Atividade - Processamento de Consultas

Augusto Ribas — Bruno Nazario — Doglas Sorgatto 15 de setembro de 2014

1 Exercício

1.1 Consulta

```
\Pi_{Qt-copia}((\sigma_{Nome-unidade='Central'}(Unidade-Biblioteca))) \\ \bigotimes(Livro-Copias \bigotimes(\sigma_{Titulo='A\ Tribo\ Perdida'}(Livro))))
```

```
\sigma_{Nome-unidade='Central'}(Unidade-Biblioteca)
```

Nome—unidade não é uma chave primaria, então podemos usar um método de busca com um indice de clusterização para muitos registros. Como a seleção envolve uma comparação de igualde num atributo não chave que pode ter um indice de clusterização, podemos usa-lo para recuperar todos os registros que satisfação a condição.

```
\sigma_{Titulo='A\ Tribo\ Perdida'}(Livro)
```

Titulo também não é uma chave primaria, então podemos usar um método de busca com um indice de clusterização para muitos registros. Como a seleção envolve uma comparação de igualde num atributo não chave que pode ter um indice de clusterização, podemos usa-lo para recuperar todos os registros que satisfação a condição.

1.2 Consulta

```
R1\neg\Pi_{Cod-unidade}(\sigma_{Nome-unidade='Central'}(Unidade_Biblioteca)) \\ R2\neg\Pi_{Cod-unidade,Nr-cartao}((\sigma_{Data-devolucao='hoje'}(Livro-Emprestimos)) \otimes R1) \\ RESULT\neg\Pi_{Titulo,Nome,Endereco}(Livro \otimes Usuario \otimes R2)
```

```
\sigma_{Nome-unidade='Central'}(Unidade_Biblioteca)
```

Nome—unidade também não é uma chave primaria, então podemos usar um método de busca com um indice de clusterização para muitos registros. Como a seleção envolve uma comparação de igualde num atributo não chave que pode ter um indice de clusterização, podemos usa-lo para recuperar todos os registros que satisfação a condição.

```
\sigma_{Data-devolucao='hoje'}(Livro-Emprestimos)
```

Data — devolucao também não é uma chave primaria, então podemos usar um método de busca com um indice de clusterização para muitos registros. Como a seleção envolve uma comparação de igualde num atributo não chave que pode ter um indice de clusterização, podemos usa-lo para recuperar todos os registros que satisfação a condição.

1.3 Consulta

 $R1(Nr-cartao, Total-livros-emp) \neg Nr-cartao \ \Im COUNT_{(Cod-livro)}(Livros-Emprestados)$

 $R2 \neg \sigma_{Total-livros-emp>5}(R1)$

 $Result \neg \Pi_{Nome, Endereco, Total-livros-emp}(R2 \bigotimes Usuario)$

 $\sigma_{Total-livros-emp>5}(R1)$

Total – livros – emp está em uma tabela temporaria chamada R1 além de ver um valor derivado (veio de uma função count), assim não possue indice, de forma que precisamos de uma busca linear(algoritimo de força bruta). Recupa todos os registros na tabela e teste se o atributo satisfaz a condição de seleção.

2 Exercício

2.1 Unidade-Biblioteca & Livros-Copias

 $b_A + (\lceil b_A/(n_B - 2) \rceil * b_B)$

onde

 b_A Número de blocos de registros de A n_B Número de buffers disponiveis b_B Número de blocos de registros de B

Número total de acessos de leitura de disco $10 + (\lceil 10/(11-2) \rceil * 15000) = 30010$

2.2 Livro-Copias \otimes Livro

Número total de acessos de leitura de disco $15000 + (\lceil 15000/(11-2) \rceil * 10000) = 16685000$

2.3 Livro-Emprestimos \otimes Unidade-Biblioteca

Número total de acessos de leitura de disco $8000 + (\lceil 8000/(11-2) \rceil * 10) = 16890$

2.4 Livro-Emprestimos ⊗ Usuario

Número total de acessos de leitura de disco $8000 + (\lceil 8000/(11-2) \rceil * 6000) = 5342000$

3 Exercício

3.1 Unidade-Biblioteca \otimes Livros-Copias

 $b_A + (r_A * (X_B + 1))$ b_A Número de blocos de registros de A r_A Número de registros de A X_B Índice em B

Número total de acessos de leitura de disco 10 + (50 * (12 + 1)) = 660

3.2 Livro-Copias \otimes Livro

Número total de acessos de leitura de disco 15000 + (50000 * (5+1)) = 315000

3.3 Livro-Emprestimos \otimes Unidade-Biblioteca

Número total de acessos de leitura de disco8000 + (24000*(1+1)) = 56000

3.4 Livro-Emprestimos \otimes Usuario

Número total de acessos de leitura de disco 8000 + (24000 * (4+1)) = 128000