Reference 5

JP Patent Application Disclosure No. 1-138230; 31 May 1989

Title of the invention: Curable composition

JP Patent Application No. 62-3303017; 30 November 1987

Priorities: 8 December 1986; JP Patent Application No. 61-290598

7 August 1987; JP Patent Application No. 72-196377

Applicant: Tokuyama Soda Co., Ltd.

Title: Curable composition:

This publication is similar to US4877854A, but differs significantly in Claim 1. We therefore have prepared a partial translation of Claim 1

Claim 1

A curable composition comprising

- (A) a linear or branched polyether with terminal alkenyl groups,
- (B) a linear or branched polyether with at least one Si-H-containing terminal polyorganosiloxane residue and at least two Si-H groups in the molecule and
- (C) at least one catalyst selected from the group consisting of platinum, chloroplatinic acid and platinum complexes, wherein the amount of the Si-H groups in the polyether (B) is 0.5 to 10 moles per mol of the total amount of the alkenyl group in the composition, and the amount of the platinum atom in the catalyst (C) is 0.1 ppm to 5 weight-% by, based on the total weight of the polyethers (A) and (B).

Also published as:

🛱 JP6037558 (B)

P1910771 (C)

CURABLE COMPOSITION

Publication number: JP1138230 (A)

Publication date: 1989-05-31
Inventor(s): HATTORI NO

HATTORI NORIKAZU; URABE SUNAO; KUSUMOTO KOJI

Applicant(s): TOKUYAMA SODA KK

Classification:
- international: C08G81/00; A61K6/08; A61K6/093; A61K6/10; C08L71/00;

C08L83/04; C08L83/12; C08L101/02; C08G81/00; A61K6/02; A61K6/10; C08L71/00; C08L83/00; C08L101/00; (IPC1-

7): A61K6/08; A61K6/10; C08G81/00

- European:

Application number: JP19870303017 19871130

Priority number(s): JP19870303017 19871130; JP19870196377 19870807;

JP19860290598 19861208

Abstract of JP 1138230 (A)

PURPOSE: To obtain the title compsn. having excellent curing characteristics, giving a cured product having excellent hydrophilic property and dimensional reproducibility and being useful for a dental molding material, by compounding two specified polyethers and a catalyst. CONSTITUTION: The title compsn, is obtd, by compounding a linear or branched polyether (i) having alkenyl end groups of formula I (wherein A is a di-- hexavalent 1-10C satd, hydrocarbon group; R1 is a linear or branched 1-6C alkylene, a is 1-300; B is formula II; R2-6 are each H, 1-10C alkyl; d is 1-10), a linear or branched polyether (ii) having Si-H groups the amt, of which is 0.5-10 mol times as much as alkenyl groups in the obtd. compsn. having polyorganosiloxane residues of formula III (wherein D is A; R7 is R1; E is formula IV; R8-12 are each R2; q is d; e is 1-30; f is 2-6; G is formula V-VII; h and i are each 1-8: R13 is H, CH3: M is CH3: i is 0-8; k is 1-3 and i+k=1-9; p and q are each 0-4 and p+g=1-4; R1 is R13) having one or more Si-H groups on its terminals and having 2 or more Si-H groups in its molecule and a catalyst (iii) selected from platinum (complex) and hexachloroplatinic acid

A E (0-R.). 08-].

(9) 日本国特許庁(JP)

(1) 特許出願公開

平1-138230 四公開特許公報(A)

④公開 平成1年(1989)5月31日 識別記号 庁内整理番号 @Int_Cl.4 C 08 G 81/00 101 ÑÜŤ 8016-4 I G-6742-4C // A 61 K 6/08 審査請求 未請求 発明の数 1 (全21頁) 6742-4C 6/10

硬化性組成物 の発明の名称

> ②特 图 昭62-303017

頤 昭62(1987)11月30日 22H

⑩昭61(1986)12月8日⑬日本(JP)⑪特顯 昭61−290598 優先権主張

銀昭62(1987)8月7日銀日本(JP)動特願 昭62-196377

神奈川県藤沢市湘南台7-15-3 ドミール21-208 @幹 明 者 服 部 和

神奈川県横浜市戸塚区深谷町1252-13 ドリームハイツ1 浦 部 直 69発明者 -712

神奈川県鎌倉市梶原2-8-6 紘 士 60発明者 植 本 山口県徳山市御影町1番1号 徳山曹達株式会社 の出 願 人

1. 祭明の名称

硬化件组成物

2. 特許請求の範囲

(A) アルケニル基を末端に有する直鎖または分 紋状のポリエーテル

(B) Si-H基を1個以上有するポリオルガノシ ロキサン残器を末端に有し、かつ Si-H 基を 分子中に 2 個以上有する直鎖または分岐状の

ポリエーテル

及び

(C) 白金,塩化白金酸及び白金錯体よりたる群 から選ばれた少なくとも1種の触媒

よりなる組成物であって、上記(B)のポリエーテ ル中の Si-H 基の量が該租成物中のアルケニル基 の器量に対して 0.5~10モル倍となる割合であ り、かつ (C) の 自金 条 雅 媒 中 の 白 金 原 子 が (A) の ポリ エーテルと(B)のポリエーテルとの合計量に対して 0.1 ppm ~ 5 重量 8 となる割合である硬化性租成 757 a

3. 発明の詳細な説明

(産業上の利用分野)

本発明は新規な硬化性組成物に関する。詳 しくは、優れた硬化特性を有し、かつその硬 化体が良好な親水性を持つと共に寸法再現性 に優れ、特に歯科用印象材として有用な硬化 性組成物である。

(従来の技術及び問題点)

常温で硬化してゴム弾性を有する硬化体を 与える硬化性組成物は、歯科用印象材を始め シーリング材等の用途に広く使用されている。 これらの用途のうち、特に歯科用印象材とし ての用途においては、精密な印象をとるため に歯及び歯ぐき表面との親和性を増す目的で その硬化体が良好な親水性を有することが要 求される。また、かかる用途において、硬化 性組成物は短時間で禁部まで均一に侵化する 優化特性(以下、深部硬化特性という)に便 れ、しかもその硬化体は脱塑時の塑性変形の ない良好な寸法再現性が要求される。

従来、親水性を有し、優れた梁那硬化特性 を有する硬化性組成物として、アルケニル基 か合有するポリエーテル、SI-H 基を有す るポリオルガノハイドロジエンジロキサン及 び白金系の触媒よりなる組成物が提案されて いる。かかる組成物は、優れた漿部硬化特性 及び親水性を有するものの、上記のポリエー テルとポリオルガノハイドロジエンシロキサ ンとの相密性が悪く、完全な硬化体が得られ 群いという問題を有する。そのため、前配の 硬化性組成物を歯科用印象材として使用した 場合、硬化体の規型時に塑件変形が起こり。 正確な印象をとることができないという問題 を有する。また、前配ポリエーテルとポリオ ルガノハイドロジエンシロキサンとの相容性 を改良するために数ポリオルガノハイドロジ エンシロキサンをポリエーテルで変性して使 用することも提案されている。しかしながら かかる組成物においては変性に使用したポリ エーテルの残基が得られる硬化体中で可塑剤

