a)

Bevis $Rank(AB) \leq Rank(A)$:

Rank av en matrise M er gitt ved: RankM + dimNulM = n RankM = n - dimNulM = dimColM

Dermed har vi at: rank(AB) = dim(ColAB), rankA = dim(ColA)

Dersom en vektor ye Col(AB). Finnes det en $x \in \mathbb{R}^P$ slik at y = (AB)x

La z = Bx $\in \mathbb{R}^n$ \longrightarrow y = A(Bx) = Az

derfor er $y \in Col(A)$ og ColAB er et underrom av A. og vi har:

rank(AB) = dim (ColAB) = dim (ColA) = rank A

the rank of AB^T is given by $Rank(AB^T) = RankB^TA^T$

rank $AB = rank(AB)^T = rank(B^T \cdot A^T) \leq rank B^T = rank B$ fra beviset i a) er $ColB^TA \leq ColB^T$ og dermed kan man konkludere med rank $AB \leq rank B$