5 Key Points | Ridge Regression | Regularized Linear Models

1 How the coefficients get affected?

- In **Linear Regression**, coefficients (β) can become **very large**, especially when:
 - 1. There is **multicollinearity** (features are highly correlated).
 - 2. The dataset is small or noisy.
- Ridge Regression adds an L2 penalty ($^{(\lambda \sum eta^2)}$) to the cost function:

$$J(eta) = ext{MSE} + \lambda \sum_{j=1}^p eta_j^2$$

- This penalty discourages large values of coefficients:
 - 1. The model still tries to fit the data but **keeps weights small**, leading to a **simpler, more stable model**.

2 Higher values are impacted more

• Ridge penalizes large coefficients more strongly because the penalty term is squared (β_i^2):

$$\lambda \beta_j^2$$

- If:
 - $\beta_1 = 0.5 \rightarrow \text{penalty} = 0.25$
 - $\beta_2 = 5 \rightarrow \text{penalty} = 25$
- Meaning:
 - Big coefficients are heavily reduced, preventing the model from giving extreme importance to single feature.
 - Small coefficients are only slightly affected, preserving weaker but useful signals.

3 Impact on Bias-Variance Trade-off

- Bias: Error from incorrect assumptions (underfitting).
- Variance: Error from sensitivity to training data (overfitting).
- Ridge Regression:
 - 1. Increases bias slightly (coefficients are shrunk, model is simpler).
 - 2. **Reduces variance a lot** (model becomes more stable and generalizes better).
- Net effect:

- 1. Lower overall error on unseen data (better generalization).
- 2. **Trade-off:** We accept a small increase in bias to achieve a big decrease in variance.

4 Effect on the Loss Function

Original Linear Regression minimizes:

$$J(\beta) = \sum (y_i - \hat{y}_i)^2$$

Ridge modifies this to:

$$J(\beta) = \sum (y_i - \hat{y}_i)^2 + \lambda \sum \beta_j^2$$

Where:

- First term = error between predictions and actual values.
- Second term = penalty on large coefficients.

This:

- Forces model to balance between accuracy and simplicity.
- Even if a feature perfectly fits noise, the penalty prevents its coefficient from blowing up.

5 Why Ridge Regression is called so?

- The name "Ridge" comes from the **constraint region** of the solution:
 - Ridge regression restricts coefficients inside a circular (elliptical) boundary:

$$\sum eta_j^2 \leq c$$

- · Geometrically:
 - 1. Solution is forced to stay near the **origin (small coefficients)**.
 - 2. This boundary forms a ridge-shaped area in the solution space.
 - 3. The optimizer finds the point where:
 - Loss function contour (ellipse) touches the ridge constraint.

6 A Practical Tip – Apply Ridge Regression

- · Use Ridge Regression when:
 - 1. Dataset has **multicollinearity** (correlated features).
 - 2. Number of features p > n (more features than data points).

- 3. Model **overfits training data**.
- 4. You want to reduce variance and improve generalization.
- In practice:
 - 1. Use ${f cross-validation}$ to select the best ${\lambda \over \lambda}$ (regularization strength).
 - 2. Too high $\lambda \rightarrow$ underfitting.
 - 3. Too low λ behaves like linear regression.

© Summary of 5 Key Understandings

Key Point	Effect in Ridge Regression
1 Coefficients get affected	Shrunk toward zero, more stable
2 Higher values impacted more	Large weights penalized more heavily
3 Bias-Variance Trade-off	Increases bias slightly, greatly reduces variance
4 Loss function effect	Adds L2 penalty, balancing accuracy and simplicity
5 Why "Ridge" name?	Solution constrained in a "ridge" (circle/ellipse) region