

4.5

Recorrências Lineares de Segunda Ordem

Inicialmente, trataremos das recorrências lineares de segunda ordem homogêneas com coeficientes constantes, isto é, recorrências da forma

$$x_{n+2} + px_{n+1} + qx_n = 0.$$

Suporemos sempre $q \neq 0$, pois se q = 0, a recorrência seria, na realidade, uma recorrência de primeira ordem.

A cada recorrência linear de segunda ordem homogênea, com coeficientes constantes, da forma acima, associaremos uma equação do segundo grau, $r^2+pr+q=0$, chamada equação característica. A nossa suposição preliminar de que q
eq 0 implica que 0 não é raiz da equação característica.

EXEMPLO 4.14

A recorrência $x_{n+2}=x_{n+1}+x_n$ tem equação característica $r^2=r+1$. As raízes da equação característica são

$$r_1 = \frac{1+\sqrt{5}}{2}$$
 e $r_2 = \frac{1-\sqrt{5}}{2}$.

O teorema a seguir mostra que se as raízes da equação característica são r_1 e r_2 , então qualquer sequência da forma $a_n=C_1r_1^n+C_2r_2^n$ é solução da recorrência, quaisquer que sejam os valores das constantes C_1 e C_2 .

TEOREMA 4.2.

Se as raízes de $r^2+pr+q=0$ são r_1 e r_2 , então $a_n=C_1r_1^n+C_2r_2^n$ é solução da recorrência $x_{n+2}+px_{n+1}+qx_n=0$, quaisquer que sejam os valores das constantes C_1 e C_2 .

DEMONSTRAÇÃO.

Substituindo $a_n=C_1r_1^n+C_2r_2^n$ na recorrência $x_{n+2}+px_{n+1}+qx_n=0$, obtemos, agrupando

$$C_1 r_1^n (r_1^2 + pr_1 + q) + C_2 r_2^n (r_2^2 + pr_2 + q)$$
$$= C_1 r_1^n 0 + C_2 r_2^n 0 = 0.$$

RECONDENCIA E INVENTE ET ELEUNDA ORDEN

COMPLO 4.15

A equação $x_{n+2} + 3x_{n+1} - 4x_n = 0$ tem $r^2 + 3r - 4 = 0$ como equação característica. As raízes da equação característica são 1 e - 4. De acordo com o Teorema 1, todas as sequências da forma $a_n = C_1 1^n + C_2 (-4)^n$ são soluções da recorrência.

O teorema a seguir mostra que, se $r_1 \neq r_2$, todas as soluções da recorrência têm a forma apontada no Teorema 1.

TEOREMA 4.3.

Se as raizes de $r^2+pr+q=0$ são r_1 e r_2 , com $r_1\neq r_2$, então todas as soluções da recorrência $x_{n+2}+px_{n+1}+qx_n=0$ são da forma $a_n=C_1r_1^n+C_2r_2^n$, C_1 e C_2 constantes.

DEMONSTRAÇÃO.

Seja y_n uma solução qualquer de $x_{n+2}+px_{n+1}+qx_n=0$. Determinemos constantes C_1 e C_2 que sejam soluções do sistemas de equações

$$\begin{cases} C_1 r_1 + C_2 r_2 = y_1 \\ C_1 r_1^2 + C_2 r_2^2 = y_2 \end{cases}$$

isto é.

$$C_1 = rac{r_2^2 y_1 - r_2 y_2}{r_1 r_2 (r_2 - r_1)}$$
 e $C_2 = rac{r_1 y_2 - r_1^2 y_1}{r_1 r_2 (r_2 - r_1)}.$

Isso é possível pois $r_1 \neq r_2$ e $r_1 \neq 0$ e $r_2 \neq 0$.

Afirmamos que $y_n=C_1r_1^n+C_2r_2^n$ para todo n natural, o que provará o teorema. Com efeito, seja $z_n=y_n-C_1r_1^n-C_2r_2^n$. Mostraremos que $z_n=0$ para todo n. Temos

$$z_{n+2} + pz_{n+1} + qz_n = (y_{n+2} + py_{n+1} + qy_n) - C_1r_1^n(r_1^2 + pr_1 + q) - C_2r_2^n(r_2^2 + pr_2 + q).$$

O primeiro parêntese é igual a zero porque y_n é solução de $x_{n+2}+px_{n+1}+qx_n=0$; os dois últimos parênteses são iguais a zero porque r_1 e r_2 são raízes de $r^2+pr+q=0$. Então $z_{n+2}+pz_{n+1}+qz_n=0$.

Alem disso, como $C_1r_1+C_2r_2=y_1$ e $C_1r_1^2+C_2r_2^2=y_2$, temos $z_1=z_2=0$. Mas, se $z_{n+2}+pz_{n+1}+qz_n=0$ e $z_1=z_2=0$, então $z_n=0$ para todo n.

EXEMPLO 4.10

Vamos determinar as soluções da recorrência

$$x_{n+2} + 3x_{n+1} - 4x_n = 0.$$

A equação característica $r^2+3r-4=0$, tem raízes 1 e -4. De acordo com os Teoremas 1 e 2, as soluções da recorrência são as sequências da forma $a_n=C_11^n+C_2(-4)^n$, isto é, $a_n=C_1+C_2(-4)^n$, onde C_1 e C_2 são constantes arbitrárias.

EXEMPLO 4.17

(Fibonacci revisitado.) Determinemos o número de Fibonacci \mathcal{F}_n definido por

$$F_{n+2} = F_{n+1} + F_n$$
, com $F_1 = F_2 = 1$.

A equação característica é $r^2=r+1$ e as suas raízes são dadas por

$$r_1 = \frac{1+\sqrt{5}}{2}$$
 e $r_2 = \frac{1-\sqrt{5}}{2}$.

Então,

$$F_n = C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Para determinar C_1 e C_2 , podemos usar $F_1=F_2=1$, mas é mais conveniente usar $F_0=0$ e $F_1=1$. Obtemos o sistema

$$\begin{cases} C_1 + C_2 = 0 \\ C_1 \frac{1+\sqrt{5}}{2} + C_2 \frac{1-\sqrt{5}}{2} = 1 \end{cases}.$$

Resolvendo o sistema, encontramos $C_1=-C_2=\frac{1}{\sqrt{5}}$. Daí:

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n,$$

isto é,

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

Se as raízes da equação característica forem complexas, a solução $a_n=C_1r_1^n+C_2r_2^n$, C_1 e C_2 constantes arbitrárias pode ser escrita de modo a evitar cálculos com complexos. Pondo as raízes na forma trigonométrica, teremos:

$$r_1 = \rho(\cos\theta + i\sin\theta), \qquad r_2 = \rho(\cos\theta - i\sin\theta)$$

 $r_1^n = \rho^n(\cos n\theta + i\sin n\theta), \quad r_2^n = \rho^n(\cos n\theta - i\sin n\theta).$

Logo.

$$C_1 r_1^n + C_2 r_2^n = \rho^n [(C_1 + C_2) \cos n\theta + i(C_1 - C_2) \sin n\theta].$$

É claro que $C_1'=C_1+C_2$ e $C_2'=i(C_1-C_2)$ são novas constantes e a solução pode ser escrita

$$a_n = \rho^n [C_1' \cos n\theta + C_2' \sin n\theta].$$

EXEMPLO 4.18

A recorrência $x_{n+2}-x_{n+1}+x_n=0$ tem equação característica $r^2-r+1=0$, cujas raízes são

$$r_1 = \frac{1 + i\sqrt{3}}{2}$$
 e $r_2 = \frac{1 - i\sqrt{3}}{2}$,

que são complexas de módulo ho=1 e argumento principal $heta=\pm \frac{\pi}{3}.$

A solução é

$$x_n = \rho^n [C_1 \cos n\theta + C_2 \sin n\theta] = C_1 \cos \frac{n\pi}{3} + C_2 \sin \frac{n\pi}{3}.$$

O que aconteceria se as raízes da equação característica fossem iguais? Os teoremas a seguir respondem essa pergunta.

TEOREMA 4.4.

Se as raízes de $r^2+pr+q=0$ são iguais, $r_1=r_2=r$, então, $a_n=C_1r^n+C_2nr^n$ é solução da recorrência $x_{n+2}+px_{n+1}+qx_n=0$, quaisquer que sejam os valores das constantes C_1 e C_2 .

DEMONSTRAÇÃO.

Se as raízes são iguais, então $r=-\frac{p}{2}$. Substituindo $a_n=C_1r^n+C_2nr^n$ na recorrência

$$x_{n+2} + px_{n+1} + qx_n = 0$$

obtemos, agrupando convenientemente os termos,

$$C_1 r^n (r^2 + pr + q) + C_2 n r^n (r^2 + pr + q) + C_2 r^n r (2r + p)$$
$$= C_1 r^n 0 + C_2 n r^n 0 + C_2 r^n r 0 = 0.$$

@XILTIEOU!

Teorema 4.5.

Se as raízes de $r^2+pr+q=0$ são iguais, $r_1=r_2=r$, então todas as soluções da recorrênci $\mathfrak d$ $x_{n+2}+px_{n+1}+qx_n=0$ são da forma $C_1r^n+C_2nr^n$, C_1 e C_2 constantes.

Seja y_n uma solução qualquer de $x_{n+2}+px_{n+1}+qx_n=0$. Determine constantes C_1 e C_2 que sejam soluçãos de x_n soluções do sistema de equações.

$$\begin{cases} C_1 r + C_2 r = y_1 \\ C_1 r^2 + 2C_2 r^2 = y_2 \end{cases},$$

isto é.

$$C_1 = 2\frac{y_1}{r} - \frac{y_2}{r^2}$$
 e $C_2 = \frac{y_2 - ry_1}{r^2}$.

Isso é possível pois $r \neq 0$.

Afirmamos que $y_n = C_1 r^n + C_2 n r^n$ para todo n natural, o que provará o teorema. Com efeito, seja $z_n=y_n-C_1r^n-C_2nr^n$. Mostraremos que $z_n=0$ para todo n. Temos

$$z_{n+2} + pz_{n+1} + qz_n = (y_{n+2} + py_{n+1} + qy_n) - C_1r^n(r^2 + pr + q) - C_2nr^n(r^2 + pr + q) - C_2r^nr(2r + p).$$

O primeiro parêntese é igual a zero porque y_n é solução de $x_{n+2}+px_{n+1}+qx_n=0$; o segundo e o terceiro parênteses são iguais a zero porque r é raiz de $r^2+pr+q=0$; o quarto é igual a zero porque 2r+p=0 já que, quando $r_1=r_2=r$, tem-se $r=-rac{p}{2}$. Então, $z_{n+2}+pz_{n+1}+qz_n=0$.

Além disso, como $C_1r+C_2r=y_1$ e $C_1r^2+2C_2r^2={}^2y_2$, temos $z_1=z_2=0$. Mas, se $z_{n+2}+pz_{n+1}+qz_n=0$ e $z_1=z_2=0$, então $z_n=0$ para todo n.

EXEMPLO 4.19

A recorrência $x_{n+2}-4x_{n+1}+4x_n=0$ tem equação característica $r^2-4r+4=0$. As raízes são $r_1=r_2=2$ e a solução da recorrência é $x_n=C_12^n+C_2n2^n$.

O teorema a seguir mostra um processo para resolver algumas recorrências não homogêneas. TEOREMA 4.6.

Se a_n é uma solução da equação

$$x_{n+2} + px_{n+1} + qx_n = f(n),$$

então a substituição $x_n=a_n+y_n$ transforma a equação em

$$y_{n+2} + py_{n+1} + qy_n = 0.$$

DEMONSTRAÇÃO.

Substituindo x_n por $a_n + y_n$ na equação, obtemos

$$(a_{n+2} + pa_{n+1} + qa_n) + (y_{n+2} + py_{n+1} + qy_n) = f(n).$$

Mas $a_{n+2}+pa_{n+1}+qa_n=f(n)$, pois a_n é a solução da equação original. Logo, a equação se transformou em

$$y_{n+2} + py_{n+1} + qy_n = 0.$$

De acordo com o Teorema 4.6, a solução de uma recorrência não homogênea é constituída de duas parcelas: uma solução qualquer da não homogênea e a solução homogênea. A solução da homogênea, sabemos achar. Uma solução da não homogênea, procuraremos por tentativas.

