انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

vii																																					يباچي	. کاد	اب	بلی کتا ہلی کتا	یپ	مير
1																																		ات	سياو	رقی.	ه تفر	ىساد	اول	رجه ا	,	1
2																																				i.	ئە نە	نمو		1.1		
13																	ر_	پوا	· يب	تر ک	اور	ست	ماسم	ن ک	بدا	ا_م	ب لب	مط	إنى َ	بىٹر يا	جيو م	1 کا	y'	_	f	(x	, y)		1.2		
22																														ت	باوار	: ي مس	فر ق	ره ^ت	۔ کی سا	بحد گ	ل ^ع ا	قال		1.3	,	
40																																					می سا			1.4	ļ	
52																																			- /		ئ سا			1.5	,	
70																																					و ی			1.6)	
74																								ئيت	يكتأ	اور	يت	جود) وج	ل ک	ے: ک	وات	مسا	ر قی	ن تفر	قيمت	رائی	ابتا		1.7	7	
81																																		ات	ساو	ق.	ه تفر	ى ساد	روم	ر جه ۱	,	2
81																														- (.;					نس			2.1		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·				- /					ن نقل	•		$\frac{2.1}{2.2}$		
98 113																											هر د	נס	ساد	U		•		_			**			$\frac{2.2}{2.3}$		
113	•	•	•	•	•	•	•	•	•															٠			٠	څ	•	•							ر فيء سي					
																																					ر نلد رکون ^ا			2.4		
134																																				-		••		2.5		
143																																								2.6		
152																													٠											2.7		
164																													•						_		کاار			2.8	5	
																						•				_	ي کمک	مع	-,	**					•		2.8					
174																						:			٠,	;	٠.		•				تى	نه	بانمو	ار کح	ن ن اد و	برا		2.9		
185	•				•	•	•	•	•	•	•						Ĺ	احل	ت کا	وار	سياه	رقی.	تفر	ساده	کمی س	2)	فإنسر	رمتح	غير	سے	يقي	طر	کے	لنے	مبد	علوه	رارم	مق	2	.10)	
193																																٠	وات	مساو	, قی	ه تفر	ىساد	خطح	. جي	بند در	ļ	3
193																														, .	• ارد						نس			3.1		-
205																								ت	ماوار	سەل	فرق	ده ت	ساد				- /			-	نقل نقل	•		3.2		

V	عسنوان
---	--------

غير متجانس خطی ساده تفر قی مساوات	3.3	
مقدار معلوم بدلنے کے طُریقے سے غیر متجانس خطی سادہ تفرقی مساوات کا حل	3.4	
ر قی مساوات	نظامِ تف	4
ُ قالب اور سمتىر كے بنیادی حقائق	4.1	
سادہ تفر قی مساوات کے نظام لبطور انجینئر کی مسائل کے نمونے	4.2	
نظرىيە نظام سادە تفر قى مساوات اور ورونسكى	4.3	
ريب 4.3.1 خطي نظام		
مستقل عددی سروالے نظام۔ سطح مرحله کی ترکیب	4.4	
نقطہ فاصل کے جانچے پڑتال کا مسلمہ معیار۔استحکام	4.5	
کیفی تراکیب برائے غیر خطی نظام	4.6	
4.6.1 سطح حرکت پرایک در جی مساوات میں تبادلہ		
سادہ تفر تی مساوات کے غیر متحاِنس خطی نظام	4.7	
4.7.1 نامعلوم عدد کی سر کی ترکیب		
لمسل ہے سادہ تفر تی مساوات کا حل۔اعلٰی تفاعل ہے عالمہ علی تفاعل	طاقتی تش	5
تركيب طاقق تسكسل	5.1	
ليژاندُرمساوات ليژاندُر کثيرر کني	5.2	
مبيوط قاق تسلل- تركيب فروبنيوس	5.3	
5.3.1 علمي استعال	5.4	
مساوات مسل اور مسل نفاش	5.4	
	3.3	
تبادله تابدله	لايلاس	6
لا پلاس بدل الت لا پلاس بدل - خطیت	6.1	
تفر قات اور تکملات کے لایلا س بدل ۔ سادہ تفر قل ساوات	6.2	
s محور پر منتقلی، ملی محور پر منتقلی، اکائی سیر همی تفاعل	6.3	
ڈیراک ڈیلٹائی تفاعل۔اکائی ضرب تفاعل۔ جزو <i>ی کسر</i> ی پھیلاو الح	6.4 6.5	
الجھاو	6.6	
لاپیا ن پرن کا ن اور سرن ۔ یر عکدون سروائے شادہ سری مساوات ۔	6.7	
رق عاد على الله الله الله الله الله الله الله ال	6.8	
• •		
برا-سمتيات مرابع	-	7
ُ قالب اور سمتیات به مجموعه اور غیر سمتی ضرب	7.1	
قالبی ضرب	7.2	
وت	اضا في ثبر	1

381	ب مفید معلوماتِ
کے مساوات	1.ب اعلى تفاعل_

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سختالی الفاظ ہی استعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سخے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور کمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

باب7

خطى الجبرا لهمتيات

خطی الجبرا وسیع مضمون ہے جس میں قالب اور سمتیات، مقطع قالب، خطی مساوات کے نظام، سمتی فضا اور خطی تادلہ، آنگنی قیمت مسائل، اور دیگر موضوعات شامل ہیں۔اس کا استعال انجیئئری، طبیعیات، جیومیٹری، کمپیوٹر سائنس، معاشیات اور دیگر میدانوں میں پایا جاتا ہے۔

متعدد اعداد و شاریا متعدد تفاعل کو مربوط طریقے سے قالب 1 اور سمتیات 2 کی مدد سے ظاہر کیا جاتا ہے۔ قالب اور سمتیات ہی خطی الجبرا کی زبان ہیں۔

matrices¹ vectors²

7.1 قالب اور سمتیات مجموعه اور غیر سمتی ضرب

مستطیلی ترتیب وار فہرست کو قالب کہتے ہیں۔درج ذیل قالب کی مثال ہیں۔قالب میں درج اعداد یا تفاعل کو قالب کے اندراجات یا قالب کے ارکان³ کہتے ہیں۔

(7.1)
$$\begin{bmatrix} 0.1 & -2 & 1.2 \\ -6 & 0 & 23 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \begin{bmatrix} \ln x & -e^x \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}$$

ایسا قالب جو صرف ایک عدد صف یا صرف ایک عدد قطار پر مشتمل ہو، سمتیہ 7 کہلاتا ہے۔ یوں نجلے دائیں ہاتھ دو ارکان پر مشتمل سمتیہ قطار 8 پایا جاتا ہے جبکہ نجلے بائیں ہاتھ سمتیہ صف 9 پایا جاتا ہے۔چو ککہ سمتیہ قطار میں کوئی صف نہیں پایا جاتا ہے۔ای طرح سمتیہ صف نہیں پایا جاتا لہذا اس میں ارکان کے مقام کو صرف ایک عدد اشاریہ سے ظاہر کیا جاتا ہے۔ای طرح سمتیہ صف میں بھی ارکان کا مقام صرف ایک عدد اشاریہ سے ظاہر کیا جاتا ہے۔یوں سمتیہ قطار میں $a_1 = 3.22$ اور $a_2 = -\frac{4}{5}$

عملی استعال میں مواد کے ذخیرہ اور اس پر عمل کرنے میں قالب کار آمد ثابت ہوتے ہیں۔درج ذیل مثال دیکھیں

elements³

 $rows^4$

columns⁵

 $^{{\}rm square\ matrix}^6$

 $vector^7$

column vector⁸

row vector⁹

مثال 7.1: خطی نظام درج و بیام میں x_2 ، x_1 اور x_3 نا معلوم متغیرات ہیں۔

$$2x_1 + 3x_2 + 2x_3 = 0$$
$$3x_1 - 2x_2 + 4x_3 = 15$$
$$5x_1 + 3x_3 = 11$$

A اور x_3 اور x_3

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 2 \\ 3 & -2 & 3 \\ 5 & 0 & 3 \end{bmatrix}$$

