69 GeekBrains

Лекция 5. Google Colab(Jupyter). Знакомство с аналитикой. Курс

Оглавление

Введение	2
Термины, используемые в лекции	3
Чтение и предварительный просмотр данных	3
Выбор данных	5
Простая статистика	7
Изображаем статистические отношения	8
Линейные графики	10
Гистограмма	11
Выводы	13

Введение

Знакомство с аналитикой. Мы будем пользоваться таким инструментом как Google colab

На лекции мы познакомимся с инструментом для работы с табличными данными(pandas) и способами визуализации данных с помощью библиотек matplotlib и seaborn. Прежде, чем приступать непосредственно к машинному обучению, важно произвести **EDA**(Exploratory Data Analysis) - Разведочный анализ данных.

Он состоит в анализе основных свойств данных, нахождения в них общих закономерностей, распределений и аномалий, построение начальных моделей, зачастую с использованием инструментов визуализации.

Понятие введено математиком **Джоном Тьюки**, который сформулировал цели такого анализа следующим образом:

- 1. Максимальное «проникновение» в данные
- 2. Выявление основных структур
- 3. Выбор наиболее важных переменных
- 4. Обнаружение отклонений и аномалий
- 5. Проверка основных гипотез

Термины, используемые в лекции

Перцентиль - это показатель, используемый в статистике, показывающий значение, ниже которого падает определенный процент наблюдений в группе наблюдений

Scatterplot (Точечный график) - Математическая диаграмма, изображающая значения двух переменных в виде точек на декартовой плоскости.

Медиана набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше.

Базовые функции для работы с данными

Библиотека **pandas** может читать многие форматы, включая: .csv, .xslx, .xls, .txt, sql и многие другие. Полный список по <u>ссылке</u>

Чтобы подключить библиотеку к Вашей программе необходимо написать следующее:

```
import pandas as pd
```

Напоминание: as(alias) - псевдоним. Мы можем сократить название все библиотеки до 2-х букв.

Прочтем файл .csv(он находится в Google Colab в папке **sample_data**) с помощью библиотеки **pandas**

```
df = pd.read_csv('sample_data/california_housing_train.csv')
```

Для того чтобы прочитать первые n строк таблицы, необходимо воспользоваться следующей функцией:

```
DataFrame.head(n=5)
```

Где DataFrame - это таблица с данными, которая предварительно была открыта. Мы ее открыли и записали в переменную **df.** Необязательно указывать n=5, вместо 5 мы можем указать любое число(число не должно превосходить количество строк в таблице). Если Вы ничего не укажете в круглых скобках, то ошибка не вылезет, по умолчанию будут выведены первые 5 строк таблицы.

Пример:

```
df.head()
```

Результат:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0
1	-114.47	34.40	19.0	7650.0	1901.0	1129.0	463.0	1.8200	80100.0
2	-114.56	33.69	17.0	720.0	174.0	333.0	117.0	1.6509	85700.0
3	-114.57	33.64	14.0	1501.0	337.0	515.0	226.0	3.1917	73400.0
4	-114.57	33.57	20.0	1454.0	326.0	624.0	262.0	1.9250	65500.0

Как мы знаем, в нашем мире почти все симметрично, есть отрицательные числа, а есть положительные и тд. Значит, если есть функция, которая показывает первые 5 строк таблицы, то и есть функция, которая показывает последние 5 строк таблицы. Да, действительно, это так. Давайте с ней познакомимся

Пример:

```
df.tail()
```

Результат:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
16995	-124.26	40.58	52.0	2217.0	394.0	907.0	369.0	2.3571	111400.0
16996	-124.27	40.69	36.0	2349.0	528.0	1194.0	465.0	2.5179	79000.0
16997	-124.30	41.84	17.0	2677.0	531.0	1244.0	456.0	3.0313	103600.0
16998	-124.30	41.80	19.0	2672.0	552.0	1298.0	478.0	1.9797	85800.0
16999	-124.35	40.54	52.0	1820.0	300.0	806.0	270.0	3.0147	94600.0

Данная функция работает аналогично с head(). Необязательно выводить последние 5 строчек, можно указать сколько угодно.

