Réalisez une application de recommandation de contenu

(a) (b)

How to track

Extractly replacing

Sommaire

- PARTIE 1 PROJET
- PARTIE 2 DONNÉES
- PARTIE 3 MODÉLISATION
- PARTIE 4 ARCHITECTURE
- PARTIE 5 SYSTÈME DE RECOMMANDATION
- PARTIE 6 ARCHITECTURE CIBLE

Le projet de l'entreprise

- Recommandation de contenus pour les utilisateurs
- Stade amont : développer un MVP

Le projet de l'entreprise

- Données à notre disposition : open source <u>https://www.kaggle.com/datasets/gspmoreira/news-portal-user-interactions-by-globocom</u>
- Système de recommandation / App : outil simple, au stade du MVP
- Architecture :
 - tester une solution serverless
 - s'interroger sur l'évolutivité : Quid des nouveaux utilisateurs ? articles ?

Les outils utilisés

- Modélisation Collaborative Filtering surpr[se]
- Création de l'Ul Flask
- Création des fonctions serverless et déploiement
- Stockage:
 - Emulateur (développement local)
 - En ligne (pour le déploiement) Azure Storage
- Déploiement continue 🔭 GitHub Actions +

Dataset

- Des données relatives aux interactions des utilisateurs :
 - clicks_sample.csv
 - clicks/ :
 - clicks_hour_000.csv
 - clicks_hour_001.csv
 - ...
 - clicks_hour_383.csv
 - clicks_hour_384.csv

- · user id : l'identifiant de l'utilisateur
- session id : un identifiant donnée à la session dans laquelle le click a lieu
- session_start : horodatage du début de la session. De type Unix time, mais en ms
- session_size : nombre de clicks dans la session d'utilisation
- click_article_id : identifiant de l'article sur lequel le click a eu lieu
- click_timestamp : horodatage du click
- click_environment : environnement d'utilisation (1 Facebook Instant Article, 2 Mobile App, 3 AMP (Accelerated Modile Pages), 4 Web)
- click_deviceGroup : type d'appareil utilisé (1 Tablette, 2 télévision, 3 vide (inconnu), 4 smartphone, 5 ordinateur de bureau)
- click_os: système d'exploitation de l'appareil
- click_country: identifiant donné au pays de l'utilisateur
- click_region : identifiant donné à la région de l'utilisateur
- click_referrer_type:inconnu
- Des données relatives aux articles :
 - articles metadata.csv
- article_id : l'identifiant de l'article, le même que click_article_id
- category_id : un identifiant donnée à la catégorie de l'article.
- created_at_ts: horodatage de la rédaction de l'article. De type *Unix time*, mais en ms
- publisher_id : l'identifiant de l'éditeur. Inutilisable car ne comporte qu'une seule valeur.
- words_count : nombre de mots dans l'article

EDA

'session_size' - Empirical distribution

Sessions très courtes

- Sessions démarrent jusqu'au 17 oct 2017
- Ensuite, un bug ? des sessions restées ouverte ?

Clicks after 2017 october 17th

EDA

- 1
- Grande majorité des utilisateurs ont lu moins de 10 articles
- MAIS certains sont extrêmement actifs
- Prendre garde à cela dans le système de notation, pondérer

- Très grande prédominance des articles avec très peu de vues
- Prendre garde également, filtrer

Number of occurrences of articles - Counting

Deux approches

COLLABORATIVE FILTERING Read by both users Similar users Read by her, recommended to him!

CONTENT-BASED FILTERING

Collaborative Filtering

- Utilisation de la librairie surpr[se
- Et de techniques de factorisation : prédire l'avis d'un utilisateur sur un article qu'il n'a jamais noté
- Mais ici : pas de rating explicite (pas de note, pas d'étoiles, etc.)
- créer un *rating* implicite, basé sur les interactions (les *clicks*) :
 - Articles lus moins de 10 fois
 - Composante 1 : le fait que l'utilisateur ait lu l'article, normalisé
 - Composante 2 : l'ancienneté du click, normalisée
 - Composante 3 : popularité de l'article (nombre d'occurrences, borné à 1000 pour être ensuite normalisé)
 - Les combiner

Collaborative Filtering

Different ratings for Collaborative Filtering Empirical distributions

Collaborative Filtering

- 3 modèles testés
- 1 modèle optimisé

Collaborative Filtering : Cross Validation results

- Faire des recommandations :
 - Entraîner le modèle sur toutes les données
 - Filtrer nos données sur un user_id
 - Créer un dataset contenant les articles qu'il n'a jamais lu
 - Prédire les ratings associés
 - Garder les 5 meilleurs

Content Base

- Essayer d'obtenir les 2 catégories « préférées du moment » de l'utilisateur :
 - Composante 1 : nombre d'articles lus par catégorie, normalisé
 - Composante 2 : récence
 - Combiner les deux
 - Agréger par catégorie
 - Garder les 2 premières catégories et les articles lus dans celles-ci
- Filtrer les *embeddings* sur ces 2 catégories
- Sortir les 5 articles (3 pour la 1^{ère} catégorie,
 2 pour la 2^{ème}) les plus similaires aux articles déjà lus,

Cosine Similarity

Des forces et des faiblesses

- → articles parfois très différents des articles déjà lus. Découvrir de nouvelles choses
- tirer parti des tendances
- difficile de faire des recommandations pertinentes à un nouvel utilisateur
- difficile d'intégrer un nouvel article
- nécessite beaucoup de données

- fonctionne même avec peu d'utilisateurs
- + permet d'approfondir ses goûts
- « enferme » l'utilisateur, ne lui fait pas découvrir des éléments nouveaux

Architecture, ce que nous n'avons pas fait...

CI: GitHub

Architecture

Déploiement

- Au stade du MVP, pour la mise en production, limitation de la taille :
 - Des données utilisateurs
 - Du modèle Surprise
 - Des *embeddings* articles
- Réduction du nombre d'utilisateurs
- Analyse en composantes principales

Content base : Impact of PCA reduction on recommendations For 1000 samples

Déploiement

- classe recommender_deployer
- resource group
- storage account Azure Storage
- function app service plan
- function app
- managed id
- role assignments (user id et managed id)
- paramètre de connexion
- publier 🥠
- déploiement continu 🙏 + 🔭 GitHub Actions

Fonctionnement

Liste d'utilisateurs

Page d'index

Page de résultat

Syst. Recommandation

CI/CD GitHub Actions

Blob Storage Azure Storage

Architecture cible, quid des nouveaux users? articles?

CI: GitHub

CD: GitHub Actions

