LA CLASE ESTÁ A PUNTO DE COMENZAR

Por favor: mantenga en silencio su micrófono y apague su cámara

Propiedades de las señales, periodicidad, potencia y energía

Análisis de señales

Marco Teran Universidad Sergio Arboleda

Outline

- Introducción
- Simetría de señales
- Periodicidad de señales de tiempo continuo
 - Periodo de una señal constituida por otras señales periódicas caso continuo
 - Periodo de una señal constituida por otras señales periódicas caso discreto
- 4 Señales de potencia y energía
 - Valor promedio de una señal
 - Potencia promedio de una señal
 - Energía promedio de una señal de una señal
 - Clasificación de señales de acuerdo a su potencia y energía

Introducción

Periodicidad del Exponencial complejo

Propiedades del exponente:

$$e^{a+b} = e^a e^b$$
$$e^{(a+b)c} = e^{ac} e^{bc}$$

Tiempo continuo:

$$e^{j\frac{2\pi}{T}t}$$

que ocurre si aumentamos la frecuencia angular ω con un factor de 2π

$$e^{j(\frac{2\pi}{T}+k2\pi)t} = e^{j\frac{2\pi}{T}t}e^{jk2\pi t}$$

Tiempo discreto:

$$e^{j\frac{2\pi}{N}n}$$

que ocurre si aumentamos la frecuencia angular Ω con un factor de 2π

$$e^{j(\frac{2\pi}{N}+k2\pi)n}=e^{j\frac{2\pi}{N}n}e^{jk2\pi n}=e^{j\frac{2\pi}{N}n}$$

Periodicidad del Exponencial complejo

Tiempo continuo:

$$x(t) = \cos\left(\frac{2\pi}{10}t\right)$$

$$x(t) = \cos\left(\left(\frac{2\pi}{10} + 6\pi\right)t\right)$$

Tiempo discreto:

$$x[n] = \cos\left(\frac{2\pi}{10}n\right)$$

$$x[n] = \cos\left(\left(\frac{2\pi}{10} + 6\pi\right)n\right)$$

Simetría de señales en el tiempo: Simetría par

Se dice que una señal presenta simetría par si se cumple:

Tiempo continuo:

$$x(t) = x(-t) \tag{1}$$

Tiempo discreto:

$$x[n] = x[-n] \tag{2}$$

Figure 2: Señal de tiempo discreto par

Simetría de señales de tiempo: Simetría impar

Se dice que una señal presenta simetría impar se cumple que Tiempo continuo:

$$x(t) = -x(-t) \tag{3}$$

Tiempo discreto:

$$x[n] = -x[-n] \tag{4}$$

Es decir, que si reflejamos una señal y le invertimos su fase (multiplicamos por -1) y obtenemos la misma señal original, esta tendría simetría impar.

Figure 4: Señal de tiempo discreto impar

Simetría de señales de tiempo continuo

Cualquier señal puede ser presentada como la suma de una componente par y una componente impar de esta:

$$x(t) = x_e(t) + x_o(t) \tag{5}$$

donde, $x_o(t)$ — es la componente par de la señal (ing. even); $x_o(t)$ — es la componente impar de la señal (ing. odd).

$$x_e(t) = \frac{1}{2} \left\{ x(t) + x(-t) \right\} \tag{6}$$

$$x_o(t) = \frac{1}{2} \left\{ x(t) - x(-t) \right\} \tag{7}$$

Cualquier señal puede ser presentada como la suma de una componente par y una componente impar de esta:

$$x[n] = x_e[n] + x_o[n] \tag{8}$$

donde, $x_e[n]$ — es la componente par de la señal (ing. even); $x_o[n]$ — es la componente impar de la señal (ing. odd).

$$x_e[n] = \frac{1}{2} \{x[n] + x[-n]\}$$
 (9)

$$x_o[n] = \frac{1}{2} \left\{ x[n] - x[-n] \right\} \tag{10}$$

Simetría de señales de tiempo discreto

Simetría de señales de TD

Encontrar la parte par e impar de la siguiente señal:

$$x[n] \quad = \quad \begin{cases} 0.5n, & \text{ para } -7 \leq n \leq -4; \\ 2, & \text{ para } -3 \leq n \leq -1; \\ n-2, & \text{ para } 0 \leq n < 4; \\ 5, & \text{ para } 4 \leq n \leq 6; \\ 0, & \text{ para otros casos.} \end{cases}$$

Periodicidad de señales de tiempo continuo

Periodicidad de señales

Señal periodica de CT

La señal x(t) de tiempo continuo es periódica con periodo T, si existe un valor real positivo distinto de cero para el cual se cumple la *condición de periodicidad*:

$$x(t+T) = x(t), \ \forall t, T \in \mathbb{R}. \tag{11}$$

A partir de la expresión anterior se puede generalizar de la siguiente manera:

$$x(t+kT) = x(t), \ \forall t \in \mathbb{R}, \ k = \pm 1, \pm 2, \pm 3, \dots \in \mathbb{Z}$$
 (12)