ロキサン残蓋を末端に有し、かつ Si-H 蓋を分子中に 2 個以上有する直鎖または分歧状のポリエーテル (以下 Si-H 蓋舎有ポリエーテルともいう)

及び

(C) 白金、塩化白金酸及び白金錯体よりなる弾 から選ばれた少なくとも1機の触媒

よりなる組成物であって、上起側のポリエーテル中の SI-H 基の量が該組成物中のアルケエル基の総量に対して 0.5~10 モル係となる割合であり、かつばの白金 系矩 延中の白金原子が(Mのポリエーテルと側のポリエーテルとの合計量に対して 0.1 ppm~5 変質をとなる割合である硬化性組成物である。

なか、本発明にかいて、直鎖または分岐状のポリエーテルの末端とは、2個以上の一OR一結合 (ただし、Bは炭素数1以上のアルキレン基を示す)よりなるポリエーテル鎖の末端をいう。

本発明において、(A)のアルケニル基含有ポリエ ーテルは、アルケニル基を末端に有する直鎖また として作用するため、その表面が粘着性を帯びた り、機性変形を超こすおそれがあり、更に改良が 確まれていた。

[問題点を解決するための手段]

本海明希等は、優れた県部硬化性を有し、かつ 七の硬化体が親水性を有すると共に良好な寸法再 現性を有する硬化性組成物を満発すべく鍛産研究 を重ねた。その結果、アルケニル系を未帰に用す る直鎖または分岐状のポリエーテル、81-11 系を 1 個以上有するポリォルガノショキサン残器を末 端に有し、かつ81-11 系を分子中に2 個以上有す る直鎖または分岐状のポリエーテル及び地族として 口血金を主体とする触線を特定の割合で配合する ことにより、前配の目的を連成し得ることを見い 出し、本発明を完成するに至った。

本条明は、

- (A) アルケニル器を末端に有する直鎖または分 較状のポリエーテル(以下、アルケニル器含 有ポリエーテルともいう)
- (B) Si-H 基 を 1 個以上有するポリオルガノシ

は分岐状のポリエーテルであれば特に制限されない。

かかるアルケニル基含有ポリエーテルは、下配 一般式

A (-(0-R₁) OB] ... (1)

で一般に示される。上配(1) 文中、A は 2 ~ 6 価の 炭素属子数 1 ~ 1 0 の 約 和 炭化水素系である。上 配 A の 個数 は 物和 炭化水素の 産機 落を 用 す の で、 上 配 飽和 炭化水素 と 種 及 び 段 高 6 個 の 砂 機 塞 を 選び う る。 族 産 操 数 が 6 を 終る 6 個 の 砂 板 他 性 組 成 物を 硬化 さ せ た と き ゴ ム デ 性 を 付 は は 放 来 を い の で 好 き し く て い 。 歳 も 好 ま し く は 故 飲 終 素 の 数 房 ち A の 価 政 は 2 ~ 4 で あ る。 該 終 和 炭 化 水素 基 の 没 戻 薬 原 子 数 位 2 ~ 4 で あ る。 該 終 和 炭 化 水素 基 の と の 炭素 原子 2 度 度 度 度 ま が 7 在 し て し よ い が 炭素 原 子 数 が 2 以 上 の と き は 1 つ の 炭素 原 子 で 2 つ 以 上 の 屋 換 基 が 存 在 し な い 方 が 安 定 性 の 面

また上記一般式(I)中、 B, は直鎖状又は分岐状

の炭素原子数 1 ~ 6 好ましくは 2 ~ 4 のアルキレン
本であり、設 アルキレン
あであり、設 アルキレン
あでものでき
発揮のアルキレン
あであってもよい。また。は 1 ~ 3 0 0 0 整数 で、 b は 2 ~ 6 の整数 である。 従って
まかまは 1 ~ 3 0 0 0 整数 で、 b は 2 ~ 6 の整数 である。 従って
まかまは 1 ~ 3 0 0 0 を数 に
なとする
平均重合度が示されていて、 a が 2 以上
ひときは該単位の
ランタ
重合形態及び
プロック
重合形態度を
なりる。

また上記一般式(I)中 B は、

及び R_6 は同種又は異種の水果原子又は換業原子数 $1\sim10$ のアルキル語であり、4 は $1\sim10$ の聚数である)で示される同種又は異種の不越和語である。上記 $R_2\sim R_6$ がアルキル語であるときは特に換業原子数 $1\sim40$ アルモル語 関 5 メテル 語、エテル 語、プロピル語、アテル語等が好道に使用される。

上配説明で明らかなように前配一般式(I)で示さ

$$\begin{array}{c} \text{CH}_1 - \text{CHCH}_1 \circ \left(\text{CH}_1 \text{CH}_0\right)_m \\ \text{CH}_2 \circ \left(\text{CH}_1 \text{CH}_0\right)_m \\ \text{CH}_3 \circ \left(\text{CH}_1 \text{CH}_0\right)_m \\ \text{CH}_4 \circ \left(\text{CH}_1 \text{CH}_0\right)_m \\ \text{CH}_5 - \text{CH}_5 \circ \left(\text{CH}_2 \text{CH}_2 \text{CH}_3\right)_m \\ \text{CH}_5 - \text{CHCH}_2 \circ \left(\text{CH}_2 \text{CH}_3 \circ \right)_m \\ \text{CH}_5 - \text{CHCH}_2 \circ \left(\text{CH}_3 \circ \right)_m \\ \text{CH}_5 - \text{CHCH}_2 \circ \left(\text{CH}_3 \circ \right)_m \\ \text{CH}_6 - \text{CH}_6 \circ \left(\text{CH}_6 \circ \right)_m \\ \text{CH}_6 - \text{CH}_6 \circ \left(\text{CH}_6$$

れるポリエーテルは末端に少くとも2個以上のアルケニル落を有する不飽和ポリエーテルである。このアルケニル高数で示されるSI-H 語言有ポリエーテルとの現域反応により硬化させるために重要な要件となる。そしてより硬化性組成物を受けたとなる。そしてよりで使用するために、酸アルケニル語言有ポリエーテルの分子重は200以上とすることが好ましく、また、複体として取扱うためには酸アルケニル語言有ポリエーテルの分子重は20,000以下とすることが好ましい。

本発明に使用するアルケニル基含有ポリエーテ ルの代表的なものを更に具体的に示せば、

$$\mathbf{CH_2} = \mathbf{CHCH_2O} + \underbrace{\mathbf{CH_2CHO}}_{\mathbf{CH_2CHO}} + \underbrace{\mathbf{CH_2CH_2CH}}_{\mathbf{L}} = \mathbf{CH_2CH_2CH} = \mathbf{CH_2CH_2CH}$$

$$\begin{array}{c} \text{CH}_{3} = \text{CH}_{2} \\ \text{CH}_{3} = \text{CHC} \\ \text{CH}_{2} = \text{CHO} \\ \text{CH}_{2} = \text{CHO} \\ \text{CH}_{3} = \text{CHO} \\ \text{CH}_{4} = \text{CHO} \\ \text{CH}_{5} = \text{CHO} \\$$

