Interação Humano-Computador Prototipação em IHC

Prof. Lesandro Ponciano

Departamento de Engenharia de Software e Sistemas de Informação (DES)

Objetivos

- Apresentar e discutir técnicas de prototipação
 - Conceito, motivação, características
 - Benefícios gerais e específicos
- Discutir tipos de prototipação
 - Horizontal vs. vertical; global vs. local; alta-fidelidade vs. baixafidelidade
- Discutir representações
 - Wireframes, mock-ups, storyboard
- Apresentar abordagens
 - Prototipação em papel, em PowerPoint e em vídeo

Por que Fazemos Protótipos?

- Em IHC, o objetivo da prototipação não é o artefato em si, mas o feedback e a iteração com os agentes
- Prototipação (ou prototipagem) é uma técnica, não simplesmente uma ferramenta
 - Essa técnica pode ser eficaz mesmo com a utilização de desenhos manuais ou outros meios não automatizados
- Passos típicos
 - 1) Definir o feedback que precisa ser obtido
 - 2) Construir os protótipos
 - 3) Avaliar e usar o que aprendeu no próximo design
 - 4) Descartar o protótipo

De quem Obter Feedback?

- De colegas
 - Este produto atende aos requisitos?
- Dos clientes
 - Este produto atende aos requisitos?
 - Qual variação você prefere?
- Dos usuários
 - Funciona? Está claro?
 - Consegue usar efetivamente? O que mudar?

Características

- Protótipos podem diferir entre si em termos de diversas características
- Características principais
 - Dimensões: Diferentes abordagens de prototipação
 - Representação: Como o desenho da interação é representado no protótipo?
 - Escopo: O protótipo inclui todo o sistema ou somente a interface? Quando representa-se somente a interface é chamado de fachada
 - Executabilidade: O protótipo pode ser executado a qualquer tempo? A implementação e o protótipo podem se fundir?
 - Amadurecimento: Como o protótipo evolui para o produto?

Horizontal e Vertical

Prototipação Horizontal

- Menor profundidade e maior largura com relação ao número de características do sistema que são contempladas no protótipo
- Mais usado quando o desenvolvimento do sistema está em um estágio inicial

Prototipação Vertical

- Utiliza um menor número de características, mas as utilizadas são abordadas em maior profundidade
- Mais usado quando o desenvolvimento do sistema está em um estágio mais adiantado

Global e Local

Prototipação global

- Visa representar o sistema inteiro, trabalhando tanto em alto nível, como em detalhes
- Um protótipo global pode ter profundidade em algumas partes
- Um usuário pode ter uma boa percepção do produto final
- São usados por todo o ciclo de prototipagem

Prototipação local

- Descreve um detalhe específico, mas importante
- Avalia alternativas de desenho para um detalhe particular
- Tipicamente é isolado dos protótipos restantes
- É usado por um período curto de tempo, quando detalhes específicos de desenho estão sendo trabalhados

Baixa-Fidelidade e Alta-Fidelidade

- Prototipação de Baixa-Fidelidade
 - Low Fidelity (Lo-Fi)
 - Representação artística com poucos detalhes
 - São mais focados em ideias amplas e iniciais
 - Baixo custo, desenvolvimento rápido e é descartado rapidamente
- Prototipação de Alta-Fidelidade
 - High Fidelity (Hi-Fi)
 - Representação com muitos detalhes
 - Assemelha-se ao produto final, útil na avaliação de detalhes
 - Tem alto custo, demanda muito tempo para ser feito, pode ser parte de um contrato

Fidelidade Baixa vs. Alta

Tipo	Vantagens	Desvantagens
Protótipo de baixa-fidelidade	 Custo mais baixo de desenvolvimento. Avalia múltiplos conceitos de design. Instrumento de comunicação útil. Aborda questões de leiaute de tela. Útil para identificação de requisitos de mercado. Proof-of-concept (demonstrações de que o conceito funciona). 	 Verificação limitada de erros. Especificação pobre em detalhe pa ra codificação. "Uso" conduzido pelo facilitador. Utilidade limitada após estabeleci mento dos requisitos. Utilidade limitada para testes de usabilidade. Limitações de fluxo e navegação.
Protótipo de alta-fidelidade	 Funcionalidade completa. Totalmente interativo. Uso conduzido pelo usuário. Define claramente o esquema de navegação. Uso para exploração e teste. Mesmo look and feel do produto final. Serve como uma especificação viva. Ferramenta de venda e marketing. 	 Desenvolvimento mais caro. Sua criação demanda tempo. Ineficiente para designs proof-of-concept (demonstrações de que o conceito funciona). Não serve para coleta de requisitos.

Mock-ups, Wireframe e Storyboards

Wireframe

- Telas de baixa fidelidade
- Define a arquitetura de informação e o layout, mas não inclui cor e muitos detalhes

Mock-up

- "Maquete"; telas de alta fidelidade
- Inclui detalhes estéticos e de funcionalidades

Storyboards

- Assemelha-se a diagramas de fluxo
- Guia que ilustra os detalhes importantes da sequência de interação

Exemplo de Wireframe

Exemplo de Mock-up

Exemplo de Storyboard

He selects an interesting project to view it in detail.

