Bases de Datos

Ejercitación. Teoría del diseño: Tercera Forma Normal

Lic. Andy Ledesma García Lic. Víctor M. Cardentey Fundora Dra. C. Lucina García Hernández

Departamento de Computación Facultad de Matemática y Computación Universidad de La Habana

Licenciatura en Ciencia de Datos

15 de febrero de 2024

Anteriormente... en Bases de Datos...

Dependencia Funcional

Dada una relación R y los atributos X, Y de R, se dice que Y depende funcionalmente de X si y sólo si el valor de X en cada tupla de R determina el valor de Y en dicha tupla, o sea, si para todo par de tuplas t_1 , t_2 se cumple que

$$t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Se representa como $R.X \rightarrow R.Y$ o simplemente

$$X \rightarrow Y$$

Notación

- ► Atributo simple: *A*, *B*, *C*, *D*, *E*
- Atributo compuesto (conjunto de atributos simples): W, X, Y, Z

Anteriormente... en Bases de Datos...

Mejorando la definición de llave candidata

Sea K un conjunto de atributos $\{A_1, A_2, ..., A_n\}$ de una esquema relacional R(U, F) es llave candidata candidata del esquema si cumple las siguientes propiedades:

- 1. Unicidad: $K_F^+ = U$
- 2. **Minimalidad**: Ningún subconjunto propio de K tiene la propiedad de unicidad.

Ejercicios

Ejercicios

1. Identificando llaves candidatas

Considere la relación R(U, F), tal que

$$U = \{A,B,C,D,E\} \quad \text{ y } \quad F = \{D \rightarrow C, \ CE \rightarrow A, \ D \rightarrow A, \ AE \rightarrow D\}.$$

¿Cuáles de los siguientes conjuntos de atributos constituyen llaves candidatas?

CE, BDE, BD, CDE, AD, BCE y A.

Eiercicios

2. Detractores de E

Considere la relación R(U, F), con $U = \{A, B, C, D, E\}$, que satisface el conjunto de dependencias funcionales $F = \{AB \rightarrow C, C \rightarrow D, BD \rightarrow E\}$. ¿Cuáles de los siguientes conjuntos de atributos no determinan funcionalmente a E?

ABC, AB, BC, AD, ACD, BE v C.

Suponga que el conjunto universo U de una relación R es $U = \{A, B, C\}$. Actualmente, R sólo contiene a la tupla (0,0,0), y dicha relación siempre satisface las dependencias funcionales $A \to B$ y $B \to C$. ¿Cuáles de las siguientes tuplas pudieran ser insertadas en R?

(0,1,0), (0,0,2), (1,1,0), (1,0,2), (0,1,2), (1,2,0) y (1,0,1).

Se conoce de la existencia de una relación R(U, F), donde

$$U = \{A, B, C, D, E\}$$
 y $F = \{A \rightarrow B, B \rightarrow C, DE \rightarrow A\},\$

pero hemos perdido los valores de ciertas tuplas. ¿Podrías ayudarnos a completarlas? Ten en cuenta que los atributos pueden tomar valores entre 0 y 3.

Ejercicios

5. Aprovechando los vacíos legales (la secuela)

¿De verdad entendieron lo que son las dependencias funcionales? Se conoce de la existencia de una relación R(A,B,C,D,E) que satisface las dependencias funcionales: $\{CE \rightarrow A, AE \rightarrow D, A \rightarrow E, D \rightarrow CA\}$

Pero somos muy despistados y nuevamente hemos perdido valores de ciertas tuplas. ¿Podrías sugerirnos cómo completarlas? Los atributos pueden tomar valores entre 1 y 20.

(2,1, NULL,1,3), (7,15,6, NULL,3), (2,5, NULL, NULL, NULL), (NULL,4,9,1,3)

Normalización

Recordar es volver a vivir

¿Es este un buen diseño?

#E	ENombre	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	<i>a</i> ₃	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	a_3	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
e_5	Carlos	113	Pinar del Río	a_3	Álgebra	3

¿Es este un buen diseño?

<u>#</u> E	ENombre	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	<i>a</i> ₃	Álgebra	4
e_1	Juan	111	La Habana	a_4	Programación	5
e_3	Pedro	111	La Habana	<i>a</i> ₃	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_4	Programación	4

Anomalías de inserción, eliminación y modificación

Entonces...

