This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08007749 A

(43) Date of publication of application: 12 . 01 . 96

(51) Int. CI

H01J 9/02 H01J 1/30 H01J 31/12

(21) Application number: 06137317

(22) Date of filing: 20 . 06 . 94

(71) Applicant:

CANON INC

(72) Inventor:

ONISHI TOSHIICHI MITOME MASANORI

(54) MANUFACTURE OF ELECTRON EMITTING ELEMENT, ELECTRON SOURCE AND IMAGE FORMING DEVICE USING THIS ELEMENT MANUFACTURED BY THIS METHOD

(57) Abstract:

PURPOSE: To manufacture electron emitting elements having excellent stability and a high efficiency quickly and easily by forming an electron emission part on a conductive film furnished between two opposing electrodes, and depositing carbon by the use of a carbonic compound having a specific vapor pressure.

CONSTITUTION: By means of sputtering, etc., an electrode material is deposited on a base board 1, and element electrodes 2, 3 are formed using the photographic technique. Thereon a molten organic metal is applied followed by heating, baking, and etching or the like so that a conductive film 4 is formed between the two electrodes 2, 3 which are opposing. Then a reforming process is conducted, consisting of impressing a pulse voltage between the element electrodes 2, 3 and feeding current, and an electron emission part 5 whose structure has changed is formed on the conductive film 4. Then carbon or a carbonic compound is deposited on this film 4 as an activating process. The carbonic compound should have a vapor pressure of 5000hPa or less, more favorably between 2-5000hPa, in the temp.

atmosphere specified for this process, and current is fed to between the electrodes so that activation is obtained.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-7749

(43)公開日 平成8年(1996)1月12日

(51) Int.Cl.6		識別記号	庁内整理番号	FΙ	技術表示箇所
H 0 1 J	9/02	В			
	1/30	Z			
	31/12	В			

		審査請求	未請求 請求項の数10 OL (全 23 頁)			
(21)出顧番号	特職平6-137317	(71)出顧人	000001007			
(22)出顧日	平成6年(1994)6月20日	キヤノン株式会社 東京都大田区下丸子3丁目30番2号				
	**	(72)発明者	・ 大西 敏一東京都大田区下丸子3丁目30番2号キヤノン株式会社内・ 三留 正則東京都大田区下丸子3丁目30番2号キヤノ			
		(72)発明者				
			ン株式会社内			
	·	(74)代理人	弁理士 丸島 (様一 。			
		·				

(54) 【発明の名称】 電子放出素子の製造方法と、該製造方法にて製造される電子放出案子を用いた電子源及び画像形 成装置

(57)【要約】

【目的】 効率の高い電子放出素子を得るための電子放出素子の製造方法と、該製造方法にて製造される電子放出素子を用いた電子額及び画像形成装置を提供することを目的とする。

【構成】 対向する電極間に、電子放出部を含む導電性膜を有する電子放出架子の製造方法において、電極間に形成された、電子放出部を含む導電性膜に、炭素あるいは炭素化合物を堆積させる工程を有し、且つ、該炭素あるいは炭素化合物を堆積させる工程は、該工程での温度雰囲気下における蒸気圧が5000hPa以下である炭素化合物を用いて行われる工程であることを特徴とする電子放出案子の製造方法と該製造方法にで製造される電子放出案子を用いた電子源及び関像形成装置。

【特許請求の範囲】

【請求項1】 対向する電極間に、電子放出部を含む導電性膜を有する電子放出業子の製造方法において、電極間に形成された、電子放出部を含む導電性膜に、炭素あるいは炭素化合物を堆積させる工程を有し、且つ、該炭素あるいは炭素化合物を堆積させる工程は、該工程での温度雰囲気下における業気圧が5000hPa以下である炭素化合物を用いて行われる工程であることを特徴とする電子放出案子の製造方法。

1

【請求項2】 前配炭素化合物は、20℃における蒸気 10 出来子等がある。 圧が5000hPa以下の炭素化合物である請求項1に [0003]上 記載の電子放出素子の製造方法。 e&W.W.De

【簡求項3】 前配炭素化合物は、酸炭素あるいは炭素化合物を堆積させる工程での温度雰囲気下における蒸気圧が0.2hPa~5000hPaの炭素化合物である 請求項1に配載の電子放出案子の製造方法。

【簡求項4】 前配炭素化合物は、20℃における蒸気 圧が0.2hPa~5000hPaの炭素化合物である 請求項3に配載の電子放出素子の製造方法。

【請求項5】 前記導電性膜に炭素あるいは炭素化合物 20 を堆積させる工程は、真空雰囲気中に前記炭素化合物を導入し、前記電極間に電圧を印加する工程を有する請求項1または3に記載の電子放出素子の製造方法。

【請求項6】 前記導入される炭素化合物の分圧は、Pr。×10 以上である(但し、Pr。は該炭素化合物の蒸気圧である)請求項5に記載の電子放出素子の製造方法。

【請求項7】 電子放出素子を有し、入力信号に応じて電子を放出する電子源において、前記電子放出素子が請求項1~6のいずれかに配載の製造方法にて製造される 30電子放出素子であることを特徴とする電子源。

【請求項 8 複数の電子放出素子の各々の両端を配線にて接続した電子放出案子の行を複数行と、該電子放出案子より放出される電子線の変調を行う変調手段とを有し、入力信号に応じて電子を放出する電子源において、前記電子放出案子が請求項 1~6のいずれかに記載の製造方法にて製造される電子放出案子であることを特徴とする電子源。

【請求項9】 互いに電気的に絶縁されたm本のX方向 配線とn本のY方向配線とに接続し配列された複数の電 40 子放出案子を有し、入力借号に応じて電子を放出する電 子源において、前記電子放出案子が請求項1~6のいず れかに記載の製造方法にて製造される電子放出案子であ ることを特徴とする電子源。

【請求項10】 電子源と画像形成部材とを有し、入力信号に基づいて画像形成する画像形成装置において、前記電子源が請求項7~9のいずれかに記載の電子源であることを特徴とする画像形成装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子放出案子の製造方法と、篏製造方法にて製造される電子放出案子を用いた電子放及び表示装置等の関像形成装置に関する発明である。

[00002]

【従来の技術】従来、電子放出素子として熱電子源と冷 陰極電子額の2種類が知られている。上配冷陰極電子源 には電界放出型(以下、FE型と略す)、金属/絶縁層 /金属型(以下、MIM型と略す)や表面伝導型電子放 出素子等がある。

[0003] 上記FE型の例としては、W. P. Dyke&W. W. Dolan、"Field emission"、Advance in Electron Physics、8、89 (1956) あるいは、C. A. Spindt、"PHYSIACL Properties of thin-film field emission cathodes with molybdenum cones"、J. Appl. Phys.、47、5248 (1976) 等が知られている。
[0004] 上記MIM型の例としては、C. A. Mead、"The tunnel-emission amplifier、J. Appl. Phys.、32、

【0005】また上記表面伝導型電子放出案子の例としては、M. I. Elinson、Radio Eng. Electron Pys.、10、(1965)等がある。

646(1961)等が知られている。

【0006】上記表面伝導型電子放出素子は、基板上に 形成された小面積の薄膜に、膜面に平行に電流を流すこ とにより、電子放出が生ずる現象を利用するものであ る。この表面伝導型電子放出素子としては、前配エリン ソン (M. I. Elinson)等によるSnO2 薄膜 を用いたもの、Au薄膜によるもの [G. Dittme r:"Thin Solid Films"、9、31 7 (1972)]、In2 O1 / SnO2 薄膜によるも の [M. Hartwell and C. G. Fons tad:"IEEE Trans. ED Conf. "、519 (1975)]、カーボン薄膜によるもの [荒木久 他:真空、第26巻、第1号、22頁(19 83)]等が報告されている。

【0007】これらの表面伝導型電子放出素子の典型的な素子構成として、前述のM. ハートウェル (M. Hartwell) の案子構成を図21に示す。

[00008] 図 21 において、221 は基板であり、また 222 は導電性膜で、H型形状のパターンにスパッタで形成された金属酸化物薄膜等からなり、後述の通電フォーミングと呼ばれる通電処理により電子放出部 223 が形成される。尚、図 21 中の素子電極間隔 L1 は $0.5 \sim 1.0$ mm、W は 0.1 mmで設定されている。

50 また、電子放出部223の位置及び形状については不明

であるので、模式図として表した。

【0009】従来、これらの表面伝導型電子放出素子に おいては、前述したように電子放出を行う前に導電性膜 222を予め通電フォーミングと呼ばれる通電処理によって電子放出部223を形成するのが一般的であった。

【0010】即ち、この通電フォーミングとは前記導電性膜222の両端に直流電圧あるいは非常にゆっくりとした昇電圧、例えば1V/分程度を印加通電し、導電性膜を局所的に破壊、変形もしくは変質せしめ、電気的に高抵抗な状態にした電子放出部223を形成することで 10 ある。尚、例えば電子放出部223は、導電性膜224の一部に発生した亀裂を有し、その亀裂付近から電子放出が行われる。前記通電フォーミング処理をした表面伝導型電子放出素子は、上配導電性膜224に電圧を印加し、該素子に電流を流すことにより、上配電子放出部223より電子を放出せしめるものである。

【0011】以上述べた表面伝導型電子放出素子は、その構造が単純であり、しかも、その製造が容易であること等から、大面積にわたり、多数の該素子を配列形成出来るという利点を有する。そこで、このような利点を生 20かせるようないろいろな応用が研究されている。例えば、荷電ビーム源、表示装置等が挙げられる。

【0012】多数の表面伝導型電子放出素子を配列形成した例としては、後述するように梯子型配置と呼ぶ、並列に表面伝導型電子放出素子を配列し、個々の該案子の両端を配線(これを共通配線とも呼ぶ)でそれぞれ結線した行を、多数行配列した電子源が挙げられる(例えば、特開昭64-31332号公報、特開平1-283749号公報、特開平1-283

【0013】また、特に、表示装置等の画像形成装置に 30 おいては、近年、液晶を用いた平板型表示装置が、CR Tに替わって替及してきたが、この液晶を用いた平板型表示装置は、自発光型でないために、パックライトを持たなければならない等の問題点があり、自発光型の表示装置の開発が望まれてきた。

【0014】自発光型の表示装置の例としては、表面伝 導型電子放出素子を多数配置した電子源と、該電子源よ り放出される電子によって可視光を発光せしめる蛍光体 とを組み合わせた表示装置である画像形成装置が挙げら れる(米国特許5066883号公報等)。

[0015]

【発明が解決しようとする課題】しかしながら、以上述べた表面伝導型電子放出案子の真空中での挙動については殆ど判っておらず、より安定で制御された電子放出特性とその効率の向上が望まれてきた。

【0016】ここで効率とは、表面伝導型電子放出来子の一対の素子電極に電圧を印加したとき、素子を流れる電流(以後、素子電流Ifという)に対する真空中に放出される電流(以後、放出電流Ieという)の電流比を指す。

【0017】つまり、素子電流 I f はでき得るだけ小さく、そして、放出電流 I e はでき得るだけ大きいことが 望ましい。

【0018】より安定で制御された電子放出特性とその 効率の向上が成されれば、例えば、蛍光体を固像形成部 材とする固像形成装置においては、低電流で明るい高品 位な画像形成装置、例えばフラットテレビが実現され る。また、低電流化に伴い、画像形成装置を構成する駆 動回路なども安価になることも期待できる。

