

Random Variables

Definition: If S is sample space of experiment s. Then random variable X is a real valued function defined on S. In other words, for every point s in S,

X(s) is a real number.

So, X(s)=x means that x is the value associated with the outcome s by the rv X.

Random Variables

Random variables are denoted by uppercase letters, such as *X* and *Y*.

Lowercase letters x and y are used to represent some particular value of the corresponding random variable.

Ex1:

When a student calls a university help desk for technical support, he/she will either immediately be able to speak to someone (*S*, for success) or will be placed on hold (*F*, for failure).

With
$$S = \{S, F\}$$
, define rv X by
$$X(S) = 1 X(F) = 0$$

The rv X indicates whether (1) or not (0) the student can immediately speak to someone.

Definition

Any random variable whose only possible values are 0 and 1 is called a **Bernoulli random variable**.

4

Ex2:

Consider an experiment in which the number of pumps in use at each of two six-pump gas stations was determined. Define rv's *X*, *Y*, and *U* by

X = the total number of pumps in use at the two stations

Y = the difference between the number of pumps in use at station 1 and the number in use at station 2

U = the maximum of the numbers of pumps in use at the two stations

Ex2:

If this experiment is performed and s = (2, 3) results, then

$$X((2, 3)) = 2 + 3 = 5,$$

so we say that the observed value of X is x = 5.

Similarly,

observed value of Y would be y = 2 - 3 = -1, and observed value of U would be $u = \max(2, 3) = 3$.

Two Types of Random Variables

Two Types of Random Variables

Definition: Discrete rv

An rv whose possible values either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on ("countably" infinite).

Definition: Continuous rv

An rv is **continuous** if *both* of the following apply:

- **1.** Its set of possible values consists either of all numbers in a single interval on the number line (possibly infinite in extent, e.g., from $-\infty$ to ∞) or all numbers in a disjoint union of such intervals (e.g., $[0, 10] \cup [20, 30]$).
- **2.** No possible value of the variable has positive probability, that is, P(X = c) = 0 for any possible value c.

Ex: Discrete rv

As another example, suppose we select married couples at random and do a blood test on each person until we find a husband and wife who both have the same Rh factor.

With X = the number of blood tests to be performed, possible values of X are D = {2, 4, 6, 8, ...}.

Since the possible values have been listed in sequence, *X* is a discrete rv.

Ex: discrete rv

Suppose that we toss three coins and consider the sample space associated with the experiment.

```
S = {hhh, hht, hth, htt,thh, tht, tth, ttt}
```

X: number of tails obtained in the toss of three coins

Hence,

$$X(hhh)=0, X(ttt)=3,$$

$$X(tht)=2$$
, $X(htt)=2$, $X(tth)=2$,

$$X(thh)=1, X(hht)=1, X(hth)=1$$

Ex: Continuous rv

The random variable denoting the life time of a car, when the cars's lifetime is assumed to take on any value in some interval [a, c]. So this is not discrete rv

Q:

If the sample space S is an infinite set, does this necessarily imply that any random variable X defined from will have an infinite set of possible values? If yes, say why. If not, give an example.

Ans: No. In the experiment in which a coin is tossed repeatedly until an H results, let Y = 1 if the experiment terminates with at most 5 tosses and Y = 0 otherwise. The sample space is infinite, yet Y has only two possible values.

Probability Distributions for Discrete rv

Probability Distributions for Discrete Random Variables

Probabilities assigned to various outcomes in \mathcal{S} in turn determine probabilities associated with the values of any particular rv X.

The *probability distribution of X* says how the total probability of 1 is distributed among (allocated to) the various possible *X* values.

Suppose, for example, that a business has just purchased four laser printers, and let *X* be the number among these that require service during the warranty period.

Probability Distributions for Discrete Random Variables

Possible *X* values: 0, 1, 2, 3, and 4.

Probability distribution tell us how the probability of 1 is subdivided among these five possible values—how much probability is associated with *X* value 0, *X* value 1, and so on.

Use the following notation for the probabilities in the distribution:

$$p(0)$$
 = the probability of the X value $0 = P(X = 0)$

$$p(1)$$
 = the probability of the X value 1 = $P(X = 1)$

and so on. In general, p(x) will denote the probability assigned to the value x.

