TUTORATO LOGICA MATEMATICA A.A. 2022/2023

ESERCIZI 2022.12.14

Esercizio 1. Sia P un insieme finito. Si stabilisca il numero di elementi dell'algebra di Lindenbaum-Tarski $LT_{\emptyset}(P)$ in funzione del numero di elementi di P.

Follow up question: È vero che, per ogni algebra di Boole A finita, esiste un insieme P tale che $A \cong LT_{\emptyset}(P)$?

Soluzione. Sia $P = \{x_1, \dots, x_n\}$. Date φ e ψ formule nelle variabili x_1, \dots, x_n , le seguenti sono equivalenti. $LT_{\emptyset}(P)$ è il quoziente $Form(P)/\equiv$, dove \equiv è l'equivalenza logica (cioè $\varphi \equiv \psi$ se e solo se per ogni valutazione ν : $Form \to \{0,1\}$ ho $\nu(\varphi) = \nu(\psi)$). Dati φ e ψ formule nelle variabili x_1, \dots, x_n , la condizione $[\varphi] = [\psi]$ è equivalente a $\varphi \equiv \psi$, che è equivalente al fatto che le tavole di verità $f_{\varphi} \colon \{0,1\}^n \to \{0,1\}$ e $f_{\psi} \colon \{0,1\}^n \to \{0,1\}$ coincidono. Perciò, ho una funzione iniettiva H da $Form(P)/\equiv$ all'insieme di funzioni da $\{0,1\}^n$ a $\{0,1\}$, che manda φ nella tavola di verità f_{φ} di φ (si veda la discussione dopo Definizione 2.17). Per il teorema di completezza funzionale, per ogni funzione $f \colon \{0,1\}^n \to \{0,1\}$ esiste una formula proposizionale φ tale che $f = f_{\varphi}$. Perciò, H è suriettiva. Perciò $|LT_{\emptyset}| = |\{0,1\}^{\{0,1\}^n}| = 2^{2^n}$. \square

Ulteriori esercizi:

Esercizio 2. In questo esercizio, per "grafo" intendiamo "grafo non orientato", cioè i lati non hanno una direzione. Mostra che la classe dei grafi connessi non è assiomatizzabile al prim'ordine:

Soluzione. Siano x e y variabili. Per ogni $n=1,2,\ldots,$ si consideri la formula

 $\varphi_n \coloneqq$ la distanza da x a y è almeno n (cioè non esistono cammini da x a y di lunghezza meno di n).

Ovvero:

$$\neg(\exists x_1 \ldots \exists_{n-2} (\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j) \land R(x, x_1) \land R(x_1, x_2) \land \cdots \land R(x_{n-3}, x_{n-2}) \land R(x_{n-2}, y)).$$

Supponiamo per assurdo che esista un'assiomatizzazione T al prim'ordine dei grafi connessi.

Poniamo $T' := T \cup \{\varphi_1, \varphi_2, \varphi_3, \dots\}.$

T' è finitamente soddisfacibile. Infatti, sia S un sottoinsieme finito di T'. Allora esiste n tale che $S \subseteq T \cup \{\varphi_1, \ldots, \varphi_n\}$. Per mostrare che S è soddisfacibile è abbastanza mostrare che $T \cup \{\varphi_1, \ldots, \varphi_n\}$ è soddisfacibile. In effetti, $T \cup \{\varphi_1, \ldots, \varphi_n\}$ è soddisfatta da una catena di lunghezza n e una valutazione delle variabili che manda x nel primo estremo e y nell'ultimo estremo.

Quindi, $T' := T \cup \{\varphi_1, \varphi_2, \varphi_3, \dots\}$ è finitamente soddisfacibile. Perciò, per il teorema di compattezza, T' è soddisfacibile. Questo vuol dire che esiste una struttura A e una interpretazione ν delle variabili in A. Poiché ogni φ_n è valida in A sotto l'interpretazione ν , non esistono cammini da $\nu(x)$ a $\nu(v)$ Cioò contraddice il fatto che A è un modello di T, cioè che A è un grafo connesso.

Date: 18 gennaio 2023.

Esercizio 3. Mostrare che la classe degli insiemi ben ordinati non è assiomatizzabile al prim'ordine. (Insieme ben ordinato := insieme totalmente ordinato ogni sottoinsieme non vuoto del quale ha minimo.) Suggerimento: si mostri che esiste un'ultrapotenza di un insieme ben ordinato che non è ben ordinato.

Soluzione. Utilizziamo il fatto: le classi assiomatizzabili al prim'ordine sono chiuse per

Basta mostrare che esiste un'ultrapotenza di $\mathbb N$ che non è ben ordinata. Sia U un ultrafiltro non principale di $\mathbb N$, ovvero un ultrafiltro che estende il filtro dei cofiniti. (Un tale ultrafiltro esiste). Considera l'ultraprotenza $\prod_{n\in\mathbb N}\mathbb N/\mathcal U$. e poni, per ogni $n\in\mathbb N$

$$a_j = (\underbrace{0, \dots, 0}_{i \text{ volte}}, 1, 2, 3, 4, \dots)$$

Claim: $\{[a_j] \mid j \in \mathbb{N}\}$ non ha minimo in $\prod_{n \in \mathbb{N}} \mathbb{N}/\mathcal{U}$.

Per mostrare il claim, basta mostrare che $[a_0] \geq [a_1] \geq [a_2] \geq [a_3] \geq \ldots$, e che $[a_0] \neq [a_1] \neq [a_2] \neq \ldots$. Mostriamo $[a_n] \geq [a_{n+1}]$: bisogna mostrare che l'insieme di indici in cui $a_n \geq a_{n+1}$ appartiene all'ultrafiltro. L'insieme degli indici è \mathbb{N} , che appartiene ad ogni ultrafiltro su \mathbb{N} . Inoltre, $[a_n] \neq [a_{n+1}]$ poiché a_n e a_{n+1} sono uguali solo su un numero finito di indici. L'insieme di tali indici non appartiene all'ultrafiltro.

Esercizio 4. Mostrare (usando gli ultraprodotti) che la classe dei gruppi finiti non è assiomatizzabile al prim'ordine.

Soluzione. Trovare un ultrapodotto infinito di gruppi finiti. Sia C_n un gruppo ciclico di ordine n, generato da g_n . Considera $(\prod_{n\in\mathbb{N}} C_n)/\mathcal{F}$, con \mathcal{F} ultrafiltro che estende i cofiniti. Considera gli elementi

$$t_1 := [(g_1^1, g_2^1, g_3^1, g_4^1, \dots)],$$

$$t_2 := [(g_1^2, g_2^2, g_3^2, g_4^2, \dots)]$$

$$t_3 := [(g_1^3, g_2^3, g_3^3, g_4^3, \dots)]$$

$$\vdots$$

Esercizio 5. Trovare un insieme di variabili P e un insieme di formule proposizionali le cui variabili appartengono a P tali che $|LT_{\Gamma}(P)| = 8$.

Esercizio 6. Si stabilisca il numero di elementi di un insieme X tale che $|\mathcal{P}(X)| = 4$. Si stabilisca il numero di elementi di un insieme P tale che $|\mathrm{LT}_{\emptyset}(P)| = 4$.

Esercizio 7. Si mostri che, per ogni algebra di Boole B, esistono un'algebra libera A e un omomorfismo suriettivo $f: A \to B$.

Follow up question: Mostrare che ogni algebra di Boole è isomorfa a $LT_{\Gamma}(P)$ per qualche P e Γ . (Qui è ammesso prendere Γ incoerente per ottenere l'algebra di Boole di un solo elemento.)

Soluzione. Si consideri l'algebra di Boole Free(B) libera su B.

