Lecture Notes 18 Multiple Testing and Confidence Intervals

Suppose we need to test many null hypotheses

$$\mathcal{H} = \{H_{0,1}, \dots, H_{0,N}\}$$

where N could be very large. We cannot simply test each hypotheses at level α because, if N is large, we are sure to make lots of type I errors just by chance. We need to do some sort of multiplicity adjustment.

Familywise Error Control. Suppose we get a p-value p_j for each null hypothesis. Let $I = \{i : H_{0,i} \text{ is true}\} \subset \mathcal{H}$ If we reject $H_{0,i}$ for any $i \in I$ then we have made an error. Let $R = \{j : \text{ we reject } H_{0j}\} \subset \mathcal{H}$ be the set of hypotheses we reject. We say that we have controlled the familywise error rate at level α if

$$\mathbb{P}(R \cap I \neq \emptyset) \le \alpha.$$

The easiest way to control the familywise error rate is the *Bonferroni method*. The idea is to reject $H_{0,i}$ if and only if $p_i < \alpha/N$. Then

$$\mathbb{P}(\text{making a false rejection}) = \mathbb{P}\left(p_i < \frac{\alpha}{N} \text{ for some } i \in I\right)$$

$$\leq \sum_{i \in I} \mathbb{P}\left(p_i < \frac{\alpha}{N}\right)$$

$$= \sum_{i \in I} \frac{\alpha}{N} \text{ since } p_i \sim \text{Unif}(0, 1) \text{ for } i \in I$$

$$= \frac{\alpha}{N} \frac{|I|}{N} \leq \alpha.$$

So we have overall control of the type I error. However, it can have low power.

The Normal Case. Suppose that we have N sample means Y_1, \ldots, Y_N each based on n Normal observations with variance 1. So $Y_j \sim N(\mu_j, \sigma^2/n)$. To test $H_{0,j}: \mu_j = 0$ we can use the test statistic $T_j = \sqrt{n}Y_j/\sigma$. The p-value is

$$p_j = 2\Phi(-|T_j|).$$

If we did uncorrected testing we reject when $p_j < \alpha$, which means, $|T_j| > z_{\alpha/2}$. A well known inequality for the tail probability of a Gaussian is

$$\frac{\phi(x)}{x+1/x} \le 1 - \Phi(x) \le \frac{\phi(x)}{x}.$$

From this it can be shown that¹

$$z_{\alpha} \approx \sqrt{2\log(1/\alpha)}$$
.

So we reject when

$$|T_j| > \sigma \sqrt{2\log(2/\alpha)/n}$$
.

Under the Bonferroni correction we reject when $p_i < \alpha/N$ which coresponds to

$$|T_i| > \sigma \sqrt{2 \log(2N/\alpha)/n}$$
.

Hence, the familywise rejection threshold grows like $\sqrt{\log N}$.

False Discovery Control. The Bonferroni adjustment is very strict. A weaker type of control is based on the *false discovery rate*. Suppose we reject a set of hyptheses R. Define the *false discovery proportion*

$$FDP = \frac{|R \cap I|}{|R|}$$

where the ratio is defined to be 0 in case both the numerator and denominator are 0. Our goal is to find a method for choosing R such that

$$FDR = \mathbb{E}(FDP) \leq \alpha$$
.

The Benjamini-Hochberg method works as follows:

- 1. Find the ordered p-values $P_{(1)} < \cdots < P_{(N)}$.
- 2. Let $j = \max\{i: P_{(i)} < i\alpha/N\}$. Let $T = P_{(j)}$.
- 3. Let $R = \{i : P_i \le T\}$.

Let us see why this controls the FDR. Consider, in general, rejecting all hypothesis for which $P_i < t$. Let $W_i = 1$ if $H_{0,i}$ is true and $W_i = 0$ otherwise. Let \widehat{G} be the empirical distribution of the p-values and let $G(t) = \mathbb{E}(\widehat{G}(t))$. In this case,

$$FDP = \frac{\sum_{i=1}^{N} W_i I(P_i < t)}{\sum_{i=1}^{N} I(P_i < t)} = \frac{\frac{1}{N} \sum_{i=1}^{N} W_i I(P_i < t)}{\frac{1}{N} \sum_{i=1}^{N} I(P_i < t)}.$$

Hence,

$$\mathbb{E}(\text{FDP}) \approx \frac{\mathbb{E}(\frac{1}{N} \sum_{i=1}^{N} W_{i} I(P_{i} < t))}{\frac{1}{N} \mathbb{E}(\sum_{i=1}^{N} I(P_{i} < t))}$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} W_{i} \mathbb{E}(I(P_{i} < t))}{\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}(I(P_{i} < t))}$$

$$= \frac{t|I|}{G(t)} \leq \frac{t}{G(t)} \approx \frac{t}{\widehat{G}(t)}.$$

$$z_{\alpha} = \sqrt{2\log(1/\alpha)} - r$$

where $0 \le r \le 1.5$.

¹In fact, it can be shown that

Let $t = P_{(i)}$ for some i; then $\widehat{G}(t) = i/N$. Thus, FDR $\leq P_{(i)}N/i$. Setting this equal to α we get $P_{(i)} < i\alpha/N$ is the Benjamini-Hochberg rule.

FDR control typically has higher power than familywise control. But they are controlling different things. You have to decide, based on the context, which is appropriate.

Example 1 Figure 1 shows an example where $Y_j \sim N(\mu_j, 1)$ for j = 1, ..., 1,000. In this example, $\mu_j = 3$ for $1 \le j \le 50$ and $\mu_j = 0$ for j > 50. The figure shows the test statistics, the p-values, the sorted log p-values with the Bonferroni threshold and the sorted log p-values with the FDR threshold (using $\alpha = 0.05$). Bonferroni rejects 7 hypotheses while FDR rejects 22.

Multiple Confidence Intervals. A similar problem occurs with confidence intervals. If we construct a confidence interval C for one parameter θ then $\mathbb{P}(\theta \in C) \geq 1 - \alpha$. But if we construct confidence intervals C_1, \ldots, C_N for N parameters $\theta_1, \ldots, \theta_N$ then we want to ensure that

$$\mathbb{P}(\theta_j \in C_j, \text{ for all } j = 1, \dots, N) \ge 1 - \alpha.$$

To do this, we construct each confidence interval C_j at level $1 - \alpha/N$. Then

$$\mathbb{P}(\theta_j \notin C_j \text{ for some } j) \leq \sum_j \mathbb{P}(\theta_j \notin C_j) \leq \sum_j \frac{\alpha}{N} = \alpha.$$

Figure 1: Top left: 1,000 test statistics. Top right: the p-values. Bottom left: sorted log p-values and Bonferroni threshold. Bottom right: sorted log p-values and FDR threshold.