SCI7661C/Mseries

CMOS DC/DC CONVERTER

■ DESCRIPTION

The SCI7661C/M CMOS DC/DC Converter features high operational performance with low power dissipation. It consists of two major parts: the booster circuitry and the regulator circuitry. The booster generates a doubled output voltage (-2.4V to -12V) or tripled output voltage (-3.6V to -18V) from the input (-1.2V to -6V). The regulator is capable of setting the output to any desired voltage. The regulated voltage can be given one of three threshold temperature gradients.

■ FEATURES

- High performance with low power dissipation
- Simple conversion of Vin (-5V) to |Vin| (+5V), 2 |Vin| (+10V), 2 Vin (-10V) or 3 Vin (-15V)
- On-chip output voltage regulator

- Power off by external signals Stationary current at power off ... Max 2μA
- On-chip C-R oscillator

■ BLOCK DIAGRAM

■ PIN CONFIGURATION

The same pin configuration in DIP and SOP

SCI7661C/M

■ PIN DESCRIPTION

Pin Name	Pin No.	Function		
CAP1+, CAP1-	1, 2	Terminal for connection of capacitor for doubler		
CAP2+, CAP2-	3, 4	Terminal for connection of capacitor for tripler		
TC1, TC2	5, 6	Temperature gradient selection terminal		
Vin	7	Power supply terminal (negative, system supply GND)		
Vouт	8	Output terminal at tripling		
Vreg	9	Regulated voltage output terminal		
RV	10	Regulated voltage control terminal		
Poff	11	Vreg output ON/OFF control terminal		
OSC2, OSC1	12, 13	Oscillation resistor connection terminal		
VDD	14	Power supply terminal (positive system supply Vcc)		

■ ABSOLUTE MAXIMUM RATINGS

(VD=0V)

Parameter	Symbol	Ratings	
Input supply voltage	Vı	-20/N*1 to 0.5	V
Input terminal voltage	Vı	Vin-0.5 to 0.5 *2	
input terminal voltage	VI	Vout-0.5 to 0.5 *3	V
Output voltage	Vo	min. –20.0	V
Allowable loss	Pd	300	mW
Operating temperature	Topr	-30 to 85 *4	°C
Storage temperature	Tstg	-55 to 150	°C
Soldering temperature and time	Tsol	260°C, 10s (at lead)	

^{*1} N=2: Doubler; N=3: Tripler

Additional Note: When this IC is soldered in the solder–reflow process, be sure to maintain the reflow furnace temperature at the curve shown in "Figure 3–5 Reflow Furnace Temperature Curve" of DATA BOOK. And this IC cannot be exposed to high temperature of the solder dipping.

^{*2} OSC1, Poff

^{*3} TC1, TC2, RV

^{*4} Plastic package

■ ELECTRICAL CHARACTERISTICS

(VDD=0V, VIN=-5V, Ta=-30° to 85°C)

Danier atam	0	0	NA:	T	N.4	11.2
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input supply voltage	Vı		-6.0		-1.2	V
Output voltage	Vo		-18.0			V
- Calput Voltago	Vreg	RL= ∞ , RRV=1M Ω , Vo= $-18V$	-18.0		-2.6	V
Regulator operating voltage	Vout		-18.0		-3.2	V
Booster current consumption	lopr1	$RL=\infty$, $Rosc=1M\Omega$		60	100	μΑ
Regulator current consumption	lopr2	$RL=\infty$, $RRV=1M\Omega$, $VO=-15V$		5.0	12.0	μΑ
Stationary current	lq	TC2=TC1=Vout, RL=∞			2.0	μΑ
Oscillation frequency	fosc	Rosc=1MΩ	16	20	24	kHz
Output impedance	Rоит	Iout=10mA		150	200	Ω
Booster power conversion efficiency	Peff	Iout=5mA	90	95		%
Regulated output voltage fluctuation	ΔVreg -18V <vout<-8v, vreg="-8V,</td"><td></td><td>0.2</td><td></td><td rowspan="2">%/V</td></vout<-8v,>			0.2		%/V
Regulated output voltage iluctuation	ΔVouτ•Vreg			0.2		
	$\frac{\Delta Vreg}{\Delta IOUT}$	VOUT=-15V, Vreg=-8V,		5		
Regulated output load fluctuation		0 <louт<10ma, ta="25°C,</td"><td></td><td></td><td>Ω</td></louт<10ma,>				Ω
		TC1=VDD, TC2=VO				
Regulated output		RSAT=Δ(Vreg-VOUT)/ΔIOUT,				
0 1	RSAT	0 <iout<10ma, rv="Vdd,</td"><td></td><td>8</td><td></td><td>Ω</td></iout<10ma,>		8		Ω
saturation resistance		Ta=25°C				
	VRV0	TC2=Vout, TC1=Vdd, Ta=25°C	-2.3	-1.5	-1.0	V
Reference voltage	VRV1	TC2=TC1=Vout, Ta=25°C	-1.7	-1.3	-1.1	V
	VRV2	TC2=VDD, TC1=VOUT, Ta=25°C	-1.1	-0.9	-0.8	V
	Сто	CT= Vreg(50°C) - Vreg(0°C) 50°C - 0°C	-0.25	-0.1	-0.06	%/°C
Temperature Gradient	Ст1		-0.5	-0.4	-0.3	%/°C
	Ст2	x 1/ Vreg(25°C) x 100	-0.7	-0.6	-0.5	%/°C
Input leakage current	ΙL	Poff, TC1, TC2, OSC1, RV pins			2.0	μΑ

