BASIC NUMBER THEORY: LECTURE 12

WENHAN DAI

This lecture explains the solution to the mid-term exam and uses the rest of the lesson to teach the following.

Genus field revisited

Recall the whole picture of genus field and Hilbert class field of any imaginary quadratic field K as follows.

$$L \qquad \qquad \text{Hilbert class field}$$

$$C(\mathcal{O}_K)^2 \Biggl(\Biggl| \Biggr| \Biggr) C(\mathcal{O}_K) \qquad \text{genus field}$$

$$\{\pm 1\}^{\mu-1} {\simeq} C(\mathcal{O}_K)/C(\mathcal{O}_K)^2 \Biggl(\Biggl| \Biggr| \Biggr) \Biggr(\pm 1\}^{\mu}$$
 imaginary quadratic field
$$\Biggl(\pm 1\}^{\mu} \Biggr)$$

Let p_1, \ldots, p_r be all odd prime divisors of d_K . Then we obtain

$$M = K(\sqrt{p_1^*}, \dots, \sqrt{p_r^*}) = \begin{cases} \mathbb{Q}(\sqrt{p_1^*}, \dots, \sqrt{p_r^*}) & d_K \equiv 1 \mod 4, \\ \mathbb{Q}(\sqrt{-1}, \sqrt{p_1^*}, \dots, \sqrt{p_r^*}) & \frac{d_K}{4} \equiv 1 \mod 4, \\ \mathbb{Q}(\sqrt{-2}, \sqrt{p_1^*}, \dots, \sqrt{p_r^*}) & \frac{d_K}{4} \equiv 2 \mod 8, \\ \mathbb{Q}(\sqrt{2}, \sqrt{p_1^*}, \dots, \sqrt{p_r^*}) & \frac{d_K}{4} \equiv 6 \mod 8. \end{cases}$$

Also, we have defined the Artin map

$$\left(\frac{M/K}{\cdot}\right): I_K \to \operatorname{Gal}(M/K) \to \prod_{i=1}^r \operatorname{Gal}(K_i/K) \stackrel{\sim}{\to} \{\pm 1\}^r,$$

where $\Phi_K : \operatorname{Gal}(M/K) \to \{\pm 1\}^r$ and $K_i = K(\sqrt{p_i^*})$. For each fractional ideal $\mathfrak{a} \subseteq \mathcal{O}_K$,

$$\Phi_K(\mathfrak{a}) = \left(\left(\frac{N(\mathfrak{a})}{p_1} \right), \dots, \left(\frac{N(\mathfrak{a})}{p_r} \right) \right).$$

Claim: Denote P the group of principal genus in $C(\mathcal{O}_K)$. Then the following diagram commutes:

Date: November 20, 2020.

2 WENHAN DAI

$$C(d_K)/C(d_K)^2 \longrightarrow C(\mathcal{O}_K)/P \longrightarrow \{\pm 1\}^{\mu}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$C(\mathcal{O}_K)/C(\mathcal{O}_K)^2 \longrightarrow \{\pm 1\}^r.$$

To be continued in Lecture 13.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email~address$: daiwenhan@pku.edu.cn