CS:APP Chapter 4 Computer Architecture Logic Design

Yuan Tang

Adapted from CMU course 15-213

Overview of Logic Design

Fundamental Hardware Requirements

- Communication
 - How to get values from one place to another
- Computation
- Storage

Bits are Our Friends

- Everything expressed in terms of values 0 and 1
- Communication
 - Low or high voltage on wire
- Computation
 - Compute Boolean functions
- Storage
 - Store bits of information

Digital Signals

- Use voltage thresholds to extract discrete values from continuous signal
- Simplest version: 1-bit signal
 - Either high range (1) or low range (0)
 - With guard range between them
- Not strongly affected by noise or low quality circuit elements
 - Can make circuits simple, small, and fast

Computing with Logic Gates

- Outputs are Boolean functions of inputs
- Respond continuously to changes in inputs
 - With some, small delay

Combinational Circuits

Acyclic Network of Logic Gates

- Continously responds to changes on primary inputs
- Primary outputs become (after some delay) Boolean functions of primary inputs

Bit Equality

Generate 1 if a and b are equal

Hardware Control Language (HCL)

- Very simple hardware description language
 - Boolean operations have syntax similar to C logical operations
- We'll use it to describe control logic for processors

Word Equality

Bit equal

Bit equal

 eq_0

Word-Level Representation

Eq

- **HCL** Representation
- bool Eq = (A == B)

- 64-bit word size
- HCL representation
 - Equality operation
 - Generates Boolean value

 a_1

 b_0

 a_0

Bit-Level Multiplexor

HCL Expression

bool out = $(s&a) \mid | (!s&b)$

- Control signal s
- Data signals a and b
- Output a when s=1, b when s=0

Word Multiplexor

Word-Level Representation

HCL Representation

```
int Out = [
   s : A;
   1 : B;
1:
```

- Select input word A or B depending on control signal s
- HCL representation
 - Case expression
 - Series of test : value pairs
 - Output value for first successful test

CS:APP3e

HCL Word-Level Examples

Minimum of 3 Words

- Find minimum of three input words
- HCL case expression
- Final case guarantees match

4-Way Multiplexor


```
int Out4 = [
  !s1&&!s0: D0;
  !s1 : D1;
  !s0 : D2;
  1 : D3;
];
```

- Select one of 4 inputs based on two control bits
- HCL case expression
- Simplify tests by assuming sequential matching

Arithmetic Logic Unit

- Combinational logic
 - Continuously responding to inputs
- Control signal selects function computed
 - Corresponding to 4 arithmetic/logical operations in Y86-64
- Also computes values for condition codes

Storing 1 Bit

Bistable Element

Storing 1 Bit (cont.)

-13-

Bistable Element

Storing and Accessing 1 Bit

Bistable Element

Resetting

Setting

Storing

1-Bit Latch

Latching

Storing

Transparent 1-Bit Latch

Latching

Changing D

- When in latching mode, combinational propogation from D to Q+ and Q-
- Value latched depends on value of D as C falls

Edge-Triggered Latch

- Only in latching mode for brief period
 - Rising clock edge
- Value latched depends on data as clock rises
- Output remains stable at all other times

Registers

- Stores word of data
 - Different from program registers seen in assembly code
- Collection of edge-triggered latches
- Loads input on rising edge of clock

Register Operation

- Stores data bits
- For most of time acts as barrier between input and output
- As clock rises, loads input

State Machine Example

- Accumulator circuit
- Load or accumulate on each cycle

CS:APP3e

Random-Access Memory

- Stores multiple words of memory
 - Address input specifies which word to read or write
- Register file
 - Holds values of program registers
 - %rax, %rsp, etc.
 - Register identifier serves as address
 - » ID 15 (0xF) implies no read or write performed
- Multiple Ports
 - Can read and/or write multiple words in one cycle
 - » Each has separate address and data input/output

Register File Timing

Reading

- Like combinational logic
- Output data generated based on input address
 - After some delay

Writing

- Like register
- Update only as clock rises

Hardware Control Language

- Very simple hardware description language
- Can only express limited aspects of hardware operation
 - Parts we want to explore and modify

Data Types

- bool: Boolean
 - a, b, c, ...
- int: words
 - A, B, C, ...
 - Does not specify word size---bytes, 64-bit words, ...

Statements

- bool a = bool-expr ;
- int A = int-expr;

HCL Operations

Classify by type of value returned

Boolean Expressions

- Logic Operations
 - a && b, a || b, !a
- Word Comparisons

```
• A == B, A != B, A < B, A <= B, A >= B, A > B
```

Set Membership

```
    A in { B, C, D }
    Same as A == B | | A == C | | A == D
```

Word Expressions

- Case expressions
 - [a:A;b:B;c:C]
 - Evaluate test expressions a, b, c, ... in sequence
 - Return word expression A, B, C, ... for first successful test

Summary

Computation

- Performed by combinational logic
- Computes Boolean functions
- Continuously reacts to input changes

Storage

- Registers
 - Hold single words
 - Loaded as clock rises
- Random-access memories
 - Hold multiple words
 - Possible multiple read or write ports
 - Read word when address input changes
 - Write word as clock rises