EE223 Analog Integrated Circuits Fall 2018

Lecture 2: Review of Basics

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

EE223 Cadence Lab

• ENG 289 Code: 116 0656

ISA: Ashley Hettick, achettick@gmail.com

■ Lab Time: Tuesday 6:00 – 8:00 PM

Wednesday 3:45 – 5:45 PM

ISA will help only Cadence setup & simulation related issues

Agenda

- Review of Basics
- □ Circuit Facts
- Analog Design Philosophy
- ☐ Circuits to be covered in the class
- □ Device Types
 - Passive
 - Active

Standard Prefixes for Multiples

Prefix	Symbol	Multiplying Factor
exa-	E	$10^{18} = 1,000,000,000,000,000$
peta-	P	$10^{15} = 1,000,000,000,000,000$
tera-	Т	$10^{12} = 1,000,000,000,000$
giga-	G	$10^9 = 1,000,000,000$
mega-	M	$10^6 = 1,000,000$
kilo-	k	$10^3 = 1,000$
hecto-	h	$10^2 = 1000$
deca-	da	10 = 10

Standard Prefixes for Fractions

deca-	da	10 = 10
deci-	d	$10^{-1} = 0.1$
centi-	С	$10^{-2} = 0.01$
milli-	m	$10^{-3} = 0.001$
micro-	μ	$10^{-6} = 0.000,001$
nano-	n	$10^{-9} = 0.000,000,001$
pico-	p	$10^{-12} = 0.000,000,000,000$
femto-	f	$10^{-15} = 0.000,000,000,000,001$
atto-	a	$10^{-18} = 0.000,000,000,000,000,001$

μm, nm, Å

■ 1 um = 10^{-6} m = $10^{3} \cdot 10^{-9}$ m = 1000 nm = 10000 Å

- 0.13 um = 130 nm technology
 - Minimum channel length: L = 0.13 um = 130 nm = 1300 Å
 - Tox \sim L / 50 = 130 nm / 50 = 2.6 nm

Things To Remember

- Speed of light
 - \cdot C = 3 x 108 m/s
 - C = f λ = frequency x wavelength
- $1 \text{ ppm} = 10^{-6}$
 - $1000 \text{ ppm} = 10^{-3} = 0.001 = 0.1\%$
- $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m} = 8.85 \text{ aF/um}$

•
$$\varepsilon_{si} = 11.7$$
 $\varepsilon_{ox} = 3.97$

$$\varepsilon_{\rm ox} = 3.97$$

$$\varepsilon_{\rm ni} = 16$$

- $k = 1.38 \times 10^{-23} \text{ J/K}, q = 1.6 \times 10^{-19} \text{ C}$
 - kT = 4 x 10⁻²¹ Joule at 300 K or 4kT = 1.6 x 10⁻²⁰ Joule
 - kT / q = 26 mV at 300 K
 - Capacitor noise $\sqrt{\frac{kT}{C}} = 64 \,\mu\text{V}$ for 1pF
 - Resistor noise: Noise of 1 k Ω = 4kTR/Hz => 4 nV / \sqrt{Hz}

Things To Remember

- $Cox = \varepsilon / t_{ox}$ (capacitance per unit area)
 - $T_{ox} = 50 \text{ Å} = 5 \text{ nm} -> C_{ox} = 3.9 \text{ x } 8.85 / 5 = 7 \text{ fF/um}^2$
 - $T_{ox} = 10 \text{ Å} = 1 \text{ nm} -> C_{ox} = 3.9 \text{ x } 8.85 / 1 = 35 \text{ fF/um}^2$
- $R = \rho L / A = \rho L / (Wt) = (\rho/t) (L/W) = R_{sq} (L/W)$
 - If $R_{sq} = 300 \Omega / sq$ (resistance per unit area)
 - L/W=10 \rightarrow R = 3 kΩ
- Angular frequency w = 2πf = 1 / RC
 - R=1 k Ω , C=1pF \rightarrow f = 160 MHz
- Logarithmic relation: log A B = log A + log B
 - $\log 2 = 0.3$
 - $\log 4 = 2 \times \log 2 = 0.6$
- Cascade of gain stages
 - Total Gain $A = A_1 \times A_2 \times A_3$
 - Input referred offset $V_{os} = V_{os1} + V_{os2}/A_1 + V_{os3}/(A_1A_2)$

Things To Remember

- KVL & KCL
- Ohm's law

$$V = R I$$

$$Q = C V$$

I-V relationship

Capacitor: $I = C dV/dt \rightarrow slew rate = dV/dt = I / C$

Inductor: $V = L \frac{di}{dt}$

Power P = V I

Understanding Power

- P = V I
- Total power = Static power + Dynamic power + Leakage power
- Static power = V I
- Dynamic power = α C V² f
- Leakage Types
 - junction leakage
 - gate leakage watch out for this in 90nm technology and beyond
 - sub-threshold leakage: usually dominant leakage factor
 - Reducing leakage
 - Higher Vt
 - 10% longer gate length reduces leakage by 35%
 - Doubling L reduces leakage by 3X

