有机推断 1

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

燃料乙醇

燃料乙醇指以生物物质为原料通过生物发酵等途径获得的可作为燃料用的乙醇。燃料乙醇经变性后与汽油按一定比例混合可制车用乙醇汽油。

燃料乙醇生产技术主要有第一代和第二代两种。第一代燃料乙醇技术是以糖质和淀粉质作物为原料生产乙醇。其工艺流程一般分为五个阶段,即液化、糖化、发酵、蒸馏、脱水。第二代燃料乙醇技术是以木质纤维素质为原料生产乙醇。与第一代技术相比,第二代燃料乙醇技术首先要进行预处理,即脱去木质素,增加原料的疏松性以增加各种酶与纤维素的接触,提高酶效率。待原料分解为可发酵糖类后,再进入发酵、蒸馏和脱水。

我国燃料乙醇的主要原料是陈化粮和以木薯、甜高粱等淀粉质或糖质非粮作物,今后研发的重点主要集中在以木质纤维素为原料的第二代燃料乙醇技术。目前,国家发改委已核准了广西的木薯燃料乙醇、内蒙的甜高粱燃料乙醇和山东的木糖渣燃料乙醇等非粮试点等项目,以农林废弃物等木质纤维素原料制取乙醇燃料的技术也已进入年产万吨级规模的中试阶段。

根深蒂固

一、根据反应条件判断有机反应类型和有机物的类别

类型:	; 类别:反应物 A:	: 生成物:。)
辨析:如果 B	还能与	反应,说明 B 一定是醛,而 A 一定是伯	醇,否则,说明
一定是酮,而 A	一定是仲醇。		
写出乙醇被氧	化为乙醛的化学方程式:		
2. A — 新制Cu(o	$\xrightarrow{OH)_2} \mathbf{B}$		
类型:	; 类别: 反应物 A:	,生成物:。	
	制氢氧化铜反应的化学方程式:		
3. $\mathbf{A} = \frac{RH_2SO_4}{\Delta}$	\rightarrow B		
类型 1:	; 类别:反应物:	,	
类型 2:	; 类别: 反应物:	,主要生成物:。	
举例:			
类型 3:	; 类别:反应物:	,生成物:	o
举例:			
4. A — NaOH 醇	^{溶液} →B		
类型 :	: 类别: 反应物:	,生成物:。	
5. A NaOH7K			
Δ			
类型 1:	; 反应物:	,生成物:。	
特点:			

类型 2:		生成物:。	
特点:			
类型 3:	; 反应物:, 生成	物:	
特点:			
举例:			
	; 反应物:		o
举例:			
H /Ni			
$6. A \xrightarrow{H_2/N_1} B$			
类型 1:	; 反应物:	;	
生成物:			
举例:			
	; 反应物:		0
举例:			
米 刑 2	F Fix Win	/+· r+: //m	
	; 反应物:	,生成初:	o
举例:			
推断题中常见的突	破口		
)根据反应现象推知官	『能团		
1. 能使溴水褪色 ,可	推知该物质分子中可能含有	o	
2. 能使酸性高锰酸钾	溶液褪色 ,可推知该物质分子中可	可能含有	
	_0		
4. 加入新制氢氧化铜	悬浊液,加热,有红色沉淀生成;	或加入银氨溶液有银镜生成,	可推知该
。则该物	质可能为	°	
5. 加入金属 Na 放出	H_2 ,可推知该物质分子结构中含有	<u> </u>	
6. 加入 NaHCO ₃ 溶液	产生气体,可推知该物质分子结构	勾中含有	o
7. 能与碳酸钠作用生	成气体的物质,含有	o	
8 加入溴水、虫现白	色沉淀,可推知该物质为		

(二) 根据反应产物推知官能团位置

1. 若由**醇氧化**得醛或羧酸,可推知-OH-定连接在有 2 个氢原子的碳原子上,即存在-CH₂OH;由醇

文 (СНОН 氧化为酮,推知—OH 一定连在有 1 个氢原子的碳原子上,即存在 ; 若醇不能在催化剂作用下被氧化,则—OH 所连的碳原子上无氢原子。

- 2. 由消去反应的产物,可确定-OH或-X的位置
- 3. 由**取代反应产物的种数**,可确定碳链结构。如烷烃,已知其分子式和一氯代物的种数时,可推断其可能的结构。有时甚至可以在不知其分子式的情况下,判断其可能的结构简式。

