

Machine Learning INF2008

Lecture 07: Unsupervised Learning

Donny Soh

Singapore Institute of Technology

李包绝

中任相車馬炮

兵伸偶

李包绝

中任相車馬炮

兵伸偶

In general, two types of unsupervised learning

- 1. Partitional clustering algorithms:
 - 1. K-Nearest Neighbour
 - 2. K-means
 - 3. DBScan
 - 4. LDA
- 2. Hierarchical algorithms: finds successive clusters using previously established clusters
 - 1. Agglomerative ("bottom-up"): HLDA
 - 2. Divisive ("top-down")

Nearest Neighbor Algorithm: Intuition

- For each new test datapoint with x-variables, the nearest neighbour algorithm simply finds the k number of datapoints closest to the datapoint.
- Upon finding these datapoints, it finds out which classes these datapoints belong to and takes a vote count and aligns itself with these datapoints.
- Suppose we have the example: "How should I go to work today".
- Typically most of us go to work either via bus or the train. Let's assume grab suddenly has this great offer if you use
 grabshare.

• You soon realize that if you share the ride with at least 2 more colleagues, not only do you spend less time commuting, you end up paying less for your trip as well!

Nearest Neighbor Algorithm: Intuition

So now every morning, you call up your 3 colleagues that stay closest to you.

As long as 2 of them agree to take grabshare with you that day, that will be the mode of your transport for that day.

What you are doing unknowingly is the k Nearest Neighbour algorithm.

You are looking for the nearest = 3 neighbours that live closest to you to share a grab ride.

Let's assume that the number of people that reply yes to you takes on the variable of r.

As long as r is greater or equal than the threshold value of 2, you will go ahead with grab. Else you will decide to take the public transport (bus or MRT).

Distance Measures

SINGAPORE INSTITUTE OF TECHNOLOGY

- Every sample is represented by a vector of numbers (eg wordvec).
- Classification / Regression is done by voting of samples from the k nearest points.
- Classification: the winner of the vote from k nearest points.
- Regression: the mean of the k nearest samples.

Euclidean Distance

$$d(x,y) = \sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Manhattan Distance

$$d(x,y) = \sum_{i=1}^{k} ||x_i - y_i||$$

Maximum Norm

$$d(x,y) = max_{1 \le i \le p} ||x_i - y_i||$$

Nearest Neighbor Algorithm: Issues

- Very prone to overfitting. A good choice of the value of k is the square root of the number of training samples.
- Doesn't work well when the number of training samples is large.
- Doesn't work well when the number of features is large (data is very sparse). (why?)

This is an example of what overfitting is.

Instead of a simple boundary that divides between two classes, the boundary is very complex, which is liable to lead to many errors.

Nearest Neighbor Algorithm: Normalization

- Do remember (where possible) to scale your features. The kNN algorithm relies on a majority vote based on the class of the nearest k datapoints in the dataset.
- Consider a simple two class classification problem, where a Class 1 sample is chosen (black) along with it's 10-nearest neighbours (filled green). In the left figure, data is not normalized, whereas in the right one it is.
- Without normalization, all the nearest neighbours are aligned in the direction of the axis with the smaller range and this leads to an incorrect classification.

K-Means Clustering

- The k-means algorithm is an algorithm to cluster *n* objects into *k* clusters.
- The algorithm will partition all points into *k* disjoint clusters.
- Each cluster will have a centroid (centre point).
- These clusters will minimize the cost of the points to the *k* centroids.

$$Loss = \sum_{j=0}^{k} \sum_{i=0}^{n} ||x_i - \mu_j||^2$$

K-Means Clustering: How it works?

Initializes the data with *k* points. These points are referred to as centroids. (eg data points).

For every point in the dataset, it finds the points in the *k centroids* closest to these points in the dataset.

For each of this points, a new centroid is calculated.

This process is continued until either

- the number of iterations for the clustering has been reached.
- the change in the loss goes below a certain threshold.
- the change in the centroid location goes below a certain threshold.

K-Means Clustering: How to pick K?

Other Clustering Methods

