Solving Actuarial Math with Python

Terence Lim

1	Actua	rial Python
	1.1	Installation
	1.2	Overview
	1.3	Examples
	1.4	Methods
2	Intore	est Theory
4	2.1	Interest rates
	2.2	Examples
	2.3	Methods
	2.3	Wiethods
3	Life (Contingent Risks 13
	3.1	Probability
	3.2	Examples
	3.3	Methods
4	Survi	val Models
	4.1	Lifetime distribution
	4.2	Survival function
	4.3	Force of mortality
	4.4	Actuarial notation
	4.5	Examples
	4.6	Methods
	110	
5	Exped	cted Future Lifetimes 23
	5.1	Complete expectation of life
	5.2	Curtate expectation of life
	5.3	Temporary expectation of life
	5.4	Examples
	5.5	Methods
6	Fract	ional Ages
•	6.1	Uniform distribution of deaths
	6.2	Constant force of mortality
	6.3	Examples
	6.4	Methods
	0.1	Thomas
7 I	Insur	······································
	7.1	Present value of life insurance r.v. Z
	7.2	Pure endowment
	7.3	Variances

	7.4	Varying insurance
	7.5	Examples
	7.6	Methods
0		
8	Annu	
	8.1	Present value of life annuity r.v. Y
	8.2	Life insurance twin
	8.3	Variances
	8.4	Immediate life annuity
	8.5	Varying life annuities
	8.6	Examples
	8.7	Methods
9	Prem	iums 47
9	9.1	Present value of future loss r.v. L
	9.2	Equivalence principle
	9.2	1 1
	9.4	
	9.5	Gross premium
	9.6	Examples
	9.7	Methods
10	Policy	Values 55
10		Net policy value
		Gross policy value
		Variance of future loss
		1
		Examples
	10.0	Methods
11	Reser	ves 63
	11.1	Recursion
		Interim reserves
		Modified reserves
		Examples
		Methods
	1110	
	Life T	
	12.1	Examples
	12.2	Methods
10	CTIT	·
13	SULT	
		Standard ultimate life table
		Pure endowment
		Temporary Annuity
		Examples
	13.5	Methods
1/1	Salact	Life Table 83
14		
		Select and ultimate life model
	14.3	Methods
15	Recur	rsion 91
-		Chain rule

	15.2	Expected future lifetime	91
			92
	15.4	Life annuities	92
			92
		1	96
	13.0	Wictious	<i>,</i> (
16	Mort	ality Laws	99
10			99
			99
	16.3	Makeham's Law	
	16.4	Gompertz's Law	
	16.5	Examples	00
	16.6	Methods	02
17	Cons	tant Force of Mortality	05
	17.1	Expected future lifetime	05
		Pure endowment	
	17.3	Life insurance	
		Life annuities	
		Examples	
	17.6	Methods	08
18			11
		Adjust mortality risk	
	18.2	Examples	11
	18.3	Methods	13
19	1/M't	thly 1	15
	19.1	Life Insurance	15
		Life Annuity Twin	
	19.3	Immediate Life Annuity	
	19.4	Examples	
		Methods	
	19.3	Methods	1 /
20	IIDD	M'thly	19
20			
		Life insurance	
		Continuous Life Insurance	
		Interest functions	
	20.4	Life annuities	20
	20.5	Examples	20
	20.6	Methods	23
21	Wool	house M'thly	25
		·	25
		Examples	
		Methods	
	21.3	Wictious	∠c
22	Somr	ple Solutions and Hints	29
44	•		
	22.1		31
	22.2	2 Survival models	
	22.3	3 Life tables and selection	
	22.4		39
	22.5	5 Annuities	46
	22.6	6 Premium Calculation	49
	~~ =	7 Policy Values	
	22.7	/ Poncy values	()c

actuarialmath - Life Contingent Risks with Python

This package implements fundamental methods for modeling life contingent risks, and closely follows traditional topics covered in actuarial exams and standard texts such as the "Fundamentals of Actuarial Math - Long-term" exam syllabus by the Society of Actuaries, and "Actuarial Mathematics for Life Contingent Risks" by Dickson, Hardy and Waters. The resources listed below should be helpful for getting started. The code chunks in this complete Colab, or Jupyter notebook, demonstrate how to solve each of the sample FAM-L exam questions released by the SOA.

The actuarial concepts, as shown in this graphic, are introduced and modeled hierarchically, and realized by corresponding derivations of Python classes.

Quick Start

- 1. pip install actuarialmath
- 2. Select a suitable subclass to initialize with your actuarial assumptions, such as MortalityLaws (or a special law like ConstantForce), LifeTable, SULT, SelectTable or Recursion.
- 3. Call appropriate methods to compute intermediate or final results, or to solve parameter values implicitly.

4. If needed, adjust the answers with ExtraRisk or Mthly (or its UDD or Woolhouse) classes.

Examples

SOA FAM-L sample question 5.7:

Given $A_{35}=0.188$, $A_{65}=0.498$, $S_{35}(30)=0.883$, calculate the EPV of a temporary annuity $\ddot{a}_{35:\overline{30|}}^{(2)}$ paid half-yearly using the Woolhouse approximation.

SOA FAM-L sample question 7.20:

For a fully discrete whole life insurance of 1000 on (35), you are given

- First year expenses are 30% of the gross premium plus 300
- Renewal expenses are 4% of the gross premium plus 30
- All expenses are incurred at the beginning of the policy year
- Gross premiums are calculated using the equivalence principle
- The gross premium policy value at the end of the first policy year is R
- Using the Full Preliminary Term Method, the modified reserve at the end of the first policy year is S
- · Mortality follows the Standard Ultimate Life Table
- i = 0.05

Calculate R - S

```
from actuarialmath.sult import SULT
                                     # use Standard Ultimate Life Table
from actuarialmath.policyvalues import Contract
life = SULT()
# compute the required FPT policy value
S = life.FPT_policy_value(35, t=1, b=1000) # is always 0 in year 1!
# input the given policy contract terms
contract = Contract(benefit=1000,
                   initial_premium=.3,
                    initial_policy=300,
                    renewal_premium=.04,
                   renewal_policy=30)
# compute gross premium using the equivalence principle
G = life.gross_premium(A=life.whole_life_insurance(35), **contract.premium_terms)
# compute the required policy value
R = life.gross_policy_value(35, t=1, contract=contract.set_contract(premium=G))
print (R-S) \# solution = -277.19
```

Resources

- 1. Colab or Jupyter notebook, to solve all sample SOA FAM-L exam questions
- 2. Online tutorial, or download pdf
- 3. Code documentation
- 4. Github repo and issues

Sources

- SOA FAM-L Sample Questions: copy retrieved Aug 2022
- SOA FAM-L Sample Solutions: copy retrieved Aug 2022
- Actuarial Mathematics for Life Contingent Risks, by David Dickson, Mary Hardy and Howard Waters, published by Cambridge University Press.

Contact

Github: https://terence-lim.github.io

ACTUARIAL PYTHON

The actuarialmath package is written in and requires Python (currently: version 3.10). Though the comparable R language possesses other desirable qualities, object-oriented programming is simpler in Python: since our sequence of actuarial concepts logically build upon each other, they are more naturally developed as a hieararchy of Python classes with inherited methods and attributes.

1.1 Installation

Using pip or git, either:

- 1. pip install actuarialmath, or
- 2. git clone https://github.com/terence-lim/actuarialmath.git

1.2 Overview

The package comprises three sets of classes, which:

- 1. Implement general actuarial concepts
 - 1. Basic interest theory and probability laws
 - 2. Survival functions, future lifetimes and fractional ages
 - 3. Insurance, annuity, premiums, policy values, and reserves calculations
- 2. Adjust results for
 - 1. Extra risks
 - 2. 1/mthly payments using UDD or Woolhouse approaches
- 3. Specify and load a particular form of assumptions
 - 1. Life table, select life table, or standard ultimate life table
 - 2. Mortality laws, such as constant force of maturity, beta and uniform distributions, or Makeham's and Gompertz's laws
 - 3. Recursion inputs

A user should first initialize a class selected from the last set to load their actuarial assumptions, then call appropriate methods that are either specific to that class or inherited from other general classes, which make use of any shortcut formulas or survival distributions obtained from those assumptions.

1.3 Examples

The Actuarial base class provides some common helpful utility functions and definitions of constants, that are needed by other subclasses in the package.

```
from actuarialmath.actuarial import Actuarial
actuarial = Actuarial()
```

For example, the constant WHOLE indicates the contract term of a whole life insurance or annuity policy, whenever we need to add to (or subtract from) finite periods of time.

```
def as_term(t): return "WHOLE_LIFE" if t == Actuarial.WHOLE else t

for a,b in [(3, Actuarial.WHOLE), (Actuarial.WHOLE, -1), (3, 2), (3, -1)]:
    print(f"{as_term(a)} + {as_term(b)} = ", as_term(actuarial.add_term(a, b)))
```

```
3 + WHOLE_LIFE = WHOLE_LIFE
WHOLE_LIFE + -1 = WHOLE_LIFE
3 + 2 = 5
3 + -1 = 2
```

The solve() method numerically solves for the a zero (or root) of an equation, hence can be useful for the purpose of "backing out" the value of the parameter which sets the output of a formula to be equal to a required target.

```
20.0
```

1.4 Methods

```
import describe
describe.methods(Actuarial)
```

```
class Actuarial - Define constants and common utility functions

Constants:
    VARIANCE : select variance as the statistical moment to calculate

WHOLE : indicates that term of insurance or annuity is Whole Life

Methods:
-----
solve(fun, target, grid, mad):
    Solve for the root of, or parameter value that minimizes, an equation

add_term(t, n):
    Add two terms, either term may be Whole Life
```

(continues on next page)

(continued from previous page)

 $\max_{t \in \mathbb{R}} (x, t, u)$:
Adjust term if adding term and deferral periods to (x) exceeds maxage

1.4. Methods 7

INTEREST THEORY

2.1 Interest rates

i is the amount earned on \$1 after one year

- effective annual interest rate
- $i^{(m)}$ is nominal interest rate stated on annual basis, compounded m times per year

$$d = \frac{i}{1+i}$$

- annual discount rate of interest
- $d^{(m)}$ is nominal discount rate stated on annual basis, compounded m times per year

$$v = \frac{1}{1+i}$$

• annual discount factor

$$\delta = \log(1+i)$$

• continuosly-compounded rate of interest

Relationships between interest rates

$$\begin{split} (1+i)^t &= (1-d)^{-t} \\ &= (1+\frac{i^{(m)}}{m})^{mt} \\ &= (1-\frac{d^{(m)}}{m})^{-mt} \\ &= e^{\delta t} \\ &= v^{-t} \end{split}$$

Doubling the force of interest

$$\delta' \leftarrow 2\delta$$

$$i' \leftarrow 2i + i^2$$

$$d' \leftarrow 2d - d^2$$

$$v' \leftarrow v^2$$

Annuity certain

$$\ddot{a}_{\overline{n|}} = \frac{1-v^n}{d}$$

· Annuity certain due

$$a_{\overline{n|}} = \frac{1 - v^n}{i} = \ddot{a}_{\overline{n+1|}} - 1$$

· Immediate annuity certain

$$\overline{a}_{\overline{n|}} = \frac{1-v^n}{\delta}$$

· Continuous annuity certain

2.2 Examples

The Interest class implements methods to convert between nominal, discount, continuously-compounded and 1/m'thy rates of interest, and compute the value of an annuity certain.

```
from actuarialmath.interest import Interest
```

SOA Question 3.10:

A group of 100 people start a Scissor Usage Support Group. The rate at which members enter and leave the group is dependent on whether they are right-handed or left-handed. You are given the following:

- The initial membership is made up of 75% left-handed members (L) and 25% right-handed members (R)
- After the group initially forms, 35 new (L) and 15 new (R) join the group at the start of each subsequent year
- Members leave the group only at the end of each year
- $q^L = 0.25$ for all years
- $q^R = 0.50$ for all years Calculate the proportion of the Scissor Usage Support Group's expected membership that is left-handed at the start of the group's 6th year, before any new members join for that year.

```
print("SOA Question 3.10: (C) 0.86")
interest = Interest(v=0.75)
L = 35 * interest.annuity(t=4, due=False) + 75 * interest.v_t(t=5)
interest = Interest(v=0.5)
R = 15 * interest.annuity(t=4, due=False) + 25 * interest.v_t(t=5)
print(L / (L + R))
```

```
SOA Question 3.10: (C) 0.86
0.8578442833761983
```

Example for doubling the force of interest:

```
print("Example: double the force of interest i=0.05")
i = 0.05
d = Interest(i=i).d  # convert interest rate to discount rate
print('i:', i, 'd:', d)
i2 = Interest.double_force(i=i)  # interest rate after doubling force
d2 = Interest.double_force(d=d)  # discount rate after doubling force
print('i:', round(i2, 6), round(Interest(d=d2).i, 6))
print('d:', round(d2, 6), round(Interest(i=i2).d, 6))
```

```
Example: double the force of interest i=0.05 i: 0.05 d: 0.047619047619047616 i: 0.1025 0.1025 d: 0.092971 0.092971
```

2.3 Methods

```
import describe
describe.methods(Interest)
```

```
class Interest - Convert between nominal, discount, continously-compounded and 1/m
⇔'thly rates,
   and compute value of annuity certain
   Args:
     i : assumed annual interest rate
     d : or assumed discount rate
     v : or assumed discount factor
     delta : or assumed continuously compounded interest rate
     v\_t : or assumed discount rate as a function of time
     i_m : or assumed monthly interest rate
     d_m : or assumed monthly discount rate
     m : m'thly frequency, if i_m or d_m are given
   Attributes:
     i (float) : interest rate
     d (float) : discount rate
     delta (float) : continuously compounded interest rate
     v (float) : discount factor
     v_t (Callable) : discount factor as a function of time
   Methods:
    _____
   annuity(t, m, due):
     Compute value of the annuity certain factor
   mthly(m, i, d, i_m, d_m):
     Convert to or from m'thly interest rates
   double_force(i, delta, d, v):
     Double the force of interest
```

2.3. Methods

THREE

LIFE CONTINGENT RISKS

3.1 Probability

$$Var(aX,bY) = a^2 \ Var(X) + b^2 \ Var(Y) + 2 \ a \ b \ Cov(X,Y)$$

$$Cov(X, Y) = E[XY] - E[X] \cdot E[Y]$$

 ${\bf Bernoulli}\ (p)\ {\bf distribution}$

 $Y \in \{a,\ b\} \text{ w.p. } (p,\ 1-p)$

•
$$E[Y] = a p + b (1 - p)$$

•
$$Var[Y] = (a - b)^2 p (1 - p)$$

Binomial (N, p) distribution

Y is sum of N i.i.d. 0-1 Bernoulli(p)

•
$$E[Y] = N p$$

•
$$Var[Y] = N p (1-p)$$

Mixture (p, p_1, p_2) of binomial distributions

Y is Binomial $(p',\ N)$, where $p'\in (p_1,\ p_2)$ w.p. $(p,\ 1-p)$

$$\bullet \ E[Y] = p \; N \; p_1 + (1-p) \; N \; p_2$$

•
$$Var[Y] = E[Y^2] - E[Y]^2 = E[Var(Y \mid p') + E(Y \mid p')^2] - E[Y]^2$$

Conditional Variance

$$Var[Y] = Var(E[Y \mid p']) + E[Var(Y \mid p')]$$

Portfolio Percentile (p,N,μ,σ^2)

Y is sum of N iid random variables, each with mean μ and variance γ^2

 $Y \sim \text{Normal with}$

$$\bullet \ \ \mathrm{mean} \ E[Y] = N \mu \ \mathrm{and}$$

• variance
$$Var[Y] = N\sigma^2$$

$$Y_p = E[y] + z_p \sqrt{Var[Y]}$$

• value of y at percentile p

3.2 Examples

The Life class implements methods for computing moments and probabilities of random variables – future lifetimes are modelled as random variables in actuarial math.

```
import math
from actuarialmath.life import Life
```

SOA Question 2.2:

Scientists are searching for a vaccine for a disease. You are given:

- 100,000 lives age x are exposed to the disease
- Future lifetimes are independent, except that the vaccine, if available, will be given to all at the end of year 1
- The probability that the vaccine will be available is 0.2
- For each life during year 1, $q_x = 0.02$
- For each life during year 2, $q_{x+1} = 0.01$ if the vaccine has been given and $q_{x+1} = 0.02$ if it has not been given

Calculate the standard deviation of the number of survivors at the end of year 2.

```
print("SOA Question 2.2: (D) 400")
p1 = (1. - 0.02) * (1. - 0.01) # 2_p_x if vaccine given
p2 = (1. - 0.02) * (1. - 0.02) # 2_p_x if vaccine not given
print(math.sqrt(Life.conditional_variance(p=.2, p1=p1, p2=p2, N=100000)))
print(math.sqrt(Life.mixture(p=.2, p1=p1, p2=p2, N=100000, variance=True)))
```

```
SOA Question 2.2: (D) 400
396.5914603215815
396.5914603237804
```

Normal distribution table:

Generate extract of normal distribution table

```
print("Values of z for selected values of Pr(Z<=z)")
print("----")
print(Life.quantiles_frame().to_string(float_format=lambda x: f"{x:.3f}"))</pre>
```

```
Values of z for selected values of Pr(Z<=z)

z 0.842 1.036 1.282 1.645 1.960 2.326 2.576
Pr(Z<=z) 0.800 0.850 0.900 0.950 0.975 0.990 0.995
```

3.3 Methods

```
import describe
describe.methods(Life)
```

```
class Life - Compute moments and probabilities
   Methods:
   variance(a, b, var_a, var_b, cov_ab):
     Variance of weighted sum of two r.v.
   covariance(a, b, ab):
     Covariance of two r.v.
   bernoulli(p, a, b, variance):
     Mean or variance of bernoulli r.v. with values {a, b}
   binomial(p, N, variance):
     Mean or variance of binomial r.v.
   mixture(p, p1, p2, N, variance):
     Mean or variance of binomial mixture
   conditional_variance(p, p1, p2, N):
      Conditional variance formula
   portfolio_percentile(mean, variance, prob, N):
     Probability percentile of the sum of N iid r.v.'s
   set_interest(interest):
     Set interest rate, which can be given in any form
   quantiles_frame(quantiles):
     Display selected quantile values from Normal distribution table
```

3.3. Methods

SURVIVAL MODELS

The future lifetime of an individual is represented as a random variable. Under this framework, probabilities of death or survival, as well as an important quantity known as the force of mortality, can be calculated. Some actuarial notation is also introduced, and it is shown how all these quantities are related to each other.

4.1 Lifetime distribution

Let (x) denotes a life aged x, where $x \ge 0$, and T_x is time-to-death, or future lifetime, of (x). This means that $x + T_x$ represents the age-at-death random variable for (x).

$$F_x(t) = \Pr[T_x \leq t] = \int_0^t f_x(t) ds$$

• probability that (x) does not survive beyond age x + t.

Lifetime density function

$$f_x(t) = \frac{\partial}{\partial t} F_x(t) = \frac{f_0(x+t)}{S_0(x)}$$

• probability density function for the random variable T_x

4.2 Survival function

In life insurance problems we may be interested in the probability of survival rather than death

$$S_x(t) \equiv {}_t p_x = Pr[T_x > t] = 1 - F_x(t)$$

• the probability that (x) survives for at least t years

$$S_x(t) = \frac{S_0(x+t)}{S_0(x)}$$

• by assumption that $Pr[T_x \le t] = Pr[T_0 \le x + t | T_0 > x]$

$$S_x(t)=\int_t^\infty f_x(s)ds$$

• since
$$\int_0^t f_x(s) ds + \int_t^\infty f_x(s) ds = 1$$

$$S_x(t) = \frac{l_{x+t}}{l_x}$$

• relate survivor function to the number of lives in life table

$$S_x(t) = e^{-\int_0^t \mu_{x+t} ds}$$

• relate survival function to the force of mortality

$$S_r(0) = 1, \ S_r(\infty) = 0, \ S'_r(t) \le 0$$

• conditions to be a valid survival function

4.3 Force of mortality

$$\mu_{x+t} = \frac{f_x(t)}{S_x(t)} = \frac{-\frac{\partial}{\partial t}_t p_x}{{}_t p_x} - \frac{\partial}{\partial t} \ln \ _t p_x$$

• is what actuaries call the force of mortality (and known as the hazard rate in survival analysis and the failure rate in reliability theory)

$$\mu_x dx \approx Pr[T_0 \le x + dx | T_0 > x]$$

• can be interpreted as the probability that (x) dies before attaining age x + dx

$$f_x(t) = {}_t p_x \; \mu_{x+t}$$

· can be related to the lifetime density function

$$\int_0^\infty \mu_{x+s} ds = \infty$$

• since $S_x(\infty) = 0$

4.4 Actuarial notation

Survival probability

$$_{t}p_{x}=Pr[T_{x}>t]\equiv S_{x}(t)$$

• probability that (x) survives to at least age x + t

Expected number of survivors

$$l_x = l_{x_0} \ _{x-x_0} p_{x_0}$$

• is the expected number of surviving lives at age x from l_{x_0} independent individuals aged x_0 .

Mortality rate

$$_{t}q_{x}=1-\ _{t}p_{x}\equiv F_{x}(t)$$

• probability that (x) dies before age x + t.

Deferred mortality probability

$$u_{|t|}q_x = Pr[u < T_x \le u + t] = \int_u^{u+t} {}_s p_x \mu_{x+s} ds$$

ullet probability that (x) survives u years, and then dies in the subsequent t years.

$$_{u|t}q_{x}=\ \frac{l_{x+u}-l_{x+u+t}}{l_{x}}$$

• can be related to number of lives in the life table

$$u|_{t}q_{x} = up_{x}tq_{x+u} = u_{+t}q_{x} - uq_{x} = up_{x} - u_{+t}p_{x}$$

• can be computed from (1) deferred mortality (2) limited mortality (3) complement of survival functions.

4.5 Examples

The Survival class implements methods to compute and apply relationships between the various basic and actuarial forms of survival and mortality functions. The force of mortality function fully describes the lifetime distribution, just as the survival function does.

```
import math
from actuarialmath.survival import Survival
```

SOA Question 2.3:

You are given that mortality follows Gompertz Law with B = 0.00027 and c = 1.1. Calculate $f_{50}(10)$.

```
print("SOA Question 2.3: (A) 0.0483")
B, c = 0.00027, 1.1

def S(x,s,t): return (math.exp(-B * c**(x+s) * (c**t - 1)/math.log(c)))
life = Survival().set_survival(S=S)
print(life.f_x(x=50, t=10))
```

```
SOA Question 2.3: (A) 0.0483
0.048327399045049846
```

SOA Question 2.6

You are given the survival function:

$$S_0(x) = \left(1 - \frac{x}{60}\right)^{\frac{1}{3}}, \quad 0 \le x \le 60$$

Calculate $1000\mu_{35}$.

```
print("# SOA Question 2.6: (C) 13.3")
life = Survival().set_survival(l=lambda x,s: (1 - (x+s) / 60)**(1 / 3))
print(1000*life.mu_x(35))
```

```
# SOA Question 2.6: (C) 13.3
13.340451278922776
```

SOA Question 2.7

You are given the following survival function of a newborn:

$$\begin{split} S_0(x) &= 1 - \frac{x}{250}, \quad 0 \leq x < 40 \\ &= 1 - (\frac{x}{100})^2, \quad 40 \leq x \leq 100 \end{split}$$

Calculate the probability that (30) dies within the next 20 years

```
print("SOA Question 2.7: (B) 0.1477")
def S(x,s):
    return 1 - ((x+s) / 250) if (x+s) < 40 else 1 - ((x+s) / 100)**2
print(Survival().set_survival(l=S).q_x(30, t=20))</pre>
```

4.5. Examples 19

```
SOA Question 2.7: (B) 0.1477
0.14772727272727
```

SOA Question 2.8

In a population initially consisting of 75% females and 25% males, you are given:

- ullet For a female, the force of mortality is constant and equals μ
- For a male, the force of mortality is constant and equals 1.5μ
- At the end of 20 years, the population is expected to consist of 85% females and 15% males.

Calculate the probability that a female survives one year.

```
print("SOA Question 2.8: (C) 0.938")

def fun(mu): # Solve first for mu, given ratio of start and end proportions
    male = Survival().set_survival(mu=lambda x,s: 1.5 * mu)
    female = Survival().set_survival(mu=lambda x,s: mu)
    return (75 * female.p_x(0, t=20)) / (25 * male.p_x(0, t=20))

mu = Survival.solve(fun, target=85/15, grid=[0.89, 0.99])
p = Survival().set_survival(mu=lambda x,s: mu).p_x(0, t=1)
print(p)
```

```
SOA Question 2.8: (C) 0.938
0.9383813306903799
```

CAS41-F99:12

You are given the following survival function:

```
S(x) = 100(k - \frac{x}{2})^{\frac{2}{3}}
```

Find k, given that $\mu_{50} = \frac{1}{48}$

```
CAS41-F99:12: k = 41
41.005207994280646
```

4.6 Methods

```
import describe
describe.methods(Survival)
```

```
class Survival - Set and derive basic survival and mortality functions

Methods:
```

(continues on next page)

(continued from previous page)

```
set_survival(S, f, 1, mu, maxage, minage):
   Construct the basic survival and mortality functions given any one form

l_x(x, s):
   Number of lives at integer age [x]+s: l_[x]+s

d_x(x, s):
   Number of deaths at integer age [x]+s: d_[x]+s

p_x(x, s, t):
   Probability that [x]+s lives another t years: : t_p_[x]+s

q_x(x, s, t, u):
   Probability that [x]+s lives for u, but not t+u years: u|t_q_[x]+s

f_x(x, s, t):
   Lifetime density function of [x]+s after t years: f_[x]+s(t)

mu_x(x, s, t):
   Force of mortality of [x] at s+t years: mu_[x](s+t)
```

4.6. Methods 21

EXPECTED FUTURE LIFETIMES

In many insurance applications we are interested not only in the future lifetime of an individual, but also the individual's *curtate* future lifetime, defined as the integer part of future lifetime. For some lifetime distributions we are able to integrate for the mean and standard deviations of future lifetimes directly, without using numerical techniques.

