Шаблон отчёта по лабораторной работе

Простейший вариант

Дион Гонсан Седрик!

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	8
4	Выводы	13
Список литературы		14

Список иллюстраций

3.1	Создайте каталог для работы
3.2	вставить текст hello.asm
3.3	Расширенный синтаксис командной строки NASM
3.4	Запуск исполняемого файла
3.5	копию файла
3.6	текст программы
3.7	lab5.asm
3.8	Скопируйте файлы

Список таблиц

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM. # Задание

- 1. В каталоге ~/work/arch-pc/lab05 с помощью команды ср создайте копию файла hello.asm с именем lab5.asm
- 2. С помощью любого текстового редактора внесите изменения в текст программы в файле lab5.asm так, чтобы вместо Hello world! на экран выводилась строка с вашими фамилией и именем.
- 3. Оттранслируйте полученный текст программы lab5.asm в объектный файл. Выполните компоновку объектного файла и запустите получивший- ся исполняемый файл.
- 4. Скопируйте файлы hello.asm и lab5.asm в Ваш локальный репозиторий в каталог ~/work/study/2022-2023/"Архитектура компьютера"/archpc/labs/lab05/. Загрузите файлы на Github.

2 Теоретическое введение

Основными функциональными элементами любой электронно-вычислительной машины (ЭВМ) являются центральный процессор, память и периферийные устройства (рис. 5.1). Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество про- водников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской (системной) плате. результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в каче- стве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифме- тические или логические операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначе- ния (именно эти регистры чаще всего используются при написании программ): • RAX, RCX, RDX, RBX, RSI, RDI — 64-битные • EAX, ECX, EDX, EBX, ESI, EDI - 32-битные • AX, CX, DX, BX, SI, DI - 16-битные • AH, AL, CH, CL, DH, DL, BH,

BL-8-битные (половинки 16-битных реги- стров). Например, AH (high AX) — старшие 8 бит регистра AX, AL (low AX) — младшие 8 бит регистра AX.

3 Выполнение лабораторной работы

1. Создайте каталог для работы с программами на языке ассемблера NASM. (рис. 3.1)

Рис. 3.1: Создайте каталог для работы

2. файл с помощью любого текстового редактора, например, gedit с помощью команды gedit hello.asm. (рис. 3.2)

```
hello.asm
  Ouvrir ▼ +
                                                                                                                                                 Enregistrer \equiv ×
1; hello.asm
2 SECTION .data
                                ; Начало секции данных
DB 'Hello world!',10 ; 'Hello world!' плюс
        hello:
                                                                    : символ перевода строки
         helloLen:EQU $-hello
                                                                   ; Длина строки hello
7 SECTION .text
                                        ; Начало секции кода
         GLOBAL _start
                                           ; Точка входа в программу
        mov eax,4
mov ebx,1
mov ecx,hello
mov edx,helloLen
int 80h
mov eax,1
mov ebx,0
int 80h
                                           ; Системный вызов для записи (sys_write)
; Описатель файла 'l' – стандартный вывод
; Адрес строки hello в есх
; Размер строки hello
                                        ; Вызов ядра
; Системный вызов для выхода (sys_exit)
; Выход с кодом возврата '0' (без ошибок)
; Вызов ядра
```

Рис. 3.2: вставить текст hello.asm

3. Транслятор NASMКомпоновщик LD. (рис. 3.3)

```
gsdion@fedora:-/work/arch-pc/lab05

[gsdion@fedora ~]$ cd ~/work/arch-pc/lab05

[gsdion@fedora lab05]$ nasm -f elf hello.asm
[gsdion@fedora lab05]$ nasm -o obj.o -f elf -g -l list.lst hello.asm
[gsdion@fedora lab05]$ [
```

Рис. 3.3: Расширенный синтаксис командной строки NASM

4. Компоновщик LD. (рис. 3.4)

```
[gsdion@fedora lab05]$ ld -m elf_i386 hello.o -o hello
[gsdion@fedora lab05]$ ld -m elf_i386 obj.o -o main
[gsdion@fedora lab05]$ ./hello
Hello world!
[gsdion@fedora lab05]$
```

Рис. 3.4: Запуск исполняемого файла

5. В каталоге ~/work/arch-pc/lab05 с помощью команды ср создайте копию файла hello.asm с именем lab5.asm. (рис. 3.5)

```
gsdion@fedora:~/work/arch-pc/lab05
Q = x

[gsdion@fedora lab05]$ ls
hello hello.asm hello.o lab5 lab5.asm lab5.o list.lst main obj.o
[gsdion@fedora lab05]$
```

Рис. 3.5: копию файла

6. С помощью любого текстового редактора внесите изменения в текст программы в файле lab5.asm так, чтобы вместо Hello world! на экран выводилась строка с вашими фамилией и именем. (рис. 3.6)

```
· lab5.asm
Ouvrir 🔻
              \oplus
                                                 ~/work/arch-pc/lab05
; hello.asm
SECTION .data
                                                      ; Начало секции данных
     hello:
                        <u>DB 'Дион Гонсан Седрик !',10 ; 'Дион Гонсан Седрик!' плюс</u>
                                                     ; символ перевода строки
     helloLen:EQU $-hello
                                                      ; Длина строки hello
SECTION .text
                               ; Начало секции кода
     GLOBAL _start
start:
                                 ; Точка входа в программу

      mov eax,4
      ; Системный вызов для записи (sys_write)

      mov ebx,1
      ; Описатель файла '1' - стандартный вывод

      mov ecx,hello
      ; Адрес строки hello в есх

      mov edx,helloLen
      ; Размер строки hello

                                 ; Вызов ядра
                               ; <u>Системный вызов для выход</u>а (<u>sys</u>_exit)
     mov eax,1
     mov ebx,0
                                  ; Выход с кодом возврата '0' (без ошибок)
     int 80h
                                  ; Вызов ядра
```

Рис. 3.6: текст программы

7. Оттранслируйте полученный текст программы lab5.asm в объектный файл. Выполните компоновку объектного файла и запустите получившийся исполняемый файл. (рис. 3.7)

```
[gsdion@fedora lab05]$ nasm -f elf lab5.asm
[gsdion@fedora lab05]$ nasm -o obj.o -f elf -g -l list.lst lab5.asm
[gsdion@fedora lab05]$ ld -m elf_i386 lab5.o -o lab5
[gsdion@fedora lab05]$ ld -m elf_i386 obj.o -o main
[gsdion@fedora lab05]$ ./lab5
Дион Гонсан Седрик !
[gsdion@fedora lab05]$
```

Рис. 3.7: lab5.asm

8. Скопируйте файлы hello.asm и lab5.asm в Ваш локальный репозиторий в каталог ~/work/study/2022-2023/"Архитектура компьютера"/arch-pc/labs/lab05/,Загрузите файлы на Github. (рис .3.8)

Рис. 3.8: Скопируйте файлы

4 Выводы

В ходе этой лабораторной работы я приобрел практический навык в освоении процедур компиляции и ассемблера программ, написанных на ассемблере NASM.

Список литературы

1. Расширенный ассемблер: NASM