EKN-812 Lecture 1

Methodology; Basic Theory of Demand

Jesse Naidoo

University of Pretoria

The Economic Approach to Human Behavior

What Good is (Economic) Theory?

• budget constraints

- preferences: axiomatic foundations
- Hicksian and Marshallian demand
- implications of rational choice: symmetry, homogeneity, negativity
- substitutes and complements; constrained demand functions and rationing

- budget constraints
- preferences: axiomatic foundations
- Hicksian and Marshallian demand
- implications of rational choice: symmetry, homogeneity, negativity
- substitutes and complements; constrained demand functions and rationing

- budget constraints
- preferences: axiomatic foundations
- Hicksian and Marshallian demand
- implications of rational choice: symmetry, homogeneity, negativity
- substitutes and complements; constrained demand functions and rationing

- budget constraints
- preferences: axiomatic foundations
- Hicksian and Marshallian demand
- implications of rational choice: symmetry, homogeneity, negativity
- substitutes and complements; constrained demand functions and rationing

- budget constraints
- preferences: axiomatic foundations
- Hicksian and Marshallian demand
- implications of rational choice: symmetry, homogeneity, negativity
- substitutes and complements; constrained demand functions and rationing

- "choice" is meaningless if there is no scarcity
- a simple situation in which resources are limited
 - two goods x_1 , x_2 available in any nonnegative amounts
 - constant prices $p_1, p_2 > 0$ and a given budget y
 - then $p_1 x_1 + p_2 x_2 \le y$
- consumer choices give us the functions $x_1^*(p, y), x_2^*(p, y)$
 - here $p = (p_1, p_2)$ is the vector of prices
- the budget constraint alone places some restrictions on behavior

- "choice" is meaningless if there is no scarcity
- a simple situation in which resources are limited:
 - two goods x_1 , x_2 available in any nonnegative amounts
 - constant prices $p_1, p_2 > 0$ and a given budget y
 - then $p_1 x_1 + p_2 x_2 \le y$
- consumer choices give us the functions $x_1^*(p, y), x_2^*(p, y)$
 - here $p = (p_1, p_2)$ is the vector of prices
- the budget constraint alone places some restrictions on behavior

- "choice" is meaningless if there is no scarcity
- a simple situation in which resources are limited:
 - two goods x_1 , x_2 available in any nonnegative amounts
 - constant prices $p_1, p_2 > 0$ and a given budget y
 - then $p_1 x_1 + p_2 x_2 \le y$
- consumer choices give us the functions $x_1^*(p, y), x_2^*(p, y)$
 - here $p = (p_1, p_2)$ is the vector of prices
- the budget constraint alone places some restrictions on behavior

- "choice" is meaningless if there is no scarcity
- a simple situation in which resources are limited:
 - two goods x_1 , x_2 available in any nonnegative amounts
 - constant prices $p_1, p_2 > 0$ and a given budget y
 - then $p_1 x_1 + p_2 x_2 \le y$
- consumer choices give us the functions $x_1^*(p, y), x_2^*(p, y)$
 - here $p = (p_1, p_2)$ is the vector of prices
- the budget constraint alone places some restrictions on behavior

- "choice" is meaningless if there is no scarcity
- a simple situation in which resources are limited:
 - two goods x_1 , x_2 available in any nonnegative amounts
 - constant prices $p_1, p_2 > 0$ and a given budget y
 - then $p_1x_1 + p_2x_2 \le y$
- consumer choices give us the functions $x_1^*(p, y), x_2^*(p, y)$
 - here $p = (p_1, p_2)$ is the vector of prices
- the budget constraint alone places some restrictions on behavior

- "choice" is meaningless if there is no scarcity
- a simple situation in which resources are limited:
 - two goods x_1 , x_2 available in any nonnegative amounts
 - constant prices $p_1, p_2 > 0$ and a given budget y
 - then $p_1x_1 + p_2x_2 \le y$
- consumer choices give us the functions $x_1^*(p, y), x_2^*(p, y)$
 - here $p = (p_1, p_2)$ is the vector of prices
- the budget constraint alone places some restrictions on behavior

- "choice" is meaningless if there is no scarcity
- a simple situation in which resources are limited:
 - two goods x_1 , x_2 available in any nonnegative amounts
 - constant prices $p_1, p_2 > 0$ and a given budget y
 - then $p_1x_1 + p_2x_2 \le y$
- consumer choices give us the functions $x_1^*(p, y), x_2^*(p, y)$
 - here $p = (p_1, p_2)$ is the vector of prices
- the budget constraint alone places some restrictions on behavior

- "choice" is meaningless if there is no scarcity
- a simple situation in which resources are limited:
 - two goods x_1 , x_2 available in any nonnegative amounts
 - constant prices $p_1, p_2 > 0$ and a given budget y
 - then $p_1x_1 + p_2x_2 \le y$
- consumer choices give us the functions $x_1^*(p, y), x_2^*(p, y)$
 - here $p = (p_1, p_2)$ is the vector of prices
- the budget constraint alone places some restrictions on behavior

- Say we are choosing quantities of n goods with prices p_i (i = 1, ... n)
- the i-th budget share is

$$s_i = \frac{p_i x_i^*}{y}$$

• the income elasticity of the *i*-th good is

$$\eta_i = \frac{y}{x_i^*} \frac{\partial x_i^*}{\partial y}$$

• the elasticity of demand for good *i* with respect to the *j* pprice is

$$\varepsilon_{ij} = \frac{p_j}{x_i^*} \frac{\partial x_i^*}{\partial p_j}$$

- obviously these quantities are all "local"
 - might vary with the particular (p, y) facing the consumer
- shares and elasticities are unitless
 - why is this good?

- Say we are choosing quantities of n goods with prices p_i (i = 1, ... n)
- the i-th budget share is

$$s_i = \frac{p_i x_i^*}{y}$$

• the income elasticity of the *i*-th good is

$$\eta_i = \frac{y}{x_i^*} \frac{\partial x_i^*}{\partial y}$$

• the elasticity of demand for good i with respect to the jbprice is

$$\varepsilon_{ij} = \frac{p_j}{x_i^*} \frac{\partial x_i^*}{\partial p_j}$$

- obviously these quantities are all "local"
 - ullet might vary with the particular $(m{p}, m{y})$ facing the consumer
- shares and elasticities are unitless
 - why is this good?

- Say we are choosing quantities of n goods with prices p_i (i = 1, ... n)
- the i-th budget share is

$$s_i = \frac{p_i x_i^*}{y}$$

• the income elasticity of the *i*-th good is

$$\eta_i = \frac{y}{x_i^*} \frac{\partial x_i^*}{\partial y}$$

• the elasticity of demand for good i with respect to the jbprice is

$$\varepsilon_{ij} = \frac{p_j}{x_i^*} \frac{\partial x_i^*}{\partial p_j}$$

- obviously these quantities are all "local"
 - might vary with the particular (p, y) facing the consumer
- shares and elasticities are unitless
 - why is this good?

- Say we are choosing quantities of n goods with prices p_i (i = 1, ... n)
- the *i*-th budget share is

$$s_i = \frac{p_i x_i^*}{y}$$

• the income elasticity of the *i*-th good is

$$\eta_i = \frac{y}{x_i^*} \frac{\partial x_i^*}{\partial y}$$

• the elasticity of demand for good i with respect to the jpprice is

$$\varepsilon_{ij} = \frac{p_j}{x_i^*} \frac{\partial x_i^*}{\partial p_j}$$

- obviously these quantities are all "local"
 might vary with the particular (p, y) facing the consume
- shares and elasticities are unitless
 - why is this good?

