	P1:	FE	3P										
	2020年	三1月31	.日 金8	翟日	午後	0:36							

Example: Body - three 3-2-1

Rot #1 about $\hat{a}_3 = \hat{b}'_3$ $\theta = \theta_1$ $A\hat{\lambda}^{B'} = \hat{a}_3 = \hat{b}'_2$

Visually OR relationships on pg. C3

Rot #2 about $\hat{b}_2' = \hat{b}_2''$

$$B'\hat{\lambda}^{B'} = \hat{b}_2' = \hat{b}_2' \qquad 0 = 0$$

F3

$${}^{A}C^{B''} = {}^{A}C^{B'} {}^{B'}C^{B''} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0\\ \sin\theta_{1} & \cos\theta_{1} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_{2} & 0 & \sin\theta_{2}\\ 0 & 1 & 0\\ -\sin\theta_{2} & 0 & \cos\theta_{2} \end{bmatrix}$$

$${}^{A}C^{B''} = {}^{A}C^{B'} {}^{B'}C^{B''} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0\\ \sin\theta_{1} & \cos\theta_{1} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_{2} & 0 & \sin\theta_{2}\\ 0 & 1 & 0\\ -\sin\theta_{2} & 0 & \cos\theta_{2} \end{bmatrix}$$

$${}^{A}C^{B''} = \begin{bmatrix} \cos\theta_{1}\cos\theta_{2} & -\sin\theta_{1} & \cos\theta_{1}\sin\theta_{2}\\ \sin\theta_{1}\cos\theta_{2} & \cos\theta_{1} & \sin\theta_{1}\sin\theta_{2}\\ -\sin\theta_{2} & 0 & \cos\theta_{2} \end{bmatrix}$$

$${}^{A}C^{B''} = \begin{bmatrix} C_{1}C_{2} & -\frac{1}{2} & C_{1}S_{2}\\ S_{1}C_{3} & C_{1} & S_{1}S_{2}\\ -S_{2} & 0 & C_{3} \end{bmatrix}$$

Rot #3 about
$$\hat{b}_1'' = \hat{b}_1$$

$$B''\hat{\lambda}^B = \hat{b}_{i} = \hat{b}_{i}$$

$${}^{A}C^{B} = {}^{A}C^{B''} {}^{B''}C^{B} = \begin{bmatrix} \cos\theta_{1}\cos\theta_{2} & -\sin\theta_{1}\cos\theta_{1}\sin\theta_{2} \\ \sin\theta_{1}\cos\theta_{2} & \cos\theta_{1} & \sin\theta_{1}\sin\theta_{2} \\ -\sin\theta_{2} & 0 & \cos\theta_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{3} & -\sin\theta_{3} \\ 0 & \sin\theta_{3} & \cos\theta_{3} \end{bmatrix}$$

$${}^{A}C^{B} = \begin{bmatrix} c_{1}c_{2} & -s_{1}c_{3}+c_{1}s_{2}s_{3} & s_{1}s_{3}+c_{1}s_{2}c_{3} \\ s_{1}c_{2} & c_{1}c_{3}+s_{1}s_{2}s_{3} & -c_{1}s_{3}+s_{1}s_{2}c_{3} \\ -s_{2} & c_{2}s_{3} & c_{2}c_{3} \end{bmatrix}$$

Result: final orientation relative to $A \left({}^{A}C^{B} \right)$ expressed in terms of body-three 3-2-1 angles

Body-two set 3-2-3

Notation —

$$\begin{array}{ccc} \theta_1 \hat{a}_3 & & \theta_1 \hat{b}_3' \\ \theta_2 \hat{b}_2' & \text{OR} & \theta_2 \hat{b}_2'' \\ \theta_3 \hat{b}_1'' & & \theta_3 \hat{b}_1 \end{array}$$

For \underline{ANY} change in orientation: initial \rightarrow final, can determine the set of three angles that are necessary to produce it

Previous Example

By inspection

${}^{A}C^{B}$	$\hat{b_1}$	$\hat{b_2}$	$\hat{b_3}$
$\hat{a}_{_{1}}$	0	-1	0
\hat{a}_2	cos 60°	0	$\sin 60^{\circ}$
$\hat{a}_{\scriptscriptstyle 3}$	-sin 60°	0	$\cos 60^{\circ}$

Equivalent single rotation to accomplish this change in orientation?

$$\hat{\lambda} = -\frac{1}{\sqrt{5}}\,\hat{a}_1 + \frac{1}{\sqrt{5}}\,\hat{a}_2 + \sqrt{\frac{3}{5}}\hat{a}_3$$

$$\theta = 104.5^{\circ}$$

Wha	it set of body-th	ree 3-2-	1 angles w	rould r	produce th	he same	e result?	F	6		
paly three	at set of body-the set of a_1 and a_2 of a_3 and a_4 and a_4 and a_5 and a_4 and a_5	$ \begin{array}{c c} & AC^B \\ \hline \hat{a}_1 \\ \hat{a}_2 \\ \hat{a}_3 \end{array} $ $ \begin{array}{c c} & c_2 & c_3 \\ c_2 & c_3 \\ c_3 \end{array} $	$\frac{\hat{b_1}}{0}$ $\cos 60^{\circ}$ $-\sin 60^{\circ}$ $s_1 c_3 + c_1 s_2$ $c_2 s_3$ we think the	$ \frac{\hat{b}_2}{-1} $ 0 0 s ₃ s ₃ hese sl	$ \frac{\hat{b}_{3}}{0} $ $ \sin 60^{\circ} $ $ \cos 60^{\circ} $ $ s_{1}s_{3}+c_{1} $ $ -c_{1}s_{3}+s_{2} $ $ c_{2}c_{3} $	= s ₂ c ₃ ₁ s ₂ c ₃ ₃	0 0,5 -0,111	-1 0 0	0 0.8 0	5	

$$\frac{\text{if } \theta_{2} = 60^{\circ}}{c_{1}c_{2} = 0} \rightarrow \theta_{1} = 90^{\circ}, 290^{\circ}$$

$$s_{1}c_{2} = c_{60^{\circ}} \rightarrow \theta_{1} = 90^{\circ}, 290^{\circ}$$

$$c_{2}s_{3} = 0 \rightarrow \theta_{3} = 0^{\circ}, 80^{\circ}$$

$$c_{2}c_{3} = c_{60^{\circ}} \rightarrow \theta_{3} = 0^{\circ}$$

$$d_{3} = 0^{\circ}, 80^{\circ}$$

$$d_{3} = 0^{\circ}$$

$$d_{3} = 0^{\circ}$$

$$\frac{\text{if } \theta_2 = 120^{\circ}}{c_1 c_2 = 0} \rightarrow \theta_1 = 90^{\circ}, 270^{\circ}$$

$$s_1 c_2 = c_{60^{\circ}} \rightarrow \theta_1 = 270^{\circ}$$

$$c_1 c_2 = c_{60^{\circ}} \rightarrow \theta_1 = 270^{\circ}$$

$$c_2 c_{60^{\circ}} \rightarrow \theta_1 = 270^{\circ}$$

Possibilities

$$\theta_1 = 90^{\circ}$$
 \hat{a}_3 $\theta_1 = 270^{\circ}$
 $\theta_2 = 60^{\circ}$ \hat{b}'_2 $\theta_2 = 120^{\circ}$
 $\theta_3 = 0^{\circ}$ \hat{b}_1 $\theta_3 = 180^{\circ}$

Always two possibilities — choose a convention to restrict the class to the same case (<u>not</u> necessary but convenient)

For first angle selected (θ_2) If \sin fcn $\rightarrow -90^{\circ} < \theta_2 < 90^{\circ}$ If \cos fcn $\rightarrow 0^{\circ} < \theta_2 < 180^{\circ}$ Of course, a different set of angles can be used if the appropriate form of the direction cosine matrix is determined

Example: Space—three 2-1-3 sequence

$$A \rightarrow B'$$
 Rot #1 θ_1 \hat{a}_2
 $B' \rightarrow B''$ Rot #2 θ_2 \hat{a}_1
 $B'' \rightarrow B''$ Rot #3 θ_3 \hat{a}_3

three successive rotations

Rot #1

 $A\hat{\lambda}^{B'} = A = A$

Rot #2
$$B' \rightarrow B''$$
 but $B' \hat{\lambda}^{B'} = \hat{a}_1 = \mathcal{C}_1 \hat{b}'_1 + \mathcal{S}_1 \hat{b}'_3$

Rotate about \hat{a}_1 -- imagine rotating the \hat{b}' above rotating about \hat{a}_1 It is tough to sketch;

