Answer to the question no 2

For implementation 1,

return
$$n-1 \leftarrow O(1)$$

else:

50,

Answer to the question no 2

Implementation 2

$$dibonacci = array = [0,1] \rightarrow O(1)$$

if
$$n < 0$$
:

elif
$$n \le 2$$
:

eke:

for i in range
$$(2, n)$$
:

Sibonacci-array. append $(\cdot - - - - -) \rightarrow O(1)$

50,
Time complexity =
$$O(1) + O(1) + O(1) + fO(1) + O(1) + fO(n) * O(1) + O(1)$$

= $O(n)$

Answer to the question 4

$$n = \text{len}(A) \longrightarrow O(1)$$

$$C = [] \longrightarrow O(1)$$

for i in range(n):
$$\rightarrow O(n) * O(3) = O(n)$$

C. append(t)
$$\rightarrow 0(3)$$

for i in range (n):
$$\to O(n) * (0 (n^2) = O(n^3)$$

for j in range(n):
$$\Rightarrow O(n) * O(n) = O(n^2)$$

for k in range (n):
$$\rightarrow O(n)*1 = O(n)$$

$$50,$$
 $0(1) + 0(1) + 0(n) + 0(n^3) + 0(1)$

$$= O(n^s)$$