TOÁN CAO CẤP A1 PHÂN PHỐI CHƯƠNG TRÌNH Số tiết: 45

Chương 1. Hàm số một biến số

Chương 2. Phép tính vi phân hàm một biến số

Chương 3. Phép tính tích phân hàm một biến số

- §1. Bổ túc về hàm số
- §2. Giới hạn của hàm số
- §3. Đại lượng vô cùng bé vô cùng lớn
- §4. Hàm số liên tục

§1. BỔ TÚC VỀ HÀM SỐ

- 1.1. Khái niệm cơ bản
- 1.1.1. Định nghĩa hàm số
- Cho $X,Y \subset \mathbb{R}$ khác rỗng.

Ánh xạ $f: X \to Y$ với $x \mapsto y = f(x)$ là một hàm số.

Khi đó:

- Miền xác định (MXĐ) của f, ký hiệu D_f , là tập X.
- Miền giá trị (MGT) của f là:

$$G = \{ y = f(x) | x \in X \}.$$

- $-\operatorname{N\acute{e}u} f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \text{ thì } f \text{ là } \operatorname{don } \operatorname{\acute{a}nh}.$
- N'eu f(X) = Y thì f là toàn ánh.
- Nếu f vừa đơn ánh vừa toàn ánh thì f là song ánh.

VD 1.

- a) Hàm số $f: \mathbb{R} \to \mathbb{R}$ thỏa $y = f(x) = 2^x$ là đơn ánh.
- b) Hàm số $f: \mathbb{R} \to [0; +\infty)$ thỏa $f(x) = x^2$ là toàn ánh.
- c) Hsố $f:(0;+\infty)\to\mathbb{R}$ thỏa $f(x)=\ln x$ là song ánh.
- Hàm số y = f(x) được gọi là hàm chẵn nếu:

$$f(-x) = f(x), \ \forall x \in D_f.$$

• Hàm số y = f(x) được gọi là hàm lẻ nếu:

$$f(-x) = -f(x), \ \forall x \in D_f.$$

Nhận xét

- Đồ thị của hàm số chẵn đối xứng qua trục tung.
- Đồ thị của hàm số lẻ đối xứng qua gốc tọa độ.

1.1.2. Hàm số hợp

• Cho hai hàm số f và g thỏa điều kiện $G_g \subset D_f$.

Khi đó, hàm số $h(x) = (f \circ g)(x) = f[g(x)]$ được gọi là hàm số hợp của f và g.

Chú ý

$$(f \circ g)(x) \neq (g \circ f)(x).$$

VD 2. Hàm số $y = 2(x^2 + 1)^2 - x^2 - 1$ là hàm hợp của $f(x) = 2x^2 - x$ và $g(x) = x^2 + 1$.

1.1.3. Hàm số ngược

• Hàm số g được gọi là hàm số ngược của f, ký hiệu $g=f^{-1}$, nếu $x=g(y), \ \forall y\in G_f.$

Nhận xét

- Đồ thị hàm số $y = f^{-1}(x)$ đối xứng với đồ thị của hàm số y = f(x) qua đường thẳng y = x.

VD 3. Cho $f(x) = 2^x$ thì $f^{-1}(x) = \log_2 x$, mọi x > 0.

1.2. Hàm số lượng giác ngược

1.2.1. Hàm số $y = \arcsin x$

• Hàm số $y = \sin x$ có hàm ngược trên $\left| -\frac{\pi}{2}; \frac{\pi}{2} \right|$ là

$$f^{-1}:[-1;\ 1] \to \left[-\frac{\pi}{2};\ \frac{\pi}{2}\right]$$

$$x \mapsto y = \arcsin x$$
.

