

Raspberry Pi 3 as a Simple WiFi Access Point

Pi as a wifi bridge providing safe subnet to wifi and Ethernet

Home

Description

The Raspberry Pi 3 has a built in WiFi radio. This makes using it easier than ever. This guide will start with a basic Raspbian build, connected to a wired network, and add WiFi access point capabilities. I sometimes use this approach for building an IoT subnet.

Next up?

After reading this guide, you may be interested in reading:

IoT hub

Parts List

• Raspberry Pi 3

- 16GB (or larger) class 10 MicroSD card
- Mini-USB power
- Ethernet cable

Overview

Start with a Raspberry Pi image. This is an image saved after following the RPi Initial Setup Guide. This may be either a Lite image or a full desktop image.

- 1. Write the image to the MicroSD.
- 2. Connect Pi to your Internet
- 3. Install dnsmasq and hostapd
- 4. Configure wlan0
- 5. Configure hostapd
- 6. Configure dnsmasq
- 7. Iptables forwarding
- 8. Load, Test and Reboot
- 9. Conclusion.

Procedures

This guide mostly follows the guide from frillip. If this is not available, try this PDF version.

Write the image

Write the image to the MicroSD as described in the RPi Initial Setup Guide. Insert the MicroSD into the Pi and boot.

Connect Pi to your Internet

Use an Ethernet cable to connect the pi to the network. DHCP will assign the pi an IP address. Find the address of your pi from your network's DHCP server.

• SSH to the pi at that IP address or yourpiname.local

Install dnsmasq and hostapd

More about dnsmasq and hostapd.

- sudo apt-get update
- sudo apt-get upgrade
- sudo apt-get install dnsmasq hostapd

Configure wlan0

- Inform dhcpd to ignore wlan0 by editing sudo nano /etc/dhcpcd.conf
 - To the end add denyinterfaces wlan0
 - This must be ABOVE any interface lines you may have added
- Configure the wlan IP, sudo nano /etc/network/interfaces
 - the wlan0 section should be changed to:

```
allow-hotplug wlan0
iface wlan0 inet static
   address 192.168.220.1
   netmask 255.255.255.0
   network 192.168.220.0
   broadcast 192.168.220.255
```

- Restart dhcpcd with sudo service dhcpcd restart
- Reload wlan0 with sudo ifdown wlan0; sudo ifup wlan0

Setup hostapd

- sudo nano /etc/hostapd/hostapd.conf
 - add the following

```
interface=wlan0
driver=n180211
hw_mode=g
channe1=6
ieee80211n=1
wmm_enabled=1
ht_capab=[HT40][SHORT-GI-20][DSSS_CCK-40]
macaddr_ac1=0
ignore_broadcast_ssid=0
# Use WPA2
auth_algs=1
wpa=2
wpa_key_mgmt=WPA-PSK
rsn_pairwise=CCMP
# Change these to your choice
# This is the name of the network
ssid=Pi3-AP
# The network passphrase
wpa_passphrase=raspberry
```

TIP: If the passphrase is too short, hostapd won't start.

- Now edit the default configuration, sudo nano /etc/default/hostapd
 - Replace #DAEMON_CONF=""with DAEMON_CONF="/etc/hostapd/hostapd.conf"

Configure dnsmasq

- Rename the current configuration,
 sudo mv /etc/dnsmasq.conf /etc/dnsmasq.conf.orig
- Create and edit the new configuration, sudo nano /etc/dnsmasq.conf
 - Add the following

```
interface=wlan0  # Use interface wlan0
listen-address=192.168.220.1  # Specify the address to listen on
bind-interfaces  # Bind to the interface
server=8.8.8.8  # Use Google DNS
domain-needed  # Don't forward short names
bogus-priv  # Drop the non-routed address spaces.
dhcp-range=192.168.220.50,192.168.220.150,12h # IP range and lease time
```

Iptables forwarding

IMPORTANT: This section is optional.

Forwarding is required if any devices connected to your this access point need to connect to the Internet. I do not forward for many IoT devices which I expect to act as an isolated network.

- Enable IP Forwarding
 - sudo nano /etc/sysctl.conf at bottom add net.ipv4.ip_forward=1
 - sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
- If you have not already completed Persistant iptables, do so now
- Required View WiFi Access Point rule set to complete iptables setup

Load, Test and Reboot

Load the services and test availability, connection and forwarding.

- sudo service hostapd start
- sudo service dnsmasq start
- Use any WiFi client to connect to your new rpi3 access point
- Verify connection of various services such as SSH
- If you chose IP Forwarding, verify that your connected device is able to connect to the Internet
- Once you have verified everything, sudo reboot now
- Retest everything with the rebooted pi

Conclusion

You now have a working WiFi access point which may be used to extend your wired network or as a hub for local IoT devices.

Published with **Pandoc** onto **GitHub Pages**