T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KÜRESEL ISINMADAN KAYNAKLANAN DIŞ HAVA SICAKLIK DEĞİŞİMLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Mak. Müh. Ersin KANDİL

Enstitü Anabilim Dalı : MAKİNA MÜHENDİSLİĞİ

Enstitü Bilim Dalı : ENERJİ

Tez Danışmanı : Yrd. Doç. Dr. Mehmet GÜNDÜZ

Ortak Tez Danışmanı : Yrd. Doç. Dr. Hasan KÜÇÜK

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KÜRESEL ISINMADAN KAYNAKLANAN DIŞ HAVA SICAKLIK DEĞIŞİMLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Mak.Müh. Ersin KANDİL

Enstitü Anabilim Dalı

MAKİNA MÜHENDİSLİĞİ

Enstitü Bilim Dalı

ENERJI

Bu tez 3.(/ 9.7/2008 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Jiiri Baskanı

Doç.Dr. Tahsin ENGIN SAÜ Makina Müh. Bölümi

er Girlin greting by

Uye

MOA

ÖNSÖZ

Günümüzde küresel ısınmanın etkileri gözlendikçe insanoğlunun bu olaya karşı ilgisi artmaktadır. Küresel ısınma, kendiliğinden ortaya çıkmamakla beraber hızlı gelişen teknolojinin ürünüdür. Özellikle dış hava sıcaklık ortalamasının artmasıyla ısı kayıplarının azaldığı görülmektedir. Basitçe düşünüldüğünde gereksiz yere yapılan kapasite artırımları daha fazla enerji kaybı ve daha fazla atık yanma ürünü demektir. Meteoroloji müdürlüğünün son yıllarda yaptığı çalışmalar da bu konu üzerinde odaklanmaktadır. Dünyadaki kullanabilir enerjiler kısıtlı olduğundan her türlü tasarrufa karşı açık olmalı ve geliyorum diyen tehlikeye karşı kendimizi korumalıyız.

Bu tezin hazırlanmasında katkılarından dolayı Yrd. Doç. Dr. Mehmet Gündüz ve Yrd. Doç. Dr. Hasan Küçük hocalarıma sonsuz teşekkürler.

İÇİNDEKİLER

ÖNSÖZ	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	vii
ÖZET	viii
SUMMARY	ix
BÖLÜM 1.	
KÜRESEL ISINMANIN DÜNYADAKİ ETKİLERİ	1
1.1. Sera Gazlarının Tanıtımı	5
1.2. Küresel Isınmanın Kanıtları	7
1.3. Küresel Isınmanın Ekolojik Sonuçları	10
1.4. Küresel İsınma ve Küresel İklim Değişimine Karşı Alınabilecek	
Önlemler	13
1.5. Küresel Isınmayla Oluşan Sıcaklık Değişimlerini	20
1.5.1. Yerkabuğundaki sonuçlar	20
1.5.2. Atmosferdeki sonuçlar	25
1.5.3. Yer kabuğundaki ve atmosferdeki sonuçlara karşı	
alınacak önlemler	33

BÖLÜM 2.				
TÜRKİYE DE Kİ DIŞ HAVA SICAKLIKLARI DEĞİŞİMLERİ				
2.1. Türkiyedeki İklim Değişikliği	37			
2.1.1. Türkiyedeki iklim değişikliği çerçeve ve sözleşmesi	37			
2.2. 2003-2023 Dönemindeki Gelişme ve Değişimleri Belirleyecek				
Temel Eğilimler ve İtici Güçler	40			
2.3. Türkiye'nin Güçlü ve Zayıf Yanları	42			
2.4. İklim Değişikliğinin Türkiye Üzerindeki Olası Etkileri	45			
2.4.1. Türkiye'nin sera gazı salınımları azaltma olanakları	47			
2.4.2. Türkiye'de sera gazı salınımlarının azaltılması amacıyla				
kullanılabilecek olan teknolojik, sosyo-ekonomik				
seçenekler	48			
BÖLÜM 3.				
KÜRESEL ISINMANIN ISI KAYBI HESAPLARIYLA İLİŞKİSİ	52			
3.1.Kürsel Isınmanın Dış Hava Sıcaklıkları Üzerindeki Neticeleri	52			
3.2. Dış Hava Sıcaklığı Hesaplama Yöntemleri	55			
3.2.1. Amerikan hesap yöntemi	55			
3.2.2. Alman hesap yöntemi	60			
3.3. Küresel Isınmanın Isı Kaybına Etkisi	63			
3.4. Önerdiğim Tespit Yöntemi	64			
3.5. Sıcaklıkların Karşılaştırılması	67			
BÖLÜM 4.				
SONUÇLAR VE ÖNERİLER				

KAYNAKLAR

EKLER....

ÖZGEÇMİŞ.....

87

89

95

SİMGELER VE KISALTMALAR LİSTESİ

t : Yıl içinde kaydedilmiş en düşük sıcaklık (°C)

 t_{ort} : Sıcaklık ortalaması (°C)

ΔQ : Isı kaybındaki değişim (W/mK)

 Δt_{d1} ; İç-dış ortam sıcaklık farkı (°C)

K : Isı geçiş katsayısı (Kcal/m²h°C)

KP : Kyoto protokolü

Z : Toplam artırım,%

Ze : Günlük çalışma süresi,saat/gün

Zh : Yön artırımı,%

Zr : Kazan ısı yükü artırım katsayısı

Zw : Kat yükseklik artırımı, %

Zy : Yıllık çalışma süresi, gün/yıl

 α_{dis} : Dış yüzeylerin isi taşınım katsayısıW/ m²K

 α_{ic} : İç yüzeylerin ısı taşınım katsayısıW/ m²K

 η_{br} : Brülörün verimi,%

 $\eta_{\scriptscriptstyle K}$: Kazanın verimi, %

 ρ : Dış hava yoğunluğu, kg/ m^3

 ζ : Özel dirnç katsayısı

 λ : Her bir yapı bileşeninin ısı iletkenlik hesap değeri, W/mK

 λ_{tzo} :Yalıtım malzemesinin ısı iletkenlik hesap değeri, W/mK

n : Bitişik yapı malzemesi sayısı

ŞEKİLLER LİSTESİ

Resim 1.1.	Buzullardan kopmuş bir buzdağı gösterimi	2
Resim 1.2.	Bir buzulun yıllara göre durumu	2
Şekil 1.1.	Sera gazının dünyaya etkisine bir gösterim	4
Şekil 1.2.	Atmosferdeki karbondioksitin yıllara göre değişimi	5
Şekil 1.3.	Hava sıcaklığının yıllara göre artışı	7
Şekil 1.4.	Güney yarımkürenin yıllık ortalama yüzey sıcaklığındaki değişimler	8
Resim 1.3.	Karasal buzulların eridiğini gösteren bir resim	9
Resim 1.4.	İsviçre alpleri	9
Resim 1.5.	Elbe nehrinden bir taşkın	12
Resim 1.6.	Alibeyköyden bir taşkın	12
Şekil 1.5.	Fosil yakıt tüketiminin gelişimi	18
Resim 1.7.	Termik santralinin sera gazı yayması	18
Şekil 3.1.	Adıyaman iline ait 1986-2006 yılları arası ölçülen en düşük sıcaklıklar	62
Şekil 3.2.	Hakkari iline ait 1986-2006 yılları arası ölçülen en düşük sıcaklıklar	63
Şekil 3.3.	Şekil 3.3. Malatya iline ait 1986-2006 yılları arası TS 2164, Alman Yöntemi, Amerikan Yöntemi ve önreilen yöntemin	
	karşılaştırılması	66
Şekil 3.4.	Isı kaybı hesabı yapılan binanın mimari projesi	71
Şekil 3.5.	Isı kaybı hesabı yapılan binanın mahalerinin QE değerleri	73
Şekil 3.6.	Isı kaybı hesap çizelgesi	74
Şekil 3.7.	Isı kaybı hesap çizelgesinde kullanılan K değerleri	76
Şekil 4.1.	Türkiye ortalama sıcaklık değerleri 1940-2006 yılları arası	
	değişimi	86

TABLOLAR LİSTESİ

Tablo 2.1.	Yakıt türlerine ve kaynaklarına göre genel enerji istemi	43
Tablo 2.2.	Temel CO ₂ göstergelerine göre Türkiye'nin dünya ülkeleri	
	sıralamasındaki yeri	44
Tablo 3.1.	Kuru termometre sıcaklık binleri	58
Tablo 3.2.	Adıyaman için ölçülmüş yıllara göre en düşük sıcaklık değerleri.	61
Tablo 3.3.	Malatya için ölçülmüş yıllara göre en düşük sıcaklık değerleri	65
Tablo 3.4.	Önerilen yöntemle tespit edilen yeni dış hesap sıcaklıklarının	
	halen kullanılan sıcaklıklardan farkı ve meteoroloji	
	istasyonlarındaki dağılımı	68
Tablo 3.5.	%'lik TS 2164' e kıyasla ısı kazançları	78
Tablo 3.6.	2008 yılında yeni yapılacak bina sayılarına göre elde edilen	
	yatırım maliyeti kazançları	80

ÖZET

Anahtar kelimeler: Küresel ısınma, dış hesap sıcaklığı

Dış hesap sıcalıklarının değişiminin araştırıldığı bu çalışmada; yeni dış hesap sıcaklıklarıyla birlikte, etkilerinin ve tasarruf potansiyellerinin belirlenmesi amaçlanmıştır. Dış hesap sıcaklığı hesaplama yöntemlerinin örneklerle verildiği çalışmada; yaygın olarak kullanılan Amerikan, Alman ve ülke şartlarına göre önerilen yeni dış hesap sıcaklığı hesap yöntemleri ve sonuçları birbiriyle kıyaslanmıştır. Yeni hesaplanan sıcaklıkların uygulmaya geçirilmesiyle sağlanacak kazançlar detaylıca anlatılmıştır.

EXAMINATION ON OUTSIDE AIR TEMPARATURES CHANGES BASED ON GLOBAL WARMING

SUMMARY

Key Words: Global warming, outside design temperatures

The change in outdoor design temperatures are evaluated in this study; the determination of its effects and the conservation potentials are also aimed with the calculation of new out door design temperatures. The most widely used American and German methods and their results are compared with the new recommended outdoor design temperatures calculation method. The possible gains by using new higher outdoor design temperatures are also explained briefly.

BÖLÜM 1. KÜRESEL ISINMANIN DÜNYADAKİ ETKİLERİ

Son 10 – 15 yıl içinde insanlığın temel ekolojik sorunlarına bir yenisi eklenmiştir. Bunun adı, "Küresel İsınma ve Küresel İklim Değişimi"dir. Bu olayın önemi; "yeni bir atmosferik tehlike", "artık dünyanın ateşi yükseliyor" gibi ifadelerle vurgulan maktadır. İnsan etkisinden kaynaklanan ve "yapay iklim değişimi" olarak da nitelenen bu sürecin, tüm canlılar ve cansız çevre için potansiyel tehlikelerle dolu olduğuna ve bu değişimin artık geriye çevrilemeyeceğine inanılmaktadır. (Hertsgaard 2001 ve Kadıoğlu 2001)

Yapay iklim değişiminin, milyonlarca yıldan beri jeolojik devirlerde cereyan eden doğal iklim değişiminden tamamen farklı olduğu, bu nedenle bütün ülkelerin endişeyle üzerinde durduğu bildirilmekte ve bu farklılıklar şu şekilde açıklan maktadır:

- 1) Yapay iklim değişimi, insanların çeşitli aktivitelerinden kaynaklanmaktadır. Bu zararlı aktiviteler artan hızla devam ettiğinden, bu gelişimin potansiyel tehlikeler doğuracağına kesin gözüyle bakılmaktadır.
- 2) Jeolojik çağlarda meydana gelen iklim değişimi çok uzun zaman dönemlerinde (binlerce, hatta milyonlarca yıl) cereyan etmiştir. Oysa, yapay iklim değişimi 15 20 yıl gibi göreceli olarak çok kısa zaman periyodu içinde ortaya çıkmıştır. Bilim insanları bu konuda şu bilgileri vermektedirler:

Özel yöntemlerle (radyokarbon, pollen analizleri,dendroklimatolojik, vb) belirlenen uzak geçmişteki sıcaklıklarla, son 10 – 15 yılın (özellikle 1990 – 2007 yılları arası) belirlenen hava sıcaklıkları karşılaştırıldıklarında, son yıllardaki hava sıcaklığının şimdiye kadar 600 yıl içinde yaşanan sıcaklıkların en yükseği olduğu anlaşılmıştır.

3) Küresel ısınmayı, jeolojik devirlerdeki ısınma veya soğuma gibi iklim değişiminden ayıran en önemli özelliklerden başka birisi de, bu değişimin bölgesel olmayıp, küresel olmasıdır. Gerçekten, hem kuzey, hem de güney kutbunda buzulların eşzamanlı olarak erimesi, aynı sürecin ana karalardaki yüksek dağlarda cereyan etmesi, ülkemizde Nemrut ve Süphan ve Kaçkar dağlarında buzulların erimeye başlaması küresel ısınmanın en belirgin kanıtıdır. (Resim 1.1. ve 1.2. ile karşılaştırınız)

Resim 1.1. Güney Kutup'undan Mart 2002 tarihinde koptuğu bildirilen ve 12 bin yıllık olduğu tahmin edilen son 30 yılın en büyük buzdağı Larsen – B buzdağı. (Hürriyet Gazetesi, Mart 2002)

Resim 1.2. Kuzey Kutbu yakınlarındaki Blomstrandbreen Buzulu'nun 1918 ve 2002 yılındaki durumları (Foto: Reuters).

Küresel ısınmanın aksine, doğal olarak jeolojik devirlerde cereyan eden soğuma ve ısınmalar ise lokal veya bölgeseldir ve ayrıca diğer bazı karakteristikler bakımından farklıdır şöyle ki (Mitscherlich, 1995):

- En eski buzul çağı yaklaşık 2,0 1,9 milyar yıl önce Kanada'da Huronik buzul çağı olarak yaşandı.
- 350 250 milyon yıl önce Güney Kutup'unda buzul çağı yaşanmıştı. O zaman Avrup'a Ana Karası geniş tropik ormanlarla kaplıydı. Bu sırada Güney Afrika ve Güney Amerika ile Avustralya'da buzul çağı hüküm sürüyordu. (Karbon ve permjeolojik devirleri).
- 20,5 milyon yıl önce, Güney Kutup'unun buzul sınırlarını 400 km kadar kuzeye ilerleten ayrı bir buzul çağı meydana gelmişti.
- En son olarak 2,4 milyon yıl önce son büyük buzul çağı yaşanmış ve zamanımızdan 10 bin yıl önce sona ermişti. Bu son buzul çağı Kuzey Avrupa'yı buzullarla kaplarken Anadolu yarımadası, her türlü canlıyı yaşatabilecek bir iklime sahipti.

Dünyanın çeşitli yerlerinde gerçekleşen buzul çağları arasında (İnterglazial dönem) geçen zaman periyodunda sıcak iklimler de hüküm sürmüştür.Ancak bu dönemler için, "Bugünkü kadar sıcak olmamakla birlikte..." ifadesi kullanılmaktadır. Böylece, zamanımızda son 10 – 15 yıl içinde yaşanan sıcaklık derecesinin bunlardan daha yüksek olduğuna ve küresel çapta gerçekleştiğine işaret edilmektedir. (Mitscherlich, 1995)

Bu açıklamalardan anlaşıldığına göre iklim değişimi milyonlarca yıldan beri devam eden bir süreçtir. Ancak son zamanlarda yaşanan küresel ısınma ve iklim değişimi, çok eskiden meydana gelen jeolojik devirlerdeki iklim değişimlerinden çok farklıdır. O nedenle zamanımızdaki iklim ve sıcaklık değişimi şu şekilde tanımlanmaktadır. Küresel ısınma, insanların çeşitli aktiviteleri sonucunda meydana gelen ve sera gazları olarak nitelenen bazı gazların atmosferde yoğun

bir şekilde artması sonucunda, yeryüzüne yakın atmosfer tabakaları ile yeryüzü sıcaklığının yapay olarak artması sürecidir." Küresel iklim değişimi ise, küresel ısınmaya bağlı olarak, diğer iklim öğelerinin de (yağış, nem, hava hareketleri, kuraklık, vb.) değişmesi olayıdır.

Tanımlamada söz konusu edilen sera gazları sunlardır: Karbondioksit, kloroflourkarbon (CFC-11, HCFC-22, CF4, vb.), gazları metan, azotoksitleri, ozon ve su buharıdır. Sera gazları aynen seranın etrafını ve çatısını kaplayan camlar gibi, günes ışınlarının büyük bir kısmının (dalga boyları 300 – 1500 milimikron olan ışınların) yer yüzüne kadar gelmesini engelleyemez. (Kadıoğlu 2001). Ancak, güneş ışınları yeryüzüne çarpınca ısı enerjisine dönüştüğünde dalga boyları değişir.O nedenle sera gazları, bu ısı enerjisi dalgalarının yeryüzünden atmosfere doğru yükselmesine; başka bir ifadeyle, karasal ışıma (radyasyon) olayı ile atmosferin yüksek katmanlarına ulaşmasına engel olurlar. Hatta bu sera gazları yeryüzünden yükselen ısı enerjisi dalgalarının bir kısmını yutar, bir kısmını da yeniden yeryüzüne yansıtır (Şekil 1.1.).

Şekil 1.1. Sera gazları ile küresel ısınmanın meydana gelişini açıklayan şematik görünüm. (TEMA Arşivi)

Sera gazlarının bu şekildeki etkisine, "Atmosferin sera etkisi" bu yolla meydana gelen ısınma olayına da "Sera gazları etkisiyle küresel ısınma" denir. Bu olay, turfanda sebze ve çiçek yetiştirilen ve genellikle her tarafı cam veya plastikle kaplı olan sera veya limonluk denen mekânlarda da aynen cereyan ettiği için, bu şekildeki terimler kullanılmaktadır.

1.1. Sera Gazlarının Tanıtımı

Sera gazlarının adları biraz önce açıklanmıştı. Bunların nitelikleri,küresel ısınmadaki payları ve atmosferdeki yoğunlukları birbirinden farklıdır. O nedenle bunlar hakkında aydınlatıcı bilgi verilmesi yararlı görülmüştür (Çepel 2003).

- Karbondioksit

Bu gaz, fosil yakıtların (petrol ve türevleri, kömürlerin ve doğalgazın) sanayide kullanılması sonucunda oluşarak atmosfere karışmaktadır. Atmosfere karışan karbondioksidin %80 – 85'i fosil yakıtlardan, %15-20'si de canlıların solunumundan ve mikroskobik canlıların organik maddeleri ayrıştırmasından kaynaklanmaktadır (Mitscherlich 1995). Bu nedenle sanayileşme devriminden önce atmosferdeki toplam karbondioksit miktarı 600 milyar ton tahmin edildiği halde, bugün bu miktarın yaklaşık 750 milyar tona çıktığı bildirilmektedir. (Houghtonet al. 1994'e göre Kadıoğlu 2001). Bir yandan fosil yakıt kullanımının hızla artışı, öte yandan fotosentez için tonlarca karbondioksit harcayan ormanların ve bitkisel planktonların tahribi, atmosferdeki karbondioksit miktarını son 160 bin yılın en yüksek düzeyine ulaştırmıştır. Yapılan ölçmeler, bu artışın devam ettiğini göstermektedir. (Houghtonetal, 1998)

Şekil 1. 2. Noaa ölçme sonuçlarına göre atmosferdeki karbondioksidin sürekli artışı (Mahmut Kayhan, 2006 Meteoroloji Genel Müdürlüğü)

Bilim insanlarının geliştirdikleri matematiksel bilgisayar son zamanlarda modellerine göre, CO2 yoğunluğunun iki katına çıkması halinde küresel artacağı hesaplanmıştır. Bu sonuç, karbondioksitin küresel sıcaklığın 3°C ısınmadaki derecesinin ne kadar yüksek olduğu konusunda bir fikir vermektedir. Gerçekten sera gazları içinde karbondioksit, küresel ısınmada % 50 paya sahiptir. Bunun nedeni, hem miktarının çok hem de karbondioksit moleküllerinin atmosferdeki ömrünün 50 – 100 yıl gibi çok uzun olmasıdır. O nedenle küresel ısınmaya karşı alınacak önlemlerin başında karbondioksit salınımının azaltılması gelmekte ve bu hususta uluslar arası düzeyde olağan üstü çabalar harcanmaktadır

- Metan

Bu gaz organik artıkların oksijensiz ortamda ayrışması (anaerobik ayrışma) sonucunda meydana gelmektedir. Başlıca kaynakları pirinç tarlaları, çiftlik gübreleri, çöp yığınları ve bataklıklardır. Metan moleküllerinin ömrünün ve miktarının az olması nedeniyle, küresel ısınmadaki etki payı % 13 kadardır.

- Azot Oksitleri

Bu sera gazının kaynakları egzoz gazları, fosil yakıtlar ve organik maddelerdir. Küresel ısınmadaki payı % 5'dir.

- Kloroflourkarbon Gazlan (CFC-H)

Bu sera gazları için doğal kaynak yoktur. Spreylerdeki püskürtücü gazlar, soğutucu aletlerde kullanılan gazlar, bilgisayar temizleyiciler, bu gazların başlıca yapay kaynaklarıdır. Küresel ısınmadaki payları % 22 oranındadır.

- Ozon

Yeryüzüne yakın atmosfer tabakalarındaki ozon'un başlıca kaynağı, egzoz gazlarının 2/3'ünü oluşturan azotoksitlerin ultraviyole ışınları ile fiziksel reaksiyona girmesidir. Bu reaksiyon sonucunda bol miktarda ozon meydana gelir ve atmosferde birikir. Yalnız, bu gazın oluşumu egzoz gazlarına ve güneşin ışınlarına bağlı olduğu için (geceleri üretilmez) miktarı çok değildir. Küresel ısınmadaki sera etkisi % 7 kadardır.

- Su Buhan

Küresel ısınmada sera etkisi bakımından en başta gelir. Ancak yeryüzüne yakın atmosfer içindeki miktarı çok nadir hallerde yükselir. Bol miktarda bulunduğu atmosfer katmanı genellikle bulutların oluştuğu yükseklerdeki atmosfer tabakalarındadır. O nedenle daha çok güneşten gelen ışınları tutmada ve yükseklere yansıtmada (albedo) etkilidir. Buraya kadar yapılan açıklamalardan anlaşılacağı üzere, küresel ısınmanın temel nedeni, bol fosil yakıt kullanılmasıyla atmosfere salınan karbondioksit miktarının çok yüksek miktarlara ulaşmasıdır. Atmosferde kalma süresinin çok yüksek olması nedeniyle küresel ısınmada sera gazları içindeki etki payı da çok yüksek olmaktadır (%50).

1.2. Küresel Isınmanın Kanıtları

Küresel ısınma olayı, genellikle fosil yakıt kullanımından meydana gelen yoğun karbondioksit emisyonu (salınımı) ile özdeşleşmiş bulunmaktadır.

Şekil 1.3. CRU/UEA (2000) 'nın aylık ortalama verileri temel alınarak yeniden çizilmiş ve yıllık sıcaklık anomelerinden yıldan yıla değişimler (Türkeş, M.Sümer, U.M. ve Çetiner 2000)

Bu nedenle, böyle bir olayın varlığını kabul etme ve zararlarının önlenmesi, fosil yakıt kullanımının kısıtlanması anlamına gelecektir. Bu ise, özellikle sanayileşmiş ülkeler ekonomisi için çok yönlü olumsuz sonuçlar doğuracağından, bu ülkeler uzun süre küresel ısınma olayını inkar etmişlerdir. Daha sonraları, bilim insanlarının ortaya koydukları kanıtlarla, böyle bir ısınma sürecinin başladığını kabul etmişler ancak, nedeninin fosil yakıt olmadığına ait çeşitli savlar ortaya

atmışlardır. Bu ekolojik afetin önüne geçmek için uğraş veren bilim insanları, söz konusu bu savların doğru olmadığını somut örneklerle kanıtlamaya çalışmışlardır. Bunların başlıcaları aşağıda verilmiştir.

- Son yüzyılın en sıcak yazları son 10 – 15 yıl içinde yaşanmıştır.Örneğin 1990'lı yılların dört yılı içinde ölçülen sıcaklıklar (1991, 1994, 1995 ve 1998) meteoroloji ölçmelerinin yapıldığı 1860 – 1996 yılları arasında ölçülen sıcaklıkların en yüksek değerlerine sahiptir. 1998 yılında, son 1400 yılın en sıcak yılı yaşanmıştır (Kadıoğlu 2004).

Son 15 – 20 yılda ölçülen küresel sıcaklıkların ortalaması ise, çeşitli özel yöntemlerle belirlenen son 600 yılın en yüksek sıcaklık ortalaması olarak hesaplanmıştır.

- Küresel ısınmanın çok önemli başka bir kanıtıda kutuplarda ve yüksek dağlarda (Alpler, Himalayalar gibi) buzulların erimeye başlamış olmasıdır (Resim 13. ve 14. ile karşılaştırınız).

Şekil 1.4. Güney yarımkürenin yıllık ortalama yüzey sıcaklığındaki değişimler(Türkeş, M.Sümer , U.M. ve Çetiner 2000)

Resim 1.3. Güney kutbuna yakın Patagonya'da karasal buzulların 1928— 2004 yıllarındaki durumlarının karşılaştırılması, buzulların hızla eridiğini ve dolayısıyla hava sıcaklığının arttığını göstermektedir (Vatan Gazetesi 30.01.2005).

Bu resim (Resim 1.3.) 1957 yılı ilkbaharında İsviçre'nin yukarı Engadin bölgesinde görülen karasal buzulu (Morteratsch Buzulu) anımsatmaktadır.Buzulların geriye çekilmesini inceleyen araştırmacılar tarafından verilen bilgilerin bir belgesi olarak Morteratsch Buzulunun fotoğrafı çekilmişti (Resim 14.). Ne yazıktır ki yaklaşık 50 yıl sonra, bu karasal buzulların bugünkü durumunu gösteren bir resim elimizde bulunmamaktadır.Ancak Resim 1.3 ve 1.4 bu hususta bir tahmin yürütebilmemize yardımcı belgeler olarak kabul edilebilir.

Resim 1.4. İsviçre Alpleri, Ober-Engadin Bölgesindeki Morteratsch buzulları (Foto:Çepel, 1957).

Amerikan Kar ve Buz Verileri Merkezi ölçümlerine göre, küresel ısınma ile ilgili şu sonuçlar ortaya çıkmaktadır (Hürriyet Gazetesi, Dış Haberler Servisi, 20.03.2002):

- 1) Antartika'da son 50 yıl içinde hava sıcaklığı 2,5°C artmış ve 7 dev buzul kitlesinin alanı, 1974 yılından bu yana 13500 kilometrekare daralmıştır.
- 2) Yaklaşık 12 bin yıllık olduğu tahmin edilen 3250 kilometrekarelik, 200 metre derinliğinde, 750 milyon ton ağırlığında buz kütlesi ana parçadan ayrılmış ve binlerce aysberge bölünmüştür.
- 3) Larsen-B buzulu, son 5 yılda 5700 kilometrekarelik bölümünü kaybetmiştir.
- 4) İzlanda Üniversitesi profesörlerinden Helgi Björnson, yaptığı araştırmalara day anarak, İzlanda'nın % 8' ini kaplayan ve kutuplar dışındaki en büyük buzul olan Vatna dev buzulunun, 1930 yılından bu yana en yüksek erime hızına eriştiğini ve küresel ısınmanın böyle devam etmesi halinde, bu dev buzulun 100 yıl sonra yok olacağını ve bütün İzlanda'nın sular altında kalacağını, Ocak 2002 yılında bildirmiştir.
- 5) Güney Kutbu'ndaki Thwaites büyük buzulundan 3400 kilometre karelik (Mayorka Adası kadar) buz kütlesi kopmuştur.Bu haber "Güney Kutbu eriyor" başlığını taşıyordu. (Cumhuriyet Gazetesi 22.03.2002).

