

INTRODUCTION TO IMAGE PROCESSING AND COMPUTER VISION

LABORATORY PROJECT 1 (LABORATORIES 1 & 2)

Rafał Jóźwiak

R. Jozwiak@mini.pw.edu.pl
Faculty of Mathematics and Information Science
Warsaw University of Technology

REALIZATION

- algorithms elaborated with OpenCV library
 - OpenCV (C++)
 - SimleCV/OpenCV (Python)
 - EmugCV (C#)
- solution for the laboratory task should contain:
 - source code with description (GUI is not obligatory, source file or Jupyter notebook)
 - folder containing segmentation results (prediction masks) DO NOT INCLUDE DATASET!!!
 - documentation (report in pdf file)
- solution should be sent up to 31.12.2022

DOCUMENTATION

- documentation should contain:
 - introduction, problem definition (task description, data set description)
 - description of solution (algorithm, step by step explanation and visualization, proposed improvements)
 - results:
 - mean results for whole data set
 - examples of good and bad segmentation results (with result per individual image) – present 5 best and worst cases
 - comments and conclusions

- input: images of leaves
- PlantVillage-Dataset public dataset (available via GitHub or via Kaggle)
- dataset of diseased plant leaf images and corresponding labels
- dataset to enable computer vision approaches to help solve the problem of yield losses in crop plants due to infectious diseases
- 38 categories by species and disease
 - available original color leaves images (raw), grayscale converted (grayscale) and segmented leaves (segmented)

- output: segmented leaves (leaves masks)
- binary segmentation
- assessment according to Intersection over Union metric (IoU, also referred to as the Jaccard index) and Dice coefficient
- mean results for whole data set (induvial results only for examples)

Original image

Segmentation result (B, prediction)
– binary mask

Ground truth (A, target)
– binary mask

$$IoU = \frac{target \cap prediction}{target \cup prediction}$$

$$Dice = \frac{2|A \cap B|}{|A| + |B|}$$

- subtask 1 preparing ground truth binary labels
 - simple thresholding form segmented results in dataset but ...
 - ... small corrections need to be defined

Ground truth (A, target)
– binary mask

Original image

- subtask 2 main segmentation algorithm
 - start with color image (not form grayscale) and find optimal representation
 - watch out for shadows
 - think about preprocessing and postprocessing (of segmentation results)

Segmentation result (B, prediction)

– binary mask

Original image

ASSESSMENT

- source code with description (idea, meritorical (content-related) assessment) 15
 pts (10 pts for main algorithm + 5 pts for GT mask preparation)
- documentation 15 pts
 - introduction, problem definition 1 pts
 - description of solution (explanation and visualization both preparation of binary masks and main algorithm) – 5 pts
 - results (mean results for main segmentation algorithm, examples of good/bad results) 5 pts
 - comments and conclusions (discussion of results, problems and possible improvements) 2 pts
 - visual quality, overall impression 2 pts