Examen Final

January 31, 2021

1 Examen Final - Edgar Gerardo Alarcón González

1.1 Número de cuenta: 31210231-9

```
[1]: # Librerías
     # General
     import pandas as pd
     import numpy as np
     from scipy import integrate
     from sklearn.metrics import mean_squared_error, mean_squared_log_error, u
     →mean_absolute_error, median_absolute_error
     from scipy.integrate import odeint
     from scipy.optimize import differential_evolution, minimize
     import matplotlib.pyplot as plt
     # Ejercicio 1
     import numpy.polynomial.polynomial as poly
     from sklearn.model_selection import train_test_split
     from sklearn.linear_model import LinearRegression
     from sklearn.preprocessing import PolynomialFeatures
     from sklearn.model_selection import cross_val_score
     # Ejercicio 2
     from keras.models import Sequential
     from keras.layers import Dense
     # Ejercicio 3
     from mpl_toolkits.mplot3d import Axes3D
     from sklearn.linear_model import LogisticRegression
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import classification report, confusion matrix
     from sklearn.metrics import roc_curve
     from sklearn.metrics import roc_auc_score
     # Ejercicio 4
     import random
     from mpl_toolkits import mplot3d
```

```
import math
import plotly.graph_objects as go
from plotly.subplots import make_subplots
```

1.2 Ejercicio 1

Usando el data set llamado problem1.csv "(x_training, y_training)":

- a) Enceuntra el polinomio que mejor ajusta los datos de entrenamiento.
- b) Usando el criterio del AIC, encuentra el mejor polinomio que que puede ajustar los datos.
- c) Realiza validación cruzada del polinomio con los datos llamados "problem
1.csv (x_test, y_test)"

1.2.1 Solución

Comenzamos haciendo una lectura de los datos

```
[2]: # Letura de datos
datos = pd.read_csv('problem1.csv')
datos.head()
```

```
[2]:
       X_training Y_training X_test
                                         Y_test
    0
            -2.00
                    22.067387
                                 2.00 6.024049
            -1.97
    1
                    19.944915
                                 2.05 6.885408
    2
            -1.94
                    18.062490
                                 2.10 7.578968
    3
            -1.91
                    16.384313
                                 2.15 8.439467
    4
            -1.88
                    14.567798
                                 2.20 9.554611
```

Vamos ahora a guardar los datos de entrenamiento y de prueba

```
[3]: # Separar datos
train = datos[["X_training","Y_training"]]
train.head()
```

```
[3]:
        X_training Y_training
     0
             -2.00
                     22.067387
     1
             -1.97
                     19.944915
     2
             -1.94
                     18.062490
     3
             -1.91
                     16.384313
     4
             -1.88
                     14.567798
```

```
[4]: test = datos[["X_test","Y_test"]]
test.head()
```

```
[4]: X_test Y_test
0 2.00 6.024049
1 2.05 6.885408
2 2.10 7.578968
```

```
3 2.15 8.439467
4 2.20 9.554611
```

Ahora hacemos un gráfico de los datos.

```
[5]: plt.plot(train.X_training,train.Y_training,'bs',alpha=0.2,)
    plt.xlabel('X_train')
    plt.ylabel('Y_train')
    #plt.savefig('fdx.pdf', format='pdf', dpi=1200, bbox_inches="tight")
    #plt.show()
```

[5]: Text(0, 0.5, 'Y_train')

1.2.2 Ajuste polinomial

Primero, vamos a proponer un ajuste polinomial de grado 8.

```
[6]: coef = poly.polyfit(train["X_training"], train["Y_training"], 

→8,rcond=None,w=None)
```

Veamos los coeficientes del modelo propuesto.

```
[7]: model = poly.Polynomial(coef)
model
```

[7]:

Notemos que los coeficientes del polinomio a partir del grado 5 parecen ser bastante pequeños.

