Examen de Física, 27 de Mayo de 2017

APELLIDOS, NOMBRE:

GRADO EN:

ATENCIÓN!:

- Todos los problemas tienen igual puntuación: 1 punto.
- La soluciones de los ejercicios 6 y 7 deben ser entregadas en hojas aparte.
- Los ejercicios de test 1, 2, 3, 4 y 5 tienen respuesta correcta única.
- \bullet Las respuestas erróneas en los ejercicios de test 1, 2, 3, 4 y 5 contarán de forma negativa como -0.5 puntos.
- 1.- Una carga puntual $q_1=-1~\mu\mathrm{C}$ está situada en el eje x a una distancia $x_1=10~\mathrm{cm}$ del origen de coordenadas. Dos cargas puntuales $q_2=-1~\mu\mathrm{C}$ y $q_3=1~\mu\mathrm{C}$ se encuentran fijas sobre el eje y en los puntos $y_{2,3}=\pm 10~\mathrm{cm}$, respectivamente. La fuerza total \mathbf{F} que ejercen las cargas q_2 y q_3 sobre q_1 es:

b)
$$\mathbf{F} \approx 0.64 \, \mathbf{j} \, \mathrm{N}$$

c)
$$\mathbf{F} \approx -0.64 \mathbf{i} \, \mathrm{N}$$

d)
$$\mathbf{F} \approx 0.64 \mathbf{i} \, \mathrm{N}$$

- 2.- En un cierto instante t=0, la carga puntual $q_1=1$ nC y masa m=1 g se encuentra a una distancia $x_1=10$ cm del origen de coordenadas y tiene una velocidad $v_0=2$ cm/s según el dibujo. Dos cargas puntuales iguales $q_2=q_3=1$ nC se encuentran fijas sobre el eje y en los puntos $y_{2,3}=\pm 10$ cm. Teniendo en cuenta que, por el Teorema de Conservación de la Energía, en cualquier instante la suma de las energía potencial y cinética de la carga q_1 es constante, la velocidad v_f de q_1 cuando pasa por el origen de coordenadas es:
 - a) La carga q_1 nunca alcanza el origen de coordenadas.

b)
$$v_f \approx 0.017 \text{ m/s}.$$

c)
$$v_f \approx 0.022 \text{ m/s}.$$

d)
$$v_f \approx 0.047 \text{ m/s}.$$

3.- El conductor de la figura está formado por cuatro segmentos de igual longitud L=10 cm y está situado en el plano x-y. El conductor es recorrido por una corriente I=2 A con el sentido que indica la figura. El conductor está inmerso en un campo magnético $\mathbf{B}=0.1\mathbf{k}$ T constante según el eje z. La fuerza total \mathbf{F} que ejerce el campo magnético sobre el conductor es:

a)
$$\mathbf{F} = -0.06 \, \mathbf{j} \, \text{N}$$

b)
$$\mathbf{F} = -0.02 \, \mathbf{j} \, \text{N}$$

c)
$$\mathbf{F} = 0.06 \, \mathbf{i} \, \text{N}$$

d)
$$\mathbf{F} = 0.02 \, \mathbf{j} \, \text{N}$$

4.- Una bobina triangular de 100 vueltas y resistencia $R=10~\Omega$, se mueve con velocidad constante v=2~m/s hacia una región del espacio donde existe un campo magnético uniforme de 0.1~T. Inicialmente la bobina se encuentra fuera de la región donde hay campo magnético (posición 1). Determinar la magnitud y el sentido de la corriente inducida en la bobina cuando la bobina está en la posición 2.

- a) I = 2 A antihorario.
- b) I = 0.1 A antihorario.
- c) I = 2 A horario.
- d) I = 0.1 A horario.

5.- Dos hilos muy largos, paralelos entre sí y separados una distancia d=10 cm transportan corrientes $I_1=1$ A e $I_2=2$ A en sentidos opuestos según el dibujo. Ambos hilos están situados en el plano x-y. Determinar a qué distancia x_0 del hilo 1 el campo magnético que crean los hilos es cero.

- a) El campo magnético no se anula en ningún punto del plano x y.
- b) $x_0 = 0.1$ m a la izquierda del hilo 1.
- c) $x_0 \approx 0.033$ m a la derecha del hilo 1.
- d) $x_0 = 0.1$ m a la derecha del hilo 1.

6.- En el circuito de la figura se conocen los valores de ε_1 , ε_2 y de las cinco resistencias. Determinar **sin resolver** las ecuaciones que permiten obtener los valores de las intensidades I_1 , I_2 , I_3 , I_4 e I_5 que, respectivamente, atraviesan las resistencias R_1 , R_2 , R_3 , R_4 y R_5 .

- 7.- Entre los puntos a y b del circuito de la figura se establece un voltaje $V(t)=10\cos(100t)$ voltios. Determinar el valor de:
 - i) La impedancia total Z del circuito. (0,25 Puntos)
 - ii) La intensidad $I_R(t)$ que atraviesa la resistencia R. (0,25 Puntos)
 - iii) La intensidad $I_L(t)$ que atraviesa la autoinducción L. (0,25 Puntos)
 - iv) La intensidad $I_C(t)$ que atraviesa el condensador C. (0,25 Puntos)

