

Winning Space Race with Data Science

Santiago Bermeo 15/6/23

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data was collected through web scraping and utilizing the SpaceX API.
- Exploratory Data Analysis (EDA) was conducted, including data wrangling, data visualization, and interactive visual analytics.
- Machine Learning techniques were employed for prediction purposes.

Summary of all results

- Valuable data was successfully gathered from publicly available sources.
- EDA helped identify the key features for predicting the success of launchings.
- Machine Learning Prediction determined the optimal model for effectively utilizing the collected data and determining the important characteristics driving this opportunity.

Introduction

Project background and context

- SpaceX is a leading company in the space industry that launches reusable rockets and lands them on ground pads or drone ships, achieving a high success rate and reducing launch costs.
- Predicting rocket landing outcomes is a complex problem that involves many factors and requires reliable data and analytical tools, which are not easily accessible or available to the public.
- SpaceY is a new startup that wants to compete with SpaceX by predicting the successful return of the first stage of rockets
- Problems you want to find answers
 - The objective is to assess the feasibility of Space Y, a new company, in competing with Space X.
 - Predicting the successful landings of the first stage of rockets to estimate total launch costs effectively and identifying the optimal launch location

Methodology

Executive Summary

- Data collection methodology:
 - Data from Space X was obtained from 2 sources:
 - Space X API (https://api.spacexdata.com/v4/rockets/)
 - WebScraping

(https://en.wikipedia.org/wiki/List_of_Falcon/_9/_and_Falcon_Heavy_launches)

- Perform data wrangling
 - After summarizing and analyzing features, the collected data was enhanced by generating a landing outcome label using outcome data.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

Data Collection

Data sets were collected from Space X API
 (https://api.spacexdata.com/v4/rockets/) and from Wikipedia
 (https://en.wikipedia.org/wiki/List_of_Falcon/_9/_and_Falcon_Heavy_launches), using web scraping technics.

Data Collection – SpaceX API

- Data can be obtained from SpaceX's public API, which was utilized in accordance with the accompanying flowchart.
- The obtained data is then persisted for further use.
- Github URL: https://github.com/santiB73/Space Y-FinalA/blob/main/spacex-datacollection-api.ipynb

Request Api and parse the SpaceX Launch Data

Restrict the data to encompass solely Falcon 9 launches.

Handle missing values

Data Collection - Scraping

- Obtain data regarding SpaceX launches from Wikipedia as an additional source.
- Scrape the data from Wikipedia following the flowchart and store it persistently.
- Github URL: https://github.com/santiB73/ SpaceY-FinalA/blob/main/webscrapin g.ipynb

Data Wrangling

- Conducted initial Exploratory Data Analysis (EDA) on the dataset.
- Calculated the number of launches per site, occurrences of each orbit, and occurrences of mission outcome per orbit type.
- Created the landing outcome label based on the Outcome column.

• Github URL: https://github.com/santiB73/SpaceY-FinalA/blob/main/spacex-Data%20wrangling.ipynb

EDA with Data Visualization

- Utilized scatterplots and barplots to visually explore the relationships between pairs of features.
 - Explored the relationships between Payload Mass and Flight Number, Launch Site and Flight Number, Launch Site and Payload Mass, Orbit and Flight Number, and Payload and Orbit.
- Github URL: https://github.com/santiB73/SpaceY-FinalA/blob/main/eda-dataviz%20(1).ipynb

EDA with SQL

- Names of the unique launch sites in the space mission
- Top 5 launch sites whose name begin with the string 'CCA'
- Total payload mass carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version F9 v1.1
- · Date when the first successful landing outcome in ground pad was achieved
- Names of the boosters which have success in drone ship and have payload mass between 4000 and 6000 kg
- Total number of successful and failure mission outcomes
- Names of the booster versions which have carried the maximum payload mass
- Failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Rank of the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 06-04-2010 and 03-20-2017.
- GitHub URL: https://github.com/santiB73/SpaceY-FinalA/blob/main/eda-sql-coursera-sqllite.ipynb

Build an Interactive Map with Folium

- Employed various visual elements, including markers, circles, lines, and marker clusters, on Folium Maps.
- Markers were utilized to represent points such as launch sites.
- Circles were used to highlight specific areas around coordinates, for instance, NASA Johnson Space Center.
- Marker clusters were employed to group events within each coordinate, such as launches at a particular launch site.
- Lines were utilized to indicate distances between two coordinates.
- GitHub URL: https://github.com/santiB73/SpaceY-FinalA/blob/main/launch_site_location.ipynb

Build a Dashboard with Plotly Dash

- Employed various graphs and plots to visualize the data, including:
 - Percentage of launches by site.
 - Payload range.
- This combination of visualizations facilitated a rapid analysis of the relationship between payloads and launch sites, aiding in the identification of the optimal launch site based on payload requirements.
- GitHub URL: https://github.com/santiB73/SpaceY-FinalA/blob/main/spacex dash app.py

Predictive Analysis (Classification)

• Four classification models were compared: logistic regression, support vector machine, decision tree and k nearest neighbors.

Github URL: https://github.com/santiB73/SpaceY-

 FinalA/blob/main/SpaceX Machine Learning Prediction Part 5.jupyterlite%2
 O(1).ipynb

Results

- Key findings from exploratory data analysis:
 - SpaceX operates from 4 different launch sites.
 - The initial launches were conducted by SpaceX itself and NASA.
 - The average payload of the F9 v1.1 booster is 2,928 kg.
 - The first successful landing outcome occurred in 2015, five years after the first launch.
 - Many Falcon 9 booster versions successfully landed on drone ships with payloads above the average.
 - Almost 100% of mission outcomes were successful.
 - Two booster versions (F9 v1.1 B1012 and F9 v1.1 B1015) failed to land on drone ships in 2015.
 - The number of successful landing outcomes improved over the years.

Results

- Insights from interactive analytics:
 - Launch sites are strategically located in safe areas, often near the sea, and are supported by robust logistic infrastructures.
 - The majority of launches occur at launch sites along the east coast.

Results

- Predictive Analysis Findings:
- The predictive analysis revealed that all models achieved a test accuracy of 83%. However, the Decision Tree Classifier outperformed the others with an impressive accuracy score of 87.5%. Therefore, the Decision Tree Classifier is considered the most reliable model for predicting successful landings.

Flight Number vs. Launch Site

- Based on the provided plot, it is evident that the current top-performing launch site is CCAF5 SLC 40, with the highest number of recent successful launches.
- Following closely is VAFB SLC 4E in second place, and KSC LC 39A in third place.
- Additionally, the plot illustrates an overall improvement in the success rate over time.

Payload vs. Launch Site

- Payloads weighing over 9,000kg (approximately the weight of a school bus) exhibit a high success rate.
- It appears that payloads exceeding 12,000kg are only feasible at the CCAFS SLC 40 and KSC LC 39A launch sites.

Success Rate vs. Orbit Type

- The highest success rates are observed for the following orbits:
 - ES-L1
 - GEO
 - HEO
 - SSO
- This is followed by:
 - VLEO with a success rate above 80%
 - LFO with a success rate above 70%

Flight Number vs. Orbit Type

- There appears to be an improvement in success rates for all orbits over time.
- The increasing frequency of VLEO orbit presents a new business opportunity.

Payload vs. Orbit Type

- There doesn't seem to be a correlation between payload and success rate for the GTO orbit.
- The ISS orbit has a wide range of payloads and a favorable success rate.
- There are only a few launches to the SO and GEO orbits.

Launch Success Yearly Trend

- The success rate began to rise in 2013 and continued to increase until 2020.
- The initial three years appear to have been a period of adjustments and technological improvements.

All Launch Site Names

- According to data, there are four launch sites:
 - CCAFS LC-40
 - CCAFS SLC-40
 - KSC LC-39A
 - VAFB SLC-4E
- The unique occurrences of "launch_site" values from the dataset are obtained by selecting them.

