Второй коллоквиум, семестр 4

12 мая 2019 г.

Оглавление

1	Опр	ределения	4
	1.1	Равномерная сходимость несобственного интеграла	4
	1.2	Нормальное топологическое пространство	4
	1.3	Финитная функция	4
	1.4	Гильбертово пространство	4
	1.5	Ортогональный ряд	4
	1.6	Сходящийся ряд в Гильбертовом пространстве	5
	1.7	Ортогональная система (семейство) векторов	5
	1.8	Ортонормированная система	5
	1.9	Коффициенты Фурье	5
	1.10	Ряд Фурье в Гильбертовом пространстве	5
	1.11	Базис, полная, замкнутая ОС	5
	1.12	Измеримое множество на элементарной двумерной поверхности в \mathbb{R}^3 .	6
	1.13	Мера Лебега на простой двумерной поверхности в \mathbb{R}^3	6
	1.14	Поверхностный интеграл первого рода	6
	1.15	Кусочно-гладкая поверхность в \mathbb{R}^3	6
	1.16	Тригонометрический ряд	6
	1.17	Коэффициенты Фурье функции	7
	1.18	Класс Липшица с константой М и показателем альфа	7
	1.19	Сторона поверхности	7
	1.20	Задание стороны поверхности с помощью касательных реперов	7
	1.21	Интеграл II рода	8
	1.22	Ориентация контура, согласованная со стороной поверхности	8
	1.23	Ядро Дирихле, ядро Фейера	9
		1.23.1 Ядро Дирихле	9
		1.23.2 Ядро Фейера	9
	1.24	Свертка	9

	1.25	Аппроксимативная единица. (а. е.)	9
	1.26	Усиленная аппроксимативная единица	9
	1.27	Метод суммирования средними арифметическими	10
	1.28	Суммы Фейера	10
	1.29	Ротор, дивергенция векторного поля	10
	1.30	Соленоидальное векторное поле	10
	1.31	Бескоординатное определение ротора и дивергенции	10
2	Teoj	ремы	11
	2.1	Перестановка двух предельных переходов. Предельный переход в несоб-	
		ственном интеграле	11
	2.2	Вычисление интеграла Дирихле	11
	2.3	Теорема об интегрировании несобственного интеграла по параметру	11
	2.4	Правило Лейбница для несобственных интегралов	11
	2.5	Теорема о вычислении интеграла по мере Бореля—Стилтьеса (с леммой)	12
	2.6	Плотность в L^p множества ступенчатых функций	12
	2.7	Лемма Урысона	12
	2.8	Плотность в L^p множества финитных непрерывных функций	12
	2.9	Теорема о непрерывности сдвига	13
	2.10	Теорема о свойствах сходимости в гильбертовом пространстве	13
	2.11	Теорема о коэффициентах разложения по ортогональной системе	13
	2.12	Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя	14
	2.13	Теорема Рисса – Фишера о сумме ряда Фурье. Равенство Парсеваля	14
	2.14	Теорема о характеристике базиса	14
	2.15	Лемма о вычислении коэффициентов тригонометрического ряда	15
	2.16	Теорема Римана-Лебега	15
	2.17	Три следствия об оценке коэффициентов Фурье	16
	2.18	Принцип локализации Римана	16
	2.19	Признак Дини. Следствия	16
	2.20	Корректность определения свертки	17
	2.21	Свойства свертки функции из L^p с фукнцией из L^q	17
	2.22	Теорема о свойствах аппроксимативной единицы	17
	2.23	Теорема Фейера	17
	2.24	Полнота тригонометрической системы и другие следствия теоремы	
		Фейера	18

2.25	Лемма об оценке интеграла ядра Дирихле	18
2.26	Формула Грина	18
2.27	Теорема об интегрировании ряда Фурье	18
2.28	Следствие о синус-коэффициентах интегрируемой функции	19
2.29	Лемма о слабой сходимости сумм Фурье	19
2.30	Леммы о равномерной ограниченности сумм Фурье и об обобщенном	
	равенстве Парсеваля	19
2.31	Формула Стокса	19
2.32	Формула Гаусса-Остроградского	19
2.33	Соленоидальность бездивергентного векторного поля	20

