17.1 Find the general solution of each of the following equations:

(a)
$$y'' + y' - 6y = 0$$

(d)
$$2y'' - 4y' + 8y = 0$$

(g)
$$2y'' + 2y' + 3y = 0$$

(r)
$$y'' + 4y' - 5y = 0$$

Solution (a) $\lambda^2 + \lambda - 6 = 0 \implies \lambda_1 = -3, \ \lambda_2 = 2.$ $y(t) = c_1 e^{-3t} + c_2 e^{2t}.$

(d)
$$2\lambda^2 - 4\lambda + 8 = 0 \implies \lambda^2 - 2\lambda + 4 = 0 \implies \lambda_{1/2} = \frac{2 \pm \sqrt{4 - 16}}{2} = 1 \pm i\sqrt{3}$$
.

The solution over \mathbb{C} is then given by

$$y(t) = c_1 e^{(1+i\sqrt{3})t} + c_2 e^{(1-i\sqrt{3})t}$$

= $c_1 e^t (\cos\sqrt{3}t + i\sin\sqrt{3}t) + c_2 e^t (\cos\sqrt{3}t - i\sin\sqrt{3}t)$.

Since the real and imaginary parts are linear combinations of y, the general solution over \mathbb{R} is

$$y(t) = c_1 e^t \cos \sqrt{3}t + c_2 e^t \sin \sqrt{3}t.$$

(g)
$$2\lambda^2 + 2\lambda + 3 = 0 \implies \lambda_{1/2} = \frac{-2 \pm \sqrt{4 - 24}}{4} = -\frac{1}{2} \pm i\frac{\sqrt{5}}{2}$$
.

The solution over \mathbb{C} is then

$$y(t) = c_1 e^{(-1+\sqrt{5})t/2} + c_2 e^{(-1-\sqrt{5})t/2}$$
$$= c_1 e^{-t/2} \left(\cos\frac{\sqrt{5}}{2}t + i\sin\frac{\sqrt{5}}{2}t\right) + c_2 e^{-t/2} \left(\cos\frac{\sqrt{5}}{2}t - i\sin\frac{\sqrt{5}}{2}t\right).$$

So the general solution over \mathbb{R} is

$$y(t) = c_1 e^{-t/2} \cos \frac{\sqrt{5}}{2} t + c_2 e^{-t/2} \sin \frac{\sqrt{5}}{2} t.$$

(r)
$$\lambda^2 + 4\lambda - 5 = 0 \implies \lambda_1 = -5, \ \lambda_2 = 1.$$
 $y(t) = c_1 e^{-5t} + c_2 e^t.$

17.2 Find the solutions of the following initial value problems:

(a)
$$y'' - 5y' + 6y = 0$$
, $y(1) = e^2$ and $y'(1) = 3e^2$

(c)
$$y'' - 6y + 9y = 0$$
, $y(0) = 0$ and $y'(0) = 5$

(e)
$$y'' + 4y' + 2y = 0$$
, $y(0) = -1$ and $y'(0) = 2 + 3\sqrt{2}$

Solution (a) $\lambda^2 - 5\lambda + 6 = 0 \implies \lambda_1 = 3, \ \lambda_2 = 2.$ $y(t) = c_1 e^{3t} + c_2 e^{2t}.$

$$y(1) = e^2 \implies c_1 e^3 + c_2 e^2 = e^2$$

 $y'(1) = 3e^2 \implies 3c_1 e^3 + 2c_2 e^2 = 3e^2$

By inspection, $c_1 = e^{-1}$ and $c_2 = 0$, so the solution is $y(t) = e^{3t-1}$.

(c) $\lambda^2 - 6\lambda + 9 = 0 \implies \lambda_1 = \lambda_2 = 3$. We check if the following is a solution: $y(t) = te^{3t}$:

$$y'(t) = e^{3t} + 3te^{3t}$$

$$y''(t) = 3e^{3t} + 3e^{3t} + 9te^{3t} = 6e^{3t} + 9te^{3t}$$

$$y'' - 6y' + 9y = 6e^{3t} + 9te^{3t} - 6e^{3t} - 18te^{3t} + 9te^{3t}$$

$$= 0.$$

It is, so the general solution is given by $y(t) = c_1 e^{3t} + c_2 t e^{3t}$.

$$y(0) = 0 \implies c_1 = 0$$

 $y'(0) = 5 \implies 3c_1 + c_2 = c_2 = 5.$

Hence, the solution is $y(t) = 5te^{3t}$.

(e)
$$\lambda^2 + 4\lambda + 2 = 0 \implies \lambda_{1/2} = \frac{-4 \pm \sqrt{16 - 8}}{2} = -2 \pm \sqrt{2}.$$

 $y(t) = c_1 e^{(-2 + \sqrt{2})t} + c_2 e^{(-2 - \sqrt{2})t}.$

$$y(0) = -1 \implies c_1 + c_2 = -1$$

 $y'(0) = 2 + 3\sqrt{2} \implies (-2 + \sqrt{2})c_1 + (-2 - \sqrt{2})c_2 = 2 + 3\sqrt{2}.$

By inspection, $c_1 = 1$ and $c_2 = -2$, so the solution is $y(t) = e^{(-2+\sqrt{2})t} - 2e^{(-2-\sqrt{2})t}$.

17.3 Show that the general solution of equation (1) approaches 0 as $x \to \infty$ if and only if p and q are both positive.

Solution " \Longrightarrow "

Let
$$\lim_{x\to\infty} y(x) = 0$$
.

$$\lambda^2 + p\lambda + q$$
 has real roots:

Then the general solution is $y(x) = c_1 e^{m_1 x} + c_2 e^{m_2 x}$.

We must have $m_1, m_2 \leq 0$, since $e^{at} \xrightarrow{t \to \infty} \infty$ if a > 0.

Assume without loss of generality that $m_1 < 0$ and $m_2 = 0$. We can switch m_1 and m_2 and repeat the following argument.

Then $y(x) \xrightarrow{x \to \infty} c_2$, which is not necessarily 0 in general.

If $m_1 = m_2 = 0$, then $y(x) \xrightarrow{x \to \infty} c_1 + c_2$, which is also not necessarily 0 in general.

Hence, we must have $m_1, m_2 < 0$. Since m_1 and m_2 are roots of $\lambda^2 + p\lambda + q$, we know that $p = -(m_1 + m_2)$ and $q = m_1 m_2$. Thus, p and q must both be positive, since m_1 and m_2 are negative.

 $\lambda^2 + p\lambda + q$ has complex roots:

Then the general solution is $y(x) = e^{ax}(c_1 \cos bx + ic_2 \sin bx)$.

Since $\cos bx$ and $\sin bx$ are bounded functions, the convergence of y does not depend on b, so we only need to look at a.

We must have a < 0 since $e^{at} \xrightarrow{t \to \infty} 0$ if and only if a < 0. If a = 0, then our solution oscillates in general. If a > 0, then $y(x) \xrightarrow{x \to \infty} \infty$. Hence, a < 0.

Since a + bi and a - bi are roots of $\lambda^2 + p\lambda + q$, we have p = -2a > 0 and $q = a^2 + b^2 > 0$.

 $\lambda^2 + p\lambda + q$ has a repeated root:

In this case, the general solution is $y(x) = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$.

Similar to the case with two distinct real roots, we must have $\lambda < 0$. Then since λ is a root of the characteristic polynomial, $p = -\lambda/2 > 0$ and $q = \lambda^2/4 > 0$.

" ← "

Let p and q be positive. By the quadratic formula, the roots of the characteristic polynomial are given by

$$\lambda_{1/2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}.$$

If the roots are real and distinct, then we have $\sqrt{p^2-4q} < \sqrt{p^2} = p$, so

$$-p + \sqrt{p^2 - 4q} < -p + p = 0$$
$$-p - \sqrt{p^2 - 4q} < 0,$$

so both roots are negative. Hence, by the argument in the first part, $y(x) \xrightarrow{x \to \infty} 0$.

If the roots are complex, the real part is -p/2 < 0, so by the argument above, y(x) converges to 0.

If the roots are repeated, then $p^2 - 4q = 0 \implies \lambda = -p/2 < 0$, so the solution also converges to 0.

