1

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO **FCC PART 22/24 TEST REPORT**

OF

Dual Sim dual standby Quad-Band mobile phone

FCC ID: W62A008

MODEL No.: A008

LISTED MODELS: N/A

BRAND NAME: Ming xing

REPORT NO: SCS-SZR090302001

ISSUE DATE: Mar 12, 2009

Prepared for

Hermitage Tool Co.,Ltd 1034 4th Avenue South Nashville, TN 37210

Prepared by

STANDARD COMPLIANCE SERVICES (SHENZHEN) CO., LTD.

d.b.a.

STANDARD COMPLIANCE SERVICES (SHENZHEN) CO., LTD. RM.315, BIG NEW BUILDING, NO.3083, NANXIN RD., NANSHAN, SHENZHEN, GUANGDONG, CHINA

TEL: 86-755-86174050

FAX: 86-755-86174237

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of Standard Compliance Services (ShenZhen) Co., Ltd.

Test Report Certification

Product Name : Dual Sim dual standby Quad-Band mobile phone

Applicant : Hermitage Tool Co.,Ltd

Address : 1034 4th Avenue South Nashville, TN 37210

Manufacturer : Sky honest Electronic (HongKong) Co., Ltd.

Model No. : A008 Listed Models: N/A

FCC ID : W62A008

Rated Voltage : AC 120 V / 60 Hz

EUT Voltage : DC 3.7V

Trade Name : Ming xing

Applicable Standard : FCC CFR Title 47 Part 2, Part 22H and Part 24E

EIA/TIA 603-C

Test Result : Complied

Test Location : QuieTek Technology (Suzhou) Co., Ltd

No.99, Hongye Rd., Suzhou Industrial Park

Loufeng Hi-Tech Development Zone, Suzhou, China

FCC Registration Number: 800392

We hereby certify that:

The above equipment was tested by Standard Compliance Services (ShenZhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 22 and Part 24.

The test results of this report relate only to the tested sample identified in this report.

Approved By	Reviewed By
Lisa Chen	fruid
Lisa Chen / Manager	Fred/ Engineer

TABLE OF CONTENTS

1. General Information	
1.1. EUT Description	
1.2. Mode of Operation	
1.3. Tested System Details	5
1.4. Configuration of Tested System	5
1.5. EUT Exercise Software	
2. Technical Test	
2.1. Summary of Test Result	
2.2. Test Environment	
3. Peak Output Power	9
3.1. Test Equipment	9
3.2. Test Setup	10
3.3. Limit	10
3.4. Test Procedure	11
3.5. Uncertainty	
3.6. Test Result	13
3.7. Test Photograph	15
4. Modulation Characteristic	17
4.1. Test Equipment	17
4.2. Test Setup	
4.3. Limit	
4.4. Test Procedure	18
4.5. Uncertainty	18
4.6. Test Result	19
5. Occupied Bandwidth	
5.1. Test Equipment	<u></u>
5.2. Test Setup	<u></u>
5.3. Limit	
5.4. Test Procedure	
5.5. Uncertainty	
5.6. Test Result	
6. Spurious Emission At Antenna Terminals (+/- 1MHz)	28
6.1. Test Equipment	28
6.2. Test Setup	28
6.3. Limit	28
6.4. Test Procedure	28
6.5. Uncertainty	
6.6. Test Result	
7. Spurious Emission	31
7.1. Test Equipment	31
7.2. Test Setup	
7.3. Limit	
7.4. Test Procedure	32
7.5. Uncertainty	
7.6. Test Result	
7.7. Test Photograph	
8. Frequency Stability Under Temperature & Voltage Variations	
8.1. Test Equipment	
8.2. Test Setup	
8.3. Limit	
8.4. Test Procedure	52
8.5. Uncertainty	52
8.6. Test Result	52