EXEMPLO 4.20

A recorrência $x_{n+2}-6x_{n+1}+8x_n=n+3^n$ tem equação característica $r^2-6r+8=0$, cujas raízes são $r_1=2$ e $r_2=4$. Portanto, a solução da homogênea, isto é, de $x_{n+2}-6x_{n+1}+8x_n=0$ é $h_n=C_12^n+C_24^n$. Tentaremos agora descobrir uma solução particular, t_n , da recorrência

$$x_{n+2} - 6x_{n+1} + 8x_n = n + 3^n$$
.

Ora, se substituirmos t_n em $x_{n+2}-6x_{n+1}+8x_n$ devemos encontrar $n+3^n$. Que tipo de função deve ser t_n ? É bastante razoável imaginar que t_n seja a soma de um polinômio do primeiro grau com uma exponencial de base 3. Tentaremos $t_n=An+B+C3^n$. Substituindo em

$$x_{n+2} - 6x_{n+1} + 8x_n = n + 3^n,$$

obtemos $3An+3B-4A-C3^n=n+3^n$. Logo, t_n será solução se 3A=1, 3B-4A=0 e -C=1. Logo,

$$A = \frac{1}{3}$$
, $B = \frac{4}{9}$ e $C = -1$.

Daí,

$$t_n = \frac{1}{3}n + \frac{4}{9} - 3^n.$$

Portanto, a solução da recorrência não homogênea é

$$x_n = C_1 2^n + C_2 4^n + \frac{1}{3}n + \frac{4}{9} - 3^n.$$

A recorrência $x_{n+2}-6x_{n+1}+8x_n=1+2^n$ tem equação característica $r^2-6r+8=0$, cujas raízes são $r_1=2$ e $r_2=4$. Portanto, a solução da equação homogênea, isto é, de $x_{n+2}-6x_{n+1}+8x_n-0.6$ h = C on C $8x_n=0$ é $h_n=C_12^n+C_24^n$. Tentaremos agora descobrir uma solução particular, t_n da recorrência $x_{n+2}-6x_{n+1}+8x_n=1+2^n$. Ora, se substituirmos t_n em $x_{n+2}-6x_{n+1}+8x_n$ devemos encontrar $1+2^n$. Que tipo de função deve ser t_n ? é bastante razoável imaginar que t_n seja a soma de u_{m} polinômio constante com uma exponencial de base 2. Tentaremos $t_n=A+B2^n$. Substituindo em

THE DULL THE

$$x_{n+2} - 6x_{n+1} + 8x_n = 1 + 2^n,$$

obtemos $3A=1+2^n$. Essa igualdade é impossível. A recorrência não admite solução da forma $t_n = A + B2^n.$

Parando para pensar no que aconteceu, verificamos que era óbvio que a nossa tentativa não podia dar certo. O espírito da nossa tentativa era tentar uma constante A para que obtivéssemos uma constante que igualaríamos a f 1 e tentar $B2^n$ para gerar uma exponencial que pudéssemos igualar a 2^n . É claro que o termo $B2^n$ não poderia cumprir o seu papel. $B2^n$ é solução da homogênea (é a solução da homogênea que é obtida pondo $C_1=B$ e $C_2=0$) e, substituído da equação, daria zero e não uma exponencial que pudéssemos igualar a 2^n .

Vamos corrigir a nossa tentativa para $t_n = A + Bn2^n$. Sempre que na nossa tentativa em algum bloco não cumprir o seu papel, fazemos a correção "aumentando o grau", isto é, multiplicando o bloco por n. Agora, substituindo na recorrência, obtemos $3A - B4B2^n = 1 + 2^n$.

Se 3A = 1 e -4B = 1, isto é,

$$A = \frac{1}{3} \qquad \text{e} \qquad B = -\frac{1}{4},$$

temos a solução

$$t_n = \frac{1}{3} - \frac{n2^n}{4}.$$

A solução da recorrência é a soma de $h_n \, {\rm com} \, t_n$. Portanto,

$$x_n = C_1 2^n + C_2 4^n + \frac{1}{3} - \frac{n2^n}{4}.$$

Observação 4.7.

O teorema 4.6 pode ser utilizado para resolver uma recorrência linear não homogênea de qualquer grau, toda vez que se conheça a solução geral y_n da recorrência homogênea correspondente e uma solução particular a(n): a solução geral da equação não homogênea é dada por $x_n = a_n + y_n$. Ilustramos este fato resolvendo, de um outro modo, a recorrência linear de primeira ordem vista no exemplo 4.13.

