Barker College	

2008 TRIAL HIGHER SCHOOL CERTIFICATE

Student Number

Mathematics Extension 2

Staff Involved:

PM MONDAY 11 AUGUST

- BHC*
- BTP*
- JM
- WMD

35 copies

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using blue or black pen
- Make sure your Barker Student Number is on ALL pages of your answer sheets
- · Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value
- ALL necessary working should be shown in every question
- Start each question on a NEW page
- · Write on one side of each answer page
- Marks may be deducted for careless or badly arranged work

Marks

Answer each question on a SEPARATE sheet of paper

Marks

1

1

1

1

3

Question 1 (15 marks) [START A NEW PAGE]

- (a) If $(\sqrt{3} + i)z = 4\sqrt{3} 4i$, find
 - (i) z in the form a + bi

(ii) z

(iii) arg(z)

- (iv) z^8 in the form a + bi
- (b) Find $\sqrt{-5-12i}$ in the form a+bi, and hence solve the equation

$$z^{2} + (1-2i)z + (\frac{1}{2} + 2i) = 0$$

If w is a complex cube root of unity, show that $1 + w + w^2 = 0$, and hence prove that (1+w)(1+2w)(1+3w)(1+7w) = 31 + 2w.

Question 1 continues on page 3

Question 1 (continued)

(d) Let z_1 and z_2 be two given complex numbers as shown on the Argand diagram below.

Let z be a variable complex number.

Sketch and describe the locus of z on an Argand diagram if:

$$|z-z_1|=|z-z_2|$$

(ii)
$$\arg\left(\frac{z-z_1}{z-z_2}\right) = \alpha, \text{ where } 0 < \alpha < \pi$$

2

2

Question 2 (continued)

b)

(a) The diagram below shows the graph of y = f(x).

There is a minimum turning point at (0, -1).

On separate diagrams, draw the graph of

(i)
$$y = f(|x|)$$

(ii)
$$y^2 = f(x)$$

(iii)
$$y = \sin^{-1} [f(x)]$$
 2

(iv)
$$y = ln[f(x)]$$
 2

The eq	uation of a curve is given by $xy^2 + x^2 = 1$	
(i)	Explain why $x = 0$ is not in the domain of the curve.	1
(ii)	Find the x – intercepts of the curve.	1
(iii)	Re-write the equation of the curve making y the subject, and hence find the domain of the curve.	2
(iv)	The curve has two asymptotes. Write down the equations of both asymptotes.	2
(v)	Hence sketch the curve $xy^2 + x^2 = 1$	1

Marks

Marks

Question 3 (15 marks) [START A NEW PAGE]

(a) Find

(i)
$$\int \frac{(x+3) dx}{\sqrt[3]{x^2 + 6x}}$$
 using the substitution $u = x^2 + 6x$

(ii)
$$\int \frac{dy}{y^2 + 10y + 30}$$

(iii)
$$\int \frac{dx}{2 + \cos x}$$
 using the "t-results"

(iv)
$$\int x^2 e^{2x} dx$$
 3

(b) Factorise $x^3 + x^2 - 6x$ and then find the values of A, B and C such that

$$\frac{x+1}{x^3+x^2-6x} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+3}$$

Hence find
$$\int \frac{(x+1) dx}{x^3 + x^2 - 6x}$$

End of Question 3

Question 4 (15 marks) [START A NEW PAGE]

(a) Let
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$$

Show that
$$I_n + I_{n-2} = \frac{1}{n-1}$$

Deduce the value of
$$I_5$$
.

Find the volume of the torus generated by revolving the circle
$$x^2 + y^2 = 4$$
 about the line $x = 3$.

$$\frac{d}{dx} \left\{ \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{-1} \left(\frac{x}{a} \right) \right\} = \sqrt{a^2 - x^2}$$

Marks

5

3

(ii) The base of a solid is the circle $x^2 + y^2 = 16x$. Every slice of this solid taken perpendicular to the x axis is a rectangle of height 6 units. Using the result from part (i) above, find the volume of this solid.

2

2

2

2

3

Question 5 (15 marks) [START A NEW PAGE]

(a) Consider the polynomial

$$p(x) = ax^4 + bx^3 + cx^2 + d$$

where a, b, c and d are integers.

Suppose that α is an integer such that $p(\alpha) = 0$

- (i) Prove that d is a multiple of α
- (ii) Prove that the polynomial $q(x) = 5x^4 x^3 + 3x^2 3$ does not have an integer root.
- (b) Let $P(x) = x^3 11x 14$ Factorise P(x) over the reals and hence find the three roots of P(x) = 0
- (c) Find the roots of $q(x) = x^4 6x^3 + 12x^2 10x + 3$ given that it has a root of multiplicity 3.
- (d) Let α, β and γ be the roots of the equation $x^3 5x^2 + 5 = 0$
 - (i) Find the value of $(\alpha-1)(\beta-1)(\gamma-1)$
 - (ii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$
 - (iii) Find a polynomial equation with integer coefficients whose roots are α^2 , β^2 and γ^2

End of Question 5

Question 6 (15 marks) [START A NEW PAGE]

- (a) For the ellipse $\frac{x^2}{36} + \frac{y^2}{9} = 1$, find
 - (i) the lengths of the axes
 - (ii) the eccentricity
 - (iii) the co-ordinates of the foci
 - (iv) the equations of the directrices
- b) Let $P(2\sec\theta, \sqrt{5}\tan\theta)$ be a variable point on the hyperbola $5x^2 4y^2 = 20$

The tangent at P meets the directrix at T. Show that PT subtends a right angle at the corresponding focus.

