Know Your data & Build Predictive Modeling

IBM
CODE

Meshael AlMuhanna, Unified Governance & Integration Technical Specialist.

Hissah AlMuneef, Cloud Developer Advocate

Meaad AlRshoud, Cloud Developer Advocate

Agenda:

- IBM's Al ladder.

- Demonstration of data quality and ETL tools.

- Watson Studio overview.

- Predictive model use case.

The Al Ladder

IBM's Steps to Successful Al Journey

IBM platforms deliver the capabilities our clients need

<u>Collect</u> Hybrid Data Management	Organize Unified Governance & Integration	Analyze Data Science & Business Analytics
	(gr. CO	200
 Collect all types of data, structured and unstructured Includes all open sources of data Leverages a single platform with a common application layer Write once and deploy anywhere 	 Satisfy all matters of finding, cataloging and masking data Integrates fluid data sets Delivers built-in compliance Leverages advanced machine learning capabilities 	 Delivers descriptive, prescriptive and predictive insights across all types of data Empowers all your teams and their unique use cases Enables advanced analytics and data science methods
Db2 & Db2 Warehouse Offerings:	Information Server Offerings:	SPSS & DSX Offerings: Cognos & Watson Analytics Watson Explorer Planning Analytics

User & application independence across on premise, private cloud, and public cloud

Understand the Quality of Data Sources

- Data Quality Score: estimate the proportion of reliable data values in the given dataset.
- Run Quality Scanner to calculate quality score
- Declare the type of problem to scan and how many passes over the data
- Findings will be all aggregated
- Score will be calculated

- Missing Values
 - Check missing values where Null values are not expected

- Uniqueness Violation
 - Check duplicate values

- Invalid Format
 - Checks for values
- Inconsistency Detection
 - Checks for values have different use of case

- Suspect Outlier
 - Checks for values that seem not to be of the same domain as other

- Violation of Correlation
 - Finds correlation between columns

- Data Rule Violation
 - Runs analysis against defined data rules

Cust ID	Name	Age	Phone	Gender
62413	Lucy V Adler	32	334-555-6633	F
62414	Cory J Gardner	25	903-222-1255	F
62414	Mary H Jacques	18	777-156-9836	F
62415	Pdsaojfsadpoifj	46	xxxx	М
62416	Shaun Q Dunda	156	904-555-2940	М
62417	Carol T Schwartz	22	804-555-3164	F
62418	HARRIS LAURENT	36	785-555-5835	

Cust ID	Name	Age	Phone	Gender
62413	Lucy V Adler	32	334-555-6633	F
62414	Cory J Gardner	25	903-222-1255	F
62414	Mary H Jacques	18	777-156-9836	F
62415	Pdsaojfsadpoifj	46	xxxx	М
62416	Shaun Q Dunda	156	904-555-2940	М
62417	Carol T Schwartz	22	804-555-3164	F
62418	HARRIS LAURENT	36	785-555-5835	-

Score: 71% Score: 73% Score: 86% Score: 85% Score: 85%

Cust ID	Name	Age	Phone	Gender
62413	Lucy V Adler	32	334-555-6633	F
62414	Cory J Gardner	25	903-222-1255	F
62414	Mary H Jacques	18	777-156-9836	F
62415	Pdsaojfsadpoifj	46	XXXX	M
62416	Shaun Q Dunda	156	904-555-2940	M
62417	Carol T Schwartz	22	804-555-3164	F
62418	HARRIS LAURENT	36	785-555-5835	

Data Set Score: 80%

Problems have been Identified, What's Next?

Fix Identified Quality Issues

Examples of Rules:

- The Gender field must be populated and must be in the list of accepted values
- The Social Security Number must be numeric and in the format 999-99-9999
- If Date of Birth Exists AND Date of Birth > 1900-01-01 and < TODAY
 - Then Customer Type Equals 'P'
- The Bank Account Branch ID is valid in the Branch Reference master list

Enforce Quality on data

Fully integrated ETL & Data qualities capabilities

Connectivity

Predict Loan Eligibility
Using SPSS
in Watson Studio

IBM Cloud

Machine Learning

IBM Watson

Watson Studio

Loan Eligibility
Predictive Model

Machine Learning

Concept

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Artificial Intelligence

Netflix

PayPal

NETFLIX

Machine learning is integral to Netflix's video recommendation engine. The company has valued the ROI of these algorithms at £1 billion a year due to their impact on customer retention.

The online payment platform uses machine learning algorithms to combat fraud. By implementing deep learning techniques, PayPal analyses vast quantities of customer data and evaluates risk accordingly.

Machine Learning

Methodology

IBM Code

Watson is Al for Business

With Watson:

Watson Studio

Watson Studio

Predict Loan Eligibility Using SPSS in Watson Studio

Problem Statement

Loans Company wants to automate the loan eligibility process based on customer detail provided while filling online application form.

Data

Not Feature	Features
110t i catal c	i catales

110110	<u> </u>					
Loan_ID String	Gender String	Married String	Dependents String	Education String	Self_Employed String	ApplicantIncome String
LP001002	Male	No	0	Graduate	No	5849
LP001003	Male	Yes	1	Graduate	No	4583
LP001005	Male	Yes	0	Graduate	Yes	3000

Class

CoapplicantIncome Decimal	LoanAmount Decimal	Loan_Amount_Term Decimal	Credit_History Decimal	Property_Area String	Loan_Status String
0	146.412162	360	1	Urban	Υ
1508	128	360	1	Rural	Ν
0	66	360	1	Urban	Υ

Bayes Net

Steps to Solution...

1. Import our Data using Data Asset node.

2. Configures variables type using **Types** node.

3. Split our data for training and testing sets using Partition node.

4. Build a probability model using Bayesian Network algorithm by the **Bayes Net** node.

5. Try other models! Why not!

Predictor Importance (i) TARGET: LOAN_STATUS

INNOVATION AND TECHNOLOGY FOR GOOD

The issue: Natural disaster preparedness and relief.
How will you answer the call?

Register For The Challenge

Amplify The Call

Get Started

Call for Code

Commit for a CAUSE. Push for CHANGE.

Call for Code Website:

https://developer.ibm.com/callforcode/

Challenge Details:

https://callforcode.org/challenge/

Build secure, resilient, traceable, and transparent supply networks with blockchain.

Use AI and bots to improve real-time communications with natural language processing.

Understand, analyze, and predict health and nutrition needs to improve services with data science.

Improve logistics
based on traffic and
weather activity to
reduce the number of
people affected.

Collect and analyze device sensor data to take corrective or preventative action automatically.

Use machine learning, deep learning, and visual recognition to improve critical processes.

Resources

Learn – develop – connect

IBM Code (developer.ibm.com/code)

IBM Developer Works (ibm.com/developerworks)

GitHub (github.com/DevExCodeHub)

Learning Lab - Coursera - Udacity - more