Exercises #3

Maxwell Petersen

October 8, 2015

Exercise 2.1

a.

b.

Exercise 2.3

- **a.** What are the variables of G? $\{R, S, T, X\}$
- **b.** What are the terminals of G? $\{a, b\}$
- **c.** Which is the start variable of G? R
- **d.** Give three strings in L(G). aaba, ab, bbaba
- **e.** Give three strings not in L(G). aaa, bbb, ϵ
- **f.** True or False: $T \Rightarrow \mathsf{aba}$. False
- g. True or False: $T \stackrel{*}{\Rightarrow} \mathsf{aba}$.
 True
- **h.** True or False: $T \Rightarrow T$ False

- i. True or False: $T \stackrel{*}{\Rightarrow} T$ True
- **j.** True or False: $XXX \stackrel{*}{\Rightarrow} \mathsf{aba}$ True
- **k.** True or False: $X \stackrel{*}{\Rightarrow} \mathsf{aba}$ False
- 1. True or False: $T \stackrel{*}{\Rightarrow} XX$ True
- **m.** True or False: $T \stackrel{*}{\Rightarrow} XXX$ True
- **n.** True or False: $S \stackrel{*}{\Rightarrow} \epsilon$ False
- O. Give a description in English of L(G).
 G is the set of every string that is not a palindrome

Exercise 2.4

a. $\{w \mid w \text{ contains at least three 1s}\}\$ $S \to T1T1T1T$

$$T \rightarrow T1 \mid T0 \mid 1T \mid 0T \mid \epsilon$$

 $\mathbf{b.} \ \{w \mid w \text{ starts with and ends with the same symbol}\}$

$$S \rightarrow 1T1 \mid 0T0$$

$$T \rightarrow T1 \mid T0 \mid 1T \mid 0T \mid \epsilon$$

c. $\{w \mid \text{the length of } w \text{ is odd}\}$

$$S \to TST \mid T$$

$$T \rightarrow 1 \mid 0$$

- **d.** $\{w \mid \text{the length of } w \text{ is odd adn the middle value is a 0} \}$ $S \rightarrow 0 \mid 0.00 \mid 0.001 \mid 1.001 \mid 1.00$
- e. $\{w \mid w = w^{\mathcal{R}}, \text{ that is, } w \text{ is a palindrome}\}\$ $S \to \mathsf{a} S \mathsf{a} \mid \mathsf{b} S \mathsf{b} \mid \mathsf{a} \mid \mathsf{b} \mid \epsilon$
- **f.** The empty set

Exercise 2.6

 ${\bf a.}$ The set of string over the alphabet $\{a,b\}$ where there are more a 's than b 's.

$$S \to T \mathbf{a} T$$

$$T
ightarrow TT$$
 | a T b | b T a | a | ϵ

b. The compliment of the language $\{a^nb^n \mid n > 0\}$

$$S \to T \mid V \mid X \mathsf{b} X \mathsf{a} X$$

$$T \to U \mathrm{a} U$$

$$U \rightarrow UU \mid aUb \mid bUa \mid a \mid \epsilon$$

$$V \to W \mathrm{b} W$$

$$W o WW \mid \mathsf{a} W\mathsf{b} \mid \mathsf{b} W\mathsf{a} \mid \mathsf{b} \mid \epsilon$$

$$X \to X \mathbf{a} \mid X \mathbf{b} \mid \epsilon$$

c. $\{w \# x \mid w^{\mathcal{R}} \text{ is a substring of } x \text{ for } w, x \in \{1,0\}^*\}$

$$S \to TX$$

$$T \rightarrow 0T0 \mid 1T1 \mid \#X$$

$$X \rightarrow 0X \mid 1X \mid \epsilon$$

d. $\{x_1 \# x_2 \# \cdots x_k \mid k \geq 1, \text{ each } x_i \in \{a, b\}^*, \text{ and for some } i \text{ and } j, x_i = x_i^{\mathcal{R}}\}$

$$S
ightarrow a TaU \mid bTbU \mid a \mid b$$

$$T \to \epsilon \mid \#S \mid S \mid \#S \#$$

$$U \to \epsilon \mid \#S$$

Exercise 2.13

Let $G=(V,\Sigma,R,S)$ be the following rammer. $V=\{S,T,U\}; \Sigma=\{\mathtt{0},\#\};$ and R is the set of rules:

$$S \to TT \mid U$$

$$T \rightarrow 0T \mid T0 \mid \#$$

$$U \rightarrow 0U00 \mid \#$$

- **a.** Describe L(G) in English.
 - L(G) is the set of all strings where there is some string of 0's a least one # then some more 0's then repeated with # in between each repeat guaranteeing that the string is going to be either two #'s or the first and last character is going to be a 0.
- **b.** Prove that L(G) is not regular.

Through exhaustive search a regular expression cannot be made for these rules. Without a regular expression the grammar produces a non regular language.

Exercise 2.14

```
Initial:
A \rightarrow BAB \mid B \mid \epsilon
B 
ightarrow 00 \mid \epsilon
Adding A_0 \to A:
A_0 \to A
A \rightarrow BAB \mid B \mid \epsilon
B 	o 00 \mid \epsilon
Converting rules to those that have at most length two:
A_0 \to A
A \to BC \mid B \mid \epsilon
B 
ightarrow 00 \mid \epsilon
C \to AB
Removing B \to \epsilon:
A_0 \to A
A \to BC \mid B \mid C \mid \epsilon
B \to \mathbf{00}
C \to AB \mid A
Removing A \to \epsilon:
A_0 \to A \mid \epsilon
A \rightarrow BC \mid B \mid C
B 
ightarrow 00
C \to AB \mid A \mid B \mid \epsilon
Removing C \to \epsilon
A_0 \to A \mid \epsilon
A \rightarrow BC \mid B \mid C
B 
ightarrow 00
C \to AB \mid A \mid B
Removing unit variables:
A_0 \rightarrow BC \mid 00 \mid AB \mid BC \mid 00 \mid \epsilon
A \rightarrow BC \mid 00 \mid AB \mid BC \mid 00
B 
ightarrow {
m 00}
```

No terminals paired with variables so the CFG is in CNF

 $C \rightarrow AB \mid BC \mid 00 \mid C$

Exercise 2.17

Let there be some regular expression R. For every union in R create a new variable S with rule $S \to \{\text{expression}\} \mid \{\text{expression}\}$, i.e $\mathtt{a} \cup \mathtt{b} \Rightarrow S \to \mathtt{a} \mid \mathtt{b}$. For every concatenation in R create a new variable S with rule $S \to \{\text{expression}\}$, i.e $\mathtt{a} \circ \mathtt{b} \Rightarrow S \to \mathtt{ab}$. For every Kleene star in R create a new variable S with rule $S \to \{\text{expression}\}S$, i.e $\mathtt{a}^* \Rightarrow S \to \mathtt{a}S$.