UNIVERSITY OF SOUTH CAROLINA

MATH-546 Algebraic Structures I

Homework 5

Problems

Problem 1:

Show the subgroup diagram for the group \mathbb{Z}_{20} . Specify a generator for each of the subgroups in the diagram and show the inclusions between the subgroups.

Answer 1:

Note: Beware the answers ChatGPT might give you. After figuring out the lattice structure for myself, I asked ChatGPT to generate the LaTeX/TikZ code for it. ChatGPT got the layout correct but put the wrong labels in.

Problem 2:

Find all the possible orders of elements of the group $\mathbb{Z}_{10} \times \mathbb{Z}_8$. For each possible order, show two different examples of elements that have that order, or state that there is only one such element.

Answer 2:

	$[0]_{8}$	$[1]_{8}$	$[2]_{8}$	$[3]_{8}$	$[4]_{8}$	$[5]_{8}$	$[6]_{8}$	$[7]_{8}$
$[0]_{10}$	1	8	4	8	2	8	4	8
$[1]_{10}$	10	40	20	40	10	40	20	40
$[2]_{10}$	5	40	20	40	10	40	20	40
$[3]_{10}$	10	40	20	40	10	40	20	40
$[4]_{10}$	5	40	20	40	10	40	20	40
$[5]_{10}$	2	8	4	8	2	8	4	8
$[6]_{10}$	5	40	20	40	10	40	20	40
$[7]_{10}$	10	40	20	40	10	40	20	40
$[8]_{10}$	5	40	20	40	10	40	20	40
$[9]_{10}$	10	40	20	40	10	40	20	40

So there is but 1 element of order 1. 3 of order 2. 4 of order 4. 4 of order 5. 8 of order 8. 12 of order 10. 16 of order 20. 32 of order 40.

Problem 3:

Let

$$H = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \equiv b \pmod{5}\}.$$

- a. Prove that H is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.
- b. Prove that H is generated by (0,5) and (1,1).
- c. Prove that H is not cyclic.

Answer 3:

Note that b is not constrained.

a. - Associativity: inherited - Identity: $0 \equiv 0 \pmod{5} \Rightarrow (0,0) \in H$ - Inverses: $a \equiv b \pmod{5}$ $\Rightarrow \exists n \ni a = 5n + b$ $\Rightarrow -a = 5(-n) + (-b)$ $\Rightarrow -a \equiv -b \pmod{5}$ $\Rightarrow (-a, -b) \in H$ - Closure: Let $(a, b) \in H \land (c, d) \in H$ then $\exists j, k \in \mathbb{Z} \ni (a = 5j + b) \land (c = 5k + d)$ $\Rightarrow (a, b) + (c, d) = (5j + b + 5k + d, b + d)$ = 5(j + l) + (b + d), b + d) $\Rightarrow (a + c) \equiv (b + d) \pmod{5}$ $\Rightarrow (a + c, b + d) \in H$

Alternatively: If (a,b) and (c,d) are arbitrary elements of H then there are $j,k \in \mathbb{Z}$ such that a=5j+b and c=5k+d.

$$(a,b) + (c,d)^{-1} = (a,b) + (-c,-d)$$

$$= (5j+b-5k-d,b-d)$$

$$= (5(j-k) + (b-d),(b-d))$$

$$\therefore (a,b) + (c,d)^{-1} \in H$$

and H is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.

b.
$$(a,b) \in H \Rightarrow \exists j \in \mathbb{Z} \ni a = 5j + b \Rightarrow b = a - 5j \text{ so}$$

 $(a,b) = (a,a - 5j)$
 $= (a,a) + (0,5j)$

= a(1,1) + i(0,5)

and so every element of H is a linear combination of (1,1) and (0,5).

And, conversely, every linear combination of (1,1) and (0,5) can be reduced to the form (a, a - 5j) satisfying the requirements of H.

c. If H is cyclic then $\langle (a,b) \rangle = H$ for some $(a,b) \in H$.

$$(1,1) \in H \Rightarrow \exists j \in \mathbb{Z} \ni j(a,b) = (1,1)$$

$$\Rightarrow a = b$$

$$(0,5) \in H \Rightarrow \exists k \in \mathbb{Z} \ni k(a,a) = (0,5)$$

$$\Rightarrow ka = 0 \land ka = 5 \Rightarrow \Leftarrow$$

So ${\cal H}$ cannot be cyclic.

Problem 4:

- a. Prove that $G = \mathbb{Z}_4 \times \mathbb{Z}_8$ does not have any elements of order 16.
- b. Give two different examples of subgroups of $\mathbb{Z}_4 \times \mathbb{Z}_8$ that have order equal to 16. For each of the two subgroups, list the elements of that subgroup.

Answer 4:

- a. Let $([a]_4, [b]_8) \in G$ then $o([a]_4) \mid \mid \mathbb{Z}_4 \mid$ and $o([b]_8) \mid \mid \mathbb{Z}_8 \mid$. Therefore $8([a]_4, [b]_8) = ([0]_4, [0]_8)$. And so no element of $\mathbb{Z}_4 \times \mathbb{Z}_8$ has an order greater than 8.
- b. Consider $\langle ([1]_4,[2]_8) \rangle$ and $\langle ([2]_4,[1]_8) \rangle$ and expand.

Theoretical Questions

Problem 5:

For every element $[a]_n \in \mathbb{Z}_n$, prove that

$$o([a]_n) = \frac{n}{\gcd(a,n)}$$

Answer 5:

By definition, $o([a]_n)$ is the smallest positive integer such that $o([a]_n)a$ is a multiple of n. Therefore, using duality of lcm and gcd:

$$o([a]_n)a = \operatorname{lcm}(a, n)$$

$$= \frac{an}{\gcd(a, n)}$$

$$o([a]_n) = \frac{n}{\gcd(a, n)}$$

Problem 6:

Let G_1 and G_2 be groups. Prove that $G_1 \times G_2$ is abelian if and only if both G_1 and G_2 are abelian.

Answer 6:

 \leftarrow Let a_1, b_1 be arbitrary elements of G_1 and a_2, b_2 be arbitrary elements of G_2 , then

$$(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2)$$

= (b_1a_1, b_2a_2)
= $(b_1, b_2)(a_1, a_2)$

 \Rightarrow Let (a_1, a_2) and (b_1, b_2) be arbitrary elements of $G_1 \times G_2$, then

$$(a_1b_1, a_2b_2) = (a_1, a_2)(b_1, b_2)$$

= $(b_1, b_2)(a_1, a_2)$
= (b_1a_1, b_2a_2)

Problem 7:

Let G_1 and G_2 be groups.

- a. Prove that if $G_1 \times G_2$ is cyclic, then both G_1 and G_2 are cyclic.
- b. Give an example to show that the converse of the statement in part (a) is not true.

Answer 7:

a. Let (g_1, g_2) be a generator of $G_1 \times G_2$ and consider $a_1 \in G_1$ an arbitraty element of G_1 . Then $(a_1, e_2) \in G_1 \times G_2$ implies that $(a_1, e_2) = (g_1, g_2)^n = (g_1^n, g_2^n)$ and therefore $a_1 = g_1^n$ for some integer n. Since a_1 is arbitrary, $\langle g_1 \rangle = G_1$ and g_1 is a generator of G_1 .

We can use the same argument for g_2 and G_2 .

b. $\mathbb{Z}_4 \times \mathbb{Z}_8$ from problem 4: both \mathbb{Z}_4 and \mathbb{Z}_8 are individually cyclic but the direct product has order 32 but can't be cyclic since no element has an order greater than 8.