

Linear Regression With Movies Based On Novels.

- Problem Statement and Motivation.
- Data Collection.
- Data Cleaning.
- Methodology.
- Result.
- Future Steps.

Motivation

Create a Linear regression model that can predict World Wild Gross of movies based on novels by determining the features most influential to their success.

Data Collection:

We scraping three web site to collect our data by merge the flowing:

1- IMDB website:

Https://www.imdb.com/search/keyword/?keywords=based-on_novel Title, Rating, Runtime, IMDB scores, Genre.
Total of 3450 dataset.

2-BoxOfficeMojo website.

https://www.boxofficemojo.com
The theaters, Total gross.
Total of 999 dataset.

3- The Numbers website.

https://www.the-numbers.com
Title, Budget, Worldwide gross.
Total of 6100 dataset.

FILM KJI88 PLUS 040812

Data clean-

- 1. Handling miss value
- 2. Remove duplicated value and nan value
- 3. Convert formatting for runtime, date resident features

Methodology

- split data train ,test, validation
- Liner regression
- LASSO Regularization
- Feature engineering

Create new variable "Primetime", indicating if a movie was released during a typically successful time of year (summer or holiday season).

7

Result

X= Rating, Runtime, IMDB_score, Budget, Theaters, Primetime.

Y= Worldwide Gross.

the metrics	Score	\mathbb{R}^2
Linear Regression	0.54	0.31
Lasso	0.54	0.31

Result

X= Budget, Primetime, Theaters, Domestic Gross.

Y= Worldwide Gross.

the metrics	Score	\mathbb{R}^2
Linear Regression	0.92	0.85
Lasso	0.92	0.85

Future steps

We will improve our prediction model by add more new features

Define different movie's category

ITHANK YOU

by: Rana Alqahtani Ohoud Albabtain Khulud Amer

