IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Rea et al.

Serial No.: 09/666,430

Filed: September 21, 2000

For: DENDRITIC CELL ACTIVATED IN THE PRESENCE OF GLUCOCORTICOID

HORMONES ARE CAPABLE OF

SUPPRESSING ANTIGEN-SPECIFIC T

CELL RESPONSES

Confirmation No.: 6289

Examiner: G. Ewoldt

Group Art Unit: 1644

Attorney Docket No.: 2183-4205.1US

Declaration Under 37 C.F.R. § 1.132

I,, a citizen of the Netherland	s, hereby declare and state as follows:
That I received a degree in	from
	_, in 19; and a Doctor of Philosophy in
from	, in 19;
That I am among the joint inventors of th	e referenced patent application;
That I conducted (or worked directly with	n) the series of tests related to this Declaration;
That the enclosed summary of the tests a	as set forth below demonstrate DEX-treated DC
can exert a potent immunoregulatory effect on T	Th1-immunity at two levels: directly through the
suppression of proliferation and IFN γ secretio	n by both naive and memory-type T cells, and

indirectly through the mobilization of IL-10-secreting T cells the presence of which can also suppress proliferation and IFN γ secretion Th1 cells and the practical use of alternatively activated DC for modulation of the alloimmune response and show that these can induce a prolonged skin graft survival even in a complete MHC incompatible donor-recipient combination; and

That Example 1 herein was based on Example 4 of the patent application.

I further hereby declare that the enclosed summary of the tests as set forth below correctly reflect the hereinafter described materials, methods, procedures, and results of those tests.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1A: Pretreatment with DEX inhibits the phenotypic change induced by LPS triggering of DC. Immature DC were cultured for 24 hours in the absence or the presence of 10⁻⁶ M DEX and activated with LPS (10 μg/ml) for 48 hours. Flow cytometric analysis showing the immature D1 cell line (immature DC), the LPS triggered mature DC (LPS) and the DEX pretreated LPS matured DC (DEX-LPS).
- FIG. 1B: DEX exposed or control immature DC were left in culture without further treatment or stimulated with LPS. Culture supernatants were harvested 48 hours later and IL-12 secretion was analyzed by ELISA. Data are derived from 3 representative independent experiments.
- FIG. 2: Pretreatment with DEX impairs the stimulatory capacities of DCs matured with LPS. Allogeneic mixed lymphocyte culture of BALB/c splenocytes with different numbers of DEX treated immature DCs (DEX), mature DCs (LPS), DEX treated mature DCs (DEX-LPS) as compared to untreated immature DCs. The IFN-γ production (B) was measured in supernatants taken after 48 hours and the proliferative response (A) was analyzed at 66 hours. Data are derived from 3 representative independent experiments.
- FIG. 3: *In vivo* effects of alloreactive splenocytes by intravenous (iv) injection of immature DCs and treated DCs into allogeneic mice.
- A) The proliferation of different numbers of responding splenocytes after *in vitro* restimulation with C57BL/6 splenocytes is shown after no treatment or after treatment with

either immature DC, DEX treated immature DCs (DEX), mature DCs (LPS), DEX treated mature DCs (DEX-LPS).

B) shows the IFN- γ production by the responding splenocytes at 48 hours after restimulation.

Data are derived from 2 representative independent experiments.

- FIG 4: *In vivo* effects of alloreactive splenocytes by subcutaneous (sc) injection of immature DCs and treated DCs into allogeneic mice.
- A) The proliferation of different numbers of responding splenocytes after *in vitro* restimulation with C57BL/6 splenocytes is shown after no treatment or after treatment with either immature DC, DEX treated immature DCs (DEX), mature DCs (LPS), DEX treated mature DCs (DEX-LPS).
- B) shows the IFN- γ production by the responding splenocytes at 48 hours after restimulation.
- C) shows the number of IL-10 producing cells in case the responding splenocytes were restimulated after 7 days *in vitro* stimulation with C57BL/6 splenocytes. Data are derived from 3 representative independent experiments.
- FIG 5A: Graft survival of C57BL/6 (H-2^b) donor skin in untreated BALB/c (H-2^d) mice and in mice receiving 7 days before transplantation a sc injection of 1 x 10⁶ mature DC (H-2^b) (LPS) or DEX treated mature DC (DEX-LPS). A significantly prolonged graft survival was found in DEX-LPS treated mice compared to mature DC treated mice (p=0.039).
- FIG 5B: Graft survival of DBA/1 (H-2^q) donor skin in untreated BALB/c (H-2^d) mice and in mice receiving 7 days before transplantation a sc injection of 1 x 10⁶ mature DC (H-2^b) (LPS) or DEX treated mature DC (DEX-LPS). No significant prolonged graft survival was found in DEX-LPS treated mice compared to mature DC treated mice (p=0.92).
- FIG. 7: Dex-treated DC preferentially induce T cells secreting IL-10 instead of IFN γ . Non-adherent PBMC were cultured with either allogeneic CD40-triggered DC or allogeneic DEX-treated CD40-triggered DC. Supernatants were harvested at day 5 and used for measurement of IFN γ and IL-10 by ELISA.
- FIG 8: T cells pretreated with modulated DC (DEX-DC) inhibit, in a dose-dependent fashion, the proliferation and cytokine production of alloreactive T cells. Alloreactive T cell

cultures were separately generated through primary stimulation of non-adherent PBMC (donor X) during 10 days with either mature DC or DEX-DC (donor Y), after which viable T cells were isolated and counted. The resulting T cell cultures are designated as T-allo and T-dex. Subsequently, a secondary stimulation of T-allo cells was performed in the presence of mature DC (Donor X) as well as in the presence of titered amounts of T-dex. As a control, secondary stimulation was performed by mixing in titered amounts of T-allo cells. (A) Proliferation was determined after 48 hours of culture by addition of ³H-thymidine for the final 16 hours. (B) Supernatants, harvested from the cultures before addition of ³H-thyxnidine, were used for measurement of IFN-γ production. A representative result of three independent experiments is shown.

EXAMPLE 1

DEK-treated CD40-triggered DC are capable of suppressing Th1-type immunity

Further examination of the T cell responses induced in an allogeneic MLR by CD40-triggered DC versus DEX-treated DC (FIG. 5 of pending application) learned that induction by Dex-treated DC did not merely alter the magnitude of the alloreactive T cell response, but profoundly affected the cytokine production by the T cells stimulated. Whereas the cytokine profile of T cells induced by CD40-triggered DC primarily featured the Th1-type cytokine IFN γ , that of T cells induced by DEX-treated DC was dominated by the immunoregulatory cytokine IL-10 (FIG. 7 attached hereto). This observation prompted us to test whether the T cells induced by DEX-treated DC could themselves exert immunoregulatory properties towards T cell proliferative capacity and IFN γ secretion. Indeed, DEX-DC educated T cells, when mixed in with secondary allogeneic MLR cultures in the presence of CD4-triggered DC, were capable of strongly inhibiting the proliferation and IFN γ production by already primed alloreactive I cells.

Taken together our data demonstrate that DEX-treated DC can exert a potent immunoregulatory effect on Th1-immunity at two levels: directly through the suppression of proliferation and IFN γ secretion by both naive and memory-type T cells, and indirectly through the mobilization of IL-10-secreting T cells the presence of which can also suppress proliferation and IFN γ secretion Th1 cells.

EXAMPLE 2

DEX-treated activated DC suppress anti-transplant immunity in vivo

Treatment of immature DC with an activating trigger in the presence of a glucocorticoid hormone results in DC maturation through an alternative maturation pathway. We demonstrate in a mouse transplantation model that such alternatively matured DC can successfully be exploited for the induction of donor-specific transplantation tolerance *in vivo*.

Materials and Methods

Mice

Female BALB/c (H-2^d), C57BL/6 (B6; H-2^b) and CBA/Ca (H-2^k) mice were obtained from IFFA Credo (Paris, France). B6.C-H2^{bml}/ByJ (class I K^b mutant phenotype) were purchased from The Jackson Laboratories (Bar Harbor, ME, USA). Mice were maintained under specific pathogen-free conditions and used at 6-10 weeks of age.

Cell lines

D1 cell line, a long-term growth-factor dependent immature splenic DC line derived from B6 mice, was cultured as described (Winzler et al, 1997, Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures, *J. Exp. Med.* 185: 317). Both floating and adherent D1 cells (detached using 2 mM EDTA) were collected and used.

Treatment of DC

The D1 cells were pretreated with dexamethasone (DEX) 10⁻⁶ M for 24 hrs, after which LPS or nothing was added to the culture for another 48 hours. D1 treated with LPS only (for 48 hours) were also used. Both DEX and LPS (of *E. coli* (Serotype 026:B6)) were purchased from Sigma-Aldrich. After treatment, supernatants were analyzed for the presence of IL-10 and /or IL-12.

Antibodies and cell surface immuno-fluorescence

The following Abs were purchased from PharMingen: FITC-coupled anti CD86 (B7.2), PE-coupled anti CD80 (B7.1), PB-coupled anti-CD40 and PB coupled anti-I-A^{b/d} (M5/114,

MHC class II). Staining was carried out at 4°C for 30 min. Stained cells were analyzed using a FACScan® flow cytometer equipped with CellQuest software (Becton Dickinson).

Cytokine analysis.

Harvested supernatants were tested for IL-12 p40/p70, IL-10 or IFN-γ content using a standard sandwich ELISA. Coating Ab: rat anti-mouse IL-12 p40/p70 mAb (clone C15.6, PharMingen), rat anti-mouse IL-10 mAb (clone JES5-2A5, PharMingen) or rat anti-mouse IFN-γ mAb (clone R4-6A2, PharMingen). Detection Ab: biotinylated rat anti-mouse IL-12 p40/p70 mAb (clone C17.8, PharMingen), biotinylated rat anti-mouse IL-10 mAb (clone SXC-l, PharMingen) or biotinylated rat anti-mouse IFN-γ mAb (clone XMG1.2, PharMingen). Streptavidin-HRP and ABTS (Sigma-Aldrich) were used as enzyme and substrate, respectively. OD405 was read by an ELISAreader (Wallac, Turku, Finland).

Proliferation assays

To study alloreactivity, splenocytes (0.5 or 1 x 10^5 cells/well) of BALB/c mice were cocultured with irradiated (30 Gy, two-fold dilutions from 2 x 10^4 cells/well) D1 cells or splenocytes (30 Gy, 1 x 10^5 cells/well). Immature DC pretreated with DEX (DEX), DEX-pretreated immature DC subsequently activated with LPS (DEX-LPS) and LPS matured DC (LPS) were used as APC in the stimulation assays. The cells were plated out in U-bottom 96-well plates (Costar, Cambridge, MA, USA) in Iscove's (IMDM, BioWhittaker) containing 8% heat-inactivated Fetal Calf Serum (Greiner, Alphen, The Netherlands), 100 IU/ml penicillin, 2mM L-glutamin and 20 μ M 2-ME. Supernatant was harvested after 48 hours and stored at 20°C. Wells were pulsed with 1 μ Ci 3 H-thymidine (Amersham International, Amersham, UK) and the cultures harvested onto glass fiber filters 18 hours later. Proliferation was measured as 3 H-thymidine incorporation by liquid scintillation spectroscopy using a betaplate (Wallac, Turku, Finland).

In vivo treatment with modulated DC analyzed by in vitro alloreactivity

After washing, 10⁶ D1 cells were injected intravenously (iv) or subcutaneously (sc) in BALB/c mice in PBS with 0.5% BSA. After 7 days, spleen cells were used for detection of

alloreactive cellular responses (proliferation and cytokine analysis) by *in vitro* stimulation with splenocytes from syngeneic mice (BALB/c), from donor mice (C57BL/6) or from third party mice (CBA/Ca).

Elispot analysis

For Elispot analysis 1 x 10⁶ splenocytes (from *in vivo* treated mice) were incubated with 1 x 10⁶ C57BL/6 splenocytes in a 24-well plate (Costar) in Iscove's containing 8% heatinactivated Fetal Calf Serum, 100 IU/ml penicillin, 2mM L-glutamin and 20 μM 2-ME days. The cells were harvested and incubated (at either 1 or 2 x 10⁵ cells/well) with irradiated (3000 rad) splenocytes (1 x 10⁵ cells/well) from C57BL/6, medium or con A controls during 24 hours in a plate (MAHA S45 10, Millipore) that was precoated with 5 μg/ml antibody (IFN-γ: R4-6A2, IL-10: JES5-2A5). Next, the wells were washed and the detection antibody was added at 0.3 μg/ml (IFN-γ: XMG1.2-biotin, IL-10: SXC-1-biotin) and incubated for 2 hours at room temperature. After another washing step, the conjugate (extravidin alkalin phospatase, Sigma E2636) was added and incubated for 1 hour at room temperature. After washing, the substrate was added and incubated for 10 minutes at room temperature, after which the reaction was stopped with tap water. Analysis of spots was performed by using a BioReader 3000 Pro (BioSys, Karben, Germany).

In vivo treatment with modulated DC analyzed by skin transplantation

After washing, 10⁶ D1 cells were injected iv or sc in BALB/c mice in PBS with 0.5% BSA. After 7 days, mice were transplanted on the tail with skin grafts derived from the tail from donor mice.

The skin grafts were protected with a glass pipe of 4.5 cm long, which was kept on the tail for 7 days. Beside this protection, little irritation (and therefore inflammation) was observed because of the fact that the mice were kept on individual basis in cages with a high tech artificial bedding (Omega-Dri) instead of normal sawdust. Graft survival was followed by daily visual inspection. Scoring was performed by comparing with syngeneic grafts and was based on redness, crust-forming and the presence of hairs. The grafts were scored as rejected when they were fully necrotic or fallen off. Statistical analysis was performed using the log rank test.

RESULTS

Characteristics of alternatively activated dendritic cells (phenotype and cytokine production)

A typical FACS profile of immature DC and the influence of DEX treatment and LPS triggering on these DCs can be seen in FIG. 1A. DC matured with LPS showed significant upregulation of CD86, CD40 and MHC class II (middle panel), when compared to immature DC, whereas DC pretreated with DEX and subsequently matured with LPS (DEX-LPS) did not show up-regulation of CD86 and only marginal up-regulation of CD40 and even a lowered expression of MHC class II (lower panel). We investigated whether DEX affected the production of the pro-inflammatory cytokine IL-12. As shown in FIG. 1B, LPS triggering of immature DC strongly induced IL-12 (p40/p70) secretion. Combined treatment with DEX and LPS resulted in a strongly reduced (7-fold) IL-12 production compared to LPS treatment alone, whereas DEX treatment only also resulted in a dramatically reduced IL-12 production.

Impaired stimulating capacity of alternatively activated DC

The reduced IL-12 production by DEX treated LPS triggered DC (DEX-LPS) prompted us to assess the T cell stimulatory capacity of these DC. As shown in FIG. 2A, proliferation of BALB/c (H-2^d) splenocytes in a primary MLR response to stimulation with B6 derived (H-2^b) DEX-LPS DC was strongly reduced (and similar to the allogeneic response to untreated immature B6 DC). Similar striking differences of the allogeneic (major and minor histocompatibility antigens mismatched) response were observed when IFN-γ production of the BALB/c splenocytes in response to the various DC used as stimulator cells was measured (FIG. 2B). Besides DEX-LPS DC also the DEX treated immature DC (DEX) induced strongly reduced alloreactive responses as measured by IFN-γ production. Therefore, these results show that mature DC pretreated with DEX have an impaired stimulating capacity.

In vivo reactivity induced by classical versus "alternatively activated" DC

To study the modulation of allo-specific immunity of these DC *in vivo*, these *in vitro* pretreated cells were injected via 2 different routes, either iv or sc. Spleen cells were harvested at different times after injection and restimulated with allogeneic splenocytes *in vitro*. Spleen

cells from mice injected iv with mature DC (LPS), exhibited a high proliferative allogeneic response which was significantly higher than that of untreated control mice or of mice treated with immature DC, DEX treated immature DC (DEX) or DEX-LPS DC (FIG. 3A). Analysis of the production of IFN-y by the splenocytes of mice injected with the different DC revealed that mice injected iv with the DEX DC showed a similar IFN-y production as the mice injected with DEX-LPS DC. This response was slightly higher compared to untreated control mice but significantly lower compared to mice injected with untreated immature DC or with LPS DC (FIG. 3B). The proliferative responses of spleen cells from mice injected sc with DEX-LPS DC exhibited a low proliferative allogeneic response which was similar to that of untreated controls and to that of DEX DC (FIG. 4A). The allogeneic IFN-y response after the DEX-LPS DC treatment was slightly higher or comparable to that of untreated controls, but significantly reduced when compared to mature DC treatment, whereas the DEX DC induced a response similar to mice injected with untreated immature DC (FIG. 4B). The number of IFN-y producing cells as measured by ELISPOT analysis was 4 times lower after treatment with DEX-LPS DC than after treatment with the DEX DC but comparable to that of untreated controls (data not shown). When the splenocytes were in vitro stimulated with C57BL/6 alloantigens for 6 days and restimulated with either conA or C57BL/6 splenocytes, the ELISPOT analysis showed an increase in the number of IL-10 producing cells when compared to untreated or to LPS-DC treated mice (FIG. 4C).

The third-party reactivity was not altered in the DC treated mice compared to untreated mice, indicating that the treatment with alternatively activated H-2^b DC was specific for the H-2^b alloantigens. These experiments demonstrate that DEX-LPS DC induce an alloimmune response, which, based on the *in vitro* parameters tested, showed both quantitative and qualitative differences compared to the alloimmune response found after injection with mature DCs.

Prolonged skin allograft survival after injection with alternatively activated DC

Subsequently, we analyzed the *in vivo* "modulatory" potential of the DEX-LPS DC in a fully allogeneic skin graft model. BALB/c mice were injected sc with either LPS DC or DEX-LPS DC or left untreated. One week after treatment these mice were transplanted with a skin

graft derived from the tail of a donor C57BL/6 mouse. The skins derived from C57BL/6 mice were rejected by the mice injected with LPS DC with a median survival time of 14 days which is not significantly different from the survival in untreated mice (MST 16 days, FIG. 5A). However, when mice were transplanted after injection with DEX-LPS DC, a significantly prolonged allograft survival was found (MST 34 days p=0.039). A similar significant prolongation was observed in 2 other independent experiments using BALB/c mice as responding strain (p=0.023 and p=0.009) and in another study using BM1 mice as responder strain (p=0.008, data not shown).

The prolonged skin graft survival after treatment with alternatively activated H-2^b DC was specific for the H-2^b alloantigens as mice injected with DEX-LPS DC rejected skin grafts from DBA/1 mice (H-2^q) in the same time (MST 14 days, FIG. 5B) as control mice (MST 14 days, untreated or LPS DC treated mice p=0.90, p=0.92 resp). These results show that the DEX-LPS DC are capable of inducing a specific prolongation of complete MHC incompatible skin allograft survival.

DISCUSSION

The present study shows that addition of a glucocorticoid hormone to immature DC results in a decreased proliferative response and a decrease in IFN-γ production by BALB/c splenocytes stimulated by these DCs. In addition we demonstrate that *in vivo* treatment with DEX pretreated mature DC decreased the allogeneic ml response as shown by a reduced IFN-γ production *in vitro* and a reduction in number of IFN-γ producing effector cells when the response was compared to mice pretreated with mature DC. This was the case both after sc or iv injection of the DEX pretreated DCs, but even more after *in vivo* treatment with the alternatively activated (DEX-LPS) DC. Pretreatment of recipients with these DC leads to a significantly prolonged skin graft survival.

In conclusion, our studies confirm and extend the practical use of alternatively activated DC for modulation of the alloimmune response and show that these can induce a prolonged skin graft survival even in a complete MHC incompatible donor-recipient combination.

I hereby declare that all statements made herein of my own knowledge are true and that

all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the U.S. Code and that such willful false statements may jeopardize the validity of the patent.

[name]		Date
Residence: Post Office Address:	, The Netherlands , The Netherlands	
Date: March 18, 2003		

KWP/csw

N:\2183\4205.1\Declaration.doc

A)

B)

B)

IFN-γ production of BALB/c splenocytes after stimulation with different B6 DC

Figure 3

A)

In vivo iv treatment with different DC, in vitro proliferation

in vivo iv treatment with different DC, in vitro analysis of IFN- γ production

Figure 4

A)

In vivo sc treatment with different DC, in vitro proliferation

B)

in vivo sc treatment with different DC, in vitro analysis of IFN- γ production

in vivo tr atment with LPS r DEX-LPS DC: in vitro analyis of IL-10 producing cells

A)

B)

H-2^q skin grafts in H-2^d recipients

IFNγ (ng/ml) DC DEX-DC IL-10 (ng/ml) 30-40 10 DC DEX-DC

Fig. 7: Dex-treated DC preferentially induce T cells secreting IL-10 instead of IFN γ .

