

A Compact Course on Linear Algebra

Laboratorio di Intelligenza Artificiale e **Grafica Interattiva** Anno Accademico 2019/20

Giorgio Grisetti

Part of the material of this course is taken from the Robotics 2 lectures given by G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

Vectors

- Arrays of numbers
- They represent a point in a n dimensional space

Vectors: Scalar Product

- Scalar-Vector Product $k \cdot \mathbf{a}$
- Changes the length of the vector, but not its direction

Vectors: Sum

Sum of vectors (is commutative)

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Can be visualized as "chaining" the vectors.

Vectors: Dot Product

Inner product of vectors (is a scalar)

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \sum_{i} a_i \cdot b_i$$

• If one of the two vectors |a| = 1the inner product $a \cdot b$ returns the length of the projection of b along the direction of a

If a · b = 0 the two vectors are orthogonal

Vectors: Linear (In) Dependence

- A vector **b** is **linearly dependent** from $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ if $\mathbf{b} = \sum k_i \cdot \mathbf{a}_i$
- In other words if b can be obtained by summing up the a_i properly scaled.
- If do not exist $\{k_i\}$ such that $\mathbf{b} = \sum_i k_i \cdot \mathbf{a}_i$ then \mathbf{b} is independent from $\{\mathbf{a}_i\}$

Vectors: Linear (In)Dependence

- A vector **b** is **linearly dependent** from $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ if $\mathbf{b} = \sum k_i \cdot \mathbf{a}_i$
- In other words it \mathbf{b} can be obtained by summing up the \mathbf{a}_i properly scaled.
- If do not exist $\{k_i\}$ such that $\mathbf{b} = \sum_i k_i \cdot \mathbf{a}_i$ then \mathbf{b} is independent from $\{\mathbf{a}_i\}$

Matrices

- A matrix is written as a table of values
- Can be used in many ways:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

 Note: a d-dimensional vector is equivalent to a dx1 matrix

Matrices as Collections of Vectors

Column vectors

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{*1} & \mathbf{a}_{*2} & \cdots & \mathbf{a}_{*m} \\ \uparrow & \uparrow & \uparrow \\ a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

Matrices as Collections of Vectors

Row Vectors

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{1*}^{T} \\ \mathbf{a}_{2*}^{T} \\ \vdots \\ \mathbf{a}_{*n}^{T} \end{pmatrix}$$

Matrices Operations

- Sum (commutative, associative)
- Product (not commutative)
- Inversion (square, full rank)
- Transposition
- Multiplication by a scalar
- Multiplication by a vector

Matrix Vector Product

- The i component of $\mathbf{A} \cdot \mathbf{b}$ is the dot product $\mathbf{a}_{i*}^T \cdot \mathbf{b}$
- The vector $\mathbf{A} \cdot \mathbf{b}$ is linearly dependent from $\{\mathbf{a}_{*i}\}$ with coefficients $\{b_i\}$

$$\mathbf{A} \cdot \mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^T \\ \mathbf{a}_{2*}^T \\ \vdots \\ \mathbf{a}_{n*}^T \end{pmatrix} \cdot \mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^T \cdot \mathbf{b} \\ \mathbf{a}_{2*}^T \cdot \mathbf{b} \\ \vdots \\ \mathbf{a}_{n*}^T \cdot \mathbf{b} \end{pmatrix} = \sum_k \mathbf{a}_{*k} \cdot b_k$$

Matrix Vector Product

• If the column vectors represent a reference system, the product A⋅b computes the global transformation of the vector b according to {a*i}

Matrix Vector Product

- Each $a_{i,j}$ can be seen as a linear mixing coefficient that quantifies the contribution to $(\mathbf{A} \cdot \mathbf{b})_j$
- Example: Jacobian of a multidimensional function

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{pmatrix} \mathbf{J}_f = \begin{pmatrix} \frac{df_1}{dx_1} & \frac{df_1}{dx_2} & \cdots & \frac{df_1}{dx_m} \\ \frac{df_2}{dx_1} & \frac{df_2}{dx_2} & \cdots & \frac{df_2}{dx_m} \\ \vdots & \ddots & & \\ \frac{df_n}{dx_1} & \frac{df_n}{dx_2} & \cdots & \frac{df_n}{dx_m} \end{pmatrix}$$

Matrix Matrix Product

- Can be defined through
 - the dot product of row and column vectors
 - the linear combination of the columns of A
 scaled by the coefficients of the columns of B

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}
= \begin{pmatrix}
\mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*m} \\
\mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*m} \\
\vdots & & & & & \\
\mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*m}
\end{pmatrix}$$

$$= \begin{pmatrix}
\mathbf{A} \cdot \mathbf{b}_{*1} & \mathbf{A} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{A} \cdot \mathbf{b}_{*m}
\end{pmatrix}$$

Matrix Matrix Product

- If we consider the second interpretation we see that the columns of *C* are the projections of the columns of *B* through *A*
- All the interpretations made for the matrix vector product hold.

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$$

$$= \begin{pmatrix} \mathbf{A} \cdot \mathbf{b}_{*1} & \mathbf{A} \cdot \mathbf{b}_{*2} & \dots \mathbf{A} \cdot \mathbf{b}_{*m} \end{pmatrix}$$

$$\mathbf{c}_{*i} = \mathbf{A} \cdot \mathbf{b}_{*i}$$

Linear Systems

$\mathbf{A}\mathbf{x} = \mathbf{b}$

- Interpretations:
 - Find the coordinates x in the reference system of A such that b is the result of the transformation of Ax.
 - Many efficient solvers
 - Conjugate gradients
 - Sparse Cholesky Decomposition (if SPD)
 - ...
 - One can obtain a reduced system (A'b') by considering the matrix (A b) and suppressing all the rows which are linearly dependent
 - Let A'x=b' the reduced system with A':m'xn and b':m'x1 and rank A' = min(m',n)
 - The system might be either over-constrained (m'>n) or under-constrained (m'<n)

Over-constrained Systems

• An over-constrained does not admit an exact solution however if rank A' = cols(A) one may find a minimum norm solution by closed form pseudo inversion

$$\mathbf{x} = \underset{\mathbf{x}}{\operatorname{argmin}} ||\mathbf{A}'\mathbf{x} - \mathbf{b}'|| = (\mathbf{A}'^T\mathbf{A}')^{-1}\mathbf{A}'^T\mathbf{b}'$$

Linear Systems

- The system is under-constrained if the number of linearly independent columns (or rows) of A' is smaller than the dimension of b'
- An under-constrained system admits infinite solutions. The degree of infinity is cols(A') - rows(A')

Matrix Inversion

$$A \cdot B = I$$

- If A is a square matrix of full rank, then there is a unique matrix $B = A^{-1}$ such that the above equation holds.
- The ith row of A is and the jth column of A⁻¹ are:
 - orthogonal, if $i \neq j$
 - their scalar product is 1, otherwise
- The ith column of A⁻¹ can be found by solving the following system:

$$\mathbf{A} \cdot \mathbf{a}^{-1}{}_{*i} = \mathbf{i}_{*i}$$
 — This is the i^{th} column of the identity matrix

Trace

- Only defined for square matrices
- Sum of the elements on the main diagonal, that is

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

- It is a linear operator with the following properties
 - Additivity: $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
 - Homogeneity: $tr(c \cdot A) = c \cdot tr(A)$
 - Pairwise commutative: $tr(AB) = tr(BA), tr(ABC) \neq tr(ACB)$
- Trace is similarity invariant $\operatorname{tr}(P^{-1}AP) = \operatorname{tr}((AP^{-1})P) = \operatorname{tr}(A)$
- Trace is transpose invariant $tr(A) = tr(A^T)$
- Given two vectors \mathbf{a} and \mathbf{b} , $tr(\mathbf{a}^T \mathbf{b}) = tr(\mathbf{a} \mathbf{b}^T)$

Rank

- Maximum number of linearly independent rows (columns)
- Dimension of the **image** of the transformation $f(\mathbf{x}) = A\mathbf{x}$
- When A is $m \times n$ we have
 - $\operatorname{rank}(A) \geq 0$ and the equality holds iff A; the null matrix
 - $\operatorname{rank}(A) \leq \min(m, n)$
 - $f(\mathbf{x})$ is injective iff rank(A) = n
 - $f(\mathbf{x})$ is surjective iff rank(A) = m
 - if m=n , $f(\mathbf{x})$ is **bijective** and A is **invertible** iff $\mathrm{rank}(A)=n$
- Computation of the rank is done by
 - Gaussian elimination on the matrix
 - Counting the number of non-zero rows

- Only defined for square matrices
- Remember? $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$ if and only if $det(\mathbf{A}) \neq 0$
- For 2×2 matrices:

Let
$$\mathbf{A} = [a_{ij}]$$
 and $|\mathbf{A}| = det(\mathbf{A})$, then

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

• For 3×3 matrices the Sarrus rule holds:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}$$

• For **general** $n \times n$ atrices?

Let A_{ij} e the submatrix obtained from A by deleting the *i-th* row and the *j-th* column

Rewrite determinant for 3×3 natrices:

$$det(\mathbf{A}_{3\times 3}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}$$
$$= a_{11} \cdot det(\mathbf{A}_{11}) - a_{12} \cdot det(\mathbf{A}_{12}) + a_{13} \cdot det(\mathbf{A}_{13})$$

• For **general** $n \times n$ atrices?

$$det(\mathbf{A}) = a_{11}det(\mathbf{A}_{11}) - a_{12}det(\mathbf{A}_{12}) + \dots + (-1)^{1+n}a_{1n}det(\mathbf{A}_{1n})$$
$$= \sum_{j=1}^{n} (-1)^{1+j}a_{1j}det(\mathbf{A}_{1j})$$

Let $\mathbf{C}_{ij} = (-1)^{i+j} det(\mathbf{A}_{ij})$ e the (i,j)-cofactor, then

$$det(\mathbf{A}) = a_{11}\mathbf{C}_{11} + a_{12}\mathbf{C}_{12} + \dots + a_{1n}\mathbf{C}_{1n}$$
$$= \sum_{j=1}^{n} a_{1j}\mathbf{C}_{1j}$$

This is called the **cofactor expansion** across the first row

- Problem: Take a 25 x 25 matrix (which is considered small). The cofactor expansion method requires n! multiplications. For n = 25, this is 1.5 x 10^25 multiplications for which a today supercomputer would take 500,000 years.
- There are much faster methods, namely using Gauss elimination to bring the matrix into triangular form.

Then:

$$\mathbf{A} = \begin{bmatrix} d_1 & * & * & * & * \\ 0 & d_2 & * & * & * \\ 0 & 0 & d_3 & * \\ 0 & 0 & 0 & d_4 \end{bmatrix} \qquad det(\mathbf{A}) = \prod_{i=1}^n d_i$$

Because for **triangular matrices** the determinant is the product of diagonal elements

Determinant: Properties

- Row operations (A still a $n \times n$ square matrix)
 - If ${f B}$ results from ${f A}$ by interchanging two rows, then $det({f B})=-det({f A})$
 - If ${\bf B}$ results from ${\bf A}$ by multiplying one row with a number c, then $det({\bf B})=c\cdot det({\bf A})$
 - If ${\bf B}$ results from ${\bf A}$ by adding a multiple of one row to another row, then $det({\bf B})=det({\bf A})$
- Transpose: $det(\mathbf{A}^T) = det(\mathbf{A})$
- Multiplication: $det(\mathbf{A} \cdot \mathbf{B}) = det(\mathbf{A}) \cdot det(\mathbf{B})$
- Does **not** apply to addition! $det(\mathbf{A} + \mathbf{B}) \neq det(\mathbf{A}) + det(\mathbf{B})$

Determinant: Applications

- Find **the inverse** \mathbf{A}^{-1} using Cramer's rule $\mathbf{A}^{-1} = \frac{\operatorname{adj}(\mathbf{A})}{\det(\mathbf{A})}$ with $\operatorname{adj}(\mathbf{A})$ being the adjugate of \mathbf{A}
- Compute **Eigenvalues** Solve the characteristic polynomial $det(\mathbf{A} \lambda \cdot \mathbf{I}) = 0$
- Area and Volume: area = |det(A)|

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$(r_i \text{ is } i\text{-th row})$$

Orthonormal matrix

• A matrix Q is **orthonormal** iff its column (row) vectors represent an **orthonormal** basis

$$q_{*i}^T \cdot q_{*j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}, \forall i, j$$

- As linear transformation, it is **norm** preserving, and acts as an isometry in Euclidean space (rotation, reflection)
- Some properties:
 - The transpose is the inverse $QQ^T = Q^TQ = I$
 - Determinant has unity norm (§ 1)

$$1 = det(I) = det(Q^T Q) = det(Q)det(Q^T) = det(Q)^2$$

Rotation matrix

A Rotation matrix is an orthonormal matrix with det =+1

• 2D Rotations
$$R(\theta) = \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix}$$

3D Rotations along the main axes

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \quad R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

IMPORTANT: Rotations are not commutative

$$R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}$$

$$R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.707 \\ 0.707 & 0.5 & 0.5 \end{bmatrix}, R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}$$

Matrices to represent Affine Transformations

 A general and easy way to describe a 3D transformation is via matrices

- Homogeneous behavior in 2D and 3D
- Takes naturally into account the noncommutativity of the transformations

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Combining Transformations

- A simple interpretation: chaining of transformations (represented ad homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives me the pose of the object wrt the robot

Combining Transformations

- A simple interpretation: chaining of transformations (represented ad homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives me the pose of the object wrt the robot

ABp gives me the pose of the object wrt the world

Symmetric matrix

• A matrix
$$A$$
 is **symmetric** if $A = A^T$, e.g.
$$\begin{bmatrix} 1 & 4 & -2 \\ 4 & -1 & 3 \\ -2 & 3 & 5 \end{bmatrix}$$

• A matrix
$$A$$
 is **skew-symmetric** if $A=-A^T$, e.g. $\begin{bmatrix} 0 & 4 & -2 \\ -4 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix}$

- **Every** symmetric matrix:
 - is diagonalizable $D=QAQ^T$, where D is a diagonal matrix of eigenvalues and Q is an orthogonal matrix whose columns are the eigenvectors of A

• define a quadratic form
$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \sum_{i,,j=1}^n a_{ij} x_i x_j$$

Positive definite matrix

- The analogous of positive number
- Definition M > 0 iff $z^T M z > 0 \forall z \neq 0$

Examples

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} z_1 & z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0$$

$$M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} z_1 & z_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 2z_1z_2 < 0, z_1 = -z_2$$

Positive definite matrix

- Properties
 - Invertible, with positive definite inverse
 - All real eigenvalues > 0
 - **Trace** is > 0
 - Cholesky decomposition $A = LL^T$
 - Partial ordering:M > N iff M N > 0
 - If M > N > 0, we have $N^{-1} > M^{-1} > 0$
 - If M, N > 0, then
 - M + N > 0

Jacobian Matrix

- It's a **non-square matrix** $n \times m$ in general
- Suppose you have a vector-valued function $f(\mathbf{x}) = \begin{vmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{vmatrix}$
- Then, the Jacobian matrix is defined as

$$\mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Jacobian Matrix

 It's the orientation of the tangent plane to the vectorvalued function at a given point

- Generalizes the gradient of a scalar valued function
- Heavily used for first-order error propagation

$$\mathbf{C}_{out} = \mathbf{F} \cdot \mathbf{C}_{in} \cdot \mathbf{F}^{T}$$

→ See later in the course

Quadratic Forms

 Many important functions can be locally approximated with a quadratic form.

$$f(\mathbf{x}) = \sum_{i,j} a_{ij} x_i x_j + \sum_i b_i x_i + c$$
$$= \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + c$$

 Often one is interested in finding the minimum (or maximum) of a quadratic form.

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})$$

Quadratic Forms

• How can we use the matrix properties to quickly compute a solution to this minimization problem?

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})$$

- At the minimum we have $f'(\hat{\mathbf{x}}) = 0$
- By using the definition of matrix product we can compute f'

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + c$$

 $f'(\mathbf{x}) = \mathbf{A}^T \mathbf{x} + \mathbf{A} \mathbf{x} + \mathbf{b}$

Quadratic Forms

■ The minimum of $f(x) = x^TAx + bx + c$ is where its derivative is set to 0

$$0 = \mathbf{A}^T \mathbf{x} + \mathbf{A} \mathbf{x} + \mathbf{b}$$

Thus we can solve the system

$$(\mathbf{A}^T + \mathbf{A})^T \mathbf{x} = -\mathbf{b}$$

If the matrix is symmetric, the system becomes

$$2Ax = -b$$

Solving that, leads to the minimum

Further Reading

 A "quick and dirty" guide to matrices is The Matrix Cookbook, see:

http://matrixcookbook.com