問題二(30%)

- •霍夫曼編碼:是一種用於檔案壓縮的方法。
- •請同學實作檔案壓縮的功能,將輸入的文字資料編碼後所需bit數(總長度),印在螢幕上。
- 輸入資料為多行不等長的字串,使用的字元包括 空格以及:
- •!,-.:;?0123456789ABCDEFGHIJK LMNOPQRSTUVWXYZabcdefghij klmnopqrstuvwxyz

編碼方式(Huffman)

字元 頻率
H 1
u 1
f 2
m 1
a 1
n 3

- 範例輸入:Huffmannn
- 1. 先統計字元出現的頻率/次數。
- 2. 將字串中的所有字元放在最底層的葉節點上。
- 3. 目前尚無父節點的所有節點中,尋找值(出現次數)最小的兩個進行合併,合併後的父節點值等於兩個子節點的值相加。
- 4. 合併直到剩下一個根節點為止。
- 5. 從根節點開始向下編碼, 左分支為0、右分支 為1, 每個葉節點的字元會產生一個霍夫曼碼。

編碼方式(Huffman)

• 範例輸入:Huffmannn

字元	頻率
Н	1
u	1
f	2
m	1
a	1
n	3

編碼	
000	
001	
01	
100	
101	
11	

編碼方式(Huffman)

字元	頻率	編碼
Н	1	000
u	1	001
f	2	01
m	1	100
a	1	101
n	3	11

- 範例輸入:Huffmannn
- 一個Char的大小為1 byte = 8 bits
- 原本"Huffmannn"這個字串要用9*8 = 72 bits儲存

• 編碼後總長度 =
$$1*3+1*3+2*2+1*3+1*3+3*2$$

$$=3+3+4+3+3+6$$

= 22 bits

輸入/輸出

- 由input_2.txt讀取測資。
- input_2.txt的第一行包含一個整數m,表示有多少行的字串, $(1 \le m \le 100, \text{ 字串長1} \sim 1000)$ 。
- •可能有多筆測資計算,若m讀取到0則表示測資結 束。
- 最後在螢幕上印出輸入字串經過編碼後的總長度。

範例

(input)

2

Hello!

oH He lolo

0

(output)

40

字元	出現頻率	編碼
1	4	10
0	4	11
Н	3	01
e	2	001
_(space)	2	0001
!	1	0000

總長度 =
$$4*2 + 4*2 + 3*2 + 2*3 + 2*4 + 1*4$$

= $8 + 8 + 6 + 6 + 8 + 4$
= 40