

INFORMAL SEQUENCE LISTING

5 <210> 1
<211> 2665
<212> DNA
<213> pUC9
<400> 1

gcccccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 60
10 cgacagggtt cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagtttagct 120
cactcattag gcacccccagg cttaacactt tatgcttccg gctcgtatgt tgggtggaaat 180
tgtgagcggta aacaatttc acacaggaaa cagctatgac catgattacg ccaagcttgg 240
ctgcagggtcg acggatcccc gggaaattcac tggccgtcgt tttacaacgt cgtgactggg 300
aaaaccctgg cgttacccaa cttaatcgcc ttgcagcaca tcccccttgc gccagctggc 360
15 gtaatagcga agaggccccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg 420
aatggcgcct gatgcggtat tttctcctta cgcacatctgtg cggtatttca caccgcataat 480
ggtgtcactct cagtaacaatc tgctctgtatc cgcacatagtt aagccagccc cgacacccgc 540
caacacccgc tgacgcgcgc tgacgggctt gtctgctccc ggcacccgt tacagacaag 600
ctgtgaccgt ctccgggagc tgcatgtgtc agaggtttc accgtcatca ccgaaacgcg 660
20 cgagacgaaa gggctcggt atacgcctat tttttagatgtaatgtcatg ataataatgg 720
tttcttagac gtcaggtggc actttcggg gaaatgtgcg cggaaacccctt atttgtttat 780
ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc 840
aataatattt aaaaaggaag agtatgagta ttcaacattt cctgtcgcc cttattccct 900
ttttgcggc atttgcctt cctgttttg ctcacccaga aacgctgggt aaagtaaaag 960
25 atgctgaaga tcagttgggt gcacgagtgg gttacatcgaa actggatctc aacagcggtt 1020
agatccttga gagtttgcgc cccgaagaac gttttcaat gatgagact tttaaagtcc 1080
tgctatgtgg cgccgtattt tcccgatattt acgcccggca agagcaactc ggtcgccgca 1140
tacactattt tcagaatgac ttgggtttagt actcaccagt cacagaaaag catcttacgg 1200
atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgtat aacactgcgg 1260
30 ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca 1320
tgggggatca tgtaactcgcc cttgatcggtt gggaaaccggaa gctgaatgaa gccataccaa 1380
acgacgagcg tgacaccacg atgcctgttag caatggcaac aacggtgcgc aaactattaa 1440
ctggcgaact acttactcta gttcccgcc aacaattaat agactggatg gaggcgata 1500
aagttgcagg accacttctg cgctcgcccc ttccggctgg ctggtttatt gctgataaat 1560
35 ctggagccgg tgagcgtggg tctcgccgtt tcattgcagc actggggcca gatggtaagc 1620
cctcccgat cgtatgttac tacacgacgg ggagtcaggc aactatggat gaacgaaata 1680
gacagatcgcc tgagataggt gcctcactga ttaagcattt gtaactgtca gaccaaggaa 1740
actcatatatactttagatt gattaaaac ttcattttta attttaaaagg atcttaggtaa 1800
agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag 1860
40 cgtcagaccc cgtagaaaaag atcaaaggat cttcttgaga tcctttttt ctgcgcgtaa 1920
tctgctgctt gcaaaaaaaa aaaccacccgc taccagcggt ggtttggggccgatcaaq 1980

agctaccaac tcttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg 2040
tccttctagt gtagccgtag ttaggccacc acttcaagaa ctctgttagca cccgcctacat 2100
acctcgctct gctaattctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta 2160
ccgggttggg ctcagaacgaa tagttaccgg ataaggcgca gcgggtcgggc tgaacggggg 2220
5 gttcgtgcac acagccccgc ttggagcgaa cgacctacac cgaactgaga tacctacagc 2280
gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa 2340
gcggcagggtt cggaacacgaa gagcgcacga gggagcttcc agggggaaac gcctggtac 2400
tttatagtcc tgcgggttt cgcacccct gacttgagcg tcgattttg tgatgctcg 2460
cagggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct 2520
10 tttgctggcc ttttgctcac atgttcttc ctgcgttatac ccctgattct gtggataacc 2580
gtattaccgc ctttgagtga gctgataccg ctgcggcagc ccgaacgacc gagcgcagcg 2640
agtcaagttagcg cgaggaagcg gaaga 2665