Probability Distributions for Discrete Random Variables

Definition

The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

$$x$$
 by $p(x) = P(X = x) = P(\text{all } s \in \mathcal{S} : X(s) = x)$.

Necessary and sufficient conditions: for p(x) to be a pmf:

- 1) $p(x) \ge 0$ for all x
- 2) $\Sigma_{\text{all possible } x} p(x) = 1$

Ex:

The Cal Poly Department of Statistics has a lab with six computers reserved for statistics majors.

Let X denote the number of these computers that are in use at a particular time of day.

Suppose that the probability distribution of *X* is as given in the following table; the first row of the table lists the possible *X* values and the second row gives the probability of each such value.

X	0	1	2	3	4	5	6
p(x)	.05	.10	.15	.25	.20	.15	.10

Ex-cont.:

cont'd

Use elementary probability properties to calculate other probabilities of interest.

For example, prob. that at most 2 computers are in use is

$$P(X \le 2) = P(X = 0 \text{ or } 1 \text{ or } 2)$$

= $p(0) + p(1) + p(2) = .05 + .10 + .15$

As the event at least 3 computers are in use is complementary to at most 2 computers are in use,

$$P(X \ge 3) = 1 - P(X \le 2) = 1 - .30$$

which can, of course, also be obtained by adding together probabilities for the values, 3, 4, 5, and 6.

For some fixed value *x*, we often wish to compute the probability that the observed value of *X* will be at most *x*.

$$p(x) = \begin{cases} .500 & x = 0 \\ .167 & x = 1 \\ .333 & x = 2 \\ 0 & \text{otherwise} \end{cases}$$

The probability that X is at most 1 is then

$$P(X \le 1) = p(0) + p(1) = .500 + .167 = .667$$

In this example, $X \le 1.5$ if and only if $X \le 1$, so

$$P(X \le 1.5) = P(X \le 1) = .667$$

Similarly,

$$P(X \le 0) = P(X = 0) = .5, P(X \le .75) = .5$$

And in fact for any x satisfying $0 \le x < 1$, $P(X \le x) = .5$.

The largest possible *X* value is 2, so

$$P(X \le 2) = 1$$
, $P(X \le 3.7) = 1$, $P(X \le 20.5) = 1$

and so on.

*Note that $P(X < 1) < P(X \le 1)$ since the latter includes the probability of the X value 1, whereas the former does not.

More generally, when X is discrete and x is a possible value of the variable, $P(X < x) < P(X \le x)$.

Definition

The **cumulative distribution function** (cdf) F(x) of a discrete rv variable X with pmf p(x) is defined for every number x by

$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$$
 (3.3)

For any real number x, F(x) is the probability that the observed value of X will be at most x.

For X a discrete rv, the graph of F(x) will have a jump at every possible value of X and will be flat between possible values. Such a graph is called a **step function**.

Proposition

For any two numbers a and b with $a \le b$,

$$P(a \le X \le b) = F(b) - F(a-)$$

where "a—" represents the largest possible X value that is strictly less than a.

In particular, if the only possible values are integers and if *a* and *b* are integers, then

$$P(a \le X \le b) = P(X = a \text{ or } a + 1 \text{ or. . . or } b)$$

= $F(b) - F(a - 1)$

Taking a = b yields P(X = a) = F(a) - F(a - 1) in this case.

Calculating Probabilities:

from probability density function and CDF

Interested to determine

- (i) Probabilities from cumulative distribution function
- (ii) Cumulative distribution functions from probability mass function & Vice versa

Ex:

A store carries flash drives with either 1 GB, 2 GB, 4 GB, 8 GB, or 16 GB of memory.

The accompanying table gives the distribution of Y = the amount of memory in a purchased drive:

У	1	2	4	8	16
p(y)	.05	.10	.35	.40	.10

Let's first determine F(y) for each of the five possible values of Y:

$$F(1) = P(Y \le 1) = P(Y = 1) = .05$$

$$F(2) = P(Y \le 2) = P(Y = 1 \text{ or } 2) = p(1) + p(2) = .15$$

$$F(4) = P(Y \le 4) = P(Y = 1 \text{ or } 2 \text{ or } 4)$$

= $p(1) + p(2) + p(4) = .50$

$$F(8) = P(Y \le 8) = p(1) + p(2) + p(4) + p(8) = .90$$

$$F(16) = P(Y \le 16) = 1$$

Ex-cont.:

Now for any other number y, F(y) will equal the value of F at the closest possible value of Y to the left of y.

