```
1 !pwd /content
```

Import Libraries

Mount GoogleDrive

```
[ ] →1 Zelle ausgeblendet
```

▶ Import the usual suspects ... 🙊 📆 🤱

```
[ ] → 2 Zellen ausgeblendet
```

```
1 import os
2 from fastai.metrics import error_rate, accuracy
```

2 Getting the Data

```
1 destination = Path("/content/gdrive/My Drive/fastai/unpackai/flowers")
2 path = destination
3 path

Path('/content/gdrive/My Drive/fastai/unpackai/flowers')

1 for flower in os.listdir("/content/gdrive/My Drive/fastai/unpackai/flowers"):
2     x = os.listdir("/content/gdrive/My Drive/fastai/unpackai/flowers"):
3     print(flower,": ",len(x))

rose : 784
    tulip : 984
    dandelion : 983
    daisy : 769
    sunflower : 732
```

Prepare for Training

```
1 fns = get_image_files(path)
2 fns

    (#4249) [Path('/content/gdrive/My Drive/fastai/unpackai/flowers/rose/4503599544_3822e7dlbe.jpg'),Path('/content

1 failed = verify_images(fns)
2 failed
    (#0) []
```

DataBlock

```
1 flowers = DataBlock(
2 blocks=(ImageBlock, CategoryBlock),
```

```
3    get_items=get_image_files,
4    splitter=RandomSplitter(valid_pct=0.25, seed=42),
5    get_y=parent_label,
6    item_tfms=Resize(128))
```

DataLoader

```
1 dls = flowers.dataloaders(path)
```

Investigate Dataset

```
1 #Show labels
2 dls.vocab
    ['daisy', 'dandelion', 'rose', 'sunflower', 'tulip']

1 # Size of Datasets
2 print("Total: ", dls.n)
3 print("Train: ", dls.train.n)
4 print("Val: ", dls.valid.n)

Total: 3187
    Train: 3187
    Val: 1062
```

1 dls.valid.show_batch(max_n=8, nrows=1)

- 4 Train

Metrics = Accuracy, because all groups ca same size

First Training Cycle: resnet18

```
1 learn = cnn_learner(dls, resnet18, metrics=accuracy) #metrics=error_rate
2 learn.fit_one_cycle(3)
```

epoch	train_loss	valid_loss	accuracy	time
0	1.392805	0.571848	0.807910	00:18
1	0.853526	0.459137	0.846516	00:18
2	0.635307	0.453260	0.853107	00:19

Zum Bearbeiten doppelklicken (oder Eingabe)

```
1 # Save the model
2 learn.save('flower-stage-1')
3 # Load the Model
4 #learn.load('flower-stage-1')
```

- 1 interp = ClassificationInterpretation.from_learner(learn)
- 2 interp.plot_confusion_matrix()

1 interp.plot_top_losses(5, nrows=1)

Second Training Cycle: resnet34

1 learn2 = cnn_learner(dls, resnet34, metrics=accuracy) #metrics=error_rate 2 learn2.fit_one_cycle(3)

epoch	train_loss	valid_loss	accuracy	time
0	1.326460	0.524526	0.811676	00:19
1	0.811511	0.443112	0.856874	00:19
2	0.573068	0.423657	0.864407	00:20

resnet34 might be better -> lets check with more epochs:

- 1 learn2 = cnn_learner(dls, resnet34, metrics=accuracy) #metrics=error_rate 2 learn2.fit_one_cycle(5)
 - epoch train_loss valid_loss accuracy time 0 1.595519 0.601521 0.791902 00:19 1 0.929540 0.455939 0.842750 00:20 2 0.635990 0.422809 0.860640 00:20 3 0.472622 0.385019 0.881356 00:19 4 0.391803 0.379211 0.875706 00:19

```
1 # Save the model
2 learn2.save('flower-stage-2')
    Path('models/flower-stage-2.pth')
```

Fazit: resnet34 scores a little bit higher accuracy score than resnet18

Third Training Cycle: Find optimal Learning Rate

```
1 # load resnet34 model
2 learn2.load('flower-stage-2')
   <fastai.learner.Learner at 0x7f928c948c90>
1 # Unfreeze all layers of the CNN
2 learn.unfreeze()
4 # Find the optimal learning rate and plot a visual
5 learn.lr_find()
6 learn.recorder.plot(suggestion=True)
   AttributeError
                                              Traceback (most recent call last)
   <ipython-input-236-c4ae56d23eda> in <module>()
         4 # Find the optimal learning rate and plot a visual
         5 learn.lr_find()
   ---> 6 learn.recorder.plot(suggestion=True)
                                     2 frames
   /usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in getattr (self, name)
       946
                           return modules[name]
                   raise AttributeError("'{}' object has no attribute '{}'".format(
       947
   --> 948
                       type(self).__name__, name))
       949
               def setattr (self, name: str, value: Union[Tensor, 'Module']) -> None:
       950
   AttributeError: 'Sequential' object has no attribute 'plot'
    SEARCH STACK OVERFLOW
      0.9
```


Fazit: Learning rate between 10e-6 and 10e-3 optimal

```
1 10e-5
     0.0001

1 # Learning Rate = 10e-5
2 learn3 = cnn_learner(dls, resnet34, metrics=accuracy) #metrics=error_rate
3 learn3.fit one cvcle(n epoch=4.
```

```
4 lr_max=0.0001)
```

epoch	train_loss	valid_loss	accuracy	time
0	2.366771	1.342375	0.473635	00:19
1	1.703686	0.866668	0.676083	00:20
2	1.319494	0.767494	0.717514	00:20
3	1.143158	0.756628	0.716573	00:19

