# Lab 6 Overview of the Linear Mixed Effects Model

#### Linear mixed effects model

Recall that in ordinary linear regression, we observe n independent random variables  $Y_i$  (i = 1, ..., n) such that  $Y_i = X_i'\beta + \epsilon_i$  with  $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$  (Lecture 2, Slide 7). In the setting of longitudinal data, we have not one, but multiple observations for the same subject:

$$Y_i = X_i'\beta + \epsilon_i \longrightarrow Y_{ij} = X_{ij}'\beta + \epsilon_{ij}$$

Repeated measures on the same individuals are likely to be correlated and must be accounted for to obtain valid inferences (Lecture 1, Slide 6). Linear mixed effects models extend traditional linear models by allowing a subset of the regression parameters to vary randomly from one individual to another, thereby accounting for sources of natural heterogeneity in the population that arise from both between- and within- subject variability (Lecture 10, Slide 17):

$$Y_{ij} = X'_{ij}\beta + \epsilon_{ij} \longrightarrow Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i' + \epsilon_{ij}$$

Specifically, by assuming that  $b_i \stackrel{iid}{\sim} N(0,G)$  and  $\epsilon_{ij} \stackrel{iid}{\sim} N(0,\sigma^2)$ , we allow the mean model for each subject (aka conditional mean)

$$E(Y_{ij}|X_{ij},b_i) = X'_{ij}\beta + Z'_{ij}b_i$$

to differ from the population mean model (aka marginal mean)

$$E(Y_{ij}|X_{ij}) = X'_{ij}\beta$$

by  $Z'_{ij}b_i$  (Lecture 10, Slides 33). Furthermore, each observation  $Y_{ij}$  is allowed to vary above or below its subject-specific mean model by  $\epsilon_{ij}$ . You can therefore think of G as effectively capturing the between-subject variability and  $\sigma^2$  as the within-subject error variance.

#### General interpretation of the parameters

- $\beta_1$ : mean response for baseline group (averaged over subjects)
- $\beta_k$ : change in mean response for every unit change in  $X_{ijk}$ , conditional on all  $X_{ijk'}$ ,  $k' \neq k$  (and averaged over subjects)
- $b_{1i}, b_{2i}$ : 1st and 2nd random effect for individual i
- $Var(b_{1i}) = G_{11}$ ,  $Var(b_{2i}) = G_{22}$ : between-subject variance of the 1st and 2nd random effect
- $Cov(b_{1i}, b_{2i}) = G_{12} = G_{21}$ : between-subject covariance of the 1st and 2nd random effect
- $\sigma^2$ : within-subject error variance
- $Cov(Y_i) = Z_i G Z'_i + \sigma^2 I_{n_i}$ : marginal covariance of the observations

# Example: Random intercept model

Consider the linear trend model from Lecture 10, Slide 24:

$$Y_{ij} = \begin{pmatrix} 1 & t_{ij} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} b_i \end{pmatrix} + \epsilon_{ij}$$
$$= (\beta_1 + b_i) + \beta_2 t_{ij} + \epsilon_{ij}$$

Under this model,

- subject-specific mean responses for individuals A and B (broken lines) deviate from the population trend (solid line) by  $b_1$  and  $b_2$ .
- inclusion of measurement errors,  $\epsilon_{ij}$ , allows responses at any occasion to vary randomly above or below subject-specific trajectories.



