Assignment- 4: IRIS Dataset

Created by:

Srinidhi Devan

Step-1: Importing the necessary libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn import tree

from sklearn.tree import DecisionTreeClassifier, plot_tree

- Here, apart from NumPy and Pandas, the additional libraries imported are: 'tree',
 'DecisionTreeClassifier', 'plot_tree' and 'train_test_split' from 'sklearn' module of
 Python for this particular problem.
- 'DecisionTreeClassifier': Facilitates in building a decision tree model in Python
- 'plot_tree': For tree visualization purpose
- 'train_test_split': For splitting the data into train (70%) & test (30%) set respectively

Step-2: Reading the Iris Dataset

data = pd.read_csv('Iris.csv')

data = data.drop(['Id'],axis=1)

- Using 'pd.read_csv' command
- Dropping the 'ld' variable from the dataset; axis=1 implies we are dropping from column

Step-3: Separating the Independent and Dependent variables in the data

```
x = data[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
y = data['Species']
```

- Here, the Independent Variables are: 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'.
 This is called 'x'
- The Dependent Variable is: 'Species' This is called 'y'

Step-4: Splitting the Dataset into Train & Test set

```
(x_train, x_test, y_train, y_test) = train_test_split(x, y, train_size=0.7, random_state=1)
```

- The train set consists of 70% of the dataset and test set consists of 30%
- The splitting is done using 'train_test_split' command
- 'random state'--> to ensure that there is always uniformity in splitting

Step-5: Building the Decision Tree model

```
dt_model = DecisionTreeClassifier(criterion = 'gini' )
```

• This is done using 'DecisionTreeClassifier' package in Python

```
dt_model.fit(x_train, y_train)
```

• And we fit the model for further analysis—using '.fit()' for training set (including both Independent (x) and dependent variables(y))

<u>Step-6: Finding the Feature Importance</u>

pd.DataFrame(dt_model.feature_importances_, columns = ["Imp"], index = x_train.columns)

• This will show us which of the Independent variables have more weightage relative to the other.

Independent Variable	Feature Importance
SepalLengthCm	0.02147
SepalWidthCm	0.02147
PetalLengthCm	0.06317
PetalWidthCm	0.89389

- From the above table, we can see that 'PetalWidthCm' has the highest importance followed by 'PetalLengthCm', 'SepalWidthCm' and 'SepalLengthCm'.
- This is done on independent variables of the training dataset.

Step-7: Plotting the Decision Tree

fig = tree.plot_tree(dt_model,feature_names=data.columns,filled='True')

This is done with the package 'plot_tree' on 'dt_model'
 Where dt_model = DecisionTreeClassifier(criterion = 'gini')

Step-8: Creating Classification Report

- This is done on both Train and Test dataset
- Classification Report shows us the 'Precision', 'Recall', 'F1 Score' and 'Accuracy'

classification_report(y_train, ytrain_predict)

Where

ytrain_predict = dt_model.predict(x_train)

Classification Report for Train Set

	Precision	Recall	F1 Score	Support
Iris-setosa	1	1	1	36
Iris-versicolor	1	1	1	32
Iris-virginica	1	1	1	37
accuracy			1	105
macro avg	1	1	1	105
weighted avg	1	1	1	105

- a. PRECISION: Percentage of Iris-setosa correctly predicted is 100%

 Percentage of Iris-versicolor correctly predicted is 100%

 Percentage of Iris-virginica correctly predicted is 100%
- RECALL: Percentage of positive cases in Iris-setosa is 100%
 Percentage of positive cases in Iris-versicolor is 100%
 Percentage of positive cases in Iris-virginica is 100%
- F1-SCORE: Percentage of positive predictions in Iris-setosa which were correct is 100%
 Percentage of positive predictions in Iris-versicolor which were correct is 100%

Percentage of positive predictions in Iris- virginica which were correct is 100%

d. ACCURACY: 100%

classification_report(y_test, ytest_predict)

Where

ytest predict = dt model.predict(x test)

Classification Report for Test Set

	Precision	Recall	F1 Score	Support
Iris-setosa	1	1	1	14
Iris-versicolor	0.94	0.94	0.94	18
Iris-virginica	0.92	0.92	0.92	13
accuracy			0.96	45
macro avg	0.96	0.96	0.96	45
weighted avg	0.96	0.96	0.96	45

- a. PRECISION: Percentage of Iris-setosa correctly predicted is 100%

 Percentage of Iris-versicolor correctly predicted is 94%

 Percentage of Iris-virginica correctly predicted is 92%
- RECALL: Percentage of positive cases in Iris-setosa is 100%
 Percentage of positive cases in Iris-versicolor is 94%
 Percentage of positive cases in Iris-virginica is 92%
- F1-SCORE: Percentage of positive predictions in Iris-setosa which were correct is 100%
 Percentage of positive predictions in Iris-versicolor which were correct is 94%
 Percentage of positive predictions in Iris- virginica which were correct is 92%
- d. ACCURACY: 96%

Step-9: Accuracy

- This is found using Confusion Matrix as shown above.
- Alternatively,

dt_model.score(x_train,y_train)

a. For Train Dataset: 100%

dt_model.score(x_test,y_test)

b. For Test Dataset: 95.55%