

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 5 :<br><br>C12N 15/85, 15/60, 15/67                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1 | (11) International Publication Number: WO 92/18635<br><br>(43) International Publication Date: 29 October 1992 (29.10.92)                                                                                                                                                                                                                                                                                                                            |
| (21) International Application Number: PCT/AU92/00164<br><br>(22) International Filing Date: 13 April 1992 (13.04.92)<br><br>(30) Priority data:<br>PK 5664 16 April 1991 (16.04.91) AU                                                                                                                                                                                                                                                                                                                                                         |    | (74) Agent: F.B. RICE & CO; 28A Montague Street, Balmain,<br>NSW 2041 (AU).                                                                                                                                                                                                                                                                                                                                                                          |
| (71) Applicant ( <i>for all designated States except US</i> ): COMMON-<br>WEALTH SCIENTIFIC AND INDUSTRIAL RE-<br>SEARCH ORGANISATION [AU/AU]; 14 Limestone<br>Avenue, Campbell, ACT 2601 (AU).<br><br>(72) Inventors; and<br><br>(75) Inventors/Applicants ( <i>for US only</i> ) : WARD, Kevin, Alan<br>[AU/AU]; 28 Woodbury Street, Wordford, NSW 2778<br>(AU). NANCARROW, Colin, Douglas [AU/AU]; 47<br>Chelmsford Avenue, Willoughby, NSW 2068 (AU).<br>BROWNLEE, Alan, George [AU/AU]; 8/1 Pennant<br>Street, Castle Hill, NSW 2154 (AU). |    | (81) Designated States: AT (European patent), AU, BE (Euro-<br>pean patent), BR, CA, CH (European patent), DE (Eu-<br>ropean patent), DK (European patent), ES (European<br>patent), FR (European patent), GB (European patent),<br>GR (European patent), IT (European patent), JP, LU<br>(European patent), MC (European patent), NL (Euro-<br>pean patent), SE (European patent), US.<br><br>Published<br><i>With international search report.</i> |
| (54) Title: GENE EXPRESSION CASSETTE CONTAINING NON-CODING SEQUENCE OF GROWTH HORMONE<br>GENE                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (57) Abstract<br><br>The present invention provides a genetic expression cassette for use in obtaining expression of a cDNA sequence in animal cells. The expression cassette comprises an inducible promoter and the 3' non-coding sequence of exon 5 of the growth hormone gene or a portion thereof. The cDNA sequence is inserted between the inducible promoter and the exon 5 of the growth hormone genes.                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                          |    |                          |
|----|--------------------------|----|------------------------------------------|----|--------------------------|
| AT | Austria                  | ES | Spain                                    | MC | Madagascar               |
| AU | Australia                | FI | Finland                                  | ML | Mali                     |
| BB | Barbados                 | FR | France                                   | MN | Mongolia                 |
| BE | Belgium                  | GA | Gabon                                    | MR | Mauritania               |
| BF | Burkina Faso             | GB | United Kingdom                           | MW | Malawi                   |
| BG | Bulgaria                 | GN | Guinea                                   | NL | Netherlands              |
| BJ | Benin                    | GR | Greece                                   | NO | Norway                   |
| BR | Brazil                   | HU | Hungary                                  | PL | Poland                   |
| CA | Canada                   | IT | Italy                                    | RO | Romania                  |
| CF | Central African Republic | JP | Japan                                    | RU | Russian Federation       |
| CG | Congo                    | KP | Democratic People's Republic<br>of Korea | SD | Sudan                    |
| CH | Switzerland              | KR | Republic of Korea                        | SE | Sweden                   |
| CI | Côte d'Ivoire            | LI | Liechtenstein                            | SN | Senegal                  |
| CM | Cameroon                 | LK | Sri Lanka                                | SU | Soviet Union             |
| CS | Czechoslovakia           | LU | Luxembourg                               | TD | Chad                     |
| DE | Germany                  | MC | Monaco                                   | TC | Togo                     |
| DK | Denmark                  |    |                                          | US | United States of America |

- 1 -

GENE EXPRESSION CASSETTE CONTAINING NON-CODING SEQUENCE OF GROWTH HORMONE GENE

FIELD OF THE INVENTION

The present invention relates to a gene expression cassette which enables expression of cDNA sequences in animal cells. The expression cassette of the present invention is particularly useful in achieving high-level expression of bacterial and/or plant genes in animal cells.

BACKGROUND OF THE INVENTION

It is now possible to transfer unique pieces of DNA between organisms in such a way that the transferred material becomes a functional part of the genetic information of the recipient organisms. The animals that are produced by this technique are termed "transgenic". One application of this technology is to transfer biochemical pathways from bacteria to domestic animals in order to increase animal productivity. One difficulty which is frequently encountered in efforts to produce such transgenic animals is the lack, or very low levels of expression of the transferred DNA sequences.

The present inventors have developed a genetic expression cassette which provides information for the expression of heterologous genes, in particular bacterial genes, in mammalian cells and in several tissues of transgenic animals, at levels that provide ready detection of the encoded polypeptides.

The expression cassette consists of two components:- a regulatory element and a non-coding sequence from the growth hormone gene.

SUMMARY OF THE PRESENT INVENTION

Accordingly, in a first aspect the present invention consists in a genetic expression cassette for use in obtaining expression of a cDNA sequence in animal cells, the cassette comprising an inducible promoter and the 3' non-coding sequence of exon 5 of the growth hormone gene or a portion thereof, the cDNA sequence being positioned

- 2 -

between the inducible promoter and the 3' non-coding sequence of exon 5 of the growth hormone gene.

In a preferred embodiment of the present invention the inducible promoter is the immediate upstream 5 nucleotide sequence of the sheep metallothionein-Ia gene.

The expression cassette of the present invention provides a means for the expression of a wide range of genes in transgenic animals, including the coding sequences of bacterial enzymes, plant chitinases, 10 insecticidal scorpion venom toxin and the insecticidal protein of the bacteria Bacillus thuringiensis. In a preferred embodiment of the present invention the cDNA sequence is selected from the group consisting of cysE, cysK, aceA and aceB genes of Escherichia coli and the 15 coding sequences of plant chitinases.

In yet a further preferred embodiment of the present invention the genetic expression cassette has a sequence substantially as shown in Figure 1.

The expression cassette of the present invention is 20 useful in obtaining high levels of expression of cDNA sequences in animal cells. Accordingly, in a second aspect the present invention consists in a non-human animal including the genetic expression cassette of the first aspect of the present invention.

25 In a preferred embodiment of this aspect the animal is ovine or bovine.

#### DETAILED DESCRIPTION OF THE INVENTION

In order that the nature of the present invention may be more clearly understood, preferred forms thereof will 30 now be described with reference to the following examples and figures in which:-

Figure 1 shows the nucleotide sequence of the expression cassette of the present invention;

Figure 2 shows the sequence of MTCE10;

35 Figure 3 shows the sequence of MTCK7;

- 3 -

Figure 4 shows the sequence of MTCEK1;  
 Figure 5 shows the sequence of MTAcEa2;  
 Figure 6 shows the sequence of MTAcEaB2;  
 Figure 7 shows the sequence of MTAcEaB11; and  
 5      Figure 8 shows levels of radiolabelled cysteine in  
 transgenic mice containing MTCEK1 (—) and in control  
 mice (---). The arrow shows the position of cysteic  
 acid.

Initially, a number of gene arrangements for  
 10 expression of the cysK gene in murine L-cells were  
 trialled. The trialled constructs were as follows:-  
 pMTCK7 - sheep metallothionein-Ia gene promoter -  
cysK - exon 5 of sheep growth hormone.  
 pMTCK8 - sheep metallothionein-Ia promoter - exon 1  
 15 sheep growth hormone - cysK - exon 5 sheep growth hormone.  
 pMTCK11 - sheep metallothionein-Ia promoter - cysK -  
 whole sheep growth hormone.  
 pMTCK12 - sheep metallothionein-Ia - exon 1 sheep  
 growth hormone - cysK - exons 2, 3, 4 and 5 sheep growth  
 20 hormone.

The constructs were transfected into murine L-cells  
 and the O-acetylserine sulfhydrylase activity of the  
 transfected cells measured. The results obtained are set  
 out in Table 1.

25

---

TABLE 1  
O-Acetylserine Sulfhydrylase Activity in Transfected  
Murine L-Cells Using Various cysK Genes

| 30 | <u>Gene</u> | <u>Enzyme Activity</u>                       |
|----|-------------|----------------------------------------------|
|    |             | (nMoles cysteine produced/mg protein/30 min) |
|    | pMTCK7      | 1350 ± 24                                    |
|    | pMTCK8      | 510 ± 13                                     |
|    | pMTCK11     | 162 ± 17                                     |
|    | pMTCK12     | 159 ± 6                                      |

35 (values represent the means of two determinations)

---

- 4 -

As can seen from these results exon 5 of the growth hormone gene of sheep is required for optimum expression of genes inserted into the cassette. Other combinations which comprise larger portions of the sheep growth hormone gene are less effective in providing expression.

Two examples of the function of the expression cassette are shown as follows:

1. Expression of the cysE and cysK genes of E. coli in transgenic animals

In order to provide a pathway for the biosynthesis of the amino acid cysteine, the coding sequences for the bacterial enzymes serine transacetylase and O-acetylserine sulfhydrylase have been inserted into the expression cassette.

Three genes are described. Genes 1 and 2 each encode single bacterial proteins, gene 1 encoding the protein serine transacetylase and gene 2 encoding the protein O-acetylserine sulfhydrylase. Gene 3 is a compound gene constructed from gene 1 and gene 2, and encodes both the serine transacetylase protein and the O-acetylserine sulfhydrylase protein.

The expression cassette of the present invention was produced using methods well known in the art. Briefly this involves the steps of:

1. Isolation and cloning of the sheep metallothionein-Ia promoter sequence.
2. Isolation and modification of the bacterial coding sequence and fusion to the bacterial coding sequence.
3. Fusion of exon 5 of the sheep growth hormone gene to the metallothionein promoter/bacterial coding sequence complex.

- 5 -

In order to provide further details on construction of the cassette the procedure followed in construction of MTCE10 was as follows:

Step 1.

5 A bacterial plasmid containing the sheep metallothionein-Ia gene was digested with the restriction enzymes Eco RI and BamH1 and a DNA fragment encoding the promoter region of the gene separated by agarose gel electrophoresis and cloned in the plasmid vector pUC8.

10 Step 2.

The coding sequence and associated 5' and 3' DNA encompassing the cysE gene of Escherichia coil was cloned in the plasmid vector pGEM3 as an Eco R1 fragment excised from a lambda transducing phage containing portion of the 15 E.coil chromosome. Sub-fragments of this insert were then cloned into the bacteriophage M13 and the clones encompassing the bacterial initiation codon and the bacterial stop codon were used for site-directed mutagenesis to introduce a Bam H1 site at the 5' end of 20 the coding sequence and a Sau 3A site at the 3' end of the gene. The mutagenesis was carried out on single-strand DNA by conventional procedures and the resulting modified DNA used to replace the corresponding DNA fragments in the insert of the original pGEM3 clone. A Bam H1 - Sau 3A 25 fragment of DNA was then excised from this plasmid and inserted into a similarly digested sample of the plasmid containing the metallothionein-Ia sequence.

Step 3.

The plasmid containing the metallothionein-Ia 30 promoter-cysE coding sequence was digested with Pvu II (adjacent to the introduced Sau 3A site) and to this was ligated a blunt-ended Pst I DNA fragment isolated from the sheep growth hormone gene and encompassing exon 5. Plasmids containing the correct orientation of the growth 35 hormone sequence were identified by restriction enzyme mapping.

- 6 -

GENE DETAILS

Gene 1 (MTCE10)

This gene consists of the sheep metallothionein-Ia gene promoter sequence joined to the coding sequence of 5 the Escherichia coli cysE gene at a unique BamH1 restriction enzyme site. This sequence was then joined to the 3' sequence of exon 5 of the sheep growth hormone gene. Minor sequence modification in the vicinity of the initiation and stop codons of the bacterial cysE gene were 10 made by site-directed mutagenesis using synthetic oligonucleotides. The metallothionein promoter replaces all regulatory sequences located 5' to the cysE gene coding sequence, and the growth hormone exon 5 sequence replaces all untranslated sequences located 3' to the cysE 15 gene coding sequence. The gene is approximately 3580 base pairs in length, of which 2827 nucleotides have been sequenced. The sequence of gene 1 is shown in Figure 2.

