Genauigkeit von Kugelgewindetrieben

Genauigkeit von Kugelgewindetrieben

Wegabweichung und Wegschwankung

Die Genauigkeit der Kugelgewindetriebe im Steigungswinkel unterliegt den japanischen JIS-Normen (JIS B 1192 - 1997). Die Toleranzklassen C0 bis C5 werden nach der mittleren Wegabweichung und der Toleranz der Wegschwankung bestimmt. Dagegen sind die Toleranzklassen C7 bis C10 für die mittlere Wegabweichung über eine Länge von 300 mm definiert.

Abb. 1 Erläuterung zur Wegabweichung und Wegschwankung

[Ist-Wegabweichung]

Die Ist-Wegabweichung ist die tatsächlich gemessene Wegabweichung des Kugelgewindetriebs.

[Soll-Wegabweichung]

Die Soll-Wegabweichung entspricht im Allgemeinen der Nennsteigung, kann jedoch im Vergleich zur Nennsteigung ein entsprechend dem Anwendungszweck absichtlich korrigiertes Steigungsmaß besitzen.

[Soll-Zielpunkt der Steigung]

Der Soll-Zielpunkt der Steigung wird zum Ausgleich einer durch Temperatur oder Belastung verursachten Längenänderung oder als Schutz gegen Spannungen durch Abweichungen der Nennsteigung gewählt und kann als positiver oder negativer Wert im voraus bei der Produktion berücksichtigt werden. Geben Sie bitte in diesem Fall einen Zielwert für den Soll-Zielpunkt der Steigung an.

[Mittlere Ist-Wegabweichung]

Die mittlere Ist-Wegabweichung zeigt einen linearen Verlauf und stellt den tendenziellen Verlauf der Ist-Wegabweichung dar. Da diese grafisch einen gekrümmten Verlauf zeigt, wird die mittlere Ist-Wegabweichung durch das geometrische Mittel bestimmt.

[Mittlere Wegabweichung (±)]

Differenz aus der mittleren Wegabweichung und der Soll-Wegabweichung.

[Variation]

Toleranz der Wegschwankung, die graphisch mittels zweier parallel verlaufender Geraden am Maximum und Minimum der Ist-Wegabweichung ermittelt wird.

[Variation/300]

Toleranz der Wegschwankung über eine Gewindelänge von 300 mm.

[Variation/2π]

Toleranz der Wegschwankung innerhalb einer Umdrehung der Gewindespindel.

Tab. 1 Wegabweichung und Wegschwankung (Maximalwerte)

Einheit: um

Tab. 1 Wegabweichung und Wegschwankung (Maximalwerte)											inheit: μm			
					Prä	zisions-K	ugelg	ewindetri	ebe					
												Gerollte	Kugelgewii	ndetriebe
	Genauigkeits- klassen C0 C1			C2		СЗ	C3 C5			C7	C8	C10		
Nutz	weg	Mittlere Wegab-	/ariation	Mittlere Wegab-	Variation	Mittlere Wegab-	Variation	Mittlere Wegab-	Variation	Mittlere Wegab-	/ariation	Wegab-	Wegab-	Wegab-
über	bis	weichung	Vari	weichung	weichung	weichung								
_	100	3	3	3,5	5	5	7	8	8	18	18			
100	200	3,5	3	4,5	5	7	7	10	8	20	18			± 210/
200	315	4	3,5	6	5	8	7	12	8	23	18			
315	400	5	3,5	7	5	9	7	13	10	25	20			
400	500	6	4	8	5	10	7	15	10	27	20			
500	630	6	4	9	6	11	8	16	12	30	23			
630	800	7	5	10	7	13	9	18	13	35	25			
800	1000	8	6	11	8	15	10	21	15	40	27			
1000	1250	9	6	13	9	18	11	24	16	46	30	± 50/	± 100/	
1250	1600	11	7	15	10	21	13	29	18	54	35	300 mm	300 mm	300 mm
1600	2000	_	_	18	11	25	15	35	21	65	40			
2000	2500	_	_	22	13	30	18	41	24	77	46			
2500	3150	_	_	26	15	36	21	50	29	93	54			
3150	4000	_	_	30	18	44	25	60	35	115	65			
4000	5000	_	_	_	_	52	30	72	41	140	77			
5000	6300	_	_	_	_	65	36	90	50	170	93			
6300	8000	_	_		_	_	_	110	60	210	115			
8000	10000	_		_	_	_	_	_	_	260	140			