1.3. Küresel Isınmanın Ekolojik Sonuçları

Küresel ısınma ve buna bağlı olarak meydana gelen iklim değişimi sürecinin yaratacağı veya yaratmış olduğu ekonomik, ekolojik ve sosyolojik sonuçlar, dünyanın her yerinde henüz tam anlamıyla yaşanmamıştır. O nedenle, bu sürecin potansiyel tehlikeleri tam anlamıyla kavranılamamıştır. Ancak, bilim insanları yapmış oldukları araştırmalarda, insanların bu tehlikelerle ergeç karşılaşacağını ve bunların yaratacağı sonuçların neler olabileceğini bilimsel verilere dayanarak açıklamaktadırlar. Bunlara ait bazı somut örnekler aşağıda verilmiştir:

1) Sıcaklıklar artınca, büyük su yüzeylerinden (deniz, göl, baraj, akarsu vb) buharlaşma artarak, toprak kuruyabilir. Bunun sonucunda bölgesel olarak iklim değişebilir, tarımsal ürünler ve ormanlar zarar görebilir. Şöyle ki;

- Büyük su yüzeylerine yakın yerlerde hava nemi ve buna bağlı olarak yağışlar artarak, sel afetleri meydana getirebilir.
- Karasal kısımlarda ise toprak suyunu kay bederek kuraklaşıp, tarımsal ürün verimi azalabilir, ormanların alanı daralarak, hidrolojik enerji üretimi düşebilir.
- 2) Buzullar eriyebilir, bunun sonucunda göler, denizler ve akarsularda su düzeyi yükselebilir, kıyı bölgeleri sular altında kalabilir, sel afetleri yaşanabilir ve toplumsal göçler başlayabilir.

Bunun somut örnekleri son yıllarda İngiltere, Almanya ve İtalya'da görülmüştür. Bu ülkelerde meydana gelen sel af etleri son 50 yılın en büyük sel afetleri olup İngiltere'de 1 milyar, İtalya'da (2000 Ekim ayında) 1,5 milyar Euro tutarında zarar meydana gelmiştir. Ayrıca 1994 Kasım ayında İtalya'da meydana gelen sel afeti 64 can; 1991 yılında Çin'de meydana gelen sel afeti 3074 can, aynı ülkede 1994 baharında meydana gelen sel afetleri 1846 can almıştır.Bunun yanında milyarlarla ifade edilen maddi zararlar meydana gelmiştir.

2002 Ağustosunda Almanya'da yaşanan sel afetinin bilançosu da tüyler ürpertici idi.(Schayan und Stumpt 2002): 21 kişi sellere kapılarak öldü; on binlercesinin mekanları boşaltıldı; binlercesi evsiz kaldı. 800 km uzunlukta nehir kıyısı boyunca dehşet yaşandı (Resim 1.6). En azından 25 milyar Euro tutarında maddi zarar meydana geldi. 740 km devlet yolu ve 180 köprü şiddetli zarar gördü. Bazı kentler harabeye döndü. 50 000 asker ve gönüllü, kurtarma ve selleri önlemede çalıştı.Bu sel afetini meydana getiren ve 1 hafta süren yağışı bilim insanları şöyle değer lendirmişti: "Bu yaşananlar dünyadaki iklim değişiminin bize kadar gelen çok az bir işaretidir. Bu olayın nedeni dünya çapındaki (küresel) ısınmadır."

Ülkemizde de son yıllarda meydana gelen sel afetlerinin nedeni, hiç kuşkusuz aynı nedenlerden kaynaklanmaktadır (Resim 1.6.)

Resim 1.5. Almanya'da Elbe Nehri 2002 Ağustos ayında tarihinin en yüksek düzeyine ulaşarak taşkınlara neden olmuştu. Şekilde gönüllüler ve askerler kum torbalarını kıyıya yığarken görülmektedir. (Schayan und Stumpt 2002,s.9).

Resim 1.6. Ülkemizde de son yıllarda sel afetleri hem sayı hemde şiddet bakımından artmıştır. Resimde 2004 yılında İstanbul-Alibeyköy'de meydana gelen sel afeti görülmektedir.

- 3) Dengesiz küresel ısınmalar hem sayı hem de şiddet bakımından son derece zararlı kasırgalar yaratabilir. Bunlara ait birkaç somut örnek aşağıda verilmiştir (Berz, 1995).
- 1991 Mayıs ayında Bangaldeş'te meydana gelen "Adsız Siklon" 140 000 kişinin ölümüne neden olmuştur.

- 1993 Mart ayında Kuzey Amerika'da meydana gelen "Kış Fırtınası" 246 kişinin ölümüne neden olmuştur
- 2004 yılı boyunca ABD'de 1727 kasırga olayı yaşanmıştır.Tarihinin en sık kasırgasını yaşayan ABD, bu kasırgalardan milyarlarca dolar zarar görmüştür.
- Küresel iklim değişimi, karalara ve sulara ait tüm ekosistemlerde şimdiden tahmin edilmesi çok güç olan dengesizlikler meydana getirecektir. Canlı ve cansız çevrenin doğal dengesi bozulacak, bu da canlıların temel yaşam süreçlerinden olan ekolojik çevrimleri etkileyecektir. Tüm canlılar için temel ekolojik yaşam koşulları ortadan kalkacaktır. Örneğin bitkisel planktonların zarar görmesiyle, dünya oksijen üretiminin % 50 60'ını sağlayan bu kaynağın verimi ve üretim gücü ciddi anlamda düşecektir (Flavin, 1996).
- 4) Küresel ısınma ile Sibirya ve Kanada'dak'i buzlu tundra toprakları çözünebilir ve bataklık haline gelebilir.Buralarda bol miktarda bataklık gazı (metan) oluşarak atmosfere karışabilir, artan sera gazları nedeniyle küresel ısınma daha da artabilir ve böylece kısır döngüye girilmiş olunabilir (Mitscherlich, 1995).

Örnekler daha da arttırılabilir. Ancak bu sınırlı sayıdaki örnekler bile, insanlığın karşı karşıya bulunduğu ekolojik tehlike potansiyelinin ne kadar büyük olduğunu göstermektedir.

1.4. Küresel İsınma ve Küresel İklim Değişimine Karşı Alınabilecek Önlemler

Küresel ısınma nedeninin, tüm ülkeler tarafından atmosfere salınan sera gazlarından kaynaklandığı hususunda bilim insanları ve ilgili uzmanlar fikir birliğine varmışlardır. Bu nedenle, küresel ısın maya karşı alınabilecek önlemler, sera gazları salınımının tüm ülkeler tarafından azaltılmasıyla özdeşleşmiştir.Ancak, sera gazları salınımına kısıtlama getiren fosil yakıtların kullanılmasının azaltılması çok yönlü ekonomik sorunlar yaratmaktadır. İşsizlik, büyüme hızının azalması, ticaret gelirlerinin düşmesi, alternatif enerjiler için yeni masrafların yapılması zorunluluğu, vb. bu sorunlardan sadece birkaçıdır.

O nedenle fosil yakıt kullanımını azaltarak, küresel ısınma hızının düşürülmesi

önlemlerinin uygulamaya geçirilebilmesi bir dizi çalışma ve uğraşılar sonucu gerçekleşebilmiştir. Bu sürecin 1988-2005 yılları arasındaki aşamaları aşağıda açıklanmıştır (Çevre Bakanlığı 1993, Dunn and Flavin 2002, Schay an und Stumpf 2002):

- Birleşmiş milletler Genel Kurulu 1988 yılında, "İklim değişikliği, insanlığın ortak kaygısıdır." şeklinde bir karar almıştır (Karar no. 43/53). Aynı yıl BM Çevre Programı ve Dünya Meteoroloji Örgütünün ortaklaşa düzenlediği, "Hükümetler Arası İklim Değişikliği Paneli" yapılmıştır. Bu panelin değerlendirilmesi 1990 yılının Ağustos ayında bir rapor halinde kamuoyuna açıklanmıştı.
- Aynı yıl (1990) İkinci İklim Değişikliği Paneli düzenlenmiş, söz konusu rapor tartışılmış ve rapora son şekli verilmiştir.
- Bu rapora dayanarak BM Genel Kurulu "İklim Değişikliği Çerçeve Sözleşmesini" (UNFCC) hazırlamış ve bu BM İklim Değişikliği Çerçeve Sözleşmesi 1992 yılı Rio Kalkınma Konferansı'nda imzaya açılmıştır. Bu çerçeve sözleşmesi 1993 yılına kadar çok sayıda ülke tarafından imzalanmıştır. Söz konusu çerçeve sözleşmesi bir yandan, sera gazlarının atmosferdeki yoğunluklarını, "dünya iklimine insan eliyle tehlikeli etkilerde bulunulmasına" engel olacak düzeylerde sabitlerken, öte yandan da ekonomik kalkınmanın devam etmesini sağlama amacı taşıyordu. Sözleşme, birkaç temel ilkeyi esas almıştı. (Dunn and Flavin, 2002):
- 1) Yeterince bilimsel kanıt olmaması, bu alanda önlem alınmasına engel olmakta kullanılmamalıdır.
- 2) Ulusların, "Ortak, ancak farklı sorumlulukları" vardır.
- 3) Geçmişte, iklim değişimine en çok katkıda bulunmuş olan sanayileşmiş ülkeler, bu sorunun çözümünde başı çekmelidir.
- 4) Taraf devletlerin hepsi, sözleşmeyi uygulamak için yaptıkları faaliyetleri bildirme konusunda taahhüde girerler.
- 5) Anlaşmaya taraftar devletler gönüllü olarak 2000 yılında sera gazı salınımlarını 1990 yılı düzeyine çekmeyi hedefleyecekler ve diğer ülkelere teknik ve mali destek vereceklerdir.

- Bu Birlesmis Milletler İklim Değişikliği Çerçeve sözlesmesine 188 ülke taraftar olmuş ve bu sözleşme 1994 Mart ayında yürürlüğe girmiştir. Ancak, Türkiye bu 188 ülke içinde yoktur. Çünkü Hükümetler Arası Görüşme Komitesi Mayıs 1992 New York toplantısında Türkiye'yi EK-I yanlışlıkla hem listesine (ekonomisi geçiş sürecinde olan ülkeler), hem de EK-II listesine (OECD ülkeleri) koymuştur. Türk hükümeti buna itiraz etmiş ve bu itirazı ancak 2001 yılının 29 Ekim – 6 Kasım tarihinde yapılan Fas'ın Marekeş Kentindeki 7. Taraflar Top lantısında görüşülerek bu hata giderilmiş ve ülkemiz bu durumu BM 'nin ilgili komisyonuna bildirmiş ve bütün formaliteler tamamlandıktan sonra Türkiye 24 M ayıs 2004 tarihinde "Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi"ne 189 uncu ülke olarak katılmıştır.
- 1995 Mart ayında 120'yi aşkın çevre kuruluşu temsilcileri bir araya gelerek, yeniden bir iklim değişikliği paneli düzenlemişlerdir. Bu panelde, Rio Zirvesi'nde benimsenen hedeflerin ne dereceye kadar gerçekleştiği tartışılmıştır. Yapılan tartışmalar sonucunda, 1994 yılında Birleşmiş Milletler İklim Değişimi Çerçeve Sözleşmesine taraf olan ülkelerin taahhütlerini, yeteri kadar yerine getirmediklerine karar verilmiştir. Bu nedenle, çerçeve sözleşmesine yasal olarak bağlayıcı bir protokol eklenmesinin zorunlu olduğu kanaatine varılarak bir protokolün düzenlenmesi çalışmalarına başlanmıştır. Bu çalışmalar sonunda 1997 Kyoto protokolü ortaya çıkmıştır.
- 1997 yılında 160'dan çok ülke temsilciliklerinden oluşan bilim adamları, Japonya'nın Kyoto kentinde bir araya gelerek, küresel ısınma ve küresel iklim değişimi olayının önlenmesinde, hiç değilse hızının kesilmesinde dünya ülkelerine yasal sorumluluk yükleyen oldukça ayrıntılı bir rapor düzenlemişlerdir. Bunun adına, "Kyoto Protokolü" denmektedir. Bu protokol yürürlüğe girdiğinde, protokolü imzalayan ülkeler şu yatırım ve koşulları kabul etmiş sayılacaklar ve derhal uygulamaya geçeceklerdir:
- 1) Gelişmiş ülkelerin herbiri, kendileri için belirlenmiş sera gazı salınımlarının sınırları üstüne çıkmayacaklar,
- 2) İklim değişimini önlemeye dönük politikalar geliştirilerek, bunları uygulamaya

koyacaklar.

- 3) Enerji verimi ve tasarrufunu arttırıcı önlemler alınacaktır.
- 4) Çöp ve motorlu araçlardan kaynaklanan sera gazı salınımlarını sınırlandıracaklar veya azaltacaklar.
- 5) Sera gazlarının atmosfere karışmasını önleyecek teknik tesisleri ve ormanları koruyacaklar.
- 6) Protokol hükümlerinin amacına ulaşmasını engelleyecek her türlü aktiviteleri ortadan kaldıracaklar.
- 7) Sanayileşmiş ve gelişmekte olan ülkelere farklı sorumluluklar yükleyen bu protokole göre, zararlı sera gazları salınımının 2012 yılında % 5,2 oranında azaltılmasıyla, 1990 yılındaki sera gazları salınım düzeyine indirilmesi sağlanacaktır.
- 8) Gelişmekte olan ülkeler ise, sera gazı salınımlarını izleme ve bunları azaltma için gerekli ön hazırlıkları tamamlayacaklar ve bu husustaki faaliyetlerini BM ilgili kuruluşlarına raporla bildireceklerdir

- 1998 yılında hükümetler, protokol hükümlerinin uygulanmasıyla ilgili kuralların hazırlanmasına ilişkin bir takvim ve eylem planı üzerinde anlaşmaya varmışlardır.
- 2000 yılının 13-15 Kasımı'nda Hollanda'nın Lahey kentinde yapılan Altıncı Dünya İklim Konferansı'nda hedeflere nasıl ulaşılacağı tartışıldı.Ancak, bazı önemli hükümler üzerinde ABD ile AB ülkeleri anlaşamadı ve toplantı kesintiye uğradı. ABD müzakerelerden çekildi.
- 2001 yılının haziran ayında ABD dışında 178 devlet temsilcisi Bonn'da toplanarak protokolün kurallarıyla ilgili temel konular üzerinde anlaşmaya vardı. 1988 yılından bu yana dünyada yürütülen en yaygın araştırmayı yapan ve iki binden fazla bilim insanı ve teknik uzmanların katılımı ile gerçekleşen "Birleşmiş Milletler İklim Değişikliği Paneli"nin sözkonusu bu 2001 yılı toplantısına ait ra porda, insanlığın neden olduğu küresel ısınmanın zaten başlamış bulunduğu ve sürecin hızla geliştiği vurgulandı.

- 2001 yılının 29 Ekim- 6 Kasım tarihinde Fas'ın Marekeş kentinde yeniden toplanıldı. Bu toplantının amacı bundan önce üzerinde anlaşmaya varılan konuları görüşmekti. Ancak, bu toplantıda da tam anlaşma sağlanamadı.
- 2002 yılının 2 4 Eylül'ünde Afrika'nın Johannesburg kentinde "Birleşmiş Milletler Sürdürülebilir Kalkınma Zirvesi" yapıldı. Bu toplantı, yalnız küresel ısınma ve küresel iklim değişiminin önlenmesi konuları için değil, çevre tahribinin önüne geçilmesi, yoksullar ile varlıklılar arasındaki uçurumun ortadan kaldırılması gibi konuları da tartışarak, uygulama için bir eylem planı hazırlanması amacıyla düzenlenmişti. Bu toplantıya ilişkin şu bilgiler verilmekte ve değerlendirmeler yapılmaktadır (Wille, 2002).

Nelson Mandella, Johannesburg'a ayak basar basmaz: "Küresel ayrıcalıklar sona erdirilmelidir. Dünyadaki varlıklılar ve yoksullar arasındaki uçurumun gittikçe artması, dünya çapında bir skandaldır." Şeklindeki beyanatı ile toplantının bu konuya da eğilmesi için bir mesaj veriyordu. Buna ek olarak yaptığı "Bundan on yıl önce Rio De Janeiro Dünya Zirvesi'nde ortaya konan korkutucu bilançoda belirtilen ne iklim değişimi, ne de biyolojik çeşitliliğin azalması durmadı; devam ediyor." Şeklindeki beyanatı ile de, zirvede konuşulup tartışılması gerekli olan diğer konulara dikkat çekiyordu.

Gerçekten Rio Zirvesi'nden sonra geçen on yıl içinde olumsuz gelişmeler sürüp gitmiştir. Örneğin çevre sorunları gittikçe artmış, küresel çapta ekonomik kalkınma için hemen hemen hiç bir şey yapılmamış, yoksullar ile varlıklılar arasındak i fark gittikçe büyümüştür. İşin en üzücü yanı, bu sorunların çözümü için gösterilen çabaların gittikçe yavaşlayıp azalmasıydı. Bu hususta şu tipik örnekler verilmektedir:

1) Rio Zirvesi'nde azaltılması kararlaştırılan sera gazları, tam aksine on yıl içinde % 10 oranında artmıştı. Ülkemizde de 1998- 2002 yılları arasında toplam fosil yakıt tüketiminde % 10,7 oranında bir artış meydana gelmiştir (Şekil 1.5.). Buna koşut olarak da CO₂ emisyonu 1997-2001 yılları arasında yaklaşık % 5,2 oranında artmıştır (DİE, 2003).Bunda, özellikle linyit kullanan termik santrallerin payı

büyüktür.

- 2) Doğal kaynakların taşıma kapasitesi aşılmıştı.
- 3) Biyolojik çeşitlilik ve ormanların korunmasından sözedilmez olmuştu.
- 4) ABD küresel ısınmanın önlenmesi anlaşmasını imzalamayacağını açıklıyordu.

Şekil 1.5. Türkiye'de fosil yakıt tüketiminin beş yıllık gelişimi. Miktarlar tüm fosil yakıt (taşkömürü, linyit, petrol ve doğalgaz) toplamıdır (DİE yıllığı 2003).

Resim 1.7. Ülkemizde fosil yakıt kullanan termik santraller, atmosfere bol miktarda sera gazı yaymaktadır. Şekilde Afşin-Elbistan Termik Santrali görülmektedir (TEMA arşivi 1999).

Yukarıda sayılan sorunların çözülmesi ve aksaklıkların düzeltilmesi için Johannerburg Toplantısı'nda kararlar alınmasına, eylem planları yapılmasına karşın, bu toplantı da hayal kırıklığı ile sona er miştir. Gerçekten, 190 ülkeden katılan binlerce delege, uzman ve hükümet temsilcileri bu zirvenin de başarısızlıkla sonuçlandığını ifade ediyorlardı. Bu toplantıya gözlemci olarak katılanlar ve medya temsilcileri, bu başarısızlığın nedenlerini aşağıdaki gibi açıklıyorlardı:

- Zirveye 189 ülkeden katılan 100 hükümet ve devlet başkanı ile birçok kuruluşun çoğunun liderleri şirket yöneticileri gibi davrandılar.
- Yenilenebilir enerji ve uluslararası çevre sorunlarının çözümü çalışmalarında da zirveden olumlu bir sonuç alınamamıştır. Yaklaşık 100 ülke temsilcilerinin yenilenebilir enerji kullanımının arttırılması için gösterdiği çabalar; ABD, Avustralya ve Kanada ile Arap ülkelerinin oluşturduğu yadırgan acak bir birlik (pakt) tarafından sabote edilerek, tüm çabaların boşa gitmesi sağlanmıştır.

"Kyoto Protokolü'nün bütün dünyada yürürlüğe girebilmesi ve gerekli yükümlülüklerin yerine getirilmesine başlanabilmesi için bu protokolün, 1990 yılı zararlı sera gazı salınımlarının % 55'inden sorumlu olan en az 55 hükümet imzalanması gerekmektedir." ABD, dünyada üretilen zararlı sera tarafından gazlarının % 36'sını (bazı kaynaklara göre %24'ünü) üretmektedir. Rusya için bu oran %18 dir. İşte bu iki ülke 2004 yılına kadar bu protokolü imzalamadığı için, yukarıda açıklanan yürürlük maddesi gereğince, Kyoto Protokolü yürürlüğe giremedi. Ancak, Rusya 2004 yılı Kasım ayında bu protokolü onaylayarak, protokolün yürürlüğe girmesinin önündeki engelleri kaldırmış oldu. Gerekli işlemlerin tamamlanmasından sonra bu protokolün 2005 yılının 18 yürürlüğe girmiş olduğunu iç ve dış basından öğrenmiş bulunuyoruz.

Böylece, bu konuda gelişmiş ve gelişmekte olan ülkelere farklı sorumluluklar yükleyen bu protokole göre, zararlı sera gazları salınımının 2012 yılında %5,2 oranında azaltılmasıyla, 1990 yılındaki sera gazları salınım düzeyine indirilmesini ön gören anlaşma yürürlüğe girmiş oldu. Ancak, bu gün gelinen noktada artık, sera gazları salınımlarını engellemenin yeterli olmadığı ve belli ölçüde küresel

ısınmanın kaçınılmaz hale geldiği belirtilmektedir. Bu gerçeği, BM İklim Değişikliği Hükümetlerarası Panel Başkanı Rajendra Pachanri Ocak 2005'te şu şekilde dile getiriyordu. "İnsan ırkının yaşamını sürdürme kapasitesini riske atıyoruz." Bu karamsarlığın nedeni olarak, dünyanın baş kirleticisi ABD'nin Kyoto Protokolü'nü imzalamaması gösteriliyordu. Bu nedenle Kyoto Protokolü'nün etkili olmasının beklenemeyeceği kanaatı belirtiliyordu.

1.5. Küresel Isınmayla Oluşan Sıcaklık Değişimleri

1.5.1. Yerkabuğundaki sonuçlar

Insanlığın yerleşik yaşama geçişinden bu yana, dünya iklimi neredeyse değişmeyen bir gidiş izliyor sıcaklıklarda herhangi bir ciddi değişim olmuyor. Bu nedenle bizler de gerek hava sıcaklıklarının gerekse iklim desenlerinin dünya tarihi boyunca hep aynı kaldığını, değişmediğini düşünüyoruz. Ne var ki iklimbilimcilerin bulguları hiç de böyle olmadığını gösteriyor. Gerçekte dünya iklim sistemi, durgun bir yapıda olmaktan çok uzak. Yüzlerce milyon yıllık sıcak dönemler, bunların ardından gelen onlarca milyon yıllık soğuk dönemler; soğuk dönemlerin içinde yüz bin yıllık periyodlarda ve yaklaşık on bin yıl süren ılık vahalar ve bunların içinde de onlarca ya da yüzlerce yıl süren görece hafif, soğuklu sıcaklı birçok dönem var. Kısacası dünya zaman zaman değişen sürelerle hem ısınıyor hem de sonra yeniden soğuyor.Örneğin son bir milyar yıl içinde yaklaşık 250 milyon yıl süren sıcak dönemlerin ardından gelen dört büyük soğuk dönem oldu. Sıcak dönemlerde, dünyanın ortalama sıcaklığının 22°C kadar olduğu sanılıyor; bugünkünden 7°C daha fazla! Bu dönemlerde kıtalar bugünkü yerlerine oturmamıştır. Karaların iç bölgelerinde ılık ve sığ denizlerle bataklıklar vardır; deniz düzeyleri yüksektir, kutuplarda buz bulunmaz; oraları da bitkiler ve ormanlarla kaplıdır. Bu sıcak dönemler, bir süre sonra soğuk ama daha kısa süren dönemlerle kesiliyorlar. Bu köklü iklim değişimi de birkaç yüz yıl gibi kısa bir sürede oluyor.(Tubitak, 2000)

Gezegenimiz, son olarak, yaklaşık elli milyon yıl önce soğuk bir döneme girdi. Aslında su anda hala onun içindeyiz. Bu dönemde hava sıcaklıkları düştü, dünyayı kutuplardan başlayarak orta enlemlere değin uzanan buz tabakaları kapladı.

Canlıların doğal yaşam alanları değişti. Yeni koşullara uyum sağlayamayan türler yok oldu; yeni türler ortaya çıktı. Bu soğuk çağda, yüz bin yıl arayla görülen ve yaklaşık on bin yıl süren kısa dönemlerin dışında dünya sürekli soğuk oldu. Peki bu periyodik ısınma ve soğumaların nedeni nedir?

250 milyon yıllık sıcak ya da yüz bin yıllık soğuk dönemlere yol açan güçlü etkiler nelerdir? İklimbilimciler de çok uzun zamandır bu sorulara yanıt arıyorlar, ilk soruya daha yanıt bulabilmiş değiller. Ancak ikincisi için bazı ipuçları var.

1930'lu yıllarda Sırp bilim adamı Milutin Milankoviç, Dünya'nın Güneş çevresindeki elips biçimli yörüngesinin, 95 000 yılda bir basıklaştığını gösterdi. Bu periyod akla hemen, yüz bin yıllık buz çağlarını getiriyor. Yörüngedeki bu değişimin yanı sıra Milankoviç, Dünya'nın ekseninde de 41 000 yıllık periyodu olan doğrusal bir kayma ile 23 000 yıllık periyodu olan dairesel bir sapma daha olduğunu buldu. Günümüz bilim adamları Dünya'nın bu hareketlerini bilmekle birlikte, bunların Dünya'nın değişken iklimiyle olan ilişkisini daha tam olarak kuramadılar. Kimi iklimbilimciler, kıta kayma hareketlerinin ve dağ oluşumlarmın iklim değişimlerinde bir etkisi olabileceğini düşünüyor. Cünkü bu tür hareketler okyanuslardaki akıntı sistemlerini ve atmosferdeki rüzgarları etkiler. Kimi bilim adamları da yanardağ etkinliklerindeki periyodik bir aşırılığın iklim sistemini etkileyebileceğini savunuyorlar. Yanardağ patlamalarıyla atmosfere çok büyük miktarlarda toz yükselir. Bu tozlar, güneş ışınlarının geçişini engelleyen bir tabaka oluşturur ve böylece dünyanın sıcaklığı da düşer. 1991'de Filipinler'deki Pinatubo yanardağının patlaması yüzünden bir yıl boyunca dünyanın ortalama sıcaklığı 1°C kadar düşmüştü. Bunlardan başka Güneş lekeleriyle iklim olayları arasında bir ilişki arayan bilim adamları da var. Gerçekten de Güneş'in manyetik alanındaki değişimler ve Güneş lekeleri, yayılan enerji miktarını etkiler. Bu da doğal olarak Dünya'nın aldığı enerji miktannın değişmesine yol açar. Soğuma ve ısınmaların nedenleri daha anlaşılabilmiş değil; ama son bir milyon yılda dünyayı en azından dokuz kez buz tabakalarının kapladığı biliniyor. Bugün aslında, bundan elli milyon yıl önce başlamış olan soğuk dönemin içindeki kısa süreli sıcak vahalardan birindeyiz: Büyük bir olasılıkla da vahanın sonu görünmeye başladı. Amerika ve Avrupa'nın ortalarına değin gelen buz tabakaları, bundan 18 000 ile 14 000 yıl önce çekilmeye başladılar. Buzların çekilmesi ısınmanın ilk belirtileriydi. Bu kısa ılık dönemin en yüksek sıcaklıklarına 8000 yıl

kadar önce ulaşıldı; hava bugünkünden yalnızca 1-2°C daha sıcaktı. Dört bin yıl kadar önce sıcaklık düşüşleri başladı. (Tubitak, 2000)

Tabii ki arada kısa süreli göreceli ılık dönemler oldu. Örneğin bin yıllarındaki böyle bir ısınma sırasında, Vikingler Izlanda'ya ve o zamanlar yeşil olan Grönland'a gidip koloniler kurdular; hatta Amerika'ya bile gittiler. Ama sonra soğukların geri gelmesiyle Grönland buzla kaplandı ve koloniler de çöktü.

