

Webinar:

Análisis de Componentes Principales

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Modo Online

Contacto : +51 908 814 045

Email : informes@futuradata.pe

CEO Futura

Hola!

Ing. Ruddy Caja,

- ✓ Ing. Estadístico e Informático UNALM
- ✓ Diploma Business Intelligence Specialist UPC
- ✓ Autor: Cálculo de Probabilidades: Un enfoque teórico y práctico
- ✓ Experto en Analítica Inmobiliaria
- ✓ CEO Futura
- ✓ 12 años de experiencia en Banca (Inteligencia Comercial, Riesgos y Banca de Negocios)

Pienso que la meta del Cientifico de Datos o Analista de Datos en general es lograr el equilibrio entre lo práctico y lo complejo... Conocer muy bien una herramienta te va a identificar más que conocer todos a medias...

— Ruddy Caja

Nuestro team de Mentores

Luis Felipe Garayar

Mentor Máster

Luis Angel Torres

Mentor Senior

Miguel A. Echeverre

Mentor Senior

Jonattan Ramos

Mentor Senior

Temas

¿De qué trata el PCA?

Fundamento matemático

- Caso de uso
- Nuestro programa

¿De qué trata el PCA?

review

Cómo funciona el Análisis de Componentes Principales

Es una técnica estadística de síntesis de información, o reducción de dimensión (en base a COMPONENTES). El ACP se basa en combinaciones lineales y transforma las variables originales en otras que se llaman componentes, las cuales son NO CORRELACIONADAS tomadas dos a dos.

- El ACP permite pasar a un nuevo conjunto de variables las componentes principales que gozan de la ventaja de estar incorrelacionadas entre sí, y que, además pueden ordenarse de acuerdo a la información que contienen. Esto último es muy útil ya que en los casos de regresiones las variables no deben estar correlacionadas y si se usan el 100% de componentes, evitaríamos la multicolinealidad.
- En otro caso no se requiere evitar la multicolinealidad porque no es el fin o la estrategia realizar una regresión lineal, sino más bien es simplemente trabajar con una cantidad menor de variables que representen el mismo problema minimizando la pérdida de información.

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

La matemática detrás...

Se han observado p variables $X_1, X_2, X_3... X_p$ sobre una muestra de n individuos u observaciones. La matriz de datos muestrales es:

$$\mathbf{X} = \begin{bmatrix} x_{11} x_{12} \dots x_{1p} \\ x_{21} x_{22} \dots x_{2p} \\ \vdots \\ x_{n1} x_{n2} \dots x_{np} \end{bmatrix}$$

En adelante supondremos que X es una "matriz centrada" (que cada observación de la variable ha sido sustraída de su media muestral y que la media de la variable conjunta es cero)

Problema: ¿Podemos describir la "información" contenida en estos datos mediante algún conjunto de variables menor que el de variables originales?

Idea: Si una variable es función de otras, contiene información redundante.

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

La matemática detrás...

Por tanto, si las p variables observadas están fuertemente correlacionadas, será posible sustituirlas por menos variables

sin gran pérdida de "información".

Esta reducción de la dimensión va a permitir:

- Simplificar posteriores análisis, que se harán a partir de un menor número de variables que el original.
- Una representación gráfica de los individuos en dimensión reducida (generalmente, 1 ó 2).
- Examinar e interpretar las relaciones entre las variables observadas.

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

La matemática detrás...

RECUERDA: TEOREMA DE LA DESCOMPOSICIÓN ESPECTRAL

Toda matriz simétrica \mathbf{A} de orden pxp puede ser escrita como un producto de matrices:

$$A = \Gamma \Lambda \Gamma'$$

 Γ : Matriz ortogonal pxp contiene los **autovectores o vectores propios** de \mathbf{A}

 Λ : Matriz diagonal pxp contiene los **autovalores o valores propios** de A

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Definición y obtención de las Componentes Principales

Sean $\mathbf{X} = [X_1, ..., X_p]$ y $\mathbf{S} = \text{var}(\mathbf{X})$ su matriz de covarianzas.

Puesto que $S \ge 0$ y simétrica, su descomposición espectral es:

$$S = T\Lambda T'$$

Donde $\mathbf{T'T} = \mathbf{TT'} = \mathbf{I}$, con $\mathbf{T} = [\mathbf{t_1}, ..., \mathbf{t_p}]$ y $\boldsymbol{\Lambda} = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_p)$,

Las componentes principales de $\mathbf X$ son las nuevas variables

$$Y_j = Xt_j, j = 1, 2, ..., p$$

Para cada j, la nueva variable $\mathbf{Y_j}$ se construye a partir del *j-ésimo* autovalor de \mathbf{S} .

FUTURA ANALITICA AVANZADA

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Propiedades de las Componentes Principales

• Las componentes principales tienen varianza decreciente.

$$\operatorname{var}(Y_1) = \operatorname{var}(\mathbf{X}\mathbf{t}_1) = \mathbf{t}_1' \mathbf{S}\mathbf{t}_1 = \lambda_1 \mathbf{t}_1' \mathbf{t}_1 = \lambda_1$$

$$\operatorname{var}(Y_2) = \operatorname{var}(\mathbf{X}\mathbf{t}_2) = \mathbf{t}_2' \mathbf{S}\mathbf{t}_2 = \lambda_2 \mathbf{t}_2' \mathbf{t}_2 = \lambda_2$$

$$\vdots$$

$$\operatorname{var}(Y_p) = \operatorname{var}(\mathbf{X}\mathbf{t}_p) = \mathbf{t}_p' \mathbf{S}\mathbf{t}_p = \lambda_p \mathbf{t}_p' \mathbf{t}_p = \lambda_p$$

$$\operatorname{var}(Y_p) = \operatorname{var}(\mathbf{X}\mathbf{t}_p) = \mathbf{t}_p' \mathbf{S}\mathbf{t}_p = \lambda_p \mathbf{t}_p' \mathbf{t}_p = \lambda_p$$

• y, están incorrelacionadas unas con otras.

$$cov(Y_i, Y_j) = cov(\mathbf{X}\mathbf{t}_i, \mathbf{X}\mathbf{t}_j) = \mathbf{t}_i'\mathbf{S}\mathbf{t}_j = \lambda_j \mathbf{t}_i'\mathbf{t}_j = 0$$
, para $i \neq j$, puesto que \mathbf{T} es una matriz ortogonal

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Propiedades de las Componentes Principales

• Las covarianzas entre cada componente principal y las variables originales X_i son:

$$cov(Y_j, [X_1, ..., X_p]) = \lambda_j \mathbf{t}'_j = 0$$
, para $j = 1, 2, ..., p$

Utilizando que Y = XT y la descomposición espectral de S

$$cov(\mathbf{Y},\mathbf{X}) = \frac{1}{n}\mathbf{Y'X} = \frac{1}{n}\mathbf{T'X'X} = \mathbf{T'S} = \mathbf{T'}(\mathbf{T}\Lambda\mathbf{T'}) = \mathbf{\Lambda}\mathbf{T'}$$

La fila j de la matriz proporciona las covarianzas entre Y_j y las variables originales X_1, X_2, \dots, X_p .

Por ejemplo, las covarianzas entre Y_1 y X_1 , ..., X_p es λ_1 t'₁

• La correlación entre Y_i y la variable original X_i es:

$$corr(Y_j, X_i) = \frac{cov(Y_j, X_i)}{\sqrt{var(Y_j)var(X_i)}} = \frac{\lambda_j t_{ij}}{\sqrt{\lambda_j s_{ii}}} = t_{ij} \sqrt{\frac{\lambda_j}{s_{ii}}}$$

Donde t_{ij} es el elemento i-ésimo del autovector \mathbf{t}_{i}

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Representación de las observaciones

Con las nuevas coordenadas dadas por los componentes principales, el individuo i-ésimo, es decir, la fila $\mathbf{x}_{i}^{'}=(x_{i1},...,x_{ip})$ de la matriz de datos \mathbf{X} , se expresa como:

$$\mathbf{y}_i' = \mathbf{x}_i'\mathbf{T} = (\mathbf{x}_i'\mathbf{t}_1, \dots, \mathbf{x}_i'\mathbf{t}_p)$$

La matriz de datos con transformaciones es Y = XT, que representa las "observaciones" de las nuevas variables (componentes principales) sobre los n individuos de la muestra.

Esta transformación puede interpretarse geométricamente considerando los n individuos como n puntos en el espacio \mathbb{R}^p .

Consideremos la distancia euclídea (al cuadrado) entre los individuos *i-ésimo* y *j-ésimo*, en las nuevas coordenadas.

$$d_{Euclid}^{2}(i,j) = (\mathbf{y}_{i}' - \mathbf{y}_{j}')(\mathbf{y}_{i} - \mathbf{y}_{j}) = (\mathbf{x}_{i}'\mathbf{T} - \mathbf{x}_{j}'\mathbf{T})(\mathbf{T}'\mathbf{x}_{i} - \mathbf{T}'\mathbf{x}_{j})$$

$$d_{Euclid}^{2}(i,j) = (\mathbf{x}_{i}' - \mathbf{x}_{j}')\mathbf{T}'\mathbf{T}(\mathbf{x}_{i} - \mathbf{x}_{j}) = (\mathbf{x}_{i}' - \mathbf{x}_{j}')(\mathbf{x}_{i} - \mathbf{x}_{j})$$

Ignorando orientaciones, podemos pensar la transformación como $una\ rotación$ en \mathbb{R}^p

El primero de los nuevos ejes (la primera componente principal) es la dirección a lo largo de la cual la dispersión de los puntos-individuos es máxima. Sucesivamente, cada componente principal es aquella dirección, ortogonal a las anteriores, a lo largo de la cual hay dispersión máxima.

