Minitab Activity 5

Example 1

Step 1

Method

 p_1 : proportion where Sample 1 = Event p_2 : proportion where Sample 2 = Event Difference: p_1 - p_2

Step 2

Descriptive Statistics

Sample	N	Event	Sample p
Sample 1	150	80	0.533333
Sample 2	100	30	0.300000

Step 3

Estimation for Difference

Difference 95% CI for Difference 0.233333 (0.113162, 0.353504)

CI based on normal approximation

Step 4

Test

Null hypothesis H_0 : $p_1 - p_2 = 0$ Alternative hypothesis H_1 : $p_1 - p_2 \neq 0$

Method	Z-Value	P-Value
Normal approximation	3.64	0.000
Fisher's exact		0.000

The test based on the normal approximation uses the pooled estimate of the proportion (0.44).

Step 5

At alpha = .02 there is sufficient evidence to suggest H_1 : $p_1 - p_2 \neq 0$.

Step 1

Method

 p_1 : proportion where Sample 1 = Event p_2 : proportion where Sample 2 = Event Difference: $p_1 - p_2$

Step 2

Descriptive Statistics

Sample	Ν	Event	Sample p
Sample 1	50	16	0.320000
Sample 2	75	28	0.373333

Step 3

Estimation for Difference

Oifference 95% CI for Difference -0.0533333 (-0.222747, 0.116081)

CI based on normal approximation

Step 4

Test

Null hypothesis H_0 : $p_1 - p_2 = 0$ Alternative hypothesis H_1 : $p_1 - p_2 \neq 0$

Method	Z-Value	P-Value
Normal approximation	-0.61	0.541
Fisher's exact		0.572

The test based on the normal approximation uses the pooled estimate of the proportion (0.352).

Step 5

At alpha = .05 there is not sufficient evidence to suggest H_1 : $p_1 - p_2 \neq 0$.

Step 1

Method

 μ_1 : population mean of Sample 1 μ_2 : population mean of Sample 2 Difference: μ_1 - μ_2

Equal variances are assumed for this analysis.

Step 2

Descriptive Statistics

Sample	N	Mean	StDev	SE Mean
Sample 1	100	1023	287	29
Sample 2	100	966	290	29

Step 3

Estimation for Difference

			99% (CI for
Difference	Pooled	StDev	Diffe	rence
57.0		288.5	(-49.1,	163.1)

Step 4

Test

Null hypothesis H_0 : $\mu_1 - \mu_2 = 0$ Alternative hypothesis H_1 : $\mu_1 - \mu_2 \neq 0$

T-Value DF P-Value 1.40 198 0.164

Step 5

At alpha = .01 there is not sufficient evidence to suggest H_1 : μ_1 - $\mu_2 \neq 0$

Step 1

Method

 μ_1 : population mean of Sample 1 μ_2 : population mean of Sample 2 Difference: μ_1 - μ_2

Equal variances are not assumed for this analysis.

Step 2

Descriptive Statistics

Sample	Ν	Mean	StDev	SE Mean
Sample 1	23	150.3	13.1	2.7
Sample 2	22	156.8	22.0	4.7

Step 3

Estimation for Difference

```
99% CI for
Difference Difference
-6.44 (-21.29, 8.41)
```

Step 4

Test

Null hypothesis H_0 : $\mu_1 - \mu_2 = 0$ Alternative hypothesis H_1 : $\mu_1 - \mu_2 \neq 0$

-1.19 33 0.244

Step 5

At alpha = .05 there is not sufficient evidence to suggest H_1 : μ_1 - $\mu_2 \neq 0$

Step 1

μ_difference: population mean of (After - Before)

Step 2

Descriptive Statistics

Sample	Ν	Mean	StDev	SE Mean
After	6	193.2	22.3	9.1
Before	6	209.8	26.9	11.0

Step 3

Estimation for Paired Difference

90% CI for Mean StDev SE Mean µ_difference -16.7 25.4 10.4 (-37.6, 4.2)

 μ _difference: population mean of (After - Before)

Step 4

Test

Null hypothesis H_0 : μ_d ifference = 0 Alternative hypothesis H_1 : μ_d ifference $\neq 0$

T-Value P-Value -1.61 0.169

Step 5

At alpha = .10 there is not sufficient evidence to suggest $H_1\colon \mu_1$ - $\mu_2 \neq 0$

Step 1

 μ _difference: population mean of (Errors Before - Errors After)

Step 2

Descriptive Statistics

Sample	Ν	Mean	StDev	SE Mean
Errors Before	6	5.50	4.32	1.77
Errors After	6	4.00	2.97	1.21

Step 3

Estimation for Paired Difference

			95% Lower Bound
Mean	StDev	SE Mean	for μ_difference
1.500	1.643	0.671	0.148

μ_difference: population mean of (Errors Before - Errors After)

Step 4

Test

Null hypothesis H_0 : μ_d ifference = 0 Alternative hypothesis H_1 : μ_d ifference > 0

T-Value P-Value 2.24 0.038

Step 5

At alpha = .05 there is sufficient evidence to suggest H1: μ_1 - μ_2 > 0