## Computer Lab 6

Andrea Bruzzone, Thomas Zhang 2016 M03 10

### Assignment 1

In this assignment we work with the function:

$$f(x) = \frac{x^2}{e^x} - 2e^{\frac{-9\sin(x)}{x^2 + x + 1}}$$

and we try to perform one-dimensional maximization using the genetic algorithm specified in the instructions. The functions can be found in the code part of this report.

## Genetic Algorithm maximization iterations = 100 p(mutation) = 0.5



## [1] "Final maximum value achieved: 0.2348"

As we can see, setting maxiter = 100 and p(mutation) = 0.5 gives rather good results, in the sense that the set of final points all are located close to the true maximum. The setting maxiter = 100 and p(mutation) = 0.9 produces similar results but the final points are more spread out along the function curve, due to the higher mutation rate.

# Genetic Algorithm maximization iterations = 100 p(mutation) = 0.9



## [1] "Final maximum value achieved: 0.1403"

To contrast, we can try setting maxiter = 10 and p(mutation) = 0.1, which often results in the final points being located not far from where they started.

# Genetic Algorithm maximization iterations = 10 p(mutation) = 0.1



## [1] "Final maximum value achieved: -1.9519"

We can infer that the genetic algorithm used requires more than 10 iterations to be effective and that the mutation rate should be moderately high for best results.

## Assignment 2

The dataset physical.csv describes a behavior of two related physical process Y=Y(X) and Z=Z(X).

### • 2.1

The plot shows together Z vs X and Y vs X. Notice the missing values of Z around X = 3, 8, 10.

## Time series plot of Y and Z against X



It seems that the two process are related, the Z process seems to be the Y process amplified and translated to the right. Moreover, it can be seen that the highest values for both the process we have for X between 0 and 2, then the two process decrease in values but they continue to be quite random.

### • 2.2

It can be seen that Z has some missing values, so we use the EM algorithm to estimate  $\lambda$ .

We compute the likelihood for  $Y_i \sim Exp(\frac{X_i}{\lambda})$  and  $Z_i \sim Exp(\frac{X_i}{2\lambda})$ :

$$L(Y|\lambda) = \frac{\prod_{i=1}^{n} X_i}{\lambda^n} \exp\left(-\frac{\sum_{i=1}^{n} Y_i X_i}{\lambda}\right)$$

$$\Pi^n \quad X \quad \left(-\sum_{i=1}^{n} X_i X_i\right) \quad \Pi^n$$

$$L(Z|\lambda) = \frac{\prod_{i=1}^n X_i}{2^n \lambda^n} \exp\left(-\frac{\sum_{i=1}^n Z_i X_i}{2\lambda}\right) = \frac{\prod_{i=1}^n X_i}{2^n \lambda^n} \exp\left(-\frac{\sum_O Z_i X_i}{2\lambda} - \frac{\sum_M Z_i X_i}{2\lambda}\right)$$

where O is the set of indices for the observed values of Z and M is the set of indices for the missing values of Z.

Then, we take the logarithm to get:

$$l(Y,Z|\lambda) = \log \frac{(\prod_{i=1}^n X_i)^2}{2^n \lambda^{2n}} - \frac{\sum_{i=1}^n Y_i X_i}{\lambda} - \frac{\sum_O Z_i X_i}{2\lambda} - \frac{\sum_M Z_i X_i}{2\lambda}$$

At this point the E-step can be done. We are going to set every missing  $Z_i$  to its Expected value given  $X_i$  and the last lambda value,  $\lambda_t$ .

$$E[Z_i|X_i,\lambda_t] = \frac{2\lambda_t}{X_i}$$

Due to the exponential distribution of  $Z_i$ .

$$E(l(Y,Z|\lambda)) = \log \frac{(\prod_{i=1}^n X_i)^2}{2^n \lambda^{2n}} - \frac{\sum_{i=1}^n Y_i X_i}{\lambda} - \frac{\sum_O Z_i X_i}{2\lambda} - \frac{|M|\lambda_t}{\lambda}$$

Where |M| is the number of missing Z values. For the M-step, we have to compute the derivative with respect to  $\lambda$  and put it equal to zero.

Doing this we get:

$$\lambda_{t+1} = \frac{\sum_{i=1}^{n} Y_{i} X_{i}}{2n} + \frac{\sum_{O} Z_{i} X_{i}}{4n} + \frac{|M|\lambda_{t}}{2n}$$

• 2.3

We implement the algorithm in R using a starting  $\lambda$  value of  $\lambda_0 = 100$  and converge criterion: stop if the change in  $\lambda$  is less than 0.001.

The optimal value and the number of iterations are:

## Iterations Lambda ## 1 5 10.69587

• 2.4

Using the optimal value of  $\lambda$  found in the previous step, we compute the mean for Y and Z and we plot it against X in the same plot as in assignment 2.1.

