Zachary Frangella

🔾 zfrangella.github.io | 🔾 zfrangella

Education

Stanford University	2022–25
Ph.D., Management Science & Engineering	
Cornell University, M.Sc., Applied Mathematics	2019-2022
Rensselaer Polytechnic Institute, B.Sc., Mathematics, Magna Cum Laude	2015-2018

Awards & Honors

Dean's Honors List , Rensselaer Po	lytechnic Institute	2015-2018
---	---------------------	-----------

Max Hirsch Prize, Rensselaer Polytechnic Institute

2019

This Prize is awarded to a Senior in the Department of Mathematical Sciences who has demonstrated outstanding ability in his or her academic work and also gives promise of outstanding success in a career in mathematical sciences.

Research Experience

Stanford University, Stanford, CA

2022-2025

Research Assistant

- Designed preconditioned stochastic gradient algorithms leveraging randomized numerical linear algebra to accelerate large-scale machine learning, with applications to GLMs and neural network training.
- Introduced RPCholesky and KRILL preconditioners for kernel ridge regression (KRR), both adopted in RandLAPACK for large-scale randomized numerical linear algebra.
- Developed block-access algorithms for solving linear systems involving massive kernel matrices ($n > 10^6$), enabling scalable KRR and Gaussian Process inference on datasets with $n \sim 10^8$ using a single GPU.
- Analyzed the optimization landscape of physics-informed neural networks (PINNs), explaining training challenges; proposed NysNewton-CG to help address these challenges, which has now been integrated into the DeepXDE library for scientific machine learning.
- Implemented and benchmarked algorithms in PyTorch, JAX, Python, and Matlab.

Cornell University, Ithaca, NY

2019-2022

Research Assistant

- Investigated algorithms for large-scale linear systems and convex composite optimization, with applications to GLMs, portfolio optimization, (kernel) ridge regression, and SVMs.
- Analyzed the Leave-one-out Cross-Validation (LOOCV) objective for ridge regression; proved quasiconvexity under mild assumptions, enabling global optimization for model selection despite general non-convexity.
- Developed Nyström Preconditioned Conjugate Gradient (Nyström PCG), adopted in Rand-LAPACK (a LAPACK extension for randomized numerical linear algebra), for solving large-scale linear systems with low-rank structure.
- Proposed NysADMM, combining Nyström PCG with linearized ADMM, achieving state-of-the-art performance over solvers such as GLMNet, LIBSVM, and SAGA.
- Implemented and benchmarked algorithms in Python and Matlab for empirical validation.

Rensselaer Polytechnic Institute, Troy, NY

Summer 2018

Undergraduate Researcher

- Developed finite element schemes for parabolic PDEs with non-smooth initial data.
- Investigated Rannacher time-stepping for classic FEM schemes and extended methods to Discontinuous Galerkin formulations.
- Implemented prototypes in MATLAB and conducted numerical experiments.

Publications (Google Scholar)

 $\dagger \rightarrow$ Equal contribution

Journal Articles

- J1. **Frangella, Zachary**, Tropp, J. A. & Udell, M. Randomized Nyström Preconditioning. *SIAM Journal on Matrix Analysis and Applications* **44**, 718–752 (2023).
- J2. **Frangella, Zachary**, Rathore, P., Zhao, S. & Udell, M. Promise: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates. *Journal of Machine Learning Research* **25**, 1–57 (2024).
- J3. Frangella, Zachary, Rathore, P., Zhao, S. & Udell, M. SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates. *SIAM Journal on Mathematics of Data Science* **6**, 1173–1204 (2024).

Peer-reviewed Conference Proceedings

- C1. Stephenson, W., **Frangella, Zachary**, Udell, M. & Broderick, T. Can We Globally Optimize Cross-Validation Loss? Quasiconvexity in Ridge Regression in Advances in Neural Information Processing Systems (2021), 24352–24364.
- C2. Zhao[†], S., **Frangella, Zachary**[†] & Udell, M. NysADMM: faster composite convex optimization via low-rank approximation in International Conference on Machine Learning (2022), 26824–26840.

- C3. Rathore, P., Lei, W., Frangella, Zachary, Lu, L. & Udell, M. Challenges in Training PINNs: A Loss Landscape Perspective in International Conference on Machine Learning (2024), 42159–42191. Oral, Top 1.5% of submissions.
- C4. Feng, M., Frangella, Zachary & Pilanci, M. CRONOS: Enhancing Deep Learning with Scalable GPU Accelerated Convex Neural Networks in Advances in Neural Information Processing Systems (2024).

In the pipeline

- P1. Diamandis, T., Frangella, Zachary, Zhao, S., Stellato, B. & Udell, M. GeNIOS: an (almost) second-order operator-splitting solver for large-scale convex optimization. *Submitted* (2023).
- P2. **Frangella, Zachary**, Diamandis, T., Stellato, B. & Udell, M. On the (linear) convergence of Generalized Newton Inexact ADMM. *Submitted* (2023).
- P3. Díaz[†], M., Epperly[†], E.N., **Frangella, Zachary**[†], Tropp, J. A. & Webber[†], R.J.. Robust, randomized preconditioning for kernel ridge regression. *Submitted* (2024).
- P4. Fazliani, S., Frangella, Z. & Udell, M. Enhancing Physics-Informed Neural Networks Through Feature Engineering. *Submitted* (2025).
- P5. Rathore, P., **Frangella, Zachary**, Yang, J., Dereziński, M. & Udell, M. Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression. *Submitted* (2025).
- P6. Rathore, P. et al. Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project. Submitted (2025).
- P7. Sun, J., **Frangella, Zachary** & Udell, M. SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning. *Submitted* (2025).

Talks and Posters

ICME Seminar on Linear Algebra and Optimization, Stanford Faster Convex Optimization via Randomized Numerical Linear Algebra	2024
MILA Tensor Network Reading Group, Montreal SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates	2024
International Congress of Industrial and Applied Mathematics, Tokyo Faster Convex Optimization via Randomized Numerical Linear Algebra	2023
ICME Xpo, Stanford SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates	2023
SIAM Conference on Optimization, Seattle Low-rank Approximation for Faster Optimization	2023
International Conference on Machine Learning, Baltimore NysADMM: Faster Composite Convex Optimization via Low-Rank Approximation	2022
SciMLCon , Virtual Speeding up A\b with Randomized Preconditioners	2022

Technical Skills

Programming Languages & Frameworks:

• Proficient: Python, Jax, PyTorch, NumPy, Cython, MATLAB, LATEX

• Familiar: Pandas, C/C++, Julia

Academic Mentoring

Graduate

Jingruo Sun, M.Sc. Stanford MS&E
Stochastic Proximal Preconditioning
Summer 2024 – Spring 2025

Weimu Lei, M.Sc. Stanford ICME

Optimization for PINNs, GPU Acclerated Optimization Software

Fall 2023 – Fall 2024

Undergraduate

Yingxi Li, B.Sc. Cornell ORIE

Faster Sparse Composite Optimization via SAFE coordinate selection

Spring 2022

Teaching

Rensselaer Polytechnic Institute

MATH 2400: Differential Equations

Teaching Assistant

Spring 2019

Cornell University

MATH 1910: Calculus for EngineersFall 2019, 2020
Teaching Assistant

MATH 1920: Multivariable Calculus for Engineers

Teaching Assistant

Spring 2021

MATH 2930: Differential Equations for Engineers

Teaching Assistant

Spring 2020, 2022

Stanford University

CME 307/MS&E 311: Optimization Spring 2023, Winter 2024, Fall 2024 Teaching Assistant, Guest Lecturer

Academic Service

Organized Sessions

ICME Seminar on Linear Algebra and Optimization, Stanford with Michael Saunders

Winter 2024

INFORMS: Advances in Optimization for Machine Learning, Seattle with Pratik Rathore and Madeleine Udell

2024

Conference Reviewer

Advances in Neural Information Processing Systems (NeurIPS)

International Conference on Machine Learning (ICML)

International Conference on Learning Representations (ICLR)

International Conference on Artificial Intelligence and Statistics (AISTATS)

Journal Reviewer

Journal of Machine Learning Research

SIAM Journal on Mathematics of Data Science

SIAM Journal on Matrix Analysis

Automatica

Optimization and Engineering

Statistics & Computing

Relevant Courses

Numerical Computing, Numerical Ordinary Differential Equations, Numerical Partial Differential Equations, Matrix Computations, Data-sparse Matrix Computations, Numerical Methods for Data Science, Reinforcement Learning, Probability Theory, Quantum Physics I-II

Last updated: September 17, 2025