Difference-in-Differences with Spatial Spillovers

Kyle Butts

April 5, 2021

Spatial Spillovers

Researchers aim to estimate the average treatment effect on the treated:

$$\tau \equiv \mathbb{E}\left[Y_{i1}(1) - Y_{i1}(0) \mid D_i = 1\right]$$

Estimation is complicated by Spillover Effects

Spillover effects are when effect of treatment extend over the treatment boundaries (states, counties, etc.). Example:

- Aa large employer opening/closing in a treated county have positive employment effects on nearby counties
- Having nearby counties with factories raises wages and reduces effect of treated counties

Bias from Spatial Spillovers

The canonical difference-in-differences estimate is:

$$\hat{\tau} = \underbrace{\hat{\mathbb{E}}\left[Y_{i1} - Y_{i0} \mid D_i = 1\right]}_{\text{Counterfactual Trend}} - \underbrace{\hat{\mathbb{E}}\left[Y_{i1} - Y_{i0} \mid D_i = 0\right]}_{\text{Counterfactual Trend}}$$

Two problems in presence of spillover effects:

Bias from Spatial Spillovers

The canonical difference-in-differences estimate is:

$$\hat{\tau} = \underbrace{\hat{\mathbb{E}}\left[Y_{i1} - Y_{i0} \mid D_i = 1\right]}_{\text{Counterfactual Trend}} - \underbrace{\hat{\mathbb{E}}\left[Y_{i1} - Y_{i0} \mid D_i = 0\right]}_{\text{Counterfactual Trend}}$$
+ Spillover on Control

Two problems in presence of spillover effects:

Spillover onto Control Units:

Nearby "control" units fail to estimate counterfactual trends because they are affected by treatment

2

Bias from Spatial Spillovers

The canonical difference-in-differences estimate is:

$$\hat{\tau} = \underbrace{\hat{\mathbb{E}}\left[Y_{i1} - Y_{i0} \mid D_i = 1\right]}_{\text{Counterfactual Trend } + \tau} - \underbrace{\hat{\mathbb{E}}\left[Y_{i1} - Y_{i0} \mid D_i = 0\right]}_{\text{Counterfactual Trend}}$$
+ Spillover on Treated
+ Spillover on Control

Two problems in presence of spillover effects:

- Spillover onto Control Units:
 - Nearby "control" units fail to estimate counterfactual trends because they are affected by treatment
- Spillover onto other Treated Units:

Treated units are also affected by nearby units and therefore combines "direct" effects with spillover effects

Econometric Contribution

I formalize spillovers into a potential outcomes framework:

[Clarke (2017), Berg and Streitz (2019), and Verbitsky-Savitz and Raudenbush (2012)]

- I decompose the difference-in-differences estimator into three parts: Direct Effect of Treatment, Spillover onto Treated Units, Spillover onto Control Units
- Show that an indicator for being close to treated units remove *all bias* so long as the indicator contains all units affected by spillovers
- 'Rings' are able to estimate spillover effects non-parametrically while still removing all bias

Roadmap of Talk

Theory

Estimation with Spillovers

Application in Urban Economics

Potential Outcomes Framework

 $Y_{it}(D_i, h(\vec{D}, i))$ is the potential outcome of county $i \in \{1, ..., N\}$ at time t with treatment status $D_i \in \{0, 1\}$.

The function $h(\vec{D}, i)$ maps the entire treatment vector into an 'exposure mapping'

Examples of $h_i(\vec{D})$

Treatment within *x* miles:

 $h(\vec{D}, i) = max_j \ 1(d(i, j) \le x)$ where d(i, j) is the distance between counties i and j.

- ullet e.g. library access where x is the maximum distance people will travel
- Spillovers are non-additive

Within 80mi.

Examples of $h_i(\vec{D})$

Treatment within *x* miles:

 $h(\vec{D}, i) = max_j \ 1(d(i, j) \le x)$ where d(i, j) is the distance between counties i and j.

- ullet e.g. library access where x is the maximum distance people will travel
- Spillovers are non-additive

Number of Treated within *x* miles:

$$h(\vec{D}, i) = \sum_{j=1}^{k} 1(d(i, j) \le x).$$

- e.g. large factories opening
- Agglomeration economies suggest spillovers are additive

Within 80mi. (Additive)

What does Diff-in-Diff identify?