Иногда заранее неизвестно сколько строк и столбцов находится внутри таблицы, чтобы это сделать необходимо воспользоваться специальной функцией.

Пример:

```
df.shape
```

Результат:

```
(17000, 9)
```

Функция shape возвращает размеры таблицы: кортеж из 2 значений, 1 - количество строк, 2 - количество столбцов.

Согласитесь, что все не раз делали заказ на каком-нибудь маркетплейсе. И когда мы заполняли поле "Email", то могли его пропустить, потому что указанно, что оно необязательное и не хотели видеть лишнего спама. Вы когда-нибудь задумывались, как в этом случае эти данные будут выглядеть внутри базы данных(таблице)? Пропуск? Пустая ячейка? Нет. Когда нужно указать, что в данной ячейки таблицы ничего нет указывается значение null.

Чтобы обнаружить пустые значения в таблице данных необходимо воспользоваться функцией .isnull().

Пример:

```
df.isnull()
```

Результат:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
16995	False	False	False	False	False	False	False	False	False
16996	False	False	False	False	False	False	False	False	False
16997	False	False	False	False	False	False	False	False	False
16998	False	False	False	False	False	False	False	False	False
16999	False	False	False	False	False	False	False	False	False

Функция привела нашу таблицу к следующему виду **True-False,** где **True** - это пустая ячейка, **False** - это заполненная ячейка. Но это неудобно, то есть нам надо просматривать 17 000 * 9 = 153 000 ячеек. Вау... Это займет слишком много времени. Однако, мы можем воспользоваться еще одной функцией .**sum()**. Данная функция выведет количество null-значений в каждой ячейке по столбцам.

Пример:

```
df.isnull().sum()
```

Результат:

```
longitude
                       0
latitude
housing median age
                       0
total rooms
                       0
total bedrooms
                       0
population
                       0
households
                       0
median income
                       0
median house value
                       0
```

Можно сделать следующий вывод: пустые значения в нашей таблицы отсутствуют.

Еще при работе с С#, мы поняли, что у каждой переменной есть свой тип данных. Также и здесь, у каждого столбца есть свой тип данных, чтобы это узнать, нужно применить функцию .dtypes.

Пример:

```
df.dtypes
```

Результат:

```
longitude
                      float64
latitude
                      float64
housing median age
                      float64
total rooms
                      float64
total bedrooms
                      float64
population
                      float64
households
                      float64
median income
                      float64
median house value
                      float64
```

Делаем вывод: у всей таблицы данных один тип float(дробное число)

Чтобы узнать название всех столбцов в таблице, воспользуйтесь функцией .columns.

Пример:

```
df.columns
```

Результат:

Выборка данных

Медиана набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше.

Если Вы хотите вывести 1 столбец на экран, то можно указать следующее выражение, которое позволит это сделать.

Пример:

```
df['latitude']
```

Результат:

```
0
         34.19
         34.40
1
2
         33.69
3
         33.64
4
         33.57
         . . .
16995
         40.58
         40.69
16996
16997
         41.84
         41.80
16998
16999
         40.54
Name: latitude, Length: 17000, dtype: float64
```

Что мы будем делать, если нам потребуется вывести на экран сразу несколько столбцов? Не очень удобно будет это прописывать вот таким образом:

```
print(df['latitude'])
print(df['population'])
```

Конечно есть решение данного вопроса

Пример:

```
df[['latitude', 'population']]
```

Результат:

	latitude	population
0	34.19	1015.0
1	34.40	1129.0
2	33.69	333.0
3	33.64	515.0
4	33.57	624.0
16995	40.58	907.0
16996	40.69	1194.0
16997	41.84	1244.0
16998	41.80	1298.0
16999	40.54	806.0

Задание: Необходимо вывести столбец **total_rooms**, у которого медианный возраст здания(**housing_median_age**) меньше **20**.