Hinweis: Der Nutzweg wird angegeben in: mm

Tab. 2 Toleranz der Wegschwankung innerhalb eines Intervalls von 300 mm und einer Umdrehung (Maximalwerte) Einheit: μm

Genauigkeits- klassen	C0	C1	C2	C3	C5	C7	C8	C10
Variation/300	3,5	5	7	8	18	_	_	_
Variation/2π	3	4	5	6	8	_	_	_

Tab. 3 Typen und Genauigkeitsklassen

Тур	Seriensymbol	Klasse	Anmerkungen	
Positionierung	Ср	1, 3, 5	ICO konform	
Transport	Ct	1, 3, 5, 7, 10	- ISO-konform	

Hinweis: Genauigkeitsklassen gelten auch für die Serien Cp und Ct. Detaillierte Angaben erhalten Sie von THK.

Genauigkeit von Kugelgewindetrieben

Beispiel: Bei der Steigungsmessung eines Kugelgewindetriebs mit dem Soll-Zielpunkt der Steigung von –9 um auf 500 mm wurden folgende Messwerte ermittelt:

Tab. 4 Messergebnisse zur Wegabweichung

Einheit: mm

Vorgegebene Position (A)	0	50	100	150
Nutzweg (B)	0	49,998	100,001	149,996
Wegabweichung (A - B)	0	-0,002	+0,001	-0,004
Vorgegebene Position (A)	200	250	300	350

Vorgegebene Position (A)	200	250	300	350
Nutzweg (B)	199,995	249,993	299,989	349,985
Wegabweichung (A - B)	-0,005	-0,007	-0,011	-0,015

Vorgegebene Position (A)	400	450	500
Nutzweg (B)	399,983	449,981	499,984
Wegabweichung (A - B)	-0,017	-0,019	-0,016

Die gemessenen Werte sind in Abbildung Abb. 2 grafisch dargestellt.

Der Positionierfehler (A-B) wird als Ist-Wegabweichung dargestellt, während die gerade Linie für die Tendenz der (A-B)-Linie der mittleren Ist-Wegabweichung entspricht.

Die Differenz zwischen der Soll-Wegabweichung und der mittleren Ist-Wegabweichung ergibt die mittlere Wegabweichung.

Abb. 2 Messergebnisse zur Wegabweichung

[Messungen]

Mittlere Wegabweichung: -7 μm

Variation: 8,8 μm

Genauigkeit der Montageoberfläche

Die Toleranzen der Montageoberflächen für Kugelgewindetriebe entsprechen der japanischen Norm (JIS B 1192-1997).

Hinweis: Der Gesamtrundlauf der Gewindespindel ist in JIS B 1192-1997 angegeben.

Abb. 3 Genauigkeit der Montageoberfläche für Kugelgewindetriebe

Genauigkeit von Kugelgewindetrieben

[Genauigkeitsklassen für die Montageoberfläche]

Tab. 5 bis Tab. 9 enthalten die Genauigkeitsklassen für die Montageoberflächen von Präzisions-Kugelgewindetrieben.

Tab. 5 Rundlauf des geschliffenen Spindelendes bezogen auf den Passsitz der Gewindespindel

Einheit: μm

Spindel- außendurchmesser (mm)		max. Rundlauf							
über	bis	C0	C1	C2	СЗ	C5	C7		
_	8	3	5	7	8	10	14		
8	12	4	5	7	8	11	14		
12	20	4	6	8	9	12	14		
20	32	5	7	9	10	13	20		
32	50	6	8	10	12	15	20		
50	80	7	9	11	13	17	20		
80	100		10	12	15	20	30		

Hinweis: Die Messungen dieser Werte erfassen auch die Auswirkungen des Rundlaufs des Spindelendes. Deshalb muss aus dem Gesamtrundlauf der Gewindespindel der Korrekturwert ermittelt werden. Dafür wird das Verhältnis der Spindel-Gesamtlänge und der Lage des Messpunkts zur Auflagefläche gebildet und zum jeweiligen Wert aus der obigen Tabelle addiert.

Beispiel: Baugröße DIK2005-6RRGO+500LC5

$$E_1 = e + \Delta e$$

e : Standardwert aus Tab. 5 (0,012)

∆e : Korrekturwert

$$\Delta e = \frac{L_1}{I} \times E_2$$

 $=\frac{80}{500}\times0,06$

L : Gesamtlänge der Gewindespindel

= 0.01 L₁ : Abs

L₁ : Abstand zwischen der Abstützung und dem Meßpunkt
 E₂ : Gesamtrundlauftoleranz der Gewindespindel (0,06)

 $E_1 = 0.012 + 0.01$

= 0.022

Hinweis: Der Gesamtrundlauf der Gewindespindel ist in JIS B 1192-1997 angegeben.

Tab. 6 Rechtwinkligkeit der Schultern der Gewindespindel bezogen auf die Bezugsachse

Einheit: µm

Spir außendurchi	max. Rechtwinkligkeit							
über	bis	C0	C1	C2	СЗ	C5	C7	
_	8	2	3	3	4	5	7	
8	12	2	3	3	4	5	7	
12	20	2	3	3	4	5	7	
20	32	2	3	3	4	5	7	
32	50	2	3	3	4	5	8	
50	80	3	4	4	5	7	10	
80	100	_	4	5	6	8	11	

Tab. 7 Rechtwinkligkeit des Mutternflansches zur Mittelachse der Gewindespindel

Einheit: µm

Durchmesser der Mutter (mm)		max. Rechtwinkligkeit							
über	bis	C0	C1	C2	СЗ	C5	C7		
_	20	5	6	7	8	10	14		
20	32	5	6	7	8	10	14		
32	50	6	7	8	8	11	18		
50	80	7	8	9	10	13	18		
80	125	7	9	10	12	15	20		
125	160	8	10	11	13	17	20		
160	200	_	11	12	14	18	25		

Tab. 8 Rundlauf des Mutternaußendurchmessers bezogen auf die Mittelachse der Gewindespindel

Einheit: µm

Durchmesser der Mutter (mm)		max. Rundlauf							
über	bis	C0	C1	C2	СЗ	C5	C7		
_	20	5	6	7	9	12	20		
20	32	6	7	8	10	12	20		
32	50	7	8	10	12	15	30		
50	80	8	10	12	15	19	30		
80	125	9	12	16	20	27	40		
125	160	10	13	17	22	30	40		
160	200	_	16	20	25	34	50		

Tab. 9 Parallelität des Außendurchmessers der Mutter (Auflagefläche) zur Mittelachse der Gewindespindel Einheit: μm

Montage- Bezugslänge (mm)		max. Parallelität						
über	bis	C0	C1	C2	СЗ	C5	C7	
_	50	5	6	7	8	10	17	
50	100	7	8	9	10	13	17	
100	200	_	10	11	13	17	30	

[Methoden zur Messung der Genauigkeit der Montageoberfläche]

Rundlauf des geschliffenen Spindelendes bezogen auf den Passsitz der Gewindespindel (siehe Tab. 5 auf ▲15-15)

Die Gewindespindel wird mit Prüfprismen an den Lagersitzen gelagert. Nach dem Ausrichten einer Messuhr an der Mantelfläche des geschliffenen Spindelendes wird die Gewindespindel einmal gedreht. Die Rundlaufabweichung ergibt sich aus der Differenz des größten und kleinsten angezeigten Wertes während einer Umdrehung.

Messtisch

Genauigkeit von Kugelgewindetrieben

Rundlauf der Kugellaufbahn bezogen auf den Passsitz der Gewindespindel (siehe Tab. 5 auf (A15-15)

Die Gewindespindel wird mit Prüfprismen an den Lagersitzen gelagert. Nachdem die Mutter gegen Verdrehen gesichert und eine Messuhr an der Mantelfläche der Mutter ausgerichtet wurde, wird die Gewindespindel einmal gedreht. Die Rundlaufabweichung ergibt sich aus der Differenz des größten und kleinsten angezeigten Wertes während einer Umdrehung.

Messtisch

 Rechtwinkligkeit der Schultern bezogen auf die Bezugsachse (siehe Tab. 6 auf A15-16) Die Gewindespindel wird mit Prüfprismen an den Lagersitzen gelagert. Nach dem Ausrichten einer Messuhr senkrecht zur Planfläche der Lagerzapfenschulter wird die Gewindespindel einmal gedreht. Der Messwert ergibt sich aus der Differenz des größten und kleinsten angezeigten Wertes während einer Umdrehung.

Rechtwinkligkeit des Mutternflansches zur Mittelachse der Gewindespindel (siehe Tab. 7 auf A 15-16)

Die Spindel wird mit nahe der Mutter stehenden Prüfprismen auf den Gewindegängen gelagert. Zusätzlich wird die Spindel gegen Verschieben in axiale Richtung und die Mutter gegen Verdrehen auf der Spindel gesichert. Nach dem Ausrichten einer Messuhr an der Flanschanlagefläche wird die Gewindespindel mit der Mutter einmal gedreht. Der Messwert ergibt sich aus der Differenz des größten und kleinsten angezeigten Wertes während einer Umdrehung.

Rundlauf des Mutternaußendurchmessers bezogen auf die Mittelachse der Gewindespindel (siehe Tab. 8 auf ▲15-16)

Die Spindel wird mit nahe der Mutter stehenden Prüfprismen auf den Gewindegängen gelagert und gegen Verdrehung gesichert. Nachdem eine Messuhr an der Mantelfläche der Mutter ausgerichtet wurde, wird die Mutter auf der Gewindespindel einmal gedreht. Die Rundlaufabweichung ergibt sich aus der Differenz des größten und kleinsten angezeigten Wertes während einer Umdrehung.

Parallelität des Außendurchmessers der Mutter (Auflagefläche) zur Mittelachse der Gewindespindel (siehe Tab. 9 auf A15-16)

Die Spindel wird mit nahe der Mutter stehenden Prüfprismen auf den Gewindegängen gelagert. Nachdem eine Messuhr an der Mantelfläche der Mutter (Auflagefläche) ausgerichtet wurde, wird die Messuhr parallel an der Gewindespindel entlang gezogen. Die Abweichung ergibt sich aus der Differenz des größten und kleinsten angezeigten Wertes.

• Gesamtrundlauf der Gewindespindelaußendurchmessers

Die Gewindespindel wird mit Prüfprismen an den Lagersitzen gelagert. Nachdem eine Messuhr mit planem Messeinsatz senkrecht zur Spindel ausgerichtet wurde, wird die Gewindespindel einmal gedreht. Dies wird an mehreren Punkten wiederholt. Der Gesamtrundlauf ergibt sich aus der Differenz des größten und kleinsten angezeigten Wertes während einer Umdrehung.

Hinweis: Der Gesamtrundlauf der Gewindespindel ist in JIS B 1192-1997 angegeben.

Genauigkeit von Kugelgewindetrieben

G2

0 bis 0 02

Axialspiel

Symbol für Axialspiel

Axialspiel

[Axialspiel von Präzisions-Kugelgewindetrieben]

G0

0 oder weniger

In Tab. 10 ist das Axialspiel für Präzisions-Kugelgewindetriebe angegeben. Bitte beachten Sie, dass bei längeren Spindellängen als in Tab. 11 angegeben das resultierende Spiel teilweise negativ sein kann (mit Vorspannung). Die maximalen Fertigungslängen von DIN-Kugelgewindetrieben sind in Tab. 12 aufgeführt.

Zum Axialspiel der Präzisions-Kugelgewindetriebe mit Caged Ball Technology siehe **A15-70** bis **A15-83**.

Tab. 10 Axialspiel von Präzisions-Kugelgewindetrieben

G1

0 bis 0.01

GT

0 bis 0,005

G3	
0 bis 0.05	

Tah	11	Maximal-Spindellängen	hai	Dräzicione-Kuar	alaawindatriahan

Einheit: mm

Finhait: mm

Gewindespindel-		Axials	oiel GT			Axials	oiel G1		Axialspiel G2					
Außendurch- messer	C0	C1	C2•C3	C5	C0	C1	C2•C3	C5	C0	C1	C2	С3	C5	C7
4•6	80	80	80	100	80	80	80	100	80	80	80	80	100	120
8	230	250	250	200	230	250	250	250	230	250	250	250	300	300
10	250	250	250	200	250	250	250	250	250	250	250	250	300	300
12•13	440	500	500	400	440	500	500	500	440	500	630	680	600	500
14	500	500	500	400	500	500	500	500	530	620	700	700	600	500
15	500	500	500	400	500	500	500	500	570	670	700	700	600	500
16	500	500	500	400	500	500	500	500	620	700	700	700	600	500
18	720	800	800	700	720	800	800	700	720	840	1000	1000	1000	1000
20	800	800	800	700	800	800	800	700	820	950	1000	1000	1000	1000
25	800	800	800	700	800	800	800	700	1000	1000	1000	1000	1000	1000
28	900	900	900	800	1100	1100	1100	900	1300	1400	1400	1400	1200	1200
30•32	900	900	900	800	1100	1100	1100	900	1400	1400	1400	1400	1200	1200
36•40•45	1000	1000	1000	800	1300	1300	1300	1000	2000	2000	2000	2000	1500	1500
50•55•63•70	1200	1200	1200	1000	1600	1600	1600	1300	2000	2500	2500	2500	2000	2000
80•100	_	_	_	_	1800	1800	1800	1500	2000	4000	4000	4000	3000	3000

^{*}Bei der Toleranzklasse C7 wird das GT- und G1-Axialspiel fertigungsbedingt teilweise negativ.

Tab. 12 Maximale Fertigungslängen bei Präzisions-Kugelgewindetrieben mit Axialspiel (DIN-Kugelgewindetriebe) Einheit: mm

Wellen-	Axials	oiel GT	Axials	oiel G1		Axialspiel G2		
durchmesser	C3, Cp3	C5, Cp5, Ct5	C3, Cp3	C3, Cp3 C5, Cp5, Ct5		C3, Cp3 C5, Cp5, Ct5		
16	500	400	500 500		700	600	500	
20, 25	800	700	800	700	1000	1000	1000	
32	900	800	1100	900	1400	1200	1200	
40	1000	800	1300	1000	2000	1500	1500	
50, 63	1200	1000	1600	1300	2500	2000	2000	

^{*}Bei der Toleranzklasse C7 (Ct7) wird das GT- und G1-Axialspiel fertigungsbedingt teilweise negativ.

[Axialspiel von gerollten Kugelgewindetrieben]

In Tab. 13 ist das Axialspiel von gerollten Kugelgewindetrieben angegeben.

Tab. 13 Axialspiel von gerollten Kugelgewindetrieben Einheit: mm

Gewindespindel- Außendurchmesser	Max. Axialspiel
6 bis 12	0,05
14 bis 28	0,1
30 bis 32	0,14
36 bis 45	0,17
50	0,2

Vorspannung

Durch die Vorspannung wird das Axialspiel des Kugelgewindetriebs eliminiert und die Steifigkeit erhöht.

Für eine hochpräzise Positioniergenauigkeit wird generell eine Vorspannung aufgebracht.

[Steifigkeit von Kugelgewindetrieben bei Vorspannung]

Durch eine Vorspannung des Kugelgewindetriebs wird die Steifigkeit der Mutter erhöht.

Abb. 4 zeigt den Verlauf der elastischen Verformung eines vorgespannten und eines nicht vorgespannten Kugelgewindetriebs.

Abb. 4 Elastische Verformung des Kugelgewindetriebs

Genauigkeit von Kugelgewindetrieben

Abb. 5 zeigt einen Kugelgewindetrieb mit Einzelmutter.

Die A- und B-Seiten der Mutter weisen aufgrund einer Steigungsverschiebung in der Muttermitte durch die Vorspannkraft Fa $_0$ einen entsprechenden Vorspannweg δa_0 auf. Beim Einwirken einer äußeren Axialkraft (Fa) ergibt sich folgende Einfederung der A- und B-Seiten:

$$\delta_{A} = \delta_{A0} + \delta_{A0}$$
 $\delta_{B} = \delta_{A0} - \delta_{A0}$

Die auf die beiden Mutternseiten A und B einwirkenden Kräfte werden also wie folgt ausgedrückt:

$$F_A = Fa_0 + (Fa - Fa')$$
 $F_B = Fa_0 - Fa'$

Bei Vorspannung entspricht die auf Seite A einwirkende Belastung Fa - Fa'. Da also die Belastung Fa', die ohne Vorspannung der Seite A wirkt, von Fa abgezogen wird, ist die Einfederung der Seite A geringer.

Dieser Effekt setzt sich bis zu dem Punkt fort, an dem die Verformung (δa_0) durch die Vorspannung von Seite B den Wert Null erreicht.

Wie stark ist die Verringerung der elastischen Verformung? Die Beziehung zwischen der axialen Belastung des nicht vorgespannten Kugelgewindetriebs und der elastischen Verformung kann ausgedrückt werden durch: δa∞Fa²³. Gemäß Abb. 6 gelten die folgenden Gleichungen:

$$\delta a_0 = KFa_0^{2/3}$$
 (K : Konstant)
 $2\delta a_0 = KF_t^{2/3}$ ($\frac{F_t}{Fa_0}$) $\frac{2}{3} = 2$ $F_t = 2^{3/2} \times Fa_0 = 2,8 \, Fa_0 \rightleftharpoons 3 \, Fa_0$

Aus diesem Grunde entsteht bei einem vorgespannten Kugelgewindetrieb bei einer externen äußeren Kraft (F_i), die den dreifachen Wert der Vorspannkraft hat, die elastische Verformung δa_0 . Diese elastische Verformung entspricht dem halben Betrag ($2\delta a_0$) eines nicht vorgespannten Kugelgewindetriebs. Aus diesem Zusammenhang kann die Vorspannung auf das Dreifache der Vorspannkraft erhöht werden, wobei bei 1/3 der max. Axialbelastung ein Optimum erreicht wird.

Jedoch führt eine zu große Vorspannung einerseits zur Beeinträchtigung der Lebensdauer sowie andererseits zur Wärmeentwicklung. Als Richtwert für die maximale Vorspannung gelten daher 10 % der dynamischen Tragzahl (Ca).

[Vorspannmoment]

Das Vorspannmoment für Kugelgewindetriebe ist nach der japanischen Norm JIS B 1192 - 1997 festgelegt.

Abb. 7 Erläuterungen zum Drehmoment eines vorgespannten Kugelgewindetriebs

• Leerlaufdrehmoment unter Vorspannung Das Drehmoment, das erforderlich ist, um die Kugelgewindespindel eines Kugelgewindetriebs mit einer bestimmten Vorspannung kontinuierlich ohne äußere Belastung zu drehen.

Tatsächliches Drehmoment

Das tatsächlich am Kugelgewindetrieb gemessene Leerlaufdrehmoment unter Vorspannung.

Drehmomentschwankung

Verhältnis der Drehmomenteschwankung zum mittleren Drehmoment. Kann gegenüber dem Bezugsmoment ein negativer oder positiver Wert sein.

