网学天地考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

北京航空航天大学 2005 年 硕士研究生入学考试试题 料目代码: 891

数据结构与 C 语言程序设计 (共8页)

考生注意: 所有答题务必书写在考场提供的答题纸上,写在本试题单上的答题一律无效(本题单不参与阅卷)。

-,	单项选择题(本题共20分,每小题各2分)			
	1. 算法的时间复杂度取决于。			
	A. 问题的规模 B. 待处理数据的存储结构			
	C. 待处理数据的状态 D. 描述算法的语言			
	2. 与单(向)链表相比较,双向链表的优点之一是。			
	A. 可以省略头结点指针 B. 可以进行随机访问			
	C. 插入、删除操作更简单 D. 顺序访问相邻结点更灵活			
	3. 在非空双向循环键表中由 q 所指的链结点后面插入一个由 p 指的链结			
点的	动作依次为:			
p>link=q; p->rlink=q->rlink; q->rlink=p; q->rlink->llink=p;				
M	C. p->llink=q; p->rlink=q->rlink; q->rlink=p; p->llink->rlink=p;			
V	D. p->llink=q; p-rlink=q->rlink; q->rlink=p; p->rlink->llink=p;			
	4. 堆栈和队列的共同之处在于它们具有相同的。			
	A. 逻辑特性 B. 物理特性 C. 运算方法 D. 元素类型			
	5. 某堆栈的输入序列为 1,2,3,4, 下面给出的四个序列中,不可			
能是	该堆栈的输出序列。			
	A. 1,3,2,4 B. 2,3,4,1 C. 4,3,1,2 D. 3,4,2,1			
	6. 当结点数目一定时,具有最小深度的二叉树是。			
	A. 满二叉树 B. 完全二叉树 C. 线索二叉树 D. 二叉排序树			
	第 891—1 页			

详见: 网学天地(www.e-studys	ky.com); 咨询QQ: 2696670	126
7. 若一棵二叉树有 50 个叶结点, 贝	该二叉树至少有	个结点。
A. 51 B. 99 C	. 100 D. 101	
8. 通过拓扑排序可以得到拓扑序列	的图一定是。	
A. 连通图 B. 带权连通图 C.	无回路的图 D. 无回	路的有向图
9. 只能在顺序存储结构上进行的查	找方法是。	
A. 顺序查找法 B. 折半查找法	C. 树型查找法 D.	散列查找法
10. 从未排序序列中任意选出一个方	元素,该元素将当前参加	非序的序列分
成前后两个部分,前一部分中所有元素	都小于等于所选元素,后-	部分中所有
元素都大于等于所选元素,而所选元素。	处在排序的最终位置: 然	后分别对被分
成的两个部分中元素个数超过1的部分	重复上述过程,直至排序	结束。这种排
序方法称为排序法。	57	(100)
A. 选择 B. 插入	C. 快速 D. 二點	砂并
二、填空题(本题共20分,每小题各	(() () () () () ()	
1. 数据的存储结构通常可以有四种	中,它们分别是。	
2. 当一个算法的时间复杂度与处理	2/6	长时,采用大O
表示方法应该表示为。	303	
3、下面的递归算法的功能是求一	入线性链表的长度。	
typedef struct node		
datatype data;		
struct node *link;		
} *LinkList;		
int LENGTH(LinkList list)	* · · · · · · · · · · · · · · · · · · ·	
{		
* if(list=NULL)		
return 0;		
else		
return;		

网学天地考研全套视频和资料, 真题、考点、典型题、命题规律独家视频讲解

网学天地考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126
}
4. 下面算法的功能是将两个非空的线性链表连接成为一个线性链表。
typedef struct node {
datatype data;
struct node *link;
}*LinkList;
void FUN(LinkList lista, LinkList listb)
. { LinkList p;
for()
: 25
p->link=listb;
) Salar Sala
5. 若某非空堆栈采用顺序存储结构,栈顶指针为 top,则删除栈顶元素时,
top的变化为
6、完全工义树、满二义树、线索二叉树和二叉排序树这四个名称中,只
有
7. 若有向图采用邻接矩阵存储方法,则计算第 i 个顶点的入度的方法
E GOOD
8. 将数据元素 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 依次存放于一个一维数组中
(假设数组第一个元素的下标为 1),然后采用折半查找方法查找元素 15,被比
较过的数组元素的下标依次为。
9. 假设排序过程中序列的变化情况如下:
初始状态: 50,72,28,39,81,15
第一趟后: 15,72,28,39,81,50
第二趟后: 15, 28, 72, 39, 81, 50
第三趙后: 15,28,39,72,81,50
第四継后、15 78 30 50 81 77

