Total variation, absolute continuity, and the Borel σ -algebra of C(I)

Jordan Bell

March 10, 2015

1 Total variation

Let a < b. A **partition** of [a, b] is a sequence t_0, t_1, \ldots, t_n such that

$$a = t_0 < t_1 < \dots < t_n = b.$$

The **total variation** of a function $f:[a,b]\to\mathbb{C}$ is

$$\operatorname{Var}_{f}[a,b] = \sup \left\{ \sum_{i=1}^{n} |f(t_{i}) - f(t_{i-1})| : t_{0}, t_{1}, \dots, t_{n} \text{ is a partition of } [a,b] \right\}.$$

If $\operatorname{Var}_f[a,b] < \infty$ then we say that f has bounded variation.

Lemma 1. If $a \le c < e < d \le b$, then

$$\operatorname{Var}_f[c,d] = \operatorname{Var}_f[c,e] + \operatorname{Var}_f[e,d].$$

The following theorem establishes properties of functions of bounded variation. 1

Theorem 2. Suppose that $f:[a,b] \to \mathbb{R}$ is of bounded variation and define

$$F(x) = \operatorname{Var}_f[a, x], \qquad x \in [a, b].$$

Then:

- 1. $|f(y) f(x)| \le F(y) F(x)$ for all $a \le x < y \le b$.
- 2. F is a nondecreasing function.
- 3. F f and F + f are nondecreasing functions.
- 4. For $x_0 \in [a, b]$, f is continuous at x_0 if and only if F is continuous at x_0 .

 $^{^{1}\}mathrm{Charalambos}$ D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed., p. 377, Theorem 39.10.

Proof. If t_0, \ldots, t_n is a partition of [a, x] then t_0, \ldots, t_n, y is a partition of [a, y], so

$$\sum_{i=1}^{n} |f(t_i) - f(t_{i-1})| + |f(y) - f(x)| \le F(y).$$

Since this is true for any partition t_0, \ldots, t_n of [a, x],

$$F(x) + |f(y) - f(x)| \le F(y).$$

This shows in particular that $F(x) \leq F(y)$, and thus that F is nondecreasing. For $a \leq x < y \leq b$,

$$f(y) - f(x) \le |f(y) - f(x)| \le F(y) - F(x),$$

thus

$$F(x) - f(x) \le F(y) - f(y),$$

showing that $x \mapsto F(x) - f(x)$ is nondecreasing. Likewise,

$$f(x) - f(y) \le |f(y) - f(x)| \le F(y) - F(x),$$

thus

$$f(x) + F(x) \le f(y) + F(y),$$

showing that $x \mapsto F(x) + f(x)$ is nondecreasing.

Suppose that F is continuous at x_0 and let $\epsilon > 0$. There is some $\delta > 0$ such that $|x - x_0| < \delta$ implies that $|F(x) - F(x_0)| < \epsilon$. If $|x - x_0| < \delta$, then

$$|f(x) - f(x_0)| < |F(x) - F(x_0)| < \epsilon$$

showing that f is continuous at x_0 .

Suppose that f is continuous at x_0 and let $\epsilon > 0$. Then there is some $\delta > 0$ such that $|x - x_0| < \delta$ implies that $|f(x) - f(x_0)| < \epsilon$, and such that $x_0 - \delta > a$. Let $x_0 - \delta < s < x_0$, and let t_0, \ldots, t_n be a partition of [s, b] such that

$$\operatorname{Var}_{f}[s, b] < \sum_{i=1}^{n} |f(t_{i}) - f(t_{i-1})| + \epsilon$$

and such that none of t_0, \ldots, t_n is equal to x_0 . Say that $t_k < x_0 < t_{k+1}$. Then

$$t_0,\ldots,t_k,x_0,t_{k+1},\ldots,t_n$$

is a partition of [s, b]. For $t_k < x < x_0$ we have $|x - x_0| < \delta$ and therefore

$$\begin{split} \operatorname{Var}_f[s,x] + \operatorname{Var}_f[x,b] &= \operatorname{Var}_f[s,b] \\ &< \sum_{i=1}^n |f(t_i) - f(t_{i-1})| + \epsilon \\ &\leq \sum_{i=1}^k |f(t_i) - f(t_{i-1})| + |f(x) - f(t_k)| \\ &+ |f(x_0) - f(x)| \\ &+ |f(t_{k+1}) - f(x_0)| + \sum_{i=k+2}^n |f(t_i) - f(t_{i-1})| + \epsilon \\ &\leq \operatorname{Var}_f[s,x] + |f(x) - f(x_0)| + \operatorname{Var}_f[x_0,b] + \epsilon \\ &< \operatorname{Var}_f[s,x] + \operatorname{Var}_f[x_0,b] + 2\epsilon, \end{split}$$

giving

$$\operatorname{Var}_f[x,b] - \operatorname{Var}_f[x_0,b] < 2\epsilon.$$

As $\operatorname{Var}_f[a,b] = \operatorname{Var}_f[a,x] + \operatorname{Var}_f[x,b]$ and also $\operatorname{Var}_f[a,b] = \operatorname{Var}_f[a,x_0] + \operatorname{Var}_f[x_0,b]$, we have $F(x) + \operatorname{Var}_f[x,b] = F(x_0) + \operatorname{Var}_f[x_0,b]$, and therefore

$$F(x_0) - F(x) < 2\epsilon.$$

Thus, if $t_k < x < x_0$ then $|F(x_0) - F(x)| < 2\epsilon$, showing that F is left-continuous at x_0 . It is straightforward to show in the same way that F is right-continuous at x_0 , and thus continuous at x_0 .

If $f:[a,b]\to\mathbb{R}$ is of bounded variation, then Theorem 2 tells us that F and F+f are nondecreasing functions. A monotone function is differentiable almost everywhere,² and it follows that f=(F+f)-F is differentiable almost everywhere.

2 Absolute continuity

Let a < b and let I = [a, b]. A function $f : I \to \mathbb{C}$ is said to be **absolutely continuous** if for any $\epsilon > 0$ there is some $\delta > 0$ such that for any n and any collection of pairwise disjoint intervals $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ satisfying

$$\sum_{i=1}^{n} (\beta_i - \alpha_i) < \delta,$$

we have

$$\sum_{i=1}^{n} |f(\beta_i) - f(\alpha_i)| < \epsilon.$$

It is immediate that if f is absolutely continuous then f is uniformly continuous.

²Charalambos D. Aliprantis and Owen Burkinshaw, *Principles of Real Analysis*, third ed., p. 375, Theorem 39.9.

Lemma 3. If $f:[a,b]\to\mathbb{C}$ is absolutely continuous then f has bounded variation.

Proof. Because f is absolutely continuous, there is some $\delta > 0$ such that if $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ are pairwise disjoint and

$$\sum_{i=1}^{n} (\beta_i - \alpha_i) < \delta,$$

then

$$\sum_{i=1}^{n} |f(\beta_i) - f(\alpha_i)| < 1.$$

Let N be an integer that is $> \frac{b-a}{\delta}$ and let $a = x_0 < \dots < x_N = b$ such that $x_i - x_{i-1} < \frac{b-a}{N}$ for each $i = 1, \dots, N$. Then

$$\operatorname{Var}_{f}[a, b] = \sum_{i=1}^{N} \operatorname{Var}_{f}[x_{i-1}, x_{i}] \leq N,$$

showing that f has bounded variation.

Let λ be Lebesgue measure on $\mathbb R$ and let $\mathfrak M$ be the collection of Lebesgue measurable subsets of $\mathbb R$.

The following theorem establishes connections between absolute continuity of a function and Lebesgue measure.³ In the following theorem, we extend $f:[a,b]\to\mathbb{R}$ to $\mathbb{R}\to\mathbb{R}$ by defining f(x)=f(b) for x>b and f(x)=f(a) for x<a. In particular, for any x>b, f'(x) exists and is equal to 0, and for any x<a, f'(x) exists and is equal to 0.

Theorem 4. Suppose that I = [a,b] and that $f: I \to \mathbb{R}$ is continuous and nondecreasing. Then the following statements are equivalent.

- 1. f is absolutely continuous.
- 2. If $E \subset I$ and $\lambda(E) = 0$ then $\lambda(f(E)) = 0$. (In words: f has the **Luzin** property.)
- 3. f is differentiable λ -almost everywhere on $I, f' \in L^1(\lambda)$, and

$$f(x) - f(a) = \int_a^x f'(t)d\lambda(t), \qquad a \le x \le b.$$

Proof. Assume that f is absolutely continuous and let $E \subset I$ with $\lambda(E) = 0$. Let $E_0 = E \setminus \{a, b\}$; to prove that $\lambda(f(E)) = 0$ it suffices to prove that $\lambda(f(E_0)) = 0$.

