PERTH MODERN SCHOOL

UNIT 3C/3D MAS – 2011

TEST 1 – POLAR COORDINATES & COMPLEX NUMBERS

N.	AME:	DATE:	
re	[To achieve full marks and to allow assessment of particular outcomes, working and reasoning should be shown.] [A maximum of 2 marks will be deducted for incorrect rounding, units, etc.]		
\mathbf{T}	his is Resource Rich – 50 minutes for 53 mark	as:	
1.	[1, 1, 1, 1 = 4 marks] Convert: a) (4,-6) into polar coordinates with -180° <	$\theta \le 180^{\circ}$.	
	b) (3,- $\sqrt{3}$) into <i>exact</i> polar coordinates with	$1-\pi < \theta \leq \pi$.	
	c) [4,35°] into Cartesian coordinates.		
	d) [8,- $\frac{3}{4}\pi$] into <i>exact</i> Cartesian coordinates.		

2. [3, 3 = 6 marks]

Clearly show how you obtain your answers, find:

a) the distance between [20,-210°] and [$\sqrt{5}$,-50°].

b) the *exact* distance between $\left[\begin{array}{c} \sqrt{5} \\ \overline{3} \end{array}, -\frac{2\pi}{3} \right]$ and $\left[\begin{array}{c} 10, -\frac{7\pi}{6} \end{array}\right]$.

3. [8 marks]

Find the *exact* distance between ($\sqrt{3k}$, \sqrt{k}) and $\left[\sqrt{k}, \frac{5\pi}{6}\right]$. Draw a diagram.

- 4. [3, 2 = 5 marks]
 - a) Find, in *exact* form, the modulus and principal argument of $-\sqrt{3} + i$, and hence rewrite $-\sqrt{3} + i$ in *exact* polar (*cis*) form.

b) Convert 2 $cis \left(\frac{\pi}{4} \right)$ into **exact** algebraic Cartesian/rectangular form.

5. [3, 3 = 6 marks] Evaluate, giving answers in *exact* form:

a)
$$4 cis \frac{\pi}{3} \times 2 cis \frac{3\pi}{4}$$

b) $4 cis \left(-\frac{5\pi}{6} \right)$ $2 cis \left(\frac{5\pi}{6} \right)$

6. [4 marks]

Given z = 2 $cis \frac{\pi}{4}$, express z^{-1} and z in **exact** polar and rectangular form.

7. [2, 2, 2, 2 = 8 marks]

The Argand diagram below shows the point representing the complex number z where |z| > 1. Plot on the same diagram, the points representing the complex numbers:

a) \bar{z}

b) iz

c) z^2

d) $\frac{1}{z}$

8. [3, 3, 3, 3 = 12 marks]

Sketch on an Argand diagram, the locus of the point z = x + iy, satisfying each of the following conditions. In each case, give the Cartesian equation or inequality of the locus.

a) Re(z) = -2

b) Im(z) = Re(z)

c) Re(z) + 2Im(z) > 3

d) Re(z).Im(z) = 1

