

Oxygen Precursor to the Reactive Intermediate in Methanol Synthesis by Cu-ZSM-5

Pieter J. Smeets,^{†,‡} Ryan G. Hadt,[†] Julia S. Woertink,[†] Pieter Vanelderen,[‡] Robert A. Schoonheydt,^{*,‡} Bert F. Sels,^{*,‡} and Edward I. Solomon^{*,†}

Department of Chemistry, Stanford University, Stanford, California 94305, and Center for Surface Chemistry, Catalysis, K.U.Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium

Received July 15, 2010; E-mail: robert.schoonheydt@biw.kuleuven.be; bert.sels@biw.kuleuven.be; edward.solomon@stanford.edu

Abstract: The reactive oxidizing species in the selective oxidation of methane to methanol in oxygen activated Cu-ZSM-5 was recently defined to be a bent $mono(\mu-oxo)$ dicopper(II) species, [Cu₂O]²⁺. In this communication we report the formation of an O₂-precursor of this reactive site with an associated absorption band at 29 000 cm⁻¹. Laser excitation into this absorption feature yields a resonance Raman (rR) spectrum characterized by ¹⁸O₂ isotope sensitive and insensitive vibrations, ν O-O and ν Cu-Cu, at 736 ($\Delta^{18}O_2 = 41 \text{ cm}^{-1}$) and 269 cm⁻¹, respectively. These define the precursor to be a μ - $(\eta^2:\eta^2)$ peroxo dicopper(II) species, [Cu₂(O₂)]²⁺. rR experiments in combination with UV-vis absorption data show that this $[Cu_2(O_2)]^{2+}$ species transforms directly into the $[Cu_2O]^{2+}$ reactive site. Spectator Cu^+ sites in the zeolite ion-exchange sites provide the two electrons required to break the peroxo bond in the precursor. O₂-TPD experiments with ¹⁸O₂ show the incorporation of the second ¹⁸O atom into the zeolite lattice in the transformation of $[Cu_2(O_2)]^{2+}$ into $[Cu_2O]^{2+}$. This study defines the mechanism of oxo-active site formation in Cu-ZSM-5.

Oxygen activated Cu-ZSM-5 has been recently shown to selectively oxidize methane to methanol at low temperatures¹ by means of a mono(μ -oxo)dicopper(II) species, $[Cu_2O]^{2+}$. The geometric and electronic structure of this reactive core was unambiguously assigned using resonance Raman (rR) spectroscopy and density functional theory (DFT) and represents a new species in inorganic chemistry. DFT calculations reproduced the low reaction barrier and kinetic isotope effect (KIE) measured experimentally and showed that the low barrier for H-atom abstraction from CH₄ reflects the strong [Cu₂O-H]²⁺ bond in the initial product and a frontier molecular orbital (FMO) that polarizes to an oxyl (O⁻) along the reaction coordinate. Interestingly, a binuclear Cu site has recently been demonstrated to be the reactive site in particulate methane monooxygenase (pMMO), an enzyme that also oxidizes methane to methanol.³ In this study we observe an oxygen precursor to the formation of the [Cu₂O]²⁺ species in Cu-ZSM-5 and, using rR spectroscopy, define its structure as a side-on bridged μ - $(\eta^2$ - $\eta^2)$ peroxo dicopper(II) core, $[Cu_2(O_2)]^{2+}$. Absorption and rR data show the conversion of $[Cu_2(O_2)]^{2+}$ into $[Cu_2O]^{2+}$, while O_2 temperature programmed desorption (O2-TPD) experiments provide insight into how this conversion occurs upon heating.

Na-ZSM-5 (VAW, Si/Al = 12) samples were ion-exchanged with aqueous solutions of varied Cu(II)-acetate concentrations.⁴ The samples were initially calcined under O_2 at 450 °C for 2 h (5 °C/

min, 50 mL/min), followed by a He flow overnight (50 mL/min). This treatment results in the autoreduction of the Cu sites in Cu-ZSM-5.⁵⁻⁷ Fiber optic UV-vis spectroscopy was used to monitor spectral changes of Cu-ZSM-5 at ambient and elevated temperatures, and rR measurements were performed to obtain the electronic and geometric structure information regarding the Cu/O₂ species in Cu-ZSM-5. MS was used to monitor the O-isotope distribution in O₂-TPD experiments.

When prereduced Cu-ZSM-5 (He at 450 °C; Cu/Al = 0.5) was exposed to O2 at room temperature (RT) an absorption band at \sim 29 000 cm⁻¹ is rapidly formed (Figure 1A). After \sim 2 min in an O₂ flow, the intensity increase of this absorption band levels off. This band is also observed in a Cu-ZSM-5 sample with Cu/Al = 0.3 and is essentially absent in samples with Cu/Al < 0.2 (see Figure S1A and B). After full formation of the 29 000 cm⁻¹ band, the sample was flushed in He to remove excess O2 at RT. Subsequent heating of Cu-ZSM-5 (Cu/Al = 0.3) in a He atmosphere resulted in the UV-vis spectral changes shown in Figure 1B. Starting at \sim 175 °C and higher temperatures, the formation of the 22 700 cm⁻¹ band, associated with the reactive [Cu₂O]²⁺ core, is observed along with the parallel disappearance of the 29 000 cm⁻¹ band. This occurs with heating in either a He or O₂ atmosphere. The [Cu₂O]²⁺ species has also been shown to form in the presence of N₂O at 100 °C, ^{1,2} and in fact, the [Cu₂O]²⁺ core still forms even at RT with N₂O. However, unlike the case with O2, when prereduced Cu-ZMS-5 is exposed to N₂O at RT, no 29 000 cm⁻¹ band is formed, and thus there is no formation of the precursor.

Figure 1. UV—vis absorption spectra of a prereduced Cu-ZSM-5 (in He at 450 °C) during (A) O_2 treatment at RT (time interval between spectra 10 s in the first 2 min, then every 50 s for 10 min and (B) subsequent heating from 25 to 375 °C in He atmosphere (temperature interval between spectra is 25 °C).

The rR spectrum of the oxygen precursor species formed at RT obtained with laser excitation at 363.8 nm (27 473 cm⁻¹) is shown in Figure 2A. Vibrational features are observed at 269 and 736

[†] Stanford University.

^{*} K.U.Leuven.

cm⁻¹ that are not present using laser excitation outside of the 29 000 cm⁻¹ band, proving that they are resonance enhanced by the species responsible for this absorption feature. When the RT treatment of the autoreduced Cu-ZSM-5 sample is performed with isotope labeled ${}^{18}\text{O}_2$, the 736 cm⁻¹ feature shifts to 695 cm⁻¹ ($\Delta^{18}\text{O}_2 = 41$ cm⁻¹) while the 269 cm⁻¹ feature is isotope insensitive. These vibrational frequencies and isotope perturbation pattern are characteristic of those of μ - $(\eta^2$ - $\eta^2)$ peroxo dicopper(II) species. Thus, we assign the 736 and 269 cm⁻¹ features to the O-O stretch (ν O-O) and the Cu-Cu stretch (ν Cu-Cu) of the μ -(η^2 - η^2) peroxo dicopper(II) moiety, respectively. The 29 000 cm⁻¹ absorption band is thus assigned as a peroxo π^*_{σ} to Cu(II) charge transfer (CT) transition. Upon heating the rR sample, the 363.8 nm rR μ - $(\eta^2:\eta^2)$ peroxo dicopper(II) precursor features go away (Figure S3). In parallel, excitation at 457.9 nm (21 834 cm⁻¹) leads to the enhancement of the vibrational features in Figure 2B (see Figure S4 for comparison of 457.9 nm rR spectra of the RT precursor and the [Cu₂O]²⁺ species). These have been assigned in ref 2 as the isotope sensitive, intense symmetric (456 cm⁻¹) and weak antisymmetric (870 cm⁻¹) stretching vibrations characteristic of the μ -oxo-bridged [Cu₂O]²⁺ species. These results parallel the absorption changes and show that the side-on bridged peroxo dicopper(II) species converts to the [Cu₂O]²⁺ species reactive in the selective oxidation of methane to methanol.

Figure 2. (A) rR spectra (363.8 nm) of $^{16}O_2$ (black) and $^{18}O_2$ (blue) precursor formed at RT and (B) rR spectra (457.9 nm) of reactive site formed by heating the O_2 precursor rR samples.

An important issue in this conversion is the fate of the second O atom as only one O atom remains in the reactive $[Cu_2O]^{2+}$ intermediate. He treatment of the reactive intermediate at temperatures above 350 °C results in the disappearance of its characteristic 22 700 cm⁻¹ absorption feature with release of O_2 . Thus, a second O atom recombines with the bridging O atom from the reactive intermediate, and through microscopic reversibility, the desorbing O_2 can contain information on the conversion of $[Cu_2(O_2)]^{2+}$ into $[Cu_2O]^{2+}$.

An O₂-TPD study in a He flow was performed after treatment of Cu-ZSM-5 with ¹⁸O₂ at 240 °C. From our previous study, reaction of Cu-ZSM-5 and ¹⁸O₂ at 240 °C results in formation of pure ¹⁸O labeled reactive sites (i.e., [Cu^{II}–¹⁸O–Cu^{II}]²⁺).² Figure 3 follows the desorbing O₂ isotopes, ¹⁶O₂, ^{16,18}O₂, and ¹⁸O₂, upon subsequent heating in a He flow. Although the site was formed with pure ¹⁸O₂, little ¹⁸O₂ desorbs. In the temperature range where the 22 700 cm⁻¹ band disappears (between 350 and 420 °C), corresponding to the loss of the [Cu^{II}–¹⁸O–Cu^{II}]²⁺ species, the ratio of ^{16,18}O₂/¹⁸O₂ released is greater than 10. This shows that the second ¹⁸O atom initially present in the peroxo precursor does not recombine with the bridging ¹⁸O atom of [Cu₂O]²⁺ upon O₂ desorption. As shown in Figure 3, the majority of bridging ¹⁸O recombines with ¹⁶O, which originates from the zeolite lattice, resulting in dominantly ^{16,18}O₂

desorption. This also indicates that the second ^{18}O atom does not form a second $[Cu^{II}-^{18}O-Cu^{II}]^{2+}$ species as this would result in desorption of $^{18}O_2$. A reference TPD experiment without the initial O_2 treatment at 240 °C showed no O_2 desorption in this temperature region. The large fraction of $^{16}O_2$ observed in Figure 3 is thus not the result of destruction of the zeolite lattice. At higher temperature the fraction of desorbing $^{16,18}O_2$ atoms decreases and mainly $^{16}O_2$ desorbs. This represents migration—recombination through the zeolite lattice of abundantly present O atoms deposited on other remote Cu sites in Cu-ZSM-5, 4,9 resulting in isotope scrambling of the $^{16}O_{lattice}$ and $^{18}O.^{10-12}$

The high incorporation of lattice ^{16}O into O_2 desorbed from $[Cu_2^{18}O]^{2+}$ ($T<420\,^{\circ}C$) indicates that the reverse occurs upon formation of the $[Cu_2O]^{2+}$ reactive species from the $[Cu_2(O_2)]^{2+}$ precursor. Thus, the high $^{16,18}O_2/^{18}O_2$ desorption ratio reflects the competition between newly formed ^{18}O lattice sites and equivalent and more prevalent ^{16}O lattice sites.

Two additional electrons are required to cleave the O–O bond of $[Cu_2(O_2)]^{2^+}$. Experimental and computational data showed that the Cu's of the reactive intermediate are Cu^{2^+} and not Cu^{3^+} , and DFT calculations of an initial $[Cu_2O]^{4^+}$ resulted in delocalization of the additional holes into the lattice, creating $[Cu_2O]^{2^+}$ and an electron-deficient lattice. Also, the electron donor and acceptor capabilities of zeolite lattices have been demonstrated experimentally, $^{13-15}$ indicating that spectator Cu^+ ions in ion-exchange sites can donate the electrons required to reduce the precursor and form the $[Cu_2O]^{2^+}$ reactive species.

Figure 3. MS signal of $^{16}O_2$, $^{16.18}O_2$, and $^{18}O_2$ as a function of temperature during O_2 -TPD (2 °C/min in He) of activated Cu-ZSM-5 (Cu/Al = 0.5, Si/Al = 12). Note that the peak in the $^{16.18}O_2$ desorption profile corresponds to loss of the 22 700 cm $^{-1}$ absorption feature.

Scheme 1

In summary, we have characterized a RT O_2 precursor in the formation of $[Cu_2O]^{2+}$, a reactive site capable of the low temperature, selective oxidation of methane to methanol in oxygen activated Cu-ZSM-5. In combination, UV—vis absorption and rR

data show the precursor is a μ - $(\eta^2:\eta^2)$ peroxo dicopper(II) core (with an absorption band at 29 000 cm⁻¹) and that this species converts directly into the [Cu₂O]²⁺ reactive intermediate (with an absorption band at 22 700 cm⁻¹). Scheme 1 presents a summary of this process. We propose that the spectator Cu⁺ ions in the ion-exchange sites provide the required electrons to cleave the bridging peroxo O-O bond. ¹⁸O₂-TPD experiments showed incorporation of the second ¹⁸O atom into the zeolite lattice upon formation of the [Cu₂O]²⁺ reactive intermediate. This study defines the mechanism of oxoreactive site formation in Cu-ZSM-5. While the [Cu₂O]²⁺ core has been shown to be highly reactive in methane oxidation, we are actively pursuing other reactive Cu/O₂ species in oxygen activated Cu-ZSM-5 and are currently investigating the relative reactivity of the precursor and the $[Cu_2O]^{2+}$ intermediate.

Acknowledgment. P.J.S. acknowledges the IWT, FWO, and K.U.Leuven for graduate and postdoctoral fellowships, and J.S.W. acknowledges the NIH for a traineeship. R.G.H. is a Gerhard Casper Stanford Graduate Fellow. This research was supported by the GOA and the Long Term Structural Funding-Methusalem Funding by the Flemish Government (R.A.S., B.F.S.) and by NIH Grant DK-31450 (E.I.S.).

Supporting Information Available: Experimental procedures, UV-vis and resonance Raman spectra of formation of precursor and conversion into reactive intermediate. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt, R. A. J. Am. Chem. Soc. 2005, 127, 1394–1395.
- Woertink, J. S.; Smeets, P. J.; Groothaert, M. H.; Vance, M. A.; Sels, B. F.; Schoonheydt, R. A.; Solomon, E. I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 18908-18913.
- (3) Balasubramanian, R.; Smith, S. M.; Rawat, S.; Yatsunyk, L. A.; Stemmler, T. L.; Rosenzweig, A. C. Nature 2010, 465, 115-119
- (4) Smeets, P. J.; Groothaert, M. H.; van Teeffelen, R. M.; Leeman, H.; Hensen, E. J. M.; Schoonheydt, R. A. J. Catal. 2007, 245, 358–368.
- (5) Iwamoto, M.; Furukawa, H.; Mine, Y.; Uemura, F.; Mikuriya, S. I.; Kagawa, S. J. Am. Chem. Soc. 1986, 1272-1273.
- (6) Da Costa, P.; Moden, B.; Meitzner, G. D.; Lee, D. K.; Iglesia, E. Phys. Chem. Chem. Phys. 2002, 4, 4590-4601.
- (7) Smeets, P. J.; Woertink, J. S.; Sels, B. F.; Solomon, E. I.; Schoonheydt, R. A. Inorg. Chem. 2010, 49, 3573-3583.
- (8) Baldwin, M. J.; Root, D. E.; Pate, J. E.; Fujisawa, K.; Kitajima, N.; Solomon, E. I. J. Am. Chem. Soc. 1992, 114, 10421-10431.
- (9) Pirngruber, G. D.; Pieterse, J. A. Z. J. Catal. 2006, 237, 237-247.
- (10) Fu, C. M.; Korchak, V. N.; Hall, W. K. J. Catal. 1981, 68, 166-171.
- (11) Pirngruber, G. D.; Roy, P. K.; Prins, R. J. Catal. 2007, 246, 147-157.
- (12) Novakova, J.; Schwarze, M.; Sobalik, Z. Catal. Lett. 2005, 104, 157–162.
- (13) Corma, A.; Garcia, H. Chem. Rev. 2002, 102, 3837-3892.
- (14) Garcia, H.; Roth, H. D. Chem. Rev. 2002, 102, 3947-4007.
- (15) Yoon, K. B. Chem. Rev. 1993, 93, 321–339.

JA106283U