Curried Functions in Haskell

Principles of Programming Languages

Cury

A Tasty dish?

Haskell Curry!

Higher order functions

- Haskell functions can take functions as parameters and return functions as return values.
- A function that does either of those is called a higher order function.

Curried Functions

- Currying is a functional programming technique that takes a function of N arguments and produces a related one where some of the arguments are fixed.
- All the functions that accepted several parameters so far have been curried functions.

A tasty dish?

- Currying was named after the Mathematical logician Haskell Curry (1900-1982)
- Curry worked on combinatory logic.
- A technique that eliminates the need for variables in mathematical logic.
- and hence computer programming!
 - At least in theory
- The functional programming language Haskell is also named in honor of Haskell Curry

Functions in Haskell

- All functions in Haskell are curried, i.e., all Haskell functions take just single arguments.
- This is mostly hidden in notation and is not apparent to a new Haskeller.
- Let's take the function div :: Int -> Int which performs integer division.
- The expression div 11 2 evaluates to 5
- But it's a two-part process
 - div 11 is evaluated & returns a function of type Int -> Int
 - That function is applied to the value 2, yielding 5

Curried functions

• Functions with multiple arguments are possible by returning functions as results:

```
add' :: Int \rightarrow (Int \rightarrow Int)
add' x y = x+y
```

add' takes an integer x and returns a function add' x. In turn, this
function takes an integer y and returns the result x + y.

Note:

 add and add' produce the same final result, but add takes its two arguments at the same time, whereas add' takes them one at a time:

```
add :: (Int,Int) \rightarrow Int
add' :: Int \rightarrow (Int \rightarrow Int)
```

 Functions that take their arguments one at a time are called curried functions, celebrating the work of Haskell Curry on such functions.

Curried functions with multiple argument

 Functions with more than two arguments can be curried by returning nested functions:

```
mult :: Int \rightarrow (Int \rightarrow (Int \rightarrow Int)) mult x y z = x*y*z
```

 mult takes an integer x and returns a function mult x, which in turn takes an integer y and returns a function mult x y, which finally takes and integer z and returns the result x * y *z.

Curried functions

- Let's take an example the max function.
- It looks like it takes two parameters and returns the one that's bigger.
- Doing max 4 5 first creates a function that takes a parameter and returns either 4 or that parameter, depending on which is bigger. Then, 5 is applied to that function and that function produces our desired result.
- The following two calls are equivalent:

```
ghci> max 4 5
5
ghci> (max 4) 5
5
```

Curried functions

- Let's examine the type of max : (Ord a) => a -> a -> a
- This can also be written as max :: (Ord a) => a -> (a -> a)
- That could be read as: max takes an a and returns (that's the ->) a function that takes an a and returns an a.
- If we call a function with too few parameters, we get back a partially applied function, meaning a function that takes as many parameters as we left out.

Why is currying useful?

 Curried functions are more flexible than functions on tuples, because useful functions can often be made by <u>partial applying</u> a curried function.

For example

```
add' 1 :: Int \rightarrow Int

take 5 :: [Int] \rightarrow [Int]

drop 5 :: [Int] \rightarrow [Int]
```

Currying Conventions

- To avoid excess parentheses when using curried functions, two simple conventions are adopted:
- 1. The arrow \rightarrow associated to the <u>right</u>.

2. As a consequence, it is natural for function application to associate to the **left**.

Polymorphic functions

Polymorphic functions

• A function is called polymorphic("of many forms") if its type contains one or more type variables.

• Type variables can be instantiated to different types in different circumstances:

• Type variable must begin with lower case letter, usually named as a,b,c etc

Polymorphic functions

- Many functions defined in the standard prelude are polymorphic.
- For example

```
fst :: (a,b) \rightarrow a

head :: [a] \rightarrow a

take :: Int \rightarrow [a] \rightarrow [a]

zip :: [a] \rightarrow [b] \rightarrow [(a,b)]

id :: a \rightarrow a
```

Overloaded functions

Overloaded functions

• A polymorphic function is called <u>overloaded</u> if its type contains one or more class constraints.

Overloaded functions

 Haskell has number of type classed, including :

```
Num - Numeric typesEq - Equality typesOrd - Ordered types
```

For example:

```
(+) :: Num a \Rightarrow a \rightarrow a \rightarrow a

(==) :: Eq a \Rightarrow a \rightarrow a \rightarrow Bool

(<) :: Ord a \Rightarrow a \rightarrow a \rightarrow Bool
```

 Constraints type variable can be instantiated to any types that satisfy the constraints

Recursion

Something is recursive if it's defined in terms of itself

Rules for recursion

- Recursive functions play a central role in Haskell and are used throughout computer science and mathematics generally.
- Recursion is basically a form of repetition, and we can understand it by making distinct what it means for a function to be recursive, as compared to how it behaves.

Recursion

- In Haskell, many problems are solved using recursion.
- The main idea: divide the problem into smaller subproblems and try to solve these subproblems as simplest cases first.
- The simplest case is called the base case.

Recursion – Sum of n natural numbers

• Let's assume natSum is a function to compute sum of n natural numbers. Let's observe the working with an example

```
natSum 5 ⇒ 5 + natSum (5 - 1)

⇒ 5 + natSum 4

⇒ 5 + (4 + natSum (4 - 1))

⇒ 5 + (4 + natSum 3)

⇒ 5 + (4 + (3 + natSum (3 - 1)))

⇒ 5 + (4 + (3 + natSum 2))

⇒ 5 + (4 + (3 + (2 + natSum (2 - 1))))

⇒ 5 + (4 + (3 + (2 + natSum 1)))

⇒ 5 + (4 + (3 + (2 + (1 + natSum (1 - 1)))))

⇒ 5 + (4 + (3 + (2 + (1 + natSum 0))))

⇒ 5 + (4 + (3 + (2 + (1 + natSum 0))))

⇒ 5 + (4 + (3 + (2 + (1 + natSum 0))))

⇒ 5 + (4 + (3 + (2 + (1 + natSum 0))))
```

S6CSE, Department of CSE, Amritapuri

The definition of natSum is called recursive, because natSum itself is used in the definition of natSum — i.e., a recursive function is a function that makes use of itself in its definition.

Recursion – Sum of n natural numbers

- Recursive function definitions have at least two cases:
 - The base case specifies what to do in the simplest form of input (where the function stops calling itself).
 - The stepping case includes the recursive use of the function by itself.

Recursion – Sum of n natural numbers

 An alternative way of writing the recursive definition of natSum would be

• It contains only one equation and makes the case distinction explicit through a conditional.

Recursion - GCD

- The greatest common divisor of two numbers is the largest number that evenly divides them both.
- For computing the greatest common divisor of two positive numbers m and n is the following
 - 1. if m = 0, then the greatest common divisor of m and n is n;
 - 2. if m < n, then swap m and n;
 - 3. replace m with m n and go back to step 1.

Recursion - GCD

We can visualize the algorithm at work on the numbers m = 6 and n = 15 as a sequence of states, thus

```
euclid :: Int \rightarrow Int
euclid 0 n = n
euclid m n | m < n = euclid n m
| otherwise = euclid (m - n) n
```

Recursion Example- Factorial

- Factorial of a number n is the product of all number numbers between 1 and n. $n! = 1 \times 2 \times 3 \times \cdots \times n$
- where 0! = 1 by convention. The factorial function can be written recursively as

```
fact :: Int \rightarrow Int
fact 0 = 1
fact n = n * fact (n - 1)
```

Recursion Example- Factorial

• Non-Recursive Version:

```
> fact :: (Eq a, Num a) => a -> a
> fact x = if x==0 then 1 else x * fact (x-1)
```

• Recursive version with pattern:-

```
> fact' :: (Eq a, Num a) => a -> a
> fact' 0 = 1
> fact' x = x * fact' (x-1)
```

Recursion Example – Fibonacci Series

• The sequence of Fibonacci numbers begins like this

• The sequence begins with 0 and 1, and every following number is the sum of the previous two.

```
> fib 0 = 0
> fib 1 = 1
> fib n = fib (n-1) + fib (n-2)
```

Recursion Example - Power

• The n-th power of an integer number a can be inductively defined as follows:

$$a^{n} = \begin{cases} 1 & \text{if } n = 0 \\ a^{n/2} \times a^{n/2} & \text{if } n > 0 \text{ and } n \text{ is even} \\ a \times a^{n/2} \times a^{n/2} & \text{otherwise} \end{cases}$$

we can define a Haskell function for computing aⁿ thus

STRUCTURAL RECURSION

- Focus on recursion over a data structure.
- This is typically a LIST or a TREE, but more generally it can be any recursive structure.
- Such a recursion is called STRUCTURAL RECURSION.
- We use structural recursion to process a data structure.

Structural Recursion

- The main idea: recurse down the structure by gradually decomposing it using pattern matching and combining the results.
- Some examples can be:

```
> sum' :: Num a => [a] -> a
> length' :: [a] -> Int
> sum' [] = 0
> sum' (x:xs) = x + sum' xs
> length' [] = 0
> length' (_:xs) = 1 + length' xs
```

Next - List in Haskell