Obliczenia Naukowe Lista 2 Laboratoria

Piotr Szyma

1 listopada 2017

1.1 Opis problemu

Powtórz zadanie 5 z listy 1, ale usuń ostatnią 9 z x_4 i ostatnią 7 z x_5 . Jaki wpływ na wyniki mają niewielkie zmiany danych?

1.2 Rozwiązanie

Uruchomiłem program z pierwszej listy po dokonaniu modyfikacji wejścia. Wyniki zestawiłem w tabeli poniżej. Numeracja algorytmów to odpowiednio 1, 2 - algorytmy sumowania odpowiednio w górę i w dół, 3, 4 - sumy częściowe.

1.3 Wynik

Float64

algorytm	przed	po
1	1.025188e - 10	-4.296343e - 03
2	-1.564331e - 10	-4.296343e - 03
3	0.000000e + 00	-4.296343e - 03
4	0.000000e + 00	-4.296343e - 03

Float32

$_algorytm$	przed	po
1	-4.999443e - 01	-4.999443e - 01
2	-4.543457e - 01	-4.543457e - 01
3	-5.000000e - 01	-5.000000e - 01
4	-5.000000e - 01	-5.000000e - 01

W przypadku arytmetyki Float64 lekka zmiana wektorów przyczyniła się do zmiany ostatecznego wyniku - wciąż znacznie odbiegajacego od realnych wartości. Dla arytmetyki Float32 usunięcie ostatnich cyfr nie miało wpływu na ostateczny wynik, gdyż arytmetyka nie jest wystarczająco dokładna.

ANALIZA WYNIKU

2 Zadanie 2

2.1 Opis problemu

Narysować wykres funkcji $f(x) = e^x \ln(1 + e^{-x})$ w co najmniej dwóch dowolnych programach do wizualizacji. Następnie policzyć granicę funkcji $\lim_{x\to\infty} f(x)$. Porównać wykres funkcji z policzoną granicą. Wyjaśnić zjawisko.

2.2 Rozwiązanie

Oto granica funkcji f(x):

$$\lim_{x \to \infty} e^x \ln(1 + e^{-x}) = 1$$

2.3 Wynik

Wykresy wygenerowane za pomocą dwóch programów do wizualzacji załączone są na Rysunkach 1 i 2.

Rysunek 1: Wykres wygenerowany za pomocą biblioteki matplotlib w języku Python

Rysunek 2: Wykres wygenerowany za pomocą biblioteki Plot w języku Julia ANALIZA WYNIKU

3.1 Opis problemu

Rozwiązać układy równań podane w specyfikacji zadania za pomocą dwóch algorytmów: eliminacji Gaussa ($\mathbf{x} = \mathbf{A}/\mathbf{b}$) oraz $x = A^{-1}b$ ($\mathbf{x} = \mathbf{inv}(\mathbf{A}) * \mathbf{b}$). Eksperymenty wykonać dla macierzy Hilberta $\mathbf{H_n}$ z rosnącym stopniem n > 1 oraz dla macierzy losowej R_n , n = 5, 10, 20 z rosnącym wskaźnikiem uwarunkowania $c = 10, 10^3, 10^7, 10^{12}, 10^{16}$. Porównać obliczony \tilde{x} z rozwiązaniem dokładnym x = (1, ..., 1)T, tj. policzyć błędy względne.

W języku Julia za pomocą funkcji cond(A) można sprawdzić jaki jest wskaźnik uwarunkowania wygenerowanej macierzy. Natomiast za pomocą funkcji rank(A) można sprawdzić jaki jest rząd macierzy.

3.2 Rozwiązanie

W celu wykonania podanych w treści zadania obliczeń, stworzyłem w języku Julia odpowiednie funkcje. Błędy względne obliczeń wyliczyłem przy pomocy normy wektora wg. wzoru:

$$\delta = \frac{||\widetilde{x} - x||}{||x||}$$

Poniżej przedstawiłem tabelę - zestawienie wyników.

3.3 Wynik

Macierz Hilberta

n	gauss	random
1	0.00000000000e + 00	0.00000000000e + 00
2	5.6610488670e - 16	1.4043333874e - 15
3	8.0225937723e - 15	0.0000000000e + 00
4	4.4515459602e - 13	4.0996530222e - 13
5	1.6828426299e - 12	3.2543043466e - 12
6	2.6189133023e - 10	1.2883031376e - 10
7	1.1328142969e - 08	4.0328055817e - 09
8	3.5398446689e - 07	3.8628224721e - 07
9	6.0153150454e - 06	1.1373234205e - 05
10	2.5639289838e - 04	4.7875286566e - 04
11	9.2062284978e - 03	1.3773749165e - 02
12	2.1237698492e - 01	8.1189912224e - 02
13	5.6147916245e + 00	3.7001925765e + 00
14	5.0203088003e + 01	5.3099680319e + 01
15	2.1930762488e + 00	5.9233167411e + 00
16	9.3939371128e + 00	7.3739406019e + 00
17	1.8900539672e + 00	7.7696770018e + 00
18	1.7078652201e + 01	3.3606846658e + 01
19	1.9533296871e + 01	1.1440959715e + 01
20	2.2728620198e + 01	3.3526120880e + 01

Losowa macierz o zadanym współczynniku cond

n	cond	gauss	random
5	1	1.7199501140e - 16	7.0216669372e - 17
5	3	1.9860273226e - 16	7.0216669372e - 17
5	7	0.00000000000e + 00	9.9301366130e - 17
5	12	4.9650683065e - 17	7.0216669372e - 17
5	16	2.2204460493e - 16	4.0943002132e - 16
10	1	2.8737410464e - 16	2.1925147984e - 16
10	3	2.9582808635e - 16	2.4575834280e - 16
10	7	3.3674731643e - 16	3.0807438657e - 16
10	12	3.4577699598e - 16	2.7644330376e - 16
10	16	3.1791949214e - 16	3.7975470272e - 16
20	1	5.8904629596e - 16	4.9836525323e - 16
20	3	4.0716587481e - 16	3.1499827100e - 16
20	7	3.4488466676e - 16	3.7731252496e - 16
20	12	3.6316343785e - 16	4.5165750266e - 16
20	16	7.7992673607e - 16	8.1319573640e - 16

ANALIZA WYNIKU

4.1 Opis problemu

"Złośliwy wielomian" Wilkinsona. Zainstalować pakiet Polynomials.

- (a) Użyć funkcji roots z pakietu Polynomials do obliczenia 20 zer wielomianu P zadanego w treści zadania. Sprawdzić obliczone pierwiastki $z_k, 1 \leq k \leq 20$, obliczając $|P(z_k)|, |p(z_k)|$ i $|z_k k|$. Wyjaśnić rozbieżność. Zapoznać się z funkcjami Poly, poly, polyval z pakietu Polynomials.
- (b) Powtórzyć eksperyment Wilkinsona, tj. zmienić współczynnik -210na $-210-2^{-23}.$ Wyjaśnić zjawisko.

4.2 Rozwiązanie

Funkcja Poly(x) generuje wielomian w zależności od współczynników podanych jako parametr. Funkcja poly(x) tworzy wielomian na podstawie pierwiastków wielomianu, natomiast funkcja polyval(p, x) pozwala na wyliczenie wartości wielomianu p dla zadanego argumentu x.

4.3 Wynik

Wyniki

k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	3744.9845589677943	634368.0	3.4638958368304884e - 14
2	0.286276201356511	2.000828411463103e18	1.5000000000121532
3	0.008870981937623812	7.081833742276362e17	2.666666671480031
4	0.001292543281409042	6.975238303156173e16	3.749999292770549
5	0.0002468752348492309	5.532738743218158e17	4.800030116128743
6	6.359660288768332e - 5	8.711755039228508e17	5.832765543928463
7	1.5599974479103758e - 5	1.1467631332545471e18	6.860997629758284
8	1.5599974479103758e - 5	1.1467631332545471e18	7.860997079449626
9	3.294359732426998e - 6	1.4150728707341862e18	8.887894252414426
10	3.294359732426998e - 6	1.4150728707341862e18	9.887892124924674
11	6.147094764624633e - 7	1.635099126269708e18	10.910961341089823
12	6.147094764624633e - 7	1.635099126269708e18	11.91095953363977
13	1.1060473806865536e - 7	1.7942764158130138e18	12.928459786425634
14	1.1060473806865536e - 7	1.7942764158130138e18	13.928458857167234
15	2.1833150474298537e - 8	1.8986230967648804e18	14.940250578500368
16	2.1833150474298537e - 8	1.8986230967648804e18	15.94025025231326
17	5.2738380570532775e - 9	1.9603045451252319e18	16.94726438591253
18	5.2738380570532775e - 9	1.9603045451252319e18	17.94726431805519
19	1.810441792686032e - 9	1.9903054634328896e18	18.950637706265248
20	1.810441792686032e - 9	1.9903054634328896e18	19.950637702768113

ANALIZA WYNIKU

5.1 Opis problemu

Równanie rekurencyjne (model logistyczny, model wzrostu populacji)

$$p_{n+1} := p_n + rp_n(1 - p_n) dla \ n = 0, 1, 2, \dots$$

Zadanie polegało na przeprowadzeniu następującego eksperymentu:

- (a) Dla danych $p_0 = 0.01$ oraz r = 3 wykonać 40 iteracji w/w wyrażenia (1), następnie 40 iteracji z modyfikacją po 10 iteracji obciąć wynik (2), odrzucając cyfry po 3 miejscu po przecinku. Obliczenia wykonać w arytmetyce Float32. Porównać wyniki.
- (b) Porównać wyliczanie 40 iteracji dla arytmetyk Float32 oraz Float64.

5.2 Rozwiązanie

W celu wyliczenia zadanych rekurencji stworzyłem program w Julii. Wyniki obliczeń przedstawiłem w tabeli poniżej.

5.3 Wynik

Wyniki (a)

n	(1)	(2)
1	0.039700001478195	0.039700001478195
2	0.154071733355522	0.154071733355522
3	0.545072615146637	0.545072615146637
4	1.288978099822998	1.288978099822998
5	0.171518802642822	0.171518802642822
10	0.722930610179901	0.722000002861023
15	1.270483732223511	1.257216930389404
20	0.579903602600098	1.309691071510315
25	1.007080554962158	1.092910766601563
30	0.752920925617218	1.319182157516479
35	1.021098971366882	0.034241437911987
40	0.258605480194092	1.093567967414856

Wyniki (b)

n	Float32	Float 64
1	0.039700001478195	0.0397000000000000
2	0.154071733355522	0.154071730000000
3	0.545072615146637	0.545072626044421
4	1.288978099822998	1.288978001188801
5	0.171518802642822	0.171519142109176
10	0.722930610179901	0.722914301179573
15	1.270483732223511	1.270261773935077
20	0.579903602600098	0.596529312494691
25	1.007080554962158	1.315588346001072
30	0.752920925617218	0.374146489639287
35	1.021098971366882	0.925382128557105
40	0.258605480194092	0.011611238029749

ANALIZA WYNIKU

6 Zadanie 6

6.1 Opis problemu

Dla zadanego równania rekurencyjnego przeprowadź serię eksperymentów.

$$x_{n+1} = x_{n,2} + c \ dla \ n = 0, 1, 2, \dots$$

Wykonać w arytmetyce Float64 40 iteracji wyrażenia dla 7 zestawów danych podanych w treści zadania.

6.2 Rozwiązanie

W celu wyliczenia zadanych rekurencji stworzyłem program w Julii. Wyniki obliczeń przedstawiłem w tabeli poniżej.

6.3 Wynik

ANALIZA WYNIKU