SỞ GDĐT NINH BÌNH

ĐỀ THI CHÍNH THỰC

ĐỀ THI CHỌN HỌC SINH GIỚI THPT CẤP TỈNH Năm học 2018 – 2019

MÔN: TOÁN

Ngày thi 11/09/2018

(Thời gian làm bài 180 phút, không kể thời gian giao đề) Đề thi gồm 04 câu, trong 01 trang

Câu 1 (6,0 điểm).

Giải hệ phương trình:
$$\begin{cases} (x-y)(x^2+xy+y^2-2) = 2\ln\frac{y+\sqrt{y^2+1}}{x+\sqrt{x^2+1}} \\ \\ 3^x.2x = 3^y+2y+1 \end{cases}$$

Câu 2 (4,0 điểm).

Xét sự hội tụ của dãy số
$$\left(x_n\right)$$
 biết $x_0=2$, $x_{n+1}=\frac{2}{x_n}+\frac{\sqrt{3}}{x_n^2}$ $\forall n\in\mathbb{N}$.

Câu 3 (6,0 điểm).

Cho tam giác ABC nội tiếp đường tròn tâm O. Dựng ra phía ngoài tam giác ABC các hình bình hành ABMN và ACPQ sao cho tam giác ABN đồng dạng với tam giác CAP. Gọi G là giao điểm của AQ và BM, H là giao điểm của AN và CP. Đường tròn ngoại tiếp các tam giác GMQ, HNP cắt nhau tại E và F (E nằm trong đường tròn (O)).

- a) Chứng minh rằng ba điểm A, E, F thẳng hàng.
- b) Chứng minh rằng bốn điểm B, C, O, E cùng thuộc một đường tròn.

Câu 4 (4,0 điểm).

Bạn Thanh viết lên bảng các số 1, 2, 3,..., 2019. Mỗi một bước Thanh xóa hai số a và b bất kỳ trên bảng và viết thêm số $\frac{ab}{a+b+1}$. Chứng minh rằng dù xóa như thế nào thì sau

khi thực hiện 2018 bước trên bảng luôn còn lại số $\frac{1}{2019}$.

----Hết-----

Họ và tên thí sinh :.	Số báo danh
Họ và tên, chữ ký:	Giám thị 1:
	Giám thị 2:

