Lab 3

Name: Anish S Ghiya

Registration Number: 18BCB0002

Task 1

- · Import dataset from sklearn
- . Make the dataframe from the data
- · Describe and info on dataset
- Value Counts for target
- · Groupby on target
- Train test split using sklearn (stratify(with and without) & randomstate)
- · Binarisation using pd.cut
- · Predictions based on threshold of b
- Calculation accuracy

Importing Libraries

```
import sklearn.datasets
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
```

Loading the dataset

Breast cancer dataset from the sklearn library

```
In []:

cancer_ds = sklearn.datasets.load_breast_cancer()
X = cancer_ds.data
y = cancer_ds.target
y_names = cancer_ds.target_names
print(y[:10])
print(y_names)
print(X[:1])

[0 0 0 0 0 0 0 0 0 0 0 0]
['malignant' 'benign']
[[1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
4.601e-01 1.189e-01]]
```

Generating the dataframe for the dataset

```
In []:
cancer_df = pd.DataFrame(cancer_ds.data, columns=cancer_ds.feature_names)
cancer_df['target'] = y
cancer_df['target_name'] = cancer_df['target'].map({0:y_names[1], 1:y_names[0]})
cancer_df.head()
Out[]:
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	radius error	texture error	p€
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	1.0950	0.9053	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	0.5435	0.7339	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	0.7456	0.7869	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	0.4956	1.1560	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	0.7572	0.7813	
4					1								•

Getting the general description of the dataset

Using the describe and info methods

```
In [ ]:
```

cancer_df.describe()

Out[]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	fı dime
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.00
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.0
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.00
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.04
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.0
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.0
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.0
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.0
4										··· Þ

In []:

cancer_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
1 ^	Emakal dimanaian aman	ECO11	£1 ~~ 上 / /

```
19 Tractal dimension error 509 non-null
                                            LLOalb4
20 worst radius
                                            float64
                             569 non-null
21 worst texture
                            569 non-null
                                            float64
22 worst perimeter
                            569 non-null
                                            float64
                            569 non-null
                                            float64
23
    worst area
                           569 non-null
569 non-null
                                            float64
    worst smoothness
                                            float64
25 worst compactness26 worst concavity
                             569 non-null
                                            float64
27 worst concave points 569 non-null 28 worst symmetry 560 non-null
                                            float64
                                            float64
                             569 non-null
28 worst symmetry
                                            float64
29 worst fractal dimension 569 non-null
30 target
                             569 non-null
                                            int64
31 target name
                             569 non-null
                                            object
dtypes: float64(30), int64(1), object(1)
memory usage: 142.4+ KB
```

Getting the target value description

Using the value_counts function to get the rows of each value in the target variable

Finding mean of all columns for specified target

Using the groupby function to calculate mean of each of the target variable values

```
In [ ]:
```

In []:

```
cancer_df.groupby(['target', 'target_name'],as_index=False).mean()
# observation from output the values for the target "0"(benign) is more than that of targe
t "1" (malignant)
```

```
Out[]:
```

	target	target_name	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mea symmet
0	0	benign	17.462830	21.604906	115.365377	978.376415	0.102898	0.145188	0.160775	0.087990	0.19290
1	1	malignant	12.146524	17.914762	78.075406	462.790196	0.092478	0.080085	0.046058	0.025717	0.17418
4											Þ

Splitting dataset into train and test

Without stratify and with stratify

Random_state is used to maintain consistency throughout all the splits we generate

