Step-1

Given matrix is in PA = LU form

$$A = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 2 & 1 & 1 \\ 3 & 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} \boxed{1} & 2 & 0 & 1 & 2 & 1 \\ 0 & 0 & \boxed{2} & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \boxed{1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Step-2

(a)

Since U matrix is just matrix obtained after row elimination, it gives no of pivots as 3. Thus rank $\frac{\text{rank of } A \text{ is 3}}{\text{rank of } A \text{ is 3}}$

Step-3

(b)

Dimension for row space is same as rank. Hence dimension of rowspace is 3

Rows with 3 pivots are independent and just combination of other rows, thus they form basis of rows pace.

These are

Step-4

(c)

Given rows 1, 2 and 3 are linearly independent as they contains 3 pivots

Step-5

(d)

Dimension for column space is same as rank. Hence dimension of column space is 3

3 linearly independent columns are basis of column space of A matrix, which can be obtained by product LU.

	[2		4		1	ĺ
	0		1		2	
	2	,	5	,	5	
are	4_		9		4	

These are

Step-6

(e)

Dimension of left null-space is $n \ \hat{a} \in r$. Thus dimension of null space is 2

Step-7

(f)

It can be solved in 2 steps, by first finding y such that

$$Ly = b$$

Then finding x which is original solution such that

$$Ux = y$$

0 0 0

Since *L* has 4 pivots only possible solution for *y* is $\begin{bmatrix} 0 \end{bmatrix}$

Now, we find x.

$$\begin{bmatrix} 2 & -1 & 4 & 2 & 1 \\ 0 & 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Free variables are x_2, x_4

Finding general and particular solutions

We get particular solution, for x to be $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Now finding 2 homogenous solutions, which are
$$\begin{bmatrix} 1/2\\1\\0\\3\\1\\0 \end{bmatrix} = \begin{bmatrix} -7\\0\\3\\1\\0 \end{bmatrix}$$

Step-8

	1/2		[-7]	
	1		0	
x_2	0	+ x ₄	3	
	0		1	
	0		0	ı

Hence ,general solution for Ax = 0 is $\begin{bmatrix} 0 \end{bmatrix}$