

Report No: CCISE171006801

FCC REPORT

(UNII)

Applicant: LigoWave LLC

Address of Applicant: 138 Mountain Brook Dr Canton, GA 30115 United States

Equipment Under Test (EUT)

Product Name: Broadband Digital Transmission System

Model No.: LigoDLB 5ac, LigoDLB 5-90ac

FCC ID: V2V-FWBD3200

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 01 Nov., 2017

Date of Test: 02 Nov., to 24 Nov., 2017

Date of report issued: 25 Nov., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
		This report was amended on FCC ID:
00	25 Nov., 2017	V2V-FWBD3200 follow FCC Class II
		Permissive Change.

Tested by: | | | Curcy | Date: 25 Nov., 2017

Test Engineer

Reviewed by: 25 Nov., 2017

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
4	_	ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	
	5.7	MEASUREMENT UNCERTAINTY	
	5.8	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	19
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
	6.8	FREQUENCY STABILITY	
7	TES	ST SETUP PHOTO	63
0	CIIT	CONSTRUCTIONAL DETAILS	71

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass*
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: Please refer to FCC ID: V2V-FWBD3200.

5 General Information

5.1 Client Information

Applicant:	LigoWave LLC		
Address: 138 Mountain Brook Dr Canton, GA 30115 United States			
Manufacturer/ Factory:	LigoWave LLC		
Address:	138 Mountain Brook Dr Canton, GA 30115 United States		

5.2 General Description of E.U.T.

Product Name:	Broadband Digital Transmission System		
Model No.:	LigoDLB 5ac, LigoDLB 5-90ac		
Operation Frequency:	Band 1: 5150MHz-5250MHz Band 4: 5725MHz-5850MHz		
Operation mode:	Fixed point-to-point operation		
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2, 802.11ac80: 1 Band 4: 802.11a/802.11n20: 5,802.11n40: 2, 802.11ac80: 1		
Channel separation:	802.11a/802.11n20:20MHz, 802.11n40:40MHz, 802.11ac80 : 80MHz		
Modulation technology: (IEEE 802.11a)	BPSK,QPSK,16-QAM,64-QAM		
Modulation technology: (IEEE 802.11n)	BPSK,QPSK,16-QAM,64-QAM		
Modulation technology: (IEEE 802.11ac)	BPSK,QPSK,16-QAM, 64-QAM, 256-QAM		
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps		
Data speed (IEEE 802.11n20):	MCS0: 13Mbps, MCS1:26Mbps, MCS2:39Mbps, MCS3:52Mbps, MCS4:78Mbps, MCS5:104Mbps, MCS6:117Mbps, MCS7:130Mbps		
Data speed (IEEE 802.11n40):	MCS0:30Mbps, MCS1:60Mbps, MCS2:90Mbps, MCS3:120Mbps, MCS4:180Mbps, MCS5:240Mbps, MCS6:270Mbps, MCS7:300Mbps		
Data speed (IEEE 802.11ac80):	Up to 866.7Mbps		
Antenna gain:	LigoDLB 5ac: 18dBi, LigoDLB 5-90ac: 18dBi		
Power supply:	DC 24V		
AC adapter :	(1) Model: G0720-240-050 Input:100-240V AC,50/60Hz 0.75A Output:24V DC MAX 0.5A (2) Model: GRT-POE20-240050A Input:100-240V AC,50/60Hz 0.5A Output:24V DC MAX 500mA		
Remark:	Item No.: LigoDLB 5ac, LigoDLB 5-90ac were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference name.		

Operation Frequency each of channel

	o position of a contained.						
	Band 1						
802.11a/802.11n20		802.11n40		802ac80			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46 5230MHz					
44	5220MHz						
48	5240MHz						
		В	and 4				
802.11a	a/802.11n20	802.11n40		802ac80			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/802.11n20		802.11n40		802ac80		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
The lowest channel	5180MHz	The lowest channel	5190MHz	Middle channel	5210MHz	
The middle channel	5200MHz	The highest channel	5230MHz			
The highest channel	5240MHz					
		Band 4				
802.11a/802.11	n20	802.11n40		802ac8	30	
Channel	Frequency	Channel	Frequency	Channel	Frequency	
The lowest channel	5745MHz	The lowest channel	5755MHz	Middle channel	5775MHz	
The middle channel	5785MHz	The highest channel	5795MHz			
The highest channel 5825MHz						

5.3 Test environment andmode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.		

Report No: CCISE171006801

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	Data rate			
802.11a	6Mbps			
802.11n20	13Mbps			
802.11n40	30Mbps			
802.11ac80	65Mbps			

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6Mbps for 802.11a, 13 Mbps for 802.11n20, 30 Mbps for 802.11n40 and 65 Mbps for 802.11ac80. All test items for 802.11a, 802.11n and 802.11ac were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE171006801

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.7 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.8 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018		
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A		
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018		
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018		
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018		
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018		

Conducted Emission:							
Test Equipment	Manufacturer	Model No. Serial No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	02-25-2017	02-24-2018		
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018		
Cable	HP	10503A	N/A	02-25-2017	02-24-2018		
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirementdoes not apply to carrier currentdevices or to devices operated underthe provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is an integral antenna, which cannot be replaced by end-user. Details as below:

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.20)7					
Test Method:	ANSI C63.4: 2014	ANSI C63.4: 2014					
TestFrequencyRange:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz	RBW=9kHz, VBW=30kHz					
Limit:©		Limit ((dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
Test procedure	* Decreases with the logarith 1. The E.U.T and simulate						
	a line impedance sta 50ohm/50uH coupling in 2. The peripheral device through a LISN that p with 50ohm termination test setup and photogra 3. Both sides of A.C. line a interference. In order to positions of equipment a	 through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted 					
Test setup:	LISN 40cr	E.U.T EMI Receiver	ter — AC power				
Test Instruments:	Refer to section 5.8 for detail	ils					
Test mode:	Refer to section 5.3 for detail	Refer to section 5.3 for details.					
Test results:	Passed						

Measurement Data:

Adapter (1) LigoDLB 5ac:

Line:

Site

Condition

: CCIS Shielding Room : FCC PART 15.407 QP LISN LINE : Broadband Digital Transmission System EUT

Model : LigoDLB 5ac
Test Mode : 5GWIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark : G0720-240-050

Kemark		90120 4	240 000					
	Freq	Read Level		Cable Loss		Limit Line	Over Limit	Remark
	MHz	—dBu₹	<u>dB</u>		dBu₹	——dBu∇	<u>dB</u>	
1	0.154	38.71	-0.56	10.78	48.93	65.78	-16.85	QP
2	0.166	37.71	-0.55	10.77	47.93	65.16	-17.23	QP
1 2 3 4 5 6 7 8	0.166	23.89	-0.55	10.77	34.11	55.16	-21.05	Average
4	0.449	27.25	-0.49	10.74	37.50	46.89	-9.39	Average
5	0.494	43.16	-0.49	10.76	53.43	56.10	-2.67	QP
6	0.494	34.21	-0.49	10.76	44.48	46.10	-1.62	Average
7	0.953	36.50	-0.49	10.86	46.87	56.00	-9.13	QP
8	1.671	31.63	-0.45	10.94	42.12	46.00	-3.88	Average
9	1.970	38.06	-0.43	10.96	48.59	56.00	-7.41	QP
10	2.978	34.48	-0.44	10.92	44.96	46.00	-1.04	Average
11	3.041	40.44	-0.43	10.92	50.93	56.00	-5.07	QP
12	4,202	32,50	-0.27	10.88	43.11	46.00	-2.89	Average

Trace: 19 Site

: CCIS Shielding Room : FCC PART 15.407 QP LISN NEUTRAL : Broadband Digital Transmission System Condition EUT

Model : LigoDLB 5ac
Test Mode : 5GWIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark : 60700-240 055

: G0720-240-050 Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	dB	dBu∜	dBu∜	<u>d</u> B	
1	0.150	40.77	-0.38	10.78	51.17	66.00	-14.83	QP
2	0.170	37.13	-0.36	10.77	47.54	64.94	-17.40	QP
3	0.182	27.35	-0.35	10.77	37.77	54.42	-16.65	Average
4	0.489	43.33	-0.30	10.76	53.79	56.19	-2.40	QP
1 2 3 4 5 6 7 8 9	0.489	34.11	-0.30	10.76	44.57	46.19	-1.62	Average
6	1.129	31.52	-0.28	10.89	42.13	46.00	-3.87	Average
7	1.619	33.16	-0.27	10.93	43.82	46.00	-2.18	Average
8	2.809	42.42	-0.21	10.93	53.14	56.00	-2.86	QP
9	2.962	42.70	-0.20	10.92	53.42	56.00	-2.58	QP
10	3.009	33.87	-0.20	10.92	44.59	46.00	-1.41	Average
11	9.253	32.69	0.29	10.91	43.89	50.00	-6.11	Average
12	9.451	38.38	0.30	10.92	49.60	60.00	-10.40	QP

LigoDLB 5-90ac:

Line:

Site

Condition

: CCIS Shielding Room : FCC PART 15.407 QP LISN LINE : Broadband Digital Transmission System EUT

Model : LigoDLB 90ac
Test Mode : 5GWIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

: G0720-240-050 Remark

CHALK		00120 2	240 000					
	Freq	Read Level		Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB		dBu₹	dBu∀	dB	
1	0.150	41.78	-0.56	10.78	52.00	66.00	-14.00	QP
1 2 3 4 5 6 7 8 9	0.166	39.85	-0.55	10.77	50.07	65.16	-15.09	QP
3	0.166		-0.55		36.51			Average
4	0.186	36.41		10.76	46.64		-17.56	
5	0.186		-0.53					Average
6	0.198		-0.52		45.64		-18.07	A 100 CO
7	0.198	The second second second	-0.52					Average
8	0.461		-0.49				-10.87	1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0.466			10.75	41.41			Average
10	3.173			10.91	32.78			Average
11	15.885		-0.65		45.64		-14.36	
12	15.885	33.06	-0.65	10.91	43.32	50.00	-6.68	Average

Neutral:

Site

: CCIS Shielding Room : FCC PART 15.407 QP LISN NEUTRAL : Broadband Digital Transmission System Condition EUT

EUT : Broadband Digital Transmission Sys:
Model : LigoDLB 90ac
Test Mode : 5GWIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 'C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark : GO720-240-050
Read LISN Cable Limit

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∜	<u>d</u> B		dBu₹	—dBu∀	<u>ab</u>	
1	0.154	42.42	-0.38	10.78	52.82	65.78	-12.96	QP
2	0.154	25.08	-0.38	10.78	35.48	55.78	-20.30	Average
3	0.166	40.65	-0.37	10.77	51.05	65.16	-14.11	QP
4	0.166	23.43	-0.37	10.77	33.83	55.16	-21.33	Average
1 2 3 4 5 6 7 8 9	0.182	38.06	-0.35	10.77	48.48	64.42	-15.94	QP
6	0.198	36.48	-0.34	10.76	46.90	63.71	-16.81	QP
7	0.198	23.01	-0.34	10.76	33.43	53.71	-20.28	Average
8	0.226	22.19	-0.33	10.75	32.61	52.61	-20.00	Average
9	0.461	35.96	-0.31	10.74	46.39	56.67	-10.28	QP
10	0.461	30.56	-0.31	10.74	40.99	46.67	-5.68	Average
11	15.885	35.17	-0.35	10.91	45.73	60.00	-14.27	QP
12	15.885	33.14	-0.35	10.91	43.70	50.00	-6.30	Average

Adapter (2) LigoDLB 5ac:

Line:

Trace: 23

Site

Condition

: CCIS Shielding Room : FCC PART 15.407 QP LISN LINE : Broadband Digital Transmission System

: Broadband Digital Transmission Syst

Model : LigoDLB 5ac

Test Mode : 5GWIFI mode

Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark : CPT DODGE

: GRT-POE20-240050A Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∀	dB	dB	dBu₹	dBu∜	dB	
1	0.154	38.26	-0.56	10.78	48.48	65.78	-17.30	QP
2	0.158	24.11	-0.55	10.77	34.33	55.56	-21.23	Average
3	0.266	24.77	-0.51	10.75	35.01	51.25	-16.24	Average
2 3 4 5 6 7	0.302	36.30	-0.51	10.74	46.53	60.19	-13.66	QP
5	0.421	36.00	-0.50	10.73	46.23	57.42	-11.19	QP
6	0.421	28.95	-0.50	10.73	39.18	47.42	-8.24	Average
7	0.775	36.38	-0.48	10.80	46.70	56.00	-9.30	QP
8	0.783	27.58	-0.48	10.81	37.91	46.00	-8.09	Average
9	1.433	31.87	-0.46	10.92	42.33	46.00		Average
10	2.500	38.47	-0.44	10.94	48.97	56.00	-7.03	QP
11	2.884	40.42	-0.44	10.92	50.90	56.00	-5.10	QP
12	2.884	33.41	-0.44	10.92	43.89	46.00	-2.11	Average

Neutral:

Trace: 21

Site

: CCIS Shielding Room : FCC PART 15.407 QP LISN NEUTRAL : Broadband Digital Transmission System Condition EUT

Model : LigoDLB 5ac
Test Mode : 5GWIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT

: GRT-POE20-240050A Remark

	Freq	Kead Level	Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	dB	dBu₹	dBu₹	dB	
1	0.150	25.97	-0.38	10.78	36.37	56.00	-19.63	Average
2	0.166	44.86	-0.37	10.77	55.26	65.16	-9.90	QP
3	0.214	42.74	-0.34	10.76	53.16	63.05	-9.89	QP
4	0.258	25.42	-0.33	10.75	35.84	51.51	-15.67	Average
5	0.426	37.38	-0.31	10.73	47.80	57.33	-9.53	QP
6	0.426	29.94	-0.31	10.73	40.36	47.33	-6.97	Average
7	0.948	36.03	-0.29	10.85	46.59	56.00	-9.41	QP
1 2 3 4 5 6 7 8 9	1.418	31.03	-0.27	10.92	41.68	46.00	-4.32	Average
9	1.535	31.38	-0.27	10.93	42.04	46.00		Average
10	2.765	39.57	-0.21	10.93	50.29	56.00	-5.71	QP
11	2.915	40.38	-0.20	10.92	51.10	56.00	-4.90	QP
12	2.962	33.52	-0.20	10.92	44.24	46.00		Average

LigoDLB 5-90ac:

Line:

Trace: 13

Trace: 13
Site : CCIS Shielding Room
Condition : FCC PART 15.407 QP LISN LINE
EUT : Broadband Digital Transmission System
Model : LigoDLB 90ac
Test Mode : 5cWIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa
Test Engineer: YT
Remark : GRT-POE20-240050A

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.154	39.80	-0.56	10.78	50.02	65.78	-15.76	QP
2	0.154	26.38	-0.56	10.78	36.60	55.78	-19.18	Average
3	0.174	36.56	-0.54	10.77	46.79	64.77	-17.98	QP
4	0.174	23.67	-0.54	10.77	33.90	54.77	-20.87	Average
5	0.186	35.74	-0.53	10.76	45.97	64.20	-18.23	QP
1 2 3 4 5 6 7 8 9	0.186	21.91	-0.53	10.76	32.14	54.20	-22.06	Average
7	0.219	31.48	-0.52	10.76	41.72	62.88	-21.16	QP
8	0.219	17.47	-0.52	10.76	27.71	52.88	-25.17	Average
9	2.750	25.20	-0.44	10.93	35.69	56.00	-20.31	QP
10	2.750	15.73	-0.44	10.93	26.22	46.00	-19.78	Average
11	24.015	28.23	-0.65	10.88	38.46	60.00	-21.54	QP
12	24.015	26.29	-0.65	10.88	36.52	50.00	-13.48	Average

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART 15.407 QP LISN NEUTRAL : Broadband Digital Transmission System Condition EUT

Model : LigoDLB 90ac Test Mode : 5GWIFI mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: YT

Remark : GRT-POE20-240050A

CHILLY		21/1 1 /1	250 5400	OUL				
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>d</u> B		dBu₹	<u>d</u> Bu∇	āB	
1	0.150	38. 15	-0.38	10.78	48.55	66.00	-17.45	QP
2	0.150	22.58	-0.38	10.78	32.98	56.00	-23.02	Average
3	0.162	37.82	-0.37	10.77	48.22	65.34	-17.12	QP
4	0.162	21.25	-0.37	10.77	31.65	55.34	-23.69	Average
5	0.186	33.39	-0.35	10.76	43.80	64.20	-20.40	QP
1 2 3 4 5 6 7	0.202	18.88	-0.34	10.76	29.30	53.54	-24.24	Average
7	0.253	28.70	-0.33	10.75	39.12	61.64	-22.52	QP
8	0.417	11.54	-0.32	10.73	21.95	47.51	-25.56	Average
	2.285	15.66	-0.24	10.95	26.37	46.00	-19.63	Average
10	2.794	25.53	-0.21	10.93	36.25	56.00	-19.75	QP
11	23.511		-0.68		37.36	60.00	-22.64	QP
12	23.511	24.99	-0.68	10.89	35.20	50.00	-14.80	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10: 2013, KDB789033						
rest ivietriou.	Band 1: 1 W (For fixed point-to-point transmitters that employ a directional						
Limit:	antenna gain greater than 25 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 25 dBi); Band 4: 1W (For fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power).						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: V2V-FWBD3200						

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)					
Test Method:	ANSI C63.10:2013 and KDB 789033					
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: V2V-FWBD3200					

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)						
Test Method:	ANSI C63.10:2013, KDB 789033						
Limit:	Band 1: 17 dBm/MHz (For fixed point-to-point transmitters that employ a directional antenna gain greater than 25 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 25 dBi); Band 4: 30dBm/500kHz(For fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power).						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: V2V-FWBD3200						

6.6 Band Edge

6.6 Band Edge							
Test Requirement:	FCC Part15 E Section	on 15.407 (b)					
Test Method:	ANSI C63.10:2013,	KDB 789033					
Receiver setup:	Detector	RBW	VBW	Remark			
·	Quasi-peak	120kHz	300kHz	Quasi-peak Value			
	RMS	1MHz	3MHz	Average Value			
Limit:	Band		BuV/m @3m)	Remark			
	Band 1		68.20	Peak Value			
	- Bana i		54.00	Average Value			
	Band 4		78.20	Peak Value			
	Remark:		54.00	Average Value			
Test Procedure:	 Band 1 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m,for EIPR[dBm]=-27dBm. Band 4 limit: E[dBμV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m,for EIPR[dBm]=-17dBm. The EUT was placed on the top of a rotating table 0.8 meters ab the groundat a 3 meter camber. The table was rotated 360 degree 						
	antenna, which tower. 3. The antenna he the ground to do Both horizontal make the meas 4. For each susper case and thenth meters and the to find the maxi 5. The test-received Specified Bandw 6. If the emission the limit specified of the EUT wou have 10dB mar	et 3 meters averaged and vertical perement. The end of	way from the intron the top of a variation one meter naximum value olarizations of the turned from 0 does set to Peak Desimum Hold Mood of the turned from 0 does to peak mode of could be stopped. Otherwise the re-tested one by	erference-receiving variable-height antenna to four meters above of the field strength. The antenna are set to arranged to its worst hats from 1 meter to 4 egrees to 360 degrees tect Function and			
Test setup:	Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver Antenna Tower Test Receiver Antenna Tower						
Test Instruments:	Refer to section 5.8	for details					
Test mode:	Refer to section 5.3	for details					
Test results:	Passed						

