Monetary Policy and the Limits to Arbitrage: Insights from a New Keynesian Preferred Habitat Model

Walker Ray UC Berkeley

January 21, 2019

Dartmouth Job Market Seminar

- Develop a GE model which takes seriously limits to arbitrage
 - Derive theoretical conditions under which QE works
 - Quantify the aggregate effects of QE

- Develop a GE model which takes seriously limits to arbitrage
 - Derive theoretical conditions under which QE works
 - Quantify the aggregate effects of QE
- Bond market imperfections play a role in the transmission of conventional monetary policy

- Develop a GE model which takes seriously limits to arbitrage
 - Derive theoretical conditions under which QE works
 - Quantify the aggregate effects of QE
- Bond market imperfections play a role in the transmission of conventional monetary policy
- Crucial for designing monetary policy going forward

- Ingredients:
 - ▶ Households do not have full access to bond markets
 - ▶ Key investors have imperfect risk-bearing capacity

- Ingredients:
 - ▶ Households do not have full access to bond markets
 - ▶ Key investors have imperfect risk-bearing capacity
 - endogenous degree of segmentation/preferred habitat

- Ingredients:
 - Households do not have full access to bond markets
 - Key investors have imperfect risk-bearing capacity
 - endogenous degree of segmentation/preferred habitat
- Dual equilibrating role of the yield curve:
 - 1. Macro channel: Intertemporal decisions of long-lived agents
 - 2. Finance channel: Short-run portfolio demands from investors

- Ingredients:
 - ▶ Households do not have full access to bond markets
 - Key investors have imperfect risk-bearing capacity
 - endogenous degree of segmentation/preferred habitat
- Dual equilibrating role of the yield curve:
 - 1. Macro channel: Intertemporal decisions of long-lived agents
 - 2. Finance channel: Short-run portfolio demands from investors
- Monetary policy works through both channels

- Theoretical results:
 - QE works if and only if bond markets are disrupted

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)
- Quantitative results:
 - \blacktriangleright QE \approx 50-75 b.p. cut in policy rate in normal times

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)
- Quantitative results:
 - ightharpoonup QE pprox 50-75 b.p. cut in policy rate in normal times
 - \blacktriangleright Conventional policy during crisis $\approx 80\%$ as effective as in normal times

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)
- Quantitative results:
 - ightharpoonup QE pprox 50-75 b.p. cut in policy rate in normal times
 - ightharpoonup Conventional policy during crisis pprox 80% as effective as in normal times
- Designing policy going forward:
 - Conventional policy: more aggressive in financial crises

- Theoretical results:
 - QE works if and only if bond markets are disrupted
 - Declining risk-bearing capacity mitigates the transmission of conventional policy (and FG)
- Quantitative results:
 - ightharpoonup QE pprox 50-75 b.p. cut in policy rate in normal times
 - ightharpoonup Conventional policy during crisis pprox 80% as effective as in normal times
- Designing policy going forward:
 - Conventional policy: more aggressive in financial crises
 - ▶ QE rule can be stabilizing

Literature Contributions

- "Preferred habitat" as a key channel for understanding bond markets
 - D'Amico and King (2013), Hamilton and Wu (2012), Greenwood and Vayanos (2014), Gorodnichenko and Ray (2017), Greenwood and Vissing-Jorgensen (2018)
- Few formal models
 - Vayanos and Vila (2009)
- QE in general equilibrium: Market segmentation vs. forward guidance
 - ► Gertler and Karadi (2013), Chen et al (2012), Carlstrom et al (2017), Christensen and Rudebusch (2012), Bauer and Rudebusch (2014), Bhattarai et al (2015)
- Frictions and expected future policy
 - McKay et al (2016), Farhi and Werning (2017), Gabaix (2016), Angeletos and Lian (2018)

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(r_t - \bar{r} \right) dt \tag{IS}$$

• Modify a benchmark continuous time NK model $(\pi_t \equiv 0)$:

$$dx_t = \varsigma^{-1} \left(r_t - \bar{r} \right) dt \tag{IS}$$

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$\mathrm{d}\mathbf{x}_{t} = \varsigma^{-1} \left(r_{t} - \bar{r} \right) \mathrm{d}t \tag{IS}$$

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{\mathbf{r}}_{t} \equiv \int_{0}^{T} \eta(\tau) R_{t,\tau} \, \mathrm{d}\tau$$
 (ER)

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$ilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au ag{ER}$$

• Rule for policy rate r_t:

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$ilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au ag{ER}$$

• Rule for policy rate r_t:

$$dr_t = -\kappa_r (r_t - \phi_{\mathsf{x}} x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$ilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au ag{ER}$$

• Rule for policy rate r_t :

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$ilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au ag{ER}$$

Rule for policy rate r_t:

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

• Rule for policy rate r_t:

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Modify a benchmark continuous time NK model ($\pi_t \equiv 0$):

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \bar{r} \right) dt \tag{IS}$$

• "Effective" borrowing rate is a function of long rates $R_{t,\tau}$:

$$\tilde{r}_t \equiv \int_0^T \eta(\tau) R_{t,\tau} \, \mathrm{d} au$$
 (ER)

• Rule for policy rate r_t :

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$
 (TR)

• Closing the model: equilibrium term structure determination

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

• Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\begin{split} \tilde{b}_{t,\tau} &= -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau} \\ &= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau}) \end{split} \tag{PH}$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\begin{split} \tilde{b}_{t,\tau} &= -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau} \\ &= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau}) \end{split} \tag{PH}$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

$$\max_{\boldsymbol{b}_{t,\tau}} E_t \, \mathrm{d}\boldsymbol{W}_t - \frac{a}{2} Var_t \, \mathrm{d}\boldsymbol{W}_t$$
s.t.
$$\mathrm{d}\boldsymbol{W}_t = \left(\boldsymbol{W}_t - \int_0^T \boldsymbol{b}_{t,\tau} \, \mathrm{d}\tau \right) r_t \, \mathrm{d}t + \int_0^T \boldsymbol{b}_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau$$
 (BC)

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

$$\max_{b_{t,\tau}} E_t \, \mathrm{d}W_t - \frac{a}{2} Var_t \, \mathrm{d}W_t$$
s.t.
$$\mathrm{d}W_t = \left(W_t - \int_0^T b_{t,\tau} \, \mathrm{d}\tau\right) r_t \, \mathrm{d}t + \int_0^T b_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau \qquad (BC)$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

$$\max_{b_{t,\tau}} E_t \, \mathrm{d}W_t - \frac{a}{2} Var_t \, \mathrm{d}W_t$$
s.t.
$$\mathrm{d}W_t = \left(W_t - \int_0^T b_{t,\tau} \, \mathrm{d}\tau\right) r_t \, \mathrm{d}t + \int_0^T b_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau \qquad (BC)$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

$$\begin{aligned} \max_{b_{t,\tau}} E_t \, \mathrm{d}W_t &- \frac{\mathsf{a}}{2} Var_t \, \mathrm{d}W_t \\ \mathrm{s.t.} \ \ \mathrm{d}W_t &= \left(W_t - \int_0^T b_{t,\tau} \, \mathrm{d}\tau \right) r_t \, \mathrm{d}t \\ &+ \int_0^T b_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau \end{aligned} \tag{BC}$$

Zero-coupon bond yields and prices $R_{t,\tau} = -\frac{\log P_{t,\tau}}{\tau}$ determined by interactions of two types of investors [Vayanos and Vila 2009]:

• Preferred habitat investors with idiosyncratic demand:

$$\tilde{b}_{t,\tau} = -\alpha(\tau) \log P_{t,\tau} + \varepsilon_{t,\tau}
= \alpha(\tau) \tau (R_{t,\tau} - \beta_{t,\tau})$$
(PH)

Arbitrageurs with mean-variance trade-off in wealth:

$$\max_{b_{t,\tau}} E_t \, \mathrm{d}W_t - \frac{a}{2} Var_t \, \mathrm{d}W_t$$
s.t.
$$\mathrm{d}W_t = \left(W_t - \int_0^T b_{t,\tau} \, \mathrm{d}\tau\right) r_t \, \mathrm{d}t + \int_0^T b_{t,\tau} \frac{\mathrm{d}P_{t,\tau}}{P_{t,\tau}} \, \mathrm{d}\tau \tag{BC}$$

• Market clearing: $b_{t, au} = - ilde{b}_{t, au}$

Solving the Model

• Equilibrium affine term structure

$$-\log P_{t,\tau} = A_r(\tau)r_t + C(\tau)$$

Solving the Model

Equilibrium affine term structure

$$-\log P_{t,\tau} = A_r(\tau)r_t + C(\tau)$$

Effective borrowing rate:

$$\tilde{r}_{t} = \underbrace{\left[\int_{0}^{T} \frac{\eta(\tau)}{\tau} A_{r}(\tau) d\tau\right]}_{\equiv \hat{A}_{r}} r_{t} + \underbrace{\left[\int_{0}^{T} \frac{\eta(\tau)}{\tau} C(\tau) d\tau\right]}_{\equiv \hat{C}}$$

