ELECTRÓNICA DE POTENCIA - PARCIAL 1

FACULTAD DE ING. ELÉCTRICA UNIVERSIDAD TECNOLÓGICA DE PANAMA

Nombre: Willson Hervarder Prof. Abdiel Bolaños

Cédula: 4-752-2122

Fecha: 30 - 09 - 2011

GYUZO: 12E-141
I- RESPONDA LAS SIGUIENTES PREGUNTAS (6 puntos cada una)

Dibuje el diagrama de un circuito de polarización que permita fijar el voltaje de encendido de un BJT de potencia (VCE-ON) en 2.1V.

2. Explique el fenómeno de recuperación reversa con una ilustración y en no más de tres líneas.

3. Por qué razón la ganancia de corriente en los BJT de potencia presenta valores tan bajos? (entre 5 y 10 unidades). Su respuesta debe relacionarse con la estructura física del dispositivo.

A qué se debe que los MOSFET de potencia presenten una eleva resistencia de encendido Ros-on, cuando son diseñados para soportar altos voltajes.

Js. Qué es el fenómeno de segunda ruptura, cuando puede presentarse y que puede hacerse para

II. RESUELVA LOS SIGUIENTES PROBLEMAS

- 1. Se quiere utilizar un MOSFET de potencia IRF1503 para conmutar una carga inductiva de 60A y 24V. La frecuencia de operación puede ser 20kHz o 100kHz y el ciclo de trabajo puede variar entre 0.2 y 0.9. La temperatura ambiente varía entre 20 y 43°C. Como criterio de diseño es de interés que la fiabilidad a largo plazo del dispositivo sea cuatro veces la esperada.
 - a) Cuanta corriente de carga podría manejar el transistor sin usar disipador de calor? Todas las otras condiciones se mantienen....
 - b) Calcule la resistencia térmica máxima del disipador de calor y escoja uno de la figura.

2. Para el circuito anterior, calcule:

- a) Calcule los snubber de bloqueo y disparo considerando que Cs=Cs1 y que ΔVce=8V y ΔVcemax=2V.
- b) El tamaño mínimo del disipador de calor considerando los snubber. 10 ptos

BUENA SUERTE

FORMULAS:

FORMULAS:

$$P_{ON} = DI_O^2 R_{DS(ON)} = DI_O V_{CE}$$
 $P_S = V_d I_O f_S (t_r + t_f)$ $P_{TOT} = P_S + P_{ON}$

$$P_{s} = V_{d}I_{o}f_{s}(t_{r} + t_{f})$$

$$P_{TOT} = P_S + P_{ON}$$

$$T_{J\,\mathrm{max}} = T_{A} + P_{TOT} \left(R_{\phi JC} + R_{\phi CS} + R_{\phi SA} \right)$$

Snubber

$$C_{S1} = \frac{I_O t_{fi}}{2V_A}$$

$$\frac{V_d}{R_s} = 0.2I_o$$

$$C_{S1} = \frac{I_O t_A}{2V_d}$$
 $\frac{V_d}{R_S} = 0.2I_O$ $P_{RS} = \frac{C_S V_d^2}{2} f_S$

Disaparo
$$\Delta V_{CR} = \frac{L_{S}L_{O}}{t_{H}}$$

$$\Delta V_{CR,\text{max}} = R_{LS}I$$

$$\Delta V_{CE,\text{max}} = R_{LS} I_O \qquad \qquad P_{RLS} = \frac{L_S I_O^2}{2} f_S$$

Perdidas de bloqueo con snubber

$$P_{\mathcal{Q}} = \frac{I_{\mathcal{Q}}^2 t_f^2 f_{\mathcal{S}}}{24C_{\mathcal{S}}}$$

DATA DE FABRICANTE IRF1503

 $V_{CD9} = 30V$ $R_{D0(on)} = 3.3m\Omega$ $I_0 = 75A$

Thermal Resistance

	Parameter	Тур.	Max.	Units
Raw	Junction-to-Case		0.45	The second
Rece	Case-to-Sink, Flat, Greased Surface	0.50		-CM
Rau	Junction-to-Ambient		62	