5.1 Complete expectation of life

$$e_x^* = E[T_x] = \int_0^\infty t \, _t p_x \, \mu_{x+t} ds = \int_0^\infty \, _t p_x \, dt$$

• is the complete expectation of life, or the expected future lifetime

$$E[T_x^2] = \int_0^\infty t^2 \ _t p_x \ \mu_{x+t} \ ds = \int_0^\infty \ 2 \ t \ _t p_x \ dt$$

• Second moment of future lifetime

$$Var[T_x] = E[T_x^2] - (\mathring{e}_x)^2$$

· Variance of future lifetime

5.2 Curtate expectation of life

$$K_x = \lfloor T_x \rfloor$$

• is the curtate future lifetime random variable, representing the number of completed whole future years by (x) prior to death

$$e_x = E[K_x] = \sum_{k=0}^\infty k_{|k|} q_x \ = \sum_{k=1}^\infty \ _k p_x \ dt$$

• Is the curtate expectation of life, representing the expected curtate lifetime

$$E[K_{x}^{2}] = \sum_{k=0}^{\infty} k^{2}_{\ k|} q_{x} \ = \sum_{k=1}^{\infty} (2k-1)_{\ k} q_{x} \ dt$$

• Second moment of curtate future lifetime

$$Var[K_x] = E[K_x^2] - (e_x)^2 \label{eq:Var}$$

• Variance of curtate future lifetime

5.3 Temporary expectation of life

We are sometimes interested in the future lifetime random variable subject to a cap of n years, which is represented by the random variable $min(T_r, n)$.

$$\mathring{e}_{x:\overline{n}|} = \int_0^n t \; _t p_x \; \mu_{x+t} \; ds + n \; _n p_x = \int_0^n \; _t p_x \; dt$$

· term complete expectation of life

$$e_{x:\overline{n}|} = \sum_{k=0}^{n-1} k_{k|} q_x + n_n p_x = \sum_{k=1}^{n} k_k p_x$$

• temporary curtate expectation of life, limited at n years

5.4 Examples

The Lifetime class implements methods to compute curtate and complete expectations and second moments of future lifetime

```
from actuarialmath.lifetime import Lifetime
```

SOA Question 2.1

You are given:

- $\bullet \ S0(t) = \left(1 \tfrac{t}{\omega}\right)^{\frac{1}{4}}, \quad 0 \leq t \leq \omega$
- $\mu_{65} = \frac{1}{180}$

Calculate e_{106} , the curtate expectation of life at age 106.

```
SOA Question 2.1: (B) 2.5
2.4786080555423604
```

SOA Question 2.4

You are given $_tq_0 = \frac{t^2}{10,000} \quad 0 < t < 100.$ Calculate $\stackrel{\circ}{e}_{75:\overline{10}|}.$

```
print("SOA Question 2.4: (E) 8.2")
def S(x,s) : return 0. if (x+s) >= 100 else 1 - ((x+s)**2)/10000.
e = Lifetime().set_survival(l=S).e_x(75, t=10, curtate=False)
print(e)
```

```
SOA Question 2.4: (E) 8.2
8.20952380952381
```

5.5 Methods

```
import describe
describe.methods(Lifetime)
```

```
class Lifetime - Computes expected moments of future lifetime

Methods:
-----
e_x(x, s, t, curtate, moment):
   Compute curtate or complete expectations and moments of life
```

5.5. Methods 25

FRACTIONAL AGES

Given values of l_x at integer ages only, we need to make some assumption about the probability distribution for the future lifetime random variable between integer ages, in order to calculate probabilities for non-integer ages or durations. Such fractional age assumptions may be specified in terms of the force of mortality function (e.g. constant) or the survival or mortality probabilities (e.g. uniform distribution of deaths).

6.1 Uniform distribution of deaths

$$T_x = K_x + R_x$$

- The UDD assumptions defines a new random variable $R_x \sim U(0,1) which is independent of {\rm K_x}$ \$.

$$_{r}q_{x}=r\ q_{x},$$
 for integer x and $0\leq s<1$

• is an equivalent way of formulating the UDD assumption

$$l_{x+r} = (1-r) \; l_x + r \; l_{x+1} = l_x - r \; d_x$$

• UDD is linear interpolation of lives between integer ages

$$_{r}q_{x+s}=\frac{r\ q_{x}}{1-s\ q_{x}},\quad\text{for }0\leq s+r<0$$

• mortality rate at a fractional age over a fractional duration, under UDD

$$\mu_{x+r} = \frac{1}{1-r\;q_x}$$

 applying the UDD approximation over successive ages implies a discontinuous function for the force of mortality, with discontinuities occurring at integer ages.

$$f_x(r) = {}_r p_x \mu_{x+r} = q_x$$

• lifetime density is constant between integer ages, which also follows from the UDD assumption for R_x .

$$\mathring{e}_x = q_x \frac{1}{2} + p_x (1 + \mathring{e}_{x+1})$$

• recursive expression for complete expectation of life obtained with UDD assumption

$$\mathring{e}_{x:\overline{1|}} = 1 - q_x \frac{1}{2} = q_x \frac{1}{2} + \ p_x$$

• 1-year limited complete expectation under UDD

$$\overset{\circ}{e}_x \approx e_x + 0.5$$

• This exact result under UDD is often used as an approximation of complete and curtate expectations.

6.2 Constant force of mortality

$$\mu_{x+r} = \ \mu_x = \ -\ln \ p_x, \quad \text{ for } 0 \leq r < 1$$

· force of mortality is constant between integer ages, which leads to a step function over successive years of age

$$l_{x+r} = (l_x)^{1-r} \cdot (l_{x+1})^r$$

· constant force of mortality is exponential interpolation of lives

$$_{r}p_{x}=e^{-\mu_{x}r}=(p_{x})^{r}$$

 \bullet since $p_x=e^{-\int_0^1\mu_{x+u}du}=e^{-\mu_x}$

$$_{r}p_{x+s} = e^{-\int_{0}^{r}\mu_{x+s+u}du} = (p_{x})^{r}, \quad \text{for } 0 \le r+s < 1$$

• the probability of surviving for period of s from age x + t is independent of t under constant force of mortality

$$f_x(r) = {}_r p_x \; \mu_{x+r} = e^{-\mu_x r} \cdot \mu_x, \quad \text{for } 0 \le r < 1$$

• relate lifetime density of (x) to constant force of mortality assumption

6.3 Examples

The Fractional class implements methods to compute survival and mortality functions between integer ages, assuming either uniform distribution of deaths or constant force of mortality

```
from actuarialmath.fractional import Fractional
```

Compare assumptions:

```
life1 = Fractional(udd=False).set_survival(l=lambda x,t: 50-x-t)
life2 = Fractional(udd=True).set_survival(l=lambda x,t: 50-x-t)
print('mortality rate    ', life1.q_r(40, t=0.5), life2.q_r(40, t=0.5))
print('force of mortality', life1.mu_r(40, r=0.5), life2.mu_r(40, r=0.5))
print('lifetime density ', life1.f_r(40, r=0.5), life2.f_r(40, r=0.5))
```

6.4 Methods

```
import describe
describe.methods(Fractional)
```

```
class Fractional - Compute survival functions at fractional ages and durations

Args:
    udd : select UDD (True, default) or CFM (False) between integer ages

Methods:
(continue or next rese)
```

(continues on next page)

(continued from previous page)

```
l_r(x, s, r):
 Number of lives at fractional age: l_[x]+s+r
p_r(x, s, r, t):
 Probability of survival from and through fractional age: t_p[x]+s+r
q_r(x, s, r, t, u):
 Deferred mortality rate within fractional ages: u|t_q[x]+s+r
mu_r(x, s, r):
 Force of mortality at fractional age: mu_[x]+s+r
f_r(x, s, r, t):
 mortality function at fractional age: f_{x}=x^{-1}
E_r(x, s, r, t):
 Pure endowment at fractional age: t_E[x]+s+r
e_r(x, s, t):
  Temporary expected future lifetime at fractional age: e_[x]+s:t
e_approximate(e_complete, e_curtate):
 Convert between curtate and complete expectations assuming UDD shortcut
```

6.4. Methods 29

INSURANCE

For a life insurance policy, the time at which the benefit will be paid is unknown until the policyholder actually dies and the policy becomes a claim.

7.1 Present value of life insurance r.v. Z

Valuation functions for the present value of insurance benefits, denoted by Z, are based on the continuous future lifetime random variable, Tx, or the curtate future lifetime random variable, Kx. The expected present value of insurance benefit, denoted and solved by EPV(Z), is sometimes referred to as the actuarial value or actuarial present value.

Whole life insurance:

$$Z = v^{T_x}$$

• continuous insurance, benefit is payable immediately on death

$$\overline{A}_x = E[v^{T_x}] = \int_{t=0}^{\infty} \ v^t \ _t p_x \ \mu_{x+t} \ dt$$

• EPV continuous whole life insurance

$$Z = v^{K_x + 1}$$

· annual insurance, benefit is payable at end of year of death

$$A_x = E[v^{K_x+1}] = \sum_{k=0}^{\infty} \ v^{k+1}_{\ k|} q_x$$

· EPV of annual whole life insurance

Term insurance:

$$Z=0 \ {\rm when} \ T_x>t, {\rm else} \ v^{T_x}$$

 \bullet death benefit is payable immediately only if the policy-holder dies within t years

$$\overline{A}_{x:\overline{t}|}^1 = \int_{s=0}^t \ v^s \ _s p_x \ \mu_{x+s} \ ds = \overline{A}_x - \ _t E_x \ \overline{A}_{x+t}$$

• continous term insurance as the difference of continous whole life and deferred continuous whole life

$$Z=0$$
 when $K_x\geq t$, else v^{K_x+1}

• death benefit is payable at the end of the year of death provided this occurs within t years

$$A^1_{x:\overline{t|}} = \sum_{k=0}^{t-1} \ v^{k+1} \ _{k|} q_x = A_x - \ _t E_x \ A_{x+t}$$

· annual term insurance as the difference of annual whole life and deferred annual whole life

Deferred whole life insurance:

Does not begin to offer death benefit cover until the end of a deferred period

$$Z = 0$$
 when $T_x < u$, else v^{T_x}

• benefit is payable immediately on the death of (x) provided that (x) dies after the age of x + u

$${}_{u|}\overline{A}_{x:\overline{t}|} = {}_{u}E_{x} \; \overline{A}_{x+u:\overline{t}|}$$

• continuous deferred insurance as the EPV of whole life insurance starting at the end of deferred period.

$$Z = 0$$
 when $K_x < u$, else v^{K_x+1}

• annual deferred insurance where the death benefit is payable at the end of the year of death

$$_{u|}A_{x:\overline{t}|}=\ _{u}E_{x}\ A_{x+u:\overline{t}|}$$

• annual deferred insurance as the EPV of whole life insurance starting at the end of deferred period.

Endowment insurance:

An endowment insurance provides a combination of a term insurance and a pure endowment.

$$Z = v^t$$
 when $T_x \ge t$, else v^{T_x}

• benefit is payable on the death of (x) should (x) die within t years, but if (x) survives for t years, the sum insured is payable at the end of the t-th year.

$$\overline{A}_{x:\overline{t}|} = \overline{A}_{x:\overline{t}|}^1 + {}_t E_x$$

• continuous endowment insurance as continuous term insurance plus a pure endowment

$$Z = v^t$$
 when $K_x \ge t$, else v^{K_x+1}

• annual endowment insurance where the death benefit is payable at the end of the year of death

$$A_{x:\overline{t}|} = A_{x:\overline{t}|}^1 + {}_t E_x$$

• annual endowment insurance as annual term insurance plus a pure endowment

7.2 Pure endowment

$$Z = 0$$
 when $T_x < t$, else v^t

• benefit payable in t years if (x) is still alive at that time, but pays nothing if (x) dies before then.

$$_{n}E_{x}=A_{x:\overline{n}|}^{}=v^{n}_{n}p_{x}$$

 Because the pure endowment will be paid only at time t, assuming the life survives, there is only the discrete time version

7.3 Variances

The variance of life insurance benefits is computed as the difference of the second moment and square of the first moment.

$$^2\overline{A}_x = \int_{t=0}^{\infty} \ v^{2t} \ _t p_x \ \mu_{x+t} \ dt$$

• second moment of continuous insurance equal to \overline{A}_x at double the force of interest.

$$^{2}A_{x}=\sum_{k=0}^{\infty}\ v^{2(k+1)}\ _{k|}q_{x}$$

• second moment of annual insurance is equal to A_x at double the force of interest.

Life insurance:

$$Var(\overline{A}_x)={}^2\overline{A}_x-(\overline{A}_x)^2$$

• variance of continuous whole life insurance

$$Var(A_x) = {}^{2}A_x - (A_x)^2$$

• variance of annual whole life insurance

$$Var(\overline{A}_{x:\overline{t}|}^{1})={}^{2}\overline{A}_{x:\overline{t}|}^{1}-(\overline{A}_{x:\overline{t}|}^{1})^{2}$$

• variance of continuous term life insurance

$$Var(A^1_{x:\overline{t|}}) = {}^2A^1_{x:\overline{t|}} - \ (A^1_{x:\overline{t|}})^2$$

• variance of annual term life insurance

$$Var(u|\overline{A}_{x:\overline{t}|}) = {}^{2}_{u}|\overline{A}_{x:\overline{t}|} - (u|\overline{A}_{x:\overline{t}|})^{2}$$

• variance of continuous deferred life insurance

$$Var(u|A_{x:\overline{t}|}) = \frac{2}{u|}A_{x:\overline{t}|} - (u|A_{x:\overline{t}|})^2$$

• variance of annual deferred life insurance

$$Var(\overline{A}_{x:\overline{t}|})={}^{2}\overline{A}_{x:\overline{t}|}-(\overline{A}_{x:\overline{t}|})^{2}$$

• variance of continous endowment insurance

$$Var(A_{x:\overline{t|}})={}^2A_{x:\overline{t|}}-\ (A_{x:\overline{t|}})^2$$

· variance of annual endowment insurance

Pure Endowment:

$$_t^2E_x=v^{2t}\ _tp_x=v_t\ _tE_x$$

• second moment of pure endowment by discounting ${}_{t}E_{x}$

$$Var({}_tE_x) = v^{2t} \ {}_tp_x \ {}_tq_x = v^{2t} \ {}_tp_x - (v^t \ {}_tp_x)^2$$

• variance of pure endowment is the variance of a Bernoulli random variable

7.4 Varying insurance

Increasing insurance:

Amount of death benefit increases arithmetically at a rate of \$1 per year.

$$(\overline{IA})_x = \int_{t=0}^{\infty} t \, v^t \,_t p_x \, \mu_{x+t} \, dt$$

• increasing continuous whole life insurance

$$(IA)_x = \sum_{k=0}^{\infty} (k+1) v^{k+1} {}_{k|} q_x$$

• increasing annual whole life insurance

$$(\overline{IA})_{x:\overline{t}|}^{1} = \int_{s=0}^{t} s \, v^{s} \,_{s} p_{x} \, \mu_{x+s} \, ds$$

• increasing continuous term insurance

$$(IA)^1_{x:\overline{t|}} = \sum_{k=0}^{t-1} \; (k+1) \; v^{k+1} \; {}_{k|} q_x$$

· increasing annual term insurance

Decreasing insurance:

Amount of death benefit increasing arithmetically at a rate of \$1 per year.

$$(\overline{DA})_{x:\overline{t}|}^{1} = \int_{s=0}^{t} (t-s) v^{s} {}_{s} p_{x} \mu_{x+s} ds$$

• decreasing continuous term insurance (not defined for whole life)

$$(DA)^1_{x:\overline{t}|} = \sum_{k=0}^{t-1} \ (t-k) \ v^{k+1} \ _{k|} q_x$$

• decreasing annual term insurance (not defined for whole life)

Identity relationship:

$$(\overline{DA})_{x:\overline{t}|}^1 + (\overline{IA})_{x:\overline{t}|}^1 = t \ \overline{A}_{x:\overline{t}|}^1$$

· relates continuous increasing and decreasing insurances

$$(DA)^1_{x:\overline{t}|} + (IA)^1_{x:\overline{t}|} = (t+1) \; A^1_{x:\overline{t}|}$$

· relates annual increasing and decreasing insurances

7.5 Examples

The Insurance class implements methods to compute the present value of life insurance

```
import math
import numpy as np
import matplotlib.pyplot as plt
from actuarialmath.insurance import Insurance
```

SOA Question 6.33

An insurance company sells 15-year pure endowments of 10,000 to 500 lives, each age x, with independent future lifetimes. The single premium for each pure endowment is determined by the equivalence principle.

- You are given:
- i = 0.03
- $\mu_r(t) = 0.02t, \quad t \ge 0$
- $_{0}L$ is the aggregate loss at issue random variable for these pure endowments.

Using the normal approximation without continuity correction, calculate $Pr(_0L) > 50,000$).

```
print("SOA Question 6.33: (B) 0.13")
life = Insurance().set_survival(mu=lambda x,t: 0.02*t).set_interest(i=0.03)
var = life.E_x(x=0, t=15, moment=life._VARIANCE, endowment=10000)
p = 1 - life.portfolio_cdf(mean=0, variance=var, value=50000, N=500)
print(p)
```

```
SOA Question 6.33: (B) 0.13
0.12828940905648634
```

SOA Question 4.18

You are given that T, the time to first failure of an industrial robot, has a density f(t) given by

$$f(t) = 0.1, \quad 0 \le t < 2$$

= $0.4t^{-2}, \quad t < t < 10$

with f(t) undetermined on $[10, \infty)$.

Consider a supplemental warranty on this robot that pays 100,000 at the time T of its first failure if $2 \le T \le 10$, with no benefits payable otherwise. You are also given that $\delta = 5\%$. Calculate the 90th percentile of the present value of the future benefits under this warranty.

```
SOA Question 4.18 (A) 81873
81873.07530779815
```

SOA Question 4.10

The present value random variable for an insurance policy on (x) is expressed as: \$\$

Determine which of the following is a correct expression for E[Z].

(A)
$$_{10|}\overline{A}_x+_{20|}\overline{A}_x-_{30|}\overline{A}_x$$

(B)
$$\overline{A}_x +_{20} E_x \overline{A}_{x+20} - 2 \ _{30} E_x \overline{A}_{x+30}$$

(C)
$$_{210}E_{x}\overline{A}_{x}+_{20}E_{x}\overline{A}_{x+20}-2\ _{30}E_{x}\overline{A}_{x+30}$$

(D)
$$_{10}E_{x}\overline{A}_{x+10}+_{20}Ex\overline{A}_{x+20}-2\ _{30}Ex\overline{A}_{x+30}$$

(E)
$$_{10}E_{x}[\overline{A}_{x}+_{10}E_{x+10}+\overline{A}_{x+20}-_{10}E_{x+20}+\overline{A}_{x+30}]$$

```
print("SOA Ouestion 4.10: (D)")
life = Insurance().set_interest(i=0) \
                     .set_survival(S=lambda x,s,t: 1, maxage=40)
def fun(x, t):
    if 10 <= t <= 20: return life.interest.v_t(t)</pre>
    elif 20 < t <= 30: return 2 * life.interest.v_t(t)</pre>
    else: return 0
def A(x, t): # Z_x+k (t-k)
    return life.interest.v_t(t - x) * (t > x)
benefits=[lambda x,t: (life.E_x(x, t=10) * A(x+10, t)
                             + life.E_x(x, t=20) * A(x+20, t)
                             - life.E_x(x, t=30) * A(x+30, t)),
            lambda x,t: (A(x, t)
                             + life.E_x(x, t=20) * A(x+20, t)
                             -2 * life.E_x(x, t=30) * A(x+30, t)),
            lambda x,t: (life.E_x(x, t=10) * A(x, t)
                             + life.E_x(x, t=20) * A(x+20, t)
                             -2 * life.E_x(x, t=30) * A(x+30, t)),
```

(continues on next page)

7.5. Examples 35

(continued from previous page)

```
SOA Question 4.10: (D)
```


SOA Question 4.12

For three fully discrete insurance products on the same (x), you are given:

- Z_1 is the present value random variable for a 20-year term insurance of 50
- Z_2 is the present value random variable for a 20-year deferred whole life insurance of 100

- Z_3 is the present value random variable for a whole life insurance of 100.
- $E[Z_1] = 1.65$ and $E[Z_2] = 10.75$
- $Var(Z_1) = 46.75$ and $Var(Z_2) = 50.78$

Calculate $Var(Z_3)$.

```
print("SOA Question 4.12: (C) 167")
cov = Insurance.covariance(a=1.65, b=10.75, ab=0) # Z1 and Z2 nonoverlapping
var = Insurance.variance(a=2, b=1, var_a=46.75, var_b=50.78, cov_ab=cov)
print(var)
```

```
SOA Question 4.12: (C) 167
166.829999999998
```

SOA Question 4.11

You are given:

- Z_1 is the present value random variable for an n-year term insurance of 1000 issued to (x)
- Z_2 is the present value random variable for an n-year endowment insurance of 1000 issued to (x)
- ullet For both Z_1 and Z_2 the death benefit is payable at the end of the year of death
- $E[Z_1] = 528$
- $Var(Z_2) = 15,000$
- $A_{x:\overline{n|}} = 0.209$
- ${}^{2}A_{x:\overline{n}|} = 0.136$

Calculate $Var(Z_1)$.

```
print("SOA Question 4.11: (A) 143385")
A1 = 528/1000  # E[Z1]  term insurance
C1 = 0.209  # E[pure_endowment]
C2 = 0.136  # E[pure_endowment^2]

def fun(A2):
    B1 = A1 + C1  # endowment = term + pure_endowment
    B2 = A2 + C2  # double force of interest
    return Insurance.insurance_variance(A2=B2, A1=B1)
A2 = Insurance.solve(fun, target=15000/(1000*1000), grid=[143400, 279300])
var = Insurance.insurance_variance(A2=A2, A1=A1, b=1000)
print(var)
```

```
SOA Question 4.11: (A) 143385
143384.9999999997
```

SOA Question 4.15

For a special whole life insurance on (x), you are given:

- · Death benefits are payable at the moment of death
- The death benefit at time t is $b_t = e^{0.02t}$, for $t \ge 0$
- $\mu_{x+t} = 0.04$, for $t \ge 0$
- $\delta = 0.06$

7.5. Examples 37

• Z is the present value at issue random variable for this insurance.

Calculate Var(Z).

```
SOA Question 4.15 (E) 0.0833
0.08334849338238598
```

SOA Question 4.4

For a special increasing whole life insurance on (40), payable at the moment of death, you are given:

- The death benefit at time t is $b_t = 1 + 0.2t$, $t \ge 0$
- The interest discount factor at time t is v(t) = (1 + 0.2t) 2, $t \ge 0$
- $_tp_{40}\mu_{40+t} = 0.025$ if $0 \le t < 40$, otherwise 0
- Z is the present value random variable for this insurance Calculate Var(Z).

```
SOA Question 4.4 (A) 0.036
0.03567680106032681
```

Plot insurance present value r.v Z

Plot the insurance present value r.v. Z and survival probability of (x), and indicate median survival lifetime. Assume mortality follows Standard Ultimate Life Table

7.6 Methods

```
import describe
describe.methods(Insurance)
```

```
class Insurance - Compute expected present values of life insurance

Methods:
------

E_x(x, s, t, endowment, moment):
   Pure endowment: t_E_x

A_x(x, s, t, u, benefit, endowment, moment, discrete):
   Numerically compute EPV of insurance from basic survival functions

insurance_variance(A2, A1, b):
   Compute variance of insurance given moments and benefit

whole_life_insurance(x, s, moment, b, discrete):
   Whole life insurance: A_x

term_insurance(x, s, t, b, moment, discrete):
   (continues on next page)
```

7.6. Methods 39

(continued from previous page)

```
Term life insurance: A_x:t^1
deferred_insurance(x, s, u, t, b, moment, discrete):
 Deferred insurance n|_A_x:t^1 = discounted term or whole life
endowment_insurance(x, s, t, b, endowment, moment, discrete):
 Endowment insurance: A_x^1:t = term insurance + pure endowment
increasing_insurance(x, s, t, b, discrete):
  Increasing life insurance: (IA)_x
decreasing_insurance(x, s, t, b, discrete):
 Decreasing life insurance: (DA)_x
Z_t(x, prob, discrete):
  T_x given percentile of the PV of WL or Term insurance, i.e. r.v. Z(t)
Z_from_t(t, discrete):
 PV of insurance payment Z(t), given T_x (or K_x if discrete)
 T_x s.t. PV of insurance payment is Z
Z_from_prob(x, prob, discrete):
 Percentile of insurance PV r.v. Z, given probability
Z_{to\_prob(x, Z)}:
 Cumulative density of insurance PV r.v. Z, given percentile value
Z_x(x, s, t, discrete):
 EPV of year t insurance death benefit for life aged [x]+s: b_x[s]+s(t)
Z_plot(x, s, stop, benefit, T, discrete, ax, title, color):
 Plot of PV of insurance r.v. Z vs t
```

ANNUITIES

A life annuity is a regular sequence of payments as long as the annuitant is alive on the payment date.

8.1 Present value of life annuity r.v. Y

Valuation functions for the present value of annuity benefits, denoted by Y, are based on the continuous future lifetime random variable, T_x , and the curtate future lifetime random variable, K_x . The expected present value of annuity benefits is denoted and solved by $\mathrm{EPV}(\mathrm{Y})$

Whole life annuity:

$$Y=\ \overline{a}_{\overline{T_x|}}=rac{1-v^{T_x}}{\delta}=$$
 present value of annuity certain due through T_x

$$\overline{a}_x = EPV[\overline{a}_{\overline{T_x|}}] = \int_{t=0}^{\infty} \ v^t_{\ t} p_x \ dt$$

• continuous whole life annuity, benefit is payable up to the moment of death

$$Y = \ddot{a}_{\overline{K_x+1|}} = \frac{1-v^{K_x+1}}{d} = \text{present value of continuous annuity certain through } K_x+1$$

$$\ddot{a}_x = EPV[\ddot{a}_{\overline{K_x+1|}}] = \sum_{k=0}^{\infty} \ v^k_{-k|} p_x$$

• annual life annuity due, benefit is payable up to the beginning of the year of death

Temporary annuity:

$$Y = \ \overline{a}_{\overline{t|}}$$
 when or $T_x > t$, else $\overline{a}_{\overline{T_x|}}$

$$\overline{a}_{x:\overline{t}|} = \int_{s=0}^{t} \ v^{s} \ _{s}p_{x} \ ds = \overline{A}_{x} - \ _{t}E_{x} \ \overline{a}_{x+t}$$

• continuous temporary life annuity

$$Y=\ddot{a}_{\overline{t|}}$$
 when $K_x\geq t,$ else $\ddot{a}_{\overline{K_x+1|}}$

$$\ddot{a}_{x:\overline{t}|} \sum_{k=0}^{t} \left. v^{k} \right|_{k|} p_{x} = \ddot{a}_{x} - \left|_{t} E_{x} \right| \ddot{a}_{x+t}$$

• annual temporary life annuity due

Deferred whole life annuity:

$$_{u|}\overline{a}_{x}=\overline{a}_{x}-\overline{a}_{x+u}$$

• continuous deferred life annuity as the difference of whole life annuities

$$a_{u}\ddot{a}_{x} = \ddot{a}_{x} - \ddot{a}_{x+u}$$

• annual deferred annuity due as the difference of annual whole life annuities due

Certain and life annuity:

A common feature of pension benefits is that the pension annuity is guaranteed to be paid for some period even if the annuitant dies before the end of the period.

$$\begin{split} Y &= \ \overline{a}_{\overline{n|}} \text{ when } T_x \leq n \text{, else } \overline{a}_{\overline{T_x|}} \\ \overline{a}_{\overline{x:\overline{n|}}} &= \overline{a}_{\overline{n|}} + \ _{n|} \overline{a}_x \end{split}$$

• is a continuous temporary certain annuity plus a deferred continuous whole life annuity

$$\begin{split} Y &= \ddot{a}_{\overline{n|}} \text{ when } K_x < n \text{, else } \ddot{a}_{\overline{K_x + 1|}} \\ \ddot{a}_{\overline{x \cdot \overline{n|}}} &= \ddot{a}_{\overline{n|}} + \ _{n|} \ddot{a}_x \end{split}$$

• is an annual temporary certain annuity due, plus a deferred annual life annuity due

8.2 Life insurance twin

Whole and Temporary Life Annuities (and Whole Life and Endowment Insurance) ONLY:

$$\overline{a}_x = \frac{1 - \overline{A}_x}{\delta}$$

$$\overline{A}_x = 1 - \delta \; \overline{a}_x$$

· continuous whole life insurance twin for continuous whole life annuity

$$\ddot{a}_x = \frac{1-A_x}{d}$$

$$A_x = 1 - d \ddot{a}_x$$

• annual whole life insurance twin for annual life annuity due

$$\overline{a}_{x:\overline{t}|} = \frac{1 - \overline{A}_{x:\overline{t}|}}{\delta}$$

$$\overline{A}_{x:\overline{t}|} = 1 - \delta \; \overline{a}_{x:\overline{t}|}$$

