Supplemental Material

Parallel adaptation to highland climate in maize domesticated populations

Shohei Takuno, Kelly Swarts, Matthew B. Hufford, Rob J. Elshire, Jeffrey C. Glaubitz, Edward S. Buckler and Jeffrey Ross-Ibarra

Supplemental Table 1 List of maize landraces used in this study

ID^a	USDA ID	Population	Landrace	Locality	Latitude	Longitude	Elevation	Origin
RIMMA0409	PI 478968	Mexico	Tepecintle	Chiapas, Mexico	15.4	-92.9	107	USDA
RIMMA0410	PI 478970	Lowland	Vandeno	Chiapas, Mexico	15.4	-92.9	107	USDA
RIMMA0433	PI 490825		Nal Tel ATB	Chiquimula, Guatemala	14.7	-89.5	457	USDA
RIMMA0441	PI 515538		Coscomatepec	Veracruz, Mexico	19.2	-97.0	1320	NA
RIMMA0615	PI 628480		Tuxpeno	Puebla, Mexico	20.1	-97.2	152	USDA
RIMMA0619	PI 645772		Pepitilla	Guerrero, Mexico	18.4	-99.5	747	USDA
RIMMA0628	PI 646017		Tuxpeno Norteno	Tamaulipas, Mexico	23.3	-99.0	300	USDA
RIMMA0696	Ames 28568		Tuxpeno	El Progreso, Guatemala	16.5	-90.2	30	Goodman
RIMMA0700	NSL 291626		Olotillo	Chiapas, Mexico	16.8	-93.2	579	Goodman
RIMMA0701	PI 484808		Olotillo	Chiapas, Mexico	16.6	-92.7	686	Goodman
RIMMA0702	Ames 28534		Negro de Tierra Caliente	Sacatepequez, Guatemala	14.5	-90.8	1052	Goodman
RIMMA0703	NSL 283390		Nal Tel	Yucatan, Mexico	20.8	-88.5	30	Goodman
RIMMA0709	Ames 28452		Tehua	Chiapas, Mexico	16.5	-92.5	747	Goodman
RIMMA0710	PI 478988		Tepecintle	Chiapas, Mexico	15.3	-92.6	91	Goodman
RIMMA0712	NSL 291696 CYMT		Oloton	Baja Verapaz, Guatemala	15.3	-90.3	1220	NA
RIMMA0716	Ames 28459		Zapalote Grande	Chiapas, Mexico	15.3	-92.7	91	Goodman
RIMMA0720	PI 489372		Negro de Tierra Caliente	Guatemala	15.5	-88.9	39	Goodman
RIMMA0721	Ames 28485		Nal Tel ATB	Chiquimula, Guatemala	14.6	-90.1	915	Goodman
RIMMA0722	Ames 28564		Dzit Bacal	Jutiapa, Guatemala	14.3	-89.7	737	Goodman
RIMMA0727	Ames 28555		Comiteco	Guatemala	14.4	-90.5	1151	Goodman
RIMMA0729	PI 504090		Tepecintle	Guatemala	15.4	-89.7	122	Goodman
RIMMA0730	Ames 28517		Quicheno Late	Sacatepequez, Guatemala	14.5	-90.8	1067	Goodman
RIMMA0731	PI 484137		Bolita	Oaxaca, Mexico	16.8	-96.7	1520	Goodman
RIMMA0733	PI 479054		Zapalote Chico	Oaxaca, Mexico	16.6	-94.6	107	Goodman
RIMMA0416	PI 484428	Mexico	Cristalino de Chihuahua	Chihuahua, Mexico	29.4	-107.8	2140	NA
RIMMA0417	PI 484431	Highland	Azul	Chihuahua, Mexico	28.6	-107.5	2040	USDA
RIMMA0418	PI 484476		Gordo	Chihuahua, Mexico	28.6	-107.5	2040	USDA
RIMMA0421	PI 484595		Conico	Puebla, Mexico	19.9	-98.0	2250	USDA
RIMMA0422	PI 485071		Elotes Conicos	Puebla, Mexico	19.1	-98.3	2200	USDA
RIMMA0423	PI 485116		Cristalino de Chihuahua	Chihuahua, Mexico	29.2	-108.1	2095	NA
RIMMA0424	PI 485120		Apachito	Chihuahua, Mexico	28.0	-107.6	2400	USDA
RIMMA0425	PI 485128		Palomero Tipo Chihuahua	Chihuahua, Mexico	26.8	-107.1	2130	USDA
RIMMA0614	PI 628445		Mountain Yellow	Jalisco, Mexico	20.0	-103.8	2060	USDA
RIMMA0616	PI 629202		Zamorano Amarillo	Jalisco, Mexico	20.8	-102.8	1800	USDA
RIMMA0620	PI 645786		Celaya	Guanajuato, Mexico	20.2	-100.9	1799	USDA
RIMMA0621	PI 645804		Zamorano Amarillo	Guanajuato, Mexico	21.1	-101.7	1870	USDA
RIMMA0623	PI 645841		Palomero de Jalisco	Jalisco, Mexico	20.0	-103.7	2520	USDA
RIMMA0625	PI 645984		Cacahuacintle	Puebla, Mexico	19.0	-97.4	2600	USDA
RIMMA0626	PI 645993		Arrocillo Amarillo	Puebla, Mexico	19.9	-97.6	2260	USDA
RIMMA0630	PI 646069		Arrocillo Amarillo	Veracruz, Mexico	19.8	-97.3	2220	USDA
RIMMA0670	Ames 28508		San Marceno	San Marcos, Guatemala	15.0	-91.8	2378	Goodman
RIMMA0671	Ames 28538		Salpor Tardio	Solola, Guatemala	14.8	-91.3	2477	Goodman
RIMMA0672	PI 483613		Chalqueno	Mexico, Mexico	19.7	-99.1	2256	Goodman
RIMMA0674	PI 483617		Toluca	Mexico, Mexico	19.3	-99.7	2652	Goodman
RIMMA0677	Ames 28476		Conico Norteno	Zacatecas, Mexico	21.4	-102.9	1951	Goodman
RIMMA0680	Ames 28448		Tabloncillo	Jalisco, Mexico	20.4	-102.2	1890	Goodman
RIMMA0682	PI 484571		Tablilla de Ocho	Jalisco, Mexico	22.1	-103.2	1700	Goodman
a CDS data are	Ames 28473		Conico Norteno	Queretaro, Mexico	20.4	-100.0	1921	Goodman

