Skincancer HAM-dataset med Pytorch

```
[1] do_training = True
```

Standardimporter

```
[1]
     import torch
     import torch.nn as nn
     import torch.nn.functional as F
     from torch.utils.data import DataLoader
     import torchvision
     from torchvision import datasets, transforms, models
     from torchvision.utils import make_grid
     import torch.optim as optim
     from torch.optim import lr_scheduler
     import time
     import os
     import numpy as np
     import pandas as pd
     #from sklearn.metrics import confusion_matrix
     import matplotlib.pyplot as plt
     %matplotlib inline
```

ModuleNotFoundError: No module named 'torchvision'

Hantering av GPU och CPU:

```
[3] def get_default_device():
    """Pick GPU if available, else CPU"""
    if torch.cuda.is_available():
        return torch.device('cuda')
    else:
        return torch.device('cpu')
```

```
[4] device = get_default_device()
```

```
[5] # print(device)
```

De båda nedanstående blocken används för att enkelt flytta till GPU:

```
def to_device(data, device):
    """Move tensor(s) to chosen device"""
    if isinstance(data, (list,tuple)):
        return [to_device(x, device) for x in data]
    return data.to(device, non_blocking=True)
```

```
class DeviceDataLoader():
    """Wrap a dataloader to move data to a device"""
    def __init__(self, dl, device):
        self.dl = dl
        self.device = device

def __iter__(self):
    """Yield a batch of data after moving it to device"""
    for b in self.dl:
        yield to_device(b, self.device)

def __len__(self):
    """Number of batches"""
    return len(self.dl)
```

Hjälpfunktioner för att spara och ladda:

```
[9] # https://pytorch.org/docs/master/notes/serialization.html

def save_trained_model(modelname):
    model_folder = "trained_models"
    model_file_suffix = ".pt"
    create_filename(modelname) # spottar ur sig ett filnamn i
    variabeln "file_name"

    full_model_filename = model_folder + "/" + file_name +
    model_file_suffix

    torch.save(model.state_dict(), full_model_filename)
```

```
def load_trained_model(modelname):
    model_folder = "trained_models"
    model_file_suffix = ".pt"
    create_filename(modelname) # spottar ur sig ett filnamn i
    variabeln "file_name"

    full_model_filename = model_folder + "/" + file_name +
    model_file_suffix

    if torch.cuda.is_available():
        model.load_state_dict(torch.load(full_model_filename))
    else:
        model.load_state_dict(torch.load(full_model_filename,
        map_location=torch.device('cpu')))
```

```
[11] def save_training_log(logname, do_validation = True):
    log_folder = "logs"
    log_filename = create_filename(logname)
    log_file_suffix = ".csv"
```

```
full_log_filename = log_folder + "/" + file_name +
log_file_suffix
    global training_log
    # Speciell range nedan för att starta på epok 1 och ej 0:
    if do_validation == True:
        training_log = pd.DataFrame(data={"epoch": range(1,
epochs + 1), \setminus
                                                "train_acc":
train_accuracy, \
                                                "train_loss":
train_losses, \
                                                "val_acc":
val_accuracy, \
                                                "val_loss":
val_losses})
        training_log.to_csv(full_log_filename, sep=',', index =
False)
    else:
        training_log = pd.DataFrame(data={"epoch": range(1,
epochs + 1), \setminus
                                                "train_acc":
train_accuracy, \
                                                "train_loss":
train_losses})
        training_log.to_csv(full_log_filename, sep=',', index =
False)
    return training_log
```

```
def load_training_log(logname):
    log_folder = "logs"
    log_filename = create_filename(logname)
    log_file_suffix = ".csv"
    full_log_filename = log_folder + "/" + file_name +
    log_file_suffix

global training_log
    training_log = pd.read_csv(full_log_filename)
    return training_log
```

Definiera de olika mängderna för träning, validering och test:

```
[13] epochs = 100
  learning_rate = 1e-4

img_w = 299
img_h = 299
img_dim = 3

batchsz_train = 2**2
batchsz_val = 2**4
batchsz_test = 2**4

train_num_workers = 4
test_val_num_workers = 4

basepath = "../../../ml/Datasets/skin-cancer-mnist-ham10000/images_per_label_splitted_sets/"
```

```
transform = val_test_data_transform)
```

```
[16]
      # Skapa loaders för de tre dataseten:
      train_loader =
      torch.utils.data.DataLoader(skincancer_train_dataset,
                                                    batch_size =
      batchsz_train,
                                                    shuffle = True,
                                                    pin_memory = True,
                                                    drop_last = True,
                                                    num_workers =
      train_num_workers)
      valid_loader =
      torch.utils.data.DataLoader(skincancer_valid_dataset,
                                                    batch_size =
      batchsz_val,
                                                    shuffle = True,
                                                    num_workers =
      test_val_num_workers)
      test_loader =
      torch.utils.data.DataLoader(skincancer_test_dataset,
                                                    batch_size =
      batchsz_test,
                                                    shuffle = False,
                                                    num_workers =
      test_val_num_workers)
```

Skapa en weighted loader som hanterar obalansen mellan klasserna:

```
[17] train_targets = train_loader.dataset.targets
# print(len(train_targets))
```

[18] **from** torch.utils.data **import** WeightedRandomSampler

```
[19] # Test för att oversampla vissa klasser...
# https://discuss.pytorch.org/t/how-to-implement-oversampling-in-
cifar-10/16964/6

train_targets = train_loader.dataset.targets
class_count = np.unique(train_targets, return_counts=True)[1]
```

```
#print("Antal bilder per klass = ", class_count, "\n")

# Testa att köra med 1 / sevenones för att se en obalanserad,
vanlig, loader
# och med 1 / class_count för att se hur det balanserade
resultatet blir:

# sevenones = np.ones(7)
# weight = 1 / sevenones
weight = 1. / class_count
samples_weight = weight[train_targets]
samples_weight = torch.from_numpy(samples_weight)

# Replacement = True ger dragning med återläggning, vilket vi ska
ha,
# annars kommer de mindre klasserna "ta slut" i dragningen:
sampler = WeightedRandomSampler(samples_weight,
len(samples_weight), replacement=True)
```

```
[21] # Definiera antalet klasser:
    number_of_classes = len(test_loader.dataset.classes)
```

Flytta *_loader till rätt device

```
[22] train_dl = DeviceDataLoader(train_loader, device)
    train_dl_weighted = DeviceDataLoader(train_loader_weighted,
    device)
    valid_dl = DeviceDataLoader(valid_loader, device)
    test_dl = DeviceDataLoader(test_loader, device)
```

Visa skillnader mellan oviktad och viktad loader:

```
[49]
      print("Antal bilder per klass = ", class_count, "\n")
      # Visa hur den drar samples från klasserna för fyra batcher:
      for batch_idx, (data, target) in
      enumerate(train_loader_weighted):
          print('Batch {}, classes {}, count {}'.format(
              batch_idx, *np.unique(target.numpy(),
      return_counts=True)))
          if batch_idx == 3:
              break
     Antal bilder per klass = [ 228 359 769 80 779 4693
                                                                997
     Batch 0, classes [2 5 6], count [1 1 2]
     Batch 1, classes [0 2 5 6], count [1 1 1 1]
     Batch 2, classes [0 4], count [2 2]
     Batch 3, classes [0 3 4], count [1 2 1]
      print("Antal bilder per klass = ", class_count, "\n")
[50]
      # Visa hur den drar samples från klasserna för fyra batcher:
      for batch_idx, (data, target) in enumerate(train_loader):
          print('Batch {}, classes {}, count {}'.format(
              batch_idx, *np.unique(target.numpy(),
      return_counts=True)))
          if batch_idx == 3:
              break
     Antal bilder per klass = [ 228 359 769
                                                 80 779 4693
                                                                997
     Batch 0, classes [1 5], count [1 3]
     Batch 1, classes [5], count [4]
     Batch 2, classes [1 5], count [1 3]
     Batch 3, classes [0 1 4 5], count [1 1 1 1]
[51]
      # len(target) # ger en vektor med batchsz i storlek.
      # Kolla t.ex. hur många samples ur klass A som finns i sista
      batchen ovan:
      \# A = 0
      # np.sum(target.numpy() == A)
```

