Complex Analysis: Day 20

John Waczak MTH 483 Date: May 21, 2018

more stuff

Theorem (Identity Principle). Let $f: \Omega \to \mathbb{C}$ and $g: \Omega \to \mathbb{C}$ be holomorphic on a region Ω and suppose $\{\alpha_k\}$ is a sequence of distinct complex numbers in Ω converging to $\alpha \in \Omega$. Suppose that $f(\alpha_k) = g(\alpha_k)$ for all $k \ge 1$ Then f(z) = g(z) for all $z \in \Omega$. This shows that holomorphic functions are very rigid.

Proof. Define h = f - g. In other words $h(\alpha_k) = 0 \ \forall k$. Now define two sets

$$X = \{ a \in \Omega : \exists \text{ some } r > 0 \text{ for which} h(a) = 0 \quad \forall z \in D_R(a) \}$$
$$Y = \{ a \in \Omega : \exists r > 0 \text{ s.t. } h(a) \neq 0 \quad \forall z \in D_R(a) \setminus \{a\} \}$$

Note that $X \cap Y = \emptyset$ and $X \cup Y = \Omega$. Also note that both X and Y are open. Given $a \in X$ or Y points close enough to a are also in X or Y. Thus Ω is the disjoint union of two open sets. By the definition of connectedness one of these sets must be \emptyset . We know that $\alpha = \lim_{k \to \infty} \alpha_k \in X$. Thus $X \neq \emptyset$. Therefore $\Omega = X$ and $h(z) = 0 \quad \forall z \in \Omega$. This implies that $f(z) = g(z) \quad \forall z \in \Omega$.

Corollary. Let $\Omega_1 \subseteq \Omega_2$ be regions, and let $f: \Omega_1 \to \mathbb{C}$ be holomorphic. If \exists holomorphic function $F: \Omega_2 \to \mathbb{C}$ such that F(z) = f(z) for all $z \in \Omega_1$ then F is unique.

Proof. If $F, G: \Omega_2 \to \mathbb{C}$ are holomorphic and F(z) = G(z) = f(z) for all $z \in \Omega_1$ then F(z) = G(z) $\forall z \in \Omega_2$ by the identity principle.

Definition. If such a $F: \Omega_2 \to \mathbb{C}$ exists it is called an analytic continuation of f.

Example $\Omega_1 = \{z = x + iy : x > 1\}$

$$f: \Omega_1 \to \mathbb{C}$$

$$f(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$

It turns out that this function f(z) has an analytic continuation $F: \Omega_2 \to \mathbb{C}$ where $\Omega_2 = \mathbb{C} \setminus \{1\}$. The Riemann Hypothesis says that all of the zeros of F(z) in the strip 0 < x < 1 occur on the line x = 1/2.