Advanced Data Analysis with Python

Cecilia Graiff

September 18, 2025

ALMAnaCH, Inria Paris - École d'Affaires Publiques, SciencesPocecilia.graiff@sciencespo.fr

Other recommended resources

- Think Python by Allen Downey offers electronic resources here that will allow you to directly code there
- Kaggle Learn Python is a more interactive guide
- Invent your Own Computer Games with Python by Al Sweigart

Resources for this class

An Introduction to Statistical Learning

- This class follows Chapter 3 of this book
- Refer to the book if you want to deepen today's topic
- It is a bit more mathematically intensive than this class!

Homework Correction

Statistical Modeling Foundations

What is a statistical model?

Definition (Statistical Model)

A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population).

Source: Wikipedia

Example: Regression

FIGURE 1.1. Wage data, which contains income survey information for men from the central Atlantic region of the United States. Left: wage as a function of age. On average, wage increases with age until about 60 years of age, at which point it begins to decline. Center: wage as a function of year. There is a slow but steady increase of approximately \$10,000 in the average wage between 2003 and 2009. Right: Boxplots displaying wage as a function of education, with 1 indicating the lowest level (no high school diploma) and 5 the highest level (an advanced graduate degree). On average, wage increases with the level of education.

Source: An Introduction to Statistical Learning with Applications in Python.

Example: Classification

FIGURE 1.2. Left: Boxplots of the previous day's percentage change in the S&P index for the days for which the market increased or decreased, obtained from the Smarket data. Center and Right: Same as left panel, but the percentage changes for 2 and 3 days previous are shown.

Example: Classification

FIGURE 1.3. We fit a quadratic discriminant analysis model to the subset of the Smarket data corresponding to the 2001–2004 time period, and predicted the probability of a stock market decrease using the 2005 data. On average, the predicted probability of decrease is higher for the days in which the market does decrease. Based on these results, we are able to correctly predict the direction of movement in the market 60% of the time.

Example: Clustering

FIGURE 1.4. Left: Representation of the NCI60 gene expression data set in a two-dimensional space, Z_1 and Z_2 . Each point corresponds to one of the 64 cell lines. There appear to be four groups of cell lines, which we have represented using different colors. Right: Same as left panel except that we have represented each of the 14 different types of cancer using a different colored symbol. Cell lines corresponding to the same cancer type tend to be nearby in the two-dimensional space.

Regression

What is regression?

Regression

Regression is a **supervised learning approach** for predicting a **quantitative** response.

Regression: Example

FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands of units, as a function of TV, radio, and newspaper budgets, in thousands of dollars, for 200 different markets. In each plot we show the simple least squares fit of sales to that variable, as described in Chapter 3. In other words, each blue line represents a simple model that can be used to predict sales using TV, radio, and newspaper, respectively.

Source: An Introduction to Statistical Learning with Application in Python

Regression: Research Questions

- 1. Is there a relationship between advertising budget and sales?
- 2. How strong is the relationship between advertising budget and sales?
- 3. Which media are associated with sales?
- 4. How large is the association between each medium and sales?
- 5. How accurately can we predict future sales?
- 6. Is the relationship linear?
- 7. Is there synergy among the advertising media?

Source: An Introduction to Statistical Learning with Application in Python

Predictors and dependent variables

- Dependent variable: the output you are trying to predict.
- Predictor(s): the variable(s) used to forecast the output.

What is Simple Linear Regression?

- Linear Regression predicts a quantitative response assuming a linear relationship with the predictor(s).
- Single linear regression predicts the quantitative output *Y* on the basis of a **single** predictor variable *X*.
- Assumes linear relationship:

$$y = \beta_0 + \beta_1 x + \epsilon$$

- Parameters or coefficients:
 - β_0 : intercept (value of y when x = 0)
 - β_1 : slope (how much y changes for 1 unit increase in x)
- ϵ : error term

Figure 1: True regression functions are never linear!

Source: An introduction to Statistical Learning with Python

From Abstract X and Y to Real Data

Substitute the example values:

$$Y \longrightarrow sales$$

$$X \longrightarrow TV$$

From Abstract X and Y to Real Data

Substitute the example values:

$$Y \longrightarrow sales$$

$$X \longrightarrow TV$$

Apply the regression formula:

sales =
$$\beta_0 + \beta_1 \times TV$$

Problem

You cannot compute the above example without **knowing the values of the coefficients**!

Estimating the coefficients

• Let's consider a sequence of data points

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

Estimating the coefficients

• Let's consider a sequence of data points

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

• We want to find β_0 and β_1 so that:

$$y_i \approx \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Estimating the coefficients

• Let's consider a sequence of data points

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

• We want to find β_0 and β_1 so that:

$$y_i \approx \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• The most common approach is the **least squares criterion**.

Residual Sum of Squares (RSS) in Linear Regression

• The residual for each observation is

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

Residual Sum of Squares (RSS) in Linear Regression

• The **residual** for each observation is

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

• The Residual Sum of Squares (RSS) is:

$$RSS = e_1^2 + e_2^2 + e_3^2 + ... + e_n^2$$

• Equivalent to:

$$RSS = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

Residual Sum of Squares (RSS) in Linear Regression

• The **residual** for each observation is

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

• The Residual Sum of Squares (RSS) is:

$$RSS = e_1^2 + e_2^2 + e_3^2 + \dots + e_n^2$$

Equivalent to:

$$RSS = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

• To sum up:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Figure 2: Visualization of RSS.

Source: Statistical Learning with Applications in Python.

It's not over yet!

Next step is assessing the accuracy of the coefficients that you estimated!

Assessing the accuracy of the coefficients

• Let's recall the formula:

$$y = \beta_0 + \beta_1 x + \epsilon$$

- ullet The error term ϵ captures what we missed with this model
- Therefore, it is important to know how well the estimated coefficients are estimated.

Mean Standard Error (SE)

How accurate is the sample mean $\bar{\mu}$ as an estimate of μ ?

- Standard Error measures how much a sample statistic (like the mean) would vary if we repeated the experiment multiple times.
- This means that it tells us how accurately a sample statistic represents the population value.

Mean Standard Error (SE)

How accurate is the sample mean $\bar{\mu}$ as an estimate of μ ?

- **Standard Error** measures how much a sample statistic (like the mean) would vary if we repeated the experiment multiple times.
- This means that it tells us how accurately a sample statistic represents the population value.
- \bullet Example: Let μ be the population mean, and $\bar{\mu}$ be mean of a sample:

$$SE(\bar{\mu})^2 = \frac{s^2}{n}$$

where

- s =sample standard deviation
- n = sample size

Mean Standard Error (SE)

How accurate is the sample mean $\bar{\mu}$ as an estimate of μ ?

- **Standard Error** measures how much a sample statistic (like the mean) would vary if we repeated the experiment multiple times.
- This means that it tells us how accurately a sample statistic represents the population value.
- \bullet Example: Let μ be the population mean, and $\bar{\mu}$ be mean of a sample:

$$SE(\bar{\mu})^2 = \frac{s^2}{n}$$

where

- s =sample standard deviation
- n = sample size
- \bullet Key insight: Larger samples \to smaller SE \to more precise estimates

Standard Errors of the Coefficients

How close are $\bar{\beta}_0$ and $\bar{\beta}_1$ are to the true values $\bar{\beta}_0$ and $\bar{\beta}_1$?

Standard Errors of the Coefficients

How close are $\bar{\beta}_0$ and $\bar{\beta}_1$ are to the true values $\bar{\beta}_0$ and $\bar{\beta}_1$?

Formulas:

$$SE(\beta_0)^2 = s^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2} \right)$$
$$SE(\beta_1)^2 = \frac{s^2}{\sum (x_i - \bar{x})^2}$$

Where:

- $s^2 = \frac{\sum (y_i \hat{y}_i)^2}{n-2}$ is the residual variance $({\sf Var}(\epsilon)$
- x_i = independent variable values
- $\bar{x} = \text{mean of } x$
- n = number of observations

Standard Errors of the Coefficients

How close are $\bar{\beta}_0$ and $\bar{\beta}_1$ are to the true values $\bar{\beta}_0$ and $\bar{\beta}_1$?

