第一章 绪论

翁楚良

https://chuliangweng.github.io

2023 春 ECNU

课程表

学年学期: 2022-2023学年2学期 切换学期							
节次/周次	星期一	星期二	星期三	星期四	星期五	星期六	星期日
第一节							
8:00 - 8:45 第二节							
第二 P 8:50 - 9:35							
第三节							
9:50 - 10:35							
第四节							
10:40 - 11:25 第五节			72				
第五卫 11:30 - 12:15							
第六节				10 16 T 16			
13:00 - 13:45				操作系统 (1-18,中北三馆教学楼			
第七节				201,【理论课占用】)			
13:50 - 14:35				,			
第八节 14:50 - 15:35		操作系统					
第九节		(1-18,教书院230,【理 论课占用】)					
15:40 - 16:25		化味口用』)					
第十节							
16:30 - 17:15							
第十一节 18:00 - 18:45							
第十二节							
18:50 - 19:35							
第十三节							
19:40 - 20:25							
第十四节 20:30 - 21:15							

操作系统???

操作系统???

课程主要内容简介

操作系统的功能

- •管理系统软硬件资源
- •扩展计算机的功能
- •向用户提供服务

课程主要内容简介

操作系统的功能

- •管理系统软硬件资源
- •扩展计算机的功能
- •向用户提供服务

操作系统原理

- •进程管理
- •I/O系统
- •存储管理
- •文件系统

课程主要内容简介

操作系统的功能

- •管理系统软硬件资源
- •扩展计算机的功能
- •向用户提供服务

操作系统原理

- •进程管理
- •I/O系统
- •存储管理
- •文件系统

操作系统课程设计

- •以Minix 3为基础
- •进行理论实践

课程资料

教材

Andrew S. Tanenbaum, Herbert Bos. 现代操作系统(第四版), 机械工业出版社(2017)

Andrew S Tanenbaum, Albert S Woodhull. 操作系统设计与实现(第三版), 电子工业出版社 (2015)

Minix (Version 3.x)http://www.minix3.org

参考资料(续)

http://pages.cs.wisc.edu/~remzi/OSTEP/

Intro	Virtualization		Concurrency	Persistence	Security
Preface Preface	3 <u>Dialogue</u>	12 <u>Dialogue</u>	25 <u>Dialogue</u>	35 <u>Dialogue</u>	52 <u>Dialogue</u>
TOC	4 <u>Processes</u>	13 Address Spaces code	26 Concurrency and Threads code	36 <u>I/O Devices</u>	53 <u>Intro Security</u>
1 <u>Dialogue</u>	5 Process API code	14 Memory API	27 <u>Thread API</u> code	37 <u>Hard Disk Drives</u>	54 <u>Authentication</u>
2 <u>Introduction</u> code	6 <u>Direct Execution</u>	15 Address Translation	28 <u>Locks</u> <u>code</u>	38 Redundant Disk Arrays (RAID)	55 <u>Access Control</u>
	7 CPU Scheduling	16 <u>Segmentation</u>	29 Locked Data Structures	39 Files and Directories	56 <u>Cryptography</u>
	8 Multi-level Feedback	17 Free Space Management	30 Condition Variables code	40 File System Implementation	57 <u>Distributed</u>
	9 <u>Lottery Scheduling</u> code	18 Introduction to Paging	31 <u>Semaphores</u> code	41 Fast File System (FFS)	
	10 Multi-CPU Scheduling	19 Translation Lookaside Buffers	32 Concurrency Bugs	42 FSCK and Journaling	Appendices
	11 <u>Summary</u>	20 Advanced Page Tables	33 Event-based Concurrency	43 Log-structured File System (LFS)	<u>Dialogue</u>
		21 Swapping: Mechanisms	34 <u>Summary</u>	44 Flash-based SSDs	Virtual Machines
		22 <u>Swapping: Policies</u>		45 Data Integrity and Protection	<u>Dialogue</u>
		23 Complete VM Systems		46 <u>Summary</u>	<u>Monitors</u>
		24 <u>Summary</u>		47 <u>Dialogue</u>	<u>Dialogue</u>
				48 <u>Distributed Systems</u>	Lab Tutorial
				49 Network File System (NFS)	Systems Labs
				50 Andrew File System (AFS)	xv6 Labs
				51 <u>Summary</u>	

参考资料(续)

助教安排

- 群聊: 2023春-操作系统
- 该二维码7天内(3月6日前)有效,重新进入将更新

■ 课程助教

□ 彭小双、郑学森

- □ 扫上面二维码加入课程微信群
- □ 学号 + 姓名

助教安排

■课程助教

□彭小双、郑学森

群聊: 2023春-操作系统

■ 课程微信群

- □ 扫上面二维码加入课程微信群
- 学号 + 姓名

■ 教师答疑

- □ 每双周周三中午12:00
- □ 方式:课程微信群
- □ 有需要的同学可参加

课程资料

- 课程ftp
 - □ 资料下载ftp(中英文教材及参考资料、定期发布的课程设计说明)
 - ftp://os2022:os2022@58.198.177.40
 - □ 作业上传ftp(完成的作业、完成的课程设计代码及说明)
 - ftp://projectsubmit:os2022@58.198.177.40

课程考核

■考核方案

□平时成绩

30%

■ 课程设计(4个)

□期中考试成绩

20%

■ 含平时考勤

□期末考试成绩

50%

第一章绪论提纲

- 1.1 什么是操作系统
- 1.2 操作系统的发展历史
- 1.3 操作系统基本概念
- 1.4 操作系统系统调用
- 1.5 操作系统组织结构
- 1.6 常用操作系统简介

