Homework 1

Alexander Brown

January 30, 2022

1.1

Given

A mathematical model that describes a wide variety of physical nonlinear systems is the nth-order differential equation

$$y^n = g(t, y, \dot{y}, ..., y^{n-1}, u)$$

where u and y are scalar variables. With u as input and y as output, find a sate model.

Solution

Suppose that $y=x_1,\,\dot{y}=x_2,\,\mathrm{etc.}$ Continuing to differentiate gives:

$$\begin{split} \dot{x_1} &= x_2 = \dot{y} \\ \dot{x_2} &= x_3 \\ & \dots \\ \dot{x}_{n-1} &= x_n \\ \dot{x}_n &= g(t, y, \dot{y}, \dots, y^{n-1}, u) \end{split}$$

1.2

Given

Consider a single-input-single-output system described by the $n{
m th}$ -order differential equation

$$y^n = g_1(t, y, \dot{y}, ..., y^{n-1}, u) + g_2(t, y, \dot{y}, ..., y^{n-1})\dot{u}$$

where g_2 is a differentiable function of its arguments. With u as input and y as output, find a state model.

 $\mathit{Hint} \colon \mathsf{Take}\ x_n = y^{n-1} - g_2(t,y,\dot{y},...,\dot{y}^{n-1})u$

Solution

Lets begin by defining $x_1=y,\ x_2=y^{(1)},\ ...,\ x_{n-1}=y^{(n-2)},\ x_n=y^{(n-1)}-g_2(t,y,\dot y,...,y^{(n-2)})u.$ Therefore

$$\begin{split} \dot{x}_1 &= y^{(1)} = x_2 \\ \dot{x}_2 &= x_3 \\ \dots \\ \dot{x}_{n-1} &= y^{(n-1)} = x_n + g_2(t, x_1, x_2, ..., x_{n-1}) u \\ \dot{x}_n &= y^{(n)} - \dot{g}_2(t, x_1, x_2, ..., x_{n-q}) u - g_2(t, x_1, x_2, ..., x_{n-q}) \dot{u} \end{split}$$

Where \dot{x}_{n-1} is found by solving $x_n = y^{n-1} - g_2(t,y,\dot{y},...,\dot{y}^{n-1})u$ for $y^{(n-1)}$ and $\dot{x}_n = y^{(n)} - \dot{g}_2(t,x_1,x_2,...,x_{n-q})u - g_2(t,x_1,x_2,...,x_{n-q})\dot{u}$ is found by using the chain rule and product rule.

Chain Rule: h'(x) = f'(g(x))g'(x)

Product Rule: $(u \cdot v)' = u' \cdot v + u' \cdot v$

$$\begin{array}{l} \dot{x}_n = y^{(n)} - \dot{g}_2(t, x_1, x_2, ..., x_{n-q}) u - g_2(t, x_1, x_2, ..., x_{n-q}) \dot{u} = \\ g_1(t, x_1, x_2, ..., x_n + g_2(t, x_2, x_3, ..., x_{n-2}) u, u) - \\ (\frac{\partial g_2}{\partial t} + \frac{\partial g_2}{\partial x_1} \dot{x}_1 + \frac{\partial g_2}{\partial x_2} \dot{x}_2 + ... + \frac{\partial g_2}{\partial x_{n-1}} \dot{x}_{n-1}) u - g_2(t, x_1, x_2, ..., x_{n-q}) \dot{u} \end{array}$$

1.5

Given

The nonlinear dynamic equations for a single-link manipulator with flexible joints, damping ignored, is given by

$$\begin{split} I\ddot{q}_1 + MgLsin(q_1) + k(q_1 - q_2) &= 0\\ J\ddot{q}_2 - k(q_1 - q_2) &= u \end{split}$$

Solution

Begin by defining $x_1 = q_1, x_2 = \dot{q}_1, x_3 = q_2, x_4 = \dot{q}_2$:

$$\begin{split} & \dot{x}_1 = \dot{q}_1 \\ & \dot{x}_2 = \ddot{q}_1 = -\frac{MgL}{I} sinx_1 - \frac{k(x_1 - x_3)}{I} \\ & \dot{x}_3 = \dot{q}_2 \\ & \dot{x}_4 = \ddot{q}_2 = \frac{k(x_1 - x_3)}{J} + \frac{u}{J} \end{split}$$

3.

