

Examen – Automatique

Session 2, mercredi 24 avril 2018

Documents autorisés : 1 pages A4 recto-verso manuscrite

⊳ Exercice 1. (4 points) On considère le système

$$(S) \begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\frac{k}{m_1 + m_2} x_1(t) - \frac{c}{m_1 + m_2} x_2(t) + \frac{1}{m_2} x_3(t) \\ \dot{x}_3(t) = \omega x_4(t) \\ \dot{x}_4(t) = -\omega x_3(t) - 2\xi \omega x_4(t) + \omega u(t). \end{cases}$$

- **1.1.** Écrire ce système sous la forme $\dot{x}(t) = Ax(t) + Bu(t)$. On donnera les matrices A et B.
- **1.2.** Quelles conditions doivent vérifier les constantes définissant le système pour que celui-ci soit contrôlable?
- \triangleright Exercice 2. (6 points) On considère le système commandé dans \mathbb{R}^2 suivant

$$(S) \begin{cases} \dot{x}_1(t) = x_1(t) - x_2(t) \\ \dot{x}_2(t) = (x_1(t) - x_2(t))(1 - 2\cos(x_1(t))) + \sin(2x_1(t)) - u(t)\cos(x_2(t)). \end{cases}$$

- **2.1.** Donner la fonction f définissant le système contrôlé (ensemble de départ, d'arrivée et application).
- **2.2.** On considère le point de fonctionnement (0,0,0). Donner des conditions sur k_1 et k_2 pour que le contrôle par retour d'état soit asymptotiquement stable
- ightharpoonup Exercice 3. (10 points) Soient a,b,c,d>0 des constantes. Le modèle "prédateur-proie" de Volterra est défini par l'équation différentielle

(S)
$$\begin{cases} \dot{x}_1(t) = ax_1(t) - bx_1(t)x_2(t) \\ \dot{x}_2(t) = -cx_2(t) + dx_1(t)x_2(t). \end{cases}$$

où $x_1(t)$ représente le nombre de proies et $x_2(t)$ le nombre de prédateurs.

3.1. Déterminer les points d'équilibre de ce système.

- **3.2.** Déterminer les matrices jacobiennes du système en ces points d'équilibres. Que peut-on en déduire quant-à la stabilité de ces points d'équilibre?
- 3.3. On définit la fonction

$$V: \mathbf{R}^2 \longrightarrow \mathbf{R}$$

 $x \longmapsto dx_1 - c \log(x_1) + (bx_2 - a \log(x_2)).$

- 1. Montrer que cette fonction est constante le long les solutions de (S).
- 2. Montrer que cette fonction est convexe.
- 3.4. En admettant le théorème suivant

Théorème 0.1. Soit x_e un point d'équilibre du système $\dot{x}(t) = f(x(t))$. Soit $W: U \to \mathbf{R}$ une fonction continue définie sur un voisinage U de x_e , dérivable sur $U \setminus \{x_e\}$ telle que

1.
$$W(x_e) = 0$$
 et $V(x) > 0$ si $x \neq x_e$;

2.
$$\frac{dW(x(t))}{dt} \leq 0 \ dans \ U \setminus \{x_e\}.$$

Alors x_e est stable.

Montrer que le système est stable au point d'équilibre.