Использование отношения Хигмана-Крускала для прерывания рекурсивной специализации функций

А. А. Кошелев

МГТУ им. Н. Э. Баумана

Третье совместное рабочее совещание ИПС имени А. К. Айламазяна РАН и МГТУ имени Н. Э. Баумана по функциональному языку программирования Рефал

12 июня 2020 года

Постановка задачи

Устранить зацикливание компилятора языка Рефал-5λ, возникающее при специализации функций, с помощью отношения Хигмана-Крускала.

Для этого необходимо:

- изучить причины возникновения зацикливания и способы его прерывания;
- разработать и реализовать алгоритм применения отношения Хигмана-Крускала и алгоритм обобщения сигнатур;
- проверить корректность работы реализованных алгоритмов.

Специализация функций

F(X,Y) — функция с параметрами X,Y. A — одно из возможных значений параметра Y. Тогда $F_A(X) = F(X,A)$ — специализация функции F(X,Y) по параметру Y.

Параметры, по которым осуществляется специализация, называют *статическими*.

Предполагается, что построение специализации позволит:

- увеличить скорость работы программы;
- уменьшить объём требуемой памяти.

Специализация функций в языке Рефал-5х

- В языке Рефал-5λ каждая функция принимает один аргумент.
- Поэтому был введён шаблон специализации, указывающий специализируемую функцию и её статические переменные.

Пример использования шаблона специализации

```
\$SPEC — ключевое слово (specialization); F — имя функции, которую необходимо специализировать; t.Y — статическая переменная; t.x — динамическая переменная.
```

 $SPEC\ F\ t.x\ t.Y;$

Алгоритм специализации функций

- 1. Происходит поиск вызова специализируемой функции.
- 2. Определяются значения статических переменных.
- 3.1. Если значения новые, строится новый экземпляр функции.
- 3.2. Иначе указывается вызов уже построенного экземпляра.
- 4. Запоминается сигнатура в виде (имя экземпляра; значения статических переменных).

Зацикливание при специализации

В ряде случаев алгоритм специализации может зациклиться.

Пример зацикливания специализации

```
$SPEC BracketsWrapper t.x t.Y;
BracketsWrapper {
  (t.X) t.Y = <BracketsWrapper t.X (t.Y)>;
  a t.Y = t.Y;
}
```

Процесс зацикливания специализации

Специализация данной функции с помощью приведённого алгоритма не может завершиться.

Обнаружение зацикливания

- Сравниваем сигнатуры с помощью отношения Хигмана-Крускала (обозначается знаком ≤).
- Интуитивное определение отношения Хигмана-Крускала:
- для сигнатур S_1 , S_2 выполняется $S_1 \leq S_2$, если путём удаления из S_2 некоторых элементов (переменных, скобочных символов, функций и т. д.) можно получить S_1 .
- Примеры:

$$x \le (y); (y) \le (((y))); x y \le f(g(x), y)$$

Формальное определение

Отношение Хигмана-Крускала имеет индуктивное определение:

- 1. $x \le y$ для любых переменных x и y.
- 2. $X \le f(Y_1, Y_2, ..., Y_n)$, если f функция и выполняется условие

$$\exists i: X \leq Y_i$$
.

3. $f(X_1, X_2, ..., X_n) \le f(Y_1, Y_2, ..., Y_n)$, если f — функция и выполняется

$$\forall i = 1, ..., n X_i \leq Y_i$$
.

Теорема Хигмана-Крускала

Отношение Хигмана-Крускала является отношением хорошего предпорядка для выражений в конечном алфавите.

Для любой бесконечной последовательности сигнатур $\{S_i\}_{i\in\mathbb{N}}$, имена переменных в которых составлены из конечного алфавита:

 $\exists i, k: S_i \leq S_k$

Обобщение сигнатур

- Пусть для сигнатур S_1 , S_2 выполнилось $S_1 \leq S_2$.
- Обобщение S_1 и S_2 сигнатура S_{gen} , из которой можно подстановками получить S_1 , S_2 .
- Пример:

$$S_1 = () t. y, S_2 = ('a') t. y.$$

 $S_{gen} = (e. x) t. y.$

При $e.x = \varepsilon$ получаем $S_{gen} \rightarrow S_1$.

При e.x = 'a'получаем $S_{gen} \rightarrow S_2$.

Частный случай обобщения

$$S_i \leq S_k$$

$$S_{gen} = S_i$$

Обобщение снизу

Реализация отношения Хигмана-Крускала

Пусть имеются выражения E_1 и E_2 , причём выражение E_2 можно представить в виде конкатенации $E_2'E_2''$. Тогда, если $E_1 \leq E_2$, то верно одно из трёх:

- 1. $E_1 \leq E_2'$.
- $2. E_1 \leq E_2''$.
- 3. E_1 можно представить в виде конкатенации $E_1'E_1''$, где $|E_1'|>0$ и $|E_1''|>0$, для которой выполняются условия: $E_1'\leq E_2'$ и $E_1''\leq E_2''$.

Реализация метода обобщения снизу

- Обобщение сигнатур в общем случае определяется неоднозначно.
- Пример:

$$S_1 = () t.y, S_2 = ('a') t.y$$

 $S_{gen_1} = (e.x) t.y$ или $S_{gen_2} = e.x$

- Для сохранения максимального количества информации о сигнатуре использован алгоритм глобального сложнейшего обобщения.

Пример тестирования

После применения специализации

До применения специализации BracketsWrapper {

```
BracketsWrapper {
  (t.X) t.Y = <BracketsWrapper t.X (t.Y)>;
  a t.Y = t.Y;
}
```

```
BracketsWrapper {
  (t.X) t.Y = <BracketsWrapper@1 t.X t.Y>;
  a t.Y = t.Y;
}

BracketsWrapper@1 {
  (t.X) t.Y = <BracketsWrapper@1 t.X (t.Y)>;
  a t.Y = (t.Y);
}
```

Заключение

- Было рассмотрено использование отношения Хигмана-Крускала и алгоритма обобщения снизу для решения проблемы зацикливания рекурсивной специализации.
- Методы были разработаны и реализованы в компиляторе языка Рефал-5λ.
- Тестирование показало корректность работы реализованных методов.