125-Кібербезпеқа. Змістовий модуль 5. ГРАФИ І ФЕРЕВА

Тема 15. Поняття графа

Теорія графів – одна з істотних частин математичного апарату інформатики та кібернетики. У термінах теорії графів можна сформулювати багато задач, пов'язаних із дискретними об'єктами. Такі задачі виникають у проектуванні інтегральних схем, схем управління, у дослідженні автоматів, в економіці й статистиці, теорії розкладів і дискретній оптимізації.

План лекції
Основні означення та властивості
Деякі спеціальні класи простих графів
Способи подання графів
Матриця інцидентності
Матриця суміжності
Ізоморфізм графів

Основні означення та властивості

Термін "граф" уперше з'явився в книзі видатного угорського математика Д. Кеніга 1936р., хоча перші задачі теорії графів пов'язані ще з іменем Л. Ейлера (XVIII ст.).

Простим графом називають пару G=(V, E), де V – непорожня скінченна множина елементів, називаних вершинами, E – множина невпорядкованих пар різних елементів з V. Елементи множини E (невпорядковані пари різних вершин) називають ребрами.

Рис. 1

Приклад. На рис. 1 зображено простий граф G з множиною вершин $V=\{v_1, v_2, v_3, v_4\}$ і множиною ребер $E=\{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_4\}\}$.

Говорять, що ребро $\{u, v\}$ з'єднує вершини u та v. Оскільки E — множина, то в простому графі пару вершин може з'єднувати не більше ніж одне ребро.

Іноді розглядають графи, у яких дві вершини можуть бути з'єднані більше ніж одним ребром. Так виникає поняття мультиграфа. *Мультиграфом* називають пару (V, E), де V – скінченна непорожня множина вершин, а E – cim'я невпорядкованих пар різних елементів з множини V. Тут застосовано термін "сім'я" замість "множина", бо елементи в E (ребра) можуть повторюватись. Ребра, що з'єднують одну й ту саму пару вершин, називають *кратними* (або *паралельними*) ребрами.

Подальше узагальнення полягає в тому, що окрім кратних ребер розглядають ще й *петлі*, тобто ребра, які з'єднують вершину саму із собою. *Псевдографом* називають пару (V, E), де V – скінченна непорожня множина вершин, а E – сім'я невпорядкованих пар не обов'язково різних вершин.

Приклад. На рис. 2 зображено (а) – мультиграф і (б) – псевдограф.

Розглянуті три типи графів називають *неорієнтованими*. Псевдограф — це найзагальніший тип неорієнтованого графа, бо він може містити петлі й кратні ребра. Мультиграф — це неорієнтований граф, який може містити кратні ребра, але не може містити петель. Нарешті, простий граф — це неорієнтований граф без кратних ребер і без петель.

Розглядають також орієнтовані графи. *Орієнтованим графом* називають пару (V, E), де V – скінченна непорожня множина вершин, а E – множина впорядкованих пар елементів множини V. Елементи множини E в орієнтованому графі називають *дугами* (або *орієнтованими ребрами*). Дугу (v,v) називають *петлею*.

Рис. 3

Приклад. На рис. 3 зображено орієнтований граф із множиною вершин $V=\{v_1, v_2, v_3, v_4, v_5\}$ і множиною дуг $E=\{(v_2, v_1), (v_2, v_3), (v_3, v_2), (v_3, v_4), (v_4, v_3), (v_4, v_5), (v_5, v_5)\}.$

Зазначимо, що дуга — це впорядкована пара вершин (записують у круглих дужках), тому в графі на рис. дуги (v_2, v_3) та (v_3, v_2) — різні. На рисунках дуги позначають стрілками.

Oрієнтованим мультиграфом називають пару (V, E), де V – скінченна непорожня множина вершин, а E – сім'я впорядкованих пар елементів з V.

Отже, елементи (дуги) в E в разі орієнтованого мультиграфа можуть повторюватись, такі дуги називають *кратними*. Підкреслимо, що кратні дуги з'єднують одну пару вершин і однаково напрямлені.