(0 【0019】本発明は、以上述べた通り、効率の高い電子放出素子を得るための電子放出素子の製造方法と、該製造方法にて製造される電子放出素子を用いた電子源及び国像形成装置を提供することを目的とするものである。

[0020]

【課題を解決するための手段】上記目的を達成する本発明は、対向する電極間に、電子放出部を含む導電性膜を有する電子放出素子の製造方法において、電極間に形成された、電子放出部を有する導電性膜に、炭素あるいは炭素化合物を堆積させる工程を有し、且つ、該炭素あるいは炭素化合物を堆積させる工程は、該工程での温度雰囲気下における蒸気圧が5000hPa以下である炭素化合物を用いて行われる工程であることを特徴とする電子放出来子の製造方法である。

【0021】 更に本発明は、電子放出素子を有し、入力 信号に応じて電子を放出する電子源において、前記電子 放出素子が上記製造方法にて製造される電子放出素子で あることを特徴とする電子源である。

【0022】更に本発明は、電子源と画像形成部材とを の 有し、入力信号に基づいて画像形成する画像形成装置に おいて、前記電子源が上記電子源であることを特徴とす る画像形成装置である。

【0023】以下に、本発明について更に詳述する。

【0024】表面伝導型電子放出素子は、前述したように、導電性膜に予め通電フォーミングと呼ばれる通電処理を施すことによって、電子放出部を形成するのが一般的であるが、該通電フォーミング処理が終了した素子に対し、更に活性化処理を施すことが好ましいことを本出額人は見出している。

(0025)この活性化工程は、例えば、オイルを含む 真空排気系で排気された真空装置内で、上記フォーミング後の素子に対し、例えば、通電フォーミングと同様の 電圧を印加することにより行われ、この活性化後の素子 には、電子放出部(またはその近傍)にカーボンが堆積 されている。従って、活性化工程には、電圧を印加する 際の素子が置かれている真空雰囲気中の有機材料の有無 が重要である。

【0026】このような電子放出部への有機材料の吸着 には、電子放出素子をその有機材料を含むガス雰囲気中 50 に暴露する方法が考えられ、従って、有機材料として、 室温において真空装置内への導入が容易であり、素子表 面で凝縮(液化)が起こりにくいガス状の材料が用いら れたが、室温でガス状の有機材料は、電子放出部近傍よ り脱離し易く、吸着量が少ないので、活性化し難いか、 または、活性化に時間がかかるという問題が生じた。ま た、このような材料を吸着させるために、業子回りに有 機材料の分圧を大きくすることも可能であるが、多量の 材料を必要としたり、活性化工程後の有機材料の排気 (除去) に時間がかかるなどの問題も生じた。また、素 子温度を低くして吸着量を増やすことも可能であるが、 活性化工程のための装置が煩雑になる。

【0027】一方、本出額人による特願平4-1945 64号で述べられているように、10⁻¹~10⁻⁵tor r程度の低真空で長時間の電子放出続けた場合に、真空 中に微量に存在する排気系からのオイルと衝突して、コ ンタミが電子放出部の近傍に堆積し、電子放出特性が劣 化するという問題が生じた。よって、活性化処理後の素 子雰囲気中からは、余分な有機材料は極力排気(除去) することが望まれる。

【0028】本発明は、以上の知見に基づき、ある特定 20 の蒸気圧を有する炭素化合物を選択し、これを用いて上 記活性化処理を行うことにより、素子表面へ炭素化合物 が吸着し易く、よって、素子の活性化処理を迅速且つ容 易にするとともに、更に好ましい態様では、活性化処理 後の素子雰囲気中からの該炭素化合物の排気(除去)を も容易にし、電子放出素子の耐久性の向上を図ることが できる。

【0029】以下に、本発明の好ましい実施態様につい て詳述する。

【0030】まず、本発明の電子放出素子の製造方法に 30 ついて、図1の(a)、(b)及び(c)を用いて説明 する。尚、図1は、該製造方法を工程順に示した素子断 面図である。

【0031】本発明の電子放出素子の製造方法は、

(A) まず、基板上の一対の素子電極間に配置された導 電性膜に、フォーミング処理を行う工程を有する。

【0032】1) 基板1を、洗剤、純水、及び有機溶剤 により充分に洗浄した後、真空蒸着法、スパッタ法等に より、電極材料を堆積し、次いで、フォトグラフィー技 10 (a)).

【0033】2) 素子電極2、3を設けた基板1に、有 機金属溶液を塗布して放置することにより有機金属薄膜 を形成する。この後、有機金属薄膜を加熱焼成処理し、 更に、リフトオフ、エッチング等によりパターニング し、導電性膜4を形成する(図1の(b))。尚、ここ では、有機金属溶液の塗布法により説明したが、これに 限られるものではなく、真空蒸着法、スパッタ法、化学 的気相堆積法、分散塗布法、ディッピング法、スピンナ 一法等によって形成される場合もある。

【0034】3)次に、フォーミング処理を行う。

【0035】このフォーミング処理は、導電性膜4を局 所的に破壊、変形もしくは変質せしめることにより、該 導電性膜4に構造の変化した部位を形成するための工程 であり、例えば、素子電極2及び3間に、不図示の電源 により通電して、導電性膜4の部位に構造の変化した電 子放出部5を形成する通電フォーミング処理である(図 1の(c))。このように、通電フォーミングにより導 電性膜4を局所的に破壊、変形もしくは変質せしめ、構 10 造の変化した部位を電子放出部と呼ぶ。

【0036】この通電フォーミングの電圧波形の例を図 2の(a)、(b)に示す。

【0037】電圧波形は、特に、パルス波形が好まし く、パルス波高値を定電圧としたパルスを連続的に印加 する場合(図2の(a))と、パルス波高値を増加させ ながら電圧パルスを印加する場合(図2の(b))とが ある。

【0038】まず、パルス波高値を定電圧とした場合 (図2の(a)) について説明する。

【0039】図2の(a) において、T1、T2はそれ ぞれ電圧波形のパルス幅とパルス間隔であり、T1を1 マイクロ秒~10ミリ秒、T2を10マイクロ秒~10 0 ミリ秒とし、三角波の波高値(通電フォーミング時の ビーク電圧) は、作成する電子放出素子の形態に応じて 適宜選択し、適当な真空度、例えば、10-5 torr程 度の真空雰囲気下で数秒から数十分印加する。尚、前記 素子電極間に印加するパルス波形は、三角波に限られる ものではなく、矩形被等、所望の被形を用いても良い。

【0040】次に、パルス波高値を増加させながら電圧 パルスを印加する場合(図2の(b))について説明す る。

【0041】図2の(b) において、T1、T2は前述 の図2の(a)と同様であるが、三角波の波高値(通電 フォーミング時のピーク電圧)は、例えば、0.1Vス テップ程度づつ増加させ、適当な真空雰囲気下で印加す

【0042】尚、この場合の通電フォーミング処理の終 了は、パルス間隔T2中に、導電性膜4を局所的に破 壊、変形しない程度の電圧、例えば、0.1V程度の電 術により該基板1上に素子電極2及び3を形成する(図 40 圧で、素子電流を測定し、抵抗値を求め、例えば、1M オーム以上の抵抗を示した時に通電フォーミングを終了 とする。

【0043】(B) 更に、活性化処理を行う工程を有す

【0044】4) 前述の通りフォーミング処理を行った 素子に対し、活性化処理を行うが、この活性化処理と は、例えば、10⁻⁴~10⁻⁵ torr程度の真空度で、 通電フォーミング同様に、波高値を定電圧としたパルス の印加を繰り返す処理工程のことを言い、かかる処理工 50 程により、真空中に存在する有機物質から、炭素あるい は炭素化合物が、上配素子に堆積して、素子電流 I f 及 び放出電流Ieが著しく変化する。この活性化処理は、 例えば、放出電流Ieが飽和した時点で酸処理工程を終 了とし、また、肢パルス波高値は、好ましくは動作駆動 電圧である。

【0045】ここで、前述した炭素あるいは炭素化合物 とは、TEM、ラマン等の結果から、グラファイト (但 し、単結晶及び多結晶の双方を含む)、非晶質カーポン (但し、非晶質カーポンと多結晶グラファイトとの混合 物も含む)等であり、その堆積物の膜厚は、好ましく は、500オングストローム以下であり、より好ましく は、300オングストローム以下である。

【0046】本発明の製造方法においては、この活性化 処理は、好ましくは、適宜選択された炭素化合物材料を 真空雰囲気中に導入することにより行われる。また、本 発明において更に好ましくは、活性化処理を施す業子 を、オイル成分を含まない真空雰囲気中に保持し、その 後上配炭素化合物を導入することにより行われる。

【0047】即ち、本発明で特に選択される好ましい炭 おける蒸気圧が、5000hPa以下の材料である。

【0048】また、この活性化処理工程時の雰囲気温度 は、室温である方が、炭素化合物材料の導入や素子の温 度管理等の点から好ましく、よって、この活性化処理に 用いられる炭素化合物材料は、より好ましくは、20℃ における蒸気圧が5000hPa以下の材料であり、例 えば、アルカン、アルケン、アルキンの脂肪族炭化水素 類、芳香族炭化水素類、アルコール類、アルデヒド類、 ケトン類、アミン類、フェノール、カルポン、スルホン 酸等の有機酸類、及びこれらの炭素化合物有機材料の誘 30 導体の中で、上記蒸気圧の条件に適合する炭素化合物材 料が適宜選択される。

【0049】20℃における蒸気圧が5000hPa以 下の炭素化合物材料のうち、本発明において特に好まし い材料を具体的に列挙するならば、プタジエン、n-ヘ キサン、1-ヘキセン、n-オクタン、n-デカン、n ードデカン、ペンゼン、ニトロペンゼン、トルエン、o ーキシレン、ペンゾニトリル、クロロエチレン、トリク ロロエチレン、メタノール、エタノール、イソプロピル アルコール、エチレングリコール、グリセリン、ホルム 40 アルデヒド、アセトアルデヒド、プロパナール、アセト ン、エチルメチルケトン、ジエチルケトン、メチルアミ ン、エチルアミン、エチレンジアミン、フェノール、螠 酸、酢酸、プロピオン酸等が挙げられる。

【0050】本発明の製造方法において用いられる炭素 化合物材料の前配蒸気圧が5000hPa以下であるこ とは、来子表面への炭素あるいは炭素化合物の堆積を容 易にし、電子放出業子の活性化処理時間を短縮すること ができる.

