Minimax Game Solution

An alternative to "solving" matrix games using the concept of *Nash* Equilibrium is the Minimax approach. It was originally devised for 2-player "Zero Sum" or "Constant Sum" games whereby what one player gains the other player loses. Each player attempts to maximise hir payoff assuming that hir opponent is attempting to minimise it.

Consider the constant sum game

0.1 Analysis of (finite) Matrix Games

One of the best known games is

Prisoner's Dilemma (PD)

		Player 2		
		Keep Quiet	Confess	
Player 1	Keep Quiet	(-1,-1)	(-12,0)	
1 layer 1	Confess	(0,-12)	(-8,-8)	

The solution is $\langle \text{ confess, confess} \rangle$. (See IESDS).

Why don't the players coordinate to get \(\) Keep Quiet, Keep Quiet \(\) ?

The exact payoffs are irrelevant, the game can also be represented by the order of players' preferences - most preferred (p1) to least preferred (p4):

		Player 2	
		Keep Quiet	Confess
Player 1	Keep Quiet	(p2,p2)	(p4,p1)
	Confess	(p1,p4)	(p3,p3)

Other examples of PD-like games are

- War with strategies Defend, Attack respectively.
- Arms Race with strategies Pass, Build respectively.
- Free Trade/ Protection with strategies No Tax, Tax respectively.
- Advertising with strategies No Ads, Ads respectively.

Deadlock is another game (success is to fail!):

		Player 2		
		Try	Fail	
Player 1	Try	(0,0)	(-1,1)	
1 layer 1	Fail	(1,-1)	(0,0)	

Using preferences, we can consider the more general version of deadlock

		Player 2		
		Left	Right	
Player 1	Up	(p2,p2)	(p1,p4)	
	Down	(p4,p1)	(p3,p3)	

The solution is $\langle \text{Up, Left} \rangle$. (See IESDS). Neither player gets hir first choice unless the other makes a mistake.

0.1.1 Strict Dominance

Strategy X strictly dominates strategy Y for a player if X gives a bigger (more preferred) payoff than Y no matter what the other players do. Players never rationally choose strictly dominated strategies.

Reduce the matrix by **Iterated Elimination of Strictly Dominated Strategies** (IESDS) - see PD and Deadlock above. The order of elimination is irrelevant. Another example is the Dance Club game:

		Boon docks	
		Salsa	Hip Hop
Downtown	Salsa	(80,0)	(60,40)
Downtown	Hip Hop	(40,60)	(40,0)

The solution is \langle Salsa, Hip Hop \rangle . Salsa dominates Hip Hop for Club Downtown, then Boonies choses Hip Hop.

Some more examples

		Player 2		
		Left Centre Right		
	Up	(13,3)	(1,4)	(7, 3)
Player 1	Middle	(4,1)	(3,3)	(6,2)
	Down	(-1,9)	(2,8)	(8,-1)

Denoting strict dominance by >, then in the order given C > R, M > D, C > L, M > U. Thus the solution is \langle Middle, Centre \rangle .

Cournot Duopoly game. Firm 1 can produce i units at a cost of $\in 1$ each. Similarly firm 2 can produce j units at a cost of $\in 1$ each. The units sell on the market at a price of $\in [8-2(i+j)]^+$ each, where $[.]^+$ is the positive part of [.] The payoff to firm 1 is the profit gained which is $\in [8-2(i+j)]^+i-i$. Similarly the payoff to firm 2 is $\in [8-2(i+j)]^+j-j$. The game matrix is

		Firm 2					
		j = 0	$j = 0 \mid j = 1 \mid j = 2 \mid j = 3$				
	i = 0	(0,0)	(0,5)	(0, 6)	(0,1)		
Firm 1	i = 1	(5,0)	(3,3)	(1,2)	(-1,-3)		
I 11 111 1	i = 2	(6,0)	(2,1)	(-2,-2)	(-2,-3)		
	i = 3	(1,0)	(-3,-1)	(-3,-2)	(-3,-3)		

The solution is $\langle i = 1, j = 1 \rangle$. What is the sequence of eliminations that leads to this? All routes lead to the same result (proof?):

		Player 2		
		Left	Right	
	Up	(1,-1)	(4,2)	
Player 1	Middle	(0,2)	(3,3)	
	Down	(-2,-2)	(2,-1)	

The solution is $\langle Up, Right \rangle$.

