CAPÍTULO 3 PROBLEMAS

3.1 Escoa-se água numa conduta circular com um perfil de velocidades dado pela equação $v = 6 (1 - r^2/16)$ ft s⁻¹. Qual será a velocidade média na conduta com diâmetro de 1,5 ft (figura P3.19).

Figura P3.1

3.2 A um tanque que contém 1000 kg de salmoura, com uma concentração de 10% em massa de sal, vai ser adicionado um caudal de 20 kg min⁻¹ com 20% em massa de sal (figura P3.2). Em simultâneo, abre-se a torneira de descarga e escoa-se um caudal de 10 kg min⁻¹. A mistura no tanque é homogeneizada por meio de um agitador. Calcule a quantidade de sal no tanque no tempo t, e o tempo necessário para que se acumulem 200 kg de sal no seu interior.

Figura P3.2

3.3 As velocidades numa conduta circular de 20 in de diâmetro foram medidas experimentalmente, obtendo-se os seguintes resultados:

Raio (in)	Vel (ft s ⁻¹)	Raio (in)	Vel (ft s ⁻¹)
0	7,5	7,75	5,47
3,16	7,10	8,37	5,10
4,45	6,75	8,94	4,50
5,48	6,42	9,49	3,82
6,33	6,15	10,0	2,40
7,03	5,81		

Calcule a velocidade média na conduta.

3.4 O perfil de velocidades numa conduta circular é dado por

$$v = v_{max} (1 - r/R)^{1/7}$$

onde R é o raio da conduta. Determine a velocidade média na conduta.

- **3.5** Uma mistura de 100 kmol h⁻¹, cuja fracção molar de tolueno é 0,35 e de benzeno 0,65, é alimentada continuamente por um processo de destilação. Obtêm-se dois caudais de produtos, um contendo como fracção molar de benzeno 0,99 e o outro contendo 5% do benzeno que entra. Calcule as razões molares em ambos os caudais (kmol h⁻¹) e a composição do caudal mais concentrado em tolueno. Não há acumulação no interior do sistema.
- **3.6** Calcule o menor diâmetro de tubo necessário para transportar 0,3 kg s⁻¹ de ar com uma velocidade máxima de 6 m s⁻¹. O ar está a 27 °C e sob uma pressão de 2,4 kg cm⁻² (absoluta).
- **3.7** Um fluido escoa-se com um caudal de 1800 L min⁻¹ num tubo de 200 mm de diâmetro, que posteriormente é reduzido para 100 mm. Calcule a velocidade média do escoamento em cada um dos dois tubos.
- **3.8** A superfície indicada na figura P3.8, divide o jacto de modo a que 30 L s⁻¹ de água se escoem para cada direcção. Para uma velocidade inicial de 20 m s⁻¹

calcular os valores das componentes de F segundo x e y, a fim de manter a superfície em equilíbrio.

Figura P3.8

3.9 Um jacto de água de 3 in de diâmetro tem uma velocidade de 110 ft s⁻¹. O jacto choca com uma lâmina que tem um ângulo de deflexão de 150°, conforme o indicado na figura P3.9. Calcule as componentes x e y da força que o jacto exerce sobre a placa.

Figura P3.9

3.10 Considere a figura P3.10. Um jacto de água, de 2 in de diâmetro, choca com uma placa que faz um ângulo de 30° com a direcção do jacto. A velocidade da água no jacto é de 60 ft s⁻¹. Calcule a força que o jacto exerce na placa (desprezando o atrito).

Figura P3.10

- **3.11** Um jacto de água de 50 mm de diâmetro choca perpendicularmente com uma placa, à velocidade de 6,3 m s⁻¹. Calcule a força exercida pela placa na água.
- **3.12** Um jacto de água tendo a velocidade de 15 m s⁻¹, choca tangencialmente numa placa curva em forma de arco de círculo com um ângulo de 120°. Calcule a amplitude e a direcção da reacção na placa, quando o caudal de água é de 0,45 kg s⁻¹.
- **3.13** Calcule a força exercida numa placa curva fixa quando um jacto, descarregando $60~L~s^{-1}$ de água à velocidade de $50~m~s^{-1}$, é deflectido de um ângulo de $135~^{\circ}$.

3.14 Calcule a força que se deve exercer numa placa como mostra a figura P3.14, de modo a que a mesma se mantenha fixa. Considere que na conduta se escoa óleo ($\rho = 0.83 \times 10^3 \text{ kg m}^{-3}$) à velocidade de 25 m s⁻¹.

Figura P3.14

3.15 Determine a força exercida na placa da figura P3.15. Dados: A_0 = 0,1 ft², v_0 = 100 ft s⁻¹, θ = 60 °, ρ = 60 lb ft ⁻³.

Figura 3.15

3.16 Calcule as componentes x e y da força necessária para suportar a placa da figura P3.16.

Dados: $Q_0 = 80 \text{ L s}^{-1}$, $\rho = 1 000 \text{ kg m}^{-3}$, $v_0 = 120 \text{ m s}^{-1}$.