Aggregate dynamics

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

$$dx_t = \varsigma^{-1} \left(\hat{A}_r r_t + \hat{C} - \bar{r} \right) dt$$

Solving the Model

Equilibrium affine term structure

$$-\log P_{t,\tau} = A_r(\tau)r_t + C(\tau)$$

• Effective borrowing rate:

$$\tilde{r}_{t} = \underbrace{\left[\int_{0}^{T} \frac{\eta(\tau)}{\tau} A_{r}(\tau) d\tau\right]}_{\equiv \hat{A}_{r}} r_{t} + \underbrace{\left[\int_{0}^{T} \frac{\eta(\tau)}{\tau} C(\tau) d\tau\right]}_{\equiv \hat{C}}$$

Aggregate dynamics

$$dr_t = -\kappa_r (r_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

$$dx_t = \varsigma^{-1} \left(\hat{A}_r r_t + \hat{C} - \bar{r} \right) dt$$

Linear stochastic differential equation:

$$\begin{split} \mathrm{d}\mathbf{Y}_t &= -\Upsilon \left(\mathbf{Y}_t - \mathbf{Y}^{SS}\right) \mathrm{d}t + \mathbf{S} \, \mathrm{d}\mathbf{B}_t \\ \Upsilon &= \begin{bmatrix} \kappa_r & -\kappa_r \phi_{\mathsf{X}} \\ -\varsigma^{-1} \hat{A}_r & 0 \end{bmatrix} \end{split}$$

Linear stochastic differential equation:

$$d\mathbf{Y}_{t} = -\Upsilon \left(\mathbf{Y}_{t} - \mathbf{Y}^{SS}\right) dt + \mathbf{S} d\mathbf{B}_{t}$$

$$\Upsilon = \begin{bmatrix} \kappa_{r} & -\kappa_{r} \phi_{x} \\ -\varsigma^{-1} \hat{A}_{r} & 0 \end{bmatrix}$$

• If determinacy conditions are met:

$$dr_t = -\lambda_1(r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

$$x_t = \omega_x(r_t - r^{SS})$$

Linear stochastic differential equation:

$$d\mathbf{Y}_{t} = -\Upsilon \left(\mathbf{Y}_{t} - \mathbf{Y}^{SS}\right) dt + \mathbf{S} d\mathbf{B}_{t}$$

$$\Upsilon = \begin{bmatrix} \kappa_{r} & -\kappa_{r} \phi_{x} \\ -\varsigma^{-1} \hat{A}_{r} & 0 \end{bmatrix}$$

• If determinacy conditions are met:

$$dr_t = -\lambda_1(r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

$$x_t = \omega_x(r_t - r^{SS})$$

Linear stochastic differential equation:

$$d\mathbf{Y}_{t} = -\Upsilon \left(\mathbf{Y}_{t} - \mathbf{Y}^{SS}\right) dt + \mathbf{S} d\mathbf{B}_{t}$$

$$\Upsilon = \begin{bmatrix} \kappa_{r} & -\kappa_{r} \phi_{x} \\ -\varsigma^{-1} \hat{A}_{r} & 0 \end{bmatrix}$$

• If determinacy conditions are met:

$$dr_t = -\lambda_1(r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$
$$x_t = \omega_x(r_t - r^{SS})$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r \phi_x}$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r\phi_x}$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r \phi_x}$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r \phi_x}$$

Characterizing \hat{A}_r (Output Sensitivity)

$$\hat{A}_r = h(\lambda) = \frac{\lambda(\lambda - \kappa_r)}{\varsigma^{-1}\kappa_r\phi_x}$$

• Take as given equilibrium dynamics of the short rate

$$\mathrm{d}r_t = -\lambda (r_t - r^{SS}) \,\mathrm{d}t + \sigma_r \,\mathrm{d}B_{r,t}$$

• Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau) \frac{\zeta_t}{\zeta_t}$$
$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv {}_{a}\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) \,\mathrm{d}\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Take as given equilibrium dynamics of the short rate

$$dr_t = -\lambda (r_t - r^{SS}) dt + \sigma_r dB_{r,t}$$

Optimality conditions:

$$\mu_{t,\tau} - r_t = A_r(\tau)\zeta_t$$

$$\zeta_t \equiv a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

Absorbing Demand Shocks

$$\frac{\mu_{t,\tau} - r_t}{A_r(\tau)} = a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

- Assume PH demand shifter is constant: $\beta_{t,\tau} = \bar{\beta}(\tau)$
- In equilibrium, arbitrageur portfolio must satisfy

$$b_{t,\tau} = -\alpha(\tau)\tau(R_{t,\tau} - \bar{\beta}(\tau))$$

Absorbing Demand Shocks

$$\frac{\mu_{t,\tau} - r_t}{A_r(\tau)} = a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