Visual inspection is not useful to write the C matrix

Use ${}^{A}C^{B'}$ to transform ${}^{B'}\hat{\lambda}^{B''} = \hat{a}_1$ into the appropriate unit vectors for use with the $\hat{\lambda}$, θ equations on page C3

$$C_{2} + C_{1}^{2}(|-C_{2}) - S_{1}S_{2} S_{1}C_{1}(|-C_{2})$$

$$S_{1}S_{2} C_{2} - C_{1}S_{2}$$

$$S_{1}C_{1}(|-C_{2}) C_{1}S_{2} C_{2} + S_{1}^{2}(|-C_{2})$$

Rot #3
$$B'' \rightarrow B$$
 but $\Theta_{\lambda} = 0$

Rotate about \hat{a}_3 -- I cannot sketch this convincingly at all!! Direction cosine matrix not available through visual inspection

Must use the derived relationships for $\hat{\lambda}$, θ

$\hat{\lambda}, \theta \text{ equations on page C3 assume } {}^{B'}\hat{\lambda}^{B} \text{ is expressed in terms of } \hat{b}'' \text{ or } \hat{b}$ ${}^{B'}\hat{\lambda}^{B} = {}^{B'}\lambda_{1}\hat{b}_{1}'' + {}^{B'}\lambda_{2}\hat{b}_{2}'' + {}^{B'}\lambda_{3}\hat{b}_{3}''$ $= {}^{A'}\lambda_{1}\hat{a}_{1} + {}^{A'}\lambda_{2}\hat{a}_{2} + {}^{A'}\lambda_{3}\hat{a}_{3}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{A}\lambda_{1} & {}^{A}\lambda_{2} & {}^{A}\lambda_{3} \end{bmatrix} {}^{A}C^{B'}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{A}\lambda_{1} & {}^{A}\lambda_{2} & {}^{A}\lambda_{3} \end{bmatrix} {}^{A}C^{B'} {}^{B'}C^{B'}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{C_{1}} & 0 & s_{1} \\ 0 & 1 & 0 \\ -s_{1} & 0 & c_{1} \end{bmatrix}$ ${}^{B'}C^{B'} = \begin{bmatrix} c_{1} & 0 & s_{1} \\ 0 & 1 & 0 \\ -s_{1} & 0 & c_{1} \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{C_{1}}\hat{a}_{1} & a_{1}\hat{a}_{2} & c_{2} \\ s_{1}s_{2} & c_{2} & c_{1}s_{2} \\ s_{1}s_{2} & c_{2} & c_{2}+s_{1}^{2}(1-c_{2}) \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{B}\hat{a}_{1} & a_{1}\hat{a}_{2} & a_{2}\hat{b}_{1}' + s_{2}\hat{b}_{2}' + c_{1}c_{2}\hat{b}_{3}'' \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{B}\hat{a}_{1} & s_{2}\hat{b}_{1} & s_{2}\hat{b}_{2}' + c_{1}c_{2}\hat{b}_{3}'' \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & s_{1}\hat{b}_{1} & s_{2}\hat{b}_{2}' + c_{1}c_{2}\hat{b}_{3}'' \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & s_{1}\hat{b}_{1} & s_{2}\hat{b}_{2}' + c_{1}c_{2}\hat{b}_{3}'' \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & s_{1}\hat{b}_{1} & s_{2}\hat{b}_{2}' + c_{1}c_{2}\hat{b}_{3}'' \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & s_{1}\hat{b}_{1} & s_{2}\hat{b}_{2} & s_{1}\hat{b}_{2} & s_{2}\hat{b}_{2}' + c_{1}\hat{c}_{2}\hat{b}_{3}'' \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & s_{1}\hat{b}_{1} & s_{2}\hat{b}_{2} & s$	F10	
$= {}^{A}\lambda_{1}\hat{a}_{1} + {}^{A}\lambda_{2}\hat{a}_{2} + {}^{A}\lambda_{3}\hat{a}_{3}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{A}\lambda_{1} & {}^{A}\lambda_{2} & {}^{A}\lambda_{3} \end{bmatrix} {}^{A}C^{B'}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{A}\lambda_{1} & {}^{A}\lambda_{2} & {}^{A}\lambda_{3} \end{bmatrix} {}^{A}C^{B'}B'C^{B'}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{C}1 & 0 & s_{1} \\ 0 & 1 & 0 \\ -s_{1} & 0 & c_{1} \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{C}2 + c_{1}^{2}(1-c_{2}) & -s_{1}s_{2} & s_{1}c_{1}(1-c_{2}) \\ s_{1}c_{1}(1-c_{2}) & c_{1}s_{2} & c_{2} + s_{1}^{2}(1-c_{2}) \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}\lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{B'}\lambda_{1} & {}^{B'}\lambda_{2} & {}^{B'}$		
$\begin{bmatrix} B^{*}\lambda_{1} & B^{*}\lambda_{2} & B^{*}\lambda_{3} \end{bmatrix} = \begin{bmatrix} A\lambda_{1} & A\lambda_{2} & A\lambda_{3} \end{bmatrix} A C^{B^{*}B^{*}}C^{B^{*}} $ $\begin{bmatrix} B^{*}\lambda_{1} & B^{*}\lambda_{2} & B^{*}\lambda_{3} \end{bmatrix} = \begin{bmatrix} c_{1} & 0 & s_{1} \\ 0 & 1 & 0 \\ -s_{1} & 0 & c_{1} \end{bmatrix}$ $\begin{bmatrix} C^{*}A^{*}B^{*}B^{*}B^{*}B^{*}B^{*}B^{*}B^{*}B$		
$\begin{bmatrix} {}^{B'}\lambda_1 & {}^{B'}\lambda_2 & {}^{B'}\lambda_3 \end{bmatrix} = \begin{bmatrix} c_1 & 0 & s_1 \\ 0 & 1 & 0 \\ -s_1 & 0 & c_1 \end{bmatrix}$ $\begin{bmatrix} c_2 + c_1^2 (1 - c_2) & -s_1 s_2 & s_1 c_1 (1 - c_2) \\ \hline s_1 s_2 & c_2 & c_1 s_2 \\ \hline s_1 c_1 (1 - c_2) & c_1 s_2 & c_2 + s_1^2 (1 - c_2) \end{bmatrix}$ $\begin{bmatrix} {}^{B'}\lambda_1 & {}^{B'}\lambda_2 & {}^{B''}\lambda_3 \end{bmatrix} = \begin{bmatrix} {}^{B'}\lambda_1 & {}^{B''}\lambda_2 & {}^{B''}\lambda_3 & {}^{B''}\lambda_3 \end{bmatrix} = \begin{bmatrix} {}^{B'}\lambda_1 & {}^{B''}\lambda_2 & {}^{B''}\lambda_3 $	$\begin{bmatrix} B''\lambda_1 & B''\lambda_2 & B''\lambda_3 \end{bmatrix} = \begin{bmatrix} A\lambda_1 & A\lambda_2 & A\lambda_3 \end{bmatrix} AC^{B''}$	
${}^{A}C^{B'} = \begin{bmatrix} c_{1} & 0 & s_{1} \\ 0 & 1 & 0 \\ -s_{1} & 0 & c_{1} \end{bmatrix}$ ${}^{B'}C^{B'} = \begin{bmatrix} c_{2} + c_{1}^{2}(1 - c_{2}) & -s_{1}s_{2} & s_{1}c_{1}(1 - c_{2}) \\ \hline s_{1}s_{2} & c_{2} & c_{1}s_{2} \\ \hline s_{1}c_{1}(1 - c_{2}) & c_{1}s_{2} & c_{2} + s_{1}^{2}(1 - c_{2}) \end{bmatrix}$ ${}^{B'}\hat{\lambda}^{B} = \hat{a}_{3} = -s_{1}c_{2}\hat{b}_{1}^{"} + s_{2}\hat{b}_{2}^{"} + c_{1}c_{2}\hat{b}_{3}^{"} \qquad \qquad \lambda_{1} = -\xi_{1}C_{2}$ $\lambda_{2} = S_{2}$	$\begin{bmatrix} B''\lambda_1 & B''\lambda_2 & B'''\lambda_3 \end{bmatrix} = \begin{bmatrix} A\lambda_1 & A\lambda_2 & A\lambda_3 \end{bmatrix} AC^{B'}B'C^{B''}$	
$\begin{bmatrix} c_{2} + c_{1}^{2}(1 - c_{2}) & -s_{1}s_{2} & s_{1}c_{1}(1 - c_{2}) \\ s_{1}s_{2} & c_{2} & c_{1}s_{2} \\ s_{1}c_{1}(1 - c_{2}) & c_{1}s_{2} & c_{2} + s_{1}^{2}(1 - c_{2}) \end{bmatrix} \hat{b}_{3}^{*}$ $\begin{bmatrix} B^{*}\lambda_{1} & B^{*}\lambda_{2} & B^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} B^{*}\lambda_{1} & B^{*}\lambda_{2} & B^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} B^{*}\lambda_{1} & B^{*}\lambda_{2} & B^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} B^{*}\lambda_{1} & B^{*}\lambda_{2} & B^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $ $\begin{bmatrix} A^{*}\lambda_{1} & A^{*}\lambda_{2} & A^{*}\lambda_{3} \end{bmatrix} = $	$\left[\begin{smallmatrix} B'' \lambda_1 & B'' \lambda_2 & B'' \lambda_3 \end{smallmatrix} \right] =$	
$ \theta = \theta_{3} $ $ \beta^{"}\hat{\lambda}^{B} = \hat{a}_{3} = -\mathbf{s}_{1}\mathbf{c}_{2}\hat{b}_{1}^{"} + \mathbf{s}_{2}\hat{b}_{2}^{"} + \mathbf{c}_{1}\mathbf{c}_{2}\hat{b}_{3}^{"} $ $ \lambda_{1} = -\xi_{1}C_{2} $ $ \lambda_{2} = S_{2} $		
$B''\hat{\lambda}^{B} = \hat{a}_{3} = -\mathbf{s}_{1}\mathbf{c}_{2}\hat{b}_{1}'' + \mathbf{s}_{2}\hat{b}_{2}'' + \mathbf{c}_{1}\mathbf{c}_{2}\hat{b}_{3}'' \qquad \Longrightarrow \lambda_{1} = -\xi_{1}C_{2}$ $\lambda_{2} = S_{2}$		
	$\hat{\lambda}^{B} = \hat{a}_{3} = -\mathbf{s}_{1}\mathbf{c}_{2}\hat{b}_{1}'' + \mathbf{s}_{2}\hat{b}_{2}'' + \mathbf{c}_{1}\mathbf{c}_{2}\hat{b}_{3}'' \qquad \Longrightarrow \qquad \lambda_{1} = -\xi_{1}C_{2}$ $\lambda_{2} = S_{2}$	