Gene 2 (MTCK7)

This gene consists of the sheep metallothionein-Ia 20 gene promoter sequence joined to the coding sequence of the Escherichia coli cysK gene at a unique Sal 1 restriction enzyme site. This sequence was then joined to the 3' sequence of exon 5 of the sheep growth hormone gene. Minor sequence modification of the cysK gene in the 25 vicinity of the initiation codon was made by site-directed mutagenesis using a synthetic oligonucleotide. The metallothionein promoter replaces all regulatory sequences located 5' to the cysK coding sequence, and the sheep growth hormone exon 5 replaces all untranslated sequence 30 located 3' to the cysK coding sequence. The size of the gene is approximately 3750 base pairs in length, of which 2957 base pairs have been sequenced. The sequence of gene 2 is shown in Figure 3.

Gene 3 (MTCEK1)

35 This gene consists of a fusion of genes 1 and 2 to

- 7 -

create a single DNA sequence that encodes both the serine transacetylase and the O-acetylserine sulfhydrylase enzymes. Each coding sequence is separately regulated by its own adjacent sheep metallothionein-Ia gene promoter sequence, and each coding sequence is separately followed by the 3' sequence of exon 5 of the sheep growth hormone gene. The gene is approximately 7550 base pairs in size, of which 5784 nucleotides have been sequenced. The sequence of gene 3 is shown in Figure 4.

10 Example 2. The expression of the glyoxylate cycle in transgenic animals

In order to provide the enzymes needed for the operation of the glyoxylate cycle in transgenic animals, the E. coli genes encoding the enzymes isocitrate lyase and malate synthase have been inserted into the expression cassette.

20 Three genes are described. Genes 1 and 2 each encode single bacterial proteins, gene 1 encoding the protein isocitrate lyase and gene 2 encoding the protein malate synthase. Gene 3 is a compound gene constructed from gene 1 and gene 2, and encodes both the isocitrate lyase and the malate synthase proteins.

GENE DETAILS

Gene 4 (MTAcEA2)

25 This gene consists of the sheep metallothionein-Ia gene promoter sequence joined to the coding sequence of the Escherichia coli aceA gene at a unique BamH1 restriction enzyme site. This sequence was then joined to the 3' sequence of exon 5 of the sheep growth hormone gene. Minor sequence modification in the vicinity of the initiation and stop codons of the bacterial aceA gene were made by site-directed mutagenesis using synthetic oligonucleotides. The metallothionein promoter replaces all regulatory sequences located 5' to the aceA gene 35 coding sequence, and the growth hormone exon 5 sequence

- 8 -

replaces all untranslated sequences located 3' to the aceA gene coding sequence. The gene is approximately 3580 base pairs in length, of which 2827 nucleotides have been sequenced. The sequence of gene 4 is shown in Figure 5.

5      Gene 5 (MTAceB2)

This gene consists of the sheep metallothionein-Ia gene promoter sequence joined to the coding sequence of the Escherichia coli aceB gene at a unique Sal I restriction enzyme site. This sequence was then joined to the 3' sequence of exon 5 of the sheep growth hormone gene. Minor sequence modification of the aceB gene in the vicinity of the initiation codon was made by site-directed mutagenesis using a synthetic oligonucleotide. The metallothionein promoter replaces all regulatory sequences located 5' to the aceB coding sequence, and the sheep growth hormone exon 5 sequence replaces all untranslated sequence located 3' to the aceB coding sequence. The size of the gene is approximately 3750 base pairs in length, of which 2957 base pairs have been sequenced. The sequence 20 of gene 5 is shown in figure 6.

Gene 6 (MTAceAB1)

This gene consists of a fusion of genes 1 and 2 to create a single DNA sequence that encodes both the isocitrate lyase and the malate synthase enzymes. Each 25 coding sequence is separately regulated by its own adjacent sheep metallothionein-Ia gene promoter sequence, and each coding sequence is separately followed by the 3' sequence of exon 5 of the sheep growth hormone gene. The gene is approximately 7550 base pairs in size, of which 30 5784 nucleotides have been sequenced. The sequence of gene 6 is shown in Figure 7.

REGULATION OF THE GENES

Regulation in Cultured Cells

Genes 1 to 6 have been transfected into mouse L-cells

- 9 -

in culture to produce stably transformed cell lines. The expression of each gene was measured by:

1. Northern blot analysis of extracted RNA.
2. Enzyme assay of cell extracts.

5 An RNA transcript of the expected size was detected in RNA extracted from each cell line, using a probe specific for the appropriate coding sequence of each gene. The intensity of the hybridisation increased when cells were grown in a medium containing 10 uM zinc  
10 sulphate, indicating that the genes were regulated by heavy metals.

The results of enzyme assays of cell extracts from each of the transformed cell lines are shown in Table 1 (genes 1 - 3) and Table 4 (genes 4,5). High levels of  
15 activity of serine transacetylase, O-acetylserine sulphhydrylase, isocitrate lyase and malate synthase were measured in the appropriate cell extracts, and the enzyme levels were increased when cells were grown in zinc-supplemented growth media.

20 Cell extracts prepared from cells containing the fusion gene MTCEK1 contained both serine transacetylase and O-acetylserine sulphhydrylase enzyme activities, indicating that both coding sequences within the fusion gene were transcribed and translated. Furthermore, when  
25 extracts from this cell line were incubated with the substrates serine and H<sub>2</sub>S, substantial quantities of cysteine were produced, evidence that the entire biochemical pathway is operational in these cells.

Similarly, cell extracts prepared from the cells  
30 containing the fusion gene MTAcEAB1 contained both isocitrate lyase and malate synthase enzyme activities, indicating that both coding sequences within the fusion gene were transcribed and translated.

**Expression in Transgenic Mice**

35 Genes 1 to 6 were each transferred to transgenic mice

- 10 -

by the technique of single-cell embryo pronuclear microinjection. Mice containing the new genes were analyzed for expression by extracting mRNA and preparing cell-free supernatants from various tissues including 5 liver, kidney and intestine. As shown in Tables 3 and 5, high levels of activity of the various enzymes were detected in appropriate transgenic mice. Furthermore, the expression of the genes in the intestinal tissues was highly zinc-dependent.

10 TABLE 2  
Expression of MTCE10 and MTCK7 in transformed mouse L-cells

|    | cells   | <u>Serine Transacetylase</u> |      | <u>O-acetylserrine</u> |      |
|----|---------|------------------------------|------|------------------------|------|
|    |         | -Zn                          | +Zn  | -Zn                    | +Zn  |
| 15 | control | 0                            | 0    | 0                      | 0    |
|    | MTCE10  | 1281                         | 2706 | -                      | -    |
|    | MTCK7   | -                            | -    | 38                     | 1367 |
|    | MTCEK1  | 120                          | 360  | 1082                   | 7790 |

20 Values are nmoles product formed/mg protein/30 min

- 11 -

TABLE 3.

Activity of serine transacetylase (SAT) and O-acetylservine sulphhydrylase (OAS) in tissue extracts prepared from transgenic mice. CK7-26 contains the gene pMTCK7, CE10-29 5 contains pMTCE10 and CEK1-28 and CEK1-8 contains pMTCEK1. Specific activity is measured as nmoles substrate utilised (SAT) or product formed (OAS/30 min/mg protein).

| <u>MOUSE LINE</u> | <u>ORGAN</u> | <u>SAT</u> | <u>OAS</u> |
|-------------------|--------------|------------|------------|
| 10 CK7-26         | Intestine    | -          | 206        |
|                   | Kidney       | -          | 352        |
|                   | Liver        | -          | 13         |
| 15 CE10-29        | Intestine    | 6,546      | -          |
|                   | Kidney       | 0          | -          |
|                   | Liver        | 0          | -          |
| 20 CEK1-28        | Intestine    | 1,161      | 2,797      |
|                   | Kidney       | 0          | 24         |
|                   | Liver        | 0          | 3          |
|                   | Brain        | 16         | 86         |
| 25 CEK1-8         | Intestine    | 4,522      | 12,778     |
|                   | Kidney       | 105        | 128        |
|                   | Liver        | 9          | 3          |
|                   | Brain        | 0          | 245        |
|                   |              | 0          | 158        |
|                   | Skin         | 0          | 329        |
|                   |              | 6          | 295        |

- 12 -

In order to assess the ability of transgenic mice containing the pMTCEK1 gene to produce cysteine, transgenic mice including this gene and control mice were given 25 mM ZnSO<sub>4</sub> in their drinking water for a minimum of four days. On the day of the experiment the ZnSO<sub>4</sub> was replaced with normal drinking water and 60 min. later 5 30 - 60 uCi of Na<sub>2</sub><sup>35</sup>S was administered per os. The mice were sacrificed 60 min. later and intestinal tissue homogenised in a buffered aqueous solution containing 10mM 10 dithiothreitol. Two volumes of performic acid were then added and the solution left at room temperature overnight. The suspension was then extracted with chloroform/methanol by conventional means and the aqueous layer concentrated by evaporation. Aliquots of the 15 solution were then placed on Whatman 3mm filter paper and subjected to electrophoresis in a solution of pyridine:acetic acid:H<sub>2</sub>O (10:100:900, pH3.6) at a voltage of 200 Volts for 2 hr. The paper was then cut into 0.5 cm strips and radioactivity counted in a scintillation 20 counter under standard conditions. The results are shown in Figure 8. As can be seen from these results the transgenic mice were able to synthesise radiolabelled cysteine from the administered sodium sulphide in contrast to the control mice.

25 TABLE 4

| Expression of MTAcA2 and MTAcB2 in transformed mouse L-cells |           |                  |                 |
|--------------------------------------------------------------|-----------|------------------|-----------------|
|                                                              | cell line | isocitrate lyase | malate synthase |
|                                                              | control   | 0                | 0               |
| 30                                                           | MTAcA2    | 68               | -               |
|                                                              | MTAcB2    | -                | 34.3            |

Values are nmoles product/mg protein/20 min

- 13 -

TABLE 5

Expression of MTAceAB1 in transgenic mice

| <u>Mouse</u> | <u>Tissue</u> | <u>Isocitrate Lyase</u> | <u>Malate Synthase</u> |
|--------------|---------------|-------------------------|------------------------|
| control      | intestine     | not detectable          | not detectable         |
|              | liver         | not detectable          | not detectable         |
|              | kidney        | not detectable          | not detectable         |
| MTAceAB1     | intestine     | 27.2                    | ND                     |
|              | liver         | not detectable          | 182                    |
|              | kidney        | not detectable          | 1.6                    |

10 Values of isocitrate lyase are nmoles product/mg protein/20 min, and for malate synthase are picomoles product/mg protein/20 min ( $\times 10^{-2}$ )

15 It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

- 14 -

CLAIMS:-

1. A genetic expression cassette for use in obtaining expression of a cDNA sequence in animal cells, the cassette comprising an inducible promoter and the 3' non-coding sequence of exon 5 of the growth hormone gene or a portion thereof, the cDNA sequence being positioned between the inducible promoter and the 3' non-coding sequence of exon 5 of the growth hormone gene.
5. A genetic expression cassette as claimed in claim 1 in which the inducible promoter is the immediate upstream nucleotide sequence of the sheep metallothionein-Ia gene.
10. A genetic expression cassette as claimed in claim 1 or claim 2 in which the cDNA codes for a bacterial enzyme, plant chitinase, insecticidal scorpion vermon toxin or the 15. insecticidal protein of Bacillus thuringiensis.
15. A genetic expression cassette as claimed in claim 3 in which the cDNA sequence is selected from the group consisting of cysE, cysK, aceA and aceB genes of Escherichia coli.
20. A genetic expression cassette as claimed in claim 1 in which the expression cassette has a sequence substantially as shown in Figure 1.
25. A transgenic non-human animal including the genetic expression cassette as claimed in any one of claims 1 to 5.
7. A transgenic non-human animal as claimed in claim 6 in which the animal is ovine or bovine.

1 / 25

FIG. 1 1/2

## SEQUENCE OF THE EXPRESSION CASSETTE

1 metallothionein promoter  
gaattcaaaggaaaagtgtatgaaacaaggcttggcacagactccctggatgtatc  
61 tcaggactattcaaaggaaatacccactgtcttacttcgttattggatgccagctctgc  
121 ccatcaactacaaggatgtttccitagggggatcctatgacttagggAACCTCCATCCT  
181 ggagccgggtggactggctaggcagtggattccctggccattcatctattcagtcgtgg  
241 agaatgttaaggaaggctggcgacagaaggctgagttcgctgtggctgttacaggaga  
301 aactagagactctgttcaaagtccagggtggggctgtggagggaaatattaggaaacgcg  
361 gggttcggggataggtggtaagctcacatccatcacgggtctctgcacacgacacagg  
421 ggctccagccaagcctggatgtgagcacgaggctggattgcgcattgagctctggaaaa  
481 gggtgaaaagcaaagacaagagttgcggggcaggaaagactgcgaggactcaggactgg  
541 gttcccgtaaacaccgatgactgcccacattgtggaaagctggaaaggggcggcaggaa  
601 tcctggagcgctacttgtcattcggacaaagtccctccgcgttggggcgagtaggggg  
661 acggaggcggttcggtgccacggagcccagccgcgttccggaaatcttcgcctcgcccg  
721 cgggtgggtgtcaccggccgaccgggtgcagggcagctcggtgcaggcgcccccgag  
781 metallothionein cap site \*  
accctctgcggccggccgcctctgtgggtataatagcgctcgctccggctccaaac  
841 acgcctcccacccggaccagtggatccaca INSERT GENE IN THIS POSITION  
910 growth hormone exon 5  
tgtcctgtatctaattgtcctgtatccgcgtgcgccttcgttgc  
960 gccatctgtgttacccctccctgtgccttcgttgcggatccactccagg  
1020 ccacccgtcctttcttaataaaaggcgaggaaattgcattgtctgagtaggtgtcat  
1080 tctattctaggggggtgggtcgggcaggatagcgaggggaggattggaaagacaatagc  
1140 aggggtgtgtggctctatgggtacccagggtgtatggatcc  
1200 ggcagaaaagaaggcaggcacatcccttcgtgcacacacccggctcgccccctggcc  
1260 ttagttccagccccactcataggacactcacagctcaggaggctccgcctcaatccca  
1320 cccgcataaaqtgttggagcggtcttcgttgcagccaccagccaaatctaggcctcca

2/25

FIG. 1 2/2

1380 gagtgaaaagaatttaaggcaagacaggctatgaagtacagagggagagaaaatgcctcca  
1440 acatgtgaggaagtgtatgagagaaaagcgtagaatttagtttgcataaatttaaggt  
1500 gactacacacttggcccaactacccttggaaatgtgtgtgttagtcactcagttgt  
1560 tccagcttttgtgaccccacggactgtggctgccaggctctgtccatggattctc  
1620 cagggcaagaatactggagggggttgccattccccagggatctccagccaaaggatc  
1680 aaacccgagtttctgcattgcaggoagattcttactctgagccatcagggaaaggcct  
1740 gtggaaatggaaaccatgcaagaatggcttggaccaataggaccagaatgttggga  
1800 tctgaactgggtcaagagatgtggaagagagattctaaatgcattgtttcatgctaagt  
1860 gcttcagtcgtgcctactatttgcaccccgatgaactgcagccaccaggctctgt  
1920 catgggattctccattcaagaatactggagtgagttcctcccccagggatctcca  
1980 aacccaggattgaccaggatcttttatctcctggacttgacaggcaaattctcac  
2040 cactagcgccactggaccaggactctaag--unsequenced region

3 / 25

FIG. 2 1/3

## SEQUENCE OF THE MTCE10 GENE

1 metallothionein promoter  
gaattcaaagaggaaaagtgtgaaacaaggcttggcacagactccctggtatgttaattc  
61 tcaggactattcaaaggaaatacccactgtcttacttcgttattggatgccagctctgc  
121 ccatcaacttacaaggatgctttccttaggggcatcctatgacttagggacacctccatcct  
181 ggagccgggtggactggctaggcagtggttccctggccattcatctattcagtcgtgg  
241 agaatgtaaaggctggcgacagaaggctgagttcgctgtggctgttacaggaga  
301 aactagagactctgttcaaagtccagggtggggctgtggagggaaatattagggaaagcg  
361 gggttcggggataggtggtaagctcacatccatcacgggtctgtcacacgacacagg  
421 ggctccagccaagcctggatgtgaagcacgaggctcgattgcgcattgagctctggaaa  
481 gggtaagcaaaagacaagagttgcggggcagggaaagactgcgaggactcaggactgg  
541 gttcccgtaaacaccgatgactgcccacattgtggaaagctggaaagggggcgggaggaa  
601 tcctggagcgctacttgtcattcggacaaagtcctccgcgttggggcgagtaggggg  
661 acggaggcggttcggtgccacggagccccagccgcgttccggaaatctgcgtcggccg  
721 cgctgggtgctcacccgggacccgggtgcagcggcagctgggtgcaggcggggcag  
781 metallothionein cap site \*  
accctctgcgcggccggccctcctgtgggtataatagcgtcgccctggctccaaac  
841 bacterial cysE gene  
MetSerCysGluGluLeuGluIleValTrpA  
acgcctccaccggaccagtggatccacaATGTCGTGTGAAAGAACTGGAAATTGTCTGGAA  
901 snAsnIleLysAlaGluAlaArgThrLeuAlaAspCysGluProMetLeuAlaSerPheT  
ACAATATTAAAGCCGAAGCCAGAACGCTGGCGACTGTGAGCCAATGCTGGCCAGTTTT  
961 yrHisAlaThrLeuLeuLysHisGluAsnLeuGlySerAlaLeuSerTyrMetLeuAlaA  
ACCACCGCAGCCTACTCAACGACACGAAAACCTGGCAGTGCAC TGAGCTACATGCTGGCGA  
1021  
snLysLeuSerSerProIleMetProAlaIleAlaIleArgGluValValGluGluAlaT  
ACAAGCTGTATGCCAATTATGCCCTGCTATTGCTATCCGTGAAGTGGTGGAAAGAACCT  
1081  
yrAlaAlaAspProGluMetIleAlaSerAlaAlaCysAspIleGlnAlaValArgThra  
ACGCCGCTGACCCGGAAATGATCGCCTCTGCCCTGTGATATTCAAGGGTGGCGTACCC  
1141  
rgAspProAlaValAspLysTyrSerThrProLeuLeuTyrLeuLysGlyPheHisAlaL  
GCGACCCGGCAGTCGATAAAACTCAACCCGTTGTTATACCTGAAGGGTTTCATGCC  
1201  
euGlnAlaTyrArgIleGlyHisTrpLeuTrpAsnGlnGlyArgArgAlaLeuAlaIleP  
TGCAGGCCTATCGCATCGTCACTGGTTGTGGAATCAGGGGCGTCGCGCACTGGCAATCT  
1261  
heLeuGlnAsnGlnValSerValThrPheGlnValAspIleHisProAlaAlaLysIleG

4/25

## FIG. 2 2/3

TTCTGCAAAACCAGGTTCTGTGACGTTCCAGGTCGATATTCACCCGGCAGCAAAATTG  
 1321  
 lyArgGlyIleMetLeuAspHisAlaThrGlyIleValValGlyGluThrAlaValIleG  
 GTCGCGGTATCATGCTTGACCAACGCGACAGGCATCGTCGTTGGTGAACGGCGGTGATTG  
 1381  
 luAsnAspValSerIleLeuGlnSerValThrLeuGlyGlyThrGlyLysSerGlyGlyA  
 AAAACGACGTATCGATTCTGCAATCTGTGACGCTTGGCGGTACGGTAAATCTGGTGGTG  
 1441  
 spArgHisProLysIleArgGluGlyValMetIleGlyAlaGlyAlaLysIleLeuGlyA  
 ACCGTACCCGAAAATTCTGTGAAGGTGTGATGATTGGCGGGCGCGAAAATCCTCGGCA  
 1501  
 snIleGluValGlyArgGlyAlaLysIleGlyAlaGlySerValValLeuGlnProValP  
 ATATTGAAGTTGGCGCGCGCGAAGATTGGCGCAGGTTCCGTGGTCTGCAACCGGTGC  
 1561  
 roProHisThrThrAlaAlaGlyValProAlaArgIleValGlyLysProAspSerAspL  
 CGCCGCATACCACCGCCGCTGGCGTCCGGCTCGTATTGTCGGTAAACCAGACAGCGATA  
 1621  
 ysProSerMetAspMetAspGlnHisPheAsnGlyIleAsnHisThrPheGluTyrGlyA  
 AGCCATCAATGGATATGGACCAGCATTCAACGGTATTAACCATACATTGAGTATGGGG  
 1681  
 spGlyIle\*\*\* growth hormone exon 5  
 ATGGGATCTAAtgtcctgtatctaattgtcctgtatcccgctgcgcctttagttgcca  
 1741  
 gccatctgtgttaccctccctgtgccttcataaccctggaaagggtgccactccagtgc  
 1801  
 ccacccgtcccccatttaataaaagcggaggaaattgcatacattgtctgagtaggtgtcat  
 1861  
 tctattctagggggtgggtcgccaggatagcgagggggaggattggaaagacaataagc  
 1921  
 aggggtgctgtggctctatgggtacccagggtgctgaataattgacccggttccctcctgg  
 1981  
 ggcagaaaagaaggcaggcacatccccctctgtgacacacaccgggtccctgccccctggtcc  
 2041  
 tttagtccagccccactcataggacactcacagctcaggaggctccgcctcaatcccc  
 2101  
 cccgcataaagtgtggagcggctctccctctcagccaccagccaatctaggcctcca  
 2161  
 gagtggaagaatttaagcaagacaggctatgaagtacagaggagagaaaatgcctcca  
 2221  
 acatgtgaggaagtgtgagagaaaagcgtagaatttagtttgtggataaaatttaaggt  
 2281  
 gactacacacttggcccaactacccttggaaatgtgtgtgttagtcactcagttgtg  
 2341  
 tccagctttgtgacccacggactgtggctgccaggctctgtccatgggatttgc  
 2401  
 caaggcaagaataactggaggggttgccattccccaggggatcttcccagcccaaggatc  
 2461  
 aaaccggatttctgcattgcaggcagattttactcttgagccatcaggaaaggccct  
 2521  
 gtgggaaatgggaaccatgcaagaatggcttggaccataggaccagaatgtttggga  
 2581  
 tctgaactgggtcaagagatgtggaaagagattctaaatgcattgtgttgcataagt

5/25

FIG. 2 3/3

2641 gcttcagtcgtgtcctactattgcaaccccgatgaactgcagccaccaggctcctctgt  
2701 catgggattctccattcaagaatactggagtgagtttccttcctccccagggatctcca  
2761 aacctcaggattgaccaggatcttttatctcctggcacttgacaggcaaatcttcac  
2821 cactagcgccactggacccagtctaag--unsequenced region

6 / 25

FIG. 3 1/3

SEQUENCE OF THE MTCK7 GENE

7/25

FIG. 3 2/3

1261 IleValAlaSerAsnProGluLysTyrLeuLeuLeuGlnGlnPheSerAsnProAlaAsn  
 ATTGTGCCAGCAATCCAGAGAAATACCTGCTGCTGCAACAATTCAAGCAATCCGGCAAAC  
 1321 ProGluIleHisGluLysThrThrGlyProGluIleTrpGluAspThrAspGlyGlnVal  
 CCTGAAATTCACGAAAAGACCACCGGTCCGGAGATATGGGAAGATAACCGACGGTCAGGTT  
 1381 AspValPheIleAlaGlyValGlyThrGlyGlyThrTrpThrGlyValThrProTyrIle.  
 GATGTATTTATTGCTGGCGTTGGACTGGCGGTACGTGGACTGGCGTCACGCCCTACATT  
 1441 LysGlyThrLysGlyLysThrAspLeuIleSerValAlaValGluProThrAspSerPro  
 AAAGGCACCAAGGCAAGACCGATCTATCTGTGCCGTTGAGCCAACCGATTCTCCA  
 1501 ValIleAlaGlnAlaLeuAlaGlyGluIleLysProGlyProHisLysIleGlnGly  
 GTTATGCCCAAGGCGCTGGCAGGTGAAGAGATTAAACCTGGCCCCGATAAAATTCAAGGGT  
 1561 IleGlyAlaGlyPheIleProAlaAsnLeuAspLeuLysLeuValAspLysValIleGly  
 ATTGGCGCTGGTTTATCCCGCTAACCTCGATCTCAAGCTGGTCGATAAGTCATTGGC  
 1621 IleThrAsnGluGluAlaIleSerThrAlaArgArgLeuMetGluGluGluGlyIleLeu  
 ATCACCAATGAAGAAGCGATTCTACCGCGCGTCGTCTGATGGAAGAAGAAGGTATTCTT  
 1681 AlaGlyIleSerSerGlyAlaAlaValAlaAlaAlaLeuLysLeuGlnGluAspGluSer  
 GCAGGGTATCTCTGGAGCAGCTGTTGCCGCGCGTTGAAACTACAAGAAGATGAAAGC  
 1741 PheThrAsnLysAsnIleValValIleLeuProSerSerGlyGluArgTyrLeuSerThr  
 TTTACCAACAAGAATATTGTGGTTATTCTACCATCATCGGGTGAGCGTTATTAAAGCACC  
 1801 AlaLeuPheAlaAspLeuPheThrGluLysGluLeuGlnGln\*\*\* growth hormone  
 GCATTGTTGCCGATCTCTCACTGAGAAAGAATTGCAACAGTAAtggccagctgcgcct  
 1861 exon 5  
 tctagttgccagccatctgtgttacccctccctgtgccttcctagaccctggaagggtgc  
 1921 cactccagtgccaccgtccttcttaataaaagcggaggaaattgcatcacattgtctga  
 1981 gtaggtgtcatttattctaggggtgggtcgcccaggatagcgagggggaggattggg  
 2041 aagacaatagcaggggtgtgtggctctatgggtacccagggtgctgaataattgaccgg  
 2101 gttccctcctgggcagaaaagaaggcaggcacatcccccttcgtgcacacaccggcctc  
 2161 gccccctggccttagttccagccccactcataggacactcacagctcaggagggtccgc  
 2221 cttcaatcccacccgctaaagtgttgtggagcggctctccctctcagccaccagccgaat  
 2281 ctaggcctccagagtggaaagaatttaagcaagacaggctatgaagtacagaggagaga  
 2341 aaatgcctccaacatgtgaggaagtgtgatgagagaaagcgtagaatttagtttggtgcata  
 2401 aattttaaagggtgactacacacttggcccaactacccttggaaatgtgtgtgttagtc  
 2461 actcagttgtccagctttgtgaccccacggactgtggctgcccaggctcctctgtcc

8/25

FIG. 3 3/3

2521 atgggattctccaggcaagaatactggaggggttgcattccccagggatcttcca  
2581 gcccaaggatcaaacccgagttctgcattgcaggcagattcttactcttgagccatc  
2641 agggaaaggccctgtggaaatgggaaccatgcaagaatggcttggaccaataggaccag  
2701 aatgtttggatctgaactgggtcaagagatgtggaaagagagattctaaatgcattgtt  
2761 catgctaagtggcttcagtcgtgtcctactatgtcaacccgatgaactgcagccacca  
2821 ggctccctgtcatggattctccattcaagaatactggagttagttcccttccccc  
2881 ggggatctccaaaccaggattgaccaggatcttgtatctcctggacttgacaggc  
2941 aaatcttcaccactagcgccactggacccagtctaag---unsequenced region

9/25

FIG. 4 1/5

## SEQUENCE OF THE MTCEK1 GENE

1 metallothionein promoter  
atcatcgatcaggcagaattcaaagaggaaaagtgtgaaacaaggcttggcacagactc  
61 cctggtatgttaattctcaggactattcaaaggaaaataccactgtttacttcgttatt  
121 gatatgccagctctgcccattacaaggatgtttccatggggcatcctatgacta  
181 gggaaacctccatcctggagccgggtggactggctaggcagtggattccctggcccattca  
241 tctattcagtcgtggagaatgtaaaggactggcgacagaaggctgagttcgctgctg  
301 ggctgttacaggagaaactagagactctgttcaaagtccagggtggggctgtggagga  
361 aatatttaggaaagcggggttcggggataagggtgtgaagctcacatccatcacgggtctc  
421 tgcacacgacacagggtctccagccaagcctggatgtgagcacgaggctcgattgcgc  
481 atgagctctggaaagggtgaaagcaaagacaagagttgcggggcaggaaagactgcga  
541 ggactcaggactgggttcccgtaaacaccgtactgcccacattgtggaaagctggga  
601 agggccggcaggaaatctggagcgctacttgtcattcgggacaaagtccctccgcgttg  
661 ggggcgagtagggggacggaggcggttcggtgacggccagccgcgttccggaa  
721 tcttgcgtcggccgcgtggctcaccgcccggccctgtgggtataatagcgtcgg  
781 tgcaggcggggcagaccctctgcgccccggccctgtgggtataatagcgtcgg  
841 bacterial cysE  
gene \* metallothionein cap site ~ MetSerCysGluGluL  
ctcctgggtccaaacacgcctcccaccggaccgtggatccacaATGTCGTGTGAAGAAC  
901 euGluIleValTrpAsnAsnIleLysAlaGluAlaArgThrLeuAlaAspCysGluProM  
TGGAAATTGTCTGGAAACAATATTAAAGCCGAAGCCAGAACGCTGGCGACTGTGAGCCAA  
961 etLeuAlaSerPheTyrHisAlaThrLeuLeuLysHisGluAsnLeuGlySerAlaLeuS  
TGCTGGCCAGTTTACACCGCAGCCTACTCAAGCACGAAAACCTTGGCAGTGCAGTGA  
1021 erTyrMetLeuAlaAsnLysLeuSerSerProIleMetProAlaIleAlaIleArgGluV  
GCTACATGCTGGCGAACAGCTGTCATGCCAATTATGCCCTGCTATTGCTATCCGTGAAG  
1081 alValGluGluAlaTyrAlaAlaAspProGluMetIleAlaSerAlaAlaCysAspIleG  
TGGTGGAAAGGCCTACGCCGCTGACCCGGAAATGATGCCCTCTGCCGCTGTGATATTC  
1141 lnAlaValArgThrArgAspProAlaValAspLysTyrSerThrProLeuLeuTyrLeuL  
AGGCGGTGCGTACCCGCGACCCGGCAGTCGATAAAACTCAACCCGTTGTTATACCTGA  
1201 ysGlyPheHisAlaLeuGlnAlaTyrArgIleGlyHisTrpLeuTrpAsnGlnGlyArgA  
AGGGTTTTCATGCCCTGCAAGGCCTATCGCATCGGTACTGGTTGGAATCAGGGCGTC

10/25

FIG. 4 2/5

1261 rgAlaLeuAlaIlePheLeuGlnAsnGlnValSerValThrPheGlnValAspIleHisP  
GCGCACTGGCAATCTTCTGAAAACCAGGTTCTGTGACGTTCCAGGTCGATATTCAAC  
1321 roAlaAlaLysIleGlyArgGlyIleMetLeuAspHisAlaThrGlyIleValValGlyG  
CGGCAGCAAAATTGGTCGCGGTATCATGCTTGACCACGCGACAGGCATCGTCGTTGGTG  
1381 luThrAlaValIleGluAsnAspValSerIleLeuGlnSerValThrLeuGlyGlyThrG  
AACGGCGGTATTGAAAACGACGTATCGATTCTGCAATCTGTGACGCTTGGCGGTACGG  
1441 lyLysSerGlyGlyAspArgHisProLysIleArgGluGlyValMetIleGlyAlaGlyA  
GTAAATCTGGTGGTGACCGTCACCCGAAATTCTGAAGGTGTGATGATTGGCGCGGGCG  
1501 laLysIleLeuGlyAsnIleGluValGlyArgGlyAlaLysIleGlyAlaGlySerValV  
CGAAAATCCTCGGCAATATTGAAGTTGGCGCGCGCAAGATTGGCGCAGGTCCGTGG  
1561 alLeuGlnProValProProHisThrThrAlaAlaGlyValProAlaArgIleValGlyL  
TGCTGCAACCGGTGCCGCCGATAACCACCGCCGCTGGCGTCCGGCTCGTATTGTCGGTA  
1621 ysProAspSerAspLysProSerMetAspMetAspGlnHisPheAsnGlyIleAsnHist  
AACCAAGACAGCGATAAGCCATCAATGGATATGGACCAGCATTTAACGGTATTAACCATA  
1681 hrPheGluTyrGlyAspGlyIle\*\*\* growth hormone exon 5  
CATTGAGTATGGGGATGGGATCTAATgtcctgtgatctaattgtcctgtgatcccgcgc  
1741 gccttctagttgccagccatctgtttaccctccctgtgccttcctagaccctggaaag  
1801 gtgccactccagtgccaccgtcctttaataaaggcgaggaaattgcacattgt  
1861 ctgagtaggtgtcattctattctaggggtgggtcgccaggatagcgagggggaggat  
1921 tggaaagacaatagcaggggtgtgtggctctatgggtacccagggtgtgaataattga  
1981 cccgggtcctcctggggcagaaagaaggcaggcacatcccctctgtgacacacccgg  
2041 cctcgccccctggcttagttccagccccactcatggacactcacagctcaggaggct  
2101 ccgcctcaatcccacccgctaaagtgttgagcggctctccctctcagccaccagcc  
2161 gaatctaggcctccagagtggaaagaatttaagcaagacaggctatgaagtagcaggagg  
2221 gagaaaaatgcctccaacatgtgagggactgtgatgagagaaggctagaattttgtgg  
2281 cataaatttaaggtgactacacacttggcccaactacccttggaaatgtgtgtgtt  
2341 agtcaactcagttgtccagctttgtgaccccacggactgtggctgccaggctct  
2401 gtccatggattctccaggcaagaatactggaggggttgccattccccaggggatctt  
2461 cccagcccaaggatcaaaccgagttctgcattgcaggcagattttactctctgagc  
2521 catcaggaaagccctgtggaaatggaaaccatgcaagaatggcttggaccaatagga

11/25

FIG. 4 3/5

2581 ccagaatgttggatctgaactgggtcaagagatgtgaaagagagattctaaatgcatt  
 2641 tttcatgctaagtggcttcagtcgtgtcctactatggcaaccccgatgaactgcaggc  
 2701 metallothionein promoter  
 atgcaagcttcagatcatcgatgaattcaaagaggaaaagtgtgaaacaaggcttggca  
 2761 cagactccctggtatgttaattctcaggactattcaaaggaaatacccactgtcttactt  
 2821 cgatttggatgccagctctgcccattacaaggatgtttcttaggggcatcct  
 2881 atgacttagggAACCTCCATCCTGGAGGCCGGGTGGACTGGCTAGGCAGTGGATTCCCTGGC  
 2941 ccattcatctattcagtcgtggagaatgtaaaggctggcgacagaaggctgagttc  
 3001 gctgctggctgttacaggagaaactagagactctgttcaaagtccagggtggggctgt  
 3061 gggaggaaatattagggaaagcgggggttcggggatagggtggtaagctcacatccatcac  
 3121 gggtctctgcacacgacacagggttcaggccatcggatgtgagcacgaggctcgg  
 3181 attgcgcattgcgcgttggaaagggtgaaagcaaagacaagagttgcggggcaggaaag  
 3241 actgcgaggactcaggactgggtttccgtaaacaccgatgactgcccacattgtggaaa  
 3301 gctgggaaggggcgggcaggaatcctggagcgctacttgtcattcggacaaagtccctc  
 3361 cgctgtggggcggcagtagggggacggaggcggttcggtgccacggagcccagccgcgtt  
 3421 ccgggaatcttgcgtcgccgcgtggctaccgcggaccgggtgcagcggca  
 3481 gctcgggtgcaggcggggcagaccctctgcgcggccgcctgtgggtataatag  
 3541 bacterial cysK gene \* metallothionein cap site MetSe  
 cgctcggtcctggctcaacacgcctccaccggaccagtggatccgtcgaccATGAG  
 3601 rLysIlePheGluAsnSerLeuThrIleGlyHisThrProLeuValArgLeuAsnAr  
 TAAGATTTTGAAGATAACTCGCTGACTATCGGTACACGCCGCTGGTCGCCCTGAATCG  
 3661 gileGlyAsnGlyArgIleLeuAlaLysValGluSerArgAsnProSerPheSerValLy  
 CATCGGTAAACGGACGCATTCTGGCGAAGGTGGAATCTCGTAACCCAGCTCAGCGTTAA  
 3721 sCysArgIleGlyAlaAsnMetIleTrpAspAlaGluLysArgGlyValLeuLysProG1  
 GTGCCGTATCGGTGCCAACATGATTGGGATGCCGAAAAGCGCGGCGTGTGAAACCAGG  
 3781 CGTTGAACCGGGTAAACCGGACCGCGTAATACCGGGATTGCACTGGCCTATGTAGCTGC  
 3841 aAlaArgGlyTyrLysLeuThrLeuThrMetProGluThrMetSerIleGluArgArgLY  
 CGCTCGCGGTTACAAACTCACCCCTGACCATGCCAGAAACCATGAGTATTGAACGCCGCAA

