Blind (Uninformed) Search

(Where we systematically explore alternatives)

R&N: Chap. 3, Sect. 3.3-5

Simple Problem-Solving-Agent Agent Algorithm

- 1. $s_0 \leftarrow \text{sense/read initial state}$
- 2. GOAL? ← select/read goal test
- 3. Succ ← read successor function
- 4. solution \leftarrow search(s_0 , GOAL?, Succ)
- 5. perform(solution)

Search Tree

Note that some states may be visited multiple times

Search Nodes and States

Search Nodes and States

Data Structure of a Node

Depth of a node N = length of path from root to N

(depth of the root = 0)

Node expansion

The expansion of a node N of the search tree consists of:

- Evaluating the successor function on STATE(N)
- 2) Generating a child of N for each state returned by the function

node generation ≠ node expansion

	8	2
3	4	7
5	1	6

8	4	2	
3		7	
5	1	6	

8		2
ഗ	4	7
5	1	6

Fringe of Search Tree

 The fringe is the set of all search nodes that haven't been expanded yet

Search Strategy

- The fringe is the set of all search nodes that haven't been expanded yet
- The fringe is implemented as a priority queue FRINGE
 - INSERT(node,FRINGE)
 - REMOVE(FRINGE)
- The ordering of the nodes in FRINGE defines the search strategy

Search Algorithm #1

SEARCH#1

- 1. If GOAL?(initial-state) then return initial-state
- 2. INSERT(initial-node, FRINGE)
- 3. Repeat:
 - a. If empty(FRINGE) then return failure
 - b. $N \leftarrow REMOVE(FRINGE)$

Expansion of N

- c. $s \leftarrow STATE(N)$
- d. For every state s' in SUCCESSORS(s)
 - i. Create a new node N' as a child of N
 - ii. If GOAL?(s') then return path or goal state
 - iii. INSERT(N',FRINGE)

Performance Measures

Completeness

A search algorithm is complete if it finds a solution whenever one exists

[What about the case when no solution exists?]

Optimality

A search algorithm is optimal if it returns a minimum-cost path whenever a solution exists

Complexity

It measures the time and amount of memory required by the algorithm

Blind vs. Heuristic Strategies

- Blind (or un-informed) strategies do not exploit state descriptions to order FRINGE. They only exploit the positions of the nodes in the search tree
- Heuristic (or informed) strategies exploit state descriptions to order FRINGE (the most "promising" nodes are placed at the beginning of FRINGE)

Example

For a blind strategy, N_1 and N_2 are just two nodes (at some position in the search tree)

1	2	3	
4	5		STATE
7	8	6	N_2

1	2	3
4	5	6
7	8	

Goal state

Example

For a heuristic strategy counting the number of misplaced tiles, N_2 is more promising than N_1

1	2	3
4	5	6
7	8	

Goal state

Remark

- Some search problems, such as the (n²-1)puzzle, are NP-hard
- One can't expect to solve all instances of such problems in less than exponential time (in n)
- One may still strive to solve each instance as efficiently as possible
 - → This is the purpose of the search strategy

Blind Strategies

- Breadth-first
 - Bidirectional
- Depth-first
 - · Depth-limited
 - Iterative deepening

• Uniform-Cost (variant of breadth-first) $= c(action) \ge \epsilon > 0$

Arc cost = 1

New nodes are inserted at the end of FRINGE

FRINGE = (2,3)

New nodes are inserted at the end of FRINGE

FRINGE = (3, 4, 5)

New nodes are inserted at the end of FRINGE

FRINGE = (4, 5, 6, 7)

Important Parameters

- 1) Maximum number of successors of any state
 - > branching factor b of the search tree
- 2) Minimal length (≠ cost) of a path between the initial and a goal state
 - → depth d of the shallowest goal node in the search tree

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete? Not complete?
 - Optimal? Not optimal?

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:???

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:

$$1 + b + b^2 + ... + b^d = ???$$

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:

$$1 + b + b^2 + ... + b^d = (b^{d+1}-1)/(b-1) = O(b^d)$$

 \rightarrow Time and space complexity is $O(b^d)$

Big O Notation

g(n) = O(f(n)) if there exist two positive constants a and N such that:

for all
$$n > N$$
: $g(n) \le a \times f(n)$

Time and Memory Requirements

d	# Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	~106	1 sec	100 Mb
8	~108	100 sec	10 Gbytes
10	~1010	2.8 hours	1 Tbyte
12	~1012	11.6 days	100 Tbytes
14	~1014	3.2 years	10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Time and Memory Requirements

d	# Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	~106	1 sec	100 Mb
8	~108	100 sec	10 Gbytes
10	~1010	2.8 hours	1 Tbyte
12	~1012	11.6 days	100 Tbytes
14	~1014	3.2 years	10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Remark

If a problem has no solution, breadth-first may run for ever (if the state space is infinite or states can be revisited arbitrary many times)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity is $O(b^{d/2}) \ll O(b^d)$ if both trees have the same branching factor b

Question: What happens if the branching factor is different in each direction?

