

Árboles de Decisión

Cristian López Del Alamo
clopezd@utec.edu.pe
IPRODAM3D - Research group

2022

Nombre del curso Nombre del docente

Nombre del curso

Decision Tree for PlayTennis

Base de Datos: Vampiros

Oscuridad	Ajo	Tez	Acento	Vampiro
?	Si	Pálido	No	No
Si	Si	Rojo	No	No
?	No	Rojo	No	Si
No	No	Promedio	Fuerte	Si
?	No	Promedio	Extraño	Si
Si	No	Pálido	Fuerte	No
Si	No	Promedio	Fuerte	No
?	Si	Rojo	Extraño	No

Base de Datos: Vampiro

F1 F2 F3 F4 Y

Oscuridad	Ajo	Tez	Acento	Vampiro
?	Si	Pálido	No	No
Si	Si	Rojo	No	No
?	No	Rojo	No	Si
No	No	Promedio	Fuerte	Si
?	No	Promedio	Extraño	Si
Si	No	Pálido	Fuerte	No
Si	No	Promedio	Fuerte	No
?	Si	Rojo	Extraño	No

Oscuridad	Vampiro
?	No
Si	No
?	Si
No	Si
?	Si
Si	No
Si	No
?	No

Oscuridad	Vampiro
?	No
Si	No
?	Si
No	Si
?	Si
Si	No
Si	No
?	No

Oscuridad	Vampiro
?	No
Si	No
?	Si
No	Si
?	Si
Si	No
Si	No
?	No

Oscuridad	Vampiro
?	No
Si	No
?	Si
No	Si
?	Si
Si	No
Si	No
?	No

Analizamos F2 : Ajo

F2	Υ
Ajo	Vampiro
Si	No
Si	No
No	Si
No	Si
No	Si
No	No
No	No
Si	No

Analizamos F3: Tez

F3	Y
Tez	Vampiro
Pálido	No
Rojo	No
Rojo	Si
Promedio	Si
Promedio	Si
Pálido	No
Promedio	No
Rojo	No

Analizamos F4 : Ajo

F4 Y

Acento	Vampiro
No	No
No	No
No	Si
Fuerte	Si
Extraño	Si
Fuerte	No
Fuerte	No
Extraño	No

Analizando las 4 características

Analizando las 4 características

+++

Analizando las 4 características

Base de Datos: Vampiro

F1 F2 F3 F4 Y

Oscuridad	Ajo	Tez	Acento	Vampiro
?	Si	Pálido	No	No
Si	Si	Rojo	No	No
?	No	Rojo	No	Si
No	No	Promedio	Fuerte	Si
?	No	Promedio	Extraño	Si
Si	No	Pálido	Fuerte	No
Si	No	Promedio	Fuerte	No
?	Si	Rojo	Extraño	No

Base de Datos: Vampiro

F1 F2 F3 F4 **Oscuridad** Vampiro Ajo Tez Acento Si Pálido No No No Rojo No Si No Promedio Extraño Si Si Rojo Extraño No

F2

Oscuridad	Ajo	Tez	Acento	Vampiro
?	Si	Pálido	No	No
?	No	Rojo	No	Si
?	No	Promedio	Extraño	Si
?	Si	Rojo	Extraño	No

Oscuridad	Ajo	Vampiro
?	Si	No
?	No	Si
?	No	Si
?	Si	No

Oscuridad	Ajo	Vampiro
?	Si	No
?	No	Si
?	No	Si
?	Si	No

Si Oscuridad == S
return No Vampiro
Si Oscuridad == N
return Vampiro
Si Oscuridad == ?
Si Ajo == N
return Vampiro
Sino
return No Vampiro

¿Qué Problemas encuentra con este método?

Nombre del curso

Nombre del docente

Nombre del curso

Información

$$I(X) = \log(1/p(x)) = -\log(p(x))$$

Nombre del docente

Fuente: click

Nombre del curso

Entropía

$$H(X) = E[I(X)] = \sum_{i=1}^{n} p(x_i)I(x_i) = -\sum_{i=1}^{n} p(x_i)log(x_i)$$

Dr. Cristian López Del Alamo

Nombre del curso

Nombre del docente

¿ Cuál de los dos histogramas tiene mayor entropía?

Nivel de Desorden de un conjunto o una clase

$$D_s = -\sum_{c \in C} P_c \log_2 P_c$$

¿Cuál es el nivel de desorden de las 3 clases en Oscuridad?

$$D(C?) =$$

$$D(CS) =$$

$$D(CN) =$$

Nombre del curso

¿Cuál es el nivel de desorden de las 3 clases en Ajo?

$$D(CS) =$$

$$D(CN) =$$

Nombre del curso

¿Cuál es el nivel de desorden de las 3 clases en Ajo?

$$D(Cp) =$$

$$D(Cr) =$$

$$D(Cpr) =$$

¿Cuál es el nivel de desorden de las 3 clases en Ajo?

$$D(CN) =$$

$$D(CF) =$$

$$D(CE) =$$

Calculando la cantidad de entropía de cada conjunto

Pesos de cada clase

0.92

0.92

Dr. Cristian López Del Alamo

Nombre del curso

Nombre del docente

Ganancia de Información en cada Feature

$$Gain(Vampiro) = H(Vampiro) - \sum_{e \in E} \frac{|e|}{|E|} H(e)$$

Ganancia de Información en cada Feature

Entropía de predicción.

	Vampiro
No	
No	
Si	
Si	
Si	
No	
No	
No	

$$H(Vampiro) = -\frac{5}{8}\log\frac{5}{8} - \frac{3}{8}\log\frac{3}{8}$$

Analizamos F1: Oscuridad

Nombre del curso

Nombre del docente

Ganancia de Información en cada Feature

$$Gini(x) = 1 - \sum_{j} [p(j|t)]^2$$

p(j|t) es la frecuencia relativa de la clase j en el nodo t

Ejemplo del cálculo de Gini

C1	0
C2	6
Gini =	

C1	1
C2	5
Gini =	

C1	2
C2	4
Gini =	

C1	3
C2	3
Gini =	

p(j|t) es la frecuencia relativa de la clase j en el nodo t

Ejemplo del cálculo de Gini

C1	0
C2	6
Gini = 0	

C1	1
C2	5
Gini = 0.28	

C1	2
C2	4
Gini = 0.44	

C1	3
C2	3
Gini = 0.5	

p(j|t) es la frecuencia relativa de la clase j en el nodo t

Calculando la cantidad de entropía de cada conjunto

Nombre del curso

Nombre del docente

Ganancia de Información en cada Feature

$$Gini_{split} = \sum_{i=1}^{\kappa} \frac{n_i}{n} Gini(i)$$

n_i es el número de registros en el hijo i, n es el número de registros en el nodo p

Calculando la cantidad de entropía de cada conjunto

Nombre del curso

Function ID3

- Input: Example set S
- Output: Decision Tree DT
- If all examples in S belong to the same class c
 - return a new leaf and label it with c
- Else
 - i. Select an attribute A according to some heuristic function
 - ii. Generate a new node DT with A as test
 - iii. For each Value v_i of A
 - (a) Let S_i = all examples in S with $A = v_i$
 - (b) Use ID3 to construct a decision tree DT_i for example set S_i
 - (c) Generate an edge that connects DT and DT_i

Nombre del curso Nombre del docente

Ensembling: Utiliza varios predictores de aprendizaje de máquinas para hacer un mejor predictor

Bagging: Bootstrap aggregating

Bootstrap: Selección aleatoria de datos, pero con reemplazo (1990). Reduce la varianza

```
def train(DB,Number_Trees):
    for i in range(Number_Trees):
        x_train, y_train = SelectRandomReplace(DB,70)
        T[i] = new D_Tree
        T[i] .train(x,train,y_train)
        return T

def predict(Trees, x_i):
    for i in range(Number_Trees):
        clases = [T.predict(x_i) for T in Trees]
    return majority_vote(clases)
```


Random Forest: Bagging + decision trees + extra randomness

Random Forest Classifier

Gracias

Árbol de Decisión

Dr. Cristian López Del Alamo