- (c) (i) If the line y = mx + b is a tangent to the ellipse $\frac{x^2}{6} + \frac{y^2}{3} = 1$, show that $b^2 = 6m^2 + 3$
 - (ii) The tangents to this ellipse from a point P(X,Y) meet at right angles. Prove that the locus of P is the circle $x^2 + y^2 = 9$.

1

2

2

2

2

2

2

Marks

1

3

1

2

В

d

A and B are two points d units apart in a vertical line. B is directly above A. Two identical particles are projected from A and B towards each other with the same velocity, u.

The resistance of the medium is ky per unit mass.

A.

Draw a diagram indicating all forces acting on the particles. (i)

Consider the particle moving upward from A. By writing an expression (ii) for $\frac{dv}{dt}$,

(
$$\alpha$$
) show that $t = \frac{1}{k} ln \left(\frac{g + ku}{g + kv} \right)$

- Hence, find ν in terms of t
- Hence, find x in terms of t
- Consider the particle moving downward from B. Given that (iii) $\frac{dv}{dt} = g - kv,$
 - (α) find t in terms of ν .
 - Find ν in terms of t

Find x in terms of t.

Hence, prove that the particles meet after a time of $\frac{1}{k} \ln \left(\frac{2u}{2u - kd} \right)$ 2 Question 8 (15 marks) [START A NEW PAGE]

(a) A particle is moving along the x axis. Its acceleration is given by

$$\frac{d^2x}{dt^2} = \frac{12 - 4x}{x^3}$$
. The particle starts from rest at the point $x = 6$.

- Show that the particle starts moving in the negative x direction.
- (ii) Find an expression for velocity, v, in terms of x.
- The path along which the particle moves is bounded. What part of the x axis is the path of the particle?

(b) Consider the area under the curve $y = \ln x$ between x = 1 and x = n.

Show that this area is exactly equal to $ln\left(\frac{n^n}{n^{n-1}}\right)$

Question 8 continues on page 12

Marks

2

3

2

Ouestion 8 (continued)

- Use the Trapezoidal Rule to find an expression which approximates this area.
- Hence show that $n^n > \sqrt{n} (n-1)! e^{n-1}$ (iii)
- Given that $\sin^{-1} 2x$, $\cos^{-1} 2x$ and $\sin^{-1} (1-2x)$ are all acute, (c)
 - Show that $\sin \left[\cos^{-1} 2x \sin^{-1} 2x\right] = 1 8x^2$
 - Solve the equation $\cos^{-1} 2x \sin^{-1} 2x = \sin^{-1} (1 2x)$

End of Paper

Trial Examination Term 3 2008.

Question 1:

(a)
$$(\sqrt{3}+i)_{3} = 4\sqrt{3}-4i$$

(i)
$$z = \frac{4\sqrt{3} - 4i}{\sqrt{3} + i} \times \frac{\sqrt{3} - i}{\sqrt{3} - i}$$
 (ii) $|z| = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16}$

$$3^{2} = \frac{4\sqrt{3} - 4i}{\sqrt{3} + i} \times \frac{\sqrt{3} - i}{\sqrt{3} - i}$$

$$= \frac{12 - 4\sqrt{3}i - 4\sqrt{3}i - 4}{4}$$

$$= 2 - 2\sqrt{3}i$$
[iii) $arg(x) = -\frac{\pi}{3}$

(iii)
$$arg(z) = -\frac{11}{3}$$

(iv)
$$\chi^8 = \left[\frac{4}{5} \operatorname{cis} \left(-\frac{\pi}{3} \right) \right]^8$$

= $\chi^{16} \operatorname{cis} \left(-\frac{8\pi}{3} \right)$
= $\chi^{16} \left[\cos \left(-\frac{2\pi}{3} \right) + i \sin \left(-\frac{2\pi}{3} \right) \right]$
= $\chi^{16} \left\{ -\frac{1}{2} - \frac{\sqrt{3}}{2}i \right\}$
= $\chi^{16} \left\{ -\frac{1}{2} - \frac{\sqrt{3}}{2}i \right\}$

1 (b) Let
$$a + bi = \sqrt{-5-12}i$$
 then

$$a^{2}-b^{2} = -5 \qquad \text{and} \qquad 2abi = -12i$$

$$b = -6$$

$$b = -6$$

$$a^{4} + 5a^{2} - 36 = 0$$

$$(a^{2}-4)(a^{2}+9) = 0$$

$$a = \pm 2$$
when $a = 2$, $b = -3$.

When $a = -2$, $b = 3$.

Hence $\sqrt{-5-12}i = \pm (2-3i)$.