12/25

FIG. 4 4/5

3901 sLeuLeuLysAlaLeuGlyAlaAsnLeuValLeuThrGluGlyAlaLysGlyMetLysG1  
 GCTGCTGAAAGCGTTAGGTGCAAACCTGGTGCTGACGGAAGGTGCTAAAGGCATGAAAGG  
 3961 yAlaIleGlnLysAlaGluGluIleValAlaSerAsnProGluLysTyrLeuLeuG1  
 CGCAATCCAAAAAGCAGAAGAAATTGTCGCCAGCAATCCAGAGAAATACCTGCTGCTGCA  
 4021 nGlnPheSerAsnProAlaAsnProGluIleHisGluLysThrThrGlyProGluIleTr  
 ACAATTCACTGGCAAACCCCTGAAATTCACTGAAAGACCACCGGTCCGGAGATATG  
 4081 pGluAspThrAspGlyGlnValAspValPheIleAlaGlyValGlyThrGlyGlyThrTr  
 GGAAGATAACCGACGGTCAGGTTGATGTATTATTGCTGGCGTGGGACTGGCGGTACGTG  
 4141 pThrGlyValThrProTyrIleLysGlyThrLysGlyLysThrAspLeuIleSerValAl  
 GACTGGCGTCACGCCCTACATTAAAGGCACCAAGGCAAGACCAGTCTTATCTCTGTCGC  
 4201 aValGluProThrAspSerProValIleAlaGlnAlaLeuAlaGlyGluGluIleLysPr  
 CGTTGAGCCAACCGATTCTCCAGTTATGCCAGGCGCTGGCAGGTGAAGAGATTAAACC  
 4261 oGlyProHisLysIleGlnGlyIleGlyAlaGlyPheIleProAlaAsnLeuAspLeuLy  
 TGGCCCGCATAAAATTCAAGGTATTGGCGTGGTTTATCCGGCTAACCTCGATCTCAA  
 4321 sLeuValAspLysValIleGlyIleThrAsnGluGluAlaIleSerThrAlaArgArgLe  
 GCTGGTCGATAAAAGTCATTGGCATCACCAATGAAGAAGCGATTCTACCGCGCGTCGTCT  
 4381 uMetGluGluGluGlyIleLeuAlaGlyIleSerSerGlyAlaAlaValAlaAlaAlaLe  
 GATGGAAGAAGAAGGTATTCTTCAGGTATCTCTCTGGAGCAGCTGTTGCCCGCGT  
 4441 uLysLeuGlnGluAspGluSerPheThrAsnLysAsnIleValValIleLeuProSerSe  
 GAAACTACAAGAAGATGAAAGCTTACCAACAAGAATATTGTGGTTATTCTACCATCATC  
 4501 rGlyGluArgTyrLeuSerThrAlaLeuPheAlaAspLeuPheThrGluLysGluLeuG1  
 GGGTGAGCGTTATTAAAGCACCGCATTGTTGCCGATCTTCAGTGAGAAAGAATTGCA  
 4561 nGln\*\*\* growth hormone exon 5  
 ACAGTAAtggccagctgcgccttcttagttgccagccatctgtgttaccctccctgtgc  
 4621 cttcctagaccctggaagggtgccactccagtgcccccacccgtccttcttaataaagcggag  
 4681 gaaattgcatcacattgtctgagtaggtgtcattctattcttaggggggtgggtcgccgag  
 4741 gatagcgagggggaggattggaaagacaatagcaggggtgtgtggctctatgggtacc  
 4801 cagggtctgaataattgaccgggttcctcctggccagaaaagaagcaggcacatccccctt  
 4861 ctctgtgacacacccggtcctgcgccttggtcattccagccccactcataggacac  
 4921 tcacagctcaggagggctccgccttcaatcccacccgctaaagtgttggagcggctct  
 4981 ccctctcagccaccagccaatctaggcctccagagtggaaagaatttaagcaagacagg

13/25

FIG. 4 5/5

5041 ctagaagtacagaggagagaaaatgcctccaacatgtgaggaagtgtgatgagagaaaagc  
5101 gtagaaattttgtggcataaatttaaggtgactacacacttggcccaactaccctt  
5161 gggaaatgtgtgtgttagtcactcagttgtgtccagctttgtgaccccacggactg  
5221 tggctgccaggctcctctgtccatgggattctccagggcaagaatactggagggggttgc  
5281 cattccccaggggatctccagccaaaggatcaaaccggagttctgcattgcaggcag  
5341 attcttactctgtgagccatcagggaaaggccctgtggaaatggaaaccatgcaagaatg  
5401 gctttggaccaataggaccagaatgttggatctgaactgggtcaagagatgtggaaag  
5461 agagattctaaatgcatgtgttcatgctaagtggcttcagtcgtgtcctactatggcaa  
5521 cccccatgaactgcaggcatgcaagcttcagctgc

14/25

FIG. 5 1/3

## SEQUENCE OF THE MTACEA2 GENE

1 metallothionein promoter  
 gaattccaaaggaaaagtatgaaacaaggcttggcacagactccctggtatgttaattc  
 61 tcaggactattcaaaggaaataccactgtcttacttcgttattggatgccagctctgc  
 121 ccatcacttacaaggatgtttccatggggcatctatgacttagggAACCTCCATCCT  
 181 ggagccgggtggactggcttaggcgtggattccctggcccattcatctattcagtcgtgg  
 241 agaatgtaaaggctggcgacagaaggctgagttcgctgctggctgttacaggaga  
 301 aactagagactctgttcaaagtccagggtggggctgtgggaggaaatattaggaaagcg  
 361 gggttcggggataggtggtaagctcacatccatcacgggtctctgcacacgacacagg  
 421 ggctccagccaaagcctggatgtgagcacgaggctcgattgcgcattgagctctggaaa  
 481 gggtaaaagcaaaagacaagagttcgaaaaacggactgcgaggactcaggactgg  
 541 gttcccgtaaacaccgatgactgcccacattgtggaaagctggaaaggggcggggcaggaa  
 601 tcctggagcgctacttgtcattcggaacaaagtccctccgcgttggggcgagtaggggg  
 661 acggaggcgttcggtgccacggagcccagccgcgttccggaaatctgcgctcggccg  
 721 cgctgggtgctcaccgcggccccgggtgcagggcagctcgggtgcaggcggggcag  
 781 metallothionein cap site \*  
 accctctgcggccggccgcctctgtgggtataatagcgctcgctctggctccaac  
 841 bacterial ace A sequence

MetLysThrArgThrGlnG

acgcctccaccggaccagtggatcctctagactcatcaccATGAAAACCGTACACAAAC  
 901 lnIleGluGluLeuGlnLysGluTrpThrGlnProArgTrpGluGlyIleThrArgProt  
 AAATTGAAGAATTACAGAAAGAGTGGACTCAACCGGTGAGGAAAGGCATTACTCGCCCAT  
 961 ACAGTGGGAAGATGTGGTGAATTACGCGGTTAGTCAGTCATCCTGAATGCACGCTGGCGC  
 1021 yrSerAlaGluAspValValLysLeuArgGlySerValAsnProGluCysThrLeuAlaG  
 AACTGGGCGCAGCGAAAAATGTGGCGTCTGCTGACGGTGAGTCGAAAAAAAGGCTACATCA  
 1081 lnLeuGlyAlaAlaLysMetTrpArgLeuLeuHisGlyGluSerLysLysGlyTyrIleA  
 AACTGGGCGCAGCGAAAAATGTGGCGTCTGCTGACGGTGAGTCGAAAAAAAGGCTACATCA  
 1141 snSerLeuGlyAlaLeuThrGlyGlyGlnAlaLeuGlnGlnAlaLysAlaGlyIleGluA  
 ACAGCCTCGGCCACTGACTGGCGGTAGCGGGACGCTAACCTGGCGGCCAGCATGTATC  
 1201 laValTyrLeuSerGlyTrpGlnValAlaAlaAspAlaAsnLeuAlaAlaSerMetTyrP  
 CGAGTCTATCTGTCGGGATGGCAGGTAGCGGGACGCTAACCTGGCGGCCAGCATGTATC  
 1261 roAspGlnSerLeuTyrProAlaAsnSerValProAlaValValGluArgIleAsnAsnT  
 CGGATCAGTCGCTCTATCCGGCAAACCTCGGTGCCAGCTGTGGTGGAGCGGATCAACAACA

15/25

FIG. 5 2/3

1261 hrPheArgArgAlaAspGlnIleGlnTrpSerAlaGlyIleGluProGlyAspProArgT  
 CCTTCCCGTCGTGCCGATCAGATCCAATGGTCCGGCATTGAGCCGGCGATCCGCCTG  
 1321 yrValAspTyrPheLeuProIleValAlaAspAlaGluAlaGlyPheGlyGlyValLeuA  
 ATGTCGATTACTCCTGCCGATCGTTGCCGATGCCGAGCCGGTTTGGCGGTGTCCTGA  
 1381 snAlaPheGluLeuMetLysAlaMetIleGluAlaGlyAlaAlaAlaValHisPheGluA  
 ATGCCCTTGAACTGATGAAAGCGATGATTGAAGCCGGTGCAGCGGAGTCACTTGCAAG  
 1441 spGlnLeuAlaSerValLysLysCysGlyHisMetGlyGlyLysValLeuValProThrG  
 ATCAGCTGGCGTCAGTGAAGAAATGCCGGCACATGGCCGGCAAAGTTTAGTGCCAACTC  
 1501 lnGluAlaIleGlnLysLeuValAlaAlaArgLeuAlaAlaAspValThrGlyValProT  
 AGGAAGCTATTCAAGAAACTGGTCGCCGGCGTCTGGCAGCTGACGTGACGGCGTTCAA  
 1561 hrLeuLeuValAlaArgThrAspAlaAspAlaAspLeuIleThrSerAspCysAspP  
 CCCTGCTGGTTGCCGTACCGATGCTGATGCCGGGATCTGATCACCTCCGATTGCGACC  
 1621 roTyrAspSerGluPheIleThrGlyGluArgThrSerGluGlyPhePheArgThrHisA  
 CGTATGACAGCGAATTATTACCGGGCAGCGTACCAAGTGAAGGCTTCTCCGTACTCATG  
 1681 laGlyIleGluGlnAlaIleSerArgGlyLeuAlaTyrAlaProTyrAlaAspLeuValT  
 CGGGCATTGAGCAAGCGATCAGCCGTGGCCTGGCGTATGCGCCATATGCTGACCTGGTCT  
 1741 rpCysGluThrSerThrProAspLeuGluLeuAlaArgArgPheAlaGlnAlaIleHisA  
 GGTGTGAAACCTCCACGCCGGATCTGGAACTGGCGCGTCTGGCACAAGCTATCCACG  
 1801 laLysTyrProGlyLysLeuLeuAlaTyrAsnCysSerProSerPheAsnTrpGlnLysA  
 CGAAATATCCGGGCAAACCTGCTGGCTTATAACTGCTGCCGTGTCGACTGGCAGAAAA  
 1861 snLeuAspAspLysThrIleAlaSerPheGlnGlnGlnLeuSerAspMetGlyTyrLysP  
 ACCTCGACGACAAAACTATTGCCAGCTTCCAGCAGCTGTCGGATATGGGCTACAAGT  
 1921 heGlnPheIleThrLeuAlaGlyIleHisSerMetTrpPheAsnMetPheAspLeuAlaA  
 TCCAGTTCATCACCCCTGGCAGGTATCCACAGCATGTGGTTAACATGTTGACCTGGCAA  
 1981 snAlaTyrAlaGlnGlyGluGlyMetLysHisTyrValGluLysValGlnGlnProGluP  
 ACGCCTATGCCAGGGCGAGGGTATGAAGCACTACGTTGAGAAAGTGCAGCAGCCGGAAAT  
 2041 heAlaAlaAlaLysAspGlyTyrThrPheValSerHisGlnGlnGluValGlyThrGlyT  
 TTGCCGCCGCGAAAGATGGCTATACTCGTATCTCACCGCAGGAAGTGGGTACAGGTT  
 2101 yrPheAspLysValThrThrIleIleGlnGlyGlyAspValPheSerHisArgAlaAspA  
 ACTTCGATAAAAGTGCAGACTATTTCAGGGCGGGCAGCTTCAGTCACCGCGCTGACC  
 2161 growth hormone exon 5  
 rgLeuHis\*\*\*  
 GGCTCCACTGAagaatcgagttctaattgacctgcgcctttagttgccagccatctg  
 2221 ctgttaccccccgtgccttcataccctggaaaggtgccactccagtgcccaccgtc  
 2281 ctttcttaataaagcgaggaaattgcatcacattgtctgagtaggtgtcattctattct

