Лекция 15. Комплексные числа

Комплексные числа - бедные родственники в программе математического образования. Для школьной программы они считаются слишком трудными, а для университета - слишком легкими. Мы хотим восполнить этот пробел.

Возникает вопрос: почему сейчас? Почему, поднявшись на вершину дифференуиального исчислния изучив формулу Тейлора, мы опускаемся в элементарный мир комплексных чисел? Ответ: от многочленов Тейлора естественно перейти к бесконечным рядам, называемым степенными. Эти ряды естественно изучать как функции комплексного переменного. А для этого нужно твердо стоять на комплексной плоскости.

1 Определение.

Определение 1 Комплексное число - это упорядоченная пара вещественных, или символ z=x+iy, где i - мнимая единица: $i^2=-1$; x называется действительной, а y - мнимой частью z.

Это определение становится содержательным, если сказать, что можно делать с комплексными числами, точнее, определить арифметические действия над ними.

Определение 2 Сложение комплексных чисел происходит покомпонентно, а умножение - по распределительному закону, с учетом равенства $i^2 = -1$. Точнее, пусть $z_1 = x_1 + y_1$, $z_2 = x_2 + y_2$. Тогда

$$z_1 + z_2 = (x_1 + y_1) + i(y_1 + y_2),$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_1 + x_2 y_2)$$

2 Поле комплексных чисел.

Множество всех комплексных чисел обозначается \mathbb{C} . Напомним аксиомы поля.

- 1. Определено коммутативное и ассоциативное сложение.
- 2. Существует нейтральный элемент 0, прибавление которого к любому числу не меняет этого числа.
- 3. Для каждого числа z существует противоположное, обозначаемое -z, добавление которого к z дает ноль.

- 4. Определено коммутативное и ассоциативное умножение.
- 5. Существует нейтральный элемент 1, умножение которого на любое число не меняет этого числа.
- 6. Для каждого ненулевого числа z существует обратное, умножение которого на z дает 1.
- 7. Распределительный закон: $\forall z_1 z_2 z_3$

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3. (1)$$

Теорема 1 Комплексные числа образуют поле.

Доказательство Мы не будем доказывать все подробно. Первые три аксиомы говорят, что $\mathbb C$ - абелева группа по сложению. Это следует из аналогичного свойства для $\mathbb R$ и, в конечном счете, для Q.

Следующие три аксиомы говорят, что $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ - коммутативная группа по умножению. Ниже мы докажем коммутативность и ассоциативность умножения комплексных чисел, а здесь только проверим существование обратного элемента.

$$\frac{1}{x+iy} = \frac{x-iy}{(x+iy)(x-iy)} = \frac{x-iy}{x^2+y^2}.$$

Здесь z = x + iy, $\bar{z} = x - iy$ - сопряженное к $z, x^2 + y^2 = z\bar{z} := |z|^2$.

Эту выкладку не надо обосновывать. Она нужна как мнемонический прием лоя запоминания формулы для обратного комплексного числа. Существование обратного доказывается выкладкой:

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}; \ z \cdot \frac{1}{z} = \frac{z\bar{z}}{|z|^2} = 1.$$

Распределителшьный закон проверяется "в лоб".

3 Задачи.

- 1. Докажите, что переход к сопряженному отображение $z \to \bar{z}$ является автоморфизмом поля комплексных чисел, и одновременно симметрией относительно вещественной оси.
- 2. Найдите все непрерывные автоморфизмы группы вещественных чисел по сложению.
- 3. * Найдите все непрерывные автоморфизмы группы комплексных чисел по сложению.

- 4. ** Найдите все непрерывные автоморфизмы группы \mathbb{C}^* комплексных чисел по умножению.
- 5. Докажите, что единичная окружность множество $\{z||z|=1\}$ является замкнутой подгруппой группы \mathbb{C}^* .

4 Геометрия комплексных чисел.

Координатная плоскость \mathbb{R}^2 изображает множество \mathbb{C} (комплексную прямую), если положить $(x,y)\equiv x+iy$. Комплексные числа становятся векторами на плоскости. Полярный радиус вектора z - это модуль комплексного числа z; обозначается |z|. Полярный угол вектора z - это аргумент комплексного числа z; обозначается arg z. Аргумент определен однозначно по модулю 2π . Неоднозначность аргумента играет важную роль в дальнейшем.

Теорема 2 Комплексные числа складываются по правилу параллелограмма.

Докажите!

Теорема 3 При умножении комплексных чисел модули перемножаются, а аргументы складываются.

Доказательство Пусть
$$z=x+iy, \; |z|=r, \; \arg z=\varphi.$$
 Тогда
$$z=r(\cos\varphi+i\sin\varphi)$$

(тригонометрическая форма комплексного числа). Пусть $w=u+iv=\rho(\cos\psi+i\sin\psi)$. Тогда

$$zw = r\rho[(\cos\varphi\cos\psi - \sin\varphi\sin\psi) + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi)] = r\rho(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Задача 1 Что происходит с модулями и аргументами комплексных чисел при делении? при переходе к сопряженному?

5 Умножение на комплексное число как геометрическое преобразование.

Меня со школьных лет не удовлетворяло предыдущее доказательство. Прозрачный факт обосновывается с помощью выкладки, смысл которой спрятан в тригонометрии. Вот доказательство, начало которого предложено Арнольдом.

Теорема 4 Преобразование плоскости, задаваемое умножением на число z по модулю равное 1 - это поворот на угол $\arg z$.