Для того чтобы решить это задание, давайте познакомимся с синтаксисом выборки данных. На самом деле, это ничем не отличается от операторов ветвления.

Решение:

```
df[df['housing_median_age'] < 20]</pre>
```

Результат:

0 -114.31 34.19 15.0 5612.0 1283.0 1015.0 472.0 1.4936 66 1 -114.47 34.40 19.0 7650.0 1901.0 1129.0 463.0 1.8200 80 2 -114.56 33.69 17.0 720.0 174.0 333.0 117.0 1.6509 85 3 -114.57 33.64 14.0 1501.0 337.0 515.0 226.0 3.1917 73	0
2 -114.56 33.69 17.0 720.0 174.0 333.0 117.0 1.6509 85	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
3 -114.57 33.64 14.0 1501.0 337.0 515.0 226.0 3.1917 73	2
	3
10 -114.60 33.62 16.0 3741.0 801.0 2434.0 824.0 2.6797 86	10
	
16983 -124.19 41.78 15.0 3140.0 714.0 1645.0 640.0 1.6654 74	16983
16987 -124.21 41.77 17.0 3461.0 722.0 1947.0 647.0 2.5795 68	16987
16991 -124.23 41.75 11.0 3159.0 616.0 1343.0 479.0 2.4805 73	16991
16997 -124.30 41.84 17.0 2677.0 531.0 1244.0 456.0 3.0313 103	16997
16998 -124.30 41.80 19.0 2672.0 552.0 1298.0 478.0 1.9797 85	16998

4826 rows × 9 columns

Если Вам нужно поставить другое условие, то аналогично.

Мы помним с С#, что иногда приходится проверять несколько условий сразу. Чтобы проверить несколько условий внутри Google Colab, указывается так:

```
df[(df['housing_median_age'] > 20) & (df['total_rooms'] > 2000)]
```

& - выполнение одновременно **всех** условий.

| - выполнение хотя бы одного из условия.

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
6	-114.58	33.61	25.0	2907.0	680.0	1841.0	633.0	2.6768	82400.0
8	-114.59	33.61	34.0	4789.0	1175.0	3134.0	1056.0	2.1782	58400.0
13	-114.61	34.83	31.0	2478.0	464.0	1346.0	479.0	3.2120	70400.0
42	-115.49	32.67	25.0	2322.0	573.0	2185.0	602.0	1.3750	70100.0
45	-115.50	32.67	35.0	2159.0	492.0	1694.0	475.0	2.1776	75500.0
16986	-124.19	40.73	21.0	5694.0	1056.0	2907.0	972.0	3.5363	90100.0
16990	-124.22	41.73	28.0	3003.0	699.0	1530.0	653.0	1.7038	78300.0
16993	-124.23	40.54	52.0	2694.0	453.0	1152.0	435.0	3.0806	106700.0
16995	-124.26	40.58	52.0	2217.0	394.0	907.0	369.0	2.3571	111400.0
16996	-124.27	40.69	36.0	2349.0	528.0	1194.0	465.0	2.5179	79000.0

5624 rows × 9 columns

Первую часть задания мы успешно выполняли! Только загвоздка... Нам не нужна вся таблица, а лишь один столбец, как это сделать?

