Zadanie 2 Wybór technologii - składowanie danych w Databricks

- Porównanie technologii DeltaLake i Iceberg
- Podpowiedz klientowi w jakich scenariuszach każda z technologii będzie bardziej optymalna.

Delta Lake

Technologia stworzona przez Databricks, głęboko zintegrowana z Apache Spark i Databricks.

Zalety:

- Automatyczne zarządzanie transakcjami ACID
- Wbudowana obsługa MERGE, UPDATE, DELETE
- Optymalizacja poprzez **Z-Ordering**, OPTIMIZE, VACUUM
- Bardzo dobra integracja z Power BI i MLflow

Idealna dla scenariuszy:

- Lakehouse na platformie Databricks z częstymi aktualizacjami danych (np. merge, upsert)
- ETL/ELT pipelines z dużą liczbą operacji na danych
- Projekty ML, gdzie potrzebna jest wersjonowalność danych (time travel)

Apache Iceberg

Technologia rozwijana przez Netflix i wspierana przez społeczność open-source, zaprojektowana z myślą o skalowalności i otwartości.

Zaletv:

- Skalowalna metadana (lepsza niż Delta Lake przy bardzo dużych tabelach)
- Pełna separacja metadanych od plików danych
- Optymalna dla czytania danych w dużych zbiorach (np. analizy ad-hoc)
- Wspierana przez wiele silników: Spark, Trino, Flink, Presto

Idealna dla scenariuszy:

- Heterogeniczne środowiska (wielu użytkowników/silników: Flink, Trino, Presto)
- Duże zbiory danych typu **append-only** (np. dane telemetryczne, logi)
- Analiza danych w otwartym ekosystemie

Podpowiedź dla klienta:

Scenariusz użycia	Technologia	Uzasadnienie
Praca w Databricks z pełnym	Delta Lake	Natywna integracja,
wsparciem		optymalizacja, operacje ACID
Duże, rosnące zbiory danych tylko do odczytu	Iceberg	Lepsze zarządzanie
		metadanymi i zgodność z
		wieloma silnikami
Machine Learning + ETL + BI	Delta Lake	Wersjonowanie, merge,
		integracja z MLflow i Power BI
Praca z Trino/Flink/Presto	Iceberg	Kompatybilność i otwarty
		standard tabel

Zadanie 3 Napisz krytykę architektury medalionu, może nie trzeba tworzyć medalionu, jakie ma błędy, wady

1. Złożoność implementacji

Wymaga tworzenia i zarządzania wieloma warstwami danych – co zwiększa nakład pracy, czas i błędy.

2. Opóźnienia przetwarzania

Dane muszą przejść przez wiele warstw, co powoduje większe opóźnienie od momentu załadunku do konsumpcji.

3. Zduplikowane dane

Te same dane występują w różnych warstwach – prowadzi to do wzrostu kosztów magazynowania.

4. Koszt obliczeniowy

Każda warstwa wymaga osobnego przetworzenia i obliczeń – co podnosi koszt działania Databricks/Spark.

5. Potrzeba wersjonowania

Brak spójnego mechanizmu wersjonowania między warstwami może prowadzić do niespójności danych.

6. Brak standaryzacji nazewnictwa

Warstwy Bronze/Silver/Gold nie mają technicznego znaczenia – mogą być różnie rozumiane przez zespoły.

7. Trudność w debugowaniu

Błędy przetwarzania są trudniejsze do prześledzenia, bo mogą wystąpić na różnych etapach transformacji.

8. Nadmierne przetwarzanie danych

Każda nowa warstwa może powodować niepotrzebne "kopiowanie" danych, nawet jeśli nie są one potrzebne.

9. Nadmiarowy kod

Każda warstwa wymaga własnych notebooków/pipeline'ów – co zwiększa złożoność kodu.

10. Niska elastyczność zmian

Zmiana schematu danych (schema evolution) wymaga często modyfikacji we wszystkich warstwach.

11. Słaba automatyzacja

Medalion wymaga ręcznej lub półautomatycznej orkiestracji wielu zadań (np. w ADF/Airflow).

12. Niejasna wartość warstw

Czasami nie wiadomo, co naprawdę różni Silver od Gold – różnice bywają sztuczne.

13. Wysoka krzywa uczenia

Nowi członkowie zespołu muszą zrozumieć koncepcję medalionu, co może spowolnić onboarding.

14. Niepotrzebne warstwy

W prostych projektach wystarcza jedna lub dwie warstwy – pełny medalion może być przesadą.

15. Utrudnione testowanie

Testowanie danych w każdej warstwie jest trudniejsze i wymaga osobnych testów jakości.

16. Brak widoczności lineage

Nie zawsze wiadomo, jak dane z Gold pochodzą z Bronze – brak przejrzystego śledzenia pochodzenia.

17. Wolniejsze wdrożenie MVP

Wymaga stworzenia pełnej struktury przed pierwszym użyciem, co opóźnia pierwszą wersję systemu.

18. Problemy z czasem życia danych

Trudno zarządzać retencją i usuwaniem danych – mogą zostać w wielu warstwach.

19. Zależność od konkretnej platformy

Medalion promowany głównie przez Databricks – może nie mieć sensu poza tym środowiskiem.

20. Brak zgodności z niektórymi standardami branżowymi

Niektóre firmy preferują inne podejścia (np. raw + curated + semantic) bardziej zgodne z ich architekturą DWH.