- Say we are choosing quantities of n goods with prices p_i (i = 1, ... n)
- the i-th budget share is

$$s_i = \frac{p_i x_i^*}{y}$$

• the income elasticity of the *i*-th good is

$$\eta_i = \frac{y}{x_i^*} \frac{\partial x_i^*}{\partial y}$$

• the elasticity of demand for good i with respect to the jpprice is

$$\varepsilon_{ij} = \frac{p_j}{x_i^*} \frac{\partial x_i^*}{\partial p_j}$$

- obviously these quantities are all "local"
 - might vary with the particular (p, y) facing the consumer
- shares and elasticities are unitless
 - why is this good?

- Say we are choosing quantities of n goods with prices p_i (i = 1, ... n)
- the i-th budget share is

$$s_i = \frac{p_i x_i^*}{y}$$

• the income elasticity of the *i*-th good is

$$\eta_i = \frac{y}{x_i^*} \frac{\partial x_i^*}{\partial y}$$

• the elasticity of demand for good i with respect to the jpprice is

$$\varepsilon_{ij} = \frac{p_j}{x_i^*} \frac{\partial x_i^*}{\partial p_j}$$

- obviously these quantities are all "local"
 - might vary with the particular (p, y) facing the consumer
- shares and elasticities are unitless
 - why is this good?

- Say we are choosing quantities of n goods with prices p_i (i = 1, ... n)
- the i-th budget share is

$$s_i = \frac{p_i x_i^*}{y}$$

• the income elasticity of the *i*-th good is

$$\eta_i = \frac{y}{x_i^*} \frac{\partial x_i^*}{\partial y}$$

• the elasticity of demand for good i with respect to the $j \not\models price$ is

$$\varepsilon_{ij} = \frac{p_j}{x_i^*} \frac{\partial x_i^*}{\partial p_j}$$

- obviously these quantities are all "local"
 - might vary with the particular (p, y) facing the consumer
- shares and elasticities are unitless
 - why is this good?

- Say we are choosing quantities of n goods with prices p_i (i = 1, ... n)
- the i-th budget share is

$$s_i = \frac{p_i x_i^*}{y}$$

• the income elasticity of the *i*-th good is

$$\eta_i = \frac{y}{x_i^*} \frac{\partial x_i^*}{\partial y}$$

• the elasticity of demand for good i with respect to the $j \not\models price$ is

$$\varepsilon_{ij} = \frac{p_j}{x_i^*} \frac{\partial x_i^*}{\partial p_j}$$

- obviously these quantities are all "local"
 - might vary with the particular (p, y) facing the consumer
- shares and elasticities are unitless
 - why is this good?

- budget constraint holds as an identity in (p, y), so we can differentiate it
- differentiate wrt y to get "Engel aggregation"
 - in elasticity form:

$$\sum_{i=1}^n s_i \eta_i \equiv 1$$

- budget-share weighted average of income elasticities is always 1
- differentiate wrt p_j to get "Cournot aggregation"
 - in elasticity form:

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij} \equiv 0$$

- budget constraint holds as an identity in (p, y), so we can differentiate it
- differentiate wrt y to get "Engel aggregation"
 - in elasticity form:

$$\sum_{i=1}^n s_i \eta_i \equiv 1$$

- budget-share weighted average of income elasticities is always 1
- differentiate wrt p_j to get "Cournot aggregation"
 - in elasticity form:

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij} \equiv 0$$

- budget constraint holds as an identity in (p, y), so we can differentiate it
- differentiate wrt y to get "Engel aggregation"
 - in elasticity form:

$$\sum_{i=1}^n \mathsf{s}_i \eta_i \equiv 1$$

- budget-share weighted average of income elasticities is always 1
- differentiate wrt p_j to get "Cournot aggregation"
 - in elasticity form:

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij} \equiv 0$$

- budget constraint holds as an identity in (p, y), so we can differentiate it
- differentiate wrt y to get "Engel aggregation"
 - in elasticity form:

$$\sum_{i=1}^n \mathsf{s}_i \eta_i \equiv 1$$

- ullet budget-share weighted average of income elasticities is always 1
- differentiate wrt p_j to get "Cournot aggregation"
 - in elasticity form:

$$s_j + \sum_{i=1}^n s_i arepsilon_{ij} \equiv 0$$

- budget constraint holds as an identity in (p, y), so we can differentiate it
- differentiate wrt y to get "Engel aggregation"
 - in elasticity form:

$$\sum_{i=1}^n s_i \eta_i \equiv 1$$

- budget-share weighted average of income elasticities is always 1
- differentiate wrt p_j to get "Cournot aggregation"
 - in elasticity form

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij} \equiv 0$$

- budget constraint holds as an identity in (p, y), so we can differentiate it
- differentiate wrt y to get "Engel aggregation"
 - in elasticity form:

$$\sum_{i=1}^n s_i \eta_i \equiv 1$$

- budget-share weighted average of income elasticities is always 1
- differentiate wrt p_j to get "Cournot aggregation"
 - in elasticity form:

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij} \equiv 0$$

- · price changes have two effects on the budget set
 - change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing powers
- as a simple example of why this distinction might matter, consider two policies:
 - levy a general consumption tax to fund highway maintainence
 - collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - \bullet with two goods, suppose p_1 rises to $p_1'>p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing powers
- as a simple example of why this distinction might matter, consider two policies:
 - levy a general consumption tax to fund highway maintainence
 - collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p'_1 > p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - levy a general consumption tax to fund highway maintainence
 - collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - \bullet with two goods, suppose p_1 rises to $p_1'>p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - · change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - levy a general consumption tax to fund highway maintainence
 - collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p_1' > p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - levy a general consumption tax to fund highway maintainence
 - collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p_1' > p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - levy a general consumption tax to fund highway maintainence
 - collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p'_1 > p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - levy a general consumption tax to fund highway maintainence
 - collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p'_1 > p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - · levy a general consumption tax to fund highway maintainence
 - collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p'_1 > p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - · change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - · levy a general consumption tax to fund highway maintainence
 - · collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p'_1 > p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - · change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - · levy a general consumption tax to fund highway maintainence
 - · collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p'_1 > p_1$; what is the Slutsky compensation?

- price changes have two effects on the budget set
 - change the relative price of goods
 - change aggregate "purchasing power"
- it is often useful to distinguish between these two mechanism for how prices affect choices
 - substitution effects due to relative prices
 - income effects due to changes in overall purchasing power
- as a simple example of why this distinction might matter, consider two policies:
 - · levy a general consumption tax to fund highway maintainence
 - · collect tolls on drivers
- Slutsky compensation: alter income after a price change such that the original bundle is feasible
 - with two goods, suppose p_1 rises to $p'_1 > p_1$; what is the Slutsky compensation?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- ullet now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- ullet now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- ullet now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - · we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- ullet now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - · we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - · not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- ullet suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- ullet now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - · not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- suppose consumers are passive: half buy only x₁ and half buy only x₂
 what is the market demand?
- now, suppose p_1 rises to p'_1 and we compensate everyone
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - · we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - · not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- ullet suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- ullet now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand?
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - · we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - · not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- ullet suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- ullet now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand?
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - · we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - · not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- ullet suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand?
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - · we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - · not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- ullet suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand?
- why does this work?

- main result in consumer theory: compensated own-price effects are negative
 - "demand curves slope down"
 - · we will see a more precise statement of this later
- however, a lot of the positive content of consumer theory comes from the budget constraint alone
 - · not from particular assumptions about rationality
- suppose prices are p_1, p_2 and all consumers have the same income y
- ullet suppose consumers are passive: half buy only x_1 and half buy only x_2
 - what is the market demand?
- now, suppose p_1 rises to p_1' and we compensate everyone
 - what happens to market demand?
- why does this work?

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
- even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object
 - we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility functions

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
 - even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object.
 - we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility when we work with utility functions

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
- even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object
 - we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility functions

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
- even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object
 - we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility functions

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
- even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object
 - we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility functions

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
- even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object
 - we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility functions

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
- even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object
 - we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility functions

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
- even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object
 - · we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility functions

- we've just seen that the budget constraint alone implies restrictions on behavior (at least in aggregate)
- even so it's often useful to introduce more structure into a model of how people make choices
 - get sharper predictions
 - a coherent language for thinking about why people do what they do
 - closely related: derive normative implications
- you have already worked with utility functions, say u(x)
 - it's possible to give an axiomatic foundation to the existence of such an object
 - · we won't use these too much
 - but, it's good to know what exactly we are assuming when we work with utility functions

- suppose the set of bundles you can choose from is a subset of \mathbb{R}^n_+ (n-tuples of nonnegative reals)
- what do we mean by "preferences"?
 - a "relation"

 describing a person's evaluation of the statement "is at least as good as"
 - a "binary relation" in the sense that you need two bundles x, y in order to evaluate "x > y"
- if this relation satisfies certain properties then:
 - we can construct a utility function u(x) that "represents" this person's preferences
 - in the sense that: $u(x) \ge u(y)$ if and only if $x \succeq 1$

- suppose the set of bundles you can choose from is a subset of \mathbb{R}^n_+ (n-tuples of nonnegative reals)
- what do we mean by "preferences"?
 - a "relation"

 describing a person's evaluation of the statement "is at least as good as"
 - a "binary relation" in the sense that you need two bundles x, y in order to evaluate "x > y"
- if this relation satisfies certain properties then:
 - we can construct a utility function u(x) that "represents" this person's preferences
 - in the sense that: $u(x) \ge u(y)$ if and only if $x \succeq y$

- suppose the set of bundles you can choose from is a subset of \mathbb{R}^n_+ (n-tuples of nonnegative reals)
- what do we mean by "preferences"?
 - a "relation"

 describing a person's evaluation of the statement "is at least as good as"
 - a "binary relation" in the sense that you need two bundles x, y in order to evaluate "x ≥ y"
- if this relation satisfies certain properties then:
 - we can construct a utility function u(x) that "represents" this person's preferences
 - in the sense that: $u(x) \ge u(y)$ if and only if $x \succeq y$

- suppose the set of bundles you can choose from is a subset of \mathbb{R}^n_+ (n-tuples of nonnegative reals)
- what do we mean by "preferences"?
 - a "relation"

 describing a person's evaluation of the statement "is at least as good as"
 - a "binary relation" in the sense that you need two bundles x, y in order to evaluate "x ≻ y"
- if this relation satisfies certain properties then:
 - we can construct a utility function u(x) that "represents" this person's preferences
 - in the sense that: $u(x) \ge u(y)$ if and only if $x \succeq y$

- suppose the set of bundles you can choose from is a subset of \mathbb{R}^n_+ (n-tuples of nonnegative reals)
- what do we mean by "preferences"?
 - a "relation"

 describing a person's evaluation of the statement "is at least as good as"
 - a "binary relation" in the sense that you need two bundles x, y in order to evaluate "x ≥ y"
- if this relation satisfies certain properties then:
 - we can construct a utility function u(x) that "represents" this person's preferences
 - in the sense that: $u(x) \ge u(y)$ if and only if $x \succeq y$

- suppose the set of bundles you can choose from is a subset of \mathbb{R}^n_+ (n-tuples of nonnegative reals)
- what do we mean by "preferences"?
 - a "relation"

 describing a person's evaluation of the statement "is at least as good as"
 - a "binary relation" in the sense that you need two bundles x, y in order to evaluate "x ≥ y"
- if this relation satisfies certain properties then:
 - we can construct a utility function u(x) that "represents" this person's preferences
 - in the sense that: $u(x) \ge u(y)$ if and only if $x \succeq y$

- suppose the set of bundles you can choose from is a subset of \mathbb{R}^n_+ (n-tuples of nonnegative reals)
- what do we mean by "preferences"?
 - a "relation"

 describing a person's evaluation of the statement "is at least as good as"
 - a "binary relation" in the sense that you need two bundles $x,\ y$ in order to evaluate " $x\succeq y$ "
- if this relation satisfies certain properties then:
 - we can construct a utility function u(x) that "represents" this person's preferences
 - in the sense that: $u(x) \ge u(y)$ if and only if $x \succeq y$

- We can construct a continuous utility function u that represents the preference relation

 if the preferences relation is
 - reflexive: for all x, $x \succeq x$
 - complete: for all x, y either $x \succeq y$ or $y \succeq x$
 - transative: if $x' \succeq x$ and $x'' \succeq x'$, then also $x'' \succeq x$
 - continuous: for any x, the sets $\{y: y \succeq x\}$ and $\{y: y \preceq x\}$ are closed
- often it's convenient to add:
 - convexity: if $x' \succeq x$, then for any $\alpha \in [0,1]$, $\alpha x' + (1-\alpha)x \succeq x$
 - if we assume this, we get that u is quasiconcave

- We can construct a continuous utility function u that represents the preference relation

 if the preferences relation is
 - reflexive: for all x, $x \succeq x$
 - complete: for all x, y either $x \succeq y$ or $y \succeq x$
 - transative: if $x' \succ x$ and $x'' \succ x'$, then also $x'' \succ x$
 - continuous: for any x, the sets $\{y: y \succeq x\}$ and $\{y: y \preceq x\}$ are closed
- often it's convenient to add:
 - convexity: if $x' \succeq x$, then for any $\alpha \in [0,1]$, $\alpha x' + (1-\alpha)x \succeq x$
 - ullet if we assume this, we get that u is quasiconcave

- We can construct a continuous utility function u that represents the preference relation

 if the preferences relation is
 - reflexive: for all x, $x \succeq x$
 - complete: for all x, y either $x \succeq y$ or $y \succeq x$
 - transative: if $x' \succeq x$ and $x'' \succeq x'$, then also $x'' \succeq x$
 - continuous: for any x, the sets $\{y:y\succeq x\}$ and $\{y:y\preceq x\}$ are closed
- often it's convenient to add:
 - convexity: if $x' \succeq x$, then for any $\alpha \in [0,1]$, $\alpha x' + (1-\alpha)x \succeq x$
 - if we assume this, we get that u is quasiconcave

- We can construct a continuous utility function u that represents the preference relation

 if the preferences relation is
 - reflexive: for all x, $x \succeq x$
 - complete: for all x, y either $x \succeq y$ or $y \succeq x$
 - transative: if $x' \succeq x$ and $x'' \succeq x'$, then also $x'' \succeq x$
 - continuous: for any x, the sets $\{y:y\succeq x\}$ and $\{y:y\preceq x\}$ are closed
- often it's convenient to add:
 - convexity: if $x' \succeq x$, then for any $\alpha \in [0,1]$, $\alpha x' + (1-\alpha)x \succeq x$
 - ullet if we assume this, we get that u is quasiconcave

- We can construct a continuous utility function u that represents the preference relation

 if the preferences relation is
 - reflexive: for all x, $x \succeq x$
 - complete: for all x, y either $x \succeq y$ or $y \succeq x$
 - transative: if $x' \succeq x$ and $x'' \succeq x'$, then also $x'' \succeq x$
 - continuous: for any x, the sets $\{y: y \succeq x\}$ and $\{y: y \preceq x\}$ are closed
- often it's convenient to add:
 - convexity: if $x' \succeq x$, then for any $\alpha \in [0,1]$, $\alpha x' + (1-\alpha)x \succeq x$
 - ullet if we assume this, we get that u is quasiconcave

- We can construct a continuous utility function u that represents the preference relation

 if the preferences relation is
 - reflexive: for all x, $x \succeq x$
 - complete: for all x, y either $x \succeq y$ or $y \succeq x$
 - transative: if $x' \succeq x$ and $x'' \succeq x'$, then also $x'' \succeq x$
 - continuous: for any x, the sets $\{y: y \succeq x\}$ and $\{y: y \preceq x\}$ are closed
- often it's convenient to add:
 - convexity: if $x' \succeq x$, then for any $\alpha \in [0,1]$, $\alpha x' + (1-\alpha)x \succeq x$
 - if we assume this, we get that u is quasiconcave

- We can construct a continuous utility function u that represents the preference relation

 if the preferences relation is
 - reflexive: for all x, $x \succeq x$
 - complete: for all x, y either $x \succeq y$ or $y \succeq x$
 - transative: if $x' \succeq x$ and $x'' \succeq x'$, then also $x'' \succeq x$
 - continuous: for any x, the sets $\{y: y \succeq x\}$ and $\{y: y \preceq x\}$ are closed
- often it's convenient to add:
 - convexity: if $x' \succeq x$, then for any $\alpha \in [0,1]$, $\alpha x' + (1-\alpha)x \succeq x$
 - if we assume this, we get that u is quasiconcave

- We can construct a continuous utility function u that represents the preference relation

 if the preferences relation is
 - reflexive: for all x, $x \succeq x$
 - complete: for all x, y either $x \succeq y$ or $y \succeq x$
 - transative: if $x' \succeq x$ and $x'' \succeq x'$, then also $x'' \succeq x$
 - continuous: for any x, the sets $\{y: y \succeq x\}$ and $\{y: y \preceq x\}$ are closed
- often it's convenient to add:
 - convexity: if $x' \succeq x$, then for any $\alpha \in [0,1]$, $\alpha x' + (1-\alpha)x \succeq x$
 - ullet if we assume this, we get that u is quasiconcave

- two ways to think of the consumer's problem
- maximize utility subject to a budget constraint

```
• x^M(p, y) = \arg\max u(x) s.t. px \le y are the Marshallian demands
• v(p, y) = \max u(x) s.t. px \le y is the indirect utility function
```

- minimize the cost of obtaining a target level of utility
 - = $x^H(p, u)$ = arg min px s.t. $u(x) \ge u$ are the Hicksian demands = e(p, u) = min px s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":

```
• x^M(p, e(p, u)) \equiv x^H(p, u) for all (p, u)
• and, x^H(p, v(p, y)) \equiv x^M(p, y) for all (p, y)
```

- two ways to think of the consumer's problem
- · maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
- minimize the cost of obtaining a target level of utility
 - $x^{H}(p, u) = \arg \min px$ s.t. $u(x) \ge u$ are the Hicksian demands
 - $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":

```
• x^{M}(p, e(p, u)) \equiv x^{H}(p, u) for all (p, u)
• and, x^{H}(p, v(p, y)) \equiv x^{M}(p, y) for all (p, y)
```

- two ways to think of the consumer's problem
- maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x''(p,u) = \arg\min px$ s.t. $u(x) \ge u$ are the Hicksian demands
 - $e(p,u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":
 - $x^M(\rho, e(\rho, u)) \equiv x^H(\rho, u)$ for all (ρ, u) • and, $x^H(\rho, v(\rho, y)) \equiv x^M(\rho, y)$ for all (ρ, y)
- what are the analogous relationships between the expenditure and indirect utility functions?

- two ways to think of the consumer's problem
- maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x^H(p, u) = \arg\min px$ s.t. $u(x) \ge u$ are the *Hicksian demands* • $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the *expenditure function* (or *cost function*
- "obviously":

```
• x^M(\rho, e(\rho, u)) \equiv x^n(\rho, u) for all (\rho, u)
• and, x^H(\rho, v(\rho, y)) \equiv x^M(\rho, y) for all (\rho, y)
```

- two ways to think of the consumer's problem
- maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x^{H}(p, u) = \arg \min px$ s.t. $u(x) \ge u$ are the *Hicksian demands*
 - $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function
- "obviously":

```
• x^{M}(p, e(p, u)) \equiv x^{H}(p, u) for all (p, u)
• and, x^{H}(p, v(p, y)) \equiv x^{M}(p, y) for all (p, y)
```

- two ways to think of the consumer's problem
- · maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x^{H}(p, u) = \arg \min px$ s.t. $u(x) \ge u$ are the Hicksian demands
 - $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":

```
• x^M(p, e(p, u)) \equiv x^H(p, u) for all (p, u)
• and, x^H(p, v(p, y)) \equiv x^M(p, y) for all (p, y)
```

- two ways to think of the consumer's problem
- · maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x^{H}(p, u) = \arg \min px$ s.t. $u(x) \ge u$ are the Hicksian demands
 - $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":

```
• x^M(p, e(p, u)) \equiv x^H(p, u) for all (p, u)
• and, x^H(p, v(p, y)) \equiv x^M(p, y) for all (p, y)
```

- two ways to think of the consumer's problem
- · maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x^{H}(p, u) = \arg \min px$ s.t. $u(x) \ge u$ are the Hicksian demands
 - $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":
 - $x^M(p, e(p, u)) \equiv x^H(p, u)$ for all (p, u)• and, $x^H(p, v(p, y)) \equiv x^M(p, y)$ for all (p, y)
- what are the analogous relationships between the expenditure and indirect utility functions?

- two ways to think of the consumer's problem
- maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x^{H}(p, u) = \arg \min px$ s.t. $u(x) \ge u$ are the Hicksian demands
 - $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":
 - $x^M(p, e(p, u)) \equiv x^H(p, u)$ for all (p, u)• and, $x^H(p, v(p, y)) \equiv x^M(p, y)$ for all (p, y)
- what are the analogous relationships between the expenditure and indirect utility functions?

- two ways to think of the consumer's problem
- maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x^{H}(p, u) = \arg \min px$ s.t. $u(x) \ge u$ are the Hicksian demands
 - $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":
 - $x^{M}(p, e(p, u)) \equiv x^{H}(p, u)$ for all (p, u)
 - and, $x^H(p, v(p, y)) \equiv x^M(p, y)$ for all (p, y)
- what are the analogous relationships between the expenditure and indirect utility functions?

- two ways to think of the consumer's problem
- · maximize utility subject to a budget constraint
 - $x^{M}(p, y) = \arg \max u(x)$ s.t. $px \le y$ are the Marshallian demands
 - $v(p, y) = \max u(x)$ s.t. $px \le y$ is the indirect utility function
- minimize the cost of obtaining a target level of utility
 - $x^{H}(p, u) = \arg \min px$ s.t. $u(x) \ge u$ are the Hicksian demands
 - $e(p, u) = \min px$ s.t. $u(x) \ge u$ is the expenditure function (or cost function)
- "obviously":
 - $x^M(p, e(p, u)) \equiv x^H(p, u)$ for all (p, u)
 - and, $x^H(p, v(p, y)) \equiv x^M(p, y)$ for all (p, y)
- what are the analogous relationships between the expenditure and indirect utility functions?