第891-3页

第五趟后: 15, 28, 39, 50, 72, 81

网学天地考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

可以断定, 所采用的排序方法是 方法。

10. 根据(大顶)堆积的定义,对应于序列(26,5,77,1,61,14,59,15)的堆积为____。

三、(本题 10 分)

折半查找的过程可以利用一棵称之为"判定树"的二叉树来描述。请画出 在长度为13的有序表中进行折半查找对应的判定树。

四、(本题 10 分)

若散列函数为 H(key) = i MOD 7, 其中, i 为关键字 key 的第一个字母在英文字母表中的序号,并且采用线性探测再散列方法处理冲突。请画出在一个初始状态为空、地址值域为[0 ·· 6]的散列表中依次插入下列关键字MON, TUE, WED, THU, FRI, SAT, SUN 以后的散列表。

五、(本题 15 分)

所谓二叉树相似,是指它们具有相同的拓扑结构。假设二叉树采用二叉链表存储结构,链结点构造为 lchild data rchild ,请写一递归算法,判断根结点指针分别为 T1 与 T2 的两棵二叉树是否相似。若它们相似,算法返回 1,否则返回 0。

六、单项选择题(本题共20分,每小题各2分)

1. 以下正确的叙述是

A. 在 C 语言中、 通句之间必须要用分号";"分开

B. 若 a 是实型变量, C 语言程序中允许赋值 a=10, 因此实型变量中允许存放整型数据

- C. 在 C 语言中, 无论是整数还是实数, 都能够准确无误地表示
- D. 在 C 语言中, %是只能用于整数运算的运算符
- 2. 若有定义 int A[4][10],*p,*q[4];,且 0≤i<4,则错误的赋值是_____
- A. p=A; B. q[i]=A[i]; C. p=A[i]; D. q[i]=&A[2][0];
- 3. 在说明一个结构体变量时,系统分配给它的存储空间是。

网学天地考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解 详见: 网学天地 (www.e-studysky.com): 咨询QQ: 2696670126 A. 该结构体中第一个成员所需要的存储空间 B. 该结构体中最后一个成员所需要的存储空间 C. 该结构体中占用最大存储空间的成员所需要的存储空间 D. 该结构体中所有成员所需要的存储空间的总和 4. 函数 fgets(str,n,fp)从文件中读入一个字符串,以下正确的叙述是 A. 字符串读入后不会自动加入'\0' B. fp 是 file 类型的指针 C. 函数 fgets 将从文件中最多读入 n-1 个字符 D. 函数 fgets 将从文件中最多读入 n 个字符 5. 若有以下定义和语句,则输出结果是 char s[10]= "a book!"; Ry COLL printf("%d",strlen(s)); A. 6 BST 6. 下面的 COMP 函数的功能是按照字典顺序比较两个字符串 s 和 t 的大小。 若 s 大于 t, 则返回一个正值; 若 s 等于 t, 则返回 0, 否则返回一个负值。请 为程序的空由处选择一个正确的答案 COMP(char *s,char *t) return 0; return(*s-*t); A. s++,t++ B. t++ 7. 下面程序的功能是 #include <stdio.h>

第891-5页

main()