Veamos el ajuste del polinomio y nuestros datos.

```
[8]: plt.plot(train["X_training"], train["Y_training"], 'bs',alpha=0.2, label='Train')
    plt.plot(train["X_training"], model(train["X_training"]), 'r', label='Model')
    plt.legend(loc='best', frameon=False)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()
```


Ahora, ajustando este polinomio a los datos de prueba

```
[9]: plt.plot(test["X_test"], test["Y_test"],'bs',alpha=0.2, label='Test')
    plt.plot(test["X_test"], model(test["X_test"]),'r', label='Model')
    plt.legend(loc='best', frameon=False)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()
```


Donde vemos que el ajuste es bueno pero sí presenta errores en los valores alejados de los datos de entrenamiento.

1.2.3 Selección de Modelo

Realizaremos un ajuste de modelo usando los datos de entrenamiento y con base en el AIC y en la suma de los cuadrados de los residuales (RSS). Esto lo haremos asumiendo un grado máximo de polinomio de 15 y mostrando un gráfico para seleccionar aquel modelo que tenga un menor AIC y menor RSS.

```
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.plot(np.arange(0,Pol_Max-1,1)+1, RSSv,'r',alpha=0.3)
ax1.set_yscale('log')
ax1.set(xlabel='Polynomial Grade', ylabel='RSS')
ax1.set(xlim=(0, Pol_Max))
ax1.set_title('(a)')
# Second #figure
fig.tight_layout(pad=5.0)
ax2.plot(np.arange(0,Pol_Max-1,1)+1, AICv,'b',alpha=0.3)
ax2.set(xlabel='Polynomial Grade', ylabel='RSS')
ax2.set(xlabel='Polynomial Grade', ylabel='AIC')
ax2.set(xlim=(0, Pol_Max))
ax2.set_title('(b)')
plt.show()
```


Donde podemos observar que el mínimo de los AIC se alcanza cuando el grado es 4 y justo ahí es donde el RSS parece estabilizarse. Algo que coincide con lo que mencionamos en el primer ajuste de modelo.

```
[11]: grade = np.argmin(AICv)+1
grade
```

[11]: 4

Donde ahora continuamos haciendo un ajuste de modelo con este grado

```
[12]: coef = poly.polyfit(train["X_training"], train["Y_training"], grade)
```

Veamos los coeficientes del modelo propuesto.

```
[13]: model = poly.Polynomial(coef)
model
```

[13]: $x \mapsto 6.000059202668212 + 8.029567412979475 x - 5.991414146668381 x^2 - 3.0086947131582313 x^3 + 1.9958810906630031 x^4$

Notemos que los coeficientes del polinomio ya lucen todos diferentes de cero.

Veamos el ajuste del polinomio y nuestros datos.

```
[14]: plt.plot(train["X_training"], train["Y_training"],'bs',alpha=0.2, label='Train')
    plt.plot(train["X_training"], model(train["X_training"]),'r', label='Model')
    plt.legend(loc='best', frameon=False)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()
```


Ahora, ajustando este polinomio a los datos de prueba

```
[15]: plt.plot(test["X_test"], test["Y_test"],'bs',alpha=0.2, label='Test')
    plt.plot(test["X_test"], model(test["X_test"]),'r', label='Model')
    plt.legend(loc='best', frameon=False)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()
```


Donde vemos que el ajuste es muy superior que el visto anteriormente y además sí predice los valores alejados de los datos de entrenamiento. Finalmente, veamos la figura completa de los datos que tenemos y su ajuste.

```
[16]: x = np.concatenate((train["X_training"], test["X_test"]))
y = np.concatenate((train["Y_training"], test["Y_test"]))
# Gráfico
plt.plot(x, y, 'bs', alpha=0.2, label='Data')
plt.plot(x, model(x), 'r', label='Model')
plt.legend(loc='best', frameon=False)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```


1.2.4 Validación Cruzada

Vamos a evaluar la calificación de validación cruzada de nuestro modelo

