DSCI353-353m-453: Class 01a Intro Class

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, M. Li, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, D. Colvin

19 January, 2023

Contents

1.1.1.1 Class R	eadings, Assignments, Textbooks Syllabus Topics
1.1.1.1.1	Reading, Lab Exercises, SemProjects
1.1.1.1.2	Textbooks
1.1.1.1.3	Tidyverse Cheatsheets, Functions and Reading Your Code 2
1.1.1.1.4	Syllabus
1.1.1.2 The DS	CI courses and class sections
1.1.1.2.1	In these Applied Data Science (DSCI) classes
1.1.1.2.2	The course sections
1.1.1.2.3	The specific courses
1.1.1.2.4	DSCI45x Graduate level courses
1.1.1.2.5	Semester Data Science Projects
1.1.1.2.6	For the DSCI 453 students they have an EDA SemProj to do 5
1.1.1.2.7	Care should be taken when choosing SemProj datasets 6
1.1.1.3 Syllabu	s
1.1.1.4 Open D	Oata Science (ODS) & HPC Compute Engines
1.1.1.4.1	The two cloud computing systems: Markov HPC Cluster & ODS
	Win10 Desktop
1.1.1.4.2	CWRU HPC provides Markov
1.1.1.4.3	You also have access to the ODS Win10 Desktops
1.1.1.4.4	And you can also use Google's Kaggle.com
1.1.1.5 Operati	ing Systems: Windows, OSX and Linux
1.1.1.5.1	Basic/Universal Rules
1.1.1.6 Quick I	ntroduction to R/Rstudio/Git
1.1.1.7 What w	ve need to do this week
1.1.1.7.1	So go make accounts, using your case.edu email address 10
1.1.1.8 Your O	pen Data Science Tool Chain
1.1.1.8.1	Its all about a Data Science Tool Chain
1.1.1.8.2	Online Git Server Communities
1.1.1.9 Things	you need to do
1.1.1.9.1	Online accounts
1.1.1.9.2	Lab Exercises are submitted and graded on Canvas
1.1.1.9.3	Your Class Git Repo
1.1.1.10 Intro to	o some R: Data Types
1.1.1.10.1	Simple Types
1.1.1.10.2	Example: Generating Random Data
1.1.1.11 Recomm	nended R Libraries
1.1.1.11.1	
1.1.1.11.2	- ,
1.1.1.11.3	Statistical and Machine Learning

	13 14
License: CC-BY-SA 4.0	
1.1.1.1 Class Readings, Assignments, Textbooks Syllabus Topics	
1.1.1.1.1 Reading, Lab Exercises, SemProjects	
 Readings: For today: For next class: ISRL1,2 (R4DS) Laboratory Exercises: LE0: Do this as a refresher LE1: Given out next Tuesday Jan. 24th LE2: Is Due Thursday Feb. 2nd Office Hours: (Class Canvas Calendar for Zoom Link) Wednesdays @ 4:00 PM to 5:00 PM Saturdays @ 3:00 PM to 4:00 PM Office Hours are on Zoom, and recorded Semester Projects DSCI 453 Students Biweekly Updates Due * Update #1 is Due Friday Jan. 27th DSCI 453 Students * Next Report Out #1 is Due Friday Feb. 17th All DSCI 353/353M/453, E1453/2453 Students: * Peer Grading of Report Out #1 is Due Thursday March 2nd Exams * MidTerm: Thursday March 9th, in class or remote, 11:30 - 12:45 PM * Final: Thursday May 4th, 2023, 12:00PM - 3:00PM, Nord 356 or remote 	
1.1.1.1.2 Textbooks -Text Books for DSCI353/353M/453	
• R4DS: Wickham: R for Data Science	
• ISLR: Intro to Statistical Learning with R, 2nd Ed.	
• DLwR: Deep Learning with R, Chollet, Allaire,	
• DLGB: Deep Learning, Goodfellow, Bengio, Courville	
Magazine Articles about Deep Learning	
- DL1 to DL12 are "Deep Learning" articles in 3-readings/2-articles/	
• Books from DSCI351/351M/451	
 Peng: R Programming for Data Science Peng: Exploratory Data Analysis with R Open Intro Stats, v4 R4DS: Wickham: R for Data Science 	
1.1.1.1.3 Tidyverse Cheatsheets, Functions and Reading Your Code	
• Look at the Tidyverse Cheatsheet	
 Tidyverse For Beginners Cheatsheet * In the Git/20s-dsci353-353m-453-prof/3-readings/3-CheatSheets/ folder 	

- Data Wrangling with dplyr and tidyr Cheatsheet

Tidyverse Functions & Conventions

- The pipe operator %>%
- Use dplyr::filter() to subset data row-wise.
- Use dplyr::arrange() to sort the observations in a data frame
- Use dplyr::mutate() to update or create new columns of a data frame
- Use dplyr::summarize() to turn many observations into a single data point
- Use dplyr::arrange() to change the ordering of the rows of a data frame
- Use dplyr::select() to choose variables from a tibble,
 - * keeps only variables you mention
- Use dplyr::rename() keeps all the variables and renames variables
 - * rename(iris, petal_length = Petal.Length)
- These can be combined using dplyr::group_by()
 - * which lets you perform operations "by group".
- The %in% matches conditions provided by a vector using the c() function
- The **forcats** package has tidyverse functions
 - * for factors (categorical variables)
- The **readr** package has tidyverse functions
 - * to read_..., melt_... col_..., parse_... data and objects

Reading Your Code: Whenever you see

- The assignment operator <-, think "gets"
- The pipe operator, %>%, think "then"

1.1.1.1.4 Syllabus

1.1.1.2 The DSCI courses and class sections

1.1.1.2.1 In these Applied Data Science (DSCI) classes

- We focus on teaching all necessary data science skills
 - Including coding in R
 - Use of Rmarkdown for data analysis reports and presentations
 - Git for code versioning and collaboration
 - Linear and non-linear regression and classification
 - Beyond linear modeling, including Support Vector Machines, Random Forest
 - Machine Learning, including Neural Networks, non-parametric regression
 - Deep Learning, including Keras/TensorFlow running on GPUs

1.1.1.2.2 The course sections

- DSCI35x (x = 1,3,2)
 - Is undergraduate class for "general" applied data science
- DSCI35xM (x=1,2,3) focuses on materials science systems
- DSCI45x (x=1,2,3)
 - Is a graduate level class
 - With the same class material and DSCI35x
 - Additionally the students do a 40 point Semester Data Analysis Project

And we have University of Pittsburgh (Pitt) students

- Taken E1453 and E2453
- With Prof. Paul Leu and TA Mingxuan Li

Day:Date	Foundation	Practicum	Readings(optional)	Due(optional)
w01a:Tu:1/17/23	Markov Cluster	R, Rstudio IDE, Git		(LE0)
w01b:Th:1/19/23	Stat. Learning, Approach	Bash, Git, Class Repo	ISLR1,2 (R4DS-1-3)	, ,
w02a:Tu:1/24/23	Train/Test, Bias vs. Vari.	Lin. Regr. Overview	ISLR3,(R4DS-4-6)	(LE0:Due) LE1
w02b:Th:1/26/23	Lin. Regr. Bias-Var.	SemProjs,	DL01 DL02 (R4DS-7,8)	
w02Pr:Fr:1/27/23	ADD DROP	DEADLINE		453 Update 1
w03a:Tu:1/31/23	Logistic Regr. Classif	Tidy Wrangling	DL03,ISLR4	
w03b:Th:2/2/23	LDA	Multi-level Mod.	DL04, DL05	LE1:Due, LE2
w04a:Tu:2/7/23	Resample Cross-Valid.	Multilevel Mod.	ISLR5	
w04b:Th:2/9/23	Bootstrap	Mixed Effects		
w04Pr:Fr:2/10/23				453 Update 2
w05a:Tu:2/14/23	Subset Selec., Shrink.	Bootstrap	ISLR6 (R4DS9-16)	LE2:Due, LE3
w05b:Th:2/16/23	Mod. Selec. Dim. Red.	Clustering, ggplot2	DL06	
w05Pr:Fr:2/17/23				453 Rep. Out 1
w06a:Tu:2/21/23	Beyond Linear Modls	Feature Select., Caret	ISLR7, DL07	
w06b:Th:2/23/23	PCA, PCR, FA	Tidy Modeling	ISLR10(R4DS22-25)	LE3:Due, LE4
w06Pr:Fr:2/24/23				453 Update 3
w07a:Tu:2/28/23	Dec. Trees, Rand. For-	Machine Learning	ISLR8, DL08,09	
	est.			
w07b:Th:3/2/23	MidTerm Review, SVM	SVM, SVR, ROC	ISLR9 (R4DS26-30)	Peer Review 1
w08a:Tu:3/7/23	R-Keras/TensorFlow2	Perceptron, Neural Nets	ISLR10	
w08b:Th:3/9/23	MIDTERM EXAM		DL10,11	LE4:Due LE5
w08Pr:Fr:3/10/23				453 Update 4
Tu:3/14/23	SPRING	BREAK	ISLR10	
Th:3/16/23	SPRING	BREAK	DL12,13	
w09a:Tu:3/21/23	Deep Learning	TF2 Keras Intro	Pocket Perceptron	ISLR10, DLR3
w09b:Th:3/23/23	Computer Vision, CNN	CNN w/TF2, Overfit	DLR4	450 D 0 1 0
w09Pr:Fr:3/24/23		L		453 Rep. Out 2
w10a:Tu:3/28/23	Deep Learn Intro	NN Types	DLR5	
w10b:Th:3/30/23	DL CNN,RNN ImageNet	NN Types, CNN wTF2	Hinton ImageNet	450 TI 15 0
w10Pr:Fr:3/31/23				453 Upd.5 & PrRev 2
Sa:4/1/23				LE5:Due LE6
w11a:Tu:4/4/23	Fitting NNs	AUC,Prec,Recall Fruit		ELOID de LIM
w11b:Th:4/6/23	NLP, Graphs & ML	AOO, FICE, ACCUIT FIUIT	LeCun DL Rev. 2015	
w12a:Tu:4/11/23	Graphs & ML	NLP with sequences	DLR6	
w12b:Th:4/13/23	NLP w attention	Graph Repr Proc Wrk-	DLRO	LE6:Due LE7
w120.111.1/15/25	TILL W AUGERITOR	flw		LEO, Due LEI
w13a:Tu:4/18/23	DL Frameworks	Explaining DL w Lime		
w13b:Th:4/20/23	Linux Distros XGBoost	Explain Preds	Deep Dream	
w13Pr:Fr:4/21/23				453 Rep. Out 3
, , , ==				Due
w14a:Tu:4/25/23	Tranformers			İ
w14b:Th:4/27/23	Final Exam Review	Torch NN & DeepLearn		LE7:Due
w14Pr:Fr:4/28/23				Peer Rev 3 Due
	FINAL EXAM	Th. 5/4/23, 12-3pm	Nord 356 & Zoom	
	453 Final PDF Report	Fr. 4/29, 11:59pm		
	100 1 mai 1 D1 100port	11. 1, 20, 11.00 pm		1

 $Table\ 1:\ DSCI353-353M-453\ Weekly\ Syllabus.\ R4DS-x.y,\ OISx.y,\ ISLRx.y,\ DLGBx.y\ refers\ to\ chapters\ and\ sections\ assigned\ as\ reading\ in\ our\ textbooks.\ DLx\ are\ deep\ learning\ articles.$

Figure 1: DSCI351-351M-451 Syllabus

1.1.1.2.3 The specific courses

- DSCI351, 351M, 451
 - Is an introduction to Exploratory Data Science
- DSCI353, 353M, 453
 - Focuses on Modeling, Prediction and Machine Learning
- DSCI 352, 352M, 452
 - Is a Semester long Data Science Project Class
 - Providing a data analysis for inclusion
 - In your Data Science Portfolio
- DSCI 354, 354M, 454
 - Is on Data Visualization and Analytics
 - Alternative Level 5 course for the ADS UG Minor

1.1.1.2.4 DSCI45x Graduate level courses

- For graduate students,
 - DSCI451 is not listed as a suggested prerequisite
- Therefore some DSCI453 grad. students
 - Do not have familiarity with Open Data Science, R, Git etc.
- For these "New to R" students
 - The initial weeks in class have optional content
 - To get people familiar with Open Data Science

1.1.1.2.5 Semester Data Science Projects

- Are done in DSCI352, 352M by students who have completed both DSCI351,3
- And by graduate students in DSCI 451, 453 and 452

For DSCI45x students, their Semester Project is developed in the DSCI352 course

- With Prof. Laura Bruckman
- During team meetings during Friday Community Hour
 - 12:45 to 1:45 in Olin 303
- And during class office hours
 - Monday/Wednesday 4pm to 5pm in White 540
- There are weekly SemProj updates due each week on progress
- And 3 SemProj Presentations in DSCI35x class

1.1.1.2.6 For the DSCI 453 students they have an EDA SemProj to do

- SemProjects:
 - SemProjects have a 5 progress update
 - * due Friday's at 11:59 pm (5 updates)
 - Each update should be made in the report template
 - * found in the Repo with each update filled out with the new things in the document
 - the update helps TA and professor grade and follow you project
 - The document should be filled in under each section and update throughout the semester until the final written report
 - SemProj Report Out #1 Class W5, (recorded 10 min presentation)
 - * Peer Grading by All DSCI 353/353m/453 students due on syllabus
 - SemProj Report Out #2 in Class W9 (recorded 10 min presentation)
 - $\ast\,$ Peer Grading by All DSCI 353/353m/453 students due on syllabus
 - SemProj Report Out #3 in Class W13 (recorded 10 min presentation)
 Peer Grading by All DSCI 353/353m/453 students due on syllabus
 - SemProj Report is full comprehensive written project

- * (report template updated from each report)
- Assistance on SemProjects is done with DSCI353-353m-453 Class
 - SemProj's are taught by Prof. Laura Bruckman
 - SemProject office hours 9-10 am on Tuesdays

1.1.1.2.7 Care should be taken when choosing SemProj datasets.

- Report Out 1 focuses on
 - Explaining the 'why' of your research project
 - Describing your dataset
 - Presenting an analysis plan
 - Cleaning your data
- Report Out 2 focuses on:
 - EDA of your data
 - Visualizing your data
 - Further cleaning of your data
 - Reevaluation of your data analysis plan (Do you need more data?)
- Report Out 3:
 - More data visualization
 - Initial modeling
 - Conclusions about your data
 - Were you able to answer your why question?
 - What else would you need to do to get to understanding your data better?

1.1.1.3 Syllabus

1.1.1.4 Open Data Science (ODS) & HPC Compute Engines

- You can do data analysis on your notebook computer
 - You can setup your own notebook
 - $\ast\,$ For data science using R or Python
 - * Full instructions are in the class syllabus, section 11
 - * For Linux, Mac's or Windows Operating Systems
 - * But Many times you'll need more compute power than your notebook
 - * Such as GPUs (Graphics Processing Units) to accelerate computations

But its useful to learn about a variety of Compute Resources

- In Class we'll use
 - Markov Data Science Cluster
 - * A high performance computing cluster
 - or Open Data Science Desktops

These are all configured the same

- Independent of the Operating System
- They have R with Rstudio IDE (Integrated Development Environment)
- Git for code versioning
- LaTeX for publication quality report generation
- And also Python3 with PyCharm IDE

1.1.1.4.1 The two cloud computing systems: Markov HPC Cluster & ODS Win10 Desktop

- Markov Data Science HPC Cluster
 - Log in to http://ondemand.case.edu
 - Using your CaseID and password

Day:Date	Foundation	Practicum	Readings(optional)	Due(optional)
w01a:Tu:1/17/23	Markov Cluster	R, Rstudio IDE, Git		(LE0)
w01b:Th:1/19/23	Stat. Learning, Approach	Bash, Git, Class Repo	ISLR1,2 (R4DS-1-3)	
w02a:Tu:1/24/23	Train/Test, Bias vs. Vari.	Lin. Regr. Overview	ISLR3,(R4DS-4-6)	(LE0:Due) LE1
w02b:Th:1/26/23	Lin. Regr. Bias-Var.	SemProjs,	DL01 DL02 (R4DS-7,8)	
w02Pr:Fr:1/27/23	ADD DROP	DEADLINE		453 Update 1
w03a:Tu:1/31/23	Logistic Regr. Classif	Tidy Wrangling	DL03,ISLR4	
w03b:Th:2/2/23	LDA	Multi-level Mod.	DL04, DL05	LE1:Due, LE2
w04a:Tu:2/7/23	Resample Cross-Valid.	Multilevel Mod.	ISLR5	
w04b:Th:2/9/23	Bootstrap	Mixed Effects		
w04Pr:Fr:2/10/23				453 Update 2
w05a:Tu:2/14/23	Subset Selec., Shrink.	Bootstrap	ISLR6 (R4DS9-16)	LE2:Due, LE3
w05b:Th:2/16/23	Mod. Selec. Dim. Red.	Clustering, ggplot2	DL06	
w05Pr:Fr:2/17/23				453 Rep. Out 1
w06a:Tu:2/21/23	Beyond Linear Modls	Feature Select., Caret	ISLR7, DL07	
w06b:Th:2/23/23	PCA, PCR, FA	Tidy Modeling	ISLR10(R4DS22-25)	LE3:Due, LE4
w06Pr:Fr:2/24/23				453 Update 3
w07a:Tu:2/28/23	Dec. Trees, Rand. Forest.	Machine Learning	ISLR8, DL08,09	
w07b:Th:3/2/23	MidTerm Review, SVM	SVM, SVR, ROC	ISLR9 (R4DS26-30)	Peer Review 1
w08a:Tu:3/7/23	R-Keras/TensorFlow2	Perceptron, Neural Nets	ISLR10	
w08b:Th:3/9/23	MIDTERM EXAM		DL10,11	LE4:Due LE5
w08Pr:Fr:3/10/23				453 Update 4
Tu:3/14/23	SPRING	BREAK	ISLR10	
Th:3/16/23	SPRING	BREAK	DL12,13	
w09a:Tu:3/21/23	Deep Learning	TF2 Keras Intro	Pocket Perceptron	ISLR10, DLR3
w09b:Th:3/23/23	Computer Vision, CNN	CNN w/TF2, Overfit	DLR4	
w09Pr:Fr:3/24/23				453 Rep. Out 2
w10a:Tu:3/28/23	Deep Learn Intro	NN Types	DLR5	
w10b:Th:3/30/23	DL CNN,RNN ImageNet	NN Types, CNN wTF2	Hinton ImageNet	
w10Pr:Fr:3/31/23				453 Upd.5 & PrRev 2
Sa:4/1/23				LE5:Due LE6
w11a:Tu:4/4/23	Fitting NNs	AUC,Prec,Recall Fruit		
w11b:Th:4/6/23	NLP, Graphs & ML	•	LeCun DL Rev. 2015	
w12a:Tu:4/11/23	Graphs & ML	NLP with sequences	DLR6	
w12b:Th:4/13/23	NLP w attention	Graph Repr Proc Wrk-		LE6:Due LE7
		flw		
w13a:Tu:4/18/23	DL Frameworks	Explaining DL w Lime		
w13b:Th:4/20/23	Linux Distros XGBoost	Explain Preds	Deep Dream	
w13Pr:Fr:4/21/23				453 Rep. Out 3 Due
w14a:Tu:4/25/23	Tranformers			İ
w14b:Th:4/27/23	Final Exam Review	Torch NN & DeepLearn		LE7:Due
w14Pr:Fr:4/28/23				Peer Rev 3 Due
, , ,	FINAL EXAM	Th. 5/4/23, 12-3pm	Nord 356 & Zoom	

 $Table\ 1:\ DSCI353-353M-453\ Weekly\ Syllabus.\ R4DS-x.y,\ OISx.y,\ ISLRx.y,\ DLGBx.y\ refers\ to\ chapters\ and\ sections\ assigned\ as\ reading\ in\ our\ textbooks.\ DLx\ are\ deep\ learning\ articles.$

Figure 2: Modeling, Prediction and Machine Learning Syllabus

- Launch the SDLE Rstudio Server-4.1.1
- You can also get a KDE Desktop on Markov

1.1.1.4.2 CWRU HPC provides Markov

- CWRU's HPC (High Peformance Computing) Markov Cluster
 - This runs RedHat Linux version 7
 - Has 4400 CPU cores
 - Has 100,000 GPU cores
 - Up to a terabyte of Ram
- And has a new Data Science Cluster, named Markov.case.edu
 - With a Hadoop Cluster for distributed computing
 - And dedicated GPUs
- You'll get accounts on CWRU HPC
- And use http://ondemand.case.edu
 - To login to Markov and get a KDE Desktop session

Figure 3: Markov Cluster

1.1.1.4.3 You also have access to the ODS Win10 Desktops

- These are cloud Windows computers
 - That you log into from a Browser
 - login to http://myapps.case.edu
 - With your CaseID and password
- The ODS VDIs are Windows 10 computers
- The ODS VDIs don't have GPUs

Not for class, but for your own data science projects.

1.1.1.4.4 And you can also use Google's Kaggle.com

• Here one can run R or Python

- Using Jupyter Notebooks Interface
- Has Free GPUs

And you can use Google's Collaboratory (https://colab.research.google.com/notebooks/welcome.ipynb)

- For Jupyter Notebooks
- Running Python3
- Doesn't support R language yet
- Free GPUs and TPUs (Tensor Processing Unit)

1.1.1.5 Operating Systems: Windows, OSX and Linux

- Command Line Environments
 - Linux: Bash on Linux, or Git Bash on Windows
 - Mac OSX: Bash in Terminal
 - Windows: Command.com Terminal
 - In R: R Console, or Console in RStudio

Linux OS	X Mac Wi	ndows
/	/	"\" don't use
ls	ls	dir
pwd	pwd	
cd	cd	cd
root filenames	root spaces	drive letters don't work
	/ ls pwd cd root	pwd pwd cd cd root root

1.1.1.5.1 Basic/Universal Rules

- No Spaces in Filenames
- Only 1 period in a filename, before file extension
- No other periods
- Only Letters, Underscore (_), and Dashes (-) in Filenames
- In code scripts, use forward slash in all file paths and directories
- You can use CamelBack or snake_case in variable or file names
 - To make code easier to read.
- Code Style is Rstudio or Google R style
- No use of = for Assignments
- $\bullet\,$ Only use <- as the Assignment Operator in R
 - Rstudio Cheat Sheet says <- is "Alt -" in R code

1.1.1.6 Quick Introduction to R/Rstudio/Git

• R is the statistical programming language

Rstudio is the Integrated Development Environment (IDE)

Git is the distributed content versioning system

1.1.1.7 What we need to do this week

- 1. Setup our Markov and Open Data Science (ODS) Computers
 - For Markov Data Science Cluster
 - * login to http://ondemand.case.edu

- * Launch the SDLE Rstudio Server-4.1.1
- For the ODS Desktop
 - * Rstudio
 - * Drag icons of R, Rstudio, Git Bash, Spyder, Jupyter Notebook, DSCI Slack · to desktop
- 2. Setup Git
- make /home/caseID/Git folder on Markov
 - * git config your name and email of your git server
- make H:\Git folder on ODS Desktop
 - * git config your name and email of your git server
- 3. Setup Bitbucket account
- 4. Setup DSCI Slack Account
- 5. Setup StackExchange account
- 6. Git Fork the Class "Prof" Repo
- In your Bitbucket Account
- 8. Git Clone your Fork of the Class Repo

1.1.1.7.1 So go make accounts, using your case.edu email address

- Most students have already been invited
 - Pitt students have been issued CaseIDs
 - * That you will use for logging in to
 - * Markov
 - * ODS Desktop
 - * DSCI Slack
 - * CWRU Canvas
- Our DSCI Slack class channel
 - CWRU Data Science Slack
 - This is an invite link to CWRU DSCI Slack
- For you cloud Git server
 - Bitbucket.org
- A Stack Exchange account

1.1.1.8 Your Open Data Science Tool Chain

1.1.1.8.1 Its all about a Data Science Tool Chain

- Use R and build on the communities foundation
- Use Rstudio as a comfy environment
- Share your Open Data and Open Source Code
- Produce Reproducible Science with Rmarkdown
 - Use Creative Commons Licenses
 - Or other Open Source Licenses
 - Such as the Gnu Public License: GPL
 - Or one of my favorites, the Apache License

Pilot your Data Science studies using available data

- Find available data sets
- Before starting the costly process of making data

Use Git repositories

- For Code Version Control
- For Collaboration
- For Open Science sharing

1.1.1.8.2 Online Git Server Communities

- We use BitBucket Account
 - In class, for our class code repositories
 - These are private repositories
- You'll probably also want a GitHub account.
 - Many Rprojects are there, and
 - you can fork their repo's as inspect the code very easily.

1.1.1.9 Things you need to do

1.1.1.9.1 Online accounts

- Sign up for our Class Slack with your personal or case.edu email
- Sign up for a bitbucket.org account
 - with your case.edu address
- Sign up for a twitter account,
 - then follow @frenchrh, @hadleywickham, @dataandme, @JennyBryan
 - @minebocek, @juliasilge, @rdpeng, @jtleek, @robjhyndman, @daniela_witten
 - and others as you want, such as
 - @fchollet, @TensorFlow, @ylecun, @GoogleAI, @egorzakharovdl
- Sign up for a stack overflow account on stack exchange

1.1.1.9.2 Lab Exercises are submitted and graded on Canvas

• Assignment turn in pages will be posted when LE are given out.

1.1.1.9.3 Your Class Git Repo

- My "Professor" Repo is 20s-dsci353-353m-453-prof
 - On bitbucket, you will fork this repo to your own account
 - Each day prior to class, update your fork from my prof. repo

1.1.1.10 Intro to some R: Data Types

- $\bullet~$ Primitives (numeric, integer, character, logical, factor)
- Data Frames
- Lists
- Tables
- Arrays
- Environments
- Others (functions, closures, promises..)

```
x <- 1
class(x)
## [1] "numeric"
y <- "Hello World"
class(y)
## [1] "character"</pre>
```

```
z <- TRUE
class(z)
## [1] "logical"
as.integer(z)
## [1] 1</pre>
```

1.1.1.10.1 Simple Types

```
randomWalk <- function(N)(cumsum(ifelse(rbinom(prob = 0.5, size = 1, N) == 0,-1,1)))
AUDUSD <- 1.2345 + randomWalk(1000)*.0001
plot(AUDUSD, type = '1')</pre>
```

1.1.1.10.2 Example: Generating Random Data

1.1.1.11 Recommended R Libraries

• We're running R 4.1.2, named "Bird Hippie"

All our "Standard R Packages" are loaded in the Markov and the ODS Desktop

1.1.1.11.1 Basic useful packages (and many more than this)

- Rcpp Convenient C++ interface
- zoo/xts Time series libraries
- Matrix Enhanced matrix library

1.1.1.11.2 Hadley Wickham Tidyverse packages

- This is the content of R for Data Science (R4DS) book.
 - Using Pipes "%>%" to replace loops
 - Makes syntax more compact and readable
 - Makes code faster
- Tidyverse Style Guide
 - Using tidy dataframes
- ggplot2 Mini-DSL (domain specific language) for data visualization
- plyr/reshape Data reshaping/manipulation

- dplyr
- data.table Faster data.frame manipulation
- knitr for markdown processing
- among others like purrr etc.

1.1.1.11.3 Statistical and Machine Learning

- e1071 Functions for latent class analysis, short time Fourier transform, fuzzy clustering, support vector machines, shortest path computation, bagged clustering, naive Bayes classifier etc (142479 downloads)
- MASS tools for variable selection etc.
- rpart Recursive Partitioning and Regression Trees. (135390)
- igraph A collection of network analysis tools. (122930)
- nnet Feed-forward Neural Networks and Multinomial Log-Linear Models. (108298)
- randomForest Breiman and Cutler's random forests for classification and regression. (105375)
- caret package (short for Classification And REgression Training) is a set of functions that attempt to streamline the process for creating predictive models. (87151)
- kernlab Kernel-based Machine Learning Lab. (62064)
- glmnet Lasso and elastic-net regularized generalized linear models. (56948)
- ROCR Visualizing the performance of scoring classifiers. (51323)
- gbm Generalized Boosted Regression Models. (44760)
- party A Laboratory for Recursive Partitioning. (43290)
- arules Mining Association Rules and Frequent Itemsets. (39654)
- tree Classification and regression trees. (27882)
- klaR Classification and visualization. (27828)
- RWeka R/Weka interface. (26973)
- ipred Improved Predictors. (22358)
- lars Least Angle Regression, Lasso and Forward Stagewise. (19691)
- earth Multivariate Adaptive Regression Spline Models. (15901)
- CORElearn Classification, regression, feature evaluation and ordinal evaluation. (13856)
- mboost Model-Based Boosting. (13078)

1.1.1.11.4 Twitter used for Data Science

- As part of setting up our Data Science Tool Chain
 - Signup for a Twitter account
 - Using Twitter in university research
 - 10 Commandments of Twitter for Academics

Data Science People to follow on Twitter

- @hadleywickham
- @jtleek Jeff Leek JHU
- @rdpeng Roger Peng JHU
- @simplystats
- @Rbloggers
- @JennyBryan
- @hspter Hilary Parker
- @NSSDeviations
- @dataandme
- @rstudio
- @rstudiotips
- @R Programming
- @CRANberriesFeed
- @timoreilly

- @kaggle
- @SciPyTip
- @PyData
- @debian
- @ubuntu
- @GuardianData
- @UpshotNYT
- @EdwardTufte
- @ProjectJupyter
- @doctorow Cory Doctorow
- @gvanrossum Founder of Python
- @NateSilver538
- @cutting Founder of Hadoop
- @RProgLangRR
- @BitbucketStatus
- @CWRUITS_STATUS
- @cshirky Clay Shirky
- @robjhyndman
- @geoffreyhinton
- @ylecun
- @fchollet
- @TensorFlow
- @JeffDean
- @yudapearl
- @AndrewYNg

1.1.1.12 Links http://www.r-project.org

 $Rory\ Winston,\ for\ the\ Learning\ R\ intro\ http://www.theresearchkitchen.com/archives/1017$

R for Data Science http://r4ds.had.co.nz/

- Or pull the R4DS repo from Bitbucket https://bitbucket.org/cwrudsci/r4ds
- Peng-Computing For Data Analysis Playlist