Computação Paralela

Semi-Presencial

Luís Fabrício W. Góes

Ifwgoes@pucminas.br

O que NÃO esperar de um curso semi-presencial?

Várias aulas expositivas presenciais

Apenas assistir vídeo aulas

Aprender o conteúdo apenas nas aulas presenciais

Ser aprovado apenas estudando para provas

Isolar-se do resto da turma

O que esperar de um curso semi-presencial?

Desenvolvimento das suas habilidades acadêmicas

Muitas horas de envolvimento e estudo fora da sala de aula (aula invertida)

Realizar tarefa em grupos diferentes

Ritmo de estudo semanal

Ciclo Semanal de Aula

Tarefa Individual (codificação)

Quinta-feira

Virtual

Quiz

(compromisso)

ou

Pergunta

(pensamento crítico)

Aula Invertida

(estudo do material

De Sexta-feira a Terça-feira em casa)

Disponibilização do Material de Estudo

(vídeos, livros e tutoriais)

Tarefa em Grupo

(colaboração, avaliação por pares)

Feedback

(discussão das resoluções das tarefas e quiz)

Presencial

Tarefas são avaliadas por habilidades e níveis

Habilidades C*

Níveis

Habilidades C*

Níveis

Habilidades C*

Níveis

Tarefa Exemplo 02

Criar uma pergunta sobre o material de estudo sobre GPU

Rubricas

Mas e a minha nota?

Pontuação Habilidades

^{*} Em função de feriados, palestras e outros eventos, o número de tarefas por atividade por variar até o final do semestre, alterando a pontuação por tarefa.

Pontuação Total por Habilidade

$$P_i = (N_i^*70 + C_i^*85 + M_i^*100) / T_i$$

P_i = Pontuação

N_i = No. de Novatos

C_i = **No.** de Competentes

M_i = No. de Mestres

T_. = No. de Tarefas

Exemplo

Suponha que em 8 tarefas avaliadas na habilidade Compromisso, um aluno obteve:

- 1 candidato
- 1 novato
- 3 competentes
- 3 mestres

$$P_{comp.} = (1*0 + 1*70 + 3*85 + 3*100) / 8$$

Pontuação Total

Soma ponderada de todas as habilidades

$$\sum_{i} P_{i} * F_{i}$$

F_i = Peso da habilidade

Pesos por Habilidade

$$P_{total} = 0.10*95 + 0.25*80 + 0.05*60 + 0.25*70 + 0.1*78.1 + 0.25*15 = 61.56$$

Conteúdo

Multicore (OpenMP)

Data	Conteúdo
07/08	Introdução a Computação Paralela Semi-Presencial 🙉
14/08	Padrões FORK-JOIN e MAP em OpenMP 🙊
21/08	Arquiteturas Paralelas
28/08	Padrão REDUCE em OpenMP (seção crítica, balanceamento de carga)
04/09	Avaliação de Desempenho de Programas Paralelos
11/09	Padrão DIVIDE & CONQUER em OpenMP (paralelismo de tarefas)
18/09	Algoritmos Paralelos (ADA - não haverá aula presencial)
25/09	Vetorização

GPU (OpenMP 4.5/CUDA)

Data	Conteúdo
02/10	Arquitetura de GPUs (hierarquia de memória) 🙉 🐷
09/10	Programação de GPUs com OpenMP
16/10	Programação de GPUs com CUDA №
23/10	Padrão REDUCE em CUDA (sincronização, uso da memória local)
30/10	Padrão SCAN em CUDA (mútiplos kernels)

Cluster (MPI)

Data	Conteúdo
06/11	Comunicação Ponto-a-Ponto em MPI 🙊
13/11	Padrão Pipeline em MPI
20/11	Comunicação Coletiva em MPI (gather, scatter, broadcast)
27/11	Apresentação dos Projetos 🗷
04/12	Reavaliação

Recursos

http://www.eitas.com.br/tutoriais/12

- Sistema de Tutoriais
 - Contém práticas de programação e também vídeos com a teoria (Material de Estudo)

ssh <no. biblioteca>@parcode.icei.pucminas.br

- Servidor Linux (acesso remoto), com processador Intel de 4 núcleos e GPU Nvidia GT 1030 com 384 núcleos. Este servidor possui suporte as seguintes ferramentas:
 - o gcc8 compilador de C que suporta OpenMP 4.5 com offloading para placas Nvidia
 - o icc, advixe, inspxe e amplxe compilador e ferramentas da Intel
 - o cuda linguagem de programação para GPUs
 - perf ferramenta para avaliação de desempenho por meio de contadores de HW

https://pucmq.instructure.com/courses/

- Sistema de Aprendizagem Virtual
 - Criação, submissão e correção de tarefas
 - Meio principal de comunicação
 - Lançamento de Notas