

LeHack 2023

DPAPI – Don't Put Administration Passwords In

login-securite.com

C'est quoi la **DPAPI?**

DPAPI-NG

Point de vue d'un **auditeur**

Qui sommes-nous.

Pierre-Alexandre
VANDEWOESTYNE

TouF (@T00uF)

CTO chez Login Sécurité

DonPAPI

Thomas
SEIGNEURET
zblurx (@_zblurx)

Consultant cybersécurité chez Login Sécurité

Dploot / Cme --dpapi

Qui sommes-nous.

150 Ti Interne En 2023

60 collaborateurs

LeHack 2023

DPAPI.

C'est quoi la DPAPI?

login-securite.com

Et Microsoft créa ... La Data Protection API.

- DPAPI -> Data Protection API
- Introduit dans Windows 2000
- Gestion du chiffrement symétrique des secrets dans un environnement Windows
- L'API nous laisse gérer le stockage du blob chiffré
- Facilite la vie des développeurs :
 - CryptProtectData : chiffre la donnée
 - CryptUnprotectData : déchiffre la donnée

Et Microsoft créa ... La Data Protection API.

Utilisé par Windows (et des applications third party sur Windows) pour chiffrer toute sorte de secret:

- Cache de mots de passe des comptes du domaine
- Mots de passe de connexions RDP
- Tâches planifiées
- Mots de passe wifi
- Certificats
- KeePass
- Navigateurs chromium based (Chrome, Edge, Brave)
- Internet Explorer
- Etc.

Dissection de la DPAPI. – Le BLOB

[BLOB]

Version : 1 (1)

Guid Credential : DF9D8CD0-1501-11D1-8C7A-00C04FC297EB

MasterKeyVersion : 1 (1)

Guid MasterKey : 4CB85E88-4B00-440A-A52C-03C812E7F19F

Flags : 20000000 (CRYPTPROTECT_SYSTEM)
Description : Données d'identification locales

CryptAlgo : 00006610 (26128) (CALG AES 256)

Salt : b'890b7c91493ac5741257d38d1b5b687bfeef6f57b581a4005d928526c212455b'

HMacKey : b''

HashAlgo : 0000800e (32782) (CALG SHA 512)

HMac : b'277e2ddaa44d84dd6212390e2d2fb4492eda05d4c19cd56d2cdfdbceafca4764'
Data : b'c6132bcd1d9ddce6cac542c4c7ca84256e475e0cde23e417cdeb7e340d3e23390497
fa5ba6e1c108cd19bc8926dd15da2a6f5fdbc808666e49d02915b8584ab3f813cbecee4a85079261e5c6409eb
d8c0ac8adebec3c155ef3f29ce8d2acf48019e09cf2b19498f6c0a8c38d849ae1e01b1f070159707120cc8122
2314cc5b637a0f623b2cc424543873def7de0991aa0d5ab83249d83aa43d9f372271a7070a27844f08bb801fd
529bc57f71456e912a5269b4e59e374ca5438594a143230ed75266aec50d4676fd4970f304ffcdea814ff8e23

8f1663532618edd3c6cf47902fc6aa517a40f6ef97fb66f6a79a5ba000873d3bd99332622b77046b13ea3ddee dbe41d34ce2aabcb31c565ac5fd8605392178678d414bfdc6d0a4359955916ce2b3e0a29fd72dd08ec4ef87d5

root@acherus-lehack [/data] ~> xxd blob-dpapi.txt

00000000:	0100	0000	9001	0000	0000	0000	0100	0000	
00000010:	d08c	9ddf	0115	d111	8c7a	00c0	4fc2	97eb	zz
00000020:	0100	0000	/211	23†1	94de	a844	a9ed	d938	r.#D8
00000030:	f2da	6ff6	0000	0020	5000	0000	4400	6f00	o PD.o.
00000040:	6e00	6e00	e900	6500	7300	2000	6400	1920	n.ne.sd
00000050:	6900	6400	6500	6e00	7400	6900	6600	6900	i.d.e.n.t.i.f.i.
00000060:	6300	6100	7400	6900	6f00	6e00	2000	6400	c.a.t.i.o.nd.

- La problématique :
 - Un système simple, sans interaction avec l'utilisateur
 - La DPAPI doit chiffrer un secret pouvant appartenir :
 - À un utilisateur local
 - À un utilisateur du domaine
 - À la machine
 - Les utilisateurs sont ... des utilisateurs. Ils peuvent oublier leur mot de passe
- L'utilisateur a déjà un secret qui lui est propre : son mot de passe. A l'ouverture de session, LSASS déchiffre et stocke toutes ses masterkeys avec.
 - (SID + MD4(mot de passe) pour les utilisateurs du domaine et SID + SHA1(mot de passe) pour les utilisateurs locaux)
- Windows va générer un « secret » machine, et le stocker dans LSA, la DPAPI_SYSTEM_KEY

- Quand un utilisateur oublie son mot de passe, on fait comment ?
- Fonctionne avec un système RSA de clé publique / clé privée
- Clé publique, distribuée à tous les utilisateurs du domaine
- Clé privée unique, stockée sur les contrôleurs de domaine
- Accessible seulement par les administrateurs du domaine ou équivalent

13

tse@debian:/tmp/dpapi\$ dpapi.py masterkey -file test/c3dd45d6-2878-4c01-8624-76f13dafe4cf Impacket for Exegol - v0.10.1.dev1+20230318.114933.11c51f7d - Copyright 2022 Fortra - forked by ThePorgs [MASTERKEYFILE] 2 (2) Version : : c3dd45d6-2878-4c01-8624-76f13dafe4cf Guid Flags 0 (0) Policy 0 (0) MasterKeyLen: 00000088 (136) BackupKeyLen: 00000068 (104) CredHistLen : 00000000 (0) DomainKeyLen: 00000174 (372) [MASTERKEY] Version 2 (2) Salt : b'e37a3749053842760c863ec0c261cd2d' Rounds 4650 (18000) HashAlgo : 00008009 (32777) (CALG HMAC) CryptAlgo : 00006603 (26115) (CALG 3DES) : b'948350faa3ddb4791fafd773a35620d35590cf1e7e6259d402f45fe61f74e8e6efafa502b5ec1d64048047172 data ca733d740001' [MASTERKEY] Version 2 (2) Salt : b'3a54b9cb2f7c4d88cc87bbc76621aa14' Rounds 4650 (18000) HashAlgo : 00008009 (32777) (CALG HMAC) CryptAlgo : 00006603 (26115) (CALG 3DES) : b'ead262eaffd1416613b61dc305ef5fc4a9f84a01cd7e20fe8b201992156d22f3ab9b68b274c1a6e35b758acb1 data [DOMAINKEY] Version 2 (2) Guid : FE8411C8-69A7-4629-A4BE-92A6D21C8477 SecretLen 100 (256) AccessCheckLen: 00000058 (88) : b'2d4551dc2dd8c0369c852fac11b514ab220adde9612a57d3441c731aa20ad260cf325380331bc0db2e9fcfe SecretData 7f21bc6342de704b8f5af8e361543269a984b79180c6d506edcba501ebfbef123cd7c67acc081140bfc5e69f93cfb0be704f1e570 4713e93f7c69e6b4688dd5a48cd90ce9a296efcf0c422ee42d507ab1869c4d26abf08d226188a94e529642ffabe9f2738021eac96 AccessCheck : b'2191a79c4bff390e5d981f3cef4785d7662c40b5c5c653a9da6b0afbe642ef5bd9ba71d6294916ff1a921a5

- La Domaine Backup Key permet de déchiffrer tous les secrets stockés via la DPAPI de tous les utilisateurs du domaine
- De facto, tous les administrateurs du domaine ont accès aux secrets de tous les utilisateurs du domaine
- De facto, tout secret stocké via la DPAPI est aussi sécurisé que l'est le compte en question, ou les comptes administrateurs du domaine

- Aucun moyen de recréer une Domain Backup Key
- En cas de compromission de la Domain Backup Key, Microsoft recommande de migrer tous les utilisateurs vers un autre domaine
- D'après un récent post de Gil Biton « The Downfall of DPAPI Top Secret Weapon », il est possible de regénérer la Domain Backup Key, mais cette technique n'est pas reconnue officiellement par Microsoft

KEEP CALM AND REBUILD THE ENTIRE FOREST

- La DPAPI dispose de quelques limites de conceptions
 - Comment on partage un secret de manière propre ?
 - Impossible de regénérer une Domain Backup Key?
 - Une seule clé qui permet de TOUT accéder ?
- Microsoft introduit CNG DPAPI, ou DPAPI-NG, sur Windows 8
 & 2012 R2
- Facilite le partage de secrets entre plusieurs personnes de manière sécurisée: un secret chiffré par une machine / un utilisateur est déchiffrable sur une autre machine / un autre utilisateur (impossible avec la DPAPI)
- Permet la protection des secrets par SID (Utilisateurs & groupe)
- Repose sur un clé racine KDS (Key Distribution Services),
 régénérable, et il est possible d'en avoir plusieurs

- Le secret est chiffré par une **CEK** (Content Encryption Key)
- La CEK est chiffrée par une **KEK** (Key Encryption Key)
- La KEK est dérivée d'une clé L2, qui est elle-même généré par la clé racine KDS.
- La CEK chiffrée et le mot de passe chiffré sont stockés ensemble
- La clé L2 est obtenu via un appel à l'interface RPC MS-GKDI avec les bons droits.

