(19) Organisation Mondiale de la Propriété Intellectuelle Bureau international

(43) Date de la publication internationale 5 avril 2001 (05.04.2001)

PCT

(10) Numéro de publication internationale WO 01/24219 A1

VERSITE PARIS 13 [FR/FR]; 99, avenue Jean Baptiste

(71) Déposant (pour tous les États désignés sauf US): UNI-

(51) Classification internationale des brevets⁷:

H01J 37/317

(21) Numéro de la demande internationale:

PCT/FR00/02664

(22) Date de dépôt international:

27 septembre 2000 (27.09.2000)

(25) Langue de dépôt:

français

(26) Langue de publication:

français

(30) Données relatives à la priorité:

99/12016

27 septembre 1999 (27.09.1999) F

Clément, F-93430 Villetaneuse (FR).

F-75005 Paris (FR).

- (72) Inventeurs; et
 (75) Inventeurs/Déposants (pour US seulement): BAUDON, Jacques [FR/FR]; 7, rue Soufflot, F-75005 Paris (FR). ROBERT, Jacques [FR/FR]; 18, boulevard Saint Marcel,
- (74) Mandataires: ORES, Irène etc.; Cabinet Orès, 6, avenue de Messine, F-75008 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,

[Suite sur la page suivante]

- (54) Title: METHOD AND DEVICE FOR ATOMIC INTERFEROMETRY NANOLITHOGRAPHY
- (54) Titre: PROCEDE ET INSTALLATION DE NANOLITHOGRAPHIE PAR INTERFEROMETRIE ATOMIQUE

(57) Abstract: The invention concerns a novel technique for producing high-performance, in particular high-resolution atomic lithography. Said technique uses Stern-Gerlach atomic interferometry enabling to produce perturbations in the atomic phase of the jet. Such interaction directly brings about controllable modulation of the intensity of the wave associated in the transverse plane with the atomic jet. The inventive atomic interferometry nanolithography installation comprises a Stern-Gerlach interferometer including, as phase object, a quadripolar magnetic induction with transverse gradient generated by four parallel bars (51) conducting direct and alternating currents, framed with two splitter blades (4, 6), respectively preceded and followed by a spin polarizer (3) and an analyzer (7) operated by laser pumping. An additional homogeneous field is generated by four other additional bars (52) powered with matching supply in currents capable of being adjusted so as to produce a field with uniform intensity and arbitrary orientation of the interference figure (F) by adjusting two current parameters. The atomic source (1) is a continuous discharge source of metastable helium or argon, with dispersion of approximately maxwellian speed of about 30 to 40 % to obtain a central spot.

(57) Abrégé: L'invention propose une nouvelle technique pour réaliser de la lithographie atomique à haute performance, en particulier de haute résolution. Cette technique utilise l'interférométrie atomique de type Stern-Gerlach permettant de réaliser des perturbations de la phase atomique du jet. Une telle interaction provoque alors directement une modulation contrôlable de l'intensité de l'onde associée dans le plan transverse au jet atomique. L'installation de nanolithographie par interférométrie atomique selon l'invention comporte un interféromètre de type Stern-Gerlach comprenant, comme objet de phase, une induction magnétique quadripolaire à gradient transverse créé par quatre barres parallèles (51) conduisant des courants continus alternés, encadré par deux lames séparatrices (4, 6), précédé et suivi

Ø 9⊕

ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

Avec rapport de recherche internationale.

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

15

20

25

30

35

PCT/FR00/02664

PROCEDE ET INSTALLATION DE NANOLITHOGRAPHIE PAR INTERFEROMETRIE ATOMIQUE

L'invention a pour objet un procédé de lithographie à l'échelle nanométrique utilisant l'interférométrie atomique et une installation de mise en œuvre d'un tel procédé.

L'invention se rapporte au domaine de la lithographie à l'échelle sub-micronique. Par projection de jets d'atomes, respectivement de type alcalin (par exemple Na, Li ou Cr), ou de type métastable (He* ou Ar*), la lithographie atomique peut permettre d'obtenir au travers d'un masque, respectivement le dépôt sur un substrat à traiter ou la gravure d'un motif sur une résine disposée sur ce substrat. L'article M. Kreis et al, paru dans Applied Physics, volume B63, 649 (1996) illustre ce type de technique.

La lithographie atomique présente, par rapport à la technique plus classique de la lithographie photonique, des avantages qui tiennent aux conditions de mise en œuvre et aux limites physiques de ces techniques :

- la source de photons, en générales un laser UV, nécessite une brillance élevée et des moyens complexes et coûteux (par exemple un laser de type Nd :YAG pour exister un jet supersonique d'atomes de xénon) pour produire des photons de longueur d'onde de plus en plus courtes afin d'augmenter la résolution de l'installation ;

- une optique de grandissement (par 4 ou 5) formée de miroirs multicouches réflectivité sélective en longueur d'ondes et de durée de vie limitée ;

- une épaisseur de motif limitée par la longueur d'onde utilisée, par exemple 157 nm pour celle du jet de xénon évoqué plus haut dans des dispositifs produisant des rayonnements dans l'ultra-violet extrême, proche des rayons X mous.

Les techniques de micro-lithographie basées sur l'optique atomique utilisent des jets thermiques ou quasi supersoniques d'atomes confinés dans un piège magnéto-optique. Dans ces techniques, le faisceau d'atomes collimaté par refroidissement à l'aide de lasers, interagit avec un masque optique. Un masque de ce type est généralement formé par une onde optique stationnaire, désaccordée vers le bleu par rapport à la fréquence de transition atomique, créant un potentiel répulsif périodique sur la trajectoire des atomes. Un tel potentiel agit comme un réseau de pas égal à une demilongueur d'onde optique. De telles applications sont décrites par exemple

15

20

25

30

35

2

dans l'article de E.M. Rasel paru dans Physical Review Letter, volume 75, 2633 (1995).

Il est ainsi possible de déposer ou de graver une série de traits parallèles sur le substrat ou, par la mise en œuvre de deux masques croisés, un ensemble périodique de forme géométrique prédéterminée (carré, rectangle ou losange).

Par essence, cette technique atomique n'est pas limitée par la longueur d'onde de l'onde associée, car celle-ci est de l'ordre de l'Angström, contrairement aux méthodes optiques décrites ci-dessus. Cependant, la micro-lithographie atomique utilisée en interaction avec des masques optiques nécessite une intensité du potentiel de masquage, et donc une intensité de l'onde optique qui crée le potentiel, de niveau élevé pour suffisamment perturber les trajectoires des atomes de manière significative. Ainsi, l'installation n'est pas souple d'utilisation. De plus, la résolution obtenue est limitée par la performance du masque utilisé.

L'invention propose une nouvelle technique pour réaliser de la lithographie atomique, mais qui ne présente pas les inconvénients ci-dessus mentionnés. Cette technique utilise l'interférométrie atomique de type Stern-Gerlach dans des conditions particulières, permettant de réaliser des perturbations de la phase atomique du jet et non des perturbations de trajectoire. Une telle interaction provoque alors directement une modulation contrôlable de l'intensité de l'onde associée dans le plan transverse au jet atomique.

Plus précisément, l'invention a pour objet un procédé de lithographie par interférométrie atomique sur une cible, à partir d'une polarisation de spin d'un faisceau d'atomes incidents par pompage optique, passage dans un objet de phase par induction magnétique transverse agissant sur une superposition cohérente d'états, puis analyse du faisceau atomique par interaction optique pour ne retenir qu'un seul état de spin, le faisceau atomique émergent contenant une série de termes interférentiels, caractérisé en ce que l'induction magnétique présente un gradient transverse pour former une figure d'interférence annulaire, en ce que le faisceau d'atomes présente une distribution de vitesse supérieure à 20 % pour éliminer sensiblement les franges d'interférence autres que la frange centrale formant alors un spot, et en ce qu'une induction magnétique homogène transverse

15

20

25

30

35

réglable est ajoutée à l'induction à gradient afin de translater de manière prédéterminée le spot central sur la cible.

L'utilisation d'une distribution large de vitesse des atomes, de type maxwellienne, permet une décroissance rapide du contraste avec l'ordre d'interférence, c'est-à-dire du contraste des anneaux de la figure d'interférence au-delà du spot central.

Selon un mode de réalisation particulier, le gradient de l'induction transverse est ajusté en fonction du diamètre et de l'intensité de spot souhaités. Le spot obtenu est d'autant plus fin et intense que le gradient est élevé. C'est la valeur limitante de la résolution spatiale de l'appareillage utilisé qui va finalement déterminer la valeur du gradient de champ à appliquer.

L'invention a également pour objet une installation de nanolithographie par interférométrie atomique de mise en œuvre de ce procédé.

Selon une forme de réalisation, cette installation comporte un interféromètre de type Stern-Gerlach, comprenant comme objet de phase une induction magnétique quadripolaire à gradient transverse créé par quatre barres parallèles conduisant des courants continus alternés, encadré par deux zones séparatrices, précédé et suivi respectivement d'un polariseur de spin et d'un analyseur fonctionnant par pompage laser, le champ homogène additionnel étant créé par exemple par quatre autres barres de même longueur et disposées à 45° des précédentes et parcourues par des courants appariés.

L'énergie interne des atomes est largement suffisante pour graver un film de résine polymère disposé sur un substrat, par exemple leur énergie interne est supérieure ou égale à 15 eV, et l'intensité du faisceau est de quelques 10 atomes par seconde.

