Report No. : ES/2007/70014 Page : 1 of 22

Contents

APPENDIX

1. Photographs of Test Setup	02
2. Photographs of EUT	05
3. Photographs of Accessories of EUT	07
4. DAE & Probe Calibration certificate	09
5. Uncertainty Analysis	19
6. Phantom Description	20
7. System Validation from Original equipment supplier	21

Page: 2 of 22

Appendix

1. Photographs of Test Setup

Fig.1 Photograph of the SAR measurement System

Fig.2.1 Photograph of the Tissue Simulant Fluid Fig.2.2 Photograph of the Tissue Simulant liquid depth 15cm for Right-head Side Fluid liquid depth 15cm for Flat (Body)

Report No. : ES/2007/70014 Page : 3 of 22

Fig.3 Right Head Section / Cheek-Touch Position

Fig.4 Right Head Section / Ear-Tilt Position(15°)

Fig.5 Left Head Section / Cheek-Touch Position

Report No. : ES/2007/70014 Page : 4 of 22

Fig.6 Left Head Section / Ear-Tilt Position(15°)

Fig.7 Body worn- EUT front to flat phantom (testing in GPRS Mode)

Fig.8 Body worn- EUT back to flat phantom (testing in GPRS Mode)

Report No. : ES/2007/70014 Page : 5 of 22

2. Photographs of the EUT

Fig.9 Front view of device

Fig.10 Back view of device

Report No. : ES/2007/70014 Page : 6 of 22

Fig.11 Left view of device

Fig.12 Right view of device

Page: 7 of 22

3. Photographs of the Accessories of EUT

Fig.13 Front view of Battery

Fig.14 Back view of Battery

Report No.: ES/2007/70014 Page: 8 of 22

Fig.15 EUT Connected Charger

Page: 9 of 22

4. DAE & Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SGS (Auden)

Certificate No: DAE4-547_Mar07

Accreditation No.: SCS 108

Dbject	DAE4 - SD 000 D	04 BA - SN: 547	
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	dure for the data acquisition electr	onics (DAE)
Calibration date:	March 5, 2007		
Condition of the calibrated item	In Tolerance		
The measurements and the uncertain	ainties with confidence pro	anal standards, which realize the physical units obability are given on the following pages and a facility: environment temperature $(22\pm3)^{\circ}$ C and $(22\pm3)^{\circ}$ C are also as a factor of the following pages and $(22\pm3)^{\circ}$ C a	are part of the certificate.
	ID#		
Primary Standards		Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
		Cal Date (Calibrated by, Certificate No.) 13-Oct-06 (Elcal AG, No: 5492)	Scheduled Calibration Oct-07
luke Process Calibrator Type 702			
luke Process Calibrator Type 702 (eithley Multimeter Type 2001	SN: 6295803	13-Oct-06 (Elcal AG, No: 5492)	Oct-07 Oct-07 Scheduled Check
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	SN: 6295803 SN: 0810278	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478)	Oct-07 Oct-07
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	SN: 6295803 SN: 0810278	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house)	Oct-07 Oct-07 Scheduled Check
Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1 Calibrated by:	SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1002	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house) 15-Jun-06 (SPEAG, in house check) Function	Oct-07 Oct-07 Scheduled Check In house check Jun-07
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1002	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house) 15-Jun-06 (SPEAG, in house check) Function Technician	Oct-07 Oct-07 Scheduled Check In house check Jun-07

Certificate No: DAE4-547_Mar07

Page 1 of 5

Report No. : ES/2007/70014 Page : 10 of 22

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Auden		Certificate	No: EX3-3578_Apr07
CALIBRATION C	ERTIFICAT		
Object	EX3DV4 - SN:35	578	
Calibration procedure(s)		and QA CAL14.v3 edure for dosimetric E-field prob	es
Calibration date:	April 24, 2007		
Condition of the calibrated item	In Tolerance		
	ted in the closed laborate	orobability are given on the following pages ory facility: environment temperature (22 ± 3	etherhoren Bayarint (seit Statut of Barring Barrin) avan the ether (Statut Hower) (s. 1
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
ower sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan0	7) Jan-08
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun	n06) Jun-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct	
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Hill
Approved by:	Fin Bomholt	R&D Director	F. Rondolf
This calibration coefficies shall as	t he correduced over the	n full without written approval of the laborate	Issued: April 24, 2007

Certificate No: EX3-3578_Apr07

Page 1 of 9

Page: 11 of 22

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'étaionnage Servizio svizzero di taratura

Accreditation No.: SCS 108

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3578 Apr07

Page 2 of 9

Page: 12 of 22

EX3DV4 SN:3578

April 24, 2007

Probe EX3DV4

SN:3578

Manufactured: Last calibrated: Recalibrated: November 4, 2005 March 20, 2006 April 24, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Page: 13 of 22

EX3DV4 SN:3578 April 24, 2007

DASY - Parameters of Probe: EX3DV4 SN:3578

Sensitivity in Fre	e Space ^A	Diode Compression ^B		
NormX	0.540 ± 10.1%	$\mu V/(V/m)^2$	DCP X	80 mV
NormY	0.490 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	86 mV
Norm7	0.570 + 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

SAR_{be} [%]

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{bo} [%]	Without Correction Algorithm	4.3	1.6

900 MHz Typical SAR gradient: 5 % per mm

TSL 1810 MHz Typical SAR gradient: 10 % per mm

With Correction Algorithm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	2.5	1.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.3

0.0

0.1

Sensor Offset

Probe Tip to Sensor Center 1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Report No. : ES/2007/70014 Page : 14 of 22

April 24, 2007 EX3DV4 SN:3578

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Report No.: ES/2007/70014 Page: 15 of 22

Page: 16 of 22

EX3DV4 SN:3578

April 24, 2007

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Report No. : ES/2007/70014 Page : 17 of 22

EX3DV4 SN:3578 April 24, 2007

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Report No. : ES/2007/70014 Page : 18 of 22

EX3DV4 SN:3578

April 24, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.60	0.90	8.12 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.24	1.00	6.90 ± 11.0% (k=2)
2000	$\pm 50 / \pm 100$	Head	40.0 ± 5%	1.40 ± 5%	0.40	1.00	6.52 ± 11.0% (k=2)
2450	\pm 50 / \pm 100	Head	39.2 ± 5%	$1.80 \pm 5\%$	0.45	1.00	6.35 ± 11.8% (k=2)
5200	± 50 / ± 100	Head	36.0 ± 5%	$4.66 \pm 5\%$	0.43	1.70	4.61 ± 13.1% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.43	1.70	4.10 ± 13.1% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.60	0.80	8.02 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.22	1.00	6.97 ± 11.0% (k=2)
2000	$\pm 50 / \pm 100$	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.45	1.00	6.56 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.50	1.00	6.38 ± 11.8% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.48	1.75	3.88 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	$6.00 \pm 5\%$	0.47	1.75	3.76 ± 13.1% (k=2)

 $^{^{\}mathrm{C}}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Report No. : ES/2007/70014 Page : 19 of 22

