情報理論

第14回 講義 エントロピーと情報量

2015. 7. 22 植松 芳彦

本日の講義内容

- 情報量の定義
 - 平均符号長の下限としての情報量
 - 直感的な立場から見た情報量
- エントロピーと情報量
 - ●「あいまいさ」の尺度としてのエントロピー
 - エントロピーの最小値/最大値

「情報源の符号化」とは何だったか?

- 元々の情報源系列が壊れない(受信側で一意復号可能)な前提で、最小限の量の符号(0,1の並び)にして送る.
- 符号長(0,1の並びの数)は、元々の情報源系列 に関わる何か重要な量を意味してないか?
- さらに平均符号長の下限値を与える「エントロピー」とは何を意味するか?

エントロピーについて知ってること(1)

- 情報源 S が発生する記号列を符号化する時の 平均符号長の下限値を与える.
 - クラフトの不等式を満たす条件で符号長を最小化
- 情報源 S の統計的性質に依存した量

平均符号長

情報源記号
$$\{a_1, a_1, \dots, a_M\}$$
 発生確率 $P(a_i) = p_i \quad (i = 1, 2, \dots, M)$ 1次エントロピー $H_1(S) = -\sum_{i=1}^{M} p_i \cdot \log_2 p_i$

教科書p57-60 第8回講義資料

エントロピーについて知ってること(2)

- n 個の情報源記号を纏めて符号化することで、 平均符号長は短くなる傾向
- 1情報源記号あたりの平均符号長の下限となる n 次エントロピーも小さくなる傾向

一般的な傾向

1情報源記号の 平均符号長

記憶のない情報源の場合

エントロピーの意味に関する仮説

- 情報源記号列が持っている情報の価値,または その裏返しとして情報を知らない場合の曖昧さの ようなものを表してないか?
 - 情報の意味が壊れない範囲で相手に伝えられる最小のビット数

直感的な立場からの情報量

- ある情報源から確率的に(統計的性質をもって) 情報が発生する場合の情報量を考える.
- 情報量はその情報が発生する確率に依存すべき.
 - 確率1で発生する情報から得られる情報量はゼロ
 - ○太陽が西に沈む
 - ○犬が人を噛む
 - 非常に発生確率の低い情報から得られる情報量は非常に大きい
 - 新たに油田が発見される
 - ○人が犬を噛む

直感的な立場からの情報量

• 情報源Sから情報 a_i が発生したことを知ることにより 得る情報量 $I(p_i)$ とは?

情報源S

各情報源記号の発生確率

情報源記号	発生確率
a_{I}	p_1
a_2	p_2
a_{M}	p_{M}

情報量 I(p) に対する条件

- 1. *I(p)* は *p* の単調減少関数
- 2. $I(p_1 \cdot p_2) = I(p_1) + I(p_2)$
- 3. I(p) は p の連続関数

上記の条件を満たす関数I(p)は以下の形のみ

$$I(p) = -a \cdot \log_2 p$$
 $I(p) = -\log_2 p$ $(a = 1)$ (\$\pi 5.4)

直感的な立場からの情報量

情報量 *I(p_i)* の平均値とは?

$$\bar{I} = \sum_{i=1}^{M} p_i \cdot I(p_i) = -\sum_{i=1}^{M} p_i \cdot \log_2 p_i$$
 (式5.5)

• 符号長と情報量の対応付け

情報源記号a』に割当てる符号長の目安

$$-\log_2 p_i \le l_i < -\log_2 p_i + 1$$

平均符号長の下限(1次エントロピー)

$$H_1(S) = -\sum_{i=1}^{M} p_i \cdot \log_2 p_i$$

情報 a_i の情報量

$$I(p_i) = -\log_2 p_i$$

情報量の平均値

$$\overline{I} = -\sum_{i=1}^{M} p_i \cdot \log_2 p_i$$

【演習1】情報量の関数のかたち

情報量 *I(p)*, 情報量の平均値(期待値)の要素関数 *p* • *I(p)* のかたちを求めておこう

р	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
-log2p	8	3.3219	2.3219	1.7370	1.3219	1.0000	0.7370	0.5146	0.3219	0.1520	0.0000
ただし p=0 のとき p・log2p = 0 とする											

「あいまいさ」の尺度としてのエントロピー

- 元々熱力学における系の「無秩序さ」を表す尺度.
- 情報理論においても、「無秩序さ」を表す尺度.
 - ある時点の出力記号を知る以前における、情報の受け手の知識の「あいまいさ」
- 情報を得る過程の2つの捉え方
 - 受け手の知識の「あいまいさ」が減っていく過程.
 - 受けての情報量が増える過程.

