숙제 2: 9월 24일(수) 밤12시(자정) 이전까지 - 조교 이메일로 제출

- 1. 다음의 모형들을 lag operator를 사용하지 않고 표현하라. (즉 아래의 문제 2와 같은 형태로 바꾸어라.)
- (a) $(1 \rho L)y = \varepsilon_t$
- (b) $(1+0.2L-0.8L^2)y_t = \varepsilon_t$
- (c) $y_t = (1 \theta L)\varepsilon_t$
- (d) $y_t = (1 0.3L + 0.5L^2)\varepsilon_t$
- 2. 다음의 모형들을 lag operator를 사용하여 표현하고 (즉 앞의 문제 1과 같은 형태로 바꾸어라.) stationary, invertible 한지 여부를 체크하라.
- (a) $y_t = 0.8y_{t-1} + \varepsilon_t$
- (b) $y_t = 0.2y_{t-1} + 0.3y_{t-2} 0.7y_{t-5} + \varepsilon_t$
- (c) $y_t = \varepsilon_t 0.7\varepsilon_{t-1}$
- (d) $y_t = \varepsilon_t + 0.3\varepsilon_{t-4}$
- 3. 다음의 MA(1) process에 대해 물음에 답하라. ε_t w.n.(0,1)

$$y_t = 2.3 - 0.95\varepsilon_{t-1} + \varepsilon_t$$

- (a) T시점에서의 T+h, h=1,2,3에 대한 optimal forecast를 구하라.
- (b) $\varepsilon_{\mathbf{1}} = 0.4$, $\varepsilon_{T-1} = -1.2$ 일 때, (a)에의 예측치는?
- 4. 표본의 크기가 T=500이고, 오차항 ε_t iidN(0,1)에서 추출한 random number 를 이용하여 다음의 모형에 의해 자료 y를 생성하고

$$y_t = \varepsilon_t$$
, white noise

$$y_t = \varepsilon_t - 0.6\varepsilon_{t-1} + 0.4\varepsilon_{t-2} - 0.5\varepsilon_{t-3} + 0.3\varepsilon_{t-4}$$

$$y_t = 0.3y_{t-1} + 0.4y_{t-2} + \varepsilon_t$$

각각의 data generating process에 의해 생성된 자료에 대해

- (a) 자료 y를 시계열 그래프와 ACF, PACF 그래프를 그리고,
- (b) MA(4) 모형을 추정한 결과를 보고하고, 해석하라.
- 5. 통화와 실물경제 사이의 인과관계를 분석하기 위해, M1통화 (단위: 10억원) 와 GDP 단위: 10억원, 2000년 불변가격)을 각각 증가율로 변환하여 M1통화증가율(X)과 GDP증가율(Y)을 이용하였다. 1986:I 2004:IV 사이의 분기별 자료를 사용하였다.

$$H_0: \alpha_1 = 0$$
 $H_1: \alpha_1 \neq 0$

X에서 Y로의 인과관계 분석을 위해 다음의 가설을 검정해서 과거 통화가 GDP에 영향이 있는지 검정하고자 한다. (Granger Causality 분석)

$$H_0:\alpha_1=\alpha_2=\alpha_3=\alpha_4,\ H_1:\ \mathrm{not}\ H_0$$

- 위의 두 가설검정을 위해 각각 t-statistic 과 F-statistic 을 이용하는 R 프로그램을 작성하고 그 결과를 제시하라.
- 자료를 불러오고 추정, 검정하는 R script을 작성하고, R script 및 결과를 캡쳐 하여 한글 파일에 오려 붙이기로 문서를 작성할 것.
- pdf 파일로 저장하여, "숙제1-홍길동.pdf"의 양식으로 파일을 저장한 후, 조교에게 이메일로 제출바람