Definiera en modell:

```
# Instansiera en modell:
[23]
      model = models.inception_v3(pretrained = True, progress = True)
[24]
      # Printa modellen för att se de sista FC-lagren som behöver bytas
      print(model)
      Inception3(
        (Conv2d_1a_3x3): BasicConv2d(
          (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True,
     track_running_stats=True)
       (Conv2d_2a_3x3): BasicConv2d(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1),
     bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True,
     track_running_stats=True)
       (Conv2d_2b_3x3): BasicConv2d(
          (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=
      (1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
      track_running_stats=True)
       (Conv2d_3b_1x1): BasicConv2d(
          (conv): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1),
     bias=False)
          (bn): BatchNorm2d(80, eps=0.001, momentum=0.1, affine=True,
      track_running_stats=True)
       (Conv2d_4a_3x3): BasicConv2d(
          (conv): Conv2d(80, 192, kernel_size=(3, 3), stride=(1, 1),
     bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
      track_running_stats=True)
       (Mixed_5b): InceptionA(
```

```
(branch1x1): BasicConv2d(
      (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch5x5_1): BasicConv2d(
      (conv): Conv2d(192, 48, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch5x5_2): BasicConv2d(
      (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=
(2, 2), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch3x3dbl_3): BasicConv2d(
      (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
  (Mixed_5c): InceptionA(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch5x5_1): BasicConv2d(
      (conv): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1),
```

```
bias=False)
      (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch5x5_2): BasicConv2d(
      (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=
(2, 2), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_3): BasicConv2d(
      (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch_pool): BasicConv2d(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
  )
  (Mixed_5d): InceptionA(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch5x5_1): BasicConv2d(
      (conv): Conv2d(288, 48, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch5x5_2): BasicConv2d(
      (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=
(2, 2), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
```

```
track_running_stats=True)
    )
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_3): BasicConv2d(
      (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
  )
  (Mixed_6a): InceptionB(
    (branch3x3): BasicConv2d(
      (conv): Conv2d(288, 384, kernel_size=(3, 3), stride=(2, 2),
bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_3): BasicConv2d(
      (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2),
bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
```

```
)
  (Mixed_6b): InceptionC(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7_1): BasicConv2d(
      (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7_2): BasicConv2d(
      (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7_3): BasicConv2d(
      (conv): Conv2d(128, 192, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_1): BasicConv2d(
      (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_2): BasicConv2d(
      (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_3): BasicConv2d(
      (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_4): BasicConv2d(
      (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_5): BasicConv2d(
      (conv): Conv2d(128, 192, kernel_size=(1, 7), stride=(1, 1),
```

```
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
  )
  (Mixed_6c): InceptionC(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7_1): BasicConv2d(
      (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7_2): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7_3): BasicConv2d(
      (conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_1): BasicConv2d(
      (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_2): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_3): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
```

```
track_running_stats=True)
    )
    (branch7x7dbl_4): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_5): BasicConv2d(
      (conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
  )
  (Mixed_6d): InceptionC(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7_1): BasicConv2d(
      (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7_2): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7_3): BasicConv2d(
      (conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_1): BasicConv2d(
      (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
```

```
(branch7x7dbl_2): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_3): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_4): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_5): BasicConv2d(
      (conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
  )
  (Mixed_6e): InceptionC(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7_1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7_2): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7_3): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1),
```

```
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7dbl_1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_2): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_3): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_4): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch7x7dbl_5): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch_pool): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
  )
  (AuxLogits): InceptionAux(
    (conv0): BasicConv2d(
      (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (conv1): BasicConv2d(
      (conv): Conv2d(128, 768, kernel_size=(5, 5), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(768, eps=0.001, momentum=0.1, affine=True,
```

```
track_running_stats=True)
    (fc): Linear(in_features=768, out_features=1000, bias=True)
  (Mixed_7a): InceptionD(
    (branch3x3_1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch3x3_2): BasicConv2d(
      (conv): Conv2d(192, 320, kernel_size=(3, 3), stride=(2, 2),
bias=False)
      (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7x3_1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7x3_2): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1),
padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7x3_3): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1),
padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch7x7x3_4): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
  )
  (Mixed_7b): InceptionE(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3_1): BasicConv2d(
      (conv): Conv2d(1280, 384, kernel_size=(1, 1), stride=(1, 1),
bias=False)
```

```
(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3_2a): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1),
padding=(0, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3_2b): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1),
padding=(1, 0), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(1280, 448, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch3x3dbl_3a): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1),
padding=(0, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch3x3dbl_3b): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1),
padding=(1, 0), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(1280, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
  (Mixed_7c): InceptionE(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(2048, 320, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
```

```
)
    (branch3x3_1): BasicConv2d(
      (conv): Conv2d(2048, 384, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3_2a): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1),
padding=(0, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3_2b): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1),
padding=(1, 0), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(2048, 448, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_3a): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1),
padding=(0, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch3x3dbl_3b): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1),
padding=(1, 0), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    (branch_pool): BasicConv2d(
      (conv): Conv2d(2048, 192, kernel_size=(1, 1), stride=(1, 1),
bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True,
track_running_stats=True)
    )
  )
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)
```

```
[25] models_last_fc_infeatures = 2048
model_name = 'Inception_v3'
```

```
[26] create_filename(model_name)

'Inception_v3_e100_bsztr4_bszval16_lr1e-04'
```

```
if do_training == True:
    # Vi måste ändra på det sista FC-lagret i modellen, som från
början
    # innehållet 1000 st out-features. Vi behöver bara 7.

for param in model.parameters():
    param.require_grad = False

# Ersätt sista fc-lagret med rätt antal ut-klasser:
    model.fc = nn.Linear(in_features = models_last_fc_infeatures,
    out_features = number_of_classes, bias = True)

else:
    model.fc = nn.Linear(in_features = models_last_fc_infeatures,
    out_features = number_of_classes, bias = True)
    load_trained_model(model_name)
    model.eval()
```

Flytta modellen till GPU, om en sådan finns:

```
[28] # Flytta modellen till rätt device:
    to_device(model, device)

# Verifiera att modellen är på rätt device:
    # True => modellen finns på GPU.

next(model.parameters()).is_cuda
```

True

```
[29] trainableparameters = []
    for param in model.parameters():
        # trainableparameters = param.numel()
        trainableparameters.append(param.numel())
        num_trainable_params = np.sum(trainableparameters)

print(f'Antalet träningsbara parametrar är
{num_trainable_params:,} st.')
```

Antalet träningsbara parametrar är 25,126,607 st.