Решение:

```
df[df['housing_median_age'] < 20, 'total_rooms']
# или (если необходимо вывести 2 и более столбцов
df[df['housing_median_age'] < 20, ['total_bedrooms', 'total_rooms']]</pre>
```

Результат:

17	44.0				
19	97.0				
113	96.0				
116	208.0				
120	186.0				
16643	255.0				
16733	411.0				
16743	89.0				
16801	98.0				
16851	133.0				
Name:	total_rooms,	Length:	178,	dtype:	float64

Простая статистика

Pandas позволяет получить основные простые данные для описательной статистики. Такие как минимальное значение в столбце, максимальное значение, сумма всех значений, среднее значение

Максимальное значение:

```
print(df['population'].max())
```

Результат:

35682.0

Минимальное значение:

```
print(df['population'].min())
```

Результат:

3.0

Среднее значение:

```
print(df['population'].mean())
```

Результат:

1429.5739411764705

Сумма:

```
print(df['population'].sum())
```

Результат:

24302757.0

Эту же статистику можно рассчитывать сразу для нескольких столбцов

Медианное значение:

```
df[['population', 'total_rooms']].median()
```

Результат:

population 1155.0 total_rooms 2106.0

dtype: float64

Перцентиль - это показатель, используемый в статистике, показывающий значение, ниже которого падает определенный процент наблюдений в группе наблюдений

Получить общую картину можно простой командой describe

df.describe()

Результат:

count - Общее кол-во не пустых строк

mean - среднее значение в столбце

std - стандартное отклонение от среднего значения

min - минимальное значение

тах - максимальное значение

Числа 25%, 50%, 75% - перцентили

Изображаем статистические отношения

Scatterplot (Точечный график)

Математическая диаграмма, изображающая значения двух переменных в виде точек на декартовой плоскости. Библиотека **seaborn** без труда принимает **pandas DataFrame**(таблицу). Чтобы изобразить отношения между двумя столбцами достаточно указать, какой столбец отобразить по оси **x**, а какой по оси **y**.

Для того чтобы начать работу с библиотекой seaborn, ее необходимо импортировать к себе в программу:

import seaborn as sns

Вернемся к нашей таблице. Можно заметить, что дома расположены в определенной "полосе" долготы и широты.

Изображение точек долготы по отношению к широте:

sns.scatterplot(data=df, x="longitude", y="latitude")

Результат:

<matplotlib.axes. subplots.AxesSubplot at 0x7fa155b53050>

Помимо двумерных отношений, мы можем добавить "дополнительное измерение" с помощью цвета. В данном случае опять же достаточно очевидное отношение, чем выше кол-во семей, тем выше кол-во людей и соответственно комнат.

```
sns.scatterplot(data=df, x="households", y="population", hue="total_rooms")
```

Результат:

<matplotlib.axes. subplots.AxesSubplot at 0x7fa14df5bcd0>

Помимо обозначения дополнительного измерения цветом мы можем использовать size.

```
sns.scatterplot(data=df, x="households", y="population", hue="total_rooms")
```

Результат:

<matplotlib.axes. subplots.AxesSubplot at 0x7fa14c1a3490>

Мы можем визуализировать сразу несколько отношений, используя класс **PairGrid** внутри **seaborn. PairGrid** принимает как аргумент pandas **DataFrame** и визуализирует все возможные отношения между ними, в соответствии с выбранным типом графика.

```
cols = ['population', 'median_income', 'housing_median_age',
'median_house_value']
g = sns.PairGrid(df[cols])
g.map(sns.scatterplot)
```

Результат:

Как Вы думаете, чем вызвана линейная зависимость по диагонали?

Линейные графики

Хорошо подойдут, если есть временная или какая-либо иная последовательность и значения, которые могут меняться в зависимости от нее. Для генерации линейных графиков в **seaborn** используется **relplot** функцию. Она также принимает **DataFrame**, **x**, **y** - столбцы.

Для визуализации выбирается тип line:

```
sns.relplot(x="latitude", y="median_house_value", kind="line", data=df)
```

Результат:

<seaborn.axisgrid.FacetGrid at 0x7fa14c03eb90>

Можно видеть, что в определенных местах долготы цена за дома резко подскакивает.