For example,

$$F(2.7) = P(Y \le 2.7) = P(Y \le 2)$$

$$= F(2) = .15$$

$$F(7.999) = P(Y \le 7.999) = P(Y \le 4)$$

$$= F(4) = .50$$

Ex-cont.:

If y < 1, F(y) = 0if y is at least 16, F(y) = 1; F(25) = 1. The cdf is thus

$$F(y) = \begin{cases} 0 & y < 1 \\ .05 & 1 \le y < 2 \\ .15 & 2 \le y < 4 \\ .50 & 4 \le y < 8 \\ .90 & 8 \le y < 16 \\ 1 & 16 \le y \end{cases}$$

A graph of this cdf is shown below.

Ex:

For the following probability mass function

у	1	2	3	4
f(y)	.4	.3	.2	.1

Determine the CDF

$$F(y) = \begin{cases} 0, & y < 1 \\ 0.4, & 1 \le y < 2 \\ 0.7, & 2 \le y < 3 \\ 0.9 & 3 \le y < 4 \\ 1 & 4 \le y \end{cases}$$

Ex:

Consider the following CDF

$$F(y) = \begin{cases} 0, & y < 1 \\ 0.4, & 1 \le y < 2 \\ 0.7, & 2 \le y < 3 \\ 0.9, & 3 \le y < 4 \\ 1, & 4 \le y \end{cases}$$

Y can take on 1, 2, 3, or 4.

Determine the pmf

$$P(Y=2)=0.7-0.4=0.3$$
, $P(Y=3)=0.9-0.7=0.2$,

Hence,

У	1	2	3	4
f(y)	.4	.3	.2	.1

For a discrete random variable X

taking values y_1, y_2, \dots, y_m . satisfying $y_1 < y_2 < \dots, < y_m$ If CDF F(y) is known at y_i , for $1 \le i \le m$ then $p(y_1) = F(y_1)$ & $p(y_i) = F(y_i) - F(y_{i-1}), 2 \le i \le m$

Ex: Probability distribution

A contractor is required by a country planning department to submit one, two, three, four, or five forms (depending on the nature of the project) in applying for a building permit.

Let Y= Number of forms required of the next applicant.

The probability that y forms are required is known to be proportional to y—that is, p(y)=ry y=1,2,3,4,5.

- **i.** What is the value of r?
- **ii.** What is the probability that at most three forms are needed?
- iii. What is the probability that between two and four forms(inclusive) are needed?
- iv. Could p(y)= $y^2/50$, y=1,2,3,4,5. be the pmf of Y?

Expectation, Variance, Standard deviation

Lecture-7

Expected Value of X

Definition

Let X be a discrete rv with set of possible values D and pmf p(x).

The **expected value** or **mean value** of X, denoted by E(X) or μ_X or just μ , is

$$E(X) = \mu_X = \sum_{x \in D} x \cdot p(x)$$

Ex1:

Ex. Let X denotes the number of heads in a toss of two fair coins. Then find the E(X) or expected number of heads occur in tossing two fair coins.

Solution:

Ex2:

Consider a university having 15,000 students and let X = of courses for which a randomly selected student is registered. The pmf of X follows.

X	1	2	3	4	5	6	7
p(x)	.01	.03	.13	.25	.39	.17	.02
Number registered	150	450	1950	3750	5850	2550	300

$$\mu = 1 \cdot p(1) + 2 \cdot p(2) + \dots + 7 \cdot p(7)$$

$$= (1)(.01) + 2(.03) + \dots + (7)(.02)$$

$$= .01 + .06 + .39 + 1.00 + 1.95 + 1.02 + .14$$

$$= 4.57$$

Rules of expectation/Results:

If X is a random variable, then it is easy to verify the following:

(i)
$$E(c) = c$$
 (ii) $E(c X) = c E(X)$

(iii)
$$E(c X + d) = c E(X) + d$$

(iv)
$$E(c H(X) + d G(X)) = c E(H(X)) + d E(G(X))$$

where c, d are constants, and H(X) and G(X) are functions of X.

Thus, expectation respects the linearity property.

Expected value of a function

Expected value of a function

Sometimes interest will focus on expected value of some function h(X) rather than on just E(X).

