# Lecture Notes for Math 307: Linear Algebra and Differential Equations

Instructor: Max Hill (Fall 2025)

Last updated: September 3, 2025

# Contents

| O | Tentative Course Outline                                                                                                                                                                                                                                                                                                               | 2              |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1 | 2025-08-25   Week 01   Lecture 011.1 A first example of a system of linear equations1.2 Key definitions: linear systems and their solutions1.3 How to understand solutions of linear systems geometrically                                                                                                                             | 4              |
| 2 | 2025-08-27   Week 01   Lecture 02 2.1 How to understand solutions of linear systems geometrically                                                                                                                                                                                                                                      |                |
| 3 | 2025-08-29   Week 01   Lecture 03 3.1 Solving a linear system using via simplifying transformations                                                                                                                                                                                                                                    |                |
| 4 | 2025-09-03   Week 02   Lecture 044.1Using row reduction to solve a linear system with a unique solution4.2The goal when doing row reduction4.3Using row reduction to solve a system with infitely many solutions4.4Using row reduction to attempt to solve a system with no solutions4.5Notes and resources for learning row reduction | 13<br>13<br>15 |
| 5 | 2025-09-??   Week 03   Lecture 05, probably                                                                                                                                                                                                                                                                                            | 17             |

# About this document

These lecture notes were prepared by Max Hill for a 16-week linear algebra course (MATH 307) at University of Hawaii at Manoa in Fall 2025.

The textbook used is *Linear Algebra and Differential Equations* (2002) by G. Peterson S. Sochacki, in which we cover primarily Chapters 1,2,5, and 6

#### 0 Tentative Course Outline

- Weeks 1-3: Matrices and determinants. (Systems of linear equations, matrices, matrix operations, inverse matrices, special matrices and their properties, and determinants.)
  - Section 1.1: Systems of Linear Equations
  - Section 1.2: Matrices and Matrix Operations
  - Section 1.3: Inverses of Matrices
  - Section 1.4: Special Matrices and Additional Properties of Matrices
  - Section 1.5: Determinants
  - Section 1.6: Further Properties of Determinants
  - Section 1.7: Proofs of Theorems on Determinants
- Weeks 4-6: Vector spaces. (Vector spaces, subspaces, spanning sets, linear independence, bases, dimension, null space, row and column spaces, Wronskian.)
  - Section 2.1: Vector Spaces
  - Section 2.2: Subspaces and Spanning Sets
  - Section 2.3: Linear Independence and Bases
  - Section 2.4: Dimension; Nullspace, Rowspace, and Column Space
  - Section 2.5: Wronskians
- Weeks 7-11: Linear transformations, spectral theory. (Linear transformation, eigenvalues and eigenvectors, algebra of linear transformations, matrices for linear transformations, eigenvalues and eigenvectors, similar matrices, diagonalization, Jordan normal form.)
  - Section 5.1: Linear Transformations
  - Section 5.2: The Algebra of Linear Transformations
  - Section 5.3: Matrices for Linear Transformations
  - Section 5.4: Eigenvalues and Eigenvectors of Matrices
  - Section 5.5: Similar Matrices, Diagonalization, and Jordan Canonical Form
  - Section 5.6: Eigenvectors and Eigenvalues of Linear Transformations

#### • Midterm Exam

- Weeks 12-14: Systems of differential equations. (Theory of systems of linear differential equations, homogeneous systems with constant coefficients, the diagonalizable case, nonhomogeneous linear systems, applications to 2 × 2 and 3 × 3 systems of nonlinear differential equations.)
  - Section 6.1: The Theory of Systems of Linear Differential Equations
  - Section 6.2: Homogenous Systems with Constant Coefficients: The Diagonalizable Case
  - Section 6.3: Homogenous Systems with Constant Coefficients: The Nondiagonalizable Case
  - Section 6.4: Nonhomogeneous Linear Systems
  - Section 6.6: Applications Involving Systems of Linear Differential Equations
  - Section 6.7:  $2 \times 2$  Systems of Nonlinear Differential Equations
- Weeks 14-16: Other stuff if time allows. (Converting differential equations to first order systems (section 6.5), linearization of 2 × 2 nonlinear systems (???), stability and instability (section 6.7), predator-prey equations (section 6.7.1).)
- Final Exam

# 1 2025-08-25 | Week 01 | Lecture 01

This lecture is based on textbook section 1.1. Introduction to Systems of Linear Equations

The nexus question of this lecture: What is a system of linear equations, and what does it mean to 'solve' a system of linear equations?

