

QUÍMICA NIVEL MEDIO PRUEBA 1

Miércoles 12 de mayo de 2010 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)				
٢		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97		103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04		102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	٠	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26		100 Fm (257)
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93		99 Es
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50		98 C f (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92		97 Bk (247)
Tabla periódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25		96 Cm (247)
bla pe				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96		95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35		94 Pu (242)
			1	25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92		93 N p (237)
	Número atómico	Elemento Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24		92 U 238,03
	Número	Elen Masa a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91		91 Pa 231,04
			•	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12		90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	+-	•	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)			
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)			

1. ¿Cuál es el coeficiente del Fe_3O_4 cuando la siguiente ecuación se ajusta usando los menores números enteros posibles?

-3-

$$_$$
 Al(s) + $_$ Fe₃O₄(s) \rightarrow $_$ Al₂O₃(s) + $_$ Fe(s)

- A. 2
- B. 3
- C. 4
- D. 5
- 2. ¿Cuál es la masa, en g, de una molécula de etano, C₂H₆?
 - A. $3,0 \times 10^{-23}$
 - B. 5.0×10^{-23}
 - C. 30
 - D. $1,8 \times 10^{25}$
- 3. ¿Qué fórmula molecular es además una fórmula empírica?
 - A. PCl₃
 - B. C_2H_4
 - C. H_2O_2
 - $D. \quad C_6 H_{12} O_6$
- 4. ¿Qué enunciado de la ley de Avogadro es válido?
 - A. $\frac{P}{T}$ = constante
 - B. $\frac{V}{T}$ = constante
 - C. Vn = constante
 - D. $\frac{V}{n}$ = constante

Una muestra del elemento X contiene 69 % de 63 X y 31 % de 65 X. ¿Cuál es la masa atómica relativa de X en esta muestra?

eriódica?

5.

- 9. ¿Qué óxidos producen una solución ácida cuando se los añade al agua?
 - I. P_4O_{10}
 - II. MgO
 - III. SO₃
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 10. ¿Cuál es la fórmula del fluoruro de magnesio?
 - A. Mg_2F_3
 - B. Mg_2F
 - C. Mg_3F_2
 - D. MgF₂
- 11. ¿Cuál es la forma de la molécula de amoníaco, NH₃?
 - A. Plana trigonal
 - B. Pirámide trigonal
 - C. Lineal
 - D. En forma de V
- 12. ¿Qué molécula es polar?
 - A. CH_2Cl_2
 - B. BCl₃
 - C. Cl₂
 - D. CCl₄

- 13. ¿Qué sustancia puede formar enlaces de hidrógeno intermoleculares en el estado líquido?
 - A. CH₃OCH₃
 - CH₃CH₂OH В.
 - C. CH₃CHO
 - D. CH₃CH₂CH₃
- ¿Qué compuesto tiene estructura covalente macromolecular (gigante covalente)? 14.
 - A. MgO(s)
 - B. $Al_2O_3(s)$
 - C. $P_4O_{10}(s)$
 - D. $SiO_2(s)$
- 15. A continuación se muestran las variaciones de entalpía estándar para la combustión del carbono y el monóxido de carbono.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_c^{\Theta} = -394 \text{ kJ mol}^{-1}$

$$\Delta H_c^{\Theta} = -394 \text{ kJ mol}^{-1}$$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_c^{\ominus} = -283 \text{ kJ mol}^{-1}$

$$\Delta H_c^{\Theta} = -283 \text{ kJ mol}^{-1}$$

¿Cuál es la variación de entalpía estándar, en kJ, para la siguiente reacción?

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A. -677
- В. -111
- C. +111
- D. +677

16. ¿Qué es correcto cuando se refiere a los cambios de energía que se producen durante la ruptura de enlaces y la formación de enlaces?

	Ruptura de enlaces	Formación de enlaces		
A.	es exotérmica y ΔH es positiva	es endotérmica y ΔH es negativa		
B.	es exotérmica y ΔH es negativa	es endotérmica y ΔH es positiva		
C.	es endotérmica y ΔH es positiva	es exotérmica y ΔH es negativa		
D.	es endotérmica y ΔH es negativa	es exotérmica y ΔH es positiva		

17.	¿Qué procesos	son exotérmicos?
------------	---------------	------------------

- I. Fusión del hielo
- II. Neutralización
- III. Combustión
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

18. ¿Qué unidad se podría usar para la velocidad de una reacción química?

