S.No	Country/ Year/ Institute	Title of the paper	Author/ Medium of Publication
		Path Following Methods Based on RL	
1	China – 2019 – Wuhan UT	A knowledge-free path planning approach for smart ships based on reinforcement learning	Chen Chen
		Methodology : Tabular Q-learning	Journal of Ocean Engineering
2	China – 2020 – Wuhan UT	A composite learning method for multi-ship collision avoidance based on reinforcement learning and inverse control	Shuo Xie
		Methodology : A3C, LSTM & Q-learning	Journal of Ocean Engineering
3	China – 2015 - Dalian Maritime University	Adaptive neural path-following control for under actuated ships in fields of marine practice	Guoqing Zhang
		Methodology : Neural Network-Adaptive Control	IEEE conference
4	Japan – 2020 – National Maritime Research Institute	Automatic ship collision avoidance using deep reinforcement learning with LSTM in continuous action spaces	Ryohei Sawada
		Methodology: LSTM – Proximal Policy Optimization(PPO)	Journal of Marine Science and Technology
5	South Korea – 2019 – Seoul National University	Control method for path following and collision avoidance of autonomous ship based on deep reinforcement learning	Zhao Luman
		Methodology: FFNN - Proximal Policy Optimization(PPO)	Journal of Marine Science and Technology
6	France - 2021 - PSL Research University	Ship path planning based on Deep Reinforcement Learning and weather forecast	Eva ARTUSI
		Methodology: FFNN – Proximal Policy Optimization(PPO2)	IEEE conference
7	Norway – 2018 - NTNU	Straight-Path Following for Under actuated Marine Vessels using Deep Reinforcement Learning	Andreas B.Martinsen
8	Norway – 2020 - NTNU	Methodology: DDPG Reinforcement Learning-Based Tracking Control of USVs in	IFAC Conference
		Varying Operational Conditions	Andreas B.Martinsen
		Methodology : Actor-Critic	Frontier in Robotics and AI
		Other Citations in Journal paper	
9	India – 2021 - IITM	A unified ship manoeuvring model with a nonlinear model predictive controller for path following in regular waves	R. Sandeepkumar
		Methodology : NMPC	Journal of Ocean Engineering
10	India – 2021- IITM	A unified seakeeping and manoeuvring model with a pid controller for path following of a kvlcc2 tanker in regular wave	Paramesh S Journal of Applied Ocean
11	Portugal – 2006-IST	Methodology : PID Path following control system for a tanker ship model	Research Lucia Moreira
		Methodology : PID	Journal of Ocean Engineering
			, <u>, , , , , , , , , , , , , , , , , , </u>