Fetal Health Classification

baseline

Import libraries to be used

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import cm
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import GridSearchCV, StratifiedKFold
```

Exploratory Data Analysis and Pre-Processing

```
In [ ]:
data = pd.read csv('fetal health.csv')
data.info()
data.head()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2126 entries, 0 to 2125
Data columns (total 22 columns):
    Column
                                                           Non-Null Count Dtype
   baseline value
0
                                                           2126 non-null float64
1 accelerations
                                                           2126 non-null float64
2 fetal movement
                                                           2126 non-null float64
3 uterine_contractions
                                                           2126 non-null float64
 4 light decelerations
                                                           2126 non-null float64
 5 severe decelerations
                                                           2126 non-null float64
 6 prolongued decelerations
                                                           2126 non-null float64
7 abnormal short term variability
                                                           2126 non-null float64
 8 mean value of short term variability
                                                           2126 non-null float64
9 percentage of time with abnormal long term variability 2126 non-null float64
10 mean value_of_long_term_variability
                                                           2126 non-null float64
11 histogram_width
                                                           2126 non-null float.64
12 histogram min
                                                           2126 non-null float64
13 histogram_max
                                                           2126 non-null float64
                                                           2126 non-null float64
14 histogram number_of_peaks
15 histogram_number_of_zeroes
                                                           2126 non-null float64
16 histogram mode
                                                           2126 non-null
                                                                          float64
                                                           2126 non-null
17 histogram mean
                                                                          float64
18 histogram_median
                                                           2126 non-null
                                                                          float64
19 histogram_variance
                                                           2126 non-null float64
                                                           2126 non-null float64
20 histogram tendency
21 fetal health
                                                           2126 non-null float64
dtypes: float64(22)
memory usage: 365.5 KB
Out[]:
```

	value	accelerations	fetal_movement	uterine_contractions	light_decelerations	severe_decelerations	prolongued_deceler
0	120.0	0.000	0.0	0.000	0.000	0.0	
4	122.0	0.006	0.0	0 006	0.003	0.0	

•	132.0	0.000	0.0	0.000	0.003	U.U	
2	baseline Value	accelerations	fetal_movement	uterine_contractions	light_decelerations	severe_decelerations	prolongued_deceler
3	134.0	0.003	0.0	800.0	0.003	0.0	_
4	132.0	0.007	0.0	0.008	0.000	0.0	
4							Þ

Note that there are no null data values and all column Dtypes are floats. There are 21 columns which translates to 21 features to analyze. Let's now remove duplicate data entries.

```
In [ ]:
```

```
unduplicated_data = data.copy()
unduplicated_data.drop_duplicates(inplace=True)
print("Removed " + str(data.shape[0] - unduplicated_data.shape[0]) + " duplicates")
data = unduplicated_data
```

Removed 13 duplicates

```
In [ ]:
```

```
print("Total: " + str(data.shape[0]) + " samples")
```

Total: 2113 samples

In []:

```
data.describe().T
```

	count	mean	std	min	25%	50%	75%	m
baseline value	2113.0	133.304780	9.837451	106.0	126.000	133.000	140.000	160.0
accelerations	2113.0	0.003188	0.003871	0.0	0.000	0.002	0.006	0.0
fetal_movement	2113.0	0.009517	0.046804	0.0	0.000	0.000	0.003	0.4
uterine_contractions	2113.0	0.004387	0.002941	0.0	0.002	0.005	0.007	0.0
light_decelerations	2113.0	0.001901	0.002966	0.0	0.000	0.000	0.003	0.0
severe_decelerations	2113.0	0.00003	0.000057	0.0	0.000	0.000	0.000	0.0
prolongued_decelerations	2113.0	0.000159	0.000592	0.0	0.000	0.000	0.000	0.0
abnormal_short_term_variability	2113.0	46.993848	17.177782	12.0	32.000	49.000	61.000	87.0
mean_value_of_short_term_variability	2113.0	1.335021	0.884368	0.2	0.700	1.200	1.700	7.0
${\bf percentage_of_time_with_abnormal_long_term_variability}$	2113.0	9.795078	18.337073	0.0	0.000	0.000	11.000	91.0
mean_value_of_long_term_variability	2113.0	8.166635	5.632912	0.0	4.600	7.400	10.800	50.7
histogram_width	2113.0	70.535258	39.007706	3.0	37.000	68.000	100.000	180.0
histogram_min	2113.0	93.564600	29.562269	50.0	67.000	93.000	120.000	159.0
histogram_max	2113.0	164.099858	17.945175	122.0	152.000	162.000	174.000	238.0
histogram_number_of_peaks	2113.0	4.077142	2.951664	0.0	2.000	4.000	6.000	18.0
histogram_number_of_zeroes	2113.0	0.325603	0.707771	0.0	0.000	0.000	0.000	10.0
histogram_mode	2113.0	137.454330	16.402026	60.0	129.000	139.000	148.000	187.0
histogram_mean	2113.0	134.599621	15.610422	73.0	125.000	136.000	145.000	182.0
histogram_median	2113.0	138.089446	14.478957	77.0	129.000	139.000	148.000	186.0
histogram_variance	2113.0	18.907241	29.038766	0.0	2.000	7.000	24.000	269.0
histogram_tendency	2113.0	0.318504	0.611075	-1.0	0.000	0.000	1.000	1.0
fetal_health	2113.0	1.303833	0.614279	1.0	1.000	1.000	1.000	3.0
4							18	▶

Visualizing Fetal Health Classification Raw Data

In []:

```
normal = data.loc[data['fetal health'] == 1].shape[0]
suspect = data.loc[data['fetal health'] == 2].shape[0]
pathological = data.loc[data['fetal health'] == 3].shape[0]
total = data.fetal health.shape[0]
print("Total count: " + str(total))
print("Normal count: " + str(normal))
print("Suspect count: " + str(suspect))
print("Pathological count: " + str(pathological))
plt.figure(figsize = (10,5))
pie fetal health = plt.pie([normal, suspect, pathological], labels=["Normal", "Suspect",
"Pathological"], autopct="%1.0f%%")
plt.title("Fetal health count")
plt.figure(figsize = (10,5))
data['fetal_health'].value_counts().plot(figsize=(10, 5), kind="bar")
plt.title("Fetal health count")
plt.xlabel("Fetal health score")
plt.ylabel("Frequency")
plt.show()
```

Total count: 2113 Normal count: 1646 Suspect count: 292 Pathological count: 175

Fetal health count

Note the imbalanced dataset in terms of fetal health scoring, leading to classification inaccuracy. To better observe feature importance and correlation, a confusion matrix will be assembled to observe correlation coefficients, giving us a better idea of what the most important features are.

Feature Analysis and Selection

In []:

Confusion Matrix

In []:

plt.figure(figsize=(20, 20))
correlation_matrix = sns.heatmap(data.corr(), annot=True, cmap="Purples")

- 0.75

In []:

feature_correlation = data.corr()["fetal_health"].sort_values(ascending=False).to_frame()
feature correlation.style.background gradient(cmap=cm.Blues)

Out[]:

fetal_health

fetal_health	1.000000
prolongued_decelerations	0.486752
abnormal_short_term_variability	0.469671
percentage_of_time_with_abnormal_long_term_variability	0.421634
histogram_variance	0.208171
baseline value	0.146077
severe_decelerations	0.132408
fetal_movement	0.088057
histogram_min	0.063529
light_decelerations	0.059651
histogram_number_of_zeroes	-0.016376
histogram_number_of_peaks	-0.022856
histogram_max	-0.046480
histogram_width	-0.069529

mean_value_of_short_term_variability	fetal_haalth
histogram_tendency	-0.135573
uterine_contractions	-0.205117
histogram_median	-0.208334
mean_value_of_long_term_variability	-0.225685
histogram_mean	-0.230243
histogram_mode	-0.253612
accelerations	-0.363947

Note that the row we are focused on is that of "fetal_health", where we can clearly see which features are most correlated with fetal_health. Of the 21 features, the features with highest correlation is "prolongued_decelerations, "abnormal_short_term_variability", and "percentage_of_time_with_abnormal_long_term_variability".

Now that we have our correlation coefficients, let's select the most important features with the KBest algorithm.

In []:

	Features	Scores
0	baseline value	137.833999
1	accelerations	194.618345
2	fetal_movement	11.700712
3	uterine_contractions	93.647474
4	light_decelerations	66.750344
5	severe_decelerations	28.438837
6	prolongued_decelerations	507.304309
7	abnormal_short_term_variability	337.703020
8	mean_value_of_short_term_variability	118.050463
9	$percentage_of_time_with_abnormal_long_term_var$	335.386156
10	mean_value_of_long_term_variability	69.418940
11	histogram_width	54.215605
12	histogram_min	86.468440
13	histogram_max	2.523350
14	histogram_number_of_peaks	11.726828
15	histogram_number_of_zeroes	2.134901
16	histogram_mode	276.382795
17	histogram_mean	298.759569
18	histogram_median	249.699523
19	histogram_variance	150.955827
20	histogram_tendency	44.854186

Eastures Coores

```
In [ ]:
```

```
plt.figure(figsize = (15,10))
plot = sns.barplot(data=feature_scores, x='Scores', y='Features', palette="rocket")
```


Let's now select the features with scores above the 100 threshold as our most important features and the ones that we will train our models on.

```
In [ ]:
```

```
best_features = feature_scores[feature_scores['Scores'] > 100]
best_features
```

Out[]:

	Features	Scores
0	baseline value	137.833999
1	accelerations	194.618345
6	prolongued_decelerations	507.304309
7	abnormal_short_term_variability	337.703020
8	mean_value_of_short_term_variability	118.050463
9	$percentage_of_time_with_abnormal_long_term_var$	335.386156
16	histogram_mode	276.382795
17	histogram_mean	298.759569
18	histogram_median	249.699523
19	histogram_variance	150.955827

In []:

```
best_features_array = list(best_features['Features'])
best_features_array.append('fetal_health')
data = data[best_features_array]
data.head()
```

0	baseline 120.0 value	accelera 6.60\$	prolongued_decelerations	abnormal_short_term_variability	mean_value_of_short_term_variabi0t§	per
1	132.0	0.006	0.0	17.0	2.1	
2	133.0	0.003	0.0	16.0	2.1	
3	134.0	0.003	0.0	16.0	2.4	
4	132.0	0.007	0.0	16.0	2.4	
4						•

Scatter Matrix

Visualizes the relationships between the most important features

```
In [ ]:
```


Dataset split (train/test)

In order to use a model, we must first scale the array of features so that they are in the same range. We will also be using the standard 70/30 train/test split.

```
In [ ]:
```

```
scaler = StandardScaler()
X=data.drop(["fetal_health"], axis=1)
X_df = pd.DataFrame(scaler.fit_transform(X), columns=X.columns)
X_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2113 entries, 0 to 2112
Data columns (total 10 columns):
```

#	Column	Non-Null Count	Dtype
0	baseline value	2113 non-null	float64
1	accelerations	2113 non-null	float64
2	prolongued_decelerations	2113 non-null	float64
3	abnormal_short_term_variability	2113 non-null	float64
4	mean_value_of_short_term_variability	2113 non-null	float64
5	<pre>percentage_of_time_with_abnormal_long_term_variability</pre>	2113 non-null	float64
6	histogram_mode	2113 non-null	float64
7	histogram_mean	2113 non-null	float64
8	histogram_median	2113 non-null	float64
9	histogram_variance	2113 non-null	float64
	63 + 64 (10)		

dtypes: float64(10)
memory usage: 165.2 KB

In []:

X df.head()

Out[]:

	baseline value	accelerations	prolongued_decelerations	abnormal_short_term_variability	mean_value_of_short_term_variability	pe
0	- 1.352782	-0.823776	-0.26964	1.514300	-0.944425	
1	0.132665	0.726444	-0.26964	-1.746497	0.865205	
2	0.030989	-0.048666	-0.26964	-1.804726	0.865205	
3	0.070687	-0.048666	-0.26964	-1.804726	1.204511	
4	0.132665	0.984814	-0.26964	-1.804726	1.204511	
4						Þ

In []:

 $X_df.describe().T$

	count	mean	std	min	25%	50%	75%
baseline value	2113.0	5.880031e- 16	1.000237	- 2.776252	- 0.742724	0.030989	0.680746
accelerations	2113.0	9.678328e- 17	1.000237	0.823776	0.823776	0.307036	0.726444
prolongued_decelerations	2113.0	2.528818e- 15	1.000237	0.269640	0.269640	0.269640	0.269640
abnormal_short_term_variability	2113.0	6.567812e- 17	1.000237	2.037640	0.873069	0.116815	0.815557
maan value of chart term variability	2113.0	- 3 013365 ₀₋	1 000227	-	-	-	Λ <i>4</i> 1270Ω

