Rec'd PCT/PTO 3 0 NOV 2004 PCT/JP 03/08187

27.06.03 **OFFICE** JAPAN PATENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 7月 1日

REC'D 15 AUG 2003

WIPO

PCT

出 Application Number:

特願2002-192368

[JP2002-192368]

[ST. 10/C]:

出 願 人 Applicant(s):

オムロン株式会社

SUBMITTED OR TRANSMITTED IN .. COMPLIANCE WITH RULE 17.1(a) OR (b)

> 7月31日 2003年

特許庁長官 Commissioner, Japan Patent Office

BEST AVAILABLE COPY

【書類名】 特許願

【整理番号】 02P00467

【提出日】 平成14年 7月 1日

【あて先】 特許庁長官殿

【国際特許分類】 G02B 26/08

【発明者】

【住所又は居所】 京都府京都市下京区塩小路通堀川東入南不動堂町801

番地 オムロン株式会社内

【氏名】 植杉 智己

【発明者】

【住所又は居所】 京都府京都市下京区塩小路通堀川東入南不動堂町801

番地 オムロン株式会社内

【氏名】 仲西 陽一

【発明者】

【住所又は居所】 京都府京都市下京区塩小路通堀川東入南不動堂町801

番地 オムロン株式会社内

【氏名】 福田 一喜

【特許出願人】

【識別番号】 000002945

【住所又は居所】 京都府京都市下京区塩小路通堀川東入南不動堂町801

番地

【氏名又は名称】 オムロン株式会社

【代表者】 立石 義雄

【代理人】

【識別番号】

100094019

【住所又は居所】

大阪府大阪市中央区谷町1丁目3番5号 オグラ天満橋

ビル

【弁理士】

【氏名又は名称】

中野 雅房

【電話番号】

(06)6910-0034

【手数料の表示】

【予納台帳番号】

038508

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9800457

【プルーフの要否】

要

【発明の名称】 光スイッチ

【特許請求の範囲】

【請求項1】 合計で少なくとも3本の入力用光路及び出力用光路を備え、 互いに光を伝送し合う入力用光路と出力用光路の組み合わせを変更することにより光路切り替えを行う光スイッチにおいて、

入力用光路及び出力用光路に対して相対的に移動可能となったミラー部材の正面を前記入力用光路及び前記出力用光路に対向させ、所定角度をなして互いに交わる一対の光反射面を形成された第1の領域と、隣接する光反射面どうしが所定角度をなして互いに交わる複数対の光反射面を形成された第2の領域とを、前記ミラー部材の正面にその移動方向に沿って配設したことを特徴とする光スイッチ

【請求項2】 前記ミラー部材を移動させるためのアクチュエータを備えた、請求項1に記載の光スイッチ。

【請求項3】 前記入力用光路及び前記出力用光路の、前記ミラー部材の正面と対向する部分を一体に構成したことを特徴とする、請求項1に記載の光スイッチ。

【請求項4】 複数本の前記入力用光路のうち一部の入力用光路から出射された光は、前記第1の領域に設けられた光反射面で反射されることによって複数本の前記出力用光路のうちの一部の出力用光路に入射させられ、他の入力用光路から出射された光は、前記第1の領域に設けられた光反射面で反射されることによって他の出力用光路に入射させられ、また、前記一部の入力用光路から出射された光は、前記第2の領域に設けられた光反射面で反射されることによって前記他の出力用光路に入射させられ、前記他の入力用光路から出射された光は、前記第2の領域に設けられた光反射面で反射されることによって前記一部の出力用光路に入射させられることを特徴とする、請求項1に記載の光スイッチ。

【請求項5】 前記ミラー部材の正面のうち前記第1の領域又は前記第2の領域のうちいずれが前記入力用光路及び前記出力用光路に対向しているか、をモニタリングする手段を備えた、請求項1に記載の光スイッチ。

2/

前記入力用光路から出射された光が、前記入力用光路から出 【請求項6】 射された後、第1の領域に設けられた光反射面で反射されて出力用光路に入射す るまでの空間光路長と、前記入力用光路から出射された光が、前記入力用光路か ら出射された後、第2の領域に設けられた光反射面で反射されて出力用光路に入 射するまでの空間光路長とが等しくなるようにしたことを特徴とする、請求項1 に記載の光スイッチ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、入力用光路(例えば、入力用光ファイバ)と出力用光路(例えば、 出力用光ファイバ)との結合関係を切り換えるための光スイッチに関する。

[0002]

【背景技術】

光通信の分野においては、光ファイバ伝送路や光送受信端末装置などを切り換 えるために光スイッチが用いられている。図1(a)、(b)に示すものは、従 来より提案されている2×2型光スイッチの主要部分の構造を説明する平面図及 び断面図である。この光スイッチにあっては、平板状をしたスイッチ基板2に凹 部3が設けられており、凹部3の内側面に90度の角度をなすようにして第1及 び第2の光反射面4、5が形成されている。また、スイッチ基板2の底面には弾 性を有する長尺の可撓性部材6が片持ち状に設けられており、可撓性部材6の先 端にはキューブ状の可動反射部材7が固定されている。可動反射部材7は、第1 及び第2の光反射面4、5によって構成された内隅部分に位置するように配置さ れており、可動反射部材7の隣接する2面には第3及び第4の光反射面8、9が 形成されている。可撓性部材6は、図1(b)に示すように、上下に屈曲するよ うになっており、第1及び第2の光反射面4の内隅部に位置していた可動反射部 材7は、可撓性部材6が下方へ屈曲することによって第1及び第2の光反射面4 、5よりも下方へ下降する。図示しないが、このスイッチ基板2の下方には、電 磁石が設置されており、電磁石を励磁すると、可撓性部材6が下方へ吸着されて 可動反射部材 7 が下方へ下がり、電磁石を消磁すると、可撓性部材 6 が上方へ復

