Set Theory

Paolo Bettelini

Contents

1	Defi	initions
	1.1	Set
	1.2	Cardinality
	1.3	Subset
	1.4	Proper Subset
	1.5	Empty Set
	1.6	Power Set
	1.7	Union
	1.8	Intersection
	1.9	Difference
	1.10	Subset in terms of relationships
	1.11	Disjoint Sets
	1.12	Cartesian Product
		Cartesian Power
	1.14	Disjoint union
	1.15	Complement
	1.16	Binary Relation
	1.17	Homogeneous Relation
	1.18	Reflexive relation
		Symmetric relation
	1.20	Transitive relation
		Equivalence relation
	1.22	Equivalence class
		Partition of a set
		Preorder
		Partial order
		Total order
		Greatest element
		Least element
		Maximal element
		Minimal element

1 Definitions

1.1 Set

A set is a collection of unordered elements.

1.2 Cardinality

The *cardinality* of a set A, denoted |A|, is the amount of elements it contians.

1.3 Subset

If A and B are sets, then A is a subset of B $(A \subseteq B)$, if all the elements of A are also in B. For every set $A, A \subseteq A$.

1.4 Proper Subset

Given two sets A and B, if $A \subseteq B$ but $A \neq B$, then A is a proper (or strict) subset of B

$$A \subset B$$

1.5 Empty Set

The empty set \emptyset is a subset of all other sets.

$$|\emptyset| = 0$$

For every set A

$$\emptyset \subseteq A$$

1.6 Power Set

If B is a set, then the power set $\mathcal{P}(B)$ is defined as the set of all subsets of B

$$\mathcal{P}(B) = \{ A \mid A \subseteq B \}$$

Note that $B \in \mathcal{P}(B)$.

The cardinality of $\mathcal{P}(A)$ is given by

$$|\mathcal{P}(A)| = 2^{|A|}$$

1.7 Union

If A and B are sets, then their union is

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

1.8 Intersection

If A and B are sets, then their *intersection* is

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

1.9 Difference

If A and B are sets, then their difference is

$$A \backslash B = \{ x \mid x \in A \land x \notin B \lor x \in B \land x \notin A \}$$

Note that

$$A \backslash B = B \backslash A \iff A = B$$

1.10 Subset in terms of relationships

$$A \subseteq B \iff A \cup B = B \iff A \cap B = A \iff A \setminus B = \emptyset$$

1.11 Disjoint Sets

If A and B are sets and $A \cap B = \emptyset$, then A and B are disjoint sets.

1.12 Cartesian Product

If A and B are sets, then their cartesian product is

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

which is the set of all possible ordered pairs.

More generally, given n sets A_1, A_2, \ldots, A_2 , their cartesian product $A_1 \times A_2 \times \cdots \times A_n$ is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) with $a_i \in A_i$.

1.13 Cartesian Power

Given a set
$$A$$
, $A^n = \underbrace{A \times A \times \cdots \times A}_n$.

The *n*-dimensional plane of real numbers is a cartesian power \mathbb{R}^n .

1.14 Disjoint union

Given sets $A_{i \in I}$, their disjoint union is

$$\bigsqcup_{i \in I} A_i = \bigcup_{i \in I} \{(x, i) \mid x \in A_i\}$$

which consists of prdered pairs where the second element is the index of the set.

1.15 Complement

If A is a set, its *complement* is

$$\bar{A} = \{x \,|\, x \notin A\}$$

1.16 Binary Relation

If A and B are sets, a function $f:A\to B$ defines a binary relation R

$$R = \{(a, b) \mid f(a) = b\}$$

Note that $R \subseteq A \times B$

1.17 Homogeneous Relation

A homogeneous relation on a set S is a binary relation from a A to A.

1.18 Reflexive relation

A homogeneous relation R on a set A is reflexive iff

$$\forall a \in A, (a, a) \in R$$

1.19 Symmetric relation

A homogeneous relation R on a set A is symmetric iff

$$\forall (a,b) \in R, (b,a) \in R$$

1.20 Transitive relation

A homogeneous relation R on a set A is transitive

$$\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \implies (a, c) \in R$$

1.21 Equivalence relation

An equivalence relation is a homogeneous relation \sim on a set A that is

- 1. Reflexive: $\forall a \in A, a \sim a$
- 2. Symmetric: $\forall a, b \in A, a \sim b \iff b \sim a$
- 3. Transitive: $\forall a, b, c \in A, a \sim b \land b \sim c \implies a \sim c$

1.22 Equivalence class

Let \sim be an equivalence relation on a set A. Given an element $a \in A$, the equivalence class of a, is defined as

$$[a]_{\sim} = \{ x \in A \mid a \sim x \}$$

By the symmetric property we have $a \in [a]_{\sim}$.

Let $b \in [a]_{\sim}$, meaning $a \sim b$. $\forall c \in [b]_{\sim}$, meaning $b \sim c$, we have $a \sim c$ by the transitive property. Thus, $c \in [a]_{\sim}$ and $[b]_{\sim} \subseteq [a]_{\sim}$. By the symmetric property we also have $b \sim a$, $\forall d \in [a]_{\sim}$, meaning $a \sim d$, we have $b \sim d$ by the transitive property. Thus, $d \in [b]_{\sim}$ and $[a]_{\sim} \subseteq [b]_{\sim}$. Hence,

$$b \in [a]_{\alpha} \iff [a]_{\alpha} = [b]_{\alpha}$$

This means that every element of an equivalence class has the same equivalence class. Thus, if two classes share an element they are the same

$$[a]_{a} \cap [b]_{a} \neq \emptyset \implies [a]_{a} = [b]_{a}$$

1.23 Partition of a set

Given a set A, a partition of a set $P = \{C_i\}_{i \in I}$ is a collection of non-empty subsets of A such that $\bigcup_{i \in I} C_i = P$ and $C_i \cap C_j = \emptyset, i \neq j$. In other words the sets C_i contain every element of A exactly once.

Given an equivalence relationship \sim of a set A, the set of its equivalence classes form a partition of A.

1.24 Preorder

A preorder is a homogeneous relation \leq on a set A with the following properties:

- 1. Reflexive: $\forall a \in A, a \leq a$
- 2. Transitive: $\forall a, b, c \in A, a \leq b \land b \leq c \implies a \leq c$

1.25 Partial order

A partial order is a homogeneous relation \leq on a set A with the following properties:

- 1. Reflexive: $\forall a \in A, a \leq a$
- 2. Transitive: $\forall a, b, c \in A, a \leq b \land b \leq c \implies a \leq c$
- 3. Antisymmetric: $\forall a, b \in A, a \leq b \land b \leq a \implies a = b$

1.26 Total order

A total order is a homogeneous relation \leq on a set A with the following properties:

- 1. Reflexive: $\forall a \in A, a \leq a$
- 2. Transitive: $\forall a, b, c \in A, a \leq b \land b \leq c \implies a \leq c$
- 3. Antisymmetric: $\forall a, b \in A, a \leq b \land b \leq a \implies a = b$
- 4. Strongly connected (or total): $\forall a, b \in A, a \leq b \lor b \leq a$

A total order is a partial order where any two elements are comparable.

1.27 Greatest element

Given a partial order on a set A, an element g is a greatest element if $\forall a \in A, a \leq g$.

1.28 Least element

Given a partial order on a set A, an element g is a least element if $\forall a \in A, g \leq a$.

1.29 Maximal element

Given a partial order on a set A, an element $g \in A$ that is a greatest element is a maximal element.

1.30 Minimal element

Given a partial order on a set A, an element $g \in A$ that is a least element is a minimal element.