1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x+2} + \frac{1}{x-1}}$,

(b) Wyznacz dziedzinę funkcji $f(x)=\frac{x^2+x-9}{x-2}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(\frac{10}{x^7} + 3x^5 + \frac{7}{3/m^4}\right)'$,

 $\left(\frac{10^x - 3 \operatorname{tg} x}{2 \operatorname{arcsin} x - 5 \cos x}\right)'$, (c) $\left(x \operatorname{arctg}\left(\frac{1}{x^2}\right)\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{1-2x}{2x+3}$ w okolicy $x_0 = -1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -0.9.

1 (a) wyznacz dziedzinę funkcji $f(x)=\sqrt{\frac{1}{x+2}+\frac{1}{x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x)=\frac{x^2+x-9}{x-2}$, zapisz

równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(\frac{10}{x^7} + 3x^5 + \frac{7}{\sqrt[3]{x^4}}\right)'$, (b)

 $\left(\frac{10^x - 3 \operatorname{tg} x}{2 \arcsin x - 5 \cos x}\right)', \ (c) \ \left(x \operatorname{arctg}\left(\frac{1}{x^2}\right)\right)'.$

3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{1-2x}{2x+3}$ w okolicy $x_0 = -1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -0.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x+2} + \frac{1}{x-1}}$,

(b) Wyznacz dziedzinę funkcji $f(x) = \frac{x^2 + x - 9}{x - 2}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(\frac{10}{x^7} + 3x^5 + \frac{7}{\sqrt[3]{x^4}}\right)'$,

 $\left(\frac{10^x - 3 \operatorname{tg} x}{2 \operatorname{arcsin} x - 5 \cos x}\right)', \text{ (c) } \left(x \operatorname{arctg}\left(\frac{1}{x^2}\right)\right)'.$ **3** Zapisz wzór Taylora dla funkcji $f(x) = \frac{1 - 2x}{2x + 3}$ w okolicy $x_0 = -1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -0.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x+2} + \frac{1}{x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{x^2 + x - 9}{x-2}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(\frac{10}{x^7} + 3x^5 + \frac{7}{\sqrt[3]{x^4}}\right)'$, (b)

 $\left(\frac{10^x - 3 \operatorname{tg} x}{2 \arcsin x - 5 \cos x}\right)'$, (c) $\left(x \operatorname{arctg}\left(\frac{1}{x^2}\right)\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{1-2x}{2x+3}$ w okolicy $x_0 = -1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -0.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{x^3 - 5x - 2}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{3x^2 - 4x + 5}{-2x^2 + 9x - 9}$, za-

pisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(5x^5 + \frac{8}{4\sqrt{x^3}} - 4\sqrt[3]{x^2}\right)'$, (b) $\left(\frac{x^2 \sin x}{\operatorname{arctg} x}\right)'$, (c) $\left(\ln \frac{x^2}{2x+3}\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \sqrt{1-x}$ w okolicy $x_0 = -3$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -2.9.

 \mathbf{II}

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{x^3 - 5x - 2}$,

(b) Wyznacz dziedzinę funkcji $f(x) = \frac{3x^2 - 4x + 5}{-2x^2 + 9x - 9}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(5x^5 + \frac{8}{\sqrt[4]{x^3}} - 4\sqrt[3]{x^2}\right)'$, (b)

 $\left(\frac{x^2 \sin x}{\operatorname{arctg} x}\right)'$, (c) $\left(\ln \frac{x^2}{2x+3}\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \sqrt{1-x}$ w okolicy $x_0 = -3$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -2.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{x^3 - 5x - 2}$,

(b) Wyznacz dziedzinę funkcji $f(x) = \frac{3x^2 - 4x + 5}{-2x^2 + 9x - 9}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(5x^5 + \frac{8}{\sqrt[4]{x^3}} - 4\sqrt[3]{x^2}\right)'$, (b)

 $\left(\frac{x^2 \sin x}{\operatorname{arctg} x}\right)'$, (c) $\left(\ln \frac{x^2}{2x+3}\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \sqrt{1-x}$ w okolicy $x_0 = -3$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -2.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{x^3 - 5x - 2}$,

(b) Wyznacz dziedzinę funkcji $f(x) = \frac{3x^2 - 4x + 5}{-2x^2 + 9x - 9}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(5x^5 + \frac{8}{\sqrt[4]{x^3}} - 4\sqrt[3]{x^2}\right)'$, (b)

 $\left(\frac{x^2 \sin x}{\operatorname{arctg} x}\right)'$, (c) $\left(\ln \frac{x^2}{2x+3}\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \sqrt{1-x}$ w okolicy $x_0 = -3$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -2.9.