LigoDLB 5ac: Band 1:

	802.11a											
Test c	hannel		Lowest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	49.25	31.38	7.05	41.93	45.75	68.20	-22.45	Horizontal				
5150.00	48.62	31.38	7.05	41.93	45.12	68.20	-23.08	Vertical				
802.11a												
Test c	hannel		Lowest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	39.24	31.38	7.05	41.93	35.74	54.00	-18.26	Horizontal				
5150.00	38.14	31.38	7.05	41.93	34.64	54.00	-19.36	Vertical				
				802.11a								
Test c	hannel		Highest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	48.52	30.82	7.11	41.89	44.56	68.20	-23.64	Horizontal				
5350.00	48.96	30.82	7.11	41.89	45.00	68.20	-23.20	Vertical				
				802.11a								
Test c	hannel		Highest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	39.32	30.82	7.11	41.89	35.36	54.00	-18.64	Horizontal				
5350.00	39.52	30.82	7.11	41.89	35.56	54.00	-18.44	Vertical				

	802.11n-HT20											
Test c	hannel		Lowest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	48.25	31.38	7.05	41.93	44.75	68.20	-23.45	Horizontal				
5150.00	48.52	31.38	7.05	41.93	45.02	68.20	-23.18	Vertical				
802.11n-HT20												
Test c	hannel		Lowest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	38.65	31.38	7.05	41.93	35.15	54.00	-18.85	Horizontal				
5150.00	38.52	31.38	7.05	41.93	35.02	54.00	-18.98	Vertical				
			8	02.11n-HT20								
Test c	hannel		Highest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	48.74	30.82	7.11	41.89	44.78	68.20	-23.42	Horizontal				
5350.00	48.66	30.82	7.11	41.89	44.70	68.20	-23.50	Vertical				
			8	02.11n-HT20								
Test channel Highest					Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	38.21	30.82	7.11	41.89	34.25	54.00	-19.75	Horizontal				
5350.00	38.65	30.82	7.11	41.89	34.69	54.00	-19.31	Vertical				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT40											
Test c	hannel		Lowest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	48.52	31.38	7.05	41.93	45.02	68.20	-23.18	Horizontal				
5150.00	48.74	31.38	7.05	41.93	45.24	68.20	-22.96	Vertical				
802.11n-HT40												
Test c	hannel		Lowest		Le	vel	Av	rerage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	39.25	31.38	7.05	41.93	35.75	54.00	-18.25	Horizontal				
5150.00	38.53	31.38	7.05	41.93	35.03	54.00	-18.97	Vertical				
	802.11n-HT40											
Test c	hannel	Highest			Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	48.65	30.82	7.11	41.89	44.69	68.20	-23.51	Horizontal				
5350.00	49.20	30.82	7.11	41.89	45.24	68.20	-22.96	Vertical				
			8	02.11n-HT40								
Test c	hannel		Highest		Le	vel	Av	rerage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	38.65	30.82	7.11	41.89	34.69	54.00	-19.31	Horizontal				
5350.00	39.17	30.82	7.11	41.89	35.21	54.00	-18.79	Vertical				

			8	02.11ac-HT80						
Test c	hannel		Middle		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	48.63	31.38	7.05	41.93	45.13	68.20	-23.07	Horizontal		
5150.00	48.74	31.38	7.05	41.93	45.24	68.20	-22.96	Vertical		
802.11ac-HT80										
Test c	hannel		Middle		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	36.35	31.38	7.05	41.93	32.85	54.00	-21.15	Horizontal		
5150.00	37.52	31.38	7.05	41.93	34.02	54.00	-19.98	Vertical		
			80	02.11ac-HT80						
Test c	hannel		Middle		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	48.54	30.82	7.11	41.89	44.58	68.20	-23.62	Horizontal		
5350.00	47.85	30.82	7.11	41.89	43.89	68.20	-24.31	Vertical		
			80	02.11ac-HT80						
Test c	hannel		Middle		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.32	30.82	7.11	41.89	32.36	54.00	-21.64	Horizontal		
5350.00	37.85	30.82	7.11	41.89	33.89	54.00	-20.11	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a											
Test c	hannel		Lowest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	48.63	31.03	7.69	41.94	45.41	78.20	-32.79	Horizontal				
5725.00	49.32	31.03	7.69	41.94	46.10	78.20	-32.10	Vertical				
802.11a												
Test c	hannel		Lowest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	38.24	31.03	7.69	41.94	35.02	54.00	-18.98	Horizontal				
5725.00	38.65	31.03	7.69	41.94	35.43	54.00	-18.57	Vertical				
	802.11a											
Test c	hannel		Highest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	49.36	31.37	7.90	42.03	46.60	78.20	-31.60	Horizontal				
5850.00	49.20	31.37	7.90	42.03	46.44	78.20	-31.76	Vertical				
				802.11a								
Test c	hannel		Highest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	38.32	31.37	7.90	42.03	35.56	54.00	-18.44	Horizontal				
5850.00	38.99	31.37	7.90	42.03	36.23	54.00	-17.77	Vertical				

	802.11n-HT20											
Test c	hannel		Lowest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	49.52	31.03	7.69	41.94	46.30	78.20	-31.90	Horizontal				
5725.00	48.55	31.03	7.69	41.94	45.33	78.20	-32.87	Vertical				
802.11n-HT20												
Test c	hannel		Lowest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	38.65	31.03	7.69	41.94	35.43	54.00	-18.57	Horizontal				
5725.00	38.74	31.03	7.69	41.94	35.52	54.00	-18.48	Vertical				
			8	02.11n-HT20								
Test c	hannel		Highest		Le	evel		Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	48.25	31.37	7.90	42.03	45.49	78.20	-32.71	Horizontal				
5850.00	48.47	31.37	7.90	42.03	45.71	78.20	-32.49	Vertical				
			8	02.11n-HT20								
Test c	Test channel Highest			Le	vel	Av	erage					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	38.65	31.37	7.90	42.03	35.89	54.00	-18.11	Horizontal				
5850.00	38.57	31.37	7.90	42.03	35.81	54.00	-18.19	Vertical				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT40											
Test c	hannel		Lowest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	49.32	31.03	7.69	41.94	46.10	78.20	-32.10	Horizontal				
5725.00	48.79	31.03	7.69	41.94	45.57	78.20	-32.63	Vertical				
802.11n-HT40												
Test c	hannel		Lowest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	38.65	31.03	7.69	41.94	35.43	54.00	-18.57	Horizontal				
5725.00	38.59	31.03	7.69	41.94	35.37	54.00	-18.63	Vertical				
			8	02.11n-HT40								
Test c	hannel		Highest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	48.74	31.37	7.90	42.03	45.98	78.20	-32.22	Horizontal				
5850.00	48.66	31.37	7.90	42.03	45.90	78.20	-32.30	Vertical				
			8	02.11n-HT40								
Test c	hannel		Highest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	38.65	31.37	7.90	42.03	35.89	54.00	-18.11	Horizontal				
5850.00	38.72	31.37	7.90	42.03	35.96	54.00	-18.04	Vertical				

	802.11ac-HT80											
Test c	hannel		Middle		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	48.65	31.03	7.69	41.94	45.43	78.20	-32.77	Horizontal				
5725.00	48.63	31.03	7.69	41.94	45.41	78.20	-32.79	Vertical				
802.11ac-HT80												
Test c	hannel		Middle		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	38.67	31.03	7.69	41.94	35.45	54.00	-18.55	Horizontal				
5725.00	38.51	31.03	7.69	41.94	35.29	54.00	-18.71	Vertical				
	802.11ac-HT80											
Test c	hannel		Middle		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	48.23	31.37	7.90	42.03	45.47	78.20	-32.73	Horizontal				
5850.00	48.95	31.37	7.90	42.03	46.19	78.20	-32.01	Vertical				
			8	02.11ac-HT80								
Test c	hannel		Middle		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	38.74	31.37	7.90	42.03	35.98	54.00	-18.02	Horizontal				
5850.00	38.81	31.37	7.90	42.03	36.05	54.00	-17.95	Vertical				

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

LigoDLB 5-90ac:

Band 1:

	802.11a											
Test c	hannel		Lowest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	45.26	31.38	7.05	41.93	41.76	68.20	-26.44	Horizontal				
5150.00	46.85	31.38	7.05	41.93	43.35	68.20	-24.85	Vertical				
802.11a												
Test c	hannel		Lowest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5150.00	39.62	31.38	7.05	41.93	36.12	54.00	-17.88	Horizontal				
5150.00	38.56	31.38	7.05	41.93	35.06	54.00	-18.94	Vertical				
	802.11a											
Test c	hannel		Highest		Le	vel	F	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	46.21	30.82	7.11	41.89	42.25	68.20	-25.95	Horizontal				
5350.00	45.17	30.82	7.11	41.89	41.21	68.20	-26.99	Vertical				
				802.11a								
Test c	hannel		Highest		Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	38.62	30.82	7.11	41.89	34.66	54.00	-19.34	Horizontal				
5350.00	37.46	30.82	7.11	41.89	33.50	54.00	-20.50	Vertical				

			8	02.11n-HT20							
Test c	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	46.23	31.38	7.05	41.93	42.73	68.20	-25.47	Horizontal			
5150.00	45.18	31.38	7.05	41.93	41.68	68.20	-26.52	Vertical			
802.11n-HT20											
Test c	hannel		Lowest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	39.64	31.38	7.05	41.93	36.14	54.00	-17.86	Horizontal			
5150.00	38.52	31.38	7.05	41.93	35.02	54.00	-18.98	Vertical			
			8	02.11n-HT20							
Test c	hannel		Highest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	45.17	30.82	7.11	41.89	41.21	68.20	-26.99	Horizontal			
5350.00	46.19	30.82	7.11	41.89	42.23	68.20	-25.97	Vertical			
			8	02.11n-HT20							
Test channel Highest				Le	vel	Av	erage				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	38.27	30.82	7.11	41.89	34.31	54.00	-19.69	Horizontal			
5350.00	39.64	30.82	7.11	41.89	35.68	54.00	-18.32	Vertical			

