Documentatie: Robotarm simulatie

Mart Rietdijk (1673342)

24oktober 2023

Klas: ITN-WOR-A-s

Docent: Jorg Visch

Course: Wor World

Versie: 1.0

Contents

1	Inle	eiding		2
2	De	Requi	rements	2
3	RO	S-struc	ctuur	4
	3.1	Conso	le package	4
	3.2	Simula	ation package	4
		3.2.1	Robotarm	4
		3.2.2	Cup	Ę
			RViz	
4	Rol	oot-cor	nmando's	7

1 Inleiding

Er zijn veel redenen om hardware in de daadwerkelijke wereld te simuleren. Daarom is deze simulatie opgezet om de meeste risico's van het werken met een robotarm af te vangen.

In dit document is te vinden hoe de simulatie-opdracht is uitgewerkt.

2 De Requirements

ID	Wat is er gedaan?	Prio	Klaar?
PA01	Alle code is gepackaged volgens de ROS-	Should	✓
	directorystructuur.		
PA02	Package is te bouwen met colcon op ROS2	Must	✓
	Humble Hawksbill		
PA03	De applicatie wordt gebouwd met C++ vol-	Must	✓
	gens de Object Oriented principes die je geleerd		
	hebt bij eerdere courses.		
PA04		Should	×

Table 1: Requirements tabel

ID	Wat is er gedaan?	Prio	Klaar?
VS01	De virtuele controller luistert naar een topic	Must	✓
	waarop string messages in het formaat van		
	de SSC-32U 1 worden geplaatst. Van de in-		
	terface moeten ten minste commando's zijn		
	opgenomen voor het verplaatsen van de servo's		
	met een ingestelde duur en het stoppen van de		
	servo's.		
VS02	De virtuele controller reageert op het topic (zie	Must	✓
	eis VS01) door bijbehorende joint_state mes-		
	sages te publiceren.		
VS03	De virtuele robotarm wordt gevisualiseerd in	Must*	✓
	Rviz (een URDF-model van de arm is beschik-		
	baar op OnderwijsOnline).		
VS04	De virtuele robotarm gedraagt zich realistisch	Must	✓
	m.b.t. tijdgedrag (servo's roteren kost tijd en		
	gaat geleidelijk).		
VS05		Should	X

Table 2: Requirements tabel

ID	Wat is er gedaan?	Prio	Klaar?
VC01		Should	×
VC02	Publiceert een 3D-visualisatie van het bekertje	Must*	✓
	voor Rviz.		
VC03		Should	×
VC04		Could*	×
VC05		Should	×
VC06	Het bekertje beweegt mee met de gripper (als	Must	✓
	hij vastgehouden wordt).		
VC07	Bekertje is onderhevig aan zwaartekracht wan-	Must	✓
	neer losgelaten.		
VC08	Bekertje bepaalt en publiceert zijn positie.	Must	✓
VC09	Bekertje bepaalt en publiceert zijn snelheid.	Should	✓

Table 3: Requirements tabel

ID	Wat is er gedaan?	Prio	Klaar?
DI01	Een demoscript stuurt over de tijd een sequentie	Must	✓
	van commando's naar de armcontroller. 2		
DI02		Could	×
DI03		Could	×

Table 4: Requirements tabel

ID	Wat is er gedaan?	Prio	Klaar?
DM01	Beschrijft hoe de code gebouwd kan worden.	Must	✓
DM02	Beschrijft stap voor stap hoe de arm bewogen	Must	✓
	kan worden middels enkele voorbeelden.		
DM03	Beschrijft welke eisen gerealiseerd zijn. En geeft	Must	✓
	hierbij een (korte) toelichting.		

Table 5: Requirements tabel

ID	Wat is er gedaan?	Prio	Klaar?
DD01	Beschrijft de structuur van de package (Nodes,	Must	✓
	topics, messages, et cetera).		
DD02	Beschrijft de structuur en samenhang van	Must	✓
	de broncode (class-diagrams, beschrijving, et		
	cetera).		
DD03		Could	×
DD04		Should	×

Table 6: Requirements tabel

3 ROS-structuur

In ROS is een structuur te beschrijven in Topic, services, Nodes, en Actions. Deze structuur wordt in dit hoofdstuk besproken per ROS-package. De structuur is te vinden in het onderstaande plaatje (fig. 1).

3.1 Console package

De Console package published een Node "Console". Deze Node published weer een Topic command. Deze Topic is van het type Command beschreven in de package robot_arm_interface. Deze Topic bevat een string. Deze wordt gevraagd door de Node "Console" en verstuurd via deze Topic naar de Node robot_arm_interface.

3.2 Simulation package

In De Simulation package worden de volgende Nodes gepublished (met een kleine beschrijving):

- robot_arm_publisher: Published alle joints van de robotarm
- robot_publisher: Is de standaard robot_state_publisher van ROS2
- cup_picked_up: Is een tf listener die kijkt of dat de arm de cup vast heeft
- cup_publisher: Published de cup frame

Deze Nodes bieden hun eigen Topics weer aan (met een kleine beschrijving):

- joint_states: De Topic die de status van de joints van de robotarm published
- picked_up_cup: De Topic die aangeeft of de cup wordt opgepakt door de robotarm
- robot_description: De Topic die de robotarm URDF aan RViz geeft
- cup_description: De Topic die de cup URDF aan RViz geeft

3.2.1 Robotarm

De robot_arm_publisher aanvraart het commando op het Topic command, en leest dit uit met de parser. Het commando dat op command wordt gepublished kan een commando zijn die zegt op welke PWM waarde de servo moet staan en hoe lang hij hier over mag doen, of een commando om alle servo's die bewegen te stoppen. De commando's komen in hoofdstuk 4 aan bod.

In de launchfile wordt de URDF aan de robot_arm_interface meegegeven. Daaruit leest de Node de URDF in en published de joint states naar de Topic joint_states.

Deze joint states worden opgevangen door de robot_publisher Node. Deze Node verwerkt de states en published op basis daarvan de frames naar het tf framework.

3.2.2 Cup

Naast de robotarm staat er ook een bekertje (cup) in de wereld. Daarvoor zorgt de cup_publisher Node. Deze published een cup frame naar het tf framework. Deze cup frame heeft een afstand ten opzichte van de robotarm.

De cup_publisher luistert naar de Topic picked_up_cup. Op deze Topic wordt of de afstand van de cup naar de onderkant van de robotarm gestuurd, of de afstand van de cup ten opzichte van de hand. Deze keuze wordt gebaseerd op het feit dat de robotarm de cup vast heeft of niet. Dit is te meten aan de afstand van de grippers van de robotarm ten opichte van de cup.

Als de robotarm de cup vast heeft, wordt de afstand van de hand gestuurd, en houdt de cup deze afstanden vast. En als de robotarm de cup niet vast heeft, valt de cup op de grond ten opzichte van de onderkant van de robotarm.

3.2.3 RViz

Op de Topics cup_description en robot_description, worden de URDFs van de robotarm en cup gepublished als string. Dit wordt gedaan zodat RViz weet bij welke joint wat te tekenen.

Figure 1: Volledige ROS-structuur

4 Robot-commando's