Esercizio 8. Sia \mathcal{U} un ultrafiltro di un'algebra di Lindenbaum $LT_{\emptyset}(P)$. Si mostri che, per tutte le formule φ, ψ nelle variabili proposizionali in P,

- (1) $[\neg \varphi] \in \mathcal{U}$ se e solo se $[\varphi] \notin \mathcal{U}$.
- (2) $[\varphi \land \psi] \in \mathcal{U}$ se e solo se $[\varphi] \in \mathcal{U}$ e $[\psi] \in \mathcal{U}$.

(3) Se $[\varphi], [\varphi \to \psi] \in \mathcal{U}$ allora $[\psi] \in \mathcal{U}$.

Esercizio 9. Qual è l'algebra libera generata dall'insieme vuoto?

Esercizio 10. Sia A l'algebra di Boole degenere (cioè A è un singoletto). Mostrare che non esiste alcun sottoinsieme X di A tale che A è liberamente generata da X.

Esercizio 11. Trovare un insieme di variabili P e un insieme di formule proposizionali Γ con variabili in P tale che $|LT_{\Gamma}(P)| = 8$.

Esercizio 12. Sia X un insieme (di variabili proposizionali). Mostrare che i seguenti insiemi sono in biezione.

- (1) $\{Y \mid Y \subseteq X\}.$
- (2) $\{\Sigma \mid \Sigma \text{ insieme massimalmente coerente di formule proposizionali con variabili in } X\}$.
- (3) $\{\mathcal{U} \mid \mathcal{U} \text{ ultrafiltro di } LT_{\varnothing}(X)\}.$

Esercizio 13. Si mostri che ogni filtro è l'intersezione dei filtri massimali che lo estendono.

Soluzione. Sia A un'algebra di Boole. Sia F un filtro di A. Sia Ult l'insieme dei filtri massimali (equivalentemente, gli ultrafiltri) di A. Mostriamo che $F = \bigcap_{U \in \text{Ult}} U$. L'inclusione $F \subseteq \bigcap_{U \in \text{Ult}} U$ è immediata. Mostriamo l'inclusione $\bigcap_{U \in \text{Ult}} U \subseteq F$. Dobbiamo mostrare che, per ogni $c \in A$, se $c \in \bigcap_{U \in \text{Ult}} U$ allora $c \in F$. Equivalentemente (prendendo la contronominale), dobbiamo mostrare che, per ogni $c \in A$, se $c \notin F$ allora $c \notin \bigcap_{U \in \text{Ult}} U$. Sia $c \in A$ con $c \notin F$. Allora, per il Corollario 3.84, esiste $U_0 \in \text{Ult}$ che estende F ma non contiene c. Allora $c \notin \bigcap_{U \in \text{Ult}} U$.

Esercizio 14. Sia A un'algebra di Boole. Si mostri che sono equivalenti.

- (1) Esiste un omomorfismo da A in $\{0,1\}$.
- (2) A non è un singoletto.

Soluzione. (1) \Rightarrow (2). $f(0_A) = 0 \neq 1 = f(1_A)$; perciò $0_A \neq 1_A$.

 $(2) \Rightarrow (1)$. Il filtro $\{1\}$ è filtro proprio. Perciò esiste un ultrafiltro U che estende $\{1\}$. Allora abbiamo $A \to A/\mathcal{U} \to \{0,1\}$. (Usiamo Lemma 3.79.)

Esercizio 15. (Esercizio 2.65, p. 39) Dimostrare che, se Σ è un insieme di formule massimalmente coerente, allora per ogni coppia di formule φ , ψ vale che $\varphi \to \psi \in \Sigma$ sse $\varphi \notin \Sigma$ o $\psi \in \Sigma$.

Soluzione. Ricordiamo che un insieme di formule Σ è massimalmente coerente se è coerente (cioè $\Sigma \not\vdash \bot$) e $\sigma \cup \{\varphi\}$ è incoerente per ogni $\varphi \notin \Sigma$.