Bilim adamlarına göre dünya şu anda artık soğuma eğiliminde olmalı. Ancak son yüz elli yıllık gözlemler, bir şeylerin sanki ters gittiğini gösteriyor. On dokuzuncu yüzyılın ortalarından 1940'a değin, dünyanın özellikle kuzey yarım küresinde belirgin bir ısınma gözlenmişti. Sonra, 1940'tan başlayıp 1960'lı yılların sonuna değin süren yaklaşık 0,25°C'lik bir soğuma yaşandı. Bu dönemde Alaska ve İskandinavya'daki buzulların geri çekilmesi durdu. Hatta İsviçre'dekiler ilerlemeye bile başladılar. Ne var ki 1970'li yıllarda dünya yeniden ısınmaya başladı. Kasım 1976'da iklimbilimci Dr. Wallace S. Broecker "Yirmi-otuz yıl sürecek, hızlı bir ısınma döneminin başında olabiliriz. Eğer doğal soğuma eğilimi sona erdiyse, küresel sıcaklık büyük bir artış gösterecektir... bu ısınma 2002 yılında, dünyanın ortalama sıcaklığını son bin yılın en üst düzeyine çıkartabilir" demişti. Bugünkü durum ortada: Ağaç halkaları, buz örnekleri, mercanlar ve okyanus tabanlarından alınan örnekler üzerinde yapılan incelemeler, 1997 yılının son 1200 yıllık dönem içindeki en sıcak yıl olduğunu ortaya koydu. 1998 ise 1997'den bile daha sıcak geçti.(Çağlar Sunay, 2000)

Bugün dünyanın en soğuk bölgesi neresidir sorusuna verilecek yanıt, kuşkusuz Antarktika'dır. Avustralya'nın iki katı büyüklüğündeki bu kıtanın hemen hemen tümü (% 98) buzla kaplıdır. Yaklaşık yüz milyon yıl önce süper kıta Gondwana'dan kopan kıta yavaş yavaş bugünkü yerine oturdu. Oluşumundan sonra çok uzun bir süre üzerinde buz bulunmayan Antarktika'da yaklaşık on beş milyon yıldır değişmeyen bir buz takkesi bulunuyor.

Kıtayı kaplayan buz tabakası, gelen güneş ışınlarının %80-85'ini geri yansıtır. Antarktika'nın günümüzde bu denli soğuk olmasının temel nedeni budur. Buz

tabakasının ortalama kalınlığı 1,5 km'dir ama bu kalınlığın 4,5 km'yi aştığı yerler de vardır.

Dünyadaki buzların % 90'ı (yaklaşık 30 milyon kilometreküp), Antarktika'da bulunur ve bu buzlar, dünyadaki temiz suların % 70'ini içerir.Bu yapısıyla, Antarktika'nın dünya iklimi içinde önemli bir yeri vardır. Her şeyden önce kıta, dünya iklim sisteminin soğutucu birimidir. Soğutma etkisinin dünya rüzgar desenlerinin oluşumunda önemli bir yeri vardır. Bu etkinin yanı sıra Antarktika'nın okyanusla olan ilişkisi de çok önemlidir. (Dr.Serdar Günaydın, 2007)

Afrika'nın güneyinde, Antarktika yakınlarında, akıntı iki kola ayrılır. Kollardan biri Avustralya'nın doğusundan geçerek Pasifik Okyanusu'nun kuzeyine yönelir. Yol boyunca ısınır ve yüzeye çıkar; sonra ABD'nin batı kıyılarını izleyerek güneye iner ve Avustralya'nın kuzeyinden geçer. Öteki kol Hint Okyanusu'nda bir çember çizer; ısınan ve yüzeyden akan sular Avustralya'nın batısında birinci kolla birleşir. Ondan sonra taşıyıcı bant tek bir büyük kol biçiminde Afrika'nın batısından geçerek kuzeye yönelir. Yol boyunca buharlaşma nedeniyle suları azalan akıntının tuz oranı yükselmiştir; kuzeye yaklaştıkça da soğur, İzlanda yakınlarında bu soğuk ve yoğun sular dibe batar. Böylece döngü tamamlanır. Taşıyıcı bant, okyanuslar arasında su ve ısı alışverişini sağlar. Bu sistem sayesinde Pasifik ve Hint Okyanuslarının sıcak suları Atlantik'e taşınır. Bu sırada yüzeyden giden akıntının üzerindeki hava da ısınır ve akıntının yakınından geçtiği karaların iklimi yumuşar. Örneğin Kuzeybatı Avrupa, taşıyıcı bant sayesinde yaklaşık 10°C daha sıcak olur. Güney yarımkürede yaz mevsimi geldiğinde, Antarktika'da eriyen buzların soğuk suları da dibe çöker ve taşıyıcı banta katılır; sonra da kuzeye yönelir. Bu nedenle Antarktika, hem soğukluğu hem de taşıyıcı banta aktardığı soğuk suları nedeniyle dünya iklim sisteminin dengesi açısından çok önemlidir. Son yıllarda bilim adamları kıtanın iç bölgelerinin aldığı yağış miktarında bir artış, bunun yanında kıyılarındaki buz hacminde de bir azalış gözlüyorlar. Buz hacmindeki benzer bir azalma Arktik Denizi'yle dünyanın orta ve alçak enlemlerindeki buzullarda da kendini gösteriyor. (Tubitak, 2000)

Örneğin Afrika'da Kilimanjaro Dağı'ndaki buzul, 20. yüzyılda kütlesinin yaklaşık dörtte üçünü yitirdi. Aynı dönemde Kafkaslardaki buzulların kütlesi yarıya indi. Çin-

Rusya sınırında, Tiyen Şan Dağları'ndaki buzullarsa son kırk yılda yaklaşık % 20 küçüldüler.

Yirminci yüzyılda denizlerin düzeyi 10-25 cm kadar yükseldi ve günümüzde de her yıl yaklaşık 2 mm yükseliyor. Bunun 0,2-0,6 mm kadarı okyanusların ısıl genleşmesinden (tıpkı yazın ısınan elektrik hatlarının sarkması gibi) kaynaklanıyor. Yükselmenin geri kalan bölümünün, buzların ve buzulların erimesi yüzünden olduğu sanılıyor. Bilim adamları bu durumu kaygıyla izliyorlar. Ama onları daha da kaygılandıran olay, buzulların erime hızının son yıllarda giderek artıyor olması.

Örneğin Yeni Zelanda'daki buzullar yalnızca yirmi yılda kütlelerinin dörtte birini yitirdiler, İspanya'da 1980 yılında yirmi yedi olan buzul sayısı bugün on üçe düşmüş durumda. Peru Andları'ndaki Qori Kalis buzulu, 1963-78 yılları arasında, yılda dört metre kadar geri çekilirken, 1995'te buzulun yıllık geri çekilme hızı otuz metreye ulaştı. Bilim adamlarına göre buzullardaki bu erime, bir tek şeyi gösteriyor; küresel bir sıcaklık artışını. Sıcaklık artişının tek göstergesi buzulların erimesi değil kuskusuz. Göllerin su sıcaklıklarındaki artıslar ya da atmosferde sıcaklığın 0°C'ye düştüğü yüksekliğin, 1970'ten bu yana her yıl, 4,5 m kadar artması da birer gösterge. Ancak dünya sıcaklığındaki artışı, en belirgin olarak gözler önüne seren kanıt, yaklaşık 140 yıldır dünyanın birçok yerinde tutulan sıcaklık kayıtları. Bu kayıtlar incelendiğinde, 1860-2000 yılları arasında küresel sıcaklığın yaklaşık 0,5-0,7°C yükselmiş olduğu görülüyor. Sıcaklığın en hızlı arttığı dönem de son yirmi yıllık dönem. Bir dereceden bile küçük bu artışın aslında pek de önemli bir artış olmadığı düşünülebilir. Ancak 1500'lü yıllarda başlayıp 1800'lü yıllara değin süren ve Avrupa'da Küçük Buz Çağı olarak anılan soğuk dönemde, ortalama küresel sıcaklık, bugünkü değerinin yalnızca 1°C altındaydı. Günümüzden 12 000 yıl kadar önce sona eren son buzul çağındaysa dünyanın ortalama sıcaklığı bugünkü düzeyinden yalnızca 5°C daha düşüktü. Bize sayı olarak pek küçük gelen bu sıcaklık değişimlerinin, iklim kuşakları, canlıların doğal yaşam alanları ve insanların toplumsal yaşamları üzerinde gerçekte büyük etkileri olur. (Dr.Serdar Günaydın, 2007)

1.5.2. Atmosferdeki sonuçlar

Güneş sisteminde, Merkür dışındaki tüm gezegenlerde, hatta kimi gezegenlerin uydularında bile atmosfer bulunur. Bu atmosferlerin kalınlığı, içerdiği gazlar ve yapısı gezegenden gezegene değişir. Örneğin Mars'ta, karbon dioksitten (CO2) oluşan ince ve soğuk bir atmosfer vardır. Öte yandan Venüs'te başta yine CO2 olmak üzere, azot, kükürt dioksit ve su buharından oluşan çok yoğun ve sıcak bir atmosfer bulunur. Mars'ın yüzey sıcaklığı -130°C'ye kadar düşerken Venüs'te sıcaklık 500°C kadardır. Mars'ın atmosferi çok incedir ve Güneş'ten gelen yüksek enerjili morötesi ışınları engelleyecek bir yapıda değildir. Öte yandan Venüs'ün atmosferindeki bulut tabakası öylesine kalındır ki yüzeyden Güneş'i görmek olanaksızdır.

Her iki gezegenin atmosferi de bugün için hem insanlar hem de Dünya'daki başka canlılar açısından -kimi mikroorganizmalar dışında- bu gezegenleri yaşanamaz kılıyor. Yeryüzünde yaşam, atmosferimizin oluşturduğu uygun koşullar sayesinde başlamış ve onun değişimleriyle birlikte evrim geçirerek biçimlenmiştir. Bilim adamları, oluşumunun ilk aşamalarında Dünya'nın bir atmosferi bulunmadığını düşünüyorlar. Tektonik hareketlerin sonucunda Dünya'nın iç kısımlarından gelen gazların zamanla bir atmosfer oluşturduğu var sayılıyor. Bu ilk atmosferin içeriği ve yapısı bugünkünden çok farklıydı. Örneğin oksijen yok denecek kadar azdı; bir ozon tabakası da yoktu. Günümüzde dünya atmosferinin oluşturan temel gazlar azot (N2) ve oksijendir (O2). Bu iki gazın yanı sıra argon (Ar), karbon dioksit (CO2), metan (CH₄), su buharı (H₂O), eser miktarda başka gazlar ve havada asılı küçük parçacıklar, aeresoller bulunur. Atmosferimiz, birbiriden farklı özellikler gösteren katmanlardan oluşur. Gazların, her katmandaki oranları değişiktir. Ama ilk yüz kilometre boyunca azotun (% 78) ve oksijenin (%20,5) oranları pek değişmez. Yükseklik arttıkça katmanlardaki gazların yoğunluğu (metreküpteki atom ya da molekül sayışı) da düşer. Atmosferin ilk ve en yoğun tabakası troposferdir. (Tubitak, 2000)

Troposferin kalınlığı yalnızca 10-15 km'dir ama atmosferdeki gaz kütlesinin % 85'i de bu katmanda bulunur. Burada yükseklik arttıkça sıcaklık azalır; en üst kısımları -60°C kadardır. Atmosferdeki su buharının hemen hemen tümü buradadır.

Troposferin üzerinde yaklaşık 50 km kalınlığındaki, kuru ve daha az yoğun stratosfer yer alır. Stratosferin ilginç bir özelliği vardır; troposferin tersine, sıcaklık yükseklikle birlikte artar. Güneş'ten gelen morötesi ışınlar, stratosferin üst kısımlarındaki (35-48 km arası) iki atomlu oksijen moleküllerini parçalar. Ama oksijen atomları, bu kez ozon (O₃) oluşturacak biçimde yeniden birleşirler. Oluşan ozon tabakası, Güneş'ten gelen ve Dünya'daki yaşam için tehlikeli olan morötesi ışınların geçişini engeller. Stratosferden sonra sırasıyla mezosfer, termosfer ve iyonosfer yer alır.

Uzaydan bakıldığında, dünyamızın yaydığı enerjinin dalgaboyuyla, -18°C'deki bir cisimden yayılan enerjinin dalgaboyunun aynı olduğu görülür. Ne var ki Dünya'da ortalama yüzey sıcaklığı 15°C'dir. Bu durum, ısının yer yüzüyle atmosferin alt katmanları arasında tutulduğunu gösterir. Gerçekten de Güneş'ten Dünya'ya gelen enerji, troposferde tutulur. Atmosfer olayları diye adlandırdığımız rüzgar, yağmur, dolu, fırtına vb. olaylar hep bu en alt ve en yoğun tabakada olur.

-Sera Etkisi Güneş'in iç bölgelerinde oluşan füzyon tepkimeleri sırasında, çok büyük miktarlarda enerji açığa çıkar. Bu enerji yavaş yavaş Güneş'in yüzeyine doğru iletilir ve oradan da bütün dalgaboylarındaki elektromanyetik dalgalar biçiminde uzaya yayılır. Güneş sistemindeki gezegenler, büyüklüklerine ve Güneş'e olan uzaklıklarına göre, bu enerjinin küçük bir bölümünü paylaşırlar geri kalanı, uzayda yayılmayı sürdürür.

Dünya'ya gelen ışınların yaklaşık dörtte biri, bulutlardan yansıyarak uzaya döner. Geri kalan enerjinin yaklaşık dörtte birini (% 28) stratosferdeki ozon tabakasıyla troposferdeki bulutlar ve su buharı soğurur.

Atmosferin soğurduğu ışınların % 90'ı bizim göremediğimiz kızılötesi ve morötesi ışınlar, % 10'u da görünür ışındır. Bir başka deyişle atmosfer, Güneş'ten gelen görünür ışınların onda dokuzunun yeryüzüne geçişini engellemez. Yeryüzüne ulaşan bu ışınlar da onu ısıtır. Tropikal kuşaktan yükselen sıcak hava kutuplara doğru, soğuk kutup havası da yüzeye inip ekvatora doğru yönelir. Böylece atmosfer olayları, su çevrimi, karbon çevrimi vb. süreçler işleyerek dünyada yaşamın sürmesi sağlanır.

Gelen ışınlarla ısınan Dünya, tıpkı dev bir radyatör gibi davranmaya başlar. Ancak bu ısıyı Güneş gibi tüm dalgaboylarında yayamaz; yalnızca kızılötesi ışınlar biçiminde yayabilir. Ne ki yüzeyden yayılan bu ışınların yalnızca küçük bir bölümü uzaya gidebilir. Çünkü atmosferdeki su buharı, karbondioksit ve metan molekülleri bu ışınları soğurur; sonra da yüzeye doğru yansıtır. Böylece Dünya'nın yüzeyi ve troposfer, olması gerekenden daha sıcak olur. Bu olay, Güneş ışınlarıyla ısınan ama içindeki ısıyı dışarıya bırakmayan seraları andırır ve bu nedenle de doğal sera etkisi olarak bilinir.

Bu sürecin başlıca aktörleri olan, su buharı, karbon dioksit ve metan da sera etkisi yapan gazlar ya da kısaca sera gazları olarak anılırlar. Bunların yanı sıra azot oksit (NO)_{2,x} ve kloroflorokarbonlar (CFC) da sera etkisi yapar. Ancak bunların atmosferdeki oranları çok küçüktür.

Dengeli bir sera etkisinin Dünya'daki yaşam için büyük bir önemi vardır. Çünkü dünyayı sıcak ve yaşanabilir kılar. Eğer bu etki olmasaydı yeryüzünde ortalama sıcaklık -18°C dolayında olurdu. Tıpkı Mars'takine benzer bir durum. Öte yandan şiddetli bir sera etkisi de Dünya'yı çok sıcak bir gezegen yapabilir; tıpkı Venüs gibi. Sera etkisinin, Dünya'yı olduğundan daha sıcak yapmasının yalnızca insan için değil tüm canlı türleri için yaşamsal bir önemi vardır. Hatta Dünya'da yaşamın başlamasının bile sera etkisiyle belki bir ilişkisi olabilir. 1970'li yılların başında ABD'deki Corneli Üniversitesi'nden iki bilim adamı, Cari Sagan ve George H. Mullen, ilginç bir düşünce ortaya attılar. Dünya'da okyanusların yaklaşık 3,8 milyar yıldır var olduğu ve en basit yaşam biçimlerinin de bu okyanuslarda yaklaşık 3,5 milyar yıl önce ortaya çıktığı tahmin ediliyor. (Çağlar Sunar, 2000)

Ayrıca aynı dönemde oluşumunun ilk aşamalarındaki Güneş'in, bugünkünden % 30 daha sönük olduğu ve çevresine daha az enerji yaydığı da biliniyor. Sagan ve Mullen'in düşüncesine göre, o dönemde Güneş'ten gelen enerji miktarı, Dünya'yı bugünkü gibi ısıtamayacak ve okyanuslardaki suların da sıvı olarak bulunmasına olanak vermeyecek denli azdı. Bu durumda okyanusların donması ve yaşamın da ortaya hiç çıkamaması gerekirdi. Ama hiç de öyle olmadı.

Çünkü o dönemde atmosferin yapısı ve içeriği bugünkünden çok farklıydı. Güneş'ten gelen yetersiz enerjiye karşın Dünya'nın yüzeyi, suların sıvı kalmasını sağlayacak denli sıcaktı. Bunun nedeni de günümüzdekinden çok daha şiddetli bir sera etkisinin yaşanıyor olmasıydı. O dönemde atmosferdeki CO2 oranı bugünkü düzeyinin 100-1000 katıydı. Zamanla oksijen üreten alglerin ve fotosentez yapan kara bitkilerinin ortaya çıkmasıyla bu oran giderek düştü. Atmosferin içeriği değişmeye başladı; canlılar sayesinde atmosferdeki karbon dioksit sürekli azalırken oksijen miktarı arttı.

Bu düşüncenin kanıtlanması olanaklı değil. Kuşkusuz başka bilim adamları sera etkisini dışlayan değişik senaryolar üretebilir. Ama Sagan'la Mullen'in senaryosunda aksayan bir yanda yok. Atmosferimizin içeriğinin, milyarlarca yıllık dünya tarihi boyunca zaman zaman değişmiş olduğu artık herkesçe biliniyor. Hatta bunun somut bir örneğine, bugün bizler tanıklık ediyoruz; 20. yüzyıl boyunca sera gazlarının atmosferdeki oranları sürekli arttı ve hala da artıyor. Bunlardaki artış da atmosferin ısı tutma kapasitesini arttırıyor ve böylece küresel sıcaklığın yükselmesine yol açıyor. Bu gazlar arasında en çelişkilisi su buharı.

Dünyadaki sera etkisinin % 75'inin su buharından kaynaklandığı düşünülüyor. Bu durum, ilginç ve tehlikeli olabilecek bir kısır döngü oluşturuyor. Çünkü dünya ısındıkça okyanuslardan, deniz, göl ve ırmaklardan daha büyük miktarlarda su, buharlaşıp atmosfere karışır. Atmosferdeki daha çok su buharı da sera etkisinin artması yani dünyanın biraz daha ısınması demektir. Ne ki insanların su çevrimi üzerinde yapabilecekleri doğrudan bir etki yok. Ama sera etkisini arttıran öteki gazların büyük bir bölümünü, insanlar üretiyor. Bunların başında da karbon dioksit geliyor. On yedinci yüzyılın başlarında keşfedilen karbon dioksit, renksiz bir gaz. Atmosferde % 0,03 (on binde üç) oranında bulunuyor ve temel olarak, karbon içeren maddelerin (kömür, petrol, doğalgaz vb) yakılmasıyla, fermantasyonla, hayvan ve bitkilerin solumalarıyla üretiliyor. Günümüzde bilim adamları, 1860'tan bu yana görülen yaklaşık 0,7°C'lik küresel ısınmanın % 60'lık bölümünden, karbon dioksitin sorumlu olduğu kanısındalar. Çünkü atmosferdeki karbon dioksit miktarı son 200 000 yılın en üst düzeyinde. Bu kadar fazla karbon dioksitin atmosfere karışmasından da kuşkusuz, otomobillerde, fabrikalarda, elektrik santrallarında vb. fosil yakıtları yakan insanlar sorumlu. (Dr. Serdar Günaydın, 2007)

Gerçekte bu düşünce hiç de yeni değil. Daha 19. yüzyılın ortalarında, atmosferin bileşimindeki küçük değişimlerin bile büyük iklimsel değişikliklere yol açabileceği tahmin ediliyordu. Bu konu üzerinde çalışan ve atmosferdeki karbon dioksitin dünya iklim sistemine olan etkisini ilk fark eden, Nobel Ödüllü isveçli kimyacı Svante A. Arrhenius oldu. Arrhenius 19. yüzyılın sonlarında, karbon dioksit oranındaki değişimin, dünyanın yüzey sıcaklığını nasıl etkileyeceğini hesapladı. Onun hesaplarına göre karbon dioksit oranı iki katına çıkarsa, yaklaşık 6°C'lik bir küresel ısınma olacaktı! Arrhenius'un bulduğu değer, bugün iklimbilimcilerin öngörülerine oldukça yakın. Bu konuya yönelik ilk pratik uygulamalar ancak 20. yüzyılın ortalarında gerçekleştirildi. Atmosferdeki karbon dioksit miktarının sistematik olarak gözlenmesine 1958'de başlandı. O yıllarda yapılan gözlemler, yaklaşık yüz yıllık bir dönemde atmosferdeki karbon dioksit miktarının % 25 oranında artmış olduğunu ortaya koydu. Bilim adamları, bu artışın temel nedenini fosil yakıtların kullanılması ve ormanların yok edilmesi gibi insan etkinlikleri olduğunu düşünüyor. Çünkü buz örnekleri üzerinde yapılan çalışmalar atmosferdeki karbon dioksit oranının binlerce yıldır değişmediğini ortaya koyuyor; ta ki Endüstri Devrimi başlayana dek.

Sera Gazları

Dünyanın kabuğu denince akla hemen, dünyanın iç kısmında sıvı durumundaki mantonun üzerinde bulunan ve kalınlığı yer yer 6 km ile 70 km arasında değişen katı bölüm, litosfer, gelir. Ne var ki bilim adamlarının Dünya'nın kabuğundan anladıkları daha farklıdır. Onlara göre kabuk, o katı bölüm, litosfer, ile birlikte hidrosferi (okyanuslar, denizler, göl ve ırmaklar), atmosferi ve buralarda yaşayan canlıları (biyosfer) da kapsar. Kabuğu oluşturan bu katı, sıvı ve gaz bölümler ve biyosfer birbirleriyle sürekli ve yoğun bir etkileşim içindedir. Bunlardan herhangi birindeki bir değişiklik ötekilerde de değişimlere yol açar. Karbon çevrimi, bu karşılıklı ilişkiyi ortaya koyan güzel ve somut bir örnektir. Yaşam, havadaki karbon dioksitin, canlı organizmalardaki karbon temelli organik bileşiklere dönüşmesi üzerine kuruludur. Dünyadaki karbonun büyük bölümü kayalardadır. Ancak bunlardaki karbonun çevrime katılması çok uzun sürer. Öte yandan atmosferle hidrosfer arasında çok daha hızlı bir karbon alışverişi vardır.

Atmosferdeki karbon dioksit suda çözünerek karbonik asit oluşturur; sonra sırasıyla bikarbonat ve karbonat iyonlarına dönüşür. Suyun içinde yaşayan bitkiler fotosentez için suda çözünmüş olarak bulunan karbonatlardan ve karbon dioksitten yararlanırlar. Okyanuslar her yıl atmosferden yaklaşık 104 milyar ton karbon dioksit çeker ve 100 milyar ton kadar da karbon dioksit salar. Okyanusların karbon çevrimindeki etkisi bilinmekle birlikte bu çevrimde yer alırken hangi iç süreçlerin işlediği hala açıklığa kavuşmuş değil.Karadaki bitkiler de fotosentez sırasında atmosferdeki karbon dioksiti alır ve karbon temelli bileşiklere çevirirler. Bunların bir bölümü metabolizmalarında kullanılır; geri kalan bölümü de depolanır. Bitkilerin depoladığı karbon, bitki yiyen hayvanlara geçer. Kara bitkileri fotosentez yoluyla her yıl yaklaşık 100 milyar ton karbon dioksiti atmosferden çeker. Bitkiler, hayvanlar ve toprak her yıl soluma yoluyla 100 milyar ton karbon dioksit salar.(Çağlar Sunay , 2000)

Karbon, ağaç dokularında da depolanır. Kayalardan sonra karalardaki en büyük karbon deposu ormanlardır. Yaşayan ormanlar yeryüzündeki; geçmiş dönemlerde yaşamış ormanlar da yer altındaki (kömür, petrol ve doğalgaz biçiminde) karbon depolarıdır.

Dünyadaki doğal süreçlerin on milyonlarca yıldır depoladığı bu karbon stokları, yirminci yüzyıl boyunca insanlar tarafından çok hızlı bir biçimde atmosfere (karbon dioksit olarak) geri verilmiştir; hala da veriliyor. Öte yandan atmosferdeki karbon dioksit oranını düşürecek ormanlar da hızla yok ediliyor.

Fosil yakıtların tüketimi ve ormansızlaştırma yüzünden her yıl atmosfere yaklaşık 7 milyar ton karbon dioksit salınıyor. Şu anda atmosferde 750 milyar ton dolayında karbon dioksit bulunuyor. Bitkilerin, hayvanların ve toprağın soluması, fosil yakıtların kullanılması, ormansızlaştırma ve okyanus-atmosfer etkileşimi yüzünden her yıl yaklaşık 207 milyar ton karbon dioksit atmosfere salınıyor. Bu miktar her yıl artıyor. Öte yandan, kara bitkilerinin fotosentezi ve yine okyanus-atmosfer etkileşimi nedeniyle de yaklaşık 204 milyar ton karbon dioksit her yıl atmosferden çekiliyor. Bu durumda yılda 3 milyar ton dolayında karbon dioksit atmosfere ekleniyor. Bu da aslında insanların fosil yakıt kullanımı sonucunda atmosfere salınan karbon dioksit miktarına eşit.

Ne var ki dünyadaki fosil yakıt rezervleri, atmosferdeki karbon dioksit düzeyini 5-10 katına çıkaracak denli fazla. Bilim adamlarının tahminlerine göre insanlar, yer altındaki bu karbon stoklarını yavaş yavaş atmosfere aktaracak. 2050 yılında atmosferdeki karbon dioksit oranının 1850'deki düzeyin iki katına, 2100'de de üç katına çıkması bekleniyor. Su buharı ve karbon dioksitle birlikte, dünyanın ısınmasına yol açan bir başka gaz da metan. Havadan hafif olan metan, renksiz ve kokusuz bir gaz ve atmosferde, karbon dioksit miktarının iki yüzde birinden daha az bulunuyor. Ama metan moleküllerinin ısı tutma yeteneği, karbon dioksit moleküllerinin 20 katıdır. Atmosferde kalış süresi de 10 yıl kadardır. Bilim adamları yaşadığımız küresel ısınmanın % 10-15'lik bölümünden atmosferdeki metanın sorumlu olduğunu düşünüyorlar. Atmosferdeki metan miktarı tıpkı karbon dioksit miktarı gibi biyolojik süreçlerden etkileniyor.

Ölen bitki ve hayvanların anaerobik çözünmesi sırasında topraktaki bakterilerce ortaya çıkartılıyor. Bu nedenle de nemli topraklarda, pirinç tarlalarında, bataklık bölgelerde ve çöplüklerde bolca bulunur. Ayrıca doğal gazın % 50-90'ı metandır. Petrol, doğal gaz ve maden çıkarma çalışmaları sırasında da atmosfere metan karışır. Günümüzde atmosferdeki metan oranı 18. yüzyıldakinin 2,5 katıdır. Yapılan araştırmalar metan miktarının her yıl % 1 oranında arttığını gösteriyor. Küresel ısınma organik madde çözünümünü hızlandırdığı için bilim adamları metan miktarındaki bu artışın daha da hızlanacağını tahmin ediyorlar.

