Formes linéaires, trace d'une matrice

Gilbert Primet

24 décembre 2013

1

1 Hyperplans, forme linéaire

1.1 Hyperplans

1.1.1 Définition

On appelle **hyperplan d'un espace vectoriel** un sous-espace vectoriel ayant un supplémentaire de dimension 1.

Si E est de dimension finie $n \in \mathbb{N}^*$, alors les hyperplans sont les sous-espaces vectoriels de dimension n-1.

1.1.2 Remarque

Grâce au théorème noyau-image, on montre que tous les supplémentaires d'un sousespace vectoriel sont isomorphes. Les supplémentaires d'un hyperplan sont donc tous de dimension 1 (ce qui est évident en dimension finie)

1.2 Forme linéaire

1.2.1 Définition

on appelle **forme linéaire** sur un $\mathbb K$ espace vectoriel toute application linéaire de E dans $\mathbb K$.

1.2.2 Propriétés

- 1. Toute forme linéaire non nulle est surjective
- 2. Le noyau d'une forme linéaire non nulle est un hyperplan
- 3. Deux formes linéaires non nulles ont le même noyau si et seulement si elles sont proportionnelles avec un coefficient de proportionnalité non nul.
- 4. Tout hyperplan est le noyau d'une forme linéaire φ (définie à une constante de proportionnalité près). L'équation linéaire $\varphi(x) = 0$ est appelée une équation de H.

- 5. Si H est un hyperplan, toute droite vectorielle D telle que $D \cap H = \{0_E \text{ est supplémentaire de } H.$
- 6. Exemples
 - (a) Dans \mathbb{K}^n , les formes linéaires sont de type $(x_1, \dots, x_n) \mapsto \sum_{i=1}^n a_i x_i$ avec $(a_1, \dots, a_n) \in \mathbb{K}^n$
 - (b) De façon plus générale, dans un espace vectoriel de dimension $n \in \mathbb{N}^*$, les formes linéaires ont pour expression relativement à une base $\mathscr{B} = (e_1, \dots, e_n) : x \mapsto \sum_{i=1}^n a_i x_i$ où $x = \sum_{i=1}^n x_i e_i$ $(a_1, \dots, a_n) \in \mathbb{K}^n$.

En particulier, les applications $x \mapsto x_i$ sont des formes linéaires appelées formes linéaires coordonnées.

(c) Dans \mathbb{K}^n les hyperplans ont une équation de la forme :

$$\sum_{i=1}^{n} a_i x_i = 0, \ (a_1, \dots, a_n) \neq (0, \dots, 0)$$

Plus généralement dans un espace vectoriel de dimension finie, une équation d'un hyperplan relativement à une base $\mathcal B$ est de la forme :

$$x = \sum_{i=1}^{n} x_i e_i \in H \iff \sum_{i=1}^{n} a_i x_i = 0$$

avec $(a_1, \dots, a_n) \neq 0$

- (d) Sur $\mathbb{K}[X]$, les applications $P \mapsto P(a)$, $P \mapsto P^{(k)}(a)((a,k) \in \mathbb{K} \times \mathbb{N})$ sont des formes linéaires.
- (e) Sur $\mathscr{C}([a,b],\mathbb{K})$, l'application $f\mapsto \int_a^b f(t)dt$ est une forme linéaire.
- 7. Pour obtenir (en dimension finie) une équation relativement à une base \mathscr{B} d'un hyperplan H d'un espace vectoriel E dont on connaît une base (v_1, \dots, v_{n-1}) , il suffit

d'écrire que :

$$\forall x \in E \ \left(x \in H \iff (v_1, \dots, v_{n-1}, x) \text{ est liée} \iff \det_{\mathscr{B}} (e_1, \dots, e_{n-1}, x) = 0 \right)$$

On peut aussi chercher une équation paramétrique de H puis éliminer les paramètres, ou, dans un espace euclidien, utiliser un vecteur directeur a de H^\perp en écrivant :

$$x \in H \iff (x|a) = 0$$

2 Trace d'une matrice, d'un endomorphisme

2.1 Trace d'une matrice

2.1.1 Définition

On appelle **trace d'une matrice carrée** $A=(a_{i,j})$ **d'ordre** n le scalaire $tr(A)=\sum_{i=1}^n a_{i,i}$

2.1.2 Propriétés

- 1. La trace est une forme linéaire sur $\mathcal{M}_n(K)$.
- 2. $\forall (A,B) \in \mathcal{M}_n(K) \ tr(AB) = tr(BA)$
- 3. $\forall A \in (M)_n(K) \forall P \in GL_n(K) tr(P^{-1}AP = tr(A))$

2.2 Trace d'un endomorphisme

2.2.1 Définition

On appelle **trace d'un endomorphisme** u d'un espace vectoriel non nul de dimension finie E la trace de la matrice de u dans une base quelconque B:

$$tr(u) = tr(Mat_B(u))$$

2.2.2 Remarque

Cette définition est indépendante de la base puisque $Mat(u)_{B'}=P_{B\to B}^{-1}Mat_B(u)P_{B\to B'}$

2.3 Propriétés

- 1. tr est une forme linéaire sur $\mathcal{L}(E)$.
- 2. $\forall (u, v) \in \mathcal{L}(E)^2 tr(u \circ v) = tr(v \circ u)$
- 3. Si p est un projecteur, alors tr(p) = rg(p)

Les deux premières propriétés sont la traduction immédiate sur les endomorphismes du cas matriciel. Pour la dernière, il suffit de considérer une base adaptée à la décomposition $E = \operatorname{Im}(u) \oplus \ker(u)$