Операции с битами состояния

19

Обзор главы

В разделе	Вы найдете	на стр.
19.1	Обзор	19–2
19.2	Бит ошибки "Двоичный результат"	19–3
19.3	Биты результата	19–4
19.4	Бит ошибки "Неупорядочено"	19–6
19.5	Бит ошибки "Переполнение"	19–7
19.6	Бит ошибки "Переполнение с запоминанием"	19–8

19.1 Обзор

Описание

Операции с битами состояния являются битовыми логическими командами (см. гл. 8), которые работают с битами слова состояния (см. раздел 6.3). Каждая из этих команд реагирует на одно из следующих условий, отображаемых одним или несколькими битами слова состояния:

- Бит двоичного результата установлен (имеет состояние 1).
- Результат арифметической операции находится по отношению к 0 в одном из следующих состояний:
 - больше 0 (>0)
 - меньше 0 (<0)
 - **-** больше или равен 0 (>=0)
 - меньше или равен 0 (<=0)
 - равен 0 (==0)
 - не равен 0 (<>0)
- Результат арифметической операции недопустим.
- Арифметическая операция привела к переполнению.

В операции И команды над битами состояния комбинируют результат их опроса с предшествующим результатом логической операции в соответствии с таблицей истинности для И (см. раздел 6.2 и таблицу 6-3). В операции ИЛИ используется таблица истинности для ИЛИ (см. раздел 6.2 и таблицу 6-4).

В этом разделе представлен элемент Бит ошибки "Двоичный результат", контролирующий состояние бита BR (Binary Result - двоичный результат) слова состояния, в международной мнемонике и в мнемонике SIMATIC.

Слово состояния

Слово состояния представляет собой регистр в памяти Вашего СРU, к которому Вы можете обращаться по адресу бита и в поразрядных логических операциях над словами. На рис. 19–1 показана структура слова состояния. Дополнительная информация об отдельных битах слова состояния находится в разделе 6.3.

2 ¹⁵	29	28	27	2^6	2 ⁵	2 ⁴	2^3	2 ²	21	2^0
		BR	CC1	CC0	ov	os	OR	STA	RLO	FC

Рис. 19-1. Структура слова состояния

Параметры

Элементы FUP, описанные в следующих разделах, не имеют выбираемых параметров.

19.2 Бит ошибки "Двоичный результат"

Описание

Вы можете использовать команду *Бит ошибки "Двоичный результат"* для контроля состояния сигнала бита BR (двоичный результат) слова состояния (см. раздел 6.3). В операции И результат опроса комбинируется с предыдущим RLO в соответствии с таблицей истинности для И (см. раздел 6.2 и табл. 6-3). А в операции ИЛИ используется таблица истинности для ИЛИ (см. раздел 6.2 и табл. 6-4).

Блок FUP

На рис. 19–2 показан блок *Бит ошибки "Двоичный результат"* в мнемонике SIMATIC и в международной мнемонике.

Рис. 19-2. Бит ошибки "Двоичный результат"

Рис. 19-3. Бит ошибки "Двоичный результат"

19.3 Биты результата

Описание

Вы можете использовать команды *Бит результата* для определения отношения результата арифметической операции к нулю, иными словами, является ли результат >0, <0, >=0, <=0, ==0, или <>0 (см. рис. 19–4). Для этого анализируются биты кода условия (СС1 и СС0, см. раздел 6.3). Если условие сравнения, указанное в операнде, выполняется, то результат опроса этого состояния сигнала равен 1.

В операции И эта команда комбинирует результат своего опроса с предыдущим результатом логической операции (RLO) в соответствии с таблицей истинности для И (см. раздел 6.2 и табл. 6-3). В операции ИЛИ эта команда комбинирует результат своего опроса с предыдущим результатом логической операции (RLO) в соответствии с таблицей истинности для ИЛИ (см. раздел 6.2 и табл. 6-4).