• Hicksian demand is:

- easier to work with for welfare analysis (why?
- harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p,u) and t>0, $e(tp,u)\equiv te(p,u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma:

$$\frac{\partial}{\partial p_i}e(p,u)\equiv x_i^H(p,u)$$

- Hicksian demand is:
 - easier to work with for welfare analysis (why?)
 - harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p,u) and t>0, $e(tp,u)\equiv te(p,u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma

$$\frac{\partial}{\partial p_i}e(p,u) \equiv x_i^H(p,u)$$

- Hicksian demand is:
 - easier to work with for welfare analysis (why?)
 - harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p,u) and t>0, $e(tp,u)\equiv te(p,u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma:

$$\frac{\partial}{\partial p_i}e(p,u)\equiv x_i^H(p,u).$$

- Hicksian demand is:
 - easier to work with for welfare analysis (why?)
 - harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p, u) and t > 0, $e(tp, u) \equiv te(p, u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma:

$$\frac{\partial}{\partial p_i}e(p,u)\equiv x_i^H(p,u)$$

- Hicksian demand is:
 - easier to work with for welfare analysis (why?)
 - harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p, u) and t > 0, $e(tp, u) \equiv te(p, u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma:

$$\frac{\partial}{\partial p_i}e(p,u)\equiv x_i^H(p,u)$$

- Hicksian demand is:
 - easier to work with for welfare analysis (why?)
 - harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p, u) and t > 0, $e(tp, u) \equiv te(p, u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma:

$$\frac{\partial}{\partial p_i}e(p,u) \equiv x_i^H(p,u)$$

- Hicksian demand is:
 - easier to work with for welfare analysis (why?)
 - harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p, u) and t > 0, $e(tp, u) \equiv te(p, u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma:

$$\frac{\partial}{\partial p_i}e(p,u) \equiv x_i^H(p,u)$$

- Hicksian demand is:
 - easier to work with for welfare analysis (why?)
 - harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p, u) and t > 0, $e(tp, u) \equiv te(p, u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma:

$$\frac{\partial}{\partial p_i}e(p,u)\equiv x_i^H(p,u)$$

- Hicksian demand is:
 - easier to work with for welfare analysis (why?)
 - harder to use, because we don't get to observe utility levels
- let's notice some useful properties of e(p, u):
 - homogenous of degree one in p: for all (p, u) and t > 0, $e(tp, u) \equiv te(p, u)$
 - increasing in u and in p
 - concave in p (why?)
 - continuously differentiable in p
 - Shephard's Lemma:

$$\frac{\partial}{\partial p_i}e(p,u)\equiv x_i^H(p,u).$$

- these special properties of the expenditure function imply restrictions on Hicksian demands
 - adding-up

$$\sum_{i=1}^n p_i x_i^H(p, u) \equiv e(p, u)$$

- homogeneity of degree zero: for all t>0 and all (p,u), $x^H(tp,u)\equiv x^H(p,u)$
- symmetry: for all i, j,

$$\frac{\partial^2 e}{\partial p_j p_i} = \frac{\partial x_i^H}{\partial p_j} = \frac{\partial x_j^H}{\partial p_i} = \frac{\partial^2 e}{\partial p_i p_j}$$

• negativity: the matrix σ with i, j-th entry

$$\sigma_{ij} = \frac{\partial x_i^H}{\partial p_i}$$

is negative semidefinite.

• this last one implies that compensated own-price effects are nonpositive:

- these special properties of the expenditure function imply restrictions on Hicksian demands
 - adding-up:

$$\sum_{i=1}^n p_i x_i^H(p, u) \equiv e(p, u)$$

- homogeneity of degree zero: for all t > 0 and all (p, u), $x^H(tp, u) \equiv x^H(p, u)$
- symmetry: for all i, j,

$$\frac{\partial^{2} e}{\partial p_{j} p_{i}} = \frac{\partial x_{i}^{H}}{\partial p_{j}} = \frac{\partial x_{j}^{H}}{\partial p_{i}} = \frac{\partial^{2} e}{\partial p_{i} p_{j}}$$

• negativity: the matrix σ with i, j-th entry

$$\sigma_{ij} = \frac{\partial x_i^H}{\partial p_j}$$

is negative semidefinite.

• this last one implies that compensated own-price effects are nonpositive $\partial x_i^H/\partial p_i < 0$

- these special properties of the expenditure function imply restrictions on Hicksian demands
 - adding-up:

$$\sum_{i=1}^n p_i x_i^H(p, u) \equiv e(p, u)$$

- homogeneity of degree zero: for all t > 0 and all (p, u), $x^H(tp, u) \equiv x^H(p, u)$
- symmetry: for all i, j,

$$\frac{\partial^2 e}{\partial p_j p_i} = \frac{\partial x_i^H}{\partial p_j} = \frac{\partial x_j^H}{\partial p_i} = \frac{\partial^2 e}{\partial p_i p_j}$$

• negativity: the matrix σ with i, j-th entry

$$\sigma_{ij} = \frac{\partial x_i^H}{\partial p_j}$$

is negative semidefinite.

• this last one implies that compensated own-price effects are nonpositive $\partial x_i^H/\partial p_i < 0$

- these special properties of the expenditure function imply restrictions on Hicksian demands
 - adding-up:

$$\sum_{i=1}^n p_i x_i^H(p, u) \equiv e(p, u)$$

- homogeneity of degree zero: for all t > 0 and all (p, u), $x^H(tp, u) \equiv x^H(p, u)$
- symmetry: for all i, j,

$$\frac{\partial^2 e}{\partial p_j p_i} = \frac{\partial x_i^H}{\partial p_j} = \frac{\partial x_j^H}{\partial p_i} = \frac{\partial^2 e}{\partial p_i p_j}.$$

• negativity: the matrix σ with i, j-th entry

$$\sigma_{ij} = \frac{\partial x_i^H}{\partial p_j}$$

is negative semidefinite.

• this last one implies that compensated own-price effects are nonpositive: $\partial x_i^H/\partial p_i \leq 0$

- these special properties of the expenditure function imply restrictions on Hicksian demands
 - adding-up:

$$\sum_{i=1}^n p_i x_i^H(p, u) \equiv e(p, u)$$

- homogeneity of degree zero: for all t > 0 and all (p, u), $x^H(tp, u) \equiv x^H(p, u)$
- symmetry: for all i, j,

$$\frac{\partial^2 e}{\partial p_j p_i} = \frac{\partial x_i^H}{\partial p_j} = \frac{\partial x_j^H}{\partial p_i} = \frac{\partial^2 e}{\partial p_i p_j}.$$

• negativity: the matrix σ with i, j-th entry

$$\sigma_{ij} = \frac{\partial x_i^H}{\partial p_i}$$

is negative semidefinite.

• this last one implies that compensated own-price effects are nonpositive: $\partial x_i^H/\partial p_i \leq 0$

- these special properties of the expenditure function imply restrictions on Hicksian demands
 - adding-up:

$$\sum_{i=1}^n p_i x_i^H(p, u) \equiv e(p, u)$$

- homogeneity of degree zero: for all t>0 and all (p,u), $x^H(tp,u)\equiv x^H(p,u)$
- symmetry: for all i, j,

$$\frac{\partial^2 e}{\partial p_j p_i} = \frac{\partial x_i^H}{\partial p_j} = \frac{\partial x_j^H}{\partial p_i} = \frac{\partial^2 e}{\partial p_i p_j}.$$

• negativity: the matrix σ with i, j-th entry

$$\sigma_{ij} = \frac{\partial x_i^H}{\partial p_j}$$

is negative semidefinite.