Definiera loss-function och vilken metod för optimering som ska användas:

```
[30] # Definiera loss-function och vilken optimerare som ska användas:
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr =
    learning_rate)
```

```
[31] # Decay LR by a factor of 0.1 every 3 epochs
# exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size =
3, gamma = 0.1)
```

Följande återställer modellens vikter mellan olika körningar

```
[32] def weights_init(m):
    if isinstance(m, nn.Conv2d):
        torch.nn.init.xavier_uniform_(m.weight.data)
```

Overfit på en batch för att se att modellen är rimlig

```
[34] if do_training == True:
```

```
model.apply(weights_init)
    model.train()
    inputs, labels = next(iter(train_dl_weighted))
    inputs = inputs.to(device)
    labels = labels.to(device)
    criterion_check_onebatch = nn.CrossEntropyLoss()
    optimizer_check_onebatch = optim.Adam(model.parameters(), lr
= learning_rate)
   model.train()
    for epoch in range(31):
        optimizer_check_onebatch.zero_grad()
        outputs = model(inputs)
        loss = criterion_check_onebatch(outputs, labels)
        _, preds = torch.max(outputs, 1)
        loss.backward()
       optimizer_check_onebatch.step()
        correct = torch.sum(preds == labels)
        if epoch%10 == 0:
            print(f'Epok {epoch:02}: ---- loss = {loss:4.4f} ---
-- accuracy = {correct}')
else:
   pass
```

Träna och utvärdera modellen

```
def train_eval(epochs = 10, do_validation = True,
    training_dataloader = train_dl_weighted, validation_dataloader =
    valid_dl):

# if ((do_training == False) and (do_validation == True)):
    # print("Kan inte validera en modell som inte tränats.")
# else:
    start_training_time = time.time()

# Placeholders för att mäta modellen:
    global train_accuracy, train_losses, val_accuracy, val_losses

train_accuracy = []
    train_losses = []

val_accuracy = []
    val_accuracy = []
    val_accuracy = []
```

```
for epoch in range(epochs):
       start_epoch_time = time.time()
       train_correct_pred_per_epoch = 0
       current_train_loss = 0.0
       current_train_corrects = 0
       # Träning
# Sätt modellen i träningsläge:
       start_train_time = time.time()
       model.train()
       for inputs_train, labels_train in training_dataloader:
           # Med denna modell får vi två outputs:
           train_predictions, train_aux_logits =
model.forward(inputs_train)
           optimizer.zero_grad()
           train_loss = criterion(train_predictions,
labels_train)
           train_loss.backward()
          optimizer.step()
           #exp_lr_scheduler.step()
           #lr = exp_lr_scheduler.get_lr()
           # Nedan ger den mest troliga klassen:
           # train_predicted består av två värden:
           # values och indices, därav väljer
           # vi train_predicted[1] sen.
           train_predicted = torch.max(train_predictions, 1)
          current_train_loss += train_loss.item() *
batchsz_train
           current_train_corrects +=
torch.sum(train_predicted[1] == labels_train.data)
       end_train_time = time.time()
       # Validering
# Sätt modellen i utvärderingsläge:
       if do_validation == True:
           start_eval_time = time.time()
           model.eval()
           current_val_loss = 0.0
           current_val_corrects = 0
```

```
with torch.no_grad():
              inputs_val, labels_val =
next(iter(validation_dataloader))
              val_predictions = model.forward(inputs_val)
              val_loss = criterion(val_predictions, labels_val)
              val_pred_values, val_predicted =
torch.max(val_predictions, 1)
              current_val_loss += val_loss.item() * batchsz_val
              current_val_corrects += torch.sum(val_predicted
== labels_val.data)
          end_eval_time = time.time()
       else:
          pass
######
       # Metrics
# Räkna ut acc och loss per epok:
       epoch_train_loss = np.float64(current_train_loss /
num_train_images)
       epoch_train_acc =
np.float64(current_train_corrects.double() / num_train_images)
       if do_validation == True:
           epoch_val_loss = np.float64(current_val_loss /
batchsz_val)
          epoch_val_acc =
np.float64(current_val_corrects.double() / batchsz_val)
           pass
       # Lagra accuracy och loss per epok i en lista för t.ex.
plottning:
       train_losses.append(epoch_train_loss)
       train_accuracy.append(epoch_train_acc)
       if do_validation == True:
          val_losses.append(epoch_val_loss)
          val_accuracy.append(epoch_val_acc)
       else:
           pass
       # Räkna ut tiderna per epok:
```

```
end_epoch_time = time.time()
        epoch_time = end_epoch_time - start_epoch_time
        # epoch startar på 0, därav "+1" nedan:
        if do_validation == True:
            print(f"Epok {epoch + 1:02}: {epoch_time:2.1f} sek,
train-acc = {epoch_train_acc:4.3f}, val-acc =
{epoch_val_acc:4.3f}, train-loss = {epoch_train_loss:4.4f}, val-
loss = {epoch_val_loss:4.4f}")
        else:
            print(f"Epok {epoch + 1:02}: {epoch_time:2.1f} sek,
train-acc = {epoch_train_acc:4.3f}, train-loss =
{epoch_train_loss:4.4f}")
    # Spara träningsdatan till fil och i en pandas_df:
    #save_training_log(model_name, do_validation)
   end_training_time = time.time()
   delta = end_training_time - start_training_time
    print(f'\nTraining took {delta:.2f} seconds.')
```

```
[] # Felsökning nedan...:-)
```

```
with torch.no_grad():
    inputs_val, labels_val = next(iter(valid_dl))

val_predictions = model.forward(inputs_val)
    val_loss = criterion(val_predictions, labels_val)

val_pred_values, val_predicted = torch.max(val_predictions,

current_val_corrects = 0

current_val_corrects += torch.sum(val_predicted == labels_val.data)
    print(current_val_corrects)
```

tensor(8, device='cuda:0')

```
[90] val_predictions # (16, 7), från model.forward(inputs)
# Är detta "sannolikheten" per klass, crossentropy? Ja, eftersom
det
# kommer från model.forward()...!
```

```
tensor([[-0.5186, -0.0426, -0.4392, -0.1860, -0.2805, -0.8589, 0.0593],
       [0.3928, -0.2779, -0.1446, 0.3555, -0.4682, 0.2508, -0.1850],
       [-0.5906, -0.4043, 0.1135, 0.1581, 0.0968, -0.1123, -0.3515],
       [ 0.3514, 0.1627, 0.3748, -0.1686, 0.1726, 0.1787, 0.5258],
       [-0.0804, -0.1824, -0.3288, -0.1269, 0.1130, 0.1983, -0.2513],
       [0.2773, -0.6002, -0.1763, -0.0763, 0.3227, -0.2346, -0.5133],
       [-0.0805, -0.3232, 0.0648, -0.0875, 0.0601, -0.0177, 0.2190],
       [-0.3279, -0.2118, 0.1383, -0.2011, 0.0932, -0.0749, -0.1768],
       [-0.3830, -0.5163, 0.2566, -0.0472, 0.1888, 0.0033, -0.3669],
       [-0.0913, -0.0355, -0.0042, -0.5512, 0.3089, -0.6105, -0.0823],
       [-0.1353, -0.5246, 0.2645, -0.5012, 0.0816, 0.2328, -0.1560],
       [0.4153, -0.1650, 0.3160, 0.2189, -0.1188, 0.1177, -0.1486],
       [-0.0165, -0.5099, -0.1494, 0.6054, 0.1635, 0.0330, -0.1733],
       [-0.4773, 0.0527, -0.0618, 0.2371, -0.1612, 0.0908, -0.1353],
       [-0.2372, -0.2170, -0.2533, 0.1442, 0.3729, 0.1128, -0.6340],
       [0.2361, -0.8672, -0.2262, 0.0009, -0.3076, 0.0644,
-0.0621]],
      device='cuda:0')
val_what # (16, 1000), från model.forward(inputs)
tensor([[-0.2042, -0.3192, -1.8778, ..., 0.3699, -1.3243, -0.1011],
       [-0.8045, 1.1339, -2.7234, \ldots, 0.8253, 1.9302, 1.8388],
       [-1.5712, 1.3545, -0.6361, ..., -3.8614, 0.2421, 0.8606],
       [-0.9931, 1.2717, -0.4980, \ldots, 1.9029, 3.0866, 0.6406],
       [-0.6393, 2.0526, 0.9540, ..., -0.3114, -0.8450,
                                                           0.7645],
       [0.2048, 0.4666, 1.8012, ..., 0.4212, 1.1100, -3.0695]],
      device='cuda:0')
val_pred_values # (16), torch.max(val_predictions, 1)
# torch.max(tensor, dim = 1) ger två värden:
# 1. max-värdena längs dim = 1 (=rad)
# 2. max-värdenas index i tensorn.
# Men varför en 1000-dimensions-tensor ovan?
tensor([0.0593, 0.3928, 0.1581, 0.5258, 0.1983, 0.3227, 0.2190, 0.1383,
0.2566,
       0.3089, 0.2645, 0.4153, 0.6054, 0.2371, 0.3729, 0.2361
      device='cuda:0')
```

[91]

[92]

[93]

```
tensor([6, 0, 3, 6, 5, 4, 6, 2, 2, 4, 2, 0, 3, 3, 4, 0], device='cuda:0')
```

val_predicted # (16), torch.max(val_predictions, 1)

```
[] # slut på felsökning i validation!
```

```
[108] # Nollställer vikterna i modellen:
    if do_training == True:
        model.apply(weights_init)
else:
        pass

# Nedan för att vi använder "droplast = True"...

# Train:
num_train_images = batchsz_train *
np.floor_divide(len(train_loader.dataset), batchsz_train)

# Validation:
num_val_images = batchsz_val *
np.floor_divide(len(valid_loader.dataset), batchsz_val)
```

Träningsrunda #1

```
[114] # Här görs själva träningen, valideringen, sparande av modellen
    och träningsloggen.
    # Alternativt så laddas en redan färdig modell/träningslogg.

# "epochs" definieras i början av filen!

if do_training == True:
        train_eval(epochs, do_validation=True,
        training_dataloader=train_dl_weighted,
        validation_dataloader=valid_dl)
            save_trained_model(model_name)

else:
        load_training_log(model_name)
```

```
Epok 01: 188.7 sek, train-acc = 0.153, val-acc = 0.188, train-loss = 1.9475, val-loss = 2.0978

Epok 02: 195.5 sek, train-acc = 0.201, val-acc = 0.312, train-loss = 1.8938, val-loss = 1.6088

Epok 03: 195.3 sek, train-acc = 0.252, val-acc = 0.062, train-loss = 1.8310, val-loss = 2.1506

Epok 04: 195.2 sek, train-acc = 0.293, val-acc = 0.250, train-loss = 1.7670, val-loss = 1.5951

Epok 05: 196.0 sek, train-acc = 0.348, val-acc = 0.375, train-loss =
```

```
1.6789, val-loss = 1.9975
Epok 06: 197.8 sek, train-acc = 0.373, val-acc = 0.562, train-loss =
1.6287, val-loss = 1.1916
Epok 07: 197.9 sek, train-acc = 0.399, val-acc = 0.375, train-loss =
1.5708, val-loss = 1.4248
Epok 08: 198.3 sek, train-acc = 0.411, val-acc = 0.250, train-loss =
1.5293, val-loss = 1.9929
Epok 09: 198.6 sek, train-acc = 0.439, val-acc = 0.500, train-loss =
1.4731, val-loss = 1.3103
Epok 10: 197.0 sek, train-acc = 0.440, val-acc = 0.375, train-loss =
1.4743, val-loss = 1.3613
Epok 11: 196.5 sek, train-acc = 0.472, val-acc = 0.688, train-loss =
1.3959, val-loss = 0.9430
Epok 12: 196.3 sek, train-acc = 0.464, val-acc = 0.500, train-loss =
1.4032, val-loss = 1.2661
Epok 13: 196.7 sek, train-acc = 0.485, val-acc = 0.562, train-loss =
1.3627, val-loss = 0.8146
Epok 14: 196.7 sek, train-acc = 0.491, val-acc = 0.750, train-loss =
1.3459, val-loss = 1.0364
Epok 15: 196.7 sek, train-acc = 0.487, val-acc = 0.375, train-loss =
1.3372, val-loss = 5.2706
Epok 16: 196.7 sek, train-acc = 0.519, val-acc = 0.375, train-loss =
1.2735, val-loss = 2.7972
Epok 17: 197.0 sek, train-acc = 0.519, val-acc = 0.625, train-loss =
1.2737, val-loss = 1.1564
Epok 18: 196.8 sek, train-acc = 0.540, val-acc = 0.375, train-loss =
1.2358, val-loss = 2.0076
Epok 19: 197.1 sek, train-acc = 0.552, val-acc = 0.562, train-loss =
1.2058, val-loss = 1.1463
Epok 20: 197.0 sek, train-acc = 0.559, val-acc = 0.750, train-loss =
1.1717, val-loss = 0.7386
Epok 21: 197.1 sek, train-acc = 0.567, val-acc = 0.438, train-loss =
1.1620, val-loss = 1.2498
Epok 22: 197.1 sek, train-acc = 0.587, val-acc = 0.375, train-loss =
1.1276, val-loss = 3.6879
Epok 23: 197.4 sek, train-acc = 0.577, val-acc = 0.375, train-loss =
1.1423, val-loss = 2.0043
Epok 24: 197.3 sek, train-acc = 0.580, val-acc = 0.500, train-loss =
1.1124, val-loss = 6.3617
Epok 25: 197.2 sek, train-acc = 0.602, val-acc = 0.375, train-loss =
1.0803, val-loss = 1.8246
Epok 26: 197.1 sek, train-acc = 0.611, val-acc = 0.688, train-loss =
1.0595, val-loss = 0.8898
Epok 27: 197.2 sek, train-acc = 0.614, val-acc = 0.438, train-loss =
1.0437, val-loss = 1.1571
Epok 28: 197.2 sek, train-acc = 0.610, val-acc = 0.688, train-loss =
1.0412, val-loss = 1.0167
Epok 29: 197.3 sek, train-acc = 0.625, val-acc = 0.625, train-loss =
0.9942, val-loss = 0.8969
Epok 30: 197.5 sek, train-acc = 0.644, val-acc = 0.688, train-loss =
0.9728, val-loss = 1.0953
Epok 31: 197.1 sek, train-acc = 0.635, val-acc = 0.500, train-loss =
```

```
0.9966, val-loss = 1.6764
Epok 32: 197.4 sek, train-acc = 0.641, val-acc = 0.625, train-loss =
0.9604, val-loss = 0.9180
Epok 33: 197.4 sek, train-acc = 0.644, val-acc = 0.625, train-loss =
0.9467, val-loss = 1.0769
Epok 34: 197.3 sek, train-acc = 0.634, val-acc = 0.562, train-loss =
0.9503, val-loss = 1.2998
Epok 35: 197.3 sek, train-acc = 0.656, val-acc = 0.562, train-loss =
0.9247, val-loss = 0.8528
Epok 36: 197.4 sek, train-acc = 0.659, val-acc = 0.688, train-loss =
0.9181, val-loss = 1.6538
Epok 37: 197.7 sek, train-acc = 0.667, val-acc = 0.562, train-loss =
0.9084, val-loss = 1.3321
Epok 38: 197.4 sek, train-acc = 0.664, val-acc = 0.688, train-loss =
0.9069, val-loss = 0.9358
Epok 39: 197.3 sek, train-acc = 0.671, val-acc = 0.562, train-loss =
0.8857, val-loss = 2.0192
Epok 40: 197.2 sek, train-acc = 0.670, val-acc = 0.688, train-loss =
0.8866, val-loss = 2.2800
Epok 41: 197.5 sek, train-acc = 0.672, val-acc = 0.562, train-loss =
0.8836, val-loss = 1.1791
Epok 42: 197.4 sek, train-acc = 0.672, val-acc = 0.750, train-loss =
0.8789, val-loss = 0.7714
Epok 43: 197.4 sek, train-acc = 0.678, val-acc = 0.750, train-loss =
0.8589, val-loss = 1.1020
Epok 44: 197.4 sek, train-acc = 0.685, val-acc = 0.375, train-loss =
0.8325, val-loss = 1.9485
Epok 45: 197.6 sek, train-acc = 0.680, val-acc = 0.312, train-loss =