Solving
$$z^2 + (1-2i)z + (\frac{1}{2}+2i) = 0$$
 we have
$$z = \frac{-(1-2i)^{\frac{1}{2}}\sqrt{(1-2i)^2 - 4(\frac{1}{2}+2i)}}{2}$$

$$z = \frac{-1+2i^{\frac{1}{2}}\sqrt{-5-12i}}{2}$$

$$z = \frac{-1+2i^{\frac{1}{2}}\sqrt{2-3i}}{2}$$

$$z = \frac{1-i}{2} \quad \text{and} \quad z = \frac{-3+5i}{2}$$

| (c) If
$$\omega$$
 is a complex cube root of unity, then

 $\omega^3 - 1 = 0$

is, $(\omega - 1)(\omega^2 + \omega + 1) = 0$.

But $\omega \neq 1$, hence $1 + \omega + \omega^2 = 0$, as required.

RTP that

 $(1+\omega)(1+2\omega)(1+3\omega)(1+7\omega) = 31 + 2\omega$.

LHS = $(1+3\omega+2\omega^2)(1+10\omega+21\omega^2)$

= $1+10\omega+21\omega^2+3\omega+30\omega^2+63\omega^3+2\omega^2+20\omega^3+42\omega^4$

= $84+13\omega+53\omega^2+42\omega^4$ (because $\omega^3 = 1$)

= $84+55\omega+53\omega^2$ (because $\omega^4 = \omega$)

= $(53+53\omega+53\omega^2)+(31+2\omega)$

(i)

The lows of of is the perpendicular bisector of AB.

The lows of z is the upper part of the circle above the chord AB.

pg4

The left branch is the Reflection of the Right branch in the y axis.

(ii)
$$y^2 = f(x)$$

ie, $y = \pm \sqrt{f(x)}$

(iii)
$$y = \sin^{-1} \left[f(x) \right]$$

Pg5

(i) Suppose that x = 0 were in the domain. Then, by substitution, into the equation of the curve, we would have

$$0 \times y^{2} + 0^{2} = 1$$

ie, $0 = 1$, which is false.

Hence x = 0 is not in the domain.

(ii) Substitute y=0 and solve $x^2=1$. The x intercepts are (1,0) and (-1,0).

(iii)
$$y^{2} = \frac{1-x^{2}}{x}$$

$$y = \pm \sqrt{\frac{1-x^{2}}{x}}$$

Need
$$\frac{1-x^2}{x} > 0$$

:. The domain is

$$x \le -1$$
 or $0 \le x \le 1$

(iv)
$$y = \sqrt{\frac{1-x^2}{x}}$$

iv, $y = \pm \sqrt{\frac{1}{x}-x}$
as $x \to -\infty$, $\pm \infty$

Hence
$$y \Rightarrow \pm \sqrt{-x}$$
. $[y^2 - y^2 - y^2]$
Hence the asymptotes are $x = 0$ and $y = \pm \sqrt{-x}$
i.e. $x = 0$ and $y^2 = -x$.

$$(v) \qquad xy^2 + x^2 = 1$$

(i)
$$\int \frac{(x+3) dx}{\sqrt[3]{x^2+6x}}$$

Let
$$u = x^2 + 6x$$

$$du = (2x + 6) dx$$

$$\frac{1}{2} du = (x + 3) dx$$

$$I = \int \frac{\frac{1}{2} du}{u^{\frac{1}{3}}}$$

$$= \frac{1}{2} \int u^{\frac{1}{3}} du$$

$$= \frac{3}{4} u^{\frac{2}{3}}$$

$$= \frac{3}{4} (x^{\frac{1}{4}} + 6x)^{\frac{2}{3}} + C.$$

$$(ii) \int \frac{dx}{2 + \cos x}$$

Let
$$t = tan(\frac{2}{\lambda})$$

$$\frac{dt}{dx} = \frac{1}{\lambda} sec^{2}(\frac{2}{\lambda})$$

$$\therefore dx = \frac{2dt}{1+t^2}.$$

$$(ii) \int \frac{dy}{y^2 + \log + 30}$$

$$= \int \frac{dy}{5 + (y + 5)^2}$$

$$=\frac{1}{\sqrt{5}}\tan^{-1}\left(\frac{y+5}{\sqrt{5}}\right)+C.$$

Hence
$$I = \int \frac{\frac{2dt}{1+t^2}}{\frac{3+t^2}{1+t^2}}$$

$$= \int \frac{2dt}{3+t^2}$$

=
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{t}{\sqrt{3}} \right)$$

$$=\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{\tan^{-1}(x_2)}{\sqrt{3}}\right)+c.$$