```
£110.0
                                                                                 1.283731 0.718221
                                                                                                   0.152712
                                                     count
                                                                 mea6
                                                            2.212985e-
                                                                       1.000237
percentage_of_time_with_abnormal_long_term_variability 2113.0
                                                                                                              0.065725
                                                                                 0.534294 0.534294 0.534294
                                                                    15
                                                                                 4.723360 0.515566 0.094259 0.643101
                                    histogram_mode 2113.0 3.792255e- 1.000237
                                                            7.585035e-
                                    histogram_mean 2113.0
                                                                        1.000237
                                                                                                    0.089729
                                                                                 3.946992 0.615095
                                                            9.018920e-
                                  histogram median 2113.0
                                                                        1.000237
                                                                                                    0.062903 0.684642
                                                                                 4.220187 0.627918
                                 histogram_variance 2113.0 3.865026e- 1.000237
                                                                                 0.651258 0.582368 0.410143
                                                                    16
```

```
In [ ]:
```

```
y=data["fetal_health"]
X_train, X_test, y_train, y_test = train_test_split(X_df, y, test_size=0.3, random_state
=42)
print("X_train samples: " + str(X_train.shape[0]) + " with " + str(X_train.shape[1]) + "
features")
print("Y_train samples: " + str(y_train.shape[0]))
print("X_test samples: " + str(X_test.shape[0]) + " with " + str(X_test.shape[1]) + " fe
atures")
print("Y_test samples: " + str(y_test.shape[0]))
```

```
X_train samples: 1479 with 10 features
Y_train samples: 1479
X_test samples: 634 with 10 features
Y_test samples: 634
```

Machine Learning Classification

lr predictions = log_reg.predict(X_test)

print(classification report(y test, lr predictions))

Here we will be using several classifiers to compare accuracy scores - we will be settling and fine-tuning the best classifier after comparing effectiveness.

Logistic Regression

```
In []:
from sklearn.linear_model import LogisticRegression

In []:
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
log_reg_score = log_reg.score(X_test, y_test)
print("Baseline LR Score: " + str(log_reg_score))

Baseline LR Score: 0.8958990536277602

In []:
cv_score_lr = cross_val_score(log_reg, X_train, y_train)
print("Baseline LR CV Score: " + str(cv_score_lr.mean()))

Baseline LR CV Score: 0.8823751717819514
```

	precision	recall	f1-score	support
1.0	0.93	0.97	0.95	497
2.0	0.73	0.58	0.65	90
3.0	0.78	0.77	0.77	47
accuracy			0.90	634
macro avg	0.81	0.77	0.79	634
weighted avg	0.89	0.90	0.89	634

In []:

```
plt.subplots(figsize=(12,8))
confusion_matrix_lr = confusion_matrix(y_test, lr_predictions)
sns.heatmap(confusion_matrix_lr/np.sum(confusion_matrix_lr),annot = True, cmap="Purples")
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4af10abad0>

Random Forest

In []:

```
from sklearn.ensemble import RandomForestClassifier
```

In []:

```
random_forest = RandomForestClassifier()
random_forest.fit(X_train, y_train)
random_forest_score = random_forest.score(X_test, y_test)
print("Baseline Random Forest Score: " + str(random_forest_score))
```

Baseline Random Forest Score: 0.9495268138801262

```
cv_score_rf = cross_val_score(random_forest, X_train, y_train)
print("Baseline RF CV Score: " + str(cv_score_rf.mean()))
```

Baseline RF CV Score: 0.9323797526339899

In []:

```
rf_predictions = random_forest.predict(X_test)
print(classification_report(y_test, rf_predictions))
```

	precision	recall	f1-score	support
1.0 2.0 3.0	0.91	0.99 0.74 0.96	0.97 0.82 0.92	497 90 47
accuracy macro avg weighted avg	0.92	0.90 0.95	0.95 0.90 0.95	634 634 634

In []:

```
plt.subplots(figsize=(12,8))
confusion_matrix_rf = confusion_matrix(y_test, rf_predictions)
sns.heatmap(confusion_matrix_rf/np.sum(confusion_matrix_rf),annot = True, cmap="Purples")
```

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f4ae0b95f90>

K-Nearest Neighbors

In []:

```
from sklearn.neighbors import KNeighborsClassifier
```

```
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
knn_score = knn.score(X_test, y_test)
print("Baseline KNN Score: " + str(knn_score))
```

Baseline KNN Score: 0.9400630914826499

In []:

```
cv_score_knn = cross_val_score(knn, X_train, y_train)
print("Baseline KNN CV Score: " + str(cv_score_knn.mean()))
```

