Robust Testing and Variable Selection for High-Dimensional Time Series

Ruey S. Tsay Booth School of Business, University of Chicago

May, 2017

Outline

- Focus on high-dimensional linear time series
- Basic theory: Extreme value theory in the domain of Gumble distribution
- Testing for serial correlations
- Finite-sample adjustments and simulations
- A simple example
- Variable selection: statistics and procedure
- Simulation and comparison

Objectives

Part of an ongoing project on analysis of big dependent data

- Develop statistical methods for analysis of high-dimensional time series
- Pocus on simple methods if possible
- Make analysis of big dependent data easy, including statistical inference.

Basic Theory

Extreme Value Theory: (Maximum and minimum) Let $x_1, ..., x_k$ be a random sample (iid) from a standard Gaussian distribution. Define the order statistics

$$x_{k,k} \leq x_{k-1,k} \leq \cdots \leq x_{2,k} \leq x_{1,k}$$
.

Also, define the norming constants

$$c_k = rac{1}{\sqrt{2 \ln(k)}}, \quad d_k = \sqrt{2 \ln(k)} - rac{\ln(4\pi) + \ln(\ln(k))}{2\sqrt{2 \ln(k)}}.$$

Then, as $k \to \infty$

$$T_{1,k} = \frac{x_{1,k} - d_k}{c_k} \rightarrow_d X, \quad T_{k,k} = \frac{-x_{k,k} - d_k}{c_k} \rightarrow_d X,$$

and $T_{1,k}$ and $T_{k,k}$ are asymptotically independent, where the CDF of X is $\Lambda(x) = \exp(-e^{-x})$.

See, for instance, the classical book by Embrechts, et al. (2001).

Ruey S. Tsay HTS 4/36

Basic tool and its property

Spearman's rank correlation:

Consider two random variables *X* and *Y* with *continuous* marginal distributions.

Let $\{(x_i, y_i)\}$ be a sample of size n from (X, Y).

Let r_i^x be the rank of x_i and r_i^y be the rank of y_i in the sample.

The Spearman's rank correlation is defined as

$$\hat{\rho} = \frac{\sum_{i=1}^{n} (r_i^{x} - \bar{r})(r_i^{y} - \bar{r})}{n(n^2 - 1)/12},$$

where $\bar{r} = (n+1)/2$.

Limiting property: $\sqrt{n}\hat{\rho} \rightarrow_d N(0,1)$ as $n \rightarrow \infty$, if X and Y are independent.

Ruey S. Tsay HTS 5/36

High-dimensional time series

Let $\mathbf{X}_t = (x_{1t}, \dots, x_{pt})'$ be a p-dimensional stationary time series.

Let $\{x_1, \dots, x_n\}$ be a realization of *n* observations of X_t . Let $\mathbf{r}_t = (r_{1t}, \dots, r_{pt})'$ be the corresponding the observation of ranks. That is, r_{it} denotes the rank series of x_{it} .

The lag-\ell Spearman's rank cross-correlation matrix is defined by

$$\widehat{\boldsymbol{\Gamma}}_{\ell} = [\widehat{\boldsymbol{\Gamma}}_{\ell,ij}] = \frac{12}{n(n^2-1)} \sum_{t=\ell+1}^{n} (\boldsymbol{r}_t - \bar{\boldsymbol{r}})(\boldsymbol{r}_{t-\ell} - \bar{\boldsymbol{r}})',$$

where \bar{r} denotes the constant vector of (n+1)/2.

The robustness of the rank correlation has been widely studied in the literature.

> **HTS** 6/36

A fundamenal question

Are there serial correlations in a given high-dimensional time series?

 $H_0: \Gamma_1 = \cdots = \Gamma_m = \mathbf{0} \text{ vs } H_1: \Gamma_i \neq \mathbf{0} \text{ for some } i, \text{ where, for simplicity, } \Gamma_\ell = E[\widehat{\Gamma}_\ell].$

The question also applies to the residuals of a fitted model, e.g. Is the model adequate for the data?