VD 4. $\arcsin 0 = 0$;

$$\arcsin(-1) = -\frac{\pi}{2};$$

$$\arcsin\frac{\sqrt{3}}{2} = \frac{\pi}{3}.$$

1.2.2. Hàm số $y = \arccos x$

• Hàm số $y = \cos x$ có hàm ngược trên $[0; \pi]$ là

$$f^{-1}: [-1; 1] \to [0; \pi]$$
$$x \mapsto y = \arccos x.$$

VD 5.
$$\arccos 0 = \frac{\pi}{2}$$
; $\arccos(-1) = \pi$;

$$\frac{\sqrt{3}}{2} = \frac{\pi}{6}; \arccos \frac{-1}{2} = \frac{2\pi}{3}.$$

Chú ý

$$\arcsin x + \arccos x = \frac{\pi}{2}, \ \forall x \in [-1; \ 1].$$

1.2.3. Hàm số $y = \arctan x$

• Hàm số $y = \tan x$ có hàm ngược trên $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ là

$$f^{-1}: \mathbb{R} \to \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$$

$$x \mapsto y = \arctan x$$
.

VD 6. $\arctan 0 = 0$;

$$\arctan(-1) = -\frac{\pi}{4};$$

$$\arctan \sqrt{3} = \frac{\pi}{3}.$$

Quy wớc.
$$\arctan(+\infty) = \frac{\pi}{2}$$
, $\arctan(-\infty) = -\frac{\pi}{2}$

1.2.4. Hàm số $y = arc\cot x$

• Hàm số $y = \cot x$ có hàm ngược trên $(0; \pi)$ là

$$f^{-1}: \mathbb{R} \to (0; \pi)$$
$$x \mapsto y = \operatorname{arc} \cot x.$$

VD 7.
$$arc \cot 0 = \frac{\pi}{2}$$
;

$$arc \cot(-1) = \frac{3\pi}{4};$$

$$arc\cot\sqrt{3} = \frac{\pi}{6}.$$

Quy wớc.
$$arc \cot(+\infty) = 0$$
, $arc \cot(-\infty) = \pi$.

§2. GIỚI HẠN CỦA HÀM SỐ

2.1. Các định nghĩa

Định nghĩa 1

• Cho hàm số f(x) xác định trên (a; b). Ta nói f(x) có giới hạn là L (hữu hạn) khi $x \to x_0 \in [a; b]$, ký hiệu $\lim_{x \to x_0} f(x) = L$, nếu $\forall \varepsilon > 0$ cho trước ta tìm được $\delta > 0$

sao cho khi
$$0 < \left| x - x_0 \right| < \delta$$
 thì $\left| f(x) - L \right| < \varepsilon$.

Định nghĩa 2 (định nghĩa theo dãy)

• Cho hàm số f(x) xác định trên (a; b). Ta nói f(x) có giới hạn là L (hữu hạn) khi $x \to x_0 \in [a; b]$, ký hiệu $\lim_{x \to x_0} f(x) = L$, nếu mọi dãy $\{x_n\}$ trong $\{a; b\} \setminus \{x_0\}$ mà

$$x_n \to x_0$$
 thì $\lim_{n \to \infty} f(x_n) = L$.

Định nghĩa 3 (giới hạn tại vô cùng)

• Ta nói f(x) có giới hạn là L (hữu hạn) khi $x \to +\infty$, ký hiệu $\lim_{x \to +\infty} f(x) = L$, nếu $\forall \varepsilon > 0$ cho trước ta tìm được N > 0 đủ lớn sao cho khi x > N thì $|f(x) - L| < \varepsilon$.

• Tương tự, ký hiệu $\lim_{x\to -\infty} f(x) = L$, nếu $\forall \varepsilon > 0$ cho trước ta tìm được N < 0 có *trị tuyệt đối* đủ lớn sao cho khi x < N thì $\left| f(x) - L \right| < \varepsilon$.

Định nghĩa 4 (giới hạn vô cùng)

• Ta nói f(x) có giới hạn là $+\infty$ khi $x \to x_0$, ký hiệu $\lim_{x \to x_0} f(x) = +\infty$, nếu $\forall M > 0$ lớn tùy ý cho trước ta tìm được $\delta > 0$ sao cho khi $0 < \left| x - x_0 \right| < \delta$ thì f(x) > M.