17.5 The equation

$$x^2y'' + pxy' + qy = 0,$$

where p and q are constants, is called *Euler's equidimensional equation*. Show that the change of independent variable given by $x = e^z$ transforms it into an equation with constant coefficients, and apply this technique to find the general solution of each of the following equations:

(a)
$$x^2y'' + 3xy' + 10y = 0$$

(c)
$$x^2y'' + 2xy' - 12y = 0$$

(e)
$$x^2y'' - 3xy' + 4y = 0$$

Solution Substituting e^z for x, we get

$$\begin{split} u(z) &:= y(e^z) \\ u' &= (y(e^z))' = e^z y'(e^z) \\ u'' &= (y(e^z))'' = e^{2z} y''(e^z) + e^z y'(e^z) = e^{2z} y''(e^z) + u'. \end{split}$$

Then we get

$$e^{2z}y''(e^z) + pe^zy'(e^z) + qy(e^z) = 0$$
$$(u'' - u') + pu' + qu = 0$$
$$u'' + (p - 1)u' + qu = 0.$$

(a) After substitution, the problem becomes u'' + 2u + 10u = 0, whose characteristic roots are given by

$$\lambda_{1/2} = \frac{-2 \pm \sqrt{4 - 40}}{2} = -1 \pm 3i,$$

so the general solution in u is given by $u(z) = e^{-z}(c_1 \cos 3z + c_2 \sin 3z)$. Since $u = y(e^z)$, we can undo the transformation with $z = \log x$, which gives

$$y(x) = \frac{c_1 \cos(3\log x) + c_2 \sin(3\log x)3}{x}.$$

(c) After transformation, the differential equation becomes u'' + u' - 12u = 0, which has characteristic roots $\lambda_1 = -4$ and $\lambda_2 = 3$. Hence, the general solution in u is $u(z) = c_1 e^{-4z} + c_2 e^{3z}$. Undoing the transformation, we get

$$y(x) = c_1 x^{-4} + c_2 x^3.$$

(e) Applying the substitution yields u'' - 4u' + 4u = 0, which has the repeated root 2. Thus, the general solution in u is $u(z) = c_1 e^{2z} + c_2 z e^{2z}$. Undoing the transformation finally gives

$$y(x) = c_1 x^2 + c_2 x^2 \log x.$$

4

- 17.8 In this problem we present another way of discovering the second linearly independent solution of (1) when the roots of the auxiliary equation are real and equal.
 - a. If $m_1 \neq m_2$, verify that the differential equation

$$y'' - (m_1 + m_2)y' + m_1 m_2 y = 0$$

has

$$y = \frac{e^{m_1 x} - e^{m_2 x}}{m_1 - m_2}$$

as a solution.

- b. Think of m_2 as fixed and use l'Hôpital's rule to find the limit of the solution in part (a) as $m_1 \to m_2$.
- c. Verify that the limit in part (b) satisfies the differential equation obtained from the equation in part (a) by replacing m_1 by m_2 .
- **Solution** a. The general solution to the differential equation is given by $y(x) = c_1 e^{m_1 x} + c_2 e^{m_2 x}$, since m_1 and m_2 are roots to the characteristic polynomial. Taking $c_1 = 1/(m_1 m_2)$ and $c_2 = -1/(m_1 m_2)$ gives us the desired solution.
 - b. The numerator and denominator both approach 0 as $m_1 \to m_2$, so we can apply l'Hôpital's to get

$$\lim_{m_1 \to m_2} \frac{e^{m_1 x} - e^{m_2 x}}{m_1 - m_2} = \lim_{m_1 \to m_2} \frac{x e^{m_1 x}}{1} = x e^{m_2 x}.$$

c. Letting $m_1 = m_2 = \lambda$, the differential equation becomes $y'' - 2\lambda y' + \lambda^2 y = 0$. We wish to verify that $y(x) = xe^{\lambda x}$ is a solution:

$$y' = e^{\lambda x} + \lambda x e^{\lambda x}$$

$$y'' = \lambda e^{\lambda x} + \lambda e^{\lambda x} + \lambda^2 x e^{\lambda x} = \lambda e^{\lambda x} + \lambda y'.$$

Substituting gives

$$y'' - 2\lambda y' + \lambda^2 y = \lambda e^{\lambda x} + \lambda y' - 2\lambda y' + \lambda^2 x e^{\lambda x}$$
$$= \lambda e^{\lambda x} - \lambda e^{\lambda x} - \lambda^2 x e^{\lambda x} + \lambda^2 x e^{\lambda x}$$
$$= 0$$

so $y(x) = xe^{\lambda x}$ indeed satisfies the differential equation.