Differentiation of pseudoprogression and tumor recurrence of glioblastoma using amide proton transfer (APT) imaging at 3 Tesla

Inga Krause¹, Thomas Zeyen², Andreas Decker³, Christina Schaub², Jochen Keupp⁴, Christoph Katemann⁴, Matthias Schneider⁵, Ulrich Herrlinger², Alexander Radbruch¹, Daniel Paech^{1,6}

¹Clinic for Neuroradiology, University Hospital Bonn, North Rhine Westphalia, Germany ²Clinic for Neurology, Section for Neurooncology, University Hospital Bonn, North Rhine Westphalia, Germany ³German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine Westphalia, Germany ⁴Philips Research, Hamburg, Germany

⁵Clinic for Neurosurgery, University Hospital Bonn, North Rhine Westphalia, Germany ⁶Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

INTRODUCTION:

Pseudoprogression is a major challenge in response assessment of glioblastoma (GBM). Conventional MRI (including FLAIR/T2 and T1 (pre-/post-contrast) images) does not allow a reliable differentiation of pseudoprogression from tumor recurrence [1]. Amide proton transfer weighted (APTw) imaging might help differentiate between pseudoprogression and tumor recurrence in glioblastoma [2].

METHODS:

28 patients (IDH wildtype GBM) with available APTw imaging in 3T MRI (Philips Achieva) and suspected progressive glioblastoma versus pseuodprogression according to the Response Assessment in Neuro-Oncology (RANO) 2.0 were evaluated [3]. Contrast-enhancing tissue were automatically 3D-segmented on gadolinium enhanced T1w images using the automated segmentation tool "HD-GLIO" [4, 5].

Mean APT signal intensities in the volumes of interest were compared for the groups of patients with pseudoprogression versus patients with tumor recurrences using unpaired t-tests. Evaluation of ground truth (tumor progression vs. pseudoprogression) was assessed via clinical follow-up in accordance with the RANO 2.0 criteria.

RESULTS:

16 patients with pseudoprogressions and 12 patients with tumor recurrences were identified according to RANO 2.0 criteria. In patients with pseudoprogression the APTw signal was significantly decreased (1.79 \pm 0.60) compared to patients with tumor recurrences (2.29 \pm 0.87), (p = 0.044).

DISCUSSION:

Our findings are consistent with those of other studies demonstrating that APTw imaging is feasible in a clinical routine setting at 3.0T and can help distinguishing pseudoprogression from tumor recurrence in GBM [2]. As a next step, we aim to expand the study population.

CONCLUSION:

First results of this ongoing study confirm the APTw imaging to help differentiate between pseudoprogression and tumor recurrence in follow-up examinations of glioblastoma at 3T. Prospective studies investigating the performance of APTw imaging in larger multi-center trials are needed.

REFERENCES:

- 1. Wen PY, et al. J Clin Oncol 2010;28(11):1963-1972.
- 2. Ma B, et al. J Magn Reson Imaging 2016;44(2):456-462.
- 3. Zhou J, et al. Magn Reson Med 2022;88(2):546-574.
- 4. Kickingereder P, et al. Lancet Oncol 2019;20(5):728-740.
- 5. Isensee F, et al. Nat Methods 2021;18:203-211.