```
[17]: # C-V para el modelo que tenemos.
test = test.dropna()
poly_features = PolynomialFeatures(degree=grade)
X_poly = poly_features.fit_transform(test)
poly = LinearRegression()
np.mean(cross_val_score(poly, X_poly, test["Y_test"], cv=5))
```

[17]: 1.0

Esto nos indica que el modelo es muy bueno. Finalmente comparémoslo contra otros grados del polinomio

```
plt.scatter(range(1,15),poly_cv)
plt.xlabel('Polynomial Grade')
plt.ylabel('Standarized Exponential Mean Scores of C-V')
```

[18]: Text(0, 0.5, 'Standarized Exponential Mean Scores of C-V')

Donde vemos que justo el grado elegido es adecuado.

1.3 Ejercicio 2

Tener la siguiente tabla lógica

$\overline{x_1}$	x_2	$x_1 \& x_2$
0	0	1
1	0	1
0	1	1
1	1	0

$\overline{x_1}$	x_2	x_1 \$ x_2
0	0	0
1	0	0
0	1	0
1	1	1

Usando Keras, construye un operador & y \$ con un perceptron simple. Si A=[1.001 0 0.001 1], B=[0 1 0 1] y C=[0 1 1 0]. Calcula la operación (A&B)\$C

1.3.1 Solución

1.3.2 Operador &

```
[19]: # The input and output, i.e. truth table, of a NAND gate
      x_train = np.array([[0,0],[1,0],[0,1],[1,1]], "uint8")
      y_train = np.array([[1],[1],[1],[0]], "uint8")
      # Create neural networks model
      model Ampersand = Sequential()
      # Add layers to the model
      model_Ampersand.add(Dense(5, activation='relu', input_dim=2))
                                                                         # first_
      →hidden layer
      #model_Ampersand.add(Dense(3, activation='relu'))
                                                                           # second
      →hidden layer
      model_Ampersand.add(Dense(1, activation='sigmoid'))
                                                                          # output
      \rightarrow layer
      # Compile the neural networks model
      model_Ampersand.compile(optimizer='adam', loss='binary_crossentropy',_
      →metrics=['accuracy'])
      # Train the neural networks model
      model_Ampersand.fit(x_train, y_train, epochs=5000,verbose=0)
```

[19]: <tensorflow.python.keras.callbacks.History at 0x1889ad645e0>

```
[20]: # Test the output of the trained neural networks based NAND gate
y_predict = model_Ampersand.predict(x_train)
print(y_predict)
```

[[0.99889034]

[0.99345964]

[0.9940161]

[0.06992993]]

1.3.3 Operador \$

```
[21]: # The input and output, i.e. truth table, of a NAND gate
x_train = np.array([[0,0],[1,0],[0,1],[1,1]], "uint8")
y_train = np.array([[0],[0],[0],[1]], "uint8")

# Create neural networks model
model_Dollar = Sequential()
# Add layers to the model
```

```
model_Dollar.add(Dense(5, activation='relu', input_dim=2))  # first hidden_\( \rightarrow \) layer

#model_Ampersand.add(Dense(3, activation='relu'))  # second_\( \rightarrow \) hidden layer

model_Dollar.add(Dense(1, activation='sigmoid'))  # output layer

# Compile the neural networks model

model_Dollar.compile(optimizer='adam', loss='binary_crossentropy', \( \rightarrow \) metrics=['accuracy'])

# Train the neural networks model

model_Dollar.fit(x_train, y_train, epochs=5000, verbose=0)
```

[21]: <tensorflow.python.keras.callbacks.History at 0x1889b0181f0>

```
[22]: # Test the output of the trained neural networks based NAND gate
y_predict = model_Dollar.predict(x_train)
print(y_predict)
```

[[5.0193071e-04]

[2.7458072e-03]

[2.6729107e-03]

[9.9726784e-01]]

1.3.4 Componiendo los operadores

A&B

```
[23]: A = np.array([1.001, 0, 0.001, 1])
B = np.array([0, 1, 0, 1])
AB = np.dstack((A,B))
A_Amp_B = model_Ampersand.predict(AB)
print(A_Amp_B)
```

WARNING:tensorflow:Model was constructed with shape (None, 2) for input Tensor("dense_input:0", shape=(None, 2), dtype=float32), but it was called on an input with incompatible shape (None, 4, 2).

[[[0.99347866]

[0.9940161]

[0.9988851]

[0.06992993]]]

(A&B)\$C

```
[24]: C = np.array([0,1,1,0])
    AAmpBC = np.dstack((A_Amp_B,C))
    Result = model_Dollar.predict(AAmpBC)
    print(Result)
```

WARNING:tensorflow:Model was constructed with shape (None, 2) for input Tensor("dense_2_input:0", shape=(None, 2), dtype=float32), but it was called on

```
an input with incompatible shape (None, 4, 2). [[[2.7094483e-03] [9.9706805e-01] [9.9723172e-01] [5.6514144e-04]]]
```

1.4 Ejercicio 3

De un ensayo clínico, tenemos 12 pacientes con infección por VIH. Después del tratamiento, la enfermedad progresó en 6 pacientes (1) y en 6 pacientes la infección no progresó (0). Cuatro medidas se toman en los 12 pacientes (edad, niveles de azúcar, niveles de células T y colesterol).

¿Qué medida se puede utilizar como marcador para describir la progresión de la enfermedad?

¿Cuáles serán los criterios a predecir la progresión? Los datos se pueden encontrar en "problema3.csv (x_age, x_sugar, x_Tcell, x_cholesterol, Salir)"?.

Ordene los datos y explique brevemente sus resultados. La variable "y" (objetivo) es un vector de 0 y 1 para representar la progresión.

1.4.1 Solución

```
[25]: # Letura de datos
datos = pd.read_csv('problem3.csv')
datos.head()
```

```
[25]:
         x_age
                x_cholesterol
                                x_sugar x_Tcell
                                                    У
      0
            35
                            220
                                      80
                                               550
                            240
                                     120
                                               600 0
      1
            18
      2
            22
                            260
                                      55
                                               580 0
      3
            23
                            220
                                      75
                                               575
                                                    0
      4
            28
                            180
                                               620
                                     100
                                                    0
```

1.4.2 Probando la variable 'age'

Definimos el modelo logístico

```
[26]: model = LogisticRegression(C=1.0, solver='lbfgs', multi_class='ovr')
y_resp = datos["y"]
x_expl = datos[["x_age"]]
```

Separamos en covariable y respuesta pero de un subconjunto de datos

```
[27]: # Separar datos
x_train, x_test, y_train, y_test = train_test_split(x_expl, y_resp, test_size=0.

→3, random_state=5)
```

```
[28]: model.fit(x_train, y_train) model.score(x_train, y_train)
```

[28]: 0.5

Mostramos los coeficientes del modelo

[31]: Text(0, 0.5, 'Progess')

Matriz de Confusión

```
Predicted Positive - 3 3

Predicted Negative - 3 3

Actual Positve Actual Negative
```

```
ROC
[34]: # Genrate a Diagonal (Random Guess)
ns_probs = [0 for _ in range(len(y_resp))]
```

```
# predict probabilities
lr_probs = model.predict_proba(x_expl)
# keep probabilities for the positive outcome only
lr_probs = lr_probs[:, 1]
# calculate scores
ns_auc = roc_auc_score(y_resp, ns_probs)
lr_auc = roc_auc_score(y_resp, lr_probs)
```

```
[35]: # summarize scores
print('ROC AUC for Logistic Model =%.3f' % (lr_auc))
```

ROC AUC for Logistic Model =0.597

