%matplotlib inline ### import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import seaborn as sns

```
In [2]:
```

```
data = pd.read_csv('health care diabetes.csv')
```

In [3]:

```
data.head()
```

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunc
0	6	148	72	35	0	33.6	0.
1	1	85	66	29	0	26.6	0.
2	8	183	64	0	0	23.3	0.
3	1	89	66	23	94	28.1	0.
4	0	137	40	35	168	43.1	2.
4)

In [4]:

```
data.isnull().any()
```

Out[4]:

Pregnancies	False
Glucose	False
BloodPressure	False
SkinThickness	False
Insulin	False
BMI	False
DiabetesPedigreeFunction	False
Age	False
Outcome	False
dtype: bool	

In [5]:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
```

Data columns (total 9 columns): Pregnancies 768 non-null int64 Glucose 768 non-null int64 BloodPressure 768 non-null int64 SkinThickness 768 non-null int64 Insulin 768 non-null int64 BMI 768 non-null float64 DiabetesPedigreeFunction 768 non-null float64 768 non-null int64 Age Outcome 768 non-null int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

In [41]:

```
Positive = data[data['Outcome']==1]
Positive.head(5)
```

Out[41]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunc
0	6	148	72	35	0	33.6	0.
2	8	183	64	0	0	23.3	0.
4	0	137	40	35	168	43.1	2.
6	3	78	50	32	88	31.0	0.
8	2	197	70	45	543	30.5	0.
4)

In [43]:

```
data['Glucose'].value_counts().head(7)
```

Out[43]:

Name: Glucose, dtype: int64

In [35]:

```
plt.hist(data['Glucose'])
```

Out[35]:

In [33]:

```
data['BloodPressure'].value_counts().head(7)
```

Out[33]:

70 57

74 52

68 45

78 45

72 44

64 43

80 40

Name: BloodPressure, dtype: int64

In [36]:

```
plt.hist(data['BloodPressure'])
```

Out[36]:

In [32]:

```
data['SkinThickness'].value_counts().head(7)
```

Out[32]:

0 227

32 31 30 27

27 23

23 22

33 20

18 20

Name: SkinThickness, dtype: int64

In [37]:

```
plt.hist(data['SkinThickness'])
```

Out[37]:

```
(array([231., 107., 165., 175., 78., 9., 2., 0., 0., 1.]),
array([ 0. , 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99.
]),
<a list of 10 Patch objects>)
```


In [30]:

```
data['Insulin'].value_counts().head(7)
```

Out[30]:

0	374
105	11
140	9
130	9
120	8
100	7
94	7

Name: Insulin, dtype: int64

In [38]:

```
plt.hist(data['Insulin'])
```

Out[38]:

In [29]:

```
data['BMI'].value_counts().head(7)
```

Out[29]:

32.0 13 31.6 12 31.2 12

0.0 11

33.3 10 32.4 10

32.8 9

Name: BMI, dtype: int64

In [39]:

```
plt.hist(data['BMI'])
```

Out[39]:

In [9]:

data.describe().transpose()

Out[9]:

	count	mean	std	min	25%	50%	7!
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.000
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.250
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.000
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.000
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.250
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.600
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.626
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.000
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.000
4							•

In []:

Week 2

In [49]:

```
plt.hist(Positive['BMI'],histtype='stepfilled',bins=20)
```

Out[49]:

In [55]:

Positive['BMI'].value_counts().head(7)

Out[55]:

32.9 8 31.6 7 33.3 6 30.5 5 32.0 5 31.2 5

32.4

Name: BMI, dtype: int64

4

In [61]:

```
plt.hist(Positive['Glucose'], histtype='stepfilled', bins=20)
```

Out[61]:

```
(array([ 2., 0., 0., 0., 0., 0., 1., 4., 9., 28., 26., 36.,
       27., 29., 22., 24., 21., 25., 14.]),
array([ 0. , 9.95, 19.9 , 29.85, 39.8 , 49.75, 59.7 , 69.65,
        79.6, 89.55, 99.5, 109.45, 119.4, 129.35, 139.3, 149.25,
       159.2, 169.15, 179.1, 189.05, 199. ]),
<a list of 1 Patch objects>)
```


In [56]:

Positive['Glucose'].value_counts().head(7)

Out[56]:

- 125 7
- 158 6
- 128 6
- 115 6
- 129 6
- 146 5 162

Name: Glucose, dtype: int64

In [62]:

```
plt.hist(Positive['BloodPressure'],histtype='stepfilled',bins=20)
```

Out[62]:

In [57]:

Positive['BloodPressure'].value_counts().head(7)

Out[57]:

70 23

76 18

78 17

74 17

72 16

0 16

82 13

Name: BloodPressure, dtype: int64

In [63]:

```
plt.hist(Positive['SkinThickness'],histtype='stepfilled',bins=20)
```

Out[63]:

In [60]:

Positive['SkinThickness'].value_counts().head(7)

Out[60]:

Name: SkinThickness, dtype: int64

In [64]:

```
plt.hist(Positive['Insulin'],histtype='stepfilled',bins=20)
```

Out[64]:

In [59]:

```
Positive['Insulin'].value_counts().head(7)
```

Out[59]:

```
0 138
130 6
180 4
156 3
175 3
194 2
125 2
```

Name: Insulin, dtype: int64

In [65]:

```
#Scatter plot
```

In [68]:

```
BloodPressure = Positive['BloodPressure']
Glucose = Positive['Glucose']
SkinThickness = Positive['SkinThickness']
Insulin = Positive['Insulin']
BMI = Positive['BMI']
```

In [85]:

```
plt.scatter(BloodPressure, Glucose, color=['b'])
plt.xlabel('BloodPressure')
plt.ylabel('Glucose')
plt.title('BloodPressure & Glucose')
plt.show()
```


In [101]:

In [100]:

In [107]:

In [104]:

```
### correlation matrix
data.corr()
```

Out[104]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	(
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	(
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	(
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	(
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	(
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	(
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	(
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	(

In [105]:

4

create correlation heat map
sns.heatmap(data.corr())

Out[105]:

<matplotlib.axes._subplots.AxesSubplot at 0x2278a586278>

In [106]:

```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True,cmap='viridis') ### gives correlation value
```

Out[106]:

<matplotlib.axes._subplots.AxesSubplot at 0x2278a71d710>

In [116]:

```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True) ### gives correlation value
```

Out[116]:

<matplotlib.axes._subplots.AxesSubplot at 0x2278bde9f28>

In [113]:

Logistic Regreation and model building

In [117]:

```
data.head(5)
```

Out[117]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
0	6	148	72	35	0	33.6	0.
1	1	85	66	29	0	26.6	0.
2	8	183	64	0	0	23.3	0.
3	1	89	66	23	94	28.1	0.
4	0	137	40	35	168	43.1	2.
4							•

In [130]:

```
features = data.iloc[:,[0,1,2,3,4,5,6,7]].values
label = data.iloc[:,8].values
```

In [136]:

In [137]:

```
#Create model
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train,y_train)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.p
y:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. S
pecify a solver to silence this warning.
 FutureWarning)

Out[137]:

In [138]:

```
print(model.score(X_train,y_train))
print(model.score(X_test,y_test))
```

0.7833876221498371

0.7337662337662337

In [139]:

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(label,model.predict(features))
cm
```

Out[139]:

```
array([[452, 48], [126, 142]], dtype=int64)
```

In [140]:

```
from sklearn.metrics import classification_report
print(classification_report(label,model.predict(features)))
```

		precision	recall	f1-score	support
	0	0.78	0.90	0.84	500
	1	0.75	0.53	0.62	268
micro	avg	0.77	0.77	0.77	768
macro	avg	0.76	0.72	0.73	768
weighted	avg	0.77	0.77	0.76	768

In [141]:

```
#Preparing ROC Curve (Receiver Operating Characteristics Curve)
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
# predict probabilities
probs = model.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(label, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(label, probs)
# plot no skill
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
```

AUC: 0.834

Out[141]:

[<matplotlib.lines.Line2D at 0x2278c4fba90>]


```
In [152]:
```

```
#Applying Decission Tree Classifier
from sklearn.tree import DecisionTreeClassifier
model3 = DecisionTreeClassifier(max_depth=5)
model3.fit(X_train,y_train)
Out[152]:
DecisionTreeClassifier(class weight=None, criterion='gini', max depth=5,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=Non
e,
            splitter='best')
In [163]:
model3.score(X_train,y_train)
Out[163]:
0.990228013029316
In [164]:
model3.score(X test,y test)
Out[164]:
0.7532467532467533
In [162]:
#Applying Random Forest
from sklearn.ensemble import RandomForestClassifier
model4 = RandomForestClassifier(n_estimators=11)
model4.fit(X_train,y_train)
Out[162]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gin
i',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min samples leaf=1, min samples split=2,
            min weight fraction leaf=0.0, n estimators=11, n jobs=None,
            oob_score=False, random_state=None, verbose=0,
            warm start=False)
In [165]:
```

```
model4.score(X train,y train)
```

Out[165]:

0.990228013029316

```
Capstone project
In [166]:
model4.score(X_test,y_test)
Out[166]:
0.7532467532467533
In [169]:
#Support Vector Classifier
from sklearn.svm import SVC
model5 = SVC(kernel='rbf',
           gamma='auto')
model5.fit(X_train,y_train)
Out[169]:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
In [170]:
model5model.score(X_test,y_test).score(X_train,y_train)
Out[170]:
1.0
In [171]:
model5.score(X_test,y_test)
Out[171]:
0.6168831168831169
In [142]:
#Applying K-NN
from sklearn.neighbors import KNeighborsClassifier
model2 = KNeighborsClassifier(n_neighbors=7,
                              metric='minkowski',
                              p = 2
```

```
model2.fit(X train,y train)
```

Out[142]:

```
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=None, n_neighbors=7, p=2,
          weights='uniform')
```

In [143]:

```
#Preparing ROC Curve (Receiver Operating Characteristics Curve)
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
# predict probabilities
probs = model2.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc auc score(label, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(label, probs)
print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".format(tpr,fp
r, thresholds))
# plot no skill
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
```

Out[143]:

Text(0, 0.5, 'True Positive Rate')

In [144]:

```
#Precision Recall Curve for Logistic Regression
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1 score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.620 auc=0.728 ap=0.728

Out[144]:

[<matplotlib.lines.Line2D at 0x2278d0052e8>]

In [145]:

```
#Precision Recall Curve for KNN
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model2.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model2.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1 score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.658 auc=0.752 ap=0.709

Out[145]:

[<matplotlib.lines.Line2D at 0x2278d025908>]

In [167]:

```
#Precision Recall Curve for Decission Tree Classifier
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model3.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model3.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1 score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.916 auc=0.966 ap=0.958

Out[167]:

[<matplotlib.lines.Line2D at 0x2278bde2a20>]

In [168]:

```
#Precision Recall Curve for Random Forest
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model4.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model4.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1 score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.914 auc=0.968 ap=0.960

Out[168]:

[<matplotlib.lines.Line2D at 0x2278a747cf8>]

In []: