ENSEM (1ère année) Université de Nancy I (Licence de Mécanique)

AnnéeUniversitaire 1996/1997

Module: MATHEMATIQUE feuille d'exercice N° 1 de Mathématique proposé par Bilal Baraké Thème: Calcul tensoriel élémentaire. (1er cours du 23/9/1996)

1) Calcul vectoriel:

Calculer en utilisant le tenseur (ε_{iik}) :

$$(\bar{A} \wedge \bar{B}).(\bar{C} \wedge \bar{D})$$

en fonction des produits scalaires deux à deux des vecteurs \vec{A} , \vec{B} , \vec{C} , \vec{D} ..

2) Identités classiques:

Soient \overline{A} et \overline{B} deux champs de vecteurs et φ une fonction scalaire tous trois définis dans un domaine de R^3 . Rappelons que:

$$grad\phi = \phi_{,i} \, \bar{k}_{i}$$
 $div\bar{A} = A_{i,i}$
 $\Delta \phi = \phi_{,i} \, i$
 $\Delta \bar{A} = A_{i,jj} \, \bar{k}_{i}$
 $grad \bar{A} = A_{i,j} \, \bar{k}_{i} \otimes \bar{k}_{j}$

les $ar{k_i}$ étant les vecteurs unitaires de base du repère de travail.orthonormé

En supposant que \overline{A} , \overline{B} et φ sont deux fois continûment dérivables. Retrouver, en utilisant les propriétés du tenseur alterné fondamental ; les identités intrinsèques classiques permettant de développer les expressions suivantes: en coordonées cartésiennes.

a)
$$div(\bar{A}\varphi)$$

b)
$$rot(\bar{A}\phi)$$

c)
$$div(\bar{A} \wedge \bar{B})$$

d)
$$div(rot \bar{A})$$

f)
$$div(\overrightarrow{grad}\phi)$$

h)
$$rot(\bar{A} \wedge \bar{B})$$

i)
$$\overrightarrow{grad}(\overline{A}.\overline{B})$$

3) Relation utile en mécanique:

Montrer que le vecteur de composantes $\gamma_i = u_{i,j}u_j$ dans un repère donné n'est autre que le

vecteur
$$\bar{\gamma} = grad \frac{U^2}{2} + (rot \bar{U}) \wedge \bar{U}$$
.

4) Propriétés du mouvement d'un solide parfait:
On considère un solide parfait de rotation instantanée $\bar{\Omega}(t)$ par rapport à un repère fixe donné.

Soient $\bar{V}(M)$ et $\bar{\gamma}(M)$ les champs respectifs des vitesses et accelérations associés à ce solide.

Appliquer dans un repère lié au solide d'origine O, les opérateurs différentiels div et rot respectivement aux champs \bar{V} et $\bar{\gamma}$.

Module: MATHEMATIQUES

Feuille d'exercices N° 2 de Mathématiques proposée par Bilal Baraké.

Thème: Invariants - Directions principales - Valeurs propres.

(2ème cours du 30/9/97)

I) Directions principales et valeurs propres d'un tenseur :

Exercice 1:

Donner les directions principales et les valeurs propres d'un tenseur $\overline{\overline{T}}$ dont 1 es composantes dans un certain repère orthonormé sont définies par :

$$t_{ij} = \lambda a_i a_j + \mu \delta_{ij}$$

 λ et μ étant des constantes et a_i les composantes d'un vecteur \vec{a} donné.

Exercice 2:

Soient \vec{U} et \vec{V} deux champs de vecteurs unitaires quelconques. En un point donné, le tenseur $\overline{\vec{T}}$ est défini par ses composantes

$$t_{ii} = \lambda \left(u_i v_i + u_i v_i \right) \qquad (\lambda > 0)$$

Déterminer ses directions principales, ses valeurs propres, sa partie sphérique et son déviateur.

II) Invariants élémentaires d'un tenseur du second ordre :

Montrer que les invariants élémentaires d'un tenseur \overline{T} s'expriment en fonction des traces de \overline{T} , \overline{T} et \overline{T}^3 . Qu'en est-il dans le cas particulier d'un déviateur $\underline{\underline{D}}$?

III) Propriétés de quelques tenseurs des contraintes particuliers :

(Les tenseurs des contraintes considérés ci-dessous sont toujours symétriques.)

Exercice 1:

Un tenseur des contraintes est dit **uniaxial** (de <u>traction simple</u> ou <u>compression simple</u>) dans la direction x_k si, au point considéré, toutes les composantes σ_{ij} sont nulles à l'exception du terme σ_{kk} de la diagonale.

