

METODE SEISMIK BIAS REFRACTION SEISMIC

Advance Exploration Geophysics Course

Dr. Wiwit Suryanto

Seismology, Volcanology and Geothermal Research Group Geophysics Laboratory, Physics Department, FMNS, UGM

Oscilloscope display

Crustal thickness study

INTRODUCTION

 Refraction seismic is most useful when abrupt increase in velocity with depth, since critically refracted P-wave eventually arrive ahead of other waves

Depth to bedrock study

REFRACTION ANATOMY

To see critical refraction clearly as a first arrival, the spread length should be at about twice the cross-over distance

Spread length $\approx 5 \times 10 \times (\text{target depth})/2$

(SINGLE HORIZONTAL INTERFACE)

 From field measurement we will obtain a seismic record of ground motions

Pick the first arrival seismic waveform

 Calculate the slope of each lines to find velocity of the first and second layer

Slope of Direct
$$=\frac{1}{V_1} \Rightarrow V_1 = \frac{1}{\text{slope of direct}}$$

Slope of Refracted $=\frac{1}{V_2} \Rightarrow V_2 = \frac{1}{\text{slope of refracted}}$
 $\theta_c = \sin^{-1}\left(\frac{V_1}{V_2}\right)$
 $t_1 = \frac{2h\cos\theta_c}{V_1} \Rightarrow h = \frac{t_1V_1}{2\cos\theta_c}$

 t_1 has a direct relation to depth of the interface

APPLICATIONS - REGIONAL SCALE

• Crustal thickness can be related to the delay time (T-axis intercept, t_1)

APPLICATIONS - LOCAL SCALE

Depth to bedrock

SEVERAL HORIZONTAL INTERFACES

$$V_{ap2} = \frac{V_1}{\sin \theta_{1,2}} = V_2$$

$$V_{ap3} = \frac{V_1}{\sin \theta_{1,3}} = V_3$$

$$V_{ap4} = \frac{V_1}{\sin \theta_{1,4}} = V_4$$

SEVERAL HORIZONTAL INTERFACES

 $\sin \theta_{1,2} = V_1/V_2$

 $\sin\theta_{1,3} = V_1/V_3$

 $\sin \theta_{2,3} = V_2/V_3$

 $\sin\theta_{1,4} = V_1/V_4$

 $\sin \theta_{2,4} = V_2/V_4$

 $\sin \theta_{3,4} = V_3/V_4$

 $V_4 > V_3 > V_2 > V_1$

N-LAYERS

N-LAYERS

$$T_n = t_{n-1} + \frac{X}{V_n}$$

where:

T_n = travel time down from the source, horizontally along the top of layer n, and back up to a receiver at X

 $t_{n-1} = T$ -axis intercept for the refraction from layer n:

$$t_{n-1} = \sum_{i=1}^{n} \frac{2h_i \cos \theta_{i,n}}{V_i}$$

X = horizontal distance from the source to the receiver

 V_n = velocity of layer n.

$$T_n = t_{n-1} + \frac{X}{V_a}$$

$$T_n = t_{n-1} + \frac{X}{V_n}$$
 $t_{n-1} = \sum_{i=1}^{n} \frac{2h_i \cos \theta_{i,n}}{V_i}$

EXAMPLE: 4-LAYERS

$$n = 1 \Rightarrow Direct Arrival$$

travel time: $T_1 = \frac{X}{V_1}$
T-Axis intercept: 0

critical distance: 0

$$n = 2 \Rightarrow 1st \ Refraction$$

$$travel time: T_2 = t_1 + \frac{X}{V_2}$$

$$T-Axis intercept: t_1 = \frac{2h_1 cos \theta_{1,2}}{V_1}$$

$$critical \ distance: X_{c1} = 2h_1 tan \theta_{1,2}$$

$$n=3\Rightarrow 2nd\ Refraction$$
 travel time: $T_3=t_2+\frac{X}{V_3}$
$$T\text{-Axis intercept: } t_2=\frac{2h_1\cos\theta_{1,3}}{V_1}+\frac{2h_2}{V_1}$$
 critical distance: $X_{c2}=2h_1\tan\theta_{1,3}+2h_2$

$$n = 4 \Rightarrow 3rd \ Refraction$$
 travel time: $T_4 = t_3 + \frac{X}{V_4}$
$$T\text{-Axis intercept: } t_3 = \frac{2h_1 \cos \theta_{1,4}}{V_1} + \frac{2h_2 \cos \theta_{2,4}}{V_2} + \frac{2h_3 \cos \theta_{3,4}}{V_3}$$
 critical distance: $X_{c3} = 2h_1 \tan \theta_{1,4} + 2h_2 \tan \theta_{2,4} + 2h_3 \tan \theta_{3,4}$

