Some Common Notations in Statistical Analysis MScA, Statistrical Analysis

Yuri Balasanov

University of Chicago, MScA

© iLykei, 2015

Common Notations I

Symbol	Meaning	
<i>X</i> , <i>Y</i>	Capitalized letters mean random variables	
x, y	Small letters mean realizations of random variables	
$<\Omega,\mathcal{F},\mathbb{P}>$	Probability space: $\begin{cases} \Omega \text{ is the set of elementary outcomes} \\ \mathcal{F} \text{ is the set of events} \\ \mathbb{P} \text{ is the probability measure} \end{cases}$	
$\mathbb{P}\left\{A\right\}$	Probability of event A	
$\mathbb{E}\left[X\right]$	Mathematical expectation of random variable X , also mean of X	
$\mathbb{V}\left[X\right]$	Variance of r.v. X , also dispersion of X $\mathbb{V}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right] = \sigma_X^2$	
σ_X	Standard deviation of r.v. X ; $\sigma_X = \sqrt{\mathbb{V}[X]}$	
cov(X, Y)	Covariance coefficient of r.v. X and Y ; $cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$	
$\rho_{_{XY}}$	Correlation coefficient of r.v. $X, Y: \rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$	

Common Notations II

Symbol	Meaning
$\mu_X^k, k = 1, 2, \dots$	Moment of r.v. X of order k
μ_X , $\kappa=1,2,\ldots$	$\mu_X^k = \mathbb{E}\left[X^k\right]; \mu_X = \mu_X^1 = \mathbb{E}\left[X\right]$
	Central moment of r.v. X of order k
$\mu_{0,X}^k$, $k=1,2,\ldots$	$\mu_{0,X}^{k} = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{k}\right]; \ \mu_{0,X}^{2} = \mathbb{V}\left[X\right]$
1,12 — 1,1	Mixed moment of r.v. X , Y
$\mu_{0,X,Y}^2 = \mu_{X,Y}$	$\mu_{X,Y} = cov(X,Y)$
$\frac{1}{n}\sum_{i=1}^{n}X_{i}$	Estimator for $\mathbb{E}[X]$, using sample X_1, X_2, \ldots, X_n
	Estimate for $\mathbb{E}\left[X ight]$, using sample
$\frac{1}{n}\sum_{i=1}^{n}x_{i}$	of realizations x_1, x_2, \ldots, x_n
$F(x) = \mathbb{P}\left\{X \le x\right\}$	Cimulative distribution funtion
$p(x_i) = \mathbb{P}\left\{X = x_i\right\}$	Probability distribution function
$p(x_i) = 1 \{ X = x_i \}$	(for discrete r.v.)
f(x)	Distribution density function
<i>I</i> (<i>X</i>)	(for continuous r.v.)