ST122: Probability and Statistics II

Waleed A. Yousef, Ph.D.,

Human Computer Interaction Lab.,
Computer Science Department,
Faculty of Computers and Information,
Helwan University,
Egypt.

March 24, 2019

Lectures follow Rice, "Mathematical Statistics and Data Analysis", 3rd edition, Duxbury:

ISBN 0-534-39942-8

Course Objectives

- Developing rigorous treatment.
- Building intuition and insight.
- Linking to real life problems.
- Coding and scientific computing.

Contents

Contents

8.2

8.3

8.4

8.5

8.3.1

8.4.1

8.5.1

8.5.2

8.5.3

introduction: Statistical inference in a Nutshen				IV
6	Distributions Derived from the Normal Distribution			1
	6.1	6.1 Introduction		
	6.2	χ^2 , t, and F Distributions		3
	6.3	Sample Mean, Sample Variance, and Sampling from Normal		
		Distribution		9
		6.3.1	Basic Concepts of Random Samples	9
		6.3.2	Sampling from the Normal Distribution	15
8	Estimation of Parameters and Fitting of Probability Distributions			22
	8.1 Introduction:		tion:	
		Estimation	on in a Nutshell	23

The Method of Moments

The Bayesian Approach to Parameter Estimation

Large Sample Theory for MLE

Large Sample Theory of Bayesian Inference

Mean Squared Error (MSE) Criterion

Best Unbiased Estimator

Asymptotic Relative Efficiency (ARE)

Assessing Estimators, Efficiency, and the Cramér-Rao Lower Bound 69

iii

26

37

49

60

68

69

74

95

Introduction: Statistical Inference in a Nutshell

Point estimate - different estimators - assessing estimators - large sample theory

Hypothesis testing.

Interval estimation.

Bayesian approach vs. Frequentist approach

Chapter 6

Distributions Derived from the Normal Distribution

6.1 Introduction

Distributions.

This Chapter discusses 3 probability distributions that frequently occur in Statistics: χ^2 , t, and F

Remember that if $V \sim Gamma(\alpha, \lambda)$, then

$$f(u) = \frac{\lambda^{\alpha}}{2} u^{\alpha-1} e^{-\lambda v} \quad u > 0$$

$$f(\nu) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \nu^{\alpha - 1} e^{-\lambda \nu}, \ \nu \ge 0,$$

$$\Gamma(\alpha)$$
 $\Gamma(\alpha)$ $\Gamma(\alpha)$

$$M(t) = (1 - t/\lambda)^{-\alpha},$$

$$E[V] = \alpha/\lambda,$$

$$Var[V] = \alpha/\lambda^2.$$

And if
$$V_1, ..., V_n$$
 are i.i.d $Gamma(\alpha, \lambda)$, then

And if
$$V_1, ..., V_n$$
 are i.i.d Gamma (α, λ) , then

$$M_{\Sigma_i V_i}(t) = (1 - t/\lambda)^{-n\alpha},$$

$$\Sigma_i V_i \sim Gamma(n\alpha, \lambda).$$

6.2 χ^2 , t, and F Distributions

Definition 1 If $Z \sim N(0,1)$, then $U = Z^2$ is called chi-square distribution with 1 degree of freedom;

i.e.,
$$U \sim \chi_1^2$$
. It is easy to show that (see Lec. notes Ch. 2):

Cn. 2):
$$f_U(u) = \frac{1}{\sqrt{2\pi}} u^{-1/2} e^{-u^2/2}.$$

 $\chi_1^2 \equiv Gamma\left(\frac{1}{2}, \frac{1}{2}\right),$

 $\frac{X-\mu}{\sigma} \sim N(0,1),$ $\left(\frac{X-\mu}{\sigma}\right)^2 \sim \chi_1^2.$

 $X \sim N(\mu, \sigma^2)$,

Convright © 2019 Waleed A. Yousef, All Rights Reserved.

Notice that:

Also:

$$f_U(u) = \frac{1}{\sqrt{2\pi}}$$

$\sum_{i} U_{i}$ is called chi-squre distribution with n degrees of freedom; i.e., $V \sim \chi_{n}^{2}$.

Definition 2 If $U_1, ..., U_n$ are i.i.d χ_1^2 r.v. then V =

 $V \sim Gamma(n/2, 1/2),$

Notice that $U_i \sim Gamma(\frac{1}{2}, \frac{1}{2})$, then

$$f_{V}(v) = \frac{1}{2^{n/2}\Gamma(n/2)}v^{n/2-1}e^{-v/2},$$

$$E[V] = n, \text{ Var}[V] = 2n.$$

solid: n = 1, dashed: n = 3, dotted: n = 6

Suppose that *U* and *V* are indep, and W = II + V

If $U \sim \chi_m^2$, $V \sim \chi_n^2$ then (obviously)

$$W = \gamma_m^2 + \gamma_n^2 = \gamma_{m+n}^2,$$

Also, if $W \sim \chi_k^2$ and $V \sim \chi_n^2$ then

If
$$vv \sim \chi_k$$
 and $v \sim \chi_n$ then

$$\chi_k^2 = U + \chi_n^2$$

$$\chi_{k}^{-} = U + \chi_{n}^{-}$$

$$M_{n} = M_{n}M_{n}$$

$$M_{\chi^2_k}=M_U M_{\chi^2_n},$$

$$M_{\chi_k^2} = M_U M_{\chi_n^2},
onumber$$

$$M_{\chi_k^2} = M_U M_{\chi_n^2}, \ M_{\chi_k^2}$$

$$M_U = \frac{M_{\chi_k^2}}{M_{\chi_k^2}}$$

$$d_U = \frac{W_{\chi_k^2}}{M_{*,2}}$$

$$J - \frac{1}{M_{\chi_n^2}}$$

$$M_{\chi_n^2} \ (1-2t)^{-k/2}$$

 $U \sim \chi^2_{(k-n)}$.

$$M_{\chi_n^2} = (1-2t)^{-k/2}$$

$$M_{\chi_n^2}$$
 $(1-2t)^{-k/2}$

If $Z \sim N(0,1)$, $U \sim \chi_n^2$, and Z, U are indep. then $T = Z/\sqrt{U/n}$ is called t distribution with n degrees of freedom; i.e., $T \sim t_n$. (prove that:)

Definition 3 (Student's *t* **Distribution)** :

$$f_T(t) = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-(n+1)/2},$$

$$E[T] = 0, \ n \ge 2,$$

$$\operatorname{Var}\left[T\right] = \frac{n}{n-2}, \ n \ge 3.$$

- The smaller *n* the thicker tail.
- The figure shows t_5 , t_{10} , t_{30} ($\approx N(0,1)$)
- $t_1 \equiv Cauch y(0,1)$.

m, n degrees of freedom; i.e., $W \sim F_{m,n}$. (prove that:)

Let $U \sim \chi_m^2$ and $V \sim \chi_n^2$, and U, V are indep. Then,

W = (U/m)/(V/n) is called F distribution with

Definition 4 (Snedecor's *F* **Distribution)** :

$$f_{W}(w) = \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{(m+n)}{2}},$$

$$E[W] = n/(n-2), n \ge 3.$$

It is obvious that if
$$U \sim t_n$$
, then $U^2 \sim F_{1,n}$.

 $Var[W] = 2\left(\frac{n}{n-2}\right)^2 \frac{(m+n-2)}{m(n-2)}, \ n \ge 5.$

Also, if $U \sim F_{n,m}$ then $U^{-1} \sim F_{m,n}$.

Summary (with terse notation):

$$\sum_{i=1}^{n} N(0,1)^{2} \sim \chi_{n}^{2},$$

$$\chi_{m}^{2} + \chi_{n}^{2} \sim \chi_{m+n}^{2},$$

$$N(0,1) / \sqrt{\chi_{n}^{2} / n} \sim t_{n},$$

$$(\chi_{m}^{2} / m) / (\chi_{n}^{2} / n) \sim F_{m,n},$$

$$t_{n}^{2} \sim F_{1,n}.$$

 $N(0,1)^2 \sim \chi_1^2$

Example 5 If X_1, X_2, X_3 are iid N(0, 1), what is the dist. of $\frac{X_1}{\sqrt{\left(X_1^2 + X_2^2 + X_3^2\right)/3}}$

6.3 Sample Mean, Sample Variance, and Sampling from Normal Distribution

6.3.1 Basic Concepts of Random Samples

Definition 6 The r.v. $X_1, ..., X_n$ are called a random sample of size n from the population F if $X_1, ..., X_n$ are i.i.d from F; and hence: $f_{X_1,...,X_n}(x_1,...,x_n) = \prod_i f(x_i)$.

$$F \xrightarrow{Sample_1} x_1, x_2, \dots x_n$$

$$F \xrightarrow{Sample_2} x_1, x_2, \dots x_n$$

$$\vdots$$

We focus in our study on infinite populations; Ch. 7 is about finite populations.

of size n, and $T(x_1,...,x_n)$ be a real- (or vector-) valued function whose domain includes the sample space of $(X_1, ..., X_n)$. Then the r.v.

Definition 7 Let $X_1, ..., X_n$ be a random sample

 $Y = T(X_1, ..., X_n)$ is called a statistic.

 $S = \sqrt{S^2}$.

Definition 8 *The sample mean, sample variance,* and sample standard deviations are statistics defined as:

 $\overline{X} = \frac{1}{n} \sum_{i} X_{i}$ $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2},$

Observed values will be denoted by \overline{x} , s^2 , and s.

$$X_1 \quad X_2 \quad \dots \quad X_n \quad \overline{X} = \frac{1}{n} \sum_i X_i$$

$$F \quad Sample_1 \quad X_1, \quad X_2, \quad X_n \quad \overline{X} = \frac{1}{n} \sum_i X_i$$

F $Sample_1$ x_1 , x_2 , ... x_n $\overline{x} = \frac{1}{n} \sum_i x_i$ $F \xrightarrow{Sample_2} x_1, x_2, \dots x_n \quad \overline{x} = \frac{1}{n} \sum_i x_i$

Lemma 9 For any numbers $x_1, ..., x_n$: $\min_{a} \sum_{i} (x_i - a)^2 = \sum_{i} (x_i - \overline{x})^2,$

$$\sum_{i}^{i} (x_i - \overline{x})^2 = \sum_{i}^{i} x_i^2 - n\overline{x}^2.$$

Proof.: is identical to argmin $E(Y-c)^2 = E[Y]$.

$$\sum_{i} (x_i - a)^2 = \sum_{i} ((x_i - \overline{x}) + (\overline{x} - a))^2$$
$$= \sum_{i} (x_i - \overline{x})^2 + \sum_{i} (\overline{x} - a)^2$$

$$+2\sum_{i} (x_{i} - \overline{x})(\overline{x} - a) \quad (\sum_{i} x_{i} = n\overline{x})$$

$$= \sum_{i} (x_{i} - \overline{x})^{2} + \sum_{i} (\overline{x} - a)^{2}.$$

$$= \sum_{i} (x_{i} - \overline{x})^{2} + \sum_{i} (\overline{x} - a)^{2},$$
which is minimized by choosing $a = \overline{x}$

which is minimized by choosing $a = \overline{x}$.

$$\sum_{i} (x_{i} - a)^{2} = \sum_{i} (x_{i} - \overline{x})^{2} + \sum_{i} (\overline{x} - a)^{2}$$

$$\sum_{i} (x_{i} - \overline{x})^{2} - \sum_{i} x^{2} - n\overline{x}^{2}$$

$$(a^{set})^{2}$$

 $\sum_{i} (x_i - \overline{x})^2 = \sum_{i} x_i^2 - n\overline{x}^2.$ $(a \stackrel{set}{=} 0)$ Notice that: both forms are O(n); however this

form requires only one for loop for execution! Copyright © 2019 Waleed A. Yousef, All Rights Reserved. **HW:** Write a computer program, and find its complexity (where a step is a multiplication), for calculating $S_{n} = \sum_{i=1}^{n} \sum_{i=1}^{n} y_{i} y_{i} y_{i}$

$$S_1 = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j,$$
 $S_2 = \sum_{i=1}^{n} \sum_{j \neq i} x_i x_j.$

Can you do a mathematical trick to reduce their complexities to O(n). !!!

2. Var $\left[\overline{X}\right] = \sigma^2/n$, 3. $E[S^2] = \sigma^2$.

Theorem 10 (Distribution-Free Properties) :

1. $E\left|\overline{X}\right| = \mu$,

$$\begin{bmatrix} 1 & -(& -)^2 \end{bmatrix}$$

$$E[S^{2}] = E\left[\frac{1}{n-1}\sum_{i}\left(X_{i} - \overline{X}\right)^{2}\right]$$

$$E[S^{2}] = E\left[\frac{1}{n-1}\sum_{i}\left(X_{i} - \overline{X}\right)^{-1}\right]$$

$$\begin{bmatrix} n-1 & \overline{z} & \overline{z} \\ -1 & \overline{z} \end{bmatrix}$$

$$= \frac{1}{n-1} E \left[\sum_{i} X_i^2 - n \overline{X}^2 \right]$$

$$= \frac{1}{n-1} E\left[\sum_{i} X_{i}^{2} - nX^{2}\right]$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} E\left[X_{i}^{2}\right] - nE\left[\overline{X}^{2}\right] \right)$$

$$= \frac{1}{n-1} \left(\sum_{i} E\left[X_{i}^{2}\right] - nE\left[\overline{X}^{2}\right] \right)$$

$$= \frac{1}{n-1} \left(n \left(\sigma^2 + \mu^2 \right) - n \left(\frac{\sigma^2}{n} + \mu^2 \right) \right) = \sigma^2,$$

which is **unbiased estimator** for σ^2 .

tion with mgf M(t), then $M_{\overline{Y}}(t) = [M(t/n)]^n$.

$$t) = [$$

Proof. done before in CLT (just 2 lines).

Example 12 Let
$$X_1, ..., X_n$$
 be a r.s. from $N(\mu, \sigma^2)$, then

Lemma 11 Let X_1, \ldots, X_n be a r.s. from a popula-

$$M(t) = \exp(\mu t + \sigma^2 t^2 / 2),$$

$$M_{-}(t) = \left[\exp\left(\mu t + \sigma^2 t^2 / 2\right) \right]$$

$$M_{\overline{X}}(t) = \left[\exp\left(\mu \frac{t}{n} + \sigma^2 \left(\frac{t}{n}\right)^2 / 2\right) \right]^n,$$

$$= \exp\left(\mu t + \frac{\sigma^2}{n} t^2 / 2\right)$$

$$= \exp\left(\mu t + \frac{\sigma^2}{n} t^2 / 2\right),$$

$$\overline{X} \sim N\left(\mu \frac{\sigma^2}{n}\right)$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$
We know that $E\left[\overline{X}\right] = \mu$ and $\operatorname{Var}\left[\overline{X}\right] = \sigma^2/n$. Bu

We know that $E\left|\overline{X}\right| = \mu$ and $Var\left|\overline{X}\right| = \sigma^2/n$. But what is new is that \overline{X} is itself Normal. We could have found it by transformation: $Z = X_1 + X_2$. If

 $X_i \sim Cauchy(0,1)$, prove that $\overline{X} \sim Cauchy(0,1)$ as well!! Copyright © 2019 Waleed A. Yousef, All Rights Reserved.

6.3.2 Sampling from the Normal Distribution

Theorem 13 Let
$$X_1, ..., X_n$$
 be r.s. form $N(\mu, \sigma^2)$

Theorem 13 Let
$$X_1, ..., X_n$$
 be r.s. form $N(p)$

$$1. \ \overline{X} \sim N(\mu, \sigma^2/n),$$

2. \overline{X} and $(X_2 - \overline{X}, ..., X_n - \overline{X})$ are indep,

3.
$$\overline{X}$$
 and S^2 are indep,
4. $(n-1) S^2 / \sigma^2 \sim \chi_{n-1}^2$.

Meaning of \overline{X} and $(X_2 - \overline{X}, ..., X_n - \overline{X})$ are indep?

Suppose $X_i \sim Bernouli$ (1/2), and we get a sam-

ple where $X_{10} = 1$. Obviously, $X_i = 1$.

Aside from normality, observe that

$$\sum_{i} \left(X_i - \overline{X} \right) = 0,$$

which means we have only (n-1) differences:

 $= \frac{1}{(n-1)} \left| \left(X_1 - \overline{X} \right)^2 + \sum_{i=2}^n \left(X_i - \overline{X} \right)^2 \right|$

 $= \frac{1}{(n-1)} \left| \left(\sum_{i=2} \left(X_i - \overline{X} \right) \right)^2 + \sum_{i=2}^n \left(X_i - \overline{X} \right)^2 \right|$

hich means we have only
$$(n-1)$$
$$X_1 - \overline{X} = -\sum_{i=2}^n (X_i - \overline{X}),$$

Matlab Code 6.1: figure; hold on;

% Change 'Normal' to 'Exp'

x=random('Normal', 0, 1, 1000, 10);

xbar=mean(x, 2);

s = std(x, 0, 2);

plot(xbar, s, '.r')

x=random('Normal', 0, 1, 1000, 100); xbar=mean(x, 2);

s = std(x, 0, 2);

plot(xbar, s, '.b')

Proof. the mgf is given by $= M(s, t_2, \ldots, t_n)$

$$= E \left[\exp \left(\frac{y}{2} \right) \right]$$

$$= E \left[\exp \left(\frac{y}{2} \right) \right]$$

$$= E \left[\exp \left(\sum_{n=1}^{n} \right) \right]$$

$$= E \left[\exp \left(\sum_{i=1}^{n} \frac{s}{n} X_i + \sum_{i=2}^{n} t_i \left(X_i - \overline{X} \right) \right) \right]$$

$$= E\left[\exp\left(s\overline{X} + t_2\left(X_2 - \overline{X}\right) + \dots + t_n\left(X_n - \overline{X}\right)\right)\right]$$

 $=E\left[\exp\left(\sum_{i=1}^{n}\left(\frac{s}{n}+\left(t_{i}-\overline{t}\right)\right)X_{i}\right)\right]$

 $(t_1 = 0)$

 $(a_i = \frac{s}{n} + (t_i - \overline{t}))$

Convriger © 2019 Waleed A. Yousef, All Rights Reserved.

$$p\left(\sum_{i=1}^{n} \frac{S}{S}\right)$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$0 \left(\sum_{i=1}^{n} \frac{3}{i} \right)$$

$$\sum_{i=1}^{n} \frac{1}{n^{i}}$$

 $= E \left[\exp \left(\sum_{i=1}^{n} a_i X_i \right) \right]$

 $= \prod_{i} \exp\left(\mu a_i + \frac{\sigma^2}{2} a_i^2\right)$

 $= \exp \left[\mu \sum_{i} a_{i} + \frac{\sigma^{2}}{2} \sum_{i} a_{i}^{2} \right]$

 $= \exp \left[\mu s + \frac{\sigma^2}{2} \left(\frac{s^2}{n} + \sum_i (t_i - \overline{t})^2 \right) \right]$

 $=\exp\left(\mu s+\frac{\sigma^2}{2n}s^2\right)\exp\left(\frac{\sigma^2}{2}\sum_i\left(t_i-\overline{t}\right)^2\right),\,$

 $=\prod M_{X_i}(a_i)$

 $(X_2 - \overline{X}, ..., X_n - \overline{X})$. Hence they are independent and since $S = S(X_2 - \overline{X}, ..., X_n - \overline{X}) : \overline{X}$ and S are independent.

Now

$$\sum_{i}$$

 $\sum_{i} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \frac{1}{\sigma^2} \sum_{i} \left[\left(X_i - \overline{X} \right) + \left(\overline{X} - \mu \right) \right]^2$

$$\sum_{i}$$

$$\frac{1}{\sigma^2}$$

the two factors are the mgf of X and

$$\frac{1}{\sigma^2}$$

$$\frac{1}{\sigma^2}$$

W = II + V

 $\chi_{n}^{2} = U + \chi_{1}^{2}$

 $U \sim \chi_{n-1}^2$.

 $= \frac{1}{\sigma^2} \sum_{i} \left(X_i - \overline{X} \right)^2 + \left(\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \right)^2$

 $= \frac{1}{\sigma^2} \sum_{i} \left(X_i - \overline{X} \right)^2 + \frac{1}{\sigma^2} \sum_{i} \left(\overline{X} - \mu \right)^2$

$$\frac{1}{\sigma^2} \sum_{i}$$

$$\left(\overline{X} - \mu \right)^2$$

$$\left(\frac{\iota}{\overline{n}}\right)^2$$

$$(U, V \text{ indep.})$$

$$(n-1 df)$$

Lemma 14

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}.$$

Proof.

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\left(\overline{X} - \mu\right)/\left(\sigma/\sqrt{n}\right)}{\left(S/\sqrt{n}\right)/\left(\sigma/\sqrt{n}\right)}$$

$$= \frac{\left(\overline{X} - \mu\right)/\left(\sigma/\sqrt{n}\right)}{S/\sigma}$$

$$= \frac{\left(\overline{X} - \mu\right)/\left(\sigma/\sqrt{n}\right)}{S/\sigma}$$

$$= \frac{\left(\overline{X} - \mu\right) / \left(\sigma / \sqrt{n}\right)}{S / \sigma}$$

$$= \frac{\left(\overline{X} - \mu\right) / \left(\sigma / \sqrt{n}\right)}{\sqrt{\left((n-1) S^2 / \sigma^2\right) / (n-1)}}$$

used for inference about μ when σ is unknwn.

$$= \frac{N(0,1)}{\sqrt{\chi_{n-1}^2/(n-1)}} = t_{n-1},$$
when σ is the

 $\frac{X-\mu}{} \sim N(0,1)$

used for inference about
$$\mu$$
 when σ is known.

Lemma 15 If $X \sim N(\mu_X, \sigma_X)$, $Y \sim N(\mu_Y, \sigma_Y)$, and we have two samples $X_1, ..., X_m$ and $Y_1, ..., Y_n$ $\frac{S_X^2/\sigma_X^2}{S_-^2/\sigma_+^2} \sim F_{m-1,n-1}.$

 $\frac{S_X^2/\sigma_X^2}{S_V^2/\sigma_V^2} = \frac{\left((m-1)S_X^2/\sigma_X^2\right)/(m-1)}{\left((n-1)S_V^2/\sigma_V^2\right)/(n-1)}$

 $=\frac{\chi_{m-1}^2/(m-1)}{\chi_{m-1}^2/(n-1)}$ (Indep.)

$$= \frac{\chi_{m-1} / (m-1)}{\chi_{n-1}^2 / (n-1)}$$

$$= F_{m-1,n-1},$$
(Indep.)

Chapter 8

Estimation of Parameters and Fitting of Probability Distributions

Introduction: Estimation in a Nutshell

• Distributions depend on some population parameters; e.g., $N(\mu, \sigma^2)$, $Exp(\lambda)$, etc. Gen

erally, we should write (e.g.,):
$$f_X(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-1}{2}(x-\mu)^2/\sigma^2\right]$$

• Obtaining data (values of a random sample) allows "estimating" these parameters.

Definition 16 A point estimator is any function
$$W(X_1,...,X_n)$$
 of a sample; i.e., any statistic is a

• We can choose, e.g., $\widehat{\sigma}^2 = \frac{1}{n} \sum_i \left(X_i - \overline{X} \right)^2$ to be an estimator for σ^2

point estimator.

be an estimator for σ^2 . • $\frac{1}{n}\sum_i (x_i - \overline{x}_i)^2$ is an estimate (realization).

- How to estimate θ "well" $(\widehat{\theta})$?
- What is $f_{\widehat{\theta}}$ (sampling distribution)?
- What is $E[\widehat{\theta}]$, $SD[\widehat{\theta}]$ (standard error),...?
- How to estimate $\tau(\theta)$, e.g.:
 - σ^2 , the variance, for $N(\mu, \sigma^2)$.
 - $\alpha\lambda$, the mean, for $Gamma(\alpha, \lambda)$.

• From the physics of the problem. E.g., given number of calls in time units, the distribution is known to be $Poisson(\lambda)$.

- Assumption; you need to validate it latter.
- Understanding (interpretation).

Why do we estimate parameters?

How to decide F_X before estimation?

- Prediction.
- Simulation and data generation.
- How do we choose estimators?

The Method of Moments

We estimate k^{th} moment by **sample moment**

$$\mu_k = \mathbb{E}\left[X^k\right]$$

$$\widehat{\mu}_k = \frac{1}{n} \sum_i X_i^k.$$

Then for population parameters θ_i , we have

$$\mu_1 = \mu_1 \left(\theta_1, \dots, \theta_r \right),$$

$$\mu_1 - \mu_1 \left(\sigma_1, \ldots, \sigma_r \right),$$

We solve

$$\mu_r = \mu_r (\theta_1, \ldots, \theta_r).$$

$$\theta_1 = \theta_1 (\mu_1, \dots, \mu_r),$$
 \vdots

$$\theta_r = \theta_r \left(\mu_1, \dots, \mu_r \right).$$
 And

 $\widehat{\theta}_1 = \widehat{\theta}_1(\widehat{\mu}_1, \dots, \widehat{\mu}_r),$

$$\widehat{\theta}_1 = \widehat{\theta}_1 \left(\widehat{\mu}_1, \dots, \widehat{\mu}_r \right)$$

$$\widehat{ heta}_r = \widehat{ heta}_r \left(\widehat{\mu}_1, \dots, \widehat{\mu}_r \right).$$

Motivation behind method of moments

$$\widehat{\mu}_k \stackrel{p}{\to} \mu_k.$$

Definition 17 An estimator $\hat{\theta} = \hat{\theta}(n)$, which estimates θ , from a sample of size n is said to be consistent in probability if

$$\widehat{\theta} \stackrel{p}{\to} \theta$$
.

