# MULTIPERCEPTRÓN Y EL ALGORITMO BACKPROPAGATION

## Multiperceptrón - Arquitectura



### Redes multicapa

 Con una sola neurona no se puede resolver el problema del XOR porque no es linealmente separable.



#### **XOR**



 $w_{11}=1$   $w_{12}=1$   $b_1=-0.5$  ;  $w_{21}=1$   $w_{22}=1$   $b_2=-1.5$  ;  $w_{31}=1$   $w_{32}=-1.5$   $b_3=-0.5$ 

#### **XOR**



| рl | <b>p2</b> | []<br>(or) | I2<br>(AND) | а |
|----|-----------|------------|-------------|---|
| 1  | 0         | 1          | 0           | 1 |
| 1  | 1         | 1          | 1           | 0 |
| 0  | 0         | 0          | 0           | 0 |
| 0  | 1         | 1          | 0           | 1 |



#### Neurona artificial



#### Perceptrón

$$f(x) = \begin{cases} 1 & si \ x \ge 0 \\ 0 & si \ x < 0 \end{cases}$$





 $lue{}$  Actualiza el vector W modificando el ángulo que forma con cada ejemplo  $X_k$ 

#### Combinador lineal

$$f(x) = x$$





 Utiliza descenso por gradiente para actualizar el vector de pesos.

### Neurona no lineal (logsig)

$$f(x) = \frac{1}{1 + e^{-x}}$$





 Utiliza descenso por gradiente para actualizar el vector de pesos.

## Neurona no lineal (tansig)

$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$



 Utiliza descenso por gradiente para actualizar el vector de pesos.

1

### Neurona no lineal (Relu)

$$f(x) = \max(0, x)$$



el vector de pesos.

1.5

#### Problema no separable linealmente



 Se busca obtener un algoritmo más general que permita integrar el aprendizaje entre las dos capas.

#### Animación de una RN

#### **Tinker With a Neural Network Right Here in Your Browser**



#### Problema no separable linealmente





□ ¿Cuál es el tamaño de cada capa?

#### Problema no separable linealmente

- La idea es aplicar un descenso en la dirección del gradiente sobre la superficie de error expresada como una función de los pesos.
- Deberán tenerse en cuenta los pesos de los arcos que unen AMBAS capas.
- Dado que el aprendizaje es supervisado, para los nodos de salida se conoce la respuesta esperada a cada entrada. Por lo tanto, puede aplicarse la regla delta vista para el Combinador Lineal y la Neurona No Lineal.

## Multiperceptrón - Arquitectura



## Algoritmo backpropagation

Dado el siguiente conjunto de vectores

$$\{(x_1, y_1), ..., (x_p, y_p)\}$$

que son ejemplos de correspondencia funcional

$$y = \phi(x)$$
  $x \in R^N, y \in R^M$ 

se busca entrenar la red para que aprenda una aproximación

$$y' = \phi'(x)$$

## Backpropagation. Capa Oculta

□ Ejemplo de entrada

$$x_p = (x_{p1}, x_{p2}, ..., x_{pN})^t$$

□ Entrada neta de la j-ésima neurona de la capa oculta

$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

□ Salida de la j-ésima neurona de la capa oculta

$$i_{pj} = f_j^h(neta_{pj}^h)$$

### Backpropagation. Capa de Salida

Entrada neta de la k-ésima neurona de la capa de salida

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

Salida de la k-ésima neurona de la capa de salida

$$o_{pk} = f_k^o(neta_{pk}^o)$$

□ Error en una sola unidad de la capa de salida

$$\delta_{pk} = (y_{pk} - o_{pk})$$

#### donde

- y es la salida deseada
- o es la salida real.
- p se refiere al p-ésimo vector de entrada
- □ k se refiere a la k-ésima unidad de salida

Se busca minimizar

$$E_p = \frac{1}{2} \sum_{k=1}^{M} \mathcal{S}_{pk}^2$$

$$E_{p} = \frac{1}{2} \sum_{k=1}^{M} (y_{pk} - o_{pk})^{2}$$

se tomará el valor negativo del gradiente

$$\frac{\partial E_{p}}{\partial w_{kj}^{o}} = -(y_{pk} - o_{pk}) \underbrace{\frac{\partial f_{k}^{o}}{\partial (neta_{pk}^{o})}}_{\partial (neta_{pk}^{o})} \underbrace{\frac{\partial (neta_{pk}^{o})}{\partial w_{kj}^{o}}}_{\partial w_{kj}^{o}} \underbrace{\frac{\partial (neta_{pk}^{o})}{\partial w_{kj}^{o}}}_{i=1} \underbrace{\frac{\partial (neta_{pk}^{o})}{\partial w_{kj}^{o}}}_{i$$

$$\frac{\partial E_p}{\partial w_{ki}^o} = -(y_{pk} - o_{pk}) f_k^o (neta_{pk}^o) i_{pj}$$

Salida de la neurona oculta j

Peso del arco que une la neurona j de la capa oculta y la neurona k de la capa de salida

Por lo tanto, para la capa de salida se tiene

$$\delta_{pk}^o = (y_{pk} - o_{pk}) f_k^o (neta_{pk}^o)$$

$$w_{kj}^{o}(t+1) = w_{kj}^{o}(t) + \alpha \delta_{pk}^{o} i_{pj}$$

 Corrección para los pesos de los arcos entre la capa de entrada y la oculta

$$\Delta_p w_{ji}^h(t) = \alpha \, \delta_{pj}^h x_{pi}$$

serán de la forma:

$$\delta_{pj}^{h} = f_{j}^{h}'(neta_{pj}^{h}) \sum_{k} \delta_{pk}^{o} w_{kj}^{o}$$

#### Backpropagation. Entrenamiento

- Aplicar un vector de entrada y calcular su salida.
- Calcular el error.
- Determinar en qué dirección (+ o -) debe cambiarse los pesos para reducir el error.
- Determinar la cantidad en que es preciso cambiar cada peso.
- Corregir los pesos de las conexiones.
- Repetir los pasos anteriores para todos los ejemplos hasta reducir el error a un valor aceptable.

#### Propagar el ejemplo de entrada a través de la capa oculta



$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

#### Propagar las salidas de la capa oculta hacia la capa de salida



#### □ Se obtienen los valores de salida



 Se calcula la corrección que se realizará al vector de pesos que llega a cada neurona de salida



 Se calcula la corrección que se realizará al vector de pesos que llega a cada neurona oculta



 Se calcula la corrección que se realizará al vector de pesos que llega a cada neurona de la capa oculta



#### □ Se actualizan ambas matrices de pesos



Aplicar el vector de entrada

$$x_p = (x_{p1}, x_{p2}, ..., x_{pN})^t$$

Calcular los valores netos de las unidades de la capa oculta

$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

Calcular las salidas de la capa oculta

$$i_{pj} = f_j^h(neta_{pj}^h)$$

Calcular los valores netos de las unidades de la capa de salida

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

Calcular las salidas

$$o_{pk} = f_k^o(neta_{pk}^o)$$

Calcular los términos de error para las unidades de salida

$$\delta_{pk}^o = (y_{pk} - o_{pk}) f_k^o'(neta_{pk}^o)$$

Calcular los términos de error para las unidades ocultas

$$\delta_{pj}^{h} = f_{j}^{h} (neta_{pj}^{h}) \sum_{k} \delta_{pk}^{o} w_{kj}^{o}$$

Se actualizan los pesos de la capa de salida

$$w_{kj}^{o}(t+1) = w_{kj}^{o}(t) + \alpha \, \delta_{pk}^{o} \, i_{pj}$$

Se actualizan los pesos de la capa oculta

$$w_{ji}^{h}(t+1) = w_{ji}^{h}(t) + \alpha \delta_{pj}^{h} x_{i}$$

Repetir hasta que el error resulte aceptable

### **XOR**



MLP\_XOR.ipynb

| pl | <b>p2</b> | []<br>(or) | I2<br>(AND) | a |
|----|-----------|------------|-------------|---|
| 1  | 0         | 1          | 0           | 1 |
| 1  | 1         | 1          | 1           | 0 |
| 0  | 0         | 0          | 0           | 0 |
| 0  | 1         | 1          | 0           | 1 |



### Problema del XOR

```
import numpy as np
from graficaMLP import dibuPtos y 2Rectas
from Funciones import evaluar, evaluarDerivada
X = np.array([ [-1, -1], [-1, 1], [1, -1], [1, 1]))
Y = np.array([-1, 1, 1, -1]).reshape(-1,1)
entradas = X.shape[1]
                          In [13]: X In [14]: Y
ocultas = 2
                                  Out[14]:
                           Out[13]:
salidas = Y.shape[1]
                           array([[-1, -1], array([[ 1],
                                [-1, 1], [-1],
                                [1, -1], [-1],
                               [ 1, 1]])
```

### Pesos iniciales

```
W1 = np.random.uniform(-0.5, 0.5, [ocultas, entradas])
b1 = np.random.uniform(-0.5, 0.5, [ocultas, 1])
W2 = np.random.uniform(-0.5, 0.5, [salidas, ocultas])
b2 = np.random.uniform(-0.5, 0.5, [salidas, 1])
       In [17]: W1
                                           In [18]: b1
       10ut[17]:
                                           Out[18]:
       array([[-0.09705477, -0.48156505], array([[ 0.28208473],
              [ 0.14081924, 0.17185576]])
                                                 [ 0.07973888]])
       In [19]: W2
       Out[19]: array([[-0.48098277, 0.45515249]])
       iIn [20]: b2
       Out[20]: array([[ 0.15708682]])
```

### Graficar W1 y b1

ph = dibuPtos\_y\_2Rectas(X,Y, W1, b1, ph)



```
alfa = 0.15
CotaError = 0.001
MAX ITERA = 300
ite = 0
while ( abs(ErrorAVG-ErrorAnt)>Cota) and ( ite < MAX ITERA ):</pre>
    for p in range(len(P)): #para cada ejemplo
        # propagar el ejemplo hacia adelante
        # calcular los errores en ambas capas
        # corregir los todos los pesos
    # Recalcular AVGError
    ite = ite + 1
                                                    Ver
    print(ite, AVGError)
                                               MLP XOR.ipynb
    # Graficar las rectas
```

### Ejemplo: Clasificación de flores de Iris

| Id  | sepallength | sepalwidth | petallength | petalwidth | class           |
|-----|-------------|------------|-------------|------------|-----------------|
| 1   | 5,1         | 3,5        | 1,4         | 0,2        | lris-setosa     |
| 2   | 4,9         | 3,0        | 1,4         | 0,2        | lris-setosa     |
| ••• | •••         | •••        | •••         | •••        | • • •           |
| 95  | 5,6         | 2,7        | 4,2         | 1,3        | Iris-versicolor |
| 96  | 5,7         | 3,0        | 4,2         | 1,2        | Iris-versicolor |
| 97  | 5,7         | 2,9        | 4,2         | 1,3        | Iris-versicolor |
| ••• | •••         | • • •      | •••         | •••        | • • •           |
| 149 | 6,2         | 3,4        | 5,4         | 2,3        | Iris-virginica  |
| 150 | 5,9         | 3,0        | 5,1         | 1,8        | Iris-virginica  |

https://archive.ics.uci.edu/ml/datasets/lris

### Ejemplo: Clasificación de flores de Iris











Ingresar el primer ejemplo a la red y calcular su salida

### Calculando la salida de la capa oculta



Salida de la capa oculta

netasH = W1 \* x.T + b1   

$$x^{T}$$

$$[[0.15, -0.13, 0.23, -0.45], \\ [-0.29, -0.41, -0.19, 0.37]]$$
\* 
$$[-1.38], \\ [-1.31]]$$
\* 
$$[-1.38], \\ [-1.31]]$$
\* 
$$[-1.31]]$$
\* 
$$[-0.10]]$$
\* 
$$[-0.10]]$$
\* 
$$[-0.10]]$$
\* 
$$[-0.1997]]$$
\* 
$$[-0.1997]$$
\* 
$$[-0.1997]$$
\* 
$$[-0.1997]$$