The well-known Ljung-Box Q(m) statistic is not useful as the dimension p increases.

Some work available, e.g. Chang, Yao and Zhou (2016) and Li et al. (2016).

Basic properties of rank correlations: A theorem

Conditions: Continuous random varaibles (no moment requirements)

- \bigcirc X_t is a white noise (no serial correlations)
- 2 Components are independent: X_{it} and X_{it} are independent for $i \neq j$.

Theorem continued

The rank cross-correlation matrix $\hat{\Gamma}_{\ell}$ satisfies

(a)
$$E(\widehat{\Gamma}_{\ell,ii}) = -\frac{n-\ell}{n(n-1)}$$
, $1 \le \ell \le n-1$,

(b)
$$E(\widehat{\Gamma}_{\ell,ij}) = 0, i \neq j,$$

(c)
$$Var(\widehat{\Gamma}_{\ell,ii}) = \frac{5(n-\ell)-4}{5n^2} + O(n^{-3}),$$

(d)
$$Cov(\widehat{\Gamma}_{\ell,ii},\widehat{\Gamma}_{h,ii}) = -\frac{2}{n^2} + O(n^{-3}), \quad 1 \le \ell < h \le n-1,$$

(e)
$$Var(\widehat{\Gamma}_{\ell,ij}) = \frac{1}{n} + O(n^{-2}), i \neq j,$$

(f)
$$Cov(\widehat{\Gamma}_{\ell,ij},\widehat{\Gamma}_{\ell,uv}) = 0 + O(n^{-2}), \quad (i,j) \neq (u,v),$$

where $1 \leq i, j \leq p$.

(a), (c), and (d) are shown by Dufour and Roy (1986). Others by independence condition.

Ruey S. Tsay HTS 9/36

Summary of the theorem

Let $vec(\mathbf{A})$ be the column-stacking vector of matrix \mathbf{A} . Then,

$$\sqrt{n} \times \text{vec}(\widehat{\Gamma}_{\ell}) \rightarrow_{d} N(0, I), \quad n \rightarrow \infty,$$

where N(0, I) denotes the p^2 -dimensional standard Gaussian distribution, provided that the conditions hold.

Testing: single cross-correlation matrix

 $H_0: \Gamma_\ell = \mathbf{0} \text{ versus } H_1: \Gamma_\ell \neq \mathbf{0}.$ Define

$$T_{\ell, \textit{max}} = \sqrt{n} \times \max\{\widehat{\Gamma}_{\ell}\} \quad T_{\ell, \textit{min}} = -\sqrt{n} \times \min\{\widehat{\Gamma}_{\ell}\}.$$

Let c_p and d_p be the norming constants with $k = p^2$. Under H_0 ,

$$T_{\ell, extit{max}}^* = rac{T_{\ell, extit{max}} - d_{
ho}}{c_{
ho}}
ightarrow_{d} X, \quad T_{\ell, extit{min}}^* = rac{T_{\ell, extit{min}} - d_{
ho}}{c_{
ho}}
ightarrow_{d} X,$$

where *X* denotes the Gumble distribution, if $n \to \infty$ and $p \to \infty$.

For type-I error α , H_0 is rejected if either $T^*_{\ell,max} \geq v_{\alpha}$ or $T^*_{\ell,min} \geq v_{\alpha}$, where $v_{\alpha} = -\ln(-\ln(1-\frac{\alpha}{2}))$.

Ruey S. Tsay HTS 11/36

Single test statistic

Define

$$T_\ell = \sqrt{n} imes \max\{T_{\ell, extit{max}}, T_{\ell, extit{min}}\} = \sqrt{n} imes \max|\widehat{m{\Gamma}}_\ell|.$$

Then, under H_0 , $(T_\ell - d_p)/c_p \to_d \max\{X_1, X_2\}$ as $n \to \infty$ and $p \to \infty$, where X_1 and X_2 are two independent Gumble random variates.

The limiting distribution of T_{ℓ} is available.

Joint test for multiple lags

 $H_0: \Gamma_1 = \cdots = \Gamma_m = \mathbf{0}$ versus $H_1: \Gamma_i \neq \mathbf{0}$ for some $1 \leq i \leq m$. Define

$$T_{max}(m) = \max\{T_{\ell,max}|\ell=1,\ldots,m\}$$

 $T_{min}(m) = \max\{T_{\ell,min}|\ell=1,\ldots,m\}$

and the norming constants $c_{p,m}$ and $d_{p,m}$ as before with $k = mp^2$. Then.

$$\frac{T_{\textit{max}} - \textit{d}_{\textit{m,p}}}{\textit{c}_{\textit{m,p}}} \rightarrow_{\textit{d}} \textit{X}, \quad \frac{T_{\textit{min}} - \textit{d}_{\textit{m,p}}}{\textit{c}_{\textit{m,p}}} \rightarrow_{\textit{d}} \textit{X}.$$

HTS 13/36

Empirical sizes: 10,000 realizations

Test	p=3	00, n =	3000	p=3	00, n =	5000	p = 500, n = 5000		
Statistic	10%	5%	1%	10%	5%	1%	10%	5%	1%
		(a) S	Standard	d Gauss	sian dis	tributio	'n		'
T_1	8.48	4.08	0.64	9.32	4.62	0.94	9.06	4.76	0.92
T_2	9.10	4.56	0.68	9.20	3.83	0.54	8.48	4.02	0.54
T_3	8.76	4.30	0.64	8.82	4.06	0.62	9.40	4.42	0.78
T_4	9.18	4.52	0.82	9.28	4.22	0.56	9.48	4.36	0.74
<i>T</i> ₅	8.86	4.10	0.84	9.66	4.38	0.86	9.38	4.60	0.84
T_{10}	9.00	3.96	0.64	9.26	4.58	0.62	9.62	5.12	1.06
<i>T</i> (5)	9.40	4.38	0.86	9.16	4.50	0.68	9.30	4.86	0.96
<i>T</i> (10)	9.36	4.96	0.66	9.62	4.12	0.72	9.96	4.76	0.82

Ruey S. Tsay

Empirical sizes continued

Test	p = 3	00, n =	3000	p=3	00, n =	5000	p = 500, n = 5000		
Statistic	10%	5%	1%	10%	5%	1%	10%	5%	1%
		(b) Caucl	ny distri	bution,	i.e. t_1			
T_1	8.86	4.72	0.82	8.68	4.16	0.68	9.80	5.16	0.82
T_2	8.90	4.48	0.48	8.66	4.06	0.66	8.78	4.10	0.78
T_3	9.12	4.18	0.86	9.32	4.14	0.72	9.12	4.44	0.62
T_4	9.06	4.54	0.56	9.50	4.80	0.72	9.02	4.08	0.92
T_5	9.04	4.04	0.80	8.76	4.46	0.68	9.06	4.74	0.74
T_{10}	9.42	4.32	0.72	9.06	4.50	0.38	9.40	4.44	0.78
<i>T</i> (5)	9.24	4.36	0.66	9.44	4.42	0.62	9.10	4.42	0.84
<i>T</i> (10)	9.08	4.20	0.84	8.84	4.10	0.72	9.48	4.52	0.76

Ruey S. Tsay

Finite-sample adjustments

Adjust for actual data used:

$$\widehat{\Gamma}_{\ell}^* = \frac{12}{(n-\ell)[(n-\ell)^2 - 1]} \sum_{t=\ell+1}^{n} (\mathbf{r}_t^* - \widetilde{r})(\mathbf{r}_{t-\ell}^* - \widetilde{r})',$$

where \tilde{r} is a p-dimensional constant vector of $(n-\ell+1)/2$, r_t^* is the rank matrix of $\boldsymbol{X}[(\ell+1):n]$ and $r_{t-\ell}^*$ is the rank matrix of $\boldsymbol{X}[1:(n-\ell)]$.

Bias adjustment of auto-correlations

$$\widehat{\Gamma}_{\ell,ii}^{a} = \widehat{\Gamma}_{\ell,ii}^{*} + \frac{n-\ell}{n(n-1)}, \quad i=1,\ldots,p$$

Finite-sample adjustments continued

Variance adjustment

$$\sqrt{5n^2/[5(n-\ell)-4]}\times \text{vec}(\widehat{\boldsymbol{\Gamma}}_{\ell}^a) \to_{\textit{d}} \textit{N}(0,\textit{I}), \quad n\to\infty.$$

The test statistic for a single lag matrix

$$T_\ell^a = \sqrt{5n^2/[5(n-\ell)-4]} \times \max\{|\widehat{\boldsymbol{\Gamma}}_{\ell,ij}^a|\}.$$

Ruey S. Tsay

Block size adjustment: for n < 3000

Adjustmented norming constants:

$$c_p^a = [2\ln(p^2\xi)]^{-1/2}, \quad d_p^a = \sqrt{2\ln(p^2\xi)} - \frac{\ln(4\pi) + \ln\ln(p^2\xi)}{2[2\ln(p^2\xi)]^{1/2}},$$

where

$$\xi = \begin{cases} 0.78^{\eta} & \text{if } n < 3000, \\ 1 & \text{otherwise,} \end{cases}$$

where $\eta = \min\{5, (n+p)/n\}$.

Empircal sizes: individual lag, 30,000 realizations

	n = 100		<i>n</i> = 300			<i>n</i> = 500				
p	10%	5%	1%	10%	5%	1%	10%	5%	1%	
				(a) L	ag-1					
10	9.62	3.94	0.35	9.61	4.07	0.36	9.86	4.21	0.42	
30	9.37	3.95	0.42	10.3	4.57	0.61	10.6	4.81	0.67	
50	9.17	3.90	0.49	10.5	4.71	0.68	10.6	4.66	0.59	
100	9.24	4.01	0.46	10.3	4.55	0.63	10.8	5.02	0.79	
300	11.5	4.77	0.55	11.7	5.46	0.83	11.6	5.42	0.90	
500	12.8	5.39	0.55	13.0	6.01	0.87	12.2	5.68	0.85	
	ı			(b) L	ag-2		ı			'
10	9.54	3.86	0.30	9.76	4.12	0.41	9.73	4.10	0.41	
30	9.31	3.92	0.39	10.2	4.57	0.60	10.9	4.86	0.63	
50	9.21	3.90	0.49	10.5	4.78	0.66	10.7	4.91	0.67	
100	9.26	3.85	0.46	10.5	4.85	0.71	10.7	4.94	0.76	
300	11.9	4.85	0.52	11.9	5.69	0.80	11.6	5.67	0.92	
500	13.2	5.74	0.60	13.4	6.31	0.99	12.3	5.73	0.89	

Ruey S. Tsay HTS 19/36

Empircal sizes: individual lag continued

	n = 100		n = 300			n = 500				
p	10%	5%	1%	10% 5% 1%			10%	5%	1%	
				(c) L	.ag-5					
10	9.41	3.88	0.39	10.0	4.07	0.42	10.1	4.16	0.43	l
30	9.61	4.07	0.40	10.4	4.54	0.56	10.4	4.75	0.64	l
50	9.02	3.88	0.39	10.4	4.74	0.65	10.8	4.98	0.67	l
100	9.49	4.11	0.39	10.6	4.90	0.65	10.8	4.97	0.75	l
300	11.6	5.03	0.51	11.6	5.49	0.79	11.5	5.41	0.83	l
500	13.1	5.48	0.64	13.0	5.95	0.98	12.7	6.03	0.93	l
	ı			(d) L	ag-10		ı			
10	9.38	3.94	0.34	9.56	4.00	0.45	9.59	4.12	0.56	
30	9.41	4.07	0.44	10.7	4.77	0.59	10.4	4.76	0.64	l
50	8.86	3.82	0.34	10.3	4.68	0.64	10.7	4.85	0.73	l
100	9.24	3.83	0.44	10.5	4.76	0.73	10.9	5.03	0.76	l
300	11.7	5.14	0.60	11.5	5.20	0.74	12.0	5.61	0.94	
500	13.0	5.56	0.60	13.5	6.18	0.93	12.4	6.02	0.92	

Ruey S. Tsay HTS 20/36

Number of lags adjustment: for p < 300

Effective lags used

$$m^* = \left\{ egin{array}{ll} m imes 0.9^{(n+p)/n} & ext{if } p < 300, \\ m & ext{otherwise,} \end{array}
ight.$$

and adjust the scale and location parameters as

$$c_{p,m}^a = [2\ln(p^2\xi m^*)]^{-1/2}$$
 $d_{p,m}^a = \sqrt{2\ln(p^2\xi m^*)} - \frac{\ln(4\pi) + \ln\ln(p^2\xi m^*)}{2[2\ln(p^2\xi m^*)]^{1/2}}.$

Ruey S. Tsay HTS 21/36

Empirical sizes: joint test, 30,000 realizations

	n = 100		n = 300			n = 500			
p	10%	5%	1%	10%	5%	1%	10%	5%	1%
			(a) <i>n</i>	$\dot{n}=5$, th	ne first :	5 lags			·
10	10.5	4.39	0.46	11.0	4.69	0.63	11.3	4.99	0.67
30	9.58	3.99	0.46	11.5	5.20	0.78	11.8	5.41	0.82
50	9.36	3.93	0.45	11.5	5.38	0.72	11.8	5.35	0.83
100	9.47	3.95	0.49	11.4	5.18	0.82	11.7	5.68	0.83
300	8.93	3.66	0.38	10.6	4.98	0.76	11.2	5.40	0.81
500	9.67	3.99	0.38	12.0	5.66	0.86	11.9	5.59	0.93
	ı		(b) m	_ = 10, tł	ne first	10 lags			
10	10.2	4.37	0.53	11.1	4.98	0.63	11.3	5.13	0.68
30	9.07	3.70	0.48	11.3	5.12	0.72	11.7	5.38	0.77
50	8.54	3.50	0.38	11.6	5.24	0.79	11.8	5.66	0.83
100	8.47	3.54	0.40	11.1	5.04	0.80	12.0	5.65	0.83
300	7.84	3.24	0.31	10.2	4.77	0.71	11.1	5.19	0.82
500	8.35	3.38	0.38	11.5	5.33	0.77	11.7	5.52	0.86

Ruey S. Tsay HTS 22/36

General covariance matrix

- p < n: Apply PCA to x_t . Apply tests to the principal component series
- 2 $p \ge n$: Select $p^* = 0.75n$ series for testing

Selection: $H_0: \Gamma_1 = \cdots = \Gamma_m = \mathbf{0}$.

• For each $\widehat{\Gamma}_{\ell}$, define a p-dimensional weight vector $\mathbf{w}_{\ell} = (\mathbf{w}_{\ell,1}, \dots, \mathbf{w}_{\ell,p})'$ such that

$$w_{\ell,i} = \max_{1 \le j \le p} |\widehat{\Gamma}_{\ell,i.}|$$

• The weights for each component x_{it} is

$$w_i = \sum_{\ell=1}^m w_{\ell,i}, \quad i=1,\ldots,p.$$

Select the p* sub-series with the highest weights.

Ruey S. Tsay HTS 23/36

Correlated series

$$oldsymbol{x}_t = oldsymbol{A}^{1/2} \epsilon_t$$

where A is a symmetric matrix with

$$A_{ij} = 0.9^{|i-j|}$$

and elements of ϵ_t are iid t_3 random variates.

The results are based on 10,000 realizations.

General covariance matrix: size simulation

	n=100		n = 300			n = 500				
p	10%	5%	1%	10% 5% 1%			10%	5%	1%	
	'			(a) L	₋ag-1					
10	9.25	3.74	0.30	9.89	4.25	0.46	9.80	4.03	0.42	
30	9.36	3.90	0.39	10.5	4.79	0.69	10.7	4.76	0.72	
50	9.05	3.86	0.41	10.6	4.81	0.64	10.7	4.79	0.63	
100	9.24	4.01	0.36	10.6	4.79	0.69	11.3	5.28	0.75	
300	9.33	4.07	0.37	11.3	5.40	0.77	11.7	5.42	0.93	
500	8.79	3.67	0.39	10.6	4.74	0.69	11.4	5.07	0.84	
	ļ			(b) L	ag-2		1			'
10	9.34	3.70	0.33	9.63	3.96	0.37	9.82	4.08	0.43	
30	9.62	3.81	0.37	10.3	4.46	0.55	10.8	5.08	0.72	
50	9.21	4.11	0.47	10.4	4.89	0.71	10.8	4.72	0.60	
100	9.08	3.83	0.51	10.7	4.95	0.71	11.0	5.07	0.70	
300	9.12	3.64	0.42	11.4	5.13	0.68	11.4	5.54	0.85	
500	8.94	3.67	0.27	11.2	4.99	0.75	11.8	5.45	0.85	

Ruey S. Tsay HTS 25/36

General covariance matrix: size simulation continued

	n = 100		<i>n</i> = 300			<i>n</i> = 500				
p	10%	5%	1%	10%	5%	1%	10%	5%	1%	
	'			(c) L	.ag-5					
10	9.52	3.88	0.26	9.77	4.04	0.45	9.70	4.23	0.43	
30	9.51	3.97	0.38	10.4	4.49	0.55	10.5	4.73	0.60	
50	9.04	3.87	0.43	10.8	5.00	0.68	10.9	5.05	0.74	
100	8.86	3.72	0.36	10.4	4.67	0.70	10.9	5.15	0.74	
300	9.38	3.84	0.43	11.3	5.51	0.75	11.0	5.20	0.86	
500	9.60	4.15	0.53	11.3	5.26	0.76	12.1	5.64	0.82	
	'			(d) L	ag-10		'		,	
10	9.31	3.70	0.30	9.33	4.02	0.41	9.63	4.09	0.40	
30	9.13	3.87	0.40	10.6	4.62	0.66	10.7	4.80	0.69	
50	9.28	3.95	0.38	10.5	4.79	0.66	10.5	4.83	0.67	
100	9.60	4.30	0.52	10.4	4.82	0.59	11.0	4.94	0.72	
300	9.17	3.68	0.36	11.6	5.32	0.86	11.5	5.36	0.84	
500	9.29	3.68	0.36	11.4	5.28	0.76	11.7	4.96	0.83	

26/36

Joint tests

	n = 100			/	n = 300)	n = 500		
p	10%	5%	1%	10%	5%	1%	10%	5%	1%
	'		(a) <i>m</i>	$\dot{n}=5$, th	ne first !	5 lags			
10	10.0	4.09	0.39	11.5	4.85	0.58	11.4	4.87	0.61
30	9.48	3.80	0.41	11.2	5.04	0.66	12.1	5.57	0.85
50	9.31	3.93	0.42	11.6	5.44	0.76	11.9	5.48	0.84
100	9.05	3.87	0.37	11.5	5.44	0.81	12.3	5.65	0.89
300	9.38	3.80	0.36	12.1	5.65	0.82	11.4	5.47	0.83
500	9.13	3.74	0.45	12.2	5.75	0.76	11.4	5.20	0.80
	ı		(b) m	_ = 10, tł	ne first	10 lags			'
10	9.49	3.81	0.40	11.4	5.08	0.68	11.3	5.31	0.64
30	8.39	3.59	0.39	11.2	5.17	0.67	11.9	5.63	0.83
50	8.43	3.48	0.39	11.5	5.37	0.79	11.7	5.37	0.78
100	8.48	3.63	0.36	11.2	5.19	0.76	11.8	5.63	0.95
300	7.96	3.42	0.27	12.2	5.65	0.76	11.4	5.31	0.86
500	8.01	3.28	0.39	12.3	5.42	0.65	11.1	4.94	0.83

Ruey S. Tsay HTS 27/36

Power study

Two data generating processes

- **1** VAR(1): $\mathbf{x}_{t} = \mathbf{\Phi} \mathbf{x}_{t-1} + \mathbf{e}_{t}$
- **2** VMA(1): $\mathbf{x}_t = \mathbf{e}_t \Theta \mathbf{e}_{t-1}$

where \boldsymbol{e}_t are iid $N(0, \boldsymbol{I}), \boldsymbol{x}_0 = \boldsymbol{0}$.

For VAR(1) models, let ζ is the sparsity parameter. Non-zero elements of Φ is $N = |p^2\zeta|$. For each realization, Φ is obtained using

- Random sample N from 1 : p² without replacement
- Draw N uniform random variates from [-0.95, 0.95]
- Assign (ii) to the N positions in vec(Φ).

Power of VAR(1) processes, 10,000 realizations

	n = 100		n = 300			n = 500				
р	ζ	10%	5%	ζ	10%	5%	ζ	10%	5%	
			(a) Individ	ual test:	: T ₁				'
10	0.05	90.0	83.3	0.01	63.1	57.0	0.01	72.3	67.3	
30	0.05	99.8	99.3	0.01	98.3	96.5	0.005	92.9	90.3	
50	0.05	100.	100.	0.01	99.9	99.5	0.005	99.5	99.0	ĺ
100	0.01	84.4	76.4	0.005	98.3	95.9	0.001	68.5	57.7	ĺ
300	0.01	100.	100.	0.005	100.	100.	0.001	80.8	72.8	ĺ
500	0.01	100.	100.	0.005	100.	100.	0.001	96.0	92.5	
			(b) Individ	ual test:	T_2^a				
10	0.05	32.1	24.0	0.01	14.2	8.51	0.01	14.5	9.00	
30	0.05	78.3	70.5	0.01	30.9	23.6	0.005	19.2	13.4	
50	0.05	99.0	98.0	0.01	46.4	38.1	0.005	30.7	23.6	
100	0.01	33.2	26.0	0.005	34.3	27.3	0.001	14.6	8.38	
300	0.01	99.9	99.7	0.005	94.0	90.3	0.001	22.1	15.4	
500	0.01	100.	100.	0.005	100.	100.	0.001	28.9	21.9	

Ruey S. Tsay HTS 29/36

Power study: Joint statistics

	n = 100		n = 300			n = 500				
р	ζ	10%	5%	ζ	10%	5%	ζ	10%	5%	
			(c) Joint t	est: T ^a	(5)				
10	0.05	80.9	72.8	0.01	58.1	52.1	0.01	68.1	63.1	
30	0.05	99.0	97.6	0.01	95.0	92.1	0.005	89.0	86.0	
50	0.05	100.	100.	0.01	99.1	98.1	0.005	98.3	96.9	
100	0.01	73.4	65.2	0.005	93.8	89.4	0.001	54.7	44.9	
300	0.01	100.	100.	0.005	100.	100.	0.001	67.7	60.0	
500	0.01	100.	100.	0.005	100.	100.	0.001	89.3	84.2	
			(0	d) Joint te	est: <i>Ta</i> (10)				
10	0.05	75.9	67.6	0.01	56.0	50.0	0.01	66.3	61.7	
30	0.05	97.9	96.1	0.01	92.9	89.3	0.005	87.2	84.0	
50	0.05	100.	99.9	0.01	98.4	96.9	0.005	97.3	95.9	
100	0.01	67.3	59.1	0.005	90.3	85.8	0.001	49.0	39.8	
300	0.01	100.	100.	0.005	100.	100.	0.001	62.8	56.1	
500	0.01	100.	100.	0.005	100.	100.	0.001	85.4	80.1	

Ruey S. Tsay HTS 30/36

VMA(1) models: power study

 $\Theta = [\Theta_{ii}]$ matrix is defined as

$$\Theta_{ij} = \left\{ egin{array}{ll} 0 & ext{if } |i-j| > 1 \ g_{ij} & ext{Otherwise} \end{array}
ight.$$

with

$$g_{ij} = \left\{ egin{array}{ll} 0 & ext{with prob 1} - \omega \ U[-0.95, 0.95] & ext{with prob } \omega \end{array}
ight.$$

Ruey S. Tsay

	$n = 100, \omega = 0.3$			n=3	300, ω =	= 0.2	$n = 500, \omega = 0.1$			
p	10%	5%	1%	10%	5%	1%	10%	5%	1%	
,	(a			Indivuo	dal test:	T_1^a				
10	95.9	89.8	63.4	99.8	99.6	98.6	97.8	96.7	94.1	
30	66.5	48.7	20.3	1.00	99.8	98.2	99.8	99.6	98.8	
50	43.4	28.3	9.48	99.7	98.5	90.2	99.8	99.5	98.0	
100	27.4	16.4	4.65	91.9	83.3	57.9	98.5	96.4	86.7	
300	20.7	12.2	3.48	51.9	38.3	19.1	62.4	50.6	31.0	
500	20.8	11.9	3.54	43.7	31.1	13.9	49.6	37.5	21.0	
'			(b)	İndividu	ual test	: T ₂ a				,
10	9.62	3.84	0.33	9.62	4.00	0.48	10.4	4.67	0.57	
30	9.64	3.85	0.40	10.3	4.42	0.47	10.8	5.03	0.70	
50	9.34	4.16	0.40	10.1	4.49	0.69	10.8	4.88	0.69	
100	9.26	3.69	0.43	10.7	4.79	0.55	11.0	5.16	0.71	
300	9.51	3.89	0.45	10.8	4.99	0.70	11.4	5.45	0.81	
500	9.23	3.69	0.49	11.5	5.35	0.82	12.3	5.83	0.91	

Ruey S. Tsay HTS 32/36

Joint test: power

	$n = 100, \omega = 0.3$		$n = 300, \omega = 0.2$			$n = 500, \omega = 0.1$		= 0.1	l	
p	10%	5%	1%	10%	5%	1%	10%	5%	1%	l
	(c) Joint t	est: T ^a	(5)	'		·	
10	86.0	75.7	47.4	99.4	99.1	97.9	96.3	95.3	92.7	ĺ
30	42.2	29.0	11.2	99.7	99.0	94.6	99.6	99.2	97.9	l
50	26.6	15.7	4.73	97.1	93.7	78.7	99.3	98.7	95.5	l
100	17.2	9.21	2.22	76.7	65.0	42.3	94.3	90.1	77.0	l
300	14.9	7.60	1.86	36.7	25.8	12.3	46.0	36.0	22.7	l
500	15.0	7.87	2.24	31.7	20.8	8.57	35.2	26.3	14.4	l
	'		(d)	Joint te	est: T^a (10)	'		'	
10	79.0	67.4	40.5	99.3	98.8	97.2	95.7	94.6	92.0	ĺ
30	33.9	22.4	8.31	99.1	98.1	91.7	99.3	98.8	97.3	l
50	20.5	11.6	3.48	94.6	89.4	72.2	98.9	97.8	93.8	l
100	13.9	7.22	1.53	68.2	56.6	36.3	91.2	85.6	72.5	l
300	12.2	6.20	1.42	31.2	21.9	9.99	40.2	31.6	19.9	l
500	12.5	6.31	1.79	26.4	17.0	6.98	31.0	22.5	12.2	

Ruey S. Tsay HTS 33/36

An example

- Daily returns, in percentages, of 92 component series of the S&P 100 index from January 2, 2004 to December 31, 2013.
- Sample size *n* = 2517

critical values: (10%,5%,1%)

- Individual lag: 4.34, 4.51, 4.89
- 2 Joint 5 lags: 4.65, 4.81, 5.17
- 3 Joint 10 lags: 4.79, 4.94, 5.29.