# Linear programming Background material

#### Fabian Bastin

fabian.bastin@umontreal.ca
Université de Montréal - CIRRELT - IVADO - Fin-ML

# Linear program

Linear program, standard form:

$$\min_{x} c^{T} x$$
s.t.  $Ax = b$ ,  $x \ge 0$ ,

with  $x, c \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$ ,  $A \in \mathbb{R}^{m \times n}$ .

Assumptions:  $rank(A) = m, m \le n$ .

#### Standard form

Any linear program can be transformed to the standard form. Consider for instance the program

$$\min_{x} c^T x \text{ s.t. } Ax \geq b.$$

Note that there is no bound constraints on x.

We first add a vector z of surplus variables:

$$\min_{x} c^{T}x$$
s.t.  $Ax - z = b$ ,  $z \ge 0$ .

We next decompose x as the difference of two non-negative variables:  $x = x^+ - x^-$ , where  $x^+ = \max\{x, 0\} \ge 0$ , and  $x^- = \max\{-x, 0\} \ge 0$ .

# Standard form (cont'd)

The problem becomes

$$\min_{X} (c -c 0) \begin{pmatrix} x^{+} \\ x^{-} \\ z \end{pmatrix},$$
s.t. 
$$(A -A -I) \begin{pmatrix} x^{+} \\ x^{-} \\ z \end{pmatrix} = b, \begin{pmatrix} x^{+} \\ x^{-} \\ z \end{pmatrix} \ge 0.$$

The inequalities constraints of the form  $x \le u$  or  $Ax \le b$  can be handled by adding slack variables:

$$x \le u \Leftrightarrow x + w = u, w \ge 0,$$
  
 $Ax \le b \Leftrightarrow Ax + y = b, y \ge 0.$ 

#### **Basis solutions**

Without loss of generality, suppose that the first m columns are independent, and form

$$\mathbf{A} = (\mathbf{B} \ \mathbf{D})$$

Basis solution:  $\mathbf{x} = (\mathbf{x}_b \ 0)$ , with  $\mathbf{B}\mathbf{x}_b = \mathbf{b}$ .

Degenerated basis solution: if some components of  $x_b$  are equal to zero.

Feasible basis solution: basis solution such that  $\mathbf{A}\mathbf{x} = \mathbf{b}$  and  $\mathbf{x} \geq 0$ .

# Fundamental theorem of linear programming

Consider an LP under standard form, with  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , and rank( $\mathbf{A}$ ) = m.

- S'il y a une solution réalisable, alors il y a une solution de base réalisable.
- S'il y a une solution réalisable optimale, alors il y a une solution de base réalisable optimale.

#### Dualité

Nous considérons le problème, dit primal:

$$\min_{x} c^{T} x$$
t.q.  $Ax \ge b$ 

$$x > 0$$

Le programme suivant est appelé dual:

$$\max_{\lambda} \lambda^{T} b$$
t.q.  $A^{T} \lambda \leq c$ 

$$\lambda \geq 0$$

 $A \in \mathbb{R}^{m \times n}$ ,  $c, x, \in \mathbb{R}^n$ ,  $\lambda, b \in \mathbb{R}^m$ .

Note: les contraintes duales peuvent aussi s'écrire  $\lambda^T A \leq c^T$  (en appliquant l'opérateur de transposition de part et d'autre de l'inégalité).

### Dualité

x: variables du problème primal

 $\lambda$ : variables du problèmes dual

Dual du dual?

$$\min_{x} c^{T} x$$
t.q.  $Ax \ge b$ 

$$x \ge 0$$

## Dualité: forme standard

$$\min_{x} c^{T} x$$
t.q.  $Ax = b$ 

$$x \ge 0$$

revient à

$$\min_{x} c^{T}x$$
t.q.  $Ax \ge b$ 

$$-Ax \ge -b$$

$$x \ge 0$$

## Dualité: forme standard

Le dual peut alors s'écrire

$$\max_{u,v} u^T b - v^T b$$
t.q. 
$$u^T A - v^T A \le c^T$$

$$u \ge 0$$

$$v \ge 0$$

ou, avec  $\lambda = u - v$ ,

$$\max_{\lambda} \lambda^T b$$
 t.q.  $\lambda^T A \leq c^T$ 

Forme asymétrique:  $\lambda \in \mathbb{R}$ .



