There are a total of five problems. You have to solve all of them.

Problem 1 (CO5): Nonregular Language (25 points)

Use the pumping lemma to **demonstrate** that L_1 , L_2 , L_3 , L_4 and L_5 is not regular.

- (a) $L_1 = \{w \in \{0,1,2\}^* : 0^n 1^n 2^n \text{ where } n \ge 0\}$ (5 points)
- (b) $L_2 = \{w \in \{0,1\}^* : 0^x 1^y 0^z \text{ where } z > x + y \text{ and } x, y \ge 0 \}$ (5 points)
- (c) $L_3 = \{w \in \{0,1\}^* : w \text{ is a palindrome}\}\ (5 \text{ points})$
- (d) $L_4 = \{w \in \{a,b\}^* : \text{ numbers of a in } w \text{ is a prime number} \}$ (5 points)
- (e) $L_5 = \{w \in \{0\}^* : 0^{3^n} \text{ where } n \ge 0\}$ (5 points)
- (a) Assume for the sake of contradiction that L_1 is regular. Then let p be the pumping length for L_1 . Now we take the string

$$w=\mathtt{0}^p\mathtt{1}^p\mathtt{2}^p\in L_1.$$

Then the length of w is $|w| = 3p \ge p$. So w can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_1$ for each $i \ge 0$. Since $|xy| \le p$, and the first p characters of w are all 0s, we can conclude that y consists of only 0s.

Then, for i = 2, xy^2z will be

$$xy^2z = xyyz = 0^{p+|y|}1^p2^p \notin L_1.$$

We have excess 0s in xyyz. Thus we get a contradiction! Hence, L_1 is not a regular language.

(b) Assume for the sake of contradiction that L_2 is regular. Then let p be the pumping length for L_2 . Now we take the string

$$w = 0^p 1^p 0^{2p+1} \in L_2.$$

Then the length of w is |w| = 4p + 1 > p. So w can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_2$ for each $i \ge 0$. Since $|xy| \le p$, and the first p characters of w are all 0s, we can conclude that y consists of only 0s.

Then, for i = 2, xy^2z will be

$$xy^2z = xyyz = 0^{p+|y|}1^p0^{2p+1}.$$

This string is not in L_2 , since $p + |y| + p \ge 2p + 1$. Thus we get a contradiction! Hence, L_2 is not a regular language.

(c) Assume for the sake of contradiction that L_3 is regular. Then let p be the pumping length for L_3 . Now we take the string

$$w = 0^p 10^p \in L_3$$
.

Then the length of w is |w| = 2p + 1 > p. So w can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_3$ for each $i \ge 0$. Since $|xy| \le p$, and the first p characters of w are all 0s, we can conclude that y consists of only 0s.

Then, for i = 2, xy^2z will be

$$xy^2z = xyyz = 0^{p+|y|}10^p = 0^p0^{|y|}10^p.$$

This string is not a palindrome, so it is not in L_3 . Thus we get a contradiction! Hence, L_3 is not a regular language.

(d) Assume for the sake of contradiction that L_4 is regular. Then let p be the pumping length for L_4 . Now we take the string

$$w = a^q \in L_4$$
,

where *q* is a prime number greater than or equal to *p*. The length of *w* is $|w| = q \ge p$. So *w* can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_4$ for each $i \ge 0$.

The length of w = xyz is q. Then, for i = 2, the length of $xy^2z = xyyz$ will be q + |y|, which should be a prime. So, for any i > 0, the length of xy^iz will be q + (i - 1)|y|.

So, for i > 0,

$$xy^{i}z = xyy^{i-1}z = a^{q+(i-1)|y|}.$$

Since this string is in L_4 , q + (i - 1)|y| is a prime number for each i > 0. But this is clearly not true, since choosing i = q + 1 gives

$$q + (i-1)|y| = q + q|y|,$$

which is divisible by q. Thus we get a contradiction! Hence, L_4 is not a regular language.

(e) Assume for the sake of contradiction that L_5 is regular. Then let p be the pumping length for L_5 . Now we take the string

$$w=0^{3^p}\in L_5.$$

Then the length of w is $|w| = 3^p > p$. So w can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_5$ for each i > 0.

Then, for i = 2, xy^2z will be

$$xy^2z = xyyz = 0^{3^p + |y|}.$$

Since this string is in L_5 , $3^p + |y|$ is a power of 3 (which is, of course, larger than 3^p). The next power of 3 larger than 3^p is 3^{p+1} . So we have

$$3^p + |y| \ge 3^{p+1} \implies |y| \ge 3^{p+1} - 3^p = 2 \cdot 3^p.$$

On the other hand, $|xy| \le p$ gives us that $|y| \le p$. So

$$p \ge |y| \ge 2 \cdot 3^p.$$

This is clearly false since $3^p > p$. Thus we get a contradiction! Hence, L_5 is not a regular language.