ABSTRAK

Welly Winata:

Skripsi

Prediksi Skor Pertandingan Sepak Bola Menggunakan *Neuroevolution of Augmenting Topologies* dan *Backpropagation*

Sepak bola merupakan olahraga yang memiliki penggemar paling banyak di dunia. Hal yang membuat sebak pola menjadi sangat populer adalah hasil yang tidak pasti dan sulit ditebak. Ada banyak faktor yang mempengaruhi hasil dari sebuah pertandingan sepak bola, diantarnya *strategy*, *skill*, bahkan sampai keberuntungan. Karena itu, menebak hasil pertandingan sepak bola merupakan masalah yang menarik.

Penelitian dimulai dengan *neuroevolution of augmenting topologies*, yang berfungsi untuk melakukan pencarian struktur dari sebuah *neural network*. Lalu, *network* yang dihasilkan oleh NEAT akan dioptimasi menggunakan *backpropagation*. *Rating* pemain, *rating team*, dan posisi pemain akan digunakan sebagai *features*.

Tingkat akurasi terbaik yang didapat sebesar 81.5% pada akurasi hasil pertandingan, dan 48% pada akurasi skor pertandingan diperoleh melalui proses NEAT yang telah dioptimasi oleh *backpropagation* menggunakan *rating* pemain, *rating team*, dan jumlah masing-masing posisi pada setiap sektor sebagai *features*.

Pada pengujian *real life*, *rating* pemain dan *team* tidak diketahui, sehingga digunakan metode rata-rata untuk menghitung rating dari pemain dan *team*. Namun, akurasi yang didapat pada pengujian ini sangat rendah, inkonsistensi dari pemain menyebabkan metode rata-rata yang digunakan tidak mampu bekerja dengan baik.

Kata kunci: *Machine Learning*, *Artificial Neural Network*, *Neuroevolution*, *Neuroevolution of Augmenting Topologies*, *Backpropagation*

ABSTRACT

Welly Winata:

Undergraduate Thesis Predicting Football Matches Score Using Neuroevoluiton of Augmenting Topologies and Backpropagation.

Football, or soccer is the most popular sport in the world. What makes football special is the uncertainty and unpredictable result. There are a lot of factors that can affect the result of a football match, such as strategy, skill, or even luck. Therefore, predicting the outcome of football match can be challenging yet interesting task.

This research started with neuroevolution of augmenting topologies, which useful to find the structur of a neural network. Then, the network produced by NEAT is optimized using backpropagation. Player ratings, team ratings, and player position are used as features of neural network.

The hightest accuracies achieved are 81.5% on the final result predicting, and 48% on score predicting, were obtained through NEAT network that optimized by backpropagation, with player ratings, team ratings, and total position from each sectors are used as features.

However, on real life test, the player and team ratings are unknown. To calculate the player and team ratings, averages methods are used. Unfortunately, the network performed poorly causing the accuracies to dropped significantly. Lack of consistency from player ratings are believed to be the main problem on calculating the player and team ratings.

Keywords: Machine Learning, Artificial Neural Network, Neuroevolution, Neuroevolution of Augmenting Topologies, Backpropagation

DAFTAR ISI

HAL	AMAN JUDUL	i
LEM	IBAR PENGESAHAN	ii
KAT	TA PENGANTAR	iv
ABS	TRAK	vi
ABS	TRACT	. vii
	TAR ISI	
	TAR TABEL	
	TAR GAMBAR	
	TAR SEGMEN PROGRAM	
	PENDAHULUAN	
	1 Latar Belakang	
	.2 Rumusan Masalah	
	.3 Tujuan Penelitian	
	.4 Ruang Lingkup	
	.5 Metodologi Penelitian.6 Sistematika Penulisan	
2 I	ANDAGANGEODA	_
	LANDASAN TEORI	
2	2.1 Machine Learning	
•	2.1.1 Supervised Learning	
_	2.2 Jaringan Saraf Tiruan	
_	2.3 Backpropagation	
	2.4 Algoritma Genetika (Genetic Algorithm)	
	2.5 Neuroevolution of Augmenting Topologies (NEAT)	
_	2.0 Encoung	. 41
3. I	DESAIN SISTEM	. 23
3	3.1 Dataset	. 23
3	3.2 Desain Sistem	. 26
	3.2.1 Neuroevolution of Augmenting Topologies (NEAT)	. 27
	3.2.2 Backpropagation	. 32
3	3.3 Desain Aplikasi	. 34
4. I	MPLEMENTASI SISTEM	. 36
	1.1 Instalasi Open Source Library	
	4.1.1 Instalasi NEAT-Python	

		4.1.2 Instalasi <i>Neataptic.js</i>	36
	4.2	Data Pre-processing	
		Implementasi NEAT	
		Implementasi Backpropagation	
5.	PEN	NGUJIAN SISTEM	48
	5.1	Sistem Pengujian	48
		Pengujian NEAT	
		5.2.1 Tahap 1	
		5.2.2 Tahap 2	
		5.2.3 Tahap 3	
		5.2.4 Kesimpulan Pengujian NEAT	
	5.3	Pengujian Backpropagation	76
		Pengujian Real Life	
		Kesimpulan Pengujian	
6.	KE	SIMPULAN DAN SARAN	83
	6.1	Kesimpulan	83
		Saran	
DA	AFT <i>A</i>	AR REFERENSI	86

DAFTAR TABEL

Tabel 4.1 Daftar Segmen Program dan Flowchart	36
Tabel 4.1 Daftar Segmen Program dan Flowchart	36
Tabel 5.1 Spesifikasi sitem pengujian	48
Tabel 5.2 Rangkuman proses training dan testing Tahap 1 Pengujian 1	51
Tabel 5.3 Rangkuman proses training dan testing Tahap 1 Pengujian 2	54
Tabel 5.4 Rangkuman proses training dan testing Tahap 1 Pengujian 3	57
Tabel 5.5 Rangkuman proses training dan testing Tahap 2 Pengujian 1	60
Tabel 5.6 Rangkuman proses training dan testing Tahap 2 Pengujian 2	62
Tabel 5.7 Rangkuman proses training dan testing Tahap 3 Pengujian 1	65
Tabel 5.8 Rangkuman proses training dan testing Tahap 3 Pengujian 2	68
Tabel 5.9 Rangkuman proses training dan testing Tahap 3 Pengujian 3	71
Tabel 5.10 Rangkuman proses training dan testing Tahap 3 Pengujian 4	73
Tabel 5.11 Rangkuman seluruh pengujian NEAT	76
Tabel 5.12 Hasil pengujian backpropagation	76
Tabel 5.13 Perbandingan akurasi dari network sebelum dan sesudah backpropagatio	n
	78
Tabel 5.14 Hasil pengujian real life	80

DAFTAR GAMBAR

Gambar 2.1 Ilustrasi cara kerja <i>Machine Learning</i>	5
Gambar 2.2 Ilustrasi supervised learning dan unsupervised learning	5
Gambar 2.3 Ilustrasi masalah regressi (regression) dan klasifikasi (classification)	6
Gambar 2.4 Ilustrasi neuron pada otak manusia	7
Gambar 2.5 Ilustrasi neuron pada artificial neural network	8
Gambar 2.6 Ilustrasi forward-pass pada artificial neural network	8
Gambar 2.7 Ilustrasi Backpropagation	9
Gambar 2.8 Ilustrasi gene, chromosome, dan population pada GA	12
Gambar 2.9 Ilustrasi proses <i>crossover</i> pada GA	13
Gambar 2.10 Ilustrasi proses <i>crossover</i> pada GA	13
Gambar 2.11 Ilustrasi proses crossover pada GA	14
Gambar 2.12 Ilustrasi proses mutation pada GA	14
Gambar 2.13 Hilangnya informasi ketika terjadi crossover antar ANN	15
Gambar 2.14 Encoding dan innovation number pada NEAT	16
Gambar 2.15 Structural mutation pada NEAT	17
Gambar 2.16 Crossover pada NEAT	18
Gambar 2.17 Label encoding dan one hot encoding	21
Gambar 3.1 Sebagian dataset yang akan digunakan pada penelitian ini	23
Gambar 3.2 Struktur dataset yang akan digunakan pada penelitian ini	24
Gambar 3.3 Flowchart dari pemrosesan dataset	25
Gambar 3.4 Flowchart sistem secara umum	26