 $^{^{}a}$ GBS data are available for the accessions in bold font.

Supplemental Table 1 (continued)

ID	USDA ID	Population	Landrace	Locality	Latitude	Longitude	Elevation	Origin
RIMMA0388	PI 443820	South America	Amagaceno	Antioquia, Colombia	6.9	-75.3	1500	USDA
RIMMA0389	PI 444005	Lowland	Costeno	Atlantico, Colombia	10.4	-74.9	7	USDA
RIMMA0390	PI 444254		Comun	Caldas, Colombia	4.5	-75.6	353	USDA
RIMMA0391	PI 444296		Andaqui	Caqueta, Colombia	1.4	-75.8	700	USDA
RIMMA0392	PI 444309		Andaqui	Caqueta, Colombia	1.8	-75.6	555	USDA
RIMMA0393	PI 444473		Costeno	Cordoba, Colombia	8.3	-75.2	100	USDA
RIMMA0394	PI 444621		Pira	Cundinamarca, Colombia	4.8	-74.7	1000	USDA
RIMMA0395	PI 444731		Negrito	Choco, Colombia	8.5	-77.3	30	USDA
RIMMA0396	PI 444834		Caqueteno	Huila, Colombia	2.6	-75.3	1100	NA
RIMMA0397	PI 444897		Negrito	Magdalena, Colombia	11.6	-72.9	50	USDA
RIMMA0398	PI 444923		Puya	Magdalena, Colombia	9.4	-75.7	27	USDA
RIMMA0399	PI 444954		Cariaco	Magdalena, Colombia	10.2	-74.1	250	USDA
RIMMA0403	PI 445163		Pira Naranja	Narino, Colombia	1.3	-77.5	1000	USDA
RIMMA0404	PI 445322		Puya Grande	Norte de Santander, Colombia	7.3	-72.5	1500	USDA
RIMMA0405	PI 445355		Puya	Norte de Santander, Colombia	8.4	-73.3	1100	USDA
RIMMA0406	PI 445514		Yucatan	Tolima, Colombia	5.0	-74.9	450	USDA
RIMMA0407	PI 445528		Pira	Tolima, Colombia	4.2	-74.9	450	USDA
RIMMA0428	PI 485354		Aleman	Huanuco, Peru	-9.3	-76.0	700	NA
RIMMA0462	PI 445073		Amagaceno	Narino, Colombia	1.6	-77.2	1700	USDA
RIMMA0690	PI 444946		Puya	Magdalena, Colombia	8.3	-73.6	250	Goodman
RIMMA0691	PI 445391		Cacao	Santander, Colombia	6.6	-73.1	1098	NA
RIMMA0707	PI 487930		Tuxpeno	Ecuador	-1.1	-80.5	30	Goodman
RIMMA0708	PI 488376		Yunquillano F Andaqui	Ecuador	-3.5	-78.6	1098	Goodman
RIMMA0426	PI 485151	South America	Rabo de Zorro	Ancash, Peru	-9.1	-77.8	2500	NA
RIMMA0430	PI 485362	Highland	Sarco	Ancash, Peru	-9.2	-77.7	2585	NA
RIMMA0431	PI 485363	(Andean)	Perlilla	Huanuco, Peru	-8.7	-77.1	2900	NA
RIMMA0436	PI 514723		Morocho Cajabambino	Amazonas, Peru	-6.2	-77.9	2200	NA
RIMMA0437	PI 514752		Ancashino	Ancash, Peru	-9.3	-77.6	2688	NA
RIMMA0438	PI 514809		Maranon	Ancash, Peru	-8.7	-77.4	2820	NA
RIMMA0439	PI 514969		Maranon	La Libertad, Peru	-8.5	-77.2	2900	NA
RIMMA0464	PI 571438		Chullpi	Huancavelica, Peru	-12.3	-74.7	1800	USDA
RIMMA0465	PI 571457		Huarmaca	Piura, Peru	-5.6	-79.5	2300	USDA
RIMMA0466	PI 571577		Confite Puneno	Apurimac, Peru	-14.3	-72.9	3600	USDA
RIMMA0467	PI 571871		Paro	Apurimac, Peru	-13.6	-72.9	2800	USDA
RIMMA0468	PI 571960		Sarco	Ancash, Peru	-9.4	-77.2	3150	USDA
RIMMA0473	PI 445114		Sabanero	Narino, Colombia	1.1	-77.6	3104	USDA
RIMMA0656	Ames 28799		Culli	Jujuy, Argentina	-23.2	-65.4	2287	Goodman
RIMMA0657	NSL 286594		Chake Sara	Bolivia	-17.5	-65.7	2201	Goodman
RIMMA0658	NSL 286812		Uchuquilla	Bolivia	-21.8	-64.1	1948	Goodman
RIMMA0661	PI 488066		Chillo	Ecuador	-2.9	-78.7	2195	Goodman
RIMMA0662	NSL 287008		Cuzco	Ecuador	0.0	-78.0	2195	Goodman
RIMMA0663	PI 488102		Mishca	Ecuador	0.4	-78.2	2067	Goodman
RIMMA0664	PI 488113		Blanco Blandito	Ecuador	0.4	-78.4	2122	Goodman
RIMMA0665								
	PI 489324		Racimo de Uva	Ecuador	-0.9	-78.9	2931	Goodman
RIMMA0667			Racimo de Uva Patillo	Ecuador Chuquisaca, Bolivia	-0.9 -21.8	-78.9 -64.1	2931 2201	Goodman NA