#### 1.1 A first example of a system of linear equations

We begin with something concrete.

**Example 1** (A first example of a system of linear equations). Consider the following word problem:

A boat travels between two ports on a river 48 miles apart. When traveling downstream (i.e., with the current), the trip takes 4 hours, but when traveling upstream (i.e., fighting the current), the trip takes 6 hours.

Assume that the boat and the current are both moving at a constant speed. What is the speed of the boat in still water, and what is the speed of the current?

This problem is hard to reason through without writing something down, but becomes much simpler when we formalize it mathematically with equations. The unknowns are (1) the speed of the boat in still water and (2) the speed of the current. So let

$$x :=$$
(the speed of the boat in still water)  $y :=$ (the speed of the current).

The speed of the boat going downstream is x + y. Therefore, since (speed) × (time) = (distance travelled), we have

$$4(x+y) = 48$$
, or equivalently  $x+y = 12$ .

Similarly, the sped of the boat going upstream is x - y, so

$$6(x-y)=48$$
, or equivalently  $x-y=8$ 

Thus, we have the following system of linear equations:

$$\begin{cases} x+y=12\\ x-y=8. \end{cases} \tag{1}$$

This system has **two equations** and **two variables** (x and y). You have encountered systems of equations like this many times. With the help of the technology of algebra, solving this problem (namely, solving System (1)) is much easier than solving the original word problem.

- In this case, the problem can be easily solved **algebraically** using a substitution (e.g., plug x = 8 + y into the first equation and solve for y, then solve for x after finding y). This gives the solution (x, y) = (10, 2). The speed of the boat in still water is 10mph. The speed of the river current is 2mph.
- We can conceive of another type of solution, which uses a **geometric**, rather than algebraic perspective: observe that each equation x + y = 12 and x y = 8 represents a line on the xy-plane. Plot the lines. Their intersection is the point (10, 2), which is the solution.
- However, solving systems of equations like in (1) becomes more cumbersome when there are lots of variables and equations. Doing substitutions and algebraic manipulations will still work, but will be tedius and difficult if you have many equations and variables.

Later, we will introduce a general algorithm which can solve any such system. This algorithm is called *Gauss-Jordan elimination*, and it will be one of the core techniques that we will use to solve many types of problems in this class.

End of Example 1.  $\square$ 

# 1.2 Key definitions: linear systems and their solutions

In this section, we formalize the mathematical objects we are studying.

**Definition 2** (Linear equation). A *linear equation* in the variables  $x_1, \ldots, x_n$  is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b,$$

where  $a_1, \ldots, a_n$  and b are constants (e.g., fixed real numbers). The numbers  $a_1, \ldots, a_n$  are called **coefficients**.

Note that the variables  $x_1, \ldots, x_n$  are not raised to any powers. That's what makes the equation *linear*. If we had squares or cubes of some of the  $x_i$ 's, or products like  $x_1x_3$ , then the equation would be quadratic or cubic, or something else, but not linear.

Example 3 (Examples of linear equations).

• The equation

$$2x - 3y = 1$$

is a linear equation in the variables x and y. Its graph is a line on the xy-plane.

• The equation

$$3x - y + 2z = 9$$

is a linear equation in the variables x, y and z. Its graph is a plane in 3-dimensional space (denoted  $\mathbb{R}^3$ ).

• The equation

$$-x_1 + 5x_2 + \pi^2 x_3 + \sqrt{2}x_4 = e^2$$

is a linear equation in the variables  $x_1, x_2, x_3$ , and  $x_4$ . The coefficients are

$$a_1 = -1$$
,  $a_2 = 5$ ,  $a_3 = \pi$ , and  $a_4 = \sqrt{2}$ .

The graph of this linear system is a 3-dimensional hyperplane in 4d-space (i.e.,  $\mathbb{R}^4$ ).

**Observation:** In these examples, we observe a simple relationship between the number of variables and the dimension of the graph:

(dimension of graph) = 
$$(\# \text{ of variables}) - 1$$
.

Here, the term **dimension** refers to the number of free variables. In the first equation (which is 2x - 3y = 1), it's easy to see that if we know one of the variables, then the other one is automatically determined. So it makes sense that the graph of this equation is of dimension 1 (which it is, because it's a line). For the second equation, if we know any 2 of the variables, then the third variable is automatically determined, so it makes sense that the dimension of the graph is 2 (which it is, because planes are 2-dimensional). Etc.

