# Relatório 1º projecto ASA 2021/2022

Grupo: al099

Aluno(s): Pedro Dias Rodrigues (99300)

#### Descrição do Problema e da Solução

Este projeto é composto por dois problemas. No primeiro recebe-se uma sequência de inteiros e pretende-se calcular o tamanho da maior subsequência estritamente crescente, assim como o número de subsequências com este tamanho máximo. Já no outro problema tem-se, por sua vez, duas sequências de inteiros e pretende-se obter o tamanho da maior subsequência comum estritamente crescente.

De modo a resolver estes dois problemas foi desenvolvido um programa em linguagem C++. No primeiro problema, pretende-se percorrer o vetor tendo em vista encontrar o valor máximo da seguinte

forma: 
$$d[i] = \max (1, \max_{j=0...i-1 \&\& a[j] < a[i]} (d[j]+1)).$$

De seguida, percorre-se o vetor que guarda o tamanho das maiores subsequências e sempre que for igual à variável incrementa-se a contagem somando-se o valor alocado num outro vetor na mesma posição, que foi criado anteriormente com o objetivo de guardar o número de subsequências de tamanho máximo existentes.

Já no segundo problema, a quantidade recursiva calculada C(i, j) representa o tamanho da maior subsequência comum entre x[1...i] e y[1...i].

$$\text{C(i, j) \'e definido recursivamente como:} \quad c[i][j] = \begin{cases} 1 + \max \ c[i][l], \ 0 \leq l < j \ and \ vect[j] < vect1[i] \\ 0, \ i = j \\ c[i-1][j], \ i \neq 0 \end{cases}$$

Por ultimo, sabemos que o valor a calcular corresponde a C(n, m) com n = |x| e m = |y|. Assim sendo, é essencial o preenchimento de uma matriz C[1 ... n, 1 ... m] para a percorrermos linha por linha.

### **Análise Teórica**

#### Leitura dos dados de entrada:

- 1. Um ciclo a depender linearmente de N logo,  $\Theta(N)$ .
- 2. Dois ciclos independentes para ler, linearmente, correspondentes às duas sequências logo,  $\Theta(|N| + |M|)$ .

Aplicação de dois ciclos for para resolução dos problemas: Logo, O(N²) para o problema 1 (percorre-se duplamente a sequência recebida como input) e O(N x M) para o problema 2 (percorre-se a sequência 2 a cada elemento da primeira sequência).

Apresentação dos dados: impressão do resultado. Complexidade Θ(1) para os dois problemas.

Complexidade global da solução do Problema 1: O(N<sup>2</sup>)

Complexidade global da solução do Problema 2: O(N x M)

## Avaliação Experimental dos Resultados

Para avaliar os resultados obtidos, geraram-se várias sequências com um número de elementos predefinidos. Os elementos das sequências são escolhidos aleatoriamente, situando-se sempre entre 1 e o tamanho da sequência, não havendo, por isso mesmo, a repetição de valores.

# Relatório 1º projecto ASA 2021/2022

Grupo: al099

Aluno(s): Pedro Dias Rodrigues (99300)

Problema 1:

| N.º Elementos | Tempo     |  |
|---------------|-----------|--|
| 1             | 0,000147  |  |
| 5             | 0,000137  |  |
| 10            | 0,0001753 |  |
| 50            | 0,0001487 |  |
| 100           | 0,0002909 |  |
| 500           | 0,001181  |  |
| 1000          | 0,0023742 |  |
| 5000          | 0,0421965 |  |
| 10000         | 0,1282    |  |
| 50000         | 0,8137    |  |
| 100000        | 1,1233    |  |
| 200000        | 1,3773    |  |
| 300000        | 2,0389    |  |
| 400000        | 2,2057    |  |
| 500000        | 2,1071    |  |
| 600000        | 2,6307    |  |
| 700000        | 3,5170    |  |
| 800000        | 3,9557    |  |
| 900000        | 4,291     |  |
| 1000000       | 5,6589    |  |

Problema 2:

| N1     | N2     | Tempo     |
|--------|--------|-----------|
| 1      | 1      | 0,00016   |
| 2      | 3      | 0,0001606 |
| 6      | 4      | 0,0001599 |
| 17     | 33     | 0,0001796 |
| 58     | 42     | 0,0001324 |
| 317    | 183    | 0,0002137 |
| 327    | 673    | 0,0033253 |
| 1750   | 3250   | 0,0593412 |
| 5000   | 5000   | 4,8169    |
| 25000  | 25000  | 6,9812    |
| 40000  | 60000  | 8,8285    |
| 150000 | 50000  | 9,1796    |
| 200000 | 100000 | 13,8397   |
| 200000 | 200000 | 13,4508   |
| 200000 | 300000 | 15,2209   |
| 400000 | 200000 | 17,1067   |
| 350000 | 350000 | 22,1877   |
| 550000 | 250000 | 35,5752   |
| 450000 | 450000 | 45,2063   |
| 525000 | 525000 | 54,524    |





Regressão linear y = 0.0000438431x + 0.1460576995

Depois de se fazer uma regressão linear com os valores obtidos do tempo real decorrido na execução do programa, em segundos, em função do número de elementos das sequências, verifica-se que os resultados comprovam a análise teórica realizada anteriormente, já que o coeficiente de determinação, em ambos os problemas, é próximo de 1. Os erros existentes estão associados às operações elementares executadas para alocação dos valores nos vetores que aparentam ter valores de tempos muito diferentes.