OBS	GDP	M1
1970:1	13217.2	259.8
1970:2	16099.8	257.8
1970:3	16182.4	274.1
1970:4	23546.7	298.6
1971:1	14653.9	316.7
1971:2	17536.2	327.3
1971:3	17885.1	323.1
1971:4	24662.2	363.1
1972:1	15459.3	378.1
1972:2	17967.4	382.5
1972:3	18545.5	428.7
1972:4	26104.5	505.9
1973:1	17147.2	578.3
1973:2	20357.7	604.4
1973:3	21360.1	657
1973:4	28607.7	722.5
1974:1	19201.2	778.4
1974:2	22177.9	754.4
1974:3	22331.1	770.4
1974:4	30044.9	884.1
1975:1	19891.7	944.5
1975:2	23351.8	943.2

1975:4	32593.7	1138.5
1976:1	21750.9	1235.2
1976:2	26097.2	1269.5
1976:3	26072.3	1363.9
1976:4	35912.6	1474.5
1977:1	23089.1	1664.3
1977:2	27839.3	1736
1977:3	29384	1915.6
1977:4	40498	2161.7
1978:1	26320.4	2389.3
1978:2	31899.4	2365.1
1978:3	31897.8	2709.7
1978:4	41922.4	2994.6
1979:1	29683.1	3260.6
1979:2	34249.3	3222.7
1979:3	33641.6	3344.5
1979:4	43422.3	3700.9
1980:1	29733.3	4006.5
1980:2	33820.1	3847.3
1980:3	34438.5	4107
1980:4	40906	4342.9
1981:1	30770.4	4759.2
1981:2	34976.1	4912.6
1981:3	36385.3	5319.9
1981:4	45326.4	5490.2
1982:1	32878.3	6260.8
1982:2	37443.7	6855.6
1982:3	39041.7	8321.6
1982:4	48895.9	9300.1
1983:1	36362.7	9538.5
1983:2	41767.9	9566.1
1983:3	43968.7	10046.2
1983:4	53212.6	10538.9
1984:1	40492.9	10863.4
1984:2	45610.9	10814
1984:3	47273.7	11315.7
1984:4	56138.7	11623.1
1985:1	43096.4	12140.8
1985:2	48662	12724.6
1985:3	50393.1	13231.1
1985:4	60256.6	13925.6

1986:1	47079.2	15165.3
1986:2	53761.4	16177.3
1986:3	56626	17259.9
1986:4	66434.9	18240.6
1987:1	53267.4	19373.2
1987:2	60487.5	20332.7
1987:3	62676.9	21678.2
1987:4	72332	23741.9
1988:1	60889.8	24910.4
1988:2	65847.8	25370.2
1988:3	68620	27309.2
1988:4	79877.7	28731.2
1989:1	64435.4	29736.8
1989:2	70639.5	29832
1989:3	73072.4	30918.1
1989:4	85651.2	32096
1990:1	70952.6	36109.9
1990:2	78051.7	37562.7
1990:3	80159.5	38063.8
1990:4	91532.5	40479.1
1991:1	77791.3	44214.3
1991:2	86155.4	44465.5
1991:3	87175.7	45770.5
1991:4	99697.5	48526.5
1992:1	84174.7	52779.4
1992:2	92192.5	53287.1
1992:3	91040.5	55158.6
1992:4	104025.3	60174.4
1993:1	87917.2	64099.3
1993:2	97219.3	65955.1
1993:3	97815	69294
1993:4	111264.4	73076.9
1994:1	95437	74575.4
1994:2	104757.7	75759.4
1994:3	105806.9	79167
1994:4	121866.6	82158
1995:1	104393.2	85746.4
1995:2	114791.9	85439.1
1995:3	116687.8	87798.4
1995:4	131226.3	91841.3
1996:1	112109.1	96076.6

