Supplementary Material: Nonparametric Empirical Bayes Estimation and Testing for Sparse and Heteroscedastic Signals

Anonymous Author(s)

Affiliation Address email

1 A Simulation

- 2 The goal of the simulation is to investigate the adaptivity of DNP and SNP to different levels of signal
- strength, sparsity level, and heteroscedasticity. To be specific, $y_i|\mu_i \sim \mathcal{N}(\mu_i, \sigma_i)$ where μ_i 's and σ_i 's
- 4 are generated as follows:

$$\mu_i \stackrel{i.i.d}{\sim} w \delta_0 + (1-w)N(V,1), \quad \sigma_i^2 \stackrel{i.i.d}{\sim} U(0.5,u)$$
 (1)

- 5 where $\omega \in \{0.55, 0.65, \dots, 0.95\}, V \in \{1, 1.5, 2, 2.5, 3\}$ and $u \in \{1, 1.5, 2, 2.5\}$. Note that
- 6 $V \in \{1, 1.5, 2\}$ For each setting, we set n = 1000 and report the above-mentioned metrics across
- 7 100 Monte Carlo repetitions.
- 8 We compare the following metrics:
- 9 1. Relative mean Squared Error (MSE) of posterior mean $n^{-1} \sum_{i=1}^{n} (\hat{\mu}_i \mu_i)^2$;
- o 2. Relative mean Squared Error (MSE) of posterior mode;
- 11 3. Bias of sparsity estimation $\operatorname{Bias}_{\hat{\omega}} = \hat{\omega} \omega$;
- 4. Credible interval coverage $n^{-1} \sum_{i=1}^{n} \mathbf{1} \{ \mu \in \widehat{CI} \};$
- 5. Empirical FDR controlling FDR at different nominal levels;
- 6. Empirical power controlling FDR at 0.05 level.
- 15 Note that the relative ratio uses SNP as the base, i.e., the relative ratio is the ratio of the metric for
- any competing estimator to that of SNP. If the ratio is larger than 1, SNP performs better than the
- 17 competing estimator.
- Figure 1 compares different methods in terms of different metrics with u=1.5 and V=2 (This
- is same as Figure 2 in the main text. We added the adaptive threshold of Stephens [2017] (ash) as
- 20 Reviewer S253 suggested). As suggested by the reviewers, we provide the tables corresponding to
- 21 Figure 1. Table 1 to 9 shows the MSE of posterior mean, the relative MSE of posterior mean, the
- MSE of posterior mode, the relative MSE of posterior mode, the bias of the sparsity estimate, the
- coverage and average length of credible interval, the empirical FDR with $\omega=0.95$ and the empirical
- power controlling FDR level at 0.05.
- Figure 2 reports the relative MSE of posterior mean varying the signal strength V, sparsity level
- w and variance heterogeneity w. The columns correspond to different signal strength V and the
- 27 rows are across different variance heterogeneity u. For each plot, the x-axis is the sparsity level
- w_0 and the y-axis the ratio of the MSE of competing estimator to the MSE of SNP. We compare
- 29 with 1) the generalized maximum likelihood Empirical Bayes estimator (GMLEB) of Jiang et al.
- 30 [2020] using Koenker and Gu [2017]; 2) the group linear estimator by Weinstein et al. [2018];

Figure 1: A) Relative mean Squared Error (MSE) of posterior mean $n^{-1}\sum_{i=1}^n (\hat{\mu}_i - \mu_i)^2$; B) Relative mean Squared Error (MSE) of posterior mode; C) Bias of sparsity estimation $\mathrm{Bias}_{\hat{\omega}} = \hat{\omega} - \omega$; D) Credible interval coverage; E) Empirical FDR; F) Empirical power controlling FDR at 0.05 level. Note that the relative ratio uses SNP as the base – if the ratio is larger than 1, SNP performs better than the competing estimator.

Table 1: Posterior mean MSE with u = 1.5 and V = 2

ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
0.55	0.509	0.511	0.618	0.591	0.624	0.514	0.67	0.534	0.654
0.65	0.456	0.459	0.591	0.56	0.596	0.462	0.585	0.49	0.572
0.75	0.38	0.384	0.541	0.504	0.541	0.388	0.478	0.415	0.467
0.85	0.276	0.281	0.438	0.397	0.432	0.284	0.341	0.316	0.335
0.95	0.133	0.139	0.227	0.194	0.22	0.144	0.159	0.195	0.154

Table 2: Posterior mean MSE Relative ratio with u=1.5 and V=2

ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
0.55	1	1.005	1.215	1.163	1.228	1.012	1.318	1.05	1.286
0.65	1	1.008	1.298	1.229	1.309	1.014	1.285	1.075	1.255
0.75	1	1.011	1.424	1.325	1.423	1.02	1.257	1.093	1.23
0.85	1	1.02	1.587	1.439	1.567	1.031	1.237	1.147	1.214
0.95	1	1.041	1.7	1.453	1.653	1.079	1.191	1.464	1.154

Table 3: Posterior mode MSE with u = 1.5 and V = 2

ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
0.55	0.536	0.767	0.756	0.904	0.58	0.594
0.65	0.448	0.605	0.577	0.705	0.537	0.484
0.75	0.336	0.439	0.414	0.503	0.476	0.361
0.85	0.217	0.267	0.291	0.302	0.392	0.234
0.95	0.084	0.091	0.232	0.1	0.269	0.101

3) the semi-parametric monotonically constrained SURE estimator (XKB.SB) and the parametric SURE estimator (XKB.M) from Xie et al. [2012]; 4) the Nonparametric Empirical Bayes Structural Tweedie (NEST) by Banerjee et al. [2020]. NEST is designed for unknown variance. We can see two clusters in terms of performance, one of the parametric methods and one of the nonparametric. The nonparametric methods perform better than the parametric counterparts. When the signal V is strong, the advantages of the nonparametric methods are even larger. In general, SNP and DNP perform better than the others. The advantages is more pronounced as the sparsity level w_0 increases since the other methods are not specially designed for sparse data. The closest competitor with SNP and

33

34

35

36

37

Table 4: Posterior mode MSE Relative ratio with u=1.5 and V=2

ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
0.55	1	1.43	1.409	1.686	1.081	1.107
0.65	1	1.351	1.289	1.575	1.2	1.081
0.75	1	1.307	1.234	1.499	1.419	1.074
0.85	1	1.233	1.345	1.396	1.809	1.082
0.95	1	1.081	2.769	1.199	3.213	1.203

Table 5: Bias of sparsity with u = 1.5 and V = 2

ω	SNP	DNP	SSLASSO	GMLEB	EBayesThresh	HART	ash
0.55	0.07	-0.036	0.361	-0.335	-0.518	0.235	-0.199
0.65	0.061	-0.044	0.251	-0.461	-0.478	0.181	-0.185
0.75	0.049	-0.061	0.138	-0.55	-0.424	0.126	-0.173
0.85	0.036	-0.071	0.015	-0.589	-0.363	0.071	-0.164
0.95	0.016	-0.091	-0.13	-0.638	-0.36	0.016	-0.189

Table 6: Coverage of credible interval with u=1.5 and V=2

ω	SNP	DNP	EBayesThresh	ash
0.55	0.95	0.96	0.93	0.95
0.65	0.96	0.96	0.94	0.95
0.75	0.96	0.96	0.96	0.96
0.85	0.97	0.97	0.97	0.96
0.95	0.98	0.98	0.99	0.98

Table 7: Length of credible interval with u=1.5 and V=2

ω	SNP	DNP	EBayesThresh	ash
0.55	2.428	2.414	2.957	2.971
0.65	2.266	2.235	2.85	2.757
0.75	2.034	2.044	2.698	2.493
0.85	1.724	1.73	2.49	2.146
0.95	1.289	1.289	2.307	1.668

Table 8: Empirical FDR with u=1.5 and V=2

ω	FDR level	BH	SNP NEB	DNP NEB	Storey	HART	ash
	0.01	0.07	0.04	0.10	0.07	0.09	0.10
	0.05	0.18	0.10	0.25	0.19	0.22	0.16
	0.10	0.28	0.14	0.34	0.29	0.30	0.24
0.95	0.15	0.33	0.18	0.41	0.35	0.35	0.29
	0.20	0.39	0.22	0.46	0.41	0.40	0.35
	0.25	0.43	0.26	0.50	0.46	0.44	0.39
	0.30	0.48	0.29	0.55	0.50	0.47	0.43

DNP is GMLEB which adapts *g*-modeling as well but does not use an EM algorithm. NEST is also comparable when the heterogeneity *u* is relatively small.

Figure 3 reports the performance of the posterior mode estimators varying the signal strength V,

sparsity level w and variance heterogeneity u. We compare 1) the parametric empirical Bayes

median estimator (EBayesThresh) with Laplace tails of Johnstone and Silverman [2004]; 2) the

SLOPE estimator of Bogdan et al. [2011], Su et al. [2016] with q = 0.1; 3) the two-step Spike-and-

Slab LASSO estimator of Rocková [2018]; 4) GMLEB posterior mode estimator. SNP is robust

Figure 2: Posterior mean MSE relative ratio.

Figure 3: Posterior mode MSE relative ratio.

Table 9: Emprical power with u = 1.5 and FDR = 0.05

\overline{V}	ω	ВН	SNP NEB	DNP NEB	Storey	HART	ash
2	0.75 0.85	0.332 0.307 0.28 0.218	0.401 0.342	0.46 0.407 0.352 0.254	0.326 0.29	0.381 0.346 0.309 0.238	0.232 0.205

Figure 4: Bias of the sparsity.

across different settings; while DNP can be less competitive since it tends to underestimate the sparsity. Comparing SNP and DNP shows the advantages of the Laplacian spike capturing sparsity. Surprisingly, our closest competitor in posterior mean estimator, GMLEB, is quite off using its posterior mode estimator. This may due to the convex relaxation Koenker and Gu [2017].

Figure 4 shows the performance of sparsity estimation $\hat{\omega}$ varying the signal strength V, sparsity level w and variance heterogeneity u. We can only compare methods mentioned above that are able to estimate sparsity. Unfortunately, all the f-modeling approaches cannot provide sparsity estimation. Therefore, we only compare DNP and SNP with GMLEB, SSLASSO, EBayesThresh and HART. Note that HART uses Jin and Cai [2007] with a theoretical null N(0,1) to estimate the sparsity. SNP and DNP estimate the sparsity level with high accuracy, while DNP underestimates the sparsity when the heterogeneity u is low compared to SNP. Both GMLEB and EBayesThresh underestimate the sparsity level, while HART and SSLASSO tend to overestimate. The overestimating behavior of SSLASSO agrees with Theorem 4.2 of Rocková [2018].

As a bonus of the Bayesian mechanism, we are able to provide uncertainty quantification in addition to point estimate. We construct the 95% equal-tailed credible interval from the posterior distribution. Figure 5 shows the empirical coverage and the average width of the credible interval across w and V. Most credible intervals are overshoot while the widths of the interval are acceptable. The credible intervals are below nominal coverage when signal is weak and the heterogeneity of noise is large.

Figure 6, 7, 8 and 9 show the performance of the multiple testing procedure. Each plot is at different signal strength V and different heterogeneity level u or sparsity level w. The x-axis is the FDR control level (α) and the y-axis is the bias of the average of the empirical ratio V/R and the empirical power across 100 runs. We compare SNP-OPT and DNP-OPT with the original linear step-up Benjamini

Figure 5: Coverage and width of the credible interval.

Figure 6: FDR control at heterogeneity level u = 1.5.

and Hochberg [1995] procedure, the pFDR of Storey [2002] and the HART procedure of Fu et al.
 [2020].

Figure 6 shows the empirical FDR varying the signal strength V and sparsity level w when the heterogeneity u=1.5 across different nominal levels; while Figure 7 fixes the sparsity level w=0.95 and varies the signal strength V and the heterogeneity level. SNP-OPT controls false discovery rate at the desired nominal level α , while others are overconfident and reject too many hypotheses in most of the cases. When the sparsity level is low, B&H procedure is conservative as expected. Storey's procedure is quite robust since it estimates the error rate of a predetermined rejection region (other than the sparse setting when w=0.95). It is instructive to compare DNP-OPT and SNP-OPT to see the benefits of the Laplacian spike. DNP-OPT tends to reject too many hypotheses, overshooting the nominal level α . This is expected since DNP underestimates the sparsity level as in Figure 4. As a result, the posterior probability of being zero $\hat{p}_i(y_i)$ is underestimated. Therefore, following our NEB-OPT procedure, DNP-OPT is over-confident in rejecting hypotheses.

Similarly, Figure 8 shows the empirical power by fixing the heterogeneity level at u=1.5 and varying the signal strength V and sparsity level w across different nominal FDR levels; while Figure 9 fixes the sparsity level w=0.95 and varies the signal strength V and the heterogeneity level. SNP-OPT controls FDR at nominal levels and at the same time increases power in most settings.

This concludes the simulation study. The nonparametric mixture prior is robust and versatile across various sparsity levels and signal strengths, especially for SNP. The multi-directional shrinkage property is particular desirable in the sparse set up where the noises are shrunk towards zero while the signals towards their corresponding centers. The multi-directional effect also reflects in the adaptive thresholding for the posterior mode estimator. In addition to point estimate, uncertainty quantification is readily provided from the Bayesian mechanism. The equal-tailed credible intervals show coverage at nominal level and are of reasonable widths.

With a focus on sparse data, it is desirable to have an accurate sparsity estimate. SNP is able to estimate the sparsity level by nature, and it estimates the sparsity well. It had been troubling to the authors that DNP tends to underestimates the sparsity due to the dispersion around zero. The underestimate of DNP also compromises the performance of the multiple testing procedures. Remedies such as a wider gap between zero and the grid points around zero are not adaptive and rather artificial. SNP, on the other hand, replaces the point-mass at zero with a Laplacian spike to handle the sparsity. The adaptivity of the spike component is particularly attractive.

Figure 7: FDR control at sparsity level w=0.95.

Figure 8: Empirical power at heterogeneity level u=1.5.

Figure 9: Empirical power at sparsity level w = 0.95.

The proposed multiple testing procedures, NEB-OPT, control FDR at nominal levels in different settings and achieve higher power.

B Gene expression data

As argued in Efron [2004], a small deviation from the theoretical null N(0,1) will distort the FDR analysis, resulting in too many inappropriate rejections as in Figure 3. In order to compare our methods and other methods thoroughly, we adopt the empirical null approach in Efron [2004] to first estimate the empirical null. The estimated empirical null turns out to be $N(0,1.09^2)$. We then obtain the new p-value by converting the z-value as $p_i' = 2\Phi'(-|Z_i|)$ where Φ' is the CDF of a $N(0,1.09^2)$ variable. We can see that comparing Figure 10a and 10b, the histogram of p-value estimated from the empirical null is closer to uniform compared to that estimated from the theoretical null N(0,1).

Storey	HART	DNP-OPT	SNP-OPT				
0.93	0.99	0.91	0.96				
Table 10: Sparsity level estimation							

We are now ready to apply BH, Storey, HART as well as our SNP-OPT and DNP-OPT to the microarray data. All procedures target to control FDR at level 0.05. For SNP-OPT and DNP-OPT, we simply plug in the differential difference and the pooled estimate of the standard deviation to our procedures. For the others, we will use the empirical null and the adjusted p-values p_i' . Both BH and Storey use the p-value p_i' estimated from the empirical null. HART estimates the sparsity level using Jin-Cai's method with the empirical null $N(0,1.09^2)$, following the procedure as in Fu et al. [2020], and adopts a jacknifed procedure to estimate the marginal density. Since SNP also provides an estimate to the sparsity, we can plug in to the HART procedure as an alternative approach to estimate the non-null proportion.

