

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CR 134073

N74-20549

The state of the s

(NASA-CR-134073) FLUTTER TESTS (OS1) CF THE 0.02-SCALE SHUTTLE OPBITER WING/ELEVON SEMI-SPAN MODEL 230 (Chrysler Corp.) CSCL 22B 66 p HC \$6.50

Unclas G3/31 34404

S S 1011127374 EER THE STATE OF THE STATE OF

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

DATA MANagement services

SPACE DIVISION CHRYSLER

DMS-DR-2094 NASA CR-134,073

FLUTTER TESTS (OS1) OF THE

0.02-SCALE SHUTTLE ORBITER WING/ELEVON

SEMI-SPAN MODEL 23-0

Ву

Michael H. Kotch Rockwell International

Prepared under NASA Contract Number NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70789

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

TEST NUMBER:

LARC 26TBT - 545

NASA SERIES NO.:

ØS1

TEST DATES:

6/6/73 - 6/10/73

FACILITY COORDINATOR:

David R. Stone Langley Research Center SSD, Vehicle Analysis Branch Bldg. 1247B, Room 120B Mail Stop 163A Langley Station Hampton, Virginia 23665

Phone: (804) 827-2483

PROJECT ENGINEER:

Michael H. Kotch Rockwell International Mail Code ACO7 12214 Lakewood Blvd. Downey, California 90241

Phone: (213) 922-4826

DATA MANAGEMENT SERVICES:

This document has been prepared by:

G. G. McDonald Data Operations

A. S. M. Donald

This document has been reviewed and is approved for release.

For N. D. Kemp Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented herein other than their display characteristics.

FLUTTER TESTS (OS1) OF THE 0.02-SCALE SHUTTLE ORBETER WING/ELEVON SEMI-SPAN MODEL 23-0

Ву

Michael H. Kotch Rockwell International

ABSTRACT

A series of simple wing/elevon flutter models of the Shuttle Orbiter were tested in the NASA Langley Research Center's 26-inch Transonic Blowdown Tunnel. Flutter points were obtained for two levels of scaled elevon actuator stiffness. This report makes no attempt to analyze the data obtained or draw a correlation to the actual vehicle; it provides a description of the wind tunnel models and the test procedures utilized in this experiment.

Descriptors

Aeroelasticity

Flutter

Space Shuttle

Wind Tunnel Models

Wind Tunnel Testing

TABLE OF CONTENTS

	PAGE
ABSTRACT	iii
LIST OF APPENDIX ILLUSTRATIONS	3
SECTION 1 INTRODUCTION	4
SECTION 2 REMARKS	5
SECTION 3 APPARATUS	7
3.1 - TEST FACILITY	7
3.2 - MODEL DESCRIPTION	7
3.3 - MODEL NOMENCLATURE AND DIMENSIONAL DATA	9
3.4 - MODEL DRAWINGS	13
3.5 - INSTRUMENTATION	13
3.6 - MODEL INSTALLATION	14
SECTION 4 PROCEDURE	15
4.1 - TEST CONDITIONS	15
4.2 - TEST PROCEDURE	15
4.3 - DATA RECORDING	16
4.4 - DATA REDUCTION	17
4.5 - EQUATIONS AND METHODS	18
SECTION 5 RESULTS	20
5.1 - CALIBRATION DATA	20
5.2 - TABULATED DATA	21
5.3 - PRELIMINARY MODEL FLUTTER BOUNDARIES	21
SECTION 6 - REFERENCES	22

TABLE OF CONTENTS (Concluded)

		PAGE
TABLES		
1.	TEST RUN SCHEDULE	23
2.	TABULATED DATA FORMAT	26
3.	TABULATED DATA	27
MODEL FIG	GURES	
1.	GENERAL ARRANGEMENT	31
2.	WING - ELEVON	32
3.	MODEL 30-OTS INSTRUMENTATION	33
4.	INSTRUMENTATION EQUIPMENT	34
5.	MODEL INSTALLATION	35
6.	MODEL INSTALLATION	36
7.	SAMPLE OSCILLOGRAPH TRACE - STEADY STATE FLUTTER	37
8	SAMPLE OSCILLOGRAPH TRACE - DIVERGENT FLUTTER	38
9.	TYPICAL OPERATING CHARACTERISTICS OF 26-INCH LANGLEY	
	TRANSONIC BLOWDOWN TUNNEL. WALL ATTACHED 3-INCH	
	DIAMETER STING IS LOCATED APPROXIMATELY 7 INCHES	
	FROM WALL AND HAS MODEL INSTALLED	39
10.	PRELIMINARY MODEL FLUTTER BOUNDARY - 50/40	
	CONFIGURATION	40
11.	PRELIMINARY MODEL FLUTTER BOUNDARY - 50/50	
	CONFIGURATION	41
APPENDIX	A - CALIBRATION DATA	42

LIST OF APPENDIX ILLUSTRATIONS

Table No.		Page No.
A-1	Pre- and Post-Run Frequency Data	43
A-2	GVS Frequencies	44
Figure No.		Page No.
A-1	Model Node Line Locations - Model No. 1	45
A-2	Model Node Line Locations - Model No. 2	46
A-3	Model Node Line Locations - Model No. 3	47
A-4	Model Node Line Locations - Model No. 4	48
A-5	Model Node Line Locations - Model No. 5	49
A-6	Model Node Line Locations - Model No. 6	50
A-7	Model Node Line Locations - Model No. 7	51
A-8	Model Node Line Locations - Model No. 8	52
A-9	GVS Modal Shape - 1st Frequency (50/40 Config)	53
A-10	GVS Modal Shape - 2nd Frequency (50/40 Config)	54
A-11	GVS Modal Shape - 3rd Frequency (50/40 Config)	55
A-12	GVS Modal Shape - 4th Frequency (50/40 Config)	56
A-13	GVS Modal Shape - 5th Frequency (50/40 Config)	57
A-14	GVS Modal Shape - 1st Frequency (50/50 Config)	58
A-15	GVS Modal Shape - 2nd Frequency (50/50 Config)	59
A-16	GVS Modal Shape - 3rd Frequency (50/50 Config)	60
A-17	GVS Modal Shape - 4th Frequency (50/50 Config)	61
A-18	GVS Modal Shape - 5th Frequency (50/50 Config)	62

SECTION 1.

INTRODUCTION

This report describes the results of Test ØS1 (TBT Test #545) conducted in the NASA Langley Research Center (LRC) 26-inch Transonic Blowdown Tunnel (TBT) during the period of 6 through 10 August 1973. The configuration tested was the Space Shuttle Orbiter wing/elevon flutter Model 23-0. Purpose of the test was to acquire, early in the design process, experimental flutter boundary data in the transonic flight regime to support analytical flutter predictions. Grumman Aerospace Corporation (GAC) was responsible for model construction and for analyzing the test results, which includes a correlation with analytical data obtained subsonically with the Wright-Pa+terson doublet-lattice computer program (AFFDL-TR-71-5), converted to a flutter program in Task NAS9-10635-10, and supersonically with the Mach Box method.

Preliminary model flutter boundaries (M vs q) are presented for two levels of simulated model elevon actuator stiffness. These boundaries include flutter points in the subsonic and transonic flight regime. Also included in this report are descriptions of the models and their properties and a presentation of tunnel test conditions and results.

All material presented herein is unclassified.

(

SECTION 2.

REMARKS

A total of thirty runs was completed in seventy-two occupancy hours for this test including nine hours for model installation.

The most frequent model flutter damage was loss of the outboard elevon. In these cases, the damaged models were quickly repaired with spare hinges and elevons. During runs #22 and #27, flutter was violent enough to fracture the wing frame of two models (#1 and #2). Post-run frequency checks were used to detect any non-visible model damage.

