अध्याय 7

गति

रोज़मर्रा की ज़िंदगी में, हम कुछ वस्तुओं को स्थिर और कुछ को गतिशील देखते हैं। पक्षी उड़ते हैं, मछलियाँ तैरती हैं, रक्त शिराओं और धमनियों में बहता है, और कारें चलती हैं। परमाणु, अणु, ग्रह, तारे और आकाशगंगाएँ सभी गतिशील हैं। हमें अक्सर किसी वस्तु की गति का आभास तब होता है जब उसकी स्थिति समय के साथ बदलती है। हालाँकि, कुछ परिस्थितियाँ ऐसी भी होती हैं जहाँ गति का अनुमान अप्रत्यक्ष प्रमाणों से लगाया जा सकता है। उदाहरण के लिए, हम धूल और पत्तों की गति को देखकर हवा की गति का अनुमान लगाते हैं।

और पेड़ों की शाखाएँ। सूर्योदय, सूर्यास्त और ऋतु परिवर्तन की घटनाएँ किस कारण से होती हैं? क्या यह पृथ्वी की गति के कारण है? अगर यह सच है, तो हम पृथ्वी की गति को प्रत्यक्ष रूप से क्यों नहीं देख पाते?

एक व्यक्ति को कोई वस्तु गतिमान और दूसरे को स्थिर प्रतीत हो सकती है। चलती बस में सवार यात्रियों को सड़क किनारे लगे पेड़ पीछे की ओर गति करते हुए प्रतीत होते हैं। सड़क किनारे खड़ा व्यक्ति बस और उसमें सवार यात्रियों को गतिमान अनुभव करता है।

हालाँकि, बस के अंदर एक यात्री अपने साथी यात्रियों को आराम करते हुए देखता है। ये अवलोकन क्या दर्शाते हैं?

अधिकांश गितयाँ जिटल होती हैं। कुछ वस्तुएँ सीधी रेखा में गित कर सकती हैं, तो कुछ वृत्ताकार पथ पर। कुछ घूर्णन कर सकती हैं और कुछ कंपन कर सकती हैं। ऐसी स्थितियाँ भी हो सकती हैं जिनमें इन सबका संयोजन शामिल हो। इस अध्याय में, हम सबसे पहले वस्तुओं की सीधी रेखा में गित का वर्णन करना सीखेंगे। हम ऐसी गितयों को सरल समीकरणों और आलेखों के माध्यम से व्यक्त करना भी सीखेंगे। बाद में, हम वृत्तीय गित का वर्णन करने के तरीकों पर चर्चा करेंगे।

गतिविधि	7.1
• चर्चा करें कि आपकी कक्षा की दीवारें सि	थेर हैं या गतिशील।
गतिविधि	7.2
• क्या आपने कभी अनुभव किया है कि जि चलती हुई प्रतीत होती है?	नेस रेलगाड़ी में आप बैठे हैं वह स्थिर अवस्था में भी
- चर्चा चर्चे और आसी अनुशन माना नहें।	

सोचें और कार्य करें

कभी-कभी हम अपने आस-पास की वस्तुओं की गित से खतरे में पड़ जाते हैं, खासकर अगर वह गित अनियमित और अनियंत्रित हो, जैसा कि बाढ़ वाली नदी, तूफ़ान या सुनामी में देखा जाता है। दूसरी ओर, नियंत्रित गित मानव जाति के लिए लाभकारी हो सकती है, जैसे जलविद्युत उत्पादन में। क्या आपको कुछ वस्तुओं की अनियमित गित का अध्ययन करने और उन्हें नियंत्रित करना सीखने की आवश्यकता महसूस होती है?

7.1 गति का वर्णन

हम किसी वस्तु की स्थिति का वर्णन एक संदर्भ बिंदु निर्दिष्ट करके करते हैं। आइए इसे एक उदाहरण से समझते हैं। मान लीजिए कि एक गाँव में स्थित एक स्कूल रेलवे स्टेशन से 2 किमी उत्तर में है। हमने रेलवे स्टेशन के सापेक्ष स्कूल की स्थिति निर्दिष्ट की है। इस उदाहरण में, रेलवे स्टेशन संदर्भ बिंदु है। हम अपनी सुविधानुसार अन्य संदर्भ बिंदु भी चुन सकते थे। इसलिए, किसी वस्तु की स्थिति का वर्णन करने के लिए हमें एक संदर्भ बिंदु निर्दिष्ट करना होगा जिसे मूल बिंदु कहते हैं।

7.1.1 सीधी रेखा में गति

गित का सबसे सरल प्रकार सरल रेखा के अनुदिश गित है। हम पहले इसे एक उदाहरण द्वारा समझाना सीखेंगे। एक सीधी रेखा में गितमान वस्तु की गित पर विचार कीजिए। वस्तु अपनी यात्रा बिंदु O से शुरू करती है जिसे उसका संदर्भ बिंदु माना गया है (चित्र 7.1)। मान लीजिए A, B और C विभिन्न क्षणों पर वस्तु की स्थिति दर्शाते हैं। सबसे पहले, वस्तु C और B से होकर A पर पहुँचती है।

= 60 किमी + 25 किमी = 85 किमी जबकि विस्थापन का परिमाण = 35 किमी। इस प्रकार, विस्थापन का परिमाण (35 किमी) पथ की लंबाई (85 किमी) के बराबर नहीं है। इसके अलावा, हम देखेंगे कि गित के एक क्रम के लिए विस्थापन का परिमाण शून्य हो सकता है लेकिन तय की गई दूरी शून्य नहीं होती है। यदि हम वस्तु को O पर वापस यात्रा करने के लिए मानते हैं, तो अंतिम स्थिति प्रारंभिक स्थिति के साथ मेल खाती है, और इसलिए, विस्थापन शून्य है। हालाँकि, इस यात्रा में तय की गई दूरी OA + AO = 60 किमी + 60 किमी = 120 किमी है। इस प्रकार, दो अलग-अलग भौतिक राशियाँ - दूरी और विस्थापन,

फिर यह उसी पथ पर वापस चलता है और B से होते हुए C तक पहुंचता है।

चित्र 7.1: एक सरल रेखा पथ पर किसी वस्तु की स्थितियाँ

वस्तु द्वारा तय की गई कुल पथ लंबाई OA + AC है, अर्थात 60 किमी + 35 किमी = 95 किमी।

