Trace et norme

Algèbre 2

Question 1/15

$$\operatorname{nrm}_{\mathbb{L}/\mathbb{K}}(\alpha)$$

Réponse 1/15

$$\det(m_{\alpha})$$

Question 2/15

Expression de $\operatorname{tr}_{\mathbb{L}/\mathbb{K}}$ pour $\mathbb{L}/\mathbb{F}/\mathbb{K}$ une tour d'extensions

Réponse 2/15

$$\operatorname{tr}_{\mathbb{L}/\mathbb{K}} = \operatorname{tr}_{\mathbb{F}/\mathbb{K}} \circ \operatorname{tr}_{\mathbb{L}/\mathbb{F}}$$

Question 3/15

Lien entre norme et plongements de \mathbb{L} dans $\mathbb{K}^{\text{alg pour }}\mathbb{L}/\mathbb{K} \text{ inséparable}$ $p^s = [\mathbb{L}:\mathbb{K}]_i, \, \beta = \alpha^{p^s}$

Réponse 3/15

$$\operatorname{nrm}_{\mathbb{L}/\mathbb{K}}(\alpha) = \left(\prod_{\sigma \in \operatorname{Pl}(\mathbb{L}/\mathbb{K})} \sigma(\beta)\right)^{\overline{p}}$$
$$= \left(\prod_{\sigma \in \operatorname{Pl}(\mathbb{K}^{\operatorname{sep},\mathbb{L}}/\mathbb{K})} \sigma(\beta)\right)^{\overline{p}}$$

Question 4/15

$$\operatorname{tr}_{\mathbb{L}/\mathbb{K}}(\alpha+\beta)$$

Réponse 4/15

$$\operatorname{tr}_{\mathbb{L}/\mathbb{K}}(\alpha) + \operatorname{tr}_{\mathbb{L}/\mathbb{K}}(\beta)$$

Question 5/15

$$\operatorname{tr}_{\mathbb{K}(x)/\mathbb{K}}(Q(x))$$
$$Q \in \mathbb{K}[X]$$

Réponse 5/15

$$\sum_{i=1}^{\infty} Q(\lambda_i)$$
 λ_i valeur propre de m_{α}

Question 6/15

Lien entre $\operatorname{nrm}_{\mathbb{L}/\mathbb{K}}(\alpha)$ et $\operatorname{nrm}_{\mathbb{F}/\mathbb{K}}(\alpha)$, $\alpha \in \mathbb{F}$ $\mathbb{L}/\mathbb{F}/\mathbb{K}$ tour d'extensions

Réponse 6/15

$$\operatorname{nrm}_{\mathbb{L}/\mathbb{K}}(\alpha) = \operatorname{nrm}_{\mathbb{F}/\mathbb{K}}(\alpha)^{[\mathbb{L}:\mathbb{F}]}$$

Question 7/15

Expression de $\operatorname{nrm}_{\mathbb{L}/\mathbb{K}}$ pour $\mathbb{L}/\mathbb{F}/\mathbb{K}$ une tour d'extensions

Réponse 7/15

$$\mathrm{nrm}_{\mathbb{L}/\mathbb{K}}=\mathrm{nrm}_{\mathbb{F}/\mathbb{K}}\circ\mathrm{nrm}_{\mathbb{L}/\mathbb{F}}$$

Question 8/15

 m_{lpha}

Réponse 8/15

$$m_{\alpha}: \mathbb{L} \longrightarrow \mathbb{L}$$
 $\ell \longmapsto \alpha \ell$
 $\alpha \in \mathbb{L} \text{ et } \mathbb{L}/\mathbb{K} \text{ algébrique}$

Question 9/15

$$\mathrm{tr}_{\mathbb{L}/\mathbb{K}}(lpha)$$

Réponse 9/15

$$\operatorname{tr}(m_{lpha})$$

Question 10/15

$$\pi_{m_{lpha}}$$

Réponse 10/15

$$P_{\alpha,\mathbb{K}}$$

Question 11/15

Lien entre
$$\operatorname{tr}_{\mathbb{L}/\mathbb{K}}(\alpha)$$
 et $\operatorname{tr}_{\mathbb{F}/\mathbb{K}}(\alpha)$, $\alpha \in \mathbb{F}$ $\mathbb{L}/\mathbb{F}/\mathbb{K}$ tour d'extensions

Réponse 11/15

$$\mathrm{tr}_{\mathbb{L}/\mathbb{K}}(\alpha) = [\mathbb{L}:\mathbb{F}] \, \mathrm{tr}_{\mathbb{F}/\mathbb{K}}(\alpha)$$

En particulier, si \mathbb{L}/\mathbb{K} est inséparable alors $\mathrm{tr}_{\mathbb{L}/\mathbb{K}} \equiv 0$

Question 12/15

Forme bilinéaire trace

Réponse 12/15

$$\langle \cdot, \cdot \rangle : \mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{K}$$
 est une forme $(x, y) \longmapsto \operatorname{tr}_{\mathbb{L}/\mathbb{K}}(xy)$ bilinéaire qui est non dégénérée si et seulement si \mathbb{L}/\mathbb{K} est séparable

Question 13/15

$$\operatorname{nrm}_{\mathbb{K}(x)/\mathbb{K}}(Q(x))$$
$$Q \in \mathbb{K}[X]$$

Réponse 13/15

$$\prod_{i=1}^{i=1} Q(\lambda_i)$$
 λ_i valeur propre de m_{α}

Question 14/15

Lien entre trace, norme et plongements de \mathbb{L} dans \mathbb{K}^{alg} pour \mathbb{L}/\mathbb{K} séparable

Réponse 14/15

$$\operatorname{tr}_{\mathbb{L}/\mathbb{K}}(\alpha) = \sum_{\sigma \in \operatorname{Pl}(\mathbb{L}/\mathbb{K})} \sigma(\alpha)$$
$$\operatorname{nrm}_{\mathbb{L}/\mathbb{K}}(\alpha) = \prod_{\sigma \in \operatorname{Pl}(\mathbb{L}/\mathbb{K})} \sigma(\alpha)$$

Question 15/15

$$\operatorname{nrm}_{\mathbb{L}/\mathbb{K}}(\alpha\beta)$$

Réponse 15/15

$$\operatorname{nrm}_{\mathbb{L}/\mathbb{K}}(\alpha) \times \operatorname{nrm}_{\mathbb{L}/\mathbb{K}}(\beta)$$