^a GBS data are available for the accessions in bold font.

Supplemental Table 2 ms command

Model I for Mexico populations

Population 1: Mexico lowland population

Population 2: Mexico highland population

-I 2 $n_{m1} \ n_{m2}$ -n 1 0.3496 -n 2 0.5704 -ej 0.01 2 1 -en 0.01 1 0.92 -en 0.0133 1 0.0163 -en 0.015 1 1.0

Model II for Mexico populations

Population 1: Mexico lowland population

Population 2: Mexico highland population

Population 3: mexicane population

 $-1\,2\,n_{m1}\,n_{m2}\,-n\,1\,1.125\,-n\,2\,0.375\,-\text{es}\,0.01\,2\,0.8\,-\text{en}\,0.01\,3\,1.0667\,-\text{ej}\,0.01\,2\,1\,-\text{en}\,0.01\,1\,1.5\,-\text{en}\,0.0133\,1\,0.0163\,-\text{en}\,0.015\,1\,1.0\,-\text{ej}\,0.1\,3\,1.0\,-\text{ej}\,0.01\,2\,1\,-\text{en}\,0.01\,2\,1\,-\text{en}\,0.01\,3\,1\,0.0163\,-\text{en}\,0.015\,1\,1.0\,-\text{ej}\,0.1\,3\,1.0\,-\text{ej}\,0.01\,2\,1\,-\text{en}\,0.01\,2\,1\,-\text{en}\,0.01\,3\,1\,0.0163\,-\text{en}\,0.0163\,-\text{en}\,0.015\,1\,1.0\,-\text{ej}\,0.1\,3\,1.0\,-\text{ej}\,0.01\,2\,1\,-\text{en}\,0.01\,2\,1\,-\text{en}\,0.01\,3\,1\,0.0163\,-\text{en}\,0.0163\,-\text{en}\,0.015\,1\,1.0\,-\text{ej}\,0.1\,3\,1.0\,-\text{ej}\,0.01\,2\,1\,-\text{en}\,0.01\,2\,1\,-\text{en}\,0.01\,3\,1\,0.0163\,-\text{en}\,0.0163\,-\text{en}\,0.015\,1\,1.0\,-\text{ej}\,0.1\,3\,1.0\,-\text{ej}\,0.01\,2\,1\,-\text{en}\,0.01\,2\,1\,-\text{en}\,0.01\,3\,1\,0.0163\,-\text{en}\,0.0163\,-\text{en}\,0.015\,1\,1.0\,-\text{ej}\,0.1\,3\,1.0\,-\text{ej}\,0.01\,2\,1\,-\text{en}\,0.01\,2\,1\,-\text{en}\,0.01\,3\,1\,0.0163\,-\text{en}\,0.015\,1\,1.0\,-\text{ej}\,0.1\,3\,1.0\,-\text{ej}\,0.01\,2\,1\,-\text{en$

Model I for SA populations

Population 1: SA lowland population

Population 2: SA highland population

 $-1\,2\,n_{s1}\,\,n_{s2}\,\,\text{-n}\,1\,\,0.5335\,\text{-n}\,2\,\,0.99\,\text{-g}\,2\,\,614.1517\,\text{-ej}\,0.006667\,2\,\,1\,\text{-eg}\,\,0.006667\,2\,\,0.0\,\text{-en}\,\,0.00667\,1\,\,0.55\,\text{-en}\,\,0.01333\,1\,\,0.0163\,\text{-en}\,\,0.015\,1\,\,1.00\,\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.00667\,1\,0.$

Model III for SA populations

Population 1: Mexico lowland population

Population 2: SA lowland population

Population 3: SA highland population

-l 3 n_{m1} n_{s1} n_{s2} -n 1 0.64 -n 2 0.342 -n 3 0.99 -g 3 601.1000 -ej 0.006667 3 2 -eg 0.006667 3 0.0 -en 0.006667 2 0.36 -ej 0.01 2 1

-en 0.01 1 1 -en 0.0133 1 0.0163 -en 0.015 1 1.0

Sample size of Mexico lowland, Mexico highland, SA lowland and SA highland populations are denoted by n_{m1} , n_{m2} , n_{s1} and n_{s2} , respectively.

Supplemental Table 3 Inference of demographic parameters

Mexico	Model I			
	Likelihood	-3050.84		
	α	0.99		
	β	0.42		
	γ	1		
	σ	1		
South America	Model I			
	Likelihood	-2737.80		
	α	0.6		
	β	0.97		
	γ	≥55		

The description of α , β and γ is in Figure 3. σ is a relative size of N_B to N_C ($N_B = \sigma N_C$).

Supplemental Figure 1 Correlation of allele frequencies between GBS (x-axes) and MaizeSNP50 (y-axes) data. We used overlapped SNPs with $n \geq 40$ for both data sets. Correlation coefficient is 0.890 ($P < 10^{-5}$ by permutation test with 10^5 replications).

Supplemental Figure 2 Correlation of allele frequencies between GBS (*x*-axes) and MaizeSNP50 (*y*-axes) data. We used overlapped SNPs with $n \geq 40$ for both data sets. Correlation coefficient is 0.890 ($P < 10^{-5}$ by permutation test with 10^5 replications).

Supplemental Figure 3 Likelihood of STRUCTURE analysis given K. The x-axes represents K and the y-axes represents likelihood.

Supplemental Figure 4 Q-Q plot for $-\log_{10}$ -scaled *P*-values of population differentiation between models in GBS data. The results of Mexico (A) and South America (B) are shown. The solid lines represent y=x.

Supplemental Figure 5 Q-Q plot for $-\log_{10}$ -scaled *P*-values with (*x*-axes) and without (*y*-axes) bottleneck in GBS data. Under Model I. (A) Mexico (B) South America.

Supplemental Figure 6 Q-Q plot for $-\log_{10}$ -scaled P-values in MaizeSNP50 data. (A, B) Q-Q plot of P-values with and without correlation of ascertainment bias (on the x- and y-axes, respectively) in Mexico (A) and South America (B). (C, D) Q-Q plot of P-values from Syngenta SNPs on the x-axes and from Panzea SNPs on the y-axes in Mexico (C) and South America (D). The solid lines represent y=x.

Supplemental Figure 7 (A) Frequency distribution of P_M given $P_S < 0.01$ and $P_S \ge 0.01$. (B) Frequency distribution of P_M given $P_M < 0.01$ and $P_M \ge 0.01$.

Supplemental Figure 8 Pattern of decay of linkage equilibrium in Mexico (A) and South America (B). Red and blue dots represent low- and highland population, respectively. r^2 values were calculated as a statistics and averaged within 10-bp bins of distance between SNPs. The x- and y-axes represent distance between SNPs (kb) and average r^2 values.