Aplicaciones de las derivadas

Ricardo Mateos

Matemáticas II

Departamento de Matemáticas UHEI - IVED

Optimizacion

Ejemplo

Calcular los siguientes límites:

a)
$$\lim_{x\to 0} \frac{e^x - \cos x}{\ln(1+x)}$$

c)
$$\lim_{x \to 0} \frac{1 - \cos x}{(e^x - 1)^2}$$

e)
$$\lim_{x \to \frac{\pi}{2}} (\operatorname{sen} x)^{\operatorname{tg} x}$$

b)
$$\lim_{x\to 0} \frac{e^x - x - \cos(3x)}{\sin^2 x}$$

d)
$$\lim_{x \to 0} \frac{e^{x^2} - 1}{\cos x - 1}$$

$$f) \quad \lim_{x \to 0} (\cos x)^{1/\sec^2 x}$$

Ejemplo

Sabiendo que $\lim_{x\to 0} \frac{a\cdot \sec x - x\cdot e^x}{x^2}$ es finito, calcula el valor de a y el de dicho límite.

Ejemplo

Hallar el valor de k para que

$$\lim_{x \to 0} \frac{e^x - e^{-x} + kx}{x - \operatorname{sen} x} = 2$$

.

Ejemplo

Sean tres números reales positivos cuya suma es 90 y uno de ellos es la media de los otros dos. Determina los números de forma que el producto entre ellos sea máximo.

Ejemplo

Sean tres números reales positivos cuya suma es 90 y uno de ellos es la media de los otros dos. Determina los números de forma que el producto entre ellos sea máximo.

Ejemplo

Descomponer el número 12 en dos sumandos positivos de forma que el producto del primero por el cuadrado del segundo sea máximo.

Ejemplo

Un espejo plano, cuadrado, de 80 cm de lado, se ha roto por una esquina siguiendo una línea recta. El trozo desprendido tiene forma de triángulo rectángulo de catetos 32 cm y 40 cm respectivamente. En el espejo roto recortamos una pieza rectangular R, uno de cuyos vértices es el punto (x,y) (véase la figura).

- a) Hallad el área de la pieza rectangular obtenida como función de x, cuando $0 \le x \le 32$.
- b) Calculad las dimensiones que tendrá R para que su área sea máxima.
- c) Calculad el valor de dicha área máxima.

Ejemplo

En una nave industrial se quiere instalar una pantalla de cine (ver figura). La forma de la nave es la descrita por la gráfica de la función $f(x)=12-\frac{x^2}{3}\geq 0$. Calcula los valores positivos (x,y) que hacen máxima el área de la pantalla.

