

Laboratório de Pesquisa em Redes e Multimídia

Redes de Computadores

Prof. José Gonçalves Pereira Filho Departamento de Informática zegonc@inf.ufes.br

O Modelo OSI (Aula 2)

O Modelo OSI

- Framework concebido pela ISO para a definição de padrões, visando a interconexão de sistemas heterogêneos (independência de fabricante, sistema operacional e plataforma de hardware).
- Descrito no documento ISO 7498, provê uma base conceitual para a interconexão de sistemas abertos e para o desenvolvimento de aplicações distribuídas.
- O termo "aberto" denota a habilidade do sistema em possuir conformidade com o modelo de referência e os padrões associados para a conexão.

As Camadas do Modelo

- O modelo separa as funcionalidades e as capacidades de arquitetura de rede em *camadas*. Define também os termos e objetos que são palavras reservadas no mundo das redes.
- Camadas foram escolhidas para quebrar o problema em problemas menores, de tamanho razoável, relativamente independentes.
- Cada camada (N) usa os serviços da camada inferior (N-1) e adiciona funcionalidades particulares para prover serviço à camada superior (N+1).

As Camadas do Modelo (cont.)

- As camadas definem desde aspectos físicos até aspectos abstratos da aplicação.
- O modelo OSI é constituído de sete camadas: Aplicação, Apresentação, Sessão, Transporte, Rede, Enlace e Física.

Aplicação do Usuário

As Camadas do Modelo (cont.)

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Física

As Camadas do Modelo (cont.)

SEGMENTS

PACKETS

FRAMES

BITS

Application Layer

Facilitates communication between software applications like outlook, IE

Presentation Layer

Data Representation and Encryption

Session Layer

Interhost Communication

Transport Layer

End-to-End connection and reliability

Network Layer

Path determination and logical addressing

Data Link Layer

MAC and LLC - Physical Addressing

Physical Layer

Media, signal and binary transmission

As Camadas do Modelo (cont.)

- Camadas superiores
 - Prestam serviços relacionados com a natureza da aplicação. Tratam de aspectos de interoperação de aplicações.
- Camadas inferiores
 - Possibilitam a interconexão de sistemas ou equipamentos individuais. Estão relacionadas a aspectos de transmissão e interconexão.
- Camada de transporte
 - Provê comunicação fim-a-fim entre aplicações.

Princípios do Modelo OSI

- Agrupar funções similares em uma mesma camada, isto é, cada camada deve desempenhar uma função bem definida.
- Criar camadas separadas para manipular funções que são manifestamente diferentes no processo ou na tecnologia envolvida.
- Permitir alterações de funções ou protocolos dentro de uma camada sem afetar as outras.
- Uma camada deve ser criada onde houver necessidade de um outro grau de abstração.
- Não criar um número grande de camadas para que a tarefa de descrever e integrar as camadas não fique mais complexa do que o necessário.

Princípios do Modelo OSI (cont.)

- Criar, para cada camada, fronteiras somente com a sua camada superior e inferior.
- As fronteiras entre camadas devem ser escolhidas de forma a minimizar o fluxo de informações através das interfaces, ou seja, criar fronteiras em pontos onde a descrição dos serviços possa ser pequena e o número de interações através da fronteira seja minimizado.
- Criar uma fronteira onde a experiência do passado tenha demonstrado ser necessária essa separação.

Princípios do Modelo OSI (cont.)

Em suma, o número de camadas deve ser grande o bastante para que funções distintas não precisem ser desnecessariamente colocadas na mesma camada e pequeno o suficiente para que a arquitetura não se torne difícil de controlar.

Outros Exemplos de Arquiteturas de Redes em Camadas

SNA	OSI		
Transaction services		Application	
Presentation services		Presentation	
Data flow control	Session		
		Transport	
		Network	
	Data link control Data li		
Data link control			
Physical		Physical	

7	Aplicação			
6	Apresentação	Aplicação		
5	Sessão			
4	Transporte	Transporte		
3	Rede	Internet		
2	Enlace de Dados	Interface com a Rede		
1	Conexão Física			
	Modelo OSI	TCP/IP		

Outros Exemplos de

Arquiteturas de Redes em Camadas (cont.)

TCP/IP

OSI AppleT Reference Model

AppleTalk Protocols

Entidades da Camada

- No MR OSI as camadas parceiras se comunicam através de um objeto chamado entidade da camada.
- Entidade é um termo que significa uma capacidade de comunicação (por exemplo, protocolo IP, protocolo TCP, um elemento roteador, etc).
- As entidade podem ser elementos de software ou de hardware.

Entidades da Camada (cont.)

Serviços

- A comunicação entre camadas é feita através da requisição de (e da resposta a) serviços. Cada camada é responsável por um conjunto de serviços
 - Serviço = o que
- Serviços são solicitados (respondidos) através de pontos específicos localizados nas interfaces entre as camadas, denominados de *Pontos de Acesso a Serviços* (*SAP's - Service Access Points*).
- A prestação de serviços é o que justifica a existência de uma camada.
- Uma camada (N+1) requisita serviços a uma camada (N) através da invocação de primitivas de serviço (ex: connect, abort, data).

Serviços (cont.)

Serviço (cont.)

Conexão

- Um serviço comum oferecido por todas as camadas consiste em prover associações entre SAP's, que podem ser usados em, particular, para transferir dados.
- Mais precisamente, uma camada-(N) oferece conexões-(N) entre SAP's-(N) como parte de serviços-(N). Essas conexões podem ser unicast, multicast ou broadcast.
- O final de uma conexão-(N) em um SAP-(N) é chamado de CEP-(N) ("connection-end-point").