• Tương tự, ký hiệu $\lim_{x\to x_0} f(x) = -\infty$, nếu $\forall M<0$ có tri tuyệt đối lớn tùy ý cho trước ta tìm được $\delta>0$ sao cho khi $0<\left|x-x_0\right|<\delta$ thì f(x)< M.

Định nghĩa 5 (giới hạn 1 phía)

- Nếu f(x) có giới hạn là L (có thể là vô cùng) khi $x \to x_0$ với $x > x_0$ thì ta nói f(x) có giới hạn phải tại x_0 (hữu hạn), ký hiệu $\lim_{x \to x_0 + 0} f(x) = L$ hoặc $\lim_{x \to x_0^+} f(x) = L$.
- Nếu f(x) có giới hạn là L (có thể là vô cùng) khi $x \to x_0$ với $x < x_0$ thì ta nói f(x) có giới hạn trái tại x_0 (hữu hạn), ký hiệu $\lim_{x \to x_0 = 0} f(x) = L$ hoặc $\lim_{x \to x^-} f(x) = L$.

Chú ý.
$$\lim_{x \to x_0} f(x) = L \Leftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = L.$$

2.2. Tính chất

Cho
$$\lim_{x \to x_0} f(x) = a$$
 và $\lim_{x \to x_0} g(x) = b$. Khi đó:

- 1) $\lim_{x \to x_0} [C.f(x)] = C.a$ (C là hằng số).
- 2) $\lim_{x \to x_0} [f(x) \pm g(x)] = a \pm b$.
- 3) $\lim_{x \to x_0} [f(x)g(x)] = ab;$
- 4) $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}, \ b \neq 0;$
- 5) Nếu $f(x) \le g(x), \forall x \in (x_0 \varepsilon; x_0 + \varepsilon)$ thì $a \le b$.
- 6) Nếu $f(x) \le h(x) \le g(x), \forall x \in (x_0 \varepsilon; x_0 + \varepsilon)$ và $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = L \text{ thì } \lim_{x \to x_0} h(x) = L.$

Định lý

Nếu
$$\lim_{x \to x_0} u(x) = a > 0$$
, $\lim_{x \to x_0} v(x) = b$ thì:

$$\lim_{x \to x_0} [u(x)]^{v(x)} = a^b.$$

VD 1. Tìm giới hạn
$$L = \lim_{x \to \infty} \left(\frac{2x}{x+3}\right)^{\frac{1}{x-1}}$$
.

A.
$$L = 9$$
; B. $L = 4$; C. $L = 1$; D. $L = 0$.

B.
$$L = 4$$
;

C.
$$L = 1;$$

D.
$$L = 0$$
.

Giải. Ta có:
$$L = \lim_{x \to \infty} \left(\frac{2x}{x+3}\right)^{2 \cdot \frac{x}{x-1}} = 2^2 \Rightarrow B.$$

Các kết quả cần nhớ

1)
$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$
, $\lim_{x \to 0^{+}} \frac{1}{x} = +\infty$.

2) Xét
$$L = \lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}$$
, ta có:

a)
$$L = \frac{a_n}{b_n}$$
 nếu $n = m$;

b)
$$L = 0$$
 nếu $n < m$;

c)
$$L = \infty$$
 nếu $n > m$.

3)
$$\lim_{\alpha x \to 0} \frac{\sin \alpha x}{\alpha x} = \lim_{\alpha x \to 0} \frac{\tan \alpha x}{\alpha x} = 1.$$

4) Số e:

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} = e.$$

VD 2. Tìm giới hạn
$$L = \lim_{x \to \infty} \left(1 + \frac{3x}{2x^2 + 1} \right)^{2x}$$
.