 $a_{32}=0$ ہیں A ہیں پایا جاتا للذا اس کا عددی سر صفر کے برابر ہو گا اور یوں x_2 ہیں x_2 ہیں میاوات کے دائیں ہاتھ کی معلومات کا اضافہ کرنے سے افزودہ قالب A میں مساوات کے دائیں ہاتھ کی معلومات کا اضافہ کرنے سے افزودہ قالب A ماتا ہے۔

$$\tilde{A} = \begin{bmatrix} 2 & 3 & 2 & 0 \\ 3 & -2 & 3 & 15 \\ 5 & 0 & 3 & 11 \end{bmatrix}$$

چونکہ افٹرودہ قالب \tilde{A} سے تینوں مساوات لکھے جا سکتے ہیں للذا دیے گئے خطی نظام کو \tilde{A} مکمل طور ظاہر کرتا ہو کہ اور \tilde{x}_3 عاصل کر سکتے ہیں۔ایسا کرنا جلد سمجھایا جائے گا۔ فی الحال تسلی کر لیس کہ اس نظام کا حل $\tilde{x}_1=0$ ، $\tilde{x}_1=0$ ، اور $\tilde{x}_3=0$ ، اور $\tilde{x}_3=0$ ہے۔

x نا معلوم متغیرات کو x_2 ، x_1 اور x_3 سے ظاہر کرنے کی بجائے دیگر علامتوں سے ظاہر کیا جا سکتا ہے مثلاً x ، y ، y ، y

coefficient $matrix^{10}$ augmented $matrix^{11}$

باب. 7. خطى الجبراد سمتيات

مثال 7.2: فروخت کھاتا

ایک دکان کی تین اشیاء کی ہفتہ وار فروخت درج بالا قالب میں دی گئی ہے۔ ہر ہفتے کی فروخت کو اسی طرح قالبول میں لکھا جا سکتا ہے۔ مہینے کے آخر میں تمام قالبوں کے مطابقتی ارکان کا مجموعہ لینے سے ہر دن، تینوں اشیاء کی کل فروخت کی فہرست حاصل ہو گی۔

عمومي تصورات اور علامت نوليي

آئیں اب تک پیش کیے گئے تصورات کو با ضابطہ دستوری صورت دیں۔ ہم موٹی کھھائی میں لاطینی حروف تہی کے بڑے حروف سے قالب کو ظاہر کریں گے مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A وغیرہ۔اییا قالب جس میں A صف اور یا اس کو چکور قوسین میں عمومی رکن سے ظاہر کریں گے مثلاً A وغیرہ۔اییا قالب جس میں میں A صف اور یعد میں قطار آئے گا) اور A تالب کی جسامت A کہلاتی ہے۔یوں A تالب کی صورت کا ہو گا۔

(7.2)
$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

مساوات 7.1 میں بالائی بائیں قالب 2×3 جسامت کا ہے جبکہ نچلا بایاں قالب 3×1 جسامت کا ہے۔ $\frac{1}{1}$

مساوات 7.2 میں ہر رکن کو دو عدد اشاریہ سے پیچانا جاتا ہے جہاں پہلا اشاریہ صف اور دوسرا اشاریہ قطار ہے۔یوں a23 دوسرے صف اور تیسرے قطار پر موجود اندراج ہے۔

 a_{22} ، a_{11} ہو m = n ہو $n \times n$ چکور قالب کہلاتا ہے۔ چکور قالب کا وہ وتر جس پر m = n ہو الیا قالب جس میں ایک چکور قالب کے مرکزی وتر a_{11} ہو تالب کا مرکزی وتر a_{11} ہو الیا تا ہے۔ مساوات a_{11} میں ایک چکور قالب کے مرکزی وتر کے ارکان a_{12} ، a_{13} اور a_{11} اور a_{12} ، a_{13} ہیں۔ جیسا ہم ویکھیں گے، چکور قالب نہایت اہم ہیں۔ a_{11} ہیں۔ جیسا ہم ویکھیں گے، چکور قالب نہایت اہم ہیں۔

ایا قالب جس میں $m \neq n$ ہو $m \times n$ مستطیل $m \times n$ قالب کہلاتا ہے۔ مستطیل قالب کی ایک مخصوص قتم چکور قالب ہے۔

سمتيات

صرف ایک صف یا ایک قطار پر بینی قالب کو سمتیہ کہتے ہیں۔ سمتیہ کے اندراج کو سمتیہ کے اجزاء 15 کہتے ہیں۔ ہم موٹی کھھائی میں لاطینی حروف تجی کے چھوٹے حروف سے سمتیہ کو ظاہر کریں گے مثلاً مثلاً مثلی مرتب کے مثلاً مثل مثالیں ورج ذیل یا اس کو چکور قوسین میں عمومی رکن سے ظاہر کریں گے مثلاً $a = [a_j]$ وغیرہ۔ سمتیہ صف کی مثالیں ورج ذیل ہیں۔

$$a = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}, \quad b = \begin{bmatrix} 2 & -3 & 0 & 4.2 & \frac{3}{5} \end{bmatrix}$$

اسی طرح سمتیہ قطار کی مثالیں درج ذیل ہیں۔

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix}, \qquad d = \begin{bmatrix} 2 \\ -1 \\ 2.3 \end{bmatrix}$$

main diagonal¹³ rectangular matrix¹⁴ components¹⁵

با__7. خطى الجبرا له سمتيات

مجموعه اور غير سمتى ضرب

آئیں پہلے مساوات کا تصور جانتے ہیں۔

تعریف: دو قالب A اور B اس صورت مساوی ہوں گے جب دونوں قالب کی جسامت برابر ہو اور ان کے نظیری ارکان آپس میں برابر ہوں لیعنی $a_{11}=b_{12}$ ، $a_{11}=b_{11}$ نظیری ارکان آپس میں برابر ہوں لیعنی قالب مختلف $a_{11}=b_{12}$ ، حسامت کے قالب ہر صورت مختلف ہوں گے۔مساوات کا تعلق A=B کھا جاتا ہے۔

مثال 7.3: قالبول کی مساوات اگر درج ذیل قالب مساوی ہوں

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \text{if} \quad B = \begin{bmatrix} 2 & -3 \\ 0 & 3.2 \end{bmatrix}$$

تب A=B اور $a_{22}=3.2$ اور $a_{21}=0$ ، $a_{12}=-3$ ، ول گے اور ہم A=B کھ سکتے $a_{21}=0$ ، $a_{21}=0$

$$\begin{bmatrix} 2 & 7 \\ 5 & 1 \end{bmatrix} \quad \begin{bmatrix} 5 & 1 \\ 2 & 7 \end{bmatrix} \quad \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix} \quad \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

تعریف: قالبوں کا مجموعہ دو کیساں جہامت کے قالب $A=[a_{jk}]$ اور $B=[b_{jk}]$ کا مجموعہ A+B کھیا جائے گا جس کے اندراجات $a_{jk}+b_{jk}$ کو A اور B کے نظیری ارکان کے مجموعے سے حاصل کیا جائے گا۔ دو مختلف جہامت کے قالبوں کا مجموعہ حاصل کرنا نا ممکن ہے۔

 ${\it different}^{16}$

مثال 7.4: اگر

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & -2 \\ 3 & 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 3 & 0 \\ 1 & 2 & 1 \\ 2 & -1 & 3 \end{bmatrix}, \quad a = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

a+b ، a+B عاصل کریں۔ a+b ، a+B عاصل کریں۔

حل: چونکہ A اور B کی کیساں جسامت ہے لہذا انہیں جمع کیا جا سکتا ہے۔ مجموعہ درج ذیل ہو گا۔

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 2+7 & -1+3 & 3+0 \\ 1+1 & 0+2 & -2+1 \\ 3+2 & 2-1 & 1+3 \end{bmatrix} = \begin{bmatrix} 9 & 2 & 3 \\ 2 & 2 & -1 \\ 5 & 1 & 4 \end{bmatrix}$$

اسی طرح چونکہ a اور b کی جسامت کیسال ہے لہذا انہیں جمع کیا جا سکتا ہے۔ ان کا مجموعہ درج ذیل ہے۔

$$a+b = \begin{bmatrix} 1+0\\3+2\\-2+1 \end{bmatrix} = \begin{bmatrix} 1\\5\\-1 \end{bmatrix}$$

چونکہ A اور b کی جسامت کیسال نہیں ہے للذا a+b حاصل نہیں کیا جا سکتا ہے۔

تعریف: غیر سمتی ضرب

کسی بھی $n \times n$ قالب $A = [a_{jk}]$ اور کسی بھی غیر سمتی مقدار (عدد) $a \times n$ قالب $a \times n$ اور کسی بھی غیر سمتی مقدار (عدد) $a \times n$ قالب $a \times n$ قالب $a \times n$ کام رکن $a \times n$ کام رکن $a \times n$ قالب $a \times n$ قالب $a \times n$ کام رکن کام رکن کام رکن کو $a \times n$ قالب $a \times n$ قالب اللہ عبان ہے۔

با___7. خطى الجبرار سمتيات

-kA کو -A کو -A کا نفی کہتے ہیں۔ ای طرح -A کو -A کو اور اس کو -A کا فوق -A کا فوق -A کو -A کو کہا جاتا ہے جو -A اور -A کا فوق -A کہاتا ہے (فرق صرف کیساں جہامت کے قالب کا عاصل کیا جا سکتا ہے)۔

مثال 7.5: غير سمتى ضرب اگر

$$\mathbf{A} = \begin{bmatrix} 1.2 & 3.3 \\ 0.6 & -1.5 \\ 0 & 6.0 \end{bmatrix}$$

ہو تب درج ذیل لکھے جا سکتے ہیں۔

$$-\mathbf{A} \begin{bmatrix} -1.2 & -3.3 \\ -0.6 & 1.5 \\ 0 & -6.0 \end{bmatrix}, \quad \frac{10}{3}\mathbf{A} = \begin{bmatrix} 4 & 11 \\ 2 & -5 \\ 0 & 20 \end{bmatrix}, \quad 0\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

اگر قالب B میں مختلف اشیاء کی کلو گرام کمیت درج ہو تب 1000 قالب انہیں اشیاء کی کمیت گرام میں دے گا۔

مجموعه قالب اور غیر سمتی ضرب کے قواعد

مجموعہ اعداد کے قواعد سے مکساں جسامت $m \times n$ کے قالبوں کے مجموعے کے درج ذیل قاعدے حاصل ہوتے $m \times n$

(7.3)
$$A+B=B+A$$

$$(A+B)+C=A+(B+C) \quad (\ddot{\mathcal{G}}^{\mathcal{L}}A+B+C)$$

$$A+0=A$$

$$A-A=0$$

 $difference^{17}$

ورج بالا موٹی ککھائی میں صفر $oldsymbol{0}$ ایسے m imes n صفر قالب 18 کو ظاہر کرتی ہے جس کے تمام ارکان صفر m imes n کے برابر ہوں۔اگر m = 1 یا m = 1 ہو تب اس کو صفر سمتیہ 19 کہیں گے۔

يول مجموعه قالب قانون تبادل اور قانون تلازم پر پورا اترتا ہے۔

اسی طرح غیر سمتی ضرب درج ذیل قواعد پر پورا اترتا ہے۔

$$c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

$$(c + k)\mathbf{A} = c\mathbf{A} + k\mathbf{B}$$

$$c(k\mathbf{A}) = (ck)\mathbf{A} \qquad (\mathbf{\mathcal{E}}^{\mathbf{L}} ck\mathbf{A})$$

$$1\mathbf{A} = \mathbf{A}$$

سوالات

اور $[a_{12}]$ اور $[a_{12}]$ مثال 7.2 معمومی سوالات ہیں۔ سوال 7.1: $[a_{jk}]$ اور $[a_{12}]$ اور $[a_{12}]$ مثال 7.2 میں $[a_{12}]$ اور $[a_{25}]$

 $[a_{25}] = 0$ اور $[a_{12}] = 23$ جوابات:

سوال 7.2: مثال 7.2 میں دیے گئے قالب کی جسامت کھیں۔

جواب: 7×3

سوال 7.3: مثال 7.4 میں قالب A کی مرکزی وتر کھیں۔

جواب: 2 ، 0 اور 1

zero matrix¹⁸ zero vector¹⁹

باب. 7. خطى الجبراد سمتيات.

سوال 7.4 تا سوال 7.10 میں قالبوں کے مجموعے اور غیر سمتی ضرب حاصل کرنے ہوں گے۔ان سوالات میں درکار قالب درج ذیل ہیں۔

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 2 & 3 \\ 0 & 4 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 0 \\ 6 & -2 \\ 4 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 4 \\ 2 & 2 \\ -1 & 3 \end{bmatrix}$$
$$E = \begin{bmatrix} 4 & 0 \\ 12 & -4 \\ 8 & 4 \end{bmatrix}, \quad u = \begin{bmatrix} 2.2 \\ 1.0 \\ 0.0, \end{bmatrix} \quad v = \begin{bmatrix} 1.1 \\ 0.5 \\ 0.0 \end{bmatrix}, \quad w = \begin{bmatrix} 2.0 \\ 1.6 \\ 3.2 \end{bmatrix}$$

-2u ، 0.2B ، 0.5A :7.4 سوال

جوابات:

$$0.5\mathbf{A} = \begin{bmatrix} 0.5 & 0 & 1.0 \\ 1.5 & -0.5 & 0.5 \\ 1.0 & 0.5 & 0 \end{bmatrix}, \quad 0.2\mathbf{B} = \begin{bmatrix} 0.4 & 0 & 0.6 \\ -0.2 & 0.4 & 0.6 \\ 0 & 0.8 & 0.2 \end{bmatrix}, \quad -2\mathbf{u} = \begin{bmatrix} -4.4 \\ -2.0 \\ 0 \end{bmatrix}$$

3A + 2B, 2C - E, -3u + v - 2w :7.5 سوال

جوابات:

$$\begin{bmatrix} 7 & 0 & 12 \\ 7 & 1 & 9 \\ 6 & 11 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -9.5 \\ -5.7 \\ -6.4 \end{bmatrix}$$

 $(3\cdot 6)$ B, 6(3)B, 5A -3A :7.6 سوال :92.

$$\begin{bmatrix} 18 & 0 & 36 \\ 54 & -18 & 18 \\ 36 & 18 & 0 \end{bmatrix}, \quad \begin{bmatrix} 18 & 0 & 36 \\ 54 & -18 & 18 \\ 36 & 18 & 0 \end{bmatrix}, \quad \begin{bmatrix} 2 & 0 & 4 \\ 6 & -2 & 2 \\ 4 & 2 & 0 \end{bmatrix}$$

سوال 7.7. (0.2(0.1E - 0.3D) :7.7 بوال جوال ت

$$\begin{bmatrix} 12 & 60 \\ 66 & 18 \\ 9 & 57 \end{bmatrix}, \begin{bmatrix} 0.08 & -0.24 \\ 0.12 & -0.2 \\ 0.22 & -0.1 \end{bmatrix}$$

E + (D + C), (D + E) + C, A + C, 0B + D :7.8 سوال جوابات: چونکه A اور C کی جسامت کیسال نہیں ہے لہذا انہیں جمع نہیں کیا جا سکتا ہے۔ غیر کیسال جسامت کی بنا B + D بنا B + D بنا راحل نہیں کیا جا سکتا ہے۔

$$E + (D + C) = (D + E) + C = \begin{bmatrix} 6 & 4 \\ 20 & -4 \\ 11 & 9 \end{bmatrix}$$

سوال 7.9: u اور w کو خلاء میں قوت کے اجزاء تصور کرتے ہوئے ان کے مجموعے سے کل قوت دریافت کریں۔

جواب:

سوال 7.10: متوازن صورت تمام قوتوں کا مجموعہ صفر کے برابر ہونے کی صورت کو متوازن²⁰ حال کہتے ہیں۔

ایا قوت x دریافت کریں کہ u ، v ، u اور x متوازن حال میں ہوں۔

$$\boldsymbol{x} = \begin{bmatrix} -5.3 \\ -3.1 \\ -3.2 \end{bmatrix}$$

 $equilibrium^{20}$

7.2 قالبي ضرب

قالبی ضرب سے مراد دو عدد قالبوں کا آلیں میں ضرب ہے۔آپ سے گزارش ہے کہ چند مثالیں حل کرتے ہوئے قالبی ضرب کو اچھی طرح سمجھیں۔ قالبی ضرب کی تعریف درج ذیل ہے۔

تعریف: قالبی ضرب

ور $r \times p$ قالب $A = [a_{jk}]$ واور $r \times p$ قالب $r \times p$ قالب $m \times n$ قالب $m \times n$ قالب $m \times n$ قالب $m \times p$ مرف $m \times n$ قالب $m \times p$ مرف $m \times p$ مورت میں ممکن ہو گا اور سے $m \times p$ قالب $m \times p$ ہو گا جس کے اندراجات درج ذیل ہوں گے۔

(7.5)

$$c_{jk} = \sum_{l=1}^{n} a_{jl}b_{lk} = a_{j1}b_{1k} + a_{j2}b_{2k} + \dots + a_{jn}b_{nk}, \quad j = 1, \dots, m \quad k = 1, \dots, p$$

یوں پہلے جزو A میں قطاروں کی تعداد n دو سرے جزو B کی صفوں کی تعداد r کے برابر ہونا لاز می ہے۔ مساوات 7.5 میں c_{jk} کو A کے r صف کے ہر رکن کو r قطار کے نظیری رکن سے ضرب ویتے ہوئے تمام r حاصل ضرب کا مجموعہ لینے سے حاصل کیا جاتا ہے۔ ہم کہتے ہیں صف ضوب قطار سے قالبی ضرب حاصل کیا جاتا ہے۔ قالبی ضرب r r کی صورت میں درج ذیل ہو گا

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \\ c_{41} & c_{42} \end{bmatrix}$$

جہاں A کی پہلی صف کے ارکان کو B کی پہلی قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے c_{11} حاصل ہو گا۔ ای طرح A کی پہلی صف کے ارکان کو B کی دوسری قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے c_{12} حاصل ہو گا اور A کی دوسری صف کے ارکان کو B کی پہلی قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے c_{21} حاصل ہو گا۔ اس عمل کو درج ذیل کھا جائے گا۔

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

7.2. قالبي ضرب

چو نکہ سمتیہ در حقیقت قالب کی مخصوص صورت ہے للذا قالب اور سمتیہ کا ضرب بھی بالکل اسی طرح حاصل کیا جائے گا۔ قالبی ضرب کی چند مثالیں درج ذیل ہیں۔

مثال 7.6: قالبی ضرب

$$\begin{bmatrix} 1 & 3 \\ 4 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 9 & 7 \\ 8 & 10 \end{bmatrix} = \begin{bmatrix} 1 \cdot 9 + 3 \cdot 8 & 1 \cdot 7 + 3 \cdot 10 \\ 4 \cdot 9 + 6 \cdot 8 & 4 \cdot 7 + 6 \cdot 10 \\ 5 \cdot 9 + 2 \cdot 8 & 5 \cdot 7 + 2 \cdot 10 \end{bmatrix} = \begin{bmatrix} 33 & 37 \\ 84 & 88 \\ 61 & 55 \end{bmatrix}$$

مثال 7.7: قالب اور سمتیه کا ضرب

$$\begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \cdot 4 + 1 \cdot 5 \\ 3 \cdot 4 + 0 \cdot 5 \end{bmatrix} = \begin{bmatrix} 13 \\ 12 \end{bmatrix} \quad \text{if} \quad \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} = \text{otherwise}$$

درج بالا میں قالب اور سمتیہ کی جگہ تبدیل کرنے سے پہلے جزو کی قطاروں اور دوسرے جزو کی صفوں کی تعداد کیساں نہیں رہتی لہذا ایبا ضرب نا ممکن ہے۔یوں ضروری نہیں ہے کہ اور AB اور BA برابر ہوں اور یہ کہ دونوں ضرب کا حصول ممکن ہو۔

سوال 7.11:

$$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -4 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 0 \\ -4 & -2 & -6 \end{bmatrix}$$

با___7. خطى الجبرار سمتيات

آپ نے دیکھا کہ سمتیات کی جگہ تبدیل کرنے سے حاصل ضرب تبدیل ہوتا ہے لینی قالبی ضوب قانون تبادل پو پورا نہیں اترتا۔

مثال $AB \neq BA$ قالبی ضرب قانون تبادل پر بورا نہیں اثرتا للذا عموماً م $B \neq AB$ ہو گا

$$\begin{bmatrix} 1 & 1 \\ 200 & 200 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 200 & 200 \end{bmatrix} = \begin{bmatrix} 199 & 199 \\ -199 & -199 \end{bmatrix}$$

آپ نے دیکھا کہ قالبی ضرب میں اجزاء کی جگہ تبدیل نہیں کی جاسکتی ہے۔اس کے علاوہ قالبی ضرب، عام اعدادی ضرب کے درج ذیل قواعد پر پورا اترتا ہے۔

(راك)
$$(kA)B = k(AB) = A(kB)$$
 $(kAB \ \ AkB)$ (7.6)
$$(ABC) = (AB)C \quad (ABC) \quad (ABC)$$

ورج بالا میں k کوئی عدد ہے اور یہ قواعد اس صورت درست ہوں گے کہ بائیں ہاتھ کے قالب، قالبی ضرب کی تحریف پر پورا اترتے ہوں۔ درج بالا میں مساوات-ب قانون تلازہ 21 کہلاتا ہے جبکہ مساوات-پ اور مساوات-قانون تقسیم 22 کہلاتا ہے۔

چونکہ قالبی ضرب صف ضرب قطار کو کہتے ہیں للذا مساوات 7.5 کو زیادہ خوش اسلوبی سے درج ذیل کھا جا سکتا ہے $c_{jk}=a_{j}b_{k}, \quad j=1,\cdots,m \quad k=1,\cdots,p$ جہاں a_{j} قطار a_{j}

$$oldsymbol{a}_{j}oldsymbol{b}_{k}=egin{bmatrix} a_{j1} & a_{j2} & \cdots & a_{jn} \end{bmatrix} egin{bmatrix} b_{1k} \ b_{2k} \ \vdots \ b_{nk} \end{bmatrix} = egin{bmatrix} a_{j1}b_{1k} + a_{j2}b_{2k} + \cdots + a_{jn}b_{nk} \end{bmatrix}$$

associative law^{21} distributive law^{22}

باب.7. خطى الجبرا ـ سمتيات

حواليه

- [1] Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equations. Malabar, FL: Krieger, 1984.
- [2] Ince, E. L., Ordinary Differential Equations. New York: Dover, 1956.
- [3] Watson, G. N., A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge: University Press, 1944.