TU DS Challenge

Milestone 2 (Data Importance)

- Dimensions: (34722, 26) => 34722 rows, 26
 columns
- 3 Features (Provider, Location, Charger)

	#	Column	Non-Null Count	Dtype
	0	Betreiber	34722 non-null	object
	1	Straße	34722 non-null	object
	2	Hausnummer	34722 non-null	object
10		Adresszusatz	4847 non-null	object
11	4	Postleitzahl	34722 non-null	int64
12		0rt	34722 non-null	object
13	6	Bundesland	34722 non-null	object
14		Kreis/kreisfreie Stadt	34722 non-null	object
15	8	Breitengrad	34722 non-null	object
16		Längengrad	34722 non-null	object
17	10	Inbetriebnahmedatum	34722 non-null	object
	11	Anschlussleistung	34722 non-null	object
19	12	Normalladeeinrichtung	34722 non-null	object
20	13	Anzahl Ladepunkte	34722 non-null	int64
21	14	Steckertypen1	34722 non-null	object
22	15	P1 [kW]	34722 non-null	object
23	16	Public Key1	3402 non-null	object
	17	Steckertypen2	29072 non-null	object
25	18	P2 [kW]	29069 non-null	object
	19	Public Key2	2845 non-null	object
27	20	Steckertypen3	1825 non-null	object
28	21	P3 [kW]	1844 non-null	object
9	22	Public Key3	166 non-null	object
80	23	Steckertypen4	993 non-null	object
31	24	P4 [kW]	993 non-null	object
32	25	Public Key4	122 non-null	object
33	dtyp	es: int64(2), object(24)		

Milestone 2 (Data Important) - Codebase

Milestone 3 (Data Preprocessing)

Problems in the Dataset:

- dtypes are mixed up (resulting in object)
- Hausnummer has 0
- many NaN entries (null values)
- longitudes etc -> proper floats
- Public key columns?

Data Preprocessing:

- Adjust missing values
- Data scaling with techniques such as Label encoding or one hot encoding
- Outlier detection
- Correlation of features (heatmap)

Milestone 3 - Pre Processing Report (1/2)

Missing Values:

701	index	0
	Y	7
0	Betreiber	0
	Straße	0
2	Hausnum	0
	Adresszus	29875
4	Postleitzahl	0
5	Ort	0
6	Bundesland	0
	Kreis/kreis	0
8	Breitengrad	0
9	Längengrad	0
10	Inbetriebn	0
11	Anschlussl	0
12	Normallad	0
13	Anzahl La	0
14	Steckertyp	0
15	P1 [kW]	0
16	Public Key1	31320
17	Steckertyp	5650
18	P2 [kW]	5653
19	Public Key2	31877
20	Steckertyp	32897
21	P3 [kW]	32878
22	Public Key3	34556
23	Steckertyp	33729
24	P4 [kW]	33729
25	Public Key4	34600

Milestone 3 - Pre Processing Report (2/2)

Prevalence of missing values:

- The following columns have only a few entries: Adresszusatz, 2+ Outlet details

Incorrect data types:

- Nearly all data got set as objects in the first place
- A parser can fix this problem
- Remaining problems are:
 - Hausnummer has string values due to values like "10C" or "13 15" 0> add regex check to remove everything that is not a number (stop as soon as we hit a character or a whitespace)

-

Summary statistics for the variables/features:

		Postleitzahl	Breitengrad	Längengrad	Anschlussleistung	Anzahl Ladepunkte	P1 [kW]	P2 [kW]	P3 [kW]	P4 [kW]
	count	34722.000000	34722.000000	34722.000000	34722.000000	34722.000000	34722.000000	29069.000000	1844.000000	992.000000
	mean	54541.003082	50.596165	9.693615	86.742523	1.921750	44.322247	38.344971	32.784706	27.978830
	std	27178.574850	1.809136	1.995396	221.380981	0.543078	74.440018	64.349365	55.057880	32.992744
	min	1067.000000	47.287800	5.243745	2.000000	1.000000	2.000000	2.000000	2.000000	3.000000
	25%	31640.750000	48.921440	8.234325	22.000000	2.000000	22.000000	22.000000	22.000000	22.000000
	50%	55411.000000	50.724632	9.441630	44.000000	2.000000	22.000000	22.000000	22.000000	22.000000
	75%	78315.000000	52.034355	11.208292	50.000000	2.000000	22.000000	22.000000	22.000000	22.000000
	max	99991.000000	55.019600	15.543810	5299.000000	4.000000	2175.000000	2175.000000	1125.000000	375.000000
		ve result shows [kW] P4 [kW] or		of the continuo	ous variables (consid	ler Anschlussleistunç	g Anzahl Ladep	ounkte P1 [kW]	P2	

Power Distribution in Germany

Various fast chargers are clustered in some areas in Germany.

Correlation of Continuous Features (via Heatmap)

- Some powers are highly correlated with each other
 - E.g. P1 & P2, P3 & P4
- Very low correlation between max. power supply for cars & number of charging points

Distribution of max power supply for cars

- Most of the max power supply for cars range from 0 to 500.

Distribution of charging points

- 2 is the most number of charging point.

Distribution of charger types

There are more normal chargers compared to fast chargers.

Major findings:

- Fast chargers are not evenly distributed across areas in Germany.
- There are fewer fast chargers compared to normal chargers.

Overview

Goal:

- Build a model to predict regions in Germany with the highest potential charging stations demand

Business benefit:

- Have a priority list of charging stations investment needs

Approach:

- Identify potential delta per region of charging stations (EV:charging points)

Technique:

Unsupervised learning (K-Means)

Features:

- Charging station distribution, per longitude & latitude in Germany in 2020
- Electric vehicle distribution based on population density & EV per person, per longitude & latitude in Germany in 2020

Approach

Approach's Rationale:

- The algorithm works by **grouping data points into clusters based on their similarity**, with each cluster represented by the mean (or "centroid") of the data points within it.
- In the case of electric vehicle charging stations, k-means can be used to **group the locations of charging stations** into clusters.
- By calculating the ratio of EV numbers to existing charging points, regions with lowest ratio are identified, which can then be used to determine the areas where new charging stations are needed.
- This can help ensure that charging stations are evenly distributed based on population density throughout Germany,
 making it easier for electric vehicle owners to find a charging station when they need one.

Milestone 5: Findings

- By feeding the selected features to K-means,
 5000 regions with the currently highest demand for more charging stations are identified
- By using our model and different sets of data, the potential future EV charging points demand can be determined, however the model training time would take longer
- Our model can assist in planning the EV charging infrastructure development and, as a result, reaching Germany's target of 15.8 million EV on the roads by 2030 and reducing CO₂ emissions from the transport sector

Performance

Model Performance

- Using statistical metrics, good scores are achieved in the performance of the model.
 - Silhouette coefficient: 0.515 (range -1 to 1)
 - Calinski-Harabasz index: 1454334.822 (0-infinity)
 - Dunn index: 0.593 (0-infinity)

Closing Remarks

- Our result is the model rather than the information, since it can be used to provide information about high charging point demand locations based on the datasets provided. It is therefore able to make predictions with the right database.
- The Datasets that were used were rather an abstraction of actual data and outdated (2020 & calculated EV per person based on total EVs)
- We used densities for 1 sqkm areas, which could be more accurate
- There are additional factors that affect a proper charging station placement like:
 - Availability of parking spaces
 - Proximity of highways/major roads
 - Availability of public transportation
 - Presence of amenities (restaurants etc.)
 - Proximity to residential areas