- Assume PH demand shifter is constant: $\beta_{t,\tau} = \bar{\beta}(\tau)$
- In equilibrium, arbitrageur portfolio must satisfy

$$b_{t,\tau} = -\alpha(\tau)\tau(R_{t,\tau} - \bar{\beta}(\tau))$$

= $\alpha(\tau)(A_r(\tau)r_t + C(\tau) + \tau\bar{\beta}(\tau))$

Absorbing Demand Shocks

$$\frac{\mu_{t,\tau} - r_t}{A_r(\tau)} = a\sigma_r^2 \int_0^T b_{t,\tau} A_r(\tau) d\tau$$

- Assume PH demand shifter is constant: $\beta_{t,\tau} = \bar{\beta}(\tau)$
- In equilibrium, arbitrageur portfolio must satisfy

$$b_{t,\tau} = -\alpha(\tau)\tau(R_{t,\tau} - \bar{\beta}(\tau))$$

= $\alpha(\tau)(A_r(\tau)r_t + C(\tau) + \tau\bar{\beta}(\tau))$

- Prices adjust to balance demand and optimality conditions
- ⇒ differential equation which solves affine coefficients

$$\hat{A}_r \equiv \int_0^T \frac{\eta(\tau)}{\tau} A_r(\tau) \,\mathrm{d} au$$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

Characterizing \hat{A}_r (Term Structure Sensitivity)

$$\hat{A}_r = g(\lambda) = \int_0^T \eta(\tau) f(\nu(\lambda)\tau) d\tau$$

where
$$f(x) = \frac{1 - e^{-x}}{x}$$
 and $\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$

$$\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$$

• ν vs. λ : Consider a shock to short rate at time t

$$\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$$

- ν vs. λ : Consider a shock to short rate at time t
- Average change in short rate from t to $t + \tau$:

$$\frac{1}{\tau} E_t \left[\int_0^\tau \frac{\partial r_{t+u}}{\partial r_t} \, \mathrm{d}u \right]$$

$$\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$$

- ν vs. λ : Consider a shock to short rate at time t
- Average change in short rate from t to $t + \tau$:

$$\frac{1}{\tau} E_t \left[\int_0^{\tau} \frac{\partial r_{t+u}}{\partial r_t} \, \mathrm{d}u \right] = \frac{1 - e^{-\lambda \tau}}{\lambda \tau} \equiv f(\lambda \tau)$$

$$\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$$

- ν vs. λ : Consider a shock to short rate at time t
- Average change in short rate from t to $t + \tau$:

$$\frac{1}{\tau} E_t \left[\int_0^\tau \frac{\partial r_{t+u}}{\partial r_t} \, \mathrm{d}u \right] = \frac{1 - e^{-\lambda \tau}}{\lambda \tau} \equiv f(\lambda \tau)$$

$$\geq f(\nu \tau)$$

$$\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$$

- ν vs. λ : Consider a shock to short rate at time t
- Average change in short rate from t to $t + \tau$:

$$\frac{1}{\tau} E_t \left[\int_0^{\tau} \frac{\partial r_{t+u}}{\partial r_t} du \right] = \frac{1 - e^{-\lambda \tau}}{\lambda \tau} \equiv f(\lambda \tau)$$

$$\geq f(\nu \tau)$$

$$= \frac{\partial R_{t,\tau}}{\partial r_t}$$

which is the immediate response of τ -bond yields

$$\nu(\lambda) = \lambda + a\sigma_r^2 \int_0^T \alpha(\tau) \tau^2 f(\nu(\lambda)\tau)^2 d\tau$$

- ν vs. λ : Consider a shock to short rate at time t
- Average change in short rate from t to $t + \tau$:

$$\frac{1}{\tau} E_t \left[\int_0^{\tau} \frac{\partial r_{t+u}}{\partial r_t} du \right] = \frac{1 - e^{-\lambda \tau}}{\lambda \tau} \equiv f(\lambda \tau)$$

$$\geq f(\nu \tau)$$

$$= \frac{\partial R_{t,\tau}}{\partial r_t}$$

which is the immediate response of τ -bond yields

• EH: two responses should be identical (only when a = 0)

General Equilibrium

Existence and Uniqueness

There exists a unique positive eigenvalue of Υ $\lambda_1>0$ for which $g(\lambda_1)=h(\lambda_1)$, which fully characterizes the model equilibrium. Further, this implies $0<\hat{A}_r<1$.

Conventional Policy and Financial Disruptions

Notes: equilibrium changes in sensitivity to the short rate \hat{A}_r as risk aversion a increases.

