Mechanik Kinematik

1.2 Kinematik

1.2.1 Geradlinige Bewegung v=konst.

```
Zeit t s Sekunden Geschwindigkeit v \frac{m}{s} Meter/Sekunde Weg, Auslenkung s m Meter v = \frac{s}{t} \quad t = \frac{s}{v}
```

Interaktive Inhalte: $s = v \cdot t - v = \frac{s}{t} - \overline{t} = \frac{s}{v}$

1.2.2 Beschleunigte Bewegung

```
v = a \cdot t
Eeschleunigung a \frac{m}{s^2} \frac{Meter/Sekunde^2}{Meter/Sekunde}
Geschwindigkeit v \frac{m}{s} \frac{Meter/Sekunde}{Meter/Sekunde}
a = \frac{v}{t} \quad t = \frac{v}{a}
Zeit t s Sekunden
Beschleunigung a \frac{m}{s^2} \frac{Meter/Sekunde^2}{Meter/Sekunde^2}
Weg, Auslenkung s m Meter
a = \frac{2 \cdot s}{t^2} \quad t = \sqrt{\frac{2 \cdot s}{a}}
```

Interaktive Inhalte: $v=a\cdot t$ - $a=\frac{v}{t}$ - $t=\frac{v}{a}$ - $s=\frac{1}{2}\cdot a\cdot t^2$ - $a=\frac{2\cdot s}{t^2}$ - $t=\sqrt{\frac{2\cdot s}{a}}$ -

1.2.3 Beschleunigte Bewegung mit Anfangsgeschwindigkeit

$v = v_0 + a \cdot t$	Anfangsgeschwindigkeit Zeit Beschleunigung Geschwindigkeit $v_0 = v - a \cdot t$ $t = \frac{v - v_0}{a}$	v_0 t a v	$\frac{m}{s}$	$Meter/Sekunde^2 \ Meter/Sekunde$	
$s = s_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$	Anfangsweg Anfangsgeschwindigkeit Zeit Beschleunigung Weg,Auslenkung $a = \frac{2 \cdot (s - s_0 - v_0 \cdot t)}{t^2} \qquad t$ $v_0 = \frac{s - s_0 - 0.5 \cdot a \cdot t^2}{t}$	s_0 v_0 t a s $= \frac{-v}{-v}$	\tilde{m}	$Meter/Sekunde^2$ Meter	$s_0 = s - v_0 \cdot t - \frac{1}{2} \cdot a \cdot t^2$
$v^2-v_0^2=2\cdot a\cdot s$ Interaktive Inhalte: $v=v_0+a\cdot t-v_0$	Geschwindigkeit Anfangsgeschwindigkeit Beschleunigung Weg, Auslenkung $v = \sqrt{2 \cdot a \cdot s + v_0^2}$ $v_0 = \sqrt{2 \cdot a \cdot s + v_0^2}$	v_0 a s $= \sqrt{v^2}$	$\frac{\frac{m}{s}}{\frac{m}{s^2}}$ m	$\frac{Meter/Sekunde^2}{Meter}$ $\frac{a \cdot s}{a \cdot s}$	2 (2 - 2 - 2 - 1 - 1)

1.2.4 Durchschnittsgeschwindigkeit

```
v = \frac{x_1 - x_2}{t_1 - t_2}
                                             aufeinanderfolgende Zeitpunkte t_2
                                                                                          Sekunde
                                                                                     s
                                             aufeinanderfolgende Zeitpunkte
                                                                                          Sekunde
                                                                              t_1
                                                                                     s
                                            zurückgelegter Weg
                                                                                    m
                                                                                          Meter
                                                                               x_2
                                            zurückgelegter Weg
                                                                               x_1
                                                                                          Meter
                                             Bahngeschwindigkeit
                                                                                          Meter/Sekunde
```