15 <210> 2
<211> 5736
<212> DNA
<213> pRSVneo
<400> 2

20 cttggaggtg cacaccaatg tggtaatgg tcaaattggcg tttattgtat cgagcttaggc 60
actttaatac aattatctct gcaatgcgga attcagtggg tcgtccaaatc catgtcagac 120
ctgtctgttg ctttcctaatt aaggcacgat cgtaccaccc tattccacc aatcgccatg 180
cacggtgctt ttctctccct tggtaaggcat gttgcttaact catcggttacc atgttgcaag 240
actacaagtg tattgcataa gactacattt cccctccct atgcaaaagc gaaactacta 300
25 tattcctgagg ggactccctaa ccgcgtacaa ccgaaggcccc gcttttcgccc taaacacacc 360
ctagtccccct cagatacgcg tatatctggc ccgtacatcg cgaagcagcg caaaacgcct 420
aacccttaagg agattcttca tgcaattgtc ggtcaaggct tgccttggtagcttaat 480
tttgctcgcg cactactcg cgacccctccaa cacacaagca gggagcagat actggcttaa 540
ctatgcggca tcagagcaga ttgtactgag agtgcaccat atgcgggttg aaataccgca 600
30 cagatgcgttta aggagaaaaat accgcattcg ggcgttcccttcc gcttcctcgc tcactgactc 660
gctgcgtcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg cggtaatacg 720
gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa 780
ggccaggaac cgtaaaaagg ccgcgttgct ggcgttttc cataggctcc gccccccctga 840
cgagcatcac aaaaatcgac gtcagaatca gaggtggcga aacccgacag gactataaag 900
35 ataccaggcg ttccccctg gaagctccct cgtgcgtctt cctgttccga ccctggcgct 960
taccggatac ctgtccgcct ttctcccttc gggaaagcgtg ggcgtttctc atagctcag 1020
ctgttaggtat ctcagttcgg tggtaggtcg tgcgtccaaatg ctgggtgtg tgacacgaacc 1080
ccccgttccag cccgaccgct ggcgttccatc cggtaactat cgtttaggt ccaacccgg 1140
aagacacgac ttatcgccac tggcagcagc cactggtaac aggatttagca gagcggaggt 1200
40 tggtaggcgggt gctacagagt tcttgaagtg gtggcctaacc tacggctaca ctagaaggac 1260
agtattttggat atctgcgttc tgctgaagcc agttaccccttcc ggaaaaagag ttggtagctc 1320

aactgttatg cctacttata aaggttacag aatattttc cataatttc ttgtatagca 3840
 gtgcagctt ttccttgcgt gtgtaaatag caaagcaagc aagagttcta ttactaaaca 3900
 cagcatgact caaaaaactt agcaattctg aaggaaagtc cttgggtct tctaccttc 3960
 tcttctttt tggaggagta gaatgtttagt agtcagcagt agcctcatca tcactagatg 4020
 5 gcatttcctc tgagcaaaac aggtttcct cattaaaggc attccaccac tgctcccatt 4080
 catcagttcc ataggttggaa atctaaaata cacaacaat tagaatcagt agtttaacac 4140
 attatacact taaaaatttt atatttacct tagagcttta aatctctgtt ggttagttgt 4200
 ccaattatgt cacaccacag aagtaagggtt cttcacaaa gatccggac caaagcggcc 4260
 atcgtgcctc cccactcctg cagttcgaaa gcatggatgc gcggatagcc gctgctggg 4320
 10 tcctggatgc cgacggattt gcactgccgg tagaactccg cgaggtcgctc cagcctcagg 4380
 cagcagctga accaactcgc gaggggatcg agcccggtt gggcgaagaa ctccagcatg 4440
 agatccccgc gctggaggat catccagccg gcgtcccgaa aaacgattcc gaagcccaac 4500
 ctttcataga aggccgggtt ggaatcgaaa tctcgtgatg gcaggttggg cgtcgcttgg 4560
 tcggtcattt cgaaccccaag agtcccgcctc agaagaactc gtcaagaagg cgatagaagg 4620
 15 cgatgcgctg cgaatcgaaa gcggcgatac cgtaaagcac gaggaagcgg tcagcccatt 4680
 cgccgccaag ctcttcagca atatcacggg tagccaacgc tatgtcctga tagcggtccg 4740
 ccacacccag cggccacag tcgatgaatc cagaaaagcg gccattttcc accatgatat 4800
 tcggcaagca ggcatcgcca tgggtcacga cgagatcctc gccgtcgggc atgcgcgcct 4860
 tgagcctggc gaacagttcg gctggcgca gcccctgatg ctcttcgtcc agatcatcct 4920
 20 gatcgacaag accggcttcc atccgagttac gtgcgcgtc gatcgatgt ttgccttgg 4980
 ggtcaatgg gcaggtagcc ggatcaagcg tatgcagccg ccgcattgca tcagccatga 5040
 tggatacttt ctcggcagga gcaagggttagt atgacaggag atcctgcccc ggcacttcgc 5100
 ccaatagcag ccagtccctt cccgcttcag tgacaacgcg gagcacagct ggcgaaggaa 5160
 25 cggccgtcgt ggccagccac gatagccgcg ctgcctcgctc ctgcagttca ttcaaggcac 5220
 cggacaggc ggtcttgcaca aaaagaaccg ggcccccctg cgctgacagc cggAACACGG 5280
 cggcatcaga gcagccgatt gtctgttgcgtt cccagtcata gccgaatagc ctctccaccc 5340
 aagcggccgg agaacctgcg tgcaatccat cttgttcaat catgcgaaac gatcctcattc 5400
 ctgtctcttgcgtt atcagatctt gatcccctgc gccatcagat cttggcgac aagaaagcca 5460
 tccagtttac tttgcagggc ttcccaacct taccagaggg cggccctagct ggcattccg 5520
 30 gttcgcttgc tgcataaaa accggccagt ctagctatcg ccatgttaagc ccactgcaag 5580
 ctacctgctt tctctttgcgtt cttgcgtttt cccttgcata gatagccctag tagctgacat 5640
 tcatccgggg tcaagcaccgt ttctgcggac tggcttctca cgtgtccgc ttccctttagc 5700
 agcccttgcg ccctgagtgc ttgcggcagc gtgaag 5736

