Année Universitaire : 2021/2022

Examen d'Analyse 3 (Session 1)

ECUE : Intégrales généralisés et Séries de fonctions Durée : 1 heure 15

Les calculatrices et les documents sont interdits. Les trois exercices sont indépendants. Une attention particulière devra être apportée à la rédaction qui sera un élément important d'appréciation.

EXERCICE 1:

Soit $\alpha \in \mathbb{R}$. Étudier la convergence de l'intégrale $\int_0^{+\infty} t^{\alpha} e^{-t} dt$. Puis calculer pour tout entier $n \in \mathbb{N}$, $I_n = \int_0^{+\infty} t^n e^{-t} dt$.

- Convergence de
$$\int_0^{+\infty} t^{\alpha} e^{-t} dt$$
:

La fonction $f: t \mapsto t^{0} e^{-t}$ étant continue sur $]0, +\infty[$, les bornes impropres de l'intégrales sont 0 et $+\infty$. On étudie donc la convergence des intégrales $\int_{0}^{1} t^{\alpha} e^{-t} dt$ et $\int_{1}^{+\infty} t^{\alpha} e^{-t} dt$.

$$\star$$
 Convergence de $\int_0^1 t^{\alpha} e^{-t} dt$:

Au voisinage de 0, on a $t^{\alpha}e^{-t} \sim t^{\alpha} = \frac{1}{t^{-\alpha}}$. Comme $\int_0^1 \frac{1}{t^{-\alpha}} dt$ converge si et seulement si $-\alpha < 1$.

Donc $\int_0^1 t^{\alpha} e^{-t} dt$ si et seulement si $\alpha > -1$.

$$\star$$
 Convergence de $\int_{1}^{+\infty} t^{\alpha} e^{-t} dt$:

Comme $\lim_{t \to +\infty} t^2 \left(t^{\alpha} e^{-t} \right) = \lim_{t \to +\infty} t^{\alpha+2} e^{-t} = 0$, donc $\int_1^{+\infty} t^{\alpha} e^{-t} dt$ converge quelque soit $\alpha \in \mathbb{R}$.

En définitive, l'intégrale $\int_0^{+\infty} t^{\alpha} e^{-t} dt$ converge si et seulement si $\alpha > -1$.

- Calcul de
$$\int_0^{+\infty} t^n e^{-t} dt$$
:

On a $I_0 = \int_0^{+\infty} e^{-t} dt = \left[-e^{-t} \right]_0^{+\infty} = 1$. En intégrant par partie, on obtient pour tout $n \in \mathbb{N}^*$,

$$I_n = \left[-t^n\mathrm{e}^{-t}
ight]_0^{+\infty} + n \int_0^{+\infty} t^{n-1}\mathrm{e}^{-t}\mathrm{d}t = nI_{n-1}.$$

Une récurrence simple montre que pour tout $n \in \mathbb{N}$, $I_n = n!$.

$\mathbf{EXERCICE}$ 2:

Soient a et b des réels strictement positifs. Étudier la nature de la série $\sum_{i=1}^{n} \frac{a^n}{b^n + n}$.

Pour tout $n \in \mathbb{N}$, posons $u_n = \frac{a^n}{h^n + n}$.

• Premier cas :
$$b > 1$$
,
On a $u_n = \left(\frac{a}{b}\right)^n \cdot \frac{1}{1 + \frac{n}{b^n}} \sim \left(\frac{a}{b}\right)^n$, donc la série $\sum_{n \ge 1} u_n$ converge si et seulement si $\frac{a}{b} < 1$ c'est-à-dire si et seulement si $0 < a < b$

si et seulement si 0 < a < b.

• Deuxième cas :
$$0 < b \le 1$$
,
On a $u_n = \frac{a^n}{n} \cdot \frac{1}{1 + \frac{b^n}{n}} \sim \frac{a^n}{n}$ et $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} a \frac{n}{n+1} = a$. Donc, d'après la règle de D'Alembert, la série $\sum u_n$ converge pour $0 < a < 1$ et diverge pour $a > 1$

D'Alembert, la série $\sum u_n$ converge pour 0 < a < 1 et diverge pour a > 1.

Losque a = 1, $u_n \sim \frac{1}{n}$, donc $\sum_{n>1} u_n$ diverge.

En résumé lorsque a et b sont des réels strictement positifs, la série $\sum_{n\geq 1} \frac{a^n}{b^n+n}$ converge si et seulement si

$$(b > 1 \text{ et } 0 < a < b) \text{ ou } (0 < b \le 1 \text{ et } 0 < a < 1)$$

EXERCICE 3:

Pour tout entier $n\in\mathbb{N}^*$, on considère la fonction $f_n: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto n\sin\left(\frac{x}{n}\right)$

$$x \longmapsto n \sin\left(rac{x}{n}
ight)$$

- (1) Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers une fonction f que l'on déterminera.
- (2) Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément sur \mathbb{R} .
- (3) Soit a > 0. La suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$ converge-t-elle uniformément sur [-a, a]?
- (1) Convergence simple sur \mathbb{R} :

Soit
$$x \in \mathbb{R}$$
. On a $f_n(x) = n \sin\left(\frac{x}{n}\right) \sim n \frac{x}{n} = x$. Donc $\lim_{n \to +\infty} f_n(x) = x$.

Par conséquent, la suite de fonctions $(f_n)_n$ converge simplement sur $\mathbb R$ vers la fonction f définie pour tout $x \in \mathbb{R}$ par f(x) = x.

Convergence uniforme sur \mathbb{R} :

On a pour tout $n \in \mathbb{N}^*$,

$$\sup_{x\in\mathbb{R}}|f_n(x)-f(x)|\geq |f_n(n)-f(n)|=n(1-\sin(1)).$$

Comme $\lim_{n\to+\infty} n(1-\sin(1)) = +\infty$, donc $\lim_{n\to+\infty} \sup_{x\in\mathbb{R}} |f_n(x)-f(x)| = +\infty$. Par conséquent la suite de fonctions $(f_n)_n$ ne converge pas uniformément sur \mathbb{R} .

Convergence uniforme sur [-a, a] où a > 0. Pour tout $n \in \mathbb{N}^*$, $g_n = f_n - f$ est dérivable sur [-a, a] et on a pour tout $x \in [-a, a]$, $g'_n(x) = \cos\left(\frac{x}{n}\right) - 1 \le 0$. Par suite g_n est strictement décroissante sur [-a, a]. D'où $\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = |f_n(a) - a|$. Comme $\lim_{n \to +\infty} \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \lim_{n \to +\infty} |f_n(a) - a| = 0$, donc la suite de fonctions $(f_n)_n$ converge uniformément sur [-a, a].

EXERCICE 4:

Pour tout entier $n \in \mathbb{N}^*$, on considère la fonction $f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$ $x \longmapsto \frac{1}{x+n(n+1)}$

- 1 Montrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge uniformément sur \mathbb{R}_+ . On note S sa somme.
- (2) Montrer que S est de classe C^1 sur \mathbb{R}_+ .
- $\bigcirc{3}$ Étudier la nature de l'intégrale généralisée $\int_{0}^{+\infty} S(x) \mathrm{d}x$.
- (1) Convergence uniforme: Pour tout $x \in \mathbb{R}_+$ et pour tout $n \in \mathbb{N}^*$, $|f_n(x)| \leq \frac{1}{n^2}$. Or $\sum_{n \geq 1} \frac{1}{n^2}$ converge, donc $\sum_{n \geq 1} f_n$ converge normalement, donc uniformément sur \mathbb{R}_+ .
- 2 Montrons que S est de classe C^1 sur \mathbb{R}_+ . Pour tout $n \in \mathbb{N}^*$, f_n est de classe C^1 sur \mathbb{R}_+ et on a pour tout $x \geq 0$, $f'_n(x) = -\frac{1}{(x+n(n+1))^2}$. Comme pour tout $x \geq 0$ et tout $n \in \mathbb{N}^*$, $|f'_n(x)| \leq \frac{1}{n^4}$ et $\sum_{n \geq 1} \frac{1}{n^4}$ converge, donc $\sum_{n \geq 1} f'_n$ converge uniformément sur \mathbb{R}_+ . Par conséquent la somme $S = \sum_{n \geq 1}^{+\infty} f_n$ est de classe C^1 sur \mathbb{R}_+ .
- Nature de $\int_0^{+\infty} S(x) dx$.

 Pour tout $x \ge 0$, on a $0 \le S(x) = \sum_{n=1}^{+\infty} f_n(x) \ge f_1(x) = \frac{1}{x+2}.$

Comme $f_1(x) \sim \frac{1}{x}$ et que $\int_1^{+\infty} \frac{1}{x} dx$ diverge, donc $\int_0^{+\infty} \frac{1}{x+2} dx$ diverge et par conséquent $\int_0^{+\infty} S(x) dx$ diverge.