Глава 1

Определения

1.1 Равномерная сходимость несобственного интеграла

Ты проиграл

1.2 Нормальное топологическое пространство

Ты проиграл

1.3 Финитная функция

 $\varphi: \mathbb{R}^m \to \mathbb{R}$. \exists шар $B: \varphi \equiv 0$ вне B. Тогда ϕ — финитная. Множество непрерывных финитных функций обозначаем как $C_0(\mathbb{R}^m)$.

1.4 Гильбертово пространство

 \mathbb{H} — линейное пространство над \mathbb{R} или \mathbb{C} , в котором задано скалярное произведение, и полное относительно соответствуйющей нормы, называется Гильбертовым.

1.5 Ортогональный ряд

 $x_k \in \mathbb{H}, \sum x_k$ называется ортогональным рядом, если $\forall k, l : k \neq l : x_k \bot x_l$.

1.6 Сходящийся ряд в Гильбертовом пространстве

 $x_n \in \mathbb{H}$.

 $\sum x_n$ сходится к x, если

$$S_n := \sum_{k=1}^n x_k, \, S_n \to x \, \text{(то есть, } |S_n - x| \to 0 - \text{сходимость по норме)}.$$

1.7 Ортогональная система (семейство) векторов

 $\{e_k\}\in\mathbb{H}$ - ортогональное семейство векторов, если $\forall k\neq l\ e_k\bot e_l,\,\forall k\ e_k\neq 0.$

1.8 Ортонормированная система

 $\{e_k\} \in \mathbb{H}$ - ортонормированное семейство векторов, если e_k — ортогональное семейство векторов, и $\forall k \ |e_k| = 1$.

1.9 Коффициенты Фурье

 $\{e_k\}$ - ортогональное семейство векторов в $\mathbb{H}, x \in \mathbb{H}.$

 $c_k(x) = \frac{\langle x, e_k \rangle}{|e_k|^2}$ называются коэффициентами Фурье вектора x по ортогональной системе $\{e_k\}$.

1.10 Ряд Фурье в Гильбертовом пространстве

 $\sum c_k(x) \cdot e_k$ называется рядом Фурье вектора x по ортогональной системе $\{e_k\}$.

1.11 Базис, полная, замкнутая ОС

 $\{e_k\}$ — ортогональная система в \mathbb{H} .

1.
$$\{e_k\}$$
 — базис, если $\forall x \in \mathbb{H} \; \exists c_k$, что $x = \sum_{k=1}^{+\infty} c_k \cdot e_k$

2.
$$\{e_k\}$$
 — полная О.С., если $(\forall k \ z \perp e_k) \Rightarrow z = 0$.

3.
$$\{e_k\}$$
 — замкнутая О.С., если $\forall x \in \mathbb{H} \sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 = ||x||^2$.

1.12 Измеримое множество на элементарной двумерной поверхности в \mathbb{R}^3

 $M\subset R^3$ — простое 2-мерное многообразие, C^1 гладкости. $\phi: \underset{\text{откр. обл.}}{O}\subset R^2\to R^3,\,\phi\in C^1$ — гомеофорфизм, $\phi(O)=M$ $E\subset M$ — изм. по Лебегу, если $\phi^{-1}(E)$ — изм. по Лебегу в R^2

1.13 Мера Лебега на простой двумерной поверхности в \mathbb{R}^3

 $S(E):=\iint\limits_{\phi^{-1}(E)}|\phi'_u imes\phi'_v|dudv$ — взвеш. образ меры Лебега отн. ϕ . Значит это мера на \mathbb{A}_M

1.14 Поверхностный интеграл первого рода

M — простое, гл, 2-мерное в R^3 , ϕ — параметризация f — изм. отн. S (см. выше), f>0 (или f — суммируем. по S) — Тогда: $\int_M f dS$ — называет инт. первого рода функ. f по поверхности M

1.15 Кусочно-гладкая поверхность в \mathbb{R}^3

 $M\subset\mathbb{R}^3$ называется кусочно-гладкой, если M представляет собой объединение:

- конечного числа простых гладких поверхностей
- конечного числа простых гладких дуг
- конечного числа точек

1.16 Тригонометрический ряд

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

(где a_i, b_i – коэффициенты ряда).