 $\pm 10.3\,\%$

 $\pm 20.6\,\%$

 $\pm 10.0\,\%$

 $\pm 20.1\,\%$

331

5. Uncertainty Analysis

Combined Std. Uncertainty

Expanded STD Uncertainty

DASY4 Uncertainty Budget According to IEEE P1528 [1]								
	22	O		,		G 1 TI	G. I. II	
Eman Dannistian	Uncertainty value	Prob. Dist.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description Measurement System	varue	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Probe Calibration	±4.8 %	N	1	1	1	±4.8 %	±4.8 %	<u></u>
Axial Isotropy	±4.7 %	R	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	R	$\sqrt{3}$	0.7	0.7	±3.9 %	±3.9 %	∞
Boundary Effects	±9.0 % ±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Linearity	±1.0 % ±4.7 %	R	$\sqrt{3}$	1	1	±0.0 % ±2.7 %	±0.0 % ±2.7 %	∞
System Detection Limits	±1.0 %	R	$\sqrt{3}$	1	1	±2.1 % ±0.6 %	±2.7 % ±0.6 %	∞
Readout Electronics	±1.0 % ±1.0 %	N	1	1	1	±0.0 % ±1.0 %	±0.0 % ±1.0 %	∞
Response Time	±0.8 %	R	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	∞
Integration Time	±2.6 %	R	$\sqrt{3}$	1	1	±1.5%	±1.5 %	∞
RF Ambient Conditions	±2.0 % ±3.0 %	R	$\sqrt{3}$	1	1	±1.7%	±1.7 %	∞
Probe Positioner	±0.4 %	R	$\sqrt{3}$	1	1	±1.7% ±0.2%	±0.2 %	
Probe Positioning	±0.4 % ±2.9 %	R	$\sqrt{3}$	1	1	±0.2 % ±1.7 %	±0.2 % ±1.7 %	∞
Max. SAR Eval.	±2.9 % ±1.0 %	R	$\sqrt{3}$	1	1	±1.7% ±0.6%	±1.7 % ±0.6 %	∞
Test Sample Related	±1.0 %	I.	VS	1	ı	±0.6 %	±0.0 %	∞
Device Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	875
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0 %	R	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
Phantom and Setup	±3.0 /0	10	ν ο	1	1	<u></u>	12.370	~
Phantom Uncertainty	SOUR TRANSPORTER OF THE PROPERTY OF THE PROPER						∞	
Liquid Conductivity (target)	±5.0 %	R	$\sqrt{3}$	0.64	0.43	±1.8 %	±1.2 %	∞
Liquid Conductivity (meas.)	±2.5 %	N	1	0.64	0.43	±1.6%	±1.1 %	∞
Liquid Permittivity (target)	±5.0 %	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4 %	∞
Liquid Permittivity (meas.)	±2.5 %	N	1	0.6	0.49	±1.5 %	±1.2 %	∞

Page: 20 of 22

6. Phantom Description

Schmid & Partner Engineering AG

e a q

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 C
Series No	TP-1150 and higher
Manufacturer	SPEAG Zeughausstrasse 43 CH-8004 Zürich Switzerland

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0.2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff.
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz – 6 GHz: Relative permittivity < 5, Loss tangent < 0.05	Material samples
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material compatibility.	DEGMBE based simulating liquids	Pre-series, First article, Material samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid.	< 1% typical < 0.8% if filled with 155mm of HSL900 and without DUT below	Prototypes, Sample testing

- CENELEC EN 50361 IEEE Std 1528-2003 IEC 62209 Part I

- FCC OET Bulletin 65, Supplement C, Edition 01-01
- The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

Date

07.07.2005

e a

Signature / Stamp

Schmitt & Partner Engineering AG
Zenghausstesse 43, 8004 Zurich Switzerland
Phone 141-245 9700-75x-46-17 245 9779
Info@speag.com, http://www.speag.com

Report No.: ES/2007/70014 Page: 21 of 22

7. System Validation from Original equipment supplier

DASY4 Validation Report for Head TSL

Date/Time: 20.03.2007 14:05:03

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d027

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 39.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.97, 4.97, 4.97); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.7 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 9.28 mW/g; SAR(10 g) = 4.9 mW/gMaximum value of SAR (measured) = 10.4 mW/g

0 dB = 10.4 mW/g

Page: 22 of 22

DASY4 Validation Report for Body TSL

Date/Time: 20.03.2007 15:34:07

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d027

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\epsilon_r = 51.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.43, 4.43, 4.43); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.5 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 9.67 mW/g; SAR(10 g) = 5.16 mW/g

0 dB = 10.9 mW/g