University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Schneider



## Advanced Algorithms Problem Set 4

Issued: Friday May 17, 2019

## Exercise 1: Multicast Routing

For the Multicast Routing Problem we are given a graph G = (V, E, c) with edge capacities  $c : E \to \mathbb{R}_{\geq 0}$  and multi-cast groups  $M_i \subseteq V$  with requirements  $r_i$ . We need to output a collection of trees  $\mathcal{P} := \bigcup P_i$ , where  $P_i$  is a tree which spans  $M_i$  whereas each edge has to reserve capacity  $r_i$  for each tree  $P_i$  that uses this edge. That means, we seek a set of trees  $\bigcup P_i$ , such that the maximal congestion:  $\max_{e \in E} \frac{1}{c_i} \sum_{i:e \in P_i} r_i$  is minimized. Show that an  $O(\log n)$  approximation to this problem can be computed efficiently and w.h.p.

## Exercise 2: Minimum Bisection Problem

Let G = (V, E, c) be a graph with an even number of nodes |V| and edge capacities  $c : E \to \mathbb{R}_{\geq 0}$ . In the *Minimum Bisection Problem* we are asking for a partition of vertices into two *equally* sized sets (B, W) (black and white) with minimal cut (sum of edge capacities between B and W). Give an efficient approximation algorithm for the problem, using the tree decomposition designed for multi commodity flow approximation.

Hint: You can use that the leaves of trees can be efficiently and optimally bisected.