Baseline KNN CV Score: 0.9060215300045809

In []:

```
knn_predictions = knn.predict(X_test)
print(classification_report(y_test, knn_predictions))
```

	precision	recall	f1-score	support
1.0 2.0 3.0	0.95 0.88 0.91	0.98 0.71 0.91	0.97 0.79 0.91	497 90 47
accuracy macro avg weighted avg	0.91 0.94	0.87 0.94	0.94 0.89 0.94	634 634

In []:

```
plt.subplots(figsize=(12,8))
confusion_matrix_knn = confusion_matrix(y_test, knn_predictions)
sns.heatmap(confusion_matrix_knn/np.sum(confusion_matrix_knn),annot = True, cmap="Purples")
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4ae0983690>

Support Vector Classifier

In []:

from sklearn.svm import SVC

In []:

```
svc = SVC()
svc.fit(X_train, y_train)
svc_score = svc.score(X_test, y_test)
print("Baseline SVC Score: " + str(svc_score))
```

Baseline SVC Score: 0.9211356466876972

In []:

```
vc_score_svc = cross_val_score(svc, X_train, y_train)
print("Baseline SVC CV Score: " + str(vc_score_svc.mean()))
```

Baseline SVC CV Score: 0.8924965643609711

In []:

```
svc_predictions = svc.predict(X_test)
print(classification_report(y_test, svc_predictions))
```

	precision	recall	f1-score	support
1.0 2.0 3.0	0.94 0.78 0.98	0.97 0.67 0.89	0.95 0.72 0.93	497 90 47
accuracy macro avg weighted avg	0.90 0.92	0.84	0.92 0.87 0.92	634 634

In []:

```
plt.subplots(figsize=(12,8))
confusion_matrix_svc = confusion_matrix(y_test, svc_predictions)
sns.heatmap(confusion_matrix_svc/np.sum(confusion_matrix_svc),annot = True, cmap="Purples")
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4ae08af050>

Linear Support Vector Classifier

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f4ae07ec2d0>

In []: from sklearn.svm import LinearSVC In []: linear svc = LinearSVC() linear_svc.fit(X_train, y_train) linear_svc_score = linear_svc.score(X_test, y_test) print("Baseline Linear SVC Score: " + str(linear svc score)) Baseline Linear SVC Score: 0.8927444794952681 /usr/local/lib/python3.7/dist-packages/sklearn/svm/ base.py:947: ConvergenceWarning: Libl inear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) In []: cv score linear svc = cross val score(linear svc, X train, y train) print("Baseline Linear SVC CV Score: " + str(cv score linear svc.mean())) /usr/local/lib/python3.7/dist-packages/sklearn/svm/ base.py:947: ConvergenceWarning: Libl inear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) /usr/local/lib/python3.7/dist-packages/sklearn/svm/ base.py:947: ConvergenceWarning: Libl inear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) /usr/local/lib/python3.7/dist-packages/sklearn/svm/ base.py:947: ConvergenceWarning: Libl inear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) Baseline Linear SVC CV Score: 0.8843999083829592 /usr/local/lib/python3.7/dist-packages/sklearn/svm/ base.py:947: ConvergenceWarning: Libl inear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) /usr/local/lib/python3.7/dist-packages/sklearn/svm/ base.py:947: ConvergenceWarning: Libl inear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning) In []: linear svc predictions = linear svc.predict(X test) print(classification report(y test, linear svc predictions)) precision recall f1-score support 1.0 0.92 0.97 0.94 497 2.0 0.73 0.53 0.62 90 3.0 0.86 0.79 0.82 47 0.89 634 accuracy 0.76 0.79 0.83 634 macro avg weighted avg 0.89 0.89 0.89 634 In []: plt.subplots(figsize=(12,8)) confusion matrix linear svc = confusion matrix(y test, linear svc predictions) sns.heatmap(confusion matrix linear svc/np.sum(confusion matrix linear svc),annot = True , cmap="Purples")

Decision Tree

```
In [ ]:
```

```
from sklearn.tree import DecisionTreeClassifier
```

In []:

```
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, y_train)
decision_tree_score = decision_tree.score(X_test, y_test)
print("Baseline Decision Tree Score: " + str(decision_tree_score))
```

Baseline Decision Tree Score: 0.9337539432176656

In []:

```
cv_score_decision_tree = cross_val_score(decision_tree, X_train, y_train)
print("Baseline Decision Tree CV Score: " + str(cv_score_decision_tree.mean()))
```

Baseline Decision Tree CV Score: 0.9073522675217591

In []:

```
decision_tree_predictions = decision_tree.predict(X_test)
print(classification_report(y_test, decision_tree_predictions))
```

	precision	recall	f1-score	support
1.0	0.96	0.97	0.96	497 90
3.0	0.88	0.96	0.92	47
accuracy			0.93	634
macro avg	0.88	0.89	0.88	634
weighted ava	0.93	0.93	0.93	634

```
plt.subplots(figsize=(12,8))
confusion_matrix_decision_tree = confusion_matrix(y_test, decision_tree_predictions)
sns.heatmap(confusion_matrix_decision_tree/np.sum(confusion_matrix_decision_tree), annot =
True, cmap="Purples")
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4ae0719b90>

Multi-layer Perceptron (Neural Network)

In []:

from sklearn.neural_network import MLPClassifier

In []:

```
neural_network = MLPClassifier()
neural_network.fit(X_train, y_train)
neural_network_score = neural_network.score(X_test, y_test)
print("Baseline Multi-layer Perceptron Score: " + str(neural_network_score))
```

Baseline Multi-layer Perceptron Score: 0.9353312302839116

/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:5
71: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
% self.max iter, ConvergenceWarning)

In []:

```
cv_score_neural_network = cross_val_score(neural_network, X_train, y_train)
print("Baseline Neural Network CV Score: " + str(cv_score_neural_network.mean()))
```

/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:5 71: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max iter, ConvergenceWarning)

/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:5 71: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged vet.

% self.max_iter, ConvergenceWarning)
/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:5
71: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max iter, ConvergenceWarning)

/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:5 71: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

Baseline Neural Network CV Score: 0.9107627118644068

/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:5 71: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max iter, ConvergenceWarning)

In []:

neural_network_predictions = neural_network.predict(X_test)
print(classification_report(y_test, neural_network_predictions))

	precision	recall	f1-score	support
1.0 2.0 3.0	0.96 0.81 0.90	0.97 0.76 0.94	0.96 0.78 0.92	497 90 47
accuracy macro avg weighted avg	0.89 0.93	0.89	0.94 0.89 0.93	634 634

In []:

plt.subplots(figsize=(12,8))
neural_network_decision_tree = confusion_matrix(y_test, neural_network_predictions)
sns.heatmap(neural_network_decision_tree/np.sum(neural_network_decision_tree),annot = Tru
e, cmap="Purples")

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f4ae065c310>

Gradient Boosting

In []:

from sklearn.ensemble import GradientBoostingClassifier

In []:

```
gradient_boosting = GradientBoostingClassifier()
gradient_boosting.fit(X_train, y_train)
gradient_boosting_score = gradient_boosting.score(X_test, y_test)
print("Baseline Gradient Boosting Classifier Score: " + str(gradient_boosting_score))
```

Baseline Gradient Boosting Classifier Score: 0.9558359621451105

In []:

```
cv_score_gb = cross_val_score(gradient_boosting, X_train, y_train)
print("Baseline GB CV Score: " + str(cv_score_gb.mean()))
```

Baseline GB CV Score: 0.9371117727897389

In []:

```
gb_predictions = gradient_boosting.predict(X_test)
print(classification_report(y_test, gb_predictions))
```

	precision	recall	f1-score	support
1.0 2.0 3.0	0.97 0.90 0.92	0.98 0.80 0.96	0.98 0.85 0.94	497 90 47
accuracy macro avg weighted avg	0.93 0.95	0.91 0.96	0.96 0.92 0.95	634 634 634

In []:

```
plt.subplots(figsize=(12,8))
gb_decision_tree = confusion_matrix(y_test, gb_predictions)
sns.heatmap(gb_decision_tree/np.sum(gb_decision_tree),annot = True, cmap="Purples")
```

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f4ae05e90d0>

LightGBM Classifier

```
In [ ]:
```

```
from lightgbm import LGBMClassifier
```

In []:

```
light_gbm = LGBMClassifier()
light_gbm.fit(X_train, y_train)
light_gbm_score = light_gbm.score(X_test, y_test)
print("Baseline LGBM Classifer Score: " + str(light_gbm_score))
```

Baseline LGBM Classifer Score: 0.9558359621451105

In []:

```
cv_score_light_gbm = cross_val_score(light_gbm, X_train, y_train)
print("Baseline LightGBM CV Score: " + str(cv_score_light_gbm.mean()))
```

Baseline LightGBM CV Score: 0.9384722858451671

In []:

```
light_gbm_predictions = light_gbm.predict(X_test)
print(classification_report(y_test, light_gbm_predictions))
```

		precision	recall	f1-score	support
	1.0 2.0 3.0	0.97 0.90 0.92	0.99 0.80 0.94	0.98 0.85 0.93	497 90 47
	3.0	0.92	0.94	0.93	4 /
accur	acy			0.96	634
macro weighted	_	0.93 0.95	0.91 0.96	0.92 0.95	634 634

In []:

```
plt.subplots(figsize=(12,8))
light_gbm_decision_tree = confusion_matrix(y_test, light_gbm_predictions)
sns.heatmap(light_gbm_decision_tree/np.sum(light_gbm_decision_tree),annot = True, cmap="Purples")
```

Out[]:

 ${\tt matplotlib.axes._subplots.AxesSubplot}$ at ${\tt 0x7f4ae053fad0}$

XGBoost Classifier

In []:

```
from xgboost import XGBClassifier
import xgboost
```

In []:

```
xgboost = XGBClassifier()
xgboost.fit(X_train, y_train)
xgboost_score = xgboost.score(X_test, y_test)
print("Baseline XGBoost Classifer Score: " + str(xgboost_score))
```

Baseline XGBoost Classifer Score: 0.9495268138801262

In []:

```
cv_score_xgboost = cross_val_score(xgboost, X_train, y_train)
print("Baseline XGBoost CV Score: " + str(cv_score_xgboost.mean()))
```

Baseline XGBoost CV Score: 0.9357581310123683

In []:

```
xgboost_predictions = xgboost.predict(X_test)
print(classification_report(y_test, xgboost_predictions))
```

	precision	recall	f1-score	support
1.0	0.97	0.98	0.97	497
2.0	0.87	0.80	0.83	90
3.0	0.92	0.94	0.93	47
			0.05	60.4
accuracy			0.95	634
macro avg	0.92	0.90	0.91	634
weighted avg	0.95	0.95	0.95	634

In []:

```
plt.subplots(figsize=(12,8))
xgboost_decision_tree = confusion_matrix(y_test, xgboost_predictions)
sns.heatmap(xgboost_decision_tree/np.sum(xgboost_decision_tree),annot = True, cmap="Purp les")
```

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f4ae0478550>

Model Scoring and Selection

```
Model
                          Scores
7
      Gradient Boosting 0.955836
8
     LightGBM Classifer 0.955836
         Random Forest 0.949527
      XGBoost Classifier 0.949527
9
    K-Nearest Neighbors 0.940063
6 Multi-layer Perceptron 0.935331
5
          Decision Tree 0.933754
3
         Support Vector 0.921136
0
     Logistic Regression 0.895899
  Linear Support Vector 0.892744
```

Model Tuning and Optimization

LightGBM Classifier Tuning/Optimization

```
param grid = {
  'learning rate': [0.001,0.01],
  'n estimators': [ 1000],
  'num leaves': [12, 30,80],
  'boosting_type' : ['gbdt'],
  'objective' : ['binary'],
  'random state' : [1],
  'colsample bytree' : [ 0.8, 1],
  'subsample' : [0.5,0.7,0.75],
'reg_alpha' : [0.1, 1.2],
  'reg lambda' : [0.1, 1.2],
  'subsample_freq' : [500,1000],
  'max_depth' : [15, 30, 80]
In [ ]:
cv method = StratifiedKFold(n splits=3)
In [ ]:
GridSearchCV GBM = GridSearchCV(estimator=LGBMClassifier(),
                                 param grid=param grid,
                                 cv=cv method,
                                 verbose=1,
                                 n jobs=4,
                                  scoring="accuracy",
                                  return train score=True
In [ ]:
GridSearchCV GBM.fit(X train, y train)
Fitting 3 folds for each of 864 candidates, totalling 2592 fits
[Parallel(n jobs=4)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n jobs=4)]: Done 42 tasks | elapsed:
                                                         36.7s
[Parallel(n_jobs=4)]: Done 192 tasks
                                            | elapsed: 2.8min
[Parallel(n_jobs=4)]: Done 442 tasks
                                                        6.5min
                                            | elapsed:
                                           | elapsed: 11.8min
[Parallel(n_jobs=4)]: Done 792 tasks
[Parallel(n_jobs=4)]: Done 1242 tasks
                                             | elapsed: 19.4min
[Parallel(n_jobs=4)]: Done 1792 tasks
                                            | elapsed: 27.9min
[Parallel(n_jobs=4)]: Done 2442 tasks
                                            | elapsed: 38.9min
[Parallel(n_jobs=4)]: Done 2592 out of 2592 | elapsed: 41.6min finished
Out[]:
GridSearchCV(cv=StratifiedKFold(n splits=3, random state=None, shuffle=False),
             error score=nan,
             estimator=LGBMClassifier(boosting type='gbdt', class weight=None,
                                        colsample bytree=1.0,
                                        importance type='split',
                                        learning rate=0.1, max depth=-1,
                                        min child samples=20,
                                        min_child_weight=0.001,
                                        min_split_gain=0.0, n_estimators=100,
                                        n jobs=-1, num leaves=31, objective=None...
                          'colsample bytree': [0.8, 1],
                          'learning rate': [0.001, 0.01],
                          'max_depth': [15, 30, 80], 'n_estimators': [1000], 'num_leaves': [12, 30, 80], 'objective': ['binary'],
                          'random_state': [1], 'reg_alpha': [0.1, 1.2],
                          'reg_lambda': [0.1, 1.2],
                          'subsample': [0.5, 0.7, 0.75],
                          'subsample freq': [500, 1000]},
             pre dispatch='2*n jobs', refit=True, return train score=True,
             scoring='accuracy', verbose=1)
In [ ]:
```

hast narame CRM = CridGaarahCV CRM hast narame

```
nesc_barams_anu - arranearama^anu.nesc_barams_
best params GBM
Out[]:
{'boosting type': 'gbdt',
 'colsample bytree': 0.8,
 'learning_rate': 0.01,
 'max depth': 15,
 'n estimators': 1000,
 'num leaves': 12,
 'objective': 'binary',
 'random state': 1,
 'reg alpha': 0.1,
 'reg lambda': 1.2,
 'subsample': 0.7,
 'subsample freq': 500}
In [ ]:
best score GBM = GridSearchCV GBM.best score
print("Optimized Grid Search GBM best score: " + str(best score GBM))
Optimized Grid Search GBM best score: 0.9263015551048005
In [ ]:
optimized LGBM = LGBMClassifier(**GridSearchCV GBM.best params )
optimized LGBM.fit(X train, y train)
Out[]:
LGBMClassifier(boosting type='gbdt', class weight=None, colsample bytree=0.8,
               importance_type='split', learning_rate=0.01, max_depth=15,
               min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,
               n estimators=1000, n jobs=-1, num leaves=12, objective='binary',
               random state=1, reg alpha=0.1, reg lambda=1.2, silent=True,
               subsample=0.7, subsample for bin=200000, subsample freq=500)
In [ ]:
optimized LGBM score = optimized LGBM.score(X test, y test)
print("Optimized LGBM Classifer Score: " + str(optimized LGBM score))
Optimized LGBM Classifer Score: 0.9479495268138801
In [ ]:
cv score optimized LGBM = cross val score(optimized LGBM, X train, y train)
print("Optimized LightGBM CV Score: " + str(cv score optimized LGBM.mean()))
Optimized LightGBM CV Score: 0.9222446174988548
In [ ]:
optimized LGBM predictions = optimized LGBM.predict(X test)
print(classification report(y test, optimized LGBM predictions))
             precision recall f1-score support
                  0.96
                           0.98
                                       0.97
                                                  497
         1.0
                            0.76
         2.0
                  0.89
                                      0.82
                                                  90
         3.0
                   0.88
                             0.98
                                       0.93
                                                  47
                                      0.95
                                                 634
   accuracy
                 0.91
                           0.90
                                     0.91
                                                 634
   macro avg
                         0.95
                  0.95
                                      0.95
                                                 634
weighted avg
In [ ]:
plt.subplots(figsize=(12,8))
```

optimized_light_gbm_decision_tree = confusion_matrix(y_test, optimized_LGBM_predictions)
sns.heatmap(optimized_light_gbm_decision_tree/np.sum(optimized_light_gbm_decision_tree),a
nnot = True, cmap="Purples")

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4adf2c1a50>

