

MÉTODO NUMÉRICOS

Aula 1 –Introdução ao Erro

Curso de Ciência da Computação Dr. Rodrigo Xavier de Almeida Leão Cientista de Dados

QS (toneladas)	<i>L</i> (milhões de reais)
0	0,00
100	0,04
200	0,16
400	0,64
500	1,00
600	1,43
800	2,55

Com essas informações e com o auxílio de um software capaz de gerar a relação matemática dessas duas variáveis, observou-se que a curva que descreve o comportamento é $L = \ln(QS + 1) \ 10^6 + 4QS^2 / 10^6 - QS / 10^5$. Então, gerente solicita algumas informações: primeiramente (na Seção 1.1), ele necessita que você determine a quantidade de silicone que deve ser produzida para alcançar um lucro de R\$ 600.000,00. Depois (na Seção 1.2), ele deseja a sistematização conceitual dos procedimentos necessários para outras formas de determinação da quantidade de silicone produzida num valor fixado de lucro, considerando o modelo apresentado anteriormente, e se é possível determinar a quantidade de silicone que maximiza o lucro da empresa. Por fim (na Seção 1.3), ele requisita que sejam desenvolvidos algoritmos para a implementação computacional da função "quantidade de silicone e lucro", considerando os conceitos apresentados a você na segunda etapa (na Seção 1.2).

BINÁRIO <-> DECIMAL

$$N = \pm a_n 2^n + a_{n-1} 2^{n-1} + \dots + a_1 2^1 + a_0 2^0$$

$$\text{Com:} \begin{cases} a_n = 1 \\ a_i = 0 \quad \text{ou} \quad 1, \quad 0 \le i < n \end{cases}$$

Assim, se quiséssemos converter $(100000)_2$, número de base 2, para base 10, analisaremos que temos 6 dígitos, n=5, e identificamos os termos a_i por: $a_5=1$, $a_4=0$, $a_3=0$, $a_2=0$, $a_1=0$, $a_0=0$. Em seguida, utilizamos a fórmula da expansão binária:

$$(100000)_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 32$$

Se quisermos realizar a operação oposta, ou seja, conversão de um sistema decimal para binário, necessitaremos do método das divisões sucessivas sobre a base 2 até que o último quociente seja menor que a base, no caso, 1.

IMPLEMENTAR FUNÇÃO DE CONVERSÃO DECIMAL <-> BINÁRIO

Formato ponto flutuante

Ponto flutuante é a representação dos números reais empregada em máquinas. Basicamente, esse número é composto por três partes: sinal, mantissa e expoente, e é identificado por:

$$m = \pm$$
 , $d_1 d_2 d_3 ... d_t \cdot \beta^e$

Sendo: d_i : dígitos da parte fracionária, $d_1 \neq 0$; β : base (2-binário; 10-decimal); t: número de dígitos na mantissa; e: expoente inteiro. De forma simplificada: $F(\beta,t,e_{\min},e_{\max})$.

Podemos representar o número 43,6, em base decimal, com 4 dígitos na mantissa por: x = 43,6; $\beta = 10$; t = 4, cuja representação será $x = 0.4360 \cdot 10^2$.

Erros na representação dos números

Os números reais formam um conjunto infinito de números, então imagine a quantidade de números que podemos ter num intervalo entre 0 e 1. Por outro lado, a representação deles no sistema de ponto flutuante é finita, pois a faixa dos expoentes é limitada, ou seja, $e_{\min} < e < e_{\max}$. Observe: dado que F(10, 2, -5, 5) e que se deseja fazer a operação de divisão entre w = 0,0064 e z = 7312resultando num número com 2t dígitos. Primeiramente, observamos que o sistema é decimal, com t=2, $e_{\min}=-5$ e $e_{\max}=5$. Assim, precisamos armazenar os números dados no sistema indicado: $w = 0.64 \cdot 10^{-2}$ e $z = 0.73 \cdot 10^4$ procedemos com a divisão que nos resulta em $w/z = 0.8767 \cdot 10^{-6}$. Como o expoente mínimo é $e_{\min} = -5$, o resultado da operação corresponde a um valor menor que o computador é capaz de armazenar, conhecido como underflow. O menor número reconhecido por um computador depende do contexto em que estamos falando. Aqui estão alguns contextos diferentes:

1. Inteiros (Integers):

Para um sistema de 32 bits, o menor número inteiro é geralmente -2,147,483,648.

Para um sistema de 64 bits, o menor número inteiro é geralmente -9,223,372,036,854,775,808.

2. Números de Ponto Flutuante (Floating Point Numbers):

No padrão IEEE 754 de 32 bits (precisão simples), o menor número positivo diferente de zero é aproximadamente $1.4 imes 10^{-45}$.

No padrão IEEE 754 de 64 bits (precisão dupla), o menor número positivo diferente de zero é aproximadamente $4.9 imes 10^{-324}$.

3. Números em ponto fixo (Fixed Point Numbers):

Isso depende da implementação específica do sistema, mas eles são limitados pelo número de bits alocados para a parte inteira e a parte fracionária.

A aproximação de um número \mathbf{y} é identificada por $\tilde{\mathbf{y}}$

Erro Absoluto $(EA)_y$

Definido pela diferença entre o valor exato e a aproximação: $\text{EA}_y = |y - \tilde{y}|$. Mas podemos não saber qual é o valor exato, então, adotamos uma "cota", tal que $\sigma \approx 0$, e assim: $\text{EA}_y < \sigma \Leftrightarrow |y - \tilde{y}| < \sigma \Leftrightarrow \tilde{y} - \sigma < y < \tilde{y} + \sigma$.

