WHAT IS CLAIMED IS:

2	1. A method for managing operational risk and return of a production
3	infrastructure with respect to a current portfolio of service-level
4	agreements, the method comprising:
5	a. calculating an efficient frontier that identifies efficient
6	portfolios of SLAs using inputs such as characteristics of
7	the production infrastructure, traffic and QoS characteristics
8	and the price of each class of SLAs;
9	b. optionally, calculating a baseline efficient frontier using
10	inputs such as market pricing and break-even pricing;
11	c. determining the performance of the current portfolio of
12	SLAs using a portfolio evaluator means and inputs which
13 .	characterize the current portfolio; and
14	d. evaluating performance by comparing the current portfolio
15	and the efficient portfolios with the desired level of risk and
16	return; and, if desired, implementing corrective action based
17	on any desired risk and return.
18	2. The method of claim 1, wherein the corrective action is selected
19	from a group of possible actions consisting of:
20	a. adjusting marketing strategy;
21	ь. changing the degree of multiplexing in the network;
22	c. changing network capacity;

1	d. changing the cost of network capacity;
2	e. defining relative compliance guarantees where networks
3	support definition of adequate policies on the basis of
4	priority;
5	f. changing prices and comparing with baseline prices of
6	SLAs; and
7	g. trading contracts of different classes of SLAs.
8	3. The method of claim 1 or claim 2 wherein, after corrective action is
9	taken, the method takes new inputs, and, with the exception of the
10	corrective action of trading SLAs, the method is re-executed, by
11	calculating a new efficient frontier which is compared with
12	performance of the current portfolio, calculated by the portfolio
13	evaluator means.
14	
15	4. The method of claim 2 wherein, for trading risk, the operator
16	determines the number of to-be-traded SLAs of a certain class by
17	subtracting the number of SLAs of the certain class in the current
18	portfolio from the number of SLAs in a desired portfolio, and taking
19	action that tends to narrow the difference; thus moving the contents
20	of the current portfolio to that of an optimal portfolio.

22

5. A method for managing operational risk and return with respect to

a portfolio of service-level agreements, wherein the method uses a

1	noncompliance risk measure to calculate risk; and wherein, principals
2	of portfolio theory are applied to characterize the portfolio for
3	comparison with other possible portfolios.
4	
5	6. The method of claim 5, wherein the risk measure is selected from a
6	group of quasi-linear noncompliance risk measures, the group
7	consisting of a probability of noncompliance with loss guarantees, a
8	probability of noncompliance with delay guarantees, an expected
9	penalty for loss, and an expected penalty for delay.
10	7. The method of claim 5 wherein the risk measure is quasi-linear and
11	the principals of portfolio theory are applied to calculate an efficient
12	frontier, thus enabling a provider to select an efficient portfolio that
13	maximizes return for a given risk or minimizes risk for a given return.
14	8. The method of claim 5, wherein the risk function is given by a
15	probability of noncompliance with loss guarantees, PNL, which, once
16	the distribution of Y , a common random variable, which represents
17	service times for customers of all classes, is known such as through
18	historical data, the method computes from the formula: $PNL(c, L) =$
19	$P[(Y-c)^+ - LY > 0]$, where c is C/y , y is the summation of a total
20	amount of accepted bandwidths of Quality of Service class L_i , C is

overall capacity of the network, \underline{L} is a vector which characterizes the

quality of each SLA, and $P[\underline{x}]$ denotes the probability of \underline{x} .

21

20

21

1	9. The method of claim 5, wherein the risk function is given by an
2	expected penalty for loss, EPL, which the method computes over a
3	time interval from the formula: $EPL(c, L) = (\beta C)\{E[(Y-c)+]\}$
4	LE[Y], where c is C/y , y is the summation of the total amount of
5	accepted bandwidths of Quality of Service class L_i , C is overall
6	capacity of the network, L is a vector which characterizes the quality
7	of each SLA, β is a constant >0, so that (βC) denotes the penalty per
8	capacity unit, E is statistical expectation, and L_i is a total of Quality of
9	Service offered by class <i>i</i> .
10	
11	10. The method of claim 5, wherein the risk function is given by an
12	expected penalty for delay, EPD, which the method computes over a
13	time interval from the formula: $EPD(c, L) = \beta \{ (\alpha/(c-1)) - (D/c) \}$,
14	where β is a constant > 0 , $c = 1/2(2/\mu)$, $D = c \Sigma \{(2/\mu) D_i\}$, and
15	$E[W_i]$ denotes the expected waiting time (i.e., delay) for class i,
16	wherein further, assumptions are made that class i traffic arrives at
17	Poisson rate λ , and that arrival processes are independent of each
18	other; service times, characterized by service rate μ of class i , are

Y of mean μ where Var[Y] denotes the variance of random variable

independently distributed and independent of each other and of the

arrival processes; that $\alpha = (1 + {Var[Y]/ \mu^2 })^2$ given that service

times for customers of all classes are distributed as a random variable

Y, and wherein noncompliance is a penalty for exceeding D_i and a

15

16

17

18

19

20

21

_	•	~		- 1	
	nramilim	tor	ramaining	under	,,
1	DICHHUIH	$\mathbf{I}\mathbf{O}\mathbf{I}$	remaining	unucı	Di.
_	F				

- 2 11. The method of claim 5, wherein the risk function is given by an expected penalty for delay, *EPD*, which the method computes,
- assuming Poisson traffic, from the formula: $EPD(v) = \beta \sum_{i} \langle E[W_i] E[W_i] \rangle$
- 5 D_i , where v is a vector of traffic intensities, v_i is the traffic intensity
- of customers in class i, E is statistical expectation, β is a constant >0
- so that βC denotes the penalty per capacity unit, W_i is waiting time
- for a class i, and D_i is the maximum permissible delay for a class i of
- 9 SLAs.
- 12. A method for determining risk and return of a production infrastructure with respect to a current portfolio, the method calculating a selected risk, such as a financial risk or Quality of
- 13 Service risk and comprising:
 - a. invoking a performance evaluator means, to determine an expected actual Quality of Service provided by a network given a set of contracts with associated traffic descriptors;
 - b. calculating portfolio risk, based on the actual Quality of
 Service and the contracted Quality of Service of the
 contracts of the portfolio using a risk measure
 corresponding to the selected risk; and
 - c. computing return according to the formula $p_i y_i p_C C$ for capacity C, expected revenue p_i , amount of contracts of

1	type i, y_i , and unit price for capacity C , p_C , where C is both
2	an input in the performance evaluator and a characteristic of
3	the production infrastructure.
4	13. The method of claim 12 wherein the performance evaluator means
5	is selected from a group of performance evaluator means consisting
6	of a formula, a simulator or test system, and a measurement system
7	for the production system.
8	14. A computerized system encoded with a method having an
9	associated process flow, the method managing the risk of financial
10	loss due to penalties brought on by noncompliance with respect to
11	network service-level agreements, characterized in that the method
12	executes the following steps:
13	a. gathering information such as traffic statistics, price
14	information, and network information;
15	b. inputting the gathered information into a risk and a return
16	function, yielding risk and return;
17	c. calculating an efficient frontier; and
18	d. using the efficient frontiers to identify an optimum portfolio
19	of service level agreements, based on a maximum level of
20	return for a given risk or a minimum risk for a given level of
21	return.

1	15. The system of claim 14, wherein, in the method, after an optimum
2	portfolio is identified, trading service-level agreements in order to
3	arrive at an optimum portfolio, the number of agreements of a certain
4 ·	class to be traded being determined by subtracting the number of
5	SLAs of the certain class in the current portfolio from the number of
6	SLAs in a desired portfolio, and taking action that tends to narrow the
7	difference, thus moving the contents of the current portfolio to that of
8	an optimal portfolio
9	
10	16. The system of claim 14, wherein, in the method, the risk function
11	is given by a probability of noncompliance with loss guarantees,
12	PNL, which, once the distribution of Y , a common random variable
13	which represents the service times for customers of all classes is
14	known such as through historical data, the method computes from the
15	formula: $PNL(c, L) = P[(Y-c)+ - LY > 0]$, where c is C/\underline{y} , \underline{y} is the
16	summation of a total amount of accepted bandwidths of Quality of
17	Service class L_i , C is overall capacity of the network, \underline{L} is a vector
18	which characterizes the quality of each SLA, and $P[\underline{x}]$ denotes the
19	probability of \underline{x} .
	-
20	17. The system of claim 14, wherein, in the method, the risk function
21	is given by an expected penalty for loss, EPL, which the method
22	computes over a time interval from the formula: $EPL(c, L) =$
23	$(\beta C)\{E[(Y-c)+]-LE[Y]\}$, where c is C/\underline{y} , \underline{y} is a summation of a total

amount of accepted bandwidths of Quality of Service class L_i , C is overall capacity of the network, \underline{L} is a vector which characterizes the quality of each SLA, β is a constant >0, so that (βC) denotes the penalty per capacity unit, E is statistical expectation, and L_i is the total Quality of Service offered by class i.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