Conexão (cont.)

Protocolos

- Protocolos são um conjunto de regras que governa a interação em sistemas distribuídos.
- A comunicação entre camadas de mesmo número em nós distintos é feita através de protocolos.
 - Para que dois parceiros se comuniquem eles devem especificar o mesmo protocolo.
- Os protocolos existem como forma de viabilizar a prestação de serviços pelas camadas (protocolo = como).

Protocolos (cont.)

Comunicação entre camadas parceiras.

Serviço vs. Protocolo

Encapsulamento de Dados

- Protocolos da camada N adicionam informações às unidades de dados recebidas da camada (N+1), gerando dados de maior tamanho a cada camada do modelo.
- Os serviços de uma camada recebem o respectivo protocolo e são passados, através do SAP, à camada inferior.

Elementos de um Protocolo

Sintaxe:

 Inclui aspectos como formato dos dados e níveis de sinal.

Semântica:

 Inclui informação de controle para coordenação e manipulação de erros.

Temporização:

 Inclui aspectos temporais envolvidos na troca de dados entre transmissor e receptor.

Sintaxe: Cabeçalho do Protocolo IP

4	€ 32 bits					
Version	IHL	Type at service	Total length			
ld entitication		Flags	Fragment offset			
Time liv		Pro to col	Header checksum			
Source address						
Destination address						
Options (+ padding)						
		Data (variable)				

Semântica: Máquina de Estados do Protocolo TCP

Aspectos de Temporização: Estabelecimento de Conexão

Tempo	Evento	Diagrama
:	O computador A envia um pacote de sincronismo (SYN) para o computador B	
-1	O computador B recebe o pacote (SYN) do computador A	HOSTA HOSTB
+2	O computador B envia seu próprio pacote de sincronismo (SYN) e o reconhecimento (ACK)	t _ <u>syn</u>
+3	O computador A recebe o pacote SYN de B	ack_synt+2
+4	O computador A envia o seu pacote de reconhecimento positivo (ACK)	t+3 d t+4 <u>ack</u> t+5
+5	O computador B recebe o ACK, e finalmente a conexão TCP é estabelecida e a transmissão dos pacotes de dados é iniciada até finalizar a sessão TCP.	

Primitivas de Serviço

- Do ponto de vista abstrato, as primitivas de serviço podem ser:
 - Requisição: quando um serviço é requisitado para ser desempenhado no parceiro.
 - Resposta: quando, uma vez desempenhado pelo parceiro, é gerada uma resposta ao serviço requisitado.
- As primitivas podem conter duas situações possíveis:
 - Primitivas de Requisição:
 - No instante em que é enviada para a rede: "request".
 - No instante que a requisição chega no parceiro: "indication".
 - Primitivas de Resposta:
 - No instante em que é enviada: "response".
 - No instante que chega no requisitante: "confirmation".

Representação das Primitivas

Grupos de Serviços

- Serviços confirmados:
 - São serviços que contém as quatro fases da primitiva (request, indication, response, confirmation).
- Serviços não-confirmados:
 - São serviços que especificam apenas as fases de request e indication.

PDU e SDU

- Quando uma camada (N+1) requisita um serviço à camada (N), neste instante ela está enviando um conjunto de bytes, denominado *Protocol Data Unit* (PDU).
- A PDU está assim dividida:
 - Cabeçalho: a parte do protocolo da camada (N+1);
 - Conteúdo: a parte de dados da camada (N+1).
- A PDU da camada (N+1) se encaixa na parte de dados da camada (N).
- Assim que a (N)-PDU ultrapassa a fronteira entre as camadas (N) e (N-1) ela recebe um novo nome na camada (N-1): SDU (Service Data Unit).

PDU e SDU (Cont.)

-(n-1)PDU = (n-1)SDU + (n-1)PCI

PCI = Protocol-control-information

PDU = Protocol-data-unit SDU = Service-data-unit

Camadas *User* e *Provider*

- A camada (N) requisita serviços somente da camada imediatamente inferior (N-1); por essa razão, ela é dita usuária (user) dessa camada.
- Uma camada abstrai a existência das camadas mais inferiores, oferecendo a somatória das funcionalidades de todas as camadas inferiores.
- Por essa abstração, a camada (N) é dita <u>provedora</u> (provider) de serviços para a camada superior (N+1).
- O provimento de serviços abstrai, inclusive, o aspecto da comunicação com a camada parceira.
- Portanto, o provider oferece os serviços e a conexão da camada (N-1), a um usuário da camada (N).

Camadas *User* e *Provider* (cont.)

Visão Geral

Por que o OSI não vingou?

- Segundo Tanenbaum, alguns dos motivos foram:
 - Momento ruim: Quanto o padrão OSI foi lançado, o TCP/IP já estava sendo amplamente utilizado nas universidades. Muitos fabricantes já ofereciam produtos TCP/IP. Desta forma, não havia interesse em gastar dinheiro em uma segunda pilha de protocolos.
 - Tecnologia Ruim: A divisão em 7 camadas foi mais política que técnica. Duas delas encontram-se praticamente vazias (sessão e apresentação) e outras duas sobrecarregadas (enlace e rede). Muitas das funções de uma camada, como o controle de erros, apareciam repetidas em outras. Se tudo isso não bastasse, a implementação era bastante complexa.
 - Implementação Ruim: Devido à tecnologia ruim, as implementações eram lentas.
 - Política Ruim: O OSI era visto como algo sendo empurrado por burocratas a pesquisadores. Por outro lado, o TCP/IP estava associado ao UNIX, que era adorado no ambiente acadêmico.