```
In [ ]:
```

```
print(X train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
(512, 31)
(512,)
(57, 31)
(57,)
In [ ]:
print(y_train.value_counts())
print(y test.value counts())
1
     317
0
    195
Name: target, dtype: int64
    40
     17
Name: target, dtype: int64
In [ ]:
print(y train.value counts()[1]/ y train.value counts()[0])
print(y test.value counts()[1]/y test.value counts()[0])
1.6256410256410256
2.3529411764705883
The distributuion without stratified is skewed towards malignant
Hence we will be using the stratify parameter to reduce this skew in the train test split
In [ ]:
from sklearn.model selection import train test split
X=cancer df.drop(['target', 'target name'], axis=1)
y=cancer df['target']
X_train, X_test, y_train, y_test = train_test_split(X,y,
                                                        test size=0.1,
                                                        random state=42,
                                                        stratify=y)
print(y train.value counts())
print(y_test.value_counts())
print("\n")
print(y train.value counts()[1]/ y train.value counts()[0])
print(y_test.value_counts()[1]/y_test.value_counts()[0])
1
     321
0
     191
Name: target, dtype: int64
1
     36
0
     21
Name: target, dtype: int64
1.6806282722513088
1.7142857142857142
From this we can clearly note the reduction in the skew as the disributions are fairly similar
```

In []:

In []:

X train

Out[]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	radius error	texture error
413	14.990	22.11	97.53	693.7	0.08515	0.10250	0.06859	0.03876	0.1944	0.05913	0.3186	1.3360
517	19.890	20.26	130.50	1214.0	0.10370	0.13100	0.14110	0.09431	0.1802	0.06188	0.5079	0.8737
245	10.480	19.86	66.72	337.7	0.10700	0.05971	0.04831	0.03070	0.1737	0.06440	0.3719	2.6120
102	12.180	20.52	77.22	458.7	0.08013	0.04038	0.02383	0.01770	0.1739	0.05677	0.1924	1.5710
28	15.300	25.27	102.40	732.4	0.10820	0.16970	0.16830	0.08751	0.1926	0.06540	0.4390	1.0120
509	15.460	23.95	103.80	731.3	0.11830	0.18700	0.20300	0.08520	0.1807	0.07083	0.3331	1.9610
230	17.050	19.08	113.40	895.0	0.11410	0.15720	0.19100	0.10900	0.2131	0.06325	0.2959	0.6790
354	11.140	14.07	71.24	384.6	0.07274	0.06064	0.04505	0.01471	0.1690	0.06083	0.4222	0.8092
103	9.876	19.40	63.95	298.3	0.10050	0.09697	0.06154	0.03029	0.1945	0.06322	0.1803	1.2220
248	10.650	25.22	68.01	347.0	0.09657	0.07234	0.02379	0.01615	0.1897	0.06329	0.2497	1.4930
540		00										

512 rows × 30 columns

Binarising the dataset

Using the pd.cut option with the bins to be 2

```
In [ ]:
```

```
X_binary_tr = X_train.apply(pd.cut, bins=2, labels=[1,0])
X_binary_te = X_test.apply(pd.cut, bins=2, labels=[1,0])
X_binary_tr.head()
```

Out[]:

	mean radius	mean texture	mean perimeter		mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	radius error	texture error	ŗ
413	1	1	1	1	1	1	1	1	1	1	1	1	
517	0	1	0	1	0	1	1	1	1	1	1	1	
245	1	1	1	1	0	1	1	1	1	1	1	1	
102	1	1	1	1	1	1	1	1	1	1	1	1	
28	1	0	1	1	0	1	1	1	1	1	1	1	
4					1								

In []:

X_binary_te.head()

Out[]:

	mean radius	mean texture	mean perimeter		mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	radius error	texture preserved
199	1	1	1	1	1	1	1	1	1	1	1	1
288	1	1	1	1	1	1	1	1	0	1	1	0
73	1	1	1	1	1	1	1	1	1	1	1	1
121	0	1	0	1	1	1	1	1	1	1	0	0
14	1	0	1	1	0	0	0	1	0	0	1	1

```
In []:

X_binary_tr = X_binary_tr.values
X_binary_te = X_binary_te.values
```

Simple ML model

227

False

Using the value of b to be the threshold, the values are predicted for the training dataset

Based on the number of correct and wrong predictions the accuracy is calculated

Formula

Correct predictions/(total number of predictions)

