

General approach to solving opt. problems using & dynamic programming
1- Characterize the structure of an opt solution
2- Recursively define the Value of an opt.
3 - Compute the value of an opt. sol. in a bottom up fashio 4 - Construct an opt. sol. from computed
4 - Construct an opt. sol. from computed
info.

1- Characterize The Structure of an opt. sol. 2- Recursively define the value of an opt. sol. 3- Compute the value of an opt. sol. in a hottom up to fashion 4- construct an opt. sol. from	General approach to solving opt. problems using dynamic Programmin
2- Recursively defense the value of an	
3 - compute the value of an opt sol. in a hottom up to fashion	2 Recursively define the value of an
un a hottom up to fashion	3 compute the value of an out sol
	un a hottom up to fashion

	ompule	Linfo.		
	0	/		
-				
-				

Problem Def.

We have I resource

In negrest labeled 1 to M

each request has start time 5i
finish time fi
weight Wi

Goal: Select a subset $S \subseteq \{1..n\}$ of mutually compatible intervels

to Maximize $\sum_{i \in S} W_i$

4	2
2	7
3	
4	3
5	
4	6
_	

Observation:

Either job i is part of the opt.

Sol. or it isn't

Case 1 if it is, value of the opt. sol.
with value of the opt. sol.

for the subproblem that

consists only of comptability

compatible requests when.

Case 2: if it wit, value of the opt sol=

Value Value of opt. sol. w/o job!

explore both paths recursively
and fundout which is opt.

Value of opt. sol. = Max (Value for Case 1,

Value for Case 2)

Sort requests in order of non-decreasing finish time

for fine

for for an an interval of

to be the largest index i < g such

that interval i & g are disjoint

Def. Let O_j denote the opt. solution

to the problem consisting of requests [1.j]

Let OPT(j) denote the value of O_j $O_7 = \{2,7\}$ OPT(7) = 15

Case 1: $j \in O_j \Rightarrow OPT(j) = w_j + OPT(p)$	7)
Casez: j & Oj = OPT(j) = OPT(j-1))

Compute-opt (j) return Max (Wj + Compute-opt (p(j)) T(n)=T(n-1)+T(n-2)+

Solution

memoization

Store the value of compute-option
a globally accessible place
the first time we compute it.

Then Simply use this value
in place of all future recursive
calls.

M-Compute of (j)

if j=0 the

return 0

else if M[j] is not empty then

return M[j]

else

define M[j]= Max(wj+

M-compute-of (p(j)),

M-Compute-of (j-1))

return M[j]

overall time =

Sort O(n lgn)

Construct P(j) O(n lgn)

time spent: M compute-opt & O(n lgn)

potal O(n lgn)

j belongs to Oj iff	
$w_j + opT(p(j)) > opT(g_j - i)$	<i>(</i>)
 Find Solution	
if j>0 then if wj+M[P(j)] > M[j-1] the output j together w/ the results of Find-Solution (P(j else	
results of Find-Solution (pij))
1	
ortput the results of Find-solution (j-1) endif	
endif takes $O(n)$	

