Basic Structures: Sets, Functions, Sequences, Sums

Chapter 2

Sets

Section 2.1

Video 15: Introduction to Sets

- Sets
- Specification of sets
- Sets of Numbers
- Special sets

Introduction

- Sets are one of the basic building blocks in discrete mathematics.
 - Important for counting.
 - Programming languages have set operations.

- Set theory is an important branch of mathematics.
 - Many different systems of axioms have been used to develop set theory.
 - Here we are not concerned with a formal set of axioms for set theory.
 - Instead, we will use what is called **naïve set theory**.

Sets

- A set is an unordered collection of objects.
 - the students in this class
 - the chairs in this room

- The objects in a set are called the **elements** of the set.
- A set is said to contain its elements.

- The notation $\alpha \in A$ denotes that α is an element of the set A.
- If a is not an element of A, write $a \notin A$

Describing a Set: Roster Method

Listing all elements of a set

$$S = \{a, b, c, d\}$$

- Order not important: $S = \{a, b, c, d\} = \{b, c, a, d\}$
- Multiple occurrences not important: $S = \{a, b, c, d\} = \{a, b, c, b, c, d\}$

Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear

$$S = \{a, b, c, d,, z\}$$

Examples

Set of all vowels in the English alphabet:

$$V = \{a, e, i, o, u\}$$

Set of all odd positive integers less than 10:

$$O = \{1, 3, 5, 7, 9\}$$

Set of all positive integers less than 100:

$$S = \{1, 2, 3, \dots, 99\}$$

Set of all integers less than 0:

$$S = \{...., -3, -2, -1\}$$

Sets of Numbers

```
N = natural numbers = \{0, 1, 2, 3, ....\}
Z = integers = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}
Z^{+} = positive integers = {1, 2, 3, .....}
R = set of real numbers
R<sup>+</sup> = set of positive real numbers
C = set of complex numbers
Q = set of rational numbers
```

Set-Builder Notation

Specify the property or properties that all members must satisfy:

$$S = \{x \mid P(x)\}$$

• P(x) may be expressed in natural language or predicate logic

Examples

 $S = \{x \mid x \text{ is a positive integer less than } 100\}$

 $O_1 = \{x \mid x \text{ is an odd positive integer less than 10}\}$

 $O_2 = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}$

 $P = \{x \mid Prime(x)\}$

 $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p, q\}$

Interval Notation

For sets of numbers

$$[a,b] = \{x \mid a \le x \le b\}$$

 $[a,b) = \{x \mid a \le x < b\}$
 $(a,b) = \{x \mid a < x \le b\}$
 $(a,b) = \{x \mid a < x < b\}$

closed interval [a,b]
open interval (a,b)

Universal Set and Empty Set

The *universal set U* is the set containing everything currently under consideration.

- Sometimes implicit
- Sometimes explicitly stated
- Contents depend on the context

The **empty set** is the set with no elements.

Denoted as Ø or {}

Some things to remember

Sets can be elements of sets.

The empty set is different from a set containing the empty set.

$$\emptyset \neq \{\emptyset\}$$

Russell's Paradox

- Let S be the set of all sets which are not members of themselves.
- A paradox results from trying to answer the question

"Is S a member of itself?"

Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

Summary

- Set definition
 - Roster method
 - Set Builder Notation
- Sets of Numbers
- Interval Notation
- Empty and Universal Set

Video 16: More on Sets

- Set equality
- Subsets
- Proper subsets

Set Equality

Definition: Two sets A and B are **equal** if and only if A and B have the same elements.

We write A = B if A and B are equal sets.

If A and B are sets, then A and B are equal if and only if

$$\forall x (x \in A \leftrightarrow x \in B)$$

Subsets

Definition: The set A is a **subset** of B, if and only if every element of A is also an element of B.

We write $A \subseteq B$ if A is a subset of B.

 $A \subseteq B$ holds if and only if

$$\forall x (x \in A \to x \in B)$$

- 1. Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set S.
- 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set S.

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a **proper subset** of B if and only if

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \not\in A)$$

We write $A \subset B$ if A is a proper subset of B.

Showing a Set is a Subset of Another Set

Showing that A is a Subset of B: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.

Showing that A is not a Subset of B: To show that A is not a subset of B, $A \nsubseteq B$, find an element $x \in A$ with $x \notin B$ (a **counterexample**).

Showing that A is a proper Subset of B: To show that A is a proper subset of B, $A \subset B$, show that A is a subset of B and find an element $x \in B$ with $x \notin A$ (a witness).

Examples

The set of all odd positive integers less than 10 is a *subset* of the set of all positive integers less than 10.

positive(x) \land odd(x) \rightarrow positive(x)

The set of all odd positive integers less than 10 is a *proper subset* of the set of all positive integers less than 10.

Witness: 2

The set of integers with squares less than 100 is *not a subset* of the set of nonnegative integers.

Counterexample: -1

Showing Equality of Sets

Recall that two sets A and B are equal, denoted by A = B, iff

$$\forall x (x \in A \leftrightarrow x \in B)$$

Using logical equivalences we have that A = B iff

$$\forall x[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

This is equivalent to $A \subseteq B$ and $B \subseteq A$.

Venn Diagrams

Venn diagrams are pictures of sets, drawn as subsets of some universal set *U*.

May be used for pictorial purposes, but never for proofs.

Summary

- Set equality
- Subsets
- Proper subsets
- How to show these relations
- How to illustrate these relations: Venn Diagrams

Video 17: Constructing Sets

- How to build new sets from existing sets
- Size of sets

Power Sets

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the power set of A.

Example: If
$$A = \{a, b\}$$
 then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

Tuples

Definition: The **ordered n-tuple** $(a_1, a_2,, a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.

 Two n-tuples are equal if and only if their corresponding elements are equal.

$$(a_1, a_2,, a_n) = (b_1, b_2,, b_n)$$
 iff. $a_1 = b_1$ and ... and $a_n = b_n$

• 2-tuples are called **ordered pairs**.

Cartesian Product

Definition: The **Cartesian Product** of two sets A and B, denoted by $A \times B$, is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Definition: A subset R of the Cartesian product $A \times B$ is called a **relation** from the set A to the set B.

Example

$$A = \{a, b\}$$
 $B = \{1, 2, 3\}$

Cartesian Product:

$$A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$

A relation:

$$R = \{(a, 1), (a, 2), (b, 2), (b, 3)\}$$

Note: In general $A \times B$ is not equal to $B \times A$

Cartesian Product

Definition: The **Cartesian Products** of the sets A_1 , A_2 ,, A_n , denoted by $A_1 \times A_2 \times \times A_n$, is the set of ordered n-tuples $(a_1, a_2,, a_n)$ where a_i belongs to A_i for i = 1, ... n.

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example

```
A \times B \times C where A = \{0, 1\}, B = \{1, 2\} and C = \{0, 1, 2\}

A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}
```

Truth Sets of Quantifiers

Definition: Given a predicate P and a domain D, we define the **truth set** of P to be the set of elements in D for which P(x) is true.

The truth set of P(x) is denoted by

$$\{x \in D | P(x)\}$$

Example: The truth set of P(x) where the domain is the integers and P(x) := |x| = 1 is the set $\{-1, 1\}$

Set Cardinality

Definition: If there are exactly *n* distinct elements in a set *S* where *n* is a nonnegative integer, we say that *S* is **finite**. Otherwise it is **infinite**.

Definition: The *cardinality* of a finite set S, denoted by |S|, is the number of (distinct) elements of S.

Examples

$$|\phi| = 0$$

Let S be the letters of the English alphabet. Then |S| = 26

$$|\{1,2,3\}| = 3$$

$$|\{\emptyset\}| = 1$$

The set of integers is infinite.

If a set has n elements, then the cardinality of the power set is 2^n .

If
$$|A| = n$$
 and $|B| = m$, then $|A \times B| = n*m$.

Summary

- Power sets
- Tuples and Cartesian Product
- Cardinality of sets

Set Operations

Section 2.2

Video 18: Set Operations

- Set Operations
 - Union
 - Intersection
 - Complementation
 - Difference
 - Symmetric Difference

Union

Definition: Let A and B be sets. The **union** of the sets A and B, denoted by $A \cup B$, is the set:

$$\{x|x\in A\vee x\in B\}$$

Example: $\{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}$

Venn Diagram for $A \cup B$

Intersection

Definition: The **intersection** of sets A and B, denoted by $A \cap B$, is $\{x | x \in A \land x \in B\}$

If the intersection is empty, then A and B are said to be disjoint.

