

Tipos de Sistemas Operativos

Sistemas Operativos Ciclo 2023_2 - Semana_07

Programación

- UNIDAD 1: Fundamentos de Sistemas Operativos
 - o Semana_05: Introducción al lenguaje ensamblador
 - Semana_06: Introducción al desarrollo de un sistema operativo
 - Semana_07: Tipos y Estructuras de Sistemas Operativos

Agenda

- 1. Introducción
- 2. Sistemas Operativos de procesamiento por lotes
- 3. Sistemas Operativos multiprogramados
- 4. Sistemas Operativos de tiempo compartido (TSS)
- 5. Sistemas Operativos de tiempo real (RTOS)
- 6. Sistemas Operativos para microcomputadoras (stand-alone)
- 7. Sistemas Operativos de red (NOS)
- 8. Sistemas Operativos Distribuidos
- 9. Evolución de los Sistemas Operativos modernos

3/37

Logro de la semana

Al final de la semana el estudiante es capaz de reconocer los tipos de Sistemas Operativos, cuales están disponibles y como ha sido evolución.

1. Introducción

Clase de sistema operativo	Período	Preocupación principal	Conceptos clave
Procesamiento por lotes	1960	Tiempo de inactividad del CPU	Operación periférica simultánea en línea, procesador de comandos
Multiprogramado	1970	Utilización de los recursos	Prioridades, priorización del programa
Tiempo compartido	1970	Un buen tiempo de respuesta	Intervalo de tiempo, planificación round- robin
Tiempo real	1980	Cumplir con el tiempo límite	Planificación en tiempo real
Distribuidos	1990	Recursos compartidos	Transparencia, control distribuido

1. Introducción

Clase de sistema operativo	Cómputos	Concepto de ejecución clave
Procesamiento por lotes	Trabajos	Se ejecuta un trabajo a la vez. Los programas del trabajo se ejecutan de manera secuencial.
Multiprogramado	Programas	El sistema operativo intercala la ejecución de varios programas para mejorar la utilización de los recursos y el desempeño del sistema.
Tiempo compartido	Procesos	El sistema operativo intercala la ejecución de los procesos para proveer una buena respuesta a todos los procesos.
Tiempo real	Procesos	El sistema operativo intercala la ejecución de los procesos en un programa de aplicación en un tiempo límite.
Distribuidos	Procesos	Se tiene accesos a recursos remotos con el uso de redes. Ejecución de los procesos de una aplicación en diferentes computadoras para lograr la compartición y el uso eficiente de los recursos.

2. Sistemas operativos de procesamiento por lotes

Objetivo: Optimizar el número de trabajos por unidad de tiempo

- Trabajo = Operaciones + Programas + Datos
- Operación secuencial de una lista de trabajos predefinidos
- Procesamiento de información que permite obtener un lote de salida
- Se reúnen los trabajos mediante spooling en cinta magnética
- · Pasos para el procesamiento por lotes:

Paso 01: Selecciona trabajo del lote
 Paso 02: Asignación de bloque de memoria
 Paso 03: Planificador selecciona trabajo

Paso 04: Trabajo completo, libera memoria y spool de salida

9/37

_

2. Sistemas operativos de procesamiento por lotes

- Lote: Secuencia de trabajos de los usuarios
- El operador ingresa el lote al sistema
- Se da servicio a los trabajos del lote sin intervención del operador
- Terminado el trabajo se inicia el siguiente.
- Terminado el lote, se espera inicio del operador

2. Sistemas operativos de procesamiento por lotes

- **Spooling:** Introducción de trabajos en un buffer (lugar de espera) de manera que un dispositivo pueda acceder a ellos cuando esté listo
- **Dispositivo virtual:** Abstracción de un dispositivo real creado por el sistema operativo, permitiendo admitir varios dispositivos virtuales asignados a un solo dispositivo real

11/37

2. Sistemas operativos de procesamiento por lotes

El tiempo de demora de un trabajo incluye los siguientes intervalos de tiempo:

- Tiempo de formación de un lote $(t_0 t_1)$
- Tiempo transcurrido en ejecutar los trabajos del lote (t₂ -t₃)
- Tiempo transcurrido en ordenar e imprimir los resultados pertenecientes a trabajos diferentes $(t_4 t_5)$

3. Sistemas operativos multiprogramados

- Son sistemas que colocan <u>varios programas de</u> <u>usuario en la memoria y</u> permiten que el CPU ejecute las instrucciones de un programa mientras que el subsistema de E/S está ocupado con una operación de E/S para otro programa
- En los sistemas multiprogramados <u>se intercala la</u>
 <u>ejecución de programas</u> para lograr la utilización
 equilibrada de los recursos, aprovechando la
 <u>operación simultánea del CPU y del subsistema de</u>
 <u>E/S</u>.
- Esta operación simultánea o concurrente se encuentra asegurada por el DMA

13/37

3. Sistemas operativos multiprogramados

- El kernel multiprogramado realiza la planificación, administración de la memoria y la administración de E/S
- Asegura la sincronización del CPU y las actividades de E/S
- El tiempo de demora depende del número de trabajos y de las prioridades asignadas

4. Sistemas operativos de tiempo compartido

- Varios usuarios interaccionan con el sistema mediante el establecimiento de una sesión e interactuando directamente con el sistema operativo
- Se <u>intercala la ejecución de programas</u> para lograr la utilización equilibrada de los recursos
- Se <u>asignan cantidades equitativas de recursos de</u> <u>procesamiento y de memoria</u> a cada máquina abstracta donde <u>se ejecuta uno o varios **procesos**</u>
- Implementaciones de <u>protección de memoria y seguridad</u> (los archivos de usuario no pueden ser leídos o modificados por otro usuario)
- La multiprogramación de tiempo compartido que soporta varios procesos por usuario se denomina multitarea

4. Sistemas operativos de tiempo compartido

- Varios usuarios ejecutan varias tareas de manera concurrente
- Utiliza <u>multitarea</u>, <u>múltiples procesos comparten recursos</u>, se efectúa planificación y conmutación dando la apariencia de paralelismo

17/37

4. Sistemas operativos de tiempo compartido

- **Kernel de tiempo compartido**: Adecuados tiempos de respuesta para todos los usuarios sin asignación de prioridades
- Se evita asignación de tiempo de procesador prolongado
- Planificación round robin: Selección y turno por lista de planificación
- Intervalo de tiempo: Cantidad máxima de tiempo de procesador
- En la administración de memoria se hace uso del intercambio

18/37

9

5. Sistemas operativos de tiempo real

- Aplicación de tiempo real: Responde a las actividades solicitadas dentro de un tiempo máximo determinado por el sistema externo
- Sistemas de tiempo real: Entornos donde se deben aceptar y procesar en tiempos muy breves un gran número de procesos, en su mayoría proveniente de entornos externos

Tipos de sistemas operativos de tiempo real

- Sistema de tiempo real duro: Estos sistemas deben proveer garantías absolutas de que cierta acción ocurrirá en un instante determinado: Ejemplo: procesos industriales.
- Sistema de tiempo real suave: No garantiza exactamente el requisito de respuesta pero de manera probabilística. Ejemplo: Sistemas de audio o de multimedia

19/37

5. Sistemas operativos de tiempo real

Condición de falla

Ocurre cuando el sistema no responde dentro del límite máximo de tiempo. Cuando ocurre una condición de falla se utilizan las siguientes técnicas:

- Tolerancia de falla. Usado en sistemas redundantes
- **Degradación parcial.** Reducción de nivel de servicio mientras persista la falla

Aplicaciones

- · Guía, dirección y control de misiles
- · Control de procesos
- Control de tráfico aéreo
- Muestreo y adquisición de datos
- Sistemas bancarios y de reservaciones

6. Sistemas operativos para microcomputadoras

- En las computadoras personales inicialmente se podía ejecutar un solo programa por vez sin la presencia de la multiprogramación, y donde se dispone de un software de abstracción de hardware alojado en ROM
- Las <u>estaciones de trabajo eran configuradas</u> de tal forma que pudiera utilizarse un <u>sistema operativo de tiempo compartido</u>
- Hacia <u>1995</u> empezaron a competir con las estaciones de trabajo, mediante la introducción de los <u>sistemas operativos Windows 95</u> y Windows NT

21/37

6. Sistemas operativos para microcomputadoras

- Tienen como características centrales la comodidad y el grado de respuesta para el usuario
- Mono-usuario On-Line
- · Orientado al usuario: Interfaz amigable y simple
- Se da menor importancia a la administración, concurrencia y seguridad
- Posee gran cantidad de herramientas y software de aplicación
- Operación y mantenimiento a costos reducidos
- Libertad é Independencia mediante mayor potencia de PC

7. Sistemas operativos para redes

- Software de sistema que <u>controla software y hardware que</u> <u>opera en una red</u>
- Permite a múltiples computadoras comunicarse entre sí con la finalidad de <u>compartir recursos</u>, <u>ejecutar aplicaciones</u>, <u>enviar mensajes</u>, <u>entre otras actividades</u>
- Microsoft añade capacidad de operación en red con Windows 95 y Windows for groups
- Los sistemas Unix fueron diseñados prácticamente desde un inicio con un enfoque orientado a la conexión a redes

23/37

7. Sistemas operativos para redes

Un sistema operativo de redes <u>habilita sus procesos para acceder a recursos que</u> <u>residen en otras computadoras independientes</u> en una red, su estructura está basada con frecuencia en el <u>modelo cliente/servidor</u>

7. Sistemas operativos para redes

• Razones Básicas

- Comunicación
- Distribuir recursos e información
- Descentralizar la administración
- Economía

Funciones principales

- Servidor de archivos
- Servidor de dispositivos periféricos
- Servidor de comunicación

25/27

8. Sistemas operativos distribuidos

Avances en tecnología

- Mejoramiento continuo de los microprocesadores que equiparan el poder de una mainframe
- · Aparición de las redes LAN, MAN, WAN de alta velocidad

Definición de sistema distribuido

- Es una colección de computadoras independientes que dan al usuario la impresión de constituir un único sistema coherente
- Elementos ocultos: computadoras, mecanismos de comunicación, organización interna

8. Sistemas operativos distribuidos

 La base de operación es una <u>capa de software</u> que brinda soporte a computadoras y redes heterogéneas

 Esta capa de software está constituida por un <u>sistema operativo</u> y recursos básicos de comunicación. Lo que se conoce como middleware

27/37

8. Sistemas operativos distribuidos

Un sistema distribuido <u>consiste de dos o más nodos</u>. Cada uno de ellos es un sistema de cómputo con su propia memoria, algún hardware de sistema de redes y capacidad de realizar algunas funciones de control de un sistema operativo.

Característica	Descripción/implicación
Recursos compartidos	Mejora la utilización de los recursos a través de las fronteras de los sistemas de cómputo individuales.
Fiabilidad	Disponibilidad de recursos y servicios a pesar de las fallas.
Rapidez de cómputo	Las partes de un cálculo pueden ejecutarse en diferentes sistemas de para acelerar el cómputo
Comunicación	Suministra medios de comunicación entre entidades remotas
Crecimiento por incrementos	Pueden magnificarse capacidades del sistema (por ejemplo, poder de procesamiento) a un costo proporcional a la naturaleza y tamaño de la magnificación.

8. Sistemas operativos distribuidos

Tipos de sistemas distribuidos

- · Sistemas computacionales distribuidos
 - · Sistemas de cómputo en cluster
 - Sistemas de cómputo en grid
- · Sistemas de información distribuidos
- · Sistemas ubicuos distribuidos

29/37

8. Sistemas operativos distribuidos

Tipos de sistemas distribuidos

- · Sistemas computacionales distribuidos
 - · Sistemas de cómputo en cluster
 - · Sistemas de cómputo en grid
- · Sistemas de información distribuidos
- · Sistemas ubicuos distribuidos

8. Sistemas operativos distribuidos

Tipos de sistemas distribuidos

- · Sistemas computacionales distribuidos
- Sistemas de información distribuidos
- · Sistemas ubicuos distribuidos

33/37

8. Sistemas operativos distribuidos

Los conceptos clave y técnicas empleadas en un sistema operativo distribuido son los siguientes:

Técnica	Descripción		
Control distribuido	Se realiza una función de control a través de la participación de varios nodos, posiblemente todos los nodos pertenecientes al sistema distribuido.		
Transparencia	Puede tenerse acceso a un recurso o un servicio sin tener que saber su localización en un sistema distribuido.		
Llamada a procedimiento remoto (RPC)	Un proceso llama a un procedimiento localizado en un sistema de cómputo diferente. El sistema operativo pasa los parámetros al procedimiento remoto y el proceso se reanuda cuando se devuelven los resultados.		

Conclusiones y Reflexión del Aprendizaje

- Queremos sumarizar lo que hemos aprendido en la semana
 - Alumnos
 - Docente
- Reflexiona sobre la aplicación y alcances de lo aprendido:
 - Alumnos
 - o Docente