

WHAT I LEARNT FROM MY CASE STUDY

Scale is very important

² Understand designer intention

REFLECTION/LIMITATIONS

Not considering building shape and floors

Degree of angle of solar panels

REVISED PROBLEM

One percent of the world has ASD

People with ASD usually have a unique attraction to music and may have enhanced musical ability.

Individuals with ASD have nearly normal abilities to recognize, experience and emotional aspects of music

 $\begin{array}{l} \text{TABLE 2} \\ \text{Study characteristics meeting inclusion criteria.} \end{array}$

Study	n	Age	Duration	Setting	Control	measure	outcome
Rabeyron (23)	37	4-7 year	8 months, 30 min	MT	Music listening	CGI, CARS, ABC	Lethargy improved
Lim, (<u>16</u>)	50	3-5 year	3 days, 2 times/day	Music training	ST	VPES	No significance
Bieleninik (<u>18</u>)	364	$4-6\frac{11}{12}$ year	5 months	MT, Standard care	Standard care	ADOS,SRS	No significant difference
Gattino (<u>19</u>)	24	7-12 year	16 weeks	MT, Activities	Activities	CARS-BR	Improve nonverbal communication
Meghan (<u>21</u>)	51	6-12 year	8–12 weeks, 1times/week, 45 min	Music intervention	Non-music intervention	VABS,SRS-II	Improve social communication
Thompson (25)	33	3-6 year	16 weeks, 1 time/week, 30-40 min	MT, Early intervention	Early intervention	VSEEC, SRS-PS	Improve social interactions
Ghasemtabar (<u>10</u>)	27	7-12 year	2 months	MT	No MT	CARS, SRS	Enhance children's social skills
Lim (20)	22	3-5 year	2 weeks, 3 days/week	MT, ABA(VB)	ST ABA (VB)	VPES	No significance

CGI, the Clinical Global Impression; CARS, Childhood Autism Rating Scale; ABC, the Aberrant Behavior Checklist; VPES, A verbal production evaluation scale; ADOS, Autism Diagnostic Observation Schedule; SRS, the Social Responsiveness Scale; VABS, Vineland Adaptive Behavior Scales; VSEEC, Vineland Social-Emotional Early Childhood Scales; ABA, Applied Behavior Analysis; ST, Speech Training.

REVISED PROBLEM

- ML has been used to retrieve music by mood and ML analyses found the personalized approach more consistent than a general approach
- Algorithm learns from a set of labeled inputs, generates a model associating the inputs with their respective labels, then classifies (or predicts) the likely label for previously unseen examples using the learned model.

- The Markov chains are used to generate music while the user wears a heart-rate sensor to monitor their bio-physiological response to the created music.
- Tendency in human-computer interaction work to prioritize the technical implementation by focusing on increased speed or accuracy of a system, rather than the specific needs of the application.

REVISED EVALUATION

CONTROL VARIABLE(S)/REQUIREMENTS:

- Recipient of generated music
- Software, method, tool used
- Music specifically for **ASD individuals**

DESIGN VARIABLE(S):

- Speed
- Pitch
- +/- Vocals

REVISED EVALUATION

Musical Interface Digital Instrument:

a medium where electronic instruments, computers and other devices can communicate. It allows for control, synchronizing and sequencing of elements

Recurrent Neural Network:

model that is trained to process and convert sequential data input to specific output

Long Short Term Memory:

different to regular RNNs as this "remembers" longer and creates a string-like to repeat the information.

Le, Ho, Lee, & Jung. (2019). Application of long short-term memory (LSTM) neural network for flood forecasting. Water, 11(7), 1387. doi:10.3390/w11071387

REVISED DESIGN SPACE

PROCESS:

- Collect existing music used for Music Therapy
 - MIDI Files
- Load MIDI Files into memory
- Transform MIDI Files into list of sequenced notes

THINGS TO COLLECT:

- Find a dataset (e.g.: Kaggle)
- Feedback from individual with ASD (verbal or observational)
- Train the network 100+ times for best results

GRASSHOPPER PLUGINS (for visualization):

- Firefly
- Buzz

MACHINE LEARNING GENERATED MUSIC

- 1 Week of 18/03
 - Decide genre of music
 - Find dataset
 - Experiment with existing scripts online

- 1 Week of 25/03
 - Continue experimenting with different methods
 - Create own script

- 1 Week of 01/04
 - Train the network
 - Begin
 generating own
 music/sound

- 1 Week of 08/04
 - Compare generated music with MT music
 - Get feedback from ASD individuals