Lamb-Dicke regime/approximation

Yichao Yu

Journal Club

$$\omega + \frac{m}{2\hbar} \left(v + \frac{\hbar \omega}{mc} \right)^2 - \frac{mv^2}{2\hbar} = \omega + \frac{\omega v}{c} + \frac{\hbar \omega^2}{2mc^2}$$

Sideband

Sideband

Frequency: $\omega + n\omega_m$

Sideband

Frequency: $\omega + n\omega_m$

Strength: $\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$

Lamb-Dicke parameter

$$\langle n|\mathrm{e}^{\mathrm{i}k\hat{x}}|n+\Delta n\rangle$$

Lamb-Dicke parameter

$$\langle n|\mathrm{e}^{\mathrm{i}k\hat{x}}|n+\Delta n\rangle$$

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \Big(a + a^{\dagger} \Big)$$

Lamb-Dicke parameter

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$

 $\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(a+a^{\dagger}\right)$
 $k\hat{x} = \eta \left(a+a^{\dagger}\right)$
 $\eta \equiv k\sqrt{\frac{\hbar}{2m\omega}} = kz_0$