JEE Main 2019 Paper 1 Question Paper & Answer Key – January 12, Shift 2

Section: Physics

Q.1 The moment of inertia of a solid sphere, about an axis parallel to its diameter and at a distance of x from it, is 'I(x)'. Which one of the graphs represents the variation of I(x) with x correctly?

Options

Q.2 A load of mass M kg is suspended from a steel wire of length 2 m and radius 1.0 mm in Searle's apparatus experiment. The increase in length produced in the wire is 4.0 mm. Now the load is fully immersed in a liquid of relative density 2. The relative density of the material of load is 8.

The new value of increase in length of the steel wire is:

Q.3

In the above circuit, $C = \frac{\sqrt{3}}{2} \mu F$, $R_2 = 20 \Omega$,

$$L\!=\!\frac{\sqrt{3}}{10}\;H$$
 and $R_1\!=\!10\,\Omega\;$. Current in

L- R_1 path is I_1 and in C- R_2 path it is I_2 . The voltage of A.C source is given by,

 $V = 200\sqrt{2}sin(100 t)$ volts. The phase difference between I_1 and I_2 is:

Options 60°

- 2. 30°
- 3. 90°
- 4. 0°

Q.4 An ideal gas is enclosed in a cylinder at pressure of 2 atm and temperature, 300 K. The mean time between two successive collisions is 6×10^{-8} s. If the pressure is doubled and temperature is increased to 500 K, the mean time between two successive collisions will be close to:

Options 1. 2×10^{-7} s

4. 3×10^{-6} s

Q.5

In the figure, given that V_{BB} supply can vary from 0 to 5.0 V, $V_{CC}\!=\!5$ V, $\beta_{dc}\!=\!200$, $R_B\!=\!100$ $k\Omega$, $R_C\!=\!1$ $k\Omega$ and $V_{BE}\!=\!1.0$ V, The minimum base current and the input voltage at which the transistor will go to saturation, will be, respectively :

Options $_{1.}$ 25 μA and $3.5 \, V$

2. 20 μA and 3.5 V

3. 25 µA and 2.8 V

4. 20 μA and 2.8 V

Q.6 In the circuit shown, find C if the effective capacitance of the whole circuit is to be $0.5~\mu F$. All values in the circuit are in μF .

Options 1. $\frac{7}{11} \mu F$

2. $\frac{6}{5} \mu F$	
3. 4 µF	
4. $\frac{7}{10} \mu F$	
Q.7 An alpha-particle of mass m suffers 1-dimensional elastic collision with a nucleus at rest of unknown mass. It is scattered directly backwards losing, 64% of its initial kinetic energy. The mass of the nucleus is:	
Options 2 m	
2. 3.5 m	
3. 1.5 m	
4. 4 m	
Q.8 A 10 m long horizontal wire extends from North East to South West. It is falling with a speed of 5.0 ms ⁻¹ , at right angles to the horizontal component of the earth's magnetic field, of 0.3×10 ⁻⁴ Wb/m ² . The value of the induced emf in wire is:	
Options $1.5 \times 10^{-3} \mathrm{V}$	
2. $1.1 \times 10^{-3} \text{ V}$	
3. $2.5 \times 10^{-3} \text{ V}$ 4. $0.3 \times 10^{-3} \text{ V}$	
4. U.J A 1U V	
Q.9	

To double the covering range of a TV transmittion tower, its height should be multiplied by : Options 1. $\frac{1}{\sqrt{2}}$ 2. 2 3. 4 4. $\sqrt{2}$	
Q.10 A plano-convex lens (focal length f_2 , refractive index μ_2 , radius of curvature R) fits exactly into a plano-concave lens (focal length f_1 , refractive index μ_1 , radius of curvature R). Their plane surfaces are parallel to each other. Then, the focal length of the combination will be: Options 1. $f_1 - f_2$ 2. $\frac{R}{\mu_2 - \mu_1}$ 3. $\frac{2f_1 f_2}{f_1 + f_2}$ 4. $f_1 + f_2$	
Q.11 A vertical closed cylinder is separated into two parts by a frictionless piston of mass m and of negligible thickness. The piston is free to move along the length of the cylinder. The length of the cylinder above the piston is l_1 , and that below the piston is l_2 , such that $l_1 > l_2$. Each part of the cylinder contains n moles of an ideal gas at equal temperature T. If the piston is stationary, its mass, m, will be given by: (R is universal gas constant and g is the acceleration due to gravity)	

