Machine Learning & Decision Trees

Machine Learning
Entropy
Decision Trees (partially)

What is Learning?

Learning is any process by which a system improves its performance from experience

Herbert Simon

A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**Tom Mitchell

What to learn about language?

Assigning categories to words (part-of-speech [POS] tagging) Assigning topics to articles, emails, or web pages Mood, affect, or sentiment classification of a text or utterance Assigning a semantic type or ontological class to a word or phrase Language identification Spoken word recognition Handwriting recognition Syntactic structure (sentence parsing) Temporal ordering of historical events Semantic roles for participants of events in a sentence Named Entity (NE) identification Coreference resolution Discourse structure identification

Types of learning

Supervised learning

Unsupervised learning

Semi-supervised learning

Target function

Target function maps input data to the desired output

Hypothesis (function) attempts to approximate the target function

Hypothesis space = a collection of all *possible* hypothesis functions

Learning from Experience = learning from training examples

Learning task

Learning involves improving on a task T with respect to a performance metric P, based on experience E

Tom Mitchell

Built corpus

Most informative and representative examples

Choose the training experience

Identify the target function

How to represent the target function

Choose a learning algorithm

Annotations increase available feature space

The way to infer the target function from the experience

Evaluate the results with the performance metric

Feature selection

Fix upon input for the target function

N-gram features

Structure-dependent features:

•Length; Nth element;

Annotation-dependent features – *new*, explicitly added information that can help in classification or discrimination.

Person, organization, and Place

Target functions

Classification

- Binary (e.g. logistic regression)
 - span vs not-spam; sentiment analysis
- Multi-class (e.g. multinomial logistic regression)
 - natural language inference, genre detection

Structure prediction

- Sequence labeling: POS tagging. segmentation
- Parsing: semantic & syntactic parsing

Regression analysis:

- •Scalar value (i.e., a measure)
- Linear is the simplest

Probabilities of classes

Types of learning (again)

Supervised learning

Unsupervised learning

Semi-supervised learning

Supervised learning

Data collection and annotation Learning the target function

The most popular learning type

Unsupervised learning

Clustering

No annotated data

Identify naturally existing groupings in the dataset

Groups/clusters are not pre-defined (vs classification)

Contrast samples in the dataset to define clusters

Types of clustering:

- Exclusive
- Overlapping: hierarchical

Representation of the samples decides the nature of clusters

Semi-supervised (SS) learning

Combines pros of supervised & unsupervised methods:

- Supervised: annotated data is informative (but expensive)
- Unsupervised: ample availability of raw data but with less (explicit) info

Types of semi-supervised learning:

Active learning: human helps to label low-conf. samples

- •Self-training: use for re-training unseen samples with high-conf. labels
- Multi-view: several ML models share with each other samples with high-conf. labels
- •Self-ensemble: versions of an ML model voting or sharing samples with high-conf. labels

Inductive & transductive learning

When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really need but not a more general one.

Vladimir Vapnik

Understanding entropy

Entropy

The measure of uncertainty, chaos, mess, and diversity

Entropy: intuition

Entropy: formula

The entropy of a discrete random variable X:

$$H(X) = -\sum_{x \in V(X)} p(x) \log p(x) = \sum_{x \in V(X)} p(x) \log \frac{1}{p(x)}$$

Values of the random variable

0.5 0.4 0.3 0.2 0.1 0 Distribution 1 Probability mass function

Base = 2 (serves as a scale)

H(X)

Entropy doesn't depend on the values of the random variable

Avg. # questions =
$$\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{4} \times 2$$

Entropy: two outcomes

The entropy of a coin:
$$X = \begin{cases} 1 & \text{with probability } p, \\ 0 & \text{with probability } 1 - p. \end{cases}$$

Decision Trees

ID3 algorithm (Quinlan, 1986)

ID3(Samples, Attributes)

If all Samples are of some C class, return C!

If Attributes = \emptyset , return most common class(Samples)!

