Project Report

Group 41

Anthony De La Torre

Kaiyuan Fan

Cory Melendez

Theoretical Run time Analysis

Algorithm 1 Pseduocode

Enumeration(A[0...n])

```
for i = 0 to n-1
     for j = i to n-1
           sum = 0;
           aLength = 0;
           //clear the subA array
           j++
           for k = i to j
                subA[aLength] = a[k];
                sum += a[k];
                 aLength++;
           k++
     if sum > maxSum
           maxSum = sum;
           maxLength = aLength;
           //copy subA array into maxSubA array
     i++
return (A[0...maxLength], sum)
```

Complexity

First for loop takes n steps, while the second does n steps as well, as well as the third

```
T(n) = n^3 \text{ or } T(n) = O(n^3)
Algorithm 2 Pseduocode
BetterEnumeration(A[0...n])
SubA[]
maxSubA[]
maxSum = 0
For i = 0 to n-1
      Sum = 0
      aLength = 0
      Clear array SubA[0...n]
      For j = i to n-1
            subA[aLength] = a[j]
            sum+=a[j]
            aLength++
            if sum > maxSum
                  maxSum = sum
                  maxLength = aLength
                   Copy SubA into maxSubA
            j++
      i++
return (a[0...maxLength], sum)
Complexity
We only have two for loops that run n times,
T(n) = n^2 \text{ or } T(n) = O(n^2)
Algorithm 3 Pseudocode
DivideAndConquer(A[1...n])
```

If n=1

```
return (A[1...n], sum(A))
Lhs subArray = DivideAndConquer(A[1...n/2])
Rhs subArray = DivideAndConquer(A[n/2+1...n])
checkRhsArray = -inf
SumRhsArray = 0
For j = n/2 + 1 to n
     sumRhsArray = sumRhsArray + A[j]
     if(sumRhsArray) > checkRhsArray)
           checkRhsArray = sumRhsArray
           rhs checkLength = j+1 - (n/2)
           rhs checkEndIndex = j
           sumToRhsEnd = sumRhsArray
     j = j+1
if Sum(Rhs subArray) < checkRhsArray</pre>
     Rhs subArray = Rhs subArray[n/2 + 1...j]
     Sum(Rhs subArray) = checkRhsArray
checkLhsArray = -inf
SumLhsArray = 0
For i = n/2 to 1
     sumLhsArray = sumLhsArray + A[i]
     if(sumLhsArray) > checkLhsArray)
           checkLhsArray = sumLhsArray
           rhs checkLength = n/2 - i
           rhs checkBegIndex = j
           sumToLhsEnd = sumLhsArray
     i = i+1
if Sum(Lhs subArray) < checkLhsArray</pre>
     Lhs subArray = Lhs subArray[i...n/2]
```

```
Sum(Lhs subArray) = checkLhsArray
```

```
MaxsubArr =
max(max(Lhs_subArray[i...n/2],Rhs_subArray[n/2...j]),A[checkBegIndex...check
EndIndex])
Return (MaxsubArr[],sum(MaxSubArr))
```

Complexity

The recursive calls require 2T(n/2) complexity, while the rest requires c_1^* n since we are checking to see if there is a greater sub array in the left hand side then the right hand side, so we do n calculations.

```
T(n) = 2T(n/2) + c_1n

Apply master method:

a=2,b=2 \Rightarrow n^{\log 2(2)}=n, f(n) = n

f(n) = \theta(n) therefore T(n) = \theta(n*\lg(n))

Algorithm 4 Pseudocode

linear_time(a[1...n])

int b[] = a[];//b is a clone
```

```
int b[] = a[];//b is a clone of a
int max=a[0];
for i from 0 to n
    if(b[i-1]>0)
        b[i]=b[i-1]+a[i];
maxsum=max value in array b
```

Complexity

return maxsum

The i loop track the input array elements from 1 to n. $\sum_{i=1}^{n} O(1) = n * O(1) = O(N)$, the theoretical runtime is O(N).