• continuous endowment insurance twin for continuous temporary life annuity

$$\ddot{a}_{x:\overline{t}|} = \frac{1 - A_{x:\overline{t}|}}{d}$$

$$A_{x:\overline{t}|} = 1 - d \; \ddot{a}_{x:\overline{t}|}$$

• annual endowment insurance twin for annual temporary life annuity due

8.3 Variances

Whole life annuity

$$^2\overline{a}_x=\frac{1-{}^2\overline{A}_x}{2\delta}$$

$$^2\overline{A}_x=1-(2\delta)\ ^2\overline{a}_x$$

$$Var(\overline{a}_x) = \frac{{}^2\overline{A}_x - (\overline{A}_x)^2}{d^2}$$

• from doubling the force of interest of continuous whole life insurance

$$\begin{split} ^{2}\ddot{a}_{x}&=\frac{1-^{2}A_{x}}{2d-d^{2}}\\ ^{2}A_{x}&=1-\left(2d-d^{2}\right){}^{2}\ddot{a}_{x}\\ Var(\ddot{a}_{x})&=\frac{^{2}\ddot{a}_{x}-\left(A_{x}\right)^{2}}{\delta^{2}} \end{split}$$

• from doubling the force of interest of annual whole life insurance

Temporary life annuity

$$\begin{split} ^{2}\overline{a}_{x:\overline{t}|} &= \frac{1 - ^{2}\overline{A}_{x:\overline{t}|}}{2\delta} \\ ^{2}\overline{A}_{x:\overline{t}|} &= 1 - (2\delta) \ ^{2}\overline{a}_{x:\overline{t}|} \\ Var(\overline{a}_{x:\overline{t}|}) &= \frac{^{2}\overline{A}_{x:\overline{t}|} - (\overline{A}_{x:\overline{t}|})^{2}}{d^{2}} \end{split}$$

• from doubling the force of interest of continuous endowment insurance

$$\begin{split} ^{2}\ddot{a}_{x:\overline{t}|} &= \frac{1 - ^{2}A_{x:\overline{t}|}}{2d - d^{2}} \\ ^{2}A_{x:\overline{t}|} &= 1 - (2d - d^{2}) \ ^{2}\ddot{a}_{x:\overline{t}|} \\ Var(\ddot{a}_{x:\overline{t}|}) &= \frac{^{2}A_{x:\overline{t}|} - \ (A_{x:\overline{t}|})^{2}}{\delta^{2}} \end{split}$$

• from doubling the force of interest of annual endowment insurance

8.4 Immediate life annuity

Benefit is paid at the *end of the year*, as long as the annuitant is alive, and can be relate to the value of an annual life annuity due:

$$a_x = \ddot{a}_x - 1$$

· whole life annuities

$$a_{x:\overline{t|}} = \ddot{a}_{x:\overline{t|}} - 1 + \ _tE_x$$

· temporary life annuities

8.5 Varying life annuities

Increasing annuity:

The amount of the annuity payment increases arithmetically with time.

$$(\overline{Ia})_x = \int_{t=0}^{\infty} t \, v^t_{t} p_x \, dt$$

• increasing continuous whole life annuity

$$(I\ddot{a})_x = \sum_{k=0}^{\infty} \ (k+1) \ v^{k+1} \ _k p_x$$

• increasing annual whole life annuity due

$$(\overline{Ia})_{x:\overline{t}|} = \int_{s=0}^{t} s \, v^{s} \,_{s} p_{x} \, ds$$

· increasing continuous temporary life annuity

$$(I\ddot{a})_{x:\overline{t|}} = \sum_{k=0}^{t-1} \; (k+1) \; v^{k+1} \; _k p_x$$

• increasing annual temporary life annuity due

Decreasing annuity:

The amount of the annuity payment decreases arithmetically with time.

$$(\overline{Da})_{x:\overline{t}|} = \int_{s=0}^{t} (t-s) v^{s} {}_{s} p_{x} ds$$

• decreasing continuous temporary life annuity (not defined for whole life)

$$(D\ddot{a})_{x:\overline{t}|} = \sum_{k=0}^{t-1} \ (t-k) \ v^{k+1} \ _k p_x$$

• decreasing annual temporary life annuity due (not defined for whole life)

Identity relationships:

$$(\overline{Da})_{x:\overline{t}|} + (\overline{Ia})_{x:\overline{t}|} = t \; \overline{a}_{x:\overline{t}|}$$

· relating continuous decreasing and increasing life annuities

$$(D\ddot{a})_{x:\overline{t}|} + (I\ddot{a})_{x:\overline{t}|} = (t+1) \; \ddot{a}_{x:\overline{t}|}$$

· relating annual decreasing and increasing life annuities due

8.6 Examples

The Annuity class implements methods to compute the present value of life annuities

```
from actuarialmath.annuity import Annuity
```

SOA Ouestion 5.6

For a group of 100 lives age x with independent future lifetimes, you are given:

- Each life is to be paid 1 at the beginning of each year, if alive
- $A_x = 0.45$
- ${}^{2}A_{x} = 0.22$
- i = 0.05
- Y is the present value random variable of the aggregate payments.

Using the normal approximation to Y, calculate the initial size of the fund needed to be 95% certain of being able to make the payments for these life annuities.

```
print("SOA Question 5.6: (D) 1200")
life = Annuity().set_interest(i=0.05)
var = life.annuity_variance(A2=0.22, A1=0.45)
mean = life.annuity_twin(A=0.45)
print(life.portfolio_percentile(mean=mean, variance=var, prob=.95, N=100))
```

```
SOA Question 5.6: (D) 1200
1200.6946732201702
```

Plot annuity present value r.v. Y:

Mortality follows Standard Ultimate Life Table. Indicate median lifetime of (20).

```
from actuarialmath.sult import SULT
life = SULT()
life.Y_plot(x=20, stop=80, T=life.Y_t(x=20, prob=0.5))
```

```
20.27530100523103
```


8.7 Methods

```
import describe
describe.methods(Annuity)
```

```
class Annuity - Compute present values and relationships of life annuities

Methods:
------
a_x(x, s, t, u, benefit, discrete):
   Numerically compute EPV of annuities from survival functions

immediate_annuity(x, s, t, b, variance):
   Compute EPV of immediate life annuity

(continues on next page)
```

8.7. Methods 45

(continued from previous page)

```
annuity_twin(A, discrete):
 Returns annuity from its WL or Endowment Insurance twin"
insurance_twin(a, moment, discrete):
 Returns WL or Endowment Insurance twin from annuity
annuity_variance(A2, A1, b, discrete):
 Compute variance from WL or endowment insurance twin
whole_life_annuity(x, s, b, variance, discrete):
  Whole life annuity: a_x
temporary_annuity(x, s, t, b, variance, discrete):
  Temporary life annuity: a_x:t
deferred_annuity(x, s, u, t, b, discrete):
  Deferred life annuity n|t_a_x = n+t_a_x - n_a_x
certain_life_annuity(x, s, u, t, b, discrete):
 Certain and life annuity = certain + deferred
increasing_annuity(x, s, t, b, discrete):
  Increasing annuity
decreasing\_annuity(x, s, t, b, discrete):
  Identity (Da)_x:n + (Ia)_x:n = (n+1) a_x:n temporary annuity
Y_t(x, prob, discrete):
  T_x given percentile of the r.v. Y = PV of WL or Temporary Annuity
Y_from_t(t, discrete):
 PV of insurance payment Y(t), given T_x (or K_x if discrete)
Y_from_prob(x, prob, discrete):
  Percentile of annuity PV r.v. Y, given probability
Y_{to_prob(x, Y):
  Cumulative density of insurance PV r.v. Y, given percentile value
Y_x(x, s, t, discrete):
  EPV of year t annuity benefit for life aged [x]+s: b_x[s]+s(t)
Y_{plot}(x, s, stop, benefit, T, discrete, ax, title, color):
 Plot PV of annuity r.v. Y vs T
```

PREMIUMS

When insurance company agrees to pay some life contingent benefits, the policyholder agrees to pay premiums to the insurance company to secure these benefits. The premiums will also need to reimburse the insurance company for the expenses associated with the policy. The calculation of the premium may not explicitly allow for the insurance company's expenses. In this case we refer to a net premium (also called a risk premium or benefit premium). If the calculation does explicitly allow for expenses, the premium is called a gross premium (also called expense-loaded premium).

Premiums for life insurance are payable in advance, with the first premium payable when the policy is purchased.

9.1 Present value of future loss r.v. L

 $_{0}L = PV$ of loss at issue = PV of future benefits - PV of future premiums

9.2 Equivalence principle

Under this principle, premiums are set such that expected loss at issue equals zero:

$$E[_0L] = EPV_0$$
(future benefits) $-EPV_0$ (future premiums) = 0

- Fully continuous: both benefits and premiums are payable continuously
- Fully discrete: benefits are paid at the end of the year, premiums are paid at the beginning of the year
- Semi-continuous: benefits are paid at moment of death, premiums are paid at the beginning of the year

9.3 Net premium

The net premium, excluding expenses, is determined under the equivalence principle

$$P_x = \frac{A_x}{\ddot{a}_x}$$

• fully discrete whole life insurance net premium

$$P_x = \frac{\overline{A}_x}{\overline{a}_x}$$

• fully continuous whole life insurance net premium

$$P^1_{x:\overline{t}|} = \frac{A^1_{x:\overline{t}|}}{\ddot{a}_{x:\overline{t}|}}$$

Solving Actuarial Math with Python

• fully discrete term life net premium

$$P_{x:\overline{t}|}^{1} = \frac{\overline{A}_{x:\overline{t}|}^{1}}{\overline{a}_{x:\overline{t}|}}$$

• fully continuous term life net premium

$$P_{x:\overline{t}|} = \frac{{}_{t}E_{x}}{\ddot{a}_{x:\overline{t}|}}$$

· fully discrete pure endowment net premium

$$P_{x:\overline{t}|} = \frac{{}_{t}E_{x}}{\overline{a}_{x:\overline{t}|}}$$

• fully continuous pure endowment net premium

$$P_{x:\overline{t}|} = \frac{A_{x:\overline{t}|}}{\ddot{a}_{x:\overline{t}|}}$$

· fully discrete endowment insurance net premium

$$P_{x:\overline{t}|} = \frac{\overline{A}_{x:\overline{t}|}}{\overline{a}_{x:\overline{t}|}}$$

• fully continuous endowment insurance net premium

Shortcuts for whole life and endowment insurance only:

For whole life and endowment insurance only, by plugging in the insurance or annuity twin, the following shortcuts are available for calculating net premiums from the insurance factor only or the annuity factor only.

$$P=b\;(\frac{1}{\ddot{a}_x}-d)=b\;(\frac{dA_x}{1-A_x})$$

• fully discrete whole life shortcut

$$P = b \; (\frac{1}{\overline{a}_x} - \delta) = b \; (\frac{d\overline{A}_x}{1 - \overline{A}_x})$$

• fully continuous whole life shortcut

$$P = b \; (\frac{1}{\ddot{a}_{x:\overline{n}|}} - d) = b \; (\frac{dA_{x:\overline{n}|}}{1 - A_{x:\overline{n}|}})$$

• fully discrete endowment insurance shortcut

$$P = b \; (\frac{1}{\overline{a}_{x:\overline{n}|}} - \delta) = b \; (\frac{d\overline{A}_{x:\overline{n}|}}{1 - \overline{A}_{x:\overline{n}|}})$$

· fully continuous endowment insurance shortcut

9.4 Portfolio Percentile Premium

The portfolio percentile premium principle is an alternative to the equivalence premium principle. We assume a large portfolio of N identical and independent policies. The present value of the total future loss \overline{L} of the portfolio can be approximated by a normal distribution over the sum of individual losses L_i

$$\begin{split} \overline{L} &= L_1 + L_2 + \dots + L_N \\ E[\overline{L}] &= N \, \mathcal{B}[\mathcal{D}] \\ Var[\overline{L}] &= N \, Va\mathcal{D}[\mathcal{B}] \\ (9.4) \end{split}$$

Note $E[\overline{L}]$ and $Var[\overline{L}]$ are functions of the unspecified premium P. Some probability percentile q (say, 95% confidence) and threshold L^* (say, 0) are chosen, then P is solved for implicitly from the following equation, such that the probability of \overline{L} not exceeding L^* is q

$$Pr[\overline{L} < L^*] = Pr\left[\frac{\overline{L} - E[\overline{L}]}{\sqrt{Var[\overline{L}]}} < \frac{L^* - E[\overline{L}]}{\sqrt{Var[\overline{L}]}}\right] = \Phi\left(\frac{L^* - E[\overline{L}]}{\sqrt{Var[\overline{L}]}}\right) = q$$

9.5 Gross premium

Gross premiums account for expenses.

If gross premiums are set under equivalence principle, then expected gross future loss at issue equals zero:

$$E[_0L^g] = EPV_0$$
(future benefits) $+ EPV_0$ (future expenses) $- EPV_0$ (future premiums) $= 0$

Expenses:

 $e_i = \text{initial_per_policy} + \text{initial_per_premium} \times \text{gross_premium}$

- initial expenses at the beginning of year 1 when a policy is issued, includes both per policy and percent of premium
- $e_r = \text{renewal_per_policy} + \text{renewal_per_premium} \times \text{gross_premium}$
 - renewal expenses in the beginning of each year 2+, includes both per policy or percent of premium

E = settlement expense

is paid with death benefit (b); hence
 claim cost = b + E = death benefit + settlement expense.

Return of premiums paid without interest upon death:

$$EPV_0(\text{return of premiums paid}) = \sum_{k=0}^{t-1} \ P(k+1) \ v^{k+1} \ _{k|} q_x = P \cdot (IA)_{x:t|}^1$$

• an additional benefit in some insurance policies, whose EPV can be calculated using an increasing insurance factor

9.6 Examples

The Premiums class implements methods for computing net and gross premiums under thethe equivalence principle

```
import numpy as np
from actuarialmath.premiums import Premiums
```

SOA Question 5.6:

For a group of 100 lives age x with independent future lifetimes, you are given:

- Each life is to be paid 1 at the beginning of each year, if alive
- $A_x = 0.45$
- $_2A_x = 0.22$
- i = 0.05
- Y is the present value random variable of the aggregate payments.

Using the normal approximation to Y, calculate the initial size of the fund needed in order to be 95% certain of being able to make the payments for these life annuities.

```
print("SOA Question 5.6: (D) 1200")
life = Premiums().set_interest(i=0.05)
var = life.annuity_variance(A2=0.22, A1=0.45)
mean = life.annuity_twin(A=0.45)
fund = life.portfolio_percentile(mean, var, prob=.95, N=100)
print(fund)
```

```
SOA Question 5.6: (D) 1200
1200.6946732201702
```

SOA Question 6.29

(35) purchases a fully discrete whole life insurance policy of 100,000. You are given:

- The annual gross premium, calculated using the equivalence principle, is 1770
- The expenses in policy year 1 are 50% of premium and 200 per policy
- The expenses in policy years 2 and later are 10% of premium and 50 per policy
- All expenses are incurred at the beginning of the policy year
- i = 0.035

Calculate \ddot{a}_{35} .

```
SOA Question 6.29 (B) 20.5
20.480268314431726
```

SOA Question 6.2

For a fully discrete 10-year term life insurance policy on (x), you are given:

- Death benefits are 100,000 plus the return of all gross premiums paid without interest
- Expenses are 50% of the first year's gross premium, 5% of renewal gross premiums and 200 per policy expenses each year
- Expenses are payable at the beginning of the year
- $A_{x:\overline{10|}}^1 = 0.17094$
- $(IA)_{x:\overline{10|}}^1 = 0.96728$
- $\ddot{a}_{x:\overline{10|}} = 6.8865$

Calculate the gross premium using the equivalence principle.

```
SOA Question 6.2: (E) 3604
3604.229940320728
```

SOA Question 6.16

For a fully discrete 20-year endowment insurance of 100,000 on (30), you are given:

- d = 0.05
- Expenses, payable at the beginning of each year, are:

	First Year	First Year	Renewal Years	Renewal Years
	Percent of Premium	Per Policy	Percent of Premium	Per Policy
Taxes	4%	0	4%	0
Sales Commission	35%	0	2%	0
Policy Maintenance	0%	250	0%	50

• The net premium is 2143

Calculate the gross premium using the equivalence principle.

9.6. Examples 51

```
SOA Question 6.16: (A) 2408.6
0.3000139997200056 13.999720005599887 2408.575206281868
```

SOA Question 6.20

For a special fully discrete 3-year term insurance on (75), you are given:

- The death benefit during the first two years is the sum of the net premiums paid without interest
- The death benefit in the third year is 10,000

x	p_x
75	0.90
76	0.88
77	0.85

• i = 0.04

Calculate the annual net premium.

```
SOA Question 6.20: (B) 459
458.83181728297285
```

Other examples

```
0.03692697915432344
```

9.7 Methods

```
import describe
describe.methods(Premiums)
```

```
Class Premiums - Compute et and gross premiums under equivalence principle

Methods:
-----

net_premium(x, s, t, u, n, b, endowment, discrete, return_premium, annuity,
initial_cost):

Net level premium for special n-pay, u-deferred t-year term insurance

insurance_equivalence(premium, b, discrete):

Compute whole life or endowment insurance factor, given net premium

annuity_equivalence(premium, b, discrete):

Compute whole life or temporary annuity factor, given net premium

premium_equivalence(A, a, b, discrete):

Compute premium from whole life or endowment insurance and annuity factors

gross_premium(a, A, IA, discrete, benefit, E, endowment, settlement_policy,
initial_policy, initial_premium, renewal_policy, renewal_premium):

Gross premium by equivalence principle
```

9.7. Methods 53

POLICY VALUES

Present value of future loss random variable at issue

For net future loss, we consider benefit payments and net premiums only.

$$_{0}L=b\:v^{K_{x}+1}-P\ddot{a}_{\overline{K_{x}+1|}}=\left(b+\frac{P}{d}\right) v^{K_{x}+1}-\frac{P}{d}$$

• net future loss at issue of fully discrete whole life insurance

$$_0L=b\ v^{T_x}-P\overline{a}_{\overline{T_x|}}=(b+\frac{P}{\delta})\ v^{T_x}-\frac{P}{\delta}\ ({\rm continuous})$$

• net future loss at issue of fully continuous whole life insurance

For gross future loss, expenses are included along with benefits payments and gross premiums.

$$_0L = \left(b + E + \frac{G - e_r}{d}\right)v^{K_x + 1} - \frac{G - e_r}{d} + \left(e_i - e_r\right)$$

• gross future loss at issue of fully discrete whole life insurance

10.1 Net policy value

The amount needed at time t to cover the shortfall of expected future benefits greater than the EPV of future premiums is called the policy value for the policy at time t, denoted $_tV$,

$$_{t}V=E[_{t}L]=EPV_{t}(\text{future benefits})-EPV_{t}(\text{future premiums})$$

ullet net policy value at time t is the expected net future loss of benefits less premiums after time t

$$_{0}V = 0$$

• net policy value at issue is 0 because of the equivalence principle

$$_{n}V=0$$

• net policy value at year n is 0 for a n-year term insurance

 $_{n}V =$ endowment benefit

 \bullet net policy value at year n is equal to the endowment benefit for a n-year endowment insurance

Shortcuts for whole life and endowment insurance:

$$_tV=b[1-\frac{\ddot{a}_{x+t}}{\ddot{a}_x}] \text{ or } b[\frac{A_{x+t}-A_x}{1-A_x}]$$

• net policy value at time t of fully-discrete whole life insurance*

$$_{t}V=b[1-\frac{\overline{a}_{x+t}}{\overline{a}_{x}}] \text{ or } b[\frac{\overline{A}_{x+t}-\overline{A}_{x}}{1-\overline{A}_{x}}]$$

• net policy value at time t of fully-continuous whole life insurance*

*Add : \overline{n} to A's and a's for endowment insurance

10.2 Gross policy value

Gross premium policy values explicitly allow for expenses and for the full gross premium, whereas net premium policy values exclude expenses from cash flows, and only the net premium is counted.

$$_{t}V^{g}=E[_{t}L^{g}]=EPV_{t}(\text{future benefits})+EPV_{t}(\text{future expenses})-EPV_{t}(\text{future premiums})$$

• gross policy value at time t is the expected net future loss of benefits and expenses less premiums after time t

10.3 Variance of future loss

These formulas apply to whole life and endowment insurance only:

Net future loss

$$Var[_{t}L] = (b + \frac{P}{d})^{2} \left[{}^{2}A_{x+t:\overline{n-t}|} - (A_{x+t:\overline{n-t}|})^{2} \right]$$

• fully discrete endowment insurance*

$$Var[_{t}L] = (b + \frac{P}{\delta})^{2} \left[{}^{2}\overline{A}_{x+t:\overline{n-t}|} - (\overline{A}_{x+t:\overline{n-t}|})^{2} \right]$$

• fully continuous endowment insurance*

Gross future loss

$$Var[_{t}L] = (b + E + \frac{G - e_{r}}{d})^{2} \left[^{2}A_{x+t:\overline{n-t}|} - (A_{x+t:\overline{n-t}|})^{2}\right]$$

• fully discrete endowment insurance*

Shortcuts for variance of net future loss

When net premiums are set under equivalence principle, these shortcuts are available without explicitly specifying the value of net premiums, again, for *whole life* and *endowment insurance* **only**:

$$Var[_{t}L] = b^{2}[\frac{^{2}A_{x+t:\overline{n-t}|} - (A_{x+t:\overline{n-t}|})^{2}}{(1-A_{x:\overline{n}|})^{2}}]$$

• variance of net future loss for fully-discrete endowment insurance*

$$Var[_{t}L] = b^{2}[\frac{^{2}\overline{A}_{x+t:\overline{n-t}|} - (\overline{A}_{x+t:\overline{n-t}|})^{2}}{(1-\overline{A}_{x:\overline{n}|})^{2}}]$$

• variance of net future loss for fully-continuous endowment insurance*

*For whole life insurance, remove the $\overline{:n|}$ and $\overline{:n-t|}$ notations.

10.4 Expense reserve

```
P^e = P^g - P^n
```

• expense premium (sometimes, expense loading) is defined as the difference of gross premium and net premium

```
_{t}V^{e} = _{t}V^{g} - _{t}V = EPV_{t}(\text{future expenses}) - EPV_{t}(\text{future expense loadings})
```

• expense reserves, defined as the difference between gross reserves and net reserves, equals the expected present value of future expenses less the expected present value of future expense loadings (or expense premiums)

Generally:

- $_{t}V^{e} < 0$
- $_tV > _tV^g > 0 > _tV^e$

10.5 Examples

The PolicyValues class implements methods for computing net and gross future losses, and policy values (expected present values). The Contract class helps to store and retrieve policy contract terms, such as benefit amounts and various expenses.

```
from actuarialmath.policyvalues import PolicyValues, Contract
```

SOA Question 6.24

For a fully continuous whole life insurance of 1 on (x), you are given:

- L is the present value of the loss at issue random variable if the premium rate is determined by the equivalence principle
- L^* is the present value of the loss at issue random variable if the premium rate is 0.06
- $\delta = 0.07$
- $\overline{A}_r = 0.30$
- Var(L) = 0.18

Calculate $Var(L^*)$.

```
print("SOA Question 6.24: (E) 0.30")
life = PolicyValues().set_interest(delta=0.07)
x, A1 = 0, 0.30  # Policy for first insurance
P = life.premium_equivalence(A=A1, discrete=False)  # Need its premium
contract = Contract(premium=P, discrete=False)
def fun(A2):  # Solve for A2, given Var(Loss)
    return life.gross_variance_loss(A1=A1, A2=A2, contract=contract)
A2 = life.solve(fun, target=0.18, grid=0.18)
contract = Contract(premium=0.06, discrete=False)  # Solve second insurance
variance = life.gross_variance_loss(A1=A1, A2=A2, contract=contract)
print(variance)
```

```
SOA Question 6.24: (E) 0.30
0.304199999999995
```

SOA Question 6.30

For a fully discrete whole life insurance of 100 on (x), you are given:

- The first year expense is 10% of the gross annual premium
- Expenses in subsequent years are 5% of the gross annual premium
- The gross premium calculated using the equivalence principle is 2.338
- i = 0.04
- $\ddot{a}_x = 16.50$
- ${}^{2}A_{r} = 0.17$

Calculate the variance of the loss at issue random variable.

```
SOA Question 6.30: (A) 900
908.141412994607
```

SOA Question 7.32

For two fully continuous whole life insurance policies on (x), you are given:

	Death Benefit	Annual Premium Rate	Variance of the PV of Future Loss at t
Policy A	1	0.10	0.455
Policy B	2	0.16	-

• $\delta = 0.06$

Calculate the variance of the present value of future loss at t for Policy B.

```
print("SOA Question 7.32: (B) 1.4")
life = PolicyValues().set_interest(i=0.06)
contract = Contract(benefit=1, premium=0.1)
def fun(A2):
    return life.gross_variance_loss(A1=0, A2=A2, contract=contract)
A2 = life.solve(fun, target=0.455, grid=0.455)
contract = Contract(benefit=2, premium=0.16)
var = life.gross_variance_loss(A1=0, A2=A2, contract=contract)
print(var)
```

```
SOA Question 7.32: (B) 1.4
1.3848168384380901
```

SOA Question 6.12

For a fully discrete whole life insurance of 1000 on (x), you are given:

• The following expenses are incurred at the beginning of each year:

	Year 1	Years 2+
Percent of premium	75%	10%
Maintenance expenses	10	2

- An additional expense of 20 is paid when the death benefit is paid
- The gross premium is determined using the equivalence principle
- i = 0.06
- $\ddot{a}_x = 12.0$
- ${}^{2}A_{x} = 0.14$

Calculate the variance of the loss at issue random variable.

```
SOA Question 6.12: (E) 88900
0.3207547169811321 35.38618830746352
88862.59592874818
```

Plot present value of future loss r.v L:

Assume mortality follows Standard Ultimate Life Table. Indicate breakeven lifetime.

```
from actuarialmath.sult import SULT
life = SULT()
x = 20
P = life.net_premium(x=x)
contract = Contract(premium=P, discrete=True)
T = life.L_to_t(L=0, contract=contract) # breakeven T
life.L_plot(x=x, T=T, contract=contract)
```

10.5. Examples 59

-0.000695265147726408

10.6 Methods

```
import describe
describe.methods(PolicyValues)
```

```
class PolicyValues - Compute net and gross future losses and policy values

Methods:
-----

net_future_loss(A, A1, b):
   Shortcuts for WL or Endowment Insurance net loss

net_variance_loss(A1, A2, A, b):
   Shortcuts for variance of net loss of WL or Endowment Insurance

net_policy_variance(x, s, t, b, n, endowment, discrete):
   Variance of future loss for WL or Endowment Ins assuming equivalence

gross_future_loss(A, a, contract):
    (continues on next page)
```

(continued from previous page)

```
Shortcut for WL or Endowment Insurance gross future loss

gross_policy_variance(x, s, t, n, contract):
    Variance of gross policy value for WL and Endowment Insurance

gross_policy_value(x, s, t, n, contract):
    Gross policy values for insurance: t_V = E[L_t]

L_from_t(t, contract):
    PV of Loss L(t) at time of death t = T_x (or K_x if discrete)

L_to_t(L, contract):
    Compute time of death T_x s.t. PV future loss is L

L_from_prob(x, prob, contract):
    Compute PV of future loss at given percentile prob

L_to_prob(x, L, contract):
    Compute percentile of L on the PV of future loss curve

L_plot(x, s, stop, T, contract, ax, title, color):
    Plot PV of future loss r.v. L vs time of death T_x
```

```
import describe
describe.methods(PolicyValues)
```

```
class PolicyValues - Compute net and gross future losses and policy values
   Methods:
   net_future_loss(A, A1, b):
     Shortcuts for WL or Endowment Insurance net loss
   net_variance_loss(A1, A2, A, b):
     Shortcuts for variance of net loss of WL or Endowment Insurance
   net_policy_variance(x, s, t, b, n, endowment, discrete):
     Variance of future loss for WL or Endowment Ins assuming equivalence
   gross_future_loss(A, a, contract):
     Shortcut for WL or Endowment Insurance gross future loss
   gross_policy_variance(x, s, t, n, contract):
     Variance of gross policy value for WL and Endowment Insurance
   gross_policy_value(x, s, t, n, contract):
     Gross policy values for insurance: t_V = E[L_t]
   L_from_t(t, contract):
     PV of Loss L(t) at time of death t = T_x (or K_x if discrete)
   L_to_t(L, contract):
     Compute time of death T_x s.t. PV future loss is L
                                                                      (continues on next page)
```

10.6. Methods 61

(continued from previous page)

```
L_from_prob(x, prob, contract):
    Compute PV of future loss at given percentile prob

L_to_prob(x, L, contract):
    Compute percentile of L on the PV of future loss curve"

L_plot(x, s, stop, T, contract, ax, title, color):
    Plot PV of future loss r.v. L vs time of death T_x
```

ELEVEN

RESERVES

The term reserves is sometimes used in place of policy values. AMLCR uses policy value to mean the expected value of the future loss random variable, and restricts reserve to mean the actual capital held in respect of a policy, which may be greater than or less than the policy value.