A.
$$L=\infty$$
;

B.
$$L = e^3$$
;

A.
$$L = \infty$$
; B. $L = e^3$; C. $L = e^2$; D. $L = 1$.

D.
$$L = 1$$
.

Giải.
$$L = \lim_{x \to \infty} \left[\left(1 + \frac{3x}{2x^2 + 1} \right)^{\frac{2x^2 + 1}{3x}} \right]^{2x \cdot \frac{3x}{2x^2 + 1}}.$$

Khi
$$x \to \infty$$
 thì $\frac{3x}{2x^2+1} \to 0$, $2x \cdot \frac{3x}{2x^2+1} \to 3$

$$\Rightarrow \lim_{x \to \infty} \left(1 + \frac{3x}{2x^2 + 1} \right)^{\frac{2x^2 + 1}{3x}} = e \Rightarrow L = e^3 \Rightarrow B.$$

VD 3. Tìm giới hạn
$$L = \lim_{x \to 0^+} \left(1 + \tan^2 \sqrt{x}\right)^{\overline{4x}}$$
.

A.
$$L=\infty$$
;

B.
$$L = 1$$
;

C.
$$L = \sqrt[4]{e}$$

A.
$$L = \infty$$
; B. $L = 1$; C. $L = \sqrt[4]{e}$; D. $L = \sqrt{e}$.

Giải.
$$L = \lim_{x \to 0^+} \left[\left(1 + \tan^2 \sqrt{x} \right)^{\frac{1}{\tan^2 \sqrt{x}}} \right]^{\frac{1}{4x} \cdot \tan^2 \sqrt{x}}$$

$$= \lim_{x \to 0^+} \left[\left(1 + \tan^2 \sqrt{x} \right)^{\frac{1}{\tan^2 \sqrt{x}}} \right]^{\frac{1}{4} \cdot \left(\frac{\tan \sqrt{x}}{\sqrt{x}} \right)^2} = \sqrt[4]{e} \Rightarrow C.$$

§3. ĐẠI LƯỢNG VÔ CÙNG BÉ – VÔ CÙNG LỚN

3.1. Đại lượng vô cùng bé

a) Định nghĩa

Hàm số $\alpha(x)$ được gọi là đại lượng vô cùng bé (VCB) khi $x \to x_0$ nếu $\lim_{x \to x_0} \alpha(x) = 0$ (x_0 có thể là vô cùng).

VD 1.
$$\alpha(x) = \tan^3 \left(\sin \sqrt{1-x} \right)$$
 là VCB khi $x \to 1^-$; $\beta(x) = \frac{1}{\ln^2 x}$ là VCB khi $x \to +\infty$.

b) Tính chất của VCB

- 1) Nếu $\alpha(x)$, $\beta(x)$ là các VCB khi $x \to x_0$ thì $\alpha(x) \pm \beta(x)$ và $\alpha(x).\beta(x)$ là VCB khi $x \to x_0$.
- 2) Nếu $\alpha(x)$ là VCB và $\beta(x)$ bị chận trong lân cận x_0 thì $\alpha(x).\beta(x)$ là VCB khi $x \to x_0$.
- 3) $\lim_{x \to x_0} f(x) = a \Leftrightarrow f(x) = a + \alpha(x)$, trong đó $\alpha(x)$ là VCB khi $x \to x_0$.

c) So sánh các VCB

• Định nghĩa

Cho $\alpha(x),\ \beta(x)$ là các VCB khi $x\to x_0,\ \lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=k.$ Khi đó:

- Nếu k=0, ta nói $\alpha(x)$ là VCB *cấp cao hơn* $\beta(x)$, ký hiệu $\alpha(x)=0(\beta(x))$.
- Nếu $k = \infty$, ta nói $\alpha(x)$ là VCB *cấp thấp hơn* $\beta(x)$.
- Nếu $0 \neq k \neq \infty$, ta nói $\alpha(x)$ và $\beta(x)$ là các VCB cùng cấp.
- Đặc biệt, nếu k = 1, ta nói $\alpha(x)$ và $\beta(x)$ là các VCB **tương đương**, ký hiệu $\alpha(x) \sim \beta(x)$.