## Example: Random intercept and slope model

Consider the mixed effects analysis from Homework 5, Part 2 (also 2014 Midterm, Question 3):

$$Y_{ij} = \begin{pmatrix} 1 & gender_i & age_{ij} & gender_i * age_{ij} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} + \begin{pmatrix} 1 & age_{ij} \end{pmatrix} \begin{pmatrix} b_{1i} \\ b_{2i} \end{pmatrix} + \epsilon_{ij}$$
$$= (\beta_1 + b_{1i}) + \beta_2 gender_i + (\beta_3 + b_{2i}) age_{ij} + \beta_4 gender_i * age_{ij} + \epsilon_{ij}$$

Based on the SAS output below,

- Within-subject error variance =  $\hat{\sigma}^2 = 1.7162$
- Between-subject variance of the intercepts =  $\widehat{G}_{11} = 5.7864$
- Difference in mean intercept by gender =  $\hat{\beta}_2 = 1.0321$
- Difference in mean slope by gender =  $\hat{\beta}_4$  = -0.3048
- Standard deviation of the slopes among subjects, conditional upon gender =  $\sqrt{\hat{G}_{22}}$  = 0.1803
- Linear rate of change over time in the mean response for males =  $\hat{\beta}_3 = 0.7844$
- Linear rate of change over time in the mean response for females =  $\hat{\beta}_3 + \hat{\beta}_4 = 0.7844 + (-0.3048) = 0.4796$
- Estimated mean response at age 10 for males =  $\hat{\beta}_1 + 10\hat{\beta}_3 = 16.3406 + 10(0.7844) = 24.1846$
- Estimated mean response at age 10 for females =  $(\hat{\beta}_1 + \hat{\beta}_2) + 10(\hat{\beta}_3 + \hat{\beta}_4) = (16.3406 + 1.0321) + 10(0.4796) = 22.1687$
- Range in which 95% of the linear rates of change in males fall =  $\hat{\beta}_3 \pm 1.96 * \sqrt{\hat{G}_{22}} = 0.7844 \pm 1.96 * 0.1803$
- 95% confidence interval for the linear rate of change in the mean response for males =  $\hat{\beta}_3 \pm 1.96 * SE(\hat{\beta}_3) = 0.7844 \pm 1.96 * 0.0860$
- The predicted linear change over time for child 1, who happens to be female =  $\hat{\beta}_3 + \hat{\beta}_4 + \hat{b}_{21} = 0.7844 + (-0.3048) + (-0.04475) = 0.4349$

#### The SAS System

#### The Mixed Procedure

#### Model Information

| Data Set                  | WORK.DENTAL2 |
|---------------------------|--------------|
| Dependent Variable        | у            |
| Covariance Structure      | Unstructured |
| Subject Effect            | id           |
| Estimation Method         | REML         |
| Residual Variance Method  | Profile      |
| Fixed Effects SE Method   | Model-Based  |
| Degrees of Freedom Method | Containment  |

#### Dimensions

| Covariance  | Parameters    | 4  |
|-------------|---------------|----|
| Columns in  | X             | 6  |
| Columns in  | Z Per Subject | 2  |
| Subjects    |               | 27 |
| Max Obs Per | Subject       | 4  |

## Number of Observations

| Number of | Observations | Read     | 108 |
|-----------|--------------|----------|-----|
| Number of | Observations | Used     | 108 |
| Number of | Observations | Not Used | 0   |

#### Estimated G Matrix (Btwn subject var-cov matrix for random effects)

| Row | Effect    | Subject | Col1    | Col2    |
|-----|-----------|---------|---------|---------|
| 1   | Intercept | 1       | 5.7864  | -0.2896 |
| 2   | age       | 1       | -0.2896 | 0.03252 |

#### Estimated G Correlation Matrix

| Row | Effect    | Subject | Col1    | Col2    |
|-----|-----------|---------|---------|---------|
| 1   | Intercept | 1       | 1.0000  | -0.6676 |
| 2   | age       | 1       | -0.6676 | 1.0000  |

## Estimated V Matrix for Subject 1

| Row | Col1   | Col2   | Col3   | Col4   |
|-----|--------|--------|--------|--------|
| 1   | 4.9502 | 3.1751 | 3.1162 | 3.0574 |
| 2   | 3.1751 | 4.9625 | 3.3176 | 3.3888 |
| 3   | 3.1162 | 3.3176 | 5.2351 | 3.7202 |
| 4   | 3.0574 | 3.3888 | 3.7202 | 5.7679 |