Example 18 $N(\mu, \sigma^2)$, and the mean and variance of any other distribution:

$$\widehat{\mu}_1 = \frac{1}{n} \sum X_i = \overline{X},$$

$$\widehat{\mu}_1 = \frac{1}{n} \sum_i X_i = \overline{X},$$

$$n \stackrel{\frown}{=} n_i$$

 $\mu_1 = E[X] = \mu$

 $\mu = \mu_1$

 $\sigma^2 = \mu_2 - \mu_1^2$

 $\widehat{\mu} = \widehat{\mu}_1 = \overline{X}.$

 $=\frac{n-1}{2}S^2,$

 $\frac{n\widehat{\sigma}^2}{2} \sim \chi_{n-1}^2.$

 $\widehat{\mu} \sim N(\mu, \sigma^2/n)$,

 $\mu_2 = E[X^2] = \mu^2 + \sigma^2$

 $\widehat{\sigma}^2 = \widehat{\mu}_2 - \widehat{\mu}_1^2 = \frac{1}{n} \sum_i X_i^2 - \overline{X}^2$

 $= \frac{1}{n} \left(\sum_{i} X_i^2 - n \overline{X}^2 \right) = \frac{1}{n} \sum_{i} \left(X_i - \overline{X} \right)^2$

Copy (© 2019 Waleed A. Yousef, All Rights Reserved.

$$n = n = 1$$

$$\widehat{\mu}_2 = \frac{1}{n} \sum_{i} X_i^2,$$

$$\mu_1 = \frac{1}{n} \sum_i X_i = X,$$

$$\widehat{\mu}_1 = \frac{1}{n} \sum_i X_i = \overline{X},$$

$$=\overline{X},$$

$$=\overline{X}$$

Example 19 : Analyzing real dataset for average amount of storms rainfall in Illinois.

Let's draw data points and normalized histogram (divide by its area):

$$Area = \sum_{i} \Delta N_{i}$$

$$= \Delta \sum_{i} N_{i} = \Delta n.$$

From the mgf of Gamma we obtained

 $\alpha = \lambda u_1$

$$E[X] = \mu_1 = \frac{\alpha}{\lambda},$$

$$\alpha(\alpha + 1)$$

$$E[X^2] = \mu_2 = \frac{\alpha(\alpha+1)}{\alpha(\alpha+1)}$$

$$E[X^2] = \mu_2 = \frac{\alpha(\alpha + 1)}{\lambda^2},$$

equations for
$$\alpha$$
 and λ ,

Solve both equations for
$$\alpha$$
 and λ ,

 $\mu_2 = \frac{\lambda^2 \mu_1^2 + \lambda \mu_1}{\lambda^2},$

equations for
$$\alpha$$
 and λ ,

$$\mathrm{E}\left[X^{2}\right]=\mu_{2}=\frac{1}{\lambda^{2}},$$
 equations for α and λ .

$$E[X^2] = \mu_2 = \frac{\alpha (\alpha + 1)}{\lambda^2},$$

$$\mathrm{E}\left[X^{2}\right] = \mu_{2} = \frac{\alpha \left(\alpha + 1\right)}{\lambda^{2}},$$

$\lambda = \frac{\mu_1}{\mu_2 - \mu_1^2},$ $\alpha = \frac{\mu_1^2}{\mu_2 - \mu_1^2},$

 $\widehat{\mu}_1 = \frac{1}{n} \sum x_i = 0.2244,$

 $\widehat{\mu}_2 = \frac{1}{n} \sum_i x_i^2 = 0.1836,$

Copy (© 2019 Waleed A. Yousef, All Rights Reserved.

 $\widehat{\lambda} = 1.6842$,

 $\widehat{\alpha} = 0.3779$

What would happen have if we fit $N(\mu, \sigma^2)$?

 $=0.5178x^{-0.6221}e^{-1.6842x}, x \ge 0$

 $f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$

x=[x; csvread('illinois63.txt')];
x=[x; csvread('illinois64.txt')];

x=[x; csvread('illinois61.txt')];

x=[x; csvread('illinois62.txt')];

$$n=length(x)$$
 % will be 227
 $plot(x, zeros(length(x)), '.r')$
 $[N, xout]=hist(x);$

bar(xout, N/(n*(xout(2)-xout(1))), 'w'
); %normalize
hold on;

```
lmda = mu1/(mu2-mu1^2)
                              % 1.6842
z=0.05:.01:2;
y1 = (lmda \land alpha) / gamma(alpha) * z. \land (
  alpha-1) .* exp(-lmda*z);
plot(z, y1, 'b', 'LineWidth', 2);
z = -2:.01:2;
v2=1/(sqrt(2*pi*(mu2-mu1^2))) *exp(-(z)
  -mu1).^2 / (2*(mu2-mu1^2)));
plot(z, y2, 'r', 'LineWidth', 2);
                   Copy 19 64 © 2019 Waleed A. Yousef, All Rights Reserved.
```

% . 2 2 4 4

% . 1836

mul = sum(x)/n

 $mu2 = sum(x.^2)/n$

 $alpha = mu1^2/(mu2-mu1^2)$ % . 3 7 7 9

$$\mu_1 = np,$$

$$\mu_2 = np(1-p) + (np)^2,$$

Example 20 (Binomial(n, p))

$$p = \frac{\mu_1}{n},$$
 $\mu_2 = \mu_1 \left(1 - \frac{\mu_1}{n} \right) + \mu_1^2$
 $n = \frac{\mu_1^2}{\mu_1 - (\mu_2 - \mu_1^2)}$

start.

- $p = \frac{\mu_1 (\mu_2 \mu_1^2)}{u_1},$

 - $\widehat{n} = \frac{\overline{X}^2}{\overline{X} \frac{1}{n} \sum_{i} \left(X_i \overline{X} \right)^2},$

 $\widehat{p} = \frac{\overline{X} - \frac{1}{n} \sum_{i} \left(X_{i} - \overline{X} \right)^{2}}{\overline{X}}.$

Sometimes the estimate will be negative!!

In general, method of moments is a good

$$\sigma_X^2 = E(X - \mu_X)^2$$
$$= E(X^2) - \mu_X^2$$

Example 21 (Cov(X, Y)) :

$$\widehat{\sigma}^2$$

$$\widehat{\sigma}_X^2$$

$$= \frac{1}{n} \sum_{i}^{n} \sum_{i}^{n} x_{i}$$

Given
$$x_1, ..., x_n$$
 and y_i . What is right (x_i, y_i) .

$$= E(X - \mu_X)^{-1}$$

$$= E(X^{2}) - \mu_X^{2}$$

$$= \mu_{2X} - \mu_{1X}^{2}$$

$$= \mu_{2X} - \mu_{1X}^{2}.$$

$$Cov(X, Y) = E(X - \mu_{X})(Y - \mu_{Y})$$

$$= E(X - \mu_X)(Y - \mu_X)(Y - \mu_X)$$
$$= E[XY] - \mu_X \mu_Y$$

$$= \mu_{11} - \mu_{1X}\mu_{1Y}$$

$$\frac{1}{1} - \mu_{1X}\mu_{1Y}$$

$$\frac{2}{1} - \frac{\overline{V}^2}{1}$$

$$\widehat{\sigma}_X^2 = \frac{1}{n} \sum_i X_i^2 - \overline{X}^2$$
$$= \frac{1}{n} \sum_i \left(X_i - \overline{X} \right)^2$$

$$\widehat{\sigma}_{XY} = \frac{1}{n} \sum_{i} X_{i} Y_{i} - \overline{XY}.$$

$$= \frac{1}{n} \sum_{i} \left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right).$$

$$n_{\overline{i}}$$
 () () Given $x_1, ..., x_n$ and $y_1, ..., y_m$, what is $\widehat{\sigma}_{XY}$?

$$E\left[\overline{XY}\right] = Cov\left(\overline{X}, \overline{Y}\right) + E\left[\overline{X}\right] E\left[\overline{Y}\right]$$

 $\mathrm{E}\sum_{i}\left(X_{i}-\overline{X}\right)\left(Y_{i}-\overline{Y}\right)=$

 $E[X_i Y_i] = Cov(X, Y) + \mu_X \mu_Y$

 $= E \left| \sum_{i} X_{i} Y_{i} - n \overline{X} \overline{Y} \right|$

 $= n \operatorname{E}[XY] - n \operatorname{E}\left[\overline{XY}\right].$

 $= (n-1)\sigma_{XY}$.

 $= \operatorname{Cov}\left(\frac{1}{n}\sum_{i}X_{i}, \frac{1}{n}\sum_{i}Y_{i}\right) + \mu_{X}\mu_{Y}$

 $= \frac{1}{n^2} \sum_{i} \sum_{i} \operatorname{Cov}(X_i, Y_j) + \mu_X \mu_Y$

 $= \frac{1}{n} \operatorname{Cov}(X, Y) + \mu_X \mu_Y$

 $= n\sigma_{XY} + n\mu_X\mu_Y - \sigma_{XY} - n\mu_X\mu_Y$

Therefore, $\frac{1}{n}\sum_{i}\left(X_{i}-\overline{X}\right)\left(Y_{i}-\overline{Y}\right)$ is biased for σ_{XY} .

Convide © 2019 Waleed A. Yousef, All Rights Reserved.

 $= E \left[\frac{1}{n^2} \sum_{i} \sum_{j} X_i Y_j \right]$ $= \frac{1}{n^2} E \left[\sum_{i} X_i Y_i + \sum_{i \neq j} X_i Y_j \right]$ $= \frac{1}{n^2} \left(n E [XY] + n (n-1) E [X_i Y_j] \right)$

 $= \frac{1}{n} \left(\mathbb{E}[XY] + (n-1)\mathbb{E}[X_i Y_j] \right)$

 $= \frac{1}{n} \operatorname{Cov}(X, Y) + \mu_X \mu_Y.$

 $= \frac{1}{n} \left(\operatorname{Cov}(X, Y) + \mu_X \mu_Y + (n-1) \mu_X \mu_Y \right)$

Another proof for $E\left|\overline{XY}\right|$:

 $E\left[\overline{XY}\right] = E\left|\left(\frac{1}{n}\sum_{i}X_{i}\right)\left(\frac{1}{n}\sum_{i}Y_{i}\right)\right|$

8.3 The Method of Maximum Likelihood

Likelihood is a function of parameters:

Likelihood is a function of parameters:
$$lik(\theta) = f_{X_1...X_n}(x_1,...,x_n|\theta)$$

- $=\prod_{i=1}^n f(x_i|\theta).$ • For given data $x_1, ..., x_n$, what is the value of θ that maximizes $lik(\theta)$.
 - Remember Example 15, Page 19 in Lecture Notes.
 - Much easier, in many cases, to deal with the **log likelihood**:

$$l(\theta) = \sum_{i=1}^{n} \log f(x_i|\theta).$$

(i.i.d.)

Example 22 ($Poisson(\lambda)$) $p(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \ 0 \le x.$

$$p(x) = \frac{1}{x!}, \ 0 \le x.$$

$$lik(\lambda) = p(x_1,...,x_x) = \prod_{i=1}^n \left(\frac{\lambda^{x_i}e^{-\lambda}}{x_i!}\right),$$

 $l'(\lambda) = \frac{\sum_{i} x_i}{\lambda} - n,$

 $\widehat{\lambda} = \frac{1}{2} \sum x_i = \overline{X},$

 $l''(\lambda) = \frac{-\sum_{i} x_i}{\lambda^2} \le 0.$

 $l(\lambda) = \sum_{i=1}^{n} \log \left(\frac{\lambda^{x_i} e^{-\lambda}}{x_i!} \right)$

 $= \sum_{i} \left[x_{i} \log \lambda - \lambda - \log (x_{i}!) \right]$

Therefore, $\hat{\lambda} = \overline{X}$ is a point of local maxima; and

 $\lim_{\lambda \to 0} l(\lambda) = -\infty,$

Convigat © 2019 Waleed A. Yousef, All Rights Reserved.

then, $\widehat{\lambda} = \overline{X}$ is a global maximum as well.

 $= \log(\lambda) \sum_{i} x_i - n\lambda - \sum_{i} \log(x_i!)$

(8.1)

 $(l'(\lambda) \stackrel{\text{set}}{=} 0)$

(MoM)

 $(x_i \geq 0)$

What does (8.1) mean for asbestos dataset?

Example 23 ($N(\mu, \sigma^2)$, both are unkown)

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-1}{2}\left(\frac{x_i-\mu}{\sigma}\right)^2\right]$$

$$l(\mu, \sigma) = \sum_{i=1}^{n} \log f(x_i | \mu, \sigma)$$

$$\sum_{i=1}^{n} \left[-\frac{1}{2} (x_i - \mu, \sigma) \right]$$

$$= \sum_{i} \left[-\log \sigma - \log \sqrt{2\pi} - \frac{1}{2} \left(\frac{x_{i} - \mu}{\sigma} \right)^{2} \right]$$

$$= -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2$$
$$\frac{\partial l}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i} (x_i - \mu) \qquad (\frac{\partial l}{\partial \mu} \stackrel{\text{set}}{=} 0)$$

$$\frac{\partial t}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i} (x_i - \mu) \qquad (\frac{\partial l}{\partial \mu} \stackrel{\text{set}}{=} 0)$$

$$0 = \sum_{i} x_i - n\widehat{\mu},$$

$$\widehat{\mu} = \frac{1}{n} \sum_{i} x_{i} = \overline{X}.$$
 (MoM)

$$\frac{\partial l}{\partial \sigma} = \frac{-n}{\sigma} + \frac{1}{\sigma^3} \sum_{i} (x_i - \mu)^2 \qquad (\frac{\partial l}{\partial \sigma} \stackrel{\text{set}}{=} 0)$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i} \left(x_i - \overline{X} \right)^2. \tag{MoM}$$

To verify that $(\widehat{\mu}, \widehat{\sigma})$ is a point of global maxima through calculus we have to satisfy:

First: it is a point of local maxima

•
$$\frac{\partial l}{\partial \mu}|_{\widehat{\mu}} = \frac{\partial l}{\partial \sigma}|_{\widehat{\sigma}} = 0$$
 (satisfied)

•
$$\frac{\partial^2 l}{\partial \mu^2}|_{\widehat{\mu}} = 0$$
 or $\frac{\partial^2 l}{\partial \sigma^2}|_{\widehat{\sigma}} = 0$ (satisfied)

•
$$\begin{vmatrix} \frac{\partial^{2}l}{\partial\mu^{2}} & \frac{\partial^{2}l}{\partial\mu\partial\sigma} \\ \frac{\partial^{2}l}{\partial\mu\partial\sigma} & \frac{\partial^{2}l}{\partial\sigma^{2}} \end{vmatrix}_{\widehat{\mu},\widehat{\sigma}} > 0 \text{ (needs work)}.$$
Second: there is no maximum at infinity (mess.)

Second: there is no maximum at infinity (messy).

Instead, we can use a trick:

$$l(\mu, \sigma) = -n\log\sigma - n\log\sqrt{2\pi} - \frac{1}{2\sigma^2}\sum_{i} (x_i - \mu)^2$$

is maximized for

$$\sum_{i} (x_i - \mu)^2 = \sum_{i} (x_i - \overline{X})^2.$$

Then $l\left(\overline{X},\sigma\right)$ is a function in single variable σ , $\frac{\partial l}{\partial \sigma} = \frac{-n}{\sigma} + \frac{1}{\sigma^3} \sum_{i} \left(x_i - \overline{X}\right)^2, \qquad \left(\frac{\partial l}{\partial \sigma} \stackrel{set}{=} 0\right)$

$$\frac{\overline{\partial \sigma}}{\partial \sigma} = \frac{1}{\sigma} + \frac{1}{\sigma^3} \sum_{i} \left(x_i - X \right) , \qquad \left(\frac{\partial t}{\partial \sigma} \right) = \frac{1}{n} \sum_{i} \left(x_i - \overline{X} \right)^2$$

$$\frac{\partial^2 l}{\partial \sigma^2} = \frac{n}{\sigma^2} - \frac{3}{\sigma^4} \sum_{i} \left(x_i - \overline{X} \right)^2$$

$$n \left(3 \sum_{i} \left(- \right)^2 \right)$$

$$= \frac{n}{\sigma^2} \left(1 - \frac{3}{n\sigma^2} \sum_{i} \left(x_i - \overline{X} \right)^2 \right),$$

$$\frac{\partial^2 l}{\partial \sigma^2} \Big|_{\widehat{\sigma}} = \frac{n}{\widehat{\sigma}^2} (1 - 3) < 0,$$

which gives a local maximum for $l(\sigma)$. And

$$\lim_{\sigma \to \infty} l\left(\sigma\right) = -\infty.$$

Hence,
$$\hat{\sigma}$$
 attains a global maxima.

Example 24 ($Gamma(\alpha, \lambda)$) :

$$f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}, \ 0 \le x < \infty$$

$$f(\alpha, \lambda) = \sum_{n=0}^{\infty} (\alpha \log \lambda + (\alpha - 1) \log x - \lambda x)$$

 $(\frac{\partial l}{\partial \lambda} \stackrel{set}{=} 0)$

 $(\frac{\partial l}{\partial \alpha} \stackrel{set}{=} 0)$

$$l(\alpha, \lambda) = \sum_{i=1}^{n} (\alpha \log \lambda + (\alpha - 1) \log x_i - \lambda x_i - \log \Gamma(\alpha))$$
$$= n\alpha \log \lambda + (\alpha - 1) \sum_{i=1}^{n} \log x_i - \lambda \sum_{i=1}^{n} x_i$$

 $0 = n \log \left(\frac{\widehat{\alpha}}{\overline{X}}\right) + \sum_{i=1}^{n} \log x_i - n \frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})}$

 $0 = n \log \widehat{\alpha} - n \log \overline{X} + \sum_{i=1}^{n} \log x_i - n \frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})},$

Copyr © 2019 Waleed A. Yousef, All Rights Reserved.

$$\frac{\partial l}{\partial \lambda}$$

$$\widehat{\lambda}$$

$$\widehat{\lambda} = \frac{\alpha}{X}$$

$$\frac{\partial l}{\partial \alpha} = n \log \lambda + \sum_{i=1}^{n} \log x_i - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$$

$$\widehat{\lambda} = \frac{\widehat{\alpha}}{\overline{X}}.$$

$$0 = \frac{n\widehat{\alpha}}{\widehat{\lambda}} - \sum_{i=1}^{n} x_i$$

$$-n\log\Gamma(\alpha)$$

$$\frac{\partial l}{\partial \lambda} = \frac{n\alpha}{\lambda} - \sum_{i=1}^{n} x_i$$

$$n\alpha$$
lo

$$= n\alpha \log \alpha$$

- no closed-form solution.
- solution has to be found either by numerical methods or bootstrap (later)
- more complications for checking the second derivatives.

Example 25

$$f(x) = \frac{1}{\theta}, \ 0 \le x \le \theta$$
$$= \frac{1}{\theta} I_{(0 \le x \le \theta)}$$
$$l(\theta) = \sum_{i=1}^{n} -\log \theta, \ x_i \le \theta$$
$$= -n\log \theta, \ x^{(n)} \le \theta$$
$$\widehat{\theta} = x^{(n)}.$$

- ·
- We know $f_{X^{(n)}}(x)$ for $X \sim Uniform(0,\theta)$.

 $\mu_1 = \frac{\theta}{2}$ $\widehat{\theta} = 2\overline{X}.$

Compare to MoM:

Intuitively, this is clear.

 $\sum_{i=1}^{m} p_i = 1$, $\sum_{i=1}^{m} x_i = n$

Using Lagrange multiplier

$$\frac{n!}{x_1!\dots}$$

$$\frac{n!}{x_1! \dots}$$

$$\frac{n!}{x_1!\ldots}$$

$$x_i = n$$

$$\frac{n!}{n!}$$

 $l(p_1, ..., p_m) = \log n! - \sum_{i=1}^{m} \log x_i! + \sum_{i=1}^{m} x_i \log p_i$

 $L(p_1,\ldots,p_m,\lambda) = \log n! - \sum_{i=1}^{m} \log x_i! + \sum_{i=1}^{m} x_i \log p_i$

 $+\lambda\left(\sum_{i=1}^{m}p_{i}-1\right)$

 $1 = \sum_{i} \widehat{p}_i = \sum_{i=1}^{m} \frac{-x_i}{\lambda} = \frac{-n}{\lambda},$

 $\frac{\partial L}{\partial p_i} = \frac{x_i}{p_i} + \lambda$

 $\widehat{p}_i = \frac{-x_i}{2},$

 $\lambda = -n$.

 $\widehat{p}_i = \frac{x_i}{n}$

Example 26 ($Multinomial(p_1,...,p_m)$) :

 $(\frac{\partial L}{\partial n} \stackrel{set}{=} 0)$

(intuitive)

Convert © 2019 Waleed A. Yousef, All Rights Reserved.

 $f(x_1,...,x_m) = \frac{n!}{x_1!...x_m!}p_1^{x_1}...p_m^{x_m}$

2, $p_1 = p$, $x_1 = x$, n is known

$$\widehat{p} = \frac{x}{n},$$

• n above is a parameter; the number of observations is 1, which is the vector $(x_1, ..., x_m)$

• A special case is Binomial(n, p), where m =

 $f(x_1,...,x_K) = \prod_{k=1}^{K} \frac{n!}{x_{k1}!...x_{km}!} p_1^{x_{k1}}...p_m^{x_{km}}$

For K observations: $(x_{11}, \ldots x_{1m}), \ldots, (x_{K1}, \ldots x_{Km})$.

$$f(x_1, ..., x_K) = \prod_{k=1}^{m} \frac{1}{x_{k1}! ... x_{km}!} p_1^{-k_1} ... p_m^{x_{km}}$$

$$L(p_1, ..., p_m, \lambda) = \log(n!)^K - \sum_{i=1}^{m} \sum_{k=1}^{K} \log x_{ki}!$$

$$L(p_1, ..., p_m, \lambda) = \log(n!)^K - \sum_{i=1}^m \sum_{k=1}^K \log x_{ki}! + \sum_{i=1}^m \sum_{k=1}^K x_{ki} \log p_i + \lambda \left(\sum_{i=1}^m p_i - 1\right)$$

$$+ \sum_{i=1}^{m} \sum_{k=1}^{K} x_{ki} \log p_i + \lambda \left(\sum_{i=1}^{m} p_i - 1 \right)$$
$$\frac{\partial L}{\partial p_i} = \frac{\sum_{k=1}^{K} x_{ki}}{p_i} + \lambda,$$

$$egin{aligned} rac{\partial L}{\partial p_i} &= rac{\sum_{k=1}^K x_{ki}}{p_i} + \lambda, \ \widehat{p}_i &= rac{-\sum_{k=1}^K x_{ki}}{2} \end{aligned}$$

$$\widehat{p}_i = \frac{p_i}{\sum_{k=1}^K x_{ki}}$$

$$\widehat{p}_i = \frac{\sum_{k=1}^K x_{ki}}{\lambda}$$

$$\widehat{p}_i = rac{-\sum_{k=1}^{m} x_{ki}}{\lambda}$$

$$1 = rac{-\sum_{i=1}^{m} \sum_{k=1}^{K} x_{ki}}{\lambda} = rac{-nK}{\lambda}$$

 $\widehat{p}_i = \frac{\sum_{k=1}^K x_{ki}}{n K} = \frac{\overline{X_i}}{n},$

 $\widehat{p} = \frac{X}{X}$

$$\widehat{p}_{i} = \frac{-\sum_{k=1}^{K} x_{ki}}{\lambda}$$

$$1 = \frac{-\sum_{i=1}^{m} \sum_{k=1}^{K} x_{ki}}{\sum_{k=1}^{K} x_{ki}} = \frac{-nK}{n}$$

$$\widehat{p}_i = \frac{-\sum_{k=1}^K x_{ki}}{\lambda}$$

which is very intuitive.

which for Binomial(n, p) will be

8.3.1 Large Sample Theory for MLE **Reminder:**

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{\overline{X}}$$

$$\frac{\widehat{\mu}}{\sigma}$$

$$\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \xrightarrow{d} N(0, 1)$$

$$\lim_{n \to \infty} \Pr\left(\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \le x\right) = \Pr(N(0, 1) \le x)$$

 $\widehat{u} \stackrel{p}{\to} E[X]$ (WLLN)

(CLT)

$$\lim_{n \to \infty} \Pr\left(\sqrt{n} \left(\widehat{\mu} - \mu\right) \le \sigma x\right) = \Pr\left(\sigma N(0, 1) \le \sigma x\right)$$
$$= \Pr\left(N\left(0, \sigma^{2}\right) \le \sigma x\right)$$

$$\sqrt{n}(\widehat{\mu} - \mu) \stackrel{d}{\to} N(0, \sigma^2)$$
 (CLT')

Definition 27 (Asymptotic Mean and Variance)

: For any statistic (or estimator)
$$T_n$$
, if

$$k_n \frac{T_n - \mu}{\sigma} \xrightarrow{d} N(0,1)$$
, $(k_n \text{ can be } \sqrt{n})$
we call μ and σ^2 the asymptotic mean and variance (even if $E[T_n] \neq \mu$ and $Var[T_n] \neq \sigma^2$).