18. The system of claim 14, wherein, in the method, the risk function is given by an expected penalty for delay, EPD, which the method computes over a time interval from the formula: $EPD(c, L) = \beta \{ (\alpha / (c-1)) - (D/c) \}$, where β is a constant > 0, $c = 1/\Sigma(\lambda/\mu)$, D = c $\Sigma \{ (\lambda/\mu)D_i \}$, and $E[W_i]$ denotes the expected waiting time (i.e., delay) for class i, wherein further, assumptions are made that class i traffic arrives at Poisson rate λ , and that arrival processes are independent of each other; service times, characterized by service rate μ of class i, are independently distributed and independent of each other and of the arrival processes; that $\alpha = (1 + \{Var[Y]/\mu^2 f^2)/2$ given that service times for customers of all classes are distributed as a random variable

Y of mean μ where Var(Y) denotes the variance of random variable

 Y_i , and wherein noncompliance is a penalty for exceeding D_i and a

- premium for remaining under D_i .
- 19. The system of claim 14, wherein, in the method, the risk function
- is given by an expected penalty for delay, *EPD*, which the method
- computes, assuming Poisson traffic, from the formula: EPD(v) =

- traffic intensity of customers in class i, E is statistical expectation, β
- is a constant >0 so that βC denotes the penalty per capacity unit, W_i
- 4 is waiting time for a class i, and D_i is the maximum permissible delay
- for a class i of SLAs.
- 6 20. A computerized system encoded with a method which manages
- 7 operational risk and return with respect to network service-level
- agreements, wherein the method calculates a probability of actual loss
- higher than allowed by a contract and a return, and, applying the
- principals of portfolio theory, determines an efficient frontier to
- enable the selection of an efficient portfolio that maximizes return at
- a given risk or minimizes risk at a given return.
- 13 21. The system of claim 20 wherein, in the method, the return is
- calculated using an expected penalty for loss.
- 22. A computerized system, encoded with a method executing a
- process flow which manages operational risk and return with respect
- to network service-level agreements, operating over a computer
- network comprising a plurality of interconnected computers and a
- plurality of resources, each computer including a processor, memory
- and input/output devices, each resource operatively coupled to at
- least one of the computers and executing at least one of the activities

13

14

15

16

17

18

- 23. The system of claim 22, wherein, the quality of service guarantees include loss rate, delay, and jitter.
 - 24. A computerized system encoded with a method which manages operational risk and return with respect to service-level agreements in a network, wherein the method manages a portfolio of service level agreements of at least two classes each of which representing relative compliance guarantees, wherein, a customer subscribing to a higher relative compliance guarantee has priority with respect to resources in the network, over customers having a lower relative compliance guarantee.
- 25. A computerized system encoded with a method which manages

1	operational risk and return with respect to network service-level
2	agreements, wherein the method takes probabilities of noncompliance
3	and base-line prices, and, through the application of portfolio theory,
4	calculates an efficient portfolio of service-level agreements, thus
5	providing a network administrator with insights into the economics of
6	a network's operations which can be used to modify the terms of
7	standard service-level agreements.
8	26. The system of claim 25, wherein the base-line prices are
9	zero-profit prices.
10	27. The system of claim 25, wherein the base-line prices are market
11	prices.
12	28. The system of claim 26, wherein the zero-profit prices are
13	calculated by:
14	a. calculating a base-line efficient portfolio using market
15	pricing and thus determining base-line prices;
16	b. investigating which of these portfolios are probably
17	attainable;
18	c. comparing the base-line prices against a zero-profit price;
19	d. if the zero-profit price is higher than the base-line price,
20	taking corrective action.
21	