35 <210> 3
 <211> 3584
 <212> DNA
 <213> pCRXA20
 <400> 3

40 gatatcatat tggctcatgt ccaacattac cgccatgtt acattgatta ttgacttagtt 60
 attaatagta atcaattacg gggtcattag ttcatagccc atatatggag ttccgcgtt 120

cataacttac ggttaaatggc ccgcctggct gaccgccccaa cgaccccccgc ccattgacgt 180
 caataatgac gtatgttccc atagtagcgc caatagggac tttccattga cgtcaatggg 240
 tggagtattt acggtaaact gcccacttgg cagtacatca agtgtatcat atgccaagtc 300
 cgccccctat tgacgtcaat gacggtaaat ggcccgcctg gcattatgcc cagtacatga 360
 5 ctttacggga ctttcctact tggcagtgaca tctacgtatt agtcatcgct attaccatgg 420
 tggatgcgggt tttggcagta caccaatggg cgtggatagc ggtttgactc acggggattt 480
 ccaagtctcc accccattga cgtcaatggg agtttgggg ggcacccaaa tcaacgggac 540
 tttccaaaat gtcgtataaa ccccgccccg ttgacgcaaa tgggcggtag gcgtgtacgg 600
 tgggagggtct atataagcag agtcgttta gtgaaccgtc agatcgctg gagacgccc 660
 10 ccacgctgtt ttgacctcca tagaagacac cgggaccgat ccagcctccg cggccgggaa 720
 cggtgcatgg gaacgcggat tccccgtgcc aagagtgacg taagtaccgc ctatagactc 780
 tataggcaca cccctttggc tcttatgcat gctatactgt ttttggcttg gggctatac 840
 acccccgctt ctttatgcta taggtgatgg tatagtttag cctataggtg tgggttattg 900
 accattattt accactcccc tattgggtac gatactttcc attactaatac cataacatgg 960
 15 ctctttgcca caactatctc tattggctat atgccaatac actgtccttt cgctcggcag 1020
 ctcccttgctc ctaacagtgg agggccagact taggcacagc acaatgcccc ccaccaccag 1080
 tgtgccacac aaggccgwgg cggtagggta tgtgtctgaa aatgagctcg gagattgggc 1140
 tcgcaccgct gacgcagatg gaagacttaa ggcagcggca gaagaagatg caggcagctg 1200
 agttgttcta ttctgataag agtcagaggt aactcccggt gcggtgtgt taacggtgaa 1260
 20 gggcagtgtt gtctgagcag tactcggtgc tgccgcgcgc gccaccacagac ataatacg 1320
 acagactaac agactgttcc tttccatggg tttttctgc agtcaccggc cgaccgaagc 1380
 ttccgcgggg cgggatcccg gcccgcgcgc gaattctgtat cataatcagc cataaccacat 1440
 ttgttagaggt tttacttgct taaaaaaacc tcccacaccc cccctgaac ctgaaaacata 1500
 aaatgaatgc aattgttgtt gtttaacttgt ttattgcagc ttataatggt tacaataaa 1560
 25 gcaatagcat cacaatttc acaaataaag cattttttc actgcattct agttgtgggt 1620
 tgtccaaact catcaatgta tcttaggtac cacgtcaggt ggcactttc gggaaatgt 1680
 gcgcggaaacc cctatttggc tattttctta aatacattca aatatgtatc cgctcatgag 1740
 acaataaccc tgataaaatgc ttcaataata ttggaaaaagg aagagtatga ttgaacaaga 1800
 tggattgcac gcagggtctc cggccgcctg ggtggagagg ctattcggt atgactgggc 1860
 30 acaacagaca atcggtctc ctgatgcgcgc cgtgttccgg ctgtcagcgc agggggcc 1920
 ggttctttt gtcaagaccc acctgtccgg tgccctgaat gaactgcagg acgaggcaggc 1980
 gccgctatcg tggctggcca cgacggggct tccttgcgc gctgtgtcg acgttgcac 2040
 tgaagcggga agggactggc tgctattggg cgaagtgcgc gggcaggatc tcctgtcatac 2100
 tcaccttgct cctgcggaga aagtatccat catggctgtat gcaatgcggc ggctgcatac 2160
 35 gcttgcattcc gctacctgcc cattcgacca ccaagcgaaa catcgatcg agcgagc 2220
 tactcggtatg gaagccggc ttgtcgatca ggatgtatcg gacgaagagc atcaggggct 2280
 cgcgcagcc gaactgttcg ccaggctcaa ggcgcgcatt cccgacggcg aggtatctcg 2340
 cgtgacccat ggcgtatgcct gcttgcggaa tatcatgggt gaaaatggcc gctttctgg 2400
 attcatcgac tggccggc tgggtgtggc ggaccgctat caggacatag cgttggctac 2460
 40 cctgtatatt gctgaagagc ttggccggcga atgggctgac cgcttcctcg tgctttacgg 2520
 tategcggct cccgattcgc agcgcattcgc ctttatcgc ctttttgacg agttttctg 2580

actcgaggcc agctgcatta atgaattggc ccacgcgcgg ggagagggcgg attgcgtatt 2640
 gggcgctctt ccgcttcctc gctcaactgta ctcgcgtgcgc tcgggtcggttc ggctgcggcg 2700
 agcggtatca gctcaactcaa aggccgtaat acggttatcc acagaatcag gggataacgc 2760
 agaaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt 2820
 5 gctggcggtt ttccataggc tccgcgcgc tgacgagcat cacaaaaatc gacgctcaag 2880
 tcagaggtgg cgaaacccga caggactata aagataaccag gcgtttcccc ctggaaagctc 2940
 cctcgtgcgc ttcctgttc cgaccctgcc gcttaccggta tacctgtccg cctttctccc 3000
 ttcgggaagc gtggcgctt ctcatacgctc acgctgttagg tatctcaagtt cggtgttaggt 3060
 cgttcgtcc aagctggct gtgtcacgaa acccccccgtt cagcccggacc gctgcgcctt 3120
 10 atccggtaac tatcgctttg agtccaaccc ggtaagacac gacttacgc cactggcagc 3180
 agccactggt aacaggatta gcagagcgag gtatgttaggc ggtgctacag agttcttgaa 3240
 gtggtggcct aactacggct acaactagaag aacagtattt ggtatctgcg ctctgctgaa 3300
 gccagttacc ttcgaaaaaa gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg 3360
 tagcggtggt tttttgttt gcaagcagca gattacgcgc agaaaaaaaaag gatctcaaga 3420
 15 agatcctttg atctttcta cggggctctga cgctcagtgg aacgaaaact cacgttaagg 3480
 gattttggtc atgagattat caaaaaggat cttcacctag atcctttaa attaaaaatg 3540
 aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctg 3584

20 <210> 4
 <211> 2361
 <212> DNA
 <213> CMV_MIE_gene,_5'end-1
 <400> 4

25 ctgcagtgaa taataaaatg tgggtttgtc cgaaataacgc gttttgagat ttctgtcgcc 60
 gactaaattc atgtcgccgc atagtgggtt ttatcgccga tagagatggc gatattggaa 120
 aaatcgatat ttgaaaaat ggcatttttga aatgtcgcc gatgtgagtt tctgtgttaac 180
 tgatatcgcc attttccaa aagtgattt tggcatacg cgatatctgg cgatacggct 240
 tatatcgttt acggggatg gcgatagacg actttggcga cttggcgat tctgtgtgtc 300
 30 gcaaataatcg cagtttcgat atagggtgaca gacgatatga ggctatatcg ccgatagagg 360
 cgacatcaag ctggcacatg gccaatgcgat atcgatctat acattgaatc aatattggca 420
 attagccata ttagtcattt gttatatacg ataaatcaat attggctatt ggccattgca 480
 tacgttgtat ctatatcata atatgtacat ttatattggc tcatgtccaa tatgaccgccc 540
 atgttgacat tgattattga ctatgttata atagtaatca attacggggt cattagttca 600
 35 tagcccatat atggagttcc gcgttacata acttacggta aatggccgc ctcgtgaccg 660
 cccaaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 720
 gggactttcc attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta 780
 catcaagtgt atcatatgcc aagtccggcc ccctattgac gtcaatgacg gtaaatggcc 840
 cgcctggcat tatgcccagt acatgaccctt acgggacttt cctacttggc agtacatcta 900
 40 cgtttagtc atcgcttta ccatggtgat gcgggtttgg cagtacacca atgggcgtgg 960
 atagcggttt gactcacggg gatttccaag tctccacccc attgacgtca atgggaggtt 1020
 gttttggcac caaaatcaac gggactttcc aaaatgtcgt aataaccccg ccccgttgac 1080

gcaaatgggc ggtaggcgtg tacggtggga ggtctatata agcagagctc gtttagtgaa 1140
 ccgtcagatc gcctggagac gccatccacg ctgtttgac ctccatagaa gacaccggga 1200
 ccgatccagc ctccgcggcc gggAACGGTG cattggAACG cggttcccc gtgccaagag 1260
 tgacgtaagt accgcctata gactctatag gcacaccct ttggctctta tgcatgctat 1320
 5 actgttttg gcttggggcc tatacacccc cgctccttat gctataggtg atggtatagc 1380
 ttagcctata ggtgtgggtt attgaccatt attgaccact cccctattgg tgacgatact 1440
 ttccattact aatccataac atggctctt gccacaacta tctctattgg ctatatgcca 1500
 atactctgtc cttcagagac tgacacggac tctgtatTT tacaggatgg ggtcccatTT 1560
 attatttaca aattcacata tacaacaacg ccgtcccccg tgccgcagt ttttattaaa 1620
 10 catagcgtgg gatctccacg cgaatctcggtacgtgttc cggacatggg ctcttctccg 1680
 gtagcggcgg agcttccaca tccgagccct ggtcccatgc ctccagcggc tcatggtcgc 1740
 tcggcagctc cttgctctta acagtggagg ccagacttag gcacagcaca atgcccacca 1800
 ccaccagtgt gccgcacaag gccgtggcgg tagggatgt gtctgaaaat gagctcggag 1860
 attgggctcg caccgtgacg cagatggaaag acttaaggca gcccgcagaag aagatgcagg 1920
 15 cagctgagtt gttgtattct gataagagtc agaggtaact cccgttgcgg tgctgttaac 1980
 ggtggagggc agtgttagtct gagcagtagt cgttgctgcc gcgcgcgcacccac 2040
 tagctgacag actaacacagac tttcccttccatgggtctt ttctgcagtc accgtccttg 2100
 acacgatggaa gtcctctgcc aagagaaaaga tggaccctga taatcctgac gagggccctt 2160
 cctccaaaggt gccacggtaacgtcggttttgcggatgttttttttataaaaattgt 2220
 20 attaatgtta tatacatatc tcctgtatgt gaccatgtg cttatgactc tatttctcat 2280
 gtgttttaggc ccgagacacc cgtgaccaag gccacgacgt tcctgcagac tatgttgagg 2340
 aaggaggtta acagtcaactg 2361

25 <210> 5
 <211>
 <212> DNA
 <213> L523S-Adenovirus vector
 <400> 5

30 ttaattaacatcatcaataatataccttattttggattgaagccaatatgataatgaggggggtggagtttgac
 gttggcgcggggcgtggaaacggggcggtgacgttagttagtggcggaaatgtgtatgttgc
 aacatgttaagcgacggatgtggcaaaagtgcacgtttttgtgtgcgcgggttacacaggaaatgtgaca
 ggggttttaggcggatgttagttagtggcgttaaccgagtaagatggccatttcgcggaaaactgaa
 taagaggaagtgaaatctgaaataattttgttactcatagcgcgttaataactgtatagtaatcaattacggggt
 35 cattagttcatagccatataatggagttccgcgttacataactacggtaatggccgcctggctgaccgc
 acgaccccccattgacgtcaataatgacgtatgttcccatagtaacgcacataggactttccattgacgtc
 aatgggtggagtatttacggtaaaactgcccacttggcagtagatgcataatgccaagtagcccccta
 ttgacgtcaatgacggtaatggccgcctggcattatgcccagtagatgcacattatggactttccacttggc
 agtacatctacgttatttagtcatgcattaccatggatgcgggtttggcagtagatcaatggcgtggatagc
 40 ggtttgactcacgggatttcaagtctccacccattgacgtcaatggagtttgcaccaaaatcaac
 gggactttccaaaatgtcgtaacaactccgcggccattgacgcacatggcgttaggcgttacgggtggaggtct
 atataaggcagagctggtttagtgaaccgtcagatccgcgttagagatctggtaccgcgtcagcgcggccgtcgagcc

ttgtctggaggcttcaattaaaggattgtccagcggaaagcaccagatgtctaaaggatggatggattatcactggac
caccagaggctcagttcaaggctcagggaaagaatttatggaaaaattaaagaagaaaactttgttagtcctaaag
aagaggtaaaacttgaagctcatatcagagtgccttgcgtccctcgaccagacacactgatgagaatgacc
5 aagtgggtgtcaaaataactggtcaacttctatgtccaggttgcggagaaaaattcagggaaattctgactc
aggtaaaagcagcaccacaacacaaggctctgcaagtgccaccacactgatcagacggaaagtaatctagataag
atatccgatccaccggatctagataactgtatcataatcagccataccacatttgcgttagaggtttacttgcctaa
aaaacctcccacaccccccgtacacactgaaacataaaatgaatgcaattgttgcgttagttaacttgcgttattgcag
10 cttataatggttacaaataaagcaatagcatcacaatttcacaataaagcatttttactgcattctagtt
gtggttgtccaaactcatcaatgtatcttaacgcggatctggcgtggtaagggtggaaagaatataagg
tgggggtcttatgttagtttatctgtttgcagcagccgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
cattgtgagctcatatttgacaacgc
tgatggtcgc
tgcagc
15 gcttgcaagcagtgcagctccgcgttcatccgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
tttgaccggaaacttaatgtcgttctcagcagctgtttgcgcgcgcgcgcgcgcgcgcgcgcgc
ctcccccataatgcgtttaaaacataaaaaaccagactctgtttggattggatcaagcaagtgtcttgc
ctgtcttatttagggtttgc
ttttccaggacgtgttaaagggtgactctggatgttgcagatacatgggcataagccgtctctgggtggaggt
20 gcaccactgcagagctcatgtcgccccgtgttagatgtatccagtcgttagcaggagcgcgtggcggt
cctaaaaatgtcttcagtagcaagctgattgcgcggcaggcccttgcgttaagtgtttacaaagcggttaag
ctggatgggtgcatacggtggatatgagatgcattggactgtatttttaggttgcgtatgtcccgccat
atccctccgggattcatgttgcagaaccaccagcacagtgatccggtgcactggaaatttgcgttag
25 cttagaaggaaatgcgtggaaagaacttggagacgcgcctgtgacccatgcattcgccataat
gatggcaatggcccacgggcggcggcgtggcgaagatattctggatcactaacgtcatagttgtttccag
gatgagatcgcataggccattttacaaagcgcggcggagggtgcgcagactgcggtataatggccatccgg
cccgaggcgtagttaccctcacagattgcattccacgcgttgcgttagtgcgtatgggggatcatgtcacctg
cgggcgatgaagaaaacggttccgggttagggagatcagctggaaagaaagcaggccctgcgtacgc
30 ctaccgcagccgggtggcccgtaaatcacacattaccggctgcactggtagttaaagagagactgcagctg
gtcattccctgagcagggggccacttcgttaagcatgtccctgactgcgtatgtttccctgacccaaatccgg
aaggcgctcgcccccagcgatagcagttctgcaaggaagcaagtttcaacgggttgcgcgcgcgc
aggcatgttttagcggttgcaccagcagcagttccaggcggccacagctcggtacccgtctacggcatctcg
atccagcatatctccctcggttgcgggttggggcggttgcgtacggcagtagtcggtgcgtcc
35 ggcagggtcatgtcttccacggcgcagggtcctcgtagcgtactgtgggtcaggtgaaggggtgcgtcc
ggctgcgcgtggccagggtgcgttgcaggctggcgtgtgtgtgaagcgctgcggcgttgcgcgc
tcggccaggtagcattgaccatgggtgtcatagtcgcgcgcgcgcgcgcgcgcgcgc
ttggaggaggcgccgcacgaggggcagtgcagactttgagggcgttagagcttggcgcgc
ggggagtaggcatccgcgcgcaggcccccgcagacggctcgccatccacgcgc
gggtcaaaaaccagggttcccatgcattttgtgcgttcttgcgttgcgtcc
40 tcgggtacaaaaggctgtccgtgtcccgatcacagacttgcggagggagttgtata
tcctcgagcggtgtccgcggcgtccctcgtagaaaactcgaccactgc
gagacaaaaggctgcgtccacgc

5 agcacgaaggaggctaagtgggaggggtagcggtcggtccactaggggtccactcgctccagggtgtgaaga
 cacatgtcgccctttcgcatcaaggaaggtgattggtttaggttagggccacgtgaccgggtttccctgaa
 gggggctataaaagggggtggggcgctcgctcactcttcccatcgctgtctgcgagggccagctgt
 tgggtgagtaactccctctgaaaagcgggcatgactctgcgctaagattgtcagttccaaaacgaggaggat
 ttgatattcacctggcccggtgatgccttgagggtggccgcatccatctggtcagaaaagacaatcttttg
 ttgtcaagcttggtgcaaaacgaccgttagggcgtagggacagacaacttggcgatggagcgcagggtttgggtt
 ttgtcgcatcgccgctcctggcccgatgttagctgcacgtattcgccgcaacgcaccgcattcgga
 aagacggtggtgcgctcgccggcaccagggtgcacgcggcaaccgcgttgcaggggacaaaggtaacgctg
 gtggctacctctcccgtaggcgctcggtggccagcagaggggccgccttgcgcgagcagaatggcgtagg
 10 gggtagctgcgtctcgccgggggtctgcgtccacggtaaagaccccgccagcaggcgccgtcgaagtag
 tctatcttgcacccatgcgatgggtgggtgagcgccggaggcgtagatgcgcggccggcaagcgcgcgtcgtatgggtgagt
 ggggacccatggcatgggtgggtgagcgccggaggcgtagatgcgcggccggcaagcgcgcgtcgtatgggtgagt
 ctgagttccaagatatgttaggttagcatcttccaccgcggatgcggcgccacgtaatcgatagttcg
 gagggagcggagggtcgccggaccggagggtctacggccggctgtctgcgcaagactatctgcctgaagatg
 15 gcatgtgagttggatgatgggtggacgctggaaagacgttgaagctggcgctgtgagacactaccgcgtcacgc
 acgaaggaggcgtaggagtcgcgcagcttggaccagctcgccggatgcacgtctaggcgccagtagtcc
 agggtttccatgtatgtcataacttacccgtccctttccacagctcgccggatgcggccacgtaatcgat
 cggtcttccatgtatgtcataacttacccgtccctttccacagctcgccggatgcggccacgtaatcgat
 acggcctggtaggcgcagcatcccttctacggtagcgcgtatgcctgcgcggcccccggagcggagggtgg
 20 gtgagcgcaaagggtccctgaccatgacttggaggactgttgcgttgcgtccatccgcctgc
 tcccgagcaaaaaggccgtccgtccatccatccatccatccatccatccatccatccatccatccatccatcc
 tttcccgccgaggcataaaggccgtccatccatccatccatccatccatccatccatccatccatccatcc
 gccggcgagcacgatctcgtaaaggccgttgcgttgcggccacaatgtaaaggccatccatccatccatcc
 ttgatggaaaggcaatttttaagttccctcgtaggttagcttcaggggagctgagccgtctgaaaggcc
 25 cagtctgcagatgagggttggaaagcgcacgaatgagctccacaggtcacggccattagcattgcagggtgg
 cgaaaggccatccatccatccatccatccatccatccatccatccatccatccatccatccatccatcc
 cagccgtcccatccatccatccatccatccatccatccatccatccatccatccatccatccatccatcc
 accagcatgaagggcacgagctgtcccttccaaaggccccatccatccatccatccatccatccatcc
 agacgctcggtgcgaggatgcgagccgatcggaaagaactggatctccgcaccaattggaggagctgg
 30 atgtggtaaaggtagaaaggccctgcgacggccgaaacactcgtgtggctttgtaaaaacgtgcgcagactgg
 cagccgtgcacggctgtacatccgcacgagggttgcgttgcacgcaccgcacaaggaaagcagactgg
 agccctcgccctggcggtttggctggctttctacttcggctgtttgccttgcaccgtctggctgtc
 ggaggtaacgttgcgaccaccacgcgcgcgagccaaaggccatccatccatccatccatccatcc
 atgacaacatcgccagatggagctgtccatggctggagctccgcggcgtcaggtcaggcggagctcc
 35 agtttacctcgcatagacgggtcagggcgccggctagatccaggtgataccatccatccatccatcc
 gccgcgtcgatggcttgcgaaaggccgcatcccccggccgcgactacggtaccgcgcggccggcg
 ggggtgtccctggatgtgcataaaaggcggtgacgcggccgagccccccggaggtaggggggctcc
 ccggggagagggggcaggggcacgtcgccgcgcgcggcaggagctggctgcgcgcgttaggttgc
 acgcgcacgcgcggcggttgcgtccatccatccatccatccatccatccatccatccatccatcc
 40 tggaaagagatgtcgacagaatcaatttcgggtcggtgcggccctggcgcaaaatctccatcc
 agttgtcttgcgttgcggatctcgccatgcactgcgttgcgtcccttgcgttgcggatctcc
 cgcgtccggctcgct