材料は、上記活性化処理工程時の雰囲気温度、好ましく は20℃における蒸気圧が、0.2hPa~5000h Pa、より望ましくは10hPa~5000hPaであ ることが特に好ましい。

【0052】20℃における蒸気圧が0.2hPa~5 000hPaである炭素化合物材料のうち、本発明にお いて特に好ましい炭素化合物材料を具体的に列挙するな らば、ブタジエン、n - ヘキサン、1 - ヘキセン、ペン ゼン、トルエン、o ーキシレン、ペンゾニトリル、クロ 10 ロエチレン、トリクロロエチレン、メタノール、エタノ ール、イソプロピルアルコール、ホルムアルデヒド、ア セトアルデヒド、プロパナール、アセトン、エチルメチ ルケトン、ジエチルケトン、メチルアミン、エチルアミ ン、エチレンジアミン、フェノール、蟻酸、酢酸、プロ ピオン酸等が挙げられる。

【0053】本発明の製造方法において用いられる炭素 化合物材料の前記蒸気圧が、0.2hPa~5000h Paであることは、秦子表面への炭素あるいは炭素化合 物の堆積を容易にし、電子放出素子の活性化処理時間を **素化合物材料は、この活性化処理工程時の雰囲気温度に 20 短縮することができるうえに更には、活性化処理後の素** 子雰囲気中からの該炭素化合物の排気(除去)をも容易 し、電子放出素子のより一層の耐久性の向上を図ること

> 【0054】また、本発明の製造方法において、炭素化 合物材料の導入分圧としては、通常の真空排気装置を用 いた場合、10-2~10-1 torr程度であることが好 ましい。

【0055】また、炭素化合物材料の蒸気圧とその導入 分圧に関しては、炭素化合物材料の蒸気圧をPro、導 入分圧をPrとすると、PrはPr。×10 以上であ るように、炭素化合物材料の種類に応じて導入分圧を設 定することが、特に、活性化処理時間を短縮できる等の 点から好ましい。

【0056】尚、以上述べた活性化処理は、前配真空雰 囲気に導入する有機材料の種類と導入分圧、及び素子に 印加するパルス電圧等に依存して、素子電流Ⅰf、及び 放出電流1eの時間依存が変化する他、前配フォーミン グ処理によって変形、変質した導電性膜の近傍へ形成さ れる炭素または炭素化合物の被膜の形成状態も変化する ものである。

【0057】以上のように作成された電子放出素子は、 好ましくは、前配通電フォーミング処理あるいは前配活 性化処理での真空度より高い真空度の真空雰囲気にて動 作駆動され、より好ましくは、80~150℃にて加熱 後、このより高い真空度の真空雰囲気下で動作駆動され る。 尚、前記通電フォーミング処理あるいは前記活性化 処理での真空度より高い真空度の真空雰囲気とは、例え ば、約10-6torr以上の真空度であり、より好まし くは、前記炭素及び炭素化合物が新たにほぼ堆積しない 【0051】更に、本発明で特に選択される炭素化合物 50 ような超高真空系である。このような超高真空系におい

ては、これ以上の炭素及び炭素化合物の堆積を抑制することが可能であり、よって、素子電流 If、放出電流 Ie は安定する。

【0058】次に、以上の本発明の製造方法にて作成される電子放出素子の基本特性について、図3及び図4を用いて説明する。

【0059】図3は、上述の製造方法にて製造された電子放出案子の電子放出特性を測定するための測定評価装置の概略構成図である。尚、図3において、図1と同じ符号を付したものは同様の部材を示す。また、11は、電子放出案子に素子電圧Vfを印加するための電源、10は、案子電極2及び3間の導電性膜4を流れる案子電流Ifを測定するための電流計、14は、案子の電子放出部より放出される放出電流Ieを補捉するためのアノード電極、13は、アノード電極14に電圧を印加するための高圧電源、12は、素子の電子放出部5より放出される放出電流Ieを測定するための電流計、15は真空装置、16は排気ポンプである。

【0060】また、電子放出素子及びアノード電極14 などは、真空装置15内に設置され、その真空装置に 20 は、不図示の真空系などの真空装置に必要な機器が具備 されており、所望の真空下で電子放出来子の測定評価を 行えるようになっている。尚、排気ポンプ16は、ター ポポンプ、ロータリーポンプからなる通常の高真空装置 系と、更には、イオンポンプなどからなる超高真空装置 系とからなる。

【0061】また、この真空装置15には、図4に示すように、ニードルバルブ21を介して炭素化合物材料を有するアンプルまたはガスポンペ等の材料額22と接続されており、真空装置15内に炭素化合物材料が気体と30して導入できるようになっており、その導入量は、真空計により真空度を測定しながら、ニードルバルブ21の開閉量と排気ポンプ23の排気量により調整することができる。尚、24はバルブを示し、25はドライポンプを示す。

【0062】また、真空装置全体及び、電子放出素子の配置された基板は、不図示のヒーターにより200℃まで加熱できる。よって、本測定評価装置は、前述の本発明の製造方法における通電フォーミング以降の工程を行うことのできる製造装置とも成り得るものである。

【0063】尚、アノード電極の電圧は1kV~10k V、アノード電極と電子放出素子との距離Hは2mm~ 8mmの範囲で測定した。

【0064】図3に示した測定評価装置により測定された、案子電流 I f と放出電流 I e の活性化処理時間に対する依存例を図5に、また、放出電流 I e および案子電流 I f と素子電圧 V f の関係の典型的な例を図6に示す。尚、図6は、放出電流 I e は素子電流 I f に比べて著しく小さいので、任意単位で示されている。

【0065】図6からも明らかなように、本発明の製造 50 り、より好ましくは、素子電極間に印加する電圧と電子

10 方法にて作成される電子放出案子は、放出電流 I e に対する三つの特徴的な性質を有する。

【0066】まず第一に、本素子はある電圧(関値電圧と呼ぶ、図6中のVth)以上の素子電圧を印加すると急激に放出電流Ieが増加し、一方、関値電圧Vth以下では放出電流Ieがほとんど検出されない。すなわち、放出電流Ieに対する明確な関値電圧Vthを持った非線形素子である。

【0067】第二に、放出電流Ieが案子電圧Vfに依 10 存するため、放出電流Ieは案子電圧Vfで制御でき

【0068】第三に、アノード電極14に捕捉される放出電荷は、案子電圧Vfを印加する時間に依存する。すなわち、アノード電極14に捕捉される電荷量は、案子電圧Vfを印加する時間により制御できる。

【0069】尚、図6に示される通り、素子電流 I f は、素子電圧 V f に対して単調増加する特性 (M I 特性と呼ぶ) (図6の実線)と、電圧制御型負性抵抗特性 (VCN R 特性と呼ぶ) (図6の破線)を示す両場合があるが、これら素子電流の特性は、その製法及び真空装置内の真空雰囲気条件等に依存する。本発明において、より好ましい態様は、上記M I 特性を示す態様である。【0070】以上のように作成される電子放出案子は、

基本的には、以下に述べるような構成を有し、平面型表面伝導型電子放出案子と垂直型表面伝導型電子放出案子の二つに大別される。

【0071】まず、平面型表面伝導型電子放出素子について説明する。

【0072】図7の(a)及び(b)はそれぞれ、平面 の 型表面伝導型電子放出素子の基本構成を示す模式的平面 図及び断面図である。図7において、1は基板、2及び 3は素子電極、4は導電性膜、5は電子放出部を示す。

【0073】基板1としては、石英ガラス、Na等の不純物含有量を減少させたガラス、青板ガラス、青板ガラス、青板ガラスにスパッタ法等により形成したSiOzを積層したガラス基板等及びアルミナ等のセラミックス等が挙げられる。

【0074】対向する素子電極5、6の材料としては、一般的な導体材料が用いられ、例えば、Ni、Cr、A U、Mo、W、Pt、Ti、Al、Cu、Pd等の金属、或は合金、及びPd、Ag、Au、RuO2、Pd-Ag等の金属或は金属酸化物、ガラス等から構成される印刷導体、In2O1-SnO2等の透明導電体及びポリシリコン等の半導体導体材料等から適宜選択される。

【0075】素子電極間隔し、素子電極長さW、導電性 膜4の形状等は、かかる電子放出素子の応用形態等によ り適宜設計されるが、案子電極間隔しは、好ましくは、 数百オングストロームより数百マイクロメートルであ り、より低ましくは、表子無短間に印加する表質に発

放出し得る電界強度等により、数マイクロメートルより 数十マイクロメートルである。

【0076】尚、導電性膜4と素子電極2、3の積層順 序は、図7に示される態様に限られず、基板1上に、導 電性膜4、対向する素子電極2、3の順に積層構成して も良い。

【0077】導電性膜4は、良好な電子放出特性を得る ためには、微粒子で構成された微粒子膜が特に好まし く、その膜厚は、素子電極2、3へのステップカパレー ジ、素子電極2、3間の抵抗値、及び前述した通電フォ 10 - ミング条件等によって適宜設定され、好ましくは、数 オングストロームより数千オングストロームで、特に好 ましくは、10オングストローム~500オングストロ -ムであって、その抵抗値は、10°~10°オーム/ □のシート抵抗値である。

【0078】また、導電性膜4を構成する材料は、P d, Ru, Ag, Au, Ti, In, Cu, Cr, F e、Zn、Sn、Ta、W、Pb等の金属、PdO、S nO2、In2O3、PbO、Sb2O3 等の酸化物、 dBィ等の硼化物、TiC、ZrC、HfC、TaC、 SiC、WC等の炭化物、TiN、ZrN、HfN等の 窒化物、Si、Ge等の半導体、カーボン等が挙げられ る.

【0079】尚、ここで述べる微粒子膜とは、複数の微 粒子が集合した膜であり、その微細構造として、微粒子 が個々に分散配置した状態のみならず、微粒子が互いに 隣接、あるいは重なり合った状態(島状も含む)の膜を 指しており、微粒子の粒径は、数オングストロームより 数千オングストローム、好ましくは、10オングストロ 30 ーム~200オングストロームである。

【0080】電子放出部5は、例えば、導電性膜4の--部に形成された高抵抗の亀裂であり、導電性膜4の膜 厚、膜質、材料及び前述した通電フォーミング等の製法 に依存して形成される。また、数オングストロームより 数百オングストロームの粒径の導電性微粒子を有するこ ともある。この導電性微粒子は、導電性膜4を構成する 材料の元素の一部、あるいは該元素の全てを含むもので ある。また、電子放出部5及びその近傍の導電性膜4に は、炭素及び炭素化合物を有する。

【0081】次に、前記垂直型表面伝導型電子放出案子 について説明する。

【0082】図8は、垂直型表面伝導型電子放出案子の 基本的な構成を示す模式的図面であり、図7と同一の符 母を付した部材は、図7のものと同様である。

【0083】基板1、素子電極2及び3、導電性膜4、 電子放出部5は、前述した平面型表面伝導型電子放出案 子と同様の材料にて構成されたものであるが、段差形成 部31は、真空蒸着法、印刷法、スパッタ法などで形成 されたS+O。などの絶縁性材料で構成され、段差形成 50 いて、7+1は複数の表面伝導型電子放出素子が配列され

12

部31の膜厚が、先に述べた平面型表面伝導型電子放出 素子の素子電極間隔しに対応し、数百オングストローム から数十マイクロメートルであり、該段差形成部の製 法、及び素子電極間に印加する電圧と電子放出し得る電 界強度により適宜設定されるが、好ましくは、数百オン グストロームから数マイクロメートルとされる。

【0084】導電性膜4は、素子電極2及び3と段差形 成部31の作成後に形成されるために、素子電極2及び 3の上に積層される。なお、電子放出部5は、図8にお いては、段差形成部31に直線状に示されているが、作 成条件及び前述の通電フォーミング条件などに依存し て、その形状及び位置共にこれに限るものではない。

【0085】以上のような本発明の製造方法にて作成さ れる電子放出素子は、前述の三つの特徴的性質を有する ので、入力信号に応じて、電子放出特性が、複数の電子 放出素子を配置した電子源及び画像形成装置等において も容易に制御できることとなり、多方面への応用ができ