• this last one implies that compensated own-price effects are nonpositive: $\partial x_{\cdot}^{H}/\partial p_{i} < 0$

- we can relate the observable Marshallian demands to the (unobservable) Hicksian ones
 - differentiate the identity $x^{M}(p, e(p, u)) \equiv x_{i}^{H}(p, u)$ wrt p
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M} = \varepsilon_{ij}^{H} - s_{j}\eta_{j}$$

- ullet so, we can form the matrix σ , assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneity
 - symmetry
 - negativity

- we can relate the observable Marshallian demands to the (unobservable)
 Hicksian ones
 - differentiate the identity $x^M(p, e(p, u)) \equiv x_i^H(p, u)$ wrt p_j
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M} = \varepsilon_{ij}^{H} - s_{j}\eta_{j}$$

- ullet so, we can form the matrix σ , assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneity
 - symmetry
 - negativity

- we can relate the observable Marshallian demands to the (unobservable)
 Hicksian ones
 - differentiate the identity $x^M(p, e(p, u)) \equiv x_i^H(p, u)$ wrt p_j
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M}=\varepsilon_{ij}^{H}-s_{j}\eta_{j}$$

- ullet so, we can form the matrix σ , assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneity
 - symmetry
 - negativity

- we can relate the observable Marshallian demands to the (unobservable)
 Hicksian ones
 - differentiate the identity $x^M(p, e(p, u)) \equiv x_i^H(p, u)$ wrt p_j
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M} = \varepsilon_{ij}^{H} - s_{j}\eta_{j}$$

- \bullet so, we can form the matrix $\sigma,$ assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneit
 - symmetry
 - negativity

- we can relate the observable Marshallian demands to the (unobservable)
 Hicksian ones
 - differentiate the identity $x^M(p, e(p, u)) \equiv x_i^H(p, u)$ wrt p_j
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M} = \varepsilon_{ij}^{H} - s_{j}\eta_{j}$$

- ullet so, we can form the matrix σ , assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneity
 - symmetry
 - negativity

- we can relate the observable Marshallian demands to the (unobservable)
 Hicksian ones
 - differentiate the identity $x^M(p, e(p, u)) \equiv x_i^H(p, u)$ wrt p_j
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M} = \varepsilon_{ij}^{H} - s_{j}\eta_{j}$$

- ullet so, we can form the matrix σ , assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneity
 - symmetry
 - negativity

- we can relate the observable Marshallian demands to the (unobservable)
 Hicksian ones
 - differentiate the identity $x^M(p, e(p, u)) \equiv x_i^H(p, u)$ wrt p_j
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M} = \varepsilon_{ij}^{H} - s_{j}\eta_{j}$$

- ullet so, we can form the matrix σ , assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneity
 - symmetry
 - negativity

- we can relate the observable Marshallian demands to the (unobservable)
 Hicksian ones
 - differentiate the identity $x^M(p, e(p, u)) \equiv x_i^H(p, u)$ wrt p_j
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M} = \varepsilon_{ij}^{H} - s_{j}\eta_{j}$$

- ullet so, we can form the matrix σ , assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneity
 - symmetry
 - negativity

- we can relate the observable Marshallian demands to the (unobservable)
 Hicksian ones
 - differentiate the identity $x^M(p, e(p, u)) \equiv x_i^H(p, u)$ wrt p_j
- the result is called the "Slutsky equation":

$$\varepsilon_{ij}^{M} = \varepsilon_{ij}^{H} - s_{j}\eta_{j}$$

- ullet so, we can form the matrix σ , assuming we had enough data with exogenous variation in prices and incomes
- then, the properties we mentioned are testable implications of rational choice
 - adding-up
 - homogeneity
 - symmetry
 - negativity

- we can translate the properties of Hicksian demand into elasticity form:
 - homogeneity: for all goods i,

$$\sum_{j=1}^{n} \varepsilon_{ij}^{H} = 0$$

adding-up (or use the utility constraint): for all j,

$$\sum_{i=1}^{n} s_{i} \varepsilon_{ij}^{H} = 0$$

$$s_i \varepsilon_{ij}^H = s_j \varepsilon_{ji}^H$$
.

- two of these imply the third
 - we don't have as many independent restrictions as it appears
 - with a two-good demand system, how much information do we need to fully characterize demand?

- we can translate the properties of Hicksian demand into elasticity form:
 - homogeneity: for all goods i,

$$\sum_{j=1}^n arepsilon_{ij}^H = 0$$

adding-up (or use the utility constraint): for all j,

$$\sum_{i=1}^{n} s_{i} \varepsilon_{ij}^{H} = 0$$

$$s_i \varepsilon_{ij}^H = s_j \varepsilon_{ji}^H$$
.

- two of these imply the third
 - we don't have as many independent restrictions as it appears
 - with a two-good demand system, how much information do we need to fully characterize demand?

- we can translate the properties of Hicksian demand into elasticity form:
 - homogeneity: for all goods i,

$$\sum_{j=1}^n arepsilon_{ij}^H = 0$$

• adding-up (or use the utility constraint): for all j,

$$\sum_{i=1}^n s_i \varepsilon_{ij}^H = 0$$

$$s_i \varepsilon_{ij}^H = s_j \varepsilon_{ji}^H$$
.

- two of these imply the third
 - we don't have as many independent restrictions as it appears
 - with a two-good demand system, how much information do we need to fully characterize demand?

- we can translate the properties of Hicksian demand into elasticity form:
 - homogeneity: for all goods i,

$$\sum_{j=1}^n \varepsilon_{ij}^H = 0$$

• adding-up (or use the utility constraint): for all j,

$$\sum_{i=1}^n s_i \varepsilon_{ij}^H = 0$$

$$s_i \varepsilon_{ij}^H = s_j \varepsilon_{ji}^H$$
.

- two of these imply the third
 - we don't have as many independent restrictions as it appears
 - with a two-good demand system, how much information do we need to fully characterize demand?

- we can translate the properties of Hicksian demand into elasticity form:
 - homogeneity: for all goods i,

$$\sum_{j=1}^n \varepsilon_{ij}^H = 0$$

adding-up (or use the utility constraint): for all j,

$$\sum_{i=1}^n s_i \varepsilon_{ij}^H = 0$$

$$s_i \varepsilon_{ij}^H = s_j \varepsilon_{ji}^H$$
.

- two of these imply the third
 - we don't have as many independent restrictions as it appears
 - with a two-good demand system, how much information do we need to fully characterize demand?

- we can translate the properties of Hicksian demand into elasticity form:
 - homogeneity: for all goods i,

$$\sum_{j=1}^n \varepsilon_{ij}^H = 0$$

adding-up (or use the utility constraint): for all j,

$$\sum_{i=1}^n s_i \varepsilon_{ij}^H = 0$$

$$s_i \varepsilon_{ij}^H = s_j \varepsilon_{ji}^H$$
.

- two of these imply the third
 - we don't have as many independent restrictions as it appears
 - with a two-good demand system, how much information do we need to fully characterize demand?

