

Computeranimation

A Practical Introduction

Introduction Computer Graphics Motivation Organization

Matteo Colaianni

Member of the scientific staff at Computer Graphics Group Erlangen

Languages:

- English
- Italian
- German
- Espero aprender um pouco de Portugês

Topics:

- Virtual Cloth Simulation/Modeling/Fitting
- Physically Based Animation
- Statistical Shape Models

Contact Information: matteo.colaianni@fau.de

Matteo Colaianni

Member of the scientific staff at Computer Graphics Group Erlangen

Erlangen: 105.000 habitants

Nuremberg: 495.000 habitants

Nuremberg

This is where I live

Kaiserburg

Christkindlesmarkt

Dokumentationszentrum

Nuremberg

You may suppose what we have in Bavaria:

Erlangen

This is where I spend most of my time (working)

Department CS

Schloßgarten Erlangen

Erlangen

Guess it! There is also beer in Erlangen

Virtual Cloth Simulation

Simulate Garment's inner Structure

Resolve Collision Cases

Virtual Cloth Modelling

Manipulate Garments Shape During Simulation

Virtual Cloth Fitting

Morph Garment Cut Lines with Scan Data

Virtual Apparel

Prototyping/Analysis

Cut and Flattening

Physically Based Animation (1)

Project Motion Data into A Statistical Space For Deformation Analysis

Physically Based Animation (2)

This Way we get Deformation Information for Motion

Storefactory (1)

Storefactory (2)

Introduction

Computer Graphics

Motivation

Organization

Overview

- Computer Graphics Group Erlangen (Department of Computer Science FAU Erlangen-Nürnberg)
- Mainly divided into three research/teaching fields:

Rendering

Geometry Processing

Scientific Visualization

Special Fields of Research

- Ongoing Research on Mixed Reality

Special Fields of Research

- Ongoing Research on Mixed Reality

Special Fields of Research

Kinect Fusion at Scale

Special Fields of Research

- Shading based scan refinement

Original

Fusion

Refined (Close-Up)

Refined Result

Introduction
Computer Graphics
Motivation
Organization

Motivation

Rendering creates stunning effects

- Photorealistic Synthesis of Images
- Photometric simulation of different Materials
- Great Effects in Real Time

...but: "Animation is where things come to life!"

[https://www.youtube.com/watch?v=K16xFw5SDFk]

Motivation

Animation can be classified

	Kinematics	Dynamics
Rigid Bodies	Movement along Paths	Accelerated Objects
Non Rigid	Skeletal Deformation	Cloth Simulation

Rigid Movement In Video Games

[Official Star Citzien Dogfight Launch Trailer]

Non-rigid Deformation

[https://www.youtube.com/watch?v=BolgBSXjxeE]

Particle Based Effects in Movies

[Unreal Engine 4 – Elemental Demo]

Introduction
Computer Graphics
Motivation
Organization

Organization

In this course you will learn

- An understanding of how different types of animation work
- Basic knowledge in creating Animation
- Basic skills in Programming Animation Techniques in C/C++ and GLSL

Requirements

- Basics in Linear Math
- Solid Programming Skills (preferable in C/C++)

Optional

- Basic Knowledge in Blender
- Basic OpenGL and GLSL (Shading Language)

Organization

Lectures

- 3 Times / Week (1,5 h each)
- Impart knowledge about the basic theoretical Concepts
- Theory and application Part

Dates

- 1st Week: May 29th; May 31st; June 2nd → every second day

- 2nd Week: June 5th; June 6th; June 7th → every day from Mon to Wed

Exercises

- 1st Week: Lecture 1, 2 and 3 are coupled to Exercises/Applications each
- 2nd Week: Lecture 4, 5 and 6 have one (bigger) Exercise/Application

Organization

Topics

- Rigid Transformation
- Animation
- Collision
- Dynamic
- Mass-Spring Simulation
- Rigging and Skeletal Animation

I want to know you now!!!