■ RECOMMENDED OPERATING CONDITIONS

(Ta=-30° ~ 85°C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
	VSTA1	Rosc=1M Ω , C ₃ \geq 10 μ F * ²			-1.2	V
Booster start voltage	VSIAT	CL/C3 \leq 1/20, Ta=-20 $^{\circ}$ to 85 $^{\circ}$ C				
	VSTA2	Rosc=1M Ω			-2.2	V
Booster stop voltage	VSTP	Rosc=1M Ω	-1.2			V
Output load resistance	RL		RL min *3			Ω
Output load current	Іоит				20	mA
Oscillation frequency	fosc		10		30	kHz
External resistance for oscillation	Rosc		680		2000	kΩ
Capacitor for booster	C1, C2, C3		3.3			μF
Regulated output adjustable resistance	RRV		100		1000	kΩ

Recommended circuitry in low voltage operation is shown below (next page, diagram on left) (VIN=-1.2V~-2.2V)
RL min depends on input voltage as shown below (next page, diagram on right) *2

^{*3}

■ CIRCUIT DESCRIPTION

C-R Oscillator

The SCI7661C/M contains a C–R oscillator for internal oscillation. It consists of an external resistor Rosc connected between the OSC1 pin and OSC2 pin.

Voltage Converters

The voltage converters double/triple the input supply voltage (VIN) using clocks generated by the C–R oscillator.

Reference Voltage Generator and Voltage Regulator

The reference voltage generator produces reference voltage needed for operation of regular circuit. The voltage regulator is used to regulate a boosted output voltage and its circuit contains a power–off function which uses signals from the system for on–off control of the V_{reg} output.

Temperature Gradient Selector Circuit

The SCI7661C/M provides the V_{reg} output with a temperature gradient suitable for LCD driving (between V_{DD} and V_{reg}).

• Temperature Gradient Assignment

Poff	TC2	TC1	Temp. Gradient	Vreg Output	CR oscillation	Remarks
1 (VDD)	L (Vout)	L (Vout)	-0.4% / °C	ON	ON	
1	L	H (VDD)	-0.1% / °C	ON	ON	
1	H (VDD)	L	-0.6% / °C	ON	ON	
1	Н	Н	-0.6% / °C	ON	OFF	Cascade connection
0 (VIN)	L	L		OFF (Hi-Z)	OFF	
0	L	Н	_	OFF (Hi-Z)	OFF	
0	Н	L	_	OFF (Hi-Z)	OFF	
0	Н	Н	_	OFF (Hi-Z)	ON	Without regulation

NOTE: The potential at Low level is different between the Poff pin and the TC1/TC2 pin.

■ EXAMPLE OF APPLICATIONS

Voltage Doubler and Tripler

A doubled voltage can be obtained at VouT (CAP2–) by disconnecting capacitor C₂ from the tripler configuration and shorting CAP2– (pin 4) and VouT (pin 8).

Voltage Tripler + Regulator

 V_{reg} output is given a temperature gradient, after boosted output V_{OUT} regulated. In this connection, both V_{OUT} and V_{reg} can be taken out at the same time.

Parallel Connection

Parallel connection of n circuits can reduce Rout to about 1/n, that output impedance Rout can be reduced by connecting serial configuration. A single smoothing capacitor C3 can be used commonly for all parallelly connected circuits.

In parallel connection, a regulated output can be obtained by applying the regulation circuit to only one of the n parallelly connected circuits.

■ PACKAGE DIMENSIONS

