Short Assignment 4 - Solutions

Problem 1 (2.5 points)

Draw a Perceptron to implement the NAND gate $\overline{A\cap B}=\overline{A}\cup\overline{B}$ using the threshold activation function $\phi(x)=\left\{egin{array}{ll} 1,&x>0\\0,&x\leq 0 \end{array}.\right.$

In [1]: from IPython.display import Image
Image('figures/nand_gate.jpg', width=800)

Out[1]:
$$NAND$$

$$t = \phi(-A - B + 2)$$

where
$$\phi(x) = \begin{cases} 1, 270 \\ 0, 260 \end{cases}$$

Problem 2 (5 points)

Consider the following two-dimensional data set and desired values for a two-class classification problem:

In [2]: Image('figures/classification.png', width=400)

For the hard-limit activation function $\phi(x)=\begin{cases} 1,&x>0\\ 0,&x\leq 0 \end{cases}$, define a neural network structure and the associated parameter values that can solve this classification problem with zero error on this dataset.

In [3]: Image('figures/MLP-solution.jpg',width=800)

Out[3]:

6. (15 points) Consider the following two-dimensional data set and desired values for a two-class classification problem:

For the hard-limit activation function $\phi(x) = \begin{cases} 1, & x > 0 \\ 0, & x \le 0 \end{cases}$, define a neural network structure and associated parameter values that can solve this classification problem (with zero error on this data set).

Submit Your Solution

Confirm that you've successfully completed the assignment.

Along with the Notebook, include a PDF of the notebook with your solutions.

add and commit the final version of your work, and push your code to your GitHub repository.

Submit the URL of your GitHub Repository as your assignment submission on Canvas	
--	--