1996:2	123035.4	96816.4
1996:3	124373	99846.4
1996:4	140272.2	106508.2
1997:1	117605.2	113567.2
1997:2	130478.5	113376.8
1997:3	130719.7	118552.4
1997:4	144231.3	126355.6
1998:1	111371.8	120023.7
1998:2	120168.3	102618.1
1998:3	120104	111139.4
1998:4	135539.4	120856.5
1999:1	117907.7	127573.4
1999:2	131841.4	139958.4
1999:3	133375.6	154976.2
1999:4	150274.6	166632.9
2000:1	133383.4	173198.4
2000:2	144171.4	182424
2000:3	144350.1	187613.4
2000:4	156759.7	190163.8
2001:1	138047.3	202638.6
2001:2	149503.6	205869.5
2001:3	149311.5	219365.8
2001:4	164003.6	237895.5
2002:1	147076.1	256941.7
2002:2	159990.3	263279.6
2002:3	159407.1	263798.2
2002:4	176274.6	276149.9
2003:1	152625	283414.8
2003:2	163536.1	277733
2003:3	163003.9	281278.2
2003:4	183489.9	291163.5
2004:1	160658.2	304054.5
2004:2	172588.5	303951.4
2004:3	170629.1	305501.2
2004:4	189548.2	312186.8

1. 다음의 모형들을 lag operator를 사용하지 않고 표현하라. (즉 아래의 문제 2와 같은 형태로 바꾸어라.)

(a)
$$(1-\rho \mathbf{L})y_{\mathbf{L}} = \varepsilon_t$$

(b)
$$(1+0.2L-0.8L^2)y_t = \varepsilon_t$$

(c)
$$y_t = (1 - \theta L)\varepsilon_t$$

(d)
$$y_t = (1 - 0.3L + 0.5L^2)\varepsilon_t$$

(a)
$$(1-\rho L)y_t = \varepsilon_t$$

$$y_t = \rho L y_t + \varepsilon_t$$

$$= \rho y_{t+1} + \varepsilon_t$$

(c)
$$Y_t = (1-0L)\varepsilon_t$$

= $\varepsilon_t - 0L\varepsilon_t$
= $\varepsilon_t - 0\varepsilon_{t-1}$

(d)
$$Y_t = (1-0.3L+0.5L^2) \mathcal{E}_t$$

= $\mathcal{E}_t - 0.3L \mathcal{E}_t + 0.5L^2 \mathcal{E}_t$
= $\mathcal{E}_b - 0.3\mathcal{E}_{t-1} + 0.5\mathcal{E}_{t-1}$

2. 다음의 모형들을 lag operator를 사용하여 표현하고 (즉 앞의 문제 1과 같은 형태로 바꾸어라.) stationary, invertible 한지 여부를 체크하라.

(a)
$$y_t = 0.8y_{t-1} + \varepsilon_t$$

(b)
$$y_t = 0.2y_{t-1} + 0.3y_{t-2} - 0.7y_{t-5} + \varepsilon_t$$

(c)
$$y_t = \varepsilon_t - 0.7\varepsilon_{t-1}$$

(d)
$$y_t = \varepsilon_t + 0.3\varepsilon_{t-4}$$

(a)
$$y_t = 0.8 y_{t+1} + \varepsilon_t$$

 $y_t = 0.8 L y_t = \varepsilon_t$
 $(1 - 0.8 L) y_t = \varepsilon_t$
 $\delta(L) = 1 - 0.8 L$

(b)
$$y_t = 0.2 y_{t-1} + 0.3 y_{t-2} - 0.7 y_{t-5} + \varepsilon_t$$

$$(1-0.2L-0.3L^{\frac{1}{2}} + 0.7L^{\frac{5}{2}}) y_t = \varepsilon_t$$

ar1 ar2 ar3 ar4 ar5
0.202711577 0.297565346 -0.001228313 0.005936342 -0.697504956
> polyroot(c(1, -ar2.st\$coef)) # 1 - 0.6279L + 0.27411/2 -> 허근이 나용.
[1] 0.8819994+0.5120341i -1.0469858-0.00000000i -0.3542511-1.0913534i 0.8819994-0.5120341i
[5] -0.3542511+1.0913534i
> Mod(polyroot(c(1, -ar2.st\$coef))) # 이를 복소수 평면에 표시됐을 때, 1보다 크니까, stability condition 만족!
[1] 1.019854 1.046986 1.147408 1.019854 1.147408

月三 約を対えて、 空 マット outside of unit circle.

: Stationary (invertible)

(C)
$$y_t = \mathcal{E}_t - 0.1 \mathcal{E}_{t-1}$$

= $\mathcal{E}_t - 0.1 L \mathcal{E}_t$
= $(1-0.1 L) \mathcal{E}_t$

$$\theta(L) = [-0.1]L$$

$$\theta(Z) = 0.01 Z = \frac{1}{0.0} > 1$$

$$\therefore \text{ invertible (Stationary)}$$

(d)
$$y_t = \mathcal{E}_t + 0.3 \mathcal{E}_{t-4}$$

$$= (1 + 0.3 L^4) \mathcal{E}_t$$

$$\mathcal{O}(L) = 1 + 0.3 L^4$$

> ar2.stScoef
ma1 ma2 ma3 ma4
0.000275837 0.0007859823 -0.0006664478 0.2773839897
> polyroot(c(1, -ar2.stScoef)) # 1 - 0.6279L + 0.2741L^2 -> 허근이 나음.
[1] 0.000732+1.378452i -1.376955-0.000000i 0.000732-1.378452i 1.377894+0.000000i
- Mad(polyroot(c(1, -ar2.stScoef))) # 이를 복소수 평면에 표시됐을 때, 1보다 크니까, stability condition 만을
[1] 1.378452 1.376955 1.378452 1.377894

月三 시행之中,空 771 outside of unit circle.
: invertible (Stationary)

- 3. 다음의 MA(1) process에 대해 물음에 답하라. $\varepsilon_t = w \cdot n \cdot (0,1)$ $y_t = 2.3 0.95 \varepsilon_{t-1} + \varepsilon_t$
- (a) T시점에서의 T+h, h=1,2,3에 대한 optimal forecast를 구하라.

(a) i) h=1:
$$E[Y_{T+1} | \Omega_T] = E[2.3 - 0.95 \mathcal{E}_T + \mathcal{E}_{T+1} | \Omega_T]$$

= $2.3 - 0.95 \mathcal{E}_T + 0$
= $2.3 - 0.95 \mathcal{E}_T$

ii)
$$h=2:E[Y_{T+2}|\Omega_{T}]=E[2.3-0.95 \mathcal{E}_{T+1}+\mathcal{E}_{T+2}|\Omega_{T}]$$

$$=2.3+0+0$$

$$=2.3$$

iii) h=3:
$$E[Y_{\tau+3} | \Omega_{\tau}] = E[2.3 - 0.95 E_{\tau+2} + E_{\tau+3} | \Omega_{\tau}]$$

$$= 2.3 + 0 + 0$$

$$= 2.3$$

(b)
$$i$$
) $h=1$: 2.3-0.95 × 0.4 = 1.92

- ii) h=2: 2.3
- ;;; h=> : 2.3

4. 표본의 크기가 T=500이고, 오차항 ε_t iidN(0,1)에서 추출한 random number 를 이용하여 다음의 모형에 의해 자료 y를 생성하고

$$y_t = \varepsilon_t, \text{ white noise } \longrightarrow \bigcup$$

$$y_t = \varepsilon_t - 0.6\varepsilon_{t-1} + 0.4\varepsilon_{t-2} - 0.5\varepsilon_{t-3} + 0.3\varepsilon_{t-4} \longrightarrow \bigcirc$$

$$y_t = 0.3y_{t-1} + 0.4y_{t-2} + \varepsilon_t \longrightarrow \bigcirc$$

각각의 data generating process에 의해 생성된 자료에 대해

- (a) 자료 y를 시계열 그래프와 ACF, PACF 그래프를 그리고,
- (b) MA(4) 모형을 추정한 결과를 보고하고, 해석하라.

Autocorrelations

Partial Autocorrelations

(b)

ACF of Residuals

_, 장치익 ACF가 모두 임계치안이 들어가 있음.

: 자기상관관계가 없는.

福如 都 一 新郊.

Box-Ljung test

data: res04

X-squared = 0.33461, df = 4, p-value = 0.9875

___ 건치의 구<mark>네</mark>제당 검접.

P-value对 0.0501公子 2억~ 复用本记 及致

ACF > 1 ST DOI 2016.

Shapiro-Wilk normality test

data: res04

W = 0.99762, p-value = 0.7043

→ द्विथ दिवा विश्व विश्व.

p-value가 0.05% > 건지 강경 만족.

