Part 1

1 Introduction to Data Mining

1.1 Why data mining?

- Data explosion
- Rich data, but poor information

1.2 What is data mining?

• Discovering interesting patterns in huge amounts of data

1.3 Knowledge discovery from data (KDD)

- 1. Data cleaning: remove noise and inconsistent data
- 2. Data integration: where multiple data source may be combined
- 3. Data selection: where relevant data are retrieved from database.
- 4. Data transformation: where data are transformed into forms appropriate for mining by performing summary or aggregation operations.
- 5. Data mining: intelligent methods are applied to extract data patterns.
- 6. Pattern evaluation: identify interesting patterns.
- 7. Knowledge presentation: visualization and knowledge representation techniques are used to present mined knowledge to users.

1.4 Various views

- Data view: kinds of data to be mined
 - 3Vs, 4Vs and 5Vs: Volume, Variety, Velocity, Veracity, Value.
 - Database-oriented: relational database, data warehouse, transnational database.
 - Sequence, stream, temporal, time-series data
 - Spatial, spatial-temporal data
 - Text, multimedia, Web data
 - Graph, social networks data
- Knowledge view: kinds of knowledge to be discovered

- Concept/class description
- Frequent patterns, associations, correlations
- Classification and prediction
- Cluster, outlier and evolution analysis
- Method view: kinds of techniques utilized
- Application view: kinds of applications adapted

1.5 Major issues in data mining

- Mining technology: mining different knowledge from diverse data types
- ullet User interaction
- Applications and social impacts

2 Getting to know your data

2.1 Data objects and attribute types

- Data object: an entity with certain attribute(s). Also called feature, dimension, variable.
- Attribute types:
 - Nominal (categorical): e.g. hair color, major, occupation.
 - Binary (boolean, symmetric or asymmetric): e.g. gender, smoker, disease
 - Ordinal: e.g. drink size, grade, professional rank
 - Numeric (quantitative):
 - * Interval-scaled
 - * Ratio-scaled
 - * Discrete vs. continuous

2.2 Basic statistical description of data

- Central Tendency:
 - Mean: sample, weighted and trimmed mean.
 - Median: middle value if N is off, otherwise average value of the middle two values.
 - * Estimation: $median = L_1 + (\frac{N/2 + (\sum freq)_l}{freq_{median}}) width$
 - Mode: value that occurs most frequently
 - * mean mode = 3 * (mean median)
 - Midrange: average of min and max
- Data Dispersion:
 - Range: difference between mac and min
 - Interquartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q1, median, Q3, max
 - Outlier: value higher/lower than 1.5 * IQR of Q3/Q1
 - Variance: $s^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \bar{x})^2$
 - Standard deviation: square root of variance.
 - Boxplot:

* Box: Q1, Median, Q3, IQR

* Whiskers: min, max, 1.5 * IQR

2.3 Data visualization

- Why data visualization?
 - Gain insights, qualitative overview and explore.
- Visualization methods:
 - Pixel-oriented
 - Geometric projection
 - Icon-based
 - Hierarchical
 - Visualizing complex data and relations

2.4 Measuring data similarity and dissimilarity

• Data martix: object-by-attribute (two modes)

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

• Dissimilarity matrix: object-by-object (one-mode)

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

2.4.1 Object similarity/dissimilarity

- Minkowski distance $(L_p \text{ norm})$: $d(i,j) = (|x_{i1} x_{j1}|^p + |x_{i2} x_{j2}|^p + ... + |x_{in} x_{jn}|^p)^{1/p}$
- Euclidean distance $(L_2 \text{ norm})$: $d(i,j) = \sqrt{(x_{i1} x_{j1})^2 + (x_{i2} x_{j2})^2 + \dots + (x_{in} x_{jn})^2}$
- Manhattan distance (L_1 norm): $d(i,j) = |x_{i1} x_{j1}| + |x_{i2} x_{j2}| + ... + |x_{in} x_{jn}|$
- Weighted distance

2.4.2 Distance measure

- Euclidean distance vs. Manhattan distance:
 - Properties:
 - * $d(i, j) \ge 0$
 - * d(i,i) = 0
 - * d(i,j) = d(j,i)
 - * $d(i,j) \le d(i,k) + d(k,j)$ (triangular inequality)

- Nominal Attributes: e.g. hair color, occupation
 - Method 1: simple matching
 - * d(i,j) = (p-m)/p
 - * m: number of matches, p: total number of variables
 - Method 2: view each state as a binary variable

* e.g. colors(red, green, yellow, blue); then (0, 1, 0, 0) means color green

• Binary variables:

- Contingency table:

		obj_j	obj_j	
		_	0	sum
obj_i	I	ص	r	q+r
obj_i	0	S	t	s+t
	sum	q+s	r+t	q+r+s+t

- Distance measure for symmetric binary variables: $d(i,j) = \frac{r+s}{q+r+s+t}$
- Distance measure for asymmetric binary variables: $d(i,j) = \frac{r+s}{q+r+s}$

3 Data Preprocessing

3.1 Overview

 Measure of data quality: accuracy, completeness, consistency, timeliness, believability, interpretability, accessibility

3.2 Data Cleaning

- Why data cleaning?
 - Imperfect data in real word
 - Incomplete: missing attributes
 - Containing errors or outliers
 - Containing discrepancies
- How to handle missing data?
 - Ignore to tuple
 - Fill in the missing value manually
 - Fill in it automatically with:
 - * A global constant
 - * The attribute mean
 - * The most probably value (e.g. regression, Bayesian inference, decision tree)
- How to handle noisy data?
 - Binning:
 - * First sort and partition data into bins (buckets)
 - * Then smooth by: bin means, bin median, bin boundaries
 - Regression: fit data into regression function
 - Clustering: detect and remove outliers

3.3 Data Integration

- Definition: Combines data from multiple sources
- Entity identification:
 - Schema integration, object matching
 - E.g. customer id vs. customer number
 - Bill Clinton vs. William Clinton
- Redundant data:

- Different naming, derived data
- May be detected by correlation analysis
- Correlation Analysis: related variables
 - * Correlation coefficient (numerical data):

$$\begin{array}{c} \cdot \ r_{A,B} = \frac{\sum_{i=1}^{N} (a_i - \bar{A})(b_i - \bar{B})}{N_{\sigma A \sigma B}} = \frac{\sum_{i=1}^{N} (a_i b_i) - N \bar{A} \bar{B}}{N_{\sigma A \sigma B}} \\ * \ X^2 \ (\text{chi-square}) \ \text{test (categorical data):} \end{array}$$

$$X^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

$$e_{ij} = \frac{count(A = a_{i}) * count(B = b_{j})}{N}$$

* Correlation does not imply causality

Data Reduction 3.4

- Why data reduction?
 - Massive data sets
 - Mining takes a long time
- Goal of data reduction:
 - Data set is much smaller in volume
 - produces almost the same mining results

Data reduction strategies:

- Dimensionality reduction:
 - attribute subset selection
 - Principal component analysis (PCA): given N data vectors of n dimensions, find $k \leq n$ orthogonal vectors that can best represent the data
- Numerosity reduction:
 - Parametric methods: 1. Assume the data fits some model, 2. Estimate model parameters, 3. Store the parameters and discard the data
 - * Regression and long-linear models
 - Non-parametric methods: do not assume models
 - * Histograms: divide data into buckets and store average or sum for each bucket.
 - * Clustering: partition data intro cluster based on similarity
 - * Sampling: use a small sample to represent whole data, then choose a representative subset of the data.
- Data compression:
 - String compression
 - Audio/video compression

3.5 Data Transformation and Discretization

3.5.1 Transformation

- Smoothing: remove noise from data.
- Aggregation: summarization (e.g. daily sales => monthly, annual sales)
- Generalization: concept hierarchy climbing (e.g. street => city => state)
- Normalization: scale to fill within a range
 - Min-max normalization: $v' = \frac{v min_A}{max_A min_A} (new_max_A new_min_A) + new_min_A$
 - Z-score normalization: $v' = \frac{v-mean}{stdev}$
 - Normalization by decimal scaling: $v' = \frac{v}{10^j}$ where j is the smallest integer s.t. MAX(|v'|) < 1
 - * e.g. range [-986, 917], j = 3 because divide by 1000
- Attribute/feature construction: new attributes constructed from existing ones.

3.5.2 Discretization

- Three types of attributes: nominal(unordered est), ordinal(ordered set), continuous(integer or real number)
- Discretization: divide continuous range into intervals Methods:
- Binning: split, unsupervised(means: how you split it does not depend on data)
- Histogram analysis: split, unsupervised
- Clustering analysis: split/merge, unsupervised
- Entropy-based discretization: split, supervised
- Interval merging by X^2 analysis: merge, supervised
- Intuitive partitioning: split, unsupervised

4 Data Warehouse and OLAP

4.1 What is a Data Warehouse?

- A decision support database that is maintained separately from an organization's operational database.
- Support information processing by providing a solid platform of consolidated, historical data for analysis.
- A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's decision-making process.

4.2 Subject-Oriented

- Organized around major subjects (e.g. customers, product, sales)
- Focus on the modeling and analysis of data decision making, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

4.3 Integrated

- Integrate multiple, heterogeneous data sources.
- Data cleaning and data integration techniques applied.

4.4 Time-Variant

- Significantly longer time span
 - Operational database: current data
 - Data warehouse: historical perspective (e.g. past 5-10 years)
- Every key structure in a data warehouse contains time info, explicitly or implicitly.

4.5 Nonvolatile (not changed)

- A physically separate store of data transformed from operational environments.
- No operational update of data
- Only two operations in data accessing: initial loading of data, access of data.

4.6 Data warehouse vs. Operational database

- OTLP (on-line transaction processing): major task of traditional relational DBMS
- OLAP (on-line analytical processing): major task of data warehouse system

	OLTP	OLAP			
users	clerk, IT professional	knowledge worker			
function	day to day operations	decision support			
DB design	application-oriented	subject-oriented			
data	current, up-to-date detailed, flat relational isolated				
usage	repetitive	ad-hoc			
access	read/write index/hash on prim. key	lots of scans			
unit of work	short, simple transaction	complex query			
# records accessed	tens	millions			
#users	thousands	hundreds			
DB size	100MB-GB	100GB-TB			
metric	transaction throughput	query throughput, response			

5 Data Cube

5.1 What is a Data Cube?

- Allow data to be modeled and views in multiple dimensions (e.g. sales)
- Dimensions: e.g. time, item, branch, location
- Facts: numerical measures (e.g. sold items, sold dollars

5.2 Conceptual Modeling

• Star schema: a fact table, a set of dimension

• Snowflake schema: a fact table, a hierarchy of dimension tables

• Fact constellations: multiple fact tables share dimension tables

5.3 Browsing a Data Cube

5.4 Typical OLAP Operations

- Roll-up (drill-up): summerization
- Drill-down: reverse of roll-up
- Slice and dice: project and select (sub-cube)
- Pivot (rotate): visualization, 3D or 2Ds
- Drill-across: more than one fact tables
- Drill-through: to the back-end relational tables

Part 2

6 Mining Frequent Patterns, Associations & Correlations

6.1 Market Basket Analysis

• Example: Which items are frequently purchased together by my customers?

6.2 Frequent Pattern Analysis

- Frequent patterns in a data set: a set of items, subsequences, substructures.
- Frequent item set: $X = \{x_1, x_2, ..., x_k\}$
- Association rule: $X \to Y$
 - Support: probability that a transaction contains $X \cup Y$
 - Confidence: conditional probability that a transaction containing X also contains Y
- Mining association rules:
 - Two-step process:
 - * Find all frequent itemsets (w/ minimum support)
 - * Generate strong association rules from the frequent itemsets (min support, min confidence)
 - A long pattern contains a combinatorial number of subpatterns
 - * E.g. 100 items: $\binom{100}{1} + \binom{100}{2} + \dots + \binom{100}{100} = 2^{100} 1$
- Closed & Max Patterns
 - Solution: mine closed patterns & max-patterns
 - Closed pattern X: no super-pattern $Y \supset X$ w/ the same support
 - Max-pattern X: no super-pattern $Y \supset X$
 - Closed pattern is a lossless compression of frequent patterns
 - * Reducing the number of patterns and rules

6.3 Apriori Algorithm

- Apriori property: subset of a freq. itemset is also frequent
- Apriori pruning: if X is infrequent, then superset of X is pruned.
- Procedure:
 - Scan DB to get frequent 1-itemset.

- Generate candidate (k+1)-itemsets from frequent k-itemsets.
- Test candidate (k+1)-itemsets against DB.
- Stop when no freq. or candidate itemsets can be generated.
- Important details:
 - Self-joining of k-itemsets to generate (k+1)-itemsets
 - * Two k-itemsets are joined if their first (k-1) items are the same.
 - Pruning: remove if subset not frequent.

6.4 Interestingness Measure

- Association rule: $A \to B$ [support, confidence]
- A strong association rule: play basketball \rightarrow eat cereal [40%, 66.7%]
- The rule is misleading:
 - Overall, 75% of students eat cereal.
 - play basketball \rightarrow not eat cereal [20%, 33.3%]

6.5 Correlation Rules

- $A \to B$ [support, confidence, correlation]
- Measure of dependent/correlated events: $lift(A,B) = \frac{P(A \cup B)}{P(A)P(B)}$
- lift = 1? No correlation
- lift < 1? Negatively dependent
- lift >1? Positively dependent

6.6 Improving Apriori

6.6.1 Reduce data scans

• Partition: Two data scans

- Sampling for frequent patterns:
 - Select a sample dataset.
 - Mine frequent patterns within sample.
 - * May use a lower min support
 - Scan whole dataset for actual support
 - * Only check closed patterns
 - * E.g. check abcd instead of ab, abc, ..., etc.
 - Scan again to fins missed frequent patterns.
- Transaction reduction:
 - If a transaction T does not contain any frequent k-itemset, then for any h > k, no need to check T when searching for frequent h-itemset.

6.6.2 Reduce number of candidates

- Hash items to buckets
 - If a hash bucket count is below support threshold, then itemsets in that hash bucket are not frequent itemsets.

	H_2							
Create hash table H_2 using hash function	bucket address	0	1	2	3	4	5	6
	bucket count	2	2	4	2	2	4	4
$h(x, y) = ((order\ of\ x) \times 10$	bucket contents	{I1, I4}	{I1, I5}	{I2, I3}	{I2, I4}	{I2, I5}	{I1, I2}	{I1, I3}
$+ (order\ of\ y))\ mod\ 7$		{I3, I5}	{I1, I5}	{I2, I3}	$\{I2, I4\}$	{I2, I5}	{I1, I2}	{I1, I3}
				{I2, I3}			{I1, I2}	{I1, I3}
				{I2, I3}			{I1, I2}	{I1, I3}

- Dynamic itemset counting
 - If A and D are frequent, start count for AD
 - If BC, BD, CD are frequent, start count for BCD

6.6.3 Count support of candidates

- First method:
 - Store candidate itemsets in a hash-tree
 - leaf-node contains a list of itemsets and counts.
 - interior node contains a hash table
 - subset function: finds all candidates contained in a transaction.

- Second method: vertical data format
 - Example: organize by datasets not be transactions
 - * Horizontal data format: T1:{A, D, E, F}
 - * Vertical data format: $t(AD) = \{T1, T6, ...\}$
 - Derive closed patter bia vertical intersection
 - $* t(X) = \{T1, T2, T3\} \text{ and } t(Y) = \{T1, T3, T3\}$
 - $* t(XY) = \{T1, T3\}$

6.7 FP-growth

- Find frequent itemsets without candidate generation
- Grow long patterns from short ones using local frequent items
- Example:
 - 1. abc is a frequent itemset
 - 2. get all transactions with abc: DB | abc
 - 3. d is a local frequent item in DB | abc
 - 4. then abcd is a frequent itemset

7 Advanced Pattern Mining

7.1 Road Map

- Kinds of patterns: set, sequential, structural
- Completeness: all, closed, maximal, constrained, approximate, near-match, top-k
- Levels of abstraction:
 - Computer \rightarrow printer
 - Laptop \rightarrow HP printer (more specific)
- Number of data dimensions
 - Computer \rightarrow printer
 - (age:30-39, income:42K-38K) \rightarrow HDTV
- Types of value
 - Boolean: presence or absence
 - Quantitative: e.g. age, income
- Types of rules
 - Association, correlation, gradient

7.2 Multi-level association rules

- Support: uniform, reduced, group-based
- Redundancy filtering:
 - Milk \rightarrow wheat bread [8%, 70%]
 - -2% milk \rightarrow wheat bread [2\%, 72\%]

7.3 Multi-dimensional association

- Single-dimensional (intra-dimensional) rules:
 - buys(X, "milk") \rightarrow buys(X, "bread")
- Multi-dimensional rules: \geq predicates
 - Inter-dimensional (no repeated predicates)
 - * age(X, "19-25") \land occupation(X, "student") \rightarrow buys(X, "coke")
 - Hybrid-dimensional (repeated predicates)
 - * $age(X, "19-25") \land buys(X, "popcorn") \rightarrow buys(X, "coke")$

7.4 Categorical vs. Quantitative

- Categorical attributes
 - Nominal, finite number of possible values, no ordering among values
 - E.g. occupation, brand, color
- Quantitative attributes
 - Numeric, implicit ordering among values
 - E.g. age, income, price

7.5 Mining Quantitative Association

- Techniques categorized by how numerical attributes (e.g. age, salary) are treated
 - Static discretization: predefined concepts
 - Dynamic discretization: data distribution
 - Clustering: distance-based association
 - Deviation: from normal data
 - * Sex=female \rightarrow wage:mean=\$7/hr
 - * Overall mean = 9/hr

7.6 Constraint-based mining

- User flexibility: proved constrains on what to be mined.
- System optimization: more efficient mining
- Constraints in data mining:
 - Knowledge type constraint
 - Data constraint
 - Dimension/level constraint
 - Interestingness constraint
 - Rules (or pattern) constraint

7.7 Metarule-guided mining

- $P_1 \wedge P_2 \wedge ... \wedge P_a \rightarrow Q_1 \wedge Q_2 \wedge ... \wedge Q_n$
- n = a + b, find all n-predicate sets L_n
- ullet Compute the support of all a-predicate subsets of L_n
- Compute the confidence of rules

7.8 Anti-monotonicity

• If an itemset S violates the constraint, so does any of its supersets.

7.9 Monotonicity

• If an itemset S satisfies the constraint, so does any of its supersets.

7.10 Succinctness

• Enumerate all and only those sets that are guaranteed to satisfy the constraint

7.11 Convertible constraints

• Convert tough constraints into int-monotonic or monotonic by properly ordering items

7.12 Classification of constrains

8 Classification: Basic Concepts

8.1 Basic Concepts

8.1.1 Classification vs. Prediction

- Classification
 - Determines categorical class labels (categorical values)
 - Raise the question: is the classification correct or not?
 - E.g. safe vs. risky, weather condition(sunny, cloudy, etc)
- Prediction
 - Models continuous-values functions (numerical values)
 - Raise the question: how close is your prediction?
- Typical applications:
 - Loan approval, target marketing, medical diagnosis, fraud detection, etc.

8.1.2 Classification

- Step 1: Learning
 - Model construction
 - Training set
 - Class labels
- Step 2: Classification result
 - Test set
 - Accuracy

8.1.3 Supervised vs. Unsupervised

- Supervised learning (classification)
 - Supervision: training data accompanied by class labels
 - New data is classified based on training
- Unsupervised learning (clustering)
 - Class labels of training data is unknown
 - Aims to establish the existence of classes or clusters in the data

8.1.4 Issues: Evaluation Criteria

• Accuracy: classification vs. prediction

• Speed: time to construct / use the model

• Robustness: handling noise and missing values

• Scalability: large amounts of data

• Interpretability: understanding and insight

• Goodness of rules: E.g. decision tree size, compactness of classification rules

8.2 Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Top-down, recursive, divide-and-conquer
 - Attribute selection
 - Attribute split
 - a Discrete-valued
 - b Continuous-valued: split_point
 - c Discrete-valued: binary tree, splitting_subset

- Stopping conditions
 - All samples belong to the same class
 - No remaining attributes: majority voting
 - No samples left
- Attribute selection measures:
 - Information gain

- * D, m classes C_i : $p_i = |C_{i,D}|/|D|$
- * Expected information (entropy) needed to classify D: $Info(D) = -\sum_{i=1}^{m} p_i log_2(p_i)$
- * Information needed to classify D using A $(a_1, a_2, ..., a_v)$: $Info_A(D) = \sum_{j=1}^v \frac{|D_j|}{|D|} \times$ $Info(D_i)$
- * Information gain: $Gain(A) = Info(D) Info_A(D)$
- * Continuous-values attribute A
 - \cdot Determine the best split point for A
 - · Sort A values in increasing order
 - · Consider the midpoint of adjacent values: $(a_i + ai + 1)/2$
 - · Pick the midpoint with minimum $Info_A(D)$
 - · Split
 - · D1:A \leq split point; D2:A > split point
- Gain Ratio
 - * Information gain measure biased toward attributes with a large number of values (e.g. customerID, productID)
 - * Select attribute with maximum gain ratio

·
$$SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times log_2(\frac{|D_j|}{|D|})$$

· $gainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$

$$\cdot gainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

- Gini Index
 - * $Gini(D) = 1 \sum_{i=1}^{m} p_i^2$
 - * Binary split: using attribute A

$$Gini_A(D) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2)$$

- * Reduction in impurity
 - $\cdot \Delta Gini(A) = Gini(D) Gini_A(D)$
- * Select attribute with largest impurity reduction
- Comparison of the tree measures:
 - * Information gain: multi-valued attributes
 - * Gain ratio: unbalanced splits
 - * Gini index: multi-values, equal-sized and pure partition, not good when number of classes is large
- Overfitting and Tree Pruning
 - Overfitting of the training data
 - * Too many branches, reflect anomalies due to noise or outliers
 - * Poor accuracy for unseen data
 - Tree pruning to avoid overfitting
 - * Pre-pruning: halt tree construction early
 - * Post-pruning: remove branches from a "fully-grown" tree

8.3 Bayesian classification

- Basics
 - A statistical classifier: predicts class membership probabilities
 - Foundation: based on Bayes' Theorem
 - Performance(naive Bayesian classifier): comparable to decision tree and some neural network classifiers
 - Incremental
- Bayes' Theorem

$$-P(H|X) = \frac{P(X|H)P(H)}{P(X)}$$

- Naive Bayesian Classifier
 - $-X = (x_1, x_2, ..., x_n)$
 - m classes: $C_1, C_2, ..., C_m$
 - Classification: maximal $P(C_i|X)$
 - Based on Bayes' Theorem: $P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$
 - Since P(X) is constant for all classes, only need to maximize $P(X|C_i)P(C_i)$
 - Naive assumption: class conditional independence

*
$$P(X|C_i) = \prod_{k=1}^n P(X_k|C_i) = P(x_1|C_i) \times P(x_2|C_i) \times ... \times P(x_n|C_i)$$

- If A_k is categorical, $P(x_k|C_i)$
- If A_k if continuous-valued, assume Gaussian distribution, $P(x_k|C_i) = g(x_k, \mu_{C_i}, \sigma C_i)$

*
$$g(x, \mu, \sigma) = \frac{i}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Advantages
 - * Easy to compute
 - * Good results in most cases
- Disadvantages
 - * Assumption: class conditional independence
 - * Dependencies exist in practice

8.4 Rule-based classification

- IF-THEN rules
 - Assessment of a rule
 - * coverage(R) = $n_{covers}/|D|$
 - * $accuracy(R) = n_{correct}/n_{covers}$
- Rules-based classification
 - Rule R is triggered (precondition satisfied)

- R is the only rule triggered
- No rule is triggered
- More than one rule is triggered
 - * Size ordering: most attribute tests
 - * Class-based ordering: importance (e.g. prevalence, misclassification cost)
 - * Rule-based ordering: (decision list) priority list ordered by rule quality or by experts
- Rule extraction
 - From a decision tree
 - Each root to leaf path
 - Leaf: class predication
 - Rules are exhaustive and mutually exclusive
- Rule quality measures
 - Consider both coverage and accuracy
 - number of positive or negative tuple covered by a rules

*
$$FOIL_Gain = pos' \times (log_2 \frac{pos'}{pos' + neg'} - log_2 \frac{pos}{pos + neg})$$

- Observed frequency vs expected frequency
 - * $Likelihood_Ratio = 2\sum_{i=1}^{m} f_i log(\frac{f_i}{e_i})$
- Rule pruning: $FOIL_Prune(R) = \frac{pos neg}{pos + neg}$

8.5 Model evaluation and selection

- Classifier accuracy measures
 - Partition: training data and testing data
 - Accuracy, recognition rate
 - Error rate, misclassification rate
 - Confusion matrix
 - Sensitivity: t_pos / pos
 - Specificity: t_neg / neg
 - Precision: t_post / (t_pos + f_pos)
 - $-\ accuracy = sensitivity \frac{pos}{pos+neg} + specificity \frac{neg}{pos+neg}$
- Classifier/Predictor evaluation
 - Holdout, random sampling
 - Cross-validation
 - * Divide into k subsamples
 - * Use k-1 subsamples for training, one for testing
 - Bootstrapping

- * Sample with replacement \rightarrow training data
- Model selection
 - Choose between two models M_1 and M_2
 - Mean error rate: estimated error on future data
 - Difference between error rates of M_1 and M_2
 - T-test

*
$$t = \frac{e\bar{r}r(M_1) - e\bar{r}r(M_2)}{\sqrt{var(M_1 - M_2)/k}}$$

* $var(M_1 - M_2) = \frac{1}{k} \sum_{i=1}^{k} [err(M_1)_i - err(M_2)_i - (e\bar{r}r(M_1) - e\bar{r}r(M_2))]^2$

8.6 Improve classification accuracy

- Ensemble methods
 - Use a combination of multiple model to increase accuracy
 - Popular ensemble methods: bagging and boosting
- Bagging: bootstrap aggregation
 - Analogy: diagnosis by multiple doctors
 - Training: given a dataset D of d tuples
 - * Training set D_i : d tuples sampled randomly with replacement
 - * A classifier M_i is learned for D_i
 - Classification: majority vote
 - Predication: average of multiple predictions
- Boosting
 - Analogy: diagnosis by multiple doctors
 - * weighted by previous diagnosis accuracy
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After classifier M_i learned, adjust weights so M_{i+1} pays more attention to tuples that were misclassified by M_i
 - M* combines the votes of all k classifiers, weighted by individual accuracy
- Adaboost
 - D: $(X_1, y_1), (X_2, y_2), ..., (X_d, y_d)$
 - Initial weight of each tuple: I/d
 - Round i (i=1, ..., k)
 - * D_i : sample d tuples with replacement from D
 - * Pr(choose tuple; based on tuple; 's weight

- * Learn M_i from D_i compute its error rate
 - $\cdot error(M_i) = \sum_{j=1}^d w_j \times err(X_j)$
- * Reduce weights of correctly classified tuples: $w_j = w_j \times \frac{error(M_i)}{1 error(M_i)}$
- * Normalize tuples weights so sum is 1
 - \cdot E.g. $(0.1, 0.3, 0.1) \rightarrow (0.2, 0.6, 0.2)$
- * Classification: weighted votes for k classifiers
 - $\cdot weight(M_i) = log \frac{i error(M_i)}{error(M_i)}$
- Ensemble methods: accuracy
 - Bagging
 - * Often significantly better than single classifier
 - * Noise: note considerably worse, more robust
 - * Prediction: proved improved accuracy
 - Boosting
 - * Generally better than bagging
 - $\ast\,$ May overfit the model to misclassified data

9 Classification: Advanced Methods

9.1 Bayesian belief networks

- Subset of variables conditionally independent (creating a network that captures the dependency of variables)
- Causal model: a directed, acyclic graph
 - node, link, parent, CPTs

CPT: Conditional Probability Table for variable LungCancer:

(FH, S) (FH,
$$\sim$$
S) (\sim FH, S) (\sim FH, \sim S)

LC 0.8 0.5 0.7 0.1

 \sim LC 0.2 0.5 0.3 0.9

 $P(x_1, \dots, x_n)$

$$= \prod_{i=1}^{n} P(x_i|Parents(Y_i))$$

9.2 Neural networks

- A set of connected input/out units
- Features: supervised learning, weighted connections, multi-layer, feed-forward, fully connected, backpropagation, adjust weights

9.3 Network topology

- Hidden layers
- Units in each layer
- Input values:
 - Continuous: normalize to [0.0, 1.0]
 - Discrete: one unit per attribute value, initially 0
- Output: 1 unit per class if more than two classes
- Trial-and-error (you do not know what is better, try and see what happens)
 - different topology, different initial weights

• Neuron

- A hidden/output layer unit

9.4 Backpropagation

• Initialize weights, biases: small random numbers

$$-I_j = \sum_i w_{ij}O_i + \theta_j$$

• Propagate the inputs forward

$$-O_j = \frac{1}{1 + e^{-I_j}}$$

• Backpropagate the error

$$- Err_j = O_j(1 - O_j)(T_j - O_j)$$

- Err_j = O_j(1 - O_j)\(\sum_k Err_k W_{jk}\)

• Termination condition

$$- w_{ij} = w_{ij} + (l)Err_jO_i$$
$$- \theta_j = \theta_j + (l)Err_j$$

9.5 Neural network as classifier

- Weakness: long training time; parameters determined empirically; pool interpretability
- Strength: high tolerance to noisy data; can classify untrained patterns; well-suited for continuous-valued inputs and outputs; success on a wide array of real-world data; inherently parallel; rule extraction

9.6 Support vector machines

- Linearly separable data (larger margin is more robust and means better separation)
 - Example:

- D: $(x_1, y_1), ..., (x_{|D|}, y_{|D|}), x_i$ is n-dimensional
- A separating hyperplane: W * x + b = 0
- Find maximum marginal hyperplane (MMH)
- Hyperplanes H_1 and H_2 : sides of margin
- Support vectors: training tuples fall on H_1, H_2
- Linearly inseparable
 - Example:

- Transform data into a higher dimension
- Search for optimal linear separating hyperplane in the new space
- Computing dot product on the transformed data mathematically equivalent to applying a kernel function to original data

$$* K(x_i, x_j)$$

$$* = \phi(x_i).\phi(x_j)$$

- Support vector machines
 - Classification for both linear and nonlinear data
 - Transforms data to higher dimension using nonlinear mapping
 - Search for optimal linear separation hyperplane in the new dimension
 - SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)

9.7 Lazy learners(learning from your neighbors)

- Eager learning: constructs classification model on training data before receiving test data
- Lazy learning: stores training data and delays processing until a new instance must be classified
- Lazy: less time in training, more time in predicting
- Lazy: require efficient storage techniques
- Lazy: richer hypothesis space using many local linear functions for implicit global approximation
- k-nearest-neighbor classifiers
 - Find k-nearest-neighbors of a test tuple
 - Discrete-valued: most common values
 - Continuous-valued: average of k values
 - Five greater weight to closer neighbors
 - Indexing for nearest-neighbor search

9.8 Additional topic regarding classification

- Multiclass classification
 - One-versus-all (OVA)
 - All-versus-all (AVA)

- Semi-supervised training
 - Self-training
 - Co-training
- Active learning
 - achieve high accuracy using as few labeled instances as possible
 - Uncertainty sampling, vision space
- Transfer learning
 - E.g. sentiment classification (camera reviews \rightarrow TV reviews
 - E.g. Transfer AdaBoost

10 Cluster Analysis

10.1 What is cluster analysis

- Cluster: a collection of data objects
 - Similar to one another withing a cluster
 - Dissimilar to objects in other clusters
- Cluster analysis
 - Group similar objects into cluster
 - Similarity measure and clustering algorithms
- Unsupervised learning: no predefined classes
- Requirements of clustering: scalability, different types of attributes, clusters with arbitrary shape, minimal domain knowledge for parameters, noisy data, incremental and insensitive to input order, high dimensionality, constraint-based clustering, interpretability and usability

10.2 Major clustering methods

- Partitioning methods
 - Construct k partitions, iterative relocation
 - E.g. k-means, k-medoids, CLARANS
- Hierarchical methods
 - Hierarchical decomposition, split/merge
 - E.g. BIRCH, ROCK, Chameleon
- Density-based methods
 - Connectivity and density functions
 - E.g. DBSCAN, OPTICS, DENCLUE
- Grid-based methods
 - Quantize into cells, multi granularity grid
 - E.g. STING, WaveCluster
- Model-based methods
 - Hypothesized cluster model, best fit
 - E.g. EM, COBWEB, SOM
- Clustering high-dimensional data
 - Subsapce clustering: CLIQUE, PROCLUS

- Frequent-pattern-based clustering: pCLuster
- Constraint-based clustering
 - User-specified or application-oriented constraints
 - E.g. COD (obstacles), user-constrained clustering, semi-supervised clustering

10.3 Partitioning methods

- Given a dataset D of n objects
- Given k, find a partition of k clusters that optimized the chosen partition criterion
- Global optimal: enumerate all partitions (slow)
- Heuristic methods (faster):

10.3.1 K-means

- Idea: cluster represented by mean (centroid)
- Partition objects into k nonempty cluster
- Computer mean (centroid) of each cluster
- Assign each object to closes centroid
- Repeat till no more assignment changes

- Complexity
 - * Relatively efficient: O(nkt)
 - · n: #objects, k: #clusters, t: #iterations
- Important points:
 - * Often terminates at local optimal
 - * Applicable only when centroid is defined
 - * Need to specify k in advance
 - * Not suitable for discovering clusters with non-convex shapes
 - * Sensitive to noise and outliers

10.3.2 K-medoids

- Idea: cluster represented by medoid (object closest to centroid)
- K-means methods is sensitive to outliers. Substantially distort the distribution of data
- K-medoids: find representative objects (medoids)

- 1. Reassigned to O_i
- 2. Reassigned to O_{random}
- 3. No change
- 4. Reassigned to O_{random}

- data object
- + cluster center
- before swapping
- --- after swapping
- PAM (Partitioning Around Medoids)
 - * Starts from an initial set of medoids
 - * Iteratively replace a medoid with a non-medoid if it reduces the total distance
 - * Effective for small datasets, does not scale
 - * $O(k(n-k)^2)$ for each iteration
- CLARA: apply PAM on multiple sampled sets
- CLARANS: use randomized sample to search for neighboring solutions

10.4 Hierarchical methods

- Group data objects into a tree of clusters
- Agglomerative: bottom-up merging
- Decisive: top-down splitting

- Dendrogram
 - Represents the process of hierarchical clustering

- Clustering: cut dendrogram at a certain level

- Distance between clusters
 - Minimum distance: $d_{min}(C_i, C_j)$
 - Maximum distance: $d_{max}(C_i, C_j)$
 - Mean distance: $d_{mean}(C_i, C_j) = |m_i m_j|$
 - Average distance: $d_{avf}(C_i, C_j) = \frac{1}{n_i n_j} \sum_{p \in C_i} \sum_{p' \in C_j} |p p'|$
- Uses distance matrix ad clustering criteria
- Does not need to specify k (# clusters)
- Termination condition
 - E.g. cluster distance exceeds a threshold
- Cannot undo previous merge/split decisions
- Algorithms
 - BIRCH
 - * Clustering large amount of numerical data
 - * Multi-phase clustering
 - · Phase 1: microclustering (hierarchical clustering)
 - · Phase 2: macroclustering (iterative partitioning)
 - * Clustering feature: $CF = \langle n, LS, SS \rangle$ (capturing how similar the clusters are)
 - CHAMELEON
 - * Overall framework

* k-nearest-neighbor graph

10.5 Density-based methods

- Clustering based on density (local cluster criterion), e.g. density-connected points
- Major features
 - Clusters of arbitrary shape, handles noise, single scan, density parameter for termination
- Typical methods
 - DBSCAN
 - * ϵ -neighborhood of p: withing radius ϵ of p
 - * Core object p: at least MinPts points in the ϵ -neighborhood of p
 - * Directly density reachable, density reachable, density connected

- DENCLUE

- * Uses statistical density functions
- * Major features:
 - \cdot Solid mathematical foundation
 - · Good for datasets with large amounts of noise
 - · Compact description of arbitrarily-shaped clusters in high-dimensional datasets
 - · Significantly faster than existing algorithm

- · Needs a large number of parameters
- * Influence function: impact of a data point within its neighborhood
- * Overall density: sum of the influence function of all data points
- * Density attractors: local maximal of overall density function
- * Clusters can be determined mathematically by identifying density attractors

10.6 Grid-based methods

- How it works:
 - Uses multi-resolution grid data structure
 - Quantizes object space to cells in the grid
 - Fast processing time: depends on the number of cells, not the number of objects
- Typical methods:
 - STING (STatistical Infromation Grid)
 - * Idea: take spatial area and divide it to rectangular cells
 - * Pros:
 - \cdot O(g): number of grid cells at bottom level
 - · Query-independent, easy to parallelize, incremental update (because no need to shuffle and change the shape, static.)
 - * Cons:
 - · Finer granularity vs. coarser granularity
 - · Only horizontal or vertical cluster boundaries, no diagonal boundaries
 - CLIQUE
 - * Dimension-growth subspace clustering. Grows from single dimensions to high dims
 - * Both density-based and grid-based
 - \cdot Each dimension \rightarrow equal-width intervals
 - · Non-overlapping rectangular units
 - · Cluster: a set of connected dense units

10.7 Evaluation of clustering

- Major tasks:
 - Clustering tendency (whether the data has clusters or not)
 - Number of clusters
 - Clustering quality (ground truth means we know the actual cluster that certain data belong to)
 - * Extrinsic methods (with ground truth)
 - * Intrinsic methods (without ground truth)

11 Advanced Cluster Analysis

11.1 Probabilistic model-based clustering

- Cluster membership of each object
 - belongs to a single cluster
 - Weighted distribution in multiple clusters
- Fuzzy clusters (soft clusters)
 - n objects, k clusters
 - $-w_i j$: probability of object i belonging to cluster j
 - $-0 \le w_i j \le 1$
- Hidden categories (probabilistic clusters)
 - Each represented by a probability density function over the data space
- Mixture model: observed data instances drawn independently from multiple clusters
- Model-based clustering
 - Assumption: data are generated by mixture of underlying probability distributions
 - $-P(D|C) = \prod_{i=1}^{n} P(o_i|C) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_j f_j(o)i$
 - Attempt to optimize the fit between data and some mathematical model
 - * Find a set C of k probabilistic clusters such that P(D—C) is maximized
- EM: Expectation Maximization
 - A popular iterative refinement algorithm
 - An extension to k-means
 - * Assign each object to a cluster according to a weight (probability distribution)
 - * New means computed on weighted sum
 - Mixture of k distributions
 - * Distribution \rightarrow cluster
 - * E.g. Gaussian distribution
 - $* \theta_i = (\mu_i, \sigma_i)$
 - Expectation step (E-step)

*
$$P(\theta_j|o_i,\theta) = \frac{P(o_i|\theta_j)}{\sum_{l=1}^k P(o_i|\theta_l)}$$

- Maximization step (M-step)

*
$$\mu_{j} = \frac{\sum_{i=1}^{n} o_{i} P(\theta_{j} | o_{i}, \theta)}{\sum_{i=1}^{n} P(\theta_{j} | o_{i}, \theta)}$$
* $\sigma_{j} = \sqrt{\frac{\sum_{i=1}^{n} P(\theta_{j} | o_{i}, \theta)(o_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} P(\theta_{j} | o_{i}, \theta)}}$

- Can be characterized by a few parameters
- Generally converges quickly but may not reach the global optima
- Computationally expensive if number of distributions is large or data set contains very few observed data points

11.2 Clustering high-dimensional data

- High-dimensional data: e.g. text documents, DNA micro-array data
- Challenges:
 - Many irrelevant dimensions may mask clusters
 - Distance measure dominated by noises
 - Cluster may exists only in some subspaces
- Methods:
 - Subspace clustering, dimensionality reduction
- The curse of dimensionality
 - Data in only one dimension is relatively packed
 - Adding a dimension "stretch" the points across that dimension, making them further apart
 - Adding more dimensions will make the points further apart
 - * High-dimensional data is extremely sparse
 - Distance measure becomes meaningless, due to equi-distance
- Why subspace clustering
 - Clusters may exist only in some subspaces
 - Subspace clustering: find clusters in all the subspaces
 - Dimension-growth: CLIQUE
 - Dimension-reduction: PROCLUS
 - * Mediods, subset of dimensions with small distance, k * L dimensions for k clusters
 - Frequent patter-based clustering
 - * Frequent term-based document clustering
 - * Clustering by pattern similarity in micro-array data (pClustering)
- Bi-Clustering
 - Cluster both objects and attributes simultaneously
 - Examples: micro-array data analysis, customers and products

11.3 Clustering graph and network data

- Applications:
 - Bi-partite graphs: customers and products, authors and conferences
 - Web search engines: web graphs, click through graphs
 - Social networks, friendship/coauthor graphs

- Graph clustering methods
 - Generic clustering or graph specific (E.g. minimum cuts, density based)
- Structure-connected cluster C
 - Connectivity, maximality
- Hubs
 - Not belong to any cluster
 - Bridge to many clusters
- Outliers
 - Connect to few clusters

11.4 Clustering with constrains

- Categorization of constraints
 - Constraints on individual objects: e.g. cluster houses worth over 300K
 - Constraints on the selection of clustering parameters: number of clusters, MinPts, etc.
 - Constraints on distance or similarity function: weighted functions, obstacles
 - User-specific constraints on the properties of individual clusters
 - Semi-supervised clustering based on "partial" supervision

12 Outlier Analysis

12.1 Types of Outliers

- Global outliers (point anomaly)
 - Different from the rest of the dataset
- Contextual outliers (conditional outlier)
 - Contextual vs. behavioral attributes
 - E.g. 30-minute commute to work
- Collective outliers
 - A subset of objects
 - E.g. over 100 delayed flights

12.2 Outlier detection challenges

- Modeling normal objects and outliers: difficult to enumerate all normal cases
- Application-specific outlier detection: e.g. clinic data vs. marketing analysis
- Handling noise in outlier detection: blur the normal vs. outlier distinction
- Understandability: justification, degree of outlier

12.3 Outlier detection methods

- Whether user labels are available: supervised, semi-supervised, unsupervised
- Assumptions about normal data and outliers: statistical (model-based), proximity-based, clustering-based

12.4 Proximity-based approaches

- Intuition: objects that are far away from the other are outliers
- Distance-based:
 - Distance of the k-th nearest neighbor or fraction of objects within distance r
- Density-based:
 - Density around outlier
 - Density of neighbors

12.5 Clustering-based approaches

- An object is outlier if
 - Does not belong to any cluster
 - Far from its closest cluster
 - Belongs to a small or sparse cluster
- Using training set to find patterns of formal data
- Compare new object with cluster
- Strength:
 - No labels required, support many data types
 - Cluster are summaries of data
 - Only need to compare object to clusters (fast)
- Weakness
 - Effectiveness depends on clustering method
 - High computation cost: first find clusters
 - To reduce cost: e.g. fixed-width clustering

12.6 Classification-based methods

- Train classification model that can distinguish normal data from outliers
- Brute-force approach
 - Labeled normal and outlier objects
 - Skewed data, cannot detect unseen anomaly
- One-class model
 - Classifier for normal data

12.7 Semi-supervised learning

- Combine classification and clustering
- Clustering to find large cluster C and small cluster C1
- C: objs w/ normal label
- One-class model from C
- C1 objs w/ outlier label
- Any obj not in C's model \rightarrow identify as outlier

12.8 Contextual outliers

- Transform to conventional outlier detection if the contexts can be clearly identified
 - Identify the context of O
 - Compare O w/ others in the same context
 - Use conventional outlier detection
- Generalize context if too few objects in the same context
 - E.g. customers by age group
 - E.g. by geographic region
- Modeling normal behavior with respect to contexts
- Contextual attributes \rightarrow behavior attributes
 - Mixture model U on contextual attributes
 - Mixture model V on behavior attributes
 - $-p(V_i|U_i)$
- Approaches: regression, Markov models, finite state automation

12.9 Collective outliers

- Objects as a group deviate significantly from the entire dataset
- Need to examine structures, i.e. relationships between multiple data objects (e.g. temporal, spatial, graph/network)
- Different from contextual outlier detection: structures are often not explicitly defined
- Reduce to conventional outlier detection: structure unit \rightarrow "super" data object
- Model the expected behavior of structure unites directly
- E.g. online social networks of customers
 - Structure unit: subgraphs of the network
 - Small subgraphs with very low frequency
 - Large subgraphs that are surprisingly frequent
- E.g. temporal sequences
 - Learn a Markov model from the sequences; a subsequence that deviates from the model

12.10 Outlier in High-D data

- Data in high-d spaces are often sparse. Object distances dominated by noise
- Interpretation of outliers
 - Too many features, need to identify subspaces of the outliers
- $\bullet\,$ Subspaces that signifying the outliers: capture the local behavior of data
- Scalable: number of subspaces increases exponentially