Interaktive Inhalte: $v = \frac{x_1 - x_2}{t_1 - t_2}$ -

Mechanik Kinematik

1.2.5 Durchschnittsbeschleunigung

 $a = \frac{v_1 - v_2}{t_1 - t_2}$

aufeinanderfolgende Zeitpunkte Sekunde t_2 aufeinanderfolgende Zeitpunkte Sekunde t_1 \underline{m} Geschwindigkeit Meter/Sekunde v_2 $\frac{s}{m}$ Geschwindigkeit v_1 Meter/Sekunde

 ${\rm Meter/Sekunde\ im\ Quadrat}$ Durch schnitts be schle unig ung

Interaktive Inhalte: $a = \frac{v_1 - v_2}{t_1 - t_2}$ -

1.2.6 Freier Fall

 $h = \frac{1}{2} \cdot g \cdot t^2$

Zeit Sekunden Fallbeschleunigung $g = \frac{m}{c^2}$ $9,81\frac{m}{c^2}$

Meter

Fallhöhe $g = \frac{2 \cdot h}{t^2} \quad t = \sqrt{\frac{2 \cdot h}{g}}$

 $v = \sqrt{2 \cdot h \cdot g}$

h - mMeter Fallbeschleunigung g $9,81\frac{m}{s^2}$

Meter/SekundeGeschwindigkeit

 $h = \frac{v^2}{2 \cdot q}$

Interaktive Inhalte: $h = \frac{1}{2} \cdot g \cdot t^2 - g = \frac{2 \cdot h}{t^2} - t = \sqrt{\frac{2 \cdot h}{g}} - v = \sqrt{2 \cdot h \cdot g} - h = \frac{v^2}{2 \cdot g}$

1.2.7 Senkrechter Wurf nach oben

 $h = h_0 + v_0 \cdot t - \frac{1}{2} \cdot g \cdot t^2$

Abwurfhöhe Meter

Meter/Sekunde Anfangsgeschwindigkeit Sekunden

Fallbeschleunigung $9,81\frac{m}{s^2}$

Höhe Meter

 $g = -\frac{2 \cdot (h - h_0 - v_0 \cdot t)}{t^2}$ $t = \frac{-v_0 \pm \sqrt{v_0^2 + 4 \cdot 0.5 \cdot g \cdot (h_0 - h)}}{c}$ $h_0 = h - v_0 \cdot t + \frac{1}{2} \cdot g \cdot t^2$

 $v = v_0 - g \cdot t$

Anfangsgeschwindigkeit Meter/Sekunde Zeit Sekunden

 $\begin{array}{ll} \frac{m}{s^2} \\ \frac{m}{s} & Meter/Sekunde \end{array}$ Fallbeschleunigung $9,81\frac{m}{e^2}$ g

Geschwindigkeit

 $v_0 = v + g \cdot t$ $t = \frac{v_0 - v}{g}$ $g = \frac{v_0 - v}{t}$

1.2.8 Waagrechter Wurf

Bewegung in x-Richtung:

 $x = v_x \cdot t$

Bewegung in y-Richtung:

 $y = h - \tfrac{1}{2} \cdot g \cdot t^2$

 $v_y = g \cdot t$

Zeitfreie Darstellung:

 $y=-\tfrac{1}{2}\cdot g\cdot (\tfrac{x}{v_x})^2=-\tfrac{g}{2\cdot v_x^2}\cdot x^2$ Gesamtgeschwindigkeit:

 $v_{ges} = \sqrt{v_x^2 + v_y^2}$ Wurfzeit:

 $t = \sqrt{\frac{2 \cdot h}{g}}$ Wurfweite: $x = v_x \cdot \sqrt{\frac{2 \cdot h}{g}}$ Auftreffwinkel:

 $\tan \alpha = \frac{v_y}{v_x}$

Fallbeschleunigung $\frac{\frac{m}{s^2}}{\frac{m}{s}}$ $9,81\frac{m}{s^2}$ Meter/Sekunde Anfangsgeschwindigkeit $v_0 = V_x$ Wurfweite

Kinematik

Interaktive Inhalte: $h=\frac{1}{2}\cdot g\cdot t^2$ – $g=\frac{2\cdot h}{t^2}$ – $t=\sqrt{\frac{2\cdot h}{g}}$ – $s=v\cdot t$ – $v=\frac{s}{t}$ –

