Deep Learning

April 18, 2019

Data Science CSCI 1951A

Brown University

Instructor: Ellie Pavlick

HTAs: Wennie Zhang, Maulik Dang, Gurnaaz Kaur

Announcements

 Extra Office Hours next week—talk to me about your project woes (getting close to your last chance)

Today

- Deep Learning roughly what is it?
- Why is it such a big deal (now)?
- Should I use deep learning for my thing?

$$\sum_{i=1}^n (Y_i - \hat{Y})^2$$

minimize
$$\sum_{i=1}^n (Y_i - \hat{Y})^2$$

minimize
$$\sum_{i=1}^n (Y_i - \hat{Y})^2$$

minimize
$$\sum_{i=1}^n (Y_i - \hat{Y})^2$$

Linear Regression

Linear Regression

$$y = wX + b$$

$$y = \vec{w} \cdot \vec{x}$$

X W

X

X

W

y

$$y = \vec{w} \cdot \vec{x}$$

$$y = \vec{w} \cdot \vec{x}$$

X W

$$y = \vec{w} \cdot \vec{x}$$

Feature Weight

$$y = \vec{w} \cdot \vec{x}$$

Logistic Regression

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$
"activation function"

X

=

X W

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

x w1 h w2 y

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

just a logistic regression

x w1 h w2

$$y=1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$
 and another

x w1 h w2 y

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

so many logistic regressions

x w1 h w2 y

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

x w1 h w2 y

$$y = \vec{w} \cdot \vec{x}$$

x w y

$$y = W_2 \cdot (W_1 \cdot \vec{x})$$

x w1 w2 y

x w1 w2 y

$$y = W_2 \cdot (W_1 \cdot \vec{x})$$

$$f = \mathcal{L}(W_2 \cdot g(\vec{x}))$$
$$g = W_1 \cdot \vec{x}$$

x w1 w2 y

$$y = W_2 \cdot (W_1 \cdot \vec{x})$$

$$f = \mathcal{L}(W_2 \cdot g(\vec{x}))$$

$$g = W_1 \cdot \vec{x}$$

x w1

$$\frac{\partial loss}{\partial s}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$$

Chain Rule!

The most basic network

The most basic network

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

The most basic network

$$y = 1 \text{ if } \vec{w} \cdot \vec{x} > \tau \text{ else } 0$$

tons of nonlinear parameters = tons of flexibility

NNs have been around since forever (the 80s!! :-0)

- NNs have been around since forever (the 80s!! :-0)
- A vanilla MLP can theoretically approximate any function ("universal approximator")

- NNs have been around since forever (the 80s!! :-0)
- A vanilla MLP can theoretically approximate any function ("universal approximator")
- (Note: "can" != "do")

Recently became viable for a few reasons, e.g....

- Recently became viable for a few reasons, e.g....
- Backprop (/autodiff): now we can build deep networks and actually train them

- Recently became viable for a few reasons, e.g....
- Backprop (/autodiff): now we can build deep networks and actually train them
- GPUs: and we can train them fast

- Recently became viable for a few reasons, e.g....
- Backprop (/autodiff): now we can build deep networks and actually train them
- GPUs: and we can train them fast
- Data: and we can train on enough data that they actually converge to something useful

"Its how the brain works."

"Its how the brain works." —> NO!

- "Its how the brain works." —> NO!
- End-to-end training—optimize directly for the thing you care about

- "Its how the brain works." —> NO!
- End-to-end training—optimize directly for the thing you care about
- Dense/denoised representations—similar inputs get similar predictions

- "Its how the brain works." —> NO!
- End-to-end training—optimize directly for the thing you care about
- Dense/denoised representations—similar inputs get similar predictions (like MF, more in a bit)

- "Its how the brain works." —> NO!
- End-to-end training—optimize directly for the thing you care about
- Dense/denoised representations—similar inputs get similar predictions (like MF, more in a bit)
- Uniform representations across sub-disciplines of AI (i.e. vision, language, sensor inputs)—"its all just vectors anyway"

NNs as classifiers

- You already have linear regression, naive bayes, logistic regression, svm...
- Now you have neural nets too!