Given

For each of the functions find whether

- Continuously differentiable
- Locally Lipschitz
- Continuous
- Globally Lipschitz

1.
$$f(x) = x^2 + |x|$$

$$2. \ f(x) = x + sgn(x)$$

3.
$$f(x) = sin(x)sgn(x)$$

4.
$$f(x) = -x + asin(x)$$

5.
$$f(x) = -x + 2|x|$$

$$f(x) = tan(x)$$

6.
$$f(x) = x + 2|x|$$

6. $f(x) = tan(x)$
7. $f(x) = \begin{bmatrix} ax_1 + tanh(bx_1) - tanh(bx_2) \\ ax_2 + tanh(bx_1) + tanh(bx_2) \end{bmatrix}$
8. $f(x) = \begin{bmatrix} -x_1 + a|x_2| \\ -(a+b)x_1 + bx_1^2 - x_1x_2 \end{bmatrix}$

$$8. \ f(x) = \begin{bmatrix} -x_1 + a|x_2| \\ -(a+b)x_1 + bx_1^2 - x_1x_2 \end{bmatrix}$$

Solution

1.

As referenced in the class notes, x^2 is locally, but not globally, Lipschitz. |x| on the other hand, it not continuous at 0. Furthermore:

$$\forall x, y \in \mathbb{R} \ ||x| - |y|| \le |x - y|$$

Therefore, the following can be said about the function

- Not continuously differentiable
- Locally Lipschitz
- Not continuous
- Not globally Lipschitz

2.

Consider Figure 1:

sgn(x) is not continuous or continuously differentiable. However it is bounded at ± 1 therefore it is globally Lipschitz (implying local as well). x is continuous and continuously differentiable as well as globally Lipschitz. Therefore:

- Continuously differentiable
- Locally Lipschitz
- Continuous

Figure 1: Plot of sgn(x)

• Globally Lipschitz

3.

Consider the following

$$\frac{\partial f}{\partial x} = \cos(x) \operatorname{sgn}(x)$$

Given the function and its derivative we can conclude:

- Not continuously differentiable
- Locally Lipschitz
- Continuous
- Globally Lipschitz

4.

sin(x) and x continuous, continuously differentiable, and globally Lipschitz therefore

- Continuously differentiable
- Locally Lipschitz
- Continuous
- Globally Lipschitz

5.

-x is continuous, continuously differentiable, and globally Lipschitz. However, we have seen the |x| is not continuous or continuously differentiable. Therefore:

- $\bullet~$ Not continuously differentiable
- Locally Lipschitz
- Not continuous
- Globally Lipschitz

6.

From Figure 2, we can see that the plot is continuous over $(-\pi/2, \pi/2)$, similarly for Figure 3. However, there is a clear asymptote at $\pm \pi/2$. From this we can say

- Continuously differentiable over $(-\pi/2,\pi/2)$
- Locally Lipschitz
- Continuous over $(-\pi/2, \pi/2)$
- Not globally Lipschitz

Figure 2: Plot of tan(x)

Figure 3: Plot of $sec^2(x)$

7.

From Figure 4, it is easily noticed that the function is continuous, continuously differentiable, and globally Lipschitz. ax_i hold similar properties. Therefore we can say the following

- Continuously differentiable
- Locally Lipschitz
- Continuous
- Globally Lipschitz

Figure 4: Plot of tanh(x)

8.

 x_i is continuous, continuously differentiable and globally Lipschitz. However, |x| is not continuous or continuously differentiable, and x^2 is not globally Lipschitz (as shown in the class notes). Therefore

- Not continuously differentiable
- Locally Lipschitz
- Not continuous
- Not globally Lipschitz

3.3

Given

Show that if $f_1:R\to R$ and $f_2:R\to R$ are locally Lipschitz, then f_1+f_2 , f_1f_2 , and $f_1\circ f_2$ are locally Lipschitz

Solution

Refer to Theorems Lemmas and Definitions for the Definition of locally Lipschitz.

a) $f_1 + f_2$

Suppose $f_3 := f_1 + f_2$. Using the definition of locally Lipschitz

$$\begin{aligned} |f_1(x) + f_2(x) - f_1(y) - f_2(y)| &= \\ |f_1(x) - f_1(y)| + |f_2(x) - f_2(y)| &= \\ L_1 \, |x - y| + L_2 \, |x - y| \end{aligned}$$

b) $f_1 f_2$

Suppose $f_3 := f_1 f_2$. Using the definition of locally Lipschitz

$$\begin{split} |f_1(x)f_2(x)-f_1(y)f_2(y)| &= \\ |f_1(x)f_2(y)+f_1(x)f_2(y)-f_1(x)f_2(y)-f_1(x)f_2(y)| &= \\ |f_1(f_2(x)-f_2(y))+f_2(y)(f_1(x)-f_1(y))| &= \\ C_2L_1\,|x-y|+C_1L_2\,|x-y| \end{split}$$

c) $f_1 \circ f_2$

Suppose $f_3 := f_1 \circ f_2 = f_2(f_1(x))$. Using the definition of locally Lipschitz

$$\begin{aligned} |f_2(f_1(x)) - f_2(f_2(y))| &= \\ L_2 \, |f_1(x) - f_1(y)| &= \\ L_1 L_2 \, |x-y| \end{aligned}$$

3.7

Given

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable for all $x \in \mathbb{R}^n$ and define f(x) by

$$f(x) = \frac{g(x)}{1 + g^T(x)g(x)}$$

Show that $\dot{x} = f(x)$, with $x(0) = x_0$, has a unique solution defined for all $t \ge 0$.

Solution

Uniqueness can be shown by showing f(x) is globally Lipschitz (Theorems Lemmas and Definitions). Lets begin by substituting g(x) := y.

$$\begin{array}{l} f(x) = \frac{y}{1+y^2} \\ \frac{\partial f}{\partial y} = -\frac{y^2-1}{y^4+2x^2+1} \end{array}$$

which shows that f(x) is continuous and continuously differentiable. Furthermore taking the limit to ∞ , $f(x) \to 0$ making f(x) bounded. Therefore, by definition

3.20

Given

Show that if $f: \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz on $W \subset \mathbb{R}^n$, then f(x) is uniformly continuous on W.

Solution

Lets begin with the definition:

$$\forall x,y \in \mathbb{R}^n \ ||f(t,x) - f(t,y)|| \le L||x - y||$$

Therefore, if $W \subset \mathbb{R}^n$ (assuming the set is compact)

$$\forall x,y \in W \ ||f(t,x) - f(t,y)|| \le L||x - y||$$

must be true.

Canvas Problem

Given

Give the definitions and examples of open sets, closed sets, and compact sets in 2D.

Solution

Open Sets

Definition: An open set in a metric space (X,d) is a subset U of X with the following property: for any $x \in U$ there is a real number ϵ such that any point X that is a distance less than ϵ from x is also contained in U.

For any point $x \in X$, define $B(x,\epsilon)$ to be the open ball of radius ϵ , which is the set of all points in X that are within distance ϵ from x. Then a set U is open iff for each point $x \in U$, there is an $\epsilon > 0$ such that $B(x,\epsilon)$ is completely contained in U

Figure 5: Example of an open set

The open interval (2,5) is an open set.

Closed Sets

Definition: A closed set in a metric space (X, d) is a subset Z of X with the following property: for any point $x \notin Z$, there is a ball $B(x, \epsilon)$ around x, for some $\epsilon > 0$, which is joint from Z.

The closed set [2,5] is a closed set.

Compact Sets

Definition: A cover of a set X is a collection of sets whose union includes X as a subset. Formally, if $C = \{U_\alpha : \alpha \in A\}$ is an indexed family of sets U_α , then C is a cover of X if

$$X\subseteq\bigcup_{\alpha\in A}U_\alpha$$

 $\label{eq:Definition: Z is compact} Definition: Z is compact if every open cover has a finite subcover.$ The closed unit interval [0,1] is compact.

Theorems Lemmas and Definitions

Locally Lipschitz

Theorems: If $f: I \times D \to \mathbb{R}^n$ is locally Lipschitz at $x_0 \in \mathbb{R}^n$, then $\exists t' \in (t_o, t_1]$ such that the solution of $\dot{x} = f(t, x), x(t_0) = x_0$ exists and is unique on $[t_0, t']$.

Lemma: If f and $\frac{\partial f_i}{\partial x_j}$ are continuous (i.e., f is continuously differentiable) on $I \times x_0$, then f is locally Lipschitz at x_0

Globally Lipschitz

Definition: A function $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ is globally Lipschitz if:

- 1. $\forall x \in D, f(\cdot, x)$ is piecewise continuous on I
- 2. $\exists L \in \mathbb{R}^+$ such that
 - $\forall t \in I, \forall x, y \in \mathbb{R}^n$
 - $||f(t,x) f(t,y)|| \le L||x y||$

Theorem: If $f: I \times D \to \mathbb{R}^n$ is globally Lipschitz then the solution of $\dot{x} = f(t,x), x(t_0) = x_0$ exists and is unique on I

Lemma: Suppose f and $\frac{\partial f}{\partial x}$ are continuous on $I \times \mathbb{R}^n$. f is globally Lipschitz iff $\frac{\partial f}{\partial x}$ is uniformly bound on $I \times \mathbb{R}^n$, i.e.

 $\exists L \in \mathbb{R}^+ \text{ s.t. } \forall t \in I, \forall x \in \mathbb{R}^n$

$$||\frac{\partial f(t,x)}{\partial x}|| \le L$$

Theorem: If $I \times R^n \to R^n$ is globally Lipschitz then the solution of $\dot{x} = f(t,x), \ x(t_0) = x_0$ exists and is unique on I.

Sources

- Class notes
- Chain Rule
- Product Rule
- Open Sets
- Closed Sets • Compact Sets

 - BrilliantWikipedia