Programa de Pós-Graduação em Computação

Aprendizado de Máquina na Saúde

Prof. Flávio Luiz Seixas

Explorando o impacto dos fatores do estilo de vida na saúde

1) Objetivo

Recentemente popularizou-se em redes sociais um comparativo entre idade x gerações. A ideia é comparar como um jovem de 29 nos anos 90/80 parece bem mais "velho" quando comparamos um jovem *millenium*, por exemplo. O mesmo vale para pessoas idosas, uma pessoa com 60 anos no mesmo período, anos 90/80, parece mais "velha" esteticamente que outra pessoa da mesma faixa etária nos dia de hoje. É obvio que não podemos generalizar, mas essa situação nos chama a atenção pois tem um fundo de verdade. Sabemos que os cuidados com a estética evoluíram muito nos últimos anos, mas é fato que hoje a pessoas se mostram mais preocupadas com saúde e qualidade de vida, principalmente depois da pandemia da COVID-19. As pessoas passaram a olhar mais pra si e o autocuidado só faz crescer. E parte desse autocuidado está diretamente ligado a mudanças no estilo de vida, principalmente no que diz respeito a saúde.

Nesse ínterim, o objetivo desse projeto é, a partir um dataset com fatores motivadores para um estilo de vida saudável, investigar quais deles mais influenciam no "score". Esse "score" é um indicador que avalia a melhor qualidade de vida. Quando maior o "score" mais saudável a pessoa é. Vamos investigar quais desses fatores mais estão relacionados entre si e, se essa relação pode ser extrapolada para um universo maior, ou seja, além do estudo.

2) Descrição do Data Set

a) Descrição dos dados:

COLUNA:	DESCRIÇÃO:		
Age	Idade em anos (variável continua)		
вмі	Equivalente ao nosso IMC (Índice de massa corporal)		
Exercise_Frequency	№úmero de dias de atividade física durante uma semana (variável categórica: 0-7).		
Diet_Quality	Um índice que reflete a qualidade da dieta, com valores mais elevados indicando hábitos alimentares mais saudáveis (contínua, 0-100).		
Sleep_Hours	Média de horas de sono por noite (variável continua)		
Smoking_Status	Fumante? 0 = Não fumante, 1 = Fumante.		
Alcohol_Consumption	Média de unidades de álcool consumidas por semana (variável continua)		
Health_Score	Uma pontuação de saúde calculada que reflete o estado geral de saúde (contínuo, 0-100).		

b) Descrição dos dados:

Para esse Dataset, em especial, não foram encontrados missing values (detalhes podem ser vistos no Notebook) e não foi preciso fazer nenhum tratamento do tipo "One-Hot Encoding" dado

que já temos uma coluna convertida em valores binários. Todas as colunas do Dataset foram

utilizadas.

c) Link do Dataset:

https://www.kaggle.com/code/a3amat02/health-and-lifestyle-analysis?select=synthetic health data.csv

3 Modelo de aprendizado de máquina:

Nesse projeto o principal objetivo consiste em criar uma modelagem preditiva para prever pontuações de saúde e uma análise exploratória para identificar os principais fatores de estilo de vida que influenciam o "score" de vida saudável. Entedemos que os modelos mais indicados para esses objetivos são: Regressão Linear, Random Forest e XGBoost.

a) Formalização matemática.

a.1) Regressão Linear

Objetivo: Estimar uma função f que mapeia as entradas x para as saídas y.

Definição:

Seja $x = (x_1, x_2, ..., x_n)$ um vetor de características e y a variável alvo (resultado), o modelo de regressão linear busca estimar uma função $\mathbf{f}(x)$, geralmente do tipo:

$$f(x) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

• $w_1, w_2, ..., w_n$ são os **pesos** do modelo (parâmetros a serem aprendidos)

■ b é o **termo de viés** (intercepto),

x é o vetor de entradas.

Objetivo do aprendizado: Encontrar os valores dos parâmetros $w_1, w_2, ..., w_n$ e b que minimizem o erro quadrático médio.

a.2) Random Forest

É um algoritmo de aprendizado de máquina do tipo supervisionado, que é também é utilizado para fazer regressão. Ele combina várias previsões de modelos individuais para obter um resultado final mais robusto e preciso. O Random Forest faz isso através da agregação de várias árvores de decisão, daí o nome "Forest" (Floresta). Cada árvore de decisão é treinada com um subconjunto dos dados de treinamento. Em vez de considerar todas as características possíveis para fazer uma divisão em cada nó da árvore, o Random Forest seleciona aleatoriamente um subconjunto de características para considerar em cada divisão. Supondo que temos $D=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\}$, onde x_i são as características de entrada e y_i são as saídas. O Random Forest vai gerar N árvores $T_1, T_2,...,T_N$, onde cada árvore T_N é treinada com um subconjunto aleatório de amostras $D_n \subseteq D$ (com reposição) e um subconjunto aleatório de características. No caso de um modelo de regressão, a previsão final do modelo é dada por:

$$\widehat{y} = \frac{1}{N} \sum_{n=1}^{N} T_n(x)$$

a.3) XGBoost

Pegando carona no conceito que vimos acima, o XGBoost seria uma espécie de evolução do Random Forest pois ele também se baseia no conceito de árvore de decisão, mas a diferença é que, diferente do primeiro, este modelo não utiliza as árvores paralelamente, mas sim as combina para melhorar a precisão. O processo é feito em sequência (em vez de em paralelo, como no Random Forest), onde cada novo modelo tenta corrigir os erros cometidos pelos modelos anteriores.