³Walter Rudin, Real and Complex Analysis, third ed., p. 146, Theorem 7.18.

Let $\epsilon > 0$. As f is absolutely continuous, there is some $\delta > 0$ such that for any n and any collection of pairwise disjoint intervals $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ satisfying

$$\sum_{i=1}^{n} (\beta_i - \alpha_i) < \delta,$$

we have

$$\sum_{i=1}^{n} |f(\beta_i) - f(\alpha_i)| < \epsilon.$$

There is an open set V such that $E_0 \subset V \subset I$ and such that $\lambda(V) < \delta$. (Lebesgue measure is outer regular.) There are countably many pairwise disjoint intervals (α_i, β_i) such that $V = \bigcup_i (\alpha_i, \beta_i)$. Then

$$\sum_{i} (\beta_i - \alpha_i) = \lambda(V) < \delta,$$

so for any n,

$$\sum_{i=1}^{n} (\beta_i - \alpha_i) < \delta,$$

and because f is absolutely continuous it follows that

$$\sum_{i=1}^{n} |f(\beta_i) - f(\alpha_i)| < \epsilon.$$

This is true for all n, so

$$\sum_{i} |f(\beta_i) - f(\alpha_i)| \le \epsilon.$$

Because f is continuous and nondecreasing, $f(\alpha_i, \beta_i) = (f(\alpha_i), f(\beta_i))$ for each i. Therefore

$$f(V) = f\left(\bigcup_{i} (\alpha_i, \beta_i)\right) = \bigcup_{i} f(\alpha_i, \beta_i) = \bigcup_{i} (f(\alpha_i), f(\beta_i)),$$

which gives

$$\lambda(f(V)) = \sum_{i} (f(\beta_i) - f(\alpha_i)) = \sum_{i} |f(\beta_i) - f(\alpha_i)| \le \epsilon.$$

This is true for all $\epsilon > 0$, so $\lambda(f(V)) = 0$. Because $f(E_0) \subset f(V)$, it follows that $f(E_0) \in \mathfrak{M}$ (Lebesgue measure is complete) and that $\lambda(f(E_0)) = 0$.

Assume that for all $E \subset I$ with $\lambda(E) = 0$, $\lambda(f(E)) = 0$. Define $g: I \to \mathbb{R}$ by

$$g(x) = x + f(x), \qquad x \in I.$$

Because f is continuous and nondecreasing, g is continuous and strictly increasing. Thus if $(\alpha, \beta) \subset I$ then $g(\alpha, \beta) = (g(\alpha), g(\beta))$ and so

$$\lambda(g(\alpha,\beta)) = g(\beta) - g(\alpha) = \beta + f(\beta) - (\alpha + f(\alpha)) = \beta - \alpha + f(\beta) - f(\alpha),$$

showing that if $J \subset I$ is an interval then $\lambda(g(J)) = \lambda(J) + \lambda(f(J))$. Suppose that $E \subset I$ and $\lambda(E) = 0$, and let $\epsilon > 0$. There are countably many pairwise disjoint intervals (α_i, β_i) such that $E \subset \bigcup_i (\alpha_i, \beta_i)$ and $\sum_i (\beta_i - \alpha_i) < \epsilon$, and because $\lambda(f(E)) = 0$, there are countably many pairwise disjoint intervals (γ_i, δ_i) such that $f(E) \subset \bigcup_i (\gamma_i, \delta_i)$ and $\sum_i (\delta_i - \gamma_i) < \epsilon$. Let

$$N = f^{-1}\left(\bigcup_{i}(\gamma_i, \delta_i)\right) \cap \bigcup_{i}(\alpha_i, \beta_i) = \bigcup_{i, j}(f^{-1}(\gamma_i, \delta_i) \cap (\alpha_i, \beta_i)) \in \mathfrak{M}.$$

We check that

$$\lambda(g(N)) = \lambda(N) + \lambda(f(N)),$$

and because

$$\lambda(N) + \lambda(f(N)) \le \sum_{i} (\beta_i - \alpha_i) + \sum_{i} (\delta_i - \gamma_i) < 2\epsilon$$

we have

$$\lambda(g(N)) < 2\epsilon.$$

Finally, $E \subset N$ so $g(E) \subset g(N)$. Therefore, for every $\epsilon > 0$ there is some $N \in \mathfrak{M}$ with $g(E) \subset g(N)$ and $\lambda(g(N)) < \epsilon$, from which it follows that $\lambda(g(E)) = 0$.