	$v + \sqrt{v^2 + 1}$	
	$\begin{cases} (x-y)(x^2+xy+y^2-2) = 2\ln\frac{y+\sqrt{y^2+1}}{x+\sqrt{x^2+1}} \end{cases} $ (1)	
	$\begin{cases} (x-y)(x^2 + xy + y^2 - 2) = 2\ln\frac{y + \sqrt{y^2 + 1}}{x + \sqrt{x^2 + 1}} \\ 3^x \cdot 2x = 3^y + 2y + 1 \end{cases} $ (1)	
-	Điều kiện xác định: $x, y \in \mathbb{R}$.	
	Phương trình (1) $\Leftrightarrow x^3 - y^3 - 2(x - y) = 2\ln(y + \sqrt{y^2 + 1}) - 2\ln(x + \sqrt{x^2 + 1})$	
	$\Leftrightarrow x^3 - 2x + 2\ln(x + \sqrt{x^2 + 1}) = y^3 - 2y + 2\ln(y + \sqrt{y^2 + 1})$	
	Xét $f(t) = t^3 - 2t + \ln(t + \sqrt{t^2 + 1})$, ta có:	
	$f'(t) = 3t^2 - 2 + \frac{2}{\sqrt{t^2 + 1}}$	
	$f'(t) = 3t^{2} - 2 + \frac{2}{\sqrt{t^{2} + 1}}$ $= (t^{2} + 1) + \frac{1}{\sqrt{t^{2} + 1}} + \frac{1}{\sqrt{t^{2} + 1}} + 2t^{2} - 3$	
	$\geq 2t^2 \geq 0 \ \forall t \in \mathbb{R}$	
1	Suy ra $f(t)$ là hàm số đồng biến trên $\mathbb R$.	
	Do đó (1) \Leftrightarrow $f(x) = f(y) \Leftrightarrow x = y$	
	Thay $x = y$ vào phương trình (2) ta được $3^x (2x-1) = 2x+1$ (3)	
6 điểm	Nhận xét: $x = \frac{1}{2}$ không là nghiệm của (3)	
	Do đó (3) $\Leftrightarrow 3^{x} - \frac{2x+1}{2x-1} = 0$ Xét $g(x) = 3^{x} - \frac{2x+1}{2x-1}$, ta có: $g'(x) = 3^{x} \ln 3 + \frac{4}{(2x-1)^{2}}$	
	Xét $g(x) = 3^x - \frac{2x+1}{2x-1}$, ta có:	
	$g'(x) = 3^{x} \ln 3 + \frac{4}{(2x-1)^{2}}$	
	$\Rightarrow g'(x) > 0 \ \forall x \in (-\infty; \frac{1}{2}) \cup (\frac{1}{2}; +\infty)$	
	Suy ra $g(x)$ đồng biến trên mỗi khoảng $(-\infty; \frac{1}{2}), (\frac{1}{2}; +\infty)$	
-	Suy ra phương trình (3) có không quá 2 nghiệm.	
-	Mà $g(1) = g(-1) = 0$ do đó (3) có đúng 2 nghiệm là $x = \pm 1$.	
	Kết luận: Tập nghiệm của hệ là $\{(1;1);(-1;-1)\}$.	
	Nhận xét: $x_n > 0 \forall n \in \mathbb{N}^*$.	
2	Đặt $g(x) = \frac{2}{x} + \frac{\sqrt{3}}{x^2}$, ta có $g(x)$ nghịch biến trên $(0; +\infty)$	
_	Do $g(x)$ nghịch biến trên $(0;+\infty)$ nên $g\circ g$ là hàm đồng biến trên $(0;+\infty)$.	
4 điểm	Suy ra (x_{2n}) đơn điệu.	
	Mà $x_1 = \frac{4 + \sqrt{3}}{4}, x_2 = \frac{32 + 24\sqrt{3}}{(4 + \sqrt{3})^2} \Rightarrow x_0 < x_2$	

	Do #4 (++) 12 Jan # # # # # # # # # # # # # # # # # # #	
	Do đó (x_{2n}) là dãy đơn điệu tăng.	
	Suy ra $x_{2n} \ge 2 \ \forall n \in \mathbb{N}$.	
	Giả sử tồn tại giới hạn $\lim x_n = a$	
	$\Rightarrow \lim x_{2n} = a \Rightarrow a \ge 2 (*).$	
	Từ $\lim x_n = a$ và $x_{n+1} = \frac{2}{x_n} + \frac{\sqrt{3}}{x_n^2}$, cho n dần đến vô cùng ta được: $a = \frac{2}{a} + \frac{\sqrt{3}}{a^2}$.	
	$a = \frac{2}{a} + \frac{\sqrt{3}}{a^2} \Leftrightarrow \left(a - \sqrt{3}\right)\left(a^2 + a\sqrt{3} + 1\right) = 0$	
	$\Leftrightarrow a = \sqrt{3}$	
	Suy ra <i>a</i> < 2 (Mâu thuẫn)	
	Vậy dãy (x_n) không hội tụ.	
3 6 điểm	a. 3,5 diểm Gọi (O1), (O2) lần lượt là đường tròn ngoại tiếp các tam giác GMQ, HNP suy ra EF là trực đẳng phương của (O1), (O2). Gọi D là giao điểm của BM và CP suy ra AGDH là hình bình hành Vì $\Delta ABN \sim \Delta CAP \Rightarrow (AB, AN) = (CA, CP)$ ((BA, BD) = $(AB, AN) = (CA, CP)$ = (CA, CD) $\Rightarrow A, B, C, D$ đồng viên. Suy ra (CA, CB) = (DA, DG) , $(AB, AC) = (DG, DC) = (GD, GA)$ suy ra hai tam giác ABC và GAD đồng dạng. $\Rightarrow \frac{AB}{AC} = \frac{GD}{GA} = \frac{AH}{AG}$ Mà $\Delta ABN \sim \Delta CAP \Rightarrow \frac{AB}{CA} = \frac{CP}{AN}$	

