Technische Universität Berlin

Fakultät II – Institut für Mathematik Kato, Penn-Karras, Peters, Winkler WS 08/09 06.04.2009

April – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vor	name:				
MatrNr.:	. Stu	dienga	ng:			
Neben einem handbeschriebenen A-zugelassen.	4 Blatt	t mit N	otizen	sind ke	eine Hil	fsmittel
Die Lösungen sind in Reinschrift geschriebene Klausuren können nic				_	n. Mit	Bleistift
Dieser Teil der Klausur umfasst d großen Rechenaufwand mit den Ke Geben Sie, wenn nichts anderes ges an.	enntnis	ssen au	s der V	Vorlesu	ng lösb	ar sein.
Die Bearbeitungszeit beträgt eine	Stund	le.				
Die Gesamtklausur ist mit 40 von 8 beiden Teile der Klausur mindester				,	•	
Korrektur						
	1	2	3	4	5	Σ
L		<u> </u>	<u> </u>			

1. Aufgabe 6 Punkte

Untersuchen Sie die nachstehenden Folgen auf Konvergenz und geben Sie im Falle der Konvergenz den Grenzwert an.

- (a) $\vec{x}_k := (\cos(k\pi), \sin(k\pi)) \text{ mit } k \in \mathbb{N},$
- (b) $\vec{y}_k := (\frac{1}{k}\cos(k\pi), \frac{1}{k}\sin(k\pi)) \text{ mit } k \in \mathbb{N},$
- (c) $\vec{z}_k := ((-1)^k \cos(k\pi), (-1)^k \sin(k\pi)) \text{ mit } k \in \mathbb{N}.$

2. Aufgabe

12 Punkte

Sind die folgenden Aussagen wahr oder falsch? Geben Sie eine Begründung an oder finden Sie ein Gegenbeispiel, ohne Begründung gibt es keine Punkte!

- (a) Sei $G \subset \mathbb{R}^2$ kompakt und $f \colon G \to \mathbb{R}$ differenzierbar. Wenn in keinem Randpunkt von G ein globales Maximum oder Minimum von $f \colon G \to \mathbb{R}$ vorliegt, so gibt es einen Punkt \vec{x}_0 im Inneren von G mit $\operatorname{grad}_{\vec{x}_0} f = \vec{0}$.
- (b) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto \sin(x)e^y$ ist differenzierbar.
- (c) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ und die Niveaulinie

$$N_0 f = \{ (x, y) \in \mathbb{R}^2 \mid f(x, y) = 0 \}$$

ein Kreis um den Nullpunkt. Dann steht $\operatorname{grad}_{(x,y)} f$ für alle $(x,y) \in N_0 f$ senkrecht auf (-y,x).

(d) Sei $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ ein stetig differenzierbares Vektorfeld und seien F_1 und F_2 zwei glatte Flächen, mit gemeinsamer Randkurve. Dann gilt

$$\left| \iint_{F_1} \operatorname{rot} \vec{v} \cdot d\vec{O} \right| = \left| \iint_{F_2} \operatorname{rot} \vec{v} \cdot d\vec{O} \right|.$$

3. Aufgabe 6 Punkte

Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion. In den Punkten $\vec{P_1}, \vec{P_2}, \vec{P_3} \in \mathbb{R}^2$ seien für den Gradienten grad $_{\vec{P_i}} f$ und die Hesse-Matrix Hess $_{\vec{P_i}} f$ der Funktion f die folgenden Werte gegeben:

	$ec{P_1}$	$ec{P_2}$	\vec{P}_3	
$\operatorname{grad}_{\vec{P_i}} f$	$(0,0)^T$	$(2,0)^T$	$(0,0)^T$	
$\operatorname{Hess}_{ec{P}_i} f$	$\begin{pmatrix} -3 & 0 \\ 0 & 5 \end{pmatrix}$	$\begin{pmatrix} -2 & 0 \\ 0 & -25 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	

Geben Sie für jeden der drei Punkte \vec{P}_1 , \vec{P}_2 und \vec{P}_3 an, ob dort ein lokales Maximum, ein lokales Minimum oder kein Extremalpunkt von f vorliegt.

4. Aufgabe 8 Punkte

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch f(x, y, z) = x + y + 2z. Sei weiter $\vec{\gamma}: [0, 1] \to \mathbb{R}^3$ eine beliebige Schraubenlinie, die vom Punkt (0, 0, 0) zum Punkt (0, 0, 3) läuft.

Bestimmen Sie für $\vec{v} = \text{grad} f$ den Wert des Integrals

$$\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds}.$$

5. Aufgabe

8 Punkte

Gegeben sei das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit

$$\vec{v}(x,y,z) = \begin{pmatrix} -xy^2 \\ x^2 \sin(z) + y \\ zy^2 \end{pmatrix}$$

Bestimmen Sie das Flussintegral von \vec{v} durch die gesamte Oberfläche des Zylinderabschnitts

$$Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 4, |z| \le 2\}.$$