Física - Discussão Projeto I

Unidades

Todas as medidas presentes no código R são dadas no SI (Sistema Internacional de Medidas), a menos que explicitado o contrário. Todas as medidas presentes em gráficos e tabelas estarão acompanhadas da unidade utilizada.

Parâmetros dos experimentos

```
# Massa do carrinho com bandeira.
p.massa = 0.2107
# Tamanho da régua
p.regua = 2
# Posição inicial do fim da bandeira em relação a origem da régua.
p.bandeira = 0.204
# Tamanho da bandeira.
p.tam bandeira = 0.0975
# Distância entre sensores adjacentes em cada um dos experimentos de movimento retilí
p.MRU.distancias = c(0.373, 0.322, 0.655, 0.37)
p.MRU.posicoes = cumsum(p.MRU.distancias) - p.bandeira
p.MUV.distancias = c(0.207 + p.bandeira, 0.414, 0.427, 0.49)
p.MUV.posicoes = cumsum(p.MUV.distancias) - p.bandeira
p.MUV flag.distancias = c(0.406, 0.49, 0.354, 0.495)
p.MUV_flag.posicoes = cumsum(p.MUV.distancias) - p.bandeira
# Altura do plano inclinado em função do deslocamento do carrinho em cada um dos expe
rimentos de MUV.
p.MUV.h = function(s = 0) { 0.012 * (p.regua - p.bandeira - s) / p.regua }
p.MUV flag.h = function(s = 0) \{ 0.005 * (p.regua - p.bandeira - s) / p.regua \}
```

Dados dos experimentos

Os dados dos experimentos MU e MUV foram carregados a partir de arquivos .csv previamente construídos a partir das anotações feitas durante a aula.

```
dados.MRU = read.csv("mru.csv")
dados.MUV = read.csv("muv.csv")
dados.MUV_flag = read.csv("muv_flag.csv")
```

Observações - MUV (bandeira)

	t ₁ (s)	t ₂ (s)	t ₃ (s)	t ₄ (s)
1	0.755	0.479	0.371	0.308
2	0.761	0.476	0.369	0.307
3	0.755	0.479	0.367	0.306
4	0.778	0.476	0.371	0.308
5	0.764	0.475	0.37	0.307

Funções e constantes

Algumas funções e constantes foram definidas com o intuito de tornar tais trechos de código reutilizáveis.

```
# Constantes comuns (physics)
ph.G = 9.7833

# Funções comuns (physics)
ph.peso = function(m, g = ph.G) { m*g }
ph.e.potencial = function(m, h, g = ph.G) { m*g*h }
ph.e.cinetica = function(v, m) { 0.5*m*v^2 }
ph.trabalho = function(f, dx, theta) { f*dx*theta }

# Funções MRU
MRU.velocidade = function(ds, dt) { ds/dt }
MRU.deslocamento = function(v, t) { v*t }

# Funções MUV
MUV.velocidade = function(a, t, v0 = 0) { v0 + a*t }
MUV.deslocamento = function(a, t, v0 = 0) { t*v0 + 0.5*a*t^2 }
MUV.aceleracao = function(s, t, v0 = 0) { 2*(s - t*v0)/t^2 }
```

Experimentos

Movimento Retilíneo

Os experimentos foram realizados num trilho de ar de 2 metros de comprimento, onde foi colocado um carrinho de 210.7 gramas com uma bandeira centralizada de 9.75 centímetros. Tal carrinho foi colocado no ponto mais à esquerda do trilho e foi suspenso por uma fina camada de ar que tornou o atrito no sistema desprezível. Além disso, 4 sensores foram dispostos ao longo desta régua. Em cada experimento estes sensores foram usados de forma diferente, como explicado nas próximas seções.

Movimento Retilíneo Uniforme

Cada iteração do experimento consistiu no lançamento do carrinho a uma velocidade fixa, com auxílio de uma mola presente no extremo inicial do trilho. No momento do lançamento, 4 *timers* foram disparados: cada um dos timers foi associado a um dos sensores dispostos no trilho. Cada um dos timers parava quando a bandeira do carrinho adentrasse a região de detecção do sensor.

O objetivo do movimento foi analisar o Movimento Retilíneo Uniforme na prática. Para isso, o trilho foi cuidadosamente ajustado de forma com que sua inclinação em relação ao chão fosse desprezível.

As tabelas abaixo mostram as posições onde cada um dos 4 sensores foram colocados ao longo do trilho e, para cada iteração realizada, os tempos registrados por cada um dos sensores.

s ₁ (m)	s ₂ (m)	s ₃ (m)	s ₄ (m)
0.169	0.491	1.146	1.516

	t ₁ (s)	t ₂ (s)	t ₃ (s)	t ₄ (s)
1	0.222	0.603	1.372	1.811
2	0.197	0.604	1.498	1.898
3	0.199	0.599	1.39	1.948
4	0.182	0.556	1.313	1.745
5	0.137	0.548	1.38	1.855

No gráfico abaixo é possível visualizar cada uma das observações obtidas. Além disso, é possível notar que a distribuição das observações lembra uma reta, o que condiz com a natureza do MRU. Mais espeficamente, uma reta que descrevesse razoavelmente bem um MRU a partir das observações dadas foi gerada a partir do método de regressão linear. Podemos notar que o coeficiente $\beta_1=0.805$ obtido indica justamente a taxa de variação do deslocamento com a variação do tempo, ou a **velocidade** do carrinho, que é constante num MRU perfeito.

Podemos ainda obter a *velocidade média* ($\Delta s/\Delta t$) no trajeto entre a origem do trilho e cada um dos sensores e obter uma reta através do mesmo método de regressão linear que nos mostre que, de fato, a velocidade do carrinho se mostra praticamente constante durante as iterações do experimento. Note que o coeficiente $\beta_1=0.061$ é razoavelmente pequeno, mostrando que há poquíssima variação na *velocidade média* do carrinho durante o trajeto.

Velocidade x Tempo

v ₁ (m/s)	v ₂ (m/s)	v ₃ (m/s)	v ₄ (m/s)
0.76	0.81	0.84	0.84
0.86	0.81	0.77	8.0
0.85	0.82	0.82	0.78
0.93	0.88	0.87	0.87
1.23	0.9	0.83	0.82

Movimento Uniformemente Variado

O trilho de ar foi levemente inclinado com ajuda de uma pastilha, fazendo com que o trilho se tornasse um plano inclinado de 2 metros de comprimento e 1.2 centímetros de altura (em relação à origem da régua). Na única iteração deste experimento, o carrinho foi solto, a partir do repouso, do começo da régua e os tempos foram medidos de forma semelhante ao MRU.

O objetivo do experimento foi analisar o Movimento Uniformemente Variado na prática.

As tabelas abaixo mostram as posições onde cada um dos 4 sensores foram colocados ao longo do trilho e os tempos registrados por cada um dos sensores.

Observações - MUV

s ₁ (m)	s ₂ (m)	s ₃ (m)	s ₄ (m)
0.207	0.621	1.048	1.538

	t ₁ (s)	t ₂ (s)	t ₃ (s)	t ₄ (s)
1	2.531	4.378	5.696	6.917

Deslocamento x Tempo

Velocidade x Tempo

Energia x Tempo

