Note:

Nom et prénom :

Soit $I \subset \mathbb{R}$ non minoré, $a \in \mathring{I}$, $f: I \to \mathbb{R}$ et $\ell \in \mathbb{R}$. Donner les définitions quantifiées de « f tend vers $+\infty$ en a », de « f tend vers ℓ en $-\infty$ » et de « f tend vers ℓ à gauche en a ».

Soit $I \subset \mathbb{R}$, $f: I \to \mathbb{R}$, $a \in \mathring{I}$ et $\ell \in \mathbb{R}$. Quel lien y a-t-il entre « $f(x) \xrightarrow[x \to a]{} \ell$ » et les limites à droite et à gauche de f en a?

Soit $I, J \subset \mathbb{R}$, soit $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ avec $f(I) \subset J$. Supposons $+\infty \in \overline{J}$, soit $a \in I$ et $\ell \in \mathbb{R}$ tels que $f(x) \xrightarrow[x \to a]{} +\infty$ et $g(x) \xrightarrow[x \to +\infty]{} \ell$. Montrer que $g(f(x)) \xrightarrow[x \to a]{} \ell$.

Dire si la proposition suivante est vraie (le démontrer) ou fausse (exhiber un contre-exemple) : « pour tout $u \in \mathbb{R}^{\mathbb{N}}$, si $u_{n+1} - u_n \xrightarrow[n \to +\infty]{} 0$ alors $(u_n)_{n \in \mathbb{N}}$ converge ».