11.1 Recursion

The following recursive formulae relating ${}_{t}V$ to ${}_{t+1}V$ for policy values can be derived for policies with discrete cash flows.

Gross reserves

$$(_{t}V^{g}+G-e)(1+i)=q_{x+t}\;(b+E)+p_{x+t\;t+1}V^{g}$$

• recursion for gross reserves

Net reserves

$$({}_tV+P)(1+i) = q_{x+t}\; b + p_{x+t\;t+1}V$$

· recursion for net reserves

Expense reserves

$$({}_tV^e + P^e - e)(1+i) = q_{x+t} \; E + p_{x+t \; t+1}V^e$$

• recursion for expense reserves

11.2 Interim reserves

Recursive formulae for interim reserves ${}_{t+r}V$ where $0 \le r \le 1$ can be similarly obtained:

$$(_tV+P)(1+i)^r = \ _rq_{x+t} \ b \ v^{1-r} + \ _rp_{x+t \ t+r}V$$

• forward recursion for interim net reserves

$$_{t+r}V\;(1+i)^{1-r}=\;{_{1-r}q_{x+t+r}\;b+\;{_{1-r}p_{x+t+r\;t+1}V}}$$

• backward recursion for interim net reserves

11.3 Modified reserves

Because acquisition expenses are large relative to the renewal and claims expenses, accounting with level net premiums typically results in large negative values for expense reserves (called deferred acquisition costs or DAC) particularly at issue.

Modified premium reserves are computed without expenses, and modifies the net premium method to assume a lower initial premium that allow implicitly for the DAC.

Full Preliminary Term

FPT is the most common method for modifying reserves. It treats the insurance policy as one-year term insurance combined with a policy as if it were issued one year later.

$$\alpha = A^1_{x:\overline{1|}} = v \ q_x$$

· initial FPT premium

$$\beta = \frac{A_{x+1}}{\ddot{a}_{x+1}}$$

• renewal FPT premium

$$_{0}V^{FPT} = _{1}V^{FPT} = 0$$

• since renewal premium set year 1 policy value to 0, while initial premium set to equal year 1 expected benefits.

$$_{t}V^{FPT}$$
 for $(x) = _{t-1}V$ for $(x+1)$

• since renewal FPT premium for (x) is net premium for (x+1) with term lengths adjusted

11.4 Examples

The Reserves class implements methods to solve reserves by recursion, and compute interim and modified reserves.

```
from actuarialmath.reserves import Reserves
from actuarialmath.policyvalues import Contract
```

SOA Question 7.31

For a fully discrete 3-year endowment insurance of 1000 on (x), you are given:

• Expenses, payable at the beginning of the year, are:

Year(s)	Percent of Premium	Per Policy
1	20%	15
2 and 3	8%	5

- The expense reserve at the end of year 2 is -23.64
- The gross annual premium calculated using the equivalence principle is G = 368.
- $G = 1000 P_{r:\overline{3}|} + P^e$, where P^e is the expense loading

Calculate $P_{x:\overline{3|}}$.

```
SOA Question 7.31: (E) 0.310
0.309966
```

AMLCR2 Figure 7.4:

 $Policy \ values \ for \ each \ year \ of \ a \ 20-year \ term \ insurance, \ sum \ insured \ 500,000, \ is sued to (50). Mortality follows the Standard Ultimate Lie and the Standard Ul$

```
from actuarialmath.sult import SULT
life = SULT()
x, T, b = 50, 20, 500000  # $500K 20-year term insurance for (50)
P = life.net_premium(x=x, t=T, b=b)
life.set_reserves(T=T)\
    .fill_reserves(x=x, contract=Contract(premium=P, benefit=b))
life.V_plot(title=f"Reserves for ${b} {T}-year term insurance issued to ({x})")
```

Reserves for \$500000 20-year term insurance issued to (50)

AMLCR2 Figure 7.3:

11.4. Examples 65

Policy values for each year of a 20-year endowment insurance, sum insured 500,000, issued to (50). Mortality follows the Standard Ultimate Life Table (note AMLCR 2 used Standard Select Table), within the standard Select Table (note AMLCR 2 used Standard Select Table) and the standard Select Table (note AMLCR 2 used Standard Select Table).

```
from actuarialmath.sult import SULT
life = SULT()
x, T, b = 50, 20, 500000  # $500K 20-year term insurance for (50)
P = life.net_premium(x=x, t=T, b=b, endowment=b)
life.set_reserves(T=T)\
    .fill_reserves(x=x, contract=Contract(premium=P, benefit=b, endowment=b))
life.V_plot(title=f"Reserves for ${b} {T}-year endowment insurance issued to ({x})")
```

Reserves for \$500000 20-year endowment insurance issued to (50)

11.5 Methods

```
import describe
describe.methods(Reserves)

class Reserves - Compute recursive, interim and modified reserves

Methods:
-----
set_reserves(T, endowment, V):
    Set values of the reserves table and the endowment benefit amount

(continues on next page)
```

```
fill_reserves(x, s, reserve_benefit, contract):
     Iteratively fill in missing values in reserves table
  t_V_forward(x, s, t, premium, benefit, per_premium, per_policy, reserve_
⇔benefit):
    Forward recursion (with optional reserve benefit)
  t_V_backward(x, s, t, premium, benefit, per_premium, per_policy, reserve_
     Backward recursion (with optional reserve benefit)
  t_V(x, s, t, premium, benefit, reserve_benefit, per_premium, per_policy):
     Solve year-t reserves by forward or backward recursion
   r_V_forward(x, s, r, premium, benefit):
     Forward recursion for interim reserves
  r_V_backward(x, s, r, benefit):
     Backward recursion for interim reserves
  FPT_premium(x, s, n, b, first):
    Initial or renewal Full Preliminary Term premiums
  FPT_policy_value(x, s, t, b, n, endowment, discrete):
     Compute Full Preliminary Term policy value at time t
  V_plot(ax, color, title):
    Plot values from reserves tables
  V_t():
    Returns reserves table as a DataFrame
```

11.5. Methods 67

TWELVE

LIFE TABLE

A life table, from some initial age x_0 to a maximum age ω , represents a survival model with probabilities ${}_tp_x$. Let l_{x_0} be an arbitrary positive number of lives at age x_0 , called the radix, and $l_{x_0+t}=l_{x_0}{}_tp_{x_0}$ A life table is typically tabulated at integer ages only – fractional age assumptions would be needed to calculate survival probabilities for non-integer ages and durations.

$$d_x = l_x - l_{x+1}$$

• it is usual for a life table to also show the values of d_x , the expected of deaths in the year of age x to x + 1.

$$q_x = \frac{d_x}{l_x}$$

• the mortality rate can then be derived, which equals the probability that a life aged x dies within one year.

12.1 Examples

The LifeTable class implements methods to load, calculate and impute life table entries

```
from actuarialmath.lifetable import LifeTable
```

AMLCR2 Exercise 3.2

You are given the following life table extract.

Age,x	l_x
52	89948
53	89089
54	88176
55	87208
56	86181
57	85093
58	83940
59	82719
60	81429

Calculate

- $_{0.2}q_{52.4}$ assuming UDD (fractional age assumption),
- $_{0.2}q_{52.4}$ assuming constant force of mortality (fractional age assumption),
- $_{5.7}p_{52.4}$ assuming UDD,

- $_{5.7}p_{52.4}$ assuming constant force of mortality,
- $_{3.2|2.5}q_{52.4}$ assuming UDD, and
- $_{3.2|2.5}q_{52.4}$ assuming constant force of mortality.

```
1 d(x=52) = 859
2 d(x=53) = 913
3 d(x=54) = 968
4 d(x=55) = 1027
5 d(x=56) = 1088
6 d(x=57) = 1153
7 d(x=58) = 1221
8 d(x=59) = 1290
9 q(x=52) = 0.009549962200382444
10 q(x=53) = 0.01024817878750463
11 q(x=54) = 0.010978043912175649
12 q(x=55) = 0.011776442528208421
13 q(x=56) = 0.01262459242756524
14 q(x=57) = 0.013549880718743022
15 q(x=58) = 0.014546104360257326
16 q(x=59) = 0.015594966090015596
17 p(x=52) = 0.99045
18 p(x=53) = 0.9897518
19 p(x=54) = 0.989022
20 p(x=55) = 0.9882236
21 p(x=56) = 0.9873754
22 p(x=57) = 0.9864501
23 p(x=58) = 0.9854539
24 p(x=59) = 0.984405
[0.001917, 0.001917, 0.935422, 0.935423, 0.030957, 0.03095]
```

A warranty pays 2000 at the end of the year of the first failure if a washing machine fails within three years of purchase. The warranty is purchased with a single premium, G, paid at the time of purchase of the washing machine. You are given:

- 10% of the washing machines that are working at the start of each year fail by the end of that year
- i = 0.08

70

- The sales commission is 35% of G
- G is calculated using the equivalence principle

Calculate G.

```
SOA Question 6.53: (D) 720
0.23405349794238678 720.1646090534978

l d q p
0 100000.0 10000.0 0.1 0.9
1 90000.0 9000.0 0.1 0.9
2 81000.0 8100.0 0.1 0.9
3 72900.0 NaN NaN NaN
```

SOA Question 6.41

For a special fully discrete 2-year term insurance on (x), you are given:

- $q_r = 0.01$
- $q_{x+1} = 0.02$
- i = 0.05
- The death benefit in the first year is 100,000
- Both the benefits and premiums increase by 1% in the second year

Calculate the annual net premium in the first year.

```
SOA Question 6.41: (B) 1417
1.9522857142857144 0.027662585034013608
1416.9332301924137

l d q p
0 100000.0 1000.0 0.01 0.99
1 99000.0 1980.0 0.02 0.98
2 97020.0 NaN NaN NaN
```

12.1. Examples 71

For the country of Bienna, you are given:

- Bienna publishes mortality rates in biennial form, that is, mortality rates are of the form: $_2q_{2x}$, for x=0,1,2,...
- Deaths are assumed to be uniformly distributed between ages 2x and 2x + 2, for x = 0, 1, 2, ...
- $_2q_{50} = 0.02$
- $_2q_{52}=0.04$ Calculate the probability that (50) dies during the next 2.5 years.

```
print("SOA Question 3.11: (B) 0.03")
life = LifeTable(udd=True).set_table(q={50//2: .02, 52//2: .04})
print(life.q_r(50//2, t=2.5/2))
print(life.frame())
```

```
SOA Question 3.11: (B) 0.03
0.0298

1 d q p
25 100000.0 2000.0 0.02 0.98
26 98000.0 3920.0 0.04 0.96
27 94080.0 NaN NaN NaN
```

SOA Question 3.5

You are given:

x	60	61	62	63	64	65	66	67
l_x	99,999	88,888	77,777	66,666	55,555	44,444	33,333	22,222

 $a = \frac{3.412.5}{60} q_{60}$ assuming a uniform distribution of deaths over each year of age

 $b = \frac{1}{3.4|2.5}q_{60}$ assuming a constant force of mortality over each year of age

Calculate 100,000(a - b)

```
SOA Question 3.5: (E) 106
106.16575827938624
```

SOA Question 3.14

You are given the following information from a life table:

Х	l_x	d_x	p_x	q_x
95	_	_	_	0.40
96	_	_	0.20	_
97	-	72	-	1.00

You are also given:

- $l_{90} = 1000$ and $l_{93} = 825$
- Deaths are uniformly distributed over each year of age.

Calculate the probability that (90) dies between ages 93 and 95.5.

```
SOA Question 3.14: (C) 0.345

0.345

1 d q p

90 1000.0 NAN NAN NAN

93 825.0 NAN NAN NAN

95 600.0 240.0 0.4 0.6

96 360.0 288.0 0.8 0.2

97 72.0 72.0 1.0 0.0

98 0.0 NAN NAN NAN
```

12.2 Methods

```
import describe
describe.methods(LifeTable)
```

```
class LifeTable - Calculate life table, and iteratively fill in missing values
     udd : assume UDD or constant force of mortality for fractional ages
     verbose: whether to echo update steps
   Notes:
      4 types of information can be loaded and calculated in the life table:
      - 'q' : probability (x) dies in one year
      - 'l' : number of lives aged x
      - 'd' : number of deaths of age x
      - 'p' : probability (x) survives at least one year
   Methods:
   set_table(fill, minage, maxage, l, d, p, q):
     Update life table
    fill_table(radix):
      Iteratively fill in missing table cells (does not check consistency)
      Return life table columns and values in a DataFrame
                                                                      (continues on next page)
```

12.2. Methods 73

__getitem__(col):
 Returns a column of the life table

CHAPTER

THIRTEEN

SULT

13.1 Standard ultimate life table

Source: SOA's "Excel Workbook for FAM-L Tables"

- interest rate i = 0.05
- 100000 initial lives aged 20
- Makeham's Law with A = 0.00022, B = 0.0000027, c = 1.124

13.2 Pure endowment

$$\begin{split} _tE_x &= v^t \; \frac{l_{x+t}}{l_x} \\ ^2_tE_x &= v^{2t} \; \frac{l_{x+t}}{l_x} = v^t \; _tE_x \end{split}$$

13.3 Temporary Annuity

$$\begin{split} &A_{x:\overline{t}|}^{1} = A_{x} - \ _{t}E_{x} \ A_{x+t} = A_{x:\overline{t}|} - \ _{t}E_{x} \\ ^{2}A_{x:\overline{t}|}^{1} = ^{2}A_{x} - \ _{t}^{2}E_{x} \ ^{2}A_{x+t} = ^{2}A_{x} - \ v^{t} \ _{t}E_{x} \ ^{2}A_{x+t} \end{split}$$

13.4 Examples

The SULT class generates and uses the standard ultimate life table, which is constructed, by default, from Makeham's Law and parameters in SOA's "Excel Workbook for FAM-L Tables"

```
import math
from actuarialmath.sult import SULT
from actuarialmath.interest import Interest
```

SOA Question 6.52

for a fully discrete 10-payment whole life insurance of H on (45), you are given:

• Expenses payable at the beginning of each year are as follows:

Expense Type	First Year	Years 2-10	Years 11+
Per policy	100	20	10
% of Premium	105%	5%	0%

- · Mortality follows the Standard Ultimate Life Table
- i = 0.05
- The gross annual premium, calculated using the equivalence principle, is of the form G = gH + f, where g is the premium rate per 1 of insurance and f is the per policy fee

Calculate f.

```
SOA Question 6.52: (D) 50.80
8.0750937741422 50.80135534704229
```

SOA Question 6.47

For a 10-year deferred whole life annuity-due with payments of 100,000 per year on (70), you are given:

- Annual gross premiums of G are payable for 10 years
- First year expenses are 75% of premium
- Renewal expenses for years 2 and later are 5% of premium during the premium paying period
- · Mortality follows the Standard Ultimate Life Table
- i = 0.05

Calculate G using the equivalence principle.

```
SOA Question 6.47: (D) 66400
66384.13293704337
```

SOA Question 6.43

For a fully discrete, 5-payment 10-year term insurance of 200,000 on (30), you are given:

76 Chapter 13. SULT

- · Mortality follows the Standard Ultimate Life Table
- The following expenses are incurred at the beginning of each respective year:

	Percent of Premium	Per Policy	Percent of Premium	Per Policy
	Year 1	Year 1	Years 2 - 10	Years 2 - 10
Taxes	5%	0	5%	0
Commissions	30%	0	10%	0
Maintenance	0%	8	0%	4

```
• i = 0.05
```

 $ddota_{30:\overline{5}} = 4.5431$

Calculate the annual gross premium using the equivalence principle.

```
SOA Question 6.43: (C) 170
171.22371939459944
```

SOA Question 6.39

XYZ Insurance writes 10,000 fully discrete whole life insurance policies of 1000 on lives age 40 and an additional 10,000 fully discrete whole life policies of 1000 on lives age 80.

XYZ used the following assumptions to determine the net premiums for these policies:

- Mortality follows the Standard Ultimate Life Table
- i = 0.05

During the first ten years, mortality did follow the Standard Ultimate Life Table.

Calculate the average net premium per policy in force received at the beginning of the eleventh year.

```
print("SOA Question 6.39: (A) 29")
sult = SULT()
P40 = sult.premium_equivalence(sult.whole_life_insurance(40), b=1000)
P80 = sult.premium_equivalence(sult.whole_life_insurance(80), b=1000)
p40 = sult.p_x(40, t=10)
p80 = sult.p_x(80, t=10)
P = (P40 * p40 + P80 * p80) / (p80 + p40)
print(P)
```

13.4. Examples 77

```
SOA Question 6.39: (A) 29
29.033866427845496
```

For a fully discrete whole life insurance policy of 50,000 on (35), with premiums payable for a maximum of 10 years, you are given:

- Expenses of 100 are payable at the end of each year including the year of death
- Mortality follows the Standard Ultimate Life Table
- i = 0.05

Calculate the annual gross premium using the equivalence principle.

```
print("SOA Question 6.37: (D) 820")
sult = SULT()
benefits = sult.whole_life_insurance(35, b=50000 + 100)
expenses = sult.immediate_annuity(35, b=100)
a = sult.temporary_annuity(35, t=10)
print(benefits, expenses, a)
print((benefits + expenses) / a)
```

```
SOA Question 6.37: (D) 820
4836.382819496279 1797.2773668474615 8.092602358383987
819.7190338249138
```

SOA Question 6.35

For a fully discrete whole life insurance policy of 100,000 on (35), you are given:

- First year commissions are 19% of the annual gross premium
- Renewal year commissions are 4% of the annual gross premium
- Mortality follows the Standard Ultimate Life Table
- i = 0.05

Calculate the annual gross premium for this policy using the equivalence principle.

```
print("SOA Question 6.35: (D) 530")
sult = SULT()
A = sult.whole_life_insurance(35, b=100000)
a = sult.whole_life_annuity(35)
print(sult.gross_premium(a=a, A=A, initial_premium=.19, renewal_premium=.04))
```

```
SOA Question 6.35: (D) 530 534.4072234303344
```

SOA Question 5.8

For an annual whole life annuity-due of 1 with a 5-year certain period on (55), you are given:

- · Mortality follows the Standard Ultimate Life Table
- i = 0.05

Calculate the probability that the sum of the undiscounted payments actually made under this annuity will exceed the expected present value, at issue, of the annuity.

78 Chapter 13. SULT

```
print("SOA Question 5.8: (C) 0.92118")
sult = SULT()
a = sult.certain_life_annuity(55, u=5)
print(sult.p_x(55, t=math.floor(a)))
```

```
SOA Question 5.8: (C) 0.92118
0.9211799771029529
```

You are given:

- · Mortality follows the Standard Ultimate Life Table
- · Deaths are uniformly distributed over each year of age
- i = 0.05

Calculate $\frac{d}{dt}(\overline{I}\overline{a})_{40:\overline{t}|}$ at t=10.5.

```
print("SOA Question 5.3: (C) 6.239")
sult = SULT()
t = 10.5
print(t * sult.E_r(40, t=t))
```

```
SOA Question 5.3: (C) 6.239 6.23871918627528
```

SOA Question 4.17

For a special whole life policy on (48), you are given:

- The policy pays 5000 if the insured's death is before the median curtate future lifetime at issue and 10,000 if death is after the median curtate future lifetime at issue
- Mortality follows the Standard Ultimate Life Table
- Death benefits are paid at the end of the year of death
- i = 0.05

Calculate the actuarial present value of benefits for this policy.

```
print("SOA Question 4.17: (A) 1126.7")
sult = SULT()
median = sult.Z_t(48, prob=0.5, discrete=False)
benefit = lambda x,t: 5000 if t < median else 10000
print(sult.A_x(48, benefit=benefit))</pre>
```

```
SOA Question 4.17: (A) 1126.7
1126.774772894844
```

SOA Question 4.14

A fund is established for the benefit of 400 workers all age 60 with independent future lifetimes. When they reach age 85, the fund will be dissolved and distributed to the survivors.

The fund will earn interest at a rate of 5% per year.

13.4. Examples 79

The initial fund balance, F, is determined so that the probability that the fund will pay at least 5000 to each survivor is 86%, using the normal approximation.

Mortality follows the Standard Ultimate Life Table.

Calculate F.

```
print("SOA Question 4.14: (E) 390000 ")
sult = SULT()
p = sult.p_x(60, t=85-60)
mean = sult.bernoulli(p)
var = sult.bernoulli(p, variance=True)
F = sult.portfolio_percentile(mean=mean, variance=var, prob=.86, N=400)
print(F * 5000 * sult.interest.v_t(85-60))
```

```
SOA Question 4.14: (E) 390000
389322.86778416135
```

SOA Question 4.5

For a 30-year term life insurance of 100,000 on (45), you are given:

- The death benefit is payable at the moment of death
- Mortality follows the Standard Ultimate Life Table
- $\delta = 0.05$
- Deaths are uniformly distributed over each year of age

Calculate the 95th percentile of the present value of benefits random variable for this insurance

```
print("SOA Question 4.5: (C) 35200")
sult = SULT(udd=True).set_interest(delta=0.05)
Z = 100000 * sult.Z_from_prob(45, prob=0.95, discrete=False)
print(Z)
```

```
SOA Question 4.5: (C) 35200
35187.952037196534
```

SOA Question 3.9

A father-son club has 4000 members, 2000 of which are age 20 and the other 2000 are age 45. In 25 years, the members of the club intend to hold a reunion. You are given:

- · All lives have independent future lifetimes.
- Mortality follows the Standard Ultimate Life Table.

Using the normal approximation, without the continuity correction, calculate the 99th percentile of the number of surviving members at the time of the reunion.

80 Chapter 13. SULT

```
SOA Question 3.9: (E) 3850
3850.144345130047
```

A club is established with 2000 members, 1000 of exact age 35 and 1000 of exact age 45. You are given:

- · Mortality follows the Standard Ultimate Life Table
- · Future lifetimes are independent
- N is the random variable for the number of members still alive 40 years after the club is established

Using the normal approximation, without the continuity correction, calculate the smallest n such that $Pr(N \ge n) \le 0.05$.

```
SOA Question 3.8: (B) 1505
1504.8328375406456
```

SOA Question 3.4

The SULT Club has 4000 members all age 25 with independent future lifetimes. The mortality for each member follows the Standard Ultimate Life Table.

Calculate the largest integer N, using the normal approximation, such that the probability that there are at least N survivors at age 95 is at least 90%.

```
print("SOA Question 3.4: (B) 815")
sult = SULT()
mean = sult.p_x(25, t=95-25)
var = sult.bernoulli(mean, variance=True)
print(sult.portfolio_percentile(N=4000, mean=mean, variance=var, prob=.1))
```

```
SOA Question 3.4: (B) 815
815.0943255167722
```

Generate SULT Table:

```
print("Standard Ultimate Life Table at i=0.05")
sult.frame()
```

(continues on next page)

13.4. Examples 81

```
(continued from previous page)
23
     99924.0 0.000262 19.8193 0.05622 0.00694 8.0986 0.61435 13.0531
    99897.8 0.000267 19.7655 0.05879 0.00739 8.0983 0.61437 13.0519
24
                 . . .
. .
        . . .
                         . . .
                                  . . .
                                          . . .
                                                  . . .
                                                          . . .
     17501.8 0.192887
96
                       3.5597 0.83049 0.69991 3.5356 0.83164
                                                                3.5597
                      3.3300 0.84143 0.71708 3.3159 0.84210 3.3300
97
     14125.9 0.214030
98
    11102.5 0.237134 3.1127 0.85177 0.73356 3.1050 0.85214 3.1127
99
     8469.7 0.262294 2.9079 0.86153 0.74930 2.9039 0.86172 2.9079
    6248.2 0.289584 2.7156 0.87068 0.76427 2.7137 0.87078 2.7156
100
    A_x:20
            5_E_x 10_E_x
                             20_E_x
   0.37829 0.78252 0.61224 0.37440
   0.37833 0.78250 0.61220 0.37429
21
   0.37837 0.78248 0.61215 0.37417
22
23
   0.37842 0.78245 0.61210 0.37404
   0.37848 0.78243 0.61205 0.37390
24
        . . .
                . . .
                        . . .
. .
   0.83049 0.19872 0.01330 0.00000
96
97
    0.84143 0.16765 0.00827 0.00000
98
   0.85177 0.13850 0.00485 0.00000
99 0.86153 0.11173 0.00266 0.00000
100 0.87068 0.08777 0.00136 0.00000
[81 rows x 12 columns]
```

13.5 Methods

```
import describe
describe.methods(SULT)
```

```
Class SULT - Generates and uses a standard ultimate life table

Args:
    i : interest rate
    radix : initial number of lives
    minage : minimum age
    maxage : maximum age
    S : survival function, default is Makeham with SOA FAM-L parameters

Methods:
-----

frame(minage, maxage):
    Derive FAM-L exam table columns of SULT as a DataFrame

__getitem__(col):
    Returns a column of the sult table
```

82 Chapter 13. SULT

CHAPTER

FOURTEEN

SELECT LIFE TABLE

14.1 Select and ultimate life model

A newly selected policyholder is in the best health condition possible, compared to the general population with the same age. The life table can be expanded to tabulate the select period when mortality. Since this selection process wears off after a few years, the ultimate part of the table can be then be used when select age is assumed to no longer have an effect on mortality.

- Future survival probabilities depend on the individual's current age and on the age at which the individual joined the group (i.e. was *selected*). Current age is written [x] + s, where x is the selected age and s is the number of years after selection.
- If an individual joined the group more than d years ago (called the *select period*), future survival probabilities (called the *ultimate mortality*) depend only on current age. The initial selection effect is assumed to have worn off after d years. Current age can be written as x + s after the select period $s \ge d$

Select life tables reflect duration as well as age during the select period.

```
tp_{[x]+s} = \Pr(\text{a life aged } x + s \text{ selected at age } x \text{ survives to age } x + s + t)
tq_{[x]+s} = \Pr(\text{a life aged } x + s \text{ selected at age } x \text{ dies before age } x + s + t)
l_{[x]+s} = \frac{l_{x+d}}{d-s} = \text{number of lives, selected at age } x, \text{ who are aged } x + s, \text{ given that } l_{x+d} \text{ survived to age } x + d.
```

• defines the life table within the select period, by working backwards from the value of l_{x+d} in the ultimate part of the table which only depends on current age.

With a select period d and for $s \ge d$ (i.e. durations beyond the select period) the values of $p_{[x-s]+s}, q_{[x-s]+s}, l_{[x-s]+s}$ depend only on current age x and not on s. So for $s \ge d$, these terms are all equal to and can be written simply as p_x, q_x, l_x respectively.

14.2 Examples

The SelectLife class implements methods to calculate and fill in a select and ultimate mortality life table

```
from actuarialmath.selectlife import SelectLife
```

You are given:

• The following extract from a mortality table with a one-year select period:

\boldsymbol{x}	$l_{[x]}$	$d_{[x]}$	l_{x+1}	x + 1
65	1000	40	_	66
66	955	45	-	67

• Deaths are uniformly distributed over each year of age

```
e_{[65]} = 15.0
```

Calculate $\stackrel{\circ}{e}_{[66]}$.

```
SOA Question 3.2: (D) 14.7

14.67801047120419

e_[x]+s: 0 1

Age

65 14.50000 14.104167

66 14.17801 13.879121
```

SOA Question 4.16

You are given the following extract of ultimate mortality rates from a two-year select and ultimate mortality table:

x	q_x
50	0.045
51	0.050
52	0.055
53	0.060

The select mortality rates satisfy the following:

- $q_{[x]} = 0.7q_x$
- $q_{[x]+1} = 0.8q_{x+1}$

You are also given that i = 0.04.

