Interrogation écrite n°08

NOM: Prénom: Note:

1. Soit f un endomorphisme d'un espace euclidien E tel que $f^* \circ f = 0$. Montrer que f = 0.

Pour tout $x \in E$,

$$||f(x)||^2 = \langle f(x), f(x) \rangle = \langle x, f^* \circ f(x) \rangle = \langle x, 0_E \rangle = 0$$

puis $f(x) = 0_E$. On en déduit que f = 0.

2. Soit u un endomorphisme d'un espace euclidien E. Montrer que $Ker(u^*) = Im(u)^{\perp}$ puis que $Im(u^*) = Ker(u)^{\perp}$. Soit $x \in E$. Alors

$$x \in \operatorname{Ker}(u^*)$$

$$\iff u^*(x) = 0_{\operatorname{E}}$$

$$\iff \forall y \in \operatorname{E}, \ \langle u^*(x), y \rangle = 0$$

$$\iff \forall y \in \operatorname{E}, \ \langle x, u(y) \rangle = 0$$

$$\iff \forall z \in \operatorname{Im}(u), \ \langle x, z \rangle = 0$$

$$\iff x \in \operatorname{Im}(u)^{\perp}$$

Ainsi $\operatorname{Ker}(u^*) = \operatorname{Im}(u)^{\perp}$. En appliquant cette égalité à u^* , on obtient $\operatorname{Ker}((u^*)^*) = \operatorname{Im}(u^*)^{\perp}$ i.e. $\operatorname{Ker}(u) = \operatorname{Im}(u^*)^{\perp}$. Or E est de dimension finie donc $\operatorname{Ker}(u)^{\perp} = (\operatorname{Im}(u^*)^{\perp})^{\perp} = \operatorname{Im}(u^*)$.

3. Soit F un sous-espace vectoriel d'un espace euclidien E. On suppose que F est stable par $u \in \mathcal{L}(E)$. Montrer que F^{\perp} est stable par u^* .

Soit $x \in F^{\perp}$. Soit $y \in F$. Par définition de l'adjoint,

$$\langle u^*(x), y \rangle = \langle x, u(y) \rangle$$

Or F est stable par u donc $u(y) \in F$. On en déduit que

$$\forall y \in F, \langle u^*(x), y \rangle = \langle x, u(y) \rangle = 0$$

Ainsi $u^*(x) \in F^{\perp}$ de sorte que F^{\perp} est stable par u^* .

4. Soient
$$\mathcal{B}$$
 une base orthonormée d'un espace euclidien E de dimension 3 ainsi que $u \in \mathcal{L}(E)$ tel que $\max_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Montrer que u est une rotation.

Posons $A = \operatorname{mat}_{\mathcal{B}}(u)$. On vérifie que $A^TA = I_3$ et $\operatorname{det}(A) = 1$. Ainsi $A \in \operatorname{SO}(3)$ puis $u \in \operatorname{SO}(E)$ car \mathcal{B} est une base orthonormée de E. Comme dim E = 3, u est une rotation.

5. Montrer que $SO_2(\mathbb{R})$ est connexe par arcs.

Notons
$$R:\theta\in\mathbb{R}\mapsto\begin{pmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{pmatrix}$$
. L'application R est continue car \cos et \sin le sont. Ainsi $SO_2(\mathbb{R})$ est connexe par arcs en tant qu'image du connexe par arcs \mathbb{R} par l'application continue R .

6. On munit \mathbb{R}^3 de son produit scalaire usuel. On note s la réflexion par rapport au plan P d'équation x + y + z = 0. Déterminer la matrice de s dans la base canonique.

Notons que a = (1, 1, 1) est un vecteur normal à P. Ainsi le projeté orthogonal d'un vecteur u sur P^{\perp} est $v = \frac{\langle u, a \rangle}{\|a\|^2} a = \frac{1}{3} \langle u, a \rangle a$ puis s(u) = u - 2v. En notant $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 , on trouve alors

$$\begin{split} s(e_1) &= e_1 - \frac{2}{3} \langle e_1, a \rangle a = \frac{1}{3} (1, -2, -2) \\ s(e_2) &= e_2 - \frac{2}{3} \langle e_2, a \rangle a = \frac{1}{3} (-2, 1, -2) \\ s(e_3) &= e_2 - \frac{2}{3} \langle e_3, a \rangle a = \frac{1}{3} (-2, -2, 1) \end{split}$$

On en déduit que
$$\text{mat}_{\mathcal{B}}(s) = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$
.