

高等数学 (I)

主讲教师: 李铮

高等数学(I)

上一次课程内容回顾

2.5 两个重要极限与无穷小的比较

2.5.1 两个重要极限

证明: 先考虑 $x \rightarrow 0^+$ 时的情形,

如图,作单位圆由面积关系知

$$\begin{array}{c|c}
 & B & C \\
\hline
 & 1 & A \\
\hline
 & 0 & 1 & A
\end{array}$$

$$S_{\triangle OAB} < S_{eta E \cap AB} < S_{\triangle OAC}$$
 即 $\frac{1}{2} \cdot 1 \cdot \sin x < \frac{1}{2} \cdot 1^2 \cdot x < \frac{1}{2} \cdot 1 \cdot \tan x$

所以
$$\sin x < x < \tan x \Rightarrow \cos x < \frac{\sin x}{x} < 1$$

重要极限1证明(续):

由函数的夹逼准则可得,
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
;

当
$$x < 0$$
 时, 令 $x = -t$,

则有
$$\lim_{x\to 0^-} \frac{\sin x}{x} = \lim_{t\to 0^+} \frac{\sin(-t)}{(-t)} = \lim_{t\to 0^+} \frac{\sin t}{t} = 1$$
,

因此,
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
。

【例题1】求极限 $\lim_{x\to \infty} \frac{\tan 2x}{x}$ 。

$$\text{ $\frac{\text{HP}: \lim_{x\to 0}\frac{\tan 2x}{x} = \lim_{x\to 0}\frac{\sin(2x)}{(2x)}\cdot\frac{2}{\cos 2x} = 1\cdot 2 = 2$} }$$

【例题2】求极限
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
。

解注:
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{x^2} = \lim_{x\to 0} \frac{\sin^2\frac{x}{2}}{(\frac{x}{2})^2} \cdot \frac{1}{2} = \frac{1}{2}$$

解注:
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{1-\cos^2 x}{x^2(1+\cos x)} = \lim_{x\to 0} \frac{\sin^2 x}{x^2} \cdot \frac{1}{1+\cos x} = \frac{1}{2}$$

【例题3】求极限
$$\lim_{x\to a} \frac{\sin x - \sin a}{x-a}$$
。

$$\text{ im} \quad \lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a} \frac{2\sin \frac{x - a}{2}\cos \frac{x + a}{2}}{x - a} = \cos a \circ$$

比较:
$$\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1} = ?$$

$$\lim_{x \to 1} (x^2 - 1) \cdot \sin \frac{1}{x - 1} = ?$$

$$\lim_{x \to 1} (x^2 - 1) \cdot \sin \frac{1}{x - 1} = ?$$

基本型:
$$\lim_{x\to\infty} x \cdot \sin\frac{1}{x} = 1$$
, $\lim_{x\to 0} x \cdot \sin\frac{1}{x} = 0$ 。

2. 重要极限2:
$$\lim_{x\to\infty} (1+\frac{1}{x})^x = e$$
.

证明: 先考虑 $x \rightarrow +\infty$ 时的情形,

 $\forall x > 0$, 有 $[x] \le x \le [x+1]$, 当 x > 1 时, 记 [x] = n,

$$\boxed{\text{II}} (1 + \frac{1}{n+1})^n < (1 + \frac{1}{x})^x < (1 + \frac{1}{n})^{n+1}$$

$$\overline{\prod} \lim_{n\to\infty} (1+\frac{1}{n})^{n+1} = \lim_{n\to\infty} (1+\frac{1}{n})^n \cdot (1+\frac{1}{n}) = e,$$

2. 重要极限2证明(续):

由夹逼准则得
$$\lim_{x\to +\infty} (1+\frac{1}{x})^x = e$$
.

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = \lim_{t \to +\infty} (1 - \frac{1}{t+1})^{-(t+1)} = \lim_{t \to +\infty} (1 + \frac{1}{t})^{t+1} = e,$$