Gambar 3.5 Flowchart dari proses training pada NEAT	.27
Gambar 3.6 Flowchart dari proses testing pada NEAT	.27
Gambar 3.7 Flowchart dari proses evaluasi pada NEAT	.29
Gambar 3.8 Flowchart dari proses pengukuran akurasi pada NEAT	.30
Gambar 3.9 Flowchart dari proses crossover dan mutasi pada NEAT	31
Gambar 3.10 Flowchart dari proses training backpropagation	.32
Gambar 3.11 Flowchart dari proses testing backpropagation	.33
Gambar 3.12 Desain halaman utama untuk melakukan prediksi	34
Gambar 3.13 Halaman untuk menampilkan hasil prediksi	34
Gambar 4.1 Contoh <i>file config</i> pada NEAT	40
Gambar 5.1 Konfigurasi yang digunakan pada Tahap 1 Pengujian 1	49
Gambar 5.2 Hasil training dari tahap 1 pengujian 1	49
Gambar 5.3 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 1 Pengujian 1	50
Gambar 5.4 Network terbaik yang dihasilkan NEAT pada Tahap 1 Pengujain 1	51
Gambar 5.5 Konfigurasi yang digunakan pada Tahap 1 Pengujian 2	.52
Gambar 5.6 Hasil training dari Tahap 1 Pengujian 2	.53
Gambar 5.7 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 1 Pengujian 2	53
Gambar 5.8 Network terbaik yang dihasilkan NEAT pada Tahap 1 Pengujain 2	54
Gambar 5.9 Konfigurasi yang digunakan pada Tahap 1 Pengujian 3	.55
Gambar 5.10 Hasil training dari Tahap 1 Pengujian 3	.56

Gambar 5.11 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 1 Pengujian 1	.56
Gambar 5.12 Konfigurasi yang digunakan pada Tahap 2 Pengujian 1	. 58
Gambar 5.13 Hasil training dari Tahap 2 Pengujian 1	. 58
Gambar 5.14 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 2 Pengujian 1	. 59
Gambar 5.15 Konfigurasi yang digunakan pada Tahap 2 Pengujian 2	. 60
Gambar 5.16 Hasil training dari Tahap 2 Pengujian 2	.61
Gambar 5.17 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 2 Pengujian 2	.61
Gambar 5.18 Konfigurasi yang digunakan pada Tahap 3 Pengujian 1	. 63
Gambar 5.19 Hasil training dari Tahap 3 Pengujian 1	. 64
Gambar 5.20 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 3 Pengujian 1	. 65
Gambar 5.21 Konfigurasi yang digunakan pada Tahap 3 Pengujian 2	. 66
Gambar 5.22 Hasil training dari Tahap 3 Pengujian 2	. 67
Gambar 5.23 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 3 Pengujian 2	. 68
Gambar 5.24 Konfigurasi yang digunakan pada Tahap 3 Pengujian 3	. 69
Gambar 5.25 Hasil training dari Tahap 3 Pengujian 3	. 70
Gambar 5.26 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 3 Pengujian 3	.71

Gambar 5.27 Konfigurasi yang digunakan pada Tahap 3 Pengujian 4	72
Gambar 5.28 Hasil training dari Tahap 3 Pengujian 4	73
Gambar 5.29 Grafik nilai fitness terbaik dan nilai fitness rata-rata dalam populasi	
selama proses training pada Tahap 3 Pengujian 4	74

DAFTAR SEGMEN PROGRAM

Segmen Program 4.1 Pre-processing pada data dengan feature berupa player ratings
dan team ratings
Segmen Program 4.2 Fungsi load_data()
Segmen Program 4.3 Fungsi start () untuk menjalankan proses NEAT41
Segmen Program 4.4 Fitness function pertama
Segmen Program 4.5 Fitness function kedua
Segmen Program 4.6 Fungsi calculate_winner()
Segmen Program 4.7 Fungsi extract_net()
Segmen Program 4.8 fungsi prepare_data() untuk menyiapkan data
berdasarkan tipe feature yang digunakan
Segmen Program 4.9 fungsi build() untuk mengkonstuksi network
Segmen Program 4.10 fungsi backprop () untuk menjalankan proses training 45
Segmen Program 4.11 fungsi calculateAccuracy() untuk mengukur akurasi
dari network
Segmen Program 4.1 Pre-processing pada data dengan feature berupa player ratings
dan team ratings
Segmen Program 4.2 Fungsi load_data()
Segmen Program 4.3 Fungsi start () untuk menjalankan proses NEAT41
Segmen Program 4.4 Fitness function pertama
Segmen Program 4.5 Fitness function kedua

Segmen Program 4.6 Fungsı calculate_winner()42
Segmen Program 4.7 Fungsi extract_net()
Segmen Program 4.8 fungsi prepare_data() untuk menyiapkan data
berdasarkan tipe <i>feature</i> yang digunakan
Segmen Program 4.9 fungsi build() untuk mengkonstuksi network45
Segmen Program 4.10 fungsi backprop () untuk menjalankan proses training 45
Segmen Program 4.11 fungsi calculateAccuracy() untuk mengukur akurasi
dari <i>network</i> 46