Complexity Analysis for Term Rewriting by Integer Transition Systems

Florian Frohn¹

Matthias Naaf¹, Marc Brockschmidt², Carsten Fuhs³, and Jürgen Giesl¹

September 8, 2017

¹RWTH Aachen University, Germany

²Microsoft Research, Cambridge, UK

³Birkbeck, University of London, UK

Example

Example

• gt(x, y): $\mathcal{O}(x)$

Example

```
• gt(x, y): \mathcal{O}(x)
```

• insert(x, ys): $\mathcal{O}(length(ys) \cdot ...)$

Example

```
• gt(x, y): \mathcal{O}(x)
```

• insert(x, ys): $\mathcal{O}(length(ys) \cdot x)$

Example

```
• gt(x, y): \mathcal{O}(x)
```

- insert(x, ys): $\mathcal{O}(length(ys) \cdot x)$
- isort(xs, ys): $\mathcal{O}(length(xs) \cdot ...)$

Example

```
isort(nil, ys) \rightarrow ys
 isort(cons(x, xs), ys) \rightarrow isort(xs, insert(x, ys))
           insert(x, nil) \rightarrow cons(x, nil)
 insert(x, cons(y, ys)) \rightarrow if(gt(x, y), x, cons(y, ys))
if(true, x, cons(y, ys)) \rightarrow cons(y, insert(x, ys))
if(false, x, cons(y, ys)) \rightarrow cons(x, cons(y, ys))
                gt(0, y) \rightarrow false
             gt(s(x), 0) \rightarrow true
          gt(s(x), s(y)) \rightarrow gt(x, y)
```

```
• gt(x, y): \mathcal{O}(x)
```

- insert(x, ys): $\mathcal{O}(length(ys) \cdot x)$
- isort(xs, ys): $\mathcal{O}(length(xs) \cdot (length(xs) + length(ys)) \cdot max(xs))$

Example

```
isort(nil, ys) \rightarrow ys
                 isort(cons(x, xs), ys) \rightarrow isort(xs, insert(x, ys))
                             insert(x, nil) \rightarrow cons(x, nil)
                insert(x, cons(y, ys)) \rightarrow if(gt(x, y), x, cons(y, ys))
               if(true, x, cons(y, ys)) \rightarrow cons(y, insert(x, ys))
               if(false, x, cons(y, ys)) \rightarrow cons(x, cons(y, ys))
                                    \mathbf{gt}(0,y) \stackrel{=}{\longrightarrow} \mathsf{false}
                                \mathbf{gt}(\mathbf{s}(x),0) \stackrel{=}{\longrightarrow} \text{true}
                           gt(s(x), s(y)) \stackrel{=}{\rightarrow} gt(x, y)
• gt(x, y): \mathcal{O}(x)
```

```
• insert(x, ys): \mathcal{O}(length(ys) \cdot x)
```

• isort(xs, ys): $\mathcal{O}(length(xs) \cdot (length(xs) + length(ys)) \cdot max(xs))$

Example

```
isort(nil, ys) \rightarrow ys
                 isort(cons(x, xs), ys) \rightarrow isort(xs, insert(x, ys))
                             insert(x, nil) \rightarrow cons(x, nil)
                insert(x, cons(y, ys)) \rightarrow if(gt(x, y), x, cons(y, ys))
               if(true, x, cons(y, ys)) \rightarrow cons(y, insert(x, ys))
               if(false, x, cons(y, ys)) \rightarrow cons(x, cons(y, ys))
                                    \mathbf{gt}(0,y) \stackrel{=}{\longrightarrow} \mathsf{false}
                                \mathbf{gt}(\mathbf{s}(x),0) \stackrel{=}{\longrightarrow} \text{true}
                           gt(s(x), s(y)) \stackrel{=}{\rightarrow} gt(x, y)
• gt(x, y): \mathcal{O}(1)
```

```
• insert(x, ys): \mathcal{O}(\text{length}(ys) \cdot x)
```

• isort(xs, ys): $\mathcal{O}(length(xs) \cdot (length(xs) + length(ys)) \cdot max(xs))$

Example

- gt(x, y): O(1)
- insert(x, ys): $\mathcal{O}(length(ys))$
- isort(xs, ys): $\mathcal{O}(length(xs) \cdot (length(xs) + length(ys)) \cdot max(xs))$

Example

```
• gt(x, y): O(1)
```

- insert(x, ys): $\mathcal{O}(length(ys))$
- isort(xs, ys): $\mathcal{O}(length(xs) \cdot (length(xs) + length(ys)))$

