Course	Thing	Explanation	Date	Important	Index
MA2001	Homogeneous	Constant terms are all 0	17/08/2021		30
MA2001	Gauss-Jordan	Used to make RREF	17/08/2021		31
MA2001	Scalar matrix	Diagonal matrix, with all diagonal same	17/08/2021		32
MA2001	Order n matrix	Square matrix nxn	17/08/2021		33
MA2001	Symmetric matrix	Top right = bottom left	17/08/2021		34
MA2001	•		17/08/2021		35
MA2001	Upper/lower triangular matrix Elementary row vs column operation	Top right or bottom left ERO has to be premultiplied, while ECO had to be postmultiplied	24/08/2021		79
MA2001	Cofactor	The 2x2 matrices that are used when calculating determinant of 3x3 matrices	24/08/2021		80
MA2001		Equal to product of diagonal entries	24/08/2021		81
MA2001	Diagonal matrix determinant		31/08/2021		116
	det(A) = kdet(B)	If rows are multiplied when ERO-ing from A to B	31/08/2021		
MA2001	det(A) = -det(B)	If rows are swapped when ERO-ing from A to B			117
MA2001	$det(A^{-1}) = 1/det(A)$	Inverse is the inverse	31/08/2021		118
MA2001	$det(cA) = c^n det(A)$	Need to power the scalar by the dimension of the matrix	31/08/2021	Important	119
MA2001	adi(A)	The adjoint of A is the matrix made up of cofactors of the elements, so it's full of matrices inside	31/08/2021		120
	adj(A)			Important	
MA2001	Aadj(A) = det(A)I	Based on how it's defined	31/08/2021	important	121
MA2001	Cramer's rule	Take a linear system and swap the solution vector with the A columns to get A_1 , A_2 and A_3 ; Then, $x = det(A_1)/det(A)$, $y = det(A_2)/det(A)$, $z = det(A_3)/det(A)$	31/08/2021		122
MA2001	$S = \{(u_1, u_2, u_3, u_4) \text{conditions}\}$	How to write linear space	31/08/2021		123
MA2001		<u>'</u>	31/08/2021		
	$S = \{(t,t,t) t \text{ in } R\}$	Explicit form is in parametric form			124
MA2001	$S = \{(x,y,z) x+y+z=0\}$	Implicit form is in equation form	31/08/2021		125
MA2001	Linear Combination	Can be derived from the augmented matrix and elimination	06/09/2021		155
MA2001	Linear Span Notation	span{(1,2,3),(3,4,5)}	06/09/2021		156
MA2001	Set Notation for Linear Span	{s(1,2,3)+t(3,4,5) s,t is elem of R}	06/09/2021		157
MA2001	Show span(A) = span(B)	Augmented matrix with A on the left and each spanning vector of B; Conduct GEJ; If consistent throughout, then $B \subseteq A$; Repeat for the other way	06/09/2021		158
MA2001	$S \subseteq Span(S) \subseteq R$	The spanning egg	10/09/2021		177
MA2001	Linear dependent	vector makes any space linearly dependent, as you can add non-zero zero vector to any vector to return itself; number of vectors in space > dimension, then linearly dependent	15/09/2021		193
MA2001	Zero space	Zero space is linearly dependent, and has empty set as basis	16/09/2021		202
MA2001	$span(S1) \subseteq span(S2)$	each ui is a linear combination of v1, v2,, vm	20/09/2021	Important	202.5
MA2001	Useful spanning	u, v and w in \mathbb{R}^{9} are linearly independent if and only if span{u, v, w} = \mathbb{R}^{3} ; In \mathbb{R}^{9} , three vectors u, v and w are linearly dependent if and only if they lie on the same line or same plane.	23/09/2021	Important	209
MA2001	Dimension	Dimension of solution space = Number of vectors in basis for solution space = Number of parameters in general solution = Number of non-pivot columns in REF	01/10/2021		217
