МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Исследование применимости газа Вандер-Вальса для рассчёта эфеекта Джоуля-Томсона

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Исследовано изменение температуры в опыте Джоуля-Томсона для углекислого газа. Рассчитаны коэффициенты Джоуля-Томсона для углекислого газа при различных температурах в диапазоне 20-50 °C. Определены параметры Вандер-Вальса для углекислого газа. Проведено сравнение полученных значений с табличными.

Содержание

1	Введение	1
2	Методика	1
3	Результаты и их обсуждение	5
4	Выводы	6
5	Использованная литература	6
6	Приложения 6.1 Ланные результатов измерений	7

1 Введение

Цель настоящей работы заключалась в определении применимости модели газа Вандер-Вальса для расчёта эффекта Джоуля-Томсона.

2 Методика

Теоретическое обоснование

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ – его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы

ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении 1 учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в 1 написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right). \tag{2}$$

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула 1 становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью уравнения 2. Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. В силу сохранения энтропии в случае реального газа получаем:

$$\mu_{\text{A-T}} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_P}.$$
 (3)

Из формулы 3 видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших а велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении

падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формулы 3, при температуре

$$T_{\text{\tiny MHB}} = \frac{2a}{Rb}$$

коэффициент $\mu_{\text{Д-T}}$ обращается в нуль. По формулам связи параметров газа Ван-дер-Ваальса с критическими параметрами получаем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny KP}}.\tag{4}$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{Д-T}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{Д-T}} < 0$, газ нагревается).

Вернемся к влиянию правой части уравнения 2 на изменение температуры расширяющегося газа. Для этого сравним изменение температуры, происходящее вследствие эффекта Джоуля—Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа. Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса.

Заменяя в формуле 2 U через $C_V T$ и PV через RT, найдем

$$(R + C_V)(T_1 - T_2) = \mu(v_2^2 - v_1^2)/2$$

или

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right).$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10 \text{ cm}^3/\text{c}$, а диаметр трубки равен 3 мм. Поэтому

$$v_2 <= \frac{4Q}{\pi d^2} = \frac{4 \cdot \text{cm}^3/\text{c}}{3,14 \cdot (0,3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}.$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1 = 4$ атм, а $P_2 = 1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = 35 \text{ cm/c}.$$

Для углекислого газа $\mu=44$ г/моль, $C_P=40$ Дж/(моль·К); имеем

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right) \approx 7 \cdot 10^{-4} \text{ K}.$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

Экспериментальная установка

Рис. 1: Схема экспериментальной установки для измерения эффекта Джоуля-Томсона для углекислого газа.

Схема установки для исследования эффекта Джоуля-Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5)мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P = 4$ атм (расход газа составляет около 10 см³/с); при этом в результате эффекта Джоуля-Томсона создается достаточная разность температур. Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра T_{κ} . Давление газа в трубке измеряется манометром М и регулируется вентилем В (при открывании вентиля B, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр М измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$. Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь – константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

3 Результаты и их обсуждение

Проведём эксперимент для трёх различных температурах 21.1 °C, 30.0 °C, 50.0 °C. Для перевода из разности потенциалов в разность температур были использованы коэффициенты перевода 40.7 $\frac{\text{мкB}}{\text{°C}}$ для 21.1 °C, 41.6 $\frac{\text{мкB}}{\text{°C}}$ для 30.0 °C, 42.5 $\frac{\text{мкB}}{\text{°C}}$ для 50.0 °C. Таким образом были получены 3 зависимости разности температур ΔT от разности давлений ΔP (Таблица 1). По полученным данным были построены графики зависимости $\Delta T(\Delta P)$ (Рис. 2). В исследуемом диапазоне температур полученные зависимости хорошо аппроксимируются прямыми, что согласуется с теоретической моделью.

Рис. 2: График зависимости перепада температур газа ΔT в зависимости от перепада давлений ΔP для различных температур. 1 - 21.1 °C, 2 - 30.0 °C, 3 - 50.0 °C.

Из коэффициентов наклона полученных прямых найдены значения коэффициентов Джоуля-Томсона μ для различных температур. Для линеаризации полученной зависимости $\mu(T)$ применим выражение 3 и построим $\mu(\frac{1}{T})$ (Рис. 3).

Рис. 3: График зависимости коэффициента Джоуля-Томсона μ в зависимости от величины обратной абсолютной температуре $\frac{1}{T}$

Полученная зависимость оказывается линейной, тогда согласно формуле 3 найдём параметры Вандер-Ваальса для углекислого газа: $a=(8.62\pm0.24)\cdot10^{-1}\,\frac{\Pi\mathrm{a}\cdot\mathrm{m}^6}{\mathrm{mon}^2}$ и $b=(4.14\pm0.28)\cdot10^{-4}\,\frac{\mathrm{m}^3}{\mathrm{mon}^3}$. Температура инверсии тогда равна $T_{inv}=(5.01\pm0.36)\cdot10^2K$. Тогда как табличные значения параметров, измеренных при наблюдении за критической точкой рывны $a_T=0.3658\,\frac{\Pi\mathrm{a}\cdot\mathrm{m}^6}{\mathrm{mon}^2}$ и $b_T=42.9\cdot10^{-6}\,\frac{\mathrm{m}^3}{\mathrm{mon}^3}$ и $T_{inv_T}=2052K$. Критическое несовпадение параметров делает невозможным количественное описание эфеекта Джоуля-Томсона с использованием модели газа Вандер-Ваальса.

4 Выводы

Модель газа Вандер-Ваальса оказалась способна на качественном уровне описать эффект Джоуля-Томсона, однако количественные оценки параметров газа Вандер-Ваальса критически разошлись с теоретическими, потому модель газа Вандер-Ваальса не подходит для количественного описания данного эффекта.

5 Использованная литература

Список литературы

[1] Лабораторный практикум по общей физике, Том 2, под редакцией А. Д. Гладуна

6 Приложения

6.1 Данные результатов измерений

$T = 21.1 ^{\circ}\text{C}$		$T = 30.0 ^{\circ}\text{C}$		$T = 50.0 ^{\circ}\text{C}$	
ΔP , atm	ΔT , K	ΔP , atm	ΔT , K	ΔP , atm	ΔT , K
4.0	-4.10	4.0	-3.80	4.0	-3.24
3.5	-3.58	3.5	-3.27	3.5	-2.77
3.0	-2.92	3.1	-2.81	3.0	-2.29
2.6	-2.48	2.6	-2.28	2.6	-1.92
2.1	-1.96	2.0	-1.68	1.9	-1.36

Таблица 1: Данные результатов измерений перепада температур ΔT от разности давлений ΔP при измерении эффекта Джоуля-Томсона для трёх различных температурах газа.