【0086】次に、本発明の製造方法にて作成される電 HfB2、2rB2、LaB6、CeB6、YB4、G 20 子放出素子を用いた電子源及び画像形成装置の基本的な 構成について述べる。

> [0087] 本発明の製造方法により作成される電子放 出素子を、好ましくは複数個、基板上に配列して、電子 源及び画像形成装置が構成される。上記基板上での電子 放出素子の配列方式は、例えば、従来例で述べた、多数 の表面伝導型電子放出素子を並列に配置し、個々の素子 の両端を配線にて結線した、電子放出素子の行を多数配 列し(行方向と呼ぶ)、この配線と直交する方向に(列 方向と呼ぶ)、該電子源の上方の空間に設置された制御 電極 (グリッドと呼ぶ) により電子を制御駆動する配列 法、及びつぎに述べるm本のX方向配線の上にn本のY 方向配線を、層間絶縁層を介して、設置し表面伝導型電 子放出素子の一対の素子電極にそれぞれ、X方向配線、 Y方向配線を接続した配列法があげられる。これを単純 マトリクス配置と以下呼ぶ。

【0088】まず、単純マトリクスについて詳述する。

【0089】本発明にかかわる電子放出素子の前述した 3つの基本的特性の特徴によれば、、単純マトリクス配 置された表面伝導型電子放出案子においても、表面伝導 40 型電子放出素子からの放出電子は、関値電圧以上では、 対向する素子電極間に印加するパルス状電圧の波高値と 幅で制御される。一方、閾値電圧以下では、殆ど放出さ れない。この特性によれば、多数の電子放出素子を配置 した場合においても、個々の案子に、上記パルス状電圧 を適宜印加すれれば、人力信号に応じて、表面伝導型電 子放出素子を選択し、その電子放出量が、制御できるこ ととなる。

【0090】以下この原理に基づき構成した電子原基板 の構成について、図9を用いて説明する。尚、図9にお た基板(以下、電子源基板という)、72はX方向配線、73はY方向配線、74は表面伝導型電子放出素子、75は結線である。尚、表面伝導型電子放出素子74は、前述した平面型あるいは垂直型のどちらであっても良い。図9において、電子源基板71は、前述したガラス基板等であり、用途に応じて設置される表面伝導型電子放出素子の個数及び個々の素子の設計上の形状が、適宜設定される。

【0091】 m本のX方向配線72は、DX1、DX2、...、DXmからなり、真空蒸着法、印刷法、スパ 10 ッタ法等で形成した導電性金属等である。また、多数の表面伝導型電子放出来子にほぼ均等な電圧が供給される様に、材料、膜厚、配線巾が設定される。Y方向配線73は、DY1、DY2、...、DYnのn本の配線よりなり、X方向配線72と同様に、真空蒸着法、印刷法、スパッタ法等で形成し、所望のパターンとした導電性金属等からなり、多数の表面伝導型素子にほぼ均等な電圧が供給される様に、材料、膜厚、配線巾等が設定される。これらm本のX方向配線72とn本のY方向配線73間には、不図示の層間絶縁層が設置され、電気的に分 20 離されて、マトリックス配線を構成する。尚、m及びnは共に正の整数である。

【0092】不図示の層間絶録層は、真空蒸着法、印刷法、スパッタ法等で形成されたSiO2等であり、X方向配線72を形成した基板71の全面、あるいはその一部に所望の形状で形成され、特に、X方向配線72とY方向配線73の交差部の電位差に耐え得る様に、膜厚、材料、製法が、適宜股定される。X方向配線72とY方向配線73は、それぞれ外部端子として引き出されている。

[0093] 更に、表面伝導型電子放出素子74の対向する電極(不図示)が、m本のX方向配線72及びn本のY方向配線73と、真空蒸着法、印刷法、スパッタ法等で形成された導電性金属等からなる結線75とによって電気的に接続されているものである。

【0094】ここで、m本のX方向配線72とn本のY方向配線73と結線75と対向する素子電極の導電性金属は、その構成元素の一部あるいはその構成元素の全部が同一であっても、また、それぞれ異なっても良く、前述した素子電極と同様の材料等から適宜選択される。尚、これら素子電極への配線は、素子電極と配線材料とが同一である場合は、これらを素子電極と総称する場合もある。また、表面伝導型電子放出素子は、基板71あるいは、不図示の層間絶縁層上のどちらに形成しても良い。

【0095】また、詳しくは、後述するが、前記X方向配象72には、X方向に配列する表面伝導型電子放出素子74の行を、入力信号に応じて、走査するための走査信号を印加するための不図示の走査信号印加手段と電気的に接続されている。

14

【0096】一方、Y方向配線73には、Y方向に配列 する表面伝導型電子放出素子74の列の各列を入力信号 に応じて、変調するための変調信号を印加するための不 図示の変調信号発生手段と電気的に接続されている。

[0097] 更に、表面伝導型電子放出素子の各素子に 印加される駆動電圧は、当該素子に印加される走査信号 と変調信号の差電圧として供給されるものである。

[0098] 以上のような構成により、単純なマトリクス配線だけで、個別の電子放出案子を選択して、独立に 駆動可能となる。

【0099】次に、以上のようにして作成した単純マトリクス配置による電子源を用いた、表示等に用いる画像形成装置について、図10、図11、及び図12を用いて説明する。

【0100】図10は画像形成装置の表示パネルの基本 構成図、図11は蛍光膜を示す図、図12は画像形成装 置をNTSC方式のテレビ信号に応じて表示を行う例の 駆動回路のプロック図である。

【0101】図10において、71は、上述のようにして電子放出案子を作製した電子源基板、81は、電子源基板71を固定したリアプレート、86は、ガラス基板83の内面に蛍光膜84とメタルバック85等が形成されたフェースプレート、82は支持枠であり、リアプレート81、支持枠82及びフェースプレート86をフリットガラス等を塗布し、大気中あるいは、窒素中で、400~500℃で10分以上焼成することで、封着して、外囲器88を構成する。

【0102】尚、図10において、74は、図9における電子放出素子に相当し、72、73は、表面伝導型電 30 子放出素子の一対の素子電極と接続されたX方向配線及びY方向配線である。

【0103】外囲器88は、上述の如く、フェースープレート86、支持枠82、リアプレート81で外囲器88を構成したが、リアプレート81は主に基板71の強度を補強する目的で設けられるため、基板71自体で十分な強度を持つ場合は別体のリアプレート81は不要であり、基板71に直接支持枠82を封着し、フェースプレート86、支持枠82、基板71にて外囲器88を構成しても良い。また、不図示ではあるが、更に、フェスプレート86とリアプレート81間に、スペーサーと呼ばれる支持体を設置することで、大気圧に対して十分な強度を持つ外囲器88のの構成にすることもできる。

[0104] 図11は蛍光膜である。蛍光膜84は、モノクロームの場合は蛍光体のみから成るが、カラーの蛍光膜の場合は、蛍光体の配列によりブラックストライブあるいはブラックマトリクスなどと呼ばれる黒色導電材91と蛍光体92とで構成される。ブラックストライブ、ブラックマトリクスが設けられる目的は、カラー表示の場合必要となる三原色蛍光体の、各蛍光体92間の50 塗り分け部を黒くすることで混色等を目立たなくするこ

とと、蛍光膜84における外光反射によるコントラスト の低下を抑制することである。 プラックストライプの材 料としては、通常良く用いられている黒鉛を主成分とす る材料だけでなく、導電性があり、光の透過及び反射が 少ない材料であればこれに限るものではない。

【0105】ここで、ガラス基板83に蛍光体を塗布す る方法はモノクローム、カラーによらず、沈澱法や印刷 法が用いられる。

【0106】また、蛍光膜84の内面側には通常メタル パック85が設けられる。メタルパックの目的は、蛍光 10 る。 体の発光のうち内面倒への光をフェースプレート86側 へ鏡面反射することにより輝度を向上すること、電子ビ ーム加速電圧を印加するための電極として作用するこ と、外囲器内で発生した負イオンの衝突によるダメージ からの蛍光体の保護等である。メタルバックは、蛍光膜 作製後、蛍光膜の内面倒表面の平滑化処理(通常フィル ミングと呼ばれる)を行い、その後A1を真空蒸着等で 堆積することで作製できる。

【0107】フェースプレート86には、更に蛍光膜8 極(不図示)を設けても良い。

【0108】また、前述の封着を行う際、カラーの場合 は各色蛍光体と電子放出索子とを対応させなくてはいけ ないため、十分な位置合わせを行なう必要がある。

【0109】外囲器88は、不図示の排気管を通じ、1 0・1 torr程度の真空度にされ、封止が行われる。ま た、外囲器88の封止後の真空度を維持するために、ゲ ッター処理を行う場合もある。これは、外囲器88の封 止を行う直前あるいは封止後に、抵抗加熱あるいは高周 (不図示) に配置されたゲッターを加熱し、蒸着膜を形 成する処理である。

【0110】ゲッターは通常Ba等が主成分であり、該 蒸着膜の吸着作用により、例えば、10⁻⁶~10⁻⁷to rrの真空度を維持するものである。

【0111】次に、前述の単純マトリクス配置の電子源 を用いて構成した表示パネルを、NTSC方式のテレビ 信号に基づきテレビジョン表示を行うための駆動回路の 概略構成を図12のプロック図を用いて説明する。

であり、また、102は走査回路、103は制御回路、 104はシフトレジスタ、105はラインメモリ、10 6は同期信号分離回路、107は変調信号発生器、Vx 及びVaは直流電圧源である。

【0113】以下、各部の機能を説明してゆくが、ま ず、表示パネル101は、端子Dox1~Doxm、端 子Doy1~Doyn、及び、高圧端子Hvを介して外 部の電気回路と接続している。このうち、端子Dox1 ~Doxmには、前配表示パネル内に設けられている電 子源、即ち、M行N列の行列状にマトリクス配線された 50 16

表面伝導型電子放出素子群を一行(N素子)づつ順次駆 動していくための操作信号が印加される。一方、端子D oy1~Doynには、前記走査信号により選択された 一行の表面伝導型電子放出素子の各素子の出力電子ビー ムを制御するための変調信号が印加される。また、高圧 端子Hvには、直流電圧源Vaより、例えば、10kV の直流電圧が供給されるが、これは、表面伝導型電子放 出案子より出力される電子ビームに、蛍光体を励起する のに充分なエネルギーを付与するための加速電圧であ

【0114】次に、走査回路102について説明する。

【0115】走査回路102は、その内部にM個のスイ ッチング素子(同図中、S1~Smで模式的に示してい る)を備えるもので、各スイッチング素子は、直流電圧 源Vxの出力電圧もしくは0V(グランドレベル)のい ずれか一方を選択し、表示パネル101の端子Dox1 ~Doxmと電気的に接続するものである。S1~Sm の各スイッチング素子は、制御回路103が出力する制 御信号Tscanに基づいて動作するものだが、実際に 4の導伝性を高めるため、蛍光膜84の外面側に透明電 20 は、例えば、FETのようなスイッチング案子を組み合 わせることにより容易に構成することが可能である。

> 【0116】尚、前記直流電圧源Vxは、本実施態様に おいては、前記表面伝導型電子放出素子の特性(電子放 出の閾値電圧)に基づき、走査されない素子に印加され る駆動電圧が、電子放出の関値電圧以下となるような一 定電圧を出力するよう設定されている。

