# R Basics

### Haewon Lee

## Table of contents

| Tal | ole of | contents                         | 1  |
|-----|--------|----------------------------------|----|
| 1   | Basic  | cs                               | 2  |
|     | 1.1    | R data types                     | 2  |
|     | 1.2    | Built-in Data sets in R $\hdots$ | 9  |
|     | 1.3    | Basic statistics functions       | 11 |
| 2   | Adva   | anced Techniques                 | 26 |
|     | 2.1    | Data Manipulation                | 26 |
|     | 2.2    | Pipeline operator                | 29 |
| 3   | LaTe   | eX codes in quarto               | 30 |
|     | 3.1    | Basic LaTeX code                 | 30 |
|     | 3.2    | Tikz pictures                    | 31 |

#### 1 Basics

#### 1.1 R data types

- 1.1.1 variable type 종류
  - numeric, complex

```
(numeric_value <- pi)
```

[1] 3.141593

```
(<mark>1</mark>+sqrt(<mark>2</mark>)*1i)*(<mark>1</mark>-sqrt(<mark>2</mark>)*1i) # complex 연산
```

[1] 3+0i

```
options(digits=20) # 20자리 표현 (defualt=7)
pi
```

- [1] 3.141592653589793116
- integer

```
options(digits=10)
(integer_value <- 42L) #반드시 정수라야 하는 경우에는 뒤에 L을 붙인다.
```

[1] 42

```
typeof(1+1); typeof(1L+1L); typeof(1:3)
```

- [1] "double"
- [1] "integer"
- [1] "integer"
  - logical 논리 값 TRUE | FALSE 두가지 값중 하나를 갖는다. 비교를 할 때에는 == 를 사용 (=는 input 명령이 됨)

```
1<0 ; 1>0 ; 1<"a"; "a">"A"; 3==6 #한줄에 여러 명령을 쓸 때에는 semicolon ; 로 구분
```

- [1] FALSE
- [1] TRUE
- [1] TRUE

- [1] FALSE
- [1] FALSE
- charactor : "abc", "a", "a123xz" 등 quotation mark 로 된 문자열 " = \" 로 표기 줄바꿈 = \n

```
letters[5:10]; paste("ab","cde", sep = "")
```

- [1] "e" "f" "g" "h" "i" "j"
- [1] "abcde"

```
as.character(345); as.numeric("23.5")
```

- [1] "345"
- [1] 23.5

```
sub("a","x", "father and grandpa"); gsub("a","x", "father and grandpa")
```

- [1] "fxther and grandpa"
- [1] "fxther xnd grxndpx"

```
(ex2 <- 'The "R" project for statistical computing')</pre>
```

- [1] "The "R" project for statistical computing"
- Escape characters in R :
  - \t Insert a tab in the text at this point.
  - \b Insert a backspace in the text at this point.
  - $\n$  Insert a newline in the text at this point.
  - \r Insert a carriage return in the text at this point.
  - \f Insert a formfeed in the text at this point.
  - \s Insert a space in the text at this point.
  - \' Insert a single quote character in the text at this point.
  - \" Insert a double quote character in the text at this point.
  - \\ Insert a backslash character in the text at this point.
- raw : used for binary data
- time: r 에서는 시간을 다루는 방법이 매우 다양함 POSIX 시간변수는 복잡한 list 형태로 되어 있음

```
(time1 <- as.POSIXlt("1960-01-01")); class(time1); typeof(time1)</pre>
```

- [1] "1960-01-01 KST"
- [1] "POSIX1t" "POSIXt"
- [1] "list"

```
first <- "2022-08-20 08:15:22" ; second <- "2022-01-01 20:04:48"
difftime(first, second); difftime(first, second, units = "hours")</pre>
```

Time difference of 230.507338 days

Time difference of 5532.176111 hours

```
first2 <- as.POSIXlt(first); second2 <- as.POSIXlt(second)
second2 - first2</pre>
```

Time difference of -230.507338 days

```
## difftime(first, second, units = "months")
## match.arg(units)에서 다음과 같은 에러가 발생했습니다:
## 'arg' should be one of "auto", "secs", "mins", "hours", "days", "weeks"
```

#### 1.1.2 data types

• vector : R에서는 모든 변수가 벡터 (열) 로 되어 있다. 다음 연산결과를 예상해 보시오

```
1:3 + 2:4 ; 1:10 + 1:2
```

- [1] 3 5 7
- [1] 2 4 4 6 6 8 8 10 10 12

```
paste(LETTERS[1:10],1:3,sep = "-"); paste(LETTERS[1:3],1:10)
```

- [1] "A-1" "B-2" "C-3" "D-1" "E-2" "F-3" "G-1" "H-2" "I-3" "J-1"
- [1] "A 1" "B 2" "C 3" "A 4" "B 5" "C 6" "A 7" "B 8" "C 9" "A 10"

vector의 특징은 모든 요소가 단일한 것이라는 점이다. NA 값을 제외하고는 모든 요소가 같아야 하기 때문에 서로 다른 성질의 것을 입력하게 되면 에러가 생기거나 변형된다.

```
c(1,2,3); c(1,2,3,"a")
 [1] 1 2 3
 [1] "1" "2" "3" "a"
• array : multidimensional vector
    (arr1 \leftarrow array(data=1:90, dim = c(6,5,3))) # 3Dimensional array
 , , 1
      [,1] [,2] [,3] [,4] [,5]
 [1,]
        1
            7
                13
                     19
                         25
  [2,]
        2
             8
                14
                     20
                         26
 [3,]
           9
                15
                     21 27
        3
 [4,]
       4 10
               16
                     22 28
 [5,]
        5 11
               17
                     23 29
 [6,]
        6 12
               18
                     24 30
  , , 2
      [,1] [,2] [,3] [,4] [,5]
      31
                     49
                         55
  [1,]
            37
                43
  [2,]
       32 38
                     50 56
                44
  [3,]
       33 39
                     51 57
               45
  [4,]
       34 40 46 52 58
  [5,]
       35 41 47
                     53 59
 [6,]
       36 42 48
                     54 60
  , , 3
      [,1] [,2] [,3] [,4] [,5]
  [1,]
            67
                73
                     79
       61
                         85
  [2,]
       62
            68
                74
                     80 86
  [3,]
       63 69
                    81 87
               75
  [4,]
       64 70 76
                     82 88
  [5,]
       65 71
               77
                     83 89
  [6,] 66 72 78
                   84 90
  arr1[6,4,2] # 3Dimensional indexing
 [1] 54
   which(arr1==54, arr.ind = TRUE )
```

```
dim1 dim2 dim3 [1,] 6 4 2
```

• matrix : 2dimensional vector

```
x \leftarrow 2:9 ; names(x) \leftarrow x # x의 이름을 부여 x \%o\% x # = outer function : outer(x,x, FUN="*")
```

```
2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81
```

• data frame : vector를 구성요소로 한 list의 형태 (외형적으로 보면 2dimension으로 보인다) dataframe의 구성요소는 vector들 (각각의 vector는 동일한 데이터 타입이라야 함)

```
col1 col2 col3

1 A 160 TRUE
2 B 170 FALSE
3 Anyone 180 FALSE
4 None 200 TRUE
```

데이터프레임 이름 <-  $data.frame(컬럼이름=c(data_1, \cdots, data_n), \cdots)$  이런 형식으로 데이터 프레임을 만들 수 있다. 데이터프레임이 R의 기본적인 데이터 양식이기 때문에 이를 다루는 방법이 다양하게 존재함

```
## dataframe cell 찾기
df1[<mark>3,2</mark>] #3행 2열의 데이터
```

#### [1] 180

```
## column 이름으로 찾기 df1[scol1]; df1[scol1]; <math>df1[scol1]; df1[scol1]; df1[scol1]; df1[scol1]; <math>df1[scol1]; df1[scol1]; df1[s
```

- [1] "A" "B" "Anyone" "None"
- [1] "A" "B" "Anyone" "None"

col1

- 1 A
- 2
- 3 Anyone
- 4 None

```
df1[,1]
```

- [1] "A" "B" "Anyone" "None"
- list: R에만 있는 독특한 데이터타입이다. 이것은 모든 데이터 타입을 담을 수 있는 형태이고 자료의 길이가 달라도 같이 담을 수가 있게 되어 있다. 또한 리스트 속에 리스트를 넣을 수 있기에 다단계로 nesting 되는 구조로 만들 수 있다.

```
sample_list <- list(data1=df1, data2 = arr1, data3 = x%o%x)
str(sample_list)</pre>
```

#### List of 3

```
$ data1:'data.frame': 4 obs. of 3 variables:
..$ col1: chr [1:4] "A" "B" "Anyone" "None"
..$ col2: num [1:4] 160 170 180 200
..$ col3: logi [1:4] TRUE FALSE FALSE TRUE
$ data2: int [1:6, 1:5, 1:3] 1 2 3 4 5 6 7 8 9 10 ...
$ data3: num [1:8, 1:8] 4 6 8 10 12 14 16 18 6 9 ...
.. attr(*, "dimnames")=List of 2
....$ : chr [1:8] "2" "3" "4" "5" ...
...$ : chr [1:8] "2" "3" "4" "5" ...
```

#### sample list\$data1

# sample\_list\$data1[,3]

[1] TRUE FALSE FALSE TRUE

#### 1.2 Built-in Data sets in R

- 1.2.1 소개 및 개요: R에는 내장된 데이터세트가 있다. 테스트용, 교육용 및 연습용으로 이러한 데이터세트를 사용하면 좋다.
  - 사용법

```
data("volcano") ## built-in dataset 중에서 volcano 사용
library(survival)
data(package="survival") ## survival package에 어떤 데이터 세트들이 있는지 확인
data(cancer) ## data(cancer, package="survival") 와 같이 사용해도 된다.
str(lung) ## cancer dataset에는 다양한 암종류의 생존분석용 데이터가 들어가 있다.
```

```
'data.frame': 228 obs. of 10 variables:
$ inst : num 3 3 3 5 1 12 7 11 1 7 ...
$ time : num 306 455 1010 210 883 ...
$ status : num 2 2 1 2 2 1 2 2 2 2 2 ...
$ age : num 74 68 56 57 60 74 68 71 53 61 ...
$ sex : num 1 1 1 1 1 1 2 2 1 1 ...
$ ph.ecog : num 1 0 0 1 0 1 2 2 1 2 ...
$ ph.karno : num 90 90 90 90 100 50 70 60 70 70 ...
$ pat.karno: num 1175 1225 NA 1150 NA ...
$ wt.loss : num NA 15 15 11 0 0 10 1 16 34 ...
```