1.1. EUT Description

Product Name	Dual Sim dual standby Quad-Band mobile phone	
Trade Name	Ming xing	
Model No.	A008	
Listed Models:	N/A	
FCC ID	W62A008	
IME No.	352690030042719	
Tx Frequency Range	GSM 850: 824MHz to 849MHz PCS 1900: 1850MHz to 1910MHz	
Rx Frequency Range	GSM 850: 869MHz to 894MHz PCS 1900: 1930MHz to 1990MHz	
Channel Number	GSM 850: 124 PCS 1900: 299	
Type of Modulation	GMSK	
Channel Control	Auto	
Antenna type	Fixed	
DC voltages	EUT Transmitting (in maximum power): DC voltage: 3.7V EUT Standby: DC voltage: 3.7V	

1.2. Mode of Operation

SCS has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode

Mode 1: GSM 850 Mode 2: PCS 1900

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pr	oduct	Manufacturer	Model No.	Serial No.	Power Cord
1	Radio Communication Tester	R&S	CMU200	106388	Non-Shielded, 1.8m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

1	Setup the EUT and simulators as shown on 1.4.
2	Turn on the power of al equipment, and link EUT to communication tester CMU200.
3	Set EUT working at maximum power output mode through CMU200, Then calling all the time.
4	Change to another mode (PCS1900) and then test it.

2. Technical Test

2.1. Summary of Test Result

No deviations from the test standards

Emission					
Performed Item	Normative References Test Performed		Deviation		
Peak Output Power	FCC Part 22.913(a)(2) and Part 2.1046 EIA/TIA 603-C	Yes	No		
Modulation Characteristic	FCC Part 2.1047(d)	Yes	No		
Occupied Bandwidth	FCC Part 2.1049	Yes	No		
Spurious Emission At Antenna Terminals (+/- 1MHz)	FCC Part 22.917(a) and Part 2.1049	Yes	No		
Spurious Emission	FCC Part 22.917(b) and Part 2.1051, 2.1053 EIA/TIA 603-C	Yes	No		
Frequency Stability Under	FCC Part 22.355 and 2.1055	Yes	No		
Temperature & Voltage Variations	EIA/TIA 603-C				

Deviations from the test standards as below description: For GSM 850 (FCC Part 22H & Part 2)

For PCS 1900 (FCC Part 24E & Part 2)

Emission					
Performed Item	Normative References	Test Performed	Deviation		
Peak Output Power	FCC Part 24.232(b) and Part 2.1046 EIA/TIA 603-C	Yes	No		
Modulation Characteristic	FCC Part 2.1047(d)	Yes	No		
Occupied Bandwidth	FCC Part 24.238(b) and Part 2.1049	Yes	No		
Spurious Emission At Antenna Terminals (+/- 1MHz)	FCC Part 24.238(a) and Part 2.1049	Yes	No		
Spurious Emission	FCC Part 24.238(b) and Part 2.1051, 2.1053 EIA/TIA 603-C	Yes	No		
Frequency Stability Under	FCC Part 24.235 and 2.1055	Yes	No		
Temperature & Voltage	EIA/TIA 603-C				

2.2. Test Environment

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	23
Humidity (%RH)	25-75	52
Barometric pressure (mbar)	860-1060	950-1000

3. Peak Output Power

3.1. Test Equipment

Conducted Output Power / AC-4

Obliqueted Output Fower 770 4					
Instrument	Manufacturer	Type No.	Serial No	Cal. Date	
Spectrum Analyzer	Agilent	E4446A	MY45300103	2008/06	
Radio Communication Tester	R&S	CMU 200	106388	2008/10	
Dual Directional Coupler	Agilent	778D	20160	2008/04	
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2008/04	
Coaxial Cable	Huber+Suhner	AC4-RF-H	10	2008/11	
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH007	2008/11	

