PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
G01N 33/566, C12P 21/06, C12N 1/20, 15/00, A61K 38/00, C07K 1/00, C07H 21/02

A1

(11) International Publication Number:

WO 96/34288

(43) International Publication Date:

31 October 1996 (31.10.96)

(21) International Application Number:

PCT/US96/05792

(22) International Filing Date:

25 April 1996 (25.04.96)

(30) Priority Data:

08/430.033

27 April 1995 (27.04.95)

US

(71) Applicant: ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).

(72) Inventors: NI, Binhui; 11810 Pursel Lane, Carmel, IN 46033 (US). PAUL, Steven, M.; 1145 Laurelwood, Carmel, IN 46032 (US).

(74) Agents: BLALOCK, Donna, K. et al.; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 (US). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: HUMAN BRAIN SODIUM-DEPENDENT INORGANIC PHOSPHATE COTRANSPORTER

(57) Abstract

This invention describes a novel human brain Na*-dependent inorganic phosphate cotransporter, designated the hBNPI protein. This invention also encompasses nucleic acids encoding this protein, or a fragment thereof, as well as methods employing this protein and the nucleic acid compounds.

FOR THE PURPOSES OF INFORMATION ONLY

LEADER TO THE RESERVE OF THE PARTY OF THE PA

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB -	United Kingdom	- MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
		. GN	Guinea	NE	Niger
AU	Australia Barbados	GR	Greece	NL	Netherlands
BB		HU	Hungary	NO-	Norway
BE	Belgium	IE	Ireland	NZ	New Zealand
BF	Burkina Faso	IT	Italy	. PL	Poland
BG	Bulgaria	JР	Japan	PT	Portugal
BJ	Benin	KE -	Kenya	RO	Romania
BR	Brazil	KG	Kyrgystan	RU	Russian Federation
BY	Belarus	KP	Democratic People's Republic	SD	Sudan
CA	Canada	Kr	of Korea	SE	Sweden
CF	Central African Republic	· KR	Republic of Korea	SG .	Singapore
CG	Congo	· KK	Kazakhstan	SI	Slovenia
CH	Switzerland		••	SK	Slovakia
CI	Côte d'Ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SZ ·	Swaziland
CN	China	LR	Liberia	TD	Chad
CS	Czechoslovakia	LT	Lithuania	· TG	Togo
CZ	Czech Republic	LU	Luxembourg	τJ	Tajikistan
DE	Germany	LV	Latvia	-	Trinidad and Tobago
DK	Denmark	. MC	Monaco	. TT	Ukraine
EE	Estonia	MD	Republic of Moldova	UA	_
ES	Spain .	MG	Madagascar	UG	Uganda United States of America
FI	Finland	ML	Mali	US	-
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

- 1 -

HUMAN BRAIN SODIUM-DEPENDENT INORGANIC PHOSPHATE COTRANSPORTER

Inorganic phosphate (Pi), a charged anion, essential to bioenergetics, metabolic regulation, and bone 5 and membrane structure. It is well known that P_i homeostasis in the body depends primarily on mechanisms that govern the renal excretion of P_i into the glomerular filtrate and its subsequent reabsorption against an electrochemical gradient via brush-border epithelial cells located in the proximal 10 tubule of the kidney [J. Bonjour and J. Caverzasio, Reviews in Physiological Pharmacology, 100:161-214 (1985); V.W. Dennis, Phosphate homeostasis, in HANDBOOK OF PHYSTOLOGY, (S. Shultz, ed. 1991) at pages 1785-1815.] This transepithelial 15 transport of P_i is mediated, in part, by a transport system which is driven by the transmembrane Na+ gradient across the microvilli brush border membrane. However, it remains largely unknown how cells transport and regulate necessary the intracellular concentrations of Pi, and the molecular events underlying this system. Experiments using isolated kidney 20 tubules or brush-border membranes have shown that Pi transport is rather complex; regulated not only by extracellular [Pi] but also by neurotransmitters such as catecholamines (for review see V.W.Dennis, supra), and by a 25 variety of hormones and metabolic factors. Berndt and Knox, "Renal Regulation of Phosphate Excretion", in, THE KIDNEY. PHYSIOLOGY AND PATHOPHYSIOLOGY, (D.W. Seldin and G. Giebisch, eds., 1991) at pages 1381-1396. Renal denervation, for example, decreases sodium and phosphate reabsorption. Norepinephrine released from nerve endings in proximity to 30 renal tubules acts on the proximal tubule to increase phosphate reabsorption. In studies of isolated tubules, however, dopamine is shown to inhibit phosphate and sodium transport in the rabbit proximal tubule. Furthermore, several studies also show that depletion of extracellular $P_{\rm i}$ or 35 increased circulating levels of parathyroid hormone alter the activity and expression of transporter molecules or both.

Several recent reports have demonstrated that Pi homeostasis significantly affects the central nervous system (CNS). Phosphate/calcium alterations in serum, for example, have been implicated in the etiology and pathogenesis of Alzheimer's diseases. Depletion of high energy phosphates (phosphocreatine) and ATP is thought to be part of the final common pathway mediating excitotoxic neuronal cell death secondary to a wide variety of insults. Tight coupling between Pi transport and ATP production has been observed in many cells and tissues. Chronic Pi depletion in vivo is 10 associated with a significant reduction in the ATP content of polymorphonuclear leukocytes, platelets, and various tissues including kidney, heart, and skeletal muscle. A similar observation has been made in cultured peripheral vagal nerves. This reduction in intracellular ATP has been shown to 15 be a direct consequence of the decrease in intracellular Pi which occurs following Pi depletion. In addition to its possible role in ATP biosynthesis, several lines of evidence have suggested that P_{i} may be involved in neuronal signalling In this regard, a study using brain tissue has 20 events. recently shown that physiological concentrations of $P_{\rm i}$ can enhance the ATP-dependent binding of Ca++ to brain microsomes, resulting in a larger intracellular pool of Ca++ releasable by inositol triphosphate. Our recent work have demonstrated that >90% P_i transport in cortical neurons, 25 which displays similar kinetic parameters to those reported for cultured kidney proximal tubule epithelial cells and membrane vesicles, are sodium dependent and that this Na+dependent transport system is regulated through a Na+dependent Pi cotransporter. B. Ni, et al., Proceedings of 30 the National Academy of Sciences (USA), 91:5607-5611 (1994).

The present invention describes the cloning and characterization of a human brain Na⁺-dependent P_i cotransporter which is selectively expressed in discrete populations of neurons and glia. Fluorescent in situ hybridization (FISH) analysis demonstrates that this Na⁺-dependent P_i cotransporter is located in chromosome 19

WO 96/34288 PCT/US96/05792

- 3 -

(19q13.3) which has been linked to susceptible gene(s) for late onset Alzheimer's disease. M. Mullan and F. Crawford, Trends in Neurological Sciences, 16, 398-403 (1993). The characterization and treatment of physiological disorders is hereby furthered.

5

This invention provides an isolated amino acid compound useful as a human brain sodium-dependent inorganic phosphate cotransporter, said compound comprising the amino acid sequence

10	acid	sec	ruen	ce				•		. •						.	
		Met 1	Glu	Phe	Arg	Gln 5	Glu	Glu	Phe		Lys 10		Ala	Gly	Arg	Ala 15	Leu
15		Gly	Lys	Leu	His	Arg	Leu	Leu	Glu	Lys 25		Gln	Glu		Ala 30		Thr
20	.1.	Lėu	Glu	Leu '35	Ser	Ala	Asp	Gly	Arg 40		Val	Thr	Thr	Ġln 45	Thr	Arg	Asp
		Pro	Pro 50	Val	Val	Asp	Cys	Thr 55		Phe	Gly	Leu	Pro 60	Arg	Arg	Tyr	Ile
25	.*:	Ile 65	Ala	Ile	Met	Ser	Gly 70	Leu	Gly	Phe	Cys	Ile 75	Ser	Phe	Gly	Ile	Arg 80
	•	Cys	Asn	Leu	Gly	Val 85	Ala	Ile	Val	Ser	Met 90	Val	Asn	Asn	Ser	Thr 95	Thr
30		His	Arg	Gly	Gly 100	His	Val	Val	Val	Gln 105	Lys	Ala	Ğln	Phe	Ser 110		Asp
35		Pro	Glu	Thr 115	Val	Gly	Leu		His 120	Gly	Ser	Phe	Phe	Trp 125	Gly	Tyr	Ile
		Val	Thr 130	Gln	Ile	Pro	Gly	Gly 135	Phe	Ile	Cys	Gln	Lys 140	Phe	Ala	Ala	Asn
40		Arg 145	Val	Phe	Gly	Phe	Ala 150		Val	Ala	Thr	Ser 155	Thr	Leu	Asn		Leu 160
		Ile	Pro	Ser	Ala	Ala 165		Val	His	Tyr	Gly 170	Cys	Val	Ile	Phe	Val 175	Arg
45	÷	Ile	Leu		Gly 180	Leu	Val	Glu	Gly	Val 185	Thr	Tyr	Pro	Ala	Cys 190	His	Gly
50		Ile	Trp	Ser 195	Lys			Pro		Leu ·	Glu	Arg	Ser	Arg 205	Leu	Ala	Thr

			Thr	Ala 210	Phe	Cys	Gly	Ser	Tyr 215	Ala	Gly	Ala	Val	Val 220	Ala	Met	Pro	Leu
5	, ,		Ala 225	Gly	Val	Leu	Val	Gln 230	Tyr	Ser	Gly	Trp	Ser 235	Ser	Val	Phe	Tyr	Val 240
		•		·.'			245				Tyr	250				. ::	255	
10	:					260					Ser 265			, .		270		-
15					275	,		٠		280					285			
13				290		•			295		Arg		٠	300				
20			305					310			Cys		315					320
			•				325				Phe	330					335	
25	,					340	ı				Ala ~345					350		
30					355					360)				365	·		Arg
				370)				375	5 11, 14		-		380	•			Gly
35			385	5				390)				395	·,		;		Ser 400
							409	5				410	•				415	
40			· · .			42	0				, 425	5 .	:.			431	, .	Arg
45					. 43	5 .				44	0.	٠.			44	· .		Ser
				45	0				45	5			,	46	U			Thr
50			46	5				47	0				47	5				480
			•				48	5		. •		. 49	U					
55			Tr	p Al	a Gl	u Pr	o Gl	u Gl	u Me	t S∈	er Gl	u Gl	u Ly	s Cy	s Gl	y Pn	e va	1 Gly

WO 96/34288 PCT/US96/05792

.

	500 510	
5	His Asp Gln Leu Ala Gly Ser Asp Asp Ser Glu Met Glu Asp Glu Ala 515	
.	Glu Pro Pro Gly Ala Pro Pro Ala Pro Pro Pro Ser Tyr Gly Ala Thr 530 535 540	
10	His Ser Thr Phe Gln Pro Pro Arg Pro Pro Pro Pro Val Arg Asp Tyr 545 550 555 560	
	hereinafter designated as SEQ ID NO:2.	
	The invention also provides an isolated nucleic	
	acid compound that comprises a nucleic acid sequence which	
15	encodes for the amino acid compounds provided. Particularly	
	this invention provides the isolated nucleic acid compound having the sequence	
20	CGATAAGCTT GATATCGAAT TCCGGACTCT TGCTCGGGCG CCTTAACCCG GCGTTCGGTT	60
20	CATCCCGCAG CGCCAGTTCT GCTTACCAAA AGTGGCCCAC TAGGCACTCG CATTCCACGC	120
	CCGGCTCCAC GCCAGCGAGC CGGGCTTCTT ACCCATTTAA AGTTTGAGAA TAGGTTGAGA	180
25	TCGTTTCGGC CCCAAGACCT CTAATCATTC GCTTTACCGG ATAAAACTGC GTGGCGGGGG	240
	TGCGTCGGGT CTGCGAGAGC GCCAGCTATC CTGAGGGAAA CTTCGGAGGG AACCAGCTAC	300
30	TAGATGGTTC GATTAGTCTT TCGCCCCTAT ACCCAGGTCG GACGACCGAT TTGCACGTCA	360
30	GGACCGCTAC GGACCTCCAC CAGAGTTTCC TCTGGCTTCG CCCTGCCCAG GCGATCGGCG	420
	GGGGGGACCC GCGGGGTGAC CGGCGGCAGG AGCCGCCACC ATG GAG TTC CGC CAG	475
35	Met Glu Phe Arg Gln 1 5	
	GAG GAG TTT CGG AAG CTA GCG GGT CGT GCT CTC GGG AAG CTG CAC CGC Glu Glu Phe Arg Lys Leu Ala Gly Arg Ala Leu Gly Lys Leu His Arg	523
40	10 15 20	
	CTT CTG GAG AAG CGG CAG GAA GGC GCG GAG ACG CTG GAG CTG AGT GCG Leu Leu Glu Lys Arg Gln Glu Gly Ala Glu Thr Leu Glu Leu Ser Ala 25 30 35	571
45		
4.5	GAT GGG CGC CCG GTG ACC ACG CAG ACC CGG GAC CCG CCG GTG GTC GAC Asp Gly Arg Pro Val Thr Thr Gln Thr Arg Asp Pro Pro Val Val Asp 40 45 50	619
50	TGC ACC TGC TTC GGC CTC CCT CGC CGC TAC ATT ATC GCC ATC ATG AGT Cys Thr Cys Phe Gly Leu Pro Arg Arg Tyr Ile Ile Ala Ile Met Ser	667

									. :									
						ATC Ile 75										GTG Val 85		715
5 .						GTC Val												763
10					90	GCC		• •	<i>3</i>	95	•			, 100	100		:	811
			Val							Trp						Gly		011
15												Val				CCA Pro		859
20	Gly	Gly		Ile		CAA Gln										TTT Phe		907
25		Ile				TCC Ser 155	Thr					Ile			Ala			955
						TGT Cys	Val		Phe					Gln		Leu		1003
30						TAC Tyr		Ala		His	Gly	Ile	Trp		Lys	TGG Trp		1051
35						CGG Arg			Leu			Thr				GGT Gly		1099
40	Ser		Ala			GTG Val											•	1147
45						AGC Ser 235												1195
:						TTC Phe					Ser						•	1243
50						TCG Ser												1291
-55						AAA Lys										ACT Thr		1339

			280					285	5				290)			
5	CCC Pro	TGG Trp 295	Arg	CGC Arg	TTC Phe	TTC Phe	ACC Thr	Ser	ATC	CCA Pro	GTC Val	TAT Tyr	Ala	ATC	ATC	GTG Val	1387
10	GCC Ala 310	Asn	TTC Phe	TGC Cys	CGC Arg	AGC Ser 315	Trp	ACG Thr	TTC Phe	TAC Tyr	CTG Leu 320	Leu	CTC Leu	ATC Ile	C TCC	CAG Gln 325	1435
	CCC Pro	GAC Asp	TAC Tyr	TTC Phe	GAA Glu 330	GAA Glu	GTG Val	TTC Phe	GGC Gly	TTC Phe 335	Glu	ATC Ile	AGC Ser	AAG Lys	GTA Val 340	GGC Gly	1483
15	CTG Leu	GTG Val	TCC Ser	GCG Ala 345	Leu	CCC Pro	CAC His	CTG Leu	GTC Val 350	ATG Met	ACC Thr	ATC Ile	ATC	GTG Val 355	CCC Pro	ATC Ile	1531
20	GGC	GGC Gly	CAG Gln 360	ATC Ile	GCG Ala	GAC Asp	TTC Phe	CTG Leu 365	CGG Arg	AGC Ser	CGC	CGC Arg	ATC Ile 370	ATG Met	TCC Ser	ACC Thr	1579
25	ACC Thr	AAC Asn 375	GTG Val	CGC Arg	AAG Lys	TTG Leu	ATG Met 380	AAC Asn	TGC Cys	GGA Gly	GGC Gly	TTC Phe 385	GGC Gly	ATG Met	GAA Glu	GCC Ala	1627
30	ACG Thr 390	CTG Leu	CTG Leu	TTG Leu	GTG Val	GTC Val 395	GGC Gly	TAC Tyr	TCG Ser	CAC His	TCC Ser 400	AAG Lys	GGC Gly	GTG Val	GCC Ala	ATC Ile 405	1675
30	TCC Ser	TTC Phe	CTG. Leu	GTC Val	CTA Leu 410	GCC Ala	GTG Val	GGC Gly	TTC Phe	AGC Ser 415	GGC Gly	TTC Phe	GCC Ala	ATC Ile	TCT Ser 420	GGG	1723
35	TTC Phe	AAC Asn	GTG Val	AAC Asn 425	CAC His	CTG Leu	GAC Asp	ATA Ile	GCC Ala 430	CCG Pro	CGC Arg	TAC Tyr	GCC Ala	AGC Ser 435	ATC	CTC Leu	1771
40	ATG Met	GGC Gly	ATC Ile 440	TCC Ser	AAC Asn	GGC Gly	GTG Val	GGC Gly 445	ACA Thr	CTG Leu	TCG Ser	GGC Gly	ATG Met 450	GTG Val	TGC Cys	CCC Pro	1819
45	ATC Ile	ATC Ile 455	GTG Val	GGG Gly	GCC Ala	ATG Met	ACT Thr 460	AAG Lys	CAC His	AAG Lys	ACT Thr	CGG Arg 465	GAG Glu	GAG Glu	TGG Trp	CAG Gln	1867
50	TAC Tyr 470	GTG Val	TTC Phe	CTA Leu	ATT Ile	GCC. Ala 475	TCC Ser	CTG Leu	GTG Val	CAC His	TAT Tyr 480	GGA Gly	GGT Gly	GTC Val	ATC Ile	TTC Phe 485	1915
50	TAC Tyr	GGG Gly	GTC Val	TTT Phe	GCT Ala 490	TCT Ser	GGA Gly	GAG Glu	AA G Lys	CAG Gln 495	CCG Pro	TGG Trp	GCA Ala	GAG Glu	CCT Pro 500	GAG Glu	1963
55	GAG .	ATG	AGC	GAG	GAG	AAG	TCT	GGC	TTC	GTT	GGC	CAT	GAC	CAG	CTG	GCT	2011

	Glu Met Ser Glu Glu Lys Cys Gly Phe Val Gly His Asp Gln Leu Ala 505 510 515	
5	GGC AGT GAC GAC AGC GAA ATG GAG GAT GAG GCT GAG CCC CCG GGG GCA Gly Ser Asp Asp Ser Glu Met Glu Asp Glu Ala Glu Pro Pro Gly Ala 520 525 530	2059
10	CCC CCT GCA CCC CCG CCC TCC TAT GGG GCC ACA CAC AGC ACA TTT CAG Pro Pro Ala Pro Pro Pro Ser Tyr Gly Ala Thr His Ser Thr Phe Gln 535 540	2107
	CCC CCC AGG CCC CCA CCC CCT GTC CGG GAC TAC TGA CCATGTGCCT Pro Pro Arg Pro Pro Pro Val Arg Asp Tyr * 550 555 560	2153
15	CCCACTGAAT GGCAGTTTCC AGGACCTCCA TTCCACTCAT CTCTGGCCTG AGTGACAGTG	2213
	TCAAGGAACC CTGCTCCTCT CTGTCCTGCC TCAGGCCTAA GAAGCACTCT CCCTTGTTCC	2273
20	CAGTGCTGTC AAATCCTCTT TCCTTCCCAA TTGCCTCTCA GGGGTAGTGA AGCTGCAGAC	2333
	TGACAGTTTC AAGGATACCC AAATTCCCCT AAAGGTTCCC TCTCCACCGG TTCTGCCTCA	2393
25	GTGGTTTCAA ATCTCTCCTT TCAGGGCTTT ATTTGAATGG ACAGTTCGAC CTCTTACTCT	2453
25	CTCTTGTGGT TTTGAGGCAC CCACACCCCC CGCTTTCCTT TATCTCCAGG GACTCTCAGG	2513
	CTAACCTTTG AGATCACTCA GCTCCCATCT CCTTTCAGAA AAATTCAAGG TCCTCCTCTA	2573
30	GAAGTTTCAA ATCTCTCCCA ACTCTGTTCT GCATCTTCCA GATTGGTTTA ACCAATTACT	2633
	CGTCCCCGCC ATTCCAGGGA TTGATTCTCA CCAGCGTTTC TGATGGAAAA TGGCGGGAAT	2693
	TCCTGCAGCC CGGGGGATCC ACT	2716
35		: •
	which is hereinafter designated as SEQ ID NO:1.	
	This invention also provides recombinant nucleic	

This invention also provides recombinant nucleic acid vectors comprising nucleic acids encoding SEQ ID NO:2.

This invention also encompasses recombinant DNA vectors which comprise the isolated DNA sequence which is SEQ ID NO:1.

The present invention also provides assays for determining the efficacy and adverse reaction profile of agents useful in the treatment or prevention of disorders associated with an inappropriate stimulation of a human brain Na+-dependent inorganic phosphate cotransporter.

The terms and abbreviations used in this document have their normal meanings unless otherwise designated. For

30

35

example "'C" refers to degrees Celsius; "N" refers to normal or normality; "mmol" refers to millimole or millimoles; "g" refers to gram or grams; "ml" means milliliter or milliliters; "M" refers to molar or molarity; "µg" refers to microgram or micrograms; and "µl" refers to microliter or microliters.

All nucleic acid sequences, unless otherwise designated, are written in the direction from the 5' end to the 3' end, frequently referred to as "5' to 3'".

All amino acid or protein sequences, unless otherwise designated, are written commencing with the amino terminus ("N-terminus") and concluding with the carboxy terminus ("C-terminus").

"Base pair" or "bp" as used herein refers to DNA or RNA. The abbreviations A,C,G, and T correspond to the 5'-15 monophosphate forms of the deoxyribonucleosides 7. (deoxy)adenine, (deoxy)cytidine, (deoxy)guanine, and (deoxy)thymine, respectively, when they occur in DNA molecules. The abbreviations U,C,G, and T correspond to the 20 5'-monophosphate forms of the ribonucleosides uracil, cytidine, guanine, and thymine, respectively when they occur in RNA molecules. In double stranded DNA, base pair may refer to a partnership of A with T or C with G. In a DNA/RNA, heteroduplex base pair may refer to a partnership of 25 A with U or C with G. (See the definition of "complementary", <u>infra</u>.)

The terms "digestion" or "restriction" of DNA refers to the catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA ("sequence-specific endonucleases"). The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors, and other requirements were used as would be known to one of ordinary skill in the art. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer or can be readily found in the literature.

10

15

30

35

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments. Unless otherwise provided, ligation may be accomplished using known buffers and conditions with a DNA ligase, such as T4 DNA ligase.

The term "plasmid" refers to an extrachromosomal (usually) self-replicating genetic element. Plasmids are generally designated by a lower case "p" preceded and/or followed by letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accordance with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

The term "reading frame" means the nucleotide sequence from which translation occurs "read" in triplets by the translational apparatus of transfer RNA (tRNA) and ribosomes and associated factors, each triplet corresponding to a particular amino acid. A base pair insertion or deletion (termed a frameshift mutation) may result in two different proteins being coded for by the same DNA segment. To insure against this, the triplet codons corresponding to the desired polypeptide must be aligned in multiples of three from the initiation codon, i.e. the correct "reading frame" being maintained.

"Recombinant DNA cloning vector" as used herein refers to any autonomously replicating agent, including, but not limited to, plasmids and phages, comprising a DNA molecule to which one or more additional DNA segments can or have been added.

The term "recombinant DNA expression vector" as used herein refers to any recombinant DNA cloning vector in which a promoter to control transcription of the inserted DNA has been incorporated.

The term "expression vector system" as used herein refers to a recombinant DNA expression vector in combination

WO 96/34288 ··· PCT/US96/05792

- 11 -

with one or more trans-acting factors that specifically influence transcription, stability, or replication of the recombinant DNA expression vector. The trans-acting factor may be expressed from a co-transfected plasmid, virus, or other extrachromosomal element, or may be expressed from a gene integrated within the chromosome.

"Transcription" as used herein refers to the process whereby information contained in a nucleotide sequence of DNA is transferred to a complementary RNA sequence.

10

15

30

35

The term "transfection" as used herein refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, calcium phosphate co-precipitation, and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.

The term "transformation" as used herein means the
introduction of DNA into an organism so that the DNA is
replicable, either as an extrachromosomal element or by
chromosomal integration. Methods of transforming bacterial
and eukaryotic hosts are well known in the art, many of which
methods, such as nuclear injection, protoplast fusion or by
calcium treatment using calcium chloride are summarized in J.
Sambrook, et al., Molecular Cloning: A Laboratory Manual, (1989).

The term "translation" as used herein refers to the process whereby the genetic information of messenger RNA is used to specify and direct the synthesis of a polypeptide chain.

The term "vector" as used herein refers to a nucleic acid compound used for the transformation of cells in gene manipulation bearing polynucleotide sequences corresponding to appropriate protein molecules which when combined with appropriate control sequences confer specific properties on the host cell to be transformed. Plasmids, viruses, and bacteriophage are suitable vectors. Artificial

25

30

35

vectors are constructed by cutting and joining DNA molecules from different sources using restriction enzymes and ligases. The term "vector" as used herein includes Recombinant DNA cloning vectors and Recombinant DNA expression vectors.

The terms "complementary" or "complementarity" as used herein refers to pair of bases, purines and pyrimidines, that associate through hydrogen bonding in double stranded nucleic acid. The following base pairs are complementary: guanine and cytosine; adenine and thymine; and adenine and uracil.

The term "hybridization" as used herein refers to a process in which a strand of nucleic acid joins with a complementary strand through base pairing. The conditions employed in the hybridization of two non-identical, but very similar, complementary nucleic acids varies with the degree of complementarity of the two strands and the length of the strands. Such techniques and conditions are well known to practitioners in this field.

"Isolated amino acid sequence" refers to any amino 20 acid sequence, however constructed or synthesized, which is locationally distinct from the naturally occurring sequence.

"Isolated DNA compound" refers to any DNA sequence, however constructed or synthesized, which is locationally distinct from its natural location in genomic DNA.

"Isolated nucleic acid compound" refers to any RNA or DNA sequence, however constructed or synthesized, which is locationally distinct from its natural location.

A "primer" is a nucleic acid fragment which functions as an initiating substrate for enzymatic or synthetic elongation.

The term "promoter" refers to a DNA sequence which directs transcription of DNA to RNA.

A "probe" as used herein is a nucleic acid compound or a fragment thereof which hybridizes with a nucleic acid compound which encodes either the entire sequence SEQ ID NO:2, a sequence complementary to SEQ ID NO:2, or a part thereof.

WO 96/34288 PCT/US96/05792

. - 13 -

The term "stringency" refers to a set of hybridization conditions which may be varied in order to vary the degree of nucleic acid affinity for other nucleic acid. (See the definition of "hybridization", supra.)

The term "antigenically distinct" as used herein refers to a situation in which antibodies raised against an epitope of the proteins of the present invention, or a fragment thereof, may be used to differentiate between the proteins of the present invention and other brain Na+- dependent inorganic phosphate cotransporter subtypes. This term may also be employed in the sense that such antibodies may be used to differentiate between the human hBNPI protein protein and analogous proteins derived from other species.

5

10

30

35

The term "PCR" as used herein refers to the widely-15 known polymerase chain reaction employing a thermally-stable polymerase.

Skilled artisans will recognize that the proteins of the present invention can be synthesized by a number of different methods. All of the amino acid compounds of the invention can be made by chemical methods well known in the art, including solid phase peptide synthesis, or recombinant methods. Both methods are described in U.S. Patent 4,617,149, the entirety of which is herein incorporated by reference.

The principles of solid phase chemical synthesis of polypeptides are well known in the art and may be found in general texts in the area. See, e.g., H. Dugas and C. Penney, BIOORGANIC CHEMISTRY, (1981) at pages 54-92. For examples, peptides may be synthesized by solid-phase methodology utilizing an Applied Biosystems 430A peptide synthesizer (commercially available from Applied Biosystems, Foster City California) and synthesis cycles supplied by Applied Biosystems. Protected amino acids, such as t-butoxycarbonyl-protected amino acids, and other reagents are commercially

available from many chemical supply houses.

15

20

25

30

Sequential t-butoxycarbonyl chemistry using double couple protocols are applied to the starting p-methyl benzhydryl amine resins for the production of C-terminal carboxamides. For the production of C-terminal acids, the corresponding pyridine-2-aldoxime methiodide resin is used. Asparagine, glutamine, and arginine are coupled using preformed hydroxy benzotriazole esters. The following side chain protection may be used:

Arg, Tosyl

Asp, cyclohexyl

Glu, cyclohexyl

Ser, Benzyl

Thr, Benzyl

Tyr, 4-bromo carbobenzoxy

Removal of the t-butoxycarbonyl moiety (deprotection) may be accomplished with trifluoroacetic acid (TFA) in methylene chloride. Following completion of the synthesis the peptides may be deprotected and cleaved from the resin with anhydrous hydrogen fluoride containing 10% meta-cresol. Cleavage of the side chain protecting group(s) and of the peptide from the resin is carried out at zero degrees centigrade or below, preferably -20°C for thirty minutes followed by thirty minutes at 0°C.

After removal of the hydrogen fluoride, the peptide/resin is washed with ether, and the peptide extracted with glacial acetic acid and then lyophilized. Purification is accomplished by size-exclusion chromatography on a Sephadex G-10 (Pharmacia) column in 10% acetic acid.

The proteins of the present invention may also be produced by recombinant methods. Recombinant methods are preferred if a high yield is desired. A general method for the construction of any desired DNA sequence is provided in J. Brown, et al., Methods in Enzymology, 68:109 (1979). See also, J. Sambrook, et al., supra.

35 The basic steps in the recombinant production of desired proteins are:

- 15 -

a) construction of a synthetic or semisynthetic DNA encoding the protein of interest;

5

b) integrating said DNA into an expression vector in a manner suitable for the expression of the protein of interest, either alone or as a fusion protein;

10

c) transforming an appropriate eukaryotic or prokaryotic host cell with said expression vector.

15

d) culturing said transformed or transfected host cell in a manner to express the protein of interest; and

e) recovering and purifying the recombinantly produced protein of interest.

20

In general, prokaryotes are used for cloning of DNA sequences in constructing the vectors of this invention.

Prokaryotes may also be employed in the production of the protein of interest. For example, the <u>Escherichia coli</u> K12

25 strain 294 (ATCC No. 31446) is particularly useful for the prokaryotic expression of foreign proteins. Other strains of <u>E. coli</u> which may be used (and their relevant genotypes) include the following.

30 <u>Strain</u>

Genotype

DH5 α

F⁻ (ϕ 80dlacZ Δ M15), Δ (lacZYA-argF)U169 supE44, λ ⁻, hsdR17(r_K ⁻, m_K ⁺), recA1, endA1, gyrA96, thi-1, relA1

35

1776.

HB101 supE44, hsdS20(r_B^- m_B-), recA13, ara-14, proA2 lacY1, galK2, rpsL20, xyl-5, mtl-1, mcrB, mrr 9.3 JM109 recAl, el4-(mcrA), supE44, endAl, 5 e de la companya de l hsdR17 (r_K^-, m_K^+) , gyrA96, relA1, thi-1, Δ (lac-proAB), F'[traD36, proAB+ lacIq,lacZ\DM15] with the contract of the supE44, $hsdS20(r_B^- m_B^-)$, ara-14 proA2, 10 RR1 lacY1, galK2, rpsL20, xyl-5, mtl-5 F-, ton, A53, dapD8, minA1, supE42 χ1776 · (glnV42), Δ(gal-uvrB)40, minB2, rfb-2, gyrA25, thyA142, oms-2, metC65, 15 oms-1, Δ (bioH-asd)29, cycB2, cycA1, hsdR2, λ^{-} endA, thi-, hsr-, hsmk+ (U.S. Patent 294 4,366,246) 20 F^- , hsdR514 (r^-m^-), supE44, supF58, LE392 lacY1, or Δ lac(I-Y)6, galK2, glaT22, metB1, trpR55, λ^- 25

These strains are all commercially available from suppliers such as: Bethesda Research Laboratories, Gaithersburg, Maryland 20877 and Stratagene Cloning Systems, La Jolla, California 92037; or are readily available to the poblic from sources such as the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, 10852-

Except where otherwise noted, these bacterial strains can be used interchangeably. The genotypes listed are illustrative of many of the desired characteristics for choosing a bacterial host and are not meant to limit the

15

invention in any way. The genotype designations are in accordance with standard nomenclature. See, for example, J. Sambrook, et al., supra. A preferred strain of E. coli employed in the cloning and expression of the genes of this invention is RV308, which is available from the ATCC under accession number ATCC 31608, and is described in United States Patent 4,551,433, issued November 5, 1985.

