Data Models

Data Modeling and Data Models

 Data modeling: Iterative and progressive process of creating a specific data model for a determined problem domain

Data models: Simple representations of complex real-world data structures

File System: Example

Database Systems: Design, Implementation, & Management: Rob & Coronel

Database System vs. File System

Database Systems: Design, Implementation, & Management: Rob & Coronel

Database Models

- A Database model defines the logical design and structure of a database and defines how data will be stored, accessed and updated in a database management system.
- While the Relational Model is the most widely used database model, there are other models too:

Hierarchical Model

Network Model

Entity-relationship Model

Relational Model

Implementation Database Models

Hierarchical Model: data model based on trees.

Network Model: data model based on graphs with records as nodes and relationships between records as edges.

Relational Model: data model based on tables

E-R Model : data model based on entiities and their relationship

Hierarchical Model

- This database model organises data into a tree-like-structure, with a single root, to which all the other data is linked.
- This model efficiently describes many real-world relationships like index of a book, recipes etc
- In hierarchical model, data is organised into tree-like structure with one one-to-many relationship between two different types of data, for example, one department can have many courses, many professors and of-course many students.

Hierarchical Model College Department Infrastructure Course Students Theory

Pros

- Simplicity
- Data integrity
- Efficiency

Cons

- Implementation complexity
- Lack of structural independency
- Implementation limitations
- Program complexity

Hierarchical Model: Example

Database Systems: Design, Implementation, & Management: Rob & Coronel

Network Model

- This is an extension of the Hierarchical model.
- In this model data is organised more like a graph, and are allowed to have more than one parent node.
- In this database model data is more related as more relationships are established in this database model.
- Also, as the data is more related, hence accessing the data is also easier and fast. This database model was used to map many-to-many data relationships.

Network Model

Pros and Cons

Pros

- Capable to handle different relationships
- Ease in data access
- Data integrity
- Database standards
- Data independence

Cons

- System complexity
- Operational anomalies
- Absence of structural independence

Entity-relationship Model

- In this database model, relationships are created by dividing object of interest into entity and its characteristics into attributes.
- E-R Models are defined to represent the relationships into pictorial form to make it easier for different stakeholders to understand.
- This model is good to design a database, which can then be turned into tables in relational model

Entity Relationship Model

Advantages

It is easy to understand and design.

Using the ER model we can represent data structures easily.

As the ER model cannot be directly implemented into a database model, it is just a step toward designing the relational database model.

Disadvantages

- Limited constraint representation
- Limited relationship representation
- No data manipulation language
- Loss of information content occurs when attributes are removed from entities to avoid crowded displays

Figure 2.3 - The ER Model Notations

Relational Model

- In this model, data is organised in two-dimensional tables and the relationship is maintained by storing a common field.
- This model was introduced by E.F Codd in 1970
- The basic structure of data in the relational model is tables. All the information related to a particular type is stored in rows of that table.

uubjest_id	mine.	headay	
1	Java	Mr. J	
2	C++	Miss C	
3	C#	Mr. C Hash	
4	Php	Mr. PHP	

mudent_ld	multiplicat_ld	merka
31	31/4	98
ä	2	78
2	1	76
3	2	88

Relational Model

Advantages

- It's simple and easy to implement.
- Poplar database software is available for this database model.
- It supports SQL using which you can easily query the data.

Figure 2.2 - A Relational Diagram

Cengage Learning © 2015

RE 2.4 LINKING RELATIONAL TABLES

Database name: Ch02_InsureCo Table name: AGENT (first six attributes)

	AGENT_CODE	AGENT_LNAME	AGENT_FNAME	AGENT_INITIAL	AGENT_AREACODE	AGENT_PHONE
>	501	Alby	Alex	В	713	228-1249
	502	Hahn	Leah	F	615	882-1244
	503	Okon	John	T	615	123-5589

Link through AGENT_CODE

Table name: CUSTOMER

	CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE	CUS_RENEW_DATE	AGENT_CODE
•	10010	Ramas	Alfred	Α	615	844-2573	05-Apr-2004	502
	10011	Dunne	Leona	K	713	894-1238	16-Jun-2004	501
	10012	Smith	Kathy	W	615	894-2285	29-Jan-2005	502
	10013	Olowski	Paul	F	615	894-2180	14-Oct-2004	502
	10014	Orlando	Myron		615	222-1672	28-Dec-2004	501
	10015	O'Brian	Amy	В	713	442-3381	22-Sep-2004	503
	10016	Brown	James	G	615	297-1228	25-Mar-2004	502
	10017	Williams	George		615	290-2556	17-Jul-2004	503
	10018	Farriss	Anne	G	713	382-7185	03-Dec-2004	501
	10019	Smith	Olette	К	615	297-3809	14-Mar-2004	503