THE SPOTIFY DATASET

Gold Team 2

AGENDA

INTRODUCTION

Although music is subjective, some songs are massive hits and others are niche and unpopular. Though the Spotify dataset, we'll be looking at:

- Factors that make a song popular
- Predictability of
- Commonalities of popular songs

through analysis and data modeling techniques.

DATASET DESCRIPTION

- Over 230,000 songs pulled using Spotify API
- 18 different attributes
- 26 genres, around 10,000 songs per genre

Which factors contribute towards popularity?

Name	Туре	Description					
Genre	String (26 Levels)	One word describing genre of track					
artist_name	String	Name of Artist					
track_name	String	Name of the Song					
track_id	String	Unique ID generated by Spotify to identify each song					
popularity	Num (1-100)	A number ranging from 1 to 100 describing how popular a song is.					
accousticness	Num (0-1)	A number ranging from 0 to 1. This value describes how acoustic a song is. A score of 1.0 means the song is most likely to be an acoustic one.					
danceability	Num (0-1)	A number ranging from 0 to 1. This value describes how danceable a song is. A score of 1.0 means the song is the					
duration_ms	Integer	Length of song in milliseconds					
energy Num (0-1)		A number ranging from 0 to 1. This value describes how energetic a sor is.					
Instrumentaines Num (0-1)		This represents the amount of vocals in the song. The closer it is to 1. the more instrumental the song is.					
key	Character	Represents the Key that the song is in.					
liveness	Num (0-1)	A number ranging from 0 to 1. This value represents the likelihood that the track is live.					

UNDERSTANDING THE DATA

What insights can we get?

HOW DO THE

ATTRIBUTES

INFLUENCE

EACH

OTHER?

DOES

POPULARITY

VARY BY

GENRE ?

DOES

POPULARITY

VARY BY

KEY ?

DOES POPULARITY

VARY BY MODE ?

"LOUD

MUSIC IS

MORE

POPULAR"

TYPES OF MODELING

01 MULTIPLE LINEAR REGRESSION 02 LOGISTIC REGRESSION

03 TEXT MINING 04 K-MEANS CLUSTERING

01

MULTIPLE LINEAR REGRESSION

1. MULTIPLE LINEAR REGRESSION

Goal: Predict the popularity score

Target Variable: Popularity

Predictors: acousticness, danceability, energy, instrumentalness, liveness, loudness, and speechiness

Training/Validation Split: 80/20

RESULTS: Low Adjusted R Squared - 0.2127

```
call:
lm(formula = popularity ~ ., data = train)
Residuals:
         10 Median
   Min
                     30
                          Max
-54.399 -10.229 1.738 11.290 57.870
coefficients:
             Estimate Std. Error t value
                                          Pr(>|t|)
(Intercept)
            60.02153
                      acousticness
            -13.63873
                      danceability 8.31153
                      -12.97420
                      0.29986 -43.27 < 0.00000000000000002
enerav
instrumentalness -3.08042
                      0.14961 -20.59 < 0.00000000000000000
loudness
            0.83271
                      0.01263 65.92 < 0.00000000000000000 ***
speechiness -5.11350
                      -9.36545
liveness
                      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.15 on 186172 degrees of freedom
Multiple R-squared: 0.2121, Adjusted R-squared: 0.2121
F-statistic: 7159 on 7 and 186172 DF, p-value: < 0.00000000000000022
```

RESULTS: High RSME: 16.13419 compared to a 0-100 scale

```
> accuracy(song.lm.pred, valid$popularity)

ME RMSE MAE MPE MAPE
Test set -0.05130541 16.14189 12.86404 -Inf Inf
```

Accuracy of the model

Conclusion: using Multiple Linear Regression on the selected variables to predict the popularity score is not accurate, and other models need to be examined.

LOGISTIC REGRESSION

2. LOGISTIC REGRESSION

Target variable: Song Popularity (whether a song is popular or not)

Predictors: acousticness, danceability, duration_ms, energy, instrumentalness, key, liveness, loudness, mode, speechiness, tempo, valence

Goal: Identify the factors that contribute towards the song's popularity

Pre-Processing: We pre-processed the data by converting the Popularity column in the dataset to 0 and 1, 1 being "Popular" and 0 being "Not Popular".

