l

r

$1.\ \,$ For the extensive-form game given below

- (a) Write down the normal-form of the game.
- (b) Find all pure strategy NE of the game.
- (c) Find all subgame perfect NE of the game.

Answer:

(a) The normal-form

	UU	UV	VU	VV
L	3, 3, <mark>2</mark>	3, 3, 2	0, 4, -2	0, <mark>4</mark> , -2
R	5 , -1 , -1	4, -1, -1	<mark>5</mark> , -1, -1	4, -1, -1

 UU
 UV
 VU
 VV

 L
 3, 3, 2
 3, 3, 2
 0, 4, -2
 0, 4, -2

 R
 1, 3, 0
 -2, 2, 1
 1, 3, 0
 -2, 2, 1

(b) Pure NE

$$(R, VU, r), \quad (L, VV, r)$$

(c) SPNE

$$(R, VU, r)$$
.

To see this, note that in the subgame after L, player 2's optimal choice is V. In the subgame after R, the NE is (U, r).

	l	r	
U	-1, -1	3, 0	
V	-1, -1	2, 1	

2. Two players, 1 and 2, simultaneously choose a number between 0 and 3, that is, $s_i \in \{0, 1, 2, 3\}$. If the sum of numbers they choose is less than or equal to 3, $s_1 + s_2 \le 3$, each player i gets s_i dollars. However, if the sum they report is greater than 3, $s_1 + s_2 > 3$, each player gets 0 dollars. Identify all pure NE.

Answer. The strategic form

player 2

0 1 2 3 0, 00, 1 0, 2 0, 3 1, 2 Player 1 1, 0 1, 1 0, 02, 0 2, 1 0, 00, 03 0, 0 3, 0 0, 00, 0

Four pure NE: