

微积分I上册习题课讲义

时间: September 18, 2024

目录

第1章	解析几何初步	1
1.1	向量	1
1.2	空间解析几何	1
1.3	练习(2025-02-28)	3

第1章 解析几何初步

1.1 向量

- 1. 在 $\triangle ABC$ 中,D 点在边 AB 上,且 AD: $AB = \lambda$,用 **b**, **c** 以及 λ 求 \overrightarrow{AD} 的模长.
- 2. 对平面向量 **a** = (a_1, a_2) , **b** = (b_1, b_2) , 证明下列恒等式成立:

$$\|\mathbf{a}\|^2 \|\mathbf{b}\|^2 = (\mathbf{a} \cdot \mathbf{b})^2 + \|\mathbf{a} \times \mathbf{b}\|^2$$

3. 你能否证明对于任意平面向量 $\mathbf{a} = (a_1, a_2, \dots, a_n), \mathbf{b} = (b_1, b_2, \dots b_n),$ Lagrange 恒等式

$$\|\mathbf{a}\|^2 \|\mathbf{b}\|^2 = (\mathbf{a} \cdot \mathbf{b})^2 + \|\mathbf{a} \times \mathbf{b}\|^2$$

成立,这个恒等式和 Cauchy-Schawtz 不等式有什么关系?

- 4. **a**, **b**, **c** 为三个向量, 证明若存在不全为零的常数 k, l, m, 使得 k**a**×**b**+l**b**×c+m**c**×**a** = 0, 则 **a**×**b**, **b**×**c**, **c**×**a** 共线.
- 5. 求空间 3 点 A, B, C 满足下列关系的充要条件: $\overrightarrow{OA} \times \overrightarrow{OB} + \overrightarrow{OB} \times \overrightarrow{OC} + \overrightarrow{OC} \times \overrightarrow{OA} = 0$.
- 6. (选做) $S = \{ \mathbf{v}_1, \mathbf{v}_2 \dots, \mathbf{v}_n \}$ 的元素都是平面向量,且满足 $|\mathbf{v}_1| + |\mathbf{v}_2| + \dots + |\mathbf{v}_n| = 1$,求证存在 S 的子集满足 $W \colon \left| \sum_{\mathbf{v} \in W} \mathbf{v} \right| \ge \frac{1}{\pi}$.

- 7. **b** = (x_1, y_1, z_1) , **c** = (x_2, y_2, z_2) , **b**, **c** 不共线, 求同时垂直于 **b**, **c** 的单位向量.
- 8. 设 \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} 是欧氏空间中任给的四个起点为 O 的向量,它们的终点分别为 A, B, C, D. 证明这些终点 A, B, C, D 共面的充分必要条件是它们中任意取三个得到的混合积满足恒等式:

$$[\mathbf{a}, \mathbf{b}, \mathbf{c}] - [\mathbf{b}, \mathbf{c}, \mathbf{d}] + [\mathbf{c}, \mathbf{d}, \mathbf{a}] - [\mathbf{d}, \mathbf{a}, \mathbf{b}] = 0.$$

1.2 空间解析几何

1. 判断下列直线的位置关系:

(a).
$$\frac{x+1}{3} = \frac{y-1}{9} = \frac{z-2}{1} \text{ fil } \frac{x}{-1} = \frac{y-2}{2} = \frac{z-1}{3}$$
(b).
$$\begin{cases} x+z+1=0 \\ x+y+1=0 \end{cases} \text{ fil } \begin{cases} x+y+z=0 \\ y+z+1=0 \end{cases}$$

2. 判断下列平面的位置关系:

- (a). x + 3y z 2 = 0 1 2x + 6y 2z 2 = 0;
- (b). x + y + 3z 4 = 0 π x + 3y + z 4 = 0
- 3. 判断下列直线与平面的位置关系:

 - (a). 直线 $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-8}{2}$ 平面 x+y-z+6=0; (b). 直线 $\begin{cases} x+3y-2z+1=0\\ 2x+4y+2z-2=0 \end{cases}$, 平面 x+2y-z-3=0.
- 4. 求下列直线的方程
 - (a). 过点 (0,1,-1), 与平面 x-3y+z-2=0 平行, 并且和直线 $\frac{x+13}{2}=\frac{y-5}{3}=\frac{z}{1}$ 和 $\frac{x-10}{5}=\frac{y+7}{4}=\frac{z}{1}$ 都共面;
 - (b). 平行于向量 u=(8,7,1), 并与直线 $\begin{cases} 3x-2y+2z+3=0\\ 2x+y+z+1=0 \end{cases}$ 和 $\begin{cases} 2x-y-5=0\\ 3x-2z+7=0 \end{cases}$ 都相交; $(c). 过点 (0,1,-1), 与直线 \begin{cases} 2x-y-5=0\\ 3x-2z+7=0 \end{cases}$ 都共面; y+z-3=0

 - (e). 经过点 M(3,-2,1), 垂直于平面 3x + 2y 3z + 5 = 0;
 - (f). 经过点 M(0,1,-1), 并且与直线 $\begin{cases} 3x + 2y 5 = 0 \\ 2x z + 3 = 0 \end{cases}$ 正交.
- 5. 求下列平面的方程:

 - (a). 过直线 $\frac{x-1}{2} = \frac{y}{1} = \frac{z}{-1}$ 平行于向量 u = (2,1,-2); (b). 过 $\frac{x+2}{3} = \frac{y-1}{0} = \frac{z}{1}$ 和原点; (c). 过直线 $\begin{cases} 2x+3y+z-1=0\\ x+2y-z+2=0 \end{cases}$,平行于向量 u = (1,1,-1);

 - (e). 平行于 x 轴, 经过点 $M_1(1,-1,2), M_2(2,0,-1)$.
- 6. 求点到直线的距离:
 - (a). 点 M(1,0,2), 直线 $\begin{cases} 3x 2y 1 = 0 \\ x y 2 = 1 \end{cases}$;
- 7. 已知平面 π 过点 (1,1,2), 并在 x 轴, y 轴, z 轴上的截距成等差数列, 又知三截距之和为 12. 求平面的方程.
- 8. 在直角坐标系中, 平面 x + y + z = 0 与二次曲面 kxy + yz + xz = 0 相交于两条直线 l_1, l_2 . 求正实数 k 的 值,使得这两条直线的夹角是 $\frac{\pi}{2}$.
- 9. 在直角坐标系中, 已知平面 ax + by + cz = 0 ($abc \neq 0$) 和二次曲面 xy + yz + zx = 0 的交线是两条正交的

直线, 证明 $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.

10. 设 $M_i = (x_i, y_i, z_i), i = 1, 2, 3$ 是不共线的三个点, 证明

$$\begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0$$

是这三个点所决定的平面的方程.

- 11. 求经过 z 轴, 并且和平面 $2x + y \sqrt{5}z 1 = 0$ 的夹角为 60° 的平面的方程.
- 12. 求到平面 3x 2y 6z 4 = 0 和 2x + 2y z + 5 = 0 距离相等的点的轨迹.

1.3 练习 (2025-02-28)

作业简要给出过程即可

△ 练习 1.1 求空间 3 点 A, B, C 满足下列关系的充要条件:

$$\overrightarrow{OA} \times \overrightarrow{OB} + \overrightarrow{OB} \times \overrightarrow{OC} + \overrightarrow{OC} \times \overrightarrow{OA} = 0.$$

练习 1.2 求异面直线
$$L_1: \frac{x-1}{0} = \frac{y}{1} = \frac{z}{1}$$
 与 $L_2: \frac{x}{2} = \frac{y}{-1} = \frac{z+2}{0}$ 之间的距离.

练习 1.4 求直线
$$L:$$

$$\begin{cases} 2x-4y+z=0, \\ & \text{在平面 } 4x-y+z=1 \text{ 上的投影直线方程.} \end{cases}$$

解 1.1 解答

充要条件为: A,B,C 三点共线。

证明:

必要性: 若
$$A,B,C$$
三点共线,则 $\overrightarrow{AB} \parallel \overrightarrow{AC}$,故 $\overrightarrow{AB} \times \overrightarrow{AC} = \vec{0}$ 。
又 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$ 。

$$\overrightarrow{AB} \times \overrightarrow{AC} = (\overrightarrow{OB} - \overrightarrow{OA}) \times (\overrightarrow{OC} - \overrightarrow{OA})$$

$$= \overrightarrow{OB} \times \overrightarrow{OC} - \overrightarrow{OB} \times \overrightarrow{OA} - \overrightarrow{OA} \times \overrightarrow{OC} + \overrightarrow{OA} \times \overrightarrow{OA}$$

$$= \overrightarrow{OB} \times \overrightarrow{OC} + \overrightarrow{OA} \times \overrightarrow{OB} + \overrightarrow{OC} \times \overrightarrow{OA} + \vec{0}$$

$$= \vec{0}$$

$$= \vec{0}$$

 $\mathbb{PP} \vec{OA} \times \vec{OB} + \vec{OB} \times \vec{OC} + \vec{OC} \times \vec{OA} = 0.$