During run #2 the oscillograph paper jammed due to a defective supply roll. Data for this test were lost. Several of the model instrumentation signals were lost during runs #9, #14, and #28, due to high-speed flow in the test section plenum which pulled the model wiring out of its protective sheath. These occurrences required a change of the model wiring protection system during high Mach number test conditions.

Erratic traces of the model torsion signal, experienced on numerous occasions, were found to be due to faulty tunnel cabling. The problem was never severe enough to require repair. A similar situation with the tunnel total temperature thermocouple was corrected by switching to a backup thermocouple.

Camera coverage of the model was obtained for runs 3, 10, 12, 13, 23, 27 and 29. Film from these runs was edited and copies sent to SD, GAC, and NASA-LRC.

SECTION 2. - Continued

During the test, it was felt that the flow over the model was not sufficiently turbulent to excite flutter when the model initially entered the flutter boundary. For example, Runs 4 and 20 in Figure 11 show low response even when well into the flutter region noted. To insure turbulent flow, grit was applied to the leading edge of wing #2 for run 22. During this run divergent flutter was experienced, indicating the grit may have had an effect. Because of the lengthy time required to apply the grit and the test objectives had been reasonable attained, the test was completed without transitions strips on the model.

High frequency, low amplitude oscillations were noted at several points in the test (see Run 12 in the run schedule). It was felt at the time that these oscillations may have been due to some unique arrangement of shock waves in the tunnel. However, it was found using Reference l that no shock wave effects because of tunnel/model geometry were indicated but that a high subsonic buzz condition might have existed for the elevons. Reference 2 provides a descriptive outline of the possible buzz mechanism.

SECTION 3.

APPARATUS

3.1 Test Facility

NASA-LRC 26-inch TBT description provided by Chrysler (found in 3.1 of DMS-DR-2067).

3.2 <u>Model Description</u>

Model 23-0 was a 0.02-scale semi-span model of the Shuttle wing/elevon. The predicted full-scale frequency ratios (fi/fl) and node lines of the flutter critical modes were simulated to assure that the experimental flutter mechanism was closely similar to that predicted by analysis.

Models simulating two full-scale wing/elevon configurations were fabricated. The simulated configurations were the basic wing and;

- 1) 11 Hz inboard and 13.5 Hz outboard elevon rotation frequencies.
- 2) 11 Hz inboard and 11 Hz outboard elevon rotation frequencies. The elevon frequencies were selected on the basis that an upper limit of approximately 14 Hz on the full scale configuration could be achieved because of elevon/wing back-up structure flexibility.

The full-scale stiffness distribution was used as the primary design guide for the models, with mass distribution playing a secondary role in achieving the desired frequency ratios and mode shapes. Stiffness distribution on the model was obtained by properly locating cutouts in a tapering thickness aluminum alloy plate.

Aerodynamic contour was achieved by shaping end-grain balsa wood bonded to the plate to minimize the stiffness contribution of the balsa wood. The balsa was sealed with a sanding sealer for surface smoothness and protection. Mylar strips were attached to the wing leading edge to insure against flow penetration between the balsa and the base plate, and to provide distinctive contrast of the wing for the movie film. The elevon trailing edge was also painted orange for contrast.

The elevon frequencies mentioned above were simulated by beryllium-copper flexures attached at the wing/elevon interface. For the 11 Hz/13.5 Hz configuration, flexure thicknesses were 0.050-inch for both the inboard and outboard elevons, designated (50/50) configuration. For the 11 Hz/11Hz configuration, flexure thicknesses were 0.050-inch and 0.040 inch, respectively, designated (50/40) configuration.

The elevons were attached to the wing by hinges at the inboard and outboard ends of each elevon, which defined the elevon hinge line. Each hinge consisted of two small flexures which restrained any elevon movement except rotation. Since the hinges acted as a torsional spring, contributing to the rotational frequency, they were installed during the pretest tuning of the elevon frequencies. As there was no shear tie between elevons, each elevon/hinge/flexure assembly simulated its own rotational frequency.

To simulate a slab wing, steel flexures were installed on the elevons, and the flexible hinges were replaced by tight fitting pins. This raised the elevon frequencies sufficiently that the elevon rotation would not be a part of the flutter mechanism.

The following model items were available for this test:

- 8 wing/elevon assemblies (Nos. 1-8)
- 6 spare elevon sets (Nos. 9-14)
- 3 spare elevon hinge assemblies
- 5 spare elevon flexure sets (11 Hz/13.5 Hz)
- 5 spare elevon flexure sets (11 Hz/11 Hz)
- 2 steel (rigid) elevon flexure sets

3.3 <u>Model Nomenclature and Dimensional Data</u>

Nomenclature for Model 23-0 is as follows:

W₁₁₃ Wing

E₂₄ Elevon

X₁₇ Transition Strip

The following two pages tabulate dimensional data for the wing and the elevon, based on the VL70-000139 lines study-orbiter, modified to exclude camber, twist, and dihedral. Also, the thickness distribution from $Y_0 = 108$ to $Y_0 = 199.045$ has been reduced to agree with the Model 30-0TS design (see Reference 3) - to assure continuity at the wing/body interface.

Page 10 describes the location of the transition strip on the wing leading edge.

X17 Transition Strip

<u>Description</u>: Wing transition strip is composed of #220 carborundum grit on a base of polaroid Print Coater. Nominal density of grit coverage is 10% of strip area.

Location: (Full-Scale Stations)

Strip midline starts at X_f 793, Y_f 105 and extends to X_f 793, Y_f 130. From there the midline follows the leading edge cuff planform, 0.5 in. measured perpendicularly from the cuff leading edge. The line intersects the point X_f 1045, Y_f 185; from this point the midline follows the 15% chord line to the wing tip (see sketch below).

Strip width is 0.10 in.

MODEL COMPONENT: ELEVON - E24	•	
GENERAL DESCRIPTION: Orbiter Configuration 3 NOTE: Elevon has some planform as E22 w		foil
thickness for W113		
Model Scale = 0.02	· · · · · · · · · · · · · · · · · · ·	
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - FT ²	205.52	0.0822
Span (equivalent) - IN.	353.34	7-0668
Inb'd equivalent chord	114.78	2.2956
Outb'd equivalent chord	55.00	1.1000
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	.208	.208
At Outb'd equiv. chord	.400	.400
Sweep Back Angles, degrees	. • •	
Leading Edge	0.00	0.00
Tailing Edge	-10.24	-10.24
Hingeline	0.00	0.00
Area Moment (Normal to hinge line) - FT3	1548.07	0.01238

ODEL COMPONENT: WING-W 113		-
ENERAL DESCRIPTION: Orbiter Configuration 3 Mo	odified	•
NOTE: Same planform as W103 (VL70-000139), ex	ccept no dihedral, incidence,	
	light line extrapolation from $Y_0 = 0006.5-64$ Mod to match thickness (199.0
Model Scale =	section aft of .40C.	41
EST NO.	. DWG. NO.	
IMENSIONS:	FULL-SCALE MODEL SCALE	
TOTAL DATA		
Area (Theo.) Ft ² Planform	0600.00	
Span (Theo In.	2690.00 1.0760 936.68 18.7336	
Aspect Ratio	2.265 2.265	
Rate of Taper	1.177	
Taper Ratio	0. 200	
Dihedral Angle, degrees	0	
Incidence Angle, degrees	0 0	
Aerodynamic Twist, degrees Sweep Back Angles, degrees	0 0	
Leading Edge	45.00 45.00	
Trailing Edge		
0.25 Element Line	35.209 - 35.209	
Chords:		
Root (Theo) B.P.O.O.	<u>689.24</u> 13.7848	
Tip, (Theo) B.P.	<u> 137.85</u> <u>2.7570</u>	
MAC	474.81 9.4962	
Fus. Sta. of .25 MAC W.P. of .25 MAC	1136.89 22.7 3 78 299.20 5.9840	
B.L. of .25 MAC	182.13 3.6426	
EVDOCED DATA		
Area (Theo) Ft ²	1752.29 0.7009	
Span, (Theo) In. BP108	720.68 14.4136	
Aspect Ratio	2.058 2.058	
Taper Ratio	0.2/51 0.2451	
Chords		
Root BP108	<u>562.40</u> <u>11.2480</u>	
Tip 1.00 <u>b</u>	137.35 2.7570	
MAC	<u> 393.03 </u>	
Fus. Sta. of .25 MAC	1185.31 23.7062	
W.P. of .25 MAC	300.20 6.0040	
B.L. of .25 MAC	251.76 5.0352	
Airfoil Section (Rockwell Mod NASA)		
XXXX-64	* *	
Root $\underline{b} = Q Y_0 = 108$	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE	
Tip <u>b</u> =	0.120 0.120	
<u>7</u>		
ta for (1) of (2) Sides	•	
Leading Edge Cuff a	Wilder widt - Amagenessa and a second of the	
Planform Area Ft	120.33 2.4066	
Leading Edge Intersects Fus M. L. @ Sta	560.0 11.2000 1025 0 20.7000	
Leading Edge Intersects Wing @ Sta	1.035.0 20.7000	

3.4 Model Drawings

Model drawings describing this model are as follows:

Number	<u>Title</u>
SS-S-00275	General Arrangement; Wall and Splitter Plate Supports
SS-S-00326	Basic Wall Mount and Side Plate
SS-S-00328	Wing - Assembly
SS-S-00329	Wing - Elevon
SS-S-00330	Wing/Elevon Fittings
SS-S-00332	No. 1 - Wing/Elevon Fittings
SS-S-00333	No. 2 - Wing/Elevon Fittings
SS-S-00334	No. 3 - Wing/Elevon Fittings
SS-S-00335	No. 4 - Wing/Elevon Fittings
SS-S-00336	Flexures

Model drawings are available from GAC. Reduced drawings of the general arrangement and the wing/elevon are included in this report (Figures 1 and 2). Checkout of test items is summarized in Reference 5.

3.5 <u>Instrumentation</u>

Instrumentation on the model consisted of two strain gage circuits of four gages each and two magnet-induction coil pickups. The strain gages were located near the wing root and were used to measure wing bending and torsion. The magnet-induction coils are located between the wing and the elevon to detect elevon rotation. Figure 3 illustrates the model instrumentation locations.

Tunnel parameter instrumentation consisted of two static pressure transducers, one total pressure transducer, and two total temperature thermocouples (one spare).

One high-speed (1000 frames/sec) movie camera was set up to view the model from the side and record any model dynamic instability.

Model and tunnel parameter instrumentation was input through amplifiers and signal conditioners. Resultant output was recorded on a high-speed oscillograph. Also recorded on the oscillograph was a static pressure reference, a 60 Hz frequency reference, and a "camera-on" reference.

Additional instrumentation required for pre- and post-run frequency and damping checks was provided by LRC. This included a dual-beam oscilloscope, a variable-frequency oscillator, an electromechanical shaker, and a suitable amplifier to drive the shaker.

Figure 4 illustrates, in block diagram form, the arrangement of the test instrumentation.

3.6 Model Installation

The model was installed on a splitter plate to isolate the model from boundary layer at the tunnel wall. The plate was mounted on the starboard wall of the test section, looking upstream (see General Arrangement drawing; see also Figures 5 and 6).

SECTION 4. PROCEDURE

4.1 Test Conditions

Model 23-0 was tested at nominal Mach numbers of 0.55 to 1.3, and nominal dynamic pressures of 2 to 30 psi. The actual test conditions for each run is shown on the run schedule (Table 1).

4.2 Test Procedure

The general procedure adhered to for each run was as follows:

- 1. Install and visually inspect the model in the tunnel.
- 2. Perform sign checks of model instrumentation.
- 3. Perform the pre-run frequency and damping checks.
- 4. Make preparations to achieve the desired tunnel operating conditions (Mach number and total pressure).
- 5. Perform instrumentation and system checks, including pre-run pressure transducer and thermocouple calibrations.
- 6. Begin run, starting camera at pre-selected total pressure.
- 7. Shut down the tunnel when the operating limit was reached or when flutter occured. Take post-run calibrations.
- 8. Perform the post-run model inspection and frequency and damping checks to determine if the model was damaged.

During a series of runs, where the model was not damaged in the prior run, only Steps 4 through 8 were followed.

The sign checks performed in Step 2 above were to assure uniform trace direction on the oscillograph record for all models. The sign con-

vention utilized was:

- 1. Positive bending Tip up
- 2. Positive torsion Leading edge up
- Positive elevon rotation Trailing edge down

The positive direction on the oscillograph traces was always to the right of the zero line, facing the recorder.

The technique utilized to obtain a particular flutter point depended on the region of interest and the known characteristics of the model response in the neighborhood of this region, but always followed one of two approaches:

One approach was to set a constant nominal Mach number and increase tunnel total pressure (and corresponding dynamic pressure) until the tunnel operating limit or flutter was attained.

The second approach occasionally used, which was felt to minimize the potential for damaging the model, was to slowly increase total pressure to a selected value and then increase or decrease Mach number until flutter was achieved.

This latter approach provided more data points close to the flutter boundary, but used up a greater volume of stored air and did not always achieve the desired Mach number and dynamic pressure due to the operating limitations of the tunnel.

4.3 Data Recording

All tunnel and model instrumentation data was recorded with oscillograph

traces, both during the run and during pre-and post-run frequency and damping checks. Pressure and thermocouple calibrations to references, and a thermocouple zero reading, were taken immediately prior to and after a run to provide requisite deflection references for these channels. Since only the dynamic response was of interest for the model instrumentation, no deflection reference for these oscillograph recordings was required (Run #1 cleared the model of any potentially excessive static loads; for this run a nominal load was applied to the model and recorded as a reference for that run). A 60 Hz reference trace was provided, however, to check the model frequencies. Figures 7 and 8 show typical oscillograph traces to flutter, in these cases during Runs 12 and 27.

Model fluctuations during a run were also recorded on high speed movie film, as previously mentioned.

4.4 Data Reduction

1

Mach number and dynamic pressure data were calculated using the measured freestream static and stagnation pressures from selected points of each run. These data were plotted on a typical operating characteristics chart for the Tunnel (see Figures 9, 10 and 11) and used for determining the conditions for the next run.

Points were selected from each run to be read from the oscillograph traces by LRC personnel, reduced, and printed in tabulated form. Table 2 presents the tabulated data format. The data reduction procedure utilized is summed in the next section.

4.5 Equations and Methods

Constants:

$$C_V = 4290 \text{ ft}^2/\text{sec}^2 - {}^{\circ}\text{R}$$

$$\Upsilon = 1.4$$

$$R = 1716 \text{ ft}^2/\text{sec}^2 - {}^{\circ}R$$

RHOSL = $0.0023769 \text{ slugs/ft}^3$

Calculate M:

M:
$$\frac{\gamma-1}{\gamma} = \frac{1/2}{\gamma}$$

$$M = \left[\frac{2[(\frac{P_0}{P_S}) - 1]}{\gamma-1}\right]$$

Convert To from °F to °R

$$T_0$$
 (°F) + 459.69 = T_0 (°R)

Calculate T_s :

$$T_S = T_0 (1 + \frac{\gamma-1}{2} M^2)^{-1}$$

Calculate Q:

$$Q = \frac{\gamma}{2} M^2 P_S$$

Calculate A:

$$A = (\gamma RT_S)^{\frac{1}{2}}$$

Calculate V:

$$V = AM$$

Calculate RHO

$$RHO = \frac{20}{V^2}$$

Calculate RHO/RHOSL:

$$RHO/RHOSL = \frac{RHO}{RHOSL}$$

Calculate VKEAS:

$$VKEAS = \begin{bmatrix} 2 \times Q \times 144 & (in^2/ft^2) \\ \hline RHOSL \end{bmatrix}$$
[0.5921 (kts/ft/sec)]

Calculate
$$\mu_0$$
:
 $\mu_0 = 2.270 \left[\frac{T_0 - 3/2}{T_0 + 198.6} \right] \times 10^{-8} \frac{1b\text{-sec}}{\text{ft}^2}$

Calculate RN:

1

$$RN = \frac{P_0M}{\mu_0} \sqrt{\frac{\gamma}{(\gamma-1)} \frac{\gamma}{C_V T_0}} \qquad \left(\frac{T_0}{T_s}\right) \frac{\gamma-2}{\gamma-1} \left[\frac{\frac{T_s}{T_0} + \frac{198.6}{T_0}}{1 + \frac{198.6}{T_0}}\right]$$

Above procedures are from Reference 6, with the exception of the VKEAS term, which is found in Reference 7.

SECTION 5.

RESULTS

5.1 Calibration Data

Table A-1, Appendix A, presents the pre- and post-run frequency calibration data acquired during the test. The frequencies shown are close to the model frequencies obtained during the Ground Vibration Survey (GVS) completed prior to the test, with the exception of the circled frequencies, which indicated model damage. GVS frequencies are summed in Table A-2 of the appendix, and node line locations for the models are illustrated in Figures A-1 through A-8. Measured mode shapes for wing #1 with 50-50 flexures are presented in Figures A-9 through A-13 and with 50-40 flexures in Figures A-14 through £-18.

Frequency checks in the tunnel were simplified by being able to manually vibrate the wing to obtain the first three modes, one wing first-bending and the two elevon rotation frequencies. The fourth and fifth modes were excited with the electro-mechanical shaker hand-held at a convenient high-response location. Removal of the shaker enabled the model to shift to its proper frequency (without the shaker mass).

Pre-run frequency examination for Run #30, where steel flexures were utilized and the elevon spring hinges were replaced with solid pins, was complicated by the fact that no prior GVS had been made of this configuration. However, examination of the effects of the flexures on the frequency ratios of the model (frequency;/frequency lst bending), together

with judicious selection of shaker location, allowed acquisition of the first four frequencies, adequate for this particular run.

As previously mentioned, calibrations were made for the tunnel pressure sensors and thermocouple immediately prior to and after each run. These calibrations were utilized in tabulating data for selected points in each run and are not presented explicitly in this report.

5.2 Tabulated Data

(

Table 3 presents the tabulated data for this test. Mach numbers and dynamic pressures from this data were used for plotting the flutter boundaries illustrated in Figures 10 and 11. Selected tabulated data points of high confidence will be used in the post-test analysis being performed by GAC.

5.3 Preliminary Model Flutter Boundaries

Figures 10 and 11 present preliminary model flutter boundaries for the two simulated elevon actuator stiffness levels. As these boundaries must be corrected to reflect actual flight densities instead of wind tunnel flow densities - part of the GAC final analysis of the data - no conclusions are presented in this report regarding the flutter boundaries except that flutter points were obtained in the subsonic and transonic flow regimes for both simulated elevon actuator stiffness levels. Due to the operating limits of the tunnel and the rapid recovery of the flutter boundary in the supersonic flow region, no flutter points were obtained in this area.

SECTION 6.

REFERENCES

- Kotch, M. H., "Shock Wave Interactions on the 23-0 Wing/Elevon Flutter Model," Internal Letter SAS/WTO/73-259, 17 August 1973.
- 2. Nakamura, Y. "Some Contributions on a Control-Surface Buzz at High Subsonic Speeds." Journal of Aircraft, V.5, No. 2, 1968, pp 118-125.
- Kotch, M. H., "Pretest Information for the 0.0125-Scale Shuttle Reflection Plane Flutter Model 30-OTS in the Langley Research Center 26-inch Transonic Blowdown Tunnel," 23 July 1973, SD73-SH-0209.
- 4. Foust, J. W., "Flutter Tests (OS2) of the Shuttle Orbiter Fin/Rudder Model 24-0".
- 5. Anon., "Model Readiness Review Shuttle Wind Tunnel Model 23-0" (Letter Contract M3W3XMZ-483002).
- 6. Ames Research Staff, "Equations, Tables, and Charts for Compressible Flow", NACA Report 1135, 1953.
- 7. Silbert, H. W., "High Speed Aerodynamics," Prentice-Hall, Inc., New York, 1948, p. 71.

	Cornents	Model trimmed OK/No flutter	No flutter. Oscillograph jammed.	Intermittent flutter. Model not damaged.	Low damping. Model not damaged.	Low damping. IB elevon bottomed out. No camera.	Divergent flutter. OB elevon damaged.	Divergent flutter. Camera too late. OB elevon lost.	Steady-state flutter. Broke OB elevon hinge.	No flutter. Lost bending & torsion signals. Model CK.	Steady-state flutter. Model not damaged.	Low demping. Some hi-freq.osc. Model OK.	Low darrying. Low emplitude, high	frequency oscillations. Model not
Initial	Valve Setting	9879	7280	4725	4875	5010	5284	7027	7550	6435	5070	2000	5300	\$1.50
×	MONHA MA												<u>-</u>	Soft
Dynamic	Pressure q	Trim & Flutter	Flutter										>	47
i .	Nominal Mach No.	Var.	0.7	8.0	6.0	1.0	8.0	0.75	0.65	1.25	Var.	Var.	Var.	to thickness
Flexure ¹	E	Š.	<u>6</u> ,	55	50	55	S	50	52	50	δ. 	ß	R	rofer
Fle	E 0	50	50	50	50	Ĉ,	07	07	07	07	G	07	97	(0€ 5)
ation	IE Elevon No.	8	ભ	ĸ	N	N	· ~	9		2	7	2	7	07) wares
U	OB Elevon No.	~	74	7	0	8	V 1	9	۸.		~	C ~	7	oo armar;
Hodel	Wing Po	Ŋ	N	ĸ	N	N	~	, 0	~	,~	~	6 -	F-	cere in
NOë			8	۳,	7	vn 23	٠0	6	œ	٥	ន	ភ	77	1

1. Purbers in flemms column (40 < 50) refer to chickness of soft and every formers (2.000 & 0.000) reconstitudar.

1、1天、下下了大多道理者了一人一次下,也是他们还是是了了事的多个一位是了全面是多名的最后的最后的

23

Table 1 (Continued)

		1											
	Comments	Steady-state & divergent flutter. OB elevon lost and wing damaged.	Lost bending & torsion signals. Steady-state and intermittent flutter. Model OK.	No flutter.	Steady-state flutter. Model not damaged.	Low damping. Elevons bottomed out (bad hinge).	Low damping. No camera. Model OK.	No flutter. Model not damaged.	No flutter. Model OK.	Divergent flutter. OB elevon demaged.	Divergent flutter. OB elevon lost. Grit on wing this run (X17)	Steady-state & divergent flutter. Lost OB elevon.	Divergent flutter. OB elevon hinges broken. Cemera did not run.
Initial	Velve Setting	5300	5300	4250	5300	0664	5175	4475	÷475	7550	5227	57.75	4650
XO:	(>HE	PESW									de Addition to the super of		- >
Dynamic	Fressure.	Flutter	,						**************************************				> ~
Nominal	Mach Fressure No. q	Var.	Var.	9.0	Ver.	6.0	Var.	0.65	0.65	Var	Var.	Var.	0.75
7	串	50	ξζ	52	20	52	50	50	50	50	50	52	20
Flexure	OB	07	50	52	S	5	S.	50	50	50	55	50	077
tion	IB Elevon No.		m	m	8	N	4	4	-1	-4	R	n	,C
Configuration	OB Elevon No.	٤	m	m .	R	~	4	4	-7	-4	N	m	6
Model	Wing No.	7	т	m	8	8	4	-4	4	-2	ĸ	е.	il.
	RUN NO.	13	A	75	97	17	18	19	20	ন	22	প্ত	24

24

1. Numbers in flexure column (40 & 50) refer to thickness of soft and stiff flexures (0.040 & 0.050) respectively.

Table 1 (Continued)

	Comments	No flutter. Model not damaged.	Divergent flutter at shutdown. Model damaged.	Divergent flutter. Lost OB elevon.	No flutter. Lost torsion signal. Model OK.	Divergent flutter. OB elevon damaged.	Slab wing simulation. Intermittent flutter. Model not damaged.		
Initial	Valve Setting	8449	51.75	4750	9485	0077	4625		
	g H d	B&W					->		
Dynemic	Pressure q	Flutter					>-		
	Nominal Mech No.	7*7	Ver.	0.75	1.4	0.65	0.75		
ture 1	IB	50	50	50	20	50	Steel		
Flexure	es Es	C†7	07	07	50	50	Steel ² Steel		
ion	IB Elevon Ko.	. ₩	₩	гł	ឧ	10	ĸ		
Configuration	OB Elevon No.	₩	₩	Н	70	10	6	Out boerd Inboerd	
Model Ca	Wing No.	83	∞	н	-4	4	٠ <u>٠</u>	os is IB is	
	HUN NO.	25	56	27	28	29	8	E CONTRACTOR OF THE CONTRACTOR	

Numbers in flex.re column (40 & 50) refer to thickness of soft and stiff flexures (0.040 & 0.050) respectively. Steel' in flexure column refers to steel flexures and pinned hinges used to simulate a slab wing condition. ાં હં

人名英国巴尔斯 五十二四十五十二

THE REPORT OF THE PERSON OF TH

Table 2 Tabulated Data Format

111 , RN*1.E6 XX.XXX		
HO/RHOSI X.XXX		
101 EAS RI XXX		
91 95 7 V VK		
83 .09.03.27 A XXXXX.X		
66 75 83 91 95 10 NO. 545 08/13/73 09.03.27 RHO T A V VKEAS .XXXXX XXX.X XXXX.X XXXX		
66 NO. 545 RHO .XXXXX		ft3
58 TEST Q XX.XX	Units	psia psia psia psia or - or - psi slugs/ft3 or ft/sec ft/sec knots -
51 TB' M X.XXX		
h3 51 58 TBT TEST N TS M Q XXX.XX X.XXX XX.XX		re e cure city
36 P/H XXXXX XX		essure ressure o mperatu ber pressur pressur sound at velo atio
16 23 30 36 PA H P P/H XX.XX XX.XX XX.XX	al al	RUN Run number of data point PT Tabulated data point PA Atmospheric pressure H Tunnel freestream total pressure Tunnel freestream static pressure Static/total pressure ratio Tunnel freestream total temperature Tunnel freestream Mach number Tunnel freestream density Tunnel freestream speed of sound V Tunnel freestream speed of sound Tunnel freestream equivalent velocity WEAS Tunnel freestream equivalent velocity Tunnel freestream equivalent velocity Tunnel freestream Reynolds number per foot (x 106)
16 23 PA H X.XX XX.XX	Description	data la point ressure ream to ream to ream to ream to ream to ream to ream de ream stream stream stream sourceam sourcea
16 PA XX.XX	Des	Run number of data point Tabulated data point Atmospheric pressure Tunnel freestream total Tunnel freestream static Static/total pressure ra- Tunnel freestream Mach m Tunnel freestream Mach m Tunnel freestream densit; Tunnel freestream speed Tunnel freestream speed Tunnel freestream speed Tunnel freestream equiva: Tunnel freestream equiva: Tunnel freestream Reynol Tunnel freestream Reynol Tunnel freestream Reynol Tunnel freestream Reynol
ol gr gr		un num subulat taosph unnel
5 12 RUN XX		
Col. No. 5 LO RUN PT XX XX	Item	RUN PA H P/H TS M RHO A V V V RHO/RH RW* 1.

Ä
ated
Tabu]
m
aple

Preliminary Data	N A S.A. I ANGLEY																											No cel on								
RN*1.E6	7.965	10.347	11.948	12.166	15.836	18.268	18.056	٠	8.519	11.416	9.458	11.253	11.867	٠	8.231	9.895	12.211	15.229	19.052	8.049	9.747	11.049	11.859	16.217	10.199	18.062	20.434	•	7.704	5.153	6.083	10.943	Ĉ.	.	16.084	
RHD/RHJSL	.912	1.081	•21	1.240	1.594	1.840	1.832	1.427	1.706	2.214	1.660	1.932	٠	2.143	1.325	1.548	1.839	2.283	2.875	1.231	1.388	1.523	1.639	2.207	1.582	2.680	3.043	1.193	1.350	67.	٠	2.075	٠		3.146	
VKEAS R	159	750	801	805	896	646	929	485	549	643	614	670	669	714	612	299	743	822	891	265	668	216	736	843	676	895	686	532	605	418	585	949	124	732	149	
>	1162	1218	1221	1215	1198	1811	1158	685	C1.2	730	805	813	835	823	897	897	922	918	887	206	957	979	970	928	907	923	606	823	879	645	140	154	129	712	713	
09.03.27. A	1005.2	978.6	6.596	962.8	948.8	636.6	933.5	1060.7	1047.3	1044.1	1042.9	1035.4	1041.3	1040.0	1057.3	1039.1	1031-6	1026-1	1008-9	1031.7	1019.8	1014.3	10101	992.9	1040.3	1023.1	1015.6	1108.5	1101.4	1081.4	1054.1	1051.2	1038.1	m	1034.5	
	420.6	398.7	388.3	385.9	374.7	367.7	362.7	468.3	456.5	453.8	452.7	446.3	451.1	450.2	465.3	449.5	443.0	438.3	423.7	443.1	432.9	428.2	424.7	410.3	450.5	435.7	459.4	511.5	504.9	486.8	462.5	460.0	•		445.5	
545 08/13/73 RHD T	.00217	.00257	.00288	.00295	.00379	.30437	.00436		• 00400	• 30526	.00395	. 30459	.00477	.00509	.00315	.00368	.00437	.00543	• 00683	.00293	.00330	• 00362	.00390	.00525	.30376	.00637	.00723	.00284	.00321	.00284	.00419	.00493	.30667	071	. 20748	
EST NO.	10.16	13.24	15.07	15.11	18,88	21.17	20.29	5.52	7.10	9.73	8.87		11.48		8.79	10.29	12.89	15.87	18.67	8.37	10.48	12.06	12.74	16.71	10.74	18.84	20.74	6.67	8.61	4. 10	7.97	9.74	?	12.61	ė	
TBT TE	1.156	1.244	1.271	1.262	1.263	1.255	1.241	949	.678	669	.772	. 785	.800	.791	.848	.864	.893	968	.879	.879	• 938		196*	.965	.872	.902	-895	.742	.798	.596	. 702	.718	.702	.687	689	
15	-		-				_		-		-	٠. 🚗		_		~	\sim	_				~	~	_				_	10	-	~	•	$\overline{}$	29.50	$\overline{}$	
н/а	.4366	.3890	.3755	.3800	.3796	.3828	.3908	.7555	.7351	.7215	•6744	.6655	.6563	. 6616	.6248	.6146	. 5955	.5948	. 6047	. 6044	. 5671	.5498	.5527	5502	. 6095	. 5900	. 5946	.6936	.6572	.7863	. 7198	.7095	.7195	.7290	.7283	•
a .	-	-		-	1.0	_	~		•	ഹ	_	1.	'10	1		_	~	~		24.5	-				$\overline{}$	~		-		•	~	~	டி	38.13	œ	
I	'αο	. 3	S	· c	S	0	-	0	C	•	୍ଦ	•	۰.	m	•	0	~	o	0	S	0	୍ୟ	· 🕠	•	-	0	~	,O	m	σ	_	0	r	52.33	54.53	
, 4	4.73	4.79	61.4	42	67.4	4.79	61.4	4.78	4.78	4.78	6.78	4.78	4.78	4.78	4.78	4.78	4.78	4.78	4.78	4.78	4.78	.78	. 78	.78	. 81	.81	-81	-32	.82	1.31	. 81	. 81	.81	4.81	4.81	
id.		N	ļM	÷	ıc	S	~		, ~	m		~	6			~	im i	.	ß	ا اورو: ا	2	m	•	5	; 	2	100	ب.	~	-	~	3	*	S	Φ.	
2 JN	-	_	-	-	1	-	. 	2	۰,۸	~		m	60	; (4 1	•		:	. 💠	•		ĸ	5	5	·w	<u>و</u> ا	9	9	-	-	œ	6 0	œ	œ	œ	co	
• .				ı				1	•		İ	:	i		!	2	7		:	!			į				1								! :	

•	U • 7 • E	15.566	7	9.56	1.84	3.70	6.32	67	3.72	3	7.902	3°50	9	16.0	ω, en :	3	3	Ξ.	٠,	2 9	٠ <u>)</u> ا	2 :	2 0	7.40	ָהָי הַיּ	64.1 7		70.0	• 0		900	•	5	9	67.	•
	KHU/ KHUSE	3.059	.882	98	7	39	9	13	8	9	1-175	2	45	3	S	=	<u>ښ</u>	•	ζ.	0	ŏ	š i	~ ;	~ (3	2.213		o d	,	ů r	.	•	9	•	٠ ا	r.
	VKEAS	731	685	734	808	860	925	156	666	536	629	678	728	136	468	109	645	638	622	588	664	825	198	793	718	637	619	756	000	299	288	468	820	873	946	933
;	>	106	1231	1245	1237	1228	1205	1199	1167	880	965	1012	1031	1018	492	936	924	900	857	772	910	1149	1031	1019	820	713	1040	1148	1111	7 F F	466	88	858	1111	1041	666
03.27.	∢	031.	ċ	985.	•	8	d	2	'n	-	1052.8	039.	028	027.	991.	057.	ú	9	042.	940	032.	004.	•	17.	9	1045.2	-	39	œ :	è	96.	5.	7.	.40	76.	78•
/73 09.	-	2	7	. 4.	7.	0.0) (f	7	2	0	•	6	0	39.	95.	65.	_:	53	52.	50.	Ę	20.	5	31.	46	454.7	26.	~	9	ř	13	20	22	19	16	΄ α
545 08/13/73	7	72	7		2 6	0033	, ה	; ;	. 0		27	33	33	35	25	27	33	34	35	39	2045	0035	0040	4	34	.00540	22	74	34	3	05	2	90	03	05	90
EST NO.		12.5	11.0	12	15.4	17.3		2	7 7 7 7	6.2	0		12.4	12.7	5	8	6	0	6		2	16.	14.	14.	12.		80	20.	20.	18	18	16.	15.	17.	21.	20.
- <u>⊢</u>	£	~	, ,	• •	4 C	ייָנע	•	• •	• '	w v			1.003			88.7			821		591				•			•	1.124					•	•	1.012
	15	7 70	7 7 7 0	000	0.0	0		44	0	0	70	7 4	, a	7	ν α	200	79	7	3.6	0	4	70.6	58	57.	47	37	86	57	. 64	37.	35	26.	24.	74.	27	20.52
	P/H	0	2 6	ָ פַּ	7 1	-	1 1	80	9 5	χ Σ	2 0	0 %	2	7 6		10		-	3	0	2		21.5		4	73		Ţ	5	52	5		3	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	10	.5211
	۵	C	•	*		•	•	<u>.</u>	-d:. •	*	7	• .		•	•	•	•	9, 6	•	•	•								~					• 0		28.59
	I	•	*	?	B	-	<u>.</u>	in i		L.	١,	•				•					•				• .					ď			•	•	•	54.85
	4	(30 (~	-		٠,	•	-	ا <u>د</u> ا	٠,	•	•	•	n (•		•		•	•	•	•	() 	•					•	•	•		14.63
	7	ı	_	_	~	€	.	'n	9	~	:	~	m	ا جي		ا: معر أ	N (n	. •	٠,	0 1		- 4 ∶¢	v]r	η,	* 4		۰,	. ~	۱' «	÷ u	٠,	α !	٠.	(N 60
	2		∞	σ	ጥ	Φ,	C.	0	σ	6	2	C	0	C :	0	ا بسر ا بسر ا				= :	- ;•	- ;	2 :	v	71	2 :		7 -			~ :	c :	? .	5 .	٠ س	\$. . .

# # # # # # # # # # # # # # # # # # #	• • •	9.58	• 89	7.97	.97	0.3	• 96	6.51		. 7	4-35	œ	5.38	. 53	5.39	• 86	.63	.08	5.58	8.303	0.98	0.72	•	5.5	• 94	12.662	. 32	• 32	. 53	• 01	• 56	'n	• 14		12.124	• 85
	אנוטרא אטרא	• 56	19.	• 66	.01	2	• 58	-01	00	• 35	1.629	•82	• 98	10.	• 03	•1•	•13	.71	.11	1.120	• 36	•68	•33	•21	.51	_	.98	. 78	• 59	• 93	• 45	.61	.71	. 17	• 94	C
	U 2	2	~	4	_	9	6	0	•	9	864	•	S.	Ę,	2	9	Q,	S	٠	S	S	œ	3	~	ŝ	0	m	œ	6	S	Ň	•	•	S.	~	2
>	•	~	906	ø	_	~	2	Ġ.	98	S	1143	œ	0	9	8	æ	N	-	8	3	6	9	0	8	•	*	2	æ	~	9	œ	~	8	3	3	~
.03.27.	₹	80.	83.	ŝ	110.	.660	078.	063.	å	005.	989.8	å	-	٥	8	070	090	031.	008-	-	018.	037.	079.	041.	023.	ຜູ້	083.	045.	ŝ	100	. +60	O.	88.	1085.4	82.	-
60	-	8	02.	90	13.	•	83.	70	6	ċ	407.8	8	'n.	Ġ			ď	~	m	448.1		ä	3	51.	35.	499.8	88	52.	38.	03,	99.	97.	93.	90	r.	•
545 08/13/73) [60900.	.00636	.00633	.00480	00900	.00851	9600	.00238	3032	.00387	2043	.00473	. 30478	.00483	.30271	.00285	2042	.00504	.30266	.00325	.00401	.00554	*910C	.00835	.30621	.00708	6680C*	.00854	•00459	.00582	.00621	9,900.	.00421	. 00462	.00334
TEST NO.	9								9.81	14.94	17.56	17.58	16.39	16.50	16.11	7.39	8.45	13.56	16.94	96.6	13.45	11.05	9.58	12.34	12.67	11.83	18.21	14.61	13.37	10.13	12,39	13.09	13.91	12.64	14.01	15.92
181	E	•995	-925	.882	• 555	.572	.577	S		7	1.155	7	0	9	6	.827	œ	S.	6	1.001	9	æ	.653	•	•645	•676	999•	•656	.654	.725	.715	.713	•723	.857	•864	1-136
U	-	19.79									56.85																								00	
		0	577	602	911	800	797	811	664	439	.4373	466	520	521	533	638	609	559	6	527	484	617	750	149	755	36	742	149	750	705	7	12	0.5	19	14	7
c		9.0	9°C	5. C	9.3	5.9	6.0	4.3	2.7	6.1	18.82	9.0	2.8	3.0	3.6	5.4	5.8	.5	5.4	4.2	5.5	1.3	2.0	1.1	in.	6.9	1.2	8.5	4.5	7.5	4.6	5.7	7.9	4.6	5.8	7.6
5	r	4	2	ċ	\$	•	1.	7.	5	•	43.03	3	ä		8	;	ŝ	8	Š	9	•	;	2	•	7.	ď	2	ţ	6	6	æ	÷	8	è.	3	6
	7		. 3	6. 9	4.7	4.1	4.7	4.7	6.7	4.7	14.78		4.7	4.1	4.7	4.7	4.7			4.1	4.3	4.7	4.7	4.7	7	-		4.1	4.7	4.1	4.7	4.7	4.7	6.1	4.1	r.
č	<u>.</u>	÷	ß	ç	_	. ~	~	•	- -	~	m	•	S	9		 4	2			-				2	m		~	æ	•	-	7	m	*		~	-
	•		_	14		15	15	15	91	16	91	91	16	16	16	11	11	1	29	~		180	61	61	19	20	20	^	20.	21	17	21	71	22	22	23

