一样名	密	次
李田		H
出	菰	K
級		中
小		本
· 小克	後日	

四川轻化工大学试卷(2018至2019学年第二学期期末)

课程名称: 高等数学 B2(A卷)

命题教师: 余成恩

适用班级: 18级文科本科班

考试	(考查):	考试	2		2019 年	Ē	月	日	共	页
题号	_	11	111	四	五.	六	七	八	总分	评阅(统分) 教 师
得										
分										

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则 视为废卷。
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分 别一同交回, 否则不给分。

得分	评阅教师

一、单选题(请将正确答案的编号填在题后对应括号内,每小题 4 分,共 24 分)

1. 函数
$$z = \frac{1}{\sqrt{2x}} \ln(y+x)$$
 的定义域是(

- (A) $y + x > 0, x \ge 0$
- (B) $y + x \neq 0, x > 0$
- (C) y + x > 0, x > 0
- (D) $y + x \neq 1, x > 0$

2. 若
$$D$$
为 $1 \le x^2 + y^2 \le 4$,则积分 $\iint_D f(x,y) d\sigma = ($)

- (A) $\int_0^{2\pi} d\theta \int_1^2 f(r\cos\theta, r\sin\theta) dr$ (B) $\int_0^{2\pi} d\theta \int_1^2 f(r\cos\theta, r\sin\theta) r dr$
- (C) $\int_0^{2\pi} d\theta \int_1^4 f(r\cos\theta, r\sin\theta) r dr$ (D) $\int_0^{2\pi} d\theta \int_1^4 f(r\cos\theta, r\sin\theta) dr$
- 3. 下列数项级数中,发散的级数是(

- (A) $\sum_{n=1}^{\infty} \frac{1}{n^3}$; (B) $\sum_{n=1}^{\infty} \frac{1}{3^n}$; (C) $\sum_{n=1}^{\infty} \frac{2^n}{3^n}$; (D) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$

4.
$$\exists \exists \exists \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad (-1 < x < 1)$$
, 则函数 $\frac{1}{2-x} = ($

A.
$$\sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}}$$
 (-2 < x < 2);

A.
$$\sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}}$$
 (-2 < x < 2); B. $\sum_{n=0}^{\infty} \frac{1}{2^n} x^n$ (-2 < x < 2);

C.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$
 (-2 < x < 2); D. $\sum_{n=0}^{\infty} 2^n x^n$ (-2 < x < 2);

D.
$$\sum_{n=0}^{\infty} 2^n x^n$$
 (-2 < x < 2)

5. 若 y_1 \mathbb{I} y_2 是某二阶线性齐次微分方程的两个线性无关解,则 $y=C_1y_1+C_2y_2$ (C_1 , C_2 为任 意常数)(

(A) 不是该方程的解;

(B) 是该方程的解,但不一定是通解;

(C)一定是该方程的通解;

(D) 可能是也可能不是该方程的解。

6. 已知方程
$$y'' - 5y' + 6y = xe^{2x}$$
 的一个特解为 $-\frac{1}{2}(x^2 + 2x)e^{2x}$,则该方程的通解为 $y =$

(A)
$$C_1e^{2x} + C_2e^{3x} - \frac{1}{2}(x^2 + 2x)e^{2x}$$

(A)
$$C_1e^{2x} + C_2e^{3x} - \frac{1}{2}(x^2 + 2x)e^{2x}$$
; (B) $C_1e^{-2x} + C_2e^{3x} - \frac{1}{2}(x^2 + 2x)e^{2x}$;

(C)
$$C_1e^{2x} + C_2e^{-3x} - \frac{1}{2}(x^2 + 2x)e^{2x}$$

(C)
$$C_1e^{2x} + C_2e^{-3x} - \frac{1}{2}(x^2 + 2x)e^{2x}$$
; (D) $C_1e^{-2x} + C_2e^{-3x} - \frac{1}{2}(x^2 + 2x)e^{2x}$

得分	评阅教师

二、填空题(请将正确的结果填在横线上.每空3分,共18分)

1. 求极限:
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\sqrt{xy+4}-2}{xy} =$$
______.

2.对于形如 $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$ 的微分方程,可作代换 u =______转化为可分离变量的微分方程求解.

3. 设
$$I = \iint_D (x^3 + 1) dx dy$$
, 其中 $D: -1 \le x \le 1$ $\square 0 \le y \le 1$, 则 $I =$ ______.

4. 若级数
$$\sum_{n=0}^{\infty} (2-u_n)$$
 收敛,则 $\lim_{n\to\infty} (2+u_n) =$ _______.

x v	6.	方程 $\frac{1}{x}dy$ =	$=\frac{1}{v}dx$ 满足条件 $y _{x=}$	$_{_{1}}=\sqrt{2}$ 的特解为	. •
------	----	----------------------	---------------------------------	-------------------------	-----

得分	评阅教师

三、已知函数
$$z = \sin(xy) + \cos^2(xy)$$
,求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$. (10 分)

得分	评阅教师

四、计算二次积分: $\int_0^1 dx \int_x^1 e^{y^2} dy$. (10 分)

得分	评阅教师

五、某厂家生产的一种产品同时在两个市场销售,售价分别为 p_1 与 p_2 ,销售量分别为 $q_1=24-0.2$ p_1 和 $q_2=10-0.05$ p_2 ,总成本函数为 C=35+40 (q_1+q_2) 元,试问:厂家如何确定两个市场的售价,才能使获得的总利润最大?.(10分)

姓名	一数	
		田町
李		¥
俳		Ħ
出	抓	K
级		Ð
		44
小 争		Ą
	例	

得分	评阅教师

六、解微分方程: $(x^2+1)y'+2xy=4x^2$. (10分)

得分	评阅教师

七、求幂级数 $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$ 的收敛域与和函数。(10 分)

得分	评阅教师

八、设函数u=f(x,y,z)具有连续的偏导数,其中z=z(x,y)是由方程 $xe^x-ye^y=ze^z$ 所确定的可微函数,求 $\frac{\partial u}{\partial x}$ 及 $\frac{\partial u}{\partial y}$ 。(8分)