Элемент FUP	Описание
> 0	Команда "Бит результата" для сравнения на > 0 определяет, больше ли 0 результат арифметичекой операции. Для определения отношения результата к 0 она опрашивает комбинацию битов кода условия СС1 и СС0 слова состояния.
< 0	Команда "Бит результата" для сравнения на < 0 определяет, меньше ли 0 результат арифметичекой операции. Для определения отношения результата к 0 она опрашивает комбинацию битов кода условия СС1 и СС0 слова состояния.
>=0	Команда "Бит результата" для сравнения на $>=0$ определяет, больше или равен 0 результат арифметичекой операции. Для определения отношения результата к 0 она опрашивает комбинацию битов кода условия $CC1$ и $CC0$ слова состояния.
<=0	Команда "Бит результата" для сравнения на <= 0 определяет, меньше или равен 0 результат арифметичекой операции. Для определения отношения результата к 0 она опрашивает комбинацию битов кода условия СС1 и СС0 слова состояния.
==0	Команда "Бит результата" для сравнения на равенство 0 определяет, равен ли 0 результат арифметичекой операции. Для определения отношения результата к 0 она опрашивает комбинацию битов кода условия СС1 и СС0 слова состояния.
<>0	Команда "Бит результата" для сравнения на неравенство 0 определяет, не равен ли 0 результат арифметичекой операции. Для определения отношения результата к 0 она опрашивает комбинацию битов кода условия СС1 и СС0 слова состояния.

Рис. 19-4. Блоки "Бит результата"

Рис. 19-5. Бит результата для случая > 0 и бит результата для случая <=0

19.4 Бит ошибки "Неупорядочено"

Описание

Вы можете использовать команду *Бит ошибки "Неупорядочено"* для проверки, является ли результат арифметической операции с плавающей точкой неупорядоченным (иными словами, не является ли одно из значений, с которым выполняется операция, недопустимым числом с плавающей точкой). Для этого анализируются биты сода условия слова состояния (СС1 и СС0, см. раздел 6.3). Если результат арифметической операции является неупорядоченным (UO = unordered - неупорядочен), то опрос состояния сигнала дает результат 1. Если комбинация СС1 и СС0 не указывает на неупорядоченность результата арифметической операции, то опрос состояния сигнала дает 0.

В операции И эта команда комбинирует результат своего опроса с предыдущим результатом логической операции (RLO, см. раздел 6.3) в соответствии с таблицей истинности для И (см. раздел 6.2 и табл. 6-3). В операции ИЛИ используется таблица истинности для ИЛИ (см. раздел 6.2 и табл. 6-4).

Рис. 19-6. Бит ошибки "Неупорядочено"

19.5 Бит ошибки "Переполнение"

Описание

Вы можете использовать команду *Бит ошибки "Переполнение"* для обнаружения переполнения (OV) в последней арифметической операции. Если после выполнения арифметической операции результат оказывается за пределами допустимого диапазона в отрицательной или положительной области, то бит OV в слове состояния (см. раздел 6.3) устанавливается. Команда опрашивает состояние этого бита. Этот бит сбрасывается, если арифметическая операция была выполнена без ошибок.

В операции И эта команда комбинирует результат своего опроса с предыдущим результатом логической операции в соответствии с таблицей истинности для И (см. раздел 6.2 и табл. 6-3). В операции ИЛИ используется таблица истинности для ИЛИ (см. раздел 6.2 и табл. 6-4).

Рис. 19-7. Бит ошибки "Переполнение"

19.6 Бит ошибки "Переполнение с запоминанием"

Описание

Вы можете использовать команду *Бит ошибки "Переполнение с запоминанием"* для распознавания предыдущего переполнения (OS, overflow stored - переполнение с сохранением) в арифметической операции. Если после выполнения арифметической операции результат оказывается за пределами допустимого диапазона в отрицательной или положительной области, то бит OS в слове состояния (см. раздел 6.3) устанавливается. Команда опрашивает состояние этого бита. В отличие от бита OV (переполнение) бит OS остается установленным, даже если следующие арифметические операции были выполнены без ошибок (см. раздел 19.5).

В операции И эта команда комбинирует результат своего опроса с предыдущим результатом логической операции в соответствии с таблицей истинности для И (см. раздел 6.2 и табл. 6-3). В операции ИЛИ используется таблица истинности для ИЛИ (см. раздел 6.2 и табл. 6-4).

Блок FUP

Рис. 19-8. Бит ошибки "Переполнение с запоминанием"