RN#1.E6	23.658 20.578 20.578 10.315 11.882 23.133 7.721 24.771 20.525 19.520 15.055 6.198 7.907 8.065 12.427 16.651 16.651
RHD/RHDSL	2.765 2.812 2.812 1.906 1.906 2.623 2.689 2.689 2.689 1.601 1.601 1.434 1.434 3.503
VKEAS	999 949 949 724 832 1118 646 1107 933 764 587 592 598 792 792 793 793 793 793 793 793 793 793 793 793
>	1014 996 916 818 824 1266 1064 1064 1265 1295 1295 1295 1295 1295 1295 1295 129
09.03.27. A	1017.8 1019.3 1018.5 1087.8 1085.8 996.1 997.7 997.8 1097.9 10096.5 1095.6
	431.2 431.8 492.6 492.6 413.0 413.0 413.0 4055.7 4055.7 4055.7 4056.0 4996.0 4996.0
545 08/13/73 RHO T	.00657 .00568 .00726 .00524 .00526 .00549
TEST NO.	23.48 23.03 21.17 10.51 12.33 16.28 29.37 9.80 22.16 22.16 20.48 13.71 6.03 8.24 11.46 11.46 14.76
T 18T W	9977 9777 1 - 2 5 1 1 - 2 5 1 1 - 3 5 4 1 - 3 5 5 1 1 - 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
15	57.117 55.41 41.96 88.55 86.83 49.07 43.75 35.93 35.93 6.78 6.78 85.79 85.79 85.79 85.79 85.79 86.83 31.29 31.29
H/d	5526 5915 6815 6830 3751 3353 5623 5623 5135 6717 7685 7685
٥.	33.4.4.8 32.6.5.9 32.6.5.9 32.6.5.9 14.6.5.9 119.6.9 1
Ι	53.53 63.17 38.68 44.84 38.35 58.31 72.03 72.03 72.03 72.03 72.03 72.03 73.81 73.81 71.06 50.69 50.69
₫	16.72 16.72 16.72 16.72 16.72 16.72 16.72 16.72 16.74 16.74
٥	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2	20 20 20 20 20 20 20 20 20 20 20 20 20 2

Figure 2. - Wing - Elevon.

・ こうのは、現場であり、他のないを表現を表現を表現していません。 本のながらないのでは、 ないのでは、 ないのです。 ないのです。

(

Figure 3 Model 30-0TS Instrumentation

THE PROPERTY OF THE PROPERTY O

Figure 4. Instrumentation Equipment

Figure 5. - Model Installation.

Figure 6. - Model Installation.

REFERENCE TRACE CAN STATIC PRESSURE CEILING STATIC PRESSURE BENDING SIGNAL TOTAL TEMPERATURE TORSION SIGNAL - INB'D ELEVON ROTATION SIGNAL OUTB'D ELEVON ROTATION SIGNAL INCREASING TI CAMERA TRACE

Typical 1/50th Scale Wind Showing Divergent Type Fi

Figure 9. Typical Operating Characteristics of 26-inch Langley Transonic Blowdown Tunnel. Wall attached 3-inch diameter sting is located approximately 7 inches from wall and has model installed.

	RUN NO 6 7 8 9 10	SYMOUVAN	RUM NO 11 12 13 24 25	SYNA Q A - PREI			TER BOUNDARY
	185	182	~' √	210			
.6	.7	۱.	.9 Nach Nº	1.0	1,1	1,2	13
50-40 (ST: Number ad symbol de:	IFF/SOFT) (jacent to i	CONFIG Clutter Lency			⊖ Lo ⊖ Ir ⊕ St	flutter ow damping atermitten ceady-stat ivergent f	t flut ter e flutter

q (psi)6

Figure 10. - Preliminary Model Flutter Boundary-50/40 Configuration.

.)

	SYM O A C V	RUN NO 1 2 3 4 5	SYM OOV A	RUN NO 14 15 16 17 18		RUN NO 19 20 21 22 23	SYM C	RUN NO 28 29
³²						PRELIMINARY	MODEL FL	UTTER BOUNDARY
30								Ļ
28								! ! !
26								
24					235	/		!
22				215	, · · · · · · · · · · · · · · · · · · ·	Yo	_	!
20				*	2180-7		O,	
q 18				200		\d\	σ ,	О Ц
(psi)				200	186	Ż	(
14	198			172	<u>}</u> 	·	ó	,
12	⊃. ′		- -	♦ ♦ <i>i</i>	∑ .>			
10	; ;	a A'L	ų Ė		,)^^	
8	,	, [']		◇ ◇ ′				
6	ರ	Δ΄						
4								
2								
L	.6	,1	.8	.9	1,0	ប	12	1,3
				Mach Nº		_		
Nu	umber a	STIFF/STIFF) djacent to f lenotes frequ	lutter			⊖ Low ⊕ Int ⊕ Ste	flutter damping ermittent ady-state ergent fl	flutter

Figure 11. - Preliminary Model Flutter Boundary-50/50 Configuration.

APPENDIX A

CALIBRATION DATA

Table A-1 illustrates the pre-and post-run frequency data obtained during this test. Comparing the results of the table with Table A-2, the frequencies obtained during the GVS prior to the test, there is generally good agreement. Note that for the post-run 15 and post-run 26 frequency checks (Table A-1), model damage is evidenced by discrepant frequencies.

Since no GVS was performed for the Run 30 configuration (steel flexures and pin hinges simulating a slab wing), comparison was impossible. However, the frequencies obtained were in good agreement with what was anticipated for this arrangement and approximate a slab wing condition.

Figures A-1 through A-8 in this appendix illustrate the node lines generated during the GVS of the eight models. The modal shapes for the entire wing/elevon (wing #1 in these figures) are illustrated in Figures A-9 through A-13 for the stiff/stiff elevon flexures configuration and in Figures A-14 through A-18 for the stiff/soft elevon flexures configuration.