Remark:

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT40									
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.25	31.38	7.05	41.93	42.75	68.20	-25.45	Horizontal		
5150.00	47.80	31.38	7.05	41.93	44.30	68.20	-23.90	Vertical		
802.11n-HT40										
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	40.21	31.38	7.05	41.93	36.71	54.00	-17.29	Horizontal		
5150.00	37.46	31.38	7.05	41.93	33.96	54.00	-20.04	Vertical		
			8	02.11n-HT40						
Test c	hannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	45.29	30.82	7.11	41.89	41.33	68.20	-26.87	Horizontal		
5350.00	46.77	30.82	7.11	41.89	42.81	68.20	-25.39	Vertical		
			8	02.11n-HT40						
Test c	hannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.46	30.82	7.11	41.89	33.50	54.00	-20.50	Horizontal		
5350.00	38.01	30.82	7.11	41.89	34.05	54.00	-19.95	Vertical		

	802.11ac-HT80									
Test c	hannel		Middle		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	42.56	31.38	7.05	41.93	39.06	68.20	-29.14	Horizontal		
5150.00	41.43	31.38	7.05	41.93	37.93	68.20	-30.27	Vertical		
802.11ac-HT80										
Test c	hannel		Middle		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.26	31.38	7.05	41.93	28.76	54.00	-25.24	Horizontal		
5150.00	32.77	31.38	7.05	41.93	29.27	54.00	-24.73	Vertical		
			80	02.11ac-HT80						
Test c	hannel		Middle		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.25	30.82	7.11	41.89	42.29	68.20	-25.91	Horizontal		
5350.00	47.94	30.82	7.11	41.89	43.98	68.20	-24.22	Vertical		
			80	02.11ac-HT80						
Test c	hannel		Middle		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.46	30.82	7.11	41.89	33.50	54.00	-20.50	Horizontal		
5350.00	38.45	30.82	7.11	41.89	34.49	54.00	-19.51	Vertical		

Remark:

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a								
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	46.53	31.03	7.69	41.94	43.31	78.20	-34.89	Horizontal
5725.00	42.19	31.03	7.69	41.94	38.97	78.20	-39.23	Vertical
802.11a								
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	36.27	31.03	7.69	41.94	33.05	54.00	-20.95	Horizontal
5725.00	31.46	31.03	7.69	41.94	28.24	54.00	-25.76	Vertical
				802.11a				
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	45.17	31.37	7.90	42.03	42.41	78.20	-35.79	Horizontal
5850.00	47.46	31.37	7.90	42.03	44.70	78.20	-33.50	Vertical
				802.11a				
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	32.21	31.37	7.90	42.03	29.45	54.00	-24.55	Horizontal
5850.00	33.46	31.37	7.90	42.03	30.70	54.00	-23.30	Vertical

802.11n-HT20									
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	46.23	31.03	7.69	41.94	43.01	78.20	-35.19	Horizontal	
5725.00	44.14	31.03	7.69	41.94	40.92	78.20	-37.28	Vertical	
802.11n-HT20									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	36.53	31.03	7.69	41.94	33.31	54.00	-20.69	Horizontal	
5725.00	35.19	31.03	7.69	41.94	31.97	54.00	-22.03	Vertical	
			8	02.11n-HT20					
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	46.28	31.37	7.90	42.03	43.52	78.20	-34.68	Horizontal	
5850.00	48.15	31.37	7.90	42.03	45.39	78.20	-32.81	Vertical	
			8	02.11n-HT20					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	35.65	31.37	7.90	42.03	32.89	54.00	-21.11	Horizontal	
5850.00	34.19	31.37	7.90	42.03	31.43	54.00	-22.57	Vertical	

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40									
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	45.26	31.03	7.69	41.94	42.04	78.20	-36.16	Horizontal	
5725.00	46.31	31.03	7.69	41.94	43.09	78.20	-35.11	Vertical	
802.11n-HT40									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	36.79	31.03	7.69	41.94	33.57	54.00	-20.43	Horizontal	
5725.00	35.49	31.03	7.69	41.94	32.27	54.00	-21.73	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	45.16	31.37	7.90	42.03	42.40	78.20	-35.80	Horizontal	
5850.00	46.29	31.37	7.90	42.03	43.53	78.20	-34.67	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	35.15	31.37	7.90	42.03	32.39	54.00	-21.61	Horizontal	
5850.00	36.79	31.37	7.90	42.03	34.03	54.00	-19.97	Vertical	

802.11ac-HT80									
Test c	hannel		Middle		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	45.79	31.03	7.69	41.94	42.57	78.20	-35.63	Horizontal	
5725.00	46.39	31.03	7.69	41.94	43.17	78.20	-35.03	Vertical	
802.11ac-HT80									
Test c	hannel		Middle		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	36.52	31.03	7.69	41.94	33.30	54.00	-20.70	Horizontal	
5725.00	35.15	31.03	7.69	41.94	31.93	54.00	-22.07	Vertical	
			80	02.11ac-HT80					
Test c	hannel		Middle		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	45.78	31.37	7.90	42.03	43.02	78.20	-35.18	Horizontal	
5850.00	46.15	31.37	7.90	42.03	43.39	78.20	-34.81	Vertical	
			8	02.11ac-HT80					
Test c	hannel		Middle		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	36.25	31.37	7.90	42.03	33.49	54.00	-20.51	Horizontal	
5850.00	35.17	31.37	7.90	42.03	32.41	54.00	-21.59	Vertical	

Remark

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1	Restricted Band								
	Test Requirement:	FCC Part15 E Se	ction 1	5.407(l	o)				
	Test Method:	ANSI C63.10: 20	13						
	TestFrequencyRange:	Band 1: 4.5 GHz Band 4: 5.35 GHz				to 5.4	6GHz		
	Test site:	Measurement Dis	tance:	3m					
	Receiver setup:	Frequency	Dete		RBW		3W	Remark	
		Above 1GHz							
		Frequency	RIV		1MHz : (dBuV/m @:	_	IHZ	Average Value Remark	
	Limit:	Above 1GHz		74.00	J,		Peak Value		
					54.00			Average Value	
	Test Procedure:	the groundat todetermine 2. The EUT wa antenna, whi tower. 3. The antenna the ground to Both horizon make the me 4. For each sus case and the meters and to find the mi 5. The test-rece SpecifiedBar 6. If the emission the limitspectof the EUT with a way and a wa	a 3 methe possible set 3 chwas height o deterrital and easurent spected enthe air he rota aximum eiver syndwidth on level iffed, throuldbe nargin v	eter ca dition of meters mount is vari- in in eth vertica nent. demiss ntenna tablew in readi- stem v with M of the en tes in report- vould b	mber. The take of the highest of the highest of the saway from the ed on the tope of the maximum of the maximum of the ed of the ed of the ed of the ed. Otherwister of the first of the ed of the e	ole was radiatifus the into of a value as of the was a control of the wa	as rotation. erferer variable to four of the arrange hts from egrees tect Fulle. e was eed and emissi one us	2.8 meters above ted 360 degrees ince-receiving e-height antenna in meters above field strength, enna are set to led to its worst in 1 meter to 4 is to 360 degrees sunction and lodB lower than in the peak values ions that did not sing peak, quasi-red in a data	
		Horn Antenna Tower Antenna Tower							
	Test Instruments:	Refer to section 5	.8 for c	letails					
	Test mode:	Refer to section 5	.3 for c	letails					
	Test results:	Passed							

Report No: CCISE171006801

LigoDLB 5ac: Band 1:

802.11a

0.0-11.10	702.11d								
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	48.65	29.30	6.80	42.05	42.70	74.00	-31.30	Horizontal	
4500.00	48.25	29.30	6.80	42.05	42.30	74.00	-31.70	Vertical	
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	37.52	29.30	6.80	42.05	31.57	54.00	-22.43	Horizontal	
4500.00	38.69	29.30	6.80	42.05	32.74	54.00	-21.26	Vertical	
Test c	hannel		Highest					Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	48.32	30.54	7.18	41.85	44.19	74.00	-29.81	Horizontal	
5460.00	48.27	30.54	7.18	41.85	44.14	74.00	-29.86	Vertical	
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	38.12	30.54	7.18	41.85	33.99	54.00	-20.01	Horizontal	
5460.00	38.36	30.54	7.18	41.85	34.23	54.00	-19.77	Vertical	

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	48.52	29.30	6.80	42.05	42.57	74.00	-31.43	Horizontal	
4500.00	48.62	29.30	6.80	42.05	42.67	74.00	-31.33	Vertical	
Test c	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	38.52	29.30	6.80	42.05	32.57	54.00	-21.43	Horizontal	
4500.00	38.22	29.30	6.80	42.05	32.27	54.00	-21.73	Vertical	
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	48.21	30.54	7.18	41.85	44.08	74.00	-29.92	Horizontal	
5460.00	48.63	30.54	7.18	41.85	44.50	74.00	-29.50	Vertical	
Test c	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	38.62	30.54	7.18	41.85	34.49	54.00	-19.51	Horizontal	
5460.00	38.71	30.54	7.18	41.85	34.58	54.00	-19.42	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Both models were tested, just the worst case model (LigoDLB 5-20ac) shown in report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	48.69	29.30	6.80	42.05	42.74	74.00	-31.26	Horizontal
4500.00	48.64	29.30	6.80	42.05	42.69	74.00	-31.31	Vertical
Test c	hannel		Lowest		Le	vel	Av	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	38.32	29.30	6.80	42.05	32.37	54.00	-21.63	Horizontal
4500.00	38.15	29.30	6.80	42.05	32.20	54.00	-21.80	Vertical
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	48.22	30.54	7.18	41.85	44.09	74.00	-29.91	Horizontal
5460.00	48.37	30.54	7.18	41.85	44.24	74.00	-29.76	Vertical
Test c	hannel		Highest		Le	vel	Av	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	38.19	30.54	7.18	41.85	34.06	54.00	-19.94	Horizontal
5460.00	38.47	30.54	7.18	41.85	34.34	54.00	-19.66	Vertical

802.11ac-HT80

OUZ.ITAC-II	100							
Test c	hannel		Middle		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	48.55	29.30	6.80	42.05	42.60	74.00	-31.40	Horizontal
4500.00	48.65	29.30	6.80	42.05	42.70	74.00	-31.30	Vertical
	hannel	20.00	Middle	.2.00		vel		rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	38.34	29.30	6.80	42.05	32.39	54.00	-21.61	Horizontal
4500.00	38.28	29.30	6.80	42.05	32.33	54.00	-21.67	Vertical
Test c	hannel		Middle		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	48.54	30.54	7.18	41.85	44.41	74.00	-29.59	Horizontal
5460.00	48.66	30.54	7.18	41.85	44.53	74.00	-29.47	Vertical
Test c	hannel		Middle		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	38.41	30.54	7.18	41.85	34.28	54.00	-19.72	Horizontal
5460.00	38.83	30.54	7.18	41.85	34.70	54.00	-19.30	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Both models were tested, just the worst case model (LigoDLB 5-20ac) shown in report.