16/25

FIG. 5 3/3

2341 aggggggtggggtcgccaggatagcgagggggaggattggaaagacaatagcaggggtgc  
2401 tgtggcttatggtacccaggtgctgaataattgaccgggttcctcctgggcagaaa  
2461 gaagcaggcacatccccttctgtgacacaccggcctcgccccctggtccttagttcc  
2521 agccccactcataggacactcacagctcaggagggtccgccttaatcccacccgctaa  
2581 agtgcttggagcggcttccttcagccaccagccgaatctaggcctccagagtggga  
2641 agaatttaagcaagacaggctatgaagtacagagggagagaaaatgcctccaacatgtga  
2701 ggaagtgtatgagagaaaagcgtagaatttagtttgtggataaatttaaggtgactacac  
2761 acttggcccaactacccttggaaatgtgtgtgttagtcactcagttgtgtccagctc  
2821 ttgtgacccacggactgtggctgccaggctctgtccatggattctccagggcaa  
2881 gaatactggaggggttgcattccccaggggatcttcccagcccaaggatcaaaccgaa  
2941 gtttctgcattgcaggcagattcttactctgagccatcaggaaagccctgtggaaa  
3001 tgggaaccatgcaagaatggcttggaccaataggaccagaatgttggatctgaact  
3061 gggtaagagatgtgaaagagagattctaaatgcatgtgtcatgctaagtggcttcagt  
3121 cgtgcctactatggcaaccccgatgaactgcag

17/25

FIG. 6 1/3

## SEQUENCE OF THE MTACEB2 GENE

1 metallothionein promoter  
 gaattcaaagaggaaaagtgtatgaaacaaggctggcacagactccctggtatgttaattc  
 61 tcaggactattcaaggaaataccactgtcttacttcgttattggatgccagctctgc  
 121 ccatcaactacaaggatgctttcctaggggcatcctatgacttagggAACCTCCATCCT  
 181 ggagccgggtggactggctaggcagtggttccctggcccattcatctattcagtcgtgg  
 241 agaatgtaaaggaaggctggcgacagaaggctgagttcgctgctggctgttacaggaga  
 301 aactagagactctgttcaaagtccagggtggggctgtggaggaaatattaggaaagcg  
 361 gggttcggggataggtggtaagctcacatccatcacgggtcttcacacgacacagg  
 421 ggctccagccaagccctggatgtgagcacgaggctcggttcgcacatgagctctggaaa  
 481 gggtaaagcaaagacaagacttgcggggcagggaaagactgcgaggactcaggactgg  
 541 gtccccgtaaacaccgatgactgcccacattgtggaaagctggaaaggggcggggcaggaa  
 601 tcctggagcgctacttgtcattcggacaaagtccctccgcgttggggcgagtaggggg  
 661 acggaggcggttcggtgccacggagccagccgcgttccggaaatcttcgcgtcggccg  
 721 cgcgtgggtcaccggccgaccgggtgcagggcagtcgggtgcaggcggggcag  
 781 metallothionein cap site \*  
 accctctgcgcggccggccgcctgtgggtataatagcgtcggtcctggctccaac  
 841 bacterial aceB sequence

MetThrGluGlnAlaThrT

acgcctcccaccggaccagtggatcccttagagtcataccATGACTGAACAGGCAACAA  
 901 hrThrAspGluLeuAlaPheThrArgProTyrGlyGluGlnGluLysGlnIleLeuThrA  
 CAACCGATGAACTGGCTTCACAAGGCCGTATGGCGAGCAGGAGAACCAAATTCTTACTG  
 961 laGluAlaValGluPheLeuThrGluLeuValThrHisPheThrProGlnArgAsnLysL  
 CCGAACGGTAGAATTCTGACTGAGCTGGTGACGCATTACGCCACAACGCAATAAAC  
 1021 euLeuAlaAlaArgIleGlnGlnGlnAspIleAspAsnGlyThrLeuProAspPheI  
 TTCTGGCAGCGCGATTCAAGCAGCAAGATATTGATAACGGAACGTTGCCTGATTTTA  
 1081 leSerGluThrAlaSerIleArgAspAlaAspTrpLysIleArgGlyIleProAlaAspL  
 TTTCGGAAACAGCTTCCATTGCGATGCTGATTGGAAAATTGCGGGATTCCCTGCGGACT  
 1141 euGluAspArgArgValGluIleThrGlyProValGluArgLysMetValIleAsnAlaL  
 TAGAACCGCCCGTAGAGATAACTGGCCGGTAGAGCGCAAGATGGTGATCACCGC  
 1201 euAsnAlaAsnValLysValPheMetAlaAspPheGluAspSerLeuAlaProAspTrpA  
 TCAACGCCAATGTGAAAGTCTTATGGCCGATTTCGAAGATTCACTGGCACCAAGACTGGGA

18/25

FIG. 6 2/3

1261  
 snLysValIleAspGlyGlnIleAsnLeuArgAspAlaValAsnGlyThrIleSerTyrT  
 ACAAAAGTGATCGACGGGCAAATTAAACCTGCGTGATGCGGTTAACGGCACCATCAGTTACA  
 1321  
 hrAsnGluAlaGlyLysIleTyrGlnLeuLysProAsnProAlaValLeuIleCysArgV  
 CCAATGAAGCAGGCCAAATTTCAGCCTCAAGCCCAATCCAGCGGTTTGATTGTCGGG  
 1381  
 alArgGlyLeuHisLeuProGluLysHisValThrTrpArgGlyGluAlaIleProGlyS  
 TACGCGGTCTGCACCTGCCGAAAAACATGTCACCTGGCGTGGTGAGGCAATCCCCGGCA  
 1441  
 erLeuPheAspPheAlaLeuTyrPhePheHisAsnTyrGlnAlaLeuLeuAlaLysGlyS  
 GCCTGTTGATTGCGCTCTATTCTTCCACAACTATCAGGCACTGTTGGCAAAGGGCA  
 1501  
 erGlyProTyrPheTyrLeuProLysThrGlnSerTrpGlnGluAlaAlaTrpTrpSerG  
 GTGGTCCCTATTCTATCTGCCGAAAACCCAGTCCTGGCAGGAAGCGGCCTGGTGGAGCG  
 1561  
 luValPheSerTyrAlaGluAspArgPheAsnLeuProArgGlyThrIleLysAlaThrL  
 AAGTCTTCAGCTATGCAGAAGATCGCTTAATCTGCCGCGCGCACCATCAAGGCGACGT  
 1621  
 euLeuIleGluThrLeuProAlaValPheGlnMetAspGluIleLeuHisAlaLeuArgA  
 TGCTGATTGAAACGCTGCCCGCCGTGTTCCAGATGGATGAAATCCTTCACGCCGCTGCGT  
 1681  
 spHisIleValGlyLeuAsnCysGlyArgTrpAspTyrIlePheSerTyrIleLysThrL  
 ACCATATTGTTGGTCTGAAC TGCGGTCGTTGGGATTACATCTCAGCTATATCAAAACGT  
 1741  
 euLysAsnTyrProAspArgValLeuProAspArgGlnAlaValThrMetAspLysProp  
 TGAAAAACTATCCCAGTCGCGCTGCCAGACAGACAGGCAGTGACGATGGATAAACCAT  
 1801  
 heLeuAsnAlaTyrSerArgLeuLeuIleLysThrCysHisLysArgGlyAlaPheAlaM  
 TCCTGAATGCTTACTCACGCCGTTGATTAAACCTGCCATAAACCGCGTGCTTTGCGA  
 1861  
 etGlyGlyMetAlaAlaPheIleProSerLysAspGluGluHisAsnAsnGlnValLeuA  
 TGGGCGGCATGGCGCGTTATTCCGAGCAAAGATGAAGAGCACAATAACCAGGTGCTCA  
 1921  
 snLysValLysAlaAspLysSerLeuGluAlaAsnAsnGlyHisAspGlyThrTrpIleA  
 ACAAAAGTAAAGCGGATAATCGCTGGAAGCCAATAACGGTCACGATGGCACATGGATCG  
 1981  
 laHisProGlyLeuAlaAspThrAlaMetAlaValPheAsnAspIleLeuGlySerArgL  
 CTCACCCAGGCCTTGCAGCACGGCAATGGCGGTATTCAACGACATTCTCGGCTCCCGTA  
 2041  
 ysAsnGlnLeuGluValMetArgGluGlnAspAlaProIleThrAlaAspGlnLeuLeuA  
 AAAATCAGCTTGAAGTGATGCGCGAACAGACGGCGATTACTGCCGATCAGCTGCTGG  
 2101  
 laProCysAspGlyGluArgThrGluGluGlyMetArgAlaAsnIleArgValAlaValG  
 CACCTTGATGGTGAACGCACCGAAGAAGGTATGCGCGCCAACATTGCGTGGCTGTGC  
 2161  
 lnTyrIleGluAlaTrpIleSerGlyAsnGlyCysValProIleTyrGlyLeuMetGluA  
 AGTACATCGAACGGTGGATCTCTGGCAACGGCTGTGCGATTATGGCCTGATGGAAAG  
 2221  
 spAlaAlaThrAlaGluIleSerArgThrSerIleTrpGlnTrpIleHisHisGlnLysT  
 ATGCGGCGACGGCTGAAATTCCCGTACCTCGATCTGGCAGTGGATCCATCATCAAAAAAA

19/25

FIG. 6 3/3

2281 hrLeuSerAsnGlyLysProValThrLysAlaLeuPheArgGlnMetLeuGlyGluGluM  
CGTTGAGCAATGGCAAACCGGTGACCAAAGCCTGTTCCGCCAGATGCTGGCGAAGAGA  
2341 etLysValIleAlaSerGluLeuGlyGluGluArgPheSerGlnGlyArgPheAspAspA  
TGAAAGTCATTGCCAGCGAACTGGCGAAGAACGTTCTCCAGGGCGTTTGACGATG  
2401 laAlaArgLeuMetGluGlnIleThrThrSerAspGluLeuIleAspPheLeuThrLeuP  
CCGCACGCTTGATGGAACAGATCACCCTCCGATGAGTAATTGATTTCCTGACCCCTGC  
2461 growth hormone exon 5  
roGlyTyrArgLeuLeuAla\*\*\*  
CAGGCTACCGCCTGTTAGCGTAAttgacctgcgcctttagttgccagccatctgctgt  
2521 taccctccctgtgccttcctagacccttggaaagggtgccactccagtgcccaccgtcctt  
2581 cttataaaagcgaggaaattgcacattgtctgacttaggtgtcattctattcttaggg  
2641 ggtggggtcggcaggatagcgaggggggaggattggaaagacaatagcagggtgctgt  
2701 ggctctatgggtacccaggtgctgaataattgacccgggtcctccctggggcagaaagaag  
2761 caggcacatccccttcttgtgacacacccggtcctgcaccttggccttagttccagcc  
2821 ccactcataggacactcacagctcaggagggtccgcctcaatcccacccgctaaagt  
2881 cttggagcggctctccctctcagccaccagccaatctaggcctccagagtggaaagaa  
2941 tttaagcaagacaggctatgaagtacagaggagagaaaatgcctccaacatgtgagggaa  
3001 gtgatgagagaaagcgtagaatttagtttgtggcataaatttaaggtgactacacactt  
3061 ggcccaactacccttggaaatgtgtgttagtcactcagttgtccagctttg  
3121 tgaccccacggactgtggctgccaggctctgtccatggattctccagggcaagaat  
3181 actggagggggtgccattccccagggtctcccagccaaaggatcaaacccgagtt  
3241 ctgcattgcaggcagattttactctctgagccatcagggaaagccctgtggaaatgg  
3301 aaccatgcaagaatggcttggaccataggaccagaatgtttgggatctgaactgggt  
3361 caagagatgtgaaagagagattctaaatgcattgtgtcatgctaagtggcttcagtcgt  
3421 tcctactatttgcaccccgatgaactgcag

20/25

FIG. 7 1/5

## SEQUENCE OF THE MTACEAB1 GENE

1 metallocionein promoter  
 gaattcaaagaggaaaagtgtgaaacaaggctggcacagactccctggtatgttaattc  
 61 tcaggactattcaaaggaaataccactgtcttacttcgttattggatgccagctctgc  
 121 ccatcaacttacaaggatgctttcctagggggcatcctatgacttaggaaacctccatcct  
 181 ggagccccgtggactggctaggcagtggttccctggcccattcatcttattcagtcgtgg  
 241 agaatgtaaaggactggcgacagaaggctgagttcgctgtggctgttacaggaga  
 301 aactagagactctgttcaaagtccagggtggggctgtggaggaaatattaggaaagcg  
 361 gggttccccggatagggtggtaagctcacatccatcacgggtctctgcacacgacacagg  
 421 ggctccagccaagcctggatgtgagcacgaggctcgattgcgcattgagctctggaaaa  
 481 gggtaaagcaaagacaagagttgcggggcagggaaagactgcgaggactcaggactgg  
 541 gttccctgtaaacaccgtactgcccacattgtggaaagctggaaagggggcggcaggaa  
 601 tcctggagcgctacttgtcattcgggacaaagtccctccgcgttggggcgagtaggggg  
 661 acggaggcggttcggtgcgcacggagccagccgcgttccggaaatctgcgcctggccg  
 721 cgcgtggtgctaccgcggccgggtgcagggggcagtcgggtgcaggcggggcag  
 781 accctctgcggccggccggccctgtgggtataatagcgtcggtcctggctccaac  
 841 bacterial aceA sequence

MetLysThrArgThrGlnG  
 acgcctcccacggaccagtggatcccttagactcataccATGAAAACCGTACACAAC  
 901 lnIleGluGluLeuGlnLysGluTrpThrGlnProArgTrpGluGlyIleThrArgProt  
 AAATTGAAGAAATTACAGAAAGAGTGGACTCAACCGCGTTGGGAAGGCATTACTCGCCCAT  
 961 ACAGTCGCGGAAGATGTGGTGAATTACCGCGTTCAAGTCATCCTGAATGCACGCTGGCGC  
 1021 AACTGGCGCAGCGAAAATGTGGCGTCTGCTGCACGGTGAGTCGAAAAAGGCTACATCA  
 1081 snSerLeuGlyAlaLeuThrGlyGlyGlnAlaLeuGlnAlaLysAlaGlyIleGluA  
 ACAGCCTCGGCCGCACTGACTGGCGGTCAAGGCGCTGCAACAGCGAAAGCGGGTATTGAAG  
 1141 laValTyrLeuSerGlyTrpGlnValAlaAlaAspAlaAsnLeuAlaAlaSerMetTyrP  
 CAGTCATCTGTCGGGATGGCAGGTAGCGCGGACGCTAACCTGGCGGCCAGCATGTATC  
 1201 roAspGlnSerLeuTyrProAlaAsnSerValProAlaValValGluArgIleAsnAsnT  
 CGGATCAGTCGCTCTATCCGGCAAACCTCGGTGCCAGCTGTGGAGCGGATCAACAAACA

21/25

FIG. 7 2/5

1261 hrPheArgArgAlaAspGlnIleGlnTrpSerAlaGlyIleGluProGlyAspProArgT  
 CCTTCCCGTCGTGCCGATCAGATCCAATGGTCCGGCAGTGAGCCGGCGATCCGCCT  
 1321 yrValAspTyrPheLeuProIleValAlaAspAlaGluAlaGlyPheGlyGlyValLeuA  
 ATGTCGATTACTCCTGCCGATCGTTGCCGATGCCAGTCGGAAAGCCGGTTTGGCGGTGTCCTGA  
 1381 snAlaPheGluLeuMetLysAlaMetIleGluAlaGlyAlaAlaAlaValHisPheGluA  
 ATGCCTTGAAC TGATGAAAGCGATGATTGAAGCCGGTGCAGCGGCAGTTCACTCGAAG  
 1441 spGlnLeuAlaSerValLysLysCysGlyHisMetGlyGlyLysValLeuValProThrG  
 ATCAGCTGGCGTCAGTGAAGAAATGCCGTCACATGGCGGCAAAGTTTAGTGCCAACTC  
 1501 1nGluAlaIleGlnLysLeuValAlaAlaArgLeuAlaAlaAspValThrGlyValProt  
 AGGAAGCTATTCAAGAAACTGGTCGCCGCGCTGGCAGCTGACGTGACGGCGTTCCAA  
 1561 hrLeuLeuValAlaArgThrAspAlaAspAlaAlaAspLeuIleThrSerAspCysAspP  
 CCCTGCTGGTTGCCGTACCGATGCTGATGCCGCGGATCTGATCACCTCCGATTGCGACC  
 1621 roTyrAspSerGluPheIleThrGlyGluArgThrSerGluGlyPhePheArgThrHisA  
 CGTATGACAGCGAATTATTACCGCGAGCGTACCGAGCTCTCCGTACTCATG  
 1681 1aGlyIleGluGlnAlaIleSerArgGlyLeuAlaTyrAlaProTyrAlaAspLeuValT  
 CGGGCATTGAGCAAGCGATCAGCCGTGGCCTGGCGTATGCGCCATATGCTGACCTGGTCT  
 1741 rpCysGluThrSerThrProAspLeuGluLeuAlaArgArgPheAlaGlnAlaIleHisA  
 GGTGTGAAACCTCCACGCCGGATCTGGAACCTGGCGCGTCGCTTGACACAAGCTATCCACG  
 1801 1aLysTyrProGlyLysLeuLeuAlaTyrAsnCysSerProSerPheAsnTrpGlnLysA  
 CGAAATATCCGGCAAACCTGCTGGCTATAACTGCTCGCGTCACTGGCAGAAAA  
 1861 snLeuAspAspLysThrIleAlaSerPheGlnGlnGlnLeuSerAspMetGlyTyrLysP  
 ACCTCGACGACAAAACTATTGCCAGCTTCCAGCAGCAGCTGCGGATATGGCTACAAGT  
 1921 heGlnPheIleThrLeuAlaGlyIleHisSerMetTrpPheAsnMetPheAspLeuAlaA  
 TCCAGTTCATCACCTGGCAGGTATCCACAGCATGTGGTTAACATGTTGACCTGGCAA  
 1981 snAlaTyrAlaGlnGlyGluGlyMetLysHisTyrValGluLysValGlnGlnProGluP  
 ACGCCTATGCCAGGGCGAGGGTATGAAGCACTACGTTGAGAAAGTGCAGCAGCCGGAAT  
 2041 heAlaAlaAlaLysAspGlyTyrThrPheValSerHisGlnGlnGluValGlyThrGlyT  
 TTGCCCGCGAAAGATGGCTATACTCGTATCTCACCAGCAGGAAGTGGGTACAGGTT  
 2101 yrPheAspLysValThrThrIleIleGlnGlyGlyAspValPheSerHisArgAlaAspA  
 ACTTCGATAAAAGTGACGACTATTATTCAGGGCGGGCGACGTCTCAGTCACCGCGCTGACC  
 2161 growth hormone exon 5  
 rgLeuHis\*\*\*  
 GGCTCCACTGAagaatcgcagttctaatttgcacgtgcgccttcgttgccagccatctg  
 2221 ctgttaccctccctgtgccttcataccctggaaagggccactccagtgccaccgtc  
 2281 ctttcttaataaagcgaggaaattgcatcacattgtctgagtaggtgtcattctattct

22/25  
FIG. 7 3/5

2341  
aggggggtgggtcggcaggatagcgaggggaggattggaaagacaatagcaggggtgc  
2401  
tgtggcttatggtaccaggtgtgaataattgacccggttcctcgtggcagaaa  
2461  
gaagcaggcacatcccctctgtgacacacccggctcgccctggtccttagttcc  
2521  
agccccactcataggacactcacagctcaggaggctccgcctcaatcccacccgctaa  
2581  
agtgcggagcggtctccctctcagccaccagccaatctaggcctccagagtggaa  
2641  
agaatthaagcaagacaggctatgaagtacagagggagagaaaatgcctccaacatgtga  
2701  
ggaagtgtatgagagaaaagcgtagaatttagttgtggataaatttaaggtgactacac  
2761  
acttggcccaactacccttggaaatgtgtgtgttagtcactcagttgtgtccagctc  
2821  
tttgcggccacggactgtggctgccaggctctgtccatggattctccaggc  
2881  
gaatactggaggggttgcattccccaggatctccagccaaaggatcaaaccg  
2941  
gtttctgcattgcaggcagattcttactcttgccatcaggaaaggccctgtggaaa  
3001  
tgggaaccatgcaagaatggcttggaccaataggaccagaatttggatctgaact  
3061  
gggtcaagagatgtggaaagagagattctaaatgcattgtgtcatgctaagtggcttc  
3121      metallothionein promoter  
cgtgtcctactattgcaccccgatgaactgcaggattcaaagaggaaaagtgtgaa  
3181  
acaaggcttgcacagactccctggtatgtattctcaggactattcaaaggaaatacc  
3241  
cactgtcttacttcgttattggatgccagctctgcccattacaaggatgtttcc  
3301  
tagggggcatctatgacttaggaacctccatcctggagccgggtggactggctaggc  
3361  
tggattccctggccattcatctattcgttgagaatgtaaaggctggc  
3421  
gaaggctgagttcgctgctggctgttacaggagaaactagagactctgttcaaagtcca  
3481  
gggtggggctgtggaggaaatattaggaaagcgggttcggggataggctggtaagc  
3541  
tcacatccatcacgggtctgcacacgcacacaggccatggc  
3601  
gcacgaggctcgattgcgcatgagctctggaaagggtgaaagcaaaagacaagactgc  
3661  
ggggcaggaaagactgcgaggactcaggactgggtccgtaaacaccgatgtgcc  
3721  
cacattgtggaaagctggaaagggcggcaggaaatcctggagcgtacttgcattcg  
3781  
gacaaagtccctccgcgttggggcggcaggatggggacggaggcggtcgacggca

