Конспект по топологии за I семестр бакалавриата Чебышёва СПбГУ (лекции Иванова Сергея Владимировича)

November 29, 2019

Contents

1	Оби	цая топология
	1.1	Метрические пространства
	1.2	Топологические пространства
	1.3	Внутренность, замыкание, граница
	1.4	Подпространства
	1.5	Сравнение топологий
	1.6	База топологии
	1.7	Произведение топологических пространств
		1.7.1 Произведение параметризуемых метрических пространств
	1.8	Непрерывность
		1.8.1 Непрерывность в метрических пространствах
		1.8.2 Липшицевы отображения
		1.8.3 Композиция непрерывных отображений
	1.9	Аксиомы
		1.9.1 Аксиомы счетности
		1.9.2 Сеперабельность
	1.10	Аксиомы отделимости

Chapter 1

Общая топология

- 1.1 Метрические пространства
- 1.2 Топологические пространства
- 1.3 Внутренность, замыкание, граница
- 1.4 Подпространства
- 1.5 Сравнение топологий
- 1.6 База топологии
- 1.7 Произведение топологических пространств

Def 1. X, Y - топологические пространства.

Топология произведения на $X \times Y$ – топология, база которой равна

$$\{A \times B \mid A \subset X, B \subset Y$$
 - открыты. $\}$.

 $X \times Y$ с такой топологией – произведение X и Y.

Theorem 1.7.1. Определение 1 корректно.

Proof. 1. Все пространство открыто

2. Пересечение двух множеств из базы = объединение множеств базы.

$$(A\times B)\cap (C\times D)=(A\cap C)\times (B\cap D).$$

Получили объединение открытого в X и в Y, а значит принадлежит базе.

Figure 1.1: Пересечение

Theorem 1.7.2. $A \cap X$ – замкнуто, $B \cap Y$ – замкнуто. Тогда $A \times B$ – замкнуто в $X \times Y$.

Proof. Докажем, что дополнение открыто.

$$(X \times Y) \setminus (A \times B) = X \times (Y \setminus B) \cup (X \setminus A) \times Y.$$

 $Y\setminus B$ открыто в Y, а $X\setminus A$ открыто в X. Тогда объединение произведений с X и Y есть объединение открытых в $X\times Y$.

Practice. Для любых $A \subset X, B \subset Y$:

- 1. $Int(A \times B) = Int(A) \times Int(B)$
- 2. $Cl(A \times B) = Cl(A) \times Cl(B)$
- 3. $A \times B$ как произведение подпространств равно $A \times B$ как подпространство произведения.

1.7.1 Произведение параметризуемых метрических пространств

Здесь все также, только топология задается метрикой. d_X, d_Y - метрики.

Theorem 1.7.3.

$$d((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

d - метрика на $X \times Y$. Произведение метризуемых пространств метризуемо.

Proof. 1. Проверим, что d - метрика. Очевидно, что $d((x,y),(x',y')) = 0 \iff d_X(x,x') = d_Y(y,y') = 0 \iff x = y \land x' = y'$. Также значение не зависит от порядка. Осталось проверить неравенство треугольника.

$$d(p, p') + d(p', p'') \stackrel{?}{\geq} d(p, p'') \stackrel{\text{HyO}}{=} d_X(x, x'').$$

 $d_X(x, x') + d_X(x', x'') \geq d_X(x, x'').$

2.
$$\Omega_d \subset \Omega_{X \times Y}$$

$$B_r((x,y)) = B_r^X(x) \times B_r^Y(y).$$

А это базовое множество, которое мы представили через базовые множества X и Y.

3. $\Omega_{X\times Y}\subset\Omega_d$ Рассмотрим $W\in\Omega_{X\times Y}$.

Figure 1.2: Произведение метрических пространств

$$\exists A\subset X,\ B\subset Y$$
- открытые, $(x,y)\in A\times B\subset W.$
$$\exists r_1>0: B^X_{r_1}(x)\subset A.$$

$$\exists r_2>0: B^Y_{r_2}(y)\subset B.$$

Теперь возьмем $r = \min(r_1, r_2)$

$$B_r^{X\times Y}((x,y)) = B_r^X(x) \times B_r^Y(y) \subset A \times B \subset W.$$

St (Согласование метрик).

$$d_1((x,y),(x',y')) = d_X(x,x') + d_Y(y,y').$$
$$d_2((x,y),(x',y')) = \sqrt{d_X(x,x')^2 + d_Y(y,y')^2}.$$

4

Proof. Проверим неравенство треугольника для второй метрики (для первого - очевидно).

$$d_2((x,y),(x'',y'')) \stackrel{?}{\leq} d_2((x,y),(x',y')) + d_2((x',y'),(x'',y''))$$

$$\sqrt{(a+b)^2 + (c+d)^2} \stackrel{!!}{\leq} \sqrt{a^2 + c^2} + \sqrt{b^2 + d^2}$$

 $\begin{array}{c} y'' \\ y' \\ y \\ \end{array}$

Figure 1.3: Неравенство треугольника

Def 2. Бесконечное произведение пространств

 $\{X_i\}_{i\in I}$ - семейство топологических пространств. Ω_i - топология.

