Исследование прецессии уравновешенного гироскопа (1.2.5)

Балдин Виктор

20 ноября 2023

1 Аннотация

Цель работы: исследовать вынужденную прецессию гироскопа, установить зависимость скорости вынужденной прецессии от величины момента сил, действующий на ось гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии.

Оборудование: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенсциркуль, линейка.

2 Теоретические сведения

В этой работе исследуется зависимость скорости прецессии гироскопа от момента силы, приложенной к его оси. Для этого к оси гироскопа подвешиваются грузы. Скорость прецессии определяется по числу оборотов рычага вокруг вертикальной оси и времни, которое на это ушло, определяемоу секундомером. В процессе измерений рычаг не только поворачивается в результате прецессии гироскопа, но и опускается. Поэтому его в начале опыта следует преподнять на 5-6 градусов. Опять надо закончить, когда рычаг опустится на такой же угол.

Рис. 1. Маховик Рис. 2. Гироскоп в кардановом подвесе

Измерение скорости прецессии гироскопа позволяет вычислить угловую скорость вращения его ротора. Расчет производится по формуле:

$$\Omega = \frac{mgl}{I_z \omega_0},$$

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа, I_z — момент инерции гироскопа по его главной оси вращения. ω_0 — частота его вращения относительно главной оси, Ω — частота прецессии.

Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной копии ротора, подвешиваемой вдоль оси симметрии на десткой проволоке. Период крутильных колебаний T_0 зависит от момента инерции I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}.$$

Чтобы исключить модуль кручения проволоки, вместо ротора гироскопа к той же проволоке подвешивают цилиндр правильной формы с известными размерами и массой, для которого лег-ко можно вычислить момент инерции $I_{\rm q}$. Для определения момента инерции ротора гироскопа имеем:

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2},\tag{1}$$

Здесь $T_{\rm u}$ – период крутильных колебаний цилиндра.

3 Методика измерений

Рис. 3. Схема экспериментальной установки

Скорость вращения ротора гироскопа можно определить и не прибегая к исследованию прецессии. У используемых в работе гироскопов статор имеет две обмотки, необходимые для быстрой раскрутки гироскопа. В данной работе одну обмотку искользубт для раскрутки гироскопа, а вторую — для измерения числа оборотов ротора. Ротор электромотора всегда немного намагничен. Вращаясь, он наводит во второй обмотке переменную ЭДС индукции, частота которой равна частоте врещения ротора. Частоту этой ЭДС можно, в частности, измерить по фигурам Лиссажу, получаемым на экране осциллографа, если на один вход подать исследуемую ЭДС, а на другой — переменное напряжение с хорошо прокалиброванного генератора. При совпадении частот на экране получаем эллипс.

4 Используемое оборудование

Гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенсциркуль, линейка.

5 Результаты измерений и обработка измерений

5.1 Измерения

Данные для частоты прецессии и опускания гироскопа: $\Omega = \frac{2\pi N}{t}$

Macca	T, c	N	Ω, c^{-1}
m = 336 г	178,52	6	$21,12\cdot10^{-2}$
111 - 330 1	179,23	6	$21,03\cdot10^{-2}$

Macca	T, c	N	Ω, c^{-1}
m = 269 г	186,41	5	$16,85 \cdot 10^{-2}$
m = 209 f	187,02	5	$16,80\cdot10^{-2}$

Macca	T, c	N	Ω, c^{-1}
$m = 215 \; \Gamma$	188,31	4	$13,35\cdot10^{-2}$
m-2101	188,01	4	$13,38 \cdot 10^{-2}$

Macca	T, c	N	Ω, c^{-1}
m = 174 г	232,43	4	$10,81 \cdot 10^{-2}$
	231,07	4	$10,88 \cdot 10^{-2}$

Macca	T, c	N	Ω, c^{-1}
m = 138 г	219,81	3	$8,58 \cdot 10^{-2}$
	218,99	3	$8,61\cdot10^{-2}$

Каждый раз рычаг опускался на 12°, что равняется $\frac{\pi}{15}$. Для каждой массы посчитаем угловую скорость опускания рычага по формуле: $\omega=\frac{\pi/15}{T}$, и момент M=mgl, где l=121 мм:

- m=336 г, $\omega=11{,}71\cdot 10^{-4}~{\rm c}^{-1},\, M=39{,}88\cdot 10^{-2}~{\rm H\cdot m}$
- $m = 269 \text{ r}, \ \omega = 11,22 \cdot 10^{-4} \text{ c}^{-1}, \ M = 31,93 \cdot 10^{-2} \text{ H} \cdot \text{m}$
- $m = 215 \text{ r}, \ \omega = 11.13 \cdot 10^{-4} \text{ c}^{-1}, \ M = 25.52 \cdot 10^{-2} \text{ H·m}$
- m=174 г, $\omega=9.04\cdot 10^{-4}~{\rm c}^{-1},~M=20.65\cdot 10^{-2}~{\rm H}\cdot {\rm m}$
- $m = 138 \text{ r}, \ \omega = 9.55 \cdot 10^{-4} \text{ c}^{-1}, \ M = 16.38 \cdot 10^{-2} \text{ H} \cdot \text{m}$

Построим график зависимости $\Omega(M)$:

Далее найдем момент инерции ротора гироскопа по формуле (1), для этого посчитаем момент инерции цилиндра, с известной нам массой и диаметром: $I_{\rm q}=\frac{1}{2}mr^2\approx 1,23\cdot 10^{-3}~{\rm kr\cdot m^2},$ а периоды: $T_0=3,933$ с и $T_{\rm q}=3,19$ с. Тогда $I_0\approx 0,8\cdot 10^{-3}~{\rm kr\cdot m^2}$

Рис. 1: Зависимость Ω от M

$$\sigma_{\Omega} = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2} \qquad \sigma_{\Omega}^{\text{сист}} = \Omega \varepsilon_T \qquad \sigma_{\Omega}^{\text{случ}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (\Omega_i - \overline{\Omega})^2}$$

Каждая частота Ω с учетом погрешностей:

•
$$\Omega = (21,08 \pm 0,03) \cdot 10^{-2} \text{ c}^{-1}$$

•
$$\Omega = (16.83 \pm 0.04) \cdot 10^{-2} \text{ c}^{-1}$$

•
$$\Omega = (13.37 \pm 0.05) \cdot 10^{-2} \text{ c}^{-1}$$

•
$$\Omega = (10.85 \pm 0.05) \cdot 10^{-2} \text{ c}^{-1}$$

•
$$\Omega = (8.60 \pm 0.03) \cdot 10^{-2} \text{ c}^{-1}$$

Погрешность $\sigma_{I_0} = I_0 \cdot \sqrt{\varepsilon_{I_{\text{tt}}}^2 + 4\varepsilon_{T_0}^2 + 4\varepsilon_{T_{\text{tt}}}^2} \approx 0.03 \text{ кг·м}^2$, значит $I_0 = (0.80 \pm 0.03) \text{ кг·м}^2$

5.2 Частота вращения ротора

Определить частоту вращения ротора можно по формуле $\omega_0 = \frac{1}{kI_0}$, где k – коэффицент наклона графика зависимости $\Omega(M)$.

График построен по МНК, а значит:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \approx 0.531 \frac{1}{\text{Дж} \cdot \text{c}}$$

$$\sigma_k^{\text{сл}} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} \approx 0,002 \ \frac{1}{\text{Дж} \cdot \text{c}}$$

Тогда
$$\omega_0=2354,05\ {
m c}^{-1},\ {
m a}\ \sigma_{\omega_0}=\omega_0\cdot\sqrt{\varepsilon_{I_0}^2+\varepsilon_k^2}\approx 88,72\ {
m c}^{-1}$$

Используя полученную угловую скорость можно определить частоту вращения ротора гироскопа: $\nu = \frac{\omega_0}{2\pi} \approx 374,7$ Гц, а $\sigma_{\nu} = \nu \varepsilon_{\omega_0} \approx 14,1$ Гц

Таким образом получаем: $\nu=(374,7\pm14,1)$ Γ ц, что с учетом сигмы попадает в значение полученное с помощью осциллографа $\nu_0=387,2$ Γ ц

5.3 Момент силы трения

Оценить момент силы трения мы можем по формуле: $M = \omega I_0 \omega_0$, а $\sigma_M = M \cdot \sqrt{\varepsilon_M^2 + \varepsilon_k^2}$. Для каждой массы момент силы трения будет свой:

- m=336 г, $\omega=11.71\cdot 10^{-4}~{\rm c}^{-1},\, M=(2.21\pm 0.02)\cdot 10^{-3}~{\rm H\cdot M}$
- $m = 269 \text{ r}, \ \omega = 11.22 \cdot 10^{-4} \text{ c}^{-1}, \ M = (2.11 \pm 0.02) \cdot 10^{-3} \text{ H} \cdot \text{m}$
- m=215 г, $\omega=11.13\cdot 10^{-4}$ c⁻¹, $M=(2.09\pm 0.02)\cdot 10^{-3}$ H·м
- $m = 174 \text{ r}, \ \omega = 9.04 \cdot 10^{-4} \text{ c}^{-1}, \ M = (1.70 \pm 0.02) \cdot 10^{-3} \text{ H} \cdot \text{M}$
- $m = 138 \text{ r}, \ \omega = 9.55 \cdot 10^{-4} \text{ c}^{-1}, \ M = (1.80 \pm 0.02) \cdot 10^{-3} \text{ H} \cdot \text{M}$

6 Обсуждение результатов

В результате данной работы мы:

- 1. Измерили момент инерции ротора гироскопа относительно оси симметрии.
- 2. Оценили погрешность в определении I_0 , Ω .
- 3. Рассчитали частоту вращения ротора гироскопа.
- 4. По скорости опускания рычага во время прецессии определили момент сил трения.
- 5. Определили частоту вращения ротора гироскопа по фигурам Лиссажу.
- 6. Оценили погрешность полученных результатов. Сравнили угловые скорости вращения ротора гироскопа.
- 7. Убедились в применимости соотношения (5) в данной работе.

7 Вывод

Полученная частота совпадает со значением частоты, измеренным с помощью осциллографа ($\nu_{\text{осп}}=387.2$) в пределах погрешности.

Также был оценен момент силы трения, действующий на ось гироскопа $M\approx 10^{-3}~{\rm H\cdot m}$. Он оказался достаточно мал по сравнению с моментом силы тяжести груза, подвешенного на ось гироскопа, но достаточным для поворота гироскопа в сторону направления силы тяжести груза. Для его более точной оценки необходима более точная шкала определения отклонения гироскопа от начального уровня, которой, к сожалению, не было.