Lecture 2: The SVM classifier

C19 Machine Learning

Hilary 2015 A. Zisserman

- Review of linear classifiers
 - Linear separability
 - Perceptron
- Support Vector Machine (SVM) classifier
 - Wide margin
 - Cost function
 - Slack variables
 - Loss functions revisited
 - Optimization

Binary Classification

Given training data (\mathbf{x}_i, y_i) for i = 1...N, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, learn a classifier $f(\mathbf{x})$ such that

$$f(\mathbf{x}_i) \begin{cases} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

Linear separability

linearly separable

not linearly separable

Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

- in 2D the discriminant is a line
- w is the normal to the line, and b the bias
- W is known as the weight vector

What is the best w?

• maximum margin solution: most stable under perturbations of the inputs

Support Vector Machine

SVM – Optimization

• Learning the SVM can be formulated as an optimization:

$$\max_{\mathbf{w}} \frac{2}{||\mathbf{w}||} \text{ subject to } \mathbf{w}^{\top} \mathbf{x}_i + b \overset{\geq}{\leq} 1 \quad \text{ if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1 \dots N$$

Or equivalently

$$\min_{\mathbf{w}} ||\mathbf{w}||^2$$
 subject to $y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \geq 1$ for $i = 1 \dots N$

 This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

Linear separability again: What is the best w?

• the points can be linearly separated but there is a very narrow margin

 but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

Introduce "slack" variables

"Soft" margin solution

The optimization problem becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i$$

subject to

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \ge 1 - \xi_i \text{ for } i = 1 \dots N$$

- ullet Every constraint can be satisfied if ξ_i is sufficiently large
- C is a regularization parameter:
 - small C allows constraints to be easily ignored \rightarrow large margin
 - large C makes constraints hard to ignore \rightarrow narrow margin
 - $-C=\infty$ enforces all constraints: hard margin
- ullet This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, C.

- data is linearly separable
- but only with a narrow margin

C = Infinity hard margin

C = 10 soft margin

Optimization

Learning an SVM has been formulated as a constrained optimization problem over ${\bf w}$ and ${\boldsymbol \xi}$

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \ge 1 - \xi_i \text{ for } i = 1 \dots N$$

The constraint $y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \geq 1 - \xi_i$, can be written more concisely as

$$y_i f(\mathbf{x}_i) \ge 1 - \xi_i$$

which, together with $\xi_i \geq 0$, is equivalent to

$$\xi_i = \max\left(0, 1 - y_i f(\mathbf{x}_i)\right)$$

Hence the learning problem is equivalent to the unconstrained optimization problem over \mathbf{w}

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$
regularization loss function

Loss function

 $\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$

loss function

Points are in three categories:

- 1. $y_i f(x_i) > 1$ Point is outside margin. No contribution to loss
- 2. $y_i f(x_i) = 1$ Point is on margin. No contribution to loss. As in hard margin case.
- 3. $y_i f(x_i) < 1$ Point violates margin constraint. Contributes to loss

Loss functions

- ullet SVM uses "hinge" loss $\max\left(0,1-y_if(\mathbf{x}_i)
 ight)$
- an approximation to the 0-1 loss

Optimization continued

$$\min_{\mathbf{w} \in \mathbb{R}^d} C \sum_i^N \max\left(0, 1 - y_i f(\mathbf{x}_i)\right) + ||\mathbf{w}||^2$$
 $\log_{\mathbf{w}} \log_{\mathbf{w}} \log_{\mathbf{w$

- Does this cost function have a unique solution?
- Does the solution depend on the starting point of an iterative optimization algorithm (such as gradient descent)?

If the cost function is convex, then a locally optimal point is globally optimal (provided the optimization is over a convex set, which it is in our case)

Convex functions

D – a domain in \mathbb{R}^n .

A convex function $f:D\to \mathbb{R}$ is one that satisfies, for any \mathbf{x}_0 and \mathbf{x}_1 in D:

$$f((1-\alpha)\mathbf{x}_0 + \alpha\mathbf{x}_1) \le (1-\alpha)f(\mathbf{x}_0) + \alpha f(\mathbf{x}_1) .$$

Line joining $(\mathbf{x}_0, f(\mathbf{x}_0))$ and $(\mathbf{x}_1, f(\mathbf{x}_1))$ lies above the function graph.

Convex function examples

A non-negative sum of convex functions is convex

SVM

$$\min_{\mathbf{w} \in \mathbb{R}^d} C \sum_i^N \max\left(0, 1 - y_i f(\mathbf{x}_i)\right) + ||\mathbf{w}||^2$$
 convex

Gradient (or steepest) descent algorithm for SVM

To minimize a cost function $C(\mathbf{w})$ use the iterative update

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \nabla_{\mathbf{w}} \mathcal{C}(\mathbf{w}_t)$$

where η is the learning rate.

First, rewrite the optimization problem as an average

$$\min_{\mathbf{w}} \mathcal{C}(\mathbf{w}) = \frac{\lambda}{2} ||\mathbf{w}||^2 + \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\lambda}{2} ||\mathbf{w}||^2 + \max(0, 1 - y_i f(\mathbf{x}_i)) \right)$$

(with $\lambda = 2/(NC)$ up to an overall scale of the problem) and $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$

Because the hinge loss is not differentiable, a sub-gradient is computed

Sub-gradient for hinge loss

$$\mathcal{L}(\mathbf{x}_i, y_i; \mathbf{w}) = \max(0, 1 - y_i f(\mathbf{x}_i))$$
 $f(\mathbf{x}_i) = \mathbf{w}^{\top} \mathbf{x}_i + b$

Sub-gradient descent algorithm for SVM

$$C(\mathbf{w}) = \frac{1}{N} \sum_{i}^{N} \left(\frac{\lambda}{2} ||\mathbf{w}||^{2} + \mathcal{L}(\mathbf{x}_{i}, y_{i}; \mathbf{w}) \right)$$

The iterative update is

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - \eta \nabla_{\mathbf{w}_{t}} \mathcal{C}(\mathbf{w}_{t})$$

$$\leftarrow \mathbf{w}_{t} - \eta \frac{1}{N} \sum_{i}^{N} (\lambda \mathbf{w}_{t} + \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{x}_{i}, y_{i}; \mathbf{w}_{t}))$$

where η is the learning rate.

Then each iteration t involves cycling through the training data with the updates:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta(\lambda \mathbf{w}_t - y_i \mathbf{x}_i)$$
 if $y_i f(\mathbf{x}_i) < 1$ $\leftarrow \mathbf{w}_t - \eta \lambda \mathbf{w}_t$ otherwise

In the Pegasos algorithm the learning rate is set at $\eta_t = \frac{1}{\lambda t}$

Pegasos – Stochastic Gradient Descent Algorithm

Randomly sample from the training data