Örneğin 2100 yılına doğru, deniz düzeyi 60 cm yükseldiğinde, ABD'nin toprak kaybının 25.000 kilometrekareye ulaşacağı hesaplanıyor. Büyük bir bölümü alçak deltalardan oluşan Bangladeş'se topraklarının %10'unu yitirebilir. Bu durum daha şimdiden başta Bangladeş, Maldiv Adaları, Mozambik, Pakistan ve Endonezya olmak üzere birçok ada halkını ve kıyı ülkeleri endişelendiriyor.

Küresel ısınmayla birlikte karalar, geceleri eskisi kadar soğumaya fırsat bulamayacak. Yazla kış, geceyle gündüz arasındaki sıcaklık farkının azalması, bütün dünyadaki rüzgar desenlerini etkileyecek; belki de fırtınaların sıklığı, şiddeti ve rotaları değişecek. Küresel ısınma, insan sağlığı açısından yeni durumlar oluşturacak. Temmuz 1995'te ABD'nin Şikago kentinde aşırı sıcaklar yüzünden 465 kişi yaşamını

yitirmişti. Sıcaklık artışı nedeniyle bu tür olaylar yüzünden her yıl binlerce kişinin yaşamım yitirmesi bekleniyor. Ayrıca böcek yumurtalarının ölmesini sağlayan gece ve kış soğuklarının hafiflemesi, önemli bir sorun olacak. Bunun basit ve somut örneği, sıtma taşıyan sivrisinekler. Bu sivrisinekler, 17°C'nin altında en fazla 1-2 gün yaşayabilir. Bu durum, onları dünya nüfusunun % 58'nin yaşadığı bölgelerden şimdilik uzak tutuyor. Ama 5°C'lik bir küresel ısınma, onların doğal yaşam alanını genişleterek, dünya nüfusunun % 60'ını o alanın içinde bırakacak. Bu düzeydeki bir küresel ısınmanın, her yıl fazladan bir milyon kişinin sıtmadan ölmesine yol açacağı sanılıyor. Bunun yanında kimi bölgelerde şiddetli kuraklık dönemlerinin ardından gelecek aşırı yağışların virüs mutasyonlarını hızlandırabileceği tahmin ediliyor. Bu nedenle yalnızca sıtmaya değil, bugün kuzey enlemlerinde seyrek rastlanan kimi hastalıklara da daha sık rastlanacak. Ayrıca sıcaklıkla birlikte salgın hastalıklarında artması bekleniyor. (Çağlar Sunay, 2000)

Küresel ısınmanın oluşturacağı çok daha önemli bir başka etkinin de taşıyıcı bant üzerinde olmasından korkuluyor. Küresel ısınma yalnızca hava sıcaklıklarını değil, deniz suyu sıcaklıklarını da arttıracak kuşkusuz. Eğer bu ısınma, taşıyıcı bantın alttan ve üstten giden akıntıları arasındaki sıcaklık farkını azaltırsa ve bu sırada okyanusların daha fazla yağış almasına yol açarak tuzluluk oranını düşürürse, bu dev akıntı sistemi durabilir. Okyanus tortulları üzerinde yapılan araştırmalar, geçmiş dönemlerde taşıyıcı bantın birkaç kez durmuş olduğunu ortaya koyuyor. Eğer böyle bir durum olursa Belfast'ın iklimi, yüzlerce kilometre kuzeydeki Spitsbergen'inki gibi olur. Bir başka deyişle küresel sıcaklık artışının, Kuzey Avrupa'daki sonuçlarından biri, şiddetli bir soğuma olabilir!

Bu ilginç örnekten de anlaşılacağı gibi küresel ısınmanın etkisi, hava sıcaklıklarının dünyanın her yerinde artması biçimde olmayacak. Gerçekte bu ısınma, çok karmaşık bir yapısı olan dünya iklim sisteminde köklü değişimlere yol açacak; kimi bölgeler (kuzey yarı küredeki kıtaların iç bölgeleri gibi) çok ısınıp kuraklık çekerken kimi bölgeler ılıman bir iklimin, kimileri de aşırı yağışların ve taşkınların etkisinde kalacak. Yağış dönemleri, miktarları ve türleri değişecek. Artan sıcaklık, daha çok buharlaşmaya ve buna bağlı olarak da daha çok bulut oluşmasına yol açacak. Yani 21. yüzyılın ortalarında dünyamız daha sıcak, daha nemli ve bol yağışlı olacak.

Böyle bir dünyada tarım üretiminin nasıl olacağı çok karmaşık ama çok da önemli bir konu. Bilim adamları arasında yaygın kanı; sıcaklık ve yeni yağış düzeni nedeniyle, ekilebilecek alanların kuzeye doğru bir miktar genişleyeceği. Yeni iklim desenleri, çiftçilerin bir bölümünü, ektikleri tarım bitkilerini değiştirmeye zorlayacak. Ama atmosferdeki karbon dioksit miktarındaki artışın, genel olarak dünya tarımım olumlu etkilemesi bekleniyor. Japonya'da yapılan bir araştırmada, karbon dioksitin iki katına çıkması durumunda pirinç üretiminin % 25 artacağı ortaya çıktı. Karbon dioksit bitkiler için besin demek. Atmosferdeki karbon dioksit oranının iki katma çıkması öteki koşulların aynı kalması durumunda dünyada alınan tarım ürününü % 10 ile % 50 arasında artıracakmış gibi görünüyor. Öte yandan tarım bitkilerinde görülen hastalıklarda da sıcaklıkla birlikte bir artış bekleniyor.

Bu yüzden kurak bölgelerdeki çiftçiler hem daha çok sulama yapacaklar hem de daha fazla tarım ilacı kullanacaklar. Bir başka deyişle bu bölgelerde tarımsal etkinliklerin maliyeti artacak. Küresel ısınmanın bir başka önemli etkisi de iklim kuşaklarının kayması olabilir. Örneğin bilim adamları yağmur kuşağının kuzeye doğru genişlemesini bekliyorlar. Ancak bu genişleme çerçevesinde yağışlar her bölgede de artmayacak; belli bölgelerde yoğunlaşacak. Birçok iklim modeli Güney Avrupa'daki yaz yağmurlarının azalacağını öngörüyor. Amerika, Avrupa ve Asya'nın 55° Kuzey enleminin yukarısında (yılın büyük bir bölümünde sıcaklığın sıfır derecenin altında olduğu bölgeler) karyağışının artması bekleniyor.

Daha güney bölgelerde kar yağışında bir azalmanın ve yağmurlarda da bir artışın olacağı, karın toprakta kalma süresinin azalacağı tahmin ediliyor. Şiddetli yağmurların daha sık yağması ve daha çok su bırakması bekleniyor.

1.5.3. Yer kabuğundaki ve atmosferdeki sonuçlara karşı alınacak önlemler

Sera gazlarının üretimi bugün dursa bile, atmosferdekiler yüzünden sıcaklık artışının daha 20-30 yıl sürmesi bekleniyor. Ama zaten böyle bir olayın gerçekleşeceği yok. Tersine, her geçen gün ülkelerin atmosfere saldığı sera gazı miktarı artıyor. Bu alanda başta Çin olmak üzere gelişmekte olan ülkeler yakın bir gelecekte gelişmiş

ülkeleri geçecekler. Bu durumda da iklimbilimcilerin öngörülerinin gerçekleşeceğini düşünebiliriz. Peki dünya iklim düzenindeki değişikliklerin toplumlar üzerindeki etkisi nasıl olacak?

Bu soruya, ülkeleri tek tek ele alarak yanıt vermek olanaksız. Bilim adamları bu soru karşısında yine çok genel açıklamalar yapmakla yetiniyorlar. Öncelikle küresel ısınma dünyadaki tüm ülkeler için bir felaket olmayacak. Yeni durumun mutlu edeceği kimi ülkeler de olacak kuşkusuz. Günümüzde dünyanın genelinde olmasa bile birçok bölgesinde iklim koşulları çetindir. Daha ılıman kışlar ve daha bol yağış, bu bölgelerde yaşayanların yüzünü güldürecektir. Öte yandan kuraklığın ya da aşırı yağmurlar yüzünden taşkınların arttığı ülkeler üzülecektir. Sıcaklığın artacağı soğuk ülkelerde ısınma harcamaları düşecektir. Değişen fırtına ve kasırga rotaları nedeniyle kasırgalardan kurtulan ülkeler sevinirken aynı nedenle kasıngaların etki alanına giren ülkeler mutsuz olacaklar. Günümüzde birçok ülke su sıkıntısı çekiyor.

Su sıkıntısı çekerken, genişleyen yağmur kuşağına giren ülkeler sevinecek ama yeni düzende giderek kuraklaşan bölgelerdeki ülkeler üzülecektir.Bütün bunlara ek olarak küresel ısınmayı durdurmak için alınacak önlemler de kimi ülkeleri zor durumda bırakacak. Dünyada sera gazlarının salımına bir sınırlama getirilmesi planlanıyor. Bu durum fosil yakıtlarla elektrik üretiminin yerini zamanla biraz daha pahalı olan alternatif enerji kaynaklarının almasına yol açacak. Enerji harcamalarının artması da gelişmekte olan ülkelerin gelişimini yavaşlatacak.

Ayrıca yer altında büyük karbon rezervleri (kömür, petrol, doğal gaz vb.) bulunan ülkeler de artık o kaynaklarından eskisi gibi yararlanamayacak.Dünya ikliminin önümüzdeki yüz yıllık dönemde yeniden dengeye kavuşabilmesi için atmosferdeki karbon dioksitin, okyanusların ve ormanların emebileceği bir düzeye indirilmesi gerekiyor. Bu da yılda en fazla 1-2 milyar tonluk bir salımla sağlanabilir; yani bugünkü miktarın yalnızca % 20' siyle.Atmosferdeki sera gazlarının miktarının kontrol edilmesine yönelik uluslararası çalışmalar yaklaşık 15 yıldır sürdürülüyor. Bu amaçla düzenlenen ilk uluslararası konferans 1988'de yapıldı. Dünya Meteoroloji Örgütü ve Birleşmiş Milletlerin ortaklaşa düzenlediği ve kısaca IPCC diye anılan, küresel ısınma konulu konferansa, iki bin dolayında bilim adamı, uzman ve çevreci

katıldı. Konferansın sonuçlarını değerlendiren 140 ülke, bir anlaşma imzaladı. Bu anlaşmaya göre taraf ülkeler, 2000 yılına gelindiğinde sera gazı üretimlerini 1990 yılı düzeyine geri çekmiş olacaklardı.

Kyoto'daki konferansa 160 ülkeden on bin dolayında bilim adamı, uzman, çevreci ve hükümet yetkilisi katıldı. Konferansta iklim değişiminin çevresel ve ekonomik sonuçları ve bunlara yönelik politikalar görüşüldü; enerjinin daha verimli kullanılması, yeni ve temiz enerji kaynaklarının araştırılması, ormanların korunması ve yeni orman alanlarının oluşturulması kararlaştırıldı. Ama konferansın en önemli olayı Kyoto Protokolü diye anılan bir anlaşmanın imzalanmasıydı. Buna göre gelişmiş ülkeler, başta karbon dioksit ve metan olmak üzere altı sera gazı üretimlerini 2012 yılına değin 1990 düzeylerinin en az % 5 altına çekecekler.

Tek başına dünya sera gazı üretiminin neredeyse dörtte birini yapan ABD için bu oran % 8; Japonya için de % 6. Öte yandan gelişmekte olan ülkeler herhangi bir kısıtlamaya gitmiyorlar. Çünkü onlara göre küresel ısınma sorunu, günümüzün gelişmiş ülkelerinin yol açtığı bir sorun. Bu saptamalarında haklılar. Ne ki yakın bir gelecekte durum biraz değişecek. Kyoto'da çok yerinde kararlar alındı ama bakalım taraf ülkeler bu kararlara uyacaklar mı? Anlaşmanın yürürlüğe girebilmesi için en az 55 ülke parlamentosunca onaylanması gerekiyor. Mayıs 2000 tarihine değin yalnızca 22 ülke bunu başarabildi. Yani protokol yürürlüğe daha giremedi. Aslında durum, görüldüğü gibi gelecek için çok da umut vaat etmiyor. Tahminlere göre, 2015'te insan etkinlikleri yüzünden atmosfere karışan karbon dioksit miktarı 1990'daki miktarın % 50 fazlası olacak; 2100 yılındaysa üç katına çıkacak. Bugün gelişmekte olan ülkelerdeki kimi fabrika kentleri, 1950'li yıllardaki Pittsburgh'u ya da Essen'i anımsatıyor. Karbon dioksit salımı en hızlı artan ülke Güney Kore. Brezilya, Çin ve Hindistan da bu alanda onunla yarışıyorlar. 1990'da atmosfere bırakılan yaklaşık 6 milyar ton karbon dioksitin % 36'sı gelişmekte olan ülkelerin bacalarından çıktı. Aynı ülkeler 2015 yılında salınan 8,5 milyar tonluk karbon dioksitin %52'sinden sorumlu olacaklar.Sera gazlarını salanlar gelişmiş ya da gelişmekte olan ülkeler olsun hiç fark etmiyor. Sonuç olarak atmosferimizdeki ısı tutan gazların miktarı her geçen gün artıyor. Bu da aslında soğuması beklenen dünyamızın ısınmasına yol açıyor. Küresel ısınmanın ciddi sonuçları kendini daha göstermedi. Öyle görünüyor ki Sovyetler Birliği'nin eski lideri Gorbaçov'un sözleri galiba gerçek olacak; Önümüzdeki yüzyılda çevre koşulları dünya çapında yıkımlara yol açtıkça, askeri değil ama ekolojik güvenlik tüm ulusların en çok önem verdiği konu olacak.

BÖLÜM 2 TÜRKİYE'DE Kİ DIŞ HAVA SICAKLIKLARI DEĞİŞİMLERİ

Yerküre iklimi, fosil yakıtların yanması, arazi kullanımı değişikliği ve ormansızlaştırma, çimento üretimi, sanayi süreçleri gibi insan etkinlikleriyle atmosfere salınan sera gazlarının doğal sera etkisini kuvvetlendirmesi sonucunda ısınmaktadır. Farklı sera gazı emisyon (salım) senaryolarına dayanan iklim yüzyıl için önemli modelleri, gelecek iklim değişikliklerinin olacağını Örneğin, Birleşmiş Milletlerin küresel iklim değişikliği öngörmektedir. konusundaki uzman kuruluşu Hükümetlerarası İklim Değişikliği Paneli'nin (IPCC) 2001 yılında yayımlanan 3. Değerlendirme Raporu'na göre (IPCC, 2001a ve 2001b), küresel ortalama yüzey sıcaklığı, 20. yüzyılda 0.4-0.8 °C arasında (yaklaşık 0.6 °C) artmıştır. IPCC'nin son raporundaki gelişmiş iklim modellerinin sonuçları, küresel ortalama yüzey sıcaklığının 1990-2100 döneminde 1.4-5.8 °C arasında yükseleceğini öngörmektedir. Bu yüzden, uluslararası toplum, sera gazı salımlarındaki artışla bağlantılı iklim riskini önlemeye yönelik önemli bir görevle karşı karşıya bulunmaktadır.Öngörülen iklim değişikliklerini ve bu değişikliklerin, sosyoekonomik sektörler, doğal ekosistemler ve insan sağlığı üzerindeki olumsuz etkilerini azaltmanın en önemli yolu ise, insan kaynaklı sera gazı salımlarını azaltmak ve ormanlar gibi karbon tutucu ortamları çoğaltmaktır.

2.1. Türkiyedeki İklim Değişikliği

2.1.1. Türkiye'deki iklim değişikliği çerçeve ve sözleşmesi

Bugün için, sera gazlarının atmosferik birikimlerini insanın iklim sistemi üzerindeki olumsuz etkilerini en aza indirecek bir düzeyde durdurmayı sağlayabilecek en önemli ve tek hükümetlerarası çaba Birleşmiş Milletler (BM) İklim Değişikliği Çerçeve Sözleşmesi'dir (İDÇS). İDÇS'nin nihai amacı, "Atmosferdeki sera gazı birikimlerini, insanın iklim sistemi üzerindeki tehlikeli

etkilerini önleyecek bir düzeyde durdurmaktır" (UNEP/WMO, 1995). Haziran 1992'de Rio'da düzenlenen BM Çevre ve Kalkınma Zirvesi'nde imzaya açılan İDÇS, 21 Mart 1994 tarihinde yürürlüğe girmiştir. İDÇS'ye, bu güne kadar, Türkiye, Afganistan, Andora, Bruney Sultanlığı, Vatikan, Irak, Liberya, Filistin ve Somali hariç, 186 ülke ve Avrupa Birliği (AB) taraf olmuştur.

İDÇS, küresel iklimi korumaya ve sera gazı salımlarını azaltmaya yönelik genel ilkeleri, eylem stratejilerini ve yükümlülükleri düzenlemektedir. Gelişmiş ülkelerin İDÇS altındaki yükümlülüğü, insan kaynaklı sera gazı salımlarını 2000 yılına kadar 1990 düzeylerinde tutmaktır (Türkeş, 1995).

Türkiye, İDÇS'nin eklerinde gelişmiş ülkeler arasında değerlendirildiği için ve bu koşullar altında özellikle enerji ilişkili CO₂ ve öteki sera gazı salımlarını 2009 yılına kadar 1990 düzeyine indirme, gelişme yolundaki ülkelere mali ve teknolojik yardım vb. konulardaki yükümlülüklerini yerine getiremeyeceği gerçeğiyle, İDÇS'yi Rio'da imzalamamış ve sonrasında da taraf olmamıştır (Anonim, 2000).

Türkiye, 1992-1995 döneminde katıldığı hemen tüm İDÇS Hükümetlerarası Görüşme Komitesi toplantılarında, özellikle enerji ilişkili CO₂ ve öteki sera gazı emisyonlarını 2009 yılına kadar 1990 düzeyinde tutmasının olanaksız olduğunu ve İDÇS'nin iki Ekinden de çıkarak, ya da özel koşulları dikkate alınarak kendisine bazı kolaylıklar sağlanması koşuluyla Eklerde kalarak, Sözleşme'ye taraf olabileceğini resmi olarak bildirmiştir (Türkeş, 2001a). Aralık 1997'de Kyoto'da yapılan 3. Taraflar Konferansı'nda (TK), Türkiye isminin eklerinden silinmesi için Pakistan ve Azerbaycan tarafından verilen **İDCS**'nin değişiklik önergeleri, esas olarak ABD ve AB'nin etkisiyle kabul edilmemiştir. O aşamada Türkiye'den, sera gazı salımlarına ilişkin gönüllü bir yükümlülüğü kabul etmesi beklenmiştir. Türkiye'nin tüm çabalarına ve beklentilerine karşın, İDÇS'nin 1998 yılında Buenos Aires'de yapılan TK-4 ve 1999'da Bonn'da yapılan TK-5 toplantılarında, Türkiye'nin Sözleşme'nin Eklerinden çıkma istemi esas olarak yine ABD ve AB'nin karşı çıkması sonucunda kabul edilmemiş ve Kasım 2000'de yapılan TK-6'ya (Lahey Konferansı'na) ertelenmiştir (Türkeş, 2001a).

Türkiye, Lahey Konferansı'na, Ek-II'den çıkmayı ve İDÇS'ye özel koşullarının dikkate alınması koşuluyla, bir Ek-I Tarafı olarak kabul edilmek istediğini içeren yeni bir öneriyle katılmıştır. Ancak, Türkiye'nin bu değişiklik istemi, Pakistan ve Kazakistan tarafından desteklenmesine karşın bir kez daha kabul görmedi (Türkeş, 2001a) ve bir sonraki TK'ye ertelendi.

Lahey Konferansı'nda alınan karar gereğince, Türkiye'nin Ek II'den çıkarak İDÇS'ye bir Ek I ülkesi olarak taraf olma isteği, 29 Ekim-6 Kasım 2001 tarihlerinde Fas'ın Marakeş kentinde yapılan 7. Taraflar Konferansı'nda kabul edilmiştir. Türkiye'ye ilişkin kararda, özetle (FCCC/SBI/2001/L.8):

Tarafların, eşitlik temelinde ve ortak ama farklılaştırılmış sorumlulukları ve bunu karşılayan olanaklarına uygun olarak, insanoğlunun bugünkü ve gelecek kuşaklarının yararı için iklim sistemini korumak zorundadır.

Türkiye'nin isteği, özellikle TK-6/1. Bölümde (Lahey'de) isminin Ek II'den silinmesi amacıyla sunduğu yeni önergesi gözetilerek: TK'nın, Türkiye'nin isminin Ek II'den silinmesini kararlaştırdığı ve Tarafları, Türkiye Sözleşme'ye taraf olduktan sonra, onu Ek I'deki öteki Taraflardan farklı yapan özel koşullarını kabul etmeye davet ettiği, açıklanmıştır.

1996 yılında Türkiye Büyük Millet Meclisi'ne (TBMM) sunulmuş ve ilgili komisyonlarca kabul edilmiş olan Türkiye'nin İDÇS'ye Katılmasının Uygun Bulunduğuna Dair Kanun Tasarısı'nın, bu son olumlu gelişme dikkate alınarak, yapılacak küçük bir değişiklikle birlikte, Türkiye Büyük Millet Meclisi (TBMM) Genel Kurulu'nda onaylanarak yürürlüğe girmesi beklenmektedir (TTGV, 2002). İDÇS'nin TBMM'ce onaylanma sürecinin tamamlanmasıyla birlikte de, Türkiye, Taraf bir ülke olarak karar düzenekleri içerisinde yer alabilecek ve ulusal rapor hazırlama çalışmalarına başlayarak uyum konusundaki çalışmalarını sürdürecektir.

2.2. 2003-2023 Dönemindeki Gelişme ve Değişimleri Belirleyecek Temel Eğilimler ve İtici Güçler

Hükümetlerarası İklim Değişikliği Paneli'nin (IPCC) Emisyon Senaryoları konulu Özel Raporu'ndaki (SRES) tüm senaryolar, iklim değişikliği konusunu özel olarak dikkate alan politikaların bulunmadığı koşullarda, CO2'nin ve öteki sera gazlarının atmosferik birikimlerinin gelecek yüzyılda önemli düzeyde 2000). artacağını göstermektedir (IPCC, Esas olarak fosil yakıtların yanmasından ve tropikal ormansızlaşmadan kaynaklanan CO₂ salımları, 1990 yılında yaklaşık 7.5 milyar ton karbon (MtC) yıl⁻¹ olarak hesaplanmıştır. SRES, bu tutarın 2100 yılında yaklaşık 5 ile 35 *MtC* yıl⁻¹ arasında değişeceğini öngörmüştür. Bu ise, 2000 yılında yaklaşık 370 ppm olan atmosferik CO₂ birikiminin, 2100 yılına kadar yaklaşık 540-970 ppm aralığına yükseleceği anlamını taşımaktadır.EK I Taraflarının sayısal salım azaltma yükümlülüklerini, KP ülkelerindeki salım indirimleriyle ve düzeneklerini kullanarak gerçeklestirmeleri olasıdır.

Ancak, Ek I Taraflarının, birinci yükümlülük döneminde (2008-2012) 1990 düzeylerine göre en az toplam %5 düzeyinde bir indirim yapma yükümlülüğü gerçekte oldukça orta düzeyde görünmesine karşın, birçok Ek I Tarafındaki salımların geçen yıllarda önemli düzeyde artmış olduğu unutulmamalıdır. Sera gazlarının atmosferik birikimlerinin belirli bir düzeyde durdurulması için, salım indirimlerinin dünyanın tüm bölgelerinde yapılması gereklidir. Eğer hükümetler, atmosferik CO₂ birikimini 550 ppm'de (sanayi öncesi düzeyinin yaklaşık iki katı) durdurmaya karar verirlerse, küresel salımların yaklaşık 2025'e kadar en yüksek noktasına çıkacağı ve 2040-2070 döneminde bugünkü düzeylerinin altına düşeceği hesaplanmaktadır (Watson, 2001). Düşük salım düzeyleri, enerji kaynaklarının geliştirilmesi ve işletiminde farklı desenlerin varlığı ile son-kullanım verimliliğindeki artışları içerecektir.

Sera gazı salımları kalkınmanın izlediği yola oldukça bağlıdır. Bu yüzden iklim değişikliğinin etkilerini en aza indirme, hem kalkınma ve

sürdürülebilirlikle ilişkili geniş kapsamlı sosyo-ekonomik politikalar ve eğilimlerden etkilenir, hem de onlar üzerinde bir etkiye sahiptir. Burada anahtar politik konu, salım haklarının eşit dağılımıdır. İnsan kaynaklı sera gazı salımlarının çoğunun, bugüne kadar sanayileşmiş ülkelerden kaynaklandığı bilinmektedir. Gelecek 20-30 yıl içerisinde ise, GYÜ'lerden kaynaklanan sanayileşmiş ülkelerden toplam salımların, kaynaklananları gececeği öngörülmektedir. Buna karşın, gelecek yüzyıl boyunca öngörülen kişi başına salımlar, GYÜ'lerin çoğunda gelişmiş ülkelere oranla hala daha düşük olacaktır. İklim sistemi yıllık sera gazı salımlarına değil, birikimli salımlara karşılık verdiği için, GYÜ salımlarının küresel ısınmaya öngörülen katkısı yaklaşık 21. yüzyılın sonuna kadar gelişmiş ülkelerin katkısına ulaşamayacaktır.

Sera gazı salımlarını azaltan iklim dostu teknolojilerdeki önemli ilerlemeler, geçen 5 yılda beklenenden çok daha hızlı bir biçimde gelişme göstermiştir. IPCC salım senaryolarına dayanan bazı çalışmalar, küresel salımlarda 2010 ve 2020 yılları için, sırasıyla 1.9-2.6 milyar ton karbon eşdeğer (MtC_{eq}) ve 3.6-5.0 MtC_{eq} azaltmanın başarılabileceğini göstermiştir. Salım azaltma potansiyelinin yarısı, doğrudan yararlarla başarılabilecekken, öteki yarısı için 1998 fiyatlarıyla tC başına 100 \$'dan daha az bir harcama yapmak gerektiği hesaplanmıştır (Watson, 2001). Ayrıca, bilinen teknolojik seçeneklerin gelecek 100 yılda CO₂ birikimini 450-550 ppm düzeylerinde durdurmayı başarabileceği kabul edilmektedir. Ancak, kısa ya da uzun vadeli salım indirimleri, teknik, ekonomik, politik, kültürel, sosyal, davranışsal kurumsal engellerin ve zorlukların üstesinden ve içermelidir. Ayrıca, araştırma, geliştirme ve etkili teknoloji transferinin, küresel salımların etkin azaltılmasında maliyet bir biçimde önemli bir rol üstleneceği beklenmelidir.

Öte yandan, sera gazı salımlarındaki bazı azaltmalar, 'no regret' (her koşulda uygulanmaya değer) seçeneklerle, sıfır maliyetlerle elde edilebilir. Örneğin, dünyanın birçok bölgesinde, hava kirliliğini önleme ya da hava kalitesini iyileştirme ve asit depolanmasını azaltma vb. yerel ve bölgesel çevresel sorunlar için kabul edilen politikaların, önlemlerin, uygulamaların ve teknolojilerin, sera gazı salımlarını azaltma kapasitelerinin önemli düzeyde

olduğu dikkate alınmalıdır.

2.3. Türkiye'nin Güçlü ve Zayıf Yanları

Türkiye'nin İDÇS'ye bugüne kadar taraf olmamasının ana nedenini ve taraf olduktan sonra özellikle sera gazı yükümlülüklerini yerine getirmede karşılaşabileceği özel koşullarını anlayabilmek, özellikle enerji sektörünün ve enerji ilişkili (burada yakıt tüketimi) CO₂ salımlarının ve projeksiyonlarının değerlendirmesi ile olasıdır.

