Fiche du chapitre I - Fonctions d'une variable réelle

Ensemble de définition d'une fonction f

C'est l'ensemble des réels x tels que l'expression f(x) a un sens.

Méthode pour déterminer l'ensemble de définition d'une fonction :

- ✓ s'il y a une racine carrée (du type $\sqrt{A(x)}$), l'expression A(x) (sous la racine) doit être positive ou nulle : on élimine les valeurs de x telles que A(x) < 0;
- ✓ s'il y a un dénominateur du type $\frac{B(x)}{C(x)}$, l'expression C(x) (par laquelle on divise) doit être non nulle : on élimine les valeurs de x telles que C(x) = 0;
- ✓ s'il y a un logarithme (du type $\ln(D(x))$ ou $\log(D(x))$), l'expression D(x) (dont on prend le logarithme) doit être strictement positive : on élimine les valeurs de x telles que $D(x) \leq 0$.

Composée de fonctions

 \triangle

On note $g \circ f$ la fonction définie par $(g \circ f)(x) = g(f(x))$.

Attention! En général, $g \circ f \neq f \circ g$.

Sur les fonctions logarithme et exponentielle

- \checkmark Si x > 0, $\log(x) = \frac{\ln(x)}{\ln(10)}$.
- \checkmark Pour x réel, $10^x = e^{x \ln(10)}$
- \checkmark Si x > 0 et y > 0, $\ln(xy) = \ln(x) + \ln(y)$.
- $\checkmark \text{ Si } x > 0 \text{ et } g > 0, \underline{\ln(xg) = \ln(x) + \ln(g)}$ $\checkmark \text{ Si } x > 0 \text{ et } \alpha \text{ réel}, \overline{\ln(x^{\alpha}) = \alpha \ln(x)}.$
- \checkmark En particulier, si x > 0, $\ln(\frac{1}{x}) = -\ln(x)$.
- \checkmark Si x > 0 et y > 0, $\ln(\frac{x}{y}) = \ln(x) \ln(y)$.
- \checkmark Pour x et y réels, $e^{x+y} = e^x e^y$.
- \checkmark Pour tout x réel, $e^{-x} = \frac{1}{e^x}$.
- ✓ Pour x et y réels, $e^{x-y} = \frac{e^x}{e^y}$
- \checkmark Pour x réel, $\ln(e^x) = x$.
- \checkmark Pour x > 0, $e^{\ln(x)} = x$.
- \checkmark On a $\ln(x) = y$ si et seulement si $x = e^y$.

- (et de même log(xy) = log(x) + log(y))
 - (et de même $\log(x^{\alpha}) = \alpha \log(x)$)
 - (et de même $\log(\frac{1}{x}) = -\log(x)$)
- (et de même $\log(\frac{x}{y}) = \log(x) \log(y)$)
 - (et de même $10^{x+y} = 10^x 10^y$)
 - (et de même $10^{-x} = \frac{1}{10^x}$)
 - (et de même $10^{x-y} = \frac{10^x}{10^y}$)
 - (et de même, $\log(10^x) = x$)
 - (et de même, $10^{\log(x)} = x$)
- (et de même, $\lceil \log(x) = y$ si et seulement si $x = 10^y \rceil$

Sur les fonctions puissances

Pour α réel, pour x > 0, on a par définition $x^{\alpha} = e^{\alpha \ln(x)}$. Pour x > 0, et pour α et β réels, on a les relations :

$$x^{\alpha+\beta} = x^{\alpha}x^{\beta}, \qquad x^{-\alpha} = \frac{1}{x^{\alpha}} = \left(\frac{1}{x}\right)^{\alpha}, \qquad x^{\alpha-\beta} = \frac{x^{\alpha}}{x^{\beta}}, \qquad x^{\alpha\beta} = \left(x^{\alpha}\right)^{\beta} = \left(x^{\beta}\right)^{\alpha}.$$

Calcul de dérivées

function f	dérivée f'
α (constante)	0
x^{α}	$\alpha x^{\alpha-1}$
e^x	e^x
$\mathrm{e}^{lpha x}$	$\alpha e^{\alpha x}$
$\alpha^x \ (\alpha > 0)$	$\ln(\alpha) \alpha^x$
$\ln(x)$	$\frac{1}{x}$

function f	dérivée f'
$\alpha u(x)$	$\alpha u'(x)$
u(x) + v(x)	u'(x) + v'(x)
u(x)v(x)	u'(x)v(x) + u(x)v'(x)
$\frac{1}{u(x)}$	$-\frac{u'(x)}{u(x)^2}$
$\frac{u(x)}{v(x)}$	$\frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$

fonction f	dérivée f'
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$1 + \tan^2(x)$
$\operatorname{sh}(x)$	$\operatorname{ch}(x)$
$\operatorname{ch}(x)$	$\operatorname{sh}(x)$

fonction f	dérivée f'
$\sqrt{u(x)}$	$\frac{u'(x)}{2\sqrt{u(x)}}$
$\ln(u(x))$	$\frac{u'(x)}{u(x)}$
$e^{u(x)}$	$u'(x) e^{u(x)}$
$u(x)^{\alpha}$	$\alpha u'(x) u(x)^{\alpha-1}$
v(u(x))	$v'(u(x)) \times u'(x)$

La tangente à la courbe représentative de f au point $(x_0, f(x_0))$ est la droite passant par le point $(x_0, f(x_0))$ de pente $f'(x_0)$. Son équation est :

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Étude de fonctions

Méthode générale pour étudier une fonction f:

- (i) on détermine l'ensemble de définition;
- (ii) on calcule la dérivée f';
- (iii) on fait un tableau de signes de la fonction f';
- (iv) on en déduit le tableau de variations de la fonction f;
- (v) on détermine les valeurs (ou les limites) aux bornes de l'ensemble de définition, et on complète le tableau de variations;
- (vi) on trace la courbe représentative de la fonction f.