Selon des caractéristiques préférées :

- la source d'atomes est une source à décharge continue d'hélium ou d'argon métastable, avec une dispersion de vitesse approximativement maxwellienne d'environ 30 à 40 % autour d'environ 2 km/s pour les atomes d'hélium et de 500 m/s pour les atomes d'argon ;
- le pompage laser du polariseur est effectué par diode laser polarisée circulairement, la polarisation en spin étant réalisée sur le niveau Zeeman +J ou –J;

10

15

20

25

30

35

- l'analyse est conduite par déviation des atomes se trouvant dans des états Zeeman autres que l'état sélectionné en utilisant des fréquences optiques différentes au moyen d'au moins un modulateur acoustooptique couplé au laser en présence d'un champ magnétique intense ;

- les lames séparatrices sont formées de réseaux matériels à fentes ultrafines, ou de réseaux optiques formés d'une onde stationnaire produit par rayonnement laser réfléchi sur un miroir, par exemple un laser à colorant en anneau, ou encore au moyen d'un champ magnétique de très faible intensité, et tournant de 90° pour induire des transitions entre les états Zeeman :

Dans un mode de réalisation préféré, le faisceau atomique est collimaté par refroidissement transversal au moyen d'une mélasse optique à deux dimensions, formée de deux mélasses successives identiques agissant respectivement sur l'une et l'autre des composantes transverses. Elles utilisent des faisceaux laser élargis en fréquence, décalés vers le rouge et polarisés circulairement au moyen d'un modulateur acousto-optique. La mélasse est formée par une série de réflexions en « zig-zag » du faisceau laser sur deux miroirs plans opposés. Les vitesses transverses sont alors fortement limitées, de l'ordre de 0,1 m/seconde ou moins.

La constance du gradient magnétique n'est utile que dans un voisinage de l'axe du faisceau de l'ordre de la taille du motif à graver, par exemple quelques microns. Dans des modes de réalisation particuliers, le gradient du champ magnétique transverse peut être créé par deux bobines en configuration « anti-Helmholtz », ou par un ensemble d'électro-aimants disposés en configuration multipolaire ou 2n-polaires. Ces moyens permettent de réaliser la configuration de champ transverse adaptée au portrait de phase souhaité pour réaliser une figure d'interférence prédéterminée.

D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui suit, relative à des exemples de réalisation exposés à titre non limitatif, en référence à des figures annexées qui représentent respectivement :

- la figure 1, un schéma général d'une installation nanolithographique selon l'invention :
- la figure 2, une vue perspective simulée d'une figure d'interférence obtenue dans le plan transverse au jet atomique lorsque celui-ci est constitué d'un faisceau mono-cinétique;

WO 01/24219 PCT/FR00/02664

5

- la figure 3, une vue perspective similaire lorsque le jet atomique a une distribution de vitesse de type maxwellienne de 40%;

- la figure 4, une vue perspective d'un exemple de translation de figure d'interférence par addition du champ magnétique uniforme ;

- les figures 5a à 5d, des profils d'interférence obtenus suivant des conditions variables de mise en œuvre d'une installation conforme à l'invention : et

5

10

15

20

25

30

35

- la figure 6, des exemples de réduction du fond d'interférence autour du spot central par l'utilisation d'interféromètres multiples.

L'installation de nano-lithographie, illustrée en figure 1, est basée sur un interféromètre de type stern-Gerlach. Les éléments constitutifs d'un tel interféromètre se composent successivement, suivant un axe central Z'-Z, d'un polariseur 3, d'un ensemble de barres 51 de production du champ magnétique transverse formant l'objet de phase entre deux lames séparatrices 4 et 6, suivi d'un analyseur 7 puis d'un détecteur 8, qui est disposé à l'endroit du substrat où le dépôt ou la gravure interviendra.

L'interféromètre atomique reçoit un faisceau d'atomes d'hélium He métastables délivré par une source 1. La source est à décharge électrique continue amorcée dans une détente à travers une tuyère, entre une électrode conique en tungstène et la tuyère. La décharge est déclenchée sous une tension d'environ 1 keV et une intensité de quelques milliampères. Avantageusement, cette décharge peut être pulsée et le gaz formé refroidi, à l'azote liquide par exemple.

La densité d'atomes délivrée est alors supérieure de l'ordre de 4.10¹⁴ atomes/s/srd dans une largeur angulaire de 0,5 radian et la distribution de vitesse des atomes, de type maxwellienne, est large, environ 30% autour de la valeur moyenne de 2 km par seconde. Une telle dispersion induit, par superposition de figures d'interférence de pas différents, un contraste à décroissance rapide des anneaux d'interférences. Comme illustré à la figure 2, en absence d'une dispersion de vitesse, la figure d'interférences F présente un contraste constant entre les franges d'interférences brillantes I_b et les franges d'interférences sombres I_s. Avec une dispersion de vitesse de l'ordre de 30%, avec une distribution de type maxwellienne, seule demeure, comme illustré sur la figure 3, la frange centrale brillante I_c formant un spot central fin, qui émerge sensiblement des autres anneaux fortement atténués selon l'axe

15

20

25

30

35

Z'-Z. Les figures 2 et 3 sont des simulations qui prennent en compte l'ensemble des paramètres quantifiés dans la présente description.

