The Complex Method

* Use k > n+1 points. Box suggested $k=2\cdot n$ no. of design variables

*The figure in R" with K>n+1 points is called a Complex

Step 0: Generate k points at random locations in the design space

Step 1: Identify the worst point

Box suggested
$$\alpha = 1.3$$

$$x_{c,j} = \frac{1}{k-1} \left(\sum_{i=1}^{k} x_{ij} - x_{worst,j} \right), j = 1, ..., n$$
design variable sum of remove worst

new point = \(\overline{x}\) new = \(\overline{x}\) + \(\int(\overline{x}\) - \(\overline{x}\) worst)

Step 3: Evaluate the objective function of the new point

Step 4: If the point is still the worst one, move it towards the centroid and go to step 3.

Otherwise, go to step 5.

Step 5: Check termination criteria. If not fulfilled, increase iteration counter and go to step 1

Termination Criteria

* Convergence in function values

$$\max_{i=1,...,k} (f(\bar{x}_i)) - \min_{i=1,...,k} (f(\bar{x}_i)) \leq \varepsilon_f$$
 (1)

(The spread in Function values is smaller than Ex)

* Convergence in optimization variables

$$\max_{j=1,\dots,n} \left(\max_{i=1,\dots,k} \left(x_{ij} \right) - \min_{i=1,\dots,k} \left(x_{ij} \right) \right) \leq \mathcal{E}_{v} \tag{2}$$

(The spread of the design variables is smaller than E_v)

* Max number of evaluations
no evaluations > Max number of evaluations

Consider a Complex with the following 4 points:

spread-
$$f = \frac{\max(f(x_i)) - \min(f(x_i))}{\min(f(x_i))} = \frac{4.2 - 3.8}{3.8} = 0.105$$

Spread =
$$\max(2.2-1.8, 1.5-0.8) = \max(0.4, 0.7) = 0.7$$

This number could be normalized by dividing with the variable range

Spread -v =
$$\max_{j=1,...,n} \left(\frac{\max_{i=1,...,k} (x_{ij}) - \min_{i=1,...,k} (x_{ij})}{x_{up,j} - x_{low,j}} \right)$$

$$\max\left(\frac{2.2-1.8}{4-0}, \frac{1.5-0.8}{4-0}\right) = \max\left(\frac{0.4}{4}, \frac{0.7}{4}\right) = 0.175$$

Complex Improvements

* Move the new point gradually towards the best when it is moved inward, towards the centroid

Otherwise, the Complex might collapse if there is a local maximum at the centroid

* Add noise to the new point so that the Complex does not converge to a local optimum

- * Add forgetting factor so that all points become slightly worse in each iteration
 - => Old objective function values are not as reliable as new ones

Without forgetting factor:
The algorithm stops
when all points have
the same value (f(x))

with forgetting factor:

	_		
f(x) 1 Iteration	0		+(x;)
3		1	3
2		2	3
1 + x3 x4 -		3	2
~		· 4	2
	/	^ ^	

Exemplification of the Complex method min f(x) = (x1-5)2+ (x2-5)2+0,1 x,.x2 OCXICMO We have two optimization variables Dase a Complex of 4 points, k=4. * Generate starting points randomly Sas X=(1, 1) f(X,)=32] $\overline{X}_{z} = (1 2)$ f (x) = 25,2 X = (3,1) $f(x_3) = 20,3$ $\overline{X}_{L_1} = (3,2)$ f (Re) = 13.6 A Identify the worst point. (+(x,) is the highest obj. tem' Xi is the worst value of the points in the Comp Cet * Colewate the centroid of the remaining Xej = Li Zij -Xwj ii=1, n $x_{e,p} = \frac{1}{2} \cdot [(1+3+1+3) - 1] = 233$ Xc,2=4-1-(1+1+2+2)-1=1667

* Reflect the worst point through the centrated \times 1 = \times 2,7 + \times . $(\times$ 1, \times 1, \times 2, \times 3 + 1,3 (2,33-1) = 9,066 Xnew, 2 = 1,667+1,3 (1,667+1) = 2,53 * Evaluate the objective tunction in the New point +(4.066,3.3) = 0, 0 * Identify the worst point. $X_{w} = (1,2)$ & Calculate the central Xe. = 3 (3+1,+3+4,066-1) -3,31 XL2 = 1 (1+2+2+252 -2) = 1,86/ * Reflect the wast point towns blue contrared Xviv. 1 = 3,36 + 1,3 (3,3 (-1) = 6,42 | (6,42,163.) = 1421 1 (6,92 ,163) = 14,41 Knew, 2 = 1,84+1,3(1,84-2)=1,63