Exercises for the lecture: Bayesian networks: inference and prediction. D-separation.

December 3, 2015

1 Hidden Markov models

The graph below depicts the Bayesian network representation of a $Hidden\ Markov\ model\ (HMM)$. HMMs are popular tools for time series modelling, e.g. in speech recognition or for the generation of trajectories for robotic limbs. The X_i represent a time-series of observations (e.g. wavelet coefficients in speech modelling), whereas the H_i are a sequence of hidden variables which describe the dependency structure of the X_i across time. In real-world applications, the X_i are often continuous random variables, and each H_i can typically take on a large number of possible values. For simplicity, we assume here that the H_i and the X_i are binary. Furthermore, let

$$P(X_i|H_i)=0.8$$
 if and only if $X_i=H_i$
$$P(H_{i+1}|H_i)=0.7$$
 if and only if $H_i=H_{i+1}$
$$P(H_0=T)=0.5$$

 $P(X_i|H_i)$ is often called the *emission model*, and $P(H_{i+1}|H_i)$ is the *transition matrix*.

E1. (1p) draw the factor graph corresponding to this Bayesian network. Explain why the sum-product algorithm can be used to compute marginals in this network.

Use the sum-product algorithm, where applicable, to solve the exercises below. Compute numerical probabilities to 3 significant digits in exponential notation, e.g. write $1.73 \cdot 10^{-4}$ for $\frac{1}{5772}$.

E2. (4p) what are the marginal distributions $P(X_0), \ldots, P(X_3)$?

Assume you observe the sequence $S = (X_0 = T, X_1 = F, X_2 = F, X_3 = T)$.

- **E3**. (**3p**) **optional**: what is the probability distribution $P(H_3|S)$? This is an example of *inference* of the hidden state.
- **E4**. (3p) optional: what is the probability distribution $P(H_0|S)$?
- **E5**. (**3p**) **optional**: what is the most probable hidden state sequence H_0, H_1, H_2, H_3 given these observations? Answering this question is typically important when the hidden states are used as input into classification systems, e.g. to identify a spoken word.

Assume you observe the sequence $(X_0 = T, X_1 = F, X_2 = F)$.

- **E6**. (3p) what is the probability distribution of X_3 given this sequence? This is an example of *time-series prediction*.
- E7. (2p) assume all variables were unobserved. Are X_0 and X_3 independent? Assume you knew $H_2 = F$. Are X_0 and X_3 independent given this knowledge?