{ FILE *fp1, *fp2;

fp1=fopen("f1","Y");

```
详见: 网学天地 (www.e-studysky.com); 咨询QQ: 2696670126
   fp2=fopen("f2","w");
   while(!feof(fpl))
       putchar(fgetc(fp1));
   rewind(fp1):
   while(!feof(fp1))
       fputc(fgetc(fp1),fp2);
    fclose(fp1):
    fclose(fp2);
}
A. 将文本文件 fl 复制到文件 f2 中
                                          SIRVY COM
B. 将二进制文件 f2 复制到文件 f1 中
C. 将二进制文件 fl 复制到文件 f2 中
D. 分别输出文本文件 fl 和 f2 的信息
8. 下列程序的执行结果是
#include <stdio.h>
                    1.0/5
FUN(int a)
    static int x=10:
    inty=1;
    x+=a:
   return(x+y+a);
}
main()
   int k=3;
    while(k<8)
       printf("%d",FUN(k++));
}
A. 17 24 30 37 45
                             B. 18 24 30 37 45
C. 19 24 30 37 45
                             D. 20 25 31 38 46
                         第891—6页
```

网学天地考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解

网学天地考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

9. 下列程序的执行结果是 typedef struct { long x[2]; int y[4]; char z[8]: MYTYPE; main() 1 MYTYPE a; printf("%d\n",sizeof(a)); } A. 12 B. 24 C. 28 10. 下列程序的输出结果是 #define ADD(a) (a)+(a) main() printf("%d\n" } A. 70 B. 140 C. 280 D. 80

七、(本題15分)

请编写一程序,该程序对于任意输入的正整数 n,输出 n 以内的所有素数。 $(n \ge 2)$

八、(本题 20 分)

约瑟夫问题(Josephus)可以这样描述: n 个人围着圆桌坐一圈,给每个人一个编号,现指定编号为 k 的人从 1 开始报数,报到第 m 的那个人离开圆桌,然后,又从他的下一个人开始继续从 1 开始报数,仍然是报到第 m 的那个人

网学天地考研全套视频和资料, 真題、考点、典型題、命題規律独家视频讲解 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

离开圆桌,如此重复下去,直到圆桌周围剩下一个人为止。

请编写一程序,依次输出各个离开圆桌的人的编号。(n, k n m 分别通过键盘输入)。提示:可以采用不带头结点的循环链表解决该问题。

九、(本题 20 分)

假设某操作系统有一条命令,该命令的功能是将指定文本文件中的所有小 写字母都转换成为大写字母,其他字符格式保持不变。命令格式为:

change filename

其中, change 为命令名: 参数 filename 为文本文件名。

请编写实现该命令的程序。要求要进行命令行的正确性检查。

网学天地考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解详见: 网学天地 (www.e-studysky.com); 咨询QQ: 2696670126

北航 2005 年《数据结构与 C 语言程序设计》考研真题与答案:

```
0 1 2 3 4 5 6
          TUE THU WED FRI SUN SAT MON
int EQUAL(BTREE T1,BTREE T2)
      if(!T1 && !T2)
        return 1;
                                                           /* 两棵二叉树均为空 */
      if(T1 && T2
          && T1->data==T2->data
                                                                                           /* 对应结点的数据相同 */
                                                                                             Columnia Statistical Statistics of the Columnia of the Columni
          && EQUAL(T1->lchild,T2->lchild) /* 并且左子树等价 */
          && EQUAL(T1->rchild,T2->rchild)) /* 并且右子树等价 */
         return 1:
   return 0;
                                                                /* 二叉树不等价 */
}
int TOPOTEST(TOPOVLink G[], vertype V[], int n)
     int i.k
     for(i=0:i<n:i++){
          for(k=0;k<n;k++){
          if(G[k].vertex==V[i]){
                                                                                        若顶点 V[i]是 G 中的顶点 */
                 if(G[k].indegree!=0)
                                                                              /* 若顶点 V[i]的入度不为 0 */
                 return 0:
                                                       /* 给定序列不是 G 的拓扑序列 */
                 p=G[k].link;
                                                                      /* 若顶点 V[i]的入度为 0 */
                 while(p!=NULL){
                 G[p->adjvex].indegree--; /* 相关顶点的入度减 1 */
                 p=p->next; /* p 移到下一个边结点 */
                }
                                                         /* 测试序列的下一个顶点 */
                 break;
          }
      }
      }
      return 1;
                                                         /* 给定序列是 G 的拓扑序列 */
}
```