Table A-1 Pre- and Post-Run Frequency Data

		MO	DEL	Γ	PPPOI	JENCIE	PS / W.	. 1	
D1 0 1		OB	IB	1	2	3	35 (H)	5	REMARKS
RUN	WING	ELEVON	ELEVON		ے				
PRE-1	2	2/.050	2/.050	125	218	262	40 8	478	FIRST 3 FREQ. OBTAINED BY PLUCKING; LAST 2 BY SHAKER
PRE-2	2	2/.050	2/.050	128	220	260	405	480	,
PRE-3	2	2/.050	2/.050	127	224	260	415	480	
PRE-4	2	2/.050	2/.050	127	224	260	410	476	
PRE-5	2	2/.050	2/.050	125	222	255	404	463	
PRE-5	2	2/.050	2/.050	125	222	256	402	462	REMOVING MODEL, FOR
		- 1 - 1 -				_ :		,	INSTALLATION OF #5
PRE-6	2	2/.040	5/.050	125	215	230	400	475	REMOVING MODEL FOR
			(1						INSTALLATION OF #5
PRE-7	6	6/.040	6/.050	125	213	235	415	500	
PRE-8	7	7/.040	7/.050	127	220	248	420	480	OB HINGES DAMAGED
PRE-9	7	7/.040	7/.050	127	223	256	410	480	
PRE-10	7	7/.040	7/.050	126	225	250	408	416	
PRE-11	7	7/.040	7/.050	125	223	245 240	400	476	
PRE-12 PRE-13	7	7/.040 7/.040	7/.050	125	218 220	240	400 400	470	
PRE-13	7	3/.050	7/.050 3/.050	125 130	215	265	400	470 500	
PRE-14	3	3/.050	3/.050	128	210	260	405	500	
P^~15	3	3/.050	3/.050	127	215	239	393	485	REMOVING MODEL
	2	2/.050	2/.050	124	223	265	404	480	KENOATING MODEL
PRE-17	2	2/.050	2/.050	127	225	268	405	485	
POST-17		2/.050	2/.050	125	217	265	40)	485	IB ELEVON DEFLECTED
1051 1	_	27.000	27.00	12)	41	20)		707	UPWARDREMOVING MODEL
PRE-18	4	4/.050	4/.050	129	214	265	405	480	OFWARD-ARMOVING MODEL
POST-18		4/.050	4/.050	130	214	265	410	460	
POST-19		4/.050	4/.050	130	215	265	408	465	
P03T-20		4/.050	4/.050	130	217	265	405	470	
PRE-22	2	2/.050	2/.050	127	215	270	410	480	
PRE-23	3	3/.050	3/.050	127	218	266	400	485	
PRE-24	5	9/.040	5/.050	120	218	235	400	470	
PRE-25	8	8/.040	8/.050	123	218	243	390	472	
PRE-26	8	8/.040	8/.050	122	219	241	395	475	
POST-26		8/.040	8/.050	108	215				MODEL DAMAGED - REMOVED
PRE-27	ı	1/.040	1/.050	122	205	233	400	480	OB ELEVON DAMAGED
PRE-28	4		10/.050	120	204	265	390	480	
PRE-29	4		10/.050	120	203	263	390	470	
PRE-30	5	SOLID	SOLID	120	335	470	660		

Table A-2 GVS Frequencies

MODEL. NO.	ELEV. (INB'D) ELEV. (OUTB'D)	00	INB'D) .050 x .320 (11.0 Hz EQUIV.) OUTB'D) .050 x .320 (13.5 Hz EQUIV.)	(11.0 Hz EQUIV.) (13.5 Hz EQUIV.)	EQUIV.) EQUIV.)	O) AETE T) AETE	(INB'D) .0 (OUTB'I' .0	50 × .320 40 × .320	.050 x .320 (11.0 Hz EQUIV.) .040 x .320 (11.0 Hz EQUIV.)	EQUIV.)
	1	2	3	ħ	5	1		3	4	5
1*	123.1	203.8	1.595	403.3	481.5	2.121	50∶.6	235.0	398.4	9.494
8	124.8	210.2	263.9	9.904	479.5	1	1	;	;	;
က	126.7	217.7	266.4	0.004	₩96. ₩	i i	!	\$ *	!	i i
4	129.7	217.9	267.1	405.1	1.36.7	!	!	ļ	1	t 1
5	;	1	1	1	1	123.8	219.8	235.5	396.8	472.9
9	1	;	;	i	1	125.4	211.0	9.045	0.304	482.4
7	i	!	1	!	1	123.1	223.3	247.8	394.7	467.5
æ	;	1	;	;	ŀ	121.7	220.8	240.7	392.8	475.7

MODEL #1 FREQUENCIES MEASURED WITH PICKUP TARGETS FOR MODE SHAPES (MODE LINE SHEET WITHOUT TARGETS). *NOTE:

ĺ

•

(

FOR SAKE OF CLASITY

SECONDARY NODE LEWES NOT SHOWN

XOIE:

ADDEL NO. 1

45

Figure A-1 Model Node Line Locations - Model No. 1

NOTE: SECONDARY NODE LINES NOT SHOWN FOR SAID OF CLARITY

Figure (-2 Model Node Line Locations - Model No. 2

(

Figure A-3 Model Node Line Locations - Model No. 3

TOR SALE OF CLASSIFI

NOTE: SECONDARY HODE LINES HOT SHOWN

YOR SAUP OF CLARITY

MODEL NO. 4

)

Figure A-4 Model Node Line Locations - Model No. 4

NOTE: SECONDARY NODE LINES NOT SHOWN

ı೧

MODEL NO.

FOR SAME OF CLARITY

Figure A-5 Model Node Line Locations - Model No. 5

Figure A-6 Model Node Line Locations - Model No. 6

TOR SAIDT OF CLARITY

MODEL NO.

Figure A-1 Model Node Line Locations - Model No. 7

NOTE: SECONDARY NODE LINES NOT SHOWN TOR SARE OF CLARITY

ω

MODEL NO.

Figure 4-8 Model Inc Locations - Model No. 8

ì

Figure A-9 GVS Modal Shape - 1st Frequency (50/40 Config)

53

MODEL 23-0 WING #1 - 50/40 CONFIGURATION f = 121.2 Hz

Figure A-10 GVS Modal Shape - 2nd Frequency (50/40 Confix)

MODEL 23-0 WING #1 - 50/40 CONFIGURATION f = 201.6 Hz

MODEL 23-0 WING #1 - 50/40 CONFIGURATION f = 235.0 Hs

Figure A-11 GVS Modal Shape - 3rd Frequency (50/40 Config)

MODEL 23-0 WING #1 - 50/40 CONFIGURATION f = 398.4 Hz

Figure A-12 GVS Model Shape - 4th Frequency(50/40 Config)

THE REPORT OF THE PARTY OF THE

- 50/40 CONFIGURATION

Figure A-13 3 Modal Shape - 5th Frequency (50/40 Config)

WING #1 - 50/50 CONFIGURATION f = 123.3 Hz

Figure A-14 GVS Model Shape - 1st Frequency (50/50 Config).

Figure A-15 GVS Model Shape - 2nd Frequency (50/50 Config)

MODEL 23-0 WING #1 - 50/50 CONFIGURATION f = 262.1 Hz

Figure A-16 GVS Modal Shape - 3rd Frequency (50/50 Config)

Figure A-17 GVS Model Shape - 4th Frequency (50/50 Config)

WING #1 - 50/50 CONFIGURATION

MODEL 23-0 WING #1 - 50/50 CONFIGURATION f = 481.2 Hz 62

١.

Figure A-18 GVS Model Shape - 5th Frequency (50/50 Config)

()