Using Overleaf and Beamer for Economics Presentation

Lifeng Ren

November 10, 2022

Overview

Topic (Research Question)

How to use overleaf and beamer to make an economics research presentation?

- (Methodology) I use different LATEX packages and third-party tools to show the audience how to use overleaf and beamer interactively in an applied economics research flow.
- (Results) They are happy.

Bullet point and Image side by side

- First item bla bla bla bla some more text
- second item bla bla bla some more text bla bla
- third item bla bla bla bla some more text bla bla bla bla bla bla

Switch Gear

Mathpix (Demo)

Definition (Schrodinger's equation)

$$i\hbar \frac{d}{dt}\psi(t) = H\psi(t)$$
 (1)

Under these assumptions, an infinite-horizon decision problem takes the following form:

$$V(x_0) = \max_{\{a_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t F(x_t, a_t)$$

subject to the constraints

$$a_t \in \Gamma(x_t), x_{t+1} = T(x_t, a_t), \forall t = 0, 1, 2, ...$$

9/1

Theoretical Diagram

```
https://jackypacky.github.io/pgf-econ-graphs/guide.pdf \\ https://mirror.math.princeton.edu/pub/CTAN/graphics/pgf/base/doc/pgfmathtp://static.latexstudio.net/wp-content/uploads/2016/06/tikzforeconomists-110619150244-phpapp01.pdf
```

click here contents page Algorithm Algorithm (Theoretical Framework

Algorithm

```
type brow : int[M+1]
    type bcol: int[N+1]
    type val : real[k]
    type val_ptr : int[K+1]
    type ind : int[K]
    type ptr : int[M+1]
 1 foreach block row I do
         i_0 \leftarrow brow[I]
      r \leftarrow brow[I+1]
       Let \hat{y} \leftarrow y_{i_0:(i_0+r-1)}
         for b = ptr[I]toptr[I+1] do
 5
            J \leftarrow ind[b]
 6
             i_0 \leftarrow bcol[J]
 7
             c \leftarrow bcol[J+1] - bcol[J]
 8
             Let \hat{x} \leftarrow x_{j_0:(j_0+c-1)}
             Let \hat{A} \leftarrow a_{i_0:(i_0+r-1),i_0:(i_0+c-1)}
10
             Perform r \times c block multiply,
11
             \hat{\mathbf{v}} \leftarrow \hat{\mathbf{v}} + \hat{A} \cdot \hat{\mathbf{x}}
12
         end
13 end
```

Bullet point and Image side by side

- First item bla bla bla bla some more text
- second item bla bla bla some more text bla bla
- third item bla bla bla bla some more text bla bla bla bla bla bla

Results

Table: Table caption

Treatments	Response 1	Response 2	
Treatment 1	0.0003262	0.562	
Treatment 2	0.0015681	0.910	
Treatment 3	0.0009271	0.296	

Jianxuan's STATA to LATEX template

A Standard Regression Table

	А		В	
	Weight (lbs.) (1)	Weight (lbs.) (2)	Price (3)	Price (4)
Mileage (mpg)	-108.432*** (9.346)	-91.220*** (8.822)	-49.512 (86.156)	21.854 (74.221)
Car origin		-550.052*** (110.908)		3673.060*** (683.978)
Weight (lbs.)			1.747** (0.641)	3.465*** (0.631)
Constant	5328.759*** (206.152)	5125.720*** (183.533)	1946.069 (3597.050)	-5853.696 (3376.987)
Time Effects Fixed Effects Observations R-squared	No No 74 0.652	No No 74 0.741	No No 74 0.293	No No 74 0.500

Standard errors in parentheses

 $^{^*}$ p < 0.05, ** p < 0.01, *** p < 0.001

Optimal Control Model (Pollution Cap)

Discussion

Thanks

Thanks a lot.

Reference I