MoM:

$$\sqrt{n} \frac{\widehat{\mu} - \operatorname{E}[X]}{\sqrt{\operatorname{Var}[X]}} \xrightarrow{d} N(0, 1) \tag{CLT}$$

 $\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $\widehat{\mu} \stackrel{p}{\to} \mathrm{E}[X]$

$$\widehat{\mu}_r = \frac{1}{n} \sum_{i=1}^n X_i^r, \qquad (MoM)$$

$$\widehat{\mu}_r \xrightarrow{p} E[X^r] \quad (E[\widehat{\mu}_r] \stackrel{always}{=} E[X^r])$$

$$\sqrt{n} \frac{\widehat{\mu}_r - \mathbb{E}[X^r]}{\sqrt{\operatorname{Var}[X^r]}} \stackrel{d}{\to} N(0,1)$$
Notice that:

- $E[\widehat{\mu}_r] = E[X^r]$ (always unbiased $\forall n$)
- the estimated parameters, e.g., $\hat{\sigma}^2$, may be biased for finite n.

(X)

(WLLN)

Some Intuition First:

 $l(\theta|X) = X\log\theta - \theta - \log(X!)$

 $l(\theta|X_1,...,X_n) = \sum_{i} X_i \log \theta - n\theta - \sum_{i} \log(X_i!)$

 $\frac{1}{n}l(\theta) \xrightarrow{p} \mathbb{E}\left[\log f(X|\theta)\right]$

 $E[l(\theta|X)] = E[X]\log\theta - \theta - E[\log(X!)]$

We simulated 1000 curves, why few are there

Take care: E[X] above is $E_{X|\theta_0}[X]$.

• Why curves are less than zero?

Convide © 2019 Waleed A. Yousef, All Rights Reserved.

```
figure1 = figure; fs=20;
set(gcf, 'Units', 'inches');
haxes=axes ('Parent', figure1, 'YLim'
  ,[-20 \ 0], 'XLim', [0 \ 50], 'FontSize',
  fs);
xlabel('$\theta$','Interpreter','latex
  ', 'FontSize', fs, 'Units', '
  normalized');
vlabel('$1(\theta)$','Interpreter','
  latex','FontSize',fs, 'Units', '
  normalized');
```

Matlab Code 8.2:

theta0=10; theta = (0:.01:50)';

ltheta = zeros(length(theta), C);

C = 1000;

hold all;

```
theta-sum(log(factorial(x)))/n;
     plot(theta, ltheta(:, c), 'b');
end;
n=1;
for c=1:C
     x=random('Poisson', theta0, [n, 1]);
     ltheta(:, c)=x*log(theta)-theta-
       sum(log(factorial(x)));
     plot(theta, ltheta(:, c), 'r');
end;
plot(theta, mean(ltheta, 2), 'r--', '
  LineWidth', 4);
Theorem 28 Under regularity conditions on f, the
MLE estimator is consistent
                   Copyright © 2019 Waleed A. Yousef, All Rights Reserved.
```

x=random('Poisson', theta0, [n, 1]);

ltheta(:, c)=mean(x)*log(theta)-

n=10;

for c=1:C

Semi-Proof. :Under regularity conditions

$$l(\theta) = \sum_{i=1}^{n} \log f(X_i|\theta),$$

$$\frac{1}{-l(\theta)} \stackrel{p}{\to} \mathrm{E} \left[\log f(X|\theta) \right],$$

 $\frac{1}{n}l(\theta) \stackrel{p}{\to} E\left[\log f(X|\theta)\right],$

$$\underset{=}{\operatorname{argmax}} l(\theta) = \underset{=}{\operatorname{argmax}} \frac{1}{n} l(\theta) \text{ (of course)}$$

$$= \underset{=}{\operatorname{argmax}} \operatorname{E} \left[\log f(X|\theta) \right]$$

$$= \underset{f}{\operatorname{argmax}} \operatorname{E}\left[\log f\left(X|\theta\right)\right]$$

$$= \frac{\partial}{\partial \theta} \operatorname{E}\left[\log f\left(X|\theta\right)\right] = \frac{\partial}{\partial \theta} \int \log f\left(x|\theta\right) f\left(x|\theta_0\right) dx$$

$$= \int \frac{\partial}{\partial \theta} \log f(x|\theta) f(x|\theta_0) dx$$

$$= \int \frac{\partial \theta}{\partial \theta} f(x|\theta) \int f(x|\theta_0) dx$$

$$= \int \frac{\frac{\partial}{\partial \theta} f(x|\theta)}{f(x|\theta)} f(x|\theta_0) dx$$

$$= \int \frac{\partial}{\partial \theta} f(x|\theta) dx$$

$$= \int \frac{\partial \theta}{f(x|\theta)} f(x|\theta_0) dx$$

$$\frac{\partial}{\partial \theta} E\left[\log f(X|\theta)\right] \Big|_{\theta_0} = \int \frac{\partial}{\partial \theta} f(x|\theta) dx \Big|_{\theta_0}$$

$$\frac{\partial}{\partial \theta} f(x|\theta) dx \Big|_{\theta_0}$$

$$\log f(X|\theta) \Big] \Big|_{\theta_0} = \int \frac{\partial}{\partial \theta} f(x|\theta) \, dx \Big|_{\theta_0}$$
$$= \frac{\partial}{\partial \theta} \int f(x|\theta) \, dx \Big|_{\theta}$$

$$\frac{\partial \theta}{\partial \theta} \left. \int_{\theta_0}^{\theta} d\theta d\theta \right|_{\theta_0} = 0$$

Lemma 29 Under regularity conditions:

$$E\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right] = 0$$

$$E\left[\left(\frac{\partial}{\partial \theta}\log f(X|\theta)\right)^{2}\right] = -E\left[\frac{\partial^{2}}{\partial \theta^{2}}\log f(X|\theta)\right],$$

which is called $I(\theta)$, the Fisher information (information number) of one observation.

• What is the meaning of "Information" here?

- Let's see on the figure.
- Meaning of both equations.

 $(E_{X|\theta})$

$f(x|\theta) \frac{\partial}{\partial \theta} \log f(x|\theta) = f(x|\theta) \frac{\frac{\partial}{\partial \theta} f(x|\theta)}{f(x|\theta)} = \frac{\partial}{\partial \theta} f(x|\theta)$

$$0 = \frac{\partial}{\partial \theta} (1) = \frac{\partial}{\partial \theta} \int f(x|\theta) \, dx = \int \frac{\partial}{\partial \theta} f(x|\theta) \, dx$$
$$= \int f(x|\theta) \frac{\partial}{\partial \theta} \log f(x|\theta) \, dx \qquad (E_{X|\theta_0})$$
$$= \frac{\partial}{\partial \theta} \int f(x|\theta) \frac{\partial}{\partial \theta} \log f(x|\theta) \, dx$$

$$= \int \frac{\partial}{\partial \theta} f(x|\theta) \frac{\partial}{\partial \theta} \log f(x|\theta) dx +$$

$$\int f(x|\theta) \frac{\partial^2}{\partial \theta^2} \log f(x|\theta) dx$$

$$\int_{0}^{\infty} f(x|\theta) \frac{\partial}{\partial \theta^2} \log \frac{\partial}{\partial \theta}$$

$$\int f(x|\theta) \left(\frac{\partial}{\partial \theta} \mathbf{I}\right)$$

$$\begin{cases} f(x|\theta) \left(\frac{\partial}{\partial \theta} \right) \\ \frac{\partial^2}{\partial \theta} \right]$$

$$\int f(x|\theta) \left(\frac{\partial^2}{\partial \theta^2} \log f(x|\theta) \right) dx$$

$$(x|\theta)\left(\frac{\partial^2}{\partial\theta^2}\log \theta\right)$$

 $= \int f(x|\theta) \left(\frac{\partial}{\partial \theta} \log f(x|\theta) \right)^2 dx +$

 $= E \left| \left(\frac{\partial}{\partial \theta} \log f(x|\theta) \right)^{2} \right| + E \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(x|\theta) \right]$

Theorem 30 Let $X_1, ..., X_n \stackrel{iid}{\sim} f(X|\theta)$, $\widehat{\theta}$ is the MLE of θ . Then, under regularity conditions $\sqrt{n} \frac{\widehat{\theta} - \theta}{1/\sqrt{I(\theta)}} \stackrel{d}{\to} N(0,1),$

$$\sqrt{n} \frac{\tau(\widehat{\theta}) - \tau(\theta)}{1/\sqrt{I(\theta)}} \xrightarrow{d} N(0,1).$$
That is, any estimator $\tau(\widehat{\theta})$ (or $\widehat{\theta}$) is asymptoti-

cally unbiased for $\tau(\theta)$ (or θ) with asymptotic variance of $1/I(\theta)$. So, we have $\stackrel{d}{\rightarrow} N(0,1)$ in addition $to \stackrel{p}{\rightarrow} \theta$.

Proof. Suppose that the true value of θ is θ_0

Proof. Suppose that the true value of
$$\theta$$
 is θ_0
$$l(\theta) = \sum_{i=1}^n \log f(X_i|\theta)$$
$$l'(\theta) = l'(\theta_0) + (\theta - \theta_0) l''(\theta_0) + \cdots$$

 $l'(\widehat{\theta}) = l'(\theta_0) + (\widehat{\theta} - \theta_0) l''(\theta_0) + \cdots$ $(\widehat{\theta} - \theta_0) \approx -l'(\theta_0) / l''(\theta_0)$ (MLE def.)

$$(\widehat{\theta} - \theta_0) \approx -l'(\theta_0) / l''(\theta_0) \qquad (N)$$

$$\sqrt{n} \frac{(\widehat{\theta} - \theta_0)}{\sqrt{1/I(\theta_0)}} \approx \frac{\sqrt{n} \frac{1}{n} l'(\theta_0) / \sqrt{I(\theta_0)}}{\frac{-1}{n} l''(\theta_0) / I(\theta_0)}.$$

$$E\left[\frac{\partial^{2}}{\partial \theta^{2}}\log f(X|\theta)\Big|_{\theta_{0}}\right] = -I(\theta_{0})$$

$$\frac{-1}{n}l''(\theta_{0}) \stackrel{p}{\to} I(\theta_{0})$$

$$\frac{-1}{n}l''(\theta_{0})/I(\theta_{0}) \stackrel{p}{\to} 1$$

$$\sqrt{n}\frac{(\widehat{\theta}-\theta_{0})}{\sqrt{1/I(\theta_{0})}} \stackrel{d}{\to} N(0,1).$$

 $\operatorname{Var}\left[\left.\frac{\partial}{\partial \theta} \log f\left(X_{i} | \theta\right)\right|_{\theta_{0}}\right] = \operatorname{E}\left[\left(\frac{\partial}{\partial \theta} \log f\left(X | \theta\right)\right)^{2}\right]_{0}$

 $\sqrt{n} \frac{\frac{1}{n} l'(\theta_0) - 0}{\sqrt{I(\theta_0)}} \stackrel{d}{\to} N(0, 1)$

 $=I(\theta_0)$

 $\frac{-1}{n}l''(\theta_0) = \frac{-1}{n}\sum_{i}\frac{\partial^2}{\partial\theta^2}\log f(X_i|\theta)$

 $\frac{1}{n}l'(\theta_0) = \frac{1}{n}\sum_{i}\frac{\partial}{\partial\theta}\log f(X_i|\theta)\Big|_{\Omega}$

 $(\mathbf{E}_{X|\theta_0})$

 $E\left[\left.\frac{\partial}{\partial \theta}\log f\left(X_{i}|\theta\right)\right|_{\theta}\right] = 0$

 $\sqrt{n} \frac{\theta - \theta_0}{\sqrt{1/I(\theta_0)}} \xrightarrow{d} N(0, 1),$ $\sqrt{n} (\widehat{\theta} - \theta_0) \xrightarrow{d} N(0, 1/I(\theta_0)),$

Said differently

• Asymptotic variance = $1/I(\theta_0)$

Why variance decreases with $I(\theta_0)$?

which means that the MLE $\widehat{\theta}$

- Asymptotically normally distributed
- Asymptotically normally distributed.

$$I(\theta_0) = -E\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\Big|_{\theta_0}\right]$$
Ugh $I(\theta_0)$ means your sharp curve at θ

High $I(\theta_0)$ means very sharp curve at θ_0 , which means very probable θ_0 , which means less likely that the next dataset will not support that inference; and hence less variable the next estimator is.