Рис. 4

Приклад. На рис. 4 наведено приклад орієнтованого мультиграфа. Дуги e_2 та e_3 – кратні, а дуги e_5 , e_6 – ні.

Надалі ми будемо використовувати термін "граф" для опису довільних графів – орієнтованих і неорієнтованих, із петлями та кратними ребрами чи без них. Термін "неорієнтований граф" або "псевдограф" – для довільного неорієнтованого графа, який може мати кратні ребра й петлі. Означення різних типів графів зведено в табл. 1.

Таблиця 1

Тип графа	Ребра	Кратні ребра дозволені?	Петлі дозволені?	
Простий граф	Неорієнтовані	Hi	Hi	
Мультиграф	Неорієнтовані	Так	Hi	
Псевдограф	Неорієнтовані	Так	Так	
Орієнтований граф	Орієнтовані (дуги)	Hi	Так	
Орієнтований мультиграф	Орієнтовані (дуги)	Так	Так	

Дві вершини u та v в неорієнтованому графі G називають cyміжними, якщо існує ребро $\{u,v\}$, тобто $\{u,v\} \in E$. Якщо $e=\{u,v\}$ — ребро, то вершини u та v називають його k та ребро e називають e

Степінь вершини в неорієнтованому графі — це кількість ребер, інцидентних цій вершині, причому петлю враховують двічі. Степінь вершини v позначають $\deg(v)$. Якщо $\deg(v)=0$, то вершину v називають iзольованою; якщо $\deg(v)=1$ — висячою, або κ інцевою.

Приклад. У неорієнтованому графі на рис. 5 степені вершин такі: $deg(v_1)=4$, $deg(v_2)=4$, $deg(v_3)=6$, $deg(v_4)=1$, $deg(v_5)=3$, $deg(v_6)=0$. Отже, вершина v_6 – ізольована, а v_4 – висяча.

Рис. 5

Зв'язок між степенями вершин неорієнтованого графа та кількістю його ребер дає така теорема.

Теорема 1. Нехай G=(V, E) неорієнтований граф з m ребрами. Тоді $\sum_{v \in V} \deg(v) = 2m.$

Зазначимо, що це твердження стосується будь-якого неорієнтованого графа, зокрема, з петлями й кратними ребрами.

Доведення. Кожне ребро додає по одиниці до степенів двох вершин, або двійку до степеня однієї вершини у випадку петлі. З цього випливає, що сума степенів вершин удвічі більша від кількості ребер. Теорему доведено.

Зазначимо, що теорему називають "теоремою про рукостискання", бо аналогічно як ребро має два кінці, так і під час рукостискання задіяні дві руки. З цієї теореми випливає, що сума степенів усіх вершин неорієнтованого графа — парне число. Цей простий факт має багато наслідків, один із яких сформульовано в наведеній нижче теоремі.

Теорема 2. Неорієнтований граф має парну кількість вершин непарного степеня.

Тепер розглянемо орієнтований мультиграф G=(V,E). Якщо $(u,v)\in E$, то вершину u називають *початковою* (*ініціальною*), а вершину $v-\kappa$ *інцевою* (*термінальною*) вершиною дуги e=(u,v). Петля має початок і кінець в одній і тій самій вершині. Вершини орієнтованого графа називають *суміжними*, якщо одна з них — початкова, а інша — кінцева для якоїсь дуги. Дуги називають *суміжними*, якщо вони мають спільну вершину u називають *інцидентною* дузі e, якщо u — початкова чи кінцева вершина цієї дуги.

Для орієнтованого графа означення степеня вершини інше. В орієнтованому мультиграфі напівственем входу вершини v називають кількість дуг, для яких вершина v кінцева; позначають $\deg^-(v)$. Напівственем виходу вершини v називають кількість дуг, для яких вершина v початкова; позначають $\deg^+(v)$.