³H thymidine (cpm)

Fig. 8A: DEX-DC educated T cells inhibit secondary alloreactive T cell response

Fig. 8B: DEX-DC educated T cells inhibit secondary alloreactive T cell response

Serial No.: 09/666,430

APPENDIX B

(VERSION OF SUBSTITUTE SPECIFICATION EXCLUDING CLAIMS WITH MARKINGS TO SHOW CHANGES MADE)

(Serial No. 09/666,430)

NOTICE OF EXPRESS MAILING	
Express Mail Mailing Label Number:	
Date of Deposit with USPS:	
Person making Deposit:	

APPLICATION FOR LETTERS PATENT

for

DENDRITIC CELLS ACTIVATED IN THE PRESENCE OF GLUCOCORTICOID HORMONES ARE CAPABLE OF SUPPRESSING ANTIGEN-SPECIFIC $\frac{1}{1}$ CELL RESPONSES

Inventors:

Delphine Gabrielle Josette Rea Cornelis Johannes Maria Melief Rienk Offringa

Attorney:
Allen C. Turner
Registration No. 33,041
TRASKBRITT
P.O. Box 2550
Salt Lake City, Utah 84110
(801) 532-1922

TITLE OF THE INVENTION

DENDRITIC CELLS ACTIVATED IN THE PRESENCE OF GLUCOCORTICOID HORMONES ARE CAPABLE OF SUPPRESSING ANTIGEN-SPECIFIC T-CELL RESPONSES

[0001] Reference to Related Application. This application claims priority from Provisional Application Serial No. 60/157,442, filed October 4, 1999.

[0002] <u>Technical Field</u>. The invention relates to the field of medicine. More in particular, the invention relates to the field of immunotherapy.

BACKGROUND OF THE INVENTION

their ability to transport antigens from peripheral tissues to lymphoid organs where they present these antigens to T-cells in an optimal costimulatory context—(1). To achieve this complex sequence of events, DC exist in different functional stages. Immature DC behave as sentinels in peripheral tissues where they efficiently capture antigens. Upon pathogen invasion, induction of protective T-cell responses requires require the activation of immature DC into mature immunostimulatory cells. DC activation is triggered in inflamed tissues by cytokines such as IL-1 and TNF-a and by bacterial components such as lipopolysaccharide (LPS) (2, 3). Activated DC migrate to T-cell areas in the lymph nodes while upregulating their costimulatory capacities and optimizing their antigen presenting functions. Upon interaction with antigen-specific T-cells, DC activation is further completed through engagement of the receptor-ligand (1) pair CD40-CD40L, leading to the production of IL-12 (4, 5, 6), a key cytokine for T helper (Th) type 1 and cytotoxic T lymphocyte (CTL) priming (7).

[0004] Antigen Presenting Cell (APC) activation through CD40-CD40L interactions represents an important immunoregulatory step for the establishment of protective T-cellT-cell immunity against pathogens and tumors (8, 9, 10). This process also plays a key role in the onset of destructive T-cell-mediated disorders such as auto-immune diseases, allograft rejection and graft versus host disease (11, 12, 13). The current treatment of these disorders largely relies on the administration of glucocorticoids (the abbreviation "GC" is used herein for the terms "glucocorticoids" and "glucocorticoid"), which exert potent anti-inflammatory and immunosuppressive effects. Because GC negatively interfere with many aspects of T-cellT-cell

activation_such as IL-2-driven proliferation and inflammatory cytokine production (reviewed in 14), activated T cells have long been considered as the main targets for GC action. Several lines of evidence now suggest a role for DC in GC-induced immune suppression. Moser et al_(15) found that GC prevented the spontaneous activation of murine DC thereby decreasing their T-cell stimulatory potential. Kitajima et al_(16) showed that GC could hamper the T-cell-mediated activation of a murine DC line. Viera et al_reported that human DC exposed to GC were poor producers of IL-12 upon LPS stimulation (17). These findings only concern loss of typical DC features and_therefore_favor a simple inhibitory role of GC on DC activation. A more complex immunoregulatory action on the DC system has not been considered.

The present invention resulted from a detailed analysis of the impact of GC on the CD40-mediated activation of monocyte-derived DC. These DC develop after culture with GM-CSF and IL-4 (2, 18) or after transmigration through endothelial cells (19) and are known to mature into the most potent human Th1-type-inducing APC upon CD40 ligation (5, 20). Moreover, these APC can easily be generated in large numbers and are thereby the cells of choice for DC-based modulation of T-eellT-cell immunity (21, 22). In contrast to previous studies, the present invention shows that GC, such as dexamethasone (DEX), do not merely prohibit DC activation, but that it converts CD40 ligation on human monocyte-derived DC and is transformed into an alternative activation pathway. DEX profoundly affectaffects the CD40-dependent maturation of human monocyte-derived DC, not only by preventing the upregulation of costimulatory; adhesion and MHC surface molecules, but also by causing these cells to secrete the anti-inflammatory mediator IL-10 instead of the Th1 stimulatory cytokine IL-12. In agreement with these phenotypic and functional changes, DC triggered through CD40 in the presence of DEX are poor stimulators of Th1-type responses. Most importantly, the present invention shows that such DC are able to induce a state of hyporesponsiveness in Th1 cells, indicating that these cells are capable of active suppression of Th1-type immunity.

SUMMARY OF THE INVENTION

[0006] As already-mentioned above, the impact of GC on DC has been the subject of several previous studies by others. However, in contrast with the present invention, these studies only highlighted inhibitory effects of GC on the DC system. DEX was found to block the upregulation of CD80, CD86 and MHC class II molecules upon activation of murine spleen DC

(15, 16), whereas very recently DEX was demonstrated to also prevent the differentiation of DC from monocyte precursors (28). In these studies, the inability of DC to acquire high expression of costimulatory and MHC molecules was accompanied with a decrease in their T-cellT cell stimulatory potential, but the effect of GC on IL-12 production was not investigated. On the other hand, Viera et al_found that the effect of GC on LPS-induced DC activation consisted in a 4-fold reduction of IL-12p70 synthesis (17). This partial effect on IL-12 secretion contrasts with the complete suppression of IL-12p70 production which is the subject of the present invention; and can be explained by the fact that their GC-treated immature DC were extensively washed prior to LPS stimulation. We indeed found that upon removal of GC, the effects of these drugs on immature DC were rapidly reversible. The continuous presence of GC during CD40 triggering of DC was clearly preferred in order to stably and completely modulate DC activation (data not shown). Taken together, previous findings indicated that the impact of GC on the DC system should be merely interpreted as an inhibitory event. Importantly, the present invention clearly demonstrates that GC_such as DEX_do not simply suppress DC activation but rather redirect this process towards a distinct functional program.

[0007] DC activation through engagement of CD40-CD40L is a key stimulatory event for the generation of effective Th1 and CD4-dependent CTL responses in vivo (10, 36, 37, 38). This pathway_however_is also involved in the development of unwanted T-cell_T-cell_responses leading to autoimmune disease or organ-transplant rejection (11, 12, 13). Until now, treatment of patients suffering from such disorders largely relies relied on the systemic administration of GC hormones. This treatment does not only suppress pathogenic T-cell_T-cell_responses_but also induces a general state of immunosuppression and metabolic and endocrine side effects. The present invention demonstrates that activation of human monocyte-derived DC through CD40, in the presence of GC such as DEX, results in an IL-10-producing APC that is a poor stimulator for Th1-type responses and that can even confer hyporesponsiveness to Th1 cells. The present invention_therefore_indicates that such DC loaded with appropriate antigens can be exploited as a novel approach for specifically downregulating unwanted T-cell_T-cell_responses in vivo.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Fig. 1. Pretreatment with DEX inhibits the phenotypic changes induced by CD40 ligation.

