LERNZIELE GASE

egriff	Lernziele
Zustand und Prozess	Unterschied zwischen Zustand und Prozess erklären
	Zustandsgrössen (Druck, Volumen, Temperatur, Stoffmenge) mit Grundeinheiten
	Molmasse aus Periodensystem ablesen (für Wasserstoff, Kohlenstoff, Stickstoff und Sauerstoff auswendig)
	Teilchenzahl in einer Gasmenge berechnen (Avogadrozahl N_A auswendig kennen)
	spezielle Prozesse (isobar, isochor, isotherm); Darstellung in Zustandsdiagrammen
ideales Gas	Bedingungen für ein ideales Gas beschreiben, Vergleich mit Eigenschaften eines realen Gases
	Beziehungen zwischen den Zustandsgrössen bei speziellen Prozessen (Boyle-Mariotte, Gay-Lussac, Amontons)
	Gasthermometer (absoluter Nullpunkt, Kelvinskala) erklären
	Berechnungen mit der Zustandsgleichung für ideale Gase
	Molvolumen und Dichte eines Gases berechnen
Gaskinetik	Teilchenbild der Gase beschreiben (z.B. Brown'sche Bewegung)
	mittlere Teilchenschnelligkeit aus Gasdruck oder Temperatur berechnen
	Temperatur als Mass für die mittlere kinetische Energie der Gasteil- chen verstehen
	Geschwindigkeitsverteilung für verschiedene Temperaturen skizzieren und interpretieren
Dampfdruck	Sättigungsdampfdruck im Teilchenbild erklären (dynamisches Gleichgewicht)
	Zusammenhang zwischen Siedepunkt und Dampfdruckkurve kenne
	einfache Berechnung mit Dampfdruckwerten (aus Diagramm oder Tabelle), z.B. Dampfmasse bestimmen
	Phasendiagramm skizzieren, Bedeutung von Tripelpunkt und kritischem Punkt kennen
rösse	Wert
ormaldruck	$p_L = 101'325 \text{ Pa}$
Molmassen	$M_{\rm H} = 1 \text{ g/mol}$ (Wasserstoffgas: H ₂)
	$M_{\rm C}$ = 12 g/mol
	$M_{\rm N} = 14 \text{ g/mol}$ (Stickstoffgas: N ₂)
	$M_{\rm O} = 16 \text{ g/mol}$ (Sauerstoffgas: O_2)
vogadrozahl	$N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}$
osoluter Nullpunkt	$\theta_{\rm o} = -273.15^{\rm o}{\rm C}~(T_{\rm o} = {\rm o~K})$
niverselle Gaskonstante	
-	$R = 8.3145 \text{ J/(mol \cdot \text{K})}$ $k = R/N_A = 1.38 \cdot 10^{-23} \text{ J/K}$