A := best_classifier_attribute(Attributes, Samples)

 $R := \langle A?, \emptyset \rangle$

Create a root of a decision tree

For *a* **in** values_of(A):

If for **no** Samples, A=a:

R[2].add(a: most_common_class(Samples)!)

else:

sub_Samples := Samples for which A=a

less Attributes := Attributes - A

 $R[2].add(a: <ID3(sub_Samples, less_Attributes)>)$

return R

Recursive step: calling ID3 on less samples and less attributes

with classes

Best discriminating attribute for Samples from Attributes

Information gain (with entropy)

Difference in avg. uncertainty level ≈ info Info gained = avg. chaos before – avg. chaos now

$$Gain(S,A) = H(S) - \sum_{v \in V(A)} \frac{|S_v|}{|S|} H(S_v)$$
 Information gain Entropy wrt the target class

best_classifier_attribute(Attributes, Samples) = = $argmax_{A \in Attributes} Gain(Samples, A)$

Outlook	Temp	Humidity	Windy	Play Golf	
Rainy	Hot	High	False	No	
Rainy	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Sunny	Mild	High	False	Yes	ID3(Samples, Attributes)
Sunny	Cool	Normal	False	Yes	If all Samples are of soi
Sunny	Cool	Normal	True	No	If Attributes = Ø, retur A := best_classifier_att
Overcast	Cool	Normal	True	Yes	$R := \langle A?, \emptyset \rangle$
Rainy	Mild	High	False	No	For a in values_of(A):
Rainy	Cool	Normal	False	Yes	If for no Sample R[2]. <i>add</i>
Sunny	Mild	Normal	False	Yes	else:
Rainy	Mild	Normal	True	Yes	sub_Sar less_Att
Overcast	Mild	High	True	Yes	R[2].add
Overcast	Hot	Normal	False	Yes	return R
Sunny	Mild	High	True	No	


```
If all Samples are of some C class, return C!
If Attributes = \emptyset, return most common class(Samples)!
A := best_classifier_attribute(Attributes, Samples)
R := \langle A?, \emptyset \rangle
For a in values_of(A):
        If for no Samples, A=a:
```

R[2].add(a: most_common_class(Samples)!)

R[2].add(a: <ID3(sub_Samples, less_Attributes)>)

sub_Samples := Samples for which A=a

less_Attributes := Attributes - A

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

 $best_classifier_attribute(Attributes, Samples) =$ $= argmax_{A \in Attributes} Gain(Samples, A)$

		Play Golf		
		Yes	No	86
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
https://w	ww.saedsayad.co	m/decision_t	ree.htm	14

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

 $best_classifier_attribute(Attributes, Samples) =$ $= argmax_{A \in Attributes} Gain(Samples, A)$

Gain -	0.247	Play Golf	
Gaiii -	- 0.247	Yes	No
Outlook	Sunny	3	2
	Overcast	4	0
	Rainy	2	3

Cair	0.020	Play Golf		
Gain = 0.029		Yes	No	
Temp.	Hot	2	2	
	Mild	4	2	
	Cool	3	1	

Gain - (152	Play Golf	
Gain = 0.152		Yes	No
Humidity	High	3	4
	Normal	6	1

0.049	Play Golf		
0.046	Yes	No	
False	6	2	
True	3	3	
		0.048 Yes 6	

https://www.saedsayad.com/decision_tree.htm

Outlook	Temp	Humidity	Windy	Play Golf	
Rainy	Hot	High	False	No	
Rainy	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Sunny	Mild	High	False	Yes	ID3(<u>Sa</u>
Sunny	Cool	Normal	False	Yes	
Sunny	Cool	Normal	True	No	
Overcast	Cool	Normal	True	Yes	A R
Rainy	Mild	High	False	No Out	<mark>look</mark> F
Rainy	Cool	Normal	False	Yes	$ \ \ \rangle$
Sunny	Mild	Normal	False	Yes	Overcast
Rainy	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overcast	Hot	Normal	False	Yes	l r
Sunny	Mild	High	True	No	

D3(<u>Samples, Attributes)</u>

If all Samples are of some C class, return C!

If Attributes = \emptyset , return most_common_class(Samples)!

A := best_classifier_attribute(Attributes, Samples)

 $R := \langle A?, \emptyset \rangle$

return R

For a in values of(A):

If for **no** Samples, A=a:

R[2].add(a: most_common_class(Samples)!)

else:

sub_Samples := Samples for which A=a

less_Attributes := Attributes - A

 $R[2].add(a: <ID3(sub_Samples, less_Attributes)>)$

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

What decision trees actually do

Machine Learning A-Z™: Hands-On Python & R In Data Science https://www.udemy.com/machinelearning/

Further Reading

https://scikit-learn.org/stable/modules/tree.html