1 Лемма

$$(\varphi \to \neg \neg \psi) \to (\varphi \to \psi)$$

Доказательство: по теореме о дедукции $(\varphi \to \neg \neg \psi), \varphi \vdash \psi$

- 1. $\neg \neg \psi \rightarrow \psi$ (схема аксиом 10)
- 2. $\varphi \to \neg \neg \psi$ (допущение)
- 3. φ (допущение)
- 4. $\neg \neg \psi \text{ (MP 2, 3)}$
- 5. ψ (MP 1, 4)

2 Лемма

2.1 Доказательство $\varphi \vdash \neg \neg \varphi$

- 1. $\varphi \to \neg \varphi \to \varphi$ (схема аксиом 1)
- 2. φ (допущение)
- 3. $\neg \varphi \rightarrow \varphi$ (MP 1, 2)
- 4. $\neg \varphi \rightarrow \neg \varphi$ (лемма)
- 5. $(\neg \varphi \to \varphi) \to (\neg \varphi \to \neg \varphi) \to \neg \neg \varphi$ (схема аксиом 9)
- 6. $\neg\neg\varphi$ (МР 6 сначала с 3, потом с 4)

По теореме о дедукции выводится $\varphi \to \neg \neg \varphi$

2.2 $(\neg\neg\varphi\rightarrow\psi)\rightarrow(\varphi\rightarrow\psi)$

Доказательство: по теореме о дедукции $(\neg\neg\varphi \to \psi), \varphi \vdash \psi$

- 1. φ (допущение)
- 2. $\varphi \rightarrow \neg \neg \varphi$ (доказано в 2.1)
- 3. $\neg\neg\varphi$ (MP 1, 2)
- 4. $\neg \neg \varphi \rightarrow \psi$ (допущение)
- 5. ψ (MP 3, 4)

3 (a) $\neg \forall x \varphi \rightarrow \exists x \neg \varphi$

Сначала докажем, что $\neg \exists x \neg \varphi \rightarrow \varphi$

- 1. $\neg \varphi \rightarrow \exists x \neg \varphi$ (схема аксиом 12)
- 2. $\neg \exists x \neg \varphi \rightarrow \neg \neg \varphi$ (по лемме о контрапозиции)
- 3. $\neg \exists x \neg \varphi \rightarrow \varphi$ (по лемме 1)

Применяя правило вывода, получаем $\neg\exists x\neg\varphi\to \forall x\varphi$. По лемме о контрапозиции $\neg\forall x\varphi\to \neg\neg\exists x\neg\varphi$. И по лемме 1 снимаем двойное отрицание $\neg\forall x\varphi\to \exists x\neg\varphi$.

- 4 (b) $\neg \exists x \varphi \rightarrow \forall x \neg \varphi$
 - 1. $\varphi \to \exists x \varphi$ (схема аксиом 12)
 - 2. $\neg \exists x \varphi \rightarrow \neg \varphi$ (лемма о контрапозиции)
 - 3. $\neg \exists x \varphi \rightarrow \forall x \neg \varphi$ (правило вывода для \forall)
- 5 (c) $\forall x \neg \varphi \rightarrow \neg \exists x \varphi$
 - 1. $\forall x \neg \varphi \rightarrow \neg \varphi$ (схема аксиом 11)
 - 2. $\neg\neg\varphi \rightarrow \neg\forall x\neg\varphi$ (лемма о контрапозиции)
 - 3. $\varphi \to \neg \forall x \neg \varphi$ (лемма 2.2)
 - 4. $\exists x\varphi \to \neg \forall x \neg \varphi$ (правило вывода для $\exists)$
 - 5. $\neg\neg \forall x \neg \varphi \rightarrow \neg \exists x \varphi$ (лемма о контрапозиции)
 - 6. $\forall x \neg \varphi \rightarrow \neg \exists x \varphi$ (лемма 2.2)
- 6 (d) $\exists x \neg \varphi \rightarrow \neg \forall x \varphi$
 - 1. $\forall x \varphi \rightarrow \varphi$ (схема аксиом 11)
 - 2. $\neg \varphi \rightarrow \neg \forall x \varphi$ (лемма о контрапозиции)
 - 3. $\exists x \neg \varphi \rightarrow \neg \forall x \varphi$ (правило вывода для \exists)
- 7 (e) $(\alpha \& \forall x \beta) \to \forall x (\alpha \& \beta)$, если x не входит свободно в α

Используем теорему о дедукции $\alpha \& \forall x \beta \vdash \forall x (\alpha \& \beta)$

- 1. $(\alpha \& \forall x \beta)$ (допущение)
- 2. $(\alpha \& \forall x \beta) \rightarrow \forall x \beta$ (схема аксиом 5)

- 3. $\forall x\beta \text{ (MP 1, 2)}$
- 4. $\forall x\beta \rightarrow \beta$ (схема аксиом 11)
- 5. β (MP 3, 4)
- 6. $(\alpha \& \forall x \beta) \rightarrow \alpha$ (схема аксиом 4)
- 7. $\alpha \, (MP \, 1, 6)$
- 8. $\alpha \to \beta \to (\alpha \& \beta)$ (схема аксиом 3)
- 9. $\alpha \& \beta$ (MP 5 и 7 с 8)
- 10. $(\alpha \& \beta) \to \alpha \to (\alpha \& \beta)$ (схема аксиом 1)
- 11. $\alpha \rightarrow (\alpha \& \beta) \text{ (MP 9, 10)}$
- 12. $\alpha \to \forall x (\alpha \& \beta)$ (правило вывода для $\forall,\ 11)$
- 13. $\forall x(\alpha \& \beta) \text{ (MP 7, 12)}$