In addition to the strains of <u>E. coli</u> discussed <u>supra</u>, bacilli such as <u>Bacillus subtilis</u>, other enterobacteriaceae such as <u>Salmonella typhimurium</u> or <u>Serratia marcescans</u>, and various <u>Pseudomonas</u> species may be used. In addition to these gram-negative bacteria, other bacteria, especially <u>Streptomyces</u>, spp., may be employed in the prokaryotic cloning and expression of the proteins of this invention.

Promoters suitable for use with prokaryotic hosts include the β -lactamase [vector pGX2907 (ATCC 39344) contains the replicon and β -lactamase gene] and lactose promoter systems [Chang et al., Nature (London), 275:615 (1978); and 20 Goeddel et al., Nature (London), 281:544 (1979)], alkaline phosphatase, the tryptophan (trp) promoter system [vector pATH1 (ATCC 37695) is designed to facilitate expression of an open reading frame as a trpE fusion protein under control of the trp promoter] and hybrid promoters such as the tac 25 promoter (isolatable from plasmid pDR540 ATCC-37282). However, other functional bacterial promoters, whose nucleotide sequences are generally known, enable one of skill in the art to ligate them to DNA encoding the proteins of the instant invention using linkers or adapters to supply any 30 required restriction sites. Promoters for use in bacterial systems also will contain a Shine-Dalgarno sequence operably linked to the DNA encoding the desired polypeptides. examples are illustrative rather than limiting.

The proteins of this invention may be synthesized

35 either by direct expression or as a fusion protein comprising the protein of interest as a translational fusion with another protein or peptide which may be removable by

15

20

25

30

enzymatic or chemical cleavage. It is often observed in the production of certain peptides in recombinant systems that expression as a fusion protein prolongs the lifespan, increases the yield of the desired peptide, or provides a convenient means of purifying the protein of interest. A variety of peptidases (e.g. trypsin) which cleave a polypeptide at specific sites or digest the peptides from the amino or carboxy termini (e.g. diaminopeptidase) of the peptide chain are known. Furthermore, particular chemicals (e.g. cyanogen bromide) will cleave a polypeptide chain at specific sites. The skilled artisan will appreciate the modifications necessary to the amino acid sequence (and synthetic or semi-synthetic coding sequence if recombinant means are employed) to incorporate site-specific internal cleavage sites. See e.g., P. Carter, "Site Specific Proteolysis of Fusion Proteins", Chapter 13 in PROTEIN PURIFICATION: FROM MOLECULAR MECHANISMS TO LARGE SCALE PROCESSES, American Chemical Society, Washington, D.C. (1990).

In addition to cloning and expressing the genes of interest in the prokaryotic systems discussed above, the proteins of the present invention may also be produced in eukaryotic systems. The present invention is not limited to use in a particular eukaryotic host cell. A variety of eukaryotic host cells are available from depositories such as the American Type Culture Collection (ATCC) and are suitable for use with the vectors of the present invention. The choice of a particular host cell depends to some extent on the particular expression vector used to drive expression of the nucleic acids of the present invention. Exemplary host cells suitable for use in the present invention are listed in Table I.

Table I

Host Cell	Origin	Source
HenG-2	Human Liver Hepatoblastoma	ATCC HB 8065

WO 96/34288 PCT/US96/05792

- 19 -

CV-1	African Green Monkey Kidney	ATCC CCL 70
"LLC-MK2	Rhesus Monkey Kidney	ATCC CCL 7.1
3 T 3	Mouse Embryo Fibroblasts	ATCC CCL 92
CHO-K1	Chinese Hamster Ovary	ATCC CCL 61
HeLa ·	Human Cervix Epitheloid	ATCC CCL 2
RPMI8226	Human Myeloma	ATCC CCL 155
H4IIEC3	Rat Hepatoma	ATCC CCL 1600
C127I	Mouse Fibroblast	ATCC CCL 1616
HS-Sultan	Human Plasma Cell Plasmocytoma	ATCC CCL 1484
ВНК-21	Baby Hamster Kidney	ATCC CCL 10

An especially preferred cell line employed in this invention is the widely available cell line AV12-664 (hereinafter "AV12"). This cell line is available from the American Type Culture Collection under the accession number ATCC CRL 9595. The AV12 cell line was constructed by injecting a Syrian hamster in the scruff of the neck with human adenovirus 12 and isolating cells from the resulting tumor.

A wide variety of vectors, some of which are discussed below, exists for the transformation of such mammalian host cells, but the specific vectors described herein are in no way intended to limit the scope of the present invention.

15

25

The pSV2-type vectors comprise segments of the simian virus 40 (SV40) genome that constitute a defined eukaryotic transcription unit-promoter, intervening sequence, and polyadenylation site. In the absence of the SV40 T antigen, the plasmid pSV2-type vectors transform mammalian and other eukaryotic host cells by integrating into the host cell chromosomal DNA. A large number of plasmid pSV2-type vectors have been constructed, such as plasmid pSV2-gpt, pSV2-neo, pSV2-dhfr, pSV2-hyg, and pSV2- β -globin, in which the SV40 promoter drives transcription of an inserted gene. These vectors are suitable for use with the coding sequences of the present invention and are widely available from

15

20

25

30

35

sources such as the ATCC or the Northern Regional Research Laboratory (NRRL), 1815 N. University Street, Peoria, Illinois, 61604.

The plasmid pSV2-dhfr (ATCC 37146) comprises a murine dihydrofolate reductase (dhfr) gene under the control of the SV40 early promoter. Under the appropriate conditions, the dhfr gene is known to be amplified, or copied, in the host chromosome. This amplification can result in the amplification of closely-associated DNA sequences and can, therefore, be used to increase production of a protein of interest. See, e.g., J. Schimke, Cell, 35:705-713 (1984).

Plasmids constructed for expression of the proteins of the present invention in mammalian and other eukaryotic host cells can utilize a wide variety of promoters. present invention is in no way limited to the use of the particular promoters exemplified herein. Promoters such as the SV40 late promoter, promoters from eukaryotic genes, such as, for example, the estrogen-inducible chicken ovalbumin gene, the interferon genes, the gluco-corticoid-inducible tyrosine aminotransferase gene, and the thymidine kinase gene, and the major early and late adenovirus genes can be readily isolated and modified to express the genes of the present invention. Eukaryotic promoters can also be used in tandem to drive expression of a coding sequence of this invention. Furthermore, a large number of retroviruses are known that infect a wide range of eukaryotic host cells. long terminal repeats in the retroviral DNA frequently encode functional promoters and, therefore, may be used to drive expression of the nucleic acids of the present invention.

Plasmid pRSVcat (ATCC 37152) comprises portions of a long terminal repeat of the Rous Sarcoma virus, a virus known to infect chickens and other host cells. This long terminal repeat contains a promoter which is suitable for use in the vectors of this invention. H. Gorman, et al., Proceedings of the National Academy of Sciences (USA), 79:6777 (1982). The plasmid pMSVi (NRRL B-15929) comprises

WO 96/34288 PCT/US96/05792

- 21 -

the long terminal repeats of the Murine Sarcoma virus, a virus known to infect mouse and other host cells. The mouse metallothionein promoter has also been well characterized for use in eukaryotic host cells and is suitable for use in the expression of the nucleic acids of the present invention. The mouse metallothionein promoter is present in the plasmid pdBPV-MMTneo (ATCC 37224) which can serve as the starting material of other plasmids of the present invention.

5

35

employs one of a series of vectors containing the BK enhancer, an enhancer derived from the BK virus, a human papovavirus. The most preferred such vector systems are those which employ not only the BK enhancer but also the adenovirus-2-early region 1A (E1A) gene product. The E1A gene product (actually, the E1A gene produces two products, which are collectively referred to herein as "the E1A gene product") is an immediate-early gene product of adenovirus, a large DNA virus.

A most preferred expression vector employed in the 20 present invention is the phd series of vectors which comprise a BK enhancer in tandem with the adenovirus late promoter to drive expression of useful products in eukaryotic host cells. The construction and method of using the phd plasmid, as well as related plasmids, are described in U.S. Patents 5,242,688, 25 issued September 7, 1993, and 4,992,373, issued February 12, 1991, as well as co-pending United States patent application 07/368,700, all of which are herein incorporated by reference. Escherichia coli K12 GM48 cells harboring the plasmid phd are available as part of the permanent stock 30 collection of the Northern Regional Research Laboratory under accession number NRRL B-18525. The plasmid may be isolated from this culture using standard techniques.

The plasmid phd contains a unique <u>Bcl</u>I site which may be utilized for the insertion of the gene encoding the protein of interest. The skilled artisan understands that linkers or adapters may be employed in cloning the gene of interest into this <u>Bcl</u>I site. A depiction of the plasmid phd

10

15

20

25

30

is provided as Figure 2 of this document. The phd series of plasmids functions most efficiently when introduced into a host cell which produces the ElA gene product, cell lines such as AV12-664, 293 cells, and others, described supra.

performed by any of the known processes including, but not limited to, the protoplast fusion method, the calcium phosphate co-precipitation method, electroporation and the like. See, e.g., J. Sambrook, et al., supra, at 3:16.30-3:16.66.

Other routes of production are well known to skilled artisans. In addition to the plasmid discussed above, it is well known in the art that some viruses are also appropriate vectors. For example, the adenovirus, the adeno-associated virus, the vaccinia virus, the herpes virus, the baculovirus, and the rous sarcoma virus are useful. Such a method is described in U.S. Patent 4,775,624, herein incorporated by reference. Several alternate methods of expression are described in J. Sambrook, et al., supra, at 16.3-17.44.

In addition to prokaryotes and mammalian host cells, eukaryotic microbes such as yeast cultures may also be used. The imperfect fungus <u>Saccharomyces cerevisiae</u>, or common baker's yeast, is the most commonly used eukaryotic microorganism, although a number of other strains are commonly available. For expression in <u>Saccharomyces</u> sp., the plasmid YRp7 (ATCC-40053), for example, is commonly used. <u>See. e.g.</u>, L. Stinchcomb, <u>et al.</u>, <u>Nature</u>, 282:39 (1979); J. Kingsman <u>et al.</u>, <u>Gene</u>, 7:141 (1979); S. Tschemper <u>et al.</u>, <u>Gene</u>, 10:157 (1980). This plasmid already contains the <u>trp</u> gene which provides a selectable marker for a mutant strain of yeast lacking the ability to grow in tryptophan.

Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase

[found on plasmid pAP12BD (ATCC 53231) and described in U.S. Patent No. 4,935,350, issued June 19, 1990, herein incorporated by reference] or other glycolytic enzymes such

10

as enolase [found on plasmid pAC1 (ATCC 39532)], glyceraldehyde-3-phosphate dehydrogenase [derived from plasmid pHcGAPC1 (ATCC 57090, 57091)], hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase, as well as the alcohol dehydrogenase and pyruvate decarboxylase genes of Zymomonas mobilis (United States Patent No. 5,000,000 issued March 19, 1991, herein incorporated by reference).

Other yeast promoters, which are inducible promoters, having the additional advantage of their transcription being controllable by varying growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein [contained on plasmid vector pCL28XhoLHBPV] (ATCC 39475) and described in United States Patent No. 4,840,896, herein incorporated by reference], glyceraldehyde 3-phosphate dehydrogenase, and enzymes responsible for 20 maltose and galactose [e.g. GAL1 found on plasmid pRY121 (ATCC 37658)] utilization. Suitable vectors and promoters for use in yeast expression are further described in R. Hitzeman et al., European Patent Publication No. 73,657A. 25 Yeast enhancers such as the UAS Gal from Saccharomyces cerevisiae (found in conjuction with the CYC1 promoter on plasmid YEpsec--hIlbeta ATCC 67024), also are advantageously used with yeast promoters.

addition to the above-mentioned expression systems, the cloned cDNA may also be employed in the production of transgenic animals in which a test mammal, usually a mouse, in which expression or overexpression of the proteins of the present invention can be assessed. The nucleic acids of the present invention may also be employed in the construction of "knockout" animals in which the expression of the native cognate of the gene is suppressed.

15

Skilled artisans also recognize that some alterations of SEQ ID NO:2 will fail to change the function of the amino acid compound. For instance, some hydrophobic amino acids may be exchanged for other hydrophobic amino acids. Those altered amino acid compounds which confer substantially the same function in substantially the same manner as the exemplified amino acid compound are also encompassed within the present invention. Typical such conservative substitutions attempt to preserve the: (a) secondary or tertiary structure of the polypeptide backbone; (b) the charge or hydrophobicity of the residue; or (c) the bulk of the side chain. Some examples of such conservative substitutions of amino acids, resulting in the production of proteins which are functional equivalents of the protein of SEQ ID NO:2 are shown in Table II, infra.

Table II

Control of the Contro

	Origin	al Residue	Exem	plary	Substitutions
		Ala	• .	Ser,	Gly
20		Arg		Lys	
		Asn		Gln,	His
		Asp	· · · · · · · · · · · · · · · · · · ·	Glu	
		Cys	e et utalis.	Ser	
	: : ::	Gln		Asn	
25		Glu		Asp	
		Gly	· · · · · · · · · · · · · · · · · · ·	Pro,	Ala
	•	His	**		Gln
		lle	; .	Leu,	Val
		Leu		Ile,	
30		Lys		Arg,	Gln, Glu
		Mel			Ile
		Phe		•	Leu, Gyr
	,	Ser	: :	Thr	
		Thr		Ser	
35	1	Trp	· - ·	Tyr	
55		P		hi din i	The second of the second

.

5

10

15

Tyr		Trp, Phe	
Val	·	Ile. Leu	

These substitutions may be introduced into the protein in a variety of ways, such as during the chemical synthesis or by chemical modification of an amino acid side chain after the protein has been prepared.

Alterations of the protein having a sequence which corresponds to the sequence of SEQ ID NO:2 may also be induced by alterations of the nucleic acid compounds which encodes these proteins. These mutations of the nucleic acid compound may be generated by either random mutagenesis techniques, such as those techniques employing chemical mutagens, or by site-specific mutagenesis employing oligonucleotides. Those nucleic acid compounds which confer substantially the same function in substantially the same manner as the exemplified nucleic acid compounds are also encompassed within the present invention.

other embodiments of the present invention are
nucleic acid compounds which comprise isolated nucleic acid
sequences which encode SEQ ID NO:2. As skilled artisans will
recognize, the amino acid compounds of the invention can be
encoded by a multitude of different nucleic acid sequences
because most of the amino acids are encoded by more than one
nucleic acid triplet due to the degeneracy of the amino acid
code. Because these alternative nucleic acid sequences would
encode the same amino acid sequences, the present invention
further comprises these alternate nucleic acid sequences.

produced using synthetic methodology. This synthesis of nucleic acids is well known in the art. See, e.g., E.L. Brown, R. Belagaje, M.J. Ryan, and H.G. Khorana, Methods in Enzymology, 68:109-151 (1979). The DNA segments corresponding to the receptor gene are generated using conventional DNA synthesizing apparatus such as the Applied Biosystems Model 380A or 380B DNA synthesizers (commercially available from Applied Biosystems, Inc., 850 Lincoln Center

10

15

20

Drive, Foster City, CA 94404) which employ phosphoramidite chemistry. In the alternative, the more traditional phosphotriester chemistry may be employed to synthesize the nucleic acids of this invention. [See, e.g., M.J. Gait, ed., OLIGONUCLEOTIDE SYNTHESIS, A PRACTICAL APPROACH, (1984).]

The synthetic human hBNPI protein gene may be designed to possess restriction endonuclease cleavage sites at either end of the transcript to facilitate isolation from and integration into expression and amplification plasmids. The choice of restriction sites are chosen so as to properly orient the coding sequence of the receptor with control sequences to achieve proper in-frame reading and expression of the hBNPI protein. A variety of other such cleavage sites may be incorporated depending on the particular plasmid constructs employed and may be generated by techniques well known in the art.

In an alternative methodology, the desired DNA sequences can be generated using the polymerase chain reaction as described in U.S. Patent No. 4,889,818, which is herein incorporated by reference.

In addition to the deoxyribonucleic acid of SEQ ID NO:1, this invention also provides ribonucleic acids (RNA) which comprise the RNA sequence

25 CGAUAAGCUU GAUAUCGAAU UCCGGACUCU UGCUCGGGCG CCUUAACCCG GCGUUCGGUU 60 CAUCCCGCAG CGCCAGUUCU GCUUACCAAA AGUGGCCCAC UAGGCACUCG CAUUCCACGC 120 CCGGCUCCAC GCCAGCGAGC CGGGCUUCUU ACCCAUUUAA AGUUUGAGAA UAGGUUGAGA 180 30 UCGUUUCGGC CCCAAGACCU CUAAUCAUUC GCUUUACCGG AUAAAACUGC GUGGCGGGGG 240 UGCGUCGGGU CUGCGAGAGC GCCAGCUAUC CUGAGGGAAA CUUCGGAGGG AACCAGCUAC 300 35 UAGAUGGUUC GAUUAGUCUU UCGCCCCUAU ACCCAGGUCG GACGACCGAU UUGCACGUCA 360 GGACCGCUAC GGACCUCCAC CAGAGUUUCC UCUGGCUUCG CCCUGCCCAG GCGAUCGGCG 420 GGGGGACCC GCGGGGUGAC CGGCGGCAGG AGCCGCCACC AUGGAGUUCC GCCAGGAGGA 480 40 GUUUCGGAAG CUAGCGGGUC GUGCUCUCGG GAAGCUGCAC CGCCUUCUGG AGAAGCGGCA 540 GGAAGGCGCG GAGACGCUGG AGCUGAGUGC GGAUGGGCGC CCGGUGACCA CGCAGACCCG 600

	GGACCCGCCG GUGGUGGACU GCACCUGCUU CGGCCUCCCU CGCCGCUACA UUAUCGCCAU	660
5	CAUGAGUGGU CUGGGCUUCU GCAUCAGCUU UGGCAUCCGC UGCAACCUGG GCGUGGCCAU	720
	CGUCUCCAUG GUCAAIIAACA GCACGACCCA CCGCGGGGGC CACGUGGUGG UGCAGAAAGC	780
	CCAGUUCAGC UGGGAUCCAG AGACUGUCGG CCUCAUACAC GGCUCCUUUU UCUGGGGCUA	840
10	CAUUGUCACU CAGAUUCCAG GAGGAUUUAU CUGUCAAAAA UUUGCAGCCA ACAGAGUUUU	900
	CGGCUUUGCU AUUGUGGCAA CAUCCACUCU AAACAUGCUG AUCCCCUCAG CUGCCCGCGU	960
15	CCACUAUGGC UGUGUCAUCU UCGUGAGGAU CCUGCAGGGG UUGGUAGAGG GGGUCACAUA 1	.020
	CCCCGCCUGC CAUGGGAUCU GGAGCAAAUG GGCCCCACCC UUAGAACGGA GUCGCCUGGC 1	.080
	GACGACAGCC UUUUGUGGUU CCUAUGCUGG GGCGGUGGUC GCGAUGCCCC UCGCCGGGGU 1	140
20	CCUUGUGCAG UACUCAGGAU GGAGCUCUGU UUUCUACGUC UACGGCAGCU UCGGGAUCUU 1	200
	CUGGUACCUG UUCUGGCUGC UCGUCUCCUA CGAGUCCCCC GCGCUGCACC CCAGCAUCUC 1	260
25	GGAGGAGGAG CGCAAGUACA UCGAGGACGC CAUCGGAGAG AGCGCGAAAC UCAUGAACCC 1	320
	CCUCACGAAG UUUAGCACUC CCUGGCGGCG CUUCUUCACG UCUAUGCCAG UCUAUGCCAU 1	380
	CAUCGUGGCC AACUUCUGCC GCAGCUGGAC GUUCUACCUG CUGCUCAUCU CCCAGCCCGA 1	440
30	CUACUUCGAA GAAGUGUUCG GCUUCGAGAU CAGCAAGGUA GGCCUGGUGU CCGCGCUGCC 1	500
	CCACCUGGUC AUGACCAUCA UCGUGCCCAU CGGCGGCCAG AUCGCGGACU UCCUGCGGAG	560
35	CCGCCGCAUC AUGUCCACCA CCAACGUGCG CAAGUUGAUG AACUGCGGAG GCUUCGGCAU 1	620
. :	GGAAGCCACG CUGCUGUUGG UGGUCGGCUA CUCGCACUCC AAGGGCGUGG CCAUCUCCUU 10	680
	and the second the control of the co	740
40		800
	GUCGGGCAUG GUGUGCCCCA UCAUCGUGGG GGCCAUGACU AAGCACAAGA CUCGGGAGGA 18	360
45		920
		980
		040
50		100
	the state of the s	60
չ55	AAUGGCAGUU UCCAGGACCU CCAUUCCACU CAUCUCUGGC CUGAGUGACA GUGUCAAGGA 22	20

· · · i	ACCCUGCUCC	ucucuguccu	GCCUCAGGCC	UAAGAAGCAC	UCUCCCUUGU	UCCCAGUGCU	2280
5	GUCAAAUCCU		CAAUUGCCUC	UCAGGGGUAG	UGAAGCUGCA	GACUGACAGU	2340
	UUCAAGGAUA			CCCUCUCCAC	cccuucuccc	UCAGUGGUUU	2400
	CAAAUCUCUC	CUUUCAGGGC	UUUAUUUGAA	UGGACAGUUC	GACCUCUUAC	ucucucuugu	2460
10	GGUUUUGAGG		cccccuuc	CUUUAUCUCC	AGGGACUCUC	AGGCUAACCU	2520
10	UUGAGAUCAC			GAAAAAUUCA	AGGUCCUCCU	CUAGAAGUUU	2580
15	CAAAUCUCUC	CCAACUCUGU	UCUGCAUCUU	CCAGAUUGGU	UUAACCAÁUU	ACUCGUCCCC	2640
	GCCAUUCCAG	GGAUUGAUUC	UCACCAGCGU	UUCUGAUGGA	AAAUGGCGGG	AAUUCCUGCA	2700
	GCCCGGGGGA	UCCACU					2716

hereinafter referred to as SEQ ID NO:3, or the complementary ribonucleic acid, or a fragment of either SEQ ID NO:3 or the complement thereof. The ribonucleic acids of the present invention may be prepared using the polynucleotide synthetic methods discussed <u>supra</u> or they may be prepared enzymatically using RNA polymerases to transcribe a DNA template.

25 complement thereof.

20

30

35

40

The most preferred systems for preparing the ribonucleic acids of the present invention employ the RNA polymerase from the bacteriophage T7 or the bacteriophage SP6. Both of these RNA polymerases are highly specific and require the insertion of bacteriophage-specific sequences at the 5' end of the message to be read. See, J. Sambrook, et al., supra, at 18.82-18.84.

This invention also provides nucleic acids, RNA or DNA, which are complementary to SEQ ID NO:1 or SEQ ID NO:3.

The present invention also provides probes and primers useful for molecular biology techniques. A compound which encodes for SEQ ID NO:1, SEQ ID NO:3 or a complementary sequence of SEQ ID NO:1 or SEQ ID NO:3, or a fragment thereof, and which is at least 18 base pairs in length, and which will selectively hybridize to human genomic DNA or messenger RNA encoding a human brain Na⁺-dependent inorganic

WO 96/34288 PCT/US96/05792

- 29 -

phosphate cotransporter, is provided. Preferably, the 18 or more base pair compound is DNA.

The term "selectively hybridize" as used herein may refer to either of two situations. In the first such embodiment of this invention, the nucleic acid compounds described supra hybridize to a human sodium-dependent inorganic phosphate cotransporter under more stringent hybridization conditions than these same nucleic acid compounds would hybridize to an analogous sodium-dependent inorganic phosphate cotransporter of another species, e.g. murine or primate. In the second such embodiment of this invention, these probes hybridize to the hBNPI protein of the present invention under more stringent hybridization conditions than other related compounds, including nucleic acid sequences encoding other ion cotransporters.

10

15

20

25

These probes and primers can be prepared enzymatically as described <u>supra</u>. In a most preferred embodiment these probes and primers are synthesized using chemical means as described <u>supra</u>. Probes and primers of defined structure may also be purchased commercially.

This invention also encompasses recombinant DNA cloning vectors and expression vectors comprising the nucleic acids of the present invention. Many of the vectors encompassed within this invention are described above. The preferred nucleic acid vectors are those which are DNA.

The sequence of SEQ ID NO:1 was prepared as follows:

Molecular cloning of a human brain Na±-dependent inorganic

phosphate cotransporter(hBNPI)

Using a cDNA encoding the rat brain Na*-dependent inorganic phosphate cotransporter (rBNPI) (Ni, et al., 1994), we screened, under low stringency conditions, a human cDNA library derived from hippocampus mRNAs. Twelve positive clones were isolated that strongly hybridized to the ³²P-labeled probe rBNPI. Restriction endonuclease analysis

15

and/or sequencing of these clones revealed two distinct sequences: those which are highly similar to the rBNPI (B. Ni, et al., 1994, supra) as well as the kidney Na+-dependent inorganic phosphate cotransporter (Na/Pi), found in 10 clones, and those found in 2 clones which were proved to be rearrangments between the human putative phosphate transporter and other cDNAs. Of the 10 clones (designed as hBNP) which exhibited a strong similarity to rBNPI, 4 clones contained the 2.7 kb message. Sequence analysis of hBNPI predicts an open reading frame of 1683 bases, corresponding to a protein of 560 amino acids with an apparent molecular mass of 61,000 Da (61 kDa). The ATG initiation codon at position 1, which is preceded by an upstream, in-frame stop codon, matches the Kazak consensus initiation sequence for the initiation of translation.

Computer searching revealed that the protein encoded by the hBNPI shared significant sequence homology at the amino acid level with those of recently cloned rat rBNPI (98%), rabbit (31%) and human (31%) kidney phosphate 20 transporter, Na/P_i , as indicated by comparison analysis. The highest degree of homology, which was found between rBNPI and suggested that hBNPI is the human homologue of the rat rBNPI. The segment of highest homology among the proteins is confined to a region that fits the proposed consensus Na+-binding domain for various Na+-dependent 25 transporter systems (Deguchi et al., 1990). Alignment of the predicted hBNPI protein sequence with the consensus sequence indicated that amino acids leucine (L), glycine (G) and arginine (R) residues match the proposed motif and that other (F and R) are conservatively changed. The predicted hBNPI 30 protein sequence also shares 41% and 32% amino acid identity with two proteins of unknown function from Caenorhabditis elegans, ZK512.6 and C38C10.2, respectively. J. Sulston et al., Nature (London), 356:37-41 (1992). A hydropathy plot of the deduced amino acid sequence of hBNPI suggests the 35 presence of at least 6 to 8 transmembrane regions. This in the contract of the contrac

WO 96/342881 PCT/US96/05792

number of membrane-spanning domains is a characteristic structural motif of transport proteins. Based on the convention that activity of neuronal P_i transport correlates with ATP synthesis and intracellular energy charge, we have modelled hBNPI protein secondary structure with 6 transmembrane domains, which is consistent with those of other energy-linked anion transporters. The putative two glycosylation sites and two protein kinase C phosphorylation sites and four putative calmodulin-dependent kinase II phosphorylation sites are well conserved

5

10

15

25

30

35

The skilled artisan understands that the type of cloning vector or expression vector employed depends upon the availability of appropriate restriction sites, the type of host cell in which the vector is to be transfected or transformed, the purpose of the transfection or transformation (e.g., transient expression in an oocyte system, stable transformation as an extrachromosomal element, or integration into the host chromosome), the presence or absence of readily assayable markers (e.g., antibiotic 20 resistance markers, metabolic markers, or the like), and the number of copies of the gene to be present in the cell.

The type of vector employed to carry the nucleic acids of the present invention may be RNA viruses, DNA viruses, lytic bacteriophages, lysogenic bacteriophages, stable bacteriophages, plasmids, viroids, and the like. The most preferred vectors of the present invention are those derived from plasmids. 8

When preparing an expression vector the skilled artisan understands that there are many variables to be considered. One such example is the use of a constitutive promoter, i.e. a promoter which is functional at all times, instead of a regulatable promoter which may be activated or inactivated by the artisan using heat, addition or removal of a nutrient, addition of an antibiotic, and the like. practitioner also understands that the amount of nucleic acid or protein to be produced dictates, in part, the selection of the expression system. For experiments examining the amount

15

20

25

30

35

of the protein expressed on the cell membrane or for experiments examining the biological function of an expressed membrane protein, for example, it may be unwise to employ an expression system which produces too much of the protein. The addition or subtraction of certain sequences, such as a signal sequence preceding the coding sequence, may be employed by the practitioner to influence localization of the resulting polypeptide. Such sequences added to or removed from the nucleic acid compounds of the present invention are encompassed within this invention.

The starting plasmids employed to prepare the vectors of the present invention may be isolated from the appropriate <u>E. coli</u> containing these plasmids using standard procedures such as cesium chloride DNA isolation.

The plasmids of the present invention may be readily modified to construct expression vectors that produce hBNPI proteins in a variety of organisms, including, for example, E. coli, Sf9 (as host for baculovirus), Spodoptera and Saccharomyces. The current literature contains techniques for constructing AV12 expression vectors and for transforming AV12 host cells. United States Patent No. 4,992,373, herein incorporated by reference, is one of many references describing these techniques.

One of the most widely employed techniques for altering a nucleic acid sequence is by way of oligonucleotide-directed site-specific mutagenesis. B. Comack, Current Protocols in Molecular Biology, 8.01-8.5.9, (F. Ausubel, et al., eds. 1991). In this technique an oligonucleotide, whose sequence contains the mutation of interest, is synthesized as described supra. This oligonucleotide is then hybridized to a template containing the wild-type sequence. In a most preferred embodiment of this technique, the template is a single-stranded template. Particularly preferred are plasmids which contain regions such as the f1 intergenic region. This region allows the generation of single-stranded templates when a helper phage is added to the culture harboring the "phagemid".

After the annealing of the oligonucleotide to the template, a DNA-dependent DNA polymerase is then used to synthesize the second strand from the oliognucleotide, complementary to the template DNA. The resulting product is a heteroduplex molecule containing a mismatch due to the mutation in the oligonucleotide. After DNA replication by the host cell a mixture of two types of plasmid are present, the wild-type and the newly constructed mutant. This technique permits the introduction of convenient restriction sites such that the coding sequence may be placed immediately adjacent to whichever transcriptional or translational regulatory elements are employed by the practitioner.

10

15

30

35

The construction protocols utilized for <u>E. coli</u> can be followed to construct analogous vectors for other organisms, merely by substituting, if necessary, the appropriate regulatory elements using techniques well known to skilled artisans.

Host cells which harbor the nucleic acids provided by the present invention are also provided. A preferred host cell is an Xenopus sp. oocyte which has been injected with RNA or DNA compounds of the present invention. Most preferred oocytes of the present invention are those which harbor a sense mRNA of the present invention. Other preferred host cells include AV12 and E. coli cells which have been transfected and/or transformed with a vector which comprises a nucleic acid of the present invention.

The present invention also provides a method for constructing a recombinant host cell capable of expressing SEQ ID NO:2, said method comprising transforming a host cell with a recombinant DNA vector that comprises an isolated DNA sequence which encodes SEQ ID NO:2. The preferred host cell is AV12. The preferred vector for expression is one which comprises SEQ ID NO:1. Another preferred host cell for this method is <u>E. coli</u>. An especially preferred expression vector in <u>E. coli</u> is one which comprises SEQ ID NO:1. Transformed host cells may be cultured under conditions well known to

skilled artisans such that SEQ ID NO:2 is expressed, thereby producing Yb in the recombinant host cell.