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete?
 - Optimal?

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete only for finite search tree
 - Not optimal
- Number of nodes generated (worst case): $1 + b + b^2 + ... + b^m = O(b^m)$
- Time complexity is O(b^m)
- Space complexity is O(bm) [or O(m)]

[Reminder: Breadth-first requires O(bd) time and space]

Depth-Limited Search

- Depth-first with depth cutoff k (depth at which nodes are not expanded)
- Three possible outcomes:
 - Solution
 - Failure (no solution)
 - Cutoff (no solution within cutoff)

Iterative Deepening Search

Provides the best of both breadth-first and depth-first search

```
Main idea: Totally horrifying!
```

```
IDS
For k = 0, 1, 2, ... do:
Perform depth-first search with depth cutoff k
```

(i.e., only generate nodes with depth $\leq k$)

Iterative Deepening

Iterative Deepening

Iterative Deepening

Performance

- Iterative deepening search is:
 - Complete
 - Optimal if step cost =1
- Time complexity is: $(d+1)(1) + db + (d-1)b^2 + ... + (1) b^d = O(b^d)$
- Space complexity is: O(bd) or O(d)

Calculation

$$db + (d-1)b^{2} + ... + (1) b^{d}$$

$$= b^{d} + 2b^{d-1} + 3b^{d-2} + ... + db$$

$$= (1 + 2b^{-1} + 3b^{-2} + ... + db^{-d}) \times b^{d}$$

$$\leq (\sum_{i=1,...,\infty} ib^{(1-i)}) \times b^{d} = b^{d} (b/(b-1))^{2}$$

Number of Generated Nodes (Breadth-First & Iterative Deepening)

$$d = 5$$
 and $b = 2$

BF	ID
1	$1 \times 6 = 6$
2	2 × 5 = 10
4	4 × 4 = 16
8	8 × 3 = 24
16	16 × 2 = 32
32	32 × 1 = 32
63	120

120/63 ~ 2

Number of Generated Nodes (Breadth-First & Iterative Deepening)

d = 5 and b = 10

BF	ID
1	6
10	50
100	400
1,000	3,000
10,000	20,000
100,000	100,000
111,111	123,456

123,456/111,111 ~ 1.111

Comparison of Strategies

- Breadth-first is complete and optimal, but has high space complexity
- Depth-first is space efficient, but is neither complete, nor optimal
- Iterative deepening is complete and optimal, with the same space complexity as depth-first and almost the same time complexity as breadth-first

Quiz: Would IDS + bi-directional search be a good combination?

Revisited States

- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated nodes in VISITED
 - If the state of a new node is in VISITED, then discard the node

- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated nodes in VISITED
 - If the state of a new node is in VISITED, then discard the node

Implemented as hash-table or as explicit data structure with flags

Depth-first search:

Solution 1:

- Store all states associated with nodes in current path in VISITED
- If the state of a new node is in VISITED, then discard the node

 \rightarrow ??

Depth-first search:

Solution 1:

- Store all states associated with nodes in current path in VISITED
- If the state of a new node is in VISITED, then discard the node
- → Only avoids loops

Solution 2:

- Store all generated states in VISITED
- If the state of a new node is in VISITED, then discard the node
- → Same space complexity as breadth-first!

Uniform-Cost Search

- Each arc has some cost $c \ge \varepsilon > 0$
- The cost of the path to each node N is

$$g(N) = \Sigma$$
 costs of arcs

- The goal is to generate a solution path of minimal cost
- The nodes N in the queue FRINGE are sorted in increasing g(N)

Need to modify search algorithm

Search Algorithm #2

SEARCH#2

- 1. INSERT(initial-node,FRINGE)
- 2. Repeat:
 - a. If empty(FRINGE) then return failure
 - b. $N \leftarrow REMOVE(FRINGE)$
 - c. $s \leftarrow STATE(N)$
- b d. If GOAL?(s) then return path or goal state
 - e. For every state s' in SUCCESSORS(s)
 - i. Create a node N' as a successor of N
 - ii. INSERT(N',FRINGE)

The goal test is applied

expanded, not when it is

generated.

to a node when this node is

Avoiding Revisited States in Uniform-Cost Search

For any state 5, when the first node N such that STATE(N) = 5 is expanded, the path to N is the best path from the initial state to 5

So:

- When a node is expanded, store its state into CLOSED
- When a new node N is generated:
 - If STATE(N) is in CLOSED, discard N
 - If there exits a node N' in the fringe such that STATE(N') = STATE(N), discard the node N or N' with the highest-cost path