CH₈

 $CH_2=CH+CH_2$) $_4O+CH_2CHO+Z+CH_2$,

$$\begin{array}{c} \text{CH}_{8} \\ \text{CH}_{1} = \text{CCH}_{2} \text{O} \cdot \left(\text{CH}_{2} + \text{CHO}_{2} \right) \\ \text{CH}_{2} = \text{CCH}_{2} \text{O} \cdot \left(\text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} \right) \\ \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} \right) \\ \text{CH}_{3} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} \right) \\ \text{CH}_{4} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} \right) \\ \text{CH}_{4} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} \\ \text{CH}_{4} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} \\ \text{CH}_{4} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} \\ \text{CH}_{4} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} + \text{CH}_{2} \\ \text{CH}_{4} + \text{CH}_{4} + \text{CH}_{4} + \text{CH}_{4} \\ \text{CH}_{4} + \text{CH}_{4} +$$

```
CH<sub>8</sub>O CH<sub>8</sub> CH<sub>9</sub>

CH<sub>9</sub>CH<sub>8</sub> CH<sub>8</sub>

CH<sub>8</sub>

CH<sub>8</sub>

CH<sub>8</sub>

CH<sub>8</sub>

CH<sub>9</sub>

CH<sub>8</sub>

CH<sub>9</sub>

CH<sub>9</sub>
```

```
CH20 CH2 CH2 CH2 CH2
      си₂о+си₂сно<del>/х</del> ссн=си₃
      си,о сна сно доснеси 2
             CH, CHO V 2 CH 2 CH=CH 2
```

$$\begin{split} & \text{CH}_2 \circ (\text{CH}_2 \text{ CH}_2 \circ)_{\mathbf{x},\mathbf{1}} \cdot (\text{CH}_2 \text{ CH}_2 \text{ CH}_2 \text{ CH}_2 \circ)_{\mathbf{x},\mathbf{2}} \cdot (\text{CH}_2 \text{ CH}_2 \text{ CH}_2) \\ & \text{CH} \circ (\text{CH}_2 \text{ CH}_2 \circ)_{\mathbf{y},\mathbf{1}} \cdot (\text{CH}_2 \text{ CH}_2 \text{ CH}_2 \circ)_{\mathbf{y},\mathbf{2}} \cdot (\text{CH}_2 \text{ CH}_2 \circ)_{\mathbf{1},\mathbf{2}} \cdot (\text{CH}_2 \circ)_{\mathbf{1},\mathbf{2}} \cdot$$

$$\left(\begin{array}{c} \text{CH}_8 \\ \text{CH}_2 \\ \text{CHO} \end{array} \right)_{\text{Th}} \text{CH}_2 \\ \text{CH}=\text{CH}_2 \quad ,$$

 $CH_2 = CHCH_2O \left(\begin{array}{c} CH_8 \\ I \\ CH_2CHO \end{array} \right)_{m-1} CH_2CH_2CH_2CH_2CH_2O \right)_n$ $CH_2CH = CH_3.$

$$_{\text{CH}_2 = \text{CHCH}_2\text{O}} \left(\begin{array}{c} _{1}^{\text{CH}_8} \\ _{2}^{\text{CH}} \end{array} \right)_{\mathcal{L}} \text{CH} = \text{CH}_2$$

(ただし、4 は3~250 で、m, n, x, y 及び z z は 0 以 z z t 1 以上で x 1, y 1, z 1, x 2, y 2 及び z z は 0 以上の整数で、m+n と x + y + z は 3~250 で、 x 1+x 2, x 1+x 2+x 1+ y 2+z 1+z 2 は 1 以上で、 x 1+x 2+x 1+ y 2+z 1+z 2 は 2 5 0 以下である。) 等が挙げられる。

来端水像基化、アルケニル番を有し、かつ該水像 基と反応しりる倍性素例えばハロゲン基等を有す る化合物を公知の条件下で反応させる方伝がある。 例えば、ポリエーテルの末端水酸差を金属ナトリ ウムを用いてアルコラート化し、次いで塩化アリ たを加えて脱塩化ナトリウム反応によりエーテル 結合を形成する方法が挙げられる。

本務明にかいて、SI-H 基含有ポリエーテルは、 SI-H 基を 1 個以上有するポリオルガノシロキサン残塞を末端に有し、かつ SI-H 基を分子中 K 2 個以上有する底領または分岐状のポリエーテルで われげ勢に削燥されない。

一般に、かかる Si-H基含有ポリエーテルは、下記一般式

で示されるシロキサン置換ポリエーテルである。 上記一般式(I) 中、 D は前記一般式(I) の A と同様 に 2 ~ 6 価好ましくは 2 ~ 3 の炭素原子数 1 ~ 1 0 好ましくは 2 ~ 4 の飽和換化水素基である。 をか、以上のアルケニル高含有ポリエーテルは、 末端を2つ及び3つ有するポリエーテル銀にアル ケニル基を語合したものを示したが、本ி明にかいてはこれらのものに限定されるものではなく、 末端を4つ~6つ有するポリエーテル銀にアルケニル基を結合したものも同様に使用可能である。 また、アルケニル基含有ポリエーテルは、1 復生 たは2 種以上を組み合せて使用することも可能である。

しかしながら工業的な製法の容易さや取扱い易 さの面を考えれば、上記アルケニル基含有ポリエ ーテルのうち、特に一般式

$$H_2C = \overset{H}{C} - \overset{H}{C} + \overset{H}{C} - \overset{H}{C} = CH_2$$

(但し、x¹ は 5 ~ 2 0 · 0 の 整数 で ある。

本発明に使用するこれらのアルケニル 語言有ポリエーテルは、公知の方法によって容易に異流することができる。例えば、市販のポリエーテルの

該価数が6を態えると本発明の硬化性組成物を硬化させたときゴム弾性を付与出来ないので一般に好ましくない。

また一般式(I)の R, は前記一般式(I)の R, と同様に直鎖状又は分岐状の 炭素原子数 1 ~6 好ましくは 2 ~4 のアルキル話であり、 級アルキル話である 2 以上のとき 風種のアルキル話であっても よい。 従って -0-R, - を単位とするポリエステル領は・が 2 以上のとき はランダム 国合形 類な 5 とりうる。

更にまた一般式(11)中、Eは、

 \mathbf{R}_{11} 、及び \mathbf{R}_{12} は同極又は典値の水素原子又は炭素原子数 $\mathbf{1} \sim 1$ の の アルキル高で、 \mathbf{s} は $\mathbf{1} \sim 1$ の 整数 で ある $\mathbf{0}$ で示される同様又は異態の アルキレン 悪である。上記式中、 \mathbf{R}_{3} 、 \mathbf{R}_{7} 、 \mathbf{R}_{13} 以 \mathbf{R}_{14} 以 び \mathbf{R}_{12} は前記一般式($\mathbf{0}$ 中、 $\mathbf{0}$ で \mathbf{R}_{12} は前記一般式($\mathbf{0}$ 中、 $\mathbf{0}$ で \mathbf{R}_{12} は前記一般式($\mathbf{0}$ 中、 $\mathbf{0}$ で \mathbf{R}_{12} に $\mathbf{0}$ で \mathbf{R}_{12} に 向様に 同様又は異様の 水素原子又は炭素