Calculate $A^1_{[50]:\overline{3}|}$.

```
SOA Question 4.16: (D) .1116
0.1115661982248521
```

For a 2-year deferred, 2-year term insurance of 2000 on [65], you are given:

• The following select and ultimate mortality table with a 3-year select period:

x	$q_{[x]}$	$q_{[x]+1}$	$q_{[x]+2}$	q_{x+3}	x+3
65	0.08	0.10	0.12	0.14	68
66	0.09	0.11	0.13	0.15	69
67	0.10	0.12	0.14	0.16	70
68	0.11	0.13	0.15	0.17	71
69	0.12	0.14	0.16	0.18	72

- i = 0.04
- The death benefit is payable at the end of the year of death

Calculate the actuarial present value of this insurance.

```
SOA Question 4.13: (C) 350
351.0578236056159
```

SOA Question 3.13

A life is subject to the following 3-year select and ultimate table:

[x]	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	x + 3
55	10,000	9,493	8,533	7,664	58
56	8,547	8,028	6,889	5,630	59
57	7,011	6,443	5,395	3,904	60
58	5,853	4,846	3,548	2,210	61

You are also given:

- $e_{60} = 1$
- · Deaths are uniformly distributed over each year of age

Calculate $\stackrel{\circ}{e}_{[58]+2}$.

14.2. Examples 85

```
SOA Question 3.13: (B) 1.6
1.6003382187147688
```

X and Y are both age 61. X has just purchased a whole life insurance policy. Y purchased a whole life insurance policy one year ago.

Both X and Y are subject to the following 3-year select and ultimate table:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	x+3
60	10,000	9,600	8,640	7,771	63
61	8,654	8,135	6,996	5,737	64
62	7,119	6,549	5,501	4,016	65
63	5,760	4,954	3,765	2,410	66

The force of mortality is constant over each year of age.

Calculate the difference in the probability of survival to age 64.5 between X and Y.

```
SOA Question 3.12: (C) 0.055
0.05465655938591829
```

SOA Question 3.7

For a mortality table with a select period of two years, you are given:

x	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}	x+2
50	0.0050	0.0063	0.0080	52
51	0.0060	0.0073	0.0090	53
52	0.0070	0.0083	0.0100	54
53	0.0080	0.0093	0.0110	55

The force of mortality is constant between integral ages.

Calculate $1000_{2.5}q_{[50]+0.4}$.

```
SOA Question 3.7: (b) 16.4
16.420207214428586
```

You are given the following extract from a table with a 3-year select period:

x	$q_{[x]}$	$q_{[x]+1}$	$q_{[x]+2}$	q_{x+3}	x+3
60	0.09	0.11	0.13	0.15	63
61	0.10	0.12	0.14	0.16	64
62	0.11	0.13	0.15	0.17	65
63	0.12	0.14	0.16	0.18	66
64	0.13	0.15	0.17	0.19	67

```
e_{64} = 5.10
```

Calculate $e_{[61]}$.

```
SOA Question 3.6: (D) 5.85
5.846832
```

SOA Question 3.3

You are given:

• An excerpt from a select and ultimate life table with a select period of 2 years:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	x + 2
50	99,000	96,000	93,000	52
51	97,000	93,000	89,000	53
52	93,000	88,000	83,000	54
53	90,000	84,000	78,000	55

· Deaths are uniformly distributed over each year of age

Calculate $10,000_{2.2}q_{[51]+0.5}$.

14.2. Examples 87

```
SOA Question 3.3: (E) 1074
1073.684210526316
```

You are given:

• An excerpt from a select and ultimate life table with a select period of 3 years:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	x + 3
60	80,000	79,000	77,000	74,000	63
61	78,000	76,000	73,000	70,000	64
62	75,000	72,000	69,000	67,000	65
63	71,000	68,000	66,000	65,000	66

• Deaths follow a constant force of mortality over each year of age

Calculate $1000_{23}q_{[60]+0.75}$.

```
SOA Question 3.1: (B) 117
116.7192429022082
```

Trace calculations:

```
1 1 (x=21, s=1) = 99880.0

2 1 (x=21, s=2) = 99730.18000000001

3 1 (x=21, s=3) = 99560.63869400001

4 1 (x=22, s=3) = 99381.4295443508

5 1 (x=23, s=3) = 99197.57389969376

6 d(x=21, s=0) = 120.0

7 d(x=21, s=1) = 149.8199999999243
```

(continues on next page)

```
(continued from previous page)
```

```
8 d(x=21, s=2) = 169.54130599999917
9 d(x=21, s=3) = 179.20914964920667
10 d(x=22, s=3) = 183.85564465704374
11 1(x=22, s=2) = 99555.65193523747
12 \ 1(x=23, s=2) = 99376.45151241611
13 d(x=22, s=2) = 174.22239088667266
14 d(x=23, s=2) = 178.87761272235366
15 1(x=22, s=1) = 99710.2027494992
16 \ 1(x=23, s=1) = 99535.70864625012
17 d(x=22, s=1) = 154.55081426173274
18 d(x=23, s=1) = 159.2571338340058
19 1(x=22, s=0) = 99834.9964951181
20 \ 1(x=23, s=0) = 99665.27350180245
21 d(x=22, s=0) = 124.79374561889563
22 d(x=23, s=0) = 129.56485555233667
0.9931675400449915
1_{x}+s:
```

14.3 Methods

```
import describe
describe.methods(SelectLife)
```

```
class SelectLife - Calculate select life table, and iteratively fill in missing.
⇔values
      periods : number of select period years
      verbose: whether to echo update steps
   Notes:
      6 types of information can be loaded and calculated in the select table:
      - 'q' : probability [x]+s dies in one year
      - 'l' : number of lives aged [x]+s
      - 'd' : number of deaths of age [x]+s
      - 'A' : whole life insurance
      - 'a' : whole life annuity
      - 'e' : expected future curtate lifetime of [x]+s
   Methods:
    set_table(fill, l, d, q, A, a, e):
     Update from table, every age has row for all select durations
    set_select(s, age_selected, fill, l, d, q, A, a, e):
                                                                       (continues on next page)
```

14.3. Methods 89

```
Update a table column, for a particular duration s in the select period
fill_table(radix):
 Fills in missing table values (does not check for consistency)
__getitem__(table):
 Returns values from a select and ultimate table
frame(table):
 Returns select and ultimate table values as a DataFrame
l_x(x, s):
 Returns number of lives aged [x]+s computed from select table
 t_p[x]+s by chain rule: prod(1_p[x]+s+y) for y in range(t)
q_x(x, s, t, u):
 t|u_q[x]+s = [x]+s survives u years, does not survive next t
e_x(x, s, t, curtate):
 Returns expected life time computed from select table
A_x(x, s, moment, discrete, kwargs):
 Returns insurance value computed from select table
a_x(x, s, moment, discrete, kwargs):
 Returns annuity value computed from select table
```

CHAPTER

FIFTEEN

RECURSION

Using annual values provided, such as in a life table, we can calculate other values at other ages and durations by repeatedly applying recursion formulas and other actuarial equations.

15.1 Chain rule

$$_{t+n}p_{x} = \ _{n}p_{x} \cdot \ _{t}p_{x+n}$$

• survival probability chain rule

$$_{t+n}E_{x}=\ _{n}E_{x}\cdot \ _{t}E_{x+n}$$

• pure endowment chain rule

15.2 Expected future lifetime

$$\stackrel{\circ}{e}_x=\stackrel{\circ}{e}_{x:\overline{m|}}+\ _mp_x\stackrel{\circ}{e}_{x+m}$$

• complete expectation of lifetime

$$\mathring{\boldsymbol{e}}_{x} = \mathring{\boldsymbol{e}}_{x:\overline{1|}} + p_{x} \ \mathring{\boldsymbol{e}}_{x+1}$$

• one-year recursion for complete expectation of lifetime

$$\stackrel{\circ}{e}_{x:\overline{m+n}|}=\stackrel{\circ}{e}_{x:\overline{m}|}+\ _{m}p_{x}\stackrel{\circ}{e}_{x+m:\overline{n}|}$$

• temporary complete expectation of lifetime

$$e_x = e_{x:\overline{m|}} + {}_m p_x \; e_{x+m}$$

• curtate expectation of lifetime

$$e_x = p_x(1 + e_{x+1})$$

• one-year recursion for curtate expectaion of lifetime

$$e_{x:\overline{m+n|}} = e_{x:\overline{m|}} + {}_{m}p_{x} e_{x:\overline{n|}}$$

• temporary curtate expectation of lifetime

15.3 Life insurance

$$A_x = v \; q_x + v \; p_x \; A_{x+1} \; \Rightarrow \; A_{x+1} = \frac{A_x - v \; q_x}{v \; p_x}$$

• whole life insurance recursion

$$A^1_{x:\overline{t}|} = v \; q_x + v \; p_x \; A^1_{x+1:\overline{t-1}|}$$

· term life insurance recursion

$$A_{x:\overline{0|}} = b$$

• endowment insurance at at end of term

$$A_{x:\overline{1|}} = q_x \ v \ b + p_x \ v \ b = v \ b$$

• one-year endowment insurance

$$IA_{x:\overline{t}|}^{1} = v \; q_{x} + v \; p_{x} \; (A_{x+1} + IA_{x+1:\overline{t-1}|}^{1})$$

• increasing insurance recursion

$$DA^1_{x:\overline{t|}} = t \; v \; q_x + v \; p_x \; (DA^1_{x+1:\overline{t-1|}})$$

· decreasing insurance recursion

15.4 Life annuities

$$\ddot{a}_x = 1 + v \: p_x \: \ddot{a}_{x+1} \: \Rightarrow \: \ddot{a}_{x+1} = \frac{\ddot{a}_x - 1}{v \: p_x}$$

· whole life annuity recursion

$$\ddot{a}_{x:\overline{t}|} = 1 + v \; p_x \; \ddot{a}_{x+1:\overline{t-1}|}$$

· temporary annuity recursion

15.5 Examples

The Recursion class implements methods to apply recursive, shortcut and actuarial formulas, and traces steps taken to find the solution.

Caveats:

- 1. Not all possible recursion rules and actuarial equations have (yet) been implemented in the current version of the package.
- 2. You may set the recursion depth to a larger limit than the default of 3 (with the keyword argument depth when initializing a Recursion class object).
- 3. But generally, the current implementation is fragile if the solution is not available within a relatively shallow search: future releases will enhance.

```
from actuarialmath.recursion import Recursion
from actuarialmath.constantforce import ConstantForce
from actuarialmath.policyvalues import Contract
```

AMLCR2 Exercise 2.6

```
Given P_x = 0.99 , P_{x+1} = 0.985,\, {}_3P_{x+1} = 0.95,\, q_{x+3} = 0.02,
```

Calculate (a) P_{x+3} , (b) $_2P_x$, (c) $_2P_{x+1}$, (d) $_3P_x$, (e) $_{1|2}q_x$.

```
*Survival p 3 <--
                                                       ~complement of mortality
  p_3 = 1 - q_3
0.98
 *Survival p_0(t=2) <--
   p_0(t=3) = p_0(t=4) / p_3
                                                           ~survival chain rule
    p_0(t=4) = p_1(t=3) * p_0
                                                           ~survival chain rule
                                                           ~survival chain rule
    p_0(t=2) = p_1 * p_0
                                                       ~complement of mortality
     p_3 = 1 - q_3
0.97515
*Survival p_1(t=2) <--
  p_1(t=2) = p_0(t=3) / p_0
                                                           ~survival chain rule
   p_0(t=3) = p_0(t=4) / p_3
                                                           ~survival chain rule
    p_0(t=4) = p_1(t=3) * p_0
                                                           ~survival chain rule
     p_3 = 1 - q_3
                                                       ~complement of mortality
0.9693877551020409
 *Survival p_0(t=3) <--
  p_0(t=3) = p_0(t=4) / p_3
                                                           ~survival chain rule
   p_0(t=4) = p_1(t=3) * p_0
                                                           ~survival chain rule
     p_3 = 1 - q_3
                                                       ~complement of mortality
0.9596938775510204
*Mortality q_0(t=2, defer=1) <--
  q_0(t=2,defer=1) = p_0 - p_0(t=3)
                                                           ~complement survival
   p_0(t=3) = p_0(t=4) / p_3
                                                           ~survival chain rule
    p_0(t=4) = p_1(t=3) * p_0
                                                           ~survival chain rule
     p_3 = 1 - q_3
                                                       ~complement of mortality
0.030306122448979567
```

SOA Question 6.48

For a special fully discrete 5-year deferred 3-year term insurance of 100,000 on (x) you are given:

• There are two premium payments, each equal to P. The first is paid at the beginning of the first year and the second is paid at the end of the 5-year deferral period

```
• p_x = 0.95
```

- $q_{x+5} = 0.02$
- $q_{x+6} = 0.03$

15.5. Examples 93

- $q_{x+7} = 0.04$
- i = 0.06

Calculate P using the equivalence principle.

```
print("SOA Question 6.48: (A) 3195")
life = Recursion(depth=5).set_interest(i=0.06)
x = 0
life.set_p(0.95, x=x, t=5)
life.set_q(0.02, x=x+5)
life.set_q(0.03, x=x+6)
life.set_q(0.04, x=x+7)
a = 1 + life.E_x(x, t=5)
A = life.deferred_insurance(x, u=5, t=3)
P = life.gross_premium(A=A, a=a, benefit=100000)
print(P)
```

```
SOA Question 6.48: (A) 3195
*Pure Endowment E_0(t=5) <--
  E_0(t=5) = p_0(t=5) * v(t=5)
                                                              ~pure endowment
 *Pure Endowment E_0(t=5) <--
  E_0(t=5) = p_0(t=5) * v(t=5)
                                                              ~pure endowment
 *Term Insurance A_5(t=3) <--
  A_5(t=3) = v * [ q_5 * b + p_5 * A_6(t=2) ]
                                                          ~backward recursion
   p_5 = 1 - q_5
                                                     ~complement of mortality
   A_6(t=2) = v * [q_6 * b + p_6 * A_7(t=1)]
                                                          ~backward recursion
    p_6 = 1 - q_6
                                                     ~complement of mortality
    A_7(t=1) = A_7(t=1, endow=1) - E_7(t=1)
                                                 ~endowment insurance - pure
    E_7(t=1) = p_7 * v(t=1)
                                                              ~pure endowment
                                                     ~complement of mortality
    p_7 = 1 - q_7
 *Term Insurance A_5(t=3) <--
  A_5(t=3) = v * [q_5 * b + p_5 * A_6(t=2)]
                                                          ~backward recursion
   p_5 = 1 - q_5
                                                     ~complement of mortality
   A_6(t=2) = v * [q_6 * b + p_6 * A_7(t=1)]
                                                         ~backward recursion
    p_6 = 1 - q_6
                                                     ~complement of mortality
    A_7(t=1) = A_7(t=1, endow=1) - E_7(t=1)
                                                 ~endowment insurance - pure
     E_7(t=1) = p_7 * v(t=1)
                                                             ~pure endowment
    p_7 = 1 - q_7
                                                     ~complement of mortality
3195.1189176587473
```

SOA Question 6.40

For a special fully discrete whole life insurance, you are given:

- The death benefit is $1000(1.03)^k$ for death in policy year k, for k = 1, 2, 3...
- $q_x = 0.05$
- i = 0.06
- $\ddot{a}_{x+1} = 7.00$
- The annual net premium for this insurance at issue age x is 110

Calculate the annual net premium for this insurance at issue age x + 1.

```
print("SOA Question 6.40: (C) 116 ")
x = 0
life = Recursion().set_interest(i=0.06).set_a(7, x=x+1).set_q(0.05, x=x)
```

(continues on next page)

```
a = life.whole_life_annuity(x)
A = 110 * a / 1000
print(a, A)
life = Recursion().set_interest(i=0.06).set_A(A, x=x).set_q(0.05, x=x)
A1 = life.whole_life_insurance(x+1)
P = life.gross_premium(A=A1 / 1.03, a=7) * 1000
print(P)
```

An insurance company sells special fully discrete two-year endowment insurance policies to smokers (S) and non-smokers (NS) age x. You are given:

- The death benefit is 100,000; the maturity benefit is 30,000
- The level annual premium for non-smoker policies is determined by the equivalence principle
- The annual premium for smoker policies is twice the non-smoker annual premium
- $\mu_{r+t}^{NS} = 0.1.$ t > 0
- $q_{x+k}^S = 1.5q_{x+k}^{NS}$, for k = 0, 1
- i = 0.08

Calculate the expected present value of the loss at issue random variable on a smoker policy.

15.5. Examples 95

```
E_1(t=1) = p_1 * v(t=1)
                                                                 ~pure endowment
   p_1 = 1 - q_1
                                                       ~complement of mortality
 *Temporary Annuity a_0(t=2) <--
   a_0(t=2) = 1 + E_0(t=1) * a_1(t=1)
                                                            ~backward recursion
   E_0(t=1) = p_0 * v(t=1)
                                                                ~pure endowment
    p_0 = 1 - q_0
                                                       \sim\!complement of mortality
   a_1(t=1) = 1
                                                     ~one-year discrete annuity
 *Pure Endowment E_0(t=2) <--
   E_0(t=2) = p_0(t=2) * v(t=2)
                                                                ~pure endowment
   p_0(t=2) = p_1 * p_0
                                                           ~survival chain rule
     p_0 = 1 - q_0
                                                       ~complement of mortality
      p_1 = 1 - q_1
                                                       ~complement of mortality
-30107.42633581125
```

15.6 Methods

```
import describe
describe.methods(Recursion)
```

```
class Recursion - Solve by appling recursive, shortcut and actuarial formulas_
⇔repeatedly
   Args:
     depth: maximum depth of recursions (default is 3)
     verbose: whether to echo recursion steps (True, default)
   Notes:
     7 types of information can be loaded and calculated in recursions:
     - 'q' : (deferred) probability (x) dies in t years
     - 'p' : probability (x) survives t years
     - 'e' : (temporary) expected future lifetime, and moments
      - 'A' : deferred, term, endowment or whole life insurance, and moments
      - 'IA' : decreasing life insurance of t years
      - 'DA' : increasing life insurance of t years
     - 'a' : deferred, temporary or whole life annuity of t years, and moments
   Methods:
   set_q(val, x, s, t, u):
     Set mortality rate u \mid t_q[x] + s to given value
   set_p(val, x, s, t):
     Set survival probability t_p_[x]+s to given value
   set_e(val, x, s, t, curtate, moment):
     Set expected future lifetime e_[x]+s:t to given value
   set_E(val, x, s, t, endowment, moment):
     Set pure endowment t_E_[x]+s to given value
```

(continues on next page)

```
set_A(val, x, s, t, u, b, moment, endowment, discrete):
   Set insurance u|_A_[x]+s:t to given value

set_IA(val, x, s, t, b, discrete):
   Set increasing insurance IA_[x]+s:t to given value

set_DA(val, x, s, t, b, discrete):
   Set decreasing insurance DA_[x]+s:t to given value

set_a(val, x, s, t, u, b, variance, discrete):
   Set annuity u|_a_[x]+s:t to given value
```

15.6. Methods 97

MORTALITY LAWS

When using special mortality laws for lifetime distribution, shortcut formulas may be available.

16.1 Beta distribution

With two parameters α, ω :

$$\begin{split} &l_x \sim (\omega - x)^\alpha \\ &\mu_x = \frac{\alpha}{\omega - x} \\ &_t p_x = (\frac{\omega - (x + t)}{\omega - x})^\alpha \end{split}$$

$$\mathring{e}_x = \frac{\omega - x}{\alpha + 1}$$

16.2 Uniform distribution

Is Beta distribution with $\alpha=1$

$$\begin{split} &l_x \sim \omega - x \\ &\mu_x = \frac{1}{\omega - x} \\ &_t p_x = \frac{\omega - (x+t)}{\omega - x} \\ &\mathring{e}_x = \frac{\omega - x}{2} \\ &\mathring{e}_{x:\overline{n}|} = \ _n p_x \ n + \ _n q_x \ \frac{n}{2} \\ &_n E_x = v^n \frac{\omega - (x+n)}{\omega - x} \\ &\bar{A}_x = \frac{\bar{a}_{\overline{\omega - x}|}}{\omega - x} \end{split}$$

 $\bar{A}_{x:\overline{n}|}^{1} = \frac{\bar{a}_{\overline{n}|}}{\omega - x}$

16.3 Makeham's Law

With three parameters c > 1, B > 0, $A \ge -B$, it includes an element in the force of mortality that does not depend on age.

$$\mu_x = A + Bc^x$$

$$_tp_x = e^{\frac{Bc^x}{\ln c}(c^t-1) - At}$$

16.4 Gompertz's Law

Is Makeham's Law with A=0

$$\begin{split} &\mu_x = Bc^x \\ &_t p_x = e^{\frac{Bc^x}{\ln c}(c^t - 1)} \end{split}$$

16.5 Examples

The MortalityLaws class, and Beta, Uniform, Makeham and Gompertz subclasses, implement methods to apply shortcut equations that are available when assuming these special mortality laws for the distribution of future lifetime.

```
from actuarialmath.mortalitylaws import MortalityLaws, Uniform, Beta, Makeham, Gompertz
```

SOA Question 2.3:

You are given that mortality follows Gompertz Law with B = 0.00027 and c = 1.1. Calculate $f_{50}(10)$.

```
print("SOA Question 2.3: (A) 0.0483")
print(Gompertz(B=0.00027, c=1.1).f_x(x=50, t=10))
```

```
SOA Question 2.3: (A) 0.0483
0.048389180223511644
```

SOA Question 2.6

You are given the survival function:

$$S_0(x) = \left(1 - \frac{x}{60}\right)^{\frac{1}{3}}, \quad 0 \le x \le 60$$

Calculate $1000\mu_{35}$.

```
print("# SOA Question 2.6: (C) 13.3")
print(Beta(omega=60, alpha=1/3).mu_x(35) * 1000)
```

```
# SOA Question 2.6: (C) 13.3
13.33333333333333
```

Beta distribution:

```
life = Beta(omega=100, alpha=0.5)
print(life.q_x(25, t=1, u=10)) # 0.0072
print(life.e_x(25)) # 50
print(Beta(omega=60, alpha=1/3).mu_x(35) * 1000) # 13.33
```

```
0.007188905547861446
50.0
13.333333333333
```

Uniform distribution:

```
print('Uniform')
uniform = Uniform(80).set_interest(delta=0.04)
print (uniform.whole_life_annuity(20))
                                               # 15.53
print(uniform.temporary_annuity(20, t=5))
                                               # 4.35
print (Uniform (161) .p_x(70, t=1))
                                               # 0.98901
print(Uniform(95).e_x(30, t=40, curtate=False)) # 27.692
print()
uniform = Uniform(omega=80).set_interest(delta=0.04)
print (uniform.E_x(20, t=5)) # .7505
print (uniform.whole_life_insurance(20, discrete=False))
                                                          # .3789
print(uniform.term_insurance(20, t=5, discrete=False)) # .0755
print(uniform.endowment_insurance(20, t=5, discrete=False)) # .8260
print(uniform.deferred_insurance(20, u=5, discrete=False)) # .3033
```

```
Uniform

16.03290804858584

4.47503070125663
0.989010989010989
32.30769230769231

0.7505031903214833
0.378867519462745
0.07552885288417432
0.8260320432056576
0.30333866657857067
```

Makeham's and Gompertz's Laws:

```
life = Gompertz(B=0.000005, c=1.10)
p = life.p_x(80, t=10)  # 869.4
print(life.portfolio_percentile(N=1000, mean=p, variance=p*(1-p), prob=0.99))

print(Gompertz(B=0.00027, c=1.1).f_x(50, t=10)) # 0.04839
life = Makeham(A=0.00022, B=2.7e-6, c=1.124)
print(life.mu_x(60) * 0.9803) # 0.00316
```

```
869.3908338193208
0.048389180223511644
0.0031580641631654026
```

16.5. Examples 101

16.6 Methods

```
import describe
describe.methods (MortalityLaws)
  class MortalityLaws - Apply shortcut formulas for special mortality laws
      Methods:
      l_r(x, s, r):
        Fractional lives given special mortality law: l_{x}+s+r
      p_r(x, s, r, t):
        Fractional age survival probability given special mortality law
      q_r(x, s, r, t, u):
        Fractional age deferred mortality given special mortality law
      mu_r(x, s, r):
        Fractional age force of mortality given special mortality law
      f_r(x, s, r, t):
        fractional age lifetime density given special mortality law
      e_r(x, s, r, t):
        Fractional age future lifetime given special mortality law
import describe
describe.methods(Beta)
  class Beta - Shortcuts with beta distribution of deaths (is Uniform when alpha = 1)
      Args:
        omega : maximum age
        alpha: alpha paramter of beta distribution
        lives : assumed starting number of lives for survival function
import describe
describe.methods(Uniform)
  class Uniform - Shortcuts with uniform distribution of deaths aka DeMoivre's Law
      Args:
        omega : maximum age
        udd : assume UDD (True, default) or CFM (False) between integer ages
describe.methods (Makeham)
```

class Makeham - Includes element in force of mortality that does not depend on age

```
Chapter 16. Mortality Laws
```

(continues on next page)

```
Args:
```

A, B, c : parameters of Makeham distribution

describe.methods(Gompertz)

```
class Gompertz - Is Makeham's Law with A = 0
Args:
    B, c : parameters of Gompertz distribution
```

16.6. Methods 103

CONSTANT FORCE OF MORTALITY

Shortcut formulas by assuming an exponential distribution (constant force of mortality) for future lifetime.

$$_tp_x=e^{-\mu t}$$

• survival functions do not depend on age x

17.1 Expected future lifetime

$$\mathring{e}_x = \frac{1}{\mu}$$

• does not depend on age x

$$\overset{\circ}{e}_{x:\overline{n|}} = \frac{1}{\mu}(1-e^{-\mu n})$$

· because of memoryless property

$$Var(T_x) = \frac{1}{\mu^2}$$

17.2 Pure endowment

$${}_nEx=e^{-(\mu+\delta)n}$$

17.3 Life insurance

$$\bar{A}_x = \frac{\mu}{\mu + \delta}$$

$$\bar{A}_{x:\overline{t|}} = \frac{\mu}{\mu + \delta} (1 - e^{-\mu t})$$

· because of memoryless property

17.4 Life annuities

$$\begin{split} \bar{a}_x &= \frac{1}{\mu + \delta} \\ \bar{a}_{x:\overline{t}|} &= \frac{1}{\mu + \delta} (1 - e^{-\mu t}) \end{split}$$

· because of memoryless property

17.5 Examples

The ConstantForce class implements methods that apply shortcut formulas available when assuming constant force of mortality for the distribution of future lifetime

```
import math
from scipy.stats import norm
from actuarialmath.constantforce import ConstantForce
```

SOA Question 6.36

For a fully continuous 20-year term insurance policy of 100,000 on (50), you are given:

- Gross premiums, calculated using the equivalence principle, are payable at an annual rate of 4500
- Expenses at an annual rate of R are payable continuously throughout the life of the policy
- $\mu_{50+t} = 0.04$, for t > 0
- $\delta = 0.08$

Calculate R.

```
SOA Question 6.36: (B) 500
500.0
```

SOA Question 6.31

For a fully continuous whole life insurance policy of 100,000 on (35), you are given:

- The density function of the future lifetime of a newborn: \$\$
- $\delta = 0.05$
- $\overline{A}_{70} = 0.51791$

Calculate the annual net premium rate for this policy.

```
SOA Question 6.31: (D) 1330
1326.5406293909457
```

SOA Question 6.27

For a special fully continuous whole life insurance on (x), you are given:

• Premiums and benefits:

	First 20 years	After 20 years
Premium Rate	3P	P
Benefit	1,000,000	500,000

- $\mu_{x+t} = 0.03, \quad t \ge 0$
- $\delta = 0.06$

Calculate P using the equivalence principle.

```
SOA Question 6.27: (D) 10310
10309.617799001708
```

SOA Question 5.4

(40) wins the SOA lottery and will receive both:

- A deferred life annuity of K per year, payable continuously, starting at age $40 + \stackrel{\circ}{e}_{40}$ and
- An annuity certain of K per year, payable continuously, for e_{40} years

You are given:

- $\mu = 0.02$
- $\delta = 0.01$
- The actuarial present value of the payments is 10,000

Calculate K.