0.1.2 Weak Dominance

Strategy X weakly dominates strategy Y for a player if X gives at least as big a payoff as Y no matter what the other players do and there is one at least one X payoff than is strictly greater than the corresponding Y payoff.

Iterated Elimination of Weakly Dominated Strategies (IEWDS) is in general not a valid technique. Consider the game:

		Player 2		
		Left	Right	
	Up	(0,1)	(-4,2)	
Player 1	Middle	(0,3)	(3,3)	
	Down	(-2,2)	(3,-1)	

If we proceed as before and denoting weak dominance by \geq , we might argue that $M \geq U$, $L \geq R$. The solution is then \langle Middle, Left \rangle . Alternatively we might argue that $M \geq D$, $R \geq L$ which leads to the solution \langle Middle, Right \rangle .

0.1.3 Best Response & Nash Equilibrium

Stag Hunt(SH) - it requires cooperation to catch a stag!

		Player 2		
		Stag	Hare	
Player 1	Stag	$(3^*, 3^*)$	(0,2)	
	Hare	(2,0)	$(1^*, 1^*)$	

For this game there is no SDS nor WDS.

A Nash equilibrium (NE) is a set of strategies, one for each player, from which there is no incentive for any one player to deviate if all the other players play these strategies, i.e. no player can gain by changing, also called a "No regrets" choice. The Best Response of a player to another player's choice of strategy is the strategy that gives the largest or best payoff. We'll denote this by placing an * beside the payoff, e.g. in the stag game above, "stag" with associated payoff 3 is the best response of player 1 to player 2 playing "stag". Hence if both parts of a payoff pair have asterisks beside them, this must be a pure strategy Nash equilibrium (PSNE) - a pair of strategies where both players are playing deterministic strategies as opposed to a mixed strategy Nash equilibrium (MSNE), where players are randomly mixing between the strategies available to them.

Thus in the stag game, the PSNE solutions are \langle stag, stag \rangle and \langle hare, hare \rangle . Notice that without efficient coordination, either solution is possible.

Consider the "Good buddies prisoner's dilemma" game:

		Player 2	
		Keep Quiet	Confess
Player 1	Keep Quiet	(p1,p1)	(p4,p2)
	Confess	(p2,p4)	(p3,p3)

This is identical to the stag hunt game.

An alternative definition of a NE is "mutual best response". Some further examples: Traffic Lights(TL)

		$\operatorname{Car} 2$		
		Go	Stop	
Car 1	Go	(-5,-5)	(1,0)	
	Stop	(0,1)	(-1,-1)	

The PSNE solutions are $\langle go, stop \rangle$ and $\langle stop, go \rangle$.

Generals, Armies & Battles. Each general commands 3 armies. No battle occurs if either general puts 0 armies in the field. Otherwise the general with more armies wins the day. With i and j standing for the number of armies of General 1 and General 2 respectively in the battlefield, one possible game matrix is

		General 2			
		j = 0	j = 1	j=2	j=3
	i = 0	(0,0)	(0,0)	(0, 0)	(0,0)
General 1	i = 1	(0,0)	(0,0)	(-1,1)	(-1,1)
General 1	i=2	(0,0)	(1,-1)	(0,0)	(-1,1)
	i = 3	(0,0)	(1,-1)	(1,-1)	(0,0)

What are the PSNE(s)?

0.1.4 Dominance & NE

If IESDS results in a unique solution then it is a (unique) NE. [proof by appeal to "no regrets"]. IESDS does not remove any NE.

IEWDS may lose NE. It is necessary to check using e.g. Best Responses. If you have a choice eliminate SDS before WDS. Examples:

- The example of Section 0.1.2 has two NE, each obtained by a different sequence of IEWDS.
- Consider the game

		Player 2		
		Left	Right	
Player 1	Up	(2,3)	(4,3)	
1 layer 1	Down	(3,3)	(1,1)	

Using IEWDS, $L \ge R$, then D > U. Hence the solution is \langle Down, Left \rangle . But using Best Responses, another NE is \langle Up, Right \rangle .

