Advanced Engineering Mathematics Mathematical Techniques for Engineering

Dr Athar Kharal

Humanities and Science Department College of Aeronautical Engineering National University of Sciences and Tecnology (NUST), Pakistan

Differentiation and Integeration of LT

Theorem

If F(s) is the Laplace transform of f(t), then

$$F'(s) = -\int_0^\infty e^{-st} t f(t) dt$$

from which, also note that

$$L(tf(t)) = -F'(s)$$
 and $L^{-1}(F'(s)) = -tf(t)$

Corollary

By mathematical induction we also have

$$L(t^{n}f(t)) = (-1)^{n} F^{(n)}(s)$$

$$L^{-1}\left(\ln\left(1+\frac{\omega^2}{s^2}\right)\right)=?$$

We observe that
$$\ln\left(1+\frac{\omega^2}{s^2}\right) = \ln\left(\frac{s^2+\omega^2}{s^2}\right) = \ln\left(s^2+\omega^2\right) - \ln s^2$$
.

This indicates that a derivative of \ln may bring terms like $\frac{s}{s^2+\omega^2}$ or $\frac{1}{s}$. Hence we set $F(s) = \ln\left(\frac{s^2+\omega^2}{s^2}\right)$ and proceed for an application of differentiation of LT theorem i.e.

$$F'\left(s\right) = \frac{d}{ds}\ln\left(s^2 + \omega^2\right) - \frac{d}{ds}\ln s^2 = 2\frac{s}{s^2 + \omega^2} - \frac{2}{s}$$

$$L^{-1}\left(F'\left(s\right)\right) = L^{-1}\left(2\frac{s}{s^2 + \omega^2} - \frac{2}{s}\right) = 2\cos\left(\omega t\right) - 2 = 2\left(s\right)$$
Since
$$L^{-1}\left(F'\left(s\right)\right) = -tf\left(t\right)$$

$$\Rightarrow -tf\left(t\right) = 2\left(\cos\left(\omega t\right) - 1\right)$$

$$f\left(t\right) = \frac{2}{s}\left(1 - \cos\left(\omega t\right)\right)$$

$$(10e-6.6-2) L(3t \sinh(4t)) = ?$$

We know
$$L(tf(t)) = -F'(s)$$

$$L(3t \sinh(4t)) = 3L(t \sinh(4t))$$

$$= 3\left(-\frac{d}{ds}L(\sinh(4t))\right)$$

$$= -3\left(\frac{d}{ds}\left(\frac{4}{s^2 - 16}\right)\right)$$

$$= 24\frac{s}{(s^2 - 16)^2}$$

For finding $L(t^n e^{kt})$, we note

$$L\left(e^{kt}\right) = \frac{1}{s-k}$$
 , $(=F(s))$

by corollary $L\left(t^{n}f\left(t\right)\right)=\left(-1\right)^{n}F^{\left(n\right)}\left(s\right)$, so we take n differentiation

$$\frac{d}{ds}\left(\frac{1}{s-k}\right) = \frac{-1}{\left(s-k\right)^2}, \quad \frac{d^2}{ds^2}\left(\frac{1}{s-k}\right) = \frac{2}{\left(s-k\right)^3}$$

$$\frac{d^3}{ds^3} \left(\frac{1}{s-k} \right) = \frac{-6}{\left(s-k \right)^4}, \text{ hence}$$

$$\frac{d^n}{ds^n} \left(\frac{1}{s-k} \right) = \frac{\left(-1\right)^n n!}{\left(s-k\right)^{n+1}}$$

$$L\left(t^n e^{kt}\right) = \frac{\left(-1\right)^n n!}{\left(s-k\right)^{n+1}}$$

(10e-6.7-6)

$$\frac{d}{dt}y_{1}(t) = 5y_{1}(t) + y_{2}(t)$$

$$\frac{d}{dt}y_{2}(t) = y_{1}(t) + 5y_{2}(t)$$

$$y_{1}(0) = 1, y_{2}(0) = -3$$

Taking Laplace Transforms

$$s Y_1 - y_1(0) = 5 Y_1 + Y_2$$

 $sY_2 - y_2(0) = Y_1 + 5 Y_2$

Using ICs

$$s Y_1 - 1 = 5 Y_1 + Y_2$$

 $s Y_2 + 3 = Y_1 + 5 Y_2$

(10e-6.7-12)

$$\frac{d^{2}}{dt^{2}}y_{1}(t) = -2y_{1}(t) + 2y_{2}(t)$$

$$\frac{d^{2}}{dt^{2}}y_{2}(t) = 2y_{1}(t) - 5y_{2}(t)$$

$$y_{1}(0) = 1, y_{2}(0) = 3, y'_{1}(0) = 0, y'_{2}(0) = 0$$

Taking Laplace Transforms

$$s^{2} Y_{1} - y'_{1}(0) - sy_{1}(0) = -2 Y_{1} + 2 Y_{2}$$

$$s^{2} Y_{2} - y'_{2}(0) - sy_{2}(0) = 2 Y_{1} - 5 Y_{2}$$

Using ICs

$$s^2 Y_1 - s = -2 Y_1 + 2 Y_2$$

 $s^2 Y_2 - 3 s = 2 Y_1 - 5 Y_2$