Decibel

- Signal amplitude can vary orders of magnitude from very small to very large values
 - Use logarithm to handle large dynamic range
- dB = 20 log V
 - If V = 100, then $20 \log V = 20 \log 100 = 40 dB$
 - $V2 = 10 \times V1 \rightarrow 20 \text{ dB increase}$
 - 0 dB = 1
 - -3 dB \rightarrow 10^(-3/20) = 0.7 \rightarrow 30% drop in magnitude from 0 dB
- $dBm = 10 \log (P/1mW) = 10 \log V^2/(0.001R)$
 - If R = 100 ohm, then -160 dBm = 3.26 nV
 - 0 dBm = 1 mW
 - $V2 = 10 \times V1 \rightarrow 20 \text{ dBm increase}$

More Things To Remember

- Transistor Vt mismatch A_{vt} = (1~2) mV · μm per nm
 - $T_{ox} = 35 \text{ Å} = 3.5 \text{ nm} \rightarrow A_{vt} = (3.5 \sim 7) \text{ mV} \cdot \mu\text{m}$
- DR (ENOB) = 6.02 N + 1.76 in dB
 - 10 bit = 62 dB
 - 1V signal in 10 bit → 1 LSB = 1 mV
- Miller Effect: $Y = C \cdot (1 A)$
 - If A is large, C_{eff} ≈ A · C
 - If A = 0.8, $C_{eff} = 0.2$ C

Circuit Spec

- Power supplies
 - 1.0V for Core
 - 1.8V for I/O
 - Power dissipation requirement
- Temperature Range

Commercial:	0 °C ~ 70	$^{\circ}C$
Odifficiolati	0 0 10	

Industrial: -40 °C ~ 85 °C

Automotive: -40 °C ~ 125 °C

Military: -55 °C ~ 125 °C

- Signal
 - Frequency of operation
 - Voltage signal swing
 - Current driving capability
 - Linearity (Signal to Noise ratio, Dynamic range, ENOB)

Process Variation

Variations

- Lot-to-Lot (L2L)
- Wafer-to-Wafer (W2W)
- Die-to-Die (D2D) or within-wafer (WIW)
- Within-die (WID) or intra-die

Process Corners

FF

SF

FS

Corner	Voltage	Temperature
F	1.98	0 °C
Τ	1.8	70 °C
S	1.62	125 °C

PVT Variation

- Process Variation
 - TT
 - SS
 - FF
 - SF
 - FS
- Voltage (Power Supply) Variation
 - ±10% or ±5%
- Temperature Range
 - Commercial: 0 °C ~ 70 °C
 - Industrial: -40 °C ~ 85 °C
 - Automotive: -40 °C ~ 125 °C
 - Military: -55 °C ~ 125 °C

Circuit Design Goal

- Meet all the spec required
- Minimize power dissipation
- Minimize circuit area
- Minimize design time
- Minimize re-spin of the design
 - Design review by team members
 - Cost implications
 - 1 or 2 day delay in tape-out
 - Mask re-spin
 - Production recall

Generic Communication Diagram

- ☐ Serializer + Deserializer = Serdes
- ☐ Channel can be either Wireline or Wireless
- ☐ Transmitter and Receiver are in a single chip

RF Transceiver

Baseband Transceiver

Basic Circuits

- Bandgap and Bias
- Amplifiers
- Comparators
- Sample & Hold
- References & Regulators
- Filters
- Oscillators
- PLL
- Integrators
- Data converters

EE223

Advanced Analog

EE288

EE230

EE227

Circuit Facts

Structure

 Circuits consist of a bunch of semiconductor devices such as transistors, resistors, capacitors, and occasionally inductors

Maxwell's equation

Circuit should obey KCL, KVL, and Ohm's law

Signal path

- High impedance node in the signal path creates a low frequency pole
- Low impedance node in the signal path creates a high frequency pole
- Inverting amplifier creates a right half plane zero
- Non-inverting amplifier creates a left half plane zero

Circuit Transfer Function

Transfer function

$$H(s) = Vout(s) = A(s-z1)(s-z2)$$

Vin(s) $(s-p1)(s-p2)$

Many circuit blocks can be approximated as second order system.

Stability Consideration

- Two poles in the transfer function
 - Useful for checking stability of Amplifiers
 - Filter design
 - PLL design
- Bode Plot

Signal-to-Noise Ratio

- $SNR = P_{sig} / P_{noise}$
 - SNR = 10 log $P_{siq}/(kT/C) = f(C)$
 - 1 bit → 6 dB → 4x increase in capacitor value for 6 dB
 - Keep bandwidth constant ~ 1/RC ~ gm/C
 - Keep voltage constant: 4 gm → 4 x I_D → 4x Power
 - Thermal noise limited circuit:
 - Each additional bit quadruples power dissipation
 - Over design is very costly