Proposition

If the rv X has a set of possible values D and pmf p(x), then the expected value of any function h(X), denoted by E[h(X)] or $\mu_{h(X)}$, is computed by

$$E[h(X)] = \sum_{D} h(x) \cdot p(x)$$

So, E[h(X)] is computed in the same way as E(X), except that h(x) is substituted in place of x.

Ex3:

A computer store has purchased three computers of a certain type at \$500 apiece. It will sell them for \$1000 apiece.

The manufacturer has agreed to repurchase any computers still unsold after a specified period at \$200 apiece.

Let X denote the number of computers sold, and suppose that

$$p(0) = .1$$
, $p(1) = .2$, $p(2) = .3$, $p(3) = .4$

Ex3-cont.:

With h(X) denoting the profit associated with selling X units, implies that

$$h(X) =$$

The expected profit is then

$$E[h(X)] =$$

Using rules of Expected Value

The h(X) function of interest is quite frequently a linear function aX + b.

In this case, E[h(X)] is easily computed from E(X) as

$$E(aX + b) = aE(X) + b$$

(Or, using alternative notation, $\mu_{aX+b} = a \mu_x + b$).

Considering previous Ex 3: Since h(X) = 800X - 900 and E(X) = 2.

So, E[h(x)] = 800 E(X) - 900 = \$700, as before.

Variance of X

Definition

Let X have pmf p(x) and expected value μ . Then the **variance** of X, denoted by V(X) or σ_X^2 , or just σ_X^2 , is

$$V(X) = \sum_{D} (x - \mu)^2 \cdot p(x) = E[(X - \mu)^2]$$

The **standard deviation** (SD) of X is

$$\sigma_X = \sqrt{\sigma_X^2}$$

Quantity $h(X) = (X - \mu)^2$ is the squared deviation of X from its mean, and σ^2 is the expected squared deviation.

One can say weighted average of squared deviations, where the weights are probabilities from the distribution.

Variance of X

Some observations:

If most of the probability distribution is close to μ , then σ^2 will be relatively small.

However, if there are x values far from μ that have large p(x), then σ^2 will be quite large.

So, basically, σ can be interpreted as the size of a representative deviation from the mean value μ .

Ex: Let X and Y be two rv's assuming the values X = 1, 9 and Y = 4, 6. Observe that both variables have the same mean values 5. However, values of X are far away from the mean or the central value 5 in comparison to the values of Y. Thus, the mean value of a rv does not account for its variability and so variance is considered.

Ex4:

A library has an upper limit of 6 on the number of videos that can be checked out to an individual at one time.

Consider only those who check out videos, and let *X* denote the number of videos checked out to a randomly selected individual. The pmf of *X* is as follows:

X	1	2	3	4	5	6
p(x)	.30	.25	.15	.05	.10	.15

The expected value of *X* is easily seen to be μ = 2.85.

Ex4-cont.:

cont'd

The variance of X is then

$$V(X) = \sigma^2 = \sum_{x=1}^{6} (x - 2.85)^2 \cdot p(x)$$

=
$$(1 - 2.85)^2(.30) + (2 - 2.85)^2(.25) + ... + (6 - 2.85)^2(.15) = 3.2275$$

The standard deviation of *X* is $\sigma = \sqrt{3.2275} = 1.800$.

Shortcut formula for σ^2

The number of arithmetic operations necessary to compute σ^2 can be reduced by using an alternative formula.

Proposition

$$V(X) = \sigma^2 = E(X^2) - [E(X)]^2$$

Proof:

Rules of Variance

Variance of h(X) is expected value of the squared difference between h(X) and its expected value:

$$V[h(X)] = \sigma^2_{h(X)} = \sum_{D} \{h(x) - E[h(X)]\}^2 \cdot p(x)$$

When
$$h(X) = aX + b$$

 $h(x) - E[h(X)] = ax + b - (a\mu + b) = a(x - \mu)$

Substituting this gives a simple relationship between V[h(X)] and V(X)

Rules of Variance

Proposition

$$V(aX + b) = \sigma_{aX+b}^2 = a^2 \sigma_x^2$$
 and $\sigma_{aX+b} = |a| \cdot \sigma_x$

In particular,

$$\sigma_{aX} = |a| \cdot \sigma_{x}, \ \sigma_{X+b} = \sigma_{X}$$

The absolute value is necessary because "a" might be negative, yet a standard deviation cannot be.

