INTRODUÇÃO A CIÊNCIA DA COMPUTAÇÃO

LÓGICA DIGITAL 2

Maurício Moreira Neto¹

¹Universidade Federal do Ceará Departamento de Computação

31 de janeiro de 2020

Sumário

- 1 Lógica Proposicional
- 2 OU (OR)
- 3 E (AND)

- 4 Tabela Verdade
- 5 Operadores
- 6 Álgebra de Boole

Em lógica, um conceito importante é o de "Proposição"

O que é uma Proposição?

- Proposição: é um enunciado verbal, ao qual deve ser atribuído, sem ambiguidade, um valor lógico verdadeiro (V) ou falso (F)
- Exemplos de proposições:
 - Fulano de Tal é Professor (V)
 - 3 + 5 = 10 (F)
 - 5 < 8 (V)
- Contra-exemplos de Proposições:
 - Onde você vai ?
 - = 3 + 5
 - Os estudantes jogam vôlei. (quais ?)

- Lógica Proposicional
 - Exemplo:
 - O quarto está fechado
 - Meu livro está no quarto
 - Proposições combinadas:
 - O quarto está fechado E meu livro está no quarto
 - O quarto está fechado OU meu livro está no quarto

- Lógica Proposicional
 - Pode-se pensar que a proposição levar guarda-chuva como um resultado que deve ser calculado pelo combinação dos resultados das proposições chovendo e previsão do tempo:

- Lógica Proposicional
 - Pode-se pensar que a proposição Sócrates é mortal como um resultado que deve ser calculado pelo combinação dos resultados das proposições todo homem é mortal e Sócrates é homem:

- Lógica Proposicional
 - Desde que as proposições possam assumir apenas dois valores, pode-se expressar todas as saídas possíveis através de uma tabela:

0	U	
CHUVA	PREVISÃO	GUARDA- CHUVA
VERDADEIRO	VERDADEIRO	VERDADEIRO
VERDADEIRO	FALSO	VERDADEIRO
FALSO	VERDADEIRO	VERDADEIRO
FALSO	FALSO	FALSO

■ Lógica Proposicional (Continuação)

- Lógica Proposicional
 - A lógica trata de formas de argumentos consistindo de letras sentenciais combinadas com as expressões:

Estas expressões são chamadas de operadores ou conectivos lógicos

- Operações Lógicas: são usadas para formar novas proposições a partir de proposições existentes
 - Considerando p e q duas proposições genéricas, pode-se aplicar as seguintes operações lógicas básicas sobre elas

Operação	Símbolo	Significado
Negação	~	Não
Conjunção	^	E
Disjunção	٧	OU

- Definindo a prioridade:
 - Usar parênteses Exemplo: ((p v q) ^ (q))

- Exemplos de aplicação das operações lógica
 - Considere:
 - p = 7 é primo = (V)
 - q = 4 é impar = (F)
 - Então:
 - 4 NÃO é impar = q = (F) = (V)
 - 7 NÃO é primo = p = (V) = (F)
 - 7 é primo E 4 NÃO é impar = p ˆ q = (V ˆ (~F)) = (V ˆ V) = (V)
 - 7 é primo E 4 é impar = $p \hat{q} = (V \hat{F}) = (F)$
 - 4 é impar E 7 é primo = q p = (F V) = (F)
 - 4 é impar E 7 NÃO é primo = $q^{\hat{p}} = (F^{\hat{v}}) = (F^{\hat{v}}) = (F^{\hat{v}}) = (F^{\hat{v}})$

- Exemplos de aplicação das operações lógica (Cont.)
 - Considere:
 - p = 7 é primo = (V)
 - q = 4 é impar = (F)
 - Então:
 - 7 é primo OU 4 NÃO é impar = p v q = (V v (F)) = (V v V) =
 - 7 é primo OU 4 é impar = p v q = (V v F) = (V)
 - 4 é impar OU 7 é primo = q v p = (F v V) = (V)
 - 4 é impar OU 7 NÃO é primo = $q v \tilde{p} = (F v (\tilde{v})) = (F v F) =$ (F)

- Exemplos de aplicação das operações lógica
 - Resumindo:

р	q	~p	p^q	pvq
٧	٧	F	V	٧
٧	F	F	F	٧
F	٧	٧	F	٧
F	F	٧	F	F

- Ou seja:
 - Não (~) troca o valor lógico. Se é F passa a ser V e vice-versa
 - E (^) só tem valor V quando as duas proposições forem V, basta uma proposição ser F para o resultado ser F
 - OU (v) só tem valor F quando as duas proposições forem
 F, basta uma proposição ser V para o resultado ser V

Exercício 3 - Considerando p = V e q = F, resolva as seguintes expressões lógicas

```
~p
pvq
(~p) ^ q
(~p) v q
p ^ (~q)
p v (~q)
(~p) ^ (~q)
(~p) v (~q)
```


- Álgebra de Boole
 - Uma variável booleana só pode assumir apenas um dos valores possíveis:
 - 0 e 1

- Uma ou mais variáveis e operadores podem ser combinados formando uma função lógica
- Exemplo:
 - ((A e B) ou C)

- Álgebra de Boole
 - Utilizada em engenharia elétrica
 - 0 e 1 representam os dois diferentes estados de um bit em um circuito digital, tipicamente alta e baixa voltagem

 Os circuitos são descritos por expressões contendo variáveis

- Álgebra de Boole
 - Tabela Verdade
 - Resultados de uma função lógica
 - Podem ser expressos numa tabela relacionando todas as combinações possíveis dos valores que suas variáveis podem assumir
 - Relaciona seus resultados correspondentes

Α	В	AND	OR
0	0	0	0
0	1	0	-1
1	0	0	- 1
1	1	1	-1

Função

Lógica

Lógica Proposicional

Álgebra de Boole

Lista das combinações possíveis dos estados das variáveis de entrada

	Α	В	Z=f(A, B)
	0	0	0
-	0	1	1
	1	0	1
	1	1	1

Variáveis

Resultados da função lógica para cada combinação dos estados de entrada

Na tabela-verdade acima a função lógica Z possui duas variáveis:

A e B

E a função lógica:

Z = f(A, B) = A + B

- Álgebra de Boole
 - Porta Lógica OU (OR)
 - Necessita de duas ou mais entradas
 - Operador: + **F** = **A** + **B**
 - Símbolo

Tabela Verdade

A	В	F=(A+B)
0	0	0
0	1	1
1	0	1
1	1	1

- Álgebra de Boole
 - Porta Lógica E (AND)
 - Necessita de duas ou mais entradas
 - Operador: . F = A . B
 - Símbolo

Tabela Verdade

A	В	F=(A.B)
0	0	0
0	1	0
1	0	0
1	1	1

- Álgebra de Boole
 - Porta Lógica NÃO (NOT)
 - Necessita de somente uma entrada (Operação unária)
 - Pode ser combinada aos operadores AND e OR
 - Operador: A'
 - Símbolo

Tabela Verdade

A	A'
0	1
1	0

Obrigado!

maumneto@gmail.com