• Другая форма:

$$\sum_{k=\mathbb{Z}} c_k e^{ikx}$$

Тогда
$$S_n := \sum_{k=-N}^N c_k e^{ikx}$$
.

1.17 Коэффициенты Фурье функции

•

$$a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \ dx$$

•

$$b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \ dx$$

•

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

1.18 Класс Липшица с константой M и показателем альфа

Ты проиграл

1.19 Сторона поверхности

Сторона (простой) гладкой двумерной поверхности — непрерывное поле единичных нормалей. Поверхность, для которой существует сторона, называется двусторонней. Если же стороны не существует, она называется односторонней.

1.20 Задание стороны поверхности с помощью касательных реперов

 F_1, F_2 – два касательных векторных поля к поверхности M.

 $\forall p \in M \quad F_1(p), F_2(p) - \text{Л.Н.3.}$ касательные векторы.

Тогда поле нормалей стороны определяется, как $n:=F_1\times F_2$

Репе́р - пара векторов из $F_1 \times F_2$.

1.21 Интеграл II рода

M — простая гладкая двусторонняя двумерная поверхность в \mathbb{R}^3 .

 n_0 — фиксированная сторона (одна из двух).

 $F: M \to \mathbb{R}^3$ – векторное поле.

 $\underline{\text{Тогда}}$ интегралом II рода назовем $\int\limits_{M}\langle F,n_{0}\rangle ds$

Замечания

- 1. Смена стороны эквивалентна смене знака.
- 2. Не зависит от параметризации.
- 3. F = (P, Q, R).

Тогда интеграл имеет вид $\iint Pdydz + Qdzdx + Rdxdy$.

 $\underline{\text{NB:}}\ Qdxdz = -Qdzdx.$

1.22 Ориентация контура, согласованная со стороной поверхности

Ориентация контура согласована со стороной поверхности, если она задает эту сторону.

<u>Пояснение</u>: Рассмотрим некоторый контур (замкнутую петлю) и точку на нем. Построим два касательных вектора к контуру в этой точке: первый — снаружи от контура (задает направление «движения» по петле), второй — внутри контура. Тогда будем называть такую ориентацию согласованной со стороной, если направление векторного произведения первого и второго векторов в точке совпадает с направлением нормали к поверхности.

1.23 Ядро Дирихле, ядро Фейера

1.23.1 Ядро Дирихле

$$D_n(t) = \frac{1}{\pi} (\frac{1}{2} + \sum_{k=1}^n \cos kt)$$

1.23.2 Ядро Фейера

$$\Phi_n(t) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(t)$$

1.24 Свертка

 $f,K \in L_1[-\pi,\pi]$ – пеорид.

$$(f * K)(x) = \int_{-\pi}^{\pi} f(x - t)K(t)dt$$

1.25 Аппроксимативная единица. (а. е.)

Пояснения: нужна 1-ца по свертке, но это не совсем функция, поэтому зададим её как предел последовательности.

 $D \subset R, h_0$ – предельная точка D в \overline{R} , тогда $\{K_h\}_{h \in D}$ – а. е. если:

AE1:
$$\forall h \in D \ K_h \in L_1[-\pi, \pi] \int_{-\pi}^{\pi} K_h = 1$$

AE2:
$$\exists M \ \forall h \ \int_{-\pi}^{\pi} |K_h| \leq M$$

АЕЗ:
$$\forall \delta \in (0,\pi) \int_{E_{\delta}} |K_h| \underset{h \to h_0}{\longrightarrow} 0$$
, где $E_{\delta} = [-\pi,\pi] \setminus [h_0 - \delta, h_0 + \delta]$

1.26 Усиленная аппроксимативная единица.