gctgtccagctgctgagccacaggctgctgtccaaacttgcgggtgcttaacggggcggaaggagaagtccacgc
 ctacatggggtagagtataatcgcatcaggataggcggtggtgcagcagcgcgcgaaataactgctg
 ccgcgcgcgtccgtccgtcaggaaataacatggcagtggtctcctcagcgatgattgcaccgcggcagcat
 aaggcgccctgtcctccggcacagcagcgcaccctatctacttaaatcagcacagtaactgcagcacagcac
 5 cacaatattgttcaaaatcccacagtgcagggcgttatccaaagctatggcgccatccaccacgtg
 gccatcataccacaagcgcaggttagattaagtggcgaccctcataaacacgcgtggacataaacattacctt
 tggcatgtttaattcaccaccccgttaccatataaacctctgattaaacatggcgccatccaccacatcct
 aaaccagctggccaaacctgcccgcgtatacactgcagggaaacgggacttggacataatgacagtggagac
 ccaggactcgtaaccatggatcatcatgctgtcatgatataatgttggcacaacacaggcacacgtgcata
 10 cttcctcaggattacaagctcctccgcgttagaaccatatcccaggaaacaacccattcctgaatcagcgtaa
 tcccacactgcagggaaagacctcgcacgttaactcacgttgcattgtcaaatgttttacattcggcagcagcgg
 atgatcctccagtatggtagcgcgggttctgtctcaaaaggaggttagacgcgttactgtacggagtgcgc
 agacaaccgagatcgtgttggcgttagtgcataccaaatggacgcggacgttagtcatattcctgaagcaaa
 accaggtgcggcgtgacaaacagatctgcgttccgtctcggcgttagatgcgtctgttagttagtttagt
 15 atatccactctctcaagcatccaggcgccccctggcttcgggttatgtaaactccttcatgcgcgcgc
 tgataacatccaccaccgcagaataagccacacccagccaaacctacatcggtctgcgagtcacacacgggag
 gagcgggaaagagctggaaagaaccatgtttttttattccaaaagattatccaaaacctcaaaatgaagatct
 attaagtgaacgcgcctccctccggtggcgttcaactctacagccaaagaacagataatggcatttgc
 tttgcacaatggcttccaaaaggcaaacggccctcagtcatagtggacgtaaaggctaaaccctttaggtga
 20 atctcctctataaaacattccagcacccatccaaaccatgcccataattctcatctgcgcacccatcaatata
 ctaagcaaatcccgaatattaagtccggcattgtaaaaatctgcctcagagcgcgcacccatcgctcaag
 cagcgaatcatgattgcataaccatcggttccctcagacacctgtataagattcaaaagcggacattaa
 taccgcgatccgttaggtcccttcgcagggccagctgaacataatgcgcaggctgcacggaccagcgc
 ctcccccgcaggaaaccttgcacaaaagaacccacactgattatgcacacgcataactcgagctatgc
 25 tagccccatgttaagctttgtcatggcgcatataaaatgcacagggtgcgtctcaaaaaatcaggca
 tcgcgcaaaaaaagaaagcacatcgtagtcatgcgcataaaaggcaggtaagctccggaccaccacagaa
 aaagacaccatttctcaacatgtctgcgggttctgcataacacaaaataaaataaaaaacattt
 aaacattagaagcctgttacaacaggaaaaacaacccttataagcataagacggactacggccatgc
 gaccgtaaaaaaactggtcaccgtgattaaaaagcaccaccgcacagctcctcggcatgtccggagtc
 30 ataatgt
 aagactcggtaaacacatcaggttattcatcggtcagtgcgtaaaaagcgcaccgaaatagccgggg
 acaccgcaggcgtagagacaacattacagccccataggaggtaacaaaattaataggagaaaaacacata
 acacctgaaaaaccctcctgcctaggcaaaatagcaccctccgcgtccagaacaacacatc
 cagcgcctaaacagtgcgttaccagttaaaaagaaaaaccttataaaaaacaccactgcacacgg
 caccgcgttacactgcgtttttccacgttacgttaacttccattttaagaaaactacaatt
 35 ccacaaaaaaacaccagaaaaaccgcacgcgcacccatcgcccagaaacgcggaaaaacccacaact
 atcgtaacttccgtttccacgttacgttaacttccattttaagaaaactacaattccacacata
 actccgcctaaaacctacgtcaccgcggccacgcgtcacaactccacccctcatta
 tcatattggctcaatccaaaataaaggatattatgtatgnnnnnnttaattaa