Band 4:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5350.00	48.21	30.82	7.11	41.89	44.25	74.00	-29.75	Horizontal
5350.00	48.23	30.82	7.11	41.89	44.27	74.00	-29.73	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5350.00	38.52	30.82	7.11	41.89	34.56	54.00	-19.44	Horizontal
5350.00	38.44	30.82	7.11	41.89	34.48	54.00	-19.52	Vertical
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	48.25	30.54	7.18	41.85	44.12	74.00	-29.88	Horizontal
5460.00	48.62	30.54	7.18	41.85	44.49	74.00	-29.51	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalawinatian
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	38.15	30.54	7.18	41.85	34.02	54.00	-19.98	Horizontal
5460.00	38.24	30.54	7.18	41.85	34.11	54.00	-19.89	Vertical

802.11n-HT20

002.1111-11120									
Test c	Test channel		Lowest			Level		Peak	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5350.00	48.52	30.82	7.11	41.89	44.56	74.00	-29.44	Horizontal	
5350.00	48.75	30.82	7.11	41.89	44.79	74.00	-29.21	Vertical	
Test c	hannel	Lowest			Level		Average		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Delegization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5350.00	38.47	30.82	7.11	41.89	34.51	54.00	-19.49	Horizontal	
5350.00	38.65	30.82	7.11	41.89	34.69	54.00	-19.31	Vertical	
Test c	Test channel		Lowest			Level		Peak	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Delegization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5460.00	48.41	30.54	7.18	41.85	44.28	74.00	-29.72	Horizontal	
5460.00	48.52	30.54	7.18	41.85	44.39	74.00	-29.61	Vertical	
Test c	Test channel		Lowest			Level		Average	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Delegization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5460.00	38.54	30.54	7.18	41.85	34.41	54.00	-19.59	Horizontal	
5460.00	38.64	30.54	7.18	41.85	34.51	54.00	-19.49	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Both models were tested, just the worst case model (LigoDLB 5-20ac) shown in report.

802.11n-HT40

Test channel			Lowest		Level		Peak		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Folalization	
5350.00	48.66	30.82	7.11	41.89	44.70	74.00	-29.30	Horizontal	
5350.00	48.36	30.82	7.11	41.89	44.40	74.00	-29.60	Vertical	
Test c	hannel	Lowest			Level		Average		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalarination	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5350.00	38.74	30.82	7.11	41.89	34.78	54.00	-19.22	Horizontal	
5350.00	38.36	30.82	7.11	41.89	34.40	54.00	-19.60	Vertical	
Test c	hannel	Lowest			Level		Peak		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5460.00	48.56	30.54	7.18	41.85	44.43	74.00	-29.57	Horizontal	
5460.00	48.25	30.54	7.18	41.85	44.12	74.00	-29.88	Vertical	
Test c	Test channel		Lowest			Level		Average	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5460.00	38.35	30.54	7.18	41.85	34.22	54.00	-19.78	Horizontal	
5460.00	38.46	30.54	7.18	41.85	34.33	54.00	-19.67	Vertical	

802.11ac-HT80

002.11100									
Test c	Test channel		Middle			Level		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	48.51	30.82	7.11	41.89	44.55	74.00	-29.45	Horizontal	
5350.00	48.36	30.82	7.11	41.89	44.40	74.00	-29.60	Vertical	
Test c	hannel	Middle			Level		Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	38.41	30.82	7.11	41.89	34.45	54.00	-19.55	Horizontal	
5350.00	38.10	30.82	7.11	41.89	34.14	54.00	-19.86	Vertical	
Test c	Test channel		Middle			Level		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	48.36	34.90	30.54	7.18	41.85	74.00	-32.15	Horizontal	
5460.00	48.25	34.90	30.54	7.18	41.85	74.00	-32.15	Vertical	
Test c	Test channel		Middle			Level		Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	38.62	34.90	30.54	7.18	41.85	54.00	-12.15	Horizontal	
5460.00	38.47	34.90	30.54	7.18	41.85	54.00	-12.15	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Both models were tested, just the worst case model (LigoDLB 5-20ac) shown in report.

Report No: CCISE171006801

LigoDLB 5-90ac:

Band 1:

802.11a

Test c	Test channel		Lowest		Level		Peak		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	1 Glanzation	
4500.00	46.25	29.30	6.80	42.05	40.30	74.00	-33.70	Horizontal	
4500.00	46.39	29.30	6.80	42.05	40.44	74.00	-33.56	Vertical	
Test c	hannel	Lowest			Level		Average		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Folalization	
4500.00	35.21	29.30	6.80	42.05	29.26	54.00	-24.74	Horizontal	
4500.00	36.98	29.30	6.80	42.05	31.03	54.00	-22.97	Vertical	
Test c	Test channel		Highest			Level		Peak	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polatization	
5460.00	46.25	30.54	7.18	41.85	42.12	74.00	-31.88	Horizontal	
5460.00	45.78	30.54	7.18	41.85	41.65	74.00	-32.35	Vertical	
Test channel		Highest			Level		Average		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5460.00	36.25	30.54	7.18	41.85	32.12	54.00	-21.88	Horizontal	
5460.00	34.91	30.54	7.18	41.85	30.78	54.00	-23.22	Vertical	

802.11n-HT20

Test c	Test channel		Lowest		Le	vel	Peak		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalarination	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
4500.00	45.26	29.30	6.80	42.05	39.31	74.00	-34.69	Horizontal	
4500.00	46.98	29.30	6.80	42.05	41.03	74.00	-32.97	Vertical	
Test c	hannel	Lowest			Level		Average		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
4500.00	35.19	29.30	6.80	42.05	29.24	54.00	-24.76	Horizontal	
4500.00	36.45	29.30	6.80	42.05	30.50	54.00	-23.50	Vertical	
Test c	Test channel		Highest			Level		Peak	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5460.00	46.25	30.54	7.18	41.85	42.12	74.00	-31.88	Horizontal	
5460.00	45.79	30.54	7.18	41.85	41.66	74.00	-32.34	Vertical	
Test c	Test channel		Highest			Level		Average	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5460.00	36.25	30.54	7.18	41.85	32.12	54.00	-21.88	Horizontal	
5460.00	35.19	30.54	7.18	41.85	31.06	54.00	-22.94	Vertical	

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	45.26	29.30	6.80	42.05	39.31	74.00	-34.69	Horizontal
4500.00	46.90	29.30	6.80	42.05	40.95	74.00	-33.05	Vertical
Test c	hannel		Lowest		Le	vel	Av	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.15	29.30	6.80	42.05	30.20	54.00	-23.80	Horizontal
4500.00	37.49	29.30	6.80	42.05	31.54	54.00	-22.46	Vertical
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.52	30.54	7.18	41.85	42.39	74.00	-31.61	Horizontal
5460.00	45.19	30.54	7.18	41.85	41.06	74.00	-32.94	Vertical
Test c	hannel		Highest		Level		Av	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.52	30.54	7.18	41.85	32.39	54.00	-21.61	Horizontal
5460.00	35.79	30.54	7.18	41.85	31.66	54.00	-22.34	Vertical

802.11ac-HT80

002.11аС-п	100							
Test c	hannel		Middle		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	45.29	29.30	6.80	42.05	39.34	74.00	-34.66	Horizontal
4500.00	46.78	29.30	6.80	42.05	40.83	74.00	-33.17	Vertical
Test c	hannel		Middle		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.64	29.30	6.80	42.05	31.69	54.00	-22.31	Horizontal
4500.00	36.21	29.30	6.80	42.05	30.26	54.00	-23.74	Vertical
Test c	hannel	Middle			Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	45.26	30.54	7.18	41.85	41.13	74.00	-32.87	Horizontal
5460.00	46.98	30.54	7.18	41.85	42.85	74.00	-31.15	Vertical
Test c	hannel		Middle		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.23	30.54	7.18	41.85	32.10	54.00	-21.90	Horizontal
5460.00	35.22	30.54	7.18	41.85	31.09	54.00	-22.91	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polanzalion
5350.00	43.26	30.82	7.11	41.89	39.30	74.00	-34.70	Horizontal
5350.00	41.75	30.82	7.11	41.89	37.79	74.00	-36.21	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5350.00	32.65	30.82	7.11	41.89	28.69	54.00	-25.31	Horizontal
5350.00	32.19	30.82	7.11	41.89	28.23	54.00	-25.77	Vertical
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	42.52	30.54	7.18	41.85	38.39	74.00	-35.61	Horizontal
5460.00	43.17	30.54	7.18	41.85	39.04	74.00	-34.96	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalawinatian
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	32.56	30.54	7.18	41.85	28.43	54.00	-25.57	Horizontal
5460.00	31.79	30.54	7.18	41.85	27.66	54.00	-26.34	Vertical