(white noise)

5. 통화와 실물경제 사이의 인과관계를 분석하기 위해, M1통화 (단위: 10억원) 와 GDP 단위: 10억원, 2000년 불변가격)을 각각 증가율로 변환하여 M1통화증가율(X)과 GDP증가율(Y)을 이용하였다. 1986:I - 2004:IV 사이의 분기별 자료를 사용하였다.

$$H_0: \alpha_1 = 0$$
 $H_1: \alpha_1 \neq 0$

X에서 Y로의 인과관계 분석을 위해 다음의 가설을 검정해서 과거 통화가 GDP에 영향이 있는지 검정하고자 한다. (Granger Causality 분석)

$$H_0:\alpha_1=\alpha_2=\alpha_3=\alpha_4,\ H_1:\ \mathrm{not}\ H_0$$

위의 두 가설검정을 위해 각각 t-statistic 과 F-statistic 을 이용하는 R 프로그램을 작성하고 그 결과를 제시하라.

> summary(lm1)\$coefficients['gr_m1_lag1',] # T-test
 Estimate Std. Error t value Pr(>|t|)
0.280110791 0.102034896 2.745245022 0.007754929

12) F-test

Q $H_b: Q_1 = Q_2 = Q_3 = Q_4$, $H_1: not I$

```
Call:
le(formula = gr_gdp ~ gr_gdp_lag1 + gr_gdp_lag2 + gr_gdp_lag3 +
    gr\_gdp\_lag4 \ + \ I(gr\_m1\_lag1 \ + \ gr\_m1\_lag2 \ + \ gr\_m1\_lag3 \ + \ gr\_m1\_lag4),
    data = data2)
Residuals:
                       Median
-0.121544 -0.007404 0.001541 0.010337 0.100263
Coefficients:
                                                       Estimate Std. Error t value Pr(>|t|)
                                                                  0.007257 0.766 0.4464
0.110041 -1.951 0.0551
(Intercept)
                                                       0.005557
                                                       -0.214659
gr_gdp_lag1
                                                                   0.110451 -1.766
                                                       -0.195075
                                                                                       0.0817
gr_gdp_lag2
                                                                   0.108758 -1.998
gr_gdp_lag3
                                                       -0.217309
                                                                                      0.0496
                                                                             6.821 2.65e-09
gr_gdp_lag4
                                                        0.725500
                                                                  0.106369
I(gr_m1_lag1 + gr_m1_lag2 + gr_m1_lag3 + gr_m1_lag4) 0.016181 0.055747
                                                                             0.290
                                                                                     0.7725
gr_gdp_lag1
gr_gdp_lag2
gr_gdp_lag3
gr_gdp_lag4
I(gr_m1_lag1 + gr_m1_lag2 + gr_m1_lag3 + gr_m1_lag4)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.02584 on 70 degrees of freedom
Multiple R-squared: 0.9583, Adjusted R-squared: 0.9553
F-statistic: 321.6 on 5 and 70 DF, p-value: < 2.2e-16
```

(1) F-test

(3) Granger Casuality test

* B IZIZHU Source Code

MA(4), 추정방법 : MLE(Maximum Likelihood)