## The SAS System

## The Mixed Procedure

## Estimated V Correlation Matrix for Subject ${\bf 1}$

| Row | Col1   | Col2   | Col3   | Co14   |
|-----|--------|--------|--------|--------|
| 1   | 1.0000 | 0.6406 | 0.6122 | 0.5722 |
| 2   | 0.6406 | 1.0000 | 0.6509 | 0.6334 |
| 3   | 0.6122 | 0.6509 | 1.0000 | 0.6770 |
| 4   | 0.5722 | 0.6334 | 0.6770 | 1.0000 |

# Covariance Parameter Estimates

| Cov Parm | Subject | Estimate |
|----------|---------|----------|
| UN(1,1)  | id      | 5.7864   |
| UN(2,1)  | id      | -0.2896  |

| UN(2,2)  | id | 0.03252 |                 |       |           |  |
|----------|----|---------|-----------------|-------|-----------|--|
| Residual |    | 1.7162  | (Within-subject | error | variance) |  |

#### Fit Statistics

| -2 Res Log Likelihood    | 432.6 |
|--------------------------|-------|
| AIC (smaller is better)  | 440.6 |
| AICC (smaller is better) | 441.0 |
| BIC (smaller is better)  | 445.8 |

## Null Model Likelihood Ratio Test

| DF | Chi-Square | Pr > ChiSq |
|----|------------|------------|
| 3  | 50.98      | <.0001     |

## Solution for Fixed Effects

|            |        |          | Standard |    |         |         |
|------------|--------|----------|----------|----|---------|---------|
| Effect     | gender | Estimate | Error    | DF | t Value | Pr >  t |
| Intercept  |        | 16.3406  | 1.0185   | 25 | 16.04   | <.0001  |
| gender     | F      | 1.0321   | 1.5957   | 54 | 0.65    | 0.5205  |
| gender     | M      | 0        |          |    |         |         |
| age        |        | 0.7844   | 0.08600  | 25 | 9.12    | <.0001  |
| age*gender | F      | -0.3048  | 0.1347   | 54 | -2.26   | 0.0277  |
| age*gender | M      | 0        |          |    |         |         |

#### Solution for Random Effects

|           |         |          | Std Err |    |         |         |
|-----------|---------|----------|---------|----|---------|---------|
| Effect    | Subject | Estimate | Pred    | DF | t Value | Pr >  t |
|           |         |          |         |    |         |         |
| Intercept | 1       | -0.6413  | 1.8112  | 54 | -0.35   | 0.7247  |
| age       | 1       | -0.04475 | 0.1543  | 54 | -0.29   | 0.7729  |
| Intercept | 2       | -0.6602  | 1.8112  | 54 | -0.36   | 0.7169  |
| age       | 2       | 0.09029  | 0.1543  | 54 | 0.59    | 0.5608  |
| Intercept | 3       | -0.2489  | 1.8112  | 54 | -0.14   | 0.8912  |
| age       | 3       | 0.1136   | 0.1543  | 54 | 0.74    | 0.4649  |
| Intercept | 4       | 1.6611   | 1.8112  | 54 | 0.92    | 0.3632  |
| age       | 4       | 0.02821  | 0.1543  | 54 | 0.18    | 0.8556  |
| Intercept | 5       | 0.5710   | 1.8112  | 54 | 0.32    | 0.7538  |
| age       | 5       | -0.05496 | 0.1543  | 54 | -0.36   | 0.7230  |
|           |         |          |         |    |         |         |

.

Type 3 Tests of Fixed Effects

| Effect     | Num<br>DF | Den<br>DF | F Value | Pr > F |
|------------|-----------|-----------|---------|--------|
| gender     | 1         | 54        | 0.42    | 0.5205 |
| age        | 1         | 25        | 88.00   | <.0001 |
| age*gender | 1         | 54        | 5.12    | 0.0277 |