Α1.5. Εσωτερικό γινόμενο διανυσμάτων

1. Να συμπληρώσετε τα κενά

i. Αν τα διανύσματα $\vec{\alpha}$, $\vec{\beta}$ είναι μη μηδενικά, τότε $\vec{\alpha} \cdot \vec{\beta} = \dots$

ii.
$$\vec{\alpha} \perp \vec{\beta} \Leftrightarrow \vec{\alpha} \cdot \vec{\beta} = \dots$$

iii.
$$\vec{\alpha} \uparrow \uparrow \vec{\beta} \Leftrightarrow \vec{\alpha} \cdot \vec{\beta} = \dots$$

iv.
$$\vec{\alpha} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{\alpha} \cdot \vec{\beta} = \dots$$

v.
$$\vec{i} \cdot \vec{j} = \dots, \vec{i}^2 = \dots = \dots$$

vi. Αν
$$\vec{\alpha} = (x_1, y_1)$$
 και $\vec{\beta} = (x_2, y_2)$, τότε $\vec{\alpha} \cdot \vec{\beta} = \dots$

vii.
$$\vec{\alpha} \cdot (\vec{\beta} + \vec{\gamma}) = \dots$$

ix. Αν θη γωνία των διανυσμάτων α, β, τότε
$$\sigma$$
υνθ=.....

x. An
$$\vec{\alpha} = (x_1, y_1)$$
 και $\vec{\beta} = (x_2, y_2)$ και $\vec{\alpha}$, $\vec{\beta} \neq \vec{0}$, τότε συν $(\vec{\alpha}$, $\vec{\beta}) = \dots$

xi.
$$\vec{\alpha} \cdot \pi \rho o \beta_{\vec{\alpha}} \vec{v} = \dots, \vec{\alpha} \neq \vec{0}$$

2. Σ-Λ

i.
$$\vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}| \cdot \sigma v (\vec{\alpha}, \vec{\beta}), \vec{\alpha}, \vec{\beta} \neq \vec{0}$$

iii.
$$\vec{\alpha} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{\alpha} \cdot \vec{\beta} + |\vec{\alpha}| \cdot |\vec{\beta}| = 0$$

ii.
$$\vec{\alpha} \cdot \vec{\beta} = 0 \Leftrightarrow \vec{\alpha} = \vec{0} \ \acute{\eta} \ \vec{\beta} = \vec{0}$$

iv.
$$\vec{\alpha} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{\alpha} \cdot \vec{\beta} = 0$$

v.
$$\sqrt{\vec{\alpha}^2} = |\vec{\alpha}|$$

vi. Αν
$$\vec{\alpha} = (x_1, y_1)$$
 και $\vec{\beta} = (x_2, y_2)$, τότε: $\vec{\alpha} \cdot \vec{\beta} = x_1 \cdot y_1 + x_2 \cdot y_2$

vii.
$$\sigma ov(\vec{\alpha}, \vec{\beta}) = \frac{\vec{\alpha} \cdot \vec{\beta}}{|\vec{\alpha}|, |\vec{\beta}|}, \vec{\alpha}, \vec{\beta} \neq \vec{0}$$

viii.
$$\vec{\alpha} \cdot \vec{v} = \vec{\alpha} \cdot \pi \rho o \beta_{\vec{v}} \vec{\alpha}$$
, $\vec{v} \neq \vec{0}$

3. Να χαρακτηρίσετε τις παρακάτω παραστάσεις με την ένδειξη Δ (διάνυσμα), ή Α (αριθμός) αναλόγως.

i.
$$\vec{\alpha} \cdot \vec{\beta}$$

ii.
$$(\vec{\alpha} \cdot \vec{\beta}) \cdot \vec{\gamma}$$

iii.
$$(\lambda \vec{\alpha}) \cdot \vec{\beta}$$

iv.
$$\vec{\alpha}^2$$

v.
$$\vec{\alpha} \cdot (\vec{\beta} + \vec{\gamma})$$

4. Έστω θ η γωνία των μη μηδενικών διανυσμάτων $\vec{\alpha}$, $\vec{\beta}$. Να αντιστοιχίσετε τις προτάσεις της στήλης A με τις ισοδύναμες της στήλης Β.

