

EE2010/IM2004 Signals and Systems

Course Overview

Course Overview						
Academic Units	4					
General Structure	Online learning activities & face-to-face tutorials per week					
Pre-requisite	MH2810 Mathematics A or (MH1810 Mathematics I & MH1811 Mathematics II)					
Description	Signals and Systems provides basic concepts of signals, Fourier analysis and linear time-invariant systems in a generic engineering context.					
	It includes applications in control engineering, communications and signal processing.					
	This course brings continuous-time and discrete-time concepts together in a unified way and relates them through sampling theory and modulation.					

Course Overview (cont'd)						
Contents	 Signals and Systems (taught by TKC) Linear Time-Invariant (LTI) Systems (by TKC) Fourier Representation of Signals and LTI Systems (by MKK) Sampling (by MKK) Modulation (TKC) 					
Learning Outcome	Through this course, students should be able to understand the representation of continuous-time and discrete-time signals; their frequency characteristics and Fourier spectrum; representation and characteristics of linear time-invariant systems in both time and frequency domains; the principles of sampling a continuous-time signal to a discrete-time one; and the concepts of modulation. This course is a pre-requisite for EE3012/IM3002 Communication Principles EE3014/IM3001 Digital Signal Processing					

Course Overview (cont'd)							
Continuous Assessment (CA)	40%	1 Quiz (10%) Individual Readiness Assessment (in-class test) (20%) 2 Labs (5% x 2 = 10%) - L2010A and L2010B					
Final Examination	60%						

Important Notes on Individual Readiness Assessment (IRA)						
Individual Readiness Assessment (IRA) contributes to 20% of the final marks						
IRA will be conducted by the respective tutor during tutorial classes throughout the entire semester						
except weeks #1, #2, #8, #10, and #13. That is, your first IRA will be conducted in the tutorial class						
of week #3, and we shall have 8 IRAs in total. (For details, refer to the Study Guide in page 7.)						
Students will be asked to solve fill-in-the-blank and/or multiple-choice questions (MCQs)						
questions, which are related to the topics covered in the lecture and tutorial of the respective weeks.						
All IRAs will be conducted at the beginning of each tutorial class in 15 minutes. Any tutorial						
question discussion or possible summary will be conducted after the completion of IRA.						
IRAs will be returned to students in the subsequent week for learning/feedback purposes.						
No make-up for any IRA owing to the main objective of IRA, and the best 6 out of 8 IRAs will be						
selected to compute the final IRA score.						

Important Notes on Quiz

There will be one common quiz for the entire semester

- Quiz (10%): Topics to be tested include materials covered in Tutorials #1 to #8, it will be conducted during tutorial class on Week #10 (21 October 2019; 5:30 pm 6:30 pm).
 - * Venue: LTxx (I will confirm you later on.)
- ☐ To answer a few compulsory questions within 45 minutes
- ☐ Students must present ID (with photo) for taking attendance
- ☐ Zero mark will be given for absentees without valid reasons or MCs
- Absentees must write in to the tutor through email within **THE SAME DAY OR EARLIER** of Quiz to request a make-up (Failure to do so will result in a zero mark)

WEEKLY STUDY GUIDE FOR LAMS VIDEOS

Week Number	LAMS Sequence, Note's Pages, & Topics	15-min IRA and Tutorial	Week Number	LAMS Sequence, Note's Pages, & Topics	15-min IRA and Tutorial	
Part 1: (by Prof. Teh Kah Chan)			Part 2: (by Prof. Ma Kai-Kuang) * <u>Use my note's page numbers as the study boundary for each week!</u>			
#1: (12-16 Aug)	Module 1 to Module 3 (Pages 1-53)	No tutorial questions. General introduction of the	#6: (16-20 Sep) Sinusoidal Signals (Pages 1-30)	Conduct IRA #5 (of previous-week #5's LAMS) and then Tutorial #5		
#1. (12-16 Aug)	Classification of Signals	course by tutors.				
	Ů		#7: (23-27 Sep)	Fourier Series (Pages 31-61)	Conduct IRA #6 (of previous-week #6's LAMS) and then Tutorial #6	
#3: (26-30 Aug) Module 6	Module 4 to Module 5 (Pages 54-81)	Conduct Tutorial #1. No IRA #1 (due to add-and-drop period).				
	Operations of Signals	Conduct 15-min IRA #2 (of previous weeks #1 and #2 LAMS) first, and then Tutorial #2.	Recess Week (30 Sep-04 Oct)			
	Madde Che Madula (Conses 00 404)		#8: (07-11 Oct)	Fourier Series Properties (Pages 62-98)	Conduct Tutorial #7. No IRA #7.	
	Module 6 to Module 8 (Pages 82-121) LTI Systems & Properties		#9: (14-18 Oct)	Fourier Transform & Its Properties (Pages 99-133, where page 121 begins FT)	Conduct IRA #8 (of previous weeks #7 and #8 LAMS on FS) and Tutorial #8	
			#10: (21-25 Oct)	Frequency Response of LTI Systems (Pages 134-164)	Conduct Tutorial #9. No IRA #9 (due to Quiz, details later).	
#4: (02-06 Sep)	Module 9 to Module 10 (Pages 122-143) Convolution	Conduct IRA #3 (of previous week #3's LAMS) and then Tutorial #3	#11: (28 Oct-01 Nov)	Sampling Theorem (Pages 165-201, where page 178 begins Sampling)	Conduct IRA #10 (of previous weeks #9 and #10 LAMS on FT) and Tutorial #10	
			Part 3: (by Prof. Teh Kah Chan)			
#5: (09-13 Sep)	Module 11 to Module 13 (Pages 144-172) Correlation	Conduct IRA #4 (of previous week #4's LAMS) and then Tutorial #4	#12: (04-08 Nov) Module 1 to Module 3 (Pages 1-40) Conduct IRA #11 (of previous week #11's LAMS) and Tutorial			
			# . 2. (34-00 HOV)	Modulation	#11	
			#13: (11-15 Nov)	No LAMS Video	Conduct Tutorial #12. No IRA #12.	

EEE EE2010/IM2004: Signals and Systems

Recommended Readings

Textbook

1. M. J. Roberts, *Fundamentals of Signals and Systems*, McGraw-Hill, International Edition, 2008. (TK5102.9.R646F)

References

- 1. M. J. Roberts, Signals and Systems, McGraw-Hill, International Edition, 2003. (TK5102.9.R63)
- 2. A. V. Oppenheim and A. S. Willsky, *Signals and Systems*, Prentice-Hall, 2nd Edition, 1997. (QA402.P62)
- 3. S. Haykin and B. V. Veen, *Signals and Systems*, Wiley, 2nd Edition, 2003. (TK5102.5.H419)
- 4. S. S. Soliman and M. D. Srinath, *Continuous and Discrete Signals and Systems*, Prentice-Hall, 2nd Edition, 1998. (TK5102.9.S686)
- 5. B. P. Lathi, *Linear Systems and Signals*, Oxford University Press, 1st Edition, 2002. (TK5102.5.L352)

Relevant Formulae

Relevant trigonometric identities will be provided, if needed.

Useful Trigonometric Identities

$$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta) \qquad \cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) = \cos\left(\frac{A-B}{2}\right) = \cos$$

$$\cos(\theta) = \frac{1}{2} \left[\exp(j\theta) + \exp(-j\theta) \right] \quad \sin(\theta) = \frac{1}{2j} \left[\exp(j\theta) - \exp(-j\theta) \right] \quad \theta$$

$$2\cos(A)\cos(B) = \cos(A-B) + \cos(A+B)$$
, $\cos^2(A) = \frac{1}{2}[1+\cos(2A)]$

$$2\sin(A)\sin(B) = \cos(A-B) - \cos(A+B)$$
 $\sin^2(A) = \frac{1}{2}[1-\cos(2A)]$

$$2\cos(A)\sin(B) = \sin(A+B) - \sin(A-B) = \sin(2A) = 2\cos(A)\sin(A) = 2\cos(A)\sin(A)$$

EE2010 Signals and Systems Part I

Overview

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals
 - 1.2 Elementary and Singularity Signals
 - 1.3 Operations on Signals
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Continuous-Time and Discrete-Time LTI Systems
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

Signals and Systems Overview

Figure 1: A typical signal and system example

EE2010 Signals and Systems Part I

1.1 Classification of Signals I

with Instructor:

A/P Teh Kah Chan

1.1 Classification of Signals

- 1) Continuous-Time vs Discrete-Time Signal
- 2) Continuous-Value vs Discrete-Value Signal
- 3) Deterministic vs Random Signal
- 4) Even vs Odd Signal
- 5) Periodic vs Aperiodic Signal
- 6) Energy-Type vs Power-Type Signal

1) Continuous-Time vs Discrete-Time Signal

- ullet Continuous-Time (CT) Signal: A signal x(t) that is specified for all value of time t
- Discrete-Time (DT) Signal: A signal y[n] that is specified only for integer value of n

Graph of Continuous-Time Signal

Graph of Discrete-Time Signal

Figure 2: Continuous-Time vs Discrete-Time signal

1) Continuous-Time vs Discrete-Time Signal

Example 1:

Try sketching the waveforms of the CT signal x(t) = t and DT signal x[n] = n, respectively.

Figure 3: Example of CT and DT signals

2) Continuous-Value vs. Discrete-Value Signal

- Continuous-Value Signal: A signal x(t) whose amplitude can take on any value
- Discrete-Value Signal: A signal y(t) whose amplitude can take on only a finite value of values

Figure 4: Continuous-Value vs Discrete-Value signal

2) Continuous-Value vs. Discrete-Value Signal

Example 2:

Try sketching the waveforms of the continuous-value signal $x(t) = A \sin(2\pi f_0 t)$ and discrete-value signal $y[n] = (-1)^n$ respectively.

Figure 5: Example of Continuous-Value vs Discrete-Value signals

3) Deterministic vs Random Signal

- Deterministic Signal: A signal x(t) that can be mathematically modeled explicitly as a function of time, i.e. $x(t) = A \sin(2\pi f_0 t)$
- Random Signal: A signal y(t) that is known only in terms of probabilistic description, i.e. noise

x(t) $A = \begin{cases} A \\ 0 \\ -A \end{cases}$

Figure 6: Deterministic vs Random signal

Graph of Deterministic Signal

Classification of Signals Summary 1

- ☐ Overview of Signals and Systems
- ☐ 1.1 Classification of Signals
 - o 1) Continuous-Time vs Discrete-Time Signal
 - o 2) Continuous-Value vs Discrete-Value Signal
 - o 3) Deterministic vs Random Signal

You have reached the end of this lesson, you have 3 more types to learn!

Please proceed with the next activity.

EE2010 Signals and Systems Part I

1.1 Classification of Signals II

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals **
 - 1.2 Elementary and Singularity Signals
 - 1.3 Operations on Signals
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

1.1 Classification of Signals

- 1) Continuous-Time vs Discrete-Time Signal ✓
- 2) Continuous-Value vs Discrete-Value Signal ✓
- 3) Deterministic vs Random Signal ✓
- 4) Even vs Odd Signal
- 5) Periodic vs Aperiodic Signal
- 6) Energy-Type vs Power-Type Signal

- Even Signal: A signal $x_e(t)$ that satisfies the condition $x_e(t) = x_e(-t)$
- Odd Signal: A signal $x_o(t)$ that satisfies the condition $x_o(t) = -x_o(-t)$

Graph of Even Signal

$x_e(t)$ 0 t

Graph of Odd Signal

Figure 7: Even vs Odd signal

• Any deterministic signal x(t) can be decomposed into sum of an even and odd signal

$$x(t) = x_e(t) + x_o(t)$$

where

$$x_e(t) = \frac{1}{2} [x(t) + x(-t)]$$

and

$$x_o(t) = \frac{1}{2} [x(t) - x(-t)]$$

- The product of two **even** signals is an **even** signal
- The product of two **odd** signals is an **even** signal
- The product of an **even** signal and an **odd** signal is an **odd** signal
- Note that

$$\int_{-T_0}^{T_0} x_e(t) dt = 2 \int_0^{T_0} x_e(t) dt$$

and

$$\int_{-T_0}^{T_0} x_0(t) \, dt = 0$$

Example 3:

Show that the signal $x(t) = A \sin(2\pi f_0 t)$ is an odd signal

Since
$$x(-t) = A \sin[2\pi f_0(-t)]$$
$$= -A \sin(2\pi f_0 t)$$
$$= -x(t)$$

hence, x(t) is an odd signal.

Figure 8: An odd signal example

Example 4:

Find the even and odd components of the signal $x(t) = \cos(t) + \sin(t) \cos(t)$.

The even component of x(t) is

$$x_{e}(t) = \frac{1}{2} [x(t) + x(-t)]$$

$$= \frac{1}{2} [\cos(t) + \sin(t) \cos(t) + \cos(-t) + \sin(-t) \cos(-t)]$$

$$= \cos(t)$$

The odd component of x(t) is

$$x_{o}(t) = \frac{1}{2} [x(t) - x(-t)]$$

$$= \frac{1}{2} [\cos(t) + \sin(t) \cos(t) - \cos(-t) - \sin(-t) \cos(-t)]$$

$$= \sin(t) \cos(t)$$

Example 5: Evaluate $\int_{-T_0}^{T_0} x(t) dt$ where $x(t) = t^3 \cos^3(10t)$.

Since

$$x(-t) = (-t)^3 \cos^3[10(-t)]$$
= - t³ \cos³(10t)
= - x(t)

hence, x(t) is an odd signal. Thus,

$$\int_{-T_0}^{T_0} x(t) dt = 0$$

5) Periodic vs Aperiodic Signal

• Periodic Signal: A signal x(t) with a constant period $0 < T_0 < \infty$ that

$$x(t) = x(t+T_0)$$
, $-\infty < t < \infty$

For a discrete-time signal, the constant period is an integer $0 < K_o < \infty$ that

$$x[n] = x[n+K_0], -\infty < n < \infty$$

• Aperiodic Signal: A signal y(t) or y[n] that does not satisfy the above equation

5) Periodic vs Aperiodic Signal

Figure 9: Periodic vs Aperiodic signal

- Energy–Type Signal
 - A signal x(t) or x[n] that has finite energy, i.e., $0 < E_x < \infty$, where

CT signal:
$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

DT signal:
$$E_x = \sum_{n = -\infty} |x[n]|^2$$

- Power–Type Signal
 - A signal x(t) or x[n] that has finite power, i.e. $0 < P_x < \infty$, where

CT signal:
$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

DT signal:
$$P_{x} = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} |x[n]|^{2}$$

Note that if x(t) or x[n] is a periodic signal with period T_0 or K_0 , respectively, then

CT signal:
$$P_x = \frac{1}{T_0} \int_{t_1}^{t_1 + T_0} |x(t)|^2 dt$$

DT signal:
$$P_x = \frac{1}{K_0} \sum_{n=k}^{k+K_0-1} |x[n]|^2$$

with any real value of t_1 and any integer value of k.

