

United International University

Name (Optional)	
D No. Section	Invigilator's Signature with date
Course Code Trimester / Semester : Spring / Summer	/ Fall, 20
lame of Exam : Class Test / Mid-term 1 / Mid-term 2 / Final	Date:
Spring ⇒24	
1 (b) 3 -> workers (A,B,C)	
P(A) = 0.7	
P(B) = 0.8	
p(c) = 0.6	
- 7	3
) Frinst wonker: 1-0.7 = 0.	2
2nd 1-0.6 = 0.4	
and Worker:	10:4 -0.024
P(task won't complete) = 0.3 x 0.2	7 - 7 - 7
to will complete)	= 0.7 x o. 8 x o.
ii) P(every wonker will complete)	= 0.336
. Jel my 2nd Worker will complete +	he work)
0.096	
= Ward	[Ans.]
= 0.3× 0.8×0.4 = 0.096 = 0.3× 0.8×0.4 = 0.096 Worker Worker Fails to do. fails to	

e)
$$P(A) = \frac{A5}{100}$$
 | $E = \frac{1}{100} | E = \frac{1}{100} | P(E|A) = \frac{62}{100} | P(E|A) = \frac{62}{100} | P(E|B) = \frac{97}{100} | P(E|C) = \frac{97}{100} | P(E|C) = \frac{95}{100} | P(E|C)$

$$P(B|E) = \frac{P(E|B) P(B)}{P(E|A) P(A) + P(E|B) P(B) + P(E|C) P(C)}$$

$$= \frac{P(E|B) P(B)}{P(E|A) P(A) + P(E|B) P(B) + P(E|C) P(C)}$$

$$= \frac{P(E|B) P(B)}{P(E|A) P(A) + P(E|B) P(B) + P(E|C) P(C)}$$

$$= \frac{P(E|B) P(B)}{P(E|A) P(A) + P(E|B) P(B) + P(E|C) P(C)}$$

$$= \frac{P(E|B) P(B)}{P(E|A) P(A) + P(E|B) P(B) + P(E|C) P(C)}$$

$$= \frac{P(E|B) P(B)}{P(A) + P(E|B) P(B) + P(E|C) P(C)}$$

$$= \frac{P(E|B) P(B)}{P(B) + P(E|C) P(C)}$$

Q2(a) hypoegeometric distribution (since sampling done without replacement)

$$P(x \le 2)$$
= $P(x = 0) + P(x = 1) + P(x = 2)$
= $\frac{5c_0}{5c_0} + \frac{5c_1}{5c_0} + \frac{46c_4}{50c_5}$
= $\frac{5c_0}{50c_5} + \frac{5c_2}{50c_5} + \frac{45c_3}{50c_5}$

$$M_X(t) = \exp\left(ut + \frac{a^2t^2}{2}\right)$$

Mean
$$\mu = 24$$

Variance, $\frac{1}{2}\alpha^2 = 50$: $\alpha = 10$
 $5.0.$, $\alpha = \sqrt{50} = 5\sqrt{2}$

$$=7$$
 $\phi\left(2<\frac{k-24}{5000}\right)=0.975$

$$\frac{k-24}{5000000} = \frac{4(0.045)}{50000000}$$

$$= \frac{k-24}{500000000} = -1.96$$

$$-19.6$$

$$= 10.15$$

$$\therefore k = 10.15$$
(Ams.)

P(x < 40.2) = 1 - P(x > 40/2) = 1 - P(x

Null: $H0 = \frac{26}{52} = \frac{1}{2}$

Altermative: Ha = 1/2

Sample size, n = 120

 $\phi(70/2) = 1 - \frac{0.1}{2}$ $= 1 - \frac{0.1}{2}$

2012 = \$\bar{p}'(0.95) = 1.65 (From table)

United International University

X	DAME FOR	
Nam (Opt	ne ional)	
ID N	lo. Section	Invigilator's Signature with date
Cou	rse Code Trimester / Semester : Spring / Summer / Fall,	20
Nan	ne of Exam : Class Test / Mid-term 1 / Mid-term 2 / Final	Date:
Q((1) a) $S_1 = \{1,2,3,4\}$	
	50 = '{ H, T}	1 2 3 4 HI 2H3H 4H
	P(A) = 2/4 = 1/2	T1 12 13 T4
	P(B) = 1/2	
	P(ANB) = 2/4 = 1/2	
	$P(A) \times P(B) = \frac{1/2}{2} \times \frac{1}{2} = \frac{1}{4}$	
	independent	(1-0.48
Ь	p(algorithm will 1 be built)	(1-0.55) x (1-0.4) x
7	:.P(alg will be brilt) = 1-0.084	= 0.916 (000)
		(me)

$$E\left(1-3x^{2}\right)$$

$$= E(1) - 3E(x^{2})$$

$$= 1 - 3E(x^{2})$$

$$E(4^{2}) = \frac{24^{2} f(x)}{(1)^{2} \times 0.55^{3}} + \int 2^{2} \times 0.15^{3}$$

$$= \int (1)^{2} \times 0.55^{3} + \int 2^{2} \times 0.15^{3}$$

$$+ \int 3^{2} \times 0.05^{3} + \int (1)^{2} \times 0.45^{3}$$

$$= 0.35 + 0.60 + 0.45 + 0.45$$

$$= 0.355 + 0.60 + 0.45 + 0.45$$

$$E(1-3x^{2}) = 1-(1.85x^{3}) = 1-5.55$$

$$= -4.55$$
(Ans)

