Аналитиеская механика.			
Положение материаль- ной точки:	$\vec{r} = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$		
Скорость материальной точки:	$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dx}{dt}\vec{k}$		
Ускорение материальной точки:	$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j} + \frac{d^2x}{dt^2}\vec{k}$		
Вектор $ec{ au}$, определение:	$\vec{v} = \frac{d}{dt}r[\vec{s(t)}] = \frac{d\vec{r}}{ds}\frac{ds}{dt} = \vec{\tau}\frac{ds}{dt},$ $\vec{\tau} = \frac{d\vec{r}}{ds}$ $\vec{w} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(v\vec{\tau}) = \frac{dv}{dt}\vec{\tau} + v\frac{d\vec{\tau}}{ds}\frac{ds}{dt} =$		
Ускорение через $ec{ au}$:	$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(v\vec{\tau}) = \frac{dv}{dt}\vec{\tau} + v\frac{d\vec{\tau}}{ds}\frac{ds}{dt} = \frac{dv}{dt}\vec{\tau} + v^2\frac{d\vec{\tau}}{ds}\frac{ds}{dt} = \frac{d\vec{\tau}}{ds} = \frac{1}{a}\vec{n}$		
Вектор кривизны, и его связь с \vec{n} :	$\frac{d\vec{r}}{ds} = \frac{1}{\rho}\vec{n}$		
Разложение \vec{w} по $\vec{\tau}$ и \vec{n} :	$\vec{w} = rac{dv}{dt}\vec{ au} + rac{v^2}{ ho}\vec{n}$		
Вектор бинормали \vec{b} :	$ec{b} = ec{ au} imes ec{n}$		
Касательные к координатныйм линиям $(\vec{r}=\vec{r}(q_1,q_2,q_3))$:	$\begin{split} \frac{\partial \vec{r}}{\partial q_1} &= \frac{\partial x}{\partial q_1} \vec{i} + \frac{\partial y}{\partial q_1} \vec{j} + \frac{\partial z}{\partial q_1} \vec{k} = H_1 \vec{e_1}, \\ \frac{\partial \vec{r}}{\partial q_2} &= \frac{\partial x}{\partial q_2} \vec{i} + \frac{\partial y}{\partial q_2} \vec{j} + \frac{\partial z}{\partial q_2} \vec{k} = H_2 \vec{e_2}, \\ \frac{\partial \vec{r}}{\partial q_3} &= \frac{\partial x}{\partial q_3} \vec{i} + \frac{\partial y}{\partial q_3} \vec{j} + \frac{\partial z}{\partial q_3} \vec{k} = H_3 \vec{e_3} \end{split}$		
Коэффициенты Ляме:	$H_k = \sqrt{\left(\frac{\partial x}{\partial q_k}\right)^2 + \left(\frac{\partial y}{\partial q_k}\right)^2 + \left(\frac{\partial z}{\partial q_k}\right)^2}$		
Ортогональные криволинейные координаты:	$(\vec{e_1} \cdot \vec{e_2}) = (\vec{e_2} \cdot \vec{e_3}) = (\vec{e_3} \cdot \vec{e_1}) = 0$		
Эквивалентные условия ортогональности криволинейных координат:	$\frac{\partial x}{\partial q_l} \frac{\partial x}{\partial q_m} = \frac{\partial y}{\partial q_l} \frac{\partial y}{\partial q_m} = \frac{\partial z}{\partial q_l} \frac{\partial z}{\partial q_m} = 0$ для $l \neq m$		
	$ds^2 = dx^2 + dy^2 + dz^2 =$		
Дифференциал дуги произвольной кривой (метрика пространства):	$\sum_{i=1}^{3} \sum_{j=1}^{3} g_{ij} dq_i dq_j$		
Метрика пространства (случай ортогональных координат):	$ds^2 = H_1^2 dq_1^2 + H_2^2 dq_2^2 + H_3^2 dq_3^2$		
Скорость через криволинейные координаты:	$\vec{v} = \frac{d\vec{r}}{dt} = \frac{\partial \vec{r}}{\partial q_1} \dot{q}_1 + \frac{\partial \vec{r}}{\partial q_2} \dot{q}_2 + \frac{\partial \vec{r}}{\partial q_3} \dot{q}_3 = H_1 \dot{q}_1 \vec{e}_1 + H_2 \dot{q}_2 \vec{e}_2 + H_2 \dot{q}_2 \vec{e}_2$		