MA2001	Transition matrix [w]s Definition 1.2.6 (Row equivalent linear	Basis S to basis T, means you express each S as a linear combination of each T; Use GJE Two augmented matrices are row equivalent if one can be	01/10/2021		218
MA2001	systems) Theorem 1.2.7 (Row equivalent linear	obtained by a series of ERO If the augmented matrices of two linear systems are row	01/10/2021		219
MA2001	systems)	equivalent, then the two systems have the same set of solutions. An augmented matrix is in REF if it:	01/10/2021		220
		1. If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix. 2. In any two successive non-zero rows, the first nonzero number in the lower row occurs farther to the right than the first nonzero number in the higher row. An augmented matrix is in RREF if it: 3. The leading entry of every nonzero row is 1 4. In each pivot column, except the pivot point,			
MA2001	Definition 1.3.1 (REF)	all other entries are zeros. Consistent linear system has one solution if #variables =	01/10/2021		221
MA2001	Remark 1.4.8.2	#nonzero rows in REF Consistent linear system has infinite solutions if there is a non-	01/10/2021		222
MA2001	Remark 1.4.8.3	pivot column in REF other than the last column; Consistent linear system has infinite solutions if #variables > #nonzero rows in REF	01/10/2021		223
MA2001	Definition 1.5.1 (Infinite solutions of	Consistent linear system has infinite solutions if #variables >	01/10/2024		204
MA2001	linear system)	#nonzero rows in REF	01/10/2021		224
MA2001	Remark 2.2.21	Square matrix is symmetric if A = A ^T	01/10/2021		225
MA2001	Definition 2.3.2 (Invertibility of square matrix)	Square matrix is invertible if ∃ square matrix B st AB = I	01/10/2021		227
MA2001	Theorem 2.3.5 (Uniqueness of inverse)	Every invertible matrix has only one inverse	01/10/2021		228
		V + W means take some v in V and some w in W, leading to v +			
	Subspace addition	w	01/10/2021		229
MA2001 MA2001	Subspace addition Theorem 2.5.6 (Determinant cofactor)	w Determinant can be expresed as value with cofactor	01/10/2021 02/10/2021		229 231

Course	Thing	Explanation	Date	Important	Index
MA2001	Theorem 2.5.10 (Determinant of transpose)	$det(A) = det(A^T)$	02/10/2021		233
	Theorem 2.5.12 (Determinant of equal		02/10/2021		200
MA2001	columns or rows)	Determinant of matrix with identical rows or columns is zero	02/10/2021		234
MA2001	Theorem 2.5.25 (Inverse using adjoint)	A ⁻¹ = adj(A)/det(A); adj(A) is a matrix containing the determinants of the cofactors	02/10/2021	Important	235
WIAZOO I	Theorem 2.5.25 (inverse using adjoint)	solution = $(\det A_1, \det A_2, \det A_3) / \det(A)$;	02/10/2021	important	200
MA2001	Theorem 2.5.27 (Cramer's rule)	detA ₁ is the first column replaced by the result	03/10/2021		236
MA2001	Definition 3.1.7 (ℝn)	Set of all n-vectors is ℝ ⁿ	03/10/2021		237
MA2001	Theorem 3.2.7 (Spannability)	If number of spanning vectors < n, then it cannot span	03/10/2021		238
MA2001	Theorem 3.4.7 (Spannability)	If number of spanning vectors > n, then it is linearly dependent, and has non-trivial solutions	03/10/2021		238.5
