EAMB7024 – Métodos Numéricos em engenharia ambiental

Nelson Luís Dias

1 de setembro de 2024

1 Ementa

Introdução; Problemas de equilíbrio; Problemas transientes: equações parabólicas e hiperbólicas, condições auxiliares; Classificação e características das equações diferenciais parciais; Equações de diferenças finitas: aproximação por diferenças finitas, discretização espacial e temporal, discretizações multidimensionais, consistência, convergência e estabilidade, formulações de ordem elevada; Técnicas de solução numérica: sistemas lineares, equações elípticas, métodos diretos, métodos iterativos, método de Gauss-Seidel, método de sobre-relaxação, condições de contorno tipo Neummann, equações hiperbólicas, equações de convecção e da onda linear, método de Runge-Kutta; Equações parabólicas; Aplicações em problemas ambientais: modelagem de aquíferos, dispersão em rios, modelos ecológicos. Método de Lattice Boltzmann.

2 Programa

Aula	Data	Conteúdo Previsto	Conteúdo Realizado
1	Seg 02 Set	Introdução à disciplina, linguagens de programação aceitas neste curso.	
2	Qua 04 Set	Editores, linha de comando, Chapel I (string, int, real, etc.).	
3	Seg 09 Set	Chapel II (arrays, arquivos de texto).	
4	Qua 11 Set	Chapel III, arquivos binários, Random.	
5	Seg 16 Set	Aproximações de diferenças finitas; Euler ordem 1 (fracasso e sucesso).	
6	Qua 18 Set	Diferenças centradas implícito, Euler ordem 2.	
7	Seg 23 Set	Runge-Kutta ordem 4.	
8	Qua 25 Set	Arrays e Domínios em Chapel; o módulo fada, e os tipos vec e mat.	
9	Seg 30 Set	Runge-Kutta ordem 4 vetorial.	
10	Qua 02 Out	Solução de uma onda cinemática com Runge-Kutta ordem 4 vetorial.	
11	Seg 07 Out	Problemas de valor de contorno em 1D: algoritmo de Thomas e ordem de convergência.	
12	Qua 09 Out	O efeito da condição de contorno na ordem de convergência.	
13	Seg 14 Out	Entrega do T1 . Defesa do T1 (15 minutos de apresentação, 5 de arguição).	
14	Qua 16 Out	Solução numérica de EDPs: onda cinemática – esquema explícito instável. onda1d-ins e surf1d-ins. Análise de estabilidade de von Newmann.	
15	Seg 21 Out	Esquema de Lax. Difusão numérica. Upwind.	
16	Qua 23 Out	Quick e Quickest. Paralelização com forall .	
17	Seg 28 Out	Exemplo 3.1 e uma análise de estabilidade mais sofisticada.	
18	Qua 30 Out	Difusão pura: método explícito e método implícito.	
19	Seg 04 Nov	Difusão pura: Crank-Nicholson. Um problema completo de difusão-advecção.	
20	Qua 06 Nov	Difusão 2D: solução analítica e método ADI.	
21	Seg 11 Nov	ADI: paralelização.	
22	Qua 13 Nov	Over-relaxation; paralelização.	
23	Seg 18 Nov	Navier-Stokes I.	
24	Qua 20 Nov	Feriado: Dia Nacional de Zumbi e da Consciência Negra (quarta-feira).	
25	Seg 25 Nov	Navier-Stokes II	
26	Qua 27 Nov	Navier-Stokes III	
27	Seg 02 Dez	Navier-Stokes IV	
28	Qua 04 Dez	Entrega do T2 . Defesa do T2 (15 minutos de apresentação, 5 de arguição).	

3 Avaliação

2 trabalhos individuais com temas à escolha dos alunos. Os trabalhos deverão ser defendidos (15 minutos) nas datas designadas na programação acima. Além disso, os trabalhos deverão ser

Tabela 1: Linguagens que podem ser utilizadas nesta disciplina

Linguagem	Sistemas Operaconais	Onde encontrar
Chapel	Linux, MacOs, Windows(?)	https://chapel-lang.org/
Fortran	Linux, MacOs, Windows	https://gcc.gnu.org/wiki/GFortran
С	Linux, MacOs, Windows	(Variável: parta de https://gcc.gnu.org/)
Pascal	Linux, MacOs, Windows	https://www.freepascal.org/
MatLab (substitua por Octave)	Linux, MacOs, Windows	https://octave.org/
Basic	Linux, MacOs, Windows	https://freebasic.net/

entregues por email (nldias@ufpr.br) no seguinte formato:

- 1. Um arquivo pdf (A4, Times-Roman, margens de 2.5cm) com a descrição teórica do trabalho (problema científico ou de engenharia, método numérico, etc.), resultados com figuras e tabelas, etc.; e a descrição do programa de computador (linguagem utilizada, principais tarefas que o programa realiza, questões computacionais relevantes).
- 2. Um arquivo-fonte com o programa em uma das linguagens que podem ser utilizadas (ver tabela 1).

4 Biliografia Recomendada

- 1. Notas de aula.
- 2. Versteeg, H. K. e Malalasekera, W. (2007). *An Introduction to Computational Fluid Dynamics*. Pearson Prentice-Hall
- 3. de Oliveira Fortuna, A. (2000). *Técnicas Computacionais para Dinâmica dos Fluidos*. Editora da Universidade de São Paulo, São Paulo