And
$$2 + \cos x = 2 + \frac{1 - t^2}{1 + t^2}$$

$$= 2 + 2t^2 + 1 - t^2 = \frac{3 + t^2}{1 + t^2}$$

$$= 1 + t^2$$

$$3(a)$$

$$(iv) \int x^{2}e^{2x} dx$$

$$= \frac{1}{2}e^{2x} x^{2} - \int \frac{1}{2}e^{2x} (2x) dx$$

$$= \frac{1}{2}x^{2}e^{2x} - \int x e^{2x} dx$$

$$= \frac{1}{2}x^{2}e^{2x} - \int \frac{1}{2}e^{2x} x - \int \frac{1}{2}e^{2x} (1) dx$$

$$= \frac{1}{2}x^{2}e^{2x} - \frac{1}{2}xe^{2x} + \frac{1}{2}\int e^{2x} dx$$

$$= \frac{1}{2}x^{2}e^{2x} - \frac{1}{2}xe^{2x} + \frac{1}{4}e^{2x} + C.$$

3(b)
$$x^3 + x^2 - 6x$$

= $x(x^2 + x - 6)$
= $x(x+3)(x-2)$.

het
$$\frac{x+1}{x^3+x^2-6x} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+3}$$
, then

$$x + 1 = A(x+3)(x-2) + Bx(x+3) + Cx(x-2).$$

Let
$$x = 0$$
. Then $1 = -6A \implies A = \frac{-1}{6}$.

Let
$$x = 0$$
.
Let $x = 2$. Then $3 = 10B \Rightarrow B = \frac{3}{10}$.

Let
$$z = -3$$
. Then $-2 = 15 C \implies C = \frac{-2}{15}$.

Hence
$$\int \frac{(x+1) dx}{x^3 + x^2 - 6x}$$

$$= \int \left(\frac{-\frac{1}{6}}{x} + \frac{\frac{3}{10}}{x-2} - \frac{\frac{2}{15}}{x+3}\right) dx$$

$$= -\frac{1}{6} \ln(x) + \frac{3}{10} \ln(x-2) - \frac{2}{15} \ln(x+3) + C.$$

(a) $I_n = \int_0^{\pi} \tan^n x \, dx$ $= \int_{-\infty}^{\infty} \tan^{n-2} x \cdot (\sec^2 x - 1) dx$ = \int_0^{\pi_4} \tan^{n-2} \times \sec^2 \times \dx \cdot \frac{1}{4} \tan^{n-2} \dx $I_n + I_{n-2} = \frac{1}{n-1} (\tan \frac{\pi}{4})^{n-1}$ $\therefore I_{n-1} + I_{n-2} = \frac{I}{n-1}, \text{ as Required.}$ $I_5 + I_3 = \frac{1}{4}$ $I_3 + I_1 = \frac{1}{2}$ I1 = 1 "4 tan 2 dx $\left[-\ln\left(\cos x\right)\right]_{0}^{\frac{1}{2}}$ = - In (T2) $I_3 = \frac{1}{2} + \ln(\frac{1}{\sqrt{\lambda}})$ $\therefore I5 = \frac{1}{4} - \left(\frac{1}{2} + \ln\left(\frac{1}{\sqrt{2}}\right)\right)$: Is = - 1/4 - 1/4 (1/2) $I_5 = l_0 \sqrt{2} - \frac{1}{4}$

PE

Rotation of the shaded strip about the line x = 3 produces a "washer" of volume 1V, where $\Delta V = \pi \left(R^2 - \Gamma^2 \right) \Delta y :$ and $R = 3 + \sqrt{4} - y^2$

and
$$\Gamma = 3 - \sqrt{4 - y^2}$$

 $\Delta V = \pi \left(R^2 - \Gamma^2 \right) \Delta y$ = $\pi \left\{ \left(3 + \sqrt{4 - y^{2}} \right)^{2} - \left(3 - \sqrt{4 - y^{2}} \right)^{2} \right\}$ Dy = $\pi \left\{ 6 \left(2 \sqrt{4 - \dot{y}^2} \right) \right\} / \dot{y}$ = 12 TT V4-y2 by:

P8 1.2.

Hence the Required Volume is V, where

$$V = 12 \pi \int_{-2}^{2} \sqrt{4 - y^{2}} dy$$

$$= 24 \pi \int_{0}^{2} \sqrt{4 - y^{2}} dy$$

$$= 24 \pi \left(\frac{1}{4} \pi \times 2^{2} \right)$$

$$= 24 \pi^{2} \text{ Units}^{3}.$$

Method 2:

Rotation of the shaded strip about the line $\alpha = 3$ produces a cylindrical shell of volume 1V, where $\int V = \pi \left(R^2 - r^2 \right) \times height.$

Now
$$R = (3-x)$$

 $r = (3-(x+0x))$
height = $\sqrt{4-x^2}$.

Hence
$$\Delta V = \pi \left\{ (3-x)^2 - (3-(x+0x))^2 \right\} \times \sqrt{4-x^2}$$

$$= \pi \left\{ (6-2x-0x)(0x) \right\} \sqrt{4-x^2}$$

$$= 2\pi (3-x)\sqrt{4-x^2} \cdot 0x$$

Hence the Regulard Volume b V, white
$$V = 2 \times 2\pi \int_{-2}^{2} (3-x) \sqrt{4-x^{2}} dx$$

$$= 4\pi \int_{-2}^{1} 3\sqrt{4-x^{2}} dx - 4\pi \int_{-2}^{2} \sqrt{4-x^{2}} dx$$

$$= 12\pi \left(\frac{1}{2} \times \pi \times 2^{2}\right) - 4\pi \left[\frac{1}{2} \cdot \frac{2}{3} \left(4-x^{2}\right)^{\frac{3}{2}}\right]_{-2}^{2}$$

