

Lab Multi Layer Perceptron

Neste exercício você vai empregar redes MLP do scikit-learn para resolver um problema de classificação sobre a base de dados penguins . Siga o modelo e em seguida responda o questionário no Moodle.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

Modelo MLP

```
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, classification_report
```

Preparação dos dados

- 1. Aquisição dos Dados
- 2. Seleção de Atributos e Instâncias (nulos?)
- 3. Hot encode dos dados
- 4. Normalização

```
# Carregando os dados
df = pd.read_csv('https://vincentarelbundock.github.io/Rdatasets/csv/MASS/Cars93.csv',index_col=0)
df = df.reset_index(drop=True)
display(df.head())
# Separando preditores e classe objetivo
X = df[['MPG.city', 'Horsepower', 'Type', 'Price', 'Width', 'Length', 'Weight', 'EngineSize']]
y = df['Origin']
# Aplicando one-hot encoding em 'Origin'
encoder = OneHotEncoder()
X_encoded = encoder.fit_transform(X[['Type']]).toarray()
X_encoded = pd.DataFrame(X_encoded, columns=encoder.get_feature_names_out())
X = pd.concat([X.drop(columns='Type'), X_encoded], axis=1)
display(X.head())
# Normalizando os dados
scaler = StandardScaler()
X = scaler.fit_transform(X)
display(pd.DataFrame(X).head())
```

	Manufacturer	Model	Туре	Min.	Price	Price	Max.Price	MPG.city	MPG.hig	ghway	AirB	ags	DriveTrain	•••	Passeng	ers	Length
0	Acura	Integra	Smal	I	12.9	15.9	18.8	25		31	N	one	Fron	t		5	177
1	Acura	Legend	Midsize	:	29.2	33.9	38.7	18		25	Drive Passen		Fron	t		5	195
2	Audi	90	Compac	t	25.9	29.1	32.3	20		26	Driver of	only	Fron	t		5	180
3	Audi	100	Midsize	:	30.8	37.7	44.6	19		26	Drive Passen		Fron	t		6	193
4	BMW	535i	Midsize	:	23.7	30.0	36.2	22		30	Driver o	only	Real			4	186
5 rows × 27 columns																	
	MPG.city Ho	sepower	Price	Width	Length	weigh	t EngineSi	ize Type_	Compact	Туре	_Large	Туре	e_Midsize	Type_S	Small Ty	pe_S	porty T
0	25	140	15.9	68	177	270	5	1.8	0.0		0.0		0.0		1.0		0.0
1	18	200	33.9	71	195	356	0	3.2	0.0		0.0		1.0		0.0		0.0

Treinamento do Modelo

- 1. Separação dos conjuntos de Treinamento e Teste
- 2. Definição do modelo e seus Hiperparâmetros
- 3. Treinamento do Modelo

```
# Separando os dados de treinamento e teste

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

# Define o modelo de classificação (MLP)

clf = MLPClassifier(hidden_layer_sizes=(8,16,8), random_state=1, max_iter=5000)

# Treinando o modelo

clf.fit(X_train, y_train)
```

```
MLPClassifier
MLPClassifier(hidden_layer_sizes=(8, 16, 8), max_iter=5000, random_state=1)
```

→ Calculo da Eficiência do Modelo

- 1. Acuracidade
- 2. Classification Report
 - 1. Precision
 - 2. Recall
 - 3. F1

```
# Calculando métricas de avaliação
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
print("Acurácia:", accuracy)
print("Classification Report:\n", classification_rep)
```

Acurácia: Classific		7142857142857 Report:	1		
		precision	recall	f1-score	support
	USA	0.82	0.82	0.82	11
non-	USA	0.88	0.88	0.88	17
accur	acy			0.86	28
macro	avg	0.85	0.85	0.85	28
weighted	avg	0.86	0.86	0.86	28

▼ Predição

Faça a predição dos seguintes veículos em X_new:

Execute para gerar X new

Mostrar código

display(X_new)

	MPG.city	Horsepower	Туре	Price	Width	Length	Weight	EngineSize
0	22	105	Sporty	15.9	68	180	2850	2.3
1	24	140	Compact	17.5	67	185	3040	2.2

Atenção: Antes de aplicar a predição é necessário aplicar as mesmas transformações empregadas antes durante o treinamento.

```
X_encoded = encoder.transform(X_new[['Type']]).toarray()
X_encoded = pd.DataFrame(X_encoded, columns=encoder.get_feature_names_out())
X_new = pd.concat([X_new.drop(columns='Type'), X_encoded], axis=1)
display(X_new.head())

X_new = scaler.transform(X_new)

y_pred = clf.predict(X_new)

print(y_pred)
```

	MPG.city	Horsepower	Price	Width	Length	Weight	EngineSize	Type_Compact	Type_Large	Type_Midsize	Type_Small	Type_Sporty	T
0	22	105	15.9	68	180	2850	2.3	0.0	0.0	0.0	0.0	1.0	
1	24	140	17.5	67	185	3040	2.2	1.0	0.0	0.0	0.0	0.0	
Γ'1	CA' 'non-l	Ις Λ ' Ί											Þ

▼ Exercício

Empregue os modelos de rede neural MLP abaixo para classifique a origem, ilha do Pinguim, baseado nos demais atributos.

```
df = sns.load_dataset('penguins')
df.head()
```

	species	island	bill_length_mm	${\tt bill_depth_mm}$	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

▼ Preparação dos Dados

Exclua os dados ausentes se houverem. Para o atributo species aplique o One Hot encode. Para o atributo sex faça o Label encode, atribuindo 0 para o masculino e 1 para femino.

▼ Dropna

```
df = df.dropna().reset_index(drop=True)
len(df)
333
```

▼ Hot Encode

Faça o hot enconde de species empregando:

```
from sklearn.preprocessing import OneHotEncoder
```

```
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
hot_encode = OneHotEncoder(handle_unknown='ignore')
hot_encode = hot_encode.fit(df[['species']])
transformed = hot_encode.transform(df[['species']]).toarray()
# print(transformed)

transformed_df = pd.DataFrame(transformed, columns=hot_encode.get_feature_names_out())
display(transformed_df.head())

df = pd.concat([df, transformed_df],axis=1)
df.head()
```

	species_	Adelie sp	ecies_Chinstrap	species_Gentoo		
0		1.0	0.0	0.0		
1		1.0	0.0	0.0		
2		1.0	0.0	0.0		
3		1.0	0.0	0.0		
4		1.0	0.0	0.0		
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0
0		Torgersen Torgersen	39.1 39.5	18.7 17.4	181.0 186.0	3750.0 3800.0
	Adelie	· ·				
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0
1	Adelie Adelie	Torgersen Torgersen	39.5 40.3	17.4 18.0	186.0 195.0	3800.0 3250.0

```
df.species_Adelie.sum()

146.0
```

▼ Label Encode

Faça o Label Encode de sex empregando a função replace() do Pandas. Atribua O para Male e 1 para Female.

```
df.sex = df.sex.replace('Male',0)
df.sex = df.sex.replace('Female',1)

df.head()
```

	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	flipper_length_mm	body_mass_g
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0
3	Adelie	Torgersen	36.7	19.3	193.0	3450.0
4	Adelie	Torgersen	39.3	20.6	190.0	3650.0
		Ü				

```
df.sex.sum()
```

165

Normalização

Empregue:

```
from sklearn.preprocessing import MinMaxScaler
```

```
from sklearn.preprocessing import MinMaxScaler

# Entradas e Saídas
X = df.drop(columns=['island','species'])
y = df['island']

columns = X.columns

scaler = MinMaxScaler()
scaler.fit(X)
X = scaler.transform(X)
pd.DataFrame(X, columns = columns)
```

	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	species_Adel				
0	0.254545	0.666667	0.152542	0.291667	0.0					
1	0.269091	0.511905	0.237288	0.305556	1.0	•				
2	0.298182	0.583333	0.389831	0.152778	1.0	•				
3	0.167273	0.738095	0.355932	0.208333	1.0					
4	0.261818	0.892857	0.305085	0.263889	0.0	•				
328	0.549091	0.071429	0.711864	0.618056	1.0	(
329	0.534545	0.142857	0.728814	0.597222	1.0	(
330	0.665455	0.309524	0.847458	0.847222	0.0	(
331	0.476364	0.202381	0.677966	0.694444	1.0	(
332	0.647273	0.357143	0.694915	0.750000	0.0	(
333 rd	333 rows × 8 columns									
4						+				

```
X.sum()
```

1106.048069435273

▼ Treinamento 1

Empregue os atributos normalizados da seção anterior como variáveis preditoras para implemente um algoritmo MLP para classificação da ilha (island) de origem dos pinguins.