Formulas:

$$SE(\beta_0)^2 = s^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2} \right)$$
$$SE(\beta_1)^2 = \frac{s^2}{\sum (x_i - \bar{x})^2}$$

Where:

- $s^2 = \frac{\sum (y_i \hat{y}_i)^2}{n-2}$ is the residual variance $(Var(\epsilon))$
- x_i = independent variable values
- $\bar{x} = \text{mean of } x$
- *n* = number of observations

Keep in mind: Smaller standard error = more precise coefficient estimates

What is a Confidence Interval (CI)?

 A confidence interval gives a range of plausible values for a population parameter.

What is a Confidence Interval (CI)?

- A confidence interval gives a range of plausible values for a population parameter.
- Common choice: 95% confidence interval

With 95% probability, the range will contain the true unknown value of the parameter.

What is a Confidence Interval (CI)?

- A confidence interval gives a range of plausible values for a population parameter.
- Common choice: 95% confidence interval

With 95% probability, the range will contain the true unknown value of the parameter.

Formula:

$$CI = \bar{x} \pm Z \cdot SE$$

where

- $\bar{x} = \text{sample mean}$
- SE = standard error
- Z = critical value from standard normal distribution (1.96 for 95%)

Example of a 95% Confidence Interval

- Sample parameter value: 150
- Standard error: 20
- 95% CI:

$$150 \pm 1.96 \cdot 20 = 150 \pm 39.2$$

• Interval: [110.8, 189.2]

We are 95% confident that the true value lies within this range.

Example

Table 1: Linear Regression of Wage on Age: Key Statistics

Measure	Value	Meaning
Mean Standard Error (SEM) Standard deviation of b_0 (SE b_0) Standard deviation of b_1 (SE b_1)	50 300 20	Average variation of sample mean wage if we resampled Intercept (2000) varies ±300 due to sample randomness Slope (150) varies ±20; uncertainty in wage increase per age
Confidence Interval (95%)	[110, 190]	We are 95% confident true slope lies between 110 and 190

Null Hypothesis

 H_0 : There is no relationship between X and Y.

Null Hypothesis

 H_0 : There is no relationship between X and Y.

Mathematically, this equals to:

$$\beta_1 = 0$$

Null Hypothesis

 H_0 : There is no relationship between X and Y.

Mathematically, this equals to:

$$\beta_1 = 0$$

Alternative Hypothesis

 H_a : There is a relationship between X and Y.

Null Hypothesis

 H_0 : There is no relationship between X and Y.

Mathematically, this equals to:

$$\beta_1 = 0$$

Alternative Hypothesis

 H_a : There is a relationship between X and Y.

Mathematically, this equals to:

$$\beta_1 \neq 0$$

T-test (for a coefficient)

- A **t-test** checks whether a coefficient is significantly different from 0.
- Translated: it checks if a predictor actually has an effect.

T-test (for a coefficient)

- A t-test checks whether a coefficient is significantly different from 0.
- Translated: it checks if a predictor actually has an effect.
- Test statistic:

$$t = \frac{\text{Estimated Coefficient} - 0}{\text{Standard Error}}$$

T-test (for a coefficient)

- A t-test checks whether a coefficient is significantly different from 0.
- Translated: it checks if a predictor actually has an effect.
- Test statistic:

$$t = \frac{\text{Estimated Coefficient} - 0}{\text{Standard Error}}$$

- Intuition:
 - Large $|t| \to \text{coefficient far from 0} \to \text{likely real effect}$
 - ullet Small |t| o coefficient close to 0 o effect might be random

P-value (for a coefficient)

- **P-value** = probability of observing a t-statistic at least as extreme as the one obtained if H_0 were true.
- Translated: tells you how unusual the result would be if H₀ was true
 (= no effect of x on y)

P-value (for a coefficient)

