README – Personalized Diet Recommendation System

1. Overview

This project implements a **Personalized Diet Recommendation System** using **XGBoost**. It predicts the **best meal plan** for an individual based on their **health**, **lifestyle**, and **nutritional data**.

2. Project Structure

3. Setup

Install dependencies:

pip install -r requirements.txt

Requirements file includes:

pandas==2.0.0

numpy==1.24.0

scikit-learn==1.2.0

xgboost==1.7.0

joblib==1.2.0

4. Usage

Training the model:

```
python main.py -train
```

Making predictions:

from predictor import predict_new

```
patient_data = {
   'Age': 30,
   'Gender': 'Male',
   'Height_cm': 175,
   'Weight_kg': 70,
   'BMI': 22.86,
   'Chronic_Disease': 'None',
   'Daily_Steps': 8000,
   'Preferred_Cuisine': 'Indian',
   # Add remaining fields...
}

result = predict_new(patient_data)
print("Top Recommended Meal Plan:", result)
```

5. Dataset

Features include:

- Demographics (Age, Gender, Height, Weight, BMI)
- Medical details (Chronic Diseases, Blood Pressure, Cholesterol, Blood Sugar)
- Lifestyle habits (Steps, Exercise Frequency, Sleep Hours, Alcohol & Smoking habits)
- Nutrition intake (Calories, Protein, Carbs, Fats)
- Food preferences & allergies

Target: Recommended_Meal_Plan (multi-class label)

6. Model

- Algorithm: XGBoost (multi-class classification)
- Evaluation Metrics:
 - Accuracy
 - Mean Average Precision (mAP)
- Validation Results (Example run):
 - o Accuracy: ~87.4%
 - o mAP: ~88.5%

7. Deliverables

- Trained model (.pkl)
- Preprocessing pipeline (encoders, column order)
- Sample predictions
- Metrics log
- Full project report (report.pdf)