Рис. 6

Приклад. Для графа, зображеного на рис. 6 напівстепені вершин такі: $\deg^-(v_1)=0$, $\deg^+(v_1)=1$, $\deg^-(v_2)=2$, $\deg^+(v_2)=0$, $\deg^-(v_3)=1$, $\deg^+(v_3)=2$.

Теорема 3. Нехай G=(V, E) – орієнтований мультиграф, який має m дуг. Тоді

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = m.$$

Доведення. Оскільки кожна дуга має початкову й кінцеву вершини, то суми напівстепенів входу й виходу однакові. Кожна з цих сум, очевидно, дорівнює кількості дуг. Теорему доведено.

Неорієнтований граф H називають $ni\partial z pa \phi o M$ неорієнтованого графа G=(V,E), якщо всі вершини графа H належать V, а всі його ребра належать E. Якщо графи H=(W,F) і G=(V,E) — прості та H — підграф графа G, то розглядають іще два окремих випадки. Підграф H називають $\kappa a p \kappa a c h u M$ $ni\partial z p a \phi o M$ (або $\phi a \kappa m o p o M$), якщо W=V. Якщо $W\neq V$, а F — множина всіх ребер із E, які мають кінці в W, то підграф H називають $nopod \infty e h u M$ ($ihdy \kappa o B a h u M$) $ihdy \kappa o B a h u M$ і позначають як G(W).

Приклад. На рис. 7 зображено граф G та три його підграфа H_1 , H_2 , H_3 , серед яких H_2 породжений, а H_3 – каркасний.

Рис. 7

Деякі спеціальні класи простих графів

Розглянемо деякі спеціальні класи простих графів, які часто використовують як приклади й широко застосовувані.

Повний граф з n вершинами (позначають як K_n) – це граф, у якого будь-яку пару вершин з'єднано точно одним ребром.

Кількість ребер у графі K_n дорівнює $C_n^2 = n(n-1)/2$.

Приклад. На рис. 8 зображено графи K_n для n=1, 2, 3, 4, 5.

Граф називають *порожнім*, якщо $E=\emptyset$, тобто такий граф не має ребер. Порожній граф з n вершинами позначають як O_n .

<u>Простий</u> граф G = (V, E) називають *двочастковим*, якщо множину його вершин V можна розбити на дві підмножини V_1 і V_2 , що не перетинаються $(V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset)$, так, що кожне ребро з'єднує вершину з V_1 і вершину з V_2 . Іноді двочастковий граф позначають як $G = (V_1 \cup V_2, E)$. Двочастковий граф називають *повним двочастковим графом*, якщо кожну вершину з V_1 з'єднано ребром із кожною вершиною з V_2 . Повний двочастковий граф позначають як $K_{m,n}$, де $m = |V_1|$, $n = |V_2|$ Граф $K_{1,n}$ називають *зіркою*.

Граф $K_{m,n}$ має n+m вершин та $n\cdot m$ ребер.

Рис. 9

Приклад. На рис. 9 наведено повні двочасткові графи $K_{1,5}$, $K_{3,2}$ та $K_{3,3}$.

Циклом C_n , $n \ge 3$, називають граф із множиною вершин $V = \{v_1, v_2, ..., v_n\}$ і множиною ребер $E = \{\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\}\}.$

Приклад. На рис. 10 зображено цикли C_3 , C_4 , C_5 і C_6 .

Колесом W_n називається граф, який одержують із циклу C_n додаванням іще однієї вершини, яку з'єднують з усіма n вершинами в C_n новими ребрами.

Рис. 11 Приклад На рис. 11 зображено колеса $W_3,\ W_4,\ W_5,\ W_6.$

Граф, вершини якого відповідають <u>усім</u> 2^n бітовим рядкам довжиною n, називають n-вимірним кубом і позначають Q_n Дві вершини в Q_n з'єднано ребром тоді й лише тоді, коли відповідні бітові рядки відрізняються точно в одному біті.

Приклад. на рис. 12 зображено Графи Q_1 , Q_2 та Q_3 .

Граф Q_{n+1} можна отримати з двох графів Q_n , з'єднавши ребрами їхні однаково позначені вершини. Після цього до бітових рядків у вершинах одного з графів Q_n зліва дописують 0, другого – дописують 1.

Приклад. Скільки ребер має граф Q_n ? Степінь кожної вершини графа Q_n дорівнює n (це випливає з означення) і тому $\sum_{i=1}^n \deg(v_i) = n \cdot 2^n$. Позначимо як m кількість ребер. За теоремою про рукостискання $n \cdot 2^n = 2m$. Звідси кількість ребер графа Q_n дорівнює $n \cdot 2^{n-1}$.

Способи подання графів

Найзрозуміліший і корисний для людини спосіб подання (зображення) графів — це рисунок на площині у вигляді точок і ліній, які з'єднують ці точки. Проте цей спосіб подання абсолютно непридатний, якщо потрібно розв'язувати на комп'ютері задачі з графами.

Розглянемо декілька інших способів подання графів. Для спрощення розглядатимемо два найбільш важливих типи графів: простий граф (рис. 13) і орієнтований граф (рис. 14).

Матрицю, кожний елемент якої дорівнює 0 або 1, називають *булевою*.

Матриця інцидентності

Нехай G=(V,E) – простий граф із множиною вершин $V=\{v_1, v_2, ..., v_n\}$ і множиною ребер $E=\{e_1, e_2, ..., e_m\}$.

Матрицею інцидентності графа G, яка відповідає заданій нумерації вершин і ребер, називають булеву $n \times m$ матрицю M з елементами m_{ij} (i=1, ..., n, j=1, ..., m), де

$$m_{ij} = \begin{cases} 1, & \text{якщо вершина } v_i \text{ та ребро } e_j \text{ інцидентні,} \\ 0 & \text{в протилежному випадку.} \end{cases}$$

Приклад. Для графа, зображеного на рис. 13, матриця інцидентності має вигляд

	e_1	e_2	e_3	e_4	e_5	
v_1	<u> </u>	1	1	0	0	
v_2	1					
v_3	0	1	0	0	1	
V_4	0	0	1	1	1	

Отже, для простого графа в матриці інцидентності в кожному стовпці точно дві одиниці, і немає однакових стовпців. Матрицю інцидентності можна використовувати й для подання мультиграфа. Тоді з'являться однакові стовпці (вони відповідають кратним ребрам). Для подання псевдографа петлю e_j у вершині v_i зображають значенням $m_{ij}=2$ (у цьому разі матриця інцидентності, очевидно, не булева).

За допомогою матриці інцидентності можна подавати й орієнтовані графи. Для таких графів вона також не булева. Нехай G=(V,E) — орієнтований граф із множиною вершин $V=\{v_1, v_2, ..., v_n\}$ і множиною дуг $E=\{e_1, e_2, ..., e_m\}$.

Матрицею інцидентності орієнтованого графа G, яка відповідає заданій нумерації вершин і дуг, називають $n \times m$ матрицю M з елементами m_{ij} (i=1, ..., n, j=1, ..., m), де

$$m_{ij} = \begin{cases} 1, & \text{якщо дуга } e_{j} \text{ виходить 3 вершини } v_{i}, \\ -1, & \text{якщо дуга } e_{j} \text{ входить у вершину } v_{i}, \\ 2, & \text{якщо дуга } e_{j} - \text{ це петля у вершині } v_{i}, \\ 0 & \text{в інших випадках} . \end{cases}$$

Приклад. Для графа, зображеного на рис. 14, матриця інцидентності має вигляд

	\boldsymbol{e}_1	\boldsymbol{e}_2	e_3	e_4	e_5	e_6
v_1	1	0	0	0	0	-1
v_2	-1	2	1	-1	0	0
v_3	0	0	-1	1	1	0 0 1
v_4	0	0	0	0	-1	1

З алгоритмічної точки зору матриця інцидентності не є добрим вибором для комп'ютерних застосувань. По-перше, вона вимагає nm комірок пам'яті, більшість із яких зайнята нулями. Подруге, незручний доступ до інформації. Щоб отримати відповідь на елементарні запитання (наприклад, чи існує дуга (v_i, v_j) , до яких вершин ведуть дуги з v_i), у найгіршому випадку потрібно перебрати всі стовпці матриці, тобто виконати m кроків.

