Python For Data Science Cheat Sheet Importing Data

Importing Data in Python

Most of the time, you'll use either **NumPy** or **pandas** to import your data:

```
>>> import numpy as np >>> import pandas as pd
```

Help

```
>>> np.info(np.ndarray.dtype)
>>> help(pd.read_csv)
```

Text Files

Plain Text Files

```
>>> filename = 'huck_finn.txt'
>>> file = open(filename, mode='r')
>>> text = file.read()
>>> print(file.closed)
>>> file.close()
>>> print(text)
Open the file for reading
Read a file's contents
Check whether file is closed
Close file
```

Using the context manager with

```
>>> with open('huck_finn.txt', 'r') as file:
    print(file.readline())
    print(file.readline())
    print(file.readline())
```

Table Data: Flat Files

Importing Flat Files with numpy

Files with one data type

Files with mixed data types

>>> data array = np.recfromcsv(filename)

The default dtype of the np.recfromcsv() function is None.

Importing Flat Files with pandas

Excel Spreadsheets

To access the sheet names, use the sheet names attribute:

```
>>> data.sheet names
```

SAS Files

```
>>> from sas7bdat import SAS7BDAT
>>> with SAS7BDAT('urbanpop.sas7bdat') as file:
    df_sas = file.to_data_frame()
```

Stata Files

```
>>> data = pd.read stata('urbanpop.dta')
```

Relational Databases

```
>>> from sqlalchemy import create_engine
>>> engine = create engine('sqlite://Northwind.sqlite')
```

Use the table names () method to fetch a list of table names:

```
>>> table names = engine.table names()
```

Querying Relational Databases

```
>>> con = engine.connect()
>>> rs = con.execute("SELECT * FROM Orders")
>>> df = pd.DataFrame(rs.fetchall())
>>> df.columns = rs.keys()
>>> con.close()
```

Using the context manager with

```
>>> with engine.connect() as con:
    rs = con.execute("SELECT OrderID FROM Orders")
    df = pd.DataFrame(rs.fetchmany(size=5))
    df.columns = rs.keys()
```

Querying relational databases with pandas

```
>>> df = pd.read sql query("SELECT * FROM Orders", engine)
```

Exploring Your Data

NumPy Arrays

>>> data_array.dtype	Data type of array elements
>>> data_array.shape	Array dimensions
>>> len(data_array)	Length of array

pandas DataFrames

```
>>> df.head()
>>> df.tail()
>>> df.tail()
>>> df.index
>>> df.columns
>>> df.info()
>>> df.info()
>>> data_array = data.values

Return first DataFrame rows
Return last DataFrame rows
Describe index
Describe DataFrame columns
Info on DataFrame
Convert a DataFrame to an a NumPy array
```

Pickled Files

```
>>> import pickle
>>> with open('pickled_fruit.pkl', 'rb') as file:
    pickled_data = pickle.load(file)
```

HDF5 Files

```
>>> import h5py
>>> filename = 'H-H1_LOSC_4_v1-815411200-4096.hdf5'
>>> data = h5py.File(filename, 'r')
```

Matlab Files

```
>>> import scipy.io
>>> filename = 'workspace.mat'
>>> mat = scipy.io.loadmat(filename)
```

Exploring Dictionaries

Accessing Elements with Functions

Accessing Data Items with Keys

Navigating Your FileSystem

Magic Commands

!ls	List directory contents of files and directories
%cd	Change current working directory
%pwd	Return the current working directory path

os Library

```
>>> import os
>>> path = "/usr/tmp"
>>> wd = os.getcwd()
>>> os.listdir(wd)
>>> os.chdir(path)
>>> os.rename("testl.txt")
>>> os.remove("testl.txt")
>>> os.mkdir("newdir")

>>> os.mkdir("newdir")

Store the name of current directory in a string
Output contents of the directory in a list
Change current working directory
Rename a file

Delete an existing file
Create a new directory
```