CS 228 Minor Autumn 2022 Quiz 1

- 1. Is the formula $p \to (q \to \neg p)$ satisfiable? If yes, give a satisfying assignment. If not, say why.
- 2. Is the formula $(p \vee \neg (p \wedge q))$ valid? Why?
- 3. Using the proof rules seen in class, can you give a proof for the sequent $p \lor q, r \vdash (p \land r) \lor (q \land r)$
- 4. What is the size of the formula $\neg(p \to \neg(q \lor (\neg r \land \neg(s \to p))))$? Draw the parse tree and explain.
- 5. Suppose we add to the proof rules of propositional logic, two new proof rules

(a) $\frac{\varphi \lor \psi}{\varphi}$ called $\lor \texttt{elim}_1$ (b) $\frac{\varphi \lor \psi}{\psi}$ called $\lor \texttt{elim}_2$ resulting in a new proof engine. Then the new proof engine is

- (a) Sound and complete
- (b) Sound but not complete
- (c) Complete but not sound
- (d) Neither sound nor complete

Explain you answer.

- 6. Consider the formula $\varphi = (p \to (q \to p))$. Which of the following apply? Check all those which apply, and explain your answer.
 - (a) $p, \neg q \vdash \varphi$
 - (b) $\neg p, q \vdash \varphi$
 - (c) $\neg p, \neg q \nvdash \varphi$
 - (d) $p, q \vdash \varphi$
 - (e) $\models \varphi$
- 7. Suppose we remove LEM from the proof rules of propositional logic. Then the resultant proof system is
 - (a) Unsound and not complete
 - (b) Sound but not complete since we removed a proof rule
 - (c) Sound and complete, since we do not need LEM as a proof rule anyway!
 - (d) Unsound but complete

Explain your answer.

- 8. The rule \perp elimination indicates that
 - (a) We do not need \perp in any proof, hence can be eliminated

- (b) If we obtain $\bot \to \psi$ as part of a proof, we can eliminate \bot and conclude ψ
- (c) If we obtain \bot in a proof, then we can conclude any formula ψ after that, since $\bot \to \psi$ holds good always
- (d) If we obtain \bot in a proof, then we can conclude any formula ψ after that, since anything can be concluded in an inconsistent system

Check all those which apply, and explain your answer.

- 9. Which among these is a Horn formula? Check all those which apply.
 - (a) $(\neg p \lor (q \to s))$
 - (b) $\neg (p \rightarrow q)$
 - (c) $\neg p \land \neg r \land (r \lor s)$
 - (d) $p \lor q \land s$
- 10. Consider the formula $\varphi = \neg p \lor (r \to (s \land p))$. What is the smallest n for which $Res^n(\varphi) = Res^{n+1}(\varphi)$?
 - (a) 2
 - (b) 3
 - (c) 1
 - (d) None of the above

Explain your answer.

- 11. Compute $Res^*(\varphi)$ for φ in the above question. Check all those which apply.
 - (a) $\emptyset \in Res^*(\varphi)$, but not in $Res^2(\varphi)$, hence φ is satisfiable
 - (b) $\emptyset \notin Res^*(\varphi)$, hence φ is satisfiable.
 - (c) To check for validity of φ it is enough to check if $\emptyset \notin Res^*(\neg \varphi)$
 - (d) To check for validity of φ it is enough to check if $\emptyset \in Res^*(\neg \varphi)$
- 12. Consider the formula $\varphi = (x \vee y) \wedge (\neg x \vee \neg y)$. In DNF, what is the size of φ ? Explain why.
- 13. Given φ in DNF, which of the following is equivalent to the validity of φ ?
 - (a) At least one clause of φ is satisfiable
 - (b) At least one clause of φ is valid
 - (c) All clauses of φ are satisfiable
 - (d) All clauses of φ are valid
 - (e) None of the above

Explain why.