QDT: Gaussian process models

Max Joseph

October 21, 2015

Background: univariate normal

$$x \sim N(\mu, \sigma^2)$$

Normal(0, 1) probability density

Background: multivariate normal

$$oldsymbol{x} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

 μ : vector of means

Σ: covariance matrix

Bivariate normal probability density

$$extbf{x} \sim extsf{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

Bivariate normal parameters
$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \; \boldsymbol{\Sigma} = \begin{bmatrix} \textit{Cov}[X_1, X_1] & \textit{Cov}[X_1, X_2] \\ \textit{Cov}[X_2, X_1] & \textit{Cov}[X_2, X_2] \end{bmatrix}$$

Bivariate normal parameters
$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \, \mathbf{\Sigma} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

Uncorrelated bivariate normal

$$oldsymbol{\mu} = egin{bmatrix} 0 \ 0 \end{bmatrix}, \, oldsymbol{\Sigma} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

Common notation

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \, \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

Common notation

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \; \mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$
 $Cov[X_1, X_1] = Var[X_1] = \sigma_1^2$
 $Cov[X_1, X_2] = \rho \sigma_1 \sigma_2$

 Σ must be symmetric and positive semi-definite

Relevant properties of multivariate normals

- 1. Marginal distributions are normal
- 2. Conditional distributions are normal

Marginals are normal

Joint distribution: $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$oldsymbol{\mu} = egin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \, oldsymbol{\Sigma} = egin{bmatrix} \sigma_1^2 &
ho\sigma_1\sigma_2 \\
ho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}$$

Marginal distribution: $y_1 \sim N(\mu_1, \sigma_1^2)$

Graphical interpretation: marginal of y_1 $N(\mu_1, \sigma_1^2)$

Conditional distributions are normal

Conditional distribution:

$$Y_1|Y_2=y_2\sim N(\mu,\Sigma)$$

Graphical interpretation of conditioning

Conditional of Y_1

$$\label{eq:Joint distribution: state} \textbf{Joint distribution: } \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \sim \textit{N} \Bigg(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{bmatrix} \Bigg)$$

Conditional distribution:

$$egin{aligned} & Y_1 | Y_2 \sim \textit{N}(\textit{E}(Y_1 | Y_2), \textit{Var}(Y_1 | Y_2)) \ & E(Y_1 | Y_2) = \mu_1 + \Omega_{12} \Omega_{22}^{-1} (Y_2 - \mu_2) \ & \textit{Var}(Y_1 | Y_2) = \Omega_{11} - \Omega_{12} \Omega_{22}^{-1} \Omega_{21} \end{aligned}$$

Now the fun stuff

Classic linear modeling

$$y = X\beta + \epsilon$$

$$\epsilon \sim N(0, \sigma^2)$$

Functional form determined by $X\beta$

Linear model functional forms

e.g.
$$y = \mu(x) + \epsilon$$

Why not set a prior on $\mu(x)$?

Gaussian process as a prior for $\mu(x)$

$$y \sim N(\mu(x), \sigma^2)$$

$$\mu(x) \sim GP(m, k)$$

GP prior for
$$\mu(x)$$

 $y \sim N(\mu(x), \sigma^2)$
 $\mu(x) \sim GP(m, k)$

Data and realizations from a GP prior

Wait, what's Gaussian about that?

If $\mu(x) \sim GP(m, k)$, then $\mu(x_1), ..., \mu(x_n) \sim N(m(x_1), ..., m(x_n), K(x_1, ..., x_n)$ m and k are functions!

Mean function: m

Classic example: $m(x) = X\beta$

e.g.,
$$\mu(x) \sim GP(X\beta, k(x))$$

But, the covariance function k(x) is the real star.

Covariance functions

k specifies covariance between to x values

Squared exponential covariance:

$$k(x,x') = \tau^2 exp\left(-\frac{|x-x'|^2}{l^2}\right)$$

Lots of options: smooth, jaggety, periodic

$$\mathbf{K} = \begin{bmatrix} \tau^2 exp(-\frac{|x_1 - x_1|^2}{l^2}) & \tau^2 exp(-\frac{|x_1 - x_2|^2}{l^2}) \\ \tau^2 exp(-\frac{|x_2 - x_1|^2}{l^2}) & \tau^2 exp(-\frac{|x_2 - x_2|^2}{l^2}) \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} \tau^2 \exp(-\frac{0^2}{l^2}) & \tau^2 \exp(-\frac{|x_1 - x_2|^2}{l^2}) \\ \tau^2 \exp(-\frac{|x_2 - x_1|^2}{l^2}) & \tau^2 \exp(-\frac{0^2}{l^2}) \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} \tau^2 exp(0) & \tau^2 exp(-\frac{|x_1 - x_2|^2}{l^2}) \\ \tau^2 exp(-\frac{|x_2 - x_1|^2}{l^2}) & \tau^2 exp(0) \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} \tau^2 & \tau^2 exp(-\frac{|x_1 - x_2|^2}{l^2}) \\ \tau^2 exp(-\frac{|x_2 - x_1|^2}{l^2}) & \tau^2 \end{bmatrix}$$

$$Cor(\mu(x_1), \mu(x_2)) = exp(-\frac{|x_1 - x_2|^2}{l^2}).$$

Correlation function

Let's check it out

sim.R: GP simulations with 1d and 2d inputs
estimate.R: GP estimation with 1d inputs