Options 1. $\frac{RT}{ng} \left[\frac{l_1 - 3l_2}{l_1 l_2} \right]$ 2. $\frac{RT}{g} \left[\frac{2l_1 + l_2}{l_1 l_2} \right]$ 3. $\frac{nRT}{g} \left[\frac{1}{l_2} + \frac{1}{l_1} \right]$	
$4 \frac{\text{nRT}}{\text{g}} \left[\frac{l_1 - l_2}{l_1 l_2} \right]$	
Q.12 Two satellites, A and B, have masses m and 2m respectively. A is in a circular orbit of radius R, and B is in a circular orbit of radius 2R around the earth. The ratio of their kinetic energies, T _A /T _B , is:	
Options 1. $\frac{1}{2}$ 2. 1 3. 2 4. $\sqrt{\frac{1}{2}}$	
Q.13 A long cylindrical vessel is half filled with a liquid. When the vessel is rotated about its own vertical axis, the liquid rises up near the wall. If the radius of vessel is 5 cm and its rotational speed is 2 rotations per second, then the difference in the heights between the centre and the sides, in cm, will be:	
Options 1. 2.0	
2. 0.1	

0.4
 1.2

Q.14 A block kept on a rough inclined plane, as shown in the figure, remains at rest upto a maximum force 2 N down the inclined plane. The maximum external force up the inclined plane that does not move the block is 10 N. The coefficient of static friction between the block and the plane is: [Take $g = 10 \text{ m/s}^2$] Options 1. $\frac{\sqrt{3}}{2}$ 2. $\frac{\sqrt{3}}{4}$ 3. $\frac{1}{2}$ 4. $\frac{2}{3}$	
In a Frank-Hertz experiment, an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV. The minimum wavelength of photons emitted by mercury atoms is close to: Options 1. 1700 nm 2. 2020 nm	
3. 220 nm 4. 250 nm	

Q.16 A particle of mass 20 g is released with an initial velocity 5 m/s along the curve from the point A, as shown in the figure. The point A is at height h from point B. The particle slides along the frictionless surface. When the particle reaches point B, its angular momentum about O will be:

(Take $g = 10 \text{ m/s}^2$)

Options 1. 2 kg-m²/s

- $2.8 \text{ kg-m}^2/\text{s}$
- 3. $6 \text{ kg-m}^2/\text{s}$
- 4. $3 \text{ kg-m}^2/\text{s}$

Q.17	A galvanometer, whose resistance is
	50 ohm, has 25 divisions in it. When a
	current of 4×10^{-4} A passes through it, its
	needle (pointer) deflects by one division.
	To use this galvanometer as a voltmeter of
	range 2.5 V, it should be connected to a
	resistance of :

Options 1. 250 ohm

- 2. 200 ohm
- 3. 6200 ohm
- 4. 6250 ohm

Q.18	
4.10	

A soap bubble, blown by a mechanical pump at the mouth of a tube, increases in volume, with time, at a constant rate. The graph that correctly depicts the time dependence of pressure inside the bubble is given by:

Options

Q.19 In the given circuit diagram, the currents, $I_1 = -0.3 \text{ A}$, $I_4 = 0.8 \text{ A}$ and $I_5 = 0.4 \text{ A}$, are flowing as shown. The currents I_2 , I_3 and I_6 , respectively, are :

Options 1. 1.1 A , -0.4 A, 0.4 A

2. 1.1 A, 0.4 A, 0.4 A

3. 0.4 A , 1.1 A, 0.4 A	
40.4 A, 0.4 A, 1.1 A	
Color Bouley (Antique Antique State State Antique Color Colo	
0.00	
Q.20 A resonance tube is old and has jagged end.	
It is still used in the laboratory to determine velocity of sound in air. A tuning fork of	
frequency 512 Hz produces first resonance	
when the tube is filled with water to a mark	
11 cm below a reference mark, near the	
open end of the tube. The experiment is repeated with another fork of frequency	
256 Hz which produces first resonance	
when water reaches a mark 27 cm below	
the reference mark. The velocity of sound	
in air, obtained in the experiment, is close to:	
Ontions	
1 322 ms 1	
2. 341 ms ⁻¹	
3. 335 ms ⁻¹	
4. 328 ms ⁻¹	
32 80 (944)	
200	
Q.21 A paramagnetic material has 10^{28}	
atoms/m ³ . Its magnetic susceptibility at temperature 350 K is 2.8 × 10 ⁻⁴ . Its	
susceptibility at 300 K is:	
Options 3.267×10^{-4}	
2 3.672×10 ⁻⁴	
2.	
3. 3.726×10^{-4}	
4. 2.672×10^{-4}	

Q.22

In a radioactive decay chain, the initial nucleus is $^{232}_{90} Th$. At the end there are 6 α -particles and 4 β -particles which are emitted. If the end nucleus is $^{A}_{Z}X$, A and Z are given by :

Options 1. A = 208; Z = 80

- A = 202; Z = 80
- 3. A = 208; Z = 82
- 4. A = 200; Z = 81

Q.23 Let l, r, c and v represent inductance, resistance, capacitance and voltage, respectively. The dimension of $\frac{l}{rcv}$ in SI units will be:

Options 1. [LA-2]

- 2. $[A^{-1}]$
- 3. [LTA]
- 4. [LT²]

If the whole set up is immersed in water without disturbing the object and the screen positions, what will one observe on the screen?

Options 1. Image disappears

2. Magnified image

https://cdn3.tcsion.com///per/g21/pub/2083/touchstone/AssessmentQPHTMLMode1//2083O18231/2083O18231S10D55391/1547377741079	981

- 3. Erect real image
- 4. No change

Q.25	When a certain photosensistive surface is illuminated with monochromatic light of frequency ν , the stopping potential for the photo current is $-V_0/2$. When the surface is illuminated by monochromatic light of frequency $\nu/2$, the stopping potential is $-V_0$. The threshold frequency for
	- V ₀ . The threshold frequency for photoelectric emission is:

Q.26 A simple harmonic motion is represented

$$y = 5(\sin 3\pi t + \sqrt{3}\cos 3\pi t) \text{ cm}$$

The amplitude and time period of the motion are :

- Options
 1. 10 cm, $\frac{2}{3} \text{ s}$
 - 2. $10 \text{ cm}, \frac{3}{2} \text{ s}$
 - 3. 5 cm, $\frac{3}{2}$ s
 - 4. 5 cm, $\frac{2}{3}$ s

Two particles A, B are moving on two concentric circles of radii R_1 and R_2 with equal angular speed ω . At t=0, their positions and direction of motion are shown in the figure :

The relative velocity $\stackrel{\rightarrow}{v_A} - \stackrel{\rightarrow}{v_B}$ at $t = \frac{\pi}{2\omega}$ is given by :

Options

1.
$$\omega(R_1 + R_2)\hat{i}$$

2.
$$-\omega(R_1 + R_2)\hat{i}$$

3.
$$\omega(R_2 - R_1)\hat{i}$$

4.
$$\omega(R_1-R_2)\hat{i}$$

Q.28 The mean intensity of radiation on the surface of the Sun is about 10⁸ W/m². The rms value of the corresponding magnetic field is closest to:

Options 1. 1 T

- 2. $10^2 \, \mathrm{T}$
- 3. 10^{-2} T
- 4. 10⁻⁴ T

Section: Chemistry

8 g of NaOH is dissolved in 18 g of H₂O. Mole fraction of NaOH in solution and molality (in mol kg⁻¹) of the solution respectively are:

0.167, 11.11	
3. 0.167, 22.20	
4.	
Q.2 Options The magnetic moment of an octahedral homoleptic Mn(II) complex is 5.9 BM. The suitable ligand for this complex is: 1. ethylenediamine CN- 2. NCS- CO	
4. CO	
Options The element that does NOT show catenation is: Ge 2. Si 3. Sn 4. Pb	

0.2, 22.20

0.2, 11.11

- Q.4 Among the following, the false statement is:
 - It is possible to cause artificial rain by throwing electrified sand carrying charge opposite to the one on clouds from an aeroplane.
 - Tyndall effect can be used to 2. distinguish between a colloidal solution and a true solution.

Lyophilic sol can be coagulated by ^{3.} adding an electrolyte.

Latex is a colloidal solution of rubber

4. particles which are positively charged

Q.5 The correct structure of histidine in a strongly acidic solution (pH = 2) is:

Options

$$_{\mathrm{H_3N}-\mathrm{CH-COOH}}^{\oplus}$$

1.

$$\bigvee_{N}^{\oplus} H_2$$

$$H_3\overset{\oplus}{N}$$
 – CH – COO

2.

3.

$$H_3$$
N $-$ CH $-$ COO

4

- (ii) CrO₃/H⁺
- (iii) H_2SO_4 (conc.), Δ

0.7 $\ \, \wedge_{\rm m}^{\circ} \ \, {\rm for\, NaCl, HCl} \, {\rm and\, NaA\, are\, 126.4, 425.9}$ and 100.5 S cm²mol⁻¹, respectively. If the conductivity of 0.001 M HA is $5\times 10^{-5}\,{\rm S\, cm^{-1}}$, degree of dissociation of HA is :

Options 1. 0.50

- 2. 0.25
- з. 0.125
- 4. 0.75

- 2. 1.0 g
- 3. 1.5 g
- 4. 1.8 g

Q.9	Chlorine	on	reaction	with	hot	and
	concentrated sodium hydroxide gives:					

Options 1. Cl and ClO₃

- 2. Cl and ClO
- 3. CIO₃ and CIO₂ -
- 4. Cl and ClO₂

Q.10 The major product of the following reaction

Options $CH_3CH_2C = CH_2$

2.
$$CO_2CH_2CH_3$$

 $CH_3C = CHCH_3$

Q.11 The combination of plots which does not represent isothermal expansion of an ideal gas is:

Options (B) and (D)

- 2. (A) and (C)
- 3. (B) and (C)
- 4. (A) and (D)

$$CH_3O$$
— $CH = CH - CH_3 \xrightarrow{HBr (excess)} ?$

1. HO
$$\bigcirc$$
 CH₂-CH-CH₃

2. HO
$$\leftarrow$$
 CH \rightarrow CH \rightarrow CH₂ \rightarrow CH₃

Q.13 The major product of the following reaction is:

The aldehydes which will **not** form Grignard product with one equivalent Grignard reagents are:

Options _{1.} (B), (D)

- 2. (B), (C)
- 3. (B), (C), (D)
- 4. (C), (D)

Q.18 Given:

(i) C (graphite) +
$$O_2(g) \rightarrow CO_2(g)$$
;
 $\Delta r H^{\circ} = x \text{ kJ mol}^{-1}$

(ii) C (graphite) +
$$\frac{1}{2}$$
 O₂(g) \rightarrow CO₂(g);
 Δr H $^{\circ} = y$ kJ mol $^{-1}$

(iii)
$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g);$$

 $\Delta r H^{\bullet} = z \text{ kI mol}^{-1}$

Based on the above thermochemical equations, find out which one of the following algebraic relationships is correct?

Options x = y + z

$$z = x + y$$

3.
$$y = 2z - x$$

4.
$$x=y-z$$

Q.19 The volume strength of 1M H_2O_2 is: (Molar mass of $H_2O_2 = 34 \text{ g mol}^{-1}$)	
Options 1. 5.6	
2. 16.8	
3. 11.35	
4. 22.4	
Q.20 The correct statement(s) among I to III with respect to potassium ions that are abundant within the cell fluids is/are:	
They activate many enzymes They participate in the oxidation of glucose to produce ATP	
III. Along with sodium ions, they are responsible for the transmission of nerve signals	
Options 1. I and II only	
2. I and III only	
3. I, II and III	
4. III only	
Q.21 The compound that is NOT a common component of photochemical smog is:	
Options 1. O3	
H ₃ C-C-OONO ₂	
3. CH ₂ =CHCHO	
4. CF ₂ Cl ₂	

3.
$$CH_3$$
 CH_2-CI

Q.25 The increasing order of the reactivity of the following with ${\rm LiAlH_4}$ is :

(A)
$$C_2H_5$$
 NH_2

(D)
$$C_2H_5$$
 O C_2H_5

Options (B) < (A) < (C) < (D)