17.5. Examples 107

```
SOA Question 5.4: (A) 213.7
213.74552118275955
```

SOA Question 5.1

You are given:

- $\delta_t = 0.06, \quad t \ge 0$
- $\mu_r(t) = 0.01, \quad t \ge 0$
- Y is the present value random variable for a continuous annuity of 1 per year, payable for the lifetime of (x) with 10 years certain

Calculate Pr(Y > E[Y]).

```
print("SOA Question 5.1: (A) 0.705")
life = ConstantForce(mu=0.01).set_interest(delta=0.06)
EY = life.certain_life_annuity(0, u=10, discrete=False)
print(life.p_x(0, t=life.Y_to_t(EY))) # 0.705
```

```
SOA Question 5.1: (A) 0.705
0.7053680433746505
```

17.6 Methods

```
import describe
describe.methods(ConstantForce)
```

```
class ConstantForce - Constant force of mortality - memoryless exponential_
distribution of lifetime

Args:
    mu : constant value of force of mortality
    udd : assume UDD (True) or CFM (False, default) between integer ages

Methods:
------
e_x(x, s, t, curtate, moment):
    Expected lifetime E[T_x] is memoryless: does not depend on (x)

E_x(x, s, t, endowment, moment):
    Shortcut for pure endowment: does not depend on age x

whole_life_insurance(x, s, moment, b, discrete):
    Shortcut for APV of whole life: does not depend on age x
```

(continues on next page)

```
temporary_annuity(x, s, t, b, variance, discrete):
   Shortcut for temporary life annuity: does not depend on age x

term_insurance(x, s, t, b, moment, discrete):
   Shortcut for APV of term life: does not depend on age x

Z_t(x, prob, discrete):
   Shortcut for T_x (or K_x) given survival probability for insurance

Y_t(x, prob, discrete):
   Shortcut for T_x (or K_x) given survival probability for annuity
```

17.6. Methods 109

CHAPTER

EIGHTEEN

EXTRA RISK

If underwriting determines that an individual should offered insurance but at above standard rates, there are different ways in which we can model the extra mortality risk in a premium calculation.

18.1 Adjust mortality risk

$$\mu_{x+t} + k \Rightarrow \ _t p_x \leftarrow \ _t p_x \ e^{-kt}$$

• add constant to force of mortality:

$$\mu_{x+t} \cdot k \Rightarrow \ _t p_x \leftarrow \ (_t p_x)^k$$

• multiply force of mortality by constant:

$$q_x \leftarrow q_x \cdot k$$

· multiply mortality rate by a constant

$$\Rightarrow$$
 $(x) \leftarrow (x+k)$

· add years to age, referred to as age rating

18.2 Examples

The ExtraRisk class implements methods to adjust the survival or mortality function by extra risks.

```
from actuarialmath.extrarisk import ExtraRisk
from actuarialmath.selectlife import SelectLife
from actuarialmath.sult import SULT
```

SOA Question 5.5

For an annuity-due that pays 100 at the beginning of each year that (45) is alive, you are given:

- Mortality for standard lives follows the Standard Ultimate Life Table
- The force of mortality for standard lives age 45 + t is represented as μ_{45+t}^{SULT}
- The force of mortality for substandard lives age 45 + t, μ^S_{45+t} , is defined as:

$$\begin{split} \mu^S_{45+t} &= \mu^{SULT}_{45+t} + 0.05, \quad 0 \leq t < 1 \\ &= \mu^{SULT}_{45+t}, \quad t \geq 1 \end{split}$$

• i = 0.05

Calculate the actuarial present value of this annuity for a substandard life age 45.

```
print("SOA Question 5.5: (A) 1699.6")
life = SULT()
extra = ExtraRisk(life=life, extra=0.05, risk="ADD_FORCE")
select = SelectLife(periods=1) \
    .set_interest(i=.05) \
    .set_select(s=0, age_selected=True, q=extra['q']) \
    .set_select(s=1, age_selected=False, a=life['a']) \
    .fill_table()
print(100*select['a'][45][0])
```

```
SOA Question 5.5: (A) 1699.6
1699.6076593190103
```

SOA Question 4.19

(80) purchases a whole life insurance policy of 100,000. You are given:

- The policy is priced with a select period of one year
- The select mortality rate equals 80% of the mortality rate from the Standard Ultimate Life Table
- Ultimate mortality follows the Standard Ultimate Life Table
- i = 0.05

Calculate the actuarial present value of the death benefits for this insurance

```
print("SOA Question 4.19: (B) 59050")
life = SULT()
extra = ExtraRisk(life=life, extra=0.8, risk="MULTIPLY_RATE")
select = SelectLife(periods=1) \
    .set_interest(i=.05) \
    .set_select(s=0, age_selected=True, q=extra['q']) \
    .set_select(s=1, age_selected=False, q=life['q']) \
    .fill_table()
print(100000*select.whole_life_insurance(80, s=0))
```

```
SOA Question 4.19: (B) 59050
59050.59973285648
```

Other examples

```
life = SULT()
extra = ExtraRisk(life=life, extra=2, risk="MULTIPLY_FORCE")
print(life.p_x(45), extra.p_x(45))
```

```
0.9992288829941123 0.9984583606096613
```

18.3 Methods

```
import describe
describe.methods(ExtraRisk)
```

```
class ExtraRisk - Adjust mortality by extra risk

Args:
    life : original survival and mortality rates
    extra : amount of extra risk to adjust
    risk : adjust by {"ADD_FORCE" "MULTIPLY_FORCE" "ADD_AGE" "MULTIPLY_RATE"}

Methods:
------
q_x(x, s):
    Return q_[x]+s after adding age rating or multipliying mortality rate

p_x(x, s):
    Return p_[x]+s after adding or multiplying force of mortality

__getitem__(col):
    Returns survival function values adjusted by extra risk
```

18.3. Methods 113

CHAPTER

NINETEEN

1/M'THLY

A new lifetime random variable is introduced to value benefits which depend on the number of complete periods of length 1/m years lived by a life (x).

$$K_x^{(m)} = \frac{1}{m} \lfloor m T_x \rfloor$$

• 1/mthly curtate future lifetime random variable, where m > 1 is an integer, is the future lifetime of (x) in years rounded to the lower $\frac{1}{m}$ th of a year.

19.1 Life Insurance

Whole life insurance

$$Z = v^{K_x^{(k)} + 1/m}$$

• present value random variable of whole life insurance

$$A_{x}^{(m)} = E[Z] = \sum_{k=0}^{\infty} \; v^{\frac{k+1}{m}} \, _{\frac{k}{m} \mid \frac{1}{m}} q_{x}$$

• 1/m'thly whole life insurance

$$E[Z^2] = E[(v^2)^{K_x^{(k)} + 1/m}] =^2 A_x^{(m)}$$

- second moment is also obtained from ${\cal A}_x^{(m)}$ at double the force of interest

Term life insurance

$$Z=0$$
 if $K_x^{(m)} \geq t$, else $v^{K_x^{(k)}+1/m}$

ullet death benefit is payable at the end of the 1/m-th year of death, provided this occurs within t years.

$$A_{x:\overline{t}|}^{1^{(m)}} = \sum_{k=0}^{mt-1} \ v^{\frac{k+1}{m}} \ _{\frac{k}{m}|\frac{1}{m}} q_x$$

• EPV of 1/m-thly term insurance benefits

19.2 Life Annuity Twin

$$A_x^{(m)} = 1 - d^{(m)} \; \ddot{a}_x^{(m)} \; \Longleftrightarrow \; \ddot{a}_x^{(m)} = \frac{1 - A_x^{(m)}}{d^{(m)}} \label{eq:Ax}$$

• 1/m'thly whole life annuity due

$$A_{x:\bar{t}|}^{(m)} = 1 - d^{(m)} \; \ddot{a}_{x:\bar{t}|}^{(m)} \; \Longleftrightarrow \; \ddot{a}_{x:\bar{t}|}^{(m)} = \frac{1 - A_{x:\bar{t}|}^{(m)}}{d^{(m)}}$$

• 1/m'thly temporary annuity due and endowment insurance

19.3 Immediate Life Annuity

$$a_x^{(m)} = \ddot{a}_x^{(m)} - \frac{1}{m}$$

• immediate 1/m'thly whole life annuity

$$a_{x:\overline{t}|}^{(m)} = \ddot{a}_{x:\overline{t}|}^{(m)} - \frac{1}{m}(1 - \ _{t}E_{x})$$

• immediate 1/m'thly temporary life annuity

19.4 Examples

The Mthly class implements methods to compute life insurance and annuity values with m'thly-pay.

```
from actuarialmath.mthly import Mthly
from actuarialmath.premiums import Premiums
from actuarialmath.lifetable import LifeTable
```

SOA Question 6.4

For whole life annuities-due of 15 per month on each of 200 lives age 62 with independent future lifetimes, you are given:

- i = 0.06
- $A_{62}^{(12)}=0.2105$ and $^2A_{62}^{(12)}=0.4075$
- π is the single premium to be paid by each of the 200 lives
- \bullet S is the present value random variable at time 0 of total payments made to the 200 lives

Using the normal approximation, calculate π such that $Pr(200\pi > S) = 0.90$.

```
print("SOA Question 6.4: (E) 1893.9")
mthly = Mthly(m=12, life=Premiums().set_interest(i=0.06))
A1, A2 = 0.4075, 0.2105
mean = mthly.annuity_twin(A1)*15*12
var = mthly.annuity_variance(A1=A1, A2=A2, b=15 * 12)
S = Premiums.portfolio_percentile(mean=mean, variance=var, prob=.9, N=200)
print(S / 200)
```

```
SOA Question 6.4: (E) 1893.9
1893.912859650868
```

SOA Question 4.2

For a special 2-year term insurance policy on (x), you are given:

- Death benefits are payable at the end of the half-year of death
- The amount of the death benefit is 300,000 for the first half-year and increases by 30,000 per half-year thereafter
- $q_x = 0.16$ and $q_{x+1} = 0.23$
- $i^{(2)} = 0.18$
- Deaths are assumed to follow a constant force of mortality between integral ages
- Z is the present value random variable for this insurance

Calculate Pr(Z > 277,000).

```
SOA Question 4.2: (D) 0.18

Z q

m
1 275229.357798 0.083485
2 277754.397778 0.076515
3 277986.052822 0.102903
4 276285.832315 0.090297
0.17941813045022975
```

19.5 Methods

```
import describe
describe.methods(Mthly)
```

```
class Mthly - Compute 1/M'thly insurance and annuities

Args:
    m : number of payments per year
    life : original survival and life contingent functions

Methods:
-----
v_m(k):
    Compute discount rate compounded over k m'thly periods

p_m(x, s_m, t_m):
    Compute survival probability over m'thly periods

q_m(x, s_m, t_m, u_m):
    (continues on next page)
```

19.5. Methods 117

```
Compute deferred mortality over m'thly periods
Z_m(x, s, t, benefit, moment):
  Return PV of insurance r.v. Z and probability of death at mthly intervals
E_x(x, s, t, moment, endowment):
 Compute pure endowment factor
A_x(x, s, t, u, benefit, moment):
  Compute insurance factor with m'thly benefits
whole_life_insurance(x, s, moment, b):
  Whole life insurance: A_x
term_insurance(x, s, t, b, moment):
  Term life insurance: A_x:t^1
deferred_insurance(x, s, n, b, t, moment):
 Deferred insurance n|_A_x:t^1 = discounted whole life
endowment_insurance(x, s, t, b, endowment, moment):
  Endowment insurance: A_x:t = term insurance + pure endowment
immediate_annuity(x, s, t, b):
  Immediate m'thly annuity
insurance_twin(a):
  Return insurance twin of m'thly annuity
annuity_twin(A):
 Return value of annuity twin of m'thly insurance
annuity_variance(A2, A1, b):
 Variance of m'thly annuity from m'thly insurance moments
whole_life_annuity(x, s, b, variance):
  Whole life m'thly annuity: a_x
temporary_annuity(x, s, t, b, variance):
  Temporary m'thly life annuity: a_x:t
deferred_annuity(x, s, u, t, b):
  Deferred m'thly life annuity due n|t_ax = n+t_ax - n_ax
immediate\_annuity(x, s, t, b):
  Immediate m'thly annuity
```

UDD M'THLY

With the UDD fractional age assumption, we can work with annual insurance and annuity factors A_x and a_x , then adjust for a more appropriate frequency $A_x^{(m)}$ and $\ddot{a}_x^{(m)}$ using the following relationships.

20.1 Life insurance

Using the values of A_x to approximate $A_x^{(m)}$

$$A_x^{(m)} = \frac{i}{i^{(m)}} A_x$$

• discrete whole life insurance

$$A^1_{x:\overline{t}|}^{(m)} = \frac{i}{i^{(m)}} A^1_{x:\overline{t}|}$$

• discrete term insurance

$$A_{x:\overline{t}|}^{(m)} = \frac{i}{i^{(m)}} A_{x:\overline{t}|}^1 + \ _t E_x$$

• endowment insurance combines the death and survival benefits, so we need to split off the death benefit to apply the approximations.

$$_{u|}A_{x}^{(m)}=\ _{u}E_{x}\frac{i}{i^{(m)}}A_{x+u}$$

• discrete deferred insurance

Double the force of interest

$$^{2}A_{x}^{(m)}=\frac{i^{2}-2i}{(i^{(m)})^{2}-2i^{(m)}}\ ^{2}A_{x}$$

• relate to doubling the force of interest for annual whole life insurance

20.2 Continuous Life Insurance

Under UDD, continuous life insurance can also be related to annual life insurance factors

$$\overline{A}_x = \frac{\imath}{\delta} A_x$$

• cwhole life insurance

$$\overline{A}_{x:\overline{t}|}^1 = \frac{i}{\delta} A_{x:\overline{t}|}^1$$

• term life insurance

$$\overline{A}_{x:\overline{t}|} = \frac{i}{\delta} A^1_{x:\overline{t}|} + {}_t E_x$$

• endowment insurance

$$_{u|}\overline{A}_{x} = _{u}E_{x}\frac{i}{\delta}A_{x+u}$$

• deferred life insurance

Double the force of interest

$${}^2\overline{A}_x = \frac{i^2-2i}{2\delta} \, {}^2A_x$$

• relate to doubling the force of interest for annual whole life insurance

20.3 Interest functions

It can be shown that by subtituting in annuity twins in the above relationships under UDD, values of 1/mthly life annuities can be adjusted from annual life annuity factors using interest rate functions $\alpha(m)$ and $\beta(m)$

$$\alpha(m) = \frac{id}{i^{(m)} \; d^{(m)}}$$

$$\beta(m) = \frac{i-i^{(m)}}{i^{(m)}\;d^{(m)}}$$

20.4 Life annuities

Using the values of \ddot{a}_x , and the interest rate functions, to obtain $\ddot{a}_x^{(m)}$ under UDD.

$$\ddot{a}_x^{(m)} = \alpha(m) \; \ddot{a}_x - \beta(m)$$

· whole life annuity

$$\ddot{a}_{x:\overline{n}|}^{(m)} = \alpha(m) \; \ddot{a}_{x:\overline{n}|} - \beta(m)(1 - \ _tE_x)$$

· temporary life annuity

$$_{u|}\ddot{a}_{x}^{(m)}=\alpha(m)\ _{u|}\ddot{a}_{x}-\beta(m)\ _{u}E_{x}$$

· deferred whole life annuity

20.5 Examples

The UDD class implements methods to compute life insurance and annuities assuming a uniform distribution of deaths (UDD)

```
from actuarialmath.udd import UDD
from actuarialmath.sult import SULT
from actuarialmath.recursion import Recursion
from actuarialmath.policyvalues import Contract
```

SOA Question 6.38

For an n-year endowment insurance of 1000 on (x), you are given:

- Death benefits are payable at the moment of death
- Premiums are payable annually at the beginning of each year
- · Deaths are uniformly distributed over each year of age
- i = 0.05
- $_{n}E_{x}=0.172$
- $\overline{A}_{r:\overline{n}|} = 0.192$

Calculate the annual net premium for this insurance.

```
print("SOA Question 6.38: (B) 11.3")
x, n = 0, 10
life = Recursion().set_interest(i=0.05)\
                  .set_A(0.192, x=x, t=n, endowment=1, discrete=False) \
                  .set_E(0.172, x=x, t=n)
a = life.temporary_annuity(x, t=n, discrete=False)
print(a)
def fun(a):
              # solve for discrete annuity, given continuous
    life = Recursion().set_interest(i=0.05)\
                      .set_a(a, x=x, t=n) \
                      .set_E(0.172, x=x, t=n)
    return UDD(m=0, life=life).temporary_annuity(x, t=n)
a = life.solve(fun, target=a, grid=a) # discrete annuity
P = life.gross_premium(a=a, A=0.192, benefit=1000)
print(a, P)
```

SOA Question 6.32

For a whole life insurance of 100,000 on (x), you are given:

- Death benefits are payable at the moment of death
- Deaths are uniformly distributed over each year of age
- · Premiums are payable monthly
- i = 0.05
- $\ddot{a}_x = 9.19$

Calculate the monthly net premium.

```
print("SOA Question 6.32: (C) 550")
x = 0
life = Recursion().set_interest(i=0.05).set_a(9.19, x=x)
benefits = UDD(m=0, life=life).whole_life_insurance(x)
payments = UDD(m=12, life=life).whole_life_annuity(x)
print(benefits, payments)
print(life.gross_premium(a=payments, A=benefits, benefit=100000)/12)
```

20.5. Examples 121

SOA Question 6.22

For a whole life insurance of 100,000 on (45) with premiums payable monthly for a period of 20 years, you are given:

- The death benefit is paid immediately upon death
- Mortality follows the Standard Ultimate Life Table
- Deaths are uniformly distributed over each year of age
- i = 0.05

Calculate the monthly net premium.

```
print("SOA Question 6.22: (C) 102")
life = SULT(udd=True)
a = UDD(m=12, life=life).temporary_annuity(45, t=20)
A = UDD(m=0, life=life).whole_life_insurance(45)
print(life.gross_premium(A=A, a=a, benefit=100000)/12)
```

```
SOA Question 6.22: (C) 102
102.40668704849178
```

SOA Question 7.9

For a semi-continuous 20-year endowment insurance of 100,000 on (45), you are given:

- Net premiums of 253 are payable monthly
- · Mortality follows the Standard Ultimate Life Table
- Deaths are uniformly distributed over each year of age
- i = 0.05

Calculate $_{10}V$, the net premium policy value at the end of year 10 for this insurance.

```
print("SOA Question 7.9: (A) 38100")
sult = SULT(udd=True)
x, n, t = 45, 20, 10
a = UDD(m=12, life=sult).temporary_annuity(x+10, t=n-10)
A = UDD(m=0, life=sult).endowment_insurance(x+10, t=n-10)
print(a, A)
contract = Contract(premium=253*12, endowment=100000, benefit=100000)
print(A*100000 - a*12*253, sult.gross_future_loss(A=A, a=a, contract=contract))
```

```
SOA Question 7.9: (A) 38100
7.831075686716718 0.6187476755196442
38099.62176709247 38099.62176709246
```

SOA Question 6.49

For a special whole life insurance of 100,000 on (40), you are given:

- The death benefit is payable at the moment of death
- Level gross premiums are payable monthly for a maximum of 20 years
- Mortality follows the Standard Ultimate Life Table
- i = 0.05
- Deaths are uniformly distributed over each year of age
- Initial expenses are 200
- Renewal expenses are 4% of each premium including the first
- Gross premiums are calculated using the equivalence principle

Calculate the monthly gross premium.

```
SOA Question 6.49: (C) 86
85.99177833261696
```

Generate table of interest functions:

```
print("Interest Functions at i=0.05")
print("-----")
print(UDD.interest_frame())
```

20.6 Methods

```
import describe
describe.methods(UDD)
```

```
class UDD - 1/mthly shortcuts with UDD assumption

Args:
    m : number of payments per year
    life : original fractional survival and mortality functions
```

(continues on next page)

20.6. Methods 123

```
Methods:
-----
alpha(m, i):
   Derive 1/mthly UDD interest rate beta function value

beta(m, i):
   Derive 1/mthly UDD interest rate alpha function value

interest_frame(i):
   Display 1/mthly UDD interest function values
```

CHAPTER

TWENTYONE

WOOLHOUSE M'THLY

Woolhouse's formula is a method of approximating 1/mthly life annuities from annual factors that does not depend on a fractional age assumption. It is based on the Euler-Maclaurin series expansion for the integral of a function.

21.1 Life Annuities

$$\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x} - \frac{m-1}{2m} - \frac{m^{2}-1}{12m^{2}}(\mu_{x} + \delta)$$

• 1/m'thly whole life annuity using the three-term Woolhouse approximation. The third term is often omitted in practice, which leads to poor approximations in some cases.

$$\ddot{a}_{x:\overline{t}|}^{(m)} \approx \ddot{a}_{x}^{(m)} - \ _{t}E_{x} \ \ddot{a}_{x+t}^{(m)} = \ddot{a}_{x:\overline{t}|} - \frac{m-1}{2m}(1 - \ _{t}E_{x}) - \frac{m^{2}-1}{12m^{2}}(\mu_{x} + \delta - \ _{t}E_{x}(\mu_{x+t} + \delta))$$

• 1/m'thly temporary life annuity from the difference of whole life Woolhouse approximations

$$\overline{a}_x \approx \ddot{a}_x - \frac{1}{2} - \frac{1}{12}(\mu_x + \delta)$$

• continuous life annuity with Woolhouse approximation when we let $m \to \infty$.

$$\mu_x \approx -\frac{1}{2}(\ln p_{x-1} + \ln p_x)$$

• if the force of mortality μ is not provided for the third Woolhouse term, it can be approximated from survival probabilities at integer ages.

21.2 Examples

The Woolhouse class implements methods to compute m'thly-pay annuity values using the Woolhouse assumption with either two or three terms.

```
from actuarialmath.woolhouse import Woolhouse
from actuarialmath.sult import SULT
from actuarialmath.recursion import Recursion
from actuarialmath.udd import UDD
from actuarialmath.policyvalues import Contract
```

SOA Question 7.7

For a whole life insurance of 10,000 on (x), you are given:

• Death benefits are payable at the end of the year of death

- A premium of 30 is payable at the start of each month
- Commissions are 5% of each premium
- Expenses of 100 are payable at the start of each year
- i = 0.05
- $1000A_{x+10} = 400$
- $_{10}V$ is the gross premium policy value at the end of year 10 for this insurance

Calculate $_{10}V$ using the two-term Woolhouse formula for annuities.

```
print("SOA Question 7.7: (D) 1110")
x = 0
life = Recursion().set_interest(i=0.05).set_A(0.4, x=x+10)
a = Woolhouse(m=12, life=life).whole_life_annuity(x+10)
print(a)
contract = Contract(premium=0, benefit=10000, renewal_policy=100)
V = life.gross_future_loss(A=0.4, contract=contract.renewals())
contract = Contract(premium=30*12, renewal_premium=0.05)
V1 = life.gross_future_loss(a=a, contract=contract.renewals())
print(V, V1, V+V1)
```

For a fully discrete 10-year deferred whole life annuity-due of 1000 per month on (55), you are given:

- The premium, G, will be paid annually at the beginning of each year during the deferral period
- Expenses are expected to be 300 per year for all years, payable at the beginning of the year
- Mortality follows the Standard Ultimate Life Table
- i = 0.05
- Using the two-term Woolhouse approximation, the expected loss at issue is -800

Calculate G.

```
SOA Question 6.25: (C) 12330
98042.52569470297 8.019169307712845
12325.781125438532
```

SOA Question 6.15

For a fully discrete whole life insurance of 1000 on (x) with net premiums payable quarterly, you are given:

- i = 0.05
- $\ddot{a}_x = 3.4611$
- $P^{(W)}$ and $P^{(UDD)}$ are the annualized net premiums calculated using the 2-term Woolhouse (W) and the uniform distribution of deaths (UDD) assumptions, respectively

```
Calculate \frac{P^{(UDD)}}{P^{(W)}}.
```

```
print("SOA Question 6.15: (B) 1.002")
x = 0
life = Recursion().set_interest(i=0.05).set_a(3.4611, x=0)
A = life.insurance_twin(3.4611)
udd = UDD(m=4, life=life)
a1 = udd.whole_life_annuity(x=x)
woolhouse = Woolhouse(m=4, life=life)
a2 = woolhouse.whole_life_annuity(x=x)
print(life.gross_premium(a=a1, A=A)/life.gross_premium(a=a2, A=A))
```

```
SOA Question 6.15: (B) 1.002
1.0022973504113772
```

SOA Question 5.7

You are given:

- $A_{35} = 0.188$
- $A_{65} = 0.498$
- $_{30}p_{35} = 0.883$
- i = 0.04

Calculate $1000\ddot{a}^{(2)}_{35:\overline{30|}}$ using the two-term Woolhouse approximation.

```
print("SOA Question 5.7: (C) 17376.7")
life = Recursion().set_interest(i=0.04)
life.set_A(0.188, x=35)
life.set_A(0.498, x=65)
life.set_p(0.883, x=35, t=30)
mthly = Woolhouse(m=2, life=life, three_term=False)
print(mthly.temporary_annuity(35, t=30))
print(1000 * mthly.temporary_annuity(35, t=30))
```

21.2. Examples 127

```
*Whole Life Annuity a_65(t=WL) <--
  a_x = (1-A_x) / d
                                                                ~insurance twin
     a_{65}(t=1) = 1
                                                     ~one-year discrete annuity
      a_66(t=1) = 1
                                                     ~one-year discrete annuity
 *Pure Endowment E_35(t=30) <--
  E_35(t=30) = p_35(t=30) * v(t=30)
                                                                ~pure endowment
17.37671459632958
 *Whole Life Annuity a_35(t=WL) <--
   a_x = (1-A_x) / d
                                                                ~insurance twin
     a_35(t=1) = 1
                                                     ~one-year discrete annuity
     a_36(t=1) = 1
                                                     ~one-year discrete annuity
 *Whole Life Annuity a_65(t=WL) <--
   a_x = (1-A_x) / d
                                                                ~insurance twin
     a_{65}(t=1) = 1
                                                     ~one-year discrete annuity
      a_66(t=1) = 1
                                                     ~one-year discrete annuity
 *Pure Endowment E_35(t=30) <--
   E_35(t=30) = p_35(t=30) * v(t=30)
                                                                ~pure endowment
17376.71459632958
```

21.3 Methods

```
import describe
describe.methods(Woolhouse)
```

```
class Woolhouse - 1/m'thly shortcuts with Woolhouse approximation

Args:
    m : number of payments per year
    life : original fractional survival and mortality functions
    three_term : whether to include (True) or ignore (False) third term
    approximate_mu : function to approximate mu_x for third term

Methods:
------
mu_x(x, s):
    Approximates or computes mu_x for third term
```

CHAPTER

TWENTYTWO

SAMPLE SOLUTIONS AND HINTS

actuarialmath - Life Contingent Risks with Python

This package implements fundamental methods for modeling life contingent risks, and closely follows traditional topics covered in actuarial exams and standard texts such as the "Fundamentals of Actuarial Math - Long-term" exam syllabus by the Society of Actuaries, and "Actuarial Mathematics for Life Contingent Risks" by Dickson, Hardy and Waters. These code chunks demonstrate how to solve each of the sample FAM-L exam questions released by the SOA.

