Carlos Benitez - Luciano Bello

Ekoparty #17 2 de noviembre de 2021

The silent partners

...o de cómo Shor se asoció a Fourier para factorizar números grandes y romper el cifrado asimétrico en computadoras cuánticas...

Carlos Benitez

Ing. y Mg. de la UTN FRBA

- Investigador en procesamiento de señales acústicas submarinas
- Primer Lab en Seguridad Informática (Si6) y primer SOC Defensa
- Asesor técnico de la Subsecretaría de Ciberdefensa
- Docente de posgrado y consultor en ciberseguridad
- Co-fundador de Platinumciber
- Formador y mentoring de equipos
- SOC, Ethical Hacking y Análisis y Gestión de Riesgos
- Quantum Computing enthusiast

Luciano Bello

Ing. de la UTN FRBA

PhD de Chalmers (Suecia)

- Desarrollador Senior en IBM Research
- Doctor en seguridad basada en lenguajes
- Python coder
- Desarrollador de Software Libre en Debian
- Diseñador de lenguajes formales
- Infosec enthusiast
- Geocacher

- previously...
- el problema
- RSA
- la factorización
- fourier el algoritmo de shor
- la implementación
- resumen

- previously...
- el problema
- RSA
- la factorización
- fourier el algoritmo de shor
- la implementación
- resumer

- Introducción a la QC
- Propiedades del qubit
- Hardware existente
- Algoritmo de Deutsch
- Los mitos de la QC
- Las QC online disponibles

- Introducción a la QC
- Propiedades del qubit
- Hardware existente
- Algoritmo de Deutsch
- Los mitos de la QC
- Las QC online disponibles

Algoritmo de Shor

- previously...
- el problema
- RSA
- la factorización
- fourier el algoritmo de shor
- la implementación
- resumer

| 9333271410463787949726552668938875959796413163310288065921775297698341521241159133233652681667066444 377828173034683701925114789618787<u>30910</u>1887004289046129<u>8730</u>28746416386<u>95</u>7<u>4</u>436440285888093124299088608 3498<u>297190</u>72729 6462527 36464363 FOE115457 |521356011614860439988085178768763 B73010228501014181466326553 220994458815/200 .0385003949578790

- previously...
- el problema
- RSA
- la factorización
- fourier el algoritmo de shor
- la implementación
- resumer

RSA

Se define un número arbitrariamente grande, producto de dos primos:

$$n = p \cdot q$$

Se calcula la función φ de Euler como:

$$\varphi(n) = (p-1)(q-1)$$

Se obtienen e (la clave para cifrar) y d (la clave para descifrar) y se generan las claves pública y privada:

$$d \ e \ \text{mod} \ \varphi(n) = 1$$

pubkey = (n,e) privkey = (n,d)

Teniendo un mensaje m:

$$message = m$$

Se genera un mensaje cifrado c como:

$$c = m^e \mod n$$

Una vez enviado, se recupera el mensaje descifrado m como:

$$m = c^d \operatorname{mod} n$$

RSA attack

Dado que en la siguiente ecuación se conocen:

$$d \in \text{mod } \varphi(n) = 1$$

Entonces, para calcular $\frac{d}{d}$ hace falta conocer $\frac{\varphi(n)}{d}$.

Pero $\varphi(n)$ es:

$$\varphi(n) = (p-1)(q-1)$$

Para obtener $\varphi(n)$ se necesitan p y q. Pero como:

$$n = p q$$

Entonces, factorizando n se obtienen p y q y, en consecuencia d.

- previously....
- el problema
- RSA
- la factorización
- fourier el algoritmo de shor
- la implementación
- resumer

Trial division

```
def TrialDivision(N):
   1 = 2
   k = int(N ** 0.5)
   while(i<= k):
       if(N % 1 == 0):
          return 0
       i += 1
if __name__ == "__main__":
   N = 49
   p = TrialDivision(N)
   if(p):
       print("Prime")
       print("Composite")
```

Fermat

```
from math import ceil, sqrt
def FermatFactors(n):
   if(n<= 0):
       return [n]
   if(n \& 1) = 0:
       return [n / 2, 2]
   a = ceil(sqrt(n))
   if(a * a == n):
       return [a, a]
   while(True):
       b1 = a * a - n
       b = int(sqrt(b1))
       if(b * b == b1):
           break
           a += 1
   return [a-b, a + b]
print(FermatFactors(6557))
```

Pollard rho

```
import random
import math
def modular_pow(base, exponent,modulus):
   result = 1
   while (exponent > 0):
       if (exponent & 1):
           result = (result * base) % modulus
       exponent = exponent >> 1
       base = (base * base) % modulus
   return result
def PollardRho( n):
   if (n = 1):
      return n
   if (n % 2 == 0):
   x = (random.randint(0, 2) % (n - 2))
   y = x
```

```
c = (random.randint(0, 1) % (n - 1))
  d = 1
   while (d == 1):
      x = (modular_pow(x, 2, n) + c + n)n
      y = (modular_pow(y, 2, n) + c + n) n
      y = (modular_pow(y, 2, n) + c + n)%n
      d = math.gcd(abs(x - y), n)
      if (d == n):
          return PollardRho(n)
   return d
if __name__ == "__main__":
  n = 10967535067
  print("One of the divisors for", n , "is ",PollardRho(n))
```


