Overfitting

Matthew Engelhard

Recall: improving one prediction may worsen another

- Suppose we predict:
 - $p_1 = .8$
 - $p_2 = .3$
 - $p_3 = .1$
- Is this a good model?Why or why not?
- Our parameters affect all the predictions: changing a parameter to decrease
 y₂ may also increase y₃

With a big enough model, this is no longer true.

perfect predictions?

predict
$$p(y_i) = y_i$$

- when is this possible?
 - logistic regression where $P \gg N$
 - MLP with final hidden layer of size M >> N
 - models with $\gg N$ parameters

We like flexible, non-linear decision boundaries...

But when we start making our decision boundary arbitrarily complex to 'fit' the training set... this is overfitting

Green boundary:

- Correct predictions for all training data
- Very likely to be <u>overfitting</u>

Black boundary:

- Balance between fit and model complexity
 - -> The black boundary is likely to perform better on new data

Overfitting

"Overfitting" happens when the learned model increases complexity to fit the observed training data *too well* – will not work to predict future data!

What would we want to use to fit these example data points?

With a complex enough model, we can typically predict our training labels perfectly.

To protect against overfitting, see how well the model performs on previously unseen data.

Early Stopping

- During optimization, we can check the validation loss as we go.
- Instead of optimizing to convergence, we can optimize until the *validation* loss stops improving
 - Saves computational cost
 - Performs better on validation (and test) sets
- Widely used technique in the field

Training Loss Keeps Improving

Conclusions

• Greater model complexity is often, but not always, advantageous

 Overfitting refers to learning and exploiting patterns in the training set that are not repeated in a new sample, including the validation and test sets

 Proper model validation is critical to estimate real-world performance and mitigate overfitting

