Introduction to probability theory and stochastic processes

Cameron Ray Smith¹, Aviv Bergman^{1,2,3,4}

¹Department of Systems and Computational Biology ²Dominick P. Purpura Department of Neuroscience

³Department of Pathology Albert Einstein College of Medicine ⁴Santa Fe Institute

Outline

Theoretical background Conceptual introduction Measure theory

Stochastic processes

References

sets

probability measure

probability axioms

conditional probability

random variables

probability densities

joint probability densities

the reality

For the general theory of measure spaces, we first need a measurable space (Ω, Σ), that is a set equipped with a collection Σ of measurable sets complete under certain operations. Then this becomes a measure space (Ω, Σ, μ) by throwing in a function μ from Σ to a space of values (such as the real line) that gets along with the set-theoretic operations that Σ has. If E is a measurable set, then μ(E) is called the measure of E with respect to μ. [1, 2]

- 1. Given a set Ω ,
- 2. a σ -algebra is a collection of subsets of Ω that is closed under complementation, countable unions, and countable intersections.
- 3. A **measurable space**, by the usual modern definition, is a set Ω equipped with a σ -algebra Σ .
- 4. The elements of Σ are called the **measurable sets** of Ω (or more properly, the measurable subsets of (Ω, Σ)).

A measure space is a measurable space equipped with a measure. There are many different types of measures parametrized by the type of their codomains. Let (Ω, Σ) be a measurable space. A **probability measure** on Ω (due to Kolmogorov) is a function μ from the collection Σ of measurable sets to the unit interval [0,1] such that:

- 1. The measure of the empty set is zero: $\mu(\emptyset) = 0$;
- 2. The measure of the entire space is one: $\mu(\Omega)=1$;
- 3. Countable additivity: $\mu(\bigcup_{i=1}^{\infty} S_i) = \sum_{i=1}^{\infty} \mu(S_i)$ whenever the S_i are mutually disjoint sets—disjoint. (Part of the latter condition is the requirement that the sum on the right-hand side must converge.)

It is sometimes stated (but in fact follows from the previous) that:

- Finitary additivity: $\mu(S \cup T) = \mu(S) + \mu(T)$ whenever S and T are disjoint.
- μ is increasing: $\mu(A) \leq \mu(B)$ if $A \subseteq B$.

Measures can be thought of in terms of integrals and densities are defined in terms of measures. Let A be, for example, one of the measurable sets from the collection of measurable sets, Σ , of our sample space Ω .

- $\mu(A) = \int_A dx$ or $\mu(A) = \int_A p(x) dx$
- $\mu(A)$ represents the mass of A which can be interpreted geometrically as an abstract volume or probabilistically as the probability mass of the event "random variable X takes a value within A"
- A density can then be defined intuitively as a function that transforms some measure μ_1 into a measure μ_2 by pointwise reweighting on the sample space Ω . Thus, densities are always relative measures.
- $d\mu_2(x) = f(x) d\mu_1(x)$ or $\frac{d\mu_2}{d\mu_2}(x) = f(x)$

Does a density always exist?

- A density function f is thus a function that is integrated to obtain information in terms of measure μ_2 from information in terms of measure μ_1 .
- $\mu_2(A) = \int_A d\mu_2(x) = \int_A f(x) d\mu_1(x)$ is not defined if $\mu_1(A) = 0$ and $\mu_2(A) \neq 0$.
- If this is never the case for all $A \in \Sigma$, then μ_2 is referred to as absolutely continuous with respect to μ_1 and this relationship is written $\mu_2 \ll \mu_1$.
- This conclusion is formalized in the **Radon-Nikodym** theorem which states that μ_2 has a density with respect to μ_1 if and only if $\mu_2 \ll \mu_1$.

... so the answer is ... no, which is the reason for going through all this abstract stuff

Outline

Theoretical background

Stochastic processes
Definition

References

Intuitively, **stochastic processes** are ∞ -dimensional probability distributions.

- In most applications, stochastic processes model systems that evolve randomly in time, which is likely the origin of the word process in the name.
- The order of this evolution can be described through the use of an index and an index set respectively t ∈ T.

Definition

Consider a random experiment with sample space X, a σ -algebra Σ , a base probability measure $\mu: \Sigma \to [0,1]$, and a collection of random variables S_t indexed by a set T. A **stochastic process** is then defined by the set $\{S_t, t \in T\}$.

• This definition can be specialized to the case of discrete or continuous stochastic processes by taking the index set to be $T \in \mathbb{N}$ or $T \in \mathbb{R}_+$ respectively.

Outline

Theoretical background

Stochastic processes

References

- David Insua, Fabrizio Ruggeri, and Mike Wiper. Bayesian Analysis of Stochastic Process Models. Wiley, 2012.
- [2] NLab. Measure space. http://ncatlab.org/nlab/show/measure+space.