QUÍMICA

AS QUESTÕES NUMÉRICAS DEVEM SER DESENVOLVIDAS SEQUENCIALMENTE ATÉ O FINAL.

Constantes

Constante de Avogadro $(N_A) = 6.02 \times 10^{23} \text{ mol}^{-1}$

Constante de Faraday (F) = $9.65 \times 10^4 \text{ C·mol}^{-1} = 9.65 \times 10^4 \text{ A·s·mol}^{-1} = 9.65 \times 10^4 \text{ J·V}^{-1} \text{ mol}^{-1}$

Carga elementar $= 1,60 \times 10^{-19} \text{ C}$

 $Constante \ dos \ gases \ (R) \qquad = \qquad 8.21 \times 10^{-2} \ atm \cdot L \cdot K^{-1} \cdot mol^{-1} = 8.31 \ J \cdot K^{-1} \cdot mol^{-1} = 1.98 \ cal \cdot K^{-1} \cdot mol^{-1}$

Constante de Planck (h) = $6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ Velocidade da luz no vácuo = $3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$

Número de Euler (e) = 2,72

Definições

Pressão: 1 atm = $760 \text{ mmHg} = 1,01325 \times 10^5 \text{ N} \cdot \text{m}^{-2} = 1,01325 \text{ bar}$

Energia: 1 J = 1 N·m = $1 \text{ kg·m}^2 \cdot \text{s}^{-2} = 6.24 \times 10^{18} \text{ eV}$

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções $= 1 \text{ mol} \cdot \text{L}^{-1}$ (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. $(\ell) = l$ íquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias. u.m.a. = unidade de massa atômica. <math>[X] = concentração da espécie química <math>X em $mol \cdot L^{-1}$

 $\ln X = 2.3 \log X$

EPH = eletrodo padrão de hidrogênio

Massas Molares

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (g{\cdot}mol}^{-1}) \end{array}$	_	Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (g{\cdot}mol}^{-1}) \end{array}$
Н	1	1,01	_	Ca	20	40,08
\mathbf{C}	6	12,01		Cr	24	52,00
N	7	14,01		${\rm Fe}$	26	$55,\!85$
О	8	16,00		m Ni	28	58,69
Na	11	22,99		Cu	29	$63,\!55$
Mg	12	24,31		Ga	31	69,72
Al	13	26,98		Ag	47	107,87
Cl	17	35,45		Au	79	196,97
\mathbf{S}	16	32,06		Pb	82	207,19
K	19	39,10				

Questão 1. Sejam dados os seguintes pares redox e seus respectivos potenciais padrão de eletrodo, a $25~^{\circ}\mathrm{C}$.

Semirreação	E ° (V versus EPH)	Semirreação	E ° (V versus EPH)
${ m Mg}^{2+} + 2{ m e}^{-} ightleftharpoons { m Mg}$	-2,37	$2 \text{H}^+ + 2 \text{e}^- \rightleftharpoons \text{H}_2$	0,00
$\mathrm{Al}^{3+} + 3\mathrm{e}^{-} \rightleftharpoons \mathrm{Al}$	-1,66	$\mathrm{Cu}^{2+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}$	0,34
$\operatorname{Cr}^{3+} + 3e^{-} \rightleftharpoons \operatorname{Cr}$	-0.74	$\mathrm{Ag}^{+} + \mathrm{e}^{-} \! \rightleftharpoons \mathrm{Ag}$	0,80
$\mathrm{Fe}^{2+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}$	-0,44	$\mathrm{O_2} + 4\mathrm{H}^+ + 4\mathrm{e}^- \rightleftharpoons 2\mathrm{H_2O}$	1,23
$\mathrm{Pb}^{2+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}$	-0.13	$\mathrm{Au}^{3+} + 3\mathrm{e}^{-} \mathop{ ightleftharpoons}^{-} \mathrm{Au}$	1,50

Com base nessas informações, responda aos itens abaixo sobre a tendência à corrosão de metais em diferentes meios.

- a) Apresente os elementos metálicos listados na tabela em ordem decrescente (do maior para o menor) de tendência à corrosão.
- b) Se esses elementos metálicos forem mergulhados em uma solução desaerada de H_2SO_4 a 0,5 mol· L^{-1} , quais deles sofrerão corrosão? Justifique.
- c) Se a solução do item b) for aerada, a tendência à corrosão dos elementos metálicos será alterada? Se sim, quais sofrerão corrosão? Justifique.
- d) Se os elementos metálicos forem mergulhados em uma solução aquosa desaerada de NaOH a $1 \text{ mol} \cdot \text{L}^{-1}$, quais deles sofrerão corrosão? Justifique.
- e) Se a solução do item d) for substituída por uma de NaOH a 0,1 mol·L⁻¹ e aerada, a tendência à corrosão dos elementos metálicos será alterada? Se sim, quais sofrerão corrosão? Justifique.