The ability of ions to bind to the hBNPI protein is essential in the development of a multitude of indications. In developing agents which act as antagonists or agonists of the hBNPI protein, it would be desirable, therefore, to determine those agents which bind the hBNPI protein. Generally, such an assay includes a method for determining whether a substance is a functional ligand of the hBNPI protein, said method comprising contacting a functional 10 compound of the hBNPI protein with said substance, monitoring binding activity by physically detectable means, and identifying those substances which effect a chosen response. Preferably, the physically detectable means is competition with labeled inorganic phosphate or binding of ligand in an 15 oocyte transient expression system

The instant invention provides such a screening system useful for discovering agents which compete with inorganic phosphate for binding to the hBNPI protein, said screening system comprising the steps of:

- a) isolating a human hBNPI protein;
- b) exposing said human hBNPI protein to a potential inhibitor or surrogate of the P_i/hBNPI protein complex;
- 25 c) introducing Pi;
 - d) removing non-specifically bound molecules; and
 - e) quantifying the concentration of bound potential inhibitor and/or $P_{\rm i}$.
- 30 This allows one to rapidly screen for inhibitors or surrogates of the formation of the P_i/hBNPI protein complex.

 Utilization of the screening system described above provides a sensitive and rapid means to determine compounds which

- 35 -

interfere with the formation of the $P_i/hBNPI$ protein complex. This screening system may also be adapted to automated procedures such as a PANDEX® (Baxter-Dade Diagnostics) system allowing for efficient high-volume screening of potential therapeutic agents.

In such a screening protocol a hBNPI protein is prepared as elsewhere described herein, preferably using recombinant DNA technology. A sample of a test compound is then introduced to the reaction vessel containing the hBNPI protein followed by the addition of P_i . In the alternative the P_i may be added simultaneously with the test compound. Unbound molecules are washed free and the eluent inspected for the presence of P_i or the test compound.

5

10

For example, in a preferred method of the invention, radioactively labeled Pi may be used. The eluent 15 is then scored for the radioactivity. The absence or diminution of the chemical label or radioactivity indicates the formation of the $P_i/hBNPI$ protein complex. indicates that the test compound has not effectively competed with P_i in the formation of the $P_i/hBNPI$ protein complex. 20 presence of the chemical label or radioactivity indicates that the test compound has competed with $P_{\mathbf{i}}$ in the formation of the P_i/hBNPI protein complex. Similarly, a radioactively or chemically labeled test compound may be used in which case the same steps as outlined above would be used except that 25 the interpretation of results would be the converse of using radioactively labelled Pi.

As would be understood by the skilled artisan these assays may also be performed such that the practitioner

30 measures the radioactivity remaining with the protein, not in the eluent. A preferred such assay employs radiolabeled Pi. After the competition reaction has been performed the reaction mixture is then passed through a filter, the filter retaining the receptor and whatever is complexed with the

35 receptor. The radioactivity on each filter is then measured in a scintillation counter. In such an assay higher amounts

things of the state of the stat

of radiolabel present indicate lower affinity for the receptor by the test compound.

The hBNPI protein may be free in solution or bound to a solid support. Whether the hBNPI protein is bound to a support or is free in solution, it is generally important that the conformation of the protein be conserved. In a preferred practice of the invention, therefore, the hBNPI protein is suspended in a hydrophobic environment employing natural or synthetic detergents, membrane suspensions, and the like. Preferred detergent complexes include the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate ("CHAPS") as well as sodium deoxycholate.

Skilled artisans will recognize that desirable dissociation constant (K_i) values are dependent on the selectivity of the compound tested. For example, a compound with a K_i which is less than 10 nM is generally considered an excellent candidate for drug therapy. However, a compound which has a lower affinity, but is selective for the particular receptor, may be an even better candidate. The present invention, however, provides radiolabeled competition assays, whether results therefrom indicate high affinity or low affinity to hBNPI protein, because skilled artisans will recognize that any information regarding binding or selectivity of a particular compound is beneficial in the pharmaceutical development of drugs.

Assays useful for evaluating ion channel cotransporters are well known in the art. <u>See, e.g.</u>, B. Ni, et al., supra. One such assay is described below.

Functional analysis of hBNPI in transfected COS-1 cells

To confirm the functional properties of the hBNPI protein, we constructed the hBNPI cDNA into a mammalian expression vector (pcDNA3) and transfected the pcDNA3-hBNPI constructs into the COS-1 cells. Sodium-dependent 32Pi uptake

- 37 -

in the cells transfected with hBNPI was stimulated 2-3 fold above that of those transfected with vectors alone or of nontransfected cells. Replacement of sodium chloride with choline chloride reduced ³²Pi uptake to background levels. Northern blot analysis was employed to examine the expression of hBNPI gene in transfected COS-1 cell lines. Labeled hBNPI cDNA detected strong expression of hBNPI transcripts in the COS-1 cells transfected with hBNPI but not in those cells transfected with the vector alone.

10

Expression of hBNPI mRNA in human brain

We examined hBNPI expression in multiple human tissues by probing polyadenylated RNA from heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, 15 spleen, thymus, prostate, testis, ovary, small intestine, colon and peripheral blood leukocytes. The Northern blot analysis demonstrated that hBNPI probe detected a single mRNA species of 2.8 kb and strong expression of hBNPI transcript in the brain tissue. Trace levels of the hBNPI could be 20 detected in RNA fractions from the small intestine, colon and testis if the blot was overexposured for a longer period of time (five days versus the usual one day exposure). No signal could be detected in the other tissues. The level of hBNPI in the brain fraction is at least 100 times higher than 25 that in the intestine or colon. Northern blot analysis with multiple human brain regions shows that hBNPI mRNA is expressed in specific brain regions: most abundantly in neuron-enriched areas such as the amygdala and hippocampus; at moderate levels in glia-enriched areas such as the corpus 30 callosum; and at low levels in the substantia niga, subthalamic nuclei and thalamus. No hBNPI transcript was detected in RNAs isolated from the caudate nucleus and hypothalamus. 35

A Northern blot of human brain mRNA isolated from fetal and adult (3.7 yr-old) brain was prepared for the characterization of expression of the hBNPI during brain

development. The blot was hybridized with \$^32P\$-labeled hBNPI cDNA and human \$\beta\$-actin cDNA. The relative abundance of hBNPI mRNA shows a dramatic increase during postnatal development.

In situ hybridization histochemistry was employed to examine cells which express hBNPI transcripts in the human brain. hBNPI mRNA is highly expressed in the hippocampus formation and cerebral cortex. While the hybridization signal is present in various layers of the cerebral cortex, it appears to be more abundant in the neuronal layer v-vi where a distinct labeling is observed of pyramidal and nonpyramidal neurons. On closer inspection, it is apparent that hBNPI transcripts are concentrated in the pyramidal neurons of hippocampus and granule neurons of dentate gyrus. hybridization signal was also detected in glia-enriched areas such as the corpus callosum, a finding which is consistent with data observed in Northern blot analysis of hBNPI mRNA in the human brain, and which suggests that, unlike its rat counterpart rBNPI, the hBNPI mRNA is expressed not only in neurons but also in glia as well. Cf., Ni, et al., supra.

20

25

30

15

5

10

Genomic analysis of the hBNPI gene

Genomic Southern blotting is a valuable tool for identifying homologous genes in various species. We used hBNPI cDNA to detect hBNPI genes in a variety of vertebrate species under stringent hybridization condition. The species tested included human, monkey, rat, mouse, dog, cow, rabbit, chicken and yeast. One major fragment which appears to harbor hBNPI gene was detected in the human, monkey, dog, cow and rabbit. Two fragments generated by internal EcoRI sites were detected in the rat and mouse. No signal was detected in yeast DNA. The results suggest that hBNPI sequence is well conserved among vertebrate species.

Genomic DNAs derived from four human individuals

were digested with restriction endonuclases and used to
determine the hBNPI gene structure and possible polymorphisms
by Southern blot techniqus utilizing the full length hBNPI

- 39 -

cDNA as a probe. The restriction patterns derived from 9 restrictions endonuclases are rather simple, and are similar between the four individuals. One major hybridizing fragment is generated by internal EcoRI, BqlII, HindIII, PstI, PvuII, respectively. One major fragment with multiple weak hybridizing bands was generated by internal digestion with TaqI, MspI and BamHI. The results suggest that hBNPI gene structure is compact, that it is most likely present as a single copy, and that no polymorphisms of hBNPI gene exist.

10

5

Chromosome localization

Using hBNPI cDNA we screened a library constructed with human leukocyte DNA to isolate the hBNPI gene. After several rounds of screening, a 23 kb DNA fragment was 15 isolated and identified as hBNPI gene. The hBNPI gene was labeled with digoxigenin dUTP by nick translation and hybridized to normal metaphase chromosomes derived from PHAstimulated peripheral blood lymphocytes using a fluorescent in situ hybridization (FISH) technique. A specific 20 hybridization signal was detected in the long arm of chromosome 19. Assignment of the hBNPI gene to the region of 19 was further confirmed by colocalization of a chromosome 19 specific probe, E2A, with the hBNPI gene. Measurements of ten specifically hybridized chromosomes 19 demonstrated that 25 hBNPI gene is located 66% of the distance from the centromere to the telomere of chromosome arm 19q, an area that corresponds to band 19q13.3. No positive signals were observed in any other chromosomes. Analysis of interphase cells show only one copy of the probe present in the human 30 genome, a finding which is consistent with the results of the genomic Southern blot.

The previously described screening systems identify

compounds which competitively bind to the hBNPI protein.

Determination of the ability of such compounds to stimulate or inhibit the action of the hBNPI protein is essential to

10

20

25

30

further development of such compounds for therapeutic applications. The need for a bioactivity assay system which determines the response of the hBNPI protein to a compound is clear. The instant invention provides such a bioactivity assay, said assay comprising the steps of:

- a) transfecting a mammalian host cell with an expression vector comprising DNA encoding a hBNPI protein;
- b) culturing said host cell under conditions such that the DNA encoding the hBNPI protein is expressed,

- c) exposing said host cell so transfected to a test compound, and
 - d) measuring the change in a physiological condition known to be influenced by the binding of a cation to the hBNPI protein relative to a control in which the transfected host cell is not exposed to the test compound.

An oocyte transient expression system can be constructed according to the procedure described in S. Lübbert, et al., Proceedings of the National Academy of Sciences (USA), 84:4332 (1987).

In an especially preferred embodiment of this invention an assay measuring the inhibition of radiolabeled phosphate uptake was performed. The inhibition of phosphate uptake is a relatively simple assay used to determine those agents which negatively affect the proteins of the present invention.

In another embodiment this invention provides a

method for identifying, in a test sample, DNA homologous to a
probe of the present invention, wherein the test nucleic acid
is contacted with the probe under hybridizing conditions and

10

15

20

25

30

35

identified as being homologous to the probe. Hybridization techniques are well known in the art. <u>See, e.g.</u>, J. Sambrook, <u>et al.</u>, <u>supra</u>, at Chapter 11.

The nucleic acid compounds of the present invention may also be used to hybridize to genomic DNA which has been digested with one or more restriction enzymes and run on an electrophoretic gel. The hybridization of radiolabeled probes onto such restricted DNA, usually fixed to a membrane after electrophoresis, is well known in the art. See, e.g., J. Sambrook, supra. Such procedures may be employed in searching for persons with mutations in these receptors by the well-known techniques of restriction fragment length polymorphisms (RFLP), the procedures of which are described in U.S. Patent 4,666,828, issued May 19, 1987, the entire contents of which is herein incorporated by reference.

The proteins of this invention as well as fragments of these proteins may be used as antigens for the synthesis of antibodies. The term "antibody" as used herein describes antibodies, fragments of antibodies (such as, but not limited, to Fab, Fab', Fab2', and Fv fragments), and chimeric, humanized, veneered, resurfaced, or CDR-grafted antibodies capable of binding antigens of a similar nature as the parent antibody molecule from which they are derived. The instant invention also encompasses single chain polypeptide binding molecules.

The term "antibody" as used herein is not limited by the manner in which the antibodies are produced, whether such production is in situ or not. The term "antibody" as used in this specification encompasses those antibodies produced by recombinant DNA technology means including, but not limited, to expression in bacteria, yeast, insect cell lines, or mammalian cell lines.

The production of antibodies, both monoclonal and polyclonal, in animals, especially mice, is well known in the art. See, e.g., C. Milstein, HANDBOOK OF EXPERIMENTAL IMMUNOLOGY, (Blackwell Scientific Pub., 1986); J. Goding, Monoclonal ANTIBODIES: PRINCIPLES AND PRACTICE, (Academic Press, 1983). For

15

20

the production of monoclonal antibodies the basic process begins with injecting a mouse, or other suitable animal, with an immunogen. The mouse is subsequently sacrificed and cells taken from its spleen are fused with myeloma cells, resulting in a hybridoma that reproduces in vitro. The population of hybridomas is screened to isolate individual clones, each of which secretes a single antibody species, specific for the immunogen. The individual antibody species obtained in this way is each the product of a single B cell from the immune animal generated in response to a specific antigenic site, or epitope, recognized on the immunogenic substance.

Chimeric antibodies are described in U.S. Patent No. 4,816,567, which issued March 28, 1989 to S. Cabilly, et al. This reference discloses methods and vectors for the preparation of chimeric antibodies. The entire contents of U.S. Patent No. 4,816,567 are herein incorporated by reference. An alternative approach to production of genetically engineered antibodies is provided in U.S. Patent No. 4,816,397, which also issued March 28, 1989 to M. Boss, et al., the entire contents of which are herein incorporated by reference. The Boss patent teaches the simultaneous co-expression of the heavy and light chains of the antibody in the same host cell.

The approach of U.S. Patent 4,816,397 has been further refined as taught in European Patent Publication No. 25 0 239 400, which published September 30, 1987. The teachings of this European patent publication (Winter) are a preferred format for the genetic engineering of the reactive monoclonal antibodies of this invention. The Winter technology involves the replacement of complementarity determining regions (CDRs) 30 of a human antibody with the CDRs of a murine monoclonal antibody thereby converting the specificity of the human antibody to the specificity of the murine antibody which was the source of the CDR regions. This "CDR grafting" technology affords a molecule containing minimal murine 35 sequence and thus is less immunogenic.

- 43 -

Single chain antibody technology is yet another variety of genetically engineered antibody which is now well known in the art. See, e.g. R.E. Bird, et al., Science 242:423-426 (1988); Patent Cooperation Treaty Publication No. 5 WO 88/01649, which was published 10 March 1988. The single chain antibody technology involves joining the binding regions of heavy and light chains with a polypeptide sequence to generate a single polypeptide having the binding specificity of the antibody from which it was derived.

The aforementioned genetic engineering approaches provide the skilled artisan with numerous means to generate molecules which retain the binding characteristics of the parental antibody while affording a less immunogenic format.

10

15

25

30

35

These antibodies are used in diagnostics, therapeutics or in diagnostic/therapeutic combinations. By "diagnostics" as used herein is meant testing that is related to either the in vitro or in vivo diagnosis of disease states or biological status in mammals, preferably in humans. "therapeutics" and "therapeutic/diagnostic combinations" as 20 used herein is respectively meant the treatment or the diagnosis and treatment of disease states or biological status by the in vivo administration to mammals, preferably. humans, of the antibodies of the present invention. antibodies of the present invention are especially preferred in the diagnosis and/or treatment of conditions associated with an excess or deficiency of hBNPI proteins.

In addition to being functional as direct therapeutic and diagnostic aids, the availability of a family of antibodies which are specific for the hBNPI protein enables the development of numerous assay systems for detecting agents which bind to this protein. One such assay system comprises radiolabeling hBNPI protein-specific antibodies with a radionuclide such as 125I and measuring displacement of the radiolabeled hBNPI protein-specific antibody, from solid phase hBNPI protein in the presence of a potential antagonist or inhibitor.

15

20

25

30

35

Numerous other assay systems are also readily adaptable to detect agents which bind hBNPI protein. Examples of these aforementioned assay systems are discussed in Methods in Enzymology, (J. Langone. and H. Vunakis, eds.

1981), Vol. 73, Part B, the contents of which are herein incorporated by reference. Skilled artisans are directed to Section II of <u>Methods in Enzymology</u>, Vol. 73, Part B, <u>supra</u>, which discusses labeling of antibodies and antigens, and Section IV, which discusses immunoassay methods.

In addition to the aforementioned antibodies specific for the hBNPI protein, this invention also provides antibodies which are specific for the hypervariable regions of the anti-hBNPI protein antibodies. Some such anti-idiotypic antibodies would resemble the original epitope, the hBNPI protein, and, therefore, would be useful in evaluating the effectiveness of compounds which are potential antagonists, agonists, or partial agonists of the hBNPI protein. See, e.g., Cleveland, et al., Nature (London), 305:56 (1983); Wasserman, et al., Proceedings of the National Academy of Sciences (USA), 79:4810 (1982).