$${}^{B''}C^B = \begin{bmatrix} c_3 + s_1^2 c_2^2 (1 - c_3) & -c_1 c_2 s_3 - s_1 c_2 s_2 (1 - c_3) & s_2 s_3 - s_1 c_1 c_2^2 (1 - c_3) \\ c_1 c_2 s_3 - s_1 c_2 s_2 (1 - c_3) & c_3 + s_2^2 (1 - c_3) & s_1 c_2 s_3 + s_2 c_1 c_2 (1 - c_3) \\ -s_2 s_3 - s_1 c_1 c_2^2 (1 - c_3) & -s_1 c_2 s_3 + s_1 c_2 c_2 (1 - c_3) & c_3 + c_1^2 c_2^2 (1 - c_3) \end{bmatrix}$$

So
$${}^{A}C^{B} = {}^{A}C^{B'} {}^{B'}C^{B'} {}^{B'}C^{B}$$

$$A C^{B} = \begin{bmatrix} -s_{1}s_{2}S_{3} + C_{3}C_{1} & -C_{2}S_{3} & C_{1}S_{2}S_{3} + C_{2}S_{1} \\ S_{1}S_{2}C_{3} + S_{3}C_{1} & C_{2}C_{3} & -C_{1}S_{2}C_{3} + S_{3}S_{1} \\ -S_{1}C_{2} & S_{2}C_{3} + S_{3}C_{1} & C_{2}C_{3} \end{bmatrix}$$

space three conditions are considered as a constant of the conditions of the conditions of the conditions are considered as a condition of the conditions of the

What set of space-three 2-1-3 angles could be used in the example?

$${}^{A}C^{B} = \begin{bmatrix} 0 & -1 & 0 \\ c_{60^{\circ}} & 0 & s_{60^{\circ}} \\ -s_{60^{\circ}} & 0 & c_{60^{\circ}} \end{bmatrix}$$

$$-s_2 = 0 \qquad \longrightarrow \qquad \theta_2 = 0^\circ, 180^\circ$$

$$\left(\text{Choose } -\frac{\pi}{2} \le \theta_2 \le \frac{\pi}{2}\right)$$

$$\begin{array}{ccc}
-s_{1}c_{2} = -s_{60^{\circ}} \to & \theta_{1} = 60^{\circ}, 120^{\circ} \\
c_{1}c_{2} = c_{60^{\circ}} \to & \theta_{1} = \pm 60^{\circ}
\end{array}$$