Доказательство Отображение $R_z: w \mapsto wz, \ w \in \mathbb{C}$ сохраняет расстояния. Действительно, квадрат длины отрезка $[w_1, w_2]$ - это

$$|w_1 - w_2|^2 = (w_1 - w_2)(\bar{w}_1 - \bar{w}_2).$$

Следовательно,

$$|zw_1 - zw_2|^2 = (w_1 - w_2)z(\bar{w}_1 - \bar{w}_2)\bar{z} = (w_1 - w_2)(\bar{w}_1 - \bar{w}_2)z\bar{z} = |w_1 - w_2|^2$$

Отображение R_z (R - от rotation) - это движение плоскости, сохраняющее 0 неподвижным. Такое движение - либо поворот (ориентация сохраняется), либо симметрия (ориентация меняется). Докажем, что R_z сохраняет ориентацию.

При $z=\pm 1$ это очевидно. При $\arg z\in (0,\pi)$ это доказывается так. Ориентация плоскости задается упорядоченной парой неколлинеарных векторов (одинаковой длины). Две пары задают одинаковую ориентацию, если второй вектор каждой пары получается из первого поворотом в одном и том же направлении. Пара (1,z) задает ту же ориентацию, что и пара $\bar{z},1$: второй вектор из первого получается поворотом на угол $\arg z$. Но первая пара получается из второй умножением на z. Значит R_z - движение, сохраняющее ориентацию с неподвижной точкой 0, переводящее 1 в z. Такое движение только одно - поворот на $\arg z$.

Пусть теперь $\arg z \in (\pi, 2\pi)$. Тогда $\arg \bar{z} \in (0, \pi)$. Для умножения на \bar{z} теорема доказана. Но умножение на z - преобразование, обратное к предыдущему Значит, для него теорема тоже доказана.

Следствие 1 Умножение на произвольное комплексное число - это поворот на его аргумент и растяжение с коэффициентом, равным его модулю.

6 Элементарная геометрия на языке комплексных чисел.

Задача 2 Доказать, что $|z_1+z_2| \le |z_1| + |z_2|$ (неравенство треугольника)

Задача 3 Даны z_1 и $z_2 \in \mathbb{C}$.

- а) Найдите множество всех таких z, что $|z-z_1|=|z-z_2|$ (Найти геометрическое место точек, равноудаленных от двух данных).
- б) Даны z_1 и $z_2 \in \mathbb{C}$. а) Найдите множество всех таких z, что $|z-z_1|+|z-z_2|=|z_1-z_2|$.
- в) Даны z_1 и $z_2 \in \mathbb{C}$. а) Найдите множество всех таких z, что $|z-z_1|-|z-z_2|=|z_1-z_2|$.

*
$$e$$
) $\frac{|z-z_1|}{|z-z_2|} = 2$.

д) Пусть $z_1z_2 \neq 0$. Найдите множество всех таких z, что

$$\arg \frac{z}{z_1} = \arg \frac{z_2}{z}$$

Задача 4 Докажите, что единичная окружность - это подгруппа группы \mathbb{C}^* .

7 Формула Муавра.

Теорема 5 При возведении комплексного числа в степень n его модуль возводится в степень n, а аргумент умножается на n: если |z| = r, $\arg z = \varphi$, то

$$|z^n| = r^n$$
, $\arg z^n = n\varphi$;
 $z^n = r^n(\cos n\varphi + i\sin n\varphi)$.

Следствие 2 Функции $\cos n\varphi$ и $\sin n\varphi$ являются многочленами от $\cos \varphi$ и $\sin \varphi$; они находятся по формуле бинома из формулы Муавра:

$$\cos n\varphi + i\sin n\varphi = (\cos \varphi + i\sin \varphi)^n$$

Задача 5 Докажите, что $\cos nx$ является многочленом от $\cos x$, и этот многочлен имеет n корней на отрезке [-1,1].

8 Извлечение корней.

Корни из комплексного числа извлекаются с помощью формулы Муавра. Решим уравнение:

$$z^n = w$$
.

Пусть $|z|=r,~\arg z=\varphi,~|w|=R,~\arg w=\psi.$ По формуле Муавра, как кажется, $r^n=R,~n\varphi=\psi.$ Следовательно,

$$r = \sqrt[n]{R}$$

имеется в виду арифметический корень; кажется также, что

$$\varphi = \frac{\psi}{n}$$
.

Но здесь вступает в игру неоднозначность аргумента. Наряду с ψ , любой угол $\psi + 2\pi k, \ k \in \mathbb{Z}$, является аргументом w. Поэтому правильным является уравнение

$$n\varphi = \psi \pmod{2\pi}$$
.

Его решения, различные по модулю 2π - это

$$\varphi_0 = \frac{\psi}{n}, \ \varphi_1 = \frac{\psi + 2\pi}{n}, \dots, \varphi_n = \frac{\psi + 2\pi(n-1)}{n}.$$

Задача 6 Корни n-й степени из числа w лежат на окружности радиуса $r = \sqrt[n]{|w|}$ в вершинах правильного n-угольника (докажите)!

Задача 7 Докажите, что корни п-й степени из 1 образуют группу по умножению.

Задача 8 *Докажите, что любая группа из n комплексных чисел по умножению имеет такой вид.

Задача 9 Найдите сумму всех корней n-й степени из $1,\ n>1.$