2021-2 스마트팩토리 동아리

최적 가공조건 분석을 위한 CNC 머신 데이터

Team C: 류승민, 김효주, 송영원

목차

- 1. 분석개요
- 2. 제조데이터 소개
- 3. 분석모델 소개
- 4. 결과분석

1. 분석개요

1.1 분석 목적

CNC 공작기계의 설비데이터를 통해 가공불량 예측 모델을 통해 양품과 불량 예측 모델을 구축하는 것이 목적

CNC 공작기계란?

 Computer numerical Control 로서 CNC가공 언어인 G-code에 의해 Tool의 좌표, 위치, 이동속도 등의 모든 것을 자동으로 조절하여 가공할 수 있는 방법

1. 분석개요

1.2 분석 배경

문제상황

- 절삭공구의 마찰에 의해 일정하지 않은 절삭력의 발생으로 정밀도 급격히 떨어짐
- 순간적인 절삭력이 증가할 때 공구수명에 영향을 미침

장애요인

 CNC가공품은 공정특성상 제작 중 생기는 문제점을 실시간으로 인지하기 어려우며 제품성형 완료 후에만 제품의 불량여부를 알 수 있어 많은 손실이 있었음

절삭 공구종류

왼쪽:양품,오른쪽:불량품

1. 분석개요

1.2 분석 배경

데이터 정의

• 1,2차 전처리 과정을 거친 가공 데이터를 사용

데이터 변수 종류	개수
샘플 관련 변수	67 1 1
기계의 X축 관련 변수	11개
기계의 Y축 관련 변수	11개
기계의 Z축 관련 변수	11개
기계의 스핀들 관련 변수	12개
기타변수	47∦

데이터 변수 종류 및 개수

• 양품과 불량품의 2가지 '라벨 데이터'로 정의하여 공정을 정지판단을 결정

<mark>사용 알고리즘</mark> : 딥뉴럴 네트워크(DNN)

즉, DNN에 기반한 AI데이터 셋을 통해 공구수명 향상과 품질 균일 개선을 통한 비용절감에 기여할 수 있음

2.1 제조데이터란?

: 기존 데이터를 바로 사용하지 않고 가공 및 전처리를 통해 분석에 적합하도록 만들어진 데이터

2.2 1차 가공데이터

: 기존 데이터 지수를 파악하고, 데이터 전처리를 통해 품질 지수를 향상시키는 과정

2.2 1차 가공데이터

- 완전성 : 필수항목에 누락이 없어야 한다.
- 유일성: 데이터 항목은 유일해야 하며 중복되어 서는 안 된다.
- 유효성: 데이터 항목은 정해진 데이터 유효범위 및 도메인을 충족해야 한다
- 일관성 : 데이터가 지켜야 할 구조, 값, 표현되는 형태가 일관되게 정의되고, 서로 일치해야 한다.
- 정확성 : 실제 존재하는 객체의 표현 값이 정확히 반영이 되어야 한다

2.3 2차 가공데이터

: 2차 가공 데이터는 AI 모델 훈련을 위한 데이터를 생산을 위해 1차 가공 데이터를 추가적으로 가공하는 과정

3.1 CNC 가공 데이터 분석 방법: 지도학습을 적용한 데이터 분석

왼쪽:양품,오른쪽:불량품

2가지 케이스에 대해 각각 별개의 라벨로 설정하여 데이터셋을 구성한다. 가공조건에 따른 최적의 가공불량 예측과정을 위해 이에 좋은 성능을 보이는 심층 신경망을 디자인하여 학습 및 테스트 했다.

3.2 심층 신경망(Deep Neural Network)

신경망이라 불리는 구조를 연속적으로 깊게 쌓은 후 분류 및 회귀 등의 다양한 목적을 위해 학습시키는 AI 알고리즘

선형적인 변환 뿐만 아니라 여러 활성화 함수 (activation function)라 부르는 비선형적 인 연산을 수행하기도 한다.

3.2 심층 신경망(Deep Neural Network)

활성화 함수(activation function)

3.2 심층 신경망(Deep Neural Network)

경사 하강법

신경망 학습 기법 중 하나. 함수의 기울기(경사)를 구하고 경사의 절댓값이 낮은 쪽으로 계속 이동시켜 극값에 이를 때까지 반복시키는 방법

손실함수(loss function)

신경망의 예측 결과값과 데이터의 실제 값이 어느 정도 일치하는지 등의 기준으로 신경망의 성능을 평가하게 되는데, 이러한 평가 수치를 손실함수라고 한다.

이진 교차 엔트로피(binary cross entropy)

교차 엔트로피 는 분류 목적의 AI 알고리즘을 학습시킬 때 가장 많이 사용되는 함수로서, 실제 목표치 (0 또는 1)와 근접할 때 낮은 값을 가 지고 반대의 경우에 높은 값을 가지게 된다.

4. 결과 분석

