Linear Regression

Dr. Supaporn Erjongmanee

Department of Computer Engineering Kasetsart University fengspe@ku.ac.th

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering
Slide 1

1

Outline

- Introduction
- Linear model
- Estimating model parameters
- Linear probabilistic model
- Residuals and Error sum of squares
- Total sum of squares
- Correlation
- Inferences on regression coefficient

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 2

Introduction

- Regression analysis is to identify relationship between two (or more) variables
- Types of model
 - · Linear regression model
 - Logistic regression model
 - Non-linear regression model
- Types of variables
 - Independent variable (x)
 - Dependent variable (e.g., y)
- Example of model:
 - $y = f(x) + \varepsilon$

Note: ε = random deviation such that mean of ε = 0

Supaporn Erjongmanee fengspe@ku.ac.th

 $\begin{array}{c} \textbf{Statistics in Computer Engineering} \\ \textbf{Slide 3} \end{array}$

f = ?

3

Introduction (cont.)

- Process to find model: $y = f(x) + \varepsilon$
 - Collect (x,y)'s data
 - Use the collected data to find function f
 - · We pick what type of function f would be
 - Linear
 - Logistic
 - Higher-order function
 - After obtain function f, we can use f to predict value of other x that is not in our collected data
 - Such function f => model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 4

Visualization of (x,y) data

- Example
 - To measure global warming, we check effect of CO₂ on tree growth
 - Experiment was performed to measure how tree grew in 11 months
 - X = Atmospheric CO₂ concentration (parts per million (ppm))
 - Y = Mass of tree growth (kilogram)

х	408	408	554	554	680	680	812	812
У	1.1	1.3	1.6	2.5	3.0	4.3	4.2	4.7

To visualize these data: Use scatter plot

Source: [1]

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 5

5

Outline

- Introduction
- Linear model
- Estimating model parameters
- Linear probabilistic model
- Residuals and Error sum of squares
- Total sum of squares
- Correlation
- Inferences on regression coefficient

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 6

Outline

- Introduction
- Linear model
- Estimating model parameters
- Linear probabilistic model
- Residuals and Error sum of squares
- Total sum of squares
- Correlation
- Inferences on regression coefficient

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 9

9

Estimating Model Parameters

 According to Gauss and Legendre, the best fit regression line is the line that has the smallest sum of errors

Image source: Figure 12.9 [1]

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 10

Estimating Model Parameters (cont.)

- Sum of errors
 - $f(b_0, b_1) = \sum_{i=1}^{n} (y_i (b_0 + b_1 x_i))^2$
- Goal is to minimize sum of errors
 - Find b₀ and b₁ that results to minimum f(b₀, b₁)
 - Let the resulting b_0 and b_1 be \hat{b}_0 and \hat{b}_1
 - $f(\hat{b}_0, \hat{b}_1) \le f(b_0, b_1)$
- The estimated regression line: $y = \hat{b}_0 + \hat{b}_1 x$

Linear regression model

Image source: Figure 12.9 [1]

Supaporn Erjongmanee

Statistics in Computer Engineering

Department of Computer Engineering Kasetsart University

11

Estimating Model Parameters (cont.) $f(b_0, b_1) = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$

• Find \hat{b}_0 and \hat{b}_1 that results to minimum $f(b_0, b_1)$

$$\frac{\partial f(b_0, b_1)}{\partial b_0} = \sum_{i=1}^n 2(y_i - (b_o + b_1 x_i))(-1) = 0$$

$$-\sum_{i=1}^n y_i + nb_0 + b_1 \sum_{i=\overline{n}}^n x_i = 0$$

$$nb_0 + b_1 \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i$$

$$nb_0 + b_1 \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$

$$\frac{\partial f(b_0, b_1)}{\partial b_1} = \sum_{i=1}^{n} 2(y_i - (b_o + b_1 x_i))(-x_i) = 0$$

$$-\sum_{i=1}^{n} x_i y_i - b_0 \sum_{i=1}^{n} x_i - b_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$b_0 \sum_{i=1}^{n} x_i - b_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$b_0 \sum_{i=1}^{n} x_i - b_1 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i \quad \text{Equation b}$$

Equation a

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 12

Department of Computer Engineering Kasetsart University

Estimating Model Parameters (cont.)

• Find \hat{b}_0 and \hat{b}_1 that results to minimum f(b₀, b₁)

$$nb_0 + b_1 \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$

Equation a

$$b_0 \sum_{i=1}^{n} x_i - b_1 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i$$

Equation b

$$\hat{b}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{b}_0 = \frac{\sum_{i=1}^n y_i - \hat{b}_1 \sum_{i=1}^n x_i}{n}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 13 Department of Computer Engineering Kasetsart University

13

Estimating Model Parameters (cont.)

• Find \hat{b}_0 and \hat{b}_1 that results to minimum $f(b_0, b_1)$ (cont.)

$$\hat{b}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$= \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}} = \frac{S_{xy}}{S_{xx}}$$

$$\hat{b}_0 = \frac{\sum_{i=1}^n y_i - \hat{b}_1 \sum_{i=1}^n x_i}{n} = \bar{y} - \hat{b}_1 \bar{x}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 14

Example

- To measure global warming, we check effect of CO₂ on tree growth
- Experiment was performed to measure how tree grew in 11 months
 - X = Atmospheric CO₂ concentration (parts per million (ppm))
 - Y = Mass of tree growth (kilogram)

х	408	408	554	554	680	680	812	812
У	1.1	1.3	1.6	2.5	3.0	4.3	4.2	4.7

Source: [1]

Supaporn Erjongmanee **Statistics in Computer Engineering**

fengspe@ku.ac.th

15

Example(cont.)

Use estimated regression equation to predict y value for other x

х	408	408	554	554	680	680	812	812
У	1.1	1.3	1.6	2.5	3.0	4.3	4.2	4.7

- 1. What is estimated tree mass (\hat{y}) when CO_2 concentration = 365?
- 2. What is estimated tree mass (\hat{y}) when CO₂ concentration = 315?

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 16

Example(cont.)

Use estimated regression equation to predict y value for other x

х	408	408	554	554	680	680	812	812
У	1.1	1.3	1.6	2.5	3.0	4.3	4.2	4.7

3. What is estimated tree mass (\hat{y}) when CO_2 concentration = 408?

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 17

17

Outline

- Introduction
- Linear model
- Estimating model parameters
- Linear probabilistic model
- Residuals and Error sum of squares
- Total sum of squares
- Correlation
- Inferences on regression coefficient

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 18

Example

- To measure global warming, we check effect of CO₂ on tree growth
- Experiment was performed to measure how tree grew in 11 months
 - X = Atmospheric CO₂ concentration (parts per million (ppm))
 - Y = Mass of tree growth (kilogram)

х	408	408	554	554	680	680	812	812
У	1.1	1.3	1.6	2.5	3.0	4.3	4.2	4.7

Why are there multiple y's for one value of x?

Source: [1]

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 19

19

Linear Probabilistic Model

• True regression = Function f (deterministic):

$$\bullet \hat{Y} = b_0 + b_1 x$$

$$b_0 = y$$
-intercept

• Observed data (random):

$$b_1 = slope$$

where

 $(\epsilon \sim N(0, \sigma^2))$ = normally distributed with μ = 0, var = σ^2

- When $\underline{\sigma^2}$ is small, ϵ is close to zero.
 - Y is closer to true regression line
- When σ^2 is large, ϵ is also large.
 - Y is far from true regression line
- Note that b₁ = rate how y increases according to x increases

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 20

Outline

- Introduction
- Linear model
- Estimating model parameters
- Linear probabilistic model
- Residuals and Error sum of squares
- Total sum of squares
- Correlation
- Inferences on regression coefficient

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 29

29

_

Error Sum of Squares (cont.)

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} y_i^2 - (\hat{b}_0 \sum_{i=1}^{n} y_i + \hat{b}_1 \sum_{i=1}^{n} x_i y_i)$$
Formula 2

- Note that formula 2 is very sensitive to decimal numbers
 - · Use as many decimal points as you can

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 33

33

Example 2 (cont.)

$$SSE = (-0.200)^2 + (-0.188)^2 + ... + (1.099)^2$$
= 7.968

$$SSE = \sum_{i=1}^{n} y_i^2 - (\hat{b}_0 \sum_{i=1}^{n} y_i + \hat{b}_1 \sum_{i=1}^{n} x_i y_i)$$
 Formula 2

- Note that formula 2 is very sensitive to decimal numbers
 - · Use as many decimal points as you can

$$SSE = 124,039.6 - \underline{(72.95855 \times 1,574.8 + 0.04103377 \times 222,657.9)}$$
$$= 124,039.6 - 124,031.6$$

= 7.96799

 $SSE = 124.039.6 - (72.958 \times 1,574.8 - 0.041033 \times 222,657.9)$ = 9.019989

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 34

Outline

- Introduction
- Linear model
- Estimating model parameters
- Linear probabilistic model
- Residuals and Error sum of squares
- Total sum of squares
- Correlation
- Inferences on regression coefficient

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 35 Department of Computer Engineering Kasetsart University

35

Coefficient of Determination

SSE is variation that cannot be explained by linear model

Let r² = coefficient of determination

$$r^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSR}{SST}$$

- Value of r² is between 0 and 1
- Note that SST = SSR + SSE

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

- $\frac{SSE}{SST}$ =proportion of total variation that cannot be described by linear regression model
- $r^2 = 1 \frac{SSE}{SST} = proportion$ of total variation that <u>can be described</u> by linear regression model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 38

Coefficient of Determination (cont.)

$$r^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSR}{SST}$$

- $r^2 = 1 \frac{SSE}{SST} = proportion$ of total variation that <u>can be described</u> by linear regression model
 - The higher r², the better that linear regression model can explain variation of
 - When r² is small, then linear regression model may not be appropriate.
- r^2 = proportion that SSE is reduced by linear regression line (\hat{y}) compared to average y (\bar{y})

Example: SSE = 2, SST = 20, $r^2 = 1 - (2/20) = 0.90$ Hence, regression reduces SSE by 90%

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

39

Example: Tree Growth vs. CO₂ (cont.)

Sample#	х	У	x²	ху	y ²
Sum	4908	22.7	3,190,248	15,441.4	78.93

$$\hat{h}_{\star} = 0.00845443$$

$$\hat{b}_1 = 0.00845443$$
 $\hat{b}_0 = -2.349293$ $n = 8$

$$n = 8$$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{(\sum_{i=1}^{n} y_i)^2}{n}$$

$$SST = 78.93 - \frac{22.7^2}{8} = 14.519$$

$$SSE = \sum_{i=1}^{n} y_i^2 - (\hat{b}_0 \sum_{i=1}^{n} y_i + \hat{b}_1 \sum_{i=1}^{n} x_i y_i)$$
 (2)

$$SSE = 78.93 - [(-2.349293)(22.7) + (0.00845443)(15,441.4)] = 1.711$$

$$r^2 = 1 - \frac{SSE}{SST} = 1 - \frac{14.519}{1.711} = 0.882$$

88.2% of observed variation can be explained by linear regression model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 40

Outline

- Introduction
- Linear model
- Estimating model parameters
- Linear probabilistic model
- Residuals and Error sum of squares
- Total sum of squares
- Correlation
- Inferences on regression coefficient

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 41

41

Correlation

• Paired data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

Note that correlation does not imply causation

- How strongly x's and y's are related to each other
- Sample correlation coefficient (r)

What is magnitude of change per one unit change of X and Y?

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$r = \frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 42

Characteristics of Correlation

Value of r does not depend which data is labeled x or y

Different from regression analysis x is independent variable. Y is not.

