به نام خدا

دانشگاه اصفهان دانشکده مهندسی کامپیوتر

> محمد کاظم هرندی ۹۳،۳۲۲۳۰۳۹

مبانی و کاربردهای هوش مصنوعی گزارشکار پروژه اول

۱. معرفی پروژه

هدف از این پروژه، طراحی و پیادهسازی یک بازی مار با استفاده از الگوریتمهای مختلف مسیریابی هوش مصنوعی است. این پروژه شامل سه بخش اصلی است:

- طراحی محیط گرافیکی بازی با استفاده از Pygame.
- پیادهسازی سه الگوریتم مسیریابی A*, BFS و DFS.
- مقایسه عملکرد این الگوریتمها از نظر سرعت، دقت، و نتایج خروجی.

در این پروژه، تلاش شـــده اســـت تا بازی از لحاظ گرافیکی بهبود یابد و تجربه کاربری روانی ارائه شـــود. همچنین پیادهسازیها در محیط GitHub مستندسازی شدهاند تا قابلیت مشاهده و مشارکت در کد فراهم باشد.

۲. روند کلی پروژه

۱. طراحی محیط بازی:

- o محیط بازی شامل یک شبکه از سلولها است که مار (Snake) و میوه (Fruit) در آن قرار دارند.
 - 🔾 مار باید با استفاده از الگوریتمهای هوش مصنوعی، مسیری برای رسیدن به میوه پیدا کند.
- عناصــر گرافیکی شــامل مار، میوه، و پسزمینه بهگونهای طراحی شــدهاند که جذابیت بصــری و شفافیت گیمپلی را تضمین کنند.

۲. ساختار کد: پروژه از چند فایل اصلی تشکیل شده است:

- o GameGUl.py: مسئولیت گرافیک بازی و تعامل با کاربر.
- o GameController.py: مديريت وضعيت بازي و ارتباط ميان الگوريتمها و محيط بازي.
 - o At, BFS: شامل پیادهسازی الگوریتمهایA*, BFS ، و DFS برای مسیریابی.

۳. مراحل اجرا:

- انتخاب الگوریتم از منوی اصلی.
- اجرای بازی با استفاده از الگوریتم انتخابشده.
 - نمایش عملکرد الگوریتم و جمع آوری آمار.

۴. مستندسازی و بهبود:

- o نتایج و مقایسهها در قالب اسکرینشاتهای بازی و توضیحات در این داکیومنت ارائه شدهاند.
 - o تغییرات گرافیکی و بهبودهای بصری برای جذابتر شدن بازی پیادهسازی شدهاند.

۳. توضیح الگوریتمهای مسیریابی

۱. الگوريتم *A

- شرح: الگوریتم *A یکی از قوی ترین و سریع ترین الگوریتم های مسیریابی است که از ترکیب دو رویکرد استفاده میکند:
 - ۱. هزینه واقعی پیمودهشده.
- ۲. هزینه تقریبی باقیمانده تا مقصــد. این الگوریتم به دلیل بهینهســازی عملکرد و دقت بالا در بازی استفاده شده است.

ویژگیها:

- عملکرد سریعتر نسبت به BFS و DFS در محیطهای بزرگ.
 - ارائه کوتاهترین مسیر با استفاده از تابع هزینه.
 - تصویر خروجی:

High Score: 34

Enter to Continue

۲. الگوريتم BFS

- شرح: BFS یک الگوریتم جستجوی گراف است که تمام مسیرهای ممکن را به ترتیب لایهای بررسی
 میکند. این الگوریتم برای یافتن مسیرهای کوتاه مناسب است.
 - ویژگیها:
 - تضمین پیدا کردن کوتاهترین مسیر.
 - کندتر از *A در محیطهای پیچیده.

تصویر خروجی:

0

High Score: 60

Enter to Continue

۳. الگوريتم DFS

- شرح: DFS از عمق برای جستجوی گراف استفاده میکند. این الگوریتم با تمرکز بر یک شاخه، تا انتها آن را جستجو کرده و سیس به شاخههای دیگر بازمیگردد.
 - ویژگیها:
 - o مناسب برای یافتن مسیر در گرافهای کوچک و ساده.
 - o ممکن است مسیر بهینه را پیدا نکند.
 - تصویر خروجی

High Score: 37

Enter to Continue

۴. مقايسه الگوريتمها

ویژگی	A *	BFS	DFS
سرعت	سريع	متوسط	کند در برخی موارد
كوتاەترين مسير	تضمينى	تضمينى	تضمینشده نیست
پیچیدگی حافظه	متوسط	ήΠ	کم
کاربرد در بازی	بهترين عملكرد	مناسب	كمتر مناسب

توجه شود تستی که برای این پروژه نوشته شده بود تلاش میکرد الگوریتمها را دچار چالش کند و به این دلیل نتایج با مواردی که در جدول یاد شده تطابق ندارد.

۵. تغییرات مثبت و بهبودها

در این پروژه، علاوه بر پیادهسازی الگوریتمها، تغییرات گرافیکی و بهبودهایی اعمال شدهاند که شامل موارد زیر است:

۱. افکتهای بصری:

- نمایش مسیر بهصورت خطهای رنگی برای الگوریتمها
 - انیمیشن پویای مار و میوه.

۲. حالتهای مختلف بازی:

o افزودن امکان مشاهده مسیرهای مختلف (highlight) برای الگوریتمها.

۳. مستندسازی و نسخهسازی:

- o استفاده از GitHub برای ذخیره و مدیریت پروژه.
- o فراهم کردن یک README در GitHub برای توضیح نحوه اجرا.

کدهای پروژه در یک مخزن GitHub ذخیره شدهاند تا قابلیت مشاهده و مشارکت برای دیگران فراهم شود. این مخزن شامل:

- فایلهای کد بازی.
- اسکرینشاتها و نتایج اجرا.