Wykład 5

poniedziałek, 29 października 2018 11:21

· võun avie liniome brugiago vzedu ____ niejednovodne

[ednovodne

UKEAD FUNDAMENTALNY

· pava vozniazan (y,(+), yz(+)) voznania jednovodnego B Spetniajara marunch

$$\det \begin{bmatrix} y_1(t) & y_2(t) \\ y_1(t) & y_2(t) \end{bmatrix} \neq 0$$

Luyznacznik Wronskiego

WZÓR LIOUVILLE'A

" jeseli funkcje y.(1) oraz y. (1) tworzą ukłak funkamentalny
lla rownania liniorego jednovodnogo na przedziale (a,b) oraz
te(a,b) to ich wronskian wyraża się wzorem:

$$W(t) = W(t_0) \cdot e^{-\int_0^t p(x) dx}$$

$$gb_{zie}$$
 $W(t) = W(y_1(t), y_2(t)) = bet [y_1(t), y_2(t)]$

PRZYKŁAD:

- · Dane jest romanie y"(+) 2y'(+) +y(+)=0.
- · Znajac jedno z roznia zan tego rómnania, wyznaczyć dvugie roznia zanie tab, oby para y,(t), yz(t) toornyła uhład fundamentalny

$$y_{1}(1) = e^{+} + \epsilon R$$

 $y_{2}(0) = 1$
 $y_{2}(0) = 0$

nazywamy równaniem liniowym o statych wsystczynnikach (niejednorodnym)

- · jezeli h(t)=0, to takie równanie bądziemy nazymali liniomym jednorodnym o statych współczynnikach : y"(t) + py'(t) + qy(t) = 0
- rownanie postaci $\lambda^2 + p\lambda + q = 0$ nazywany rownaniem charakterystycznym dla rownania D.
- · wielomian postaci w (1) = 2 + p2 + q nazywany wielomianem chovaliterystycznym dla vównania D.
- niech λ_1 , λ_2 beda duoma rożnymi pierwiastkami vzeczymistymi wielomiano w (2). Włedy układ fundamentalny dla równania D okłada się z funkcji y, (+) = $e^{\lambda_1 t}$ ovaz y₂(+) = $e^{\lambda_2 t}$. Są to tzw. rozniazania szczególne dla równania D.
 - natomiast rozwiązanie ogólne rozwiązania D wyroża się wzorem $y(t) = c_1 y_1(t) + c_2 y_2(t)$, tzn. $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$.
- niech λ_o będzie poduójnym pierwiastkiem wielomianu charakterystycznego.
 Wtedy układ fundamentalny dla rómnania D składa się z funkcji
 y₁(t) = e^{2ot}, y₂(t) = t · e^{2ot}. Το sm. roznimzania szczególne
 - natomiast voznia zanie ogólne równania D my vaza się w zorem $y(t) = c_1 y_1(t) + c_2 y_2(t)$, $c_2 y_3(t) = c_1 e^{\lambda_0 t} + c_2 t e^{\lambda_0 t}$
- niech $\lambda_1 = \alpha + \beta i$ ovaz $\lambda_2 = \alpha \beta i$, $\beta > 0$, beday pierwissthamizespolonymi dla nielomianu charakteryctycznego w (λ) . W tedy u kład fundamentalny dla równania D bedzie składał się z funkcji $y_1(t) = e^{\alpha t} \cdot co_2(\beta t)$ $y_2(t) = e^{\alpha t} \cdot sin(\beta t)$ \in rozw. szczególne
 - roznizzanie gjélne rénnania D myroza się wzorem $y(t) = c_1 y_1(t) + c_2 y_2(t) = c_1 e^{at} cos(\beta t) + c_2 e^{at} sin(\beta t)$
- · skad bierze sie eat cos(Bt) i eat sin (Bt)
 - $e^{\lambda t}$ $\lambda = \alpha + \beta$; $e^{i\varphi} = \cos \varphi + i \sin \varphi$
 - $e^{(\alpha+\beta+1)+} = e^{\alpha+} \cdot e^{\beta+1} = e^{\alpha+} \cdot (\cos\beta+1) = e^{(\alpha+\beta+1)+}$
 - = ext cos Bt + ext sin Bt i

PRZYKŁADY

Przyklad 1:
$$y''(t) = 3y'(t) + 2y(t) = 0$$

 $\lambda^2 - 3\lambda + 2 = 0$

	$\Delta = 1$ $\lambda_1 = 1$ $\lambda_2 = 2$
	omentalny oktaba sia z Z vozniazam
y, (t)= e	Voznia zania szczogólne
y (t) = c,	et + (2 e ²⁺ Lossin ranie ogélne
Przykład 2	y''(t) - 6y'(t) + 9y(t) = 0
	$\lambda^2 - 6\lambda + 9 = 0$
	$(\lambda - 3)^2 = 0 \qquad \lambda = 3$
٠ ١ ١ ١ ١	
out. [Luda	$y_{2}(t) = e^{3t}$ $y_{2}(t) = t \cdot e^{3t}$ $y_{3}(t) = t \cdot e^{3t}$ Voznia zania szczególne
	y(t)=c1e2+c2+e2+ ~ voznie zenie ogólne
Przykład 3	$y''(t) + 4y(t) = 0$ $y^{2} + 4 = 0$
	$(\lambda - 2i)(\lambda + 2i) = 0$
	$\lambda_1 = 2$: $\lambda_2 = -2$:
	y1(+)= e° · cos 2+ = cos 2+
	yz(t)=e° · sin2t = sin2t
	y(t) = c, cos2+ +c2 sin2+ Frozniaranie ogólne
Zadanie t	ekstone:
byznaczył 10 m	vémnanie vouhv, n któnym przyspieszenie jest mielkościa stata i wynowi
+= 0 pkt	przebyła droga punktu materialnego do chnili += 25, jeżeli w chnili . materialny przebył drogą y= 0; nadano mu prądkość w chnili +=0=55
vo -na,	= 5 %
y(+) - 1	potosenie plat, materialnego - chuili t
y"(+)-	Przyspieszenie phł. malerialnego
(u'(+)=1	(t) = u'(t)

$$\begin{cases} y''(t) = 10 \\ y(0) = 0 \\ y'(0) = 5 \end{cases}$$

RÓWNANIA RÓŻNICZKOWE NIEJEDNORODNE

- · postar rozmiazania romnania linionego :
 - niech φ(t) bedzie szczególnym rozninzaniem równania A oraz niech
 para y₁(t), y₂(t) bedzie układem fundamentalnym równania jednovodnego.
 - · wtedy dle każdego rozniazania ogólnego równania A istnieja state C1, C2 takie, że y (+)= c1y1(+) + c2y2(+) + \phi(+)

METODA UZMIENNIANIA STAŁYCH

* zatoiny, ze para y, (t), y, (t) twoxzy układ fundamentalny równania Liniowego jednorodnego. Wtedy funkcją y(t)=C1(t)y1(t) + c2(t)y2(t) jest rozwiazaniem vównania liniowego niejednorodnego, gdzie state (1(t), c2(t) spetniają układ równani

$$\begin{bmatrix} y_1(t) & y_2(t) \\ y_1(t) & y_2(t) \end{bmatrix} \cdot \begin{bmatrix} c_1(t) \\ c_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ h(t) \end{bmatrix}$$