- $[\Rightarrow]$ Supponiamo $\varphi \to \psi \in \Sigma$. Mostriamo che $\varphi \notin \Sigma$ o $\psi \in \Sigma$. Cioè dobbiamo mostrare che se $\varphi \in \Sigma$, allora $\psi \in \Sigma$. Supponiamo $\varphi \in \Sigma$. Poichè $\varphi \in \Sigma$ e $\varphi \to \psi \in \Sigma$, allora $\Sigma \vdash \psi$ e quindi (Prop. 2.64) $\psi \in \Sigma$.
 - $[\Leftarrow]$. Supponiamo $\varphi \notin \sigma$ o $\psi \in \Sigma$.
 - (1) Caso $\varphi \notin \Sigma$. Allora $\neg \varphi \in \Sigma$ (Prop. 2.64). Allora $\Sigma \vdash (\varphi \to \psi)$. Allora $\varphi \to \psi \in \Sigma$.
 - (2) Caso $\psi \in \Sigma$. Allora $\Sigma \vdash (\varphi \to \psi)$. Allora $\varphi \to \psi \in \Sigma$.

Esercizio 16. Sia \mathcal{U} un ultrafiltro di un'algebra di Lindenbaum $LT_{\emptyset}(P)$. Si mostri che, per tutte le formule φ, ψ nelle variabili proposizionali in P,

- (1) $[\neg \varphi] \in \mathcal{U}$ se e solo se $[\varphi] \notin \mathcal{U}$.
- (2) $[\varphi \wedge \psi] \in \mathcal{U}$ se e solo se $[\varphi] \in \mathcal{U}$ e $[\psi] \in \mathcal{U}$.
- (3) Se $[\varphi], [\varphi \to \psi] \in \mathcal{U}$ allora $[\psi] \in \mathcal{U}$.

Soluzione. (1). Per definizione, abbiamo $[\neg \varphi] = \neg [\varphi]$. Poichè \mathcal{U} è un ultrafiltro, si ha $[\varphi] \in \mathcal{U}$ oppure $\neg [\varphi] \in \mathcal{U}$, ma non entrambi.

Esercizio 17. Mostrare che vale $\varphi \land \psi \vdash \sigma$ se e solo se $\varphi \vdash \psi \rightarrow \sigma$.

Esercizio 18. Siano $x \in y$ variabili distinte.

- (1) $\neg([x] \land [y]) = \neg[x] \lor \neg[y] \text{ in } \operatorname{LT}_{\emptyset}(\{x,y\})$?
- (2) $[x] \wedge [y] = [x] \text{ in } LT_{\emptyset}(\{x, y\})$?
- (3) $[x] \wedge [y] = [x]$ in $LT_{\{x \to y\}}(\{x, y\})$?
- (4) $[x] \to [y] = [y] \to [x]$ in $LT_{\{x \lor y\}}(\{x, y\})$?

 $Soluzione. \hspace{0.5cm} \textbf{(1) Sì. } \neg([x] \wedge [y]) = [\neg(x \wedge y)]. \hspace{0.5cm} \neg[x] \vee \neg[y] = [\neg x \vee \neg y]. \hspace{0.5cm} \text{Poich\'e} \hspace{0.5cm} \neg(x \wedge y) \equiv \neg x \vee \neg y, \\ \text{abbiamo} \hspace{0.5cm} [\neg(x \wedge y)] = [\neg x \vee \neg y].$

- (2) No. Basta mostrare che $x \land y \not\equiv x$. Per far ciò, si noti che una òa prima è falsa e la seconda è vera sotto l'interpretazione $x \mapsto 1$ e $y \mapsto 0$.
- (3) Sì. Basta mostrare che, per ogni valutazione che rende vera $x \to y, \ x \wedge y$ è resa vera se e solo se resa x è vera.
- (4) No. Si consideri la valutazione $x \mapsto 0, y \mapsto 1$.