

DÉVELOPPEMENT D'UNE APPLICATION D'AIDE AU DIAGNOSTIC DE TUMEURS CÉRÉBRALES BASÉE SUR LES RÉSEAUX DE NEURONES ARTIFICIELS

Étudiant : Brad Niepceron | Encadrant : Filippo Grassia

Directeur de Thèse: Ahmed Nait-Sidi-Moh

Université de Picardie Jules Vernes

Contexte et problématique

Contexte

- La segmentation des IRM est une étape cruciale dans le développement d'applications pour les neurosciences et le domaine clinique
- Les artefacts et la rareté de certaines tumeurs compliquent la précision du diagnostic

Problématique

Construire un modèle d'aide au diagnostic en tenant compte des caractéristiques inhérentes aux IRM cérébrales.

Artefact sur une IRM

Méthodologie et contributions

Réseau de neurones à convolutions

Auto-encodeur adverse à convolutions

But:

- Réduire le nombre d'opérations
- Réduire le temps d'apprentissage
- Éviter la disparition du gradient

But:

- Détection d'anomalie
- Profiter de la réduction de dimension

Résultats et Conclusion

Obtenus

Notre modèle	Dice score (Tumor core) 0.83
Tustison et al.	0.79
Zhao et al.	0.79

Limites

- Plusieurs phases d'entraînement sont nécessaires pour pouvoir segmenter tout type de tumeurs

Perspectives

 Construire un système de diagnostique entier en intégrant des informations sémantiques (ontologies)

MERCI DE VOTRE ATTENTION.

