Written Exercises

· State another name for each rotation.

3.
$$\mathcal{R}_{A, 450}$$
 4. $\mathcal{R}_{B, -720}$ 5. H_O

The diagonals of regular hexagon ABCDEF form six equilateral triangles as shown. Complete each statement below.

6.
$$\mathcal{R}_{0.60}:E\to \frac{?}{}$$

8.
$$\mathcal{R}_{O, 120}: F \to \frac{?}{}$$

9.
$$\mathcal{R}_{D, 60}: \frac{?}{?} \to O$$

10.
$$\mathcal{R}_{B_{-60}}(O) = \frac{?}{}$$

11.
$$H_0(A) = \frac{?}{}$$

Exs. 6-14

12. A reflection in
$$\overrightarrow{FC}$$
 maps B to $\underline{}$ and D to $\underline{}$.

13. If k is the perpendicular bisector of FE, then $R_{\nu}(A) = \frac{?}{}$

14. If a translation maps A to B, then it also maps O to $\frac{?}{}$ and E to $\frac{?}{}$

State whether the specified triangle is mapped to the other triangle by a reflection, translation, rotation, or half-turn.

15.
$$\triangle(1)$$
 to $\triangle(2)$

16.
$$\triangle$$
(1) to \triangle (3)

17.
$$\triangle$$
(1) to \triangle (4)

18.
$$\triangle(1)$$
 to $\triangle(5)$

19.
$$\triangle$$
(2) to \triangle (4)

20.
$$\triangle$$
(2) to \triangle (7)

21.
$$\triangle(4)$$
 to $\triangle(6)$

22.
$$\triangle(4)$$
 to $\triangle(8)$

23. In the diagram at the right there is a glide reflection that maps triangle (1) to triangle $(\frac{?}{})$.

Exs. 15-24

- 25. Which of the following properties are invariant under a half-turn? a. distance b. angle measure c. area d. orientation
- 26. Which of the properties listed in Exercise 25 are invariant under the rotation $\mathcal{R}_{0.90}$?

Copy the figure on graph paper. Draw the image by the specified rotation.

27. $\Re_{O, 90}$

28. \mathcal{R}_{0} -90

29. Ho

30. If $H_C:(1, 1) \to (7, 3)$, find the coordinates of C.