In another embodiment, this invention encompasses pharmaceutical formulations for parenteral administration which contain, as the active ingredient, the anti-hBNPI protein antibodies described, <u>supra</u>. Such formulations are prepared by methods commonly used in pharmaceutical chemistry.

Products for parenteral administration are often formulated and distributed in solid, preferably freeze-dried form, for reconstitution immediately before use. Such formulations are useful compositions of the present invention. Their preparation is well understood by pharmaceutical chemists.

In general, these formulations comprise the active ingredient in combination with a mixture of inorganic salts, to confer isotonicity, as well as dispersing agents such as lactose, to allow the dried preparation to dissolve quickly

upon reconstitution. Such formulations are reconstituted for use with highly purified water to a known concentration.

Alternatively, a water soluble form of the antibody can be dissolved in one of the commonly used intravenous fluids and administered by infusion. Such fluids include physiological saline, Ringer's solution or a 5% dextrose solution.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Ni, Binhui Paul, Steven M.
- (ii) TITLE OF INVENTION: HUMAN BRAIN SODIUM DEPENDENT INORGANIC PHOSPATE COTRANSPROTER AND RELATED NUCLEIC ACID COMPOUNDS

and the second of the second of the second

- (iii) NUMBER OF SEQUENCES: 3
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Eli Lilly and Company

- (B) STREET: Lilly Corporate Center
- (C) CITY: Indianapolis
- (D) STATE: Indiana
- (E) COUNTRY: United States of America
 - (F) ZIP: 46285
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/430,033
 - (B) FILING DATE: April 27, 1995
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Blalock, Donna K.

 - (B) REGISTRATION NUMBER: 38,082
 (C) REFERENCE/DOCKET NUMBER: X-10006
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (317) 276-0756
 - (B) TELEFAX: (317) 276-3861
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2716 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 461..2143

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGATAAGCTT GATATCGAAT TCCGGACTCT TGCTCGGGCG CCTTAACCCG GCGTTCGGTT	60
CATCCCGCAG CGCCAGTTCT GCTTACCAAA AGTGGCCCAC TAGGCACTCG CATTCCACGC	120
CCGGCTCCAC GCCAGCGAGC CGGGCTTCTT ACCCATTTAA AGTTTGAGAA TAGGTTGAGA	180
TCGTTTCGGC CCCAAGACCT CTAATCATTC GCTTTACCGG ATAAAACTGC GTGGCGGGGG	240
TGCGTCGGGT CTGCGAGAGC GCCAGCTATC CTGAGGGAAA CTTCGGAGGG AACCAGCTAC	300
TAGATGGTTC GATTAGTCTT TCGCCCCTAT ACCCAGGTCG GACGACCGAT TTGCACGTCA	360
GGACCGCTAC GGACCTCCAC CAGAGTTTCC TCTGGCTTCG CCCTGCCCAG GCGATCGGCG	420
GGGGGGACCC GCGGGGTGAC CGGCGGCAGC AGCCGCCACC ATG GAG TTC CGC CAG	475
Met Glu Phe Arg Gln 1 5	
GAG GAG TTT CGG AAG CTA GCG GGT CGT GCT CTC GGG AAG CTG CAC CGC	500
Glu Glu Phe Arg Lys Leu Ala Gly Arg Ala Leu Gly Lys Leu His Arg	523
10 15 20	•
CTT CTC CAC AND CCC CAC CAN CCC CAC CAC AND AND AND AND AND AND	
CTT CTG GAG AAG CGG CAG GAA GGC GCG GAG ACG CTG GAG CTG AGT GCG Leu Leu Glu Lys Arg Gln Glu Gly Ala Glu Thr Leu Glu Leu Ser Ala	571
25 30 35	
GAT GGG CGC CCG GTG ACC ACG CAG ACC CGG GAC CCG CCG GTG GTG GAC	619
Asp Gly Arg Pro Val Thr Thr Gln Thr Arg Asp Pro Pro Val Val Asp	
40 45 50	•.
TGC ACC TGC TTC GGC CTC CCT CGC CGC TAC ATT ATC GCC ATC ATG AGT	667
Cys Thr Cys Phe Gly Leu Pro Arg Arg Tyr Ile Ile Ala Ile Met Ser	007
55 60 65	
GGT CTG GGC TTC TGC ATC AGC TTT GGC ATC CGC TGC AAC CTG GGC GTG	715
Gly Leu Gly Phe Cys Ile Ser Phe Gly Ile Arg Cys Asn Leu Gly Val	/15
70 75 80 85	
GCC ATC GTC TCC ATG GTC AAT AAC AGC ACG ACC CAC CGC GGG GGC CAC	763
Ala Ile Val Ser Met Val Asn Asn Ser Thr Thr His Arg Gly Gly His	, 63
90 95 100	
GTG GTG GTG CAG AAA GCC CAG TTC AGC TGG GAT CCA GAG ACT GTC GGC	811
Val Val Gln Lys Ala Gln Phe Ser Trp Asp Pro Glu Thr Val Gly	
105 110 115	
CTC ATA CAC GGC TCC TTT TTC TGG GGC TAC ATT GTC ACT CAG ATT CCA	859
Leu Ile His Gly Ser Phe Phe Trp Gly Tyr Ile Val Thr Gln Ile Pro	000
120 125 130	

	GGA Gly 135															907
	ATT															955
	GTC Val															1003
	GAG Glu															1051
	CCA Pro															1099
	TAT Tyr 215															1147
	TAC Tyr															1195
	TTC Phe															1243
	CAC His															1291
	GGA Gly		Ser					Asn								1339
	TGG Trp 295	Arg					Ser									1387
	Asn					Trp					Leu				CAG Gln 325	1435
Pro	GAC Asp	Tyr	Phe	Glu 330	Glu	Val	Phe	Gly	Phe 335	Glu	Ile	Ser	Lys	Val 3 4 0	Gly	1483
				Lei					Met					Pro	ATC Ile	1531

			Ile												ACC Thr		1579
ACC Thr	AAC Asn 375	GTG Val	CGC Arg	AAG Lys	TTG Leu	ATG Met 380	AAC Așn	TGC	GGA Gly	GGC	TTC Phe 385	Gly	'ATG Met	GAA Glu	GCC Ala		1627
ACG Thr 390	Leu	CTG Leu	TTG Leu	GTG Val	GTC Val 395	GGC Gly	TAC Tyr	TCG Ser	CAC His	TCC Ser 400	AAG Lys	GGC Gly	GTG Val	GCC Ala	ATC Ile 405		1675
TCC Ser	TTC Phe	CTG Leu	GTC Val	CTA Leu 410	GCC Ala	GTG Val	GGC Gly	TTC Phe	AGC Ser 415	GGC Gly	TTC Phe	GCC Ala	ATC Ile	TCT Ser 420	GGG Gly		1723
			AAC Asn 425														1771
ATG Met	GGC Gly	ATC Ile 440	TCC Ser	AAC Asn	GGC Gly	GTG Val	GGC Gly 445	ACA Thr	CTG Leu	TCG Ser	GGC Gly	ATG Met 450	GTG Val	TGC Cys	CCC Pro		1819
ATC Ile	ATC Ile 455	GTG Val	GGG Gly	GCC Ala	ATG Met	ACT Thr 460	AAG Lys	CAC His	AAG Lys	ACT Thr	CGG Arg 465	GAG Glu	GAG Glu	TGG Trp	CAG Gln		1867
TAC Tyr 470	GTG Val	TTC Phe	CTA Leu	ATT Ile	GCC Ala 475	TCC Ser	CTG Leu	GTG Val	CAC His	TAT Tyr 480	GGA Gly	GGT Gly	GTC Val	ATC Ile	TTC Phe 485	٠	1915
TAC Tyr	GGG Gly	GTC Val	TTT Phe	GCT Ala 490	TCT Ser	GGA Gly	GAG Glu	AAG Lys	CAG Gln 495	CCG Pro	TGG Trp	GCA Ala	GAG Glu	CCT Pro 500	GAG Glu	- 5 • 7 • • ₹	1963
			GAG Glu 505														2011
GGC Gly	AGT Ser	GAC Asp 520	GAC Asp	AGC Ser	GAA Glu	ATG Met	GAG Glu 525	GAT Asp	GAG Glu	GCT Ala	GAG Glu	CCC Pro 530	CCG Pro	GGG Gly	GCA Ala		2059
			CCC Pro		Pro												2107
CCC Pro 550	CCC Pro	AGG _. Arg	CCC Pro	CCA Pro	CCC Pro 555	CCT Pro	GȚC Val	CGG Arg	GAC Asp	TAC Tyr 560	TGA *	CCAT	GTGC	CT			2153
CCCA	CTGA	AT G	GCAG	TŢTC	C AG	GACC	TCCA	TTC	CACT	CAT	CTCT	GGCC	TG A	GTGA	CAGTG		2213
TCAA	.GGAA	.cc c	TGCT	CCTC	т ст	GTCC	TGCC	TCA	GGCC	TAA	GAAG	CACT	CT C	CCTT	GTTCC		2273

CAGTGCTGTC	AAATCCTCTT	TCCTTCCCAA	TTGCCTCTCA	GGGGTAGTGA	AGCTGCAGAC	2333
TGACAGTTTC	AAGGATACCC	AAATTCCCCT	AAAGGTTCCC	TCTCCACCCG	TTCTGCCTCA	2393
GTGGTTTCAA	ATCTCTCCTT	TCAGGGCTTT	ATTTGAATGG	ACAGTTCGAC	CTCTTACTCT	2453
CTCTTGTGGT	TTTGAGGCAC	CCACACCCCC	CGCTTTCCTT	TATCTCCAGG	GACTCTCAGG	2513
CTAACCTTTG	AGATCACTCA	GCTCCCATCT	CCTTTCAGAA	AAATTCAAGG	TCCTCCTCTA	2573
GAAGTTTCAA	ATCTCTCCCA	ACTCTGTTCT	GCATCTTCCA	GATTGGTTTA	ACCAATTACT	2633
CGTCCCCGCC	ATTCCAGGGA	TTGATTCTCA	CCAGCGTTTC	TGATGGAAAA	TGGCGGGAAT	2693
TCCTGCAGCC	CGGGGGATCC	ACT				2716

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 561 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met 1	Glu	Phe	Arg	Gln 5	Glu	Glu	Phe	Arg	Lys 10	Leu	Ala	Gly	Arg	Ala 15	Leu
Gly	Lys	Leu	His 20	Arg	Leu	Leu	Glu	Lys 25	Arg	Gln	Glu	Gly	Ala 30	Glu	Thr
Leu	Glu	Leu 35	Ser	Ala	Asp	Gly	Arg 40	Pro	Val	Thr	Thr	Gln 45	Thr	Arg	Asp
Pro	Pro 50	Val	Val	Asp	Cys	Thr 55	Cys	Phe	Gly	Leu	Pro 60	Arg	Arg	Týr	Ile
Ile 65	Ala	Ile	Met	Ser	Gly 70	Leu	Gly	Phe	Cys	Ile 75	Ser	Phie	Gly	Ile	Arg 80
Cys	Asn	Leu	Gly	Val 85	Ala	Ile	Val	Ser	Me t 90	Val	Asn	Asn	Ser	Thr 95	Thr
His	Arg		Gly 100		Val	Val	Val	Gln 105	Lys	Ala	Glņ	Phe	Ser 110	Trp	Asp
Pro	Glu	Thr	Val	Gly	Leu	Ile	His	Gly	Ser	Phe	Phe	Trp	Gly	Tyr	Ile

Val Thr Gln Ile Pro Gly Gly Phe Ile Cys Gln Lys Phe Ala Ala Asn

135

130

125

Arg		Phe	e Gly	Phe	Ala 150		Val	Ala	Thr	Ser 155		: Leu	Asn	Met	Leu 160	
Ile	Pro	Ser	Ala	Ala 165		Val	His	Tyr	Gly 170		Val	Ile	Phe	Val 175	Arg	
Ilę	Leu	Gln	Gly 180		Val	Glu	Gly	Val 185	•	Туг	Pro	Ala	Cys 190		Gly	
Ile	Trp	Ser 195		Trp	Ala	Pro	Pro 200	Leu	Glu	Arg	Ser	Arg 205		Ala	Thr	
. Thr	Ala 210	Phe	Суѕ	Gly	Ser	Tyr 215	Ala	Gly	Ala	Val	Va 1 220	Ala	Met	Pro	Leu	
Ala 225	Gly	Val	Leu	Val	Gln 230	Tyr	Ser	Gly	Trp	Ser 235	Ser	Val	Phe	Tyr	Val 240	
Tyr	Gly	Ser	Phe	Gly 2 4 5	Ile	Phe	Trp	Tyr	Leu 250	Phe	Trp	Leu	Leu	Val 255	Ser	
Tyr	Glu	Ser	Pro 260	Ala	Leu	His	Pro	Ser 265	Ile	Ser	Glu	Glu	Glu 270	Arg	Lys	
Tyr	Ile	Glu 275	Asp	Ala	Ile	Gly	Glu 280	Ser	Ala	Lys	Leu	Met 285	Asn	Pro	Leu	
Thr	Lys 290	Phe	Ser	Thr	Pro	Trp 295	Arg	Arg	Phe	Phe	Thr 300	Ser	Met	Pro	Val	
Tyr 305	Ala	Ile	Ile		Ala .310	Asn	Phe	Суѕ	Arg	Ser 315	Trp	Thr	Phe	Tyr	Leu 320	
Leu	Leu	Ile	Ser	Gln 325	Pro	Asp	Tyr	Phe	Glu 330		Val	Phe	Gly		Glu	
Ile	Ser	Lys	Val 340	Gly	Leu	Val	Ser	Ala 345	Leu	Pro	His		Val 350	Met	Thr	
Ile	Ile	Val 355	Pro	Ile	Gly	Gly	Gln 360	Ile	Ala	Asp	Phe	Leu 365	Arg	Ser	Arg	
Arg	Ile 370	Met	Ser	Thr	Thr	Asn 375		Arg	Lys	Leu	Met 380	Asn	Cys	Gly	Gly	
Phe 385	Gly	Met	Glu	Ala	Thr 390	Leu	Leu	Leu	Val	Val 395		Туг	Ser	His	Ser 400	
Lys	Gly	Val	Ala	Ile 405	Ser	Phe	Leu	Val	Leu 410	Ala	Val,	Gly	Phe	Ser 415	Gly	
Phe	Ala	Ile	s r 420		Phe	Asn	Val	Asn 425	His	Leu	Asp	Ile	Ala 430	Pro	Arg	

Tyr	Ala	Ser 435	Ile	Leu	Met		11e 440	Ser ?	Asn	Gly	Val	Gly 445	Thr	Leu	Ser
Gly	Met 450	Val	Cys	Pro	Ile	Ile 455	Val	Gly	Ala	Met	Thr 460	Lys	His	Lys	Thr
Arg 465	Glu	Glu	Trp	Gln		Val		Leu	Ile	Ala 475	Ser	Leu	Val	His	Tyr 480
Gly	Gly	Val	Ile	Phe 485	Tyr	Gly	Val	Phe	Ala 490	Ser	Gly	Glu	Lys	Gln 495	Pro
Trp	Ala		Pro 500	Glu	Glu	Met	Ser	Glu 505	Gļu	Lys	Cys	Gly	Phe 510		Gly
His	Asp	Gln 515	Leu	Ala	Gly	Ser	Asp 520	Asp	Ser	Glu	Met	Glu 525	Asp	Glu	Ala
Glu	Pro 530	Pro	Gly	Ala		Pro -535		Pro	Pro	Pro	Ser 540	Tyr	Gly	Ala	Thr
His 545	Ser	Thr	Phe	Gln	Pro 550	Pro	Arg	Pro	Pro	Pro 555	Pro	Val	Arg	Asp	Tyr 560

