1/22

٠٠٠٠ 🕳

ti=Tci+Tmi	····· (1a)
ti:DIFFUSION-CODE TRANSMISSION TIME Tci:VALUE OF DIGITS EXPRESSING A NUMBER THAN 1 msec (PHASE OF DIFFUSION CODE)	SMALLER
Tmi:VALUE OF DIGITS EXPRESSING A NUMBER TO OR GREATER THAN 1 msec	EQUAL
ti=Tci+Ti+to	····· (1b)
ti:DIFFUSION-CODE TRANSMISSION TIME Tci:VALUE OF DIGITS EXPRESSING A NUMBER THAN 1 msec(PHASE OF DIFFUSION CODE) (Ti+to):VALUE OF DIGITS EXPRESSING A NUM TO OR GREATER THAN 1 msec to:REFERENCE TIME(COMMON TO SATELLITES) Ti:DIFFERENTIAL TIME)

```
fi(Xo, \tau, to) = | Xi(ti)-Xo | -c {(tr-ti)+\tau}
= | Xi(Tci+Ti+to)-Xo |
                  -c \{tr-(Tci+Ti+to)+\tau\} = 0
                                               .....(2)
Xi(ti) = (xi(ti)yi(ti)zi(ti))^{T}
                                               ....(3)
Xo=(xo\ yo\ zo)^T
                                               .....(4)
f1 (Xo, \tau, to) = | X1 (Tc1+T1+to) -Xo |
                -c \{tr-(Tc1+T1+to)+\tau\} = 0
                                               ····· (2a)
f2 (Xo, \tau, to) = | X2 (Tc2+T2+to) -Xo |
-c {tr-(Tc2+T2+to) + \tau} =0
                                               ····· (2b)
f3(Xo, \tau, to) = |X3(Tc3+T3+to)-Xo|
                   -c \{tr-(Tc3+T3+to)+\tau\} = 0
                                               ····· (2c)
f4(Xo, \tau, to) = | X4(Tc4+T4+to) - Xo |
                   -c \{tr-(Tc4+T4+to)+\tau\} = 0
                                               ····· (2d)
f5(Xo, \tau, to) = | X5(Tc5+T5+to) - Xo |
                   -c \{tr-(Tc5+T5+to)+\tau\} = 0
```

POINT OF INTEREST	
(Xo(n), τ (n), to(n))	(11)
$\Delta fi = \frac{\partial fi}{\partial xo(n)} \Delta xo + \frac{\partial fi}{\partial yo(n)} \Delta yo + \frac{\partial fi}{\partial zo(n)} \Delta zo$)
$+\frac{\partial fi}{\partial \tau (n)} \Delta \tau + \frac{\partial fi}{\partial to (n)} \Delta to$	(12)
	•
$fi(Xo(n), \tau(n), to(n)) + \Delta fi = 0$	(13)
(ΔXo, Δτ, Δto)	(14)
ΔΧο=(Δχο Δχο Δχο)Τ	(15)
ا عد: عد: ا	
$\left \frac{\partial fi}{\partial xo(n)} = \frac{\partial fi}{\partial xo} \right _{xo=xo(n)}$	(16)
	to(n))ΔP ·····(17)
 	.
F=(f1 f2 f3 f4 f5) ¹	(18)
ΔP=(Δxο Δyο Δ τ Δto) ^T	(19)

