Top quark mass measurement from b-jet energy spectrum at 13 TeV

Presenters: Abhirami Harilal, Alan Yuseth Herrera Flor, Ali Eren Simsek, Diyaselis Delgado Lopez, Furong Yan, Hirak Bandyopadhyay, John Lawrence, Michael Lukasik

Motivation

- Free parameter needed to be measured within the standard model
 - Top production in 2016 (σttbar = 832 pb)
- Strongest coupling to the Higgs mechanism
 - o Provides a key variable to subsequent measurements
- Concise measurement provides a place to search for rare decay modes
 - \circ B_s -> $\mu^+\mu^-$

Extracting Top Mass

 Considering two body decay from the top quark in the rest frame

$$M_t = E_b^{rest} + \sqrt{M_W^2 - M_b^2 + (E_b^{rest})^2}$$

 Knowing the energy of the BJet provides us all we need to get the top mass

Search Method

- Single top production rare compared to TTbar,
 reconstruction contains unknowns
- TTbar final states includes dilepton, lepton+jet, and fully hadronic.
- Dilepton channel provides clear signature,
 provide clean and easy cuts to make for event
 selection
- Thus, TTbar -> 2I + 2b is our search signal

Selection of the EMu Events

Triggers:

- Mu8_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL
- Mu17_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL

Leptons:

- Events have exactly one electron and one muon
- $p_T > 20 \text{ GeV and } |\eta| \le 2.4$
- Ilsolationl < 0.15(0.12) in a cone of radius 0.3(0.4)

Jets

- \geq 2 jets with $p_T > 30$ GeV and $|\eta| \leq 2.5$
- 1 or 2 b-tagged jets (CSV > 0.405)

Event Yields

Process	Number of events
Single top	6438 ± 92
W	0.0 ± 0.0
Diboson	182 ± 8
$t\bar{t}$	138101 ± 238
DY	339 ± 76
Total from simulations	145061 ± 76
Data	131120

- Signal:
 - ttbar
- Background:
 - W+jets
 - Diboson
 - Single-top
 - Drell-Yan

Energy Spectrum:

- Energy peak has a correlation of the top mass
- Asymmetrical, hard to fit

Pt/

B-jet Energy

Log Energy Spectrum

- To find information from the data we first convert the energy into a reweighed log plot of the b-jet energy
- This makes the data symmetric about its peak and much easier to fit

Log of b-jet energy

Fit Function

- After event selection is finished we are ready to extract information from the data
- First we must do a fit to the b-jet energy spectrum
- We considered using a polynomial fit and a Gaussian fit

Gaussian or Polynomial

- The polynomial fit function showed potential because it had lower Chi² values and uncertainties on the peaks
- However for certain data it would not produce a proper fit or the uncertainty on the peak
- In the end we decided to use the Gaussian fit function to analyze the data

Why calibration is necessary?

Without calibration our values for the mean b-jet peak would be lower and result in lower values of top mass.

We correct the measurement from several sources of bias, such as:

- Reconstruction: unmeasured energy
- Event Selection: jet pT, b-tag, etc.
- Purity: Misidentified b-jets, background events

Calibration Procedure

From MC simulation of different top masses, we compute the energy peak of the b-jets and fit with a Gaussian

- M₊ = 169.5 GeV
- M₊ = 172.5 GeV
- M_t = 175.5 GeV

2000 pseudo-experiments were created from the expected b-jet energy spectrum in log scale for the top mass values.

We use a Poisson distribution on number of events in each bin. Finally, for each mass, we plot the peak distributions.

Calibration Plot

- For the three top masses, a fit is done between the expected and measured b energy peak.
- Extract the fit parameters and apply to get calibrated b-peak energy.
- Uncertainties associated are propagated applying the covariance matrix.

Calibration Performance

From the Eb distribution for Mt= 172.5 GeV

Before calibration Mt= 169.82 GeV

Calibration Performance

- Create the Pull distribution for each value of predicted top mass.
- $PuII = (E^{Peak}_{calibrated} E^{Peak}_{predicted})/\Delta E^{Peak}_{calibrated}$
- Zero mean points towards no bias ---> Results agree with the theoretical prediction.
- Width distribution is theoretically 1.
- Our width values range from 0.69 to 0.81 -->Lower values indicate overestimation of statistical uncertainty.

Calibration Performance

 Pull distributions for three different cases show calibration gives mean of the pull distributions close to zero.

Top mass = 169.5 GeV

Top mass = 172.5 GeV

Top mass = 175.5 GeV

Systematic Uncertainties

Even with infinite statistics, the error on a result will never be zero!

Such errors are called "systematic uncertainties", and typical origins are:

- Imperfect modeling/simulation
- Lacking understanding of experiment
- > Uncertainty in parameters involved
- Uncertainty associated with corrections
- > Theoretical uncertainties/limitations

While the statistical uncertainty is Gaussian and scales like, the systematic uncertainties do not necessarily follow this rule...

When **statistical** uncertainty is largest, more data will improve precision. When **systematic** uncertainty is largest, more understanding will improve precision.

Theoretical Systematic Uncertainties

	δE _{peak} [GeV]	δm₁ [GeV]
Final State Radiation	0,87	1,43
Initial State Radiation	0,099	0,16
Q ² scale [Parton Shower]	0,009	0,018
Top Pt reweighting	1,63	2,67

- It has been observed in several analyses at 8 and 13 TeV that the top-quark pT is not perfectly reproduced in simulations.
- Simulations are not corrected for top-quark measurements but they need to be reweighed so that the top-quark pT distribution matches the one observed in data in order to consider this mis-modeling as a source of systematic uncertainty.

Experimental Systematic Uncertainties

- Jet energy resolution (JER)
- Jet energy scale (JES)
 - uncorrelated group
 - In-situ correlation group
 - Flavor
- Pileup
- b-tagging, trigger and lepton selection efficiencies
- Background normalization

Experimental Systematic Uncertainties

	δE _{peak} [GeV]	δmt [GeV]
Jet Energy Resolution	1.72	1.928
Pileup	0.0115	0.02286
Lepton Scale Factor	0.003	0.01257
Jet Energy Scale	1.3123	2.1572
Total (Theory + Exp)	2.8472	4.197

Results

Final results for the top mass:

$$M_t = 175.03 \pm 0.93 \pm 4.20 \text{ GeV}$$
 (value ± stat ± syst)

Summary

- Precise measurements of top mass is required for the radiative correction for W, Z and Higgs mass.
- Extracted top mass from b-jet energy spectrum in dilepton events.
- Our measurement yields the top mass value to be $175.03 \pm 0.93 \pm 4.20$ GeV.
- Good result for such a small time window. ;)