$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

### Calculando la salida de la capa oculta



Salida de la capa oculta



$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

### Calculando la salida de la red (capa de salida)

# X [[-1.73,-0.05,-1.38,-1.31], [[1,0,0], [-0.37,-1.62, 0.22, 0.18], [0,1,0], [1.11,-0.05, 0.93, 1.54], [0,0,1], [-0.99, 0.39,-1.44,-1.31], [1,0,0], [1.73, 1.29, 1.46, 1.81]]

Capa de entrada
Capa de salida
oculta

Iris-Setosa
petallength
petalwidth

Iris-Virginica

Salida de red

$$netas0 = W2 * salidasH + b2$$

**W2** 

#### salidasH

**b2** 

FunH='tanh' ; FunO='sigmoid'

#### netas0

$$= \begin{bmatrix} [ 0.62780411] \\ [-0.24167055] \\ [-0.81704249] \end{bmatrix}$$

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

$$o_{pk} = f_k^o(neta_{pk}^o)$$

### Calculando la salida de la red (capa de salida)



**b2** 

Salida de red

$$netas0 = W2 * salidasH + b2$$

**W2** 

#### salidasH

FunH='tanh' ; FunO='sigmoid'

#### netas0

$$= \begin{bmatrix} [ 0.62780411] \\ [-0.24167055] \\ [-0.81704249] \end{bmatrix}$$

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

$$o_{pk} = f_k^o(neta_{pk}^o)$$

### Error de la capa de salida

Error en la respuesta de la red para este ejemplo

```
ErrorSalida = y.T - salidasO
```



FunH='tanh' ; FunO='sigmoid'



$$\delta_{pk}^o = (y_{pk} - o_{pk}) f_k^o'(neta_{pk}^o)$$

### [[-1.73, -0.05, -1.38, -1.31], [[1,0,0],[-0.37, -1.62, 0.22, 0.18], [0,1,0],[1.11,-0.05, 0.93, 1.54], [0,0,1],[-0.99, 0.39, -1.44, -1.31], [1,0,0],[ 1.73, 1.29, 1.46, 1.81] [0,0,1]]

#### Factores para corregir W1 y b1

```
(1-salidasH**2)
  deltaH = deriv FunH .* (W2.T @ deltaO)
        deltaH =
         [[-0.54976963]
  deltaH =
          [-0.0625583411
```



FunH='tanh' ; FunO='sigmoid'

$$\delta_{pj}^{h} = f_{j}^{h} (neta_{pj}^{h}) \sum_{k} \delta_{pk}^{o} w_{kj}^{o}$$

#### Capa de entrada Capa de Capa salida oculta sepallength [[-1.73, -0.05, -1.38, -1.31], [[1,0,0],Iris-Setosa [-0.37, -1.62, 0.22, 0.18], [0,1,0],sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1],Iris-Versicolor petallength [-0.99, 0.39, -1.44, -1.31], [1,0,0],[ 1.73, 1.29, 1.46, 1.81]] [0,0,1]] Iris-Virginica petalwidth

#### Factores para corregir W1 y b1

deltaH =

[[-0.54976963]

[-0.0625583411

Note que las derivadas de ambas funciones de activación sigmoides (derivada\_FunO y deriv\_FunH) son siempre positivas y actúan como factor de escala

### Corrigiendo de los pesos



#### Modificación de W2 y b2

#### MLP\_IRIS\_algBPN.ipynb

### Corrigiendo de los pesos

#### Capa de entrada Capa de X Capa salida oculta sepallength [[-1.73, -0.05, -1.38, -1.31], [[1,0,0],Iris-Setosa [-0.37, -1.62, 0.22, 0.18], [0,1,0],sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1],Iris-Versicolor petallength [-0.99, 0.39, -1.44, -1.31], [1,0,0],[ 1.73, 1.29, 1.46, 1.81]] [0,0,1]] Iris-Virginica petalwidth Modificación de W1 y b1 W1 = W1 + alfa \* deltaH @ xFunH='tanh' ; FunO='sigmoid' $W1 = \begin{bmatrix} [0.15, -0.13, 0.23, -0.45], \\ [-0.29, -0.41, -0.19, 0.37] \end{bmatrix} + alfa * \begin{bmatrix} [-0.54976963] \\ [-0.06255834] \end{bmatrix} @ [[-1.73, -0.05, -1.38, -1.31]$ $\mathbf{W1} = \begin{bmatrix} [0.25 & -0.13 & 0.31 & -0.38] \\ [-0.28 & -0.41 & -0.18 & 0.38] \end{bmatrix}$

b1 = b1 + alfa \* deltaH =  $\begin{bmatrix} [-0.45] \\ [-0.10] \end{bmatrix}$  + alfa \*  $\begin{bmatrix} [-0.54976963] \\ [-0.06255834] \end{bmatrix}$  =  $\begin{bmatrix} [-0.5] \\ [-0.11] \end{bmatrix}$ 

# Si se ingresa el mismo ejemplo luego de modificar los pesos de la red ...

```
1 netasH = W1 @ xi.T + b1
 2 |salidasH = 2.0/(1+np.exp(-netasH))-1
 3 netas0 = W2 @ salidasH + b2
 4 salidas0 = 1.0/(1+np.exp(-netas0))
   print("salida0 = \n", salidas0)
 6 ErrorSalidaNew = yi.T-salidasO
    print("ErrorSalida = \n", ErrorSalidaNew)
salida0 =
 [[0.82694546]
 [0.41887838]
 [0.21955387]]
ErrorSalida =
 [[ 0.17305454]
 [-0.41887838]
 [-0.21955387]]
 1 print("Error inicial = ", np.sum(ErrorSalida**2))
 2 print("Error luego de la correccion = ", np.sum(ErrorSalidaNew**2))
Frror inicial = 0.40847570307169573
Error luego de la correccion = 0.25361086753371476
```

### Antes de modificar los pesos de la red

```
salida0 =
  [[0.65199139]
  [0.43987471]
  [0.30639182]]
  ErrorSalida =
  [[ 0.34800861]
  [-0.43987471]
  [-0.30639182]]
```

Ver MLP\_IRIS.ipynb





Ingresar el primer ejemplo a la red y calcular su salida

### Calculando la salida de la capa oculta

**W1** 

#### Capa de entrada Capa de X Capa salida oculta sepallength $[[-1.73, -0.05, -1.38, -1.31], \leftarrow$ [[1,0,0], Iris-Setosa [-0.37, -1.62, 0.22, 0.18], [0,1,0],sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1],Iris-Versicolor [1,0,0], petallength [-0.99, 0.39, -1.44, -1.31],[ 1.73, 1.29, 1.46, 1.81]] [0,0,1]] Iris-Virginica petalwidth Salida de la capa oculta FunH='tanh' ; FunO='softmax' $netasH = W1 * x^T + b1$ $\mathbf{x}^{\mathbf{T}}$ [[-1.73], $[[0.15, -0.13, 0.23, -0.45], \star [-0.05],$ [[-0.45],[[-0.4309][-1.38], [-0.29, -0.41, -0.19, 0.37]][-0.10]][ 0.1997]] [-1.31]

**b1** 

### Calculando la salida de la capa oculta

#### Capa de entrada Capa de X Capa salida oculta sepallength $[[-1.73, -0.05, -1.38, -1.31], \leftarrow$ [[1,0,0], Iris-Setosa [-0.37, -1.62, 0.22, 0.18], [0,1,0],sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1],Iris-Versicolor petallength [-0.99, 0.39, -1.44, -1.31], [1,0,0],[ 1.73, 1.29, 1.46, 1.81]] [0,0,11] Iris-Virginica petalwidth Salida de la capa oculta FunH='tanh' : FunO='softmax' netasH = W1 \* x.T + b1 $\mathbf{x}^{\mathbf{T}}$ [[-1.73],[[ 0.15, -0.13, 0.23, -0.45], \* [-0.05], + [[-0.45],[[-0.4309] [-1.38], [-0.29, -0.41, -0.19, 0.37]][-0.10]][ 0.1997]]

[-1.31]