【0117】また、制御回路103は、外部より入力す る画像信号に基づいて、適切な表示が行われるように各 部の動作を整合させる働きを持つものであり、以下に説 波加熱等の加熱法により、外囲器 8 8 内の所定の位置 30 明する同期信号分離回路 1 0 6 より送られる同期信号T syncに基づいて、各部に対して、Tscan、Ts ft、及び、Tmryの各制御信号を発生する。

【0118】同期信号分離回路106は、外部から入力 されるNTSC方式のテレビ信号から、同期信号成分と 輝度信号成分とを分離する回路で、良く知られているよ うに周波数分離(フィルター)回路を用いれば、容易に 構成できるものである。同期信号分離回路106により 分離された同期信号は、良く知られるように、垂直同期 信号と水平同期信号よりなるが、ここでは説明の便宜 【0112】 図12において、101は前配表示パネル 40 上、Tsync信号として図示した。一方、前配テレビ 信号から分離された画像の輝度信号成分を、便宜上、D ATA信号と示すが、同信号はシフトレジスタ104に 入力される。

> 【0119】シフトレジスタ104は、時系列的にシリ アルに入力される前記DATA信号を、画像の1ライン 毎にシリアル/パラレル変換するためのもので、前配制 御回路103より送られる制御信号Tsftに基づいて 動作する。即ち、制御信号Tsftは、シフトレジスタ 104のシフトクロックであると言い換えても良い。シ リアル/パラレル変換された画像1ライン分(電子放出

案子のN案子分の駆動データに相当する)のデータは、 Id1~IdnのN個の並列信号として前記シフトレジ スタ104より出力される。

【0120】 ラインメモリ105は、射御回路103より送られる鮮魚信号Tmryにしたがって、適宜Id1 $\sim I$ dno内容を記憶する。記憶された内容は、I'd1 $\sim I$ 'dnとして出力され、変調信号発生器107に入力される。

【0121】変調信号発生器107は、前配画像データ I'd1~1'dnの各々に応じて、表面伝導型電子放 10 出案子の各々に適切に駆動変調するための信号源で、その出力信号は、端子Doy1~Doynを通じて表示パネル101内の表面伝導型電子放出素子に印加される。

【0122】本発明に係る電子放出来子は、前述した通り、放出電流Ieに対して、以下の基本特性を有している。即ち、前述したように、電子放出には明確な関値電圧Vthがあり、Vth以上の電圧を印加された時のみ電子放出が生じる。

【0123】また、電子放出の関値電圧以上の電圧に対しては、素子への印加電圧の変化に応じて、放出電流も 20変化していく。尚、電子放出素子の材料や構成、製造方法を変えることにより、電子放出の関値電圧Vthの値や、印加電圧に対する放出電流の変化の度合いが変わる場合もあるが、いずれにしても以下のようなことが言える。

【0124】即ち、本電子放出素子に、パルス状の電圧を印加する場合、例えば、電子放出の関値電圧以下の電圧を印加しても電子放出は生じないが、電子放出の関値電圧以上の電圧を印加すると電子は放出される。その際、第一には、パルスの波高値Vmを変化させることに 30より、出力電子ビームの強度を制御することが可能である。第二には、パルスの幅Pwを変化させることにより出力される電子ビームの電荷の総量を制御することが可能である。

【0125】したがって、入力信号に応じて、電子放出 案子を変調する方式としては、電圧変調方式、パルス幅 変調方式等が挙げられ、電圧変調方式を実施するには、 変調信号発生器107としては、一定の長さの電圧パルス を発生するが入力されるデータに応じて適宜パルスの 波高値を変調するような電圧変調方式の回路を用いる。

【0126】また、パルス幅変調方式を実施するには、 変調信号発生器107としては、一定の液高値の電圧パ ルスを発生するが、入力されるデータに応じて適宜電圧 パルスの幅を変調するようなパルス幅変調方式の回路を 用いるものである。

【0127】以上説明した一連の動作により、表示パネル101を用いてテレビジョンの表示を行える。尚、上記説明中、特に記載しなかったが、シフトレジスタ104やラインメモリ105は、デジタル信号式のものでもアナログ信号式のものでも差し支えなく。関するに、顧

18 像信号のシリアル/パラレル変換や配憶が所定の速度で 行われれば良い。

【0128】デジタル信号式を用いる場合には、同期信号分離回路106の出力信号DATAをデジタル信号化することが必要であるが、これは、同期信号分離回路106の出力部にA/D変換器を備えれば容易に可能であることは言うまでもない。また、これと関連して、ラインメモリ105の出力信号がデジタル信号かアナログ信号かにより、変調信号発生器107に用いられる回路が若干異なったものとなるのも言うまでもない。

【0129】即ち、デジタル信号の場合には、電圧変調方式においては、変調信号発生器107には、例えば、D/A変換回路を用い、必要に応じて、増幅回路等を付け加えれば良い。また、パルス幅変調方式おいては、変調信号発生器107は、例えば、高速の発振器、及び発振器の出力する波数を計数する計数器(カウンタ)、更に、計数器の出力値と前記メモリの出力値を比較する比較器(コンパレータ)を組み合わせた回路を用いれば、当業者であれば容易に構成できる。必要に応じて、比較器の出力するパルス幅変調された変調信号を表面伝導型電子放出素子の駆動電圧にまで電圧増幅するための増幅器を付け加えても良い。

【0130】一方、アナログ信号式を用いる場合には、電圧変調方式においては、変調信号発生器107には、例えば、オペアンプ等を用いた増幅回路を用いれば良く、必要に応じて、レペルシフト回路等を付け加えても良い。また、パルス幅変調方式においては、例えば、電圧制御型発振回路(VCO)を用いれば良く、必要に応じて、表面伝導型電子放出素子の駆動電圧にまで電圧増幅するための増幅器を付け加えても良い。

【0131】以上のように完成した本発明の画像形成装置において、こうして、各電子放出案子には、容器外端子Dox1~Doxnを通じて電圧を印加することにより電子放出させ、高圧端子Hvを通じてメタルバック85あるいは不図示の透明電極に高圧を印加して電子ピームを加速し、蛍光膜84に電子ピームを衝突させ、蛍光体を励起・発光させることで画像を表示することができる。

【0132】以上述べた構成は、表示等に用いられる画像形成装置を作成する上で必要な概略構成であり、例えば、各部材の材料等、詳細な部分は上述の内容に限定されるものではなく、画像形成装置の用途に適するように適宜選択される。また、入力信号の例として、NTSC方式を挙げたが、これに限るものではなく、他のPAL、SECAM方式等の賭方式でも良い。また、更には、これらよりも、多数の走査線からなるTV信号、例えば、MUSE方式をはじめとする高品位TV方式でも良い。

4 やラインメモリ105は、デジタル信号式のものでも 【0133】次に、前述した梯子型配置の電子源及び画アナログ信号式のものでも差し支えなく、要するに、画 50 像形成装置の基本的な構成について、図13び図14用

いて説明する。

[0134] 図13において、110は電子源基板、1 11は電子放出素子、112は、Dx1~Dx10より なる前記電子放出案子を配線するための共通配線であ る。電子放出素子111は、基板110上に、X方向に 並列に複数個配置される(これを素子行と呼ぶ)。この 素子行が複数行配置されて電子源を構成している。

【0135】このような電子源は、各条子行の共通配線 間 (Dx1-Dx2間、Dx3-Dx4間、Dx5-D x6間、Dx7-Dx8間、Dx9-Dx10間) に適 10 宜、駆動電圧を印加することで、各案子行を独立に駆動 することが可能である。即ち、電子ビームを放出したい 素子行には、電子放出の関値電圧以上の電圧を印加し、 電子ピームを放出させない素子行には、電子放出の関値 **電圧以下の電圧を印加すれば良い。また、各案子行間** で、それぞれ一方の共通配線を同一配線とする(例え ば、Dx2とDx3、Dx4とDx5、Dx6とDx 7、Dx8とDx9をそれぞれ同一配線とする) ように しても良い。

【0136】図14は、梯子型配置の電子源を備えた画 20 像形成装置の表示パネル構造を示すための図である。1 20はグリッド電極、121は電子が通過するための空 孔、122は、Dox1、Dox2、···、Doxm よりなる容器外端子、123は、グリッド電極120と 接続されたG1、G2、・・・、Gnからなる容器外端 子、110は、図13に示した前述の電子源基板であ る。尚、図13及び図14の同一符号のものは同じもの を示す。

【0137】図14の表示パネルは、前述の単純マトリ クス配置の画像形成装置(図10)と比較し、電子源基 30 板110とフェースプレート86との間にグリッド電極 120を備えている点で大きく異なっている。

【0138】図14において、基板110とフェースプ レート86との間にはグリッド電極120が設けられて いるが、このグリッド電極120は、表面伝導型電子放 出案子から放出された電子ピームを変調することのでき る電極で、梯子配置の各案子行とは直交してストライプ 状に設けられており、更に、電子ピームを通過させるた めに、各素子に対応して1個ずつ円形の空孔121が設 けられている。尚、このグリッド電極の形状及び設置位 40 置は必ずしも図14に示す態様に限られるものではな く、電子放出案子の周辺や近傍に配置されていれば良 く、また、空孔121もメッシュ状に多数の通過口が設 けられた態様であっても良い。

【0139】尚、容器外端子122及びグリッド容器外 端子123は、不図示の制御回路と電気的に接続されて

【0140】以上の画像形成装置は、素子行を1列ずつ 順次駆動(走査)していくのと同期して、グリッド電極 列に閩像1ライン分の変調信号を何時に印加することに 50 る微粒子からなる導電性膜4を形成した(図1の

より、各電子ピームの蛍光体への照射を制御し、画像を 1ラインずつ表示することができる。

【0141】以上述べた、本発明の思想によれば、テレ ビジョン放送の表示装置のみならず、テレビ会議システ ム、コンピューター等の表示装置として、好適な画像形 成装置が提供される。更には、感光性ドラム等とで構成 された光プリンターとしての画像形成装置としても用い ることもできる.

[0142]

【実施例】以下、実施例を挙げて、本発明をより詳細に 説明する。

【0143】 (実施例1) 本実施例における電子放出素 子の製造方法を図1を用いて以下に説明する。

【0144】①、まず、基板1として石英基板を用い、 これを洗剤、純水および有機溶剤により十分に洗浄を行 った後、該基板1上に、レジスト材RD-2000Nを 2500 rpm、40秒でスピンナー塗布して80℃、 25分加熱してプリベークした。

【0145】次に、電極間隔(図7のLに相当)が2_μ m、電極長さ(図7のWに相当)が500μmの電極形 状に対応するマスクを用いて密着露光し、RD-200 0 N用現像液で現像し、120℃、20分加熱してポス トペークした。

【0146】本実施例においては、素子電極の材料とし てニッケル金属を用い、抵抗加熱蒸着機を用いてニッケ ルを毎秒0.3nmで膜厚が100nmになるまで蒸着 した後、アセトンでリフトオフし、アセトン、イソプロ ピルアルコール、つづいて酢酸プチルで洗浄後、乾燥し て、基板1上に対向する素子電極2、3を形成した(図 10 (a)).

【0147】②. 次に、クロムを基板全面に50nm蒸 着し、レジスト材A21370を2500rpm、30 秒スピンナー塗布して、90℃、30分加熱しプリベー クした後、電子放出部が形成される導電性膜を塗布する ためのパターンを有するマスクを用いて露光し、現像液 MIF312で現像して、120℃、30分加熱しポス トペークした。

[0148] 次に、(NH₄) Ce (NO₃) 6 /HC 104 /H2 O=17g/5cc/100ccの組成の 溶液に30秒浸漬し、クロムをエッチングした後、アセ トン中、10分間超音波攪拌してレジストを剥離して、 更に、有機パラジウム溶液(ccp4230、奥野製薬 (株) 製) を800 r p m、30 秒 スピンナー 塗布し て、300℃、10分間焼成し、酸化パラジウム (Pd 〇) 微粒子 (平均粒径: 7 nm) を有する微粒子状の導 電性膜を形成した。

【0149】次に、クロムをリフトオフして、その幅 (図7のW'に相当) が300μm、膜厚が10nm、 シート抵抗値が 5×10^4 Ω / \Box の、Pdを主元素とす (b))。なおここで述べる微粒子膜とは、複数の微粒子が集合した膜であり、その微細構造として、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接、あるいは、重なり合った状態(島状も含む)の膜をさし、その粒径とは、前配状態で粒子形状が認識可能な微粒子についての径をいう。

【0150】③、次に、以上の素子を図3の測定評価装置に設置し、真空ポンプにて排気し、2×10-1torrの真空度に達した後、素子に素子電圧Vfを印加するための電源10より、素子電極2、3間にそれぞれ、電 10圧を印加し、通電処理(フォーミング処理)を行った。尚、フォーミング処理の電圧波形を図2の(b)に示す。

【0151】図2の(b)中、T1及びT2は電圧波形のパルス幅とパルス間隔であり、本実施例ではT1を1ミリ秒、T2を10ミリ秒とし、矩形波の波高値(フォーミング時のピーク電圧)は0.1 Vステップで昇圧し、フォーミング処理を行なった。また、フォーミング処理中は、同時に、0.1 Vの電圧で、T2間に抵抗測定パルスを挿入し、抵抗を測定した。尚フォーミング処理の終了は、抵抗測定パルスでの測定値が、約1 MQ以上になった時とし、同時に、素子への電圧の印加を終了した。本実施例において、素子のフォーミング電圧VFは、5.1 Vであっり、以上のようにして、導電性膜4に亀裂形状の電子放出部5が形成された(図1の(c))。

【0152】④、以上のようにして作成された素子について、アセトン(20℃での蒸気圧233hPa)を、約1×10⁻⁶ torr導入した雰囲気下で、20分間、素子電極間に電圧を印加して活性化処理を行なった。尚、活性化処理の電圧波形を図15に示す。

【0153】図15中、T3及びT4は電圧波形のパルス幅とパルス間隔であり、本実施例ではT3を100マイクロ秒、T4を10ミリ秒とし、矩形波の波高値は14Vで行った。

【0154】その後、約1×10⁻¹ torrまで排気を 行った。

【0155】尚、活性化に用いられる有機材料の真空装置内への導入は、ニードルバルブを用いた導入系(図4)で、真空装置内の圧力がほぼ一定になるように調整 40した。

【0156】以上のようにして得られた素子の特性は、アノード電極の電圧は1kV、アノード電極と電子放出素子との距離Hは4mmで測定した。また、真空度1×10・1torrの環境下で測定を行った。

【0157】その結果、素子電圧が14 Vの時、素子電流は2 mA、放出電流は1 μ A となり、電子放出効率nは0.05 %であった。また、10 時間の連続駆動を行っても特性に変化は無かった。

【0158】また、作製した電子放出素子に関し、素子 50 子放出素子を得ることができた。

電圧14V、電圧パルスの繰り返し周期60Hzで、パルス幅が 30μ sec、 100μ sec、 300μ secを々での、素子電流 If 及び放出電流 Ieのパルス幅

22

依存性について、表1に示した。

【0159】 (実施例2) 本実施例においては、実施例 1の活性化処理において用いられたアセトンの代わりに、n-ドデカン (20 $^{\circ}$ での蒸気圧0.1hPa) を用いて活性化を行った以外は実施例1と同様に行った。

【0160】得られた素子に対し、実施例1と同様にIf、Ieの測定を行ったところ、素子電圧が14Vの時、素子電流は2.2mA、放出電流は1μAとなり、電子放出効率 nは0.045%であった。また、10時間の連続駆動を行っても特性に変化は無かった。

【0161】(実施例3)本実施例においては、実施例1の活性化処理において用いられたアセトンの代わりにホルムアルデヒド(20℃での蒸気圧4370hPa)を用いて2時間、活性化を行った以外は実施例1と同様に行った。

【0162】得られた素子に対し、実施例1と同様にI 30 f、Ieの測定を行ったところ、素子電圧が14Vの 時、素子電流は1mA、放出電流は0.2μAとなり、 電子放出効率ηは0.02%であった。また、10時間 の連続駆動を行っても特性に変化は無かった。

【0.16.3】 (実施例4) 本実施例においては、実施例 1.0 の活性化処理において用いられたアセトンの代わりに n-0 キサン (2.0 ℃での蒸気圧1.6.0 h P.a) を用いて活性化を行った以外は実施例1.2 と同様に行った。

【0164】得られた素子に対し、実施例1と同様にIf、Ieの測定を行ったところ、素子電圧が14Vの時、素子電流は1.8mA、放出電流は0.8μAとなり、電子放出効率πは0.044%であった。

【0165】(実施例5)本実施例においては、実施例1の活性化処理において用いられたアセトンの代わりにn-ウンデカン(20℃での蒸気圧0.35hPa)を用いて活性化を行った以外は実施例1と同様に行った。

【0166】得られた案子に対し、実施例1と同様にIf、Ieの測定を行ったところ、案子電圧が14Vの時、案子電流は1.5mA、放出電流は $0.6\mu A$ となり、電子放出効率 η は0.04%であった。

【0167】また、以上の実施例1、2、4、5にで作製した電子放出素子に関し、素子電圧14V、電圧パルスの繰り返し周期60 H z で、パルス幅が30 μ s e c、100 μ s e c、300 μ s e c 各々での、素子電流 I f 及び放出電流 I e のパルス幅依存性について、表1に示した。

【0168】表1の結果から明らかであるように、活性 化時に導入される炭素化合物材料の20℃における蒸気 圧が、0.2hPa~500hPaの範囲にある場合に は、上記If及びIeのパルス幅依存性が生じにくい電 子が出来るを得ることができた [0169]

*【表1】 表

	索 子9	T流If(mA)	放出電流Ι e (μΑ)		
パルス幅	30 µ 🕏	100 μ秒	300 μ Đ	30 µ ф	100 μ₺	300 µ 🕏
実施例 1	1. 8	2. 0	2. 0	0. 9	0. 9	1. 0
実施例 2	2. 6	2. 4	2. 2	1. 4	1. 2	1. 0
实施例 4	1. 7	1. 7	1. 8	0. 7	0. 7	0.8
実施例 5	1. 4	1. 4	1. 5	0. 5	0.6	0. 6

【0170】 (実施例6) 本実施例においては、本発明 の製造方法にて製造される電子放出素子を多数有する電 20 子源を用いた図14に示されるような画像形成装置を作 製した。

【0171】実施例1と同様の製造方法で、対向する電 極間に導電性膜を配置した楽子111を、図13に示す とおり、絶縁性基板110上にライン状に多数作製し た。

【0172】次に、この絶縁性基板 (電子源基板) 11 0をリアプレート81上に固定した後、絶縁性基板11 0の上方に、電子通過孔121を有する変調電極120 を、上記ライン状の素子と直交する方向に配置した。

【0173】更に、絶縁性基板110の5mm上方に、 フェースプレート86(ガラス基板83の内面に蛍光膜 84とメタルバック85が形成されて構成される)を支 持枠82を介し配置し、フェースプレート86、支持枠 82、リアプレート81の接合部にフリットガラスを塗 布し、大気中あるいは窒素雰囲気中で400℃ないし5 00℃で10分以上焼成することで封着した。また、リ アプレート81への絶縁性基板110の固定もフリット ガラスで行った。

【0174】また、蛍光膜84は、ストライプ形状(図 40 11の(a)) を採用し、先に、プラックストライプを 形成し、その間隙部に各色蛍光体を塗布し、蛍光膜84 を作製した。ブラックストライプの材料として通常良く 用いられている黒鉛を主成分とする材料を用いた。ま た、ガラス基板83に蛍光体を塗布する方法は、スラリ 一法を用いた。

【0175】また、蛍光膜84の内面側にはメタルパッ ク85が設けられている。メタルパックは、蛍光膜作製 後、蛍光膜の内面側表面の平滑化処理(通常フィルミン グと呼ばれる)を行い、その後、Alを真空蒸着するこ 50 光膜84に衝突し、励起・発光させる。その際、変調電

とで作製した。

【0176】フェースプレート86には、更に蛍光膜8 4の導伝性を高めるため、蛍光膜84の外面側に透明電 極(不図示)が設けられる場合もあるが、本実施例で は、メタルバックのみで十分な導伝性が得られたので省 略した。

24

【0177】前述の封着を行う際、カラーの場合は各色 蛍光体と電子放出素子とを対応させなくてはいけないた め、十分な位置合わせを行った。

【0178】以上のようにして完成したガラス容器内の 雰囲気を排気管(図示せず)を通じて、真空ポンプにて 30 排気し、十分な真空度に達した後、容器外端子Dox1 ~Doxmを通じ、電極間に電圧を印加し、前述の実施 例1と同様の条件にてフォーミングを行い、素子111 の導電性膜に電子放出部を形成した。

【0179】次に、ガラス容器内にアセトンを1×10 - 'torr導入し、容器外端子Dox1~Doxmを通 じ、電極間に電圧を印加し、前述の実施例1と同様の条 件にて素子111の活性化を行った。

【0180】その後、アセトンを排気し、基板110上 に多数の電子放出素子が配列した電子源を作製した。

【0181】最後に、約1×10⁻⁶torrの真空度 で、不図示の排気管をガスバーナーで熱することで溶着 し外囲器の封止を行い、更に、封止後の真空度を維持す るために、高周波加熱法でゲッター処理を行った。

【0182】以上のように完成した本発明の画像形成装 置において、各電子放出案子には、容器外端子Dox1 ~Doxmを通じ、電圧を印加することにより電子放出 させ、放出された電子は変調電極120の電子通過孔1 21を通過した後、高圧端子87を通じ、メタルバック 85に印加された数k V以上の高圧により加速され、蛍

極120に情報信号に応じた電圧を容器外端子 $G1\sim G$ nを通じ印加することにより、電子通過孔121を通過する電子ビームを制御し固像表示することがであるが、本実施例では、絶縁層であるS1O2(不図示)を介し、絶縁性基板 110010μ m上方に 50μ m径の電子通過孔121を有する変調電極120を配置することで、加速電圧として6k V印加したとき、電子ビームのオンとオフは50 V以内の変調電圧で制御でき、画像表示することができた。

[0183] (実施例7) 本実施例においては、本発明 10 の製造方法にて製造される電子放出案子を多数有する電子放出案子を多数有する電子 でいた 図10に示されるような画像形成装置を作製した。

【0184】図10は、本実施例における画像形成装置の基本構成図であり、図11は、その蛍光膜である。

【0185】電子源の一部の平面図を図16に示す。また、図中のA-A、断面図を図17に示す。但し、図16、図17、図18、図19で、同じ記号を示したものは、同じものを示す。ここで、1は基板、72は図9のDxmに対応するX方向配線(下配線とも呼ぶ)、73は図9のDynに対応するY方向配線(上配線とも呼ぶ)、4は電子放出部を含む導電性膜、5、6は素子電極、141は層間絶縁層、142は、素子電極5と下配線72と電気的接続のためのコンタクトホールである。

【0186】まず、本実施例の電子源の素子基板の製造 方法を図18及び図19により工程順に従って具体的に 説明する。

【0187】工程-a

商浄化した青板ガラス上に厚さ0.5ミクロンのシリコン酸化膜をスパッタ法で形成した基板1上に、真空蒸着30により厚さ50AのCr、厚さ6000オングストロームのAuを順次積層した後、ホトレジスト(A21370・ペキスト社製)をスピンナーにより回転盤布、ペークした後、ホトマスク像を露光、現像して、下配線72のレジストパターンを形成し、Au/Cr堆積膜をウェットエッチングして、所望の形状の下配線72を形成する(図18の(a))。

【0188】工程-b

次に厚さ1.0ミクロンのシリコン酸化膜からなる層間 絶縁層141をRFスパッタ法により堆積する(図18 40 の(b))。

【0189】工程-c

工程 b で堆積したシリコン酸化膜にコンタクトホール142を形成するためのホトレジストパターンを作り、これをマスクとして層間絶縁層141をエッチングしてコンタクトホール142を形成する。エッチングはCF√とH2 ガスを用いたRIE (Reactive lon Etching) 法によった(図18の(c))。

【0190】工程-d

その後、秦子電極5と秦子電極間ギャップGとなるべき 50 ト81上に固定した後、基板71の5mm上方に、フェ

26

パターンをホトレジスト(RD-2000N-41 日立化成社製)形成し、真空蒸着法により、厚さ50オングストロームのTi、厚さ1000オングストロームのNiを順次堆積した。ホトレジストパターンを有機溶剤で溶解し、Ni/Ti堆積膜をリフトオフし、案子電極間隔Gは3ミクロンとし、案子電極の幅は300ミクロン、を有する素子電極5、6を形成した(図18の(d))。

【0191】工程-e

7 案子電極5、6の上に上配線73のホトレジストパターンを形成した後、厚さ50オングストロームのTi、厚さ5000オングストロームのAuを順次真空蒸着により堆積し、リフトオフにより不要の部分を除去して、所望の形状の上配線73を形成した(図19の(e))。 [0192]工程-f

案子間電極ギャップおよびこの近傍に関口を有するマスクにより膜厚1000オングストロームのCr膜151を真空蒸着により堆積・パターニングし、その上に有機Pd溶液(ccp4230、奥野製薬(株)製)をスピンナーにより回転塗布、300℃で10分間の加熱焼成処理をした(図19の(f))。また、こうして形成された主元素としてPdよりなる微粒子からなる導電性膜2の膜厚は100オングストローム、シート抵抗値は5×10・Ω/□であった。なおここで述べる微粒子膜とは、上述したように、複数の微粒子が集合した膜であり、その微細構造として、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接、あるいは、重なり合った状態(島状も含む)の膜をさし、その粒径とは、前配状態で粒子形状が認識可能な微粒子ついての径をいう。

【0193】工程-g

Cr 膜 151 および焼成後の導電性膜 2 を酸エッチャントによりエッチングして所望のパターンを形成した(図 19 の(g))。

【0194】工程-h

コンタクトホール142部分以外にレジストを整布するようなパターンを形成し、真空蒸着により厚さ50オングストロームのTi、厚さ5000オングストロームのAuを順次堆積した。リフトオフにより不要の部分を除去することにより、コンタクトホール142を埋め込んだ。

[0195]以上の工程により絶縁性基板1上に下配線72、層間絶縁層141、上配線73、素子電極5、6、導電性膜2等を形成した(図19の(h))。

【0196】 つぎに、以上のようにして作成した電子源の素子基板を用いて表示装置を構成した例を、図10と図11を用いて説明する。

【0197】上述のようにして多数の素子を配列形成した電子源基板71を、図10に示すとおり、リアプレート81上に開室した後、基板71の5mm上方に、フェ

ースプレート86(ガラス基板83の内面に蛍光膜84 とメタルパック85が形成されて構成される)を支持枠 82を介し配置し、フェースプレート86、支持枠8 2、リアプレート81の接合部にフリットガラスを塗布 し、大気中あるいは窒素雰囲気中で400℃ないし50 0℃で10分以上焼成することで封着した。また、リア プレート81への基板71の固定もフリットガラスで行 った。尚、図10において、.72、73はそれぞれX方 向及びY方向の配線である。

【0198】蛍光膜84は、モノクロームの場合は蛍光 10 体のみから成るが、本実施例では蛍光体はストライプ形 状 (図11の(a)) を採用し、先にブラックストライ プを形成し、その間隙部に各色蛍光体を塗布し、蛍光膜 84を作製した。ブラックストライプの材料として通常 良く用いられている黒鉛を主成分とする材料を用いた。 また、ガラス基板83に蛍光体を塗布する方法はスラリ 一法を用いた。

【0199】また、蛍光膜84の内面側には通常メタル パック85設けられる。メタルバックは、蛍光膜作製 グと呼ばれる)を行い、その後、Alを真空蒸着するこ とで作製した。

【0200】フェースプレート86には、更に蛍光膜8 4の導伝性を高めるため、蛍光膜84の外面側に透明電 極(不図示)が散けられる場合もあるが、本実施例で は、メタルバックのみで十分な導伝性が得られたので省 略した。

【0201】前述の封着を行う際、カラーの場合は各色 蛍光体と素子とを対応させなくてはいけないため、十分 な位置合わせを行った。

【0202】以上のようにして完成したガラス容器内の 雰囲気を排気管(図示せず)を通じオイルを使用しない 真空ポンプにて1×10⁻⁶torrまで排気した。

【0 2 0 3】その後、容器外端子Dox1~Doxmと Doy1~Doynを通じ、図17に示した素子の電極 5、6間に電圧を印加し、導電性膜を通電処理(フォー ミング処理) することにより、電子放出部を含む導電性 膜4を作成した。

【0204】フォーミング処理の電圧波形を図2(b) に示す。

【0205】このように作成された電子放出部は、パラ ジウム元素を主成分とする微粒子が分散配置された状態 となり、その微粒子の平均粒径は30オングストローム であった。

【0206】次に、ガラス容器内にアセトンを1×10 - 3 torr導入し、容器外端子Dox1~DoxmとD oyl~Doynを通じ電子放出素子74の電極間に電 圧を印加し、実施例1と同様の条件にて活性化を行っ た。その後、アセトンを排気し、電子源を作製した。

【0207】次に1×10⁻⁶torr程度の真空度で、

120℃、10時間のペーキングを行った後、不図示の 排気管をガスパーナーで熱することで溶着し外囲器の封 止を行った。

[0208] 最後に封止後の真空度を維持するために、 ゲッター処理を行った。これは、封止を行う直前に、高 周波加熱等の加熱法により、画像形成装置内の所定の位 置(不図示)に配置されたゲッターを加熱し、蒸着膜を 形成処理した。ゲッターはBa等を主成分とした。

【0209】以上のように完成した本発明の画像表示装 置において、各電子放出素子には、容器外端子Dox1 ~Doxm、Doy1~Doynを通じ、走査信号及び 変調信号を不図示の信号発生手段よりそれぞれ、印加す ることにより、電子放出させ、高圧端子87を通じ、メ タルパック85に数kV以上の高圧を印加し、電子ピー ムを加速し、蛍光膜84に衝突させ、励起・発光させる ことで画像を表示した。

【0210】(実施例8)図20は、以上説明した表面 伝導型電子放出案子を電子源として用いたディスプレイ パネルに、例えば、テレビジョン放送をはじめとする種 後、蛍光膜の内面側表面の平滑化処理(通常フィルミン 20 々の画像情報源より提供される画像情報を表示できるよ うに構成した表示装置の一例を示すための図である。

> 【0211】図20中、200はディスプレイパネル、 201はディスプレイパネルの駆動回路、202はディ スプレイコントローラ、203はマチプレクサ、204 はデコーダ、205は入出力インターフェース回路、2 06はCPU、207は画像生成回路、208および2 09および210は画像メモリーインターフェース回 路、211は画像入力インターフェース回路、212お よび213はTV信号受信回路、214は入力部であ る。尚、本表示装置は、例えば、テレビジョン信号のよ うに映像情報と音声情報の両方を含む信号を受信する場 合には、当然映像の表示と同時に音声を再生するもので あるが、本発明の特徴と直接関係しない音声情報の受 信、分離、再生、処理、記憶などに関する回路やスピー カーなどについては説明を省略する。

【0212】以下、画像信号の流れに沿って各部の機能 を説明してゆく。

【0213】まず、TV信号受信回路213は、例え ば、電波や空間光通信などのような無線伝送系を用いて 40 伝送されるTV画像信号を受信する為の回路である。

【0214】尚、受信するTV信号の方式は特に限られ るものではなく、例えば、NTSC方式、PAL方式、 SECAM方式等の緒方式でも良い。また、これらより 更に多数の走査線よりなるTV信号(例えば、MUSE 方式をはじめとするいわゆる高品位TV)は、大面積化 や大画素数化に適した前記ディスプレイパネルの利点を 生かすのに好適な信号源である。

【0215】TV信号受信回路213で受信されたTV 信号は、デコーダ204に出力される。

【0216】また、TV信号受信回路212は、例え 50

ば、同軸ケーブルや光ファイパー等のような有線伝送系 を用いて伝送されるTV画像信号を受信するための回路 であるが、前記TV信号受信回路213と同様に、受信 するTV信号の方式は特に限られるものではなく、ま た、本回路で受信されたTV信号もデコーダ204に出 力される。

【0217】また、画像入力インターフェース回路21 1は、例えば、TVカメラや画像読み取りスキャナーな どの画像入力装置から供給される画像信号を取り込むた めの回路で、取り込まれた画像信号はデコーダ204に 10 出力される.

【0218】また、画像メモリーインターフェース回路 210は、ビデオテープレコーダー(以下、VTRと略 す) に記憶されている画像信号を取り込むための回路 で、取り込まれた画像信号はデコーダ204に出力され ろ.