$$= 24\pi^{2} \quad \text{onits}^{\frac{3}{2}}.$$

$$4(c) (i) \frac{d}{dx} \left\{ \frac{1}{\lambda} \times (a^{2} - x^{2})^{\frac{1}{\lambda}} + \frac{1}{\lambda} a^{2} \sin^{2}(\frac{x}{a})^{2} \right\}$$

$$= \frac{1}{2} \times \frac{1}{\lambda} (a^{2} - x^{2})^{-\frac{1}{\lambda}} (-2x) + \frac{1}{\lambda} (a^{2} - x^{2})^{\frac{1}{\lambda}} + \frac{1}{\lambda} a^{2} \cdot \frac{1}{\lambda} (a^{2} - x^{$$

$$\frac{-x^{2}}{2\sqrt{a^{2}-x^{2}}} + \frac{\sqrt{a^{2}-x^{2}}}{2} + \frac{a^{2}}{2\sqrt{a^{2}-x^{2}}}$$

$$= \frac{a^{2}-x^{2}}{2\sqrt{a^{2}-x^{2}}} + \frac{\sqrt{a^{2}-x^{2}}}{2}$$

$$= \frac{a^{2}-x^{2}}{2\sqrt{a^{2}-x^{2}}} + \frac{a^{2}-x^{2}}{2\sqrt{a^{2}-x^{2}}} = \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} = \sqrt{a^{2}-x^{2}}.$$

$$4(c) (ii) x^{2} + y^{2} = 16x 7 y = \frac{1}{2}\sqrt{64 - (x-8)^{2}}$$

$$x^{2} - 16x + 64 + y^{2} = 64$$

$$(x-8)^{2} + y^{2} = 64.$$

The volume of a slice is AV, where

$$\Delta V = 6 \times 2 \sqrt{64 - (x - 8)^2} \times \Delta x$$

$$= 12 \sqrt{64 - (x - 8)^2} \Delta x.$$

Hence the Volume, V, of the Required solid is

$$V = 12 \int_{0}^{16} \sqrt{64 - (x - 8)^{2}} dx$$

$$= 12 \left\{ \left[\frac{1}{2} (x-8) \sqrt{64 - (x-8)^2} + \frac{1}{2} \times 64 \times \sin^{-1} \left(\frac{x-8}{8} \right) \right]_0^{16} \right\}$$

=
$$12 \left\{ (0+32(\frac{\pi}{2})) - (0+32(\frac{\pi}{2})) \right\}$$

Question 5:

(a) (i)
$$p(x) = ax^4 + bx^3 + cx^2 + d$$

$$p(d) = ad^4 + bd^3 + cd^2 + d = 0$$

$$d = -ad^4 - bd^3 - cd^2$$

$$d = -d(ad^3 + bd^2 + cd),$$
which is divisible by d.

Hence d is a multiple of d.

(ii) Using the result from part (i), if q(x) has an integer root, then that integer divides -3. The divigors of -3 are ± 1 , ± 3 .

Now $q(1) = 5 - 1 + 3 - 3 \neq 0$.

And $q(-1) = 5 + 1 + 3 - 3 \neq 0$.

And $q(3) = 405 - 27 + 27 - 3 \neq 0$.

And $q(-3) = 405 + 27 + 27 - 3 \neq 0$.

Hence q(x) does not have an integer root.

5(b) $P(x) = x^3 - 11x - 14$

Notice that P(-2) = -8 + 22 - 14 = 0.

Hence (x+2) is a factor of P(x).

$$\begin{array}{r}
x^{2} - 2x & 47 \\
x^{3} + 0x^{2} - 11x - 14 \\
x^{3} + 2x^{2} \\
\hline
-2x^{2} - 11x - 14 \\
-2x^{2} - 4x \\
\hline
-7x - 14 \\
-7x - 14 \\
\hline
0.
\end{array}$$

$$\therefore \ \, P(x) = (x+2)(x^2-2x-7)$$

Solving
$$x^2 - 2x - 7 = 0$$

$$x = \frac{2 \pm \sqrt{4 - 4(-7)}}{2}$$

$$x = \frac{2 \pm \sqrt{32}}{2} = \frac{2 \pm 4\sqrt{2}}{2} = \frac{1 \pm 2\sqrt{2}}{2}$$

The three Roots of P(x) = 0 are x = -2 and $1\pm 2\sqrt{2}$.

5(c)
$$q(x) = x^4 - 6x^3 + 12x^2 - 10x + 3$$

 $q'(x) = 4x^3 - 18x^2 + 24x - 10$
 $q''(x) = 12x^2 - 36x + 24$
 $= 12(x^2 - 3x + 2)$
 $= 12(x-1)(x-2)$

Test
$$x = 1$$
:
$$q'(1) = 4 - 18 + 24 - 10 = 0$$

$$q'(1) = 1 - 6 + 12 - 10 + 3 = 0$$

Here x=1 is a root of multiplicity 3. Here $q(x) = (x-1)^3(x-3)$.

So the roots of g(x) = 0 are x = 1, 1, 1, 3.