Example

```
\begin{array}{cccc} \textbf{isort}(\mathsf{nil},ys) & \to & ys \\ \textbf{isort}(\mathsf{cons}(x,xs),ys) & \to & \textbf{isort}(xs,\textbf{insert}(x,ys)) \\ \textbf{insert}(x,\mathsf{nil}) & \to & \mathsf{cons}(x,\mathsf{nil}) \\ \textbf{insert}(x,\mathsf{cons}(y,ys)) & \to & \textbf{if}(\textbf{gt}(x,y),x,\mathsf{cons}(y,ys)) \\ \textbf{if}(\mathsf{true},x,\mathsf{cons}(y,ys)) & \to & \mathsf{cons}(y,\textbf{insert}(x,ys)) \\ \textbf{if}(\mathsf{false},x,\mathsf{cons}(y,ys)) & \to & \mathsf{cons}(x,\mathsf{cons}(y,ys)) \\ \textbf{gt}(0,y) & \xrightarrow{\to} & \mathsf{false} \\ \textbf{gt}(\mathsf{s}(x),0) & \xrightarrow{\to} & \mathsf{true} \\ \textbf{gt}(\mathsf{s}(x),\mathsf{s}(y)) & \xrightarrow{\to} & \mathbf{gt}(x,y) \end{array}
```

the recursive isort rule is at most applied linearly often

```
\begin{array}{cccc} \textbf{isort}(\mathsf{nil},ys) & \to & ys \\ \textbf{isort}(\mathsf{cons}(x,xs),ys) & \to & \textbf{isort}(xs,\textbf{insert}(x,ys)) \\ \textbf{insert}(x,\mathsf{nil}) & \to & \mathsf{cons}(x,\mathsf{nil}) \\ \textbf{insert}(x,\mathsf{cons}(y,ys)) & \to & \textbf{if}(\textbf{gt}(x,y),x,\mathsf{cons}(y,ys)) \\ \textbf{if}(\mathsf{true},x,\mathsf{cons}(y,ys)) & \to & \mathsf{cons}(y,\textbf{insert}(x,ys)) \\ \textbf{if}(\mathsf{false},x,\mathsf{cons}(y,ys)) & \to & \mathsf{cons}(x,\mathsf{cons}(y,ys)) \\ \textbf{gt}(0,y) & \stackrel{=}{\to} & \mathsf{false} \\ \textbf{gt}(\mathsf{s}(x),0) & \stackrel{=}{\to} & \mathsf{true} \\ \textbf{gt}(\mathsf{s}(x),\mathsf{s}(y)) & \stackrel{=}{\to} & \mathsf{gt}(x,y) \end{array}
```

- the recursive isort rule is at most applied linearly often
- the recursive insert rule is at most applied quadratically often

```
\begin{array}{cccc} \textbf{isort}(\mathsf{nil},ys) & \to & ys \\ \textbf{isort}(\mathsf{cons}(x,xs),ys) & \to & \textbf{isort}(xs,\textbf{insert}(x,ys)) \\ \textbf{insert}(x,\mathsf{nil}) & \to & \mathsf{cons}(x,\mathsf{nil}) \\ \textbf{insert}(x,\mathsf{cons}(y,ys)) & \to & \textbf{if}(\textbf{gt}(x,y),x,\mathsf{cons}(y,ys)) \\ \textbf{if}(\mathsf{true},x,\mathsf{cons}(y,ys)) & \to & \mathsf{cons}(y,\textbf{insert}(x,ys)) \\ \textbf{if}(\mathsf{false},x,\mathsf{cons}(y,ys)) & \to & \mathsf{cons}(x,\mathsf{cons}(y,ys)) \\ \textbf{gt}(0,y) & \stackrel{=}{\to} & \mathsf{false} \\ \textbf{gt}(\mathsf{s}(x),0) & \stackrel{=}{\to} & \mathsf{true} \\ \textbf{gt}(\mathsf{s}(x),\mathsf{s}(y)) & \stackrel{=}{\to} & \mathsf{gt}(x,y) \end{array}
```

- the recursive isort rule is at most applied linearly often
- the recursive insert rule is at most applied quadratically often
 - Note: Requires reasoning about isort, insert, and if rules!

```
\begin{array}{cccc} \textbf{isort}(\mathsf{nil},ys) & \to & ys \\ \textbf{isort}(\mathsf{cons}(x,xs),ys) & \to & \textbf{isort}(xs,\textbf{insert}(x,ys)) \\ \textbf{insert}(x,\mathsf{nil}) & \to & \mathsf{cons}(x,\mathsf{nil}) \\ \textbf{insert}(x,\mathsf{cons}(y,ys)) & \to & \textbf{if}(\textbf{gt}(x,y),x,\mathsf{cons}(y,ys)) \\ \textbf{if}(\mathsf{true},x,\mathsf{cons}(y,ys)) & \to & \mathsf{cons}(y,\textbf{insert}(x,ys)) \\ \textbf{if}(\mathsf{false},x,\mathsf{cons}(y,ys)) & \to & \mathsf{cons}(x,\mathsf{cons}(y,ys)) \\ \textbf{gt}(0,y) & \stackrel{=}{\to} & \mathsf{false} \\ \textbf{gt}(\mathsf{s}(x),0) & \stackrel{=}{\to} & \mathsf{true} \\ \textbf{gt}(\mathsf{s}(x),\mathsf{s}(y)) & \stackrel{=}{\to} & \mathsf{gt}(x,y) \end{array}
```

