3 P P

Introduction

Finding the size of a vector, its angle, and projection

Changing the reference

Doing some real-world vectors examples

- Quiz: Vector operations 5 questions
- ▶ Video: Summary

Keep Learning

100%

1 / 1 point

Vector operations assessment

Review Learning Objectives

Vector operations assessment

Submit your assignment

LATEST SUBMISSION GRADE

100%

١.		will be tested on all of the different topics you have in covered this module. Good luck! WE DATE Mar 29, 1:59 PM +07 ATTEMPTS 3 every 8 hours	1 / 1 point	Try again
	A ship travels with velocion ordinate axes.	Receive $\operatorname{grafte}_{2}^{\mathbf{E}}$, with current flowing in the direction given by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ with respect to some co-TO PASS 80%Loft-higher	Grade 100%	View Feedback We keep your highest scor

What is the velocity of the ship in the direction of the current?

\bigcirc	$\lceil 3/2 \rceil$
	2/3

Correct

This is the vector projection of the velocity of the ship onto the velocity of the current.

2. A ball travels with velocity given by $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, with wind blowing in the direction given by $\begin{bmatrix} 3 \\ -4 \end{bmatrix}$ with respect to some co-1/1 point

What is the size of the velocity of the ball in the direction of the wind?

 \odot $\frac{2}{5}$

 $\left(-\frac{2}{5} \right)$

 \bigcirc $\frac{5}{2}$

This is the scalar projection of the velocity of the ball onto the velocity of the wind.

Given vectors $\mathbf{v} = \begin{bmatrix} -4 \\ -3 \\ 8 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -3 \\ -6 \\ 5 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the

This is a change of basis in 3 dimensions.

4. Are the following vectors linearly independent?

$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 1 \\ -8 \\ 7 \end{bmatrix}$

No