यह वस्तु द्वारा तय की गई दूरी है। दूरी का वर्णन करने के लिए हमें केवल संख्यात्मक मान निर्दिष्ट करने की आवश्यकता है, गति की दिशा नहीं। कुछ राशियाँ ऐसी होती हैं जिनका वर्णन केवल उनके संख्यात्मक मानों द्वारा किया जाता है। किसी भौतिक राशि का संख्यात्मक मान उसका परिमाण होता है। इस उदाहरण से, क्या आप वस्तु की प्रारंभिक स्थिति O से अंतिम स्थिति C की दूरी ज्ञात कर सकते हैं? यह अंतर आपको वस्तु के O से C तक A से होकर विस्थापन का संख्यात्मक मान देगा। किसी वस्तु की प्रारंभिक स्थिति से अंतिम स्थिति तक मापी गई न्यूनतम दूरी को विस्थापन कहते हैं।

किसी वस्तु की समग्र गति का वर्णन करने और किसी निश्चित समय पर उसकी प्रारंभिक स्थिति के संदर्भ में उसकी अंतिम स्थिति का पता लगाने के लिए उपयोग किया जाता है।

गतिविधि _____ 7.3

• एक मीटर स्केल और एक लंबी रस्सी लें। • बास्केटबॉल कोर्ट के एक कोने से उसके किनारों के साथ-साथ विपरीत कोने तक चलें। • आपके द्वारा तय की गई दूरी और विस्थापन का परिमाण

मापें। • आपको क्या अंतर नज़र आएगा?

इस मामले में दोनों के बीच क्या संबंध है?

गतिविधि _____ 7.4

• ऑटोमोबाइल में एक उपकरण लगा होता है जो तय की गई दूरी दर्शाता है। ऐसे उपकरण को ओडोमीटर कहते हैं। एक कार भुवनेश्वर से नई दिल्ली जा रही है। ओडोमीटर के अंतिम और प्रारंभिक रीडिंग के बीच का अंतर 1850 किमी है। • भारत के सड़क मानचित्र का उपयोग करके भुवनेश्वर और नई दिल्ली के बीच विस्थापन का परिमाण ज्ञात कीजिए।

क्या विस्थापन का परिमाण किसी वस्तु द्वारा तय की गई दूरी के बराबर हो सकता है?

चित्र 7.1 में दिए गए उदाहरण पर विचार कीजिए। वस्तु द्वारा O से A तक गति करने पर तय की गई दूरी 60 किमी है और विस्थापन का परिमाण भी 60 किमी है। O से A और वापस B तक गति के दौरान तय की गई दूरी

प्रश्न

क्यू

1. एक वस्तु एक से होकर गुजरी है
 दूरी। क्या इसका कोई शून्य मान हो सकता है?

विस्थापन? यदि हाँ, तो समर्थन करें अपना उत्तर उदाहरण सहित दीजिए।

2. एक किसान सड़क के किनारे चलता है

भुजा वाले एक वर्गाकार मैदान की सीमा 40 सेकंड में 10 मीटर । क्या होगा?

विस्थापन का परिमाण

2 मिनट 20 मिनट के अंत में किसान

अपनी प्रारंभिक स्थिति से कुछ सेकंड की दूरी पर?

3. निम्नलिखित में से कौन सा कथन सत्य है?

विस्थापन?

- (a) यह शून्य नहीं हो सकता.
- (b) इसका परिमाण इससे अधिक है द्वारा तय की गई दूरी वस्तु।

7.1.2 एकसमान गति और गैर-

एक सीधी रेखा में गतिमान किसी वस्तु पर विचार करें

एकसमान गति

रेखा। मान लीजिए कि यह पहले सेकंड में 5 मीटर चलती है, अगले सेकंड में 5 मीटर अधिक तीसरे सेकंड में 5 मीटर अधिक तीसरे सेकंड में 5 मीटर और चौथे सेकंड में 5 मीटर। इस स्थिति में, वस्तु प्रत्येक दिशा में 5 मीटर की दूरी तय करती है। सेकंड। जैसे-जैसे वस्तु समान दूरी तय करती है समय के बराबर अंतराल में, इसे कहा जाता है एकसमान गित। इसमें समय अंतराल गित छोटी होनी चाहिए। हमारे दैनिक जीवन में जीवन में, हम ऐसी गितयों का सामना करते हैं जहाँ वस्तुएँ समान अंतराल में असमान दूरी तय करना समय का, उदाहरण के लिए, जब कोई कार चल रही हो भीड़ भरी सड़क पर या कोई व्यक्ति जॉगिंग कर रहा हो एक पार्क में। ये कुछ उदाहरण हैं असमान गित.

गतिविधि

दो की गति के बारे में डेटा
विभिन्न वस्तुएँ A और B दी गई हैं
तालिका 7.1.
उनकी सावधानीपूर्वक जांच करें और बताएं
क्या वस्तुओं की गति
एक समान या गैर-समान।

तालिका 7.1

समय	^{दूरी} द्वारा यात्रा की गई वस्तु A मीटर में वस्तु B मीत	_{दूरी} ट्र में
सुबह 9:30 बजे	10	12
सुबह 9:45 बजे	20	19
10:00 AM	30	23
सुबह 10:15 बजे	40	35
सुबह 10:30:00 बजे	50	37
सुबह 10:45 बजे	60	41
दिन के 11 बजे	70	44

7.2 गति की दर मापना

चित्र 7.2 में दी गई स्थितियों पर गौर कीजिए। यदि चित्र 7.2(a) में गेंदबाजी की गित 143 किमी /घंटा है, तो इसका क्या अर्थ है? चित्र 7.2(b) में दिए गए साइनबोर्ड से आप क्या समझते हैं?

अलग-अलग वस्तुओं को एक निश्चित दूरी तय करने में अलग-अलग समय लग सकता है।

उनमें से कुछ तेजी से चलते हैं और कुछ धीरे-धीरे चलते हैं। जिस दर से वस्तुएं चलती हैं वह अलग हो सकती है। इसके अलावा, विभिन्न वस्तुएं एक ही दर से गित कर सकती हैं। किसी वस्तु की गित की दर को मापने के तरीकों में से एक वस्तु द्वारा इकाई समय में तय की गई दूरी का पता लगाना है। इस मात्रा को गित कहा जाता है। गित की SI इकाई मीटर प्रित सेकंड है। इसे m s-1 या m/s के प्रतीक द्वारा दर्शाया गया है। गित की अन्य इकाइयों में सेंटीमीटर प्रित सेकंड (cm s-1) और किलोमीटर प्रित घंटा (km h-1) शामिल हैं। किसी वस्तु की गित निर्दिष्ट करने के लिए, हमें केवल इसकी परिमाण की आवश्यकता है। किसी वस्तु की गित स्थिर नहीं होनी चाहिए। ज्यादातर मामलों में, वस्तुएँ असमान गित में होंगी। इसलिए, हम ऐसी वस्तुओं की गित की दर का वर्णन उनकी औसत गित के रूप में करते हैं। किसी वस्तु की औसत गित कुल तय की गई दूरी को लिए गए कुल समय से विभाजित करके प्राप्त की जाती है। अर्थात

यदि कोई वस्तु t समय में s दूरी तय करती है तो उसकी गति v है,

$$\tilde{H} = \frac{v_H}{2} \tag{7.1}$$

आइए इसे एक उदाहरण से समझते हैं। एक कार 2 घंटे में 100 किमी की दूरी तय करती है। इसकी औसत गति 50 किमी प्रति घंटा है। हो सकता है कि कार हर समय 50 किमी प्रति घंटा की गति से न चल रही हो।

कभी-कभी इसकी गति इससे अधिक तेज होती होगी और कभी-कभी इससे धीमी।

उदाहरण 7.1 एक वस्तु 4 सेकंड में 16 मीटर और फिर 2 सेकंड में 16 मीटर चलती है। वस्तु की औसत चाल क्या है?

