Solution (d). By the definition of p_{n+1} as the zero of the tangent line approximation at p_n , the fact $f(p_*) = 0$, and the Lagrange form of the Taylor remainder for the tangent line approximation of f at p_n , we have

$$0 = f(p_n) + f'(p_n)(p_{n+1} - p_n),$$

$$0 = f(p_*) = f(p_n) + f'(p_n)(p_* - p_n) + \frac{1}{2}f''(q_n)(p_* - p_n)^2,$$
for some q_n between p_n and p_* .

Upon subtracting the second equation from the first we see that

$$0 = f'(p_n)(p_{n+1} - p_*) - \frac{1}{2}f''(q_n)(p_* - p_n)^2.$$

Upon solving for $p_{n+1} - p_*$ we obtain the general relation

$$p_{n+1} - p_* = \frac{f''(q_n)}{2f'(p_n)} (p_n - p_*)^2.$$

For $f(x) = x^3 - 6$ we have $f'(x) = 3x^2$ and f''(x) = 6x, which are both increasing functions over $[6^{\frac{1}{3}}, 2]$. We thereby have the bounds

Therefore because
$$p_n$$
 and q_n lie in $[6^{\frac{1}{3}}, 2]$ while $p_* = 6^{\frac{1}{3}}$, we obtain the bound $3 \cdot 6^{\frac{2}{3}} \leq f'(x)$, $p_{n+1} - 6^{\frac{1}{3}} = \frac{f''(q_n)}{2f'(r_n)} |p_n - 6^{\frac{1}{3}}|^2 \leq \frac{12}{2(1-r_n)^2} |p_n - 6^{\frac{1}{3}}|^2$,

$$\left| p_{n+1} - 6^{\frac{1}{3}} \right| = \frac{f''(q_n)}{2f'(p_n)} \left| p_n - 6^{\frac{1}{3}} \right|^2 \le \frac{12}{2 \cdot 3 \cdot 6^{\frac{2}{3}}} \left| p_n - 6^{\frac{1}{3}} \right|^2,$$

which reduces to the desired bound.