SELECTED MIDTERM SOLUTIONS and other miscellany....

Part I. 1. Draw a lattice diagram for the abelian group $\mathbb{Z}/36\mathbb{Z}$.

Part II. 1. Let g_1, g_2, \dots, g_r be representatives of conjugacy classes of the finite group G and assume these elements pairwise commute. Prove that G is abelian.

Proof. If G acts on itself by conjugation, then by the class equation,

$$|G| = |Z(G)| + \sum_{i=1}^{k} [G : C_G(g_i)],$$

where the sum is over distinct conjugacy classes of G of size greater than 1. (We may assume that the representatives g_i are ordered so that $g_i \notin Z(G)$ for i = 1, ..., k.) Letting j = |Z(G)|, we note that G has r = j + k distinct conjugacy classes with $j \geq 1$ and r > k. For each of the elements g_i , i = 1, ..., k, notice that $|C_G(g_i)| \geq r$, since by hypothesis g_i commutes with each g_j , j = 1, ..., r. Then for each of these k conjugacy classes \mathcal{O}_{g_i} of size greater than 1,

$$|\mathcal{O}_{g_i}| = [G : C_G(g_i)] = \frac{|G|}{|C_G(g_i)|} \le \frac{|G|}{r}.$$

Combining this with the class equation, we have

$$|G| = |Z(G)| + \sum_{i=1}^{k} \left[G : C_G(g_i) \right]$$

$$\implies |G| \le (r - k) + \sum_{i=1}^{k} \frac{|G|}{r}$$

$$\implies |G| \le (r - k) + k \frac{|G|}{r}$$

$$\implies |G| \left(1 - \frac{k}{r} \right) \le (r - k).$$

Now since $(r-k) \neq 0$, we find

$$|G| \leq r$$
.

Clearly, $|G| \geq r$. Thus we conclude

$$|G| = r$$
.

This means that G has |G| distinct conjugacy classes and necessarily then, each is of size 1. Thus, for all $g \in G$, $g \in Z(G)$.

- 2. See class notes.
- 3. (a) While it would not suffice to quote the theorem "Any group of order 77 with $7 \nmid 10 = 11-1$ is cyclic, mimicking the proof of this statement for groups of order pq, p, q prime and p < q, $p \nmid q 1$ will lead to a proof.
 - (b) Hint: A counting argument suffices.
- 4. (a) Hint: Try a counting argument.
 - (b) forthcoming
- 5. See class notes. This follows from the Class Equation,

A good exercise:

Problem: In the symmetric group S_9 , count the number of conjugates of

- (1) (123)(456)(789)
- (2) (12)(34)(56)
- (3) (123)(456)
- (4) a k-cycle σ , for $k = 2, \ldots, 9$.
- (5) (1234)(56)