Progetto su Incertezza

IALab A.A. 2019/2020

Reti Bayesiane

Pruning: Nodi Irrilevanti

Consider the query P(JohnCalls|Burglary = true)

$$P(J|b) = \alpha P(b) \mathop{\textstyle \sum}_{e} P(e) \mathop{\textstyle \sum}_{a} P(a|b,e) P(J|a) \mathop{\textstyle \sum}_{m} P(m|a)$$

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here, X = JohnCalls, $\mathbf{E} = \{Burglary\}$, and $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$ so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

Pruning: Nodi Irrilevanti

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by \mathbf{E}

For P(JohnCalls|Alarm=true), both Burglary and Earthquake are irrelevant

Per dettagli si m-separation vedete sezione 2.3 di questo documento:

https://ourspace.uregina.ca/bitstream/handle/10294/7635/dosSantos_Andre_200334126_MSC_CS_Fall2016.pdf

Given a Bayesian network **N** and a query (\mathbf{Q} , \mathbf{e}), one can also eliminate some of the network edges and reduce some of its CPTs without affecting its ability to compute the joint marginal $\Pr(\mathbf{Q}, \mathbf{e})$ correctly. In particular, for each edge U

- \rightarrow X that originates from a node U in **E**, we can:
 - 1. Remove the edge $U \rightarrow X$ from the network.
 - 2. Replace the CPT $\Theta_{X|\mathbf{U}}$ for node X by a smaller CPT, which is obtained from $\Theta_{X|\mathbf{U}}$ by assuming the value u of parent U given in evidence \mathbf{e} . This new CPT corresponds to $\sum_{U} \Theta_{X|\mathbf{U}}^{u}$.

The result of this operation is denoted by pruneEdges(**N**, **e**) and we have the following result.

Theorem 6.5. Let N be a Bayesian network and lete be an instantiation. If N' = pruneEdges(N, e), then Pr(Q, e) = Pr'(Q, e) where Pr and Pr' are the probability distributions induced by networks N and N', respectively.

Questa rete con

C=false:

		A	B	$\Theta_{B A}$	A	C	$\Theta_{C A}$
A	Θ_A	true	true	.2	true	true	.8
true	.6	true	false	.8	true	false	.2
false	.4	false	true	.75	false	true	.1
	'	false	false	.25	false	false	.9

B	C	D	$\Theta_{D BC}$			
true	true	true	.95			
true	true	false	.05	C	E	$\Theta_{E C}$
true	false	true	.9	true	true	.7
true	false	false	.1	true	false	.3
false	true	true	.8	false	true	0
false	true	false	.2	false	false	1
false	false	true	0			1
false	false	false	1			

Diventa:

A	Θ_A
true	.6
false	.4

A	B	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

A	C	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

B	D	$\sum_{C} \Theta_{D BC}^{C \neq \text{alse}}$
true	true	.9
true	false	.1
false	true	0
false	false	1

E	$\sum_{C} \Theta_{E C}^{C ightharpoonup ext{false}}$
true	0
false	1

Definition 6.4. Let $f_1,...,f_n$ be a set of factors. The interaction graph G of these factors is an undirected graph constructed as follows. The nodes of G are the variables that appear in factors $f_1,...,f_n$. There is an edge between two variables in G iff those variables appear in the same factor.

$S_1: \Theta_A \Theta_{B A} \Theta_{C A} \Theta_{D BC} \Theta_{E C}$	D E
$\mathcal{S}_2:\;\Theta_A\;\;\Theta_{C A}\;\;\Theta_{E C}\;\;f_1(A,C,D)$	D E
$\mathcal{S}_3: \; \Theta_A f_2(A,D,E)$	D E
$S_4: f_3(D, E)$	D
$S_5: f_4(E)$	E

Algorithm 5 MinDegreeOrder(N, X)

input:

N: Bayesian network

X: variables in network N

output: an ordering π of variables X

main:

1: $G \leftarrow$ interaction graph of the CPTs in network N

2: for i = 1 to number of variables in X do

3: $\pi(i) \leftarrow$ a variable in X with smallest number of neighbors in G

4: add an edge between every pair of non-adjacent neighbors of $\pi(i)$ in G

delete variable π(i) from G and from X

6: end for

7: return π

Algorithm 6 MinFillOrder(N, X)

input:

N: Bayesian network

X: variables in network N

output: an ordering π of variables X

main:

G ← interaction graph of the CPTs in network N

2: for i = 1 to number of variables in X do

π(i)← a variable in X that adds the smallest number of edges on Line 4

4: add an edge between every pair of non-adjacent neighbors of $\pi(i)$

5: delete variable $\pi(i)$ from G and from X

6: end for

7: return π

Pruning e ordine: esperimenti

Eseguire esperimenti su **molte BN diverse** confrontando il tempo di VE al variare di:

- 1. dimensioni e "complessità" ("lontananza" da un polytree) della BN
- 2. numero e posizione variabili evidenza e di query
- 3. ordine variabili (topologico inverso, min-degree, min-fill)

Non è un esercizio di programmazione!

E' importante fare degli esperimenti ragionati e valutare criticamente i risultati

Reti di Test

- per testare il vostro Progetto BN potete in prima istanza usare le semplici BN viste nella teoria e negli esercizi, come:
 - rete "earthquake"
 - rete Sprinkler
 - ecc.
- per sperimentare con reti più grandi potete far riferimento al Bayesian Network Repository all'URL:

http://www.bnlearn.com/bnrepository/

Reti di Test

- le reti nel BNR sono fornite in vari formati, tra cui:
 - BIF (formato di interchange, purtroppo però una versione vecchia non basata su XML)
 - NET (consigliata per leggerle con SamIam)
- a sua volta SamIam vi permette di salvare le reti caricate in XMLBIF (formato di interchange basato su XML)
- usate poi il parser per XMLBIF che vi ho fornito qui:

https://gitlab2.educ.di.unito.it/ialabstudenti/bnparser

Reti di Test: generatori

• per test ancora più completi potete usare un generatore di BN come:

http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/

Reti Bayesiane Dinamiche

Progetto su DBN

- sulle BN statiche abbiamo visto in classe:
 - Simple Query con algoritmo di Variable Elimination
- sulle DBN abbiamo visto in classe:
 - algoritmo di Rollup filtering
- la libreria **aima-core** fornisce:
 - rappresentazione BN statiche
 - rappresentazione **DBN**
 - algoritmo di Variable Elimination capace di rispondere a Conjunctive Simple Query su BN statiche
 - algoritmo **approssimato** di inferenza su **DBN** (lo usiamo per <u>verifica di correttezza</u>)

- partire dall'algoritmo di Variable Elimination per BN statiche
- 2. modificarlo in modo che effettui il Rollup filtering su una DBN (considerando due "slice" per volta)
- 3. **attenzione**: conviene restituire il risultato come insieme di fattori, senza moltiplicarli tutti in un unico fattore (ultime operazioni della *eliminationAsk*)
- 4. oltre alla DBN, occorre naturalmente fornire all'algoritmo una sequenza di osservazioni $\mathbf{e_1}, \ldots, \mathbf{e_m}$ (dato che parliamo di DBN, le variabili evidenza possono essere più di una a ciascun istante di tempo)

slice 0 e 1

slice 1 e 2

slice t e (t+1)

Esperimenti

Eseguire esperimenti su **diverse DBN** confrontando il tempo di filtering al variare di:

- 1. numero di variabili di stato \mathbf{X}_{t} e complessità della relazione tra \mathbf{X}_{t} e \mathbf{X}_{t+1} e tra \mathbf{X}_{t} e \mathbf{E}_{t}
- 2. ordine variabili (topologico inverso, min-degree, min-fill)

Non è un esercizio di programmazione!

E' importante fare degli esperimenti ragionati e valutare criticamente i risultati

DBN di test per il Progetto

- per testare il vostro Progetto DBN potete in prima istanza usare la semplice DBN (di fatto, un HMM) Umbrella visto a teoria e nell'esercizio su HMM
- per fare prove più significative potete:
 - "dinamizzare" le BN statiche usate nel primo Progetto
 - non devono essere reti molto grandi, ma permettervi di avere fino a 10-20 variabili di stato
 - ullet se vi è comodo possono esserci variabili hidden oltre agli stati $\mathbf{X}_{\rm t}$ e alle evidenze $\mathbf{E}_{\rm t}$