Survival Analysis

Chao Cheng

November 28, 2022

Contents

1	Basic knowledge					
	1.1 Survival and hazard					
	1.2	Censo	r			
		1.2.1	Right censor			
		1.2.2	Left censor			
		1.2.3	Interval censor			
2 MI	ML	LE :				
	2.1	Param	netric MLE	. 4		
		2.1.1	One-sample setting	. 4		
		2.1.2	Two-sample setting	. (
	2.2	Nonpa	arametric MLE	. (
		2.2.1	Discrete time points	. (

1 Basic knowledge

1.1 Survival and hazard

Let T denote the time to an event that we are interested in. Then we know the c.d.f.

$$F_T(t) = P(T \le t),$$

and the corresponding p.d.f.

$$f_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_T(t) .$$

Here to simplify the discussion, we assume T is a continuous random variable. In the context of survival analysis, the *event* often refers to death. Then T represents the lifespan of the subject. So $F_T(t)$ represents the probability that the death occurs before t. In another word, we know the probability that the subject survives passes t is

$$S_T(t) = 1 - F_T(t) = P(T > t).$$

 $S_T(t)$ is often called the survival function? and clearly

$$f_T(t) = -\frac{\mathrm{d}}{\mathrm{d}t} S_T(t).$$

The **hazard function** h(t) is defined as

$$h\left(t\right) = \lim_{\Delta \to 0} \frac{P\left(T \le t + \Delta | T > t\right)}{\Delta} = \lim_{\Delta \to 0} \frac{F_T\left(t + \Delta\right) - F_T\left(t\right)}{\Delta \cdot S_T\left(t\right)} = \frac{f_T\left(t\right)}{S_T\left(t\right)}.$$
 (1)

h(t) represents the instant hazard? unified probability? that the subject will be dead instantly after t given the fact that it's alive at t. And the **cummulative hazard function** is

$$H(t) = \int_{0}^{t} h(x) dx = \int_{0}^{t} \frac{f_{T}(x)}{S_{T}(x)} dx = \int_{0}^{t} \frac{-dS_{T}(x)}{S_{X}(t)} = -\log(S_{T}(x))|_{0}^{t} = -\log(S_{T}(t)).$$

Proposition 1. The random variable H(T) follows unit exponential distribution EXP(1).

Proof.

$$P(H(T) \le t) = P(-\log S(T) \le t)$$

$$= P(1 - F(T) \ge e^{-t})$$

$$= P(T \le F^{-1}(1 - e^{-t}))$$

$$= F(F^{-1}(1 - e^{-t}))$$

$$= 1 - e^{-t}.$$

which is the c.d.f of EXP(1). Here to simplify the deduction we make some assumptions that

- F(t) is continuous.
- $F^{-1}(t)$ is well defined.

Also to simplify the notation and avoid confusion, we use $S\left(\cdot\right)$ and $F\left(\cdot\right)$ instead of $S_{T}\left(\cdot\right)$ and $F_{T}\left(\cdot\right)$ like before.

1. **Exponential distribution:** Denote $T \sim EXP(\lambda)$. Then

$$\begin{split} f\left(t\right) &= \lambda e^{-\lambda t} \\ F\left(t\right) &= 1 - e^{-\lambda t} \qquad S\left(t\right) = e^{-\lambda t} \\ h\left(t\right) &= \lambda \qquad \text{constant hazard} \\ H\left(t\right) &= \lambda t \\ \mathrm{E}\left(T\right) &= 1/\lambda \qquad \mathrm{Var}\left(T\right) = 1/\lambda^2 \end{split}$$

2. Weibull distribution: Denote $T \sim W(p, \lambda)$. Then

$$f(t) = p\lambda^{p}t^{p-1}\exp\left(-\left(\lambda t\right)^{p}\right)$$

$$F(t) = 1 - \exp\left(-\left(\lambda t\right)^{p}\right) \qquad S(t) = \exp\left(-\left(\lambda t\right)^{p}\right)$$

$$h(t) = p\lambda^{p}t^{p-1}$$

$$H(t) = \left(\lambda t\right)^{p}$$

$$E(T) = \frac{1}{\lambda} \cdot \Gamma\left(1 + \frac{1}{p}\right) \qquad \operatorname{Var}(T) = \frac{1}{\lambda^{2}}\left(\Gamma\left(1 + \frac{2}{p}\right) - \Gamma\left(1 + \frac{1}{p}\right)\right)$$