(i) Enerji

Türkiye enerji tüketimi, geçtiğimiz yıllarda sürekli bir artış göstererek 2000 yılında yaklaşık 82.2 milyon ton eşdeğer petrole (Mtep) ulaşmıştır (TTGV, 2002). Bu değerin, artışını sürdürerek, 2005 yılında 115.2 Mtep'e ve 2010 yılında 153.9 Mtep'e ulaşacağı öngörülmektedir. Enerji ve Tabii Kaynaklar Bakanlığı'nın (ETKB) resmi verilerine göre, kaynaklar bazında genel enerji istemi Şekil 3.1.'de verilmiştir. Türkiye'de hemen her türlü enerji kaynağı bulunmakla birlikte, üretilen enerji tüketimi karşılamadığı için, enerji tüketiminin % 66'sı ithalatla karşılanmaktadır. Bu oranın önümüzdeki yıllarda giderek artması beklenmektedir. Türkiye'nin, sanayileşme hedefini sürdüren gelişmekte olan bir ülke olması ve nüfusun hızlı bir artış göstermesi nedenleriyle, elektrik enerjisine olan talep de önemli ölçüde artmaktadır. Buna koşut olarak, 1990 yılında 16,317.6 mega watt (MW) olan kurulu güç, ek elektrik üretim tesislerin kurulması ile yaklaşık % 67 artarak, 2000'de 27,264.1 MW'a ulaşmıştır (TTGV, 2002) (Tablo 3. 1.). Bununla uyumlu olarak, 1990'da 57,543 giga watt saat (GWh) olan elektrik enerjisi üretimi, yaklaşık % 117'lik artışla 2000'de 124,921.6 GWh olmuştur.

Tablo 2.1. Yakıt türlerine ve kaynaklarına göre genel enerji istemi (Mtep) (2000-2020).

	Yıl										
Tür ve kaynak	2000	2005	2010	2020							
Taşkömürü	9,983	9,277	15,541	77,199							
Linyit	13,219	16,765	24,113	30,331							
Asfaltit	0,009	0,043	0,043	0,043							
İkincil kömür	1,635										
Petrol	32,595	43,806	51,165	71,894							
Doğal gaz	13,327	34,06	49,58	74,505							
Nükleer				7,297							
Hidrolik	2,656	3,092	5,339	10,002							
Rüzgar	0,003	0,004	0,449	1,146							
Güneş	0,262	0,375	0,602	1,119							
Jeotermal	1,792	2,116	2,619	4,733							
Ticari olmayan kaynaklar	6,457	5,325	4,417	3,925							
Net elektrik ithali	0,288	0,295									
Toplam birincil enerji	82,226	115,158	153,868	282,194							
istemi											

Kaynak: ETKB, 2002.

Türkiye'de elektrik enerjisi istemi, ağırlıklı olarak termik ve hidrolik kaynaklardan karşılanmaktadır (Tablo 3.1.). Jeotermal ve rüzgar enerjisi gibi yenilenebilir enerji kaynaklarının payı ise, henüz oldukça düşüktür. Termik üretimde, enerji kaynakları arasında linyit önemli bir yer tutmaktadır. Termik elektrik enerjisi üretiminde, doğalgazın payının artmasına karşılık, yerli enerji kaynağı olarak linyit gelecek yıllarda da önemini sürdürecektir.

Buna karşın, gelecek yüzyıl boyunca öngörülen kişi başına salımlar, GYÜ'lerin çoğunda gelişmiş ülkelere oranla hala daha düşük olacaktır. İklim sistemi yıllık sera gazı salımlarına değil, birikimli salımlara karşılık verdiği için, GYÜ salımlarının küresel ısınmaya öngörülen katkısı yaklaşık 21. yüzyılın sonuna kadar gelişmiş ülkelerin katkısına ulaşamayacaktır.

(ii) Sera Gazı Salımları

Türkiye'nin sera gazı salımı hesaplamaları, ulusal iklim değişikliği çalışmaları ve etkinlikleri kapsamında, Devlet İstatistik Enstitüsü'nce (DİE) yapılmaktadır. 1990-2000 tüketim değerleri ve 2000-2020 dönemi projeksiyon değerleri, yakıt tüketiminden kaynaklanan sera gazlarının tutarlarında, bugüne

kadar olduğu gibi gelecekte de çok hızlı bir artışın olacağını göstermektedir (TTGV, 2002). Sera gazları içerisinde en büyük payı, CO₂ salımları almaktadır. Yakıt tüketimindeki artışa koşut olarak, CO₂ salımlarında da, gerçekleşen tüketim değerleri ve projeksiyonlar için hızlı bir artış eğiliminin varlığı dikkat çekicidir. (Tablo 3.2.).

Tüketim ve projeksiyon değerleri için yakıt tüketiminden kaynaklanan sera gazı salımlarının sektörlere dağılımı karşılaştırıldığında, bazı sektörlerin payı artarken, bazılarının payında belirgin bir azalış oluştuğu görülmektedir (TTGV, 2002). 2000 yılında CO₂ salımlarının % 34'ü çevrim, % 32'si sanayi, % 17'si ulaştırma ve % 16'sı öteki (konut, tarım ve ormancılık) sektörlerden kaynaklanırken, 2020 yılında % 41'inin çevrim, % 33'ünün sanayi, % 13'ünün ulaştırma ve % 13'ünün öteki sektörlerden kaynaklanacağı öngörülmektedir

Tablo 2.2. Temel CO₂ göstergelerine göre Türkiye'nin dünya ülkeleri sıralamasındaki yeri.

	1995	1996	1997	1998	1999
Toplam CO ₂ salımı	25	25	23	24	23
CO ₂ /Nüfus	80	79	75	76	75
CO ₂ /GSYİH	63	71	70	71	60
CO ₂ /GSYİH (satın alma gücü paritesi)	81	84	81	81	55
Kaynak: IEA 2001					

Türkiye, 1999 yılı temel CO₂ göstergeleri açısından, dünya ülkeleri arasında, toplam CO₂ salımında 23. kişi başına düşen CO₂ salımı açısından 75., CO₂ salımının gayrı safi yurt içi hasılaya (GSYİH) oranında 60. ve satın alma gücü paritesi dahil GSYİH'nin CO₂'ye oranında ise 55. sırada yer almaktadır (TTGV, 2002) (Tablo 3.2.). Türkiye'nin, toplam CO₂ salım tutarı dışında kalan göstergelerde alt sıralarda yer aldığı, bu nedenle gelişmiş ülkelerle birlikte değerlendirilmesinin hakkaniyete ve İDÇS'nin "ortak ama farklı sorumluluklar" ilkesine uymadığı görülmektedir.

2010 yılında birincil enerji isteminin yaklaşık % 70'ini dış alımla karşılayacak olan Türkiye, yapılan projeksiyonlara göre doğal gaz arzını ve taş kömürü dış alımını arttırmayı planlamaktadır. Enerji arzında bu boyutta bir artışa duyulan gereksinim göz önüne alındığında, Türkiye'nin CO₂ salımlarını 1990 yılı

düzeyine ya da altına indirmesi doğal olarak olası görülmemektedir. Ancak, CO₂ salımlarının bugünkü artış hızını azaltmak amacıyla, ETKB tarafından çeşitli senaryolar üzerinde çalışılmaktadır.

2.4.İklim Değişikliğinin Türkiye Üzerindeki Olası Etkileri

Türkiye, iklim değişikliğinin, özellikle su kaynaklarının zayıflaması, orman yangınları, kuraklık, erozyon, çölleşme ve bunlara bağlı ekolojik bozulmalar gibi öngörülen olumsuz yönlerinden etkilenebilecektir.İklim modellerinin çoğunda, genel olarak Akdeniz Havzası'na ya da Türkiye ve bölgesine ilişkin sıcaklık öngörüleri, kuzey yarımkürenin orta ve yüksek enlemlerine göre daha düşüktür.

Başka sözlerle, en büyük ısınma yüksek enlemlerde bulunan alanlarda beklenmektedir. IPCC 3. Değerlendirme Raporu'nda da kullanılan çeşitli iklim modellerine göre (IPCC, 2001a), Türkiye üzerindeki yıllık ortalama sıcaklıkların 2050 yılına kadar, yalnız sera gazlarındaki artışları dikkate alındığında, 1-3 °C arasında; sera gazlarındaki ve sülfat parçacıklarındaki değişimler birlikte dikkate alındığında ise 1-2 °C arasında bir artış olacağı öngörülmektedir.

Başka model sonuçlarından yararlanarak da, insan kaynaklı iklim değişikliğinin ya da küresel ısınmanın Türkiye üzerindeki etkileri değerlendirilebilir. Burada bir örnek olarak, insan kaynaklı iklim değişikliğinin, Türkiye'nin sıcaklık ve yağış koşulları, bitki biyokütlesi, su kaynakları ve besin temini üzerindeki etkileri, United Kingdom Meteorological Office Hadley Centre İkinci İklim Modeli'nin sonuçlarına göre (UKMO/DETR, 1999) bölgesel olarak değerlendirilmiştir. Hadley Centre modeli, atmosferdeki CO₂ birikimlerini 750 ppm ve 550 ppm düzeylerinde durduran CO₂ salımları senaryolarını temel almaktadır. Ayrıca, sözü edilen bu çalışmada CO₂ ve öteki sera gazlarındaki artışlar için herhangi bir önlemin alınmadığını kabul eden salımların kontrol edilmediği (azaltılmadığı) senaryoya dayalı model sonuçları, durdurma senaryolarının kullanıldığı model sonuçlarıyla bir karşılaştırma yapılabilsin diye birlikte ele alınmıştır. Bu yeni model sonuçlarından yararlanarak, 2080'li yıllara kadar Türkiye için yapılan

değerlendirme aşağıda verilmiştir:

Sıcaklık değişiklikleri

-Atmosferdeki CO₂ gazı birikimini (insan etkinlikleri sonucunda atmosfere verilen salımlarla ilişkili fazla birikimler) azaltmak için hiç önlemin alınmadığını kabul eden senaryoya göre, 2080'li yıllara kadar Türkiye üzerindeki yıllık ortalama (1961-1990 sıcaklıklarda normaliyle karşılaştırıldığında) yaklaşık 3-4 °C artış;

-CO₂ birikimlerini 750 ppm'de durdurmayı öngören senaryoya göre, yıllık ortalama sıcaklıklarda yaklaşık 2-3 °C artış;

-CO₂ birikimlerini 550 ppm'de durduran senaryoya göre, yıllık ortalama sıcaklıklarda yaklaşık 1-2 °C artış.

Yağış değişiklikleri

-Salımların kontrol edilmediği senaryoya göre, 2080'li yıllara kadar Türkiye üzerindeki yıllık ortalama yağışlarda yaklaşık 0 ile –1 mm/gün değişiklik (azalma); -CO₂ birikimlerini 750 ve 550 ppm'de durdurmayı öngören her iki senaryoya göre, 2080'li yıllara kadar Türkiye üzerindeki yıllık ortalama yağışlarda yaklaşık 0 ile –0.5 mm/gün değişiklik (azalma).

Vejetasyon biyokütle değişiklikleri

-Salımların kontrol edilmediği senaryo ile CO₂ birikimlerini 750 ve 550 ppm'de durdurma senaryolarına göre, Türkiye üzerindeki vejetasyon biyokütlesinde (kgC/m²) 2080'li yıllara kadar iklim değişikliği nedeniyle önemli bir değişiklik öngörülmemiştir.

2.4.1. Türkiye'nin sera gazı salımlarını azaltma olanakları

Enerji tasarrufu ve enerjinin verimli kullanımı etkinlikleri ve çalışmaları, yeni ve yenilenebilir enerji teknolojileriyle birlikte, Türkiye'nin gelecekte de en fazla yararlanabileceği politika araçlarının ve teknolojik olanakların başında gelecektir. Enerji tasarrufu çalışmaları, Türkiye'de tüm sektörlerde ortalama % 25'in üzerinde enerji tasarrufu potansiyeli bulunduğunu göstermektedir.

Ancak, öngörülen bu hedeflere ulaşılabilmesi için, belirlenen enerji tasarrufu projelerinin hızlı bir biçimde hayata geçirilmesi, yeni projelerin yapılması, enerji verimliliği proje ve yatırımlarının mali olarak desteklenmesi ve enerji verimliliği hizmet şirketlerinin Türkiye'de yapabilecekleri etkinliklerin özendirilmesi gereklidir. Ayrıca, Türkiye'de etkin bir enerji verimliliği programının uygulanabilmesi ve somut başarılara elde edilebilmesi için, yetkili bir kuruluşa ve etkin bir "Enerji Verimliliği Yasası"na gereksinim bulunmaktadır.

Türkiye'de potansiyeli en yüksek yenilenebilir enerji kaynağı, enerjisidir. ETKB'nin öngörülerine göre, rüzgar enerjisi üretim kapasitesinin, öngörülen kurulu güç kapasitesi içindeki payı % 4.3'e 2020 yılı için yükselecektir. Güneş enerjisinin de büyük bir gelişme potansiyeli bulunmaktadır. Türkiye'de güneş enerjisi, esas olarak ısıtmada güneş toplayıcıları kullanılması şeklindedir ve 2000 yılında 262,000 Tep enerji üretilmiştir. Isıtmaya yönelik varolan ulusal toplayıcı kapasitesi 7.5 milyon m² dolayındadır. 2010 yılında 602 Ktep ve 2020'de 1,119 Ktep enerji sağlanabileceği öngörülmektedir. Türkiye'nin bugünkü toplam jeotermal ısı kullanımı kapasitesi 820 MWt olmasına karşın, potansiyeli yaklaşık 31,500 MWt'dir. Günümüzde 52,000 konut ısıtılırken, 2010 yılında 500,000 konutun jeotermal ısıtmadan yararlanabileceği öngörülmektedir. Türkiye'nin 2010 yılı jeotermal elektrik üretim hedefi ise, 500 MWe'dir. Türkiye'nin gelecekte, jeotermal potansiyeli ile toplam elektrik enerjisi gereksinimin % 5'ini karşılayabileceği öngörülmektedir. Türkiye'nin bugünkü hidroelektrik enerji kuruluşlarının toplam kapasitesi 12.4 GW'tır. Bu değerin, 2005 yılında 13.9 GW'a ve 2010 yılında 18.8 GW'a yükseleceği öngörülmektedir. Küçük ölçekli kuruluşlar, Türkiye'nin toplam hidrolik enerji kapasitesinin yalnız % 1'ni oluşturmaktadır. Küçük ölçekli hidroelektrik kuruluşlarıyla ilgili enerji öngörülerine göre, 2000'de 143 MW olan kurulu güç, 2010'da 418 MW olacak ve 2020'de 750 MW'ı aşabilecektir.

Türkiye ormancılık sektörü, fosil yakıtlar yerine, sürdürülebilir olarak işletilen ormanlardan sağlanan yakacak odunun kullanılması konusuna önem vermektedir. Türkiye'nin enerji ormanı potansiyeli oldukça büyüktür. Yapılan çalışmalar, yalnız meşe türü için 4 milyon ha bir alanın enerji ormanı için uygun olduğunu göstermiştir.

2.4.2. Türkiye'de sera gazı salımlarının azaltılması amacıyla kullanılabilecek olan teknolojik, sosyo-ekonomik seçenekler

Lahey Konferansı'nda alınan karar gereğince, Türkiye'nin Ek II'den çıkarak İDÇS'ye bir Ek I ülkesi olarak taraf olma isteği, Kasım 2001'de Fas'ın Marakeş kentinde yapılan 7. Taraflar Konferansı'nda ilgili organlarca görüşülerek kabul edilmiştir. Bunun sonucunda, TK, Türkiye'nin isminin Ek II listesinden silinmesini kararlaştırmıştır. Bu yüzden, Türkiye'nin, kendisine en uygun politika araçları ile bunların uygulanmasını sağlayacak olan yasal önlemleri ve çok sektörlü/çok kullanıcılı programları, kalkınma hedeflerini, önceliklerini, özel koşullarını ve gereksinimlerini dikkate alarak bir an önce belirlemesi gerekmektedir.

Türkiye'nin gelecek 20 yılda sera gazı salımlarını azaltmak amacıyla yararlanabileceği yeni bilimsel ve teknik/teknolojik olanaklar, önlemler ve bazı makro politika araçları, Türkiye'nin gelecekteki olanakları ve gereksinimleri de dikkate alınarak aşağıda verilmiştir (IPCC, 2001c; Türkeş, 2001c):

1) Enerji temininde ve CO₂'nin fiziksel uzaklaştırılmasında yeni teknolojik seçenekler

- (i) Fosil yakıtlı elektrik üretiminde daha verimli, ekonomik ve temiz yakma teknolojilerinin kullanımının arttırılması:
- Atmosferik akışkan yatak ve basınçlı akışkan yatak teknolojileri,
- Birleşik çevrim gaz türbini (CCGT) teknolojisi,
- Bütüncül gazlaştırma birleşik çevrim (IGCC) teknolojisi,
- Kojenerasyon sistemleri,
- Yakıt hücreleri.
- (ii) Yenilenebilir enerji çevrim teknolojilerinden yararlanarak, yenilenebilir enerji kaynaklarının birincil enerji kaynakları içindeki payının arttırılması:
- Su gücü,
- Biyokütle çevrimi,
- Rüzgar gücü,
- Güneş enerjisi,
- Jeotermal enerji.
- (iii) Fosil yakıt kalitesinin iyileştirilmesi ve karbon içeriği daha düşük fosil yakıtlara geçiş;
- (iv) CO₂'nin fiziksel olarak uzaklaştırılması teknolojileri (CO₂'in yeraltında depolanmasıyla birlikte akışkan gazların ve yakıtların dekarbonizasyonu, vb.);
- (v) Üretimden, ulaştırmadan, çevrimden ve dağıtımdan kaynaklanan sera gazı salımlarının azaltılması.
- 2) Ulaştırma ve Taşımacılık Sektörü:
- (i) Hibrit elektrik motorlu araçlar;
- (ii) Hafif yapı malzemelerinin kullanımının arttırılması;
- (iii) Doğrudan enjeksiyonlu benzin ve dizel motorlarının yaygınlaştırılması;
- (iv) Otomobil yakıt hücrelerinin geliştirilmesi ve kullanımının yaygınlaştırılması;
- (v) Salımların tam yakıt döngüsüyle azaltması;

- (vi) Biyoyakıtların geliştirilmesi ve kullanımının yaygınlaştırılması;
- (vii) Deniz taşımacılığının verimliliğinin arttırılması ve yaygınlaştırılması;
- (viii) Kamyon taşımacılığında, turbo dizel motorlu kamyonların yaygınlaştırılması;
- (ix) Sürdürülebilir Ulaştırma Sistemleri:
- Ulaştırma ve kent içi trafik sistemlerinin, motorlu taşıtların daha az yakıt tüketmelerini sağlayabilecek biçimde düzenlenmesi; ve
- Kent içinde raylı toplu taşımacılığın, şehirlerarası yük ve yolcu taşımacılığında demiryollarının ve denizyollarının önemsenmesi ve uygulanması, vb.
 - 3) İmalat Sanayii:
 - (i) Yakıt dönüşümü;
 - (ii) Yenilenebilir enerjilerin kullanımının arttırılması;
 - (iii) Malzeme verimliliğinin iyileştirilmesi;
 - (iv) Enerji verimliliğinin ve tasarrufunun arttırılması.
 - 4) Tarım ve Ormancılık Sektörleri ve Enerji Ürünleri:
 - (i) Yönetim tekniklerinin güçlendirilmesi;
 - (ii) Ormanlaştırma ve yeniden ormanlaştırmanın arttırılması, ormansızlaştırmanın önlenmesi:
 - (iii) Bozulan tarım arazilerinin ve çayır/meraların onarılması;
 - (iv) Tarımsal ormancılığın özendirilmesini içeren gelişmiş orman, çayır/mera ve tarım arazisi yönetimi;
 - (v) Yeni teknolojilerin geliştirilmesi ve kullanımının arttırılması;
 - (vi) Ürün ve hayvan artık ve atıklarının değerlendirilmesi;
 - (vii) Toprak çözümlemelerini ve bitki gereksinimini dikkate alan azotlu gübre kullanımı;
 - (viii) Geviş getiren hayvanların ıslahı ve yem kalitesinin iyileştirilmesi;
 - (ix) Bilimsel ve teknolojik gelişmelere ve yeniliklere yönelik olumlu

davranış değişikliklerinin desteklenmesi.

- 5) Bina/Hizmet Sektörü:
- (i) Bütüncül Bina Tasarımı;
- (ii) Elektrikli alet ve araçlardaki enerji verimliliğinin arttırılması ve enerji kayıplarının en aza indirilmesi;
- (iii) Binalarda fotovoltaik sistemlerin yaygınlaştırılması ve kullanımının arttırılması.
- 6) Atık Yönetimi:
- (i) Katı atık (çöp) düzenli depolama alanlarının yönetimi;
- (ii) Geri dönüşüm ve yeniden kullanım;
- (iii) Çürütme;
- (iv) Yakma;
- (v) Atık su yönetimi;
- (vi) Önleyici çevre yönetimi.

BÖLÜM 3 KÜRESEL ISINMANIN ISI KAYBI HESAPLARIYLA İLİŞKİSİ

Gelişmekte olan ülkemizde değişen yaşam tarzı ve artan nüfus , beraberinde tüketimi eğer bu tüketim kontrolsüz ve bilinçsiz ise israfı da getirmektedir. Artan nüfusa paralel olarak barınma ihtiyacına çözüm arayışları hızlanırken, sosyo-ekonomik nedenlerle köyden şehirlere doğru artan göç; şehir nüfusu oranını 1927 yılı nüfus sayımı sonuçlarıyla tesbit edilen % 24'ten günümüzde çıkartmış ve özellikle şehirlerimizde hızlı yapılaşmaya neden olmuştur. Standartların, yönetmeliklerin ve her süreçte kontrolün eksikliği; çarpık gelişen şehirlerimizde, verimli tüketimden çok bilinçsiz enerji israfına neden olan binaların kullanımına ve hala aynı mantıkta devam edilen insasına olanak tanımaktadır. Enerjisinin yaklaşık % 85'ini ısıtma amaçlı tükettiği tahmin edilen bu binalarımız, 2002 yılındaki ülke toplam enerji tüketimi içindeki % 32'lik payı almışlardır.

Hızlanan yanlış yapılaşma ve gelişen şehirler, tüketilen enerji ve artan emisyonla birlikte mikro ölçekte çevre ve şehir atmosferi üzerinde etkili olup sıcaklıkları değiştirirken; makro ölçekte sera etkisiyle hızlanan küresel ısınma ve neden olduğu iklim değişiklikleri de sıcaklıkları etkilemektedir. İklim değişikliğinin neden olduğu dış ortam sıcaklıklarının yükselmesi ise, projelendirilen ısıtma tesisatı boyutları ile ısıtma amaçlı enerji tüketimi verimliliğini doğrudan etkileyen ve halen kullanmakta olduğumuz dış hesap sıcaklıklarının doğruluğunu düşündürtmektedir

3.1. Küresel Isınmanın Dış Hava Sıcaklıkları Üzerindeki Neticeleri

Esas yapılış gayesi hava şartlarına karşı koruma sağlamak olan ideal bir bina, hava şartlarındaki değişimlerin etkisini en aza indirecek ve iç şartları daima konfor bölgesinde tutacak şekilde yapılmalıdır. Bu durum, en düşük ilk maliyet ve mümkün olan en düşük işletme masraflarıyla gerçekleştirilmelidir. Bir ısıtma sisteminin

en kötü hava şartlarında dahi ihtiyaca cevap vermesi istenirken; sistem büyüklüğünü en kötü yerel iklim koşullarında gerçekleşen ısıtma yüküne eşit tasarlayarak, en yüksek kapasiteye sahip bir sistemin seçimi genellikle ekonomik olmamaktadır. Örneğin iç ortam sıcaklığını yüksek veya dış ortam sıcaklığını düşük tutarak ihtiyaca cevap verecek bir ısıtma sisteminin kurulması hem gereksiz hem de maliyet yükselticidir (Gülferi, 1979; Gültekin ve Kadıoğlu,1996; Ashrae, 1997).

Dış hesap sıcaklıkları, en kötü hava sartlarını da kapsayacak derecede düsük olmalı, fakat çok kısa bir müddetle rastlanan düşük sıcaklıklardan da seçilmemelidir. Çünkü meteoroloji kayıtları en şiddetli iklim koşullarının her yıl tekrarlanmadığını göstermektedir. Eğer ısıtma sistemleri en şiddetli iklim koşulları icin tasarlanırsa, sistemin çalışma süresinin büyük bir bölümünde şüphesizdir. İsitma sisteminin en kapasite fazlalığı olacağı şidetli iklim koşullarında kısa sürelerle istenilen iç sıcaklığı sağlayamaması, çoğu kez kritik önem taşımamakta, fakat ticari uygulamalarda veya endüstriyel bir üretim sırasında iç ortam sıcaklığının denetimi gerekli olabilmektedir. Bu bakımdan her yapı için özel gereksinimler dikkatle değerlendirilmelidir. (Gülferi, 1966; Ashrae, 1997).

Günümüzde sıcaklık verileri pek çok yerde, farklı şekillerde ve değişik amaçlar için kullanılmaktadır. Bunların başında da ısıtma ve soğutma amaçlı kullanımlar gelmektedir. Bir iç ortamda konforun sağlanması, binanın içinde ve dışında hüküm süren atmosferik şartların iyi bir şekilde yorumlanmasına bağlıdır.

Konutların ve endüstri alanlarının soğuk havalarda ısıtılması ve sıcak havalarda soğutulması için ihtiyaç duyulan enerji, yakıt miktarı ve projelendirilen tesisat büyüklüğü, hava sıcaklığı ile orantılıdır (Gültekin, 1995; Gültekin ve Kadıoğlu, 1996).

Isıtma sistemlerinin projelendirilmesi de iklim verilerine dayanmaktadır. Herhangi bir ısıl sistemi boyutlandırmak ve cihaz seçimlerini yapabilmek için öncelikle ısı yükünü belirlemek gerekmektedir. Burada söz konusu olan ısı yükü; pik yük adını

verdiğimiz, sistemin karşılaşabileceği en büyük yük olup, ısıtmada tamamen söz konusu yerdeki iklim şartlarına bağlıdır. İdeal ısıtma sistemi ısı kaybına denk gelecek yeterli 1s1yı sağlamalıdır. Bu nedenle "Hesap Değerleri" gerçekte karşılaşılan "İklim Şartlarına" uymalıdır. Geçmişteki uzun yıllara ait iklim incelenmesi ile istatistiksel olarak tasarım veya hesap iklim Değerleri saptanırken; ısıtma sisteminin projelendirilmesine dayandırılacak dış sıcaklığın seçiminde, binanın bulunacağı yerde gerçekleşen kış sıcaklıklarının çalışılması gereklidir (Gülferi, 1979; Demirbilek ve Yener, 1996; Arısoy, 1998). Örneğin ısıtma yükü hesabı yapılıyorsa, geçmiste söz konusu yörede kaydedilen en düsük sıcaklık değerini esas almak, çok büyük bir 1s1 kaybı değerinin gözönüne alınması anlamına gelmektedir. Sistem bu ısı yüküne göre boyutlandığında; bütün ömrü boyunca muhtemelen bu en düşük sıcaklık değeri ile bir daha karşılaşmayarak hiç yetersiz kalmayacak, buna karşılık kullanılmayan çok büyük kapasite fazlalığına neden olacaktır. Tesis buna bağlı olarak tasarım kapasitesinde çalışmayarak veya kısa aralıklarda çalışarak, süreci verimsiz kılacaktır. Ömrünü düşük kapasitede çalışarak geçirecek olan böyle bir sistem; hem yatırım maliyeti olarak cok pahali bir sistem yapımı anlamına gelecek, hem de işletme (yakıt veya enerji tüketimi) maliyetlerinin yüksek olmasına neden olacaktır.Çünkü genellikle kapasitelerde anma verimlerinin daha altında düşük sistemler, düşük verimle çalışmaktadır (Gülferi, 1979; Demirbilek ve Yener, 1996; El-Shaarawi ve Al-Masri, 1996).

