Das Federpendel – Experimentplanung

Material/Aufbau: Eine Feder wird an einem Stativ befestigt. Daneben stehen zwei unterschiedliche Massen und eine zweite Feder sowie eine Zeitmessgerät zur Verfügung.

Planen Sie Messreihen, die Sie dem Kurs vorführen könnten, um die Abhängigkeit der Schwingungsdauer qualitativ bis halb quantitativ herzuleiten.

Denken Sie daran, innerhalb einer Messreihen nur eine Variable zu verändern

→ Variablenkontrolle!

Ermitteln Sie die Schwingungsdauer nicht direkt, da der Zeitraum einer Messung zu kurz ist.

22.04.2024 Schwingungen

1. Messreihe: Veränderung von T durch D (m und y sind konstant)

	$D_1 = 3$ N/m	D ₂ = 10 N/m	D ₃ = 20 N/m
t [s]	15,92	9	6,15
T [s]	1,592	0,9	0,615

m = 0.2 kg

y = 0.04 m

Je größer die Federkonstante, desto geringer ist die Schwingungsdauer, wenn Masse und Auslenkung konstant bleiben.

22.04.2024 Schwingungen

2. Messreihe: Veränderung von T durch m (D und y sind konstant)

	m ₁ = 0,02kg	$m_2 = 0.1 kg$	$m_3 = 1 kg$
t [s]	1,5	4,28	9,56
T [s]	0,15	0,428	0,956

$$D = D_3 = 20 \text{ N/m}$$

$$y = 0.04 \text{ m}$$

Je größer die angehängte Masse, desto größer ist die Schwingungsdauer, wenn Federkonstante und Auslenkung konstant bleiben.

22.04.2024

3. Messreihe: Veränderung von T durch y (m und D sind konstant)

	$y_1 = 0.1 \text{ m}$	y ₂ = 0,03 m	$y_3 = 0.07 \text{ m}$
t [s]	6,77	6,39	6,47
T [s]	0,677	0,639	0,647

m = 0.2 kg

D = 20 N/m

Die Auslenkung hat so gut wie keine (Messungenauigkeit!) auf die Schwingungsdauer, wenn Federkonstante und Masse konstant bleiben.

HA: Auswertung: Zeichnen Sie die drei zugehörigen Diagramme T(D),T(m), T(y)

- Welchen Verlauf haben die Graphen, wenn Sie den Verlauf weiter nach rechts zeichnen? Welchen Funktionen ähneln sie?
- Tipp: Wurzelfunktion
- Vergleichen Sie T mit $\sqrt{\frac{m}{D}}$. Nutzen Sie dazu jede Messreihe 1x. Um welchen Faktor unterscheiden sich die jeweiligen Wertepaare? Kommt Ihnen diese Zahl bekannt vor? Leiten Sie daraus abschließend eine Formel für die Schwingungsdauer T eines Federpendels her.

22.04.2024 Schwingungen