[0003]

図2(a)、(b)は上記光スイッチによる切替え動作を説明するための図である。この例では、第1の光反射面4に対向させて第1の入力用光ファイバ10を配置し、第4の光反射面9に対向させて第2の入力用光ファイバ11を配置し、第3の光反射面8に対向させて第1の出力用光ファイバ12を配置し、第2の光反射面5に対向させて第2の出力用光ファイバ13を配置している。

[0004]

しかして、可動反射部材 7 が上昇していて第 1 及び第 2 の光反射面 4 、 5 の前面に位置している場合には、図 2 (a)に示すように、第 1 の入力用光ファイバ 1 0 から出射された光 1 4 は、第 1 の光反射面 4 及び第 3 の光反射面 8 で反射された後に第 1 の出力用光ファイバ 1 2 に結合する。第 2 の入力用光ファイバ 1 1 から出射された光 1 5 は、第 4 の光反射面 9 及び第 2 の光反射面 5 で反射された後に第 2 の出力用光ファイバ 1 3 に結合する。

[0005]

また、可動反射部材7が下降していて第1及び第2の光反射面4、5の前面にない場合には、図2(b)に示すように、第1の入力用光ファイバ10から出射された光14は、第1の光反射面4及び第2の光反射面5で反射された後に第2の出力用光ファイバ13に結合する。第2の入力用光ファイバ11から出射された光15は、第2の光反射面5及び第1の光反射面4で反射された後に第1の出力用光ファイバ12に結合する。

[0006]

従って、このような光スイッチによれば、電磁石で可撓性部材6を駆動させて 可動反射部材7を昇降させることにより、第1の入力用光ファイバ10及び第2 の入力用光ファイバ11から出射された光の結合先を、第1の出力用光ファイバ 12と第2の出力用光ファイバ13との間で切り換えることができる。

[0007]

しかし、このような構造の光スイッチでは、第1及び第2の光反射面4、5と 第3及び第4の光反射面8、9とが互いに別個の部材(スイッチ基板2の凹部内

[0008]

具体的に説明すると、以下のとおりである。まず、可撓性部材6に可動反射部 材7を取付ける前の状態において、第1及び第2の入力用光ファイバ10、11 と第1及び第2の出力用光ファイバ12、13を平行に配置した後、図2(b) のように、第1の出力用光ファイバ12に第2の入力用光ファイバ11から出射 された光15が入射し、第2の出力用光ファイバ13に第1の入力用光ファイバ 10から出射された光14が入射するように、4本の光ファイバ10~13の位 置を入出射の組み合わせ毎に調芯し、その調芯後の状態で各光ファイバ10~1 3を接着剤等で固めて固定する。ついで、第2の入力用光ファイバ11及び第1 の出力用光ファイバ12の前方に可動反射部材7を配置し、可動反射部材7を動 かしてその位置及び角度を調整する。図2(a)に示すように、第1の出力用光 ファイバ12に第1の入力用光ファイバ10から出射された光14が入射し、第 2の出力用光ファイバ13に第2の入力用光ファイバ11から出射された光15 が入射するよう、各光ファイバ10~13に対して可動反射部材7の位置及び角 度が調整されたら、その状態で可動反射部材 7 を可撓性部材 6 の先端部上面に接 着剤等で固定する。

[0009]

ところが、可動反射部材7を可撓性部材6に取り付ける前の状態で各光ファイ バ10~13を調芯した後、各光ファイバ10~13は固定されているので、続 けて可動反射部材7を光ファイバ11、12の前方において可動反射部材7の位 置及び角度を調整しようとしても、光ファイバ10~13の位置関係は変えるこ とができないので、高精度で可動反射部材7の位置及び角度を調整することはで きない。また、第1の光反射面4及び第2の光反射面5の位置にバラツキがある と、光反射面4、5を基準にして位置決めされた光ファイバ10~13の位置に もバラツキが生じるので、可動反射部材7の位置や角度の調整が余計困難になる 。そのため、このような構造の光スイッチでは、可動反射部材7を取付ける前と

後とで、各光ファイバ10~13の位置と可動反射部材7の位置及び角度を試行 錯誤的に調整しなければならず、このことが光スイッチの組立てを困難にしてい た。

[0010]

【発明の開示】

本発明は上記のような従来例の問題点に鑑みてなされたものであり、その目的 とするところは、入力用光路や出力用光路と光反射面との軸芯合わせを簡単に行 えるようにすることにある。

[0011]

