Universidad de Granada Departamento de Electrónica y Tecnología de Computadores

ANÁLISIS DE CIRCUITOS

Grado en Ingeniería de Tecnologías de Telecomunicación Examen septiembre 2011

Duración: 3 horas

Responda a cada pregunta en hojas separadas Lea detenidamente los enunciados antes de contestar

Nombre	D.N.I.	Grup	00	

1. Calcular el equivalente de Thevenin entre los terminales a y b del siguiente circuito: (2 puntos)

- 2. El circuito está en régimen permanente con el interruptor cerrado, que se abre en t = 0. Datos: I(t) = 20 A, R1 = R2 = 9 Ω , R3 = 6 Ω , C1 = C2 = 1/18 F:
 - a) Determinar el voltaje en ambos condensadores en t = 0. (0.75 puntos)
 - b) Determinar la corriente en ambos condensadores en t = 0. (0.75 puntos)
 - c) Determinar el voltaje v(t) en el condensador C2 para t > 0. (1.5 puntos)

3. Hallar la matriz Z de impedancias de mallas del cuadripolo de la figura. (2 puntos)

- 4. Dado el circuito de la figura en el que R_{in}→∞ y A_v→∞:
 - a) Calcule la función de transferencia y dibuje el correspondiente diagrama de Bode en magnitud y fase. (1.5 puntos)
 - b) Calcule la frecuencia de corte. (0.5 puntos)
 - c) Calcule la salida $v_0(t)$ del circuito cuando la entrada es $v_1(t) = 5\cos(2\pi \cdot 10t) + 5\cos(\pi \cdot 10^5t) + 5\cos(2\pi \cdot 10^7t + \pi/4)$ ¿Qué tipo de filtro es el circuito?. (1 punto)

NOTA: transformadas de Laplace de utilidad: $\delta(t) \leftrightarrow 1$

 $u(t) \leftrightarrow \frac{1}{s}$

 $\rho(t) \leftrightarrow \frac{1}{\sigma^2}$

 $e^{-at} \leftrightarrow \frac{1}{s+a}$

Sugerencia: tener en cuenta que el producto de A_vv_{in} debe ser finito.