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polanzalion
5350.00	43.26	30.82	7.11	41.89	39.30	74.00	-34.70	Horizontal
5350.00	42.52	30.82	7.11	41.89	38.56	74.00	-35.44	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5350.00	32.65	30.82	7.11	41.89	28.69	54.00	-25.31	Horizontal
5350.00	32.19	30.82	7.11	41.89	28.23	54.00	-25.77	Vertical
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	43.25	30.54	7.18	41.85	39.12	74.00	-34.88	Horizontal
5460.00	43.19	30.54	7.18	41.85	39.06	74.00	-34.94	Vertical
Test cl	hannel		Lowest		Level		Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	32.52	30.54	7.18	41.85	28.39	54.00	-25.61	Horizontal
5460.00	31.49	30.54	7.18	41.85	27.36	54.00	-26.64	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Folanzalion
5350.00	43.26	30.82	7.11	41.89	39.30	74.00	-34.70	Horizontal
5350.00	43.95	30.82	7.11	41.89	39.99	74.00	-34.01	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalawinatian
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5350.00	32.25	30.82	7.11	41.89	28.29	54.00	-25.71	Horizontal
5350.00	31.46	30.82	7.11	41.89	27.50	54.00	-26.50	Vertical
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	43.26	30.54	7.18	41.85	39.13	74.00	-34.87	Horizontal
5460.00	44.79	30.54	7.18	41.85	40.66	74.00	-33.34	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	32.17	30.54	7.18	41.85	28.04	54.00	-25.96	Horizontal
5460.00	33.45	30.54	7.18	41.85	29.32	54.00	-24.68	Vertical

802.11ac-HT80

	702.11d0 11100									
Test c	hannel		Middle		Le	vel	F	Peak		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization		
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)			
5350.00	42.26	30.82	7.11	41.89	38.30	74.00	-35.70	Horizontal		
5350.00	41.76	30.82	7.11	41.89	37.80	74.00	-36.20	Vertical		
Test c	hannel		Middle		Le	vel	Av	erage		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalarination		
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization		
5350.00	32.24	30.82	7.11	41.89	28.28	54.00	-25.72	Horizontal		
5350.00	30.19	30.82	7.11	41.89	26.23	54.00	-27.77	Vertical		
Test c	hannel		Middle		Le	vel	F	Peak		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization		
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization		
5460.00	43.15	34.90	30.54	7.18	41.85	74.00	-32.15	Horizontal		
5460.00	42.20	34.90	30.54	7.18	41.85	74.00	-32.15	Vertical		
Test c	Test channel		Middle		Le	vel	Av	erage		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalamination		
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization		
5460.00	32.49	34.90	30.54	7.18	41.85	54.00	-12.15	Horizontal		
5460.00	33.16	34.90	30.54	7.18	41.85	54.00	-12.15	Vertical		

Remark:

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C S	ection 15.20	9 and 15.205				
Test Method:	ANSI C63.10:20	13					
TestFrequencyRange:	30MHz to 40GH	Z					
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark	
· ·	30MHz-1GHz	Quasi-peak				Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3M	Hz Peak Value		
Limit:	Frequency		Limit (dBuV/m @	3m)		Remark	
	30MHz-88M	Hz	40.0		C	Quasi-peak Value	
	88MHz-216N	ИHz	43.5		C	Quasi-peak Value	
	216MHz-960I	MHz	46.0		C	Quasi-peak Value	
	960MHz-1G	Hz	54.0		C	Quasi-peak Value	
	Frequency	У	Limit (dBm/MH	z)		Remark	
	Above 1GH	1-	68.20			Peak Value	
	Above 1GF	12	54.00			Average Value	
Test Procedure:	1. The EUT w 1GHz)/1.5n table was reradiation. 2. The EUT w antenna, w tower. 3. The antenn ground to d horizontal a measurement and thenthe and the rotal maximum respecified Base limitspecified EUT would 10dB marg	= EIRP[dBm] as placed on n(above 1GH otated 360 de as set 3 mete hichwas mou a height is va- etermine the and vertical pre- ent. uspected emi e antenna wa atablewas tur- eading. ceiver system andwidth with sion level of the d, then testir be reported. in would bere-	egrees to deterrance away from the control on the top aried from one maximum valued arizations of the control o	ating taround a mine the interest of a variable was arths from rees to ak Detect Mode mode oped aremissio one us	able 0.8 t a 3 m e positive positive ference ariable of four refield senna ar ranged n 1 me a 360 d ect Fund the mas that ing period the mass that ing period that in the mass	Bm(below neter camber. The cion of the highest se-receiving height antenna meters above the strength. Both re set to make the d to its worst case ster to 4 meters egrees to find the action and DdB lower than the peak values of the did not have ak, quasi-peak or	

Adapter (1) **Below 1GHz** LigoDLB 5ac:

Horizontal:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) HORIZONTAL : Broadband Digital Transmission System Condition

EUT

Model : LigoDLB 5ac Test mode : 5GWIFI mode Power Rating : AC120V/60Hz Environment : Temp:25.5C

Huni:55%

Test Engineer: YT

: G0720-240-050 Remark

omari.			Antenna Factor						
_	MHz					dBuV/m			
1	31.955	36.24	11.43	0.85	29.97	18.55	40.00	-21.45	QP
2	135.032	47.11	8.48	2.34	29.30	28.63	43.50	-14.87	QP
3	175.037	49.97	9.30	2.69	29.01	32.95	43.50	-10.55	QP
4	210.048								
5	260.144	47.37	12.37	2.84	28.52	34.06	46.00	-11.94	QP
6	651, 942	48.74	18, 50	3.87	28.77	42.34	46,00	-3.66	OP

Vertical:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) VERTICAL : Broadband Digital Transmission System Condition EUT

: LigoDLB 5ac Model Test mode : 5GWIFI mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: YT
Remark : G0720-240-050

CMAIK			Antenna Factor					Over	Donoule
	rreq	rever	ractor	LOSS	ractor	rever	Line	LIMIC	Kemark
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	74.919	51.76	9.18	1.63	29.68	32.89	40.00	-7.11	QP
2	84.999	51.06	9.76	1.83	29.60	33.05	40.00	-6.95	QP
3	125.007	57.99	9.62	2.22	29.36	40.47	43.50	-3.03	QP
4	135.032	60.76	8.48	2.34	29.30	42.28	43.50	-1.22	QP
5	150.011	57.82	8.50	2.52	29.22	39.62	43.50	-3.88	QP
6	651.942	48.34	18.50	3.87	28.77	41.94	46.00	-4.06	QP

LigoDLB 5-90ac:

Horizontal:

Site Condition EUT

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) HORIZONTAL

Broadband Digital Transmission System

Model : LigoDLB 5-90ac Test mode : 5GWIFI mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

Remark : G0720-240-050

	Freq		ReadAntenna evel Factor						Remark
_	MHz	dBu∇	<u>dB</u> /m	₫B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	135.032	52.57	8.48	2.34	29.30	34.09	43.50	-9.41	QP
2	159.784	52.66	8.60	2.59	29.13	34.72	43.50	-8.78	QP
2	175.037	53.50	9.30	2.69	29.01	36.48	43.50	-7.02	QP
4	210.048	52.13	11.30	2.86	28.77	37.52	43.50	-5.98	QP
5	284.977	48.87	12.91	2.90	28.48	36.20	46.00	-9.80	QP
6	651.942	48.10	18.50	3.87	28.77	41.70	46.00	-4.30	QP

Vertical:

Site : 3m chamber
Condition : FCC PART 15.407 3m VULB9163(30M2G) VERTICAL
EUT : Broadband Digital Transmission System
Model : LigoDLB 5-90ac
Test mode : 5GWIFI mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%
Test Engineer: YT

Test Engineer: YT Remark : G0720-240-050

Mark		Read.	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor							
_	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBu√/m	dBuV/m	<u>dB</u>		
1 2 3	40.559	41.30	13.40	1.22	29.90	26.02	40.00	-13.98	QP	
2	89.905	49.56	10.60	2.04	29.57	32.63	43.50	-10.87	QP	
3	175.037	49.36	9.30	2.69	29.01	32.34	43.50	-11.16	QP	
	225.308	44.82	11.30	2.84	28.68	30.28	46.00	-15.72	QP	
	425.028	37.38	15.60	3.14	28.83	27.29	46.00	-18.71	QP	
6	651 942	43 60	18 50	3 87	28 77	37 20	46 00	-8 80	OP	

Adapter (2) **Below 1GHz** LigoDLB 5ac:

Horizontal:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) HORIZONTAL : Broadband Digital Transmission System Condition

EUT

Model : LigoDLB 5ac Test mode : 5GWIFI mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

: GRT-POE20-240050A Remark

	Freq		Antenna Factor						Remark
	MHz	dBu∀		dB	dB	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	<u>d</u> B	
1	135.032	43.83	8.48	2.34	29.30	25.35	43.50	-18.15	QP
2	189.739	48.66	10.40	2.79	28.90	32.95	43.50	-10.55	QP
3	199.986	49.83	11.30	2.87	28.83	35.17	43.50	-8.33	QP
4	254.728	50.15	12.27	2.82	28.53	36.71	46.00	-9.29	QP
4 5	651.942	48.18	18.50	3.87	28.77	41.78	46.00	-4.22	QP
6	986.072	43.04	21.62	4.40	27.51	41.55	54.00	-12.45	QP

Vertical:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) VERTICAL : Broadband Digital Transmission System Condition

EUT

Model : LigoDLB 5ac Test mode : 5GWIFI mode Power Rating : AC120V/60Hz Environment : Temp:25.5C

