \mid \omega_i)$, the class-conditional densities
- In general:

These two are unknown, and have to be estimated

- To estimate the priors:
 - Assume a multinomial random variable, ω, and use maximum likelihood estimate

Parameter Estimation

Prior probabilities

Assume we have c classes:

- What is: $P(\omega_1), P(\omega_2), ..., P(\omega_c)$?
- Say ω is a multinomial r.v.
- Suppose from samples we have seen:

$$n_1$$
 samples of class ω_1

$$n_2$$
 samples of class ω_2

•

$$n_c$$
 samples of class ω_c

n total number of samples

Then

$$P(\omega_i) = \frac{n_i}{n}$$

250 cats
$$(\omega_1)$$

350 dogs
$$(\omega_2)$$

$$\frac{100 \text{ horses } (\omega_3)}{}$$

$$P(\omega_1) = \frac{250}{700} \approx 0.357$$

$$P(\omega_2) = \frac{350}{700} \approx 0.5$$

$$P(\omega_3) = \frac{100}{700} \approx 0.143$$

Maximum Likelihood Estimation (MLE)

Assume:

Class-conditional probs have a parametric form.

• Aim:

Estimate the parameters of the pdf.

Schemes:

- MLE views these parameters as quantities, while
- Bayesian estimation views them as random variables.

Given:

- c classes: $\omega_1, \omega_2, ..., \omega_c$
- Labeled dataset: D = $D_1 \cup D_2 \cup ... \cup D_n$
- where each sample in D_i is drawn independently based on the pdf $p(\mathbf{x} \mid \omega_i)$
- i.e., the samples are independent and identically distributed (iid) random vectors (or variables).

Assumption:

 $p(\mathbf{x} \mid \omega_i)$ has a *parametric* form the aim is to estimate the parameters, vector θ_i

The Problem

- Extract the information from D_j to obtain a good estimate of θ_i
- Another assumption:
 - D_i does not give any info about θ_j where $i \neq j$
- Each D_j is independent from each other
- Assume we deal with one dataset: D_j , Rename it D, as follows

$$D = \{ \mathbf{x}_1, \ \mathbf{x}_2, \ \dots, \ \mathbf{x}_n \}$$

- We then have *c* separate problems:
 - Given D, and the parametric form $p(\mathbf{x} \mid \omega_j)$, estimate the unknown parameter θ

- Examples:
 - Normal distribution: $\theta = [\mu \ \Sigma]^t$
 - Exponential distribution: $\theta = [\lambda]^t$
- The parametric forms of the normal distribution...
- Considering the *k*th sample (it is the same for all samples):

$$p(\mathbf{x}_k \mid \boldsymbol{\mu}) = \frac{1}{(2\pi)^{\frac{d}{2}}/\boldsymbol{\Sigma}/2} e^{-\frac{1}{2}(\mathbf{x}_k - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x}_k - \boldsymbol{\mu})}$$

Aim of MLE

Maximize the *likelihood* that D is generated from θ .

 Since each sample x_i in D is drawn independently, then, the likelihood is given by:

$$p(\mathcal{D} \mid \mathbf{\theta}) = \prod_{k=1}^{n} p(\mathbf{x}_{k} \mid \mathbf{\theta})$$

- The maximum likelihood estimate of θ is the value $\hat{\theta}$ that maximizes $p(\mathcal{D} | \theta)$
- For convenience:
 - work with the *logarithm* of the likelihood.
- Maximizing *log* of likelihood
 ⇒ Maximizing likelihood

- If $p(\mathcal{D} | \theta)$ is differentiable on θ , then.. $\hat{\theta}$ can be found using differential calculus...
- How?
 - Let θ be a *t*-component vector, $\theta = [\theta_1, \dots, \theta_t]^t$, and
 - let ∇_{θ} be the *gradient* operator:

$$abla_{oldsymbol{ heta}} = egin{bmatrix} rac{\partial}{\partial heta_1} \ rac{\partial}{\partial heta_t} \ \end{pmatrix}$$