充分性: $\vec{A} \cdot \vec{OA} \times \vec{OB} + \vec{OB} \times \vec{OC} + \vec{OC} \times \vec{OA} = 0$, 则 $\vec{AB} \times \vec{AC} = 0$, 故 $\vec{AB} \parallel \vec{AC}$ 。由于 \vec{AB} 与 \vec{AC} 有 公共点 A, 所以 A,B,C 三点共线。

答案: A, B, C 三点共线

解 1.2 解答

异面直线 L_1 与 L_2 之间的距离公式为:

$$d = \frac{|\overrightarrow{P_1P_2} \cdot (\vec{s_1} \times \vec{s_2})|}{|\vec{s_1} \times \vec{s_2}|}$$

其中,

- L_1 : 方向向量 $\vec{s_1} = (0, 1, 1)$,已知点 $P_1 = (1, 0, 0)$
- L_2 : 方向向量 $\vec{s_2} = (2, -1, 0)$,已知点 $P_2 = (0, 0, -2)$
- $\overrightarrow{P_1P_2} = (-1, 0, -2)$

经过计算, 异面直线 L_1 与 L_2 之间的距离为: 1

解 1.3 解答

直线 L_1 与 L_2 的方向向量均为 $\vec{s} = (1,2,1)$, 故两直线平行。

取 L_1 上点 $P_1(1,-1,0)$, L_2 上点 $P_2(2,-1,1)$, 则 $\overrightarrow{P_1P_2}=(1,0,1)$ 。 平行线间距离 $d = \frac{|\overrightarrow{P_1P_2} \times \vec{s}|}{|\vec{s}|}$.

$$\overrightarrow{P_1P_2} \times \vec{s} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 1 \\ 1 & 2 & 1 \end{vmatrix} = (-2)\mathbf{i} + 0\mathbf{j} + 2\mathbf{k} = (-2, 0, 2).$$
$$|\overrightarrow{P_1P_2} \times \vec{s}| = \sqrt{(-2)^2 + 0^2 + 2^2} = \sqrt{8} = 2\sqrt{2}.$$

$$|\overrightarrow{P_1P_2} \times \vec{s}| = \sqrt{(-2)^2 + 0^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$$

$$|\vec{s}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6} \, .$$

$$d = \frac{2\sqrt{2}}{\sqrt{6}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \, .$$

解 1.4 解答

直线 L 的方向向量为 $\vec{s} = (9,7,10)$,点 $P = (\frac{18}{5}, \frac{9}{5}, 0)$ 在直线 L 上。

投影平面法向量 $\vec{n_{proj}} = \vec{s} \times \vec{n_p} = (17, 31, -37)$,其中 $\vec{n_p} = (4, -1, 1)$ 为投影平面 4x - y + z = 1 的法向量。 投影平面方程为: $17(x-\frac{18}{5})+31(y-\frac{9}{5})-37(z-0)=0$, 化简得 17x+31y-37z=117。

投影直线方程为投影平面与平面 4x-y+z=1 的交线,即:

$$\begin{cases} 4x - y + z = 1 \\ 17x + 31y - 37z = 117 \end{cases}$$

答案: 投影直线方程为 $\begin{cases} 4x - y + z = 1 \\ 17x + 31y - 37z = 117 \end{cases}$

解 1.5 解答

解:

将直线 L_1 和 L_2 转换为参数方程:

$$L_1: \begin{cases} x = t \\ y = 3t + 5 \end{cases}$$
 $L_2: \begin{cases} x = s \\ y = 4s - 7 \\ z = 2t - 3 \end{cases}$ $z = 5s + 10$

设 $M(t,3t+5,2t-3)\in L_1$, $N(s,4s-7,5s+10)\in L_2$, 则 $\overrightarrow{PM}=(t+3,3t,2t-12)$, $\overrightarrow{PN}=(s+3,4s-12,5s+1)$ 。 由 \overrightarrow{PM} || \overrightarrow{PN} 得 $\frac{t+3}{s+3}=\frac{3t}{4s-12}=\frac{2t-12}{5s+1}$ 。 解得 $t=-\frac{240}{29}$ 。 方向向量 $\overrightarrow{v}=\overrightarrow{PM}=(17,80,92)$ 。 直线方程为: $\frac{x+3}{17}=\frac{y-5}{80}=\frac{z-9}{92}$ 。 答案: $\frac{x+3}{17}=\frac{y-5}{80}=\frac{z-9}{92}$