VD 2.

• $1 - \cos x$ là VCB cùng cấp với x^2 khi $x \to 0$ vì:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{4\left(\frac{x}{2}\right)^2} = \frac{1}{2}.$$

• $\sin^2 3(x-1) \sim 9(x-1)^2$ khi $x \to 1$.

ullet Tính chất của VCB tương đương khi $x
ightarrow x_0$

1)
$$\alpha(x) \sim \beta(x) \Leftrightarrow \alpha(x) - \beta(x) = 0(\alpha(x)) = 0(\beta(x))$$
.

- 2) Nếu $\alpha(x) \sim \beta(x)$, $\beta(x) \sim \gamma(x)$ thì $\alpha(x) \sim \gamma(x)$.
- 3) Nếu $\alpha_1(x) \sim \beta_1(x)$, $\alpha_2(x) \sim \beta_2(x)$ thì $\alpha_1(x)\alpha_2(x) \sim \beta_1(x)\beta_2(x)$.
- 4) Nếu $\alpha(x) = 0(\beta(x))$ thì $\alpha(x) + \beta(x) \sim \beta(x)$.

Quy tắc ngắt bỏ VCB cấp cao

Cho $\alpha(x)$, $\beta(x)$ là *tổng các VCB khác cấp* khi $x \to x_0$ thì $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$ bằng giới hạn tỉ số hai VCB *cấp thấp*

nhất của tử và mẫu.

VD 3. Tìm giới hạn
$$L = \lim_{x \to 0} \frac{x^3 - \cos x + 1}{x^4 + x^2}$$
.

Giải.
$$L = \lim_{x \to 0} \frac{x^3 + (1 - \cos x)}{x^4 + x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$
.

• Các VCB tương đương cần nhớ khi $x \rightarrow 0$

- 1) $\sin x \sim x$;
- 3) $\arcsin x \sim x$;
- 5) $1 \cos x \sim \frac{x^2}{2}$;
- 7) $\ln(1+x) \sim x$;

- 2) $\tan x \sim x$;
- 4) $\arctan x \sim x$
- 6) $e^x 1 \sim x$;
- 8) $\sqrt[n]{1+x} 1 \sim \frac{x}{n}$.

Chú ý

Nếu u(x) là VCB khi $x \to 0$ thì ta có thể thay x bởi u(x) trong 8 công thức trên.

VD 4. Tính giới hạn
$$L = \lim_{x \to 0} \frac{\ln(1 - 2x \sin^2 x)}{\sin x^2 \cdot \tan x}$$
.

Giải. Khi $x \to 0$, ta có:

$$\frac{\ln(1 - 2x\sin^2 x)}{\sin x^2 \cdot \tan x} \sim \frac{-2x\sin^2 x}{x^2 \cdot x} \sim \frac{-2x \cdot x^2}{x^2 \cdot x} = -2.$$

Vậy
$$L = -2$$
.

VD 5. Tính
$$L = \lim_{x \to 0} \frac{\sin(\sqrt{x+1}-1) + x^2 - 3\tan^2 x}{\sin x^3 + 2x}$$

Giải. Khi $x \to 0$, ta có:

$$\tan^2 x \sim x^2$$
 (cấp 2), $\sin x^3 \sim x^3$ (cấp 3),

$$\sin\left(\sqrt{x+1}-1\right) \sim \sqrt{1+x}-1 \sim \frac{x}{2} \text{ (cấp 1)}.$$

Vậy
$$L = \lim_{x \to 0} \frac{\frac{x}{2}}{2x} = \frac{1}{4}$$
.

Chú ý

Quy tắc VCB tương đương *không áp dụng được* cho hiệu hoặc tổng của các VCB nếu chúng làm *triệt tiêu* tử hoặc mẫu của phân thức.

$$\underline{\mathbf{VD 6.}} \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2} = \lim_{x \to 0} \frac{(e^x - 1) + (e^{-x} - 1)}{x^2} \\
= \lim_{x \to 0} \frac{x + (-x)}{x^2} = 0 \text{ (Sai!)}.$$

$$\lim_{x \to 0^{-}} \frac{x^{3}}{\tan x - x} = \lim_{x \to 0^{-}} \frac{x^{3}}{x - x} = -\infty \text{ (Sai!)}.$$

3.2. Đại lượng vô cùng lớn

a) Định nghĩa

Hàm số f(x) được gọi là đại lượng vô cùng lớn (VCL) khi $x \to x_0$ nếu $\lim_{x \to x_0} f(x) = \infty$ (x_0 có thể là vô cùng).

VD 7. $\frac{\cos x + 1}{2x^3 - \sin x}$ là VCL khi $x \to 0$; $\frac{x^3 + \sqrt{x} - 1}{x^2 - \cos 4x + 3}$ là VCL khi $x \to +\infty$.

Nhận xét. Hàm số f(x) là VCL khi $x \to x_0$ thì $1 \times VCD$ 11:

$$\frac{1}{f(x)}$$
 là VCB khi $x \to x_0$.

b) So sánh các VCL

• Định nghĩa

Cho
$$f(x),\ g(x)$$
 là các VCL khi $x\to x_0,\ \lim_{x\to x_0}\frac{f(x)}{g(x)}=k$. Khi đó:

- Nếu k = 0, ta nói f(x) là VCL cấp thấp hơn g(x).
- Nếu $k=\infty$, ta nói f(x) là VCL **cấp cao hơn** g(x).
- Nếu $0 \neq k \neq \infty$, ta nói f(x) và g(x) là các VCL cùng cấp.
- Đặc biệt, nếu k = 1, ta nói f(x) và g(x) là các VCL **tương đương**. Ký hiệu $f(x) \sim g(x)$.

VD 8.

• $\frac{3}{x^3}$ là VCL khác cấp với $\frac{1}{2x^3+x}$ khi $x \to 0$ vì:

$$\lim_{x \to 0} \left(\frac{3}{x^3} : \frac{1}{2x^3 + x} \right) = 3 \lim_{x \to 0} \frac{2x^3 + x}{x^3} = 3 \lim_{x \to 0} \frac{x}{x^3} = \infty.$$

• $2\sqrt{x^3} + x - 1 \sim 2\sqrt{x^3}$ khi $x \to +\infty$.

Quy tắc ngắt bỏ VCL cấp thấp

Cho f(x) và g(x) là tổng các VCL khác cấp khi $x \to x_0$

thì $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ bằng giới hạn tỉ số hai VCL *cấp cao nhất*

của tử và mẫu.

VD 9. Tính các giới hạn:

$$A = \lim_{x \to \infty} \frac{x^3 - \cos x + 1}{3x^3 + 2x}; B = \lim_{x \to +\infty} \frac{x^3 - 2x^2 + 1}{2\sqrt{x^7} - \sin^2 x}.$$

Giải.

$$A = \lim_{x \to \infty} \frac{x^3}{3x^3} = \frac{1}{3}.$$

$$B = \lim_{x \to +\infty} \frac{x^3}{2\sqrt{x^7}} = \lim_{x \to +\infty} \frac{1}{2\sqrt{x}} = 0.$$

.....

§4. HÀM SỐ LIÊN TỤC

4.1. Định nghĩa

- Số $x_0\in D_f$ được gọi là điểm cô lập của f(x) nếu $\exists \varepsilon>0: \forall x\in (x_0-\varepsilon;\ x_0+\varepsilon)\setminus \{x_0\} \text{ thì } x\not\in D_f.$
- Hàm số f(x) liên tục tại x_0 nếu $\lim_{x \to x_0} f(x) = f(x_0)$.
- Hàm số f(x) liên tục trên tập X nếu f(x) liên tục tại mọi điểm $x_0 \in X$.

