Question? PollEv.com/erickhiu063

Midterm Review Session 2

Eric Khiu

3/4/24 6-8pm @ BBB 1670

Handout available at course drive/Exam/Midterm Review
Annotated version will be uploaded tonight

Exam Logistics

- Midterm: Wednesday March 6th, 7-9pm
- Room assignments on <u>drive</u>
- ► You may bring <u>one double-sided</u> 8.5 x 11 study sheet
- No calculators
- We will provide scratch papers

Question? PollEv.com/erickhiu063

Exam Format

- 5 multiple answer multiple choice
- 3 **single answer** multiple choice
- 4 short answer
- 2 long answer

► See Piazza @1003 for details

Question? PollEv.com/erickhiu063

Question? PollEv.com/erickhiu063

Selected Problems

- ► WN 22 Long 1- DP: 2ASP (See Review 1 with Daphne)
- ▶ WN 22 Long 2- Turing Reduction: L_{BOB}
- WN 22 Long 3- Potential Method
- WN 23 Short 1- Asymptotic Bound
- ▶ WN 23 Long 1- DP: Max sum decreasing subsequence

DP Recipe

- Write recurrence
 - ► Choose the subject of recurrence
 - Base case(s)
 - ► Form optimal sub-solution ("up to this point")
- Size of table (Dimensions? Range of each dimensions?)
- To fill in cell, which other cells do I look at?
- Which cell(s) contain the final answer?
- ▶ Reconstructing solution: Follow arrows from final answer to base case

Question? PollEv.com/erickhiu063

DP Recurrence Overview

- Step 1: Define the subject of recurrence
 - ▶ Is this a 1D DP problem? 2D? What dimension do we want to do it in?
 - ▶ In which/ how many direction(s) do we want to reduce the problem?
- Step 2: Identify the base case(s)
 - ▶ In what situation(s) we can't reduce the problem further?
 - Is there any special cases?
- Step 3: Construct (optimal) sub-solution
 - Sub-solution:
 - ▶ [Sub] How to reduce the problem to smaller version of the same problem?
 - [Solution] How to combine the result so that the overall result is correct?
 - ▶ If [some condition] is/ isn't satisfied, what options do we have?
 - Optimal: (only for optimization problem)
 - ▶ Is it a maximization or minimization problem?
 - ▶ What is/ are the variable(s) we're taking max/ min over?
 - ▶ What is the objective function to be maximized/ minimized?

Question? PollEv.com/erickhiu063

Turing Reductions Overview

Question? PollEv.com/erickhiu063

- ▶ Suppose we want to show that $A \leq_T B$
- \triangleright Step 1: Identify the inputs of D_A and D_B
 - ▶ Is the input a number? A string? Multiple strings? A machine?
- Step 2: Draft Desired Behavior of D_A
 - Choose between "return same" and "return opposite"
 - ▶ Return same: $x \in A \Leftrightarrow \cdots \Leftrightarrow x' \in B \Leftrightarrow D_B(x')$ accepts $\Leftrightarrow D_A(x)$ accepts
 - ▶ Return opposite: $x \in A \Leftrightarrow \cdots \Leftrightarrow x' \notin B \Leftrightarrow D_B(x')$ rejects $\Leftrightarrow D_A(x)$ accepts

Note: Here we condense the two cases using iff

- ► Step 3: Generate input(s) for D_B
 - ▶ Return same: How to generate x', possibly using x, such that $x \in A \Rightarrow x' \in B$ and $x \notin A \Rightarrow x' \notin B$?
 - ▶ Return opposite: How to generate x', possibly using x, such that $x \in A \Rightarrow x' \notin B$ and $x \notin A \Rightarrow x' \in B$?

Question? PollEv.com/erickhiu063

Selected Problems

$Shorter\ Answer-30\ points$

1. (8) Briefly prove or disprove the following statement: If $L_1, L_2 \subseteq \{0, 1\}^*$ are <u>undecidable</u> languages and $L_1 \neq L_2$, then their symmetric difference, $(L_1 \setminus L_2) \cup (L_2 \setminus L_1)$, is also an undecidable language.