• The game

		Player 2		
		Left	Centre	Right
	Up	(2,2)	(4,2)	(4, 3)
Player 1	Middle	(2,4)	(5,5)	(7,3)
	Down	(3,4)	(3,7)	(6,6)

Using IEWDS C \geq L, then M > U, M > D and C> R. Hence the solution is \langle Middle, Centre $\rangle.$ This is the only NE.

0.1.5 MSNE

Matching Pennies(MP) is an example of a game with no PSNE.

		Player 2		
		Heads	Tails	
Player 1	Heads	(1,-1)	(-1,1)	
1 layer 1	Tails	(-1,1)	(1,-1)	

Other names for this game are

- Goalkeeeper v. Penalty Taker
- Offense v. Defense (American Football)
- Fastball v. Curveball (Baseball)
- Attack A or B v. Defend A or B

Nash proved that every finite ¹ game has a NE.

This game has the MSNE $\langle 1/2 \text{ Heads} + 1/2 \text{ Tails}, 1/2 \text{ Heads} + 1/2 \text{ Tails} \rangle$.

More generally, MSNEs can be found using the Bishop-Cannings theorem. Consider the following game:

		Player 2		
		Left	Right	
Player 1	Up	(3,-3)	(-2,2)	
1 layer 1	Down	(-1,1)	(0,0)	

 $^{^{1}}$ finite number of players, finite number of pure strategies

Again note that there is no PSNE. We'll use the notation $R_1\langle s_1, s_2\rangle$ and $R_2\langle s_1, s_2\rangle$ to stand for the payoffs to Player 1 and 2 respectively when Player 1 plays strategy s_1 and Player 2 strategy s_2 .

In the mixed strategy game let p be the probability that Player 1 plays Up, and similarly q the probability that Player 2 plays Left. Then the payoff to player 2 by playing Left against Player 1's mixed strategy is

$$R_2\langle p\mathrm{Up} + (1-p)\mathrm{Down}, \mathrm{Left}\rangle = -3p + 1(1-p)$$

Again the payoff to player 2 by playing Right against Player 1's mixed strategy is

$$R_2\langle p\mathrm{Up} + (1-p)\mathrm{Down}, \mathrm{Right}\rangle = 2p + 0(1-p)$$

If the two payoff values are different then Player 2 has a definite preference between the two and so would not want to randomise. If for instance Player 2 were to choose Left, then Player 1 would abandon his mixed strategy and choose Up instead. Similarly if Player 2 were to choose Right instead, Player 1 would change from randomising to playing Down. In either case, the mixed strategies go out the window and no NE exists. To get a MSNE requires that Player 2 be indifferent between the two payoffs i.e. requires that the two payoffs be the same and since the payoff at any mixed strategy is a linear combination of the pure strategy payoffs, this must also have the same value. Equating the two payoffs gives

$$-3p + 1(1-p) = 2p + 0(1-p)$$

 $\Rightarrow p = 1/6$

and the value of the payoff is

$$v_2 = R_2 \left\langle \frac{1}{6} \text{Up} + \frac{5}{6} \text{Down, Left or Right} \right\rangle = \frac{1}{3}$$

Similarly the payoffs to Player 1 by playing Up (respectively Down) against Player 2's mixed strategy are

$$R_1 \langle \text{Up}, q \text{Left} + (1-q) \text{Right} \rangle = 3q + (-2)(1-q)$$

$$R_1\langle \text{Down}, q \text{Left} + (1-q) \text{Right} \rangle = (-1)q + 0(1-q)$$

respectively. To be indifferent between the two requires

$$3q + (-2)(1-q) = (-1)q + 0(1-q)$$

 $\Rightarrow q = 1/3$

and the value of the payoff is

$$v_1 = R_1 \left\langle \text{Up or Down}, \frac{1}{3} \text{Left} + \frac{2}{3} \text{Right} \right\rangle = -\frac{1}{3}$$

Exercise: Show that the stag hunt game has a MSNE at $\langle 1/2 \text{ stag} + 1/2 \text{ hare}, 1/2 \text{ stag} + 1/2 \text{ hare} \rangle$.

We can have partial MSNE where (at least) one player has a pure strategy and (at least) one player has a mixed strategy.

Examples of games with MSNE:

• Chicken (aka Snowdrift):

		Player 2		
		Continue / Stay in car	Swerve / Shovel	
Player 1	Continue / Stay in car	(-10,-10)	(2,-2)	
1 layer 1	Swerve / Shovel	(-2,2)	(0,0)	

PSNEs occur at \langle Continue, Swerve \rangle and at \langle Swerve, Continue \rangle . There is also a MSNE at \langle 1/5 continue + 4/5 swerve, 1/5 continue + 4/5 swerve \rangle . Show that $v_1 = v_2 = -2/5$.

• Battle of the Sexes:

		Her		
		Ballet	Fight	
Him	Ballet	(1,2)	(-1,1)	
111111	Fight	(-1,1)	(2,1)	

PSNEs occur at \langle Ballet, Ballet \rangle and at \langle Fight, Fight \rangle . Show that there is a MSNE at \langle 1/3 ballet + 2/3 fight, 2/3 ballet + 1/3 fight \rangle with $v_1 = 2/3 = v_2$. Compare and contast this with the payoffs of the PSNEs.

0.1.6 MSNE and Dominance

A SDS cannot be played with positive probability in a MSNE (otherwise a higher payoff can be obtained by not playing the SDS when the strategy says to play it).

0.1.7 Strict Dominance in Mixed Strategies

Consider the game:

		Player 2		
		Left	Right	
	Up	(3,-1)	(-1,1)	
Player 1	Middle	(0,0)	(0,0)	
	Down	(-1,2)	(2,-1)	

This game has no SDS dominated by a pure strategy nor any PSNE. If a mixture of two pure strategies dominates another, then that strategy is a SDS.

In the above game 1/2 Up + 1/2 Down > Middle. Remove Middle to get

		Player 2		
		Left	Right	
Player 1	Up	(3,-1)	(-1,1)	
1 layer 1	Down	(-1,2)	(2,-1)	

Show that a MSNE exists at $\langle (3/5)\text{Up} + (2/5)\text{Down}, (3/7)\text{Left} + (4/7)\text{Right} \rangle$.

Another example:

		Player 2		
		Left	Centre	Right
	Up	(-3,6)	(9,1)	(0, 2)
Player 1	Middle	(3,-4)	(2,4)	(4,1)
	Down	(4,7)	(3,2)	(-3,2)

Using IESDS, we get (1/4)L + (3/4)C > R, D > M, L > C, D > U. Thus the solution is $\langle Down, Left \rangle$.

0.1.8 Atypical Matrix Games

Almost all matrix games have an odd number of solutions (Wilson 1971). Examples of non generic games follow. Weak dominance is usually the culprit.

•

		Player 2		
		Left	Right	
Player 1	Up	(1,1)	(0,0)	
1 Tayer 1	Down	(0,0)	(0,0)	

There are two PSNEs.

•

		Player 2		
		Left	Right	
Player 1	Up	(2,2)	(9,0)	
1 layer 1	Down	(2,3)	(5,-1)	

Using IESDS, L > R. Player 1 can choose Up or Down as pure strategies or any mixture of the two. All strategies yield a payoff of 2: an infinite number of strategies. If tempted to use IEWDS, $U \ge D$, leading to the solution $\langle Up, Right \rangle$. Caveat emptor!

- Example 2 of Section 0.1.4 had two PSNEs. It also has an infinite number of MSNEs at \langle Up, qLeft + (1-q)Right \rangle for $q \leq 3/4$.
- Selten's Horse:

		Player 2	
		Left	Right
Player 1	Up	(3,1)	(0,0)
	Down	(2,2)	(2,2)

There are two PSNEs at \langle Up,Left \rangle and \langle Down,Right \rangle and an infinite number of MSNEs at \langle Down, qLeft + (1-q)Right \rangle for $q \leq 2/3$.

• Take or Share - TV game show:

		Player 2	
		Share	Take
Player 1	Share	(4,4)	(0,8)
	Take	(8,0)	(0,0)

There are three PSNEs at all but \langle Share, Share \rangle . If one player chooses Take, then the other is indifferent between Share and Take which leads to an infinity of MSNEs.