MACHINE LEARNING IRONHACK

• ÍNDICE

- Descripción explicación proyecto
- Organización
 entender los datos
- 3 Limpieza
 Procesar el
 dataset
- 4 Elección modelo modelo modelo machine learning

5 Conclusión
Breve descripción
aquí

INFORMACIÓN IMPORTANTE

DESCRIPCIÓN

EL proyecto trata de hacer un modelo predictivo en un dataset de Salaries, entrenar diferentes modelos y buscar el más óptimo y que mejor explique la variable salary

ORGANIZACIÓN

Realizo un estudio de los outliers para entender un poco mejor el dataset.

También analizo los máximos y mínimos.

Relizo la media de los salarios y a través delos Quartiles establezco unos límites para los valores.

LIMPIEZA

las columnas "Salary" y
"Salary Currency".Estas
columnas se encuentran
recogidas en
"Salary_in_usd". Por lo
que decidí eliminarlas.

	work_year	experience_level	employment_type	jab_tide	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
0	2022	SE	FT	Data Engineer	140250	US	100	US	M
1	2022	SE	FT	Data Engineer	135000	US	100	US	M
2	2021	MI	FT	BI Data Analyst	100000	US	100	US	M
3	2021	MI	СТ	ML Engineer	270000	US	100	US	L
4	2021	MI	FT	Data Engineer	26005	RO	0	US	L

df_test.head()

	work_year	experience_level	employment_type	job_title	employee_residence	remote_ratio	company_location	company_size
0	2020	SE	FT	Machine Learning Scientist	JP	0	JP	S
1	2020	MI	FT	Lead Data Analyst	US	100	US	L
2	2020	MI	FT	Data Analyst	US	100	US	L
3	2020	MI	FT	Machine Learning Engineer	CN	0	CN	М
4	2020	MI	FT	Product Data Analyst	IN	100	IN	L

Q11: 64594.5 Q33: 150000.0 IQRR: 85405.5 Upper Limit for Outliers: 278108.25 Lower Limit for Outliers: 21891.75

OBJETIVOS DE LA PRESENTACIÓN

Adjusted R-Squared

Model
Lars
RANSACRegressor
TransformedTargetRegressor
LinearRegression
MLPRegressor
LinearSVR
KernelRidge
GaussianProcessRegressor
SVR
QuantileRegressor
DummyRegressor
NuSVR
ElasticNetCV
AdaBoostRegressor

KNeighborsRegressor

698168442509481163906183114995979575195860992.00
55597888842277934003424067584.00
3175467926990929956649828352.00
37.64
37.56
35.31
14.75
10.15
10.14
10.04
10.01
9.45
8.56
8.32