

FIG. 1

FIG. 2

300

FIG. 3A

Training Sequences

320

index i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Seq. #																										
1	1	1	1	-1	1	1	1	1	-1	-1	-1	1	-1	-1	1	-1	1	1	1	-1	1	1	1	-1	-1	
2	1	-1	1	-1	-1	1	1	1	1	-1	1	1	-1	-1	-1	1	-1	1	-1	-1	1	1	1	1	1	1
3	-1	1	-1	-1	1	1	1	-1	1	-1	1	1	-1	-1	-1	-1	-1	1	-1	-1	1	1	1	-1	1	-1
4	-1	-1	-1	1	1	-1	1	-1	1	1	1	-1	-1	1	-1	-1	-1	-1	-1	1	1	-1	1	-1	1	1
5	-1	1	-1	-1	-1	1	1	1	-1	1	1	-1	1	-1	-1	-1	1	-1	-1	-1	1	1	1	1	-1	-1
6	-1	1	-1	-1	-1	-1	1	1	1	-1	1	1	1	-1	1	-1	-1	1	-1	-1	-1	1	1	1	1	-1
7	-1	-1	1	-1	1	1	-1	1	1	1	-1	1	1	1	-1	-1	-1	1	-1	1	1	-1	1	1	1	1
8	-1	-1	1	-1	-1	1	-1	1	1	1	-1	-1	-1	-1	1	-1	-1	-1	1	-1	-1	1	-1	1	1	1

FIG. 3B

3/7

340

FIG. 3C

360

FIG. 3D

380

FIG. 3E

RECEIVED
INTERFERING SIGNALS
400

FIG. 4

MODIFY THE CORRELATE EQUATION(S) TO INCLUDE A SUM THAT IS DEPENDENT ON THE RECEIVED SEQUENCE(S) BUT INDEPENDENT OF THE TRAINING SEQUENCE

MODIFY THE CORRELATE EQUATION(S) SO THAT ALL PRODUCTS CORRESPONDING TO AT LEAST ONE VALUE OF THE TRAINING SEQUENCE(S) BECOME ZERO

FIG. 4A

MODIFY THE CORRELATE EQUATION(S) SO THAT THE NUMBER OF PRODUCTS TO BE CALCULATED IS LESS THAN THE NUMBER OF VALUES IN A TRAINING SEQUENCE

MODIFY THE
CORRELATE
EQUATION(S) BY
ELIMINATING
COMMON
SUBEXPRESSIONS

FIG. 4C

	505	510	515
a 16	0000000000000000100000000000	00000000	
a 15	0000000000000000100000000000	10000111	
a 14	0000000000000000100000000000	00011010	
a 13	0000000000000000100000000000	01000110	
a 12	0000000000000000100000000000	11101110	
a 11	0000000000000000100000000000	00111100	
b 10	0000000000100000000000000001	01010011	
b 9	0000000001000000000000000010	01111111	
b 8	00000000100000000000000000100	11001111	
b 7	00000001000000000000000000001000	11111100	
b 6	000001000000000000000000000010000	11101011	
b 5	0000100000000000000000000000100000	10110010	
b 4	00010000000000000000000000001000000	00010000	
b 3	00100000000000000000000000001000000	11000011	
b 2	010000000000000000000000000010000000	10101100	
b 1	1000000000000000000000000000100000000	11000000	

FIG. 5

FIG. 4E