Problem Set 8 MATH 25800

8 Algebras

3/3: **8.1.** Let $T_i \in \operatorname{End}_A(M_i)$ for i = 1, 2, and let M_1, M_2 be A[X]-modules for an arbitrary ring A. Let $S: M_1 \to M_2$ be a function.

- (i) Prove that S is an A[X]-module homomorphism iff...
 - (a) S is an A-module homomorphism;
 - (b) $T_2S = ST_1$.
- (ii) Prove that S is an A[X]-module isomorphism iff...
 - (a) S is an A-module isomorphism;
 - (b) $T_2 = ST_1S^{-1}$.
- **8.2.** Consider (M,T) with $M=A^n$ and $T(a_1,\ldots,a_n)=(0,a_1,\ldots,a_{n-1})$. Prove that the corresponding A[X]-module is isomorphic to $A[X]/(X^n)$.
- **8.3.** Let V be a finite dimensional vector space and $T: V \to V$ be a linear transformation. Consider the pair (V, T). Why is V a finitely generated torsion F[X]-module?
- **8.4.** $T: V \to V$ is diagonalizable if there is a basis e_1, \ldots, e_n of V consisting of eigenvectors of T, i.e., $Te_i = a_i e_i$ for some $a_i \in F$.
 - (i) What is the minimal polynomial of T?
 - (ii) What condition on a_1, \ldots, a_n is necessary and sufficient for the existence of a cyclic vector for T?
- **8.5.** Let V be an n-dimensional vector space. Let $T \in \operatorname{End}_F(V)$. Let $A = \{S \in \operatorname{End}_F(V) : ST = TS\}$. Hint: We may regard V as an F[X]-module. Identify A with $\operatorname{End}_{F[X]}(V)$. And then use the rational canonical from.
 - (i) Show that the dimension of A (as an F-vector space) is greater than or equal to n.
 - (ii) Show that the equality is attained iff T has a cyclic vector.
- **8.6.** Let $f \in R[X]$ be a monic polynomial of degree n. Let M be a free R-module with basis e_1, \ldots, e_n .
 - (i) Show that there is a unique R-module homomorphism $T: M \to M$ such that $T(e_i) = e_{i+1}$ for all i = 1, ..., n-1 and $f(T)e_1 = 0$.
 - (ii) Show that f(T)v = 0 for all $v \in M$.
 - (iii) Let $b \in R$. Define $S: M \to M$ by S(v) = bv Tv for all $v \in M$. Compute $\Lambda^k(S)e_1 \cdots e_k$. for all $k = 1, \ldots, n$ inductively and deduce that $\det(S) = f(b)$.
- **8.7.** Let V be a vector space over a field F. Let $v_1, \ldots, v_r \in V$.
 - (i) Prove that if v_1, \ldots, v_r are linearly dependent, then $v_1 \cdots v_r \in \Lambda^r(V)$ equals zero.
 - (ii) Prove that if v_1, \ldots, v_r are linearly independent, then $v_1 \cdots v_r \in \Lambda^r(V)$ is nonzero.
 - (iii) Prove that if W is a linear subspace of V and w_1, \ldots, w_r is a basis of W, then the one-dimensional subspace $Fw_1 \cdots w_r$ of $\Lambda^r(V)$ depends only on W, i.e., it does not depend on the choice of the basis w_1, \ldots, w_r . It is conventional to refer to this one dimensional subspace as $\det(W) \subset \Lambda^r(V)$.
 - (iv) If W_1, W_2 are both r-dimensional subspaces of V, ad if the one-dimensional subspaces $\det(W_1)$ and $\det(W_2)$ of $\Lambda^r(V)$ are equal to each other, show that $W_1 = W_2$.
- **8.8.** Let V be a vector space of dimension 4, and let $\omega \in \Lambda^2(V)$ be nonzero. Prove that $\omega^2 = 0$ iff $F\omega = \det(W)$ for a two-dimensional subspace $W \subset V$.

Problem Set 8 MATH 25800

8.9. Prove that the characteristic polynomial is monic of degree n. Prove that the coefficient of λ^{n-1} in the characteristic polynomial of L is the negative of the trace of L, which is defined to be the sum of the diagonal terms of the matrix that represents L when a basis e_1, \ldots, e_n is specified.

- **8.10.** Deduce the Cayley-Hamilton theorem for fields from Problem 8.6 and the fact that every torsion F[X]-module is the direct sum of cyclic modules.
- 8.11. (i) Show that the Cayley-Hamilton theorem for fields implies the theorem for integral domains as well
 - (ii) Show that the Cayley-Hamilton theorem for the polynomial ring $\mathbb{Z}[X_1,\ldots,X_{n^2}]$ implies the theorem for all $L: \mathbb{R}^n \to \mathbb{R}^n$ where R is a commutative ring.