4.
$$(A) < (B) < (C) < (D)$$

The pair that does NOT require calcination	
is : Options _{1.} ZnO and MgO	
2. ZnO and $Fe_2O_3 \cdot xH_2O$	
3. ZnCO ₃ and CaO	
4. Fe ₂ O ₃ and CaCO ₃ ·MgCO ₃	
Q.27 The major product of the following reaction is:	
CH ₃ CH ₂ CH - CH ₂ (i) KOH alc.	
$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ Br & Br & Br & & & & & \\ \end{array}$ (ii) NaNH ₂	
in liq NH ₃	
Options _{1.} $CH_3CH = C = CH_2$	
CH ₃ CH ₂ CH - CH ₂	
2 N N 1 1	
3. $CH_3CH = CHCH_2NH_2$	
4. $CH_3CH_2C \equiv CH$	
If K_{sp} of Ag_2CO_3 is 8×10^{-12} , the molar solubility of Ag_2CO_3 in 0.1 M $AgNO_3$ is :	
Options $8 \times 10^{-12} \mathrm{M}$	
2. $8 \times 10^{-11} \mathrm{M}$	
$_{3.} 8 \times 10^{-10} \mathrm{M}$	
4. $8 \times 10^{-13} \mathrm{M}$	

Q.29

The upper stratosphere consisting of the ozone layer protects us from the sun's radiation that falls in the wavelength region of: Options 200 - 315 nm 400 - 550 nm 3. 0.8 - 1.5 nm 4. 600 - 750 nm	
4. 000 = 750 fait	
Q.30 If the de Broglie wavelength of the electron in n^{th} Bohr orbit in a hydrogenic atom is equal to 1.5 πa_0 (a_0 is Bohr radius), then the value of n/z is :	
Options 0.40	
2. 1.50	
3. 1.0	
4. 0.75	
Section: Math	nematics
$\lim_{x \to 1^{-}} \frac{\sqrt{\pi} - \sqrt{2\sin^{-1} x}}{\sqrt{1 - x}} \text{ is equal to :}$	
Options 1. $\frac{1}{\sqrt{2\pi}}$	
2. $\sqrt{\frac{2}{\pi}}$	
3. $\sqrt{\frac{\pi}{2}}$	
4. √π	

0.0 50 100 100 100 100 100 100 100 100 100	

Let f be a differentiable function such that f(1) = 2 and f'(x) = f(x) for all $x \in \mathbb{R}$. If h(x) = f(f(x)), then h'(1) is equal to:

Options 1, 2e2

- 2. 4e
- 3. 2e
- 4. $4e^2$

Q.3

The integral
$$\int_{1}^{e} \left\{ \left(\frac{x}{e} \right)^{2x} - \left(\frac{e}{x} \right)^{x} \right\} \log_{e} x \, dx$$

is equal to:

Options 1.
$$\frac{1}{2} - e - \frac{1}{e^2}$$

$$2. - \frac{1}{2} + \frac{1}{e} - \frac{1}{2e^2}$$

3.
$$\frac{3}{2} - \frac{1}{e} - \frac{1}{2e^2}$$

4.
$$\frac{3}{2} - e - \frac{1}{2e^2}$$

Let $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{c}$ be three unit vectors, out of which vectors $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{c}$ are non-parallel. If α and β are the angles which vector $\stackrel{\rightarrow}{a}$ makes with vectors $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{c}$ respectively and $\stackrel{\rightarrow}{a}$ \times $\left(\stackrel{\rightarrow}{b}\times\stackrel{\rightarrow}{c}\right)=\frac{1}{2}\stackrel{\rightarrow}{b}$, then $|\alpha-\beta|$ is equal to :

Options 1. 30°

- 2. 90°
- 3. 60°
- 4. 45°

Q.5

The integral $\int \frac{3x^{13} + 2x^{11}}{(2x^4 + 3x^2 + 1)^4} dx$ is

equal to:

(where C is a constant of integration)

$$\int_{1}^{8} \frac{x^4}{6\left(2x^4+3x^2+1\right)^3} + C$$

2.
$$\frac{x^{12}}{6(2x^4 + 3x^2 + 1)^3} + C$$

$$3. \frac{x^4}{\left(2x^4 + 3x^2 + 1\right)^3} + C$$

$$\frac{x^{12}}{\left(2x^4 + 3x^2 + 1\right)^3} + C$$

Q.6	If $\sin^4 \alpha + 4 \cos^4 \beta + 2 = 4\sqrt{2} \sin \alpha \cos \beta$;
	α , $\beta \in [0, \pi]$, then $\cos(\alpha + \beta) - \cos(\alpha - \beta)$ is equal to :

Options 1. 0

- 2. -1
- 3. √<u>2</u>
- 4. $-\sqrt{2}$

If a curve passes through the point (1, -2) and has slope of the tangent at any point

(x, y) on it as $\frac{x^2 - 2y}{x}$, then the curve also passes through the point :

Options $_1$ (3,0)

- 2. $\left(\sqrt{3},0\right)$
- 3. (-1,2)
- 4. $\left(-\sqrt{2},1\right)$

$$\frac{x+1}{2} = \frac{y-2}{1} = \frac{z-3}{-2}$$
 and the plane,

$$x-2y-kz=3$$
 is $\cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$, then a value

of k is:

1.
$$\sqrt{\frac{5}{3}}$$

2.
$$\sqrt{\frac{3}{5}}$$

$$3. - \frac{3}{5}$$

$$-\frac{5}{3}$$

- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	

Options
$$\lim_{n\to\infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + ... + \frac{1}{5n} \right)$$
 is equal to :

$$\frac{\pi}{4}$$

$$\frac{\pi}{2}$$

In a game, a man wins Rs. 100 if he gets 5 or 6 on a throw of a fair die and loses Rs. 50 for getting any other number on the die. If he decides to throw the die either till he gets a five or a six or to a maximum of three throws, then his expected gain/loss (in rupees) is:

Q.10

Options $\frac{400}{9}$ loss

1.

$$\frac{400}{3}$$
 gain

$$\frac{400}{3}$$
 loss

If a straight line passing through the point P(-3,4) is such that its intercepted portion between the coordinate axes is bisected at P, then its equation is :

Options
$$3x - 4y + 25 = 0$$

$$4x-3y+24=0$$

3.
$$x-y+7=0$$

$$4.4x + 3y = 0$$

Q.12

There are m men and two women participating in a chess tournament. Each participant plays two games with every other participant. If the number of games played by the men between themselves exceeds the number of games played between the men and the women by 84, then the value of m is:

Options 1. 12

- 2. 11
- 3. 9
- 4. 7

Q.13 The tangent to the curve $y=x^2-5x+5$, parallel to the line 2y=4x+1, also passes through the point:

1.
$$\left(\frac{7}{2}, \frac{1}{4}\right)$$

2.
$$\left(\frac{1}{8}, -7\right)$$

3.
$$\left(-\frac{1}{8},7\right)$$

4.
$$\left(\frac{1}{4}, \frac{7}{2}\right)$$

Let S be the set of all real values of λ such that a plane passing through the points $(-\lambda^2, 1, 1)$, $(1, -\lambda^2, 1)$ and $(1, 1, -\lambda^2)$ also passes through the point $(-1, -1, 1)$. Then S is equal to:	
Options 1. $\{\sqrt{3}\}$	
2. $\{\sqrt{3}, -\sqrt{3}\}$	
3. {1, -1}	
4. {3, -3}	
Q.15 Let z_1 and z_2 be two complex numbers satisfying $ z_1 = 9$ and $ z_2 - 3 - 4i = 4$. Then the minimum value of $ z_1 - z_2 $ is:	
Options 1. 0	
2. √2	
3. 1 4. 2	
Q.16 The total number of irrational terms in the	
binomial expansion of $\left(7^{\frac{1}{5}} - 3^{\frac{1}{10}}\right)^{60}$ is:	
Options 1. 55	
2. 49	
3. 48 4. 54	
V1	

Q.17 The equation of a tangent to the parabola, $x^2=8y$, which makes an angle θ with the positive direction of x-axis, is:	
Options _{1.} $y=x \tan \theta + 2 \cot \theta$ 2. $y=x \tan \theta - 2 \cot \theta$ 3. $x=y \cot \theta + 2 \tan \theta$ 4. $x=y \cot \theta - 2 \tan \theta$	
Q.18 In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 opted for both NCC and NSS. If one of these students is selected at random, then the probability that the student selected has opted neither for NCC nor for NSS is:	
Options 1. $\frac{1}{6}$ 2. $\frac{1}{3}$ 3. $\frac{2}{3}$ 4. $\frac{5}{6}$	
Q.19 The mean and the variance of five observations are 4 and 5.20, respectively. If three of the observations are 3, 4 and 4; then the absolute value of the difference of the other two observations, is: Options 1. 7	
2. 5	

1

4.