EXAMPLE: REFRACTION SURVEY FOR OCEANIC CRUST

EXAMPLE: REFRACTION SURVEY FOR OCEANIC CRUST

PROBLEM FOR REFRACTION SEISMIC

- 1. Low velocity layer ($V_2 < V_1 < V_3$) there will be no critical refraction from the layer with velocity V_2 . From the travel time graph, V_3 lies directly below layer V_1 . The equation will yield no V_2 and the layer V_1 will be too tick.
- 2. Thin layer $(V_3 > V_2 > V_1$, but h_2 very small), the refraction from this thin layer never observed as first arrival.
- 3. Dipping interface

(1) LOW VELOCITY LAYER

(1) LOW VELOCITY LAYER

(2) THIN LAYER

$T_{red} = T - \frac{X}{V_{red}}$

REDUCED TRAVEL-TIME PLOT

$$T_{red} = T - \frac{X}{6 \text{ km/s}}$$

(3) DIPPING INTERFACE

- For a dipping interface apparent velocities observed at the surface are not equal to the true velocity of the refracting layer.
- When the source shoots down-dip toward the receiver, the apparent velocity is lower than the true velocity
- When the source shoots up-dip toward the receiver, the apparent velocity is higher than the true velocity
- The dipping interface can be resolved by recording a reversed refraction profile

DIPPING INTERFACE

The apparent velocities for downdip and updip shooting

$$\alpha = \frac{\sin^{-1}(V_1/V_{2d}) - \sin^{-1}(V_1/V_{2u})}{2}$$

$$\theta_{c} = \frac{\sin^{-1}(V_{1}/V_{2d}) + \sin^{-1}(V_{1}/V_{2u})}{2}$$

$$V_1 = \frac{1}{\text{slope of direct arrival}}$$

$$V_2 = \frac{V_1}{\sin \theta_c}$$

$$V_{2d} = \frac{V_1}{\sin(\theta_c + \alpha)}$$

$$V_{2u} = \frac{V_1}{\sin(\theta_c - \alpha)}$$

 V_{2d} = apparent velocity shooting downdip V_{2u} = apparent velocity shooting updip

V₁ = velocity of the overlying layer

 θ_c = critical angle

 α = dip of the interface.

• Travel time to receiver at horizontal distance (X), shooting downdip (T_d) and updip (T_u) are:

$$T_{d} = t_{1d} + \frac{X}{V_{2d}}$$
 where
$$t_{1d} = \frac{2h_{d}\cos\theta_{c}}{V_{1}}$$

$$T_{u} = t_{1u} + \frac{X}{V_{2u}}$$

$$t_{1u} = \frac{2h_{u}\cos\theta_{c}}{V_{1}}$$

 $h_d = perpendicular$ distance to interface when shooting downdip:

$$h_{d} = \frac{V_{1} t_{1d}}{2 \cos \theta_{c}}$$

h_u = perpendicular distance to interface when shooting updip:

$$h_u = \frac{V_1 t_{1u}}{2 \cos \theta_c}$$

The vertical depth to the interface below point A and B

QUIZ

1 Buat perkiraan velocity di bawah permukaan

Distance from Shot (m)	Arrival Times (ms)	
	Direct Wave	Refracted Wave
0	0.00	13.58
3	2.14	14.24
6	4.29	14.91
9	6.43	15.58
12	8.57	16.24
15	10.71	16.91
18	12.86	17.58
21	15.00	18.24
24	17.14	18.91
27	19.29	19.58
30	21.43	20.24
33	23.57	20.91
36	25.71	21.58
39	27.86	22.24
42	30.00	22.91
45	32.14	23.58
48	34.29	24.24
51	36.43	24.91
54	38.57	25.58
57	40.71	26.24
60	42.86	26.91
63	45.00	27.58
66	47.14	28.24
69	49.29	28.91