Structuri de Date Elementare

— Stive Cozi Deque Mars? Batog? ——

Stive (Stack)

- Sunt structuri de date de tip LIFO (Last In First Out)
- Avem acces numai la elementul din vârf (top)
- Operații de bază:
 - Push adăugarea unui element (în vârf)
 - Pop eliminarea elementului din vârf
- Operații suplimentare:
 - Size() numărul de elemente
 - isEmpty() returnează true dacă numărul de elemente este exact 0
 - Peek() ne spune valoarea din vârf fără să o extragă

Stive (Stack)

Stive (Stack)

- Metode de implementare:
 - Stivă ca Vector
 - Vizualizare
 - <u>Implementare</u> (găsiți în secțiunea de implementare ca array)
 - Stivă ca Listă
 - Vizualizare
 - <u>Implementare</u> (găsiți în secțiunea de implementare ca linked list)
 - Stivă în C++ https://en.cppreference.com/w/cpp/container/stack

Exerciții

- https://www.infoarena.ro/problema/nrpits
- Inversarea unui text
- Problema <u>parantezelor</u>

Cozi (Queue)

- Sunt structuri de date de tip FIFO (First In First Out)
- Avem acces la primul şi la ultimul element (head & tail / front & back)
- Operații de bază:
 - Push adăugarea unui element la coadă
 - o Pop eliminarea unui element
- Operaţii suplimentare:
 - Size() numărul de elemente
 - isEmpty() returnează true dacă numărul de elemente este exact 0
 - First() ne spune valoarea de la început fără să o extragă
 - Last() ne spune valoarea de la sfârșit fără să o extragă

Cozi (Queue)

Cozi (Queue)

- Metode de implementare:
 - Coadă ca Vector
 - Vizualizare
 - Implementare
 - Coadă ca Listă
 - Vizualizare
 - Implementare
 - o Coadă în C++ https://en.cppreference.com/w/cpp/container/queue

Deque

- Double ended queue (coadă cu două capete)
- Operații de bază:
 - Push Front
 - Push Back
 - Pop Front
 - Pop Back
- Operații suplimentare
 - Size()
 - Front()
 - Back()
 - isEmpty()

Deque

Deque

- Double ended queue (coadă cu două capete)
- Metode de implementare:
 - o Deque ca Listă
 - Vizualizare
 - Implementare
 - Deque ca Array
 - <u>Implementare</u>
 - Deque în C++ https://en.cppreference.com/w/cpp/container/deque

Exerciții

https://infoarena.ro/problema/deque

 Book Pile -https://codeforces.com/problemsets/acmsguru/problem/99999/271

Problemă

Se dă un vector cu n elemente și apoi n operații de genul:

- 1 i j → care este minimul din intervalul [i,j]
- 2 i $x \rightarrow$ modificați elementul de pe poziția i în x

0	1	2	3	4	5	6	7	8
								8

Problemă

Se dă un vector cu n elemente și apoi n operații de genul:

- 1 i j → care este minimul din intervalul [i,j]
- 2 i x \rightarrow modificați elementul de pe poziția i în x

Idei?

•

Se dă un vector cu n elemente și apoi n operații de genul:

- 1 i j → care este minimul din intervalul [i,j]
- 2 i x \rightarrow modificați elementul de pe poziția i în x

Idee:

Împărțim vectorul în zone de lungime L și calculăm minimul pe fiecare zonă în parte.

0	1	2	3	4	5	6	7	8
3	9	2	5	7	34	6	11	8
	2			5			6	

Simenul lui Batog - SQRT Decomposition

Împărțim vectorul în zone de lungime L și calculăm minimul pe fiecare zonă în parte.

Linkuri externe:

- Geeks for geeks
- CpAlgorithms

Se dă un vector cu n elemente și apoi n operații de genul:

- 1 i j → care este minimul din intervalul [i,j]
- 2 i x \rightarrow modificați elementul de pe poziția i în x

Cum răspundem la 1 0 8; 1 0 4; **1 1 7** ?

0	1	2	3	4	5	6	7	8
3	9	2	5	7	34	6	11	8
	2			5			6	

Se dă un vector cu n elemente și apoi n operații de genul:

- 1 i j → care este minimul din intervalul [i,j]
- 2 i $x \rightarrow$ modificați elementul de pe poziția i în x

Cum răspundem la 1 1 7 ?

0	1	2	3	4	5	6	7	8
3	9	2	5	7	34	6	11	8
	2			5			6	

Smenul lui Batog - Complexitate 1

Pentru **query** (operatia de tip 1):

Împărțim vectorul în **n / L zone** de lungime L

Putem itera aproape complet **2 zone** (de la început și/sau de la final) \Rightarrow O(2*L)

$$\Rightarrow$$
 O(n/L + 2 * L)

0	1	2	3	4	5	6	7	8
3	9	2	5	7	34	6	11	8
	2			5			6	

Șmenul lui Batog - Complexitate 1

Pentru **query** (operația de tip 1):

$$O(n/L + 2 * L)$$

Cât trebuie să fie L pentru o complexitate minimă?

```
• L = sqrt(n)
```

```
\Rightarrow O(n/\operatorname{sqrt}(n) + 2 * \operatorname{sqrt}(n))
= O(\operatorname{sqrt}(n) + 2 * \operatorname{sqrt}(n))
```

$$= O(sqrt(n))$$

Se dă un vector cu n elemente și apoi n operații de genul:

- 1 i j → care este minimul din intervalul [i,j]
- 2 i $x \rightarrow$ modificați elementul de pe poziția i în x

Cum răspundem la 2 2 1; **2 3 10** ?

0	1	2	3	4	5	6	7	8
3	9	2	5	7	34	6	11	8
	2			5			6	

Se dă un vector cu n elemente și apoi n operații de genul:

- 1 i j → care este minimul din intervalul [i,j]
- 2 i x \rightarrow modificați elementul de pe poziția i în x

Cum răspundem la 2 3 10 ?

0	1	2	3	4	5	6	7	8
3	9	2	5 10	7	34	6	11	8
2			7			6		

Simenul lui Batog - Complexitate 2

Pentru **update** (operatia de tip 2):

Modificăm elementul de pe poziția i

Trebuie să facem update pe zona respectivă (să recalculăm minimul)

$$\Rightarrow$$
 O(L) = O(sqrt(n))

0	1	2	3	4	5	6	7	8
3	9	2	5 10	7	34	6	11	8
2				7			6	

Împărțim vectorul în zone de:

- sqrt(n)
- sqrt(n) / 2
- sqrt(n) * 2
- Variaţiuni

De ce?

Împărțim vectorul în zone de:

- sqrt(n)
- sqrt(n) / 2
- sqrt(n) * 2
- Variaţiuni

- De ce?
 - o În practică, algoritmul poate rula mai rapid pentru valori diferite de sqrt(n), în funcție de operațiile care se fac pe segmente.

Şmenul lui Batog - sortare

Se dă un vector cu n elemente. Sortați-l folosind șmenul lui Batog.

0	1	2	3	4	5	6	7	8
	9							
	2			5			6	

https://leetcode.com/problems/sort-an-array/

Complexitate?

O(n sqrt n)

Kahoot

Începem cursul 5 (Luni 15 ianuarie ora 14:00) cu **Kahoot dublu**!

Final