Figura P3.16

3.17 Para o divisor de caudal da figura P3.17, calcule as componentes x e y da força que nele se exerce.

Dados: $Q_0 = 10 \text{ L s}^{\text{-1}}$, $Q_1 = 3 \text{ L s}^{\text{-1}}$, $Q_2 = 7 \text{ L s}^{\text{-1}}$, $\theta_0 = 45^{\text{0}}$, $\theta_1 = 30^{\text{0}}$, $\theta_2 = 120^{\text{0}}$, $v_0 = 10 \text{ m s}^{\text{-1}}$, $\rho = 830 \text{ kg m}^{\text{-3}}$.

Figura P3.17.

- **3.18** Resolva o problema anterior usando a técnica gráfica de adição de vectores.
- **3.19** Um injector de água do escoamento primário com uma área $A_j = 0.05 \text{ ft}^2 \text{ e}$ uma velocidade $v_j = 90 \text{ ft s}^{-1}$, arrasta um escoamento secundário de velocidade $v_s = 10 \text{ ft s}^{-1} \text{ e}$ uma área constante, $A = 0.6 \text{ ft}^2 \text{ (figura P3.19)}$. Na secção 2, a água está completamente misturada. Considerando um escoamento uni-dimensional e desprezando as tensões tangenciais nas paredes,
- a) determine a velocidade média do escoamento misturado na secção 2;
- b) determine o aumento de pressão (P₂ P₁), considerando que a pressão do jacto e a pressão na secção 1 da conduta secundária é a mesma.

Figura P3.19

3.20 Considere o escoamento de água estacionário no troço da conduta representada na figura P3.20. Na secção 1, de diâmetro 0,3 m, a velocidade é de 12 m s $^{-1}$ e a pressão é de 138 kPa. Na secção 2, o diâmetro é de 0,38 m e a pressão de 145 kPa. Determine as forças F_x e F_y necessárias para manter o cotovelo da conduta em equilíbrio.

Figura P3.20

3.21 Através da turbina apresentada na figura P3.21 escoa-se água a um caudal de 0,21 m³ s⁻¹, sendo as pressões em A e B respectivamente 1,5 kg cm⁻² e -0,35 kg cm⁻². Determine a potência fornecida à turbina pela água.

Figura P3.21

- **3.22** Uma tubagem transporta água duma secção A para uma secção B (0,15 m²). Em A, a velocidade (suposta uniforme) é 1,8 m s⁻¹ e a pressão 117 kN m⁻². Supondo que o atrito é desprezável, determine a pressão em B, sabendo que esta secção se encontra localizada 6 m acima da secção A (0,3 m²).
- **3.23** Um jacto de água é dirigido verticalmente a partir duma agulheta de diâmetro 25 mm. Supondo que o jacto permanece circular e desprezando qualquer perda de energia, qual será o diâmetro do jacto num ponto situado 4,5 m acima da agulheta? A velocidade da água à saída da agulheta é de 12 m s⁻¹.

3.24 Considere a figura P3.24 que representa um sifão com um diâmetro de 75 mm sendo a pressão da atmosfera equivalente a 10 m de coluna de água (m.c.a.). Calcule a velocidade da água à saída do sifão e a pressão absoluta em B.

Figura P3.24

3.25 A água escoa-se de A para B, com um caudal de 0,4 m³ s⁻¹, através da tubagem representada na figura P3.25. Se a pressão piezométrica em A for de 7 m.c.a., e não houver perdas de energia entre A e B, calcule a pressão piezométrica em B. Trace a linha piezométrica e a linha de energia total.

3.26 Considere o esquema da figura P3.26.

Figura P3.26

Se a deflexão do mercúrio do manómetro for de 360 mm, calcule o caudal volúmico de água, desprezando as perdas de energia.

- **3.27** Uma tubagem de 24 in de diâmetro transportando 31,4 ft³ s⁻¹ (densidade = 0,85) de um fluido, apresenta uma curva de 90º no plano horizontal. Sabendo que a perda de carga na curva é de 3,3 ft de óleo e que a pressão à entrada é de 42,5 psi, determine a força exercida pelo óleo sobre a curva.
- **3.28** Um óleo de densidade 0,75 escoa-se dentro de um tubo de 150 mm de diâmetro sob uma pressão de 1 kg cm⁻². Se a energia total relativa a um plano de 2,4 m abaixo da linha de centro do tubo é de 18 kg m kg⁻¹, determine o caudal do óleo em m³ s⁻¹.
- **3.29** Um fluido escoa-se de A para B numa conduta horizontal como mostra a figura P3.29, com um caudal de 2 ft³ s⁻¹ e uma perda por atrito de 0,15 ft. Sendo a pressão em B de 24 in, qual será a pressão em A.

Figura P3.29

3.30 Considere o tanque circular (D = 6 ft) representado na figura P3.30. O óleo é drenado por um orifício de 2 in de diâmetro. Considerando que a pressão do ar se mantém constante, quanto tempo leva o nível do óleo a baixar 2 ft? A densidade do óleo é de 0,750 e a do mercúrio 13,6.

Figura P3.30

- **3.31** O tubo do problema 3.27 é ligado a um outro de 12 in de diâmetro através de uma redução padrão. Para o mesmo caudal de 31,4 ft³ s⁻¹ de óleo à pressão de 40 psi, que força exercerá o óleo sobre a redução?
- **3.32** Uma curva redutora de 45°, tendo a montante 610 mm e a jusante 305 mm de diâmetro, transporta água com um caudal de 0,4 m³ s⁻¹ sob uma pressão de 1,5 kg cm⁻². Desprezando as perdas na curva, calcule a força exercida pela água sobre a curva de redução.
- **3.33** Um óleo, de densidade 0,830, escoa-se através de uma curva expansora de 90°, de 400 para 600 mm de diâmetro. A pressão à entrada da curva é de 130 kPa. Desprezando as perdas, calcule a força necessária para suportar a curva, quando o caudal de óleo é de 0,6 m³ s⁻¹. Considere a curva horizontal.
- **3.34** Considere a figura P3.34. Desprezando as perdas, calcule as componentes x e y da força necessária para suportar o valor de y, com este eixo colocado no plano horizontal.

Figura P3.34

3.35 Considere o esquema da figura P3.35.

Figura P3.35

A bomba BC deve fornecer $5,62~{\rm ft}^3~{\rm s}^{\text{-1}}$ de óleo de densidade 0,762 ao reservatório D. Supondo-se que a perda de energia de A a B é de $8,25~{\rm ft~lb_f~lb^{\text{-1}}}$ e C a D de $21,75~{\rm ft~lb_f~lb^{\text{-1}}}$, calcule:

- a) a potência que a bomba deve fornecer ao sistema;
- b) trace a linha de energia.
- **3.36** Um óleo de densidade 0,761 escoa-se do tanque A para E como representado na figura P3.36. As perdas de carga podem ser consideradas como se indica a seguir.

A a B =
$$0.3 \text{ v}^2_{0.3} / \text{g}$$

C a D =
$$0.2 \text{ v}^2_{0.15} / \text{g}$$

B a C =
$$4.5 \text{ v}^2_{0.3} / \text{g}$$

D a E =
$$4.5 \text{ v}^2_{0.15} / \text{g}$$
.

Calcule:

- a) o caudal em m³ s⁻¹;
- b) a pressão em C, em kg cm⁻².

Figura P3.36

3.37 A perda de carga na turbina CR da figura P3.37 é de 200 ft e a pressão em T é de 72,7 psi. Considerando que as perdas são

W a R =
$$2 v^2_{24}/2g$$

C a T =
$$3 v^2_{12}/2g$$
.

Determine:

- a) o caudal volúmico;
- b) a piezocarga em R;
- c) trace a linha piezométrica e a linha de energia.

Figura P3.37

- **3.38** Qual será a pressão no nariz de um torpedo, movendo-se em água salgada a uma velocidade de 100 ft s⁻¹ e à profundidade de 30 ft? Se a pressão em C na face do torpedo à mesma cota que o nariz é de 24,7 psi, qual será a velocidade relativa neste ponto ($P_{atm} = 14,7$ psi)?
- **3.39** Uma esfera é colocada num escoamento de ar o qual está à pressão atmosférica e tem uma velocidade de 100 ft s⁻¹. Considerando a massa volúmica do ar constante e igual a 0,00238 slug ft⁻³ (slug = lb_f s² ft⁻¹)
- a) calcule a pressão de estagnação;
- b) calcule a pressão na superfície da esfera no ponto B a 75º do ponto de estagnação, se a velocidade aí é de 220 ft s⁻¹.
- **3.40** A bomba da figura P3.40 eleva 4 ft³ s⁻¹ de água do reservatório inferior para o superior.

As perdas de carga na conduta são dadas por $35v^2/2g$. Se a bomba tem uma eficiência de 70%, qual a potência necessária?

Figura P3.40

3.41 Através da bomba representada na figura P3.41 escoam-se 3 $\mathrm{ft^3}$ s⁻¹ de gasolina (d = 0,68). As perdas de carga entre 1 e 2 são de 10 ft e a bomba fornece ao escoamento 30 hp. Qual deverá ser a leitura no manómetro de mercúrio, em ft?

Figura P3.41

3.42 A turbina da figura P3.42 recebe 100 m 3 s $^{-1}$ de água e descarrega 10 m abaixo da superfície inferior. As perdas na conduta são de 2,5 v 2 /2g. Qual a potência em kW desenvolvida pela turbina?

Figura P3.42