

planetmath.org

Math for the people, by the people.

properties of the Lebesgue integral of Lebesgue integrable functions

 $Canonical\ name \qquad Properties Of The Lebesgue Integral Of Lebesgue Integrable Functions$

Date of creation 2013-03-22 16:14:01 Last modified on 2013-03-22 16:14:01 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 19

Author Wkbj79 (1863)

Entry type Theorem Classification msc 26A42 Classification msc 28A25

 $Related\ topic \qquad Properties Of The Lebesgue Integral Of Nonnegative Measurable Functions$

Theorem. Let (X, \mathfrak{B}, μ) be a measure space, $f: X \to [-\infty, \infty]$ and $g: X \to [-\infty, \infty]$ be Lebesgue integrable functions, and $A, B \in \mathfrak{B}$. Then the following properties hold:

$$1. \left| \int_A f \, d\mu \right| \le \int_A |f| \, d\mu$$

2. If
$$f \leq g$$
, then $\int_A f d\mu \leq \int_A g d\mu$.

3.
$$\int_A f d\mu = \int_X \chi_A f d\mu$$
, where χ_A denotes the characteristic function of

4. If
$$c \in \mathbb{R}$$
, then $\int_A cf d\mu = c \int_A f d\mu$.

5. If
$$\mu(A) = 0$$
, then $\int_A f d\mu = 0$.

6.
$$\int_A (f+g) d\mu = \int_A f d\mu + \int_A g d\mu$$
.

7. If
$$A \cap B = \emptyset$$
, then $\int_{A \cup B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu$.

8. If
$$f = g$$
 almost everywhere with respect to μ , then $\int_A f d\mu = \int_A g d\mu$.

$$\left| \int_{A} f \, d\mu \right| = \left| \int_{A} f^{+} \, d\mu - \int_{A} f^{-} \, d\mu \right| \text{ by definition}$$

$$\leq \left| \int_{A} f^{+} \, d\mu \right| + \left| \int_{A} f^{-} \, d\mu \right| \text{ by the triangle inequality}$$

$$= \int_{A} f^{+} \, d\mu + \int_{A} f^{-} \, d\mu \text{ by the}$$

properties of the Lebesgue integral of nonnegative measurable functions (proper $=\int_{-1}^{1} (f^{+} + f^{-}) d\mu$ by the

http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativel $=\int_{A}|f|\,d\mu$

- 2. Since $f \leq g$, the following must hold:
 - $f^+ = \max\{0, f\} \le \max\{0, g\} = g^+;$
 - $\bullet \ -f \ge -g;$
 - $f^- = \max\{0, -f\} \ge \max\{0, -g\} = g^-$.

Thus, by the http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegative of the Lebesgue integral of nonnegative measurable functions (prop-

erty 2),
$$\int_A f^+ d\mu \leq \int_A g^+ d\mu$$
 and $\int_A f^- d\mu \geq \int_A g^- d\mu$. Therefore, $-\int_A f^- d\mu \leq -\int_A g^- d\mu$. Hence, $\int_A f^+ d\mu - \int_A f^- d\mu \leq \int_A g^+ d\mu - \int_A g^- d\mu$. It follows that $\int_A f d\mu \leq \int_A g d\mu$.

$$\int_{A} f \, d\mu = \int_{A} f^{+} \, d\mu - \int_{A} f^{-} \, d\mu \text{ by definition}$$
$$= \int_{X} \chi_{A} f^{+} \, d\mu - \int_{X} \chi_{A} f^{-} \, d\mu \text{ by the}$$

http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMelebesgueIntegralOfNonneg

4. If $c \geq 0$, then

$$\int_{A} cf \, d\mu = \int_{A} (cf)^{+} \, d\mu - \int_{A} (cf)^{-} \, d\mu \text{ by definition}$$

$$= \int_{A} cf^{+} \, d\mu - \int_{A} cf^{-} \, d\mu$$

$$= c \int_{A} f^{+} \, d\mu - c \int_{A} f^{-} \, d\mu \text{ by the}$$

http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeM

$$= c \left(\int_A f^+ d\mu - \int_A f^- d\mu \right)$$
$$= c \int_A f d\mu \text{ by definition.}$$