Radiated Output Power / AC-2

Instrument	Manufacturer	Type No.	Serial No	Cal. Date	
Spectrum Analyzer	Agilent	E4408B	MY4 <mark>510267</mark> 9	2008/11	
Radio Communication Tester	R&S	CMU 200	106388	2008/10	
PSG Analog S.G.	Agilent	E8257D	MY44321116	2008/06	
Preamplifier	QuieTek	AP-025C	QT-AP003	2008/11	
Preamplifier	QuieTek	AP-180C	CHM-0602012	2008/11	
Bilog Type Antenna	Schaffner	CBL6112B	2932	2008/11	
Half Wave Tuned Dipole Antenna COM-POWER		AD-100	40137	2008/11	
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	496	2008/11	
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	499	2008/11	
Coaxial Cable	Huber+Suhner	AC2-R	04	2008/11	
Coaxial Cable	Huber+Suhner	AC2-T	05	2008/11	
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH002	2009/03	

3.2. Test Setup

Conducted Power Measurement:

Radiated Power Measurement:

3.3. Limit

For FCC Part 22.913(a)(2):

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

For FCC Part 24.232(b):

The EIRP of mobile transmitters and auxiliary test transmitters must not exceed 2 Watts.

REPORT NO: SCS-SZB090302001 FCC ID: W62A008 DATE: 03/16/2009

3.4. Test Procedure

The EUT was setup according to EIA/TIA 603C

Conducted Power Measurement:

- Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the

maximum signal level is detected by the measuring receiver.

- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- I) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the

input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

3.5. Uncertainty

The measurement uncertainty is defined as for Conducted Power Measurement ± 1.2 dB, for Radiated Power Measurement ± 3.2 dB

3.6. Test Result

Product	Dual Sim dual standby Quad-Band mobile phone		
Test Item	Peak Output Power		
Test Mode	Mode 1: GSM 850		
Date of Test	2009/03/04	Test Site	AC-2

			Conducted Peak	Radiated Peak		
Channel	Frequency	Modulation	Output Power	Output Power Measurement	Limit	Result
No.	(MHz)		Measurement	(dBm)	(dBm)	
128	824.2	GSM	32.06	28.08	38.50	Pass
189	836.4	GSM	31.57	28.22	38.50	Pass
251	848.8	GSM	32.34	29.04	38.50	Pass

Radiated Measurement

Frequency (MHz)	SA Reading (dBm)	Ant.Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)
Low Channe	l 128 (824.2	OMHz)						
824.20	-13.50	Н	19.61	2.56	-0.02	17.03	38.50	-21.47
824.20	-2.40	V	30.66	2.56	-0.02	28.08	38.50	-10.42
Middle Chan	nel 380 (836	6.40MHz)						
836.40	-13.12	Н	19.92	2.59	0.10	17.43	38.50	-21.07
836.40	-2.24	V	30.71	2.59	0.10	28.22	38.50	-10.28
High Channe	el 773 (848.8	BOMHz)						
848.80	-13.04	Н	20.46	2.54	0.13	18.05	38.50	-20.45
848.80	-2.12	V	31.45	2.54	0.13	29.04	38.50	-9.46

Product	Dual Sim dual standby	Dual Sim dual standby Quad-Band mobile phone		
Test Item	Peak Output Power	Peak Output Power		
Test Mode	Mode 2: PCS 1900	Mode 2: PCS 1900		
Date of Test	2009/03/04	Test Site	AC-2	

			Conducted Peak	Radiated Peak		
Channel	Frequency	Modulation	Output Power	Output Power Measurement (dBm)	Limit	Result
No.	(MHz)		Measurement	(ubiii)	(dBm)	
512	1850.2	GPRS	29.68	27.31	33.00	Pass
661	1880.0	GPRS	29.51	27.45	33.00	Pass
810	1909.8	GPRS	30.00	28.18	33.00	Pass

Radiated Measurement

Frequency	SA	Ant.Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBi)	(dBm)	(dBm)	(dB)
,	(dBm)	,	(dBm)	(dB)	, ,	,	,	
Low Channe	l 512 (1850)	.20MHz)						
1850.20	-6.06	Н	19.63	3.55	10.40	26.48	33.00	-6.52
1850.20	-5.22	V	20.46	3.55	10.40	27.31	33.00	-5.69
Middle Chan	nel 661 (18	80.00MHz)						
1880.00	-5.95	Н	20.12	3.53	10.43	27.02	33.00	-5.98
1880.00	-5.16	V	20.55	3.53	10.43	27.45	33.00	-5.55
High Channe	el 810 (1909	.80MHz)						
1909.80	-5.86	Н	20.47	3.56	10.44	27.35	33.00	-5.65
1909.80	-5.04	V	21.3	3.56	10.44	28.18	33.00	-4.82

3.7. Test Photograph

Test Mode: Mode 1: GSM 850

Description: Radiated Peak Output Power Test Setup for EUT

Test Mode: Mode 1: GSM 850

Description: Radiated Peak Output Power Test Setup for Substitution Antenna

Test Mode: Mode 2: PCS 1900

Description: Radiated Peak Output Power Test Setup for EUT

Test Mode: Mode 2: PCS 1900

Description: Radiated Peak Output Power Test Setup for Substitution Antenna

4. Modulation Characteristic

4.1. Test Equipment

Modulation Characteristic / AC-4

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2008/06
Radio Communication Tester	R&S	CMU 200	106388	2008/10
Dual Directional Coupler	Agilent	778D	20160	2008/04
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2008/04
Coaxial Cable	Huber+Suhner	AC4-RF-H	10	2008/11
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH007	2008/11

4.2. Test Setup

REPORT NO: SCS-SZB090302001 FCC ID: W62A008 DATE: 03/16/2009

4.3. Limit

N/A

4.4. Test Procedure

GMSK is a form of binary signaling schemes which represent digital states as a shift between discrete sinusoidal frequencies called Frequency Shift Keying (FSK). Minimum Shift Keying (MSK) is continuous phase FSK with the smallest possible modulation index h. Modulation index is defined as: h = 2*F*Tb

where F = Peak frequency deviation in Hz and Tb = Bit period in seconds

Two discrete frequencies, representing two distinct digital states, with equal phases at switch time t = 0 requires a minimum value of h = 0.5. The Gaussian part of GMSK describes the fact that the digital pulses are filtered in the time domain. This results in bits which are sinusoidal rather than square. The effective spectrum is then compressed with the average carrier frequency in the center of the passband. This is a great advantage because of the significantly reduced bandwidth. GMSK is utilized because of these bandwidth conservation properties.

The bandwidth for GSM is a 60 MHz up-link at 1850-1910 MHz and down-link at 1930-1990 MHz. The 65 MHz is divided into 299 channels, each of which is 200 kHz wide. Slight spectral spillage is allowed into neighboring channels (which is minimized by GMSK). This separated transmit/receive frequencies scheme under GSM enables easier duplex filtering.

Within the bandwidth, individual channels are subdivided into multiframes (made of 26 frames), frames (made of 8 time slots), and time slots (made of 8 fields). The time slots are 0.57 ms long allowing 156.25 bits of information including overhead.

4.5. Uncertainty

The measurement uncertainty is defined as 0.1%

Product	Dual Sim dual standby Quad-Band mobile phone		
Test Item	Modulation Characteristic		
Test Mode	Mode 1: GSM 850		
Date of Test	2009/03/04	Test Site	AC-4

Figure (GSM 850-Channel 128)

Figure (GSM 850-Channel 189)

Figure (GSM 850-Channel 251)

Product	Dual Sim dual standby Quad-Band mobile phone		
Test Item	Modulation Characteristic		
Test Mode	Mode 2: PCS 1900		
Date of Test	2009/03/04	Test Site	AC-4

Figure (PCS 1900-Channel 512)

Figure (PCS 1900-Channel 661)

Figure (PCS 1900-Channel 810)

5. Occupied Bandwidth

5.1. Test Equipment

Occupied Bandwidth / AC-4

Occupied Bandwidth / NO 4				
Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2008/06
Radio Communication Tester	R&S	CMU 200	106388	2008/10
Dual Directional Coupler	Agilent	778D	20160	2008/04
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2008/04
Coaxial Cable	Huber+Suhner	AC4-RF-H	10	2008/11
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH007	2008/11

5.2. Test Setup

5.3. Limit

N/A

5.4. Test Procedure

Using a resolution bandwidth of 3kHz and a video bandwidth of 10kHz, the -26dBc points were established and the emission bandwidth determined. The plots below show the resultant display from the Spectrum Analyzer.