Στήλη Α	Στήλη Β	
A. $\vec{\alpha} \cdot \vec{\beta} = 0$	1. θ: οξεία	
B. α ↑ ↓ β	$2. \vec{\alpha} \cdot \vec{\beta} = \vec{\alpha} \cdot \vec{\beta} $	
Γ . $\vec{\alpha} \cdot \vec{\beta} < 0$	3. $\vec{\alpha} \perp \vec{\beta}$	
Δ . $\vec{\alpha} \uparrow \uparrow \vec{\beta}$	$ 4, \vec{\alpha} \vec{\beta} $	
E. $\vec{\alpha} \cdot \vec{\beta} > 0$	5. $ \vec{\alpha} \cdot \vec{\beta} + \vec{\alpha} \cdot \vec{\beta} = 0$	
	6. θ: αμβλεία	

A	В	Γ	Δ	E

Ασκήσεις

8. Αν το διάνυσμα $\vec{\alpha}$ είναι μοναδιαίο, $|\vec{\beta}|$ =2 και $(\vec{\alpha},\vec{\beta})$ = $\frac{2\pi}{3}$, να υπολογίσετε τα εσωτερικά γινόμενα:

i.
$$\vec{\alpha} \cdot \vec{\beta}$$

ii.
$$(\vec{\alpha} - 2\vec{\beta}) \cdot (\vec{\alpha} - \vec{\beta})$$
 iii. $(\vec{\alpha} - 3\vec{\beta})^2$

iii.
$$(\vec{\alpha} - 3\vec{\beta})^2$$

9. Αν $|\vec{\beta}|$ = $2|\vec{\alpha}|$ = 2 και η γωνία των διανυσμάτων α,β είναι π/2, να υπολογίσετε το μέτρο του διανύσματος $\vec{\mathbf{v}} = (\vec{\alpha} \cdot \vec{\beta}) \vec{\beta} + 2\vec{\alpha} - 3\vec{\beta}$

10. Αν τα διανύσματα α,β είναι μοναδιαία και ισχύει ότι $\vec{\alpha} \cdot \vec{\beta} = 1$, να αποδείξετε ότι $\vec{\alpha} = \vec{\beta}$.

11. Αν $|\vec{\alpha}|=1$, και $|\vec{\beta}|=2$, και η γωνία των διανυσμάτων α και β είναι 60° και $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=\vec{0}$, να υπολογίσετε το: ii. $\vec{\alpha} \cdot \vec{v} + \vec{\beta} \cdot \vec{v}$ i. $|\vec{y}|$

12. Av $|\vec{\beta}| = 2 \cdot |\vec{\alpha}| = 2\sqrt{5}$, και $(\vec{\alpha}, \vec{\beta}) = 120^\circ$ και $\vec{v} = 2 \cdot \vec{\alpha} + \vec{\beta}$, να υπολογίσετε:

i. to
$$|\vec{v}|$$

ii. τις γωνίες
$$(\vec{\alpha}, \vec{v}), (\vec{v}, \vec{\beta})$$

13. Αν $|\vec{\alpha}| = \sqrt{2} \cdot |\vec{\beta}| = 2\sqrt{2}$ και $(\vec{\alpha}, \vec{\beta}) = \frac{\pi}{4}$, να βρείτε τη γωνία των διανυσμάτων $\vec{\alpha} - \vec{\beta}, \vec{\beta}$.

14. Αν τα διανύσματα $\vec{\alpha}$, $\vec{\beta}$ είναι μοναδιαία και $(\vec{\alpha}$, $\vec{\beta})$ = 120°, να υπολογίσετε τη γωνία των διανυσμάτων: $\vec{v} = \vec{\alpha} - \vec{\beta}, \vec{u} = 2\vec{\alpha} + 4\vec{\beta}$

