

FUNCTIONS

INTERVAL NOTATION (III)

Contents include:

Bracket Interval Notation

www.mathifyhsc.com.au

• Bracket Interval Notation

Typically, when expressing the domain and range of a function, students may be accustomed to expressing these using the inequality signs \leq , \geq , < and >.

For example: $-1 \le x < 4$

An alternate method to express intervals is known as "Bracket Interval Notation", where the endpoints of our interval for x, $a \le x \le b$, are given in brackets like [a, b]. There are two types of brackets which can be used:

o A square bracket "[]" means that the endpoint is included. Therefore:

[a, b] will be the same as $a \le x \le b$

o A round bracket "()" means that the endpoint is excluded. Therefore:

(a, b) will be the same as a < x < b

Example 1: Convert the following domains into interval notation

a)
$$-3 \le x \le 5$$

[-3, 5]

b)
$$-1 \le x < 4$$

[_1 4`

c)
$$-7 < x \le 8$$

(-7,8]

When our interval for x is only bound to one endpoint, or no endpoints at all, we employ the use of ∞ or $-\infty$ with round brackets "() "to represent the unbounded side. Therefore:

If
$$x \ge a$$
, then $[a, \infty)$

If
$$x \leq a$$
, then $(-\infty, a]$

If x is any real number, then $(-\infty, \infty)$

Example 2: Convert the following domains into interval notation

a)
$$x > 1$$

 $(1, \infty)$

b)
$$x \le -7$$

 $(-\infty, -7]$

c)
$$x > -9$$

$$(-9, \infty)$$

If an interval has two or more parts to it, it may be represented through bracket interval form using the set notation symbol "U" which essentially means "or". Therefore:

If
$$x > a$$
 or $x < a$, then $(-\infty, -a) \cup (a, \infty)$

Example 3: Convert the following domains into interval notation

a) $x \le 3$ or $x \ge 9$

$$(-\infty,3] \cup [9,\infty)$$

b) $x < -8 \text{ or } x \ge 2$

$$(-\infty, -8) \cup [2, \infty)$$

c) $x \le -26 \text{ or } x > -4$

$$(-\infty, -26] \cup (-4, \infty)$$

Interval Notation Exercises

- 1. Convert the following into inequality interval notation for the range of a function
- a) $[-3, \infty)$
- b) (-1,2]
- c) $(-\infty, 4)$
- d) $(-\infty, -2] \cup (6, \infty)$
- 2. Convert the following into bracket interval notation
- a) $-4 < x \le 7$
- b) $x \ge -8$
- c) $x < -9 \text{ or } x \ge 8$
- d) $x < -2 \text{ or } 1 < x \le 3 \text{ or } x \ge 21$
- e) $x \in \mathbb{R}$, $x \neq 7$
- 3. Find the natural domain of the following functions, giving answers in interval notation
- a) $f(x) = \frac{1}{2x+3}$
- b) $g(x) = \sqrt{3-x}$
- c) $h(x) = \ln x + 3$
- d) $f(x) = \ln(x^2 + 3x 4)$

Interval Notation Exercise Answers

- 1.
- a) $y \ge -3$
- b) $-1 < y \le 2$
- c) v < 4
- d) $v \le -2 \text{ or } v > 6$
- 2.
- a) (-4,7]
- b) [-8, ∞)
- c) $(-\infty, -9) \cup [8, \infty)$
- d) $(-\infty, -2) \cup (1, 3] \cup [21, \infty)$
- e) $(-\infty,7) \cup (7,\infty)$
- 3.
- a) For these questions, it's always important to remember that the denominator cannot equal 0

$$\therefore 2x + 3 \neq 0$$

$$2x \neq -3$$

$$x \neq -\frac{3}{2}$$

$$2x \neq -3$$

$$x \neq -\frac{3}{2}$$

Therefore, the domain is $x \in \mathbb{R}$, $x \neq -\frac{3}{2}$ which means that x is any real number except $-\frac{3}{2}$. In interval notation this may be written as:

$$\left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, \infty\right)$$

b) For these questions, always remember that whatever is inside a square root function can never be less than 0

$$\therefore 3 - x \ge 0$$

The domain is that $x \le 3$, in interval notation this may be written as $(-\infty, 3]$

c) For these questions, always remember that whatever is inside a ln greater than 0

$$\therefore x > 0$$

In interval notation this domain may be written as $(0, \infty)$

d) Once again, whatever is inside ln must be greater than 0

$$\therefore x^2 + 3x - 4 > 0$$

$$(x+4)(x-1) > 0$$

$$x < -4 \text{ or } x > 1$$

The domain in interval notation may be written as $(-\infty, -4) \cup (1, \infty)$

