

Module 1

MEE1004-FLUID MECHANICS

Problems related to Newton's law of Viscosity

Problems related to Surface tension and Capillarity

Vinayagamurthy G, Dr. Eng.,
Associate Professor
School of Mechanical and Building Sciences
VIT Chennai

Newton's law of Viscosity

. A flat plate area 1.5x106 mm² is pulled with a speed of 0.4 m/s relative to another plate located at a distance of 0.15 mm from it. Find the force and power required to maintain this speed, if the fluid separating them is having viscosity as 1 poise.

. A flat plate area 1.5x106 mm² is pulled with a speed of 0.4 m/s relative to another plate located at a distance of 0.15 mm from it. Find the force and power required to maintain this speed, if the fluid separating them is having viseosity as 1 poise.

Solution:

Given:

Area of the plate, $A = 1.5 \times 10^6 \text{ mm}^2 = 1.5 \text{m}^2$

Speed of plate relative to another plate, du = 0.4 m/s

Distance between the plates, $dy = 0.15 \text{ mm} = 0.15 \text{ x } 10^{-3} \text{m}$

Viscosity $\mu = 1 \text{ poise } \frac{1}{10} \frac{N_{\mathcal{S}}}{m^2}.$

Using equation (1.2), we have

$$u = \mu \frac{du}{dy} = \frac{1}{10} \times \frac{0.4}{015 \times 10^{-3}} = 266.66 \frac{N}{m^2}$$

- (i) : Shear force, $F = \tau x \text{ area} = 266.66 \times 1.5 = 400 \text{ N}.$
- (ii) Power* required to move he plate at the speed 0.4 m/sec

$$= F \times u = 400 \times 0.4 = 160 \text{ W}.$$

Calculate the dynamic viscosity of an oil, which is used for lubrication between a square plate of size 0.8 m x0.8 m and an inclined plane with angle of inclination 30° as shown in Fig. The weight of the square plate is 300 N and it slides down the inclined plane with a uniform velocity of 0.3 m/s. The thickness of oil film is 1.5 mm.

Calculate the dynamic viscosity of an oil, which is used for lubrication between a square plate of size 0.8 m x0.8 m and an inclined plane with angle of inclination 30° as shown in Fig. The weight of the square plate is 300 N and it slides down the inclined plane with a uniform velocity of 0.3 m/s. The thickness of oil film is 1.5 mm.

Solution:

Given:

Area of plate, $A = 0.8 \times 0.8 = 0.64 \text{ m}^2$

Angle of plane, $\theta = 30^{\circ}$

Weight of plate, W = 300 N

Velocity of plate, u = dyThickness of oil film, t = dy

 $= 1.5 \text{ mm} = 1.5 \times 10^{-3} \text{m}$

Let viscosity of fluid between plate and inclined plane is μ . Component of weight W, along the plane = W cos 60° =150 N

Thus the shear force, F, on the bottom surface of the plate = 150 N

And shears stress,
$$\tau = \frac{F}{Area} = \frac{150}{0.64} N / m^2$$

Now using equation (1.2), we have

$$\tau = \mu \, \frac{du}{dy}$$

where du = Change of velocity = u-0=u=0.3 m/s

$$dy = t = 1.5 \times 10^{-3} \text{ m}$$

$$\frac{150}{0.64} = \mu \frac{0.3}{1.5 \times 10^{-3}}$$

$$\mu = \frac{150 \times 1.5 \times 10^{-3}}{0.64 \times 0.3} = 1.17 Ns / m^2 = 1.17 \times 10 = 11.7 \ poise.$$

