

Networks

Канальный уровень

Функции уровней OSI/RM

- Прикладной уровень:
 - интерфейс с пользователем (функции сервиса)
- Транспортный уровень:
 - передача между удаленными процессами (диалоги)
- Сетевой уровень:
 - передача между удаленными устройствами сети (между сетями)
- Канальный уровень:
 - передача внутри одной физической среды (сети)

Канальный уровень

- Обеспечение доступа к среде
- Инкапсуляция данных в PDU кадр (Frame)

Кадр и среда

- **Кадр (Frame)** PDU Канального уровня
- Среда (Media) физическое средство (носитель) для передачи информации между двумя узлами

Узел и физическая сеть

- Узел (Node) устройство физической сети (в контексте канального уровня)
- Физическая сеть (Physical Network) два и более узла соединенных одной физической средой

Задача канального уровня

Канальный уровень ответственен за обмен кадрами между узлами по общей передающей среде в одной физической сети

Функции

- Инкапсуляция пакета в кадр
- Деинкапсуляция пакета из кадра
- Управление доступом к среде функции протокола канального уровня по обеспечению взаимодействия узла со средой и по передаче кадров в различных типах физических сетей

Кадр – PDU канального уровня

- Описание кадра ключевой элемент протоколов канального уровня
- Контрольная информация для формирования кадра:
 - Идентификация взаимодействующих узлов
 - Определение временных рамок
 - Границы кадра
 - Прием/передача
 - Контроль ошибок передачи
 - Порядок взаимодействия узлов

Форматирование

- Подготовка к передаче:
 - Преобразование в битовый поток
 - Кадрирование
- **Кадрирование (framing)** кодирование кадра для передачи, обрамление данных верхнего уровня

Задачи кадрирования

- Определение границ кадра (Frame Start, Frame Stop)
- Адресация (Addressing)
- Определение типа передаваемых данных (Туре)
- Данные сетевого уровня (DATA)
- Обнаружение ошибок (Error Detection)

Карта сетевого интерфейса

 Карта сетевого интерфейса (Network Interface Card) – плата устройства, позволяет соединить его с сетью

Подуровни канального уровня

- Logical Link Control
 - Интерфейс с сетевым уровнем
 - Идентификация протокола сетевого уровня
- Media Access Control
 - Предоставление доступа к среде
 - Интерфейс с физическим уровнем
 - Адресация кадра
 - Обозначение начала и конца кадра

Стандарты

- ISO:
 - HDLC (High Level Data Link Control)
- IEEE:
 - 802.2 (LLC)
 - 802.3 (Ethernet)
 - 802.5 (Token Ring)
 - 802.11 (Wireless LAN)
- ITU:
 - Q.922 (Frame Relay Standard)
 - Q.921 (ISDN Data Link Standard)
 - HDLC (High Level Data Link Control)
- ANSI:
 - ADCCP (Advanced Data Communications Control Protocol)

Методы контроля доступа к среде

- Методы зависят от:
 - Способа разделения среды
 - Топологии
 - Насколько тщательно контролируется доступ к среде?
 - Какие правила получения доступа к среде (передаче)?
 - Есть ли определенный порядок передачи?

Контролируемый доступ к среде

- Только один узел может передавать в один момент времени
- Ожидание возможности передачи (своей очереди)
- Оповещение о передаче
- Меньшие коллизии (или отсутствуют вообще)
- Высокая избыточность (на запросы, ожидания)
- Примеры:
 - FDDI
 - Token Ring

Разделяемый доступ к среде

- Передача по возможности (готовности узла)
- Повторная передача при наложениях сигналов
- Низкая избыточность
- Большие коллизии (при большой нагрузке)
- Примеры:
 - CSMA/CD для сетей Ethernet
 - CSMA/CA для 802.11 беспроводных сетей (Wireless)

Тип передачи

Полудуплексная передача (Half-Duplex)

Полнодуплексная передача (Full-Duplex)

Топологии

- Физическая топология определяет каким образом узлы соединены в физическую сеть через среду
- **Логическая топология** определяет механизмы адресации узлов на канальном уровне (Data)

Точка-точка

- Логическая топология типа точка-точка:
 - В соединении участвуют только 2 конечных устройства
 - Добавление промежуточных устройств не меняет топологии
 - Топология реализована на уровне адресации устройств

- Физическая топология типа точка-точка:
 - Физическое соединение двух устройств (прямое)
 - Обычно промежуточные устройства отсутствуют
 - Нет необходимости в адресации устройств

Множественный доступ

• Множественный доступ с контролем несущей и обнаружением коллизий (Carrier-Sense Multiple Access with Collision Detection, CSMA/CD) – технология множественного доступа к общей передающей среде в локальной сети с контролем коллизий

CSMA/CD

- Действия узла в рамках CSMA/CD:
 - Постоянно прослушиваю среду:
 - а вдруг этот кадр для меня?
 - Для передачи своего кадра жду освобождения среды
 - При передаче своего кадра контролирую коллизии:
 - передаваемые и одновременно получаемые данные должны совпадать иначе кто-то передает вместе со мной (коллизия)
 - Если при передаче обнаружена коллизия:
 - жду случайный промежуток времени и повторяю передачу (если среда свободна)
- Пример:
 - Ethernet

Кольцо

- Логическая топология типа кольцо
 - Передача кадров по кольцу (транзитом, от одного к другому)
 - Передача своих данных только в свою очередь
 - Если кадр не мне передаю дальше

Протоколы

- Протоколы канального уровня:
 - Ethernet
 - Point-to-Point Protocol (PPP)
 - High-Level Data Link Control (HDLC)
 - Frame Relay
 - Asynchronous Transfer Mode (ATM)