Q.20

Q.20 Options If
$$A = \begin{bmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{bmatrix}$$
; then for all

$$\theta \in \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$$
, det (A) lies in the interval :

$$\left[1,\,\frac{5}{2}\,\right]$$

$$\left[\frac{5}{2},4\right]$$

$$\left(0,\frac{3}{2}\right)$$

1.
$$\left[\frac{5}{2}, 4\right]$$
2.
$$\left[0, \frac{3}{2}\right]$$
3.
$$\left(\frac{3}{2}, 3\right]$$
4.

Q.21	If a circle of radius R passes through the origin O and intersects the coordinate axes at A and B, then the locus of the foot of perpendicular from O on AB is:	
Options	$(x^2 + y^2)^2 = 4R^2x^2y^2$	
	$(x^2 + y^2)^3 = 4R^2x^2y^2$	
	$(x^2+y^2)^2 = 4Rx^2y^2$	
	$(x^2+y^2)(x+y) = R^2xy$	
	7.	

Q.22	The set of all values of λ for which the			
	system of linear equations			

$$x-2y-2z=\lambda x$$

$$x + 2y + z = \lambda y$$

$$-x-y=\lambda z$$

has a non-trivial solution:

Options 1. is a singleton

- 2. contains exactly two elements
- 3. is an empty set
- 4. contains more than two elements

Q.23	If the function	f given	by

 $f(x) = x^3 - 3(a-2)x^2 + 3ax + 7$, for some $a \in \mathbb{R}$ is increasing in (0, 1] and decreasing in [1, 5), then a root of the equation,

$$\frac{f(x) - 14}{(x - 1)^2} = 0 (x \neq 1)$$
is:

Options 1. -7

- 2. 5
- 3. 7
- 4. 6

Q.24 Let **Z** be the set of integers. If
$$A = \{x \in \mathbb{Z} : 2^{(x+2)(x^2-5x+6)} = 1\}$$
 and $B = \{x \in \mathbb{Z} : -3 < 2x - 1 < 9\}$, then the number of subsets of the set $A \times B$, is :

Options 1. 215

- 2. 218
- 3. 2¹²
- 4. 210

	:			
Q.25 If ${}^{n}C_4$, ${}^{n}C_5$ and ${}^{n}C_6$ are in A.P., then n can be:				
Options 1. 9				
2. 14				
3. 11				
4. 12				
0.26				
Q.26 Let S and S' be the foci of an ellipse and B be any one of the extremities of its minor axis. If ΔS'BS is a right angled triangle with right angle at B and area (ΔS'BS) = 8 sq. units, then the length of a latus rectum of the ellipse is:				
Options 1. 4				
2. 2√2				
3. $4\sqrt{2}$				
4. 2				
Q.27 If the angle of elevation of a cloud from a point P which is 25 m above a lake be 30° and the angle of depression of reflection of the cloud in the lake from P be 60°, then the height of the cloud (in meters) from the surface of the lake is:				
Options 1. 60				
2. 50				
3. 45				
4. 42				

Q.28 The expression \sim ($\sim p \rightarrow q$) is logically equivalent to:	
Options $p \land q$	
2. p ∧ ~ q	
$p \wedge q$	
4. $\mathbf{p} \wedge \mathbf{q}$	
Q.29 If the sum of the first 15 terms of the series	
$\left(\frac{3}{4}\right)^3 + \left(1\frac{1}{2}\right)^3 + \left(2\frac{1}{4}\right)^3 + 3^3 + \left(3\frac{3}{4}\right)^3 + \dots$ is equal to 225 k, then k is equal to :	
Options 1. 108	
2. 27	
3. 54	
4. 9	
Q.30 The number of integral values of m for which the quadratic expression, $(1+2m)x^2-2(1+3m)x+4(1+m)$, $x \in \mathbb{R}$, is always positive, is:	
Options 1. 3	
2. 8	
3. 7	
4. 6	