Pontificia Universidad Católica del Perú

Escuela de Posgrado

Análisis Complejo (semana 9)

FUNCIONES ANALÍTICAS Y CEROS

- 1. Determine el mayor disco abierto centrado en el origen donde $f(z)=z^2+z$ es inyectiva.
- 2. Utilice la representación $f(z) = w_0 + \zeta(z)^n$ para cos(z) con $z_0 = 0$. Determine explicitamente $\zeta(z)$.
- 3. Probar que el conjunto de los ceros de la función

$$\operatorname{sen}\left(\frac{1+z}{1-z}\right)$$

admite un punto de acumulación en C.

4. Probar que la función $f(z) = e^z - z$ tiene un cero simple en cada franja abierta semi-infinita

$$\{z = x + iy : x > 0, 2n\pi < y < 2(n+1)\pi\},\$$

y no tiene otros ceros.

5. Si f(z) es analítica en una vecindad del origen y $f'(0) \neq 0$, pruebe la existencia de una función analítica g(z) tal que

$$f(z^n) = f(0) + (g(z))^n,$$

en una vecindad del cero.

- 6. Sea $p(z) = z^3 + ikz 1$, donde 0 < k < 1. Probar que las raices de p estan en anillo $\{z: \frac{1}{2} < |z| < 2\}$. ¿Existe algún cuadrante que no contiene raices de p?
- 7. Sea p(z) un polinomio y a_1, a_2, \ldots, a_k las raices, con m_j el orden de a_j . Probar que

$$p(z) = c(z - a_1)^{m_1}(z - a_2)^{m_2} \dots (z - a_k)^{m_k}$$

para alguna constante c y la suma $m_1 + m_2 + \cdots + m_k$ coincide con el grado del polinomio.

- 8. Sea $f:U\to\mathbb{C}$ una función analítica en un abierto U. Analizar la equivalencia de los items.
 - a) $f \equiv 0$ (es identicamente cero)
 - b) Existe $a \in U$ tal que la derivada $f^{(n)}(a) = 0$, para cada $n \ge 0$.
 - c) $\{z: f(z) = 0\}$ tiene un punto de acumulación.
- 9. Estudie el item anterior asumiendo que U es un abierto conexo.
- 10. Sea $f: U \to \mathbb{C}$ una función analítica no-constante en un abierto conexo U. Probar que si f(a) = 0, entonces existe r > 0 de modo que $B(a, r) \subset U$ y $f(z) \neq 0, \forall 0 < |z a| < r$

11. Considere una función entera f(z). Si existen las constante $M>0,\,r>0$ y entero m>0 tal que

$$|z| > r \implies |f(z)| \le M|z|^m$$

entonces f(z) es un polinomio de grado $\leq m$.

- 12. Sean f(z) y g(z) dos funciones analiticas en un abierto conexo U de modo que por cada z se tiene f(z)g(z) = 0. Probar $f \equiv 0$ o bien $g \equiv 0$.
- 13. Si f(z) es analítica y no-constate en una región U, entonces |f(z)| no tiene un máximo en U
- 14. Probar el «princípio del máximo» utilizando la formula integral de Cauchy.
- 15. Considere $\gamma \subset D$ es una curva cerrada en un disco abierto D, donde f(z) es analítica.
 - a) Probar que el índice $\eta(\gamma, z) = 0$ siempre que

$$d(z, \partial U) < \frac{1}{2}d(\gamma, \partial U)$$

b) Para cada $w_0 \in \mathbb{C}$, analice el número de elementos del conjunto

$$\{z \in D : f(z) = w_0, \eta(\gamma, z) \neq 0\}$$

- 16. Si f(z) es analítica e inyectiva en la region U, pruebe que la derivada $f'(z) \neq 0, \forall z \in U$
- 17. Analice las siguientes afirmaciones
 - a) Cada función analitica definida en una región envia conjuntos abiertos en abiertos
 - b) Cada función analitica definida en una región envia conjuntos cerrados en cerrados
 - c) f(z) = Re(z) satisface (a) y (b)
- 18. Estudie el ítem anterior para el caso de una biyección analítica.
- 19. Sea $f(z) = (z-a)^m g(z)$ con g(z) analítica en U y $g(z) \neq 0, \forall z \in U$. Sea γ un ciclo que es homologo a cero en U y $a \in U$ que no está en γ . Probar que

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \eta(\gamma, a) m$$

20. Sea U un conjunto simplemente conexo (su complemento en el plano extendido es conexo) y a_1, \ldots, a_n en U. Sea f(z) analítica en $U^* = U \setminus \{a_1, \ldots, a_n\}$ y C_k una circunferencia pequeña centrada en a_k y considere

$$b_k = \frac{1}{2\pi i} \int_{C_k} f(z) dz.$$

Probar que existe una función analítica H(z) en U^* tal que

$$H'(z) = f(z) - \sum_{k} \frac{b_k}{z - a_k}.$$