Modal logic Michael Franke

October 2022

Notions covered: ...

to be cleaned up and completed

1 Basics of Modal Logic

1.1 Language

Definition 1 (Syntax). Let $\Phi = \{p, q, r, ...\}$ be a set of proposition letters. The **language** $\mathfrak{L}_{\Phi,i}$ of basic modal logic based on Φ for i agents is:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \psi \mid B_i \varphi$$
.

Additionally, we allow the following notational variants:

$$\varphi \lor \psi \equiv \neg(\neg \varphi \land \neg \psi) \qquad \qquad \varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$$

$$\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi \qquad \qquad P_i \varphi \equiv \neg B_i \neg \varphi.$$

1.2 Semantics

Definition 2 (Model). A **modal model** (aka. **Kripke structure**) for the language $\mathfrak{L}_{\Phi,i}$ is a triple $\mathcal{M} = \langle W, V, (R_j)_{j \leq i} \rangle$ such that:

- W is a set of worlds,
- $V: W \times \Phi \rightarrow \{0, 1\}$ is a valuation function,
- for each agent $i R_i \subseteq W \times W$ is an **accessibility relation**.

Notation and terminology:

- write wR_iv for $\langle w, v \rangle \in R_i$
- write $R_i(w) = \{v \in W \mid wR_iv\}$
- implicitly restrict attention to **serial models** where $R_i(w) \neq \emptyset$ for all w and i
- if $\mathcal{M} = \langle W, V, (R_j)_{j \le i} \rangle$ and $w \in W$, we call the pair \mathcal{M} , w a **pointed model**
- we say that a model is reflexive (transitive, Euclidean) if all of its relations R_i are reflexive (transitive, Euclidean)
- for $C \subseteq \{r, t, e\}$ let $\mathfrak{M}_{\Phi, i}^C$ be the class of all models $\mathcal{M}_{\Phi, i}$ that have the properties selected in C
 - $\mathfrak{M}_{\Phi i}^{\{t,e\}}$ is the class of **belief models**

- $\mathfrak{M}_{\Phi,i}^{\{r,t,e\}}$ is the class of **knowledge models**

Definition 3 (Truth & Validity). Fix $\mathcal{M} = \langle W, V, (R_j)_{j \le i} \rangle$ and $w \in W$ and define **truth in pointed models** inductively:

$$\mathcal{M}, w \models p \text{ iff } V(w, p) = 1$$
 $\mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi$
 $\mathcal{M}, w \models \neg \varphi \text{ iff } \mathcal{M}, w \not\models \varphi$ $\mathcal{M}, w \models B_i \varphi \text{ iff } \mathcal{M}, v \models \varphi \text{ for all } v \in R_i(w)$

We say that a formula φ is **valid in a model** \mathcal{M} , $\mathcal{M} \models \varphi$, if for all $w \in W$ of that model \mathcal{M} , $w \models \varphi$. We say that a formula φ is **valid in a class of models** \mathcal{N} , $\mathcal{N} \models \varphi$, if φ is valid on every model in \mathcal{N} .

Example 4 (Modal Model). We consider a simple modal model for $\Phi = \{p, q\}$ and two agents i and j. The following formulas are true at world w:

- B_j(¬p ∧ ¬q)
 "j believes that p and q are false"
- ¬p ∧ B_ip
 "i falsely believes that p is true"
- $\neg B_i q \land \neg B_i \neg q$ "*i* is uncertain about *q*"
- $\neg B_j p \wedge B_i B_j p$ "i falsely believes that j believes p"
- ¬B_iB_jq ∧ ¬B_i¬B_jq
 "i is uncertain whether j believes q"
- $B_i(q \to B_j q \land \neg q \to B_j \neg q)$ "i believes that j knows whether q"

1.3 Proof System

Definition 5 (Proof System for Modal Logics). A proof system for a modal logical language is given by a set of *I* **inference rules** and a set *A* of **axiom schemas**. Let *I* contain the rules:

MP: from φ and $\varphi \rightarrow \psi$ infer ψ (modus ponens)

Nec: from φ infer $B_i\varphi$ (necessitation)

and let A always contain the **normal axiom schemata**:

Prop: all substitution instances of tautologies of propositional logic

K:
$$(B_i\varphi \wedge B_i(\varphi \to \psi)) \to B_i\psi$$

and additionally any (possibly empty) subset of the following **additional axiom schemata**:

T:
$$B_i \varphi \to \varphi$$
 (truth)

4:
$$B_i \varphi \to B_i B_i \varphi$$
 (positive introspection)

5:
$$\neg B_i \varphi \rightarrow B_i \neg B_i \varphi$$
 (negative introspection)

Definition 6 (Proof System, Proof). A **proof** is a sequence of formulas each of which is either an axiom or derived from previous formulas in the sequence by application of an inference rule. For any (possibly empty) subset D of the additional axioms $\{T, 4, 5\}$ we write $D \vdash \varphi$ if a proof exists for φ in the corresponding proof system.

Soundness & Completeness

Theorem 7 (Soundness & Completeness). Let C be a (possibly empty) subset of $\{r, t, e\}$ and let D the 'corresponding' subset of $\{T, 4, 5\}$. Then:

$$\mathfrak{M}_{\Phi i}^{C} \models \varphi \text{ iff } D \vdash \varphi.$$

The "left-to-right" part is **completeness**, the "right-to-left" part is **soundness**.