## CINEMATICA STRUTTURE MULTICORPO

## -> Teoremi delle contene cinematiche

Soluzione es. 1 visto in classe:



- 1- Impongo una rotazione y orakia attorno a C, per il corpo []
- 2- La spostamenta raggiunta verticale sora n= cpl verso il bosso.
- 3- Riporto le rotezione y attorno a C1 anche mele projezioni verticali, identificando anche gli spostamenti orizzontali, che saranno sempre M=40.
- 4-In A it compo I e II arranho lo stesso spostamento onizzontale, quindi  $\eta_I = \eta_I = \psi l$   $\rightarrow \psi$  e lo stesso anche per II  $\rightarrow \psi$  orario, quindi Anaccio la Trotazione del corpo II attorno a  $C_{ev}$
- 5 Riporto la notazione y del corpo II anche sugli spostamenti verticali.
  - (NB) Il doppio pendolo permette (in questo esempio) la opostamento verticale tra compo I e II,

    infatti vuela verticale la spostamento e diverso.



## Soluzione es. 2 visto in classe:



Per espere allineati C1 e C1e -> 00 > C2 sta formo (1º corrollario)

Bichi Cze Cr → W : il corpo I TRASLA empo la verticale

## Soluzione 10.3 per casa:

C1, C2 e C1e devono essere allinesti -> tracció la netta p che passa per Cre Cr e interseco r ou ani giace C12 -> nell'intersezione identifico C12 qui i due troutti NON sono paralleli, perchi la biella permette la rote zione relativa