End of Example 3.  $\square$ 

**Definition 4** (Linear system, solution of a linear system). When considered together, a collection of m linear equations

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{21}x_2 + \dots + a_{2n}x_n = b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(2)

is called a **system of linear equations**, or **linear system** for short. A **solution** to a system of linear equations is a set of values for  $x_1, \ldots, x_n$  which satisfy all equations in system (2).

Example 5 (A system of linear equations). An example of a system of linear equations is

$$\begin{cases} x - y + z = 0 \\ 2x - 3y + 4z = -2 \\ -2x - y + z = 7 \end{cases}$$

When a linear system like this walks in the door, we always first ask two basic questions: (1) 'how many equations does it have?' and (2) 'how many variables does it have?'. In this case, we have m = 3 equations and n = 3 variables.

End of Example 5.  $\square$ 

# 1.3 How to understand solutions of linear systems geometrically

Here is a very useful geometric perspective. In system (2), we have a system of m equations expressed in n variables  $x_1, \ldots, x_n$ . Each of the m equations is the equation of some hyperplane<sup>1</sup> which lives in n-dimensional space ( $\mathbb{R}^n$ ). The solution to the linear system is the intersection of these hyperplanes.

For example, in Example 5, the 'hyperplanes' were lines, and their intersection was the point (x, y) = (10, 2).

We will spend a lot of time understanding what hyperplanes look like, and what intersections of hyperplanes look like.

<sup>&</sup>lt;sup>1</sup>Note: Hyperplanes will be defined more formally later, but for now can be thought of as generalized lines or planes, since a 1-dimensional hyperplanes is a *line* and a 2-dimensional hyperplane is a *plane*.

# 2 2025-08-27 | Week 01 | Lecture 02

The nexus question of this lecture: What do solutions to linear systems look like?

#### 2.1 How to understand solutions of linear systems geometrically

Here is a very useful geometric perspective. In system (2), we have a system of m equations expressed in n variables  $x_1, \ldots, x_n$ . Each of the m equations is the equation of some hyperplane<sup>2</sup> which lives in n-dimensional space ( $\mathbb{R}^n$ ). The solution to the linear system is the intersection of these hyperplanes.

The clearest example of this can be seen in the linear system:

Example 6 (The case with two variables).

$$\begin{cases}
 a_{11}x + a_{12}y = b_1 \\
 a_{21}x + a_{22}y = b_2
\end{cases}$$
(3)

where  $a_{12}, a_{22} \neq 0$ . (In this case, the "hyperplanes" are simply lines.) Here, the solutions to the first equation are the points on the line

$$y = -\frac{a_{11}}{a_{12}}x + \frac{b_1}{a_{12}} \tag{4}$$

Similarly, the solutions to the second equation are the points on the line

$$y = -\frac{a_{21}}{a_{22}}x + \frac{b_2}{a_{22}}. (5)$$

There are three possible things that can happen when we intersect the two lines in Eqs. (4) and (5):

• Case 1. The two line equations Eqs. (4) and (5) represent distinct lines and are not parallel. In this case, their intersection consists of a unique point, like this:



In this case, the system (3) has **exactly one solution**—namely, the intersection of the two lines, just like we saw in the boat example.

- Case 2. The two line equations Eqs. (4) and (5) represent two parallel but different lines. In this case, the two lines never intersect each other (i.e., there is no point that lies on both lines), so the system (3) has no solutions.
- Case 3. The two equations of lines are the same, so they represent the same line. Therefore the intersection of the two lines is the entire line. Therefore, there are **infinitely many solutions** to the linear system (3). Namely, any point (x, y) on the line is a solution to the linear system.

End of Example 6.  $\square$ 

These three cases desribed in Example 6 constitute the following trichotomy:

**Theorem 7.** A system of linear equations either has (1) exactly one solution, (2) no solution, or (3) infinitely many solutions.

We haven't proven this fact, only illustrated it for systems of linear equations like (3) that have 2 equations and 2 variables. In fact, as we shall see, this fact always holds for all linear systems of the form given in (2), no matter how many equations and variables.

<sup>&</sup>lt;sup>2</sup>Note: Hyperplanes will be defined more formally later, but for now can be thought of as generalized lines or planes, since a 1-dimensional hyperplanes is a *line* and a 2-dimensional hyperplane is a *plane*.

