Data Structures in Python Chapter 4

- 1. Recursion Concepts
- 2. Recursion Stack and Memoization
- 3. Recursive Algorithms
- 4. Recursive Graphics

Agenda

- Recursion Definition
 - Definitions and Programming
 - Why recursion?
 - Concept Example
 - More Examples

Recursion Definition

See Recursion

Recursion Definition

- See Recursion
- Recursion is when a function calls itself
- Recursion simplifies program structure at a cost of function calls

Recursion — Image from AlgoDaily

The <u>Sierpinski triangle</u> a confined recursion of triangles that form a fractal

Recursion Definition

- See Recursion
- Recursion is when a function calls itself
- Recursion simplifies program structure at a cost of function calls
- Recursion vs. Leap of faith

recursion is when a function calls itself

Why recursion?

- A new "cultural experience"
 - A different way of thinking of problems or creative thinking
- It can solve some kinds of problems better than iteration.
- It leads to elegant, simplistic, and short code (when used well).
- Believe it or not, there are some programming languages ("functional" languages such as Scheme, ML, and Haskell) use recursion exclusively (no loops)
- This skill is a key component of the rest of our course.

Recursion

- Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem (as opposed to iteration).
- Recursive algorithm is expressed in terms of
 - base case(s) for which the solution can be stated non-recursively,
 - recursive case(s) for which the solution can be expressed in terms of a smaller version of itself.

Four stages in the construction of a **Koch snowflake**. The stages are obtained via a recursive definition.

Concept Example

- Pick one of students in the row and ask: How many students total are next you in your "row"?
 - You have poor vision, so you can see only the people next to you.
 So, you can't just look the sides and count.
 - But you are allowed to ask questions of two persons next to you.
 - How can we solve this problem, recursively?

Concept Example: pass the buck

- Number of people on the both sides of me:
 - If there is someone to the left side of me, ask him/her how many people are to the left size of him/her.
 - Do the same to the right side of me.
 - When they respond with a value L from the left and R from the right, then I will answer L + R + 1.
- If there is nobody both side of me, I will answer 1.

Recursion and cases

- Every recursive algorithm involves at least 2 cases:
 - base case: A simple occurrence that can be answered directly.
 - recursive case: A more complex occurrence of the problem that cannot be directly answered but can instead be described in terms of smaller occurrences of the same problem.
- Some recursive algorithms have more than one base or recursive case, but all have at least one of each.
- A crucial part of recursive programming is identifying these cases.

Example 1: Factorial

- Recurrence relation: A mathematical formula that generates the terms in a sequence from previous terms.
 - factorial(n) = $n * [(n-1) * (n-2) * \cdots * 1]$
 - factorial(n) = n * factorial(n-1)
- Recursive definition of factorial(n):

•
$$factorial(n) = \begin{cases} 1, & if n = 0 \\ n * factorial(n - 1), & if n > 0 \end{cases}$$

- Examples:
 - 4! = 4 * 3 * 2 * 1 = 24
 - -7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040

Example 1: Factorial

Recursive definition of factorial(n)

•
$$factorial(n) = \begin{cases} 1, & if n = 0 \\ n * factorial(n - 1), & if n > 0 \end{cases}$$

```
factorial(n)

function factorial
input: integer n such that n >= 0
output: [n × (n-1) × (n-2) × ... × 1]
    1. if n is 0, return 1
    2. otherwise, return [ n × factorial(n-1) ]
end factorial
```

```
factorial(n = 4)

f_4 = 4 * f_3
= 4 * (3 * f_2)
= 4 * (3 * (2 * f_1))
= 4 * (3 * (2 * (1 * f_0)))
= 4 * (3 * (2 * (1 * 1)))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * 6
= 24
```

Exercise: With four students, compute 4! using recursion.

Example 1: Factorial

Recursive definition of factorial(n)

•
$$factorial(n) = \begin{cases} 1, & if n = 0 \\ n * factorial(n - 1), & if n > 0 \end{cases}$$

```
factorial(n)

function factorial
input: integer n such that n >= 0
output: [n × (n-1) × (n-2) × ... × 1]
    1. if n is 0, return 1
    2. otherwise, return [ n × factorial(n-1) ]
end factorial
```


Exercise: With four students, compute 4! using recursion.

Consider the following function to print a line of * characters:

```
def print_stars(n):
    """prints a line containing the given number of stars.
    precondition: n >= 0 """
    for i in range(n):
        print('*', end='')
    print()
```

- Write a recursive version of this method (that calls itself).
 - Solve the problem without using any loops.
 - Hint: Your solution should print just one star at a time.

- What are the cases to consider?
 - What is a very easy number of stars to print without a loop?

```
def print_stars(n):
    if n == 1:
        print('*')
    else:
        ...
    print()
```

Handling additional cases, with no loops (in a wrong way):

```
def print_stars(n):
    if n == 1:
        print('*')
    elif n == 2:
        print('**')
    elif n == 3:
        print('***')
    ...
    else:
        ...
    print()
```

Taking advantage of the repeated pattern (somewhat better):

```
def print_stars(n):
    if n == 1:
        print('*')
    elif n == 2:
        print_stars(2)
    elif n == 3:
        print_stars(3)
    ...
    else:
        ...
    print()
```

Example 2: Using recursion properly

Condensing the recursive cases into a single case:

Example 2: Using recursion properly

• The real, even simpler base case is **an n of 0**, **not 1**:

Bad Recursion Example 1

- Problem:
 - Compute the sum of all integers from 1 to n

```
def bad_sum(n):
    return n + bad_sum(n-1)
```

No base case!!!

Bad Recursion Example 2

- Problem:
 - If n is odd, compute the sum of all odd integers from 1 to n; and if it is even compute sum of all even integers.

```
def bad_sum(n):
   if n == 0:
      return 0
   return n + bad_sum(n-2)
```

Base case cannot be reached!!!

- What is the result of the following call mystery(648)?
 Do it by hands, not running the code, and draw a diagram for the function calls.
- How many kinds of the results will you get if you give many different n?

```
def mystery(n):
    if n < 10:
        return n
    else:
        a = n // 10
        b = n % 10
        return mystery(a + b)</pre>
```

- What is the result of the following call mystery(648)? Do it by hands, not running the code.
- How many kinds of the results will you get if you give many different n?

```
def mystery(n):
    if n < 10:
        return n
    else:
        a = n // 10
        b = n % 10
        return mystery(a + b)</pre>
```

```
mystery(648):
    a = 648 // 10  # 64
    b = n % 10  # 8
    return mystery(72)  # mystery(72)
```

- What is the result of the following call mystery(648)?
 Do it by hands, not running the code.
- How many kinds of the results will you get if you give many different n?

```
def mystery(n):
    if n < 10:
        return n
    else:
        a = n // 10
        b = n % 10
        return mystery(a + b)</pre>
```

```
mystery(648):
    a = 648 // 10  # 64
    b = n % 10  # 8
    return mystery(72) # mystery(72)

    mystery(72):
        a = 72 // 10  # 7
        b = n % 10  # 2
        return mystery(9) # mystery(9)
```

- What is the result of the following call mystery(648)?
 Do it by hands, not running the code.
- How many kinds of the results will you get if you give many different n?

```
def mystery(n):
    if n < 10:
        return n
    else:
        a = n // 10
        b = n % 10
        return mystery(a + b)</pre>
```

```
mystery(648):
   a = 648 // 10 # 64
   b = n % 10 # 8
   return mystery(72) # mystery(72)
          mystery(72):
             a = 72 // 10 # 7
             b = n % 10 # 2
             return mystery(9) # mystery(9)
                     mystery(9):
                        return 9
```

What is result of the following call, mystery(234) and mystery(5067), respectively?
 Do it by hands and draw the function call diagrams like the previous example.

```
def mystery(n):
    if n < 10:
        return 10 * n + n
    else:
        a = mystery(n // 10)
        b = mystery(n % 10)
        return a * 100 + b</pre>
```

What is result of the following call, mystery(234) and mystery(5067), respectively?
 Do it by hands and draw the function call diagrams like the previous example.

```
def mystery(n):
    if n < 10:
        return 10 * n + n
    else:
        a = mystery(n // 10)
        b = mystery(n % 10)
        return a * 100 + b</pre>
```

```
mystery(234):
    return ...
```

Summary

- Recursion: see Recursion
- Recursion is when a function calls itself
 - It can be used to simplify complex solutions to difficult problems.
- A recursive algorithm passes the buck repeatedly to the same function.

