

X Bit Labs IN - Software Training Institute

code.xbitlabs.in - Free Coding Tutorials

Training sessions

Master Tomorrow's skill with Hands-On Learning - with www.xbitlabs.in

1

Date :	Oct 14 2024	Board :	CBSE
Class:	12	Session #:	7
Subject :	Mathematics	Assignment # :	VaA4
Topic :	Vector Algebra	Subtopic(s) :	Vector (or cross) product of two vectors, Properties (Right-hand rule, Distributive
Lecture #:	4		Law, Multiplication by Scalar)

Vector (or cross) product of two vectors:

The **vector product** (or **cross product**) of two vectors is a mathematical operation that results in a third vector that is perpendicular to both of the original vectors. This operation is defined only in three-dimensional space.

Formula:

If you have two vectors **A** and **B** in 3D space:

- A = $\langle A_x, A_y, A_z \rangle$
- B = $\langle B_x, B_y, B_z \rangle$

The cross product $A \times B$ is given by:

$$A \times B = \langle A_y B_z - A_z B_y, A_z B_x - A_x B_z, A_x B_y - A_y B_x \rangle$$

In determinant form, the cross product can be represented as:

$$A imes B = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ A_x & A_y & A_z \ B_x & B_y & B_z \end{bmatrix}$$

Where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit vectors in the x, y, and z directions, respectively.

Properties:

- 1. Perpendicular Vector: The resulting vector is perpendicular to both A and B.
- 2. Magnitude: The magnitude of the cross product is:

$$|A \times B| = |A||B|\sin\theta$$

Where θ is the angle between the vectors **A** and **B**.

- 3. **Right-Hand Rule**: The direction of the resulting vector follows the right-hand rule. If you curl the fingers of your right hand from vector **A** to vector **B**, your thumb points in the direction of the cross product.
- 4. Non-Commutativity: The cross product is not commutative:

$$A \times B \neq B \times A$$

In fact,
$$A imes B = -(B imes A)$$
.

5. **Zero Vector**: If the vectors are parallel or anti-parallel (i.e., $\theta=0^\circ$ or 180°), the cross product will be a zero vector.

6. Distributive law:

$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) + (\mathbf{A} \times \mathbf{C})$$

Note: Don't change the order of vectors in vector products.

Recall that,

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$$

$$\hat{i} \times \hat{j} = \hat{k}, \quad \hat{j} \times \hat{k} = \hat{i}, \quad \hat{k} \times \hat{i} = \hat{j}$$

and

$$\hat{j} \times \hat{i} = -\hat{k}$$
, $\hat{k} \times \hat{j} = -\hat{i}$ and $\hat{i} \times \hat{k} = -\hat{j}$.

7) Multiplication by Scalar:

$$\lambda(\mathbf{A} \times \mathbf{B}) = (\lambda \mathbf{A}) \times \mathbf{B} = \mathbf{A} \times (\lambda \mathbf{B})$$

Example:

Let
$$\mathbf{A}=\langle 1,2,3 \rangle$$
, $\mathbf{B}=\langle 4,5,6 \rangle$, and $\lambda=3$.

1. First, compute the cross product $\mathbf{A} \times \mathbf{B}$:

$$\mathbf{A} \times \mathbf{B} = \langle 2 \times 6 - 3 \times 5, 3 \times 4 - 1 \times 6, 1 \times 5 - 2 \times 4 \rangle$$
$$\mathbf{A} \times \mathbf{B} = \langle 12 - 15, 12 - 6, 5 - 8 \rangle = \langle -3, 6, -3 \rangle$$

2. Now multiply the result by the scalar λ :

$$\lambda(\mathbf{A} \times \mathbf{B}) = 3 \times \langle -3, 6, -3 \rangle = \langle -9, 18, -9 \rangle$$

Alternatively, you could first multiply one of the vectors by the scalar λ and then compute the cross product, and you would obtain the same result:

$$\begin{aligned} (3\mathbf{A}) \times \mathbf{B} &= \langle 3 \times 1, 3 \times 2, 3 \times 3 \rangle \times \mathbf{B} = \langle 3, 6, 9 \rangle \times \langle 4, 5, 6 \rangle \\ &= \langle 6 \times 6 - 9 \times 5, 9 \times 4 - 3 \times 6, 3 \times 5 - 6 \times 4 \rangle = \langle 36 - 45, 36 - 18, 15 - 24 \rangle = \langle -9, 18, -9 \rangle \end{aligned}$$

In both cases, you get the same final result.

Vector Algebra - Lecture board 4:

$$\vec{a} = a_1 \hat{i} + b_1 \hat{j}$$

$$\vec{b} = a_2 \hat{i} + b_2 \hat{j}$$

$$\vec{a} \times \vec{b} = (a_1 \hat{i} + b_1 \hat{j}) \times (a_2 \hat{i} + b_2 \hat{j})$$

$$a_1 \hat{i} \times (a_2 \hat{i} + b_2 \hat{j}) + b_1 \hat{j} \times (a_2 \hat{i} + b_2 \hat{j})$$

$$(a_1 \hat{i} \times a_2 \hat{i}) + (a_1 \hat{i} \times b_2 \hat{j})$$

$$+ (b_1 \hat{j} \times a_2 \hat{i}) + (b_1 \hat{j} \times b_2 \hat{j})$$

$$+ (b_1 \hat{j} \times a_2 \hat{i}) + (b_1 \hat{j} \times b_2 \hat{j})$$

$$\Rightarrow 0 + \beta / b_2 \hat{k} + (b_1 / a_2 / a_1 \hat{k} + b_2 \hat{k}) + 0$$

$$\vec{R} = a_1 \hat{i} + b_1 \hat{j} + c_1 \hat{k}$$

$$\vec{b} = a_2 \hat{i} + b_2 \hat{j} + c_2 \hat{k}$$

$$\hat{i} \hat{j} \hat{k} \rightarrow \hat{i} \hat{j} \hat{k}$$

$$\vec{a}_1 \rightarrow a_1 \rightarrow a_1 \rightarrow a_1 \rightarrow a_2 \rightarrow a$$

Now complete this assignment #VaA4:

#VaA4:

Example 22 Find $|\vec{a} \times \vec{b}|$, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$

Example 23 Find a unit vector perpendicular to each of the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

Example 24 Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its vertices.

Example 25 Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

- **1.** Find $|\vec{a} \times \vec{b}|$, if $\vec{a} = \hat{i} 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} 2\hat{j} + 2\hat{k}$.
- 2. Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$.
- 3. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the components of \vec{a} .
- 4. Show that

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

- 5. Find λ and μ if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}$.
- **6.** Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ?
- 7. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then show that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.
- **8.** If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$. Is the converse true? Justify your answer with an example.
- 9. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).

- 10. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} 7\hat{j} + \hat{k}$.
- 11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is
 - (A) $\pi/6$
- (B) $\pi/4$
- (C) $\pi/3$
- (D) $\pi/2$
- 12. Area of a rectangle having vertices A, B, C and D with position vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} \frac{1}{2}\hat{j} + 4\hat{k}$ and $-\hat{i} \frac{1}{2}\hat{j} + 4\hat{k}$, respectively is
 - (A) $\frac{1}{2}$

(B) 1

(C) 2

(D) 4

Miscellaneous Examples

Example 26 Write all the unit vectors in XY-plane.

Example 27 If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between \overline{AB} and \overline{CD} . Deduce that \overline{AB} and \overline{CD} are collinear.

Example 28 Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$.

Example 29 Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$.

Example 30 If with reference to the right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} and \hat{k} , $\vec{\alpha} = 3\hat{i} - \hat{j}$, $\vec{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.

Miscellaneous Exercise

- 1. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.
- 2. Find the scalar components and magnitude of the vector joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$.
- **3.** A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.
- 4. If $\vec{a} = \vec{b} + \vec{c}$, then is it true that $|\vec{a}| = |\vec{b}| + |\vec{c}|$? Justify your answer.
- 5. Find the value of x for which $x(\hat{i} + \hat{j} + \hat{k})$ is a unit vector.
- **6.** Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$.
- 7. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\vec{a} \vec{b} + 3\vec{c}$.
- 8. Show that the points A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7) are collinear, and find the ratio in which B divides AC.
- 9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2\vec{a} + \vec{b})$ and $(\vec{a} 3\vec{b})$ externally in the ratio 1:2. Also, show that P is the mid point of the line segment RQ.

15. Prove that $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$, if and only if \vec{a} , \vec{b} are perpendicular, given $\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}.$

Choose the correct answer in Exercises 16 to 19.

16. If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} \ge 0$ only when

(A) $0 < \theta < \frac{\pi}{2}$

(B) $0 \le \theta \le \frac{\pi}{2}$

(C) $0 < \theta < \pi$

(D) $0 \le \theta \le \pi$

17. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if

(A) $\theta = \frac{\pi}{4}$ (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$ 18. The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is (A) 0 (B) -1 (C) 1 (D) 3

19. If θ is the angle between any two vectors \vec{a} and \vec{b} , then $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π

- (A) 0

The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal, Also, find its area.

Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\pm \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

12. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and $\vec{c} \cdot \vec{d} = 15$.

13. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

14. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{c} \cdot \vec{d} = 15$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

End