समाधान:

वस्तु द्वारा तय की गई कुल दूरी = 16 मीटर + 16 मीटर = 32 मीटर

कुल लिया गया समय = 4 सेकंड + 2 सेकंड = 6 सेकंड

औसत गित = $\frac{\text{कुल तय की गई दूरी}}{\text{कुल लिया गया समय}}$ $= \frac{32 \text{ मीटर =}}{6 \frac{3}{6} \frac{3}{6} \frac{3}{6} \frac{1}{6}} = 5.33 \text{ मीटर सेकंड-1}$

इसलिए, वस्तु की औसत गति 5.33 मीटर प्रति सेकंड है।

7.2.1 दिशा के साथ गति

किसी वस्तु की गति की दर अधिक व्यापक हो सकती है यदि हम उसकी गति के साथ-साथ उसकी गति की दिशा भी निर्दिष्ट करें। वह राशि जो इन दोनों पहलुओं को निर्दिष्ट करती है, वेग कहलाती है।

वेग किसी वस्तु की एक निश्चित दिशा में गतिमान गित है। किसी वस्तु का वेग एकसमान या परिवर्तनशील हो सकता है। इसे वस्तु की गित, गित की दिशा या दोनों में परिवर्तन करके बदला जा सकता है। जब कोई वस्तु एक सरल रेखा में परिवर्तनशील गित से गितमान होती है, तो हम उसकी गित की दर को औसत वेग के रूप में व्यक्त कर सकते हैं। इसकी गणना उसी प्रकार की जाती है जैसे हम औसत गित की गणना करते हैं।

यदि वस्तु का वेग एक समान दर से बदल रहा है, तो औसत वेग किसी निश्चित समयावधि के लिए प्रारंभिक वेग और अंतिम वेग के अंकगणितीय माध्य द्वारा दिया जाता है। अर्थात्,

प्रारंभिक वेग + अंतिम वेग औसत वेग = 2

गणितीय रूप से, v
$$= \frac{\frac{q+d}}{2}$$
 (7.2)

जहाँ vav औसत वेग है, u प्रारंभिक वेग है और v वस्तु का अंतिम वेग है।

गति और वेग की इकाइयाँ समान हैं, अर्थात, m s-1 या m/s.

गतिविधि 7.6

 अपने घर से बस स्टॉप या स्कूल तक पैदल चलने में लगने वाले समय को मापें। अगर आपकी औसत चलने की गति 4 किमी /घंटा है, तो अपने घर से बस स्टॉप या स्कूल की दूरी का अनुमान लगाएँ।

गतिविधि गतिविधिगतिविधि

 जब बादल छाए हों, तो बार-बार गरज और बिजली चमक सकती है। बिजली चमकने के बाद, गङ्गड़ाहट की आवाज़ आप तक पहुँचने में कुछ समय लेती है।

• क्या आप बता सकते हैं कि ऐसा क्यों होता है? • डिजिटल कलाई घड़ी या स्टॉप वॉच का उपयोग करके इस समय अंतराल को मापें। • बिजली के निकटतम बिंदु की दूरी की गणना करें। (हवा में ध्वनि की गति = 346 मीटर प्रति सेकंड)

प्रश्न

1. गति और वेग के बीच अंतर बताइए।

क्यू

- 2. किस स्थिति/स्थितियों में किसी वस्तु के औसत वेग का परिमाण उसकी औसत गति के बराबर होता है?
- 3. ऑटोमोबाइल का ओडोमीटर क्या मापता है?
- 4. जब कोई वस्तु एकसमान अवस्था में होती है तो उसका पथ कैसा दिखता है? गति?
- 5. एक प्रयोग के दौरान, एक अंतरिक्ष यान से एक संकेत पांच मिनट में ग्राउंड स्टेशन तक पहुंच गया।

अंतरिक्ष यान की ग्राउंड स्टेशन से दूरी कितनी थी? सिम्नल प्रकाश की गति से यात्रा करता है, यानी 3 × 108 मीटर /सेकेंड ।

उदाहरण 7.2 एक कार का ओडोमीटर यात्रा के आरंभ में 2000 किमी और यात्रा के अंत में 2400 किमी दिखाता है। यदि यात्रा में 8 घंटे लगे, तो कार की औसत गति किमी /घंटा और मी /से में परिकलित कीजिए।

समाधान: समाधान: समाधान:

कार द्वारा तय की गई दूरी, s = 2400 किमी – 2000 किमी = 400 किमी

बीता हुआ समय, t = 8 घंटे कार की औसत गति है,

वाव =
$$\frac{\frac{\sqrt{44}}{2}}{\frac{2}{1}} = \frac{400 \text{ किमी}}{8 \text{ घंटे}}$$

= 50 किमी प्रति घंटा-1

= 13.9 मी.से. कार

की औसत गति 50 किमी.से. या 13.9 मी.से. है ।

उदाहरण 7.3 उषा 90 मीटर लंबे एक पूल में तैरती है। वह एक ही सीधे रास्ते पर एक छोर से दूसरे छोर तक और वापस तैरकर एक मिनट में 180 मीटर की दूरी तय करती है।

उषा की औसत चाल और औसत वेग ज्ञात कीजिए।

समाधान: समाधान: समाधान:

उषा द्वारा 1 मिनट में तय की गई कुल दूरी 180 मीटर है।

1 मिनट में उषा का विस्थापन = 0 मीटर

उषा की औसत गति 3 मी.से. है तथा उसका औसत वेग 0 मी.से. है।

7.3 वेग परिवर्तन की दर

किसी वस्तु की एकसमान गति के दौरान, सरल रेखा में, उसका वेग समय के साथ स्थिर रहता है। इस स्थिति में, किसी भी समय अंतराल में वस्तु के वेग में परिवर्तन शून्य होता है।

हालाँकि, असमान गति में, वेग समय के साथ बदलता रहता है। विभिन्न क्षणों और पथ के विभिन्न बिंदुओं पर इसका मान अलग-अलग होता है। अतः, किसी भी समय अंतराल में वस्तु के वेग में परिवर्तन शून्य नहीं होता।

क्या अब हम किसी वस्तु के वेग में परिवर्तन को व्यक्त कर सकते हैं?

