June 2006 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1(a)	Indicates max / median / min / upper quartile/ lower quartile (2 or more) Indicates outliers (or equivalent description) Illustrates skewness (or equivalent description e.g. shape) Any 3 rows Allows comparisons Indicates range / IQR / spread	
(b)(i) (ii)	37 (minutes) Upper quartile or Q ₃ or third quartile or 75 th percentile or P ₇₅	B1 B1 (2)
(c)	Outlier's How to calculate correctly 'Observations that are very different from the other observations and need to be treated with caution' These two children probably walked / took a lot longer Any 2	B1 B1 (2)
(d)	20 30 40 50 60 Time (School B)	
	Box & median & whiskers Sensible scale 30,37,50 25,55	M1 B1 B1 B1 (4)
(e)	Children from school A generally took less time 50% of B ≤ 37 mins, 75% of A < 37 mins (similarly for 30) Median/Q1/Q3 of A < median/Q1/Q3 of B (1 or more) A has outliers, (B does not) Both positive skew IQR of A <iqr a="" b,="" of="" range="">range of B</iqr>	B1 B1 B1 B1
		Total 15

Question Number	Scheme		Marks
2. (a)	P(both longer than 24.5)= $\frac{11}{55} \times \frac{10}{54} = \frac{1}{27}$ or	0.037 or 0.037 2 fracs x w/o rep. awrt 0.037	M1A1
(b)	Estimate of mean time spent on their converge $\overline{x} = \frac{1060}{55} = 19\frac{3}{11}$ or $19.\dot{2}\dot{7}$ or 19.3	rsations is 1060/total, awrt 19.3 or 19mins 16s	(2) M1A1
	33 11		(2)
(c)	$\frac{1060 + \sum fy}{80} = 21$	21x80=1680	B1
	$\sum fy = 620$	Subtracting 'their 1060'	M1
	$\vec{y} = \frac{620}{25} = 24.8$	Dividing their 620 by 25	M1A1
(d)	Increase in mean value. Length of conversations increased considerably		
		context - ft only from comment above	B1 ∫ (2)
			Total 10
3. (a)	$\sum x = \sum t = 337.1$, $\sum y = 16.28$	Can be implied	B1,B1
	$S_{xy} = 757.467 - \frac{337.1 \times 16.28}{8} = 71.4685$	either method, awrt 71.5	M1A1
	$S_{xx} = 15965.01 - \frac{337.1^2}{8} = 1760.45875$	awrt 1760	A1
(b)	$b = \frac{71.4685}{1760.45875} = 0.04059652$	/ correct way up, awrt 0.0406	(5) M1A1
	$a = \frac{16.28}{8} - b \times \frac{337.1}{8} = 0.324364$	using correct formula, awrt 0.324	M1A1
	y = 0.324 + 0.0406x 3 sf or better	but award for copying from above	A1∫ (5)
(c)	At $t = 40$, $x = 40$, $y = 1.948$, $l = 2461.948$	sub x=40, awrt 1.95, awrt 2461.95	M1A1A1∫
(d)	l - 2460 = 0.324 + 0.0406t $l = 2460.324 + 0.0406t$	LHS required awrt 2460.32, f.t. their 0.0406, / and t	(3) M1 A1
(e)	At $t = 90$, $l = 2463.978$	awrt 2464	(2) B1
(f)	90°C outside range of data unlikely to be reliable		(1) B1 B1 (2)
			Total 18

4 (a)	E(X) = 3; $Var(X) = \frac{25-1}{12} = 2$ **AG**		В1
	Var(X) = $1^2 \times \frac{1}{5} + 2^2 \times \frac{1}{5} + 3^2 \times \frac{1}{5} \dots - 3^2 = 11$ Accept (55/5)-9 as minimum evidence.	-9=2 ** AG **	M1A1 (3)
(b)	E(3X-2) = 3E(X) - 2 = 7		M1A1∫
(c)	$Var(4-3x) = 3^2 Var(X) = 18$		(2) M1A1 (2) Total 7
5(a)	2 separate sketches OK. Bell Shape 1.78 & 0.2 1.65 & 0.3 Accept clear alternatives to 0.3: 0.7/0.5/0.2		
(b)	$\frac{1.78 - \mu}{\sigma} = 0.8416 \Rightarrow 1.78 - \mu = 0.8416\sigma$	either for method	(3) M1
,-,	σ	0.8416	B1
	$\frac{1.65 - \mu}{\sigma} = -0.5244 \Rightarrow 1.65 - \mu = -0.5244\sigma$	(-)0.5244	B1
	Solving gives $\mu = 1.70, \sigma = 0.095$	N.B. awrt 0.84, 0.52 B1B0 awrt 1.7, 0.095 cao	M1A1A1 (6)
(c)	P(height ≥ 1.74)=1-P(height<1.74)	'one minus'	M1
	$=1-P\left(Z<\frac{1.74-1.70}{0.095}\right)$	standardise with their mu and sigma	M1
	= 1 - P(Z < 0.42) = 0.3372	awrt 0.337	A1 (3) Total 12

