Plano de Ensino de Disciplina Ciência da Computação 2015

Disciplina: SO1 - Sistemas Operacionais I Código: Série: 3º Semestre

Carga Horária Semanal: 4 aulas Carga Horária Anual: 68 aulas

Coordenador: Carlos Eduardo de Barros Paes **Professores:** Carlos Eduardo de Barros Paes

EMENTA

Conceituação de sistemas operacionais. Evolução desses sistemas. Estrutura do Sistema Operacional. Processos: estados, contexto, gerenciamento pelo kernel, escalonamento, sinais e interrupções. Processos Leves (Threads). Escalonamento de CPU. Comunicação e Sincronização entre processos. Princípios e Prática de Programação Concorrente. Deadlock.

DESCRIÇÃO

A disciplina tem por objetivo apresentar os conceitos necessários para o gerenciamento eficiente dos recursos de hardware disponíveis em uma plataforma computacional, apresentar ao estudante conceitos fundamentais de sistemas operacionais para computadores, bem como aspectos relacionados aos conceitos em sistemas operacionais de importância no mercado e capacitar o estudante a compreender o funcionamento dos sistemas operacionais, bem como fornecer embasamento teórico para que possa assimilar novas tecnologias na área.

OBJETIVOS

Gerais

Proporcionar capacidades e habilidades para que o aluno:

- Conheça e compreenda os mecanismos e as políticas para o compartilhamento dos recursos computacionais e as formas de uso desses recursos por meio do Sistema Operacionais.
- Aplicar esses conhecimentos no processo de desenvolvimento de sistemas computacionais..

Específicos

Conduzir gradativamente o aluno, ao longo do curso, a:

- Conhecer as necessidades que incentivaram o desenvolvimento de sistemas básicos para controle e compartilhamento de recursos;
- Compreender os problemas que surgem ao permitir o compartilhamento de recursos limitados.
- Compreender as teorias criadas para controle desse compartilhamento;
- Aplicar essas teorias de compartilhamento de recursos na organização dos sistemas básicos de programas;
- Conhecer as formas de serviços providos por esse sistema básico ao usuário final do computador.

Procedimentos de Ensino

Cada aula consistirá da combinação adequada de:

- Aulas expositivas em sala com participação do aluno em pelo menos 75% das aulas;
- Atividade individual ou em grupo realizadas em sala de aula;
- Série de exercícios para as provas (apenas provas P1 e P2);
- Leitura recomendada (artigos selecionados)
- Experimentos práticos em laboratório
- Trabalhos de Implementação;
- Seminários: Quando tratar-se da apresentação de seminários, o trabalho deverá ser apresentado na forma escrita e posteriormente apresentado para a turma como um seminário.

Instrumentos e Critérios de Avaliação

Para ser aprovado em qualquer disciplina do curso o aluno deverá atingir pelo menos 75% de presença em 34 semanas de aula e média final igual ou superior a 5.0 (cinco).

A fórmula vigente para o cálculo da **Média Final (MF)**, conforme aprovada pelo Departamento de Ciência da Computação e pelo Conselho Departamental da Faculdade de Matemática, Física e Tecnologia (FMFT), é dada por:

$$MF = (N1 + N2) / 2 \cdot (0.8 + 0.04 \text{ A}) \text{ com } Ni = (a \cdot Pi + b \cdot Ai) / (a + b) \text{ com}$$

- \triangleright a, b ε {1, 2, 3}
- Pi: nota da Prova do semestre i (i: 1, 2)
- Ai: nota de Atividades do semestre i (i: 1, 2)
- ➤ A refere-se a atividade extra, que pode ser constituída por seminários, projetos, trabalhos de pesquisa, trabalhos de campo, etc., de acordo com a especificação da disciplina.

Na disciplina em pauta (SO12), a **Média Final** (**MF**), é obtida fazendo-se a = 3 b = 1 e A = formulada a partir de um projeto de implementação desenvolvido em grupo no decorrer do segundo semestre.

Com isso, tem-se:

MF =
$$\frac{N1 + N2}{2} \times (0.8 + 0.04 \times A)$$
 em que N1 = $\frac{3 \times P1 + A1}{4}$, N2 = $\frac{3 \times P2 + A2}{4}$

Recursos Necessários

- Projetor digital e retro-projetor;
- Laboratório com o ambiente UNIX (Linux) e as seguintes ferramentas para elaboração de experimentos e projetos de implementação: Compilador C ou C++ (ex: gcc), Compilador Java (SDK da SUN última versão) e Editor de texto (ex: pico, mc e etc)
- Quadro de giz;

Conteúdo Programático

Conceituação de sistemas operacionais

Histórico e tipos de sistemas operacionais.

- Sistemas em lote (batch)
- Sistemas de tempo compartilhado
- Sistemas de computadores pessoais
- Sistemas paralelos
- Sistemas de tempo real
- Sistemas distribuídos

Estrutura e conceitos básicos de sistemas operacionais

- Componentes do sistema
- Serviços de sistemas operacionais
- Chamada ao Sistema (System Calls)
- Programas de sistema
- Estrutura do sistema
- Máguinas virtuais

Gerência de Processos

- Processos (heavyweight process)
- Thread (lightweight process)
- Escalonamento de processos
- Sincronização de processos
- Deadlock e Starvations
- Problemas clássicos de intercomunicação de processos.

Laboratório de Sistemas Operacionais

- Introdução ao Sistema Operacional Linux
- Comandos básicos do Shell
- Linguagem C (ambiente de desenvolvimento)
- Gerência de Processos
- Sinais no Unix
- Comunicação entre Processos e Sincronização: Pipes
- Comunicação entre Processos e Sincronização: FIFOs e Memória Compartilhada
- Comunicação entre Processos e Sincronização: Semáforos e Queues
- Threads (Java e Pthreads)

INSERÇÃO DA DISCIPLINA NO PROJETO DO CURSO

Esta disciplina dará ao aluno um conhecimento sobre os principais conceitos sobre sistemas operacionais, tais como processos, algoritmos de escalonamento, comunicação entre processo e programação concorrente. Além disso, a disciplina apresenta e discute a arquitetura dos principais sistemas operacionais.

Cronograma

Semana	Tópicos	Ref. Bibl.	Aulas
1	Apresentação do curso de Sistemas Operacionais	Plano de Ensino	4
	 Conteúdo programático do curso, sistema de avaliação e 	da Disciplina	
	bibliografia de referência.		
	 Motivações do estudo de Sistemas Operacionais 		
	Laboratório de Sistemas Operacionais		
	 Introdução ao Linux 		
	 Comandos Básicos de Shell 		
	 Exercícios: utilização dos comandos básicos de Shell 		
2	Introdução aos Sistemas Operacionais	Capítulo 1	4
	 Conceituação de Sistemas Operacionais. 		
	 Histórico e tipos de sistemas: Sistemas em Lote, Sistemas 		
	de Tempo Compartilhado, Computadores Pessoais,		
	Sistemas Paralelos, Sistemas de Tempo Real e Sistemas		
	Distribuídos.		
	Laboratório de Sistemas Operacionais		
	 Ambiente de desenvolvimento em C 		
	 Uso do gcc para compilação de programa em C 		
	 Criação de bibliotecas estáticas 		
	 Link de bibliotecas em C 		
	 Exercícios: implementação de programa simples em C. 		
3	Estruturas de Sistemas Operacionais	Capítulo 3	4
	 Componentes do sistema 		
	 Serviços de Sistemas Operacionais 		
	 Chamada de sistemas (System Calls) 		
	 Programas de sistema 		
	 Estrutura do sistema 		
	 Máquinas virtuais 		
	Laboratório de Sistemas Operacionais		
	Linguagem C		
	 Alocação dinâmica em C 		
	 Semântica de Ponteiros em C 		
	 Exercícios: implementação de alguma estrutura de dados 		
	dinâmica em C (Lista, árvore e etc)		
4	Gerenciamento de Processos	Capítulo 4	4
	 Conceito de processos. 		
	 Escalonamento de processos 		
	 Operações nos processos 		
	Laboratório de Sistemas Operacionais		
	 Chamadas ao sistema Linux 		
	Gerenciamento de Arquivos		
	 Exercícios: implementação de leitura e gravação em 		
	arquivos texto e binário		

5	Gerenciamento de Processos	Capítulo 4	4
	 Operações nos processos 		1
	Laboratório de Sistemas Operacionais		
	 Chamadas ao sistema Linux 		
	 Gerenciamento de Processos (uso de fork, execlp, wait e 		
	etc)		
	 Exercícios: implementação de criação de processos usando 		
	fork		
6	Threads	Capítulo 5	4
	Visão geral		
	Benefícios		
	Threads de usuário e de kernel		
	Laboratório de Sistemas Operacionais		
	- Threads em Java		
	Coordenação de threads (join,start,stop,resume e etc)		
	Sincronização em Java (método/bloco sincronizado)	0 " 1 5	
7	Threads	Capítulo 5	4
	Modelos de Multithreading Fatudos de Cosos Threade no sistema Solaria e no		
	Estudos de Caso: Threads no sistema Solaris e na Linguagem Java		
	Linguagem Java Laboratório de Sistemas Operacionais		
	- Locks		
	ReadWriteLocks		
	 Serviço de execução de tarefas em Java 		
	Exercícios: Implementação de um escalonador de tarefas		
	em Java usando algums política de escalonamento		
8	Escalonamento de Processos	Capítulo 6	4
	 Conceitos básicos 	'	
	 Critérios de escalonamento 		
	 Algoritmos de escalonamento 		
	Laboratório de Sistemas Operacionais		
	 Simulador de Sistemas Operacionais SOSim 		
9	Escalonamento de Processos	Capítulo 6	4
	 Escalonamento com múltiplos processadores 		
	 Escalonamento de tempo real 		
	 Escalonamento de threads 		
	Avaliação de algoritmos		
	Laboratório de Sistemas Operacionais		
40	Simulador de Sistemas Operacionais SOSim Prove P4		4
10	Prova P1	Conftula 4 a 7	4
11	Comunicação e Sincronização de Processos - Processos Cooperativos Comunicação entre Processos	Capítulo 4 e 7	4
	Programação Concorrente Fundamentos de Singrapização		
	Fundamentos de SincronizaçãoProblema da região crítica		
	Frobletia da região criticaSoluções para duas tarefas		
	Soluções para duas tareiasHardware de sincronização		
	Laboratório de Sistemas Operacionais		
	Comunicação de processos		
	Pipes		
	 Exercícios: implementação de comunicação entre processos 		
	usando pipes		
I	ασαι ασ ριροσ	1	1