Figure 5: Señal periódica de tiempo continuo

Periodicidad de señales de tiempo discreto

Señal periodica de DT

La señal x[n] de tiempo discreto es periódica con periodo N, si existe un valor entero positivo distinto de cero para el cual se cumple la *condición de periodicidad*:

$$x[n+N] = x[n], \ \forall n, N \in \mathbb{Z}.$$
(13)

A partir de la expresión anterior se puede generalizar de la siguiente manera:

$$x[n+mN] = x[n], \ \forall n \in \mathbb{Z}, \ m = \pm 1, \pm 2, \pm 3, \dots$$
 (14)

Periodo de una señal constituida por otras señales periódicas de tiempo continuo

- El valor entero mínimo positivo de T/N distinto de cero que satisface esta condición de periodicidad se denomina periodo fundamental $T_0 = \min\{T\}$ y $N_0 = \min\{N\}$.
- Una señal periódica es de longitud infinita.
- Una señal que no tiene periodo se conoce como aperiódica.

Periodicidad de señales

- a. ¿A que igual el periodo de una señal aperiódica?
- ¿Que significa que una señal tenga un periodo igual a cero?
- \mathbf{c} Encontrar el periodo de la señal $x(t) = \sin(25t)$
- **d.** Encontrar el periodo de la señal $x[n] = \sin\left(\frac{22\pi}{10}n\right)$

Periodo de una señal constituida por otras señales periódicas de tiempo continuo

Sea una señal igual a la suma/producto de distintas señales periódicas Tiempo continuo:

$$f(t) = \sum_{i=1}^{K} x_i(t), \text{ donde } K \text{ --- numero total de señales} \tag{15}$$

será periódica con periodo fundamental igual

Periodo de una señal constituida por otras señales periódicas - caso continuo

$$T_{\Sigma} = T\{f(t)\} = \text{mcm}\{T_1, T_2, T_3, \dots, T_K\} \tag{16}$$

Entonces se puede decir que $f(t) = f(t + kT_{\Sigma}), \ k \in \mathbb{Z}.$

Periodo de una señal constituida por otras señales periódicas de tiempo discreto

Sea una señal igual a la suma/producto de distintas señales periódicas Tiempo discreto:

$$f[n] = \sum_{i=1}^{K} x_i[n]$$
, donde K — numero total de señales (17)

será periódica con periodo fundamental igual

$$N_{\Sigma} = N\{f[n]\} = \text{mcm}\{N_1, N_2, N_3, \dots, N_K\}$$
 (18)

Entonces se puede decir que $f[n] = f[n + mN_{\Sigma}], m \in \mathbb{Z}.$

Periodicidad de señales de tiempo discreto - El problema de Ω_0

Las señales exponenciales complejas de tiempo continuo son distintas para cada valor de ω_0 , en cambio para el caso discreto no ocurre lo mismo.

Considere, $k \in \mathbb{Z}$, entonces

$$e^{j(\Omega_0 + 2\pi k)n} = e^{j\Omega_0 n} \underbrace{e^{j2\pi kn}}_{=1} = e^{j\Omega_0 n} \tag{19}$$

- Las secuencias con frecuencia angular $\Omega_0 \pm 2\pi$, $\Omega_0 \pm 4\pi$, etc., son las mismas.
- Las señales discretas solo se tiene en cuenta un intervalo de 2π para cual se toma Ω_0 . Es decir $0 \le \Omega_0 < 2\pi$ o $-\pi \le \Omega_0 < \pi$.

Periodo de una señal constituida por otras señales periódicas de tiempo discreto

Periodicidad de señales

Encontrar el periodo de las siguientes señales:

a.
$$x(t) = e^{j\frac{t}{4}}$$

$$\bullet [n] = \cos \frac{1}{4}n$$

$$x(t) = \cos \frac{96\pi}{25} t \sin \frac{120\pi}{7} t$$

$$d x[n] = \cos \frac{\pi}{117} n + \sin \frac{4\pi}{368} n$$

$$s[n] = 4\cos(3\pi n + 8\pi) + \frac{1}{2\pi}\tan\left(\frac{12\pi}{5}n\right) - \sec(0.25\pi n)$$

$$y(t) = \frac{\sin\left(\frac{\pi}{4}t\right)\cos\left(\frac{\pi}{3}t\right)}{\cot\left(\frac{\pi}{12}t\right)}$$

Señales de potencia y energía

La **potencia** y al energía es uno de los dos recursos más importantes de las telecomunicaciones, el otro recurso es el **espectro**.

Las funciones **físicamente realizables** son aquellas que señales que pueden ser **observables** (se pueden medir), por ejemplo en un laboratorio.

Para una señal ser físicamente realizable es necesario que cumpla las siguientes condiciones:

- Ser diferente de cero en algún momento;
- Debe tener valor en el espectro en un intervalo determinado de frecuencias;
- Sus valores de intensidad deben ser reales y finitos.

Operador promedio de tiempo continuo

Operador promedio de tiempo continuo

$$\langle \cdot \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} [\cdot] dt$$
 (20)

- El operador anterior suma (integra) todo lo que se encuentra dentro del operador y lo promedia en el tiempo
- Este operador es lineal, por tanto cumple el principio de superposición.

Para el caso de una señal periódica con periodo T_0 :

$$\langle \cdot \rangle = \frac{1}{T_0} \int_{\langle T_0 \rangle} [\cdot] \, \mathrm{d}t \tag{21}$$

Donde T_0 es el mínimo valor positivo entero que satisface $x(t) = x(t + T_0)$

Operador de suma promedio de tiempo discreto

Operador de suma promedio de tiempo discreto

$$\langle \cdot \rangle = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} [\cdot]$$
 (22)

Señales de potencia y energía

- El operador anterior suma todo lo que se encuentra dentro del operador y lo promedia en el numero de muestras
- Este operador es lineal, por tanto cumple el principio de superposición.

Para el caso de una señal periódica con periodo N_0 :

$$\langle \cdot \rangle = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} [\cdot] \tag{23}$$

Donde N_0 es el mínimo valor positivo entero que satisface $x[n] = x[n+N_0]$

Valor promedio de una señal en el tiempo continuo

También conocida como valor DC (ing. direct current) de la señal.

Tiempo continuo:

Se aplica mediante el operador: $\langle x(t) \rangle$

$$x_{DC} = \langle x(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) dt$$
 (24)

Generalmente se utiliza para evaluar promedios en tiempos definidos de tiempo, por ejemplo de un t_1 a t_2 :

$$x_{DC} = \langle x(t) \rangle = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x(t) dt$$
 (25)

Valor promedio de una señal en el tiempo discreto

Tiempo discreto:

Se aplica mediante el operador: $\langle x[n] \rangle$

$$x_{DC} = \langle x[n] \rangle = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n]$$
 (26)

Generalmente se utiliza para evaluar promedios en tiempos definidos de tiempo, por ejemplo de un n_1 a n_2 (+1 si pasa por cero la suma):

$$x_{DC} = \langle x[n] \rangle = \frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} x[n], \text{ donde } n_2 > n_1$$
 (27)

Potencia promedio de una señal

En los sistemas de comunicación es de suma importancia esta magnitud

Figure 7: Diagrama general de un sistema de comunicación de Shannon

Desde un punto de vista físico, la potencia es trabajo por unidad de tiempo.

Señales de potencia y energía

para este caso, la potencia instantánea

$$p(t) = v(t)i(t) = \frac{W}{q}\frac{q}{t} = \frac{W}{t}$$
(29)

La potencia promedio es igual a

$$\langle p(t) \rangle = \langle v(t)i(t) \rangle$$
 (30)

Figure 8: Circuito resistivo

Potencia promedio de una señal

Figure 9: Potencia de un circuito de corriente alterna

Potencia promedio de una señal

Potencia promedio de una señal de tiempo continuo

Potencia normalizada

Tiempo continuo:

$$P_x = \langle |x(t)|^2 \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$$
(31)

La potencia de una señal periódica con periodo T_0 se puede hallar con ayuda de la ecuación:

$$P_x = \frac{1}{T_0} \int_{\langle T_0 \rangle} |x(t)|^2 dt$$
 (32)

Potencia promedio de una señal de tiempo discreto

Potencia normalizada

Tiempo discreto:

$$P_x = \langle |x[n]|^2 \rangle = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$
 (33)

La potencia de una señal periódica con periodo N_0 se puede hallar con ayuda de la ecuación:

$$P_x = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} |x[n]|^2 \tag{34}$$

Energía promedio de una señal de una señal

- La energía es la cantidad de potencia consumida en determinado intervalo de tiempo de acuerdo a lo que dure el trabajo realizado por la señal.
- Se puede expresar de forma normalizada mediante la siguiente ecuación

Tiempo continuo:

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt \tag{35}$$

Tiempo discreto:

$$E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 \tag{36}$$

- Se dice que x es una señal (secuencia) de **energía**, si y solo si $0 < E_x < \infty$, y su potencia tiende a cero $P_{m} \rightarrow 0$
- Se dice que x es una señal (secuencia) de **potencia**, si y solo si $0 < P_x < \infty$, y su energía tiende a cero $E_x \to \infty$
- Si no cumple ninguna de estas propiedades, estas señales no son ni de potencia, ni de energía.

Nota: Una señal periódica es de potencia, si su contenido de energía por periodo es finito. La potencia promedio se calcula sobre cada periodo porque se repite.

Potencia y energía

Determine la potencia y la energía de la señal

$$s(t) = 3e^{-at}$$

Potencia v energía

Determine la potencia y energía de la siguiente señal:

$$s(t) = A\cos(\omega t)$$

Potencia y energía

Clasificación de señales de acuerdo a su potencia y energía

Determine la potencia y la energía del escalón unitario u[n].

Potencia y energía

Determine la potencia y energía de la siguiente señal:

$$x[n] = (-0.5)^n u[n] \quad$$

Potencia y energía

Determinar si las siguientes señales son de potencia o de energía:

a.
$$x(t) = 2e^{j3t}$$

$$\mathbf{b.} \ \ s[n] = A\cos(\Omega_0 n + \phi)$$

¿Preguntas?

Contacto: Marco Teran webpage: marcoteran.github.io/ e-mail: marco.teran@usa.edu.co