

Feature extraction

Johannes Müller

With material from
Robert Haase, BiaPoL, PoL TU Dresden
Marcelo Zoccoler, BiaPol, PoL, TU Dresden
Benoit Lombardot, Scientific Computing Facility, MPI CBG

Feature extraction

- Feature extraction is a *late* processing step in image analysis.
- It can be used for images, or segmented/labelled images

Feature extraction

- A feature is a countable or measurable property of an image or object.
- Goal of feature extraction is finding a minimal set of features to describe an object well enough to differentiate it from other objects.
- Intensity based
 - Mean intensity
 - Standard deviation
 - Total intensity
 - Textures

- Shape based /spatial
 - Area / Volume
 - Roundness
 - Solidity
 - Circularity / Sphericity
 - Elongation
 - Centroid
 - Bounding box

- Spatio-temporal
 - Displacement,
 - Speed,
 - Acceleration

- Others
 - Overlap
 - Colocalization
 - Neighborhood

- Mixed features
 - Center of mass
 - Local minima / maxima

Perimeter

- Length of the outline around an object
- Depends on the actual implementation

	0	1	2	3	4 X
0	0	0	0	0	0
1	0	0	0	0	0
2	1	1	1	0	0
3	0	1	1	0	0
4 J	0	0	0	0	0

Fit ellipse

- For every object, find the optimal ellipse simplifying the object.
- Major axis ... long diameter
- Minor axis ... short diameter
- Major and minor axis are perpendicular to each other

• The aspect ratio describes the elongation of an object.

AR = major / minor

$$solidity = \frac{A}{A_{convexHull}}$$

Roundness and circularity

PoL
Physics of Life
TU Dresden

- The definition of a circle leads us to measurements of circularity and roundness.
- In case you use these measures, define them correctly. They are not standardized!

Diameter

d

Circumference

 $C = \pi d$

Area

$$A = \frac{\pi d^2}{4}$$

$$roundness = \frac{4 * A}{\pi \; major^2}$$

$$circularity = \frac{4\pi * A}{perimeter^2}$$

Roundness = 1 Circularity = 1 Roundness ≈ 1 Circularity ≈ 1 Roundness < 1 Circularity < 1

Roundness and circularity

200 400 500 000

Feature extraction in Python

- In Fiji: Analyze > Analyze Particles...
- In Python: from skimage import measure

https://scikit-image.org/docs/stable/api/skimage.measure.html

skimage.measure.label (label_image[,]) skimage.measure.regionprops (label_image[,])	Label connected regions of an integer array. Measure properties of labeled image regions.
<pre>skimage.measure.inertia_tensor_eigvals (image)</pre>	Compute the eigenvalues of the inertia tensor of the image.
skimage.measure.inertia_tensor (image[, mu])	Compute the inertia tensor of the input image.
<pre>skimage.measure.grid_points_in_poly (shape, verts)</pre>	Test whether points on a specified grid are inside a polygon.
<pre>skimage.measure.find_contours (image[,])</pre>	Find iso-valued contours in a 2D array for a given level value.
skimage.measure.euler_number (image[,])	Calculate the Euler characteristic in binary image.
<pre>skimage.measure.blur_effect (image[, h_size,])</pre>	Compute a metric that indicates the strength of blur in an image (0 for no blur, 1 for maximal blur).

area : int

Number of pixels of the region.

area_bbox : int

Number of pixels of bounding box.

area_convex : int

Number of pixels of convex hull image, which is the smallest convex polygon that e

area_filled : int

Number of pixels of the region will all the holes filled in. Describes the area of the i

axis_major_length : float

The length of the major axis of the ellipse that has the same normalized second ce the region.

axis_minor_length : float

The length of the minor axis of the ellipse that has the same normalized second ce the region.

Summary

filtered = filters.median(image)

filtered = filters.gaussian(image, sigma=5)

Filtering the image reduces pixel noise

bg_subtracted = morphology.white_tophat(image, footprint=footprint)

Top-hat filtering removes the background

Thresholding binarizes the image

threshold = filters.threshold_otsu(image)

Connected-components analysis groups pixels to objects

labels = measure.label(binary)

Feature extraction allows descriptive statistics

measurements = measure.regionprops_table(labels, properties=properties)