• Define $l(\theta)$ as the *log-likelihood* function:

$$l(\mathbf{\theta}) \equiv \ln p(\mathcal{D} \,|\, \mathbf{\theta})$$

• Formally, the argument of $l(\theta)$ that maximizes the log-likelihood is:

$$\hat{\mathbf{\theta}} = \arg\max_{\mathbf{\theta}} \ln p(\mathcal{D} \mid \mathbf{\theta})$$

We can write the log-likelihood as:

$$l(\mathbf{\theta}) = \ln \prod_{k=1}^{n} p(\mathbf{x}_{k} \mid \mathbf{\theta}) = \sum_{k=1}^{n} \ln p(\mathbf{x}_{k} \mid \mathbf{\theta})$$

and

$$\nabla_{\boldsymbol{\theta}} l = \sum_{k=1}^{n} \nabla_{\boldsymbol{\theta}} \ln p(\mathbf{x}_{k} \mid \boldsymbol{\theta})$$

• Obtaining a set of **necessary** conditions (*t* equations): $\nabla_{\mathbf{e}} l = \mathbf{0}$

- A solution $\hat{\theta}$ to this can be:
 - A true global maximum or minimum,
 - A local maximum or minimum, or
 - An inflection point.
- Then, check second derivative.
- Note:
 - $\hat{\theta}$ is an estimate, and then
 - we must have an *infinite* number of samples to obtain the *true* parameter.

Normal Distribution

- First case: Unknown μ
- Suppose the samples are drawn from a multivariate normal distribution...
- Then, $\theta = [\mu \ \Sigma]^t$
- Suppose also that Σ is known
- Consider one of the samples (it is the same for all samples):

$$p(\mathbf{x}_k \mid \boldsymbol{\mu}) = \frac{1}{(2\pi)^{\frac{d}{2}}/\boldsymbol{\Sigma}/2} e^{-\frac{1}{2}(\mathbf{x}_k - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x}_k - \boldsymbol{\mu})}$$

• Then:

$$\ln p(\mathbf{x}_k \mid \boldsymbol{\mu}) = -\frac{1}{2} \ln \left[(2\pi)^d / \boldsymbol{\Sigma} / \right] - \frac{1}{2} (\mathbf{x}_k - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

• Differentiating wrt μ , we have:

$$\nabla_{\boldsymbol{\theta}} \ln p(\mathbf{x}_k \mid \boldsymbol{\mu}) = \boldsymbol{\Sigma}^{-1}(\mathbf{x}_k - \boldsymbol{\mu})$$

 We know that this is true for all k, and thus the necessary condition for a maximum is:

$$\sum_{k=1}^{n} \Sigma^{-1}(\mathbf{x}_{k} - \boldsymbol{\mu}) = \mathbf{0}$$

• Pre-multiplying by Σ , and rearranging: $\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}$

where $\hat{\mu}$ is called the *sample mean*

If we view the samples as a "cloud"...

 û is the centroid of the cloud

Pictorially (mean):

Second case: Unknown μ and Σ :

- This is the typical case in normal distributions
- Consider the univariate normal distribution
- Thus, $\theta = [\theta_1 \ \theta_2] = [\mu \ \sigma^2]^t$
- The log-likelihood function:

$$\ln p(x_k \mid \mathbf{\theta}) = -\frac{1}{2} \ln(2\pi\theta_2) - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

Taking derivatives and solving, we have:

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 and $\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2$

Multivariate case:

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \quad \text{and} \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}})^{t}$$

Example for normal distribution:

• Let:
$$D = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1.5 \\ 1.8 \end{bmatrix}, \begin{bmatrix} 2.2 \\ 3.3 \end{bmatrix}, \begin{bmatrix} 3.7 \\ 4.2 \end{bmatrix} \right\}$$

