Nome (Número	
`		LEI MIEI

Grupo I – Sem justificar, indique o valor lógico das seguintes proposições.

Resposta correta: 0.75 Resposta em branco: 0 Resposta errada: -0,25 Cotação mínima do grupo: 0

1.	O conjunto $D = \{(x, y) \in \mathbb{R}^2 : y - x > 0\}$	$ \wedge \ (x-1)^2 + (y+1)^2 < 16 \} \ \text{\'e aberto e limitado}. $	
	3 (() 5) - 5 =		

3. Não existe uma função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 com derivadas parcias de segunda ordem contínuas tal que $f_x(x,y) = y^3 + 8xy$ e $f_y(x,y) = 3xy^2 - 4x^2$.

4. A função
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 definida por $f(x,y) = \begin{cases} x & \text{se } y \neq x^2 \\ 2-y & \text{se } y = x^2 \end{cases}$ é descontínua em todos os pontos da forma $(b,b^2), b \in \mathbb{R}$.

5. Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 uma função derivável. Se $\nabla f(1,1)$ e $v \in \mathbb{R}^2 \setminus \{(0,0)\}$ são vetores ortogonais, então $\frac{\partial f}{\partial v}(1,1) = 0$.

6. Se
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 é tal que $\frac{\partial f}{\partial v}(0,1) = v_1 v_2$, para todo o vetor $v = (v_1, v_2) \in \mathbb{R}^2 \setminus \{(0,0)\}$, então f não é derivável em $(0,1)$.

7. Seja
$$\mathscr{C}$$
 a curva de interseção da superfície $z=2y^2+x$ com o plano vertical $x=1$. \square O declive da reta tangente a \mathscr{C} no ponto $(1,-1,3)$ é positivo.

8. Se
$$z(x,y)=y+f(x^2-y^2)$$
, sendo $f\colon \mathbb{R} \longrightarrow \mathbb{R}$ uma função derivável, então
$$u \longmapsto f(u)$$

$$y\frac{\partial z}{\partial x}+x\frac{\partial z}{\partial y}=x.$$

9. O conjunto de nível 2 da função
$$f(x,y,z)=x^2+(y-1)^2$$
 é um cilindro circular que contém o ponto $(1,2,0)$.

10. Se
$$f, g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 são funções com derivadas parciais de primeira ordem contínuas tais que $f(1,1) = g(2,1) = 2$ e $\nabla f(1,1) = \nabla g(2,1) = (1,2)$, então o plano tangente ao gráfico de f em $(1,1,f(1,1))$ também é tangente ao gráfico de g em $(2,1,g(2,1))$.

(Continua)

Grupo II – Apresente os cálculos que realizar e justifique as suas respostas. Responda na folha de teste.

- 1. [3 val] Determine, se existir, $\lim_{(x,y)\to(0,0)} f(x,y)$, para
 - (a) $f(x,y) = e^{x^2y} + \frac{x y^4}{x^3 + y^4}$ (b) $f(x,y) = \begin{cases} \frac{\sin(2x^3 2y)}{x^3 y} & \text{se } y < x^3 \\ x + 2 & \text{se } y \ge x^3 \end{cases}$
- 2. [5.5 val] Considere a função $f \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^2y + xy^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- (a) Mostre que a função f é contínua em (0,0).
- (b) Mostre que, qualquer que seja o vetor $v = (v_1, v_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, existe $\frac{\partial f}{\partial v}(0, 0)$.
- (c) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$, para todo o $(x,y) \in \mathbb{R}^2$.
- (d) Estude a diferenciabilidade de f em (1,1) e em (0,0).
- 3. [2 val] Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = x^4 + y^4 - 4xy + 1.$$

Determine os pontos críticos de f e classifique-os quanto à sua natureza, indicando o valor do extremo quando existir.

4. [2 val] Utilize o método dos multiplicadores de Lagrange para determinar os extremos da função $f \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = y - x$$

no conjunto $\mathscr{C} = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 = 2 \right\}.$