# Primal-dual conversion

| Minimisation  | Maximisation  |  |
|---------------|---------------|--|
| Constraints   | Variables     |  |
| $\geq$        | $\geq 0$      |  |
| <u> </u>      | <b>≤</b> 0    |  |
| =             | unconstrained |  |
| Variables     | Constraints   |  |
| ≥ 0           | <u> </u>      |  |
| $\leq 0$      | <u>≥</u>      |  |
| unconstrained | =             |  |

## Dualité faible

(Forme symétrique ou forme asymétrique – forme standard)

Si x and  $\lambda$  sont réalisables pour le primal et le dual, respectivement, alors

$$c^T x \geq \lambda^T b$$

Proof.

$$\lambda^T b \leq \lambda^T A x \leq c^T x$$

pour  $x \ge 0$ , vu que x est supposé realisable, et que du dual,  $\lambda^T A \le c^T$ .

Dès lors, l'objectif primal est une borne supérieure pour le dual, et vice-versa.



#### Corollaire

Si  $x_0$  et  $\lambda_0$  sont réalisables pour le primal et le dual, respectivement, et si

$$c^T x_0 = \lambda_0^T b,$$

alors  $x_0$  et  $\lambda_0$  sont optimaux pour leur problème respectif.

Mais on n'a encore dit sur la réalisabilité d'un problème par rapport à l'autre!

### Dualité forte

Si un des problèmes, primal ou dual, a une solution optimale finie, l'autre problème a aussi une solution optimale finie, et les valeurs correspondantes des fonctions objectifs sont égales. Si l'un des problèmes a un objectif non borné, l'autre problème n'a pas de solution réalisable.

Si un programme est non réalisable, cela n'implique cependant pas que son dual soit non borné. Celui-ci peut être non réalisable.

Le tableau ci-dessous synthétise les différents cas de figure possibles.

| Primal / Dual  | Borné      | Non borné  | Non réalisable |
|----------------|------------|------------|----------------|
| Borné          | possible   | impossible | impossible     |
| Non borné      | impossible | impossible | possible       |
| Non réalisable | impossible | possible   | possible       |

# Optimalité et dualité

L'optimalité peut se déduire des conditions KKT.

En LP, nous n'avons pas besoin d'exiger une qualification de contraintes pour appliquer les conditions KKT.

Lagrangien:

$$\mathcal{L} = \mathbf{c}^{\mathsf{T}} \mathbf{x} - \mathbf{\pi}^{\mathsf{T}} (\mathbf{A} \mathbf{x} - \mathbf{b}) - \mathbf{s}^{\mathsf{T}} \mathbf{x}.$$

Conditions KKT: vecteurs de Lagrange  $\pi$  et s t.q.

$$A^{T}\pi + s = c,$$
  
 $Ax = b,$   
 $x \ge 0,$   
 $s \ge 0,$   
 $x_{i}s_{i} = 0, j = 1, 2, ..., n.$ 

## Problème dual

Soit  $(x^*, \pi^*, s^*)$  un vecteur satisfaisant les conditions KKT. On a

$$c^T x^* = (A^T \pi^* + s^*)^T x^* = (Ax^*)^T \pi^* = b^T \pi^*.$$

Il est de plus facile de montrer que les conditions (nécessaires) KKT sont suffisantes.

#### Problème dual:

$$\max_{\pi} \boldsymbol{b}^T \pi$$
, t.q.  $\boldsymbol{A}^T \pi \leq \boldsymbol{c}$ ,

or, equivalently,

$$\max_{\pi} \boldsymbol{b}^T \pi$$
, t.q.  $\boldsymbol{A}^T \pi + \boldsymbol{s} = \boldsymbol{c}, \ \boldsymbol{s} \geq \boldsymbol{0}$ .