Proofs and longer questions – 40 points

Answer two of the following three questions. Clearly cross out the question you do not want graded. If it isn't clear what problem you don't want graded, we will grade the first two. Each of the two questions are worth 20 points.

- 1. The **2-Arithmetic Subsequence Problem** is defined as follows: Given a sequence of n positive integers a_1, \ldots, a_n , find the length of the longest subsequence where each value in the subsequence is increasing by 2. For example, in the sequence 6, 1, 2, 3, 12, 4, 5, 6, the length of the longest increasing-by-two subsequence is 3 and is achieved by the subsequence 2, 4, 6 (also by 1, 3, 5).
 - (a) Find a recurrence relation that can be used to solve the 2ASP.
 - (b) Write pseudocode which solves the problem using dynamic programming. It should have a run time that is $O(n^2)$.

2. Let $L_{bob} = \{ \langle M \rangle \mid \langle \text{``bob''} \rangle \notin L(M) \}$. Show that $L_{ACC} \leq_T L_{bob}$ or show that $L_{HALT} \leq_T L_{bob}$. (Do whichever of the two you would prefer.)

3. Consider the following two-player game on a 12×12 grid. At the beginning of the game, there is at most one stone occupying each square (so each square either has 1 or 0 stones). On their turn, each player must pick a stone and remove it. Subsequent to removing the stone, the player can place or remove stones as desired, on any of the squares to the **right** of that stone (on the same row). No square may ever have more than one stone. The game ends when there are no more stones left on the board.

Are there any initial board states **and** sets of moves that can make the game continue indefinitely, or will the game always end **regardless** of the initial position and the moves of the players? If so, describe them. If not, provide a proof that demonstrates this.

Hint: Try simulating the game on a 4×4 grid.

_

Shorter Answer – 24 points

Each of the three questions in this section is worth 8 points.

1. Give the **tightest correct asymptotic** (big-O) bound, as a function of n, on the **worst-case number of additions** done by the following algorithm, along with a **value of** k **that induces the worst case**. Also **state whether this is polynomial in the input size** or not. No explanation or proof is needed.

```
1: function Funk(n,k) \triangleright n is a positive integer, and k \in \{1,2,\ldots,n\}

2: x=0

3: for i=1,2,\ldots,k do

4: for j=1,2,\ldots,n-k do

5: x=x+1

6: return x
```

Proofs and Longer Answers – 40 points

Each of the two questions in this section is worth 20 points.

1. Let $A[1,\ldots,n]$ be an array of $n\geq 1$ positive real numbers. A decreasing subsequence of A is a sequence of array elements $A[i_1] > A[i_2] > \cdots > A[i_m]$, where $i_1 < i_2 < \cdots < i_m$ are some (not necessarily contiguous) array indices.

We are interested in the maximum sum obtainable by decreasing subsequences of A, i.e.,

$$\max\{A[i_1] + \cdots + A[i_m] : A[i_1] > A[i_2] > \cdots > A[i_m]$$
 is a decreasing subsequence of A }.

For example, for A = [4, 2, 2, 3, 5, 1], both $S_1 = [4, 3, 1]$ and $S_2 = [5, 1]$ are decreasing subsequences. The sum over S_1 is 8 = 4 + 3 + 1, whereas the sum over S_2 is 6 = 5 + 1. It can be verified that S_1 has the maximum sum overall, i.e., no decreasing subsequence of A has a sum greater than 8. (Note that the subsequence [4, 2, 2, 1] has a sum of 9, but it is not decreasing, because $2 \ge 2$.)

(a) Let H(i) denote the maximum sum obtainable by a decreasing subsequence of A that ends at index i, i.e.,

$$H(i) = \max\{A[i_1] + \dots + A[i_m] : A[i_1] > \dots > A[i_m] \text{ is a decreasing subsequence of } A \text{ with } i_m = i\}.$$

Give a correct recurrence relation for H(i), including base case(s), that is suitable for an efficient dynamic-programming algorithm. Briefly justify your answer.

Hint: an optimal decreasing subsequence ending at index i is either a single element, or has an immediate predecessor (a second-to-last element). What are the possible indices for this predecessor? What is true about the part of the subsequence that ends at this predecessor?