12	Comunicação e Sincronização de Processos	Capítulo 4 e 7	4
	Semáforos		
	Monitores		
	Laboratório de Sistemas Operacionais		
	 Comunicação de processos 		
	 FIFO e Shared Memory 		
	 Exercícios: implementação de comunicação entre processos 		
	usando FIFO e memória compartilhada		
13	Comunicação e Sincronização de Processos	Capítulo 4 e 7	4
	 Problemas Clássicos de IPC 		
	Laboratório de Sistemas Operacionais		
	 Sincronização de processos 		
	 Semáforos e Mutex (padrão System V) 		
	 Exercícios: implementação de semáforos para sincronizar 		
	processos		
14	Deadlock	Capitulo 8	4
	 Modelo de sistema 	'	
	 Caracterização de deadlocks 		
	 Métodos para tratar de deadlock 		
	Laboratório de Sistemas Operacionais		
	Problemas clássicos de IPC		
	Produtor e Consumidor		
	Exercício: implementação do problema do produtor e		
	consumidor usando semáforos e memória compartilhada		
15	Deadlock	Capitulo 8	4
	Prevenção de deadlock	Capitalo o	
	Impedimento de deadlock		
	Detecção de deadlock		
	Recuperação de um deadlock		
	Laboratório de Sistemas Operacionais		
	Problemas clássicos de IPC		
	Leitores e Escritores		
	Exercício: implementação do problema dos leitores e		
	escritores usando semáforos e memória compartilhada		
16	Prova P2	Capitulo 8	4
	Laboratório de Sistemas Operacionais	Capitalo o	
	 Problemas clássicos de IPC 		
	Barbeiro Dorminhoco		
	Exercício: implementação do problema do barbeiro		
	dorminhoco usando semáforos e memória compartilhada		
17	Correção e vista da Prova P2		
	Problema dos Filósofos Glutões		
	Laboratório de Sistemas Operacionais		
	 Exercício: implementação do problema dos filósofos glutões 		
	usando semáforos.		
18	Prova PS		4
	Laboratório de Sistemas Operacionais		
	 Exercício: implementação do problema dos filósofos glutões 		
	usando semáforos.		
19	Correção e vista da Prova PS		
	Laboratório de Sistemas Operacionais		
	 Exercício: implementação do problema dos filósofos glutões 		
	usando semáforos.		

PRÉ-REQUISITOS - TÓPICOS

Essa disciplina possui como pré-requisito os seguintes tópicos:

- Conhecimento de programação em alguma linguagem de alto nível, técnicas de programação e estrutura de dados (LP2+DA)
- Conhecimento básico de organização de computadores (OC)
- Conhecimento de linguagem de montagem de algum processador moderno (OC)
- Conhecimento de mecanismos de interrupção (OC)

PRÉ-REQUISITOS - DISCIPLINAS

Essa disciplina possui como pré-requisito as seguintes disciplinas:

- Laboratório de Programação 1 e 2
- Organização de Computadores
- Desenvolvimento de Algoritmos

BIBLIOGRAFIA

Básica

- SILBERSCHATZ,A. et al., Operating Systems Concepts with Java. Eighth Edition, John Wiley & Sons, Inc, 2009.
- TANENBAUM, A., Modern Operating Systems. Third Edition, Prentice Hall, 2010.
- MACHADO, F.B., MAIA, L. P., Introdução a Arquitetura de Sistemas Operacionais, LTC Livros Técnicos e Científicos Ed. Ltda, 3ª Edição, 2007.

Complementar

- GALVIN, S., Operating System Concepts. Fifth Edition, Addison-Wesley, 1998.
- TANENBAUM, D and WOODHULL, A., Operating System: Design and Implementation. Second Edition, Prentice Hall, 1997
- NUTT, G., Operating System: A Modern Perspective. Addison-Wesley, 1997.
- STEVES, W. R., Unix Networking Programming: Interprocess Communication. Second Edition, Prentice Hall, 1998.
- MILENKOVIC, M., Operating Systems: Concepts and Designs, McGraw Hill, 1987, ISBN: 0-07-041920-5.
- MADNICK, DOHOUAN, Operating Systems, McGraw Hill Ed., 1974, ISBN: 0-07-039455-5.
- KELLER, L. S., Operating Systems: Communicating and Controlling the Computer, Pretince-Hall Inc, 1988, ISBN: 0-13-638040-9.
- MAEKAWA, OLDEHOEFT, Operating Systems: Advanced Concepts, Benjamin Cummings-Co., 1987, ISBN: 0-8053-7121-4.
- DEITEL, H. M.: An Introduction to Operating Systems, Addison Wesley, 1984.
- KIRNER,C., MENDES, S.B.T., Sistemas Operacionais Distribuídos, Editor Campus, 1988.
- BACH, M. J., The Design Of The Unix Operating System, Prentice Hall, Inc, 1990.