The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees

Naruya Saitou Masatoshi Nei

4 de dezembro de 2016

Agenda[']

- Introdução
- 2 Métodos
- 3 Eficiência para recuperação de topologias
- 4 Resultados

Introdução

Objetivo

Construção de árvores filogenéticas através do princípio de construção da árvore de evolução de topologia mínima ou máxima parsimônica^a.

^aAto ou costume de economizar, de poupar

Métodos comparados

- Distância de Wagner (DW)
- Método de Li
- Modificação do Método de Farris (MF)
- Proximidade^a de vizinhanças pelo método de Sattath and Tversky (ST)

aneighborliness

Neighbor-Joining

- Semelhante ao método ST, o qual o objetivo é a construção de topologia de árvores
- diferencial: considerar os comprimentos dos ramos da árvore final
- Unidades Taxonômicas Operacionais (OTUs¹ [=neighbors])
- Para cálculo:
 - N/2 para N par e (N-1)/2 para N impar
 - L_{ij} tamanho do ramo entre i e j
 - $D_{12} = L_{1X} + L_{2X}$ Distância entre nós folhas

$$S_0 = \sum_{i=1}^{N} L_{iX} = \frac{1}{N-1} \sum_{i < j} D_{ij}$$
 (1)

OTUs e topologias

Matriz de distâncias

Table 1
Distance Matrix for the Tree in Figure 1

оти	OTU									
	1	2	3	4	5	6	7			
2	7									
3	8	5								
4	11	8	5							
5	13	10	7	8						
6	16	13	10	11	5					
7	13	10	7	8	6	9				
8	17	14	11	12	10	13	8			

Construção da topologia

Critério de Evolução Mínima de Topologia

Assume-se como critério a seguintes condições:

$$D_{12} + D_{ij} < D_{1i} + D_{2j}$$

Assim, considerando este critério, a equação 1 poderá conter a menor evolução de topologias.

Modelos de árvores

Tabela comparativas de nucleotídeos

Table 3 P_c and d_T (in parentheses) for Six Tree-making Methods for the Case of a = 0.01, b = 0.04, and c = 0.07

	1	MODEL TREE A		MODEL TREE Ba			
Метнор	300	600	900	300	600	900	
UPGMA:							
p ^b	14 (3.18)	36 (1.72)	58 (0.98)	14 (4.54)	36 (2.74)	51 (1.68)	
d ^c	15 (3.18)	34 (1.74)	56 (1.04)	13 (4.56)	35 (2.70)	52 (1.60)	
MF:							
p	39 (1.76)	73 (0.58)	95 (0.10)	24 (2.86)	51 (1.30)	67 (0.76)	
d	38 (1.92)	72 (0.62)	95 (0.10)	19 (2.94)	48 (1.42)	64 (0.86)	
DW:							
p	42 (1.70)	75 (0.54)	96 (0.08)	26 (2.36)	55 (1.12)	79 (0.48)	
d	37 (1.74)	74 (0.58)	95 (0.10)	28 (2.36)	58 (1.06)	79 (0.46)	
LI:							
p	41 (1.58)	71 (0.70)	94 (0.12)	40 (2.04)	70 (0.78)	90 (0.22)	
d	36 (1.84)	66 (0.82)	89 (0.24)	39 (2.10)	70 (0.78)	90 (0.26)	
ST:							
p	48 (1.26)	75 (0.54)	97 (0.06)	45 (1.66)	75 (0.62)	91 (0.22)	
d	44 (1.48)	70 (0.62)	96 (0.08)	43 (1.62)	74 (0.64)	91 (0.22)	
NJ:							
p	48 (1.36)	76 (0.54)	97 (0.06)	46 (1.64)	76 (0.60)	91 (0.20)	
d	41 (1.60)	70 (0.62)	96 (0.08)	45 (1.62)	75 (0.60)	91 (0.20)	

As shown in fig. 6.

^b Trees reconstructed from data on the proportion of different nucleotides between the sequences compared.

c Trees reconstructed from the Jukes-Cantor distance.

Após as comparações

Dependendo dos valores dos parâmetros p e d

$$MF \ll UPGMA \approx DW \ll Li < ST < NJ$$
 (2)

p o proporção da diferença entre os nucleotídeos entre duas sequências

 $d \rightarrow \mathsf{dist}$ ância de Jukes-Cantor