Example 6:

Determine the energy and power of the periodic signal $x(t) = A \cos(2\pi f_0 t)$

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

$$= \int_{-\infty}^{\infty} |A\cos(2\pi f_{0}t)|^{2} dt$$

$$= \infty$$

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2} dt$$

$$= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} |x(t)|^{2} dt$$

$$= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} |A\cos(2\pi f_{0}t)|^{2} dt$$

Hence, x(t) is a power-type signal.

In general, power-type signals are periodic signals.

Classification of Signals Summary 2

- Classification of Signals
 - 4) Even vs Odd Signal

$$x(t) = x_e(t) + x_o(t)$$

$$x_e(t) = \{x(t) + x(-t)\}/2$$

$$x_o(t) = \{x(t) - x(-t)\}/2$$

- 5) Periodic vs Aperiodic Signal
- 6) Energy-Type vs Power-Type Signal

CT Signals:
$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt = \frac{1}{T_0} \int_{t_1}^{t_1 + T_0} |x(t)|^2 dt$$
DT Signals: $E_x = \sum_{n = -\infty}^{\infty} |x[n]|^2$

$$P_x = \lim_{K \to \infty} \frac{1}{2K + 1} \sum_{n = -K}^{K} |x[n]|^2 = \frac{1}{K_0} \sum_{n = k}^{k + K_0 - 1} |x[n]|^2$$

Classification of Signals Summary 2

- 1.1 Classification of Signals
 - o 1) Continuous-Time vs Discrete-Time Signal
 - o 2) Continuous-Value vs Discrete-Value Signal
 - o 3) Deterministic vs Random Signal
 - o 4) Even vs Odd Signal
 - o 5) Periodic vs Aperiodic Signal
 - o 6) Energy-Type vs Power-Type Signal

You have reached the end of module 1.1.

Made some mental notes on each classification of signals?

Try it and proceed with the next activity!

EE2010 Signals and Systems Part 1

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals Recap through further examples
 - 1.2 Elementary and Singularity Signals
 - 1.3 Operations on Signals
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

Example 7:

Determine the energy and power of the signal $y(t) = \exp(-|t|)$.

$$E_{y} = \int_{-\infty}^{\infty} |y(t)|^{2} dt$$

$$= \int_{-\infty}^{\infty} |\exp(-|t|)|^{2} dt$$

$$= \int_{-\infty}^{\infty} |\exp(-|t|)|^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |y(t)|^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \times E_{y}$$

$$= 2 \times \int_{0}^{\infty} \exp(-2t) dt$$

$$= 0$$

$$= 1$$

Hence, y(t) is an <u>energy-type</u> signal. In general, energy-type signals are <u>aperiodic</u> signals.

Example 8:

Determine the energy and power of the discrete-time periodic signal $x[n] = A \sin(2\pi n/4)$.

$$E_y = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

$$= \sum_{n=-\infty}^{\infty} |A\sin(\frac{2\pi n}{4})|^2$$

$$= \infty$$

$$P_{x} = \frac{1}{K_{0}} \sum_{n=k}^{K+K_{0}-1} |x[n]|^{2}$$

$$= \frac{1}{4} \sum_{n=0}^{3} |A \sin(\frac{2\pi n}{4})|^{2}$$

$$= \frac{A^{2}}{4} \times [0^{2} + 1^{2} + 0^{2} + (-1)^{2}]$$

$$= \frac{A^{2}}{4}$$

Hence, x[n] is a power-type signal.

Example 9:

A simplified transmitter model of a digital communication system is shown below (figure 10). Determine the classifications of each signal.

Figure 10: Transmitter model of a digital communication system

- x(t) is a continuous-time, continuous-value, deterministic, even, periodic, and power-type signal
- $x[n] = x(nT_s)$ is a discrete-time, continuous-value, deterministic, even, periodic, and power-type signal
- $\hat{x}[n]$ is a discrete-time, discrete-value, deterministic, even, periodic, and power-type signal
- w[n] is a discrete-time, continuous-value, random, and aperiodic signal
- y[n] is a discrete-time, continuous-value, random, and aperiodic signal

Example 9:

x(t) is a continuous-time, continuous-value, deterministic, even, periodic, and power-type signal

 $x[n] = x(nT_s)$ is a discretetime, continuous-value, deterministic, even, periodic, and power-type signal

and aperiodic signal

y[n] is a discrete-time, continuous-value, random, and aperiodic signal

Example 9:

EE2010 Signals and Systems Part 1

1.2 Elementary and Singularity Signals

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals Recap through further examples $\sqrt{}$
 - 1.2 **Elementary** and Singularity Signals
 - 1.3 Operations on Signals
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

1.2 Elementary and Singularity Signals

Elementary Signals

- 1) Exponential ®
- 2) Sinusoidal 🖘
- 3) Complex exponential **

Singularity Signals

- 1) Impulse function
- 2) Step function
- 3) Signum function
- 4) Rectangular function
- 5) Sinc function

1) Exponential signal

$$x(t) = A \exp(at)$$

 \rightarrow x(t) is growing if a > 0

 \rightarrow x(t) is decaying if a < 0

Figure 12: Exponential signal

2) Sinusoidal signal

$$x(t) = A\cos(2\pi f_0 t + \theta)$$
 or $A\sin(2\pi f_0 t + \theta)$

where A is the amplitude, f_0 is the frequency in Hertz, and θ is the phase angle in radians

A sinusoidal signal is periodic with period $T_0 = \frac{1}{f_0}$

Figure 13: CT sinusoidal signal

• The discrete-time version of the sinusoidal signal is

$$x[n] = A \cos\left(\frac{2\pi n}{K_0} + \theta\right)$$
 or $A \sin\left(\frac{2\pi n}{K_0} + \theta\right)$

where A is the amplitude, K_0 is a positive integer defined as the fundamental period, and θ is the phase angle in radians

Figure 14: DT sinusoidal signal

3) Complex exponential signal

$$A \exp(j2\pi f_0 t) = A \cos(2\pi f_0 t) + jA \sin(2\pi f_0 t)$$

> The magnitude of complex exponential signal is given by

$$|A \exp(j2\pi f_0 t)| = A$$

The sinusoidal signal can be expressed as

$$A\cos(2\pi f_0 t + \theta) = \Re \left\{ A\exp(j2\pi f_0 t) \exp(j\theta) \right\}$$

and

$$A\sin(2\pi f_0 t + \theta) = \Im\{A\exp(j2\pi f_0 t)\exp(j\theta)\}\$$

Elementary Signals Summary 3

- ☐ Example 9 on Overall Classification of Signals
- ☐ Elementary Signals
 - 1) Exponential Signal: $x(t) = A \exp(at)$
 - 2) Sinusoidal Signal: $x(t) = A\cos(2\pi f_0 t + \theta)$

$$x[n] = A\cos\left(\frac{2\pi n}{K_0} + \theta\right)$$

3) Complex Exponential Signal:

$$x(t) = A \exp(j2\pi f_0 t)$$

= $A \cos(2\pi f_0 t) + jA \sin(2\pi f_0 t)$

Reflect on how much you have understood the lesson so far before proceeding.

EE2010 Signals and Systems Part 1

1.2 Elementary and Singularity Signals

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems-Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals
 - 1.2 **Elementary** ✓ and Singularity Signals
 - 1.3 Operations on Signals
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

Recap: 1.2 Elementary Signals

Example 10: Sketch the function $x(t) = 5 \exp(-at) \times \cos(2\pi 10t)$ for t > 0. Assume that a > 0.

