Computation of Variations of the LZ77 factorization and the LPF Array with Suffix Trees

Dominik Köppl

M&D Data Science Center, Tokyo Medical and Dental University, Japan

results of:

- "Non-Overlapping LZ77 Factorization and LZ78 Substring Compression Queries with Suffix Trees." Algorithms 14(2): 44 (2021)
- "Reversed Lempel-Ziv Factorization with Suffix Trees." Algorithms 14(6): 161 (2021)

in this talk

variations of Lempel-Ziv 77 (LZ77) factorization:

- non-overlapping Lempel-Ziv 77 (NOV LZ)
- reversed LZ

variations of longest previous factor array (LPF):

- LPnF: longest previous non-overlapping factor array
- LPnrF: longest previous non-overlapping reversed factor array our contribution:
 - 2n-bit representations of LPnF and LPnrF
 - (near) linear-time algorithms computing the mentioned factorizations/arrays in small space

Kolpakov, Kucherov'09

setting & example

- \blacksquare T: input text, n-1:=|T| length of T
- lacksquare Σ : alphabet of T, $\sigma := |\Sigma|$ size of Σ
- $\blacksquare \ \$ < c \ \forall \ c \in \Sigma$

i	1	2	3	4	5	6	7	8	9	10	11
<i>T</i> \$	a	b	b	a	b	b	a	b	a	b	\$
LPF	0	0	1	5	4	3	2	3	2	1	0
LPnF	0	0	1	3	3	3	2	3	2	1	0
LPnrF	0	0	2	1	3	3	2	3	2	1	0

succinct representation

Sadakane'07: 2*n*-bit representation PLCP array

- PLCP[i]: longest common prefix of (T\$)[i..] with its lexicographically preceding suffix
- PLCP[n] = 0 since (T\$)[n] = \$
- ightharpoonup PLCP[i] $\leq n \ \forall \ i \in [1..n]$,
- ightharpoonup PLCP[i] \geq PLCP[i 1] 1

succinct representation

Sadakane'07: 2*n*-bit representation PLCP array

- PLCP[i]: longest common prefix of (T\$)[i..] with its lexicographically preceding suffix
- PLCP[n] = 0 since (T\$)[n] = \$
- ightharpoonup PLCP[i] $\leq n \ \forall \ i \in [1..n]$
- ightharpoonup PLCP[i] \geq PLCP[i 1] 1

succinct representation

preceding suffix

Sadakane'07: 2*n*-bit representation PLCP array

- PLCP[i]: longest common prefix of (T\$)[i...] with its lexicographically
- PLCP[n] = 0 since (T\$)[n] = \$
- $\blacksquare \ \mathsf{PLCP}[i] \le n \ \forall \ i \in [1..n]$
- $PLCP[i] \ge PLCP[i-1] 1$ ■ hence: $PLCP[i] - PLCP[i-1] + 1 \ge 0$.
- \Rightarrow store all values of PLCP[i] PLCP[i-1] + 1 in unary:
- $\sum_{i=1}^{n} (\mathsf{PLCP}[i] \mathsf{PLCP}[i-1] + 1) = \mathsf{PLCP}[n] + n = n \text{ with } \mathsf{PLCP}[0] := 0$
- \blacksquare need n '1's and n '0's
- $\Rightarrow 2n$ bits.

i-1

related arrays with same representation

Ref.	array	factorization
Sadakane'07	PLPF	lcpcomp (Dinklage+'17)
Belazzougui and Cunial'14	matching statistics	Relative LZ (Ziv+'93)
Bannai,Inenaga,K.'17	LPF	LZ77
this talk	LPnF	NOV LZ
this talk	LPnrF	reversed LZ (Kolpakov+'09)

- NOV LZ: Non OVerlapping Lempel-Ziv 77
- \blacksquare Ref.: first occurrence of 2*n*-bit representation

previous work

LPnrF:

	Ref.	time	bits
LPnF:	Crochemore, Tischler' 11 Crochemore + '12 Ohlebusch, Weber' 19:	$\mathcal{O}(n)$	$\mathcal{O}(n \lg n)$ $\mathcal{O}(n \lg n)$ $\mathcal{O}(n \lg n)$