本発明の請求項1にかかる光スイッチは、合計で少なくとも3本の入力用光路及び出力用光路を備え、互いに光を伝送し合う入力用光路と出力用光路の組み合わせを変更することにより光路切り替えを行う光スイッチにおいて、入力用光路及び出力用光路に対して相対的に移動可能となったミラー部材の正面を前記入力用光路及び前記出力用光路に対向させ、所定角度をなして互いに交わる一対の光反射面を形成された第1の領域と、隣接する光反射面どうしが所定角度をなして互いに交わる複数対の光反射面を形成された第2の領域とを、前記ミラー部材の正面にその移動方向に沿って配設したことを特徴としている。ここで、入力用光路とは、光を透過伝搬させて空間へ光を出射する光伝送媒体であって、例えば光ファイバや光導波路等によって構成されている。出力用光路とは、空間から入射した光を透過伝搬させる光伝送媒体であって、例えば光ファイバや光導波路等によって構成されている。

[0012]

本発明の請求項1にかかる光スイッチによれば、例えば入力用光路と出力用光路とがいずれも複数本である場合には、請求項4に記載しているように、一部の入力用光路から出射された光は、第1の領域に設けられた光反射面で反射されることによって一部の出力用光路に入射させられ、他の入力用光路から出射された光は、第1の領域に設けられた光反射面で反射されることによって他の出力用光路に入射させられ、また、前記一部の入力用光路から出射された光は、第2の領域に設けられた光反射面で反射されることによって前記他の出力用光路に入射さ域に設けられた光反射面で反射されることによって前記他の出力用光路に入射さ

せられ、前記他の入力用光路から出射された光は、第2の領域に設けられた光反射面で反射されることによって前記一部の出力用光路に入射させられるように構成することができるので、ミラー部材を相対的に移動させて光を反射させる領域を第1の領域と第2の領域とで切り替えることにより、入力用光路と出力用光路との結合関係を切り替えることができる。(なお、この請求項4の記載は、請求項1の光スイッチにおいて、入力用光路又は出力用光路のいずれか一方が1本である場合や、入力用光路と出力用光路の本数が等しくない場合を排除するものではない。)

[0013]

しかも、この光スイッチにあっては、一対の光反射面を形成された第1の領域と複数対の光反射面を形成された第2の領域とをミラー部材に一体に形成しているので、第1の領域の光反射面と第2の領域の光反射面との位置ずれや角度誤差が、部品精度のみ(組立てによる影響を受けない)になって、非常に小さく、且つ安定したものになり、入力用光路及び出力用光路と各光反射面との位置調整作業を容易に行うことができる。

[0014]

本発明の請求項2にかかる光スイッチは、請求項1の光スイッチにおける前記 ミラー部材を移動させるためのアクチュエータを備えたことを特徴としているの で、電気的信号によって光スイッチを切り替えることができる。

[0015]

本発明の請求項3にかかる光スイッチは、請求項1の光スイッチにおける前記入力用光路及び前記出力用光路の、前記ミラー部材の正面と対向する部分を一体に構成しているので、入力用光路及び出力用光路の全体とミラー部材との位置調整を行えばよくなり、位置調整作業をより一層簡略にすることができる。

[0016]

また、本発明の請求項5にかかる光スイッチは、請求項1の光スイッチにおいて、前記ミラー部材の正面のうち前記第1の領域又は前記第2の領域のうちいずれが前記入力用光路及び前記出力用光路に対向しているか、をモニタリングする手段を備えているので、当該モニタリング手段を通じて例えば電気信号により光

[0017]

本発明の請求項6にかかる光スイッチは、請求項1の光スイッチにおいて、前記入力用光路から出射された光が、前記入力用光路から出射された後、第1の領域に設けられた光反射面で反射されて出力用光路に入射するまでの空間光路長と、前記入力用光路から出射された光が、前記入力用光路から出射された後、第2の領域に設けられた光反射面で反射されて出力用光路に入射するまでの空間光路長とが等しくなるようにしたことを特徴としている。ここで、空間光路長とは、入力用光路から出射された光が出力用光路に入射するまでに光が伝搬する光路の光学的光路長である。一般に、第1の領域と第2の領域が入出力用光路から等しい距離にあれば、第1の領域に設けられた光反射領域で反射される光の空間光路長よりも、第2の領域に設けられた光反射領域で反射される光の空間光路長よりも、第2の領域に設けられた光反射領域で反射される光の空間光路長よりも、第2の領域に設けられた光反射領域で反射される光の空間光路長が短くなるので、両者の光路長を等しくするためには、第1の領域よりも第2の領域の方が入出射用光路から遠くなるように配置すればよい。

[0018]

請求項6に記載の光スイッチにあっては、第1の領域で反射される光の空間光路長と第2の領域で反射される光の空間光路長とが等しくなっているので、光スイッチの切替えに伴うレンズ位置の調整などが不要になり、また、光の結合効率の変化も起こらなくなる。

[0019]

なお、この発明の以上説明した構成要素は、可能な限り任意に組み合わせることができる。

[0020]

【発明の実施の形態】

(第1の実施形態)

図3は本発明の一実施形態による光スイッチの外観斜視図、図4は当該光スイッチの要部の断面図である。また、図5は当該光スイッチの内部構造を示す斜視図である。この実施形態は、2本の入力用光ファイバと、2本の出力用光ファイバとの結合関係を切り換えることができる2×2型光スイッチである。この光ス

[0021]

図5に示すように、光スイッチ本体22は、基板24上にミラーユニット25 、光ファイバ設置ユニット26、光ファイバアレイ27を実装して構成されてい る。ミラーユニット25は、基板24内の一方に実装されており、光ファイバア レイ27は、基板24内の他方に固定された光ファイバ設置ユニット26に保持 されていて、ミラーユニット25と対向している。

[0022]