5.5. Uncertainty

The measurement uncertainty is defined as \pm 10 Hz

5.6. Test Result

Product	Dual Sim dual standby Quad-Band mobile phone		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: GSM 850		
Date of Test	2009/03/04	Test Site	AC-4

Channel No.	Frequency (MHz)	Measurement of -26dB Bandwidth (kHz)
128	824.20	321.00
189	836.40	321.00
251	848.80	307.00

Figure Channel 189 (836.40MHz)

Figure Channel 251 (848.80MHz)

Product	Dual Sim dual standby Quad-Band mobile phone		
Test Item	Occupied Bandwidth		
Test Mode	Mode 2: PCS 1900		
Date of Test	2009/03/04	Test Site	AC-4

Channel No.	Frequency (MHz)	Measurement of -26dB Bandwidth (kHz)
512	1850.20	314.00
661	1880.00	313.00
810	1909.80	315.00

Figure Channel 661 (1880.00MHz)

Figure Channel 810 (1909.80MHz)

6. Spurious Emission At Antenna Terminals (+/- 1MHz)

6.1. Test Equipment

Spurious Emission At Antenna Terminals (+/- 1MHz) / AC-4

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2008/06
Radio Communication Tester	R&S	CMU 200	106388	2008/10
Dual Directional Coupler	Agilent	778D	20160	2008/04
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2008/04
Coaxial Cable	Huber+Suhner	AC4-RF-H	10	2008/11
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH007	2008/11

6.2. Test Setup

6.3. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

6.4. Test Procedure

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

6.5. Uncertainty

The measurement uncertainty is defined as \pm 1.2 dB.

6.6. Test Result

Figure Channel 251 (Mode 1: GSM850--848.80MHz)

Figure Channel 512 (Mode 2: PCS1900--1850.20MHz)

Figure Channel 810 (Mode 2: PCS1900--1909.80MHz)

7. Spurious Emission

7.1. Test Equipment

Conducted Spurious Emission / AC-4

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2008/06
Radio Communication Tester	R&S	CMU 200	106388	2008/10
Dual Directional Coupler	Agilent	778D	20160	2008/04
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2008/04
Coaxial Cable	Huber+Suhner	AC4-RF-H	10	2008/11
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH007	2008/11

Radiated Spurious Emission / AC-2

radiated oparious Emission	/ / (O Z			
Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	E4408B	MY45102679	2008/11
Radio Communication Tester	R&S	CMU 200	106388	2008/10
PSG Analog S.G.	Agilent	E8257D	MY44321116	2008/06
Preamplifier	QuieTek	AP-025C	QT-AP003	2008/11
Preamplifier	QuieTek	AP-180C	CHM-0602012	2008/11
Bilog Type Antenna	Schaffner	CBL6112B	2932	2008/11
Half Wave Tuned Dipole Antenna	COM-POWER	AD-100	40137	2008/11
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	496	2008/11
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	499	2008/11
Coaxial Cable	Huber+Suhner	AC2-R	04	2008/11
Coaxial Cable	Huber+Suhner	AC2-T	05	2008/11
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH002	2009/03

7.2. Test Setup

Conducted Spurious Measurement:

Radiated Spurious Measurement:

7.3. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

7.4. Test Procedure

The EUT was setup according to EIA/TIA 603C

Conducted Spurious Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.

- c) EUT Communicate with CMU200, then select a channel for testing. d) Add a correction factor to the display of spectrum, and then test.
- e) The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1 MHz for Part 24, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

Radiated Spurious Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the

maximum signal level is detected by the measuring receiver.

- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- q) The maximum signal level detected by the measuring receiver shall be noted.
- h) The transmitter shall be replaced by a substitution antenna.
- i) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- j) The substitution antenna shall be connected to a calibrated signal generator.
- k) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- I) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- m) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- n) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- o) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- p) The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1 MHz for Part 24. The frequency range was checked up to 10th harmonic.

7.5. Uncertainty

The measurement uncertainty is defined as for Conducted Power Measurement ± 1.2 dB, for Radiated Power Measurement ± 3.2 dB

7.6. Test Result

Engineer : John	
Site : Shielding Room	Time: 2009/03/04 - 19:02
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : GSM850 Channel 128

Engineer : John	
Site : Shielding Room	Time: 2009/03/04 - 19:04
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : GSM850 Channel 189

Engineer : John	
Site : Shielding Room	Time: 2009/03/04 - 19:04
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : GSM850 Channel 251

Engineer : John	
Site : Shielding Room	Time: 2009/03/04 - 19:25
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : GSM850 Channel 128

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBm)	(dBm)	(dB)	(dBm)	
1	*	2472.236	0.000	-24.197	-24.197	-11.197	-13.000	PEAK
2		3296.148	0.000	-35.256	-35.256	-22.256	-13.000	PEAK
3		4120.060	0.000	-48.495	-48.495	-35.495	-13.000	PEAK
4		4943.972	0.000	-59.276	-59.276	-46.276	-13.000	PEAK

Engineer : John	
Site : Shielding Room	Time : 2009/03/04 - 19:26
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : GSM850 Channel 189

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBm)	(dBm)	(dB)	(dBm)	
1	*	2508.254	0.000	-20.882	-20.882	-7.882	-13.000	PEAK
2		3345.673	0.000	-36.762	-36.762	-23.762	-13.000	PEAK
3		4183.091	0.000	-50.368	-50.368	-37.368	-13.000	PEAK

Engineer : John	
Site : Shielding Room	Time: 2009/03/04 - 19:27
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT: A008	Probe : - Line1
Power : DC 3.7V	Note : GSM850 Channel 251

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
	н	(MHz)	(dB)	(dBm)	(dBm)	(dB)	(dBm)	
1	*	2548.774	0.000	-23.703	-23.703	-10.703	-13.000	PEAK
2		3395.198	0.000	-38.711	-38.711	-25.711	-13.000	PEAK
3		4246.123	0.000	-55.136	-55.136	-42.136	-13.000	PEAK
4		5092.546	0.000	-61.004	-61.004	-48.004	-13.000	PEAK

Engineer : John	
Site : Shielding Room	Time: 2009/03/04 - 19:07
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : PCS1900 Channel 512

	Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
	(MHz)	(dB)	(dBm)	(dBm)	(dB)	(dBm)	
1	40.675	0.000	-48.713	-48.713	-35.713	-13.000	PEAK
2	439.060	0.000	-58.094	-58.094	-45.094	-13.000	PEAK

Engineer : John	
Site : Shielding Room	Time: 2009/03/04 - 19:08
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : PCS1900 Channel 661

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBm)	(dBm)	(dB)	(dBm)	
1	*	40.675	0.000	-46.816	-46.816	-33.816	-13.000	PEAK
2		548.724	0.000	-58.207	-58.207	-45.207	-13.000	PEAK

Engineer : John	
Site : Shielding Room	Time : 2009/03/04 - 19:08
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : PCS1900 Channel 810

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBm)	(dBm)	(dB)	(dBm)	
1	*	40.675	0.000	-49.711	-49.711	-36.711	-13.000	PEAK
2		588.514	0.000	-57.736	-57.736	-44.736	-13.000	PEAK

Engineer : John	
Site : Shielding Room	Time: 2009/03/04 - 19:20
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : PCS1900 Channel 512

