Fracture Mechanics

3. Mixed-mode loading

Luc St-Pierre

April 18, 2023

Learning outcomes for this week

After this week, you will be able to:

- \triangleright Calculate the stress intensity factors K_I and K_{II} for mixed-mode loading.
- ▶ Predict when fracture will occur.
- ▶ Find the direction of crack propagation.

Outline

Evaluating K_I and K_{II}

When will fracture occur?

In which direction will the crack propagate?

Outline

Evaluating K_I and K_{II}

When will fracture occur?

In which direction will the crack propagate?

Mixed-mode loading

Often, cracks are at a certain angle from the loading direction. This means that the crack is loaded in modes I and II simultaneously.

To find K_I and K_{II} , we need to use Mohr's circle to express the stress components in a reference frame aligned with the crack plane.

Mohr's circle: procedure

Follow these three steps to create and use Mohr's circle:

1. Write the stress components in the global reference frame (x, y).

- ► Three components: σ_{xx} , σ_{yy} , and σ_{xy} .
- ▶ Be careful with signs: tension/compression.
- 2. Draw the circle using two points on σ vs τ axes.
 - ▶ First point: $(\sigma_{xx}; -\sigma_{xy})$.
 - ightharpoonup Second point: $(\sigma_{yy}; \sigma_{xy})$.
- 3. Rotate clockwise by 2β to find the local stress components: σ_{11} , σ_{22} , and σ_{12} .

Finally, we can calculate K_I with σ_{22} , and K_{II} using σ_{12} .

Example problem

Find the stress intensity factors K_I and K_{II} for the biaxial loading case shown below, where the total crack length is 2a. Express your results as functions of σ , β , and a.

Step 1: the stress field in the (x, y) frame is $\sigma_{xx} = \sigma/4$, $\sigma_{yy} = \sigma$, and $\sigma_{xy} = 0$. Then, we can plot Mohr's circle with two points: $(\sigma_{xx}; -\sigma_{xy}) = (\sigma/4; 0)$ and $(\sigma_{yy}; \sigma_{xy}) = (\sigma, 0)$.

This circle has a radius:

$$r = \frac{\sigma - \sigma/4}{2} = \frac{3\sigma}{8}$$

and a centre:

$$c = \frac{\sigma}{4} + \frac{3\sigma}{8} = \frac{5\sigma}{8}$$

Then, the stress field in the (1,2) frame is:

$$\sigma_{11} = c - r\cos 2\beta = \frac{\sigma}{8}(5 - 3\cos 2\beta)$$
 $\sigma_{22} = c + r\cos 2\beta = \frac{\sigma}{8}(5 + 3\cos 2\beta)$

$$\sigma_{22} = c + r \cos 2\beta = \frac{\sigma}{8} (5 + 3\cos 2\beta)$$

and

$$\sigma_{12} = r\sin 2\beta = \frac{3\sigma}{8}\sin 2\beta$$

We found:

$$\sigma_{11} = \frac{\sigma}{8} (5 - 3\cos 2\beta)$$

$$\sigma_{22} = \frac{\sigma}{8} (5 + 3\cos 2\beta)$$

$$\sigma_{12} = \frac{3\sigma}{8} \sin 2\beta$$

Then, the stress intensity factors K_I and K_{II} are given by:

$$K_{I} = \sigma_{22}\sqrt{\pi a} = \frac{\sigma}{8}(5 + 3\cos 2\beta)\sqrt{\pi a}$$
$$K_{II} = \sigma_{12}\sqrt{\pi a} = \frac{3\sigma}{8}\sin 2\beta\sqrt{\pi a}$$

Outline

Evaluating K_I and K_{II}

When will fracture occur?

In which direction will the crack propagate

Mixed-mode fracture

As mentioned earlier, the stress intensity factor is **not** additive:

$$K_{(\text{total})} \neq K_I + K_{II} + K_{III}$$

In contrast, the energy release rate G is the sum of each mode:

$$G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{(1+\nu)K_{III}^2}{E}$$

where E' = E for plane stress, and $E' = E/(1 - \nu^2)$ for plane strain. A simple fracture criterion is obtained by setting G equal to the material's toughness:

$$G_{Ic} = \frac{K_{Ic}^2}{E'}$$

Mixed-mode fracture: a simple criterion

From previous slide, setting $G = G_{Ic}$ gives:

$$\frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{(1+\nu)K_{III}^2}{E} = \frac{K_{Ic}^2}{E'}$$

If $K_{III} = 0$, this simplifies to:

$$K_{I}^{2} + K_{II}^{2} = K_{Ic}^{2}$$

which gives a circular fracture envelope.

Is this equation validated experimentally?

Mixed-mode fracture: an experimental approach

A fracture envelope can be obtained experimentally. Multiple tests are needed where β is varied to change K_I/K_{II} .