Conventional Policy and Financial Disruptions

Notes: equilibrium changes in monetary shock reversion λ_1 as risk aversion a increases.

Conventional Policy and Financial Disruptions

Notes: equilibrium changes in output response ω_x to monetary shocks as risk aversion a increases.

Policy Implications

- More aggressive response to output φ_x results
- Higher inertia κ_r results
- Shifts in effective rate weights $\eta(\tau)$ results
- Forward guidance less effective as risk aversion increases details

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})
\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t
d\beta_t = -\kappa_\beta \beta_t dt$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$
$$\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_{t}$$
$$d\beta_{t} = -\kappa_{\beta}\beta_{t} dt$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})
\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t
d\beta_t = -\kappa_{\beta}\beta_t dt$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})
\beta_{t,\tau} = \bar{\beta}(\tau) + \frac{\theta(\tau)}{\theta_t}\beta_t
d\beta_t = -\kappa_\beta\beta_t dt$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})
\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t
d\beta_t = -\kappa_\beta \beta_t dt$$

• Affine functional form of bond prices

$$-\log P_{t,\tau} = A_r(\tau)r_t + A_{\beta}(\tau)\frac{\beta_t}{t} + C(\tau)$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$
$$\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t$$
$$d\beta_t = -\kappa_\beta \beta_t dt$$

• Affine functional form of bond prices

$$-\log P_{t,\tau} = A_r(\tau)r_t + \frac{A_{\beta}(\tau)\beta_t}{A_{\beta}(\tau)} + C(\tau)$$

- Suppose the central bank directly purchases bonds through open market operations
- Change to the demand shifter in PH demand

$$\tilde{b}_{t,\tau} = \alpha(\tau)\tau(R_{t,\tau} - \beta_{t,\tau})$$
$$\beta_{t,\tau} = \bar{\beta}(\tau) + \theta(\tau)\beta_t$$
$$d\beta_t = -\kappa_\beta \beta_t dt$$

· Affine functional form of bond prices

$$-\log P_{t,\tau} = A_r(\tau)r_t + A_{\beta}(\tau)\beta_t + C(\tau)$$

$$\implies \tilde{r}_t = \hat{A}_r r_t + \hat{A}_{\beta}\beta_t + \hat{C}$$

Output Response to QE

Notes: plots of output gap response to a QE shock as risk aversion increases.

Output Response to QE

Notes: plots of output gap response to a QE shock as risk aversion increases.

Sticky Prices

• What about when prices are not fixed?

$$dx_t = \varsigma^{-1}(\tilde{r}_t - \pi_t - \bar{r}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Sticky Prices

What about when prices are not fixed?

$$dx_t = \varsigma^{-1}(\tilde{r}_t - \pi_t - \bar{r}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Results go through if determinacy condition is met:

$$\hat{A}_r > \frac{\delta}{\delta \phi_{\pi} + \rho \phi_{\mathsf{x}}}$$

Sticky Prices

What about when prices are not fixed?

$$dx_t = \varsigma^{-1}(\tilde{r}_t - \pi_t - \tilde{r}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

• Results go through if determinacy condition is met:

$$\hat{A}_r > \frac{\delta}{\delta \phi_{\pi} + \rho \phi_{\mathsf{x}}}$$

• If $\hat{A}_r=1$ and $\phi_{\mathsf{x}}=0$, reduces to $\phi_{\pi}>1$

Implications – Determinacy

Notes: determinacy condition as risk aversion a increases.

The model is determinate if the solid dark line lies above the dotted light line (light shaded region) and is indeterminate otherwise (dark shaded region).

Implications – Determinacy

Notes: determinacy condition as central bank response to inflation ϕ_{π} increases. The model is determinate if the solid dark line lies above the dotted light line (light shaded region) and is indeterminate otherwise (dark shaded region).

Implications – Determinacy

Notes: determinacy condition as central bank inertia κ_r increases. The model is determinate if the solid dark line lies above the dotted light line (light shaded region) and is indeterminate otherwise (dark shaded region).