The Bayesian Approach to Parameter Estimation

- We treat θ as r.v. with **subjective** prior knowledge f_{Θ} ; as opposed to "Frequentist (or Classical) Approach"
- Data $\mathbf{x} = x_1, ..., x_n$ for $\mathbf{X} = X_1, ..., X_n$ modifies our belief and produces the posterior $f_{\Theta \mid \mathbf{X}}$?
- We estimate θ by many criteria; e.g.,:

 $\widehat{\theta} = \underset{\theta}{\operatorname{argmax}} f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x})$ 2. Posterior Mean:

1. Posterior Mode/Max. A Posteriori (MAP):

$$\widehat{\theta} = \mathop{\mathbf{E}}_{\Theta}[\theta] = \int \theta f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) \, d\theta$$

3 Posterior loss function ontimization

3. Posterior loss function optimization:
$$\widehat{\theta} = \underset{\eta}{\operatorname{argmin}} \operatorname{E}_{\Theta}[L(\eta, \theta)]$$

$$= \underset{\eta}{\operatorname{argmin}} \int L(\eta, \theta) f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

General Framework:

$$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) = \frac{f_{\mathbf{X},\Theta}(\mathbf{x},\theta)}{f_{\mathbf{X}}(\mathbf{x})}$$

$$= \frac{f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta)}{\int f_{\mathbf{X},\Theta}(\mathbf{x},\theta) d\theta}$$

$$= \frac{f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta)}{\int f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta) d\theta}$$

 $= Const(\mathbf{x}) f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta)$ $Posterior \propto Likelihood \times Prior.$

Connection to MLE:

$$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) = Const(\mathbf{x}) f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) f_{\Theta}(\theta)$$

$$\propto Likelihood \times Prior$$

if we choose an uninformative prior $\Theta \sim U$ to let data speak for themselves:

$$f_{\Theta|X}(\theta|x) = Const(x) f_{X|\Theta}(x|\theta)$$

 $\propto Likelihood$

Then, if we choose MAP criterion

Then, if we choose WAP criterion
$$\widehat{Q}$$

$f_{\mathbf{X}|\Lambda} = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}, \ 0 \le x_i,$

Example 31 (Poisson) X denotes $X_1, ..., X_n$:

$$=\frac{\lambda^{\sum_{i}x_{i}}e^{-n\lambda}}{\prod_{i}x_{i}!}$$

$$=\frac{\lambda^{\sum_i x_i} e^{-n\lambda}}{\prod_i x_i!}$$

$$f_{\Lambda|\mathbf{X}} = \frac{f_{\mathbf{X}|\Lambda}(\mathbf{x}|\lambda) f_{\Lambda}(\lambda)}{\int f_{\mathbf{X}|\Lambda}(\mathbf{x}|\lambda) f_{\Lambda}(\lambda) d\lambda}$$

$$= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda}(\lambda) / \prod_{i} x_{i}!}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda}(\lambda) / \prod_{i} x_{i}!}$$

- $= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{1}{100}}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{1}{100} d\lambda}$

 - $=\frac{v^{\alpha}}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-v\lambda}$
 - $\sim Gamma(S_n+1,n)$

 $\widehat{\lambda} = \frac{\alpha - 1}{2} = \frac{S_n}{X}$

 $\frac{S_n}{n} = \frac{573}{23} = 24.9, \quad \frac{S_n + 1}{n} = 25$

- $\widehat{\lambda} = \operatorname{E}[\Lambda] = \frac{S_n + 1}{n} = \overline{X} + \frac{1}{n} \quad \text{(Post. Mean)}$ $\frac{\partial f_{\Lambda \mid \mathbf{X}}}{\partial \lambda} = \frac{v^{\alpha}}{\Gamma(\alpha)} \left((\alpha 1) \lambda^{\alpha 2} e^{-v\lambda} v\lambda^{\alpha 1} e^{-v\lambda} \right)$

- $= \frac{1}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda}(\lambda) / \prod_{i} x_{i}! d\lambda}$
 - $(\Lambda \sim U(0, 100))$

 - $(Gamma(\alpha, v))$

(MAP≡MLE)

n Cop 63 to 2019 Waleed A. Yousef. All Rights Reserved.

that Λ has $\mu = 15$ and $\sigma = 5$ then, we can assume that $\Lambda \sim Gamma(\alpha, \nu)$ with $\mu = \alpha/\nu$.

On the other hand, if we have the prior knowledge

$$\sigma^2 = \alpha/v^2,$$

$$v = \frac{\mu}{\sigma^2} = 0.6 << n \qquad (n = 23)$$

 $(S_n = 573)$

$$\alpha = \nu \mu = 9 << S_n,$$

$$f_{\Lambda | \mathbf{X}} = \frac{\lambda^{\sum_i x_i} e^{-n\lambda} f_{\Lambda}(\lambda)}{\int \lambda^{\sum_i x_i} e^{-n\lambda} f_{\Lambda}(\lambda) d\lambda}$$

$$f_{\Lambda|X} = \frac{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} f_{\Lambda}(\lambda) d\lambda}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{v^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-v\lambda}}$$

$$= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{v^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-v\lambda}}{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{v^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-v\lambda}}$$

$$= \frac{\int \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \frac{v^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-v\lambda} d\lambda}{\int \lambda^{(S_{n}+\alpha-1)} e^{-(n+v)\lambda}}$$
$$= \frac{\int \lambda^{(S_{n}+\alpha-1)} e^{-(n+v)\lambda} d\lambda}{\int \lambda^{(S_{n}+\alpha-1)} e^{-(n+v)\lambda} d\lambda}$$

$$= \frac{\lambda^{(S_n + \alpha - 1)} e^{-(n+\nu)\lambda}}{\int \lambda^{(S_n + \alpha - 1)} e^{-(n+\nu)\lambda} d\lambda}$$

$$\sim Gamma(S_n + \alpha, n + \nu)$$

$$= \frac{1}{\int \lambda^{(S_n + \alpha - 1)} e^{-(n+\nu)\lambda} d\lambda}$$

$$\sim Gamma(S_n + \alpha, n + \nu)$$

$$\hat{\lambda} = \frac{S_n + \alpha}{1 + \alpha} = \frac{573 + 9}{1 + \alpha} = 24.7 \quad \text{(Post. Mean)}$$

$$\sim Gamma(S_n + \alpha, n + \nu)$$

$$\widehat{\lambda} = \frac{S_n + \alpha}{n + \nu} = \frac{573 + 9}{23 + .6} = 24.7 \quad \text{(Post. Mean)}$$

 $\widehat{\lambda} = \frac{S_n + \alpha - 1}{n + \gamma} = \frac{573 + 9 - 1}{23 + 6} = 24.6$ (MAP) **Example 32** (Ber(p)) : n obs., then $u_1 = p$.

$$\mu_1 = p$$
,
$$\widehat{p} = \overline{X} = \frac{\sum_i x_i}{n} = \frac{\# Heads}{n}$$
,
$$p_X(x) = p^x (1-p)^{1-x}, x = 0, 1$$

$$l_X(x) = p^x (1-p)^{1-x}, \ x = 0, 1$$

$$l(p) = \sum_i x_i \log p + \sum_i (1-x_i) \log (1-p)$$

(MoM)

$$l'(p) = \frac{\sum_{i} x_{i}}{p} - \frac{\sum_{i} (1 - x_{i})}{1 - p} \qquad (l'(p) \stackrel{set}{=} 0)$$

$$\widehat{p} = \overline{X} = \frac{\sum_{i} x_{i}}{n} = \frac{\# Heads}{n}. \qquad (MLE)$$

Now, if we get 5 heads in 5 trials \hat{p} will be 1!!!!

Let's see the Bayesian approach.

$$\widehat{p} = \frac{A-1}{A+B-2} = \frac{a+S-1}{a+b+n-2}$$
 (MAP)
=
$$\frac{a+S-1}{2a+n-2}$$
 (Symmetric Prior)
$$a = 1: U(0,1), \ \widehat{p} = \frac{S}{n} \equiv MLE.$$

a = 2: not uniform but spread. $\hat{p} = (S+1)/(n+2)$.

Copyl © 2019 Waleed A. Yousef, All Rights Reserved.

(MAP)

 $f_{\mathbf{X}|P} = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i} x_i} (1-p)^{\sum_{i} (1-x_i)}$

 $f_{P}(p) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{a-1} (1-p)^{b-1} \ (\sim Beta(a,b))$

 $f_{P|\mathbf{X}} = \frac{f_{\mathbf{X}|P}(\mathbf{x}|p) f_{P}(p)}{\int f_{\mathbf{X}|P}(\mathbf{x}|p) f_{P}(p) dp}$

 $\propto p^{a-1+S} (1-p)^{b-1+(n-S)}$

 $\sim Beta(a+S,b+n-S)$.

• S = n: $\hat{p} = (n+1)/(n+2) \to 1$.

a >>: insisting on fair coin, $\hat{p} \approx a/(2a) = \frac{1}{2}$

• S = n/2: $\hat{p} = 1/2$ (of course).

$$f_{P|X} \sim Beta(a+S,b+n-S)$$

$$\widehat{p} = \frac{A}{A+B}$$

$$= \frac{a+S}{a+b+n}$$
 (Posterior Mean)

8.4.1 Large Sample Theory of **Bayesian Inference**

X and **x** denote $X_1, ..., X_n$ and $x_1, ..., x_n$, respectively, to simplify notation.

x denote
$$X_1, ..., X_n$$
 and x to simplify notation.

X and **x** denote
$$X_1, \ldots, X_n$$
 and x_1, \ldots, x_n tively, to simplify notation.
$$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) \propto f_{\Theta}(\theta) \, f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta),$$
 which is dominated by $f_{\mathbf{X}|\Theta}$ as $n \to \infty$.
$$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) \propto f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) \qquad (6.5)$$

$$= \exp \left[\log f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) \right]$$

$$= \exp \left[l(\theta) \right]$$

$$= \exp \left[l(\theta) \right]$$

 $= \exp[l(\widehat{\theta}) + (\theta - \widehat{\theta})l'(\widehat{\theta})]$

$$= \exp[l(\theta) + (\theta - \theta)l'(\theta - \theta)l$$

$$(as n \to \infty)$$

$$(a'(\widehat{\theta}))$$
 $(a'(\widehat{\theta}))$

$$(\widehat{\theta}) = 0$$

$$= \exp[l(\theta) + (\theta - \theta)l'(\theta) + \frac{1}{2}(\theta - \widehat{\theta})^{2}l''(\widehat{\theta}) + \cdots]$$

$$\propto \exp\left[-\frac{1}{2}\frac{(\theta - \widehat{\theta})^{2}}{-1/l''(\widehat{\theta})}\right] \qquad (l'(\widehat{\theta}) = 0)$$

 $\sim N(\widehat{\theta}, -1/l''(\widehat{\theta})).$ Do not confuse it with the MLE asymptotic nor-

8.5 Assessing Estimators, Efficiency, and the Cramér-Rao Lower Bound

8.5.1 Mean Squared Error (MSE) Criterion

$$MSE(\widehat{\theta}) = \underset{\mathbf{X}}{\mathbb{E}} \left[(\widehat{\theta} - \theta)^{2} \right]$$

$$= \underset{\mathbf{X}}{\text{Var}} \left[\widehat{\theta} \right] + \left(\underset{\mathbf{X}}{\mathbb{E}} \widehat{\theta} - \theta \right)^{2}$$

$$= Variance (\widehat{\theta}) + \left(Bias(\widehat{\theta}) \right)^{2}.$$

- terrible otherwise. • If $Bias(\widehat{\theta}) = 0$, $\widehat{\theta}$ is unbiased for θ .
- If Dias(0) = 0, 0 is unblusted for 0.

• Since $MSE = MSE(\theta)$ no best estimator;

e.g., $\hat{\theta} = 12.3$ is the best when $\theta = 12.3$ but

• Tradeoff exists between Bias and Variance.

A biased estimator may has lower MSE.

 $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i} \left(X_i - \overline{X} \right)^2,$ $S^2 = \frac{1}{n-1} \sum_{i} \left(X_i - \overline{X} \right)^2$

Example 33 ($\widehat{\sigma}^2$ vs. S^2 for $N(\mu, \sigma^2)$) :

$$E[S^{2}] = \sigma^{2}$$
 (unbiased)

$$Var[S^{2}] = \frac{2\sigma^{4}}{n-1}$$
 (see Extra Materials)

$$MSE(S^{2}) = \frac{2\sigma^{4}}{n-1} + (\sigma^{2} - \sigma^{2})^{2} = \frac{2\sigma^{4}}{n-1}$$

$$E[\widehat{\sigma}^{2}] = \frac{n-1}{n}\sigma^{2}$$
 (biased)

 $\operatorname{Var}\left[\widehat{\sigma}^{2}\right] = \operatorname{Var}\left[\frac{n-1}{n}S^{2}\right] = \left(\frac{n-1}{n}\right)^{2} \operatorname{Var}\left[S^{2}\right]$ $= \left(\frac{n-1}{n}\right)^{2} \left(\frac{2\sigma^{4}}{n-1}\right) = \frac{2(n-1)\sigma^{4}}{n^{2}}$

$$MSE(\widehat{\sigma}^2) = \frac{2(n-1)\sigma^4}{n^2} + \left(\frac{n-1}{n}\sigma^2 - \sigma^2\right)^2$$
$$= \frac{2n-1}{n^2}\sigma^4 < \frac{2\sigma^4}{n-1} \ \forall \sigma, n.$$

Remarks:

- Although S^2 is unbiased, $\hat{\sigma}^2$ has less MSE.
- MSE, for scale parameter, may not be reasonable since $\sigma^2 > 0$.
- $\widehat{\theta}_1$ may be better than $\widehat{\theta}_2$ under some criterion and the other way around and another criterion.

