Lecture 5

Last time

- Models fit training data better than new data
- Models chosen by optimizing training performance (e.g. deviance) will be overfit
- Methods for approximating performance (log-likelihood, deviance, accuracy, etc.) on new data:
 - Train/test splits
 - k-fold cross-validation
 - leave-one-out cross-validation

Next step: A way to systematically search through models

General model search idea

- 1. Consider a set of potential models
- 2. Search through set
- As we search, fit models and calculate an optimality criterion
- 3. Choose the model with the best optimality criterion

Question: What is our set of potential models, and how do we search through that set?

Best subset selection

- Set of potential models: *all* possible combinations of the available explanatory variables
- Calculates optimality criterion for every potential model in the set

Question: Are there any potential issues with best subset selection?

Forward stepwise selection

Backward stepwise selection

Similar to forward stepwise selection, but in the other direction:

- 1. Specify the largest model we are willing to consider
- 2. Consider each term in the model; remove the term which most improves the optimality criterion
- 3. Repeat Step 2 until the optimality criterion can no longer be improved

Some issues with model selection

- Best subset selection is computationally prohibitive with too many variables
- Stepwise selection algorithms are greedy, and generally won't return the best model
- Optimality criteria involving cross-validation can be computationally expensive when calculated for many models in a search procedure

Alternative optimality criteria

AIC and BIC

Class activity

https://sta712-

f23.github.io/class_activities/ca_lecture_5.html