• rotterdam : breast cancer dataset in survival package

```
library(moonBook)
mytable(grade~. , data=rotterdam)
```

#### Descriptive Statistics by 'grade'

|            | 2<br>(N=794)      | 3<br>(N=2188)     | p     |
|------------|-------------------|-------------------|-------|
| pid        | 1328.4 ± 865.1    | 1569.0 ± 860.9    | 0.000 |
| year       | $1987.9 \pm 3.1$  | $1988.3 \pm 3.0$  | 0.004 |
| age        | $54.4 \pm 12.7$   | $55.3 \pm 13.1$   | 0.086 |
| meno       |                   |                   | 0.000 |
| <b>-</b> 0 | 392 (49.4%)       | 920 (42.0%)       |       |
| - 1        | 402 (50.6%)       | 1268 (58.0%)      |       |
| size       |                   |                   | 0.000 |
| - <=20     | 462 (58.2%)       | 925 (42.3%)       |       |
| - 20-50    | 290 (36.5%)       | 1001 (45.7%)      |       |
| - >50      | 42 ( 5.3%)        | 262 (12.0%)       |       |
| nodes      | $2.0 \pm 3.7$     | $3.0 \pm 4.6$     | 0.000 |
| pgr        | $236.2 \pm 385.8$ | $134.9 \pm 242.8$ | 0.000 |
| er         | $179.8 \pm 291.9$ | $161.8 \pm 265.0$ | 0.127 |

| hormon     |                               | 0.000    |
|------------|-------------------------------|----------|
| - 0        | 735 (92.6%) 1908 (87.2%)      |          |
| - 1        | 59 ( 7.4%) 280 (12.8%)        |          |
| chemo      |                               | 1.000    |
| <b>-</b> 0 | 640 (80.6%) 1762 (80.5%)      |          |
| - 1        | 154 (19.4%) 426 (19.5%)       |          |
| rtime      | 2458.3 ± 1408.6 1967.1 ± 1370 | .8 0.000 |
| recur      |                               | 0.000    |
| - 0        | 480 (60.5%) 984 (45.0%)       |          |
| - 1        | 314 (39.5%) 1204 (55.0%)      |          |
| dtime      | 2908.9 ± 1278.6 2495.2 ± 1287 | .8 0.000 |
| death      |                               | 0.000    |
| - 0        | 532 (67.0%) 1178 (53.8%)      |          |
| - 1        | 262 (33.0%) 1010 (46.2%)      |          |

mytable(grade~. , data=rotterdam) %>% mylatex() %>% cat

Descriptive Statistics by grade

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Descriptive Statistics by grade |                    |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|--------------------|-------|--|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 2                               | 3                  | n     |  |
| year $1987.9 \pm 3.1$ $1988.3 \pm 3.0$ $0.004$ age $54.4 \pm 12.7$ $55.3 \pm 13.1$ $0.086$ meno $0.000$ - 0 $392 (49.4\%)$ $920 (42.0\%)$ - 1 $402 (50.6\%)$ $1268 (58.0\%)$ size $0.000$ - <=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | (N=794)                         |                    | þ     |  |
| age $54.4 \pm 12.7$ $55.3 \pm 13.1$ $0.086$ meno $0.000$ - 0 $392 (49.4\%)$ $920 (42.0\%)$ - 1 $402 (50.6\%)$ $1268 (58.0\%)$ size $0.000$ - <=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pid                    | $1328.4 \pm 865.1$              | $1569.0 \pm 860.9$ | 0.000 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | year                   | $1987.9 \pm 3.1$                | $1988.3 \pm 3.0$   | 0.004 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | age                    | $54.4 \pm 12.7$                 | $55.3 \pm 13.1$    | 0.086 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | meno                   |                                 |                    | 0.000 |  |
| size       0.000         - <=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0                    | 392 (49.4%)                     | 920 (42.0%)        |       |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1                    | 402 (50.6%)                     | 1268 (58.0%)       |       |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | size                   |                                 |                    | 0.000 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <=20                 | 462~(58.2%)                     | 925 (42.3%)        |       |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 20-50                | 290 (36.5%)                     | 1001 (45.7%)       |       |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - >50                  | $42 \ (5.3\%)$                  | 262 (12.0%)        |       |  |
| er $179.8 \pm 291.9$ $161.8 \pm 265.0$ $0.127$ hormon $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.$ | nodes                  | $2.0 \pm 3.7$                   | $3.0 \pm 4.6$      | 0.000 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pgr                    | $236.2 \pm 385.8$               | $134.9 \pm 242.8$  | 0.000 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er                     | $179.8 \pm 291.9$               | $161.8 \pm 265.0$  | 0.127 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hormon                 |                                 |                    | 0.000 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0                    | 735 (92.6%)                     | 1908 (87.2%)       |       |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1                    | 59~(7.4%)                       | 280 (12.8%)        |       |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chemo                  |                                 |                    | 1.000 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0                    | 640 (80.6%)                     | 1762 (80.5%)       |       |  |
| $\begin{array}{cccccccccccccc} recur & & & & & & & & & & \\ -0 & 480 & (60.5\%) & 984 & (45.0\%) & & & & \\ -1 & 314 & (39.5\%) & 1204 & (55.0\%) & & & & \\ dtime & 2908.9 \pm 1278.6 & 2495.2 \pm 1287.8 & 0.000 \\ death & & & & & & & & \\ -0 & 532 & (67.0\%) & 1178 & (53.8\%) & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1                    | 154 (19.4%)                     | 426~(19.5%)        |       |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rtime                  | $2458.3\pm1408.6$               | $1967.1\pm1370.8$  | 0.000 |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | recur                  |                                 |                    | 0.000 |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0                    | 480 (60.5%)                     | 984 (45.0%)        |       |  |
| death 0.000 - 0 532 (67.0%) 1178 (53.8%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1                    | 314 (39.5%)                     | 1204 (55.0%)       |       |  |
| - 0 532 (67.0%) 1178 (53.8%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\operatorname{dtime}$ | $2908.9\pm1278.6$               | $2495.2\pm1287.8$  | 0.000 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | death                  |                                 |                    | 0.000 |  |
| - 1 262 (33.0%) 1010 (46.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 0                    | 532 (67.0%)                     | 1178 (53.8%)       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1                    | 262 (33.0%)                     | 1010 (46.2%)       |       |  |