 $\widehat{p}_M = \overline{X}$ $E[\widehat{p}_M] = p$ $\operatorname{Var}\left[\widehat{p}_{M}\right] = \frac{1}{n}p\left(1-p\right)$

Example 34 (\widehat{p} of Ber(p)) :

$$MSE(\widehat{p}_{M}) = \frac{1}{n}p(1-p)$$

$$\widehat{p}_{R} = \frac{S+a}{s} \qquad \text{(Posterior Mean)}$$

(MLE)

$$\widehat{p}_{B} = \frac{S+a}{a+b+n}$$

$$\operatorname{E}\left[\widehat{p}_{B}\right] = \frac{np+a}{a+b+n}$$
(Po

 $\operatorname{Var}\left[\widehat{p}_{B}\right] = \frac{np(1-p)}{(a+b+n)^{2}}$

$$MSE(\widehat{p}_B) = \frac{np(1-p)}{(a+b+n)^2} + \left(\frac{np+a}{a+b+n} - p\right)^2$$
Changing a $b = \sqrt{n}/2$ related denoted as an experience of the second secon

Choosing $a = b = \sqrt{n/2}$ relaxes dependence on p:

$$ng \ a = b = \sqrt{n}/2 \ relaxes \ dependence \ on$$

$$\widehat{p}_B = \frac{S + \sqrt{n}/2}{\sqrt{n}},$$

Fing
$$a=b=\sqrt{n}/2$$
 relaxes dependence or $\widehat{p}_B=rac{S+\sqrt{n}/2}{n+\sqrt{n}},$

 $MSE(\widehat{p}_B) = \frac{n}{4(n+\sqrt{n})^2}.$ Comvient © 2019 Waleed A. Yousef, All Rights Reserved.

$$MSE(\widehat{p}_M) = \frac{1}{n}p(1-p)$$

$$MSE(\widehat{p}_B) = \frac{n}{4(n+\sqrt{n})^2}$$

.050

.025

$$-\frac{\mathsf{MSE}(\overline{X})}{0} = \frac{\mathsf{MSE}(\overline{X})}{0}$$

$$-\frac{\mathsf{MSE}(\widehat{p}_{\mathsf{B}})}{0} = \frac{\mathsf{MSE}(\widehat{p}_{\mathsf{B}})}{0}$$

$$-\frac{\mathsf{MSE}(\widehat{p}_{\mathsf{B}})}{0} = \frac{\mathsf{MSE}(\widehat{p}_{\mathsf{B}})}{0}$$

$$-\frac{\mathsf{MSE}(\widehat{p}_{\mathsf{B}})}{0} = \frac{\mathsf{MSE}(\widehat{p}_{\mathsf{B}})}{0} = \frac{\mathsf{MSE}(\widehat{p}_{\mathsf{B}})}{0}$$

boundary.

• For large n, \hat{p}_M is better unless p is in the middle.

• For small n, \hat{p}_B is better unless p is on the

• Having knowledge about the problem allows choosing the right estimator.

8.5.2 Best Unbiased Estimator **Definition 35 (UMVUE)** : An estimator $\hat{\theta}^*$, for θ ,

is a best unbiased estimator or uniform minimum variance unbiased estimator (UMVUE) if it satis*fies* $E[\widehat{\theta}^*] = \theta \ \forall \theta \ and \ for \ any \ other \ estimator \ \widehat{\theta} \ we$ have $\operatorname{Var}\left[\widehat{\theta}^*\right] \leq \operatorname{Var}\left[\widehat{\theta}\right]$.

Theorem 36 (Cramér-Rao Inequality) : Let $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} f(x|\theta)$ with regularity condition. The

$$X_1,...,X_n \sim f(x|\theta)$$
 with regularity condition. The for any estimator $T = T(X_1,...,X_n) = T(\mathbf{X})$

$$Var(T) \ge \frac{\left(\frac{d}{d\theta} E[T]\right)^2}{nI(\theta)},$$

$$Var(T) \ge \frac{1}{nI(\theta)}.$$
 (if T is unbiased)

(if *T* is unbiased)

• For all estimators with particular bias: the

higher the information number the lower the *lower bound*. • An estimator *attains* (*attainment*) the lower bound is called *efficient*.

 $Var[T] \ge (Cov(T, Z))^2 / Var(Z)$

Proof. :Since $1 \le \rho = \text{Cov}(T, Z) / \sqrt{\text{Var}(T) \text{Var}(Z)}$

$$Z = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X_i | \theta)$$

$$\text{Var}[Z] = n \text{Var} \left[\frac{\partial}{\partial \theta} \log f(X_i | \theta) \right]$$

 $= nI(\theta)$ (Proof of Th. 30)

$$\sigma_{TZ} = E(Z - E[Z]) (T - E[T]) = E[T(Z - E[Z])]$$

$$= E[ZT] \qquad (E[Z] - 0)$$

$$= E[ZT] \qquad (E[Z] = 0)$$

$$\begin{bmatrix} \partial & \longrightarrow & \end{bmatrix}$$

$$= E \left[T \frac{\partial}{\partial \theta} \log \prod_{i} f(X_{i} | \theta) \right]$$

$$-\mathbb{E}\left[\frac{1}{\partial \theta} \log \prod_{i} f(X_{i} | \theta) \right]$$

$$-\mathbb{E}\left[\frac{\partial}{\partial \theta} \log f(\mathbf{Y} | \theta) \right] \qquad (\mathbf{Y} - \mathbf{Y})$$

$$= E\left[T\frac{\partial}{\partial \theta}\log f(\mathbf{X}|\theta)\right] \qquad (\mathbf{X} = X_1, \dots, X_n)$$

$$= \mathbb{E}\left[\frac{1}{\partial \theta} \log f(\mathbf{x}|\theta) \right] \qquad (\mathbf{x} = x_1, \dots, x_n)$$

$$f(\mathbf{x} = x_1, \dots, x_n)$$

$$= \int T(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int T(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x}$$

$$\int f(\mathbf{x}|\theta)$$

$$= \frac{\partial}{\partial x} \int T(\mathbf{x}) f(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \frac{\partial}{\partial \theta} \int T(\mathbf{x}) f(\mathbf{x}|\theta) d\mathbf{x}$$

$$-\frac{\partial}{\partial \theta} \int T(\mathbf{X}) f(\mathbf{X}|\theta) d\mathbf{X}$$

$$= \frac{\partial}{\partial \theta} \underbrace{\mathbf{E}}_{\mathbf{X}} [T(\mathbf{X})]$$

Convinct © 2019 Waleed A. Yousef, All Rights Reserved.

$I(\lambda) = E \left[\left(\frac{\partial}{\partial \lambda} \log \frac{\lambda^X e^{-\lambda}}{X!} \right)^2 \right]$

Example 37 (Poisson) :

$$\log \frac{1}{X}$$

$$\begin{bmatrix} (\partial \lambda & \lambda) \\ (\partial \lambda) & (\lambda) \end{bmatrix}$$

$$= E \left[\left(\frac{\partial}{\partial \lambda} \left(X \log \lambda \right) \right) \right]$$

 $= E \left| \left(\frac{X}{\lambda} - 1 \right)^2 \right|$

$$= \mathbf{E}\left[\left(\frac{\partial}{\partial \lambda} \left(X \log \lambda - \lambda - \log X!\right)\right)^{2}\right]$$

$$= E\left[\left(\frac{\partial}{\partial \lambda} \left(X \log \lambda\right)\right)\right]$$

$$\log \lambda$$
 -

$$(\lambda - \lambda - \log X!)$$

$$1 - \lambda - \log X!$$

$$\left[\frac{\lambda^X e^{-\lambda}}{2}\right]$$
 (ea

$$= -E \left[\frac{\partial^2}{\partial \lambda^2} \log \frac{\lambda^X e^{-\lambda}}{X!} \right]$$
 (easier)

$$= -E\left[\frac{-X}{\lambda^2}\right] = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda},$$

$$\frac{\lambda}{\lambda^2} = \frac{1}{\lambda},$$

 $\operatorname{Var}[T] \ge \frac{\left(\frac{\partial}{\partial \lambda} \operatorname{E}[T]\right)^{2}}{nI(\lambda)}$

 $=\frac{\lambda}{n}$ $\widehat{\lambda} = \overline{X}$

Example 38 (*U* (0, θ)) : $f(x|\theta) = 1/\theta$, then

$$I(\theta) = E\left[\left(\frac{\partial}{\partial \theta}\log(1/\theta)\right)^2\right]$$

$$I(\theta) = E\left[\left(\frac{\partial}{\partial \theta}\log(1/\theta)\right)\right]$$

= $E\left[\left(-\frac{\partial}{\partial \theta}\log\theta\right)^2\right] = 1/\theta^2$,

$$\operatorname{Var}\left[\widehat{\theta}\right] \ge \frac{\left(\frac{\partial}{\partial \theta} \operatorname{E}\left[T\right]\right)^{2}}{nI(\theta)}$$

$$= \frac{\theta^{2}}{\theta} \qquad \text{(for unbiased estimators)}$$

$$= \frac{\theta^2}{n},$$
 (for unbiased estimators)
$$\widehat{\theta} = 2\overline{X},$$
 (MoM)

$$\theta = 2X$$
, (MON)
$$E[\widehat{\theta}] = \theta$$
 (unbiase)

$$E[\widehat{\theta}] = \theta \qquad \text{(unbiased)}$$

$$Var[\widehat{\theta}] = \frac{4}{n} Var[X] = \frac{4}{n} \frac{\theta^2}{12}$$

$$\theta^2 \qquad \theta^2$$

$$\operatorname{Var}\left[\widehat{\theta}\right] = \frac{4}{n}\operatorname{Var}\left[X\right] = \frac{4}{n}\frac{\theta^2}{12}$$
$$= \frac{\theta^2}{3n} < \frac{\theta^2}{n}. \quad (!!!\text{where is the problem?})$$

Convright © 2019 Waleed A. Yousef, All Rights Reserved.

 $\frac{\partial}{\partial \theta} E[T] = \frac{\partial}{\partial \theta} \int Tf(x|\theta) dx$ $(\mathbf{x} = x)$

The regularity condition assumes (n = 1):

$$= \int T \frac{\partial}{\partial \theta} f(x|\theta) dx$$
Let's see

$$\frac{\partial}{\partial \theta} \mathbf{E}[T] = \frac{\partial}{\partial \theta} \int_0^{\theta} T \frac{1}{\theta} dx$$
$$= \frac{\partial}{\partial \theta} \left(1 \int_0^{\theta} T dx \right)$$

$$= \frac{\partial}{\partial \theta} \left(\frac{1}{\theta} \int_{0}^{\theta} T dx \right)$$
$$= \begin{pmatrix} \partial & 1 \end{pmatrix} \int_{0}^{\theta} T dx + 1 & \partial & \int_{0}^{\theta} T dx$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_0^\theta T dx + \frac{1}{\theta} \frac{\partial}{\partial \theta} \int_0^\theta T dx$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx + \frac{T(\theta)}{\theta}$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx + \frac{T(\theta)}{\theta}$$

$$= \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx$$

$$\int_{0}^{\theta} T \frac{\partial}{\partial \theta} f(x|\theta) dx = \left(\frac{\partial}{\partial \theta} \frac{1}{\theta}\right) \int_{0}^{\theta} T dx,$$

$$\neq \frac{\partial}{\partial \theta} \operatorname{E}[T],$$

unless $T(\theta) = 0 \ \forall \theta$. Homework: repeat with the MLE estimator, scale it to be unbiased, then find its variance.

Copyright © 2019 Waleed A. Yousef, All Rights Reserved.

Loss Function

but also for designing and optimization!