- the recursive isort rule is at most applied linearly often
- the recursive insert rule is at most applied quadratically often
 - Note: Requires reasoning about isort, insert, and if rules!
- the recursive if rule is applied as often as the recursive insert rule

Example

```
\begin{array}{cccc} \textbf{isort}(\mathsf{nil},ys) & \to ys \\ \textbf{isort}(\mathsf{cons}(x,xs),ys) & \to \textbf{isort}(xs, \textbf{insert}(x,ys)) \\ \textbf{insert}(x,\mathsf{nil}) & \to \mathsf{cons}(x,\mathsf{nil}) \\ \textbf{insert}(x,\mathsf{cons}(y,ys)) & \to \textbf{if}(\mathbf{gt}(x,y),x,\mathsf{cons}(y,ys)) \\ \textbf{if}(\mathsf{true},x,\mathsf{cons}(y,ys)) & \to \mathsf{cons}(y, \textbf{insert}(x,ys)) \\ \textbf{if}(\mathsf{false},x,\mathsf{cons}(y,ys)) & \to \mathsf{cons}(x,\mathsf{cons}(y,ys)) \\ \textbf{gt}(0,y) & \stackrel{=}{\to} \mathsf{false} \\ \textbf{gt}(\mathsf{s}(x),0) & \stackrel{=}{\to} \mathsf{true} \\ \textbf{gt}(\mathsf{s}(x),\mathsf{s}(y)) & \stackrel{=}{\to} \mathsf{gt}(x,y) \end{array}
```

Example

Example

Example

Example

Example

```
isort(xs', ys) \xrightarrow{1} ys
                                                                   xs'=1
isort(xs', ys) \xrightarrow{1} isort(xs, insert(x, ys))
                                                                  xs' = 1 + x + xs
insert(x, ys') \xrightarrow{1} 2 + x
                                                                vs'=1
insert(x, ys') \xrightarrow{1} if(gt(x, y), x, ys')
                                                           ys'=1+y+ys
  if(b, x, ys') \xrightarrow{1} 1 + y + insert(x, ys)
                                                                  b = 1 \wedge vs' = 1 + v + vs
  if (b, x, ys') \xrightarrow{1} 1 + ys'
                                                                   b = 1 \land vs' = 1 + v + vs
    \mathbf{gt}(x',y') \stackrel{0}{\longrightarrow} 1
                                                                   x'=1
    \mathbf{gt}(x',y') \stackrel{0}{\longrightarrow} 1
                                                                   x' = 1 + x \wedge y' = 1
    gt(x', y') \xrightarrow{0} gt(x, y)
                                                                   x' = 1 + x \wedge y' = 1 + y
```

```
isort(xs', ys) \xrightarrow{1} ys
                                                                   xs'=1
isort(xs', ys) \xrightarrow{1} isort(xs, insert(x, ys))
                                                                  xs' = 1 + x + xs
insert(x, ys') \xrightarrow{1} 2 + x
                                                                vs'=1
insert(x, ys') \xrightarrow{1} if(gt(x, y), x, ys')
                                                           ys'=1+y+ys
  if(b, x, ys') \xrightarrow{1} 1 + y + insert(x, ys)
                                                                  b = 1 \wedge vs' = 1 + v + vs
  if (b, x, ys') \xrightarrow{1} 1 + ys'
                                                                   b = 1 \land vs' = 1 + v + vs
     \mathbf{gt}(x',y') \stackrel{0}{\longrightarrow} 1
                                                                   x'=1
     \mathbf{gt}(x',y') \stackrel{0}{\longrightarrow} 1
                                                                   x' = 1 + x \wedge y' = 1
     gt(x', y') \xrightarrow{0} gt(x, y)
                                                                   x' = 1 + x \wedge y' = 1 + y
```

- abstract terms to integers
 - ullet note: variables range over ${\mathbb N}$
 - $\bullet \ \mathsf{just} + \mathsf{and} \ \cdot$

```
isort(xs', ys) \xrightarrow{1} ys
                                                                   xs'=1
isort(xs', ys) \xrightarrow{1} isort(xs, insert(x, ys))
                                                                  xs' = 1 + x + xs
insert(x, ys') \xrightarrow{1} 2 + x
                                                                vs'=1
insert(x, ys') \xrightarrow{1} if(gt(x, y), x, ys')
                                                           ys'=1+y+ys
  if(b, x, ys') \xrightarrow{1} 1 + y + insert(x, ys)
                                                                  b = 1 \wedge vs' = 1 + v + vs
  if (b, x, ys') \xrightarrow{1} 1 + ys'
                                                                   b = 1 \wedge vs' = 1 + v + vs
    \mathbf{gt}(x',y') \stackrel{0}{\longrightarrow} 1
                                                                  x'=1
    \mathbf{gt}(x',y') \stackrel{0}{\longrightarrow} 1
                                                                  x' = 1 + x \wedge y' = 1
    gt(x', y') \xrightarrow{0} gt(x, y)
                                                                   x' = 1 + x \wedge y' = 1 + y
```