实例

Banking system	Airline reservation	Web browser	Application programs
Compilers Editors		Command interpreter	System
0	perating syste	em	programs
Ма	achine langua		
N	licroarchitectu	Hardware	
Р	hysical device		

一个计算机系统示例

操作系统在计算机系统中的地位

操作系统目标

- 有效性(系统管理人员的观点)
 - 管理和分配硬件、软件资源,合理地组织计算机的工作流程

操作系统目标

- 有效性(系统管理人员的观点)
 - 管理和分配硬件、软件资源,合理地组织计算机的工作流程
- 方便性(用户的观点)
 - □ 提供良好的、一致的用户接口,弥补硬件系统的类型和数量差别

操作系统目标

- 有效性(系统管理人员的观点)
 - 管理和分配硬件、软件资源,合理地组织计算机的工作流程
- 方便性(用户的观点)
 - □ 提供良好的、一致的用户接口,弥补硬件系统的类型和数量差别
- 可扩充性(开放的观点)
 - 硬件的类型和规模、操作系统本身的功能和管理策略、多个系统之间的资源共享和互操作

OS是计算机资源管理器

- 管理对象
 - □ CPU、存储器、外部设备、信息(数据和软件)
- ■管理内容
 - □ 资源的当前状态(数量和使用情况)、资源的分配、 回收和访问操作,相应管理策略(包括用户权限)

OS是扩展机

- 在裸机上添加:设备管理、文件管理、存储管理(针对内存和外存)、处理器管理(针对 CPU)
- 屏蔽异构的计算机硬件,提供统一的抽象接口
 - □ 如采用的NEC PD765控制器芯片(或功能等价的芯片)来进行软盘I/O操作
 - PD765有16条命令,它通过向一个设备寄存器装入特定的数据来执行这些命令,命令数据长度从1到9字节不等,其中包括:读写数据、移动磁头臂、格式化磁道、初始化、检测磁盘状态、复位、校准控制器及设备等

OS是用户使用系统的接口

- 系统命令
 - □ 命令行、菜单式、命令脚本式、图形用户接口GUI
- 系统调用
 - □ 形式上类似于过程调用,在应用编程中使用

操作系统举例

MS OS

□ MS DOS, MS Windows 3.x, Windows 95, Windows NT, Windows XP, Windows Vista, Windows 7, Windows 8, Window 10, Windows 11

类UNIX

□ BSD, SRV4, Mac OS X, SCO UNIX, AIX, Solaris, Minix, Linux, Android

实时OS

VxWorks, pSoS, Nucleus, FreeRTOS

第一章绪论提纲

- 1.1 什么是操作系统
- 1.2 操作系统的发展历史
- 1.3 操作系统基本概念
- 1.4 操作系统系统调用
- 1.5 操作系统组织结构
- 1.6 常用操作系统简介

需求推动发展

- 器件的发展
 - □ CPU处理能力、内存容量和速度、内外存融合...

- 提高资源的利用率和系统性能
 - □ 多道程序、分时系统、进程、线程、协程...
 - □ 虚拟化、容器、微服务、无服务...
- 方便用户
 - □ 文本终端、图形界面,网络服务,手写和语音...

电子管时代 (1945-1955)

工作方式

- 用户既是程序员,又是操作员,是计算机专业人员
- □ 编程语言为机器语言
- □ 输入输出为纸带或卡片

计算机的工作特点

- □ 用户独占全机:不出现资源被其他用户占用,资源利用率低
- □ CPU等待用户:计算前,手工装入纸带或卡片;计算完成后, 手工卸取纸带或卡片;CPU利用率低

晶体管时代(1955-1965)

- 利用磁带把若干个作业分类编成作业执行序列,每个批作业由一个专门的监督程序(Monitor)自动依次处理。可使用汇编语言开发。
 - 批处理中的作业组成:
 - □ 用户程序
 - □数据
 - □ 作业说明书(作业控制语言)
 - 批:
 - 供一次加载的磁带或磁盘,通常由若干个作业组装成,在处理中使用一组相同的系统软件(系统带)

典型FMS作业的结构

脱机批处理操作

集成电路时代(1965-1980)

- 多道批处理的运行特征
 - □ 多道:内存中同时存放几个作业;
 - 宏观上并行运行:都处于运行状态,但都未运行完;
 - □ 微观上串行运行:各作业交替使用CPU;
- 多道批处理系统的特点
 - □ 优点:
 - 资源利用率高:CPU和内存利用率较高;
 - 作业吞吐量大:单位时间内完成的工作总量大;
 - □ 缺点:
 - 用户交互性差:整个作业完成后或中间出错时, 才与用户交互,不利于调试和修改;
 - 作业平均周转时间长:短作业的周转时间显著增长;

内存布局

Program A

Run

Wait

Run

Wait

执行序列

内存布局

Program A Run Wait Run Wait

执行序列 Program B Wait Run Wait Run Wait

内存布局

内存布局

分时系统(time-sharing system)

- 分时是指多个用户分享使用同一台 计算机,多个程序分时共享硬件和 软件资源。
 - 多个用户分时共享:单个用户使用计算机的效率低,因而允许多个应用程序同时在内存中,分别服务于不同的用户
 - □ 前台和后台程序(foreground & background)分时:后台程序不占用终端输入输出,不与用户交互
 - □ 通常按时间片(time slice)分配:各个程序在CPU上执行的轮换时间
- MULTICS Unix的"前辈"

