RISC-V

- [[Instruction Set Architecture]]
- properties
 - is open
 - developed at UC Berkeley
 - An instruction family from low-end 32bit devices to large 64bit CPUs

M KIDC-V

- · Significant momentum in industry and academia
- More information and full specs available at https://riscv.org/
- Instruction Set
 - Base instruction sets
 - RV32I (RV32E is the same as RV32I, except the fact that it only allows 16 registers)
 - RV64I
 - RV128I
 - Extensions
 - "M" Standard Extension for Integer Multiplication and Division
 - "A" Standard Extension for Atomic Instructions
 - "Zicsr", Control and Status Register (CSR) Instructions
 - · "F" Standard Extension for Single-Precision Floating-Point
- ALU and register file are 32-bit
- register files consists of 32 registers
 - register x0 always stores zero
 - allows transformation of operations
 - * add(destination,a,b) => add(dest, a, 0) = move(a, dest)

Instruction Encoding

- stores operation to execute and parameters
- terminology

Opcode, funct3, funct7: definition of the functionality

• Imm: immediate values (constants)

• rs1, rs2: source registers

• rd: destination register

- instruction types
 - R-Type

* perform arithmetic and logic operations based on two input registers $\frac{31}{25}$ $\frac{25}{24}$ $\frac{20}{20}$ $\frac{19}{15}$ $\frac{14}{12}$ $\frac{12}{11}$ $\frac{7}{6}$ $\frac{6}{12}$ $\frac{1}{12}$

funct7 rs2 rs1 funct3 rd opcode R-Type

IR ADD, R3, R2, R1

31		25	24		20	19		15	14	12	11		7	6		0
	0000000			00001			00010		00	0		00011			0110011	
31		25	24		20	19		15	14	12	11		7	6		0
	funct7			rs2			rsl		fun	ict3		rd			opcode	

- I-Type
- S-Type
- U-Type