Ref.	time	bits
Kolpakov, Kucherov'09	$\mathcal{O}(n \lg \sigma)$	$\mathcal{O}(n \lg n)$
Chairungsee, Crochemore'09	$\mathcal{O}(n\lg\sigma)$	$\mathcal{O}(n \lg n)$
Sugimoto+'16	$\mathcal{O}(n\lg^2\sigma)$	$\mathcal{O}(n \lg \sigma)$
Crochemore+'12	$\mathcal{O}(n)$	$\mathcal{O}(n \lg n)$

- with 2n-bit representation: $\mathcal{O}(n \lg n)$ bits of working space no longer optimal!
- can we improve working space while not sacrificing time (too much)?

our results

- \bullet $\epsilon > 0$ selectable constant
- lacktriangle basic time: $\mathcal{O}(\epsilon^{-1}n)$
- $t_{SA} = \log_{\sigma}^{\epsilon} n$: suffix array query

structure	bits	multiplicative time penalty
NOV LZ or LPnF	$(1+\epsilon)n\lg n + \mathcal{O}(n)$	$\mathcal{O}(1)$
	$\frac{\mathcal{O}(\epsilon^{-1} n \lg \sigma)}{(2+\epsilon) n \lg n + \mathcal{O}(n)}$	$rac{\mathcal{O}(t_{SA})}{\mathcal{O}(1)}$
LPnrF	$\mathcal{O}(\epsilon^{-1} n \lg \sigma)$	$\mathcal{O}(t_{SA})$
reversed LZ	$(2+\epsilon)n\lg n + \mathcal{O}(n) \ \mathcal{O}(\epsilon^{-1}n\lg\sigma)$	$egin{aligned} \mathcal{O}(1) \ \mathcal{O}(1) \end{aligned}$
	O(e mgo)	$\mathcal{O}(1)$

$$T = abbabbabab$$

T = abbabbabab

• descend from root to leaf λ with suffix number = factor starting position

T = abbabbabab

- descend from root to leaf λ with suffix number = factor starting position
- as long as smallest suffix number in subtree is $< sn(\lambda)$

- descend from root to leaf λ with suffix number = factor starting position
- as long as smallest suffix number in subtree is $< sn(\lambda)$

$$T = a|b|babbabab$$

- descend from root to leaf λ with suffix number = factor starting position
- as long as smallest suffix number in subtree is $< sn(\lambda)$
- lowest visited nodes witnesses reference
- previous occurrence must not overlap

$$T = a|b|b|abbabab$$

- descend from root to leaf λ with suffix number = factor starting position
- as long as smallest suffix number in subtree is $< sn(\lambda)$
- lowest visited nodes witnesses reference
- previous occurrence must not overlap
- otherwise trim overlap

$$T = a|b|b|abb|abab$$

general case:

- sn(w): smallest suffix number in subtree of node w
- \blacksquare strdepth(w): string depth of node w
- node v : lowest traversed node
- \blacksquare node u: v's parent

length is

- $ightharpoonup min(sn(\lambda) sn(v), strdepth(v))$
- \blacksquare min(sn(λ) sn(u), strdepth(u))
- \Rightarrow take the max of both

$$T = a|b|b|abb|abab$$
\$

recap

can compute NOV LZ with

- $\mathcal{O}(n)$ calls to $\operatorname{sn}(\cdot)$
- $\mathcal{O}(z)$ calls to strdepth (\cdot)

to compute LPnF:

- treat each leaf as a factor starting position
- use suffix links to omit the traversal from the top
- $\Rightarrow \mathcal{O}(n)$ calls to $\operatorname{sn}(\cdot)$ and $\operatorname{strdepth}(\cdot)$

how much time costs a call to $sn(\cdot)$ or $strdepth(\cdot)$?

suffix trees

construction by Farach-Colton+'00:

- $\mathcal{O}(n)$ time
- lacktriangle $\mathcal{O}(n \lg n)$ bits working space

space-efficient $\mathcal{O}(n)$ time constructions:

- Fischer+'18:
 - $(1+\epsilon)n\lg n + \mathcal{O}(n)$ bits with $\epsilon \in (0,1]$
 - $riangleq t_{\mathsf{SA}} = \mathcal{O}(1/\epsilon)$ time for $\mathsf{sn}(\cdot)$ and $\mathsf{strdepth}(\cdot)$
- Munro+'17,Belazzougui+'20:
 - \Box $\mathcal{O}(n \lg \sigma)$ bits
 - $\ ^{\square}\ t_{\mathsf{SA}} = \log_{\sigma}^{\epsilon} n \ \mathsf{with} \ \mathsf{SA} \ \mathsf{sampling}$
 - $\ \ \$ alternatively: strdepth (\cdot) in $\mathcal{O}(\mathsf{strdepth}(\cdot))$ time

reversed LZ factorization

- lacktriangle T^{R} : reverse of T
- lacktriangle use suffix tree of $R := T \# T^{\mathrm{R}} \$$ with $\$ < \# < c \ \forall \ c \in \Sigma$
- key lemma: each factor is the string label of a suffix tree node.

key lemma

key lemma

assume factor F ending before an a with

key lemma

$$R = \begin{bmatrix} \overline{\mathbf{a}} & F^{\mathrm{R}} & F & \overline{\mathbf{a}} \end{bmatrix} \#$$

- \blacksquare assume factor F ending before an a with
- lacktriangle reference preceded by $ar{\mathbf{a}} \in \Sigma \{\mathbf{a}\}$ (otherwise F can be prolonged)

key lemma

$$R = \begin{bmatrix} \bar{\mathbf{a}} & F^{R} & F & \bar{\mathbf{a}} \end{bmatrix} \# \begin{bmatrix} F & \bar{\mathbf{a}} & \$ \end{bmatrix}$$

- \blacksquare assume factor F ending before an a with
- lacktriangle reference preceded by $ar{\mathbf{a}} \in \Sigma \{\mathbf{a}\}$ (otherwise F can be prolonged)
- \blacksquare mirrored reference in \mathcal{T}^{R} ends with $\bar{\mathbf{a}}$
- \Rightarrow R has substrings F_a and $F_{\bar{a}}$
- $\Rightarrow \exists$ node with string label F

(if $F^{\mathbb{R}}$ is prefix of $T \Rightarrow F$ \$ is suffix of R)

cooperative 2 player game

each player takes turns at the same pace

- Player 2
 - □ selects leaves in descending suffix number order
 - □ marks all nodes on the path up to the root
- Player 1
 - □ selects leaves in ascending suffix number order
 - if selected leaf λ starts with a factor F: search the lowest marked ancestor v with strdepth(v) = |F|

Player 1 starts.

analysis

- termination when both players meet (at symbol #)
- Player 2 never marks a node twice $\Rightarrow \mathcal{O}(n)$ node visits
- Player 1 calls $\mathcal{O}(z)$ times strdepth(w), where z=# factors

find source positions in $\mathcal{O}(z \lg n)$ bits:

- second game, but keeping the red marked nodes
- when Player 2 reaches a red marked node from leaf λ : store there $\operatorname{sn}(\lambda)$ note: $z = \mathcal{O}(\log_{\sigma} n) \Rightarrow \mathcal{O}(z \lg n) \subset \mathcal{O}(n \lg \sigma)$

total:

- lacktriangledown $\mathcal{O}(nt_{\mathsf{SA}})$ time for LPnrF by setting $z \leftarrow n$, and using SA sampling for computing strdepth(w)

open problems

- lacktriangle $\mathcal{O}(n \lg \sigma)$ bits $+ \mathcal{O}(n)$ time possible for computing any LP*F table?
 - ! Matching statistics can be computed in $\mathcal{O}(n \lg \sigma)$ bits and $\mathcal{O}(n)$ time because the choice for the reference is static, while all LP*F tables need references based on the already processed text.
- LCP array has notion of *irreducible* LCP values with a sum of $\mathcal{O}(n \lg n)$.
 - □ Are there irreducible LP*F values? If so, what is their sum?
- $\mathcal{O}(r)$ words of space, r: runs in the Burrows-Wheeler transform (BWT). \blacksquare matching statistics: Bannai, Gagie, I'20
 - LPF: Prezza.Rosone'20
 - NOV LZ by adaptation of Policriti, Prezza'18:
 - they update the RLBWT of the reversed text while computing a factor
 - □ instead, keep the RLBWT and update it *after* determining factor
 - adaptation to LPnF seems hard:
 - need to insert characters and undo these insertions in RLBWT
 - $\Rightarrow \sum_{i=1}^n \mathsf{LPnF}[i] = \mathcal{O}(n^2)$ steps
 - for LPnF or LPnrF open