Een filter op basis van convolutie:

- Convolutie van het ingangssignaal met de kernel van de filter (impulsresponse van digitale filter)
- Worden ook FIR-filters genoemd (Finite Impuls Response filter

Een filter op basis van recursie:

- Zijn een uitbreiding op het convolutieprincipe: naast punten van de ingang wordt ook gebruik gemaakt van berekende waarden van de uitgang
- In plaats van een kernel spreekt men van recursiecoëfficiënten
- Vanwege terugkoppeling aan de uitgang is de impulsresponse theoretisch oneindig lang; spreekt van IIR-filter (Infinite Impuls Response filter)

Voorstelling informatie in het tijdsdomein

- ➤ Elke sample bevat informatie die interpreteerbaar is zonder verwijzing naar enig andere sample
- > Zelfs al heb je slechts één sample, je weet toch wat je meet
- Is de eenvoudigste manier om informatie op te nemen in een signaal.

Voorstelling informatie in het frequentiedomein:

- Informatie aangaande een periodieke beweging via frequentie, fase en amplitude
- ➤ Elke sample op zich bevat geen specifieke informatie; de informatie is opgenomen in de relatie over een groot aantal samples in het signaal

Stapresponse

Beschrijft hoe gegevens weergegeven in het tijdsdomein worden gewijzigd door het systeem

Frequentieresponse:

Toont hoe informatie, weergegeven in het frequentiedomein, wordt gewijzigd

Dit onderscheid is essentieel in het filterontwerp omdat het niet mogelijk is om de filter te optimaliseren voor beide toepassingen: goede prestaties in het tijdsdomein en in het frequentiedomein.

Tijdsdomeinparameters (stapresponse)

Stijgtijd

Om evenementen in een signaal te onderscheiden, moet de duur van de stapresponsie korter zijn dan de afstand van de gebeurtenissen.

Overshoot

➤ Moet vermeden worden omdat het de amplitude van de samples verandert in het signaal; (overshoot leidt tot fundamentele vertekening van de informatie in het tijdsdomein)

Lineaire fase

Als de bovenste helft van de stapresponse symmetrisch is met de onderste helft treedt faselineariteit op

Frequentiedomeinparameters (frequentieresponse)

> Snelle roll-off

➤ Hoe sneller de roll-off, hoe dichter de van elkaar te scheiden frequenties kunnen staan

Doorlaatband

Om frequenties zo goed mogelijk door te laten in de doorlaatband mag deze geen rimpel bevatten

Demping in de stopband

Om adequaat de frequenties in de stopband te blokkeren moet de stopband een sterke demping hebben