- **P-value** = probability of observing a t-statistic at least as extreme as the one obtained if H_0 were true.
- Translated: tells you how unusual the result would be if H_0 was true (= no effect of x on y)
- Interpretation:
 - Small p-value (e.g., < 0.05) \rightarrow reject H_0 , coefficient likely significant
 - ullet Large p-value (e.g., > 0.05) ightarrow fail to reject H_0 , no strong evidence

Example

Regression of wage on age: $wage=\beta_0+\beta_1\times age+\epsilon$ Random example values: $wage=2000+150\times age+\epsilon$

Table 2: Linear Regression of Wage on Age: Key Statistics

Measure	Value	Meaning
Mean Standard Error (SEM)	50	Average variation of sample mean wage if we resampled
Standard deviation of b_0 (SE b_0)	300	Intercept (2000) varies ±300 due to sample randomness
Standard deviation of b_1 (SE b_1)	20	Slope (150) varies ±20; uncertainty in wage increase per age
Confidence Interval (95%)	[110, 190]	We are 95% confident true slope lies between 110 and 190
T-test (for b ₁)	7.5	Tests if age significantly affects wage; higher $t \rightarrow$ more evidence
P-value (for b_1)	0.0001	Very low $ ightarrow$ strong evidence that age significantly affects wage

These values are not real, they just deem as an example. We will see real values in the practical session.

We talked about how to evaluate the accuracy of the coefficients. What about the **accuracy of the model?**

- Coefficient accuracy: how well is the relationship between X and Y modeled?
- Model accuracy: how well does the model predict?

Assessing the accuracy of the model

The **error** of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean).

Assessing the accuracy of the model

The **error** of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean).

The **residual** is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).

Source: Wikipedia

Assessing the accuracy of the model

- Residual Standard Error (RSE)
- Coefficient of Determination (R-Squared)

Residual Standard Error

The **Residual Standard Error (RSE)** is the standard deviation of data points from the predicted values in a linear regression model.

Residual Standard Error

The **Residual Standard Error (RSE)** is the standard deviation of data points from the predicted values in a linear regression model.

$$RSE = \sqrt{\frac{1}{n-p-1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Residual Standard Error

The **Residual Standard Error (RSE)** is the standard deviation of data points from the predicted values in a linear regression model.

$$RSE = \sqrt{\frac{1}{n-p-1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

• The smaller your RSE, the better your model.

R-squared

The **coefficient of determination**, denoted as r^2 , is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

Source: Wikipedia

R-squared

The **coefficient of determination**, denoted as r^2 , is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

Source: Wikipedia

$$1 - \frac{\text{Residual Sum of Squares}}{\text{Total Sum of Squares}}$$

- $R^2 = 1$: the regression predictions perfectly fit the data
- $R^2 = 0$: the regression does not fit the data

Example

Table 3: Linear Regression of Wage on Age: Key Statistics

Measure	Value	Meaning
Mean Standard Error (SEM)	50	Average variation of sample mean wage if we resampled
Standard deviation of b_0 (SE b_0)	300	Intercept (2000) varies ±300 due to sample randomness
Standard deviation of b_1 (SE b_1)	20	Slope (150) varies ±20; uncertainty in wage increase per age
Confidence Interval (95%)	[110, 190]	We are 95% confident true slope lies between 110 and 190
T-test (for b ₁)	7.5	Tests if age significantly affects wage; higher t \rightarrow more evidence
P-value (for b ₁)	0.0001	Very low → strong evidence that age significantly affects wage
Residual Sum of Squares (RSS)	12,000	Total squared difference between observed and predicted wages; smaller = better fi
R-squared (R ²)	0.85	85% of wage variation explained by age; higher → better model fit

What happens when we have more than one predictor?

Regression: Example

FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands of units, as a function of TV, radio, and newspaper budgets, in thousands of dollars, for 200 different markets. In each plot we show the simple least squares fit of sales to that variable, as described in Chapter 3. In other words, each blue line represents a simple model that can be used to predict sales using TV, radio, and newspaper, respectively.

Source: An Introduction to Statistical Learning with Application in Python

What is multiple linear regression?