Dado eventualmente necessário: $\log 2 = 0.3$.

Questão 2. Três regiões industrializadas apresentaram as seguintes concentrações (em partes por milhão em volume) de óxidos gasosos em suas atmosferas:

Região	Gás(es) presente(s)	$\operatorname{Concentração}\left(\operatorname{ppm}_{\operatorname{v}}\right)$
\mathbf{R}	CO_2	$5,00 \times 10^2$
G	$ m NO_2$	4,00
ъ	NO	$1,45 \times 10^{1}$
$\overline{\mathbf{T}}$	SO_2	$2,00 \times 10^3$

Sabe-se que a chuva ácida se refere à água da chuva com pH menor que 5,6 (equivale a $[H^+] > 2,5 \times 10^{-6} \,\mathrm{mol \cdot L}^{-1}$). Considere a pressão atmosférica igual a 1 atm e a formação apenas dos ácidos $\mathrm{H}_2\mathrm{CO}_3$, HNO_2 e $\mathrm{H}_2\mathrm{SO}_3$ na dissolução dos gases.

- a) Determine a concentração molar de H⁺ esperada para a água da chuva em cada uma das regiões.
- b) Organize as regiões em ordem crescente de pH esperado da água da chuva.
- c) Qual(is) região(ões) pode(m) sofrer os efeitos negativos de uma chuva ácida?

Dados eventualmente necessários: K_H = constante da lei de Henry, K_a = constante de ionização da espécie ácida A formada na solubilização do gás X.

Substância X	$\mathbf{K_H} \; (\mathrm{mol \cdot atm}^{-1} \cdot \mathrm{L}^{-1})$	$ m K_{a1}$	$ m K_{a2}$	
	$X(g) \rightleftharpoons X(aq)$	$\mathrm{HA}(\mathrm{aq}) ightleftharpoons \mathrm{H}^+(\mathrm{aq}) + \mathrm{A}^-(\mathrm{aq})$	$\mathrm{HA}^{-}(\mathrm{aq}) ightleftharpoons \mathrm{H}^{+}(\mathrm{aq}) + \mathrm{A}^{2-}(\mathrm{aq})$	
$\overline{\mathrm{CO_2}}$	0,04	4.5×10^{-7}	4.7×10^{-11}	

$rac{ ext{NO}_2}{ ext{NO}}$	$0.01 \\ 0.002$	7.0×10^{-4}	
SO_2	0,04	1.2×10^{-2}	6.6×10^{-8}

Questão 3. Um reator químico, projetado com uma válvula de alívio de pressão que é acionada a 8,5 atm, contém uma mistura gasosa composta por quantidades iguais de um reagente (A) e de uma substância inerte (B), a 10 °C e 2 atm. Ao elevar rapidamente a temperatura do reator para 293 °C, o reagente A começa a se decompor de acordo com a seguinte equação estequiométrica genérica:

$$2A(g) \rightarrow 3C(g) + 4D(g) + E(g)$$

Sabendo que a velocidade de consumo de A nessa temperatura é dada por $\nu_A = -0.25 \times (P_A)^0$ (em atm·h⁻¹), onde P_A corresponde à pressão parcial da substância A, responda:

- a) Após quanto tempo de reação a válvula de alívio é acionada?
- b) Quais as pressões parciais de cada espécie (A, B, C, D e E) presente no reator no momento do acionamento da válvula de alívio?
- c) Assumindo 100% de rendimento da reação, qual a quantidade máxima de mistura gasosa que pode ser adicionada ao reator sem que a válvula de alívio seja acionada?

Questão 4. O poder calorífico é um indicativo do potencial energético dos combustíveis, sendo que a diferença entre o poder calorífico superior (PCS) e o poder calorífico inferior (PCI) equivale à energia necessária para a vaporização da água formada numa reação de combustão completa. Sabe-se que o PCS do metano é 55 $\rm MJ\cdot kg^{-1}$ e do etanol é 30 $\rm MJ\cdot kg^{-1}$ e que a entalpia de vaporização da água é $\rm \Delta H_{\rm vap, H_2O} = 44~kJ\cdot mol^{-1}$.

- a) Calcule os valores do PCI do metano e do etanol, em kJ·mol⁻¹.
- b) Sabendo que o gás natural é composto principalmente por metano e que os outros componentes possuem PCS muito inferiores ao deste gás, estime a porcentagem em massa de metano presente em um gás natural cujo $PCS = 52 \text{ MJ} \cdot \text{kg}^{-1}$.
- c) Explique por que o PCS do metano é muito superior ao do etanol.