Example: $\{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}$ $\{1, 2, 3\} \cap \{4, 5, 6\} = \emptyset$

Venn Diagram for $A \cap B$

Difference

Definition: The **difference** of sets A and B, denoted by A - B, is the set containing the elements of A that are not in B.

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$$

The difference of *A* and *B* is also called the **complement** of *B* with respect to *A*.

Example: $\{1, 2, 3\} - \{3, 4, 5\} = \{1, 2\}$

Venn Diagram for A - B

Complement

Definition: If A is a set, then the complement of the A with respect to the universe U, denoted by \bar{A} is the set

$$\bar{A} = U - A = \{x \in U \mid x \notin A\}$$

The complement of A is also denoted by A^c .

Example: If *U* is the positive integers, $\{x \mid x > 70\}^c = \{x \mid x \le 70\}$

Venn Diagram for Complement

Symmetric Difference

Definition: The **symmetric difference** of sets A and B, denoted by $A \oplus B$ is the set

$$(A - B) \cup (B - A)$$

Example: $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7, 8\}$, $A \oplus B = \{1, 2, 3, 6, 7, 8\}$

Venn Diagram

Analogy Set Operations – Propositional Calculus Connectives

U corresponds to V

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

 \cap corresponds to \wedge

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

 \bar{A} corresponds to \neg

$$\bar{A} = \{x \in U \mid \neg x \in A\} = \{x \in U \mid \neg x \notin A\}$$

 \bigoplus corresponds to \bigoplus

$$A \oplus B = \{x \mid x \in A \oplus x \in B\}$$

Cardinality of Set Union

Inclusion-Exclusion

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Venn Diagram for A, B, $A \cap B$, $A \cup B$

Summary

- Set Operations
- Analogy to Propositional Logic
- Inclusion-Exclusion

Video 19: Set Identities

- Set Identities
- Proving set identities

Set Identities

Set Identities can be understood as analogues of logical equivalences in propositional logic

Example: First De Morgan Law for Sets: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

This corresponds to $\neg(p \land q) \equiv \neg p \lor \neg q$

Proving Set Identities

Different approaches to prove set identities

- Use set builder notation and propositional logic.
- 2. Prove that each set (side of the identity) is a subset of the other.
- 3. Membership Tables: Verify that elements in the same combination of sets always either belong or do not belong to the same side of the identity.

Set-Builder Notation: First De Morgan Law

```
\overline{A \cap B} = \{x | x \notin A \cap B\}  by defn. of complement = \{x | \neg (x \in (A \cap B))\}  by defn. of does not belong symbol by defn. of intersection = \{x | \neg (x \in A \land x \in B)\}  by defn. of intersection = \{x | \neg (x \in A) \lor \neg (x \in B)\}  by 1st De Morgan law for Prop Logic = \{x | x \notin A \lor x \notin B\}  by defn. of not belong symbol by defn. of complement = \{x | x \in \overline{A} \lor x \in \overline{B}\}  by defn. of complement = \{x | x \in \overline{A} \lor \overline{B}\}  by defn. of union = \overline{A} \cup \overline{B}  by meaning of notation
```

Alternative Proof

$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$$

$$\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$$

$x \in \overline{A \cap B}$
$x \not\in A \cap B$
$\neg((x \in A) \land (x \in B))$
$\neg(x \in A) \lor \neg(x \in B)$
$x \notin A \lor x \notin B$
$x \in \overline{A} \lor x \in \overline{B}$
$x \in \overline{A} \cup \overline{B}$

by assumption
defn. of complement
defn. of intersection
1st De Morgan Law for Prop Logic
defn. of negation
defn. of complement
defn. of union

$$x \in \overline{A} \cup \overline{B}$$

$$(x \in \overline{A}) \lor (x \in \overline{B})$$

$$(x \notin A) \lor (x \notin B)$$

$$\neg (x \in A) \lor \neg (x \in B)$$

$$\neg ((x \in A) \land (x \in B))$$

$$\neg (x \in A \cap B)$$

$$x \in \overline{A \cap B}$$

by assumption
defn. of union
defn. of complement
defn. of negation
by 1st De Morgan Law for Prop Logic
defn. of intersection
defn. of complement

List of Set Identities

$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws

$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{\overline{A \cap B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Note: they have all correspondents in propositional logic, and carry the same name

Proof by Membership table

Construct a membership table to show that the distributive law holds.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Α	В	С	$B \cap C$	$A \cup (B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap (A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

Note: you can read the column name A as the predicate $x \in A$

Generalized Unions and Intersections

Since union and intersection are associative, we can introduce the following notations

• Let $A_1, A_2, ..., A_n$ be an indexed collection of sets.

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n$$

Example

For $i = 1, 2, ..., let A_i = \{i, i + 1, i + 2,\}$. Then,

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{1, 2, 3, \dots\}$$

$$\bigcap_{i=1}^{n} A_i = \bigcap_{i=1}^{n} \{i, i+1, i+2, ...\} = \{n, n+1, n+2,\} = A_n$$

Summary

- Set identities as analogous to propositional logical equivalences
- Proof by
 - Set builder notation
 - Subset relationship
 - Truth table
- Generalised union and intersection

Functions

Section 2.3

Video 20: Introduction to Functions

- Definition of a Function
- Injection, Surjection, Bijection

Functions

Definition: Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

If f is a function from A to B, we write $f: A \rightarrow B$.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Functions are sometimes called mappings or transformations.

Example

Functions - Terminology

Given a function $f: A \rightarrow B$:

- We say f maps A to B or f is a mapping from A to B
- A is called the **domain** of f
- *B* is called the *codomain* of *f*
- If f(a) = b,
 - then b is called the *image* of a under f
 - a is called the **preimage** of b

Functions - Terminology

- The **range** of *f* is the set of all images of points in **A** under *f*. We denote it by *f*(**A**).
- If $f: A \rightarrow B$ and S is a subset of A, then $f(S) = \{f(s) \mid s \in S\}$
- Two functions are *equal* when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

Example

- *f*(a) =
- The image of d is
- The domain of f is?
- The codomain of f is?
- The preimage of y is ?
- The preimages of x are?
- f(A) = ?
- $f({a,b,c}) = ?$

Representing Functions

Functions may be specified in different ways

- An explicit statement of the assignment Table of students and their grades
- A formula

$$f(x) = x + 1$$

• A computer program.

A Python program that when given an integer n, produces the Number 2^n

Injections

Definition: A function f is said to be **one-to-one**, or **injective**, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.

A function is said to be an **injection** if it is one-to-one.

Why important?

Every Sciper number can only be assigned to one student.

Surjections

Definition: A function f from A to B is called **onto** or **surjective**, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

A function f is called a **surjection** if it is **onto**.

Why important?

Every Section has at least one student.

Bijections

Definition: A function f from A to B is a **one-to-one correspondence**, or a **bijection**, if it is both one-to-one and onto (surjective and injective).

Illustration

Showing that f is injective

Let $f: A \rightarrow B$ be a function

To show that *f* is injective:

Select arbitrary $x,y \in A$, Show that if f(x) = f(y), then x = y

To show that *f* is not injective:

Find $x,y \in A$ such that $x \neq y$ and f(x) = f(y)

Showing that f is surjective

Let $f: A \rightarrow B$ be a function

To show that *f* is surjective:

Select arbitrary $y \in B$,

Find an element $x \in A$ such that f(x) = y

To show that *f* is not surjective :

Find $y \in B$ such that $f(x) \neq y$ for all $x \in A$

Example

```
Is the function f: Z \rightarrow Z, f(x) = x+1 surjective?
                                                                                   Yes
                                                                                               preimage of y is y-1
Is the function f: \mathbb{N} \to \mathbb{N}, f(x) = x+1 surjective?
                                                                                              0 is no preimage
                                                                                   No
Is the function f: Z \rightarrow Z, f(x) = x+1 injective?
                                                                                               if x\neq y then x+1\neq y+1
                                                                                   Yes
Is the function f: \mathbb{N} \to \mathbb{N}, f(x) = x+1 injective?
                                                                                               if x\neq y then x+1\neq y+1
                                                                                   Yes
Is the function f: \mathbf{Z} \rightarrow \mathbf{Z}, f(\mathbf{x}) = \mathbf{x}^2 surjective?
                                                                                               3 has no preimage
                                                                                   No
Is the function f: \mathbf{Z} \rightarrow \mathbf{Z}, f(x) = x^2 injective?
                                                                                              -1^2=1^2
                                                                                   No
Is the function f: \mathbb{N} \to \mathbb{N}, f(x) = x^2 injective?
                                                                                               if x \neq y then x^2 \neq y^2
                                                                                   Yes
```