基板24の上面にはミラーユニット25を実装するための電極パッド30が設 けられ、基板24の下面には、図4に示すように、光スイッチ21のリード足3 1が設けられている。なお、リードは図4に示すリード足31のように回路基板 に差し込むタイプのものに限らず、表面実装型のリードであってもよい。

[0023]

図6はミラーユニット25の構造を示す斜視図である。このミラーユニット2 5にあっては、上面が開口したハウジング37内に電磁石38が納められており (図4参照)、電磁石38の上方に被駆動部39が配設されている。図7は被駆 動部39の構造を示す一部省略した平面図である。被駆動部39は長方形状をし た鉄片40と、鉄片40の両側に平行に配置された一対の金属製バネ片43とを 樹脂モールド部44によって成形一体化したものであり、鉄片40の両端部とバ ネ片43の両端部はいずれも樹脂モールド部44から露出している。また、各バ ネ片43の外側中央部からは、ねじれ変形軸41が突出しており、ねじれ変形軸 41の先端に固定片42が設けられている。ねじれ変形軸41及び固定片42も 樹脂モールド部44から露出している。さらに、図4に示すように、鉄片40の 下面中央部には、永久磁石45が固着されている。

[0024]

被駆動部39は、電磁石38の上方に配設されて固定片42をハウジング37 の上面に固定されており、ねじれ変形軸41によって揺動自在に支持されている

[0025]

電磁石38は、図4に示すように、コア46の外周にコイル47を巻き回したものである。コア46は永久磁石によって形成されており、コア46の両端部は上方へ延びて(コア46の両端の上方へ延びている部分を、ヨーク部48a、48bはそれ8bという。)鉄片40の両端部下面に対向し、ヨーク部48a、48bはそれぞれS極とN極とに磁化されている。また、鉄片40の下面には、永久磁石45が接合されているので、鉄片40は全体が同一極に磁化されている(例えば、永久磁石45のS極面が鉄片40は全体が同一極に磁化されている(例えば、永久磁石45のS極面が鉄片40に接合されていると、鉄片40はS極となる。)。なお、ミラーユニット25のリード足69は、ハウジング37の両側面に設けられている。

[0026]

このような構造のミラーユニット25の動作及び原理については、特開平10-255631号公報に開示されている。簡単にいうと、電磁石38のコイル47に流す電流の向きによって被駆動部39を異なる方向に回動させることができ、しかも、鉄片40のいずれか一方の端部がいずれかのヨーク部48a、48bに吸着されると、コイル47の電流をオフにしても鉄片40はいずれかのヨーク部48a、48bに吸着された状態を維持する。すなわち、両方向でラッチ動作し、切替状態を保持するために電力を消費しない。

[0027]

このようにして電磁石38によって、被駆動部39が駆動されると、鉄片40の端がヨーク部48a、48bに当接することにより、鉄片40は常に所定角度で停止させられる。また、鉄片40が傾くと、それと共にバネ片43も傾く。バネ片43の両端部下面には電気接点が設けられており、バネ片43の電気接点に対向する位置には、バネ片43が接触したことを検出するための検知部49a、49b(例えば、電気的な接点)がそれぞれ設けられており、いずれの検知部49a、49bから検知信号が出力されているかによってミラーブロック50が上昇しているか、下降しているかをモニターすることができる。

図8は、鉄片40の端部に固定されているミラーブロック50の形状を示す斜 視図であり、図9 (a)、(b)はその平面図及び正面図である。ミラーブロッ ク50は、金属、ガラス、プラスチック等によってほぼ直方体状に形成されてい る。ミラーブロック50の前面には90度の角度を成すようにして左右に第1の 光反射面51と第2の光反射面52が形成されている。さらに、ミラーブロック・ 50の前面上半分では、90度の角度を成すようにして左右に第3の光反射面5 3と第4の光反射面54が突出している。ここで、第3の光反射面53と第1の 光反射面51も90度の角度を成しており、第4の光反射面54と第2の光反射 面52も90度の角度を成している。従って、ミラーブロック50の前面上半分 では、互いに90度の角度を成すようにして第1の光反射面51、第3の光反射 面53、第2の光反射面52及び第4の光反射面54がW溝状に形成されており 、ミラーブロック50の前面下半分では、互いに90度の角度を成すようにして 第1の光反射面51と第2の光反射面52がV溝状に形成されている。具体的に は、ミラーブロック50の上半分では、中心面に関して第1の光反射面51及び 第3の光反射面53と第2の光反射面52及び第4の光反射面54とが面対称と なっており、ミラーブロック50の上半分では、中心面に関して第1の光反射面 51と第2の光反射面52が面対称となっている。

[0029]

ミラーブロック50は下面を鉄片40の端部上面に接着剤により接着して固定されており、W溝状の光反射面51~54が上になり、V溝状の光反射面51、52が下になっている。これとは反対に、V溝状の光反射面51、52が上になり、W溝状の光反射面51~54が下になるようにして、ミラーブロック50の上面を下にして鉄片40に接着することも可能である。しかし、このような構造では、ミラーブロック50の接着作業時に、第1の光反射面51と第3の光反射面53の間と第4の光反射面54と第2の光反射面52の間との2本のV溝から接着剤が毛細管現象によって昇り、光反射面を汚し易くなる。本実施形態のように、ミラーブロック50の下面を下にして鉄片40に接着すれば、接着剤は第1の光反射面51と第2の光反射面52の間の1本のV溝を通ってしか昇らないの

