Chương 8: Tầng liên kết dữ liệu

Giảng viên: Ngô Hồng Sơn

Khoa CNTT- ĐHBK Hà Nội Bộ môn Truyền thông và Mạng máy tính

Tổng quan

- Tuần trước: Tầng ứng dụng
 - Mô hình: client-server vs. P2P
 - Case study: HTTP, Mail, FTP...
- Tuần này: Tầng liên kết dữ liệu
 - Dịch vụ:
 - Đóng gói, địa chỉ hóa
 - Phát hiện và sửa lỗi
 - Kiểm soát luồng
 - Kiểm soát truy nhập đường truyền

- Công nghệ mạng LAN (Local Area Network)
 - Ethernet
 - Wireless LAN
- Công nghệ mạng WAN (Wide Area Network)
 - Frame relay
 - ATM

2

•

Giới thiệu về Tầng liên kết dữ liệu

Nút mạng và liên kết

- Nút mạng:
 - PCs, Laptop, Routers, Server...
- Liên kết:
 - Kênh truyền thông giữa các nút kế tiếp
 - Hữu tuyến: Ethernet LAN, ADSL, fiber optic...
 - Không dây: Wi-fi, Wi-Max, vệ tinh,...
- Tầng liên kết dữ liệu:
 Truyền dữ liệu giữa các thành phần kế tiếp

Tầng liên kết dữ liệu và kiến trúc phân tầng

802.2 LLC					
802.3	802.4	802.5	802.11		802.16
Ethernet	Token Bus	Token Ring	Wi-Fi		Wi-Max

5

- Đóng gói Framing:
 - Đơn vị dữ liệu: Frame (khung tin)
 - Bên gửi: đặt gói tin tầng mạng vào khung tin, thêm phần đầu, phần đuôi
 - Bên nhận: Bỏ phần đầu, phần đuôi và lấy gói tin truyền lên tầng mạng
- Địa chỉ hóa Addressing:
 - Địa chỉ vật lý đặt trong phần đầu gói tin để định danh nút nguồn, nút đích

- Điều khiển truy nhập đường truyền
 - Nếu là mạng đa truy nhập, cần có các giao thức truy nhập đường truyền cho nhiều máy trạm
- Kiểm soát luồng:
 - Kiểm soát tốc độ truyền của bên gửi sao cho bên nhận hoạt động tốt, không bị quá tải
- Kiểm soát lỗi:
 - Phát hiện và sửa các lỗi bít
 - e.g. parity check, checksum, CRC check

Kiểm soát lỗi

Phát hiện lỗi Phát hiện và sửa lỗi

Nguyên lý phát hiện lỗi

EDC= Error Detection Code (redundancy)
Mã phát hiện lỗi

- Mã đơn
 - Phát hiện lỗi bít đơn

0111000110101011 0

- Mã hai chiều
 - Phát hiện và sửa lỗi bít đơn

 Khái niệm về checksum của Internet?

- Mã kiểm tra lỗi độ dài 16 bit
- Tại bên gửi
 - Đặt 16 bit của checksum = 0
 - Tổng theo các số 16 bits
 - Đảo bit tất cả
- Tại bên nhận
 - Tổng tất cả theo các số 16 bit
 - Phải thu được toàn các bit 1
 - Nếu không, gói tin bị lỗi

CRC: Cyclic Redundancy Check Mã vòng

- Dữ liệu được xem như một số nhị phân: D
- Chọn một chuỗi r+1 bit, G (chuỗi sinh Generator)
- Tìm một chuỗi R độ dài r bit, sao cho chuỗi ghép của D và R là một số nhị phân chia hết cho G (chia modulo 2)

CRC: Cách tìm R

- <D, R> có thể viết dưới dạng
 - D.2^r xor R
- <D, R> chia hết cho G
 - $D.2^{r} \times R = n.G$
 - $D.2^r = n.G \times R$
- Có nghĩa là R là số dư khi chia D.2^r cho G (phép chia modulo 2)

$$R = D.2^r \mod G$$

```
R=110, chuỗi bít gửi đi là \underbrace{10101001110}_{\textbf{D}}
```

```
• Ví dụ
               G
10101001000
              1001
1001 D
              1011110
  1110
  1001
   1110
   1001
    1111
    1001
     1100
     1001
      1010
      1001
```

R

14

CRC biểu diễn dưới dạng đa thức

- $1011: x^3 + x + 1$
- Ví dụ một số mã CRC được sử dụng trong thực tế:
 - CRC-8 = $x^8 + x^2 + x + 1$
 - $CRC-12 = x^{12}+x^{11}+x^3+x^2+x$
 - CRC-16-CCITT = $x^{16} + x^{12} + x^5 + 1$
 - CRC-32 = $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$
- G càng dài, mã CRC phát hiện lỗi càng hiệu quả
- CRC được sử dụng rộng rãi trong thực tế
 - Wi-fi, ATM, Ethernet...
 - Phép toán XOR được cài đặt bởi phần cứng
 - Phát hiện chuỗi bít bị lỗi có độ dài nhỏ hơn r+1 bit

Kiểm soát truy nhập đường truyền

- Điểm-nối-điểm
 - ADSL
 - Telephone modem
 - Leased Line....
- Quảng bá
 - Mạng LAN truyền thống với hình trạng bus hay mạng hình sao dùng hub (công nghệ lỗi thời)
 - Wireless LAN, radio network, mobile network
 - HFC:
 - ...
- Các mạng quảng bá cần giao thức điều khiển truy nhập để tránh xung đột -> Giao thức đa truy nhập

Phân loại các giao thức đa truy nhập

- Chia kênh:
 - Chia tài nguyên của đường truyền thành nhiều phần nhỏ (Thời gian - TDMA, Tần số - FDMA, Mã - CDMA)
 - Chia từng phần nhỏ đó cho các nút mạng
- Truy nhập ngẫu nhiên:
 - Kênh không được chia, cho phép đồng thời truy nhập, chấp nhận là có xung đột (collision)
 - Cần có cơ chế để phát hiện và tránh xung đột
 - e.g. Pure Aloha, Slotted Aloha, CSMA/CD, CSMA/CA...
- Lần lượt:
 - Theo hình thức quay vòng
 - Token Ring, Token Bus....

- FDMA: frequency division multiple access
- TDMA: time division multiple access
- CDMA: code division multiple access

TDMA và FDMA

Ví dụ:

4 kênh

FDMA

TDMA:

 Mạng LAN có 6 máy, 1,3,4 hoạt động. 2, 5, 6 nghỉ

Các phương pháp truy cập ngẫu nhiên

Aloha

- Packet-Switched Radio Network
- Các nút truyền trên một tần số (f0)
- Nút trung tâm nhận và truyền lại một tần số khác (f1)

Nếu có hai nút cùng truyền: Xung đột

 Nếu có xung đột, nút vừa truyền sẽ nhận được một gói tin bị lỗi, nó sẽ đợi một thời gian ngẫu nhiên trước khi truyền lại

- Thời gian được chia làm các khe (slot) bằng nhau
- Dữ liệu có cùng kích thước (1 slot)
- Các nút phải đồng bộ hóa thời gian

Pure ALOHA

Hiệu quả kém hơn Slotted ALOHA!

- Carrier Sense Multiple Access with Collision Detection (Đa truy nhập, có phát hiện xung đột)
- Thế nào là CSMA/CD: trong một cuộc họp
 - Multiple Access:
 - Collision:
 - CSMA: "Listen before talk"
 - CD
 - "Listen while talking"

- CSMA: Các máy nghe trước muốn truyền:
 - Nếu kênh rỗi, truyền toàn bộ dữ liệu
 - Nếu kênh bận, chờ (rút lui và quay lại)
- Tại sao lại có xung đột?

