Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2017-2018

Seconda prova in itinere - 11 giugno 2018

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7	
							SI	NO

Leggere le tracce con attenzione!

Giustificare le risposte, risposte non giustificate non saranno valutate.

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning entro il 21 giugno.

1. (15 punti)

Data la seguente formula booleana

$$(x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

definire l'insieme S e l'intero t tali che $\langle S, t \rangle$ sia l'immagine di $\langle \Phi \rangle$ nella riduzione polinomiale di 3-SAT a SUBSET-SUM.

2. (15 punti)

Fornire le definizioni di:

- complessità di tempo di una macchina di Turing deterministica,
- classe di complessità di tempo TIME(t(n)),
- algoritmo di verifica e linguaggio verificabile.
- 3. (15 punti)
 - Definire le classi P, NP, co-NP.
 - Per ognuna delle seguenti domande dire se è vera, falsa o non si sa, motivando brevemente la risposta:
 - (1) A_{TM} appartiene ad NP.
 - (2) $NP \cap co\text{-}NP = \emptyset$.
- 4. (15 punti)

Fornire la definizione formale di funzione calcolabile e di riducibilità mediante funzione.

Seconda prova in itinere

5. (15 punti)

Data una macchina di Turing deterministica M si consideri la macchina di Turing deterministica M' così definita:

M' = "su input x:

- 1. esegue M su x
- 2. se M accetta, accetta
- 3. se M rifiuta, accetta

Si consideri la funzione $f: \Sigma^* \to \Sigma^*$ definita come segue:

$$f(y) = \begin{cases} \langle M', w \rangle & \text{se } y = \langle M, w \rangle \text{ dove } M \text{ è una macchina di Turing e } w \text{ è una stringa,} \\ y & \text{altrimenti.} \end{cases}$$

La funzione f è calcolabile? Motivare brevemente la risposta.

6. (15 punti)

Definire i linguaggi A_{TM} , $HALT_{TM}$, EQ_{TM} .

Utilizzando il risultato del precedente esercizio, provare le seguenti relazioni.

$$HALT_{TM} \leq_m A_{TM}$$

$$HALT_{TM} \leq_m EQ_{TM}$$

Occorre enunciare eventuali risultati intermedi utilizzati, senza necessariamente dimostrarli.

7. Si consideri il linguaggio

$$L = \{\langle M \rangle \mid M$$
è una MdT che si arresta su 11 e non si arresta su 00 $\}$.

Definire il linguaggio $HALT_{TM}$ e dimostrare che $HALT_{TM} \leq_m L$.