A aproximação de um número \mathbf{y} é identificada por $\tilde{\mathbf{y}}$

Erro Relativo $(ER)_y$

Suponha a situação: $\mathbf{W} = 50$; $\mathbf{W} = 50,02$ e $\mathbf{Z} = \mathbf{0},0004$; $\mathbf{\tilde{Z}} = 0,0002$. Teríamos que os erros absolutos de cada variável seriam: $\mathbf{E}\mathbf{A}_{\mathbf{W}} = \mathbf{0},\mathbf{2}$ e $\mathbf{E}\mathbf{A}_{\mathbf{Z}} = \mathbf{0},0002$, assim $\mathbf{E}\mathbf{A}_{\mathbf{Z}} < \mathbf{E}\mathbf{A}_{\mathbf{W}}$ e concluiríamos que a aproximação de \mathbf{Z} é melhor frente a de \mathbf{W} . Mas observe que as grandezas dessas variáveis são muito diferentes, o que nos leva a definir o erro relativo: $\mathbf{E}\mathbf{R}_{\mathbf{y}} = \mathbf{y} - \mathbf{\hat{y}}$.

Para o caso citado, teríamos:
$$ER_y = \left| \frac{50-50,2}{50,2} \right| = 0,003984$$
 e $ER_z = \left| \frac{0,0004-0,0002}{0,0002} \right| = 1$, o que nos leva a crer que a

aproximação de ${\it w}$ é superior à de ${\it z}$.

Erros de arredondamento

Número	Arrendondamento	Truncamento
2,32	0,232 · 10	0,232 · 10
11,054	0,111 · 10 ²	0,110 · 10 ²
-138,17	-0,138 · 10 ³	-0,138 · 10³

Propagação de erros

Podemos ter operações matemáticas com mais de uma variável. Assim, temos, além dos erros de representação delas, a propagação de erros causada pelas relações entre variáveis. Para o caso de propagação dos erros absolutos, citam-se os seguintes casos:

a) Soma e subtração entre as variáveis: $\textit{EA}_{w\pm z} = \mid \textit{EA}_{w} \pm \textit{EA}_{z} \mid$

- b) Multiplicação entre as variáveis: $\textit{EA}_{w \cdot z} = \mid \tilde{w} \textit{EA}_z \pm \tilde{z} \textit{EA}_w \mid$
- c) Divisão entre as variáveis: $EA_{w/z} = \frac{EA_w}{\tilde{z}} \frac{\tilde{w}EA_z}{\tilde{z}^2}$

Para a propagação dos erros relativos, temos:

a) Soma e subtração:
$$ER_{w\pm z} = \frac{\tilde{w}}{\tilde{w} \pm \tilde{z}} ER_w \pm \frac{\tilde{z}}{\tilde{w} \pm \tilde{z}} ER_z$$

b) Multiplicação:
$$ER_{w\cdot z} = ER_z + ER_w$$

c) Divisão:
$$ER_{w/z} = ER_w - ER_z$$

IMPLEMENTAR FUNÇÃO DE PROPGAÇÃO DE ERROS

Equações

Prof. Dr. Rodrigo Xavier de Almeida Leão

Equações

Caso uma função f(x), contínua no intervalo [a,b], possua valores de sinais contrários nos pontos extremos desse intervalo, $f(a) \cdot f(b) < 0$, o intervalo terá, no mínimo, um zero da equação f(x) = 0, ou seja, existirá, no mínimo, um número $x^* \in (a,b)$ tal que $f(x^*) = 0$. Verificada a existência de raiz nesse intervalo, precisamos calculá-la por métodos numéricos, que deverão fornecer uma sequência X_k de aproximações, sendo adotado um critério de parada, de modo a cessar o processo iterativo quando for atingido um número predeterminado de iterações, ou se χ_{k} estiver suficientemente próximo do zero da função, ou seja:

$$|f(x_k)| \le \varepsilon \circ |\frac{x_k - x_{k-1}}{x_{k-1}}| \le \varepsilon$$

sendo arepsilon a tolerância estipulada.

Método da Bissecção

Fundamenta-se na ideia de refinamento de um intervalo inicial, (a,b), que contenha a raiz, de forma iterativa, ao meio. Assim, a cada novo intervalo é atualizado o valor de a ou b de acordo com a função de iteração:

$$x_k = \frac{a+b}{2}, k = 1, 2, ...$$

Se $f(a) \cdot f(x_k) < 0$, então teremos $b = x_k$, senão $a = x_k$. A desigualdade $f(a) \cdot f(x_k) < 0$ é usada para certificar que haverá pelo menos uma raiz no intervalo (a,b). Assim, a cada nova iteração estamos diminuindo pela metade a distância entre os extremos do intervalo até alcançar o zero de acordo com a precisão desejada.

IMPLEMENTAR FUNÇÃO PARA SOLUCIONAR EQUAÇÃO DE 2 GRAU COM FÓRMULA DE BHASKARA

50 PTS

IMPLEMENTAR FUNÇÃO DE BUSCA DE ZERO DE FUNÇÕES

ENCONTRE AS RAÍZES DA EQUAÇÃO

$$x^3 - 2x^2 - 5x + 6 = 0$$