Liu 2nd Place

The Nature Conservancy Fisheries Monitoring

kaggle

Team members:

Justas Kranauskas

Agenda

- 1. Background
- 2. Summary
- 3. Feature selection & engineering
- 4. Training methods
- 5. Important findings
- 6. Simple model

Background

- Phd from Vilnius University
- Used CNNs in Kaggle's:
 - Challenges in Representation Learning: Facial Expression Recognition
 Challenge
 - National Data Science Bowl
 - State Farm Distracted Driver Detection

Summary

- Used CNNs in object detection frameworks
- Optimized for detection speed
 - SSD, YOLO
- Optimized for classification accuracy
 - Faster RCNN, RFCN
 - VGG16, ResNet101
- Ensemble of ~20 Faster RCNN models
- ~1 week to train all variations from scratch

Features Selection / Engineering

- Data augmentation
 - Horizontal flip
 - Vertical flip
 - Rotation by 90 degrees
- Fish annotations
 - Bounding box
 - Head-tail points
 - Merged bounding box
- Proposals for classifications
 - 300 (default)
 - 600

Features Selection / Engineering

fish annotations: red - head-tail points, blue - bounding box, violet - merged bounding box (for multiple fishes in single image)

Training Methods

- 11-fold cross validation
 - The only "correct" model
 - Folds created semi-automatically
 - Actually, ensemble of 11 models
 - Arithmetic mean of predictions
- 2nd best my submission
 - Could be in the 3rd place overall on private leaderboard if my best submission failed

Important and Interesting Findings

- Stage2 contained only new boats
- Split training data correctly
- Used early-stopping to avoid overfitting the public leaderboard
- Used data augmentation both on training and testing images (which was not readily available in open-source FasterRCNN framework)
- Did not try to classify species of fish by the boat it was catched in :)

Simple Model

 I believe that single FasterRCNN model could do the job with correct (and enough) training data provided

kaggle