- 15. Av $|\vec{\alpha}|=3$, $|\vec{\beta}|=|\vec{\gamma}|=1$ και $\vec{\alpha}+\vec{\beta}+4\cdot\vec{\gamma}=\vec{0}$, τότε:
 - i. να βρείτε το $\vec{\alpha} \cdot \vec{\beta}$ ii. Να υπολογίσετε τη γωνία των διανυσμάτων $\vec{\alpha}$, $\vec{\beta}$ iii. Να δείξετε ότι: $\vec{\alpha} = 3\vec{\beta}$.
- 16. Αν τα διανύσματα $\vec{\alpha}$, $\vec{\beta}$ είναι μοναδιαία και τα $\vec{v}=3\vec{\alpha}+2\vec{\beta}$, $\vec{u}=-7\vec{\alpha}+8\vec{\beta}$ είναι κάθετα, να βρείτε τη γωνία των διανυσμάτων $\vec{\alpha}$, $\vec{\beta}$.
- 17. Αν $|\vec{\alpha}|=3$, $|\vec{\beta}|=1$ και $|\vec{\alpha}-\vec{b}|=2$, να υπολογίσετε το μέτρο του διανύσματος $\vec{v}=\vec{\alpha}-2\vec{\beta}$.
- 18. Έστω τα διανύσματα $\vec{\alpha}$, $\vec{\beta}$ με $|\vec{\alpha}|=1$, $|\vec{\beta}|=1$, $(\vec{\alpha},\vec{\beta})=60^\circ$ και το τρίγωνο ABΓ με $\vec{AB}=\vec{\alpha}-\vec{\beta}$, $\vec{BF}=3\vec{\alpha}+\vec{\beta}$. Να βρείτε το μήκος της διαμέσου AM του τριγώνου ABΓ.
- 19. Να υπολογίσετε τα μήκη των διαγωνίων ενός παραλληλογράμμου που κατασκευάζεται με τα διανύσματα $3\vec{\alpha}+2\vec{\beta}$ και $\vec{\alpha}-\vec{\beta}$, αν $|\vec{\alpha}|=1$, $|\vec{\beta}|=\sqrt{2}$ και η γωνία των διανυσμάτων α και β $(\vec{\alpha},\vec{\beta})=135^\circ$.
- 20. Αν $\vec{\alpha} = (-1,2)$ και $\vec{\beta} = (1,3)$, να υπολογίσετε τα εσωτερικά γινόμενα:
 - i. $\vec{\alpha} \cdot \vec{\beta}$ ii. $(-\vec{\alpha}) \cdot (2\vec{\beta})$ iii. $\vec{\alpha}^2$ iv. $(\vec{\alpha} \vec{\beta}) \cdot (\vec{\alpha} + 2\vec{\beta})$
- 21. An $\vec{\alpha} = (3, -4)$ kai $\vec{\beta} = \frac{1}{7}\vec{i} + \vec{j}$, na breite th gwnia twn $\vec{\alpha}$, $\vec{\beta}$.
- 22. Δίνονται τα διανύσματα $\vec{\alpha}$ =(1,-7) και $\vec{\beta}$ =(-3, λ). Αν $(\vec{\alpha}$, $\vec{\beta}$)=135°, να βρείτε το λ .
- 23. Αν $\vec{\alpha} = (1, -1)$, $\vec{\beta} = (1, 1)$, $2\vec{v} + \vec{u} = \vec{\beta}$ και $\vec{v} + 2\vec{u} = \vec{\alpha}$, να βρείτε:
- i. τα διανύσματα $ec{v}$ και $ec{u}$
- ii. To $\sigma vv(\vec{u}, \vec{v})$.
- 24. Αν $|\vec{\alpha}|=3$ και $|\vec{\beta}|=6$, να βρείτε το λ, ώστε τα διανύσματα $\vec{v}=3\vec{\alpha}+\lambda\vec{\beta}$ και $\vec{u}=3\vec{\alpha}-\lambda\vec{\beta}$, να είναι κάθετα.
- 25. Έστω το διάνυσμα $\vec{\alpha} = (-1,2)$.
- i. Να βρείτε το διάνυσμα \vec{v} , ώστε: $\vec{v} \perp \vec{\alpha}$ και $|\vec{v}| = 5$.
- ii. Να βρείτε το διάνυσμα \vec{u} , ώστε: $\vec{\alpha} \cdot \vec{u} = \sqrt{45}$
- 26. Έστω τα διανύσματα $\vec{\alpha} = (1,3)$, $\vec{\beta} = (1,-2)$, $\vec{\gamma} = (4,-3)$. Να βρείτε τα διανύσματα $\vec{v} = \lambda \vec{\alpha} + \mu \vec{\beta}$ ώστε να είναι: $|\vec{v}| = 10$ και $\vec{v} \perp \vec{\gamma}$.