Sources:

- SOA FAM-L Sample Solutions: copy retrieved Aug 2022
- SOA FAM-L Sample Questions: copy retrieved Aug 2022
- · Online tutorial, or download pdf
- Code documentation
- · Github repo and issues

```
#! pip install actuarialmath
```

```
"""Solutions code and hints for SOA FAM-L sample questions
MIT License. Copyright 2022-2023, Terence Lim
import math
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from actuarialmath.interest import Interest
from actuarialmath.life import Life
from actuarialmath.survival import Survival
from actuarialmath.lifetime import Lifetime
from actuarialmath.fractional import Fractional
from actuarialmath.insurance import Insurance
from actuarialmath.annuity import Annuity
from actuarialmath.premiums import Premiums
from actuarialmath.policyvalues import PolicyValues, Contract
from actuarialmath.reserves import Reserves
from actuarialmath.recursion import Recursion
from actuarialmath.lifetable import LifeTable
from actuarialmath.sult import SULT
from actuarialmath.selectlife import SelectLife
from actuarialmath.mortalitylaws import MortalityLaws, Beta, Uniform, Makeham,
 →Gompertz
```

(continues on next page)

```
from actuarialmath.constantforce import ConstantForce
from actuarialmath.extrarisk import ExtraRisk
from actuarialmath.mthly import Mthly
from actuarialmath.udd import UDD
from actuarialmath.woolhouse import Woolhouse
```

Helper to compare computed answers to expected solutions

```
class IsClose:
   """Helper class for testing and reporting if two values are close"""
   def __init__(self, rel_tol : float = 0.01, score : bool = False,
                verbose: bool = False):
       self.den = self.num = 0
                               # whether to count INCORRECTs instead of assert
       self.score = score
       self.verbose = verbose # whether to run silently
       self.incorrect = [] # to keep list of messages for INCORRECT
       self.tol = rel_tol
   def __call__(self, solution, answer, question="", rel_tol=None):
        """Compare solution to answer within relative tolerance
       Args:
         solution (str | numeric) : gold label
         answer (str | numeric) : computed answer
         question (str) : label to associate with this test
         rel_tol (float) : relative tolerance to be considered close
       if isinstance(solution, str):
           isclose = (solution == answer)
           isclose = math.isclose(solution, answer, rel_tol=rel_tol or self.tol)
        self.den += 1
        self.num += isclose
       msg = f"{question} {solution}: {answer}"
       if self.verbose:
           print("----", msg, "[OK]" if isclose else "[INCORRECT]", "-----")
       if not self.score:
           assert isclose, msq
       if not isclose:
           self.incorrect.append(msg)
       return isclose
   def __str__(self):
        """Display cumulative score and errors"""
       return f"Passed: {self.num}/{self.den}\n" + "\n".join(self.incorrect)
isclose = IsClose(0.01, score=False, verbose=True)
```

(continues on next page)

22.1 1 Tables

These tables are provided in the FAM-L exam

- Interest Functions at i=0.05
- · Normal Distribution Table
- · Standard Ultimate Life Table

but you actually do not need them here!

```
print("Interest Functions at i=0.05")
UDD.interest_frame()
  Interest Functions at i=0.05
         i(m)
               d (m)
                      i/i(m)
                              d/d(m) alpha(m) beta(m)
  1
      0.05000 0.04762 1.00000 1.00000 1.00000
      0.04939 0.04820 1.01235 0.98795 1.00015 0.25617
      0.04909 0.04849 1.01856 0.98196 1.00019 0.38272
  12 0.04889 0.04869 1.02271 0.97798 1.00020 0.46651
      0.04879 0.04879 1.02480 0.97600 1.00020 0.50823
print("Values of z for selected values of Pr(Z<=z)")</pre>
print(Life.quantiles_frame().to_string(float_format=lambda x: f"{x:.3f}"))
  Values of z for selected values of Pr(Z \le z)
           0.842 1.036 1.282 1.645 1.960 2.326 2.576
  Pr(Z<=z) 0.800 0.850 0.900 0.950 0.975 0.990 0.995
print ("Standard Ultimate Life Table at i=0.05")
SULT().frame()
  Standard Ultimate Life Table at i=0.05
                                                          A_x:10
                                     A_x
                                             2A_x a_x:10
                                                                   a_x:20
           l x
                     q_x
                             a_x
  20
      100000.0 0.000250 19.9664 0.04922 0.00580 8.0991 0.61433 13.0559
       99975.0 0.000253 19.9197 0.05144 0.00614 8.0990 0.61433 13.0551
  21
  22
       99949.7 0.000257 19.8707 0.05378 0.00652
                                                  8.0988 0.61434 13.0541
        99924.0 0.000262 19.8193 0.05622
  23
                                         0.00694
                                                  8.0986 0.61435 13.0531
       99897.8 0.000267 19.7655 0.05879 0.00739 8.0983 0.61437 13.0519
  24
                    . . .
                            . . .
                                    . . .
                                              . . .
                                                     . . .
                                                             . . .
  96
       17501.8 0.192887 3.5597 0.83049 0.69991 3.5356 0.83164 3.5597
  97
       14125.9 0.214030 3.3300 0.84143 0.71708 3.3159 0.84210 3.3300
  98
       11102.5 0.237134 3.1127 0.85177 0.73356 3.1050 0.85214 3.1127
  99
       8469.7 0.262294 2.9079 0.86153 0.74930 2.9039 0.86172 2.9079
  100
      6248.2 0.289584 2.7156 0.87068 0.76427 2.7137 0.87078 2.7156
       A_x:20
               5_E_x 10_E_x 20_E_x
       0.37829 0.78252 0.61224 0.37440
  2.0
       0.37833 0.78250 0.61220 0.37429
  2.1
```

22.1. 1 Tables 131

0.37837 0.78248 0.61215 0.37417

```
23
   0.37842 0.78245 0.61210 0.37404
   0.37848 0.78243 0.61205 0.37390
24
              . . .
                    . . .
       . . .
   0.83049 0.19872 0.01330 0.00000
96
97
   0.84143 0.16765 0.00827 0.00000
98
   0.85177 0.13850 0.00485 0.00000
99
   0.86153 0.11173 0.00266 0.00000
100 0.87068 0.08777 0.00136 0.00000
[81 rows x 12 columns]
```

22.2 2 Survival models

SOA Question 2.1: (B) 2.5

- derive formula for μ from given survival function
- solve for ω given μ_{65}
- ullet calculate e by summing survival probabilities

```
----- Q2.1 2.5: 2.4786080555423604 [OK] -----
True
```

SOA Question 2.2: (D) 400

- calculate survival probabilities for the two scenarios
- apply conditional variance formula (or mixed distribution)

```
p1 = (1. - 0.02) * (1. - 0.01) # 2_p_x if vaccine given

p2 = (1. - 0.02) * (1. - 0.02) # 2_p_x if vaccine not given

std = math.sqrt(Life.conditional_variance(p=.2, p1=p1, p2=p2, N=100000))

isclose(400, std, question="Q2.2")
```

```
----- Q2.2 400: 396.5914603215815 [OK] -----
True
```

SOA Question 2.3: (A) 0.0483

1. Derive formula for f given survival function

```
B, c = 0.00027, 1.1
S = lambda x,s,t: math.exp(-B * c**(x+s) * (c**t - 1)/math.log(c))
life = Survival().set_survival(S=S)
f = life.f_x(x=50, t=10)
isclose(0.0483, f, question="Q2.3")
```

```
----- Q2.3 0.0483: 0.048327399045049846 [OK] -----
True
```

SOA Question 2.4: (E) 8.2

- derive survival probability function ${}_tp_x$ given ${}_tq_0$
- ullet compute \mathring{e} by integration

```
def 1(x, s): return 0. if (x+s) >= 100 else 1 - ((x + s)**2) / 10000.
e = Lifetime().set_survival(l=1).e_x(75, t=10, curtate=False)
isclose(8.2, e, question="Q2.4")
```

```
----- Q2.4 8.2: 8.20952380952381 [OK] -----
True
```

SOA Question 2.5: (B) 37.1

- solve for e_{40} from limited lifetime formula
- ullet compute e_{41} using backward recursion

```
----- Q2.5 37.1: 37.11434302908726 [OK] -----
True
```

SOA Question 2.6: (C) 13.3

• derive force of mortality function μ from given survival function

```
life = Survival().set_survival(l=lambda x,s: (1 - (x+s)/60)**(1/3))
mu = 1000 * life.mu_x(35)
isclose(13.3, mu, question="Q2.6")
```

```
---- Q2.6 13.3: 13.340451278922776 [OK] -----
True
```

SOA Question 2.7: (B) 0.1477

· calculate from given survival function

```
---- Q2.7 0.1477: 0.14772727272727 [OK] -----
True
```

SOA Question 2.8: (C) 0.94

- relate p_{male} and p_{female} through the common term μ and the given proportions

```
def fun(mu): # Solve first for mu, given ratio of start and end proportions
    male = Survival().set_survival(mu=lambda x,s: 1.5 * mu)
    female = Survival().set_survival(mu=lambda x,s: mu)
    return (75 * female.p_x(0, t=20)) / (25 * male.p_x(0, t=20))
mu = Survival.solve(fun, target=85/15, grid=[0.89, 0.99])
p = Survival().set_survival(mu=lambda x,s: mu).p_x(0, t=1)
isclose(0.94, p, question="Q2.8")
```

```
---- Q2.8 0.94: 0.9383813306903799 [OK] -----
True
```

22.3 3 Life tables and selection

SOA Question 3.1: (B) 117

· interpolate with constant force of maturity

```
---- Q3.1 117: 116.7192429022082 [OK] -----
True
```

SOA Question 3.2: (D) 14.7

- UDD $\Rightarrow \stackrel{\circ}{e}_x = e_x + 0.5$
- fill select table using curtate expectations

```
----- Q3.2 14.7: 14.67801047120419 [OK] -----
True
```

SOA Question 3.3: (E) 1074

• interpolate lives between integer ages with UDD

```
---- Q3.3 1074: 1073.684210526316 [OK] -----
True
```

SOA Question 3.4: (B) 815

• compute portfolio percentile with N=4000, and mean and variance from binomial distribution

```
sult = SULT()
mean = sult.p_x(25, t=95-25)
var = sult.bernoulli(mean, variance=True)
pct = sult.portfolio_percentile(N=4000, mean=mean, variance=var, prob=0.1)
isclose(815, pct, question="Q3.4")
```

```
----- Q3.4 815: 815.0943255167722 [OK] -----
True
```

SOA Question 3.5: (E) 106

• compute mortality rates by interpolating lives between integer ages, with UDD and constant force of mortality assumptions

```
.q_r(60, u=3.4, t=2.5)
b = LifeTable(udd=False).set_table(l={age:1 for age,1 in zip(range(60, 68), 1)})\
.q_r(60, u=3.4, t=2.5)
isclose(106, 100000 * (a - b), question="Q3.5")
```

```
----- Q3.5 106: 106.16575827938624 [OK] -----
True
```

SOA Question 3.6: (D) 15.85

• apply recursion formulas for curtate expectation

```
----- Q3.6 5.85: 5.846832 [OK] -----
True
```

SOA Question 3.7: (b) 16.4

- · use deferred mortality formula
- · use chain rule for survival probabilities,
- · interpolate between integer ages with constant force of mortality

```
----- Q3.7 16.4: 16.420207214428586 [OK] -----
True
```

SOA Question 3.8: (B) 1505

compute portfolio means and variances from sum of 2000 independent members' means and variances of survival.

```
sult = SULT()

p1 = sult.p_x(35, t=40)

p2 = sult.p_x(45, t=40)
```

(continues on next page)

```
---- Q3.8 1505: 1504.8328375406456 [OK] -----
True
```

SOA Question 3.9: (E) 3850

- compute portfolio means and variances as sum of 4000 independent members' means and variances (of survival)
- · retrieve normal percentile

```
---- Q3.9 3850: 3850.144345130047 [OK] -----
True
```

SOA Question 3.10: (C) 0.86

• reformulate the problem by reversing time: survival to year 6 is calculated in reverse as discounting by the same number of years.

```
interest = Interest(v=0.75)
L = 35*interest.annuity(t=4, due=False) + 75*interest.v_t(t=5)
interest = Interest(v=0.5)
R = 15*interest.annuity(t=4, due=False) + 25*interest.v_t(t=5)
isclose(0.86, L / (L + R), question="Q3.10")
```

```
----- Q3.10 0.86: 0.8578442833761983 [OK] ------
True
```

SOA Question 3.11: (B) 0.03

• calculate mortality rate by interpolating lives assuming UDD

```
life = LifeTable(udd=True).set_table(q={50//2: .02, 52//2: .04})
q = life.q_r(50//2, t=2.5/2)
isclose(0.03, q, question="Q3.11")
```

```
---- Q3.11 0.03: 0.0298 [OK] -----
True
```

SOA Question 3.12: (C) 0.055

• compute survival probability by interpolating lives assuming constant force

```
life = SelectLife(udd=False).set_table(l={60: [10000, 9600, 8640, 7771],
61: [8654, 8135, 6996, 5737],
62: [7119, 6549, 5501, 4016],
63: [5760, 4954, 3765, 2410]})
q = life.q_r(60, s=1, t=3.5) - life.q_r(61, s=0, t=3.5)
isclose(0.055, q, question="Q3.12")
```

```
----- Q3.12 0.055: 0.05465655938591829 [OK] -----
True
```

SOA Question 3.13: (B) 1.6

- compute curtate expectations using recursion formulas
- · convert to complete expectation assuming UDD

```
---- Q3.13 1.6: 1.6003382187147688 [OK] -----
True
```

SOA Question 3.14: (C) 0.345

• compute mortality by interpolating lives between integer ages assuming UDD

```
----- Q3.14 0.345: 0.345 [OK] -----
True
```

22.4 4 Insurance benefits

SOA Question 4.1: (A) 0.27212

- solve EPV as sum of term and deferred insurance
- · compute variance as difference of second moment and first moment squared

```
life = Recursion().set_interest(i=0.03)
life.set_A(0.36987, x=40).set_A(0.62567, x=60)
life.set_E(0.51276, x=40, t=20).set_E(0.17878, x=60, t=20)
z2 = 0.24954
A = (2 * life.term_insurance(40, t=20) + life.deferred_insurance(40, u=20))
std = math.sqrt(life.insurance_variance(A2=Z2, A1=A))
isclose(0.27212, std, question="Q4.1")
```

```
---- Q4.1 0.27212: 0.2721117749374753 [OK] -----
True
```

SOA Question 4.2: (D) 0.18

- calculate Z(t) and deferred mortality for each half-yearly t
- sum the deferred mortality probabilities for periods when PV > 277000

```
---- Q4.2 0.18: 0.17941813045022975 [OK] -----
True
```

SOA Question 4.3: (D) 0.878

- solve q_{61} from endowment insurance EPV formula
- solve $A_{60:\overline{3|}}$ with new i=0.045 as EPV of endowment insurance benefits.

```
life = Recursion(verbose=False).set_interest(i=0.05).set_q(0.01, x=60)
def fun(q):  # solve for q_61
    return life.set_q(q, x=61).endowment_insurance(60, t=3)
life.solve(fun, target=0.86545, grid=0.01)
A = life.set_interest(i=0.045).endowment_insurance(60, t=3)
isclose(0.878, A, question="Q4.3")
```

```
---- Q4.3 0.878: 0.8777667236003878 [OK] -----
True
```

SOA Question 4.4 (A) 0.036

- integrate to find EPV of Z and Z^2
- · variance is difference of second moment and first moment squared

```
----- Q4.4 0.036: 0.03567680106032681 [OK] -----
True
```

SOA Question 4.5: (C) 35200

- interpolate between integer ages with UDD, and find lifetime that mortality rate exceeded
- compute PV of death benefit paid at that time.

```
sult = SULT(udd=True).set_interest(delta=0.05)
Z = 100000 * sult.Z_from_prob(45, 0.95, discrete=False)
isclose(35200, Z, question="Q4.5")
```

```
---- Q4.5 35200: 35187.952037196534 [OK] -----
True
```

SOA Question 4.6: (B) 29.85

- · calculate adjusted mortality rates
- · compute term insurance as EPV of benefits

```
----- Q4.6 29.85: 29.84835110355902 [OK] -----
True
```

SOA Question 4.7: (B) 0.06

- use Bernoulli shortcut formula for variance of pure endowment Z
- solve for i, since p is given.

```
----- Q4.7 0.06: 0.06008023738770262 [OK] -----
True
```

SOA Question 4.8 (C) 191

• use insurance recursion with special interest rate i=0.04 in first year.

```
def v_t(t): return 1.04**(-t) if t < 1 else 1.04**(-1) * 1.05**(-t+1)
A = SULT().set_interest(v_t=v_t).whole_life_insurance(50, b=1000)
isclose(191, A, question="Q4.8")</pre>
```

```
----- Q4.8 191: 191.1281281882354 [OK] -----
True
```

SOA Question 4.9: (D) 0.5

• use whole-life, term and endowment insurance relationships.

```
*Pure Endowment E_35(t=15) <--
E_35(t=15) = A_35(t=15,endow=1) - A_35(t=15) ~endowment insurance minus term
---- Q4.9 0.5: 0.5 [OK] -----
```

SOA Question 4.10: (D)

• draw and compared benefit diagrams

```
life = Insurance().set_interest(i=0.0).set_survival(S=lambda x,s,t: 1, maxage=40)
def fun(x, t):
    if 10 <= t <= 20: return life.interest.v_t(t)
    elif 20 < t <= 30: return 2 * life.interest.v_t(t)
    else: return 0
def A(x, t): # Z_x+k (t-k)</pre>
```

(continues on next page)

(continued from previous page)

```
return life.interest.v_t(t - x) * (t > x)
benefits=[lambda x,t: (life.E_x(x, t=10) * A(x+10, t)
                            + life.E_x(x, t=20) * A(x+20, t)
                            - life.E_x(x, t=30) * A(x+30, t)),
          lambda x,t: (A(x, t)
                       + life.E_x(x, t=20) * A(x+20, t)
                       -2 * life.E_x(x, t=30) * A(x+30, t)),
          lambda x,t: (life.E_x(x, t=10) * A(x, t)
                       + life.E_x(x, t=20) * A(x+20, t)
                       -2 * life.E_x(x, t=30) * A(x+30, t)),
          lambda x,t: (life.E_x(x, t=10) * A(x+10, t)
                       + life.E_x(x, t=20) * A(x+20, t)
                       -2 * life.E_x(x, t=30) * A(x+30, t)),
          lambda x,t: (life.E_x(x, t=10))
                       * (A(x+10, t)
                          + life.E_x(x+10, t=10) * A(x+20, t)
                          - life.E_x(x+20, t=10) * A(x+30, t)))]
fig, ax = plt.subplots(3, 2)
ax = ax.ravel()
for i, b in enumerate([fun] + benefits):
   life.Z_plot(0, benefit=b, ax=ax[i], color=f"C{i+1}", title='')
   ax[i].legend(["(" + "abcde"[i-1] + ")" if i else "Z"])
z = [sum(abs(b(0, t) - fun(0, t)) for t in range(40)) for b in benefits]
ans = "ABCDE"[np.argmin(z)]
isclose('D', ans, question="Q4.10")
```

```
---- Q4.10 D: D [OK] -----
```

True

SOA Question 4.11: (A) 143385

- compute endowment insurance = term insurance + pure endowment
- apply formula of variance as the difference of second moment and first moment squared.

```
A1 = 528/1000  # E[Z1] term insurance

C1 = 0.209  # E[pure_endowment]

C2 = 0.136  # E[pure_endowment^2]

B1 = A1 + C1  # endowment = term + pure_endowment

def fun(A2):

   B2 = A2 + C2  # double force of interest

   return Insurance.insurance_variance(A2=B2, A1=B1)

A2 = Insurance.solve(fun, target=15000/(1000*1000), grid=[143400, 279300])

var = Insurance.insurance_variance(A2=A2, A1=A1, b=1000)

isclose(143385, var, question="Q4.11")
```

```
---- Q4.11 143385: 143384.9999999997 [OK] -----
True
```

SOA Question 4.12: (C) 167

- since Z_1, Z_2 are non-overlapping, $E[Z_1 Z_2] = 0$ for computing $Cov(Z_1, Z_2)$
- · whole life is sum of term and deferred, hence equals variance of components plus twice their covariance

```
cov = Life.covariance(a=1.65, b=10.75, ab=0) # E[Z1 Z2] = 0 nonoverlapping
var = Life.variance(a=2, b=1, var_a=46.75, var_b=50.78, cov_ab=cov)
isclose(167, var, question="Q4.12")
```

```
---- Q4.12 167: 166.829999999999 [OK] -----
True
```

SOA Question 4.13: (C) 350

• compute term insurance as EPV of benefits

```
---- Q4.13 350: 351.0578236056159 [OK] -----
True
```

SOA Question 4.14: (E) 390000

• discount (by interest rate i=0.05) the value at the portfolio percentile, of the sum of 400 bernoulli r.v. with survival probability $_{25}p_{60}$

```
sult = SULT()
p = sult.p_x(60, t=85-60)
mean = sult.bernoulli(p)
var = sult.bernoulli(p, variance=True)
F = sult.portfolio_percentile(mean=mean, variance=var, prob=.86, N=400)
F *= 5000 * sult.interest.v_t(85-60)
isclose(390000, F, question="Q4.14")
```

```
---- Q4.14 390000: 389322.86778416135 [OK] -----
True
```

SOA Question 4.15 (E) 0.0833

 this special benefit function has effect of reducing actuarial discount rate to use in constant force of mortality shortcut formulas

```
life = Insurance().set_survival(mu=lambda *x: 0.04).set_interest(delta=0.06)
benefit = lambda x,t: math.exp(0.02*t)
A1 = life.A_x(0, benefit=benefit, discrete=False)
A2 = life.A_x(0, moment=2, benefit=benefit, discrete=False)
var = life.insurance_variance(A2=A2, A1=A1)
isclose(0.0833, var, question="Q4.15")
```

```
----- Q4.15 0.0833: 0.08334849338238598 [OK] -----
True
```

SOA Question 4.16: (D) 0.11

• compute EPV of future benefits with adjusted mortality rates

```
----- Q4.16 0.1116: 0.1115661982248521 [OK] -----
True
```

SOA Question 4.17: (A) 1126.7

- find future lifetime with 50% survival probability
- compute EPV of special whole life as sum of term and deferred insurance, that have different benefit amounts before and after median lifetime.

```
sult = SULT()
median = sult.Z_t(48, prob=0.5, discrete=False)
def benefit(x,t): return 5000 if t < median else 10000
A = sult.A_x(48, benefit=benefit)
isclose(1130, A, question="Q4.17")</pre>
```

```
----- Q4.17 1130: 1126.774772894844 [OK] -----
True
```

SOA Question 4.18 (A) 81873

• find values of limits such that integral of lifetime density function equals required survival probability

```
---- Q4.18 81873: 81873.07530779815 [OK] -----
```

```
True
```

SOA Question 4.19: (B) 59050

- calculate adjusted mortality for the one-year select period
- · compute whole life insurance using backward recursion formula

```
----- Q4.19 59050: 59050.59973285648 [OK] -----
True
```

22.5 5 Annuities

SOA Question 5.1: (A) 0.705

- sum of annuity certain and deferred life annuity with constant force of mortality shortcut
- use equation for PV annuity r.v. Y to infer lifetime
- compute survival probability from constant force of mortality function.

```
life = ConstantForce(mu=0.01).set_interest(delta=0.06)
EY = life.certain_life_annuity(0, u=10, discrete=False)
p = life.p_x(0, t=life.Y_to_t(EY))
isclose(0.705, p, question="Q5.1") # 0.705
```

```
----- Q5.1 0.705: 0.7053680433746505 [OK] -----
True
```

SOA Question 5.2: (B) 9.64

- · compute term life as difference of whole life and deferred insurance
- compute twin annuity-due, and adjust to an immediate annuity.

```
*Whole Life Annuity a_0(t=WL) <--
  a_x = (1-A_x) / d
                                                               ~insurance twin
     a_0(t=1) = 1
                                                    ~one-year discrete annuity
     a_1(t=1) = 1
                                                    ~one-year discrete annuity
 *Whole Life Annuity a_10(t=WL) <--
  a_x = (1-A_x) / d
                                                               ~insurance twin
     a_10 (t=1) = 1
                                                    ~one-year discrete annuity
     a_11(t=1) = 1
                                                    ~one-year discrete annuity
---- Q5.2 9.64: 9.6399999999999 [OK] ----
True
```

SOA Question 5.3: (C) 6.239

• Differential reduces to the the EPV of the benefit payment at the upper time limit.

```
t = 10.5
E = t * SULT().E_r(40, t=t)
isclose(6.239, E, question="Q5.3")
---- Q5.3 6.239: 6.23871918627528 [OK] -----
```

SOA Question 5.4: (A) 213.7

- compute certain and life annuity factor as the sum of a certain annuity and a deferred life annuity.
- solve for amount of annual benefit that equals given EPV

```
life = ConstantForce(mu=0.02).set_interest(delta=0.01)
u = life.e_x(40, curtate=False)
P = 10000 / life.certain_life_annuity(40, u=u, discrete=False)
isclose(213.7, P, question="Q5.4") # 213.7
----- Q5.4 213.7: 213.74552118275955 [OK] ------
```

```
True
```

SOA Question 5.5: (A) 1699.6

- · adjust mortality rate for the extra risk
- compute annuity by backward recursion.

22.5. 5 Annuities 147

```
---- Q5.5 1700: 1699.6076593190103 [OK] -----
True
```

SOA Question 5.6: (D) 1200

- compute mean and variance of EPV of whole life annuity from whole life insurance twin and variance identities.
- portfolio percentile of the sum of N = 100 life annuity payments

```
life = Annuity().set_interest(i=0.05)
var = life.annuity_variance(A2=0.22, A1=0.45)
mean = life.annuity_twin(A=0.45)
fund = life.portfolio_percentile(mean, var, prob=.95, N=100)
isclose(1200, fund, question="Q5.6")

----- Q5.6 1200: 1200.6946732201702 [OK] ------
True
```

SOA Question 5.7: (C)

- compute endowment insurance from relationships of whole life, temporary and deferred insurances.
- compute temporary annuity from insurance twin
- apply Woolhouse approximation

```
*Whole Life Annuity a_35(t=WL) <--
  a_x = (1-A_x) / d
                                                               ~insurance twin
     a_35(t=1) = 1
                                                    ~one-year discrete annuity
     a_36(t=1) = 1
                                                    ~one-year discrete annuity
*Whole Life Annuity a_65(t=WL) <--
  a_x = (1-A_x) / d
                                                               ~insurance twin
     a_65(t=1) = 1
                                                    ~one-year discrete annuity
     a_66(t=1) = 1
                                                    ~one-year discrete annuity
*Pure Endowment E_35(t=30) <--
  E_35(t=30) = p_35(t=30) * v(t=30)
                                                               ~pure endowment
---- Q5.7 17376.7: 17376.71459632958 [OK] -----
```

SOA Question 5.8: (C) 0.92118

True

- calculate EPV of certain and life annuity.
- find survival probability of lifetime s.t. sum of annual payments exceeds EPV

```
sult = SULT()
a = sult.certain_life_annuity(55, u=5)
p = sult.p_x(55, t=math.floor(a))
isclose(0.92118, p, question="Q5.8")
```

```
---- Q5.8 0.92118: 0.9211799771029529 [OK] -----
True
```

SOA Question 5.9: (C) 0.015

- · express both EPV's expressed as forward recursions
- solve for unknown constant k.

22.6 6 Premium Calculation

SOA Question 6.1: (D) 35.36

- · calculate IA factor for return of premiums without interest
- solve net premium such that EPV benefits = EPV premium

```
---- Q6.1 35.36: 35.35922286190033 [OK] -----
True
```

SOA Question 6.2: (E) 3604

• EPV return of premiums without interest = Premium \times IA factor

• solve for gross premiums such that EPV premiums = EPV benefits and expenses

```
---- Q6.2 3604: 3604.229940320728 [OK] -----
True
```

SOA Question 6.3: (C) 0.390

- solve lifetime t such that PV annuity certain = PV whole life annuity at age 65
- calculate mortality rate through the year before curtate lifetime

```
life = SULT()
t = life.Y_to_t(life.whole_life_annuity(65))
q = 1 - life.p_x(65, t=math.floor(t) - 1)
isclose(0.39, q, question="Q6.3")
```

```
---- Q6.3 0.39: 0.39039071872030084 [OK] -----
True
```

SOA Question 6.4: (E) 1890

```
mthly = Mthly(m=12, life=Annuity().set_interest(i=0.06))
A1, A2 = 0.4075, 0.2105
mean = mthly.annuity_twin(A1) * 15 * 12
var = mthly.annuity_variance(A1=A1, A2=A2, b=15 * 12)
S = Annuity.portfolio_percentile(mean=mean, variance=var, prob=.9, N=200) / 200
isclose(1890, S, question="Q6.4")
```

```
---- Q6.4 1890: 1893.912859650868 [OK] -----
True
```

SOA Question 6.5: (D) 33

```
life = SULT()
P = life.net_premium(30, b=1000)
def gain(k): return life.Y_x(30, t=k) * P - life.Z_x(30, t=k) * 1000
k = min([k for k in range(20, 40) if gain(k) < 0])
isclose(33, k, question="Q6.5")</pre>
```

```
---- Q6.5 33: 33 [OK] ----
```

```
True
```

SOA Question 6.6: (B) 0.79

```
----- Q6.6 0.79: 0.7914321142683509 [OK] -----
True
```

SOA Question 6.7: (C) 2880

```
life = SULT()
a = life.temporary_annuity(40, t=20)
A = life.E_x(40, t=20)
IA = a - life.interest.annuity(t=20) * life.p_x(40, t=20)
G = life.gross_premium(a=a, A=A, IA=IA, benefit=100000)
isclose(2880, G, question="Q6.7")
```

```
----- Q6.7 2880: 2880.2463991134578 [OK] -----
True
```

SOA Question 6.8: (B) 9.5

- calculate EPV of expenses as deferred life annuities
- · solve for level premium

```
---- Q6.8 9.5: 9.526003201821927 [OK] -----
True
```

SOA Question 6.9: (D) 647

```
---- Q6.9 647: 646.8608151974504 [OK] -----
True
```

SOA Question 6.10: (D) 0.91

```
x = 0
life = Recursion(verbose=False).set_interest(i=0.06).set_p(0.975, x=x)
a = 152.85/56.05
life.set_a(a, x=x, t=3)
p1 = life.p_x(x=x+1)
life.set_p(p1, x=x+1)

def fun(p):
    return life.set_p(p, x=x+2).term_insurance(x=x, t=3, b=1000)
p = life.solve(fun, target=152.85, grid=0.975) # finally solve p_x+3, given A_x:3
isclose(0.91, p, question="Q6.10")
```

```
---- Q6.10 0.91: 0.9097382950525701 [OK] -----
True
```

SOA Question 6.11: (C) 0.041

```
True
```

SOA Question 6.12: (E) 88900

```
---- Q6.12 88900: 88862.59592874818 [OK] -----
True
```

SOA Question 6.13: (D) -400

```
life = SULT().set_interest(i=0.05)
A = life.whole_life_insurance(45)
contract = Contract(benefit=10000, initial_premium=.8, renewal_premium=.1)
def fun(P):  # Solve for premium, given Loss(t=0) = 4953
    return life.L_from_t(t=10.5, contract=contract.set_contract(premium=P))
contract.set_contract(premium=life.solve(fun, target=4953, grid=100))
L = life.gross_policy_value(45, contract=contract)
life.L_plot(x=45, T=10.5, contract=contract)
isclose(-400, L, question="Q6.13")
```

```
----- Q6.13 -400: -400.94447599879277 [OK] -----
True
```


SOA Question 6.14 (D) 1150

```
life = SULT().set_interest(i=0.05)
a = life.temporary_annuity(40, t=10) + 0.5*life.deferred_annuity(40, u=10, t=10)
A = life.whole_life_insurance(40)
P = life.gross_premium(a=a, A=A, benefit=100000)
isclose(1150, P, question="Q6.14")
```

```
---- Q6.14 1150: 1148.5800555155263 [OK] -----
True
```

SOA Question 6.15: (B) 1.002

```
life = Recursion().set_interest(i=0.05).set_a(3.4611, x=0)
A = life.insurance_twin(3.4611)
udd = UDD(m=4, life=life)
a1 = udd.whole_life_annuity(x=x)
woolhouse = Woolhouse(m=4, life=life)
a2 = woolhouse.whole_life_annuity(x=x)
P = life.gross_premium(a=a1, A=A)/life.gross_premium(a=a2, A=A)
isclose(1.002, P, question="Q6.15")
```

```
---- Q6.15 1.002: 1.0022973504113772 [OK] ----
```

True

SOA Question 6.16: (A) 2408.6

```
---- Q6.16 2410: 2408.575206281868 [OK] -----
True
```

SOA Question 6.17: (A) -30000

```
*Term Insurance A_0(t=2) <--
  A_0(t=2) = v * [ q_0 * b + p_0 * A_1(t=1) ]
                                                           ~backward recursion
   p_0 = 1 - q_0
                                                     ~complement of mortality
   A_1(t=1) = A_1(t=1, endow=1) - E_1(t=1)
                                                 ~endowment insurance - pure
    E_1(t=1) = p_1 * v(t=1)
                                                              ~pure endowment
   p_1 = 1 - q_1
                                                      ~complement of mortality
*Temporary Annuity a_0(t=2) <--
  a_0(t=2) = 1 + E_0(t=1) * a_1(t=1)
                                                           ~backward recursion
                                                              ~pure endowment
   E_0(t=1) = p_0 * v(t=1)
    p_0 = 1 - q_0
                                                      ~complement of mortality
   a_1(t=1) = 1
                                                    ~one-year discrete annuity
*Pure Endowment E_0(t=2) <--
  E_0(t=2) = p_0(t=2) * v(t=2)
                                                              ~pure endowment
   p_0(t=2) = p_1 * p_0
                                                          ~survival chain rule
     p_0 = 1 - q_0
                                                      ~complement of mortality
     p_1 = 1 - q_1
                                                      ~complement of mortality
---- Q6.17 -30000: -30107.42633581125 [OK] -----
```

True

SOA Question 6.18: (D) 166400

```
----- Q6.18 166400: 166362.83871487685 [OK] -----
True
```

SOA Question 6.19: (B) 0.033

```
life = SULT()
contract = Contract(initial_policy=.2, renewal_policy=.01)
a = life.whole_life_annuity(50)
A = life.whole_life_insurance(50)
contract.premium = life.gross_premium(A=A, a=a, **contract.premium_terms)
L = life.gross_policy_variance(50, contract=contract)
isclose(0.033, L, question="Q6.19")
```

```
---- Q6.19 0.033: 0.03283273381910885 [OK] -----
True
```

SOA Question 6.20: (B) 459

```
life = LifeTable().set_interest(i=.04).set_table(p={75: .9, 76: .88, 77: .85})
a = life.temporary_annuity(75, t=3)
IA = life.increasing_insurance(75, t=2)
A = life.deferred_insurance(75, u=2, t=1)
def fun(P): return life.gross_premium(a=a, A=P*IA + A*10000) - P
P = life.solve(fun, target=0, grid=[449, 489])
isclose(459, P, question="Q6.20")
```

```
---- Q6.20 459: 458.83181728297353 [OK] -----
True
```

SOA Question 6.21: (C) 100

```
---- Q6.21 100: 100.85470085470084 [OK] -----
True
```

SOA Question 6.22: (C) 102

```
life=SULT(udd=True)
a = UDD(m=12, life=life).temporary_annuity(45, t=20)
A = UDD(m=0, life=life).whole_life_insurance(45)
P = life.gross_premium(A=A, a=a, benefit=100000) / 12
isclose(102, P, question="Q6.22")
```

```
----- Q6.22 102: 102.40668704849178 [OK] -----
True
```

SOA Question 6.23: (D) 44.7

```
---- Q6.23 44.7: 44.70806635781144 [OK] -----
True
```

SOA Question 6.24: (E) 0.30

```
life = PolicyValues().set_interest(delta=0.07)
x, A1 = 0, 0.30  # Policy for first insurance
P = life.premium_equivalence(A=A1, discrete=False)  # Need its premium
contract = Contract(premium=P, discrete=False)
def fun(A2):  # Solve for A2, given Var(Loss)
    return life.gross_variance_loss(A1=A1, A2=A2, contract=contract)
A2 = life.solve(fun, target=0.18, grid=0.18)

contract = Contract(premium=0.06, discrete=False)  # Solve second insurance
var = life.gross_variance_loss(A1=A1, A2=A2, contract=contract)
isclose(0.304, var, question="Q6.24")
```

```
---- Q6.24 0.304: 0.3041999999999999 [OK] ----
```

```
True
```

SOA Question 6.25: (C) 12330

```
life = SULT()
woolhouse = Woolhouse(m=12, life=life)
benefits = woolhouse.deferred_annuity(55, u=10, b=1000 * 12)
expenses = life.whole_life_annuity(55, b=300)
payments = life.temporary_annuity(55, t=10)
def fun(P):
    return life.gross_future_loss(A=benefits + expenses, a=payments,
                                  contract=Contract(premium=P))
P = life.solve(fun, target=-800, grid=[12110, 12550])
isclose(12330, P, question="Q6.25")
```

```
---- Q6.25 12330: 12325.781125438532 [OK] ----
True
```

SOA Question 6.26 (D) 180

```
life = SULT().set_interest(i=0.05)
def fun(P):
    return P - life.net_premium(90, b=1000, initial_cost=P)
P = life.solve(fun, target=0, grid=[150, 190])
isclose(180, P, question="Q6.26")
```

```
---- Q6.26 180: 180.03164891315885 [OK] ----
True
```

SOA Question 6.27: (D) 10310

```
life = ConstantForce(mu=0.03).set_interest(delta=0.06)
x = 0
payments = (3 * life.temporary_annuity(x, t=20, discrete=False)
            + life.deferred_annuity(x, u=20, discrete=False))
benefits = (1000000 * life.term_insurance(x, t=20, discrete=False)
            + 500000 * life.deferred_insurance(x, u=20, discrete=False))
P = benefits / payments
isclose(10310, P, question="Q6.27")
```

```
---- Q6.27 10310: 10309.617799001708 [OK] ----
True
```

SOA Question 6.28 (B) 36

```
life = SULT().set_interest(i=0.05)
a = life.temporary_annuity(40, t=5)
A = life.whole_life_insurance(40)
                                                                               (continues on next page)
```

(continued from previous page)

```
----- Q6.28 36: 35.72634219391481 [OK] -----
True
```

SOA Question 6.29 (B) 20.5

```
---- Q6.29 20.5: 20.480268314431726 [OK] -----
True
```

SOA Question 6.30: (A) 900

```
---- Q6.30 900: 908.141412994607 [OK] -----
True
```

SOA Question 6.31: (D) 1330

```
---- Q6.31 1330: 1326.5406293909457 [OK] -----
```

```
True
```

SOA Question 6.32: (C) 550

```
x = 0
life = Recursion().set_interest(i=0.05).set_a(9.19, x=x)
benefits = UDD(m=0, life=life).whole_life_insurance(x)
payments = UDD(m=12, life=life).whole_life_annuity(x)
P = life.gross_premium(a=payments, A=benefits, benefit=100000)/12
isclose(550, P, question="Q6.32")
```

True

SOA Question 6.33: (B) 0.13

```
life = Insurance().set_survival(mu=lambda x,t: 0.02*t).set_interest(i=0.03)
x = 0
var = life.E_x(x, t=15, moment=life._VARIANCE, endowment=10000)
p = 1- life.portfolio_cdf(mean=0, variance=var, value=50000, N=500)
isclose(0.13, p, question="Q6.33", rel_tol=0.02)
```

```
---- Q6.33 0.13: 0.12828940905648634 [OK] -----
```

SOA Question 6.34: (A) 23300

```
---- Q6.34 23300: 23294.288659265632 [OK] -----
True
```

SOA Question 6.35: (D) 530

```
sult = SULT()
A = sult.whole_life_insurance(35, b=100000)
a = sult.whole_life_annuity(35)
P = sult.gross_premium(a=a, A=A, initial_premium=.19, renewal_premium=.04)
isclose(530, P, question="Q6.35")
```

```
---- Q6.35 530: 534.4072234303344 [OK] -----
True
```

SOA Question 6.36: (B) 500

```
----- Q6.36 500: 500.0 [OK] -----
True
```

SOA Question 6.37: (D) 820

```
sult = SULT()
benefits = sult.whole_life_insurance(35, b=50000 + 100)
expenses = sult.immediate_annuity(35, b=100)
a = sult.temporary_annuity(35, t=10)
P = (benefits + expenses) / a
isclose(820, P, question="Q6.37")
```

```
---- Q6.37 820: 819.7190338249138 [OK] -----
True
```

SOA Question 6.38: (B) 11.3

```
*Temporary Annuity a_0(t=10) < --
a_0(t=10) = [1 - A_0(t=10)] / d(t=10)
a_0(t=1) = 1
*annuity twin cone-year discrete annuity (continues on next page)
```

(continued from previous page)

SOA Question 6.39: (A) 29

```
sult = SULT()
P40 = sult.premium_equivalence(sult.whole_life_insurance(40), b=1000)
P80 = sult.premium_equivalence(sult.whole_life_insurance(80), b=1000)
p40 = sult.p_x(40, t=10)
p80 = sult.p_x(80, t=10)
P = (P40 * p40 + P80 * p80) / (p80 + p40)
isclose(29, P, question="Q6.39")
```

```
---- Q6.39 29: 29.033866427845496 [OK] -----
```

SOA Question 6.40: (C) 116

```
# - standard formula discounts/accumulates by too much (i should be smaller)
x = 0
life = Recursion().set_interest(i=0.06).set_a(7, x=x+1).set_q(0.05, x=x)
a = life.whole_life_annuity(x)
A = 110 * a / 1000
life = Recursion().set_interest(i=0.06).set_A(A, x=x).set_q(0.05, x=x)
A1 = life.whole_life_insurance(x+1)
P = life.gross_premium(A=A1 / 1.03, a=7) * 1000
isclose(116, P, question="Q6.40")
```

True

SOA Question 6.41: (B) 1417

```
x = 0
life = LifeTable().set_interest(i=0.05).set_table(q={x:.01, x+1:.02})
a = 1 + life.E_x(x, t=1) * 1.01
A = life.deferred_insurance(x, u=0, t=1) + 1.01*life.deferred_insurance(x, u=1, t=1)
P = 100000 * A / a
isclose(1417, P, question="Q6.41")
```

```
----- Q6.41 1417: 1416.9332301924137 [OK] -----
True
```

SOA Question 6.42: (D) 0.113

```
----- Q6.42 0.113: 0.11307956328284252 [OK] -----
True
```

SOA Question 6.43: (C) 170

• although 10-year term, premiums only paid first first years: separately calculate the EPV of per-policy maintenance expenses in years 6-10 and treat as additional initial expense

```
----- Q6.43 170: 171.22371939459944 [OK] -----
True
```

SOA Question 6.44: (D) 2.18

True

SOA Question 6.45: (E) 690

```
---- Q6.45 690: 689.2659416264196 [OK] -----
True
```


SOA Question 6.46: (E) 208

SOA Question 6.47: (D) 66400

```
---- Q6.47 66400: 66384.13293704337 [OK] -----
True
```

SOA Question 6.48: (A) 3195 – example of deep insurance recursion

```
*Pure Endowment E_0(t=5) <--
 E_0(t=5) = p_0(t=5) * v(t=5)
                                                               ~pure endowment
*Pure Endowment E_0(t=5) <--
 E_0(t=5) = p_0(t=5) * v(t=5)
                                                               ~pure endowment
*Term Insurance A_5(t=3) <--
 A_5(t=3) = v * [ q_5 * b + p_5 * A_6(t=2) ]
                                                           ~backward recursion
                                                      ~complement of mortality
  p_5 = 1 - q_5
  A_6(t=2) = v * [ q_6 * b + p_6 * A_7(t=1) ]
                                                           ~backward recursion
   p_6 = 1 - q_6
                                                      ~complement of mortality
                                                                      (continues on next page)
```

(continued from previous page)

```
A_7(t=1) = A_7(t=1, endow=1) - E_7(t=1)
                                                 ~endowment insurance - pure
     E_7(t=1) = p_7 * v(t=1)
                                                              ~pure endowment
    p_7 = 1 - q_7
                                                     ~complement of mortality
 *Term Insurance A_5(t=3) <--
  A_5(t=3) = v * [ q_5 * b + p_5 * A_6(t=2) ]
                                                          ~backward recursion
   p_5 = 1 - q_5
                                                     ~complement of mortality
   A_6(t=2) = v * [ q_6 * b + p_6 * A_7(t=1) ]
                                                         ~backward recursion
    p_6 = 1 - q_6
                                                     ~complement of mortality
    A_7(t=1) = A_7(t=1, endow=1) - E_7(t=1)
                                                 ~endowment insurance - pure
    E_7(t=1) = p_7 * v(t=1)
                                                             ~pure endowment
    p_7 = 1 - q_7
                                                     ~complement of mortality
---- Q6.48 3195: 3195.1189176587473 [OK] ----
```

True

SOA Question 6.49: (C) 86

```
---- Q6.49 86: 85.99177833261696 [OK] -----
True
```

SOA Question 6.50: (A) -47000

```
life = SULT()
P = life.premium_equivalence(a=life.whole_life_annuity(35), b=1000)
a = life.deferred_annuity(35, u=1, t=1)
A = life.term_insurance(35, t=1, b=1000)
cash = (A - a * P) * 10000 / life.interest.v
isclose(-47000, cash, question="Q6.50")
```

```
---- Q6.50 -47000: -46948.2187697819 [OK] -----
True
```

SOA Question 6.51: (D) 34700

SOA Question 6.52: (D) 50.80

• set face value benefits to 0

```
---- Q6.52 50.8: 50.80135534704229 [OK] -----
True
```

SOA Question 6.53: (D) 720

```
x = 0
life = LifeTable().set_interest(i=0.08).set_table(q={x:.1, x+1:.1, x+2:.1})
A = life.term_insurance(x, t=3)
P = life.gross_premium(a=1, A=A, benefit=2000, initial_premium=0.35)
isclose(720, P, question="Q6.53")
```

```
---- Q6.53 720: 720.1646090534978 [OK] -----
True
```

SOA Question 6.54: (A) 25440

```
life = SULT()
std = math.sqrt(life.net_policy_variance(45, b=200000))
isclose(25440, std, question="Q6.54")
```

```
----- Q6.54 25440: 25441.694847703857 [OK] -----
True
```

22.7 7 Policy Values

SOA Question 7.1: (C) 11150

```
---- Q7.1 11150: 11152.108749338717 [OK] -----
True
```

SOA Question 7.2: (C) 1152

```
---- Q7.2 1152: 1151.5151515151515 [OK] -----
True
```

SOA Question 7.3: (E) 730

```
---- Q7.3 730: 729.998398765594 [OK] -----
True
```

SOA Question 7.4: (B) -74 – split benefits into two policies

```
---- Q7.4 -74: -73.942155695248 [OK] -----
```

True

SOA Question 7.5: (E) 1900

```
----- Q7.5 1900: 1901.766021537228 [OK] -----
True
```

Answer 7.6: (E) -25.4

```
----- Q7.6 -25.4: -25.44920289521204 [OK] -----
True
```

SOA Question 7.7: (D) 1110

```
x = 0
life = Recursion().set_interest(i=0.05).set_A(0.4, x=x+10)
a = Woolhouse(m=12, life=life).whole_life_annuity(x+10)
contract = Contract(premium=0, benefit=10000, renewal_policy=100)
V = life.gross_future_loss(A=0.4, contract=contract.renewals())
contract = Contract(premium=30*12, renewal_premium=0.05)
V += life.gross_future_loss(a=a, contract=contract.renewals())
isclose(1110, V, question="Q7.7")
```

True

SOA Question 7.8: (C) 29.85

SOA Question 7.9: (A) 38100

```
sult = SULT(udd=True)
x, n, t = 45, 20, 10
a = UDD(m=12, life=sult).temporary_annuity(x+10, t=n-10)
A = UDD(m=0, life=sult).endowment_insurance(x+10, t=n-10)
contract = Contract(premium=253*12, endowment=100000, benefit=100000)
V = sult.gross_future_loss(A=A, a=a, contract=contract)
isclose(38100, V, question="Q7.9")
```

```
---- Q7.9 38100: 38099.62176709246 [OK] -----
True
```

SOA Question 7.10: (C) -970

```
life = SULT()
G = 977.6
P = life.net_premium(45, b=100000)
contract = Contract(benefit=0, premium=G-P, renewal_policy=.02*G + 50)
V = life.gross_policy_value(45, t=5, contract=contract)
isclose(-970, V, question="Q7.10")
```

```
---- Q7.10 -970: -971.8909301877826 [OK] -----
True
```

SOA Question 7.11: (B) 1460

```
life = Recursion().set_interest(i=0.05).set_a(13.4205, x=55)
contract = Contract(benefit=10000)

def fun(P):
    return life.L_from_t(t=10, contract=contract.set_contract(premium=P))
P = life.solve(fun, target=4450, grid=400)
V = life.gross_policy_value(45, t=10, contract=contract.set_contract(premium=P))
isclose(1460, V, question="Q7.11")
```

True

SOA Question 7.12: (E) 4.09

Answer 7.13: (A) 180

True

```
life = SULT()
V = life.FPT_policy_value(40, t=10, n=30, endowment=1000, b=1000)
isclose(180, V, question="Q7.13")
```

```
---- Q7.13 180: 180.1071785904076 [OK] -----
True
```

SOA Question 7.14: (A) 2200

```
---- Q7.14 2200: 2197.8174603174602 [OK] -----
True
```

SOA Question 7.15: (E) 50.91

```
----- Q7.15 50.91: 50.91362826922369 [OK] -----
True
```

SOA Question 7.16: (D) 380

```
----- Q7.16 380: 381.6876905200001 [OK] -----
True
```

SOA Question 7.17: (D) 1.018

True

SOA Question 7.18: (A) 17.1

```
x = 10
life = Recursion(verbose=False).set_interest(i=0.04).set_q(0.009, x=x)
def fun(a):
    return life.set_a(a, x=x).net_policy_value(x, t=1)
a = life.solve(fun, target=0.012, grid=[17.1, 19.1])
isclose(17.1, a, question="Q7.18")
```

```
----- Q7.18 17.1: 17.07941929974385 [OK] -----
True
```

SOA Question 7.19: (D) 720

```
---- Q7.19 720: 722.7510208759086 [OK] -----
```

```
True
```

SOA Question 7.20: (E) -277.23

```
---- Q7.20 -277.23: -277.19303323929216 [OK] -----
True
```

SOA Question 7.21: (D) 11866

```
---- Q7.21 11866: 11866.30158100453 [OK] -----
True
```

SOA Question 7.22: (C) 46.24

```
life = PolicyValues().set_interest(i=0.06)
contract = Contract(benefit=8, premium=1.250)
def fun(A2):
    return life.gross_variance_loss(A1=0, A2=A2, contract=contract)
A2 = life.solve(fun, target=20.55, grid=20.55/8**2)
contract = Contract(benefit=12, premium=1.875)
var = life.gross_variance_loss(A1=0, A2=A2, contract=contract)
isclose(46.2, var, question="Q7.22")
```

```
---- Q7.22 46.2: 46.2375 [OK] ----
```

```
True
```

SOA Question 7.23: (D) 233

```
life = Recursion().set_interest(i=0.04).set_p(0.995, x=25)
A = life.term_insurance(25, t=1, b=10000)
def fun(beta): # value of premiums in first 20 years must be equal
    return beta * 11.087 + (A - beta)
beta = life.solve(fun, target=216 * 11.087, grid=[140, 260])
isclose(233, beta, question="Q7.23")
```

```
*Term Insurance A_25(t=1,b=10000) <--
A_25(t=1) = A_25(t=1,endow=10000) - E_25(t=1,endow=10000) ~endowment

sinsurance - pure
E_25(t=1) = p_25 * v(t=1) ~pure endowment

----- Q7.23 233: 232.64747466274176 [OK] -----
```

True

SOA Question 7.24: (C) 680

```
life = SULT()
P = life.premium_equivalence(A=life.whole_life_insurance(50), b=1000000)
isclose(680, 11800 - P, question="Q7.24")
```

```
---- Q7.24 680: 680.291823645397 [OK] -----
True
```

SOA Question 7.25: (B) 3947.37

```
---- Q7.25 3950: 3947.3684210526353 [OK] -----
True
```

SOA Question 7.26: (D) 28540

• backward = forward reserve recursion

(continues on next page)

(continued from previous page)

```
.set_reserves(T=2, endowment=50000)
def benefit(k): return k * 25000
def fun(P): # solve P s.t. V is equal backwards and forwards
    policy = dict(t=1, premium=P, benefit=benefit, reserve_benefit=True)
    return life.t_V_backward(x, **policy) - life.t_V_forward(x, **policy)
P = life.solve(fun, target=0, grid=[27650, 28730])
isclose(28540, P, question="Q7.26")
```

```
----- Q7.26 28540: 28542.392566782808 [OK] -----
True
```

SOA Question 7.27: (B) 213

```
----- Q7.27 213: 212.970355987055 [OK] -----
True
```

SOA Question 7.28: (D) 24.3

```
life = SULT()
PW = life.net_premium(65, b=1000)  # 20_V=0 => P+W is net premium for A_65
P = life.net_premium(45, t=20, b=1000)  # => P is net premium for A_45:20
isclose(24.3, PW - P, question="Q7.28")
```

```
---- Q7.28 24.3: 24.334725400123975 [OK] -----
True
```

SOA Question 7.29: (E) 2270

(continues on next page)

(continued from previous page)

```
---- Q7.29 2270: 2270.743243243244 [OK] -----
True
```

SOA Question 7.30: (E) 9035

```
contract = Contract(premium=0, benefit=10000) # premiums=0 after t=10
L = SULT().gross_policy_value(35, contract=contract)
V = SULT().set_interest(i=0).gross_policy_value(35, contract=contract) # 10000
isclose(9035, V - L, question="Q7.30")
```

```
---- Q7.30 9035: 9034.654127845053 [OK] -----
True
```

SOA Question 7.31: (E) 0.310

```
x = 0
life = Reserves().set_reserves(T=3)
G = 368.05
def fun(P): # solve net premium expense reserve equation
    return life.t_V(x, t=2, premium=G-P, benefit=lambda t:0, per_policy=5+0.08*G)
P = life.solve(fun, target=-23.64, grid=[.29, .31]) / 1000
isclose(0.310, P, question="Q7.31")
```

```
---- Q7.31 0.31: 0.309966 [OK] -----
True
```

SOA Question 7.32: (B) 1.4

```
life = PolicyValues().set_interest(i=0.06)
contract = Contract(benefit=1, premium=0.1)
def fun(A2):
    return life.gross_variance_loss(A1=0, A2=A2, contract=contract)
A2 = life.solve(fun, target=0.455, grid=0.455)
contract = Contract(benefit=2, premium=0.16)
var = life.gross_variance_loss(A1=0, A2=A2, contract=contract)
isclose(1.39, var, question="Q7.32")
```

```
---- Q7.32 1.39: 1.3848168384380901 [OK] -----
True
```

Final Score

Solving Actuarial Math with Python

```
from datetime import datetime
print(datetime.now())
print(isclose)
```

2023-06-05 13:43:59.247011 Passed: 136/136