## LaTeX을 이용하여 깔끔한 논문형식의 테이블을 만들 수 있다.

#### 1.3 Basic statistics functions

#### 1.3.1 t-test

```
R function: t.test -
   option arguments : alternative = c("two.sided", "less", "greater"), formula (종속변수~ 독립변수)
   help files: ?t.test 를 치면 함수의 argument, values(results), detail에 대해서 설명이 나옴
   group1 <- rotterdam[ rotterdam$grade == 2, "age"]</pre>
   group2 <- rotterdam[ rotterdam$grade != 2, "age"]</pre>
   t.test(group1, group2) ## unmatched 임의의 두개의 vector로 비교
    Welch Two Sample t-test
data: group1 and group2
t = -1.7436947, df = 1444.4213, p-value = 0.08142509
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.9599008823 0.1152640033
sample estimates:
  \hbox{\tt mean of x} \quad \hbox{\tt mean of y} \quad
54.38161209 55.30393053
   t.test(age~meno,data=rotterdam) ## matched 한개의 데이터프레임에서 paired t-test
    Welch Two Sample t-test
data: age by meno
t = -76.545414, df = 2972.8397, p-value < 2.2204e-16
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
 -21.53192159 -20.45636342
sample estimates:
mean in group 0 mean in group 1
    43.30106707
                    64.29520958
1.3.2 \chi^2 (chi-square) test
R function: chisq.test
   table(rotterdam[,c("hormon","size")])
      size
hormon <=20 20-50 >50
     0 1283 1119 241
     1 104
              172 63
   chisq.test(table(rotterdam[,c("hormon","size")]), correct = TRUE)
```

```
Pearson's Chi-squared test
data: table(rotterdam[, c("hormon", "size")])
X-squared = 51.920064, df = 2, p-value = 5.317424e-12
  chisq.test(rotterdam$hormon, rotterdam$chemo)
   Pearson's Chi-squared test with Yates' continuity correction
data: rotterdam$hormon and rotterdam$chemo
X-squared = 29.771106, df = 1, p-value = 4.861842e-08
  x <- matrix(c(12, 5, 7, 7), ncol = 2) ## matrix를 만들어서 검정하는 방법
     [,1] [,2]
[1,]
     12
       5
            7
[2,]
  chisq.test(x)$p.value ## chisq test의 결과물은 list이다 여기서 p.value 부분만 출력
[1] 0.4233054243
  chisq.test(x, simulate.p.value = TRUE, B = 10000)$p.value
[1] 0.2860713929
1.3.3 generalized linear regression and Loess smoothing (LOcal regrESSion)
R function: glm (generalized linear models) 다중 선형회귀
  data(economics, package="ggplot2")
  economics$index <- 1:nrow(economics) # create index variable</pre>
  glm_model1 <- glm(psavert~pop, data = economics)</pre>
  summary(glm_model1)
glm(formula = psavert ~ pop, data = economics)
Coefficients:
                Estimate
                            Std. Error t value Pr(>|t|)
(Intercept) 2.594603e+01 4.811677e-01 53.92305 < 2.22e-16 ***
           -6.757974e-05 1.852367e-06 -36.48290 < 2.22e-16 ***
```

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 2.645600898)

Null deviance: 5034.5843 on 573 degrees of freedom Residual deviance: 1513.2837 on 572 degrees of freedom

AIC: 2191.3815

Number of Fisher Scoring iterations: 2

#### anova(glm\_model1)

Analysis of Deviance Table

Model: gaussian, link: identity

Response: psavert

Terms added sequentially (first to last)

#### plot(glm\_model1)









```
economics <- economics[100:180, ] ### narrow span
loessMod10 <- loess(uempmed ~ index, data=economics, span=0.10) # 10% smoothing span
loessMod25 <- loess(uempmed ~ index, data=economics, span=0.25)
loessMod50 <- loess(uempmed ~ index, data=economics, span=0.50)
smoothed10 <- predict(loessMod10)
smoothed25 <- predict(loessMod25)
smoothed50 <- predict(loessMod50)
plot(economics$uempmed, x=economics$date, type="l", main="Loess Smoothing and Prediction", xlab="Date",
lines(smoothed10, x=economics$date, col="red")
lines(smoothed50, x=economics$date, col="green")
lines(smoothed50, x=economics$date, col="blue")</pre>
```