```
[36]: # calculate roc curves
    ns_fpr, ns_tpr, _ = roc_curve(y_resp, ns_probs)
    lr_fpr, lr_tpr, _ = roc_curve(y_resp, lr_probs)
# plot the roc curve for the model
plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
plt.plot(lr_fpr, lr_tpr, marker='.', label='Logistic')
# axis labels
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
# show the legend
plt.legend()
# show the plot
plt.show()
```


Esta variable no nos parece ayudar pues parece que predice prácticamente la certeza de un volado.

1.4.3 Probando la variable 'cholesterol'

Definimos el modelo logístico

```
[37]: model = LogisticRegression(C=1.0, solver='lbfgs', multi_class='ovr')
y_resp = datos["y"]
x_expl = datos[["x_cholesterol"]]
```

Separamos en covariable y respuesta pero de un subconjunto de datos

```
[38]: # Separar datos
x_train, x_test, y_train, y_test = train_test_split(x_expl, y_resp, test_size=0.
→3, random_state=5)
```

```
[39]: model.fit(x_train, y_train) model.score(x_train, y_train)
```

[39]: 0.625

Mostramos los coeficientes del modelo

```
[40]: model.coef_
```

[40]: array([[-0.00722093]])

```
[41]: model.intercept_
```

[41]: array([1.50771544])

```
Graficando el Modelo
```

```
[42]: X = np.arange(150, 280, 0.1)
X = X.reshape(-1, 1)
plt.scatter(x_expl, y_resp)
plt.scatter(X,model.predict_proba(X)[:,1],marker='x',color='g',linewidth=.1)
plt.title("Logistic Regression Model")
plt.xlabel('Cholesterol')
plt.ylabel('Progress')
```

[42]: Text(0, 0.5, 'Progress')


```
ROC

[45]: # Genrate a Diagonal (Random Guess)

ns_probs = [0 for _ in range(len(y_resp))]

# predict probabilities

lr_probs = model.predict_proba(x_expl)

# keep probabilities for the positive outcome only

lr_probs = lr_probs[:, 1]

# calculate scores

ns_auc = roc_auc_score(y_resp, ns_probs)

lr_auc = roc_auc_score(y_resp, lr_probs)

[46]: # summarize scores

print('ROC AUC for Logistic Model =%.3f' % (lr_auc))

ROC AUC for Logistic Model =0.597

[47]: # calculate roc curves

ns_fpr, ns_tpr, _ = roc_curve(y_resp, ns_probs)
```

```
lr_fpr, lr_tpr, _ = roc_curve(y_resp, lr_probs)
# plot the roc curve for the model
plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
plt.plot(lr_fpr, lr_tpr, marker='.', label='Logistic')
# axis labels
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
# show the legend
plt.legend()
# show the plot
plt.show()
```


Esta variable mejora con respecto a la anterior, pero aún su poder de predicción no parece bueno.

1.4.4 Probando la variable 'sugar'

Definimos el modelo logístico

```
[48]: model = LogisticRegression(C=1.0, solver='lbfgs', multi_class='ovr')
y_resp = datos["y"]
x_expl = datos[["x_sugar"]]
```

Separamos en covariable y respuesta pero de un subconjunto de datos

```
[49]: # Separar datos
```

```
x_train, x_test, y_train, y_test = train_test_split(x_expl, y_resp, test_size=0.
      →3, random_state=5)
[50]: model.fit(x_train, y_train)
      model.score(x_train, y_train)
[50]: 1.0
     Mostramos los coeficientes del modelo
[51]: model.coef
[51]: array([[0.7157536]])
[52]:
      model.intercept_
[52]: array([-87.67981786])
     Graficando el Modelo
[53]: X = np.arange(55, 240, 0.1)
      X = X.reshape(-1, 1)
      plt.scatter(x_expl, y_resp)
      plt.scatter(X,model.predict_proba(X)[:,1],marker='x',color='g',linewidth=.1)
      plt.title("Logistic Regression Model")
      plt.xlabel('Sugar')
      plt.ylabel('Progress')
[53]: Text(0, 0.5, 'Progress')
```