Eğer ısıtma tesisleri sıkça gerçekleşen şartlar için projelendirilirse, tesisler projelendirme kapasitesinde daha sık çalışacaktır. Ekstrem dış şartlar olduğunda hesap sıcaklıklarını sağlayamayabileceklerdir, fakat bu tür bu tesisler ic gerçekleşmelerin çok sık olmayacağına ve olabilecek konforsuz iç şartların süresinin kısa olacağına dikkat edilmelidir. Ekstrem durumu aşan bazı hallerde binanın ısı kaybının ısıtma sistemince karşılanamaması ve bu seyrek durumlarda iç sıcaklığın arzu edilen sıcaklığın biraz altına düşmesi kabullerine dayanarak projelendirmek çok daha makuldur. Kaynak araştırmasında, bu sıcaklığın yaklaşık tanımının birçok araştırmacı tarafından yapıldığı görülmektedir. Kış hesap sıcaklığı; binalar için ısıtma sisteminin projelendirilmesinde kullanımının sağlanması için, ortalama bir kış boyunca yeterli sıklıkta tekrarlanan en soğuk sıcaklık olarak tanımlanmaktadır. Bu sıcaklığın 1sı kaybı hesaplamalarında kullanılarak, bu tür sistemlerin normal işlemlerde üstesinden gelebileceği söylenebilir (Demirbilek ve Yener, 1996).

3.2.Dış Hava Sıcaklığı Hesaplama Yöntemleri

- Kış dış hesap sıcaklığı için; en düşük sıcaklığın veya uzun seneler için en düşük sıcaklıkların ortalamasının alınması.
- Kaydedilen en düşük sıcaklığın 5-8°C artırılması , Ocak ortalamasının 13.8-19.4°C azaltılması, günlük ortalama sıcaklıkların muhtemel tekrarlarına dayanmasıdır.
- Ocak ayı veya en düşük ayın saatlerinin % 1.0, % 2.5, % 5 ve % 10'unda veya altında rastlanan dış sıcaklık değerinin kullanılması, aylık en düşük kuru termometre sıcaklığı ortalamasının seçimi, başvurulan çeşitli yöntemlerdir. (Gülferi,1966; Demirbilek, 1992; El-Shaarawi ve Al-Masri, 1996)

3.2.1.Amerikan hesap yöntemi

- Amerikan yönteminde, kış için dış hesap sıcaklığı, her şehir ya da meteoroloji istasyonu için iki frekans seviyesinde belirlenmektedir. Temsil eden sıcaklıklar; kuzey yarımkürede Aralık, Ocak, Şubat (2160 saat), güney yarım kürede Haziran, Temmuz, Ağustos aylarında toplam gün sayısının % 99 veya % 97.5'una eşit olmalı veya aşmalıdır.
- -Normal bir kışta % 99 değerinin altında veya eşit 22 saat, % 97.5 değerinin altında veya eşit 45 saat vardır.
- Kanada şehirleri veya meteoroloji istasyonları için bu iki hesap sıcaklığı, Kanada'nın en soğuk ayı olan Ocak ayı referans alınarak hesaplanmaktadır. Genellikle dış hesap sıcaklığı % 97.5'a denk gelen değerdir. Eğer bina masif, camları az, iç ısı yükü büyük ve sadece gündüzleri kullanılıyorsa, belirli şartlar altındaki normal binalar için gerekli dış hesap sıcaklıkları % 2.5 risk ile seçilmektedir.

Bilakis eğer bina düşük ısı kapasiteli hafif yapı elemanları ile yapılmış ve yeterli yalıtılmamışsa, idare eder ısıtma sistemi ve orta büyüklükte cam yüzey alanı varsa, ısıl kütlesi düşük, ısı yükü az ve iç hesap sıcaklıkları yüksek hassasiyet ile sabit tutulması isteniyorsa, hacim sıcaklık kontrolü kritiktir veya ekstrem sıcaklıkların ortalamaları da % 1 risk değeri kullanılmaktadır (Gülferi,1966; Houghton, 1985; Demirbilek, 1992; El- Shaarawi ve Al-Masri, 1996; Kuehn, Ramsey ve Threlkeld, 1998).

- Önerilen bir diğer yöntemde de; hesap sıcaklığı bölgesinde ısıtma mevsimi boyunca meydana gelmiş bulunan sıcaklıkların ve aynı müddet içerisindeki derece gün sayılarının yüzde kümülatif tekrarları (%0.5,%1.5,%2.5) arasındaki ilişkiler incelenerek, diğer istasyonlar için kış dış hesap sıcaklıkları hesaplanmaktadır. % 0.5, % 1.5 ve % 2.5 risk için tesbit edilen dış sıcaklıkların değerleri, derece gün sayıları ve aynı risk değerleri gösterilerek hazırlanan dağılım diyagramında noktalar kullanılarak elde edilen eğri ve denklem, diğer istasyonlar için kış dış hesap sıcaklıklarının derece gün sayıları yardımıyla hesaplanmasında kullanılmaktadır. (Gülferi, 1966).
- Daha önceleri tasarım şartlarının hesaplanmasında kullanılan kış ayları ülkelerin bulundukları yere bağlı olarak değişmekte; ABD'de 3 ay kış dönemine, Kanada'da Ocak aylarına, uluslararası yerleşim noktalarında ise en soğuk 3 aya dayanmaktadır. Ancak ülkelere ve ülke içinde farklı bölgesel iklim alanlarına bağlı olarak farklı değerler belirlenebilmektedir. Hesap şartlarının ülke veya genel şartlarından bağımsız olarak herhangi bir yerdeki aynı yıllık tekrar iklim olasılığını temsil etmesi amacıyla, daha önce kış ayları boyunca tekrar etme sıklıkları 99 ve 97.5 yüzde değerleri yıllık % 99.6 ve % 99'a denk gelecek şekilde değiştirilmiştir. Örneğin kış için % 99.6 değeri, yıldaki 8760 saat içinde 35 saat altına inilen sıcaklık değeri anlamını taşımaktadır. Bu değişiklik herhangi bir yerde, mevsimsel ekstrem sıcaklık ve rutubet dağılımlarından bağımsız, aynı meydana gelme (tekrar etme) olasılığını temsil edecek tasarım şartlarını sağlamak için yapılmıştır (Ashrae, 1997).

- Amerikan yöntemine göre hesap yapabilmek için, meteoroloji verilerinin saatlik tablolar halinde kaydedilmesi gerekiyor. Maalesef meteoroloji istasyonlarımızda saatlik olarak ölçülen sıcaklıklar gelişi güzel kaydedilmekte ve herhangi bir tablonun altında toplanmamaktadır. Ancak bununla ilgili çeşitli çalışmalarla tablolar oluşturan bilim adamları olmuştur. Prof.Dr.Arif İleri'nin bilgisayar simülasyon programları yardımıyla oluşturduğu sıcaklık binleri tabloları mevcuttur.Bu tabloların geçerliliğini yayınladığı makalelerle kanıtlamıştır.(Arif İleri,1998)
- Amerikan yöntemine meteorolijiden aldığımız güncel verilerden de yararlanarak birkaç örnek verelim.

Tablo 3.1.Kuru termometre sıcaklık binleri (Arif İleri, 1998)

Yer	Vardiya		Kuru Termometre Sıcaklık Binleri																					
		-27	-24	-21	-18	-15	-12	-9	-6	-3	0	3	6	9	12	15	18	21	24	27	30	33	36	39
¥	08:00_16:00	0	0	0	0	0	0	0	0	0	73	304	471	358	344	331	311	463	554	56	16	4	0	0
Zonguldak	16:00_08:00	0	0	0	0	0	0	0	0	10	221	637	759	706	524	683	752	832	311	29	11	0	0	0
Zon	Toplam	0	0	0	0	0	0	0	0	10	294	941	1230	1064	868	1014	1063	1295	865	85	27	4	0	0
_	08:00_16:00	0	0	0	0	0	0	0	0	1	10	143	439	414	347	369	373	415	426	327	21	0	0	0
Samsun	16:00_08:00	0	0	0	0	0	0	0	0	4	73	524	910	644	579	849	706	727	387	67	5	0	0	0
Sa	Toplam	0	0	0	0	0	0	0	0	5	83	667	1349	1058	926	1218	1079	1142	813	394	26	0	0	0
_	08:00_16:00	0	0	0	0	0	0	0	0	5	26	151	392	432	390	371	332	388	496	297	5	0	0	0
Trabzon	16:00_08:00	0	0	0	0	0	0	0	0	27	75	457	874	708	571	684	668	870	495	44	2	0	0	0
	Toplam	0	0	0	0	0	0	0	0	32	101	608	1266	1140	961	1055	1000	1258	991	341	7	0	0	0
	08:00_16:00	0	0	0	0	0	0	2	29	45	132	215	346	326	255	317	321	351	317	288	237	89	15	0
Edirne	16:00_08:00	0	0	0	0	0	0	18	70	142	362	606	660	577	624	584	746	547	288	149	77	22	3	0
Щ_	Toplam	0	0	0	0	0	0	20	99	187	494	821	1006	903	879	901	1067	898	605	437	314	111	18	0
=	08:00_16:00	0	0	0	0	0	0	0	0	25	31	178	402	433	329	273	311	390	408	382	119	4	0	0
istanbul	16:00_08:00	0	0	0	0	0	0	0	0	52	75	493	843	760	545	632	727	825	415	98	9	1	0	0
İst	Toplam	0	0	0	0	0	0	0	0	77	106	671	1245	1193	874	905	1038	1215	823	480	128	5	0	0
<u>8</u>	08:00_16:00	0	0	0	0	0	0	0	8	13	44	118	275	461	379	326	312	314	379	369	241	46	0	0
Çanakkal e	16:00_08:00	0	0	0	0	0	0	0	21	43	138	420	711	811	606	629	607	757	448	195	80	9	0	0
ပိစ	Toplam	0	0	0	0	0	0	0	29	56	182	538	986	1272	985	955	919	1071	827	564	321	55	0	0
	08:00_16:00	0	0	0	0	0	1	1	2	31	84	190	327	444	316	244	278	320	360	317	288	70	12	0
Bursa	16:00_08:00	0	0	0	0	0	1	3	7	102	279	514	725	785	576	560	705	615	337	161	85	19	1	0
ă	Toplam	0	0	0	0	0	2	4	9	133	363	704	1052	1229	892	804	983	935	697	478	373	89	13	0
	08:00_16:00	0	0	0	0	0	11	14	52	179	279	287	297	217	171	210	305	367	350	291	167	83	5	0
Ankara	16:00_08:00	0	0	0	0	5	28	74	144	393	557	619	493	483	573	592	594	426	249	141	75	28	1	0
A	Toplam	0	0	0	0	5	39	88	196	572	836	906	790	700	744	802	899	793	599	432	242	111	6	0
	08:00_16:00	0	0	0	0	2	10	49	114	187	324	374	235	268	238	214	280	270	357	278	76	9	0	0
Van	16:00_08:00	0	0	0	0	41	82	177	371	448	629	501	542	490	451	500	451	405	226	123	32	6	0	0
>	Toplam	0	0	0	0	43	92	226	485	635	953	875	777	758	689	714	731	675	583	401	108	15	0	0
·-	08:00_16:00	0	0	0	0	6	14	52	107	199	213	221	258	240	258	309	322	368	310	242	117	40	9	0
ayseri	16:00_08:00	0	0	0	9	43	67	183	206	454	534	544	560	621	695	579	420	253	148	96	44	13	6	0
ξ.	Toplam	0	0	0	9	49	_	235	313		747	765	818	861	953	888	742	621	458	338	161	53	15	0
œ	08:00_16:00	0	0	0	0	1	5	20	92	244	328	182	151	189	192	247	289	303	306	287	239	156	43	11
Malatya	16:00_08:00	0	0	0	0	5	25	103	280	464	485	344	358	389	524	531	485	563	386	247	169	95	17	5
×	Toplam	0	0	0	0	6	30	123	372	708	813	526	509	578	716	778	774	866	692	534	408	251	60	16
	08:00_16:00	0	0	0	0	0	0	0	6	22	136	319	366	245	200	241	258	216	200	244	217	287	264	64
Siirt	16:00_08:00	0	0	0	0	0	0	0	33	96	392	722	534	427	528	509	385	384	473	490	244	148	95	15
Ö	Toplam	0	0	0	0	0	0	0	39	118	528	1041	900	672	728	750	643	600	673	734	461	435	359	79
	08:00_16:00	0	0	0	0	0	0	0	0	1	14	65	190	235	382	374	300	294	356	410	350	259	55	0
zmir	16:00_08:00	0	0	0	0	0	0	0	0	10	65	235	469	602	769	592	572	661	714	492	230	59	5	0
İzr	Toplam	0	0	0	0	0	0	0	0	11	79	300	659	837	1151	966	872	955	1070	902	580	318	60	0

Tablo 3.1.Kuru termometre sıcaklık binleri devamı (Arif İleri, 1998)

			Kuru Termometre Sıcaklık Binleri									\neg												
Yer	Vardiya	-27	-24	-21	-18	-15	-12	-9	-6	-3	0	3	6	9	12	15	18	21	24	27	30	33	36	39
	08:00_16:00	0	0	0	0	1	12	48	125	253	198	209	242	215	203	319	308	349	354	287	106	42	14	0
Konya	16:00_08:00	0	0	0	0	7	51	159	288	493	418	469	534	545	582	663	539	341	210	112	43	19	2	0
Š	Toplam	0	0	0	0	8	63	207	413	746	616	678	776	760	785	982	847	690	564	399	149	61	16	0
œ	08:00_16:00	0	0	0	0	0	0	0	0	5	31	133	293	338	206	243	207	229	221	258	323	312	304	175
Şanlıurfa	16:00_08:00	0	0	0	0	0	0	0	0	35	176	399	735	543	422	401	420	443	534	550	417	205	142	51
Şa	Toplam	0	0	0	0	0	0	0	0	40	207	532	1028	881	628	644	627	672	755	808	740	517	446	226
kır	08:00_16:00	0	0	0	0	0	0	1	6	35	76	196	356	296	239	284	246	146	192	231	313	280	261	127
Diyarbakır	16:00_08:00	0	0	0	0	0	1	24	102	197	290	628	700	554	432	409	445	441	436	319	226	153	92	26
Ö	Toplam	0	0	0	0	0	1	25	108	232	366	824	1056	850	671	693	691	587	628	550	539	433	353	153
	08:00_16:00	0	0	0	0	0	0	0	0	0	0	24	81	172	347	453	450	278	219	447	449	230	117	18
Antalya	16:00_08:00	0	0	0	0	0	0	0	0	0	4	228	531	807	697	684	578	620	640	476	163	35	8	4
An	Toplam	0	0	0	0	0	0	0	0	0	4	252	612	979	1044	1137	1028	898	859	923	612	265	125	22
	08:00_16:00	0	0	0	0	0	0	0	0	0	5	25	100	209	314	352	388	288	289	397	432	378	89	16
Adana	16:00_08:00	0	0	0	0	0	0	0	0	1	34	116	369	773	645	648	614	615	774	616	197	65	7	1
Ad	Toplam	0	0	0	0	0	0	0	0	1	39	141	469	982	959	1000	1002	903	1063	1013	629	443	96	17
	08:00_16:00	0	0	0	0	0	5	6	39	105	294	331	319	287	271	244	346	363	289	203	141	38	4	0
Çorum	16:00_08:00	0	0	0	0	0	16	70	199	435	695	515	593	705	669	660	418	267	128	72	25	7	1	0
8	Toplam	0	0	0	0	0	21	76	238	540	989	846	912	992	940	904	764	630	417	275	166	45	5	0
Sivas	08:00_16:00	0	0	0	3	8	24	95	161	286	237	234	194	237	280	289	299	289	287	209	109	37	7	0
55	16:00_08:00	0	0	0	15	46	106	228	449	495	445	519	515	706	612	563	349	208	130	59	23	6	1	0
	Toplam	0	0	0	18	54	130	323	610	781	682	753	709	943	892	852	648	497	417	268	132	43	8	0
⊆	08:00_16:00	0	0	0	0	6	9	23	51	130	232	276	323	294	293	251	246	295	316	272	185	73	10	0
Erzincan	16:00_08:00	0	0	0	0	19	45	50	165	477	600	542	559	593	535	510	516	398	255	134	63	14	0	0
Er	Toplam	0	0	0	0	25	54	73	216	607	832	818	882	887	828	761	762	693	571	406	248	87	10	0
E	08:00_16:00	15	21	39	46	69	95	127	233	234	222	189	222	237	223	265	305	320	266	137	15	0	0	0
Erzunm	16:00_08:00	69	87	103	114	179	169	256	410	394	521	522	562	551	503	431	272	158	95	41	4	0	0	0
Er	Toplam	84	108	142	160	248	264	383	643	628	743	711	784	788	726	696	577	478	361	178	19	0	0	0
	08:00_16:00	1	5	21	34	58	92	187	245	254	189	219	213	288	271	317	309	287	211	76	8	0	0	0
ē	16:00_08:00	12	36	96	104	177	270	405	359	342	377	475	596	722	643	417	217	131	65	22	2	0	0	0
Kars	Toplam	13	41	117	138	235	362	592	604	596	566	694	809	1010	914	734	526	418	276	98	10	0	0	0

Tablo 3.1. 'den bakacak olursak, Zonguldak için 0 °C ve –2 °C aralığında toplam 294 saat sıcaklıklar ölçülmüştür. Bildiğimiz gibi % 97.5 risk değerinin altında 3 aylık kış dönemi içinde 45 saat vardır. -3 °C değerinin altında ise ölçülen sıcaklık saatlerinin toplamı 10 saattir. Bu toplam % 97.5 risk değeri olan 45 saatin altındadır.Zonguldak'ın kış için dış sıcaklık değeri 0 °C ve –2 °C aralığında olmalıdır.Meteoroloji verilerini incelersek Zonguldak için -1 °C nin en çok kaydedilen sıcaklık olduğunu görmekteyiz.TS 2164'ün önerdiği değer ise -3 °C dir.

Samsun için inceleme yaparsak, 0 °C ve -2 °C aralığında toplam 83 saat ölçüm yapılmıştır. -3 °C değerinin altında ise sadece 5 saat ölçüm yapılabilmiştir.Trabzon 'da da durum benzerdir..Bu iki il içinde dış hava sıcaklık değerinin 0 °C ve -2 °C arasında en çok görülen değerin seçilmesi gerektiği sonucu çıkmaktadır. Samsun için -0.8 °C , Trabzon için 0 °C nin en çok kaydedilen sıcaklık olduğu gözlenmektedir.TS 2164 te bu iki ilimiz içinde önerilen dış hava sıcaklığı -3 °C dir.

3.2.2. Alman hesap yöntemi

-Alman metodu olan DIN 4108'de ve benzer şekilde DIN 4701'e uygun ısı kaybı hesabında, bir yerin dış hava sıcaklığı için 20 yıllık zaman dilimi içinde on kez düşülen veya altına inilen en düşük iki günlük ortalama hava sıcaklığı değeri esas alınmaktadır. Isı yükü hesaplamalarında bu sıcaklık, yapı türünün ağırlığına bağlı olarak belirlenen dış sıcaklık düzeltmesi 2 °C ve ya 4 °C artırılarak kullanılmaktadır. (DIN, 1982; VDI, 1983)

-Özellikle dış hesap sıcaklığı seçiminde belirli riskleri tasarımcıya yükleyen ve alınan bu risk yüzdesini gösteren Amerikan yöntemiyle, sıcaklık aralığı için daha katı sınırlar uygulayan Alman yöntemi kıyaslandığında; seçimde her ikisi de yapı ağırlığını gözönüne alırken, Alman yönteminde tanımlanmış bağıntılarla ve bunların sayısal sonuçlarıyla daha belirgin bir şekilde dış hesap sıcaklığının ve yapı ağırlığına göre düzeltme değerlerinin tanımlı olduğu, oysa Amerikan yönteminde yapılması gerekli kabullerin ucu açık sözlerle ifade edildiği, saatlık sıcaklıkları kullanan Amerikan yöntemine kıyasla Alman yönteminin;

günlük sıcaklık ortalamalarından dış hesap sıcaklıklarını türettiği ve 12 yıllık gözlem süreli Amerikan yöntemine kıyasla, 20 yıl gibi 8 yıl daha uzun bir gözlem süresi ele aldığı görülecektir.Her ikisi de ısıtma süresi uzunluğunu dikkate almamaktadır. (Kemal Gani Bayraktar, 2003)

- Türkiye'de dış hava sıcaklık değerlerinin uzun yıllara ait verileri bulunduğundan Alman yöntemine göre uygulama yapmak mümkündür.Bu yöntemi de örneklerle irdeleyelim.
- -Meteoroloji genel müdürlüğünden 1986-2006 yılları arası ölçülen en düşük sıcaklık değerleri alındı ve bu değerler tablolara dönüştürüldü. Adıyaman ili için Alman yöntemini uygulayalım.
- Tablo 3.2. yıllara göre Adıyaman iline ait meteoroloji müdürlüğü tarafından ölçülmüş endüşük sıcaklık değerleri görülmektedir.Daha açıklayıcı olması için bu değerlerden bir grafik elde edelim.

Tablo 3.2. Adıyaman için ölçülmüş yıllara göre en düşük sıcaklık değerleri (°C)

Yıl	Sıcaklık(℃)
1986	-3,6
1987	-4,8
1988	-4,3
1989	-6,2
1990	-5
1991	-6,8
1992	-8
1993	-6,5
1994	-6
1995	-4,1
1996	-2,7
1997	-7,9
1998	-3,1
1999	-2,8
2000	-7,4
2001	-5
2002	-8,4
2003	-4
2004	-7,4
2005	-3,8
2006	-6,3

Şekil 3.1. Adıyaman iline ait 1986-2006 yılları arası ölçülen en düşük sıcaklıklar

Bu grafiktende gördüğümüz gibi -7°C üstünde 16 değer vardır.Alman yöntemine göre 20 yılda en az 10 kez altına düşülen değer olarak rahatlıkla seçilebilir.TS 825 izolasyon değerleri göz önüne alınarak +4°C düzeltme katsayısı eklendiğinde, Adıyaman için Alman yöntemine göre dış hava sıcaklığı -3°C olmaktadır.TS 2164 Adıyaman ili için dış hava sıcaklığı olarak -9°C önermektedir.-9°C Adıyaman 'da son 20 yılda en düşük değer olarak bile kaydedilememiştir.

Şekil 3.2. Hakkari iline ait 1986-2006 yılları arası ölçülen en düşük sıcaklıklar

Bu grafiktende gördüğümüz gibi -20°C üstünde 17 değer vardır.Alman yöntemine göre 20 yılda en az 10 kez altına düşülen değer olarak rahatlıkla seçilebilir.TS 825 izolasyon değerleri göz önüne alınarak +4°C düzeltme katsayısı eklendiğinde, Hakkari için Alman yöntemine göre dış hava sıcaklığı -16°C olmaktadır.TS 2164 Hakkari ili için dış hava sıcaklığı olarak -24°C önermektedir.-24°C Hakkari'de son 20 yılda en düşük değer olarak bile kaydedilememiştir.

Alman yöntemini meteorolojiden verilerini aldığımız 82 istasyona uyguladığımızda çıkan referans değerler 20 yılın aritmetik ortalaması olarak gözlenmektedir. Yani Alman yöntemi başka bir değişle aritmetik ortalamaya dayanmaktadır. Türkiye'nin geneline yayılan bu çalışmada ayrıca aritmetik ortalmalar alınarak Alman ve Amerikan yöntemleriyle kıyaslanmıştır. Sonuçlar güncel veri olarak tablolar halinde sunulmuştur.

3.3. Küresel Isınmanın Isı Kaybına Etkisi

Isıtma konusunda Türk Standartları'nın henüz hazırlanmamış olması dolayısıyla muhtelif teşekküllerin ısıtma projelerinde kendilerinin kabul etmiş oldukları kurallara uyulmasını arzu etmeleri ve bazı hallerde bu kuralların birbirleriyle çelişmesi

problemine çözüm bulunması amacıyla, Makina Mühendisleri Odası İstanbul Şubesi'nde oluşturulan tesisat komisyonu; mevcut kuralları, standart tasarılarını ve yabancı standardları gözönüne alarak, "Kalorifer Tesisatı Proje alandaki Hazırlama Esasları''nı tespit etmiş ve Odanın 42 numaralı yayını olarak 1970 yılında yayınlamıştır. Halen kullanılmakta olan Türkiye'de geçerli iklim verileri olarak kış şartları için (-27°C/+3°C) aralığında değişen tek bir dış hava kuru termometre hesap sıcaklıklarının yer aldığı bu yayında; dış sıcaklık derecelerinin, bölgenin iklim şartları gözönünde bulundurularak Bayındırlık Bakanlığı tarafından hazırlandığı belirtilmektedir. Bu çalışma esas alınarak hazırlanmış Türk standart ve esasları olan "Kalorifer Tesisatı Projelendirme Kuralları" ise 1984 tarihlidir. 1968 tarihli çalışmada önerilmiş; % 1.5 risk faktörüyle hesaplanmış olduğu anlaşılan verilerin belirlendiği çalışmalar ise 33 yıl öncelerine dayandığından, güncelliği tartışma konusudur. (Narter vd., 1968; MMO, 1970; TS,1984)

Küresel ve yerel etkenler rol oynayarak, dünyanın ve ülkemizin iklimi değişmiş ve değişmektedir. Belirli yörelerde dış sıcaklığın daha farklı olması gerektiği savunulduğundan; resmi çerçevenin dışına çıkıp, insiyatif kullanabilen pek çok proje mükellifi ve yapımcı, kendi tecrübelerine dayanarak standardın dışında iklim değerleri kullanmaktadır. Öte yandan iklim değişikliğine ilave olarak özellikle büyük şehirlerde ısı adaları oluşmakta ve şehir içinde bölgeden bölgeye de iklim şartları önemli farklılıklar göstermektedir. (Kemal Gani Bayraktar, 2003)

3.4. Önerdiğim Tespit Yöntemi

Diğer dış hesap sıcaklığı hesap yöntemlerine kıyasla 20 yıllık zaman dilimi içinde (1986-2006 yılları arası için) her yıl için kaydedilmiş en düşük hava sıcaklıklarının ,ilk günü 20 yıl önceki gün kabul ederek 20 inci yılın sonuna kadar olan bütün sıcaklık değerleri toplanır ve genel toplam 21'e bölünerek aritmetik ortalama alınmış olur.Bazı illerin 2006 sıcaklık değerleri eksik olduğundan 1986-2005 yılları arası ölçülen toplam 20 değerden elde edilen genel toplam 20'e bölünür.Aritmetik ortalama alınarak elde edilen sıcaklık değerine , yapının izolasyon durumu göz önüne alınarak +4°C düzeltme değeri eklenir. Böylece dış hava sıcaklık değeri bulunmuş olur.

Bunu bir örnekle açıklayalım. Malatya meteoroloji istasyonunda 1986-2006 yılları arasında ölçülen endüşük sıcaklık değerleri aşağıdaki tablodadır.

Tablo 3.3. Malatya için ölçülmüş yıllara göre en düşük sıcaklık değerleri (°C)

1986	-8,2
1987	-10,5
1988	-8,4
1989	-9,6
1990	-13,7
1991	-14,7
1992	-14,4
1993	-17
1994	-13,2
1995	-11
1996	-8,4
1997	-13,7
1998	-10
1999	-7
2000	-14,6
2001	-12
2002	-19
2003	-12,4
2004	-11,4
2005	-8,2
2006	-10,6

 t_1 = (-8,2 °C) 1986 yılında ölçülen en düşük sıcaklık, t_2 = (-10,5 °C) 1987 yılında ölçülen en düşük sıcaklık, t_3 =(-8,4 °C) 1988 yılında ölçülen en düşük sıcaklık, t_4 = (-9,6 °C) 1989 yılında ölçülen en düşük sıcaklık, t_{21} = 2006 yılında ölçülen en düşük sıcaklık (-10,6 °C)

$$t_{ortalama} = \frac{t_1 + t_2 + t_3 + t_4 + \dots + t_{21}}{21}$$
, $t_{ortalama} = -11,81$ °C (Malatya için)

Elde edilen $t_{ortalama}$ =(-11,81 °C) değeri, 20 yıl içinde kaydedilmiş en düşük sıcaklık değerlerinin aritmetik ortalamasıdır. Yapıların izolasyonlu olma zorunluluğunu getiren TS 825'in, 2000 yılından itibaren zorunlu hale gelmesinden sonra Alman yönteminde de belirtilen +4 °C düzeltme değeri bu ortalamaya eklenir.Göztepe istasyonu için yeni dış hava sıcaklık değeri , $t_{dış}$ =(-11,81 +4)°C =(-7,81°C) \cong (-8°C) olur.

