1.

Notes on LLT polynomials, using the definition in [HHLRU, §5] and [HHL, §3].

1.1. We write **N** for the set of positive integers.

For our purposes, an integer partition is a weakly decreasing sequence of integers $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots)$ that stabilizes at zero after finitely many entries. Recall that λ defines a subset of $\mathbb{N} \times \mathbb{N}$ called its Young diagram: A point $\square = (j, i)$ belongs to the subset if and only if $j \le \lambda_i$. The *content* of \square is

$$\kappa(\Box) = j - i$$
.

Abusing notation, we will conflate λ with its Young diagram where convenient.

1.2. Consider sets of the form $\nu = \lambda \setminus \mu$, where λ , μ are partitions with $\mu \subseteq \lambda$. We declare two such sets to be equivalent whenever they differ by translation by a vector (k,k) with $k \in \mathbf{Z}$: that is, whenever they differ by translation but their elements have the same contents. We define a *skew shape* to be an equivalence class of such sets. Abusing notation, we again write ν to denote the skew shape it represents.

If ν is nonempty, then its *head* is its bottommost rightmost element. In this case, the *content* of ν , denoted $\kappa(\nu)$, is the content of its head. This is also the maximum content among the elements of ν .

1.3. We will work with *d*-tuples of skew shapes: say, $\vec{v} = (v^{(0)}, \dots, v^{(d-1)})$. We define the *size* of \vec{v} to be $|\vec{v}| = \sum_i |v^{(i)}|$.

A semistandard Young tableau of (skew) shape \vec{v} is a function $T: \coprod_i v^{(i)} \to \mathbb{N}$ that, within each skew shape $v^{(i)}$, is weakly increasing along rows and strictly increasing along columns. In symbols,

if
$$\square'$$
 lies left of \square , then $T(\square') \leq T(\square)$, and if \square' lies above \square , then $T(\square') > T(\square)$, for all i and $\square, \square' \in \nu^{(i)}$.

We write $SSYT(\vec{v})$ for the set of all semistandard Young tableaux of shape \vec{v} .

The weight of T is the sequence $\mu(T) = (\mu_1(T), \mu_2(T), \ldots)$ in which $\mu_k(T) = |T^{-1}(k)|$. For any integer partition μ , we write $SSYT(\vec{v}, \mu) \subseteq SSYT(\vec{v})$ for the subset of semistandard Young tableaux T such that $\mu(T) = \mu$. Note that it is nonempty only if $|\mu| = |\vec{v}|$.

For $0 \le i < d$ and $\square \in v^{(i)}$, we define the *adjusted content* of \square by

$$c(\Box) = d\kappa(\Box) + i$$
.

Given a semistandard Young tableau T of shape \vec{v} , the *inversion set* Inv(T) is the set of tuples (i, i', \Box, \Box') , with $\Box \in v^{(i)}$ and $\Box' \in v^{(i')}$, such that:

$$T(\square) < T(\square')$$
 and $0 < c(\square) - c(\square') < d$.

Compare to [HHLRU, 216].

1.4. Let Λ_t be the ring of symmetric functions in variables x_1, x_2, \ldots with coefficients in $\mathbf{Z}[t^{\pm 1}]$. We write $\langle -, - \rangle$ for the $\mathbf{Z}[t^{\pm 1}]$ -linear Hall pairing on Λ_t . We write $(h_{\mu})_{\mu}$ for the basis of complete homogeneous symmetric functions, where μ runs over integer partitions. For any sequence of nonnegative integers $\mu = (\mu_1, \mu_2, \ldots)$, we set

$$x^{\mu} = x_1^{\mu_1} x_2^{\mu_2} \cdots$$

For our purposes, the (modified) Lascoux–Leclerc–Thibon (LLT) polynomial of \vec{v} is the quasisymmetric function

$$LLT_{\vec{v}}(t) = \sum_{T \in SSYT(\vec{v})} t^{|Inv(T)|} x^{\mu(T)},$$

which turns out to be symmetric in $x_1, x_2, ...$, and hence, defines an element of Λ_t . Indeed, LLT_{\vec{v}} is the unique symmetric function such that

$$\langle h_{\mu}, \text{LLT}_{\vec{v}} \rangle = \sum_{T \in \text{SSYT}(\vec{v}, \mu)} t^{\text{Inv}(T)} \text{ for all } \mu \text{ with } |\mu| = |\vec{v}|.$$

1.5. We say that a skew shape ν is a *ribbon* if and only if the (unadjusted) contents of its elements form a single (possibly empty) interval of consecutive integers, without repetition. In informal terms, ν is connected and contains no square. In the literature, ribbons are also known as *border strips* or *rim hooks*.

We order the elements of a nonempty ribbon by decreasing content, so that the head is the first element. We say that a non-head element is a *step up* if and only if it lies above its predecessor: that is, it marks a place where the ribbon moves up, not left.

Henceforth, we assume that \vec{v} is a *d*-tuple of ribbons. (Their individual sizes may vary.) Let

$$C(\vec{v}) = \{c(\Box) \in \mathbf{Z} \mid \Box \in v^{(i)} \text{ for some } i\},$$

$$D(\vec{v}) = \{c(\Box) \in \mathbf{Z}^2 \mid \Box \in v^{(i)} \text{ for some } i \text{ and } \Box \text{ is a step up}\}.$$

Note that $D(\vec{v})$ would be what [HHL, §3] would call the descent set of \vec{v} , except that we use the adjusted content c while they use κ .

Let us say that an arbitrary subset $C \subseteq \mathbf{Z}$ is *d-contiguous* if and only if, for all $0 \le i < d$, the set $\{(c-i)/d \mid c \in C_{(i)}\}$ is a (possibly empty) interval of consecutive integers, where

$$C_{(i)} = \{c \in C \mid c \equiv i \pmod{d}\}.$$

Let A(d) be the set of pairs (C, D), with $D \subseteq C \subseteq \mathbf{Z}$, such that:

- (1) C is bounded and d-contiguous.
- (2) If $c \in D$, then $c + d \in D$.

Then, by construction:

Lemma 1.1. The map $\vec{v} \mapsto (C(\vec{v}), D(\vec{v}))$ restricts to a bijection from the set of d-tuples of ribbons to the set $\mathbf{A}(d)$.

1.6. Let $(C, D) \in \mathbf{A}(d)$. We define a *coloring* of (C, D) to be a function $T : C \to \mathbf{N}$ such that:

$$\text{if } c \notin D, \quad \text{then } T(c) \leq T(c+d), \\ \text{and if } c \in D, \quad \text{then } T(c) > T(c+d), \\ \end{cases} \text{ for all } c \in C \text{ such that } c+d \in C.$$

We write Col(C, D) for the set of colorings of (C, D).

The weight $\mu(T)$ is defined as before: $\mu(T) = (\mu_k(T))_{k \ge 1}$ with $\mu_k(T) = |T^{-1}(k)|$. For any integer partition μ , we write $\operatorname{Col}(C, D, \mu) \subseteq \operatorname{Col}(C, D)$ for the subset of colorings T such that $\mu(T) = \mu$.

The *inversion set* Inv(T) is the set of pairs (c, c') such that:

$$T(c) < T(c')$$
 and $0 < c - c' < d$.

We conclude:

Lemma 1.2. If $(C, D) = (C(\vec{v}), D(\vec{v}))$ for some d-tuple of ribbons \vec{v} , then pullback along the function $c : \coprod_i v^{(i)} \to \mathbf{Z}$ defines a bijection

$$\operatorname{Col}(C, D) \xrightarrow{\sim} \operatorname{SSYT}(\vec{v})$$

that preserves weights and inversion sets. In particular, $LLT_{\vec{v}} = LLT_{C,D}$, where

$$LLT_{C,D}(t) = \sum_{T \in Col(C,D)} t^{|Inv(T)|} x^{\mu(T)}.$$

We will restate the theorems of Haglund–Haiman–Loehr and Hikita using the formalism of pairs (C, D) introduced above.

1.7. *Macdonald Polynomials*. Fix a partition λ with at most d parts, meaning $\lambda_{i+1} = 0$ for $i \geq d$. Let

$$C(\lambda) = \{i - di \in \mathbb{Z} \mid 0 < i < d, 0 < i < \lambda_{i+1}\}.$$

Then $C(\lambda)$ forms a bounded, d-contiguous subset of **Z**, For any $(C, D) \in \mathbf{A}(d)$, let

$$\operatorname{maj}(D) = \sum_{0 \le i < d} \sum_{\substack{0 \le j < \lambda_{i+1} \\ i - dj \in D}} (\lambda_{i+1} - j)$$
$$= |\{(c, c') \in D \times C \mid c - c' \in d\mathbf{N}\}|.$$

Let λ' denote the transpose of λ , and let

$$hhl(D) = \sum_{0 \le i < d} \sum_{\substack{0 \le j < \lambda_{i+1} \\ i - dj \in D}} (\lambda'_{j+1} - i - 1)$$
$$= |\{(c, c') \in C \times D \mid d \mid c/d \mid < c' < c\}|.$$

Let $\tilde{H}_{\lambda}(q,t) \in \Lambda_t \otimes \mathbf{Z}[q^{\pm 1}]$ be the modified Macdonald polynomial of λ . Recall the identity

$$\tilde{H}_{\lambda'}(t,q) = \tilde{H}_{\lambda}(q,t),$$

Taking the μ in [HHL] to be our λ' , and applying the symmetry identity, we can rewrite the main result of *ibid*. as:

Theorem 1.3 (Haglund–Haiman–Loehr). For any partition λ , we have

$$\tilde{H}_{\lambda}(q,t) = \sum_{\substack{D \text{ such that} \\ (C(\lambda),D) \in \mathbf{A}(d)}} q^{\operatorname{maj}(D)} t^{-\operatorname{hhl}(D)} \mathrm{LLT}_{C(\lambda),D}(t).$$

Below, our notation for λ will omit its zero entries. We also write $(m_{\mu})_{\mu}$ for the basis of Λ_t of monomial symmetric functions, which is dual to the basis $(h_{\mu})_{\mu}$ under the Hall pairing, and $(s_{\mu})_{\mu}$ for the basis of Schur functions, which is orthonormal.

Example 1.4. We work out the Schur expansion of \tilde{H}_{λ} for the partitions $\lambda \vdash 3$. We will use the fact that hhl(D) = 0 for all D encountered below, along with the following table of pairings $\langle s_{\pi}, m_{\mu} \rangle$, also known as inverse Kostka numbers:

$$m_{(3)}$$
 $m_{(2,1)}$ $m_{(2,1)}$ $m_{(2,1)}$ $m_{(2,1)}$ $m_{(2,1)}$ $m_{(1^3)}$ $m_{(2,1)}$ $m_{(1^3)}$ $m_{(2,1)}$ $m_{(1^3)}$ $m_{(2,1)}$ $m_{(1^3)}$

• $\lambda = (3)$. We can take d = 1, giving $C(\lambda) = \{0, -1, -2\}$. There are 4 choices for D, which give the following values for maj(D) and the coefficients in the monomial and Schur expansions of $LLT_{C(\lambda),D}$:

Altogether, $\tilde{H}_{(3)}(q,t) = s_{(3)} + (t+t^2)s_{(2,1)} + t^3s_{(1^3)}$.

• $\lambda = (2, 1)$. We can take d = 2, giving $C(\lambda) = \{0, 1, -2\}$. There are 2 choices for D, which give:

maj
$$m_{(3)}$$
 $m_{(2,1)}$ $m_{(1^3)}$ $s_{(3)}$ $s_{(2,1)}$ $s_{(1^3)}$
0 1 1+t 1+2t 1 t
1 2+t 1 t

Altogether, $\tilde{H}_{(2,1)}(q,t) = s_{(3)} + (q+t)s_{(2,1)} + qts_{(1^3)}$.

• $\lambda = (1^3)$. We can take d = 3, giving $C(\lambda) = \{0, 1, 2\}$. The only choice for D is the empty set, which gives:

maj
$$m_{(3)}$$
 $m_{(2,1)}$ $m_{(1^3)}$
0 1 1+t+t² 1+2t+2t²+t³

Altogether,
$$\tilde{H}_{(1^3)}(q, t) = s_{(3)} + (t + t^2)s_{(2,1)} + t^3s_{(1^3)}$$
.

Example 1.5. The first cases where $hhl(D) \neq 0$ occur when $\lambda = (2, 2) \vdash 4$. Here we need the following inverse Kostka numbers:

$$m_{(4)}$$
 $m_{(3,1)}$ $m_{(3,1)}$ $m_{(2^2)}$ $m_{(2,1^2)}$ $m_{(2^2)}$ $m_{(2^2)}$ $m_{(2^2)}$ $m_{(2^2)}$ $m_{(2,1^2)}$ $m_{(2^4)}$ $m_{(2^4)}$

Taking d = 2 gives $C(\lambda) = \{0, 1, -2, -1\}$. There are 4 choices for D, which give:

Altogether, the Schur expansion of $\tilde{H}_{(2^2)}(q,t)$ is

$$s_{(4)} + (q + qt + t)s_{(3,1)} + (q^2 + t^2)s_{(2^2)} + (q^2t + qt + qt^2)s_{(3,1)} + q^2t^2s_{(1^4)}.$$

1.8. Hikita Polynomials. Fix a positive integer n coprime to d. Write d = mn + b, where m, b are integers and 0 < b < n. Let $\mathbf{Z}_0^n \subseteq \mathbf{Z}^n$ be the subset of tuples ξ such that $\xi_1 + \cdots + \xi_n = 0$, and let

$$\mathbf{Z}_0^n(d) = \left\{ \xi \in \mathbf{Z}_0^n \middle| \begin{array}{ll} \text{if} & j = i + b, & \text{then } \xi_j \le \xi_i + m; \\ \text{if } & j = i + b - n, & \text{then } \xi_j \le \xi_i + m + 1 \end{array} \right\}.$$