```
In [ ]:
b = 20
In [ ]:
def get predictions(X binary tr, y train, b):
  pred = []
  # loop to go through the all the values of b for all columns
  for i in range(X_binary_tr.shape[0]):
    # for checking the threshold for predicting the bening and makignant
    if (np.sum(X binary tr[i,:]) >= b):
      pred.append(1)
    else :
     pred.append(0)
  # creating a dataframe with predictions and true values
  df = pd.DataFrame(columns=['Predictions', 'True values'])
  df['Predictions'] = pred
  df['True values'] = y train
  #checking if the prediction is sane as y_train
  df['cor wr'] = df['Predictions'] == df['True values']
  display(df['cor wr'].value counts())
  #accuracy = correct preds/(correct preds + wrong preds)
  return df['cor wr'].value counts()[1] / (df['cor wr'].value counts()[1]+df['cor wr'].va
lue counts()[0])
# Iterating through all possible values of b
for b in range(X train.shape[1]):
  print("Value of b: ", b)
  print("Accuracy: ", get predictions(X binary tr, y train, b))
Value of b: 0
True
         285
False
        227
Name: cor wr, dtype: int64
Accuracy: 0.556640625
Value of b: 1
         285
True
        227
False
Name: cor wr, dtype: int64
Accuracy: 0.556640625
Value of b: 2
         285
True
```

```
Name: cor wr, dtype: int64
Accuracy: 0.556640625
Value of b: 3
True
       285
False 227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 4
True 285
False 227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 5
True
       285
False 227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 6
True
       285
False 227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 7
       285
True
False 227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 8
True 285
False 227
Name: cor wr, dtype: int64
Accuracy: 0.556640625
Value of b: 9
True 285
False 227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 10
       285
True
False
       227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 11
True 285
False 227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 12
True
       285
False
       227
Name: cor_wr, dtype: int64
Accuracy: 0.556640625
Value of b: 13
       284
True
False
       228
```

```
Name: cor wr, dtype: int64
Accuracy: 0.5546875
Value of b: 14
True
       284
False 228
Name: cor_wr, dtype: int64
Accuracy: 0.5546875
Value of b: 15
True 281
False 231
True
Name: cor wr, dtype: int64
Accuracy: 0.548828125
Value of b: 16
       281
True
False 231
Name: cor_wr, dtype: int64
Accuracy: 0.548828125
Value of b: 17
True 279
False 233
Name: cor wr, dtype: int64
Accuracy: 0.544921875
Value of b: 18
True 278
False 234
Name: cor_wr, dtype: int64
Accuracy: 0.54296875
Value of b: 19
       277
True
False 235
Name: cor wr, dtype: int64
Accuracy: 0.541015625
Value of b: 20
True 276
False 236
Name: cor_wr, dtype: int64
Accuracy: 0.5390625
Value of b: 21
       273
True
False 239
Name: cor_wr, dtype: int64
Accuracy: 0.533203125
Value of b: 22
      271
241
True
False
Name: cor_wr, dtype: int64
Accuracy: 0.529296875
Value of b: 23
True
       278
False
       234
Name: cor_wr, dtype: int64
Accuracy: 0.54296875
Value of b: 24
     271
True
False
```

Name: cor wr, dtype: int64 Accuracy: 0.529296875 Value of b: 25 265 True False 247 Name: cor_wr, dtype: int64 Accuracy: 0.517578125 Value of b: 26 True 259 False 253 True Name: cor wr, dtype: int64 Accuracy: 0.505859375 Value of b: 27 247 False True Name: cor_wr, dtype: int64 Accuracy: 0.482421875 Value of b: 28 False 271 True 241 Name: cor wr, dtype: int64 Accuracy: 0.470703125 Value of b: 29 False 281 231 True Name: cor_wr, dtype: int64 Accuracy: 0.451171875 In []: