北京市通州区 2016 年初中毕业考试试卷

数学

2016年5月

考 生

- 1. 本试卷共 8 页, 三道大题, 29 道小题, 满分 120 分, 考式时间 120 分钟。
- 2. 在试卷, 答题卡上准确填写学校名称, 班级, 姓名。

3. 试图答案一律书写在答题卡上各题指定区域内的相应位置上。

须

知

4. 请用蓝色或黑色钢笔、圆珠笔答卷。

5、考试结束,请把本试卷和答题卡一并交回

一、选择题(本题共30分,每小题3分)

1. 如左图是一个几何体的三?图,那么这几何体的展开图可以是

- 2. 如图,数轴上的 A,B,C,D 四点中,与表示数 $\sqrt{17}$ 的点数接近的点是
- A. 点 A
- B. 点 B
- C. 点 C
- D. 点 D

- 3. 计算: $\frac{\mathbf{a}^2 1}{\mathbf{a}^2 + 2\mathbf{a} + 1} \div \frac{a 1}{a}$, 其结果正确的是
- A, $\frac{1}{2}$
- B. $\frac{a}{a+1}$
- C. $\frac{\mathbf{a}+1}{\mathbf{a}}$
- D. $\frac{a+1}{a+2}$
- 4、将一副三角板如图放置,使点 D 落在 AB 上,如果 EC//AB,那么 ZDFC 的度数为
- $A.45^{\circ}$
- B. 50°
- C. 60°
- D. 75°

5. 本学期的四次数学单元练习中,甲、乙两位同学的平均成绩一样,方差分别为 1.0, 0.6, 由此可知

A. 甲比乙的成绩稳定

B. 甲乙两人的成绩一样稳定

C. 乙比甲的成绩稳定

D. 无法确定谁的成绩更稳定

6. 如图, AB 为⊙O 的弦, 半径 OD ⊥ AB 于点 C, 如果 AB=8, CD=2,

那么⊙O 的半径长为

- A. $\sqrt{7}$
- B. 3
- C. 4
- D. 5

7. 一个盒子中装有四张完全相同的卡片,分别写着 2cm, 3cm, 4cm 和 5cm, 盒子外有两张卡片, 分别写着 3cm 和 5cm, 现随机从盒中取出一张卡片, 与盒子外的两张卡片放在一起, 以卡片上的数量分别作为三条线段的长度, 那么这三条线段能构成三角形的概率是

A. $\frac{1}{4}$

- B. $\frac{1}{3}$
- $C \frac{1}{2}$
- D. $\frac{3}{4}$

8. 如图,在已知 △ ABC 中,按以下步骤作用:

①分别以 B,C 为圆心,以大于 $\frac{1}{2}$ BC 的长为半径作弧,两

弧相交于两点 M, N; ②作直线 MN 交 AB 于 D, 连接 CD, 如果 CD=AC, \angle A=50°, 那么 \angle ACB 的度数为

A. 90°

- B. 95°
- C. 100°

9. 随着北京公交票制票价调整,公交集团更换了新版公交站票,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:

乘车路程计价区段	0-10	11-15	16-20	-
对应票价 (元)	2	3	4	-

另外,一卡通刷卡实行 5 折优惠,小明用一卡通乘车上车时站名上对应的数字是 5,下车时站名上对应的数字是 22,那么小明乘车的费用是

- A. 2 元
- B. 2.5 元
- C.3.5 元
- D. 4 元

10. 如图,在边长为 2 的正方形 ABCD 中剪去一个边长为 1 的小正方形 CEFG,动点 P 从点 A 出发,沿 $A \to D \to E \to F \to G \to B$ 的路线绕多边形的边匀速运动到点 B 时停止(不含点 A 和点 B),那么 Δ ABP 的面积 S 随着时间 t 变化的函数图象大致为

- 二、填空题(本题共18分,每小题3分)
- 11. 分解因式: $2x^3 4x^2 + 2x =$ ________。
- 12. 已知点 A(2, y_1)、B(M, y_2)是反比例函数 $y = \frac{6}{x}$ 的图象上的两点,且 $y_1 < y_2$,
- 写出满足条件的 m 的一个值, m 可以是____。
- 13. 已知正六边形 ABCDEF 的边心距为 $\sqrt{3}$ cm, 那么正六边形的半径为_____cm。
- 14. 如图是根据某班 50 名同学一周的体育锻练情况绘制的条形统计图,那么这个班 50 名同学一周参加体育锻炼时间的众数是______(小时),中位数是_____(小时)。

16.在数学课上,老师提出如下问题:

已知:如图,线段AB,BC,求作:平行四边形ABCD

小明的作法如下:

如图: (1) 以点 C 为圆心, AB 长为半径孤弧;

- (2) 以点 A 为圆心, BC 长为半径面弧;
- (3) 两弧在 BC 上方交于点 D, 连接 AD, CD, 四边形 ABCD 为所求作平行四边形

老师说:"小明的作法正确。"

请回答: 小明的作图依据是

三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程。

17. 计算:
$$\left|1-\sqrt{2}\right|+\left(-\frac{1}{3}\right)^{-2}+\left(3.14-\pi\right)^{0}-2\sqrt{\frac{1}{2}};$$

18. 求不等式组
$$\begin{cases} 3x + 4 > 5x - 2 \\ x \ge \frac{1}{3}x - \frac{4}{3} \end{cases}$$
 的最小整数解.

19. 解方程:
$$\frac{x}{x-2} - \frac{1}{x^2 - 4} = 1$$

20. 如图, 已知 AB=AC=AD, 且 AD//BC

求证: ∠DAC=2∠D

21. 某市居民用电的电价实行阶梯收费, 收费标准如下表:

一户居民每月用电量 x (单位: 度)	电费价格(单位:元/度)
0 < x ≤ 200	а
200 < x ≤ 400	b
x > 400	0.92

- (1) 已知李叔家四月份用电 286 度,缴纳电费 178.76 元,五月份用电 316 度,缴纳电费 198.56 元,请你根据以上数据,求出表格中 a、b 的值。
- (2) 六月份是用电高峰期,李叔计划六月份电费支出不超过300元,直接写出李叔家六月份最多可用电的度数是:______.

22. 如图。在平面直角坐标系 xoy 中,一次函数 $y = \frac{1}{2}x$ 的图像与反比例函数 $y = \frac{k}{x}$ 的图象

的一个交点为 A (2, m).

(2) 如果点 P 在直线 OA 上, 且满足 PA=2OA,

直接写出点 P 的坐标。

23. 如图, 四边形 ABCD中, ∠A=∠ABC=90°, AD=1, BC=3, E 是边 CD 的中点, 连接 BE 并 延长与 AD 的延长线相较于点 F. 连接 CF.

(1) 求证: 四边形 BDFC 是平行四边形;

(2) 己知 CB=CD, 求四边形 BDFC 的面积。

24. 为了了解某区的绿化进程,小明同学查询了园林绿化政务网,根据网站发布的近几年该

城市城市绿化资源情况的相关数据,绘制了如下统计图(不完整)

某市 2011-2015 年人均公共绿地面积年增长率统计图 某市 2011-2015 年人均公共绿地面积统计图

2013

? 人均占有绿地面积(平方米)

(1) 请根据以上信息解答下列问题:

2012

①求 2014 年该市人均公共绿地面积是多少平方米 (精确到 0.1)?

2014

②补全条那统计图:

2011

(2) 小明同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高人均公共绿地面积做贡献,他对所在班级的 40 多名同学 2015 年参与植树的情况做了调查,并根据调查情况绘制出如下统计表:

2015年份

种树棵数(棵) 0	1	2	3	4	5
人数 10	5	6	9	4	6

如果按照小明的统计数据,请你通过计算估计,他所在学校的 300 名同学在 2015 年共植树 多少棵?

25. 已知关于
$$x$$
 的一元二次方程 $ax^2 + (3a+1)x + 2(a+1) = 0(a^1 0)$

- (1) 求证:无论 a 为任何非零实数,方程总有两个实数根;
- (2) 当 a 取何整数时,关于 x 的方程 $ax^2 + (3a+1)x + 2(a+1) = 0(a 1 0)$ 的两个实数根均为负整数。

26. 如图: $\triangle ABC$ 是 $\odot O$ 的内接三角形, $\angle ACB$ =45° , $\angle AOC$ =150° ,过点 C作 $\odot O$ 的切线 交 AB 的延长线于点 D.

- (1) 求证: *CD=CB*;
- (2) 如果 $\odot o$ 的半径为 $\sqrt{2}$,求AC 的长.

- 27. 已知: 二次函数 $\mathbf{y} = -\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$ 的图象过点 \mathbf{A} (-1, 0) 和 \mathbf{C} (0, 2).
- (1) 求二次函数的表达式及对称轴;

(2) 将二次函数 $\mathbf{y} = -\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$ 的图象在直线 y=1 上方的部分沿直线 y=1 翻折,图象其余的部分保持不变,得到的新函数图象记为 G,点 M(m, \mathbf{y}_1)在图象 G 上,且 $y_1 \geq 0$,求 m 的取值范围。

- 28. 已知,在菱形 ABCD 中, \angle ADC= 60° ,点 F 为 CD 上任意一点(不与 C、D 重合),过 点 F 作 CD 的垂线,交 BD 于点 E,连接 AE.
 - (1) ①依愿意补全图 1;

②线段 EF、CF、AE 之间的等量关系是

(2) 在图 1 中将 \triangle DEF 绕点 D 逆时针旋转,当点 F、E、C 在一条直线上(如图 2)。

线段 EF、CE、AE 之间的等量关系是____。

写出判断线段 EF、CE、AE之间的等量关系的思路(可以不写出证明过程)

29. 在平面直角坐标系 xoy 中, $\odot C$ 的半径为 r,点 P 是与圆心 C 不重合的点,给出如下定义:如果点 \mathbf{P}' 为射线 CP 上一点,

满足 $\mathbf{CP} \cdot \mathbf{CP'} = \mathbf{r^2}$,那么称点 $\mathbf{P'}$ 为点 \mathbf{P} 关于 \mathbf{OC} 的反演点,

右图为点 P 及其关于 $\odot C$ 的反演点 \mathbf{P}' 的示意图。

- (1) 如图 1,当 \odot 0 的半径为 1 时,分别求出点 M (1, 0),N (0, 2),T $\left(\frac{1}{2}, \frac{1}{2}\right)$ 关于 \odot 的反演点 M' ,N' ,T' 的坐标;
- (2) 如图2: 已知点A (1, 4), B (3, 0), 以AB为直径的 \odot C的与y轴交于点C, D (点C位于点D下方), E为CD的中点,如果点O, E关于 \odot C的反演点分别为O ,E ,求 $\angle E$ O C的大小。

2016 届初三数学毕业参考答案

一、选择题(本题共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10

答案 A	СВ	D	С	D	D	D	A	В
二、填空题(本題	娅共 18 分,每	事小题 3 分))					
11. $2x(x-1)^2$; 12. 1(名	答案不唯	三);	13. 2	; 14.	8, 9;	15. A.	E, DF,
$DG^2 + GC^2 = 1$	DC^2 ; 16.	两组对	边分别	相等的	四边形是	是平行四	边形;	
三、解答题(本	题共 72 分,)							
17. $\left 1-\sqrt{2}\right +\left(-\frac{1}{2}\right)$	$-\frac{1}{3}\Big)^{-2} + (3.14)^{-2}$	$(4-\pi)^0$	$2\sqrt{\frac{1}{2}};$					
解: 原式=√2-	$-1+9+1-\sqrt{2}$;	• • • • • • • • • • • • • • • • • • • •	4	分;		2	/
=9. 18. 求不等式组	$\begin{cases} 3x+4 > 5x \\ x \ge \frac{1}{3}x - \frac{4}{3} \end{cases}$	c - 2 ①	的最小整		5分.	7.		
解:解不等	至式①,得				2,2			
	x < 3;			3		•••••	2 :	分;
解不等	至式②,得	7.						
	$x \ge -2$;		7 7		•••••	•••••	4 5	; ;
所以这个不	等式组的解集	集是 −2 ≤	x < 3.					
:最小整数 19. 解方程: —	$\frac{x}{x} = \frac{1}{x^2 - 4}$	=1.		•	•••••	••••••	5 分	
	$\frac{1}{(x+2)(x-2)}$	$\overline{2}$ = 1,				1分	;	
x(x+2)	-1 = (x+2)	(x-2),			• • • • • • • • • • • • • • • • • • • •		2	分;
$x^2 + 2x -$	$-1 = x^2 - 4$			••	•••••		3分;	
$\therefore x = -\frac{1}{2}$	$\frac{3}{2}$,			•••	•••••	•••••	4分;	
经检验: <i>x</i> =	$=-rac{3}{2}$ 是原方和	呈的解,		•••••			5分.	

∴原方程的解是
$$x = -\frac{3}{2}$$
.

20. 解: : **AB=AC=AD,

AD//BC,

$$\therefore \angle ABC = \angle ABD + \angle DBC = \angle D + \angle D = 2 \angle D$$
,

21. (1) 解:

根据题意得:
$$\begin{cases} 200a + 86b = 178.76 \\ 200a + 116b = 198.56 \end{cases}$$
 2分;

解得:
$$\begin{cases} a = 0.61 \\ b = 0.66 \end{cases}$$
 4分;

22. 解: (1) : 一次函数 $y = \frac{1}{2}x$ 的图象过点 A (2, m),

$$\therefore m = \frac{1}{2} \times 2 = 1 \qquad 1 \text{ }$$

A(2, 1)

∵反比例函数
$$y = \frac{k}{r}$$
 的图象过点 A (2, 1).

∴反比例函数的表达式为
$$y = \frac{2}{x}$$
. 3分;

23. (1) 证明:

$$\therefore \angle A = \angle ABC = 90^{\circ}$$
,

 $\therefore AF//BC$,

$$\therefore \angle ECB = \angle EDF$$
, $\angle EBC = \angle EFD$

- ∵*E* 是边 *CD* 的中点,
- $\therefore CE=DE$,
- ∴*BC=DF* 或 *BE=FE*, ······· 2 分;
- ∴四边形 AECD 是平行四边形,
- $\therefore \angle A = \angle ABC = 90^{\circ}$,
- :.四边形 BADG 是矩形,
- $\therefore AD=BG=1$,
- $\therefore CG=BC-BG=3-1=2,$
- : CB = CD,
- $\therefore DG = \sqrt{5} , \qquad \qquad 4 \, \text{f}$

即 2014 年北京市人均绿地面积约为 15.0 平方米.

......3 分

估计他所在学校的 300 名同学在 2015 年共植树 675 棵.

25. (1) 证明:
$$\triangle = (3a+1)^2 - 8a(a+1)$$
 …… 1分;
$$= 9a^2 + 6a + 1 - 8a^2 - 8a$$
$$= a^2 - 2a + 1$$

$$= (a-1)^2 \ge 0 \qquad \qquad 2 \ \text{β};$$

无论 a 为任何非零实数, 方程总有两个实数根;

$$x_1 = -1 - \frac{1}{a}, \quad x_2 = -2$$
 4 $\%$;

- ::两个实数根均为整数,
- $\therefore a = \pm 1$,
- ::两个实数根均为负整数,

- 26. 如图, $\triangle ABC$ 是 $\odot O$ 的内接三角形, $\angle ACB$ =45°, $\angle AOC$ =150°,过点 C 作 $\odot O$ 的切线 交 AB 的延长线于点 D.
 - (1) 求证: CD=CB;
 - (2) 如果 $\odot O$ 的半径为 $\sqrt{2}$, 求AC 的长.
 - (1) 证明: 连结 OB.

$$\therefore AB = AB$$
, $\angle ACB = 45^{\circ}$,

- : OA = OB,
- $\therefore \angle OAB = \angle OBA = 45^{\circ}$
- ∴ ∠*AOC*=150°,
- $\therefore \angle COB = 60^{\circ}$
- : OC = OB,

- $\therefore \angle OCB = \angle OBC = 60^{\circ}$,
- $\therefore \angle CBD = 75^{\circ}$,
- ::CD 是⊙O 的切线,
- $\therefore \angle OCD = \angle OCB + \angle BCD = 90^{\circ}$,
- $\therefore \angle BCD = 30^{\circ}$,

$$\therefore \angle D = \angle CBD = 75^{\circ}$$
,

- (2) 解: 过点 B 作 $BE \perp AC$ 于点 E,
 - $:: \triangle OCB$ 是等边三角形,

$$\therefore BC = OC = \sqrt{2}$$
,

$$\therefore \angle ACB = 45^{\circ}$$
,

$$\therefore CE = BE = 1$$
,

......4分;

$$\therefore BC = BC$$
, $\angle BOC = 60^{\circ}$,

$$\therefore \angle EAB = \frac{1}{2} \angle BOC = 30^{\circ},$$

$$\therefore \tan \angle EAB = \frac{BE}{AE},$$

$$\therefore \frac{\sqrt{3}}{3} = \frac{1}{AE},$$

$$\therefore AE = \sqrt{3}$$
,

$$.. AE = \sqrt{3}$$

$$\therefore AC = AE + CE = \sqrt{3} + 1, \quad \cdots$$

5分

27. 解: (1) 根据题意得:

$$\begin{cases} -1 - b + c = 0 \\ c = 2 \end{cases}$$

解得:
$$\begin{cases} b=1 \\ c=2 \end{cases}$$

二次函数的表达式为 $y = -x^2 + x + 2$

...... 2分;

对称轴为直线 $x = -\frac{1}{2 \times (-1)} = \frac{1}{2}$

3分;

(2) 解法 (一) 当 y = 0 时, $-x^2 + x + 2 = 0$.

$$∴ x = -1$$
 或 2.

:二次函数的图象与x轴交于点A(-1,0),

当
$$y = 2$$
 时, $-x^2 + x + 2 = 2$.

∴
$$x = 0$$
 或1.

二二次函数的图象与直线 y = 2 交于点 C(0,2), D(1,2)................. 5分;

解法 (二) 当 y = 0 时, $-x^2 + x + 2 = 0$.

∴ x = -1 或. 2.

二次函数的图象与 v 轴交于点 C(0,2),

∴根据图象可得 $-1 \le m \le 0$ 或 $1 \le m \le 2$. ……………… 7分:

- 28. 已知,在菱形 ABCD 中, $\angle ADC=60^{\circ}$,点 F 为 CD 上任意一点(不与 C、D 重合),过点 F 作 CD 的垂线,交 BD 于点 E,连接 AE.
 - (1) ①依题意补全图 1;

②线段 EF、CF、AE 之间的等量关系是

(2) 在图 1 中将 $\triangle DEF$ 绕点 D 逆时针旋转,当点 F、E、C 在一条直线上(如图 2), 线段 EF、CE、AE 之间的等量关系是______.

写出判断线段 EF、CE、AE 之间的等量关系的思路. (可以不写出证明过程)

解: (1) ①依题意补全图 1,如图

$$CF^2 + EF^2 = AE^2$$

2分:

- a. 如图2,作 $\triangle DEF$ 关于 DF 的对称 $\triangle DGF$,推出 DG=DE,GE=2EF; ········· 4 分;
- b. 由菱形 ABCD 和∠ADC=60°, 得 AD=DC, ∠ODC=30°;
- c. 由 $\angle ODC=30^{\circ}$ 和 $\triangle DEF$ 关于 DF 的对称 $\triangle DGF$ 推出 $\angle EDG=60^{\circ}$;

...... 5分;

- d. 由 DG=DE,AD=DC 和 $\angle ADC$ = 60° , $\angle EDG$ = 60° 推出 $\triangle ADE$ \cong $\triangle CDG$;

(2) 解法一: $: GE \cdot GE' = r^2$, $GO \cdot GO' = r^2$,

 $\therefore GE \cdot GE' = GO \cdot GO'$, 4分; 即 $\frac{GE}{GO'} = \frac{GO}{GE'}$.

$$\mathbb{Z} : \angle E'GO' = \angle EGO$$
,

$$\therefore \triangle E'O'G \hookrightarrow \triangle OEG$$
,

$$\therefore \angle E'O'G = \angle OEG.$$

......6分;

:E 为弦 CD 的中点,G 为圆心,

∴ $GE \bot CD$ 于点 E,

$$\therefore \angle E'O'G = 90^{\circ}$$
.

解法二: 易得
$$G(2, 2)$$
, $E(0, 2)$, $r = \sqrt{5}$, ………

5分;

$$\therefore EG=2, OG=2\sqrt{2}$$
.

$$GE \cdot GE' = r^2$$
, $GO \cdot GO' = r^2$,

$$\therefore GE' = \frac{5}{2}, \quad GO' = \frac{5\sqrt{2}}{4}.$$

∵ E' 在射线 GE 上, O' 在射线 GO 上,

$$\therefore E'(-\frac{5}{2}\,,\ 2),\ O'(\frac{3}{4}\,,\ \frac{3}{4}),$$

$$\therefore O'E' = \frac{5\sqrt{2}}{4},$$

.....7分

$$\therefore GO'^2 + O'E'^2 = GE'^2$$

$$\therefore \angle E'O'G = 90^{\circ}$$