(d)
$$x^3 - 5x^2 + 5 = 0$$

$$\begin{cases} d + \beta = 5 - \delta \\ d\beta + d\delta + \beta \delta = 0 \end{cases}$$

$$d\beta = -5$$

(i)
$$(d-1)(\beta-1)(\delta-1)$$

= $d\beta X - (d\beta + d\delta + \beta \delta) + (d+\beta+\delta) - 1$
= $-5 + 5 - 1$
= -1
 $p_{\delta} 18$

$$5 (d) (ii) \quad x^{3} - 5x^{2} + 5 = 0$$

$$50 \quad d^{3} - 5x^{2} + 5 = 0$$
and
$$\beta^{3} - 5\beta^{2} + 5 = 0$$
and
$$\gamma^{3} - 5\gamma^{2} + 5 = 0$$
and
$$\gamma^{3} - 5\gamma^{2} + 5 = 0$$

$$\therefore \quad \lambda^3 + \beta^3 + \delta^3 = 5(\lambda^2 + \beta^2 + \delta^2) - 15.$$

Now
$$d^2 + \beta^2 + \delta^2 = (\alpha + \beta + \delta)^2 - 2(\alpha \beta + \alpha \delta + \beta \delta)$$

$$= (5)^2 - 2(0)$$

$$= 25.$$

$$\therefore d^3 + \beta^3 + \delta^3 = 5 \times 25 - 15 = 110.$$

(iii) The equation whose roots one of, bt and 8t is

$$(\sqrt{x})^{3} - 5(\sqrt{x})^{2} + 5 = 0$$

$$x\sqrt{x} - 5x + 5 = 0$$

$$x\sqrt{x} = 5x - 5$$

$$(x\sqrt{x})^{2} = (5x - 5)^{2}$$

$$x^{3} = 25x^{2} - 50x + 25$$

is,
$$x^3 - 25x^2 + 50x - 25 = 0$$
.

(a)
$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$
 $\Rightarrow a = 6, b = 3.$

(i) Length of major axis is 12 units. Length of minor axis is 6 units.

(ii)
$$b^{2} = a^{2}(1-e^{2})$$

 $q = 36(1-e^{2})$
 $e^{2} = \frac{3}{4} \implies e = \frac{\sqrt{3}}{2}$

- (iii) The foci are at $(\pm 3\sqrt{3}, 9)$. The foci are at $(\pm 3\sqrt{3}, 9)$.
- (iv) The directrices have equations $x = \pm \frac{a}{e}$.

 The directrices have equations $x = \pm \frac{6}{5} = \pm \frac{12}{\sqrt{3}}$ if, $x = \pm 4\sqrt{3}$.

To find the equation of the tangent at
$$P$$
:

$$\frac{2x}{4} - \frac{2y}{5} \cdot \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{2x}{4} \cdot \frac{5}{2y} = \frac{5x}{4y}$$
At $P(2\sec 0, \sqrt{5} \tan 0)$, $\frac{dy}{dx} = \frac{10\sec 0}{4\sqrt{5} \tan 0}$

Hence the equation of the tangent at Pii
$$y - \sqrt{5} \tan 0 = \frac{10 \sec 0}{4 \sqrt{5} \tan 0} \left(x - 2 \sec 0\right), \text{ etc.}$$

6(b) ctol.
To find the equation of the directrix, first find.

the eccentricity:

$$5 = 4(e^{2} - 1)$$

$$\frac{5}{4} + \frac{4}{4} = \frac{9}{4} = e^{2} \implies e = \frac{3}{2}.$$

Here the direct Rix has equation $x = \frac{42}{3/2} = \frac{4}{3}$.

To find the y-cooldinate of T: substitute $x = \frac{4}{3}$ in (1):

$$y - \sqrt{5} \tan 0 = \frac{10 \sec 0}{4\sqrt{5} \tan 0} \left(\frac{4}{3} - 2 \sec 0 \right)$$

:
$$y = \frac{2\sqrt{5}}{3\sin 0} - \frac{\sqrt{5}(1+\tan^2 0)}{\tan 0} + \sqrt{5} \tan 0$$

$$y = \frac{2\sqrt{5}}{3\sin\theta} = \frac{\sqrt{5}\cos\theta}{\sin\theta} = \frac{2\sqrt{5} - 3\sqrt{5}\cos\theta}{3\sin\theta}$$

Hence
$$T = \left\{ \frac{4}{3}, \frac{2\sqrt{5} - 3\sqrt{5} \cos \theta}{3 \sin \theta} \right\}$$

(i) Substitute $y = m \times + b$ into the equation of ellipse:

$$\frac{x^2}{6} + \frac{\left(mx + b\right)^2}{3} = 1$$

$$ic, x^2 + 2(m^2x^2 + 2bmx + b^2) = 6$$

$$ic_1$$
 $x^2(2n^2+1) + 4bmx + (26^2-6) = 0.$

$$(4bm)^2 - 4(2m^2+1)(2b^2-6) = 0$$

$$16b^2m^2 - 16b^2m^2 + 48m^2 - 8b^2 + 24 = 0$$

ie,
$$12 m^2 - 2b^2 + 6 = 0$$

ie,
$$6m^2-b^2+3=0$$

ie,
$$b^2 = 6m^2 + 3$$
, as toguired.