MA2001	Theorem 3.2.10 (Subset of subspace)	$span(S_1) \subseteq span(S_2)$ iff each in S_1 is in $span(S_2)$	03/10/2021		239
MA2001	Theorem 3.2.12 (Union of subspace)	If $u \in \text{span}(S)$, then $\text{span}(S) = \text{span}(S \cup u)$	03/10/2021		240
MA2001	Theorem 3.3.6 (Subspace solution)	Solution set of a homogenous system is a subspace	03/10/2021		241
MA2001	Definition 3.4.2.1 (Linearly independent)	If $\sum cu = 0$ only has the trivial solution, then the vectors are linearly independent	03/10/2021		242
MA2001	Theorem 3.4.4.1 (Redundant vector)	If there is at least one vector that is a linear combination of the rest, then that is a redundant vector	03/10/2021		243
IVIA2001	Theorem 5.4.4.1 (Neutridani Vector)	Vectors are linearly independent if u□₁ is not a linear	03/10/2021		243
MA2001	Theorem 3.4.10 (Linearly independent)	combination of the rest	03/10/2021		244
1440004	Theorem 3.5.7 (Vectors in vector	Every vector in a space can be expressed by the basis vectors	02/40/2024		0.45
MA2001	space)	in exactly one way S is a basis for V, S = k;	03/10/2021		245
	Theorem 3.5.11 (Linearly independent	y in V are linearly dependent iff (v)s are linearly dependent in			
MA2001	basis)	$span(S) = V iff span((v)s) = \mathbb{R}^k;$	04/10/2021		247
		Any subset of V with more than k vectors is always linearly			
MA2001	Theorem 3.6.1 (Linearly independent span)	dependent; Any subset of V with less than k vectors cannot span V	04/10/2021		248
	opa,	S is a basis for V	0 11 10/2021		2.0
MA2001	Theorem 3.6.7 (Basis)	\Leftrightarrow S is linearly independent and $ S = k = dim(V)$ \Leftrightarrow S \subseteq V and $ S = k = dim(V)$	04/10/2021	Important	249
		If U is a subspace of V;			
		$\dim(U) = \dim(V) \Leftrightarrow U = V;$			
MA2001	Theorem 3.6.9 (Subspace)	$U \subseteq V \Leftrightarrow \dim(U) \leq \dim(V);$ $U \subseteq V \land U \neq V \Leftrightarrow \dim(U) \leq \dim(V)$	04/10/2021	Important	250
1417 1200 1	mediam c.c.c (Cabapace)	A is invertible	0471072021	Important	200
		\Leftrightarrow Ax = 0 only has trivial solution \Leftrightarrow RREF(A) = I \Leftrightarrow REF no non-zero rows \Leftrightarrow A can be expressed as product of elementary matrices of another invertible matrix \Leftrightarrow det(A) ≠ 0 \Leftrightarrow 3 square matrix B such that BA = I \Leftrightarrow Rows of A form a basis for \mathbb{R}^n \Leftrightarrow Columns of A form a basis for \mathbb{R}^n \Leftrightarrow row / column space = \mathbb{R}^n \Leftrightarrow rank(A) = n \Leftrightarrow nullity(A) = 0 \Leftrightarrow 0 is not an eigenvalue of A			
MA2001	Theorem 3.6.11 (Invertible)	$\Leftrightarrow \operatorname{Ker}(T) = \{0\}$ $\Leftrightarrow R(T) = \mathbb{R}^n$	04/10/2021	Simportant	251
	, ,	(v)s is the row form of coordinate vector;			
MA2001	Notation 3.7.1 (Coordinate vector)	[v]s is the column form of coordinate vector; Coordinate vector means that v is made up of vectors in S	04/10/2021		252
	riotation on in (obsidance vocal)	Finding transition matrix P from S = $\{u_1,, u_{\square}\}$ to T = $\{v_1,, v_{\square}\}$	0 11 10/2021		202
		P = ([u₁]t [u₂]t [u□]t) aka expressing each vector in s as a			