23/25

FIG. 7 4/5

3841 gcccagccgcgttccggaaatcttcgcgtcgccgcgtgggtgctcaccgcggacccg  
 3901 ggtgcagcgggcagctcggtgcaggcgaaaaaagaccctctgcgcggccggccctcct  
 3961 metallothionein cap site \*  
 4021 gtgggtataatagcgctcgcttggctccaacacgcctccaccggaccagtggatc  
 bacterial aceB sequence  
 4081 MetThrGluGlnAlaThrThrAspGluLeuAlaPheThrAr  
 ctcttagagtcatcaccATGACTGAACAGGCAACAACCAGTGAACGGCTTCACAAG  
 4141 gProTyrGlyGluGlnGluLysGlnIleLeuThrAlaGluAlaValGluPheLeuThrGl  
 GCCGTATGGCGAGCAGGAGAAAGCAAATTCTTACTGCCAAGCGGTAGAATTCTGACTGA  
 4201 uLeuValThrHisPheThrProGlnArgAsnLysLeuLeuAlaAlaArgIleGlnGlnGl  
 GCTGGTGACGCATTACGCCACAACGCAATAAACCTCTGGCAGCGCATTAGCAGCA  
 4261 nGlnAspIleAspAsnGlyThrLeuProAspPheIleSerGluThrAlaSerIleArgAs  
 GCAAGATATTGATAACGGAACGTTGCCTGATTATTCGGAAACAGCTCCATTGCGGA  
 4321 pAlaAspTrpLysIleArgGlyIleProAlaAspLeuGluAspArgArgValGluIleTh  
 TGCTGATTGGAAAATTGGCGGGATTCCCTGCGGACTTAGAAGACCGCCGCTAGAGATAAC  
 4381 rGlyProValGluArgLysMetValIleAsnAlaLeuAsnAlaAsnValLysValPheMe  
 TGGCCCGGTAGAGCGCAAGATGGTGATCAACGCGCTAACGCCAATGTGAAAGTCTTAT  
 4441 nLeuArgAspAlaValAsnGlyThrIleSerTyrThrAsnGluAlaGlyLysIleTyrGl  
 CCTGCGTGATGCGGTTAACGGCACCATCAGTTACACCAATGAAGCAGGCAAATTACCA  
 4501 nLeuLysProAsnProAlaValLeuIleCysArgValArgGlyLeuHisLeuProGluLy  
 GCTCAAGCCAATCCAGCGGTTTGATTGTGGTACGGCTGCACCTGCCGGAAAA  
 4561 sHisValThrTrpArgGlyGluAlaIleProGlySerLeuPheAspPheAlaLeuTyrPh  
 ACATGTCACCTGGCGTGGTGAGGCAATCCCCGGCAGCCTGTTGATTGCGCTCTATT  
 4621 ePheHisAsnTyrGlnAlaLeuLeuAlaLysGlySerGlyProTyrPheTyrLeuProLy  
 CTTCCACAACTATCAGGCAGTGGCAAGGGCAGTGGCTCTATCTGCCGAA  
 4681 sThrGlnSerTrpGlnGluAlaAlaTrpTrpSerGluValPheSerTyrAlaGluAspAr  
 AACCCAGTCCTGGCAGGAAGCGGCTGGAGCGAAGTCTTCAGCTATGCAGAAGATCG  
 4741 gPheAsnLeuProArgGlyThrIleLysAlaThrLeuIleGluThrLeuProAlaVa  
 CTTTAATCTGCCCGCGCCGACCATCAAGGCGACGTTGCTGATTGAAACGCTGCCCGCGT  
 4801 1PheGlnMetAspGluIleLeuHisAlaLeuArgAspHisIleValGlyLeuAsnCysG1  
 GTTCCAGATGGATGAAATCCTTCACGCCGCTGCGTGACCATATTGTTGGTCTGAACCGGG  
 4861 yArgTrpAspTyrIlePheSerTyrIleLysThrLeuLysAsnTyrProAspArgValLe  
 TCGTTGGGATTACATCTTCAGCTATCAAAACGTTGAAAAACTATCCCGATCGCGTCT

24/25

FIG. 7 5/5

4921 uProAspArgGlnAlaValThrMetAspLysProPheLeuAsnAlaTyrSerArgLeuLe  
 GCCAGACAGACAGGCAGTGACATGGATAAACCATTCCTGAATGCTTACTCACGCCCTTT  
 4981 uIleLysThrCysHisLysArgGlyAlaPheAlaMetGlyGlyMetAlaAlaPheIlePr  
 GATTAAAACCTGCCATAAACCGCGGTGCTTTGCGATGGCGGCATGGCGCGTTATTCC  
 5041 oSerLysAspGluGluHisAsnAsnGlnValLeuAsnLysValLysAlaAspLysSerLe  
 GAGCAAAGATGAAGAGCACAATAACCAGGTGCTAACAAAGTAAAAGCGGATAATCGCT  
 5101 uGluAlaAsnAsnGlyHisAspGlyThrTrpIleAlaHisProGlyLeuAlaAspThrAl  
 GGAAGCCAATAACGGTCACGATGGCACATGGCTCACCCAGGCCTGCCGGACACGGC  
 5161 aMetAlaValPheAsnAspIleLeuGlySerArgLysAsnGlnLeuGluValMetArgGl  
 AATGGCGGTATTCAACGACATTCTCGCTCCCGTAAAAATCAGCTTGAAGTGATGCCGCA  
 5221 uGlnAspAlaProIleThrAlaAspGlnLeuLeuAlaProCysAspGlyGluArgThrGl  
 ACAAGACGCGCCGATTACTGCCGATCAGCTGCTGGCACCTGTGATGGTGAACGCACCGA  
 5281 uGluGlyMetArgAlaAsnIleArgValAlaValGlnTyrIleGluAlaTrpIleSerGl  
 AGAAGGTATGCCGCCAACATTGCGCTGGCTGTGCAGTACATCGAACGCGTGGATCTCTGG  
 5341 yAsnGlyCysValProIleTyrGlyLeuMetGluAspAlaAlaThrAlaGluIleSerAr  
 CAACGGCTGTGCGCAGATTGCGCTGATGGAAGATGCCGACGGCTGAAATTCCCG  
 5401 gThrSerIleTrpGlnTrpIleHisHisGlnLysThrLeuSerAsnGlyLysProValTh  
 TACCTCGATCTGGCAGTGGATCCATCATCAAAAAACGTTGAGCAATGCCAGCGAACTGGG  
 5461 rLysAlaLeuPheArgGlnMetLeuGlyGluGluMetLysValIleAlaSerGluLeuGl  
 CAAAGCCTTGTCCGCCAGATGCTGGCGAACAGATGAAAGTCATTGCCAGCGAACTGGG  
 5521 yGluGluArgPheSerGlnGlyArgPheAspAspAlaAlaArgLeuMetGluGlnIleTh  
 CGAAGAACGTTCTCCAGGGCGTTTGACGATGCCGACGCTTGTGAAACAGATCAC  
 5581 rThrSerAspGluLeuIleAspPheLeuThrLeuProGlyTyrArgLeuLeuAla\*\*\*  
 CACTCCGATGAGTTAATTGATTCTGCCAGGCTACCGCCTGTAGCGTAAtt  
 5641 growth hormone exon 5  
 tgacctgcgccttctagttgccagccatctgtgttaccctccctgtgccttcata  
 5701 cctggaagggtgccactccagtgccaccgtccttcttaataaaaggcgaggaaattgc  
 5761 cacattgtctgagtaggtgtcatttattctaggggtgggtcggcaggatagcgagg  
 5821 gggaggattggaaagacaatagcaggggtgtgtggcttatgggtacccagg  
 5881 ataattgaccgggtccctggcagaaagaagcaggcacatcccctctgtgaca  
 5941 caccgggtcctcgccccctggccttagttccagccccactcataggacactcac  
 agactca

25/25



Fig. 8

## INTERNATIONAL SEARCH REPORT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>I. CLASSIFICATION OF SUBJECT MATTER</b> (If several classification symbols apply, indicate all) <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
| <p>According to International Patent classification (IPC) or to both National Classification and IPC<br/>Int. Cl.<sup>a</sup> C12N 15/85, 15/60, 15/67</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
| <b>II. FIELDS SEARCHED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
| Minimum Documentation Searched <sup>7</sup><br><table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">Classification System</td> <td style="width: 50%;">Classification Symbols</td> </tr> <tr> <td colspan="2" style="text-align: center; padding-top: 10px;">           IPC WPAT Derwent Database: Keywords: inducible, promoter, regulatory, element, exon, non-coding<br/>           Chemical Abstracts: Keywords: hormone, exon, non-coding         </td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                    | Classification System | Classification Symbols | IPC WPAT Derwent Database: Keywords: inducible, promoter, regulatory, element, exon, non-coding<br>Chemical Abstracts: Keywords: hormone, exon, non-coding |  |
| Classification System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Classification Symbols                                                                                                                                                                                                                          |                                    |                       |                        |                                                                                                                                                            |  |
| IPC WPAT Derwent Database: Keywords: inducible, promoter, regulatory, element, exon, non-coding<br>Chemical Abstracts: Keywords: hormone, exon, non-coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
| Documentation Searched other than Minimum Documentation<br>to the Extent that such Documents are Included in the Fields Searched <sup>8</sup><br><p>Biotechnology Abstracts: Keywords: growth, hormone, exon, non-coding<br/>AU:IPC:C12N 15/85, 15/60, 15/67, 15/11, 15/18:</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
| <b>III. DOCUMENTS CONSIDERED TO BE RELEVANT*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
| Category <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Citation of Document, <sup>11</sup> with indication, where appropriate of the relevant passages <sup>12</sup>                                                                                                                                   | Relevant to Claim No <sup>13</sup> |                       |                        |                                                                                                                                                            |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hampson, R.K. et al. Molecular and Cellular Biology, Volume 9, No. 4, April 1989 (American Society for Microbiology)<br>"Alternative Processing of Bovine Growth Hormone mRNA is Influenced by Downstream Exon Sequences", see pages 1604-1610. | 1-7                                |                       |                        |                                                                                                                                                            |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Byrne, C.R. et al. Australian Journal of Biological Sciences, Volume 40, No. 4, 1987, "The Isolation and Characterisation of the Ovine Growth Hormone Gene", see pages 459-468.                                                                 | 1-7                                |                       |                        |                                                                                                                                                            |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Orian, J.M. et al. Nucleic Acids Research, Volume 16, No. 18, 1988 (IRL Press Limited)<br>"Cloning and sequencing of the ovine growth hormone gene" see page 9046.                                                                              | 1-7                                |                       |                        |                                                                                                                                                            |  |
| * Special categories of cited documents : <sup>10</sup><br>"A" Document defining the general state of the art which is not considered to be of particular relevance<br>"E" earlier document but published on or after the international filing date<br>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)<br>"O" document referring to an oral disclosure, use, exhibition or other means<br>"P" document published prior to the international filing date but later than the priority date claimed<br>"T" Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention<br>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step<br>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art<br>"&" document member of the same patent family |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
| <b>IV. CERTIFICATION</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |
| Date of the Actual Completion of the International Search<br>20 June 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date of Mailing of this International Search Report<br>25 June 1992 (25.06.92)                                                                                                                                                                  |                                    |                       |                        |                                                                                                                                                            |  |
| International Searching Authority<br><b>AUSTRALIAN PATENT OFFICE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature of Authorized Officer<br>M. ROSS                                                                                                                 |                                    |                       |                        |                                                                                                                                                            |  |

## FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

|   |                                                                                                                                                                                                                                                                                                                   |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A | Curatola, A.M. and C. Basilico.<br>Molecular and Cellular Biology, Volume 10, No. 6, June 1980<br>(American Society for Microbiology)<br>"Expression of the K-fgr Proto-Oncogene Is Controlled by 3 <sup>1</sup><br>Regulatory Elements Which Are Specific for Embryonal Carcinoma<br>Cells" see pages 2575-2483. |  |
| A | Gutkind, J.S. et al. Molecular and Cellular Biology, Volume 11, No. 3,<br>March 1991 (American Society for Microbiology)<br>"A Novel c-fgr Exon Utilized in Epstein-Barr Virus-Infected B<br>Lymphocytes but Not in Normal Monocytes" see pages 1500-1507.                                                        |  |

V.  OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE <sup>1</sup>

This International search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claim numbers ..., because they relate to subject matter not required to be searched by this Authority, namely:
2.  Claim numbers ..., because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful International search can be carried out, specifically:
3.  Claim numbers ..., because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4a

VI.  OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING <sup>2</sup>

This International Searching Authority found multiple inventions in this international application as follows:

1.  As all required additional search fees were timely paid by the applicant, this International search report covers all searchable claims of the International application.
2.  As only some of the required additional search fees were timely paid by the applicant, this International search report covers only those claims of the International application for which fees were paid, specifically claims:
3.  No required additional search fees were timely paid by the applicant. Consequently, this International search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:
4.  As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

## Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.