OBSERVATION

```
Call:
glm(formula = Is_Popular ~ ., family = "binomial", data = train.df)
Deviance Residuals:
   Min
             10
                  Median
                                      Max
-1.3904 -0.6073 -0.4289 -0.1877
                                   3.7522
Coefficients:
                                 Std. Error z value
                     Estimate
                                                               Pr(>|z|)
(Intercept)
                -0.1957052718 0.1006673135 -1.944
                                                               0.05189 .
acousticness
                -0.7070940134
                              0.0401196741 -17.625 < 0.00000000000000000 ***
danceability
                 2.3810938330
                              0.0627864305 37.924 < 0.00000000000000000 ***
duration_ms
                                            -0.0000009678 0.0000001131
energy
                -1.4339711807
                              0.0735557197 -19.495 < 0.00000000000000000 ***
instrumentalness -1.5956301672 0.0498133919 -32.032 < 0.0000000000000000 ***
key2
                 0.0592627925 0.0422590923
                                                               0.16081
                 0.0883639034 0.0395501386
                                             2.234
                                                               0.02547 *
key3
key4
                 0.0377221847 0.0365293963
                                             1.033
                                                               0.30177
kev5
                 0.2058704643 0.0366323076
                                                           0.0000000191 ***
                 0.0497871583 0.0379229701
                                             1.313
                                                               0.18923
key6
                                                               0.00385 **
key7
                 0.1585635674 0.0548560269
                                             2.891
key8
                 0.0361185324 0.0409980836
                                             0.881
                                                               0.37833
key9
                 0.0896308906 0.0392637974
                                             2.283
                                                               0.02244 *
                 0.2159216409 0.0406790104
                                             5.308
                                                           0.0000001109 ***
kev10
key11
                -0.0079608599 0.0370231707
                                            -0.215
                                                               0.82975
key12
                 0.0000028353 ***
liveness
                -0.9270870498 0.0563717878 -16.446 < 0.00000000000000000 ***
loudness
                 0.1261704032 0.0038622561
                                            32.668 < 0.00000000000000000 ***
mode0
                 0.1024283634
                              0.0179884589
                                             5.694
                                                           0.0000000124 ***
                -0.7855579609
                              0.0709314751 -11.075 < 0.00000000000000000 ***
speechiness
tempo
                 0.0012440343 0.0002897661
                                            4.293
                                                           0.0000176087 ***
valence
                -1.1401423078 0.0409157134 -27.866 < 0.00000000000000000 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 109393 on 141418 degrees of freedom
Residual deviance: 97207 on 141396 degrees of freedom
AIC: 97253
Number of Fisher Scoring iterations: 6
```

Looking at the Logistic Regression logit Coefficients we can infer that almost all the audio based metrics are equally significant in predicting the popularity of the song.

CONFUSION MATRIX

p=0.5	Actual Class							
Predicted		0	1					
Class	0	30578	4736					
	1	25	16					

Sensitivity = 0.0033670 Specificity = 0.9991831 Accuracy = 86.53%

ROC CURVE

Threshold at 0.5

IDEAL THRESHOLD

Specificity 0.5869359

Sensitivity 0.7485269

At the ideal threshold of 0.1353475 we were able to get best sensitivity and specificity

INFERENCE

As per our logistic regression model we inferred that:

- Almost all the audio based metrics had major influence in predicting the song's popularity
- To increase the sum of sensitivity and specificity in the threshold value can be reduced in our model
- Songs with lower acousticness, higher danceability, lower liveness, lower speechiness, lower instrumentalness and energy tend to be more popular

O3 TEXT MINING

stargaz moonlight pump now came passionfruit america life everyday unforgett cant uproar know havana sucker adictiva rehúso take remixbrainer nickiwake remixbrainer callao umbrella bettercall play godbamba never girl crus make stylist motorsport starboy trip acuerdo remedi woman

stori aida bell gisell christmarain scene kid friend sing 2good final can happi O two boy back god just know get; adagio rigoletto homesonata versio parti blue dogworld overtur origin way piano prelud vocal symphoni want heart requiemtraviata