Multilayer Perceptron

Multilayer Perceptron

"Feed Forward Net"

"Fully Connected Layer"

Multilayer Perceptron

Arbitrary, non-linear combinations of input features. No prior on the structure of those features.

Convolutional Neural Net (CNN)

Convolutional Neural Net (CNN)

Used for vision. Assumes spatial structure to the data.

Recurrent Neural Net (RNN)

Recurrent Neural Net (RNN)

Used for language (and other things). Assumes linear/temporal structure to the data.

 Train a model to do some task T1 (for which you have a lot of data)

- Train a model to do some task T1 (for which you have a lot of data)
- Let the model converge. Now your hidden states contain whatever features were good for T1

- Train a model to do some task T1 (for which you have a lot of data)
- Let the model converge. Now your hidden states contain whatever features were good for T1
- Maybe these features are good for some other task T2 too? Maybe you can now do T2 with less training?

"Pretraining"

- Train a model to do some task T1 (for which you have a lot of data)
- Let the model converge. Now your hidden states contain whatever features were good for T1
- Maybe these features are good for some other task T2 too? Maybe you can now do T2 with less training?

Factorization of the term-context matrix

	the	congress	parliament	US	UK
the	1	1	1	1	1
congress	1	1	0	1	0
parlaiment	1	0	1	1	1
US UK	1	1	1	1	0
	1	0	1	0	1

the con- parlia- US UK Embeddings

the congress parlaiment US

US UK

1	1	1	1	1
1	1	0	1	0
1	0	1	1	1
1	1	1	1	
1	0	1	0	1

Embeddings!

the	-0.60
ongress	-0.48
parliament	-0.43
uS.	-0.48

	-0.60	-0.39	0.70	0.00
	-0.48	0.50	-0.12	-0.71
t	-0.43	-0.58	-0.69	0.00
	-0.48	0.50	-0.12	0.71
	0.02	0.79	0.02	-0.44
				i

-0.65	-0.34	-0.51	-0.34	-0.31
0.02	-0.54	0.34	-0.54	0.56
-0.42	0.02	0.79	0.02	-0.44
-0.63	0.27	0.00	0.37	0.63
-0.04	0.73	0.00	-0.68	0.04

one hot encoding, i.e.: the word "congress"

Word Embeddings predict one hot encoding of next word, i.e.:

the word "stagnated"

W2W1

Actually the same as the MF embeddings (assuming a linear network...)
Levy and Goldberg (2014)

Allows parameter sharing over similar words.

INPUT

For your homework: Skipgram

w(t-2) w(t-1) w(t) w(t+1) Given a word, predict the words that come to its left w(t+2) and right...

PROJECTION

OUTPUT

 Mostly require (massive!) supervised learning. Better use of deep RL/unsupervised pretraining?

- Mostly require (massive!) supervised learning. Better use of deep RL/unsupervised pretraining?
- Feature engineering has been replaced with architecture engineering/hyperparameter hacking. Metalearning?

- Mostly require (massive!) supervised learning. Better use of deep RL/unsupervised pretraining?
- Feature engineering has been replaced with architecture engineering/hyperparameter hacking. Metalearning?
- End-to-end-training hurts generalizability. Inductive biases on the hypothesis space?

- Mostly require (massive!) supervised learning. Better use of deep RL/unsupervised pretraining?
- Feature engineering has been replaced with architecture engineering/hyperparameter hacking. Metalearning?
- End-to-end-training hurts generalizability. Inductive biases on the hypothesis space?
- The <u>big</u> reason: its really really hard to formulate most problems as ML problems

Do you have a ton of data?

Do you have a ton of data?

work.

bye:)