

Baum

Betrachte einen **Baum** aus N **Knoten**, nummeriert von 0 bis N-1. Knoten 0 heißt **Wurzel**. Jeder Knoten mit Ausnahme der Wurzel hat genau einen Elternknoten. Für jedes i mit $1 \le i < N$ gilt, dass der Elternknoten von i der Knoten P[i] ist, wobei P[i] < i. Wir nehmen auch an, dass P[0] = -1.

Für jeden Knoten i ($0 \le i < N$) ist der **Teilbaum** von i die Menge der folgenden Knoten:

- *i*, und
- jeder Knoten, dessen Elternknoten i ist, und
- jeder Knoten, dessen Großelternknoten i ist, und
- jeder Knoten, dessen Urgroßelternknoten i ist,
- etc.

Das untenstehende Bild zeigt einen Beispielbaum aus N=6 Knoten. Jeder Pfeil verbindet einen Knoten mit seinem Elternknoten, bis auf die Wurzel, die keinen Elternknoten hat. Der Teilbaum von Knoten 2 enthält Knoten 2,3,4 und 5. Der Teilbaum von Knoten 0 enthält alle 0 Knoten des Baumes und der Teilbaum von Knoten 0 enthält nur Knoten 0.

Jeder Knoten hat ein nicht-negatives **Gewicht**. Wir bezeichnen das Gewicht des Knotens i ($0 \le i < N$) mit W[i].

Deine Aufgabe ist es, ein Programm zu schreiben, das Q Anfragen, die jeweils durch ein Paar von ganzen Zahlen (L,R) bestimmt werden, beantwortet. Die Antwort auf die Anfrage sollte wie folgt berechnet werden:

Stellen wir uns vor, dass wir jedem Knoten des Baumes eine ganze Zahl, genannt **Koeffizient**, zuordnen. So eine Zuordnung wird durch eine Folge $C[0],\ldots,C[N-1]$ beschrieben, wobei C[i] ($0 \le i < N$) der Koeffizient ist, der Knoten i zugeordnet wird. Nennen wir diese Folge eine

Koeffizientenfolge. Beachte, dass die Glieder der Koeffizientenfolge negativ, 0 oder positiv sein können.

Für eine Anfrage (L,R) nennen wir eine Koeffizientenfolge **gültig**, wenn für jeden Knoten i ($0 \le i < N$) die folgende Bedingung gilt: Die Summe der Koeffizienten der Knoten im Teilbaum von Knoten i ist nicht kleiner als L und nicht größer als R.

Für eine gegebene Koeffizientenfolge $C[0],\ldots,C[N-1]$ definieren wir die **Kosten** des Knotens i als $|C[i]|\cdot W[i]$, wobei |C[i]| den Betrag von C[i] bezeichnet. Die **Gesamtkosten** schließlich sind die Summe der Kosten aller Knoten. Deine Aufgabe ist es, für jede Anfrage die **minimalen Gesamtkosten** zu berechnen, die man durch die Wahl einer geeigneten gültigen Koeffizientenfolge erreichen kann.

Angaben zur Implementierung

Du sollst die folgenden zwei Funktionen implementieren:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: Arrays der Länge N von ganzen Zahlen, die die Elternknoten und Gewichte angeben.
- Diese Funktion wird genau einmal in jedem Testfall aufgerufen, am Anfang der Interaktion zwischen dem Grader und deinem Programm.

```
long long query(int L, int R)
```

- L, R: Die ganzen Zahlen, die die Anfrage beschreiben.
- Diese Funktion wird in jedem Testfall Q-mal nach dem Aufruf von init aufgerufen.
- Diese Funktion soll die Antwort auf die gegebene Anfrage zurückgeben.

Beschränkungen

- 1 < N < 200000
- $1 \le Q \le 100\,000$
- P[0] = -1
- $0 \leq P[i] < i$ für alle i mit $1 \leq i < N$
- $0 \leq W[i] \leq 1\,000\,000$ für alle i mit $0 \leq i < N$
- $1 \le L \le R \le 1000000$ in allen Anfragen

Subtasks

Subtask	Punkte	Zusätzliche Beschränkungen	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ für alle i mit $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ für alle i mit $0 \leq i < N$	
5	11	$W[i] \leq 1$ für alle i mit $0 \leq i < N$	
6	22	L=1	
7	19	Keine weiteren Beschränkungen.	

Beispiel

Betrachte die folgenden Aufrufe:

Der Baum besteht aus 3 Knoten: aus der Wurzel und ihren 2 Kindern. Alle Knoten haben Gewicht 1.

In dieser Anfrage gilt L=R=1, das heißt, dass die Summe der Koeffizienten in jedem Teilbaum gleich 1 sein müssen. Betrachte die Koeffizientenfolge [-1,1,1]. Der Baum und die entsprechenden Koeffizienten (in grau unterlegten Rechtecken) sind hier dargestellt:

Die Summe der Koeffizienten jedes Teilbaums des Knoten i ($0 \le i < 3$) ist 1. Dementsprechend ist die Koeffizientenfolge gültig. Die Kosten können wie folgt berechnet werden:

Für jeden Knoten i ($0 \le i < 3$)

Knoten	Gewicht	Koeffizient	Kosten
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$\mid 1 \mid \cdot 1 = 1$

Die Gesamtkosten im Beispiel sind 3. Die beschriebene Koeffizientenfolge ist die einzig gültige, daher sollte der Aufruf 3 zurückgeben.

```
query(1, 2)
```

Die minimalen Kosten für diese Anfrage sind 2 und können durch die Koeffizientenfolge $\left[0,1,1\right]$ erreicht werden.

Beispielgrader

Eingabeformat:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

wobei L[j] und R[j] ($0 \le j < Q$) Eingabeparameter für den j-ten Aufruf von query sind.

Beachte, dass die zweite Zeile der Eingabe **lediglich** N-1 **ganze Zahlen** enthält, da der Beispielgrader den Wert von P[0] nicht einliest.

Ausgabeformat:

```
A[0]
A[1]
...
A[Q-1]
```

wobei A[j] ($0 \leq j < Q$) der Rückgabewert des j-ten Aufrufs von query ist.