Predicates and quantifiers

8.1 Introduction

A *predicate* is a logical statement that depends on a value or values. When a predicate is applied to a particular value it becomes a *proposition*. An example is the predicate:

prime(x)

which depends on some numeric value, x, so that

prime(7)

is a true proposition meaning that seven is a prime number, and prime(6)

is a false proposition. (A prime number is one that is only divisible by itself and 1).

8.2 Quantifiers

Quantifiers can be applied to predicates to give propositions.

8.2.1 Universal quantifier

The universal quantifier is written:

Α

and is pronounced 'for all' (it looks like an upside-down 'A', in *for All*). It is used in the form:

 \forall declaration | constraint • predicate

which states that for the declaration(s) given, restricted to certain values (by a predicate called a constraint), the predicate holds.

For each of the quantifiers to be described here, the

constraint

part may be omitted.

The declaration introduces a typical element that is then optionally constrained. The predicate may apply to this element. For example, to state that all natural numbers less than 10 have squares less than 100:

$$\forall i: \mathbb{N} | i < 10 \cdot i^2 < 100$$

This would be pronounced: 'for all i drawn from the set of natural numbers, such that i is under ten, i squared is less than 100'.

A universal quantification can be thought of as a chain of conjunctions. The quantification above is equivalent to:

$$0^2 < 100 \land 1^2 < 100 \land ... \land 8^2 < 100 \land 9^2 < 100$$

If the set of values over which the variable is universally quantified is *empty*, then the quantification is defined to be true:

$$\forall i: \mathbb{N} \mid 0 \le i < 0 \cdot i^2 < 100$$
 is defined to be true

8.2.2 Existential quantifier

The existential quantifier is written:

 \exists

and is pronounced 'there exists' (it looks like a backwards 'E', in *there Exists*). It is used in the form:

∃ declaration | constraint • predicate

The declaration introduces a typical variable which is then optionally constrained. The predicate applies to this variable. For example, to state that there is a natural number under ten which has a square less than 100:

$$\exists i: \mathbb{N} \mid i < 10 \cdot i^2 < 100$$

This would be pronounced: 'there exists an i drawn from the set of natural numbers, such that i is less than ten, and i squared is less than 100'.

Note that there need not be only one value of i for which this is true; in this example there are ten: 0 to 9.

To define the predicate *Even*:

Even(x)
$$\Leftrightarrow \exists k: \mathbb{Z} \cdot k * 2 = x$$

A universal quantification can be thought of as a chain of disjunctions. If the set of values over which the variable is quantified is *empty*, then the existential quantification is defined to be false:

 $\exists i: \mathbb{N} | 0 \le i < 0 \cdot i^2 < 100$ is defined to be false

existential

8.2.3 Unique quantifier

The *unique quantifier* is similar to the existential quantifier except that it states that there exists *only one* value for which the predicate is true.

The unique quantifier is written:

 \exists_1

An example is:

$$\exists_1 i: \mathbb{N} | i < 10 \cdot i^2 < 100 \wedge i^2 > 80$$

This would be pronounced: 'there exists only one i drawn from the set of natural numbers, where i is less than ten, such that i squared is less than 100 and i squared is greater than 80'. It is equivalent to saying that the predicate holds for i, but that there is no j (with a value different from i) for which it holds:

$$\exists_{1}$$
 i: $\mathbb{N} \mid i < 10 \cdot i^{2} < 100 \wedge i^{2} > 80$

⇔

 $\exists i: \mathbb{N} \mid i < 10 \cdot i^{2} < 100 \wedge i^{2} > 80$

∧ ¬($\exists j: \mathbb{N} \mid j < 10 \wedge i \neq j \cdot j^{2} < 100 \wedge j^{2} > 80$)

8.2.4 Counting quantifier

Some notations use a counting quantifier that counts for how many values of the variable the predicate holds. In Z this is not needed; instead, we use a set comprehension to construct the set of values for which the predicate holds, and then finds the size of the set.

An example is: the number of natural numbers under 10 that have squares greater than 30:

$$\#\{i: \mathbb{N} \mid i < 10 \cdot i^2 > 30\}$$

8.2.5 Quantifiers in schema

Quantifiers may be used in the expressions contained in the predicate part of a schema.

8.3 Set comprehension

So far we have given values to sets by listing all their elements. It is also possible to give a value to a set by giving a condition (a *predicate*) which must hold for all members of the set. This can be done by a formulism called a *set comprehension*. The general form is:

{declaration | constraint • expression}

- The *declaration* is for a typical element and it gives the element's type.
- The *constraint* restricts the possible values of the typical element. It is a logical expression which must be true for that value of the typical element to be included.
- The *expression* is an expression indicating the value to be included in the set.

A comprehension is very useful for giving a value to an infinite set. For example we cannot write:

$$\{\ldots -8, -6, -4, -2, 0, 2, 4, 6, 8, \ldots\}$$

since we would then rely on solely the reader's intuition to understand what the continuation indicated by '...' must be. Instead we write:

$$\{x: \mathbb{Z} \mid \text{Even}(x) \cdot x\}$$

Here x is the typical value. It is of type *integer* so the set generated will be a *set* of integers. The value of x is constrained to be even. The value x is included in the generated set. So the generated set is the set of even integers.

The following set comprehension generates the set of the *squares* of the *even* integers:

$$\{x: \mathbb{Z} \mid \text{Even}(x) \cdot x * x\}$$

The constraint and its preceding bar may be omitted:

 $\{x: \mathbb{N} \cdot x * x\}$ the squares of the natural numbers

8.3.1 Ranges of numbers

The notation

m .. n

was introduced in Chapter 2. It is shorthand for

$$\{i: \mathbb{Z} \mid m \leq i \land i \leq n \cdot i\}$$

8.4 Relationship between logic and set theory

There is a direct relationship between some of the operators of logic and operations on sets:

[X] any set

$$S, T: PX$$

 $S \cup T == \{x: X \mid x \in S \lor x \in T \cdot x\}$
 $S \cap T == \{x: X \mid x \in S \land x \in T \cdot x\}$
 $S \setminus T == \{x: X \mid x \in S \land x \notin T \cdot x\}$

8.5 Summary of notation

∀ x: T • P	Universal quantification: 'for all x of type T, P holds'
∃ x: T • P	Existential quantification: 'there exists an x of type T, such that P holds'
∃ ₁ x: T • P	Unique existence: 'there exists a unique x of type T, such that P holds'
{D P • t}	the set of t's declared by D where P holds

EXERCISES

1. Re-express the proposition

 $\forall p$: PERSON | $p \in loggedIn \cdot p \in users$

using set relations.

- 2. Write an expression that states that the squares of all integers are non-negative.
- 3. Write an expression to state that there is a number that is equal to itself squared.
- 4. Using the fact that $m \mod n$ is zero when m is divisible by $n \pmod 2$ and n > 0 write a set comprehension to define the set of prime numbers.