We have:

$$\hat{\mathbf{\mu}} = \frac{1}{5} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 1.5 \\ 1.8 \end{bmatrix} + \begin{bmatrix} 2.2 \\ 3.3 \end{bmatrix} + \begin{bmatrix} 3.7 \\ 4.2 \end{bmatrix} \right) = \frac{1}{5} \begin{bmatrix} 10.4 \\ 12.3 \end{bmatrix} = \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix}$$

$$\hat{\Sigma} = \frac{1}{5} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right) \left[\begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right]^{t} + \left[\begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right) \left[\begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right]^{t} \right\} +$$

$$\frac{1}{5} \left\{ \begin{bmatrix} 1.5 \\ 1.8 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right) \left[\begin{bmatrix} 1.5 \\ 1.8 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right]^{t} + \left[\begin{bmatrix} 2.2 \\ 3.3 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right) \left[\begin{bmatrix} 2.2 \\ 3.3 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right]^{t} \right\} +$$

$$\frac{1}{5} \left\{ \begin{bmatrix} 3.7 \\ 4.2 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right) \left[\begin{bmatrix} 3.7 \\ 4.2 \end{bmatrix} - \begin{bmatrix} 2.08 \\ 2.46 \end{bmatrix} \right]^{t} \right\}$$

$$\hat{\Sigma} = \frac{1}{5} \left\{ \begin{bmatrix} 1.16 & 1.57 \\ 1.57 & 2.13 \end{bmatrix} + \begin{bmatrix} 0.01 & 0.03 \\ 0.03 & 0.21 \end{bmatrix} + \begin{bmatrix} 0.33 & 0.38 \\ 0.38 & 0.48 \end{bmatrix} + \begin{bmatrix} 0.01 & 0.10 \\ 0.10 & 0.70 \end{bmatrix} + \begin{bmatrix} 2.62 & 2.81 \\ 2.81 & 3.02 \end{bmatrix} \right\}$$

$$\hat{\Sigma} = \begin{bmatrix} 0.82 & 0.98 \end{bmatrix}$$

$$\hat{\Sigma} = \begin{bmatrix} 0.82 & 0.98 \\ 0.98 & 1.30 \end{bmatrix}$$

Naïve Bayes Classifier

- We've seen how to estimate the pdf for the class-conditional probs, p(x|ω_i), from a dataset D
- We've used random vectors to represent x:

$$\mathbf{X} = [X_1 \ X_2 \ \dots \ X_d]^t \in \Re^d$$

- Normal distribution is a good option for many reasons, as discussed
- Estimate the mean and covariance and we're done
- But data may not be normally distributed.

Moreover, in practice:

- We may not have a large number of training samples
- Example: Gene expression data
 with n = 30 samples (patients) and
 d = 10,000+ features (gene
 expressions or transcript measures)
- Roughly speaking, if n is a good number of points, we should have n^d points for d dimensions
- But that's not always the case

Naïve Bayes Classifier

- Solution:
 - Assume that $x_1 x_2 \dots x_d$ are independent
- Thus, $p(\mathbf{x}|\omega_j)$ will be:

$$p(\mathbf{x} \mid \omega_j) = \prod_{i=1}^d p(x_i \mid \omega_j) \quad j = 1, 2, ..., c$$

• Then, given an unknown sample, we assign the class as follows:

$$\omega_j = \arg\max_{\omega_j} \prod_{i=1}^d p(x_i \mid \omega_j) \quad j = 1, 2, ..., c$$

- This is the Naïve Bayes Classifier!
- It's simple, and it's been shown to work well in many real classification problems

Bayes Classification in Scikit

Bayes:

- Uses Gaussian distributions
- Called Quadratic Discriminant Analysis

https://scikitlearn.org/stable/modules/lda_qda.html

Naïve Bayes:

- Gaussian:
 - Based on normal distributions of independent random variables
- Multinomial Naïve Bayes :
 - Also considers discrete attributes (features).
 - Suitable for text classification.
- Bernoulli Naïve Bayes:
 - Considers multiple features, binaryvalued
 - Also suitable for text classification

http://scikit-

<u>learn.org/stable/modules/naive_bayes.html</u>

Classifier Evaluation

Cross validation:

- Given a dataset, $D = D_1 \cup D_2 \cup ... \cup D_c$ where each D_i has n_i labeled samples
- Split D_i into two subsets D_{i1} and D_{i2} , (not necessarily of the same cardinality),
- Obtaining: $training\ set:\ D_{11}\cup D_{21}\cup ...\cup D_{c1}$ $test\ set:\ D_{12}\cup D_{22}\cup ...\cup D_{c2}$
- Train classifier with $D_{11} \cup D_{21} \cup ... \cup D_{c1}$ Test classifier with $D_{12} \cup D_{22} \cup ... \cup D_{c2}$
- Do the same by swapping training and test sets

- It is a generalization of cross validation.
- Using this method, D_i is divided into m disjoint sets of equal size, say [n|m]
 - (distributing remaining samples over some sets) where $n_i \ge m$
- The classifier is trained m times, and
 - at each time, one different set is left out for testing,
 - remaining samples used for training.

Cross Validation graphically

m-fold cross validation

50

Confusion Matrix

- Given c classes, a c × c matrix A where:
 - a_{ij} contains the # of samples that are classified as ω_j when their **true** class is ω_i
- For i = j,
 - a_{ij} refers to how accurate is the classifier for ω_i
- whereas for $i \neq j$,
 - a_{ij} refers to how the classifier misclassifies samples

Example, 4 classes:

Predicted class

51

True class		ω_1	ω_2	ω_3	ω_4
	ω_1	18	2	0	1
	ω_2	3	33	8	1
	ω_3	0	2	12	1
	ω_4	4	1	2	28

Performance Measures – 2 classes

- Suppose two classes: positive and negative
- Let:
 - *TP* = true positives (positive classified as positive)
 - TN = true negatives (negative classified as negative)
 - FP = false positives (negative classified as positive)
 - FN = false negatives (positive classified as negative)
 - \blacksquare P = total number of positives
 - N = total number of negatives
 - n = total number of samples

Performance Measures

True positive TP rate:

$$TPrate = \frac{TP}{TP + FN} = \frac{TP}{P}$$

 Positive predicted value (PPV) or precision aka hit rate

$$PPV = \frac{TP}{TP + FP}$$

 False positive rate or FP rate aka false alarm rate

$$FP \ rate = \frac{FP}{TN + FP} = \frac{FP}{N}$$

Negative predicted value (NPV)

$$NPV = \frac{TN}{TN + FN}$$

Performance Measures

Specificity:

$$SP = \frac{TN}{TN + FP} = 1 - FP \ rate$$

• Sensitivity (recall):
$$SE = \frac{TP}{TP + FN} = TP \ rate$$

Accuracy:

$$\frac{TP+TN}{n}$$

Geometric mean:

$$G_m = \sqrt{SE \times SP}$$

Summary of Performance Measures

		Predicted class		Metrics	
		Class1(+) Class2 (-)			
True class	Class1(+)	TP	FN	P = TP+FN True positive rate (Sensitivity, Recall)= TP/P False negative rate= FN/P	
	Class2 (-)	FP	TN	N = TN+FP True negative rate (Specificity)= TN/N False positive rate= FP/N	
Metrics		Positive predicted value (PPV) Precision TP/(TP+FP)	Negative predictive value(NPV) TN/(TN+FN)	$\mathbf{n} = TP+FN+FP+TN$ $\mathbf{Accuracy=} \ (TP+TN)/n$ $\mathbf{Error} \ \mathbf{rate} = (FP+FN)/n = 1 - Accuracy$ $\mathbf{Geometric} \ \mathbf{mean=} \ \sqrt{SE \times SP}$	

Other Performance Measures

Geometric mean

$$G_m = \sqrt{SE \times SP}$$

- Matthews Correlation Coefficient
 - +1: perfect classification
 - 0: average random classification
 - -1: inverse classification

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

F-measure

$$F = \frac{(\beta^2 + 1)PPV \times SE}{\beta^2 PPV + SE}$$

Common value of β=1 gives F1 measure:

$$F1 = 2(PPV \times SE)/(PPV + SE)$$

- ROC curve analysis
 - Involves visual and numerical analysis of the tradeoff between TP and FP rates