L'ouverture angulaire du jet d'hélium en sortie de la source 1 est définie par la collimation réalisée par refroidissement transversal. Ce refroidissement est réalisé au moyen de deux mélasses optiques, 2a et 2b, agissant sur les composantes transverses de vitesse des atomes, respectivement selon les axes X'-X et Y'-Y. Elles utilisent des faisceaux lasers 2f, élargis en bandes latérales de fréquence de largeur 15 à 20 MHz, décalées vers le rouge, la largeur et le décalage spectral étant obtenus à l'aide d'un modulateur acousto-optique (non représenté). Ces faisceaux lasers sont polarisés circulairement. Les faisceaux 2f subissent une série de réflexions entre deux miroirs plan proposé M pour former un « zigzag » de largeur égal 8 mm, la longueur d'interaction étant alors portée à 8 cm pour chaque mélasse. La puissance laser utile reste faible, environ 40 mW. Dans ces conditions, le faisceau atomique présente une ouverture d'environ 0,1 rd et des vitesses transverses inférieures à 0,1m/s.

L'interaction optique entre le faisceau d'atomes d'Hélium et le polariseur 3 sélectionne un sous-niveau Zeeman, en référence à l'axe de quantification du polariseur (avec champ magnétique) réalisé par pompage optique dans l'exemple de réalisation. Ce pompage est obtenu à l'aide d'un faisceau laser polarisé par une diode « DBR » de longueur d'onde de 1,08 µm et de puissance 1mW. Ce faisceau laser est colinéaire à un champ magnétique d'intensité de l'ordre du gauss.

Le faisceau subit ainsi une polarisation de spin à travers le polariseur 3. La lame séparatrice 4 transforme l'état Zeeman sélectionné par le polariseur, par exemple l'état +1 ou -1, en une superposition cohérente d'états identique pour tous les atomes. Les caractéristiques de la figure d'interférence obtenue seront fonction de l'objet de phase 5, qui est construit sur les superpositions cohérentes d'états Zeeman obtenues à l'aide de la zone séparatrice 4. Dans l'exemple, cet effet de séparation est réalisé au moyen d'un champ magnétique de faible intensité, 10 milligauss, tournant de 90° sur une distance de l'ordre de 8 mm pour induire des transitions dites « de Majorana » entre les états Zeeman.

Dans l'exemple, l'objet de phase 5 est constitué d'un profil d'induction magnétique B formé par quatre barres parallèles 51, en cuivre d'environ 10 cm de longueur et réparties régulièrement autour de l'axe Z'-Z à

WO 01/24219

10

15

20

25

30

35

PCT/FR00/02664

une distance « a », d'environ 16 mm dans l'exemple. Les barres conduisent des courants continus alternés $\pm i_A$ d'intensité de quelques centaines de milliampères les barres étant parallèles à l'axe Z '-Z. L'induction magnétique B présente un gradient transverse radial et constant au voisinage de l'axe Z'-Z, champ dit quadripolaire. La figure d'interférence obtenue est alors annulaire F dans le plan transverse (X'-X, Y'-Y).

Le champ magnétique B quadripolaire à gradient transverse, formé par les quatre barres parallèles 51, induit un objet de phases pour chaque état Zeeman, avec un déphasage proportionnel à l'intégrale du champ magnétique B le long de la trajectoire atomique, et inversement proportionnelle à la vitesse de l'atome considéré. Le déphasage est produit sur le mouvement externe relatif à chaque état Zeeman.

L'installation permet d'obtenir un gradient G de l'ordre de 5.10⁻⁴.i_A /mm, mais des valeurs supérieures, par exemple celles utilisées pour les simulations de l'ordre de 10⁻² i_A/mm peuvent être aisément obtenues en utilisant d'autres dispositifs, par exemple des bobines en configuration anti-Helmhotz ou des électro-aimants en configuration hexapolaire.

Le diamètre du spot central est d'autant plus fin que le gradient G est élevé. L'installation donne des gradients relativement modestes mais permet d'obtenir une taille de spot de l'ordre d'une dizaine de nanomètres. La constance du gradient G est assurée dans un voisinage de l'axe Z'-Z de la taille du motif à graver, par exemple quelques micromètres. Seule la largeur initiale du profil du faisceau atomique en sortie de la source est grande devant la taille du motif à graver ou à déposer.

La seconde lame séparatrice 6 est constituée et opère de la même manière que la première lame séparatrice 4 pour fournir des superpositions cohérentes pour chaque état atomique émergent de l'objet de phase. D'autres techniques existent pour réaliser former une telle séparation, par exemple par diffraction à travers des réseaux matériels à fentes ultrafines, constituées par exemple de 20 000 pas/mm, ou de réseaux optiques formés d'une onde stationnaire produit par rayonnement laser réfléchi sur un miroir ou par effet de recul obtenu par absorption d'un photon résonnant.

L'analyseur 7 ne retient qu'un seul état Zeeman pour que le flux atomique émergent ne contienne qu'une série de termes interférentiels formant des franges brillantes et sombres annulaires dont l'intensité est mesurée par le détecteur 8. Dans l'exemple de réalisation, l'analyseur 7 est

10

15

20

25

30

35

constitué à partir d'un faisceau laser du même type que celui formant le polariseur 3. Ce détecteur est substitué par le substrat de silicium nappé de la résine que l'on souhaite graver ou sur lequel on dépose la structure souhaitée.

L'analyse est conduite optiquement par déviation, par pression de radiation, des atomes qui se trouvent dans des états Zeeman autres que celui sélectionné, en utilisant des fréquences optiques différentes ajustées par un ou deux modulateurs acousto-optiques opérant avec le même laser que le polariseur, en présence d'un champ magnétique de l'ordre de 100 G.

Afin de permettre la gravure ou le dépôt de motifs de géométrie prédéterminée sur le substrat à traiter, un champ magnétique uniforme additionnel B_h est produit par quatre barres 52, disposées à 45° des premières barres 51 dans le plan transverse (X'-X, Y'-Y), les barres étant alimentées par des courants appariés $\pm i_H$ d'intensité réglable, par exemple de l'ordre de 0,1A. Un tel champ additionnel permet alors de réaliser une translation du spot central dans le plan transverse du substrat : le gradient est simplement déplacé le long de l'axe X'-X, autour d'une nouvelle origine. La figure 4 montre la translation du spot central selon l'axe X'-X.

Pratiquement, il est possible d'obtenir n'importe quelle translation dans le plan transverse, en alimentant les barres 52 appariées (en ordre tournant) avec des courants réglables $+i_1$, $+i_2$, $-i_1$, $-i_2$, pour disposer de deux paramètres (i_1, i_2) et réaliser un champ uniforme d'intensité et d'orientation arbitraire.

Il est à noter que si le gradient G du champ magnétique principal B est augmenté en augmentant i_A , les intensités i_H , i_1 et/ou i_2 sont également augmentée(s) pour obtenir une même translation du spot, la translation dépendant du rapport i_A/i_H . Pour ce faire, les barres 52 du champ additionnel peuvent être remplacées par deux paires de bobines en configuration Helmholtz .

En simulation, il est présenté respectivement sur les figures 5a à 5d, des profils de configuration d'interférences selon des mises en œuvres variables.

Ces conditions sont résumées dans le tableau ci-après, en fonction de la largeur de la source (σ), de la largeur relative de la distribution de vitesse longitudinale du jet ($\delta v/v$), du diamètre du spot central obtenu (δx),

Sources

cohérente

cohérente

Incohérente

Etat Zeemann M=0

Cohérente

Etat Zeemann M=0

Fig.

5a

5b

5c

5d

: ច(μ**m**)

0,2

2000

500

2000

et des distances des principaux composants de l'interféromètre (d = distance de l'objet de phase à la source, L = largeur de l'objet de phase, et D = distance de la source au détecteur/substrat).

5

TABLEAU

D(cm)

11

200

25

100

G/µm

4 10⁻⁶

4 10⁻⁷

8 10⁻⁷

4 10-7

δx (nm)

40

100

80

120

L(cm)

5

20

10

10

δv/v

1

2

1

1

d(cm)

5

5

5

5

10

15

20

25

30

35

Ces exemples montrent que des diamètres de spot de l'ordre d'une ou de quelques dizaines de nanomètres sont aisément accessibles dans des conditions normales. Il est à noter que des écarts par rapport à la forme idéale illustrée par les figures 5a à 5d, se traduit par une déformation de la figure d'interférences qui, en tout état de cause, ne porte pas à conséquence.

Il est à noter que l'intensité de courant atomique émis, c'est-à-dire le nombre d'atomes par seconde et par centimètre carré, est égale à l'intensité de courant sur le spot central formé, la modulation réalisée par le gradient n'agissant que sur l'intensité de fond, qui est 2J + 1 fois plus faible, J étant le spin de l'atome utilisé. Par exemple, pour l'argon (J = 2), le fond est cinq fois plus faible et pour une source émettant à 4.10¹⁴ atomes/s/srd, on obtient une densité de courant égal à 1,3.10¹⁰ atomes/s.cm² pour une distance D d'objet de phase égal à 0,5 m.

Il est à noter également que, dans le mécanisme de la gravure ou de dépôt, c'est l'énergie interne des atomes métastables utilisés

10

15

20

25

30

35

qui joue le rôle principal et non leur énergie cinétique, l'effet de la vitesse étant négligeable.

Pour l'argon, l'énergie interne est d'environ 15 eV par atome qui sont transférés à la résine, pour l'hélium, l'énergie interne est supérieure ou égale à 20 eV. Cette énergie est largement suffisante pour graver un film polymère.

Dans le processus de dépôt, la vitesse des atomes est limitée et le facteur de réflexion des atomes rendu négligeable. C'est le cas aux vitesses thermiques pour des atomes « déposables » de type alcalin ou chrome.

Dans tous les cas, c'est le nombre d'atomes parvenant sur la cible pendant une durée déterminée qui est à prendre en considération et non leur vitesse. Un seuil de densité peut être par exemple d'environ 10¹⁴ atome /s/srd. En particulier, les atomes « déposables » présentent un flux sensiblement plus important (10⁴ fois environ) que celui des atomes métastables, ce qui conduit à une densité de courant de l'ordre de 10¹⁴ atomes/s.cm².

Dans le cas de la gravure, les atomes métastables ne creusent pas directement la résine recouvrant le support de silicium, mais modifient ses propriétés en cassant ses molécules avec un rendement proche de l'unité. Par exemple, quelques dizaines d'atomes arrivant sur une aire de 40 nm de diamètre produisent l'effet désiré, ce qui dure environ 60 s. Quant au dépôt, pour réaliser une épaisseur de 1 nm sur la même surface, il faut déposer 10,5 d/M_A, d étant la densité et M_A la masse atomique, ce qui nécessite un temps de quelques millisecondes.

Le spot atomique apparaît sur un fond uniforme d'intensité qui vaut 1/(2J+1) l'intensité du spot central. Lorsque la vitesse de tracé est relativement faible (de l'ordre de 0,7 nm/s), l'accumulation de l'intensité du fond peut devenir un inconvénient. Cette perturbation peut être levée en utilisant un interféromètre multiple. en utilisant une succession d'interféromètres disposés en série, l'analyseur de l'un étant utilisé comme polariseur du suivant. La figure 6 montre pour un nombre n d'interféromètres identiques en série variant de 1 à 4, un profil transversal final modulé par les interféromètres successifs. Le contraste s'en trouve ainsi très sensiblement amélioré car, si M(ρ) désigne la modulation induite par chaque interféromètre.

WO 01/24219 PCT/FR00/02664

le profil transversal final sera $M(\rho)^n$. Le diamètre du spot central à mi-hauteur se trouve également réduit, d'un facteur statistique égal à \sqrt{n} .

11

L'invention n'est pas limitée aux exemples de réalisation décrits et représentés. La loi de distribution transverse de la densité atomique dans le faisceau peut être par exemple de type gaussien avec un écart-type de 100µm.

Ю

15

20

25

30

REVENDICATIONS

- 1. Procédé de lithographie par interférométrie atomique sur une cible. à partir d'une polarisation de spin d'un faisceau d'atomes incidents par pompage optique, de la formation d'un objet de phase par induction magnétique transverse à partir d'une superposition cohérente d'états de spin, puis analyse du faisceau atomique par interaction optique pour ne retenir qu'un seul état de spin, le faisceau atomique émergent contenant une série de termes interférentiels, caractérisé en ce que l'induction magnétique (B) présente un gradient transverse (G) pour former une figure d'interférence annulaire (F), en ce que le faisceau d'atomes présente une distribution de vitesse supérieure à 20 % pour éliminer sensiblement les franges d'interférence autres que la frange centrale formant alors un spot (I_c), et en ce qu'une induction magnétique homogène transverse réglable (Bh) est ajoutée à l'induction à gradient (B) afin de translater de manière prédéterminée le spot central (I_c) sur la cible (8).
- 2. Procédé de lithographie selon la revendication 1, dans lequel le gradient (G) de l'induction transverse est ajusté en fonction du diamètre et de l'intensité de spot souhaités, le spot obtenu (Ic) est d'autant plus fin et intense que le gradient est élevé.
- 3. Installation de nanolithographie par interférométrie atomique comportant un interféromètre de type Stern-Gerlach comprenant comme objet de phase une induction magnétique quadripolaire à gradient transverse créé par quatre barres parallèles (51) conduisant des courants continus alternés (±iA), encadré par deux lames séparatrices (4, 6), précédé et suivi respectivement d'un polariseur de spin (3) et d'un analyseur (7) fonctionnant par pompage laser, le champ homogène additionnel (Bh) étant créé par quatre autres barres additionnelles (52) alimentées de manière appariée avec des courants réglables (+i1, +i2, -i1, -i2) afin de réaliser un champ uniforme d'intensité et d'orientation arbitraire par réglage de deux paramètres (i1, i2).
- 4. Installation de nanolithographie par interféromètrie atomique selon la revendication 3, dans laquelle les barres additionnelles (52) ont même longueur que les barres principales (51), sont disposées à 45° des précédentes et parcourues par des courants appariés (±iн).

