

Curso Qualidade de software

Qualidade de Software

Módulo 4

Planning: O que você vai aprender

- Aprenderemos sobre as principais técnicas de testes:
- Caixa preta:
 - Particionamento de equivalência
 - Valor Limite
 - Tabela de decisão
 - Transição de estado
- Essas técnicas vão te ajudar a construir uma estratégia de teste muito mais assertiva, otimizando seu tempo e diminuindo o risco.

Técnicas de testes

Técnicas de Testes

Ajuda a identificar as condições de teste, casos de teste e os dados de teste;

Colabora com os princípios de testes para otimizar o trabalho e diminuir os riscos.

Os sete princípios de testes

- 1. O teste mostra a presença de defeitos e não a sua ausência
- 2. Testes exaustivos são impossíveis
- 3. O teste inicial economiza tempo e dinheiro
- 4. Defeitos se agrupam
- 5. Cuidado com o paradoxo do pesticida
- 6. O teste depende do contexto
- 7. Ausência de erros é uma ilusão

Qual técnica usar?

A escolha de quais técnicas de teste usar depende de vários fatores:

- Complexidade do sistema;
- Contratos com o cliente;
- Níveis e tipos de risco;
- Documentação disponível;
- Conhecimento e habilidades do QA;

- Ferramentas disponíveis;
- Tempo e orçamento;
- Modelo de trabalho;
- Tipos de defeitos esperados.

Fonte: Sylabus CTFL - 2018

Categorias

- Cobertura de instrução
- Teste de decisão e cobertura

- Particionamento de equivalência
- Análise de valor limite
- Tabela de decisão
- Transição de estado
- Baseado em caso de uso

Experiência

- Teste exploratório
- Baseado em checklist
- Suposição de erro

Particionamento de equivalencia

Aula 2

Particionamento de equivalência

- Também conhecidas como classes de equivalência ou partição de equivalência;
- Divide os dados em partições para que todos os membros de uma determinada partição sejam processados da mesma maneira;
- Existem para valores válidos e inválidos;
- É baseado em regra de negócio.

Técnica de teste Caixa preta

Funcionalidade: Novo cadastro de alunos

Como administrador da plataforma EBAC

Quero um novo sistema de cadastro

Para registrar novos alunos na plataforma

Regras de negócio:

- 1- Apenas alunos entre 16 e 80 anos podem ser cadastrados
- 2-Usuários já cadastrados e ativos há mais de 90 dias, apenas confirmar os dados
- 3- Permitir cadastro apenas das 9 as 18 horas

Cobertura de teste:

Apenas alunos entre 16 e 80 anos podem ser cadastrados

Apenas alunos entre 16 e 80 anos podem ser cadastrados

Casos de testes

	Entrada	Saída
Teste 1	Cadastrar aluno de 10 anos	inválido
Teste 2	Cadastrar aluno de 30 anos	válido
Teste 3	Cadastrar aluno de 85 anos	inválido

Considerando os intervalos estipulados em cada partição

Usuários já cadastrados e ativos há mais de 90 dias, apenas confirmar os dados

Usuários ativos há mais de 90 dias, apenas confirmar os dados

Casos de testes

	Entrada	Saída
Teste 1	Validar usuário com 100 dias	válido
Teste 2	Validar usuário com 50 dias	inválido

Permitir cadastro apenas das 9 as 18 horas

Valores flutuantes

Permitir cadastro apenas das 9 as 18 horas

Casos de testes

	Entrada	Saída
Teste 1	Cadastrar aluno às 7:15	inválido
Teste 2	Cadastrar aluno às 15:30	válido
Teste 3	Cadastrar aluno às 20:00	inválido

Análise de valor limite

- É uma extensão do particionamento de equivalência
- Só pode ser usada quando a partição é ordenada, consistindo em dados numéricos ou sequenciais.
- Os valores mínimo e máximo (ou primeiro e último valores) de uma partição são seus valores limites.

Técnica de teste Caixa preta

Funcionalidade: Novo cadastro de alunos

Como administrador da plataforma EBAC

Quero um novo sistema de cadastro

Para registrar novos alunos na plataforma

Regras de negócio:

- 1- Apenas alunos entre 16 e 80 anos podem ser cadastrados
- 2-Usuários já cadastrados e ativos há mais de 90 dias, apenas confirmar os dados
- 3- Permitir cadastro apenas das 9 as 18 horas

Apenas alunos entre 16 e 80 anos podem ser cadastrados

Particionamento de equivalência:

Apenas alunos entre 16 e 80 anos podem ser cadastrados

Apenas alunos entre 16 e 80 anos podem ser cadastrados

Casos de testes

	Entrada	Saída
Teste 1	Cadastrar aluno de 15 anos	inválido
Teste 2	Cadastrar aluno de 16 anos	válido
Teste 3	Cadastrar aluno de 17 anos	válido
Teste 4	Cadastrar aluno de 79 anos	válido
Teste 5	Cadastrar aluno de 80 anos	válido
Teste 6	Cadastrar aluno de 81 anos	inválido

Usuários já cadastrados e ativos há mais de 90 dias, apenas confirmar os dados

Usuários já cadastrados e ativos há mais de 90 dias, apenas confirmar os dados

Casos de testes

	Entrada	Saída
Teste 1	Validar usuários ativos há 89 dias	inválido
Teste 2	Validar usuários ativos há 90 dias	válido
Teste 3	Validar usuários ativos há 91 dias	válido

Permitir cadastro apenas das 9 as 18 horas

Valores flutuantes

Permitir cadastro apenas das 9 as 18 horas

Casos de testes

	Entrada	Saída
Teste 1	Cadastrar aluno às 8:59	inválido
Teste 2	Cadastrar aluno às 9:00	válido
Teste 3	Cadastrar aluno às 9:01	válido
Teste 4	Cadastrar aluno às 17:59	válido
Teste 5	Cadastrar aluno às 18:00	válido
Teste 6	Cadastrar aluno às 18:01	inválido

Tabela de decisão

- Também conhecido como Técnicas de teste combinatórias ou tabela de causa e efeito;
- Útil para testar regras de negócio com diferentes condições de combinações que levam à resultados diferentes;

Desvantagens:

Quando o número de entradas aumenta a tabela se torna mais complexa

Notações comuns

Os valores das condições e ações são geralmente mostrados como valores booleanos

Para condições:

S	N	-
Sim	Não	N/A
Verdadeiro	Falso	Não aplicável
V	F	
1	0	

Para <mark>ações</mark>:

X	,
S	N
Verdadeiro	Falso
V	F
1	0

Em branco

Podem ser usados números ou intervalos numéricos e valores discretos como:

- Verde | Amarelo | Vermelho
- Aceito | Não aceito
- Cadastrado | Não cadastrado.

Curiosiodade

Em ciência da computação, **boolean**, ou lógico, é um tipo de dado primitivo que possui dois valores, que podem ser considerados como

0 ou **1**

Falso ou Verdadeiro

Chamado boolean em homenagem a George Booleque definiu um sistema de lógica algébrica pela primeira vez na metade do século XIX.


```
if(ativo >= 90) {
alert('VERDADEIRO');
}
else alert("FALSO")
```


Tabela de decisão

Exemplo com login:

Condições	Regra 1	Regra 2	Regra 3	Regra 4
Usuário válido?	Sim	Sim	Não	Não
Senha válida?	Sim	Não	Sim	Não
Ações				
Permitir acesso?	Sim	Não	Não	Não

Casos de testes:

- 1. Login com usuário válido e senha válida, **deve** permitir acesso
- 2. Login com usuário válido e senha inválida, **não deve** permitir acesso
- 3. Login com usuário inválido e senha válida, **não deve** permitir acesso
- 4. Login com usuário inválido e senha inválida, **não deve** permitir acesso