# 2.2 The planar case

Recall that, geometrically, a line is determined by two features:

- 1. A slope m which determines the direction of the line
- 2. A point  $(x_0, y_0)$  which the line passes through, as this determines where the line lives on the xy-plane It is easy to see that these two things determine everything about a line because the equation of a line can be expressed as

$$y - y_0 = m(x - x_0)$$

and to write this down, all we need are m and  $(x_0, y_0)$ .

Just like a line, a plane is determined by two things:

- 1. A normal vector  $n = \langle A, B, C \rangle$  which determines the tilt of the plane. (Here, A, B, and C are fixed constants)
- 2. A point  $(x_0, y_0, z_0)$  which the plane passes through, as this determines where in 3-d space  $(\mathbb{R}^3)$  the plane lives.

To be precise, a plane  $\mathbb{P}$  consists of the set of points (x, y, z) satisfying the following equation:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$
(6)

This is the standard form equation of a plane, and we can write it down if we know both  $n = \langle A, B, C \rangle$  and  $(x_0, y_0, z_0)$ . So if we know those two things, then we know the equation of the plane, meaning we know everything about it.

By a little bit of algebra, we can rewrite Eq. (6) as

$$Ax + By + Cz = D$$

where  $D = Ax_0 + By_0 + Cz_0$ . This is a linear equation. Just like how the solutions to a linear equation with 2 variables form a line, the solutions to a linear equation with 3 variables form a plane.

**Example 8** (A system with three variables). Suppose we wish to solve the linear system

$$\begin{cases} x - y + z = 0 \\ 2x - 3y + 4z = -2 \\ -2x - y + z = 7 \end{cases}$$

In this case, each equation is the equation of a plane. The planes for the first two equations are the following:



The plane for the first equation is in red. The plane for the second equation is blue. Any point on the red plane is a solution to the first equation x - y + z = 0. Any point on the blue plane is a solution to the second equation 2x - 3y + 4z = -2. The two planes interesect in a line. If I pick any point on this line, then it satisfies both equations.

But our system has three equations, so we have a third plane, and the intersection of all three planes is a point, as shown:



In this case, the system of equations has a unique solution, which is the unique point of intersection of the planes. Here's the desmos link to see the plots of these three planes, if you want to play around with them:

https://www.desmos.com/3d/gpgtw2rjaf

Of course there are other ways that three planes could have intersected. For example, two of the planes might be parallel, like the following picture, in which case the system will have no solutions:



Or the three planes could intersect in a line, like the following picture, in which case there are infinitely many solutions (credit Noah C. for the observation and picture):



There are other ways that three planes could intersect as well, but the trichotomy stated earlier always holds: their intersection either constists of (1) exactly one point, (2) infinitely many points, or (3) zero points.

End of Example 8.  $\square$ 

We've seen in this lecture that for systems of linear equations with two variables, the solutions are the intersection of lines. For systems of linear equations with three variables, the solutions are the intersections of planes. ... And for systems with n > 3 variables, the solutions are the intersections of hyperplanes.

# 3 2025-08-29 | Week 01 | Lecture 03

This lecture is based on section 1.1 in the textbook

The nexus question of this lecture: How can we solve a linear system without resorting to substitution?

Recall in the boat example (Example 1), we had the system

$$\begin{cases} x + y = 12 \\ x - y = 8 \end{cases}$$

And we could solve this using substitution. Another thing we could have done, would be to add the second equation to the first, giving us a new, simpler but equivalent system:

$$\begin{cases} 2x = 20 \\ x - y = 8 \end{cases}$$

Then divide the firs equation by two

$$\begin{cases} x = 10 \\ x - y = 8 \end{cases}$$

Then subtract the first equation from the second:

$$\begin{cases} x = 10 \\ -y = -2 \end{cases}$$

Then multiply the second equation by -1

$$\begin{cases} x = 10 \\ y = 2 \end{cases}$$

And tada! We have found our solution without doing substitution. But this example was very simple, so maybe it's special and we can't always do this sort of thing? Actually, we can. In the rest of the lecture, I'll try to formalize these sorts of steps we used here and apply them to a more complicated problem.

The reason I'm doing this is because, in the next lecture, I will begin to present **Gauss-Jordan elimination** (aka **row reduction**), a general method which can be used to find the solutions of any system of linear equation which does not use substitution. For now, the we will work out an example which motivates the main ideas that will be used by Gauss-Jordan elimination.

#### 3.1 Solving a linear system using via simplifying transformations

**Example 9** (Solving a linear system with elementary operations). Suppose we wish to solve the following system:

$$\begin{cases} x - y + z = 0 & (E_1) \\ 2x - 3y + 4z = -2 & (E_2) \\ -2x - y + z = 7 & (E_3) \end{cases}$$
 (7)

This system has 3 equations, labeled  $E_1, E_2, E_3$ , and 3 variables x, y and z. Suppose that we know ahead of time that this system has a unique solution (we showed this graphically in Example 8). Then, in principle, we could solve this using substitution, but that would suck. Instead, I will illustrate an approach in which we iteratively transform this linear system into successively simpler systems until we get to a point where the solution is obvious.

To do this, we will play a game where there are three 'moves' available to us. The three moves are:

- 1. Interchange two equations in the system.
- 2. Multiply an equation by a nonzero number.

3. Replace an equation by itself plus a multiple of another equation.

These moves are called **elementary operations**, and if we use them intelligently, they will allow us to transform the linear system into a simpler system.

Two systems of equations are said to be *equivalent* if they have the same solutions. Applying elementary operations always results in an equivalent system. Our goal will be to use some combination of elementary operations to produce a system of the form

$$\begin{cases} x = * \\ y = * \\ z = * \end{cases}$$

where each \* is a constant which we will have computed. This will be our solution to the linear system (7), because the two systems will be equivalent.

First, let's apply operation 3: specifically, by replacing  $E_2$  with  $E_2 - 2E_1$ :

$$\begin{cases} x - y + z = 0 \\ - y + 2z = -2 \\ -2x - y + z = 7 \end{cases}$$

We have eliminated the x from the second equation, yielding a simpler system. Let's keep doing this. To eliminate x from equation 3, let's apply operation 3 again: This time, replace  $E_3$  with  $E_3 + 2E_1$ :

$$\begin{cases} x - y + z = 0 \\ - y + 2z = -2 \\ -3y + 3z = 7 \end{cases}$$

Apply operation 3, replace  $E_1$  with  $E_1 - E_2$ . This will allow us to eliminate y from  $E_1$ :

$$\begin{cases} x & -z = 2 \\ -y + 2z = -2 \\ -3y + 3z = 7 \end{cases}$$

Apply operation 3, replace  $E_3$  with  $E_3 - 3E_2$ . This will allow us to eliminate y from  $E_3$ :

$$\begin{cases} x & -z = 2 \\ -y + 2z = -2 \\ -3z = 13 \end{cases}$$

Apply operation 2 twice: multiply both the first and second equations by 3:

$$\begin{cases} 3x & -3z = 6 \\ -3y & +6z = -6 \\ -3z = 13 \end{cases}$$

Apply operation 3, twice. First, replace  $E_1$  with  $E_1 - E_3$ . Then replace  $E_2$  with  $E_2 + 2E_3$ . Doing both of these, we get:

$$\begin{cases} 3x & = -7 \\ -3y & = 20 \\ -3z & = 13 \end{cases}$$

Apply operation 2 by multiplying the first equation by 1/3. Then multiply the second and third equations both by -1/3:

$$\begin{cases} x & = -7/3 \\ y & = -20/3 \\ z = -13/3 \end{cases}$$

This is the solution to the original equation. We have used elementary operators to reduce our original linear system Eq. (7) to the above system, which equivalent to the original system.

While solving this system was still a lot of (tedious) work, it was still probably simpler than doing substitution.

End of Example 9.  $\square$ 

# 3.2 Representing a linear system as an augmented matrix

In the procedure presented in Example 9, we didn't really need to track the variables, only the *coefficients* and the *quantities on the right hand sides* of the equations. Instead of working with the equations directly, it will be simpler to work with the following matrix, called the **augmented matrix** corresponding go Eq. (7):

$$\left[\begin{array}{ccc|c} 1 & -1 & 1 & 0 \\ 2 & -3 & 4 & -2 \\ -2 & -1 & 1 & 7 \end{array}\right].$$

Comparing this with system (7), it becomes clear that the augmented matrix was obtained essentially by just erasing the variables x, y, and z in (7), and then placing what remains into an array. We also drew a vertical line to the separate the left- and right-hand sides of the equations. Inside the augmented matrix, the  $3 \times 3$  submatrix of coefficients

$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ -2 & -1 & 1 \end{bmatrix}$$

is called the **coefficient** matrix of the system.

