Produktionssteuerung mit selbstlernenden Multiagentensystemen

Umsetzung anhand eines virtuellen Simulationsmodells

Inhalt

- 1. Motivation & Zielsetzung
- 2. Simulationsmodell & Steuerungsansätze
- 3. Ergebnisse
- 4. Kritik
- 5. Beantwortung der Forschungsfrage

Motivation

Wandel der Anforderungen:

- -> heterogenere & variablere Kundenbedürfnisse
- -> Anpassung der unternehmensinternen Strukturen für mehr Flexibilität

Idee: Produktionssteuerung durch selbstlernende Multiagentensysteme

Forschungsfrage

Wie leistungsfähig ist ein selbstlernendes Multiagentensystem in der Produktionssteuerung?

Beantwortung der Frage mittels:

- Modell eines Produktionssystems zur virtuellen Simulation
- Alternative Steuerungsansätzen zum Leistungsvergleich

Vorgängerarbeit

- Einzelagent-System
- Aufgabe der Reihenfolgebildung
- Sortenreine Puffer
- Umrüstvorgänge notwendig
- Ziel: Minimierung der Gesamtbearbeitungszeit

Anforderungen an das Simulationsmodell

Spannungsverhältnis zwischen den Anforderungen:

Komplexität

Verständlichkeit Realitätsnähe

Fiktives Produktionssystem

Gestaltung des Multiagentensystems

Verfügbare Steuerungsansätze

Statische Heuristiken:

- 1. nextValidAction
- 2. shortestRemainingTime

Selbstgelernte Heuristiken:

3. DeepRL

Aktionsraum

$$A = \left(egin{array}{ll} Transfer: Ladungstr\begin{array}{ll} Transfer: Maschine - Ladungstr\begin{array}{ll} Egenta & Fransfer & F$$

- Der Aktionsraum ist bei allen Steuerungsansätzen gleich
- Nicht alle Aktionen sind immer ausführbar (Statusabhängigkeit)

1. nextValidAction

$$B(s_t) = \begin{pmatrix} Ladungsträger\ belegt?\\ Eingangspuffer\ belegt?\\ aktuelle\ Bearbeitung\ abgeschlossen?\\ Bearbeitung\ möglich? \end{pmatrix}$$

- Einfacher statischer Steuerungsansatz
- Zulässige Transfers werden direkt ausgeführt

2. shortestRemainingTime

$$B(s_t) = \begin{pmatrix} Ladungstr\"{a}ger\ belegt?\\ Eingangspuffer\ belegt?\\ aktuelle\ Bearbeitung\ abgeschlossen?\\ beste\ freie\ Wahl\ f\"{u}r\ priorisiertes\ Werkst\"{u}ck?\ ^1 \end{pmatrix}$$

- leistungsfähigerer statischer Steuerungsansatz
- Priorisierung anhand der Restbearbeitungszeit

¹allumfassendes Wissen über alle Werkstücke, Maschinenfähigkeiten und –belegung notwendig

3. DeepRL

Eingangspuf fer belegt? Eingangspuf fer belegt? aktuelle Bearbeitung abgeschlossen? Anzahl belegte Ladungsträger Anzahl Werkstücke im System Anzahl mögl. Bearbeitungsschritte Anzahl möglicher Bearbeitungsschritte (n + 1) Anzahl verbleibende Bearbeitungsschritte $Anzahl mögl. Bearbeitungsschritte opt. Maschine^1/$

- Algorithmus passt Steuerungsheuristik dynamisch an
- Beobachtungen werden als Eingangsdaten für KNN verwendet

¹allumfassendes Wissen über alle Maschinenfähigkeiten notwendig

3. DeepRL

Experimentieren

- a) Iterative Modellentwicklung
- b) Training des selbstlernendenAlgorithmus über 7-Tage Produktion
- c) Ausführliche Simulationsexperimente (Lernfähigkeit deaktiviert)

Nachweis der Lernfähigkeit

Mean Reward over the last 100 decisions

Simulationsergebnisse

Interpretation der Ergebnisse

Der selbstlernende Algorithmus lernt:

- Unzulässige Aktionen zu vermeiden
- Mögliche Transfers werden direkt durchgeführt
- Keine Priorisierung der Aufträge
- Keine Zusammenarbeit der Agenten untereinander

Möglichkeiten zur Leistungssteigerung

Faktoren	Gamma	Lernrate	KNN-Design	Epsilon Greedy (ε/decay/ε- min)	Belohungsfunktion
Mögliche Faktorenstufen	0,9	0,001	10x24x24x3	1/0,99/0,01	Bestrafung (-5) für unmögliche Wahl; Belohnung (+25) für möglichen Transfer und (10*x) Anzahl an hintereinander durchführbaren Operationen, kein Transfer neutral (0)
	0,99	0,01	10x64x24x3	1/0,99/0,05	Bestrafung (-5) für unmögliche Wahl; Belohnung (+5) für möglichen Transfer; kein Transfer neutral; (+100*x) für x=Zuwachs des Durchsatzes seit letzter Entscheidung
	0,999	0,1	10x24x12x6x3	1/0,999/0,1	Bestrafung (-5) für unmögliche Wahl; kein Transfer Bestrafung (-2); (+100*x) für x=Zuwachs des Durchsatzes seit letzter Entscheidung
			10x48x24x12x3		Bestrafung (-5) für unmögliche Wahl; Belohnung (+100*x) für x=Zuwachs des Durchsatzes seit letzter Entscheidung

Kritik

- Eingeschränkte Nutzbarkeit durch hohe Berechnungszeiten
- -> meiste Zeit für Entscheidungsabfrage aus Python (unabhängig von de-/aktivierter Lernfähigkeit)
- Reduktion der Leistung auf die Kenngröße Durchsatz
- -> Multi-Kriterien Optimierung (Auslastung, Termintreue, etc.)

Kritik

- Realitätsferne durch kontinuierliche Umlaufförderung ("zufällige" Entscheidungsabfrage)
- -> eigenständiger Agent entscheidet über Transporte

Zusammenfassung und Ausblick

Wie leistungsfähig ist ein selbstlernendes Multiagentensystem in der Produktionssteuerung?

Mit geringem Aufwand¹ lässt sich das Leistungsniveau eines einfachen statischen Steuerungsansatzes² erreichen.

Die <u>Anpassung des Lernverfahrens</u> kann zu <u>Leistungssteigerungen</u> führen.

¹Bestehende Softwarebausteine

²Mögliche Bearbeitungsschritte werden direkt durchgeführt (keine Priorisierung, aber auch keine unzulässigen Entscheidungen)