Medición del ritmo cardíaco por medios ópticos Métodos Numéricos Avanzados Instituto Tecnológico de Buenos Aires

BALAGUER, Pedro 55795

Benítez, Julián 56283 Garrigó, Mariano 54393

Perazzo, Matías 55024

SAQUÉS, M. Alejo 56047

Resumen

Palabras clave:

1. Resultados

A continuación, se exhibirán los tiempos de ejecución entre las diferentes implementaciones del algoritmo fft realizadas, como así también de los resultados obtenidos a la hora de calcular el ritmo cardíaco de un individuo.

1.1. Algoritmos fft

A continuación, se presenta una tabla comparativa de tiempos de ejecución entre la implementación recursiva e iterativa del algoritmo fft Cooley-Tukey.

N	Recursivo	Iterativo	Mejora
512	.009	.003	x3
1024	.02	.006	x3.34
2048	.046	.014	x3.29
4096	.096	.029	x3.21
8192	.201	.06	x3.35

Cuadro 1: Comparación entre implementaciones de *Cooley-Tukey*

Como podrá verse en la Tabla 1, la immecanismo plementación iterativa del algoritmo *Cooley*—sión, se uti *Tukey* es claramente del mismo orden algorítmico, pero en torno a 3,3 veces más rápido. Se arguye que la mejora en la *performance* la muestra:

proviene de la eliminación del *overhead* generado por los *stackframes* generados por la implementación recursiva en cada llamada.

1.2. Mediciones del ritmo cardíaco

Se han tomado 5 muestras de un individuo en diferentes partes del cuerpo, variando el uso del **LED** del dispositivo:

- 1. Índice izquierdo (cubriendo el **LED** con el mismo),
- 2. Pulgar derecho (sin cubrir el **LED**),
- 3. Antebrazo,
- 4. Índice derecho (sin cubrir el **LED**),
- 5. Índice derecho (con el **LED** apagado).

Al momento de tomar las capturas, el individuo se encontraba en reposo. Se procuró que el mismo realizara inhalaciones y exhalaciones a intervalos regulares de aproximadamente 2 segundos, instruyéndole que realizara las mismas de manera calma.

A modo de control, se tomó una serie de muestras del ritmo cardíaco del individuo con mecanismos tradicionales. Para mayor precisión, se utilizó un estetoscopio y se contó durante el lapso de 1 minuto la cantidad de pulsaciones. Los siguientes parámetros describen la muestra:

- N = 14
- $\bar{X} = 78,929$
- $\sigma = 4,0089$

A continuación se exhibirán los resultados utilizando diferentes métodos para obtener un valor escalar que represente el *brillo* de la imagen para un instante dado, tomando una trama en escala de grises.

Debe notarse que, en el análisis a continuación, se asume que el rimo cardíaco real permanece constante entre cada una de las muestras tomadas. Dadas las circunstancias en las que se re han realizado las mediciones, esta asunción puede tener un grado alto de validez. Sin embargo, eventuales variaciones podrían influir sobre la precisión de los errores presentados a continuación.

1.3. Región cuadrada con vértice en el centro

Para este caso, se ha tomado una región cuadrada de 30X30 con vértice en el centro de la imagen. Este caso es el utilizado por la Cátedra en el código de ejemplo.

Muestra	Ppm.	Error
1	73.815	6.93%
2	75.592	4.41%
3	86.150	9.15%
4	80.854	2.44%
5	84.316	6.83%

Cuadro 2: Región 30X30 con vértice en el centro

Como podrá verse en el Cuadro 2, la aproximación con menor error relativo al promedio ha sido la de la muestra correspondiendo al dedo índice sin cubrir el **LED**. Por otro lado, la que mayor error relativo parecería mostrar es el caso del antebrazo.

1.4. Promedio de toda la imagen

En este caso, se han promediado todos los puntos de la imagen en escala de grises.

Muestra	Ppm.	Error
1	73.815	6.93%
2	86.139	9.13%
3	87.908	11.38%
4	80.853	2.44%
5	59.724	32.16%

Cuadro 3: Promedio de toda la imagen

Utilizando el método anterior, el error relativo en la muestra 5 era comparable al de las otras muestras. En el Cuadro 3, podrá verse que dicho error, con este método, excede con creces el de las otras muestras. Esto indicaría que utilizar el **LED** podría ser un requisito indispensable a la hora de aproximar el ritmo cardíaco.

Figura 1: Muestra 3: proximidad entre picos

Otro caso cuyo error creció con respecto al obtenido en el método anterior es el de la muestra 3. Sin embargo, como se podrá ver en la Figura 1, existen dos picos de magnitud comparable claramente distinguibles uno del otro. El mayor es, razonablemente, el que corresponde a la frecuencia 87,908. El que le sigue, corresponde al valor de 77,016, lo que, de tomarse como valor del ritmo cardíaco, marcaría un |Error| = 2,48%. Esto podría ser absolutamente azaroso, pero la eventual precisión del segundo valor en magnitud suscita curiosidad sobre la perspectiva de poder tomar la

frecuencia del segundo mayor pico al tomar la medición en el antebrazo.

1.6

1.5. Región cuadrada con vértice en el centro, interpolando puntos

Para este último caso, se ha tomado una región cuadrada de 200X200 con vértice en el centro de la imagen, interpolando de a 5 píxeles. El objetivo de esto es maximizar la superficie cubierta, a la vez que se toma una cantidad similar de píxeles que en el primer caso. Dado que se está filmando con la lente inmediatamente sobre la piel, la distancia real entre los píxeles es ínfima. Luego, al interpolar muy probablemente se obtenga una aproximación cercana al verdadero promedio de todos los píxeles de la región.

Muestra	Ppm.	Error
1	73.815	6.93%
2	73.834	6.90%
3	87.908	11.38%
4	80.853	2.44%
5	59.724	32.16%

Cuadro 4: Interpolando

Como podrá verse en la Tabla 4, salvo una aparente mejoría en la muestra 2, los valores del |Error| son aproximadamente similares a los del caso anterior.

Figura 2: Muestra 3: proximidad entre picos

Tal como se ha observado en el método de promediado anterior, en la muestra 3, tras una inspección del gráfico de frecuencias, se observan dos picos de magnitud comparable. En este caso, el valor de la segunda frecuencia más representativa es de 77,419, lo que representaría un |Error| = 1,95%, el menor de todos los errores relativos obtenidos hasta el momento.

1.6. Nueva muestra en el antebrazo

En los apartados anteriores, se ha notado una característica particular en la gráfica de frecuencias para los vídeos tomados sobre el antebrazo. Se ha considerado oportuno indagar sobre dicho punto, tomando 2 nuevas mediciones sobre dicha parte del cuerpo del mismo sujeto de pruebas. A continuación se exhiben las gráficas de frecuencias:

Figura 3: Muestra 6: proximidad entre picos

Como podrá notarse en la Figura 3, el caso parecería ser idéntico al de la muestra 3: el pico mayor se encuentra en la frecuencia 93,079, y el que le sigue, en 77,4194.

REFERENCIAS

Referencias

Figura 4: Muestra 6: proximidad entre picos

Sin embargo, en la Figura 4, la estimación obtenida es de 61,535, y el fenómeno que se observó antes es inexistente. Luego, se podría concluir que lo antes observado responde al azar producto del *ruido* al tomar la filmación. Además, dada la falta de precisión en todas las medidas en las que se utilizó el antebrazo, podría decirse que dicho sector del cuerpo no es apropiada para estimaciones certeras.