

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/06

PHYSICS Paper 6 (Options (A2))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Option A – Astrophysics and Cosmology

1	(a)	large mass of gas (allow H and He)giving off e.m. radiation (allow light)held together by gravitational forces, or other good physic		B1	[3]
	(b)		group of (many) starsany further detail e.g. some dimension, shape, etc		[2]
	(c)		rocky or gaseous objectorbiting a starseen by reflected light	B1	[3]
2			measure wavelength of light received from galaxy measure wavelength of light in laboratory/on Earth (fractional) change in wavelength related to speed		
			or Doppler shift gives speed	B1	[3]
3	(a)		$v = H_0 d$ $H_0 = (1.8 \times 10^4)/430$ $= 42 \text{ km s}^{-1} \text{ Mpc}^{-1}$	C1 A1	[2]
	(b)	(i)	1 pc = 3.1×10^{16} m		
			= $(3.1 \times 10^{22})/(42 \times 10^3)$ = 7.4×10^{17} s	C1 A1	
		(ii)	Earth-Moon distance = $3.8 \times 10^5 \text{ km}$ (allow $2 - 7 \times 10^5 \text{ km}$) speed = $(3.8 \times 10^8)/(7.4 \times 10^{17})$ = $5.1 \times 10^{-10} \text{ m s}^{-1}$	C1 Δ1	[5]
	(c)		This is local gravitational attraction On wider scale, galaxies are receding	B1	[2]
O	ption	F – The	Physics of Fluids		
4	(a)	(i)	equal	B1	
		(ii)	density of ice is less	B1	[2]
	(b)		mass of ice becomes equal mass of water (allow weight) melted ice fills space of water displaced by ice	M1	[0]
_			so level does not change	A1	[3]
5	(a)		e.g. streamline, incompressible non-viscous, horizontal flow(1 each, max 3)	B3	[3]
	(b)		air close to train moves at the speed of the train/air dragged alouby train	B1 B1 M1	[4]
6	(a)	(i)	random/irregular movement (of fluid)any other detail, e.g. eddies, pattern always changing		

Page 3			Mark Scheme	Syllabus	Paper
			A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06
		(ii)	kinetic energy given to air to cause turbulence or work rovercome drag forceenergy comes from car so fuel consumption increases	M1	[4]
	(b)	(i)	drag coefficient/drag constant	B1	
		(ii)	power = Fv and hence		
		(iii)	120 x 10 ³ – $\frac{1}{2}$ x 0.3 x 1.2 x 2.5 x v^3		[4]
Or	otion	M – Me	edical Physics		
7	(a)		electrons fired at metal target electrons decelerated giving off (e.m.) radiation	B1 B1 B1	[5]
	(b)	(i)	increase cathode/tube current	B1	
		(ii)	increase anode voltage	B1	
		(iii)	use aluminium filter (allow metal filter)	B1	[3]
	(c)		$I = I_0 e^{-\mu x}$	C1	
			In 2 = 0.40 μ μ = 1.733 cm ⁻¹ or = In2/0.4		
			x = 1.33 cm	A1	[3]
8	(a)		produces greater intensity (at focus) limits region of cell damage allows for accurate guidance	B2	[2]
	(b)		laser beam cauterises tissue can produce coagulation vaporisation of water in cells		[2]
9	(a)		ability to detect (small) changes in loudness/intensity depends on $I/\Delta I$	B1	[2]
	(b)		$\Delta I.L. = 10 \text{ Ig}(\Delta I / I) \text{ or } I.L. = 10 \text{Ig}(III_0)$ $3.0 = 10 \text{ Ig}(I_2 / (4.5 \times 10^{-5})$ $I_2 = 9.0 \times 10^{-5} \text{ Wm}^{-2}, \Delta I = 4.5 \times 10^{-5} \text{ W m}^{-2}$	C1	[3]

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Option P – Environmental Physics

10	10 (a)			decay of organic matter		[2]
	(b)			of fossil fuels can be extracted (economically)		[2]
11	(a)		bombarded by neutron produces two fragments of	n/U-235, etc of about equal mass	B1 B1	[4]
	(b)	(i)	slows down neutrons		B1	
		(ii)	absorbs neutrons		B1	
		(iii)		reactor core/prevents radiation leakage		[4]
12	(a)		= (1 – 313/813)		C1	[3]
	(b)	(i)	e.g. heat loss in exhaust of	gases/cooling towers	B1	
		(ii)	• .	boiler, <u>either</u> increase T_H or decrease T_L turbine, CHP system(1 each, max 2)	B2	[3]
	(c)		e.g. thermal, visual, etc	(1 each, max 2)	.B2	[2]
Opt	tion T	– Tele	ecommunications			
13	(a)			(-1 each error or omission)bers(-1 each error or omission)		[4]
	(b)		· ·	positions		[2]
	(c)		makes smaller 'step heigh sample more frequently	arger number of bitst'	A1 M1	[4]
14	(a) central conductor with outer screeninginsulation between inner and outer and also as cladding			B1	[2]	
	e.g. greater bandwidth immune to e.m. interference radiates less e.m. power less cross-talk lower noise levels					
15			more than 100 m 1000 less than 10 m line	dwide) km of sight <u>or</u> worldwide using satellites 1 each error or omission)	B5	[5]