Discrete Mathematics, 2016 Fall - Worksheet 17

November 9, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

1. Please express the following permutations in disjoint cycle form.

(a)
$$\pi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{bmatrix}$$
.
(b) $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 3 & 5 \end{bmatrix}$

- 2. Prove that in the cycle decomposition produced by the algorithm discussed on the slides, the resulting cycles are pairwise disjoint.
- 3. How many permutations in S_n have exactly one cycle?
- 4. Let π, σ be given by

$$\pi = (1)(2,3,4,5)(6,7,8,9), \qquad \sigma = (1,3,5,7,9,2,4,6,8)$$

Calculate the following

- (a) $\pi \circ \sigma$
- (b) $\sigma \circ \pi$
- (c) π^{-1}
- (d) $\pi^{-1} \circ \pi$.
- 5. Write the following permutations as the composition of transpositions and determine whether the permutation is even or odd.
 - (a) (1,3)(2,4,5)
 - (b) (1, 2, 4, 3)(5)
 - (c) $[(1,3)(2,4,5)]^{-1}$.
- 6. Prove the following group facts:
 - (a) If (G, *) is a group and $g \in G$, then $(g^{-1})^{-1} = g$.
 - (b) If (G, *) is a group with identity element e, then $e^{-1} = e$.
 - (c) If (G, *) is a group and $g, h \in G$, then $(g * h)^{-1} = h^{-1} * g^{-1}$.
- 7. Show that the alternating group (A_n, \circ) is indeed a group.