- 1 ??learn.fit_one_cycle()
- 1 learn3.save('flower-stage-3')

Path('models/flower-stage-3.pth')

Forth Training Cycle: Random Resize Crop

```
1 learn2.load('flower-stage-2')
```

<fastai.learner.Learner at 0x7f928c948c90>

- 1 flowers = flowers.new(item_tfms=RandomResizedCrop(128, min_scale=0.4))
- 2 dls = flowers2.dataloaders(path)
- 3 dls.train.show_batch(max_n=4, nrows=1, unique=True)

- 1 learn4 = cnn_learner(dls, resnet34, metrics=accuracy) #metrics=error_rate
- 2 learn4.fit_one_cycle(4)

epoch	train_loss	valid_loss	accuracy	time
0	1.439501	0.610579	0.782486	00:20
1	0.902160	0.450160	0.838041	00:19
2	0.666545	0.407429	0.852166	00:20
3	0.546984	0.389173	0.865348	00:19

1 learn4.save('flower-stage-4')

Path('models/flower-stage-4.pth')

- Fazit: Random Resize Crop slightly improve accuracy
- Fifth Training Cycle: Delete bad Images manually

Prediction/Actual/Loss/Probability

sunflower/daisy / 8.33 / **០៤៤**ក្/sunflower / 7.73*ទូ*៤៤៤៦០wer/dandelion / 6.62 / **០**០១៩/daisy / 6.33 / 0.84 tulip/daisy / 5.98 / 0.52

rose/sunflower / 5.98 / 0.7 tulip/daisy / 5.86 / 0.99 daisy/tulip / 5.63 / 0.8 dandelion/rose / 5.35 / @lagdelion/daisy / 5.24 / 0.99

1 cleaner = ImageClassifierCleaner(learn4)
2 cleaner


```
1 n=0
```

2 for idx in cleaner.delete():

n+=1

4 cleaner.fns[idx].unlink()

1 n

9

1 learn5 = cnn_learner(dls, resnet34, metrics=accuracy) #metrics=error_rate

2 learn5.fit_one_cycle(4)

epoch train_loss valid_loss accuracy time

0.00% [0/49.00:00<00:00] _____ OSError Traceback (most recent call last) <ipython-input-250-d7a560e6c53a> in <module>() 1 learn5 = cnn_learner(dls, resnet34, metrics=accuracy) #metrics=error_rate ---> 2 learn5.fit one cycle(4) 13 frames /usr/local/lib/python3.7/dist-packages/torch/_utils.py in reraise(self) # have message field 428 raise self.exc_type(message=msg) --> 429 raise self.exc_type(msg) 430 431 OSError: Caught OSError in DataLoader worker process 0. Original Traceback (most recent call last): File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/worker.py", line 202, in _worker_loop data = fetcher.fetch(index) File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/ utils/fetch.py", line 34, in fetch data = next(self.dataset iter) File "/usr/local/lib/python3.7/dist-packages/fastai/data/load.py", line 118, in create batches yield from map(self.do batch, self.chunkify(res)) File "/usr/local/lib/python3.7/dist-packages/fastcore/basics.py", line 216, in chunked res = list(itertools.islice(it, chunk sz)) File "/usr/local/lib/python3.7/dist-packages/fastai/data/load.py", line 133, in do_item try: return self.after_item(self.create_item(s)) File "/usr/local/lib/python3.7/dist-packages/fastai/data/load.py", line 140, in create item if self.indexed: return self.dataset[s or 0] File "/usr/local/lib/python3.7/dist-packages/fastai/data/core.py", line 333, in __getitem_ res = tuple([tl[it] for tl in self.tls]) File "/usr/local/lib/python3.7/dist-packages/fastai/data/core.py", line 333, in stcomp> res = tuple([tl[it] for tl in self.tls]) File "/usr/local/lib/python3.7/dist-packages/fastai/data/core.py", line 299, in __getitem_ return self._after_item(res) if is_indexer(idx) else res.map(self._after_item) File "/usr/local/lib/python3.7/dist-packages/fastai/data/core.py", line 261, in _after_item def _after_item(self, o): return self.tfms(o) File "/usr/local/lib/python3.7/dist-packages/fastcore/transform.py", line 200, in __call_ def __call__(self, o): return compose_tfms(o, tfms=self.fs, split_idx=self.split_idx) File "/usr/local/lib/python3.7/dist-packages/fastcore/transform.py", line 150, in compose_tfms x = f(x, **kwargs)File "/usr/local/lib/python3.7/dist-packages/fastcore/transform.py", line 73, in __call__ def __call__(self, x, **kwargs): return self._call('encodes', x, **kwargs) File "/usr/local/lib/python3.7/dist-packages/fastcore/transform.py", line 83, in call recurii recarii_cype(r(x, ""xwarys), x, rec) File "/usr/local/lib/python3.7/dist-packages/fastcore/dispatch.py", line 118, in call return f(*args, **kwargs) File "/usr/local/lib/python3.7/dist-packages/fastai/vision/core.py", line 110, in create return cls(load_image(fn, **merge(cls._open_args, kwargs))) File "/usr/local/lib/python3.7/dist-packages/fastai/vision/core.py", line 85, in load image im = Image.open(fn) File "/usr/local/lib/python3.7/dist-packages/PIL/Image.py", line 2843, in open fp = builtins.open(filename, "rb") OSError: [Errno 107] Transport endpoint is not connected: '/content/gdrive/My Drive/fastai/unpackai/flowers/tulip/6934951920_d43ff8b78d.jpg'

SEARCH STACK OVERFLOW