[0030]

光ファイバ設置ユニット26は、図10に示す略U字状をした支持台55と、図11に示す調整板56とからなる。支持台55は、両側部上面に凹部58を設けられており、予め底面を基板24の上面に固定されている。調整板56は、両側面からそれぞれ棒状をしたアーム57を延出されている。この調整板56は、支持台55に取付けられる前に、光ファイバアレイ27の下面に接着剤で固定される。ついで、光ファイバアレイ27を載置された調整板56のアーム57を支持台55の凹部58に納め、光ファイバアレイ27の位置を調整した後、接着剤によってアーム57を凹部58内に固定し、空中において調整板56で光ファイバアレイ27を支持させる。

[0031]

図12は光ファイバアレイ27の分解斜視図である。この光ファイバアレイ2 7にあっては、ホルダー59内に4本の光ファイバ32~35の端部が保持され ている。各光ファイバ32~35の先端部は、ホルダー59内で精密に軸心を位 置決めされ、所定ピッチで一列に平行に配列され、その状態で固定されている。 具体的には、順次、第1の入力用光ファイバ32、第1の出力用光ファイバ34 、第2の入力用光ファイバ33、第2の出力用光ファイバ35が配列されている 。ホルダー59に光ファイバ32~35を精密に位置決めする手段としては、多 芯のフェルールに嵌め込んでもよく、光ファイバ32~35をV溝状のグルーブ にはめ込むことによって行ってもよい。また、ホルダー59の前面にはレンズア レイ60が接着剤等で固定されており、レンズアレイ60には光ファイバ32~ 35の各端面に対向させて微小な結合用レシズ61が成形されている。このレン ズアレイ60としては、透明樹脂基板に透明樹脂からなる結合用レンズ61を設 けてもよく、ガラス基板にガラスからなる結合用レンズ61を設けてもよく、透 明樹脂基板にガラスからなる結合用レンズ61を設けてもよく、ガラス基板に透 明樹脂からなる結合用レンズ61を設けてもよい。このレンズアレイ60は、未 硬化の接着剤を挟んでホルダー59の前面に配置した後、各光ファイバ32~3 5から各結合用レンズ61に光を出射させ、各結合用レンズ61を通過した光を

[0032]

つぎに、この光スイッチ21の組立て工程を説明する。光スイッチ21の組立 て工程においては、まず基板24の電極パッド30にミラーユニット25のリー ド足69をハンダ付けすることにより、基板24上にミラーユニット25を実装 する。ミラーユニット25には予めミラーブロック50が取付けられている。光 ファイバ設置ユニット26の支持台55も、ミラーユニット25と対向する位置 に配置され、予め基板24の上面に接着される。

[0033]

ついで、図11に示すように光ファイバアレイ27の下面に調整板56を接着して光ファイバアレイ27と調整板56を一体化しておく。この光ファイバアレイ27をロボットハンドで掴み、光ファイバアレイ27を支持台55の上方へ搬入し、光ファイバアレイ27の下面に固定されている調整板56のアーム57を支持台55の凹部58内に納める。

[0034]

この後、ミラーブロック50を上昇させて第1の光反射面51及び第2の光反射面52を光ファイバ32~35に対向させた状態で、光ファイバアレイ27を動かして光軸位置の調整を行い(図13(b)参照)、光ファイバアレイ27の位置をコンピュータに記憶させる。ついで、ミラーブロック50を下降させて第1の光反射面51、第3の光反射面53、第4の光反射面54及び第2の光反射面52を光ファイバ32~35に対向させた状態で、光ファイバアレイ27を動かして光軸位置の調整を行い(図13(a)参照)、光ファイバアレイ27の位置をコンピュータに記憶させる。こうして、ミラーブロック50を上昇させた状態と下降させた状態で光ファイバアレイ27の光軸調整位置を検出し、各位置をコンピュータに記憶させると、コンピュータはそのデータに基づいて最適位置を演算する(例えば、両位置の平均位置を求める。)。光ファイバアレイ27の最適位置がコンピュータによって演算されると、光ファイバアレイ27はロボットハンドによって最適位置となるように微調整され、その状態に保持される。この

[0035]

こうして基板24内にミラーユニット25と光ファイバ設置ユニット26を取 付けることにより、光スイッチ本体22が組立てられる。この光スイッチ本体2 2においては、ミラーユニット25のミラーブロック50と、光ファイバアレイ 27の各光ファイバ32~35の端面とが互いに対向しており、ミラーユニット 25の電磁石38を励磁して鉄片40のミラーブロック50が設けられているの と反対側の端部を吸着させると、ミラーブロック50が上昇する。この状態では 、第3の光反射面53及び第4の光反射面54は光ファイバ32~35の端部の 軸心が含まれる平面よりも上に上がり、図13(b)に示すように、ミラーブロ ック50の下半分で第1の入力用光ファイバ32及び第1の出力用光ファイバ3 4が第1の光反射面51に対向し、第2の入力用光ファイバ33及び第2の出力 用光ファイバ35が第2の光反射面52に対向する。また、ミラーユニット25 の電磁石38を励磁して鉄片40のミラーブロック50が設けられている側の端 部を吸着させると、ミラーブロック50が下に下がる。この状態では、図13(a) に示すように、ミラーブロック50の上半分で第1の入力用光ファイバ32 が第1の光反射面51に対向し、第1の出力用光ファイバ34が第3の光反射面 53に対向し、第2の入力用光ファイバ33が第4の光反射面54に対向し、第 2の出力用光ファイバ35が第2の光反射面52に対向する。