- Value of r does not depend on unit of x or y
- Value of *r* is between [-1, 1]
- r = 1 if and only if <u>all</u> (x_i, y_i) are on the line with positive slope
- r = -1 if and only if <u>all</u> (x_i, y_i) are on the line with negative slope
- r^2 is coefficient of determination

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 43

43

Strong vs. Weak Correlation

- What is value of r to identify weak or strong correlation?
 - $0.8 \le |r| \le 1$: Strong
 - $0 \le |r| \le 0.5$: Weak

Why r = 0.5 is weak?

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 45

45

Outline

- Introduction
- Linear model
- Estimating model parameters
- Linear probabilistic model
- Residuals and Error sum of squares
- Total sum of squares
- Correlation
- Inferences on regression coefficient

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 46

Slope of Linear Regression

- ullet \widehat{b}_1 indicates linear relationship between x and y
- How much do we know about \hat{b}_1 ?
 - ullet Distribution of \widehat{b}_1
 - Variance of \hat{b}_1
 - ullet Hypothesis test on \widehat{b}_1

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 47

47

Distribution of \hat{b}_1

$$\hat{b}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \left[\bar{y} \sum_{i=1}^{n} (x_{i} - \bar{x}) = \bar{y} \left[(\sum_{i=1}^{n} x_{i}) - n\bar{x} \right] = 0 \right]}$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i} - \sum_{i=1}^{n} (x_{i} - \bar{x}) \bar{y}$$
Constants

$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x}) y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2} - \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \bar{y}}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
Constants for each y_i

$$\hat{b}_1 = \sum_{i=1}^n c_i Y_i \text{ where } c_i = \frac{x_{i-}\bar{x}}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{x_{i-}\bar{x}}{Sxx}$$

 \hat{b}_1 is a linear of Y_i

Each Yi's are normally distributed.

Hence, \hat{b}_1 is also normal distributed

Image source: Figure 12.5 [1]

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 48 Department of Computer Engineering
Kasetsart University

Variance of \hat{b}_1

$$\hat{b}_1 = \sum_{i=1}^n c_i Y_i$$
 where $c_i = \frac{x_{i-}\bar{x}}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{x_{i-}\bar{x}}{Sxx}$

$$Var(\hat{b}_1) = \sigma_{\hat{b}_1}^2 = \frac{Var(Y)}{S_{xx}} = \frac{\sigma^2}{S_{xx}}$$

$$\sigma_{\hat{b}_1} = \frac{\sigma}{\sqrt{S_{xx}}}$$

$$s_{\hat{b}_1} = \frac{S}{\sqrt{S_{xx}}}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 49

49

Hypothesis Testing of \hat{b}_1

 σ , s: standard deviation of noise $\varepsilon \sim N(0, \sigma^2)$ $\sigma_{\hat{b}_1}$, $s_{\hat{b}_1}$: standard deviation of \hat{b}_1

- Null hypothesis (H_0): $b_1 = b$
- Test statistic = $t = \frac{\hat{b}_1 b}{s_{\hat{b}_1}}$

Note:
$$s_{\hat{b}_1} = \frac{s}{\sqrt{S_{xx}}} = \frac{\sqrt{SSE/(n-2)}}{\sqrt{S_{xx}}}$$

Alternative Hypothesis	Rejection Region at α level
$H_a: b_1 > b$	$t \ge t_{\alpha, n-2}$
$H_a: b_1 < b$	$t \leq -t_{\alpha,\;n\text{-}2}$
$H_a: b_1 \neq b$	Either $t \le -t_{\alpha/2, n-2}$ or $t \ge t_{\alpha/2, n-2}$

Model utility test:

- When b = 0, we test H_0 : $b_1 = 0$.
- If H₀ is true, this means that linear regression model: y = b₀ only
 - Equivalently, model does not depend on x.
- If H₀ is rejected, r² will be large. Linear model is appropriate for use.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 51

Example: Tree Growth vs. CO₂ (cont.)

Sample#	x	У	x ²	ху	y ²
Sum	4908	22.7	3,190,248	15,441.4	78.93

Test statistic =
$$t = \frac{\hat{b}_1 - b}{s_{\hat{b}_1}}$$

$$\hat{b}_1 = 0.00845443$$
 $\hat{b}_0 = -2.349293$

$$s_{\hat{b}_1} = \frac{s}{\sqrt{S_{xx}}} = \frac{\sqrt{SSE/(n-2)}}{\sqrt{S_{xx}}}$$

$$SST = 14519$$

$$SST = 14.519$$
 $SSE = 1.710705$

$$s = \sqrt{\frac{SSE}{n-2}} = 0.533964$$

$$Sxx = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 179,190$$

$$S_{\hat{b}_1} = \frac{0.533964}{\sqrt{179,910}} = 0.001261407$$

Supaporn Erjongmanee

fengspe@ku.ac.th

Statistics in Computer Engineering

n = 8

52

- H_0 : $b_1 = 0$
- $H_a: b_1 \neq 0$

$$s_{\hat{b}_1} = \frac{s}{\sqrt{S_{xx}}} = \frac{\sqrt{SSE/(n-2)}}{\sqrt{S_{xx}}}$$

$$s_{\hat{b}_1} = \frac{0.533964}{\sqrt{179,910}} = 0.001261407$$
 $\hat{b}_1 = 0.00845443$

$$t = \frac{\hat{b}_1 - b_1}{s_{\hat{b}_1}} = \frac{0.00845443}{0.001261407} = 6.702386$$
 p-value = 0.0005355

Given $\alpha = 0.05, n = 6$, then

Rejection region: $t \ge 2.447$ or $t \le -2.447$

Reject Ho

Given $\alpha = 0.05, p < \alpha$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 53

Department of Computer Engineering Kasetsart University

```
Example: Tree Growth vs. CO<sub>2</sub> (cont.)
 • H_0: b_1 = 0
 • H_a: b_1 \neq 0
   s_{\hat{b}_1} = \frac{0.533964}{\sqrt{179.910}} = 0.001261407 \hat{b}_1 = 0.00845443
   t = \frac{\hat{b}_1 - b}{s_{\hat{c}}} = \frac{0.00845443}{0.001261407} = 6.702386
                                                                          p-value \le 0.0005355
                                                                    Call:
   Given \alpha = 0.05, n = 6, then
                                                                    lm(formula = y ~ x)
   Rejection region: t \ge 2.447 or t \le -2.447
                                                                    Min 1Q Median 3Q Max
-0.73446 -0.33671 0.08271 0.18819 0.90028
    Reject Ho
                                                                    b1 is not zero.
                                                                    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                    Residual standard error: 0.534 on 6 degrees of freedom
                                                                    Multiple R-squared: 0.8822, Adjusted R-squared: 0.8625
F-statistic: 44.92 on 1 and 6 DF, p-value: 0.0005355
Supaporn Erjongmanee
                                           Statistics in Computer Engineeri
fengspe@ku.ac.th
```


ANOVA Relationship with \hat{b}_1

- H_0 : b_1 = 0 H_a : $b_1 \neq 0$

	df	Sum of Squares (SS)	Mean Square (MS)	f
Regression (1	SSR	SSR	$\frac{SSR}{SSE/(n-2)}$
Error	n-2	SSE	$S^2 = SSE / (n-2)$	
Total	n-1	SST		

Reject H_0 if $f \ge F_{\alpha, 1, n-2}$

Supaporn Erjongmanee

Statistics in Computer Engineering

56

Example: Tree Growth vs. CO₂ (cont.)

• H_0 : $b_1 = 0$

- SST = 14.519
- SSE = 1.710705

• $H_a: b_1 \neq 0$

	df	Sum of Squares (SS)	Mean Square (MS)	f
Regression	1	14.51875-1.710705 = 12.80804	12.80804	44.92197
Error	6	1.710705	0.2851176	
Total	7	14.51875		

- Given α = 0.05, F_{0.05, 1, 6} = 5. 987378 p-value = 0.000535
- Reject H_o
- b1 is not zero. ☐ X linearly relates with Y. ☐ X affects Y.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 57

References

 J.L. Devore and K.N.Berk, Modern Mathematical Statistics with Applications, Springer, 2012.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 59 Department of Computer Engineering Kasetsart University