15

20

25

30

- 5. Installation de nanolithographie selon la revendication 3, dans laquelle les barres (52) du champ additionnel sont par deux paires de bobines en configuration Helmholtz.
- 6. Installation de nanolithographie par interférométrie atomique selon l'une des revendications 3 et 5, dans laquelle la source d'atomes (1) est une source à décharge continue d'hélium ou d'argon métastable, avec une dispersion de vitesse approximativement maxwellienne d'environ 30 à 40 % autour d'environ 2 km/s pour les atomes d'hélium et de 500 m/s pour les atomes d'argon.
- 7. Installation de nanolithographie par interférométrie atomique selon l'une quelconque des revendications 3 à 6, dans laquelle le pompage laser du polariseur est effectué par diode laser polarisée circulairement, la polarisation en spin étant réalisée sur le niveau Zeeman +1 ou –1.
- 8. Installation de nanolithographie par interférométrie atomique selon l'une quelconque des revendications 3 à 7, dans laquelle l'analyse est conduite par déviation des atomes se trouvant dans des états Zeeman autres que l'état sélectionné en utilisant des fréquences optiques différentes au moyen d'au moins un modulateur acousto-optique couplé au laser (7) en présence d'un champ magnétique intense, par exemple de l'ordre de 100 G.
- 9. Installation de nanolithographie par interférométrie atomique selon l'une quelconque des revendications 3 à 8, dans laquelle les lames séparatrices (4, 6) sont formées de réseaux matériels à fentes ultrafines, de réseaux optiques formés d'une onde stationnaire produit par rayonnement laser réfléchi sur un miroir, ou au moyen d'un champ magnétique de très faible intensité, et tournant de 90° pour induire des transitions entre les états Zeeman.
- 10. Installation de nanolithographie par interférométrie atomique selon l'une quelconque des revendications 3 à 9, dans laquelle le faisceau atomique est collimaté par refroidissement transversal au moyen d'une mélasse optique à deux dimensions, formée de deux mélasses successives identiques (2a, 2b) agissant respectivement sur l'une et l'autre des composantes transverses (X'-X, Y'-Y), utilisant des faisceaux laser (2f) élargis latéralement en fréquence, décalés vers le rouge au moyen d'un modulateur acousto-optique et polarisés circulairement, et chaque mélasse

10

15

20

est formée par une série de réflexions en « zig-zag » du faisceau laser sur deux miroirs plans opposés (M).

- 11. Installation de nanolithographie par interférométrie atomique selon l'une quelconque des revendications 3 à 10, dans laquelle le gradient (G) du champ magnétique transverse (B) est créé par deux bobines en configuration « anti-Helmholtz », ou par un ensemble d'électro-aimants disposés en configuration multipolaire ou 2n-polaires.
- 12. Installation de nanolithographie par interférométrie atomique selon l'une quelconque des revendications 3 à 11, dans laquelle la source (1) est à décharge électrique continue amorcée dans une détente à travers une tuyère, entre une électrode conique en tungstène et la tuyère, pour former un jet d'atomes, respectivement de type alcalin ou chrome, ou métastable de type hydrogène ou gaz rare pour obtenir respectivement le dépôt sur un substrat à traiter ou la gravure d'un motif sur une résine disposée sur ce substrat.
- 13. Installation de nanolithographie par interférométrie atomique selon l'une quelconque des revendications 3 à 12, dans laquelle l'interféromètre est multiple par l'utilisation d'une succession d'interféromètres disposés en série, l'analyseur de l'un étant utilisé comme polariseur du suivant pour éliminer le fond dans la figure d'interférence et affiner le spot central.

F1G.1

FIG.6

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H01J37/317						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS	SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) IPC 7 H01J G03G G03F						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practical search terms used) WPI Data, PAJ, EPO-Internal, INSPEC						
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the rel	levant passages	Relevant to claim No.			
P,X	BOUSTIMI M ET AL: "Atomic interference patterns in the transverse plane" PHYSICAL REVIEW A (ATOMIC, MOLECULAR, AND OPTICAL PHYSICS), MARCH 2000, APS THROUGH AIP, USA, vol. 61, no. 3, pages 033602/1-6, XP002155770 ISSN: 1050-2947 page 33602-5, left-hand column, paragraph 2 -right-hand column, paragraph 2 -/		1-13			
X Furti	her documents are listed in the continuation of box C.	Patent family members are listed	in annex.			
A document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but		T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention odocument of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone of document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. S document member of the same patent family Date of mailing of the international search report				
ļ	mailing address of the ISA	Authorized officer				
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fay: (-31-70) 340-3016	Schaub, G				

Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/FR 00/02664
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	RASEL E M ET AL: "ATOM WAVE INTERFEROMETRY WITH DIFFRACTION GRATINGS OF LIGHT" PHYSICAL REVIEW LETTERS,US,NEW YORK,NY, vol. 75, no. 14, 2 October 1995 (1995-10-02), pages 2633-2637, XP000892519 ISSN: 0031-9007 cited in the application the whole document	1,3
A	KREIS M ET AL: "PATTERN GENERATION WITH CESIUM ATOMIC BEAMS AT NANOMETER SCALES" APPLIED PHYSICS B: LASERS AND OPTICS, DE, SPRINGER INTERNATIONAL, BERLIN, vol. B63, 1996, pages 649-652, XP000885051 ISSN: 0946-2171 cited in the application the whole document	1,3
A	LISON F ET AL: "Lithography with cesium atomic beams" TECHNICAL DIGEST. SUMMARIES OF PAPERS PRESENTED AT THE INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE. CONFERENCE EDITION. 1998 TECHNICAL DIGEST SERIES, VOL.7 (IEEE CAT. NO.98CH36236), TECHNICAL DIGEST SUMMARIES OF PAPERS PRESENTED AT THE INTERNATIONAL, page 166 XP002142925 1998, Washington, DC, USA, Opt. Soc. America, USA ISBN: 1-55752-541-2 the whole document	1,3
Α	TIMP G ET AL: "USING LIGHT AS A LENS FOR SUBMICRON, NEUTRAL-ATOM LITHOGRAPHY" PHYSICAL REVIEW LETTERS,US,AMERICAN PHYSICAL SOCIETY, NEW YORK, vol. 69, no. 11, 14 September 1992 (1992-09-14), pages 1636-1639, XP000320466 ISSN: 0031-9007 the whole document	1,3
A	MCCLELLAND J JET AL: "LASER-FOCUSED ATOMIC DEPOSITION" SCIENCE,US,AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, vol. 262, no. 5135, 5 November 1993 (1993-11-05), pages 877-880, XP000579771 ISSN: 0036-8075 the whole document	1,3

