

CONTROLE PREDITIVO DE ROBÔS MÓVEIS NÃO HOLONÔMICOS

Felipe Kühne

kuhne@eletro.ufrgs.br

Prof. Dr. João Manoel Gomes da Silva Jr.

jmgomes@eletro.ufrgs.br

Prof. Dr. Walter Fetter Lages

fetter@eletro.ufrgs.br

Universidade Federal do Rio Grande do Sul Escola de Engenharia

Departamento de Engenharia Elétrica

Objetivos Propostos

Estudo e desenvolvimento de algoritmos de controle preditivo (MPC) para robôs móveis dotados de rodas e com restrições não holonômicas abordando:

- proposta de um algoritmo MPC baseado em linearizações sucessivas sobre a trajetória;
- 2 implementação de algoritmos de controle preditivo não linear (NMPC);
- **3** comparação entre as estratégias acima em termos de: *complexidade*, *tempo de execução* e *desempenho*.

Motivação

O problema do controle de robôs móveis:

- Devido às condições de Brockett (Brockett, 1982), leis de controle suaves e invariantes no tempo não podem ser utilizadas para a estabilização de sistemas não holonômicos através de realimentação estática de estados;
- Solução: Leis de controle descontínuas (Bloch et al., 1990) e variantes no tempo (Samson, 1990).

Motivação

Desvantagens das abordagens clássicas:

- baixas taxas de convergência;
- trajetórias altamente oscilatórias;
- síntese e sintonia do controlador não é intuitiva;
- em implementações reais é difícil de se obter boa performance, devido às restrições nas entradas de controle e nos estados que naturalmente existem.

Motivação

Através do uso de Controle Preditivo:

- uma lei de controle variante no tempo é implicitamente gerada;
- restrições nas entradas de controle:
 - saturação e limites de torque dos atuadores podem ser considerados;
- restrições nos estados:
 - movimentação dentro de uma região segura.

Robôs Móveis

Modelagem matemática:

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = w \end{cases}$$

 $\mathbf{x} \triangleq [x \ y \ \theta]^T$: configuração do robô;

 $\mathbf{u} \triangleq [v \ w]^T$: entradas de controle.

Controle de Robôs Móveis

Objetivos:

- (a) estabilização em uma trajetória (rastreamento de trajetória);
- (b) estabilização em um ponto.

Controle de Robôs Móveis

Rastreamento de trajetória:

• Robô de referência:

$$\begin{cases} \dot{x}_r = v_r \cos \theta_r \\ \dot{y}_r = v_r \sin \theta_r \\ \dot{\theta}_r = w_r \end{cases}$$

• O problema de rastreamento de trajetória pode ser posto como encontrar uma lei de controle tal que

$$\mathbf{x}(t) - \mathbf{x}_r(t) = 0$$

em um intervalo de tempo finito.

Controle de Robôs Móveis

Estabilização em um ponto:

• Dada uma postura qualquer x_d , encontrar uma lei de controle tal que

$$\mathbf{x}(t) - \mathbf{x}_d = 0$$

em um intervalo de tempo finito.

• Por causa da Condição de Brockett, não existe lei de controle suave e invariante no tempo que resolva este problema.

- O método de controle preditivo baseia-se em um *modelo do sistema* para obter uma seqüência ótima de controle através da minimização de uma *função de custo* (Allgöwer, 1999);
- A cada instante de amostragem, é feita uma predição dos estados dentro de um intervalo de tempo finito, chamado *horizonte de predição*.
 Baseado nessas predições, a função de custo é minimizada com relação às futuras ações de controle em malha aberta;
- A função de custo é minimizada respeitando-se restrições nos estados e nas entradas de controle.

Problema de minimização da função de custo:

Resolvido *on line*, repetidamente a cada instante de amostragem k.

$$\mathbf{u}^{\star} = \arg\min_{\mathbf{u}} \left\{ \Phi(k) \right\}$$

sujeito a:
$$\mathbf{u}(k+i-1|k) \in \mathbb{U}$$
 $\mathbf{x}(k+i|k) \in \mathbb{X}$

onde $i \in [1, ..., N]$, obtendo-se uma sequência de controle ótima

$$\mathbf{u}^{\star} \triangleq \{\mathbf{u}^{\star}(k|k), \mathbf{u}^{\star}(k+1|k), \cdots, \mathbf{u}^{\star}(k+N-1|k)\}$$

- Apenas o controle para o instante atual $-\mathbf{u}^*(k|k)$ é aplicado na planta e o mesmo procedimento repete-se para o próximo instante de amostragem;
- Este mecanismo é comumente chamado de Estratégia de Horizonte Móvel (moving ou receding horizon), em referência ao modo com que a janela de tempo desloca-se de um instante de amostragem para o próximo;

- O controle preditivo tornou-se bem aceito em indústrias de processo, principalmente onde as plantas a serem controladas são suficientemente *lentas* para permitir a sua implementação;
- Entretanto, para sistemas não lineares e/ou com dinâmicas rápidas, a implementação de tal técnica permanece limitada, devido principalmente ao grande custo computacional envolvido na solução da otimização, que precisa ser resolvida *on-line*.

ABORDAGEM 1:

Linearizações sucessivas ao longo de uma trajetória de referência.

 O modelo é linearizado sucessivamente em torno de uma trajetória de referência ⇒ modelo linear variante no tempo;

$$\tilde{\mathbf{x}}(k+1) = \mathbf{A}(k)\tilde{\mathbf{x}}(k) + \mathbf{B}(k)\tilde{\mathbf{u}}(k),$$

$$\tilde{\mathbf{x}}(k) \triangleq \mathbf{x}(k) - \mathbf{x}_r(k), \quad \tilde{\mathbf{u}}(k) \triangleq \mathbf{u}(k) - \mathbf{u}_r(k)$$

• O problema de otimização é transformado em um problema de *Programação Quadrática*.

ABORDAGEM 1

Função de custo:

$$\Phi(k) = \sum_{j=1}^{N} \tilde{\mathbf{x}}^{T}(k+j|k) \mathbf{Q}\tilde{\mathbf{x}}(k+j|k) + \tilde{\mathbf{u}}^{T}(k+j-1|k) \mathbf{R}\tilde{\mathbf{u}}(k+j-1|k)$$

Variável de otimização:

$$\tilde{\mathbf{u}} \triangleq [\tilde{\mathbf{u}}^T(k|k) \cdots \tilde{\mathbf{u}}^T(k|k+N-1)]^T$$

Restrição:
$$\mathbf{u}_{min} \leq \mathbf{u}(k) \leq \mathbf{u}_{max}$$

$$\downarrow \downarrow$$

$$\mathbf{u}_{min} - \mathbf{u}_r(k) \leq \tilde{\mathbf{u}}(k) \leq \mathbf{u}_{max} - \mathbf{u}_r(k)$$

ABORDAGEM 1 - Resultados

$$N = 5$$
 $\mathbf{Q} = diag(1, 1, 0.5)$ $\mathbf{R} = 0.1\mathbf{I}$
 $-0.4 \le v \le 0.4$ $-0.4 \le w \le 0.4$

ABORDAGEM 2: MPC Não Linear - Estabilização em uma trajetória.

Função de custo:

$$\Phi(k) = \sum_{j=1}^{N} \tilde{\mathbf{x}}^{T}(k+j|k) \mathbf{Q}\tilde{\mathbf{x}}(k+j|k) + \tilde{\mathbf{u}}^{T}(k+j-1|k) \mathbf{R}\tilde{\mathbf{u}}(k+j-1|k)$$

Variáveis de otimização:
$$\mathbf{u} \triangleq [\mathbf{u}^T(k|k) \cdots \mathbf{u}^T(k+N-1|k)]^T$$

 $\mathbf{x} \triangleq [\mathbf{x}^T(k+1|k) \cdots \mathbf{x}^T(k+N|k)]^T$

Restrições:
$$\mathbf{x}(k+1) = f(\mathbf{x}(k), \mathbf{u}(k))$$

 $\mathbf{u}_{min} \leq \mathbf{u}(k) \leq \mathbf{u}_{max}$

ABORDAGEM 2 - Resultados

$$N = 5$$
 $\mathbf{Q} = diag(1, 1, 0.5)$ $\mathbf{Q}_N = 50\mathbf{Q}$ $\mathbf{R} = 0.1\mathbf{I}$ $-0.4 \le v \le 0.4$ $-0.4 \le w \le 0.4$

ABORDAGEM 3: MPC Não Linear - Estabilização em um ponto.

Função de custo:

$$\Phi(k) = \sum_{j=1}^{N} \mathbf{x}^{T}(k+j|k)\mathbf{Q}\mathbf{x}(k+j|k) + \mathbf{u}^{T}(k+j-1|k)\mathbf{R}\mathbf{u}(k+j-1|k)$$

Variáveis de otimização: $\mathbf{u} \triangleq [\mathbf{u}^T(k|k) \cdots \mathbf{u}^T(k+N-1|k)]^T$

$$\mathbf{x} \triangleq [\mathbf{x}^T(k+1|k) \cdots \mathbf{x}^T(k+N|k)]^T$$

Restrições: $\mathbf{x}(k+1) = f(\mathbf{x}(k), \mathbf{u}(k))$

$$\mathbf{u}_{min} \leq \mathbf{u}(k) \leq \mathbf{u}_{max}$$

$$\mathbf{x}_{min} \leq \mathbf{x}(k) \leq \mathbf{x}_{max}$$

ABORDAGEM 3 - Resultados

$$N = 5$$
 $\mathbf{Q} = diag(1, 1, 0.5)$ $\mathbf{Q}_N = 100\mathbf{Q}$ $\mathbf{R} = 0.01\mathbf{I}$ $-2 \le v \le 2$ $-2 \le w \le 2$ $-0.5 \le x \le 0.5$

Trabalhos Futuros

- Obtenção de trajetórias de aproximação para o modelo linearizado;
- Testes dos algoritmos com diversas funções de custo e matrizes de peso;
- Estudo de estabilidade;
- Implementação em tempo-real.

Publicações

- Estimação e Controle da Posição de um Robô Móvel Utilizando Filtro de Kalman. XV Congresso Brasileiro de Automática. Gramado, 2004;
- Model Predictive Control of a Mobile Robot Using Linearization. 4th Conference on Mechatronics and Robotics. Aachen, Germany, 2004.
- Point Stabilization of Mobile Robots with Model Predictive Control. A ser submetido.

Cronograma Previsto

	2004												2005	
	jan	fev	mar	abr	mai	jun	jul	ago	set	out	nov	dez	jan	fev
Artigo CBA														
Estudo MPC														
MPC linear														
Artigo MechRob														
MPC não linear														
Testes														
Estabilidade														
Tempo real														
Dissertação														
Defesa														

Restrições Não Holonômicas

- a velocidade no ponto de contato entre a roda e o solo (ponto C) é nula;
- a velocidade perpendicular ao plano da roda (π_2) é nula.

Restrições Não Holonômicas

Exemplo: carro