0.8702, val-loss = 2.1241
Epok 46: 197.5 sek, train-acc = 0.694, val-acc = 0.438, train-loss =
0.8297, val-loss = 2.3729
Epok 47: 197.7 sek, train-acc = 0.694, val-acc = 0.812, train-loss =
0.8262, val-loss = 2.0544
Epok 48: 197.8 sek, train-acc = 0.699, val-acc = 0.688, train-loss =
0.8031, val-loss = 1.0296
Epok 49: 197.6 sek, train-acc = 0.694, val-acc = 0.562, train-loss =
0.8323, val-loss = 0.8082
Epok 50: 197.5 sek, train-acc = 0.701, val-acc = 0.688, train-loss =
0.8114, val-loss = 0.7651
Epok 51: 197.4 sek, train-acc = 0.706, val-acc = 0.500, train-loss =
0.7990, val-loss = 1.1351
Epok 52: 197.7 sek, train-acc = 0.707, val-acc = 0.438, train-loss =
0.7924, val-loss = 0.8877
Epok 53: 197.7 sek, train-acc = 0.708, val-acc = 0.562, train-loss =
0.7799, val-loss = 0.8841
Epok 54: 197.4 sek, train-acc = 0.712, val-acc = 0.688, train-loss =
0.7846, val-loss = 1.9554
Epok 55: 197.7 sek, train-acc = 0.709, val-acc = 0.688, train-loss =
0.7907, val-loss = 0.9413
Epok 56: 197.5 sek, train-acc = 0.716, val-acc = 0.500, train-loss =
0.7462, val-loss = 0.9541
Epok 57: 197.6 sek, train-acc = 0.714, val-acc = 0.688, train-loss =
```

```
0.7589, val-loss = 0.9520
Epok 58: 197.5 sek, train-acc = 0.709, val-acc = 0.812, train-loss =
0.7781, val-loss = 0.4887
Epok 59: 197.7 sek, train-acc = 0.719, val-acc = 0.625, train-loss =
0.7525, val-loss = 1.3916
Epok 60: 197.9 sek, train-acc = 0.725, val-acc = 0.688, train-loss =
0.7397, val-loss = 0.6547
Epok 61: 197.8 sek, train-acc = 0.728, val-acc = 0.562, train-loss =
0.7382, val-loss = 1.1263
Epok 62: 197.9 sek, train-acc = 0.720, val-acc = 0.500, train-loss =
0.7566, val-loss = 1.2619
Epok 63: 197.9 sek, train-acc = 0.738, val-acc = 0.500, train-loss =
0.7050, val-loss = 1.0538
Epok 64: 197.6 sek, train-acc = 0.735, val-acc = 0.562, train-loss =
0.7126, val-loss = 1.2428
Epok 65: 197.8 sek, train-acc = 0.747, val-acc = 0.625, train-loss =
0.6982, val-loss = 0.8411
Epok 66: 197.9 sek, train-acc = 0.741, val-acc = 0.625, train-loss =
0.6966, val-loss = 1.2583
Epok 67: 197.9 sek, train-acc = 0.753, val-acc = 0.562, train-loss =
0.6680, val-loss = 0.9478
Epok 68: 197.7 sek, train-acc = 0.735, val-acc = 0.625, train-loss =
0.6948, val-loss = 1.0621
Epok 69: 198.0 sek, train-acc = 0.737, val-acc = 0.750, train-loss =
0.7004, val-loss = 0.7840
Epok 70: 197.9 sek, train-acc = 0.749, val-acc = 0.812, train-loss =
0.6761, val-loss = 1.2190
Epok 71: 198.0 sek, train-acc = 0.744, val-acc = 0.688, train-loss =
0.6930, val-loss = 0.6777
Epok 72: 198.1 sek, train-acc = 0.749, val-acc = 0.625, train-loss =
0.6815, val-loss = 0.8202
Epok 73: 198.0 sek, train-acc = 0.754, val-acc = 0.500, train-loss =
0.6748, val-loss = 0.9940
Epok 74: 198.0 sek, train-acc = 0.753, val-acc = 0.688, train-loss =
0.6696, val-loss = 0.8163
Epok 75: 197.9 sek, train-acc = 0.755, val-acc = 0.500, train-loss =
0.6605, val-loss = 1.1640
Epok 76: 197.9 sek, train-acc = 0.759, val-acc = 0.688, train-loss =
0.6408, val-loss = 0.8165
Epok 77: 197.9 sek, train-acc = 0.766, val-acc = 0.500, train-loss =
0.6368, val-loss = 1.1745
Epok 78: 198.0 sek, train-acc = 0.762, val-acc = 0.875, train-loss =
0.6428, val-loss = 0.3986
Epok 79: 198.0 sek, train-acc = 0.765, val-acc = 0.438, train-loss =
0.6496, val-loss = 1.5209
Epok 80: 198.0 sek, train-acc = 0.763, val-acc = 0.750, train-loss =
0.6327, val-loss = 0.9269
Epok 81: 198.1 sek, train-acc = 0.760, val-acc = 0.688, train-loss =
0.6396, val-loss = 1.7422
Epok 82: 197.9 sek, train-acc = 0.779, val-acc = 0.875, train-loss =
0.6089, val-loss = 0.4387
Epok 83: 198.5 sek, train-acc = 0.770, val-acc = 0.375, train-loss =
```

```
0.6196, val-loss = 2.0462
Epok 84: 198.1 sek, train-acc = 0.773, val-acc = 0.750, train-loss =
0.6092, val-loss = 1.1982
Epok 85: 198.2 sek, train-acc = 0.781, val-acc = 0.875, train-loss =
0.5911, val-loss = 0.3891
Epok 86: 198.1 sek, train-acc = 0.774, val-acc = 0.625, train-loss =
0.6050, val-loss = 1.2302
Epok 87: 198.2 sek, train-acc = 0.764, val-acc = 0.750, train-loss =
0.6229, val-loss = 0.4473
Epok 88: 198.2 sek, train-acc = 0.775, val-acc = 0.500, train-loss =
0.6023, val-loss = 1.5081
Epok 89: 198.0 sek, train-acc = 0.784, val-acc = 0.625, train-loss =
0.5808, val-loss = 0.9736
Epok 90: 198.0 sek, train-acc = 0.780, val-acc = 0.875, train-loss =
0.5995, val-loss = 0.5954
Epok 91: 198.0 sek, train-acc = 0.794, val-acc = 0.812, train-loss =
0.5641, val-loss = 0.4165
Epok 92: 198.1 sek, train-acc = 0.787, val-acc = 0.875, train-loss =
0.5645, val-loss = 0.5689
Epok 93: 198.2 sek, train-acc = 0.787, val-acc = 0.688, train-loss =
0.5892, val-loss = 0.7354
Epok 94: 198.1 sek, train-acc = 0.784, val-acc = 0.812, train-loss =
0.5901, val-loss = 0.8423
Epok 95: 198.3 sek, train-acc = 0.795, val-acc = 0.750, train-loss =
0.5705, val-loss = 1.3004
Epok 96: 198.1 sek, train-acc = 0.790, val-acc = 0.562, train-loss =
0.5711, val-loss = 1.0325
Epok 97: 198.3 sek, train-acc = 0.791, val-acc = 0.875, train-loss =
0.5681, val-loss = 0.5962
Epok 98: 198.3 sek, train-acc = 0.804, val-acc = 0.688, train-loss =
0.5411, val-loss = 1.0791
Epok 99: 198.3 sek, train-acc = 0.791, val-acc = 0.625, train-loss =
0.5687, val-loss = 0.9102
Epok 100: 198.1 sek, train-acc = 0.798, val-acc = 0.750, train-loss =
0.5592, val-loss = 1.1658
```

Training took 19745.89 seconds.