FIVL

sided dice: = { 1.2,3,4,5}

$$P(x=1) = \frac{9}{25}$$

$$P(x=2) = \frac{7}{25}$$

$$P(x=3) = \frac{5}{25}$$

$$P(x=4) = \frac{3}{25}$$

$$P(x=5) = \frac{1}{25}$$

$$pmf = \frac{41-2x}{25}$$
; $x = 1,2,3,4,5$

e)
$$P(\alpha=1) = P(\alpha=2)$$

=7 $\frac{\lambda^{2}}{1!} = \frac{\lambda^{2}}{2!}$

$$= 7 \quad 1! = \frac{\lambda^2}{2}$$

$$\lambda = 2$$

$$=\frac{1}{\alpha!}$$

$$=\frac{2^{\circ}\bar{e}^{2}}{0!}$$

$$5 \cdot D \cdot = \sqrt{1} = \sqrt{2} \left(Ans \right)$$

$$\frac{85(b)}{Mx(1)} = \frac{e^{tb} - e^{ta}}{(b-9)t}$$

$$= \frac{e^{4t} - e^{0t}}{4t}$$

Hore,
$$b = 4$$

 $a = 0$

$$= \begin{cases} 0.F \\ \frac{x-60}{4} : 0 \le x \le 4 \end{cases}$$

$$= \begin{cases} \frac{x-60}{4} : 0 \le x \le 4 \end{cases}$$

Midian:
$$m = \frac{a+b}{2}$$

$$= \frac{0+4}{2}$$

$$= \frac{4}{2} = 2 \quad (Ans.)$$

#+ 5 cmmve 2024

mean =
$$160 = 4$$

 $30 = 24 = 0$

$$P(150 < X < 180) = P(\frac{150 - 160}{24} < Z < \frac{180 - 160}{24})$$

$$= P(-0.416 < Z < 0.83)$$

$$= P(7 \times 0.83) - P(2 \times -0.416) = P(0.416) = P(0.416) = P(2 \times 0.83) - P(2 \times 0.416) = P(2 \times 0.416) = P(2 \times 0.416) = P(2 \times 0.416) = P(2 \times 0.83) = P(2 \times 0.83)$$

United International University

	V	
Name (Optional)		
D No.	Section	Invigilator's Signature with date
Course Code	Trimester / Semester : Spring / Summer	/ Fall, 20
Name of Exam : Class Test / M		Date:
P(4) =	Given	
P(B) :		
PLANC) 1 -	
	$ P(A \cap B) = P(A \cap B) $) x P(B)
p(A n B) = ?	= D 2) P(BAC) = P	(2 × p(c)
10(c) = ?	2) P(BAC) = P	(13) 1 (6)
p(Bnc)=?	2(101) =	P(A) XP(c)
	(3) P(A/10)	$= \frac{P(A) \times P(\iota)}{P(A) \cap P(A)}$
Ind ipendent		= P(A)
		> D
* 20 Fe	in binomial dista =	>
What's tha Tor	to of them will	wonk =>
T. T	P(x = 0) = max px q'	1-2

 $\frac{2}{2\alpha}$ = $\begin{vmatrix} 1-0.05 \\ 0.95 \end{vmatrix}$ $\left(\frac{2\alpha}{2\alpha}\right) = \begin{vmatrix} 0.95 \\ 0.95 \end{vmatrix} = \begin{vmatrix} 1.65 \\ 0.95 \end{vmatrix}$ 2 /2x toble 7 /. 7x => \frac{\bar{a} - \mu}{\alpha} > - \frac{\frac{1}{2}}{\alpha} $= 7 \overline{7} - \mu \quad \gamma - 2 \propto x \alpha$ $= 7 \overline{7} \quad \gamma \quad \mu = (2 \propto x \alpha)$ $= 7 \overline{7} \quad \gamma \quad 6 - (1.65 \times 0.)$

$$F(x=x) = 2 \quad 3 \quad 4$$

$$F(x=x) = 0.2 \quad P = 0.5 \quad 9$$

$$Find = 0 \quad and \quad b$$

$$E(x) = 2.5$$

$$= 2 \quad x \quad R(x) = 2.5$$

$$= (1 \times 0.2) + 2P + (9 \times 0.5) + 49 = 0.5 \longrightarrow 1$$

$$= (1 \times 0.2) + 2P + (9 \times 0.5) + 49 = 0.5 \longrightarrow 1$$

$$= 0.2 + P + 9 + 0.5 = 1 \longrightarrow 2$$

$$= 0.2 \quad P = 0.5 = 1 \longrightarrow 2$$

$$= 0.2 \quad P = 0.5 = 1 \longrightarrow 2$$

$$= 0.2 \quad P = 0.5 = 1 \longrightarrow 2$$