- abstract terms to integers
 - ullet note: variables range over ${\mathbb N}$
 - \bullet just + and \cdot
- analyze result-size for bottom-SCC using standard tools

- abstract terms to integers
 - ullet note: variables range over ${\mathbb N}$
 - \bullet just + and \cdot
- analyze result-size for bottom-SCC using standard tools

$$\begin{array}{ccc} \mathbf{gt}(x',y') & \stackrel{0}{\rightarrow} & 1 \\ \mathbf{gt}(x',y') & \stackrel{0}{\rightarrow} & 1 \\ \mathbf{gt}(x',y') & \stackrel{0}{\rightarrow} & \mathbf{gt}(x,y) \end{array}$$

$$| x' = 1$$

$$| x' = 1 + x \land y' = 1$$

$$| x' = 1 + x \land y' = 1 + y$$

- abstract terms to integers
 - ullet note: variables range over ${\mathbb N}$
 - ullet just + and \cdot
- analyze result-size for bottom-SCC using standard tools
- analyze runtime of bottom-SCC using standard tools

- abstract terms to integers
 - ullet note: variables range over ${\mathbb N}$
 - ullet just + and \cdot
- analyze result-size for bottom-SCC using standard tools
- analyze runtime of bottom-SCC using standard tools

Abstracting Terms to Integers

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

$$\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x))$$
 $\mathbf{f}(x) \to \mathbf{f}(x)$ $\mathbf{g}(a) \xrightarrow{=} \mathbf{g}(a)$

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example

$$\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x))$$
 $\mathbf{f}(x) \to \mathbf{f}(x)$ $\mathbf{g}(a) \xrightarrow{=} \mathbf{g}(a)$

innermost rewriting: $h(x) \rightarrow f(g(x)) \rightarrow f(g(x)) \rightarrow ...$

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example $\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x)) \qquad \mathbf{f}(x) \to \mathbf{f}(x) \qquad \mathbf{g}(\mathbf{a}) \xrightarrow{=} \mathbf{g}(\mathbf{a})$ innermost rewriting: $\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x)) \to \mathbf{f}(\mathbf{g}(x)) \to \dots \qquad \mathcal{O}(\infty)$

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example $\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x)) \qquad \mathbf{f}(x) \to \mathbf{f}(x) \qquad \mathbf{g}(\mathbf{a}) \overset{=}{\to} \mathbf{g}(\mathbf{a})$ innermost rewriting: $\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x)) \to \mathbf{f}(\mathbf{g}(x)) \to \dots \qquad \mathcal{O}(\infty)$

• Just ground rewriting?

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

• Just ground rewriting?

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example		
$\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x))$	$\mathbf{f}(x) \longrightarrow \mathbf{f}(x)$ $\mathbf{g}(a) \stackrel{=}{\longrightarrow} \mathbf{g}(a)$	
innermost rewriting:	$h(x) o f(g(x)) o f(g(x)) o \dots$	$\mathcal{O}(\infty)$
ground rewriting:	$\mathbf{h}(a) o \mathbf{f}(\mathbf{g}(a)) \overset{=}{ o} \mathbf{f}(\mathbf{g}(a)) \overset{=}{ o} \dots$	$\mathcal{O}(1)$

• Just ground rewriting?

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example $h(x) \to f(g(x)) \qquad f(x) \to f(x) \qquad g(a) \xrightarrow{=} g(a)$ innermost rewriting: $h(x) \to f(g(x)) \to f(g(x)) \to \dots \qquad \mathcal{O}(\infty)$ ground rewriting: $h(a) \to f(g(a)) \xrightarrow{=} f(g(a)) \xrightarrow{=} \dots \qquad \mathcal{O}(1)$

- Just ground rewriting?
- Add terminating variant of relative rules!

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example

$$\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x))$$
 $\mathbf{f}(x) \to \mathbf{f}(x)$ $\mathbf{g}(a) \xrightarrow{\equiv} \mathbf{g}(a)$
innermost rewriting: $\mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x)) \to \mathbf{f}(\mathbf{g}(x)) \to \dots$ $\mathcal{O}(\infty)$

ground rewriting:

$$\mathbf{h}(\mathsf{a}) o \mathbf{f}(\mathbf{g}(\mathsf{a})) \overset{=}{ o} \mathbf{f}(\mathbf{g}(\mathsf{a})) \overset{=}{ o} \dots$$

Just ground rewriting?
 Add terminating variant of relative rules!

Definition

 ${\cal N}$ is a terminating variant of ${\cal S}$ if ${\cal N}$ terminates and every ${\cal N}\text{-normal}$ form is an ${\cal S}\text{-normal}$ form.