Engineer : John	
Site : Shielding Room	Time : 2009/03/04 - 19:21
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : PCS1900 Channel 661 GPRS

Engineer : John	
Site : Shielding Room	Time : 2009/03/04 - 19:21
Limit : FCC_22&24_Spurious_03M_PK	Margin: 0
EUT : A008	Probe : - Line1
Power : DC 3.7V	Note : PCS1900 Channel 810 GPRS

Product	Dual Sim dual standby Quad-Band mobile phone				
Test Item	Radiated Spurious Emission	·			
Test Mode	Mode 1: GSM 850	·			
Date of Test	2009/03/04	Test Site	AC-2		

Frequency	SA	Ant.Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBi)	(dBm)	(dBm)	(dB)
	(dBm)		(dBm)	(dB)				
Low Channel	128 (824.20	OMHz)						
1645.00	-31.32	V	-40.15	3.28	9.75	-33.68	-13.00	-20.68
2470.00	-44.24	V	-56.06	4.10	10.48	-49.68	-13.00	-36.68
1645.00	-41.25	Η	-36.64	3.28	9.75	-30.17	-13.00	-17.17
2470.00	-38.26	Н	-53.40	4.10	10.48	-47.02	-13.00	-34.02
Middle Chann	iel 189 (836	5.40MHz)						
1675.00	-32.03	V	-43.82	3.32	9.95	-37.19	-13.00	-24.19
2515.00	-48.27	V	-57.85	3.81	10.62	-51.04	-13.00	-38.04
1675.00	-40.42	Η	-44.00	3.32	9.95	-37.37	-13.00	-24.37
2515.00	-49.54	Н	-54.84	3.81	10.62	-48.03	-13.00	-35.03
High Channel	251 (848.8	0MHz)						
1690.00	-32.92	V	-43.82	3.35	10.06	-37.11	-13.00	-24.11
2545.00	-48.65	V	-58.65	4.19	10.68	-52.16	-13.00	-39.16
1705.00	-34.31	Н	-42.50	3.35	10.06	-35.79	-13.00	-22.79
2545.00	-46.12	Ŧ	-55.81	4.19	10.68	-49.32	-13.00	-36.32

Product	Dual Sim dual standby Quad-Band mobile phone				
Test Item	Radiated Spurious Emission				
Test Mode	Mode 2: PCS 1900				
Date of Test	2009/03/04 Test Site AC-2				

Frequency	SA	Ant.Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBi)	(dBm)	(dBm)	(dB)
	(dBm)		(dBm)	(dB)				
Low Channel	512 (1850.2	20MHz)						
3698.40	-41.87	V	-43.68	4.78	12.69	-35.77	-13.00	-22.77
5550.60	-48.16	V	-46.54	6.03	13.15	-39.42	-13.00	-26.42
3698.40	-43.28	Н	-46.83	4.78	12.69	-38.92	-13.00	-25.92
5550.60	-47.22	Н	-43.93	6.03	13.15	-36.81	-13.00	-23.81
Middle Chann	el 661 (188	0.00MHz)						
3759.00	-44.86	V	-46.43	5.03	12.72	-38.74	-13.00	-25.74
5640.00	-46.53	V	-45.10	5.93	13.14	-37.89	-13.00	-24.89
3759.00	-37.76	Н	-44.57	5.03	12.72	-36.88	-13.00	-23.88
5640.00	-39.14	Н	-44.07	5.93	13.14	-36.86	-13.00	-23.86
High Channel	810 (1909.	80MHz)						
3819.60	-43.61	V	-46.12	5.03	12.73	-38.42	-13.00	-25.42
5729.40	-49.12	V	-47.61	6.20	13.11	-40.70	-13.00	-27.70
3819.60	-42.86	Н	-46.78	5.03	12.73	-39.08	-13.00	-26.08
5729.40	-47.62	Н	-46.07	6.20	13.11	-39.16	-13.00	-26.16