Figure 15: An exponentially damped sinusoidal signal

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals
 - 1.2 **Elementary** ✓ and **Singularity Signals** ❖
 - 1.3 Operations on Signals
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

1.2 Elementary and Singularity Signals

Elementary Signals

- 1) Exponential ✓
- 2) Sinusoidal ✓
- 3) Complex exponential ✓

Singularity Signals

- 1) Impulse function **
- 2) Step function **
- 3) Signum function 🖘
- 4) Rectangular function *
- 5) Sinc function 🖘

1) The DT unit impulse (or Dirac Delta) function $\delta[n]$ is defined as

$$\delta[n] = \begin{cases} 1, & n = 0, \\ 0, & n \neq 0. \end{cases}$$

Figure 16: DT impulse functions

1) The CT unit impulse (or Dirac Delta) function $\delta(t)$ is defined as

$$\delta(t) = \begin{cases} \infty, & t = 0, \\ 0, & t \neq 0. \end{cases}$$

Figure 17: CT impulse functions

Properties of the CT impulse function

Property One

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

> Property Two

$$x(t) \times \delta(t - T_0) = x(T_0) \times \delta(t - T_0)$$

> Property Three

$$\int_{-\infty}^{\infty} x(t) \times \delta(t - T_0) dt = x(T_0)$$

2) The CT unit step function u(t) is defined as

$$u(t) = \begin{cases} 1, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

Figure 18: A CT unit step function

2) The DT unit step function u[n] is defined as

$$u[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0. \end{cases}$$

Figure 19: A DT unit step function

3) The CT signum function sgn(t) is defined as

$$sgn(t) = \begin{cases} 1, & t > 0, \\ 0, & t = 0, \\ -1, & t < 0. \end{cases}$$

Figure 20: A CT signum function

3) The DT signum function sgn[n] is defined as

$$sgn[n] = \begin{cases} 1, & n > 0, \\ 0, & n = 0, \\ -1, & n < 0. \end{cases}$$

Figure 21: A DT signum function

4) The CT unit rectangular function $\operatorname{rect}(\frac{t}{T})$ is defined as

$$rect(\frac{t}{T}) = \begin{cases} 1, & |t| \le T/2, \\ 0, & \text{otherwise.} \end{cases}$$

Figure 22: A CT unit rectangular function

4) The DT unit rectangular function $rect[\frac{n}{K}]$ (assume that *K* is even) is defined as

$$rect[\frac{n}{K}] = \begin{cases} 1, & |n| \le K/2, \\ 0, & \text{otherwise.} \end{cases}$$

Figure 23: A DT unit rectangular function

5) The sinc function sinc(t) is defined as

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$$

Figure 24: A sinc function

Example 11: The function $x(t) = 5 \times \text{sinc}(t)$ is sampled at every $T_s = 0.5$ second interval to produce the sampled signal $x_s(t)$. Sketch the waveforms for x(t) and $x_s(t)$, respectively.

$$x_{s} = \sum_{n=-\infty}^{\infty} x(t) \times \delta(t - nT_{s})$$

$$= \sum_{n=-\infty}^{\infty} x(nT_{s}) \times \delta(t - nT_{s})$$

$$= \sum_{n=-\infty}^{\infty} 5 \times \operatorname{sinc}(nT_{s}) \times \delta(t - nT_{s})$$

Example 11: The function $x(t) = 5 \times \text{sinc}(t)$ is sampled at every $T_s = 0.5$ second interval to produce the sampled signal $x_s(t)$. Sketch the waveforms for x(t) and $x_s(t)$, respectively.

Figure 25: Waveforms for x(t) and $x_s(t)$

Singularity Signals Summary 4

☐ Singularity Signals

1) Impulse Function:
$$\delta(t) = \begin{cases} \infty, & t = 0, \\ 0, & t \neq 0. \end{cases}$$

2) Step Function:
$$u(t) = \begin{cases} 1, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

3) Signum Function:
$$sgn(t) = \begin{cases} 1, & t > 0, \\ 0, & t = 0, \\ -1, & t < 0. \end{cases}$$

4) Rectangular Function:
$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1, & |t| \leq T, \\ 0, & \text{otherwise.} \end{cases}$$

5) Sinc Function:
$$sinc(t) = \frac{sin(\pi t)}{\pi t}$$

You have reached the end of 1.2: Elementary and Singularity Signals.

EE2010 Signals and Systems Part 1

1.3 Operations on Signals

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 **Operations on Signals**
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

• Amplitude scaling: The operation Ax(t) (or Ax[n]) is to multiply the amplitude of x(t) (or x[n]) by an amount A

Figure 26: Amplitude scaling of signals

• Time shifting: The operation x(t - T) (or x[n - K]) is to shift x(t) (or x[n]) by an amount T (or K)

Figure 27: Time shifting of signals

Example 12: Show that
$$\operatorname{rect}\left(\frac{t}{T}\right) = u\left(t + \frac{T}{2}\right) - u(t - \frac{T}{2})$$
.

Figure 28: Example on time shifting operation

- CT time scaling: The operation x(t/a) is to scale x(t) by a
 - \triangleright It expands the function horizontally by a factor |a|
 - \triangleright If a < 0, the function will be also time inverted

Figure 29: CT time scaling of signals

- DT time scaling: x[Kn] or x[n/K] where K is an integer
 - \triangleright x[Kn]: Time compression or decimation
 - \triangleright x[n/K]: Time expansion

Figure 30: DT time scaling of signals

Example 13: If $x(t) = 0.5 \times \text{rect}(\frac{t}{4})$ as shown in Figure 31, sketch the waveform $y(t) = -2x(\frac{t-2}{2})$.

Figure 31: Example of operations on signals

Example 13:

If
$$x(t) = 0.5 \times \text{rect}(\frac{t}{4})$$
, sketch the waveform $y(t) = -2x(\frac{t-2}{2})$

Figure 32: Example of operations on signals

Operations on Signals Summary 5

- Amplitude Scaling: The operation Ax(t) (or Ax[n]) is to multiply the amplitude of x(t) (or x[n]) by an amount A.
- Time Shifting: The operation x(t-T) (or x[n-k]) is to shift x(t) (or x[n]) by an amount T (or K).
- ☐ Time Scaling:
 - \circ CT signals: The operation x(t/a) is to scale x(t) by an amount a.
 - It expands the function horizontally by a factor |a|.
 - If a < 0, the function will be also time inverted.
 - O DT signals: x[Kn] or x[n/K] where K is an integer.
 - x[Kn]: Time compression or decimation.
 - x[n/K]: Time expansion.

You have reached the end of 1.3: Operations on Signals.