- A. mol
- B. $mol dm^{-3}$
- C. $mol dm^{-3} s^{-1}$
- D. dm³

- 19. ¿Cuáles de los siguientes pueden aumentar la velocidad de una reacción química?
 - I. Aumento de temperatura
 - II. Agregado de un catalizador
 - III. Aumento de la concentración de los reactivos
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **20.** ¿Cuál es la expresión de la constante de equilibrio, K_c , para la siguiente reacción?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

A.
$$K_{c} = \frac{[NO_{2}]}{[N_{2}O_{4}]}$$

B.
$$K_{\rm c} = \frac{[NO_2]^2}{[N_2O_4]}$$

C.
$$K_c = \frac{[NO_2]}{[N_2O_4]^2}$$

D.
$$K_c = [NO_2][N_2O_4]^2$$

21. Considere la siguiente reacción endotérmica.

$$5CO(g) + I_2O_5(g) \rightleftharpoons 5CO_2(g) + I_2(g)$$

De acuerdo con el principio de Le Chatelier, ¿qué cambio produciría un aumento de la cantidad de CO₂?

- A. Aumento de la temperatura
- B. Disminución de la temperatura
- C. Aumento de la presión
- D. Disminución de la presión

22. ¿Qué especies se comportan como ácidos de Brønsted-Lowry en la siguiente reacción reversible?

$$H_2PO_4^-(aq) + CN^-(aq) \rightleftharpoons HCN(aq) + HPO_4^{2-}(aq)$$

- A. HCN y CN⁻
- B. HCN y HPO₄²⁻
- C. $H_2PO_4^-yHPO_4^{2-}$
- D. HCN y H₂PO₄
- 23. ¿Cuáles de los siguientes son ácidos débiles en solución acuosa?
 - I. CH₃COOH
 - II. H_2CO_3
 - III. HCl
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **24.** ¿En qué especie el azufre presenta número de oxidación 0?
 - A. SO₃
 - B. S₈
 - C. Na₂SO₄
 - D. H₂S

25. ¿Cuál es el agente reductor en la siguiente reacción?

$$2MnO_4^-(aq) + Br^-(aq) + H_2O(l) \rightarrow 2MnO_2(s) + BrO_3^-(aq) + 2OH^-(aq)$$

- A. Br
- B. BrO_3^-
- C. MnO₄
- D. MnO₂

26. ¿Qué cambios podrían tener lugar en el electrodo positivo (cátodo) de una pila voltaica?

- I. $Zn^{2+}(aq) a Zn(s)$
- II. $Cl_2(g)$ a $Cl^-(aq)$
- III. Mg(s) a $Mg^{2+}(aq)$
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

27. ¿Cuál es la fórmula estructural del 2,3-dibromo-3-metilhexano?

- A. CH₃CHBrCHBrCH(CH₃)CH₂CH₃
- B. CH₃CHBrCBr(CH₃)CH₂CH₂CH₃
- C. CH₃CH₂CHBrCBr(CH₂CH₃)₂
- D. CH₃CHBrCHBrCH(CH₂CH₃)₂

- **28.** ¿Qué sucede cuando se añaden unas gotas de agua de bromo a un exceso de 1-hexeno y se agita la mezcla?
 - I. El color del agua de bromo desaparece.
 - II. El producto orgánico que se forma no contiene ningún enlace doble carbono-carbono.
 - III. Se forma 2-bromohexano.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 29. ¿Cuál es el producto de la siguiente reacción?

$$\text{CH}_3\text{CH(OH)CH}_3 \xrightarrow{\text{Cr}_2\text{O}_7^{2-}/\text{H}^+} \rightarrow$$

- A. CH₃COOH
- B. CH₃COCH₃
- C. CH₃CH₂COOH
- D. CH₃CH₂CH₃
- **30.** ¿Cuántas cifras significativas hay en 0,00370?
 - A. 2
 - B. 3
 - C. 5
 - D. 6