O4 K-MEANS CLUSTERING

CLUSTERING - LOW VS HIGH POPULARITY

Cluster	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	liveness	loudness	speechiness	tempo	valence
1	-1.23	1.35	-0.97	-0.09	-1.36	-0.36	0.00	-1.18	-0.31	-0.42	-0.79
3	-0.90	1.08	0.11	-0.11	0.40	-0.53	2.42	-0.29	3.71	-0.62	-0.15
2	-0.77	0.81	-0.74	12.54	-0.64	0.57	0.34	-0.82	0.87	-0.58	-0.56
8	-0.66	-0.29	0.84	-0.22	0.33	-0.46	-0.21	0.35	-0.17	-0.01	1.21
7	-0.41	1.28	-1.41	0.13	-1.51	2.07	-0.41	-1.81	-0.41	-0.51	-1.15
5	-0.12	-0.31	0.15	0.12	0.16	1.91	-0.24	0.04	-0.32	0.13	-0.05
6	0.09	-0.86	-0.35	0.05	0.89	-0.43	0.29	0.72	-0.15	1.01	0.05
9	0.51	0.52	-0.09	0.07	-0.63	-0.44	-0.32	-0.06	-0.33	-0.11	-0.47
4	0.98	-0.72	0.73	-0.09	0.52	-0.49	-0.23	0.60	-0.08	-0.22	0.34

- Low popularity clusters are characterized by extreme highs and lows of attributes (darker colors) such as acousticness, danceability, energy, loudness, and valence.
- **High popularity** clusters have less extreme attributes
- **Insight** Spotify could use this analysis to provide recommendations to new artists to be careful of releasing songs too extreme in any one attribute.

GENRE CLUSTER GROUPS

("RAP", "INDIE", "ROCK", "JAZZ", "ELECTRONIC", "HIP-HOP", "ALTERNATIVE", "POP")

Cluster	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	liveness	loudness	speechiness	tempo	valence
5	1.05	-0.55	1.11	-0.13	0.37	-0.47	-0.25	0.50	0.10	0.00	0.69
4	0.13	-0.56	0.44	0.43	0.36	1.85	-0.22	0.19	-0.29	0.10	-0.01
3	0.85	-0.77	0.11	0.03	0.55	-0.44	-0.03	0.58	-0.12	-0.59	-0.38
2	0.59	0.99	-0.14	0.07	-0.96	0.18	-0.31	-0.52	-0.33	-0.21	-0.46
1	0.72	-0.86	-0.14	-0.02	0.83	-0.39	0.01	0.72	-0.03	1.20	-0.14

- 5) High popularity, high danceability, moderately high valence
- 4) Lower popularity, high instrumentalness

- 2) Moderate popularity, high acousticness, low energy
- 1) High popularity, low acousticness, high energy, high loudness, high tempo

3) High popularity, low acousticness, low tempo

#4) Electronic/Jazz featuring artists such as Aphex Twin,

Gambino, Kendrick Lamar, Imagine Dragons and Dillon Francis.

Cole, Kid Cudi, Kevin Gates, Lil Baby and Future.

Bonobo, Nujabes, Gramatik and Flying Lotus.

#5) Hip-Hop/Rap featuring artists such as Drake, Eminem, J.

#3) Alternative featuring artists such as Brock Hampton, Childish

- #2) Jazz featuring artists such as Café Jazz Deluxe, Dean Martin,
 John Coltrane and Ella Fitzgerald.
- #1) Rock & EDM featuring artists such as Arctic Monkeys, Kings of Leon, Bassnectar, Flosstradamus and Fall Out Boy.

05 CHALLENGES

WHAT WERE SOME CHALLENGES?

DUPLICATES

A track could have multiple genres resulting in duplicate data

PULLED DATA

Focus was to get 10,000 songs from 26 genres

GENRE CLUSTERING

Had to subset genres and perform multiple clusters

O6 CONCLUSION

KEY INSIGHTS & TAKEAWAYS

MLR

Exact popularity score is hard to predict based on the song attributes

POPULAR SONGS

tend to have multiple artists or be remixes

AUDIO-BASED Metrics

had major influence in predicting the song's popularity

GENRES

can be clustered into groups based on Spotify API attributes

IF YOU ARE AN ARTIST...

TOPIC

Love songs about your feelings

FIND SOMEONE

Have remixes and Features

AUDIO-BASED Metrics

Focus on higher loudness, lower intrumentalness

GENRES

Stick to pop/rap