EE2010 Signals and Systems Part 1

1.4 Properties of Signals

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 Operations on Signals ✓
 - 1.4 **Properties of Systems**
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

- 1) Stability
- 2) Memory
- 3) Causality
- 4) Linearity
- 5) Time Invariant

A system refers to any physical device (i.e, communication channels, filters) that produces an output signal y(t) in response to an input signal x(t)

Figure 33: Block diagram representation of a system

- 1) Stability
- A system is said to be bounded-input bounded-output (BIBO) stable if and only if every bounded input (i.e. $|x(t)| < \infty$ for all t, or $|x[n]| < \infty$ for all n) results in bounded output

An example of a BIBO stable system

$$y[n] = r^n x[n]u[n], \qquad |r| < 1$$

An example of a BIBO unstable system

$$y[n] = r^n x[n] u[n], \qquad |r| > 1$$

2) Memory

➤ A system is said to possess memory if its output signal depends on past or future values of the input signal

An example of a system with memory

$$y[n] = x[n] + x[n-1] + x[n-2]$$

➤ A system is memoryless if its output signal depends only on the present value of the input signal

An example of a memoryless system

$$y(t) = x^2(t)$$

- 3) Causality
- ➤ A system is causal if the present value of the output signal depends only on the present or past values of the input signal An example of a causal system

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

- A system is noncausal if the present value of the output signal depends on the future values of the input signal
- A noncausal system is not physically realizable in real time

 An example of a noncausal system

$$y[n] = \frac{1}{3}(x[n+1] + x[n] + x[n-1])$$

4) Linearity

A system is linear if the principle of superposition holds, i.e. if input signal is $x_3(t) = a_1x_1(t) + a_2x_2(t)$, then the output signal is $y_3(t) = a_1y_1(t) + a_2y_2(t)$ for any constants a_1 and a_2

$$x_1(t) \longrightarrow H \longrightarrow y_1(t)$$
 $x_2(t) \longrightarrow H \longrightarrow y_2(t)$

$$x_3(t) = a_1 x_1(t) + a_2 x_2(t) \longrightarrow H \longrightarrow y_3(t) = a_1 y_1(t) + a_2 y_2(t)$$

Figure 34: A linear system

Example 14:

A system is shown below (Figure 35). Determine whether it is a linear system.

$$x(t) \longrightarrow H \longrightarrow y(t) = x(2t)$$

Figure 35

Example 14:

Determine whether it is a linear system.

$$x(t) \longrightarrow H \longrightarrow y(t) = x(2t)$$

$$x_1(t) \rightarrow \boxed{\boldsymbol{H}} \Rightarrow y_1(t) = x_1(2t)$$
 $x_2(t) \rightarrow \boxed{\boldsymbol{H}} \Rightarrow y_2(t) = x_2(2t)$

$$x_3(t) = a_1 x_1(t) + a_2 x_2(t)$$
 \longrightarrow \mathbf{H} \longrightarrow $y_3(t) = a_1 x_1(2t) + a_2 x_2(2t)$ $= a_1 y_1(t) + a_2 y_2(t)$

Figure 36: A linear system example

In this case, the principle of superposition holds, hence it is a <u>linear system</u>.

- 5) Time Invariant
- A system is time invariant if for any delayed x(t-T), the output is delayed by the same amount y(t-T)

$$x(t) \longrightarrow \boxed{\boldsymbol{H}} \longrightarrow y(t)$$

$$x_1(t) = x(t-T) \longrightarrow \boxed{\boldsymbol{H}} \longrightarrow y_1(t) = y(t-T)$$

Figure 37: A time invariant system

Example 15:

For the system as shown below (Figure 38) with y(t) = x(t) + c, where c is an arbitrary constant, determine whether it is a time invariant system.

$$x(t) \longrightarrow H \longrightarrow y(t) = x(t) + c$$

Figure 38

Example 15:

Determine whether it is a time invariant system.

$$x(t) \longrightarrow H \longrightarrow y(t) = x(t) + c$$

$$x(t) \longrightarrow \mathbf{H} \longrightarrow y(t) = x(t) + c$$

$$x_1(t) = x(t-T) \longrightarrow \mathbf{H} \longrightarrow y_1(t) = x(t-T) + c$$

$$= y(t-T)$$

Figure 39: A time invariant system example

In this case, the system is <u>time invariant</u>.

2. Linear Time-Invariant (LTI) Systems

Linear Time Invariant (LTI)

- A system is linear time invariant if it satisfies both conditions of linear and time invariance
- ➤ A LTI system can be analyzed in both time domain and frequency domain

$$x_1(t) \rightarrow \mathbf{H} \rightarrow y_1(t)$$
 $x_2(t) \rightarrow \mathbf{H} \rightarrow y_2(t)$

$$x_3(t) = a_1 x_1(t-T_1) + a_2 x_2(t-T_2) \longrightarrow \mathbf{H} \longrightarrow y_3(t) = a_1 y_1(t-T_1) + a_2 y_2(t-T_2)$$

Figure 40: An LTI system

2. Linear Time-Invariant (LTI) Systems

Example 16:

Determine whether the system below given by y(t) = x(2t) in Example 14 is an LTI system.

$$x(t) \longrightarrow H \longrightarrow y(t) = x(2t)$$
Figure 35

From Example 14, the system is linear.

$$x_1(t)=x(t-T)$$
 \longrightarrow \boldsymbol{H} \longrightarrow $y_1(t)=x(2t-T)\neq y(t-T)$

Figure 41: A non-LTI system example

However, the system is not time invariant, hence it is not an LTI system.

Properties of Systems Summary 6

- ☐ 1) Stability: Bounded input results in bounded output.
- ☐ 2) Memory: Output depends on past and/or future values of input.
- ☐ 3) Causality: Output does not depend on future values of input.
- ☐ 4) Linearity: Principle of superposition holds.
- \Box 5) Time Invariant: For any delayed input x(t-T), the output is delayed by the same amount y(t-T).
 - o Linear Time-Invariant (LTI) Systems

You have reached the end of 1.4: Properties of Systems. Consider mapping out your learning and proceed.

EE2010 Signals and Systems Part 1

2. Linear Time-Invariant (LTI) Systems

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 Operations on Signals ✓
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 **Discrete-Time ③** and Continuous-Time **LTI Systems**
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

2. Linear Time-Invariant (LTI) Systems

Linear Time Invariant (LTI)

- A system is linear time invariant if it satisfies both conditions of linear and time invariance
- ➤ A LTI system can be analyzed in both time domain and frequency domain

$$x_1(t) \rightarrow \mathbf{H} \rightarrow y_1(t)$$
 $x_2(t) \rightarrow \mathbf{H} \rightarrow y_2(t)$

$$x_3(t) = a_1 x_1(t-T_1) + a_2 x_2(t-T_2) \longrightarrow \mathbf{H} \longrightarrow y_3(t) = a_1 y_1(t-T_1) + a_2 y_2(t-T_2)$$

Figure 40: An LTI system

2. Linear Time-Invariant (LTI) Systems

Example 16:

Determine whether the system below given by y(t) = x(2t) in Example 14 is an LTI system.

$$x(t) \longrightarrow \boxed{H} \longrightarrow y(t) = x(2t)$$
Figure 35

From Example 14, the system is linear.

$$x_1(t)=x(t-T)$$
 \longrightarrow \boldsymbol{H} \longrightarrow $y_1(t)=x(2t-T)\neq y(t-T)$

Figure 41: A non-LTI system example

However, the system is not time invariant, hence it is not an LTI system.

2.1 Discrete-Time and Continuous-Time LTI Systems

Analysis of DT and CT LTI Systems:

➤ Any LTI system can be uniquely defined by its impulse response

$$\delta(t) \longrightarrow H \longrightarrow h(t)$$

$$\delta[n] \longrightarrow H$$

Figure 42: Impulse response of an LTI system

2.1 Discrete-Time and Continuous-Time LTI Systems

The output of any LTI system is the convolution of the input signal and its impulse response

$$x(t) \longrightarrow h(t) \longrightarrow y(t) = x(t) * h(t)$$

$$x[n] \longrightarrow h[n] \longrightarrow y[n] = x[n] * h[n]$$

Figure 43: System response of an LTI system

2.1 Discrete-Time and Continuous-Time LTI Systems

The discrete time convolution (convolution sum) is defined as

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

The continuous time convolution (convolution integral) is defined as

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Example 17:

Sketch the waveform of y[n] = x[n] * h[n] using the graphical approach for convolution sum

Figure 44: Example on convoluted sum

Example 17: Sketch the waveform of y[n] = x[n] * h[n]

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

Example 17:

Figure 45: Solution for example on convolution sum

Example 18:

Show that $\delta[n-2] * x[n] = x[n-2]$ where x[n] is shown below (Figure 46).