**b1** 

salidasH = 2 / 
$$(1+np.exp(-netasH)) - 1 = [[-0.21217712] [0.09951948]]$$

**W1** 

### Calculando la salida de la red (capa de salida)

#### Capa de entrada Capa de X Capa salida oculta sepallength [[-1.73, -0.05, -1.38, -1.31],[[1,0,0], Iris-Setosa [-0.37, -1.62, 0.22, 0.18],[0,1,0], sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1],Iris-Versicolor petallength [-0.99, 0.39, -1.44, -1.31],[1,0,0], [ 1.73, 1.29, 1.46, 1.81]] [0,0,1]] Iris-Virginica petalwidth Salida de red FunH='tanh' : FunO='softmax'

$$netas0 = W2 * salidasH + b2$$

#### [[-4.79, -0.99], [ 0.38, 0.09], [ 2.40, -0.38]]

**W2** 

#### salidasH

netas0

$$= \begin{bmatrix} [ 0.62780411] \\ [-0.24167055] \\ [-0.81704249] \end{bmatrix}$$

### Calculando la salida de la red (capa de salida)



[0.14247058]]

### Error de la capa de salida

Error en la respuesta de la red para este ejemplo



$$C = -\sum_{k=1}^{3} y_k \ln \hat{y}_k$$

$$C = -\ln \hat{y}_s$$



#### Factores para corregir W2 y b2

$$\frac{\partial C}{\partial w_{jk}} = -(y_j - \hat{y}_j) x_k$$
$$\frac{\partial C}{\partial h_i} = -(y_j - \hat{y}_j)$$

FunH='tanh' : FunO='softmax'

#### Capa de entrada Capa de X Capa salida oculta sepallength [[-1.73, -0.05, -1.38, -1.31], [[1,0,0],Iris-Setosa [-0.37, -1.62, 0.22, 0.18], [0,1,0],sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1],Iris-Versicolor petallength [-0.99, 0.39, -1.44, -1.31], [1,0,0],[ 1.73, 1.29, 1.46, 1.81] [0,0,1]] Iris-Virginica petalwidth

#### Factores para corregir W1 y b1

```
deltaH = \begin{bmatrix} [-2.22876926] \\ [-0.35688272] \end{bmatrix}
```

### Corrigiendo de los pesos



#### Modificación de W2 y b2

### Corrigiendo de los pesos

#### Capa de entrada Capa de X Capa salida oculta sepallength [[-1.73, -0.05, -1.38, -1.31], [[1,0,0],Iris-Setosa [-0.37, -1.62, 0.22, 0.18], [0,1,0],sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1],Iris-Versicolor petallength [-0.99, 0.39, -1.44, -1.31], [1,0,0],[ 1.73, 1.29, 1.46, 1.81]] [0,0,1]] Iris-Virginica petalwidth Modificación de W1 y b1 W1 = W1 + alfa \* deltaH @ xFunH='tanh' ; FunO='softmax' $\mathbf{W1} = \begin{bmatrix} [ \ 0.15, -0.13, 0.23, -0.45 ], \\ [ -0.29, -0.41, -0.19, 0.37 ] \end{bmatrix} + \mathbf{alfa} * \begin{bmatrix} [ -2.22876926 ] \\ [ -0.35688272 ] \end{bmatrix} @ [ [ -1.73, -0.05, -1.38, -1.31 ] \\ [ -0.35688272 ] \end{bmatrix}$ $\mathbf{W1} = \begin{bmatrix} [ 0.54 & -0.12 & 0.54 & -0.16 ] \\ [ -0.23 & -0.41 & -0.14 & 0.42 ] \end{bmatrix}$ b1 = b1 + alfa \* deltaH = $\begin{bmatrix} [-0.45] \\ [-0.10] \end{bmatrix}$ + alfa \* $\begin{bmatrix} [-2.22876926] \\ [-0.35688272] \end{bmatrix}$ = $\begin{bmatrix} [-0.67] \\ [-0.14] \end{bmatrix}$

# Si se ingresa el mismo ejemplo luego de modificar los pesos de la red ...

```
2 salidasH = 2.0/(1+np.exp(-netasH))-1
 3 netas0 = W2 @ salidasH + b2
 4 | salidas0 = np.exp(netas0)/(np.sum(np.exp(netas0)))
 5 print("salida0 = \n", salidas0)
 6 ErrorSalidaNew = -yi.T*np.log(salidasO+EPS)
 7 print("ErrorSalida = \n", ErrorSalidaNew)
salida0 =
[[0.9799741]
[0.01682763]
 [0.00319826]]
ErrorSalida =
[[ 0.02022913]
[-0. ]
 [-0.
 1 print("Error inicial = ", np.max(ErrorSalida))
 2 print("Error luego de la correccion = ", np.max(ErrorSalidaNew))
Error inicial = 0.5037731768932103
Error luego de la correccion = 0.02022913433699978
```

1 netasH = W1 @ xi.T + b1

```
Antes de modificar los pesos de la red salida0 = [[0.60424642] [0.253283 ] [0.14247058]] ErrorSalida = [[ 0.50377318] [-0. ] [-0. ]]
```

```
Ver
MLP_IRIS_SoftMax.ipynb
```

### Multiperceptrón en Python

```
from sklearn.neural network import MLPClassifier
clf = MLPClassifier( solver='sgd',
                     learning rate init=0.15,
                     hidden layer sizes=(5),
                     max iter=700, verbose=False,
                     tol=1.0e-09, activation = 'tanh')
clf.fit(X train,T train)
y pred= clf.predict(X train)
```

### Matriz de Confusión

|              | Predice Clase 1 | Predice Clase 2 | Recall          |
|--------------|-----------------|-----------------|-----------------|
| True Clase 1 | A               | В               | A/(A+B)         |
| True Clase 2 | С               | D               | D/(C+D)         |
| Precision    | A/(A+C)         | D/(B+D)         | (A+D)/(A+B+C+D) |

accuracy

- Los aciertos del modelo están sobre la diagonal de la matriz.
- □ **Precision**: la proporción de predicciones correctas sobre una clase.
- Recall: la proporción de ejemplos de una clase que son correctamente clasificados.
- Accuracy: la performance general del modelo, sobre todas las clases. Es la cantidad de aciertos sobre el total de ejemplos.

# Sklearn.metrics.accuracy\_score

```
from sklearn import metrics

Y_train = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

Y_pred = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]

aciertos = metrics.accuracy_score(Y_train,Y_pred)

print("%% accuracy = %.3f" % aciertos)
```

# Sklearn.metrics.accuracy\_score

```
from sklearn import metrics

Y_train = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

Y_pred = [0, 2 1, 3, 0, 1, 2, 0) 0, 1, 2, 3]

Rtas esperadas

Rtas esperadas

Rtas esperadas

Rtas esperadas

Print("% accuracy = 8.3f" % aciertos)
```

- De los 12 valores sólo 9 fueron identificados correctamente.
- $\square$  La tasa de aciertos es 9/12 = 0.75

```
Y \text{ train} = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_{pred} = [0,(2) 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
MM = metrics.confusion matrix(Y train,Y pred)
print ("Matriz de confusión: \n%s" % MM)
                  Matriz de confusión:
               0 [[3 0 0 0]
                                            Esperaba obtener 1
                                           como respuesta pero
                                            la red respondió 2
                  [1 0 0 2]]
                    PREDICE
```

```
Y \text{ train} = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_pred = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
MM = metrics.confusion matrix(Y_train,Y_pred)
print ("Matriz de confusión: \n%s" % MM)
                 Matriz de confusión:
               0 [[3 0 0 0]
                                          La respuesta correcta
              1 [0 2 1 0]
                                            es 2 pero la red
                                              respondió 1
                   [1 0 0 2]]
                    PREDICE
```

```
Y \text{ train} = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_{pred} = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
MM = metrics.confusion matrix(Y train,Y pred)
print ("Matriz de confusión: \n%s" % MM)
                 Matriz de confusión:
               0 [[3 0 0 0]
                                          Esperaba un 3 pero la
                                            red respondió 0
               2 [0 1 2 0]
                   (1)0 0 2]]
                    PREDICE
```

```
Y \text{ train} = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y \text{ pred} = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
MM = metrics.confusion matrix(Y train,Y pred)
print("Matriz de confusión:\n%s" % MM)
                 Matriz de confusión:
               0 [[3 0 0 0]
                                           Los valores fuera de
              1 [0 2 1 0]
                                           la diagonal principal
               2 [0 1 2 0]
                                              son errores
                  [1 0 0 2]]
                    0 1 2 3
                    PREDICE
```

