Sprawozdanie

Ćwiczenie 1

Jan Kwinta

Prowadzący ćwiczenia: prof. Jerzy Smyrski

Data wykonania: 15 marca 2023

Wstęp teoretyczny

Podczas pierwszych labolatoriów z elektroniki cyfrowej zapoznawaliśmy się z narzędziami dostępnymi w pracowni elektronicznej: oscyloskopem Tektronix MSO3000 oraz generatorem przebiegów elektrycznych Tektronix AFG3000. W celu nauki podstaw obsługi tych urządzeń wykonaliśmy trzy zadania dotyczące:

- Obserwacji i pomiaru kształtu funkcji, amplitudy, częstotliwości i przesunięcia fazowego sygnałów.
- Generowania i obserwacji dwóch funkcji harmonicznych tworzących krzywe Lissajous.
- Obserwacji zjawiska dudnienia, które powstaje przy sumowaniu dwóch sygnałów o zbliżonych częstotliwościach; pomiaru okresów wygenerowanych dudnień.

Ćwiczenie 1.1

Obserwacja syngałów z generatora. Pierwszym zadaniem było podanie sygnału z generatora na oscyloskop, obserwacja kształtu sygnału i zapisanie obrazu wyświetlanego na ekranie oscyloskopu. Poniżej zapisałem 3 obrazy:

- 1. Sygnał sinusoidalny o częstotliwości 3~kHz i amplitudzie 2~Vpp.
- 2. Sygnał trójkątny o częstotliwości 3~kHz i amplitudzie 3~Vpp.
- 3. Sygnał prostokątny o częstotliwości 2 kHz i amplitudzie 2 Vpp.

1: Sygnał sinusoidalny.

MSO3012 - 10:28:51 15.03.2023

2: Sygnał trójkątny.

3: Sygnał prostokątny.

Pomiar amplitudy i częstotliwości sygnałów. Oscyloskopem można wykonywać pomiary na kilka sposobów:

- 1. W oparciu o poziome i pionowe działki wyświetlane na ekranie oscyloskopu. Działki poziome odpowiadają ustawionej wartości wzmocnienia sygnału, a działki pionowe podstawy czasu. Obydwie te wartości są widoczne u dołu ekranu.
- 2. Za pomocą kursorów. Kursory to wbudowane w oscyloskop narzędzie służące do precyzyjnego mierzenia wartości takich jak: napięcie w danej chwili czasu, odstęp pomiędzy dwoma kursorami, itp.
- 3. Za pomocą funkcji "Measure", która automatycznie analizuje sygnał i wyświetla na ekranie informacje o nim.

MSO3012 - 10:59:38 15.03.2023

Działki oscyloskopu: jednej działce na osi X odpowiada $1\ ms$. W jednej działce czasu obserwujemy trzy przebiegi sygnału. Jednej działce na osi Y odpowiadają $2\ V$. Możemy więc wnioskować, że sygnał ma częstotliwość $3\ kHz$ i amplitudę $4\ V$ pp.

Kursory: kursor A zmierzył wartość szczytową amplitudy $1\ V$, zaś kursor B, wartość minimalną $-1\ V$. Zatem amplituda peak-to-peak tego sygnału wynosi $2\ V$.

Kursory: Siła sygnału w miejscu obydwu kursorów wynosi 0~V. Odległość czasowa między kursorami to $333~\mu s$. Częstotliwość sygnału jest odwrotnością jego okresu, wynosi więc $\frac{1}{333\cdot 10^{-6}}=\frac{1}{333}\cdot 10^6\approx 3~kHz$.

Kursory: Powyższą metodę można też zastosować używając innej funkcji kursorów. Tu zamiast okresu sygnału oscyloskop od razu podaje częstotliwość.

Funkcja "Measure": Oscyloskop automatycznie podaje amplitudę (1.98 V) oraz częstotliwość (3.016 kHz) sygnału. Wyniki automatycznego pomiaru dosyć dokładnie odpowiadają wartościom ustawionym na generatorze: 2 V oraz 3 kHz.

Pomiar przesunięcia fazy. Na kanały 1 i 2 oscyloskopu podane zostały dwa sygnały z wyjść 1 i 2 generatora. Obydwa sygnały sinusoidalne miały taką samą częstotliwość $3\ kHz$ i taką samą amplitudę $2\ V$ pp. Wartość fazy sygnału została ustawiona na 0° dla kanału 1 i 45° dla kanału 2.

Tak ustawione przesunięcie fazowe można zmierzyć na dwa sposoby:

- 1. Kursorami: ustawiając w menu kursorów jeden okres sygnału na kanale 1 jako 360° i mierząc drugim kursorem przesunięcie przecięcia sygnału na kanale 2 z osią poziomą. Niestety nie zapisałem grafiki wykonania tego pomiaru.
- 2. Za pomocą wbudowanej funkcji "Measure": ustawiając który sygnał chcemy mierzyć w stosunku do drugiego kanału.

Pomiar przesunięcia fazy dwóch sygnałów funkcją "Measure".

Ćwiczenie 1.2

Krzywe Lissajous. Wykorzystując tryb X-Y oscyloskopu możemy zaobserwować efekt złożenia dwóch drgań harmonicznych, które tworzą krzywe parametryzowane, zwane krzywymi Lissajous. Kształt krzywych zależy od stosunku częstotliwości dwóch sygnałów i ich przesunięcia fazy. W poniższych przykładach wybierałem na generatorze tę samą amplitudę dla obydwu kanałów (2 V) i różne częstotliwości oraz przesunięcia fazy. Kształty krzywych Lissajous mogą być bardzo różne, od mało skomplikowanych takich jak odcinek albo okrąg aż do złożonych zamkniętych krzywych przecinających się wiele razy.

MSO3012 - 12:19:31 15.03.2023

Krzywa 1: kanał 1: 1 kHz, kanał 2: 1 kHz, faza: 90°

Krzywa 2: kanał 1: 5 kHz, kanał 2: 6 kHz, faza: 0°

Krzywa 3: kanał 1: 4 kHz, kanał 2: 3 kHz, faza: 180°

Krzywa 4: kanał 1: 2 kHz, kanał 2: 5 kHz, faza: 90°

Krzywa 5: kanał 1: 2kHz, kanał 2: 3kHz, faza: 120°

Krzywa 6: kanał 1: 17 kHz, kanał 2: 21 kHz, faza: 6°

Ćwiczenie 1.3

Dudnienia. Jeżeli wykonamy sumowanie dwóch sygnałów sinusoidalnych o jednakowych amplitudach i zbliżonych (ale różnych) częstotliwościach możemy zaobserwować zjawisko dudnień.

Na kanale 1 sygnał o częstotliwości 1 kHZ, na kanale 2 $1.05\ kHz$. Obydwa sygnały mają amplitudę 2 Vpp.

Badając to zjawisko mierzymy dwie wartości: częstotliwość wypadkową v_w oraz częstotliwość dudnień v_d . Okres wypadkowy $T_w = \frac{1}{v_w}$ to okres pomiędzy szczytami dwóch bliskich skoków. Okres dudnień $T_d = \frac{1}{v_d}$ wyznaczamy pomiędzy maksymalnymi skokami dudnień.

Jeżeli v_1 i v_2 to znane częstotliwości dodawanych sygnałów to możemy wyznaczyć częstotliwości analitycznie:

$$v_w = \frac{v_1 + v_2}{2}$$
$$v_d = |v_1 - v_2|$$

W przypadku mierzonych przeze mnie dudnień sygnałów jest to:

$$v_w = \frac{1+1.05}{2} = \frac{2.05}{2} = 1.025 \ [kHz]$$

 $v_d = |1-1.05| = 0.05 \ [kHz] = 50 \ [Hz]$

Pomiary.

Okres wypadkowy $T_w = 976 \ [\mu s]$.

Zatem $v_w = \frac{1}{976 \cdot 10^{-6}} [Hz] \approx 1024.59016 [Hz] = 1.024590 [kHz].$

MSO3012 - 12:43:00 15.03.2023

Okres dudnień $T_d = 20.01 \ [ms]$.

Zatem $v_d = \frac{1}{20.01 \cdot 10^{-3}} [Hz] \approx 49.975012 [Hz].$

Omówienie wyników

Podczas pomiarów amplitudy i częstotliwości sygnałów (Ćwiczenie 1.1) za pomocą kursorów oscyloskop wskazywał wartości z błędem względnym rzędu 0.1% w porównaniu do parametrów ustawionych na generatorze przebiegów.

Dla częstotliwości:
$$\left| \frac{3000 - 3003}{3000} \right| = 0.1\%$$

Funkcja "Measure" oscyloskopu przy mierzeniu amplitudy, częstotliwości i przesunięcia fazy wykazała nieco większy błąd.

Dla częstotliwości:
$$\left|\frac{3000-3016}{3000}\right|=0.53\%$$
Dla amplitudy: $\left|\frac{2-1.98}{2}\right|=0.1\%$
Dla przesunięcia fazy: $\left|\frac{45-45.73}{45}\right|=0.162\%$

Warto również zaznaczyć, że oscyloskop posiada więcej narzędzi, do mierzenia nawet najmniejszych zmian sygnału, np automatyczne obliczanie średniej i odchylenia standardowego mierzonej wartości w danym zakresie czasu.

Przy obliczaniu częstotliwości dudnień błąd wyników moich pomiarów w stosunku do obliczonych analitycznie "idealnych" częstotliwości był mniejszy niż 0.05%.

$$\left| \frac{1.025 - 1.02459}{1.025} \right| = 0.04\%$$

$$\left| \frac{50 - 49.975012}{50} \right| = 0.049976\%$$

Notatki z zeszytu labolatoryjnego

Poniżej załączone są notatki z zeszytu labolatoryjnego, które prowadziłem podczas zajęć wykonując pomiary.

POMIARY

pom1 - dzialkami'

skala

$$V = 2 V$$
 $t = 1 ms$
 W jednej' dziulce czasu

trzy puebiegi

poin 2a – Kursovy kursov
$$a \approx 1 \vee 1$$
 kursov $b \approx -1 \vee 1$ amp $2 \vee pp$

poin 2b — obydia kusovy va OV
$$a \quad 0.000 \text{ s}$$

$$b \quad 333 \quad \text{ys}$$

$$f = \frac{1}{T} = \frac{1}{333-10^{-6}} = 3 \text{ kHz}$$

pom 3 — foukeja measure

top 1.98 V

Freq 3.01 WHz

PRZESUNIECIE

Wszystko na 1 SkHz
2 Vpp

45° na gen.
na CH1

kursory i measure

Sostemenie 1 okoesu 360°

semicrenie na lemale?

LISSAJOUS

Knywa 1	5 kHz, 6 kHz
Krywa 2	Winica fan 0° 4kHz, 3kHz
Knywa 3	nosinita for 180° LkHz, 5 kHz
	resinica for goo
Knywa 4	2ktz, 3ktz 120° 1ktlz, 1ktlz 90°
Knywer 5	
Kryna 6	17 kHz, 21 KH2 60
PUDNIENIA	1kH2 , 1.05 kH2 2Vpp , 2Vpp
To - ohnes dudnivers	Suma Sygnator
Two her ypadle	$T_{W} = \frac{1}{fd} = 20 \text{ ms}$ $T_{W} = \frac{1}{f\omega} = 9 + 6 \text{ ps}$ $f_{W} = \frac{1}{f\omega} = \frac{1}{f\omega} + \frac{1}{f\omega}$ $f_{W} = \frac{1}{f\omega} + \frac{1}{f\omega} + \frac{1}{f\omega} = \frac{1}{f\omega} + \frac{1}{$