Figure 46: Example on convolution with Delta function

2.1a Discrete-Time LTI Systems

Firstly, using the graphical approach, denote

$$y[n] = \delta[n-2] * a$$

2.1a Discrete-Time LTI Systems

Figure 47: Solution for example on convolution with Delta function

2.1a Discrete-Time LTI Systems

Alternatively, based on the definition of convolution sum, we have

$$y[n] = \delta[n-2] * x[n] = \sum_{m=-\infty}^{\infty} \delta[m-2]x[n-m]$$

Since

$$\delta[m-2] = \begin{cases} 1, & m=2, \\ 0, & m \neq 2. \end{cases}$$

Hence

$$y[n] = \sum_{m=-\infty}^{\infty} \delta[m-2]x[n-m]$$
$$= x[n-2]$$

2.1 Discrete-Time and Continuous-Time LTI Systems Summary 7

NANYANG TECHNOLOGICAL UNIVERSITY

- ☐ Analysis of DT Systems
 - O Any DT LTI system can be uniquely defined by its impulse response, h[n].
 - o The output of a DT LTI system is the convolution of the input signal and its impulse response.
 - The DT convolution (or convolution sum) is defined as

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

o The graphical approach for evaluating the convolution sum.

You have reached the end of 2.1a. Do reflect on your level of understanding. Please proceed to 2.1b Continuous-Time LIT Systems.

EE2010 Signals and Systems Part 1

2.0 Linear Time-Invariant (LTI) Systems

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 Operations on Signals ✓
 - 1.4 Properties of Systems ✓
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time ✓ and Continuous-Time LTI Systems ♥
 - 2.2 Convolution
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

Example 19:

Sketch the waveform of y(t) = x(t) * x(t) using the graphical approach for convolution integral.

Figure 48: Example on convolution integral

$$y(t) = x(t) * x(t) = \int_{-\infty}^{\infty} x(\tau)x(t-\tau)d\tau$$

Figure 49: Solution for example on convolution integral

Example 20:

Sketch the waveform of $y(t) = x_1(t) * x_2(t)$ using the graphical approach for convolution integral.

Figure 50: Example on convolution integral

$$y(t) = x(t) * x(t) = \int_{-\infty}^{\infty} x(\tau)x(t-\tau)d\tau$$

Figure 51: Solution for example on convolution integral

 $x_2(t-\tau)$

 $-A_1$

2.1 Discrete-Time and Continuous-Time LTI Systems Summary 8

- ☐ Analysis of CT Systems
 - Any CT LTI system can be uniquely defined by its impulse response, h(t).
 - o The output of a CT LTI system is the convolution of the input signal and its impulse response.
 - The CT convolution (or convolution integral) is defined as

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

o The graphical approach for evaluating the convolution integral.

You have reached the end of 2.1. Do reflect on your level of understanding. Please proceed to 2.2 Convolution.

EE2010 Signals and Systems Part 1

2.2 Convolution

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 Operations on Signals ✓
 - 1.4 Properties of Systems
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems
 - 2.2 **Convolution**
 - 2.3 LTI System Properties
 - 2.4 Correlation Functions

2.2 Convolution

- 2.2a Properties of Convolution
 - 1) Commutative
 - 2) Distributive
 - 3) Associative
 - 4) Convolution with Delta Function
- 2.2b Step Response of LTI Systems

2.2a Properties of Convolution

1) Commutative

$$x_1[n] * x_2[n] = x_2[n] * x_1[n]$$

 $x_1(t) * x_2(t) = x_2(t) * x_1(t)$

2) Distributive

$$x_1[n] * \{x_2[n] + x_3[n]\} = x_1[n] * x_2[n] + x_1[n] * x_3[n]$$

$$x_1(t) * [x_2(t) + x_3(t)] = x_1(t) * x_2(t) + x_1(t) * x_3(t)$$

2.2a Properties of Convolution

3) Associative

$$x_1[n] * \{x_2[n] * x_3[n]\} = \{x_1[n] * x_2[n]\} * x_3[n]$$

 $x_1(t) * [x_2(t) * x_3(t)] = [x_1(t) * x_2(t)] * x_3(t)$

4) Convolution with Delta function

$$x[n] * \delta[n - K_0] = x[n - K_0]$$

$$x(t) * \delta(t - T_0) = x(t - T_0)$$

2.2a Properties of Convolution

Example 21: Show that $x(t) * \delta(t - T_0) = x(t - T_0)$ using the definition of convolution integral.

Based on the definition of convolution integral, we have

$$y(t) = x(t) * \delta(t - T_0)$$

$$= \int_{-\infty}^{\infty} \delta(\tau - T_0)x(t - \tau)d\tau$$

$$= \int_{-\infty}^{\infty} \delta(\tau - T_0)x(t - T_0)d\tau$$

$$= x(t - T_0) \int_{-\infty}^{\infty} \delta(\tau - T_0)d\tau$$

$$= x(t - T_0)$$

2.2b Step Response of LTI Systems

The step response is defined as the output of the system with the unit step function as input signal

Step response of a DT system

$$s[n] = u[n] * h[n] = \sum_{m=-\infty}^{\infty} h[m]u[n-m]$$
$$= \sum_{m=-\infty}^{n} h[m]$$

> Step response of a CT system

$$s(t) = u(t) * h(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau$$
$$= \int_{-\infty}^{t} h(\tau)d\tau$$

2.2b Step Response of LTI Systems

Example 22: Find the step response of the one-stage RC filter as shown below (Figure 52), where the impulse response is given by

$$h(t) = \frac{1}{RC} \times \exp\left(-\frac{t}{RC}\right) u(t).$$

Figure 52: A simple one-stage *RC* filter

2.2b Step Response of LTI Systems

Example 22: Find the step response of the one-stage RC filter as shown below (Figure 52), where the impulse response is given by

$$h(t) = \frac{1}{RC} \times \exp\left(-\frac{t}{RC}\right) u(t).$$

Figure 52: A simple one-stage *RC* filter

$$s(t) = u(t) * h(t)$$

$$= \int_{-\infty}^{t} h(\tau) d\tau$$

$$= \int_{-\infty}^{t} \frac{1}{RC} \times \exp\left(-\frac{\tau}{RC}\right) u(\tau) d\tau$$

$$= \frac{1}{RC} \int_{0}^{t} \exp\left(-\frac{\tau}{RC}\right) d\tau$$

$$= \begin{cases} 1 - \exp\left(-\frac{t}{RC}\right), & t \ge 0, \\ 0, & t < 0. \end{cases}$$

2.2 Convolution Summary 9

NANYANG TECHNOLOGICAL UNIVERSITY

- ☐ Properties of Convolution
 - o Commutative, Distributive, and Associative.
 - o Convolution with Impulse Function:

$$x(t) * \delta(t - T_0) = x(t - T_0)$$

 $x[n] * \delta[n - K_0] = x[n - K_0]$

 Step Response: Output of the system with the unit step function as the input signal

$$s[n] = u[n] * h[n] = \sum_{m=-\infty}^{n} h[m]$$

$$s(t) = u(t) * h(t) = \int_{-\infty}^{t} h(\tau) d\tau$$

You have reached the end of 2.2. Please proceed.

EE2010 Signals and Systems Part 1

2.3 LTI System Properties

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems ✓✓
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 Operations on Signals ✓
 - 1.4 Properties of Systems ✓
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems ✓
 - 2.2 Convolution ✓
 - 2.3 LTI System Properties **
 - 2.4 Correlation Functions

2.3 Properties of LTI Systems

- ☐ 2.3a Properties of LTI Systems
 - 1) Memoryless
 - 2) Causal
 - 3) BIBO Stable

- □ 2.3b System Interconnections
 - 1) Parallel Connection: Summation of subsystem impulse responses.
 - 2) Cascade Connection: Convolution of subsystem impulse responses.

- 1) Memoryless LTI Systems
- > A LTI system is memoryless if and only if its impulse response is given by

DT system:
$$h[n] = c\delta[n]$$

CT system:
$$h(t) = c\delta(t)$$

where c is an arbitrary constant

➤ For all memoryless LTI systems, simply perform scalar multiplication on the input

- 2) Causal LTI Systems
- ➤ A LTI system is causal if and only if its impulse response satisfies the following condition

DT system:
$$h[n] = 0$$
, for $n < 0$

CT system:
$$h(t) = 0$$
, for $t < 0$

➤ A causal LTI system cannot generate an output before the input is applied

- 3) Stable LTI Systems
- ➤ A LTI system is BIBO stable if and only if its impulse response satisfies the following condition

DT system:
$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$
CT system:
$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

➤ An example of a stable LTI system

$$h[n] = \rho^n u[n], |\rho| < 1$$

Example 23:

Determine whether the system with impulse response $h(t) = \exp(-at)u(t)$ where a > 0 is (i) memoryless, (ii) causal and (iii) BIBO stable.

- (i) The system is not memoryless since $h(t) \neq c\delta(t)$
- (ii) The system is causal since h(t) = 0 for t < 0
- (iii) The system is BIBO stable since

$$\int_{-\infty}^{\infty} |h(t)|dt = \int_{0}^{\infty} \exp(-at)dt$$
$$= 1/a < \infty$$

1) Parallel Connection

Figure 53: Parallel connection of systems

2) Cascade Connection

$$x[n] \Rightarrow h_1[n] \Rightarrow y[n]$$

$$x(t) \Rightarrow h_1(t) \Rightarrow h_2(t) \Rightarrow y(t)$$

$$x[n] \Rightarrow h_1[n] * h_2[n] \Rightarrow y[n]$$

$$x(t) \Rightarrow h_1(t) * h_2(t) \Rightarrow y(t)$$

Figure 54: Cascade connection of systems

Example 24: Determine the equivalent impulse response h[n] of the overall system as shown below (Figure 55), where

Figure 55: Example on interconnections of systems

Example 24: Determine the equivalent impulse response h[n] of the overall system as shown below (Figure 55), where

$$h_1[n] = u[n],$$

 $h_2[n] = u[n+2] - u[n],$
 $h_3[n] = \delta[n-2],$ and
 $h_4[n] = \alpha^n u[n]$

Figure 55: Example on interconnections of systems

The resultant overall system impulse response is

$$h[n] = \{h_1[n] + h_2[n]\} * h_3[n] - h_4[n]$$

$$= \{u[n] + u[n+2] - u[n]\} * \delta[n-2] - \alpha^n u[n]$$

$$= u[n+2] * \delta[n-2] - \alpha^n u[n]$$

$$= u[n] - \alpha^n u[n]$$

$$= \{1 - \alpha^n\} u[n]$$

2.3 Properties of LTI Systems Summary 10

- ☐ 2.3a Properties of LTI Systems
 - o 1) Memoryless: $h[n] = c\delta[n]$, or $h(t) = c\delta(t)$
 - o 2) Causal: h[n] = 0, for n < 0. h(t) = 0, for t < 0.
 - o 3) BIBO Stable:

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty, \text{ or } \int_{-\infty}^{\infty} |h(t)| dt < \infty$$

- 1) Parallel Connection: Summation of subsystem impulse responses.
- o 2) Cascade Connection: Convolution of subsystem impulse responses.

You have reached the end of 2.3. Please proceed.

EE2010 Signals and Systems Part 1

2.4 Correlation Functions I

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems-Part 1

- 1. Signals and Systems ✓✓
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 Operations on Signals ✓
 - 1.4 Properties of Systems ✓
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems ✓
 - 2.2 Convolution ✓
 - 2.3 LTI System Properties ✓
 - 2.4 Correlation Functions

1) Block diagram representation of difference equation

$$y[n] = x[n] - 3y[n-1] + 2y[n-2]$$

Figure 56: Block diagram representation of difference equation

2) Block diagram representation of differential equation

$$y(t) = x(t) - \frac{5}{4} \times \frac{d}{dt}y(t) - \frac{1}{2} \times \frac{d^2}{dt^2}y(t)$$

Figure 57: Block diagram representation of difference equation

Example 25:

Find the block diagram representation of differential equation for the simple one-stage *RC* low-pass filter as shown below (Figure 58)

Figure 58: A simple one-stage *RC* filter

Example 25: Find the block diagram representation of differential equation for the simple one-stage *RC* low-pass filter as shown in Figure 58.

Figure 59: Block diagram representation of differential equation for the *RC* filter

➤ The correlation function is a mathematical expression of how correlated two signals are as a function of how much one of them is shifted

➤ The correlation function between two functions is a function of the amount of shift

- ➤ The Two types of correlation functions are:
 - 1) Autocorrelation function
 - 2) Cross correlation function

2.4b Autocorrelation Function

The autocorrelation is the correlation of a function with itself

• 1.1. For an energy-type signal x[n] or x(t)

DT signal:
$$\mathcal{R}_{xx}[m] = \sum_{n=-\infty}^{\infty} x[n]x^*[n+m]$$

CT signal: $\mathcal{R}_{xx}(\tau) = \int_{-\infty}^{\infty} x(t)x^*(t+\tau)dt$

where $x^*(t)$ denotes the complex conjugation of x(t).

• 1.2. For an power-type signal x[n] or x(t)

DT signal:
$$\mathcal{R}_{xx}[m] = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} x[n]x^*[n+m]$$

CT signal: $\mathcal{R}_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t)x^*(t+\tau)dt$

2.4b Autocorrelation Function

- 1) Autocorrelation function
 - 1.3. For an energy-type signal x[n] or x(t)

DT signal:
$$E_x = \mathcal{R}_{xx}[0]$$

CT signal:
$$E_x = \mathcal{R}_{xx}(0)$$

• 1.4. For an power-type signal x[n] or x(t)

DT signal:
$$P_x = \mathcal{R}_{xx}[0]$$

CT signal:
$$P_x = \mathcal{R}_{xx}(0)$$

2.4b Autocorrelation Function

- 2) Properties of autocorrelation function
 - The peak of autocorrelation function occurs at the zero shift

DT signal:
$$\mathcal{R}_{xx}[0] \geq \mathcal{R}_{xx}[m]$$

CT signal:
$$\mathcal{R}_{xx}(0) \geq \mathcal{R}_{xx}(\tau)$$

Autocorrelation functions are even functions

DT signal:
$$\mathcal{R}_{xx}[m] = \mathcal{R}_{xx}[-m]$$

CT signal:
$$\mathcal{R}_{xx}(\tau) = \mathcal{R}_{xx}(-\tau)$$

• A time shift in the signal does not change its autocorrelation function, i.e. the autocorrelation functions of x(t) and $x(t - T_1)$ are the same

2.4(I) Correlation Functions I Summary 11

- ☐ 2.4a Block Diagram Representation of Differential and Difference Equations
- ☐ 2.4b Autocorrelation Function
 - o 1.1. For an energy-type signal x[n] or x(t)

DT signal:
$$\mathcal{R}_{xx}[m] = \sum_{n=-\infty}^{\infty} x[n]x^*[n+m]$$

CT signal:
$$\mathcal{R}_{xx}(\tau) = \int_{-\infty}^{\infty} x(t)x^*(t+\tau)dt$$

DT signal:
$$\mathcal{R}_{xx}[m] = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} x[n]x^*[n+m]$$

CT signal:
$$\mathcal{R}_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^*(t+\tau) dt$$

You have reached the end of 2.4(I). Proceed with more examples ahead.

