Kapitola 4

Oneskorenie v zložitých logických systémoch. Často používané zapojenia kombinačných obvodov.

Vplyv dynamickej nedokonalosti stavebných prvkov na činnosť kombinačných systémov. Vznik hazardu a spôsoby jeho eliminácie. Časový priebeh zmeny výstupu logickej siete. Príklady často používaných zapojení kombinačných obvodov.

Vlastnosti technologických hradiel v integrovaných obvodoch

Hazard v logických obvodoch

Vplyv dynamickej nedokonalosti stavebných prvkov na činnosť kombinačného systému

Doposiaľ sme nebrali do úvahy časové pomery v navrhnutých zapojeniach. Pokiaľ v kombinačných zapojeniach nám nejaké malé oneskorenie nespôsobí nefunkčnosť zapojenia pri návrhu sekvenčných systémov je situácia opačná a je nutné časové oneskorenia vziať do úvahy.

Časový priebeh výstupu logického hradla

Na obr. 1b je uvedený ideálny a reálny (zjednodušený) časový priebeh prechodu signálu cez logický člen. Medzi významné parametre môžeme uviesť oneskorenie a skreslenie oproti ideálnemu priebehu.

Matematický popis logického—obdĺžnikového signálu vyjadríme napr. s Fourierovým rozkladom ako súčet harmonických signálov s rozdielnou amplitúdou a fázou. Logické hradlo sa správa ako dynamický systém s určitými frekvenčnými vlastnosťami.

Obrázok 1. Logické hradlo NAND a jeho popis – a), časový priebeh zmeny výstupu – b).

Zmena vstupnej a výstupnej hodnoty nenastáva však okamžite ale postupne. Na obr. 1b nie je zobrazená. Aj keď výrobcovia používajú rôzne riešenia, každé ma svoje výhody a nevýhody. Jedná sa o technologickú záležitosť a s postupom času sa vlastnosti tranzistorov použitých pre zostavenie hradiel zlepšujú.

Pri návrhu logických obvodov nás zaujímajú elektrické, prevádzkové a technické vlastnosti a tiež časové odozvy použitých hradiel.

Elektrické vlastnosti nám určujú spotrebu energie, napájacie napätia a prúdovú spotrebu, taktiež správanie sa vstupu (napr. impedancia) a výstupu a pod.

Prevádzkové a technické parametre predstavujú bežne rozsahy pracovných teplôt, typ a veľkosť puzdra, tvary vývodov, technológia montáže a iné.

Najdôležitejšie *časové parametre* sú doba nábehu, doba poklesu a rýchlosť logických hradiel (maximálna pracovná frekvencia, ktorú dokáže prenášať na výstup), zvlnenie výstupného napätia a ďalšie. Tieto údaje získavame od výrobcu z katalógu súčiastok.

Hazard je také správanie kombinačného systému, ktoré vzniká v dôsledku zmien vstupných signálov (nie je popísané Karnaughovou mapou).

Rozpoznávame dva typy hazardov $\mathit{statický}$ a $\mathit{dynamický},$ viď. obr. 2.

Poznámka: Označenie vychádza z toho v akej hodnote hazard nastáva. Podmienkou existencie dynamického hazardu v kombinačnom obvodu je prítomnosť statického hazardu.

Obrázok 2. Statický hazard v "nule" a "jednotke" – a), dynamický hazard v "nule" a "jednotke" – b). Hazardy sú zvýraznené červenou farbou.

Identifikácia hazardu a spôsoby jeho odstránenia

Existenciu statického hazardu vieme určiť z rozmiestnenia pravidelných konfigurácií v Karnaughovej mape. Ak sa dve konfigurácie neprekrývajú, tak v zapojení vždy existuje statický hazard, ak sa zmenia príslušné vstupné premenné súčasne.

Univerzálne riešenie—odstránenie statického hazardu na výstupe—spočíva v kompenzácii oneskorenia v príslušnej vetve logickej siete a to zaradením prídavných oneskorujúcich hradiel do navrhnutej schémy.

Špecifické riešenie spočíva v pridaní redundantnej konfigurácie v Karnaughovej mape, ktorá premostí susediace konfigurácie.

Príklad 4.1

Navrhnite zapojenie úlohy obr. 3a s logickými hradlami NAND, ktoré neobsahuje hazard.

Obrázok 3. Karnaughova mapa – a), schéma zapojenia a označenie merných bodov – b).