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 H01J37/317						
Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB						
B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE						
Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 H01J G03G G03F						
Documentation consultée autre que la documentation mínimale dans la mesure où ces documents relevent des domaines sur lesquels a porté la recherche						
Base de don	nnées électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisat	ole, termes de recherche utilisés)			
WPI Data, PAJ, EPO-Internal, INSPEC						
C. DOCUME	ENTS CONSIDERES COMME PERTINENTS					
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication	des passages pertinents	no. des revendications visées			
P,X	BOUSTIMI M ET AL: "Atomic interfer patterns in the transverse plane" PHYSICAL REVIEW A (ATOMIC, MOLECUL OPTICAL PHYSICS), MARCH 2000, APS AIP, USA, vol. 61, no. 3, pages 033602/1-6, XP002155770 ISSN: 1050-2947 page 33602-5, colonne de gauche, a-colonne de droite, alinéa 2	AR, AND THROUGH	1-13			
X Voir	la suite du cadre C pour la fin de la liste des documents	Les documents de familles de bre	evets sont indiqués en annexe			
° Catégories	s spéciales de documents cités:	C document ultérieur publié après la date	de dépôt international ou la			
"T" document utérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la date de priorité et n'appartenenant pas à l'état de la technique, non technique pertinent, mais cité pour comprendre le principe						
°E' document anterieur, mais publie à la date de dépôt international						
L document pouvant jeter un doute sur une revendication de inventive par rapport au document considéré isolément						
priorité ou cae pour determiner la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive						
"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens document est associé à un ou plusieurs autres document est associé à un ou plusieurs autres document publié avant la date de dépôt international, mais pour une personne du métier						
postérieurement à la date de priorité revendiquée "&" document qui fait partie de la même famille de brevets						
Date a laqu	elle la recherche internationale a été effectivement achevée	Date d'expedition du présent rapport o	de recherche internationale			
1	8 décembre 2000	05/01/2001				
Nom et adre	esse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Fonctionnaire autorisé				
	Tel. (+31-70) 340-2040. Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schaub, G				

		PC1/FR UU/U2004
	OCUMENTS CONSIDERES COMME PERTINENTS	
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indicationdes passages pe	rtinents no. des revendications visées
A	RASEL E M ET AL: "ATOM WAVE INTERFEROMETRY WITH DIFFRACTION GRATINGS OF LIGHT" PHYSICAL REVIEW LETTERS,US,NEW YORK,NY, vol. 75, no. 14, 2 octobre 1995 (1995-10-02), pages 2633-2637, XP000892519 ISSN: 0031-9007 cité dans la demande le document en entier	1,3
Α	KREIS M ET AL: "PATTERN GENERATION WITH CESIUM ATOMIC BEAMS AT NANOMETER SCALES" APPLIED PHYSICS B: LASERS AND OPTICS, DE, SPRINGER INTERNATIONAL, BERLIN, vol. B63, 1996, pages 649-652, XP000885051 ISSN: 0946-2171 cité dans la demande le document en entier	1,3
A	LISON F ET AL: "Lithography with cesium atomic beams" TECHNICAL DIGEST. SUMMARIES OF PAPERS PRESENTED AT THE INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE. CONFERENCE EDITION. 1998 TECHNICAL DIGEST SERIES, VOL.7 (IEEE CAT. NO.98CH36236), TECHNICAL DIGEST SUMMARIES OF PAPERS PRESENTED AT THE INTERNATIONAL, page 166 XPO02142925 1998, Washington, DC, USA, Opt. Soc. America, USA ISBN: 1-55752-541-2 le document en entier	1,3
А	TIMP G ET AL: "USING LIGHT AS A LENS FOR SUBMICRON, NEUTRAL-ATOM LITHOGRAPHY" PHYSICAL REVIEW LETTERS, US, AMERICAN PHYSICAL SOCIETY, NEW YORK, vol. 69, no. 11, 14 septembre 1992 (1992-09-14), pages 1636-1639, XP000320466 ISSN: 0031-9007 le document en entier	1,3
A	MCCLELLAND J JET AL: "LASER-FOCUSED ATOMIC DEPOSITION" SCIENCE,US,AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, vol. 262, no. 5135, 5 novembre 1993 (1993-11-05), pages 877-880, XP000579771 ISSN: 0036-8075 le document en entier	1,3