With the parallel trends assumption and a random sample, I decompose the difference-in-differences estimate as follows:

$$\mathbb{E}\left[\hat{\tau}\right] = \underbrace{\mathbb{E}\left[Y_{i1} - Y_{i0} \mid D_i = 1\right] - \mathbb{E}\left[Y_{i1} - Y_{i0} \mid D_i = 0\right]}_{\text{Difference-in-Differences}}$$

$$= \mathbb{E}\left[Y_{i1}(1, 0) - Y_{i1}(0, 0) \mid D_i = 1\right]$$

$$+ \mathbb{E}\left[Y_{i1}(1, h_i(\vec{D})) - Y_{i1}(1, 0) \mid D_i = 1\right]$$

$$- \mathbb{E}\left[Y_{i1}(0, h_i(\vec{D})) - Y_{i1}(0, 0) \mid D_i = 0\right]$$

What does Diff-in-Diff identify?

With the parallel trends assumption and a random sample, I decompose the difference-in-differences estimate as follows:

$$\mathbb{E}\left[\hat{\tau}\right] = \underbrace{\mathbb{E}\left[Y_{i1} - Y_{i0} \mid D_i = 1\right] - \mathbb{E}\left[Y_{i1} - Y_{i0} \mid D_i = 0\right]}_{\text{Difference-in-Differences}}$$

$$= \mathbb{E}\left[Y_{i1}(1,0) - Y_{i1}(0,0) \mid D_i = 1\right]$$

$$+ \quad \mathbb{E}\left[Y_{i1}(1,h_i(\vec{D})) - Y_{i1}(1,0) \mid D_i = 1\right]$$

$$- \quad \mathbb{E}\left[Y_{i1}(0,h_i(\vec{D})) - Y_{i1}(0,0) \mid D_i = 0\right]$$

$$= \tau_{\text{direct}} + \tau_{\text{spillover, treated}} - \tau_{\text{spillover, control}}$$

Roadmap of Talk

Theory

Estimation with Spillovers

Application in Urban Economics

Spillovers as estimand of interest

Until now, we assumed our estimand of interest is τ_{direct} .

However, the two other spillover effects are of interest as well:

- τ_{spillover, control}: Do the benefits of a treated county come at a cost to neighbor counties?
- $\tau_{\text{spillover, treated}}$: Does the estimated effect change based on others treatment? (This is what you should consider if you are a policy maker)

To estimate the spillover effects, we have to parameterize $h(\vec{D},i)$ function and the potential outcomes function $Y_i(D_i,h(\vec{D},i))$.

Robustness to Misspecification

I find that an indicator for being Within x miles from treated area interacted with treatment status will remove **all bias** so long as the indicator contains all the affected units.

 \bullet Indicator will estimate the average spillover effect on treated and control units and remove these from estimate, $\hat{\tau}$

Estimation of Spillover Effects

In a lot of settings, estimating the spillover effects are also an estimand of interest.

A set of concentring 'rings' around treatment perform best for estimating spillover effects

Rings (0-20, 20-30, 30-40, 40-60, 60-80)

Benefits of Rings

- Still remove all bias from the treatment effect estimate
- Can trace out how spillovers spread over distance
- If spillovers are additive in the number of nearby treated units, then an additive version of rings should be used (but this loses the bias-removal property)

Roadmap of Talk

Theory

Estimation with Spillovers

Application in Urban Economics

Urban Economics

I apply framework to place-based analyses in Urban Economics

- Revisit Kline and Moretti (2014a) analysis of the Tennessee Valley Authority
 - The local effect estimate is contaminated by spillover effects to neighboring counties (Kline and Moretti, 2014b)
 - Large scale manufacturing investment creates an 'urban shadow' (Cuberes, Desmet, and Rappaport, 2021; Fujita, Krugman, and Venables, 2001)
- Discuss how framework can reconcile conflicting findings on effect of federal Empowerment Zones
 - Identification Strategy of using far-away rejected applicants (Busso, Gregory, and Kline, 2013) vs. census tracts within 1000 feet of empowerment zone (Neumark and Kolko, 2010)

Roadmap of Talk

Theory

Estimation with Spillovers

Application in Urban Economics

- I decomposed the TWFE estimate into the direct effect and two spillover terms
- I showed that a set of concentric rings removes two spillover terms from treatment effect estimate and models spillovers well
- For place-based policies, I show the importance of considering spatial spillovers when estimating treatment effects