Lineer Olmayan Direnç

f(v,i) = 0

Bazı Özel Lineer Olmayan Dirençler

$$R_{ID} = \{(v, i) : vi = 0, i = 0, v < 0 \text{ ve } v = 0, i > 0\}$$

Diyot tıkamada
$$(v < 0)$$
, $i = 0$

Diyot iletimde
$$(i > 0)$$
, $v = 0$

Hatırlatma

Diyot tıkamada iken davranışı hangi eleman gibi?

Diyot iletimde iken davranışı hangi eleman gibi?

p-n Jonksiyon Diyodu (alçak frekanslardaki özellikleri)

$$R_D = \{(v, i) : i \ni I_s[\exp(\frac{v}{v_T}) - 1], I_s, v_T \text{ sabit}\}$$

$$I_s$$
 ters doyma akımı $V_T=rac{kT}{q}$ k Boltzman sabiti $V_T=0,026V$ T Sıcaklık (Kelvin) $i(t)$

Tünel Diyod

$$R_{TD} = \{(v, i) : i = \hat{i}(v)\}$$

 $v_1 < v < v_2$ eğim negatif

👈 osilatör, kuvvetlendirici

İ₂ < i < İ₁ her akıma üç gerilim karşılık düşüyor hafıza, anahtarlama

gerilim kontrollü, akım kontrollü değil

Bağımsız kaynaklar

Bağımsız gerilim kaynağı

$$R_{v_s} = \{(v, i) : v = v_s(t), -\infty < i < \infty\}$$

Bağımsız gerilim kaynağı lineer eleman mı?

Bağımsız gerilim kaynağı gerilim kontrollü mü?

Bağımsız gerilim kaynağı akım kontrollü mü?

Bağımsız akım kaynağı

Zamanla Değişen Dirençler

v-i karakteristiği zamanla değişen dirence zamanla değişen direnç denir.

Lineer Zamanla Değişen Direnç

Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar

i kapı akımı v kapı gerilimi

1-kapılının özellikleri kapı akımı ve gerilimi cinsinden yazılır

Seri bağlı 2-uçlu dirençler

Tanım Bağıntıları

$$v_1 = \hat{v}_1(i_1)$$
 $v_2 = \hat{v}_2(i_2)$

KAY KGY
$$i=i_1$$
 1. düğüm 1-2-3-1 düğüm dizisi

$$i_1=i_2$$
 2. düğüm
$$v_1+v_2-v=0$$

$$v_1+v_2=v$$

Amaç: $v = \hat{v}(i)$ bağıntısını bulmak

KGYV =
$$v_1 + v_2$$
 $v_1 + v_2 = \hat{v}_1(i) + \hat{v}_2(i) = \hat{v}(i)$
 $v_1 + v_2 = \hat{v}_1(i) + \hat{v}_2(-i)$
 $v_2 + v_3 = \hat{v}_1(i) + \hat{v}_2(-i)$

Sonuç: KAY -> tüm elemanların akımı kapı akımı ile aynı
KGY -> kapı gerilimi eleman gerilimlerinin toplamı

elemanlar akım kontrollü elde edilen 1-kapılı da akım kontrollü

Bir soru: İki uçlunun tanım bağıntısını elde ediniz

Bir başka soru: Bu iki uçlunun da tanım bağıntısını elde ediniz

<u>Paralel bağlı 2-uçlu dirençler</u>

Tanım Bağıntıları

$$i_1 = \hat{i}_1(v_1)$$
 $i_2 = \hat{i}_2(v_2)$

KGY 2 düğümü referans alınırsa $v = v_1 = v_2$

KAY 1. düğüm $i=i_1+i_2$

Amaç: $i = \hat{i}(v)$ bağıntısını bulmak

KAY
$$\longrightarrow$$
 $i = i_1 + i_2$

ETB \longrightarrow $i = \hat{i}_1(v_1) + \hat{i}_2(v_2)$

KGY \longrightarrow $i = \hat{i}_1(v) + \hat{i}_2(v) = \hat{i}(v)$

Bir soru: İki uçlunun tanım bağıntısını elde ediniz

Bir başka soru: Bu iki uçlunun da tanım bağıntısını elde ediniz

İki uçluların tanım bağıntısını elde ediniz

DC Çalışma Noktası

bağımsız akım kaynağı ve/veya bağımsız gerilim kaynağı

 $f_a(v_a, i_a) = 0$

• ilgilenilen akım ve/veya gerilim — çıkış DC girişli bir devreye ilişkin çözümlere çalışma noktaları adı verilir.

DC analizi çalışma noktalarının bulunmasıdır.

 $f_b(v_b, i_b) = 0$

ETB $f_a(v,i) = 0$ $f_b(v,-i) = 0$ Bu iki bağıntının çözümü DC çalışma noktalarını verir.

DC çalışma noktalarını bulunuz