- 1. Train/Test Split. Empregue 30% dos dados para teste, random_state=1 e dados estratificados pelo atributo classe (variável objetivo).
- 2. MLP. Empregue random_state=1, uma rede com camadas ocultas de 8, 16 e 8 neurônios respectivamente e número máximo de iterações 1000.

Não empregue outros parâmetros além dos solicitados.

Obtenha ao final a acuracidade do modelo, o classification report e a matriz de confusão para responder as questões.

```
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
# Separação Treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.3, random_state=1)
# Definicão
clf = MLPClassifier(random_state=1, hidden_layer_sizes=(8,16,8), max_iter=1000)
# Treinamento
clf.fit(X_train, y_train)
# Avaliação
y_pred = clf.predict(X_test)
print('\nClassification Report:\n')
print(classification_report(y_test, y_pred))
print('\nConfusion Matrix:\n')
print(confusion_matrix(y_test, y_pred))
```

Classification Report:

	precision	recall	f1-score	support
Biscoe Dream	0.73 0.61	0.78 0.76	0.75 0.67	49 37
Torgersen	0.50	0.07	0.12	14
accuracy macro avg weighted avg	0.61 0.65	0.53 0.67	0.67 0.52 0.64	100 100 100

Confusion Matrix:

[[38 10 1] [9 28 0] [5 8 1]]

clf.coefs_[0].sum()

-2.244783703253475

Treinamento 2

Altere o modelo anterior para uma rede com 8, 4 elementos de camadas internas, a função de ativação relu e o máximo número de iterações 5000. Empregue o mesmo conjunto de Treinamento e Teste anterior.

```
# Definição
clf = MLPClassifier(random_state=1, hidden_layer_sizes=(8,4), max_iter=5000, activation='relu')
# Treinamento
clf.fit(X_train, y_train)

# Avaliação
y_pred = clf.predict(X_test)

print('\nClassification Report:\n')
print(classification_report(y_test, y_pred))

print('\nConfusion Matrix:\n')
print(confusion_matrix(y_test, y_pred))
```

Classification Report:

	precision	recall	f1-score	support
Biscoe Dream Torgersen	0.92 0.61 0.29	0.73 0.89 0.14	0.82 0.73 0.19	49 37 14
accuracy macro avg weighted avg	0.61 0.72	0.59 0.71	0.71 0.58 0.70	100 100 100

```
Confusion Matrix:
```

```
[[36 11 2]
[ 1 33 3]
[ 2 10 2]]
```

```
clf.coefs_[0].sum()
```

-0.8648101761509308

▼ Predição

Faça a predição dos seguinte pinguim:

```
species Adelie
bill_length_mm 40.0
bill_depth_mm 18.0
flipper_length_mm 185.0
body_mass_g 3900.0
sex Male
```

```
X_new = pd.DataFrame()

X_new['species']=['Adelie']

X_new['bill_length_mm']=40.0

X_new['bill_depth_mm']=18.0

X_new['flipper_length_mm']=185.0

X_new['body_mass_g']=3900.0

X_new['sex']='Male'

X_new.head()
```

```
species bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex

0 Adelie 40.0 18.0 185.0 3900.0 Male
```

array([[0.36003115, 0.38667105, 0.25329781]])

```
X_encoded = hot_encode.transform(X_new[['species']]).toarray()
X_encoded = pd.DataFrame(X_encoded, columns=hot_encode.get_feature_names_out())
X_new = pd.concat([X_new.drop(columns='species'), X_encoded], axis=1)
display(X_new.head())

X_new.sex = X_new.sex.replace('Male',0)
X_new.sex = X_new.sex.replace('Female',1)

X_new = scaler.transform(X_new)

y_pred = clf.predict(X_new)

print(y_pred)
```

```
clf.classes_
array(['Biscoe', 'Dream', 'Torgersen'], dtype='<U9')</pre>
```

```
clf.predict_proba(X_new)
```