$$L(heta) = \sum_{i=1}^n \mathcal{L}(y_i, \hat{y}_i) + \Omega(f)$$

Onde:

 $\mathcal{L}(y_i, y_i')$ é a função de perda (erro) entre a previsão y'i e o valor real yi

 $\Omega(\mathfrak{f})$ é o termo de regularização que penaliza a complexidade das árvores para evitar overfitting.

b) Método de Validação

Como todos os modelos utilizarão técnicas de regressão, os métodos de validação acabam por ser os mesmos, basicamente:

- MSE (Erro Quadrático Médio): Mede a média dos quadrados dos erros, ou seja, a média das diferenças quadráticas entre os valores previstos e os valores reais.
- RMSE (Raiz do Erro Quadrático Médio): O nome é autoexplicativo
- MAE (Erro Absoluto Médio): A média das diferenças absolutas entre os valores previstos e reais.
- R² (Coeficiente de Determinação): Mede a proporção da variabilidade nos dados que é explicada pelo modelo. R² varia entre 0 e 1, sendo que valores próximos a 1 indicam um modelo que explica bem os dados.
- O Cross Validation é uma técnica usada para avaliar e comparar diferentes modelos de machine learning. Ele divide o dataset em blocos e cada um dezes é usado somente uma vez. Ao invés de dividir o dataset em partes fixas para treino e validação, ele funciona dividindo o dataset em vários blocos (ou "folds"). Cada bloco é usado, uma vez, como conjunto de validação enquanto os outros servem para treino. O modelo é treinado e avaliado várias vezes, garantindo que todas as partes do dataset sejam usadas tanto para treino quanto para validação. No final, os resultados são resumidos, dando uma visão mais confiável sobre o desempenho do modelo no dataset.

4 Medidas de desempenho:

Essas foram as medidas encontradas quando submetemos o Data Set ao modelo preditivo em cada um dos modelos de machine learning utilizados com foco em regressão.

Medida:	Regressão Linear:	Randon Forest:	XGBoost:
MSE	34,55	36,35	35,99
RSME	5,878	6,029	5,99
MAE	4,516	4,309	4,468
R ²	0.8368	0.8283	0,83

Após desenvolver o modelo submetemos a ele os arquivos que foram selecionados para validação do modelo. Os resultados estão abaixo:

Medida:	Regressão Linear:	Randon Forest:	XGBoost:
MSE	34,29	36,77	39,05
RSME	5,85	6,06	6,24
MAE	4,500	4,490	4,680
R ²	0,81	0,80	0,79

5. Conclusão

Conforme vimos acima, as métricas de desempenho dos três modelos são relativamente próximos com um ligeiro destaque para a Regressão Linear. Quando submetemos a essas mesmas métricas os dados de validação do modelo, observamos que a Regressão Linear ainda se destaca dentre as demais e, por essa razão, entendemos que será a melhor opção para nosso modelo preditivo. Uma outra vantagem também é esse modelo ter um processamento menos oneroso que os demais. As métricas de desempenho do modelo de regressão sugerem que ele é altamente eficaz na previsão do Health_Score com base nos fatores de estilo de vida fornecidos. Dentro desses fatores, o mais importante é a qualidade da dieta estão as principais conclusões:

Erro quadrático médio (MSE: 34,55):

A diferença quadrática média entre os valores previstos e reais do Health_Score é relativamente baixa. Isto indica que as previsões do modelo estão próximas das pontuações reais, embora ainda possa haver espaço para melhorias na precisão.

Erro Médio Absoluto (MAE: 4,51):

Em média, o Health_Score previsto difere da pontuação real em aproximadamente 4,65 pontos. Este nível de erro sugere boa precisão para aplicações práticas, considerando o intervalo Health_Score (0–100).

R-quadrado (R²: 0,836):

O modelo explica cerca de 80,9% da variação em Health_Score usando os recursos de entrada. Esta é uma forte indicação de que as características escolhidas (por exemplo, idade, IMC, frequência de exercício, etc.) são altamente preditivas de resultados de saúde. No entanto, aproximadamente 19,1% da variância se deve a fatores não capturados no modelo ou à aleatoriedade.

Análise de Resíduos

Por fim, é feita uma análise dos resíduos. Os resíduos são as diferenças entre as variáveis de teste e as variáveis de previsão. O mundo ideal é que seja zero ou o mais próximo possível mas, como vimos, isso não vai acontecer pois temos 19% de variância. É importante ver como é o comportamento desses resíduos. Essa informação é dada no gráfico abaixo, onde os resíduos são normalmente distribuídos com uma leve assimetria a direita indicando que as variáveis de teste são ligeiramente maiores que as do modelo de predição. Provavelmente se deve a alguns outliers presentes no grupo de teste, que foram direcionados a esse grupo aleatoriamente.

Finalmente, podemos dizer que modelo de regressão linear fornece uma estrutura robusta e interpretável para a compreensão da relação entre fatores de estilo de vida e saúde. Pode orientar eficazmente os indivíduos ou as políticas de saúde pública destinadas a melhorar os resultados gerais de saúde, enfatizando factores como o exercício, a qualidade da dieta, a redução do tabagismo e principalmente uma dieta equilibrada.