Fibonacci GCD

Fibonacci numbers have the following form:

$$F_1 = 1 \ F_2 = 1 \ F_3 = 2 \ dots \ F_n = F_{n-2} + F_{n-1}$$

We have an array a_1, a_2, \ldots, a_N which contains N elements.

We want to find $\gcd(F_{a_1}, F_{a_2}, F_{a_3}, \cdots, F_{a_N})$.

Input Format

The first line contains N, where N denotes size of the array.

Each of the next N lines contains a number: the $i^{
m th}$ line contains a_i .

Output Format

Print a single integer — the remainder of the division of the resulting number by $10^9 + 7$.

Constraints

 $1 \leq N \leq 2 imes 10^5$ $1 \leq a_i \leq 10^{12}$

Sample Input 1

3 2 3 5

Sample Output 1

1

Explanation 1

$$F_2 = 1$$

 $F_3 = 2$
 $F_5 = 5$
 $\gcd(1, 2, 5) = 1$

Sample Input 2

2 3 6

Sample Output 2

2

Explanation 2

$$F_3 = 2$$

 $F_6 = 8$
 $\gcd(2, 8) = 2$