6c(i) old
Hence m of PS =
$$\frac{\sqrt{5} \tan \alpha}{2 \sec \alpha - 3}$$

and m of ST =
$$\frac{2\sqrt{5} - 3\sqrt{5}\cos \alpha}{3\sin \alpha}$$

 $\frac{4}{3} - 3$

$$= \frac{2\sqrt{5} - 3\sqrt{5}\cos \theta}{-5\sin \theta}$$

Now
$$(m \not PS) \times (m \not PS)$$

$$= \frac{\sqrt{5} \tan \alpha}{2 \sec \alpha - 3} \times \frac{3\sqrt{5} \cos \alpha - 2\sqrt{5}}{5 \sin \alpha}$$

6(c) (ii) The target
$$y = mx + b$$
 passes through (x, y) so $y = mx + b$

ie, $b = (y - mx)$

ie, $b^2 = y^2 - 2mxy + m^2x^2$

But $b^2 = 6m^2 + 3$, so
$$6m^2 + 3 = y^2 - 2mxy + m^2x^2$$

ie, $0 = m^2x^2 - 6m^2 - 2mxy + y^2 - 3$

ie, $0 = m^2(x^2 - 6) - 2mxy + (y^2 - 3)$.

Now this is a quadratic in m with two roots, namely m and $\frac{1}{m}$. Here the product of the roots is also roots is -1. But the product of the roots is also equal to $\frac{c}{a}$, is, $\frac{\gamma^2-3}{\chi^2-6}$.

Hence
$$\frac{y^2-3}{x^2-6} = -1$$

is, $y^2-3=6-x^2$

is, $x^2+y^2=9$

(ii)
$$m\ddot{x} = -mg - mkV$$

 $\ddot{x} = -g - kV = \frac{dV}{dt}$

(d)
$$\frac{dt}{dv} = \frac{-1}{g+kv}$$

$$t = \int \frac{-dv}{g+kv}$$

$$t = -\frac{1}{k} \ln(g+kv) + C$$

But when t=0, V= u so C= \frac{1}{k} h(g+ku). Hence $t = \frac{1}{k} \ln(g + kv) + \frac{1}{k} \ln(g + ku)$ ie, $t = \frac{1}{k} \ln \left(\frac{g + ku}{g + kv} \right)$, as required.

(b) so
$$e^{kt} = \left(\frac{g+ku}{g+kv}\right)$$

 $g+kv = \left(g+ku\right)e^{-kt}$
 $p_8^2 = 26$

50
$$V = \frac{1}{k} (g + k\alpha) e^{-kt} - \frac{3}{k}k$$

7(ii)

(8) So $\frac{dz}{dt} = \frac{1}{k} (g + k\alpha) e^{-kt} - \frac{3}{k}k$

$$\therefore z = -\frac{1}{k^2} (g + k\alpha) e^{-kt} - \frac{3}{k} + F$$

But when $t = 0$, $z = 0$ so $F = \frac{1}{k^2} (g + k\alpha)$

$$\therefore z = \frac{1}{k^2} (g + k\alpha) e^{-kt} - \frac{3}{k} + \frac{1}{k^2} (g + k\alpha)$$

7(iii) $\frac{dV}{dt} = g - kV$

(d) $\frac{dt}{dv} = \frac{3}{g - kV} = -\frac{1}{k} \ln (g - k\alpha) + H$

But when $t = 0$, $V = M$ so $H = \frac{1}{k} \ln (g - k\alpha)$

$$\therefore t = -\frac{1}{k} \ln (g - k\alpha) + \frac{1}{k} \ln (g - k\alpha)$$

if, $t = \frac{1}{k} \ln \left(\frac{g - k\alpha}{g - k\alpha} \right)$

(b) So $e^{kt} = \left(\frac{g - k\alpha}{g - k\alpha} \right)$

$$\frac{g}{g} - kV = (g - k\alpha) e^{-kt}$$

:
$$kV = g - (g - kn)e^{-kt}$$

: $V = \frac{g}{k} - \frac{1}{k}(g - kn)e^{-kt}$

7(111)
(8)
$$\frac{dx}{dt} = \frac{9}{k} - \frac{1}{k} (g - ka) e^{-kt}$$

 $\therefore x = \frac{gt}{k} + \frac{1}{k^2} (g - ka) e^{-kt} + R$

But when
$$t=0$$
, $z=0$ so $R=-\frac{1}{k^2}(g-ku)$

$$\therefore x = \frac{1}{k^2} (g - ku) e^{-kt} + \frac{gt}{k} - \frac{1}{k^2} (g - ku).$$