## Time series plot of Y and Z against X with the EM-alg. expected values



The computed  $\lambda$  seems to be reasonable, based on visual inspection of the fit to data.

## **Group Contributions**

Andrea did heroic work with the latex for the report, while Thomas contributed the nice code for the genetic algorithm plots. We discussed the EM-derivation thoroughly and managed to correct each others mistakes. First assignment is derived from Thomas code while second assignment comes from Andreas code.

### Appendix

### R code

```
objfunc <- function(x){
   res <- x^2/exp(x) - 2 * exp(-9 * sin(x) / (x^2 + x + 1))
   return(res)
}
crossover <- function(x,y){
   return((x + y) / 2)
}
mutate <- function(x){
   res <- x^2 %% 30
   return(res)
}</pre>
```

```
genalgfunc <- function(maxiter = 100 , mutprob = 0.5){</pre>
  X \leftarrow seq(0,30,0.01)
  plot(X,objfunc(X), main = c("Genetic Algorithm maximization",
                                 paste("iterations =",maxiter,
                                        " p(mutation) =",mutprob)),
       type="1")
  X \leftarrow seq(0,30,5)
  Values <- objfunc(X)</pre>
  points(X, Values, col = "blue", cex = 1, pch = 1, lwd = 2)
  count <- 0
  maxvals <- c()</pre>
  repeat{
    if(count == maxiter){
      break
    parents <- sample(X,2)</pre>
    victim <- order(Values)[1]</pre>
    kid <- crossover(parents[1],parents[2])</pre>
    if(runif(1) < mutprob){</pre>
      kid <- mutate(kid)</pre>
    X[victim] <- kid</pre>
    Values <- objfunc(X)</pre>
    maxvals <- c(maxvals,max(Values))</pre>
    count <- count + 1</pre>
  points(X, Values, col = "red", cex = 1, pch = 4, lwd = 2)
  legend("topright",legend = c("Initial points","Final points"),
          lty = c(0,0), col = c("blue", "red"), pch = c(1,4), lwd = c(2,2))
 paste("Final maximum value achieved:", round(maxvals[maxiter],4))
\#par(mfrow = c(1,1))
\#maxiter <- c(10,20,30)
\#mutprob <- c(0.1, 0.2, 0.3)
#for(i in 1:2){
# for(j in 1:2){
   genalgfunc(maxiter[i], mutprob[j])
# }
#}
set.seed(-3456)
genalgfunc( maxiter = 100, mutprob = 0.5)
set.seed(-3456)
genalgfunc( maxiter = 100, mutprob =0.9)
set.seed(-3456)
genalgfunc( maxiter = 10, mutprob =0.1)
physical <- read.csv2("physical.csv", sep = "," ,header = TRUE, stringsAsFactors = FALSE)</pre>
#2.1
physical$X <- as.numeric(physical$X)</pre>
physical$Y <- as.numeric(physical$Y)</pre>
physical$Z <- as.numeric(physical$Z)</pre>
```

```
plot(physical$X, physical$Y, type = "l", ylim = c(0, 35), xlab = "X", ylab="value", main = "Time series"
lines(physical$X, physical$Z, col="red")
legend("topright", c("Y vs X", "Z vs X"),
       lty=c(1,1), lwd = c(2.5, 2.5), col = c("black", "red"))
em <- function(Y, Z, X){</pre>
Zobs <- Z[!is.na(Z)]</pre>
Zmiss <- Z[is.na(Z)]</pre>
Xobs <- which(!is.na(Z))</pre>
n <- length(Z)
r <- length(Zmiss)
# Initial value
lambda <- 100
i <- 1
repeat{
  # E- step
  EY \leftarrow sum(Y*X) / 2
  EZo <- sum(Zobs*X[Xobs]) / 4
  EZm \leftarrow (r * lambda) / 2
  #M-step
  lambda1 \leftarrow (EY + EZm + EZo) / n
  # Stop if converged
  if (abs(lambda1 - lambda) < 0.001) break
 lambda <- lambda1
  i < -i + 1
}
res <- data.frame(Iterations = i, Lambda = lambda)
return(res)
}
em_exp <- em(physical$Y, physical$Z, physical$X)</pre>
em_exp
plot(physical$X, physical$Y, type = "1", ylim = c(0, 35), xlab = "X", ylab = "value", main=c("Time series
            "with the EM-alg. expected values"))
lines(physical$X, physical$Z, col="red")
lines(physical$X, em_exp$Lambda/physical$X, col="blue")
lines(physical$X, (2*em_exp$Lambda)/physical$X, col="green")
legend("topright", c("Y vs X", "Z vs X", "EY vs X", "EZ vs X"),
       lty=c(1,1), lwd = c(2.5, 2.5), col = c("black", "red", "blue", "green"))
## NA
```