Домашняя работа к занятию 25.

- **1.1** Найдите ФСР уравнения $(1-x^2)y'' 2xy' + 6y = 0$, состоящую из функций, аналитических в области |x| < 1.
- **1.2** Найдите ФСР уравнения $x^2y'' 2xy' + (2 + x^2)y = 0$ в виде степенных рядов.
- **2.1** Найдите ФСР уравнения $(1-x^2)y'' 2xy' + 6y = 0$ в виде обобщенных степенных рядов в области |x| > 1.
- **2.2** Найдите решение уравнения $x^2y'' 2xy' + \ln(1+x)y = 0$ в области x > 0 в виде степенного ряда. Покажите, что линейно независимое с ним решение имеет логарифмическую особенность, поэтому найти его в виде обобщенного степенного ряда нельзя.
- **3.1** Рассмотрим уравнение $x^2y'' + xP(x)y' + Q(x)y = 0$, где функции P(x) и Q(x) аналитические в окрестности нуля. Покажите, что если определяющее уравнение имеет кратный корень $\lambda \in \mathbb{R}$, то одно решение можно найти в виде обобщенного степенного ряда, а линейно независимое с ним решение обязательно имеет логарифмическую особенность.
- **3.2** Покажите, что если уравнение $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y = 0$ имеет ФСР, состоящую из функций

$$y_1(x) = x^{\lambda_1} \sum_{k=0}^{+\infty} c_k x^k, \quad c_0 \neq 0,$$

$$y_2(x) = x^{\lambda_2} \sum_{k=0}^{+\infty} d_k x^k, \quad c_0 \neq 0,$$

то точка $x_0 = 0$ является регулярной особой точкой этого уравнения.

3.3 Покажите, что уравнение $x^2y'' + 2xy' + (\cos x - 1)y = 0$ имеет ФСР в виде обобщенных степенных рядов. Найдите несколько первых членов этих рядов.

Ответы и указания

1.1 Формулы для получения коэффициентов $c_{n+2} = c_n \frac{(n-2)(n+3)}{(n+1)(n+2)}$.

Если $c_0=1,\ c_1=0,\ {
m to}\ c_2=-3$ и $c_n=0$ для всех $n\geqslant 3.$ Таким образом, $y_1(x)=1-3x^2.$

Если
$$c_0=0,\ c_1=1,\ \text{то}\ c_{2k}=0$$
 для всех $k\in\mathbb{N},\ c_{2k+1}=c_{2k-1}\frac{(k+1)(2k-3)}{k(2k+1)}$ и $y_2(x)=x-\frac{2}{3}x^3-\frac{1}{5}x^5-\frac{4}{35}x^7-\dots$

1.2 Указание: определяющее уравнение $\lambda^2-3\lambda+2=0$ имеет корни $\lambda_1=1$ и $\lambda_2=2.$

Other:
$$y_2(x) = x^2 - \frac{1}{3!}x^4 + \dots + \frac{(-1)^{n-1}}{(2n-1)!}x^{2n} + \dots = x \cdot \sin x$$
,
 $y_1(x) = x - \frac{1}{2!}x^3 + \dots + \frac{(-1)^n}{(2n)!}x^{(2n+1)} + \dots = x \cdot \cos x$.

2.1 Указание: покажите, что уравнение имеет решение в виде ряда $y_2(x) = \frac{c_3}{x^3} + ... + \frac{c_n}{x^n} + ...$, где $c_3 = 1$, $c_n = 0$ для n = 2k, а для n = 2k + 1 при k > 1 коэффициенты находятся по формуле $c_{n+2} = c_n \frac{n(n+1)}{(n+4)(n-1)}$.

Линейно независимое с $y_2(x)$ решение $y_1(x)=1-3x^2$ получено в задаче 1.1.

Other:
$$y_2(x) = \frac{1}{x^3} + \frac{3}{14} \frac{1}{x^5} + \frac{5}{28} \frac{1}{x^7} + \dots$$

 ${f 2.2}$ Указание: определяющее уравнение $\lambda^2-3\lambda=0$ имеет корни $\lambda_1=0$ и $\lambda_2=3.$

Рекуррентные формулы для коэффициентов c_n :

$$n(n-3)c_n + c_{n-1} - \frac{1}{2}c_{n-2} + \dots + \frac{(-1)^n}{n-3}c_3 = 0$$

Положим $c_3 = 1$, тогда $4c_4 + c_3 = 0$, то есть $c_4 = -\frac{1}{4}$ и т. д.

Otbet:
$$y_2(x) = \sum_{k=0}^{+\infty} c_k x^k = x^3 - \frac{1}{4}x^4 + \dots$$

3.3 Указание: определяющее уравнение $\lambda^2 + \lambda = 0$ имеет корни $\lambda_1 = -1$ и $\lambda_2 = 0$. Поэтому существует решение в виде степенного ряда $y_2(x) = 1 + \frac{1}{12}x^2 + \dots$ Отметим, что функция $y_2(x)$ является четной.

Покажите, что линейно независимое с $y_2(x)$ решение является нечетной функцией, не имеющей логарифмической особенности, и может быть найдено в виде $y_1(x)=\frac{1}{x}+\sum_{k=0}^{+\infty}c_{2k+1}x^{2k+1}$.

Ответ:
$$y_1(x) = \frac{1}{x} + \frac{1}{4}x + ..., y_2(x) = 1 + \frac{1}{12}x^2 + ...$$