(iv) Let the particles meet after t units of time. A will have travelled a distance of. oc, and B will have travelled a distance of och such that $x_1 + x_2 = id$, ie,

$$\begin{cases} -\frac{1}{k^{2}}(g+ku)e^{-kt} - \frac{gt}{k} + \frac{1}{k^{2}}(g+ku) + \frac{1}{k^{2}}(g-ku)e^{-kt} \\ + \frac{gt}{k} - \frac{1}{k^{2}}(g-ku) \end{cases} = d$$

$$ie$$
, $\frac{2u}{k} - \frac{2a}{k} = \frac{kt}{k}$

ie,
$$\frac{kd}{2u} = 1 - e^{-kt}$$
 ie, $e^{-kt} = \frac{2u - kd}{2uu}$

$$kt, \frac{2u}{kt}$$

$$t = \frac{1}{k} \ln \left(\frac{2u}{2u} \right)$$

ie, eht. = $\frac{2a}{2\dot{u}-kd}$ ie, $t=\frac{1}{k}\ln\left(\frac{2u-kd}{2u-kd}\right)$,

(ii)
$$\frac{d}{dx} \left(\frac{1}{2} \sqrt{2}\right) = \frac{12 - 4x}{x^3} = \frac{12}{z^3} - \frac{4}{z^2}$$

$$\therefore \frac{1}{z} \sqrt{z} = -\frac{6}{x^2} + \frac{4}{z^2} + C$$
8.4 when $z = 6$, $z = 6$, $z = 6$

But when
$$x=6$$
, $V=0$ so

$$0 = -\frac{6}{36} + \frac{4}{6} + C \implies C = -\frac{1}{2}$$

$$\therefore V^2 = -\frac{12}{x^2} + \frac{8}{x} - 1$$

$$y^{2} = \frac{8x - x^{2} - 12}{x^{2}}$$

$$V = \pm \sqrt{\frac{8x - x^2 - 12}{x^2}} = \pm \sqrt{\frac{8x - x^2 - 12}{x}}$$

(i) When
$$x = 6$$
, $V = 0$ and $\frac{d^2x}{dt^2} = \frac{12-24}{64}$ (0.
Since acceleration is negative, and $V = 0$, therefore it starts moving in the negative direction.

$$(ii) \quad V = \pm \sqrt{8x-2^2-12}$$

FOR V to be real, we need 8x -x2-1270, is, (x-2)(6-x) > 0,

ie,
$$2 \le x \le 6$$
.

The particle is restricted to

8(b) (i) Exact onea =
$$\int_{1}^{n} \log_{2}x \, dx$$

$$= \left[x \ln x - x \right]_{1}^{n}$$

$$= \left(n \ln n - n \right) - \left(0 - 1 \right)$$

$$= n \ln n - n + 1$$

$$= \left(\ln n^{n} \right) - \left(n - 1 \right)$$

$$= \left(\ln n^{n} \right) - \log_{e} e^{(n-1)}$$

$$= \ln \left(\frac{n^{n}}{e^{n-1}} \right), \text{ as required.}$$

(ii) Using the Trapezoidal Rule with strips of width 1 unit, Area =
$$\frac{1}{2} \left\{ 0 + \ln n + 2 \left[\ln 2 + \ln 3 + \dots + \ln (n-1) \right] \right\}$$

(iii) Area by Trapezoidal Rule
$$\angle$$
 Exact area $\frac{1}{2} \ln n + \ln (n-1)!$ $\angle \ln \left(\frac{n}{e^{n-1}}\right)$ $\ln \sqrt{n} (n-1)!$ $\angle \ln \left(\frac{n}{e^{n-1}}\right)$ $\ln \sqrt{n} (n-1)!$ $\angle \ln \left(\frac{n}{e^{n-1}}\right)$ $\ln (n-1)!$ $\angle \ln \left(\frac{n}{e^{n-1}}\right)$ $\ln (n-1)!$ e^{n-1} $\angle \ln (n-1)!$ e^{n-1

8 (c) (i) Let
$$d = \sin^{-1} \lambda x$$

$$\sin k = 2x$$

$$\cos d = \sqrt{1 - 4x^{2}}$$
het $\beta = \cos^{-1} \lambda x$

Let
$$\beta = \cos^{-1} 2x$$

$$\cos \beta = 2x$$

$$\sin \beta = \sqrt{1-4x^2}$$

Now
$$\sin \left[\cos^{-1} 2x - \sin^{-1} 2x \right]$$

$$= \sin \left(\beta - d \right)$$

$$= \sin \beta \cos d - \cos \beta \sin d$$

$$= \sqrt{1 - 4x^2} \times \sqrt{1 - 4x^2} - 2x \times 2x$$

$$= 1 - 4x^2 - 4x^2$$

$$= 1 - 8x^2, \text{ as required.}$$

(ii) To solve
$$\cos^{-1} 2x - \sin^{-1} 2x = \sin^{-1} (1-2x)$$

 $\sin \left[\cos^{-1} 2x - \sin^{-1} 2x\right] = \sin \left[\sin^{-1} (1-2x)\right]$
 $1-8x^2 = 1-2x$, from part (i)
 $0 = 8x^2 - 2x$
 $0 = 2x(4x-1)$
 $x = 0$ or $\frac{1}{4}$
However $\sin^{-1} 2\pi x$, $\cos^{-1} 2\pi x$ $\sin^{-1} (1-2\pi)$
 $2\pi x$ rewrite, so $x = \frac{1}{4}$ only.