【0219】また、画像メモリーインターフェース回路 209は、ビデオディスクに記憶されている画像信号を 取り込むための回路で、取り込まれた画像信号はデコー ダ204に出力される。

【0220】また、画像メモリーインターフェース回路 208は、所謂、静止画ディスクのように、静止画像デ ータを記憶している装置から画像信号を取り込むための 回路で、取り込まれた静止画像データはデコーダ204 に入力される。

[0221] また、入出カインターフェース回路205 は、本表示装置と外部のコンピュータもしくはコンピュ ータネットワークもしくはプリンター等の出力装置とを 接続するための回路であって、画像データや文字・図形 は本表示装置の備えるCPU206と外部との間で制御 信号や数値データの入出力などを行うことも可能であ る。

【0222】また、画像生成回路207は、前配入出力 インターフェース回路205を介して、外部から入力さ れる画像データや文字・図形情報や、あるいはCPU2 06より出力される画像データや文字・図形情報に基づ き、表示用画像データを生成するための回路である。本 回路の内部には、例えば、画像データや文字・図形情報 を蓄積するための書き換え可能メモリーや、文字コード 40 に行えるようになるという利点が生まれるからである。 に対応する画像パターンが記憶されている読み出し専用 メモリーや、画像処理を行うためのプロセッサー等をは じめとして画像の生成に必要な回路が組み込まれてい

【0223】本回路により生成された表示用画像データ は、デコーダ204に出力されるが、場合によっては前 記入出力インターフェース回路205を介して外部のコ ンピュータネットワークやプリンターに出力することも 可能である。

[0224] また、CPU206は、主として本表示装 50

30

置の動作制御や、表示画像の生成や選択や編集に関わる 作業を行うもので、例えば、マルチプレクサ203に制 御信号を出力し、ディスプレイパネルに表示する画像信 号を適宜選択したり組み合わせたりする。

【0225】また、その際には表示する画像信号に応じ てディスプレイパネルコントローラ202に対して制御 信号を発生し、画面表示周波数や走査方法(例えば、イ ンターレースか、ノンインターレースか)や一面面の走 査線の数等、表示装置の動作を適宜制御する。

【0226】また、前配画像生成回路207に対して画 像データや文字・図形情報を直接出力したり、あるいは 前記入出力インターフェース回路205を介して外部の コンピュータやメモリーをアクセスして画像データや文 字・図形情報を入力する。

【0227】尚、CPU206は、もちろんこれ以外の 目的の作業にも関わるものであっても良く、例えば、パ ーソナルコンピュータやワードプロセッサ等のように、 情報を生成したり処理する機能に直接関わっても良い。 あるいは、前述したように、入出カインターフェース回 路205を介して外部のコンピュータネットワークと接 20 統し、例えば、数値計算などの作業を外部機器と協同し て行っても良い。

【0228】また、入力部214は、前記CPU206 に使用者が命令やプログラム、あるいはデータなどを入 力するためのものであり、例えば、キーポードやマウス のほか、ジョイスティック、パーコードリーダー、音声 認識装置等の多様な入力機器を用いる事が可能である。

[0229] また、デコーダ204は、前記207乃至 213より入力される種々の画像信号を3原色信号、ま 情報の入出力を行うのはもちろんのこと、場合によって 30 たは輝度信号と「信号、Q信号に逆変換するための回路 である。尚、同図中に点線で示すように、デコーダ20 4は内部に画像メモリーを備えるのが望ましく、これ は、例えば、MUSE方式をはじめとして、逆変換する に際して、画像メモリーを必要とするようなテレビ信号 を扱うためである。

> 【0230】また、画像メモリーを備える事により、静 止画の表示が容易になる、あるいは前配画像生成回路2 07及びCPU206と協同して画像の間引き、補間、 拡大、縮小、合成をはじめとする画像処理や編集が容易

> 【0231】また、マルチプレクサ203は、前配CP U206より入力される制御信号に基づき、表示画像を **適宜選択するものである。即ち、マルチプレクサ203** は、デコーダ204から入力される逆変換された画像信 号のうちから所望の画像信号を選択して駆動回路201 に出力する。その場合には、一画面表示時間内で画像信 号を切り替えて選択することにより、いわゆる多画面テ レビのように、一画面を複数の領域に分けて領域によっ て異なる画 を表示することも可能である。

【0232】また、ディスプレイパネルコントローラ2

02は、前配CPU206より入力される制御信号に基 づき、駆動回路201の動作を制御するための回路であ る。まず、ディスプレイパネルの基本的な動作に関わる ものとして、例えば、ディスプレイパネルの駆動用電源 (図示せず) の動作シーケンスを制御するための信号を 駆動回路201に対して出力する。

【0233】また、ディスプレイパネルの駆動方法に関 わるものとして、例えば、画面表示周波数や走査方法 (例えば、インターレースか、ノンインターレースか) を制御するための信号を駆動回路201に対して出力す 10 る。

【0234】また、場合によっては、表示画像の輝度や コントラストや色調やシャープネスといった画質の調整 に関わる制御信号を駆動回路201に対して出力する場 合もある。

【0235】また、駆動回路201は、ディスプレイパ ネル200に印加する駆動信号を発生するための回路で あり、前配マルチプレクサ203から入力される画像信 母と、前記ディスプレイパネルコントローラ202より 入力される制御信号に基づいて動作するものである。

【0236】以上、各部の機能について説明したが、図 20に例示した構成により、本表示装置においては多様 な画像情報源より入力される画像情報をディスプレイパ ネル200に表示する事が可能である。

【0237】即ち、テレビジョン放送をはじめとする各 種の画像信号は、デコーダ204において逆変換された 後、マルチプレクサ203において適宜選択され、駆動 回路201に入入される。一方、デイスプレイコントロ ーラ202は、表示する画像信号に応じて駆動回路20 1の動作を制御するための制御信号を発生する。

【0238】駆動回路201は、上配画像信号と制御信 号に基づいて、ディスプレイパネル200に駆動信号を 印加する。これにより、ディスプレイパネル200にお いて画像が表示される。

【0239】これら一連の動作は、CPU206により 統括的に制御される。

【0240】また、本表示装置においては、前記デコー ダ204に内蔵する画像メモリや画像生成回路207及 び情報の中から選択したものを表示するだけでなく、表 示する画像情報に対して、例えば、拡大、縮小、回転、 移動、エッジ強調、間引き、補間、色変換、画像の縦横 比変換等をはじめとする画像処理や、合成、消去、接 統、入れ換え、はめ込み等をはじめとする画像編集を行 う事も可能である。

【0241】また、本実施例の説明では特に触れなかっ たが、上記画像処理や上記画像編集と同様に、音声情報 に関しても処理や編集を行なうための専用回路を設けて も良い。

【0242】従って、本表示装置は、テレビジョン放送

32

像を扱う画像編集機器、コンピュータの端末機器、ワー ドプロセッサをはじめとする事務用端末機器、ゲーム機 等の機能を一台で兼ね備えることが可能で、産業用ある いは民生用として極めて応用範囲が広い。

【0243】尚、上記図20は、表面伝導型電子放出素 子を電子額とするディスプレイパネルを用いた表示装置 の構成の一例を示したに過ぎず、これのみに限定される ものでない事は言うまでもない。例えば、図20の構成 要素のうち、使用目的上必要のない機能に関わる回路は 省いても差し支えない。また、これとは逆に、使用目的 によっては逆に、使用目的によってはさらに構成要素を 追加しても良い。

【0244】例えば、本表示装置をテレビ電話機として 応用する場合には、テレビカメラ、音声マイク、照明 機、モデムを含む送受信回路等を構成要素に追加するの が好適である。

【0245】本表示装置においては、とりわけ表面伝導 型電子放出素子を電子源とするデイスプレイパネルの導 形化が容易なため、表示装置の奥行きを小さくすること **20** ができる。

【0246】それに加えて、表面伝導型電子放出素子を 電子源とするディスプレイパネルは大画面化が容易で輝 度が高く視野角特性にも優れるため、本表示装置は、降 場感あふれ、迫力にとんだ画像を視認性良く表示するこ とが可能である。

[0247]

【発明の効果】以上説明したように、本発明によれば、 製造工程が簡単で、効率の高い電子放出素子が提供さ れ、しかも多数の素子を有する大面積基板にも適用で き、更には、良好な階調性を有する高品位な画像形成装 置を提供できるという効果がある。

【0248】 つまり、蒸気圧の低いオイル雰囲気中で活 性化するよりも、オイルのきわめて少ない真空雰囲気中 にオイルよりも吸着、脱離が容易な有機材料を真空装置 に導入して活性化を行い、その後、有機材料を排気する ことで、電子放出部に炭素化合物(あるいは炭素)を有 する電子放出案子を、高速且つ容易に形成でき、また、 電子放出素子の耐久性等の点で効果がある。

【0249】また、パルス幅依存性が生じにくい等の動 作安定性の優れた素子を得ることができるという効果が ある。

【0250】また、特に、素子が狭い空間(例えばガラ ス基板で挟まれた空間等) に保持された表示パネルで も、活性化の為に使用される有機材料を、適量、パネル 内に導入できるという効果がある。また、一度導入した 後に除去が容易な為、活性化後の素子にパルス幅依存性 が生じにくい等の動作安定性に優れ、階調表示に適した 素子を得ることができるという効果がある。

【0251】以上のようにして、耐久性に優れ、動作安 の表示模器、テレビ会議の端末模器、静止側像及び動画 50 定性が高く、しかも階調表示に適した、複数素子を配し

た画像表示装置等の画像形成装置が提供できる。

【図面の簡単な説明】

【図1】本発明の製造方法を説明するための断面図。

【図2】本発明の製造方法に係る、通電フォーミング及び活性化の印加電圧波形の例を示す図。

【図3】本発明に係わる表面伝導型電子放出素子の測定 評価装置の概略構成図。

【図4】本発明に係わる表面伝導型電子放出素子の測定 評価装置の概略構成図。

【図5】本発明に係わる表面伝導型電子放出素子の素子 10 電流 If、放出電流 Ieの活性化処理時間依存例を示す

【図6】本発明に係わる表面伝導型電子放出素子の基本的な特性図。

【図7】本発明に係わる表面伝導型電子放出素子の模式 的平面図(a)及び断面図(b)。

【図8】本発明に係わる表面伝導型電子放出素子の別の 態様を示す模式的断面図。

【図9】単純マトリクス配置の電子源を示す図。

【図10】画像形成装置の表示パネルの概略構成図。

【図11】表示パネルに用いられる蛍光膜を示す図。

【図12】画像形成装置をNTSC方式のテレビ信号に 応じて駆動表示を行う例を示す駆動回路のプロック図。

【図13】梯子配置の電子源を示す図。

【図14】 画像形成装置の表示パネルの別の態様を示す 軽略構成図。

【図15】実施例における活性化の印加電圧波形を示す

【図16】実施例における電子源の平面図。

【図17】実施例における電子源の一部断面図。

【図18】実施例における電子源の製造方法を説明する ための断面図。

【図19】実施例における電子源の製造方法を説明する ための断面図。

【図20】実施例における画像形成装置を説明するための図。

【図21】従来の電子放出素子を示す模式的平面図。 【符号の説明】

1,221 基板

2, 3, 222 素子電極

4,224 導電性膜

5,223 電子放出部

34

11, 13 電源

10, 12 電流計

14 アノード電極

15 真空装置

16,23 排気ポンプ

21 ニードルパルプ

22 炭素化合物材料源

24 パルブ

25 ドライポンプ

31 段差形成部

71, 110 電子源基板

72 X方向配線

73 Y方向配線

74, 111 電子放出案子

75 結線

81 リアプレート

82 支持枠

83 ガラス基板

20 84 蛍光膜

85 メタルパック

86 フェースプレート

87 高圧端子

88 外囲器

91 黒色導電材

92 蛍光体

101 表示パネル

102 走査回路

103 制御回路

30 104 シフトレジスタ

105 ラインメモリ

106 同期信号分離回路

107 変調信号発生器

112 共通配線

120 変調 (グリッド) 電極

121 電子通過孔

122 素子配線の容器外端子

123 変調電極の容器外端子

141 層間絶縁層

40 142 コンタクトホール

[図8]

(図14)

()

[図18]

[図19]

