CATHOLIC SECONDARY SCHOOLS ASSOCIATION OF NEW SOUTH WALES

OF NEW SOUTH V

Marks

Question 1

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

(a) The diagram below shows the graph y = f(x) where $f(x) = 3 - \frac{1}{x^2}$.

On separate diagrams, sketch the following graphs, in each case showing any intercepts on the coordinate axes and the equations of any asymptotes:

(i)
$$y = \left\{ f(x) \right\}^2$$

2

(ii)
$$y^2 = f(x)$$

2

(b)(i) The polynomial equation
$$P(x) = 0$$
 has a double root α . Show that α is also a root of the equation $P(x) = 0$.

2

(ii) The line
$$y = mx$$
 is a tangent to the curve $y = 3 - \frac{1}{x^2}$. Show that the equation $mx^3 - 3x^2 + 1 = 0$ has a double root and hence find any values of m .

4

(c) The diagram below shows the graph y = f(x) where $f(x) = x^3 - 3x$, $x \ge 1$.

(i) Copy the diagram. On your diagram sketch the graph of the inverse function $y = f^{-1}(x)$ showing any intercepts on the coordinate axes and the coordinates of any endpoints. Draw in the line y = x.

2

(ii) Find the coordinates of any points of intersection of the curves y = f(x) and $y = f^{-1}(x)$. Hence find the area of the region in the first quadrant bounded by the curves y = f(x) and $y = f^{-1}(x)$ and the coordinate axes.

Question 2

(Begin a new page)

(a) Find
$$\int \frac{1-\sin x}{\cos^2 x} dx$$
.

(b) Find
$$\int \left(e^x + e^{-\frac{1}{2}x}\right)^2 dx.$$

(c) Use the substitution
$$u = \sqrt{x}$$
 to evaluate $\int_{1}^{25} \frac{1}{x + \sqrt{x}} dx$, expressing the answer in simplest exact form.

(d) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_0^{\frac{\pi}{3}} \frac{1}{5 - 4\cos x} dx$, expressing the answer in simplest exact form.

(e)(i) If
$$I_n = \int_0^1 x(1-x)^n dx$$
, $n = 0, 1, 2, ...$, show that $I_n = \frac{n}{n+2} I_{n-1}$, $n = 1, 2, 3, ...$

(ii) Hence show that
$$I_n = \frac{1}{2^{n+2}C_2}$$
, $n = 1, 2, 3, ...$

Question 3

(Begin a new page)

(a) Show that the complex number
$$z = \frac{6-2i}{3+4i} - \frac{6}{5i}$$
 is real.

(b)
$$z_1 = 4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$$
 and $z_2 = 2\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$.

- (i) On an Argand diagram draw the vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} representing z_1 , z_2 , $z_1 + z_2$ 2 respectively.
- (ii) Hence find $|z_1 + z_2|$ in simplest exact form. 2
- (c) The quadratic equation $z^2 + kz + 4 = 0$, k real and -4 < k < 4, has two non-real roots α , β .

(i) Explain why
$$\alpha$$
, β are complex conjugates. Hence show that $|\alpha| = |\beta| = 2$.

(ii) If
$$\alpha$$
, β have arguments $\frac{\pi}{4}$, $-\frac{\pi}{4}$, find the value of k .

(d)(i) On an Argand diagram shade the region where both
$$|z-(1+i)| \le \sqrt{2}$$
 and $0 \le \arg z \le \frac{\pi}{2}$
(ii) Find the exact perimeter and the exact area of the shaded region.

- (a) Sketch the graph of the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$ showing the intercepts on the axes, the coordinates of the foci and the equations of the directrices.
- 4

Marks

- (b) The hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, a > b > 0, has eccentricity e.
 - (i) Show that the line through the focus F(ae, 0) that is perpendicular to the asymptote $y = \frac{bx}{a}$ has equation $ax + by a^2e = 0$.

1

asymptote $y = \frac{1}{a}$ has equation $ux + \partial y + u = 0$.

- 3
- (c) $P(p, \frac{1}{p})$ and $Q(q, \frac{1}{q})$ are two variable points on the rectangular hyperbola xy = 1 such that the chord PQ passes through the point A(0,2). M is the midpoint of PQ.

(ii) Show that this line meets the asymptote at a point on the corresponding directrix.

- (i) Show that PQ has equation x + pqy (p+q) = 0. Hence deduce that p + q = 2pq.
- 3
- (ii) Deduce that the tangent drawn from the point A to the rectangular hyperbola touches the curve at the point (1,1).
- 1
- (iii) Sketch the rectangular hyperbola showing the points P, Q, A and M. Find the equation of the locus of M and state any restrictions on the domain of this locus.
- 3

Question 5

(Begin a new page)

(a)

The diagram shows the graph of the curve $y = x - e^{-x}$, $x \ge 0$. This curve makes an intercept X on the x-axis, where 0 < X < 1. The region bounded by the curve and the line y = x between x = 0 and x = X is rotated through one complete revolution about the y-axis.

- (i) Use the method of cylindrical shells to show that the volume V of the solid of revolution is given by $V = 2\pi \int_{-\infty}^{\infty} x e^{-x} dx$.
- 3

(ii) Hence show that $V = 2\pi \left(1 - X - X^2\right)$

	Marks
(b) $z = \cos \theta + i \sin \theta$ (i) Express $1 + z$ in modulus argument form. Hence show that $(1+z)^4 = 16 \cos^4 \frac{\theta}{2} (\cos 2\theta + i \sin 2\theta)$.	3
(ii) Use the Binomial Theorem expansion of $(1+z)^4$ to show that $1+4\cos\theta+6\cos2\theta+4\cos3\theta+\cos4\theta=16\cos^4\frac{\theta}{2}\cos2\theta$, and find a corresponding expression for $4\sin\theta+6\sin2\theta+4\sin3\theta+\sin4\theta$.	3
(iii) Hence show that $\frac{4\sin\theta + 6\sin 2\theta + 4\sin 3\theta + \sin 4\theta}{1 + 4\cos\theta + 6\cos 2\theta + 4\cos 3\theta + \cos 4\theta} = \tan 2\theta,$	3
and $\frac{4\sin\theta + 4\sin 3\theta + \sin 4\theta}{1 + 4\cos\theta + 4\cos 3\theta + \cos 4\theta} = \tan 2\theta.$	
Question 6 (Begin a new page)	
(a) A particle of mass m kg is dropped from rest in a medium in which the resistance to motion has magnitude $\frac{1}{10}mv^2$ when the velocity of the particle is v ms ⁻¹ . After	
t seconds the particle has fallen x metres and has velocity ν ms ⁻¹ and acceleration a ms ⁻² . Take the acceleration due to gravity as 10 ms ⁻² .	
(i) Draw a diagram showing the forces acting on the particle. Hence show that $a = \frac{100 - v^2}{10}$.	2
(ii) Show that $t = \frac{1}{2} \ln \left(\frac{10 + \nu}{10 - \nu} \right)$.	2
(iii) Find expressions in terms of t for v and x .	3
(iv) Show that the terminal velocity is 10 ms ⁻¹ . Hence find the exact time taken and	3

Marks

(b) The equation
$$x^3 + px + q = 0$$
 (where p, q real) has roots α , β , γ .

terminal velocity.

(i) Show that the monic cubic equation with roots
$$\alpha^2$$
, β^2 , γ^2 is $x^3 + 2px^2 + p^2x - q^2 = 0$.

the exact distance fallen by the particle in reaching a speed equal to 80% of its

(ii) Show that
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\gamma^2}{q}$$
. Hence find a cubic equation with roots $\frac{1}{\alpha} + \frac{1}{\beta}$, $\frac{1}{\beta} + \frac{1}{\gamma}$ and $\frac{1}{\gamma} + \frac{1}{\alpha}$.

Question 7

(Begin a new page)

(a)

ABC is an acute-angled triangle inscribed in a circle. P is a point on the minor arc AB of the circle. PL and PN are the perpendiculars from P to CA (produced) and CB respectively. LN cuts AB at M.

- (i) Copy the diagram
- (ii) Explain why PNCL is a cyclic quadrilateral.

1

(iii) Show that $\angle PBM = \angle PNM$.

3

(iv) Hence show that PM is perpendicular to AB.

3

- (b) The equation $x^2 + x + 1 = 0$ has roots α , β . $T_n = \alpha^n + \beta^n$, n = 1, 2, 3, ...
 - (i) Show that $T_1 = T_2 = -1$.

2

(ii) Show that $T_n = -T_{n-1} - T_{n-2}$, n = 3, 4, 5, ...

2

(iii) Hence use Mathematical Induction to show that $T_n = 2\cos\frac{2n\pi}{3}$, n = 1, 2, 3, ...

(a) A die is biased so that on any single roll the probability of getting an even score is p where $p \neq 0.5$. In 12 rolls of this die the probability of getting exactly 4 even scores is three times the probability of getting exactly 3 even scores. Find the value of p.

3

(b)

 $P(a, e^a)$ and $Q(b, e^b)$, where a > b, are two points on the curve $y = e^x$. M is the midpoint of PQ.

(i) Use the diagram to show that $e^a + e^b > 2e^{\frac{1}{2}(a+b)}$.

2

(ii) Hence show that if a > b > c > d then $e^a + e^b + e^c + e^d > 4e^{\frac{1}{4}(a+b+c+d)}$

2

- (c) A closed hollow right cone with radius r and height h has volume V and surface area A.
 - (i) Show that $9V^2 = r^2 A^2 2\pi r^4 A$.

3

(ii) Hence show that if A is fixed then the maximum value of V is $\sqrt{\frac{A^3}{72\pi}}$.