He decides to add the project to his To-Do list. He selects the To-Do tab to see the other projects on his list.

He takes a close look at a project he had added a while back.

Prototipação Rápida

- O uso da criatividade na construção de protótipos pode dispensar maiores esforços de implementação
- Pode-se utilizar desenhos manuais ou outros meios não automatizados
- Uma pessoa pode fazer a função do computador
 - Preserva-se a metacomunicação entre designer e o usuário ao longo da interação
 - Tal método pode ser bastante eficaz

Exemplo de Protótipo em Papel

Exemplo de Palm em Papel

- Usa-se modelos físicos
 - Por exemplo, cartolina
- Dimensões e aspecto são importantes
 - Cabe na mão? Leve? Pesado?
 - Aspectos dinâmicos são simulados com outras cartolinas

Exemplo de Template

Notes:	Notes:	Notes:

Percepções dos Utilizadores

Questões a Ponderar

- Diversos aspectos precisam ser considerados na decisão de uso da prototipação em papel
 - Robustez, escopo da aplicação, instruções e flexibilidade
- Robustez
 - Permite representar as principais ideias que se deseja avaliar?
- Escopo de aplicação
 - O escopo da aplicação tem muitos detalhes?
 - Pode ser difícil entender com protótipo em papel

Questões a Ponderar

Instruções

- Com poucos detalhes a pessoa usa sem ajuda
- Com muitos detalhes é necessário ajuda (instrução) do designer

Flexibilidade

- Têm partes do protótipo de papel ajustável para que as pessoas possam 'redesenhá-lo' on-the-fly
- Notas autoadesivas podem representar partes da tela onde o usuário pode mover os elementos ou adicionar novos itens

Prototipação em PowerPoint

Prototipação em PowerPoint

- Permite um pouco mais de fidelidade na definição da interface comparado ao protótipo em papel
- Pode-se representar mais detalhes e reusar imagens típicas, que são utilizadas em sistemas com propósitos parecidos
- Tem-se suporte do sistema para responder à integração do usuário

Prototipação em Vídeo

https://www.instagram.com/p/BEHbRUwB7B9/

Prototipação em Vídeo

- Pode-se representar uma dinâmica
 - Sistemas ubíquos e interação multimodal
- Pode-se manter o vídeo e adicionar diferentes intervenções de projeto a fim de compará-las

Sistema Pulso

https://www.youtube.com/watch?v=TWXc-a3uPIk

Sistema Lumen

https://www.youtube.com/watch?v=pI7LEZ3AsOg

Benefícios Gerais da Prototipação

- Protótipos permitem
 - Observar precocemente a natureza final do produto
 - Considerar conceitos e alternativas antes do desenvolvimento
 - Obter retorno sobre a estrutura do projeto
 - Detectar e resolver problemas de usabilidade, comunicabilidade e acessibilidade antes de escrever código
- Protótipos também
 - Poupam tempo e custo de desenvolvimento
 - Mantém o projeto centrado nos usuários

Benefícios Específicos

- Para os desenvolvedores
 - Protótipos geram uma referência comum para discussões
 - Os códigos dos sistemas ficam menores
 - Sistemas são codificados com menos esforço
- Para os usuários
 - Sistemas mais fáceis de aprender e utilizar
 - Usuários demonstram maior nível de satisfação
 - Maior entusiasmo dos usuários
 - Maior aceitação pelos usuários

Dicas para Reduzir os Custos

- Aprenda a prototipar com gráficos ruins
 - Cuidado para não deixar que o layout do protótipo influencie o gráfico final da aplicação
- Prototipe em pontos significativos do processo
 - Não faça apenas no início e fim
- Não "se apegue" ao seu artefato
 - Aprenda a jogar fora seu protótipo
- Não tente fazer mais que o período planejado permite

Atividades

- 1) Diferencie prototipação global e local
- 2) Diferencie protótipos de baixa-fidelidade e protótipos de altafidelidade. Apresente vantagens e desvantagens
- 3) Diferencie wireframe, mock-up e storyboard
- 4) Diferencie prototipação em papel, prototipação em PowerPoint e prototipação em vídeo. Apresente vantagens e desvantagens
- 5) Discuta benefícios que a prototipação traz para usuários e para desenvolvedores

Referências

BARBOSA, Simone D. J; SILVA, Bruno Santana da. Interação humano-computador. Rio de Janeiro (RJ): Elsevier, 2010. 384 p. ISBN (Capítulo 6 e 7)

BENYON, David. Interação humano-computador. 2. ed. São Paulo: Pearson Prentice Hall, 2011. xx, 442 p. ISBN 9788579361098 (Capítulo 8)

ROGERS, Yvonne; SHARP, Helen; PREECE, Jennifer. Design de interação: além da interação homem-computador. 3. ed. Porto Alegre: Bookman, 2013. xiv, 585 p. ISBN 9788582600061 (Capítulo 8)