原子数1~10好ましくは1~4のアルキル基が ※がAェ

更にまた一般式 $\|$ 中、。は $1 \sim 3$ 0 の好ましくは $1 \sim 1$ 0 の整数が、またまは $2 \sim 6$ 好ましくは $2 \sim 3$ の整数が好ましく選ばれる。

更にまた上記一般式 (()中 G は次ぎの()) ~ (() に示 す同種又は異種のシロキサン器である。

即ち、

遊放で、 k は 1 ~ 3 の 整数で j + k = 1 ~ 9

のを更に具体的に示せば、

CH.CHO-CH.CH.CH.-S10+S10

であり、 Me はメチル基である) 又は、

及び q は $0 \sim 4$ の整数で、 $p + q = 1 \sim 4$ であり、 $R_{1.4}$ は $R_{1.5}$ と同じである)

である。 孵化上配側で示されるシロキサン 話は本 発明の硬化性組成物を増科用印象材として使用す るとも最もすぐれた効果を領揮する。

本場別の硬化性組成物を軽に飼料用印象材に使用するときは生体制能性、浮発性の問題をさけるのが好ましく、この理由を考慮すれば上記ショキン性技术リエーテルは分子量を400以上とすることが好ましく、また液体として収扱りために、分子量を25,000以下とすることが好ましい。

かかる Si-H 基含有ポリエーテルの代表的なも

て使用することも可能である。

ち、特に一般式、

〔但し、y'は3~50の整数であり、J及びLは 同種又は異種の

(但しMo はメチル基である)である〕 で示される Si-H 基含有ポリエーテルは好適である。

不発明の硬化性根成物において、前記 SI-H 基 含有ポリエーテルは、アルケニル基含有ポリエー テルとの相談性が感めて良いため均質な硬化体を 得ることができると共に、ポリエーテル鎖の末端 に SI-H 基を 1 個以上有するポリオルガノシロキ サン残垢が倍合し、ポリエーテル残器としてほと んど存在しないため、該ポリエーテル残器による 可選化作用がなく、寸法再現性の良好な硬化体を 得ることができる。この SI-H 基含有ポリエーテ ルは、公知の方法によって容易に製造することが

剤と接触させることにより白金系触媒を吸着除去 する手段も可能である。

できる。すなわち、前述のアルケニル基含有ポリ エーテルと、SI-H 基を2個以上有するポリオル ガノシロキサンとを、アルケニル基に対するポリ オルガノシロキサン分子のモル比が1以上とたる 割合で塩化白金酸等の白金系触媒の存在下に反応 させることにより得られる。なお、本発明にむい て、SI-H基含有ポリエーテルは、製造時の反応 が完全ではなく、未反応のアルケニル基を含有し た生成物が一部幾存する場合でも該アルケニル基 は硬化性組成物中で架橋基として作用するため、 問題なく使用できる。前記した方法によって得ら れた SI-H 基含有ポリエーテルは、白金系触媒を 含有しているため保存安定性が悪く、長期にわた り保存する場合、 SI-H 基が分解、反応し増粘や ゲル化などの問題が生じることがある。この問題 を解決するためには、該 Si-H 基含有ポリエーテ ルを炭銀水素ナトリウムなどの固体塩基性物質と 接触させ、白金系触媒を中和、分解して除去する という精製処理を施せばよい。あるいはまた、該 Si-H 基含有ポリエーテルをシリカゲル等の影響

本発明において、SI-H 基音者ポリエーサル中のSI-H 基の登は公知の方法によつて同 建することができる。例えば、区科をイソブ ロビルアルコールに溶解し、欠いでこれに次 酸化カリウムを添加して発生する水尖切っなが がながま また、本名明の硬化性組成物中において、は、機能性の は、機能性の 性度である自全系数は中の自金原子が、アル ケェル基含有ポリエーデルと SI - H 基合有ポリ リエーナルとの合計量 ド対しで(3.1 - 1000) ppm となる制合で存在 デルタは大学ないでした。 上記自金原子の割合から1.ppm 未満のませた。 は、便化反応が発んど進行しない。また、該 割合がま配り上限p値 を踏えても多量に加え た効果は得られないからである。

本発明の硬化性超成物に、硬化前の作業性 を向上するため、もしくは硬化後の路物性を

一般にはアルケニル基含有ポリエーテル及び SI-H 基合有ポリエーテルの合計量100重 量額に対して500重量部以下の範囲とする ことがよい。また、本発明の硬化性組成物に おいて、アルケニル基の量に対してSi-H 基 の水素の量が比較的多い場合は、硬化時に副 生物として水素ガスを発生することがある。 とのような場合、該水霖ガスにより、得られ る硬化体の表面状態が荒れることを防止する ため、水業吸収剤としてパラジウム、白金、 ニツケル、マグネシウム、亜鉛等の金属粉末 またはそれらを担体に担持したものを添加す ることが好ましい。かかる水素吸収剤の設加 量は金属原子に換算して 0.1~100 ppm となる割合で硬化性組成物中に存在させれば よい。

本発明の硬化性組成物においては、得られ る硬化体の物性を著しく低下しない範囲で更 に他の前加剤を疏加してもよい。かかる縦加 剤としては、可阻剤、傾料、酸化防止剤、膵 向上させるために、公知の無機及び有機質の 充填剤を設加してもよい。かかる無模質の充 填剤としては、フユームドシリカ、粉砕シリ カ,けいそう土,石英粉末,ガラス繊維,カ ーポンプラック、機化鉄、酸化亜鉛、酸化チ タン、アルミナ、マグネシア、炭酸カルシウ ム,炭酸マグネシウム,炭酸亜鉛等が例示さ れる。また、有機質の充填剤としては、粉砕 ポリマー、粉末ポリマー等が例示される。た だし、Si-H 基含有ポリエーテルの Si-H 基 はアルカリ性雰囲気下で脱水素縮合反応を起 とすため、マグネシア、炭酸カルシウム、炭 酸マグネシウム等のアルカリ性を显する充填 剤をSi-H 基含有ポリエーテルに予め加えて おくことはひかえるべきである。上配した無 機質の充填剤はそのまま用いてもよく、表面 をシランカツブリング刺等で処理して用いて もよい。また、死填剤の能加量は特に限定さ れるものでなく、得られる硬化体の緒物性を 苦しく低下させない範囲で使用すればよい。