$$E(T^{m}) = \frac{1}{\lambda^{m}}\Gamma\left(1 + \frac{m}{p}\right)$$

1.2 Censor

1.2.1 Right censor

• Type I: an i.i.d sample $T_1, \dots, T_n \sim F$ and a fixed constant c. And the observed data is (U_i, δ_i) for $i = 1, \dots, n$ where

$$U_i = \min (T_i, c)$$
$$\delta_i = 1_{T_i \le c}.$$

So the observed data consists of a random number, r, of uncensored observations, all of which are less than c. And n-r censored observations, all are c.

• Type II: an i.i.d sample $T_1, \dots, T_n \sim F$ and a pre-defined number of failure r. The observation is stopped when r failure occurs and the stopping time is c. The observed data is still the form (U_i, δ_i) for $i = 1, \dots, n$, the same as that in Type I censor. But in actuality, we observe the first r order statistics

$$T_{(1,n)}, \cdots, T_{(r,n)}$$
.

Note that here $(U_1, \delta_1), \dots, (U_n, \delta_n)$ are dependent whereas they are independent for Type I.

• Type III (Random censor): The underlying data is

$$c_1, \dots, c_n$$
 constant $T_1, \dots, T_n \sim F$.

And the observed data is (U_i, δ_i) for $i = 1, \dots, n$, where

$$U_i = \min (T_i, c_i)$$

$$\delta_i = 1_{T_i \le c_i}.$$

Note: for inference, c_i is often treated as constant. For study design or studying the asymptotic property, they are often treated as i.i.d random variables C_1, \dots, C_n .

1.2.2 Left censor

 T_i is censored when $T_i \leq l_i$.

1.2.3 Interval censor

 $l_i \leq T_i \leq u_i$, but only l_i and u_i are observed.

2 MLE

There is an i.i.d survival time sample T_1, \dots, T_n with common and unknown c.d.f. $F(\cdot)$ and the observated data is (U_i, δ_i) for $i = 1, \dots, n$, where

$$U_i = \min (T_i, C_i)$$

$$\delta_i = 1 (T_i \le C_i)$$

and C_i is the (fixed or random) censoring time. Let \bot denote "is independent of". We assume $T_i\bot C_i$ (Non-informative censoring, the key assumption) and (U_i, δ_i) are also i.i.d. The observed data consists of two parts. U_i is continuous while δ_i is binary.

$$(U_i, \delta_i) = (u_i, 1)$$
 T_i is uncensored at u_i
 $(U_i, \delta_i) = (u_i, 0)$ T_i is censored at u_i

When C_i s are known constants, the likelihood for (U_i, δ_i) is

$$L_{i}(F) = \begin{cases} f(u_{i}) & \text{if } \delta_{i} = 1\\ 1 - F(u_{i}) & \text{if } \delta_{i} = 0 \end{cases}$$
$$= f(u_{i})^{\delta_{i}} (1 - F(u_{i}))^{1 - \delta_{i}}$$

Therefore

$$L(F) = \prod_{i=1}^{n} L_i(F) = \prod_{i=1}^{n} \left(f(u_i)^{\delta_i} (1 - F(u_i))^{1 - \delta_i} \right) = \prod_{i=1}^{n} \left(h(u_i)^{\delta_i} S(u_i) \right).$$
(2)

The last equality relies on the fact that f(t) = h(t) S(t).

When C_i s are i.i.d. $\sim G$, where G is continuous with p.d.f g. Then we have

$$P(U_i \le u, \delta_i = 1) = P(T_i \le u, T_i \le C_i) = \int_0^u \int_t^\infty f(t) g(c) dc dt = \int_0^u f(t) (1 - G(t)) dt$$

Therefore the likelihood for $\delta_i = 1$ is

$$L_i(F, G) = f(u_i)(1 - G(u_i))$$
 when $\delta_i = 1$.

And similarly, for $\delta_i = 0$, the likelihood is

$$L_i(F, G) = g(u_i)(1 - F(u_i))$$
 when $\delta_i = 0$.

Hence the full likelihood is

$$L(F,G) = \prod_{i=1}^{n} \left\{ (f(u_i) (1 - G(u_i)))^{\delta_i} ((1 - F(u_i)) g(u_i))^{1 - \delta_i} \right\}$$

$$= \prod_{i=1}^{n} \left\{ f(u_i)^{\delta_i} (1 - F(u_i))^{1 - \delta_i} \right\} \cdot \prod_{i=1}^{n} \left\{ g(u_i)^{1 - \delta_i} (1 - G(u_i))^{\delta_i} \right\}$$
(3)

So the core to maximize L(F,G) with respect to F in (3) is the same as that in (2).

2.1 Parametric MLE

2.1.1 One-sample setting

Suppose T_1, \dots, T_n are i.i.d. $Exp(\lambda)$, and subject to noninformative right censoring. Then (2) becomes

$$L = L(\lambda) = \prod_{i=1}^{m} \left\{ \left(\lambda e^{-\lambda u_i} \right)^{\delta_i} \left(e^{-\lambda u_i} \right)^{1-\delta_i} \right\} = \lambda^{\sum_{i=1}^{n} \delta_i} e^{-\lambda \sum_{i=1}^{n} u_i} = \lambda^r e^{-\lambda W},$$

where $r = \sum_{i=1}^{n} \delta_i$ is the number of observed events and $W = \sum_{i=1}^{n} u_i$ is the total of observed time. Therefore $\log L = r \log \lambda - \lambda W$ and the MLE for λ is

$$\hat{\lambda} = \frac{r}{W}.$$

Furthermore, we know that

$$\begin{cases} \frac{\partial \log L}{\partial \lambda} = \frac{r}{\lambda} - W\\ \frac{\partial^2 \log L}{\partial \lambda^2} = -\frac{r}{\lambda^2} \end{cases}.$$

Based on properties of fisher information (See the notes about fisher information for more details.), we know that at the true underlying value λ , it must satisfy

$$\begin{cases}
E \frac{\partial \log L}{\partial \lambda} = \frac{Er}{\lambda} - EW = 0 \\
I(\lambda) = -E \frac{\partial^2 \log L}{\partial \lambda^2} = \frac{Er}{\lambda^2} \\
I^*(\lambda) = \frac{1}{n}I(\lambda) = \frac{Er}{n\lambda^2}
\end{cases} \tag{4}$$

Note that in (4), r and W are random variables. And the probability to observe an event is

$$p = P(\delta_i = 1) = P(U_i \le \infty, \delta_i = 1) = \int_0^\infty f(t) (1 - G(t)) dt.$$

Therefore $r \sim binomial(n, p)$, Er = np. And from property of MLE, we can write

$$\frac{\sqrt{n}\left(\hat{\lambda}-\lambda\right)}{\sqrt{I^{\star}\left(\lambda\right)^{-1}}} = \frac{\left(\hat{\lambda}-\lambda\right)}{\sqrt{I\left(\lambda\right)^{-1}}} \stackrel{D}{\to} N\left(0,1\right),$$

which means approximately

$$\hat{\lambda} \stackrel{\text{apx}}{\sim} N\left(\lambda, I\left(\lambda\right)^{-1}\right) = N\left(\lambda, \frac{\lambda^2}{np}\right).$$

Unfortunately, both λ and p (essentially $G(\cdot)$) are unknown. We plug in the estimation $\hat{\lambda} = r/W$ and $\hat{p} = r/W$ and apply Slutsky's theorem. This means for the purpose of estimation, we use

$$\begin{cases} \hat{\lambda} = \frac{r}{W} \\ I(\hat{\lambda}) = \frac{r}{\hat{\lambda}^2}, \quad I^{\star}(\hat{\lambda}) = \frac{r}{n\hat{\lambda}^2} \end{cases}$$
 (5)

Not that unlike (4), here in (5), r and W are observations. And we have

$$\hat{\lambda} \stackrel{\text{apx}}{\sim} N\left(\lambda, \frac{r}{W^2}\right). \tag{6}$$

Note that it turns out that a better approximation is to assume $\log \hat{\lambda}$ is normal. Using the delta method, this gives

$$\log \hat{\lambda} \stackrel{\text{apx}}{\sim} N\left(\log \lambda, \frac{1}{np}\right) \approx N\left(\log \lambda, \frac{1}{r}\right).$$
 (7)

Now based on (6) or (7), we can construct CI on λ , which also means we can perform hypothesis testing about λ .

2.1.2 Two-sample setting

For two samples x_1, \dots, x_n and y_1, \dots, y_m , both follow exponential distribution with parameters λ_1 and λ_2 . Assume noninformative censoring in each group, using same tech in Section 2.1.1 we can get

$$Z = \frac{\log \hat{\lambda_1} - \log \hat{\lambda_2}}{\sqrt{\frac{1}{r_1} + \frac{1}{r_2}}} \stackrel{\text{apx}}{\sim} N(0, 1).$$

2.2 Nonparametric MLE

The NPMLE of survivor function $S(\cdot)$ based on i.i.d. survival time and non-informative right censoring is often known as Kaplan-Meier estimator or the Product-Limit Estimator. Here we provide some heuristic development, but formal proofs will be deferred to other notes. With the same notation as before, the observed data is

$$U_i = \min (T_i, C_i), \qquad \delta_i = 1 (T_i \le C_i),$$

where T_i s are i.i.d survival times and C_i s are i.i.d non-informative censoring time. The full likelihood is already shown in (3).

2.2.1 Discrete time points

To begin with, let's assume $F(\cdot)$ takes discrete values with mass points at $\{v_i\}$ s: $0 \le v_1 < v_2 < \cdots < \cdots$, and define the discrete hazard functions as

$$h_1 = P(T = v_1)$$

 $h_j = P(T = v_j | T > v_{j-1})$ $j > 1.$ (8)

Note that (8) can be seen as discrete version of (1). And for $t \in [v_j, v_{j+1}]$,

$$S(t) \stackrel{\text{def}}{=} P(T > t) = P(T > v_j)$$

$$= P(T > v_j | T > v_{j-1}) P(T > v_{j-1})$$

$$= P(T > v_j | T > v_{j-1}) P(T > v_{j-1} | T > v_{j-2}) P(T > v_{j-2})$$

$$= \cdots$$

$$= P(T > v_1) \prod_{i=1}^{j-1} P(T > v_{i+1} | T > v_i)$$

$$= \prod_{i=1}^{j} (1 - h_i) \qquad j > 1.$$

For discrete case, the p.m.f $f(\cdot)$ is

$$f(v_1) = P(T = v_1) = h_1$$

$$f(v_j) = P(T = v_j) = P(T = v_j | T > v_{j-1}) P(T > v_{j-1}) = h_j \prod_{i=1}^{j-1} (1 - h_i).$$

Then if we want to estimate $F(\cdot)$ from likelihood, either (2) or (3), we are just trying to maximizing

$$L(F) = \prod_{i=1}^{n} \left\{ f(u_i)^{\delta_i} (1 - F(u_i))^{1 - \delta_i} \right\}$$
$$= \prod_{\{u_i | \delta_i = 1\}} f(u_i) \prod_{\{u_i | \delta_i = 0\}} S(u_i).$$

Let $I(\cdot)$ be an index mapping function that returns the index in v_i s that matches u_i , i.e. $I(u_i) = j$ if and only if $u_i \in [v_j, v_{j+1})$. Then we know that $u_i = v_{I(u_i)}$ and we can write

$$L(F) = \prod_{\{u_{i} | \delta_{i} = 1\}} f(v_{I(u_{i})}) \prod_{\{u_{i} | \delta_{i} = 0\}} S(v_{I(u_{i})})$$

$$= \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} = v_{1}\}} f(v_{1})\right] \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} \neq v_{1}\}} f(v_{I(u_{i})})\right] \left[\prod_{\{u_{i} | \delta_{i} = 0\}} \prod_{k=1}^{I(u_{i})} (1 - h_{k})\right]$$

$$= \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} = v_{1}\}} h_{1}\right] \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} \neq v_{1}\}} \left(h_{I(u_{i})} \prod_{k=1}^{I(u_{i}) - 1} (1 - h_{k})\right)\right] \left[\prod_{\{u_{i} | \delta_{i} = 0\}} \prod_{k=1}^{I(u_{i})} (1 - h_{k})\right]$$

$$= \left[\prod_{\{u_{i} | \delta_{i} = 1\}} h_{I(u_{i})}\right] \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} \neq v_{1}\}} \prod_{k=1}^{I(u_{i}) - 1} (1 - h_{k})\right] \left[\prod_{\{u_{i} | \delta_{i} = 0\}} \prod_{k=1}^{I(u_{i})} (1 - h_{k})\right].$$