If c < 0, then

$$\begin{split} \int_A cf \, d\mu &= \int_A (cf)^+ \, d\mu - \int_A (cf)^- \, d\mu \text{ by definition} \\ &= \int_A (-c) f^- \, d\mu - \int_A (-c) f^+ \, d\mu \\ &= -c \int_A f^- \, d\mu + c \int_A f^+ \, d\mu \text{ by the} \\ &\text{http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeM} \\ &= c \left(- \int_A f^- \, d\mu + \int_A f^+ \, d\mu \right) \end{split}$$

5. Note that $\int_A f^+ \, d\mu = 0$ and $\int_A f^- \, d\mu = 0$ by the http://planetmath.org/PropertiesOfThe of the Lebesgue integral of nonnegative measurable functions (property 6). It follows that $\int_A f \, d\mu = 0$.

 $=c\int f d\mu$ by definition.

6. Let $\{s_n\}$ be a nondecreasing sequence of nonnegative simple functions converging pointwise to $f^+ + g^+$ and $\{t_n\}$ be a nondecreasing sequence of nonnegative simple functions converging pointwise to $f^- + g^-$. Note that, for every n, $\int_A s_n \, d\mu - \int_A t_n \, d\mu = \int_A (s_n - t_n) \, d\mu$. Since f and g are integrable and $|f + g| \le |f| + |g|$, f + g is integrable. Thus,

$$\begin{split} \int_A f \, d\mu + \int_A g \, d\mu &= \int_A f^+ \, d\mu - \int_A f^- \, d\mu + \int_A g^+ \, d\mu - \int_A g^- \, d\mu \text{ by definition} \\ &= \int_A f^+ \, d\mu + \int_A g^+ \, d\mu - \left(\int_A f^- \, d\mu + \int_A g^- \, d\mu \right) \\ &= \int_A (f^+ + g^+) \, d\mu - \left(\int_A (f^- + g^-) \, d\mu \right) \text{ by the} \\ &= \text{http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonne} \end{split}$$

 $= \lim_{n \to \infty} \int_A s_n d\mu - \left(\lim_{n \to \infty} \int_A t_n d\mu\right) \text{ by Lebesgue's monotone convergence}$ $= \lim_{n \to \infty} \left(\int_A s_n d\mu - \int_A t_n d\mu\right)$ $= \lim_{n \to \infty} \int_A (s_n - t_n) d\mu$ $= \int_A (f^+ + g^+ - (f^- + g^-)) d\mu \text{ by Lebesgue's dominated convergence the}$ $= \int_A (f^+ - f^- + g^+ - g^-) d\mu$

$$\begin{split} \int_{A\cup B} f\,d\mu &= \int_{A\cup B} f^+\,d\mu - \int_{A\cup B} f^-\,d\mu \text{ by definition} \\ &= \int_A f^+\,d\mu + \int_B f^+\,d\mu - \left(\int_A f^-\,d\mu + \int_B f^-\,d\mu\right) \text{ by the} \\ &\text{ http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegative} \\ &= \int_A f^+\,d\mu - \int_A f^-\,d\mu + \int_B f^+\,d\mu - \int_B f^-\,d\mu \\ &= \int_A f\,d\mu + \int_B f\,d\mu \text{ by definition} \end{split}$$

 $=\int (f+g) d\mu$ by definition.

8. Let $E = \{x \in A : f(x) = g(x)\}$. Since f and g are measurable functions and $A \in \mathfrak{B}$, it must be the case that $E \in \mathfrak{B}$. Thus, $A - E \in \mathfrak{B}$. By hypothesis, $\mu(A \setminus E) = 0$. Note that $E \cap (A \setminus E) = \emptyset$ and $E \cup (A \setminus E) = A$. Thus, $\int_A f \, d\mu = \int_E f \, d\mu + \int_{A \setminus E} f \, d\mu = \int_E f \, d\mu + 0 = \int_E g \, d\mu + 0 = \int_E g \, d\mu + \int_{A \setminus E} g \, d\mu = \int_A g \, d\mu$.