Como gerar testes

Pessoas matriculadas e maiores de 18 anos ganham um curso de inglês por 3 meses

Condição A: sim / não = 2 Condição B: sim / não = 2

Quantidade de regras = $\frac{4}{}$

Condições	Regra 1	Regra 2	Regra 3	Regra 4
Matriculado?	Sim	Sim	Não	Não
Maior que 18?	Sim	Não	Sim	Não
Ação				
Ganha curso?	Sim	Não	Não	Não

Funcionalidade: Novo cadastro de alunos

Como administrador da plataforma EBAC

Quero um novo sistema de cadastro

Para registrar novos alunos na plataforma

Regras de negócio:

- 1- Apenas alunos entre 16 e 80 anos podem ser cadastrados
- 2-Usuários já cadastrados e ativos há mais de 90 dias, apenas confirmar os dados
- 3- Permitir cadastro apenas das 9 as 18 horas

Tabela de decisão

Apenas alunos entre 16 e 80 anos podem ser cadastrados

Condições	Regra 1	Regra 2	Regra 3
Idade	< 16	16 a 80	> 80
Ações			
Cadastrar		X	
Não cadastrar	X		X

Tabela de decisão

Condições	Classes	T1	T2	Т3	T4	Т5	Т6	Т7	Т8	Т9
	< 16	1	1	1	0	0	0	0	0	0
Idade	>=16 e <=80	0	0	0	1	1	1	0	0	0
	>80	0	0	0	0	0	0	1	1	1
	<9h	1	0	0	1	0	0	1	0	0
Horário	>=9h e <=18	0	1	0	0	1	0	0	1	0
	>18	0	0	1	0	0	1	0	0	1
Ações										
Cadaatus	sim					X				
Cadastro	Não	X	X	X	X		X	X	X	X

Modelo gerado com X|decision: http://juliodelima.com.br/xdecision/pt

Transição de estado

Transição de estado

- Técnica aplicada onde os casos de teste são gerados para executar elementos de um modelo de transição de estado
- Os testes são projetados para executar transições de estado válidas e inválidas
- Muito usado em sistemas embarcados ou softwares de máquinas que tem um funcionamento sequencial.

Diagrama

Um diagrama de transição de estado mostra os possíveis estados do software, bem como a forma como o software entra, sai e transita entre os estados.

Estrutura básica de elementos

Estado é a situação durante a vida de um sistema na qual a ele satisfaz algumas condições Evento é a causa necessária para que haja a transição de estado.

Estado 3

Estado inicial

é por onde se começa a leitura de um diagrama de estado

Transição é o relacionamento entre dois estados

Estado 1

Ação

Estado 2

é a resposta que o sistema dará ao evento executado

é o estado que representa o fim.

Quando usar?

Quando temos uma sequência de eventos que ocorrem e condições associadas que se aplicam a esses eventos

Quando o tratamento adequado de um determinado evento **depende dos eventos** e condições que ocorreram no passado

Quando temos sistemas de tempo real com vários estados e transições envolvidos

Exemplo de Transições de estado

Exemplo de Transições de estado

Usando o diagrama de transição de estado, qual a sequencia de testes inválida:

a)
$$S0 - S1 - S5 - S6$$

b)
$$S0 - S1 - S4 - S6$$

c)
$$S0 - S1 - S3 - S6$$

d)
$$S0 - S1 - S5 - S0$$

Tabela de transição de estado

A tabela nos ajuda com os cenários de teste e nos mostra todas as transições válidas e potencialmente inválidas entre estados.

Testes	Teste 1	Teste 2	Teste 3
Estado Inicial:	ON	OFF	ON
Evento:	Apagar	Acender	Falha
Estado final:	Luz apagada	Luz acesa	Luz apagada

Review: O que você aprendeu

 Aprendemos como aplicar as principais técnicas de caixa preta e os benefícios de cada técnica.

Referências:

- https://bstqb.org.br/b9/doc/syllabus_ctfl_2018br.pdf
- https://istqb-glossary.page/pt/
- http://juliodelima.com.br/xdecision/pt
- https://www.youtube.com/watch?v=ifqQoCVJh5M
- https://www.youtube.com/watch?v=tU6v8EchNpE