$$(9)$$

Note that in (9), the first part is

$$\prod_{\{u_i|\delta_i=1\}} h_{I(u_i)} = \prod_{j=1}^{\infty} h_j^{d_j},\tag{10}$$

where $d_j = \sum_{i=1}^n \delta_i \cdot 1$ $(u_i = v_j)$ is the number of event at v_j . The second and third part in (9) is

$$\left[\prod_{\{u_{i} \mid \delta_{i}=1, u_{i} \neq v_{1}\}} \prod_{k=1}^{I(u_{i})-1} (1-h_{k})\right] \left[\prod_{\{u_{i} \mid \delta_{i}=0\}} \prod_{k=1}^{I(u_{i})} (1-h_{k})\right] \\
= \left[\prod_{k=1}^{\infty} \prod_{\{i \mid \delta_{i}=1, I(u_{i})-1 \geq k\}} (1-h_{k})\right] \left[\prod_{k=1}^{\infty} \prod_{\{i \mid \delta_{i}=0, I(u_{i}) \geq k\}} (1-h_{k})\right] \\
= \left[\prod_{k=1}^{\infty} (1-h_{k})^{\sum_{i=1}^{n} \delta_{i} \cdot 1(I(u_{i})-1 \geq k)}\right] \left[\prod_{k=1}^{\infty} (1-h_{k})^{\sum_{i=1}^{n} (1-\delta_{i}) \cdot 1(I(u_{i}) \geq k)}\right] \\
= \left[\prod_{k=1}^{\infty} (1-h_{k})^{\sum_{i=1}^{n} \delta_{i} \cdot [1(I(u_{i}) \geq k)-1(I(u_{i})=k)]}\right] \left[\prod_{k=1}^{\infty} (1-h_{k})^{\sum_{i=1}^{n} (1-\delta_{i}) \cdot 1(I(u_{i}) \geq k)}\right] \\
= \prod_{k=1}^{\infty} (1-h_{k})^{Y(v_{k})-d_{k}},$$
(11)

where

$$Y(v_k) = \sum_{i=1}^{n} 1(I(u_i) \ge k) = \sum_{i=1}^{n} 1(u_i \ge v_k)$$

is the number of subjects that are "at risk" at time v_k . **Note:** by the word "at risk", we also count the subjects that died just at v_k , which means $Y(v_i) \ge d_i$.

Then from (10) and (11) we know that (9) can be written as

$$L(F) = \prod_{j=1}^{\infty} h_j^{d_j} (1 - h_j)^{Y(v_j) - d_j}.$$
 (12)

And the NPMLE is just

$$\hat{h}_j = \frac{d_j}{Y(v_j)} \tag{13}$$

for $j = 1, \dots, \infty$ and $Y(v_j) > 0$. (13) implies some properties of this discrete NPMLE:

- 1. This estimation makes sense: the probability of dying at v_j given the fact you live past v_{j-1} can be estimated by the proportion of subjects die at v_j over the number of "at risk" at v_j .
- 2. \hat{h}_j is only defined at time points where $Y(v_j) > 0$. Therefore, for large enough v_j , there will be no observation, no matter event or censoring, resulting inability to make estimation about hazard at those time points.
- 3. For time points where $Y(v_j) > 0$ but no event occurs, the hazard is estimated to be 0.

This means

$$\hat{S}(t) = \begin{cases} 1 & t < v_1 \\ \prod_{j=1}^{k} (1 - \hat{h}_j) & v_k \le t < v_{k+1} \end{cases}$$

Note: $S(\cdot)$ is defined to be right-continuous.

Let v_g denotes the largest time point with observation, which means $Y(v_g) > 0$ and $Y(v_{g+1}) = 0$. Then either $d_g = Y(v_g)$ or $d_g < Y(v_g)$. If $d_g = Y(v_g)$, then $\hat{h}_g = 1$ and $\hat{S}(t) = 0$ for $t \ge v_g$. But if $d_g < Y(v_g)$, then $\hat{S}(t) > 0$ for $v_g \le t < v_{g+1}$ and $\hat{S}(t)$ is undefined on $t \in [v_{g+1}, \infty)$.

Here one might say that the KM estimator is undefined on $t \in [v_{g+1}, \infty)$. Or another explanation is that NPMLE is not unique and any survival function that is identical to \hat{S} at previous time is the NPMLE.

References