distribution	example	parameters			probability density mass function for x	mean	standard deviation	supported x	generate 10 numbers in R estimate the likelihood of x in R
normal		$\mu = \text{mean} *$			$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\mathbf{x}-\mu}{\sigma}\right)^2}$	μ	σ	continuum $(-\infty,\infty)$	$rnorm(n=10,mean=\mu,sd=\sigma)$
-5 0 5 10 15	SAT score	$\sigma = SD$							$dnorm(x, mean=\mu, sd=\sigma)$
log-normal		$m = \text{logarithm of median } *$ $= \ln \left(\frac{\mu^2}{\sqrt{\mu^2 + \sigma^2}} \right)$							rlnorm(n=10,meanlog=m,sdlog=s)
-5 0 5 10 15	plant height	$s = \text{spread} = \sqrt{\ln\left(\frac{e^{2m} + 1}{e^{2m} + 1}\right)}$	$ \sqrt{\ln\left(1 + \frac{\sigma^2}{\mu^2}\right)} $ $ \frac{\sqrt{e^{4m} + 4e^{2m}\sigma^2}}{2e^{2m}} $		$\frac{1}{x s \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\ln(x) - m}{s}\right)^2}$	$e^{\left(m+\frac{S^2}{2}\right)}$	$\sqrt{\left(e^{s^2}-1\right)e^{2m+s^2}}$	continuum $(0, \infty)$	dlnorm(x,meanlog=m,sdlog=s)
exponential	time	$\lambda = \text{rate}$			λe ^{-λx}	$\frac{1}{\lambda}$	$\frac{1}{\lambda}$	continuum $[0,\infty)$	$rexp(n=10, rate=\lambda)$
-5 0 5 10 15	between two earthquakes								$dexp(x, rate=\lambda)$
gamma	time it takes	$\mathbb{E} = \text{shape (how many events)}$ $\lambda = \text{rate or } \vartheta = \text{scale} = \frac{1}{\lambda}$			$rac{\lambda^{\mathbb{E}}}{\Gamma(\mathbb{E})} x^{\mathbb{E}-1} e^{-\lambda x}$	$\mathbb{E} \frac{1}{\lambda}$	$\sqrt{\mathbb{E}} \frac{1}{\lambda}$	continuum $[0,\infty)$	rgamma(n=10,shape= \mathbb{E} ,rate= λ)
-5 0 5 10 15	to finish PhD								$dgamma(x, shape=E, rate=\lambda)$
beta	proportion of skin	$\mu = \text{mean}$	$\alpha = \mu\theta$		$\Gamma(\alpha + \beta)$ $\alpha = 1$	μor	$\sqrt{\frac{\mu-\mu^2}{\theta+1}}$ or	continuum	rbeta(n=10, shape1= $\mu * \theta$, shape2=(1- μ)* θ)
-5 0 5 10 15	covered by clothing	$\theta = \text{shape}$ (concentration)	or	$\beta = (1 - \mu)\theta$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$\frac{\alpha}{\alpha+\beta}$	$ \frac{\sqrt{\frac{\mu - \mu^2}{\theta + 1}}}{\sqrt{\alpha \beta}} \text{ or } $ $ \frac{\sqrt{\alpha \beta}}{(\alpha + \beta)\sqrt{\alpha + \beta + 1}} $	[0,1]	dbeta(x , shape1= $\mu * \theta$, shape2=(1- μ)* θ)
Poisson	customers	1			$\lambda^{x}e^{-\lambda}$	1	/3	counts	rpois(n=10, lambda= λ)
-5 0 5 10 15	per day (same shop)	$\lambda = \text{rate}$			$\frac{\lambda^{x}e^{-\lambda}}{x!}$	λ	$\sqrt{\lambda}$	{0,1,}	dpois(x , lambda= λ)
gamma-Poisson	customers per day	$\mu = \text{mean}$ $\theta = \text{shape (concentration)}$			$\frac{\Gamma(x+\theta)}{x!\Gamma(\theta)} \left(\frac{\theta}{\theta+\mu}\right)^{\theta} \left(\frac{\mu}{\theta+\mu}\right)^{x}$	μ	$\sqrt{\mu + \frac{\mu^2}{\theta}}$	counts {0,1,}	rpois(n=10,lambda= rgamma(n=10,shape= θ ,rate= θ/μ))
-5 0 5 10 15	(different shops)								$dnbinom(x, size = \theta, prob = \theta/(\mu + \theta))$
binomial	number of dates out of	p = probability of + 1			$\binom{n}{x}p^x(1-p)^{n-x}$	np	$\sqrt{np-np^2}$	counts $\{0,\ldots,n\}$	rbinom(n=10,size=n,prob=p)
-5 0 5 10 15	n invitations for coffee	n = total attempts							dbinom(x, size=n, prob=p)
beta-binomial	number of dates out of	$\mu = \text{mean of beta} \qquad \alpha = \mu\theta$					[(a) (a)		rbinom(n=10, size= n , prob=rbeta(n=10, shape1= $\mu^*\theta$, shape2=(1- μ)* θ))
-5 0 5 10 15	n invitations for coffee (different	$\theta = \text{shape}$ (concentration)		$\beta = (1 - \mu)\theta$	$\binom{n}{x} \frac{\Gamma(x+\alpha)\Gamma(n-x+\beta)\Gamma(\alpha+\beta)}{\Gamma(n+\alpha+\beta)\Gamma(\alpha)\Gamma(\beta)}$	$n\mu \text{ or } \frac{n\alpha}{\alpha+\beta}$	$\sqrt{\frac{n(\theta+n)(\mu-\mu^2)}{\theta+1}} \text{ or } $ $\sqrt{\frac{n\alpha\beta(\alpha+\beta+n)}{(\alpha+\beta)\sqrt{\alpha+\beta+1}}} $	counts $\{0,\ldots,n\}$	<pre>dbetabinom<-function(x,mup,shape,size){ a<-mup*shape; b<-(1-mup)*shape choose(size,x)* (gamma(x+a)*gamma(size-x+b)*gamma(a+b))/ (gamma(size+a+b)*gamma(a)*gamma(b))}</pre>
	people)	n = total attempts ooth positive and negative values, other part			ramators are always positive for the a	(nlanatica	of the gamma function	on F and intuiti	dbetabinom(x , mup= μ , shape= θ , size= n)

^{*}parameters with asterisk can assume both positive and negative values, other parameters are always positive, for the explanation of the gamma function Γ and intuition about α , β parameters of beta, flip the paper