Изменяем свойство АЕЗ, на АЕЗ':

$$\forall h \ K_h \in L_{\infty}[-\pi, \pi]; \ \forall \delta \in (0, \pi) \ \ \underset{t \in E_{\delta}}{\operatorname{ess \, sup}} \left| K_h(t) \right| \underset{h \to h_0}{\longrightarrow} 0$$

1.27 Метод суммирования средними арифметиче-

$$\sum a_n = \lim_{n \to \infty} \frac{1}{n+1} \cdot \sum_{k=0}^n S_k$$

1.28 Суммы Фейера.

$$\sigma_n = \frac{1}{n+1} \sum_{k=0}^{n} S_k(f(x)) = \int_{-\pi}^{\pi} f(x-t) \Phi_n(t) dt$$

1.29 Ротор, дивергенция векторного поля

F=(P,Q,R) — векторное поле в \mathbb{R}^3 . $rot\ F=(R'_y-Q'_z,P'_z-R'_x,Q'_x-P'_y)$ — ротор, вихрь $div\ F=P'_x+Q'_y+R'_z$. Многомерный случай определяется аналогично.

1.30 Соленоидальное векторное поле

Векторное поле A — соленоидальное, если \exists векторное поле B : rot B = A. Тогда B называется векторным потенциалом поля A.

1.31 Бескоординатное определение ротора и дивергенции

 $rot\ F$ — это такое векторное поле, что $\forall a\ \forall n_0(rotF(a))_{n_0}=\lim_{r\to 0}\frac{1}{\pi r^2}\int\limits_{\partial B_r}F_ldl$ где B_r — круговой контур, n_0 — нормаль контура, F_l — проекция на касательное направление контура.

Пояснение:
$$\frac{1}{\pi r^2} \int\limits_{\partial B_r} F_l dl = \frac{1}{\pi r^2} \iint\limits_{B_r} \langle rot \ F, n_0 \rangle dS \underset{r \approx 0}{\approx} rot F(a)$$
$$div F(a) = \lim_{r \to 0} \frac{1}{\lambda_3(B(a,r))} \iiint\limits_{B(a,r)} div F \, dx \, dy \, dz = \lim_{r \to 0} \frac{1}{\lambda_3(B(a,r))} \iint\limits_{\partial B(a,r)} \langle F, n_0 \rangle dS$$

Глава 2

Теоремы

2.1 Перестановка двух предельных переходов. Предельный переход в несобственном интеграле.

Ты проиграл

2.2 Вычисление интеграла Дирихле

Ты проиграл

2.3 Теорема об интегрировании несобственного интеграла по параметру

Ты проиграл

2.4 Правило Лейбница для несобственных интегралов

Ты проиграл

2.5 Теорема о вычислении интеграла по мере Бореля— Стилтьеса (с леммой)

Ты проиграл

2.6 Плотность в L^p множества ступенчатых функций

Ты проиграл

2.7 Лемма Урысона

X — нормальное топологическое пространство, то есть:

- 1. Все одноточечные множества замкнуты.
- 2. Любые два непересекающихся замкнутых множества отделимы окрестностями: A, B замкнуты, $A \cap B = \emptyset \Rightarrow \exists A_1, B_1$ открыты, $A_1 \cap B_1 = \emptyset$, $A \subset A_1$, $B \subset B_1$.

 F_0, F_1 — замкнуты, $F_0 \cap F_1 = \emptyset$.

<u>Тогда:</u> $\exists f: X \to [0,1]$, непрерывная (в смысле топологического определения непрерывности), равная 0 на F_0 и равная 1 на F_1 .

