Assignment 4

Design the following circuits using Verilog and create a testbench for each design to check its functionality. Create a do file for the question.

- 1) ALSU is a logic unit that can perform logical, arithmetic, and shift operations on input ports
 - Input ports A and B have various operations that can take place depending on the value of the opcode.
 - Each input bit except for the clk and rst will be sampled at the rising edge before any processing so a D-FF is expected for each input bit at the design entry.
 - The output of the ALSU is registered and is available at the rising edge of the clock.

FACEBOOK GRP: DIGITAL ELECTRONICS COURSES MOBILE NO.: 01009279775

Inputs

Each input bit except for the clk and rst will have a DFF in front of its port. Any processing will take place from the DFF output.

Input	Width	Description
clk	1	Input clock
rst	1	Active high asynchronous reset
А	3	Input port A
В	3	Input port B
cin	1	Carry in bit, only valid to be used if the parameter FULL_ADDER is "ON"
serial_in	1	Serial in bit, used in shift operations only
red_op_A	1	When set to high, this indicates that reduction operation would be executed on A rather than bitwise operations on A and B when the opcode indicates AND and XOR operations
red_op_B	1	When set to high, this indicates that reduction operation would be executed on B rather than bitwise operations on A and B when the opcode indicates AND and XOR operations
opcode	3	Opcode has a separate table to describe the different operations executed
bypass_A	1	When set to high, this indicates that port A will be registered to the output ignoring the opcode operation
bypass_B	1	When set to high, this indicates that port B will be registered to the output ignoring the opcode operation
direction	1	The direction of the shift or rotation operation is left when this input is set to high; otherwise, it is right.

Outputs and parameters

Output	Width	Description
leds	16	When an invalid operation occurs, all bits blink (bits turn on and then off with each clock cycle). Blinking serves as a warning; otherwise, if a valid operation occurs, it is set to low.
out	6	Output of the ALSU

Parameter	Default value	Description
INPUT_PRIORITY	А	Priority is given to the port set by this parameter whenever there is a conflict. Conflicts can occur in two scenarios, red_op_A and red_op_B are both set to high or bypass_A and bypass_B are both set to high. Legal values for this parameter are A and B
FULL_ADDER	ON	When this parameter has value "ON" then cin input must be considered in the addition operation between A and B. Legal values for this parameter are ON and OFF

Opcodes & Handling invalid cases

Invalid cases

- 1. Opcode bits are set to 110 or 111
- 2. red_op_A or red_op_B are set to high and the opcode is not AND or XOR operation

C)utput	when	invalid	cases	occurs

- 1. leds are blinking
- 2. out bits are set to low, but if the bypass_A or bypass_B are high then the output will take the value of A or B.

Opcode	Operation
000	AND
001	XOR
010	Addition
011	Multiplication
100	Shift output by 1 bit
101	Rotate output by 1 bit
110	Invalid opcode
111	Invalid opcode

You are required to write the constraint file for the ALSU done in assignment 5. Connect the inputs A, B and opcode to the switches as shown on the board below

- "clk" is connected to W5 pin as suggested in the board's reference manual with frequency 100 MHz
- "rst" is connected to button U18
- "leds" are connected to the LEDs on the board

You are required to set a debug core to be able to debug any input or output for the design.

Note:

- You can use in the testbench the system function "\$urandom_range" which returns randomized unsigned integer within a range if you want to strict the opcode to have valid opcodes only
- signal_in = \$urandom_range(5,15); //randomized between 5 and 15
- Bit stream generation will not be successful since the output bits are not connected yet (You will connect them to the seven segment display in assignment 5)

Deliverables:

- 1) The assignment should be submitted as a PDF file with this format <your_name>_Assignment4 for example Kareem_Waseem_Assignment4.
- 2) Snippets from the waveforms captured from QuestaSim for the design with inputs assigned values and output values visible.
- 3) Snippets from the schematic after the elaboration & synthesis

- 4) Snippet from the utilization & timing report & after the synthesis and implementation.
- 5) Snippet of the "Messages" tab showing no critical warnings or errors after running elaboration, synthesis, and implementation.

Note that your document should be organized as follows:

- 1. RTL code
- 2. Testbench code
- 3. Do file
- 4. QuestaSim Snippets
- 5. Constraint File showing the debug core added in the end of the file.
- 6. Elaboration ("Messages" tab & Schematic snippets)
- 7. Synthesis ("Messages" tab, Utilization report, timing report & Schematic snippets)
- 8. Implementation ("Messages" tab, Utilization report, timing report & device snippets)

Note that your document should be organized. I am expecting the Verilog code, and the waveforms snippets

FACEBOOK GRP: DIGITAL ELECTRONICS COURSES MOBILE NO.: 01009279775