More precise definitions are as follows:

**Definition 10** (Augmented Matrix). Given a linear system of the form (2), the **augmented matrix** is

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

and the **coefficient matrix** is the matrix

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

This is our first application of

# 4 2025-09-03 | Week 02 | Lecture 04

The nexus question of this lecture: What is Gauss-Jordan elimination (aka: row reduction) and how do we use it to solve linear systems?

Now I will present *Gauss-Jordan elimination*. This is also called *Gaussian elimination*, or more commonly, *row reduction*. I will illustrate it by means of an example.

#### 4.1 Using row reduction to solve a linear system with a unique solution

Suppose we wish to solve

$$\begin{cases} x - y + z = 0 \\ - y + 2z = -2 \\ -2x - y + z = 7 \end{cases}$$
 (8)

**Steps:** We initialize the algorithm by setting up an *augmented matrix* corresponding to the system. For the system in (8), the augmented matrix is

$$\left[\begin{array}{ccc|c} 1 & -1 & 1 & 0 \\ 2 & -3 & 4 & -2 \\ -2 & -1 & 1 & 7 \end{array}\right].$$

- The matrix to the left of the vertical row is the **coefficient matrix**.
- A line of numbers going from left to right is called a **row** of the matrix. A line of numbers going down the matrix is a **column**.

Gauss-Jordan elimination is like a game where the player has three possible moves, called **row operations**.

- 1. Interchange two rows.
- 2. Multiply a row by a nonzero number.
- 3. Replace a row by itself plus a multiple of another row.

The player does row operations with the **goal** of making the diagonal entries of the coefficient matrix 1's and making as many of the other numbers zero, if possible. Here are the row operations for this example:

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 2 & -3 & 4 & -2 \\ -2 & -1 & 1 & 7 \end{bmatrix} \xrightarrow{R_2 - 2R_1 \to R_2} \begin{bmatrix} 1 & -1 & 1 & 0 \\ \mathbf{0} & -\mathbf{1} & \mathbf{2} & -\mathbf{2} \\ -2 & -1 & 1 & 7 \end{bmatrix} \xrightarrow{R_3 + 2R_1 \to R_3} \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & -1 & 2 & -2 \\ \mathbf{0} & -\mathbf{3} & \mathbf{3} & \mathbf{7} \end{bmatrix}$$

$$\xrightarrow{R_1 - R_2 \to R_1} \begin{bmatrix} \mathbf{1} & \mathbf{0} & -\mathbf{1} & 2 \\ 0 & -1 & 2 & -2 \\ 0 & -3 & 3 & 7 \end{bmatrix} \xrightarrow{R_3 - 3R_2 \to R_3} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & -1 & 2 & -2 \\ \mathbf{0} & \mathbf{0} & -\mathbf{3} & \mathbf{13} \end{bmatrix} \xrightarrow{(-1) \cdot R_2 \to R_2} \begin{bmatrix} 1 & 0 & -1 & 2 \\ \mathbf{0} & \mathbf{1} & -\mathbf{2} & \mathbf{2} \\ 0 & 0 & -3 & \mathbf{13} \end{bmatrix}$$

$$\xrightarrow{(-\frac{1}{3}) \cdot R_3 \to R_3} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -2 & 2 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & -\mathbf{13/3} \end{bmatrix} \xrightarrow{R_2 + 2R_3 \to R_2} \begin{bmatrix} 1 & 0 & -1 & 2 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{20/3} \\ 0 & 0 & 1 & -\mathbf{13/3} \end{bmatrix} \xrightarrow{R_1 + R_3 \to R_1} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & -\mathbf{7/3} \\ 0 & 1 & 0 & -20/3 \\ 0 & 0 & 1 & -13/3 \end{bmatrix}$$

We now convert the augmented matrix back to a system of linear equations:

$$\begin{cases} 1x - 0y + 0z = -7/3 \\ 0x - 1y + 0z = -20/3 \\ 0x - 0y + 1z = -13/3 \end{cases}$$

or more simply,

$$x = -7/3$$
$$y = -20/3$$
$$z = -13/3$$

We can check that this is a solution to the original system of equations (8).

# 4.2 The goal when doing row reduction

In the previoux example, we used row reduction Gauss-Jordan elimination to solve a linear system. The example we did had a unique solution. When that happens we can reduce the coefficient matrix to a matrix like

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

possibly with one or more rows of zeros at the bottom. (It may be larger or smaller depending on the number of equations and variables).

