Probability exercises - Problem Set 6 - Continuous Random Variables and Random Vectors

Manuel Lleonart Anguix

For this Problem Set I added the notation! It means that an exercise is more difficult than the others in the Problem Set.!!, as you might imagine, is translated to *only for try-harders*.

Exercise 1. Let X be a random continuous variable with $f_X(x) = \frac{4}{3x^2}$ density function, for $1 \le x \le 4$. Compute the following probabilities.

1. P(1 < x < 3), $P(1 \le X < 3)$, P(1.5 < X < 3).

$$P(1 < x < 3) = P(1 \le X < 3) = \int_{1}^{3} \frac{4}{3x^{2}} dx = \left[\frac{-4}{3x}\right]_{1}^{3} = \frac{4}{3} - \frac{4}{9} = \frac{8}{9}$$

$$P(1.5 < X < 3) = \int_{1.5}^{3} \frac{4}{3x^2} dx = \left[\frac{-4}{3x} \right]_{1.5}^{3} = \frac{4}{9}$$

2. $P(X \le 1), P(X < 1), P(0 \le X \le 2 \mid 1 \le X \le 3).$

$$P(X \le 1) = P(X < 1) = 0$$

$$P(0 \le X \le 2 \mid 1 \le X \le 3) = \frac{P(1 \le X \le 2)}{P(1 \le X \le 3)} =$$

3. $P(X \in \mathbb{N}) = 0$.

4. !!
$$P(X \in \mathbb{Q}) = 0$$
.

For the last two exercises you might want to check the concept of countable set.

Exercise 2. Let X be a uniform random variable in [0,1]. Compute the following probabilities:

• P(X = 1), P(X = 0), P(X = 0.5), $P(X \in [0, 1])$, $P(X \in [0, 0.5])$, $P(X \le 0.5)$, and $P(X \ge 1)$

$$P(X = 1) = P(X = 0) = P(X = 0.5) = 0$$

$$P(X \in [0, 1]) = 1, \ P(X \in [0, 0.5]) = P(X \le 0.5) = \frac{1}{2}$$

$$P(X \ge 1) = 0$$

• What is the density function of $f_X(x)$ (in the lectures), and $F_X(x)$ (you must calculate it)? Show how you can go from one to another (Show the operations).

$$F_X(x) = \begin{cases} 0 & \text{if } x < 1 \\ x & \text{if } x \in [0, 1] \\ 1 & \text{if } x > 1 \end{cases}$$

Exercise 3. ! The support of a certain continuous random variable is the set [1,5]. Its density function is proportional to x^2 .

1. Write its density function.

$$f_X(x) = \begin{cases} cx^2 & \text{if } x \in [1, 5] \\ 0 & \text{Otherwise} \end{cases}$$

With $c = \frac{3}{124}$.

2. What is the probability of (1,3]

$$P(X \in (1,3]) = \int_{1}^{3} cx^{2} dx = \frac{13}{62}$$

Exercise 4. Find the density function of the continuous random variable that has as distribution function:

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - (1 + 3x)e^{-3x} & \text{if } x \ge 0 \end{cases}$$

Is this function continuous? Is it right-continuous? Yes, yes.

$$f_X(x) = \begin{cases} 0 & \text{if } x < 0\\ 9xe^{-3x} & \text{if } x \ge 0 \end{cases}$$

Exercise 5. Let X and Y be two discrete independent random variables with support in the set $\{0,1,2\}$ such that:

$$P(X = 0) = 0.3$$
, $P(X = 1) = 0.5$, $P(Y = 0) = 0.6$, $P(Y = 1) = 0.1$

1. Build a table that shows P(X = x, Y = y) for every (x, y) in the common support.

	X	0.3	0.5	0.2
Y		0	1	2
0.6	0	0.18	0.3	0.12
0.1	1	0.03	0.05	0.02
0.7	2	0.21	0.35	0.14

2. Find P(X = Y).

$$P(X = Y) = 0.18 + 0.05 + 0.14$$

3. Find P(X + Y = 2).

$$P(X + Y = 2) = 0.12 + 0.21 + 0.05$$

Exercise 6. The joint density of X and Y is $f(x,y) = \lambda^3 x e^{-\lambda(x+y)}$ for x > 0 and y > 0 (0 otherwise).

1. Find the marginal densities and show that X and Y are independent.

$$f_X(x) = \int_0^\infty \lambda^3 x e^{-\lambda(x+y)} dy = \lambda^2 x e^{-\lambda(x+y)} \Big]_0^\infty = \lambda^2 x e^{-\lambda x}$$

$$f_Y(y) = \int_0^\infty \lambda^3 x e^{-\lambda(x+y)} dx = \lambda e^{-\lambda y}$$

You just need to check that the product matches the density function.

2. ! Find $P(X \le a, Y \le b)$ for every a and b positive numbers. The result might be an integral of x and y that you don't know how to calculate, just indicate the integral.

$$P(X \le a, Y \le b) = \int_0^a \int_0^b \lambda^3 x e^{-\lambda(x+y)} dy dx$$

3. Find $P(X \le a)$ for a > 0.

$$P(X \le a, Y \le b) = \int_0^a \int_0^\infty \lambda^3 x e^{-\lambda(x+y)} dy dx$$

Exercise 7. Let (X,Y) a random vector with joint density function

$$f_{XY}(x,y) = \begin{cases} \frac{1}{2\sqrt{2\pi}} e^{-\frac{1}{2}(y-x)^2}, & if -1 < x < 1, -\infty < y < \infty \\ 0, & otherwise \end{cases}$$

1. ! Find $f_X(x)$.

$$f_X(x) = \begin{cases} 0 & \text{if } |x| > 1\\ \frac{1}{2} & \text{if } |x| < 1 \end{cases}$$

2. Find $f_{Y|X}(y)$.

$$f_{Y|X}(y) = \frac{f_{XY}(x,y)}{f_X(x)}$$

¹ You might want to use some integral calculator on the internet...