Deep Learning

03 – Gradient-Based Training Part 1: Backpropagation

Prof. Dr. Rainer Gemulla

Universität Mannheim

Version: 2024-1

Backpropagation

- Backpropagation is an algorithm to compute gradients
 - Origins in the 60s in control theory
 - Rediscovered many times
 - Used for neural networks since the 80s
- Given a compute graph, performs
 - 1. Forward pass to compute (all) output(s) (forward propagation)
 - 2. Backward pass to compute (all) gradient(s) (backward propagation)
- For us: compute graph typically represents
 - Output \hat{y} of an FNN (given x, θ)
 - ▶ Loss L of an FNN (given (x, y), θ)
 - ightharpoonup Cost function J for an FNN (given $\{(\boldsymbol{x}_i,y_i)\}, \boldsymbol{\theta}$)
- And we are interested in gradients (as we will see)
 - \blacktriangleright W.r.t. weights $(\nabla_{\theta} J)$: e.g., for gradient-based training
 - ightharpoonup W.r.t. intermediate outputs $(\nabla_z L)$: e.g., for model debugging
 - W.r.t. inputs $(\nabla_x L \text{ of } \nabla_x \hat{y})$: e.g., for sensitivity analysis or adversarial training

Recap: Gradient

 For functions with multiple inputs, there are multiple partial derivatives; e.g.,

$$f = x_1^2 + 5x_1x_2$$
$$\frac{\partial}{\partial x_1} f = 2x_1 + 5x_2$$
$$\frac{\partial}{\partial x_2} f = 5x_1$$

ullet We can gather them all in a single vector, the gradient of f

$$\nabla_{\boldsymbol{x}^{\top}} f \stackrel{\text{def}}{=} \begin{pmatrix} \frac{\partial}{\partial x_1} J & \frac{\partial}{\partial x_2} f & \cdots & \frac{\partial}{\partial x_n} f \end{pmatrix}$$

For the example above, we obtain

$$\nabla_{\boldsymbol{x}^{\top}} f = \begin{pmatrix} 2x_1 + 5x_2 & 5x_1 \end{pmatrix} \qquad \nabla_{\boldsymbol{x}} f = \begin{pmatrix} 2x_1 + 5x_2 \\ 5x_1 \end{pmatrix}$$
 Numerator layout (row) Denominator layout (column)

Compute graphs

- Backpropagation generally operates on a compute graph
- Directed, acyclic graph that models a computation (as a data flow program)
- Vertices correspond to operations
- Edges correspond to data passed between operations (typically tensor-valued)
- Multiple sources (no incoming edge): inputs, weights, ...
- One sink (no outgoing edge): result

Corresponding compute graph

Forward propagation (example)

ullet Compute graph for example output \hat{y}

- ullet Forward propagation: inputs o result
- Edges transport values
- For example:
 - 1. Provide inputs ${m x}$, ${m W}_1^{ op}$, ${m W}_2^{ op}$
 - 2. Evaluate first matmul: $oldsymbol{z}_1 = oldsymbol{W}_1^{ op} oldsymbol{x}$
 - 3. Evaluate second matmul: $oldsymbol{z}_2 = oldsymbol{W}_2^{ op} oldsymbol{z}_1$
 - 4. Evaluate norm: $\hat{y} = ||z_2||$

Forward propagation

- Operators are evaluated in topological order ("forwards")
 - ▶ Whenever an operator is evaluated, all its inputs must be available
 - Computation is local: only input values are required (the remainder of the compute graph does not matter)
- Inputs and/or outputs are generally tensor-valued
 - ightharpoonup E.g., $\mathrm{matmul}(m{A},m{B})=m{A}m{B}$ takes two 2D tensors and produces a 2D tensor
 - Note: our visual representation of compute graph does not indicate which input is A and which is B, but the actual compute graph does (and must do so)
- Intermediate results may need to be kept
 - To evaluate subsequent operators
 - ► To enable gradient computation with backpropagation
- Parallel processing is possible
 - ► Each operator can be evaluated as soon as all its inputs available
 - ► E.g., transformer encoders can operate on all inputs in parallel
 - E.g., RNN encoders must process inputs sequentially

Backward propagation (example)

ullet Backward graph for example output \hat{y}

- Backward propagation: result → gradients
- Edges transport gradients
 - ightharpoonup Consider edge e and define

$$\delta_e\stackrel{\mathrm{def}}{=}$$
 gradient of result w.r.t. values on edge e evaluated at the provided inputs

- For example:
 - 1. Compute all values of forward pass (not shown above)
 - 2. $\delta_{\hat{y}} = \nabla_{\hat{y}} \operatorname{result} = \nabla_{\hat{y}} \hat{y} = 1$
 - 3. δ_{z_2} (discussed later)
 - 4. $\delta_{\boldsymbol{W}_{2}^{\top}}$ and $\delta_{\boldsymbol{z}_{1}}$ (discussed later)
 - 5. $\delta_{\mathbf{W}_{+}^{\top}}$ and $\delta_{\mathbf{x}}$ (discussed later)

