Automatele Pushdown (PDA)

Andrei Paun

Cuprins

- Motivare
- Definitie
- Exemple
- Moduri de acceptare
- Determinism si nedeterminism
- Relatia cu gramaticile independente de context
- Determinism si CFG
- Sumar

Motivare

DFA/NFA nu sunt suficient de puternice

- {aⁱbⁱ| i>0}
 gramatica: S -> aSb | ab
- {ww^r|w din {a+b}*} palindrom de lungime para gramatica: S -> aSa | bSb | λ
- limbajul format din paranteze balansate gramatica: S -> (S) | SS | λ

Motivare

Automate Pushdown: λ-NFA cu stiva

- pentru marit puterea NFA-urilor restrictionam "regulile"/ tranzitiile
- avem acces la o stiva (LIFO)

Automate Pushdown -- PDA

Cuvantul de intrare

Reprezentare grafica

Simbolul initial pe stiva

Sibolul special (ultimul din stiva)

Apare la momentul 0

$$\underbrace{q_1} \xrightarrow{a, b \to c} \underbrace{q_2}$$

stiva

$$\underbrace{q_1}^{a, b \to cd} q_2$$

$$\begin{array}{cccc}
 & a, & b \to \lambda \\
\hline
 & q_1
\end{array}$$

stiva

Stiva vida

Automatul SE OPRESTE nu mai avem tranzitii posibile dupa q_2

O tranzitie posibila

Nedeterminism PDA-urile sunt nedeterministe

Tranzitiile nedeterministe sunt posibile

 λ – transition

Exemplu de PDA

PDAM

$$L(M) = \{a^n b^n \mid n \ge 1\}$$

$$a, a \rightarrow aa$$
 $a, \$ \rightarrow a\$$
 $b, a \rightarrow \lambda$
 q_1
 $b, a \rightarrow \lambda$
 q_2
 $\lambda, \$ \rightarrow \$$
 q_3

Ideea de baza:

1. Push a-urii 2. pentru fiecare b de la pe stiva intrare consumam un a de pe stiva 3. Am gasit $a, a \rightarrow aa$ un cuvant $b, a \rightarrow \lambda$ λ , \$ $b, \underline{a \rightarrow \lambda}$

Exemplu de executie: momentul 0

Stiva

Exemplu de Rejectare: Timpul O

Exemplu

- {ww^r|w din {a+b}*}
 - pornim intr-o stare s1 care va face o alegere nedeterminista daca am ajuns sau nu la mijlocul cuvantului. Daca nu am ajuns, se salveaza pe stiva literele citite de la intrare
 - din s1 mergem in s2 (in momentul alegerii nedeterministe)
 - in s2 se compara simbolurile de pe stiva cu simbolurile de intrare
 - daca ajungem la sfarsitul cuvantului de intrare si stiva este goala acceptam (mergem intr-o stare finala s3)

Definitie Automate Pushdown

$$\delta(q, a, X) \ni (q', X') \text{ unde } q, q' \in Q; a \in \Sigma \cup \{\lambda\}; X \in \Gamma; X' \in \Gamma^*$$

mergem din starea q in q' citind de la intrare a (care poate sa file λ) si citind de pe stiva simbolul X. In final ajungem in starea q' si inlocuim X cu X' pe stiva

Descriere instantanee

Modul de operare al PDA

• daca $(p,\alpha) \in \delta(q,a,X)$ definim $(q,aw,X\beta) \vdash (p,w,\alpha\beta), unde \ w \in \Sigma^*; \beta \in \Gamma^*$

Limbajele acceptate de PDA

 Acceptare prin stare finala: Se porneste din starea initiala, se accepta daca am ajuns intr-o stare finala (la fel ca in cazul automatelor finite)

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$$

$$T(M) = \{ w \mid (q_0, w, z) \vdash^* (q, \lambda, \alpha), q \in F \}$$

 Acceptare prin stiva vida: Se porneste din starea initiala, se accepta daca am ajuns la sfarsitul cuvantului intr-o configuratie cu stiva vida

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$$

$$N(M) = \{ w \mid (q_0, w, z) \vdash^* (q, \lambda, \lambda) \}$$

 se poate arata simplu echivalenta dintre cele doua moduri de acceptare Acceptare prin stare finala si stiva vida: Se porneste din starea initiala, se accepta daca am ajuns la sfarsitul cuvantului intr-o stare finala si cu stiva vida

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$$

$$L(M) = \{ w \mid (q_0, w, z) \vdash^* (q, \lambda, \lambda), q \in F \}$$

Determinism si nedeterminism

- Definitie: un PDA este deterministic daca
 - $\delta(q, a, X)$ contine cel mult un element pentru orice $q \in Q; a \in \Sigma \cup \{\lambda\}; X \in \Gamma$
 - daca $\delta(q, a, X)$ nu este vid pentru $a \in \Sigma$ atunci $\delta(q, \lambda, X)$ este vid

observatii pentru DPDA

- DPDA accepta λ-tranzitii
- fiecare tranzitie este determinata de catre starea curenta, simbolul de intrare curent si simbolul din capul stivei
- pentru o pereche stare-simbol de intrare putem sa avem o multitudine de tranzitii diferentiate de simbolul de pe stiva

Proprietati pentru DPDA

- daca avem T_{DPDA}, N_{DPDA}, L_{DPDA} fiind familiile de limbaje acceptate de DPDA prin "stare finala", "stiva vida" si "stare finala si stiva vida", respectiv
- avem $N_{DPDA} = L_{DPDA}$ inclus in T_{DPDA}

exemplu: L={a^mbⁿ|m≤n, n>0}

L=T(A), dar L nu apartine lui N_{DPDA}

CFL deterministe

 Definitie: limbajele independente de context deterministe sunt toate limbajele acceptate de DPDA prin modul de acceptare "stare finala"

- DCFLs sunt incluse strict in CFLs
- exemple: L={aⁿbⁿ|0≤n}U{aⁿb²ⁿ|0≤n}
- {ww^r|w din {a+b}*}

Relatia cu limbajele independente de context

- PDA (nedeterministe) sunt echivalente cu CFG
- se demonstreaza ca pentru orice gramatica G se poate construi un PDA A care accepta limbajul generat de G
- si apoi se demonstreaza ca pentru orice PDA A se poate construi o gramatica G care genereaza toate cuvintele acceptate de automatul A

L(CFG) inclus in L(PDA)

- fie G o gramatica independenta de context
- construim automatul A cu 3 stari si tranzitiile

DCFL proprietati de inchidere

- DCFL sunt inchise la
 - complementare
 - intersectie cu limbaje regulate
- DCFL nu sunt inchise la
 - reuniune
 - intersectie

Sumar

- PDA: un λ-NFA cu stiva
- Acceptare: stare finala, stiva vida, 1&2
- modurile de acceptare sunt echivalente pentru PDA
- PDA sunt echivalente cu CFG
- DPDA sunt strict incluse in PDA
- modurile de acceptare nu sunt echivalente pentru DPDA
- REG inclus in DPDA inclus in CFG