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Reducción de la dimensión

La variación total de **X** se define como $tr(\mathbf{S}) = \sum_{i=1}^{p} \lambda_i$

La variación total de $\mathbf{Y} = \mathbf{X}\mathbf{T}$ es igual a la variación total de \mathbf{X} :

$$tr(var(\mathbf{Y})) = tr\left(\frac{1}{n}\mathbf{T}'\mathbf{X}'\mathbf{X}\mathbf{T}\right) = tr(\mathbf{T}'\mathbf{S}\mathbf{T}) = tr(\mathbf{T}'\mathbf{T}\mathbf{\Lambda}\mathbf{T}'\mathbf{T}) = \sum_{i=1}^{p} \lambda_i$$

Puesto que, $S = T\Lambda T'$, T es una matriz ortogonal.

Cuando el cociente (porcentaje de variabilidad explicada)

$$P_q = \frac{\sum_{i=1}^p \lambda_i}{tr \mathbf{S}} \times 100, \qquad q < p,$$

es cercano a 100%, entonces las variables $Y_1, Y_2, ..., Y_q$ pueden reemplazar a $X_1, X_2, ..., X_p$ sin gran pérdida de información, en términos de "variación total".

FUTURA ANALITICA AVANZADA

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Reducción de la dimensión

Sean $\mathbf{X} = [X_1,..., X_p]$ y $\mathbf{S} = \text{var}(\mathbf{X})$ su matriz de covarianzas.

$$S = T\Lambda T'$$

$$\mathbf{Y}_{j} = \mathbf{X}\mathbf{t}_{j}, \quad j = 1, 2, ..., p$$

$$\operatorname{var}(Y_{1}) = \operatorname{var}(\mathbf{X}\mathbf{t}_{1}) = \mathbf{t}_{1}'\mathbf{S}\mathbf{t}_{1} = \lambda_{1}\mathbf{t}_{1}'\mathbf{t}_{1} = \lambda_{1}$$

$$\operatorname{var}(Y_{2}) = \operatorname{var}(\mathbf{X}\mathbf{t}_{2}) = \mathbf{t}_{2}'\mathbf{S}\mathbf{t}_{2} = \lambda_{2}\mathbf{t}_{2}'\mathbf{t}_{2} = \lambda_{2}$$

$$\cdot \cdot \cdot \cdot$$

$$\operatorname{var}(Y_{p}) = \operatorname{var}(\mathbf{X}\mathbf{t}_{p}) = \mathbf{t}_{p}'\mathbf{S}\mathbf{t}_{p} = \lambda_{p}\mathbf{t}_{p}'\mathbf{t}_{p} = \lambda_{p}$$

Con
$$\lambda_1 > \lambda_2 > \cdots > \lambda_p$$

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Otros métodos para reducir dimensionalidad

- PCA (linear)
- t-SNE (non-parametric/ nonlinear)
- Sammon mapping (nonlinear)
- Isomap (nonlinear)
- LLE (nonlinear)
- CCA (nonlinear)
- SNE (nonlinear)
- MVU (nonlinear)
- Laplacian Eigenmaps (nonlinear)

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Caso de Uso

Analicemos...

Nuestro programa académico

ROADMAP DE APRENDIZAJE

CONTENIDO

MÓDULO 1 CIENCIA DE DATOS & HERRAMIENTAS

· Introducción a la ciencia de datos

Proceso de un proyecto de ciencia de datos

• Programación en Python

21h

• Regresión Lineal y técnicas de regularización

 Regresión Logística y K-Nearest Neighbors (KNN)

- Árboles de Regresión y Clasificación
- Evaluación y comparación de modelos
- K-Means y técnicas de clustering jerárquico
- Componentes Principales y reducción de dimensiones

12h

MÓDULO 2 PRINCIPIOS BÁSICOS DE LA CIENCIA DE DATOS

· Visualización de datos

Análisis exploratorio de datos

• Tratamiento e imputación de datos perdidos

- Limpieza de datos: Outliers univariados y multivariados
- Pre-procesamiento de datos
- Transformación de datos y WOEs (Weight of Evidence)
- Selección inicial de variables

MÓDULO 4
TÉCNICAS AVANZADAS

• Support Vector Machine (SVM)

 Modelos ensamblados: Bagging, Random Forest y Boosting

- Market Basket Analysis, sistemas de recomendación
- Introducción al Text Mining
- Deep Learning: Redes Neuronales, Convolucionales y su aplicación
- · Análisis de series de tiempo

MÓDULO 3
ALGORITMOS DE LA CIENCIA DE
DATOS

CASOS DE ESTUDIO

INANCIERO, SEGUROS COBRANZAS

- Marketing Bancario
- Predictor de Ingresos
- Credit Scoring
- Fuga de Clientes Telco
- Seguro: Pago de Primas de renovación
- Contactabilidad Cobranzas

SALUD Y RECURSOS HUMANOS

- Health Analytics
- Human Resources Analytics

RETAIL

- Big Mart Analytics
- Black Friday

INMOBILIARIO

- Análisis de Precios de Viviendas
- Adquisición de Créditos Hipotecarios

Rueda de preguntas...

Programa: Data Science for Business

Inicio : 12 agosto

Hora : 7:30-10:30pm (GMT-5 Lima)

Modo Online

Contacto : +51 908 814 045

Email : informes@futuradata.pe