MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. INDUSTRIAL E GESTÃO | 2014-15

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 3h (15m de tolerância).

Prova de Reavaliação Global

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A desistência só é possível após 1 hora do início da prova;
- * Não é permitido o uso de telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos grupos utilizando folhas de capa distintas.

GRUPO I

- 1) [4,5] Seja o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^4$, tal que $\vec{a} = (1,3,-2,2)$, $\vec{b} = (0,2,1,3)$ e $\vec{c} = (1,2,0,3)$, e o subespaço de \mathbb{R}^4 , $T = \{(x, y, z, w) \in \mathbb{R}^4 : x + y w = 0\}$. Calcule:
 - a) O subespaço gerado pelo conjunto S, L(S); indique uma base para o subespaço obtido e conclua em relação à sua dimensão. Justifique a resposta.
 - **b**) Uma base ortogonal, W, para o subespaço T que inclua um elemento de S.
 - c) Uma base, V, para o espaço \mathbb{R}^4 que contenha o maior número possível de elementos de S.
- **2)** [4,8] Considere as transformações lineares $S \in L(\mathbb{R}^3, \mathbb{R}^3)$ e $R \in L(\mathbb{R}^4, \mathbb{R}^3)$, tais que S(x, y, z) = (2x + y, x z, 2x + y z) e R(x, y, z, w) = (x z, x + w, 2x z + w) e $T \in L(\mathbb{R}^3, \mathbb{R}^2)$, que tem a representação matricial

$$T = m(T) = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 2 & 0 \end{bmatrix}_{U, E_2}$$

em relação às bases $U = \{(0,1,0),(0,0,1),(1,0,0)\} \subset \mathbb{R}^3$ e E_2 , base canónica para o espaço \mathbb{R}^2 . Sejam as bases $V = \{(2,1),(1,1)\} \subset \mathbb{R}^2$ e E_3 , base canónica para o espaço \mathbb{R}^3 .

- a) Determine o núcleo e o contradomínio de *R*. Para cada um destes subespaços, indique uma base e conclua em relação à sua dimensão.
- **b**) Mostre que *S* é injetiva e determine a sua transformação inversa.
- c) Obtenha a matriz $m(TR)_{E_4,V}$, representação matricial de TR em relação às bases E_4 , base canónica para o espaço \mathbb{R}^4 , e V.

(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 3h (15m de tolerância).

Prova de Reavaliação Global

GRUPO II

- 3) [3,6] Considere a reta $r: X(t) = P + t\vec{a}$, $t \in \mathbb{R}$, em que P = (0,1,0) e $\vec{a} = (1,-1,1)$, o plano M: x y = 1 e o ponto S = (1,1,2). Determine:
 - a) A distância do ponto S à reta r e o ângulo que esta reta faz com M.
 - **b**) Os planos que contêm a reta r e fazem um ângulo de 60° com M.
- 4) [3,3] Seja a transformação linear $H: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$\mathbf{H} = m(H) = \begin{bmatrix} 3 & -2 & -1 \\ -2 & 6 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

em relação à base canónica, E, para o espaço \mathbb{R}^3 .

- **a)** Calcule os valores próprios de *H* e os respetivos espaços próprios; indique, para cada um desses subespaços, uma base e a dimensão.
- **b**) Mostre, justificando devidamente, que a função H admite uma base, V, de vetores próprios para o espaço \mathbb{R}^3 . Obtenha a matriz $H_{V,V}$ que representa H em relação à base V e apresente as expressões matriciais que comprovam que H e $H_{V,V}$ são matrizes semelhantes.
- 5) [1,8] Calcule, indicando todas as operações efetuadas, o determinante da matriz real

$$\mathbf{F} = \begin{bmatrix} 1 & 5 & -k & 1 \\ 1 & k & 4 & 1-k \\ 1 & 2 & -3 & -1 \\ -1 & -2 & 4 & 1 \end{bmatrix}$$

Obtenha o valor de k para que $5|\mathbf{F}| = |\mathbf{F}|^2$.

6) [2,0] Sejam as retas $r = L(P, \vec{a})$ e $s = L(Q, \vec{c})$ do espaço \mathbb{R}^3 . Recorrendo às propriedades dos produtos vetorial e misto, estabeleça condições necessárias e suficientes para que as retas dadas sejam concorrentes. Justifique a resposta.