Netflix Users Analysis Using Python

Leveraging the power of Python and cutting-edge data analysis libraries, we delved into a fascinating dataset on Netflix users to uncover valuable insights. Explored key attributes such as Age, Gender, Subscription Plan, Monthly Revenue, Last Date of Activity, Join Date, and Device to gain a comprehensive understanding of user behavior and preferences. Employed advanced data visualization techniques to present findings in an insightful and visually appealing manner. Conducted in-depth analysis to identify trends, patterns, and correlations within the dataset, providing actionable insights for Netflix and related stakeholders.

Import Library

```
import pandas as pd
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
```

Uploading Csv fle

```
df = pd.read_csv("Netflix Userbase.csv")
```

Data Preprocessing

.head()

head is used show to the By default = 5 rows in the dataset

df.head()

Next steps: View recommended plots

.tail()

tail is used to show last rows

df.tail()

shape

It show the total no of rows & Column in the dataset

```
df.shape

→ (2500, 10)
```

Columns

It show the no of each Column

```
df.columns
```

dtypes

This Attribute show the data type of each column

```
df.dtypes
```

```
→ User ID
                           int64
    Subscription Type
                          object
    Monthly Revenue
                           int64
    Join Date
                          object
    Last Payment Date
                          object
    Country
                          object
    Age
                           int64
    Gender
                          object
    Device
                          object
    Plan Duration
                          object
    dtype: object
```

v .unique()

In a column, It show the unique value of specific column.

.nuique()

It will show the total no of unque value from whole data frame

```
df.nunique()
```

5/14/24, 10:55 AM

→ ▼	User ID	2500
	Subscription Type	3
	Monthly Revenue	6
	Join Date	300
	Last Payment Date	26
	Country	10
	Age	26
	Gender	2
	Device	4
	Plan Duration	1
	dtype: int64	

.describe()

It show the Count, mean, median etc

df.describe()

value_counts

It Shows all the unique values with their count

df["Country"].value_counts()

.isnull()

It shows the how many null values

df.isnull()

	User ID	Subscription Type	Monthly Revenue	Join Date	Last Payment Date	Country	Age	Gender	Device	Dur
0	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	
2495	False	False	False	False	False	False	False	False	False	
2496	False	False	False	False	False	False	False	False	False	
2497	False	False	False	False	False	False	False	False	False	
2498	False	False	False	False	False	False	False	False	False	
2499	False	False	False	False	False	False	False	False	False	>

sns.heatmap(df.isnull())

df["Join Date"] = pd.to_datetime(df["Join Date"])
df["Last Payment Date"] = pd.to_datetime(df["Last Payment Date"])

<ipython-input-15-2e17a82e1ed8>:1: UserWarning: Could not infer format, so each element will be parsed individually, falling back to
 df["Join Date"] = pd.to_datetime(df["Join Date"])
 <ipython-input-15-2e17a82e1ed8>:2: UserWarning: Could not infer format, so each element will be parsed individually, falling back to
 df["Last Payment Date"] = pd.to_datetime(df["Last Payment Date"])

import pandas as pd

```
# Assuming 'df' is your DataFrame with a 'Join Date' column
df['Join Date'] = pd.to_datetime(df['Join Date'])
```

Extract month names

df['Join Month'] = df['Join Date'].dt.month_name()

Display the DataFrame with the added 'Join Month' column print(df)

$\overline{\Rightarrow}$		User ID	Subscription Type	Monthly Revenue	Join Date	Last Payment Date	١
	0	1	Basic	10	2022-01-15	2023-10-06	
	1	2	Premium	15	2021-05-09	2023-06-22	
	2	3	Standard	12	2023-02-28	2023-06-27	
	3	4	Standard	12	2022-10-07	2023-06-26	
	4	5	Basic	10	2023-01-05	2023-06-28	

```
14 2022-07-25
                                                                   2023-12-07
2495
        2496
                       Premium
2496
        2497
                         Basic
                                              15 2022-04-08
                                                                   2023-07-14
2497
         2498
                       Standard
                                              12 2022-09-08
                                                                   2023-07-15
2498
        2499
                      Standard
                                              13 2022-12-08
                                                                   2023-12-07
2499
        2500
                         Basic
                                              15 2022-08-13
                                                                   2023-12-07
            Country Age Gender
                                      Device Plan Duration Join Month
0
      United States
                      28
                            Male Smartphone
                                                   1 Month
                                                               January
                                      Tablet
                                                    1 Month
1
             Canada
                      35
                          Female
                                                                  Mav
                                                              February
2
     United Kingdom
                            Male
                                     Smart TV
                                                   1 Month
                      42
3
          Australia
                      51
                           Female
                                     Laptop
                                                   1 Month
                                                               October
                            Male Smartphone
4
            Germany
                      33
                                                   1 Month
                                                               January
2495
               Spain
                      28
                          Female
                                     Smart TV
                                                   1 Month
                                                                  July
                                                                 April
2496
               Spain
                      33
                           Female
                                     Smart TV
                                                    1 Month
                            Male
                                                   1 Month
2497
      United States
                                      Laptop
                                                             September
2498
              Canada
                      48
                           Female
                                       Tablet
                                                    1 Month
                                                              December
2499
      United States
                                     Smart TV
                                                    1 Month
                      35
                          Female
                                                                August
[2500 rows x 11 columns]
```

Why we Use (get_continent) in Python:

This library can help you find the continent of a given country

```
# Deriving some useful features using lambda function
def get_continent(country):
     ""returns the continent of the given country"""
   if country in {"United States", "Canada", "Mexico"}:
       return "North America"
    if country in {"France", "Germany", "United Kingdom", "Italy", "Spain"}:
       return "Europe"
    if country == "Brazil":
       return "South America"
    if country == "Australia":
       return "Australia"
   return "Africa / Asia"
def get_age_class(age):
    """returns the age class of a given age"""
   return "Kid" if age < 11 \setminus
   else "Teen" if age < 20 \
   else "Young" if age < 40 \
   else "Senior" if age < 70 \
   else "Elderly"
df["Country"] = df["Country"].apply(lambda x: get_continent(x))
df["Age"] = df["Age"].apply(lambda x : get_age_class(x))
```

∑ ▼		User ID	Subscription Type	Monthly Revenue	Join Date	Last Payment Date	Country	Age	Gender	Device
	0	1	Basic	10	2022- 01-15	2023- 10-06	North America	Young	Male	Smartphone
	1	2	Premium	15	2021- 05-09	2023- 06-22	North America	Young	Female	Tablet
	2	3	Standard	12	2023- 02-28	2023- 06-27	Europe	Senior	Male	Smart TV
	3	4	Standard	12	2022 - 10-07	2023 - 06-26	Australia	Senior	Female	Laptop
	4	5	Basic	10	2023- 01-05	2023- 06-28	Europe	Young	Male	Smartphone
	2495	2496	Premium	14	2022- 07-25	2023- 12-07	Europe	Young	Female	Smart TV

```
plt.figure(figsize=(8, 6))
sns.countplot(data=df, x='Gender')
```

df

```
plt.xlabel('Gender')
plt.ylabel('Distribuation')
plt.title('Distribution of Gender')
plt.show()
```



```
plt.figure(figsize=(8, 6))
sns.countplot(data=df, x='Gender', hue ="Country")
plt.xlabel('Gender')
plt.ylabel('Country')
plt.title('Gender Vise Country Subscribers')
plt.show()
```



```
plt.figure(figsize=(8, 6))
sns.countplot(data=df, x='Country', hue ="Device")
plt.xlabel('Country')
plt.ylabel('Device')
plt.title('Country Vise Device Users')
plt.show()
```


Group the data by Feedback and calculate the count of each category
Device = df.groupby('Device').size()

Create a pie chart
plt.figure(figsize=(8, 8))
plt.pie(Device, labels=Device.index, autopct='%1.1f%%', startangle=140)
plt.title('Distribution of Device')
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()


```
plt.figure(figsize=(8, 6))
sns.countplot(data=df, x='Subscription Type')
plt.xlabel('Subscription Type')
plt.ylabel('Counts')
plt.title('Distribuation of Subscription Type')
plt.show()
```


d	f

`		User ID	Subscription Type	Monthly Revenue	Join Date	Last Payment Date	Country	Age	Gender	Device	Plan Duration	Join Month	11.
	0	1	Basic	10	2022- 01-15	2023-10-06	North America	Young	Male	Smartphone	1 Month	January	
	1	2	Premium	15	2021- 05-09	2023-06-22	North America	Young	Female	Tablet	1 Month	May	
	2	3	Standard	12	2023- 02-28	2023-06-27	Europe	Senior	Male	Smart TV	1 Month	February	
	3	4	Standard	12	2022- 10-07	2023-06-26	Australia	Senior	Female	Laptop	1 Month	October	
	4	5	Basic	10	2023- 01-05	2023-06-28	Europe	Young	Male	Smartphone	1 Month	January	
	2495	2496	Premium	14	2022- 07-25	2023-12-07	Europe	Young	Female	Smart TV	1 Month	July	
	2496	_2497	Basic	15	2022-	_ 2023-07-14	Furone_	Young	_Female_	Smart_TV_	1 Month	AnriL_	

```
Joining_Months_Counts = df['Join Month'].value_counts()
Joining_Months_Counts.plot(kind='bar')
plt.xlabel('Join Month')
plt.ylabel('Count')
plt.title('Joining Counts By Months')
```

→ Text(0.5, 1.0, 'Joining Counts By Months')

Machine Learning Implementation

1. Import Libraries

2. Assuming 'Subscription Plan' and 'Device' are categorical, 'Age' is numerical

```
X = pd.get\_dummies(df[['Subscription Type', 'Age', 'Device']], drop\_first=True)
y = df['Monthly Revenue']
```

3. Splitting the dataset into the training set and test set

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

4. Initialize the Linear Regression Model

```
model = LinearRegression()
```

5. Fit the model

```
model.fit(X_train, y_train)

LinearRegression

LinearRegression()
```

6. Predict on the testing set

```
y_pred = model.predict(X_test)
```