3.VGG

2014年由牛津大学研究组Visual Geometry Group提出,论文地址<u>Very</u> <u>Deep Convolutional Networks for Large-Scale Image Recognition</u>

ConvNet Configuration					
A	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224 \times 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

图3 VGG网络结构

文章亮点:通过堆叠多个3×3卷积核来代替大尺度卷积核(减少所需参数)。

论文中提到: 堆叠2个3×3的卷积核代替5×5的卷积核, 堆叠3个3×3的卷积核代替7×7的卷积核, 它们拥有相同的感受野。

基本概念拓展: CNN感受野

在CNN中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野(receptive field)。

$$F(i) = (F(i+1) - 1) \times S + ks$$

例如, F=1, 经过3个3×3的卷积核后感受野为7×7

$$Conv3 \times 3(3) : F = (1-1) \times 1 + 3 = 3$$

$$Conv3 \times 3(2) : F = (3-1) \times 1 + 3 = 5$$

$$Conv3 \times 3(1) : F = (5-1) \times 1 + 3 = 7$$

pytorch实现