

## **Assignment # 9:** Graph Traversal and Shortest Path

- 1. Draw a graph corresponding to the data in the matrix below.
  - a. The numbers indicate the weight of the edge between (u, v).

|     | вкк | PHS | CNX | ККС | NST |
|-----|-----|-----|-----|-----|-----|
| ВКК | 0   | 1   | 3   | 3   | 2   |
| PHS | 1   | 0   | 4   | 4   | 3   |
| CNX | 3   | 4   | 0   | 6   | 5   |
| KKC | 3   | 4   | 6   | 0   | 7   |
| NST | 2   | 3   | 5   | 7   | 0   |



2. Given a computer network below where a number represents the transfer **speed**, provide your answer to the following questions.



2.1 List all the nodes  $(v_1, v_2, ..., v_n)$  in the network as a set of V.

**V** =

2.2 How many edges are there in the network?



| 2 2         | Liat tha | adiagont | nadaa | of Dho  | ·/OO |
|-------------|----------|----------|-------|---------|------|
| <b>Z</b> .3 | List the | adjacent | noues | oi Piia | yao. |

2.4 Provides 3 cycle paths in the computer network.



2.5 Create an adjacency matrix of the computer network where each cell in the matrix is the weight of the edge between (u, v).

|                  | Ayutthaya | Bangkok | Chiang<br>Mai | Nan | Nakhon<br>Pathom | Phayao | Rayong |
|------------------|-----------|---------|---------------|-----|------------------|--------|--------|
| Ayutthaya        |           |         |               |     |                  |        |        |
| Bangkok          |           |         |               |     |                  |        |        |
| Chiang<br>Mai    |           |         |               |     |                  |        |        |
| Nan              |           |         |               |     |                  |        |        |
| Nakhon<br>Pathom |           |         |               |     |                  |        |        |
| Phayao           |           |         |               |     |                  |        |        |
| Rayong           |           |         |               |     |                  |        |        |



| 2.6 Provide the | most efficient traversal path | n using <u>depth-first</u> search, | starting |
|-----------------|-------------------------------|------------------------------------|----------|
| from Ayutthaya. | The rule is to access a node  | with the highest speed fir         | st.      |

2.7 Provide the most efficient traversal path using <u>breadth-first</u> search, starting from Rayong. The rule is to access a node with the highest speed first.



3. Given the graph below where a number represents the traveling **distance**, provide your answer to the following questions.



3.1 Write the shortest path (step-by-step) from node *Harry* and calculate the total weight with the distance between node *Harry* to the other nodes.



3.2 [Optional] Write the MST from node *Harry* (step-by-step) to other nodes using Prim's algorithm.



3.3 [Optional] Write the MST (step-by-step) to other nodes using Kruskal's algorithm.



3.4 [Optional] Why are the result MSTs from the Prim and Kruskal algorithm different from each other?



4. Given the graph below where the number represents the traveling **distance**, provide your answer to the following questions.



4.1 Write the shortest path (step-by-step) from node *Panda* and calculate the total weight with the distance between node *Panda* to the other nodes.



| 4.2 Provide the most efficient traversal path using <u>depth-first</u> search, starting from a panda's location. The rule is to go to the closest bamboo first.   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |
|                                                                                                                                                                   |
|                                                                                                                                                                   |
| 4.3 Provide the most efficient traversal path using <u>breadth-first</u> search, starting from a panda's location. The rule is to go to the closest bamboo first. |
|                                                                                                                                                                   |

4.4 [Optional] Write the MST from node *Panda* (step-by-step) to other nodes using Prim's algorithm.