• Models the relationship between a dependent variable Y and multiple independent variables X_1, X_2, \dots, X_p :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

What is multiple linear regression?

 Models the relationship between a dependent variable Y and multiple independent variables X₁, X₂,..., X_p:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

where:

- *Y* = dependent variable (outcome)
- X_1, X_2, \dots, X_p = independent variables (predictors)
- $\beta_0 = intercept$
- β_1, \ldots, β_p = regression coefficients
- $\varepsilon = \text{error term}$

What is multiple linear regression?

 Models the relationship between a dependent variable Y and multiple independent variables X₁, X₂,..., X_p:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

where:

- Y =dependent variable (outcome)
- X_1, X_2, \dots, X_p = independent variables (predictors)
- $\beta_0 = intercept$
- β_1, \ldots, β_p = regression coefficients
- $\varepsilon = {\sf error\ term}$

Remember

The coefficient β_i represents the change in Y for a one-unit increase in X_i (remember single linear regression!), holding other variables constant.

From Abstract X and Y to Real Data

Substitute the example values:

$$egin{array}{ll} Y & \longrightarrow & \mathit{sales} \ & X_1 & \longrightarrow & \mathit{TV} \ & X_2 & \longrightarrow & \mathit{radio} \ & X_3 & \longrightarrow & \mathit{newspaper} \end{array}$$

From Abstract X and Y to Real Data

Substitute the example values:

$$egin{array}{ll} Y & \longrightarrow & \mathit{sales} \ & X_1 & \longrightarrow & \mathit{TV} \ & X_2 & \longrightarrow & \mathit{radio} \ & X_3 & \longrightarrow & \mathit{newspaper} \end{array}$$

Apply the regression formula:

$$sales = \beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper$$

Frame Title

Remember

Correlation among predictors can be problematic: low correlation is desired.

Estimating the coefficients

• Least squares method as in simple linear regression

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where:

- y_i = actual value of the i-th observation
- $\hat{y}_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} = \text{predicted value}$
- *n* = number of observations

Estimating the coefficients

• Least squares method as in simple linear regression

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where:

- y_i = actual value of the i-th observation
- $\hat{y}_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} = \text{predicted value}$
- *n* = number of observations

$$\sum_{i=1}^{n} \left(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} \times x_{i1} - \hat{\beta}_{2} \times x_{i2} - \dots - \hat{\beta}_{n} \times x_{in} \right)$$

Some assumptions of Linear Regression

Linearity

• **Linear relationship** between the dependent and independent variable(s)

Linearity

• **Linear relationship** between the dependent and independent variable(s)

Figure 3: Source: EMathZone

Linearity

• **Linear relationship** between the dependent and independent variable(s)

Figure 3: Source: EMathZone

• How to check: With a scatterplot.

No multicollinearity

• In multiple linear regression, independent variables must be **not too highly correlated with each other**.

No multicollinearity

- In multiple linear regression, independent variables must be not too highly correlated with each other.
- How to check: Correlation matrix.

No multicollinearity

- In multiple linear regression, independent variables must be not too highly correlated with each other.
- How to check: Correlation matrix.

Figure 4: From last week's lab: a heatmap representing correlation values.

Homoscedasticy

 Homoscedasticy means that the variance of the errors is roughly the same across all values of the predictor(s) in your regression model.

Homoscedasticy

- Homoscedasticy means that the variance of the errors is roughly the same across all values of the predictor(s) in your regression model.
- **How to check** (intuitively, without formal tests): Plot the residuals and look for (approximately) even variance.

Other limitations

 Linear regression involves other limitations and assumptions, not treated in this course due to its more limited scope.

How can you elaborate a meaningful data analysis pipeline that involves linear regression?

Adapt to your own research question

- Elaborate a public policy research question related to your own studies and knowledge
- This way, errors in your model will still be meaningful.
- Example:
 - I evaluate wage in relation to age: this is meaningful!
 - I evaluate wage in relation to height: I might detect some patterns (for example, due to biases in my samples), but this research question makes no sense!
- This seems obvious, yes; but I am sure you can think of several field-specific examples, and of correlation that people who do not study public policies do not know!