## Task

give code for this data set

Here is all the data you need: "boston.csv"

Double-click (or enter) to edit

## Data loading

### Subtask:

Load the Boston housing dataset from the "boston.csv" file.

**Reasoning**: Load the dataset and display the first few rows and the shape to verify the data is loaded correctly.

```
try:
    df = pd.read_csv('boston.csv')
    display(df.head())
    print(df.shape)
except FileNotFoundError:
    print("Error: 'boston.csv' not found. Please ensure the file exists in the current di
except pd.errors.ParserError:
    print("Error: Could not parse the CSV file. Please check the file format.")
except Exception as e:
    print(f"An unexpected error occurred: {e}")
```

| <b>→</b> |   | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | В      | LS |
|----------|---|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|----|
|          | 0 | 0.00632 | 18.0 | 2.31  | 0    | 0.538 | 6.575 | 65.2 | 4.0900 | 1   | 296.0 | 15.3    | 396.90 |    |
|          | 1 | 0.02731 | 0.0  | 7.07  | 0    | 0.469 | 6.421 | 78.9 | 4.9671 | 2   | 242.0 | 17.8    | 396.90 |    |
|          | 2 | 0.02729 | 0.0  | 7.07  | 0    | 0.469 | 7.185 | 61.1 | 4.9671 | 2   | 242.0 | 17.8    | 392.83 |    |
|          | 3 | 0.03237 | 0.0  | 2.18  | 0    | 0.458 | 6.998 | 45.8 | 6.0622 | 3   | 222.0 | 18.7    | 394.63 |    |
|          | 4 | 0.06905 | 0.0  | 2.18  | 0    | 0.458 | 7.147 | 54.2 | 6.0622 | 3   | 222.0 | 18.7    | 396.90 |    |
|          | • |         |      |       |      |       |       |      |        |     |       |         |        |    |

## Data exploration

### Subtask:

Explore the loaded Boston Housing dataset to understand its characteristics.

**Reasoning**: Explore the data by examining the first few rows, data types, descriptive statistics, missing values, and visualize the distributions of numerical features.

```
# Data Overview
display(df.head())
print(df.dtypes)
# Descriptive Statistics
display(df.describe())
# Missing Values
print(df.isnull().sum())
# Data Distribution (Histograms)
import matplotlib.pyplot as plt
df.hist(bins=30, figsize=(20, 15))
plt.suptitle('Histograms of Numerical Features', fontsize=16)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()
# Correlation Matrix (Heatmap)
import seaborn as sns
plt.figure(figsize=(12, 10))
correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix of Numerical Features')
plt.show()
```

| - 6 |   | _ |
|-----|---|---|
|     |   | _ |
|     | → | / |
| -   | • |   |

|                                                                  | CRIM                 | I ZN                                                                                             | INDUS                                              | CHAS  | NOX    | RM            | AGE          | DI     | S RAD   | TAX   | Y PTRATIO  | В      | LS  |
|------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|-------|--------|---------------|--------------|--------|---------|-------|------------|--------|-----|
| 0                                                                | 0.00632              | 18.0                                                                                             | 2.31                                               | 0     | 0.538  | 6.575         | 65.2         | 4.0900 | 0 1     | 296.0 | 15.3       | 396.90 |     |
| 1                                                                | 0.02731              | 0.0                                                                                              | 7.07                                               | 0     | 0.469  | 6.421         | 78.9         | 4.967  | 1 2     | 242.0 | 17.8       | 396.90 |     |
| 2                                                                | 0.02729              | 0.0                                                                                              | 7.07                                               | 0     | 0.469  | 7.185         | 61.1         | 4.967  | 1 2     | 242.0 | 17.8       | 392.83 |     |
| 3                                                                | 0.03237              | 0.0                                                                                              | 2.18                                               | 0     | 0.458  | 6.998         | 45.8         | 6.0622 | 2 3     | 222.0 | 18.7       | 394.63 |     |
| 4                                                                | 0.06905              | 0.0                                                                                              | 2.18                                               | 0     | 0.458  | 7.147         | 54.2         | 6.0622 | 2 3     | 222.0 | 18.7       | 396.90 |     |
| B<br>LST<br>MED                                                  | US<br>S<br>ATIO      | floate<br>floate<br>floate<br>floate<br>floate<br>floate<br>floate<br>floate<br>floate<br>floate | 54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54 |       |        |               |              |        |         |       |            |        |     |
| ,                                                                | . 3                  | CRIM                                                                                             | 4                                                  | ZN    | ]      | INDUS         |              | CHAS   |         | NOX   | RM         |        | ΑŒ  |
| СО                                                               | <b>unt</b> 506       | 5.000000                                                                                         | 506.0                                              | 00000 | 506.00 | 00000         | 506.00       | 0000   | 506.000 | 0000  | 506.000000 | 506.00 | 000 |
| me                                                               | ean 3                | 3.613524                                                                                         | 4 11.3                                             | 63636 | 11.13  | 86779         | 0.06         | 9170   | 0.554   | 1695  | 6.284634   | 68.57  | 49C |
| s                                                                | td 8                 | 3.601545                                                                                         | 5 23.3                                             | 22453 | 6.86   | 0353          | 0.25         | 3994   | 0.115   | 5878  | 0.702617   | 28.14  | 886 |
| m                                                                | nin (                | 0.006320                                                                                         | 0.0                                                | 00000 | 0.46   | 0000          | 0.00         | 0000   | 0.385   | 5000  | 3.561000   | 2.90   | 000 |
| 2                                                                | <b>5</b> % (         | 0.08204                                                                                          | 5 0.0                                              | 00000 | 5.19   | 0000          | 0.00         | 0000   | 0.449   | 9000  | 5.885500   | 45.02  | 50C |
| 50                                                               | <b>0</b> % (         | ).256510                                                                                         | 0.0                                                | 00000 | 9.69   | 0000          | 0.00         | 0000   | 0.538   | 3000  | 6.208500   | 77.50  | 000 |
| 7                                                                | <b>5</b> % 3         | 3.677083                                                                                         | 3 12.5                                             | 00000 | 18.10  | 00000         | 0.00         | 0000   | 0.624   | 1000  | 6.623500   | 94.07  | 50C |
| CRI<br>ZN<br>IND<br>CHA<br>NOX<br>RM<br>AGE<br>DIS<br>RAD<br>TAX | M<br>US<br>S<br>ATIO | 3.976200<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                  | ) 100.C                                            | 00000 | 27.74  | 10000         | 1.00         | 0000   | 0.871   | 1000  | 8.780000   | 100.00 | OOC |
| dty                                                              | pe: int              | 64                                                                                               |                                                    |       | His    | stograms of l | Numerical Fe | atures |         |       |            |        |     |



**Reasoning**: Investigate the relationship between features and the target variable 'MEDV' using scatter plots.

```
import matplotlib.pyplot as plt

# Feature Relationships (Scatter Plots)
for col in df.columns:
    if col != 'MEDV':
        plt.figure(figsize=(8, 6))
        plt.scatter(df[col], df['MEDV'], alpha=0.5)
        plt.title(f'Relationship between {col} and MEDV')
        plt.xlabel(col)
        plt.ylabel('MEDV')
        plt.show()
```









## Relationship between CHAS and MEDV







## Relationship between RM and MEDV



Relationship between AGE and MEDV









# Data cleaning

## Subtask:

Handle potential outliers and any remaining issues in the dataset.

**Reasoning**: Handle outliers in 'CRIM' and 'LSTAT' columns using winsorizing, then re-visualize the distributions to verify the changes.

```
import matplotlib.pyplot as plt
import numpy as np

# Winsorize 'CRIM'

df['CRIM'] = np.clip(df['CRIM'], a_min=df['CRIM'].quantile(0.05), a_max=df['CRIM'].quantil

# Winsorize 'LSTAT'

df['LSTAT'] = np.clip(df['LSTAT'], a_min=df['LSTAT'].quantile(0.05), a_max=df['LSTAT'].qu

# Re-visualize distributions after winsorizing

df.hist(bins=30, figsize=(20, 15))

plt.suptitle('Histograms of Numerical Features After Winsorizing', fontsize=16)

plt.tight_layout(rect=[0, 0.03, 1, 0.95])

plt.show()
```





## Data preparation

### Subtask:

Prepare the data for modeling by scaling numerical features.

**Reasoning**: Separate features and target, identify numerical features, and scale them using StandardScaler, then replace original numerical features with scaled ones.

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 1. Separate features (X) and target variable (y)
X = df.drop('MEDV', axis=1)
y = df['MEDV']
# 2. Identify numerical features
numerical_features = X.select_dtypes(include=['number']).columns
# 3. Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 4 & 5. Scale numerical features and replace original numerical features
scaler = StandardScaler()
X_train_scaled = X_train.copy()
X_test_scaled = X_test.copy()
X_train_scaled[numerical_features] = scaler.fit_transform(X_train[numerical_features])
X_test_scaled[numerical_features] = scaler.transform(X_test[numerical_features])
display(X_train_scaled.head())
display(X_test_scaled.head())
```

| <b>→</b> |            | CRIM                   | ZN                    | INDUS                  | CHAS                  | NOX                    | RM                   | AGE                 | DIS                   |
|----------|------------|------------------------|-----------------------|------------------------|-----------------------|------------------------|----------------------|---------------------|-----------------------|
|          | 477        | 2.650239               | -0.500320             | 1.033237               | -0.278089             | 0.489252               | -1.428069            | 1.028015            | -0.802173             |
|          | 15         | -0.460349              | -0.500320             | -0.413160              | -0.278089             | -0.157233              | -0.680087            | -0.431199           | 0.324349              |
|          | 332        | -0.588422              | 1.013271              | -0.715218              | -0.278089             | -1.008723              | -0.402063            | -1.618599           | 1.330697              |
|          | 423        | 0.927494               | -0.500320             | 1.033237               | -0.278089             | 0.489252               | -0.300450            | 0.591681            | -0.839240             |
|          | 19         | -0.439085              | -0.500320             | -0.413160              | -0.278089             | -0.157233              | -0.831094            | 0.033747            | -0.005494             |
|          |            |                        |                       |                        |                       |                        |                      |                     |                       |
|          |            | CRIM                   | ZN                    | INDUS                  | CHAS                  | NOX                    | RM                   | AGE                 | DIS                   |
|          | 173        | <b>CRIM</b> -0.576080  | <b>ZN</b> -0.500320   | INDUS -1.007111        | <b>CHAS</b> -0.278089 | <b>NOX</b> -0.395412   | <b>RM</b> 0.141282   | <b>AGE</b> 0.555916 | <b>DIS</b> -0.545853  |
|          | 173<br>274 |                        |                       |                        |                       |                        |                      |                     |                       |
|          | ., •       | -0.576080              | -0.500320             | -1.007111              | -0.278089             | -0.395412              | 0.141282             | 0.555916            | -0.545853             |
|          | 274        | -0.576080<br>-0.583716 | -0.500320<br>1.229499 | -1.007111<br>-0.664391 | -0.278089<br>3.595975 | -0.395412<br>-0.931315 | 0.141282<br>0.623942 | 0.555916            | -0.545853<br>0.126565 |

## Model training

### Subtask:

Train a linear regression model.

**Reasoning**: Train a linear regression model on the scaled training data and make predictions on the scaled test data.

```
from sklearn.linear_model import LinearRegression
# Initialize the model
model = LinearRegression()
# Train the model
model.fit(X_train_scaled, y_train)
# Make predictions
y_pred = model.predict(X_test_scaled)
```

### Model evaluation

#### Subtask:

Evaluate the linear regression model's performance.

**Reasoning**: Evaluate the linear regression model's performance using R-squared, RMSE, and MAE.

```
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import numpy as np

# Calculate evaluation metrics
r2 = r2_score(y_test, y_pred)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
mae = mean_absolute_error(y_test, y_pred)

# Print the metrics
print(f"R-squared: {r2:.2f}")
print(f"RMSE: {rmse:.2f}")
print(f"MAE: {mae:.2f}")

R-squared: 0.70
RMSE: 4.68
MAE: 3.14
```

## Model optimization

### Subtask:

Model Optimization: Explore alternative regression models and hyperparameter tuning.

**Reasoning**: Train Ridge, Lasso, and RandomForestRegressor models with default hyperparameters, evaluate their performance, and optionally tune hyperparameters for the best-performing model.

```
from sklearn.linear_model import Ridge, Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import numpy as np
# Initialize models
ridge_model = Ridge()
lasso_model = Lasso()
rf model = RandomForestRegressor()
# Train models
ridge model.fit(X train scaled, y train)
lasso_model.fit(X_train_scaled, y_train)
rf_model.fit(X_train_scaled, y_train)
# Make predictions
ridge_pred = ridge_model.predict(X_test_scaled)
lasso_pred = lasso_model.predict(X_test_scaled)
rf_pred = rf_model.predict(X_test_scaled)
def evaluate_model(y_true, y_pred):
    r2 = r2_score(y_true, y_pred)
    rmse = np.sqrt(mean_squared_error(y_true, y_pred))
    mae = mean_absolute_error(y_true, y_pred)
    return r2, rmse, mae
# Evaluate models
ridge_r2, ridge_rmse, ridge_mae = evaluate_model(y_test, ridge_pred)
lasso r2, lasso rmse, lasso mae = evaluate model(y test, lasso pred)
rf_r2, rf_rmse, rf_mae = evaluate_model(y_test, rf_pred)
print("Ridge Regression:")
print(f"R-squared: {ridge_r2:.2f}")
print(f"RMSE: {ridge_rmse:.2f}")
print(f"MAE: {ridge mae:.2f}")
print("\nLasso Regression:")
print(f"R-squared: {lasso r2:.2f}")
print(f"RMSE: {lasso rmse:.2f}")
print(f"MAE: {lasso_mae:.2f}")
print("\nRandom Forest Regressor:")
print(f"R-squared: {rf_r2:.2f}")
print(f"RMSE: {rf_rmse:.2f}")
print(f"MAE: {rf_mae:.2f}")
# Compare and select the best model
results = {
    'Linear Regression': (r2, rmse, mae),
    'Ridge': (ridge_r2, ridge_rmse, ridge_mae),
```