

CSE 6140/ CX 4140 Computational Science and Engineering ALGORITHMS

Coping with NP-completeness - 6
Approximation Algorithms

Instructor: Xiuwei Zhang

Assistant Professor

School of Computational Science and Engineering

Based on slides by Prof. Ümit V. Çatalyürek and Bistra Dilkina

KT 11.2 Clustering

Center Selection Problem

- Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.
- Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.
- Application: where to put the branch offices w.r.t. clients?

Greedy Algorithm: A False Start

- Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.
- Remark: arbitrarily bad!

Center Selection Problem

- Input. Set of *n* sites $s_1, ..., s_n$ and integer k > 0.
- Center selection problem. Select *k* centers *C* so that maximum distance from a site to nearest center is minimized.
- Notation.
 - dist(x, y) = distance between x and y.
 - o dist(s_i , C) = min $c \in C$ dist(s_i , c) = distance from s_i to closest center.
 - \circ r(C) = max_i dist(s_i, C) = smallest covering radius.
- Goal. Find set of centers C that minimizes r(C), subject to |C| = k.
- Distance function properties.
 - o dist(x, x) = 0 (identity)
 - o dist(x, y) = dist(y, x) (symmetry)

Also known as Metric Facility Location problem

Center Selection Example

- Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.
- Remark: search can be infinite!

 Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>, s<sub>2</sub>,..., s<sub>n</sub>) {
   C = φ
   repeat k times {
        Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>, C)
        Add s<sub>i</sub> to C
        site farthest from any center
   }
   return C
}
```


Observation. Upon termination all centers in C are pairwise at least r(C) apart. **Pf.**

- Remember that r(C) = max_i dist(s_i, C)
- Let us call the point that achieves this maximum radius s'
 - clearly s' is not one of the chosen centers, k < n
 - s' is at least r(C) away from any chosen center

Center Selection: Greedy Algorithm

Observation. Upon termination all centers in C are pairwise at least r(C) apart. **Pf. (continued...)**

- Assume there are two centers c_i and c_i at distance < r(C) (let i < j)
 - o when we chose j, its distance to the current C was < r(C) due to c
 - o s' was an option to choose as center and it was at least r(C) away from all centers in current $C \Rightarrow s'$ is further than j from the current centers
- By construction of algorithm, we always choose the furthest point from the current C
 ⇒ Contradict with that s' is not a center

Center Selection: Analysis of Greedy Algorithm

- Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$.
- Pf. (by contradiction)

greedy optimum

- Assume $r(C) > 2r(C^*)$, i.e., $r(C^*) < \frac{1}{2} r(C)$.
 - For each center c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it. (no 2 balls overlaps) (by observation: every two centers are at least r(C) apart)
 - $dist(c_i, C^*) \le r(C^*) < \frac{1}{2} r(C)$, so <u>at least</u> one c_i^* in each ball in C freedy center is site. By our assumption

Center Selection: Analysis of Greedy Algorithm

- Theorem. Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).
- Pf. (by contradiction) Assume $r(C) > 2r(C^*)$, i.e. $r(C^*) < \frac{1}{2} r(C)$.
 - at least one c_i* in each ball in C
 - Every pair of c_i,'s in C are at least r(C) apart (by alg.), so each ball around a c_i in C does not intersect with any other ball
 - Each ball has at least one c_i^* and $|C| = |C^*| = k$, so at most one c_i^* in each ball
 - Therefore <u>exactly one c_i* in each ball</u>

Center Selection

Greedy algorithm:

repeatedly choose the next center to be the site farthest from any existing center.

Notations:

C: the centers selected by Greedy

C*: the centers selected by Optimal

 $r(C) = max_i dist(s_i, C)$ (we want to minimize this value)

Shown earlier:

→ There is exactly one c_i* in each ball

Georgia Tech

Center Selection: Analysis of Greedy Algorithm

- Theorem. Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).
- Pf. (by contradiction) Assume $r(C) > 2r(C^*)$, i.e. $r(C^*) < \frac{1}{2} r(C)$.
 - exactly one c_k^* in each ball in C; let c_k be the site paired with c_k^*
 - Consider <u>any</u> site s and its closest center c_i* in C*:
 - a dist(s, C) ≤ dist(s, c_i^*) ≤ dist(s, c_i^*) + dist(c_i^* , c_i^*) ≤ 2r(C*).

 min across all c_i^* Δ -inequalit

 s and c_i^*
 - true for any site s including the one that has dist(s,C)=r(C)
 - Thus $r(C) \le 2r(C^*)$, this is a contradiction with our assumption ■
 - The assumption is wrong
 - r(C) ≤ $2r(C^*)$ -

Center Selection

- Theorem. Let C* be an optimal set of centers. Then $r(C) \le 2r(C^*)$.
- **Theorem**. Greedy algorithm is a 2-approximation for center selection problem.
- Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane