Folgen und Reihen: Teil 3

Andreas Henrici

MANIT1 IT18ta_ZH

Folgen und Reihen: Teil 3

Überblick

- Grenzwerte von Folgen
 - Beispiele und Definition
 - Grenzwerte von geometrischen Folgen
 - Rechnen mit Grenzwerten
- Grenzwerte von Reihen
 - Definition
 - Beziehung zur Konvergenz der Folge
 - Beispiele

Grenzwerte von Folgen: Beispiele zur Motivation

Beispiel

Wie verhalten sich diese Folgen für $n \to \infty$?:

a) $(a_n) = (\frac{1}{n})$

b) $(a_n) = \left(\frac{n}{n+1}\right)$

c) $(a_n) = \left(3 \cdot \left(\frac{1}{5}\right)^{n-1}\right)$

d) $(a_n) = \left(\left(1 + \frac{1}{n}\right)^n\right)$

Grenzwerte von Folgen: Graphische Erklärung

Grenzwert a einer Folge (a_n) :

- Der Grenzwert selbst muss von der Folge nicht exakt erreicht werden.
- Die Folge muss aber jede noch so kleine Umgebung des Grenzwerts erreichen und nicht mehr verlassen.

Aus: Arens et al., *Mathematik*, ISBN: 978-3-8274-1758-9 © Spektrum Akademischer Verlag GmbH 2008

Beispiele und Definition

Grenzwerte von Folgen: Formelle Definition

Definition

- Eine reelle Zahlenfolge (a_n) hat als Grenzwert/Limes die Zahl a ∈ ℝ, falls die folgende Bedingung erfüllt ist:
 - Zu jeder Fehlerschranke $\epsilon>0$ gibt es eine Index-Untergrenze $N\in\mathbb{N}$, sodass alle Folgenglieder a_n mit Index n>N im Intervall $(a-\epsilon,a+\epsilon)$ liegen, bzw. falls gilt:

$$\lim_{n\to\infty} a_n = a \quad \Leftrightarrow \quad \forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : \; |a_n - a| < \epsilon$$

Grenzwerte von Reihen

 Eine Folge heisst konvergent, falls sie einen Grenzwert besitzt, ansonsten divergent.

Satz

Eine Folge (a_n) besitzt höchstens einen Grenzwert.

Grenzwerte von Folgen: Beispiele von Grenzwerten

Beispiel (Fortsetzung)

Folgen mit Grenzwert:

a)
$$(a_n) = (\frac{1}{n}) : \lim_{n \to \infty} \frac{1}{n} = 0$$

b)
$$(a_n) = \left(\frac{n}{n+1}\right) : \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1$$

c)
$$(a_n) = (3 \cdot (\frac{1}{5})^{n-1}) : \lim_{n \to \infty} 3 \cdot (\frac{1}{5})^{n-1} = 0$$

d)
$$(a_n) = ((1 + \frac{1}{n})^n) : \lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

Folgen ohne Grenzwert: Beispiele

Beispiel (Fortsetzung)

Folgen ohne Grenzwert:

a)
$$(a_n) = ((-1)^n)$$
:

$$(a_n) = (-1, 1, -1, 1, -1, 1, \ldots)$$

Oszillation zwischen zwei Häufungspunkten

b)
$$(a_n) = (3+2n)$$
 $(b_n) = (5,7,9,11,...)$

Wachstum gegen ∞

"Bestimmte Divergenz" bzw. Wachstum gegen $\pm \infty$

- Folgen mit beliebig gross werdenden Gliedern:
 - Zu jeder Schranke $a \in \mathbb{R}$ gibt es eine Index-Untergrenze $N \in \mathbb{N}$, sodass alle Folgenglieder a_n mit Index n > N im Intervall (a, ∞) liegen, d.h. grösser als a sind:

$$\lim_{n\to\infty}a_n=\infty\quad\Leftrightarrow\quad\forall a\in\mathbb{R}\;\exists N\in\mathbb{N}\;\forall n>N:\;a_n>a$$

- Folgen mit beliebig klein werdenden Gliedern:
 - Zu jeder Schranke $a \in \mathbb{R}$ gibt es eine Index-Untergrenze $N \in \mathbb{N}$, sodass alle Folgenglieder a_n mit Index n > N im Intervall $(-\infty, a)$ liegen, d.h. kleiner als a sind:

$$\lim_{n\to\infty} a_n = -\infty \quad \Leftrightarrow \quad \forall a \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n > N : \ a_n < a$$

• Solche Folgen nennt man "bestimmt divergent"; sie sind nicht konvergent, wir sprechen *nicht* von "Konvergenz gegen ∞ ", aber wir schreiben $\lim_{n\to\infty} a_n = \infty$.

Grenzwerte von arithmetischen und geometrischen Folgen

- Grenzwerte von arithmetischen Folgen: $a_n = A + (n-1) \cdot d$
 - d > 0: $\lim_{n \to \infty} a_n = \infty$
 - d < 0: $\lim_{n \to \infty} a_n = -\infty$
 - d = 0: $\lim_{n \to \infty} a_n = A$
- Grenzwerte von geometrischen Folgen: $a_n = A \cdot q^{n-1}$?

Beispiel

Verhalten von (q^n) für $n \to \infty$ für unterschiedliche Werte von q?

- **a)** q = 0.6:
- **b)** q = -0.6:
- **c)** q = 2:
- **d)** q = -2:
- **e)** q = 1:
- f) q = -1:

Grenzwerte von geometrischen Folgen

Beispiel

Verhalten von (q^n) für $n \to \infty$ für unterschiedliche Werte von q:

- a) q = 0.6: konvergent, $\lim_{n \to \infty} q^n = 0$
- **b)** q = -0.6: konvergent, $\lim_{n \to \infty} q^n = 0$
- c) q = 2: divergent, $\lim_{n \to \infty} q^n = \infty$
- d) q = -2: divergent, $\lim_{n \to \infty} q^n$ existiert nicht
- e) q = 1: konvergent, $\lim_{n \to \infty} q^n = 1$
- f) q = -1: divergent, $\lim_{n \to \infty} q^n$ existiert nicht

Also:

- a) |q| < 1: $\lim_{n \to \infty} q^n = 0$, d.h. Folge (q^n) konvergent.
- **b)** |q| > 1: $\lim_{n \to \infty} |q|^n = \infty$, d.h. Folge (q^n) divergent.
- c) q = 1: $\lim_{n \to \infty} q^n = 1$, d.h. Folge (q^n) konvergent.
- d) q = -1: $\lim_{n \to \infty} q^n$ existiert nicht, d.h. Folge (q^n) divergent.

Grenzwerte von geometrischen Folgen

Konsequenz für die Konvergenz der geometrischen Folge (a_n) :

Satz

Sei (a_n) eine geometrische Folge mit Anfangsglied $A \neq 0$ und Quotient $q \neq 0$. Dann gilt:

- a) Für |q| < 1 ist $\lim_{n \to \infty} a_n = 0$, d.h. die Folge (a_n) ist konvergent.
- **b)** Für |q| > 1 ist $\lim_{n \to \infty} |a_n| = \infty$, d.h. die Folge (a_n) ist divergent.
- c) Für q = 1 ist $\lim_{n \to \infty} a_n = A$, d.h. die Folge (a_n) ist konvergent.
- **d)** Für q = -1 existiert $\lim_{n \to \infty} a_n$ nicht, d.h. die Folge (a_n) ist divergent.

Rechnen mit Grenzwerten

Satz

Seien (a_n) und (b_n) zwei konvergente Folgen mit

$$\lim_{n\to\infty} a_n = a, \qquad \lim_{n\to\infty} b_n = b \qquad (a,b\in\mathbb{R}).$$

Dann gilt:

a)
$$\lim_{n\to\infty}(a_n\pm b_n)=a\pm b$$

b)
$$\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b$$

c)
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$$
, falls $b_n \neq 0$ und $b \neq 0$

$$\mathbf{d)} \lim_{n \to \infty} (a_n)^k = a^k$$

Beispiel

$$\lim_{n\to\infty}\frac{4n^3-2n^2+5n-8}{-7n^3+4n^2-6n+1}=$$

Grenzwerte von Reihen: Definition

Erinnerung: Sei (a_k) eine Folge

- Die Reihe ist die Folge der Partialsummen
- Konvergenz der Reihe bedeutet Konvergenz der Folge der Partialsummen!

Definition

- Die unendliche Reihe $\sum_{k=1}^{\infty} a_k$ heisst konvergent bzw. divergent, falls die Teilsummenfolge (s_n) konvergent bzw. divergent ist.
- Falls die unendliche Reihe konvergent ist, ist $s = \lim_{n \to \infty} s_n$ die Summe der unendlichen Reihe:

$$s = a_1 + a_2 + a_3 + \ldots = \sum_{k=1}^{n} a_k$$

• Falls die Folge (s_n) bestimmt divergent ist, d.h. $\lim_{n\to\infty} s_n = \pm \infty$, so ist $\sum_{k=1}^{\infty} a_k$ ebenfalls bestimmt divergent:

$$s=a_1+a_2+a_3+\ldots=\sum_{i=1}^{\infty}a_k=\pm\infty.$$

Konvergenz der Folge und Konvergenz der Reihe

Frage: Beziehung zwischen $\lim_{n\to\infty} a_n$ und $\sum_{k=1}^{\infty} a_k$?

Beispiel

Für die Folge

$$(a_n) = \left(\frac{1}{2^{n-1}}\right) = \left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)$$

gilt:

•
$$\lim_{n\to\infty} a_n = 0$$
, d.h. (a_n) ist konvergent mit Grenzwert $a = 0$.

•
$$\sum_{k=1}^{\infty} a_k = 2$$
, d.h. $\sum_{k=1}^{\infty} a_k = 2$ ist konvergent.

Satz

Sei $\sum_{k}^{\infty} a_k$ eine konvergente unendliche Reihe. Dann gilt

$$\lim_{n\to\infty}a_n=0.$$

Grenzwerte von Reihen: Beispiele

Beispiel

Untersuchen Sie, ob die zu den Folgen (a_n) gehörenden Reihen

$$\sum_{k=1}^{\infty} a_k \text{ konvergieren:}$$

$$\bullet$$
 $(a_n) = (1, 1.5, 2, 2.5, 3, \ldots)$:

•
$$(a_n) = (1, -1, 1, -1, 1, -1, \ldots)$$
:

•
$$(a_n) = (1, 0.1, 0.01, 0.001, \ldots)$$
:

•
$$(a_n) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$$
:

Grenzwerte von Reihen: Beispiele, fortgesetzt

Beispiel (Fortsetzung)

- $(a_n) = (1, 1.5, 2, ...)$: Reihe $(s_n) = (1, 2.5, 4.5, 7, ...)$ divergent
- $(a_n) = (1, -1, 1, ...)$: Reihe $(s_n) = (1, 0, 1, 0, 1, ...)$ divergent
- $(a_n) = (1, 0.1, 0.01, 0.001, ...)$: Geometrische Reihe $(s_n) = (1, 1.1, 1.11, 1.111, ...)$ konvergent mit Grenzwert

$$s = \frac{A}{1-q} = \frac{1}{1-0.1} = \frac{10}{9} = 1.1111...$$

• $(a_n) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$: Die Reihe

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

heisst harmonische Reihe. Sie ist divergent, obwohl die Folgenglieder gegen Null konvergieren, $\lim_{\to} \frac{1}{1} = 0$.

Grenzwerte von Reihen: Weitere Beispiele

Beispiel

•
$$(a_n) = \left(\frac{(-1)^{n+1}}{n}\right) = \left(1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots\right)$$
: (alternierende harmon. R.)

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \pm \ldots = \ln(2)$$

•
$$(a_n) = (\frac{1}{n^2}) = (1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots)$$
:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}$$

•
$$(a_n) = (\frac{1}{n^{1+\epsilon}}) = (1, \frac{1}{2^{1+\epsilon}}, \frac{1}{3^{1+\epsilon}}, \frac{1}{4^{1+\epsilon}}, \dots)$$
:

$$\sum_{k=1}^{\infty} \frac{1}{k^{1+\epsilon}}$$
 ist konvergent für jedes $\epsilon > 0$