76

इस प्रश्न का उत्तर देने के लिए, हमें त्वरण नामक एक अन्य भौतिक राशि का परिचय देना होगा, जो प्रति इकाई समय में किसी वस्तु के वेग में परिवर्तन का माप है। अर्थात,

अगले 5 s में साइकिल का वेग घटकर 4 m s-1 हो जाता है । दोनों स्थितियों में साइकिल का त्वरण परिकलित कीजिए।

30 s में साइकिल का वेग 6 m s-1 हो जाता है । फिर वह ब्रेक लगाता है जिससे

वेग त्वरण में परिवर्तन =

समय लिया

यदि किसी वस्तु का वेग समय t में प्रारंभिक मान u से अंतिम मान v में परिवर्तित होता हैं , तो त्वरण a है.

$$\nabla = \frac{dl - q}{q} \tag{7.3}$$

इस प्रकार की गति को त्वरित गति कहते हैं। यदि त्वरण वेग की दिशा में हो तो इसे धनात्मक माना जाता है और यदि यह वेग की दिशा के विपरीत हो तो इसे ऋणात्मक माना जाता है। त्वरण का SI मात्रक m²s –2 है।

यदि कोई वस्तु सीधी रेखा में गित करती है और उसका वेग समान समय अंतरालों में समान मात्रा में बढ़ता या घटता है, तो वस्तु का त्वरण एकसमान कहा जाता है। स्वतंत्र रूप से गिरते हुए पिंड की गित एकसमान त्वरित गित का एक उदाहरण है। दूसरी ओर, यदि किसी वस्तु का वेग असमान दर से बदलता है, तो वह असमान त्वरण से गित कर सकती है। उदाहरण के लिए, यदि एक सीधी सड़क पर चलती हुई कार समान समय अंतरालों में अपनी गित असमान मात्रा में बढ़ाती है, तो कार को असमान त्वरण से गितमान कहा जाता है।

गतिविधि गतिविधिगतिविधि

अपने दैनिक जीवन में आप गतियों की एक श्रृंखला देखते हैं जिसमें (a) त्वरण गति की दिशा में होता है, (b) त्वरण गति की दिशा के विपरीत होता है, (c) त्वरण एकसमान होता है, (d) त्वरण असमान होता है। • क्या आप प्रत्येक का एक उदाहरण बता सकते हैं?

उपरोक्त प्रकार की गति के लिए?

उदाहरण 7.4 स्थिर स्थिति से शुरू करते हुए, राहुल अपनी साइकिल को आगे बढ़ाता है

समाधान:

पहली स्थिति में: प्रारंभिक वेग, u = 0; अंतिम वेग, v = 6 m s-1 ; समय, t = 30 s.

समीकरण (8.3) से, हमें प्राप्त होता है

उपरोक्त समीकरण में u,v और t के दिए गए मानों को प्रतिस्थापित करने पर , हम प्राप्त करते हैं

$$_{\text{ए}} = \frac{\left(6\text{मी.से.} - 0\text{मी.से.}\right)^{-1}}{\left(6\text{Hl.ki.} - 0\text{Hl.ki.}\right)^{-1}}$$

= 0.2 m s-2 दसरे

मामले में: प्रारंभिक वेग, u = 6 m s−1; अंतिम वेग, v = 4 m s−1; समय, t = 5 s.

= -0.4 मी.से. -2 .

पहले मामले में साइकिल का त्वरण 0.2~m~s-2~ है और दूसरे मामले में, यह -0.4~m~s-2~ है ।

प्रश्न

1. आप कब कहेंगे कि कोई पिंड (i) एकसमान त्वरण में है? (ii) असमान त्वरण में है?

क्यू

2. एक बस 5 सेकंड में अपनी गति 80 किमी प्रति घंटा से घटाकर 60 किमी प्रति घंटा कर लेती है। बस का त्वरण ज्ञात कीजिए।

 एक रेलवे स्टेशन से चलना शुरू करके एकसमान त्वरण से चलती हुई एक रेलगाड़ी 10 मिनट में 40 किमी /घंटा की चाल प्राप्त कर लेती है । इसका त्वरण ज्ञात कीजिए।

7 4 गति का चित्रमय निरूपण

ग्राफ़ विभिन्न प्रकार की घटनाओं के बारे में बुनियादी जानकारी प्रस्तुत करने का एक सुविधाजनक तरीका प्रदान करते हैं। उदाहरण के लिए, एक दिवसीय क्रिकेट मैच के प्रसारण में, ऊर्ध्वाधर दंड ग्राफ़ प्रत्येक ओवर में एक टीम के रन रेट को दर्शाते हैं। जैसा कि आपने गणित में पढ़ा है, एक सीधी रेखा वाला ग्राफ़ दो चरों वाले रैखिक समीकरण को हल करने में मदद करता है।

किसी वस्तु की गित का वर्णन करने के लिए, हम रेखा ग्राफ़ का उपयोग कर सकते हैं। इस स्थिति में, रेखा ग्राफ़ एक भौतिक राशि, जैसे दूरी या वेग, की किसी अन्य राशि, जैसे समय, पर निर्भरता दर्शाते हैं।

7.4.1 दूरी-समय ग्राफ़

समय के साथ किसी वस्तु की स्थिति में परिवर्तन को सुविधाजनक पैमाने को अपनाकर दूरी-समय ग्राफ पर दर्शाया जा सकता है।

इस ग्राफ में समय को x-अक्ष के साथ और दूरी को y-अक्ष के साथ लिया गया है।

दूरी-समय ग्राफ का उपयोग विभिन्न परिस्थितियों में किया जा सकता है, जहां वस्तुएं एकसमान गित, असमान गित से चलती हैं, स्थिर रहती हैं आदि।

चित्र 7.3: चित्र 7.3: चित्र 7.3: एकसमान गति से गतिमान वस्तु का दूरी-समय ग्राफ

हम जानते हैं कि जब कोई वस्तु समान समय अंतराल में समान दूरी तय करती है, तो वह एकसमान गति से चलती है। इससे पता चलता है कि वस्तु द्वारा तय की गई दूरी, लिए गए समय के समानुपाती होती है। इस प्रकार, एकसमान चाल के लिए, समय के विरुद्ध तय की गई दूरी का ग्राफ़ एक सरल रेखा होती है, जैसा कि चित्र 7.3 में दर्शाया गया है।

