<u>2110573: Pattern Recognition</u> <u>การรู้จำแบบด้วยคอมพิวเตอร์</u> <u>Thursdays 13:00-16:00</u>

Pattern Recognition

- What is pattern recognition
 - Types of classification problems
- Generative models
 - Maximum likelihood estimate
 - Maximum a posteriori estimate
 - Gaussian Mixture Models
 - Naive Bayes
- Dimensionality reduction and visualization
 - Principle Component Analysis
 - Linear Discriminant Analysis
 - Random Projection
 - t-SNE
- Discriminative models
 - · Support Vector Machines
 - Neural Networks, DNN, CNN, LSTM
- Unsupervised methods
- Reinforcement learning (guest lecture)
- Other Applications and how to approach a classification task in the real world
- Tools: Jupyter Notebook, Tensorflow (Keras)

Course github https://github.com/ekapolc/pattern 2024

เนื้อหาวิชา

Pattern Recognitionเป็นส่วนหนึ่งของArtificial Intelligence ที่เน้นไปในการสร้างระบบรู้จำโดยอาศัยฐาน ข้อมูล วิชานี้จะสอนถึงการสร้างระบบรู้จำแบบต่างๆ รวมถึงทฤษฎีพื้นฐานของระบบรู้จำเหล่านั้น วิชาจะแบ่ง เป็นสองส่วนหลัก ช่วงแรกจะเน้นGenerative Models เช่น ทฤษฎีMaximum Likelihood Estimation,Maximum a posteriori และ Expectation Maximization ในช่วงที่สองจะเน้นDiscriminative Modeling เช่น Support Vector Machines และ Deep Learning ผู้เรียนจะได้เรียนรู้ถึงทฤษฎีและทดลอง ลงมือปฏิบัติจริงในด้านต่างๆเช่น bioinformatics, natural language processing, computer vision เป็นตัน เพื่อเป็นการปูพื้นฐานให้ผู้เรียนได้นำไปใช้ในวิชาเฉพาะทางที่สนใจต่อๆไป ในวิชานี้จะสอนผ่าน เครื่องมือที่ใช้กันทั่วไปในวงการ เช่น Jupyter Notebook และ Pytorch โดยการประมวลผลส่วนใหญ่จะทำ บนGoogle colaboratory ทั้งนี้ ผู้เรียนควรจะมีความรู้เบื้องตันเกี่ยวกับlinear algebraและprobability

<u>ตารางการเรียน</u>

คาบเรียนที่	เนื้อหา	การบ้านและควิช
1 - 11/1	Introduction, K-mean	เริ่มHW1
2 - 18/1	Regression, MLE & MAP	
3 - 25/1	Naive Bayes & GMM	ส่งHW1, Quiz 1, เริ่มHW2
4 - 1/2	GMM, EM, ELBO, Dimensionality reduction I (PCA)	
5 - 8/2	Dimensionality reduction II (LDA, RP) and visualization techniques (t-sne, UMAP, PHATE)	ส่งHW2, Quiz 2, เริ่มHW3
6 - 15/2	SVM, NN I	
7 - 22/2	NN II (CNN & Recurrent)	ส่งHW3, Quiz 3, เริ่มHW4
8 - 29/2	NN III (Architectures) & Pytorch demo	เริ่มHW5
9 - 7/3	Midterm week - No midterm for this class	
10 - 14/3	Transformers & Self-supervised I	ส่งHW4, Quiz 4
11 - 21/3	Self-supervised learning II	สงHW5, Quiz 5, ส่ง course project proposal, เริ่มHW6
11 - 28/3	Generative models I (GAN, VAE)	เริ่มHW7
12 - 4/4	Generative models II (Diffusion)	ส่งHW6, Quiz 6, เริ่ม HW8
13 - 11/4	Reinforcement Learning	ส่งHW7, Quiz 7
14 - 18/4	No regular class - meeting/progress presentation with project mentors	Course project progress
15 - 25/4	Tricks of the trade: machine learning in the real world + Guest	ส่งHW8, Quiz 8
Some time during final exam	Project presentation No final exam for this class	ส่งcourse project

<u>การส่งการบ้านสาย</u>

สายไม่เกิน 6 ชม. -0.5 คะแนน

สายไม่เกิน 24 ชม. -2 คะแนน

ถ้าส่งสายเกิน 24 ชม.จะไม่ได้รับการตรวจ

เกณฑ์การวัดผล

Attendance and in-class activities 10%

Quizzes 20%

Homework 40%

Project 30%

<u>การตัดเกรด</u>

- > 85% A
- > 80% B+
- > 75% B
- > 70% C+
- > 65% C
- > 60% D+
- > 55% D
- < 55% F

หมายเหตุ เกณฑ์การให้คะแนนดังกล่าวเป็นเกณฑ์เบื้องต้น ผู้สอนสามารถลดcut-offได้ตามความเหมาะสม ทั้งนี้ จะไม่มีการเพิ่ม cut-off ไม่ว่าในกรณีใดๆทั้งสิ้น

Office hour on discord

10:00-11:30 PM Monday, Tuesday, Friday

หนังสือเรียน

ไม่มีหนังสือเรียนบังคับ แต่ผู้สนใจสามารถอ่านหนังสือด้านล่างประกอบบทเรียนได้

- 1. Richard O. Duda, Peter E. Hart, David G. Stork, *Pattern Classification*, John Wiley & Sons, 2012.
- 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.