<210> 6

211

<212> DNA

212 DNA

<213> B3

<210> 7

<211> 579

<212> prot

35 <213> L523S

<400> 7

Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser
5 10 15

40 Asp Leu Glu Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro
20 25 30

Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser
35 40 45

45 Trp Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His

	50	55	60	
	Gly Lys Pro Ile Glu Val Glu His Ser Val Pro Lys Arg Gln Arg Ile			
5	65	70	75	80
	Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu Val			
	85	90	95	
10	Leu Asp Ser Leu Leu Val Gln Tyr Gly Val Val Glu Ser Cys Glu Gln			
	100	105	110	
	Val Asn Thr Asp Ser Glu Thr Ala Val Val Asn Val Thr Tyr Ser Ser			
	115	120	125	
15	Lys Asp Gln Ala Arg Gln Ala Leu Asp Lys Leu Asn Gly Phe Gln Leu			
	130	135	140	
20	Glu Asn Phe Thr Leu Lys Val Ala Tyr Ile Pro Asp Glu Thr Ala Ala			
	145	150	155	160
	Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly Gln			
	165	170	175	
25	Arg Gly Ser Ser Arg Gln Gly Ser Pro Gly Ser Val Ser Lys Gln Lys			
	180	185	190	
	Pro Cys Asp Leu Pro Leu Arg Leu Leu Val Pro Thr Gln Phe Val Gly			
	195	200	205	
30	Ala Ile Ile Gly Lys Glu Gly Ala Thr Ile Arg Asn Ile Thr Lys Gln			
	210	215	220	
	Thr Gln Ser Lys Ile Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala			
35	225	230	235	240
	Glu Lys Ser Ile Thr Ile Leu Ser Thr Pro Glu Gly Thr Ser Ala Ala			
	245	250	255	
40	Cys Lys Ser Ile Leu Glu Ile Met His Lys Glu Ala Gln Asp Ile Lys			
	260	265	270	
	Phe Thr Glu Glu Ile Pro Leu Lys Ile Leu Ala His Asn Asn Phe Val			
	275	280	285	
45	Gly Arg Leu Ile Gly Lys Glu Gly Arg Asn Leu Lys Lys Ile Glu Gln			
	290	295	300	
50	Asp Thr Asp Thr Lys Ile Thr Ile Ser Pro Leu Gln Glu Leu Thr Leu			
	305	310	315	320
	Tyr Asn Pro Glu Arg Thr Ile Thr Val Lys Gly Asn Val Glu Thr Cys			
	325	330	335	
55	Ala Lys Ala Glu Glu Ile Met Lys Lys Ile Arg Glu Ser Tyr Glu			
	340	345	350	
	Asn Asp Ile Ala Ser Met Asn Leu Gln Ala His Leu Ile Pro Gly Leu			
	355	360	365	
60	Asn Leu Asn Ala Leu Gly Leu Phe Pro Pro Thr Ser Gly Met Pro Pro			
	370	375	380	

Pro Thr Ser Gly Pro Pro Ser Ala Met Thr Pro Pro Tyr Pro Gln Phe
385 390 395 400

5 Glu Gln Ser Glu Thr Glu Thr Val His Leu Phe Ile Pro Ala Leu Ser
405 410 415

Val Gly Ala Ile Ile Gly Lys Gln Gly Gln His Ile Lys Gln Leu Ser
10 420 425 430

Arg Phe Ala Gly Ala Ser Ile Lys Ile Ala Pro Ala Glu Ala Pro Asp
435 440 445

Ala Lys Val Arg Met Val Ile Ile Thr Gly Pro Pro Glu Ala Gln Phe
15 450 455 460

Lys Ala Gln Gly Arg Ile Tyr Gly Lys Ile Lys Glu Glu Asn Phe Val
465 470 475 480

20 Ser Pro Lys Glu Glu Val Lys Leu Glu Ala His Ile Arg Val Pro Ser
485 490 495

Phe Ala Ala Gly Arg Val Ile Gly Lys Gly Gly Lys Thr Val Asn Glu
25 500 505 510

Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr
515 520 525

30 Pro Asp Glu Asn Asp Gln Val Val Val Lys Ile Thr Gly His Phe Tyr
530 535 540

Ala Cys Gln Val Ala Gln Arg Lys Ile Gln Glu Ile Leu Thr Gln Val
35 545 550 555 560

Lys Gln His Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser
565 570 575

Arg Arg Lys

40 <210> 8
<211>
<212> prot
<213> L523S p13-21
<400> 8

45 Ala Ala Pro Ser Asp Leu Glu Ser Ile