[0009] Seven days immature DC were cultured for 24h in the absence or the presence of 10⁻⁶M DEX and activated via CD40 with the CD8-CD40L fusion protein for 48h. The comparison with immature DC maintained in medium alone is shown. Empty histograms show the background staining with isotype controls MoAb and solid histograms represent specific staining of the indicated cell surface markers. Specific mean fluorescence intensities are indicated. Mean fluorescence intensities of isotype controls were between 3 and 4. Data are representative of 4 independent experiments.

[0010] Fig. 2. DC triggered through CD40 maintain an activated phenotype upon a subsequent DEX exposure. Immature DC were activated with the CD8-CD40L fusion protein. DEX (10-6M) or medium control were added 48h later and cells were analyzed after 2 additional days of culture. The comparison with immature DC maintained in medium alone is shown. Empty histograms show the background staining with isotype controls MoAb and solid histograms represent specific staining of the indicted cell surface markers. Specific mean fluorescence intensities are indicated. Mean fluorescence intensities of isotype controls were between 3 and 5. Data are representative of 2 independent experiments.

[0011] Fig. 3. Pretreatment with DEX does not affect the regulation of DC antigen uptake machinery. Immature DC were incubated in the absence or the presence of 10⁻⁶M DEX for 24h and further activated or not via CD40 with the CD8-CD40L fusion protein for 48h. Cells were pulsed for 1h with medium containing either 1mg/ml FITC-BSA or 1mg/ml FITC-mannosylated BSA. Empty histograms show the background autofluorescence, Grey-filled histograms show the background uptake at 0°C. and black-filled histograms show the specific uptake at 37°C. Data are representative of 3 independent experiments.

[0012] Fig. 4. Pretreatment with DEX alters the cytokine secretion profile of CD40-triggered DC.

[0013] DEX-exposed or control immature DC were left in culture without further treatment or stimulated with the CD8-CD40L fusion protein. Culture supernatants were harvested 48h later and IL-10, IL-12p40 and IL-12p70 secretion were analyzed by specific ELISA. Data are representative from 6 independent experiments.

- [0014] Fig. 5. Pretreatment with DEX impairs the T-cell stimulatory capacities of DC activated via CD40 and leads to a state of hyporesponsiveness of Th1 cells.
- [0015] Allogeneic MLR: non adherent nonadherent allogeneic PBMC were cultured with different numbers of CD40-triggered DC, DEX-treated CD40-triggered DC or immature DC. The proliferative response was measured on day 5.
- [0016] Th1 stimulation assays: Hsp65-specific T-cells were cultured with different numbers of HLA-DR matched CD40-triggered DC or with DEX-treated CD40-triggered DC pulsed with the hsp65 protein or with the specific p3-13 peptide epitope. The proliferative response and the T-cell dependent IFN-g production were analyzed on day 3. Data are representative of 4 independent experiments.
- [0017] Fig. 6. DEX-treated DC triggered through CD40 induce a state of hyporesponsiveness in Th1 cells. Hsp65-specific T-cells precultured with CD40-triggered DC or with DEX-treated CD40-triggered DC pulsed with the p3-13 peptide epitope were harvested after 48h, allowed to rest in the presence of 5U/ml IL2 for 3 days, and restimulated with p3-13-pulsed DC. The proliferative response and IFN-g production were measured on day 3. Similar results were obtained in 2 independent experiments.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

previously reported for dendritic cells. One can_therefore_consider these cells to be part of a class of cells distinct from the class formed by the "classical" dendritic cells. The dendritic cells of the invention can be used in a different way than the classical dendritic cells. The dendritic cells of the invention can_for instance_be used to suppress, at least in part, an undesired immune response in a host. In one aspect, the invention_therefore_provides a method for preparing a pharmaceutical composition for reducing an unwanted T_cell_T_cell_response in a host, comprising culturing peripheral blood monocytes from saidthe host to differentiate into dendritic cells, activating said dendritic cells in the presence of a glucocorticoid hormone and loading saidthe activated dendritic cells with an antigen against which said T_cell_the T_cell_response is to be reduced. An unwanted T_cell_T_cell_response can be any type of T_cell_T_cell_response. For instance, but not limited to, a T_cell_T_cell_response associated with an auto-immune disease or a transplantation disease, such as a graft versus host disease or a host versus graft disease. A pharmaceutical

composition of the invention typically comprises a dendritic cell of the invention suspended in a liquid suitable for preserving the function of saidthe dendritic cell in saidthe liquid and/or suitable for administration to a host. A host, preferably, is a human. Preferably, saidthe host is at risk of developing or is suffering from an auto-immune autoimmune disease or allergy. Preferably, saidthe host suffers from or is at risk of suffering from a host versus graft disease and/or a graft versus host disease. With the term "at risk",risk," it is meant that one expects that saidthe host may develop saidthe disease, for instance, but not limited to, a host receiving a transplant. Such a host is considered to be at risk of developing a host versus graft disease. An antigen typically is a peptide capable of binding to a major histocompatibility complex (MHC) I and/or II molecule. Such peptides are known in the art and a person skilled in the art is capable of determining whether a given peptide comprises an antigen or not. An antigen may be derived from a naturally occurring protein. An antigen may also be a synthetic peptide or equivalent thereof, preferably with an amino-acid sequence equivalent to a peptide derived from a protein.

[0019] In another aspect, the invention provides a pharmaceutical composition for reducing an unwanted T-cell response in a host, saidthe composition being obtained by culturing peripheral blood monocytes from saidthe host to differentiate into dendritic cells, activating saidthe dendritic cells in the presence of a glucocorticoid hormone and loading saidthe activated dendritic cells with an antigen against which said T-cell response is to be reduced. In one embodiment, a method is provided for reducing an unwanted T-cell response in a host, comprising administering a composition of the invention to saidthe host.

[0020] The invention further provides a method for reducing an unwanted T-cell response in a host comprising culturing peripheral blood monocytes from saidthe host to differentiate into dendritic cells, activating saidthe dendritic cells and/or their precursors in the presence of a glucocorticoid hormone and loading saidthe activated dendritic cells with an antigen against which said T-cell response is to be reduced and administering saidthe composition to saidthe host.

[0021] In one embodiment of the invention, saidthe activation is done through a CD40 receptor. Activation of DC through triggering of the CD40 receptor can involve either incubation with a CD8-CD40L fusion protein, a trimeric formfrom of CD40L consisting of CD40L-molecules to which a modified leucine zipper has been attached, anti-CD40 antibodies, or cells

that express CD40L. Other signals that can be employed for the activation of DC as described in the present invention include lipopolysaccharide (LPS) and polyI/C.

