CPSC 213, Winter 2010, Term 1 — Quiz 1 Date: Oct 6, 2010; Instructor: Tamara Munzner

NAME:		:: STUDENT NUMBER:
т	A D TI	AY/TIME:
1	For	r each of the following, give the smallest number greater than or equal to 0×1009 that is aligned as indicated.
	1a	Aligned for access to 2-byte shorts:
	1b	Aligned for access to 4-byte longs:
	1c	Aligned for access to 8-byte long longs:
	1d	Aligned for access to 16-byte chunks of memory:
2	Wł	nat is does the following program output on a Little Endian (e.g., Intel) processor?
		int main (char** argc, int argv) {
		char $a[4]$; *((int*)(a)) = 0x01020304;
		((Int)(a)) = 0x01020304; printf ("a[2] = %d",a[2]);
		}
Τŀ	ne pro	ogram outputs this string (you fill in the rest): a [2] =
3	Ex	plain the tradeoff between static and dynamic arrays in C by giving one benefit of using each over the other.
	3a	Benefit of static arrays compared to dynamic arrays:
	3 b	Benefit of dynamic arrays compared to static arrays:
be	some	eve an RTL description and SM213 assembly code that a compiler might generate for this code. (There may be code in between the declarations in the first line and the assignments in the last three lines, so a may have signed to any value.) Assign static values as the compiler would; explain values you use. The SM213 ISA centation is provided on the last page for reference.
C	:	
	int	b[5], i, a*;
	i =	. 2•
] = 5;
	a[i] = 3;

RTL:

SM213 Assembly:

OpCode	Format	Semantics	Eg Machine	Eg Assembly
load immediate	0d	$r[d] \leftarrow v$	0100	ld \$0x1000,r1
	vvvvvvv		00000100	
load base	1osd	$r[d] \leftarrow m[o \times 4 + r[s]]$	1123	ld 4(r2),r3
load indexed	2sid	$r[d] \leftarrow m[r[i] \times 4 + r[s]]$	2123	ld (r1,r2,4),r3
store base+dis	3sod	$m[o \times 4 + r[d]] \leftarrow r[s]$	3123	st r1,8(r3)
store indexed	4sdi	$m[r[i] \times 4 + r[d]] \leftarrow r[s]$	4123	st r1, (r2, r3, 4)
halt	f000		f000	halt
nop	ff00		ff00	do nothing (nop)
rr move	60sd	$r[d] \leftarrow r[s]$	6012	mov r1, r2
add	61sd	$r[d] \leftarrow r[d] + r[s]$	6112	add r1, r2
and	62sd	$r[d] \leftarrow r[d] \& r[s]$	6212	and r1, r2
inc	63-d	$r[d] \leftarrow r[d] + 1$	6301	inc r1
inc addr	64-d	$r[d] \leftarrow r[d] + 4$	6401	inca r1
dec	65-d	$r[d] \leftarrow r[d] - 1$	6501	dec r1
dec addr	66-d	$r[d] \leftarrow r[d] - 4$	6601	deca r1
not	67-d	$r[d] \leftarrow !r[d]$	6701	not r1
shift	7dss	$r[d] \leftarrow r[d] << s$	7102	shl \$2, r1
			71fe	shr \$2, r1
branch	8-00	$pc \leftarrow pc + 2 \times o$	1000: 8004	br 0x1008
branch if equal	9roo	if $r[r] == 0$, $pc \leftarrow pc + 2 \times o$	1000: 9104	beq r1, 0x1008
branch if greater	aroo	if $r[r] > 0$, $pc \leftarrow pc + 2 \times o$	1000: a104	bgt r1, 0x1008
jump	b	$pc \leftarrow a$	b000	jmp 0x1000
	aaaaaaaa		00001000	
get program counter	6f-d	$r[d] \leftarrow \text{pc}$	6f01	gpc rl
jump indirect	croo	$pc \leftarrow r[r] + 2 \times o$	c102	jmp 8(r1)
jump double ind, b+disp	droo	$pc \leftarrow m[4 \times o + r[r]]$	d102	jmp *8(r1)
jump double ind, index	eri-	$pc \leftarrow m[4 \times r[i] + r[r]]$	e120	jmp *(r1,r2,4)