Algorithm Details

In this article, we describe the algorithm in this project.

1 Introduction

Naive implementations of Kalman filters and smoothers have numerical instability issues. In this project, we implemented the square root formulation of the Kalman algorithm, which is more accurate and stable.

2 Square Root Kalman Algorithm

In this section, we describe the square root Kalman algorithm described in [1].

Let X be a Gaussian random variable with mean m and covariance matrix V. The square root form of X is given by R and z where

$$(R^T R)^{-1} = V,$$

$$Rm = z.$$

The square root formulation of the Kalman algorithms:

- square root information filter and
- square root information smoother

will be parametrized by Gaussian random variables in square root form.

2.1 Square Root Information Filter

Recall that in jth iteration, the true state x_j is evolved from the state x_{j-1} according to

$$(1) x_i = \Phi_i x_{i-1} + G w_i$$

where

- Φ_i is the nonsingular transition matrix and
- w_j is the process noise that are assumed to have zero mean and nonsingular covariance matrix $Q_w(j) = (R_w^T(j)R_w(j))^{-1}$.

An observation z_i of the true state x_i is made according to

$$z_j = Ax_j + v_j$$

where $v_i \in N(0, I)$.

2.1.1 Prediction Step

Let $(\hat{R}_x(j-1), \hat{z}_x(j-1))$ be the square root form of the updated estimate in iteration j-1. The prediction step is to solve

minimize
$$\|\hat{R}_{x}(j-1)x_{j-1} - \hat{z}_{x}(j-1)\|^{2} + \|R_{w}(j)w_{j} - z_{w}(j)\|^{2}$$
 subject to *Equation* 1.

Noted that $x_{j-1} = \Phi_j^{-1}(x_j - Gw_j)$, the above minimization problem is equivalent to

minimize
$$\left\| \begin{pmatrix} R_w(j) & 0 \\ -R_x^d(j)G & R_x^d(j) \end{pmatrix} \begin{pmatrix} w_j \\ x_j \end{pmatrix} - \begin{pmatrix} z_w(j) \\ \hat{z}_x(j-1) \end{pmatrix} \right\|^2$$

which can be solved by using the QR decomposition

$$\begin{pmatrix} R_w(j) & 0 & z_w(j) \\ -R_r^d(j)G & R_r^d(j) & \hat{z}_x(j-1) \end{pmatrix} = Q \begin{pmatrix} \tilde{R}_w(j) & \tilde{R}_{wx}(j) & \tilde{z}_w(j) \\ 0 & \tilde{R}_x(j) & \tilde{z}_x(j) \end{pmatrix}$$

where

- the right hand side is the QR decomposition of the left hand side,
- $(R_w(j), z_w(j))$ is the prior estimate of w_i in square root form,
- $R_x^d(j) = \hat{R}_x(j-1)\Phi_j^{-1}$ and
- $(\tilde{R}_x(j), \tilde{z}_x(j))$ is the predict estimate in square root form.

2.1.2 Update Step

Let $(\tilde{R}_x(j), \tilde{z}_x(j))$ be the prior information obtained from prediction step, the update step is to solve

minimize
$$\left\|\tilde{R}_{x}(j)x_{j}-\tilde{z}_{x}(j)\right\|^{2}+\left\|Ax_{j}-z_{j}\right\|^{2}.$$

Algorithm Details 3

The above minimization problem can be rewritten as

minimize
$$\left\| \begin{pmatrix} \tilde{R}_x(j) \\ \hat{R}_x(j) \end{pmatrix} x_j - \begin{pmatrix} \tilde{z}_x(j) \\ z_j \end{pmatrix} \right\|^2$$

which can be solved by using the QR decomposition

$$\begin{pmatrix} \tilde{R}_{x}(j) & \tilde{z}_{x}(j) \\ A & z_{i} \end{pmatrix} = Q \begin{pmatrix} \hat{R}_{x}(j) & \hat{z}_{x}(j) \\ 0 & e_{i} \end{pmatrix}$$

where

- the right hand side is the QR decomposition of the left hand side and
- $(\hat{R}_x(j), \hat{z}_x(j))$ is the updated estimate in square root form.

2.2 Square Root Information Smoother

Let $(R_x^*(j), z_x^*(j))$ be the smoothed estimate in iteration j. The smooth step is to solve

minimize
$$\|\tilde{R}_w(j)w_j + \tilde{R}_{wx}(j)x_j - \tilde{z}_w(j)\|^2 + \|\tilde{R}_x(j)x_j - \tilde{z}_x(j)\|^2$$
subject to
$$Equation 1.$$

Replacing x_j by $\Phi_j x_{j-1} + Gw_j$, the above minimization problem is equivalent to

$$\underset{x_{j-1}, w_j}{\text{minimize}} \qquad \qquad \left\| \begin{pmatrix} \tilde{R}_w(j) + \tilde{R}_{wx}(j)G & \tilde{R}_{wx}(j)\Phi_j \\ R_x^*(j)G & R_x^*(j)\Phi_j \end{pmatrix} \begin{pmatrix} w_j \\ x_{j-1} \end{pmatrix} - \begin{pmatrix} \tilde{z}_w(j) \\ z_x^*(j) \end{pmatrix} \right\|^2$$

which can be solved by using the QR decomposition

$$\begin{pmatrix} \tilde{R}_{w}(j) + \tilde{R}_{wx}(j)G & \tilde{R}_{wx}(j)\Phi_{j} & \tilde{z}_{w}(j) \\ R_{x}^{*}(j)G & R_{x}^{*}(j)\Phi_{j} & z_{x}^{*}(j) \end{pmatrix} = Q \begin{pmatrix} R_{w}^{*}(j) & R_{wx}^{*}(j) & z_{w}^{*}(j) \\ 0 & R_{x}^{*}(j-1) & z_{x}^{*}(j-1) \end{pmatrix}$$

where

- the right hand side is the QR decomposition of the left hand side and
- $(R_x^*(j-1), z_x^*(j-1))$ is the smoothed estimate in square root form.

References

[1] G.J. Bierman. *Factorization Methods for Discrete Sequential Estimation*. Dover Books on Mathematics Series. Dover Publications, 2006.