エントロピーの最小値

• エントロピーが各情報源記号 a_i の発生確率 p_i の変化に伴いどのような値を取り得るか考察

```
情報源記号 \{a_1,a_2,\cdots,a_M\} 発生確率 P(a_i)=p_i \quad (i=1,2,\cdots,M) 
1次エントロピー H_1(S)=-\sum_{i=1}^M p_i \cdot \log_2 p_i = H(S) (記憶ない情報源)
```

- p_i は確率であることから $0 \le H(S)$ (式5.8)
- 等号の成立は特定の p_j につき $p_j=1$ $p_k=0$ $(k \neq j)$
- どの記号が発生するか予め明らかなので、「あいまいさ」が全くない。

エントロピーの最大値

教科書p58の補助定理により

$$H(S) = -\sum_{i=1}^{M} p_i \cdot \log_2 p_i$$

$$\leq -\sum_{i=1}^{M} p_i \cdot \log_2 \frac{1}{M} = \log_2 M \qquad (\sharp 5.9)$$

- 等号成立は $p_1 = p_2 = \cdots = p_M = \frac{1}{M}$
- どの記号が発生する確率も等しく、どれが発生するか全く見当がつかない時「あいまいさ最大」(エントロピー最大)

【参考】補助定理

教科書p58-59 第7回講義資料

p₁, ・・・, p_M(p_iは非負)に

$$p_1 + p_2 + \dots + p_M = 1$$

q₁, ・・・, q_M(q_iも非負)に

$$q_1 + q_2 + \dots + q_M \le 1$$

(式4.9)

• が成り立つとき、以下の関係が成立、

$$H_1(S) = -\sum_{i=1}^{M} p_i \bullet \log_2 p_i \le -\sum_{i=1}^{M} p_i \bullet \log_2 q_i \quad (\pm 4.10)$$

等号条件
$$p_i = q_i$$
 $(i = 1, 2, \dots, M)$

各記号の発生確率とエントロピー

情報源記号数M =2の場合(発生記号はA, B のみ)
 の,各記号の発生確率とエントロピーの関係.

【演習2】各記号の発生確率とエントロピー

情報源記号数M =10(発生記号a₁,···, a₁₀)場合の,
 各記号の発生確率とエントロピーの関係.

特定記号の発生確率が高い場合

$$p_1 = p_2 = \dots = p_8 = 0.001$$

 $p_9 = 0.002, \quad p_{10} = 0.99$
 $H(S) = -\sum_{i=1}^{10} p_i \cdot \log_2 p_i$

=

すべての発生確率が同じ場合

$$p_1 = p_2 = \dots = p_{10} = 0.1$$

$$H(S) = -\sum_{i=1}^{10} p_i \cdot \log_2 p_i$$

$$= -\sum_{i=1}^{10} 0.1 \cdot \log_2 0.1$$

р	0.001	0.002	0.01	0.02	0.1	0.9	0.99	M	10
-log2p	9.9658	8.9658	6.6439	5.6439	3.3219	0.1520	0.0145	log2M	3.3219

各記号の発生確率とエントロピー

- 情報源が「英文」の場合のエントロピーを試算
- 英文は記憶ある情報源のため、エントロピーは更に低い

各アルファベットの発生確率 が同じ場合

$$p_A = p_B = \dots = p_Z = \frac{1}{26}$$

$$H(S) = \log_2 26 = 4.70$$

各アルファベットの発生確率 に表5.1の偏りがある場合

$$H(S) = -\sum_{i=A}^{Z} p_i \cdot \log_2 p_i$$
$$= 4.17$$

実際の英文は記憶のある情報源でありエントロピー1.2程度と推定されてる

表 5.1 英文における文字の出現確率

文字	文字 確率		確率	文字	確率	
Α	8. 29%	J	0. 21%	s	6. 33%	
В	1.43	K	0.48	Т	9. 27	
С	3.68	L	3. 68	U	2.53	
D	4. 29	м	3, 23	v	1.03	
E	12.08	N	7. 16	w	1,62	
F	2. 20	0	7. 28	х	0. 20	
G	1.71	P	2. 93	Y	1. 57	
н	4. 54	Q	0.11	z	0.09	
I	7. 16	R	6.90			

本日のまとめ

- これまで学んできた平均符号長,直感的な視点等を踏まえ,「情報量」を定義した.
 - 各情報源記号の情報量 $I(p_i) = -\log_2 p_i$
 - ・情報量の平均値 $\overline{I} = -\sum_{i=1}^{M} p_i \cdot \log_2 p_i$
- エントロピーをその情報を受け取る前の知識のあいまいさと捉え直し、各記号の発生確率への依存性を考察。