[0036]

しかして、各光ファイバ32~35と各光反射面51~54との位置関係が正しく調整されているとすれば、図13(a)のようにミラーブロック50が下降している切り替え状態の光スイッチ21では、第1の入力用光ファイバ32から出射された光66は第1の光反射面51及び第3の光反射面53で反射された後

[0037]

これに対し、図13(b)のようにミラーブロック50が上昇している切り替え状態の光スイッチ21では、第1の入力用光ファイバ32から出射された光66は第1の光反射面51及び第2の光反射面52で反射された後、第2の出力用光ファイバ35に入射する。また、第2の入力用光ファイバ33から出射された光67は第2の光反射面52及び第1の光反射面51で反射された後、第1の出力用光ファイバ34に入射する。よって、この切り替え状態では、第1の入力用光ファイバ32と第2の出力用光ファイバ35が結合され、第2の入力用光ファイバ33と第1の出力用光ファイバ34とが結合される。

[0038]

なお、ミラーブロック50と光ファイバアレイ27とを精密に位置調整したとしても、接着剤が完全に硬化するまでにアーム57の動いたりして、光ファイバアレイ27の取り付け後に再度位置調整したい場合も考えられる。そのような場合に対処するためには、図14に示すように、アーム57を屈曲又は蛇行した形状にしておき、調整板56を支持台55に固定した後でも、アーム57を塑性変形させて調整板56と共に光ファイバアレイ27を動かし、光ファイバアレイ27を縦方向及び横方向に位置調整し、あるいは、光ファイバアレイ27の角度を調整できるようにしてもよい。

[0039]

光ファイバアレイ27の位置調整が完了したら、光スイッチ本体22の上面を カバー23で覆って光スイッチ本体22の上面を封止する。これにより、封止構 造の光スイッチ21が製造される。

[0040]

(第2の実施形態)

図15(a)、(b)及び(c)は本発明の別な実施形態による光スイッチに用いられるミラーブロック50の構造を示す一部破断した平面図、正面図及び一部破断した下面図である。このミラーブロック50にあっては、第1の光反射面51と第2の光反射面52の間のV溝、第1の光反射面51と第3の光反射面53の間のV溝、第4の光反射面54と第2の光反射面52の間のV溝において、各V溝の最深部を埋めることによってそれぞれ平面部62、63、63を形成し、ミラーブロック50の接着時にV溝の奥で毛細管現象により接着剤を吸い上げにくくしている。図では、V溝の奥が平面になっているが、曲面であっても差し支えない。このようにして、V溝の奥の溝幅に下限値を設定すれば、接着剤を光反射面に吸い上げにくくなるので、より一層光反射面が接着剤で汚れにくくなる

[0041]

なお、この実施形態では、第1の光反射面51と第2の光反射面52の間のV 溝の開口幅W1が1mmで、第1の光反射面51と第3の光反射面53の間のV 溝と第4の光反射面54と第2の光反射面52の間のV溝の各開口幅W2が0. 5mmであり、V溝の奥の平面部62、63の幅W3はほぼ50μmとなっている。

[0042]

(第3の実施形態)

上記のような構造のミラーユニット25では、鉄片40をシーソー状に回動させてミラーブロック50を昇降させているので、ミラーブロック50が上昇しているときと、ミラーブロック50が下降しているときとで、ミラーブロック50の正面(光反射面)の角度が上下に変化する。特に、ミラーユニット25を小型化すると、ミラーブロック50が昇降したときの角度の変化が大きくなり、入力用光ファイバ32、33から出てミラーブロック50で反射された光が出力用光ファイバ34、35から逸れる恐れがある。このような場合には、図16び図17(a)、(b)、(c)に示すような構造のミラーブロック50を用いればよい。

[0043]

図16及び図17(a)、(b)、(c)は本発明のさらに別な実施形態による光スイッチに用いられるミラーブロック50の構造を示す斜視図及び上面図、正面図、下面図である。このミラーブロック50にあっては、ミラーブロック50の正面の下半分においては、第1の光反射面51aと第2の光反射面52aによってV溝状に形成されており、しかも、ミラーユニット25に取付けられたミラーブロック50が上昇したときに第1の光反射面51a及び第2の光反射面52aに立てた法線が光ファイバ32~35の先端の光軸と同一平面に含まれるよう、第1の光反射面51a及び第2の光反射面52を下方へ傾けている。さらに、ミラーブロック50の正面の上半分においては、第1の光反射面51b、第2の光反射面52b、第3の光反射面53及び第4の光反射面54によってW溝状に形成されており、しかも、ミラーユニット25に取付けられたミラーブロック50が下降したときに第1の光反射面51b、第2の光反射面52b、第3の光反射面53及び第4の光反射面52b、第3の光反射面53及び第4の光反射面51b、及び第2の光反射面52b、第3の光反射面53及び第4の光反射面51b、及び第2の光反射面52b、第3の光反射面53及び第4の光反射面51b、及び第2の光反射面52b、第3の光反射面53及び第4の光反射面54を上方へ傾けている。

[0044]

よって、このようなミラーブロック 50 を用いれば、ミラーブロック 50 で反射された光が光ファイバ $32 \sim 35$ の光軸を含む平面から外れることがなく、各光反射面 51a、51b、52a、52b、53 及び 54 と各光ファイバ $32 \sim 35$ との軸芯合せを容易に行えると共に、光スイッチ 21 の結合効率を向上させることができる。

[0045]

(第4の実施形態)

図18に示すものは、入力用光ファイバが1本で、出力用光ファイバが2本の、1×2型の光スイッチである。この実施形態では、ミラーブロック50の下降時に、第1の出力用光ファイバ34が第3の光反射面53に対向し、入力用光ファイバ64が第4の光反射面54に対向し、第2の出力用光ファイバ35が第2の光反射面52に対向するように配置されている。

[0046]

しかして、この光スイッチにおいては、ミラーブロック50が下降している切り替え状態では、図18(a)のように、入力用光ファイバ64から出射された光65は第4の光反射面54及び第2の光反射面52で反射された後、第2の出力用光ファイバ35に入射する。よって、この切り替え状態では、入力用光ファイバ64と第2の出力用光ファイバ35とが結合されている。

[0047]

これに対し、ミラーブロック50が上昇している切り替え状態では、図18(b)のように、入力用光ファイバ64から出射された光65は第2の光反射面52及び第1の光反射面51で反射された後、第1の出力用光ファイバ34に入射する。よって、この切り替え状態では、入力用光ファイバ64と第1の出力用光ファイバ34とが結合される。

[0048]

なお、入力用光ファイバが2本で、出力用光ファイバが1本の、1×2型の光 スイッチも可能であることはもちろんである。

[0049]

(第5の実施形態)

図19に示すものは、入力用光ファイバが4本で、出力用光ファイバが4本の、4×4型の光スイッチである。この光スイッチにおいては、ミラーブロック50が下降しているとき、第1の入力用光ファイバ71及び第2の入力用光ファイバ72が第1の光反射面51に対向し、第1の出力用光ファイバ75及び第2の出力用光ファイバ76が第3の光反射面53に対向し、第3の入力用光ファイバ73及び第4の入力用光ファイバ74が第4の光反射面54に対向し、第3の出力用光ファイバ77及び第4の出力用光ファイバ78が第2の光反射面52に対向するように配置されている。

[0050]

しかして、ミラーブロック50が下降している切り替え状態では、第1の入力 用光ファイバ71及び第2の入力用光ファイバ72から出射された光79、80 は第1の光反射面51及び第3の光反射面53で反射された後、それぞれ第2の 出力用光ファイバ76及び第1の出力用光ファイバ75に入射する。また、第3

[0051]

これに対し、図19(b)のようにミラーブロック50が上昇している切り替え状態では、第1の入力用光ファイバ71及び第2の入力用光ファイバ72から出射された光79、80は第1の光反射面51及び第2の光反射面52で反射された後、それぞれ第4の出力用光ファイバ78及び第3の出力用光ファイバ77に入射する。また、第3の入力用光ファイバ73及び第4の入力用光ファイバ74から出射された光81、82は第2の光反射面52及び第1の光反射面51で反射された後、第2の出力用光ファイバ76及び第1の出力用光ファイバ75に入射する。よって、この切り替え状態では、第1の入力用光ファイバ71と第4の出力用光ファイバ78とが結合され、第2の入力用光ファイバ72と第3の出力用光ファイバ77とが結合され、第3の入力用光ファイバ73と第2の出力用光ファイバ76とが結合され、第4の入力用光ファイバ74と75とが結合される。

[0052]

(第6の実施形態)

第1の実施形態のようなミラーブロック50を用いた場合には、図13(a)(b)から分かるように、例えば第1の入力用光ファイバ32から出射された光66が第1の光反射面51と第3の光反射面53で反射されて第1の出力用光ファイバ34に入射する場合と、第1の入力用光ファイバ32から出射された光66が第1の光反射面51と第2の光反射面52で反射されて第2の出力用光ファイバ35に入射する場合とでは、第1の光反射面51から出射してから第1の出

力用光ファイバ34又は第2の出力用光ファイバ35に入射するまでの空間光路長が異なる。従って、第1の出力用光ファイバ34に入射する光66と、第2の出力用光ファイバ35に入射する光66とでは、ファイバ端面における、光66の位相や光スポット系などが異なり、光スイッチを切り換えることによって光信号の特性が変化し、例えば、レンズ位置の調整が必要になったり、結合効率が変化する恐れがある。

[0053]

図20に示すものは上記のような問題を解消するための、最適なミラーブロック50の構造を示す斜視図である。このミラーブロック50にあっては、ミラーブロック50の正面の下半分においては、第1の光反射面51aと第2の光反射面52aによってV溝状に形成され、ミラーブロック50の正面の上半分においては、第1の光反射面51b、第2の光反射面52b、第3の光反射面53及び第4の光反射面54によってW溝状に形成されている。しかも、上半分に形成されている第1の光反射面51b、第2の光反射面52b、第3の光反射面53及び第4の光反射面54が、下半分に形成されている第1の光反射面51aと第2の光反射面52aよりも後方へ後退させられており、それによってミラーブロック50の上半分を用いても、下半分を用いても空間光路長に変化がないようにしている。

[0054]

図21(a)(b)は、ミラーブロック50が下降していて第1の光反射面51b、第2の光反射面52b、第3の光反射面53及び第4の光反射面54が用いられている状態と、ミラーブロック50が上昇していて第1の光反射面51aと第2の光反射面52aが用いられている状態とを表わしている。図13(a)(b)に示されている光66と光67の光路の幾何学的関係から分かるように、図13(a)の状態から図13(b)の状態へ切り換えたときに空間光路長が長くなる距離は、光66と光67とで等しいので、その距離の半分だけ第1の光反射面51b、第2の光反射面52b、第3の光反射面53及び第4の光反射面54を後方へ下げることで空間光路長が変化しないようにできる。

[0055]

[0056]

なお、上記実施形態においては、ミラーユニット 2 5 の被駆動部 3 9 はシーソー状に駆動されてミラーブロック 5 0 を回動させていたが、被駆動部 3 9 を昇降させることによってミラーブロック 5 0 を上下に平行移動させるようにしてもよい。また、ミラーユニット 2 5 は電磁石によってミラーブロック 5 0 を動かすようにしていたが、ミラーユニット 2 5 は静電アクチュエータやボイスコイルなど他の方式でミラーブロック 5 0 を動かすようにしていても良い。また、電磁石を用いる場合でも、電磁石を1個だけにし、電磁石が励磁されている場合にはミラーブロック 5 0 が下降位置となり、電磁石が消磁されている場合にミラーブロック 5 0 が上昇位置となるようにしても良い。また、電磁石を用いる場合でも、ラッチの掛からないタイプのものであっても差し支えない。

[0057]

【発明の効果】

本発明の光スイッチによれば、一対の光反射面を形成された第1の領域と一対の光反射面を複数組形成された第2の領域とをミラー部材に一体に形成しているので、第1の領域と第2の領域との位置ずれや誤差が非常に小さくなり、入力用 光路及び出力用光路と各光反射面との位置調整作業を容易に行うことができる。

【図面の簡単な説明】

【図1】

(a)、(b)は、従来例の2×2型光スイッチの主要部分の構造を説明する 平面図及び断面図である。

【図2】

(a)、(b)は上記光スイッチによる切替え動作を説明する図である。

【図3】

本発明の一実施形態による光スイッチの外観斜視図である。

【図4】

同上の光スイッチの概略断面図である(カバーは図示省略)。

【図5】

図3の光スイッチの内部構造を示す斜視図である。

【図 6.】

ミラーユニットの構造を示す斜視図である。

【図7】

同上のミラーユニットに用いられている被駆動部の構造を説明するための平面 図である。

【図8】

被駆動部上に固定されているミラーブロックの形状を示す斜視図である。

【図9】

(a)、(b)は同上のミラーブロックの平面図及び正面図である。

【図10】

光ファイバ設置ユニットを構成する支持台の斜視図である。

【図11】

光ファイバ設置ユニットを構成する調整板と光ファイバアレイを示す斜視図で ある。

【図12】

光ファイバアレイの分解斜視図である。

【図13】

(a)、(b)は、本発明にかかる光スイッチの作用説明図である。

【図14】

光ファイバ設置ユニットの別な例を示す平面図である。

【図15】

(a)、(b)及び(c)は、本発明の別な実施形態に用いられるミラーブロックを示す一部破断した平面図、正面図及び一部破断した下面図である。

【図16】

本発明のさらに別な実施形態に用いられるミラーブロックの斜視図である。

.【図17】

(a) は同上のミラーブロックの平面図、(b) は (a) のX-X線断面図、

【図18】

本発明のさらに別な実施形態であって、1×2型の光スイッチの作用説明のための概略図である。

【図19】

本発明のさらに別な実施形態であって、4×4型の光スイッチの作用説明のための概略図である。

【図20】

本発明のさらに別な実施形態による光スイッチに用いられるミラーブロックの斜視図である。

【図21】

(a)、(b)は同上のミラーブロックの作用説明図である。

【符号の説明】

- 22 光スイッチ本体
- 2 4 基板
- 25 ミラーユニット
- 26 光ファイバ設置ユニット
- 27 光ファイバアレイ
- 38 電磁石
- 40 鉄片
- 41 ねじれ変形軸
- 50 ミラーブロック
- 51 第1の光反射面
- 52 第2の光反射面
- 53 第3の光反射面
- 54 第4の光反射面
- 55 支持台
- 5 6 調整板
- 57 アーム

- · 5 8 凹部
- 60 レンズアレイ
- 61 レンズ

【図1】

(a)

(b)

51

(a)

【図11】

【図13】

【図19】

【書類名】 要約書

【要約】

【課題】 入射光路や出射光路と光反射面との軸芯合わせを簡単に行えるようにする。

【解決手段】 ミラーブロック50の下半分に互いに90度の角度をなすようにして第1の光反射面51及び第2の光反射面52を形成する。ミラーブロック50の上半分にも互いに90度の角度をなすようにして第1の光反射面51及び第2の光反射面52を形成し、第1の光反射面51と第2の光反射面52の間において互いに90度の角度をなすようにして第3の光反射面53及び第4の光反射面54を形成する。光を反射させる領域をミラーブロック50の上半分と下半分に切り替えることにより、入力用光ファイバと出力用光ファイバの結合関係を切り替える。

【選択図】 図8

特願2002-192368

出願,人履歴情報

識別番号

[000002945]

1. 変更年月日 [変更理由]

2000年 8月11日

住所

住所変更

氏名才

京都市下京区塩小路通堀川東入南不動堂町801番地

オムロン株式会社