Chapter 8
The Enhanced
EntityRelationship
(EER) Model

Addison-Wesley is an imprint of

The Enhanced Entity-Relationship (EER) Model

- Enhanced ER (EER) model
 - Created to design more accurate database schemas
 - Reflect the data properties and constraints more precisely
 - More complex requirements than traditional applications

The Enhanced Entity-Relationship (EER) Model

- Enhanced ER model extends the basic ER model by adding following features:
 - An entity definition is known as a class.
 - A specific occurrence of an entity is an instance of a class.
 - Classes can be formed into superclass/subclass hierarchies using generalization and specialization.
 - The IS-A relationship.
 - Inheritance of attributes: Subclass entity inherits all attributes and relationships of superclass
 - · Constraints on subclass membership.
 - Categories are used to represent a union of classes.

Specialization

Specialization

- Process of defining a set of subclasses of an entity type
- Defined on the basis of some distinguishing characteristic of the entities in the superclass
- Each subclass inherits all relationships and attributes from the super-class.
- Subclass can define:
 - Specific attributes
 - Specific relationship types
- Certain attributes may apply to some but not all entities of the superclass
- Some relationship types may be participated in only by members of the subclass

Specialization

- The specialization process allows us to do the following:
 - Define a set of subclasses of an entity type
 - Establish additional specific attributes with each subclass
 - Establish additional specific relationship types between each subclass and other entity types or other subclasses

Generalization

- Reverse process of abstraction
- Generalize into a single superclass
 - Original entity types are special subclasses
- Generalization
 - Process of defining a generalized entity type from the given entity types

Figure 8.2 Instances of a specialization.

Enhanced ER Diagram

Specialization/Generalization:

PEARSON

Constraints on Specialization and Generalization

- Completeness (or totalness) constraint
 - Total Specialization Every member of the super-class must belong to at least one subclass.
 - Partial Specialization a member of the super-class may not belong to one of the subclasses.
- Disjoint every member of the super-class can belong to at most one of the subclasses.
- Overlapping a member of the super-class can belong to more than one of the subclasses.
- Disjointness and completeness constraints are independent

ER Diagram Notation (cont.)

Total or partial specialization:

Disjoint or overlapping specialization:

Constraints on Specialization and Generalization

- May be several or one subclass
- Determine entity subtype:
 - Predicate-defined (or condition-defined)
 subclasses: we can determine exactly the entities that will become members of each subclass by placing a condition on the value of some attribute of the superclass.
 - Attribute-defined specialization: all subclasses in a specialization have their membership condition on the same attribute of the superclass.
 - User-defined: we do not have a condition for determining membership in a subclass.

Attribute-defined Subclass

Rules for Attribute-defined Subclass

- If the specialization attribute at the superclass level is single-valued, membership at the subclass level is always disjoint.
- If the specialization attribute at the superclass level is multi-valued, membership at the subclass level is always overlapping.
- If the specialization is total, the attribute value in the superclass is required.
- If the specialization is partial, the specialization attribute value in the superclass is optional. The presence of a value, however, implies automatic insertion at the subclass level.

User-defined Subclass

Specialization and Generalization Hierarchies and Lattices

- Specialization hierarchy
 - Every subclass participates as a subclass in only one class/subclass relationship
 - Results in a tree structure or strict hierarchy
- Specialization lattice
 - Subclass can be a subclass in more than one class/subclass relationship

Rules for Superclass/Subclass Hierarchy

- Deleting an entity from a superclass implies automatic deletion of the entity from all subclasses.
- Deleting an entity from a subclass does not imply deleting the entity from its superclass. However, attributed-defined constraints must not be violated.
- At the superclass level, changing the value of an attribute used for attribute-defined specialization requires appropriate changes in subclass membership.

Specialization and Generalization Hierarchies and Lattices (cont'd.)