Попробуем визуализировать longitude по отношения к median_house_value и поймем в чем же дело, почему цена так резко подскакивает.

```
sns.relplot(x = 'longitude', y = 'median_house_value', kind = 'line', data = df)
```

Результат:

Можно видеть, что в определенных местах широты цена за дома также очень высока.

Используя точечный график можно визуализировать эти отношения с большей четкостью. Скорее всего резкий рост цен связан с близостью к ценному объекту, повышающему качество жизни, скорее всего побережью океана или реки.

```
sns.scatterplot(data=df, x="latitude", y="longitude", hue="median_house_value")
```

Результат:

<matplotlib.axes. subplots.AxesSubplot at 0x7fa149121fd0>

Гистограмма

Способ представления табличных данных в графическом виде — в виде столбчатой диаграммы. По оси \mathbf{x} обычно указывают значение, а по оси \mathbf{y} - встречаемость(кол-во таких значений в выборке)

```
sns.histplot(data=df, x="median_income")
```

Результат:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa14915eb10>

Можно видеть что у большинства семей доход находится между значениями 2 и 6. И только очень небольшое количество людей обладают доходом > 10.

Изобразим гистограмму по housing median age.

```
sns.histplot(data = df, x = 'housing_median_age')
```

Результат:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa148fc6c50>

Распределение по возрасту более равномерное. Большую часть жителей составляют люди в возрасте от 20 до 40 лет. Но и молодежи не мало. Также очень много пожилых людей > 50 лет медианный возраст.

Давайте посмотрим медианный доход у пожилых жителей.

```
sns.histplot(data=df[df['housing_median_age']>50], x="median_income")
```

Результат:

Большого отличия от популяции в целом не наблюдается. Скорее всего это местные жители.

Давайте разобьем возрастные группы на 3 категории те кто моложе 20 лет, от 20 до 50 и от 50, чтобы посмотреть влияет ли это на доход.

```
df.loc[df['housing_median_age'] <= 20, 'age_group'] = 'Молодые'

df.loc[(df['housing_median_age'] > 20) & (df['housing_median_age'] <= 50),
    'age_group'] = 'Cp. возраст'

df.loc[df['housing_median_age'] > 50, 'age_group'] = 'Пожилые'
```

Что в этом случае происходит внутри таблицы? Добавился новый столбец **age_group**, в котором будет указана соответствующая категория.

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	age_group
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0	Молодые

Применим group_by, чтобы получить среднее значение.

```
df.groupby('age_group')['median_income'].mean().plot(kind='bar')
```

Результат:

<matplotlib.axes. subplots.AxesSubplot at 0x7fa14833aa90>

Молодые оказываются самой богатой группой населения. Но отличие в доходе не значительное.

Seaborn так же позволяет нам смотреть распределение по многим параметрам. Давайте поделим группы по доходам на 2. Те у кого медианный доход выше 6 и те у кого меньше. Изобразим дополнительное измерение с помощью оттенка в виде возрастных групп и групп по доходам.

```
df.loc[df['median_income'] > 6, 'income_group'] = 'rich'
df.loc[df['median_income'] < 6, 'income_group'] = 'everyone_else'</pre>
```

```
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value age_group income_group

1 -114.31 34.19 15.0 5612.0 1283.0 1015.0 472.0 1.4936 66900.0 Молодые everyone_else
```

```
sns.displot(df, x="median_house_value", hue="income_group")
```

Результат:

Итоги:

Анализ данных должен предоставлять информацию и инсайт, которые не видны невооруженным взглядом. В этом и есть красота аналитики. В данном случае можно сделать следующий выводы. Стоимость домов напрямую зависит от их расположения, в определенной полосе(скорее всего побережье) цена на дома высокая. Чем выше доход, тем больше шанс, что человек проживает в богатом районе. Распределение по возрастам примерно одинаковое во всех группах доходов. Ну и очевидно чем больше людей, тем больше семей, и соответственно комнат и спален.