Malatya istasyonu için TS 2164, Alman yöntemi, Amerikan yöntemi ve önerilen yeni yöntemin sonuçlarını şekil 3.3. de görelim.

Şekil 3.3. Malatya iline ait 1986-2006 yılları arası TS 2164, Alman Yöntemi, Amerikan Yöntemi ve önreilen yöntemin karşılaştırılması

TS 825 şartlarını sahip bir yer için 20 yılın aritmetik ortalaması alınarak oluşturulmuş yeni sıcaklık değerleri ve alman yöntemi kullanılarak bulunmuş yeni değerler Tablo 3.4. de verilmiştir.

Türkiye'de bulunabilen sıcaklık kayıtlarından, ülke genelinde yaygın olarak yıllardan beri ölçülmekte olan ve geçmişe dönük uzun süreli verilerine ulaşılabilen kaydedilmiş en düşük sıcaklıkların kullanılabilmesinden hareketle

geliştirilen bu yöntem; 20 yıllık bir süre içinde pik sıcaklıklardan arındırılmış çok farklı iklimlerin yaşandığı ve farklı ısıtma sürelerinin hüküm sürdüğü ülkemizde, belirli ve sabit tekrar sayısının gösterdiği sıcaklık seçimi yerine aritmetik ortalamanın referans alınması sonucunda elde edilen dış hesap sıcaklığının 4 °C arttırılarak yeni sıcaklığın seçimine olanak sunmaktadır.(önerilen yöntem)

3.5. Sıcaklıkların Karşılaştırılması

Türkiye'nin geneline yayılmış Devlet Meteoroloji İşleri Genel Müdürlüğü'ne bağlı 82 meteoroloji istasyonunun; 1986 – 2006 dönemi kaydedilmiş en düşük hava sıcaklığı verilerinin (°C) birimi değerlerinden yararlanılmış; Alman yöntemi ve önerilen yöntem kullanılarak, yeni dış hesap sıcaklıkları belirlenmiştir. Hesaplanan dış hesap sıcaklıklarının 1970 öncesi önerilmiş dış hesap sıcaklıkları ile kıyaslanması; Alman yöntemi sonuçlarıyla istasyonların % 89'nında, önerilen dış hesap sıcaklığı hesap yöntemi sonuçlarıyla da istasyonların % 90'unda yeni kış dış hesap sıcaklıklarının arttığı sonucuna varılmaktadır. Ağrı, Ardahan, Balıkesir, Bartın, Bayburt, Erzurum, Karaman, Muş' ta ise dış hesap sıcaklıkarının düştüğü gözlenmiştir.

Tablo 2.1.'den de görüleceği üzere, önerilen yöntemle hesaplanan yeni dış hesap sıcaklıkları,halen kullanılan dış hesap sıcaklıklarımıza kıyasla; örneğin önerilen yöntemle hesaplanan yeni dış hesap sıcaklıkları; İstanbul'da 1°C'ye, İzmir'de +3°C'ye, Elazığ'da -8°C'ye, Giresun'da +3°C'ye, K.maraşta -1°C'ye, Adıyman'da ise -1°C'ye yükselmektedir. Yeni dış hesap sıcaklıklarının yönetmelik ve standartlara girmesi ile birlikte, tesisat ilk yatırım giderlerinde yapılagelmekte olan gereksiz harcamalar ve milli servet kayıplarının da önüne geçilmiş olacaktır.

Tablo 3.4. Önerilen yöntemle tespit edilen yeni dış hesap sıcaklıklarının halen kullanılan sıcaklıklardan farkı ve meteoroloji istasyonlarındaki dağılımı

İL	Boylam	Enlem	Yeni Yapılacak	Nüfusu	Ölçüm Aralığı				Amerikan Y.	St. Sapma
			Bina Sayısı		ΥīI	°C	°	°C	°C	
Adana	35.18	36.59	2410	1.849.478	1986-2006	0	2	2	2	1,00
Adapazarı	30.25	40.47	2057	756.168	1986-2006	-3	-1	-2		1,00
Adiyaman	38.17	37.45	372	623.811	1986-2006	-9	-1	-3		4,16
Afyon	30.32	38.45	1805	812.416	1986-2005	-12	-10	-11		1,00
Ağrı	43.08	39.31	147	528.744	1986-2006	-24	-29	-29		2,89
Aksaray	34.03	38.23	720	396.084	1986-2006	-15	-12	-11		2,08
Amasya	35.51	40.39	333	365.231	1986-2006	-12	-7	-9		2,52
Ankara	32.53	39.57	8326	4.007.860	1986-2006	-12	-8	-11	-9,7	1,73
Antakya	36.07	36.15	1217	581.341	1986-2005	0	2	2	1,8	0,97
Antalya	30.42	36.53	5911	1.719.751	1986-2006	3	3	4		0,58
Ardahan	42.42	41.08	52	133.756	1986-2006	-21	-27	-26		3,21
Artvin	41.49	41.10	146	191.934	1986-2006	-9	-4	-6		2,52
Aydın	27.50	37.51	2756	950.757	1986-2006	-3	1	0		2,08
Balıkesir	27.52	39.39	1819	1.076.347	1986-2006	-3	-4	-4		0,58
Bartın	32.21	41.38	183	184.178	1986-2006	-3	-5	-5		1,15
Batman	41.10	37.52	120	456.734	1986-2005	-9	-5	-4		2,65
Bayburt	40.15	40.16	79	97.358	1986-2006	-15	-19	-18		2,08
Bilecik	29.58	40.09	412	124.380	1986-2006	-9	-5	-7		2,00
Bingöl	40.30	38.52	85	123.470	1986-2006	-18	-12	-14		3,06
Bitlis	42.06	38.22	198	219.511	1986-2006	-15	-13	-15		1,15
Bolu	31.36	40.44	564	270.654	1986-2006	-15	-11	-12		2,08
Burdur	30.20	37.40	413	256.803	1986-2006	-9	-6	-7		1,53
Bursa	29 04	40.11	5421	2.125.140	1986-2005	-6	-4	-5	-2,7	1,41
Çanakkale	26.24	40.08	864	464.975	1986-2005	-3	-1	-2	-2,5	0,85
Çankırı	33.37	40.36	237	270.355	1986-2006	-15	-10	-11	·	2,65
Çorum	34.58	40.33	914	597.065	1986-2006	-15	-11	-13	-10,9	1,94
Denizli	29 05	37.47	2059	850.029	1986-2006	-6	-2	-3		2,08
Diyarbakır	40.12	37.55	488	1.362.708	1986-2005	-9	-8	-7	-8	0,82
Düzce	31.36	40.44	499	314.266	1986-2006	-9	-6	-7		1,53
Edirne	26.34	41.40	644	402.606	1986-2006	-9	-7	-7	-6,3	1,16
Elazığ	39.13	38.40	576	364.274	1986-2006	-12	-8	-8		2,31
Erzincan	39.30	39.44	265	316.841	1986-2006	-18	-14	-15	-16	1,71
Erzurum	41.16	39.55	374	937.389	1986-2006	-21	-29	-29	-29,4	4,07
Gaziantep	37.22	37.05	1762	1.285.249	1986-2006	-9	-4	-5		2,65
Giresun	38.24	40.55	406	523.819	1986-2006	-3	3	1		3,06
Gümüşhane	39.27	40.27	167	186.953	1986-2006	-12	-14	-12		1,15
Hakkari	43.46	37.34	90	236.581	1986-2006	-24	-13	-16		5,69
lğdır	44.02	39.56	154	168.634	1986-2006	-18	-13	-14		2,65
Isparta	30.33	37.45	676	513.681	1986-2006	-9	-8	-8		0,58

Tablo 3.4. Devamı

İL	Boylam	Enlem	Yeni Yapılacak	Nüfusu	Ölçüm Aralığı	TS 2164	Önerilen Y.	Alman Y.	Amerikan Y.	St. Sapma
	ŕ		Bina Sayısı		YII	°C	°C	°C	°C	
İstanbul	29 05	40.58	19225	10.018.735	1986-2006	-3	1	0	-0,8	1,70
İ.Göztepe	29 05	40.58		243.185	1986-2006	-3	1	0	-1-	2,08
İ.Florva	29 05	40.58		225.243	1986-2006	-3	Ö	0		1,73
İ.Kireçburnu	29 05	40.58		262.843	1986-2006	-3	1	0		2,08
i.Kumköv	29 05	40.58		242.853	1986-2006	-3	-1	-1		1,15
İ.Şile	29 05	40.58		32.447	1986-2006	-3	-1	-1		1,15
İzmir	27 10	38.24	7107	3.370.866	1986-2006	0	3	2	1,1	1,28
K.Maraş	36.56	37.36	1195	1.002.384	1986-2006	-9	-1	-3	1	4,16
Karaman	33.14	37.11	511	243.210	1986-2005	-12	-14	-15		1,53
Kars	43.05	40.36	213	325.016	1986-2006	-27	-24	-24	-23,2	1,68
Kastamonu	33.46	41.22	365	375.476	1986-2006	-12	-11	-11		0,58
Kayseri	35.29	38.43	1254	1.060.432	1986-2006	-15	-15	-14	-14,9	0,49
Kilis	37.05	36.44	150	114.724	1986-2006	-6	0	-1	· ·	3,21
Kırıkkale	33.30	39.50	265	383.508	1986-2006	-12	-8	-11		2,08
Kırklareli	27.13	41.44	705	328.461	1986-2005	-9	-6	-6		1,73
Kırşehir	34.10	39.08	335	253.239	1986-2005	-12	-12	-11		0,58
Kocaeli	29.54	40.46	4041	1.206.085	1986-2006	-3	0	-1		1,53
Konya	32.30	37.52	3116	2.192.166	1986-2005	-12	-12	-12	-12,9	0,45
Kütahya	29.58	39.24	822	656.903	1986-2006	-12	-10	-10	<u> </u>	1,15
Malatya	38.18	38.21	726	853.658	1986-2006	-12	-8	-8	-9,8	1,90
Manisa	27.26	38.36	2631	1.260.169	1986-2006	-3	-1	-1	·	1,15
Mardin	40.44	37.18	283	705.098	1986-2006	-6	-4	-4		1,15
Mersin	34.36	36.49	2134	715.328	1986-2006	3	3	4		0,58
Muğla	28.21	37.12	6527	715.328	1986-2006	-3	-2	-1		1,00
Muş	41.31	38.44	84	453.654	1986-2006	-18	-22	-26		4,00
Nevşehir	34.40	38.25	602	309.914	1986-2006	-15	-13	-13		1,15
Niğde	34.40	37.59	1005	348.081	1986-2006	-15	-13	-14		1,41
Ordu	37.52	40.59	1052	887.765	1986-2006	-3	1	1		2,31
Osmaniye	32.30	37.52	747	458.782	1986-2006	-3	1	-1		2,00
Rize	40.30	41.02	157	365.938	1986-2006	-3	1	0		2,08
Samsun	36.20	41.17	1237	1.209.137	1986-2006	-3	1	0	-0,8	1,70
Siirt	41.56	37.56	56	263.676	1986-2006	-9	-4	-6	-6	3,54
Sinop	35.10	42.02	241	225.574	1986-2006	-3	2	1		2,65
Sivas	37.01	39.49	988	755.091	1986-2006	-18	-16	-16	-17,2	0,98
Şanlıurfa	38.46	37.08	966	1.443.422	1986-2006	-6	0	-1	-2	2,63
Tekirdağ	27.29	40.59	2492	623.591	1986-2006	-6	-3	-3		2,12
Tokat	36.54	40.18	561	828.027	1986-2006	-15	-9	-10		3,21
Trabzon	39.43	41.00	873	975.137	1986-2005	-3	2	1	0	2,16
Tunceli	39.32	39.06	133	93.584	1986-2006	-18	-12	-12		3,46
Uşak	29.29	38.40	876	322.313	1986-2006	-9	-6	-6		1,73
Van	43.41	38.28	151	877.524	1986-2006	-15	-12	-13	-12,6	2,12
Yalova	29.16	40.39	793	168.593	1986-2006	-3	0	0		1,73
Yozgat	34.49	39.50	626	682.919	1986-2006	-15	-12	-13		1,53
Zonguldak	31.48	41.27	550	615.599	1986-2006	-3	0	0	-1,1	1,42

Daha düşük ısıtma ihtiyacı, daha küçük ısıl gücünde kazan ihtiyacı, daha az uzunlukta radyatör, aynı seviyede daha az sistemdeki su hacmi ve daha küçük genleşme kabı hacmi gerektirmekte; aynı seviyede yıllık yakıt tüketiminin azalması, aynı oranlarda azalacak daha küçük yakıt deposu kullanımına yöneltmektedir. Rastlanılan daha gerçekçi sıcaklıklarda çalışılmasının sağlanması, sabit sıcaklıkta tasarlanmış sistemler için hiç şüphesiz verimlilik artırımı da sağlayacaktır.

Dış hesap sıcaklıklarındaki değişimin tesisat projelendirilmesindeki kazançlarına yönelik bir bina için yapılmış örnek, Türkiye için genelleştirilmiştir. Örnekte ele alınan TS 825 "Binalarda Isı Yalıtım Kuralları" kriterlerine uygun projelendirilmiş bina , durumu serbest, konumu ayrık nizam, mahal sıcaklıkları salon 22 °C, banyo 24°C, mutfak 20°C, hol 15°C 'e göre dizayn edilmiştir. Çizelgede sadece dış hava sıcaklıkları değiştirilerek ısı kayıpları her için ayrı ayrı bulunmuştur. Şekil 2.1., şekil 2.2., şekil 2.3. de Kahramanmaraş istasyonu için yapılan ısı kaybı hesap çizelgeleri örnek olarak verilmiştir.

	İşletme Durumu	7	
Binanın Durumu			
	Rüzgar Durumu	R	
	Konumu	AYRIK N	
	Durumu	SERBEST	
	Dış Sıcaklık	-9°C	
Mahal Sıcaklıkları ºC	•	L	
	Salon	22°C	
	Y.Odası	20°C	
	O.Odası	20°C	
	Ç.Odası	20°C	
	Banyo	24 °C	
	WC	15°C	
	Mutfak	20°C	
	Hol	15°C	
	Aydınlatma	0°C	
Bina Elemanlarının I	sı Geçirgenlik Katsayısı (Kcal/m²	hC ⁰)	
	Dış Duvar	0,659	Kcal/m²hºC
	İç Duvar	1,2	Kcal/m²hºC
		0,69	
		0,610	
	Doşeme	0,671	Kcal/m²hºC
	Tavan	0,642	Kcal/m²hºC
	Pencereler	2,2	Kcal/m²hºC
	Balkon Kapıları	2,2	Kcal/m²hºC
	İç Kapı	4,5	Kcal/m²hºC
	Tesisat Su Sıcaklığı	90/70°C	
	Radyatör Tipi	21 -PKP	
	Kazan Kapasitesi	10000	Kcal/h
	Günlük Yakıt Tüketimi	47	Kg/h_m³/h
	Yakıt Türü	doğalgaz	

Şekil 3.4. Isı kaybı hesabı yapılan binanın mimari projesi devamı

Z01 QE DEĞERİ

Z02 QE DEĞERİ

Pencere detayı L= (A+B) * 2 = (1 + 0,60) * 2 L= 3,2 m Rapı detayı C L= (A+B) * 2 = (2 + 0,80) * 2 L= 5,6 m Ltoplam= 8,8

Z03 QE DEĞERİ

80

QE: a QE: 2,5 QE: 482,328

Pencere detayı L= (A+B) * 2 = (1 + 0,60) * 2 L= 3,2 m S QE: a L R H T Ze QE: 2,5 3,2 0,9 0,84 29 1 QE: 175,392 kcal/h

8,8 kcal/h R 0,9

Şekil 3.5. Isı kaybı hesabı yapılan binanın mahallerinin QE değerleri

														Sa	yfa	
					ıçı	KAYIF	HES/	D CET	VELİ						at	Z
T	esisin	Adı:												Ta	rih	
Yap	ı Bileş	eni		Ala	n Hes	abı			lsı Kayı	p Hesa	ıbı		Artır	mlar		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
İşaret	Yön	Kalınlık	Uzunluk	Yükseklik/Genişlik	Toplam Alan	Miktar	Çıkan Alan	Hes. Gir. Alan	Isı Geç. Kat. Sayısı	Sıcaklık Farkı	Artırımsız Isı Kay.	ZD Birleşik	Zw Kat Yüksekliği	ZH Yön	Z Toplam	Toplam Isı ihtiyacı
		cm	m	m	m	Ad	m	m	Kcal/mhc	с	Kcal/h	%	%	%	1+%	Kcal/h
						Z0	1 SAL	ON	22							
DD	KB	27	11,5	3		1	4,48	30,02	0,6594	31	613,651					
İD1	G	23	3,5	3	10,5	1		10,5	1,2806	2	26,893					
İD2	D	23	2	3	6	1		6	1,2806	12	92,203					
İD3	D	23	3	3	9	1	1,98	7,02	1,2806	7	62,929					
ÇCP	В		1,6	1,4	2,24	2		2,24	2,2	31	152,768					
İK	D		0,9	2,2	1,98	1		1,98	4,5	7	62,37					
DÖŞ		22	5	5	25	1		25	0,6713	15	251,7375					
TAV.		22	5	5	25	1	0	25	0,642	31	497,55					
											1760,101	7	0	5	1,12	
											Qenft.					374,976
														Toplan	n	2346,289
						Z02 Y	AYAK (20							
DD	GB	27	8,5	3		1	4	21,5	0,6594	29	411,136					
ID3	D	23	1,5	3		1	1,98	2,52	1,2806	5	16,136					
DP	В		1,6	1,4	2,24	1		2,24	2,2	29	142,912					
BK .	В		8,0	2,2	1,76	1		1,76	2,2	29	112,288					
İK			0,9	2,2	1,98	1		1,98	4,5	5	44,550					
DÖŞ		34	3,5	5		1		17,5	0,6978	13	158,750					
TAV.		22	3,5	5	17,5	1	0	17,5	0,642	29	·	_	_	_		
											1211,586	7	0	-5	1,02	
											Qenft.					482,328
														Toplan	n	1718,146
						700	0.05		20							
D.D.	1/5				40.5		0.00		20		220 05000					
DD in4	KD B	27	6,5	3		1	2,24	17,26 e	0,6594	29	330,05608					
iD1	В	23	2	3 3		1	4.00	2.52	1,2806	10	76,836					
ID2	В	23	1,5				1,98	2,52	1,2806	5 20	16,13556					
DP iv	D		1,6	1,4	2,24	1		2,24	2,2	29 45	142,912					
İK	В		0,9	2,2		1		1,98	4,5	15	133,65					
TAV.		22	3	3,5	10,5	1	0	10,5	0,642	29	195,489		_		4 40	4000 400
											895,07864	7	0	5	1,12	
											Qenft.			T	_	175,392
														Toplan	n	1177,880

Şekil.3.6. Isı kaybı hesap çizelgesi

														Sa	yfa	
									:					K		Z
т	esisin	Adı:				KAYIF									rih	
	ı Bileş				n Hes				lsı Kayı				Artır	ımlar		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
İşaret	Yön	Kalınlık	Uzunluk	Yükseklik/Genişlik	Toplam Alan	Miktar	Çıkan Alan	Hes. Gir. Alan	Isı Geç. Kat. Sayısı	Sıcaklık Farkı	Artırımsız İsı Kay.	ZD Birleşik	Zw Kat Yüksekliği	ZH Yön	Z Toplam	Toplam Isı ihtiyacı
		cm	m	m	m	Ad	m	m	Kcal/mhc	с	Kcal/h	%	%	%	1+%	Kcal/h
						Z04	MUTE	AK	20							
DD	D	27	3	3	9	1	4	5	0,6594	29	95,613					
İD1	В	23	3	3	9	1	1,98	7,02	1,2806	5	44,94906					
вк	D		8,0	2,2	1,76	1		1,76	2,2	29	112,288					
ÇCP	D		1,6	1,4	2,24	1		2,24	2,2	29	142,912					
İK	В		0,9	2,2	1,98	1		1,98	4,5	5	44,55					
TAV.		0,22	3	3	9	1	0	9	0,642	29	167,562					
											607,87406	7	0	0	1,07	650,4252442
											Qenft.					482,328
														Toplan	n	1132,753244
						Z05	ç. od	ASI	20							
DD	GD	27	6,5	3	19,5	1		17,26	0,6594	29	330,05608					
İD1	В	23	0,5	3	1,5	1		1,5	1,2806	20	38,418					
İD2	В	23	3	3	9	1	1,98	7,02	1,2806	5	44,94906					
ÇCP	D		1,6	1,4	2,24	1		2,24	2,2	29	142,912					
İK			0,9	2,2	1,98	1		1,98	4,5	5	44,55					
DÖŞ		34	3	3,5	10,5	1		10,5	0,6978	13						
TAV.		22	3	3,5	10,5	1	0	10,5	0,642	29	195,489					
								, .			891,62384	7	0	-5	1.02	909,4563127
											Qenft.					175,392
														Toplan	า	1084,848313
														•		
						Z0	6 BAN	YO	24							
DD	G	27	2,5	3	7,5	1	0,3	7,2	0,6594	33	156,67344					
iD1	D	23	0,5	3	1,5	1	1,2	1,5	1,2806	24	46,1016					
iD2	D	23	6	3	18	1	1,98		1,2806	9	184,63691					
iD3	В	23	3,5	3	10,5	1	1	10,5	1,2806	4	53,7852					
DP	G		0,6	0,5	0,3	1		0,3	2,2	33	21,78					
iĸ	D		0,9	2,2	1,98	1		1,98	4,5	9	80,19					
DÖŞ	_	22	2,5	3,5				8,75	0,6107	17	90,841625					
TAV.		22	2,5	3,5		1	0	8,75	0,642	33	185,3775					
			د, ع	0,0	5,75	<u> </u>		3,13	0,042	- 55	819,38627	7	0	-5	1,02	835,7739985
											Qenft.	<u> </u>		-5	1,02	137,214
											Som.			Toplan		972,9879985

Şekil 3.6. Isı kaybı hesap çizelgesi devamı

DIŞ DUVAR K DEĞERİ

1/k=1/hiç+l1/k1.....+ln/kn+hdış

Malzemeler	L	K	L/K
İç sıva	0,02	0,87	0,0230
Delikli tuğla	0,19	0,45	0,4222
Sert köpük	0,03	0,035	0,8571
Dış sıva	0,03	1,4	0,0214
hiç		7	0,1429
hdış		20	0,0500
Toplam	0,27		1,5166

 $K = 1/1,5166 = 0,659353 \text{ kcal/m}^2\text{h}^0\text{C}$

İÇ DUVAR K DEĞERİ

Malzemeler	L	K	L/K
İç sıva	0,02	0,75	0,0267
Delikli tuğla	0,19	0,43	0,4419
İç sıva	0,02	0,75	0,0267
hiç		7	0,1429
hdış		7	0,1429
	0,23		0,7809

 $K = 1/0,7809 = 1,28056 \text{ kcal/m}^2\text{h}^0\text{C}$

ZEMİNE OTURAN DÖŞEME K DEĞERİ

Malzemeler	L	K	L/K
Parke	0,03	0,15	0,2
Şap	0,03	1,2	0,025
Strofor	0,03	0,035	0,857
Gobeton	0,1	1,1	0,091
Blokaj Beton	0,15	2,5	0,06
hiç		5	0,200
Toplam	0,34		1,4331

 $K = 1/1,4331 = 0,697811 \text{ kcal/m}^2\text{h}^0\text{C}$

BANYO VE MUTFAK DÖŞEME K DEĞERİ

Malzemeler	L	K	L/K
Seramik	0,03	0,9	0,0333
Şap	0,03	1,2	0,0250
Strofor	0,04	0,035	1,1429
Betonarme	0,1	1,5	0,0667
Sıva	0,02	0,75	0,0267
hiç		5	0,2
hdış		7	0,1429
Toplam	0.22		1 6374

Şekil 3.7. Isı kaybı hesap çizelgesinde kullanılan K değerleri

KAZAN HESABI

Fk= Isıtma yüzeyi

Qk=Qh*(1+ZR)

Qk=8432,904*(1+0,1) 9276,194 kcal /h Kazan kapasitesi 10000 kcal/h seçilir

Fk=Qk/k*(1+Zg) Fk=9276,194/10000*(1+0,1)=5,7 m2

0,84329

YAKIT MİKTARI HESABI

Zy= gün Zg= saat

Hu= yakıtın alt ısıl verimi By=(622750*12*213/2*8250*0,85

nk= kazanın verimi

By=(Qk* Zg*Zy=/2*Hu*nk 0,182246

By=(9276,194*12*213/2*8250*0,85)

By= 1690,549 kg/ yıl

POMPA HESABI

Vp=Qk/cg*(Tg-Tç) Cp=0,96

Vp=55000/ 0,96*(90-70) 483,1351

Vp=483 lt /h

KAPALI GENLEŞME DEPOSU

Vn= V*E/(Po/Pf - Pa/Po)

Vn= (1000*0,036) / ((2,5/2,5) - (2,5/50)) = 72lt

BRÜLÖR HESABI

B=QK/Hu*Nb

B=9276,194/8250*0,85 1,322808

B=1,32 kg/h

82 meteoroloji istasyonu için ayrı ayrı hesaplanan ısı kayıpları tablo 2.2. de verilmiştir.Ayrıca geçerli olan TS 2164 'e kıyasla, yeni hesaplanan kış dış hava sıcaklıklarına göre hesaplanmış ısı kaybı hesapları % kazanç şeklinde gösterilmiştir.

