

HiPerFET™

Power MOSFET

N-Channel Enhancement Mode
Avalanche Rated, High dv/dt, Low t_{rr}

Preliminary data

Symbol	Test Conditions	Maximum Ratings		
V_{DSS}	$T_J = 25^\circ\text{C}$ to 150°C	550	V	
V_{DGR}	$T_J = 25^\circ\text{C}$ to 150°C ; $R_{GS} = 1 \text{ M}\Omega$	550	V	
V_{GS}	Continuous	± 20	V	
V_{GSM}	Transient	± 30	V	
I_{D25}	$T_c = 25^\circ\text{C}$	22	A	
I_{DM}	$T_c = 25^\circ\text{C}$, pulse width limited by T_{JM}	88	A	
I_{AR}	$T_c = 25^\circ\text{C}$	22	A	
E_{AR}	$T_c = 25^\circ\text{C}$	30	mJ	
dv/dt	$I_s \leq I_{DM}$, $di/dt \leq 100 \text{ A}/\mu\text{s}$, $V_{DD} \leq V_{DSS}$, $T_J \leq 150^\circ\text{C}$, $R_G = 2 \Omega$	5	V/ns	
P_D	$T_c = 25^\circ\text{C}$	300	W	
T_J		-55 ... +150	$^\circ\text{C}$	
T_{JM}		150	$^\circ\text{C}$	
T_{stg}		-55 ... +150	$^\circ\text{C}$	
T_L	1.6 mm (0.063 in) from case for 10 s	300	$^\circ\text{C}$	
M_d	Mounting torque	1.13/10	Nm/lb.in.	
Weight		6	g	

IXFH22N55

$V_{DSS} = 550 \text{ V}$
 $I_{D(\text{cont})} = 22 \text{ A}$
 $R_{DS(\text{on})} = 0.27 \Omega$
 $t_{rr} \leq 250 \text{ ns}$

TO-247 AD

G = Gate,
S = Source,
D = Drain,
TAB = Drain

Features

- International standard packages
JEDEC TO-247 AD
- Low $R_{DS(\text{on})}$ HDMOS™ process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance (< 5 nH)
 - easy to drive and to protect
- Fast intrinsic Rectifier

Applications

- Power Factor Control Circuits
- Uninterruptible Power Supplies (UPS)
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- Temperature and lighting controls
- Low voltage relays

Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- Space savings
- High power density

Symbol	Test Conditions	Characteristic Values		
		($T_J = 25^\circ\text{C}$, unless otherwise specified)	min.	typ.
V_{DSS}	$V_{GS} = 0 \text{ V}$, $I_D = 250 \mu\text{A}$	550		V
$V_{GS(\text{th})}$	$V_{DS} = V_{GS}$, $I_D = 4 \text{ mA}$	2	4.5	V
I_{GSS}	$V_{GS} = \pm 20 \text{ V}_{DC}$, $V_{DS} = 0$		± 100	nA
I_{DSS}	$V_{DS} = 0.8 \cdot V_{DSS}$ $V_{GS} = 0 \text{ V}$	$T_J = 25^\circ\text{C}$ $T_J = 125^\circ\text{C}$	250 1	μA mA
$R_{DS(\text{on})}$	$V_{GS} = 10 \text{ V}$, $I_D = 0.5 \cdot I_{D25}$ Pulse test, $t \leq 300 \mu\text{s}$, duty cycle d $\leq 2 \%$		0.27	Ω

Symbol	Test Conditions	Characteristic Values			
		($T_J = 25^\circ\text{C}$, unless otherwise specified)	min.	typ.	max.
g_{fs}	$V_{DS} = 10 \text{ V}; I_D = 0.5 I_{D25}$, pulse test	11	18	S	
C_{iss} C_{oss} C_{rss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	4200		pF	
		450		pF	
		135		pF	
$t_{d(on)}$ t_r $t_{d(off)}$ t_f	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$, $R_G = 2 \Omega$ (External)	20	40	ns	
		43	60	ns	
		70	90	ns	
		40	60	ns	
$Q_{g(on)}$ Q_{gs} Q_{gd}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$	150	170	nC	
		29	40	nC	
		60	85	nC	
R_{thJC}			0.42	K/W	
R_{thCK}		0.15		K/W	

Source-Drain Diode

Characteristic Values
($T_J = 25^\circ\text{C}$, unless otherwise specified)

Symbol	Test Conditions	min.	typ.	max.
I_s	$V_{GS} = 0 \text{ V}$		22	A
I_{SM}	Repetitive; pulse width limited by T_{JM}		88	A
V_{SD}	$I_F = I_s, V_{GS} = 0 \text{ V}$, Pulse test, $t \leq 300 \mu\text{s}$, duty cycle $\delta \leq 2 \%$		1.5	V
t_{rr}	$I_F = I_s$, $-di/dt = 100 \text{ A}/\mu\text{s}$, $V_R = 100 \text{ V}$ $T_J = 125^\circ\text{C}$		250	ns
			400	ns

TO-247 AD Outline

Dim.	Millimeter Min.	Max.	Inches Min.	Max.
A	19.81	20.32	0.780	0.800
B	20.80	21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G	1.65	2.13	0.065	0.084
H	-	4.5	-	0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
N	1.5	2.49	0.087	0.102

Fig. 1 Output Characteristics

Fig. 2 Input Admittance

Fig. 3 $R_{DS(on)}$ vs. Drain Current

Fig. 4 Temperature Dependence of Drain to Source Resistance

Fig. 5 Drain Current vs. Case Temperature

Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage

Fig.7 Gate Charge Characteristic Curve

Fig.8 Forward Bias Safe Operating Area

Fig.9 Capacitance Curves

Fig.10 Source Current vs. Source to Drain Voltage

Fig.11 Transient Thermal Impedance

