ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Национальный исследовательский университет «Высшая школа экономики»

> Факультет экономических наук Образовательная программа «Экономика»

КУРСОВАЯ РАБОТА

На тему «Вариация алгоритма кросс-валидации со взвешиванием наблюдений»

Студент группы БЭК161 Гармидер Петр Александрович

> Научный руководитель: Борис Демешев

Содержание

1	Введение		
	1.1	Параметры и гиперпараметры модели	3
	1.2	Типы кросс-валидации	3
	1.3	Кросс-валидация на временных рядах	6

1 Введение

1.1 Параметры и гиперпараметры модели

Большая часть популярных моделей имеют множество параметров и гиперпараметров однозначно выделяющие модель из множества всех алгоритмов. Гиперпараметры модели — параметры, вводимые пользователем вручную, которые в большинстве случаев не меняются в ходе обучения¹. Параметры модели — параметры, которые не вводятся пользователем вручную, а есть результат оптимизации функции потерь. Их конечное значения становится известно после завершения процесса обучения. Параметры модели связывают имеющиеся у исследователя данные и выбранный алгоритм для обучения.

Рассмотрим пример. Пусть имеем обучающую выборку $D = \{x_i, y_i\}$ и тестовую выборку $d = \{x_i, y_i\}$, где $x_i, y_i \in R$, |D| = N и |d| = n. Будем оценивать y_i используя L_2 - регуляризатор или Ridge-regression (см. [2]). Имеем безусловной задачу оптимизации:

$$\sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 + \lambda \hat{\beta}_1^2 \to \min_{\hat{\beta}_0, \hat{\beta}_1}$$

В (??) существуют два параметра для оптимизации $\hat{\beta}_0$ и $\hat{\beta}_1$, а также один гиперпараметр λ , который является константой в рассматриваемой задаче. Коэффициенты регрессии находятся из задачи минимизации при заданном уровне λ , в то время, как степень регуляризации λ задается исследователем. В конечно счете исследователь заинтересован в создании модели, которая имеет высокое качество на тестовой выборке d, что не участвовала в процессе обучения. Качество работы модели на выборке d очевидно зависит от выбранного исследователем λ . Поэтому, выбор оптимального значения для гиперпараметров является также важной задачи для получения лучшей модели.

Гиперпараметрами модели также могут быть: метод обработки пропусков в данных, количество слоев в нейронной сети, выбранные функции активации, уровень Dropout, скорость обучения и другие.

Влияние гиперпараметров на качество работы модели делает их правильный выбор отдельной задачей. Оптимальный алгоритм подбора гиперпараметров уникален для каждой конкретной задачи. Качество работы модели в целом принято оценивать на выборках не участвовавших в обучении, но для которых известно истинной значение зависимой переменной.

1.2 Типы кросс-валидации

Кросс-валидация — техника валидации модели для оценки качества её работы и установления факта обобщающей способности. Метод CV позволяет понять, выучила ли модель зависимость

¹Однако такая практика также используется, например, изменение гиперпараметра learning rate в ходе алгоритма градиентного спуска (см. [1])

между рассматриваемыми переменными или же алгоритм переобучился и хорошо предсказывает лишь данные имеющиеся в обучающей выборке². Как правило, кросс-валидационной проверке подвергаются модели, которые направлены на точность предсказаний, оставляя за бортом вопрос интерпретации полученных результатов.

Разберем некоторые варианты алгоритма кросс-валидации:

Пусть имеем: X — множество признаков, описывающих объекты; Y — множество зависимых переменных; $D^l = \{x_i, y_i\}$ — наблюдаемая выборка , где $x_i \in X, y_i \in Y, l$ — размер выборки; $Q: (A \times (X \times Y)) \to R$ — функция потерь; A — модель; $\mu: (X \times Y) \to A$ — алгоритм обучения [3].

• Валидация на отложенных данных (Hold-out)

Исследователь выбирает число t — количество объектов из множества D, которые будут использованы для обучения модели. Соответственно, оставшая часть объектов l — t используется для проверки качетсва работы модели. Итого, получаются две выборки $Train^t$ и $Test^{l-t}$ такие, что $Tr^t \cup Tt^{l-t} = D^l$. Решается задача:

$$HOCV(\mu,Tr^t,Tt^{l-t}) = Q(\mu(Tr^t),Tt^{l-t}) \to min_{\mu}$$

$$\mathbf{Tr^t} \qquad \qquad \mathbf{Tt^{l-t}}$$

Рис. 1: Иллюстрация валидации на отложенных данных

Метод Hold-out CV обычно используется в том случае, если исследователь обладает большой обучающей выборкой, т.к данный способ не требует больших вычислительных мощностей. Итоговое качество Q также зависит от разбиения обучающей выборки, что является главным недостатком метода.

• K-fold кросс-валидация

Исходная выборка D разбивается случайным образом на K непересекающихся, примерно равных по мощности множеств: $D_1, D_2, \ldots D_k; |D_i| \approx \frac{l}{k}$. После чего, для каждого из получившихся множеств проводится процедура hold-out CV; результаты всех процедур усредняются. Решается задача:

$$KFCV(\mu, D, K) = \frac{1}{K} \sum_{i=1}^{K} OFCV(\mu(D \backslash D_i), D_i) \to min_{\mu}$$

Mетод K-fold CV решает проблему высокой зависимости получаемого результата от разбиения, однако является весьма затратным с точки зрения вычислительных мощностей.