Variance, Moment Generating Functions, Bernoulli Distribution Lecture-8

Rules of Variance

Variance of h(X) is expected value of the squared difference between h(X) and its expected value:

$$V[h(X)] = \sigma_{h(X)}^2 = \sum_{D} \{h(x) - E[h(X)]\}^2 \cdot p(x)$$

When h(X) = aX + b

$$h(x) - E[h(X)] = ax + b - (a\mu + b) = a(x - \mu)$$

Substituting this gives a simple relationship between V[h(X)] and V(X):

Proposition

$$V(aX + b) = \sigma_{aX+b}^2 = a^2 \sigma_x^2$$
 and $\sigma_{aX+b} = |a| \cdot \sigma_x$

The absolute value is necessary because "a" might be negative, yet a standard deviation cannot be.

- Variance indicates the variability of a list of values.
- It is an average distance from the mean on the observations we have.
- The more different from each other our data are, the greater is the variance.

Ex. Let the rv X represent the number of automobiles that are used for social business purposes on any given workday. The probability distribution for company A is

X: 1 2 3 f(x): 0.3 0.4 0.3

and that for company B is

X: 0 1 2 3 4 f(x): 0.2 0.1 0.3 0.3 0.1

Show that the variance of the probability distribution for company B is greater than that for company A.

An appliance dealer sells three different models of upright freezers having 13.5, 15.9, and 19.1 cubic feet of storage space, respectively. Let X = the amount of storage space purchased by the next customer to buy a freezer. Suppose that X has pmf

x	13.5	15.9	19.1	
p(x)	.2	.5	.3	

- a. Compute E(X), $E(X^2)$, and V(X).
- b. If the price of a freezer having capacity X cubic feet is 25X - 8.5, what is the expected price paid by the next customer to buy a freezer?
- c. What is the variance of the price 25X 8.5 paid by the next customer?
- d. Suppose that although the rated capacity of a freezer is X, the actual capacity is h(X) = X - .01X². What is the expected actual capacity of the freezer purchased by the next customer?

Ordinary Moments: For any positive integer r, r^{th} ordinary moments of a discrete random variable X with pmf p(x) is defined as $E[X^r]$.

Thus, for r=1 we get mean.

Using 1st and 2nd ordinary moments, we can evaluate Variance.

There is a tool, *moment generating function* (mgf) which helps to evaluate all ordinary moments in one go.

Moment generating function

<u>Definition</u>: Let X be any random variable with density f. The mgf for X is denoted by $m_X(t)$ and is given by

$$m_X(t) = E(e^{tX})$$

provided the expectation is finite for all real numbers t in some open interval (-h, h).

It is derived from the density that allows one to calculate ordinary moments of distribution easily. It provides a unique identifier for each distribution.

Theorem: If $m_X(t)$ is the mgf for a random variable X, then

$$\left. \frac{d^r m_X(t)}{dt^r} \right|_{t=0} = E(X^r)$$

Some standard discrete distribution

Bernoulli Probability Distribution

- Named after Swiss mathematician Jacob Bernoulli
- The discrete probability distribution of a random variable which takes the value 1 with probability p and the value 0 with probability q=1-p
- The probability distribution of any single experiment that asks a yes—no question; the question results in a booleanvalued outcome, a single bit whose value is success/yes/true/one with probability p and failure/no/false/zero with probability q.

If X is a random variable with this distribution, then

$$P(X = 1) = p = 1 - P(X = 0) = 1 - q$$

The probability mass function f of this distribution, over possible outcomes x, is

$$f(x;p) = \begin{cases} 1-p & \text{if } x = 0\\ p & \text{if } x = 1\\ 0 & \text{elsewhere} \end{cases}$$

This can also be expressed as

$$f(x;p) = p^x (1-p)^{1-x}; x \in \{0,1\}$$

- Parameter $0 \le p \le 1$; q = 1 p
- Support $k \in \{0,1\}$

$$f(x, p) = \begin{cases} 1 - p; x = 0 \\ p; x = 1 \\ 0; elsewhere \end{cases}$$

•
$$F(x) = \begin{cases} 0; x < 0 \\ 1 - p; 0 \le x < 1 \\ 1; x \ge 1 \end{cases}$$

- $\bullet E(X) = p$
- $E(X^2) = p$
- Var(X) = pq
- $m_X(t) = q + pe^t$