因此,
$$\lim_{x\to\infty} (1+\frac{1}{x})^x = e$$
, 证毕。

【例题4】求极限
$$\lim_{x\to\infty} (1+\frac{2}{x})^{x+3}$$
。

$$\frac{\text{MF: } \lim_{x \to \infty} (1 + \frac{2}{x})^{x+3} = \lim_{x \to \infty} (1 + \frac{2}{x})^{\frac{x}{2} \cdot 2 + 3} = \lim_{x \to \infty} [(1 + \frac{2}{x})^{\frac{x}{2}}]^2 \cdot (1 + \frac{2}{x})^3$$

$$= e^2 \cdot 1 = e^2 \circ$$

解:
$$\Leftrightarrow x = \frac{1}{t}$$

【例题6】求极限
$$\lim_{x\to\infty} (\frac{2x-1}{2x+1})^x$$
。

解:
$$\lim_{x\to\infty} \left(\frac{2x-1}{2x+1}\right)^x = \lim_{x\to\infty} \left(1 + \frac{-2}{2x+1}\right)^{\frac{2x+1}{-2}\cdot(-1)-\frac{1}{2}}$$

$$= \lim_{x \to \infty} \left[(1 + \frac{-2}{2x+1})^{\frac{2x+1}{-2}} \right]^{-1} \cdot (1 + \frac{-2}{2x+1})^{-\frac{1}{2}} = e^{-1} .$$

基本形式可简记为:
$$(1+\frac{1}{\infty})^{\infty} \rightarrow e, (1+0)^{\frac{1}{0}} \rightarrow e$$

注意: 两个∞ 需完全一致, 而两个0 表示无穷小也需完全一致。

结合复合函数极限运算法则。

常用变化公式: $(1+0)^{\infty} \rightarrow e^{0\cdot\infty}$

即: 设 $\lim f(x) = 1$ 且 $\lim g(x) = \infty$,

 $\iiint \lim f(x)^{g(x)} = \lim [1 + (f(x) - 1)]^{g(x)} = e^{\lim [f(x) - 1] \cdot g(x)}$

[例题7] 求极限
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$$
。

解: $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x\to 0} [1 + (\cos x - 1)]^{\frac{1}{\cos x - 1}} \cdot \frac{\cos x - 1}{x^2} = e^{-\frac{1}{2}}$ 。

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = e^{\lim_{x \to 0} (\cos x - 1) \cdot \frac{1}{x^2}} = e^{-\frac{1}{2}} .$$

【例题8】求极限
$$\lim_{x\to 0} \frac{\ln(1+x)}{x}$$
。

解:
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = \lim_{x\to 0} \ln(1+x)^{\frac{1}{x}} = \ln e = 1$$
。

【例题9】求极限
$$\lim_{x\to 0} \frac{e^x - 1}{x}$$
。

解:
$$\Leftrightarrow$$
 $e^x - 1 = t \Rightarrow x = \ln(1+t)$,

$$\iiint_{x\to 0} \frac{e^x - 1}{x} = \lim_{t\to 0} \frac{t}{\ln(1+t)} = 1.$$

2.5.2 无穷小的比较

- 1. 定义 设 α,β 是无穷小,即 $\lim \alpha = 0, \lim \beta = 0$,
- 高阶无穷小

如果 $\lim_{\alpha = 0}^{\beta} = 0$, 则称 β 为 α 的高阶无穷小, 记作: $\beta = o(\alpha)$;

• 同阶无穷小

如果 $\lim_{\alpha=c\neq 0}^{\beta}$ = $c\neq 0$, 则称 β 为 α 的同阶无穷小, 记作: $\beta=O(\alpha)$;

 $oldsymbol{eta}$: 严格来说数学上 $oldsymbol{eta} = O(lpha)$ 表示 $oldsymbol{eta}$ 有界,同阶记为 $oldsymbol{eta} symbol{lpha} pprox oldsymbol{lpha}$ 。

等价无穷小

如果 $\lim_{\alpha = 1}^{\beta} = 1$, 则称 β 为 α 的等价无穷小, 记作: $\beta \sim \alpha$;

K 阶无穷小

如果 $\lim_{\alpha^k} \beta = c \neq 0$, 则称 β 为 α 的 k 阶无穷小。

例如: $\exists x \to 0$ 时, $1 - \cos x \neq x$ 的高阶无穷小,

是 x^2 的同阶无穷小,也是 x 的二阶无穷小,

 $1-\cos x$ 还是 $\frac{1}{2}x^2$ 的等价无穷小。

【例题10】证明: 当 $x \to 0$ 时, $\sqrt{1+x} - \sqrt{1-x} \sim x$ 。

证明: 即证:
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} = 1$$
,

$$\overline{\prod} \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{(1+x) - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})} = 1, \quad \text{iff} \quad \text{iff}$$

【例题11】 当 $x \to 0$ 时,确定 $\tan x - \sin x$ 是 x 的几阶无穷小?

解: 由于
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x\to 0} \frac{\tan x \cdot (1 - \cos x)}{x^3} = \frac{1}{2}$$

所以 $\tan x - \sin x$ 是 x 的三阶无穷小。

2. 无穷小的主部

设
$$\lim \beta = 0$$
, 若 $\exists \alpha$, $\lim \alpha = 0$, 使得 $\lim \frac{\beta - \alpha}{\alpha} = 0$,

或 $\beta-\alpha=o(\alpha)$, 则称 α 为 β 的主部, 此时, $\beta=\alpha+o(\alpha)$,

注意:此时 $\beta \sim \alpha$

【例题12】当 $x\to 0^+$ 时,确定无穷小 $\sqrt{x^2+x}$ 的主部。

解: 当 $x \rightarrow 0^+$ 时, $x+x^2 \sim x$, 所以, $\sqrt{x^2+x} \sim \sqrt{x}$,

因此,无穷小 $\sqrt{x^2+x}$ 的主部是 \sqrt{x} 。

2. 等价无穷小的代换

定理1: 设 $\alpha,\alpha_1,\beta,\beta_1$ 均为无穷小, $\alpha \sim \alpha_1,\beta \sim \beta_1$

且
$$\lim \frac{\beta_1}{\alpha_1}$$
 存在,则 $\lim \frac{\beta}{\alpha} = \lim \frac{\beta_1}{\alpha_1}$ 。

证明:
$$\lim_{\alpha} \frac{\beta}{\beta_1} \cdot \frac{\beta_1}{\alpha_1} \cdot \frac{\alpha_1}{\alpha} = \lim_{\alpha} \frac{\beta_1}{\alpha_1}$$
.

定理2: 设 α , β 为无穷小,且 $\lim_{\alpha \to 0} \beta = 0$,则 $\alpha + \beta \sim \alpha$,

即
$$\alpha + o(\alpha) \sim \alpha$$
。

3. 常用的等价无穷小

设
$$x \rightarrow 0$$
 时,

 $\sin x \sim x$, $\arcsin x \sim x$, $\tan x \sim x$, $\arctan x \sim x$,

$$1-\cos x \sim \frac{1}{2}x^2, \sqrt[n]{1+x}-1 \sim \frac{1}{n}x, (1+x)^{\mu}-1 \sim \mu x,$$

$$\ln(1+x) \sim x$$
, $e^x - 1 \sim x$, $a^x - 1 \sim x \ln a$.

如果
$$x \rightarrow x_0$$
 可令 $t = x - x_0 \rightarrow 0$ 。

【例题13】求极限
$$\lim_{x\to 0} \frac{\ln(1+2x)}{\sin 3x}$$
。

解:
$$\lim_{x\to 0} \frac{\ln(1+2x)}{\sin 3x} = \lim_{x\to 0} \frac{2x}{3x} = \frac{2}{3}$$
.

【例题14】求极限
$$\lim_{x\to 0} \frac{1-\cos x}{(e^{-x}-1)(\sqrt{1+\tan x}-1)}$$
。

解: 原式 =
$$\lim_{x\to 0} \frac{\frac{1}{2}x^2}{(-x)\cdot\frac{1}{2}\cdot\tan x} = -\lim_{x\to 0} \frac{x}{\tan x} = -1$$
。

【例题15】求极限 $\lim_{x\to 0} \frac{\sin x + \cos x - 1}{2^x - 1 + x^2}$ 。

解: 当
$$x \rightarrow 0$$
 时,

$$\sin x \sim x, 1 - \cos x \sim \frac{1}{2}x^2, \sin x + \cos x - 1 \sim x$$

$$2^{x}-1\sim x\ln 2, 2^{x}-1+x^{2}\sim x\ln 2,$$

原式 =
$$\lim_{x\to 0} \frac{x}{x \ln 2} = \frac{1}{\ln 2}$$
。

【例题16】设极限
$$\lim_{x\to 0} \frac{1+f(x)}{x^2} = \frac{1}{3}$$
,求极限 $\lim_{x\to 0} \frac{\tan x + \sin x \cdot f(x)}{x^3}$ 。

问题:
$$\lim_{x\to 0} \frac{\tan x + \sin x \cdot f(x)}{x^3} = \lim_{x\to 0} \frac{1+f(x)}{x^2}$$
?

$$\lim_{x \to 0} \frac{\tan x + \sin x \cdot f(x)}{x^3} = \lim_{x \to 0} \frac{\tan x - \sin x + \sin x \cdot [1 + f(x)]}{x^3}$$

$$= \lim_{x \to 0} \frac{\tan x \cdot (1 - \cos x)}{x^3} + \lim_{x \to 0} \frac{\sin x \cdot [1 + f(x)]}{x^3} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

第二章 极限与连续

本次课程内容小结

下次课程内容预告

第二章 极限与连续