Sticky price model with shocks

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \pi_t - \bar{r} - z_{x,t} \right) dt$$

$$d\pi_t = \left(\rho \pi_t - \delta x_t - z_{\pi,t} \right) dt$$

$$dr_t = -\kappa_r \left(r_t - \phi_\pi \pi_t - \phi_x x_t - r^* \right) dt + \sigma_r dB_{r,t}$$

Sticky price model with shocks

$$dx_{t} = \varsigma^{-1} \left(\tilde{r}_{t} - \pi_{t} - \bar{r} - \mathbf{z}_{x,t} \right) dt$$

$$d\pi_{t} = \left(\rho \pi_{t} - \delta x_{t} - \mathbf{z}_{\pi,t} \right) dt$$

$$dr_{t} = -\kappa_{r} \left(r_{t} - \phi_{\pi} \pi_{t} - \phi_{x} x_{t} - r^{*} \right) dt + \sigma_{r} dB_{r,t}$$

Shocks

$$d\mathbf{z}_{i,t} = -\kappa_{\mathbf{z}_i}\mathbf{z}_{i,t}\,\mathrm{d}t + \sigma_{\mathbf{z}_i}\,\mathrm{d}\mathbf{B}_{\mathbf{z}_i,t}$$

Sticky price model with shocks

$$dx_t = \varsigma^{-1} (\tilde{r}_t - \pi_t - \bar{r} - z_{x,t}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t - z_{\pi,t}) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Shocks

$$dz_{i,t} = -\kappa_{z_i} z_{i,t} dt + \sigma_{z_i} dB_{z_i,t}$$

Demand factors

$$\beta_{t,\tau} = \bar{\beta}(\tau) + \sum_{k} \beta_{k,t} \theta_{k}(\tau)$$
$$d\beta_{k,t} = -\kappa_{\beta_{k}} \beta_{k,t} dt + \sigma_{\beta_{k}} dB_{\beta_{k},t}$$

Sticky price model with shocks

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \pi_t - \bar{r} - z_{x,t} \right) dt$$

$$d\pi_t = \left(\rho \pi_t - \delta x_t - z_{\pi,t} \right) dt$$

$$dr_t = -\kappa_r \left(r_t - \phi_\pi \pi_t - \phi_x x_t - r^* \right) dt + \sigma_r dB_{r,t}$$

Shocks

$$dz_{i,t} = -\kappa_{z_i} z_{i,t} dt + \sigma_{z_i} dB_{z_i,t}$$

Demand factors

$$\beta_{t,\tau} = \bar{\beta}(\tau) + \sum_{k} \beta_{k,t} \theta_{k}(\tau)$$
$$d\beta_{k,t} = -\kappa_{\beta_{k}} \beta_{k,t} dt + \sigma_{\beta_{k}} dB_{\beta_{k},t}$$

Sticky price model with shocks

$$dx_t = \varsigma^{-1} \left(\tilde{r}_t - \pi_t - \bar{r} - z_{x,t} \right) dt$$

$$d\pi_t = \left(\rho \pi_t - \delta x_t - z_{\pi,t} \right) dt$$

$$dr_t = -\kappa_r \left(r_t - \phi_\pi \pi_t - \phi_x x_t - r^* \right) dt + \sigma_r dB_{r,t}$$

Shocks

$$dz_{i,t} = -\kappa_{z_i} z_{i,t} dt + \sigma_{z_i} dB_{z_i,t}$$

Demand factors

$$\beta_{t,\tau} = \bar{\beta}(\tau) + \sum_{k} \beta_{k,t} \theta_{k}(\tau)$$
$$d\beta_{k,t} = -\kappa_{\beta_{k}} \beta_{k,t} dt + \frac{\sigma_{\beta_{k}}}{\delta_{\beta_{k},t}} dB_{\beta_{k},t}$$

Sticky price model with shocks

$$dx_t = \varsigma^{-1} (\tilde{r}_t - \pi_t - \bar{r} - z_{x,t}) dt$$

$$d\pi_t = (\rho \pi_t - \delta x_t - z_{\pi,t}) dt$$

$$dr_t = -\kappa_r (r_t - \phi_\pi \pi_t - \phi_x x_t - r^*) dt + \sigma_r dB_{r,t}$$

Shocks

$$dz_{i,t} = -\kappa_{z_i} z_{i,t} dt + \sigma_{z_i} dB_{z_i,t}$$

Demand factors

$$\beta_{t,\tau} = \bar{\beta}(\tau) + \sum_{k} \beta_{k,t} \theta_{k}(\tau)$$
$$d\beta_{k,t} = -\kappa_{\beta_{k}} \beta_{k,t} dt + \sigma_{\beta_{k}} dB_{\beta_{k,t}}$$

Requires numerical solution methods

Calibration

Table: Numerical Exercise Calibration

Parameter	Value	Description	Target
Effective Borrowing Rate			
η_1	1.7069	Weight Scaling Factor	Treasury Maturity Distribution
Macroeconomic Dynamics			
ρ	0.0400	Discount Factor	Long-Run Interest Rate
ς^{-1}	1.0000	Intertemporal Elasticity	Balanced Growth
κ_r	0.9473	Monetary Policy Inertia	$Cov[r_t, r_{t-1}] = 3.5013$
$\kappa_{z\pi}$	0.5863	Cost-Push Shock Inertia	$Cov[\pi_t, \pi_{t-1}] = 0.9141$
κ_{z_X}	0.2554	Demand Shock Inertia	$Cov[x_t, x_{t-1}] = 2.2908$
ϕ_{π}	2.0420	Inflation Taylor Coeff.	$Cov[r_t, \pi_t] = 1.0006$
$\phi_{\scriptscriptstyle X}$	0.9709	Output Taylor Coeff.	$Cov[r_t, x_t] = 0.7722$
δ	0.0459	Nominal Rigidity	$Cov[\pi_t, x_t] = -0.3015$
σ_r	0.0116	Monetary Shock Vol.	$Var[r_t] = 2.7066$
$\sigma_{z_{\pi}}$	0.0068	Cost-Push Shock Vol.	$Var[\pi_t] = 0.5097$
σ_{z_X}	0.0126	Demand Shock Vol.	$Var[x_t] = 1.5192$
Term Structure			
$\theta_s(\tau)$	$\delta(\tau-2)$	Short Factor Location	LSAP Targets
$\theta_{\ell}(\tau)$	$\delta(\tau-10)$	Long Factor Location	LSAP Targets
$\alpha(\tau)$	1.0000	Habitat Elasticity	Normalized
κ_{β}	0.1710	Habitat Factor Inertia	QE1 Yield Curve Response
$\sigma_{z_{\beta}}$	0.0142	Habitat Factor Vol.	QE1 Yield Curve Response
_a	1559.7	Risk Aversion	QE1 Yield Curve Response

QE: Model vs. Data

Notes: Yield curve response to the announcement of the initial round of QE on March 18, 2009 (light dotted line). The dark line corresponds to the yield curve response to a QE shock in the model. Source: Gurkaynak, Sack, and Wright (2007). $\eta(\tau)$

Aggregate Response (Monetary Policy)

Notes: inflation and output response a 50 b.p. monetary shock, for different levels of risk aversion a.

Aggregate Response (QE, long end)

Notes: inflation and output response to "long" QE shock on impact, for different levels of risk aversion a.

Aggregate Response (Operation Twist)

Notes: inflation and output response an "Operation Twist" shock, for different levels of risk aversion a.

Optimal Conventional Policy

- Can the planner improve outcomes?
- Loss function

$$E_0 \int_0^\infty e^{-\rho t} \left(w_\pi \pi_t^2 + w_x x_t^2 \right) dt$$

Optimal Conventional Policy

- Can the planner improve outcomes?
- Loss function

$$E_0 \int_0^\infty e^{-\rho t} \left(\mathbf{w_{\pi}} \pi_t^2 + \mathbf{w_{x}} x_t^2 \right) dt$$

Optimal Conventional Policy

- Can the planner improve outcomes?
- Loss function

$$\min_{\phi_{\pi},\kappa_{r}} E_{0} \int_{0}^{\infty} e^{-\rho t} \left(w_{\pi} \pi_{t}^{2} + w_{x} x_{t}^{2} \right) \mathrm{d}t$$

Optimal inflation response and inertia as financial disruptions increase conditional distribution

Optimal Response: More Aggressive in Crises

Notes: optimal policy coefficients on inflation (Panel A) and inertia (Panel B) as risk aversion increases. Planner weights: $w_{\pi} = 1$, $w_{x} = 0.1$.

Stabilizing LSAPs

- Can LSAPs be used to ensure determinacy?
- Endogenous QE purchases:

$$\mathrm{d}\beta_t = -\kappa_\beta \left(\beta_t - \phi_\pi^\beta \pi_t\right) \mathrm{d}t$$

Stabilizing LSAPs

- Can LSAPs be used to ensure determinacy?
- Endogenous QE purchases:

$$\mathrm{d}\beta_t = -\kappa_\beta \left(\beta_t - \frac{\phi_\pi^\beta}{\pi} \pi_t\right) \mathrm{d}t$$

QE and Determinacy

Notes: determinacy conditions as a function of risk aversion (x-axis) and endogenous response of QE to inflation (y-axis). Darker colors correspond to larger values of the unstable eigenvalue. The dotted black line demarcates the region of determinacy.

37

Concluding Remarks

- Develops a unified, parsimonious framework to study conventional and unconventional monetary policies
- Transmission depends crucially on the risk-bearing capacity of financial markets

Concluding Remarks

- Develops a unified, parsimonious framework to study conventional and unconventional monetary policies
- Transmission depends crucially on the risk-bearing capacity of financial markets
- Future work:
 - Macroprudential policies, default risk
 - Monetary policy in open economies
 - ▶ Debt management

Implications – Conventional Policy

Notes: equilibrium changes in sensitivity to the short rate \hat{A}_r and monetary shock reversion λ_1 as central bank response to output ϕ_x increases.