Huni:55%

Test Engineer: YT

: GRT-POE20-240050A Remark

		Read	ReadAntenna		Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹	—dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	74.919	51.20	9.18	1.63	29.68	32.33	40.00	-7.67	QP
2	84.999	53.25	9.76	1.83	29.60	35.24	40.00	-4.76	QP
2	135.032	55.90	8.48	2.34	29.30	37.42	43.50	-6.08	QP
4	199.986	52.23	11.30	2.87	28.83	37.57	43.50	-5.93	QP
5	215.268	52.33	11.30	2.85	28.73	37.75	43.50	-5.75	QP
6	651.942	45.75	18.50	3.87	28.77	39.35	46.00	-6.65	QP

LigoDLB 5-90ac:

Horizontal:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) HORIZONTAL : Broadband Digital Transmission System Condition

EUT

model : LigoDLB 5-90ac
Test mode : 5GWIFI mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Hu
Test Engineer: YT
Remark

Huni:55%

: GRT-POE20-240050A Remark

		ATT - A		~~~~					
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBu}\overline{V}/\overline{m}$	<u>dB</u>	
1	135.032	58.61	8.48	2.34	29.30	40.13	43.50	-3.37	QP
2	159.784	52.77	8.60	2.59	29.13	34.83	43.50	-8.67	QP
3	250.301	51.17	12.20	2.81	28.54	37.64	46.00	-8.36	QP
4	284.977	49.23	12.91	2.90	28.48	36.56	46.00	-9.44	QP
5	651.942	50.66	18.50	3.87	28.77	44.26	46.00	-1.74	QP
6	986.072	46.32	21.62	4.40	27.51	44.83	54.00	-9.17	QP

Vertical:

Site : 3m chamber
Condition : FCC PART 15.407 3m VULB9163(30M2G) VERTICAL
EUT : Broadband Digital Transmission System
Model : LigoDLB 5-90ac
Test mode : 5GWIFI mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remark : GRT-POE20-240050A
Readbutenna Cable Preamp Limit

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∜	— <u>dB</u> /m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	89.905	53.86	10.60	2.04	29.57	36.93	43.50	-6.57	QP
2	135.032	46.06	8.48	2.34	29.30	27.58	43.50	-15.92	QP
3	260.144	42.69	12.37	2.84	28.52	29.38	46.00	-16.62	QP
4	325.596	46.14	13.60	3.02	28.51	34.25	46.00	-11.75	QP
3 4 5	331.355	46.65	13.90	3.04	28.52	35.07	46.00	-10.93	QP
6	651.942	44.22	18.50	3.87	28.77	37.82	46.00	-8.18	QP

Report No: CCISE171006801

Above 1GHz: LigoDLB 5ac:

Band 1:

802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	51.25	36.95	9.82	41.97	56.05	68.20	-12.15	Vertical		
10360.00	51.30	36.95	9.82	41.97	56.10	68.20	-12.10	Horizontal		
		802.11	a mode Lowe	est channe	I (AverageVa	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	41.20	36.95	9.82	41.97	46.00	54.00	-8.00	Vertical		
10360.00	41.23	36.95	9.82	41.97	46.03	54.00	-7.97	Horizontal		
		802.1	1a mode Mid	ddle chann	el (Peak Val	ue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	51.01	36.96	9.85	41.95	55.87	68.20	-12.33	Vertical		
10400.00	50.89	36.96	9.85	41.95	55.75	68.20	-12.45	Horizontal		
		802.11	a mode Mido	le channel	(AverageVa	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	40.31	36.96	9.85	41.95	45.17	54.00	-8.83	Vertical		
10400.00	41.02	36.96	9.85	41.95	45.88	54.00	-8.12	Horizontal		
		802.11	la mode Higl	hest chann	el (Peak Va	lue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	51.02	37.00	9.96	41.88	56.10	68.20	-12.10	Vertical		
10480.00	51.36	37.00	9.96	41.88	56.44	68.20	-11.76	Horizontal		
		802.11a	mode High	est channe	l (AverageV	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	40.12	37.00	9.96	41.88	45.20	54.00	-8.80	Vertical		
10480.00	40.36	37.00	9.96	41.88	45.44	54.00	-8.56	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n20 mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	51.41	36.95	9.82	41.97	56.21	68.20	-11.99	Vertical			
10360.00	51.32	36.95	9.82	41.97	56.12	68.20	-12.08	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average)	√alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	40.12	36.95	9.82	41.97	44.92	54.00	-9.08	Vertical			
10360.00	41.02	36.95	9.82	41.97	45.82	54.00	-8.18	Horizontal			
		802.11	n20 mode M	iddle chan	nel (Peak Va	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	51.36	36.96	9.85	41.95	56.22	68.20	-11.98	Vertical			
10400.00	51.22	36.96	9.85	41.95	56.08	68.20	-12.12	Horizontal			
	802.11n20 mode Middle channel (AverageValue)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	40.32	36.96	9.85	41.95	45.18	54.00	-8.82	Vertical			
10400.00	40.41	36.96	9.85	41.95	45.27	54.00	-8.73	Horizontal			
		802.11r	n20 mode Hi	ghest chan	nel (Peak V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	51.32	37.00	9.96	41.88	56.40	68.20	-11.80	Vertical			
10480.00	51.32	37.00	9.96	41.88	56.40	68.20	-11.80	Horizontal			
		802.11n2	20 mode Hig	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	40.26	37.00	9.96	41.88	45.34	54.00	-8.66	Vertical			
10480.00	41.20	37.00	9.96	41.88	46.28	54.00	-7.72	Horizontal			

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	50.96	36.96	9.85	41.95	55.82	68.20	-12.38	Vertical		
10380.00	51.10	36.96	9.85	41.95	55.96	68.20	-12.24	Horizontal		
802.11n40 mode Lowest channel (AverageValue)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	40.13	36.96	9.85	41.95	44.99	54.00	-9.01	Vertical		
10380.00	40.32	36.96	9.85	41.95	45.18	54.00	-8.82	Horizontal		
		802.11r	n40 mode Hi	ghest chan	nel (Peak V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10460.00	51.32	36.98	9.92	41.90	56.32	68.20	-11.88	Vertical		
10460.00	51.02	36.98	9.92	41.90	56.02	68.20	-12.18	Horizontal		
		802.11n ²	I0 mode Higl	hest chann	el (Average)	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10460.00	40.63	36.98	9.92	41.90	45.63	54.00	-8.37	Vertical		
10460.00	40.15	36.98	9.92	41.90	45.15	54.00	-8.85	Horizontal		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11ac80 mode Middle channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10420.00	50.14	36.97	9.89	41.93	55.07	68.20	-13.13	Vertical				
10420.00	50.67	36.97	9.89	41.93	55.60	68.20	-12.60	Horizontal				
		802.11ac	:80 mode Mi	ddle chann	el (Average	Value)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10420.00	40.14	36.97	9.89	41.93	45.07	54.00	-8.93	Vertical				
10420.00	40.63	36.97	9.89	41.93	45.56	54.00	-8.44	Horizontal				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	50.21	37.49	10.81	42.29	56.22	74.00	-17.78	Vertical			
11490.00	51.23	37.49	10.81	42.29	57.24	74.00	-16.76	Horizontal			
		802.11	a mode Lowe	est channe	I (AverageV	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	38.36	37.49	10.81	42.29	44.37	54.00	-9.63	Vertical			
11490.00	38.41	37.49	10.81	42.29	44.42	54.00	-9.58	Horizontal			
	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	51.23	37.55	10.78	42.27	57.29	74.00	-16.71	Vertical			
11570.00	51.84	37.55	10.78	42.27	57.90	74.00	-16.10	Horizontal			
802.11a mode Middle channel (Average Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	39.32	37.55	10.78	42.27	45.38	54.00	-8.62	Vertical			
11570.00	38.74	37.55	10.78	42.27	44.80	54.00	-9.20	Horizontal			
		802.11	la mode Higl	hest chann	el (Peak Va	lue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	51.52	37.59	10.76	42.26	57.61	74.00	-16.39	Vertical			
11650.00	51.69	37.59	10.76	42.26	57.78	74.00	-16.22	Horizontal			
		802.11a	mode Highe	est channe	l (Average V	'alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	38.46	37.59	10.76	42.26	44.55	54.00	-9.45	Vertical			
11650.00	38.69	37.59	10.76	42.26	44.78	54.00	-9.22	Horizontal			

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 The emission levels of other factors.

The emission levels of other frequencies are very lower than the limit and not show in test report.