Độ trễ lan truyền

Xung đột trong CSMA

- Giả sử kênh truyền có 4 nút
- Tín hiệu điện từ lan truyền từ nút này đến nút kia mất một thời gian nhất định (trễ lan truyền)
- Ví dụ:

CSMA/CD: Tóm tắt

- Máy trạm nghe trước khi muốn truyền
 - Bận: Rút lui, sau đó quay lại tiếp tục nghe
 - Rỗi: Bắt đầu truyền, vừa truyền vừa "nghe ngóng" xem có xung đột hay không
 - Nghe trong thời gian bao lâu?
 - Nếu phát hiện thấy xung đột: Hủy bỏ quá trình truyền và quay lại trạng thái rút lui
- Sau khi rút lui, khi nào thì quay lại
 - Exponential back-off

So sánh chia kênh và truy nhập ngẫu nhiên

- Chia kênh
 - Hiệu quả, công bằng cho đường truyền với lưu lượng lớn
 - Lãng phí nếu chúng ta cấp kênh con cho một nút chỉ cần lưu lượng nhỏ
- Truy nhập ngẫu nhiên
 - Khi tải nhỏ: Hiệu quả vì mỗi nút có thể sử dụng toàn bộ kênh truyền
 - Tải lớn: Xung đột tăng lên
- Phương pháp quay vòng: Có thể dung hòa ưu điểm của hai phương pháp trên

Token Ring - Mang vòng dùng thể bài

- Một "thẻ bài" luân chuyển lần lượt qua từng nút mạng
- Nút nào giữ thẻ bài sẽ được gửi dữ liệu
- Gửi xong phải chuyển thẻ bài đi
- Một số vấn đề
 - Tốn thời gian chuyền thẻ
 - Trễ
 - Mất thẻ bài....

Tổng kết các phương pháp kiểm soát đa truy nhập

- Chia kênh
- Truy nhập ngẫu nhiên
- Quay vòng
- Phân tích ưu, nhược điểm

- Trong phương pháp CSMA/CD, khi lượng dữ liệu cần gửi tăng lên thì:
 - Xung đột tăng lên?
 - Thông lượng tăng lên?
- Trong phương pháp TDMA, xung đột sẽ tăng lên khi lượng dữ liệu cần gửi tăng lên?
- Khi lượng dữ liệu cần gửi là rất nhiều, phương pháp Token Ring là kém hơn so với CSMA/CD
- Câu hỏi: Giải thích một cách định lượng hiệu quả của các phương pháp truy cập đường truyền (Bài tập lớn)

LAN: Local Area Network

LAN topology

WLAN

Bus

Star 36 Ring

Mang Lan Ethernet

- IEEE 802.3
- Tốc độ đa dạng: 10 Mbps 10 Gbps...
 - Ethernet: 10BaseT, 10Base2...
 - Fast Ethernet: 100BaseT
 - Giga Ethernet

Metcalfe's Ethernet sketch

Mạng hình sao

- Mạng dạng bus từng phổ biến trước đây
 - Các nút mạng cùng chia sẻ một đường trục
- Ngày nay: Chủ yếu là mạng hình sao
 - Một bộ chuyển mạch trung tâm với nhiều cổng Ethernet
 - Bộ chuyển mạch có thể tạo liên kết độc lập cho 2 nút mạng bất kỳ
 - Không xung đột
 - Không giao thức đa truy nhập .

Cấu trúc đơn vị dữ liệu của Etherne

- Preamble: Bắt đầu một khung tin
- Address: Địa chỉ vật lý của trạm nguồn, trạm đích
 6 bytes
- Type: Giao thức tầng trên (IP, Novell IPX, AppleTalk, ...)
- PAD: Phần thêm vào cho khung tin đủ độ dài (nếu cần thiết)
- CRC: Mã kiểm soát lỗi

Chuẩn mạng cục bộ 802.3 Ethernet Standards

- Link & Physical Layers
- MAC: CSMA/CD
- Có nhiều chuẩn Ethernet khác nhau
 - Cùng giao thức MAC và cấu trúc Frame
 - Tốc độ khác nhau: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - Phương tiện truyền khác nhau: Cáp quang, cáp đồng trục, cáp xoắn đôi.

