The Maximum Margin Principle

Announcements

None

Outline

- Hyperplanes
- Max-margin hyperplanes
- Optimal soft-margin hyperplanes

Drawback of Plug-in Classifiers

 Plug-in methods require estimation of (conditional) densities or mass functions, which can be more difficult than estimating a decision boundary

 $\eta(x)$ is quite complicated but the decision regions are simple and η is smooth near 1/2

Linear Classifiers

- Binary classification
- Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_n, y_n)$.
- Assume the labels are -1 and 1
- Recall a linear classifier has the form

$$f(x) = \operatorname{sign}(W^{T}x + b)$$

$$\operatorname{sign}(t) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases}$$

How can we use the training data to directly optimize for \boldsymbol{w} and b?

Hyperplanes

• A hyperplane is a subset of \mathbb{R}^d of the form

$$f = \{x : w^{T}x + b = 0\}$$

for some $\boldsymbol{w} \in \mathbb{R}^d$, $b \in \mathbb{R}$.

• In general, a hyperplane is an affine subspace of dimension d-1

Normal Vectors

- The vector w is orthogonal to the hyperplane, and for this reason is called a *normal vector*.
- To say that w is orthogonal to a hyperplane means that it is orthogonal to every vector that lies in the hyperplane. Every such vector can be written as the difference of two points x and x' in the hyperplane.

$$w^{T}\chi + b = 0$$
 $=$ $w^{T}(\chi - \chi') = 0$ $=$ $w \perp \chi - \chi'$

Distance from Point to Hyperplane

• Let $\mathcal{H} = \{ \boldsymbol{x} \mid \boldsymbol{w}^T \boldsymbol{x} + b = 0 \}$. The distance from $\boldsymbol{z} \notin \mathcal{H}$ to \mathcal{H} is

• Let $\mathcal{H} = \{ \boldsymbol{x} \mid x_1 - 5x_2 + 5x_3 - 7 = 0 \} \subseteq \mathbb{R}^3$. The distance from \mathcal{H} to

$$z = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad w = \begin{bmatrix} 7 \\ -5 \\ 5 \end{bmatrix}, b = -7$$
is
$$|w^{7}z+b| = |1-5+5-7| = 6$$

$$||w|| = \sqrt{|1^{2}+(-5)^{2}+5^{2}} = \sqrt{5}$$

distance: 6

Separating Hyperplanes

- Let $(x_1, y_1), \ldots, (x_n, y_n)$ be training data for a binary classification problem
- Assume $y_i \in \{-1, 1\}$.
- We say the training data are linearly separable if there exist $\mathbf{w} \in \mathbb{R}^d$, $b \in \mathbb{R}$ such that

• In this case we refer to

$$\mathcal{H} = \{ \boldsymbol{x} : \boldsymbol{w}^T \boldsymbol{x} + b = 0 \}$$

as a separating hyperplane.

Separating Hyperplanes

• Are all separating hyperplanes equally good?

Poll: Margin of a Hyperplane

- Let $\mathcal{H} = \{ \boldsymbol{x} : \boldsymbol{w}^T \boldsymbol{x} + b = 0 \}$ be a separating hyperplane.
- The margin ρ of a \mathcal{H} is the distance from \mathcal{H} to the nearest training point x_i .
- **Poll:** A formula for ρ is

(A)
$$\rho(\boldsymbol{w}, b) = \min_{\boldsymbol{z} \in \mathbb{R}^d} \frac{|\boldsymbol{w}^T \boldsymbol{z} + b|}{\|\boldsymbol{w}\|}$$

(B)
$$\rho(\boldsymbol{w}, b) = \max_{\boldsymbol{z} \in \mathbb{R}^d} \frac{|\boldsymbol{w}^T \boldsymbol{z} + b|}{\|\boldsymbol{w}\|}$$

(C)
$$\rho(\boldsymbol{w}, b) = \min_{i=1,...,n} \frac{|\boldsymbol{w}^T \boldsymbol{x}_i + b|}{\|\boldsymbol{w}\|}$$

(D)
$$\rho(\boldsymbol{w}, b) = \max_{i=1,\dots,n} \frac{|\boldsymbol{w}^T \boldsymbol{x}_i + b|}{\|\boldsymbol{w}\|}$$

Max-Margin Hyperplane

• The margin ρ of a separating hyperplane is the distance from the hyperplane to the nearest training point:

$$\rho(\boldsymbol{w},b) := \min_{\boldsymbol{i} = 1,\dots,n} \frac{|\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}; + \boldsymbol{b}|}{|\boldsymbol{w}|}$$

• The maximum margin or optimal separating hyperplane is the solution of

max
$$\left(\begin{array}{c} min \\ \bar{\iota} = 1/-1/N \end{array}\right)$$

W/b $\left(\bar{\iota} = 1/-1/N \right)$

s.t.
$$y_i(W^Tx_i+b) > 0 \quad \forall i=1,...,n$$

Max-Margin Hyperplane

Canonical Form

ullet A separating hyperplane is said to be in *canonical form* if $oldsymbol{w}$ and b are such that

$$y_i(w^7x_i+b) \ge 1 \quad \forall i$$

 $y_i(w^7x_i+b) = 1 \quad \text{for some } i$

• Every separating hyperplane can be represented in canonical form. If $\mathcal{H} = \{ \boldsymbol{x} : \boldsymbol{w}^T \boldsymbol{x} + b = 0 \}$ and $\alpha > 0$, then

$$\mathcal{H} = \left\{ \chi : (\alpha \omega)^{\mathsf{T}} \chi + (\alpha b) = 0 \right\}$$

and

$$\forall x$$
 sign $\{(\alpha \omega)^T x + (\alpha b)\} = sign \{\omega^T x + b\}$

ullet Thus we can always scale $oldsymbol{w}$ and b such that the smallest value of

$$y_i((aw)^Tx_i + (ab))$$

Canonical Form

Max-Margin Hyperplane

• This allows us to write the max-margin hyperplane

$$\max_{\boldsymbol{w},b} \left(\min_{i=1,...,n} \frac{|\boldsymbol{w}^T \boldsymbol{x}_i + b|}{\|\boldsymbol{w}\|} \right)$$
s.t. $\forall i \quad y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1$

$$\exists i \quad y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) = 1.$$

• Equivalently,

max

$$w_ib$$
 ||w||
 $s.t.$ $\forall i$ $y_i(w^Tx_i+b) \ge 1$
 $\exists i$ $y_i(w^Tx_i+b) = 1$

• This is an example of a quadratic program

s.t.
$$\forall i \ y_i(w^i\chi_i + b) \geqslant 1$$

Non-Separable Data

• What if the training data are not linearly separable?

Ksee

Optimal Soft-Margin Hyperplane

- Introduce slack variables $\xi_1, \ldots, \xi_n \geq 0$.
- ullet The optimal soft-margin hyperplane is the solution of

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{C} \sum_{i=1}^{N} \boldsymbol{\xi}_{i}$$
s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \boldsymbol{\xi}_{i}$ $\forall i = 1, \dots, n$

$$\boldsymbol{\xi}_{i} \geqslant 0 \qquad \forall i = 1, \dots, n$$

- \bullet C is a user-defined parameter
- This is another quadratic program

Poll 2

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i$ $\forall i = 1, \dots, n$

$$\xi_i \ge 0 \qquad \forall i = 1, \dots, n$$

• True or False: As C increases, the solution becomes more sensitive to outliers like the one shown

Poll 3

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i$ $\forall i = 1, \dots, n$

$$\xi_i \ge 0 \qquad \forall i = 1, \dots, n$$

- True or False: If C = 0, the OSM hyperplane recovers the max-margin hyperplane in the case of linearly separable data.
 - (A) True
 - (B) False \checkmark

$$w = 0$$
 is optimal

Closing Thoughts

 The optimal soft margin hyperplane classifier is a special case of a much more general classifier that we will study soon: the support vector machine