Riešenie

Zapíšme optimálne konfigurácie úlohy z obr. 3a a preveďme výraz do 1. NSF:

$$y = \overline{b} \cdot \overline{c} + a \cdot b$$
$$= (\overline{b}|\overline{c})|(a|b)$$

Schéma zapojenia je na obr. 3b. V zapojení existuje statický hazard, čo vidieť z umiestnenia konfigurácií v Karnaughovej mape. Rozhodujúce hradlo je na obr. 3b zakreslené oranžovou farbou.

Jedným z možných riešení je oneskorenie výstupu pripojením kondenzátora s vhodnou kapacitou "oproti zemi" na výstup tohto hradla. V súčinnosti s výstupnou impedanciou hradla tak tvorí "spomaľujúci" R-C článok.

Druhým lepším riešením by bolo zaradenie $\it bufera$ na výstup tohto logického hradla, ktorý si vytvoríme z bežného hradla vhodným zapojením.

Tretie riešenie spočíva v premostení konfigurácií v obr. 3a ďalšou konfiguráciou. Výsledok návrhu zapojenia bez hazardov je na obr. 4b.

Obrázok 4. Upravené pravidelné konfigurácie – a), výsledná schéma zapojenia – b).

Časový priebeh zmeny výstupu logickej siete—simulácia činnosti

Sledovanie zmien výstupov hradiel v zapojeniach logických obvodov je častou úlohou návrhára. K meraniu priebehov sa používajú v súčasnosti digitálne osciloskopy, ktoré sú vybavené pamäťovými funkciami. Pri diagnostike zložitých schém sa výsledky meraní spracovávajú v špecializovaných programoch na počítači.

Predpokladajme pri kreslení "simulácie" činnosti logického obvodu rovnaké časové oneskorenie u všetkých hradiel (tento údaj poskytuje výrobca súčiastky). Taktiež sa obmedzíme na hazardy spôsobené zmenou len jednej vstupnej premennej. (Predpokladáme, že bežne je to "najčastejší" prípad?)

Príklad 4.2

Zakreslite simuláciu činnosti úlohy z obr. 3b (bez zapojeného kondenzátora C) tak, aby zachytával priebeh hazardu.

Riešenie

Simulujeme zmenu len jednej vstupnej premennej v čase, ktorá spôsobuje hazard na výstupe zapojenia. Jedná sa o vstupnú premennú b. Zakreslíme priebeh zmien výstupu logickej siete pri vstupoch a=1, c=0 a zmene b z log. 0 na log. 1 a späť, obr. 5. Oba počiatočné body simulácie sú zakreslené na obr. 3a s farebným podkladom (žltý a zelený).

Obrázok 5. Priebeh simulácie činnosti logického obvodu pri zmene jediného vstupu – b.

Zhrnutie simulácie:

Ak máme schému z logických členov NAND hazard existuje len, keď sa príslušná premenná mení z log. 1 na log. 0 pri opačnej zmene sa na výstupe hazard neprejaví.

- 1. Všetky zmeny vo vnútri konfigurácie sú bez hazardov.
- Ak navrhujem NDF, potom hazardy nevznikajú medzi log. 0 v Karnaughovej mape.
- Ak navrhujem NKF, potom hazardy nevznikajú medzi log. 1 v Karnaughovej mape.

V aplikačnej praxi sa určité zapojenia kombinačných obvodov často opakujú, preto sa vyrábajú v podobe integrovaných obvodov – IO (angl. IC – Integrated Circuit). Uveďme si niektoré z nich.

Záver—pravidlá návrhu bez hazardov

Časté zapojenia kombinačných obvodov

Multiplexor – MUX

Funkcia: prepnutie 1 vstupu z viacerých možných (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16) na výstup.

Obrázok 6. Schematická značka – a), princíp prepínania – b), štrukturálna bloková schéma MUX 1 zo 4 (4-vstupový multiplexor) – c).

Demultiplexor – DEMUX

Funkcia: prepínanie jediného vstupu na 1 z viac možných (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16).

Obrázok 7. Schematická značka – a), princíp prepínania – b), štrukturálna bloková schéma s riadkovým (line decoder) dekodérom – c), elektrické zapojenie DEMUX 1 zo 4 (4-vstupový demultiplexor) – d).

Komparátor

Funkcia: porovnanie dvoch n–bitových čísiel. Plná verzia komparátora obsahuje všetky tri výstupy, viď. obr. 8a. V praxi však často používame len jediný výstup komparátora.

Obrázok 8. Schematická značka – a), elektrická zapojenie úplného 1–bitového komparátora.

Kóder – CD

Funkcia: prevod kódu 1 z N (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16 alebo práve 10 t.j. BCD resp. 9–klávesnica bez "nuly") najčastejšie na binárne číslo.

Obrázok 9. Schematická značka kódera – a), príklad zapojenia CD 1 zo 7, klávesnica s číslami 1 až 7.