Course Code:	Course Title	Credit
CSC701	Deep Learning	3

Pre	Prerequisite: Basic mathematics and Statistical concepts, Linear algebra, Machine		
Lea	Learning		
Cou	Course Objectives:		
1	To learn the fundamentals of Neural Network.		
2	To gain an in-depth understanding of training Deep Neural Networks.		
3	To acquire knowledge of advanced concepts of Convolution Neural Networks,		
	Autoencoders and Recurrent Neural Networks.		
4	Students should be familiar with the recent trends in Deep Learning.		
Course Outcomes:			
1	Gain basic knowledge of Neural Networks.		
2	Acquire in depth understanding of training Deep Neural Networks.		
3	Design appropriate DNN model for supervised, unsupervised and sequence learning		
	applications.		
4	Gain familiarity with recent trends and applications of Deep Learning.		

Modul		Content	39Hrs
e			
1		Fundamentals of Neural Network	4
	1.1	History of Deep Learning, Deep Learning Success Stories, Multilayer	
		Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons,	
		Gradient Descent, Feedforward Neural Networks, Representation Power	
		of Feedforward Neural Networks	
	1.2	Deep Networks: Three Classes of Deep Learning Basic Terminologies	
		of Deep Learning	
2		Training, Optimization and Regularization of Deep Neural	10
		Network	
	2.1	Training Feedforward DNN	
		Multi Layered Feed Forward Neural Network, Learning Factors,	
		Activation functions: Tanh, Logistic, Linear, Softmax, ReLU, Leaky	
		ReLU, Loss functions: Squared Error loss, Cross Entropy, Choosing	
		output function and loss function	
	2.2	Optimization	
		Learning with backpropagation, Learning Parameters: Gradient	
		Descent (GD), Stochastic and Mini Batch GD, Momentum Based GD,	
		Nesterov Accelerated GD, AdaGrad, Adam, RMSProp	
	2.3	Regularization	
		Overview of Overfitting, Types of biases, Bias Variance Tradeoff	
		Regularization Methods: L1, L2 regularization, Parameter sharing,	
		Dropout, Weight Decay, Batch normalization, Early stopping, Data	
		Augmentation, Adding noise to input and output	
3		Autoencoders: Unsupervised Learning	6
	3.1	Introduction, Linear Autoencoder, Undercomplete Autoencoder,	
		Overcomplete Autoencoders, Regularization in Autoencoders	

	3.2	Denoising Autoencoders, Sparse Autoencoders, Contractive	
		Autoencoders	
	3.3	Application of Autoencoders: Image Compression	
4		Convolutional Neural Networks (CNN): Supervised Learning	7
	4.1	Convolution operation, Padding, Stride, Relation between input, output	
		and filter size, CNN architecture: Convolution layer, Pooling Layer	
		Weight Sharing in CNN, Fully Connected NN vs CNN, Variants of	
		basic Convolution function, Multichannel convolution operation, 2D convolution.	
	4.2	Modern Deep Learning Architectures:	
		LeNET: Architecture, AlexNET: Architecture, ResNet: Architecture	
5		Recurrent Neural Networks (RNN)	8
	5.1	Sequence Learning Problem, Unfolding Computational graphs,	
		Recurrent Neural Network, Bidirectional RNN, Backpropagation	
		Through Time (BTT), Limitation of "vanilla RNN" Vanishing and	
		Exploding Gradients, Truncated BTT	
	5.2	Long Short Term Memory(LSTM): Selective Read, Selective write,	
		Selective Forget, Gated Recurrent Unit (GRU)	
6		Recent Trends and Applications	4
	6.1	Generative Adversarial Network (GAN): Architecture	
	6.2	Applications: Image Generation, DeepFake	

Tex	Textbooks:		
1	Ian Goodfellow, Yoshua Bengio, Aaron Courville. —Deep Learning, MIT Press Ltd, 2016		
2	Li Deng and Dong Yu, —Deep Learning Methods and Applications, Publishers Inc.		
3	Satish Kumar "Neural Networks A Classroom Approach" Tata McGraw-Hill.		
4	JM Zurada —Introduction to Artificial Neural Systems, Jaico Publishing House		
5	M. J. Kochenderfer, Tim A. Wheeler. —Algorithms for Optimization , MIT Press.		
References:			
1	Deep Learning from Scratch: Building with Python from First Principles- Seth Weidman by O'Reilley		
2	François Chollet. —Deep learning with Python —(Vol. 361). 2018 New York: Manning.		
3	Douwe Osinga. —Deep Learning Cookbookl, O'REILLY, SPD Publishers, Delhi.		
4	Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc		
5	S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India		

Assessment:

Internal Assessment:

The assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise a total of six questions.
- 2 All questions carry equal marks.
- 3 Question 1 and question 6 will have questions from all modules. Remaining 4 questions will be based on the remaining 4 modules.

Only four questions need to be solved.
In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Useful Links		
1	http://www.cse.iitm.ac.in/~miteshk/CS6910.html	
2	https://nptel.ac.in/courses/106/106/106106184/	

3 https://www.deeplearningbook.org/