

Departamento de Matemática, Universidade de Aveiro

Cálculo II-Agrupamento 3 — Exame Final (Época de Recurso)(V1)

3 de julho de 2023 Duração: **2h45**

N.º Mec.: _			Nome	:							
(Declaro que desisto:							N. folhas suplementares: _				
Questão [Cotação]	1 [60pts]	2 [18pts]	3 [15pts]	4 [20pts]	5 [20pts]	6 [20pts]	7a [10pts]	7b [12pts]	7c [03pts]	8 [22pts]	Classificaç (valores)
– Nas	quest	ões 2 a	a 8 just	ifique 1	todas a	ıs resp	ostas e	e indiq	ue os d	álculos	efetuados -
seguir (i) res (ii) re	nte: posta co sposta e	orreta: 1 rrada: -	0 pontos 3 pontos	s; s;	uma cru nula: 0		ão corre	ta. A co	otação a	atribuir	a cada respost
				$\sum_{n=0}^{+\infty} x^n,$	-1 < 3	x < 1	qual das	seguint	tes série	s é a séri	e de MacLaur
	função j $\sum_{n=0}^{+\infty}$		$\frac{2}{1+9x^2}?$ $9^n x^{2n},$	$-\frac{1}{3} <$	$x < \frac{1}{3}$						
	n=0		$2^{n}, -$ $9^{n}x^{2n},$								
		$(-9)^n x$	$^{2n}, -$	$\frac{1}{9} < x <$	$<\frac{1}{9}$						
(b)]	Relativa	mente à	ı função	$g:\mathbb{R}^2$:	$ ightarrow \mathbb{R}$ det	finida po	or $g(x, y)$	$y) = \begin{cases} \bar{y} \\ \bar{y} \end{cases}$	$\frac{x^3}{y^3 + (y - x)}$ -1 se	$\frac{1}{2}$ se ($(x, y) =$	$(x,y) \neq (0,0)$ $= (0,0)$
	podemo									(** , 9)	(0,0)
[g é	contínu	u(x,y) = $u(x,y) =$ $u(x,y) =$ $u(x,y) =$,						
	Utilizan	do o po	$\lim_{x,y)\to(0,0}$ linómio do de lno	de Mac		de orde	m 2 da t	função l	n(1+x)	c), podem	nos afirmar qu
[·4/					$\frac{7}{32} - \frac{9}{32}$		

	(d) Seja $f(x,y,z)=e^x\sin(yz)+1$. A derivada direcional da função f no ponto $P=(0,\pi,-1)$ na direção do vetor $\overrightarrow{u}=(-1,1,0)$ é:
	$ \begin{array}{c c} -1 & $
	(e) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y) = x^2y^3$. Podemos afirmar que: f não tem pontos críticos $(0,0)$ é maximizante local de f $(0,0)$ é ponto de sela de f
	(f) A solução geral da equação diferencial exata $(2x+y^2)dx + 2xydy = 0$ é dada implicitamente por:
	$ \boxed{ \frac{x^2}{2} + xy^2 = C, C \in \mathbb{R} } $ $ \boxed{ x + xy = C, C \in \mathbb{R} } $ $ \boxed{ x - xy = C, C \in \mathbb{R} } $
[18pts]	2. Determine o raio e o intervalo de convergência da série de potências $\sum_{n=1}^{+\infty} \frac{(-3)^n}{\sqrt{n}} (x+1)^n$. ξ

- [15pts]
- 3. Suponha que $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, no intervalo de convergência]-R,R[, onde $a_n \in \mathbb{R}, \forall n \in \mathbb{N}_0.$

Sabendo que existe $k \in \mathbb{N}$ tal que $f(0) = f'(0) = \ldots = f^{(k-1)}(0) = 0$, mostre que

$$\lim_{x \to 0} \frac{f(x^2)}{x^{2k}} = \frac{f^{(k)}(0)}{k!}.$$

Continua na folha suplementar Nº

- [20pts]
- 4. Seja f a função 2π -periódica, definida em $[-\pi,\pi[$ por $f(x)=\frac{x}{2}.$ Justifique que a série de Fourier associada a f é uma série da forma $\sum_{n=0}^{+\infty} b_n \operatorname{sen}(nx)$, determine o valor de b_n , para todo o $n \in \mathbb{N}$, e indique o valor da soma da série no ponto $x = \frac{\pi}{2}$.