# **Loess Smoothing and Prediction**



```
economics <- economics[1:58,]
library(ggplot2)
ggplot(data=economics, aes(x=index, y=uempmed))+
   geom_point()+
   geom_smooth(method = "lm")</pre>
```



#### 1.3.4 One-way ANOVA

```
library(psych)
PlantGrowth ## 내장 dataset
```

```
weight group
    4.17 ctrl
1
    5.58 ctrl
2
3
    5.18 ctrl
    6.11 ctrl
4
5
    4.50 ctrl
6
    4.61 ctrl
7
    5.17 ctrl
    4.53 ctrl
8
9
    5.33 ctrl
10
    5.14 ctrl
11
    4.81 trt1
12
    4.17 trt1
13
    4.41 trt1
    3.59 trt1
14
15
    5.87 trt1
```

```
16
    3.83 trt1
17
    6.03 trt1
18
    4.89 trt1
19
    4.32 trt1
20
    4.69 trt1
21
    6.31 trt2
22
    5.12 trt2
    5.54 trt2
23
    5.50 trt2
24
    5.37 trt2
25
26
    5.29 trt2
    4.92 trt2
27
28
    6.15 trt2
    5.80 trt2
29
30
    5.26 trt2
```

plot(weight~group, data = PlantGrowth) ## Boxplot으로 자동으로 그려준다.



#### with(PlantGrowth, describeBy(weight,group))

```
Descriptive statistics by group
```

group: ctrl

-----

group: trt1

vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 10 4.66 0.79 4.55 4.62 0.53 3.59 6.03 2.44 0.47 -1.1 0.25

group: trt2

vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 10 5.53 0.44 5.44 5.5 0.36 4.92 6.31 1.39 0.48 -1.16 0.14

bartlett.test(PlantGrowth\$weight ~ PlantGrowth\$group) ## 등분산 가정을 체크함

Bartlett test of homogeneity of variances

data: PlantGrowth\$weight by PlantGrowth\$group
Bartlett's K-squared = 2.8785738, df = 2, p-value = 0.2370968

aov\_model <- aov(weight~group, data = PlantGrowth)
summary(aov\_model)</pre>

Df Sum Sq Mean Sq F value Pr(>F)
group 2 3.76634 1.8831700 4.84609 0.01591 \*
Residuals 27 10.49209 0.3885959
---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

#### 1.3.5 Correlation tests

Pearson correlation formula

$$r = \frac{\sum (x-m_x)(y-m_y)}{\sqrt{\sum (x-m_x)^2 \sum (y-m_y)^2}}$$

Spearman correlation formula: non-parametric

$$\rho = \frac{\sum (x' - m_{x'})(y' - m_{y'})}{\sqrt{\sum (x' - m_{x'})^2 \sum (y' - m_{y'})^2}}$$

where x' = rank(x) and y' = rank(y)

Kendall correlation formula: non-parametric

$$\tau = \frac{n_c - n_d}{\frac{1}{2}n(n-1)}$$

where  $n_c$ : number of concordant pairs,  $n_d$ : number of concordant pairs, n: size of x + y

res <- cor.test(economics\$index, economics\$uempmed, method = "pearson")
res</pre>

Pearson's product-moment correlation

data: economics\$index and economics\$uempmed
t = -13.654567, df = 56, p-value < 2.2204e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:</pre>

```
-0.9255815657 -0.7998071541
sample estimates:
          cor
-0.8769389168
  res$p.value ## res는 리스트형태로 나오는 결과물이다. 여기에서 필요한 값만 골라냄
[1] 1.822639345e-19
  res$estimate
          cor
-0.8769389168
  res2 <- cor.test(economics$index, economics$uempmed, method = "spearman")
  res2
    Spearman's rank correlation rho
data: economics$index and economics$uempmed
S = 60517.721, p-value < 2.2204e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
-0.861568223
  res3 <- cor.test(economics$index, economics$uempmed, method = "kendall")
  res3
   Kendall's rank correlation tau
data: economics$index and economics$uempmed
z = -7.8580733, p-value = 3.90087e-15
alternative hypothesis: true tau is not equal to 0
sample estimates:
          tau
-0.7167487038
1.3.6 Survival analysis
  • Kaplan Meier Analysis - Basic survival model survival::Surv
  km <- Surv(rotterdam$dtime, event = rotterdam$death) ## default type : "right"</pre>
```

plot(km) ## km - Surv class (time, status) 가지고 있는 리스트



median(km); mean(km) ## Surv 객체에 대한 method 함수들이 있다. plot.Surv포함

#### \$quantile

50

4033

#### \$lower

50

3888

#### \$upper

50

4309

#### [1] 1302.8833

• Kaplan Meier Analysis - survfit model

```
km_fit <- survfit(km~rotterdam$meno)
summary(km_fit, c(365*1:19)) ### 정해진 time에 맞는 생존테이블표를 만든다.
```

#### Call: survfit(formula = km ~ rotterdam\$meno)

#### rotterdam\$meno=0

```
time n.risk n.event survival
                                 std.err lower 95% CI upper 95% CI
 365
       1298
                 13 0.990084 0.00273656
                                              0.984735
                                                           0.995462
                 56 0.947311 0.00617381
 730
       1236
                                              0.935287
                                                           0.959489
1095
       1140
                 90 0.878196 0.00905336
                                              0.860630
                                                           0.896121
                 59 0.832587 0.01034896
1460
       1071
                                              0.812549
                                                           0.853120
1825
        973
                 59 0.786049 0.01140771
                                              0.764005
                                                           0.808729
2190
        865
                 50 0.744541 0.01222354
                                              0.720964
                                                           0.768888
2555
        754
                 43 0.706203 0.01291841
                                              0.681332
                                                           0.731982
2920
                 31 0.674528 0.01353781
                                                           0.701590
        611
                                              0.648509
3285
        480
                 15 0.656234 0.01397343
                                              0.629410
                                                           0.684201
                 21 0.622823 0.01505424
                                              0.594005
3650
        345
                                                           0.653039
4015
        217
                 13 0.594613 0.01631412
                                              0.563482
                                                           0.627463
```

```
4380
                  6 0.575323 0.01759653
                                             0.541848
                                                          0.610866
        138
4745
         88
                  4 0.553799 0.01999709
                                                          0.594412
                                             0.515960
5110
         54
                  3 0.530422 0.02334386
                                             0.486587
                                                          0.578207
                  2 0.506485 0.02783275
5475
         29
                                             0.454769
                                                          0.564082
5840
         14
                  1 0.481161 0.03617160
                                                          0.557545
                                             0.415241
6205
          5
                  2 0.390943 0.06657871
                                             0.279996
                                                          0.545853
6570
          3
                  0 0.390943 0.06657871
                                             0.279996
                                                          0.545853
6935
                  0 0.390943 0.06657871
                                             0.279996
                                                          0.545853
               rotterdam$meno=1
                                std.err lower 95% CI upper 95% CI
time n.risk n.event survival
 365
       1616
                 46 0.972378 0.00401599
                                            0.9645389
                                                          0.980281
 730
       1508
                103 0.910256 0.00701496
                                            0.8966099
                                                          0.924109
                                            0.8142608
1095
       1366
                129 0.832077 0.00918891
                                                          0.850283
1460
       1245
                111 0.764188 0.01045754
                                            0.7439639
                                                          0.784962
1825
       1111
                 87 0.709950 0.01121688
                                            0.6883018
                                                          0.732278
2190
        944
                 82 0.655456 0.01186297
                                            0.6326122
                                                          0.679124
2555
                 58 0.613767 0.01230810
        819
                                            0.5901113
                                                          0.638371
        642
                 45 0.577382 0.01272281
2920
                                            0.5529763
                                                          0.602864
        474
                 42 0.535877 0.01333692
3285
                                            0.5103646
                                                          0.562665
3650
        342
                 31 0.495578 0.01418038
                                            0.4685496
                                                          0.524165
4015
        188
                 35 0.430288 0.01613537
                                            0.3997973
                                                          0.463104
4380
        113
                 17 0.386353 0.01771621
                                            0.3531444
                                                          0.422684
         62
                  6 0.357899 0.01988720
4745
                                            0.3209686
                                                          0.399079
                  7 0.309356 0.02431136
5110
         28
                                            0.2651946
                                                          0.360871
5475
         14
                  1 0.293074 0.02795732
                                            0.2430961
                                                          0.353326
5840
          8
                  3 0.217092 0.04323095
                                            0.1469392
                                                          0.320737
                  0 0.217092 0.04323095
6205
                                            0.1469392
                                                          0.320737
                  1 0.162819 0.05710016
6570
          1
                                            0.0818823
                                                          0.323757
6935
                  0 0.162819 0.05710016
          1
                                            0.0818823
                                                          0.323757
 plot(km_fit, col = rainbow(2), lty=1:2)
 legend("topright", legend = c("Menopause(-)", "Menopause(+)"),
         col= rainbow(2), lty=1:2)
 library(survminer)
 ggsurvplot(km_fit, data = rotterdam,
             conf.int = T, xscale = 365.2425, ## xscale can be "d_y"
             break.x.by = 5*365.2425,
             pval = T, pval.size =4, surv.median.line = "hv",
             risk.table = FALSE, ## if TRUE, risk table is displayed under graph
             legend.title="Menopause", legend.labs=c("No","Yes"),
```

palette = c("#E7B800", "#2E9FDF"),)



## ggplot + survminer package

#### • Cox Proportional model

$$\label{eq:hazard function} h(t) = \lim_{\Delta t \to 0} \frac{\Pr[(t \le T < t + \Delta t | T \ge t)]}{\Delta t} \quad = \quad \frac{p(t)}{S(t)}$$

$$\log h_i(t) = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$

#### args(coxph)

function (formula, data, weights, subset, na.action, init, control,
 ties = c("efron", "breslow", "exact"), singular.ok = TRUE,
 robust, model = FALSE, x = FALSE, y = TRUE, tt, method = ties,
 id, cluster, istate, statedata, nocenter = c(-1, 0, 1), ...)
NULL

```
library(carData)
                     ## Rossi data set 이용하기 위해서 사용
  library(car)
                     ## Anova function
  colnames(Rossi) # emp1-52 : factor (yes or no)
                               "age"
 [1] "week"
             "arrest" "fin"
                                        "race"
                                                "wexp"
                                                         "mar"
                                                                  "paro"
 [9] "prio"
             "educ"
                      "emp1"
                               "emp2"
                                        "emp3"
                                                "emp4"
                                                         "emp5"
                                                                  "emp6"
[17] "emp7"
             "emp8"
                      "emp9"
                               "emp10"
                                        "emp11"
                                                "emp12"
                                                         "emp13"
                                                                  "emp14"
[25] "emp15"
             "emp16"
                      "emp17"
                               "emp18"
                                       "emp19"
                                                "emp20"
                                                         "emp21"
                                                                  "emp22"
                      "emp25"
[33] "emp23"
             "emp24"
                               "emp26"
                                        "emp27"
                                                "emp28"
                                                         "emp29"
                                                                  "emp30"
[41] "emp31"
             "emp32"
                      "emp33"
                               "emp34"
                                       "emp35"
                                                "emp36"
                                                         "emp37"
                                                                  "emp38"
[49] "emp39"
             "emp40"
                      "emp41"
                               "emp42"
                                        "emp43"
                                                "emp44"
                                                         "emp45"
                                                                  "emp46"
[57] "emp47"
             "emp48"
                      "emp49"
                               "emp50"
                                        "emp51"
                                                "emp52"
  cox_model1 <- coxph(Surv(week, arrest) ~</pre>
                      fin + age + race + wexp + mar + paro + prio,
                      data = Rossi)
  summary(cox model1)
Call:
coxph(formula = Surv(week, arrest) ~ fin + age + race + wexp +
   mar + paro + prio, data = Rossi)
 n= 432, number of events= 114
                            exp(coef)
                                        se(coef)
                                                        z Pr(>|z|)
                     coef
              -0.37942217   0.68425668   0.19137948   -1.98256   0.0474161 *
finyes
              -0.05743774   0.94418067   0.02199947   -2.61087   0.0090312 **
age
              -0.31389979  0.73059224  0.30799278  -1.01918  0.3081180
raceother
              wexpyes
marnot married 0.43370388 1.54296190 0.38186806 1.13574 0.2560642
              -0.08487108  0.91863070  0.19575667  -0.43355  0.6646124
paroyes
prio
               0.09149708 1.09581358 0.02864855 3.19378 0.0014042 **
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
              exp(coef) exp(-coef) lower .95 upper .95
              0.6842567 1.4614399 0.4702367 0.9956841
finyes
              0.9441807 1.0591193 0.9043345 0.9857825
age
              0.7305922 1.3687526 0.3994948 1.3361001
raceother
wexpyes
              0.8608838 1.1615969 0.5679354 1.3049390
marnot married 1.5429619 0.6481041 0.7299759 3.2613836
              0.9186307 1.0885767 0.6259110 1.3482466
paroyes
              prio
Concordance= 0.64 (se = 0.027)
Likelihood ratio test= 33.27 on 7 df, p=2.36e-05
Wald test
                    = 32.11 on 7 df, p=3.87e-05
```

```
Score (logrank) test = 33.53 on 7 df, p=2.11e-05
  Anova(cox_model1)
Analysis of Deviance Table (Type II tests)
     LR Chisq Df Pr(>Chisq)
fin 3.9862101 1 0.0458741 *
age 7.9880173 1 0.0047088 **
race 1.1251518 1 0.2888118
wexp 0.5003372 1 0.4793520
mar 1.4311793 1 0.2315721
paro 0.1869702 1 0.6654503
prio 8.9765972 1 0.0027346 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  anova(cox_model1)
Analysis of Deviance Table
Cox model: response is Surv(week, arrest)
Terms added sequentially (first to last)
                  Chisq Df Pr(>|Chi|)
        loglik
NULL -675.38063
fin -673.46210 3.83706 1 0.05013146 .
age -666.23582 14.45257 1 0.00014373 ***
race -665.84148 0.78867 1 0.37450208
wexp -664.21789 3.24717 1 0.07154674.
mar -663.57584 1.28411 1 0.25713587
paro -663.23596 0.67976 1 0.40966904
prio -658.74766 8.97660 1 0.00273459 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   모델의 전체적인 생존곡선을 알고 싶으면 survfit 함수를 이용해서 생존곡선을 그릴 수 있다.
```

```
plot(survfit(cox_model1), ylim = c(0.6,1),xlab = "weeks",
    ylab = "Proportion not rearrested")
```





#### 2 Advanced Techniques

#### 2.1 Data Manipulation

#### 2.1.1 Data reading

data file 이 존재하는 디렉토리를 먼저 설정해주어야 한다. 이를 위한 명령어는 setwd() = set working directory 라는 의미 setwd("G:/R project/nomogram") 와 같이 디렉토리를 설정해줄 수도 있지만,

만약 디렉토리를 찾기 어렵다면 setwd(choose.dir()) 와 같은 명령으로 파일탐색기를 열어서 디렉토리를 선택할 수 있다. 현재 사용할 xlsx 파일들이 다음 디렉토리에 있다고 가정하자

```
setwd("G:/R project/nomogram")
library(readxl)
dir(pattern = "*.xls")

[1] "datasummary.xlsx" "Patient_info.xls" "Survdata.xls"
[4] "폐암-항암.xlsx" "폐암 -환자정보.xlsx" "폐암 op.xlsx"
[7] "폐암 RT.xlsx" "폐암_OP.xls" "폐암_RT.xls"
[10] "폐암_추적조사.xls" "폐암_항암치료.xls" "폐암환자 통계.xlsx"

xlsxfiles <- dir(pattern = "*.xls")
ptinfo <- read_xlsx(xlsxfiles[5])
```

#### 2.1.2 Binding tables

데이터프레임 결합 방법들 rbind(), cbind(), merge()



Figure 1: 데이터프레임 결합방법

<sup>\*\*</sup> 당연한 이야기지만 rbind는 컬럼의 갯수가 같아야 하고, cbind는 행의 갯수가 같아야 함

#### 2.1.3 Join (Merge) tables

```
merge function
   merge(x, y, by = intersect(names(x), names(y)), ## 공통된 컬럼하나를 결합용 키로 선택
   by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all, ## x와 y의 결합용 키의 이름이 서로 다를 경우에는 독립적으로
지정
   sort = TRUE, suffixes = c(".x",".y"), no.dups = TRUE,
   incomparables = NULL, \cdots)
  df1 <- data.frame( ID = 1:10, Name = c("Lee", "Kim", "Park", "Kang",
                      "Shin", "Lim", "Kwon", "Choi", "Nam", "Baek" ),
                      Score = as.integer(rnorm(10, 80,6))
                      )
  df2 <- data.frame( ID = sample(1:10, 9, replace = F),</pre>
                      Department = sample( c("IM", "GS", "GY", "PD" ),9, replace = T),
                      Age = as.integer(rnorm(9, 40,6)))
  df1
   ID Name Score
1
   1 Lee
              80
2
    2 Kim
              81
3
   3 Park
              82
   4 Kang
              80
5
   5 Shin
              79
6
    6 Lim
              92
7
   7 Kwon
              82
8
    8 Choi
              81
9
    9 Nam
              76
10 10 Baek
              79
  df2
  ID Department Age
1 3
             IM 39
2 6
             GY 44
3 8
             IM 37
4 5
             PD 47
5
   2
             IM 36
6 4
             GY 40
7 7
             PD 40
8 10
             PD 38
9 9
             IM 37
  merged_df <- merge(df1,df2, by="ID", all = TRUE) # full join</pre>
  merged_df
```

|    | ID | Name         | Score | ${\tt Department}$ | Age |
|----|----|--------------|-------|--------------------|-----|
| 1  | 1  | Lee          | 80    | <na></na>          | NA  |
| 2  | 2  | Kim          | 81    | IM                 | 36  |
| 3  | 3  | ${\tt Park}$ | 82    | IM                 | 39  |
| 4  | 4  | Kang         | 80    | GY                 | 40  |
| 5  | 5  | ${\tt Shin}$ | 79    | PD                 | 47  |
| 6  | 6  | Lim          | 92    | GY                 | 44  |
| 7  | 7  | ${\tt Kwon}$ | 82    | PD                 | 40  |
| 8  | 8  | ${\tt Choi}$ | 81    | IM                 | 37  |
| 9  | 9  | Nam          | 76    | IM                 | 37  |
| 10 | 10 | Baek         | 79    | PD                 | 38  |

#### 2.1.4 Types of Join

merge 함수를 실행하여 데이터를 결합할 때에는 데이터 join 방법이 다음과 같이 4가지가 있다.

두개의  $\mathrm{d} f$ 에서 모든 데이터가 완전하게 존재하지 않기 때문에 일치하지 않는 부분에 대한 처리규칙이 중요하다.



Figure 2: Types of Join

merge 함수의 옵션에서 all = TRUE 를 선택하면 full join, all.x 는 left join, all.y는 right join 이 된다. all= FALSE 인 경우에는 당연히 inner join

dplyr package에는 개별적인 join 함수가 있는데 그것을 사용해도 됨

 $inner\_join(df1,\,df2), left\_join(df1,\,df2), right\_join(df1,\,df2), full\_join(df1,\,df2)$ 

left\_join(df2, df1): alternative right join

#### 2.1.5 Reshape data

#### 2.2 Pipeline operator

library magrittr 를 사용하면 pipeline 연산자를 쓸 수 있게 된다. %>% 형식이다.

만약 c("A","B","C") 라는 데이터를 "ABC" 로 paste 한 다음에 다시 tolower 함수를 적용하여 "abc"로 변환하는 작업을 한다고 하자. 그런 경우에는 다음과 같이 코딩을 해야 한다. 하지만 pipeline operator를 사용하면 함수 중첩을 줄이고 코드를 이해하기 쉽게 사용할 수 있다.

```
library(magrittr)
tolower(paste(c("A","B","C"), collapse = ""))
```

[1] "abc"

```
c("A","B","C") %>% paste(., collapse = "") %>% tolower ## paste 함수에는 여러 인자가 들어가는데
```

[1] "abc"

## 첫번째 인자로 들어가기 위해서 . 을 사용함

- 3 LaTeX codes in quarto
- 3.1 Basic LaTeX code

$$f(r) = \int_0^\infty e^{-\frac{x^2 + y^2}{2}} dx$$

$$f(x) = e^{\pi i}$$

# 3.2 Tikz pictures