形剤、接着付与剤等が挙げられる。

本発明の硬化性組成物は、盧温または加熱 状態で硬化する。従つて、本発明の硬化性組 成物のうち密温で硬化するものは、アルケニ ル基含有ポリエーテルと白金系錯体との混合 物を1つの梱包体とし、これとSI-H基含有 ポリエーテル生たは跛 Si-H 基含有ポリエー テルとアルケニル基含有ポリエーテルとの温 会的をもう1つの欄包体とする、いわゆる2 被型で貯蔵し、使用時に両者を流量ずつ取り 出し混合して用いることが凝ましい。また、 硬化性組成物が加熱状態で硬化するものは、 上記と同様の2液型でもよいし、白金系触媒 として加熱時のみ作用する触媒、例をば白金 ーリン錯体などの白金系錯体を選択し、3 放 分をあらかじめ混合して貯蔵する、いわゆる 1 被型でもよい。この時の加熱強度はポリデ エーテル ★★★★
の耐久性を考慮すると 150℃以下とすることが望ましい。

(発明の作用及び効果)

本発明により与えられる硬化性組成物は、 使れた深部硬化性を有し、その硬化体は親水 性を有すると共に良好な寸法再現性及び寸法 安定性を有する。すなわち、本発明の硬化性 組成物は、触媒の作用によつて硬化反応が進 行するため、技部探部にかかわりなく均一に 硬化する。また、数組成物はポリエーテル鎖 を主体とするものであるから、その硬化体は 親水性を有している。更に該硬化性組成物中 のポリエーテルはすべての末端にアルケニル 慈ないしはSI-H 蕎を有しているため、両菇 のモル数を調節することにより、硬化体中で 可塑剤として作用するポリエーテル残落を極 めて少なくでき、そのためとの硬化体は要面 が粘着性を帯びず、しかも用性変形を超こし にくいという優れた寸法再現性を有する。そ して、硬化反応は SI-H 品のアルケニル基へ の付加反応であるから、遠やかに硬化が終了 し、脱離成分を発生することがないため、経 時的な寸法安定性は良好である。

れ以上になるほど親水性が低いことを示す。 (2) 寸法再現性

直径13 mm,高さ20 mmの円柱形の硬化

以上の特徴を有する本発明の硬化性組成物は、 広範囲にわたる分野への利用が可能であるが、停 に 歯科用印設材としての用途に有用である。また 銀水性等に起因する優れた生体 親和性により、 選 科用印象材の用途のみでなく、 鏡 歯 適合試験用材 材(フィットチェッカー)、 粘膜調整材等の用途 にも有用である。

〔寒施例〕

本発明を更に具体的に説明するため実施例を示すが、本発明はこれらの実施例に限定されるものではない。

なか、実施例及び比較例にかいて、硬化体の現 水性及び寸法再現性は下配の方法で測定したもの である。

(1) 親水性

温度23℃, 湿度50多に調剤された室内にかいて、硬化体の平滑な面に純水を10ルル 備下し、15分後に接触角側定器によって水 との接触角を制度する。この値が0°に近い低 と親状性が高く、90°に近いほともしくはそ

体を軟料片とし、これに高さ方向に12% (E43) の圧解値を30秒間加え、荷重を除去して から1分段の高さを1mmとする。この1の 値より下式によつて永久益値が与えられる。

この値が小さいほど寸法再現性が優れてお り、この値が大きいほど塑性変形が厳しい ことを示す。

また、実施列及び比較例において、(SI ー H 高含有ポリエーテル中の SI-H 高の量) /(硬化性組成物中のアルケェル高の路量) のモル比は SI-H / AL 比と略配し、アルケ エル高含有ポリエーテルと SI-H 高含有ポリ エーテルとの合計量に対する自金系傾体中の 自金属子の割合を Cp t と略記する。

また、以下の実施例において、アルケニル 基倉有ポリエーテル及びSi-H 高含有ポリエ ーテルの平均式とは、酸ポリエーテルの原料 の構造とその組成及び化学的分析法(アルケ ニル高量及び 81-H 高量の定量、液体クロマ トグラフィーによる分子量及び分子量分布の 測定、赤外分光分析、核磁気共鳴スペクトル など)から導かれた構造式であり、跛ポリエ ーテルの平均化された構造を示す式である。 異選例 1

平均式

CH₈ = CHCH₂O (CH₈CHO / 104 CH₂CH=CH₂
で示されるアルケニル基含有ポリエーテルS

で示されるアルケニル基含有ポリエーテル95 部(以下、特配しない限り直量部を扱わす)、 平均式

で示される SI-H 基言有ポリエーアル 5 態(SI-H/AL 比= 1.0) 及び石渓秀末 1 0 0 彫 を 配合し、ペーストを 調子 か。ここに ゼ (1/3-アロニル・バルコ・デザイル・アンドン から 得た 日金鎖 年 (日金菓子 を 3 4 重 数 含 す す る。) を 0.1 2 彫 (Cpt = 4 0 0 0 ppm) 加 え、 減合した所、 歯盤 において 5 分後 に ゴ ム 乗 を 有 す る 便 化 体 が 得られた。この 便 化 体 の 水 と の 扱 魚 は 5 3 *、 水 久 重 は 0.3 5 % であつた。

奥施例 2

平均式

で示されるアルケニル基合有ポリエーテル4 部、平均式

(81-H/AD比=1.0)及びフュームドシリカ10部を逃合し、ベーストを調製した。次いで実施例1で用いた白金系録体を0.1部(Cpt=340ppm)加えて認合した結果、 派艦において6分後にゴム弾性を有する硬化 体が得られた。この硬化体の水との扱触角は 31、水久派は0.25%であつた。

夹焰剑 3

平均式

(ただし、 a , b , c は 0 以上の整数、かつ a + b + c = 6 6) で示されるアルケニル鑑含有ポリエーテル48 部、平均式

(ただし、a, b, cは上配と同じ)
で示されるSI-H 据言者ポリエーアル 5 2 部
(SI-H/AL 比= 1.0) 及びケイソウエ 2 5
部を観合し、ペーストを開製した。 次いで、
PtCL₂(C₃H₄)₃で示される自金額体を
0.05部(Cpt= 3 0 0 ppm) 加え、協合した結果、祝臨において 7 分後にゴム 3 性を

Ma Ma

有する硬化体が得られた。この硬化体の水との扱放角は 4 9 、永久亜は 0,3 7% であつた。

爽施例 4

実施例1で用いたアルケニル基含有ポリエ ーナルと S1-H 茲含有ポリエーテルをそれぞ れ 4 5 部 と 5 部 、 石 英 粉 末 4 9.9 8 部 及 び 酸 化防止剤として 2.6 ージー t ープチルー 4 ー メチルフエノール(以下、BHTと称す) 0.02部を混合してペーストを調製した。一 方、上記アルケニル芸含有ポリエーテルを50 報、実施例1で用いた白金系譜体を0.12部、 設骸カルシウム 4 9.7 2部、BHT 0.0 2部、 パラジウム 0.5 % 担持アルミナ 0.0 1 部、赤 色顔料 0.0 1 部を混合し、触媒ペーストを調 製した。これらのペーストを 1 箇月間室温下 で保存した後、両ペーストを努益ずつ(Si - H / A L 比 = 1.0 , C p t = 4 0 0 p p m) 取 り出して練和した結果、室温において 5 分後 にゴム弾性を有する硬化体が得られた。との