MA2001	Definition 3.7.3 (Transition Matrix)	linear combination of vectors in t; P[w]s = [w]t	04/10/2021	Important	253
		Set up augmented matrix (v ₁ v ₂ v ₃ u ₁ u ₂ u ₃)			
MA2001	Find transition matrix	→ Do GJE to get ($I \mid [u_1]t \mid [u_2]t \mid [u_3]t$) → $u_1 = av_1 + bv_2 + cv_3 \Rightarrow [u_1]t = (a b c)$	04/10/2021	Important	254
IVIAZUUT	Find transition matrix	The transition matrix P from S to T:	04/10/2021	important	204
		Is invertible;			
MA2001	Theorem 3.7.5 (Transition Matrix)	P ⁻¹ is the transition matrix from T to S	04/10/2021		255
MA2001	Definition 4.1.2 (Row Space)	It is the span of the rows	08/10/2021		292
MA2001	Definition 4.1.2 (Column Space)	It is the span of the columns	08/10/2021		293
MA2001	Theorem 4.1.7 (ERO preservation of row and column space)	A and B are row-equivalent ⇒ row spaces are the same, but column spaces might not be the same	08/10/2021		294
NAN 2004	Theorem 4.1.11 (Linear independence	A and B are row-equivalent \Rightarrow linear independence of columns in A \Leftrightarrow linear independence of columns in B \Leftrightarrow linear	00/40/0004		205
MA2001	of rows and columns) Find basis for linear span (Row space	relationship of between columns is conserved (u ₁ + u ₂ = u ₃)	08/10/2021		295
MA2001	method)	Get the row space of the RREF	08/10/2021		296
	Find basis for linear span (Column	See the pivot columns of the RREF, and match them with the	00115:555		
MA2001	space method)	original matrix, to get the basis in terms of the original columns	08/10/2021		297
MA2001	Find extension of set to a basis	Put the vectors as row space, then find the non-pivot columns of the RREF	08/10/2021	Important	298
	Colutions to Av = h	b belongs to column space of A ⇒ system has solutions; b doesn't belong ⇒ system has no solution	08/10/2021		299
MA2001	Solutions to Ax = b				

Course	Thing	Explanation	Date	Important	Index
		rank(A) = REF nonzero rows			
		= REF leading entries			
		= REF pivot columns			
		= largest number of linearly independent rows			
		= largest number of linearly independent columns			
MA2001	Rank	= dim(rowspace) = dim(columnspace)	08/10/2021	Important	301
MA2001	Dimension Theorem of Matrix	rank(A) + nullity(A) = #columns of A		Simportant	302
				Simportant	
MA2001	Vector in column space	Av ∈ column space of A	08/10/2021		303
MA2001	Column space of AB	$colspace(AB) \subseteq colspace(A)$	08/10/2021		304
MA2001	Rank of AB	$rank(AB) \le rank(A)$	08/10/2021	Important	305
MA2001	Rank of A + B	$rank(A + B) \le rank(A) + rank(B)$	08/10/2021	Important	306
MA2001	Dimension of A + B	$dim(A + B) = dim(A) + dim(B) - dim(A \cap B) \le n$	08/10/2021	Simportant	307
		Can be obtained by applying RREF to the augmented matrix Ax			
MA2001	Nullspace of A	= 0	08/10/2021		308
MA2001	format long/format short	Converts values to decimal form	09/10/2021	Matlab	314
MA2001	format rat	Converts values to rational form	09/10/2021	Matlab	315
MA2001	[A b]	Concatenate vector b to matrix A	09/10/2021	Matlab	316
MA2001	rref()	Computes RREF form	09/10/2021	Matlab	317
MA2001	A(i,:)	Extract the ith row	09/10/2021		318
MA2001			09/10/2021		319
	A([i,j],:)	Extract the ith and jth row			