- previously...
- el problema
- RSA
- la factorización
- fourier
- el algoritmo de shor
- la implementación
- resumer

Joseph Fourier 1768-1830

Transformada de Fourier

$$\mathcal{F}(\omega) = \int_{-\infty}^{\infty} f(x) \cdot e^{j\omega x} \cdot dx$$

Transformada Discreta de Fourier

$$\begin{split} X_k &= \sum_{n=0}^{N-1} x_n \cdot e^{-\frac{j2\pi}{N}kn} \\ &= \sum_{n=0}^{N-1} x_n \cdot \left[\cos\left(\frac{2\pi}{N}kn\right) - j \cdot \sin\left(\frac{2\pi}{N}kn\right) \right] \end{split}$$

Transformada Rápida de Fourier (FFT)

- previously...
- el problema
- RSA
- la factorización
- fourier
- el algoritmo de shor
- la implementación
- resumer

| 9333271410463787949726552668938875959796413163310288065921775297698341521241159133233652681667066444 377828173034683701925114789618787<u>30910</u>1887004289046129<u>8730</u>28746416386<u>95</u>7<u>4</u>436440285888093124299088608 3498<u>297190</u>72729 6462527 36464363 FOE115457 |521356011614860439988085178768763 B73010228501014181466326553 220994458815/200 .0385003949578790

El algoritmo de Shor (I)

$$N=g$$
. h

$$\downarrow$$
 2,3,5,7,11,13,17,...

$$35 = ?$$
 . ?

$$\checkmark$$
 2 \rightarrow { SHOR } \rightarrow 5

Dados dos coprimos g y N existen p y m tales que

$$g^p = m . N + 1$$

El algoritmo de Shor (II)

$$g^p = m \cdot N + 1$$

$$g^p - 1 = m \cdot N$$

$$\left(g^{\frac{p}{2}} - 1\right) \left(g^{\frac{p}{2}} + 1\right) = m \cdot N$$

$$p = ?$$

$$g^p = m . N + 1$$

$$g^p \mod N = 1$$

El algoritmo de Shor (III)

Transformada Cuántica de Fourier (QFT)

$$\operatorname{QFT}_N |x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{xk} |k\rangle$$

Transformada Cuántica de Fourier (QFT)

$$|x\rangle + |x+p\rangle + |x+2p\rangle...+... |x+np\rangle \mapsto \{\text{QFT}\} \mapsto |\frac{1}{p}\rangle$$

Transformada Cuántica de Fourier (QFT)

$$\operatorname{QFT}_N |x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{xk} |k\rangle$$

El Algoritmo de Shor (IV)

- previously...
- el problema
- RSA
- la factorización
- fourier
- el algoritmo de shor
- la implementación
- resumer

El algoritmo de Shor

El algoritmo de Shor

Algoritmo de Shor: Implementación

$$\operatorname{QFT}_2|x\rangle \mapsto \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\mathbf{U} \; \mathbf{ROT}_k = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & e^{j\frac{2\pi}{2^k}} \end{bmatrix}$$

El algoritmo de Shor circuito cuántico (4 qubits)

El algoritmo de Shor circuito cuántico de QFT (4 qubits)

El algoritmo de Shor circuito cuántico (8 qubits)

El algoritmo de Shor circuito cuántico de QFT (8 qubits)

- previously...
- el problema
- RSA
- la factorización
- fourier
- el algoritmo de shor
- la implementación
- resumen

de qué hablamos...?

- previously...
- factorización de grandes números...
- Fourier su serie y su transformada
- reescritura de la ecuación de factorización
- periodicidad en la función
- Shor 'crea' la QFT para encontrar el período.
- del período sale 'p'... y de p 'q'
- implementación de Shor en una QC
- no se puede factorizar N > 56153=233·241
- ...por ahora...

Referencias

How does RSA works https://hackernoon.com/how-does-rsa-work-f44918df914b

Trial Division Algorithm
https://www.geeksforgeeks.org/trial-division-algorithm-for-prime-factorization/amp/

Fermat's Factorization Method https://www.geeksforgeeks.org/fermats-factorization-method/

Pollard's Factorization Method https://www.geeksforgeeks.org/pollards-rho-algorithm-prime-factorization/amp/

Fourier Transform in qiskit https://leftasexercise.com/2019/02/25/implementing-the-quantum-fourier-transform-with-qiskit/

Quantum Factorization
https://towardsdatascience.com/quantum-factorization-b3f44be9d738

How Quantum Computers Break Encryption | Shor's Algorithm Explained https://www.youtube.com/watch?v=FRZQ-efABeQ

How Shor's Algorithm Factors 314191 https://www.youtube.com/watch?v=lvTqbM5Dq4Q

New largest number factored on a quantum device is 56,153 https://phys.org/news/2014-11-largest-factored-quantum-device.html

Self https://github.com/ch4r1i3b/Eko2021_The_Silent_Partners

muchas gracias!

Luciano Bello

1ucian0<at>ieee.org
@microluciano

Carlos Benitez

carlos<at>platinumciber.com @ch4r1i3b

> Ekoparty #17 2 de noviembre de 2021