Table 11 shows the number of discoveries and Figure 11 shows the discoveries on the Z vs σ scatter plot controlling FDR at 0.05 level. SNP-OPT and DNP-OPT reject more hypotheses than other methods. SNP-OPT rejects 37 hypotheses and DNP-OPT rejects 44. The BH procedure is the most conservative as expected, claiming 13 discoveries. Note that if we use the unadjusted p-value from the theoretical null, the BH procedure yield 51 discoveries, many of which could be over-confident

- (a) Histogram of the unadjusted p-value
- (b) Histogram of the adjusted p-value

Figure 10: Figure (A) shows the histogram of the unadjusted p-value. Figure (B) shows the histogram of the adjusted p-value p'_i 's estimated from the empirical null $N(0, 1.09^2)$.

Figure 11: The scatter plot of Z vs σ . The red triangles (\triangle) label the 13 discoveries by the BH procedure. The green circle (\bigcirc) labels the 44 discoveries by DNP-OPT. The purple cross (\times) labels the 19 discoveries by HART jackknifed procedure. The blue solid circle (\bullet) label the 37 discoveries by SNP-OPT. The yellow solid triangle (\blacktriangle) label the 13 discoveries by Storey's procedure. All the procedures target FDR level at 0.05.

BH	Storey	HART jk	HART jk + SNP	DNP-OPT	SNP-OPT	SNP Mode
13	13	19	29	44	37	59
(0.22%)	(0.22%)	(0.31%)	(0.48%)	(0.73%)	(0.61%)	(0.98%)

Table 11: Number and proportion of discoveries controlling FDR level at 0.05

Figure 12: The scatter plot of Z vs σ . The purple cross (×) labels the 19 discoveries by HART jackknifed procedure. The red triangle (∇) label the 29 discoveries by HART with SNP sparsity plug in. The blue circle (\bigcirc) labels the 59 non-zero estimate from the posterior mode estimator of SNP. The blue solid circle (\bullet) label the 37 discoveries by SNP-OPT. All the multiple testing procedures target FDR level at 0.05.

false rejections as we see in the simulation. The Storey procedure obtains similar results. The HART procedure yields 19 discoveries while the HART variant using the sparsity estimated by SNP yields 29 discoveries.

Since we do not know the ground truth, we again cannot claim much. However, it is insightful to compare the rejection regions as in Figure 11. The reject regions for SNP-OPT and DNP-OPT depend on both Z and σ . The dependency is more obvious for SNP-OPT – SNP-OPT does not reject hypothesis that corresponds to large σ_i .

Storey	HART	DNP-OPT	SNP-OPT				
0.93	0.99	0.91	0.96				
Table 12: Sparsity level estimation							

Table 12 shows the sparsity estimation. Storey's procedure estimates the sparsity at 0.93 while the Jin-Cai procedure [Jin and Cai, 2007] used by HART estimates the sparsity at 0.99. SNP-OPT, which demonstrates the accurate sparsity estimation in the simulation, estimates 0.96, in between the two mentioned.

We also compare the posterior mode estimators. The posterior mode estimator of SNP produces 59 non-zero estimate although it does not provide guarantee for FDR control. On the other hand, SLOPE rejects 0 hypothesis when controlling FDR at 0.05 level.

Lastly, Figure 13 shows the heatmap of the discovery genes by SNP-OPT vs non-discovery genes among the cancer patients and healthy subjects. Comparing the differential expression of the significant genes (discoveries) on the left and the randomly picked from the non-discoveries on the right, we see that the difference in expression level among the the cancer patients and healthy subjects is distinguishable from the significant genes, while the difference in the non-discovery group is less obvious.

Figure 13: The heatmap of the discovery genes by SNP-OPT vs non-discovery genes among the cancer patients and healthy subjects. The two vertical panels are the significant group (discoveries) with the header labelled in green and the randomly selected group from the non-discoveries with the header labelled in grey. The two horizontal panels are the cancer patients with the side bar labelled in red and the healthy group with the side bar lablled in blue.

143 C Proof

144 C.1 Proof of Theorem 1

Lemma 1. Suppose we have an estimate of $\pi^{(t)}$ in round t. Define

$$\pi_{j,i}^{(t)} = \frac{p(y_i \mid \tau_j) \, \pi_j^{(t)}}{\sum_{m=1}^{M} p(y_i \mid \tau_m) \, \pi_m^{(t)}}.$$
 (2)

146 The EM algorithm update π by

$$\pi_j^{(t+1)} = \frac{1}{n} \sum_{i=1}^n \pi_{j,i}^{(t)}.$$
 (3)

Proof. With no information on which μ_i each y_i conditions on, we introduce an unobserved indicator variable z_i that is k if $y_i|z_i \sim N(\tau_k, \sigma^2)$. Note that

$$z \sim Multinomial(M, \pi)$$
.

149 The full likelihood function then becomes

$$L(\mathbf{y} \mid \mathbf{z}, \pi) = p(\mathbf{y} \mid \mathbf{z}) p(\mathbf{z} \mid \pi)$$

$$= \prod_{i=1}^{n} \prod_{j=1}^{M} (p(y_i \mid \tau_j) \cdot \pi_j)^{\mathbf{1}_{\{z_i = j\}}}$$
(4)

and thus the log-likelihood

$$\ell(\mathbf{y} \mid \mathbf{z}, \boldsymbol{\pi}) = \sum_{i=1}^{n} \sum_{j=1}^{M} \mathbf{1}_{\{z_i = j\}} \left(\log p \left(y_i \mid \tau_j \right) + \log \pi_j \right). \tag{5}$$

In the E-step, we take expected value of the above likelihood function over \mathbf{z} conditional on \mathbf{y} and $\pi^{(t)}$, i.e. $\mathbb{E}^{(t)}$ refers to averaging z over the distribution $\mathbb{P}(\mathbf{z} \mid \pi^{(t)}, \mathbf{y})$. Given the full log-likehood (5), the expected log posterior density is

$$\mathbb{E}_{Z|\pi^{(t)},y}^{(t)}\ell(\mathbf{z},\pi\mid\mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{M} \mathbb{P}\left(Z_{i} = j|y_{i},\pi^{(t)}\right) \left(\log p\left(y_{i}\mid\tau_{j}\right) + \log \pi_{j}\right). \tag{6}$$

For the M-step, we maximize (6) over π . Let

$$\pi_{j,i}^{(t)} = \mathbb{P}(Z_i = j \mid Y_i = y_i, \pi^{(t)}) = \frac{p(y_i \mid \tau_j)\pi_j^{(t)}}{\sum_{m=1}^{M} f(y_i \mid \tau_m)\pi_m^{(t)}}$$
(7)

Since the only unknowns in (7) are π_j 's with the constraint of $\sum \pi_j = 1$, it is a constrained optimization problem

$$\underset{\pi}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{j=1}^{M} \mathbb{P}\left(Z_{i} = j | y_{i}, \pi^{(t)}\right) \left(\log p\left(y_{i} \mid \tau_{j}\right) + \log \pi_{j}\right)$$
subject to
$$\sum_{i=1}^{n} \pi_{j} = 1$$
(8)

157 By the method of Lagrange multipliers, we find the maximizer being

$$\pi_j^{(t+1)} = \frac{\sum_{i=1}^n \pi_{j,i}^{(t)}}{\sum_{k=1}^M \sum_{i=1}^n \pi_{k,i}^{(t)}} = \frac{1}{n} \sum_{i=1}^n \pi_{j,i}^{(t)}.$$
 (9)

Proof of Theorem 1. The general consistency of the nonparametric maximum likelihood estimator was established in Kiefer and Wolfowitz [1956]. Our setup is a special case of Example 1 in Kiefer and Wolfowitz [1956], i.e., for any $p(y|\mu)$ in the exponential family, assuming if π_1 and π_2 are two different distributions on μ , then for at least one y, $m(y|\pi_1) \neq m(y|\pi_2)$ where $m(y|\pi)$ is the marginal density of y, i.e. $m(y|\pi) = \int p(y|\mu)\pi(\mu)d\mu$.

It worths mentioning that the likelihood has a convex geometry. The functional of interest is

$$L(\pi) = \sum_{i=1}^{n} \left\{ -\log \int p(y_i|\mu_i)\pi(\mu_i)d\mu_i \right\},$$
 (10)

which is a sum of $-\log(\cdot)$ of a linear functional $\int p(y_i|\mu_i)\pi(\mu_i)d\mu_i$. Since $-\log(\cdot)$ is convex and non-decreasing, $L(\pi)$ is convex if the space of π is convex. This is also the case for the discretized version,

$$L(\pi) = \sum_{i=1}^{n} \left\{ -\log \sum_{i} p(y_i | \tau_j) \pi_j \right\}.$$
 (11)

168 C.2 Proof of Proposition 1

159

161

162

163

Let a decision vector be $\mathbf{a}=(a_1,\cdots,a_m)$ where $a_i=1$ if we reject the i-th hypothesis and $a_i=0$ otherwise. A false discovery can be expressed as $a_i\mathbf{I}_{\mu_i=0}$ where \mathbf{I} is an indicator function, and similarly a false non-discovery as $(1-a_i)\mathbf{I}_{\mu_i\neq 0}$.

An optimal testing procedure can be constructed to minimize the objective function $\mathbb{E}(T)$, subject to R=k for a positive integer number k. That is, given the number of total discoveries, we want to

Table 13: Posterior mean MSE with u = 1

\overline{V}	ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
	0.55	0.34	0.347	0.388	0.378	0.385	0.348	0.398	0.346	0.393
1.0	0.75	0.246	0.257	0.312	0.3	0.309	0.26	0.286	0.261	0.28
	0.95	0.097	0.116	0.144	0.126	0.138	0.119	0.121	0.124	0.115
	0.55	0.383	0.389	0.45	0.441	0.448	0.392	0.475	0.389	0.465
1.5	0.75	0.285	0.295	0.383	0.373	0.38	0.298	0.344	0.296	0.337
	0.95	0.116	0.137	0.181	0.166	0.175	0.135	0.144	0.137	0.136
	0.55	0.42	0.427	0.508	0.501	0.508	0.43	0.537	0.424	0.519
	0.65	0.376	0.385	0.488	0.48	0.487	0.387	0.473	0.385	0.458
2.0	0.75	0.314	0.326	0.451	0.443	0.448	0.33	0.391	0.324	0.38
	0.85	0.233	0.249	0.377	0.369	0.373	0.252	0.292	0.243	0.284
	0.95	0.128	0.148	0.226	0.214	0.22	0.149	0.162	0.147	0.155
	0.55	0.438	0.447	0.556	0.55	0.557	0.449	0.577	0.441	0.55
	0.65	0.39	0.4	0.54	0.534	0.54	0.405	0.508	0.399	0.486
2.5	0.75	0.328	0.343	0.508	0.502	0.506	0.345	0.419	0.336	0.403
	0.85	0.245	0.263	0.438	0.432	0.435	0.265	0.312	0.25	0.301
	0.95	0.134	0.155	0.273	0.265	0.268	0.157	0.173	0.151	0.165
	0.55	0.432	0.443	0.594	0.589	0.595	0.446	0.595	0.437	0.562
	0.65	0.383	0.396	0.581	0.576	0.582	0.402	0.52	0.392	0.494
3.0	0.75	0.325	0.339	0.554	0.549	0.553	0.342	0.428	0.331	0.409
	0.85	0.237	0.259	0.49	0.486	0.487	0.262	0.316	0.244	0.303
	0.95	0.131	0.156	0.32	0.315	0.315	0.157	0.174	0.147	0.168

minimize the averaged number of false non-discoveries. Correspondingly, the objective function can be written as

$$\min_{(a_1, \dots, a_m)} \mathbb{E} \Big[\sum_{i=1}^m (1 - a_i) \mathbf{I}_{\mu_i \neq 0} \Big] \quad \text{s.t.} \quad \sum_{i=1}^m a_i = k.$$
 (12)

The expectation in (12) is over the distribution of y and the prior distribution of μ . It is equivalent to minimize the expectation of loss function conditional on y, that is, minimizing

$$\min_{(a_1, \cdots, a_m)} L(\mathbf{a}) = \sum_{i=1}^m \left[(1 - a_i) P(\mu_i \neq 0 | \mathbf{y}) \right]$$
 subject to
$$\sum_{i=1}^m a_i = k.$$
 (13)

178 After some algebra, (13) can be re-arranged as

$$L(\mathbf{a}) = \sum_{i=1}^{m} (1 - P(\mu_i = 0|\mathbf{y})) + \sum_{i=1}^{m} a_i [P(\mu_i = 0|\mathbf{y}) - 1].$$

Note that $L(\mathbf{a})$ is increasing when the second term is increasing. Therefore, to minimize $L(\mathbf{a})$ subject to $\sum_{i=1}^m a_i = k$, for the smallest k values of $P(\mu_i = 0|\mathbf{y})$, we set the corresponding $a_i = 1$, and the rest of the a_i 's are set as 0. The proof is now complete.

D Simulation tables

Table 14: Posterior mean MSE Relative ratio with $u=1\,$

\overline{V}	ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
	0.55	1	1.019	1.14	1.111	1.131	1.023	1.17	1.018	1.155
1.0	0.75	1	1.047	1.271	1.221	1.257	1.057	1.163	1.063	1.139
	0.95	1	1.2	1.489	1.303	1.423	1.23	1.254	1.285	1.188
	0.55	1	1.015	1.174	1.152	1.169	1.022	1.239	1.014	1.213
1.5	0.75	1	1.037	1.345	1.31	1.335	1.046	1.208	1.039	1.182
	0.95	1	1.184	1.565	1.433	1.511	1.167	1.24	1.18	1.178
	0.55	1	1.016	1.209	1.192	1.208	1.023	1.278	1.009	1.235
	0.65	1	1.022	1.297	1.276	1.293	1.028	1.256	1.023	1.218
2.0	0.75	1	1.038	1.433	1.408	1.426	1.049	1.244	1.032	1.209
	0.85	1	1.069	1.619	1.584	1.602	1.084	1.254	1.043	1.221
	0.95	1	1.153	1.764	1.67	1.718	1.162	1.266	1.148	1.21
	0.55	1	1.02	1.271	1.257	1.272	1.025	1.319	1.007	1.256
	0.65	1	1.027	1.386	1.37	1.386	1.039	1.302	1.023	1.248
2.5	0.75	1	1.045	1.547	1.528	1.542	1.051	1.277	1.025	1.228
	0.85	1	1.073	1.789	1.765	1.774	1.081	1.273	1.021	1.231
	0.95	1	1.157	2.037	1.976	1.998	1.17	1.288	1.13	1.235
	0.55	1	1.025	1.374	1.363	1.377	1.033	1.378	1.012	1.301
	0.65	1	1.033	1.517	1.504	1.519	1.048	1.357	1.023	1.289
3.0	0.75	1	1.043	1.703	1.687	1.699	1.052	1.317	1.017	1.257
	0.85	1	1.089	2.065	2.046	2.05	1.103	1.33	1.026	1.276
	0.95	1	1.189	2.438	2.403	2.403	1.199	1.329	1.123	1.279

Table 15: Posterior mode MSE with $u=1\,$

V	ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
	0.55	0.376	0.475	0.454	0.524	0.517	0.454
1.0	0.75	0.234	0.269	0.309	0.291	0.443	0.317
	0.95	0.07	0.056	0.237	0.058	0.316	0.161
	0.55	0.408	0.576	0.568	0.699	0.542	0.503
1.5	0.75	0.258	0.332	0.338	0.389	0.465	0.334
	0.95	0.08	0.069	0.228	0.078	0.332	0.144
	0.55	0.425	0.645	0.717	0.904	0.554	0.539
	0.65	0.355	0.516	0.539	0.705	0.512	0.447
2.0	0.75	0.272	0.378	0.38	0.503	0.467	0.344
	0.85	0.181	0.232	0.263	0.302	0.407	0.238
	0.95	0.083	0.081	0.215	0.1	0.329	0.13
	0.55	0.419	0.667	0.895	1.123	0.557	0.552
	0.65	0.351	0.54	0.656	0.875	0.517	0.451
2.5	0.75	0.274	0.401	0.436	0.625	0.468	0.343
	0.85	0.183	0.249	0.269	0.375	0.412	0.234
	0.95	0.082	0.088	0.199	0.125	0.335	0.12
-	0.55	0.4	0.638	1.097	1.346	0.538	0.541
	0.65	0.333	0.524	0.793	1.049	0.5	0.437
3.0	0.75	0.261	0.39	0.505	0.749	0.457	0.331
	0.85	0.173	0.245	0.279	0.45	0.404	0.223
	0.95	0.077	0.089	0.181	0.15	0.333	0.112

Table 16: Posterior mode MSE Relative ratio with u=1

\overline{V}	ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
	0.55	1	1.264	1.209	1.394	1.374	1.206
1.0	0.75	1	1.147	1.321	1.243	1.893	1.355
	0.95	1	0.791	3.366	0.825	4.496	2.293
	0.55	1	1.411	1.39	1.711	1.327	1.232
1.5	0.75	1	1.284	1.309	1.505	1.801	1.292
	0.95	1	0.869	2.864	0.975	4.173	1.813
	0.55	1	1.518	1.689	2.13	1.303	1.268
	0.65	1	1.453	1.517	1.984	1.442	1.259
2.0	0.75	1	1.388	1.396	1.848	1.714	1.264
	0.85	1	1.283	1.454	1.67	2.251	1.315
	0.95	1	0.973	2.59	1.21	3.965	1.565
	0.55	1	1.591	2.135	2.679	1.329	1.316
	0.65	1	1.537	1.866	2.491	1.472	1.283
2.5	0.75	1	1.466	1.592	2.284	1.711	1.253
	0.85	1	1.363	1.473	2.056	2.258	1.281
	0.95	1	1.076	2.436	1.528	4.107	1.473
	0.55	1	1.596	2.743	3.367	1.345	1.353
	0.65	1	1.575	2.386	3.156	1.504	1.313
3.0	0.75	1	1.492	1.935	2.869	1.752	1.267
	0.85	1	1.419	1.618	2.606	2.339	1.293
	0.95	1	1.149	2.342	1.936	4.31	1.45

Table 17: Bias of sparsity with u=1

V	ω	SNP	DNP	SSLASSO	GMLEB	EBayesThresh	HART	ash
	0.55	0.178	0	0.294	-0.405	-0.516	0.269	-0.154
1.0	0.75	0.085	-0.084	0.068	-0.612	-0.585	0.127	-0.227
	0.95	0.01	-0.17	-0.181	-0.756	-0.793	-0.014	-0.331
	0.55	0.114	-0.052	0.323	-0.422	-0.515	0.213	-0.198
1.5	0.75	0.05	-0.114	0.097	-0.598	-0.506	0.097	-0.226
	0.95	-0.002	-0.19	-0.171	-0.77	-0.631	-0.02	-0.32
	0.55	0.067	-0.09	0.353	-0.402	-0.512	0.152	-0.232
	0.65	0.048	-0.11	0.244	-0.485	-0.487	0.108	-0.227
2.0	0.75	0.025	-0.136	0.131	-0.581	-0.454	0.063	-0.225
	0.85	0.003	-0.167	0.002	-0.649	-0.429	0.018	-0.244
	0.95	-0.004	-0.198	-0.157	-0.762	-0.482	-0.026	-0.312
	0.55	0.04	-0.114	0.383	-0.396	-0.493	0.097	-0.254
	0.65	0.027	-0.133	0.274	-0.464	-0.458	0.065	-0.24
2.5	0.75	0.012	-0.15	0.163	-0.552	-0.41	0.033	-0.218
	0.85	-0.005	-0.174	0.034	-0.639	-0.369	0	-0.226
	0.95	-0.013	-0.195	-0.14	-0.739	-0.371	-0.033	-0.309
	0.55	0.032	-0.122	0.415	-0.389	-0.454	0.053	-0.272
	0.65	0.02	-0.133	0.301	-0.444	-0.419	0.03	-0.25
3.0	0.75	0.014	-0.148	0.19	-0.534	-0.368	0.008	-0.216
	0.85	-0.003	-0.179	0.067	-0.637	-0.319	-0.015	-0.207
	0.95	-0.013	-0.194	-0.12	-0.722	-0.291	-0.037	-0.297

Table 18: Coverage of credible interval with u = 1

V	ω	SNP	DNP	EBayesThresh	ash
	0.55	0.93	0.93	0.94	0.94
1.0	0.75	0.95	0.95	0.96	0.95
	0.95	0.98	0.98	0.96	0.98
	0.55	0.93	0.94	0.93	0.93
1.5	0.75	0.95	0.96	0.96	0.95
	0.95	0.98	0.98	0.98	0.98
	0.55	0.94	0.94	0.92	0.94
	0.65	0.95	0.95	0.94	0.94
2.0	0.75	0.95	0.96	0.95	0.96
	0.85	0.97	0.97	0.97	0.97
	0.95	0.98	0.98	0.98	0.98
	0.55	0.94	0.95	0.90	0.94
	0.65	0.95	0.95	0.92	0.95
2.5	0.75	0.96	0.96	0.94	0.96
	0.85	0.97	0.97	0.97	0.97
	0.95	0.98	0.98	0.99	0.98
	0.55	0.95	0.95	0.87	0.94
	0.65	0.96	0.96	0.90	0.95
3.0	0.75	0.96	0.96	0.93	0.96
	0.85	0.97	0.97	0.96	0.97
	0.95	0.98	0.98	0.99	0.99

Table 19: Length of credible interval with u=1

V	ω	SNP	DNP	EBayesThresh	ash
	0.55	1.933	1.975	2.553	2.198
1.0	0.75	1.723	1.766	2.464	1.966
	0.95	1.4	1.401	2.531	1.621
	0.55	1.999	2.062	2.5	2.33
1.5	0.75	1.763	1.828	2.349	2.06
	0.95	1.433	1.45	2.306	1.653
	0.55	2.055	2.144	2.446	2.413
	0.65	1.928	2.022	2.365	2.279
2.0	0.75	1.778	1.885	2.257	2.121
	0.85	1.607	1.705	2.132	1.936
	0.95	1.426	1.474	2.075	1.684
	0.55	2.07	2.192	2.384	2.441
	0.65	1.925	2.066	2.292	2.3
2.5	0.75	1.761	1.906	2.165	2.129
	0.85	1.574	1.709	2.014	1.945
	0.95	1.401	1.464	1.873	1.692
	0.55	2.024	2.177	2.311	2.436
	0.65	1.876	2.033	2.207	2.268
3.0	0.75	1.687	1.868	2.065	2.086
	0.85	1.497	1.699	1.893	1.917
	0.95	1.334	1.449	1.692	1.691

Table 20.	Empirical FD	R with u -	1 and $V-1$
Table 20.	- Ениописат етд	\mathbf{K} with $n = 1$	and v =

	Table 20: Empirical FDR with $u = 1$ and $v = 1$									
ω	FDR level	BH	SNP NEB	DNP NEB	Storey	HART	ash			
	0.01	0.02	0.02	0.03	0.03	0.02	0.02			
	0.05	0.06	0.05	0.08	0.08	0.05	0.05			
	0.10	0.09	0.09	0.13	0.12	0.08	0.07			
0.35	0.15	0.11	0.11	0.16	0.15	0.10	0.10			
	0.20	0.13	0.14	0.20	0.18	0.12	0.12			
	0.25	0.14	0.16	0.23	0.21	0.14	0.14			
	0.30	0.16	0.19	0.26	0.23	0.16	0.16			
	0.01	0.04	0.03	0.05	0.05	0.04	0.03			
	0.05	0.10	0.08	0.12	0.12	0.09	0.08			
	0.10	0.14	0.12	0.18	0.18	0.13	0.12			
0.55	0.15	0.18	0.16	0.24	0.23	0.16	0.14			
	0.20	0.22	0.20	0.28	0.28	0.20	0.18			
	0.25	0.25	0.23	0.33	0.32	0.23	0.21			
	0.30	0.27	0.26	0.37	0.35	0.26	0.24			
	0.01	0.07	0.04	0.09	0.08	0.08	0.06			
	0.05	0.16	0.12	0.20	0.19	0.16	0.13			
	0.10	0.23	0.17	0.28	0.27	0.22	0.19			
0.75	0.15	0.29	0.23	0.34	0.34	0.27	0.23			
	0.20	0.34	0.27	0.40	0.39	0.32	0.28			
	0.25	0.38	0.31	0.45	0.44	0.36	0.32			
	0.30	0.42	0.35	0.49	0.49	0.40	0.36			
	0.01	0.18	0.05	0.24	0.22	0.27	0.19			
	0.05	0.38	0.13	0.49	0.42	0.47	0.37			
	0.10	0.51	0.27	0.59	0.55	0.56	0.50			
0.95	0.15	0.58	0.31	0.67	0.62	0.62	0.58			
	0.20	0.64	0.37	0.71	0.68	0.66	0.63			
	0.25	0.68	0.42	0.74	0.72	0.70	0.67			
	0.30	0.72	0.45	0.77	0.76	0.73	0.71			

Table 21: Empirical FDR with u = 1 and V = 2

Table 21: Empirical FDR with $u = 1$ and $V = 2$								
ω	FDR level	BH	SNP NEB	DNP NEB	Storey	HART	ash	
	0.01	0.01	0.02	0.03	0.03	0.02	0.01	
	0.05	0.04	0.06	0.09	0.08	0.05	0.03	
	0.10	0.07	0.09	0.14	0.13	0.08	0.05	
0.35	0.15	0.09	0.13	0.20	0.17	0.11	0.07	
0.00	0.20	0.11	0.17	0.25	0.20	0.14	0.09	
	0.25	0.13	0.21	0.30	0.24	0.17	0.11	
	0.30	0.14	0.25	0.33	0.28	0.21	0.14	
	0.01	0.02	0.02	0.03	0.03	0.02	0.01 0.04	
	0.05	0.06	0.06	0.10	0.09	0.06	0.04	
0.45	0.10 0.15	0.09	0.10 0.14	0.16 0.21	0.15	0.10		
0.43		0.12			0.20	0.13	0.08	
	0.20	0.15	0.18	0.26	0.24	0.17	0.10	
	0.25	0.17	0.22	0.32	0.28	0.20	0.12	
	0.30	0.19	0.27	0.36	0.32	0.24	0.15	
	0.01	0.03	0.02	0.04	0.04	0.03	0.02	
	0.05	0.07	0.07	0.11	0.11	0.07	0.05	
	0.10	0.12	0.12	0.18	0.17	0.12	0.07	
0.55	0.15	0.15	0.16	0.24	0.23	0.16	0.10	
	0.20	0.19	0.21	0.30	0.28	0.20	0.12	
	0.25	0.22	0.25	0.35	0.32	0.24	0.14	
	0.30	0.25	0.29	0.40	0.36	0.28	0.17	
	0.01	0.04	0.03	0.05	0.05	0.04	0.02	
	0.05	0.09	0.08	0.12	0.13	0.09	0.05	
	0.10	0.15	0.13	0.20	0.20	0.15	0.08	
0.65	0.15	0.19	0.18	0.27	0.27	0.20	0.11	
	0.20	0.23	0.23	0.32	0.32	0.24	0.14	
	0.25	0.27	0.27	0.38	0.37	0.28	0.17	
	0.30	0.31	0.32	0.43	0.41	0.32	0.20	
	0.01	0.05	0.03	0.06	0.06	0.05	0.03	
	0.05	0.12	0.10	0.15	0.15	0.12	0.07	
	0.10	0.12	0.16	0.13	0.13	0.12	0.11	
0.75	0.15	0.17	0.10	0.24	0.30	0.15	0.14	
0.75	0.20	0.29	0.26	0.37	0.36	0.29	0.17	
	0.25	0.33	0.30	0.42	0.42	0.34	0.21	
	0.30	0.38	0.35	0.48	0.46	0.38	0.24	
-			0.04					
	0.01	$0.07 \\ 0.17$		0.08	0.08	0.07	0.04	
	0.05		0.12	0.20	0.20	0.17	0.10	
0.05	0.10	0.25	0.18	0.30	0.29	0.25	0.16	
0.85	0.15	0.31	0.24	0.38	0.37	0.31	0.21	
	0.20	0.37	0.29	0.44	0.43	0.36	0.25	
	0.25	0.42	0.34	0.50	0.49	0.42	0.29	
	0.30	0.47	0.39	0.55	0.54	0.46	0.33	
	0.01	0.12	0.04	0.16	0.13	0.15	0.10	
	0.05	0.28	0.13	0.36	0.32	0.33	0.21	
	0.10	0.40	0.21	0.48	0.44	0.42	0.32	
0.95	0.15	0.48	0.27	0.56	0.52	0.50	0.40	
	0.20	0.54	0.32	0.63	0.59	0.55	0.46	
	0.25	0.60	0.37	0.68	0.65	0.60	0.52	
	0.30	0.65	0.42	0.72	0.70	0.64	0.58	

Table 22: Emprical power with u=1 and V=1

ω	FDR level	ВН	SNP NEB	DNP NEB	Storey	HART
	0.01	0.13	0.172	0.176	0.144	0.151
	0.05	0.214	0.29	0.294	0.241	0.243
	0.10	0.274	0.369	0.372	0.314	0.305
0.65	0.15	0.319	0.427	0.43	0.37	0.351
	0.20	0.36	0.481	0.484	0.419	0.39
	0.25	0.396	0.529	0.535	0.466	0.426
	0.30	0.429	0.578	0.584	0.513	0.462
	0.01	0.118	0.152	0.157	0.129	0.139
	0.05	0.196	0.258	0.263	0.22	0.222
	0.10	0.254	0.331	0.336	0.285	0.28
0.75	0.15	0.297	0.388	0.392	0.338	0.322
	0.20	0.336	0.435	0.442	0.385	0.357
	0.25	0.371	0.482	0.489	0.429	0.39
	0.30	0.404	0.526	0.536	0.473	0.423
	0.01	0.107	0.131	0.137	0.112	0.128
	0.05	0.179	0.222	0.231	0.194	0.203
	0.10	0.228	0.286	0.295	0.249	0.249
0.85	0.15	0.268	0.337	0.344	0.298	0.287
	0.20	0.305	0.381	0.388	0.342	0.317
	0.25	0.339	0.418	0.427	0.38	0.347
	0.30	0.369	0.455	0.465	0.417	0.374
	0.01	0.079	0.089	0.097	0.084	0.105
	0.05	0.137	0.161	0.174	0.152	0.166
	0.10	0.183	0.216	0.23	0.197	0.206
0.95	0.15	0.215	0.254	0.271	0.236	0.234
	0.20	0.244	0.293	0.309	0.27	0.26
	0.25	0.273	0.328	0.348	0.311	0.283
	0.30	0.304	0.366	0.388	0.352	0.305

Table 23: Emprical power with u = 1 and V = 2

	Table 23: Emprical power with $u = 1$ and $V = 2$							
ω	FDR level	BH	SNP NEB	DNP NEB	Storey	HART		
	0.01	0.391	0.483	0.488	0.426	0.443		
	0.05	0.521	0.641	0.645	0.569	0.585		
	0.10	0.593	0.718	0.723	0.65	0.658		
0.65	0.15	0.64	0.769	0.774	0.701	0.705		
	0.20	0.674	0.806	0.812	0.741	0.741		
	0.25	0.705	0.837	0.843	0.774	0.771		
	0.30	0.731	0.865	0.872	0.806	0.799		
	0.01	0.372	0.448	0.453	0.398	0.418		
	0.05	0.5	0.597	0.6	0.534	0.55		
	0.10	0.567	0.673	0.676	0.609	0.618		
0.75	0.15	0.615	0.719	0.724	0.659	0.661		
	0.20	0.649	0.758	0.763	0.699	0.697		
	0.25	0.679	0.79	0.795	0.733	0.725		
	0.30	0.705	0.818	0.822	0.764	0.754		
	0.01	0.348	0.406	0.416	0.366	0.386		
	0.05	0.463	0.54	0.547	0.488	0.502		
	0.10	0.526	0.613	0.62	0.558	0.564		
0.85	0.15	0.573	0.662	0.669	0.61	0.607		
	0.20	0.611	0.699	0.706	0.652	0.643		
	0.25	0.643	0.73	0.739	0.685	0.672		
	0.30	0.672	0.761	0.769	0.717	0.698		
	0.01	0.288	0.317	0.334	0.301	0.329		
	0.05	0.394	0.436	0.452	0.412	0.425		
	0.10	0.456	0.503	0.521	0.478	0.481		
0.95	0.15	0.499	0.551	0.566	0.523	0.516		
	0.20	0.534	0.587	0.607	0.565	0.546		
	0.25	0.567	0.623	0.642	0.597	0.57		
	0.30	0.593	0.655	0.677	0.635	0.598		

Table 24: Posterior mean MSE with u=1.5

\overline{V}	ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
	0.55	0.379	0.38	0.453	0.411	0.45	0.381	0.452	0.414	0.449
1.0	0.75	0.267	0.27	0.347	0.306	0.34	0.272	0.307	0.32	0.303
	0.95	0.084	0.091	0.124	0.091	0.118	0.095	0.098	0.162	0.093
	0.55	0.446	0.447	0.538	0.503	0.54	0.449	0.569	0.476	0.561
1.5	0.75	0.327	0.329	0.447	0.404	0.442	0.332	0.397	0.369	0.391
	0.95	0.109	0.115	0.169	0.137	0.163	0.12	0.128	0.18	0.123
	0.55	0.509	0.511	0.618	0.591	0.624	0.514	0.67	0.534	0.654
	0.65	0.456	0.459	0.591	0.56	0.596	0.462	0.585	0.49	0.572
2.0	0.75	0.38	0.384	0.541	0.504	0.541	0.388	0.478	0.415	0.467
	0.85	0.276	0.281	0.438	0.397	0.432	0.284	0.341	0.316	0.335
	0.95	0.133	0.139	0.227	0.194	0.22	0.144	0.159	0.195	0.154
	0.55	0.551	0.555	0.687	0.668	0.696	0.558	0.746	0.571	0.716
	0.65	0.495	0.499	0.664	0.642	0.672	0.503	0.655	0.522	0.632
2.5	0.75	0.416	0.42	0.619	0.592	0.624	0.424	0.537	0.445	0.52
	0.85	0.304	0.31	0.52	0.486	0.518	0.314	0.386	0.336	0.376
	0.95	0.152	0.157	0.29	0.257	0.283	0.162	0.183	0.206	0.178
	0.55	0.564	0.569	0.743	0.729	0.754	0.573	0.794	0.583	0.751
	0.65	0.506	0.511	0.724	0.708	0.733	0.516	0.696	0.529	0.663
3.0	0.75	0.428	0.432	0.685	0.665	0.692	0.436	0.572	0.452	0.547
	0.85	0.313	0.319	0.591	0.565	0.591	0.324	0.412	0.339	0.397
	0.95	0.16	0.165	0.355	0.323	0.347	0.17	0.197	0.209	0.193

Table 25: Posterior mean MSE Relative ratio with $u=1.5\,$

V	ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
1.0	0.55 0.75 0.95	1 1 1	1.001 1.01 1.085	1.194 1.297 1.485	1.085 1.143 1.086	1.187 1.273 1.414	1.004 1.017 1.136	1.192 1.149 1.166	1.093 1.197 1.939	1.184 1.133 1.109
1.5	0.55 0.75 0.95	1 1 1	1.003 1.009 1.051	1.207 1.369 1.547	1.128 1.237 1.247	1.212 1.353 1.493	1.009 1.017 1.098	1.276 1.215 1.172	1.069 1.13 1.641	1.259 1.196 1.125
2.0	0.55 0.65 0.75 0.85 0.95	1 1 1 1	1.005 1.008 1.011 1.02 1.041	1.215 1.298 1.424 1.587 1.7	1.163 1.229 1.325 1.439 1.453	1.228 1.309 1.423 1.567 1.653	1.012 1.014 1.02 1.031 1.079	1.318 1.285 1.257 1.237 1.191	1.05 1.075 1.093 1.147 1.464	1.286 1.255 1.23 1.214 1.154
2.5	0.55 0.65 0.75 0.85 0.95	1 1 1 1	1.008 1.009 1.01 1.019 1.034	1.247 1.342 1.488 1.712 1.904	1.212 1.297 1.422 1.6 1.69	1.264 1.358 1.5 1.704 1.859	1.013 1.015 1.02 1.033 1.062	1.354 1.324 1.291 1.272 1.2	1.038 1.055 1.069 1.104 1.353	1.3 1.276 1.249 1.237 1.17
3.0	0.55 0.65 0.75 0.85 0.95	1 1 1 1	1.009 1.011 1.011 1.018 1.028	1.318 1.431 1.6 1.886 2.209	1.294 1.4 1.553 1.804 2.013	1.337 1.449 1.617 1.886 2.162	1.017 1.02 1.02 1.035 1.059	1.408 1.376 1.336 1.313 1.23	1.034 1.046 1.056 1.081 1.301	1.332 1.31 1.278 1.267 1.2

Table 26: Posterior mode MSE with u=1.5

\overline{V}	ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
	0.55	0.421	0.499	0.487	0.524	0.521	0.461
1.0	0.75	0.253	0.28	0.336	0.291	0.425	0.294
	0.95	0.059	0.057	0.249	0.058	0.239	0.096
	0.55	0.487	0.635	0.604	0.699	0.562	0.535
1.5	0.75	0.299	0.359	0.369	0.389	0.462	0.331
	0.95	0.072	0.074	0.242	0.078	0.267	0.098
	0.55	0.536	0.767	0.756	0.904	0.58	0.594
	0.65	0.448	0.605	0.577	0.705	0.537	0.484
2.0	0.75	0.336	0.439	0.414	0.503	0.476	0.361
	0.85	0.217	0.267	0.291	0.302	0.392	0.234
	0.95	0.084	0.091	0.232	0.1	0.269	0.101
	0.55	0.554	0.864	0.935	1.123	0.596	0.629
	0.65	0.467	0.689	0.695	0.875	0.547	0.505
2.5	0.75	0.356	0.503	0.472	0.625	0.481	0.374
	0.85	0.231	0.307	0.299	0.375	0.396	0.244
	0.95	0.09	0.105	0.218	0.125	0.269	0.103
	0.55	0.542	0.912	1.136	1.346	0.579	0.638
	0.65	0.458	0.734	0.833	1.049	0.524	0.503
3.0	0.75	0.354	0.541	0.542	0.749	0.47	0.371
	0.85	0.233	0.332	0.311	0.45	0.388	0.242
	0.95	0.091	0.116	0.202	0.15	0.271	0.102

Table 27: Posterior mode MSE Relative ratio with $\underline{u}=1.5$

V	ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
	0.55	1	1.186	1.157	1.244	1.237	1.095
1.0	0.75	1	1.105	1.326	1.151	1.68	1.164
	0.95	1	0.958	4.196	0.979	4.025	1.617
	0.55	1	1.304	1.24	1.435	1.154	1.099
1.5	0.75	1	1.2	1.231	1.298	1.541	1.105
	0.95	1	1.029	3.381	1.082	3.724	1.367
	0.55	1	1.43	1.409	1.686	1.081	1.107
	0.65	1	1.351	1.289	1.575	1.2	1.081
2.0	0.75	1	1.307	1.234	1.499	1.419	1.074
	0.85	1	1.233	1.345	1.396	1.809	1.082
	0.95	1	1.081	2.769	1.199	3.213	1.203
	0.55	1	1.559	1.687	2.025	1.075	1.135
	0.65	1	1.476	1.49	1.875	1.172	1.083
2.5	0.75	1	1.411	1.325	1.754	1.35	1.049
	0.85	1	1.327	1.296	1.625	1.712	1.054
	0.95	1	1.167	2.414	1.38	2.971	1.139
	0.55	1	1.683	2.096	2.484	1.069	1.176
	0.65	1	1.604	1.82	2.293	1.145	1.1
3.0	0.75	1	1.529	1.532	2.119	1.33	1.048
	0.85	1	1.425	1.335	1.932	1.668	1.038
	0.95	1	1.28	2.222	1.648	2.986	1.129

Table 28: Bias of sparsity with u=1.5

\overline{V}	ω	SNP	DNP	SSLASSO	GMLEB	EBayesThresh	HART	ash
	0.55	0.217	0.087	0.31	-0.38	-0.486	0.337	-0.074
1.0	0.75	0.139	0.02	0.088	-0.549	-0.523	0.182	-0.136
	0.95	0.034	-0.07	-0.149	-0.621	-0.633	0.028	-0.196
	0.55	0.13	0.02	0.334	-0.342	-0.505	0.29	-0.147
1.5	0.75	0.089	-0.021	0.112	-0.582	-0.458	0.156	-0.154
	0.95	0.024	-0.073	-0.141	-0.65	-0.489	0.022	-0.19
	0.55	0.07	-0.036	0.361	-0.335	-0.518	0.235	-0.199
	0.65	0.061	-0.044	0.251	-0.461	-0.478	0.181	-0.185
2.0	0.75	0.049	-0.061	0.138	-0.55	-0.424	0.126	-0.173
	0.85	0.036	-0.071	0.015	-0.589	-0.363	0.071	-0.164
	0.95	0.016	-0.091	-0.13	-0.638	-0.36	0.016	-0.189
	0.55	0.039	-0.067	0.388	-0.344	-0.517	0.18	-0.228
	0.65	0.031	-0.068	0.277	-0.439	-0.466	0.138	-0.209
2.5	0.75	0.025	-0.069	0.165	-0.507	-0.394	0.095	-0.181
	0.85	0.019	-0.085	0.041	-0.602	-0.318	0.052	-0.155
	0.95	0.008	-0.099	-0.116	-0.592	-0.268	0.01	-0.181
	0.55	0.026	-0.08	0.416	-0.303	-0.495	0.131	-0.256
	0.65	0.019	-0.076	0.301	-0.384	-0.438	0.099	-0.226
3.0	0.75	0.017	-0.075	0.189	-0.482	-0.362	0.068	-0.185
	0.85	0.011	-0.088	0.067	-0.571	-0.282	0.036	-0.149
	0.95	0.004	-0.095	-0.101	-0.594	-0.207	0.005	-0.166

Table 29: Coverage of credible interval with u=1.5

\overline{V}	ω	SNP	DNP	EBayesThresh	ash
	0.55	0.93	0.92	0.96	0.94
1.0	0.75	0.94	0.94	0.97	0.95
	0.95	0.98	0.98	0.98	0.98
	0.55	0.94	0.94	0.95	0.94
1.5	0.75	0.95	0.95	0.97	0.95
	0.95	0.98	0.98	0.99	0.98
	0.55	0.95	0.96	0.93	0.95
	0.65	0.96	0.96	0.94	0.95
2.0	0.75	0.96	0.96	0.96	0.96
	0.85	0.97	0.97	0.97	0.96
	0.95	0.98	0.98	0.99	0.98
	0.55	0.96	0.96	0.89	0.95
	0.65	0.96	0.96	0.92	0.96
2.5	0.75	0.97	0.97	0.94	0.96
	0.85	0.97	0.97	0.96	0.97
	0.95	0.98	0.98	0.99	0.98
	0.55	0.96	0.96	0.84	0.96
	0.65	0.96	0.97	0.88	0.96
3.0	0.75	0.97	0.97	0.92	0.97
	0.85	0.98	0.98	0.95	0.97
	0.95	0.98	0.99	0.98	0.98

Tal	ble 30:	Length o	f credibl	e interval with u	= 1.5
\overline{V}	ω	SNP	DNP	EBayesThresh	ash
	0.55	2.098	2.07	3.158	2.52
1.0	0.75	1.759	1.741	3.019	2.153
	0.95	1.193	1.135	2.96	1.551
	0.55	2.273	2.215	3.066	2.775
1.5	0.75	1.912	1.892	2.844	2.342
	0.95	1.236	1.171	2.644	1.608
	0.55	2.428	2.414	2.957	2.971
	0.65	2.266	2.235	2.85	2.757
2.0	0.75	2.034	2.044	2.698	2.493
	0.85	1.724	1.73	2.49	2.146
	0.95	1.289	1.289	2.307	1.668
	0.55	2.524	2.558	2.839	3.094
	0.65	2.352	2.357	2.724	2.869
2.5	0.75	2.087	2.104	2.55	2.572
	0.85	1.749	1.779	2.313	2.198
	0.95	1.337	1.336	2.008	1.698
	0.55	2.542	2.62	2.709	3.158
	0.65	2.349	2.403	2.58	2.91
3.0	0.75	2.062	2.109	2.391	2.573
	0.85	1.719	1.765	2.137	2.17
	0.95	1.328	1.28	1.745	1.68

Table 31: Empirical FDR with u = 1.5 and V = 1

ω FDR level BH SNP NEB DNP NEB Storey HART ash 0.01 0.02 0.02 0.03 0.02 0.01 0.02 0.05 0.04 0.04 0.06 0.05 0.03 0.04 0.10 0.06 0.06 0.09 0.08 0.05 0.06 0.35 0.15 0.08 0.09 0.12 0.10 0.06 0.07 0.20 0.10 0.11 0.15 0.13 0.07 0.09 0.25 0.11 0.13 0.18 0.15 0.09 0.11 0.30 0.13 0.16 0.22 0.17 0.10 0.13 0.05 0.06 0.06 0.09 0.07 0.06 0.06 0.10 0.10 0.09 0.13 0.11 0.08 0.09 0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.		Table	31; EI	притсаі грк	with $u = 1.5$	and $V =$	1	
0.05 0.04 0.04 0.06 0.05 0.03 0.04 0.10 0.06 0.06 0.09 0.08 0.05 0.06 0.35 0.15 0.08 0.09 0.12 0.10 0.06 0.07 0.20 0.10 0.11 0.15 0.13 0.07 0.09 0.25 0.11 0.13 0.18 0.15 0.09 0.11 0.30 0.13 0.16 0.22 0.17 0.10 0.13 0.05 0.06 0.06 0.09 0.07 0.06 0.06 0.10 0.10 0.09 0.13 0.11 0.08 0.09 0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.14 0.20 0.18 0.12 0.14 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.25 0.18 0.17 0.24	ω	FDR level	BH	SNP NEB	DNP NEB	Storey	HART	ash
0.10 0.06 0.06 0.09 0.08 0.05 0.06 0.35 0.15 0.08 0.09 0.12 0.10 0.06 0.07 0.20 0.10 0.11 0.15 0.13 0.07 0.09 0.25 0.11 0.13 0.18 0.15 0.09 0.11 0.01 0.02 0.02 0.04 0.03 0.03 0.03 0.05 0.06 0.06 0.09 0.07 0.06 0.06 0.10 0.10 0.09 0.13 0.11 0.08 0.09 0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.14 0.20 0.18 0.12 0.14 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.30 0.20 0.20 0.28		0.01	0.02	0.02	0.03	0.02	0.01	0.02
0.35 0.15 0.08 0.09 0.12 0.10 0.06 0.07 0.20 0.10 0.11 0.15 0.13 0.07 0.09 0.25 0.11 0.13 0.18 0.15 0.09 0.11 0.30 0.13 0.16 0.22 0.17 0.10 0.13 0.01 0.02 0.02 0.04 0.03 0.03 0.03 0.05 0.06 0.06 0.09 0.07 0.06 0.06 0.10 0.10 0.09 0.13 0.11 0.08 0.09 0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.14 0.20 0.18 0.12 0.14 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.30 0.20 0.20 0.28 0.24 0.17 0.18 0.01 0.05 0.04 0.08		0.05	0.04	0.04	0.06	0.05	0.03	0.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.10	0.06	0.06	0.09	0.08	0.05	0.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.35	0.15	0.08	0.09	0.12	0.10	0.06	0.07
0.30 0.13 0.16 0.22 0.17 0.10 0.13 0.01 0.02 0.04 0.03 0.03 0.03 0.05 0.06 0.06 0.09 0.07 0.06 0.06 0.10 0.10 0.09 0.13 0.11 0.08 0.09 0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.14 0.20 0.18 0.12 0.14 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.30 0.20 0.20 0.28 0.24 0.17 0.18 0.01 0.05 0.04 0.08 0.05 0.06 0.05 0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22		0.20	0.10	0.11	0.15	0.13	0.07	0.09
0.01 0.02 0.02 0.04 0.03 0.03 0.03 0.05 0.06 0.06 0.09 0.07 0.06 0.06 0.10 0.10 0.09 0.13 0.11 0.08 0.09 0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.14 0.20 0.18 0.12 0.14 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.30 0.20 0.20 0.28 0.24 0.17 0.18 0.01 0.05 0.04 0.08 0.05 0.06 0.05 0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.21 0.22		0.25	0.11	0.13	0.18	0.15	0.09	0.11
0.05 0.06 0.09 0.07 0.06 0.06 0.10 0.10 0.09 0.13 0.11 0.08 0.09 0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.14 0.20 0.18 0.12 0.14 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.30 0.20 0.20 0.28 0.24 0.17 0.18 0.01 0.05 0.04 0.08 0.05 0.06 0.05 0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30		0.30	0.13	0.16	0.22	0.17	0.10	0.13
0.10 0.10 0.09 0.13 0.11 0.08 0.09 0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.14 0.20 0.18 0.12 0.14 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.30 0.20 0.20 0.28 0.24 0.17 0.18 0.01 0.05 0.04 0.08 0.05 0.06 0.05 0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.25		0.01	0.02	0.02	0.04	0.03	0.03	0.03
0.55 0.15 0.12 0.12 0.16 0.15 0.10 0.12 0.20 0.15 0.14 0.20 0.18 0.12 0.14 0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.30 0.20 0.20 0.28 0.24 0.17 0.18 0.01 0.05 0.04 0.08 0.05 0.06 0.05 0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
0.25 0.18 0.17 0.24 0.21 0.14 0.16 0.30 0.20 0.20 0.28 0.24 0.17 0.18 0.01 0.05 0.04 0.08 0.05 0.06 0.05 0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36	0.55				0.16			
0.30 0.20 0.28 0.24 0.17 0.18 0.01 0.05 0.04 0.08 0.05 0.06 0.05 0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41								0.14
0.01 0.05 0.04 0.08 0.05 0.06 0.05 0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41								
0.05 0.12 0.08 0.14 0.12 0.12 0.12 0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41		0.30	0.20	0.20	0.28	0.24	0.17	0.18
0.10 0.16 0.12 0.20 0.18 0.15 0.16 0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41		0.01	0.05	0.04	0.08	0.05	0.06	0.05
0.75 0.15 0.20 0.15 0.24 0.22 0.19 0.19 0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41								
0.20 0.24 0.18 0.28 0.26 0.21 0.22 0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41								
0.25 0.28 0.21 0.32 0.30 0.24 0.25 0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41	0.75							
0.30 0.31 0.24 0.36 0.34 0.27 0.28 0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41			0.24					
0.01 0.17 0.09 0.18 0.15 0.20 0.17 0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41								
0.05 0.22 0.15 0.34 0.25 0.33 0.33 0.10 0.32 0.16 0.44 0.36 0.43 0.41		0.30	0.31	0.24	0.36	0.34	0.27	0.28
0.10 0.32 0.16 0.44 0.36 0.43 0.41								
	0.95							
		0.15	0.41	0.20	0.52	0.43	0.50	0.47
0.20 0.47 0.23 0.58 0.50 0.53 0.52								
0.25 0.52 0.27 0.62 0.56 0.58 0.57								
0.30 0.56 0.29 0.65 0.59 0.61 0.60		0.30	0.56	0.29	0.65	0.59	0.61	0.60

Table 32: Empirical FDR with u=1.5 and V=2

0.01 0.01 0.01 0.02 0.01 0.0 0.05 0.03 0.04 0.06 0.05 0.0 0.10 0.05 0.08 0.12 0.08 0.0 0.35 0.15 0.07 0.12 0.17 0.12 0.0 0.20 0.08 0.16 0.22 0.15 0.0 0.25 0.10 0.20 0.28 0.18 0. 0.30 0.12 0.25 0.32 0.21 0. 0.01 0.01 0.01 0.02 0.02 0.0 0.05 0.04 0.04 0.06 0.05 0.0 0.45 0.15 0.09 0.12 0.16 0.13 0.0	02 0.02 04 0.04 06 0.06 08 0.08 11 0.10 14 0.13 01 0.01 03 0.03 05 0.04
0.10 0.05 0.08 0.12 0.08 0.0 0.35 0.15 0.07 0.12 0.17 0.12 0.0 0.20 0.08 0.16 0.22 0.15 0.0 0.25 0.10 0.20 0.28 0.18 0.0 0.30 0.12 0.25 0.32 0.21 0.0 0.01 0.01 0.02 0.02 0.0 0.05 0.04 0.04 0.06 0.05 0.0 0.10 0.06 0.08 0.11 0.10 0.0	0.04 0.04 0.06 0.06 0.08 0.08 0.1 0.10 0.4 0.13 0.1 0.01 0.3 0.03 0.5 0.04
0.35 0.15 0.07 0.12 0.17 0.12 0.0 0.20 0.08 0.16 0.22 0.15 0.0 0.25 0.10 0.20 0.28 0.18 0. 0.30 0.12 0.25 0.32 0.21 0. 0.01 0.01 0.02 0.02 0.0 0.05 0.04 0.04 0.06 0.05 0.0 0.10 0.06 0.08 0.11 0.10 0.0	06 0.06 08 0.08 11 0.10 14 0.13 01 0.01 03 0.03 05 0.04
0.20 0.08 0.16 0.22 0.15 0.0 0.25 0.10 0.20 0.28 0.18 0.0 0.30 0.12 0.25 0.32 0.21 0.0 0.01 0.01 0.01 0.02 0.02 0.0 0.05 0.04 0.04 0.06 0.05 0.0 0.10 0.06 0.08 0.11 0.10 0.0	08 0.08 11 0.10 14 0.13 01 0.01 03 0.03 05 0.04
0.25 0.10 0.20 0.28 0.18 0. 0.30 0.12 0.25 0.32 0.21 0. 0.01 0.01 0.01 0.02 0.02 0.0 0.05 0.04 0.04 0.06 0.05 0. 0.10 0.06 0.08 0.11 0.10 0.	11 0.10 14 0.13 01 0.01 03 0.03 05 0.04
0.30 0.12 0.25 0.32 0.21 0.32 0.01 0.01 0.01 0.02 0.02 0.02 0.05 0.04 0.04 0.06 0.05 0.0 0.10 0.06 0.08 0.11 0.10 0.0	0.13 01 0.01 03 0.03 05 0.04
0.01 0.01 0.01 0.02 0.02 0.0 0.05 0.04 0.04 0.06 0.05 0.0 0.10 0.06 0.08 0.11 0.10 0.0	0.01 0.03 0.03 0.04
0.05 0.04 0.04 0.06 0.05 0.0 0.10 0.06 0.08 0.11 0.10 0.0	0.03 0.04
0.10 0.06 0.08 0.11 0.10 0.0	0.04
0.45 0.15 0.09 0.12 0.16 0.13 0.0	0.06 (
0.20 0.10 0.16 0.22 0.17 0.1	
0.25 0.13 0.21 0.27 0.21 0.	
0.30 0.15 0.25 0.33 0.24 0.3	0.12
0.01 0.02 0.02 0.02 0.02 0.0	
0.05 0.05 0.05 0.06 0.06 0.0	
0.10 0.08 0.09 0.12 0.11 0.0	
0.55 0.15 0.11 0.13 0.17 0.15 0.0	
0.20 0.13 0.17 0.22 0.19 0.3	
0.25 0.16 0.21 0.28 0.23 0.3	
0.30 0.19 0.26 0.33 0.27 0.1	0.13
0.01 0.02 0.02 0.03 0.03 0.0	
0.05 0.06 0.05 0.07 0.08 0.0	
0.10 0.10 0.09 0.13 0.12 0.0	
0.65 0.15 0.13 0.13 0.18 0.17 0.1	
0.20 0.16 0.17 0.23 0.21 0.1	4 0.10
0.25 0.20 0.22 0.29 0.26 0.1	7 0.12
0.30 0.23 0.26 0.34 0.29 0.2	21 0.14
0.01 0.03 0.02 0.04 0.04 0.0	
0.05 0.08 0.06 0.09 0.10 0.0	
0.10 0.12 0.10 0.15 0.14 0.1	
0.75 0.15 0.17 0.14 0.20 0.19 0.1	
0.20 0.20 0.18 0.25 0.24 0.1	
0.25 0.24 0.22 0.31 0.28 0.3	
0.30 0.28 0.27 0.36 0.32 0.3	25 0.17
0.01 0.05 0.03 0.05 0.05 0.0	
0.05 0.10 0.07 0.13 0.12 0.1	
0.10 0.16 0.12 0.19 0.18 0.1	
0.85 0.15 0.21 0.15 0.25 0.23 0.3	
0.20 0.26 0.19 0.30 0.28 0.2	
0.25 0.30 0.23 0.35 0.33 0.2	
0.30 0.34 0.27 0.40 0.38 0.3	31 0.23
0.01 0.07 0.04 0.10 0.07 0.0	
0.05 0.18 0.10 0.25 0.19 0.2	
0.10 0.28 0.14 0.34 0.29 0.3	
0.95 0.15 0.33 0.18 0.41 0.35 0.3	
0.20 0.39 0.22 0.46 0.41 0.4	
0.25 0.43 0.26 0.50 0.46 0.4	
0.30 0.48 0.29 0.55 0.50 0.4	17 0.43

Table 33: Emprical power with u=1.5 and V=1

ω	FDR level	ВН	SNP NEB	DNP NEB	Storey	HART
	0.01	0.06	0.087	0.088	0.065	0.074
	0.05	0.108	0.158	0.16	0.118	0.125
	0.10	0.145	0.216	0.219	0.159	0.162
0.65	0.15	0.174	0.267	0.271	0.192	0.193
	0.20	0.202	0.315	0.319	0.227	0.223
	0.25	0.231	0.362	0.367	0.261	0.252
	0.30	0.258	0.409	0.416	0.294	0.282
	0.01	0.052	0.072	0.074	0.054	0.064
	0.05	0.092	0.131	0.134	0.097	0.108
	0.10	0.126	0.181	0.184	0.136	0.142
0.75	0.15	0.156	0.223	0.227	0.168	0.169
	0.20	0.182	0.263	0.268	0.196	0.195
	0.25	0.207	0.303	0.311	0.225	0.219
	0.30	0.232	0.344	0.352	0.255	0.243
	0.01	0.049	0.062	0.065	0.051	0.061
	0.05	0.086	0.111	0.116	0.09	0.099
	0.10	0.114	0.149	0.154	0.118	0.127
0.85	0.15	0.136	0.181	0.188	0.141	0.148
	0.20	0.153	0.21	0.22	0.162	0.166
	0.25	0.175	0.242	0.252	0.187	0.184
	0.30	0.197	0.272	0.284	0.212	0.204
	0.01	0.035	0.038	0.04	0.034	0.041
	0.05	0.057	0.067	0.076	0.061	0.074
0.95	0.10	0.081	0.094	0.107	0.089	0.096
	0.15	0.099	0.117	0.131	0.108	0.11
	0.20	0.116	0.134	0.151	0.124	0.124
	0.25	0.129	0.154	0.173	0.138	0.135
	0.30	0.141	0.169	0.195	0.156	0.146

Table 34: Emprical power with u=1.5 and V=2

ω	FDR level	ВН	SNP NEB	DNP NEB	Storey	HART
	0.01	0.219	0.292	0.296	0.237	0.253
	0.05	0.332	0.456	0.46	0.362	0.381
	0.10	0.405	0.562	0.567	0.443	0.466
0.65	0.15	0.455	0.639	0.644	0.503	0.528
	0.20	0.499	0.7	0.705	0.554	0.581
	0.25	0.537	0.75	0.756	0.599	0.626
	0.30	0.573	0.793	0.799	0.641	0.669
	0.01	0.203	0.258	0.262	0.214	0.232
	0.05	0.307	0.401	0.407	0.326	0.346
	0.10	0.376	0.496	0.501	0.4	0.422
0.75	0.15	0.424	0.566	0.574	0.456	0.478
	0.20	0.467	0.622	0.632	0.5	0.522
	0.25	0.501	0.671	0.68	0.541	0.564
	0.30	0.534	0.714	0.725	0.578	0.601
	0.01	0.185	0.224	0.232	0.19	0.211
	0.05	0.28	0.342	0.352	0.29	0.309
	0.10	0.337	0.42	0.43	0.352	0.369
0.85	0.15	0.381	0.478	0.488	0.395	0.413
	0.20	0.417	0.525	0.538	0.436	0.448
	0.25	0.45	0.571	0.585	0.472	0.481
	0.30	0.481	0.616	0.628	0.503	0.512
	0.01	0.149	0.162	0.17	0.152	0.172
	0.05	0.218	0.24	0.254	0.221	0.238
0.95	0.10	0.261	0.293	0.31	0.268	0.279
	0.15	0.295	0.335	0.352	0.301	0.309
	0.20	0.324	0.372	0.395	0.332	0.334
	0.25	0.353	0.408	0.436	0.365	0.36
	0.30	0.376	0.443	0.471	0.392	0.382

Table 35: Posterior mean MSE with u=2

V	ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
	0.55	0.433	0.425	0.537	0.489	0.53	0.426	0.516	0.473	0.517
1.0	0.75	0.307	0.296	0.38	0.35	0.373	0.297	0.339	0.372	0.338
	0.95	0.085	0.085	0.124	0.095	0.116	0.092	0.092	0.199	0.089
	0.55	0.517	0.515	0.685	0.614	0.677	0.52	0.675	0.551	0.673
1.5	0.75	0.385	0.379	0.522	0.478	0.513	0.382	0.462	0.434	0.46
	0.95	0.122	0.119	0.17	0.146	0.163	0.124	0.131	0.221	0.128
	0.55	0.607	0.607	0.83	0.737	0.822	0.613	0.82	0.628	0.81
	0.65	0.546	0.548	0.778	0.692	0.77	0.551	0.715	0.58	0.706
2.0	0.75	0.463	0.46	0.677	0.613	0.668	0.464	0.582	0.495	0.576
	0.85	0.337	0.332	0.512	0.467	0.502	0.336	0.408	0.382	0.405
	0.95	0.159	0.154	0.234	0.213	0.226	0.159	0.174	0.241	0.172
	0.55	0.675	0.678	0.928	0.843	0.933	0.683	0.935	0.687	0.909
	0.65	0.611	0.614	0.898	0.807	0.896	0.619	0.825	0.632	0.805
2.5	0.75	0.522	0.521	0.824	0.736	0.81	0.526	0.681	0.542	0.668
	0.85	0.386	0.382	0.654	0.588	0.641	0.388	0.486	0.414	0.479
	0.95	0.191	0.183	0.311	0.29	0.302	0.191	0.215	0.257	0.213
	0.55	0.711	0.715	0.986	0.927	1.007	0.72	1.016	0.717	0.97
	0.65	0.645	0.651	0.968	0.899	0.984	0.654	0.902	0.656	0.868
3.0	0.75	0.553	0.553	0.928	0.838	0.92	0.559	0.751	0.564	0.726
	0.85	0.415	0.41	0.781	0.698	0.766	0.418	0.543	0.428	0.529
	0.95	0.211	0.203	0.395	0.371	0.387	0.212	0.248	0.266	0.245

Table 36: Posterior mean MSE Relative ratio with $u=2\,$

V	ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
	0.55	1	0.982	1.24	1.13	1.224	0.985	1.191	1.092	1.195
1.0	0.75	1	0.965	1.239	1.141	1.214	0.969	1.104	1.211	1.103
	0.95	1	1.004	1.463	1.123	1.369	1.087	1.087	2.34	1.052
	0.55	1	0.996	1.324	1.187	1.31	1.005	1.306	1.065	1.302
1.5	0.75	1	0.984	1.355	1.241	1.332	0.992	1.201	1.127	1.196
	0.95	1	0.977	1.397	1.202	1.336	1.015	1.075	1.813	1.053
	0.55	1	1	1.368	1.215	1.355	1.01	1.352	1.035	1.336
	0.65	1	1.002	1.424	1.267	1.409	1.009	1.308	1.062	1.293
2.0	0.75	1	0.994	1.463	1.324	1.443	1.003	1.259	1.071	1.246
	0.85	1	0.987	1.521	1.389	1.491	0.999	1.212	1.134	1.203
	0.95	1	0.967	1.47	1.339	1.422	0.997	1.094	1.515	1.079
	0.55	1	1.005	1.376	1.25	1.383	1.012	1.385	1.018	1.348
	0.65	1	1.005	1.469	1.321	1.466	1.013	1.35	1.034	1.317
2.5	0.75	1	0.999	1.58	1.41	1.553	1.009	1.305	1.038	1.28
	0.85	1	0.989	1.693	1.522	1.661	1.005	1.259	1.071	1.24
	0.95	1	0.959	1.626	1.514	1.582	0.997	1.125	1.346	1.112
	0.55	1	1.006	1.388	1.305	1.417	1.013	1.43	1.009	1.366
	0.65	1	1.009	1.499	1.393	1.525	1.014	1.398	1.017	1.345
3.0	0.75	1	1	1.677	1.514	1.663	1.01	1.357	1.02	1.312
	0.85	1	0.989	1.883	1.683	1.847	1.007	1.309	1.033	1.277
	0.95	1	0.965	1.877	1.763	1.836	1.007	1.177	1.265	1.162

Table 37: Posterior mode MSE with u=2

\overline{V}	ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
	0.55	0.455	0.508	0.512	0.524	0.538	0.472
1.0	0.75	0.268	0.284	0.355	0.291	0.405	0.286
	0.95	0.057	0.056	0.222	0.059	0.214	0.075
	0.55	0.548	0.657	0.633	0.699	0.588	0.566
1.5	0.75	0.329	0.369	0.392	0.389	0.454	0.341
	0.95	0.073	0.075	0.243	0.078	0.223	0.086
	0.55	0.634	0.813	0.788	0.904	0.62	0.646
	0.65	0.518	0.638	0.608	0.705	0.572	0.523
2.0	0.75	0.387	0.46	0.442	0.503	0.491	0.389
	0.85	0.245	0.278	0.313	0.302	0.38	0.249
	0.95	0.089	0.094	0.242	0.1	0.233	0.097
	0.55	0.686	0.951	0.968	1.123	0.634	0.699
	0.65	0.569	0.75	0.728	0.875	0.584	0.562
2.5	0.75	0.429	0.544	0.502	0.625	0.5	0.419
	0.85	0.274	0.329	0.324	0.375	0.405	0.272
	0.95	0.102	0.112	0.231	0.125	0.241	0.107
	0.55	0.697	1.056	1.167	1.346	0.625	0.725
	0.65	0.589	0.837	0.865	1.049	0.568	0.574
3.0	0.75	0.448	0.611	0.573	0.749	0.498	0.428
	0.85	0.291	0.372	0.338	0.45	0.403	0.282
	0.95	0.109	0.128	0.217	0.15	0.248	0.113

Table 38: Posterior mode MSE Relative ratio with u=2

\overline{V}	ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
	0.55	1	1.115	1.125	1.151	1.181	1.036
1.0	0.75	1	1.061	1.325	1.088	1.515	1.068
	0.95	1	0.986	3.882	1.033	3.742	1.309
	0.55	1	1.198	1.155	1.275	1.072	1.033
1.5	0.75	1	1.121	1.193	1.182	1.382	1.036
	0.95	1	1.022	3.317	1.061	3.038	1.173
	0.55	1	1.282	1.242	1.426	0.978	1.018
	0.65	1	1.23	1.172	1.36	1.104	1.009
2.0	0.75	1	1.188	1.142	1.3	1.268	1.004
	0.85	1	1.137	1.279	1.235	1.553	1.017
	0.95	1	1.062	2.728	1.133	2.625	1.097
	0.55	1	1.386	1.409	1.636	0.924	1.019
	0.65	1	1.317	1.279	1.538	1.025	0.988
2.5	0.75	1	1.27	1.172	1.458	1.168	0.977
	0.85	1	1.2	1.181	1.368	1.477	0.991
	0.95	1	1.098	2.265	1.221	2.362	1.047
	0.55	1	1.515	1.673	1.93	0.897	1.039
	0.65	1	1.422	1.468	1.782	0.965	0.975
3.0	0.75	1	1.365	1.281	1.674	1.113	0.957
	0.85	1	1.279	1.161	1.547	1.384	0.971
	0.95	1	1.169	1.985	1.369	2.266	1.036

Table 39: Bias of sparsity with u=2

V	ω	SNP	DNP	SSLASSO	GMLEB	EBayesThresh	HART	ash
	0.55	0.263	0.141	0.323	-0.329	-0.448	0.382	-0.004
1.0	0.75	0.172	0.066	0.105	-0.487	-0.456	0.218	-0.063
	0.95	0.042	-0.027	-0.058	-0.507	-0.529	0.048	-0.115
	0.55	0.15	0.056	0.345	-0.297	-0.485	0.342	-0.09
1.5	0.75	0.119	0.027	0.125	-0.499	-0.412	0.196	-0.096
	0.95	0.035	-0.036	-0.103	-0.512	-0.413	0.046	-0.116
	0.55	0.075	-0.002	0.368	-0.272	-0.511	0.294	-0.165
	0.65	0.08	-0.005	0.258	-0.432	-0.457	0.232	-0.143
2.0	0.75	0.074	-0.01	0.146	-0.472	-0.39	0.169	-0.126
	0.85	0.056	-0.026	0.027	-0.515	-0.313	0.107	-0.11
	0.95	0.027	-0.045	-0.107	-0.488	-0.289	0.043	-0.116
	0.55	0.039	-0.044	0.393	-0.284	-0.519	0.245	-0.204
	0.65	0.041	-0.034	0.281	-0.397	-0.458	0.194	-0.179
2.5	0.75	0.044	-0.026	0.169	-0.456	-0.371	0.142	-0.146
	0.85	0.037	-0.041	0.049	-0.503	-0.277	0.09	-0.112
	0.95	0.018	-0.05	-0.098	-0.484	-0.212	0.038	-0.113
	0.55	0.023	-0.058	0.418	-0.254	-0.51	0.197	-0.228
	0.65	0.023	-0.052	0.303	-0.343	-0.441	0.156	-0.198
3.0	0.75	0.028	-0.033	0.19	-0.411	-0.347	0.116	-0.153
	0.85	0.027	-0.045	0.07	-0.479	-0.249	0.075	-0.112
	0.95	0.012	-0.051	-0.084	-0.469	-0.16	0.033	-0.105

Table 40: Coverage of credible interval with u=2

0.55 0.92 0.91 0.97 0.94 1.0 0.75 0.93 0.93 0.98 0.94 0.95 0.97 0.97 0.99 0.98 0.55 0.94 0.94 0.96 0.94 1.5 0.75 0.95 0.95 0.97 0.95 0.95 0.97 0.98 0.99 0.97 0.95 0.55 0.96 0.96 0.94 0.95 0.95 0.65 0.96 0.96 0.95 0.95 0.95 2.0 0.75 0.96 0.96 0.96 0.95 0.95 0.85 0.96 0.97 0.97 0.97 0.96 0.95 0.95 0.97 0.98 0.99 0.97 0.97 0.96 0.65 0.96 0.96 0.89 0.96 0.96 0.99 0.97 2.5 0.75 0.97 0.97 0.93 0.96 0.96 0.96	V	ω	SNP	DNP	EBayesThresh	ash
0.95 0.97 0.97 0.99 0.98 0.55 0.94 0.94 0.96 0.94 1.5 0.75 0.95 0.95 0.97 0.95 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.94 0.95 0.65 0.96 0.96 0.95 0.95 2.0 0.75 0.96 0.96 0.95 0.95 0.85 0.96 0.97 0.97 0.97 0.96 0.95 0.97 0.99 0.97 0.91 0.96 0.65 0.96 0.97 0.91 0.96 0.65 0.96 0.97 0.91 0.96 0.85 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.98 0.95 0.98 0.98 0.98 0.95 0.		0.55	0.92	0.91	0.97	0.94
0.55 0.94 0.94 0.96 0.94 1.5 0.75 0.95 0.95 0.97 0.95 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.94 0.95 0.65 0.96 0.96 0.95 0.95 2.0 0.75 0.96 0.96 0.95 0.95 0.85 0.96 0.97 0.97 0.96 0.96 0.95 0.97 0.99 0.97 0.97 0.90 0.97 0.55 0.96 0.96 0.89 0.96 0.96 0.99 0.97 0.55 0.96 0.97 0.91 0.96 0.96 0.99 0.97 2.5 0.75 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.98 0.98 0.55 0.98 0.98 0.98 0.98 0.98 0.55 0.97 <	1.0	0.75	0.93	0.93	0.98	0.94
1.5 0.75 0.95 0.95 0.97 0.98 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.94 0.95 0.65 0.96 0.96 0.95 0.95 2.0 0.75 0.96 0.96 0.96 0.95 0.85 0.96 0.97 0.97 0.96 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.89 0.96 0.65 0.96 0.97 0.91 0.96 0.85 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 0.65 0.97 0.97 0.86 0.96 0.65 0.97 0.97 0.86 0.96 0.65 0.97 0.97 0.90		0.95	0.97	0.97	0.99	0.98
0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.94 0.95 0.65 0.96 0.96 0.95 0.95 2.0 0.75 0.96 0.96 0.96 0.95 0.85 0.96 0.97 0.97 0.96 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.89 0.96 0.65 0.96 0.97 0.91 0.96 0.85 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.93 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.55 0.97 0.97 0.86 0.96 0.55 0.97 0.97 0.86 0.96 0.55 0.97 0.97 0.86 0.96 0.65 0.97 0.97 0		0.55	0.94	0.94	0.96	0.94
0.55 0.96 0.96 0.94 0.95 0.65 0.96 0.96 0.95 0.95 2.0 0.75 0.96 0.96 0.96 0.95 0.85 0.96 0.97 0.97 0.96 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.89 0.96 0.65 0.96 0.97 0.91 0.96 2.5 0.75 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.98 0.99 0.97	1.5	0.75	0.95	0.95	0.97	0.95
0.65 0.96 0.96 0.95 0.95 2.0 0.75 0.96 0.96 0.96 0.95 0.85 0.96 0.97 0.97 0.96 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.89 0.96 0.65 0.96 0.97 0.91 0.96 0.85 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.98 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.98 0.94 0.97		0.95	0.97	0.98	0.99	0.97
2.0 0.75 0.96 0.96 0.95 0.85 0.96 0.97 0.97 0.96 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.89 0.96 0.65 0.96 0.97 0.91 0.96 2.5 0.75 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.55	0.96	0.96	0.94	0.95
0.85 0.96 0.97 0.98 0.99 0.97 0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.89 0.96 0.65 0.96 0.97 0.91 0.96 2.5 0.75 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.65	0.96	0.96	0.95	0.95
0.95 0.97 0.98 0.99 0.97 0.55 0.96 0.96 0.89 0.96 0.65 0.96 0.97 0.91 0.96 2.5 0.75 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97	2.0	0.75	0.96	0.96	0.96	0.95
0.55 0.96 0.96 0.89 0.96 0.65 0.96 0.97 0.91 0.96 2.5 0.75 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.85	0.96	0.97	0.97	0.96
0.65 0.96 0.97 0.91 0.96 2.5 0.75 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.95	0.97	0.98	0.99	0.97
2.5 0.75 0.97 0.97 0.93 0.96 0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.55	0.96	0.96	0.89	0.96
0.85 0.97 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.65	0.96	0.97	0.91	0.96
0.95 0.98 0.98 0.98 0.98 0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97	2.5	0.75	0.97	0.97	0.93	0.96
0.55 0.97 0.97 0.82 0.96 0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.85	0.97	0.97	0.96	0.96
0.65 0.97 0.97 0.86 0.96 3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.95	0.98	0.98	0.98	0.98
3.0 0.75 0.97 0.97 0.90 0.97 0.85 0.98 0.98 0.94 0.97		0.55	0.97	0.97	0.82	0.96
0.85 0.98 0.98 0.94 0.97		0.65	0.97	0.97	0.86	0.96
	3.0	0.75	0.97	0.97	0.90	0.97
0.95 0.98 0.98 0.98 0.98		0.85	0.98	0.98	0.94	0.97
		0.95	0.98	0.98	0.98	0.98