2.8 Плотность в L^p множества финитных непрерывных функций

 $(\mathbb{R}^m, \mathbb{A}, \lambda_m)$

 $E\subset\mathbb{R}^m$ — изм. Тогда множество финитных непрерывных функций плотно в $L_p(E,\lambda_m), p\in[1;+\infty]$

2.9 Теорема о непрерывности сдвига

Обозначения:

 $f_h := f(x+h)$

 $[0,T]\subset\mathbb{R}$. Будем считать, что $L_p[0,T]$ состоит из T-периодических функций $\mathbb{R}\to\overline{\mathbb{R}}$. Отсюда $\int_0^T f=\int_a^{a+T} f$.

$$\widetilde{C}[0,T] = f \in C[0,T] : f(0) = f(T).||f|| = \max_{x \in [0,T]} |f(x)|$$

NB: $f \in \widetilde{C}[0,T] \Rightarrow f$ равномерно непрерывна (по т. Кантора).

Формулировка:

- 1. f- рвим. непр. на \mathbb{R}^m . Тогда $||f-f_h||_\infty \to 0$ при $h \to 0$.
- 2. $1 \le p < +\infty \ f \in L_p(\mathbb{R}^m, \lambda_m)$. Тогда $||f f_h||_p \to 0$.
- 3. $f \in \widetilde{C}[0,T]$. Тогда $||f f_h||_{\infty} \to 0$.
- 4. $1 \le p < +\infty$ $f \in L_p[0;T]$. Тогда $||f f_h||_p \to 0$.

2.10 Теорема о свойствах сходимости в гильбертовом пространстве

- 1. $x_n \to x, y_n \to y \Rightarrow \langle x_n, y_n \rangle \to \langle x, y \rangle$
- 2. $\sum x_k$ сходится, тогда $\forall y : \sum \langle x_k, y \rangle = \langle \sum x_k, y \rangle$
- 3. $\sum x_k$ ортогональный ряд, тогда $\sum x_k$ $\operatorname{cx} \Leftrightarrow \sum |x_k|^2$ сходится, при этом $|\sum x_k|^2 = \sum |x_k|^2$

2.11 Теорема о коэффициентах разложения по ортогональной системе

 $\{e_k\}$ — ортогональная система в $\mathbb{H},\ x\in\mathbb{H}, x=\sum_{k=1}^{+\infty}c_k\cdot e_k$ Тогда:

- 1. $\{e_k\}$ Л.Н.З.
- $2. c_k = \frac{\langle x, e_k \rangle}{||e_k||^2}$

3. $c_k \cdot e_k$ — проекция x на прямую $\{te_k \mid t \in \mathbb{R} \ ($ или $\mathbb{C})\}$ Иными словами, $x = c_k \cdot e_k + z$, где $z \perp e_k$

2.12 Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя

$$\{e_k\}$$
 — ортогональная система в $\mathbb{H}, x \in \mathbb{H}, n \in \mathbb{N}$ $S_n = \sum\limits_{k=1}^n c_k(x)e_k, \ \mathcal{L} = Lin(e_1, e_2, \dots e_n) \subset \mathbb{H}$ Тогда:

- 1. S_n орт. проекция x на пр-во \mathcal{L} . Иными словами $x=S_n+z,\ z\bot\mathcal{L}$
- 2. S_n наилучшее приближение x в $\mathcal{L}(||x S_n|| = \min_{y \in \mathcal{L}} ||x y||)$
- $3. ||S_n|| \leq ||x||$

2.13 Теорема Рисса — Фишера о сумме ряда Фурье. Равенство Парсеваля

 $\{e_k\}$ – орт. сист. в $\mathbb{H}, x \in \mathbb{H}$

Тогда:

1. Ряд Фурье $\sum\limits_{k=1}^{+\infty}c_k(x)e_k$ сходится в $\mathbb H$

2.
$$x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow \forall k \ z \perp e_k$$

3.
$$x = \sum_{k=1}^{+\infty} c_k e_k \Leftrightarrow \sum_{k=1}^{+\infty} |c_k|^2 ||e_k||^2 = ||x||^2$$

2.14 Теорема о характеристике базиса

 $\{e_k\}$ — ортогональная система в $\mathbb H$

Тогда эквивалентны следующие утверждения:

1. $\{e_1\}$ — базис.