	função $f(x,y)=x^2+y^2. \label{eq:funça}$
	Usando o Método dos Multiplicadores de Lagrange, determine o(s) ponto(s) da curva $y=x^2-1$ mais próximo(s) da origem.

ots]	6.	Resolva a seguinte equação diferencial homogénea: $y' = \frac{y}{x} \left(1 - \ln \left(\frac{y}{x} \right) \right), x, y \in \mathbb{R}^+.$

	7.	Cons	sidere a EDO $y'' + 5y' + 4y = e^{2x}$.
[10pts]		(a)	Resolva a EDO homogénea associada.
			Continua na folha suplementar Nº
[12pts]		(b)	Usando o Método dos Coeficientes Indeterminados, determine uma solução particular da EDO completa.
			EBC completa.
		(-)	Continua na folha suplementar N°
[03pts]		(c)	Indique a solução geral da EDO completa.

Continua na folha suplementar No

$\begin{cases} y'' - y' = 2e^t \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$

8. Usando a Transformada de Laplace, resolva o seguinte problema de valores iniciais:

[22pts]

Formulário Transformada de Laplace

Função	Transformada	Função	Transformada	Função	Transformada
$t^n \\ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$	$ \begin{array}{c c} \operatorname{sen}(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ cos(at) (a \in \mathbb{R}) $	$ \frac{s}{s^2 + a^2} \\ (s > 0) $	$ \begin{array}{c} \operatorname{senh}(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

$$\mathcal{L}\{f(t)+g(t)\}(s)=F(s)+G(s)\;,\;s>\max\{s_f,s_g\}$$

$$\mathcal{L}\{\alpha f(t)\}(s)=\alpha F(s)\;,\;s>s_f\;\mathrm{e}\;\alpha\in\mathbb{R}$$

$$\mathcal{L}\{e^{\lambda t}f(t)\}(s)=F(s-\lambda)\;,\;s>s_f\;\mathrm{e}\;\alpha\in\mathbb{R}$$

$$\mathcal{L}\{t^nf(t)\}(s)=(-1)^nF^{(n)}(s)\;,\;s>s_f\;\mathrm{e}\;n\in\mathbb{N}$$

$$\mathcal{L}\{H_a(t)\cdot f(t-a)\}(s)=\mathrm{e}^{-as}F(s)\;,\;s>s_f\;\mathrm{e}\;a>0$$

$$\mathcal{L}\{f(at)\}(s)=\frac{1}{a}\;F\left(\frac{s}{a}\right)\;,\;s>a\;s_f\;\mathrm{e}\;a>0$$

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \ldots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$
$$\cos s > \max\{s_f, s_{f'}, s_{f''}, \ldots, s_{f^{(n-1)}}\}, n \in \mathbb{N}$$

$$\mathcal{L}\{(f*g)(t)\}(s) = F(s) \cdot G(s), \quad \text{onde} \quad (f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,d\tau, \ t \ge 0$$

Formulário de Primitivas

_ = ===================================									
Função	Primitiva	Função	Primitiva	Função	Primitiva				
$u^r u'$ $(r \neq -1)$	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u				
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\sin u$	$u'\sin u$	$-\cos u$				
$u'\sec^2 u$	$\tan u$	$u'\csc^2 u$	$-\cot u$	$u' \sec u$	$ \ln \sec u + \tan u $				
$u'\csc u$	$-\ln \csc u + \cot u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$				

Algumas fórmulas trigonométricas

$$sec $x = \frac{1}{\cos x}$

$$sen(x \pm y) = sen x \cos y \pm \cos x \operatorname{sen} y$$

$$cos(x \pm y) = cos x \cos y \mp \operatorname{sen} x \operatorname{sen} y$$

$$cos^{2} x = \frac{1 + \cos(2x)}{2}$$

$$1 + \tan^{2} x = \sec^{2} x$$

$$cos(2x) = 2 \sin x \cos x$$

$$cos(2x) = \cos^{2} x - \sin^{2} x$$

$$sin^{2} x = \frac{1 - \cos(2x)}{2}$$

$$1 + \cot^{2} x = \csc^{2} x$$$$