MA2001	size()	Size of matrix	09/10/2021		320
MA2001	zeros(r,c)	Creates zero matrix of size rxc	09/10/2021		321
MA2001	eye(n)	Creates identity matrix of size n	09/10/2021	Matlab	322
MA2001	diag([])	Creates diagonal matrix using a list as the entries	09/10/2021	Matlab	323
MA2001	A'	Transpose matrix	09/10/2021	Matlab	324
MA2001	A^(-1)	Inverse matrix	09/10/2021	Matlab	325
MA2001	inv()	Inverse matrix	09/10/2021		326
MA2001	det()	Determinant of matrix	09/10/2021		327
MA2001					328
	syms s t	Creates 2 free parameters, to be used in general solutions	09/10/2021		
MA2001	rank()	Rank of matrix	09/10/2021		329
MA2001	null(A, 'r')	Nullspace of matrix	09/10/2021	Matlab	330
MA2001	Full Rank	rank(A) = min{m, n} is full rank	14/10/2021	Important	355
MA2001	Matrix dimension	#rows × #columns	14/10/2021	Important	356
MA2001	Matrix coordinates	A ₁₂ means first row, second column	14/10/2021	Important	357
MA2001	Definition 5.1.2 (Distance)	Distance is just pythagoras' theorem extended	15/10/2021		358
MA2001	Definition 5.1.2 (Angle)	cos ⁻¹ (u·v/ u v)	15/10/2021		359
1200 .	Zemmen ernz (rangie)	S is orthogonal set of nonzero vectors ⇒ S is linearly	10/10/2021		000
MA2001	Theorem 5.2.4 (Orthogonal)	independent	15/10/2021		360
MA2001	Definition 5.2.13 (Find orthogonal)	p is proj _v u ⇒ u - p is vector orthogonal to V	15/10/2021		362
IVIAZUU I	Delimition 5.2.13 (Find offilogonal)		15/10/2021		302
		$S = \{u_1, u_2,, u \square\}: \text{ orthogonal basis for V};$ $proj_v w: p = (w \cdot u_1)u_1/ u_1 ^2 + (w \cdot u_2)u_2/ u_2 ^2 + + (w \cdot u \square)$			
MA2001	Theorem 5.2.15 (Find projection)	$ \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} $	15/10/2021	Important	363
	` ` ` ` ` `	Show p is projection of w onto V			
MA2001	Theorem 5.2.15 (Prove projection)	> Need to show w-p is orthogonal to each vector in V	02/11/2021	Important	363.5
	Theorem 5.2.8 (Projection in				
MA2001	subspace)	$w \in V \Rightarrow proj_v w$ is just w	15/10/2021		364
		For a basis $\{u_1,u_2\}$, find the projection of u_2 onto u_1 , then u_2 - p is			
		the orthogonal;			
	Discussion 5.2.18.1 (Find orthogonal	To add another vector u ₃ , apply the same operation to find			
MA2001	basis from basis)	projection, then u ₃ - p;	15/10/2021		365
		$v_1 = u_1$			
	Theorem 5.2.19 (Gram-Schmidt	$V_2 = U_2 - (U_2 \cdot V_1)V_1/ V_1 ^2$			
MA2001	Process)	$V_3 = U_3 - (U_3 \cdot V_1)V_1/ V_1 ^2 - (U_3 \cdot V_2)V_2/ V_2 ^2$	15/10/2021	Important	366
MA2001	Dot product	$u \cdot v = uv^T$	15/10/2021		367
MA2001	Find orthogonal vector	Convert into homogenous system with $\sum v \cdot u_i = 0$	15/10/2021	Important	368
MA2001	Length of vector	norm()	16/10/2021	Matlab	376
MA2001	Dot product	dot(u, v)	16/10/2021	Matlab	377
MA2001	Orthonormal of a column space	orth(V)	16/10/2021		378
MA2001	Prove subset	$\forall x \in A (x \in B) \Rightarrow A \subseteq B$	20/10/2021		399
IVIAZUUI	i iove subset	, ,	20/10/2021		399
MA2001	Find general solution of linear system	Set arbitrary parameters λ , μ to variables that only appear once in the REF-ed linear systems	20/10/2021		401
MA2001	Find linear equation	Sub in values into the arbitrary parameters	20/10/2021		401
IVIAZUU I	i iliu ilileai equation	2,	20/10/2021		402
