Table 6:3 Interstellar molecules

year	name	formula	wavelength
1937	methylidyne	СН	4 300 Å (0·43 µm)
1940	cyanogen	CN	3 875 Å (0·3875 μm)
1941	methylidyne ion	CH+	3 745-4 233 Å (0·3745-0·4233 µm)
1963	*hydroxyl	OH	2·2, 5·0, 6·3, 18 cm
1968	ammonia	NH ₃	1·20–1·26 cm
1968	*water	H ₂ O	1·35 cm
1700	water	1120	
1969	*formaldehyde	H₂CO	{ 1, 2·2, 6·2 cm { 2·0, 4·0 mm
1970	*carbon monoxide	CO	2·60 mm
1970	*cyanogen	CN	2.64 mm
1970	hydrogen	H_2	1 100 Å (0·11 μm)
1970	*hydrogen cyanide	HCN	3·38 mm
1970	*formyl ion	HCO+	3·36 mm
1970	*cyanoacetylene	HC₂CN	3·30 cm
1970	methanol	CH ₃ OH	0·3, 1·2, 36 cm
1970	formic acid	HCO ₂ H	18·3 cm
1971	carbon monosulphide	CS	2·04 mm
1971			6·49 cm
	formamide	HCONH ₂	2·30 mm
1971	silicon monoxide	SiO	
1971	carbonyl sulphide	OCS	2·74 mm
1971	methyl cyanide	CH ₃ CN	2·72 mm
1971	isocyanic acid	HNCO	0·34, 1·36 cm
1971	*hydrogen isocyanide	HNC	3·31 mm
1971	propyne	CH₃C₂H	3·51 mm
1971	acetaldehyde	CH₃CHO	28·1 cm
1971	thioformaldehyde	H ₂ CS	9·5 cm
1972	hydrogen sulphide	H_2S	1.78 mm
1972	methyleneimine	CH ₂ NH	5.67 cm
1973	sulphur monoxide	SO	3·49 mm
1974	ethynyl	C ₂ H	3.43 mm
1974	dimethyl ether	CH ₃ OCH ₃	3·47, 9·6 mm
1974	*methylamine	CH ₃ OCH ₃ CH ₃ NH ₂	3·48, 4·1 mm
1974			3.22 mm
	*hydrodinitrogenyl ion	N ₂ H ⁺	2.98, 3.73 mm
1975	cyanamide	NH₂CN	
1975	silicon sulphide	SiS	2.75, 3.30 mm
1975	ethanol	CH ₃ CH ₂ OH	2·8, 3·3, 3·5 mm
1975	sulphur nitride	SN	2·60 mm
1975	sulphur dioxide	SO ₂	3·46, 3·58 mm
1975	acrylonitrile	CH2CHCN —	21·86 cm
1975	methyl formate	HCO₂CH₃	18·6 cm
1976	*formyl	HCO	3·46 mm
1976	cyanodiacetylene	HC₄CN	2·80, 11·28 cm
1976	methyl cyanoacetylene	CH ₃ C ₂ CN	3·46 mm
1977	cyanoethynyl	C ₂ CN	3·03, 3·37 mm
1977	ketene	CH ₂ CO	2·94, 3·00, 3·67 mm
1977	nitrosyl hydride	HNO	3.68 mm
1977	ethyl cyanide	CH ₃ CH ₂ CN	2·58-3·06 mm
1977			2·95 cm
1978	cyanohexatri-yne	HC ₂ C ₂ C ₂ CN	1.99 mm
17/0	nitric oxide	NO	1.75 111111

*Several isotopic forms are known.

diameter, that is more than 600 000 times greater. The strength of the OH lines varies markedly over periods of a few months.

All these factors point to some sort of amplification occurring in the production of the OH lines, and such sources are called MASERS (an acronym for Microwave Amplification by Stimulated Emission of Radiation), the microwave equivalent of LASERS. The maser process is, as yet, not well understood. It is clear that the OH molecules absorb energy by some process and convert it into radiation; but the amplification can only occur under extremely critical conditions of density, temperature and magnetic field. Some masers appear to be identified with stars which are in the process of formation, while others are associated with very late-type red stars, such as Mira variables and NML Cyg. Recently, other masers - water vapour (H₂O), silicon monoxide (SiO), methyl alcohol (CH₃OH) and methylidyne (CH) - have been discovered, and it is hoped that they will provide more clues to the working of the mechanism.

All molecules, whatever process they are undergoing, are basically unstable in the hostile environment of space. Those which have been discovered must, therefore, be relatively young; and astrochemists are currently working hard on theories of their formation. It appears that the simpler diatomic molecules can be built up on the surfaces of dust grains; but the complex varieties need to be assembled by collisions between atoms in dense gas clouds and there is no general agreement as to how this happens.

Conditions in space are vastly different from those in terrestrial laboratories, which makes prediction of the end result that much more difficult. A few outspoken scientists have even suggested that the complex molecules which make up living creatures were originally built up in space.