Launch Site Names Begin with 'CCA'

• 5 records where launch sites begin with `CCA`:

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS KG_	Orbit	Customer	Mission_Outcom e	Landing_Outcom e
06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Success	Failure (parachute)
12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	Success	No attempt
10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	Success	No attempt
03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	Success	No attempt

• Here we can see five samples of Cape Canaveral launches.

Total Payload Mass

Total payload carried by boosters from NASA: 111.268 KG

• The total payload calculated above corresponds to NASA, as it includes the sum of all payloads with codes containing 'CRS'.

Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1: 2928.4 KG

• By filtering the data using the mentioned booster version and calculating the average payload mass, we obtained a value of 2928 kg.

First Successful Ground Landing Date

• First successful landing outcome on ground pad: 01/08/2018

• By filtering the data based on successful landing outcomes on the ground pad and retrieving the earliest date, it is possible to identify the first occurrence, which occurred on 01/08/2018

Successful Drone Ship Landing with Payload between 4000 and 6000

- Boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000:
- F9 FT B1022
- F9 FT B1026
- F9 FT B1021.2
- F9 FT B1031.2

 Based on the applied filters, the following four distinct booster versions were selected.

Total Number of Successful and Failure Mission Outcomes

Number of successful and failure mission outcomes:

Mission_Outcome	QTY
None	898
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

• By grouping mission outcomes and tallying the number of records for each group, we arrived at the aforementioned summary.

Boosters Carried Maximum Payload

- Boosters which have carried the maximum payload mass:
- F9 B5 B1048.4
- F9 B5 B1048.5
- F9 B5 B1049.4
- F9 B5 B1049.5
- F9 B5 B1049.7
- F9 B5 B1051.3
- F9 B5 B1051.4
- F9 B5 B1051.6
- F9 B5 B1056.4
- F9 B5 B1058.3
- F9 B5 B1060.2
- F9 B5 B1060.3

2015 Launch Records

• Failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015:

month	Landing_Outcome	Booster_Version	Launch_Site
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40
06	Precluded (drone ship)	F9 v1.1 B1018	CCAFS LC-40
10	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order:

Landing_Outcome	QTY
Success	20
No attempt	10
Success (drone ship)	8
Success (ground pad)	7
Failure (drone ship)	3
Failure	3
Failure (parachute)	2
Controlled (ocean)	2
No attempt	1

All launch sites

• Launch sites are strategically located in close proximity to the sea, likely for safety reasons, while also maintaining convenient access to roads and railroads.

Launch Outcomes by Site

• Successful outcomes are denoted by green markers, while red markers indicate failures.

Logistics and Safety

• KSC LC-39A launch site exhibits favorable logistical characteristics as it is located in proximity to both rail and road infrastructure, while also being relatively distant from populated areas.

Successful Launches by Site

• The location of launch sites appears to be a critical factor influencing the success of missions.

Launch Site With Highest Success Ratio

• KSC LC-39A has the highest success ratio with a ratio of 76.9%

Payload vs. Launch Outcome

• The combination of payloads under 6,000kg and FT boosters yields the highest success rate.

Classification Accuracy

- Four classification models were evaluated and their accuracies are shown in the plot beside.
- All models achieved a test accuracy of 83%. However, the Decision Tree Classifier outperformed the others with an impressive accuracy score of 87.5%. Therefore, the Decision Tree Classifier is considered the most reliable model for predicting successful landings.

Confusion Matrix

• The confusion matrix shows that the model is great predicting when the first stage landed but not when it did not land

Conclusions

- Multiple data sources were examined, enhancing the conclusions throughout the analysis.
- KSC LC-39A emerged as the optimal launch site.
- Launches with payloads exceeding 7,000kg exhibit lower risks.
- While the majority of mission outcomes are successful, successful landing outcomes demonstrate improvement over time, reflecting advancements in processes and rockets.
- The Decision Tree Classifier is a valuable tool for predicting successful landings and enhancing profitability.

Appendix

- SQL Queries can be found in the following link: https://github.com/santiB73/SpaceY-FinalA/blob/main/eda-sql-coursera-sqllite.ipynb
- Data sets and all the code used in this project can be found in the following link: https://github.com/santiB73/SpaceY-FinalA

