Chapter 2: Finite dimensional vector space

Linear Algebra Done Right, by Sheldon Axler

Contents

A: Span and Linear independence	3
B: Bases	3
C: Dimension	4

A: Span and Linear independence

B: Bases

Problem 1

Find all vector spaces that have exactly one basis.

Proof. Consider all lines passing through origin.

Problem 3

(a) Let U be the subspace of \mathbb{R}^5 defined by

$$U = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \text{ and } x_3 = 7x_4$$

Find a basis of U.

- (b) Extend the basis in part (a) to a basis of \mathbb{R}^5 .
- (c) Find a subspace W of \mathbb{R}^5 such that $\mathbb{R}^5 = U \oplus W$.

Proof. (a) We can verify that (3,1,0,0,0), (0,0,7,1,0), (0,0,0,0,1) is a basis of U, and it spans U.

Idea: We start from the basis of \mathbb{R}^5 and try to fit it into the given condition.

- (b) (3,1,0,0,0), (0,0,7,1,0), (0,0,0,0,1), (0,1,0,0,0), (0,0,1,0,0)Idea: Downgrade all vector to one dimensional (to obtain the basis of \mathbb{R}^5).
- (c) $span\{(0,0,0,0,1), (0,1,0,0,0)\}$ Idea: Refer to the definition of direct sum.

Problem 5

Prove or disprove: there exists a basis p_0, p_1, p_2, p_3 of $\mathcal{P}_3(\mathbb{F})$ such that none of the polynomials p_0, p_1, p_2, p_3 has a degree 2.

Proof. Consider

$$p_0 = a_1$$

$$p_1 = a_2 x$$

$$p_2 = a_3 x^3$$

$$p_3 = a_4 x^2 + a_5 x^3$$

It is easy to verify that they are linearly independent, and span $\mathcal{P}_3(\mathbb{F})$ \square

Problem 6

Suppose v_1, v_2, v_3, v_4 is a basis of V. Prove that

$$v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$$

is also a basis of V.

Proof. We could obtain v_1, v_2, v_3 with the following operation

$$v_3 + v_4 - v_4 = v_3 \tag{1}$$

$$v_2 + v_3 - (v_3 + v_4 - v_4) = v_2 \tag{2}$$

$$v_1 + v_2 - (v_2 + v_3 - (v_3 + v_4 - v_4)) = v_1$$
(3)

Which suggests that $v_1 + v_2$, $v_2 + v_3$, $v_3 + v_4$, v_4 also spans V. Next, we prove that they are linearly independent.

$$a(v_1 + v_2 + b(v_2 + v_3) + c(v_3 + v_4) + dv_4$$
(4)

$$=av_1 + (a+b)v_2 + (b+c)v_3 + (c+d)v_4$$
(5)

Since v_1, v_2, v_3, v_4 is a basis, we have a = b = c = d = 0. This implies that $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ is also linearly independent.

Problem 8

Suppose U and W are subspaces of V such that $V = U \oplus W$. Suppose also that u_1, \ldots, u_m is a basis of U and w_1, \ldots, w_n is a basis of W. Prove that

$$u_1,\ldots,u_m,w_1,\ldots,w_n$$

is a basis of V.

Proof. The linear independency of $u_1,\ldots,u_m,w_1,\ldots,w_n$ is directly come from the definition of direct sum since $U\cap W=0$. Since u_1,\ldots,u_m is a basis of U. We can write any $u\in U$ as a linear combination of u_1,\ldots,u_m . Similarly, we can write any $w\in W$ as a linear combination of w_1,\ldots,w_n . Therefore, we can write any $v\in V$ as a linear combination of $u_1,\ldots,u_m,w_1,\ldots,w_n$.

C: Dimension

Problem 1

Suppose V is finite-dimensional and U is a subspace of V such that $\dim U = \dim V$. Prove that U = V.

Proof. Let u_1, \ldots, u_n be a basis of U. Since U is a subspace of V, we can extend the basis of U to a basis of V. Since $\dim U = \dim V$, every independent list of right length is also a base suggests that u_1, \ldots, u_n also spans V. Therefore, U = V.

Problem 2

Show that the subspaces of \mathbb{R}^2 are precisely the zero subspace, all lines in \mathbb{R}^2 through the origin, and \mathbb{R}^2 itself.

Proof. dim $R^2 = 2 \implies$ dim subspaces of $R^2 \le 2$

When
$$\dim U = 0$$
, $U = \{0\}$. (6)

$$\dim U = 1,$$
 U is a line passing through origin. (7)

$$\dim U = 2, (8)$$

5