$$J(Xo(n), \tau(n), to(n)) = \begin{bmatrix} \frac{\partial f1}{\partial xo(n)} & \frac{\partial f1}{\partial yo(n)} & \frac{\partial f1}{\partial zo(n)} & \frac{\partial f1}{\partial \tau(n)} & \frac{\partial f1}{\partial to(n)} \\ \frac{\partial f2}{\partial xo(n)} & \frac{\partial f2}{\partial yo(n)} & \frac{\partial f2}{\partial zo(n)} & \frac{\partial f2}{\partial \tau(n)} & \frac{\partial f2}{\partial to(n)} \\ \frac{\partial f3}{\partial xo(n)} & \frac{\partial f3}{\partial yo(n)} & \frac{\partial f3}{\partial zo(n)} & \frac{\partial f3}{\partial \tau(n)} & \frac{\partial f3}{\partial to(n)} \\ \frac{\partial f4}{\partial xo(n)} & \frac{\partial f4}{\partial yo(n)} & \frac{\partial f4}{\partial zo(n)} & \frac{\partial f4}{\partial \tau(n)} & \frac{\partial f4}{\partial to(n)} \\ \frac{\partial f5}{\partial xo(n)} & \frac{\partial f5}{\partial yo(n)} & \frac{\partial f5}{\partial zo(n)} & \frac{\partial f5}{\partial \tau(n)} & \frac{\partial f5}{\partial to(n)} \\ \frac{\partial f1}{\partial xo(n)} & = -\frac{xi(Tci+Ti+to(n))-xo(n)}{|Xi(Tci+Ti+to(n))-Xo(n)|} & \cdots (22) \\ \frac{\partial f1}{\partial yo(n)} & = -\frac{yi(Tci+Ti+to(n))-yo(n)}{|Xi(Tci+Ti+to(n))-Xo(n)|} & \cdots (23) \\ \frac{\partial f1}{\partial yo(n)} & = -\frac{zi(Tci+Ti+to(n))-zo(n)}{|Xi(Tci+Ti+to(n))-Xo(n)|} & \cdots (24) \\ \frac{\partial f1}{\partial yo(n)} & = -\frac{zi(Tci+Ti+to(n))-zo(n)}{|Xi(Tci+Ti+to(n))-Xo(n)|} & \cdots (25) \\ \frac{\partial f1}{\partial yo(n)} & = -\frac{zi(Tci+Ti+to(n))-xo(n)}{|Xi(Tci+Ti+to(n))-Xo(n)|} & \cdots (26) \\ \frac{\partial f1}{\partial yo(n)} & = -\frac{(Xi(Tci+Ti+to(n))-Xo(n))\cdot Vi(Tci+Ti+to(n))}{|Xi(Tci+Ti+to(n))-Xo(n)|} & +C \\ & \cdots (26) \\ A\cdot B=(Xi(Tci+Ti+to(n))-Xo(n))\cdot Vi(Tci+Ti+to(n)) & \cdots (27) \\ \end{pmatrix}$$

.....(31)

F I G. 6

 $(Xo(0), \tau(0), to(0)) = (Xoa, 0, toa)$

INITIAL VALUES

Xo(0)=Xoa:APPROXIMATE POSITION OF RECEIVER

au (O):INITIAL VALUE OF ERROR au OF RECEIVER INTERNAL CLOCK to(0)=toa:INITIAL VALUE OF REFERENCE TIME to

(TIME INDICATED BY INTERNAL CLOCK OF RECEIVER AT ITERATION COMPUTATION START TIME)

NEXT POINT OF INTEREST	
$(Xo(n+1), \tau(n+1), to(n+1))$ = $(Xo(n) + \Delta Xo, \tau(n) + \Delta \tau, to(n+1)$	$o(n) + \Delta to$
)	(33)
CONVERGENCE CRITERIA(ε:CONS	TANT)
ΔXo < ε	(35)
ΔP < ε	(36)
\mid F (Xo(n), τ (n), to(n) \mid < ε	(37)

CALCULATION OF DIFFERENTIAL TIME	<u>Ti</u>
t1=Tc1+to	····· (1c)
ti=Tci+Ti+to (i ≧ 2)	····· (1d)
Ti=(Ti+to)-to=(ti-Tci)-(t1-Tc1)	(41)
c(tr-ti)= Xi(ti)-Xo	(42)
ti=tr- Xi(ti)-Xo	(43)
t1=tr- X1 (t1) -Xo c	(44)
$Ti = \left(\frac{ X1(t1)-Xo }{c} + Tc1\right) - \left(\frac{ Xi(ti)-Xo }{c}\right)$	+Tci) (45)
$c \times 1.0 \times 10^{-3} \text{ [m]} \simeq 3.0 \times 10^{5} \text{ [m]}$	(46)
$ti=t1-2.0 \times 10^{-2}$ [SECONDS]	(47)