Not only for assessment and comparison,

The loss function:

$$L(\theta, T(\mathbf{X})) = |\theta - T(\mathbf{X})|$$
 (absolute error (AE))

- $L(\theta, T(\mathbf{X})) = (\theta T(\mathbf{X}))^2$ (squared error (SE))
- expresses how the estimate $T(\mathbf{X})$ deviates from θ .
- The risk: $R(\theta, T) = \underset{\mathbf{v}}{\mathbf{E}} L(\theta, T(\mathbf{X}))$
- is a function of θ . $R(\theta, T_1)$ may cross with $R(\theta, T_2)$.

$$= \mathop{\mathbf{E}}_{\mathbf{X}} [L(\theta, T(\mathbf{X}))],$$

$$L(\theta, T(\mathbf{X})) = (\theta - T(\mathbf{X}))^{2}.$$

 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}, \quad (R(\sigma^{2}, S^{2})) = \frac{2\sigma^{4}}{n-1}$

Example 39 (Risk of σ^2 **Est.)** :

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2, \quad (R\left(\sigma^2, \widehat{\sigma}^2\right) = \frac{2n-1}{n^2} \sigma^4)$$

$$\widetilde{S}^2 = b \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 \qquad (R\left(\sigma^2, \widetilde{S}^2\right)?)$$

$$\widetilde{S}^{2} = b \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}$$

$$R\left(\sigma^{2}, \widetilde{S}^{2}\right) = \text{Var}\left[b\left(n-1\right)S^{2}\right]$$

$$+ \left(\text{E}\left[b\left(n-1\right)S^{2}\right] - a^{2}\right]$$

 $+(E[b(n-1)S^2]-\sigma^2)^2$ $= b^{2} (n-1)^{2} \frac{2\sigma^{4}}{n-1} + (b(n-1)-1)^{2} \sigma^{4}$

 $= c\sigma^4$.

$$= c\sigma^{4},$$

$$c_{\min} = \frac{2}{n+1}$$

$$\widetilde{S}^{2} = \frac{1}{n+1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}$$

$$= c\sigma^4,$$

$$c_{\min} = \frac{2}{n+1}$$

$$= (2b^{2}(n-1) + (b(n-1)-1)^{2})\sigma^{4},$$

$$= c\sigma^{4},$$

$$(n-1)-1$$

(at
$$b = \frac{1}{n}$$

$$(at b = \frac{1}{n+1})$$

$$(R(\sigma^2, \widetilde{S}^2) = \frac{2}{n+1}\sigma^4)$$

Copy 14 © 2019 Waleed A. Yousef.

Connection to Cramér-Rao Inequality

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$
$$l(\theta) = -\log\sqrt{2\pi} - \frac{1}{2}\log\theta - \frac{1}{2\theta}(x-\mu)^2$$
$$(\theta = \sigma^2)$$

$$l'(\theta) = \frac{-1}{2\theta} + \frac{\left(x - \mu\right)^2}{2\theta^2}$$

$$l''(\theta) = \frac{1}{2\theta^2} - \frac{\left(x - \mu\right)^2}{\theta^3}$$
$$E\left[l''(\theta)\right] = \frac{1}{2\theta^2} - \frac{\theta}{\theta^3} = \frac{-1}{2\theta^2}$$

$$E[l''(\theta)] = \frac{1}{2\theta^2} - \frac{1}{\theta^3} = \frac{1}{2\theta^2}$$
$$I(\theta) = -E\left[\frac{\partial^2 l(\theta)}{\partial \theta^2}\right] = \frac{1}{2\sigma^4}$$

$$Var[T] \ge \frac{1}{nI(\theta)} = \frac{2\sigma^4}{n},$$
• lower bound of any unbiased estimator of

- lower bound of any unbiased estimator of σ^2
- not attainable by the unbiased version above

Assessing with different Loss Function:

$$L(\theta, a) = (a - \theta)^{2} = \theta \left(\frac{a}{\theta} - 1\right)^{2}$$
 (SE loss)

$$L(\theta, a) = \frac{a}{\theta} - 1 - \log\left(\frac{a}{\theta}\right)$$
 (Stien's loss)
SE
8
6
4
2

$$\widetilde{S}^{2} = b \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}$$

$$L(\theta, a) = \frac{a}{\theta} - 1 - \log \left(\frac{a}{\theta} \right)$$

$$R(\sigma^{2}, \widetilde{S}^{2}) = E \left[b(n-1) \frac{S^{2}}{\sigma^{2}} - 1 - \log \frac{b(n-1) S^{2}}{\sigma^{2}} \right]$$

$$= b \operatorname{E} \left[\chi_{n-1}^{2} \right] - 1 - \log b - \operatorname{E} \log \chi_{n-1}^{2}$$

$$\frac{\partial R}{\partial b} = \operatorname{E} \left[\chi_{n-1}^{2} \right] - \frac{1}{b} \qquad (\stackrel{\text{set}}{=} 0)$$

$$b = \frac{1}{\operatorname{E} \left[\chi_{n-1}^{2} \right]} = \frac{1}{n-1}$$

$$\tilde{S}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2} = S^{2}.$$

"Better" in which sense?

Function Optimization!

$$R(\theta, T) = \underset{\mathbf{X}}{\mathbf{E}} L(\theta, T(\mathbf{X}))$$
$$= \int L(\theta, T(\mathbf{x})) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

Obtaining Bayesian's Estimator by Loss

- no uniformly "best" estimator.
- $R(\theta, T_1)$ may cross with $R(\theta, T_2)$.

$$\mathop{\mathbf{E}}_{\Theta} R(\theta, T) = \int_{\Omega} R(\theta, T) f_{\Theta}(\theta) d\theta$$

$$= \int_{\theta} \left[\int_{\mathbf{x}} L(\theta, T(\mathbf{x})) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} \right] f_{\Theta}(\theta) d\theta$$

$$J_{\theta} \left[J_{\mathbf{x}} \right]$$

$$= \int_{\mathbf{x}} \left[\int_{\theta} L(\theta, T(\mathbf{x})) f_{\mathbf{X}}(\mathbf{x}|\theta) f_{\Theta}(\theta) d\theta \right] d\mathbf{x}$$

$$f \left[\int_{\theta} \int_{\theta} L(\theta, T(\mathbf{x})) f_{\mathbf{X}}(\mathbf{x}|\theta) f_{\Theta}(\theta) d\theta \right] d\mathbf{x}$$

$$= \int_{\mathbf{x}} \left[\int_{\theta} L(\theta, T(\mathbf{x})) f_{\mathbf{X}}(\mathbf{x}|\theta) f_{\Theta}(\theta) d\theta \right] d\mathbf{x}$$

$$= \int_{\mathbf{x}} \left[\int_{\theta} L(\theta, T(\mathbf{x})) f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \right] f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

$$T = \operatorname{argmin} \int_{\theta} L(\theta, T(\mathbf{x})) f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

Solutions under different loss functions:

$$T_{1} = \underset{T}{\operatorname{argmin}} \int_{\theta} (T - \theta)^{2} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \quad \text{(SE loss)}$$

$$= \int_{\theta} \theta f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \quad \text{(Posterior mean)}$$

$$T_2 = \underset{T}{\operatorname{argmin}} \int_{\theta} |T - \theta| f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \qquad \text{(AE loss)}$$

$$R = \int_{\theta} |T - \theta| f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

$$= \int_{-\infty}^{T} (T - \theta) f(\theta) d\theta + \int_{T}^{\infty} -(T - \theta) f(\theta) d\theta$$

$$= T \int_{-\infty}^{T} f(\theta) d\theta - \int_{T}^{T} \theta f(\theta) d\theta$$

$$= \int_{-\infty}^{T} (T - \theta) f(\theta) d\theta + \int_{T}^{T} - (T - \theta) f(\theta) d\theta$$

$$= T \int_{-\infty}^{T} f(\theta) d\theta - \int_{-\infty}^{T} \theta f(\theta) d\theta - \int_{T}^{\infty} f(\theta) d\theta + \int_{T}^{\infty} \theta f(\theta) d\theta$$

$$\frac{\partial R}{\partial T} = \left(\int_{T}^{T} f(\theta) d\theta + T f(T) \right) - T f(T) - C$$

$$= T \int_{-\infty}^{T} f(\theta) d\theta - \int_{-\infty}^{T} \theta f(\theta) d\theta - \int_{-\infty}^{\infty} f(\theta) d\theta - \int_{T}^{\infty} f(\theta) d\theta + \int_{T}^{\infty} \theta f(\theta) d\theta$$

$$\frac{\partial R}{\partial T} = \left(\int_{-\infty}^{T} f(\theta) d\theta + T f(T) \right) - T f(T) - \int_{T}^{\infty} f(\theta) d\theta + \int_{T}^{\infty} f(\theta)$$

 $= \int_{-\infty}^{T} f(\theta) d\theta - \int_{-\infty}^{\infty} f(\theta) d\theta$ $0 = F_{\Theta|\mathbf{X}}^{-1}(T) - \left(1 - F_{\Theta|\mathbf{X}}^{-1}(T)\right)$ $0.5 = F_{\Theta|X}^{-1}(T)$ $T_2 = F_{\Theta|\mathbf{X}}^{-1}(0.5)$ (Posterior median)

 $\left(\int_{T}^{\infty} f(\theta) d\theta - Tf(T)\right) - Tf(T)$

$$R = \int_{\theta} I_{a \le |T - \theta|} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$
$$= \int_{\theta \in T} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

 $T_3 = \underset{x}{\operatorname{argmin}} \int_{\Omega} I_{0 \le |T - \theta|} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta \quad (0 - 1 \text{ loss})$

$$-\int_{a \le |T-\theta|} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

$$= 1 - \int_{|T-\theta| < a} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

$$= 1 - \int_{T-a}^{T+a} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

$$= 1 - \Pr_{\Theta|\mathbf{X}}[|\theta - T| < a]$$

Notice that: we have to maximize the probability $\int_{T-a}^{T+a} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$. The period [T-a, T+a] has

- a length of (T + a) (T a) = 2a
 mid point of ½ [(T + a) + (T a)] = T.
- T and mode do not necessarily coincide.,
- which means that T_3 is mid-point of 2a modal interval.

For unimodal symmetric
$$f_{\Theta|X}$$
:
$$f_{\Theta|X}(\theta-M)=f_{\Theta|X}(\theta+M). \text{ Therefore,}$$

$$T_3=Mode. \tag{MAP}$$

 $\frac{\partial R}{\partial T} = f_{\Theta|\mathbf{X}}(T + a|\mathbf{x}) - f_{\Theta|\mathbf{X}}(T - a|\mathbf{x}),$ $f_{\Theta|\mathbf{X}}(T + a|\mathbf{x}) = f_{\Theta|\mathbf{X}}(T - a|\mathbf{x}).$

 $f_{\Theta|X}$ 0.20

0.15

0.10

0.05

 $R \approx 1 - f_{\Theta|\mathbf{X}}(T|\mathbf{x}) \cdot 2a$

For $a \rightarrow 0$

Recognition.

$$T_3 = \underset{T}{\operatorname{argmax}} f_{\Theta|\mathbf{X}}(T|\mathbf{x}) = Mode$$
 (MAP)
Of course T_3 could have been any point if we starte

minimizing the risk from begining not by obtaining the limit:

$$R = 1 - \int_{T-a}^{T+a} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$
$$= 1 - \int_{T}^{T} f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) d\theta$$

$$=1-\int_T f_{\Theta|\mathbf{X}}(\theta|\mathbf{x})\,d\theta$$

$$=1,$$
 unless Θ is discrete or categorical as in Pattern

MLE, Bayesian, Loss Functions have same treat-

Estimation for Discrete Θ

ment. However, maximization, expectation,..etc are taken over discrete space. Also, Cramér-Rao

Lower Bound is derived for continuous case!

Example 15, page 19, first course. x captured animal in a population of θ animals. x was found to be 4 (we renamed variables):

Example 40 (Capture Recapture Method) : as in

$$L(\theta) = P(x|\theta) = \frac{\binom{10}{4}\binom{\theta-10}{20-4}}{\binom{\theta}{20}}, \quad \text{(Likelihood)}$$

$$\widehat{\theta}_{MLE} = 50$$

$$0.35 \mid 0.30 \mid 0.25 \mid 0.15 \mid 0$$

20

50

60

70

80

100

(Likelihood)

- maximization is obtained by $L_{\theta}/L_{\theta+1}$ not by $\frac{\partial L}{\partial \theta}$.
- Bayesian estimation is exactly the same through defining $f_{\Theta}\left(heta
 ight) .$
 - However, $f_{\Theta|X}(\theta|\mathbf{x})$ will be discrete.

• $\Theta = \{\theta_1, \dots, \theta_K\}$, with K categories (classes). • E.g., $\Theta = \{Male, Female\}$

Recognition)

Estimation for Categorical Θ (basis for Pattern

• MoM is not applicable here (Θ is not numeric).

$$X|\theta_2 \sim N$$
 (1.7,.1).

Suppose we got 1.77, 1.58, 1.77, 1.86, 1.75, 1.80,

 $X|\theta_1 \sim N(1.5, .08)$,

1.77, 1.67, 1.73, 1.62. Are these readings obtained from Male or Female population?

8.5.3 Asymptotic Relative Efficiency (ARE)

Definition 41 The (sequence of) estimator T_n is said to be asymptotically efficient for θ if

$$\sqrt{n} (T_n - \theta) \xrightarrow{d} N(0, \sigma^2),$$

$$\sigma^2 = \frac{1}{I(\theta)},$$

which is Cramér-Rao Lower Bound. It is clear that MLE is asymptotically efficient.