Class 26: Outline

Hour 1:

Driven Harmonic Motion (RLC)

Hour 2:

Experiment 11: Driven RLC Circuit

Last Time: Undriven RLC Circuits

LC Circuit

It undergoes simple harmonic motion, just like a mass on a spring, with trade-off between charge on capacitor (Spring) and current in inductor (Mass)

Damped LC Oscillations

Resistor dissipates energy and system rings down over time

Mass on a Spring: Simple Harmonic Motion` A Second Look

Mass on a Spring

We solved this:

$$F = -kx = ma = m\frac{d^2x}{dt^2}$$

$$m\frac{d^2x}{dt^2} + kx = 0$$

Simple Harmonic Motion

$$x(t) = x_0 \cos(\omega_0 t + \phi)$$

Moves at natural frequency

What if we now move the wall? Push on the mass?

Demonstration: Driven Mass on a Spring Off Resonance

Driven Mass on a Spring

Now we get:

$$F = F(t) - kx = ma = m\frac{d^2x}{dt^2}$$

$$m\frac{d^2x}{dt^2} + kx = F(t)$$

Assume harmonic force:

$$F(t) = F_0 \cos(\omega t)$$

Simple Harmonic Motion

$$x(t) = x_{\text{max}} \cos(\omega t + \phi)$$

Moves at driven frequency

Resonance

$$x(t) = x_{\text{max}} \cos(\omega t + \phi)$$

Now the amplitude, x_{max}, depends on how close the drive frequency is to the natural

frequency

Let's See...

Demonstration: Driven Mass on a Spring

Resonance

$$x(t) = x_{\text{max}} \cos(\omega t + \phi)$$

x_{max} depends on drive frequency

Many systems behave like this:

Swings

Some cars

Musical Instruments

. . .

Electronic Analog: RLC Circuits

Analog: RLC Circuit

Recall:

Inductors are like masses (have inertia)
Capacitors are like springs (store/release energy)
Batteries supply external force (EMF)

Charge on capacitor is like position, Current is like velocity – watch them resonate

Now we move to "frequency dependent batteries:" AC Power Supplies/AC Function Generators

Demonstration: RLC with Light Bulb

Start at Beginning: AC Circuits

Alternating-Current Circuit

- direct current (dc) current flows one way (battery)
- alternating current (ac) current oscillates

sinusoidal voltage source

$$V(t) = V_0 \sin \omega t$$

 $\omega = 2\pi f$: angular frequency

 V_0 : voltage amplitude

AC Circuit: Single Element

$$V_{\square} = V$$

$$= V_0 \sin \omega t$$

$$I(t) = I_0 \sin(\omega t - \phi)$$

Questions:

- 1. What is I_0 ?
- 2. What is ϕ ?

AC Circuit: Resistors

$$I_{R} = \frac{V_{R}}{R} = \frac{V_{0}}{R} \sin \omega t$$
$$= I_{0} \sin (\omega t - 0)$$

$$I_0 = \frac{V_0}{R}$$
$$\varphi = 0$$

 I_R and V_R are in phase

AC Circuit: Capacitors

$$Q(t) = CV_C = CV_0 \sin \omega t$$

$$I_{C}(t) = \frac{dQ}{dt}$$

$$= \omega C V_{0} \cos \omega t$$

$$= I_{0} \sin(\omega t - \frac{\pi}{2})$$

$$I_{0} = \omega C V_{0}$$

$$\varphi = -\frac{\pi}{2}$$

 $I_{\rm C}$ leads $V_{\rm C}$ by $\pi/2$

AC Circuit: Inductors

$$V_L = L \frac{dI_L}{dt}$$

$$V=V_0\sin \omega t$$

$$\frac{dI_L}{dt} = \frac{V_L}{L} = \frac{V_0}{L} \sin \omega t$$

$$I_{L}(t) = \frac{V_{0}}{L} \int \sin \omega t \, dt$$

$$= -\frac{V_{0}}{\omega L} \cos \omega t$$

$$= I_{0} \sin (\omega t - \frac{\pi}{2})$$

$$\varphi = \frac{V_{0}}{\omega L} \cos \omega t$$

$$I_0 = \frac{V_0}{\omega L}$$
$$\varphi = \frac{\pi}{2}$$

 $I_{\rm L}$ lags $V_{\rm L}$ by $\pi/2$

AC Circuits: Summary

Element	I ₀	Current vs. Voltage	Resistance Reactance Impedance
Resistor	$\frac{V_{0R}}{R}$	In Phase	R = R
Capacitor	ωCV_{0C}	Leads	$X_C = \frac{1}{\omega C}$
Inductor	$rac{V_{0L}}{\omega L}$	Lags	$X_L = \omega L$

Although derived from single element circuits, these relationships hold generally!

PRS Question: Leading or Lagging?

Phasor Diagram

Nice way of tracking magnitude & phase:

Notes: (1) As the phasor (red vector) rotates, the projection (pink vector) oscillates

(2) Do both for the current and the voltage

Demonstration: Phasors

Phasor Diagram: Resistor

$$V_0 = I_0 R$$

$$\varphi = 0$$

 $I_{\rm R}$ and $V_{\rm R}$ are in phase

Phasor Diagram: Capacitor

$$V_0 = I_0 X_C$$

$$= I_0 \frac{1}{\omega C}$$

$$\varphi = -\frac{\pi}{2}$$

 $I_{\rm C}$ leads $V_{\rm C}$ by $\pi/2$

Phasor Diagram: Inductor

$$V_0 = I_0 X_L$$

$$= I_0 \omega L$$

$$\varphi = \frac{\pi}{2}$$

 $I_{\rm L}$ lags $V_{\rm L}$ by $\pi/2$

PRS Questions: Phase

Put it all together: Driven RLC Circuits

Question of Phase

We had fixed phase of voltage:

$$V = V_0 \sin \omega t$$
 $I(t) = I_0 \sin(\omega t - \phi)$

It's the same to write:

$$V = V_0 \sin(\omega t + \phi)$$
 $I(t) = I_0 \sin \omega t$

(Just shifting zero of time)

Driven RLC Series Circuit

$$I(t) = I_0 \sin(\omega t)$$

$$V_R = V_{R0} \sin(\omega t)$$

$$V_L = V_{L0} \sin(\omega t + \frac{\pi}{2})$$

$$V_C = V_{C0} \sin(\omega t + \frac{-\pi}{2})$$

What is I_0 (and $V_{R0} = I_0 R$, $V_{I0} = I_0 X_I$, $V_{C0} = I_0 X_C$)?

What is φ ? Does the current lead or lag V_s ?

Must Solve:
$$V_S = V_R + V_L + V_C$$

Driven RLC Series Circuit

Now Solve:
$$V_S = V_R + V_L + V_C$$

Now we just need to read the phasor diagram!

Driven RLC Series Circuit

$$V_{0S} = \sqrt{V_{R0}^2 + (V_{L0} - V_{C0})^2} = I_0 \sqrt{R^2 + (X_L - X_C)^2} \equiv I_0 Z$$

$$I_0 = \frac{V_{0S}}{Z}$$

$$\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

Plot I, V's vs. Time

PRS Question: Who Dominates?

RLC Circuits: Resonances

Resonance

$$I_0 = \frac{V_0}{Z} = \frac{V_0}{\sqrt{R^2 + (X_L - X_C)^2}}; \quad X_L = \omega L, \quad X_C = \frac{1}{\omega C}$$

At very low frequencies, C dominates $(X_C >> X_L)$: it fills up and keeps the current low At very high frequencies, L dominates $(X_L >> X_C)$: the current tries to change but it won't let it At intermediate frequencies we have **resonance**

$$\emph{I}_{0}$$
 reaches maximum when $\ \emph{X}_{L} = \emph{X}_{C}$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

Resonance

$$I_0 = \frac{V_0}{Z} = \frac{V_0}{\sqrt{R^2 + (X_L - X_C)^2}}; \quad X_L = \omega L, \quad X_C = \frac{1}{\omega C}$$

$$\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

Demonstration: RLC with Light Bulb

PRS Questions: Resonance

Experiment 11: Driven RLC Circuit

Experiment 11: How To

Part I

- Use exp11a.ds
- Change frequency, look at I & V. Try to find resonance – place where I is maximum

Part II

- Use exp11b.ds
- Run the program at each of the listed frequencies to make a plot of I₀ vs. ω