수DA쟁이

헤드퍼스트 DA - chap 6 베이지안 통계 (첫걸음을 내딛다.)

Department of Mathematics Gyeongsang National University Youngmin Shin

1. 의사가 충격적인 소식을 전해주었습니다.

- 도마뱀 독감에 걸려버렸다! (양성 판정, 엉덩이에 상당한 통증 ㅠㅠ)
- 이 검사가 얼마나 정확한지 확인 하고 싶다.

1. 의사가 충격적인 소식을 전해주었습니다.

통계 결과

- 도마뱀 독감에 걸렸을 경우 이 검사에서 양성 판정이 나올 확률: 90%
- 도마뱀 독감에 걸리지 않았을 경우 이 검사에서 양성 판정이 나올 확률: 9%

2. 정확도 분석을 한번에 하나씩 해봅시다.

시나리오 1.

- 100명 중 90명이 이 병에 걸렸을 경우, 걸리지 않은 사람이 이 검사에서 양성 판정을 받는 경우
- → 10명이 이 병에 걸리지 않음. 이 중에 양성 판정을 받았지만, 실제로 걸리지 않는 사람은 10명의 9%인 1명
- 도마뱀 독감에 걸리지 않았을 경우 이 검사에서 양성 판정이 나올 확률: 9%

2. 정확도 분석을 한번에 하나씩 해봅시다.

시나리오 2.

- 100명 중 10명이 이 병에 걸렸을 경우, 걸리지 않은 사람이 이 검사에서 양성 판정을 받는 경우
- → 90명이 이병에 걸리지 않았음. 양성 판정을 받았지만 실제로 걸리지 않은 사람은 90명 중의 9%인 8명

• 도마뱀 독감에 걸리지 않았을 경우 이 검사에서 양성 판정이 나올 확률: 9%

3. 여러분은 거짓 양성을 세고 있습니다.

- 진짜 양성: 질병에 걸린 사람이 양성으로 결과가 나옴
- 거짓 양성: 질병에 걸리지 않은 사람이 양성으로 결과가 나옴
- 진짜 음성: 질병에 걸리지 않은 사람이 음성으로 결과가 나옴
- 가짜 음성: 질병에 걸린 사람이 음성으로 결과가 나옴

3. 여러분은 거짓 양성을 세고 있습니다.

- 진짜 양성: 질병에 걸린 사람이 양성으로 결과가 나옴
- 거짓 양성: 질병에 걸리지 않은 사람이 양성으로 결과가 나옴
- 진짜 음성: 질병에 걸리지 않은 사람이 음성으로 결과가 나옴
- 가짜 음성: 질병에 걸린 사람이 음성으로 결과가 나옴

거짓 양성 ↔ 진짜 음성 (거짓 양성: 9%) (진짜 음성: 91%) 진짜 양성 ↔ 가짜 음성 (진짜 양성: 90%) (가짜 음성: 10%)

4. 여기 나오는 모든 용어는 조건부 확률을 나타냅니다.

• 조건부 확률: 다른 어떤 사건이 발생했을 경우에 사건이 일어날 확률

P(확률|조건)

4. 여기 나오는 모든 용어는 조건부 확률을 나타냅니다.

+: 양성 판정

-: 음성 판정

L: 독감에 걸림

 \sim L: 독감에 걸리지 않음

- $P(+|\sim L)$: 도마뱀 독감에 걸리지 않았을 경우, 검사에서 양성판정이 나올 확률.
- P(+|L): 도마뱀 독감에 걸린 경우, 검사에서 양성판정이 나올 확률.
- P(-|L|): 도마뱀 독감에 걸린 경우, 검사에서 음성판정이 나올 확률.
- $P(-|\sim L)$: 도마뱀 독감에 걸리지 않았을 경우, 검사에서 음성판정이 나올 확률.

5. 1%의 사람이 도마뱀 독감에 걸려있습니다.

- 조사를 통해 국내 인구의 1%가 도마뱀 독감에 걸려있음을 알아냄.
- ✓ 1%는 기준 비율
- ✓ 검사를 위해 개개인에 대한 새로운 사실을 알기 전에 모집단의 1%만이 도마뱀 독감에 걸려 있음을 알고 있습니다. 따라서 기준 비율을 사전 비율이라고 합니다.

5. 1%의 사람이 도마뱀 독감에 걸려있습니다.

- 기준 비율 오류를 조심하세요
- ✓ 진짜 양성 비율이 90%이기 때문에 독감에 걸렸을 가능성이 꽤 높다는 것을 의미 한다고 착각 할 수 있지만, 기준 비율이 1%라는 것을 알면 진짜 양성 비율이 90%나 되는 것은 검사 결과에 별로 설득력이 없이 진다.

5. 1%의 사람이 도마뱀 독감에 걸려있습니다.

검사에서 양성 판정을 받았을 경우 독감에 걸렸을 확률=

독감에 걸렸고 결과가 양성인 사람 수

독감에 걸렸고 검사결과가 양성인 사람의 수 + 독감에 걸리지 않았지만 검사 결과가 양성인 사람 수

=9/(9+89)

=0.09

9

The number who test positive

.....1

The number who test negative

89

The number who test positive

901

The number who test negative

기준 비율: 1%

내가 독감에 걸렸을 확률: 9% (일반인에 비해 도마뱀에 걸렸을 가능성이 9배!)

6. 간단한 정수를 사용해 복잡한 확률에 대해 생각해 봅시다.

 우리 두뇌는 원래 소수의 확률을 처리하는데 별로 적합하지 않기 때문에 확률은 정수로 반환하고 생각하면 실수를 줄일 수 있어서 효과적입니다. 7. 베이즈 정리는 새로운 데이터가 들어왔을 때 기준 비율을 계산합니다.

• 베이즈 정리는 기준비율과 조건부 확률을 사용하여 새로운 조건부 확률을 예측할 수 있게 해주는 강력한 통계학적 공식

$$P(L|+) = \frac{P(L)P(+|L)}{P(L)P(+|L) + P(\sim L)P(+|\sim L)}$$

8. 베이즈 정리는 반복해서 사용할 수 있습니다.

• 베이즈 정리는 새로운 정보를 분석에 포함 시키는 방법을 제공하기 때 문에 분석할 때 매우 중요하게 사용됩니다.

8. 베이즈 정리는 반복해서 사용할 수 있습니다.

<u>분석</u>

기준 비율 + 검사 결과 + 추가 검사 결과

9. 두번째 검사 결과는 음성입니다.

음성!

10. 새로운 검사에서는 다른 정확도 통계가 나왔습니다.

- 도마뱀 독감 진단 검사 → 고급 도마뱀 독감 진단 검사
- 이전과 동일한 기준비율을 사용하면 안된다.

11. 새로운 정보로 기준 비율이 바뀔 수 있습니다.

- 첫 번째 검사 결과는 모집단의 발생률을 기준 비율로 사용.
- 검사에서 도마뱀에 걸렸을 확률을 새로운 기준비율로 사용한다. 왜냐 하면, 양성 판정을 받은 사람이 그룹이 되기 때문이다.

새로운 기준비율: 9%

Thank you!