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2716 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: RNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CGAUAAGCUU	GAUAUCGAAU	UCCGGACUCU	necnéeece	CCUUAACCCG	GCGUUCGGUU	60
CAUCCCGCAG	CGCCAGUUCU	GCUUACCAAA	AGUGGCCCAC	UAGGCACUCG	CAUUCCACGC	120
CCGGCUCCAC	GCCAGCGAGC	CGGCCUUCUU	ACCCAUUUAA	AGUUUGAGAA	UAGGUUGAGA	180
ucguuucgc	CCCAAGACCU	CUAAUCAUUC	GCUUUACCGG	AUAAAACUGC	GUGGCGGGG	240
UGCGUCGGGU	CUGCGAGAGC	GCCAGCUAUC	CUGAGGGAAA	CUUCGGAGGG	AACCAGCUAC	300
UAGAUGGUUC	GAUUAGUCUU	UCCCCCUAU	ACCCAGGUCG	GACGACCGAU	UUGCACGUCA	360
GGACCGCUAC	GGACCUCCAC	CAGAGUUUCC	UCUGGCUUCG	CCCUGCCCAG	GCGAUCGGCG	420

The state of the s

GGGGGGACCC	GCGGGGGGAC	CGGCGGCAGG	AGCCGCCAC	AUGGAGUUC	CGCCAGGAGGA	480
GUUUCGGAAG	CUAGCGGGUC	GUGCUCUCGG	GAAGCUGCAC	ceccuucue	G . AGAAGCGGCA	540
GGAAGGCGCG	GAGACGCUGG	AGCUGAGUGC	GGAUGGGCGC	CCGGUGACC	A CGCAGACCCG	600
GGACCCGCCG	GUGGUGGACU	GCACCUGCUU	ceeccucccu	CGCCGCUAC	UUAUCGCCAU	660
CAUGAGUGGU	cugggcuucu	GCAUCAGCUU	UGGCAUCCGC	UGCAACCUGO	GCGUGGCCAU	720
CGUCUCCAUG	GUCAAUAACA	GCACGACCCA	ccccccccc	CACGUGGUGG	UGCAGAAAGC	780
CCAGUUCAGC	UGGGAUCCAG	AGACUGUCGG	CCUCAUACAC	GGCUCCUUUU	UCUGGGCUA	840
CAUUGUCACU	CAGAUUCCAG	GAGGAUUUAU	CUGUCAAAAA	UUUGCAGCCA	ACAGAGUUUU	900
CGGCUUUGCU	AUUGUGGCAA	CAUCCACUCU	AAACAUGCUG	AUCCCCUCAG	CUGCCCGCGU	960
CCACUAUGGC	UGUGUCAUCU	UCGUGAGGAU	CCUGCAGGG	UUGGUAGAGG	GGGUCACAUA	1020
cccccccucc	CAUGGGAUCU	GGAGCAAAUG	GGCCCCACCC	UUAGAACGGA	GUCGCCUGGC	1080
GACGACAGCC	UUUUGUGGUU	CCUAUGCUGG	GGCGGUGGUC	GCGAUGCCCC	UCGCCGGGGU	1140
CCUUGUGCAG	UACUCAGGAU	GGAGCUCUGU	UUUCUACGUC	UACGGCAGCU	UCGGGAUCUU	1200
CUGGUACCUG	UUCUGGCUGC	UCGUCUCCUA	CGAGUCCCCC	GCGCUGCACC	CCAGCAUCUC	1260
GGAGGAGGAG	CGCAAGUACA	UCGAGGACGC	CAUCGGAGAG	AGCGCGAAAC	UCAUGAACCC	1320
CCUCACGAAG	UUUAGCACUC	CCUGGCGGCG	CUUCUUCACG	UCUAUGCCAG	UCUAUGCCAU	1380
CAUCGUGGCC	AACUUCUGCC	GCAGCUGGAC	GUUCUACCUG	CUGCUCAUCU	CCCAGCCCGA	-1440
CUACUUCGAA	GAAGUGUUCG	GCUUCGAGAU	CAGCAAGGUA	GGCCUGGUGU	ccccccuccc	1500
CCACCUGGUC	AUGACCAUCA	UCGUGCCCAU	CGGCGGCCAG	AUCGCGGACU	UCCUGCGGAG	1560
CCGCCGCAUC	AUGUCCACCA	CCAACGUGCG	CAAGUUGAUG	AACUGCGGAG	GCUUCGGCAU	1620
GGAAGCCACG	CUGCUGUUGG	UGGUCGGCUA	CUCGCACUCC	AAGGCGUGG	CCAUCUCCUU	1680
CCUGGUCCUA	cccucccu	UCAGCGGCUU	CGCCAUCUCU	GGGUUCAACG	UGAACCACCU	1740
GGACAUAGCC	CCGCGCUACG	CCAGCAUCCU	CAUGGGCAUC	UCCAACGGCG	UGGGCACACU	1800
GUCGGGCAUG	GUGUGCCCCA	UCAUCGUGGG	GGCCAUGACU	AAGCACAAGA	CUCGGGAGGA	1860
GUGGCAGUAC	GUGUUCCUAA	nnecenceen	GGUGCACUAU	GGAGGUGUCA	UCUUCUACGG	1920
GUCUUUGCU	UCUGGAGAGA	AGCAGCCGUG	GGCAGAGCCU	GAGGAGAUGA	GCGAGGAGAA	1980
SUGUGGCUUC	GUUGGCCAUG	ACCAGCUGGC	UGGCAGUGAC	GACAGCGAAA	UGGAGGAUGA	2040

GGCUGAGCCC CCGGGGGCAC	CCCCUGCACC	ccccccucc	UAUGGGCCA	CACACAGCAC	2100
AUUUCAGCCC CCCAGGCCCC					2160
AAUGGCAGUU UCCAGGACCU	CCAUUCCACU	CAUCUCUGGC	CUGAGUGACA	GUGUCAAGGA	2220
ACCCUGCUCC UCUCUGUCCU	GCCUCAGGCC	UAAGAAGCAC	ucucccutigu	UCCCAGUGCU	2280
GUCAAAUCCU CUUUCCUUCC	CAAUUGCCUC	UCAGGGGUAG	UGAAGCUGCA	GACUGACAGU	2340
UUCAAGGAUA CCCAAAUUCC	CCUAAAGGUU	CCCUCUCCAC	ccguucugcc	UCAGUGGUUU	2400
CAAAUCUCUC CUUUCAGGGC	UUUAUUUGAA	UGGACAGUUC	GACCUCUUAC	ucucucuugu	2460
GGUUUUGAGG CACCCACACC	cccccuuuc	CUUUAUCUCC	AGGGACUCUC	AGGCUAACCU	2520
UUGAGAÜCAC UCAGCUCCCA	UCUCCUUUCA	GAAAAAUUCA	AGGUCCUCCU	CUAGAAGUUU	2580
CAAAUCUCUC CCAACUCUGU	UCUGCAUCUU	CCAGAUUGGU	UUÄACCAAUU	ACUCGUCCCC	2640
GCCAUUCCAG GGAUUGAUUC	UCACCAGCGU	UUCUGAUGGA	AAAUGGCGGG	AAUUCCUGCA	2700
GCCCGGGGGA UCCACU					2716

We Claim:

1. An isolated amino acid compound functional as a human brain Na⁺-dependent inorganic phosphate cotransporter which comprises the amino acid sequence

5	which	ı co	mpr	ises	s th	e ar	mino	ac	id s	sequ	ence	9 .	**			• •	
	• .	Met 1	Glu	Phe	Arg	Gln 5	Glu	Glu	Phe	Arg	Lys 10		Ala	Gly	Arg	Ala 15	Leu
10		Gly	Lys	Leu	His 20	Arg	Leu	Leu	Glu	Lys 25		Gln	Glu	Gly	Ala 30		Thr
15		Leu	Glu	Leu 35	Ser	Ala	Asp	Gly	Arg 40	Pro	Val	Thr	Thr	Gln 45	Thr	Arg	Asp
		Pro	Pro 50	Val	Val	Asp	Cys	Thr 55	Cys	Phe	Gly	Leu	Pro 60	Arg	Arg	Tyr	Ile
20		11e 65	Ala	Ile	Met	Ser	'Glÿ 70	Leu	Gly	Phe	Cys	Ile 75	Ser	Phe	Ġly	Ile	Arg 80
		Cys	Asn	Leu	Gly	Val 85	Ala	Ile	Val	Ser	Met 90	Val	Asn	Asn	Ser	Thr 95	Thr
25		His	Arg	Gly	Gly 100	His	Val	Val	Val	Gln 105	Lys	Ala	Gln	Phe	Ser 110	Trp	Asp
30		Pro	Glu	Thr 115	Val	Gly	Leu	Ile	His 120	Gly	Ser	Phe	Phe	Trp 125	Gly	Tyr	Ile
		Val	Thr 130	Gln	Ile	Pro	Gly	Gly 135	Phe	Ile	Cys	Gln	Lys 140	Phe	Ala	Ala	Asn
35		Arg 145	Val	Phe	Gly	Phe	Ala 150	Ile	Val	Ala	Thr	Ser 155	Thr	Leu	Asn	Met	Leu 160
		Ile	Pro	Ser	Ala	Ala 165	Arg	Val	His	Tyr	Gly 170	Cys	Val	Ile	Phe	Val 175	Arg
40		Ile	Leu	Gln	Gly 180	Leu	Val	Glu	Gly	Val 185	Thr	Tyr	Pro	Ala	Cys 190	His	Gly
45		Ile	Trp	Ser 195	Lys	Trp	Ala	Pro	Pro 200	Leu	Glu	Arg	Ser	Arg 205	Leu	Ala	Thr
	,		Ala 210	Phe	Суѕ	Gly	Ser	Tyr 215	Ala	Gly	Ala	Val	Val 220	Ala	Met	Pro	Leu
50		Ala 225	Gly	Val	Leu	Val	Gln 230	Tyr	Ser	Gly	Trp	Ser 235	Ser	Val	Phe	Tyr	Val 240

		Tyr	Gly	Ser	Phe	Gly 245	Ile	Phe	Trp	Tyr	Leu 250	Phe	Trp	Leu	Leu	Val 255	Ser
5		Tyr	Glu	Ser	Pro 260	Ala	Leu	His	Pro	Ser 265	Ile	Ser	Glu	Glu	Glu 270	Arg	Lys
	:	Tyr	Ile	Glu 275	Asp	Ala	Ile		Glu 280		Ala	Lys	Leu	Met 285	Asn	Pro	Leu
10		Thr	Lys 290	Phe	Ser	Thr	Pro	Trp 295	Arg	Arg	Phe	Phe	Thr 300	Ser	Met	Pro	Val
15	:	Tyr 305	Ala	Ile	Ile	Val	Ala 310	Asn	Phe	Cys	Arg	Ser 315		Thr	Phe	Tyr	Leu 320
		Leu	Leu	Ile	Ser	Gln 325	Pro	Asp	Tyr	Phe	Glu 330		Val	Phe	Gly	Phe 335	Glu
20		Ile	Ser	Lys	Val 340	Gly	Leu	Val	Ser	Ala 345	Leu	Pro	His	Leu	Val 350	Met	Thr
	. *.	Ile	Ile	Val 355	Prö	Ile	Gly	Gly	Gln 360	Ile	Ala	Asp	Phe	Leu 365	Arg	Ser	Arg
25		Arg	Ile 370	Met	Ser	Thr	Thr	Asn 375	Val	Arg	Lys	Leu	Met 380	Asn	Cys	Gly	Gly
30	• ,	Phe 385	Gly	Met	Glu	Ala	Thr 390	Leu	Leu	Leu	Val	Val 395	Gly	Tyr	Ser	His	Ser 400
		Lys	Gly	Val	Ala	11e 405	Ser	Phe	Leu	Val	Leu 410	Ala	Val	Gly	Phe	Ser 415	Gly
35		Phe	Ala	Ile	Ser 420	Gly	Phe	Asn	Val	Asn 425	His	Leu	Asp	Ile	Ala 430	Pro	Arg
	*	Tyr	Ala	Ser 435	Ile	Leu	Met	Gly	Ile 440	Ser	Asn	Gly	Val	Gly 445	Thr	Leu	Ser
40		Gly	Met 450		Cys	Pro	Ile	11e 455	Val	Gly	Ala	Met	Thr 460	Lys	His	Lys	Thr
45		Arg 465	Glu	Glu	Trp	Gln	Tyr 470	Val	Phe	Leu	Ile	Ala 475	Ser	Leu	Val	His	Tyr 480
	•		Gly	Val	Ile	Phe 485	Tyr	Gly	Val	Phe	Ala 490	Ser	Gly	Glu	Lys	Gln 495	Pro
50		Trp	Ala	Glu	Pro 500	Glu	Glu	Met	Ser	Gļu 505	Glu	Lys	Cys	Gly	Phe 510	Val	Gly
-	. •	His	Asp	Gln 515	Leu	Ala	Gly	Ser	Asp 520	Asp	Ser	Glu	Met	Glu 525		Glu	Ala
55		Glü	Pro	Pro	Gly	Ala	Pro	Pro	Ala	Pro	Pro	Pro	Ser	Tyr	Gly	Ala	Thr

57

530 535 540

5

His Ser Thr Phe Gln Pro Pro Arg Pro Pro Pro Pro Val Arg Asp Tyr 545 550 555 560

which is SEQ ID NO:2, or a functional equivalent thereof, or a fragment of at least 6 continuous amino acids thereof.

- 2. A nucleic acid compound encoding an amino acid compound of Claim 1.
- 3. A composition comprising an isolated nucleic acid compound containing a sequence encoding a human brain

 Na+-dependent inorganic phosphate cotransporter or fragment thereof as claimed in Claim 2, wherein said sequence encoding a human brain Na+-dependent inorganic phosphate cotransporter or fragment thereof is selected from the group consisting of:
- 20 (a) CGATAAGCTT GATATCGAAT TCCGGACTCT TGCTCGGGCG CCTTAACCCG GCGTTCGGTT CATCCCGCAG CGCCAGTTCT GCTTACCAAA AGTGGCCCAC TAGGCACTCG CATTCCACGC CCGGCTCCAC GCCAGCGAGC CGGGCTTCTT ACCCATTTAA AGTTTGAGAA TAGGTTGAGA 25 TCGTTTCGGC CCCAAGACCT CTAATCATTC GCTTTACCGG ATAAAACTGC GTGGCGGGG TGCGTCGGGT CTGCGAGAGC GCCAGCTATC CTGAGGGAAA CTTCGGAGGG AACCAGCTAC 30 TAGATGGTTC GATTAGTCTT TCGCCCCTAT ACCCAGGTCG GACGACCGAT TTGCACGTCA GGACCGCTAC GGACCTCCAC CAGAGTTTCC TCTGGCTTCG CCCTGCCCAG GCGATCGGCG GGGGGGACCC GCGGGGTGAC CGGCGGCAGG AGCCGCCACC ATGGAGTTCC GCCAGGAGGA 35 GTTTCGGAAG CTAGCGGGTC GTGCTCTCGG GAAGCTGCAC CGCCTTCTGG AGAAGCGGCA GGAAGGCGCG GAGACGCTGG AGCTGAGTGC GGATGGGCGC CCGGTGACCA CGCAGACCCG 40 GGACCCGCCG GTGGTGGACT GCACCTGCTT CGGCCTCCCT CGCCGCTACA TTATCGCCAT CATGAGTGGT CTGGGCTTCT GCATCAGCTT TGGCATCCGC TGCAACCTGG GCGTGGCCAT CGTCTCCATG GTCAATAACA GCACGACCCA CCGCGGGGGC CACGTGGTGG TGCAGAAAGC 45 CCAGTTCAGC TGGGATCCAG AGACTGTCGG CCTCATACAC GGCTCCTTTT TCTGGGGCTA CATTGTCACT CAGATTCCAG GAGGATTTAT CTGTCAAAAA TTTGCAGCCA ACAGAGTTTT

CGGCTTTGCT ATTGTGGCAA CATCCACTCT AAACATGCTG ATCCCCTCAG CTGCCCGCGT CCACTATGGC TGTGTCATCT TCGTGAGGAT CCTGCAGGGG TTGGTAGAGG GGGTCACATA 5 CCCCGCCTGC CATGGGATCT GGAGCAAATG GGCCCCACCC TTAGAACGGA GTCGCCTGGC GACGACAGCC TTTTGTGGTT CCTATGCTGG GGCGGTGGTC GCGATGCCCC TCGCCGGGGT CCTTGTGCAG TACTCAGGAT GGAGCTCTGT TTTCTACGTC TACGGCAGCT TCGGGATCTT 10 CTGGTACCTG TTCTGGCTGC TCGTCTCCTA CGAGTCCCCC GCGCTGCACC CCAGCATCTC GGAGGAGGAG CGCAAGTACA TCGAGGACGC CATCGGAGAG AGCGCGAAAC TCATGAACCC 15 CCTCACGAAG TTTAGCACTC CCTGGCGGCG CTTCTTCACG TCTATGCCAG TCTATGCCAT CATCGTGGCC AACTTCTGCC GCAGCTGGAC GTTCTACCTG CTGCTCATCT CCCAGCCCGA CTACTTCGAA GAAGTGTTCG GCTTCGAGAT CAGCAAGGTA GGCCTGGTGT CCGCGCTGCC 20 CCACCTGGTC ATGACCATCA TCGTGCCCAT CGGCGGCCAG ATCGCGGACT TCCTGCGGAG CCGCCGCATC ATGTCCACCA CCAACGTGCG CAAGTTGATG AACTGCGGAG GCTTCGGCAT 25 GGAAGCCACG CTGCTGTTGG TGGTCGGCTA CTCGCACTCC AAGGGCGTGG CCATCTCCTT CCTGGTCCTA GCCGTGGGCT TCAGCGGCTT CGCCATCTCT GGGTTCAACG TGAACCACCT GGACATAGCC CCGCGCTACG CCAGCATCCT CATGGGCATC TCCAACGGCG TGGGCACACT 30 GTCGGGCATG GTGTGCCCCA TCATCGTGGG GGCCATGACT AAGCACAAGA CTCGGGAGGA GTGGCAGTAC GTGTTCCTAA TTGCCTCCCT GGTGCACTAT GGAGGTGTCA TCTTCTACGG 35 GGTCTTTGCT TCTGGAGAGA AGCAGCCGTG GGCAGAGCCT GAGGAGATGA GCGAGGAGAA GTGTGGCTTC GTTGGCCATG ACCAGCTGGC TGGCAGTGAC GACAGCGAAA TGGAGGATGA GGCTGAGCCC CCGGGGGCAC CCCCTGCACC CCCGCCCTCC TATGGGGCCA CACACAGCAC 40 ATTTCAGCCC CCCAGGCCCC CACCCCCTGT CCGGGACTAC TGACCATGTG CCTCCCACTG AATGGCAGTT TCCAGGACCT CCATTCCACT CATCTCTGGC CTGAGTGACA GTGTCAAGGA 45 ACCOTGCTCC TCTCTGTCCT GCCTCAGGCC TAAGAAGCAC TCTCCCTTGT TCCCAGTGCT GTCAAATCCT CTTTCCTTCC CAATTGCCTC TCAGGGGTAG TGAAGCTGCA GACTGACAGT TTCAAGGATA CCCAAATTCC CCTAAAGGTT CCCTCTCCAC CCGTTCTGCC TCAGTGGTTT 50 CAAATCTCTC CTTTCAGGGC TTTATTTGAA TGGACAGTTC GACCTCTTAC, TCTCTCTTGT GGTTTTGAGG CACCCACACC CCCCGCTTTC CTTTATCTCC AGGGACTCTC AGGCTAACCT 55

TTGAGATCAC TCAGCTCCCA TCTCCTTTCA GAAAAATTCA AGGTCCTCCT CTAGAAGTTT CAAATCTCTC CCAACTCTGT TCTGCATCTT CCAGATTGGT TTAACCAATT ACTCGTCCCC 5 GCCATTCCAG GGATTGATTC TCACCAGCGT TTCTGATGGA AAATGGCGGG AATTCCTGCA GCCCGGGGGA TCCACT which is SEQ ID NO:1; 10 (b) CGAUAAGCUU GAUAUCGAAU UCCGGACUCU UGCUCGGGCG CCUUAACCCG GCGUUCGGUU CAUCCCGCAG CGCCAGUUCU GCUUACCAAA AGUGGCCCAC UAGGCACUCG CAUUCCACGC 15 CCGGCUCCAC GCCAGCGAGC CGGGCUUCUU ACCCAUUUAA AGUUUGAGAA UAGGUUGAGA UCGUUUCGGC CCCAAGACCU CUAAUCAUUC GCUUUACCGG AUAAAACUGC GUGGCGGGG UGCGUCGGGU CUGCGAGAGC GCCAGCUAUC CUGAGGGAAA CUUCGGAGGG AACCAGCUAC 20 UAGAUGGUUC GAUUAGUCUU UCGCCCCUAU ACCCAGGUCG GACGACCGAU UUGCACGUCA GGACCGCUAC GGACCUCCAC CAGAGUUUCC UCUGGCUUCG CCCUGCCCAG GCGAUCGGCG 25 GGGGGGACCC GCGGGGGAC CGGCGGCAGG AGCCGCCACC AUGGAGUUCC GCCAGGAGGA GUUUCGGAAG CUAGCGGGUC GUGCUCUCGG GAAGCUGCAC CGCCUUCUGG AGAAGCGGCA GGAAGGCGCG GAGACGCUGG AGCUGAGUGC GGAUGGGCGC CCGGUGACCA CGCAGACCCG 30 GGACCCGCCG GUGGUGGACU GCACCUGCUU CGGCCUCCCU CGCCGCUACA UUAUCGCCAU CAUGAGUGGU CUGGGCUUCU GCAUCAGCUU UGGCAUCCGC UGCAACCUGG GCGUGGCCAU 35 CGUCUCCAUG GUCAAUAACA GCACGACCCA CCGCGGGGGC CACGUGGUGG UGCAGAAAGC CCAGUUCAGC UGGGAUCCAG AGACUGUCGG CCUCAUACAC GGCUCCUUUU UCUGGGGCUA CAUUGUCACU CAGAUUCCAG GAGGAUUUAU CUGUCAAAAA UUUGCAGCCA ACAGAGUUUU 40 CGGCUUUGCU AUUGUGGCAA CAUCCACUCU AAACAUGCUG AUCCCCUCAG CUGCCCGCGU CCACUAUGGC UGUGUCAUCU UCGUGAGGAU CCUGCAGGGG UUGGUAGAGG GGGUCACAUA 45 CCCCGCCUGC CAUGGGAUCU GGAGCAAAUG GGCCCCACCC UUAGAACGGA GUCGCCUGGC GACGACAGCC UUUUGUGGUU CCUAUGCUGG GGCGGUGGUC GCGAUGCCCC UCGCCGGGGU CCUUGUGCAG UACUCAGGAU GGAGCUCUGU UUUCUACGUC UACGGCAGCU UCGGGAUCUU 50 CUGGUACCUG UUCUGGCUGC UCGUCUCCUA CGAGUCCCCC GCGCUGCACC CCAGCAUCUC

GGAGGAGGAG CGCAAGUACA UCGAGGACGC CAUCGGAGAG AGCGCGAAAC UCAUGAACCC

CCUCACGAAG UUUAGCACUC CCUGGCGGCG CUUCUUCACG UCUAUGCCAG UCUAUGCCAU CAUCGUGGCC AACUUCUGCC GCAGCUGGAC GUUCUACCUG CUGCUCAUCU CCCAGCCCGA CUACUUCGAA GAAGUGUUCG GCUUCGAGAU CAGCAAGGUA GGCCUGGUGU CCGCGCUGCC 5 CCACCUGGUC AUGACCAUCA UCGUGCCCAU CGGCGGCCAG AUCGCGGACU UCCUGCGGAG CCGCCGCAUC AUGUCCACCA CCAACGUGCG CAAGUUGAUG AACUGCGGAG GCUUCGGCAU 10 GGAAGCCACG CUGCUGUUGG UGGUCGGCUA CUCGCACUCC AAGGGCGUGG CCAUCUCCUU CCUGGUCCUA GCCGUGGGCU UCAGCGGCUU CGCCAUCUCU GGGUUCAACG UGAACCACCU GGACAUAGCC CCGCGCUACG CCAGCAUCCU CAUGGGCAUC UCCAACGGCG UGGGCACACU 15 GUCGGGCAUG GUGUGCCCCA UCAUCGUGGG GGCCAUGACU AAGCACAAGA CUCGGGAGGA GUGGCAGUAC GUGUUCCUAA UUGCCUCCCU GGUGCACUAU GGAGGUGUCA UCUUCUACGG 20 GGUCUUUGCU UCUGGAGAGA AGCAGCCGUG GGCAGAGCCU GAGGAGAUGA GCGAGGAGAA GUGUGGCUUC GUUGGCCAUG ACCAGCUGGC UGGCAGUGAC GACAGCGAAA UGGAGGAUGA GGCUGAGCCC CCGGGGGCAC CCCCUGCACC CCCGCCCUCC UAUGGGGCCA CACACAGCAC 25 AUUUCAGCCC CCCAGGCCCC CACCCCCUGU CCGGGACUAC UGACCAUGUG CCUCCCACUG AAUGGCAGUU UCCAGGACCU CCAUUCCACU CAUCUCUGGC CUGAGUGACA GUGUCAAGGA 30 ACCCUGCUCC UCUCUGUCCU GCCUCAGGCC UAAGAAGCAC UCUCCCUUGU UCCCAGUGCU GUCAAAUCCU CUUUCCUUCC CAAUUGCCUC UCAGGGGUAG UGAAGCUGCA GACUGACAGU UUCAAGGAUA CCCAAAUUCC CCUAAAGGUU CCCUCUCCAC CCGUUCUGCC UCAGUGGUUU 35 CAAAUCUCUC CUUUCAGGGC UUUAUUUGAA UGGACAGUUC GACCUCUUAC UCUCUCUUGU GGUUUUGAGG CACCCACACC CCCCGCUUUC CUUUAUCUCC AGGGACUCUC AGGCUAACCU 40 UUGAGAUCAC UCAGCUCCCA UCUCCUUUCA GAAAAAUUCA AGGUCCUCCU CUAGAAGUUU CAAAUCUCUC CCAACUCUGU UCUGCAUCUU CCAGAUUGGU UUAACCAAUU ACUCGUCCCC GCCAUUCCAG GGAUUGAUUC UCACCAGCGU UUCUGAUGGA AAAUGGCGGG AAUUCCUGCA 45 GCCCGGGGGA UCCACU

which is SEQ ID NO:3;

50

(c) a nucleic acid compound complementary to (a) or
 (b); and

- (d) a fragment of (a), (b), or (c) that is at least 18 bases in length and which will selectively hybridize to human genomic DNA encoding a human brain Na+-dependent inorganic phosphate cotransporter.
- 4. An expression vector capable of producing a human brain sodium-dependent inorganic phosphate

 10 cortranporter, or a fragment thereof, in a host cell which comprises a nucleic acid compound as claimed in Claim 3 operably linked with regulatory elements necessary for expression of the nucleic acid compound in the host cell.
- 5. An expression vector as claimed in Claim 4 which comprises a nucleic acid compound encompassing nucleotides 461 to 2143 of SEQ ID NO:1, or a sequence complementary to this region.

20

5

6. A method of evaluating the effectiveness of a test compound for the treatment or prevention of a condition associated with an inappropriate stimulation of a human Na+-dependent inorganic phosphate cotransporter protein which method comprises:

a) introducing into a mammalian host cell an expression vector comprising DNA encoding a human hBNPI protein as claimed in either one of Claims 2 or 3;

Ť.

ž

30

b) culturing said host cell under conditions such that the human hBNPI protein is expressed;

35

c) exposing said host cell expressing the human hBNPI protein to a test compound; and

PCT/US96/05792

- d) measuring the change in a physiological condition known to be influenced by the binding of native ligand to the human hBNPI protein relative to a control in which the transfected host cell is exposed to native ligand.
- 7. A method of evaluating the effectiveness of a test compound for the treatment or prevention of a condition associated with an inappropriate stimulation of a human Na+- dependent inorganic phosphate cotransporter protein compounds which method comprises:

15

5

a) introducing into a mammalian host cell an expression vector comprising DNA encoding a human Na+-dependent inorganic phosphate cotransporter protein as claimed in either one of Claims 2 or 3;

20

b) culturing said host cell under conditions
 such that the human Na⁺-dependent inorganic
 phosphate cotransporter protein is expressed;

25

c) exposing said host cell expressing the human Na+-dependent inorganic phosphate cotransporter protein to a test compound;

30

d) exposing said host cell expressing the Na+-dependent inorganic phosphate cotransporter protein to inorganic phosphate simultaneously with or following the exposure to the test compound; and

35

e) measuring the change in inorganic phosphate uptake relative to a control in

. 63

which the transfected host cell is exposed to only inorganic phosphate.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/05792

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) Please See Extra Sheet.						
US CL : Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC						
	LDS SEARCHED documentation searched (classification system followed	hy classification symbols)				
U.S. : 435/7.1, 69.1, 252.3, 240.1, 320.1; 530/300, 350; 436/501; 536/23.1						
Documenta	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched			
Electronic o	data base consulted during the international search (na	me of data base and, where practicable,	search terms used)			
Please S	ee Extra Sheet.					
			·			
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
X	Ni et al. Cloning and expression of	a cDNA encoding a brain-	1-5			
	specific Na-dependent inorganic					
Υ .	Proc. Natl. Acad. Sci. USA. Jur	ne 1994, Vol. 91, pages	6, 7			
	5607-5611, especially pages 5601	7-5610.				
Y	Chong et al. Molecular Cloning	of the cDNA Encoding a	1-7			
	Human Renal Sodium Phosphate					
	Assignment to Chromosome 6					
	November 1993, Vol. 18, pages 35					
	355-357.					
A, P	Li et al. Molecular cloning of two	rat Na/Pi cotransporters:	1-7			
.,	evidence for differential tissue expression of transcripts.					
	Cellular and Molecular Biology Research. March 1996, Vol.					
	5, pages 451-460.					
	5, pages 431-400.					
	·					
X Further documents are listed in the continuation of Box C. See patent family annex.						
Special categories of cited documents: T later document published after the international filing date or priority						
	ocument defining the general state of the art which is not considered	date and not in conflict with the applict principle or theory underlying the inv				
	be part of particular relevance order the international filing date	"X" document of particular relevance; the	e claimed invention cannot be			
_	ocument which may throw doubts on priority claim(s) or which is	considered novel or cannot be conside when the document is taken alone	tor in maniae sit macurase sich			
ci	ted to establish the publication date of another citation or other secial reason (as specified)	"Y" document of particular relevance; th	e claimed invention cannot be			
	ocument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive	h documents, such combination			
	means being obvious to a person skilled in the art document published prior to the international filing date but later than "&" document member of the same patent family					
the priority date claimed						
Date of the actual completion of the international search Date of mailing of the international search report						
03 JUNE 1996 15 JUL 1996						
Name and mailing address of the ISA/US Authorized officer						
Commission Box PCT	oner of Patents and Trademarks	KENNETH A. SORENSEN				
Washington, D.C. 20231						
Facsimile N	No. (703) 305-3230	Telephone No. (703) 308-0196				

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/05792

C (Continua	ntion). DOCUMENTS CONSIDERED TO BE RELEVANT	····	
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
x	Ni et al. Cloning and expression of a novel cDNA encoding brain specific Na-dependent inorganic phosphate cotransporter Abstracts of the Society for Neuroscience, 24th Annual Meeti Volume 20, 1994, Abstract 382.4, page 925.		
Y	Collins et al. Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate (Na/Pi) transporter in the control and hypophospate mouse. FASEB Journal, August 1994, Vol. 8, pages 862-86 especially pages 862-865.	1-7	
Y	Magagnin et al. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc. Natl. Acad. Sci. USA. July 1993, Vol. 90, pages 5979-5983, especially pages 5981-5983.		1-7
		:- :	
. :			
***		• •	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/05792

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6):

G01N 33/566; C12P 21/06; C12N 1/20, 15/00; A61K 38/00; C07K 1/00; C07H 21/02 341

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/7.1, 69.1, 252.3, 240.1, 320.1; 530/300, 350; 436/501; 536/23.1

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

STN/MEDLINE, EMBASE, BIOSIS, CONFSCI, DISSABS, WPIDS, PATOSEP JICST-EPLUS, APS search terms: , human brain sodium dependent inorganic phosphate co-transporter, protein, animo acid sequence, cDNA, recombinant, hBNPI, synonyms and authors