Imputación de datos perdidos mediante técnicas de Machine Learning

Un experimento usando la Encuesta Permanente de Hogares

Germán Rosati german.rosati@gmail.com

CONICET/ IDAES-UNSAM / PIMSA / UNTREF

05 de Septiembre de 2019

Hoja de ruta

- ¿Qué es y como se genera un dato perdido?
- ¿Cómo lidiar con los datos perdidos?
 - Técnicas tradicionales (imputación simpe)
 - Técnicas basadas en Machine Learning
- Metodología de imputación utilizada
- Resultados y discusión

¿Qué es un valor perdido?

- Valor del que se carece una dato válido en la variable observada
- Problema generalizado en investigaciones por encuestas
- Problema cada vez más frecuente en investigaciones que usan registros administrativos o datos de redes sociales, aplicaciones, etc.
- ¿Cómo se generan esos datos perdidos?

Procesos de generación de valores perdidos

Ejemplos

MCAR				
X1	Υ			
0	NA			
0	1			
0	1			
1	1			
1	NA			
2	NA			
2	1			
2	1			
3	1			
3	1			
3	NA			
3	1			
4	1			
4	NA			
4	1			
4	NA			
4	1			
4	1			

MAR				
Υ				
1				
1				
1				
1				
1				
				1
1				
1				
NA				
NA				
1				
1				
NA				
1				
NA				
1				
NA				

MAR					
X1					
0	1				
0	1				
0	1				
1	1				
1	1				
2	1				
2	1				
2	1				
3	1				
3	1				
3	1				
3	1				
4	1				
4	NA				
4	1				
4	NA				
4	NA				

¿Por qué es importante imputar datos?

Un ejemplo: EPH

Proporción de casos imputados (sin datos en alguna variable de ingresos) en EPH. Total de aglomerados urbanos, 2003-2018 (II-Trimestre de cada año)

Imputación simple

- Exclusión de casos → se achica el dataset
- Reemplazo por la media o alguna otra medida → intervalos de confianza más estrechos de forma artificial
- Reponderación \rightarrow es incómodo trabajar con varios sets de pesos.

- Método ampliamente usado. INDEC -hasta 2015- y Dirección de Estadística de la Ciudad para realizar imputaciones en EPH y EAH
- Reemplaza valores faltantes de un no respondente (receptor) con los valores observados de un respondente (donante) que es similar al receptor.

- Problema 1: selección de la métrica de similitud entre los casos
- Problema 2: selección de los donantes. El donante es seleccionado aleatoriamente de un set de potenciales donantes hot-deck aleatorioo bien se selecciona un solo caso donante, generalmente a partir de un algoritmo de vecinos cercanosüsando alguna métrica -hot-deck determinístico-.

Ensamble Learning

- Técnicas de aprendizaje supervisado donde se combinan varios modelos base.
- Ampliar el espacio de hipótesis posibles para mejorar la precisión predictiva del modelo combinado resultante.
- Los ensambles suelen ser mucho más precisos que los modelos base que los componen.

Ensamble Learning - Bagging

- Construcción de estimadores independientes -Boostrap-
- Combinación las predicciones mediante función agregación.
- Ejemplos: Random Forest, ExtraTrees, etc.

Ensamble Learning - Boosting

- Construcción secuencial de los estimadores
- Mayor peso en aquellos casos en los que se observa una peor performance.
- Ejemplos: AdaBoost y Gradient Tree Boosting, XGBoost.

Ensamble Learning - Multi Layer Perceptron

Fuente: https://technology.condenast.com/story/a-neural-network-primer

- Cada neurona aplica una transformación lineal $x_i w_i^T + b$ seguida de una función de activación
- Al apilar capas de neuronas se aplican sucesivas de transformaciones lineales que permiten la construcción de modelos altamente no lineales

Ensamble Learning - Bagging-LASSO

Bagging-LASSO

- Se aplica el algoritmo bagging a la imputación de ingresos laborales en la EPH del II trimestre de 2015
- En cada remuestra se estima la siguiente regresión LASSO

$$log_{10}(y_i) = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j + e_i$$
 (1)

• Buscando minimizar la siguiente función de costo:

$$CF = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (2)

Pipeline

- Dataset: EPH 2do. trimestre de 2015
- Población: Ocupados en la semana de referencia
- Variables predictoras sociodemográficas, laborales y otros ingresos
- Repo: https://github.com/gefero/ML_imputation

Pipeline

Estrategia de validación 1

- Estimación de métricas de error
- Supuesto: Proceso de generación de datos perdidos MCAR o MAR

Tabla 3. Métricas de performance predictiva de los diferentes algoritmos entrenadas

Algoritmo	RMSE	MAE
Hot Deck	\$5930.6	\$3740.6
Random Forest	\$2800.6	\$1561.9
XGBoost	\$3260.8	\$2016.8
MLP	\$3974.2	\$2293.1

Fuente: elaboración propia en base a microdatos de la EPH - 2do. trimestre de 2015

Estrategia de validación 2

Comparación de distribuciones sobre datos perdidos reales (es decir, imputados por INDEC)

Estrategia de validación 2

Comparación de distribución de datos completos (imputados + respuesta)

Resumen

- Machine Learning como alternativa para la imputación
- Reducción considerable en el RMSE entre casos perdidos comparado a Hot Deck -entre 30 % y 50 %-
- Problemas a futuro
 - Extensión del alcance del ejercicio
 - Mejoras en tuneo de hiperparámetros (algoritmos de búsqueda más inteligentes, diferentes funciones de activación, etc.)
 - Propiedades de los estimadores y estimaciones de medidas basadas en ingresos al utilizar estas técnicas
 - Performance relativa a HotDeck en procesos de generación de datos no aleatorios

rindec/eph

https://github.com/rindec/eph

rindec/eph

NLP - letras de tango

Composición de tópicos de algunos tangos

	Topic1	Topic2	Topic3	Topic4	Topic5	Topic6	Topic7
	Amor signo -	lmág. naturales	Amor signo +	Miscelaneo	Ciudad	Tango	Personif.
Arrabal amargo	0.02	0.02	0.02	0.02	0.85	0.02	0.02
Barrio reo	0.03	0.03	0.03	0.53	0.03	0.34	0.03
Cafetin de Buenos Aires	0.02	0.02	0.49	0.38	0.02	0.02	0.02
Garua	0.03	0.03	0.03	0.03	0.85	0.03	0.03
Lejana Tierra mía	0.03	0.03	0.03	0.03	0.84	0.03	0.03

NLP - letras de tango

Evolución temporal de los tópicos

¿Preguntas?

- @Crst C
- M german.rosati@gmail.com
- https://gefero.github.io/