MA2001	Prove equality of matrices	Separate the matrices into individual elements a _i □; Use a _{i1} b _i □ when doing matrix multiplication	20/10/2021		403
MA2001	Prove symmetric	Prove AT = A	20/10/2021		404
IVIAZUUI	i iove symmetric		20/10/2021		404
MA2001	Prove invertible (Algebra)	Try to express the original statement as a product of the invertible matrix	20/10/2021		405
	, , ,	R is obtained via GJE of A ⇔ invertible PA = R			419
MA2001	ERO transformation	IX is obtained via GUE Of A ⇔ INVERTIBLE PA = K	21/10/2021		419
MA2001	Relation between nullspace and rowspace	Nullspace of matrix is orthogonal to rowspace	21/10/2021	Important	420
	· ·			portant	
MA2001 MA2001	Nullspace of transpose	Nullspace of A ^T A = nullspace of A	21/10/2021		421
	Rank of transpose	$rank(A) = rank(A^T)$	21/10/2021		422

Course	Thing	Explanation	Date	Important	Index
		u is the best approximate solution to $Ax = b$ \Leftrightarrow u is a solution to $A^TAx = A^Tb$			
		\Leftrightarrow u is a solution to A*Ax = A*b \Leftrightarrow u is a solution to Ax = p, projection of b onto column space of			
		Α			
MA2001	Least squares solution	⇔ u is unique or infinite	22/10/2021	Important	425
		Want to find projection of w onto V → Form matrix A using column space of V			
		→ Find least squares solution to Ax = w			
	Find projection using least squares	\rightarrow Find any solutions to A ^T Ax = A ^T w	00/40/0004		
MA2001	solution	→ Au gives the projection of w onto V	22/10/2021		426
		A is orthogonal square matrix $\Leftrightarrow A^{-1} = A^{T}$;			
		⇔AA ^T = I;			
		$\Leftrightarrow A^T$ is orthogonal;			
		⇔ rows of A are an orthonormal basis for ℝ ⁿ			
		⇒ columns of A are an orthonormal basis for ℝ ⁿ ⇒ u = Au			
		⇔ u - v = Au - Av			
		⇔ Angle between u and v = Angle between Au and Av			
		⇔ Norm, distance and angles are preserved			
MA2001	Orthogonal matrix	⇔ Basis, Orthogonal basis and Orthonormal basis are preserved	22/10/2021	Simportant	427
100 1	Crinogorial matrix	$S = \{u_1, u_2,, u\square\}$ and $T = \{v_1, v_2,, v\square\}$ are bases for \mathbb{R}^n	22/10/2021	Cimportant	127
		\Rightarrow Orthonormal S and Standard T \Rightarrow P = (u_1 u_2 u_{\square})			
		\Rightarrow Standard S and Orthonormal T \Rightarrow P = (v ₁ ; v ₂ ;v \square)			
MA2001	Orthonormal transition matrix	⇒ Orthonormal S and Orthonormal P = B ⁻¹ A	22/10/2021	Important	428
MA2001	Dimension of eigenspace	Dimension of eigenspace ≤ multiplicity (power of eigenvalue in characteristic equation)	29/10/2021		433
IVIAZOU I	Emicrision of eigenspace	A has n linearly independent eigenvectors	25/10/2021		433
		$\Leftrightarrow \Sigma \text{dim} E_i = n$			
MA2001	Theorem 6.2.3 (Diagonalisable)	\Leftrightarrow dimE _i = multiplicity of eigenvalue for every eigenvalue of A	29/10/2021	Important	434
		n x n matrix			
		→ characteristic polynomial → eigenvalues			
		→ eigenspaces			
MA2001	Find diagonalisation	→ bases for eigenspaces	29/10/2021		435
NAA 0004	Odbarani diagonaliashia	Orthogonal matrix P exists such that PTAP is diagonal;	20/40/2024	l	400
MA2001	Orthogonal diagonalisable	Symmetric ⇔ orthogonally diagonalisable	29/10/2021	Important	436
		n x n matrix → characteristic polynomial			
		→ distinct eigenvalues			
		→ eigenspaces→ bases for eigenspaces			
		→ Gram-Schmidt Process			
MA2001	Find orthogonal diagonalisation	\rightarrow (v ₁ v ₂ v \square) is the orthogonal matrix	29/10/2021		437
MA2001	Stochastic matrix	Sum along every column is equal to 1	29/10/2021		438
MA2001	Theorem 5.3.2 (Best approximation)	The projection of u onto W is the best approximation of u in W	29/10/2021	Important	439
MA2001	Definition 5.3.6 (Least squares)	Least squares minimises b - Ax	29/10/2021		440
		u is a least squares solution of Ax = b ⇔ u is a solution of Ax = p (projection of b on the column space			
		of A)			
	Theorem 5.3.8 (Least squares	\Leftrightarrow u is a solution of A ^T Ax = A ^T b			
MA2001	solution)	⇔Au = p	29/10/2021	Important	441
MA2001	Theorem 6.1.9 (Triangle eigenvalue)	Eigenvalues are diagonal entries of triangle matrices	31/10/2021		448
		Symmetric			
	Theorem 6.2.4 (Symmetric	 ⇔ orthogonally diagonalisable ⇔ eigenvectors associated with different eigenspaces are 			
MA2001	Theorem 6.3.4 (Symmetric diagonalisable)	orthogonal	31/10/2021		449
MA2001	Theorem 6.2.7 (Distinct eigenvalues)	Full distinct eigenvalues ⇒ diagonalisable	31/10/2021		450
MA2001	Matrix multiplication	$A(u_1 u_2 \dots u_{\square}) = (Au_1 Au_2 \dots Au_{\square})$	31/10/2021	Important	451
		The transition matrix P from orthonormal S to T is orthogonal	, 5, 2021	p	.51
	Theorem 5.4.7 (Orthogonal transition	and PT is the transition matrix from T to S			_
MA2001	matrix)	$v_1 = \sum (v_1 \cdot u_i)u_i$	31/10/2021		452
MA2001	Theorem 5.2.8.1 (Orthogonal coordinate vector)	$(w)s = (w \cdot u_1/ u_1 ^2 w \cdot u_2/ u_2 ^2 w \cdot u_3/ u_3 ^2)$	31/10/2021	Important	453
1417 12001	obordinate vestory	T is a linear transformation	01/10/2021	mportant	100
		⇔ T(0) = 0			
		$\Leftrightarrow T(u + v) = T(u) + T(v)$			
MA2001	Linear Transformation	\Leftrightarrow cT(u) = T(cu)	06/11/2021	Important	461
MA2001	Find linear transformation from basis	$A(u_1) = v_1$, $A(u_2) = v_2$, $A(u_3) = v_3 \Longrightarrow A = (v_1 \ v_2 \ v_3)(u_1 \ u_2 \ u_3)^{-1}$	06/11/2024	Important	400
MA2001	(Stacking)		06/11/2021	mportant	462
MA2001	Range of linear transformation	R(T) is the set of all possible images of T	06/11/2021		463
MA2001	Kernel of linear transformation	Ker(T) is the set of all vectors whose images are 0	06/11/2021		464
MA2001	Block matrix multiplication	A(B ₁ B ₂) = (AB ₁ AB ₂) P ₂ + 2P ₂ means 3rd row 1et column is 2:	09/11/2021		465
MA2001	Elementary matrix	R₃ + 2R₁ means 3rd row, 1st column is 2; Invert means 3rd row, 1st column is -2;	09/11/2021		466
		Provides the characteristic polynomial associated with the			.00
MA2001	charpoly()	matrix	12/11/2021		474
MA2001	solve(charpoly(A, x))	Solves the characteristic polynomial associated with the matrix	12/11/2021	Important	475
MA2001	eig()	Finds the eigenvalues	12/11/2021	Important	476
MA2001	null(λ*eye() - A, 'r')	Finds eigenspace associated to the λ	12/11/2021	· ·	477
	Coordinate vector based on	S = $\{u_1, u_2, u_3\}$ is an orthonormal basis for W \Rightarrow (w)s = (w · u ₁			
		W · U ₂ W · U ₃)	23/11/2021	L	528