Modern Security Topics

Spring 2017

Instructors

Name: Collin Berman and Cyrus Malekpour, both 4th year CS majors in SEAS. We are also co-presidents of the <u>Computer and Network Security Club</u>

Meeting Time: Thursday 5:00PM - 5:50PM in Thornton Hall D223

Office Hours: TBD

Email: collin@virginia.edu and cyrus@virginia.edu

Professor of Contact: If a student has a significant issue with the course, grades, or instructor,

contact the course professor:

Name: David Evans

Email: evans@virginia.edu
Office: Rice Hall, room 507

Course Details

Pre-requisites

CS 2150

CS 4630 (Defense against the Dark Arts) is not required, but would be helpful

Course Description

This course will provide an overview of topics related to modern computer and network security. The focus is to understand modern exploitation and defense, including binary vulnerability attacks, web security, cryptography, provable security, and mobile security. Students will be exposed to current security research and news, and also be given hands-on exploits and attacks to implement.

Content Covered

This course will cover the following areas:

- x86 and x64 assembly code
- Binary analysis tools, including static and dynamic analysis
- Binary exploitation, including manual attacks and fuzzing
- DEP/ASLR protections and bypasses
- Modern browser exploitation
- Windows exploitation and reversing
- Web security (SQLi, XSS, etc) and analysis tools
- Cryptography (primitives, popular systems, modern topics)
- Provable security

- Android and iOS security architecture
- Kernel exploitation
- Basic malware analysis

Required Readings

There are no textbooks required for this class. Any papers or other readings will be posted on the course website. Useful links will also be posted on the course website.

Attendance Policy

Attendance is required for this class, and composes a large amount of the course grade. Students are allowed two unexcused absences for the semester, after which you will lose 5% of their attendance grade per absence. Excused absences do not count against any of the above.

Grading Criteria

Grading in this class is a pass/fail based on two criteria. In order to achieve a "pass", you must attend at least 12 lectures (not including excused absences) and complete 8 out of 12 homework assignments. Homework is due at the start of the class after it is assigned, and some assignments have extra credit which counts as an additional homework opportunity.

For each homework, students will be required to turn in their finished result (code, exploit script, test case, etc) and a brief writeup (~1 paragraph) of what they did to solve the problem.

Course Schedule

Readings are meant to be completed by the class they are listed next to. Assignments are due before the start of the following class.

Week #	Торіс	Readings Due	Assignment
1	Syllabus, Security Mindset, review of C concepts		
2	(Re)introduction to x86 assembly		Implement a simple assembly program
3	Debuggers and static analysis	2150 GDB Tutorial Part I	Binary reversing assignment
4	Buffer overflows, ret2libc, ROP	Buffer overflow writeup	Implement a ROP attack
5	DEP and ASLR protections and bypasses		ROP with DEP and ASLR implemented
6	Fuzzing & Browser Exploits		Simple fuzzing with afl

7	Cryptographic primitives	Sections 1.1, 1.2 of HAC	Cryptopals
8	RSA, AES, ECDSA	AES: The Making of a New Encryption Standard	Forge RSA signatures
9	Modern Topics in Cryptography	Sections 1, 3 of djb's intro to PQcrypto	Research a topic
10	Provable Security	Sections 1, 3 of arXiv:1610.08279	Secure insecure software
11	Malware Analysis and Reversing		Reverse a piece of ransomware
12	Exploitation and analysis on Windows		Simple Windows binary exploit
13	Web security and tools		A SQLi challenge and an XSS challenge
14	Android and iOS security architecture	Sections from Android and iOS security docs	

Assignment Details (by week)

- 1. (No homework)
- 2. Implement a program in x86 assembly for Linux that reads a file and prints it out backwards. For extra credit, don't use any C functions.
- 3. Reverse a crackme binary to recover a password
- 4. Use a ROP attack to exploit a simple 32-bit Linux binary
- 5. Use a ROP attack to exploit a 32-bit Linux binary that is protected by DEP and ASLR
- 6. Use AFL to find a crash in a program we give you
- 7. Complete <u>Cryptopals</u> set 1, challenges 1–4. For extra credit, also complete challenge 5 and 6.
- 8. Carry out an existential forgery against a network service implementing a signing oracle using unpadded RSA. For extra credit, carry out a selective forgery.
- 9. Find a cool topic in cryptography from the past few years and write a short summary.
- 10. Given a piece of software along with an incorrect proof of security, identify sections of code that prevent the proof from going through and correct these sections to prove the system secure.
- 11. You're given a piece of ransomware! Figure out what it does and decrypt the file we give you
- 12. Exploit a simple vulnerable binary on Windows
- 13. Complete challenges from https://github.com/cnsuva/web-challenges-server
- 14. (No homework)