

Guías de Prácticas de Laboratorio

Identificación:
GL-AA-F-1

Número de Páginas: 2

Fecha Emisión:
2022/07/15

Laboratorio de:

PROCESAMIENTO DIGITAL DE SEÑALES

Título de la Práctica de Laboratorio: 2

Convolución, correlación y transformación

Elaborado por:	Revisado por:	Aprobado por:
Andrea Carolina Corredor Bedoya	Jorge Andrés Álvarez Triana	
Docente Facultad de Ingeniería Biomédica	Jefe de área – Ciencias de la Ingeniería	

CONVOLUCIÓN Y CORRELACIÓN Control de Cambios

Descripción del Cambio	Justificación del Cambio	Fecha de Elaboración / Actualización

CONVOLUCIÓN Y CORRELACIÓN

- 1. FACULTAD O UNIDAD ACADÉMICA: INGENIERÍA CAMPUS N.G.
- PROGRAMA: INGENIERÍA BIOMÉDICA
- 3. ASIGNATURA: PRECESAMIENTO DIGITAL DE SEÑALES
- **4. SEMESTRE**: 6
- 5. OBJETIVOS:
- Reconocer la convolución como una operación entre señal y sistema
- Reconocer la correlación como una operación entre señales
- Reconocer la transformada como herramienta de análisis en el dominio de la frecuencia.

6. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL LABORATORIO:

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA

7. PRECAUCIONES CON LOS MATERIALES, REACTIVOS, INSTRUMENTOS Y EQUIPOS A UTILIZAR:

Tratar responsablemente los computadores de la sala de sistemas

8. PROCEDIMIENTO, MÉTODO O ACTIVIDADES:

- a. Teniendo el sistema h[n] = {cada dígito de su código} (ej: h[n] = {5,6,0,0,1,4,6}) y la señal x[n] = {cada dígito de su cédula} (ej: x[n]={1,0,2,1,4,5,4,8,1,9}):
 - i. Encuentre la señal y[n] resultante de la convolución usando sumatorias (a mano).
 - ii. Encuentre la representación gráfica y secuencial (a mano).
 - iii. Encuentre la señal y[n] resultante de la convolución usando Python.
 - iv. Encuentre la representación gráfica y secuencial usando Python.

CONVOLUCIÓN Y CORRELACIÓN

- b. Sean $x1[nTs] = \cos(2\pi 100nTs)$ $para 0 \le n < 9$, y $x2[nTs] = \sin(2\pi 100nTs)$ $para 0 \le n < 9$ para Ts = 1.25ms. Encuentre la correlación entre ambas señales. Además, encuentre la representación gráfica y secuencial.
- c. Descargue una señal en physionet de acuerdo con las indicaciones del docente (tipo de señal):
 - i. Caracterice la señal en función del tiempo, esto es, calcule sus estadísticos descriptivos, frecuencia de muestreo, etc.
 - ii. Describa la señal en cuanto a su clasificación.
 - iii. Aplique la transformada de Fourier de la señal y grafique tanto su transformada, como su densidad espectral.
 - iv. Analice los estadísticos descriptivos en función de la frecuencia:
 - Frecuencia media,
 - Frecuencia mediana,
 - Desviación estándar,
 - Histograma de frecuencias

9. CRITERIO DE EVALUACIÓN A LA PRESENTE PRÁCTICA:

Para la evaluación de la práctica, la docente responsable desarrollará una rúbrica en la que le asignará un porcentaje a cada uno de los ítems mencionados y a un informe o pregunta abierta que realizará a los miembros del grupo el día de la entrega. El tiempo estimado para el desarrollo y entrega de la práctica es de 2 semanas.