¿Cómo solucionar estas anomalías?

Fácil...

Estudiante				Provincia-G	rupo	
<u>#E</u>	ENombre	Prov	rincia	<u>Provincia</u>	Grupo	
e_1	Juan	La Ha	abana -	La Habana	111	
e_2	María	Mata	anzas	Matanzas	112	_
e_3	Pedro	La Ha	abana	Mayabeque	112	
e_4	Rita	Maya	beque	Pinar del Río	113	
<i>e</i> ₅	Carlos	Pinar o	del Río			
		ı	Asignatura			
		<u>#A</u>	ANombre			
		a_1	Análisis			
		a_2	Lógica			
		a_3	Álgebra			
		a_4	Programació	n		

Evaluar #A Nota 3 e_1 a_1 e_1 a_2 e_1 **a**3 5 e_1 **a**4 e_3 **a**3 3 e_2 a_1 3 e_2 a_2 3 e_4 a_2 *e*₄ *a*₄

*a*3

*e*5

3

Formalizando el diseño

¿Cómo obtener esta solución?

Proyección de las dependencias funcionales

Dados un esquema relacional R(U,F) y un conjunto de atributos Z tal que $Z\subseteq U$, la proyección de un conjunto de dependencias funcionales F sobre un conjunto de atributos Z – denotada por $\Pi_Z(F)$ – consiste en el conjunto de dependencias funcionales $X\to Y$ de F^+ tales que $XY\subseteq Z$.

$$\Pi_{Z}(F) = \{X \to Y \mid F \models X \to Y \land XY \subseteq Z\}$$

Descomposición de un esquema relacional

La descomposición del esquema relacional R(U, F) se representa por

$$\rho = \{R_1(U_1, F_1), R_2(U_2, F_2), ..., R_n(U_n, F_n)\}$$

de manera tal que:

$$V = \bigcup_{i=1}^n U_i$$

Para todo i = 1, ..., n se cumple que $F_i = \Pi_{U_i}(F)$

Normalización de una base de datos relacional

```
Estudiante(U_1, F_1):

U_1 = \{ \#E, ENombre, Provincia \}

F_1 = \{ \#E \rightarrow Enombre, Provincia \}
```

Asignatura(U_3 , F_3): $U_3 = \{ \#A, ANombre \}$ $F_3 = \{ \#A \rightarrow ANombre \}$

Provincia-Grupo(U_2 , F_2): $U_2 = \{\text{Provincia, Grupo}\}$ $F_2 = \{\text{Provincia} \rightarrow \text{Grupo}\}$

Evaluar(
$$U_4$$
, F_4):
 $U_4 = \{ \#E, \#A, Nota \}$
 $F_4 = \{ \#E, \#A \rightarrow Nota \}$

Formas normales

Primera Forma Normal

Un esquema relacional R(U, F) está en primera forma normal (1FN) si todos los atributos toman un solo valor del dominio subyacente.

La trivial

<u>#</u> E	ENombre	Grupo	Provincia	<u>#A</u>	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	a_4	Programación	5
e_3	Pedro	111	La Habana	<i>a</i> ₃	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_4	Programación	4
<i>e</i> ₅	Carlos	113	Pinar del Río	<i>a</i> ₃	Álgebra	3

Toda relación se encuentra en primera forma normal

Dependencia funcional completa

Dado un esquema relacional R(U,F) y los atributos X, Y de R (posiblemente compuestos), se dice que Y depende funcional y completamente de X si y solo si Y depende funcionalmente de X y no depende de algún subconjunto propio de X.

¿Qué dependencias funcionales existen en esta relación?

#E	ENombre	Grupo	Provincia	#A	ANombre	Nota
$\overline{e_1}$	Juan	111	La Habana	$\overline{a_1}$	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	<i>a</i> ₃	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	a_3	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
e_5	Carlos	113	Pinar del Río	a_3	Álgebra	3

Clasificando dependencias

```
\#E, \#A \rightarrow ENombre
\#E, \#A \rightarrow Grupo
\#E, \#A \rightarrow Provincia
\#E. \#A \rightarrow ANombre
\#E, \#A \rightarrow Nota
\#E \rightarrow ENombre
\#E \rightarrow Grupo
\#E \rightarrow Provincia
\#A \rightarrow ANombre
Provincia \rightarrow Grupo
```

Clasificando dependencias

```
\#E, \#A \rightarrow ENombre
\#E, \#A \rightarrow Grupo
                                     Incompletas
\#E, \#A \rightarrow Provincia
\#E. \#A \rightarrow ANombre
\#E, \#A \rightarrow Nota
\#E \rightarrow ENombre
\#E \rightarrow Grupo
                                     Completas
\#E \rightarrow Provincia
\#A \rightarrow ANombre
Provincia \rightarrow Grupo
```

Formas normales

Segunda Forma Normal

Un esquema relacional R(U, F) está en segunda forma normal (2FN), si está en 1FN y todos los atributos no llaves dependen completamente de la llave.

Llegando hasta segunda

Estudiante

<u>#E</u>	ENombre	Provincia	Grupo
e_1	Juan	La Habana	111
e_2	María	Matanzas	112
e_3	Pedro	La Habana	111
e_4	Rita	Mayabeque	112
<i>e</i> ₅	Carlos	Pinar del Río	113

Asignatura

<u>#A</u>	ANombre	
a_1	Análisis	
a_2	Lógica	
a_3	Álgebra	
<i>a</i> ₄	Programación	

Evaluar

<u>#E</u>	<u>#A</u>	Nota
e_1	a_1	3
e_1	a_2	2
e_1	<i>a</i> ₃	4
e_1	<i>a</i> ₄	5
e_3	<i>a</i> ₃	4
e_2	a_1	3
e_2	a_2	3
e_4	a_2	3
e_4	<i>a</i> ₄	4
<i>e</i> ₅	<i>a</i> ₃	3

Llegando hasta segunda

Estudiante

<u>#E</u>	ENombre	Provincia	Grupo
e_1	Juan	La Habana	111
e_2	María	Matanzas	112
e_3	Pedro	La Habana	111
e_4	Rita	Mayabeque	112
<i>e</i> ₅	Carlos	Pinar del Río	113

Asignatura

<u>#A</u>	ANombre
a_1	Análisis
a_2	Lógica
a_3	Álgebra
<i>a</i> ₄	Programación

Evaluar

<u>#E</u>	<u>#A</u>	Nota
e_1	a_1	3
e_1	a_2	2
e_1	<i>a</i> ₃	4
e_1	<i>a</i> ₄	5
e_3	<i>a</i> ₃	4
e_2	a_1	3
e_2	a_2	3
<i>e</i> ₄	a_2	3
<i>e</i> ₄	<i>a</i> ₄	4
<i>e</i> ₅	<i>a</i> ₃	3

Llegando hasta segunda

Todavía existe redundancia innecesaria

Dado un esquema relacional R(U,F) y los atributos X, Y y Z de R (posiblemente compuestos), se dice que Z depende funcional y transitivamente de X si y solo si Y y Z dependen funcionalmente de X y, además, Z depende funcionalmente de Y. Si Z no dependiera funcionalmente de Y, entonces se dice que Y y Z son mutuamente independientes.

Estudiante

<u>#</u> E	ENombre	Provincia	Grupo
e_1	Juan	La Habana	111
e_2	María	Matanzas	112
e_3	Pedro	La Habana	111
<i>e</i> ₄	Rita	Mayabeque	112
e_5	Carlos	Pinar del Río	113

 $\begin{array}{l} \#\mathsf{E} \to \mathsf{ENombre} \\ \#\mathsf{E} \to \mathsf{Grupo} \\ \#\mathsf{E} \to \mathsf{Provincia} \\ \mathsf{Provincia} \to \mathsf{Grupo} \end{array}$

Estudiante

<u>#</u> E	${\sf ENombre}$	Provincia	Grupo	
e_1	Juan	La Habana	111	$\#E \to ENombre$
e_2	María	Matanzas	112	#E o Grupo
<i>e</i> ₃	Pedro	La Habana	111	#E o Provincia
<i>e</i> ₄	Rita	Mayabeque	112	Provincia $ o$ Grupo
<i>e</i> ₅	Carlos	Pinar del Río	113	

$$\#E o \mathsf{Provincia}$$
, $\mathsf{Provincia} o \mathsf{Grupo} \models \#E o \mathsf{Grupo}$

