

Gambar 4.4 Alur Kerja ECG Recorder

4.2 Pengembangan Server Deteksi Aritmia

Alur pengembangan software server deteksi aritmia terdiri dari beberapa proses seperti yang disajikan pada Gambar 4.5.

Sinyal ECG (MIT-BIH) mula-mula akan melalui tahap preprocessing, yaitu tahap dalam menghilangkan noise yang ada pada sinyal. Noise bisa mengganggu proses selanjutnya karena ciri dari sinyal tersebut akan sulit dideteksi. Setelah sinyal melewati tahap preprocessing, ciri-ciri sinyal akan diesktrak untuk menjadi nilai inputan pada tahap klasifikasi. Pada tahap klasifikasi, akan ditentukan apakah sinyal tersebut termasuk kelas aritmia atau kelas normal berdasarkan karakterisktik sinyal yang sudah dipelajari.

Ada tiga metriks uji berkaitan dengan software deteksi yang dibuat, yaitu: sensitivitas, spesifisitas, dan akurasi. Ketiga metriks uji tersebut digunakan untuk menganalisis kinerja dari software yang dibuat. Sensitivitas ditentukan oleh rasio deteksi aritmia dengan tepat dari jumlah kasus aritmia sebenarnya. Spesifisitas ditentukan oleh rasio

deteksi sinyal sebagai normal yang benar dari jumlah kasus normal yang digunakan sebenarnya. Sementara akurasi ditentukan oleh rasio sinyal aritmia dan normal yang dideteksi dengan benar dari jumlah data sebenarnya kasus aritmia dan normal yang digunakan. Indikator performansi ini dapat dituliskan dalam persamaan (i), (ii), dan (iii)

dimana TP (True Positive) adalah jumlah denyut aritmia yang terdeteksi dengan benar, FP (False Positive) adalah jumlah denyut aritmia yang terdeteksi sebagai normal, TN (True Negative) adalah jumlah denyut normal yang terdeteksi dengan benar, dan FN (False Negative) adalah jumlah denyut normal yang terdeteksi sebagai aritmia.

4.2.1 Preprosesing dan Ekstraksi Ciri

Pada penelitian ini preprosesing digunakan untuk menghilangkan noise baseline wander. Baseline wander adalah noise ECG dengan tipikal naik turun dan tidak berada secara konsisten pada garis isoline (garis nol). Hal ini dapat menyebabkan kesulitan dalam mendeteksi puncak R secara tepat, karena sangat mungkin gelombang T dengan bentuk dan ukuran tidak normal terindikasi sebagai puncak R oleh algoritma pada proses ekstraksi ciri. Untuk mendapatkan sinyal dengan baseline yang benar digunakan metode DWT seperti yang diusulkan oleh Sargolzaei et al. (2009) dengan fungsi basis Daubechies orde 4 (db4). Setelah mendapatkan sinyal dengan baseline yang tepat, tahap preprocessing selanjutnya adalah menggunakan Five Point Derivative Function. Selanjutnya sinyal hasil proses filter Five Point Derivative Function diekstraksi cirinya dengan menggunakan metode yang mengacu pada algoritma yang diusulkan (Umer et al., 2014) untuk mendapatkan puncak R dan menghitung interval RR.

Penelitian ini membuat beberapa model pengenalan aritmia berbasis *machine learning*, seperti Atrial Fibrillation (AF), Premature Ventricular Contraction (PVC), Premature Atrial Contraction (PAC), Double, Triple dan Ventricular Tachicardia/Ventricular

Fibrillation (VT/VF). Tabel 4.2 adalah hasil ekstraksi ciri berdasar jarak RR untuk sinyal AF, dari data base Afdb dan Nsrdb (MIT-BIH).

Tabel 4.2 Ekstraksi Ciri Jarak puncak R ke puncak R Sinyal ECG

	min	max	mean	median	std	type
0	52	124	83.34709	85	10.38468	Normal
1	30	262	125.0581	123	23.98898	Normal
2	63	180	92.80701	94	14.42886	Normal
3	11	228	93.02181	94	11.4858	Normal
4	4	299	83.1524	83	13.30686	Normal
5	16	166	87.75991	86	10.82371	Normal
6	71	157	108.1738	111	14.12299	Normal
7	68	219	106.1646	107	7.713886	Normal
8	68	223	123.4255	126	22.71969	Normal
9	73	182	101.9243	100	18.38651	Normal
10	76	141	94.32732	92	10.06618	Normal
11	27	746	86.67256	78	34.14242	Normal
12	66	176	88.14204	89	12.78498	Normal
13	22	192	77.57037	78	15.46302	Normal
14	64	192	93.37145	94	12.48255	Normal
15	79	140	112.4814	114	9.719761	Normal
16	38	192	83.77228	84	10.94853	Normal
17	43	192	73.6817	72	10.7733	Normal
18	2	36838	690.9149	218.5	2078.589	AF
19	3	448	157.9947	174	90.10815	AF
20	87	395	165.6803	165	34.49015	AF
21	13	1132	150.1257	123	70.2615	AF
22	11	401	196.2038	197	46.73648	AF
23	4	439	141.8513	135	37.40497	AF
23	4	37619	2924.659	411	5861.99	AF
25	3	2620	152.5105	137	65.1581	AF
25	7	2701	158.8741	147	66.46323	AF

