Divergence $\nabla \cdot \mathbf{F}$ in non-Cartesian coordinates

This is an "optional extra" for those who like to see where things come from.

Coordinate-free definition of divergence

When trying to find an interpretation of $\nabla \cdot \mathbf{F}$ in Cartesian coordinates, we effectively took a flux integral over a small volume $\delta V = \delta x \delta y \delta z$, and showed that the divergence measures local sources of flux. In fact we were using the definition of divergence in terms of a flux integral:

divergence of
$$\mathbf{F}$$
 at $\mathbf{r} = \operatorname{div} \mathbf{F}(\mathbf{r}) = \nabla \cdot \mathbf{F}(\mathbf{r}) = \lim_{V \to 0} \frac{1}{V} \oint_{S} \mathbf{F} \cdot d\mathbf{S}$

The surface S encloses the volume V, which as $V \to 0$ converges around the point \mathbf{r} . The integral $\oint_S \mathbf{F} \cdot d\mathbf{S}$ gives the total flux emanating from the enclosed volume V (remember, the direction of surface element $d\mathbf{S}$ is the *outward* normal).

Divergence in a general orthogonal coordinate system.

We know how to evaluate the divergence in Cartesian coordinates. How do we evaluate $\nabla \cdot \mathbf{F}$ when \mathbf{F} is a vector field expressed in any other orthogonal coordinate system? To derive the answer we repeat the process of evaluating a flux integral over the surface S of a small volume V surrounding the point $\mathbf{r} = (u, v, w)$, using what we now know about surface elements in a general coordinate system. The range of the *coordinates* in V is chosen to be

$$u \pm \delta u/2$$
$$v \pm \delta v/2$$
$$w \pm \delta w/2$$

but of course the size of the volume depends on the scale factors, and is $V = (h_u \delta u)(h_v \delta v)(h_w \delta w)$ as shown in the figure (though pedants should note that, strictly speaking, these dimensions pass through \mathbf{r} and not along the edges of the box).

To keep things a bit easier, we will assume that V is so small that \mathbf{F} can be taken as a constant across any given face, but may take different values on each face. The flux crossing the upper shaded face is then given by

$$\Phi_{u+} = \mathbf{F}(u + \delta u/2, v, w) \cdot \delta \mathbf{S}_{u+}$$

the subscript u+ denoting which face we are on. The surface element for this face is

$$\delta \mathbf{S}_{u+} = + (\hat{\mathbf{e}}_v \times \hat{\mathbf{e}}_w) h_v h_w \delta v \delta w$$

= +\hat{\mathbf{e}}_u h_v (u + \delta u/2, v, w) h_w (u + \delta u/2, v, w) \delta v \delta w.

In this expression we note the key point that in a general coordinate system the scale factors h_u , h_v and h_w vary with position. Next we write the component of the vector \mathbf{F} in the direction $\hat{\mathbf{e}}_u$ as F_u , so

$$\mathbf{F}(u, v, w) = F_u(u, v, w)\hat{\mathbf{e}}_u + F_v(u, v, w)\hat{\mathbf{e}}_v + F_w(u, v, w)\hat{\mathbf{e}}_w.$$

Then the flux is

$$\Phi_{u+} = F_u(u + \delta u/2, v, w) h_v(u + \delta u/2, v, w) h_w(u + \delta u/2, v, w) \delta v \delta w$$

This is similar to the Cartesian case, except for the dependence of the scale factors h_v and h_w on the coordinates. If we write $G_u = F_u h_v h_w$ (with all 3 terms evaluated at the same coordinates) we are back on more familiar territory:

$$\Phi_{u+} = +G_u(u + \delta u/2, v, w) \times \delta v \delta w$$

$$\approx \left(G_u(u, v, w) + \frac{\delta u}{2} \frac{\partial G_u}{\partial u}(u, v, w) \right) \delta v \delta w$$

where the second expression is a Taylor expansion of the first and becomes exact as $\delta u \to 0$. On the lower shaded face, the outward normal is $-\hat{\mathbf{e}}_u$ and F_u , h_v and h_w must be evaluated at $(u - \delta u/2, v, w)$. Then

$$\Phi_{u-} = -G_u(u - \delta u/2, v, w) \times \delta v \delta w$$

$$\approx \left(-G_u(u, v, w) + \frac{\delta u}{2} \frac{\partial G_u}{\partial u}(u, v, w) \right) \delta v \delta w$$

and the total flux across the two shaded faces is

$$\Phi_{u+} + \Phi_{u-} = \frac{\partial G_u}{\partial u} \delta u \, \delta v \, \delta w = \frac{\partial}{\partial u} (h_v h_w F_u) \delta u \, \delta v \, \delta w.$$

This whole process is repeated for the other pairs of faces at $v \pm \delta v/2$ and $w \pm \delta w/2$. Adding, we get

$$\oint_{S} \mathbf{F} \cdot d\mathbf{S} = \delta u \delta v \delta w \left[\frac{\partial}{\partial u} \left(F_{u} \ h_{v} \ h_{w} \right) + \frac{\partial}{\partial v} \left(F_{v} \ h_{w} \ h_{u} \right) + \frac{\partial}{\partial w} \left(F_{w} \ h_{u} \ h_{v} \right) \right]_{(u,v,w)}.$$

Finally, dividing by the volume $V = h_u h_v h_w \delta u \delta v \delta w$ enclosed by S and taking the limit we find our answer:

$$\lim_{V \to 0} \frac{1}{V} \oint_{S} \mathbf{F} \cdot d\mathbf{S} = \nabla \cdot \mathbf{F} = \frac{1}{h_{u} h_{v} h_{w}} \left[\frac{\partial}{\partial u} \left(F_{u} \ h_{v} \ h_{w} \right) + \frac{\partial}{\partial v} \left(F_{v} \ h_{w} \ h_{u} \right) + \frac{\partial}{\partial w} \left(F_{w} \ h_{u} \ h_{v} \right) \right]$$

Explicit expressions.

In Cartesians (x, y, z), $h_x = h_y = h_z = 1$ and

$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

In cylindrical polars (ρ, ϕ, z) , $h_{\rho} = 1$, $h_{\phi} = \rho$, $h_{z} = 1$ and

$$\nabla \cdot \mathbf{F} = \frac{1}{\rho} \left[\frac{\partial (F_{\rho}\rho)}{\partial \rho} + \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial (F_{z}\rho)}{\partial z} \right] = \frac{1}{\rho} \frac{\partial (\rho F_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_{z}}{\partial z}$$

In spherical polars (r, θ, ϕ) , $h_r = 1$, $h_{\theta} = r$, $h_{\phi} = r \sin \theta$ and

$$\nabla \cdot \mathbf{F} = \frac{1}{r^2 \sin \theta} \left[\frac{\partial (F_r r^2 \sin \theta)}{\partial r} + \frac{\partial (F_\theta r \sin \theta)}{\partial \theta} + \frac{\partial (F_\phi r)}{\partial \phi} \right]$$
$$= \frac{1}{r^2} \frac{\partial (r^2 F_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta F_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial (F_\phi)}{\partial \phi}$$