7.7. Test Photograph

Test Mode: Mode 1: GSM 850

Description: Radiated Spurious Emission Test Setup for EUT (Below 1GHz)

Test Mode: Mode 1: GSM 850

Description: Radiated Spurious Emission Test Setup for Substitution Antenna (Below1GHz)

Test Mode: Mode 1: GSM 850

Test Mode: Mode 1: GSM 850

Description: Radiated Spurious Emission Test Setup for Substitution Antenna (Above1GHz)

Test Mode: Mode 2: PCS 1900

Test Mode: Mode 2: PCS 1900

Description: Radiated Spurious Emission Test Setup for Substitution Antenna (Below1GHz)

Test Mode: Mode 2: PCS 1900

Test Mode: Mode 2: PCS 1900

Description: Radiated Spurious Emission Test Setup for Substitution Antenna (Above1GHz)

8. Frequency Stability under Temperature & Voltage Variations

8.1. Test Equipment

Frequency Stability Under Temperature & Voltage Variations / AC-4

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2008/06
Radio Communication Tester	R&S	CMU 200	106388	2008/11
Dual Directional Coupler	Agilent	778D	20160	2008/04
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2008/04
Coaxial Cable	Huber+Suhner	AC3-RF	08	2008/11
AC Power Supply	IDRC	CF-500TP	979422	2009/03
DC Power Supply	IDRC	CD-035-020PR	977272	2009/02
Programmable Temperature & Humidity Chamber	Gaoyu	TH-1P-B	WIT-05121302	2009/01
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH003	2009/03

8.2. Test Setup

Variable Power Supply

8.3. Limit

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Limit $< \pm 2.5 \text{ ppm}$

8.4. Test Procedure

The EUT was setup according to EIA/TIA 603C

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of +50°C reached.

FCC ID: W62A008

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation ($\pm 15\%$) and endpoint, record the maximum frequency change.

8.5. Uncertainty

The measurement uncertainty is defined as ± 10 Hz.

8.6. Test Result

Product	Dual Sim dual standby Quad-Band mobile phone				
Test Item	Frequency Stability Under Temperature & Voltage Variations				
Test Mode	Mode 1: GSM 850				
Date of Test	2009/03/04	Test Site	Shielding Room		

Frequency Stability Under Temperature

Temperature Interval	Test Frequency	Deviation	Limit
(℃)	(MHz)	(Hz)	(Hz)
-30	836.40	-62	± 2091
-20	836.40	-51	± 2091
-10	836.40	-24	± 2091
0	836.40	-16	± 2091
10	836.40	-17	± 2091
20	836.40	-17	± 2091
30	836.40	-26	± 2091
40	836.40	-39	± 2091
50	836.40	-64	± 2091

Frequency Stability Under Voltage					
DC Voltage (V)	Test Frequency (MHz)	Deviation (Hz)	Limit (KHz)		
3.14	836.40	-29	± 2091		
3.70	836.40	-23	± 2091		
4.25	836.40	-38	± 2091		

Product	Dual Sim dual standby Quad-Band mobile phone				
Test Item	Frequency Stability Under Temperature & Voltage Variations				
Test Mode	Mode 2: PCS 1900				
Date of Test	2009/03/04	Test Site	Shielding Room		

Frequency Stability Under Temperature

Trequency Stability Order Temperature				
Temperature Interval	Test Frequency	Deviation	Limit	
(℃)	(MHz)	(Hz)	(Hz)	
-30	1880.0	-69	± 4700	
-20	1880.0	-52	± 4700	
-10	1880.0	-47	± 4700	
0	1880.0	-38	± 4700	
10	1880.0	-27	± 4700	
20	1880.0	-22	± 4700	
30	1880.0	-34	± 4700	
40	1880.0	-43	± 4700	
50	1880.0	-57	± 4700	

Frequency Stability Under Voltage

DC Voltage (V)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
3.14	1880.0	-34	± 4700
3.70	1880.0	-28	± 4700
4.25	1880.0	-44	± 4700

-----END OF REPORT-----