3/1/25, 12:19 PM Bayesian

BAYESIAN

```
In []: import seaborn as sns
    import matplotlib.pyplot as plt
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    from sklearn.preprocessing import StandardScaler
    from sklearn.naive_bayes import GaussianNB
In []: df=pd.read_csv('Naive-Bayes-Classification-Data.csv',sep=',')
In []: df
```

Out[]:		glucose	bloodpressure	diabetes
	0	40	85	0
	1	40	92	0
	2	45	63	1
	3	45	80	0
	4	40	73	1
	•••			
	990	45	87	0
	991	40	83	0
	992	40	83	0
	993	40	60	1
	994	45	82	0

995 rows × 3 columns

```
In []: X=df.drop(["diabetes"],axis=1)
y=df["diabetes"]

In []: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)

In []: sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

In []: nvclassifier = GaussianNB()
nvclassifier.fit(X_train, y_train)
```

Bayesian

3/1/25, 12:19 PM Bayesian

```
Out[ ]:
         ▼ GaussianNB
        GaussianNB()
In [ ]: y_pred = nvclassifier.predict(X_test)
In [ ]: accuracy = accuracy_score(y_test, y_pred)
        print(f"Accuracy: {accuracy:.2f}")
       Accuracy: 0.95
In [ ]: print("Actual values:", y_test[:10].values)
        print("Predicted values:", y_pred[:10])
       Actual values: [1 0 1 1 0 1 1 1 0 1]
       Predicted values: [1 0 1 1 0 1 1 1 0 1]
In [ ]: corr_matrix = df.corr()
        plt.figure(figsize=(10, 6))
        sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", linewidths=0.5)
        plt.title("Feature Correlation Heatmap")
        plt.show()
```