Suppose that $E \subset I$ belongs to \mathfrak{M} . Because $E \in \mathfrak{M}$, there are $E_0, E_1 \in \mathfrak{M}$ such that $E = E_0 \cup E_1$, $\lambda(E_0) = 0$, and E_1 is a countable union of closed sets (namely, an F_{σ} -set). On the one hand, as $E_1 \subset I$, E_1 is a countable union of compact sets, and because g is continuous, $g(E_1)$ is a countable union of compact sets, and in particular belongs to \mathfrak{M} . On the other hand, because $\lambda(E_0) = 0$, $g(E_0) \in \mathfrak{M}$. Therefore $g(E) = g(E_0) \cup g(E_1) \in \mathfrak{M}$. Define $\mu : \mathfrak{M} \to [0, \infty)$ by

$$\mu(E) = \lambda(g(E \cap I)), \qquad E \in \mathfrak{M}.$$

If E_i are countably many pairwise disjoint elements of \mathfrak{M} , then $g(E_i \cap I)$ are pairwise disjoint elements of \mathfrak{M} , hence

$$\mu\left(\bigcup_{i} E_{i}\right) = \lambda\left(g\left(\left(\bigcup_{i} E_{i}\right) \cap I\right)\right)$$

$$= \lambda\left(\bigcup_{i} g(E_{i} \cap I)\right)$$

$$= \sum_{i} \lambda(g(E_{i} \cap I))$$

$$= \sum_{i} \mu(E_{i}),$$

showing that μ is a measure. If $\lambda(E) = 0$, then $\lambda(E \cap I) = 0$ so $\lambda(g(E \cap I)) = 0$, i.e. $\mu(E) = 0$. This shows that μ is absolutely continuous with respect to λ . Therefore by the Radon-Nikodym theorem⁴ there is a unique $h \in L^1(\lambda)$ such that

$$\mu(E) = \int_E h d\lambda, \qquad E \in \mathfrak{M}.$$

 $h(x) \geq 0$ for λ -almost all $x \in \mathbb{R}$.

Suppose that $x \in \mathbb{R}$ and let E = [a, x]. Then g(E) = [g(a), g(x)], and

$$\mu(E) = \int_{E} h(t)d\lambda(t) = \int_{a}^{x} h(t)d\lambda(t).$$

On the other hand,

$$\mu(E) = \lambda(g(E)) = \lambda([g(a), g(x)]) = g(x) - g(a) = x + f(x) - (a + f(a)).$$

Hence

$$f(x) - f(a) = \int_{a}^{x} h(t)d\lambda(t) - (x - a),$$

i.e.,

$$f(x) - f(a) = \int_{a}^{x} (h(t) - 1)d\lambda(t).$$

By the Lebesgue differentiation theorem,⁵ f'(x) = h(x) - 1 for λ -almost all $x \in \mathbb{R}$, and it follows that $f' \in L^1(\lambda)$ and

$$f(x) - f(a) = \int_{a}^{x} f'(t)d\lambda(t), \qquad x \in I.$$

Assume that f is differentiable λ -almost everywhere in I, $f' \in L^1(\lambda)$, and

$$f(x) - f(a) = \int_{a}^{x} f'(t)d\lambda(t), \qquad x \in I.$$

Let $\epsilon > 0$ and let $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ be pairwise disjoint intervals satisfying

$$\sum_{i=1}^{n} (\beta_i - \alpha_i) < \delta.$$

Because f is nondecreasing, for λ -almost all $x \in I$, $f'(x) \geq 0$, and hence the measure μ defined by $d\mu = f'd\lambda$ is absolutely continuous with respect to λ . It follows⁶ that there is some $\delta > 0$ such that for $E \in \mathfrak{M}$, $\lambda(E) < \delta$ implies that $\mu(E) < \epsilon$. This gives us

$$\mu\left(\bigcup_{i=1}^n(\alpha_i,\beta_i)\right)<\epsilon,$$

⁴Walter Rudin, Real and Complex Analysis, third ed., p. 121, Theorem 6.10.

⁵Walter Rudin, Real and Complex Analysis, third ed., p. 141, Theorem 7.11.