	4H CP 4O	
	$\Rightarrow \frac{AH}{AG} = \frac{CP}{AN} = \frac{AQ}{AN}$	
	$\Rightarrow AH.AN = AG.AQ$	
	$\Rightarrow P_{A/(O_1)} = P_{A/(O_2)}$	
	$A(O_1)$ $A(O_2)$ $A(O_2)$ $A \in EF$.	
	Vậy A, E, F thẳng hàng.	
	b. 2,5 điểm	
	Gọi $F' = MN \cap PQ$.	
	Ta có: $(F'M, F'Q) = (AB, AC) = (GM, GQ)$.	
	Suy ra $F' \in (O_1)$. Turong tự $F' \in (O_2)$. Suy ra $F' \equiv F$.	
	Ta có E, F, M, G đồng viên \Rightarrow (GB, GE) = (GM, GE) = (FM, FE)= (AB,AE)	
	suy ra A, B, E, G đồng viên	
	Tương tự A, C, E, H đồng viên.	
	Suy ra (EB, EC) = (EB, EA) + (EA, EC) = (GB, GA) + (HA, HC)	
	= 2(DB,DC)	
	A A , B , C , D đồng viên suy ra D thuộc A A A B A A B A A B A B A	
	\Rightarrow (EB, EC) = (DB, DC)	
	Suy ra B, C, E, O đồng viên.	
	Với mỗi tập $T = \{a_1; a_2;; a_n\}$ các số viết trên bảng thì đặt	
	$A(T) = \left(\frac{1}{a_1} + 1\right) \left(\frac{1}{a_2} + 1\right) \cdots \left(\frac{1}{a_n} + 1\right)$	
	$\Rightarrow A(\{1;2;\cdots;2019\}) = 2020$	
	Ta thấy: $\left(\frac{1}{a}+1\right)\left(\frac{1}{b}+1\right) = \frac{(a+1)(b+1)}{ab}$	
5	$=\frac{1}{\left(\frac{ab}{ab+1}\right)}+1$	
	$(\overline{a+b+1})$	
4 điểm	Suy ra nếu xóa hai số a và b và thay bởi $\frac{ab}{a+b+1}$, tập T biến thành tập T' thì	
	A(T) = A(T').	
	Giả sử sau khi thực hiện 2018 bước ta được số thực x ta có: $A(\lbrace x \rbrace) = \frac{1}{x} + 1 = 2020$	
	$\Rightarrow x = \frac{1}{2019}$	
	Vậy trên bảng luôn còn lại số $\frac{1}{2019}$.	

.....HÉT.....

SỞ GDĐT NINH BÌNH

ĐỀ THI CHÍNH THỨC

ĐỀ THI CHỌN HỌC SINH GIỚI THPT CẤP TỈNH NĂM HỌC 2018 - 2019 MÔN: TOÁN

Ngày thi:12/09/2018

(Thời gian 180 phút, không kể thời gian phát đề) Đề thi gồm 04 câu, trong 01 trang

Câu 1 (4,0 điểm).

Cho đa thức P(x) có hệ số nguyên và a, b, c là các số nguyên thỏa mãn P(a) = 1, P(b) = 2 và P(c) = 3. Chứng minh rằng: a + c = 2b.

Câu 2 (5,0 điểm).

Cho ba số thực dương a, b, c. Chứng minh bất đẳng thức:

$$\Big(a+b+c\Big)\!\!\left(\frac{1}{a}\!+\!\frac{1}{b}\!+\!\frac{1}{c}\right)\!+4\sqrt{2}\,\frac{ab+bc+ca}{a^2+b^2+c^2}\!\geq\!9+4\sqrt{2}\;.$$

Câu 3 (6,0 điểm).

