CIS-350 INFRASTRUCTURE TECHNOLOGIES

Study Guide for Test 2

Closed book, closed notes. You may use a calculator only for calculations. You may have a "cheat sheet", i.e., an index card 3"x5" filled up on one side with anything you want. The other side of the card should be blank. You need to turn this card with the test or show it to me after the test.

Materials covered:

- (1) Chapters 7-11 to the extent they were covered in class or assigned explicitly for reading. Use lecture notes and/ slides posted for these chapters on BB as well as associated reading. There may also be a <u>limited</u> number of questions about the material in the textbook that we did not cover explicitly in class. For example, from some sections in chapter 10 on peripheral devices and chapter 11.
- (2) Review Homeworks 4-5 as well as In-class Activities 4 and 5. The solutions for Homeworks and In-class Activities are posted on BB in the Assignments and Course Documents folders, respectively.

Test format:

- (1) The test format will be similar to Test 1
- (2) Multiple choice questions on all the mentioned material like in Sample Test 2 which follows.
- (3) Short essay questions, similar to those in Homeworks as well as from the Reading Review Questions and Exercises following each chapter.
- (4) Short numerical problems to work, similar to those in In-class Activity 5.
- (5) Working the machine cycle for the LMC instruction (LDA, STO, ADD, SUB, or branch) like in In-class Activity 4.
- (6) Fill in blanks and matching questions. Memorize the description of the keywords (those in bold) used in textbook.

This Sample Test 2 is very comprehensive and longer that the real Test 2 is going to be. You should be able to work this test in about 90 minutes maximum, including 3-5 essay questions. Test 2 is likely to be shorter and suitable for 75 minutes allocated for it. Good luck!

Sample Test 2

I. Multiple Choice Questions.

On the IBM Mainframe memory access	e computer, memory to re	egister (M \leftrightarrow R) instru	uctions typically require
	°0 c. 2	d. 4	
. •	` •	•	e) can be issued within the to execute
a. the user	b. the application p	rogram	
c. the operating system		•	
3. The	stores an addr	ess of the current/ne	xt instruction to execute.
a. instruction registere. program/instruction co		c. control Unit	d. ALU

4. The	executes an ins	struction and perfo	orms arithmetic and logic	
operations. a. instruction register be. program/instruction counter	o. accumulator	c. control unit	d. ALU	
5. The or data is stored.	holds the addres	s of a memory loc	ation at which the instru	ction
a. MAR b. MDR	c. instruction count	er d. accu	mulator	
6. The MAR and MDR act as a a. interfaces b. intermediaries	ans c. bu	between CF uffers d. bridg	PU and memory. es e. caches	
7. If the size of the MAR is 20 b locations.				
a. 262144 b. 524288 d	c. 1048576 d. 2	097152 e. 4194	304	
8. Access time to flash memory a. seconds (s) b. millise	is about 120 econds (ms) c. m	icroseconds (µs)	d. nanoseconds	(ns)
9. A bus can carry b. data e. all the above	 c. addresse	s d. cont	ol signals	
10. Programs always use addresses. a. physical/logical b. logica				
11. Access time to registers is a. measured in millisecondsc. measured in seconds12. In	b. measured d. almost ins	d in microseconds stant	omputer on a network a	re
received by every other compute a. Ethernet b. LAN	iter connected to t	he network.		. •
limits their speed and length.	•	dio-generated elec	etrical interference which	1
14. The interfaces between but a. buffers b. tokens		ngs e. lines		
15. Which of the following is that a. RETURN b. CALL		ction? d. SVC	e. LDA	
16. Which of the following data a. stack b. 1-dimensiona e. queue	a storage structure al array c. 2-			
17. Relatively slow data memor	ry accesses could l	pe reduced by incr	easing the number of	
a. flag registers d. general purpose registers	b. instruction	n pointer registers n registers	c. MAR	