27	77	406	144.1296	133	37.32404	AF
28	7	406	114.1892	110	34.52797	AF
29	40	55413	541.0039	157.5	2871.674	AF
30	21	331	118.7556	98	51.66795	AF
31	4	21095	2310.457	1183	3325.136	AF
32	53	324	176.2659	176	39.78563	AF
33	9	27255	1158.268	130	3534.018	AF
34	7	25167	1995.236	740	3161.748	AF
35	19	865	233.163	176	140.7445	AF
36	25	130283	34983.94	15139	40876.97	AF
37	7	379	127.709	121	38.92781	AF

Gambar 4.6 menunjukkan bagaimana ekstraksi ciri berbasis DWT dilakukan pada server. Ekstraksi ciri tersebut diprogram menggunakan Bahasa Phyton untuk mendapat ciri AF dari jarak puncak R ke puncak R berikutnya.

Gambar 4.6 Ekstraksi ciri berbasis DWT pada Server

4.2.2 Klasifikasi

Penelitian ini menggunakan salah satu algoritma machine learning, *Decision Tree*, untuk mengklasifikasi data Normal dan aritmia. Tabel 4.3 adalah contoh Atrial Fibrillation (AF) confusion matrix (salah satu jenis aritmia), untuk menentukan apakah deteksi AF yang dilakukan sesuai dengan label data atau tidak, yang selanjutnya digunakan untuk menentukan kinerja dalam metriks akurasi, sensitifitas dan spesifisitas.

Tabel 4.3 Confusion Matrix AF dan Normal

	Real	
Prediction	AF	Normal
Aritmia	TP	FP
Normal	FN	TN

Gambar 4.7 adalah screen shoot dari *web-based arrhythmia detection* yang dikembangkan. Seperti terlihat pada Gambar 4.7 sebelah kiri adalah identitas pasien, tengah menunjukkan sinyal EKG pasien dan sebelah kiri adalah keputusan deteksi apakah normal atau merupakan sinyal aritmia.

Gambar 4.7. Dashboard Web-based Application Monitoring Aritmia

Modul komunikasi	OK	Dapat digunakan untuk upload program dan
serial		juga komunikasi
Push button	OK	
Charging komponen	OK	Dapat digunakan untuk mengisi ulang daya
Charging komponen		baterai

4.4.2 Algorithm Testing pada Server

Berdasar klasifikasi Decision Tree (DT), dengan melakukan pengujian sebanyak 10 kali percobaan, untuk setiap parameter dan metoda pada algoritma klasifikasi tersebut, berikut grafik hasil pengujian algoritma Decision Tree terhadap matriks akurasi:

Gambar 4.10 Grafik Hasil Pengujian Decision Tree

Seperti terlihat dalam Gambar 4.10, dua parameter pada DT, yaitu: Gini Index dan Information Gain, digunakan untuk mendapat akurasi terbesar dari 10 kali percobaan yang dilakukan. Akurasi paling tinggi didapat ketika kedalaman pohon adalah 5 dan parameter yang digunakan adalah Gini Index, yaitu sebesar 93.125%. Pada kedalaman pohon yang sama, parameter Information Gain memberikan akurasi sebesar 91.875%. Dapat dilihat juga saat maksimum kedalaman pohon bernilai 6, 7, dan 8, hasil ratarata akurasi yang diperoleh cukup baik yaitu di atas 90%. Namun perlu diperhatikan bahwa jumlah atribut yang digunakan untuk menentukan atribut target dalam penelitian ini adalah sebanyak 5 atribut. Jumlah atribut yang sedikit, jika menggunakan algoritma Decision Tree dengan parameter nilai maksimum kedalaman pohon yang terlalu besar dapat menyebabkan model menjadi overfit. Kasus overfit

terjadi saat Decision Tree tidak mampu menggeneralisasikan atau menentukan kelas untuk data baru yang belum pernah dipelajari. Hal ini seperti ditunjukkan pada Gambar 4.11. di mana saat maksimum kedalaman pohon bernilai 10, algoritma mampu menghasilkan nilai akurasi, sensitivitas, dan spesifisitas masing-masing 100%. Namun saat dilakukan untuk mendeteksi data baru, Decision Tree salah mengklasifikasikan data tersebut.

Gambar 4.11. Hasil Deteksi Menggunakan Model Overfit

Selanjutnya, hasil eksperimen lengkap hasil pengukuran kinerja Decision tree pada ketiga metriks yaitu akurasi, sensitifitas dan spesifisitas ditunjukkan pada Gambar 4.12

Gambar 4.12. Grafik Kinerja Optimal Decision Tree dalam mendeteksi salah satu jenis aritmia (AF) dan Normal