华东师范大学期末试卷 (B) 2010 —2011 学年第 — 学期

课程名称:	高等数学 B					
学生姓名:			学	号:_		
专 业:		年	F级/	班级:	 10 级	 _

课程性质:专业必修

	二	111	四	五.	六	七	八	总分	阅卷人签名

一、填空题(15分,每小题3分)

(1)
$$\lim_{n \to \infty} \frac{2n^4 + n^3 + 2n}{6n^4 + 5} = \underline{\hspace{1cm}};$$

(2) 设
$$y = \frac{e^x + x}{xe^x}$$
,则 $\frac{dy}{dx} =$ ______;

(3) 比较①
$$\int_{1}^{2} \ln x \, dx$$
 与② $\int_{1}^{2} (\ln x)^{2} \, dx$ 的大小,则① ____ ② (填入 ">","<" 或 "=");

(5) 设点
$$(1,3)$$
是曲线 $y = ax^3 + bx^2$ 的拐点,则 $a = _____$, $b = _____$;

二、计算下列极限(20分,每小题4分)

(1)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$
; (2) $\lim_{x \to 1} \left(\frac{3}{x^3 - 1} - \frac{1}{x - 1} \right)$; (3) $\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}$;

(4)
$$\lim_{x \to +\infty} x \left(\frac{\pi}{2} - \arctan x \right);$$
 (5) $\lim_{x \to 0} \frac{\int_0^x t^2 \arctan t dt}{x^3 \tan x}.$

三、求下列积分(20分,每小题4分)

(1)
$$\int (\sec^2 x + 3\cos x) dx$$
; (2) $\int \frac{x}{1+5x} dx$; (3) $\int \sin \sqrt{x} dx$;

(4)
$$\int_0^2 |x^2 - 1| dx$$
; (5) $\int_1^3 \frac{f'(x)}{1 + f^2(x)} dx$, $\sharp = f(x) = \frac{5(x+3)(x-1)}{3(x+1)(x+2)}$.

四、判断下列广义积分的敛散性; 若收敛,则求其值(8分,每小题4分)

(1)
$$\int_0^{+\infty} e^{-2x} dx$$
; (2) $\int_1^e \frac{dx}{x\sqrt{1-(\ln x)^2}}$

五、判别下列级数的敛散性,并说明理由(16分,每小题4分)

(1)
$$\sum_{n=1}^{\infty} \frac{n}{n+2}$$
; (2) $\sum_{n=1}^{\infty} \frac{100^n}{n!}$; (3) $\sum_{n=1}^{\infty} \left(\frac{n+1}{n^2+1}\right)^2$; (4) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n^2+n}}$.

六、(8分,每小题4分)

(1) 证明: 当
$$x > 0$$
时, $\ln(1+x) > x - \frac{x^2}{2}$;

(2) 求函数
$$f(x) = \frac{1}{3}x^3 - 4x$$
 在[-1, 3]上的最大值和最小值.

七、(6分)设
$$f(x)$$
在 $[0,1]$ 上可导,且满足关系式 $f(1) = \frac{2}{e} \int_0^{\frac{1}{2}} e^x f(x) dx$,证明:存在一个 $\xi \in (0,1)$,使 $f'(\xi) + f(\xi) = 0$.

八、(7分)设

$$f(x) = \begin{cases} \frac{g(x)}{x}, & x \neq 0, \\ a, & x = 0, \end{cases}$$

其中 g(x) 具有二阶连续导数且 g(0)=0. 求常数 a 的值,使 f(x) 在 x=0 处连续,并讨论 f'(x) 在 x=0 处的连续性.