[0022] In another aspect, the invention provides a method for obtaining ana-dendritic cell capable of tolerisingtolerizing a T-cell for an antigen comprising providing saidthe dendritic cell with a glucocorticoid hormone, activating saidthe dendritic cell and providing saidthe dendritic cell with saidthe antigen. With the term tolerising "tolerizing," it meant that saidthe dendritic cell has an immunosuppressive effect on said T cell the T-cell. A tolerised T cell will essentially tolerized T-cell essentially will not respond with cell division when exposed to a cell presenting an antigen said T cell would, a T-cell in the untolerised untolerized state would respond to such exposure with cell division. A tolerised T cell will essentially tolerized T-cell esstentially will not respond withby killing a cell presenting an antigen said T cell would, a T-cell in the untolerised untolerized state would respond to with cell killsuch exposure by killing the cell presenting an antigen.

[0023] In one embodiment, saidthe dendritic cell and/or a precursor thereof is provided with saida glucocorticoid hormone in vitro. A T-cell of the invention is preferably an antigen specific T-cell preferably a cytotoxic T-cell or a Th cell.

[0024] In another aspect, the invention provides an isolated dendritic cell capable of modifying the function of an antigen specific Th cell, which would otherwise enhance a given immune response, resulting in a T-cell that is capable of reducing this immune response. In one embodiment, the invention provides a method for modifying an antigen specific T-cell comprising providing an dendritic cell according to the invention with said antigen and ee-cultivating cocultivating said T-cell and said dendritic cell. Preferably, said ee-cultivating cocultivating is performed in vitro. Said The method may further comprise multiplying said the functionally modified T-cell.

[0025] The invention also provides an isolated funtionally modified T-cell obtainable by a method according to the invention.

[0026] In another aspect, the invention provides the use of a glucocorticoid hormone for obtaining ana-dendritic cell capable of functionally modifying a T-cell.

[0027] The invention also provides a pharmaceutical composition comprising ana-dendritic cell and/or a functionally modified T-cell according to the invention. The invention further

provides the use of a dendritic cell and/or a functionally modified T-cell according the invention for the preparation of a medicament.

[0028] The invention also provides a method for the treatment of an individual suffering from or at risk of suffering from a disease associated with at least part of the immune system of saidthe individual comprising, including providing saidthe individual with an dendritic cell and/or a functionally modified T-cell according to the invention. Preferably, saidthe dendritic cell and/or saidthe functionally modified T-cell, or precursors thereof are derived from an HLA-matched donor. Preferably, saidthe HLA-matched donor is saidthe individual.

[0029] Method of treatments of the invention are preferably useused for the treatment of an individual suffering from an auto-immune autoimmune disease, an allergy, a graft versus host disease and/or a host versus graft disease.

Examples

Example 1

Impairment of CD40-CD40L-mediated phenotypic changes by DEX

We explored the impact of DEX on the phenotypic changes induced by CD40 [0030] ligation on immature monocyte-derived DC. In the absence of DEX, the fusion protein CD8-CD40L induced a strong upregulation of the costimulatory molecules CD80, CD86 and CD40, of the MHC class I and II molecules, of the adhesion markers CD54 and CD58 and of the DC maturation marker CD83 (Fig 1). In the presence of DEX, these CD8-CD40L-induced phenotypic changes were dramatically impaired: the upregulation of CD80, CD86, CD40, CD54, CD58 and of the MHC class I and II molecules was largely inhibited and CD83 was not expressed (Fig 1). Importantly, DEX-treated DC did not revert to a monocyte/macrophage stage as shown by the lack of expression of CD14 (Fig 1). Titration of DEX showed a complete inhibition of CD40mediated phenotypic changes at 10^{-6} M and 10^{-7} M, a partial blockade at 10^{-8} M and no effect at 10⁻⁹ M and 10⁻¹⁰ (data not shown). In addition, DEX action was dependent on binding to the GC-receptor, since it was asbolished by simultaneous addition of the GC receptor antagonist RU486 (data not shown). In experiments performed with LPS or TNF-a as activation agents. similar results were obtained. However, the combination of DEX and TNF-alpha induced a massive cell death (viable cell recovery 5-10% of control cultures), a phenomenon that was not

observed when DEX-treated DC were stimulated with LPS or through CD40 (viable cell recovery 60 to 100% of control cultures) (not shown).

[0031] We next analyzed whether activated DC could still be affected by DEX. DC incubated with CD8-CD40L for 48h and further exposed to DEX maintained a stable activated phenotype (Fig 2).

[0032] We conclude that DEX prevents the phenotypic changes induced by CD40 signals on immature DC and that already activated DC are resistant to DEX action.

Example 2

DEX does not interfere with the regulation of DC antigen uptake machinery

[0033] Unlike activated DC, immature DC efficiently internalize antigens through macropinocytosis and mannose receptor-mediated endocytosis (2, 3, 25, 26). We analyzed whether DEX could affect the DC antigen capture machinery and its downregulation following CD40 cross-linking. As shown in Fig 3, incorporation of FITC-BSA and FITC-mannosylated BSA by immature DC and by DEX-treated immature DC was comparable. Upon CD40 triggering, a similar decrease of FITC-BSA and FITC-mannosylated BSA uptake by both DEX-treated and untreated DC was observed (Fig 3). These results were the first to indicate to us that DEX does not block all aspects of DC activation, since it does not interfere with the downregulation of the DC antigen capture machinery.

Example 3

DEX-treated CD40-triggered DC secrete IL-10 instead of IL-12

[0034] A key feature of CD40-triggered DC for initiating T_cell immunity resides in their ability to produce the proinflammatory cytokine IL-12 (5, 6, 27). We investigated whether DEX affected IL-12 production by DC stimulated through CD40, and we explored the possibility that DEX could promote the secretion of the anti-inflammatory cytokine IL-10. As shown in Fig 4, CD40 triggering of DC strongly induced IL-12p40 and IL-12p70 secretion (up to 120ng/ml and 170pg/ml_respectively) but only poorly stimulated the production of IL-10 (up to 68pg/ml). In contrast, CD40 triggering of DEX-treated DC resulted in a dramatically reduced IL-12p40 production (up to 100 fold) and in the complete suppression of IL-12p70 secretion, whereas IL-10 production was strongly enhanced (up to 50 fold) (Fig 4). Immature DC and their DEX-

treated counterparts failed to secrete detectable amounts of IL-12 and IL-10 (Fig 4). Therefore, CD40 ligation of DC in the presence of DEX triggers the secretion of high levels of the anti-inflammatory cytokine IL-10 instead of IL-12.

Example 4

DEX-treated CD40-triggered DC are capable of suppressing Th1-type immunity

The strikingly modified response of DC to CD40 ligation in the presence of DEX prompted us to compare the T-cell stimulatory potential of these cells with that of their DEX-untreated counterparts. In an allogeneic MLR, CD40-triggered DC induced a strong proliferative T-cell T-cell response, whereas the addition of DEX prior to CD40 triggering reduced their T-cell stimulatory capacity to that of immature DC (Fig 5). When tested for their ability to stimulate an hsp65-specific CD4⁺ Th1 clone, CD40-triggered DC pulsed with the hsp65 protein or with the specific peptide epitope p3-13 were found to be potent inducers of both T-cellT-cell proliferation and T-cell dependent IFN-g production (Fig 5). In contrast, in the presence of Agpulsed DEX-treated CD40-triggered DC, T-cellT-cell proliferation and IFN-g production were significantly decreased (p<0.001 and p<0.01 respectively) (Fig 5). We next investigated whether DEX-treated CD40-triggered DC were simply poor stimulators of Th1 cells, or whether they could exert suppressive effects on these T-cells. We therefore tested hsp65-specific Tcells stimulated with p3-13-pulsed DEX-treated CD40-triggered DC for their capacity to respond to a second potent antigenic challenge. Fig 6 shows that preculturing T cells T cells with CD40triggered DC led to a strong T-eell rolliferation and IFN-gamma production upon second antigen-specific restimulation. In contrast, preculture with DEX-treated CD40-triggered DC resulted in a dramatically reduced proliferative and IFN-gamma production capacity of Th1 cells. Thus, CD40 triggering of DC in the presence of DEX results in APC that are not merely poor inducers of T-cell responses but that also induce a state of hyporesponsiveness in Th1 cells.

Materials and Methods

Generation of DC

[0036] Immature DC were generated from peripheral blood monocyte precursors (PBMC). Human PBMC from healthy donors, isolated through Ficoll-Hypaque density

centrifugation were plated at 1.5x10⁷ per well in 6-well plates (Costar Corp., Cambridge, MA) in RPMI 1640 (Life Technologies, Paisley, Scotland) supplemented with 2mM glutamine, 100UI/ml penicillin and 10% FCS. After 2h at 37⁹C37°C, the non-adherent cells were removed and the adherent cells were cultured in medium containing 500U/ml IL-4 (Pepro Tech Inc. Rocky Hill, NJ) and 800U/ml GM-CSF (kindly provided by Dr S. Osanto, LUMC, Leiden, NL) for a total of 7 days.

Activation of immature DC with a CD8-CD40L fusion protein

[0037] Activation of DC though CD40 was performed with a fusion protein made of the extracellular domain of human CD40L and of the murine CD8a chain (CD8-CD40L). The CD8-CD40L cDNA described by Garrone et al_(23) was transferred into an eukaryotic expression vector containing the hygromycin resistance gene, and used for the generation of stably transfected Chinese Hamster Ovary (CHO) cells. Culture supernatants containing the CD8-CD40L fusion protein were concentrated with a pressurized stirred cell system (Amicon, Inc., Beverly, MA), checked for binding to CD40 and tested for optimal DC activation conditions (not shown). DC were incubated at 5 x 10⁵/ml/well in a 24-well plate (Costar Corp., Cambridge, MA) and activated in the presence of 1/10 CD8-CD40L supernatant. Cells and supernatants were analyzed after 48h. Of note, control supernatants obtained from untransfected CHO cells or from CHO cells transfected with the CD8a cDNA lacked DC activating functions and were similar to culture medium.

DEX and RU486 treatment of DC

[0038] Seven days immature DC were treated with 10⁻⁶M DEX (Sigma, St Louis, MO) in the presence of GM-CSF and IL-4 or GM-CSF alone. After 24h, DC were analyzed or were further stimulated via CD40 by adding the CD8-CD40L fusion protein to the cultures as described above. In some experiments, the glucocorticoid receptor antagonist RU485 (Roussel-UCLAF, Romainville, France) was used at 10mM final concentration, alone or in combination with DEX.

Analysis of DC surface phenotype by flow cyttometry

[0039] Cells were stained on ice with FITC or PE-conjugated mouse monoclonal antibodies (MoAb) for 30 min in PBS 1% FCS and were analyzed on a FACScan® (Becton Dickinson, San Jose, CA). The following MoAb were used: FITC-anti-CD80 (BB1), PE-anti-CD86 (FUN-1), FITC-anti-CD40 (5C3), PE-anti-CD54 (HA 58) and PE-anti-CD58 (1C3) (Pharmingen, San Diego, CA); PE-anti-CD14 (L243) and PE-anti-HLA-DR (Mf-P9) (Becton Dickinson); PE-anti-CD83 (HB15A) (Immunotech, Marseille, France); and PE-anti-HLA class I (Tu 149) (Caltag Laboratories, Burlingame, CA).

Antigen uptake experiments

[0040] DC were resuspended in medium buffered with 25mM Hepes. FITC-BSA and FITC-mannosylated BSA (both from Sigma) were added at 1mg/ml final concentration and the cells were incubated at 37⁰C37°C or at 0⁰C0°C to determine background uptake. After 1h, DC were washed extensively with ieed-coldice-cold PBS and analyzed by FACS® using propidium iodide to eliminate dead cells.

Cytokine detection by ELISA

[0041] Culture supernatants were analyzed in serial twofold dilutions in duplicate. IL-12p70 was detected using a solid phase sandwich ELISA kit (Diaclone Research, Besancon, France) (sensitivity 3pg/ml). For IL-12p40 and IFN-g detection, capture MoAb and polyclonal biotinylated detection Ab were obtained from Peter van de Meijde (BPRC, Rijswijk, NL) (sensitivity 10pg/ml). IL-10 was detected using the Pelikine compact human IL-10 ELISA kit (CLB, Amsterdam, NL) (sensitivity 3pg/ml).

Allogeneic mixed lymphocyte reaction (MLR)

[0042] Non-adherent Nonadherent allogeneic adult PBMC from an unrelated individual were cultured in 96-well flat-bottom plates (Costar Corp., Cambridge, MA) at a density of 1.5 x 10⁵/well with various numbers of g-irradiated (3,000 rads) DC, in triplicates triplicates. Proliferation was assessed on day 5 by [³H]thymidine uptake (0.5mCi/well, specific activity 5Ci/mMol, Amersham Life Science, Buckinghamshire, UK) during a 16h pulse.

Th1 stimulation assays

[0043] The Mycobacterium tuberculosis and M. lepraeM. leprae hsp65-specific, HLA-DR3-restricted CD4+ Th1 clone Rp15 1-1 used in this study recognizes an hsp65 determinant corresponding to peptide residues 3 to 13 (p3-13) (24). HLA-DR-matched DEX-treated immature DC and their DEX-untreated counterparts were pulsed with 10mg/ml of p3-13 or with 10mg/ml of hsp65 for 2h, washed extensively and stimulated through CD40 as described above. For Ag-pulsed DEX-treated immature DC, CD40 triggering was performed in the presence of DEX. Hsp65 specific T-cells (10⁴) were cultured with different numbers of g-irradiated (3,000 rads) DC in 96-well flat-bottom plates (Costar Corp.) in triplicatestriplicate for 3 days. [3H]thymidine (incorporation) was measured on day 3 after a 16h pulse. Before the addition of 13H1th/midine, 50ml of supernatants were collected from each well and supernatants from triplicate wells were pooled to measure IFN-g production. To test hsp65-specific T-cells T-cells responsiveness to a second potent antigenic challenge, 10^4 T cells were first cultured for 48h with 5 x 10³ peptide-pulsed DC prepared as above, then harvested and allowed to rest in medium containing 5U/ml IL-2. Three days later, 10⁴ viable T-cells were restimulated with 5×10^3 peptide-pulsed DC generated from the same donor as used for the first culture and tested for their ability to proliferate and to produce IFN-g as previously described.

Statistical analysis

[0044] Covariance analysis was used to compare <u>T-cell T cell proliferation</u> and IFN-g production as a function of DC number, between DEX-treated CD40-triggered DC and DEX-untreated CD40-triggered DC (Fig. 5).

REFERENCES

- 1. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 392: 248, 1998.
- 2. Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony stimulating factor and downregulated by tumor necrosis factor a. J Exp Med 179: 1109, 1994.
- 3. Sallusto F, Cella M, Danieli C, Lanzavecchia A: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182: 389, 1995.
- 4. Caux C, Massacrier C, Vandervliet B, Dubois B, van Kooten C, Durand I, Banchereau J: Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180: 1263, 1994.
- 5. Cella M, Sheidegger D, Palmer-Lehman K, Lane P, Lanzavechia Lanzavecchia A, Alber G: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T-cell stimulatory capacity: T-T help via APC activation. J Exp Med 184: 747, 1996.
- 6. Koch F, Stanzl U, Jennevin P, Janke K, Heufler C, Kampgen E, Romani N, Schuler G: High levels IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 184: 741, 1996.
- 7. Trinchieri G: Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13: 251, 1995.
- 8. Kamanaka M, Yu P, Yasui T, Koshida K, Kawaba T, Horii T, Kishimoto T, Kikutani H: Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 4: 275, 1996.
- 9. Yang Y, Wilson JM: CD40 ligand-dependent T_cell activation: requirement of B7-CD28 signaling through CD40. Science 273: 1862, 1996.

- 10. Mackey MF, Gunn JR, Ting P, Kikutani H, Dranoff G, Noelle RJ, Barth Jr RJ: Protective immunity induced by tumor vaccines requires interactions between CD40 and its ligand CD154, Cancer Res 57: 2569, 1997.
- 11. Grewal IS, Foellmer HG, Grewal KD, Xu J, Hardardottir F, Baron JL, Janeway Jr CA, Flavell RA: Requirement for CD40 ligand in costimulation induction, T-cell activation and experimental allergic encephalomyelitis. Science 273: 1864, 1996.
- 12. Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS, Hong X, Thomas D, Fechner JH, Knechtle SJ: CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA 94: 8789, 1997.
- 13. Durie FH, Aruffo A, Ledbetter J, Crassi KM, Green WR, Fast LD, Noelle RJ: Antibody to the ligand of CD40, gp39, blocks the occurrence of the acute and chronic forms of graft-vs-host disease. J Clin Invest 94: 1333, 1994.
- 14. Almawi WY, Beyhum HN, Rahme AA, Rieder MJ: Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 60: 563, 1996.
- 15. Moser M, De Smedt T, Sornasse T, Tielemans F, and Chentoufi AA: Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol 25: 2818, 1995.
- 16. Kitajima T, Ariitzumi K, Bergstresser PR, Takashima A: A novel mechanism of glucocorticoid-induced immune suppression: the inhibition of T-cell-mediated terminal maturation of a murine dendritic cell line. J Clin Invest 98: 142, 1996.
- 17. Viera PL, Kalinski P, Wierenga EA, Kapsenberg ML, de Jong EC: Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T-cell stimulatory potential. J Immunol 161: 5245, 1998.
- 18. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G: Proliferating dendritic cell progenitors in human blood. J Exp Med 180: 83, 1994.
- 19. Randolph GC, Beaulieu S, Lebecque S, Steinman RM, Muller WA: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282: 480, 1998.

- 20. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu Y-J: Reciprocal control of T helper cell and dendritic cell differentiation. Science 283: 1183, 1999.
- 21. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from non proliferating progenitors in human blood. J Immunol Methods 196:121, 1996.
- 22. Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D, Schuler G: Generation of mature dendritic cells from human blood: an improved method with special regard to clinical applicability. J Immunol Methods 196:137, 1996.
- 23. Garrone P, Neidhardt E-M, Garcia E, Galibert L, van Kooten C, Banchereau J: Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med 182: 1265, 1995.
- 24. Geluk A, van Meigaarden KE, Janson AAM, Drijfhout J-W, Meloen R, de Vries RRP, Ottenhoff T: Functional analysis of DR17(DR3)-restricted mycobacterial T_cell epitopes reveals DR17 binding motif and enables the design of allele-specific competitor peptides. J Immunol 149: 2864, 1992.
- 25. Engering AJ, Cella M, Fluitsma D, Brockhaus M, Hoefsmit ECM, Lanzavecchia A, Pieters J: The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur J Immunol 27: 2412, 1997.
- 26. Tan MCAA, Mommaas AA, Drijfhout J-W, Jordens R, Onderwater JJM, Verwoerd D, Mulder AA, van der Heiden AN, Scheidegger D, Oomens LCJM, Ottenhoff THM, Tulp A, Neefjes JJ, Koning F: Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur J Immunol 27: 2426, 1997.
- 27. de Saint Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Ait-Yahia S, Banchereau J, Liu Y-J, Lebecque S, Caux C: The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 160: 1666, 1998.
- 28. Piemonti L, Monti P, Allavena P, Sironi M, Soldini L, Leone BE, Socci C, Di Carlo V: Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 162: 6473, 1999.

- 29. Blotta MH, Dekruyff RH, Umetsu DT: Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J Immunol 158: 5589, 1997.
- 30. Visser J, van Boxel-Dezaire A, Methrost D, Brunt T, de Kloet ER, Nagelkerken L: Differential regulation of interleukin 10 (IL-10) and IL-12 by glucocorticoids in vitro. Blood. 91: 4255, 1998.
- 31. van Kooten C, Banchereau J: Function of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 9: 330, 1997.
- 32. Scheinman RI, P.C. Cogswell PC, Lofquist AK, and Baldwin Jr AS: Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270: 283, 1995.
- 33. Auphan N, Dinato JA, Rosette C, Helmberg A, Karin N: Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270: 286, 1995.
- 34. Murphy TL, Cleveland MG, Kulesza P, Magram J, Murphy KM: Regulation of interleukin 12 p40 expression through an NF-kappa B half site. Mol Cell Biol 15: 5258, 1995.
- 35. Yoshimoto T, Nagase H, Ishida T, Inoue J, Nariuchi H: Induction of interleukin-12 p40 transcript by CD40 ligation via activation of nuclear factor-kappaB. Eur J Immunol 27: 3461, 1997.
- 36. Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474, 1998.
- 37. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478, 1998.
- 38. Schoenberger SP, Toes REM, van der Voort EI, Offringa R, Melief CJM: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393: 480, 1998.

ABSTRACT OF THE DISCLOSURE

The present invention provides novel methods for immunotherapy. The invention provides immune cells and methods to generate them, with the capacity to at least in part reduce an immune response in a host. In one aspect, the invention provides a method for generating a dendritic cell with the capacity to tolerisetolerize a T-cellT-cell for antigen said-T-cell the T-cell was specific for, comprising including culturing peripheral blood monocytes from an individual to differentiate into dendritic cells, activating saidthe dendritic cells in the presence of a glucocorticoid hormone and loading saidthe activated dendritic cell with saidthe antigen said T cellthe T-cell was specific for.

2183\4205.1\Patent Application.doc 10/17/01

Addendum

1. DENDRITIC CELL ACTIVATED IN THE PRESENCE OF GLUCOCORTICOID HORMONES ARE CAPABLE OF SUPPRESSING ANTIGEN-SPECIFIC T CELL RESPONSES