Матриця суміжності.

Нехай G=(V, E) – простий граф, |V|=n. Припустимо, що вершини графа G занумеровані: $v_1, v_2, ..., v_n$. Матрицею суміжності графа G (яка відповідає даній нумерації вершин) називають булеву $n \times n$ матрицю A з елементами a_{ij} (i, j=1, ..., n), де

$$a_{ij} = \begin{cases} 1, & \text{якщо } \left\{v_i, v_j\right\} \in E, \\ 0 & \text{в протилежному випадку.} \end{cases}$$

Приклад. Матриця суміжності для графа, зображеного на рис. 13, має вигляд

$$\begin{array}{c|ccccc} & v_1 & v_2 & v_3 & v_4 \\ v_1 & \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ v_3 & \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}. \end{array}$$

Цілком очевидно, що для неорієнтованого графа $a_{ij}=a_{ji}$, тобто матриця суміжності неорієнтованого графа симетрична. Більше того, позаяк у простому графі немає петель, то для нього в матриці суміжності $a_{ii}=0$ ($i=1,\ldots,n$).

Матрицю суміжності можна використовувати також для подання псевдографа. Тоді це не булева матриця: елемент a_{ij} дорівнює кількості ребер, що з'єднують v_i та v_j . Петлю у вершині v_i подають значенням діагонального елемента a_{ii} =1.

Для подання орієнтованих графів також використовують матрицю суміжності. Це булева $n \times n$ матриця A з елементами a_{ij} (i, j=1, ..., n), де

$$a_{ij} = \begin{cases} 1, & \text{якщо } (v_i, v_j) \in E, \\ 0 & \text{в протилежному випадку.} \end{cases}$$

Приклад 7. Матриця суміжності для графа, зображеного на рис. 14, має вигляд

$$\begin{array}{c|cccc}
v_1 & v_2 & v_3 & v_4 \\
v_1 & 0 & 1 & 0 & 0 \\
v_2 & 0 & 1 & 1 & 0 \\
v_3 & 0 & 1 & 0 & 1 \\
v_4 & 1 & 0 & 0 & 0
\end{array}.$$

Зазначимо, що матриця суміжності орієнтованого графа, загалом кажучи, несиметрична.

Матрицю суміжності можна використовувати й для подання орієнтованого мультиграфа. У такому разі це не булева матриця: елемент a_{ij} дорівнює кількості дуг, які мають v_i початковою вершиною, а v_j – кінцевою.

Великою перевагою матриці суміжності як способу подання графа є швидкий доступ до інформації: за один крок можна одержати відповідь на запитання, чи існує ребро (дуга) з v_i у v_j . Недоліком є те, що незалежно від кількості ребер обсяг пам'яті становить n^2 комірок. Як іще один аргумент проти використання матриці суміжності можна зазначити, що деякі алгоритми, які в разі використання матриці суміжності мають оцінку складності $O(n^2)$, для іншого способу подання графа мають кращу o-оцінку.

Ізоморфізм графів

Прості графи G_1 та G_2 називають ізоморфними, якщо існує така бієкція $\varphi: V_1 \to V_2$, що вершини u та v суміжні в G_1 тоді й лише тоді, коли вершини $\varphi(u)$ та $\varphi(v)$ суміжні в G_2 для всіх $u, v \in V_1$ (у такому разі говорять, що ця бієкція зберігає суміжність вершин).

Приклад. Графи на рис. 15 ізоморфні, бієкцію φ можна задати так: $\varphi(x_1)=y_1$; $\varphi(x_2)=y_4$; $\varphi(x_3)=y_3$; $\varphi(x_4)=y_2$.

Приклад. Усі три графи, зображені на рис. 16, ізоморфні. Довести це пропонуємо як вправу.

Ізоморфні графи природно ототожнювати (їх можна зобразити одним рисунком). Вони могли б різнитися природою своїх елементів, але саме це ігнорується при введенні поняття "граф". У деяких ситуаціях усе ж доводиться розрізняти ізоморфні графи, і тоді корисне поняття "позначеного графа". Граф з n вершинами називають *позначеним*, якщо його вершинам присвоєно якісь мітки, наприклад, числа 1, 2, ..., n. Ототожнимо кожну з вершин з її номером (і, отже, множину вершин – із множиною чисел $\{1, 2, ..., n\}$) і означимо рівність простих позначених графів G_1 та G_2 з однаковою кількістю вершин n так: $G_1 = G_2$ тоді й лише тоді, коли $E_1 = E_2$.

Приклад. На рис. 17 зображено три різні позначені графи.

Щоб наголосити, що графи розрізняють лише з точністю до ізоморфізму, говорять про абстрактний граф. Абстрактний граф приводить до різних матриць суміжності залежно від нумерації вершин. З'ясуємо, як пов'язані між собою ці матриці. Нехай G_1 та G_2 — позначені графи з n вершинами і G_1 та G_2 ізоморфні.

Теорема 4. Прості графи ізоморфні тоді й лише тоді, коли їх матриці суміжності можна отримати одну з одної однаковими перестановками рядків і стовпців.

Задача виявлення ізоморфізму дуже складна. Теоретично алгоритм перевірки пари простих графів на ізоморфізм існує — його сформульовано в попередній теоремі. Проте він не знаходить практичного застосування, оскільки може бути потрібно до n! перестановок і перевірок.

Часто неважко довести, що два графи не ізоморфні. Це буде, якщо порушуються інваріанти. *Інваріант* – це властивість, яку довільні ізоморфні графи або обидва мають, або обидва не мають.

Такими інваріантами, наприклад, ϵ :

- ♦ кількість вершин;
- ♦ кількість ребер;
- \bullet кількість вершин конкретного степеня (вершині $v, v \in V_1$, $\deg(v) = d$, має відповідати вершина $u = \varphi(v), u \in V_2$, $\deg(u) = d$).

Є й інші інваріанти, але порушення інваріанта – це лише достатня умова неізоморфності графів. Не існує набору інваріантів для виявлення ізоморфізму.

Приклад. Графи на рис. 18 не ізоморфні. Обидва графи мають по п'ять вершин і по шість ребер. Проте граф G_2 має вершину степеня 1, якої не має граф G_1 .

Рис. 18

Приклад. На рис. 19 зображено графи G_1 і G_2 . Обидва вони мають по 8 вершин і по 10 ребер. Вони також мають по чотири вершини степеня 2 і по чотири вершини степеня 3. Однак ці графи не ізоморфні. Справді, позаяк $\deg(x_1)=2$ в G_1 , то вершині x_1 має відповідати одна із чотирьох вершин y_2 , y_4 , y_6 , y_8 у графі G_2 . Зазначені вершини мають у графі G_2 степінь 2. Проте кожна з цих чотирьох вершин суміжна з іншою вершиною степеня 2 в графі G_2 , що не виконується для вершини x_1 у графі G_1 .

Те, що графи, зображені на рис. 19, не ізоморфні, можна довести й інакше. На рис. 20 зображено підграфи графів G_1 і G_2 , породжені вершинами степеня 3. Якщо графи G_1 та G_2 ізоморфні, то й зазначені підграфи мають бути ізоморфними. Проте підграфи з рис. 6 не ізоморфні.

Ми розглянули поняття ізоморфізму для простого графа. Для неорієнтованих мультиграфів і псевдографів, а також орієнтованих графів природно вводять поняття ізоморфізму як бієкції між множинами вершин, яка зберігає суміжність, кратності ребер, петлі та напрямки дуг. Зазначимо, що теорема 4 залишається правильною для мультиграфів, псевдографів і орієнтованих графів.