(三)根据反应产物推知官能团个数

- 1. 与银氨溶液反应,若 **1mol 有机物生成 2mol 银**,则该有机物分子中含有______; 若生成 **4mol 银**,则含有______; 若生成 **4mol 银**,则含有______;
- 2. 与金属钠反应, 若 **1mol 有机物生成 0.5molH₂**,则其分子中含有一个活泼氢原子,可能为______, 或_______,也可能为_____。
 - 3. 与碳酸钠反应,若 1mol **有机物生成 0.5molCO₂**,则说明其分子中含有_____。
 - 4. 与碳酸氢钠反应,若 1mol 有机物生成 1molCO₂,则说明其分子中含有_____。

三、掌握重要有机反应类型及原理

$$A_{1} = A_{1} + B_{1}$$
 $Y \rightarrow A - Y + B - X$

1. 取代反应: 原理可简述为: "有进有出"图示为

包含: 烷烃的卤代(扩展到饱和碳原子的特征反应), 醇和氢卤酸的反应, 苯的溴代、硝化, 苯酚和溴水的反应, 广义说, 酯化、水解也可归属此列。

2. 加成反应: 原理可简述为: "有进无出"

包含:烯烃、炔烃、苯环、醛等加 H_2 ,烯烃、炔烃等加 X_2 ,烯烃、炔烃等加HX,烯烃、炔烃等加 H_2O 等等。加成反应是不饱和碳原子的特征反应之一。

$$\begin{array}{ccc} A & \xrightarrow{-\hat{\mathbb{Z}} & \hat{\mathbb{Z}} & \hat{\mathbb{Z}} & A = B + x - y \\ \stackrel{+}{\mathbb{Z}} & \stackrel{-}{\mathbb{Z}} & \stackrel{-}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{-}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & \stackrel{+}{\mathbb{Z}} & A = B + x - y \\ & \stackrel{+}{\mathbb{Z}} & A = B + x - x - y \\ & \stackrel{$$

3. 消去反应: 原理可简述为:

包含: 醇分子内脱水生成烯烃, 卤代烃脱 HX 生成烯烃。

$$\begin{array}{c} \textbf{A} - \textbf{B} + \textbf{H} - \textbf{O} \textbf{H} \longrightarrow \textbf{A} - \textbf{O} \textbf{H} + \textbf{H} - \textbf{B} \\ \uparrow & \vdots & \vdots & \vdots \\ \end{array}$$

5. 水解反应:

- 6. 氧化反应
 - (1) 定义: 有机化合物分子中增加氧原子或减少氢原子的反应称为氧化反应。
 - (2) 举例: 2CH₃CHO + O₂→2CH₃COOH
- 7. 还原反应
 - (1) 定义: 有机化合物分子中增加氢原子或减少氧原子的反应称为还原反应。
 - (2) 举例: CH₃CHO + H₂ → CH₃CH₂OH

四、弄清常见有机物之间的相互转化关系,并掌握方程式

掌握各类有机物间的相互联系,使有机化学知识形成体系。各类链烃及其衍生物间的关系可表示如下:

枝繁叶茂

知识点 1: 根据数据处理,进行推断

通过对题目中已知的一些数据,如有机物的分子式、同分异构体的数目、反应时各反应物的个数比等进行处理,来确定有机物的结构简式。

- 【例1】某有机物 4.6 克完全燃烧生成标准状况下二氧化碳 2.24 升和 1.8 克水,其蒸气的密度 2.054 克/升(标准 状况),求:
 - (1) 推测该有机物的分子式
 - (2) 又知该有机物能与乙醇发生酯化反应,试推测有机物的分子结构,并写出发生酯化反应的化学方程式。

变式 1: 烃的含氧衍生物 A 的分子量是 72,分子里共有 38 个质子,充分燃烧 1 molA 需 3molO_2 , A 可使溴水 褪色,使石蕊试液变红,求有机物的分子式,并写出 A 发生加聚反应的化学方程式。

变式 2: 某有机物 A 中只含碳、氢、氧三种元素,相对分子质量为 102, 氢元素的质量分数为 9.8%, 分子中氢原子个数为氧的 5 倍.

- (1) A 的分子式为____。
- (2) 若 A 为酯类物质,在酸性条件下水解,生成两种相对分子质量相同的有机物,则 A 的结构简式可能为
- (3) 若 A 为羧酸,可由醇 B 氧化得到, A 和 B 可以生成酯 C,符合这些条件的酯只有____种,请写出其中一种酯的结构简式:
- (4) 若 A 中有 2 个不同的含氧官能团,并含有 2 个甲基,不能发生消去反应的结构简式为:

知识点 2:	利田右机	物的性	质推断
	7171 /TT / H ////	101111 T	ומא אור ענו

有机物性质是与其所具有的官能团相对应的,可根据有机物的某些性质(如反应对象、反应条件、反应数据、反应特征、反应现象、反应前后分子式的差异等等),首先确定其中的官能团及位置,然后再结合分子式价键规律、取代产物的种类等确定有机物的结构简式,再根据题设要求进行解答。

(I)A 可以及生的及巡衔		(选填序号)	ō		
				④氧化反应	
(2)B 分子所含官能团的	名称是	,		0	
(3)B 分子中没有支链,					异构体的结构简
式是	0				
(4)由 B 制取 A 的化学力	万程式是			c	,
变式 1: 某有机物 X 的分子	式为 C ₄ H ₈ O ₂ , X 在酸	於性条件下与 力	火 反应,生成	两种有机物 Y 和 Z,	Y在铜催化下
被氧化为W,W能发生银镜	危反应.				
(1) X 中所含的官能因]是(填名称)				
(2) 写出符合题意的 X	K的结构简式			o	
(3) 若 Y 和 Z 含有相	目同的碳原子数,写出	日下列反应的任	化学方程式: `	Y 与浓硫酸的混合物	物共热发生消去
反应		o			
W 与新制 Cu(OH)2 反	应			o	
(4) 若 X 的某种同分别	异构体能使石蕊变红色	色,可能有	种。		
变式 2: A 是一种酯,分子式	戊是 C₁₄H₁₂O₂,A 可以	人由醇 B 跟羧菌	竣 C 发生酯化	反应得到。A 不能	使溴水褪色,氧
化B可得到C。					
化 B 可得到 C。 (1) 写出 A、B、C 的	结构简式: A	, B	, C	o	

知识点 3: 简单框图类推断题

由一些特殊的反应条件及反应现象入手,推断出对应的反应类型、反应物的官能团,生成物的种类等。

【例3】根据图示完成下列问题。

- (1) 化合物 A 含有的含氧官能团是
- (2) 1 mol A 与 2 mol H₂ 反应生成 1 mol E, 其反应方程式是

- (3) 与 A 具有相同官能团的 A 的同分异构体的结构简式是
- (4) B 在酸性条件下与 Br₂ 反应得到 D, D 的结构简式是
- (5) F 的结构简式是 。由 E 生成 F 的反应类型是

变式 1: A 是烃的含氧衍生物,能发生以下变化(B 中无不饱和键):

$$A+NaOH$$
溶液 $A+NaOH$ 溶液 $A+NaOH$ 溶液 $A+NaOH$

现知 12 克 B 与足量金属钠反应,在标准状况下放出 2.24 升氢气,试写出各物质的结构简式

变式 2: 乙烯是一种重要的化工原料,以乙烯为原料衍生出部分化工产品的反应如下(部分反应条件已略去):

请回答下列问题:

- (1) A 的化学名称是 ;
- (2) B和A反应生成C的化学方程式为 ,该反应的

类型	型为;				
	(3) D 的结构简式	式为; (4) F	的结构简式为	;	
	(5) D的同分异构	均体的结构简式为	0		
1	م نے				
000	水熟 水熟 水熟 表	蒂落			
1	(切光) 甘方扣 ##	的八乙十4 C H O	敏坐灶组碎后应和加 式后属	5. 类收点上 II 加出 底绳文4	hm L-1
1.	构简式可能是		罗 及生氓锐又巡和加风又为	立,若将它与 H₂加成,所得产∜	勿红
	A. (CH ₃) ₂ CHCH(C		B. (CH ₃) ₂ CH CH ₂ OI	1	
	C. CH ₃ CH ₂ C(CH ₃)		D. CH ₃ (CH ₂) ₃ CH ₂ Ol		
	c. chischize(chis	<u> </u>	D. CH ₃ (CH ₂) ₃ CH ₂ O ₃	11	
2.	分子式为 C ₁₀ H ₁₄ 的]苯的同系物,其苯环上有	4个甲基,符合条件的结构	习有 ()	
	A. 2种	B. 3种	C. 4种	D. 5种	
3.	某一有机物 A 可发	定生下列变化			
			HCl →B → C		
	A(0	$C_6 H_{12} O_2) \xrightarrow{\text{NaOH } 2 \text{NaOH}} $	CnO C		
			ΔE		
	已知 C 为羧酸,且	LC、E不发生银镜反应,	则 A 的可能结构有 ()	
	8A. 4种	B. 3种	C. 2种	D. 1种	
4.				应生成物,B 的分子式是(,
	A. C_3H_6O	B. $C_3H_6O_2$	C. C_3H_8O	D. C_2H_6O	
5.	某化合物且有加下	化学性质,①能与 Na 反际	D放出气体 ②能使溴水	() 《) 《) 《) 《) 《) 《) 》 () 《) 》 ()	
٠.			文出气体,则该有机物可能		
	A. $CH_2 = CHCC$		B. $CH_2 = CHCHC$		
				,	
	C. $CH_2 = CHCH$	H_2OH	D. $CH_2 = CHCOC$	OCH ₃	
6.	有A、B、C三种和	有机物,B用氢气还原生成	D,A的水解产物之一也是	是 D, 另一产物与硝酸、硝酸铂	き混
	和液反应,生成黄	色沉淀。B 氧化后生成 E,	C 的水解产物之一也是 E	,另一种产物是 D。E 既能与硕	炭酸
	钠溶液反应,又能	与银氨溶液反应。			
	(1)结构简式: A 是	£; B 是	; C是	o	