Träningsrunda #2

```
[142] # Träna igen med 1/10 lr:
    optimizer = torch.optim.Adam(model.parameters(), lr = 1e-5)
```

```
[143] train_eval(epochs, do_validation=True,
    training_dataloader=train_dl_weighted,
    validation_dataloader=valid_dl)
```

```
Epok 01: 195.5 sek, train-acc = 0.807, val-acc = 0.562, train-loss =
0.5166, val-loss = 1.0817
Epok 02: 198.0 sek, train-acc = 0.825, val-acc = 0.625, train-loss =
0.4823, val-loss = 0.9798
Epok 03: 196.5 sek, train-acc = 0.840, val-acc = 0.562, train-loss =
0.4388, val-loss = 1.1893
Epok 04: 196.5 sek, train-acc = 0.835, val-acc = 0.750, train-loss =
0.4480, val-loss = 1.0340
Epok 05: 196.6 sek, train-acc = 0.829, val-acc = 0.688, train-loss =
0.4615, val-loss = 0.9008
Epok 06: 196.9 sek, train-acc = 0.843, val-acc = 0.812, train-loss =
0.4353, val-loss = 0.7824
Epok 07: 199.3 sek, train-acc = 0.839, val-acc = 0.750, train-loss =
0.4396, val-loss = 0.9192
Epok 08: 199.4 sek, train-acc = 0.833, val-acc = 0.938, train-loss =
0.4467, val-loss = 0.3198
Epok 09: 199.2 sek, train-acc = 0.842, val-acc = 0.625, train-loss =
0.4330, val-loss = 0.9602
Epok 10: 198.0 sek, train-acc = 0.842, val-acc = 0.812, train-loss =
0.4254, val-loss = 0.3324
Epok 11: 199.6 sek, train-acc = 0.846, val-acc = 0.875, train-loss =
0.4262, val-loss = 0.7296
Epok 12: 198.6 sek, train-acc = 0.847, val-acc = 0.812, train-loss =
0.4142, val-loss = 0.6502
Epok 13: 198.1 sek, train-acc = 0.839, val-acc = 0.562, train-loss =
0.4252, val-loss = 1.4576
Epok 14: 198.3 sek, train-acc = 0.848, val-acc = 0.688, train-loss =
0.4174, val-loss = 0.4887
Epok 15: 198.3 sek, train-acc = 0.850, val-acc = 0.688, train-loss =
0.4103, val-loss = 0.9923
Epok 16: 198.3 sek, train-acc = 0.854, val-acc = 0.688, train-loss =
0.4020, val-loss = 0.6445
Epok 17: 198.3 sek, train-acc = 0.853, val-acc = 0.750, train-loss =
0.4040, val-loss = 1.5162
Epok 18: 200.3 sek, train-acc = 0.847, val-acc = 0.750, train-loss =
0.4119, val-loss = 0.8780
Epok 19: 200.4 sek, train-acc = 0.849, val-acc = 0.750, train-loss =
0.4054, val-loss = 0.6988
Epok 20: 200.5 sek, train-acc = 0.852, val-acc = 0.812, train-loss =
0.4059, val-loss = 0.4377
Epok 21: 200.5 sek, train-acc = 0.853, val-acc = 0.750, train-loss =
0.3964, val-loss = 0.5894
Epok 22: 200.4 sek, train-acc = 0.858, val-acc = 0.688, train-loss =
0.3817, val-loss = 0.6005
Epok 23: 198.4 sek, train-acc = 0.854, val-acc = 0.750, train-loss =
0.3976, val-loss = 0.6497
Epok 24: 198.2 sek, train-acc = 0.850, val-acc = 0.938, train-loss =
0.3960, val-loss = 0.3587
Epok 25: 198.3 sek, train-acc = 0.854, val-acc = 0.688, train-loss =
0.3956, val-loss = 0.5928
Epok 26: 198.3 sek, train-acc = 0.858, val-acc = 0.688, train-loss =
```

```
0.3870, val-loss = 0.5606
Epok 27: 198.4 sek, train-acc = 0.854, val-acc = 0.812, train-loss =
0.3926, val-loss = 0.6384
Epok 28: 198.5 sek, train-acc = 0.855, val-acc = 0.688, train-loss =
0.3962, val-loss = 1.1601
Epok 29: 198.5 sek, train-acc = 0.854, val-acc = 0.688, train-loss =
0.4001, val-loss = 1.1276
Epok 30: 198.2 sek, train-acc = 0.855, val-acc = 0.875, train-loss =
0.3891, val-loss = 0.4180
Epok 31: 198.7 sek, train-acc = 0.856, val-acc = 0.688, train-loss =
0.3935, val-loss = 0.9873
Epok 32: 198.2 sek, train-acc = 0.848, val-acc = 0.562, train-loss =
0.4094, val-loss = 0.9729
Epok 33: 198.5 sek, train-acc = 0.852, val-acc = 0.812, train-loss =
0.3980, val-loss = 0.6133
Epok 34: 198.5 sek, train-acc = 0.853, val-acc = 0.688, train-loss =
0.4110, val-loss = 0.9383
Epok 35: 198.5 sek, train-acc = 0.865, val-acc = 0.750, train-loss =
0.3742, val-loss = 0.5652
Epok 36: 198.4 sek, train-acc = 0.847, val-acc = 0.812, train-loss =
0.4108, val-loss = 0.7913
Epok 37: 198.4 sek, train-acc = 0.855, val-acc = 0.812, train-loss =
0.3924, val-loss = 0.4098
Epok 38: 198.5 sek, train-acc = 0.863, val-acc = 1.000, train-loss =
0.3807, val-loss = 0.1485
Epok 39: 198.4 sek, train-acc = 0.853, val-acc = 0.875, train-loss =
0.3910, val-loss = 0.4439
Epok 40: 198.7 sek, train-acc = 0.858, val-acc = 0.688, train-loss =
0.3918, val-loss = 0.7439
Epok 41: 198.6 sek, train-acc = 0.864, val-acc = 0.562, train-loss =
0.3713, val-loss = 2.0161
Epok 42: 198.5 sek, train-acc = 0.859, val-acc = 0.625, train-loss =
0.3856, val-loss = 1.4986
Epok 43: 198.7 sek, train-acc = 0.867, val-acc = 0.500, train-loss =
0.3648, val-loss = 0.7722
Epok 44: 198.4 sek, train-acc = 0.860, val-acc = 0.875, train-loss =
0.3848, val-loss = 0.3520
Epok 45: 198.6 sek, train-acc = 0.864, val-acc = 0.938, train-loss =
0.3700, val-loss = 0.2062
Epok 46: 198.5 sek, train-acc = 0.866, val-acc = 0.812, train-loss =
0.3650, val-loss = 0.4768
Epok 47: 198.4 sek, train-acc = 0.865, val-acc = 0.938, train-loss =
0.3717, val-loss = 0.2556
Epok 48: 198.5 sek, train-acc = 0.866, val-acc = 0.812, train-loss =
0.3634, val-loss = 0.8432
Epok 49: 198.6 sek, train-acc = 0.866, val-acc = 0.688, train-loss =
0.3672, val-loss = 1.4026
Epok 50: 198.5 sek, train-acc = 0.868, val-acc = 0.812, train-loss =
0.3655, val-loss = 0.4589
Epok 51: 199.0 sek, train-acc = 0.862, val-acc = 0.750, train-loss =
0.3813, val-loss = 0.5871
Epok 52: 199.2 sek, train-acc = 0.863, val-acc = 0.688, train-loss =
```

```
0.3658, val-loss = 0.9944
Epok 53: 199.2 sek, train-acc = 0.864, val-acc = 0.688, train-loss =
0.3705, val-loss = 0.7530
Epok 54: 199.0 sek, train-acc = 0.867, val-acc = 0.812, train-loss =
0.3688, val-loss = 0.4490
Epok 55: 199.2 sek, train-acc = 0.863, val-acc = 0.438, train-loss =
0.3734, val-loss = 1.0472
Epok 56: 199.4 sek, train-acc = 0.873, val-acc = 0.562, train-loss =
0.3537, val-loss = 1.2444
Epok 57: 200.1 sek, train-acc = 0.869, val-acc = 0.812, train-loss =
0.3552, val-loss = 0.5804
Epok 58: 201.1 sek, train-acc = 0.869, val-acc = 0.625, train-loss =
0.3612, val-loss = 1.0286
Epok 59: 201.5 sek, train-acc = 0.863, val-acc = 0.688, train-loss =
0.3682, val-loss = 0.6739
Epok 60: 201.0 sek, train-acc = 0.874, val-acc = 0.938, train-loss =
0.3590, val-loss = 0.2299
Epok 61: 201.6 sek, train-acc = 0.860, val-acc = 0.750, train-loss =
0.3679, val-loss = 0.5331
Epok 62: 198.8 sek, train-acc = 0.874, val-acc = 0.875, train-loss =
0.3454, val-loss = 0.4469
Epok 63: 198.9 sek, train-acc = 0.871, val-acc = 0.750, train-loss =
0.3523, val-loss = 0.5140
Epok 64: 198.6 sek, train-acc = 0.867, val-acc = 0.688, train-loss =
0.3784, val-loss = 0.7734
Epok 65: 198.7 sek, train-acc = 0.871, val-acc = 0.688, train-loss =
0.3516, val-loss = 1.0950
Epok 66: 198.7 sek, train-acc = 0.869, val-acc = 0.750, train-loss =
0.3549, val-loss = 1.2290
Epok 67: 198.6 sek, train-acc = 0.872, val-acc = 0.625, train-loss =
0.3501, val-loss = 1.0696
Epok 68: 198.7 sek, train-acc = 0.868, val-acc = 0.750, train-loss =
0.3767, val-loss = 0.5713
Epok 69: 198.7 sek, train-acc = 0.871, val-acc = 0.875, train-loss =
0.3566, val-loss = 0.3504
Epok 70: 198.8 sek, train-acc = 0.874, val-acc = 0.750, train-loss =
0.3539, val-loss = 0.9270
Epok 71: 199.0 sek, train-acc = 0.868, val-acc = 0.562, train-loss =
0.3633, val-loss = 0.5646
Epok 72: 198.7 sek, train-acc = 0.880, val-acc = 0.625, train-loss =
0.3438, val-loss = 0.9495
Epok 73: 199.3 sek, train-acc = 0.873, val-acc = 0.750, train-loss =
0.3516, val-loss = 0.8571
Epok 74: 198.7 sek, train-acc = 0.872, val-acc = 0.500, train-loss =
0.3542, val-loss = 1.0943
Epok 75: 198.8 sek, train-acc = 0.881, val-acc = 0.812, train-loss =
0.3348, val-loss = 0.4493
Epok 76: 198.8 sek, train-acc = 0.879, val-acc = 0.750, train-loss =
0.3318, val-loss = 0.5121
Epok 77: 198.9 sek, train-acc = 0.876, val-acc = 0.750, train-loss =
0.3352, val-loss = 0.6572
Epok 78: 198.6 sek, train-acc = 0.875, val-acc = 0.812, train-loss =
```

```
0.3380, val-loss = 0.4961
Epok 79: 198.8 sek, train-acc = 0.870, val-acc = 0.625, train-loss =
0.3438, val-loss = 0.8550
Epok 80: 198.7 sek, train-acc = 0.866, val-acc = 0.688, train-loss =
0.3555, val-loss = 1.6490
Epok 81: 198.7 sek, train-acc = 0.874, val-acc = 0.562, train-loss =
0.3418, val-loss = 1.2547
Epok 82: 199.0 sek, train-acc = 0.874, val-acc = 0.625, train-loss =
0.3492, val-loss = 1.0371
Epok 83: 199.1 sek, train-acc = 0.870, val-acc = 1.000, train-loss =
0.3521, val-loss = 0.1089
Epok 84: 198.7 sek, train-acc = 0.872, val-acc = 0.812, train-loss =
0.3427, val-loss = 0.3974
Epok 85: 199.0 sek, train-acc = 0.877, val-acc = 0.625, train-loss =
0.3306, val-loss = 0.9062
Epok 86: 199.0 sek, train-acc = 0.881, val-acc = 0.438, train-loss =
0.3267, val-loss = 1.5808
Epok 87: 199.0 sek, train-acc = 0.880, val-acc = 0.812, train-loss =
0.3406, val-loss = 0.5937
Epok 88: 198.9 sek, train-acc = 0.871, val-acc = 0.812, train-loss =
0.3506, val-loss = 0.3547
Epok 89: 199.0 sek, train-acc = 0.878, val-acc = 0.750, train-loss =
0.3339, val-loss = 0.5044
Epok 90: 198.9 sek, train-acc = 0.879, val-acc = 0.688, train-loss =
0.3304, val-loss = 0.8986
Epok 91: 199.1 sek, train-acc = 0.879, val-acc = 0.875, train-loss =
0.3394, val-loss = 0.2694
Epok 92: 198.9 sek, train-acc = 0.879, val-acc = 0.688, train-loss =
0.3306, val-loss = 0.5232
Epok 93: 198.8 sek, train-acc = 0.873, val-acc = 0.812, train-loss =
0.3435, val-loss = 0.7928
Epok 94: 199.0 sek, train-acc = 0.883, val-acc = 0.688, train-loss =
0.3210, val-loss = 0.9696
Epok 95: 198.8 sek, train-acc = 0.884, val-acc = 0.875, train-loss =
0.3155, val-loss = 0.5224
Epok 96: 199.0 sek, train-acc = 0.868, val-acc = 0.688, train-loss =
0.3596, val-loss = 0.4225
Epok 97: 198.9 sek, train-acc = 0.881, val-acc = 0.750, train-loss =
0.3309, val-loss = 0.9740
Epok 98: 198.6 sek, train-acc = 0.877, val-acc = 0.875, train-loss =
0.3290, val-loss = 0.2562
Epok 99: 198.9 sek, train-acc = 0.879, val-acc = 0.562, train-loss =
0.3392, val-loss = 1.6944
Epok 100: 198.8 sek, train-acc = 0.887, val-acc = 0.938, train-loss =
0.3155, val-loss = 0.2234
```

Training took 19879.97 seconds.

	epoch	train_acc	train_loss	val_acc	val_loss
0	1	0.807396	0.516601	0.5625	1.081673
1	2	0.825385	0.482347	0.6250	0.979839
2	3	0.839520	0.438792	0.5625	1.189287
3	4	0.835094	0.448042	0.7500	1.034017
4	5	0.828955	0.461532	0.6875	0.900803
•••	•••				
95	96	0.868361	0.359616	0.6875	0.422541
96	97	0.881211	0.330864	0.7500	0.974005
97	98	0.877499	0.328972	0.8750	0.256247
98	99	0.878926	0.339228	0.5625	1.694368
99	100	0.887065	0.315463	0.9375	0.223435

100 rows × 5 columns

```
[] # Nedan celler för felsökning:
```

```
[58] inputs, labels = next(iter(train_dl_weighted))
  outputs, logits = model.forward(inputs)
```

```
[60] train_loss = criterion(outputs, labels)
```

[61] train_loss

tensor(1.9413, device='cuda:0', grad_fn=<NllLossBackward>)

```
[70] current_train_loss = 0.0
    current_train_corrects = 0.0
    current_train_loss += train_loss.item() * batchsz_train
```

[72] labels.data

```
tensor([1, 2, 1, 0], device='cuda:0')
```

[77] train_predicted

[74] train_predicted[1]

```
tensor([3, 1, 5, 6], device='cuda:0')
```

[75] current_train_corrects += torch.sum(train_predicted[1] ==
 labels.data)

[76] current_train_corrects

```
tensor(0., device='cuda:0')
```

[121] training_log.head()

	epoch	train_acc	train_loss	val_acc	val_loss
0	1	0.152913	1.947532	0.1875	2.097773
1	2	0.200742	1.893778	0.3125	1.608780
2	3	0.252427	1.830984	0.0625	2.150602

3	époch	शिवीत 2व ट c	t raĥ9 <u>9</u> 60ss	Va 1 <u>5</u> 9€c	1 v ā 1/2 5 1/2 8
4	5	0.347658	1.678864	0.3750	1.997504

Utvärdering av modellen:

Grafer över accuracy och loss på train/validation:

```
plt.plot(training_log['epoch'], training_log['train_loss'])
    #plt.title("Loss on the training set over the epochs")
    # plt.yticks(np.arange(0, 50, step = 5))
    # plt.ylim(0,50)
    #plt.show()

# Plotta accuracy över valideringsdatat:
    plt.plot(training_log['epoch'], training_log['val_loss'])
    plt.title("Training and validation loss")
    #plt.yticks(np.arange(0, 1.1, step = 0.2))
    #plt.ylim(0, max())
    plt.legend(['Train loss', 'Validation loss'], loc = 'upper right')
    plt.show()
```

Training and validation loss 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25

```
[147] plt.plot(training_log['epoch'], training_log['train_acc'])
    #plt.title("Loss on the training set over the epochs")
    # plt.yticks(np.arange(0, 50, step = 5))
```

```
# plt.ylim(0,50)
#plt.show()

# Plotta accuracy över valideringsdatat:
plt.plot(training_log['epoch'], training_log['val_acc'])
plt.title("Training and validation accuracy")

#plt.yticks(np.arange(0, 1.1, step = 0.2))

#plt.ylim(0, max())
plt.legend(['Train acc', 'Validation acc'], loc = 'lower right')
plt.show()
```



```
[148] max_train_acc = 100*max(training_log['train_acc'])
```

```
[149] print(f'Max tränings-accuracy = {max_train_acc:.2f} %.')
```

Max tränings-accuracy = 88.71 %.

Utvärdera modellen på validation- och test-set:

```
def evaluate_model(num_eval_images, data_loader, model):
    model.eval()
    start_eval_test_time = time.time()

# Nedan för att vi inte ska uppdatera
# modellens vikter:

with torch.no_grad():
    correct = 0
```

```
[151] num_test_images = len(test_loader.dataset)
    evaluate_model(num_test_images, test_dl, model)

Test accuracy: 1478/2010 = 73.53 %

Evaluation took 8.72 seconds.
```

```
[152] num_valid_images = len(valid_loader.dataset)
    evaluate_model(num_valid_images, valid_dl, model)
```

Test accuracy: 762/998 = 76.35 % Evaluation took 4.47 seconds.

Confusion matrix

```
predictions = model.forward(inputs)
                  _, preds = torch.max(predictions, 1)
                  for t, p in zip(classes.view(-1), preds.view(-1)):
                      confusion_matrix[t.long(), p.long()] += 1
          return confusion_matrix
[130]
      # Beräkningen på test-setet tar ca. 24 sek.
      # på den stationära datorn med GPU med 4 workers,
      # och ca. 19 sek. med 8 workers.
      start_cm_time = time.time()
      cm_test = pytorch_confusion_matrix(number_of_classes, model,
      test_dl)
      end_cm_time = time.time()
      delta_cm_time = end_cm_time - start_cm_time
      print(f'Beräkningen av CM tog {delta_cm_time:.2f}.')
      Beräkningen av CM tog 9.47.
[131]
     # Spara confusion matrix till en fil...
      cm_file_suffice = ".pt"
      cm_filename = "results/" + file_name + cm_file_suffice
      torch.save(cm_test, cm_filename)
[132]
      # Ladda CM från en fil:
      cm_test = torch.load(cm_filename)
[133]
      cm_test_np = cm_test.numpy()
[134]
      np.set_printoptions(suppress=True)
      print(cm_test_np)
      [ 33. 14. 9. 4. 3. 3.
                                     1.]
      [ 7. 80. 10. 1. 1.
                                3.
                                      2.]
      [ 8. 11. 152. 4. 16. 23.
                                     7.]
            4. 3. 15. 0. 1.
                                     1.]
         0.
         6. 4. 43. 6. 93. 61.
                                     10.]
```

```
[ 11. 36. 108. 37. 94. 976. 80.]
[ 0. 0. 0. 1. 1. 0. 27.]]
```

Precision och recall (precision & sensitivitet):

```
[135]
      # Beräkna första radens summa:
      sum_row_one = np.sum(cm_test_np[:,0])
      # Då blir t.ex. precision för label 1:
      precision_label_one = cm_test_np[0][0].item() / sum_row_one
      print(f'Precision f\u00f6r label 1 = {precision_label_one:.3f}')
[136]
      Precision för label 1 = 0.508
      # Motsvarande blir recall för label 1:
[137]
      sum_col_1 = np.sum(cm_test_np[0,:])
      recall_label_one = cm_test_np[0][0] / sum_col_1
      print(f'Recall för label 1 = {recall_label_one:.3f}')
      Recall för label 1 = 0.493
[138] # Få ut labels så här:
      test_loader.dataset.classes[0]
      'akiec'
[139]
      # Skapa en sammanställning över precision/recall för alla sju
      klasser.
      # Precision:
      print("Precision f\u00f6r respektive klass:")
      for i in range(number_of_classes):
          sum_row_i = np.sum(cm_test_np[:, i])
          recall_i = cm_test_np[i,i] / sum_row_i
          print(f'{test_loader.dataset.classes[i]:5}: {recall_i:.3f}')
```

```
# Recall:
print("\nRecall för respektive klass:")
for j in range(number_of_classes):
    sum_col_j = np.sum(cm_test_np[j, :])
    recall_j = cm_test_np[j,j] / sum_col_j
    print(f'{test_loader.dataset.classes[j]:5}: {recall_j:.3f}')
Precision för respektive klass:
akiec: 0.508
bcc : 0.537
bkl : 0.468
df : 0.221
mel : 0.447
nv : 0.915
vasc : 0.211
Recall för respektive klass:
akiec: 0.493
bcc : 0.769
bkl : 0.688
df : 0.625
mel: 0.417
nv : 0.727
vasc : 0.931
```

Visualisera modellens förutsägelser

```
[ ]
     def visualize_model(model, num_images = 6):
         was_training = model.training
         model.eval()
          images_so_far = 0
          fig = plt.figure()
         with torch.no_grad():
              for i, (inputs, labels) in enumerate(test_loader):
                  inputs = inputs.to(device)
                  labels = labels.to(device)
                  outputs = model(inputs)
                  _, preds = torch.max(outputs, 1)
                  for j in range(inputs.size()[0]):
                      images_so_far += 1
                      ax = plt.subplot(num_images//2, 2, images_so_far)
                      ax.axis('off')
```

```
ax.set_title('predicted:
{}'.format(class_names[preds[j]]))
    imshow(inputs.cpu().data[j])

if images_so_far == num_images:
    model.train(mode = was_training)
    return

model.train(mode = was_training)
```

```
[] visualize_model(model, 4)
```