ग्राफ़ का OB भाग दर्शाता है कि दूरी एक समान दर से बढ़ रही है। ध्यान दें कि, यदि आप विस्थापन के परिमाण को y-अक्ष पर वस्तु द्वारा तय की गई दूरी के बराबर मानते हैं, तो आप एकसमान गित के स्थान पर एकसमान वेग शब्द का भी प्रयोग कर सकते हैं।

किसी वस्तु की गित ज्ञात करने के लिए हम दूरी-समय ग्राफ का उपयोग कर सकते हैं। ऐसा करने के लिए, चित्र 7.3 में दर्शाए गए दूरी-समय ग्राफ के एक छोटे भाग AB पर विचार करें। बिंदु A से x-अक्ष के समांतर एक रेखा और बिंदु B से y-अक्ष के समांतर एक अन्य रेखा खींचें। ये दोनों रेखाएँ बिंदु C पर मिलकर एक त्रिभुज ABC बनाती हैं। अब, ग्राफ पर, AC समय अंतराल (t) को दर्शाता है।

(t₂ को इस प्रकार दर्शाया जा सकता है

$$\tilde{H} = \frac{veqe 2\overline{1}}{\hat{\sigma}_2 - \hat{\sigma}_1} \tag{7.4}$$

हम त्वरित गति के लिए दूरी-समय ग्राफ़ भी बना सकते हैं। सारणी 7.2 दो सेकंड के समय अंतराल में एक कार द्वारा तय की गई दूरी दर्शाती है।

तालिका 7.2: नियमित समय अंतराल पर कार द्वारा तय की गई दूरी

समय (सेकंड में) दूरी (मीटर में)	
0	0
2	1
4	4
6	9
8	16
10	25
12	36

चित्र 7.4: गतिमान कार के लिए दूरी-समय ग्राफ असमान गति

कार की गित के लिए दूरी-समय ग्राफ़ चित्र 7.4 में दर्शाया गया है। ध्यान दें कि इस ग्राफ़ का आकार एकसमान गित के लिए पहले दिए गए दूरी-समय ग्राफ़ (चित्र 7.3) से भिन्न है। इस ग्राफ़ की प्रकृति समय के साथ कार द्वारा तय की गई दूरी में अरैखिक परिवर्तन दर्शाती है। इस प्रकार, चित्र 7.4 में दर्शाया गया ग्राफ़ असमान गित से गित को दर्शाता है।

7.4.2 वेग-समय ग्राफ़

किसी सीधी रेखा में गतिमान वस्तु के वेग में समय के साथ होने वाले परिवर्तन को वेग-समय ग्राफ द्वारा दर्शाया जा सकता है। इस ग्राफ में, समय को x-अक्ष के अनुदिश और वेग को

चित्र 7.5: एक कार की एकसमान गति के लिए वेग-समय ग्राफ

y-अक्ष के अनुदिश दर्शाया गया है। यदि वस्तु एकसमान वेग से गित करती है, तो उसके वेग-समय ग्राफ की ऊँचाई समय के साथ नहीं बदलेगी (चित्र 7.5)। यह x-अक्ष के समांतर एक सरल रेखा होगी। चित्र 7.5 40 किमी /घंटा के एकसमान वेग से गितमान एक कार के लिए वेग-समय ग्राफ दर्शाता है। हम जानते हैं कि वेग और समय का गुणनफल एकसमान वेग से गितमान वस्तु का विस्थापन देता है। वेग-समय ग्राफ और समय अक्ष द्वारा परिबद्ध क्षेत्रफल विस्थापन के परिमाण के बराबर होगा।

चित्र 7.5 का उपयोग करके कार द्वारा चली गई दूरी जानने के लिए, रेखाचित्र ग्राफ पर समय t और t के संगत बिंदुओं से समय t बनाएं t और t के बीच लंबवत। t किमी / t मंदा का वेग ऊँचाई AC या BD और समय t0 लंबाई AB द्वारा दर्शाया जाता है।

2 - t1) को द्वारा दर्शाया जाता है

तो, कार द्वारा तय की गई दूरी s (-t1) को इस प्रकार व्यक्त किया जा सकता समय (t $_2$ है

2 – t1) किमी = आयत ABDC का क्षेत्रफल (छायांकित चित्र 7.5)। में

हम एकसमान त्वरित गति का अध्ययन उसके वेग-समय ग्राफ़ द्वारा भी कर सकते हैं। मान लीजिए कि एक कार को उसके इंजन की जाँच के लिए सीधी सड़क पर चलाया जा रहा है। मान लीजिए कि चालक के बगल में बैठा एक व्यक्ति कार के स्पीडोमीटर की रीडिंग देखकर हर 5 सेकंड बाद उसका वेग मापता है। समय के विभिन्न क्षणों पर कार का वेग, km h-1 और m s-1 में दर्शाया गया है।

तालिका 7.3 में।

तालिका 7.3: समय के नियमित क्षणों पर कार का वेग

समय	कार का वेग (किमी घंटा–1) (मी से– 1)	
0	0	0
5	2.5	9
10	5.0	18
15	7.5	27
20	10.0	36
25	12.5	45
30	15.0	54

इस स्थिति में, कार की गित के लिए वेग-समय ग्राफ़ चित्र 7.6 में दर्शाया गया है। ग्राफ़ की प्रकृति दर्शाती है कि समान समय अंतरालों में वेग समान मात्रा में बदलता है। इस प्रकार, सभी समान रूप से त्वरित गितयों के लिए, वेग-समय ग्राफ़ एक सरल रेखा होती है।

चित्र 7.6: एकसमान त्वरण से गतिमान कार के लिए वेग-समय ग्राफ।

आप कार द्वारा तय की गई दूरी को उसके वेग-समय ग्राफ से भी निर्धारित कर सकते हैं।

वेग-समय ग्राफ के अंतर्गत क्षेत्र, किसी निश्चित समय अंतराल में कार द्वारा तय की गई दूरी (विस्थापन का परिमाण) दर्शाता है।

यदि कार एकसमान वेग से गतिमान होती, तो उसके द्वारा तय की गई दूरी को ग्राफ़ के अंतर्गत क्षेत्र ABCD द्वारा दर्शाया जाता (चित्र 7.6)। चूँिक त्वरण के कारण कार के वेग का परिमाण बदल रहा है, इसलिए कार द्वारा तय की गई दूरी s, वेग-समय ग्राफ़ के अंतर्गत क्षेत्र ABCDE द्वारा दर्शाई जाएगी (चित्र 7.6)।

असमान त्वरित गति के मामले में, वेग-समय ग्राफ का कोई भी आकार हो सकता है।

(AD × DE) 2

= एबी × बीसी +

चित्र 7.7: असमान रूप से त्वरित गति में किसी वस्तु का वेग-समय ग्राफ।

चित्र 7.7(a) एक वेग-समय ग्राफ़ दर्शाता है जो एक वस्तु की गति को दर्शाता है जिसका वेग समय के साथ घट रहा है, जबिक चित्र 7.7(b) एक वेग-समय ग्राफ़ दर्शाता है जो समय के साथ वस्तु के वेग में असमान परिवर्तन को दर्शाता है। इन ग्राफ़ों की व्याख्या करने का प्रयास करें।

	0	7 9
गतिविधि गतिविधिगतिविधि		

• तीन स्टेशनों A, B और C पर एक ट्रेन के आगमन और प्रस्थान का समय तथा स्टेशन A से स्टेशन B और C की दूरी तालिका 7.4 में दी गई है।

तालिका 7.4: स्टेशन A स B आर C की दूरिया तथा ट्रेन के आगमन आर प्रस्थान का समय			
स्टेशन की दूरी सम	ा का समय से आगमन प्रस्थ ^(किमी)	ान (घंटे) (घंटे)	
ए बी सी	0 120 180	08:00 11:15 13:00	08:15 11:30 13:15

यह मानते हुए कि किसी दो स्टेशनों के बीच ट्रेन की गति एकसमान है, उसके लिए दूरी-समय ग्राफ बनाएं और उसकी व्याख्या करें।

गतिविधि गतिविधिगतिविधि

_7.10

 फ़िरोज़ और उसकी बहन सानिया साइिकल से स्कूल जाते हैं। दोनों अपने घर से एक ही समय
 पर निकलते हैं, लेकिन स्कूल पहुँचने में उन्हें अलग-अलग समय लगता है, हालाँकि वे एक ही रास्ता अपनाते हैं।

तालिका 7.5 उनके द्वारा अलग-अलग समय में तय की गई दूरी दर्शाती है

तालिका 7.5: फ़िरोज़ और सानिया द्वारा अलग-अलग समय पर अपनी साइकिलों पर तय की गई दूरी

समय	दूरी फ़िरोज़ द्वारा सानिया द्व (किमी) (किमी)	ारा तय की गईं दूरी
8:00 बजे	0	0
सुबह 8:05 बजे	1.0	0.8
सुबह 8:10 बजे	1.9	1.6
सुबह 8:15 बजे	2.8	2.3
सुबह 8:20 बजे	3.6	3.0
सुबह 8:25 बजे	-	3.6

उनकी गतियों व

उनकी गतियों के लिए समान पैमाने पर दूरी-समय ग्राफ बनाएं और व्याख्या करें।

प्रश्न

- 1. किसी वस्तु की एकसमान और असमान गति के लिए दूरी-समय ग्राफ की प्रकृति क्या है?
- 2. आप उस वस्तु की गति के बारे में क्या कह सकते हैं जिसका दूरी-समय ग्राफ समय अक्ष के समानांतर एक सीधी रेखा है?
- 3. िकसी वस्तु की गति के बारे में आप क्या कह सकते हैं यदि उसका चाल-समय ग्राफ समय अक्ष के समान्तर एक सरल रेखा है?

4. वेग-समय ग्राफ के नीचे व्याप्त क्षेत्रफल द्वारा मापी जाने वाली राशि क्या है?

7.5 गति के समीकरण

जब कोई वस्तु एकसमान त्वरण के साथ एक सरल रेखा के साथ चलती है, तो गति के समीकरणों के रूप में ज्ञात समीकरणों के एक समूह द्वारा एक निश्चित समय अंतराल में उसके वेग, गति के दौरान त्वरण और तय की गई दूरी को संबंधित करना संभव है। सुविधा के लिए, ऐसे तीन समीकरणों का एक समूह नीचे दिया गया है: v = u + at (7.5) s = ut + ½ at2 (7.6) 2 as = v2 - u2 (7.7) जहां u वस्तु का प्रारंभिक वेग है जो समय t के लिए एकसमान त्वरण a के साथ चलता है, v अंतिम वेग है, और s समय t में वस्तु द्वारा तय की गई दूरी है। समीकरण (7.5) वेग-समय संबंध का वर्णन करता है और समीकरण (7.6) स्थिति-समय संबंध का प्रतिनिधित्व करता है। समीकरण (7.7), जो स्थिति और वेग के बीच संबंध का प्रतिनिधित्व करता है,

उदाहरण 7.5 विरामावस्था से चलना प्रारंभ करते हुए एक रेलगाड़ी 5 मिनट में 72 km /h का वेग प्राप्त करती है। यह मानते हुए कि त्वरण एकसमान है, (i) त्वरण और (ii) इस वेग को प्राप्त करने में रेलगाड़ी द्वारा तय की गई दूरी ज्ञात कीजिए।

समाधान:

हमें दिया गया है u = 0 ; v = 72 km h–1 = 20 m s-1 तथा t = 5 मिनट = 300 s. (i) समीकरण (7.5) से हम जानते हैं कि (v – u)

81

(ii) समीकरण (7.7) से हमें 2 = v2 – u2 = v2 – 0 प्राप्त होता है। इस प्रकार,

 $_{\mathrm{QH}} = rac{{{}^{\mathrm{s}^{\mathrm{Q}}}}^{2}}{2\,\mathrm{V}}$ $= rac{{\left(20\,\,\mathrm{V}\mathrm{PV}\mathrm{V}\mathrm{K}\,\,\right)}^{-1\,2}}{2\! imes\!\left(1/15\right)\,\mathrm{V}\mathrm{PV}\mathrm{V}\mathrm{K}}$ $= 3000\,\,\mathrm{Plc}\,\mathrm{V} = 3$ कि.मी

ट्रेन का त्वरण 2 मीटर प्रति सेकंड है - 15

और तय की गई दूरी 3 किमी है।

उदाहरण 7.6 एक कार 5 सेकंड में 18 किमी प्रति घंटा से 36 किमी प्रति घंटा तक समान रूप से त्वरित होती है।

(i) त्वरण और (ii) उस समय में कार द्वारा तय की गई दूरी की गणना करें।

समाधान:

(i) समीकरण (7.5) से हमें प्राप्त होता है

समीकरण (7.6) से हमें प्राप्त होता है

का त्वरण 1 मीटर प्रति सेकंड है और तय की गई दूरी 37.5 मीटर है।

= 37.5 मीटर कार

उदाहरण 7.7 एक कार पर ब्रेक लगाने से गति की विपरीत दिशा में 6 m s-2 का त्वरण उत्पन्न होता है । यदि ब्रेक लगाने के बाद कार को रुकने में 2 s का समय लगता है, तो इस दौरान कार द्वारा तय की गई दूरी की गणना कीजिए।

समाधान:

हमें
$$a=-6$$
 m s-2; $t=2$ s और $v=0$ m s-1 दिया गया है । समीकरण (7.5) से हम जानते हैं कि $v=u+\cdots$ at $0=u+(-6$ m s-2) \times 2 s या $u=12$ m s-1 समीकरण (7.6) से हम पाते हैं

एस = यूटी +
$$\frac{}{2}$$
 पर 2 $\frac{}{2}$ = $(12 \, \text{मीटर सेकंड} - 1) \times (2 \, \text{सेकंड}) + \frac{}{2}$ (-6 मीटर सेकंड-2) (2 सेकंड)2 = 24 मीटर - 12 मीटर = 12

इस प्रकार, ब्रेक लगाने के बाद कार 12 मीटर आगे बढ़ेगी और फिर रुक जाएगी। क्या अब आप समझ सकते हैं कि सड़क पर चलते समय ड्राइवरों को वाहनों के बीच कुछ दूरी बनाए रखने के लिए क्यों कहा जाता है?

प्रश

- एक बस विरामावस्था से प्रारम्भ होकर 0.1 m s-2 के एकसमान त्वरण से
 मनट तक चलती है। (a) अर्जित गित, (b) तय की गई दूरी ज्ञात कीजिए।
- 2. एक रेलगाड़ी 90 किमी /घंटा की चाल से चल रही है। ब्रेक इस प्रकार लगाए जाते हैं कि -0.5 मीटर /सेकेंड का एकसमान त्वरण उत्पन्न हो। ज्ञात कीजिए कि रेलगाड़ी रुकने से पहले कितनी दूरी तय करेगी।
- 3. एक ट्रॉली, एक आनत तल से नीचे की ओर जाते समय 2 cm s-2 का त्वरण प्राप्त करती है । 3 s बाद इसका वेग क्या होगा ?

82

4. एक रेसिंग कार का एकसमान त्वरण 4 m s है। शुरू होने के 10 s बाद यह कितनी दूरी तय करेगी?

5. एक पत्थर को ऊर्ध्वाधर ऊपर की ओर 5 m s-1 के वेग से फेंका जाता है। यदि गति के दौरान पत्थर का नीचे की ओर त्वरण 10 m s-2 है, तो पत्थर द्वारा प्राप्त ऊँचाई कितनी होगी और उसे वहाँ पहुँचने में कितना समय लगेगा? ट्रैक के सीधे भाग AB, BC, CD और DA.

खुद को ट्रैक पर बनाए रखने के लिए, वह कोनों पर अपनी गित तेज़ी से बदलता है। एक चक्कर पूरा करते समय, एथलीट को अपनी गित की दिशा कितनी बार बदलनी होगी? यह स्पष्ट है कि एक आयताकार ट्रैक पर एक बार चलने के लिए, उसे अपनी गित की दिशा चार बार बदलनी होगी।

अब, मान लीजिए कि एक आयताकार ट्रैक के बजाय, एथलीट एक षट्कोणीय आकार के पथ ABCDEF पर दौड़ रहा है, जैसा कि चित्र 7.8(b) में दिखाया गया है। इस स्थिति में, एथलीट को एक चक्कर पूरा करते समय छह बार अपनी दिशा बदलनी होगी। क्या होगा यदि ट्रैक एक षट्भुज न होकर एक समअष्टभुज हो, जिसमें आठ बराबर भुजाएँ हों जैसा कि चित्र 7.8(c) में ABCDEFGH द्वारा दिखाया गया है? यह देखा गया है कि जैसे-जैसे ट्रैक की भुजाओं की संख्या बढ़ती है, एथलीट को अधिक से अधिक बार मोड़ लेना पड़ता है। जैसे-जैसे हम भुजाओं की संख्या अनिश्चित काल तक बढ़ाते जाते हैं, ट्रैक के आकार का क्या होगा? यदि आप ऐसा करते हैं, तो आप देखेंगे कि ट्रैक का आकार एक वृत्त के आकार के करीब पहुँच जाता है और प्रत्येक भुजा की लंबाई एक बिंदु तक कम हो जाती है। यदि एथलीट वृत्ताकार पथ पर स्थिर परिमाण के वेग से गति करता है,

7.6 एकसमान वृत्तीय गति

जब किसी वस्तु का वेग बदलता है, तो हम कहते हैं कि वस्तु त्वरित हो रही है। वेग में परिवर्तन उसके परिमाण या गति की दिशा, या दोनों में परिवर्तन के कारण हो सकता है। क्या आप ऐसा कोई उदाहरण सोच सकते हैं जब किसी वस्तु का वेग परिमाण नहीं, बल्कि केवल गति की दिशा बदलती हो?

(a) आयताकार ट्रैक

(c) अष्टकोणीय आकार का ट्रैक (d) एक गोलाकार ट्रैक

चित्र 7.8: विभिन्न आकृतियों के बंद पथों पर एक एथलीट की गति।

आइए एक बंद पथ पर किसी पिंड की गति का एक उदाहरण देखें। चित्र 8.9 (a) एक आयताकार पथ ABCD पर एक एथलीट का पथ दर्शाता है। मान लीजिए कि एथलीट एकसमान गति से दौड़ रहा है। हम जानते हैं कि एक वृत्त की परिधि

त्रिज्या r का मान $2 r \pi$ द्वारा दिया गया है । यदि एथलीट को त्रिज्या r के वृत्ताकार पथ पर एक बार जाने में t सेकंड लगते हैं, तो गति v इस प्रकार दी गई है

(7.8)

जब कोई वस्तु एकसमान गति से वृत्ताकार पथ पर गति करती है, तो उसकी गति को एकसमान वृत्तीय गति कहते हैं।

गतिविधि गतिविधिगतिविधि — 7.11

• धागे का एक टुकड़ा लें और उसके एक सिरे पर पत्थर का एक छोटा टुकड़ा बाँध दें। धागे को दूसरे सिरे से पकड़कर पत्थर को स्थिर गति से वृत्ताकार पथ पर घुमाएँ, जैसा कि चित्र 7.9 में दिखाया गया है।

चित्र 7.9: स्थिर परिमाण के वेग के साथ एक वृत्ताकार पथ का वर्णन करता एक पत्थर।

• अब धागे को खोलकर पत्थर को छोड़ दें।

क्या आप बता सकते हैं कि पत्थर छोड़े जाने के बाद वह किस दिशा में गित करेगा?
 इस क्रियाकलाप
 को कुछ बार दोहराकर और पत्थर को वृत्ताकार पथ के विभिन्न स्थानों पर छोड़कर, जाँच

