МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ им. В. И. ВЕРНАДСКОГО» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра компьютерной инженерии и моделирования

Методика расчёта трудоёмкости выполнения алгоритма

Отчет по лабораторной работе №1

по дисциплине «Компьютерные системы»

студента 3 курса группы ИВТ-б-о-222 Гоголева Виктора Григорьевича

Направления подготовки 09.03.01«Информатика и вычислительная техника»

Цель: рассчитать трудоёмкость алгоритма двумя способами: универсальным

Универсальный метод

$$\frac{dp1(t)}{dt} = 1 + 0,5p_{10}(t) - p_1(t)$$

$$\frac{dp2(t)}{dt} = p_1(t) - p_2(t)p_3 - p_2(t)p_4$$

$$\frac{dp3(t)}{dt} = 0,4p_2(t) + 0.25p_7(t) - p_3(t)$$

$$\frac{dp4(t)}{dt} = 0,6p_2(t) - p_4(t)p_5 - p_4(t)p_8$$

$$\frac{dp5(t)}{dt} = 0.53p_4(t) - p_5(t)$$

$$\frac{dp6(t)}{dt} = p_3(t) - p_6(t)$$

$$\frac{dp7(t)}{dt} = p_6(t) - p_7(t)p_9 - p_7(t)p_3$$

$$\begin{split} \frac{dp8(t)}{dt} &= 0,47p_4(t) - p_8(t) \\ \frac{dp9(t)}{dt} &= 0,75p_7(t) + p_8(t) + p_5(t) - p_9(t) \\ \frac{dp10(t)}{dt} &= p_9(t) - p_{10}(t) p_1 - p_{10}(t) p_k \end{split}$$

СЛАУ:

$$\begin{cases} 0,5p_{10}-p_1=-1\\ p_1-p_2=0\\ 0.4p_2-p_3+0,25p_7=0\\ 0.6p_2-p_4=0\\ 0,53p_4-p_5=0\\ p_3-p_6=0\\ p_6-p_7=0\\ 0,47p_4-p_8=0\\ 0.75p_7+p_8+p_5-p_9=0\\ p_9-p_{10}=0 \end{cases}$$

Матрица

	1	2	3	4	5	6	7	8	9	10	
	A									В	
1	-1	0	0	0	0	0	0	0	0	0,5	-1
2	1	-1	0	0	0	0	0	0	0	0	0
3	0	0,4	-1	0,4	0	0	0,25	0	0	0	0
4	0	0,6	0	-1	0	0	0	0	0	0	0
5	0	0	0	0,53	-1	0	0	0	0	0	0
6	0	0	1	0	0	-1	0	0	0	0	0
7	0	0	0	0	0	1	-1	0	0	0	0
8	0	0	0	0,47	0	0	0	-1	0	0	0
9	0	0	0	0	1	0	0,75	1	-1	0	0
10	0	0	0	0	0	0	0	0	1	-1	0
	·								·		

Обратная матрица и решение

	A ⁻¹								Х		
1	-2,631579	-1,63158	-1,31579	-1,84211	-1,31579	-1,31579	-1,31579	-1,31579	-1,31579	-1,31579	2,63158
2	-2,631579	-2,63158	-1,31579	-1,84211	-1,31579	-1,31579	-1,31579	-1,31579	-1,31579	-1,31579	2,63158
3	-2,245614	-2,24561	-2,45614	-2,10526	-1,12281	-1,45614	-1,45614	-1,12281	-1,12281	-1,12281	2,24561
4	-1,578947	-1,57895	-0,78947	-2,10526	-0,78947	-0,78947	-0,78947	-0,78947	-0,78947	-0,78947	1,57895
5	-0,836842	-0,83684	-0,41842	-1,11579	-1,41842	-0,41842	-0,41842	-0,41842	-0,41842	-0,41842	0,83684
6	-2,245614	-2,24561	-2,45614	-2,10526	-1,12281	-2,45614	-1,45614	-1,12281	-1,12281	-1,12281	2,24561
7	-2,245614	-2,24561	-2,45614	-2,10526	-1,12281	-2,45614	-2,45614	-1,12281	-1,12281	-1,12281	2,24561
8	-0,742105	-0,74211	-0,37105	-0,98947	-0,37105	-0,37105	-0,37105	-1,37105	-0,37105	-0,37105	0,74211
9	-3,263158	-3,26316	-2,63158	-3,68421	-2,63158	-2,63158	-2,63158	-2,63158	-2,63158	-1,63158	3,26316
10	-3,263158	-3,26316	-2,63158	-3,68421	-2,63158	-2,63158	-2,63158	-2,63158	-2,63158	-2,63158	3,26316

Средняя трудоемкость

Сетевой метод

- 1) 0-1-2-3-6-7-9-10 = 250+280+370+290+430+100+200=1920
- 2) 0-1-2-4-5-9-10=250+280+190+440+100+200=1460
- 3) 0-1-2-4-8-9-10=1380

Q(min) = 1380

k1	250		
k2	280		
k3	370	KC2	1083,33
k4	190	KC1	3107,55
k5	440		
k6	290	Qmin	1380
k7	430	Qmax	112872
k8	360	k	5
k9	100		
k10	200		

Расчет трудоемкости (minu max) и веса КС1 и КС2

вывод

В результате работы были изучены и на практике применены несколько способов расчета трудоемкости алгоритма, а именно универсальный метод и сетевой метод.