		802.11r	n20 mode Lo	west chan	nel (Peak V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	51.32	37.49	10.81	42.29	57.33	74.00	-16.67	Vertical		
11490.00	51.42	37.49	10.81	42.29	57.43	74.00	-16.57	Horizontal		
		802.11n2	20 mode Low	est chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	39.74	37.49	10.81	42.29	45.75	54.00	-8.25	Vertical		
11490.00	38.69	37.49	10.81	42.29	44.70	54.00	-9.30	Horizontal		
		802.11	n20 mode M	iddle chan	nel (Peak Va	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	51.42	37.55	10.78	42.27	57.48	74.00	-16.52	Vertical		
11570.00	51.63	37.55	10.78	42.27	57.69	74.00	-16.31	Horizontal		
802.11n20 mode Middle channel (Average Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	39.68	37.55	10.78	42.27	45.74	54.00	-8.26	Vertical		
11570.00	39.41	37.55	10.78	42.27	45.47	54.00	-8.53	Horizontal		
		802.11r	20 mode Hi	ghest chan	nel (Peak V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	51.47	37.59	10.76	42.26	57.56	74.00	-16.44	Vertical		
11650.00	51.85	37.59	10.76	42.26	57.94	74.00	-16.06	Horizontal		
802.11n20 mode Highest channel (Average Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	38.75	37.59	10.76	42.26	44.84	54.00	-9.16	Vertical		
11650.00	38.95	37.59	10.76	42.26	45.04	54.00	-8.96	Horizontal		

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11510.00	51.55	37.51	10.81	42.29	57.58	74.00	-16.42	Vertical			
11510.00	51.74	37.51	10.81	42.29	57.77	74.00	-16.23	Horizontal			
802.11n40 mode Lowest channel (Average Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11510.00	39.87	37.51	10.81	42.29	45.90	54.00	-8.10	Vertical			
11510.00	39.32	37.51	10.81	42.29	45.35	54.00	-8.65	Horizontal			
		802.11r	n40 mode Hi	ghest chan	nel (Peak V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11590.00	51.25	37.56	10.78	42.27	57.32	74.00	-16.68	Vertical			
11590.00	51.36	37.56	10.78	42.27	57.43	74.00	-16.57	Horizontal			
		802.11n4	0 mode High	nest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11590.00	39.65	37.56	10.78	42.27	45.72	54.00	-8.28	Vertical			
11590.00	39.41	37.56	10.78	42.27	45.48	54.00	-8.52	Horizontal			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11ac80 mode Middle channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
11550.00	51.42	37.54	10.80	42.28	57.48	74.00	-16.52	Vertical				
11550.00	51.82	37.54	10.80	42.28	57.88	74.00	-16.12	Horizontal				
		802.11ac	80 mode Mid	ddle chann	el (Average	Value)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
11550.00	38.22	37.54	10.80	42.28	44.28	54.00	-9.72	Vertical				
11550.00	39.65	37.54	10.80	42.28	45.71	54.00	-8.29	Horizontal				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No: CCISE171006801

LigoDLB 5-90ac: Band 1:

Band 1:											
	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	50.62	36.95	9.82	41.97	55.42	68.20	-12.78	Vertical			
10360.00	49.32	36.95	9.82	41.97	54.12	68.20	-14.08	Horizontal			
		802.11a	a mode Lowe	est channe	I (AverageV	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	41.23	36.95	9.82	41.97	46.03	54.00	-7.97	Vertical			
10360.00	39.62	36.95	9.82	41.97	44.42	54.00	-9.58	Horizontal			
	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	48.25	36.96	9.85	41.95	53.11	68.20	-15.09	Vertical			
10400.00	50.19	36.96	9.85	41.95	55.05	68.20	-13.15	Horizontal			
802.11a mode Middle channel (Average Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	40.19	36.96	9.85	41.95	45.05	54.00	-8.95	Vertical			
10400.00	39.65	36.96	9.85	41.95	44.51	54.00	-9.49	Horizontal			
		802.11	la mode Higl	hest chann	el (Peak Va	lue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	49.58	37.00	9.96	41.88	54.66	68.20	-13.54	Vertical			
10480.00	49.13	37.00	9.96	41.88	54.21	68.20	-13.99	Horizontal			
802.11a mode Highest channel (Average Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	40.13	37.00	9.96	41.88	45.21	54.00	-8.79	Vertical			
10480.00	41.67	37.00	9.96	41.88	46.75	54.00	-7.25	Horizontal			

Remark:

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	50.63	36.95	9.82	41.97	55.43	68.20	-12.77	Vertical
10360.00	49.21	36.95	9.82	41.97	54.01	68.20	-14.19	Horizontal
		802.11n2	20 mode Low	est chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	39.32	36.95	9.82	41.97	44.12	54.00	-9.88	Vertical
10360.00	40.19	36.95	9.82	41.97	44.99	54.00	-9.01	Horizontal
		802.11	n20 mode M	iddle chan	nel (Peak Va	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	49.82	36.96	9.85	41.95	54.68	68.20	-13.52	Vertical
10400.00	48.15	36.96	9.85	41.95	53.01	68.20	-15.19	Horizontal
	802.11n20 mode Middle channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	40.23	36.96	9.85	41.95	45.09	54.00	-8.91	Vertical
10400.00	40.19	36.96	9.85	41.95	45.05	54.00	-8.95	Horizontal
		802.11r	20 mode Hi	ghest chan	nel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	49.62	37.00	9.96	41.88	54.70	68.20	-13.50	Vertical
10480.00	48.52	37.00	9.96	41.88	53.60	68.20	-14.60	Horizontal
		802.11n2	0 mode High	nest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	40.16	37.00	9.96	41.88	45.24	54.00	-8.76	Vertical
10480.00	39.62	37.00	9.96	41.88	44.70	54.00	-9.30	Horizontal

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	48.26	36.96	9.85	41.95	53.12	68.20	-15.08	Vertical
10380.00	49.32	36.96	9.85	41.95	54.18	68.20	-14.02	Horizontal
		802.11n4	10 mode Low	est chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	40.21	36.96	9.85	41.95	45.07	54.00	-8.93	Vertical
10380.00	39.62	36.96	9.85	41.95	44.48	54.00	-9.52	Horizontal
	802.11n40 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	49.31	36.98	9.92	41.90	54.31	68.20	-13.89	Vertical
10460.00	48.52	36.98	9.92	41.90	53.52	68.20	-14.68	Horizontal
	802.11n40 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	39.62	36.98	9.92	41.90	44.62	54.00	-9.38	Vertical
10460.00	40.13	36.98	9.92	41.90	45.13	54.00	-8.87	Horizontal

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac80 mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	49.62	36.97	9.89	41.93	54.55	68.20	-13.65	Vertical
10420.00	50.47	36.97	9.89	41.93	55.40	68.20	-12.80	Horizontal
	802.11ac80 mode Middle channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	41.62	36.97	9.89	41.93	46.55	54.00	-7.45	Vertical
10420.00	39.46	36.97	9.89	41.93	44.39	54.00	-9.61	Horizontal

Remark:

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Dana 4.	802.11a mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	49.32	37.49	10.81	42.29	55.33	74.00	-18.67	Vertical
11490.00	48.25	37.49	10.81	42.29	54.26	74.00	-19.74	Horizontal
		802.11a	mode Lowe	st channel	(Average V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	39.32	37.49	10.81	42.29	45.33	54.00	-8.67	Vertical
11490.00	39.64	37.49	10.81	42.29	45.65	54.00	-8.35	Horizontal
		802.1	1a mode Mid	dle chann	el (Peak Val	ue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	49.25	37.55	10.78	42.27	55.31	74.00	-18.69	Vertical
11570.00	48.15	37.55	10.78	42.27	54.21	74.00	-19.79	Horizontal
802.11a mode Middle channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	40.31	37.55	10.78	42.27	46.37	54.00	-7.63	Vertical
11570.00	39.67	37.55	10.78	42.27	45.73	54.00	-8.27	Horizontal
		802.11	la mode Hig	hest chann	el (Peak Va	lue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	48.26	37.59	10.76	42.26	54.35	74.00	-19.65	Vertical
11650.00	47.16	37.59	10.76	42.26	53.25	74.00	-20.75	Horizontal
		802.11a	mode Highe	est channe	l (Average V	'alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	36.54	37.59	10.76	42.26	42.63	54.00	-11.37	Vertical
11650.00	38.45	37.59	10.76	42.26	44.54	54.00	-9.46	Horizontal

Remark:

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n20 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	48.26	37.49	10.81	42.29	54.27	74.00	-19.73	Vertical
11490.00	47.12	37.49	10.81	42.29	53.13	74.00	-20.87	Horizontal
		802.11n2	20 mode Low	est chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	39.64	37.49	10.81	42.29	45.65	54.00	-8.35	Vertical
11490.00	37.58	37.49	10.81	42.29	43.59	54.00	-10.41	Horizontal
		802.11	n20 mode M	iddle chan	nel (Peak Va	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	49.62	37.55	10.78	42.27	55.68	74.00	-18.32	Vertical
11570.00	48.17	37.55	10.78	42.27	54.23	74.00	-19.77	Horizontal
	802.11n20 mode Middle channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	39.32	37.55	10.78	42.27	45.38	54.00	-8.62	Vertical
11570.00	38.59	37.55	10.78	42.27	44.65	54.00	-9.35	Horizontal
		802.11r	n20 mode Hi	ghest chan	nel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	49.62	37.59	10.76	42.26	55.71	74.00	-18.29	Vertical
11650.00	48.75	37.59	10.76	42.26	54.84	74.00	-19.16	Horizontal
		802.11n2	0 mode High	nest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	37.24	37.59	10.76	42.26	43.33	54.00	-10.67	Vertical
11650.00	36.26	37.59	10.76	42.26	42.35	54.00	-11.65	Horizontal

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	48.52	37.51	10.81	42.29	54.55	74.00	-19.45	Vertical
11510.00	47.61	37.51	10.81	42.29	53.64	74.00	-20.36	Horizontal
		802.11n ²	10 mode Low	est chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	40.23	37.51	10.81	42.29	46.26	54.00	-7.74	Vertical
11510.00	39.62	37.51	10.81	42.29	45.65	54.00	-8.35	Horizontal
	802.11n40 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	48.24	37.56	10.78	42.27	54.31	74.00	-19.69	Vertical
11590.00	47.19	37.56	10.78	42.27	53.26	74.00	-20.74	Horizontal
	802.11n40 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	38.56	37.56	10.78	42.27	44.63	54.00	-9.37	Vertical
11590.00	36.15	37.56	10.78	42.27	42.22	54.00	-11.78	Horizontal

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac80 mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	48.21	37.54	10.80	42.28	54.27	74.00	-19.73	Vertical
11550.00	47.34	37.54	10.80	42.28	53.40	74.00	-20.60	Horizontal
	802.11ac80 mode Middle channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	39.32	37.54	10.80	42.28	45.38	54.00	-8.62	Vertical
11550.00	38.61	37.54	10.80	42.28	44.67	54.00	-9.33	Horizontal

Remark:

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.					
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply					
	Note: Measurement setup for testing on Antenna connector					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.					
Test results:	Refer to FCC ID: V2V-FWBD3200					