Interval partitioning possblem A set of njobs $J = \{J_1, T_2, ..., J_n\}$ where each job J_i has a start time s_i and a finish time f_i A partition of the jobs in J into K sets such that each set of jobs are mutually compatible. Objective: minimise K

Situations where the problem appears

you have a set of fixed jobs and want to schedule them ming minimum resources.

in some class rooms.

in some class rooms.

one wants to schedule the lectures using minimum class rooms.

Depth sta set of intervals The maximum num

The maximum number of intervals that contain any given time

2 3 2

observation:

Number of sets must be K > depth

Question

what about $\kappa = depth ??$

Target! - Need a solution with depth number of sets.

we design greedy algorithm - consider the jobs in (some order) which order? - Assign each job to an available set - If all the sets are not available then create a new set. 0123456

oule 1: Earliest finish time oule?: Shortest interval first rules: Fewest conflict onley: Earliest start time.

Input $(n, (s_1, f_1), (s_1, f_2), \dots, (s_n f_n))$ - sort the jobs in increasing order of their start time. $3_1 \le 8_2 \le 8_3 \le \dots \le 8_n$ - depth 0 - 0 0 0 0 0 0 0 0	Earliest start time
- Sort the jobs in increasing order of their start time. $8_1 \le 8_2 \le 8_3 \le \cdots \le 8_n$ - depth 0 - 0 0 0 0 0 0 0 0	Input $(n, (s_1, f_1), (s_2, f_2), \dots, (s_n f_n))$
- depth 0 — & 1) - For $i = 1$ to n if f_i is compatible with some job in any set if f_i is compatible with some job in any set assign f_i in such set. Priority else create a new set depth +1 set schedule f_i in depth +1 set	- sort the jobs in increasing order of their start time.
- depth 0 — & 1) - For $i = 1$ to n if f_i is compatible with some job in any set if f_i is compatible with some job in any set assign f_i in such set. Priority else create a new set depth +1 set schedule f_i in depth +1 set	$8, \leq 82 \leq 83 \leq \cdots \leq 8n$ $-0(n)(9n)$
From $i = 1 + 0 n$ if J_i is compatible with some job in any set assign J_i in such set. Priority else create a new set depth +1 sehedule J_i in depth +1 set Jefth = depth +1 Total time	- depth 0 — XI)
priority assign J_{i} in such Set. Priority else create a new set depth +1 schedule J_{i} in depth +1 set depth = depth +1 Total time	- For $l = 1 + 0 n$
Priority else create a new set depth +1 schedule J; in depth +1 set depth = depth +1 Total time Total time	it di 18 Eampoint in such Set.
schedule 5: in depth +1 set depth = depth +1 Total time	promieur
schedule j; in depth +1 set depth = depth +1 Total time Total time	mon) exserved a new set depth +1 _ D(1)
depth = depth +1 Total time (n2)	schedule J: in depth +1 set
	depth = depth +1 Total time
- red all legal	- return the schodule. Total time of (n) improved of (n)

correctness
claim: The algorithm never schedule two incompatible jobs in the same set.
Straigh Fromard.
claim: The greedy algorithm is optimal. Posts wet det be the no. of Sets the algorithm returns.
Question: When the last set ie, the d-th set first used? I
Question: When the last set ie, the d-th set first used? The algorithm trying to add Jith sets Job but it is incompatible stranged sets with all other d-1 sets.

The start time of ji is in between the start time and finish time of all the last jobs in d-1 sets. Therefore the algorithm uses I sets only because of their are I overlapping jobs ie, the depth of the problem is d.