Prob1 MA568

Hengchang Hu9/29/18

1.Download data file Retinal_ISIs.txt which contains wating times in milliseconds & Plot spiking activity as a histogram of the distribution of the times and as a spike train time series & Describe the spiking properties .

Hisogram of the distribution of times

Spike train time series

My Point of View: The histogram shows that most of the waiting times are 3-30 ms, and the waiting times between 3-11 ms consists of more than 50 % of observed data. So a homogeneous Poisson Process may not well fitted in this data.

2. Compute a 5-number summary & box plot for ISI distribution

^{##} Min. 1st Qu. Median Mean 3rd Qu. Max. ## 2.00 5.00 10.00 30.83 44.00 190.00

5-number summary of this data is (2, 5, 10, 44, 190) corresponding to (min, .25 quantile, median, .75 quantile, max).

- From the 5-number summary, we can see that most of waiting time data are concentrated in 5-44 ms.
- From the boxplot, we can tell that this is a long-tailed distribution because there are lots of big data over 100 ms although most of data are concentrated in 5-44 ms.

3.Bin the spike train data from Retinal_ISIs.txt into time bins of width 1ms., 10ms., 10ms., 20ms. Plot time series of spike counts and distribution of spike counts as histogram for each bin width

Time series of Spike counts for 1ms width time bins

Histogram of distribution of spike counts for 1ms width time bins

Time series of Spike counts for 10ms width time bins

Histogram of distribution of spike counts for 10ms width time bins

Time series of Spike counts for 100ms width time bins

Histogram of distribution of spike counts for 100ms width time bins

4.Plot the likelihood as a function of λ for values of λ between 0 Hz to 60 Hz & Find value $\hat{\lambda}_{ML}$ that maximize the likelihood & Provide an approximate 95% confidence interval for $\hat{\lambda}_{ML}$.


```
## $maximum
## [1] 32.4
##
## $objective
## [1] 2408.77
```

The value of $\hat{\lambda}_{ML}$ that maximaize the likelihood is 32.4, and the approximate 95% confidence interval for $\hat{\lambda}_{ML}$ is $[32.4-1.96\times\frac{\sqrt{972}}{30},32.4+1.96\times\frac{\sqrt{972}}{30}]$, i.e. [30.36311,34.43689]

 $5.\mathrm{Plot}$ an empirical CDF of the interspike intervals for the data & Plot the exponential CDF on the same plot as your empirical CDF & Construct a KS plot of the empirical CDF on the x-axis against the model CDF on the y-axis

Empirical Distributions

[1] "KS statistics is 0.251797527798863"

6.Construct a QQ plot of the empirical vs model quantiles

7. Compute the Fano Factor for increments process binned at 1ms, 10ms, 100ms

- ## [1] "The sample Fano Factor for the increments process binned at 1ms is 0.96763225440848"
- ## [1] "The 95% confidence interval of sample Fano Factor for a Poisson Process at 1ms bin length is [
- ## [1] "The sample Fano Factor for the increments process binned at 10ms is 1.16610063436783"
- ## [1] "The 95% confidence interval of sample Fano Factor for a Poisson Process at 10ms bin length is [
- ## [1] "The sample Fano Factor for the increments process binned at 100ms is 1.45827655972584"
- ## [1] "The 95% confidence interval of sample Fano Factor for a Poisson Process at 100ms bin length is

8. Plot the autocorrelation function of the observed interspike intervals with 95% confidence bounds

Series waitingTime