Absolute Maximum Ratings

	Parameter	Max.	Units		
10 @ To = 25°C	Continuous Drain Current, Vas @ 10V (Silicon fimited)	240			
10 @ To = 100°C	Continuous Drain Current, Vg8 @ 10V (See Fig.9)	170	A		
Ip @ To = 25°C	Continuous Drain Current, Vgs @ 10V (Package Emited)	75			
IDM	Pulsed Drain Current ①	060			
Po @To = 25°C	Power Dissipation	330	W		
	Linear Derating Factor	2.2	W/°C		
V _{G8}	Gate-to-Source Voltage	± 20	V		
Eas	Single Pulse Avalenche Energy®	510	inJ:		
EAS (tested)	Single Pulse Avalanche Energy Tested Value®	980			
AR	Avalanche Current®	See Fig.12a, 12b, 15, 16:	A		
AR	Repetitive Avalanche Energy®		mJ		
J	Operating Junction and	-55 to +975.			
вто	Storage Temperature Range		°C		
810	Soldering Temperature, for 10 pagends	300 (1.6mm from case)			

Id(on)	Tum-On Delay Time	17			V ₀₀ = 15V
t-	Rise Time	130		ns	I _D = 140A P _Q = 2.5Ω V _{QS} = 10V Φ
td(off)	Turn-Off Delay Time	59 48	_		
	Fall Time				

		1	T HARD STREET		T a	5	17	3	9	10	111	1 12
Heat sink to.		2	_3_	4	1 3	-	112	100	1,25	1.2	0.5	0.55
TIga ("C/W)	3.2	2.3	2.2	0	198	1./	1277	212	6713	534	595	1311
THE RESERVE OF THE PARTY OF THE		THE RESERVE OF	181		198	298	435	3/12	SCI-CHE	335		

del Mosfet de potoucia.

1000 0.45 °C/W 16 NOTON) = 60 d L-Dja 1000 : 0.5 0/10 j = 20KHZ a 100/cHZ 1,= 155 0 Timex = 175°C D = 0.2 a 0.9 1.625 14 = 130 ms ta = 20 a 43°C Wilban Heroundez 1/= 48m5 Siabilited dunes la esperada 4-752-7122 Grupo : 150-146 9 tor = T; uox - Ta = 175°C - 43°C = 2.129 W losa 62°C/W 20176°E PON = RES(ON) IO D = (3.3 m) IO 2(0.9) (1.70) = 5.049 x10-3 Io. Ps = Vo Tofr (1x+1) = (24) Io (100k) (130ms + 48ms) = 0. 4272 Io 2. $129 \omega = 5.049 \times 10^{-3} I_0^{2} + 0.4272I_0$ $I_{0, =} -89.331 A$ PTOT = PS + Pau a) [102 = 4.7204 A] $P_{00} = (3.3 \, \text{m})(60)^2 (0.9)(1.626) = 17.37.45 \, \text{W}$ $P_{5} = (24)(60)(1004)(120 \, \text{CM/S}) = 12.37.45 \, \text{W}$ Ps = (24)(60)(100K)(130m5+48m5) = 25. 632 w Proj. P., + ?3 = 17.37 45 W + 25.632 W = 43.00 65 W 0.45°c/w - 0.5°c lasa = (+3 - +a) - Roje - Kores = (155°C - 43°C) 18000 = 1,6543°C/W/ 65,000 N 7-1 Page (1/10) = 1.3

Blogues Goubbil

(si = Io Ifi = (60) /48 10-5) = 6 xy6 8 F

Ls = 24 = 2 -

Prs = 1 (6+10-8) /24) 2 (100+1/2) = 1, 728 W

Dispero SNU bbor

L5 = AVCE + Y = (8) (130 110-9) = 1, 7 33/110-8 H

 $\ell_{15} = 4 \frac{1}{20} = \frac{2}{60} = 0.033 f$

Prs= (1,733 x10-84)(00)2(100(KHZ) = 3.1194 W

Pq = (8)(60) (130 ×10-9) (10 0 kHz) = 6.24 40

Pg bloque0 = (60) 2 (48 x10-9) 2 (100 KH2) = 0,576 W 74 (6 ×10-8)

1°00 = (60) 2 (3.3 ×10-3) (0,9) = 15.692 W

Py = Pg d8 paro - Py Hogue v + PaN = 4.24 +0.576 + 10.692

9, = 17.508 WV

0,45% w - 0.5°C/01 = 5.44 2 3/11 1 0.99 = (1956- 430) 17.508 Wills an Harvander 4-752-2122 Crupo 100-141 Acopt il filter aumento to S