ma4.st\$coef

```
install.packages("car", dependencies = T)
install.packages('Imtest')
library(Imtest)
library(car)
# ------ Problem 4 ------
# (1)
# data generation
y1 <- rnorm(500)
y2 < - arima.sim(n = 500, model = list(ma = c(-0.6, 0.4, -0.5, 0.3)))
y3 < - arima.sim(n = 500, model = list(ar = c(0.3, 0.4)))
# draw ACF. PACF
# y1
op <- par(no.readonly = TRUE)
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) # 2 by 2 graph. 1행에 1개 2행에 3개
par("mar")
par(mar=c(1,1,1,1))
plot.ts(y1, ylab='simulated y series')
acf(y1, main = 'Autocorrelations', ylab = '', ylim = c(-1,1), ci.col = 'red')
pacf(y1, main = 'Partial Autocorrelations', ylab = '', ylim = c(-1, 1), ci.col = 'black')
# y2
plot.ts(y2, ylab='simulated y series')
acf(y2, main = 'Autocorrelations', ylab = '', ylim = c(-1,1), ci.col = 'red') # ci = maybe confidence
interval.
pacf(y2, main = 'Partial Autocorrelations', ylab = '', ylim = c(-1, 1), ci.col = 'black')
# v3
plot.ts(y3, ylab='simulated y series')
acf(y3, main = 'Autocorrelations', ylab = '', ylim = c(-1,1), ci.col = 'red') # ci = maybe confidence
interval.
pacf(y3, main = 'Partial Autocorrelations', ylab = '', ylim = c(-1, 1), ci.col = 'black')
# (2): estimate MA(4) with y2
arma04 < - arima(y2, order = c(0, 0, 4))
II04 <- logLik(arma04) # log likelihood
aic04 <- arma04$aic
res04 <- residuals(arma04)
Box.test(res04, lag = 4, type = 'Ljung-Box') # auto correlation 1~4까지 모두가 동시에 0이라는 것을 test
shapiro.test(res04) # normality test -> 귀무가설 기각 불가 -> 정규성 만족.
tsdiag(arma04)
# invertible(stationary) test
ma4.st <- arima(y2, c(0, 0, 4), include.mean = FALSE, transform.pars = FALSE, method = 'ML')
```

```
polyroot(c(1, ma4.st$coef))
Mod(polyroot(c(1, ma4.st$coef))) # 이를 복소수 평면에 표시했을 때, 1보다 크면, stability condition 만족!
root.comp <- Im(polyroot(c(1, ma4.st$coef)))
root.real <- Re(polyroot(c(1, ma4.st$coef)))
# plotting the roots in a unit circle
x < - seq(-1, 1, length = 1000)
y1 <- sqrt(1-x^2)
y2 < - -sqrt(1-x^2)
plot(c(x, x), c(y1, y2), xlab = 'Real part', ylab = 'Complex part', type = 'I',
  main = 'Unit Circle', ylim = c(-2, 2), xlim = c(-2, 2))
abline(h = 0)
abline(v = 0)
points(root.real, root.comp, pch = 19)
legend(-1.5, -1.5, legend = 'Roots of MA(4)', pch = 19)
# ------ Problem 5 ------
setwd('/Users/imchaebin/Desktop/시계열분석/숙제2/')
data2 <- read.table("data.txt", head = T)
data2
data2$GDP <- as.numeric(data2$GDP)
data2$M1 <- as.numeric(data2$M1)
data2$gr_gdp <- (data2$GDP - lag(data2$GDP, 1)) / data2$GDP
data2$gr_gdp_lag1 <- lag(data2$gr_gdp, 1)
data2$gr_gdp_lag2 <- lag(data2$gr_gdp, 2)
data2$gr_gdp_lag3 <- lag(data2$gr_gdp, 3)
data2$gr gdp lag4 <- lag(data2$gr gdp, 4)
data2$gr m1 <- (data2$M1 - lag(data2$M1, 1)) / data2$M1
data2$gr_m1_lag1 <- lag(data2$gr_m1, 1)
data2$gr_m1_lag2 <- lag(data2$gr_m1, 2)
data2$gr_m1_lag3 <- lag(data2$gr_m1, 3)
data2$gr_m1_lag4 <- lag(data2$gr_m1, 4)
data2 <- data2[which(data2$OBS == '1986:1') : which(data2$OBS == '2004:4'), ]
data2 <- na.omit(data2)
# 1st estimation
lm1 <- lm(gr_gdp ~ gr_gdp_lag1 + gr_gdp_lag2 + gr_gdp_lag3 + gr_gdp_lag4 + gr_m1_lag1 +
gr_m1_{lag2} + gr_m1_{lag3} + gr_m1_{lag4}
      data = data2
summary(lm1)$coefficients['gr_m1_lag1',] # T-test
linearHypothesis(lm1, 'gr_m1_lag1=0') # F-test
# 2nd estimation
```

granger_data <- data2[c('gr_gdp', 'gr_m1')]