Math 2130 Summer 2012 Test 2 (by N Harland)

1. Given that

$$xyu + v = 2$$
 and $y^2 + u^2 - u^2v = y + 43$

define u and v as functions of x and y, find $\frac{\partial u}{\partial v}$, when x=1,y=2,u=3 and v=-4.

Find the equation of the tangent line (in either parametric, vector or symmetric form) to the curve of intersection of

$$yz + \sin(xyz) = -4$$
 and $x^2 + y^2 + z^2 = 8$

at the point (0, 2, -2). [7]

- 3. For the function $f(x,y) = x^2y + xy^2 + 3y$
 - (a) Find the critical point(s) of f. [4]
 - (b) Classify the critical point(s) found in (a) as either relative minimum, relative maximum, saddle point, or neither. [5]
 - (c) Find the absolute maximum and minimum of f on the region bounded by $y = x^2$ and y = 4. [7]
- 4. Find

$$\iint_{R} (1-x)dA$$

where R is the region bounded by the lines x+y=1, x+y=-1, x-y=1, x-y=-1. [8]

5. The one-dimensional wave equation is

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

where c is any positive constant. Let f(u) and g(v) be twice differentiable functions. Show that

$$y(x,t) = f(x+ct) + g(x-ct)$$

satisfies the wave equation. [4]

aunts Answers

$$x=0$$
, $y=2-t$, $z=-2-t$

3. a)
$$(1,-2)$$
, $(-1,2)$

5. Hint: let
$$u = x + ct$$
 \Rightarrow $v = x - ct$

$$y = f(u) + g(v)$$

$$= f(u) + g(v)$$

$$u = h(x,t), V = J(x,t)$$

4. 2

5. Hint: let
$$u = x + ct \implies (x + x + ct)$$
 $v = x - ct \implies (x + x + ct)$
 $v = x - ct \implies (x + x + ct)$

by employing the tree-diagram