⁶Walter Rudin, Real and Complex Analysis, third ed., p. 124, Theorem 6.11.

and as

$$\mu(\alpha_i, \beta_i) = \int_{\alpha_i}^{\beta_i} f'(t) d\lambda(t) = f(\beta_i) - f(\alpha_i),$$

we get

$$\sum_{i=1}^{n} f(\beta_i) - f(\alpha_i) < \epsilon.$$

This shows that f is absolutely continuous, completing the proof.

The following lemma establishes properties of the total variation of absolutely continuous functions.⁷

Lemma 5. Suppose that I = [a,b] and that $f: I \to \mathbb{R}$ is absolutely continuous. Then the function $F: I \to \mathbb{R}$ defined by

$$F(x) = \operatorname{Var}_f[a, x], \qquad x \in I$$

is absolutely continuous.

Proof. Let $\epsilon > 0$. Because f is absolutely continuous, there is some $\delta > 0$ such that if $(a_1, b_1), \ldots, (a_m, b_m)$ are disjoint intervals with $\sum_{k=1}^m (b_k - a_k) < \delta$, then

$$\sum_{k=1}^{m} |f(b_k) - f(a_k)| < \epsilon.$$

Suppose that $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ are disjoint intervals with $\sum_{i=1}^n (\beta_i - \alpha_i) < \delta$. If $\alpha_i = t_{i,0} < \cdots < t_{i,m_i} = \beta_i$ for $i = 1, \ldots, n$, then $(t_{i,j-1}, t_{i,j}), 1 \le i \le n$, $1 \le j \le m_i$, are disjoint intervals whose total length is $< \delta$, hence

$$\sum_{i=1}^{n} \sum_{j=1}^{m_i} |f(t_{i,j}) - f(t_{i,j-1})| < \epsilon.$$

It follows that

$$\sum_{i=1}^{n} |F(\beta_i) - F(\alpha_i)| = \sum_{i=1}^{n} \operatorname{Var}_f[\alpha_i, \beta_i] \le \epsilon,$$

which shows that F is absolutely continuous.

We now prove the fundamental theorem of calculus for absolutely continuous functions. 8

Theorem 6. Suppose that I = [a, b] and that $f : I \to \mathbb{R}$ is absolutely continuous. Then f is differentiable at almost all x in I, $f' \in L^1(\lambda)$, and

$$f(x) - f(a) = \int_{a}^{x} f'(t)d\lambda(t), \qquad x \in I.$$

⁷Walter Rudin, Real and Complex Analysis, third ed., p. 147, Theorem 7.19.

⁸Walter Rudin, Real and Complex Analysis, third ed., p. 148, Theorem 7.20.

Proof. Define $F: I \to \mathbb{R}$ by

$$F(x) = \operatorname{Var}_f[a, x], \quad x \in I.$$

By Lemma 3, f has bounded variation, and then using Theorem 2, F - f and F + f are nondecreasing. Furthermore, by Lemma 5, F is absolutely continuous, so F - f and F + f are absolutely continuous. Let

$$f_1 = \frac{F+f}{2}, \qquad f_2 = \frac{F-f}{2},$$

which are thus nondecreasing and absolutely continuous. Applying Theorem 4, we get that f_1, f_2 are differentiable at almost all $x \in I$, $f'_1, f'_2 \in L^1(\lambda)$, and

$$f_1(x) - f_1(a) = \int_a^x f_1'(t)d\lambda(t), \qquad a \le x \le b$$

and

$$f_2(x) - f_2(a) = \int_a^x f_2'(t)d\lambda(t), \qquad a \le x \le b.$$

Because $f = f_1 - f_2$, f is differentiable at almost all $x \in I$, $f' = f'_1 - f'_2 \in L^1(\lambda)$, and

$$f(x) - f(a) = \int_{a}^{x} f'(t)d\lambda(t), \qquad a \le x \le b,$$

proving the claim.

3 Borel sets

Let I = [a, b]. Denote by C(I) the set of continuous functions $I \to \mathbb{C}$, which with the norm

$$||f||_{C(I)} = \sup_{x \in I} |f(x)|, \qquad f \in C(I),$$

is a Banach space. Denote by AC(I) the set of absolutely continuous functions $I \to \mathbb{C}$. Let $\mathscr{B}_{C(I)}$ be the Borel σ -algebra of C(I). We have $AC(I) \subset C(I)$, and in the following theorem we prove that AC(I) is a Borel set in C(I).