Tablo 3.5. %'lik TS 2164' e kıyasla ısı kazançları

	1984 TS 2164	1986-2006		1986-2006		1986-2006	
	Geçerli olan	Önerilen Y.	Kazanç(%)	Alman Y.	Kazanç(%)	Amerikan Y.	Kazanç(%)
İL	kcal/h	kcal/h	% Önerilen Y.	kcal/h	% Alman Ý.	kcal/h	% Amerikan Y.
Adana	6990,548	6670,025	4,585	6670,025	4,585	6670,025	4,585
Adapazarı	7471,334	7150,81	4,290	7311,072	2,145	-	-
Adiyaman	8432,904	7150,81	15,203	7471,334	11,403	-	-
Afyon	8913,69	8593,166	3,596	8753,428	1,798	-	-
Ağrı	10836,831	11638,14	-7,394	11638,14	-7,394	-	-
Aksaray	9394,475	8913,69	5,118	8753,428	6,824	-	-
Amasya	8913,69	8112,381	8,990	8432,904	5,394	-	-
Ankara	8913,69	8272,642	7,192	8753,428	1,798	8545,087	4,135
Antakya	6990,548	6670,025	4,585	6670,025	4,585	6702,077	4,127
Antalya	6990,548	6509,763	6,878	6349,501	9,170	-	-
Ardahan	10356,045	11317,616	-9,285	11157,354	-7,738	-	-
Artvin	8432,904	7631,595	9,502	7952,119	5,701	-	-
Aydın	7471,334	6830,287	8,580	6990,548	6,435	-	-
Balıkesir	7431,334	7631,595	-2,695	7631,595	-2,695	-	-
Bartın	7431,334	7791,857	-4,851	7791,857	-4,851	-	-
Batman	8432,904	7791,857	7,602	7631,595	9,502	-	-
Bayburt	9394,475	10035,522	-6,824	9875,26	-5,118	-	-
Bilecik	8432,904	7791,857	7,602	8112,381	3,801	-	-
Bingöl	9875,26	8913,69	9,737	9234,213	6,491	-	-
Bitlis	9394,475	9073,951	3,412	9394,475	0,000	-	-
Bolu	9394,475	8753,428	6,824	8913,69	5,118	-	-
Burdur	8432,904	7952,119	5,701	8112,381	3,801	-	-
Bursa	7952,119	7631,595	4,031	7791,857	2,015	7423,255	6,651
Çanakkale	7471,334	7150,81	4,290	7311,072	2,145	7391,203	1,073
Çankırı	9394,475	8593,166	8,530	8753,428	6,824	-	-
Çorum	9394,475	8753,428	6,824	9073,951	3,412	402, 8737	6,994
Denizli	7952,119	7311,072	8,061	7471,334	6,046	-	-
Diyarbakır	8432,904	8272,642	1,900	8112,381	3,801	8272,642	1,900
Düzce	8432,904	7952,119	5,701	8112,381	3,801	-	-
Edirne	8432,904	8112,381	3,801	8112,381	3,801	197,000	5,131
Elazığ	8913,69	8272,642	7,192	8272,642	7,192	-	-
Erzincan	9875,26	9234,213	6,491	9394,475	4,869	9554,737	3,246
Erzurum	10356,045	11638,14	-12,380	11638,14	-12,380	11702,244	-12,999
Gaziantep	8432,904	7631,595	9,502	7791,857	7,602	-	-
Giresun	7471,334	6509,763	12,870	6830,287	8,580	-	-
Gümüşha	8913,69	9234,213	-3,596	8913,69	0,000	-	-
Hakkari	10836,831	9073,951	16,267	9554,737	11,831	-	-
lğdır	9875,26	9073,951	8,114	9234,213	6,491	-	-
Isparta	8432,904	8272,642	1,900	8272,642	1,900	-	-

Tablo 3.5. %'lik TS 2164' e kıyasla ısı kazançları devamı

	1984 TS 2164	1986-2006		1986-2006		1986-2006	
	Geçerli olan	Önerilen Y.	Kazanç(%)	Alman Y.	Kazanç(%)	Amerikan Y.	Kazanç(%)
İL	kcal/h	kcal/h	% Önerilen Y.	kcal/h	% Alman Y.		% Amerikan Y.
İ.Göztepe	7471,334	6830,287	8,580	6990,548	6,435	7118,758	4,719
İ.Florya	7471,334	6990,548	6,435	6990,548	6,435	7118,758	4,719
İ.Şile	7471,334	7150,81	4,290	7150,81	4,290	7118,758	4,719
İ.Kireçburnu	7471,334	6830,287	8,580	6990,548	6,435	7118,758	4,719
İ.Kumköy	7471,334	7150,81	4,290	7150,81	4,290	7118,758	4,719
İzmir	6990,548	6509,763	6,878	6670,025	4,585	6814,26	2,522
K.Maraş	8432,904	7150,81	15,203	7471,334	11,403	- '	-
Karaman	8913,69	9234,213	-3,596	9394,475	-5,394	-	-
Kars	11317,616	10836,831	4,248	10836,831	4,248	10708,621	5,381
Kastamonu	8913,69	8753,428	1,798	8753,428	1,798	-	-
Kayseri	9394,475	9394,475	0,000	9234,213	1,706	9378,449	0,171
Kilis	7952,119	6990,548	12,092	7150,81	10,077	-	-
Kırıkkale	8913,69	8272,642	7,192	8753,428	1,798	-	-
Kırklareli	8432,904	7952,119	5,701	7952,119	5,701	_	-
Kırşehir	8913,69	8913,69	0,000	8753,428	1,798	_	-
Kocaeli	7471,334	6990,548	6,435	7150,81	4,290	_	_
Konya	8913,69	8913,69	0,000	8913,69	0,000	9057,925	-1,618
Kütahya	8913,69	8593,166	3,596	8593,166	3,596	-	- 1,010
Malatya	8913,69	8272,642	7,192	8272,642	7,192	8561,114	3,955
Manisa	7471,334	7150,81	4,290	7150,81	4,290		
Mardin	7952,119	7631,595	4,031	7631,595	4,031	_	_
Mersin	6509,763	6509,763	0,000	6349,51	2,462	_	_
Muğla	7471,334	7311,072	2,145	7150,81	4,290	_	-
Muş	9875,26	10516,307	-6,491	11157,354	-12,983	_	_
Nevşehir	9394,475	9073,951	3,412	9073,951	3,412	_	_
Niğde	9394,475	9073,951	3,412	9234,213	1,706	_	-
Ordu	7471,334	6830,287	8,580	6830,287	8,580	_	-
Osmaniye	7471,334	6830,287	8,580	7150,81	4,290	-	-
Rize	7471,334	6830,287	8,580	6990,548	6,435	_	-
Samsun	7471,334	6830,287	8,580	6990,548	6,435	7118,758	4,719
Siirt	8432,904	7631,595	9,502	7952,119	5,701	7952,119	5,701
Sinop	7471,334	6670,025	10,725	6830,287	8,580	1002,110	0,101
Sivas	9875,26	9554,737	3,246	9554,737	3,246	9747,051	1,298
Şanlıurfa	7952,119	6990,548	12,092	7150,81	10,077	7311,072	8,061
Tekirdağ	7952,119	7471,334	6,046	7471,334	6,046		0,001
Tokat	9394,475	8432,904	10,235	8593,166	8,530		
Trabzon	7471,334	6670,025	10,725	6830,287	8,580	6990,548	6,435
Tunceli	9875,26	8913,69	9,737	8913,69	9,737	2000,040	0,700
Uşak	8432,904	7952,119	5,701	7952,119	5,701		
Van	9394,475	8913,69	5,118	9073,951	3,412	9009,847	4.094
Yalova	7471,334	6990,548	6,435	6990,548	6,435	0000,041	7,007
Yozgat	9394,475	8913,69	5,118	9073,951	3,412		
Zonguldak	7471,334	6990,548	6,435	6990,548	6,435	7166,836	4,076
Zonguluak	1411,004	0000,040	0,400	0000,040	0,400	1 100,000	1 4,010

Tablo 3.6. 2008 yılında yeni yapılacak bina sayılarına göre elde edilen yatırım maliyeti kazançları

	Yeni Yapılacak	Kazanç(%)	Önerilen Y.		Alman Y		
İL	Bina Sayısı	% Önerilen Y.	Birim	% Alman Y.	Birim	% Amerikan Y.	Birim
Adana	2410	4,585	11049,850	4,585	11049,850	4,585	11049,850
Adapazarı	2057	4,290	8824,530	2,145	4412,265		0,000
Adiyaman	372	15,203	5655,516	11,403	4241,916		0,000
Afyon	1805	3,596	6490,780	1,798	3245,390		0,000
Ağrı	147	-7,394	-1086,918	-7,394	-1086,918		0,000
Aksaray	720	5,118	3684,960	6,824	4913,280		0,000
Amasya	333	8,990	2993,670	5,394	1796,202		0,000
Ankara	8326	7,192	59880,592	1,798	14970,148	4,135	34428,010
Antakya	1217	4,585	5579,945	4,585	5579,945	4,127	5022,559
Antalya	5911	6,878	40655,858	9,170	54203,870		0,000
Ardahan	52	-9,285	-482,820	-7,738	-402,376		0,000
Artvin	146	9,502	1387,292	5,701	832,346		0,000
Aydın	2756	2,695	7427,420	6,435	17734,860		0,000
Balıkesir	1819	-4,851	-8823,969	-2,695	-4902,205		0,000
Bartın	183	-4,851	-887,733	-4,851	-887,733		0,000
Batman	120	7,602	912,240	9,502	1140,240		0,000
Bayburt	79	-6,824	-539,096	-5,118	-404,322		0,000
Bilecik	412	7,602	3132,024	3,801	1566,012		0,000
Bingöl	85	9,737	645, 827	6,491	551,735		0,000
Bitlis	198	3,412	675,576	0,000	0,000		0,000
Bolu	564	6,824	3848,736	5,118	2886,552		0,000
Burdur	413	5,701	2354,513	3,810	1573,530	6,651	2746,863
Bursa	5421	4,031	21852,051	2,015	10923,315	1,703	9231,963
Çanakkale	864	4,290	3706,560	2,145	1853,280		0,000
Çankırı	237	8,530	2021,610	6,824	1617,288	6,994	578, 1657
Çorum	914	6,824	6237,136	3,412	3118,568		0,000
Denizli	2059	8,061	16597,599	6,046	12448,714	1,900	3912,100
Diyarbakır	488	1,900	927,200	3,801	1854,888		000,0
Düzce	499	5,701	2844,799	3,801	1896,699	5,131	2560,369
Edirne	644	3,801	2447,844	3,801	2447,844		000,0
Elazığ	576	7,192	4142,592	7,192	4142,592		0,000
Erzincan	265	6,491	1720,115	4,869	1290,285	3,246	860,190
Erzurum	374	-12,380	-4630,120	-12,380	-4630,120	-12,990	-4858,260
Gaziantep	1762	9,502	16742,524	7,602	13394,724		0,000
Giresun	406	12,870	5225,220	8,580	3483,480		0,000
Gümüşhane	167	-3,596	-600,532	0,000	0,000		0,000
Hakkari	90	16,267	1464,030	11,831	1064,790		0,000
lğdır	154	8,114	1249,556	6,491	999,614		0,000
Isparta	676	1,900	1284,400	1,900	1284,400		0,000
			236793,195		180204,948		

Tablo 3.6. devamı

	Yeni Yapılacak	Kazanç(%)	Önerilen Y.	Kazanç(%)			AmerikanY.
İL	Bina Sayısı	% Önerilen Y.	Birim	% Alman Y.	Birim	% Amerikan Y.	Birim
İstanbul	19225	6,435	123712,875	6,435	123712,875	4,719	90722,775
İzmir	7107	4,585	32585,595	4,585	32585,595	2,522	17923,854
K.Maraş	1195	15,203	18167,585	11,403	13626,585		0,000
Karaman	511	-3,596	-1837,556	-5,394	-2756,334		0,000
Kars	213	4,248	904,824	4,248	904,824	5,381	1146,153
Kastamonu	365	1,798	656,270	1,798	656,270		0,000
Kayseri	1254	0,000	0,000	1,706	2139,324	0,171	214,434
Kilis	150	12,092	1813,800	10,077	1511,550		0,000
Kırıkkale	265	7,192	1905,880	1,798	476,470		0,000
Kırklareli	705	5,701	4019,205	5,701	4019,205		0,000
Kırşehir	335	0,000	0,000	1,798	602,330		0,000
Kocaeli	4041	6,435	26003,835	4,290	17335,890		0,000
Konya	3116	0,000	0,000	0,000	0,000	-1,618	-5041,688
Kütahya	822	3,596	2955,912	3,596	2955,912		0,000
Malatya	726	7,192	5221,392	7,192	5221,392	3,955	2871,330
Manisa	2631	4,290	11286,990	4,290	11286,990		0,000
Mardin	283	4,031	1140,773	4,031	1140,773		0,000
Mersin	2134	0,000	0,000	2,462	5253,908		0,000
Muğla	6527	2,145	14000,415	4,290	28000,830		0,000
Muş	84	-6,491	-545,244	-12,983	-1090,572		0,000
Nevşehir	602	3,412	2054,024	3,412	2054,024		0,000
Niğde	1005	3,412	3429,060	1,706	1714,530		0,000
Ordu	1052	8,580	9026,160	8,580	9026,160		0,000
Osmaniye	747	8,580	6409,260	4,290	3204,630		0,000
Rize	157	8,580	1347,060	6,435	1010,295		0,000
Samsun	1237	8,580	10613,460	6,435	7960,095	4,719	5837,403
Siirt	56	9,502	532,112	5,701	319,256	5,701	319,256
Sinop	241	10,725	2584,725	8,580	2067,780		0,000
Sivas	988	3,246	3207,048	3,246	3207,048	1,298	1282,424
Şanlıurfa	966	12,092	11680,872	10,077	9734,382	8,061	7786,926
Tekirdağ	2492	6,046	15066,632	6,046	15066,632		0,000
Tokat	561	10,235	5741,835	8,530	4785,330		0,000
Trabzon	873	10,725	9362,925	8,580	7490,340	6,435	5617,755
Tunceli	133	9,737	1295,021	9,737	1295,021		0,000
Uşak	876	5,701	4994,076	5,701	4994,076		0,000
Van	151	5,118	772,818	3,412	515,212	4,094	618,194
Yalova	793	6,435	5102,955	6,435	5102,955		0,000
Yozgat	626	5,118	3203,868	3,412	2135,912		0,000
Zonguldak	550	6,435	3539,250	6,435	3539,250	4,076	2241,800
			341955,712		332806,745		131540,616
	GENEL TOPLA	M	578748,907		513011,693		

Adıyaman, Artvin, Gaziantep, Giresun, Hakkari, K.Maraş, Kilis, Siirt, Şanlıurfa, Tokat, Trabzon, Tunceli illerinde enerji tasarrufunun % 10 ları bulduğu gözlenmektedir.(Tablo 2.3.) Adıyaman ve Hakkari' de TS 2164 'ün önerdiği dış sıcaklık değerleri son 20 yılda en düşük sıcaklık olarak bile kaydedilmemiştir. K.Maraş gibi nüfusu 1 milyonun üzerindeki bir şehirde enerji tasarrufu Alman yönteminde %11,403, önerilen yöntemle %15,11 i bulmaktadır. TS 2164 'ün K.Maraş için önerdiği —9 °C son 20 yılda en düşük sıcaklık olarak 1997 ve 2004 yılında sadece 2 kez birer saat görülmüştür. Giresun' da 1986 ve 1997 'de en düşük sıcaklık olarak sadece 2 kez, Şanlıurfa 'da 1989, 1992, 1993 te 3 kez kaydedilmiştir. Trabzon ve Kilis' te sadece 4 er kez en düşük sıcaklık olarak kaydedilmiştir. Bütün bunların sonucu gösteriyor ki TS 2164 'te önerilen dış hava sıcaklıkları normal değerlerin altında kalmakta ve her yıl enerji israfına yol açmaktadır.

Türkiye' de her yıl yapılan bina sayısını düşündüğümüzde elde edebileceğimiz enerji tassarufunu yaklaşık olarak hesaplamak için, elde ettiğimiz % sonuçları bir birim kabul edip her il için ayrı ayrı yeni yapılacak bina sayılarıyla çarptığmızda toplam değere ulaşırız. Yeni yapılacak bina sayıları Türkiye istatistik kurumunun 2008 güncel verilerinden alınmıştır. 2008 yılında ortalama bir kat kaloriferinin maliyetinin 3000 YTL olduğu düşünülürse, bu değerin %1'i 30 YTL'ye denk gelmektedir.Bu %1' lik değeri bizim elde ettiğimiz toplam % birim değerlerle çarptığımızda Alman yöntemine göre 15.390.350 YTL, önerilen yönteme göre 17.362.400 YTL tasarruf sağlanmış olacaktır. % birim enerji kazançları Tablo 2.3. te verilmiştir.

Tüm Türkiye'yi kapsayacak şekilde ve güncel son verilerle böylesine detaylı yapılan bu çalışmada elde edilen sonuçlara göre; halen kullanılan dış hesap sıcaklıklarının ve ısı iklim bölgelerinin yeniden düzenlenmesi, binalarda ısı yalıtımı ve kalorifer tesisatı yönetmelik ile standartlarının da buna göre yenilenmesi gerekmektedir.

Üstlenilen riskin bilinmesinden öte, yapının ağırlığına karar verme insiyatifinin uygulamacıya bırakılması; ülkemizdeki alışkanlıklar ile inşatta, projede, hesaplamada, uygulamada ve kontrolde yapılabilecek keyfi değişiklikler, daha

sonra ısınma problemleriyle karşılaşılabilecek yetersiz tesisat boyutlandırmalarına sebebiyet verebilecektir. Bu sebeple, Alman ve Amerikan yöntemlerinin aksine önerilen hesaplama yönteminde olduğu gibi şu an için tek bir değer verilmesi, hem uygulama hem de kontrol için çok daha pratiktir.

Dış hesap sıcaklığındaki değişim, tesisat kullanımını ve yapıya bağlı zamlandırma katsayılarını değiştirmemekle birlikte; ısı ihtiyacını önemli ölçüde değiştirmekte, tesisatın kullanıma yönelik artırım katsayılarıyla birlikte tesisat ve ekipman boyutlandırmasına azaltıcı yönde etkisi artarak yansımaktadır. Dış hesap sıcaklığının bu yükselişi, kalorifer tesisatı ilk yatırım ve işletme giderleri ile yıllık yakıt talebinde değişen oranlarda azalma sağlayacağını göstermektedir. Önerilen dış hesap sıcaklığı hesaplama yöntemi pratik ve uygun olmakla birlikte; ülkemizde TS 825 "Binalarda Isı Yalıtım Kuralları" uygulanarak yapılmakta olan yeni yapıların tesisat projelen- dirmesinde önerilen yeni dış hesap sıcaklıklarının kullanılması güvenle sağlanabilirken, gerek bireyler ve gerekse ülke ekonomisi açısından da sıralanan birçok avantajı beraberinde getirecektir.Kazan ısı gücünde, radyatör sayı ve gruplarında azalma, genlesme kabı, dolaşım pompası, brülör kapasitesi ve baca kesitinde küçülme, ilk yatırım giderleri, işçilik giderleri ve elektrik tüketiminde azalma sağlanacaktır. Artan verimlilikle azaltılacak yakıt tüketimi, hem bireylerin daha az yakıt ihtiyacına hem de ülkenin daha az enerji kaynakları ithalatına neden olacak, döviz giderlerinde tasarruf sağlanacaktır. Halen doğalgaz kullanılmayan şehirlerimizde yakıt ve cürufun taşınması sürecinde; azalacak araç sayısı ile araç yakıt tüketimi ve emisyonlarının azalması, ısıtma döneminde yakıt taşıyan araçların yoğunluğunu artırdığı trafikte rahatlama söz konusudur. Küresel ısınmaya, insan sağlığını olumsuz etkileyerek iş veriminin azalmasına,sağlık giderlerinin artmasına, kültürel mirasımız tarihi yapıların zarar görmesine neden olan hava kirliliği azalacaktır.

Yürürlükteki standart ve yönetmeliklerin özellikle 1s1 ekonomisi yönünden ülkemiz için yetersiz oldukları bilinmektedir. Dış hesap sıcaklıklarındaki bu değişim özellikle 1s1tma tesisatı sektöründeki üreticilerin ürünçeşitlerini tekrar gözden geçirmesini ve hatta ilgili kalorifer tesisat projelendirme standardının günümüz teknolojilerini de kapsayacak şekilde yenilenmesini gerektirecektir. Standart sadece bu çalışmada da

önerilen sıcaklıkların değişimini kapsamamalıdır.

Hesaplama yöntemi; bina yapım alışkanlıklarını gözönünde tutan yeni artırım katsayılarının belirlenmesini ve düşük sıcaklık ısıtmasına da olanak verilmesini sağlayacak şekilde yeniden düzenlenmelidir.

"TS 825-Binalarda Isı Yalıtım Kuralları" standardındaki derece gün bölgelerinin yeniden düzenlenmesi yanı sıra, "TS 2164- Kalorifer Tesisatı Projelendirme Kuralları" içinde yer alan dış hesap sıcaklıklarının değişimiyle de uyumluluk sağlanmalıdır.

BÖLÜM 4 SONUÇLAR VE ÖNERİLER

Türkiye sıcaklıklarında gözlenen ısınma, ya esas olarak sera gazlarının artan atmosferik birikimleri ile yakından ilgili olan insanın neden olduğu küresel ısınmaya ya da bölgesel ve/ya da kentsel arazi kullanımı değişiklikleri ve hızlı kentleşme ile ilgili olan bölgesel bir ısınmaya bağlanabilir.Ülkenin çok sayıda istasyonunun gece hava sıcaklıklarında gözlenen anlamlı ve çok hızlı ısınma eğilimlerinin, insana bağlı iklim değişikliğinin hava sıcaklıkları üzerindeki uzun dönemli ve küresel etkilerine ek olarak, büyük bir olasılıkla Türkiye'deki yaygın, hızlı ve artan kentleşme olgusu ile ilgili olduğunu kabul etmektedir.

Bütün ısıtma sistemleri tasarımlarının başlangıç noktası mekanların ısı kayıplarını hesaplamaktır.Bunun için dış ortamda en ekstrem sıcaklık koşullarının olduğu durum için tepe yük hesaplanır ve gerek ısıtıcılar gerekse ısıtıcı akışkanı sağlayan kaynak büyüklüğü buna göre seçilir.Dış ortam sıcaklığı için alınan bu ekstrem değerler, ısı kaybıyla ilgili Türk Standardında ve Makine Mühendisleri Odası tarafından öngörülen hesap yöntemlerinde,güncel olmayan yaklaşık 30 yıl öncesine dayanan Meteorolojik değerleri kapsayan ve herhangi bir risk faktörü içermeyen mutlak büyüklüklerdir.Oysa Metoroliji Müdürlüğümüz yapmış olduğu ölçümlerden de görüldüğü gibi en uç sıcaklık değerini esas alarak yapılacak hesaplar, gereğinden büyük seçilmiş olmakta, muhtemelen çalışma ömrü boyunca bu uç noktayı görmeyecek sistem bileşenleri yaratacak ve gerek ilk yatırım gerekse işletme maliyetini önemli ölçüde büyütecektir.

Şekil 4.1. Türkiye ortalama sıcaklık değerleri 1940-2006 yılları arası değişimi (meteoroloji müd. 2008)

Şekil 4.1.' de de görüldüğü gibi 1992 yılından itibaren Türkiye'nin ortalama sıcaklıklarında ivmeli bir artış vardır. Halen kullanmakta olduğumuz hesap değerlerinin üç büyük şehrimiz için İstanbulu'un tamamı için -3 °C Ankara için -12 °C ve İzmir için de 0 °C olduğu düşünülürse, meteoroloji istasyonlarımızın ölçümleri de göz önüne alındığında sonuç olarak ,sistemleri mevcut yöntemleri kullanarak daha büyük boyutlandırdığımız ortaya çıkar. Günümüzde küresel ısınmanın da etkileri hem meteorolojik hem de hissedilir şekilde kanıtlandığından artık ısı kayıp hesaplarında güncel değerlerin kullanılması gerektiği ve risk faktörünün göze alınması aşıkardır.

KAYNAKLAR

- [1] ASHRAE, (1997). Konutlarda Soğutma ve Isitma Yükü Hesapları, Temel El Kitabı, TTMD Yayınları, 25, Ankara.(sayfa 22-36)
- [2] ARISOY, A., (1998). İklim Verileri, III. Uluslararası Yapıda Tesisat Bilimi ve Teknolojisi Sempozyumu, İstanbul, 3-8.
- [3] DEMIRBILEK, F. N., (1992). Correlation Between Winter Design Temperature And Mass Of The Exterior Walls, Doktora Tezi, ODTÜ, Ankara.
- [4] DIN 4710, (1982). Meteorologische Daten zur Berechnung des Energieverbrauches von heiz- und raumlufttechnischen Anlagen, Beuth Verlag, Berlin.
- [5] PFEIFER, P., K., Görke, O., (2005). Fuel to hydrogen an overview over fuel conversion activities at the institute for micro process engineering. In Proc. Aiche Spring National Meeting, Atlanta, U.S.A.
- [6] EL-SHAARAWI, M. A. I., Al-Masri, N., (1996). Weather Data and Heating Degree Days For Saudi Arabia, Energy, 21, 39-44.
- [7] GÜLFERI, İ., (1966). Meteorolojik Değerler Yardımıyla Kış İçin Dış Hesap Sıcaklığının Bulunmasında Kullanılacak Yeni Bir İstatistiki Metod ve Türkiye'ye Tatbikatı, Doktora Tezi, İ.T.Ü., İstanbul.
- [8] Kalorifer Tesisatı Proje Hazırlama Esasları, (1970). Makina Mühendisleri Odası, 42, İskender Matbaası,İstanbul.
- [9] KUEHN, T. H., Ramsey, J.W. and Threlkeld, J.L., (1998). Thermal Environmental Engineering, Prentice Hall, New Jersey.
- [10] TS 2164, (1984). Kalorifer Tesisatı Projelendirme Kuralları, Türk Standartları Enstitüsü, Ankara.
- [11] VDI 2067 Blatt 1, (1983).

- [12] BERZ, G., "Hava Şartlarıyla İlgili Hasar Düzeyleri" Münich Insurance Company, Münich 1995.
- [13] ÇEPEL, N., "Ekolojik Sorunlar ve Çözümleri". TÜBİTAK Popular Bilim Kitapları 180. Aydoğdu M atbaası, Ankara, 2003.
- [14] Çevre Bakanlığı (Yayımlayan), Birleşmiş Milletler Çevre ve Kalkınma Konferansı (UNCED). Yeşill Seri 3, Ankara, 1993.
- [15] Devlet İstatistik Enstitüsü (Yayımlayan), Türkiye İstatistik Yıllığı 2003. Yayın no. 2895, DİE M atbaası, Ankara, Nisan 2004.
- [16] DUNN, S., "Enerji Ekonomisini Karbondan Arındırmak". Dünyanın Durumu Raporu 2002, TEMA Yayın No.35, İstanbul, 2001.
- [17] DUNN, S. And C. Falavin, "İklim Değişikliğini Gündemin Ön Sıralarına Taşımak". Dünyanın Durumu Raporu 2002, TEMA Yayın No. 37. İstanbul, 2002.
- [18] FLAVIN, C., "İklim Değişikliğinin Yol Açtığı Risklerle Mücadele". Dünyanın Durumu Raporu 1996, TEMA-TÜBİTAK Yayını, Ankara, 1997.
- [19] FLAVIN, C. And S. Dunn, "İklim Değişikliği Tehlikesini Bertaraf Etmek". Dünyanın Durumu Raporu 1998. TEMA Yayın No.23. İstanbul, 1998.
- [20] HERTSGAARD, M., Yeryüzü Gezgini, Çevresel Geleceğimizin Peşinde Dünya Turu. TEMA Yayın No. 34. İstanbul, 2001.
- [21] KADIOĞLU, M., Bildiğimiz Havaların Sonu. Küresel İklim Değişimi ve Türkiye. Güncel Yayıncılık A.S. No.110, İstanbul, 2001.
- [22] KADIOĞLU, M., "İklim Değişiyor... Türkiye Daha da Kuraklaşacak." 2023 Dergisi, Sayı 40, s.8-16, 2004.
- [23] M ITSCHERLICH, G., Die Welt in der wir leben. Entstehung Entwichlung, heutige Stand. Rombach Ökologie, Rombach Verlag, Freiburg, 1995
- [24] TÜRKEŞ M., Sümer, U.M. ve Demir, İ. 2002 Türkeş M., 1995, 1996, 1999, 2000
- [25] Türkiye Çevre Vakfı (Yayımlayan), Türkiye'nin Çevre Sorunları 2003. TÇV yayın no. 163, Önder M atbaası, Ankara, 2003.
- [26] WILLE, J., "Johannesburg 2002, UN Weltgipfel, Konzepte für die Zukunft." M agazine Deutschland, D. Nr. 5/2002, Oktober-November.
- [27] Bayraktar K.G, Dağsöz A.K., Kılıç A., 2003 itü dergisi

EKLER

ÖZGEÇMİŞ

Ersin Kandil, 26.02.1981 de İstanbul' da doğdu. İlk, orta eğitimini Ümraniye'de tamamladı. 1999 yılında Haydar Paşa Lisesinden mezun oldu. 2000 yılında başladığı Trakya Ü. Makine Mühendisliği Bölümünü 2004 yılında bitirdi. 2004 – 2006 yılları arasında Mavi Mühendislik Sanayi ve Tic. Ltd. Şti.nde teknik işler müdürü olarak çalıştı. 2006- 2007 yılları arasında Optimum Mühendisliğin bünyesine girdi. Şuan Optimum Mühendisliğin mekanik tesisat bölümünün teknik sorumlusu olarak iş hayıtını sürdürmektedir.