EE2010 Signals and Systems Part 1

2.4 Correlation Functions II

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems-Part 1

- 1. Signals and Systems ✓✓
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 Operations on Signals ✓
 - 1.4 Properties of Systems ✓
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems ✓
 - 2.2 Convolution ✓
 - 2.3 LTI System Properties ✓
 - 2.4 Correlation Functions More examples on this...

Example 26:

Find the autocorrelation function and power of the sinusoidal signal $x(t) = A\sin(2\pi f_0 t)$

Since x(t) is a power-type signal, the autocorrelation function is given by

$$\mathcal{R}_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^*(t+\tau) dt
= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A^2 \times \sin(2\pi f_0 t) \times \sin(2\pi f_0 (t+\tau)) dt
= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \frac{A^2}{2} \left[\cos(2\pi f_0 \tau) - \cos(2\pi f_0 (2t+\tau)) \right] dt
= \frac{A^2}{2} \times \cos(2\pi f_0 \tau)$$

Example 26: Find the autocorrelation function and power of the sinusoidal signal $x(t) = A\sin(2\pi f_0 t)$

The power of signal x(t) is given by

$$P_x = \mathcal{R}_{xx}(0)$$
$$= \frac{A^2}{2}$$

Alternatively, based on the definition of power, we have

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2} dt$$

$$= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} |x(t)|^{2} dt$$

$$= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} |A \sin(2\pi f_{0}t)|^{2} dt$$

$$= \frac{A^{2}}{2}$$

Example 27:

Find the autocorrelation function and power of the sinusoidal signal $y(t) = A\sin[2\pi f_0(t - T_1)]$, where T_I is an arbitrary constant delay.

Denote $\theta = 2\pi f_0 t$, we have

$$y(t) = A\sin(2\pi f_0 t - 2\pi f_0 T_1)$$
$$= A\sin(2\pi f_0 t - \theta)$$

Since y(t) is a power-type signal, the autocorrelation function is given by

$$\mathcal{R}_{yy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} y(t) y^*(t+\tau) dt$$

Example 27: Find the autocorrelation function and power of the sinusoidal signal $y(t) = A\sin[2\pi f_0(t - T_1)]$, where T_I is an arbitrary constant delay.

Earlier, we have

$$y(t) = A\sin(2\pi f_0 t - \theta)$$

Since y(t) is a power-type signal, the autocorrelation function is given by

$$\mathcal{R}_{yy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} y(t) y^*(t+\tau) dt
= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A^2 \times \sin(2\pi f_0 t - \theta) \times \sin(2\pi f_0 (t+\tau) - \theta) dt
= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \frac{A^2}{2} \left[\cos(2\pi f_0 \tau) - \cos(2\pi f_0 (2t+\tau) - 2\theta) \right] dt
= \frac{A^2}{2} \times \cos(2\pi f_0 \tau)$$

Comparing with the results with Example 26, we conclude that the autocorrelation functions of x(t) and $x(t-T_1)$ are the same.

Example 28:

Find the autocorrelation function of the signal x[n] as shown below (Figure 60) using the graphical approach.

Figure 60: Example on autocorrelation function of a DT signal

Example 28:

Since x[n] is an energy-type signal,

$$\mathcal{R}_{xx}[m] = \sum_{n=-\infty}^{\infty} x[n]x^*[n+m] = \sum_{n=-\infty}^{\infty} x[n]x[n+m]$$

$$\downarrow^{2 \uparrow x[n]} \downarrow^{-1} \downarrow^$$

Example 28:

Figure 61: Solution for example on autocorrelation function

2.4(II) Correlation Functions Summary 12

- ☐ Examples on Autocorrelation Functions.
- \square The autocorrelation functions of x(t) and $x(t-T_I)$ are the same.
- ☐ The graphical approach for evaluating the autocorrelation function.

You have reached the end of 2.4(II). Take some time to reflect then press on!

EE2010 Signals and Systems Part 1

2.4 Correlation Functions III

with Instructor:

A/P Teh Kah Chan

Outline of Signals & Systems- Part 1

- 1. Signals and Systems ✓✓
 - 1.1 Classification of Signals ✓
 - 1.2 Elementary and Singularity Signals ✓
 - 1.3 Operations on Signals ✓
 - 1.4 Properties of Systems ✓
- 2. Linear Time-Invariant (LTI) Systems
 - 2.1 Discrete-Time and Continuous-Time LTI Systems ✓
 - 2.2 Convolution ✓
 - 2.3 LTI System Properties ✓
 - 2.4 Correlation Functions Cross Correlation Function

The cross correlation is the correlation of two different functions

For energy-type signals x[n] and y[n] (or x(t) and y(t))

DT signal:
$$\mathcal{R}_{xy}[m] = \sum_{n=-\infty}^{\infty} x[n]y^*[n+m]$$

CT signal:
$$\mathcal{R}_{xy}(\tau) = \int_{-\infty}^{\infty} x(t)y^*(t+\tau)dt$$

 \triangleright For power-type signals x[n] and y[n] (or x(t) and y(t))

DT signal:
$$\mathcal{R}_{xy}[m] = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} x[n]y^*[n+m]$$

CT signal:
$$\mathcal{R}_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) y^*(t+\tau) dt$$

Example 29: Find the cross correlation function between the two signals $x(t) = \exp(j2\pi f_0 t)$ and $y(t) = \exp(j2\pi 2f_0 t)$.

$$\mathcal{R}_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) y^*(t+\tau) dt
= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \exp(j2\pi f_0 t) \times \exp[-j2\pi 2 f_0 (t+\tau)] dt
= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \exp(-j2\pi f_0 t) \times \exp(-j4\pi f_0 \tau) dt
= \exp(-j4\pi f_0 \tau) \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} [\cos(2\pi f_0 t) - j\sin(2\pi f_0 t)] dt
= 0$$

Example 30: Find the cross correlation function between the two signals x(t) and y(t) as shown below (Figure 62) using the graphical approach.

Figure 62: Example on cross correlation function of CT signals

Example 30:

Since x(t) and y(t) are energy-type signals:

$$\mathcal{R}_{xy}(\tau) = \int_{-\infty}^{\infty} x(t)y^*(t+\tau)dt = \int_{-\infty}^{\infty} x(t)y(t+\tau)dt$$

Example 30:

Figure 63: Solution for example on cross correlation function

2.4(III) Correlation Functions Summary 13

 \square For an energy-type signal x[n] and y[n] (or x(t) and y(t)):

DT Signals:
$$R_{xy}[m] = \sum_{n=-\infty}^{\infty} x[n]y^*[n+m]$$

CT Signals:
$$R_{xy}(\tau) = \int_{-\infty}^{\infty} x(t)y^*(t+\tau)dt$$

 \square For a power-type signal x[n] and y[n] (or x(t) and y(t)):

DT Signals :
$$R_{xy}[m] = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} x[n] y^*[n+m]$$

CT Signals:
$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) y^*(t+\tau) dt$$

You have reached the end of 2.4.

