Causality Compensated Attention for Contextual Biased Visual Recognition

Olaluwoye Olalekan

African Masters in Machine Intelligence (AMMI), Senegal

Authors: Ruyang Liu, Jingjia Huang, Thomas H. Li, Ge Li (2023)

29th, August, 2025

Overview

- Introduction
- Why Causality Matters in Image Recognition
- Causal View of Contextual Bias and Attention Mechanism.
- Causal Intervention: Theoretical Framework
- Methodology (IDA)
- Results and Discussion
- Conclusion

Introduction

- Attention mechanisms help models focus on important features in images.
- Key to improving accuracy in tasks like classification and object detection.
- Problem: Models often picks up context (background) instead of objects due to contextual bias.
- Leads to incorrect predictions when objects appear in unfamiliar contexts.
- The Authors propose a new attention module called IDA.

Aim and Objectives

Aims: To improve attention mechanisms by reducing the impact of contextual bias.

The objectives are:

- Understand how current models are affected by contextual bias.
- Develop the IDA module to correct the bias.
- Evaluate the effectiveness of IDA on benchmark tasks (multi-label classification and object detection).

Causal View of Contextual Bias, Attention Mechanism and the Intervention

Figure 1: Demonstration of the causal view of contextual bias in visual recognition

(a) The confounding effect $(X \leftarrow C \rightarrow Y)$

(b) The role of attention mechanism

(c) Causal intervention

Causal Intervention: Theoretical Framework

- Interventions cut off misleading context, ensuring the model focuses on the relevant features (*Pearl*, 2009).
- Backdoor adjustment: Used to control for context that could falsely associate objects and predictions.
- The intervention equation can be expressed as:

$$P(Y|do(X)) = \sum_{c} P(Y|X,C=c)P(C=c)$$

Where: X is the object, Y is the prediction, and C represents the context.

- do(X) refers to intervening directly on X, breaking the confounding effect of the context.
- P(Y|X,C=c): The probability of Y given X and C.
- P(c) is the probability distribution of the confounder.

Solution: Intervention Dual Attention (IDA)

Fig. 2: Overview of the proposed model. X could be either image feature from visual backbone or ROI feature from detection backbone. The model is composed of the baseline attention (SCA), the multiple sampling on SCA (MS-SCA), and the second attention layer (DPA or transformer).

Model Hyper-parameters

- **Epoch (80):** This is the total number of iterations of all the training data in one cycle for training a model.
- Batch Size (32): Determines the number of images processed in each forward and backward pass during training.
- Learning Rate (0.0001): Controls the step size at which the model's parameters are updated in response to the estimated error during training.
- Optimizer: Adam optimizer was used to regularize the model and prevent overfiting.

Results – Evaluation of the model on Test Images (1)

 Predicted:
 Predicted:

 person: 0.73
 gerson: 0.73

 cat: 0.16
 cat: 0.46

 dog: 0.49
 dog: 0.67

 car: 0.54
 bicycle: 0.65

 True:
 person: 1.0

 cat: 0.0
 cat: 0.0

 dog: 0.0
 cat: 0.0

 car: 0.0
 dog: 0.0

 car: 0.0
 bicycle: 0.0

Fig. 3: Predictions and true labels for different classes (person, cat, dog, car, and bicycle).

Results – Evaluation of the model on Test Images (3)

Fig. 4: Predictions and true labels for different classes (cat, dog, car, and bicycle).

Interpretation of Results

Table 1: Performance based on predictions and true labels

	Person	Cat	dog	car	bicycle
Image 1Predictions	0.73	0.16	0.49	0.54	0.65
True Labels	1.00	0.00	0.00	0.00	0.00
Image 2Predictions	0.73	0.46	0.67	0.47	0.73
True Labels	1.00	0.00	0.00	0.00	0.00
Image 3Predictions	0.72	0.23	0.51	0.45	0.62
True Labels	0.00	1.00	0.00	0.00	0.00
Image 4Predictions	0.54	0.29	0.89	0.48	0.89
True Labels	1.00	0.00	0.00	1.00	1.00
Image 5 Predictions	0.74	0.25	0.53	0.48	0.95
True Labels	1.00	0.00	0.00	0.00	0.00

The IDA model achieving a mAP of 48.6%.

Summary and Conclusion

This presentation explored how causality can enhance image processing by helping models distinguish true object relationships from misleading contextual elements.

These are key points to note:

- IDA addresses contextual bias using causal inference to improve visual recognition tasks.
- By applying causality, IDA reduces predictions influenced by irrelevant contextual elements, resulting in accurate output.
- Enhances model robustness by focusing attention on the right object features.
- Extend IDA to video recognition and other high-dimensional tasks.

Thanks for listening

References

- 1. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 770-778.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. *Advances in Neural Information Processing Systems (NeurIPS)*, 5998-6008.
- 3. Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press.
- Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. European Conference on Computer Vision (ECCV), 740-755.