Questão 5. Sulfeto de níquel é pouco solúvel em água, apresentando a constante do produto de solubilidade igual a $K_{ps} = 4 \times 10^{-19}$. Ao adicionar 18,15 g desse sal a 1 L de água e, em seguida, ajustar o pH do meio com adição de ácido sulfúrico, observou-se a solubilização do sal com formação de ácido sulfídrico. Desprezando-se a variação de volume do meio reacional pela adição do ácido e dadas as constantes de ionização do ácido sulfídrico $K_{a1} = 1 \times 10^{-7}$ e $K_{a2} = 1 \times 10^{-14}$, determine:

- a) A constante de equilíbrio K da reação de solubilização do sulfeto de níquel em meio ácido.
- b) A faixa de valores de pH na qual todo o sulfeto de níquel é solubilizado.
- c) A porcentagem de sulfeto de níquel solubilizado quando o pH do meio for 3.

Questão 6. Considere a combustão de um determinado alceno com uma quantidade definida de ar em excesso. Considere, ainda, que o ar é composto apenas por nitrogênio e oxigênio numa proporção molar de 3,76 e que o nitrogênio não sofre oxidação durante a combustão. Para esta reação, determine a porcentagem do(s) gás(es) em cada uma das situações descritas abaixo.

a) Na combustão incompleta do alceno com ar em excesso, além dos produtos esperados numa combustão completa, há a formação de monóxido de carbono na proporção molar de 1 para 8 em relação ao dióxido de carbono. Além disso, a quantidade em mol de O₂ que sobrou após a reação é

igual à de carbono no início da reação. Com base nessas informações, determine a composição percentual aproximada dos gases resultantes da reação, considerando a remoção prévia da água.

b) Determine o percentual de ar em excesso na reação de combustão completa do alceno.

Questão 7. Responda às seguintes questões:

- a) Sabe-se que a primeira afinidade eletrônica do oxigênio é exotérmica (-141 kJ·mol^{-1}) e a segunda é altamente endotérmica ($+798 \text{ kJ·mol}^{-1}$). Justifique a razão pela qual a maioria dos compostos iônicos contendo oxigênio são encontrados na forma do ânion O^{2-} .
- b) A primeira energia de ionização para o oxigênio (1313,9 kJ·mol⁻¹) é menor do que a primeira energia de ionização para o nitrogênio (1402,3 kJ·mol⁻¹), enquanto um comportamento oposto é observado para a segunda energia de ionização para oxigênio (3388,3 kJ·mol⁻¹) e nitrogênio (2856 kJ·mol⁻¹). Justifique esse comportamento.
- c) A primeira energia de ionização para o sódio (495,8 kJ·mol⁻¹) é consideravelmente maior que a do potássio (418,8 kJ·mol⁻¹). Um comportamento semelhante pode ser observado para o magnésio (737,7 kJ·mol⁻¹) e para o cálcio (589,8 kJ·mol⁻¹). No entanto, essa tendência não é observada para os elementos alumínio (577,5 kJ·mol⁻¹) e gálio (578,8 kJ·mol⁻¹). Justifique esses comportamentos.

Questão 8. Considere a reação de oxirredução não balanceada de um mol de sulfato de chumbo com ácido hipocloroso, a 25 °C.

$$1PbSO_4(s) + HOCl(aq) \rightarrow Cl_2(g) + PbO_2(s) + HSO_4^-(aq) + H^+(aq)$$

Para esta reação, a variação de entalpia padrão é $\Delta H_r^o = +19.9$ kJ. Sabe-se que o potencial de eletrodo padrão da espécie que sofre oxidação é +1.63 V e o da espécie que sofre redução é +1.61 V.

- a) Escreva as semirreações, a reação global balanceada e o potencial padrão da reação global.
- b) Determine a variação de energia interna da reação (ΔU_r^o) , considerando comportamento ideal das espécies.
- c) Justifique termodinamicamente a diferença entre os valores de ΔH_r^0 e ΔU_r^0 para a reação acima.

Questão 9. O polietileno é um polímero largamente utilizado devido às suas características estruturais e às suas propriedades. Dependendo das condições reacionais e do sistema catalítico empregado na polimerização, diferentes tipos de polietileno podem ser produzidos. Dois dos principais tipos de polietileno são: polietileno de baixa densidade (PEBD) e polietileno de alta densidade (PEAD), ilustrados abaixo:

- a) Escreva a fórmula estrutural do monômero do polietileno e também do produto de polimerização com três unidades repetitivas do monômero. Qual é o nome dessa reação de polimerização?
- b) Como a linearidade da cadeia do polímero afeta sua rigidez? Pelo critério de linearidade, qual dos dois polímeros (PEBD ou PEAD) seria mais rígido?

c) Como a cristalinidade de um polímero afeta sua transparência/opacidade? Pelo critério da cristalinidade, qual dos dois polímeros (PEBD ou PEAD) teria maior transparência?

Questão 10. Considere o composto 2,4-pentanodiona.

- a) Escreva, utilizando fórmulas estruturais, a equação química que representa o equilíbrio tautomérico deste composto com a sua forma enólica.
- b) Desenhe as estruturas de ressonância da forma enólica do item a).
- c) Explique por que a 2,4-pentanodiona é um composto ácido.