Estudiante

<u>#</u> E	ENombre	Provincia	Grupo	
e_1	Juan	La Habana	111	$\#E \to ENombre$
e_2	María	Matanzas	112	#E o Grupo
e_3	Pedro	La Habana	111	#E o Provincia
e_4	Rita	Mayabeque	112	$Provincia \to Grupo$
<i>e</i> ₅	Carlos	Pinar del Río	113	

 $\#\mathsf{E} \to \mathsf{Provincia},\, \mathsf{Provincia} \to \mathsf{Grupo} \models \#\mathsf{E} \to \mathsf{Grupo}$

Existe una dependencia funcional transitiva

Formas normales

Tercera Forma Normal

Un esquema relacional R(U, F) está en tercera forma normal (3FN), si está en 2FN y los atributos no llaves son mutuamente independientes.

Al fin, la tercera

Estudiante			Provincia-Grupo			
<u>#E</u>	ENombre	Provincia		<u>Provincia</u>	Grupo	
e_1	Juan	La Habana		La Habana	111	
e_2	María	Matanzas		Matanzas	112	
e_3	Pedro	La Habana		Mayabeque	112	
e_4	Rita	Mayabeque	!	Pinar del Río	113	
e_5	Carlos	Pinar del Rí	0			
Asignatura						
		<u>#A</u> Af	Vombre			

Análisis

Lógica

Álgebra

Programación

 a_1

 a_2

*a*₃

a4

Evaluar				
<u>#E</u>	$\underline{\#A}$	Nota		
e_1	a_1	3		
e_1	a_2	2		
e_1	<i>a</i> ₃	4		
e_1	a_4	5		
e_3	a_3	4		
e_2	a_1	3		
e_2	a_2	3		
<i>e</i> ₄	a_2	3		
<i>e</i> ₄	<i>a</i> ₄	4		
e_5	a_3	3		

Entonces...

... alguna duda?

Ejercicios 6. ;FN?

Considere el siguiente esquema relacional R(U, F), donde:

 $U = \{A, B, C, D, E, G\} y$

 $F = \{ \text{ AB} \rightarrow \text{ C, C} \rightarrow \text{ A, BC} \rightarrow \text{ D, D} \rightarrow \text{ EG, BE} \rightarrow \text{ C, CG} \rightarrow \text{ B, CE} \rightarrow \text{ G} \}$

a) Analice en qué forma normal se encuentra R(U, F).

Ejercicios

7. Ahora con una tablita

Dado el siguiente esquema relacional R(U, F), donde:

 $U = \{ CI, Nombre, NoCuenta, Banco, CodBanco \} y$

 $\mathsf{F} = \{ \ \mathsf{CI} \to \mathsf{Nombre}, \ \mathsf{NoCuenta}, \ \mathsf{CodBanco}; \ \mathsf{CodBanco} \to \mathsf{Banco} \ \}$

CI	Nombre	NoCuenta	CodBanco	Banco
99031603817	Lucía	0596 9143 9134 2891	634	BM Carlos 3ro
97011344519	Alexa	0585 3772 8749 1234	636	BM Belascoain
93032683916	Eduardo	0512 3142 8246 1823	634	BM Carlos 3ro
89032182713	Amelia	0533 3567 2243 8821	637	BM CN Miramar

- a) Analice en qué FN se encuentra la relación.
- b) ¿Se producen anomalías en este ejemplo? Si la respuesta es afirmativa, ejemplifique cuáles.
- c) En función de lo analizado en el inciso anterior, proponga una descomposición en la que no se produzcan tales anomalías.

Bases de Datos

Ejercitación. Teoría del diseño: Tercera Forma Normal

Lic. Andy Ledesma García Lic. Víctor M. Cardentey Fundora Dra. C. Lucina García Hernández

Departamento de Computación Facultad de Matemática y Computación Universidad de La Habana

Licenciatura en Ciencia de Datos

15 de febrero de 2024