Множество $\prod_{i \in I} X_i = \{\{x_i\}_{i \in I} \mid \forall i, x_i \in X_i\}.$

Тогда рассмотрим отображение $p_i: X \mapsto X_i$ - проекция.

Тихоновская топология на X – топология с предбазой

$$\left\{p_i^{-1}(U)\right\}_{i\in I,\ U\in\Omega}.$$

Tasks. 1. Счетное произведение метризуемых – метризуемо. Сначала можно разобраться с отрезком $[0,1]^{\mathbb{N}} = \prod_{i \in \mathbb{N}} [0,1]$.

2. Канторовское множество $\approx \{0,1\}^{\mathbb{N}}$

Figure 1.4: Тихоновская топология

1.8 Непрерывность

X,Y - топологические пространства, Ω_1,Ω_2 - топологии, $f:X\to Y$.

Def 3. f – непрерывна, если $\forall U \subset \Omega_Y: f^{-1}(U) \subset \Omega_X$.

Note.

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

Exs. 1. Тождественное отображение непрерывно. $id_X: X \to X$

- 2. Константа тоже непрерывна. $Const_{y_0}: X \to Y, \ \forall x \in X \quad x \mapsto y_0$
- 3. Если X дискретно, $\forall f: X \to Y$ непрерывно.
- 4. Если Y антидискретно, $\forall f: X \to Y$ непрерывно.

Def 4. $f: X \to Y, \ x_0 \in Y \ f$ непрерывна в точке x_0 , если

 \forall окрестности $U\ni y_0=f(x_0)\exists$ окрестность $V\ni x_0:f(U)\subset V.$

Theorem 1.8.1. f - непрерывна тогда и только тогда, когда $\forall x_0 \in X : f$ - непрерывна в точке x_0 .

 $Proof. \Rightarrow)$ $y_0 \in U.$

$$\left\{\begin{array}{ll} f^{-1}(U) \text{ открыт} & V:=f^{-1}(U) \\ x_0 \in f^{-1}(U) & f(V) \subset U \end{array}\right..$$

 \Leftarrow)

 $U\subset Y$ - открыто, хотим доказать, что $f^{-1}(U)$ - открыто. Достаточно доказать, что $\forall x\in f^{-1}(x)$ - внутренняя.

$$\exists V\ni x: f(V)\subset U \Leftrightarrow x\in V\subset f^{-1}(U).$$

Тогда x - внутренняя точка $f^{-1}(U)$.

1.8.1 Непрерывность в метрических пространствах

Theorem 1.8.2. X, Y – метрические пространства. $f: X \to Y, x_0 \in X$.

Tогда f – непрерывна в точка x_0 тогда и только тогда, когда

$$\forall \varepsilon > \exists \delta > 0 : f(B_{\delta}) \subset B_{\varepsilon}(f(x)).$$

Или можем записать альтернативную формулировку непрерывности:

$$\forall \varepsilon \exists \delta : \forall x' \in X \land d(x, x') < d \Rightarrow d(f(x), f(x')) < \varepsilon.$$

Proof. ⇒) Так как f – непрерывна в точке x, существует окрестность $V\ni x:f(v)\subset B_\varepsilon(f(x))$. Так как V открыто, $\exists \delta>0:B_\delta\subset V$.

$$\Leftarrow$$
) Рассмотрим $U \ni f(x)$. Тогда $\exists \varepsilon > 0 : B_{\varepsilon}(f(x)) \subset U :$ $\exists \delta > 0 : f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \subset U$. Можем взять $V := B_{\delta}(x)$.

1.8.2 Липшицевы отображения

Def 5. X, Y – метрические пространства.

 $f: X \to Y$ – липшицево, если $\exists c > 0 \forall x, x' \in X: d_Y(f(x), f(x')) \leq c d_X(x, x')$. C – константа Липшица данного отображения.

Corollary. Все липшицевы отображения непрерывны.

Proof. Рассмотрим $\delta = \frac{\varepsilon}{c}$.

$$d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) \le C\delta = \varepsilon.$$

Ех. X – метрика, $x0 \in X$. $f: X \to \mathbb{R}$, $f(x) = d(x, x_0)$

$$|f(x) = f(y)| = f(y) - f(x) = d(y, x_0) - d(x, x_0) \le d(x, y).$$

Получили, что липшицево с константой 1.

Task. $A \subset X$

$$f(x) = dist(x, A) := \inf\{d(x, y) \mid y \in A\}.$$

Доказать, что X тоже липшицево с константой 1.

Ех. $d: X \times X \to \mathbb{R}$ – непрерывна.

1.8.3 Композиция непрерывных отображений

Theorem 1.8.3. Композиция непрерывных отображений непрерывна.

Figure 1.5: compose

1.9 Аксиомы

1.9.1 Аксиомы счетности

Def 6. $X = (X, \Omega)$ База в точке $x \in X$ – такое множество $\Sigma_x \subset \Omega$, что:

- 1. $\forall V \in \Sigma_x : x \in V$
- 2. $\forall U \not\ni x \exists V \in \Sigma_x : V \subset U$

Name. Счетное множество – не более, чем счетное.

Def 7. Пространство X удовлетворяет первой аксиоме сетности (1AC), если для любой точки $x \in X$ существует счетная база в этой точке.

Def 8. Пространство X удовлетворяет второй аксиоме счетности (2AC), если у него есть счетная база топологии.

Theorem 1.9.1. $2AC \Rightarrow 1AC$

Proof. Пусть Σ – база топологии, $x \in X$. Пусть . . .

Theorem 1.9.2. Все метрические пространства удовлетворяют второй аксиоме счетности.

 $St. \mathbb{R}$ имеет счетную базу.

Theorem 1.9.3. Если X и Y имеют счетную базу, то $X \times Y$ тоже имеет счетную базу.

Theorem 1.9.4. Если X имеет счетную базу, то любое его подпространство тоже имеет счетную базу.

Corollary. \mathbb{R}^n имеет счетную базу.

Practice. 1AC тоже наследуется подпространствами и произведениями.

Def 9. Топологические свойство – наследственное, если оно сохраняется при замене пространства на любое подпространство.

Ех. Дискретность, антидискретность, 1АС, 2АС – наследственные свойства.

Theorem 1.9.5. Линделёф Если X удовлетворяет 2AC, то из любого открытого покрытия можно выбрать счетное подпокрытие.

Proof. Пусть Λ – множество тех элементов базы, которые содержатся хотя бы в одном из элементов покрытия. Λ – счетное покрытие.

Каждому $U \in A$ сопоставим V из исходного покрытия, для которого $U \subset V$. Все такие V образуют искомое счетное покрытие.

1.9.2 Сеперабельность

Def 10. Всюду плотное множество – множество, замыканние которого есть все пространство.

Def 11. Множество всюду плотно тогда и только тогда, когда оно не пересекается с любым непустым открытым множеством.

 $\mathbf{E}\mathbf{x}$. \mathbb{Q} всюду плотно в \mathbb{R}

Def 12. Топологическое пространство сепарабельно, если в нем есть счетное всюду плотное множество.

Prop. X, Y – сепарабельны $\Longrightarrow X \times Y$ тожее.

Note. Сепарабельность – не наследственное свойство.

Theorem 1.9.6.

- Cчетная база \Longrightarrow сепарабельность.
- Для метризуемых пространств сеперабельность \Longrightarrow счетная база

1.10 Аксиомы отделимости

Def 13. X обладает свойтсвом T_1 , если для любой различных точек $x,y \in X$ существует такое открытое U, что $x \notin U \land y \notin U$.

Theorem 1.10.1. $T_1 \iff$ любая точка является замкнутым множеством.

Def 14. X — хаусдорфово, если для любых $x,y\in X$ существуют окрестности $U\ni x\wedge V\ni y:\ U\cap V=\varnothing.$

Def 15. X хаусдорфово \iff Диагональ $\Delta:=\{(x,x)\mid x\in X\}$ замкнута в $X\times X$

 \mathbf{Def} 16. X – регулярно, если

- обладает T_1
- \forall замкнутого $A\subset X\ \forall x\in X\setminus A$ \exists открытые $U,V:A\subset U\land x\in V\land U\cap V=\varnothing$ Другое название T_3 -пространство

Def 17. X – нормально, если

- обладает T_1
- $\forall A, B \in X (A \cap B = \emptyset)$ \exists открытые $U, V : A \subset U, B \subset V \land U \cap V = \emptyset$

Другое название T_4 -пространство