Microprocessor Based Design

Course Title: Microprocessor Based Design
Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8

Nature of the Course: Theory + Lab Credit Hrs: 3

Semester: V

Course Description: In this course, the range of issues to be considered in designing a microprocessor-based system is discussed. First, the criteria for selecting a microprocessor/microcontroller are discussed, and second, the hardware and software aspects of designing systems are focused.

Course Objective: The course objective is to demonstrate the concept of microprocessor and to be able to design a microprocessor based system to get desired results. It also emphasizes on hardware interfacing of 8051 to develop solutions of real world problems.

Detail Syllabus:

Unit 1	Teaching
Introduction to Microcontroller	Hours (12)
Overview of Typical Microcontroller, The Pico controller	2
The Microcontroller's Memory, The Central Processor, Timing	2
The I/O Interface, The Address, Data, and Control Buses	2
The Pico controller Design	2
Software/Firmware Development Architecture	1.5
Interfacing, Interfacing Types, Interfacing Techniques	1.5
Introduction of PIC, and ARM	1
Unit 2	Teaching
Sensors and Actuators	Hours (7)
Sensors	1
Analog to Digital Conversion	2
Control Algorithm,	1
Digital to Analog Conversion	2
Actuator	1
Unit 3	Teaching
Bus and Communication Technology	Hours (8)
Common Parallel and Serial Bus Systems	2
Topology	0.5
Arbitration	1
Synchronization	0.5
CAN-Protocol	1
Bluetooth, PCI	1
ISA	1.5
WIFI	0.5
Unit 4	Teaching
Introduction to 8051 Microcontroller and Programming	Hours (12)
8051 architecture and pin diagram	3
Registers, Timers, Counters, Flags	1

Special Function Registers	1
Addressing Modes	1
Data types, Instructions and Programming	0.5
Single-bit Operations	1.5
Timer and Counter Programming	1
Interrupts Programming	1
Serial Communication	1
Memory Accessing and their Simple Programming Applications	1
Unit 5	Teaching
Electromagnetic Interference and Compatibility	Hours (6)
Basics of PCB Design	1
Design Consideration	1
Impact of EMI	1
Sources of EMI	1
Types of Noise	0.5
Grounding, Shielding	1
EMI, and EMC Standard	0.5

Laboratory works:

- Programming and Application development using any microcontroller like 8051, Atmel, Arduino platform
- Interfacing different Sensors and I/O Devices
- Small scale PCB design using software design tool
- Interfacing to ADC, DAC, and Sensors

Recommended Books:

- 1. D. V. Hall, **Microprocessors and Interfacing Programming and Hardware**, McGraw Hill
- 2. K. J. Ayala, The 8051 Microcontroller: Architecture, Programming and Applications, West
- 3. Mazidi, M.A., **The 8051 Microcontroller and Embedded System**, Pearson Education (2008)
- 4. T. Bansod, Pratik Tawde, **Microcontroller Programming (8051, PIC, ARM7 ARM Cortex)**, Shroff Publishers & Distributors Pvt. Ltd

Model Question

Course Title: Microprocessor Based Design
Course No: CSC324
Semester: V
Full Marks: 60
Pass Marks: 24
Credit Hrs: 3

Section A

Attempt any two questions. $(2 \times 10 = 20)$

- 1. Explain 8051 block diagram and also highlight on its unique features. (10)
- 2. What are different interfacing techniques of a microcontroller? Explain (10)
- 3. Explain about various types of addressing modes. (10)

Section B

Attempt any eight questions. $(8 \times 5 = 40)$

- 4. Highlight on the functionality of CAN protocol layer.(5)
- 5. Explain various serial data transmission modes of 8051. (5)
- 6. Explain on the basics of PCB design. (5)
- 7. Differentiate between serial and parallel bus systems.(5)
- 8. What are the basic features of ARM.? Discuss on its applicability. (3+2)
- 9. Explain about various Timer modes of 8051. (5)
- 10. What are the major roles of Instruction Set? Explain Instruction Set Architecture.(2+3)
- 11. Differentiate between sensors and actuators. Explain various types of noises. (5)
- 12. Write short notes on: $(2 \times 2.5 = 5)$
 - a. PCI
 - b. Shielding