Ta	Table 41: Length of credible interval with $u = 2$								
V	ω	SNP	DNP	EBayesThresh	ash				
	0.55	2.132	1.999	3.664	2.696				
1.0	0.75	1.646	1.655	3.453	2.199				
	0.95	0.911	0.851	3.324	1.334				
	0.55	2.403	2.253	3.533	3.059				
1.5	0.75	1.964	1.866	3.235	2.48				
	0.95	0.985	0.984	2.897	1.406				
	0.55	2.652	2.516	3.364	3.375				
	0.65	2.467	2.33	3.228	3.095				
2.0	0.75	2.186	2.07	3.037	2.731				
	0.85	1.748	1.721	2.74	2.231				
	0.95	1.049	1.06	2.422	1.489				
	0.55	2.844	2.764	3.174	3.607				
	0.65	2.645	2.528	3.045	3.32				
2.5	0.75	2.33	2.212	2.83	2.913				
	0.85	1.863	1.83	2.508	2.346				
	0.95	1.129	1.119	2.046	1.553				
	0.55	2.963	2.918	2.977	3.765				
	0.65	2.744	2.678	2.836	3.456				
3.0	0.75	2.393	2.285	2.61	3.004				
	0.85	1.893	1.848	2.277	2.373				
	0.95	1.18	1.105	1.716	1.546				

Table 42: Empirical FDR with u=2 and V=1

	1401		inpiricai i Di	u = 2	ina v — i	L	
ω	FDR level	BH	SNP NEB	DNP NEB	Storey	HART	ash
	0.01	0.01	0.02	0.02	0.02	0.01	0.02
	0.05	0.03	0.04	0.05	0.03	0.03	0.03
	0.10	0.04	0.05	0.07	0.05	0.04	0.05
0.35	0.15	0.06	0.07	0.10	0.07	0.05	0.06
	0.20	0.07	0.09	0.12	0.09	0.06	0.08
	0.25	0.09	0.11	0.15	0.10	0.06	0.09
	0.30	0.10	0.13	0.18	0.12	0.07	0.10
	0.01	0.02	0.02	0.04	0.02	0.02	0.02
	0.05	0.05	0.05	0.08	0.05	0.05	0.06
	0.10	0.08	0.07	0.11	0.08	0.07	0.08
0.55	0.15	0.10	0.09	0.14	0.10	0.08	0.10
	0.20	0.12	0.11	0.16	0.12	0.09	0.12
	0.25	0.13	0.13	0.19	0.14	0.10	0.14
	0.30	0.15	0.15	0.22	0.17	0.12	0.16
	0.01	0.04	0.03	0.07	0.05	0.04	0.04
	0.05	0.10	0.08	0.14	0.10	0.10	0.10
	0.10	0.13	0.11	0.17	0.14	0.12	0.14
0.75	0.15	0.16	0.13	0.21	0.17	0.14	0.17
	0.20	0.19	0.15	0.24	0.20	0.16	0.20
	0.25	0.22	0.17	0.27	0.23	0.18	0.22
	0.30	0.24	0.18	0.30	0.25	0.20	0.24
	0.01	0.26	0.19	0.21	0.18	0.11	0.13
	0.05	0.30	0.23	0.31	0.22	0.15	0.28
	0.10	0.31	0.25	0.42	0.29	0.17	0.37
0.95	0.15	0.36	0.26	0.47	0.35	0.21	0.42
	0.20	0.40	0.28	0.53	0.42	0.24	0.44
	0.25	0.47	0.27	0.58	0.47	0.27	0.49
	0.30	0.48	0.30	0.62	0.50	0.32	0.53

Table 43: Empirical FDR with u=2 and V=2

	FDR level	BH	SNP NEB	$\frac{\text{NIII} \ u = 2 \text{ a}}{\text{DNP NEB}}$	Storey	HART	ash
	0.01	0.01	0.01	0.02	0.01	0.01	0.01
	0.01	0.01	0.01	0.02	0.01	0.01	0.01
	0.03	0.02	0.03	0.03	0.03	0.02	0.02
0.25	0.10	0.04	0.07	0.09	0.08	0.03	0.04
0.35		0.03					
	0.20		0.16	0.21	0.10	0.05	0.07
	0.25	0.08	0.21	0.27	0.13	0.07	0.09
	0.30	0.09	0.26	0.31	0.16	0.09	0.12
	0.01	0.01	0.01	0.02	0.01	0.01	0.01
	0.05	0.03	0.04	0.04	0.04	0.02	0.02
0.45	0.10	0.04	0.06	0.08	0.06	0.03	0.04
0.45	0.15	0.06	0.10	0.13	0.09	0.04	0.05
	0.20	0.08	0.14	0.19	0.11	0.06	0.06
	0.25	0.10	0.19	0.25	0.14	0.07	0.08
	0.30	0.11	0.24	0.30	0.17	0.10	0.10
	0.01	0.01	0.02	0.02	0.01	0.01	0.01
	0.05	0.04	0.04	0.05	0.04	0.03	0.03
	0.10	0.06	0.07	0.09	0.07	0.04	0.05
0.55	0.15	0.08	0.10	0.13	0.10	0.05	0.06
	0.20	0.10	0.14	0.17	0.13	0.07	0.08
	0.25	0.12	0.18	0.23	0.16	0.09	0.09
	0.30	0.14	0.23	0.28	0.19	0.11	0.11
	0.01	0.02	0.02	0.03	0.02	0.02	0.02
	0.05	0.05	0.05	0.06	0.06	0.04	0.04
0.65	0.10	0.08	0.07	0.09	0.09	0.06	0.06
	0.15	0.10	0.10	0.13	0.12	0.07	0.07
	0.20	0.12	0.13	0.17	0.14	0.09	0.09
	0.25	0.15	0.16	0.22	0.17	0.11	0.10
	0.30	0.17	0.21	0.27	0.20	0.13	0.12
	0.01	0.02	0.02	0.04	0.03	0.02	0.02
	0.05	0.06	0.05	0.08	0.07	0.05	0.05
	0.10	0.10	0.08	0.11	0.10	0.07	0.07
0.75	0.15	0.13	0.10	0.15	0.13	0.10	0.09
	0.20	0.15	0.13	0.18	0.17	0.12	0.11
	0.25	0.18	0.16	0.22	0.20	0.14	0.12
	0.30	0.21	0.20	0.27	0.23	0.16	0.14
	0.01	0.03	0.02	0.05	0.03	0.03	0.03
	0.05	0.09	0.07	0.10	0.09	0.08	0.07
	0.10	0.12	0.10	0.15	0.13	0.10	0.10
0.85	0.15	0.16	0.12	0.19	0.17	0.13	0.12
2.00	0.20	0.20	0.14	0.23	0.20	0.16	0.15
	0.25	0.22	0.18	0.27	0.24	0.18	0.17
	0.30	0.26	0.21	0.31	0.27	0.21	0.19
	0.01	0.07	0.04	0.07	0.07	0.06	0.09
	0.01	0.07	0.04	0.07	0.12	0.10	0.05
	0.03	0.12	0.03	0.30	0.12	0.14	0.13
0.95	0.10	0.19	0.14	0.35	0.20	0.14	0.26
0.75	0.13	0.20	0.10	0.39	0.27	0.13	0.30
	0.25	0.35	0.20	0.39	0.32	0.25	0.30
	0.23	0.33	0.25	0.43	0.37	0.23	0.33
	0.50	0.56	0.20	0.47	0.33	0.20	0.57

Table 44: Emprical power with u=2 and V=1

ω	FDR level	ВН	SNP NEB	$\frac{\text{III } u = 2 \text{ and }}{\text{DNP NEB}}$	Storey	HART
	0.01	0.036	0.056	0.057	0.038	0.043
	0.05	0.065	0.1	0.103	0.068	0.073
	0.10	0.086	0.138	0.14	0.09	0.094
0.65	0.15	0.104	0.171	0.175	0.109	0.111
	0.20	0.121	0.207	0.212	0.128	0.128
	0.25	0.138	0.243	0.25	0.146	0.143
	0.30	0.152	0.282	0.292	0.162	0.161
	0.01	0.032	0.045	0.047	0.033	0.037
	0.05	0.055	0.081	0.083	0.055	0.06
	0.10	0.072	0.111	0.114	0.074	0.077
0.75	0.15	0.086	0.138	0.141	0.089	0.091
	0.20	0.101	0.163	0.169	0.105	0.104
	0.25	0.116	0.191	0.197	0.121	0.117
	0.30	0.131	0.22	0.228	0.136	0.131
	0.01	0.029	0.039	0.041	0.029	0.031
	0.05	0.051	0.068	0.071	0.052	0.052
	0.10	0.065	0.09	0.096	0.067	0.064
0.85	0.15	0.077	0.109	0.116	0.08	0.075
	0.20	0.092	0.126	0.136	0.093	0.085
	0.25	0.102	0.144	0.157	0.105	0.095
	0.30	0.111	0.163	0.181	0.116	0.104
	0.01	0.031	0.032	0.034	0.029	0.022
	0.05	0.044	0.048	0.055	0.044	0.034
	0.10	0.051	0.062	0.074	0.052	0.04
0.95	0.15	0.06	0.075	0.09	0.063	0.044
	0.20	0.073	0.088	0.105	0.081	0.048
	0.25	0.084	0.099	0.12	0.091	0.052
	0.30	0.097	0.108	0.135	0.103	0.056

Table 45: Emprical power with u=2 and V=2

ω	FDR level	ВН	SNP NEB	DNP NEB	Storey	HART
	0.01	0.137	0.192	0.194	0.143	0.158
	0.05	0.213	0.316	0.318	0.226	0.242
	0.10	0.271	0.414	0.418	0.289	0.304
0.65	0.15	0.314	0.497	0.501	0.337	0.355
	0.20	0.351	0.571	0.576	0.378	0.402
	0.25	0.385	0.639	0.644	0.417	0.448
	0.30	0.417	0.7	0.706	0.456	0.494
	0.01	0.125	0.166	0.168	0.129	0.143
	0.05	0.193	0.266	0.269	0.2	0.216
	0.10	0.243	0.346	0.351	0.252	0.268
0.75	0.15	0.281	0.41	0.417	0.293	0.309
	0.20	0.316	0.472	0.48	0.33	0.349
	0.25	0.346	0.532	0.541	0.364	0.386
	0.30	0.378	0.587	0.596	0.398	0.422
	0.01	0.116	0.143	0.148	0.117	0.128
	0.05	0.175	0.222	0.23	0.178	0.188
	0.10	0.215	0.281	0.291	0.219	0.23
0.85	0.15	0.249	0.331	0.342	0.251	0.261
	0.20	0.276	0.374	0.387	0.282	0.289
	0.25	0.304	0.418	0.435	0.31	0.316
	0.30	0.327	0.462	0.48	0.335	0.34
	0.01	0.094	0.101	0.108	0.094	0.088
	0.05	0.137	0.148	0.159	0.139	0.128
	0.10	0.167	0.181	0.197	0.168	0.151
0.95	0.15	0.188	0.21	0.227	0.192	0.168
	0.20	0.206	0.237	0.255	0.214	0.181
	0.25	0.226	0.26	0.284	0.229	0.195
	0.30	0.241	0.285	0.312	0.245	0.208

Table 46: Posterior mean MSE with u=2.5

\overline{V}	ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
1.0	0.55	0.487	0.466	0.58	0.574	0.572	0.47	0.575	0.525	0.581
	0.75	0.347	0.321	0.4	0.399	0.391	0.323	0.367	0.419	0.369
	0.95	0.09	0.088	0.134	0.113	0.128	0.105	0.093	0.235	0.091
1.5	0.55	0.588	0.581	0.768	0.741	0.76	0.59	0.78	0.616	0.784
	0.75	0.447	0.428	0.564	0.558	0.555	0.43	0.521	0.492	0.523
	0.95	0.133	0.126	0.178	0.159	0.169	0.13	0.137	0.26	0.135
2.0	0.55	0.704	0.701	0.986	0.919	0.977	0.714	0.978	0.711	0.976
	0.75	0.548	0.537	0.763	0.738	0.752	0.542	0.684	0.567	0.683
	0.95	0.18	0.171	0.245	0.24	0.235	0.173	0.189	0.285	0.188
2.5	0.55 0.75 0.95	0.805 0.636 0.227	0.805 0.63 0.213	1.197 0.973 0.325	1.079 0.914 0.326	1.187 0.959 0.314	0.818 0.638 0.218	1.143 0.831 0.244	0.789 0.629 0.306	1.128 0.823 0.244
3.0	0.55	0.87	0.872	1.371	1.207	1.355	0.884	1.267	0.839	1.227
	0.75	0.697	0.693	1.169	1.068	1.153	0.701	0.948	0.668	0.929
	0.95	0.266	0.25	0.42	0.425	0.408	0.258	0.297	0.321	0.296

Table 47: Posterior mean MSE Relative ratio with $u=2.5\,$

V	ω	SNP	DNP	Grouplinear	XGB.M	XGB.SB	GMLEB	EBayesThresh	NEST	ash
1.0	0.55	1	0.958	1.192	1.18	1.176	0.966	1.181	1.078	1.193
	0.75	1	0.924	1.15	1.148	1.125	0.929	1.056	1.207	1.063
	0.95	1	0.974	1.485	1.246	1.417	1.16	1.027	2.599	1.001
1.5	0.55	1	0.988	1.307	1.261	1.292	1.003	1.328	1.048	1.333
	0.75	1	0.957	1.262	1.248	1.242	0.963	1.166	1.101	1.17
	0.95	1	0.949	1.345	1.198	1.275	0.981	1.035	1.964	1.016
2.0	0.55	1	0.995	1.4	1.305	1.387	1.014	1.389	1.01	1.386
	0.75	1	0.98	1.392	1.346	1.372	0.99	1.247	1.035	1.246
	0.95	1	0.951	1.363	1.336	1.306	0.965	1.053	1.587	1.046
2.5	0.55 0.75 0.95	1 1 1	1 0.99 0.937	1.488 1.529 1.429	1.341 1.437 1.434	1.475 1.507 1.382	1.016 1.002 0.96	1.42 1.305 1.072	0.981 0.989 1.347	1.402 1.294 1.073
3.0	0.55 0.75 0.95	1 1 1	1.003 0.994 0.94	1.577 1.677 1.582	1.388 1.532 1.599	1.559 1.654 1.537	1.017 1.005 0.972	1.457 1.359 1.119	0.964 0.958 1.208	1.41 1.332 1.114

Table 48: Posterior mode MSE with u=2.5

\overline{V}	ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
	0.55	0.474	0.511	0.532	0.524	0.543	0.481
1.0	0.75	0.275	0.286	0.368	0.291	0.393	0.284
	0.95	0.057	0.057	0.115	0.063	0.12	0.068
	0.55	0.586	0.668	0.657	0.699	0.618	0.592
1.5	0.75	0.345	0.374	0.411	0.389	0.456	0.351
	0.95	0.074	0.075	0.149	0.079	0.233	0.085
	0.55	0.697	0.835	0.814	0.904	0.658	0.692
2.0	0.75	0.418	0.47	0.465	0.503	0.519	0.415
	0.95	0.092	0.096	0.201	0.103	0.211	0.098
	0.55	0.788	0.994	0.995	1.123	0.689	0.765
2.5	0.75	0.48	0.563	0.528	0.625	0.544	0.463
	0.95	0.108	0.115	0.23	0.125	0.225	0.111
	0.55	0.835	1.128	1.192	1.346	0.681	0.807
3.0	0.75	0.522	0.646	0.6	0.749	0.546	0.491
	0.95	0.121	0.134	0.227	0.15	0.237	0.122

Table 49: Posterior mode MSE Relative ratio with u=2.5

V	ω	SNP	DNP	SSLASSO	SLOPE	GMLEB	EBayesThresh
	0.55	1	1.08	1.124	1.106	1.148	1.016
1.0	0.75	1	1.041	1.34	1.061	1.429	1.034
	0.95	1	0.999	2.003	1.103	2.094	1.193
	0.55	1	1.139	1.121	1.192	1.053	1.009
1.5	0.75	1	1.083	1.191	1.125	1.32	1.015
	0.95	1	1.018	2.003	1.068	3.144	1.147
	0.55	1	1.198	1.168	1.297	0.945	0.993
2.0	0.75	1	1.125	1.112	1.203	1.24	0.992
	0.95	1	1.041	2.185	1.12	2.287	1.064
	0.55	1	1.261	1.262	1.425	0.874	0.97
2.5	0.75	1	1.173	1.1	1.302	1.134	0.965
	0.95	1	1.067	2.126	1.16	2.078	1.028
	0.55	1	1.351	1.427	1.611	0.815	0.966
3.0	0.75	1	1.237	1.149	1.435	1.047	0.94
	0.95	1	1.103	1.874	1.234	1.956	1.009

Table 50: Bias of sparsity with u=2.5

\overline{V}	ω	SNP	DNP	SSLASSO	GMLEB	EBayesThresh	HART	ash
1.0	0.55	0.291	0.16	0.336	-0.261	-0.408	0.413	0.05
	0.75	0.194	0.087	0.123	-0.435	-0.399	0.241	-0.01
	0.95	0.045	-0.007	0.164	-0.133	-0.573	0.05	-0.07
1.5	0.55	0.171	0.078	0.354	-0.256	-0.459	0.379	-0.038
	0.75	0.143	0.045	0.136	-0.442	-0.369	0.224	-0.05
	0.95	0.041	-0.014	0.108	-0.543	-0.483	0.05	-0.073
2.0	0.55	0.082	0.018	0.375	-0.25	-0.498	0.338	-0.126
	0.75	0.093	0.016	0.154	-0.457	-0.357	0.201	-0.086
	0.95	0.033	-0.02	0.005	-0.438	-0.3	0.049	-0.076
2.5	0.55	0.04	-0.027	0.397	-0.277	-0.513	0.293	-0.18
	0.75	0.058	-0.008	0.174	-0.412	-0.346	0.177	-0.113
	0.95	0.027	-0.031	-0.06	-0.405	-0.191	0.048	-0.074
3.0	0.55	0.021	-0.047	0.421	-0.238	-0.511	0.25	-0.203
	0.75	0.04	-0.016	0.193	-0.375	-0.329	0.153	-0.126
	0.95	0.021	-0.032	-0.068	-0.397	-0.131	0.046	-0.069

Table 51: Coverage of credible interval with u=2.5

\overline{V}	ω	SNP	DNP	EBayesThresh	ash
	0.55	0.91	0.90	0.98	0.93
1.0	0.75	0.91	0.92	0.98	0.93
	0.95	0.96	0.97	0.99	0.97
	0.55	0.94	0.93	0.97	0.94
1.5	0.75	0.94	0.94	0.98	0.94
	0.95	0.96	0.97	0.99	0.97
	0.55	0.96	0.95	0.94	0.95
2.0	0.75	0.96	0.96	0.96	0.94
	0.95	0.97	0.98	0.99	0.97
	0.55	0.96	0.96	0.89	0.96
2.5	0.75	0.96	0.97	0.93	0.95
	0.95	0.97	0.98	0.98	0.97
	0.55	0.97	0.97	0.80	0.96
3.0	0.75	0.97	0.97	0.88	0.96
	0.95	0.98	0.98	0.97	0.98

Table 52: Length of credible interval with u=2.5

V	ω	SNP	DNP	EBayesThresh	ash
	0.55	2.143	1.976	4.081	2.788
1.0	0.75	1.489	1.629	3.794	2.186
	0.95	0.717	0.645	4.04	1.061
	0.55	2.462	2.269	3.924	3.235
1.5	0.75	1.97	1.877	3.543	2.528
	0.95	0.762	0.768	3.637	1.167
	0.55	2.778	2.592	3.705	3.65
2.0	0.75	2.279	2.127	3.304	2.87
	0.95	0.878	0.892	2.844	1.265
	0.55	3.042	2.888	3.45	3.988
2.5	0.75	2.506	2.357	3.049	3.148
	0.95	0.977	1.019	2.099	1.339
	0.55	3.245	3.126	3.191	4.241
3.0	0.75	2.649	2.495	2.779	3.333
	0.95	1.038	1.016	1.653	1.36

Table 53: Empirical FDR with u=2.5 and V=1

ω	FDR level	ВН	SNP NEB	DNP NEB	Storey	HART	ash
	0.01	0.01	0.02	0.02	0.02	0.01	0.02
	0.05	0.02	0.04	0.05	0.02	0.02	0.03
	0.10	0.04	0.05	0.07	0.04	0.03	0.04
0.35	0.15	0.05	0.06	0.09	0.05	0.04	0.06
	0.20	0.06	0.08	0.11	0.06	0.04	0.07
	0.25	0.07	0.09	0.13	0.08	0.05	0.08
	0.30	0.08	0.11	0.16	0.09	0.06	0.09
	0.01	0.01	0.01	0.04	0.01	0.01	0.02
	0.05	0.04	0.05	0.07	0.04	0.04	0.05
	0.10	0.06	0.07	0.10	0.06	0.05	0.07
0.55	0.15	0.08	0.08	0.13	0.08	0.06	0.09
	0.20	0.10	0.10	0.15	0.10	0.07	0.10
	0.25	0.11	0.11	0.17	0.11	0.08	0.12
	0.30	0.13	0.13	0.20	0.13	0.09	0.14
	0.01	0.04	0.03	0.06	0.04	0.03	0.05
	0.05	0.08	0.07	0.13	0.08	0.06	0.09
	0.10	0.12	0.10	0.16	0.12	0.07	0.12
0.75	0.15	0.14	0.11	0.20	0.14	0.09	0.16
	0.20	0.16	0.13	0.23	0.16	0.10	0.18
	0.25	0.19	0.14	0.25	0.19	0.12	0.20
	0.30	0.21	0.16	0.28	0.21	0.14	0.23
	0.01	0.28	0.27	0.32	0.17	0.00	0.16
	0.05	0.32	0.28	0.35	0.26	0.00	0.24
	0.10	0.34	0.31	0.45	0.28	0.00	0.32
0.95	0.15	0.36	0.31	0.48	0.32	0.00	0.38
	0.20	0.38	0.32	0.51	0.37	0.25	0.43
	0.25	0.40	0.34	0.55	0.41	0.25	0.46
	0.30	0.45	0.36	0.59	0.46	0.25	0.48

Table 54: Empirical FDR with u=2.5 and V=2

	Table	9 54: Er	npiricai FDR	with $u = 2.5$	and $V =$	2	
ω	FDR level	BH	SNP NEB	DNP NEB	Storey	HART	ash
	0.01	0.01	0.01	0.02	0.01	0.01	0.01
	0.05	0.02	0.03	0.04	0.02	0.01	0.02
	0.10	0.03	0.06	0.08	0.04	0.02	0.03
0.35	0.15	0.04	0.10	0.13	0.06	0.03	0.04
	0.20	0.05	0.15	0.20	0.07	0.03	0.06
	0.25	0.06	0.20	0.26	0.09	0.04	0.07
	0.30	0.07	0.26	0.31	0.11	0.05	0.10
	0.01	0.01	0.02	0.02	0.01	0.01	0.01
	0.05	0.03	0.04	0.05	0.03	0.03	0.03
	0.10	0.05	0.06	0.07	0.06	0.03	0.04
0.55	0.15	0.06	0.08	0.10	0.07	0.04	0.06
	0.20	0.08	0.11	0.14	0.09	0.05	0.07
	0.25	0.10	0.15	0.19	0.11	0.06	0.08
	0.30	0.11	0.19	0.24	0.13	0.07	0.10
	0.01	0.02	0.02	0.04	0.02	0.02	0.02
	0.05	0.06	0.05	0.07	0.06	0.04	0.04
	0.10	0.08	0.07	0.10	0.08	0.06	0.06
0.75	0.15	0.10	0.09	0.13	0.11	0.07	0.08
	0.20	0.12	0.11	0.16	0.13	0.09	0.10
	0.25	0.15	0.13	0.19	0.15	0.10	0.12
	0.30	0.16	0.16	0.22	0.17	0.12	0.13
	0.01	0.08	0.05	0.06	0.06	0.02	0.08
	0.05	0.12	0.08	0.17	0.12	0.03	0.13
	0.10	0.17	0.13	0.26	0.16	0.04	0.20
0.95	0.15	0.22	0.16	0.31	0.23	0.06	0.22
	0.20	0.27	0.19	0.36	0.28	0.06	0.26
	0.25	0.30	0.21	0.39	0.31	0.07	0.29
	0.30	0.33	0.24	0.42	0.34	0.09	0.33

Table 55: Emprical power with u=2.5 and V=1

ω	FDR level	ВН	SNP NEB	DNP NEB	Storey	HART
	0.01	0.025	0.04	0.041	0.026	0.026
	0.05	0.044	0.073	0.074	0.045	0.044
	0.10	0.058	0.099	0.102	0.06	0.057
0.65	0.15	0.071	0.123	0.126	0.072	0.067
	0.20	0.08	0.146	0.152	0.081	0.076
	0.25	0.09	0.172	0.179	0.092	0.085
	0.30	0.101	0.202	0.211	0.103	0.094
	0.01	0.022	0.032	0.033	0.022	0.02
	0.05	0.038	0.057	0.06	0.039	0.033
	0.10	0.049	0.077	0.082	0.049	0.042
0.75	0.15	0.058	0.095	0.101	0.059	0.049
	0.20	0.067	0.112	0.12	0.068	0.055
	0.25	0.075	0.131	0.141	0.076	0.061
	0.30	0.083	0.15	0.164	0.085	0.068
	0.01	0.025	0.032	0.033	0.025	0.017
	0.05	0.042	0.054	0.058	0.042	0.026
	0.10	0.052	0.072	0.078	0.054	0.032
0.85	0.15	0.06	0.086	0.092	0.061	0.037
	0.20	0.069	0.1	0.108	0.07	0.041
	0.25	0.075	0.112	0.121	0.077	0.045
	0.30	0.083	0.125	0.137	0.085	0.05
	0.01	0.03	0.03	0.03	0.03	0.02
	0.05	0.04	0.04	0.04	0.04	0.02
	0.10	0.05	0.07	0.09	0.05	0.02
0.95	0.15	0.06	0.08	0.11	0.06	0.02
	0.20	0.08	0.09	0.12	0.08	0.02
	0.25	0.08	0.11	0.15	0.09	0.02
	0.30	0.09	0.11	0.15	0.11	0.02

Table 56: Emprical power with u=2.5 and V=2

ω	FDR level	ВН	SNP NEB	DNP NEB	Storey	HART
	0.01	0.098	0.143	0.145	0.1	0.111
	0.05	0.149	0.233	0.235	0.152	0.166
	0.10	0.187	0.311	0.314	0.192	0.207
0.65	0.15	0.219	0.382	0.386	0.227	0.242
	0.20	0.249	0.452	0.458	0.258	0.274
	0.25	0.275	0.522	0.529	0.287	0.307
	0.30	0.3	0.594	0.601	0.314	0.342
	0.01	0.089	0.122	0.124	0.09	0.097
	0.05	0.135	0.194	0.196	0.136	0.145
	0.10	0.167	0.251	0.255	0.169	0.178
0.75	0.15	0.193	0.304	0.308	0.196	0.206
	0.20	0.219	0.356	0.361	0.223	0.231
	0.25	0.242	0.407	0.415	0.246	0.257
	0.30	0.262	0.463	0.471	0.267	0.282
	0.01	0.081	0.105	0.108	0.081	0.083
	0.05	0.122	0.16	0.166	0.123	0.119
	0.10	0.15	0.201	0.211	0.151	0.144
0.85	0.15	0.172	0.237	0.249	0.173	0.162
	0.20	0.189	0.272	0.288	0.19	0.18
	0.25	0.206	0.307	0.326	0.208	0.198
	0.30	0.224	0.343	0.366	0.227	0.216
	0.01	0.088	0.096	0.105	0.089	0.061
	0.05	0.129	0.143	0.152	0.13	0.08
	0.10	0.151	0.168	0.177	0.153	0.094
0.95	0.15	0.167	0.187	0.207	0.169	0.104
	0.20	0.181	0.208	0.226	0.181	0.114
	0.25	0.192	0.224	0.246	0.195	0.123
	0.30	0.207	0.244	0.27	0.209	0.134

3 References

- Trambak Banerjee, Luella Fu, Gareth M James, and Wenguang Sun. Nonparametric empirical bayes estimation on heterogeneous data. 2020.
- Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal statistical society: series B (Methodological)*, 57(1):289–300, 1995.
- Małgorzata Bogdan, Arijit Chakrabarti, Florian Frommlet, and Jayanta K Ghosh. Asymptotic bayes optimality under sparsity of some multiple testing procedures. *The Annals of Statistics*, 39(3):
 1551–1579, 2011.
- Bradley Efron. Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. *Journal* of the American Statistical Association, 99(465):96–104, 2004.
- Luella Fu, Bowen Gang, Gareth M James, and Wenguang Sun. Heteroscedasticity-adjusted ranking
 and thresholding for large-scale multiple testing. *Journal of the American Statistical Association*,
 pages 1–13, 2020.
- Wenhua Jiang et al. On general maximum likelihood empirical bayes estimation of heteroscedastic iid normal means. *Electronic Journal of Statistics*, 14(1):2272–2297, 2020.
- Jiashun Jin and T Tony Cai. Estimating the null and the proportion of nonnull effects in large-scale multiple comparisons. *Journal of the American Statistical Association*, 102(478):495–506, 2007.
- I. M. Johnstone and B. W. Silverman. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. *The Annals of Statistics*, 32(4):1594–1649, 2004.
- Jack Kiefer and Jacob Wolfowitz. Consistency of the maximum likelihood estimator in the presence
 of infinitely many incidental parameters. *The Annals of Mathematical Statistics*, pages 887–906,
 1956.
- Roger Koenker and Jiaying Gu. Rebayes: Empirical bayes mixture methods in r. *Journal of Statistical* Software, 82(8):1–26, 2017.
- Veronika Rocková. Bayesian estimation of sparse signals with a continuous spike-and-slab prior. *The* Annals of Statistics, 46(1):401–437, 2018.
- Matthew Stephens. False discovery rates: a new deal. Biostatistics, 18(2):275–294, 2017.
- John D Storey. A direct approach to false discovery rates. *Journal of the Royal Statistical Society:* Series B (Statistical Methodology), 64(3):479–498, 2002.
- Weijie Su, Emmanuel Candes, et al. Slope is adaptive to unknown sparsity and asymptotically minimax. *Annals of Statistics*, 44(3):1038–1068, 2016.
- Asaf Weinstein, Zhuang Ma, Lawrence D Brown, and Cun-Hui Zhang. Group-linear empirical bayes estimates for a heteroscedastic normal mean. *Journal of the American Statistical Association*, 113 (522):698–710, 2018.
- Xianchao Xie, SC Kou, and Lawrence D Brown. Sure estimates for a heteroscedastic hierarchical model. *Journal of the American Statistical Association*, 107(500):1465–1479, 2012.