Classify Genres From Audio Data

Preparing our dataset

```
In [2]: import pandas as pd
         # Read in track metadata with genre labels
         tracks = pd.read_csv(filepath_or_buffer="datasets/fma-rock-vs")
         -hiphop.csv")
         # Read in track metrics with the features
         echonest_metrics = pd.read_json(path_or_buf="datasets/echones")
         t-metrics.json",precise_float=True)
         # Merge the relevant columns of tracks and echonest metrics
         echo tracks = pd.merge(echonest metrics,tracks[['track id','g
         enre_top']],on='track_id')
         # Inspect the resultant dataframe
         echo_tracks.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 4802 entries, 0 to 4801
         Data columns (total 10 columns):
                       Non-Null Count Dtype
              Column
         --- -----
                                -----
          0 track_id
                                4802 non-null int64
          1 acousticness 4802 non-null float64
2 danceability 4802 non-null float64
3 energy 4802 non-null float64
          4 instrumentalness 4802 non-null float64
          5 liveness 4802 non-null float64
          6 speechiness 4802 non-null float64
7 tempo 4802 non-null float64
8 valence 4802 non-null float64
9 genre_top 4802 non-null object
         dtypes: float64(8), int64(1), object(1)
         memory usage: 412.7+ KB
```

Pairwise relationships between continuous variables

```
In [3]: echo tracks.head()
Out[3]:
                                                   energy instrumentalness livenes
              track id acousticness danceability
          0
                    2
                           0.416675
                                       0.675894 0.634476
                                                                  0.010628 0.17764
           1
                    3
                           0.374408
                                       0.528643  0.817461
                                                                  0.001851 0.10588
                           0.043567
                                       0.745566 0.701470
                                                                  0.000697 0.37314
           3
                  134
                           0.452217
                                       0.513238 0.560410
                                                                  0.019443 0.09656
                  153
                           0.988306
                                                                  0.973006 0.12134
                                       0.255661 0.979774
```

Normalizing the feature data

```
In [4]: # Define our features
        features = echo_tracks.drop(columns=['genre_top','track_id'])
        labels = echo_tracks['genre_top']
        from sklearn.preprocessing import StandardScaler
        # Scale the features and set the values to a new variable
        scaler = StandardScaler()
        scaled_train_features = scaler.fit_transform(features)
        print(scaled_train_features)
        [[-0.19121034 1.30442004 0.03831594 ... 0.37303429 1.153
        97908
           0.46228696]
         [-0.30603598 0.50188641 0.78817624 ... 2.44615517 0.007
        91367
          -0.69081137]
         [-1.20481276    1.68413943    0.31285194    ...    0.13513049    -0.777
        31688
           0.63107745]
         [-1.29470431 1.17682795 0.13265633 ... 0.85182206 -0.935
        41008
          -0.07941825]
         [-1.13869115 -0.02253433 0.57117905 ... 1.40951543 1.313
        01348
           0.47513794]
         [-0.90611434 1.10148973 0.56322452 ... 1.36030881 -1.436
        69053
           0.76217464]]
```

Principal Component Analysis on our scaled

data

```
In [5]:
        # This is just to make plots appear in the notebook
        %matplotlib inline
        # Import our plotting module, and PCA class
        import matplotlib.pyplot as plt
        from sklearn.decomposition import PCA
        # Get our explained variance ratios from PCA using all featur
        es
        pca = PCA()
        pca.fit(scaled_train_features)
        exp_variance = pca.explained_variance_ratio_
        print(exp_variance)
        print(pca.components_)
        # plot the explained variance using a barplot
        fig, ax = plt.subplots()
        ax.bar(range(features.shape[1]),exp_variance)
        ax.set_xlabel('Principal Component #')
```

```
[0.24297674 0.18044316 0.13650309 0.12994089 0.11056248 0.08
302245
 0.06923783 0.04731336]
[[-4.33617070e-03 5.79543156e-01 -2.36263229e-01 -4.3506317
9e-01
  -5.46236491e-02 4.32381961e-01 -1.79477383e-01 4.4368976
 [-5.43521941e-01 -9.29911248e-02 5.89109033e-01 -3.4425935
5e-01
   2.59405544e-01 8.46847426e-02 3.49788708e-01 1.8318764
4e-011
 [ 2.86043643e-01 -2.48800804e-01 -1.68840803e-01 -2.6635012
8e-01
   6.56826885e-01 4.36291451e-01 2.75628055e-04 -3.6749928
4e-01]
 [ 4.77238876e-01 -9.68661663e-02 4.79983348e-03 1.0025388
3e-01
  -2.08763560e-01 2.42021088e-01 7.57582026e-01 2.7694614
0e-01]
 [ 2.98644311e-01 1.91995892e-01 1.83922307e-01 3.1785092
4e-01
   6.10719051e-01 -3.19352594e-01 -1.19244387e-01 4.9990945
8e-01]
 [ 2.77995583e-01 -4.73875658e-02 6.56791470e-01 2.0575901
1e-01
  -2.24694808e-01 4.74804140e-01 -4.11318550e-01 -4.0637298
9e-02]
 [-4.18338999e-01 3.10217608e-01 -1.47037071e-01 6.6905133
3e-01
   1.75009382e-01 4.18174935e-01 1.82722016e-01 -1.4360374
5e-01]
[-2.31321640e-01 -6.69966058e-01 -2.85967880e-01 1.4218519
1e-01
  -2.50487697e-02 2.33783168e-01 -2.33913698e-01 5.3445663
6e-01]]
```

Out[5]: Text(0.5, 0, 'Principal Component #')