For all $\xi \in \mathbf{Z}_0^n$, let

$$C(\xi) = \{ n\xi_j + j - 1 \in \mathbf{Z} \mid 1 \le j \le n \}.$$

We see that $C(\xi)$ is a full and irredundant set of representatives for residue classes modulo n. It turns out that if $\xi \in \mathbf{Z}_0^n(d)$, then $C(\xi)$ is also d-contiguous: This fact is implicit in the work of Gorsky–Mazin [GM13, GM16]. For all such ξ , we set

area(
$$\xi$$
) = -min $C(\xi)$,
(1.1) Inv(ξ) = { $(c, c', l) \in C(\xi)^2 \times \{1, ..., d-1\} \mid c - c' \in l + n$ **N**}.

These definitions essentially come from [GM13]. The statistic denoted dinv(ξ) in the literature corresponds to $\delta - |\text{Inv}(\xi)|$, where

$$\delta := \frac{1}{2}(d-1)(n-1),$$

the maximum value of |Inv|. See also [GMV], where codinv corresponds to |Inv|.

Let $S'_{d/n}(q,t) \in \Lambda_t \otimes \mathbf{Z}[q^{\pm 1}]$ be the image, under $s_{\lambda} \mapsto s_{\lambda'}$, of the q,t-symmetric function in the rational shuffle theorem. The following result is essentially [H, Thm. 4.15], except that Hikita does not use area as we have defined it: He instead uses area($(-)^{\tau}$), where τ is the involution on \mathbf{Z}_0^n defined by

$$(\xi_1,\ldots,\xi_n)^{\tau}=(-\xi_n,\ldots,-\xi_1),$$

which preserves $\mathbf{Z}_0^n(d)$. For all $\xi \in \mathbf{Z}_0^n(d)$, it can be shown that $|\operatorname{Inv}(\xi^{\tau})| = |\operatorname{Inv}(\xi)|$ and $\operatorname{LLT}_{C(\xi^{\tau}),\emptyset} = \operatorname{LLT}_{C(\xi),\emptyset}$: for instance, through the reinterpretations of these invariants that we will give later.

Theorem 1.6 (Hikita). For any n > 0 coprime to d, we have

$$t^{\delta} S'_{d/n}(q, t^{-1}) = \sum_{\xi \in \mathbf{Z}_0^n(d)} q^{\operatorname{area}(\xi)} t^{|\operatorname{Inv}(\xi)|} \operatorname{LLT}_{C(\xi),\emptyset}(t).$$

Example 1.7. Take d=4 and n=3, so that $\delta=3$. We compute:

$$\mathbf{Z}_0^3(4) = \{(0,0,0), (1,0,-1), (0,1,-1), (1,-1,0), (-1,0,1)\}.$$

Below. we list the corresponding sets $C(\xi)$, the values for area (ξ) and $|Inv(\xi)|$, and the coefficients in the monomial and Schur expansions of $LLT_{C(\xi),\emptyset}$.

C(x)	area	Inv	$m_{(3)}$	$m_{(2,1)}$	$m_{(1^3)}$	$S_{(3)}$	$S_{(2,1)}$	$S_{(1^3)}$
$\{0, 1, 2\}$	0	0	1	$1 + t + t^2$	$1 + 2t + 2t^2 + t^3$	1	$t + t^2$	t^3
${3, 1, -1}$	1	1	1	1 + t		1	t	
$\{0, 4, -1\}$	1	2	1	1 + t		1	t	
${3,-2,2}$	2	2	1	1 + t		1	t	
$\{-3, 1, 5\}$	3	3	1			1		

Thus the Hikita polynomial is

$$(1+qt+qt^2+q^2t^2+q^3t^3)s_{(3)}+(t+t^2+qt^2+qt^3+q^2t^3)s_{(2,1)}+t^3s_{(1^3)}.$$

Sending $t \mapsto t^{-1}$, then multiplying by t^3 , we get $S'_{4/3}(q,t)$, which has symmetry between q and t:

$$(t^3 + qt^2 + qt + q^2t + q^3)s_{(3)} + (t^2 + t + qt + q + q^2)s_{(2,1)} + s_{(1^3)}.$$

Note that here, the LLT polynomials happen to be Hall–Littlewood polynomials. For other pairs (d, n), like (7, 3) or (5, 4), this is not the case.