TOLERANCE OF APPROXIMATE POSITION OF RECEIVER cTi=(|X1(t1)-Xo|+cTc1) -(|Xi(ti)-Xo|+cTci) (51) $\cdots (52)$ | AX | : DISTANCE BETWEEN COORDINATES REPRESENTING APPROXIMATE POSITION OF RECEIVER AND ACTUAL POSITION OF RECEIVER (63) |A| > |B| $|A| - |B| \le |A - B| \le |A| + |B|$ $|Xi(ti)-(Xo+\Delta X)|$ = | (Xi(ti)-Xo)-\(\Delta X\)| (65) A=Xi(ti)-Xo (66) (67) $B = \Delta X$ $\begin{array}{l} \mid Xi \; (ti) - Xo \mid - \mid \Delta X \mid \\ & \leqq \mid (Xi \; (ti) - Xo) - \Delta X \mid \\ & \leqq \mid Xi \; (ti) - Xo \mid + \mid \Delta X \mid \end{array}$ (68)

```
TOLERANCE OF ERROR OF RECEIVER INTERNAL TIME

t1+\Delta t=ti+\Delta t+2. \ 0\times 10^{-2} \ [SECONDS] \ \cdots (53)
(|X1(t1+\Delta t)-Xo|+cTc1) \ -(|Xi(t1+\Delta t)-Xo|+cTc1) \ -(|Xi(t1+\Delta t)-Xo|+cTc1) \ -(|Xi(ti+\Delta t+2. \ 0\times 10^{-2})-Xo|+cTc1) \ -(|Xi(t1)-Xo|+\Delta t\times 1. \ 0\times 10^{3}+cTc1) \ -(|Xi(t1)-Xo|-\Delta t+2. \ 0\times 10^{-2})\times 1. \ 0\times 10^{3}+cTc1) \ -(|X1(t1)-Xo|+cTc1)-(|Xi(t1)-Xo|+cTc1) \ +(2\Delta t+2. \ 0\times 10^{-2})\times 1. \ 0\times 10^{3} \ =cTi+(2\Delta t+2. \ 0\times 10^{-2})\times 1. \ 0\times 10^{3} \ \cdots (54)
\Delta d=(2\Delta t+2. \ 0\times 10^{-2})\times 1. \ 0\times 10^{3} \ [m]
\simeq 2\Delta t\times 1. \ 0\times 10^{3} \ [m] \ \cdots (55)
```

 $2 \mid \Delta X \mid +2 \mid \Delta t \mid \times 1.0 \times 10^{3} < 1.5 \times 10^{5}$ (56)

 $| \Delta X | +1.0 \times 10^{3} \times | \Delta t | < 7.5 \times 10^{4}$ (57)

```
SECOND METHOD
f1(Xo, \tau, to) = | X1(Tc1+T1+to) - Xo |
                  -c \{tr-(Tc1+T1+to)+\tau\} = 0
f2(Xo, \tau, to) = |X2(Tc2+T2+to)-Xo|
                  -c \{tr-(Tc2+T2+to)+\tau\} = 0
f3(Xo, \tau, to) = |X3(Tc3+T3+to)-Xo|
                 -c \{tr-(Tc3+T3+to)+\tau\} = 0
                                            ····· (2c)
f4(Xo, \tau, to) = | X4(Tc4+T4+to) - Xo |
                  -c \{tr-(Tc4+T4+to)+\tau\} = 0
                                            ····· (2d)
f5 (Xo, \tau, to) = | X5 (Tc5+T5+to) - Xo |
                 -c \{tr-(Tc5+T5+to)+\tau\} = 0
                                            ····· (2e)
f6(Xo, \tau, to) = |X6(Tc6+T6+to)-Xo|
                  -c \{tr-(Tc6+T6+to)+\tau\} = 0
                                            ····· (2f)
\Delta P = (J^T J)^{-1} J^T (-F)
                                            ..... (61)
```

THIRD METHOD	
f 5 (Xo) = Xo - Xoa =0 Xoa:APPROXIMATE POSITION OF	(71) F RECEIVER
$\frac{\partial f5}{\partial xo(n)} = \frac{xo(n)}{ Xo(n) }$	(72)
$\frac{\partial f5}{\partial yo(n)} = \frac{yo(n)}{ Xo(n) }$	(73)
$\frac{\partial f5}{\partial zo(n)} = \frac{zo(n)}{ Xo(n) }$	(74)
$\frac{\partial f5}{\partial \tau (n)} = 0$	(75)
$\frac{\partial f5}{\partial to(n)} = 0$	(76)

F I G. 15

F I G. 16

F I G. 17

F I G. 18

FIG. 20

F I G. 21

F I G. 22A

F I G. 22B

(91)
(92)
(93)
····· (91a)
····· (91b)
····· (91c)
····· (91d)
(95)
VER