LNSprover*

Björn Lellmann

LNSprover implements backwards proof search in modular linear nested sequent calculi for normal and non-normal propositional modal logics. It is based on the article [1].

0.1 Implemented logics

- The logics in the non-normal modal cube (see Fig. 1), i.e., extensions of classical modal logic E with any combination of the axioms
 - C: regularity ($\Box A \wedge \Box B \rightarrow \Box (A \wedge B)$)
 - N: necessitation ($\Box \top$)
 - M: monotonicity ($\Box(A \land B) \rightarrow \Box A \land \Box B$)
- The logics in the modal tesseract (see Fig. 2), i.e., extensions of monotone modal logic M with any combination of the axioms
 - P: (¬□⊥)
 - D: $(\Box \neg A \rightarrow \neg \Box A)$
 - T: $(\Box A \rightarrow A)$
 - 4: $(\Box A \rightarrow \Box \Box A)$
 - C: regularity ($\Box A \land \Box B \rightarrow \Box (A \land B)$)
 - N: necessitation ($\Box \top$)

as well as the logics M5, MP5, MP45, MP45, MD45, MC45, MCD45 including the axiom

$$-$$
 5: $(\Box \neg A \rightarrow \Box \neg \Box A)$

(see Fig. 3). Note that logic MCN is normal modal logic K, so e.g. MCNT4 is the logic KT4 = S4 in standard terminology. Also note that 5 implies N, so we have e.g. MC45 = MCN45 = K45 and MCD45 = MCND45 = KD45.

^{*}Version 1.0

Figure 1: The non-normal modal cube

0.2 Input syntax

The syntax of formulae F is given by

```
P | true | false | neg F | box F | F and F | F or F | F \rightarrow F
```

where P is a,b,c,... The usual conventions for omitting parentheses are in place, i.e., the binding strength is: unary connectives > and > or > ->.

0.3 Usage

Make sure you have SWI-Prolog installed (http://www.swi-prolog.org/) and the files Insprover.pl, derivation.tex and output.tex are in the same folder. Start swipl and load the file Insprover.pl, e.g., typing

```
swipl lnsprover.pl
```

at a terminal. Run the prover with

```
?- prv([Axioms],[Gamma],[Delta]).
```

where ${\tt Gamma} \Rightarrow {\tt Delta}$ is the sequent you want to check and ${\tt Axioms}$ is a list of axioms from

For extensions of classical modal logic E include c1, for the logics in the tesseract include mon. The axioms prefixed with cl are those for extensions of the non-normal cube, the remaining ones those for the tesseract. **IMPORTANT:** for logics including axiom t switch on Kleeneing (see Section 0.5 below).

If the sequent is derivable, the prover displays the derivation and writes it to a .tex file. If there is more than one derivation, hit; to search for the next one. Run latex on output.tex to obtain a pdf showing all these derivations. For larger derivations you might need to increase the paper size in the preamble of output.tex by replacing the a4paper option in

```
\usepackage[...,a4paper]{geometry}
```

with e.g. a0paper.

Figure 2: The modal tesseract

Figure 3: The extensions of modal logic $\mathsf{M5}$

0.4 Example

1. To check whether the sequent

$$\Box A \land \Box B \Rightarrow \Box (A \land B)$$

is derivable in classical modal logic with axioms N and C, type

?- prv([cl,cln,clc],[box a and box b],[box (a and b)]).

2. To check whether

$$\Box(A \land B) \Rightarrow \Box\Box B$$

is derivable in monotone modal logic with axioms 4 and C, type

0.5 Kleeneing

By default the propositional rules are not Kleene'd (i.e., the principal formulae are not copied into the premiss(es)). This can be changed by typing

?- kleeneing.

Likewise, to turn Kleeneing off again type

?- nokleeneing.

IMPORTANT: For logics including the axiom T, switch on Kleeneing to prevent loops in proof search.

References

 B. Lellmann and E. Pimentel. Proof search in nested sequent calculi. In M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors, *LPAR-20 2015*, pages 558–574. Springer Berlin Heidelberg, 2015.

Table 1: The propositional rules

Table 2: The contraction rules

$$\frac{\Gamma,A,A\Rightarrow\Delta}{\Gamma,A\Rightarrow\Delta}~\mathsf{Con_L}\qquad \frac{\Gamma\Rightarrow A,A,\Delta}{\Gamma\Rightarrow A,\Delta}~\mathsf{Con_R}$$

Table 3: The modal rules for the tesseract

Table 4: The modal rules for the non-normal cube

$$\frac{\mathcal{G} \ \, /\!\! / \ \, \Gamma \Rightarrow \Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma,A\Rightarrow\Pi;\Omega\Rightarrow\Theta] \qquad \mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! / \ \, \Omega\Rightarrow A,\Theta}{\mathcal{G} \ \, /\!\! / \ \, \Gamma,\Box A\Rightarrow\Delta \ \, /\!\! /^{\rm e} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] } \ \, \Box_L^{\rm e}$$

$$\frac{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm e} \ \, [\Rightarrow A;A\Rightarrow] }{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] } \ \, \Box_R^{\rm e} \qquad \frac{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta }{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] } \ \, \mathrm{jump}$$

$$\frac{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] }{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] } \ \, \mathrm{M}$$

$$\frac{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] }{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] } \ \, \mathrm{C}$$

$$\frac{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] }{\mathcal{G} \ \, /\!\! / \ \, \Gamma\Rightarrow\Delta \ \, /\!\! /^{\rm efin} \ \, [\Sigma\Rightarrow\Pi;\Omega\Rightarrow\Theta] } \ \, \mathrm{N}$$