0.1 Homework 5

0.1.1 Landau's Theory

Derive the critical exponents based on Landau's theory for second-order phase transition.

$$\psi_0(t, m_0) = q(t) + r(t)m_0^2 + s(t)m_0^4 + \cdots \quad \left(t = \frac{T - T_c}{T_c}, |t| \ll 1\right);$$

Assuming that

- Symmetry: The free energy is even in m_0 ;
- Analticity: ψ_0 is analytic in m_0 and t, which allows a Taylor expansion;
- Critical behavior: Near T_c , the coefficients behave as $r(r) \approx r_0 t$, $s(t) \approx s_0 > 0$.

The exponents are given by:

$$m_0 \sim (-t)^{\beta}, \quad \chi \sim |-t|^{-1}, \quad m_0 \sim h^{1/\delta}, \quad \xi \sim |t|^{-\nu}$$

The equilibrium order parameter m_0 minimizes the free energy:

$$\frac{\partial \psi_0}{\partial m_0} = 0 \Rightarrow 2r(t)m_0 + 4s(t)m_0^3 = 0$$
$$\Rightarrow m_0[r(t) + 2s(t)m_0^2] = 0$$

So

- Disordered phase $(T > T_c)$: $m_0 = 0$, since r(t) > 0;
- Ordered phase $(T < T_c)$: $m_0^2 = -\frac{r(t)}{2s(t)} \approx -\frac{r_0 t}{2s_0}$, since $r(t) \approx r_0 t$ and $s(t) \approx s_0$.
- 1. For $T < T_c$, t < 0, $m_0 \sim \sqrt{-t} \Rightarrow m_0 \sim (-t)^{1/2} \Rightarrow \beta = \frac{1}{2}$
- 2. Susceptibility χ , which is defined as $\chi^{-1}=\left.\frac{\partial^2\psi_0}{\partial m_0^2}\right|_{m_0=m_{eq}}$.
 - For $T > T_c$, $m_0 = 0$. $\chi^{-1} = 2r(t) \approx 2r_0 t \Rightarrow \chi \sim t^{-1}$
 - For $T < T_c$, $m_0^2 = -\frac{r(t)}{2s(t)}$:

$$\frac{\partial^2 \psi_0}{\partial m_0^2} = 2r(t) + 12s(t)m_0^2 = 2r(t) + 12s(t) \left[-\frac{r(t)}{2s(t)} \right] = -4r(t)$$
$$\chi^{-1} = -4r(t) \approx -4r_0 t \Rightarrow \chi \sim (-t)^{-1} \Rightarrow \boxed{\gamma = 1}$$

- 3. Specific heat.
 - For $T > T_c$, $\psi_0 = q(t)$;
 - For $T < T_c$, $\psi_0 = q(t) + r(t)m_0^2 + s(t)m_0^4 = q(t) \frac{r(t)^2}{4s(t)}$. And the specific heat is defined as $C = -T\frac{\partial^2 \psi_0}{\partial T^2}$. Since $r(t) \sim t$, the singular part is C, which jumps at t = 0. So $\alpha = 0$.
- 4. Critical isotherm. At $T=T_c$, the free energy is $\psi_0=q(0)+s(0)m_0^4+\cdots$. Applying an external field h, the equilibrium condition is

$$h = \frac{\partial \psi_0}{\partial m_0} = 4s(0)m_0^3 \Rightarrow m_0 \sim h^{1/3} \Rightarrow \delta = 3$$

5. Correlation length, which is defined as $\xi \sim \sqrt{\frac{c}{r(t)}} \sim t^{-1/2} \Rightarrow \boxed{\nu = \frac{1}{2}}$