CACHE COHERENCE PROTOCOLS ANALYZER

A tool for analyzing how different Snooping based Cache Coherence Protocols perform under varying workloads

15-618 SPRING 2017 FINAL PROJECT

KSHITIZ DANGE (KDANGE)

YASH TIBREWAL (YTIBREWA)

WHAT DID WE MAKE?

- Cache Simulator
 - Generate memory traces
 - Analyze the memory traces
 - Multiple snooping based cache protocol
 - Mimic real world system behavior

WHAT ARE WE TRYING TO SOLVE?

- Have a problem to solve
 - Need to design a system to solve it
 - What kind of cache coherence protocol can we use?
 - Our tool will help you decide!

SYSTEM DESIGN

PROTOCOLS

- Write Invalidate Protocols
 - MSI
 - MESI
 - MOSI
 - MOESI
- Write-Update Protocol
 - Dragon
- Hybrid Protocol
 - Competitive Snooping (!)

HOW DO WE COMPARE THE PROTOCOLS?

- Number of Bus Transactions
- Number of Memory Requests
- Number of Memory Write-Backs
- Number of Cache to Cache Transfers

HOW DO WE GENERATE THE MEMORY TRACE?

- Intel Pin-tool
 - Memory trace of a program
 - Problem?
 - Relevance of functions
 - HUGE!
 - Solution
 - Dummy functions

0 W 0x7ffe852793bc	w wx/liccscesia4	O M OXTOO	ש K א שוע א ש
0 R 0x7ffe852793bc	0 R 0x6021b8	1 R 0x100	0 W 0x1024
0 R 0x7ffe852793b0	0 R 0x7ffcc3ce3fa4	2 R 0x100	1 R 0x1088
0 R 0x7ffe852793a8	0 R 0x7ffcc3ce3fa4	3 R 0x100	1 W 0x1088
0 R 0x7ffe852793bc	0 R 0x7ffcc3ce3fa4	4 R 0x100	2 R 0x1152
0 R 0x7ffe85279398	0 R 0x7ffcc3ce3f98	5 R 0x100	2 W 0x1152
0 W 0x7ffe852792e8	0 W 0x7ffcc3ce3f78	6 R 0x100	3 R 0x1216
0 R 0×601040	0 R 0x602058	7 R 0x100	3 W 0x1216
0 W 0x7ffe852792e0	0 W 0x7ffcc3ce3f70	8 R 0x100	4 R 0x1280
0 R 0×601008	0 R 0×602008	9 R 0x100	4 W 0x1280
0 W 0x7ffe852792d8	0 W 0x7ffcc3ce3f68	10 R 0x100	5 R 0x1344
0 R 0×601010	0 R 0×602010	11 R 0x100	5 W 0x1344
0 W 0x7ffe852792a0	0 W 0x7ffcc3ce3f30	12 R 0x100	6 R 0x1408
0 W 0x7ffe852792a8	0 W 0x7ffcc3ce3f38	13 R 0x100	6 W 0x1408
0 W 0x7ffe852792b0	0 W 0x7ffcc3ce3f40	14 R 0x100	7 R 0x1472
0 W 0x7ffe852792b8	0 W 0x7ffcc3ce3f48	15 R 0x100	7 W 0x1472
0 W 0x7ffe852792c0	0 W 0x7ffcc3ce3f50	0 W 0x100	8 R 0x1536
0 W 0x7ffe852792c8	0 W 0x7ffcc3ce3f58	1 R 0x100	8 W 0x1536
0 W 0x7ffe852792d0	0 W 0x7ffcc3ce3f60	2 R 0x100	9 R 0x1600
0 R 0x7ffe852792e0	0 R 0x7ffcc3ce3f70	3 R 0x100	9 W 0x1600
0 R 0x7ffe852792d8	0 R 0x7ffcc3ce3f68	4 R 0x100	10 R 0x1664
0 W 0x7ffe85279258	0 W 0x7ffcc3ce3ee8	5 R 0x100	10 W 0x1664
0 W 0x7ffe85279250	0 W 0x7ffcc3ce3ee0	6 R 0x100	11 R 0x1728
0 W 0x7ffe85279248	0 W 0x7ffcc3ce3ed8	7 R 0x100	11 W 0x1728
0 W 0x7ffe85279240	0 W 0x7ffcc3ce3ed0	8 R 0x100	12 R 0x1792
0 R 0x7fd6033c6270	0 R 0x7f37b3074270	9 R 0x100	12 W 0x1792
0 R 0x7fd6033c6278	0 R 0x7f37b3074278	10 R 0x100	13 R 0x1856
0 R 0x600eb0	0 R 0x601eb0	11 R 0x100	13 W 0x1856
0 R 0x7fd6033c6300	0 R 0x7f37b3074300	12 R 0x100	14 R 0x1920
0 R 0x600ec0	0 R 0x601ec0	13 R 0x100	14 W 0x1920
0 R 0x600f30	0 R 0x601f30	14 R 0x100	15 R 0x1984
0 R 0×400624	0 R 0x4007f4	15 R 0x100	15 W 0x1984
0 R 0x7fd6033c6208	0 R 0x7f37b3074208	0 W 0x100	0 R 0x2048
0 W 0x7ffe85279238	0 W 0x7ffcc3ce3ec8	1 R 0x100	0 W 0x2048
0 R 0×400618	0 R 0x4007e8	2 R 0x100	1 R 0x2112
0 R 0×400395	0 R 0x4003cd	3 R 0x100	1 W 0x2112
0 R 0x7fd6033c63d0	0 R 0x7f37b30743d0	4 R 0x100	2 R 0x2176
0 R 0x600f90	0 R 0x601f90	5 R 0x100	2 W 0x2176
0 R 0x40053c	0 R 0×400680	6 R 0x100	3 R 0x2240
0 R 0x7fd6033c64e8	0 R 0x7f37b30744e8	7 R 0x100	3 W 0x2240
0 R 0x7fd5eee5b680	0 R 0x7f379f01a698	8 R 0x100	4 R 0x2304
0 R 0x7fd5eea45758	0 R 0x7f379e6e6758	9 R 0x100	4 W 0x2304
	0 D 0.75270~6~670~	40 D 0-400	E D 0-2200

WHAT DID THE TOOL HELP US ANALYZE?

BENEFIT OF 'E' STATE

BUS Tx vs MEM Reqs vs MEM WriteBacks (MSI v MESI)

BUS Tx

MEM Reqs

WriteBacks

BENEFIT OF 'O' STATE

BUS Tx, MEM Reqs vs MEM WriteBacks (MSI v MOSI)

WriteBacks

WRITE INVALIDATE vs WRITE UPDATE

BUS Tx, MEM WB and CACHE Tran (MOESI v Dragon)

BUS Tx

MEM WB

COMPETITIVE SNOOPING (!)

BFS - top_down - 100x100 grid

WHICH ONE WOULD YOU CHOOSE?

THANK YOU!

Kshitiz Dange and Yash Tibrewal

HOW CAN YOU CONFIGURE OUR TOOL?

- You can:
 - Specify the Number of Cores
 - Specify the cache size
 - Specify the associativity of cache
 - Specify the program trace to analyze
 - Specify the snooping protocol to use