Implications – Conventional Policy

Notes: equilibrium changes in sensitivity to the short rate \hat{A}_r and monetary shock reversion λ_1 as central bank inertia κ_r increases.

Sensitivity to Long Rates

Notes: different weighting function $\eta(\tau)$ in the determination of the effective borrowing rate \tilde{r}_t .

Sensitivity to Long Rates

Notes: different weighting function $\eta(\tau)$ in the determination of the effective borrowing rate \tilde{r}_t .

Implications – Sensitivity to Long Rates

Notes: equilibrium changes in sensitivity to the short rate \hat{A}_r and monetary shock reversion λ_1 as the weighting function $\eta(\tau)$ shifts towards short-term bonds.

back

Forward Guidance

• Central bank announces a peg: $r_0 = r^{\diamond}$ and

$$\mathrm{d}r_t = \begin{cases} -\kappa_r^{\diamond}(r_t - r^{\diamond}) \, \mathrm{d}t + \sigma_r^{\diamond} \, \mathrm{d}B_{r,t} & \text{if } 0 < t < t^{\diamond} \\ -\kappa_r(r_t - \phi_x x_t - r^*) \, \mathrm{d}t + \sigma_r \, \mathrm{d}B_{r,t} & \text{if } t \ge t^{\diamond} \end{cases}$$

Affine coefficient functions during peg:

$$-\log P_{t,\tau} = A_r^{\diamond}(\tau)r_t + C^{\diamond}(\tau)$$
$$\implies \tilde{r}_t = \hat{A}_r^{\diamond}r_t + \hat{C}^{\diamond}$$

Rational expectations dynamics for output:

$$\frac{\partial x_0}{\partial r^{\diamond}} = \omega_x - t^{\diamond} \varsigma^{-1} \hat{A}_r^{\diamond} , \quad \frac{\partial^2 x_0}{\partial r^{\diamond} \partial t^{\diamond}} = -\varsigma^{-1} \hat{A}_r^{\diamond}$$

Response to Forward Guidance

Notes: plots of $\frac{\partial x_0}{\partial r^{\diamond}}$ ("level") and $\frac{\partial^2 x_0}{\partial r^{\diamond} \partial t^{\diamond}}$ ("length") as risk aversion increases.

Long-Run Variance

State-space representation

$$\mathrm{d}\mathbf{y}_t = -\Gamma\left(\mathbf{y}_t - \mathbf{y}^{SS}\right)\mathrm{d}t + \mathbf{S}\,\mathrm{d}\mathbf{B}_t\,,\ \mathbf{x}_t = \Omega\left(\mathbf{y}_t - \mathbf{y}^{SS}\right)$$

ullet Conditional distribution $oldsymbol{y}_t | oldsymbol{y}_0 \sim \mathcal{N}\left(oldsymbol{\mu}_t, oldsymbol{\Sigma}_t
ight)$ where

$$\boldsymbol{\mu}_t = \mathbf{y}^{SS} + e^{-\Gamma t} (\mathbf{y}_0 - \mathbf{y}^{SS}), \ \ \boldsymbol{\Sigma}_t = \int_0^t e^{\Gamma(u-t)} \boldsymbol{\Sigma} e^{\Gamma^T(u-t)} \, \mathrm{d}u$$

Present-discounted value

$$egin{aligned} \widetilde{oldsymbol{\Sigma}}_{\infty} &\equiv \int_{0}^{\infty} e^{-
ho t} oldsymbol{\Sigma}_{t} \, \mathrm{d}t \ \\ \implies \mathsf{vec} \, \widetilde{oldsymbol{\Sigma}}_{\infty} &= (\Gamma \oplus \Gamma)^{-1} (
ho oldsymbol{\mathsf{I}} + \Gamma \oplus \Gamma)^{-1} \, \mathsf{vec} \, oldsymbol{\Sigma} \end{aligned}$$

Jump variables

$$\widetilde{\boldsymbol{\Sigma}}_{\infty}^{\boldsymbol{x}} = \boldsymbol{\Omega}\widetilde{\boldsymbol{\Sigma}}_{\infty}\boldsymbol{\Omega}^{T}$$

Effective Borrowing Rate Weights

Notes: average maturity distribution of outstanding Treasury debt (light dotted line). The dark line corresponds to the effective borrowing rate weights in the model. Source: FRED.