Theorem 7. $AC(I) \in \mathcal{B}_{C(I)}$.

Proof. If X, Y are Polish spaces, $f: X \to Y$ is continuous, $A \in \mathcal{B}_X$, and f|A is injective, then $f(A) \in \mathcal{B}_Y$. Let $X = \mathbb{C} \times L^1(I)$, which is a Banach space with the norm

$$\|(A,g)\|_X = |A| + \int_a^b |g| d\lambda, \qquad (A,g) \in X.$$

 $^{^9 \, {\}rm Alexander}$ Kechris, Classical Descriptive Set Theory, p. 89, Theorem 15.1.

Furthermore, \mathbb{C} and $L^1(I)$ are separable and thus so is X, so X is indeed a Polish space. The Banach space C(I) is separable and thus is a Polish space. Define $\Phi: X \to C(I)$ by

$$\Phi(A,g)(x) = A + \int_a^x g(t)d\lambda(t), \qquad (A,g) \in X, \qquad x \in I.$$

For $(A_1, g_1), (A_2, g_2) \in X$,

$$\begin{split} \|\Phi(A_1,g_1) - \Phi(A_2,g_2)\|_{C(I)} &= \left\| (A_1 - A_2) + \int_a^x (g_1(t) - g_2(t)) d\lambda(t) \right\|_{C(I)} \\ &= |A_1 - A_2| + \sup_{x \in I} \left| \int_a^x (g_1(t) - g_2(t)) d\lambda(t) \right| \\ &\leq |A_1 - A_2| + \int_a^b |g_1(t) - g_2(t)| d\lambda(t) \\ &= \|(A_1,g_1) - (A_2,g_2)\|_X \,, \end{split}$$

which shows that $\Phi: X \to C(I)$ is continuous.

Let $(A, g) \in X$ and $\epsilon > 0$. Because $g \in L^1(I)$, there is some $\delta > 0$ such that if $\lambda(E) < \delta$ then $\int_E |g| d\lambda < \epsilon^{10}$. If $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ are disjoint intervals whose total length is $< \delta$, then, with $E = \bigcup_{i=1}^n (\alpha_i, \beta_i)$,

$$\sum_{i=1}^{n} |\Phi(A,g)(\beta_i) - \Phi(A,g)(\alpha_i)| = \sum_{i=1}^{n} \left| \int_{\alpha_i}^{\beta_i} g(t) d\lambda(t) \right|$$

$$\leq \sum_{i=1}^{n} \int_{\alpha_i}^{\beta_i} |g(t)| d\lambda(t)$$

$$= \int_{E} |g| d\lambda$$

$$< \epsilon.$$

showing that $\Phi(A, g)$ is absolutely continuous. On the other hand, let $f \in AC(I)$. From Theorem 6, f is differentiable at almost all $x \in I$, $f' \in L^1(I)$, and

$$f(x) - f(a) = \int_{a}^{x} f'(t)d\lambda(t), \qquad x \in I.$$

Then $(f(a), f') \in X$, and the above gives us, for all $x \in I$,

$$\Phi(f(a), f')(x) = f(a) + \int_a^x f'(t)d\lambda(t) = f(x),$$

thus $\Phi(f(a), f') = f$. Therefore

$$\Phi(X) = AC(I).$$

 $^{^{10} \}text{Walter Rudin}, \, \textit{Real and Complex Analysis}, \, \text{third ed., p. 32}, \, \text{exercise 1.12}.$

If $\Phi(A_1,g_1)=\Phi(A_2,g_2)$, then $\Phi(A_1,g_1)(a)=\Phi(A_2,g_2)(a)$ gives $A_1=A_2$. Using this, and defining $G:I\to\mathbb{C}$ by $G=\int_a^x(g_1(t)-g_2(t))d\lambda(t)$, we have G(x)=0 for all $x\in I$. Then G'(x)=0 for all $x\in I$, and by the Lebesgue differentiation theorem¹¹ we have $G'(x)=g_1(x)-g_2(x)$ for almost all $x\in I$. That is, $g_1(x)=g_2(x)$ for almost all $x\in I$, and thus in $L^1(I)$ we have $g_1=g_2$. Therefore $\Phi:X\to C(I)$ is injective.

Therefore $\Phi(X) \in \mathscr{B}_{C(I)}$.

¹¹Walter Rudin, *Real and Complex Analysis*, third ed., p. 141, Theorem 7.11.