 $^{^2\}mathrm{B}$ английской литературе данную ситуацию называют overfitting

Рис. 2: Иллюстрация K-fold кросс-валидации при ${\rm K}=4$

Обычно используется в тех случаях, когда размеры выборки и модель позволяют быстро проводить процедуру обучения. Число K выбирается исследователем на своё усмотрение. Заметим, что при $t=\frac{l}{2}$ Hold-out $\mathrm{CV}\equiv\mathrm{two} ext{-fold }\mathrm{CV}$.

• Leave-one-out кросс-валидация

Частный случай K-fold кросс-валидации, при K=l. Исходное множество D разбивается на l подмножеств: $D_1, D_2, \ldots D_l$; $|D_i|=1$. После чего проводится стандартная K-fold кросс-валидация. LOO CV подвергается критике; в некоторых исследованиях говорится, что данный метод плохо оценивает предсказательную силу модели [4]. Кроме того, данный метод требует высоких вычислительных мощностей, т.к потребуется l раз обучать модель.

• Полная кросс-валидация (Complete)

Исследователь выбирает число t, после чего изначальная выборка D^l разбивается всеми возможными способами на выборки Tr^l и Tt^{l-t} . Заметим, что силов возможных разбиений для заданного t равно C_l^{l-t} . Таким образом, исследователь решает задачу:

$$CCV(D,t) = \frac{1}{C_l^{l-t}} \sum_{D^l = Tr^l \cup Tt^{l-t}} Q(\mu(Tr^t), Tt^{l-t}) \to min_{\mu}$$

Даже при достаточно небольших значениях t, данный метод проверки работоспособности модели используется крайне редко в силу его вычислительной сложности.

• Случайные разбиения (Random sampling)

Выборка разбивается в случайной пропорции, после чего для получившегося разбиения проводится hold-out CV. Данная процедура повторяется несколько раз; результаты усредняются.

• M × K-fold кросс-валидация

K-fold кросс-валидация проводится М раз; результаты М валидаций усредняются. Итого:

$$MKFCV(\mu, D, K, M) = \frac{1}{M} \sum_{i=1}^{M} KFCV(\mu, D, K) \rightarrow min_{\mu}$$

Метод допустим к использованию при небольшой выборке и алгоритме, который способен обучаться $M \times K$ раз за разумное время.

Одной из причин использования кросс-валидации является подбор гиперпараметров. Допустим исследователь решает задачу по выбору оптимального параметра λ для L_2 - регуляризатора на странице 3. Если не проводить кросс-валидацию, то лучшее качество на выборке D даст модель с $\lambda = 0$, т.к в этом случае на коэффициенты регрессии не накладываются никакие ограничения, а поэтому они сойдутся к решению, которое минимизирует среднеквадратичную ошибку на выборке D. Однако, получаемое качество работы модели на обучающей выборке не отображает реальную картину. Исследователь, в конечном счете, заинтересован создать модель, которая будет иметь высокое качество на объектах не входящих в обучающую выборку. Для этого, есть смысл проверять качество работы модели используя один из перечисленных методов кросс-валидации. В этом случае, оптимальное значение λ скорее всего окажется больше нуля.

1.3 Кросс-валидация на временных рядах

Временной ряд — наблюдаемая выборка данных, объекты которой представлены во временном порядке. В большинстве случаев, временной ряд представлен точками, которые одинаково отдалены друг от друга во временной шкале. Анализ временных рядов значимо отличается от подходов работы с простой выборкой данных: учитывается зависимость точек от времени, а также взаимосвязь текущего значения параметра с лагированными. Примерами временных рядов являются: курс доллар к евро, реальный уровень ВВП США, ключевая ставка ЦБ РФ, последовательность кадров в видеоролике и так далее. В данной работе фокус будет сделан на одномерных временных рядах, прогноз для которых будет иметь вид некоторой функции от прошлых значений.

Как и раньше, задача построения моделей для прогнозирования временных рядов включает в себя стадию подбора оптимальных гиперпараметров модели. Однако, по очевидным причинам большинство методов кросс-валидации из секции 1.2 не подходят для случая, когда объектом исследования является временной ряд. Непрактично оценивать модель на случайно выбранных данных, которые с большой долей вероятности потеряют временную структуру при разбиениях.

Список литературы

- [1] Zeiler Matthew D. ADADELTA: An Adaptive Learning Rate Method. 2012.
- [2] Hoerl Arthur E, Kennard Robert W. Ridge regression: Biased estimation for nonorthogonal problems // Technometrics. 1970. T. 12, № 1. C. 55–67.
- [3] Кросс-валидация. URL: http://neerc.ifmo.ru/wiki/index.php?title=Кросс-валидация.
- [4] Efron Bradley. How biased is the apparent error rate of a prediction rule? // Journal of the American statistical Association. 1986. T. 81, № 394. C. 461–470.