2.
$$\forall x,y \in \mathbb{H} \quad \langle x,y \rangle = \sum c_k(x)\overline{c_k(y)}\|e_k\|^2$$
 (обобщенное уравнение замкнутости)

- 3. $\{e_k\}$ замкнутая система.
- 4. $\{e_k\}$ полная система.
- 5. $Lin(e_1,e_2,\ldots)$ плотна в $\mathbb H$

2.15 Лемма о вычислении коэффициентов тригонометрического ряда

Пусть $S_n \to f$ в $L_1(-\pi, \pi]$

Тогда:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx \quad k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx \quad k = 0, 1, 2, \dots$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx \quad k = 0, 1, 2, \dots$$

2.16 Теорема Римана-Лебега

 $E \subset \mathbb{R}^1$ — измеримо $f \in L_1(E,\lambda), \ \lambda$ - мера Лебега

$$\int_{E} f(x)e^{ikx}dx \xrightarrow[k \to +\infty]{} 0$$

$$\int_{E} f(x)cos(kx)dx \xrightarrow[k \to +\infty]{} 0$$

$$\int_{E} f(x)sin(kx)dx \xrightarrow[k \to +\infty]{} 0$$

2.17 Три следствия об оценке коэффициентов Фурье

Ты проиграл

2.18 Принцип локализации Римана

$$f, G \in L_1[-\pi, \pi]$$
 $x_0 \in R, \delta > 0$
 $f \equiv g$ на $(x_0 - \delta, x_0 + \delta)$
 $\frac{\text{Тогда:}}{S_n(f, x_0) - S_n(g, x_0)} \to 0$

2.19 Признак Дини. Следствия

$$f \in L_1[-\pi,\pi]$$
 $x_0 \in R$ $S \in R$ $(*) \int\limits_0^\pi \frac{|f(x_0+t)-2S+f(x_0-t)|}{t} dt$ сходится $\overline{\text{Тогда:}}$ $S_n(f,x_0) \to S$

Следствие1:

∃ 4 предела

$$\lim_{t\to\pm 0} \frac{f(x_0+t)-f(x_0\pm 0)}{t}$$

Тогда:

 $\overline{\text{Ряд фурье сходится в } x_0 \text{ как } \frac{f(x_0+0)+f(x_0-0)}{2}$

Следствие2:

$$f \in L_1[-\pi,\pi]$$

f непрерывна в x_0

 \exists конечные $f'_{+}(x_0), f'_{-}(x_0)$

Тогда:

$$S_n(f,x_0) \to f(x_0)$$

2.20 Корректность определения свертки

$$f, K \in L_1[-\pi, \pi]$$

Тогда: $(f * K)$ – корректно заданная фукнция из $L_1[-\pi, \pi]$

2.21 Свойства свертки функции из L^p с фукнцией из L^q

$$f\in L^p;\, K\in L^q$$
 $1\leqslant p\leqslant +\infty;\, rac{1}{p}+rac{1}{q}=1$ Тогда:

- f*K непр. на $[-\pi,\pi]$
- $||f * K||_{\infty} \leq ||K||_q ||f||_p$

2.22 Теорема о свойствах аппроксимативной единицы

1.
$$f \in \widetilde{C}[-\pi,\pi] \Rightarrow (f*K_h) \underset{h \to h_0}{\Longrightarrow} f$$
, где свертка $(f*K)(x) = \int_{-\pi}^{\pi} f(x-t)K(t)dt$

2.
$$f \in L^1[-\pi, \pi] \Rightarrow ||(f * K_h) - f||_1 \underset{h \to h_0}{\to} 0$$

3. K_h - усил. апрокс ед. f - непр. в точке x. Тогда $(f*K_h)(x) \to f(x)$ Замеч.) пункт 2 верен для L_p

2.23 Теорема Фейера

1.
$$f \in \widetilde{C}[\pi, -\pi]$$
, тогда $\sigma_n \underset{n \to +\infty}{\Longrightarrow} f$

