Unit 7: Equilibria

Subunit 7.1: Chemical equilibria: reversible reactions, dynamic equilibrium

Topical Question No: 1

3 Two moles of compound P were placed in a sealed container. The container was heated and P was partially decomposed to produce Q and R only. A dynamic equilibrium between P, Q and R was established.

At equilibrium x moles of R were present and the total number of moles present was $\left(2 + \frac{x}{2}\right)$.

What is the equation for this reversible reaction?

A
$$P \rightleftharpoons 2Q + R$$

B
$$2P \rightleftharpoons 2Q + R$$

$$\mathbf{C}$$
 2P \rightleftharpoons Q + R

D
$$2P \rightleftharpoons Q + 2R$$

Topical Question No: 2

11 Ammonia is manufactured from nitrogen and hydrogen using the Haber process.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

What is the expression for K_c for this equilibrium?

$$\mbox{\bf A} \quad \frac{2[N\mbox{H}_3(g)]}{[N_2(g)] \,+\, 3[\mbox{H}_2(g)]} \label{eq:approx}$$

$$\mbox{\bf B} \quad \frac{2[N\mbox{H}_{3}(g)]}{[N_{2}(g)]\,\times\,3[\mbox{H}_{2}(g)]}$$

$$\bm{C} = \frac{[NH_3(g)]^2}{[N_2(g)] \ + \ [H_2(g)]^3}$$

$$\mathbf{D} = \frac{[NH_3(g)]^2}{[N_2(g)] \times [H_2(g)]^3}$$

Topical Question No: 3

34 Sulfur dioxide and oxygen react in the gas phase.

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

Which statements are correct?

- 1 Increasing the pressure increases the equilibrium yield of SO₃.
- 2 Increasing the temperature lowers the value of the equilibrium constant K_p .
- 3 The presence of a vanadium(V) oxide catalyst increases the equilibrium yield of SO₃.

11 The reaction between sulfur dioxide and oxygen is reversible.

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$
 $\Delta H^{\Theta} = -196 \text{ kJ mol}^{-1}$

Which conditions of pressure and temperature favour the **reverse** reaction?

	pressure	temperature
Α	high	high
В	high	low
С	low	high
D	low	low

Topical Question No: 5

18 Sulfur trioxide is manufactured from sulfur dioxide and oxygen, using the Contact process.

Which condition affects the value of the equilibrium constant, K_c ?

- A adjusting the temperature
- B increasing the pressure
- C removing SO₃ from the equilibrium mixture
- **D** using a catalyst

Topical Question No: 6

8 The reaction between sulfur dioxide and oxygen is a dynamic equilibrium.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

What happens when the pressure of the system is increased?

- A The rate of reaction will decrease and the position of the equilibrium will move to the left.
- **B** The rate of reaction will decrease and the position of the equilibrium will move to the right.
- **C** The rate of reaction will increase and the position of the equilibrium will move to the left.
- **D** The rate of reaction will increase and the position of the equilibrium will move to the right.

Topical Question No: 7

17 Graphs can be drawn to show the percentage of ammonia at equilibrium when nitrogen and hydrogen are mixed at different temperatures and pressures.

Which diagram correctly represents these two graphs?

Topical Question No: 8

7 The Contact process is used in the manufacture of sulfuric acid. The equation for the main reaction is shown below.

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ mol}^{-1}$

Which statement about this reaction is incorrect?

- A Increased pressure gives a higher yield of SO₃.
- **B** Increased temperature gives a higher yield of SO₃.
- **C** In the forward reaction the oxidation state of sulfur changes from +4 to +6.
- **D** Vanadium(V) oxide is used as a catalyst.

Topical Question No: 9

10 The equilibrium constant, K_c , for the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, is 60 at 450 °C.

What is the number of moles of hydrogen iodide in equilibrium with $2\,\text{mol}$ of hydrogen and $0.3\,\text{mol}$ of iodine at $450\,^{\circ}\text{C}$?

- **A** $\frac{1}{100}$
- **B** $\frac{1}{10}$
- **C** 6
- **D** 36

4 Hydrogen and carbon dioxide gases are mixed in equal molar amounts at 800 K. A reversible reaction takes place.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

At equilibrium, the partial pressures of H_2 and CO_2 are both 10.0 kPa. K_p is 0.288 at 800 K.

What is the partial pressure of CO in the equilibrium mixture?

A 5.37 kPa

B 18.6 kPa

C 28.8 kPa

D 347 kPa

Answer Key

- 1. Error
- 2. Error
- 3. Error
- 4. Error
- 5. Error
- 6. Error
- 7. Error
- 8. Error
- 9. Error
- 10. Error