N = natural numbers =
$$\{0, 1, 2, 3,\}$$

Z = integers = $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Summary

- Definition of a Function
 - domain, co-domain, image, pre-image, range, equality
- Injection, Surjection, Bijection
 - How to show these properties

Video 21: More on Functions

- Inverse Function
- Function Composition
- Partial Functions
- Graphs of Functions

Inverse Functions

Definition: Let f be a bijection from A to B. Then the **inverse** of f, denoted f^{-1} , is the function from B to A defined as

$$f^{-1}(y) = x \text{ iff } f(x) = y$$

No inverse exists unless *f* is a bijection. Why?

Is the function $f: \mathbf{Z} \to \mathbf{Z}$, f(x) = x+1 invertible? Yes

The inverse function is $f^1: \mathbf{Z} \to \mathbf{Z}$, $f^1(y) = y-1$

Is the function $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2$ invertible? No The function f is not one-to-one

Composition

Definition: Let $f: B \to C$, $g: A \to B$. The **composition** of f with g, denoted $f \circ g$ is the function from A to C defined by

$$f \circ g(x) = f(g(x))$$

If
$$f(x) = x^2$$
 and $g(x) = x+1$, then
$$f(g(x)) = (x+1)^2$$

and

$$g(f(x)) = x^2 + 1$$

Composition is not commutative!

Partial Functions

Definition: A **partial function** f from a set A to a set B is an assignment to each element a in a <u>subset</u> of A, called the **domain of definition** of f, of a unique element b in B.

- The sets A and B are called the **domain** and **codomain** of f, respectively.
- We say that f is undefined for elements in A that are not in the domain of definition of f.
- When the domain of definition of f equals A, we say that f is a total function.

 $f: \mathbf{Z} \to \mathbf{R}$ where $f(n) = \sqrt{n}$ is a partial function from \mathbf{Z} to \mathbf{R} where the domain of definition is the set of nonnegative integers.

The domain of definition of the function is N.

Note that f is undefined for negative integers.

Graphs of Functions

Definition: Let f be a function from the set A to the set B. The **graph** of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

The graph can be used to illustrate the function pictorially!

Graph of
$$f(n) = 2n + 1$$

from Z to Z

Graph of
$$f(x) = x^2$$

from Z to Z

Summary

- Inverse Function
 - Only for bijections
- Function Composition
 - Not commutative
- Partial Functions
- Graph of Functions

Relations

Chapter 9

Relations and Their Properties

Section 9.1

Video 22: Relations

- Introduction to Relations
- Operation on Relations

Binary Relations

Definition: A **binary relation** R from a set A to a set B is a subset $R \subseteq A \times B$.

Example:

```
Let A = \{0,1,2\} and B = \{a,b\}
\{(0, a), (0, b), (1,a), (2, b)\} is a relation from A to B.
```

Representation of Relations

Possible representation of relations from a set A to a set B

Functions and Relations

- A function $f: A \rightarrow B$ can also be defined as a subset of $A \times B$, i.e. as a relation.
- A function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

$$\forall x, y_1, y_2[[(x,y_1) \in f \land (x,y_2) \in f] \to y_1 = y_2]$$

Relations are more general than functions!

Combining Relations

Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, and $R_2 - R_1$.

Example:

Let
$$A = \{1,2,3\}$$
 and $B = \{1,2,3,4\}$.
Let $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$
 $R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$
 $R_1 \cap R_2 = \{(1,1)\}$ $R_1 - R_2 = \{(2,2),(3,3)\}$
 $R_2 - R_1 = \{(1,2),(1,3),(1,4)\}$

Composition of Relations

Definition: Let *R* be a relation from a set *A* to a set *B*. Let *S* be a relation from *B* to a set *C*.

The **composite** of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.

We denote the composite of R and S by $S \circ R$.

$$S \circ R = \{(b, x), (b, z)\}$$

N-ary Relations

Definition: Let A_1 , A_2 ,..., A_n be sets. An **n-ary relation** on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$. The sets A_1 , A_2 , ..., A_n are called the **domains** of the relation, and n is called its **degree**.

Database tables are n-ary relations

TABLE 1 Students.			
Student_name	ID _number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Domains

Summary

- Binary Relations
- Set-operations on Relations
- Composition of Relations
- N-ary Relations