D'après la loi de l'additivité dans un circuit en dérivation \mathbf{I}_1 + \mathbf{I}_2

Donc $I_2 = I - I_1 = 0.45 - 0.05 = 0.40 A$

L'intensité qui traverse le moteur est donc de 0,40 A.

Exercice 4.

Dans le circuit en dérivation ci-contre, on appelle :

- I l'intensité lue sur l'ampèremètre A (I = 0,70 A)
- \underline{I}_1 , l'intensité lue sur l'ampèremètre $A_1 (\underline{I}_1 = 0.35 A)$
- et I₂, l'intensité lue par l'ampèremètre A₂.

Dans une même branche, l'intensité est partout la même, donc elle sera de 0,35 A

2. Quelle est la valeur de l'intensité qui traverse la lampe L_C ? Justifie

C'est un circuit en dérivation

D'après la loi de l'additivité dans un circuit en dérivation : $\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2$

Donc $I_2 = I - I_1 = 0.70 - 0.35 = 0.35 A$

L'intensité qui traverse le moteur est donc de 0,35 A.

Entraines- toi!

Exercice A:

L'ampèremètre A indique 0,3 A.

L'ampèremètre A₁ indique 0,17 A

Calculer la valeur indiquée par l'ampèremètre A_2 .

Exercice B

Dans ce montage I₁ vaut 0,16 A et I₂ indique 0,25 A.

Quelle est la valeur de l'intensité délivrée par le générateur I ?

