DATA SCIENCE

JENS BAETENS

WAT IS DATA SCIENCE?

https://www.menti.com/d7mr61nrs5

WELKE VOETBALPLOEG GAAT WINNEN?

Eerste stap om deze vraag te antwoorden is om data te gaan zoeken

Naar wat voor data moet er gezocht worden?

Over welke periode moet er data gezocht worden?

Welke databronnen kunnen gebruikt worden?

VERWERKING VERZAMELDE DATA

ELDE DATA

1/1/2001 Gent

1-1/01

07-01/2001 Gent

Sport

gent Spoor fouten op: verkeerde ingave, labelling, ruis ...

Zorg dat de privacy in de dataset gegarandeerd is

Reduceer het volume door onnodige data, duplicaten, ... te verwijderen

Zoek naar reeds bestaande patronen in de data.

MODEL OPBOUWEN VOOR DE DATA

Kies 1 of meerdere machine learning technieken

Train met de verzamelde data

Valideer je resultaten en vergelijk verschillende technieken.

Till verros

COMMUNICEER EN VISUALISEER

Hoe goed werkt ons model?

Wat kunnen we eruit leren?

Op maat van je doelpubliek:

- Grote publiek
- Bedrijfsleiders \
- Politici

Landen	Odds*
Engeland	7.50
Belgie	(8.00)
Frankrijk	4.50
Nederland	15.00
Spanje	8.50
Duitsland	11.00
Portugal	8.50
Italie	7.50

DEFINITIE

Data Science is het vermogen om de juiste data

- te selecteren
- te begrijpen
- te verwerken
- te visualiseren

met als doel de waarde uit de data te halen.

Ly onderkoud - Anraden von films Ly planning

Olocha DRoll norsolde Vota Degripa Machine Learning Math and Computer N. 59L Science/II Statistics Data Science Traditional Software Chamile - ataonyatal

mevisile - Scans

liveotest

gesil. Research Development Domains/Business Knowledge

NOOD AAN DATASCIENCE?

Source: https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit_36-billion-by-2025/

NOOD AAN DATASCIENCE?

Source: https://data-flair.training/blogs/why-learn-data-science/

MORE EXAMPLES OF USE CASES

Financiële sector

- Fraude detecteren
- Risico's inschatten
- Beleggen op de beurs

Gezondheidszorg

- Bij een aantal ziektes betere diagnoses dan menselijke dokters
- Remote opvolgen door middel van chatbots, remote sensors, ...
- Ontlast de dokter voor behandeling en opvolging patiënten

MORE EXAMPLES OF USE CASES

Marketing

- Gepersonaliseerde reclame
- Klanten binding
- Type klant detecteren en anders behandelen

soort reclame, opvolging

COMPUTER VISION

Leer Coarring -CNN

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

(VDA > 6 PO L> ML brinan

Foto = Febra Model 1

(Translate) 2

Telest -> foto 3

Machine learning use cases in retail

WAAROM NU?

Veel snellere hardware

- Custom designed GPU's

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Veel meer data beschikbaar looktan

-(Internet of Things 657's fonerers

1024 & Biblish

Good Kilolyt Social Media _

Prijs van dataopslag gezakt

WAAROM NU?

Betere algoritmes

Open source frameworks

- Python, PyTorch, Tensorflow, ... Slearn St - technicken

Step 2: Define The Report

Step 3: Generate SQL commands

What happened?

Descriptive

Analysis

Standard

Reporting

Business Intelligence Analyst What should I do?

Data Science Questions

Why? What will happen?

Data Scientist **ENGAGEMENT PROCESS**

Step 1: Define Hypothesis to Test ←

Predictive

Analysis

Prescriptive Analysis

Step 2: Gather Data

Step 3: Build Data Model

DIFFERENCE BETWEEN BUSINESS INTELLIGENCE AND DATA SCIENCE

Step 4: Create Report

The data warehouse is a "schema-on-load" approach because the data schema must be defined and built prior to loading data into the data warehouse. Without an underlying data model, the BI tools will not work.

CHARACTERISTICS	Focus	Reports, KPIs, trends	Patterns, correlations, models
	Process	Static, comparative	Exploratory, experimentation, visual
	Data Sources	Pre-planned, added slowly	On the fly, as-needed
	Transform	Up front, carefully planned	In-database, on-demand, enrichment
	Data quality	Single version of truth	("Good enough," probabilities
	Data model	Schema on load	Schema on query
	Analytics	Retrospective, Descriptive	Predictive, Prescriptive, Preventative

Step 5: Build and Refine Analytic Models

Step 6: Ascertain Goodness of Fit —

