стремится к нулю. Пользуясь полученным результатом, вывести приближенную формулу для площади сегмента:

$$S \approx \frac{2}{3} bh$$
.

§ 10. Формула Тейлора

 1° . Локальная формула Тейлора. Если 1) функция $f_i(x)$ определена в некоторой окрестности $|x-x_0| < \varepsilon$ точки x_0 ; 2) $f_i(x)$ имеет в этой окрестности производные $f_i'(x),\ldots,f^{(n-1)}(x)$ до (n-1)-го порядка включительно; 3) в точке x_0 существует производная n-го порядка $f_i^{(n)}(x_0)$, то

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o(x - x_0)^n, \qquad (1)$$

где

$$a_k = \frac{f^{(k)}(x_0)}{k!}$$
 $(k = 0, 1, ..., n)$.

В частности, при $x_0 = 0$ нмеем:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n}).$$
 (2)

При указанных условиях представление (1) единственно.

Если в точке x_0 существует производная $f^{(n+1)}(x_0)$, то остаточный член в формуле (1) может быть взят в виде $O^{*}((x-x_0)^{n+1})$.

Из локальной формулы Тейлора (2) получаем следующие пять важных разложений:

I.
$$e^{x} = 1 + x + \frac{x^{n}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}).$$

II. $\sin x = x - \frac{x^{n}}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n}).$

III. $\cos x = 1 - \frac{x^{n}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1}).$

IV. $(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!} x^{2} + \dots + \frac{m(m-1) \dots (m-n+1)}{n!} x^{n} + o(x^{n}).$

V. $\ln (1+x) = x - \frac{x^{2}}{2!} + \dots + (-1)^{n-1} \frac{x^{n}}{2!} + o(x^{n}).$

 2° . Формула Тейлора. Если 1) функция f(x) определена на сегменте $\{a, b\}$; 2) f(x) имеет на этом сегменте