1.2.9 Schiefer Wurf

 $y = x \cdot tan\alpha - \frac{g \cdot x^2}{2 \cdot v_0^2 \cdot cos^2 \alpha}$

$x_w = \frac{v_0^2 \cdot \sin(2 \cdot \alpha)}{g}$	Fallbeschleunigung g $\frac{m}{s^2}$ $9,81\frac{m}{s^2}$ Abwurfwinkel α \circ Grad Anfangsgeschwindigkeit v_0 $\frac{m}{s}$ Meter/Sekunde Wurfweite x_w m Meter $t = \frac{v_0 \cdot sin\alpha}{g}$
$v_y = v \cdot \sin\alpha - g \cdot t$	Fallbeschleunigung g $\frac{m}{s^2}$ 9, $81\frac{m}{s^2}$ Zeit t s Sekunden Winkel Geschwindigkeitsvektor v - x-Achse α \circ Grad Betrag der Geschwindigkeit v $\frac{m}{s}$ Meter/Sekunde Komponente in y-Richtung v_y $\frac{m}{s}$ Meter/Sekunde $v = \frac{v_y + g \cdot t}{sin\alpha}$
$v_x = v \cdot cos\alpha$	Winkel Geschwindigkeitsvektor v - x-Achse α ° Grad Betrag der Geschwindigkeit v $\frac{m}{s}$ Meter/Sekunde Komponente in x-Richtung v_x $\frac{m}{s}$ Meter/Sekunde $v = \frac{v_x}{\cos \alpha}$
$v = \sqrt{v_x^2 + v_y^2}$	Komponente in x-Richtung v_x $\frac{m}{s}$ Meter/Sekunde Komponente in y-Richtung v_y $\frac{m}{s}$ Meter/Sekunde Betrag der Geschwindigkeit v $\frac{m}{s}$ Meter/Sekunde $v_x = \sqrt{v^2 - v_y^2}$
$v_y = \sqrt{v^2 - v_x^2}$	Betrag der Geschwindigkeit v $\frac{m}{s}$ Meter/Sekunde Komponente in x-Richtung v_x $\frac{m}{s}$ Meter/Sekunde Komponente in y-Richtung v_y $\frac{m}{s}$ Meter/Sekunde

 $v_y = tan\alpha \cdot v_x \quad tan\alpha = \frac{v_y}{v_x} \quad v_x = \frac{v_y}{tan\alpha}$

Anfangsgeschwindigkeit

in x-Richtung (Bahnkurve)

in y-Richtung (Bahnkurve) y

Fallbeschleunigung

Abwurfwinkel

 $t = \frac{2 \cdot v_0 \cdot sin\alpha}{2}$

 $\frac{\frac{m}{s}}{\frac{m}{s^2}}$

 v_0

g

Meter/Sekunde

Grad

Meter

Meter

 $9,81\frac{m}{s^2}$

Mechanik Kinematik

1.2.10 Frequenz-Periodendauer

Interaktive Inhalte: $f = \frac{1}{T} - T = \frac{1}{f} - f = \frac{n}{t} - t = \frac{n}{f} - n = f \cdot t$

1.2.11 Winkelgeschwindigkeit

1.2.12 Bahngeschwindigkeit

$v = \omega \cdot r$	Radius	r	m	Meter
	Winkelgeschwindigkeit			
	Bahngeschwindigkeit	v	\overline{s}	Meter/Sekunde
Interaktive Inhalte: $v = \omega \cdot r - \omega = \frac{v}{2}$	$\omega = \frac{v}{r}$ $r = \frac{v}{\omega}$			

1.2.13 Zentralbeschleunigung

$a_z = \omega^2 \cdot r$	Radius Winkelgeschwindigkeit Zentralbeschleunigung	ω	$\frac{1}{s}$	Meter 1/Sekunde
	$\omega = \sqrt{\frac{a_z}{r}} r = \frac{a_z}{\omega}$			
Interaktive Inhalte: $a = \omega^2$, $r = \omega = -\frac{a_z}{2}$				