

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data Wrangling
 - EDA with Data Visualization
 - Building an interactive map with Folium
 - Building a Dashboard with Plotly Dash
 - Predictive Analysis (Classification)
- Summary of all results
 - EDA Result
 - Interactive Analytics
 - Predictive Analysis

Introduction

- Project background and context
 - SpaceX advertises Falcon rocket launches on it's website, with a cost of 62 Million dollars; other
 providers cost upward of 165 Million dollars, each much of the savings is because SpaceX can
 reuse the first stage.
- Problems you want to find answers
 - The project task is to predicting if the 1st stage of the SpaceX Falcon rocket will land successfully.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
- Perform data wrangling
 - One Hot Encoding data fields for machine learning and Data Cleaning of null values and irrelevant columns.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, KNN, SVM, DT model have been built and evaluated for the best Classifier.

Data Collection

- The following dataset was collected:
 - SpaceX launch data that is gathered from the SpaceX REST API.
 - This API will give us data about launches, including information about the rocket used, payload delivered, launch specification, landing specifications and landing outcome.
 - The SpaceX REST API endpoints, or URL, starts with api.spacexdata.com/v4/.
 - Another popular data source for obtaining Falcon 9 Launch data is web scrapping Wikipedia using BeautifulSoup.

Data Collection - SpaceX API

Data collection with SpaceX Rest calls

```
[8]: spacex url="https://api.spacexdata.com/v4/launches/past"
      response = requests.get(spacex_url)
 [9]: static json url='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/AP
      response.status code
[9]: 200
[12]: # Use json normalize meethod to convert the json result into a dataframe
      jlist = requests.get(static_json_url).json()
      df2 = pd.json_normalize(jlist)
      df2.head()
         static_fire_date_utc static_fire_date_unix tbd
                                                    net window
                                                                                                     details crew ships capsules
[12]:
                                                                                   rocket success
                                                                                                      Engine
                                                                                                    failure at
                                 1.142554e+09 False False
                                                             0.0 5e9d0d95eda69955f709d1eb
                                                                                             False
                                                                                                                              [] [5eb0e4b
            17T00:00:00.000Z
                                                                                                     seconds
                                                                                                   and loss of
                                                                                                      vehicle
```

Data Wrangling

EDA with Data Visualization

EDA with SQL

SQL queries performed include:

- Displaying the names of the unique launch sites in the space mission
- Displaying 5 records where launch sites begin with the string 'KSC'
- Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where the successful landing outcome in drone ship was achieved.
- Listing the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- Listing the total number of successful and failure mission outcomes
- Listing the names of the booster versions which have carried the maximum payload mass.
- Listing the records which will display the month names, successful landing outcomes in ground pad, booster
- versions, launch site for the months in year 2017
- Ranking the count of successful landing outcomes between the date 2010 06 04 and 2017 03 20 in descending order.

Build an Interactive Map with Folium

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

• The SVM, KNN, and Logistic Regression model achieved the highest accuracy at 83.3%, while the SVM performs the best in terms of Area Under the Curve at 0.958.

Results

- The SVM, KNN, and Logistic Regression models are the best in terms of
- prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they
- will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate.

Flight Number vs. Launch Site

Payload vs. Launch Site

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

%sql select distinct (LaunchSite) from spaceX

```
[54]: unique_launch_sites = df_spaceX['LaunchSite'].unique()
print(unique_launch_sites)
['CCSFS SLC 40' 'VAFB SLC 4E' 'KSC LC 39A']
```

Launch Site Names Begin with 'CC'

%sql select * from spaceX where LaunchSite 'CC%' limit 5

]:		FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	Reused
	0	1	2010- 06-04	Falcon 9	6123.547647	LEO	CCSFS SLC 40	None None	1	False	False	False	NaN	1.0	
	1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCSFS SLC 40	None None	1	False	False	False	NaN	1.0	
	2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCSFS SLC 40	None None	1	False	False	False	NaN	1.0	
	4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCSFS SLC 40	None None	1	False	False	False	NaN	1.0	
	5	6	2014- 01-06	Falcon 9	3325.000000	GTO	CCSFS SLC 40	None None	1	False	False	False	NaN	1.0	
	<														>

Total Payload Mass

%sql select sum(PayloadMass) from spaceX where customer = 'NASA'

Total payload carried by boosters from NASA: 168179.10 kg

Average Payload Mass by F9 v1.1

 %sql select avg(PayloadMass) from spaceX where BOOSTER_VERSION='F9 v1.1'

```
[61]: # Filter the dataframe to only include rows where BoosterVersion is F9 v1.1
df_f9_v1_1 = df_spaceX[df_spaceX['BoosterVersion'] == 'F9 v1.1']

# Calculate the mean of the PayloadMass column
avg_payload_mass = df_f9_v1_1['PayloadMass'].mean()

print("Average payload mass carried by F9 v1.1 boosters:", avg_payload_mass, "kg")

Average payload mass carried by F9 v1.1 boosters: nan kg
```

First Successful Ground Landing Date

 %sql select min(DATE) from spaceX where Landing_outcome = 'Success(ground pad)'

Successful Drone Ship Landing with Payload between 4000 and 6000

- %sql select BOOSTER_VERSION from spaceX where Landing_Outcome
 - = 'Success(drone ship)' and PayloadMass>4000 and PayloadMass < 6000

Total Number of Successful and Failure Mission Outcomes

 %sql select count(MISSION_OUTCOME) from spaceX where MISSION_Outcome = 'Success' or MISSION_Outcome = 'Failure (in flight)'

Boosters Carried Maximum Payload

 %sql select BOOSTER_VERSION from spaceX where PayloadMass =(select max(PayloadMass) from spaceX)

2015 Launch Records

 %sql select * from spaceX where Landing_Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 %sql select * from spaceX where Landing_Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc

All launch sites marked on a map

Success / failed launches marked on the map

Distance between a launch site to its proximities

Total Success Launch by all sites

Success Rate by site

Payload vs Launch Outcome

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate.