Further visualization of PCA

```
In [6]: import numpy as np
    cum_exp_variance = np.cumsum(exp_variance)

fig, ax = plt.subplots()
    ax.bar(range(features.shape[1]),cum_exp_variance)
    ax.axhline(y=0.85, linestyle='--')

n_components = 6

pca = PCA(n_components, random_state=10)
    pca.fit(scaled_train_features)
    pca_projection = pca.transform(scaled_train_features)
```


Train a decision tree to classify genre

```
In [8]: from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier

    train_features, test_features, train_labels, test_labels = tr
    ain_test_split(pca_projection,labels,random_state=10)

# Train our decision tree
    tree = DecisionTreeClassifier(random_state=10)
    tree.fit(train_features,train_labels)

# Predict the Labels for the test data
    pred_labels_tree = tree.predict(test_features)
```

Compare our decision tree to a logistic regression

```
In [9]: # Import LogisticRegression
    from sklearn.linear_model import LogisticRegression
    logreg = LogisticRegression(random_state=10)
    logreg.fit(train_features,train_labels)
    pred_labels_logit = logreg.predict(test_features)

# Create the classification report for both models
    from sklearn.metrics import classification_report
    class_rep_tree = classification_report(test_labels,pred_labels
    s_tree)
    class_rep_log = classification_report(test_labels,pred_labels
    _logit)

print("Decision Tree: \n", class_rep_tree)
    print("Logistic Regression: \n", class_rep_log)
```

Decision Tree				
	precision	recall	f1-score	support
Нір-Нор	0.60	0.60	0.60	235
Rock	0.90	0.90	0.90	966
accuracy			0.84	1201
macro avg	0.75	0.75	0.75	1201
weighted avg	0.84	0.84	0.84	1201
Logistic Regre	ession:			
	precision	recall	f1-score	support
Нір-Нор	0.77	0.54	0.64	235
Rock	0.90	0.96	0.93	966
accuracy			0.88	1201
macro avg	0.83	0.75	0.78	1201
weighted avg	0.87	0.88	0.87	1201

Balance our data for greater performance

```
In [10]: echo_tracks.loc[echo_tracks['genre_top']=='Hip-Hop']
```

Out[10]:

	track_id	acousticness	danceability	energy	instrumentalness	live
0	2	0.416675	0.675894	0.634476	1.062807e-02	0.17
1	3	0.374408	0.528643	0.817461	1.851103e-03	0.10
2	5	0.043567	0.745566	0.701470	6.967990e-04	0.37
3	134	0.452217	0.513238	0.560410	1.944269e-02	0.09
118	583	0.748986	0.765886	0.513173	9.572095e-01	0.61
4797	124718	0.412194	0.686825	0.849309	6.000000e-10	0.86
4798	124719	0.054973	0.617535	0.728567	7.215700e-06	0.13
4799	124720	0.010478	0.652483	0.657498	7.098000e-07	0.70
4800	124721	0.067906	0.432421	0.764508	1.625500e-06	0.10
4801	124722	0.153518	0.638660	0.762567	5.000000e-10	0.26

910 rows × 10 columns

```
In [11]: hop_only = echo_tracks.loc[echo_tracks['genre_top']=='Hip-Ho
p']
    rock_only = echo_tracks.loc[echo_tracks['genre_top']=='Rock']

    rock_only = rock_only.sample(hop_only.shape[0],random_state=1
0)
    rock_hop_bal = pd.concat([rock_only,hop_only])

# The features, labels, and pca projection are created for the balanced dataframe
features = rock_hop_bal.drop(['genre_top', 'track_id'], axis=
1)
    labels = rock_hop_bal['genre_top']
    pca_projection = pca.fit_transform(scaler.fit_transform(features))

# Redefine the train and test set with the pca_projection from the balanced data
train_features, test_features, train_labels, test_labels = train_test_split(pca_projection,labels, random_state=10)
```

Balancing our dataset to improve model bias

```
In [12]: tree = DecisionTreeClassifier(random_state=10)
    tree.fit(train_features,train_labels)
    pred_labels_tree = pred_labels_tree = tree.predict(test_features)
    logreg = LogisticRegression(random_state=10)
    logreg.fit(train_features,train_labels)
    pred_labels_logit = logreg.predict(test_features)
    print("Decision Tree: \n", classification_report(test_labels, pred_labels_tree))
    print("Logistic Regression: \n", classification_report(test_labels, pred_labels_logit))
```

Decision Tree:

	precision	recall	f1-score	support
Нір-Нор	0.74	0.73	0.74	230
Rock	0.73	0.74	0.73	225
accuracy			0.74	455
macro avg	0.74	0.74	0.74	455
weighted avg	0.74	0.74	0.74	455
Logistic Regre	ession: precision	recall	f1-score	support
Hip-Hop	0.84	0.80	0.82	230
Rock	0.80	0.85	0.83	225
accuracy			0.82	455
macro avg	0.82	0.82	0.82	455

Using cross-validation to evaluate our models

```
In [13]: from sklearn.model_selection import KFold, cross_val_score
    kf = KFold(n_splits=10)
    tree = DecisionTreeClassifier(random_state=10)
    logreg = LogisticRegression(random_state=10)
    tree_score = cross_val_score(tree,pca_projection,labels,cv=kf)
    logit_score = cross_val_score(logreg,pca_projection,labels,cv=kf)
    print("Decision Tree:", np.mean(tree_score), "Logistic Regres sion:", np.mean(logit_score))
```

Decision Tree: 0.7489010989010989 Logistic Regression: 0.782 967032967033

In []:	