```
ROC

# Genrate a Diagonal (Random Guess)

ns_probs = [0 for _ in range(len(y_resp))]

# predict probabilities

lr_probs = model.predict_proba(x_expl)

# keep probabilities for the positive outcome only

lr_probs = lr_probs[:, 1]

# calculate scores

ns_auc = roc_auc_score(y_resp, ns_probs)

lr_auc = roc_auc_score(y_resp, lr_probs)

[57]: # summarize scores

print('ROC AUC for Logistic Model =%.3f' % (lr_auc))

ROC AUC for Logistic Model =1.000

[58]: # calculate roc curves

ns_fpr, ns_tpr, _ = roc_curve(y_resp, ns_probs)
```

```
lr_fpr, lr_tpr, _ = roc_curve(y_resp, lr_probs)
# plot the roc curve for the model
plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
plt.plot(lr_fpr, lr_tpr, marker='.', label='Logistic')
# axis labels
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
# show the legend
plt.legend()
# show the plot
plt.show()
```


Esta variable predice demasiado bien, de hecho ajusta perfectamente a los datos que nosotros tenemos.

1.4.5 Probando la variable 'Tcell'

Definimos el modelo logístico

```
[59]: model = LogisticRegression(C=1.0, solver='lbfgs', multi_class='ovr')
y_resp = datos["y"]
x_expl = datos[["x_Tcell"]]
```

Separamos en covariable y respuesta pero de un subconjunto de datos

```
[60]: # Separar datos
      x_train, x_test, y_train, y_test = train_test_split(x_expl, y_resp, test_size=0.
       →3, random_state=5)
[61]: model.fit(x_train, y_train)
      model.score(x_train, y_train)
[61]: 1.0
     Mostramos los coeficientes del modelo
[62]: model.coef_
[62]: array([[-0.07262875]])
[63]:
      model.intercept_
[63]: array([31.70077079])
     Graficando el Modelo
[64]: X = np.arange(80, 674, 0.1)
      X = X.reshape(-1, 1)
      plt.scatter(x_expl, y_resp)
      plt.scatter(X,model.predict_proba(X)[:,1],marker='x',color='g',linewidth=.1)
      plt.title("Logistic Regression Model")
      plt.xlabel('Tcell')
      plt.ylabel('Progress')
[64]: Text(0, 0.5, 'Progress')
```



```
ROC

# Genrate a Diagonal (Random Guess)

ns_probs = [0 for _ in range(len(y_resp))]

# predict probabilities

lr_probs = model.predict_proba(x_expl)

# keep probabilities for the positive outcome only

lr_probs = lr_probs[:, 1]

# calculate scores

ns_auc = roc_auc_score(y_resp, ns_probs)

lr_auc = roc_auc_score(y_resp, lr_probs)

[68]: # summarize scores

print('ROC AUC for Logistic Model = %.3f' % (lr_auc))

ROC AUC for Logistic Model = 1.000

[69]: # calculate roc curves

ns_fpr, ns_tpr, _ = roc_curve(y_resp, ns_probs)
```

```
lr_fpr, lr_tpr, _ = roc_curve(y_resp, lr_probs)
# plot the roc curve for the model
plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
plt.plot(lr_fpr, lr_tpr, marker='.', label='Logistic')
# axis labels
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
# show the legend
plt.legend()
# show the plot
plt.show()
```


Esta variable al igual que la anterior ajusta muy bien a los datos. Con base en estas dos podemos darnos una buena idea de propuesta de modelo.

1.4.6 Conclusión

Lo que podemos proponer para lograr predecir la variable respuesta es usar las variables sugar y Tcell con el criterio de tomar como 1 la variable respuesta y si sugar >= 175 o bien Tcell <= 325. Esta es la información inmediata que puede proporcionarnos nuestros datos.

1.5 Ejercicio 4

Usando un perceptron multicapa con Keras, produ ce un cono de la 'dimensión' de tu elección. Nota: En otras palabras, usa la ecuación de un cono y luego genera datos artificiales para generar X, Y y Z. Luego, usa los datos X, Y y Z para entrenar una red neuronal, y crea la forma de un

cono pero producida por la red neuronal. En tu reporte debes mencionar la ecuación del cono que seleccionaste, y la figura creada por la red neuronal.

1.5.1 Solución

Ecuación del cono que trabajaremos es

$$z = \sqrt{x^2 + y^2}$$

