Date: -21/03/2022

Examination ROU NO.: -21312915017

Name of Program: -B. Tech (Information Tech.

and Mathematical Innovation).

Semestor: -Ist Sem.

Unique Paper Code: -32861101

Title of the Paper: - Seeing the world through Calculas.

Solution 1

We have, $P(x) = 4x^3 - 6x^2 - 24x + 5$ (i) finding the contical points. $P(x) = 12x^2 - 12x - 24$ $= 12(x^2 - x - 2).$ for contical points. P'(x) = 0

$$|x|^{2} - x - 2| = 0$$

$$|x^{2} - x - 2| = 0$$

$$|x^{2} - x - 2| = 0$$

$$|x - 2|(x + 1) = 0$$

$$|x = 2||x = -1||$$

(ii) Checking for maxima, minima or point of inflection.

p''(x) = 12(2x-1).

(a) For point of inflection. P''(x) = 0 12(2x-1) = 0. 2x-1 = 0

 $\frac{3206110 \text{ k(UPC)}}{\text{Now Checkiy for maxima and minima}}$ (a) x = 2

 $\rho''(2) = 12((2\cdot 2)-1) = 12 \times 3 = 36 > 0$ (a) x=2, the function attains a minima.

 $P(2) = (4 \times 8) - (6 \times 4) - 24(2) + 5$ = 32 - 24 - 48 + 5

= -35.

also (a) x = -1

P''(-1) = 12(-2-1) = -36 < 0.

: @ x = -1, the function attains a maxima.

P(-1) = -4 -6 +24+5

= 19

(iii) A/C to the C.P, the function can be further divedled into several intervals:

(2,0)

Checking concavity & nature of function.

V				
Interval	P'(26)	Nature of	P"(2)	Concavity
(-D, -1)	Let $x = -2$ P'(-2) = 48 >0	Increasing	P"(2)=-60 <0	concave down.
(-1, 1/2)	x=0 P'(0)=-24 <0	Dec.	ρ"(0) = -12 <0	Concave
(1/2,2)	x=1 p'(1)=-24 < 0	Dec.	P"(1)=12 >0	Concave
(2,0)	7 = 3 $P'(3) = 48$ > 0	Inc.	P"(3)=60 >0.	Concave