Donner une condition nécessaire et suffisante relative aux invariants d'un tenseur des contraintes Σ pour qu'il soit uniaxial dans une direction quelconque de \mathbb{R}^3 .

Exercice 2:

Un tenseur des contraintes est dit de **cisaillement simple** dans les directions orthogonales ox_k , ox_l si tous les σ_{ij} sont nuls à l'exception de $\sigma_{kl} = \sigma_{lk}$.

Donner une condition nécessaire et suffisante relative aux invariants d'un tenseur des contraintes Σ pour qu'il soit de cisaillement simple dans deux directions orthogonales quelconques de l'espace.

Module: MATHEMATIQUES

Feuille d'exercices N° 3 de Mathématiques Responsable: Daniel Margerit Thème: Analyse tensorielle. (3ème cours du 6/10/97)

I) Champ de gradient:

Soit $\vec{U} = \varphi(\theta) \overrightarrow{grad} \theta$ un champ de vecteurs de E^3 défini sur un domaine Ω de E^3 , $\theta \in C^2(\Omega)$ et φ une application différentiable de $C^2(\Omega)$ dans $C^1(\Omega)$. (1) Montrer que \vec{U} définit un champ de gradient.

II) Relation de compatibilité et calcul de champ de déplacement:

(Les calculs qui suivent sont classiques en Mécanique des Milieux Continus pour calculer un champ de déplacement $ec{U}$ à partir du tenseur des déformations linéarisé obtenu pour écriture des équations d'équilibre)

Exercice 1:

On définit le tenseur :

$$\bar{\varepsilon}(\underline{x}) = \varphi(\underline{x}) \bar{\overline{\eta}},$$

où φ est une application de E^3 dans R et $\overline{1}$ le tenseur unité.

(9(E3,R)

Quelle est la forme la plus générale de φ telle que ε soit la partie paire (ou symétrique) d'un tenseur \overline{grad} $\overline{\vec{U}}$? Donner l'expression générale de \vec{U} .

Exercice 2:

Considérons la fonction
$$\varphi: (x_1, x_2) \in E^{3} \longrightarrow \varphi(x_1, x_2) \in R$$

et le champ de tenseur ε de composantes $\varepsilon_{ii} = \varphi_{,i}\varphi_{,i}$.

- a) Donner les directions principales et valeurs propres de ε .
- b) A quelle équation aux dérivées partielles doit satisfaire la fonction φ pour que ε soit la partie symétrique d'un champ de tenseur gradient de \vec{U} (\vec{U} champ vectoriel de E^3)?
- c) Y a-t-il des solutions harmoniques ϕ ($\Delta \phi = 0$) ? Donner une expression générale de \vec{U} dans ce dernier cas.

Exercice 3:

On obtient, pour une poutre en flexion, le champ de déformation linéarisé de composantes

$$\begin{cases} \varepsilon_{11} = \frac{-Mx_2}{EI} \\ \varepsilon_{12} = \frac{\sigma Mx_2}{EI} = \varepsilon_{33} \\ \varepsilon_{12} = \varepsilon_{23} = \varepsilon_{13} = 0 \end{cases}$$

Sachant que le tenseur des déformations $\bar{\varepsilon}$ de composantes ε_{ij} est relié au champ de déplacement \vec{U} par les relations

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$

Montrer que le champ ε_{ij} ci-dessus est effectivement intégrable et calculer le champ des déplacements associé sachant que les conditions d'encastrement se traduisent à l'origine $\underline{x}=0$ par

$$\vec{U} = \overrightarrow{rot} \vec{U} = 0$$

Daniel

Module: MATHEMATIQUES Feuille d'exercices N° 4 de Mathématiques

proposée par : Florence Biguenet Thème: Quelques problèmes (4ème cours du 13/10/96)

I Exercices d'algèbre tensorielle :

1 - Montrer que si un tenseur du second ordre est symétrique dans une base orthonormée	$\{\vec{e}_i\},$
il l'est dans toute autre base $\{\vec{e}_i^{'}\}$.	

- ${\bf 2}$ Soient ${\bf t}_{iikl}$ les composantes dans un repère d'un tenseur T d'ordre ${\bf 4}$. Démontrer que $s_{jl}=t_{ijjl}$ sont les composantes dans ce même repère d'un tenseur $\stackrel{=}{S}$ d'ordre 2. On utilisera pour cela la définition 3 du polycopié p.11. Cette vérification justifiera alors une extension de l'opérateur "contraction" à des indices non adjacents.
- 3 Calculer $\det(\bar{1} + \vec{u} \otimes \vec{v})$ et montrer en particulier que ce déterminant vaut 1 lorsque les vecteurs \vec{U} et \vec{V} sont orthogonaux.
 - a) en se servant de la formule du déterminant
 - b) en cherchant les valeurs propres du tenseur
- $\bf 4$ On considère un tenseur T représenté dans un repère R par la matrice :

$$T = \begin{bmatrix} x_1^2 & x_1 x_2 & \dots & x_1 x_N \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ x_N x_1 & x_N x_2 & \dots & x_N^2 \end{bmatrix}$$

Écrire \overline{T} à l'aide des notations indicielles puis donner une expression intrinsèque de T.

- 5 On considère trois vecteurs \vec{U}, \vec{V} et \vec{W} de R^3 et on désigne par T le tenseur défini par $\mathbf{T} = (\vec{U} \wedge \vec{V}) \otimes \vec{W}$
 - a)Quel est l'ordre de ce tenseur ? Donner son expression dans une base orthonormée $\{\vec{e}_i\}.$
 - b) Donner une expression intrinsèque de la trace de T
 - c) On suppose maintenant que \vec{W} est orthogonal au plan défini par les vecteurs \vec{U} et \vec{V} ; montrer alors que T est symétrique. Que dire à priori de ses valeurs propres et directions principales dans ce cas?

d)On se place dans le cas particulier décrit en c) et l'on suppose de plus que \vec{W} est unitaire; déterminer alors sans calcul les directions et valeurs propres de T.

6 - Définition et propriété d'un déviateur :

On désigne par d_i (pour i=1,2,3) les trois valeurs propres réelles où complexes d'un déviateur D; écrire le polynôme caractéristique de D pour chacune de ses valeurs propres et en déduire l'identité : $3d_1d_2d_3 = d_1^3 + d_2^3 + d_3^3$.

II Exercices d'analyse tensorielle :

1.- Étude d'un champ de vecteurs radial:

On considère le vecteur $\vec{V}(M) = \mathbf{A} \cdot \frac{\overrightarrow{OM}}{r^2}$ de \mathbb{R}^3 où \mathbf{A} est un tenseur constant du second ordre et r le rayon sphérique : $r^2 = x_k x_k$ $k \in \{1, 2, 3\}$. Donner les conditions sur \mathbf{A} pour que l'une des relations suivantes soit satisfaite:

a)
$$\operatorname{div}(\vec{V}) = 0$$

b)
$$rot(\vec{V}) = \vec{0}$$

Il est demandé de ne pas utiliser les coordonnées sphériques.

- **2 -** Calculer $div[\varphi(x) \ \vec{U}(x) \otimes \vec{V}(x)]$.
- 3 Montrer que $\displaystyle \iiint_{\Omega} rot U d\tau = \int_{\partial \Omega} \vec{n} \wedge \vec{U} d\sigma$ où Ω est un domaine de R^3 et \vec{n} la normal extérieure au bord $\partial \Omega$ de Ω .

4 - Astuces de calcul en coordonnées cylindriques :

Soient (O, x_1, x_2, x_3) un repère absolu orthonormé dans R^3 dont les vecteurs unitaires de bases sont \vec{e}_i et M (de coordonnées x_i) un point de R^3 dont on désignera par H la projection orthogonale sur Ox_3 . On considère le vecteur particulier :

$$\vec{V}(M) = \mathbf{A}. \, \overrightarrow{HM} + \varphi(r, x_3) \, \vec{e}_3$$

où r désigne le rayon cylindrique défini par $r^2 = x_{\alpha}x_{\alpha}$ $\alpha \in \{1,2\}$ et **A** est un tenseur constant du second ordre sur R^2 (composantes $a_{\alpha\beta}$).

a) Montrer en dérivant l'expression précédente de r^2 par rapport à x_j que

$$r_{,j} = \frac{x_{\alpha}}{r} \delta_{\alpha j} = r_{,\alpha} \delta_{\alpha j}.$$

- b)Écrire les conditions sur ${\bf A}$ et ϕ pour que ${\it div} \vec{V} = 0$.
- c) Même question pour que cette fois $rot\vec{V} = 0$.

5 - A propos d'un champ de gradients :

Soit T(x) un champ de tenseurs défini par :

$$\mathbf{T}(x) = \left[\alpha(\vec{e}_1 \otimes \vec{e}_1 + \vec{e}_2 \otimes \vec{e}_2) + \beta \vec{e}_3 \otimes \vec{e}_3\right] x_1.$$

Écrire les composantes du tenseur dans la base $\{\vec{e}_i\}$. Montrer qu'il est la partie symétrique d'un champ de vecteurs \vec{U} . Que dire de l'unicité de \vec{U} ?

Déterminer la solution générale du système $\frac{1}{2}(u_{i,j} + u_{j,i}) = t_{ij}$.

III Application du calcul tensoriel à l'électromagnétisme :

Relation énergétique en électromagnétisme :

On rappelle que la puissance énergétique $P_{em}(\Omega)$ apportée sous forme électromagnétique à un domaine volumique arbitraire Ω de l'espace est égale au flux entrant du vecteur de Poynting $\vec{E} \wedge \vec{H}$ à travers la frontière $\partial \Omega$ de Ω .

Donner en utilisant le théorème de la divergence généralisée et les astuces de calcul tensoriel l'expression de la densité volumique de puissance $p_{em}(M)$ (apportée en chaque point

M de l'espace sous forme électromagnétique) en fonction de \vec{H} , $\frac{\partial \vec{B}}{\partial t}$, \vec{E} , \vec{J} et $\frac{\partial \vec{D}}{\partial t}$ où l'on rappelle

que
$$rot\vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$
 et $rot\vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J}$.

IV Application du calcul tensoriel à l'élasticité :

Les équations de l'élasticité classique sont:

 $i)div \stackrel{=}{\Sigma} + \vec{f} = 0$ traduisant l'équilibre

 $ii) \stackrel{=}{\Sigma} = \lambda \varepsilon_1 \stackrel{=}{1} + 2\mu \stackrel{=}{\varepsilon}$ traduisant le comportement

 $\overline{\Sigma}$, tenseur symétrique du second ordre est le champ de contrainte de composantes σ_{ij}

 \vec{f} est un champ de forces volumiques extérieures

 $\overline{\overline{\epsilon}}(u)$ de composantes ϵ_{ij} est la partie symétrique du tenseur gradU et U est le champ de déplacements et ϵ_1 est le premier invariant de $\overline{\overline{\epsilon}}$

- a) Donner l'équation aux dérivées partielles vectorielles vérifiée par U en fonction de \vec{f} . (On passera par les composantes de i) et ii) puis on remontera à 2 expressions intrinsèques équivalentes de l'équation cherchée.)
- b) Exprimer $\overline{\overline{\epsilon}}$ en fonction de $\overline{\overline{\Sigma}}$ (On passera par la trace de l'expression ii), et l'on posera en fin de calcul $\mu = \frac{E}{2(1+\nu)}$ et $\frac{\lambda}{2\mu(3\lambda+2\mu)} = \frac{\nu}{E}$.
- c) En supposant que l'on connaisse un champ $\overline{\Sigma}$ vérifiant i), écrire les relations que doivent

satisfaire les σ_{ij} pour que l'on puisse déterminer un champ de déplacement U à partir de l'expression trouvée en b).

V Extraits de l'examen de l'année précédente

A) Etudes d'un tenseur simple du second ordre

Soit \overrightarrow{u} vecteur unitaire fixe et

$$\mathbb{T}(x) = \phi(x) \xrightarrow{u} \otimes \overrightarrow{u}$$

- 1) Valeur du déterminant de T?
- 2) Vecteurs propres et valeurs propres de T?
- 3) Expression et ordre du tenseur gradient de T?
- 4) Condition nécessaire et suffisante sur ϕ pour que div $\mathbb{T} = 0$.

B) Opérations sur le second gradient d'un champ de vecteurs \overrightarrow{U}

Soient \overrightarrow{U} un champ de vecteurs et $\overrightarrow{\Omega} = \frac{1}{2}$ rot \overrightarrow{U} son vecteur tourbillon de composantes ω_i

- 1) On pose $k_{i\ell} = \omega_{i,\ell}$, montrer que le tenseur K (de composantes $k_{i\ell}$) est un déviateur.
- 2) Exprimer $\epsilon_{pmi} \; k_{i\ell}$ en fonction des dérivées secondes de \overrightarrow{U} .
- 3) On désigne par

$$k_{ij\ell} = \frac{1}{3} \left[u_{i,j\ell} + u_{j,\ell i} + u_{\ell,ij} \right]$$

la partie totalement symétrique de $u_{i,j\ell}$; déterminer, à l'aide du résultat de la question 2, le reste

$$r_{ij\ell} = u_{i,j\ell} - k_{ij\ell}$$

en fonction des composantes de K.

4) Montrer alors que, quelque soit le tenseur du troisième ordre T, la quantité

$$p = t_{ij\ell} u_{i,j\ell}$$

peut s'écrire sous la forme

$$p = d_{ij} k_{ij} + s_{ij\ell} k_{ij\ell}$$

dans laquelle d_{ij} et $s_{ij\ell}$ sont les composantes respectives d'un déviateur et d'un tenseur totalement symétrique en $ij\ell$ que l'on exprimera en fonction de $t_{ij\ell}$.