Cho tứ giác lồi ABCD nội tiếp trong đường tròn (O), đường tròn tâm I tiếp xúc với các tia AB, AD lần lượt tại E và F, đồng thời tiếp xúc trong với đường tròn (O) tại điểm T. Hai tiếp tuyến tại A và T của đường tròn (O) cắt nhau tại K. Các đường thẳng TE, TF lần lượt cắt đường tròn (O) thứ tự tại các điểm M, N (M, N khác T).

- a) Chứng minh rằng ba điểm K, M, N thẳng hàng.
- b) Đường phân giác của góc BAC cắt đường thẳng MC tại P, đường thẳng KP cắt đường thẳng CN tại Q. Chứng minh rằng: Nếu N là tâm đường tròn ngoại tiếp tam giác ADQ thì bán kính đường tròn nội tiếp các tam giác ABC và ACD bằng nhau.

Câu 4 (5,0 điểm).

Với số n nguyên dương, đặt f(n) là số ước nguyên dương của n. Xét tập hợp $G = \{n \in \mathbb{N}^* : f(m) < f(n), \forall m \in \mathbb{N}, 0 < m < n\} \text{ và gọi } p_i \text{ là số nguyên tố thứ i } (i \in \mathbb{N}^*).$

- a) Chứng minh rằng: Nếu n
 thuộc G và $p_{_m}$ là ước nguyên tố của n
 thì $(p_{_1}p_{_2}...p_{_m})$ là ước của n.
- b) Với số nguyên tố p_m , gọi k, M là các số nguyên dương thỏa mãn $2^k > p_m$ và $M = (p_1 p_2 \dots p_{m-1})^{2k}$. Chứng minh rằng: Nếu n > M và n thuộc G thì n chia hết cho p_m .

	Hết
Họ và tên thí sinh :.	Số báo danh
Họ và tên, chữ ký:	Giám thị 1:
	Giám thị 2:

Câu	Nội dung	Điểm
	Vì $P(b) = 2$ nên ta có $P(x) = (x-b).q(x) + 2$ với $q(x) \in \mathbb{Z}[x]$.	
	$C_{n,n} = 1 D(n) (n, k) n(n) + 2 \rightarrow (n, k) n(n) = 1$	
	Suy ra $1 = P(a) = (a-b) \cdot q(a) + 2 \Rightarrow (a-b) \cdot q(a) = -1$	
1	$3 = P(c) = (c-b) \cdot q(c) + 2 \Rightarrow (c-b) \cdot q(c) = 1$	
4		
điểm	Vì $a - b$, $c - b$, $q(a)$, $q(c)$ là những số nguyên nên $a - b$ và $c - b$ là ước của 1.	
	Ta có $P(a) \neq P(c) \Rightarrow a \neq c$. Suy ra: $\begin{cases} a-b=1 \\ c-b=-1 \end{cases}$ hoặc $\begin{cases} a-b=-1 \\ c-b=1 \end{cases}$	
	$\Rightarrow a+c=2b$	
	$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+4\sqrt{2}\frac{ab+bc+ca}{a^2+b^2+c^2} \ge 9+4\sqrt{2}$	
	$(a + b + c)(a + b + c)^{1+\sqrt{2}}(a^2 + b^2 + c^2)^{1+\sqrt{2}}$	
	$\Leftrightarrow (a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) - 9 = 4\sqrt{2} - 4\sqrt{2} \frac{ab + bc + ca}{a^2 + b^2 + c^2}$	
	$\Leftrightarrow \frac{(a-b)^{2}}{ab} + \frac{(b-c)^{2}}{bc} + \frac{(c-a)^{2}}{ca} \ge 2\sqrt{2} \frac{(a-b)^{2} + (a-c)^{2} + (b-c)^{2}}{a^{2} + b^{2} + c^{2}} $ (*)	
	$\Leftrightarrow \frac{(a - b)}{ab} + \frac{(b - c)}{bc} + \frac{(b - c)}{ca} \ge 2\sqrt{2} \frac{(a - c) + (a - c) + (b - c)}{a^2 + b^2 + c^2} \tag{*}$	
	Không mất tính tổng quát giả sử $a \ge b \ge c \Rightarrow \frac{(a-b)^2}{b} \le \frac{(a-c)^2}{c}$	
	Áp dung bất đẳng thức Chebyshev ta có:	
	$\left[\frac{\left(a-b\right)^{2}}{b} + \frac{\left(a-c\right)^{2}}{c}\right]\left(b+c\right) \ge 2\left[\left(a-b\right)^{2} + \left(a-c\right)^{2}\right]$	
2	$(a-b)^2 (a-c)^2 2[(a-b)^2 + (a-c)^2]$	
2	$\Rightarrow \frac{(a-b)^2}{ab} + \frac{(a-c)^2}{ac} \ge \frac{2\left[(a-b)^2 + (a-c)^2\right]}{a(b+c)} \tag{1}$	
5	Đẳng thức xảy ra khi và chỉ b = c	
điểm	Mặt khác theo bất đẳng thức AM – GM: $2(a^2+b^2+c^2) \ge 2a^2+(b+c)^2$	
	$\geq 2\sqrt{2}a(b+c)$	
	$\Rightarrow \frac{2}{a(b+c)} \ge \frac{2\sqrt{2}}{a^2 + b^2 + c^2}$	
	Suy ra $\frac{2[(a-b)^2 + (a-c)^2]}{a(b+c)} \ge 2\sqrt{2} \frac{(a-b)^2 + (a-c)^2}{a^2 + b^2 + c^2} $ (2)	
	Suy ra $\frac{1}{a(b+c)} \ge 2\sqrt{2} \frac{(a-c) + (a-c)}{a^2 + b^2 + c^2}$ (2)	
	Đẳng thức xảy ra khi và chỉ khi a = b = c hoặc $a\sqrt{2} = b + c$	
	$a^2 + b^2 + c^2 \ge 3bc > 2\sqrt{2}bc$ (vì $a \ge b \ge c$)	
	$\Rightarrow \frac{\left(b-c\right)^2}{bc} \ge 2\sqrt{2} \frac{\left(b-c\right)^2}{a^2 + b^2 + c^2} \tag{3}$	
	$\Rightarrow \frac{(3)}{bc} \ge 2\sqrt{2} \frac{(3)}{a^2 + b^2 + c^2}$	
	Từ (1), (2), (3) suy ra BDT (*) đúng. Suy ra điều phải chứng minh.	

	Dấu bằng xảy ra khi $a = b = c$ hoặc $a = \sqrt{2}b = \sqrt{2}c$ và các hoán vị.	
	a) 3,0 điểm	
	Phép vị tự tâm T , tỉ số k biến đường tròn $ig(Iig)$ thành đường tròn $ig(Oig)$.	
	Khi đó vì T , E , M thẳng hàng và $E \in (I)$, $M \in (O)$ nên $V_T^k : E \mapsto M$	
	T , F , N thẳng hàng và $F \in (I)$, $N \in (O)$ nên $V_T^k : F \mapsto N$	
	Gọi L là giao điểm của AT và (I) suy ra $V_T^k:L\mapsto A$	
3	Tiếp tuyến tại E , F của $\left(I\right)$ và TL đồng qui tại A	
	\Rightarrow $TELF$ là tứ giác điều hòa.	
6 điểm	Phép vị tự tâm T , tỉ số k biến tứ giác $TELF$ thành $TMAN$ nên $TMAN$ là tứ giác điều hòa.	
	Suy ra K , M , N thẳng hàng.	
	b) 3,0 điểm	
	Từ $IE /\!/ OM$ nên $OM \perp AB \Rightarrow M$ là điểm chính giữa cung AB của O .	