(2)化学方程式: B→D 是 A 的水解反应是 C的水解反应是 7. 羧酸 $A(分子式为 C_5H_{10}O_2)$ 可由醇 B 氧化得到,A 和 B 可以生成酯 C(相对分子质量为 172),符合这些 条件的酯只有 4 种。请写出这 4 种酯的结构简式: 8. 有以下一系列反应,最终产物是乙二酸. 答下列问题: (1) C 的结构简式是______. B→C 的反应类型是______, E→F 的化学方程式是 (2) E 与乙二酸发生酯化反应生成环状化合物的化学方程式是 9. A 是一种苯的邻位二取代物,相对分子质量为 180,有酸性。A 水解生成 B 和 C 两种酸性化合物, B 的相 对分子质量为 60, C 能溶解于 NaHCO3 溶液,并能使 FeCl3 溶液显紫色(已知酸性大小:羧酸>碳酸>酚> 水)。试推断 A、B、C 的结构简式。 10. 已知碳碳双键可以被臭氧氧化,反应如下: ·CHO ,具体合成途径如下: 完成下列填空: 所属的同系物的通式为 , A 的结构简式是 的一种同分异构体是一种芳香酸,且分子只含有一个环,写出满足条件的任意一种同分异 构体的结构简式

(2) 这三步反应的反应类型是、、、、。
(3)写出最后一步反应的反应方程式。
OH 11. 环己醇() 是一种有机化工基础原料,工业上的主要合成途径及有关反应如下:
II. 环亡醇(
$\begin{array}{c c} A & H_2 \cdot N_i \\ \hline C_6 H_6 O & \bigcirc \triangle & & \bigcirc \\ \end{array}$
$\begin{bmatrix} \mathbf{B} \\ \mathbf{C}_2\mathbf{H}_2 \end{bmatrix} \boxed{2} \boxed{\mathbf{C}} \boxed{3} \boxed{\mathbf{Q}} \boxed{\mathbf{Q}}$
已知: A、C 都是芳香族化合物。
(1) A 的名称是, 写出 A 在生活或生产中的一种用途(制环己醇除外)。
(2) C 的结构简式是
(3)下列检验由反应④制取的环己烯是否纯净的方法中,合理的是。
a. 测定沸点 b. 用金属钠 c. 用 FeCl ₃ 溶液 d. 用高锰酸钾溶液
(4)写出反应⑤和⑥的化学方程式;
12. 异戊二烯(C_5H_8)是橡胶工业的重要原料。工业上有多种合成方法,其中两种如下:
A 催化二聚 2-甲基-1-戊烯 异构化, 脱甲基 异戊二烯
о он
B CH ₃ -C-CH ₃ CH = C-C-CH ₃ 选择性加氢 C 反应 2
根据题意回答下列问题:
(1)A的结构简式为。已知B可作为生产高分子导电材料的原料,则B的名称:
。反应①的反应类型是。
(2)反应②的化学方程式为。
(3)丁基橡胶是由异戊二烯与 2-甲基丙烯共聚生成,写出该橡胶的结构简式。
(4)与异戊二烯相差一个"CH ₂ "原子团,且结构中只有一个甲基的同系物除
$CH_2 = CH-CH_2-CH=CH-CH_3$, $CH_2 = CH-CH=CH-CH_2-CH_3$, $CH_2 = C-CH_2-CH=CH_2$

还有_____(填结构简式)(已知 \ C=C=C < 不稳定)。