Analysing the Impact of Forecasting and Demand Patterns in Supply Chains

Burak Kandemir

Agenda

- [†] Conclusion

Introduction

Objectives

- Quantifying the impact of better forecasting on supply chain performance
- Integrating strategic growth targets to supply chain simulation
- Analysing system behaviour under demand increase or decreases for a certain period of time without updating forecasting methodology

Applications

- A consumer electronics distributor with a singleechelon supply chain structure
- A major domestic appliances manufacturer with a twoechelon supply chain structure

Methods

- Vensim® by VentanaSystems is used as simulation tool
- Forecast accuracy is involved in market demand as uniformly distributed within accuracy levels
- Strategy and demand increase and decreases are aligned by determining period and magnitude

Flow of Calculation Steps in System Dynamics Model

System Dynamics Model of a Consumer Electronics Distributor's Single-Echelon Supply Chain

Historic sales of Product A fit to Gamma Distribution with parameters α =1.31 and β =2230.7

Supply Chain KPIs differ at different forecast accuracy levels

9412 pcs of safety stock corresponding to 95% service level is included in simulation. Better forecasting affecting supply chain KPIs namely order fill rates and inventory days

Different safety stock calculation indicate different outcomes in terms of service level and inventory turns

Figures are obtained at 80% forecast accuracy which is taken constant for all runs. Change of supply chain KPIs confirming the robustness of the model

System Dynamics Model of Major Domestic Appliances Manufacturer's Two-Echelon Supply Chain

Scenario 0: «Sterile» conditions

Simulation Setup for **Product Group 1**

Forecast accuracy: 80%

Manufacturing cycle time: 4 weeks

Strategic growth: None

Demand increase: None

Demand Decline: None

Explicitly calculated safety stock @RDC: 19000 pcs

Initial factory stock: 5000

Initial RDC stock: 19000 (balance)

Average order fill rate: 97%

Average inventory days: 33.9

Order Fill Rate

Demand Increase Scenarios

Simulation Setup for Product Group 1

- Forecast accuracy: 80%
- Manufacturing cycle time: 4 weeks
- Strategic growth: None
- Demand increase: Parametric
- Demand Decline: None
- Explicitly calculated safety stock
 @RDC: 19000 pcs
- Initial factory stock: 5000
- Initial RDC stock: 19000
- Demand has jumps and downs in addition to forecast

Demand Change Btw. W20-32	Avg.Order Fill Rate Btw. W20-32
None	99.8%
10% increase	99.1%
20% increase	97.6%
30% increase	92.7%
40% increase	87.7%

Advance demand sharing would enable proactive actions for any occasion higher than 20%

Demand Increase Scenarios – Outputs for 40% increase for 8 weeks

- Demand increase of 40% between w20-w28
- Service level decreases to 75% level during jump period
- Adjustment of stock levels occur with phase lag

Demand Decrease Scenarios

Simulation Setup for Product Group 1

- Forecast accuracy: 80%
- Manufacturing cycle time: 4 weeks
- Strategic growth: None
- Demand increase: None
- Demand Decline: None
- Explicitly calculated safety stock
 @RDC: 19000 pcs
- Initial factory stock: 5000
- Initial RDC stock: 19000

Demand Change Btw. W20-32	Avg.Inventory Days Btw. W20-32
None	36.5
10% decrease	44.8
20% decrease	55.0
30% decrease	68.1
40% decrease	85.3

Recovery period of inventory lasts twice of decline period when no action taken for forecasting and safety stock management

Conclusion

Analysed

- - ♣ Generate market demand based on forecast
- - ♣ Strategy horizon and target
 - ♣ RAMP function
- Demand increase or decrease for a specific period of time
 - ♣ Change period and ratio
 - **†** PULSE function

Findings

- Accuracy of forecasts have a direct impact on supply chain performance in terms of inventory and service levels
- Inventory policies try to stabilize the supply chain system even in low forecast accuracy
- ♣ Stock adjustment takes more time in demand decrease scenarios

Further studies

- ♣ Can be applied for better forecasting models
- Forecast accuracy may not be uniformly distributed, analysis of historic data may yield more precise results

References

- 4 Aburto, L. and Weber, R. (2007) 'Improved supply chain management based on hybrid demand forecasts', *Applied Soft Computing*, 7(1), pp. 136–144. doi:10.1016/j.asoc.2005.06.001.
- Disney, S.M. and Lambrecht, M.R. (2010) On replenishment rules, forecasting, and the bullwhip effect in supply chains. 2008th, Kolophon: LaVergne, Tenn., USA, 2010th edn. Hanover, Mass.: Now Publ (Foundations and trends in technology, information and operations management, Vol. 2.2007/08,1).
- Ф Forrester, J.W. (1958) 'Industrial dynamics: A major breakthrough for decision makers', *Harvard Business Review*, 36, pp. 37–66.
- [♣] Hu, Y., Zhang, J. and Xu, Z. (2007) 'Asymmetric demand information's impact on supply chain performance and relationship under price-only contract', in 2007 IEEE International Conference on Automation and Logistics, Jinan, China: IEEE, pp. 2891–2896. doi:10.1109/ICAL.2007.4339075.
- ** Klug, F. (2013) 'The internal bullwhip effect in car manufacturing', *International Journal of Production Research*, 51(1), pp. 303–322. doi:10.1080/00207543.2012.677551.
- [♣] Lummus, R.R., Duclos, L.K. and Vokurka, R.J. (2003) 'The impact of marketing initiatives on the supply chain', *Supply Chain Management: An International Journal*, 8(4), pp. 317–323. doi:10.1108/13598540310490071.
- [‡] Lyneis, J.M. (2000) 'System dynamics for market forecasting and structural analysis', *System Dynamics Review*, 16(1), pp. 3–25.
- [♣] McCullen, P. and Towill, D. (2002) 'Diagnosis and reduction of bullwhip in supply chains', *Supply Chain Management: An International Journal*, 7(3), pp. 164–179. doi:10.1108/13598540210436612.
- [†] Moran, F.V. and Barrar, P. (2006) 'Supply Chain Dynamics: Structural Causes of the Bullwhip Effect', in Torres, O. C. and Moran, F. V., *The Bullwhip Effect in Supply Chains*. Palgrave Macmillan, pp. 71−94.
- Φ Ouyang, Y., Lago, A. and Daganzo, C.F. (2006) 'Taming the Bullwhip Effect: From Traffic to Supply Chains', in Torres, O. C. and Moran, F. V., *The Bullwhip Effect in Supply Chains*. Palgrave Macmillan, pp. 71–94.
- Sterman, J.D. (1989) 'Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment', *Management Science*, 35(3), pp. 321–339. doi:10.1287/mnsc.35.3.321.
- Ф Sterman, J.D. (2000) Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill Higher Education.
- Terwiesch, C. *et al.* (2005) 'An Empirical Analysis of Forecast Sharing in the Semiconductor Equipment Supply Chain', *Management Science*, 51(2), pp. 208–220. doi:10.1287/mnsc.1040.0317.
- Torres, O.C. and Moran, F.V. (2006) The Bullwhip Effect in Supply Chains A review of methods, components and cases. Palgrave MacMillan.

Thank you...

Q&A

