Floating point numbers representation

IEEE754

IEEE754

```
Single-Precision (32 бит); B = 127

S E (8 bit) M (23 bit)

Double-Precision (64 бит); B = 1023

S E (11 bit) M (52 bit)
```

Value =
$$(-1)^{S} \cdot 2^{E-B} \cdot (1 + M / 2^{52})$$

Special values

S	E	M	Value
0	0	0	+0
1	0	0	-0
0	1111	0	+ ∞
1	1111	0	- ∞
0	1111	≠ 0	Signaling NaN
1	1111	≠ 0	Quiet NaN
0	0	≠ 0	Denormalized values
1	0	≠ 0	

Denormalized values

```
Single-Precision (32 бит)
S 0000 0000 M (23 bit)
Double-Precision (64 бит)
S 000 0000 0000 M (52 bit)
```

Value =
$$(-1)^{S} \cdot M / 2^{52}$$

Operations: multiplication

$$\langle S,E,M \rangle = \langle S_1,E_1,M_1 \rangle \cdot \langle S_2,E_2,M_2 \rangle$$

1. Calculate

$$S = S_1 ^ S_2$$

 $E = E_1 + E_2$
 $M = 1.M_1 \cdot 1.M_2$

2. $\{M >>= 1; E++ \}$ while M overflows

Operations: addition

$$\langle S,E,M \rangle = \langle S_1,E_1,M_1 \rangle \cdot \langle S_2,E_2,M_2 \rangle$$

1. Calculate

$$E_{diff} = E1 - E2$$

- 2. Normalize M_2 to E_{diff} bits
- 3. Values:

$$E = E_1$$
 $M = M_1 + /- M_2$
 $S = sign(-1S1M_1 + -1S2M_2)$

FPU implementations

- Extended command set (ARM VFP):
 - Additional commands
 - Additional 32 registers
- Coprocessor (x86): (gcc -mfpmath=387)
 - Commands that CPU gives to FPU
 - Interaction through stack
- SSE commands (Pentium-III+, x86-64): (gcc -msse -mfpmath=sse)
 - xmm registers used
 - Scalar commands SSE used

Precision

- Floating point
 - Single precision -32 bit $\approx 10^{37}$
 - Double Precision 64bit $\approx 10^{307}$
- Fixed point