Multiple inheritance

- Subclass with more than one superclass
- If attribute (or relationship) originating in the same superclass inherited more than once via different paths in lattice
 - Included only once in shared subclass
- A shared subclass must satisfy the multiple inheritance intersection constraint, where each instance of the shared subclass is an instance of all of its superclasses

Single inheritance

Some models and languages limited to single inheritance

Specification Lattice

PEARSON

Utilizing Specialization and Generalization in Refining Conceptual Schemas

- Specialization process
 - Start with entity type then define subclasses by successive specialization
 - Top-down conceptual refinement process
- Bottom-up conceptual synthesis
 - Involves generalization rather than specialization

Modeling of UNION Types Using Categories

- Union type or a category
 - Represents a single superclass/subclass relationship with more than one superclass
 - Subclass represents a collection of objects that is a subset of the UNION of distinct entity types
 - Attribute inheritance works more selectively
 - A category represents a union of its superclasses, where an instance of a category subclass must be an instance of at least one superclass, but is not necessarily a member of all superclasses.

Categories and Categorization

A category can be total or partial. A total category holds the union of all entities inits superclasses, whereas a partial category can hold a subset of the union.

A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions

- The UNIVERSITY Database Example
 - UNIVERSITY database
 - Students and their majors
 - Transcripts, and registration
 - University's course offerings

PEARSON

Design Choices for Specialization/Generalization

- Many specializations and subclasses can be defined to make the conceptual model accurate
- If subclass has few specific attributes and no specific relationships
 - Can be merged into the superclass
- If all the subclasses of a specialization/generalization have few specific attributes and no specific relationships
 - Can be merged into the superclass
 - Replace with one or more type attributes that specify the subclass or subclasses that each entity belongs to

Design Choices for Specialization/Generalization (cont'd.)

- Union types and categories should generally be avoided
- Choice of disjoint/overlapping and total/partial constraints on specialization/generalization
 - Driven by rules in miniworld being modeled

Formal Definitions for the EER Model Concepts

- Class:Set or collection of entities
- Subclass: Class whose entities must always be a subset of the entities in another class
- For such a superclass/subclass relationship, we must always have
 S ⊆ C

Formal Definitions for the EER Model Concepts

- A specialization Z = {S1, S2, ..., Sn} is a set of subclasses that have the same superclass G; that is, G/Si is a superclass/subclass relationship for i = 1, 2, ..., n. G is called a generalized entity type (or the superclass of the specialization, or a generalization of the subclasses {S1, S2, ..., Sn}).
 - Z is said to be total if we always (at any point in time) have

$$\bigcup_{i=1}^{n} S_{i} = G$$

- Otherwise, Z is said to be partial.
- Zis said to be disjoint ifwe always have
 Si ∩ Sj = Ø (empty set) for i ≠ j
- Otherwise, Z is said to be overlapping.

Formal Definitions for the EER Model Concepts (cont'd.)

- A subclass S of C is said to be predicate-defined if a predicate p on the attributes of C is used to specify which entities in C are members of S; that is, S = C[p], where C[p] is the set of entities in C that satisfy p.
- A subclass that is not defined by a predicate is called user-defined.
- A specialization Z(or generalization G) is said to be attribute-defined if a predicate (A = ci), where A is an attribute of G and ci is a constant value from the domain of A, A specialization Z(or generalization G) is said to be attribute-defined if a predicate(A = ci), where A is an attribute of G and ci is a constant value from the domain of A,

Formal Definitions for the EER Model Concepts (cont'd.)

A category T is a class that is a subset of the union of n defining superclasses D1, D2,..., Dn, n > 1, and is formally specified as follows:

$$T \subseteq (D_1 \cup D_2 \dots \cup D_n)$$

 A predicate pi on the attributes of Di can be used to specify the members of each Di that are members of T. If a predicate is specified on every Di, we get

$$T = (D_1[p_1] \cup D_2[p_2] \dots \cup D_n[p_n])$$