で、と、ごれた。 で示されるビェル盗束端射銀ポリシロキサン 100部、平均式

で示されるSI-H高含有ポリショキサンを 1 部(SI-H/AL比=1.0)及び石英券末 100 部を混合しペーストを調製した。 次いで、実 場明1で用いた白金系媒体を 0.0 5 部(Cpt =168 ppm)加え混合した結果、 重温 において 5 分後にゴム 原性を有する硬化体が 得ら れた。この硬化体の水との接触角は 7 3°、 水外流は 0.4 0%であつた。

比較例 2

実施例1と同様のアルケニル蒸含有ポリエ -テル915級と平均式

$$\begin{array}{c} \text{Me }_8\text{SiO} \\ \begin{array}{c} \text{H} \\ \text{SIO} \\ \text{SIO}_{\pi} \\ \text{SiMe }_{\mathfrak{g}} \end{array} \\ \text{Me }_{\mathfrak{g}} \\ \begin{array}{c} \text{CH}_8\text{CH}_8\text{CH}_2\text{O} \\ \text{CH}_2\text{CH}_8\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\text$$

硬化体の水との扱触角は 5 4°、永久重は 0.30%であつた。

実施例 5

実施列1で用いたアルケニル語含有ポリエーアル及び81-H 語言有ポリエーアルをそれだれ95節及び5節(81-H/ALレニ1.0)、ケトラヤス(トリフエニルホスフアイト)自会 末97.96節、ヒニームドシリカ2節、石栗的末97.96節、ヒニームドシリカ2節、イラシウム0.1%担持ゼオライト0.01節を傷合し、ベーストを調製した。とのベーストを1箇月間室選下で保存した後120℃において1時間処理した結果、ゴム栗性を有する硬化体が得られた。得られた延行体の水との接換角は50°、永久産は0.15%であるた。

比較明 1

比較例 3

 ħ.

実施例6~31,比较例4~9

第1要に示す機類のアルケニル高含有ポリエーテル及び S1-H 基含有ポリエーテルと実施例1と 同様の自金額体とを S1-H/AL 比及び Cpt が第1 設に示す値となるように混合し、窓礁にかける硬 化時間、得られた硬化体の水との接触角、及び水 久蓮を創定した。その結果を第1要に併せて示す。 尚第1要中に提示したェ、ッ及びェは1以上の整 数で、x¹、y¹、x²、y²及び x² は1以上の整 数で、x¹ x²、y¹ + y²及び x² は1以上で たった。1+x²、y¹ + y²及び x⁴ は1以上で整 なで、x¹ x²、y¹ + y²及び x⁶ は1以上で整 なった。1+x²、y¹ + y²及び x⁶ は1以上の整数である。

旗 1 获

	アルケニル蒸含有ポリエーサル	81-日本含有ポリエーテル	SI-H /AL 比	Cpt (ppm)	硬化 時間 (分)	水との 接触角 (*)	水久亞 (%)
突施判 6	CH ₄ -CHCH ₂ O (CH ₅ CH ₅ CH ₅ CH ₅ O (CH ₅ CH ₅	M6-S10-S10-S1-CH2CH2CH2CHC-CH2CH0-8 M6-S10-S10-S10-S10-S10-S10-S10-S10-S-M6 M6-M6-M6-M6-M6-M6-M6-M6-M6-M6-M6-M6-M6-M	1.0	400	5	53	0.30
突施們 7	ದಚ್ಚ-ದಾದಚ್ಕಂಳದಚ್ಚದಚ್ಚರುಕ್ಕಾ(ದಚ್ಚರಚಾರವಕ್ಕ ದಚ್ಚಡಚಿ-ದಚ್ಚ		1.0	400	6	2 2	0.3 5

	アルケニル高含有ポリエーテル	Si-H差含有ポリエーテル	SI-H /AL 比	Cpt (ppm)	硬化 時間 (分)	水との 接触角 (**)	永久亚 (%)
実施貿8	CH3-CHCH2CH3 CH3O)12 CH3CH-CH2 ←CH3-CHCH3O+CH3 CH3O)12 CH3-CH-CH3	Me-S10-S1-CH ₂ CH ₃ CH ₃ O+CH ₂ CH ₂ O) ₁₈ Me Me Me Me Me Me Me Me	1.0	400	5. 5	3 1	0.25
		(CH ₂ CH ₂ CH ₃ CH ₃ O) ₁₃ CH ₃ CH ₃ CH ₃ -SIO SIO SI SI Me					
突旅例 9	Cit, Citof ₁ , Cit-Cit, (Cit, Citof ₁ , Cit-Cit,	CH ₀ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₄ CH ₅ S 10 S 1	1.0	200		54	0.15
				i i			

	アルケニル基金有ポリエーテル	SI-H基含有ポリエーテル	SI-H /AL 此	Cpt (ppm)	硬化 時間 (分)	水との 扱触角 (゜)	永久亞 (%)
奥施例 10	CH ₃ / CH ₃	H O CH ₁ CH ₂ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅	1.0	500	4.5	5 3	0.15
與推列 11	CH*-CH+CH*)*0-CH*CH0-L** (CH*)*CH-CH*	H O CH CH CH CH CH CH	0.7	400	6.5	50	0.20
突路例 12	CH ₂ -CCH ₂ O-(CH ₂ CHO) 20 (CH ₂ CH ₂	(M-1) Me CH ₂ (H-8) OS IOS I - CH ₂ CH ₂ (CCH ₂ GH ₃ O) + 1	0.8	400	6	4 2	0.15

	アルケニル茶含有ポリエーテル	Si-H店含有ポリエーテル	SI-H /A L 此		護化 水との 専間 接触が 分) (**)	9
突飾例 13	CH gCH-CHCHg o (CHg CHgCHgCHgCHg) ss CHgCH-CHCHg	H O CH ₂ CH ₂ CH ₃ CH ₃	0.8	400	6 56	0.20
契角例 14	CH2-CHO10 (CH2-CH2) 12 CH2-CH2 CH3-CHCH2-O(CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	Me	0.9	400	5.5 6.3	0.30
実務例 15	$\begin{split} & \text{Cif}_{\frac{1}{2}}(\varphi) \in \text{Cif}_{\frac{1}{2}}(G_{\frac{1}{2}}(G_{\frac{1}{2}}(G_{\frac{1}{2}}(G_{\frac{1}{2}}(G_{\frac{1}{2}}(G_{\frac{1}{2}}(G_{\frac{1}{2}})))) \\ & \text{Cif}_{\frac{1}{2}}(G_{\frac{1}{2}}(G_{\frac{1}{2}}(G_{\frac{1}{2}}))) \\ & \text{Cif}_{\frac{1}{2}}(\varphi) \in \text{Cif}_{\frac{1}{2}}(G_{\frac{1}{2}(G_{\frac{1}{2}}(G_{\frac{1}2}(G_{\frac{1}2}(G_{\frac{1}2}(G_{\frac{1}2}(G_{\frac{1}2}(G_{\frac{1}2}(G_{\frac{1}2}(G_{\frac{1}2}(G_{\frac{1}2}(G_{$	No CH ₂	0.9	400	5 33	0.30