Quy wớc

• Hàm số f(x) liên tục tại mọi điểm cô lập của nó.

4.2. Định lý

- Tổng, hiệu, tích và thương của các hàm số liên tục tại x_0 là hàm số liên tục tại x_0 .
- Hàm số sơ cấp xác định ở đâu thì liên tục ở đó.
- Hàm số liên tục trên một đoạn thì đạt giá trị lớn nhất và nhỏ nhất trên đoạn đó.

4.3. Hàm số liên tục một phía

Định nghĩa

Hàm số f(x) được gọi là *liên tục trái (phải*) tại x_0 nếu $\lim_{x\to x_0^-} f(x) = f(x_0) \ (\lim_{x\to x_0^+} f(x) = f(x_0)).$

• Định lý

Hàm số f(x) liên tục tại x_0 nếu

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0).$$

VD 1. Cho hàm số
$$f(x) = \begin{cases} \frac{3\tan^2 x + \sin^2 \sqrt{x}}{2x}, & x > 0 \\ \alpha, & x \le 0 \end{cases}$$

Giá trị của α để hàm số liên tục tại x=0 là:

A.
$$\alpha = 0$$
; B. $\alpha = \frac{1}{2}$; C. $\alpha = 1$; D. $\alpha = \frac{3}{2}$.

Giải. Ta có
$$\lim_{x\to 0^-} f(x) = f(0) = \alpha$$
.

Mặt khác, khi $x \to 0^+$ ta có:

$$\frac{3\tan^2 x + \sin^2 \sqrt{x}}{2x} \sim \frac{\left(\sqrt{x}\right)^2}{2x} = \frac{1}{2}$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \frac{1}{2}.$$

Hàm số f(x) liên tục tại x = 0

$$\Leftrightarrow \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) \Rightarrow \alpha = \frac{1}{2} \Rightarrow B.$$

VD 2. Cho hàm số
$$f(x) = \begin{cases} \frac{\ln(\cos x)}{\arctan^2 x + 2x^2}, & x \neq 0 \\ 2\alpha - 3, & x = 0 \end{cases}$$

Giá trị của α để hàm số liên tục tại x = 0 là:

A.
$$\alpha = \frac{17}{12}$$
; B. $\alpha = -\frac{17}{12}$; C. $\alpha = -\frac{3}{2}$; D. $\alpha = \frac{3}{2}$.

Giải. Khi $x \to 0$, ta có:

$$\arctan^2 x + 2x^2 \sim 3x^2;$$

$$\ln(\cos x) = \ln[1 + (\cos x - 1)] \sim \cos x - 1 \sim -\frac{x^2}{2}$$

$$\Rightarrow \frac{\ln(\cos x)}{\arctan^2 x + 2x^2} \sim \frac{-\frac{x^2}{2}}{3x^2} \Rightarrow \lim_{x \to 0} f(x) = -\frac{1}{6}.$$

Hàm số f(x) liên tục tại x = 0

$$\Leftrightarrow \lim_{x \to 0} f(x) = f(0) \Leftrightarrow -\frac{1}{6} = 2\alpha - 3 \Rightarrow A.$$

4.4. Phân loại điểm gián đoạn

- Nếu hàm số f(x) không liên tục tại x_0 thì x_0 được gọi là điểm gián đoạn của f(x).
- Nếu tồn tại các giới hạn:

$$\lim_{x \to x_0^-} f(x) = f(x_0^-), \quad \lim_{x \to x_0^+} f(x) = f(x_0^+)$$

nhưng $f(x_0^-)$, $f(x_0^+)$ và $f(x_0)$ không đồng thời bằng nhau thì ta nói x_0 là điểm gián đoạn loại một.

Ngược lại, x_0 là điểm gián đoạn loại hai.

.....