Ethernet cổ điển

 \therefore Packetsize $\geq (12\mu s) \times 10Mb/s = 120bits$

Thực tế, Min packet size = 512 bits.

- Thêm thời gian phát hiện xung đột.
- Cho phép "repeaters" đủ thời gian khuếch đại tín hiệu.

Ethernet MAC Protocol

10Base-5

10Base-2

10Base-T

10Base-F

10Base-5: Cáp đồng trục béo, max = 500m.

10Base-2: Cáp đồng trục gầy, max ~ 200m (180m).

10Base-T: Dùng cáp xoắn đôi (twisted-pair) CAT 3

10Base-F: Dùng cáp sợi quang.

- Sử dụng hub trung tâm, cáp TP CAT 3 (4 cặp dây xoắn).
- Dễ lắp đặt và quản trị
- Làm Ethernet trở nên phổ biến hơn

"Fast Ethernet" 100Mb/s

Ethernet MAC Protocol

100Base-T4

100Base-TX

100Base-FX

Mạng hình sao, Độ dài cáp 100m. 100Base-T4: Cáp TP CAT 3. 100Base-TX: Cáp TP CAT 5.

100m 100Base-FX: Cáp sợi quang. Hub, switch 44

"Gigabit Ethernet" 1Gbps

Ethernet MAC Protocol

1000Base-TX

1000Base-FX

1000Base-TX: 4 cặp dây xoắn, CAT 6.

1000Base-FX: Cáp sợi quang.

- Địa chỉ IP :
 - 32-bit
 - Dùng trong tầng mạng IP
- Địa chỉ MAC :
 - Dùng trong tầng liên kết dữ liệu
 - 48 bit

ARP và địa chỉ MAC

Mỗi card mạng có một địa chỉ MAC

ARP: Address Resolution Protocol

Vấn đề: Xác định địa chỉ MAC từ địa chỉ IP

- Mỗi nút mạng (host, router) có một bảng ARP
- ARP table: Ánh xạ địa chỉ IP/MAC của một số nút trong mạng

< IP address; MAC address;
TTL>

 TTL (Time To Live): khoảng 20 min.)

Giao thức ARP: Hoạt động trên cùng một mạng

- A muốn gửi dữ liệu tới B
 A lưu lại đ/c MAC của mà không biết đ/c MAC B và gửi tin đến B của B
- A quảng bá một gói tin ARP, trong đó chỉ ra đ/c IP của B
 - Quảng bá ntn?
 - Phạm vi gói tin được quảng bá?
- B nhận được đ/c này sẽ trả lời A đ/c MAC của mình
 - Làm sao biết A gửi?

- ARP là một giao thức "plug-and-play"
 - Nếu muốn ARP mở rộng phạm vi hoạt động sang một mạng khác?
 - ARP Proxy

Ví dụ: chuyển gói tin giữa hai máy

Giả sử A biết đ/c IP của B

- A tạo một gói tin IP, địa chỉ nguồn A, địa chỉ đích B
- A dùng ARP để lấy đ/c MAC của router: 111.111.111.110
- A tạo một frame, đ/c đích là router, đặt gói tin vào
- A chuyển frame tới R
- R nhận frame
- R đọc địa chỉ IP của B từ trong khung tin
- R dùng ARP để tìm đ/c MAC của B
- R tạo một frame, đặt gói tin vào và chuyển đến B

Tuần tới

- More about LAN:
 - Bridge and Switch
 - WLAN
- Physical layer issues

- Bài giảng có sử dụng các tư liệu và hình vẽ từ:
 - Tài liệu của trường đại học Keio và Ritsumekan
 - Tài liệu "Computer Network, a top down approach" của J.F Kurose và K.W. Ross