As shown here, the simple criterion $K_I^2 + K_{II}^2 = K_{Ic}^2$ is relatively close to experiments.

Outline

Evaluating K_I and K_{II}

When will fracture occur?

In which direction will the crack propagate?

Direction of crack propagation

For mixed-mode loading, experiments have shown that cracks grow in the direction of local mode I.

The local mode I direction is where $\sigma_{\theta\theta}$ is maximum, which is the same as the direction where $\sigma_{r\theta} = 0$.

Stress field for mixed-mode loading

The stress field close to the crack tip is obtained by adding the modes I and II contributions for each stress component, which gives:

$$\sigma_{rr} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{5}{4} \cos \frac{\theta}{2} - \frac{1}{4} \cos \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(-\frac{5}{4} \sin \frac{\theta}{2} + \frac{3}{4} \sin \frac{3\theta}{2} \right)$$

$$\sigma_{\theta\theta} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{3}{4} \cos \frac{\theta}{2} + \frac{1}{4} \cos \frac{3\theta}{2} \right) - \frac{K_{II}}{\sqrt{2\pi r}} \left(\frac{3}{4} \sin \frac{\theta}{2} + \frac{3}{4} \sin \frac{3\theta}{2} \right)$$

$$\sigma_{r\theta} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{1}{4} \sin \frac{\theta}{2} + \frac{1}{4} \sin \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(\frac{1}{4} \cos \frac{\theta}{2} + \frac{3}{4} \cos \frac{3\theta}{2} \right)$$

The direction of crack propagation is given by the angle θ for which $\sigma_{r\theta} = 0$. This gives the following equation:

$$0 = K_I \left(\sin \frac{\theta}{2} + \sin \frac{3\theta}{2} \right) + K_{II} \left(\cos \frac{\theta}{2} + 3 \cos \frac{3\theta}{2} \right)$$

If you know K_I and K_{II} , you can solve for θ .

Example problem

Find the angle of crack propagation for the biaxial loading case shown below, provided that $\sigma=10\,\mathrm{MPa}$ and $\beta=20^\circ.$

Find the angle of crack propagation for the biaxial loading case shown below, provided that $\sigma = 10 \,\mathrm{MPa}$ and $\beta = 20^\circ$.

On Slide 10, we found:

$$K_{I} = \frac{\sigma}{8} (5 + 3\cos 2\beta) \sqrt{\pi a} = 9.12 \sqrt{\pi a}$$
$$K_{II} = \frac{3\sigma}{8} \sin 2\beta \sqrt{\pi a} = 2.41 \sqrt{\pi a}$$

Substituting $K_I = 9.12\sqrt{\pi a}$ and $K_{II} = 2.41\sqrt{\pi a}$ in $\sigma_{r\theta} = 0$ returns:

$$\sigma_{r\theta} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{1}{4} \sin \frac{\theta}{2} + \frac{1}{4} \sin \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(\frac{1}{4} \cos \frac{\theta}{2} + \frac{3}{4} \cos \frac{3\theta}{2} \right)$$

$$\implies 0 = 9.12 \left(\sin \frac{\theta}{2} + \sin \frac{3\theta}{2} \right) + 2.4 \left(\cos \frac{\theta}{2} + 3 \cos \frac{3\theta}{2} \right)$$

And solving numerically, we find:

$$\theta = -26^{\circ}$$
, 130° and 180°

- ► The value of 180° is physically impossible.
- The other two values correspond to either a minimum or a maximum of $\sigma_{\theta\theta}$. The crack will propagate in the direction of maximum $\sigma_{\theta\theta}$.

We are left with $\theta = -26^{\circ}$ or 130° , and we are looking for the value corresponding to a maximum in $\sigma_{\theta\theta}$. This stress is given by (see Slide 17):

$$\sigma_{\theta\theta} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{3}{4} \cos \frac{\theta}{2} + \frac{1}{4} \cos \frac{3\theta}{2} \right) - \frac{K_{II}}{\sqrt{2\pi r}} \left(\frac{3}{4} \sin \frac{\theta}{2} + \frac{3}{4} \sin \frac{3\theta}{2} \right)$$

for
$$\theta = -26^{\circ} \implies \sigma_{\theta\theta} = 9.98 \sqrt{\frac{a}{2r}}$$

for $\theta = 130^{\circ} \implies \sigma_{\theta\theta} = -0.48 \sqrt{\frac{a}{2r}}$

The maximum $\sigma_{\theta\theta}$ is obtained with $\theta = -26^{\circ}$; therefore, the crack will propagte in this direction.

Note that our solution, $\theta = -26^{\circ}$, is in the local (crack) reference frame.

Summary

Under mixed-mode loading:

- \triangleright find the stress intensity factors K_I and K_{II} using Mohr's circle,
- ightharpoonup use the energy release rate G to predict when fracture will occur,
- the crack will propagate in the direction where $\sigma_{r\theta} = 0$.