But in general, as we've seen, a linear system either has (1) one solution, (2) no solutions, or (3) infinitely many solutions. And if cases (2) or (3) happen, then we won't be able to do that. So we need to relax our "goal" when doing row reduction.

Our new goal is to reduce the coefficient matrix to reduced row-echelon form, which in the case of a linear system with three equations and three variables, means it should look like one of these

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 & \# \\ 0 & 1 & \# \\ 0 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & \# & \# \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where # denotes any arbitrary number.

**Definition 11.** More precisely, a coefficient matrix

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

is said to be in reduced row echelon form if

- 1. Any rows of zeros appear at the bottom
- 2. The leftmost nonzero entry of all other rows equals 1 (the "leading 1's")
- 3. Each leading 1 of a nonzero row appears to the right of the leading row above it
- 4. All the other entries of a column containing a leading 1 are zero

This definition is *general*: it applies to any system with m equations and n variables. The pattern will become natural once you've worked a few (dozen?) examples.

# 4.3 Using row reduction to solve a system with infitely many solutions

Here's an example which shows what happens when we try to solve a linear system with infinitely many solutions:

Example 12 (Using row reduction to solve a system with infitely many solutions). We wish to solve the system

$$\begin{cases}
2x + 3y - z = 3 \\
-x - y + 3z = 0 \\
x + 2y + 2z = 3 \\
y + 5z = 3
\end{cases}$$

This system has 4 equations and 3 variables. Each equation represents a plane. The solutions, if there are any, will be the intersection of these four planes. I've plotted the planes in Desmos:



It looks like the four planes intersect in a line. So we should expect infinitely many solutions.

Step 1. Write down the augmented matrix of the system.

$$\left[\begin{array}{ccc|c}
2 & 3 & -1 & 3 \\
-1 & -1 & 3 & 0 \\
1 & 2 & 2 & 3 \\
0 & 1 & 5 & 3
\end{array}\right]$$

**Step 2.** Do some combination or row reduction steps until the coefficient matrix is in reduced row echelon form. (This is Example 3 in the textbook, refer there for the steps.)

**Step 3.** Our matrix is now in reduced row echelon form:

$$\left[\begin{array}{ccc|c}
1 & 0 & -8 & -3 \\
0 & 1 & 5 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

Let's convert it back into a linear system of equations:

$$x - 8z = -3$$
$$y + 5z = 3$$
$$0 = 0$$
$$0 = 0$$

Therefore, we have

$$\begin{cases} x = -3 + 8z \\ y = 3 - 5z \end{cases} \tag{9}$$

where z is any real number. There are no restrictions on the value of z. Any choice of z gives us a valid solution to our original system of equations. If z = 0, we have the solution (x, y, z) = (-3, 3, 0). If z = 1, then we have the solution (x, y, z) = (5, -2, 1), and so forth.

**Interpretation:** In this case, z is called a **free variable** and x and y are called **dependent variables**. The solutions to the original linear system consist of all points on a line which cuts through 3-dimensional space  $\mathbb{R}^3$ . Eq. (9) gives us a parametric equation of the line. The set of solutions is 1-dimensional, because it is a line.

End of Example 12.  $\square$ 

We've covered two of the three cases. For the last case, we consider the question what happens if we attempt to solve a linear system that has no solutions?

# 4.4 Using row reduction to attempt to solve a system with no solutions

**Example 13** (Using row reduction to attempt to solve a system with no solutions). Suppose we wish to solve the system

$$2x + y - z = 3$$
$$-x - y + 2z = 0$$
$$-x - y + 2z = 4$$

Here's a plot of the planes:



Their intersection if the three planes is *empty*: there is no point which lies on all three planes. So this system has no solution. What happens when we try to use row reduction?

**Step 1.** Write down the augmented matrix:

$$\left[\begin{array}{ccc|c}
2 & 1 & -1 & 3 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 2 & 4
\end{array}\right]$$

**Step 2.** Do row reduction to get to reduced row echelon form (I'm skipping steps here):

$$\left[\begin{array}{ccc|c}
1 & 0 & 1 & 3 \\
1 & -1 & 3 & 3 \\
0 & 0 & 0 & 4
\end{array}\right]$$

**Step 3.** Convert back to a linear system:

$$\begin{cases} x + z = 3 \\ x - y + 3z = 3 \\ 0 = 4 \end{cases}$$

The last equation is never true, no matter what values we choose for x, y and z. So the system has no solution

