GAUTAM BUDDHA UNIVERSITY

Course Name: RAMS Advanced

Course Credit: 04

Total Contact Hours: 60

S	Topics	Total
No	Topics	Hours: 60
1	Review on Basic RAMS module	2
2	System Reliability Modelling and Evaluation Techniques:	6
	Advance	
	Standby/Partial Standby model, Load Sharing Model, Tri-State	6
	Model., Reliability modeling for repairable components	
3	Interference Theory and Stress-Stress Models	6
	Interference Theory and Reliability Computation: General	4
	expressions, Reliability Computation for different types of	
	similar/dissimilar stress-strength distributions, Graphical Approach.	
	Physics of Failure (Interference Theory and Stress-Strength Models,	2
	Time Dependent Stress Strength Model (advance), Degradation	
	Analysis)	
4	Time Dependent Stress Strength Model	4
	SS Classification, reliability computation for Deterministic/Random	4
	Cycle times, Reliability in case of aging, cyclic damage, and	
	cumulative damage.	
5	Maintainability & Testability Analysis, Availability Modeling	6
	Markov State Model for non-maintained/maintained Systems:	6
	Reliability/Availability Modelling for single unit, standby, two units	
	with/without joint servicing. Markov models advantages and	
	limitations.	
6	Fault Tree Analysis	6
	Definitions and Symbols, Construction, Simplification	2
	Fault tree evaluation: Qualitative and Quantitative	2
	Event Importance Measures: Birnbaum, Vesely-Fussel etc.	2
7	Special Systems Models and Reliability Evaluation	6
	Phased-mission Systems, Common-cause Failure Modelling,	6
	Introduction to Multistate Systems.	
8	Reliability Testing and Demonstration	8
	Types of Reliability Testing, ALT, HALT and HASS models	3
	(overview) (Statistics, Physics-Statistics, Physics-Experimental based	
	models), in-service reliability demonstration with consumer &	
	producer's risk, field reliability demonstration.	
	Degradation Models, Basic ALT plans.	3
	4 Industrial Case Studies- Telecom, Medical, Electronics and	4
	Defense	
9	Fault Tolerance for enhancement of Reliability & Safety	8
	Safety Assessment and safety approval, cross approval processes	8
	Fault Tolerance	
	Case Studies: Aerospace and Railway	

GAUTAM BUDDHA UNIVERSITY

10	Commonly used RAMS standards Industrial Case Studies from	8
	Railway, Defence and New Product Development and xxx)	
	MIL XXXX, IEC, ARP, SAE, EN, ISO, CENELEC, SIL etc.	8

References and Textbooks

Maintainability and Testability definitions and Acronyms

- 1. International Electrotechnical Vocabulary: Dependability and Quality of Service, IEC-60050-192 (2015)
- P. DERSIN & R. Valenzuela, Designing for Availability in Systems and Systems of Systems, Annual Reliability & Maintainability Symposium (Tutorial given at RAMS 2020)

Reliability Demonstration

- 1. Reliability Testing-Compliance Tests for Constant Failure Rate and constant Failure Intensity, 2d Edition, IEC 61124, Geneva, 2006
- MIL-HDBK-781 A: Handbook for Reliability Test Methods, Plans and Environments for Engineering, Development Qualification, and Production, US Dept of defence, Arlington, VA, 1996.
- 3. P. Dersin and C. Maiorano, Methods for RAM Demonstration in Railway Projects, Chapter 10, Handbook of RAMS in Railway Systems, CRC Press, 2018.

General

- 1. Walpole R. E., Myers R. H., Myers S. L., and Ye K, "Probability & Statistics for Engineers and Scientists", 9th edition, New York; Prentice Hall, 2012.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw-Hill.
- 3. Elsayed A. Elsayed, "Reliability Engineering", 2nd ed., John Wiley & Sons, Inc.
- 4. Kapur K. C. and Lamberson, L. R, "Reliability in Engineering Design", Wiley India Pvt. Ltd., 2009
- 5. Kececioglu D. B., "Reliability Engineering Handbook, Vol. 1 and 2", DEStech Publications, Inc.
- 6. Birolini, Reliability Engineering, Theory & Practice; 8th Edition, Springer, 2017 (Ch. 7 on reliability demonstration)