- Cas d'usage connus :
 - LAPSv2
 - Exports de PFX protégés par SID
 - BitLocker
 - ASP.NET core secrets
- La DPAPI-NG ne permet le déchiffrement que via l'appel à l'interface MS-GKDI, donc nécessite un accès réseau à un contrôleur de domaine : pas viable pour des secrets nécessaires hors-accès au DC.

- La clé KDS est stockée dans le fichier NTDS.dit, donc accessible aux comptes administrateurs du domaine
- Quasi comme pour la DPAPI classique, tout repose sur la sécurité du groupe ayant accès au mot de passe ou la sécurité des comptes administrateurs du domaine

You said DPAPI-ng will be more secure

Microsoft:

LeHack 2023

DPAPI.

Point de vue d'un auditeur

login-securite.com

Les outils.

Depuis les machines et hors-ligne

- Mimikatz https://github.com/gentilkiwi/mimikatz
- SharpDPAPI https://github.com/GhostPack/SharpDPAPI
- Pypykatz https://github.com/skelsec/pypykatz
- Lazagne https://github.com/AlessandroZ/LaZagne
- Impacket via dpapi.py https://github.com/fortra/impacket

Depuis le réseau

- DonPAPI https://github.com/login-securite/DonPAPI
- Dploot https://github.com/zblurx/dploot CrackMapExec (via dploot) https://github.com/mpgn/CrackMapExec

Pré compromission du domaine.

- Elever ses privilèges & latéraliser
- Tous les secrets machines sont accessibles à partir du moment où on est administrateur local de la machine
 - Tâches planifiées
 - Certificats Machine
 - Clé Wifi

Pré compromission du domaine.


```
root@acherus-lehack [/data] ~>
                                                                                              root@acherus-lehack [/data] ~>
                                                                                              root@acherus-lehack [/data] ~>
    acherus-leha 1 bash* 2 bash-
                                                                                                                                                                    Tue Jun 13 15:56
                                                                                                                                       VOL 45% | MEM 17.7G | HOME 32G | 10.7.46.9 | CPU 2.51% | 7 100% | 2023-06-13 15:56:48
```

Under the hood

- Connection smb au share C\$
- Récupération des masterkeys machine
 - C:\Windows\System32\Microsoft\Protect
- Récupération des blobs DPAPI machine
 - C:\Windows\System32\config\systemprofile\AppData\Local\Microsoft\Credentials\
- Dump LSA pour récupérer les clefs DPAPI (machine & user)
- Déchiffrement des masterkeys via les clefs DPAPI
- Déchiffrement des blobs DPAPI avec les masterkeys déchiffrées correspondantes

Under Under the hood – Dump LSA


```
1. self.__remoteOps.enableRegistry()

    self.__bootKey = self.__remoteOps.getBootKey()
    self.__remoteOps.saveSECURITY()
```

- - On peut jouer sur:
 - Le nom du fichier de sortie & son extension
 - L'accès remote au fichier (\$ADMIN != C\$/windows/System32/)
 - La temporalité entre l'accès à la bootkey et le dump du hive SECURITY

Pré compromission du domaine.

- Si le mot de passe d'un utilisateur du poste compromis est connu, alors il est possible de déchiffrer tous ses mots de passe sur ce poste
 - Navigateurs (mots de passe et cookies)
 - Credential Manager
 - Solutions de gestion des mots de passe et d'administration (RDG, KeePass, ect.)
- Si un utilisateur est connecté, il est possible de dump ses masterkeys déchiffrées dans LSASS
- Sinon, toujours possible de bruteforcer la masterkey hors-ligne avec hashcat / JtR pour retrouver le mot de passe de l'utilisateur

Pré compromission du domaine.


```
root@acherus-lehack [/data] ~> dploot credentials -u c.ponce -p capbreton -d testlab.local 192.168.56.59
 -1 bash-
    acherus-leha 1 bash*
                                                                                                   Mon Jun 26 15:16
```

Under the hood

- Connection smb au share C\$
- Récupération des masterkeys de tous les utilisateurs
 - C:\Users\c.ponce\AppData\Roaming\Microsoft\Protect
- Récupération des blobs DPAPI des utilisateurs
 - C:\Users\c.ponce\AppData\Local\Microsoft\Credentials
- Déchiffrement des masterkeys via le mot de passe de l'utilisateur (saisie lors de la connexion)
- Déchiffrement des blobs DPAPI avec les masterkeys déchiffrées correspondantes

Post compromission du domaine.