- we can translate the properties of Hicksian demand into elasticity form:
 - homogeneity: for all goods i,

$$\sum_{j=1}^n arepsilon_{ij}^H = 0$$

adding-up (or use the utility constraint): for all j,

$$\sum_{i=1}^n s_i \varepsilon_{ij}^H = 0$$

$$s_i \varepsilon_{ij}^H = s_j \varepsilon_{ji}^H$$
.

- two of these imply the third
 - we don't have as many independent restrictions as it appears
 - with a two-good demand system, how much information do we need to fully characterize demand?

- we've already seen some restrictions on Marshallian demand
 - Cournot aggregation

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij}^M = 0$$

Engel aggregation

$$\sum_{i=1}^n s_i \eta_i = 1.$$

- we've already seen some restrictions on Marshallian demand
 - Cournot aggregation:

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij}^M = 0$$

Engel aggregation

$$\sum_{i=1}^n s_i \eta_i = 1$$

- · we've already seen some restrictions on Marshallian demand
 - Cournot aggregation:

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij}^M = 0$$

Engel aggregation:

$$\sum_{i=1}^n s_i \eta_i = 1.$$

- · we've already seen some restrictions on Marshallian demand
 - Cournot aggregation:

$$s_j + \sum_{i=1}^n s_i \varepsilon_{ij}^M = 0$$

Engel aggregation:

$$\sum_{i=1}^n s_i \eta_i = 1.$$

- we could define *i* and *j* to be *substitutes* if an increase in the price of *j* leads to an increase in the (compensated) demand for *i*
 - i.e. if $\varepsilon_{ii}^H > 0$
- similarly, let's call *i* and *j* complements if an increase in the price of *j* leads to a decrease in the compensated demand for *i*

• i.e. if
$$\varepsilon_{ii}^H < 0$$

- what might go wrong if we defined things in terms of Marshallian demand?
- with a two-good demand system, you can only have substitutes (prove this!)

- we could define *i* and *j* to be *substitutes* if an increase in the price of *j* leads to an increase in the (compensated) demand for *i*
 - i.e. if $\varepsilon_{ij}^H > 0$
- similarly, let's call *i* and *j* complements if an increase in the price of *j* leads to a decrease in the compensated demand for *i*

• i.e. if
$$\varepsilon_{ii}^H < 0$$

- what might go wrong if we defined things in terms of Marshallian demand?
- with a two-good demand system, you can only have substitutes (prove this!)

- we could define *i* and *j* to be *substitutes* if an increase in the price of *j* leads to an increase in the (compensated) demand for *i*
 - i.e. if $\varepsilon_{ij}^H > 0$
- similarly, let's call i and j complements if an increase in the price of j leads to
 a decrease in the compensated demand for i

• i.e. if
$$\varepsilon_{ij}^H < 0$$

- what might go wrong if we defined things in terms of Marshallian demand?
- with a two-good demand system, you can only have substitutes (prove this!)

- we could define *i* and *j* to be *substitutes* if an increase in the price of *j* leads to an increase in the (compensated) demand for *i*
 - i.e. if $\varepsilon_{ij}^H > 0$
- similarly, let's call i and j complements if an increase in the price of j leads to
 a decrease in the compensated demand for i
 - i.e. if $\varepsilon_{ij}^H < 0$
- what might go wrong if we defined things in terms of Marshallian demand?
- with a two-good demand system, you can only have substitutes (prove this!)

- we could define *i* and *j* to be *substitutes* if an increase in the price of *j* leads to an increase in the (compensated) demand for *i*
 - i.e. if $\varepsilon_{ij}^H > 0$
- similarly, let's call i and j complements if an increase in the price of j leads to
 a decrease in the compensated demand for i
 - i.e. if $\varepsilon_{ij}^H < 0$
- what might go wrong if we defined things in terms of Marshallian demand?
- with a two-good demand system, you can only have substitutes (prove this!)

- we could define *i* and *j* to be *substitutes* if an increase in the price of *j* leads to an increase in the (compensated) demand for *i*
 - i.e. if $\varepsilon_{ij}^H > 0$
- similarly, let's call i and j complements if an increase in the price of j leads to
 a decrease in the compensated demand for i
 - i.e. if $\varepsilon_{ij}^H < 0$
- what might go wrong if we defined things in terms of Marshallian demand?
- with a two-good demand system, you can only have substitutes (prove this!)

- so far we have only imposed the budget constraint on consumers
- suppose the quantities of some goods were fixed, e.g. because of rationing
 - say the quantity of good 1 is fixed at z, and x₋₁ is the vector of all the other goods
 - the consumer's expenditure-minimization problem becomes:

$$\overline{e}(p, u, z) = \min_{\substack{x = 1 \ x = 1}} p_1 z + p_{-1} x_{-1} \text{ s.t. } u(z, x_{-1}) \ge u$$

- let $\overline{x}^H(p_{-1}, u, z)$ be the constrained Hicksian demands
- notice how the price of the rationed good does not directly affect the constrained demands

- so far we have only imposed the budget constraint on consumers
- suppose the quantities of some goods were fixed, e.g. because of rationing
 - say the quantity of good 1 is fixed at z, and x₋₁ is the vector of all the other goods
 - the consumer's expenditure-minimization problem becomes:

$$ar{e}(p,u,z) = \min_{x_{-1}} p_1 z + p_{-1} x_{-1} \text{ s.t. } u(z,x_{-1}) \geq u$$

- let $\overline{x}^H(p_{-1}, u, z)$ be the constrained Hicksian demands
- notice how the price of the rationed good does not directly affect the constrained demands

- so far we have only imposed the budget constraint on consumers
- suppose the quantities of some goods were fixed, e.g. because of rationing
 - say the quantity of good 1 is fixed at z, and x₋₁ is the vector of all the other goods
 - the consumer's expenditure-minimization problem becomes:

$$\overline{e}(p, u, z) = \min_{\substack{x_{-1} \ x_{-1}}} p_1 z + p_{-1} x_{-1} \text{ s.t. } u(z, x_{-1}) \ge u$$

- let $\overline{x}^H(p_{-1}, u, z)$ be the constrained Hicksian demands
- notice how the price of the rationed good does not directly affect the constrained demands

- so far we have only imposed the budget constraint on consumers
- suppose the quantities of some goods were fixed, e.g. because of rationing
 - say the quantity of good 1 is fixed at z, and x₋₁ is the vector of all the other goods
 - the consumer's expenditure-minimization problem becomes:

$$\overline{e}(p, u, z) = \min_{x_{-1}} p_1 z + p_{-1} x_{-1} \text{ s.t. } u(z, x_{-1}) \ge u$$

- let $\overline{x}^H(p_{-1},u,z)$ be the constrained Hicksian demands
- notice how the price of the rationed good does not directly affect the constrained demands

- so far we have only imposed the budget constraint on consumers
- suppose the quantities of some goods were fixed, e.g. because of rationing
 - say the quantity of good 1 is fixed at z, and x₋₁ is the vector of all the other goods
 - the consumer's expenditure-minimization problem becomes:

$$\overline{e}(p, u, z) = \min_{x_{-1}} p_1 z + p_{-1} x_{-1} \text{ s.t. } u(z, x_{-1}) \ge u$$

- let $\overline{x}^H(p_{-1}, u, z)$ be the constrained Hicksian demands
- notice how the price of the rationed good does not directly affect the constrained demands

- so far we have only imposed the budget constraint on consumers
- suppose the quantities of some goods were fixed, e.g. because of rationing
 - say the quantity of good 1 is fixed at z, and x₋₁ is the vector of all the other goods
 - the consumer's expenditure-minimization problem becomes:

$$\overline{e}(p, u, z) = \min_{x_{-1}} p_1 z + p_{-1} x_{-1} \text{ s.t. } u(z, x_{-1}) \ge u$$

- let $\overline{x}^H(p_{-1}, u, z)$ be the constrained Hicksian demands
- notice how the price of the rationed good does not directly affect the constrained demands

- let $\Delta(p, u, z) = \overline{e}(p, u, z) e(p, u)$ be the "excess" expenditure due to rationing
 - clearly $\Delta(p, u, z) \geq 0$ with a minumum where $z = x_1^H(p, u)$ why?
 - and, the constrained Hicksian demands satisf

$$\overline{x}_{i}^{H}(p_{-1}, u, x_{1}^{H}(p_{1}, p_{-1}, u)) \equiv x_{i}^{H}(p_{1}, p_{-1}, u)$$

• if we differentiate wrt the price of the rationed good (p_1) ,

$$\frac{\partial \overline{x}_i}{\partial z} = \frac{\sigma_{i1}}{\sigma_{11}}$$

- what does this tell us about the effects of rationing on the demand for other goods?
- and, if we differentiate with respect to p_i , we get

$$\frac{\partial \overline{x}_{i}^{H}}{\partial p_{i}} = \sigma_{ii} - \frac{\sigma_{ii}^{2}}{\sigma_{1i}}$$

- let $\Delta(p, u, z) = \overline{e}(p, u, z) e(p, u)$ be the "excess" expenditure due to rationing
 - clearly $\Delta(p, u, z) \geq 0$ with a minumum where $z = x_1^H(p, u)$ why?
 - and, the constrained Hicksian demands satisfy

$$\overline{x}_i^H(p_{-1}, u, x_1^H(p_1, p_{-1}, u)) \equiv x_i^H(p_1, p_{-1}, u)$$

• if we differentiate wrt the price of the rationed good (p_1) ,

$$\frac{\partial \overline{x}_i}{\partial z} = \frac{\sigma_{i1}}{\sigma_{11}}$$

- what does this tell us about the effects of rationing on the demand for other goods?
- and, if we differentiate with respect to p_i , we get

$$\frac{\partial \overline{x}_i^H}{\partial p_i} = \sigma_{ii} - \frac{\sigma_{i1}^2}{\sigma_{11}}$$

- let $\Delta(p, u, z) = \overline{e}(p, u, z) e(p, u)$ be the "excess" expenditure due to rationing
 - clearly $\Delta(p, u, z) \ge 0$ with a minumum where $z = x_1^H(p, u)$ why?
 - · and, the constrained Hicksian demands satisfy

$$\overline{x}_{i}^{H}(p_{-1}, u, x_{1}^{H}(p_{1}, p_{-1}, u)) \equiv x_{i}^{H}(p_{1}, p_{-1}, u)$$

• if we differentiate wrt the price of the rationed good (p_1) ,

$$\frac{\partial \overline{x}_i}{\partial z} = \frac{\sigma_{i1}}{\sigma_{11}}$$

- what does this tell us about the effects of rationing on the demand for other goods?
- and, if we differentiate with respect to p_i , we get

$$\frac{\partial \overline{x}_i^H}{\partial p_i} = \sigma_{ii} - \frac{\sigma_{i1}^2}{\sigma_{11}}$$

- let $\Delta(p, u, z) = \overline{e}(p, u, z) e(p, u)$ be the "excess" expenditure due to rationing
 - clearly $\Delta(p, u, z) \ge 0$ with a minumum where $z = x_1^H(p, u)$ why?
 - · and, the constrained Hicksian demands satisfy

$$\overline{x}_{i}^{H}(p_{-1}, u, x_{1}^{H}(p_{1}, p_{-1}, u)) \equiv x_{i}^{H}(p_{1}, p_{-1}, u)$$

• if we differentiate wrt the price of the rationed good (p_1) ,

$$\frac{\partial \overline{x}_i}{\partial z} = \frac{\sigma_{i1}}{\sigma_{11}}$$

- what does this tell us about the effects of rationing on the demand for other goods?
- and, if we differentiate with respect to p_i , we get

$$\frac{\partial \overline{x}_i^H}{\partial p_i} = \sigma_{ii} - \frac{\sigma_{i1}^2}{\sigma_{11}}$$

- let $\Delta(p, u, z) = \overline{e}(p, u, z) e(p, u)$ be the "excess" expenditure due to rationing
 - clearly $\Delta(p, u, z) \geq 0$ with a minumum where $z = x_1^H(p, u)$ why?
 - · and, the constrained Hicksian demands satisfy

$$\overline{x}_{i}^{H}(p_{-1}, u, x_{1}^{H}(p_{1}, p_{-1}, u)) \equiv x_{i}^{H}(p_{1}, p_{-1}, u)$$

• if we differentiate wrt the price of the rationed good (p_1) ,

$$\frac{\partial \overline{x}_i}{\partial z} = \frac{\sigma_{i1}}{\sigma_{11}}$$

- what does this tell us about the effects of rationing on the demand for other goods?
- and, if we differentiate with respect to p_i , we get

$$\frac{\partial \overline{x}_i^H}{\partial p_i} = \sigma_{ii} - \frac{\sigma_{i1}^2}{\sigma_{11}}$$

- let $\Delta(p, u, z) = \overline{e}(p, u, z) e(p, u)$ be the "excess" expenditure due to rationing
 - clearly $\Delta(p, u, z) \ge 0$ with a minumum where $z = x_1^H(p, u)$ why?
 - · and, the constrained Hicksian demands satisfy

$$\overline{x}_{i}^{H}(p_{-1}, u, x_{1}^{H}(p_{1}, p_{-1}, u)) \equiv x_{i}^{H}(p_{1}, p_{-1}, u)$$

• if we differentiate wrt the price of the rationed good (p_1) ,

$$\frac{\partial \overline{x}_i}{\partial z} = \frac{\sigma_{i1}}{\sigma_{11}}$$

- what does this tell us about the effects of rationing on the demand for other goods?
- and, if we differentiate with respect to p_i, we get

$$\frac{\partial \overline{\mathbf{x}}_{i}^{H}}{\partial \mathbf{p}_{i}} = \sigma_{ii} - \frac{\sigma_{i1}^{2}}{\sigma_{11}}$$

- let $\Delta(p, u, z) = \overline{e}(p, u, z) e(p, u)$ be the "excess" expenditure due to rationing
 - clearly $\Delta(p, u, z) \ge 0$ with a minumum where $z = x_1^H(p, u)$ why?
 - · and, the constrained Hicksian demands satisfy

$$\overline{x}_{i}^{H}(p_{-1}, u, x_{1}^{H}(p_{1}, p_{-1}, u)) \equiv x_{i}^{H}(p_{1}, p_{-1}, u)$$

• if we differentiate wrt the price of the rationed good (p_1) ,

$$\frac{\partial \overline{x}_i}{\partial z} = \frac{\sigma_{i1}}{\sigma_{11}}$$

- what does this tell us about the effects of rationing on the demand for other goods?
- and, if we differentiate with respect to p_i, we get

$$\frac{\partial \overline{\mathbf{x}}_{i}^{H}}{\partial \mathbf{p}_{i}} = \sigma_{ii} - \frac{\sigma_{i1}^{2}}{\sigma_{11}}$$

References

Table of Contents

The Economic Approach to Human Behavior

The Budget Constraint

Preferences and Rational Choice

Implications of Rational Choice