18. In the Transmeta Crusoe CPU t a. 64 b. 128 c. 256	he instruction bundle 6 d. 32		bits.
19. In which of the following architectinstructions? a. very long instruction word (VLIW) b. explicitly parallel instruction comp c. Intel 32-bit architecture d. Pe	architecture outer (EPIC) - Intel Ita		
20 a. Branching and stalling c. Stalling and reordering	create proble b. Branching and re d. branching and h	ms in pipelinin eordering yperthreading	g.
21. In	IAR) and memory dat	ta register (MD	PR).
22. To be effective, cache operation a. True b. False	ns must be completely	y controlled by	software.
23. A hardware the request is presently stored withi a. LRU controller b. cache con e. disk controller	n the cache.		
24. Cache memory is like virtual me a. True b. False	emory and it does not	exist physicall	y.
25. During the op actually replaced.			
a. rewriteb. write through26. In a master-slave processing sy			
a. True b. False			
27. In symmetrical multiprocessing,a. Trueb. False	each CPU has equal	access to res	ources.
28 translate a peripheral device and control the a. I/O modules or interfaces c. interrupt handling routines	peripheral device. b. interrupts	the form acce	ptable (understandable) to
20 Interrupts originate in the comp	ıtor		
a. hardware or software b. ha	rdware only c. s	oftware only	
30. Which architecture is <u>not</u> suitab devices?	le for fast data transfe	er between me	mory and peripheral
a. channel architecturec. DMA architecture	b. programmed I/C d. bus architecture		

reasonable se b. guarantee d	oility to re ervice. correct a		error-fre		oftware fa	ailures and still r	maintain a
transfer b. releases the	commu e main p terrupt to	nication with a processor to do the main prod	other ta	sks		s the responsibil sfer is finished	lity for I/O
33. On the IBN a. 4	M/z Serie b. 5	es computers, c. 6	-	s are divided i d. 7	nto e. 8	classes.	
a. I/O requestb. SVC callc. program int	generat errupt (g	iginates in the order by the complemental by the complemental by an order the timer (w	puter pro n illegal i	ngram	eeds the s	slice of the CPU	I time allocated
•)x1200 pi	ixels. On the <u>t</u>	<u>rue</u> color	system this ima	age would use
a. 960,000	byte	es of storage. b. 1,920,000		c. 2,880,000		d. 3,840,000	
36. A shortcut	R.A.I.D	. stands for					
	•	kpensive disks dependent driv		b. redundant d. redundant	•	ndependent/ine put devices	xpensive disks
37. Hard disks a. constant lin c. variable line	ear velo	• '	b. cons	fo tant angular v ble angular ve	elocity (C	•	
38. In a 4-disk independent o a. 2				uld be reduced d. 5	d	times as di	sks use
39. In a stripe		ray, one disk is b. parity check		used for c. system che		d. secto	or checking
40. The comp size (in inches a. 17.2			gle of the	e sides of 11 a d. 19.		ches. What is th	ne approximate

42. If the size of the logical record is 50 bytes and the blocking factor is 100, the size of the physical record is _____ bytes.
a. 2 b. 0.5 c. 500 d. 5000

d. clusters

41. On disk, data are recorded on concentric circles called

c. tracks

b. sectors

e. None of the above

a. blocks

		ha		ddress.	
44. The most is close to	common size c	f RAM in conte	mporary PC co	mputers availab	ole on the market now
a. 16KB	b. 1MB	c. 64TB	d. 2GE	3.	
				f special conditi d. memory add	ons such as overflow dress
$PC \rightarrow MDR - IR [add A \rightarrow PC+1]$ represents the	MAR → IR dress] → MAR MDR → PC → instru	ction.			
a. ADD	b. SUB	c. STO	d. LDA	e. BR	
47. If the instruction represent?	uction's operati	on code is 5 bit	s long, how ma	ny unique instru	uctions can it
	b. 32.	c. 16	d. 8	e. 5	
		rd disk in a mod c. 200 GB			ut
finds data and a. registers, ca	l instructions is ache, RAM, dis	as follows:	b. RAM, cache	uctions, the ord e, registers, tap upe, RAM, cach	
images?	_			•	means of displaying
	rtube (CRT) Il display (LCD)		anic light-emittir r e. impa	ng diode (ORED act	0)
computer are	designed to we	ork together in a	such a way tha	t overall perfor	components of the mance is enhanced e. accessibility
52. The abbre	eviation "VLSI o	circuits" stands	for		
, ,	scale integrate system integrat		•	ale integrated on stem integration	
53. The syste	m bus, which is	s the primary in	terface with the	e CPU, is some	etimes referred to as
a. PCI-Expres	s b. PCI	bus c. exte	rnal CPU bus	d. fron	t side bus
54. Which of transfers?	the following is	not a very fast	interface bus s	suitable for high e. FireWire	n-speed data

55. Multiprocessing systems are commonly known as tightly-coupled systems. a. True b. False
56. Commodity-off-the-shelf components are inexpensive computers connected together to form a cluster.
a. blade b. grid c. Beowulf d. super
I. Fill out the blanks with the most appropriate word(s)
1. DRAM stands for
2. Eight bytes contains bits (How many)?
3. One byte can store unique patterns (How many)?
4. A shortcut MIPS stands for
5. Checking each peripheral device for input in rotation at frequent intervals is called
6. Interrupts originate in the computer or but are processed by the computer
7. Multiple interrupts can be handled by assigning to each interrupt.
3. Computers provide interrupt capability by providing special control lines to the CPU known as They are usually labeled as
9. In an instruction STO 50, an implicit source is an
10. Assume that the content of the accumulator is 25. If you perform the right arithmetic shift of the accumulator by 1 bit, the new contents of the accumulator will be
11. Assume that the content of the accumulator is 20. If you perform the left arithmetic shift of the accumulator by 2 bits, the new contents of the accumulator will be
12. The first phase in the instruction (machine) cycle is called the phase, and the second phase is called the phase.
13. The holds a data value that is being written to or read from the memory location currently addressed by the MAR.
14. A is a set of parallel or serial wires, or optical conductors that can carr bits.
15. Two different processing methods are used for determining which device initiated an nterrupt. These methods are and
16. In, one can start the fetch cycle for the current instruction during the execute cycle for the previous instruction. In other words, instructions can overlap.
17. Two methods of implementing a disk array are: a array and a

	hod, by which ea e, from left to righ							ing each p	ixel, one
19. Cache means that a regions in m	nemory works du at any given time emory.	e to a p most r	orinciple nemory	known a referenc	as ces will	be conf	ined to or	e or a few	_, which small
	ache memory is t using the LRU					mory m	ust be se	lected for	
21. The mair form accepta	n function of an/t able and underst	he ood by	the peri	pheral d	is evice, a	to tran and to c	slate data ontrol the	and signa peripheral	ls to the device.
	rrays data redun ta redundancy is						ereas in a	a well desi	gned
23. SCSI sta	ands for								
	primary models								
III. Suppose respectively.	that the following	g instru	ction an	d data is	s found	at mem	ory locati	ons 05 and	d 75,
Address	Instruction (mnemonic)		Nume code	ric					
 05 	LDA 75		575						
75	40								
the fetch-exe	ntents of the PC ecute cycle is per er is unknown, w	rformed	for inst	ruction I	_DA 75	residing			
$PC \rightarrow MAR$ $MDR \rightarrow IR$ $IR [address]$ $MDR \rightarrow A$ $PC+1 \rightarrow PC$	\rightarrow MAR	PC	MAR 	MDR	IR 	A 			

IV. Short calculations/answers

If the rotational speed of the disk is 100 revolutions per <u>second</u> , the average latency time is milliseconds.
2. If the rotational speed of the disk is 8400 revolutions per minute, the average latency time is milliseconds.
3. A disk pack contains 13 platters. The data can be recorded on both surfaces of each platter except the top and the bottom platter. The top and the bottom platter can store data on their inner surfaces only. Each surface has 500 tracks. One track can hold 50,000 bytes of information. What is the capacity (expressed in KB and MB) of one cylinder ? What is the capacity (expressed in MB and GB) of the entire disk pack ? Show your computations.
4. Assuming that the rotational speed of the disk is 12,000 revolutions per minute, each track has 200 sectors, and seek time is 9 ms, calculate the total disk access time for 120 sectors. Note that this time will be the sum of seek time, latency time, and transfer time of 120 sectors.
<u>V. Short essay questions</u> - These are examples of the short essay questions. There will be only between 3 and 5 short essay questions on Test 2.
1. What factors determine the speed of the computer?
2. Why are buses used in the computer? What can they carry? What is the difference between multipoint bus and point-to-point bus? Explain the term <i>throughput</i> and <i>data width</i> of the bus.
3. What are registers? Where are they located? Why are they needed? Are they temporary or permanent memory?

Dr. J. Zurada, CIS

4. Describe common features and differences between serial and parallel interface.

- 5. What is the disk interface and what does it do?
- 6. Explain the Programmed I/O.
- 7. Discuss vectored interrupt and polling.
- 8. Give the examples of interrupts that originate in software and hardware
- 9. What is pipelining?
- 10. Describe the write-through and write-back operations in cache memory.
- 11. How are multiple interrupts handled?
- 12. Discuss the concepts of mirrored and striped disk arrays.
- 13. List techniques that improve the disk performance in terms of access time.
- 14. Discuss the methods of displaying pixels on the computer screen
- 15. Explain what is meant by synergy.
- 16. What is a loosely coupled system? How does it differ from a tightly coupled system?
- 17. Discuss the advantages of clustering.
- 18. What is grid computing?
- 19. Explain the operation of the SCSI.
- 20. Explain the basic USB topology.

		Answers
l.		
1. A 2. C 3. E 4. D 5. A 6. A 7. C 8. C 9. E 10. B 11. D 12. A 13. B 14. C	15. D 16. A 17. D 18. B 19. B 20. A 21. B 22. B 23. B 24. B 25. C 26. B 27. A 28. A 29. A 30. B 31. A 32. D	35. C 36. B 37. B 38. B 39. B 40. D 41. C 42. D 43. C 44. D 45. A 46. C 47. B 48. C 49. A 50. C 51. B 52. A

33. C	53. D
34. D	54. A
	55. A
	56. C

II.

- 1. dynamic random access memory
- 2.64
- 3. 256
- 4. millions of instructions per second
- 5. polling
- 6. hardware, software, software
- 7. priority
- 8. interrupt lines, IRQ or INT
- 9. accumulator
- 10. 12 (integer division)
- 11.80
- 12. fetch, execute
- 13. memory data register (MDR)
- 14. bus
- 15. vectored interrupt, polling
- 16. pipelining
- 17. mirrored, striped
- 18. raster scanning
- 19. locality of reference
- 20. least recently used (LRU)
- 21. I/O module or interface
- 22. desired, not desired
- 23. Small Computer System Interface
- 24. shared-nothing, shared disk

III.

	PC	MAR	MDR	IR	Α
$PC \rightarrow MAR$	05	05	575	?	?
$MDR \rightarrow IR$	05	05	575	575	?
IR [address] → MAR	05	75	40	575	?
$MDR \rightarrow A$	05	75	40	575	40
$PC+1 \rightarrow PC$	06	75	40	575	40

575 may be replaced with LDA 75.

IV.

1.

$$\frac{1}{2}\frac{1}{100} = \frac{1}{200}$$
 seconds = 5 milliseconds

2.

1 minute has 60 seconds

8400 revolutions /minute = 8400/60 = 140 revolutions/second

$$\frac{1}{2}\frac{1}{140} = \frac{1}{280}$$
 seconds = 3.57 milliseconds

3.

- (a) The number of recording surfaces is 11*2+1+1=24
- (b) The capacity of the cylinder = 24 * 50,000 bytes = 1,200,000 bytes = 1,171.875 KB = 1.144 MB
- (c) The capacity of the entire disk pack = 1.144 MB * 500 tracks = 572.0 MB = 0.559 GB

4.

The number of revolutions/second is 12,000/60=200

Latency time =
$$\frac{1}{2} \frac{1}{200} = \frac{1}{400}$$
 seconds = 2.5 ms

Transfer time =
$$\frac{120}{200 \times 200} = \frac{120}{40000}$$
 seconds = 3.0 ms

Seek time = 9 ms

The total disk access time is the sum of the three times = 9 ms + 2.5 ms + 3.0 ms = 14.5 ms

٧.

The answers to the essay questions are in the textbook, lecture notes, or homework solutions posted on BB.