

EDPT 601

4 Metal Forming Problems

Rolling ,Extrusion and wire Drawing

Source: Manufacturing Engineer's Reference Book, Butterworth-Heinemann

Students Names:	Date
	/
Semester Student ID Group	dd / mm / yy
(For instructor use only) Evaluation	
Grade	
Commonto	
Comments	

Prof. Nahed El Mahallawy

TAs:

Eng. Sherifa Taher

Eng. Olivia Louis

Eng. Noha Abdeltawab

Eng. Ramy Amir

Eng. Mahmoud Badr

Eng. Mohamed Magdy

1- Rolling

Compare the roll force and the power required for AISI 1020 steel and 1100-O aluminum with the following dimensions.

Width: 300 mm

Initial Thickness: 30 mm Final thickness: 25 mm Rolls speed: 100 rpm Rolls radius: 320 mm

2- Extrusion

- a. A round billet made of steel is extruded at a temperature of 1200 °C. The billet diameter is 150 mm and the final bar diameter is 80 mm. Calculate the extrusion force on the ram.
- b. Calculate the extrusion force required for the extrusion of an aluminum I-section, at 400 °C, from a billet of 25 mm diameter, where the I-section has a height of 12.5 mm, the flange width is 6 mm, and the thickness is 1.5 mm.

3- Wire Drawing

A wire of 1.5 mm diameter is to be drawn from a 6 mm diameter work piece. The material can endure 60% reduction before annealing. It can be reduced by 30% per stage. How many drawing stages are needed and when is annealing needed to be performed?

Calculate the drawing force associated with the first stage.

Useful Data

1. Rolling

Fig. 1

2. Extrusion

$$F = A_o k \ln \left(\frac{A_o}{A_f} \right)$$

3. Wire drawing

Fig. 2

$$F = Y_{\text{avg}} A_f \ln \left(\frac{A_o}{A_f} \right).$$

Fig. 3

Fig. 4