- Accès à la Domain Backup Key, donc possible de déchiffrer tous les secrets: navigateur, credential manager, solution d'administration et gestion de mots de passe, ect.
- « Convertir » la compromission du domaine :
 - Compromettre le tenant Azure via les cookies sauvegardés dans les navigateurs
 - Compromettre les équipements hors domaine : cœur de réseau, NAS, solutions de backup
 - Un accès au cœur de réseau permet d'enlever le cloisonnement pour son IP
 - Compromettre d'autres domaines

Post compromission du domaine.

tseddebian: ~		SECURITE -
root@acherus-lehack [/data] ~>		
1 oo tgacher as cenaen [7 aaca]		
	ī	
<u>.</u>	T.	
	N AEG. MEM 19 CC HOME 27C 10 7 AC 0 CDH 2 020.	

Under the hood

- Récupération de la Domain Backup Key via MS-LSAD
- Connection smb au share C\$
- Récupération des masterkeys de tous les utilisateurs
 - C:\Users\j.asselin\AppData\Roaming\Microsoft\Protect
- Récupération des données Chrome
 - C:\Users\j.asselin\AppData\Local\Google\Chrome\User Data\Local State
 - C:\Users\j.asselin\AppData\Local\Google\Chrome\User Data\Default\Login Data
 - C:\Users\j.asselin\AppData\Local\Google\Chrome\User Data\Default\Network\Cookies
- Déchiffrement des masterkeys grâce à la Domain Backup Key
- Déchiffrement des secrets Chrome avec les masterkeys déchiffrées correspondantes

Récap.

Secret	Accès admin local	Accès admin local + connaissance du mot de passe utilisateur	Administrateur du domaine
Tâches planifiées			
Secrets navigateurs			
Certificats machines			
Certificats utilisateurs			
Clé Wifi			
Internet Explorer			

Et les autres secrets?

- Beaucoup d'autres applications n'utilisent pas la DPAPI pour stocker les secrets :
 - Firefox
 - mRemoteNg
 - TightVNC (et les autres VNC)
 - LastPass
 - Putty
 - Ect.
- Généralement, récupérer les secrets en clair (si toutefois ils sont chiffrés) requiert seulement d'être administrateur local sur la machine
- DonPAPI extrait déjà tous ces secrets &

Quel intérêt pour un client.

- Vision exhaustive de la gestion des secrets sur l'ensemble du parc
- Mettre en avant les mauvaises pratiques
- Plan de remédiation global sur :
 - Comptes de service
 - Comptes admin dans des taches planifiés, lancement de services ...
 - Réutilisation de mots de passe

Quel intérêt pour un client.

LeHack 2023

DPAPI.

Comment se protéger ?

login-securite.com

Comment se protéger.

- Avoir conscience que les comptes utilisés pour les tâches planifiées et le lancement de services peuvent être récupérée par un attaquant avec un accès admin local a la machine
- Ne pas stocker de mots de passe administrateur ailleurs que dans un KeePass, et ne pas stocker le mot de passe KeePass via la DPAPI
- Mettre en place un mot de passe pour déverrouiller la base de mot de passe du navigateur
- Possible de désactiver le stockage de mots de passe pour l'authentification réseau (Credential Manager)

Comment détecter.

- Spoiler alert : c'est chiant
- Surveiller l'activation de Remote Registry et le dump de LSA Secret via un EDR (nécessaire pour récuperer les clés machines)
- Il est possible de surveiller les accès suspicieux aux masterkeys et endroits de stockage des blobs DPAPI
 - Déception : l'utilisation de fichiers canary pour surveiller l'accès frauduleux aux blobs de données / masterkeys detecte les actions malveillantes
- Surveiller l'accès à la **Domain Backup Key**: Event ID 4662 de type SecretObject, l'object accedé contient "BACKUPKEY" et le masque d'accès est 0x2

Credits

- Benjamin Delpy (@gentilkiwi) pour Mimikatz et toutes les recherches sur la DPAPI
- Alberto Solino (@agsolino) pour Impacket (https://github.com/SecureAuthCorp/impacket). Tout ce qu'on a fait dans nos outils se base sur cette librairie
- Will Schroeder (@harmj0y) pour SharpDPAPI et plusieurs articles sur le sujet.
- Alessandro Z (@AlessandroZ) & tous les gens qui ont travaillé sur Lazagne (https://github.com/AlessandroZ/LaZagne/wiki)
- @Byt3bl33d3er & @mpgn_x64 pour CrackMapExec
- @Fist0urs : ma première lecture sur la DPAPI

DonPapi – LeHack2023's Edition

- DonPAPI est publié dans Pypi
 - Pour l'installer : pip install donpapi
- Ajout du copy paste JavaScript des cookies dans le rapport
- Dump des certificats user et machines
- Tricks de bypass d'EDR pour les dump LSA

LeHack 2023

DPAPI.des questions?

login-securite.com