回文數

何謂回文數

回文數(palindromic number)之所以叫回文數,正是因為其前後對稱,由前往後念或由後往前念會得到相同的數字。

不論以何種進位制度進行,都將有無窮個回文數。

例如:9、33、191、4774、12321等。

最早的回文數

在數學方面記載「回文數」 最早的書籍是宋代

楊輝著的《注解九章演算法》(1261年),並有自注:「出《解鎖》算術, 賈憲用此術。」。

在我國, 把下圖稱為「賈憲 (約1200年) 三角形。」在歐洲叫做「帕斯卡(1653年)三角形。」

```
1
1
1

1
1
1

1
2
1

1
3
3
1

1
4
6
4
1

1
5
10
10
5
1

1
6
15
20
15
6
1
```

以完全平方數討論

原數	平方	原數	平方	原數	平方	原數	平方
11	121	2002	4008004	30693	942060249	1042151	1086078706801
22	484	2285	5221225	100001	10000200001	1100011	1210024200121
26	676	2636	6948496	101101	10221412201	1101011	1212225222121
101	10201	10001	100020001	110011	12102420121	1102011	1214428244121
111	12321	10101	102030201	111111	12345654321	1109111	1230127210321
121	14641	10201	104060401	200002	40000800004	1110111	1232346432321
202	40804	11011	121242121	798644	637832238736	1111111	1234567654321
212	44944	11111	123454321	1000001	1000002000001	1270869	1615108015161
264	69696	11211	125686521	1001001	1002003002001	2000002	400008000004
307	94249	20002	400080004	1002001	1004006004001	2001002	4004009004004
836	698896	20102	404090404	1010101	1020304030201	2012748	4051154511504
1001	1002001	22865	522808225	1011101	1022325232201	2294675	5265533355625
1111	1234321	24846	617323716	1012101	1024348434201	3069307	9420645460249

未進位之迴文數規律-1

Ι,

$$a_1$$
: 11² = 121 = 10² + 2 · 10 + 1

$$a_2$$
: $101^2 = 10201 = 10^4 + 2 \cdot 10^2 + 1$

$$a_3$$
: $1001^2 = 1002001 = 10^6 + 2 \cdot 10^3 + 1$

公式:
$$(10^n + 1)^2 = (10^{2n} + 1) + 2(10^n)$$

證明:

$$(10^n + 1)^2 = C_2^2 10^{2n} + C_1^2 10^n \cdot 1 + C_0^2 1^2 = (10^{2n} + 1) + 2 \cdot 10^n$$

未進位之迴文數規律-2

|| \

 a_1 : 22² = 484 = 4 · 10² + 8 · 10 + 4

 a_2 : $202^2 = 40804 = 4 \cdot 10^4 + 8 \cdot 10^2 + 4$

 a_3 : 2002² = 4008004 = 4 · 10⁶ + 8 · 10³ + 4

公式:
$$[2 \cdot (10^n + 1)]^2 = 4(10^{2n} + 1) + 8(10^n)$$

證明:

$$[2 \cdot (10^n + 1)]^2 = 4 \cdot C_2^2 \cdot 10^{2n} + 4 \cdot C_1^2 \cdot 10^n \cdot 1 + C_0^2 \cdot 1^2 = 4(10^{2n} + 1) + 8 \cdot 10^n$$

未進位之迴文數規律-3

統整[、[[的公式,可知此規律的通式為:

$$[k(10^n + 1)]^2 = k^2(10^{2n} + 1) + 2 \cdot k^2 \cdot 10^n$$

 \ddot{a} 2· k^2 · $10^n \ge 10$,即打破回文數之規則。

a a

x a a

aa

aa

<u>a 2a a</u>

10^m	2n+6	2n + 5	 n + 5	n+4	n + 3	n + 2	n+1	 1	0
係數	1	0	 n - 2 + 2	n - 1 + 0	n + 2	n - 1 + 0	n - 2 + 2	 0	1

進位之迴文數

$ a_n $	number	a_n^2
a_1	3	9
a_2	307	9 <mark>424</mark> 9
a_3	30693	$9\frac{42}{060}\frac{24}{24}9$
a_4	3069307	9 <mark>42</mark> 06 <mark>454</mark> 60 <mark>24</mark> 9
a_5	306930693	9 <mark>42</mark> 06 <mark>45</mark> 030 <mark>54</mark> 60 <mark>24</mark> 9
a_6	30693069307	9 <mark>42</mark> 06 <mark>45</mark> 03 <mark>484</mark> 30 <mark>54</mark> 60 <mark>24</mark> 9
a_7	3069306930693	9 <mark>42</mark> 06 <mark>45</mark> 03 <mark>48</mark> 000 <mark>84</mark> 30 <mark>54</mark> 60 <mark>24</mark> 9
a_8	306930693069307	$9\frac{42}{06}\frac{45}{45}03\frac{48}{48}00\frac{514}{514}00\frac{84}{84}30\frac{54}{54}60\frac{24}{24}9$
a_9	3069306930693	9 <mark>42</mark> 06 <mark>45</mark> 03 <mark>48</mark> 00 <mark>5</mark> 0971 <mark>14</mark> 00 <mark>84</mark> 30 <mark>54</mark> 60 <mark>24</mark> 9

$$\begin{cases} a_1 = 3 \\ a_n = 100a_{n-1} + (-1)^n \cdot 7 \cdot n \ge 2 \end{cases}$$

名詞定義

反向數:若某正整數的所有位數數字按相反順序重新排列後,所得到的數稱為原數的反向數。

反向倍數:若某正整數的反向數,其位數與原數一樣,且恰好是原數的正整數倍,則稱其為反向倍數。

例如:110 的反向數 11,因其反向數的位數為 2 位數,與原數的 3 位數不同,所以 110 沒有反向倍數;

2018 的反向數是 8102, 8102 並非 2018 的正整數倍,所以 2018 沒有反向倍數。但如 6 的 1 倍是 6, 777 的 1 倍是 777; 1234321 的 1 倍是 1234321,這種對稱情況 1 倍的反向倍數即是迴文數,太過顯然。

因此在本文反向倍數的尋找與性質探討中,暫且排除迴文數的情況。若 $A\cdots B$ 為 m 位數,其 α 倍的反向數為反向倍數,則我們稱 $A\cdots B$ 為 α 倍的反向倍數。

以反向數探討回文數

用一個數,乘以該數的顛倒數,而得到回文數。如:

 $12 \times 21 = 252$

 $112 \times 211 = 23632$

 $1111112 \times 2111111 = 23456965432$

這類回文數稱為「顛倒乘積型回文數」。

参考資料

- 迴文數定理與迴文數幻方
- 你知道你的生日可以寫成三個迴文數相加嗎?
- 問題有點燒腦,趣談迴文數
- 中華民國第 58 屆中小學科學展覽會作品