 $\mathcal{O}(1)$

Terminating Variants

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example

$$h(x) \to f(g(x))$$
 $f(x) \to f(x)$ $g(a) \xrightarrow{=} g(a)$ $g(a) \xrightarrow{=} a$ innermost rewriting: $h(x) \to f(g(x)) \to f(g(x)) \to \dots$ $\mathcal{O}(\infty)$ ground rewriting: $h(a) \to f(g(a)) \xrightarrow{=} f(g(a)) \xrightarrow{=} \dots$ $\mathcal{O}(1)$

• Just ground rewriting?

Add terminating variant of relative rules!

Definition

 ${\cal N}$ is a terminating variant of ${\cal S}$ if ${\cal N}$ terminates and every ${\cal N}\text{-normal}$ form is an ${\cal S}\text{-normal}$ form.

Terminating Variants

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example

$$h(x) \to f(g(x)) \qquad f(x) \to f(x) \qquad g(a) \xrightarrow{=} g(a) \qquad g(a) \xrightarrow{=} a$$
 innermost rewriting:
$$h(x) \to f(g(x)) \to f(g(x)) \to \dots \qquad \mathcal{O}(\infty)$$
 ground rewriting:
$$h(a) \to f(g(a)) \xrightarrow{=} f(g(a)) \xrightarrow{=} \dots \qquad \mathcal{O}(1)$$
 with terminating variant:
$$h(a) \to f(g(a)) \xrightarrow{=} f(a) \to f(a) \to \dots$$

- Just ground rewriting?
 - Add terminating variant of relative rules!

Definition

 ${\cal N}$ is a terminating variant of ${\cal S}$ if ${\cal N}$ terminates and every ${\cal N}\text{-normal}$ form is an ${\cal S}\text{-normal}$ form.

Terminating Variants

Term Rewriting	Integer Transition Systems
arbitrary start terms	ground start terms

Example

$$\begin{aligned} \mathbf{h}(x) &\to \mathbf{f}(\mathbf{g}(x)) & \mathbf{f}(x) \to \mathbf{f}(x) & \mathbf{g}(a) \xrightarrow{=} \mathbf{g}(a) & \mathbf{g}(a) \xrightarrow{=} \mathbf{a} \\ \text{innermost rewriting:} & \mathbf{h}(x) \to \mathbf{f}(\mathbf{g}(x)) \to \mathbf{f}(\mathbf{g}(x)) \to \dots & \mathcal{O}(\infty) \\ \text{ground rewriting:} & \mathbf{h}(a) \to \mathbf{f}(\mathbf{g}(a)) \xrightarrow{=} \mathbf{f}(\mathbf{g}(a)) \xrightarrow{=} \dots & \mathcal{O}(1) \\ \text{with terminating variant:} & \mathbf{h}(a) \to \mathbf{f}(\mathbf{g}(a)) \xrightarrow{=} \mathbf{f}(a) \to \mathbf{f}(a) \to \dots & \mathcal{O}(\infty) \end{aligned}$$

- Just ground rewriting?
- Add terminating variant of relative rules!

Definition

 ${\cal N}$ is a terminating variant of ${\cal S}$ if ${\cal N}$ terminates and every ${\cal N}\text{-normal}$ form is an ${\cal S}\text{-normal}$ form.

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

$$\mathbf{f}(x) \longrightarrow \mathbf{f}(\mathbf{g}(\mathsf{a}))$$
 $\mathbf{g}(\mathsf{b}(\mathsf{a})) \longrightarrow \mathsf{a}$

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

$$\mathbf{f}(x) \longrightarrow \mathbf{f}(\mathbf{g}(a))$$
 $\mathbf{g}(b(a)) \longrightarrow a$

original TRS:
$$\mathbf{f}(\mathsf{a}) \to \mathbf{f}(\mathbf{g}(\mathsf{a})) \to \mathbf{f}(\mathbf{g}(\mathsf{a})) \to \dots$$

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$f(x) \rightarrow f(g(a))$$

$$\mathbf{g}(b(a)) \to a$$

$$\mathbf{f}(\mathsf{a}) \to \mathbf{f}(\mathbf{g}(\mathsf{a})) \to \mathbf{f}(\mathbf{g}(\mathsf{a})) \to \dots$$

 $\mathcal{O}(\infty)$

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$\mathbf{f}(x) \longrightarrow \mathbf{f}(\mathbf{g}(a))$$
 $\mathbf{g}(b(a)) \longrightarrow a$

original TRS:
$$\mathbf{f}(\mathsf{a}) \to \mathbf{f}(\mathbf{g}(\mathsf{a})) \to \mathbf{f}(\mathbf{g}(\mathsf{a})) \to \dots$$

resulting ITS:
$$f(1) \xrightarrow{1} f(g(1))$$

 $\mathcal{O}(\infty)$

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$\mathbf{f}(x) \rightarrow \mathbf{f}(\mathbf{g}(a))$$
 $\mathbf{g}(b(a)) \rightarrow a$

original TRS:
$$f(a) \rightarrow f(g(a)) \rightarrow f(g(a)) \rightarrow \dots$$

resulting ITS:
$$f(1) \xrightarrow{1} f(g(1))$$

 $\mathcal{O}(\infty)$ $\mathcal{O}(1)$

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$\mathbf{f}(x)
ightarrow \mathbf{f}(\mathbf{g}(\mathsf{a})) \qquad \qquad \mathbf{g}(\mathsf{b}(\mathsf{a}))
ightarrow \mathsf{a}$$

original TRS:
$$f(a) \rightarrow f(g(a)) \rightarrow f(g(a)) \rightarrow \dots$$

resulting ITS:
$$f(1) \xrightarrow{1} f(g(1))$$

 $\mathcal{O}(\infty)$ $\mathcal{O}(1)$

Definition

A TRS is completely defined iff its ground normal forms do not contain defined symbols.

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$f(x) \rightarrow f(g(a))$$

$$\mathbf{g}(b(a)) \rightarrow a$$

$$\mathbf{g}(x) \stackrel{=}{\rightarrow} \mathbf{a}$$

original TRS:

$$f(a) \rightarrow f(g(a)) \rightarrow f(g(a)) \rightarrow \dots$$

resulting ITS:

$$f(1) \xrightarrow{1} f(g(1))$$

 $\mathcal{O}(1)$

 $\mathcal{O}(\infty)$

Definition

A TRS is completely defined iff its ground normal forms do not contain defined symbols.

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$f(x) \rightarrow f(g(a))$$

$$\mathbf{g}(b(a)) \rightarrow a$$

$$\mathbf{g}(x) \xrightarrow{=} \mathbf{a}$$

$$\mathbf{f}(\mathsf{a}) \to \mathbf{f}(\mathbf{g}(\mathsf{a})) \to \mathbf{f}(\mathbf{g}(\mathsf{a})) \to \dots$$

$$\mathcal{O}(\infty)$$

$$f(1) \stackrel{1}{\rightarrow} f(g(1))$$

$$\mathcal{O}(1)$$

ITS after completion: $f(1) \xrightarrow{1} f(g(1)) \xrightarrow{0} f(1) \xrightarrow{1} f(g(1)) \xrightarrow{0} \dots$

Definition

A TRS is completely defined iff its ground normal forms do not contain defined symbols.

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$f(x) \rightarrow f(g(a))$$

$$\mathbf{g}(b(a)) \to a$$

$$\mathbf{g}(x) \xrightarrow{=} \mathbf{a}$$

$$f(a) \rightarrow f(g(a)) \rightarrow f(g(a)) \rightarrow \dots$$

$$\mathcal{O}(\infty)$$

$$f(1) \stackrel{1}{ o} f(g(1))$$

$$\mathcal{O}(1)$$

ITS after completion: $f(1) \xrightarrow{1} f(g(1)) \xrightarrow{0} f(1) \xrightarrow{1} f(g(1)) \xrightarrow{0} \dots$

$$(1)$$
) $\stackrel{0}{\rightarrow}$ $\mathbf{f}(1) \stackrel{1}{\rightarrow} \mathbf{f}(\mathbf{g}(1))$

$$\mathcal{O}(\infty$$

Definition

A TRS is completely defined iff its ground normal forms do not contain defined symbols.

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$f(x) \rightarrow f(g(a))$$

$$\mathbf{g}(b(a)) \to a$$

$$\mathbf{g}(x) \xrightarrow{=} \mathbf{a}$$

$$\textbf{f}(a) \rightarrow \textbf{f}(\textbf{g}(a)) \rightarrow \textbf{f}(\textbf{g}(a)) \rightarrow \dots$$

$$f(1) \xrightarrow{1} f(g(1))$$

$$\mathcal{O}(1)$$

ITS after completion:
$$f(1) \xrightarrow{1} f(g(1)) \xrightarrow{0} f(1) \xrightarrow{1} f(g(1)) \xrightarrow{0} \dots$$

$$\mathcal{O}(\infty)$$

 $\mathcal{O}(\infty)$

Definition

A TRS is completely defined iff its well-typed ground normal forms do not contain defined symbols.

Term Rewriting	Integer Transition Systems
arbitrary matchers	just integer substitutions

Example

$$f(x) \rightarrow f(g(a))$$

$$\mathbf{g}(b(a)) \rightarrow a$$

$$\mathbf{g}(x) \xrightarrow{=} a$$

$$f(a) \rightarrow f(g(a)) \rightarrow f(g(a)) \rightarrow \dots$$

$$\mathcal{O}(\infty)$$

resulting ITS:
$$f(1) \xrightarrow{1} f(g(1))$$
ITS after completion: $f(1) \xrightarrow{1} f(g(1)) \xrightarrow{0} f(1) \xrightarrow{1} f(g(1)) \xrightarrow{0} \dots$

$$\mathcal{O}(1)$$
 $\mathcal{O}(\infty)$

Definition

A TRS is completely defined iff its well-typed ground normal forms do not contain defined symbols.

TRS not completely defined? \wedge Add suitable terminating variant!

Bird's Eye View

- abstract terms to integers
- 2 analyze result-size for bottom-SCC using standard tools
- analyze runtime of bottom-SCC using standard tools

Bird's Eye View

$$\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{1} & 2+x & | & ys'=1 \\ \textbf{insert}(x,ys') & \xrightarrow{1} & \textbf{if}(b,x,ys') & | & ys'=1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys'=1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+ys' & | & b=1 \land ys'=1+y+ys \end{array}$$

- abstract terms to integers
- 2 analyze result-size for bottom-SCC using standard tools
- 3 analyze runtime of bottom-SCC using standard tools

Analyze Size Using Standard Tools

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{1} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{1} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+ys' & | & b=1 \land ys' = 1+y+ys \end{array}
```

Example

```
\begin{array}{llll} \textbf{insert}(x,ys') & \xrightarrow{1} & 2+x & | & ys'=1 \\ \textbf{insert}(x,ys') & \xrightarrow{1} & \textbf{if}(b,x,ys') & | & ys'=1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys'=1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+ys' & | & b=1 \land ys'=1+y+ys \end{array}
```

Example

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{2+x} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{1} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+ys' & | & b=1 \land ys' = 1+y+ys \end{array}
```

Example

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{2+x} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{0} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+ys' & | & b=1 \land ys' = 1+y+ys \end{array}
```

Example

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{2+x} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{0} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1+y} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1} & 1+ys' & | & b=1 \land ys' = 1+y+ys \end{array}
```

Example

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{2+x} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{0} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1+y} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1+ys'} & 1+ys' & | & b=1 \land ys' = 1+y+ys \end{array}
```

Example

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{2+x} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{0} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1+ys'} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1+ys'} & 1+ys' & | & b=1 \land ys' = 1+y+ys \end{array}
```

Idea: move "integer context" to costs $\curvearrowright 1 + x + ys'$

Example

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{2+x} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{0} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1+y} & 1+y+\textbf{insert}(x,ys) & | & b = 1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1+ys'} & 1+ys' & | & b = 1 \land ys' = 1+y+ys \end{array}
```

Idea: move "integer context" to costs $\curvearrowright 1 + x + ys'$

$$\mathbf{f}(x) \xrightarrow{1} 2 + x \cdot \mathbf{f}(x-1) \qquad | \quad x > 0$$

Example

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{2+x} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{0} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1+ys'} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1+ys'} & 1+ys' & | & b=1 \land ys' = 1+y+ys \end{array}
```

Idea: move "integer context" to costs $\sim 1 + x + ys'$

Example

$$\mathbf{f}(x) \xrightarrow{1} 2 + x \cdot \mathbf{f}(x-1) \qquad | \quad x > 0$$

Idea: use accumulator

Example

```
\begin{array}{lll} \textbf{insert}(x,ys') & \xrightarrow{2+x} & 2+x & | & ys' = 1 \\ \textbf{insert}(x,ys') & \xrightarrow{0} & \textbf{if}(b,x,ys') & | & ys' = 1+y+ys \land b \leq 1 \\ \textbf{if}(b,x,ys') & \xrightarrow{1+ys'} & 1+y+\textbf{insert}(x,ys) & | & b=1 \land ys' = 1+y+ys \\ \textbf{if}(b,x,ys') & \xrightarrow{1+ys'} & 1+ys' & | & b=1 \land ys' = 1+y+ys \end{array}
```

Idea: move "integer context" to costs $\sim 1 + x + ys'$

Example

$$\mathbf{f}(x) \xrightarrow{1} 2 + x \cdot \mathbf{f}(x - 1) \qquad | \quad x > 0$$

$$\mathbf{f}(x, acc) \xrightarrow{acc \cdot 2} 2 + x \cdot \mathbf{f}(x - 1, acc \cdot x) \qquad | \quad x > 0$$

Idea: use accumulator

Bird's Eye View

- abstract terms to integers
- analyze result-size for bottom-SCC using standard tools
- analyze runtime of bottom-SCC using standard tools

Bird's Eye View

$$\begin{array}{lll} \mathbf{isort}(xs',ys) & \xrightarrow{1} & ys & | & xs' = 1 \\ \mathbf{isort}(xs',ys) & \xrightarrow{1} & \mathbf{isort}(xs,\mathbf{insert}(x,ys)) & | & xs' = 1 + x + xs \end{array}$$

- abstract terms to integers
- analyze result-size for bottom-SCC using standard tools
- analyze runtime of bottom-SCC using standard tools

Analyze Runtime Using Standard Tools

- $|\mathbf{insert}(x, ys)| \leq 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call
- replace nested function call by fresh variable x_f

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call
- replace nested function call by fresh variable x_f

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call
- replace nested function call by fresh variable x_f
- add constraint " $x_f \leq \text{size bound}$ "

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call
- replace nested function call by fresh variable x_f
- add constraint " $x_f \leq \text{size bound}$ "

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call
- replace nested function call by fresh variable x_f
- add constraint " $x_f \leq \text{size bound}$ "
- $\sim \mathcal{O}(xs'^2 + xs' \cdot ys)$

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call
- replace nested function call by fresh variable x_f
- add constraint " $x_f \leq \text{size bound}$ "
- $\cap \mathcal{O}(xs'^2 + xs' \cdot ys)$
 - similar techniques to eliminate outer function calls

$$\begin{array}{cccc} \mathbf{isort}(xs',ys) & \xrightarrow{1} & ys & | & xs' = 1 \\ \mathbf{isort}(xs',ys) & \xrightarrow{1+2\cdot ys} & \mathbf{isort}(xs,x_f) & | & xs' = 1+x+xs \land x_f \leq 1+x+ys \end{array}$$

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call
- replace nested function call by fresh variable x_f
- add constraint " $x_f \leq \text{size bound}$ "
- $\sim \mathcal{O}(xs'^2 + xs' \cdot ys)$
 - similar techniques to eliminate outer function calls

$$times(s(x), y) \rightarrow plus(times(x, y), y)$$

- $|\mathbf{insert}(x, ys)| \le 1 + x + ys$
- $\mathsf{rt}(\mathsf{insert}(x, ys)) \leq 2 \cdot ys$
- add costs of nested function call
- replace nested function call by fresh variable x_f
- add constraint " $x_f \leq \text{size bound}$ "
- $\sim \mathcal{O}(xs'^2 + xs' \cdot ys)$
 - similar techniques to eliminate outer function calls ⇒ see paper!

$$times(s(x), y) \rightarrow plus(times(x, y), y)$$

• CoFloCo, KoAT, and PUBS used as backends

- CoFloCo, KoAT, and PUBS used as backends
- CoFloCo supports nested defined symbols
 - $\ensuremath{\sim}$ runs in parallel to our technique

- CoFloCo, KoAT, and PUBS used as backends
- CoFloCo supports nested defined symbols

 ∼ runs in parallel to our technique

Results for 922 TPDB-examples

$rc_\mathcal{R}$	(n)	TcT	AProVE ITS	AProVE old	AProVE & TcT	AProVE new
	$\mathcal{O}(1)$	47	43	48	53	53
\leq	$\mathcal{O}(n)$	276	254	320	354	379
\leq	$\mathcal{O}(n^2)$	362	366	425	463	506
\leq	$\mathcal{O}(n^3)$	386	402	439	485	541
\leq	$\mathcal{O}(n^{>3})$	393	412	439	491	548
\leq	EXP	393	422	439	491	553

- CoFloCo, KoAT, and PUBS used as backends
- CoFloCo supports nested defined symbols
 runs in parallel to our technique

Results for 922 TPDB-examples

$rc_{\mathcal{R}}(n)$	TcT	AProVE ITS	AProVE old	AProVE & TcT	AProVE new
$\mathcal{O}(1)$	47	43	48	53	53
$\leq \mathcal{O}(n)$	276	254	320	354	379
$\leq \mathcal{O}(n^2)$	362	366	425	463	506
$\leq \mathcal{O}(n^3)$	386	402	439	485	541
$\leq \mathcal{O}(n^{>3})$	393	412	439	491	548
≤ EXP	393	422	439	491	553

Summary

abstraction from terms to integers

- CoFloCo, KoAT, and PUBS used as backends
- CoFloCo supports nested defined symbols
 runs in parallel to our technique

Results for 922 TPDB-examples

$rc_\mathcal{R}$	(n)	TcT	AProVE ITS	AProVE old	AProVE & TcT	AProVE new
	$\mathcal{O}(1)$	47	43	48	53	53
\leq	$\mathcal{O}(n)$	276	254	320	354	379
\leq	$\mathcal{O}(n^2)$	362	366	425	463	506
\leq	$\mathcal{O}(n^3)$	386	402	439	485	541
\leq	$\mathcal{O}(n^{>3})$	393	412	439	491	548
\leq	EXP	393	422	439	491	553

Summary

- abstraction from terms to integers
- modular bottom-up approach using standard ITS tools

- CoFloCo, KoAT, and PUBS used as backends
- CoFloCo supports nested defined symbols
 runs in parallel to our technique

Results for 922 TPDB-examples

$rc_{\mathcal{R}}(n$	n)	TcT	AProVE ITS	AProVE old	AProVE & TcT	AProVE new
C	2(1)	47	43	48	53	53
\leq C	$\mathcal{O}(n)$	276	254	320	354	379
\leq C	$O(n^2)$	362	366	425	463	506
\leq C	$O(n^3)$	386	402	439	485	541
\leq C	$O(n^{>3})$	393	412	439	491	548
\leq E	EXP	393	422	439	491	553

Summary

- abstraction from terms to integers
- modular bottom-up approach using standard ITS tools
- significantly improves state-of-the-art