	アルケニル指含有ポリエーテル	Si-H蒸合有ポリエーテル	SI-H /AL 走	Cpt 硬化 等域 (ppm) (分)	水との 接触角 (*)	永久亞 (%)
灰施 例 16	CH ₃ O(CH ₃ CH ₂ CH-CH ₃ CH ₃ O(CH ₃ CH ₂ CH-CH ₃ CH ₃ O(CH ₃ CH ₂ CH-CH ₃ CH ₃ O(CH ₃ CH ₃ CH ₃ CH-CH ₃ A+y+= S 1	Me Me Me CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₄ CH ₅ C	1.2	400 5	50	0.20
奥施河 17		- H O O O O O O O O O O O O O O O O O O	1.5	400 4.5	2.0	0.35

	アルケニル著含有ポリエーテル	Si-H‐杏有ポリエーテル	SI-H /AL 此	Cpt 提化 時間 (ppm) (分)	水との 摂触角 (*)	未久道 (%)
突施例 18	CH ₂ O+CH ₂ CHO+CH ₂ CH ₃ O+CH ₃ CHO+CH ₃ CH ₃ CCH-CH ₃	CH ₂ O+CH ₃ CHO+CH ₃ CHO ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CHO+SIO+SI-Me CH ₃ O+CH ₃ CHO ₂ CH ₃	2.0	400 3	5 1	0.30
	CH2 CH2 CH2 CH2 CH2 CH3	CHO + CH ₂ CHO + CH ₂ CH ₂ CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₆ CH ₆ CH ₆ Me Me Me				
	$CH_{3} \bigcirc CH_{3} \bigcirc C$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
実施例 19	CH ² O (CH ² CH) CH ² CH ² CH-CH ²	CH_O (CH_CHO) x CH_CH_CH_CH_C = SIO (SIO)	2.0	400 , 3	5 1	0.35
	CHO +CH_CHO+yCH_CH-CH_	CHO CH, CH, CH, CH, SIOSI-H				
	$ \begin{vmatrix} CH_2O \\ CH_2O \\ CH_2CIO \\ -CH_2CH - CH_2 \end{vmatrix} $ $ x + y + z = 66 $	$ \begin{array}{c} \text{M6} & \text{M6} & \text{M6} \\ \text{M6} & \text{M6} & \text{M6} \\ \text{I} & \text{M6} & \text{I} & \text{I} \\ \text{CH}_2\text{O} + \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\text{CH}_3\text{C} + \text{I} \\ \text{I} & \text{I} & \text{I} \\ \text{X} + \text{y} + \text{z} = 1 \text{ 7} \end{array} $		ļ		

	アルケニル基含有ポリエーテル	Si-H基含有ポリエーテル	SI-H /AL 比	Cpt 版化 時間 (ppm) (分)	水との. 摂配角 (*)	水久道 (%)
庚 施例 20	CH ₂ O _C CH ₂ O _B CH ₂ CH-CH ₃ C ₂ H ₃ C(-CH ₃ O _B CH ₂ CH-CH ₃ C ₃ H ₃ C(-CH ₃ O _B CH ₂ CH-CH ₃ CH ₃ O _C CH ₄ CH ₂ CH ₂ CH ₂ CH-CH ₃ CH ₃ O _C CH ₄ CH ₂ CH ₂ CH ₂ CH-CH ₃ x+y+z=8 6	$\begin{array}{c} H \\ M_{0} \pm S \\ 10 \\ \hline \\ 10 \\ M_{0} \\ \\$	3.0	4 0 0	5 2	0.2 5
安热例 21	CH ₁ -CHCH ₂ O(-CH ₁ -CH ₂ CH) ₁₀ (CH ₁ -CH ₂ CH ₂ CH) ₁₀ (CH-CH ₁ -CH ₂	CH ₃ Me Me CH ₂ O(CH ₂ CH) ₂ CH ₂ CH ₂ CH ₂ -S10S1-H Me Me CH ₂ O(CH ₂ CH) ₂ CH ₂ CH ₂ CH ₃ -S10S1-H Me Me CH ₃ CH ₃ Me Me CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ -S10S1-H CH ₃ CH ₃ CH ₂ CH ₃	1.0	80 17	6.0	0.25
		x+y+z=6			ļ	

	アルケニル芸言有ポリエーテル	Si-H荻含有ポリエーテル	SI-H /AL 此	Cpt (ppm)	原化 時間 (分)	水との 接触角 (*)	水久道 (%)
吳綺剛22	CHz-CHCH2O (CH2CHO) 10 gCH-CH2	CH ₂ O-CH ₂ CHO-xCH ₂ CH ₂ CH ₂ CH ₃	1.0	100	11	53	0.30
		CHO (CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃					
ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:		CH ₂					
突美別 23	CH ₂ O (CH ₂ CHO) _X CH-CH ₃ CH ₃ O (CH ₃ CHO) _X CH-CH ₃	H CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CHO ₇ SiO + Si - CH ₂ CH ₂ CH ₂ CHO ₇ H CH ₂ CH ₃ SiO + SiO	1.0	800	0.5	5 2	0.30
	$CH_2O\left(CH_2CHO\right)_2CH-CH_2$ $x+y+z=6.6$	3.0 4.0					

	アルケニル蒸含有ポリエーテル	Si-H基含有ポリエーテル	SI-H /AL 此	Cpt (ppm)	便化 時間 (分)	水との 接触角 (*)	水久亚 (%)
突越例 24	$\begin{array}{cccc} CI_{1,1} & & & & \\ CII_{1,0} & CII_{1,2} & CII_{1,2} & CII_{1,2} & CII_{1,2} \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	Mo Si O Si O Si CH CH CH CH CH CH CH C	1.0	600		4.4	0.35
比較例4	実施例1と同様	実施例1と同様	0.3	400	催化せず	**_	
. 5	突施例 2 と同様	実施例 2 と同様	0.2	400	同上		-
· 6	実施例1と同様	実施例1と同様	1 5	400	利上	_	-
* 7	実施例3と同様	突縮例3と同様	2 0	400	同上	-	
, 8	li L	阿上	1.0	0.05	{ 陶上	-	_
<i>"</i> 9	実施例1と両様	突施例1と同様	1.0	0.01	间上	_	

	アルケニル基含有ポリエーテル	Si-H蒸含有ポリエーテル	SI-H /AL /E	C _{pt}	硬化 時間 (分)	水との 接触角 (°)	永久歪 (男)
爽施例 25	突萬例 1 と同様	Ma - SI - O - SI - Ma O - O - O - O - O - O - O - O - O - O		200	5	53	0.3 0
実施例 26	$CH_2 = CHCH_2 \left(\begin{array}{c} CH_5 \\ -CHCH_2 \end{array} \right)_T$, $r^1 + r^2 + r^5 + r^4 = 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.2 5
		Me Me H-SI-O-SI-CH ₂ CH ₂ CH ₂ O+CH ₂ CHO-SI Me Me					

	アルケニル高含有ポリエーテル Si-	-H基含有ポリエーテル	SI-H /AL 比	C _{pt} (ppm)	時間	水との 接触角 (^)	*久蕴 (多)
奖施例27	$\begin{array}{c} \text{CH}_2 = \text{CHCH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 = \text{CHCH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 = \text{CHCH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_2 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \right) \\ \text{CH}_3 \left(\begin{array}{c} \text{CH}_3 \\$	施例26と同様	1.0	300	5	53	0.20
実施例 28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	奪倒26と同様	1.0	300	5	53	0.2 0
爽始們29	来海列 1 $\stackrel{!}{\sim}$ 月 期 Ma Ma CH3 $\stackrel{!}{\sim}$ 1 $\stackrel{!}{\sim}$	H ₂ CH ₂ CH ₂ -SiOSI-H	1.0	300	6	5 2	0.3 0

	アルケニル 基含有ポ リエーテル	Si-H基含有ポリエーテル	SI-H /AL 比	C _{pt} (ppm)	硬化 時間 (分)	水との 接触角 (*)	永久盃 (多)
爽施例 3 0	実施例 1 と向様	Mo Mo Mo Mo Mo Mo Mo Mo	1.0	300	6	54	0.30
実施例 31	実施例 1 と同様	Se SI OS - CH ₂ CH ₂ CH ₂ CH ₂ CHC ₂ CHC ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ C	1.0	300	6	54	0.3 5

奥施例32

突縮例5のテトラキス(トリフェニルホスファイト)白全0.01形のかわりに、白金風0.08 部(Cpt=800ppm)を用いて、ペーストを調製した。

このペーストを120℃にかいて3時間処理した結果、ゴム弾性を有する硬化体が得られた。得られた硬化体の水との接触角は50°、水久運は0.20%であった。

事 施 例 3 3

実施例1の白金錯体 0.12部のかわりに、堰化白金駅 0.16部(Cpt=600ppm)を用い、混合した所、室園にかいて24時間後にゴム弾性を有する硬化体が得られた。この硬化体の水との接触角は53°、永久亜は0.35季であった。

実施例 3 4 ~ 6 B 4&46~31

実施例1~全年(対応実施例)で使用したアル ケニル基含有ポリエーテル、Si-H基含有ポリエー テル及び白金N様を失々用いて下記の硬化性組成 物よりなる印象材を構成した。

上記印象材のAペーストとBペーストを等量す つ取り出して練和し、硬化時間、水との接触角及 び永久歪を測定した。また、アメリカン デンタル アソシエーション スペシフィケーション

(American Dental Association Specification) ※19の測定法に従って圧縮歪及び寸法変化を制 定した。更に、前記の印象材を用いて口腔内印象 を採得し、印象面の状態を、発合跡及び枯薄性に よって評価した。また、上記印象をもとにクラウ ン(歯科用鈎造冠)を作成し、その適合性によって で開露を評価した。

発泡跡、粘着性及び精度は下記の基準によって 評価した。

(1) 発泡跡

A…全く存在しない

B … わずかに存在する

C … 多数存在する

(2) 粘着性

A…全くない

B ... ややある

C…強く粘着する

(3) 精 庭

A … クラウンがよく適合した

B … クラウンがわずかに適合しなかった

C… クラウンが全く適合しなかった

納果を第2表に示す。

尚第2表に於ける対応実施例No. は前記実施例のNo. を指すものである。

				_1	R 2	表					
突拍例系	対 応 実施別系	SI-H/AL	Cpt (ppm)	硬化時間 (分)	水との 接触角(*)	永久歪 (ぎ)	圧縮至 (*)	寸法変化 (多)	発泡跡	粘潛性	精度
3 4	1	1.0	200	4	5 3	0.4 0	5.6 0	-0.05	A	A	Λ
3 5	2	1.0	170	5	3 2	0.35	8,55	-0.05	Α.		Α
3 6	3	1.0	500	4.5	5.0	0.30	3.10	-0.05	A .	۸.	Α.
3 7	4	1.1	150	6	5 1	0.45	5.5 0	-0.05	A	Α	Α.
3 8	6	1.1	150	5	4.9	0.5 0	4.70	- 0.0 5	Α.		Α.
3 9	7	1.0	250	5	2 1	0.5 5	5.15	-0.05			A
4 0	8	1.0	200	5	29	0.40	3.75	-0.05		Α	A .
4 1	9	0.9	150	5.5	5 3	0.5 5	4.20	-0.05	Α	A	
4 2	10	1.0	160	5.5	5 3	0.35	2.8 0	-0.05	Α.	Α.	Α
4 3	1.1	1.0	160	-6	5 1	0.4 0	3.6 5	-0.05	Α.	A	
4.4	12	1.0	180	6	4.4	0.4 0	2.9 5	-0.05	A	A	A
4.5	1 3	1.0	150	5.5	5.8	0.35	2.7 5	-0.05	A	Α	A
4.6	14	1.2	200	5	5 0	0.6 0	7.15	-0.05	Α.	Α	A
4 7	1.5	1.4	220	5	2 9	0.6 5	7.30	-0.05	٨	Α	
4.8	16	1.0	160	4.5	4 9	0.3 0	3.15	-0.05		Α.	Α.
4 9	1.7	1,0	160	4	2 1	0.2 5	3.2 5	-0.05	Α.	Α	
5 0	18	1.0	120	5	5 3	0.3 5	2.2 0	-0.05		A	Α.
5 1	19	1.0	130	4.5	5 3	0.35	2.6 0	-0.05		A .	A
5 2	2.0	0.8	150	5	5 I	0.5 5	4.30	-0.05	Α	A	Α.
5 3	2 1	1.6	350	5.5	5.8	0.6 5	4.2 5	- 0.0 5	A	Α.	A
5 4	2 2	1.0	140	4	5 2	0.4 0	5.5 0	- 0.0 5	A	Α	Α
5 5	2 3	1.0	140	5	5 1	0.35	2.7 0	0.0 5	Α	Α	A
5 6	2.4	1.0	150	4.5	4.0	0.35	3.05	0.0 5	A	Α	Α
5 7	2.5	1.0	170	4	5 3	0.4 0	5.70	-0.05	A	Α.	Α
5 8	2.6	1.0	200	5	5 2	0.35	3.55	-0.05	A	Α.	A
5 9	2.7	1.0	200	5.5	5 2	0.3 0	2.8 0	-0.05	A		A
6 0	2.8	1.0	200	5,5	5 3	0.30	2.2 0	-0.05	A	A	Α.
6 1	2 9	1.0	200	5	5 3	0.35	3.3 0	-0.05	A	A	A
62 .	3 0	1.0	200	5	5 2	0.4 0	2.35	0.0 5	Λ	Α	A
6 3	3 1	1.0	200	5.5	5 3	0.4 0	2.05	- 0.0 5	A	A	A

比較例10

実施例1と同様のアルケニル基含有ポリエーテ ルを45部、平均式

 C)。 これをもとに作製したクラウンは、不適合 (評価 C) であった。

特許出願人 德山曹達株式会社