End of Example 13.  $\square$ 

# 4.5 Notes and resources for learning row reduction

**NOTE:** I'm not going to do a lot of examples of row reduction because it's so time consuming that it's not a great use of lecture time. So I expect you to teach yourself how to do row reduction. If you want to see more examples, some good online videos are

```
https://www.youtube.com/watch?v=OP2aQUOevhI
https://www.youtube.com/watch?v=eDb6iugi6Uk
```

There are also some nice online tools to help with row reduction, for example:

```
https://textbooks.math.gatech.edu/ila/demos/rrinter.html
https://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=roc
```

#### General advice:

- 1. Of course I'm going to ask you to row-reduce matrices on your exams, and for that you'll need to be able to do it by hand, without a calculator.
- 2. Write down all your steps, including a new matrix at every step in an organized way.
- 3. Use the notation  $R_i \leftrightarrow R_j$  to indicate a swap of rows i and j;  $cR_i \to R_i$  to indicate a multiplication of row i by a constant c; and,  $R_i + cR_j \to R_i$  to indicate that you've added c times row j to row i.
- 4. Work left to right, top to bottom. Start by making the top left entry 1. Then use it to make all the numbers below it zero. Then go to the second column, second row, and make that 1. Then make everything beneath it zero. Etc.

# 5 2025-09-?? | Week 03 | Lecture 05, probably

This lecture is based on section 1.2 in the textbook.

The nexus question of this lecture: What is a matrix, and what kinds of things can we do with it?

A *matrix* is a rectangular array of objects, usually numbers, which are called *entries*. If the number of rows and the number of columns are equal, the matrix is said to be a *square matrix*.

For example,

$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 5 & -3 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 & -7 & 5 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

A matrix with m rows and n columns takes the form

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Such a matrix is said to be an  $m \times n$  matrix. It can be denoted compactly by

$$A = [a_{ij}]$$
 or  $A = (a_{ij})$ 

To denote the entry at row i, column j, we write either

$$\operatorname{ent}_{ij}(A)$$
 or more simply,  $a_{ij}$ 

If  $A = (a_{ij})$  is an  $n \times n$  matrix, then the entries  $a_{11}, a_{22}, a_{33}, \ldots, a_{nn}$  are called the **diagonal entries**.

Vectors are a special case of matrices. An n-dimensional vector is an  $n \times 1$  matrices (a column matrix, typically).

We add matrices in the obvious way:

$$\begin{bmatrix} 3 & 4 \\ -2 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 2 & 10 \end{bmatrix} = \begin{bmatrix} 4 & 9 \\ 0 & 10 \end{bmatrix}$$

We can multiply matrices by a scalar, also in the obvious way:

$$10 \times \begin{bmatrix} 3 & 4 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 30 & 40 \\ -20 & 0 \end{bmatrix}$$

**Matrix multiplication**, however, doesn't seem natural at all. We define matrix multiplication in the following way. If  $A = (a_{ij})$  is an  $m \times n$  matrix and  $B = (ab_{ij})$  is an  $n \times \ell$  matrix, then the product P = AB is an  $m \times \ell$  matrix

$$P = (p_{ij})$$

where

$$p_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

For example,

$$\begin{bmatrix}1&2\\3&4\end{bmatrix}\begin{bmatrix}5&6\\7&8\end{bmatrix}=\begin{bmatrix}1\cdot5+2\cdot7&1\cdot6+2\cdot8\\3\cdot5+4\cdot7&3\cdot6+4\cdot8\end{bmatrix}=\begin{bmatrix}19&22\\43&50\end{bmatrix}$$

Two matrices A and B are said to **commute** if AB = BA, but this usually doesn't happen. For example,

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$$

Then 
$$AB = BA = \begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}$$

The *identity matrix* is a square matrix with 1's on its diagonal and 0's everywhere else. For example,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{et cetera}$$

It has the property that when you multiply it by another matrix, it doesn't change the other matrix. For example,

$$\begin{bmatrix} 5 & 6 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 2 & 7 \end{bmatrix}$$

It's like multiplying a number by 1.

Question: Why is matrix multiplication defined in such a seemingly bizzare way? A good explanation will have to come later in the course, but the beginnings of an answer is that it allows us to represent systems of linear equations with matrix equations.

Indeed, suppose we have any linear system, like this:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{21}x_2 + \ldots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \end{cases}$$

Define the three matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Then we can represent the linear system compactly as the matrix equation

$$AX = B$$
.