Backward propagation

- $\delta_e \stackrel{\mathrm{def}}{=}$ gradient of result w.r.t. values on edge e
- Key insight of backpropagation
 - Gradients δ_e can be computed incrementally (akin to forward pass, but in reverse order)
- Operators are evaluated in reverse topological order ("backwards")
 - When operator evaluated, its output gradient(s) must be available
 - Computation is local: only input values and output gradient(s) are required (the remainder of the compute graph does not matter)
 - ► Recall: intermediate outputs of forward pass required
 - \rightarrow memory consumption (or recompute)
- Gradients are generally tensor-valued
 - ► Convention: same shape as values in forward pass
- Intermediate results may need to be kept
 - ► To evaluate gradient for prior operators
 - ► To debug/analyze models
- Parallel processing is possible (as before)

Gradient (single univariate function)

input
$$\xrightarrow{u}$$
 f \xrightarrow{y} result

- Output: y = f(u)
- Gradient $\delta_y \stackrel{\text{def}}{=} \nabla_y y = 1$
- Gradient $\delta_u \stackrel{\text{def}}{=} \nabla_u y = \frac{\partial}{\partial u} f(u) = f'(u)$
- Example
 - $y = \sigma(u) = \sigma(0)$ (logistic function)
 - $\delta_u = \sigma'(u) = \sigma(u)(1 \sigma(u)) = \sigma(0)(1 \sigma(0))$

Gradient (composition of two univariate functions)

ullet Let's add another operator g in front

input
$$\xrightarrow{v} g$$
 $\xrightarrow{u} f$ \xrightarrow{y} result

- Output: y = f(u) = f(g(v))
 - **▶** Function composition
- Gradient: $\delta_u \stackrel{\text{def}}{=} \nabla_u y = \frac{\partial}{\partial u} f(u) = f'(u) = f'(u)$
 - \triangleright Same computation as before (but u now output of g)
 - Need to retain u in forward pass to compute f'(u)
- Gradient

$$\delta_v \stackrel{\text{def}}{=} \nabla_v y = \underbrace{\frac{\partial}{\partial v} f(g(v)) = g'(v) f'(g(v))}_{\text{chain rule}} = g'(v) \delta_u$$

- ▶ Observe: that's a local computation at q
- ▶ Need: δ_u → passed backwards from subsequent operators
- ightharpoonup Need: v o computed in forward pass
- ightharpoonup Need: q' o determined by <math>q

Example

Forward pass input
$$v > \log_2 v > 0$$
 $v > 0.5$ result

Backward pass

input
$$\underbrace{\frac{\delta_v}{0.36}} \underbrace{\log_2} \underbrace{\frac{\delta_u}{0.25}} \underbrace{\frac{\delta_y}{\sigma}} \underbrace{\frac{\delta_y}{1}}$$
 result

- $\delta_y = \nabla_y y = 1$
- $\delta_u = \nabla_u y = \sigma'(u)\delta_y = \sigma(u)(1 \sigma(u))\delta_y = 0.25 \cdot 1 = 0.25$
- $\delta_v = \nabla_v y = \log_2'(v) \delta_u = \frac{1}{v \log(2)} \delta_u \approx 1.44 \cdot 0.25 = 0.36$

Gradient (composition of univariate functions)

ullet This generalizes; e.g., consider n operators

input
$$z_0 = x$$
 f_1 z_1 f_2 z_2 \cdots z_{n-1} f_n $z_n = y$ result

We have

$$y = f_n(f_{n-1}(\cdots(f_1(x))\cdots))$$

• At each operator f_i , the required gradient can be computed as follows:

$$\begin{split} \delta_{z_{i-1}} & \stackrel{\text{def}}{=} \nabla_{z_{i-1}} y = \underbrace{\frac{\partial y}{\partial z_{i-1}}}_{\text{chain rule}} = \underbrace{\frac{\partial y}{\partial z_i} \frac{\partial z_i}{\partial z_{i-1}}}_{\text{local derivative}} & \underbrace{\frac{\partial y}{\partial z_{i-1}}}_{\text{chain rule}} \end{split}$$

Overall gradient

Let's derive an expression for the gradients individually

$$\begin{split} \delta_{z_n} &= 1 \\ \delta_{z_{n-1}} &= f_n'(z_{n-1})\delta_{z_n} &= f_n'(z_{n-1}) \\ \delta_{z_{n-2}} &= f_{n-1}'(z_{n-2})\delta_{z_{n-1}} &= f_{n-1}'(z_{n-2})f_n'(z_{n-1}) \\ \delta_{z_{n-3}} &= f_{n-2}'(z_{n-3})\delta_{z_{n-2}} &= f_{n-2}'(z_{n-3})f_{n-1}'(z_{n-2})f_n'(z_{n-1}) \\ &\vdots \end{split}$$

- Gradient is product of local gradients along the path from the result to the resp. edge
- Backpropagation avoids repeated computations by
 - 1. Proceeding backwards
 - 2. Using the chain rule

Gradient (multiple inputs)

Operators often have multiple inputs; e.g., a simple linear unit

In the forward pass, the operator computes

$$y = f(x, w, b) = wx + b$$

 In the backward pass, we compute gradients of result w.r.t. each edge as before (using the chain rule)

$$\delta_y = 1$$

$$\delta_x = \nabla_x y = \nabla_x f(w, x, b) \cdot \delta_y = w \cdot 1$$

$$\delta_w = \nabla_w y = \nabla_w f(w, x, b) \cdot \delta_y = x \cdot 1$$

$$\delta_b = \nabla_b y = \nabla_b f(w, x, b) \cdot \delta_y = 1 \cdot 1$$

 \bullet Consider each input separately and reuse incoming $\delta\text{-value}$

Gradient (multiple outputs)

- Operators may have multiple outputs; e.g., consider
 - \blacktriangleright E.g., operator f(x) may output n values, say, $z_1=f_1(x),\,\ldots$, $z_n=f_n(x)$
 - lacktriangle During backpropagation, we obtain δ_{z_1} , ..., δ_{z_n}
 - ► We are interested in

$$\delta_x = \nabla_x y = \underbrace{\frac{\partial y}{\partial x} = \sum_{k=1}^n \frac{\partial y}{\partial z_k} \frac{\partial z_k}{\partial x}}_{\text{multivariate chain rule}}$$

$$= \sum_{k=1}^n f_k'(x) \delta_{z_k}$$

Consider each output independently and sum up

Gradient (multiple uses)

- Sometimes an operator's output is "used" multiple times
 - ightharpoonup E.g., the output of an operator g(x) is used n times
 - That's equivalent to a single operator f with n identical outputs (i.e., $z_k = f_k(x) = g(x)$), each being used once
 - ightharpoonup Using the results from the previous slide with f defined in this way:

$$\delta_x = \nabla_x y = \sum_{k=1}^n f_k'(x) \delta_{z_k} = \sum_{k=1}^n g'(x) \delta_{z_k}$$
$$= g'(x) \sum_{k=1}^n \delta_k$$

Sum up all incoming δ -values and proceed as before

Gradient computation in general

- ullet Consider an operator $oldsymbol{f}: \mathbb{R}^I o \mathbb{R}^O$
- ullet Forward pass: $oldsymbol{v}^{\mathsf{out}} = oldsymbol{f}(oldsymbol{v}^{\mathsf{in}})$ with $oldsymbol{v}^{\mathsf{in}} \in \mathbb{R}^I$ and $oldsymbol{v}^{\mathsf{out}} \in \mathbb{R}^O$

$$\stackrel{v^{\mathsf{in}}}{\longrightarrow} \overbrace{f} \stackrel{v^{\mathsf{out}}}{\longrightarrow}$$

ullet Backward pass: $oldsymbol{\delta}^{\mathsf{in}} = oldsymbol{J}_f(v^{\mathsf{in}})^ op oldsymbol{\delta}^{\mathsf{out}}$ with $oldsymbol{\delta}^{\mathsf{out}} \in \mathbb{R}^{O}$ and $oldsymbol{\delta}^{\mathsf{in}} \in \mathbb{R}^{I}$

$$\underbrace{ \delta^{\mathsf{in}} }_{} \underbrace{ J_f }_{} \underbrace{ \delta^{\mathsf{out}} }_{}$$

where we use the Jacobian $oldsymbol{J_f} \in \mathbb{R}^{O imes I}$ given by

$$\boldsymbol{J}_{\boldsymbol{f}} = \nabla_{\boldsymbol{v}_{\mathsf{in}}^{\top}} \boldsymbol{f} = \begin{pmatrix} \nabla_{\boldsymbol{v}_{\mathsf{in}}^{\top}} v_{1}^{\mathsf{out}} \\ \vdots \\ \nabla_{\boldsymbol{v}_{\mathsf{in}}^{\top}} v_{O}^{\mathsf{out}} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial v_{1}^{\mathsf{in}}} v_{1}^{\mathsf{out}} & \dots & \frac{\partial}{\partial v_{I}^{\mathsf{in}}} v_{1}^{\mathsf{out}} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial v_{1}^{\mathsf{in}}} v_{O}^{\mathsf{out}} & \dots & \frac{\partial}{\partial v_{I}^{\mathsf{in}}} v_{O}^{\mathsf{out}} \end{pmatrix}$$

- Intuitively, $f'(v^{\rm in})\delta^{\rm out}$ now becomes $\boldsymbol{J}_f(v^{\rm in})^{\top}\boldsymbol{\delta}^{\rm out}$
 - ► Can be derived by "rewriting" the discussions on multiple inputs/outputs from the previous slides into matrix form
- More in exercises and tutorials