Drehmomentschwankungsgrad

Verhältnis der Drehmomentschwankung zum Bezugsmoment.

Bezugsmoment

Vorgegebenes Leerlaufdrehmoment unter Vorspannung.

Berechnung des Bezugsmoments

Das Bezugsmoment eines vorgespannten Kugelgewindetriebs wird aus folgender Formel berechnet (4):

$$T_P = 0.05 (\tan \beta)^{-0.5} \frac{Fa_0 \cdot Ph}{2\pi}$$
(4)

 T_{P} : Bezugsmoment (Nmm)

β : Steigungswinkel

Fa₀ : Vorspannkraft (N)

Rh : Steigung (mm)

Genauigkeit von Kugelgewindetrieben

Beispiel: Wird der Kugelgewindetrieb Typ BIF4010-10G0 + 1500LC3 bei einer Gewindelänge von 1.300 mm (Spindeldurchmesser: 40 mm, Kugelmittenkreis: 41,75 mm, Steigung: 10 mm) mit einer Vorspannung von 3.000 N vorgespannt, wird das Vorspannmoment des Kugelgewindetriebs nach den folgenden Schritten berechnet:

■Berechnung des Bezugsmoments

β : Steigungswinkel

$$tan\beta = \frac{Steigung}{\pi \times Kugelmittenkreis} = \frac{10}{\pi \times 41.75} = 0.0762$$

Fa₀: Vorspannkraft = 3.000 N

Ph: Steigung = 10 mm

$$T_p = 0.05 (tan \beta)^{-0.5} \frac{Fa_0 \cdot Ph}{2\pi} = 0.05 (0.0762)^{-0.5} \frac{3000 \times 10}{2\pi} = 865 \text{ Nmm}$$

■Berechnung der Drehmomentschwankung

$$\frac{\text{Gewindelänge}}{\text{Spindeldurchmesser}} = \frac{1300}{40} = 32,5 \le 40$$

Nach Tab. 14 beträgt der Drehmomentschwankungsgrad \pm 30 % bei einem Bezugsmoment zwischen 600 und 1.000 Nmm, einer Gewindelänge von bis zu 4.000 mm und einer Genauigkeitsklasse von C3.

Dementsprechend wird die Drehmomentschwankung wie folgt berechnet:

865 \times (1 \pm 0,3) = 606 Nmm bis 1.125 Nmm

■Ergebnis

Bezugsmoment : 865 Nmm

Drehmomentschwankung : 606 Nmm bis 1.125 Nmm

Tab. 14 Toleranzbereiche für die Drehmomentschwankung

Tab. 14 Tolora Epot of the Ground Table State of the Ground Table Stat															
Bezugsmoment · Nmm		Gewindelänge													
		max. 4.000 mm											Über 4.000 mm bis 10.000 mm		
		Gewindelänge Spindeldurchmesser ≤40					40 .	Ge	windelä	-00					
							40< Spindeldurchmesser <60					_			
		Toleranzklasse					Toleranzklasse					Toleranzklasse			
über	bis	C0	C1	C3	C5	C7	C0	C1	C3	C5	C7	C3	C5	C7	
200	400	±30 %	±35 %	±40 %	±50 %	_	±40 %	±40 %	±50 %	±60 %	_	_	_	_	
400	600	±25%	±30%	±35%	±40 %	_	±35 %	±35 %	±40 %	±45 %	_	_	_	_	
600	1000	±20%	±25%	±30%	±35%	±40 %	±30%	±30%	±35%	±40%	±45 %	±40%	±45%	±50 %	
1000	2500	±15%	±20%	±25%	±30%	±35 %	±25%	±25%	±30%	±35%	±40 %	±35%	±40%	±45 %	
2500	6300	±10%	±15%	±20%	±25%	±30 %	±20%	±20%	±25%	±30%	±35 %	±30%	±35%	±40 %	
6300	10000	_	±15 %	±15%	±20%	±30 %	_	_	±20%	±25%	±35 %	±25%	±30%	±35 %	