	Tương tự: N là điểm chính giữa cung AD của $\left(O\right)$.	
	Phân giác góc \widehat{BAC} cắt CM tại P , mà CM là phân giác góc \widehat{ACB} nên P là tâm đường tròn nội tiếp tam giác ABC .	
	Ngoài ra, Q thuộc CN là phân giác góc \widehat{ACD} và $NQ = NA = ND$ nên Q là tâm	
	đường tròn nội tiếp tam giác ACD .	
	Gọi r_1 , r_2 là bán kính các đường tròn nội tiếp các tam giác ABC và ADC .	
	$\operatorname{Do} K$, P , Q thẳng hàng nên theo định lý Menelaus cho tam giác $M\!C\!N$ với cát	
	tuyến $\overline{K, P, Q}$ ta có: $\frac{PC}{PM} \cdot \frac{KM}{KN} \cdot \frac{QN}{QC} = 1$.	
	Tam giác $\Delta KAM \sim \Delta KNA$.	
	Mặt khác: $\frac{KM}{KN} = \frac{KM}{KA} \cdot \frac{KA}{KN} = \left(\frac{AM}{AN}\right)^2$.	
	Suy ra $\frac{QC}{PC} = \frac{AM}{AN} = \frac{\sin \widehat{ACM}}{\sin \widehat{ACN}} \Rightarrow QC.\sin \widehat{NCA} = PC.\sin \widehat{MCA}$.	
	Suy ra $r_1 = r_2$. Ta có điều phải chứng minh	
	a) 3 điểm	
	Giả sử $n = p_1^{k_1} p_2^{k_2} \dots p_{\alpha}^{k_{\alpha}} (k_i \in \mathbb{N}, i = \overline{1, \alpha}) \implies f(n) = (k_1 + 1)(k_2 + 1) \dots (k_{\alpha} + 1)$	
	Giả sử n chia hết $p_{\scriptscriptstyle m}$, tồn tại i thỏa mãn $1 \le i < m \le \alpha$ mà n không chia hết cho $p_{\scriptscriptstyle i}$.	
	Suy ra $k_m \ge 1, k_i = 0$	
	Xét $n_0 = \frac{n}{p_m} p_i$ ta có:	
	$n_0 < n \text{ và } f(n_0) = f(n) \frac{(k_i + 2) k_m}{(k_i + 1)(k_m + 1)} = f(n) \frac{2k_m}{k_m + 1}$	
	Do $k_m \ge 1 \Rightarrow 2k_m \ge k_m + 1$ nên $f(n_0) \ge f(n)$ mâu thuẫn.	
	Vậy n chia hết cho p_i với mọi $i = 1, 2,, m$.	
4	b) 2 điểm	
	Xét $n \in G$ và $n > M$. Giả sử n không chia hết cho p_m thì mọi ước của n đều thuộc	
5	tập $\{p_1, p_2,, p_{m-1}\}.$	
điểm	(Thật vậy, giả sử n có ước $p_j > p_m$ thì theo ý (a) n chia hết cho	
	$p_1, p_2,, p_m,, p_j$. Mâu thuẫn.)	
	Suy ra $n = p_1^{k_1} p_2^{k_2} \dots p_{m-1}^{k_{m-1}} (k_i \in \mathbb{N}, i = \overline{1, m-1})$	
	Vì $n > M$ nên tồn tại $i : 1 \le i \le m-1$ sao cho $k_i > 2k$.	
	Đặt $n_1 = \frac{n}{p_i^k}$ và $n_0 = n_1 \cdot p_m$. Do $p_i^k \ge 2^k > p_m$ suy ra $n_0 < n$.	
	$f(n) = (k_1 + 1)(k_2 + 1)(k_t + 1)$	
	$f(n_0) = (k_1 + 1)(k_2 + 1)\dots(k_{i-1} + 1)(k_i - k + 1)(k_{i+1} + 1)\dots(k_t + 1).2$	
	Vì $k_i + 1 > 2k \Rightarrow 2(k_i - k + 1) > k_i + 1 \Rightarrow f(n_0) > f(n)$. Mâu thuẫn.	
	Vậy có điều phải chứng minh.	

.....HẾT.....