ROC Graphs

- Receiver Operating Characteristic (ROC) graph: visual tools for analysis
- Depicts tradeoff between TP/FP rates
- Better insight than simple metrics
- Suitable for unbalanced class problems
- Drawback: not easy to be constructed in practice

ROC Space

- One point corresponds to the result of a classifier
- Northwest is better
- Southeast is worse
- Diagonal x = y
 corresponds to a
 random classifier

ROC Curve

- A curve in ROC space
- Northwest is better
- In theory:
 - Exact curve
- In practice:
 - Approximate
 - Varies on parameters
 - Varies on samples

ROC in Theory

• Example: Two normally distributed classes

slide threshold from left to right and find TP/FP rates

Empirical ROC Curve

- Vary parameters of classifier:
 - Obtain a set of points in ROC space
 - SVM: Vary parameters of kernel and/or margin
 - *k*-NN: Vary *k*
 - Bayesian/LDR: vary thresholds, weights or dimensions
 - NN: vary hyperparamters
- Use scores from classifier
 - Scikit:
 - https://scikitlearn.org/0.15/auto_examples/p lot_roc.html

From Points to ROC Curve

ROC curve

0.5

FP rate

0.6

- Points from different classification scenarios
- Smooth or fitted ROC curve
- Connect points using cutoff levels

0.2

- Convex hull
- Regression •
- Stepwise

ROC points

© Luis Rueda, 2019

Comparison of Classifiers

Both AUC are equal!

Compare classifiers A and B

Compare sensitivities and AUC

Performance Measures – Multi-class

- a_{ii} is the # of samples classified as ω_j when their **true** class is ω_i
- n is the total number of samples
- n_i is the total number of samples of class i
- True positives: $TP_i = a_{ii}$
- False positives: $FP_i = \sum_{j=1}^{c} a_{ji}$
- False negatives: $FN_i = \sum_{j=1}^{c} a_{ij}$

Precision:

$$Precision_i = \frac{TP_i}{TP_i + FP_i}$$

Recall:

$$Recall_i = \frac{TP_i}{TP_i + FN_i}$$

Accuracy:

$$Acc_i = \frac{a_{ii}}{n_i}$$

Macro Average Geometric (MAvG):

$$MAvG = \sum_{i=1}^{c} (Acc_i)^{1/c}$$

Performance Measures – Multi-class

• F-measure of class *i*:

$$F\text{-measure}_{i} = \frac{2 \times Recall_{i} \times Precision_{i}}{Recall_{i} + Precision_{i}}$$

Mean F-measure (MFM):

$$MFM = \frac{1}{c} \sum_{i=1}^{c} F - measure_i$$

Macro average accuracy (MAvA):

$$MFM = \frac{1}{c} \sum_{i=1}^{c} Acc_i$$

• AUC Uniform (one-against-one):

$$AUCU = \frac{2}{c(c-1)} \sum_{\substack{i,j=1 \ i \neq j}}^{c} AUC_{ij}$$

where AUC_{ij} is the AUC for classes i and j

Example: SVM Linear kernel

References

- 1. R. Duda et al, Pattern Classification, 2nd Edition, Wiley, 2000.
- 2. Linear and Quadratic classifiers in Scikit: https://scikit-learn.org/stable/modules/lda_qda.html
- 3. Naïve Bayes in Scikit: http://scikit-learn.org/stable/modules/naive_bayes.html
- 4. S. Park, J. Goo, C. Jo. Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists, Korean J Radiol, 2004, 5:11-18.
- 5. T. Fawcett, An Introduction to ROC Analysis, Pattern Recognition Letters, 2006, 861-874.
- J. Sanchez-Crisostomo et al. Empirical Analysis of Assessments Metrics for Multi-class Imbalance Learning on the Back-Propagation Context. ICSI 2014, Springer LNCS 8795, pp. 17-23.
- 7. ROC in Scikit: https://scikit-learn.org/0.15/auto_examples/plot_roc.html