Testing

For testing we tested our algorithms against the given test text file, we also used the online tool provided and checked irregular arrays and any arrays that we thought may give us trouble, such as all negatives in the beginning and at the end with a large positive number in the middle, a single positive number, and several larger arrays

Analysis

To get more accurate run time across all algorithms, we ran the following tests on a single computer:

	enumeration			better enumeration			
n		time	regression	n	time	regression	
	100	0.025	0.01823	5000	1.39279	1.0215313	
	200	0.1627	0.13346	6000	1.8322	1.54692121	
	300	0.48942	0.42765	7000	2.3817	2.19704568	
	400	1.04523	0.97705	8000	3.08695	2.97734223	
	500	1.8723	1.85456	9000	3.74957	3.89270864	
	600	3.1159	3.13076	10000	4.78972	4.94761557	
	700	4.81477	4.8744	11000	5.89917	6.14618599	
	800	7.00556	7.15277	12000	7.30852	7.4922535	
	900	10.2581	10.0319	13000	8.97589	8.98940645	
	1000	13.5017	13.5769	14000	10.9915	10.6410224	
(3.287*10^-8)*(x^2.872)				(3.894*10^-9)*(x^2.276)			
	should be x^3			should be x^2			
	divide and conqu	divide and conquer			linear-time		
n		time	regression	n	time	regression	
	20000	0.03994	0.04224	20000	0.00283	0.0030798	
	25000	0.05429	0.05277	25000	0.00377	0.0038068	
	25000 30000	0.05429 0.06421	0.05277 0.06349	25000 30000	0.00377 0.00464	0.0038068 0.0045338	
						0.0045338	
	30000	0.06421	0.06349	30000	0.00464	0.0045338	
	30000 35000	0.06421 0.07497	0.06349 0.07437	30000 35000	0.00464 0.0054	0.0045338 0.0052608	
	30000 35000 40000	0.06421 0.07497 0.08687	0.06349 0.07437 0.08539	30000 35000 40000	0.00464 0.0054 0.00615	0.0045338 0.0052608 0.0059878	
	30000 35000 40000 45000	0.06421 0.07497 0.08687 0.09646	0.06349 0.07437 0.08539 0.09652	30000 35000 40000 45000	0.00464 0.0054 0.00615 0.00683	0.0045338 0.0052608 0.0059878 0.0067148	
	30000 35000 40000 45000 50000	0.06421 0.07497 0.08687 0.09646 0.10901	0.06349 0.07437 0.08539 0.09652 0.10777	30000 35000 40000 45000 50000	0.00464 0.0054 0.00615 0.00683 0.00746	0.0045338 0.0052608 0.0059878 0.0067148 0.0074418	
	30000 35000 40000 45000 50000	0.06421 0.07497 0.08687 0.09646 0.10901 0.12026 0.12915	0.06349 0.07437 0.08539 0.09652 0.10777 0.11911	30000 35000 40000 45000 50000	0.00464 0.0054 0.00615 0.00683 0.00746 0.00809 0.00873	0.0045338 0.0052608 0.0059878 0.0067148 0.0074418 0.0081688 0.0088958	
	30000 35000 40000 45000 50000 55000	0.06421 0.07497 0.08687 0.09646 0.10901 0.12026 0.12915	0.06349 0.07437 0.08539 0.09652 0.10777 0.11911	30000 35000 40000 45000 50000 55000	0.00464 0.0054 0.00615 0.00683 0.00746 0.00809 0.00873 +0.000171	0.0045338 0.0052608 0.0059878 0.0067148 0.0074418 0.0081688 0.0088958	

Times(s)	Enumeration Better_enumeration		Divide and	Linear_time	
			conquer		
10	8.99*10^2	1.36*10^4	1.59*10^6	6.88*10^7	
30	1.32*10^3	2.21*10^4	4.45*10^6	2.06*10^8	
60	1.68*10^3	2.99*10^4	8.54*10^6	4.12*10^8	

The functions at the bottom are the functions that were the best fit, as you can see we got very close on every algorithm. Also, you can see that we had to use widely different sized algorithms, we had to do this since some of the algorithms would require much less work than the others. The following are the graphs of the above data set with the orange as the best fit:

Since we had widely different array sizes, we did a log-log plot of all four on the same graph

