Homework I - Group 107

(ist1103811, ist1103479)

I. Pen-and-paper

1) Answer 1

2) Answer 2

Homework I - Group 107

(ist1103811, ist1103479)

3) Answer 3

Homework I – Group 107

(ist1103811, ist1103479)

4) Answer 4

1) 97	nı	92	72	Σn ₁ : γ 8
0.24	10		5	나는 그 사람들은 그는 일을 보고 있다. 그는 그를 보고 있는데 그를 보고 있다.
0.06	11	2	2	51,278
0.04	12	0	9.5	Ση ₁ 2=650
9.36	8	0	9.5	5h ₂ ² = 628,5
0.32	9	0	9.5	
0.68	3	2	2	ΣΛ ₁ Λ ₂ 2 517. 5
0.5	1	0	3.5	
0.76	2	2	2	$\sum_{n_1,n_2} \frac{\sum_{n_1} \sum_{n_2}}{72}$ 517.5-507
0.46	6	1	S	N= 0 0 7 766
0.62	4	0	3.5	$\int \left(\left[\sum N_1^2 - \frac{(\sum N_1)^2}{12} \right] \left(\sum N_2^2 - \frac{(\sum N_2)^2}{12} \right) - \int \left(650 - 507 \right) \left(628.5 - 507 \right)$
0.44	7	1	5	
0.52	5	0	5.5	
				Correlações auto paça

5) Answer 5

II. Programming and critical analysis

1) Answer 1

Homework I - Group 107

(ist1103811, ist1103479)

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.feature selection import f classif
from scipy.io import arff
data, meta = arff.loadarff("column_diagnosis.arff")
df = pd.DataFrame(data)
target_variable = 'class'
X = df.drop(columns=[target_variable])
y = df[target_variable]
f_scores, _ = f_classif(X, y)
feature_scores_df = pd.DataFrame({'Feature': X.columns, 'F-Score': f_scores})
feature_scores_df = feature_scores_df.sort_values(by='F-Score', ascending=False)
highest_discriminative_var = feature_scores_df.iloc[0]['Feature']
print(f"Input Variable with Highest Discriminative Power:\n{fea-
ture_scores_df.head(1)}")
lowest discriminative var = feature scores df.iloc[-1]['Feature']
print(f"\nInput Variable with Lowest Discriminative Power:\n{fea-
ture_scores_df.tail(1)}")
plt.figure(figsize=(12, 5))
sns.kdeplot(data=df, x=highest_discriminative_var, hue=target_variable, com-
mon norm=False, shade=True)
plt.title(f'Class-Conditional PDFs for {highest_discriminative_var}')
plt.xlabel(highest_discriminative_var)
plt.ylabel('Density')
plt.legend(title=target variable)
plt.savefig('high_discriminative_pdf.png')
plt.show()
plt.figure(figsize=(12, 5))
sns.kdeplot(data=df, x=lowest_discriminative_var, hue=target_variable, com-
mon_norm=False, shade=True)
plt.title(f'Class-Conditional PDFs for {lowest_discriminative_var}')
plt.xlabel(lowest_discriminative_var)
plt.ylabel('Density')
plt.legend(title=target variable)
plt.savefig('low_discriminative_pdf.png')
plt.show()
```

TÉCNICO LISBOA

Aprendizagem 2022/23

Homework I - Group 107

(ist1103811, ist1103479)

Output:

Input Variable with Highest Discriminative Power:

Feature F-Score

5 degree_spondylolisthesis 119.122881

Input Variable with Lowest Discriminative Power:

Feature F-Score

4 pelvic_radius 16.866935

Low discriminative plot:

High discriminative plot:

2) Answer 2

Homework I – Group 107

(ist1103811, ist1103479)

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
from scipy.io import arff
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import pandas as pd
data, meta = arff.loadarff("column_diagnosis.arff")
df = pd.DataFrame(data)
X = df.drop(columns=['class']).values
y = df['class']
label encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
depth_limits = [1, 2, 3, 4, 5, 6, 8, 10]
train_accuracies = []
test accuracies = []
seed = 0
num_runs = 10
for depth_limit in depth_limits:
   train_acc = 0
   test_acc = 0
   for _ in range(num_runs):
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
stratify=y, random_state=seed)
        clf = DecisionTreeClassifier(max_depth=depth_limit, random_state=seed)
        clf.fit(X_train, y_train)
       train_pred = clf.predict(X_train)
       test_pred = clf.predict(X_test)
       train_acc += accuracy_score(y_train, train_pred)
        test_acc += accuracy_score(y_test, test_pred)
   train_avg_acc = train_acc / num_runs
    test_avg_acc = test_acc / num_runs
```

Homework I - Group 107

(ist1103811, ist1103479)

```
train_accuracies.append(train_avg_acc)
    test_accuracies.append(test_avg_acc)

plt.figure(figsize=(10, 6))
plt.plot(depth_limits, train_accuracies, marker='o', label='Training Accuracy')
plt.plot(depth_limits, test_accuracies, marker='o', label='Testing Accuracy')
plt.title('Decision Tree Accuracy vs. Depth Limit')
plt.xlabel('Depth Limit')
plt.ylabel('Accuracy')
plt.ylabel('Accuracy')
plt.xticks(depth_limits)
plt.legend()
plt.grid(True)
plt.savefig("accuracy_vs_depth.png")
```


3) Answer 3

Analisando a training accuracy, representada em azul, podemos ver que ela aumenta à medida que o limite de profundidade da árvore aumenta, o que nos mostra que esta árvore de decisão tem uma boa performance nos treinos pelos quais foi submetida. A testing accuracy, por sua vez, também aumenta à medida que o limite de profundidade aumenta, o que nos mostra que o modelo generaliza melhor mesmo com o aumento da complexidade do modelo. Porém, por volta do limite de profundidade 4, a testing accuracy fica constante, até começando a diminuir no limite de profundidade 5. Esta descida na testing accuracy sugere que estamos com um problema de overfitting. O modelo tem um bom desempenho nos treinos, porém não consegue transitar essa boa performance para dados não vistos, acabando por reduzir a testing accuracy. Por último, temos a escolha de profunidade ótima. Tal como o nome indica, este parâmetro designa o pico de precisão de teste (que por observação do gráfico se encontra em torno do limite de profundidade 3 e 4) e a capacidade de generalização óptima do

TÉCNICO LISBOA

Aprendizagem 2022/23

Homework I - Group 107

(ist1103811, ist1103479)

modelo. Se ultrapassarmos este ponto ideal, , o modelo torna-se demasiado complexo e ocorre overfitting, o que resulta numa diminuição da precisão do teste.

Answer 4 (i)

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree
from sklearn.preprocessing import LabelEncoder
from scipy.io import arff
data = arff.loadarff('column_diagnosis.arff')
df = pd.DataFrame(data[0])
df['class'] = df['class'].str.decode('utf-8')
le = LabelEncoder()
df['class'] = le.fit_transform(df['class'])
X = df.drop(columns='class')
y = df['class']
clf = DecisionTreeClassifier(random state=0, min samples leaf=20)
clf.fit(X, y)
plt.figure(figsize=(12, 8))
plot_tree(clf, filled=True, feature_names=X.columns, class_names=le.classes_)
plt.savefig('plot.png')
plt.show()
```

Homework I – Group 107

(ist1103811, ist1103479)

4) Answer 4 (ii)

Homework I – Group 107

(ist1103811, ist1103479)

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder
from scipy.io import arff
data = arff.loadarff('column_diagnosis.arff')
df = pd.DataFrame(data[0])
unique_classes = df['class'].unique()
print("Unique Classes:", unique_classes)
label encoder = LabelEncoder()
df['class'] = label_encoder.fit_transform(df['class'])
X = df.drop(columns=['class'])
y = df['class']
clf = DecisionTreeClassifier(random_state=0, min_samples_leaf=20)
clf.fit(X, y)
feature_importances = clf.feature_importances_
associations_df = pd.DataFrame({'Feature': X.columns, 'Association Importance':
feature_importances})
associations_df = associations_df.sort_values(by='Association Importance',
ascending=False)
print("Hernia-Conditional Associations (Feature Importance):")
print(associations_df)
```

Output:

Unique Classes: [b'Hernia' b'Spondylolisthesis' b'Normal'] Hernia-Conditional Associations (Feature Importance):

Feature Association Importance

5	degree_spondylolisthesis	0.795233
3	sacral_slope	0.123995
4	pelvic_radius	0.080772
0	pelvic_incidence	0.000000
1	pelvic_tilt	0.000000
2	lumbar_lordosis_angle	0.000000