

R60ATR2-单人轨迹模组上手指南

使用前请仔细阅读产品说明书, 并妥善保存 V1.0

云帆瑞达科技(深圳)有限公司

MicRadar Technology (Shenzhen) Co.,LTD

1. 产品介绍

轨迹追踪雷达,基于人员体动幅度,距离,角度,包括呼吸运动等细微的幅度,进行基础人员存在和位置的检测。通过实时对雷达回波的变化判断人员的距离角度变化,实现对人员位置的实时报点,实现轨迹追踪效果。根据运动幅度大小(体征大小)以及微弱的人呼吸微动信号,识别出目标的静止/活跃情况,输出稳定的静态位置锁定功能。

2. 外观介绍

天线面

引脚

3. 主要性能说明

3.1. 雷达主要功能

功能点	状态变化时间/功能解释
DP1:实时距离变化	1s 上报一次距离信息
DP2: 实时角度变化	1s 上报角度信息

4. 模块封装尺寸及引脚说明

雷达模块结构示意图

接口	引脚	描述	典型值	说明
	1	5V	5.0V	电源输入正端
接口1	2	GND		地
	3	RX	3.3v	串口接收
	4	TX	3.3v	串口发送
	5	GP2		备用扩展引脚
	6	GP1		备用扩展引脚
	1	3V3	3.3V	输入电源
接口 2 —	2	GND		地
	3	SL		保留
	4	SD		保留
	5	GP3		备用扩展引脚
	6	GP4		备用扩展引脚
	7	GP5		备用扩展引脚
	8	GP6		备用扩展引脚

引脚说明

注:

- 1) GP1~GP6 为参数选择控制端,可根据用户需求重定义。
- 2) 本接口输出信号均为 3.3V 电平。

使用接线图

模组接线示意图

5. 工具准备

- 5.1. TTL 串口工具、杜邦线、PC 电脑、串口助手终端
- 5.2. 雷达用户手册(协议)

6. 上电及数据规则

7. 雷达安装说明

7.1. 雷达模块工作范围

R60ATR2 雷达模块波束覆盖范围如下图所示。雷达覆盖范围为水平 100°、俯 仰 100°的立体扇形区域。

R60ATR2 雷达覆盖区域示意图

7.2. 雷达安装方向及探测范围

7. 2. 1 水平安装

* 确保雷达探测准确性,请水平安装!

雷达水平安装,保证雷达主波束覆盖探测区域;雷达安装高度建议为1米 ≤H≤1.5米,默认建议安装1.4米。雷达前面无明显遮挡物及覆盖物。

受雷达安装高度及雷达波束范围影响,在该安装模式下,运动轨迹追踪最大 距离 L3 ≈ 10 米; 人体静止位置检测最大距离 L2 ≈ 6 米。

8. 主要功能测试指引

运动轨迹追踪测试:

轨迹追踪实时性测试:

在雷达探测范围内进行移动测试时,雷达会每秒上报一次目标实时的角度距离变化信息,通过 实时的位置形成实时轨迹。

进行测试	判断雷达是否能正常每秒上报一次目标实时
在范围内进行随意移动一定距离	的角度距离变化信息时,能够正常的判断输
	出则表示 "通过"

示例测试表格格式:

测试次数	移动	是否位置上报正常	是否通过
第一次	随意移动	是	通过

静止位置检测测试:

静态距离信息精度测试:

在雷达探测范围内进行移动测试,并在随意一个位置停下时,雷达最后上报的距离与真实距离 进行对比,确认距离误差值是否在合理区间内来确认距离信息精度。

进行测试	判断雷达最后上报的距离与真实距离的误差
在范围内进行随意移动一定距离后随意位置	是否在规定精度范围内,在规定精度范围内
停下	则表示 "通过"

示例测试表格格式:

测试次数	雷达距离信息	与真实距离信息对比 是否在精度要求内	是否通过
第一次	2.1m	是	通过

静态角度信息精度测试:

在雷达探测范围内进行移动测试,并在随意一个位置停下时,雷达最后上报的角度与真实角度 进行对比,确认距离误差值是否在合理区间内来确认距离信息精度。

进行测试	判断雷达最后上报的角度与真实角度的误差
在范围内进行随意移动一定距离后随意位置	是否在规定精度范围内,在规定精度范围内
停下	则表示 "通过"

示例测试表格格式:

测试次数	雷达角度信息	与真实距离信息对比 是否在精度要求内	是否通过
第一次	50°	是	通过

9. 雷达实际安装步骤指引

步骤 1: 确认人主要活动停留区域,该位置为雷达的覆盖范围

步骤 2: 确认雷达实际水平安装高度 1.2m-1.5m

步骤 3: 确认雷达探测范围内是否存在干扰源,尽可能的移除干扰源

步骤 4: 按照步骤确认最终安装位置,进行正常使用

10. 天线与外壳的布局要求

PCBA: 需要保持雷达的贴件高度比其他器件 ≥ 1mm

外壳结构: 需要保持雷达天线面和外壳面有 3mm 距离

外壳探测面: 非金属外壳、需要平直、避免弯曲面、影响整个扫面面积的性能。

11. 常见问题

干扰因素: 雷达属于电磁波探测传感器,活动的非生命体会导致误报。金属,液体的运动,会导致误判。通常,电风扇,贴近雷达的宠物,金属窗帘的晃动都会引起误判。雷达需要在安装角度做规划。

非干扰因素: 雷达电磁波会穿透人体的衣物,窗帘,薄木板,玻璃。需要根据应用,决定雷达的安装角度以及性能。

半干扰因素: 雷达判断人体存在,不适合直接面对空调。空调内部电机会导致雷达误判。需要雷达产品不直接面对空调。或者同空调同一方向。

12. 历史版本更新说明

Revision	Release Data	Summary
V1. 0_0520	2022/05/20	初稿