```
[70]: random.seed(10)
      a = np.random.uniform(-1,1,1000)
      b = np.random.uniform(-1,1,1000)
      z = math.sqrt(2)-np.sqrt(a**2+b**2)
      #from mpl_toolkits import mplot3d
      fig = plt.figure(figsize = (10, 7))
      ax = plt.axes(projection ="3d")
      # Creating plot
      #ax.scatter3D(a, b, z, color = "green")
      #plt.title("simple 3D scatter plot")
      # show plot
      #plt.show()
      fig = go.Figure(data=[go.Scatter3d(
          x=a,
          y=b,
          z=z,
          mode='markers',
          marker=dict(
              size=5,
                               # set color to an array/list of desired values
              color=z,
              colorscale='Viridis', # choose a colorscale
              opacity=0.8
      )])
      # tight layout
      fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
```



```
model_cono.compile(optimizer='sgd', loss='mse', metrics=['accuracy'])
# Train the neural networks model
model_cono.fit(x_train, z, epochs=2500, verbose=0)
```

[71]: <tensorflow.python.keras.callbacks.History at 0x1889f72b3a0>

```
[72]: random.seed(15)
    xt = np.random.uniform(-1,1,500)
    yt = np.random.uniform(-1,1,500)
    x_test = np.array(np.dstack((xt,yt)))
    x_test = np.reshape(x_test, (500, 2))
    zt = model_cono.predict(x_test)

# Para el gráfico
fig = plt.figure(figsize = (10, 7))
    ax = plt.axes(projection ="3d")
# Creating plot
ax.scatter3D(a, b, z, color = "green")
ax.scatter3D(xt, yt, zt, color = "red")
plt.title("Cono original y predicciones del Cono")

# show plot
plt.show()
```

WARNING:tensorflow:5 out of the last 5 calls to <function
Model.make_predict_function.<locals>.predict_function at 0x000001889F7884C0>
triggered tf.function retracing. Tracing is expensive and the excessive number
of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2)
passing tensors with different shapes, (3) passing Python objects instead of
tensors. For (1), please define your @tf.function outside of the loop. For (2),
@tf.function has experimental_relax_shapes=True option that relaxes argument
shapes that can avoid unnecessary retracing. For (3), please refer to https://ww
w.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and
https://www.tensorflow.org/api_docs/python/tf/function for more details.

Cono original y predicciones del Cono


```
mode='markers',
    marker=dict(
        size=5,
                                # set color to an array/list of desired values
        color=z,
        colorscale='Viridis', # choose a colorscale
        opacity=0.8
    )),
row=1, col=1)
fig.add_trace(
    go.Scatter3d(
    x=xt,
    y=yt,
    z=zt,
    mode='markers',
    marker=dict(
        size=5,
                               # set color to an array/list of desired values
        color=z,
        #colorscale='Viridis', # choose a colorscale
        opacity=0.8
    )),
row=1, col=2)
```

2 Referencias

- $\bullet\ https://medium.com/analytics-vidhya/using-cross-validation-to-evaluate-different-models-regression-5f61ec89531$
- http://www.w3big.com/es/python/func-number-seed.html
- https://mathinsight.org/parametrized_surface_examples#:~:text=Parametrize%20the%20single%20cone%
- https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-c4cfea20c590#:~:text=A%20single%2Dlayer%20perceptron%20is,weighted%20sum%20and%20activation%2
- https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/