Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №2.2

«Электронный осциллограф»

Выполнил студент:

Голубев Григорий Альбертович группа: 23.C02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Введение					
	1.1	Цель работы				
	1.2	Решаемые задачи				
2	Основная часть					
	2.1	Теоретическая часть				
	2.2	Эксперимент				
	2.3	Обработка данных и обсуждение результатов				
		Исходный код				
		Таблицы				
		Графики				
3	Вы	вол				

1 Введение

1.1 Цель работы

Целью данной лабораторной работы является исследование и анализ характеристик чувствительности осциллографа, а также изучение фигур Лиссажу для разных отношений частот. В процессе работы будет выполнен расчет максимальной чувствительности, коэффициента усиления, а также проведены эксперименты для определения отклонений и их влияния на точность измерений.

1.2 Решаемые задачи

- 1. Исследовать чувствительность пластин вертикального и горизонтального отклонений осциллографической трубки.
- 2. Наблюдать с помощью осциллографа синусоидальное напряжение, полученное с выхода генератора.
- 3. Получить фигуры Лиссажу и определить частоту исследуемого напряжения по фигурам Лиссажу.

2 Основная часть

2.1 Теоретическая часть

Чувствительность горизонтальных и вертикальных пластин измеряется по формуле:

$$S = \frac{L}{2\sqrt{2} \cdot U_{\text{off}}} \tag{1}$$

где

- S чувствительность (мм/B),
- L длина одного деления экрана осциллографа,
- $U_{\rm eff}$ эффективное напряжение.

2.2 Эксперимент

Для получения термоэлектронной эмиссии катод трубки нагревают, подавая на нагреватель катода переменное напряжение. Вылетевшие из катода электроны ускоряются электрическим полем и движутся по направлению к аноду. По пути они пролетают через фокусирующий электрод, который собирает вылетевшие электроны в пучок, образуя электронный луч, который проходит

между отклоняющими пластинами двух взаимно перпендикулярных плоских конденсаторов. Если в конденсаторах создать электрическое поле, то первый конденсатор С1 может отклонять луч в одном направлении, а второй конденсатор С2 — в перпендикулярном. Пройдя отклоняющие пластины конденсаторов, электронный луч попадает в широкую часть трубки. Экран электронно-лучевой трубки покрывается веществом, которое светится под действием электронного пучка. В результате на экране видно светящееся пятно F. При правильно подобранных напряжениях на катоде, аноде и фокусирующем электроде это пятно имеет размеры порядка 1 мм в диаметре.

Рис. 1. Схема установки

Рис. 2. Схема установки

Рис. 3. Схема установки

Рис. 4. Фотография установки - осциллограф

Рис. 5. Фотография установки - генератор сигналов

2.3 Обработка данных и обсуждение результатов

Исходный код

Для написания программы, вычисляющей все требуемые данные, используется язык C++; среда разработки - Visual Studio.

Данная программа на языке C++ предназначена для расчета чувствительности на основе данных, прочитанных из файлов. Чувствительность вычисляется по формуле

$$S = \frac{L}{2 \cdot \sqrt{2} \cdot U_{eff}}$$

где (L) и (U) - входные данные, считываемые из текстовых файлов. Программа обрабатывает три набора данных: вертикальные, горизонтальные и данные максимальных значений. Результаты расчета чувствительности выводятся на экран и сохраняются в текстовый файл. Программа выполняет следующие шаги:

- 1. Чтение данных из текстовых файлов.
- 2. Расчет чувствительности для каждого набора данных.
- 3. Вывод результатов расчета чувствительности на экран.
- 4. Запись результатов расчета чувствительности в файл.

Листинг 1. Функция считывания данных из файла

```
std::vector<double> readData(const std::string& filename) {
    std::ifstream file(filename);
    if (!file.is_open()) {
        throw std::runtime_error("He удалось открыть файл " + filename);
    }
    std::vector<double> data;
    double value;
    while (file >> value) {
        data.push_back(value);
    }
    return data;
}
```

Листинг 2. Функция расчета чувствительности

Листинг 3. Функция для вычисления среднего значения

```
double computeAverage(const std::vector<double>& inputData)
{
    double totalSum = 0.0;
```

```
for (double num : inputData)
          totalSum += num;
6
7
      return totalSum / inputData.size();
9
10
  // Функция расчета стандартного отклонения
| double calculateStdDev(const std::vector<double>& dataVector)
13
      double meanValue = computeAverage(dataVector);
14
      double squaredDiffsTotal = 0.0;
15
16
      for (double val : dataVector) {
17
          squaredDiffsTotal += std::pow(val - meanValue, 2);
      }
19
20
      return std::sqrt(squaredDiffsTotal / (dataVector.size() * (
^{21}
     dataVector.size() - 1)));
22 }
```

Таблицы

Таблица 1. Результаты наблюдений, расчет чувствительности для ПВО

Длина линии на экране, <i>L</i>	Эффективное напряжение, $U_{\rm eff}$	Чувствительность, S	
MM	B	мм/В	
10	4,5	0.785674	
20	10,9	0,648722	
30	17,5	0,606092	
40	23,5	0,601793	
50	31,6	0,55942	

Таблица 2. Результаты наблюдений, расчет чувствительности для ПГО

Длина линии на	Эффективное напря-	Чувствительность, S		
экране, L	жение, U_{eff}	тувствительность, В		
MM	В	мм/В		
10	3	1.17851		
20	8,5	0.83189		
30	13,7	0.774205		
40	20,2	0.700106		
50	26,5	0,667082		

Таблица 3. Максимальная чувствительность осциллографа

Длина линии на	Эффективное напря-	Чувствительность, S
экране, L	жение, $U_{\rm eff}$	тувствительность, В
MM	В	мм/В
10	0,073	48.432
20	0,12	58.9256
30	0,196	54.1153
40	0,351	40.291

Таблица 4. Таблица исследования фигур Лиссажу

Вид фигуры Лиссажу	О	8	000	00
Отношение частот f_x/f_y	1:1	2:1	1:3	1:2
Частота по лимбу генератора f_y , Γ ц	50	25	150	100
Исследуемая частота f_x , Γ ц	50	50	50	50

Графики

Исходя из графиков ПВО и ПГО, можно заключить, что в диапазонах 10.9 - 31.6 (ПВО) и 8.5 - 26.5 (ПГО) приборы демонстрируют стабильную чувствительность. Для более точной оценки значений в этих зонах рассчитаем среднее арифметическое значение по трем соответствующим измерениям, а погрешность определим как стандартную ошибку этого среднего.

$$S_y = 0.64034 \, {
m mm/B}$$
 $S_x = 0.830359 \, {
m mm/B}$ $\Delta S = \sqrt{rac{\sum_{i=1}^n (S_i - \overline{S})^2}{n(n-1)}}$

Таким образом:

$$\Delta S_y = 0.0389866 \, \text{mm/B}, \quad \Delta S_x = 0.0916488 \, \text{mm/B}$$

Максимальный коэффициент усиления:

$$K_{\text{max}} = \frac{S}{S_y} = 92.022$$

Рис. 6. Зависимость чувствительности пластин вертикального отклонения от напряжения

Рис. 7. Зависимость чувствительности пластин горизонтального отклонения от напряжения

3 Вывод

С использованием синусоидального напряжения на экране осциллографа были получены стационарные фигуры Лиссажу. Чувствительность вертикальных и горизонтальных отклоняющих пластин осциллографа была определена с помощью фигур Лиссажу. Частота исследуемого напряжения, вычисленная на основе этих фигур, составила 50 ± 0.5 Гц.

Список литературы

[1] https://github.com/st117210/Workshop2.git