Introduction to Algorithms Lecture 11 Minimum Spanning Trees

Xue Chen
xuechen1989@ustc.edu.cn
2025 spring in

Outline

- Introduction
- 2 Basic Properties
- 3 Prim's Algorithm
- 4 Kruskal's Algorithm
- 5 Data Structures for Disjoint Sets

Spanning trees are fundamental objects in graph theory

- Onnectivity: DFS/BFS trees
- Single Source Shortest Paths Tree
- Today: Minimum Spanning Trees
- More: trees for cut, ...

Problem Description

Minimum Spanning Tree (MST)

Give a undirected & weighted graph G, define the weight of a tree T to be the sum of all weights on its edges. The goal is to find a Tree with minimum weight.

- 1 Network Design: Traffic, eletrical, ...
- Algorithm Design: traveling salesman prob, Steiner tree, ...

Outline

- 1 Introduction
- 2 Basic Properties
- 3 Prim's Algorithm
- 4 Kruskal's Algorithm
- Data Structures for Disjoint Sets

Basic Properties of Trees

- Spanning tree is a minimal way to connect a graph
- Remove a cycle edge can not disconnect a graph
- 3 A tree on n nodes has n-1 edges
- 4 Any connected graph G = (V, E) with |E| = |V| 1 is a tree
- Solution A connected graph is a tree iff ∃ a unique path between any two nodes

True of False: If ∃ a unique edge e with the lightest weight, e in any MST.

- True of False: If ∃ a unique edge e with the lightest weight, e in any MST.
- ② Question: So (h, g) is always in MST, how about 2nd lightest edges (i, c) and (g, f)?

- ① True of False: If \exists a unique edge e with the lightest weight, e in any MST.
- ② Question: So (h, g) is always in MST, how about 2nd lightest edges (i, c) and (g, f)?

Greedy method in Theorem 23.1 of CLRS

Let \underline{A} be a subset of edges that is included in some MST. Pick any cut $(\underline{S}, \overline{S})$ such that \underline{S} and \overline{S} are NOT connected by edges in \underline{A} . Then for any lightest edge \underline{e} on $\underline{S} \times \overline{S}$, \exists a MST that contains \underline{e} .

- True of False: If ∃ a unique edge e with the lightest weight, e in any MST.
- ② Question: So (h, g) is always in MST, how about 2nd lightest edges (i, c) and (g, f)?

Greedy method in Theorem 23.1 of CLRS

Let A be a subset of edges that is included in some MST. Pick any cut (S, \overline{S}) such that S and \overline{S} are NOT connected by edges in A. Then for any lightest edge e on $S \times \overline{S}$. \exists a MST that contains e.

Two Algorithms from opposite directions

Define $\operatorname{cut}(S, \overline{S}) := \{(u, v) : u \in S, v \notin S\}$

Greedy method in Theorem 23.1 of CLRS

Let A be a subset of edges that is included in some MST. Pick any cut (S, \overline{S}) such that S and \overline{S} are NOT connected by edges in A. Then for any lightest edge e on cut (S, \overline{S}) , \exists a MST that contains e.

① Prim's algorithm: Maintain S by adding vertices and finding the lightest edge on $E \cap (S, \overline{S})$

Two Algorithms from opposite directions

Define $\operatorname{cut}(S, \overline{S}) := \{(u, v) : u \in S, v \notin S\}$

Greedy method in Theorem 23.1 of CLRS

Let A be a subset of edges that is included in some MST. Pick any cut (S, \overline{S}) such that S and \overline{S} are NOT connected by edges in A. Then for any lightest edge e on cut (S, \overline{S}) , \exists a MST that contains e.

- ① Prim's algorithm: Maintain S by adding vertices and finding the lightest edge on $E \cap (S, \overline{S})$
- ② Kruskal's Algorithm: Add an edge e and check A ∪ {e} has a cycle or not.

Outline

- Introduction
- 2 Basic Properties
- 3 Prim's Algorithm
- 4 Kruskal's Algorithm
- Data Structures for Disjoint Sets

Based on the cut property, consider a greedy method to grow a tree S:

Start from S = {root} and add a neighbor with the lightest crossing edge to S every time

Based on the cut property, consider a greedy method to grow a tree S:

① Start from $S = \{root\}$ and add a neighbor with the lightest crossing edge to S every time

Based on the cut property, consider a greedy method to grow a tree S:

① Start from $S = \{root\}$ and add a neighbor with the lightest crossing edge to S every time

Based on the cut property, consider a greedy method to grow a tree S:

- Start from S = {root} and add a neighbor with the lightest crossing edge to S every time
- ② Use a heap to maintain the lightest cross edge to v for every $v \notin S$

- ① $u.key := \min_{v \in S} w(u, v)$ for $u \notin S$
- 2 $u.\pi$ denotes its argmin (as its father in MST)
- 3 Q maintains \overline{S} according to u.key

```
MST-PRIM(G, w, r)
    for each u \in G.V
         u.key = \infty
        u.\pi = NIL
   r.key = 0
 5 \quad Q = G.V
   while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
 8
         for each v \in G.Adi[u]
 9
              if v \in Q and w(u, v) < v.key
10
                  v.\pi = u
11
                  v.key = w(u, v)
```

- ① $u.key := \min_{v \in S} w(u, v)$ for $u \notin S$
- 2 $u.\pi$ denotes its argmin (as its father in MST)
- 3 Q maintains \overline{S} according to u.key

```
MST-PRIM(G, w, r)
    for each u \in G.V
        u.key = \infty
   u.\pi = NII.
 4 r.key = 0
 5 \quad O = G.V
 6 while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
         for each v \in G.Adi[u]
             if v \in Q and w(u, v) < v.key
10
                  v.\pi = u
11
                  v.key = w(u, v)
```

Time Complexity

 $O(m \log n)$: Each vertex will be extracted once; so every edge will make at most one change in the heap

Outline

- Introduction
- 2 Basic Properties
- 3 Prim's Algorithm
- 4 Kruskal's Algorithm
- 5 Data Structures for Disjoint Sets

An alternate greedy approach:

- Maintain a set of edges A (the same one in THM 23.1 in CLRS)
- ② Try every edge e from the lightest to the heaviest: If $A + \{e\}$ does not constitute a cycle, $A = A + \{e\}$

An alternate greedy approach:

- Maintain a set of edges A (the same one in THM 23.1 in CLRS)
- ② Try every edge e from the lightest to the heaviest: If $A + \{e\}$ does not constitute a cycle, $A = A + \{e\}$

Description

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3  MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6  if FIND-SET(u) \neq FIND-SET(v)

7  A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

Example: Pseudo-code from CLRS

Time Complexity

```
Sort(m edges) + n \times Union + m \times Find-Set
```

Next: Disjoint sets supports UNION and FIND-SET in almost constant time: RADIX-SORT + Disjoint sets is faster than $O(m \log n)$

Outline

- Introduction
- 2 Basic Properties
- 3 Prim's Algorithm
- 4 Kruskal's Algorithm
- 5 Data Structures for Disjoint Sets

Introduction

A data structure for disjoint sets: For a fixed ground set, support 3 operations

- MAKE-SET(x): create a new set {x} for element x
- ② FIND-SET(x): Find the representative element of x's set

Introduction

A data structure for disjoint sets: For a fixed ground set, support 3 operations

- MAKE-SET(x): create a new set {x} for element x
- ② FIND-SET(x): Find the representative element of x's set
- UNION(x, y): Unites two disjoint sets containing x and y separately into one set

Introduction

A data structure for disjoint sets: For a fixed ground set, support 3 operations

- MAKE-SET(x): create a new set {x} for element x
- ② FIND-SET(x): Find the representative element of x's set
- UNION(x, y): Unites two disjoint sets containing x and y separately into one set

Applications

Maintenance of connected components in graphs and maps, equivalence relation, least-common ancestors problem, ...

Implementation

Maintain those sets as trees

- Root is the unique representation
- Question:

How to implement MAKE-SET and FIND-SET? How about UNION operation?

Implementation

Maintain those sets as trees

- Root is the unique representation
- Question:

How to implement MAKE-SET and FIND-SET? How about UNION operation?

3 Recall: height is the most important parameter for time complexity

Implementation

Maintain those sets as trees

- Root is the unique representation
- Question:

How to implement MAKE-SET and FIND-SET? How about UNION operation?

3 Recall: height is the most important parameter for time complexity

Rank of elements

To maintain heights, define a rank for each element:

After makeset(A), makeset(B),..., makeset(G):

After union(A, D), union(B, E), union(C, F):

Rank of elements

To maintain heights, define a rank for each element:

After makeset(A), makeset(B), ..., makeset(G):

After union(A, D), union(B, E), union(C, F):

UNION(x, y)

- ① Let r_x and r_y be their representatives
- 2 If $rank(r_x) > rank(r_y)$: $\pi(r_y) = r_x$
- 3 Else: $\pi(r_x) = r_y$ and Update $rank(r_y)$ to $max\{rank(r_y), rank(r_x) + 1\}$

After union(A, D), union(B, E), union(C, F):

After union(C, G), union(E, A):

After union(B, G):

Basic Properties

① For any non-root x, $rank(\pi(x)) > rank(x)$ — Question: Is it always true $rank(\pi(x)) = rank(x) + 1$?

Basic Properties

- ① For any non-root x, $rank(\pi(x)) > rank(x)$ — Question: Is it always true $rank(\pi(x)) = rank(x) + 1$?
- Any tree with root-rank k has at least 2^k nodes
 proof by induction

Basic Properties

- ① For any non-root x, $rank(\pi(x)) > rank(x)$ — Question: Is it always true $rank(\pi(x)) = rank(x) + 1$?
- Any tree with root-rank k has at least 2^k nodes
 proof by induction
- 3 If there are n elements in all trees, at most $n/2^k$ nodes of rank k implies all trees have height $\leq \log n$

Basic Properties

- ① For any non-root x, $rank(\pi(x)) > rank(x)$ — Question: Is it always true $rank(\pi(x)) = rank(x) + 1$?
- Any tree with root-rank k has at least 2^k nodes
 proof by induction
- If there are n elements in all trees, at most $n/2^k$ nodes of rank k implies all trees have height $\leq \log n$
- \odot But this only implies $O(\log n)$ time for FIND-SET!

Basic Properties

- ① For any non-root x, $rank(\pi(x)) > rank(x)$ — Question: Is it always true $rank(\pi(x)) = rank(x) + 1$?
- Any tree with root-rank k has at least 2^k nodes
 proof by induction
- If there are n elements in all trees, at most $n/2^k$ nodes of rank k implies all trees have height $\leq \log n$
- \odot But this only implies $O(\log n)$ time for FIND-SET!

A Small trick improves time significantly

Path compression: In FIND-SET, set $\pi(x)$ to be the root for all x on the path

```
function FIND-SET(x)
   if \pi(x) \neq x then
                                                             //x is not a root
       \pi(x) = \text{FIND-SET}(\pi(x))
                                                 // Path Compression Trick
   return \pi(x)
procedure MAKE-SET(x)
   \pi(x) = x and rank(x) = 0
procedure Union-Set(x, y)
    r_x = \text{FIND-SET}(x) \text{ and } r_y = \text{FIND-SET}(y)
   if rank(r_x) > rank(r_y) then
       \pi(r_v) = r_x
   else
       \pi(r_x) = r_y and rank(r_y) = \max\{rank(r_y), rank(r_x) + 1\}
```


Amortized Analysis

Let $\log^* n$ be number of log operations that bring n down to 1, e.g., $\log^* 1000 = 4$ and $\log^* 2^{65536} = 5$

THM: Running time of Disjoint Sets

Amortized time of m FIND-SET operations is $O(m+n) \cdot \log^* n$.

Amortized Analysis

Let $\log^* n$ be number of log operations that bring n down to 1, e.g., $\log^* 1000 = 4$ and $\log^* 2^{65536} = 5$

THM: Running time of Disjoint Sets

Amortized time of m FIND-SET operations is $O(m+n) \cdot \log^* n$.

- Consider those ranks— path compression does not affect their ranks
- ② Divide all ranks into $\log^* n + O(1)$ intervals:

Amortized Analysis

Let $\log^* n$ be number of log operations that bring n down to 1, e.g., $\log^* 1000 = 4$ and $\log^* 2^{65536} = 5$

THM: Running time of Disjoint Sets

Amortized time of m FIND-SET operations is $O(m+n) \cdot \log^* n$.

- Consider those ranks— path compression does not affect their ranks
- ② Divide all ranks into $\log^* n + O(1)$ intervals:

f1y,
$$\{2\}$$
, $\{3,4\}$, $\{5,6,\cdots,16\}$, $\{17,\cdots,2^{16}=65536\}$, $\{65537,\cdots,5,\cdots,5\}$

- ③ Amortized analysis with accounting method: For each x whose rank $\in [k+1,\ldots,2^k]$, assign a budget 2^k total budget $= n \cdot \log^* n$
- 4 Next: $m \cdot \log^* n + budgets$ bounds time of $m \times FIND-SET$

① Consider FIND-SET of length ℓ : $x_{\ell} \to x_{\ell-1} \to \cdots \to x_1 \to x_0$

- ① Consider FIND-SET of length ℓ : $x_{\ell} \to x_{\ell-1} \to \cdots \to x_1 \to x_0$
- ② Fix $i \in [\ell]$: FIND-SET never changes $rank(x_i)$; but $rank(\pi(x_i))$ becomes larger

intervals of ranks

3 To bound amortized-time(FIND-SET), our focus is on $[rank(x_i), rank(\pi(x_i))]$ vs intervals of ranks

- ① Consider FIND-SET of length ℓ : $x_{\ell} \to x_{\ell-1} \to \cdots \to x_1 \to x_0$
- ② Fix $i \in [\ell]$: FIND-SET never changes $rank(x_i)$; but $rank(\pi(x_i))$ becomes larger

- 3 To bound amortized-time(FIND-SET), our focus is on $[rank(x_i), rank(\pi(x_i))]$ vs intervals of ranks
- 4 OBS: Once $[rank(x_i), rank(\pi(x_i))]$ crossed an interval, it keeps crossing those intervals in the future this part is at most $\log^* n$

- ① Consider FIND-SET of length ℓ : $x_{\ell} \to x_{\ell-1} \to \cdots \to x_1 \to x_0$
 - ② Fix $i \in [\ell]$: FIND-SET never changes $rank(x_i)$; but $rank(\pi(x_i))$ becomes larger

- 3 To bound amortized-time(FIND-SET), our focus is on $\lceil rank(x_i), rank(\pi(x_i)) \rceil$ vs intervals of ranks
- 4 OBS: Once $[rank(x_i), rank(\pi(x_i))]$ crossed an interval, it keeps crossing those intervals in the future this part is at most $\log^* n$
- ⑤ O.w. pay the cost by the budget of x_i If $rank(x_i) \in [k+1, ..., 2^k]$, after x_i paid $\leq 2^k$ times, $rank(\pi(x_i))$ falls into above case and x_i stops paying

Summary

- Two algorithms implements the greedy idea
- 2 Prim's ALG runs in $O(m \log n)$ via heaps (faster by Fibonacci-heap)
- **3** Kruskal's ALG runs in $O(m \log^* n)$ after sorting

Summary

- Two algorithms implements the greedy idea
- ② Prim's ALG runs in $O(m \log n)$ via heaps (faster by Fibonacci-heap)
- **3** Kruskal's ALG runs in $O(m \log^* n)$ after sorting
- 4 For disjoint sets, a small change makes a big difference: from $O(\log n)$ to 5!

Questions?