Contents

align equal signs	2
align left	2
Independent Samples	3
Example of newcommand	3
Probability	4
Binary Functions	4
As of June 20, 2022	

Contents

file <- "/home/jim/code/publish_project/MATH/100_math_examles.md"

PURPOSE: Collect examples of math/latex here: vectors, equations, align, symbols etc.

This is markdown file. Using print_pdf.sh % out.pdf pandoc will produce .pdf files with appropriate latex packages.

use of grave symbol:

 $\single quote' \ "double quote"$

in latex:
\$\\$10.25\$

\$10.25

$$x = \begin{cases} 0 & \text{if x odd,} \\ 1 & \text{if x even.} \end{cases}$$

Let V be vector space and B be basis.

 \vec{p}

dot product

magnitude

 $|\vec{a}|$

unit vector

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$$

matrix:

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

matrix with subscripts

$$\begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}$$

matrix with square brackets (bmatrix)

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \tag{1}$$

 $matrix \ with \ dots \ \dots$

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \tag{2}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 (3)

As we can see from eqn \sim (1) and \sim (3) ...

align equal signs

$$y = x^2$$

$$z = y^2$$
(4)
(5)

$$z = y^2 \tag{5}$$

align left A

$$y = x^2 (6)$$

(7)

$$z = y^2$$

$$A = B = C \tag{8}$$

$$D = E = F \tag{9}$$

$$x - 1 = y \tag{10}$$

$$x = y + 1 \tag{11}$$

Still centered, but note alignment has changed.

$$x - 1 = y \tag{12}$$

$$x = y + 1 \tag{13}$$

inline

 $\frac{n!}{k!(n-k)!} = \min\{n}{k}$

$$\tfrac{n!}{k!(n-k)!}=\binom{n}{k}$$

Independent Samples

$$\begin{split} \mu_{\bar{x_1}-\bar{x_2}} &= \mu_1 - \mu_2 \\ \sigma_{\bar{x_1}-\bar{x_2}}^2 &= \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \\ \mu_{\hat{p}_1-\hat{p}_2} &= p_1 - p_2 \\ \sigma_{\hat{p}_1-\hat{p}_2}^2 &= \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2} \\ \underbrace{a+b+c} &\underbrace{d+e+f} = 42 \\ \underbrace{some \ words} \end{split}$$

 \mathbb{R}

abc abc

Example of newcommand

short cut to say vector

::: REF: see Michelle videos ::: latex ignores, but prints the line.

 $\Delta T_{E}X$

% SOFT vs HARD return

This is one line. \ That was a soft return, which is why this is NOT a new paragraph. And outdent is because it second line of paragraph.

% HARD But this is also one line. That was hard return. Difference?

 $\sqrt{2}$

 $\sqrt[3]{2}$

 $\ln x$

Probability

$$X \in \mathcal{P}(A)$$

|number of elments | = 2^k

$$A \cup B$$

$$\cup_{i=1}^{n} A_{i}$$

$$\bigcup_{i=1}^{n} A_{i}$$

$$A \cap B$$

$$\bigcap_{i=1}^{n} A_{i}$$

$$N_{h} = N * P(H)$$

$$P(A \mid B)$$

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Let $\pi \in [0,1]$ be a random variable. Then function $f(\pi)$ is probability density function (pdf) if

$$f(\pi) > 0 \forall \pi$$

(write P (a-b))

$$\int_{\pi} f = 1$$

One model for pdf of f is **Beta** which often used in **conjugacy** (same family of distributions for both prior and posterior, with only parameters varying)

Using Bayes,

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(F)} \tag{14}$$

Binary Functions

Y is the number of successes in a fixed number of trials (n)

$$Y|\pi \sim Bin(n,\pi)$$

$$f(y|\pi) = \begin{pmatrix} 6 \\ y \end{pmatrix} \pi^y (1-\pi)^{6-y} \quad for \quad y \in \{0,1,2,3,4,5,6\}$$

We can use the prior for π and all y to calculate each probabilities.

latex code $\frac{n!}{k!(n-k)!} = \min\{n}{k}$

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$
$$\binom{6}{y} \pi^y (1-\pi)^{6-y}$$

$$X = 5 + 2 + 3$$

= $(5 + 2) + 3$