

Understanding retreat rate of glacier using flowline model

Aparna Sharma

aparna.ramgopalsharma@students.iiserpune.ac.in

Flowline model

Length variation with time

Length variation with time

Sensitivity and Response time

After ela is raised up the length decreases and the glacier again tries to attain the steady state

How much??

 ΔL

Till what time??

τ

Sensitivity and Response time

Sensitivity: The rate of change length of the glacier from one steady-state to another, with respect to the ELA is defined as the climate sensitivity, $\frac{dL}{dE}$. For this model we can take it to be $\frac{L_0 - L_f}{50}$.

Response Time: The climatic state is changed stepwise from C1 to C2, here represented as ela change. The corresponding equilibrium lengths are L_0 and L_f . The response time τ , is the time a glacier needs to attain a length $L_0 - \frac{L_0 - L_f}{e}$.

Retreat rate of a glacier

Notice the nature of the retreat rate curves.

Can you find the hidden parameters ΔL and τ in these curves??

$$\frac{dL}{dt} = \frac{\Delta L}{\tau} \frac{t}{\tau} e^{-\frac{t}{\tau}}$$

Retreat rate of a glacier

Retreat rate depends on sensitivity and response time of the glacier.

Sensitivity-slope dependence

$$\frac{dL}{dE} = \frac{1}{slope^{1.44}}$$

$$\frac{dL}{dE} \approx \frac{1}{slope^{1.5}}$$
 (Oerlemans, J., 1950)

Retreat rate slope relation

Retreat rate depends on response time, response time is a strong function of slope but retreat rate and slope are not related! What could be the hidden factor controlling the retreat rate of a glacier