2.
$$f \in L_p[\pi, -\pi], (1 \le p < +\infty)$$
, тогда $||\sigma_n(f) - f||_p \underset{n \to +\infty}{\to} 0$

3.
$$f \in L_1[\pi, -\pi], f$$
- непр. в т. x , тогда $\sigma_n(f, x) \underset{n \to +\infty}{\longrightarrow} f(x)$

2.24 Полнота тригонометрической системы и другие следствия теоремы Фейера

Ты проиграл

2.25 Лемма об оценке интеграла ядра Дирихле

- 1. $D_n(t) = \frac{\sin nt}{\pi t} + \frac{1}{2\pi}(\cos nt + h(t)\sin nt)$, где h(t) не зависит от n и $|h(t)| \le 1$ на $[-\pi;\pi]$.
- 2. $\forall x, |x| < 2\pi |\int_0^x D_n(t)dt| < 2$

2.26 Формула Грина

 $D \subset \mathbb{R}^2$ – компакт, связное, одновясвязное, ориентировано

 $\delta D-C^2$ -гладкая кривая, тоже ориентировано

D и δD ориентированы согласовано

P,Q – функции, гладкие в открытой области $O\supset D$

Тогда:

$$\iint\limits_{D} (\frac{\delta Q}{\delta x} - \frac{\delta P}{\delta y}) dx dy = \int\limits_{\delta D} (P(x, y) dx + Q(x, y)) dy$$

2.27 Теорема об интегрировании ряда Фурье

 $f \in L_1[-\pi;\pi].$

Тогда $\forall a, b \in \mathbb{R}$:

$$\int_{a}^{b} f(x)dx = \sum_{k \in \mathbb{Z}} c_{k}(f) \int_{a}^{b} e^{ikx} dx$$

Сумма по $k \in \mathbb{Z}$ понимается в смысле главного значения $(\lim_{n\to\infty}\sum_{k=-n}^n)$.

 $\underline{\text{Замечание:}}$ Ряд Фурье f может всюду расходиться, но ряд интеграла всегда сходится.

2.28 Следствие о синус-коэффициентах интегриру-емой функции

Ты проиграл

2.29 Лемма о слабой сходимости сумм Фурье

Ты проиграл

2.30 Леммы о равномерной ограниченности сумм Фурье и об обобщенном равенстве Парсеваля

Ты проиграл

2.31 Формула Стокса

 Ω – эллиптическая, гладкая, двусторонняя поверхность, C^2 – гладкое; n_0 – сторона $\delta\Omega$ - ориентирована согласовано с n_0 (P,Q,R) – векторное поле на Ω , заданное в O - откр. : $\Omega\subset O\subset\mathbb{R}^3$ Тогда:

$$\int\limits_{\Omega} (Pdx + Qdy + Rdz) = \iint\limits_{\Omega} ((R_{y}^{'} - Q_{z}^{'})dydz + (P_{z}^{'} - R_{x}^{'})dzdx + (Q_{x}^{'} - P_{y}^{'})dxdy)$$

2.32 Формула Гаусса-Остроградского

 $V = \{(x,y,z) \in \mathbb{R}^3 : (x,y) \in G, f(x,y) \le z \le F(x,y)\}, G \subset \mathbb{R}^2, \partial G$ — гладкая кривая в $\mathbb{R}^2, F \in "C'(G)"$ (кавычки означают "включая границу, то есть с более широкой гладкой областью"), ∂V — внешняя сторона, $R : O(V) \to \mathbb{R}$. Тогда

$$\iiint\limits_V \frac{\partial R}{\partial z} \, dx \, dy \, dz = \iint\limits_{\partial V} R \, dx \, dy$$

2.33 Соленоидальность бездивергентного векторного поля

A - соленоидально $\Leftrightarrow div(A) = 0$ $A \in C^1, O$ — хорошая область.