NUMBERS

1 2 3

	2	3
10 ²	10 ¹	10 ⁰
100	10	1

$$= 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 1 \times 100 + 2 \times 10 + 3 \times 1$$

= 123

4 1 2 3

10¹

10⁰

10²

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 1000 + 1 \times 100 + 2 \times 10 + 3 \times 1$$

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 1000 + 1 \times 100 + 2 \times 10 + 3 \times 1$$

$$= 4123$$

human hand

human hand

cartoon character's hand

2 3 (octal)

2 3 (octal) 8² 8¹ 8⁰ 2 3 8² 8¹ 8⁰

(octal)

 $= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$

1 2 3

(octal)

80

$$= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$$

 $= 1 \times 64 + 2 \times 8 + 3 \times 1$

8¹

8²

 1
 2
 3

 8²
 8¹
 8⁰

(octal)

 $= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$

 $= 1 \times 64 + 2 \times 8 + 3 \times 1$

= 83 (decimal)

decimal octal 8

decimal octal

decimal octal 16 ?

decimal octal ? 100

what now?

a binary number is like a switch

0, 1, ...

0, 1, 10, ...

0, 1, 10, 11, ...

0, 1, 10, 11, 100, ...

0, 1, 10, 11, 100, 101, ...

0, 1, 10, 11, 100, 101, 110

(binary)

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

 $\frac{1}{2^2}$ $\frac{1}{2^1}$ $\frac{0}{2^0}$

(binary)

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

 $= 1 \times 4 + 1 \times 2 + 0 \times 1$

1 1 0

(binary)

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

 $= 1 \times 4 + 1 \times 2 + 0 \times 1$

= 6 (decimal)

2 3 4 5 6

0, 1, 10, 11, 100, 101, 110

place value systems

$$N = d_n * R^{n-1} + ... + d_2 * R^1 + d_1 *$$

$$d \in \{0, 1, ... R-1\}$$

R ≥ 2