## **Best First Search**



The distances in the picture are the real distances between the nodes. The estimated remaining distances to the goal, G are:



| Open        | Closed                |
|-------------|-----------------------|
| A16         |                       |
| B14 C20     | A16                   |
| D18         | A16 B14               |
| C20 E23 F24 | A16 B14 D18           |
| E11 B12 F24 | A16 C20 D18           |
| B12 F24 G24 | A16 C20 E11           |
| D16 F24 G24 | A16 B12 C20 E11       |
| F22 G24     | A16 B12 C20 D16 E11   |
| G22         | A16 B12 C20 D16 E11F2 |

The heuristic function, h is not monotone, however. h(C) = 16, h(B) = 4, and cost(C,B) = 4, so h(C) - h(B) > cost(C,B). Therefore we had the first occurence of node D, which was later replaced by a better D.

The estimations are optimistic, so we know that the found path is the best.

But if we replace the estimated distance from F to G with 8 we get:

| Open        | Closed              |
|-------------|---------------------|
| A16         |                     |
| B14 C20     | A16                 |
| D18         | A16 B14             |
| C20 E23 F28 | A16 B14 D18         |
| E11 B12 F28 | A16 C20 D18         |
| B12 G24 F28 | A16 C20 E11         |
| D16 G24 F28 | A16 B12 C20 E11     |
| G24 F26     | A16 B12 C20 D16 E11 |

Now we have G24 as the current state, so we stop the search. We have found a solution according to method A, but it is not the best one. The big estimate of F hid the best solution.