MBM - Dodatek

Metody pomiaru rezystancji

Metoda techniczna

Jest to najprostsza metoda pomiaru rezystancji, polegająca na pomiarze napięcia przyłożonego do elektrod oraz natężenia prądu płynącego między elektrodami. Przy zastosowaniu jako miernika prądu galwanometru z bocznikiem (rys. 1.4) mierzoną rezystancję określa się wzorem

$$R_x = \frac{U_x}{I_x} = \frac{U_x}{c_i \alpha_x p_x}, \qquad (1.5)$$

w którym:

 R_x – m ierzona rezystancja, Ω ,

Ux - napięcie na mierzonej rezystancji, V,

 I_x – prąd płynący przez R_x , A,

c_i – stała prądowa galwanometru, A/dz,

α_x – wychylenie wskazówki galwanometru, dz,

p_x – przekładnia bocznika.

Rys. 1.4. Pomiar rezystancji metodą techniczną z wykorzystaniem galwanometru

Przy czułości galwanometru $c_i = 10^{-10}$ A/dz oraz jego wychyleniu $\alpha_x = 1$ dz i najwyższej czułości $p_x = 1$ oraz napięciu pomiarowym $U_x = 1000$ V maksymalna wyznaczalna rezystancja jest rzędu 10^{13} Ω .

Metoda mostkowa

Do pomiarów można stosować mostek Wheatstone'a (rys. 1.5). Mierzoną rezystancję R_x wyznacza się ze wzoru

$$R_x = \frac{R_1}{R_2} R_N, {1.6}$$

w którym:

R_N – rezystor wzorcowy,

R₁, R₂ – rezystory wzorcowe o regulowanej wartości.

Rys. 1.5. Pomiar rezystancji za pomocą mostka Wheatstone'a

Galwanometr służy jako wskaźnik równowagi mostka. Maksymalna mierzona rezystancja R_x wynosi około $10^{13} \Omega$. Ograniczenie wynika ze skończonej czułości galwanometru oraz wartości rezystorów wzorcowych.

Metoda porównawcza

Wymieniona metoda polega na porównaniu wskazań galwanometru połączonego w szereg z rezystorem wzorcowym ze wskazaniem tegoż galwanometru po załączeniu badanej próbki (rys. 1.6). Rezystancję R_x mierzoną metodą porównawczą oblicza się z zależności

$$R_x \approx \frac{U_x \alpha_N R_N}{U_N \alpha_x p_x},\tag{1.7}$$

w której:

R_N – rezystancja rezystora wzorcowego,

x – indeks dla przypadku rezystancji mierzonej,

N – indeks dla przypadku rezystancji wzorcowej.

Rys. 1.6. Pomiar rezystancji za pomocą metody porówna wczej

Metoda ładowa nia kondensa tora

Pomiar rezystancji metodą ładowania kondensatora polega na pomiarze napięcia U_c na kondensatorze wzorcowym ładowanym prądem płynącym przez badaną rezystancję oraz pomiarze czasu t, po upływie którego na kondensatorze wzorcowym C_N pojawi się napięcie U_c . Schemat układu pomiaro wego przed stawiono na rysunku 1.7.

Rys. 1.7. Pomiar rezystancji metodą ładowania kondensatora

Po włączeniu włącznika W_1 następuje ładowanie się kondensatora C_N prądem płynącym przez R_x . Włącznik W_2 jest załączony tylko na czas pomiaru napięcia U_c na kondensatorze C_N , tzn. po upływie czasu t (czasu gromadzenia się na pojemności C_N ładunku elektrycznego). Wartość R_x wyznacza się z zależności

$$R_x = \frac{Ut}{C_N U_c},\tag{1.8}$$

w której:

U – napięc ie zasilania,

 U_c – napięcie na kondensatorze wzorcowym o pojemności C_N mierzone za pomocą woltomierza V (rys. 1.7) po upływie czasut, gdzie t – czas liczony od momentu załączenia napięcia (włączenia W_1 – rys. 1.7) do momentu odczytu. Czas odczytu t powinien spełniać zależność $t << R_x C_N$.

Woltom ierz powinien mieć bardzo dużą rezystancję wejściową. Właściwy jest np. woltom ierz elektrostatyczny. W opisanej metodzie stosuje się również kompensacyjny pomiar napięcia (patrz PN-88/E-04405).

Metody elektro metryczne

Wymieniona grupa metod zawiera elementy metod przedstawionych wcześniej, przy czym w miejsce galwanometru wprowadza się elektrometry. W najogólniejszym znaczeniu elektrometry są miernikami bardzo małych prądów, około 10^{-15} A, zasilanymi elektronicznymi wzmacniaczami prądu stałego. Elektrometry przeznaczone do pomiaru wysokich rezystancji są zwykle nazywane teraomometrami i zawierają, oprócz czułego miernika prądu, zasilacz napięć pomiarowych (napięcia U_0). Ogólny schemat elektrometrycznego miernika wysokich rezystancji (teraomometru) przedstawiono na rysunku 1.8. Mierzoną rezystancję określa się z zależności

$$R_x = \frac{U_0 R_N}{U_{\text{wyj}}}, \tag{1.9}$$

w której:

U₀ – napięc ie pomiarowe, V; najczęśc iej 100, 200, 500, 1000 V,

 R_N - rezystor wzorcowy, wymienny - $10^8 \div 10^{12} \Omega$,

 $U_{\rm wyj}$ – wyjściowe napięcie wzmacniacza, na ogół $1\div3$ V dla pełnego wychylenia.

Rys. 1.8. Elektrometryczny miernik wysokich rezystancji; W – wzmacniacz elektrometryczny

Ze względu na hiperboliczną zależność napięcia wyjściowego $U_{\rm wyj}$ od rezystancji R_x , teraomomierze z odczytem analogowym mają na ogół naniesioną hiperboliczną skalę rezystancji. Na podobnej zasadzie działają mikroprocesorowe mierniki najwyższych rezystancji, gdzie wynik w postaci cyfrowej otrzymuje się przez operacje dzielenia wartości napięcia U_0 przez wartość mierzonego prądu I_x wykonywaną przy użyciu mikroprocesora.

Wpływ konfiguracji elektrod na pojemność kondensatora w powietrzu

Tabela 2.1. Układ trójelektrodowy i wzór do obliczania pojemności w powietrzu

Rozmieszczenie elektrod na próbkach	Pojemność w powietrzu, F
Elektrody okrągłe	$C_0 = 6.95 \cdot 10^{-12} \frac{(d + Bg)^2}{h}$

- 1 -elektroda pomiarowa,
- 2 -elektroda ochronna,
- 3 -elektroda wysokonapięciowa,
- d średnica elektrody, m,
- g szerokość szczeliny pomiędzy elektrodą a pierścieniem ochronnym, m,
- h grubość próbki, m.

W spółczynnik B wyznaczamy w zależności od stosunku g/h według rysunku 2.3.

Rys. 2.3. Zaležność współczynnika B od stosunku g/h

Metody wytwarzania elektretów

Metoda termoelektryczna - wytwarzanie elektretu z polimeru dipolowego (pozostałe metody - ładunek z zewnętrznego źródła)

Warunki procesu:

- 1. podnosimy temperaturę do temperatury polaryzacji
- 2. przykładamy pole elektryczne
- 3. ochładzamy utrzymując pole "zamrażanie stanu polaryzacji"

Temperatura polaryzacji T_P to temperatura, w której możliwe jest ustawienie dipoli w kierunku pola elektrycznego. Dla wosków i żywic - temperatura mięknienia. Dla polimerów dipolowych, trochę większa niż temperatura zeszklenia.

Metody implantacji ładunków z zewnętrznego źródła:

- 1. Metoda ulotowa próbka położna na elektrodzie płaskiej, a nad nią zawieszona jest elektroda ostrzowa, przykładamy wysokie napięcie. Prosta, nagminnie stosowana.
- 2. Metoda cieczowa wprowadzanie ładunku pod wpływem napięcia z niezwilżającej cieczy przewodzącej. Następnie proces starzenia i migracja ładunków w głąb materiału.
- 3. Metoda ładowania wiązką niskoenergetycznych elektronów zalety metody można zgromadzić kontrolowane gęstości ładunku jednego znaku na głębokości ściśle określonej zasięgiem elektronów. Dla takich, dobrze zdefiniowanych, elektretów można badać procesy zmiany przestrzennego rozkładu ładunku oraz jego kontrolowany zanik. Stanowisko elektrowiązkowe strumień elektronów -> soczewki -> próbka.