करें कि पत्थर जिस दिशा में गति करता है, वह वही रहती है या नहीं।

अगर आप ध्यान से देखें, तो पत्थर को छोड़े जाने पर वह वृत्ताकार पथ के स्पर्शरेखीय सीधी रेखा में गित करता है। ऐसा इसिलए है क्योंकि एक बार पत्थर को छोड़ दिए जाने के बाद, वह उसी दिशा में गित करना जारी रखता है जिस दिशा में वह उस क्षण गित कर रहा था। इससे पता चलता है कि जब पत्थर वृत्ताकार पथ पर गित कर रहा था, तो हर बिंदू पर गित की दिशा बदल गई।

जब कोई खिलाड़ी किसी खेल प्रतियोगिता में हथौड़ा या डिस्कस फेंकता है, तो वह हथौड़ा या डिस्कस को अपने हाथ में पकड़कर अपने शरीर को घुमाकर उसे गोलाकार गति प्रदान करता है। वांछित दिशा में छोड़े जाने पर, हथौड़ा या डिस्कस उसी दिशा में गति करता है जिस दिशा में वह छोड़े जाने के समय गति कर रहा था, ठीक ऊपर वर्णित गतिविधि में पत्थर के टुकड़े की तरह। एकसमान वृत्तीय गति में गति करने वाली वस्तुओं के और भी कई परिचित उदाहरण हैं, जैसे चंद्रमा और पृथ्वी की गति, पृथ्वी के चारों ओर वृत्तीय कक्षा में घूमता एक उपग्रह, एक वृत्तीय पथ पर स्थिर गति से साइकिल चालक, इत्यादि।

आपने क्या सीखा?

गति स्थिति में परिवर्तन है; इसे चली गई दूरी या विस्थापन के संदर्भ में वर्णित किया जा सकता है। • किसी वस्तु की गति एकसमान या असमान हो सकती है, यह इस बात पर निर्भर करता है कि उसका वेग स्थिर है

या बदल रहा है। • किसी वस्तु की गति प्रति इकाई समय में तय की गई दूरी है, और वेग प्रति इकाई समय में विस्थापन है। • किसी वस्तु का त्वरण प्रति वेग में परिवर्तन है

इकाई समय.

वस्तुओं की एकसमान और असमान गति को ग्राफ़ के माध्यम से दिखाया जा सकता है। • एकसमान त्वरण से गतिमान वस्तु की गति को निम्नलिखित समीकरणों की

सहायता से वर्णित किया जा सकता है, अर्थात

$$v = u + at$$

s = आउट + ½ at2

जहाँ u वस्तु का प्रारंभिक वेग है, जो समय t के लिए एकसमान त्वरण a के साथ गति करता है, v इसका अंतिम वेग है और s समय t में तय की गई दूरी है ।

ै यदि कोई वस्तु एकसमान गति से वृत्ताकार पथ पर गति करती है, तो उसकी गति को एकसमान वृत्तीय गति कहते हैं।

अभ्यास

- एक एथलीट 200 मीटर व्यास वाले वृत्ताकार ट्रैक का एक चक्कर 40 सेकंड में पूरा करता है। 2 मिनट 20 सेकंड के अंत में तय की गई दूरी और विस्थापन क्या होगा?
- 2. जोसेफ 300 मीटर सीधी सड़क के एक छोर A से दूसरे छोर B तक 2 मिनट 30 सेकंड में दौड़ता है और फिर मुड़कर 1 मिनट में 100 मीटर वापस बिंदू C तक दौड़ता है। (a) A से B तक और (b) A से C तक दौड़ते समय जोसेफ की औसत गति और वेग क्या हैं?
- 3. अब्दुल, स्कूल जाते समय, अपनी यात्रा की औसत गति 20 किमी /घंटा आँकता है। उसी रास्ते से वापस आते समय, ट्रैफ़िक कम होता है और औसत गति 30 किमी /घंटा होती है। अब्दुल की यात्रा की औसत गति क्या है?
- 4. एक मोटरबोट एक झील पर विरामावस्था से 3.0 m s-2 की स्थिर दर से सीधी रेखा में 8.0 s तक त्वरित होती है। इस दौरान नाव कितनी दूरी तय करती है?
- 5. 52 किमी प्रति घंटे की गति से यात्रा कर रही एक कार का चालक ब्रेक लगाता है। ग्राफ पर उस क्षेत्र को छायांकित करें जो इस अवधि के दौरान कार द्वारा तय की गई दूरी को दर्शाता है। (b) ग्राफ का कौन सा भाग एकसमान गति को दर्शाता है?

कार?

6. चित्र 7.10 तीन वस्तुओं A, B और C का दूरी-समय ग्राफ दर्शाता है। ग्राफ का अध्ययन करें और निम्नलिखित प्रश्नों के उत्तर दें:

New 7.10 New 7.10New 7.10

- (a) तीनों में से कौन सबसे तेज गित से यात्रा कर रहा है? (b) क्या तीनों कभी सड़क पर एक ही बिंदु पर होते हैं? (c) जब B, A को पार करता है तब C कितनी दूरी तय कर चुका होता है? (d) जब B, C को पार करता है तब तक B कितनी दूरी तय कर चुका होता है?
- 7. एक गेंद को 20 मीटर की ऊँचाई से धीरे से गिराया जाता है। यदि इसका वेग 10 मीटर प्रति सेकंड की दर से एकसमान रूप से बढ़ता है , तो यह किस वेग से धरती से टकराएगी? कितने समय बाद यह धरती से टकराएगी?
- 8. एक कार के लिए चाल-समय ग्राफ चित्र 7.11 में दर्शाया गया है।

चित्र 7.11

- (a) कार पहले 4 सेकंड में कितनी दूरी तय करती है? ग्राफ पर उस क्षेत्र को छायांकित करें जो इस अवधि के दौरान कार द्वारा तय की गई दूरी को दर्शाता है।
- (b) ग्राफ का कौन सा भाग एकसमान गति को दर्शाता है? कार?
- 9. बताइए कि निम्नलिखित में से कौन सी स्थितियाँ संभव हैं और इनमें से प्रत्येक के लिए एक उदाहरण दीजिए:
 - (a) एक वस्तु जिसका त्वरण स्थिर है लेकिन गति

शून्य है

वेग

(b) एक वस्तु त्वरण के साथ लेकिन एकसमान गति से गतिमान है रफ़्तार।

(c) एक वस्तु एक निश्चित दिशा में लंबवत दिशा में त्वरण के साथ गति कर रही है।

10. एक कृत्रिम उपग्रह 42250 किमी त्रिज्या वाली वृत्ताकार कक्षा में घूम रहा है। यदि इसे पृथ्वी की परिक्रमा करने में 24 घंटे लगते हैं, तो इसकी गति की गणना कीजिए।