II B. Tech I Semester Supplementary Examinations, May - 2018 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING (Com. to CSE, IT, ECC)

Time: 3 hours Max. Marks: 70

		Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
		2. Answer ALL the question in Part-A3. Answer any THREE Questions from Part-B	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		<u>PART –A</u>	
1.	a)	Express $P \leftrightarrow Q$ using $\uparrow$ only.	(4M)
	b)	Write Fermat's Theorem?	(4M)
	c)	Show that a relation R on a set A is symmetric if and only if $R = R^{-1}$	(3M)
	d)	Draw the binary tree whose level order indices are { 1,2,4,5,8,10,11,20 }	(3M)
	e)	How many ways can we get sum of 4 or 8 when two distinguishable dice are	(4M)
	f)	rolled? How many ways can we get an even sum? Solve $a_n - 7a_{n-1} + 12$ $a_{n-2} = 0$ for $n \ge 2$	(4M)
	1)	Solve $a_n - 7a_{n-1} + 12a_{n-2} = 0$ for $n \ge 2$	( <del>1</del> 1V1)
		<u>PART –B</u>	
2.	a)	Obtain the Principal conjunctive normal form of $(P \land Q) \lor (\sim P \lor Q \lor R)$	(8M)
	b)	Show that $R\Lambda(P VQ)$ is a valid conclusion from the premises $PVQ$ , $Q\rightarrow R$ , $P\rightarrow M$	(8M)
		and ¬M.	
3.	a)	Heing mothematical induction, prove that the following statement is true for all	(OM)
3.	a)	Using mathematical induction, prove that the following statement is true for all positive integers $n \cdot 1^2 + 2^2 + 3^2 + + n^2 = n(n+1)(2n+1)/6$ for $n \ge 1$	(8M)
	b)	Find the greatest common divisors of the following pairs of integers 81 and 36	(8M)
	U)	This the greatest common divisors of the following pairs of integers of and 30	(0111)
4.	a)	Let $X=\{1,2,3,4\}$ if $R=\{(x,y) (x-y)$ is integer non zero multiple of 2} and	(8M)
		$S=\{(x,y) (x-y) \text{ is integer non zero multiple of 3} \text{ find R U S and R } \cap S$	
	b)	Draw Hasse diagram representing the partial ordering on {(a,b) : a   b} on	(8M)
		{1,2,3,4,6,8,12}.	
_	`		(03.5)
5.	a)	Explain Depth First Search algorithm with example.	(8M)
	b)	What is the chromatic number of the following i) $C_n$ ii) $K_n$ iii) $K_{m,n}$ iv) tree with n vertices	(8M)
		1) $C_n = H$ ) $K_n = H$ ) $K_{m,n} = H$ ) thee with H vertices	
6.	a)	In how many ways can 12 of the 14 people be distributed into 3 teams where the	(8M)
		first team has 3 members, the second has 5, and the third has 4 members?	(- )
	b)	Find the coefficient of $x_1^4 x_2^5 x_3^6 x_4^3$ in $(x_1 + x_2 + x_3 + x_4)^{18}$ ?	(8M)
7.	a)	Solve the recurrence relation $a_n$ - 7 $a_{n-1}$ + 10 $a_{n-2}$ =0 for $n \ge 2$ using generating	(8M)
	1 \	functions?	(O3 4)
	b)	Solve $a_n + 2n a_{n-1} - 3n(n-1)a_{n-2} = 0$ .	(8M)

1 of 1