#### Sklearn.metrics.classification\_report

```
Y_train = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_pred = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
report = metrics.classification_report(Y_train,Y_pred)
print("Resultado de la clasificación:\n%s" % report)
Resultado de la clasificación:
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.75      | 1.00   | 0.86     | 3       |
| 1            | 0.67      | 0.67   | 0.67     | 3       |
| 2            | 0.67      | 0.67   | 0.67     | 3       |
| 3            | 1.00      | 0.67   | 0.80     | 3       |
| accuracy     |           |        | 0.75     | 12      |
| macro avg    | 0.77      | 0.75   | 0.75     | 12      |
| weighted avg | 0.77      | 0.75   | 0.75     | 12      |

Matriz de confusión: [[3 0 0 0] [0 2 1 0] [0 1 2 0] [1 0 0 2]]

#### Sklearn.metrics.classification\_report

```
Y_train = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_pred = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
report = metrics.classification_report(Y_train,Y_pred)
print("Resultado de la clasificación:\n%s" % report)
```

| Nesurtado de | Ia CIASILICAC | . TOIL. |          |         |
|--------------|---------------|---------|----------|---------|
|              | precision     | recall  | f1-score | support |
| 0            | 0.75          | 1.00    | 0.86     | 3       |
| 1            | 0.67          | 0.67    | 0.67     | 3       |
| 2            | 0.67          | 0.67    | 0.67     | 3       |
| 3            | 1.00          | 0.67    | 0.80     | 3       |
|              |               |         |          |         |
| accuracy     |               |         | 0.75     | 12      |
| macro avg    | 0.77          | 0.75    | 0.75     | 12      |
| weighted avg | 0.77          | 0.75    | 0.75     | 12      |

Resultado de la clasificación:

#### F1-score

$$F1 = 2 * \frac{precision * recall}{precisión + recall}$$

# Ejemplo: Clasificación de flores de Iris



### Reconocedor de dígitos escritos a mano

Se desea entrenar un multiperceptrón para reconocer dígitos escritos a mano. Para ello se dispone de los mapas de bits correspondientes a 3823 dígitos escritos a mano por 30 personas diferentes en el archivo "optdigits\_train.csv".

 El desempeño de la red será probado con los dígitos del archivo "optdigits\_test.csv" escritos por otras 13 personas.

# "optdigits\_train.csv" y "optdigits\_test.csv"

□ Cada dígito está representado por una matriz numérica de 8x8





# "optdigits\_train.csv" y "optdigits\_test.csv"

□ Cada dígito está representado por una matriz numérica de 8x8





# RN para reconocer dígitos manuscritos

```
In [90]: print("ite = %d %% aciertos X_train : %.3f" % (ite,
metrics.accuracy_score(Y_train,Y_pred)))
ite = 200 % aciertos X train : 0.982
In [91]: MM = metrics.confusion_matrix(Y_train,Y_pred)
   ...: print("Matriz de confusión TRAIN:\n%s" % MM)
                           im_32x32_a_8x8.ipynb
Matriz de confusión TRAIN:
[[375
                                    0]
              0 0 0 0 0 0 0]
0 0 0 0 0 0 0]
80 0 2 0 0 0 0]
   7 382
       0 378
          0 380
       0 0 0 383 0 1 0 0 0]
                         0 0 0 0]
       0 0 1 0 369
       2 0 0 0 0 373 0 0 0]
       0 0 1 0 0 0 386
                                    0]
     2 0 0 0 0 0 361
                                    0]
                                0 366]]
```

Entrenamiento muy lento ¿Se puede acelerar?

MLP\_MNIST\_8x8.ipynb