Friedrich-Schiller-Universität Jena Institut für Geographie Lehrstuhl für Geoinformatik, Geohydologie und Modellierung

Regionalisierungswerkzeug regionWK

Entwicklungsphase I

Dokumentation

 $Auslieferungsdatum:\,20.12.2008$

Inhaltsverzeichnis

1	Ber	echnung von zusätzlichen meteorologischen Größen	3
	1.1	Absolute Luftfeuchte	3
	1.2	Globalstrahlung	5
	1.3	Kurzwellige Ausstrahlung	7
	1.4	Langwellige Ausstrahlung	8
	1.5	Nettostrahlung	10
2	Ber	echnung der potentiellen Evapotranspiration	11
	2.1	Verfahren von Turc-Wendling	11
	2.2	Verfahren von Haude	12
	2.3	Verfahren von Penman	14
	2.4	Verfahren von Penman-Monteith	16
	2.5	Gras-Referenzverdunstung	19
3	Met	thoden zur Korrektur von Niederschlagsmesswerten	21
	3.1	Niederschlagskorrektur nach RICHTER (1995) (auf Tagesbasis)	21
	3.2	Niederschlagskorrektur nach RICHTER (1995) und SEVRUK (1989) .	24
	3.3	Niederschlagskorrektur nach RICHTER (1995) (auf Monatsbasis)	27
4	Met	thoden zur Bestimmung der Niederschlagsform	29
	4.1	Bestimmung von Niederschlagsform sowie Schnee- und Regenanteilen	29
5	Met	thoden zur deskriptiven statistischen Auswertung von Zeitreihen	31

1 Berechnung von zusätzlichen meteorologischen Größen

1.1 Absolute Luftfeuchte

Sourcen:

org.unijena.regionWK.AP1.CalcAbsoluteHumidity.java

Beschreibung:

Die absolute Luftfeuchte ist die vorhandene Masse an Wasserdampf in einer Volumeneinheit Luft. Die maximal mögliche Masse an Wasserdampf, die pro Volumeneinheit Luft aufgenommen werden kann bis die Luft gesättigt ist, wird als Sättigungsfeuchte bezeichnet. Sie wird mit dem von der Temperatur am jeweiligen Standort abhängigen Sättigungsdampfdruck und dieser Temperatur nach folgender Formel berechnet:

$$maxHum = est \cdot \frac{216.7}{temp} \quad [gcm^{-3}] \tag{1}$$

mit

est Sättigungsdampfdruck [kPa] temp Temperatur [K].

Daraus wird die absolute Luftfeuchte unter Verwendung der gemessenen relativen Luftfeuchte (rhum) abgeleitet nach:

$$ahum = maxHum \cdot \frac{rhum}{100} \quad [gcm^{-3}] \tag{2}$$

Literatur

Brunotte, E., H. Gebhardt, M. Meurer, P. Meusburger & J. Nipper (Hrsg.) (2001 f.): Lexikon der Geographie in vier Bänden. Heidelberg: Spektrum.

Eingabe:

rhum Relative Luftfeuchte [%] temperature Mittlere Lufttemperatur [°C]

Interne Variablen:

rhumTemp	Temperatur	$[^{\circ}C]$			
absDist	absoluter	Abstand	zwischen	verwendeten	[m]
	Temperatur- und Relativen- Luftfeuchte-Messstation				
est	Sättigungsd	ampfdruck			[kPa]
maxHum	Sättigungsfe	euchte			$[\mathrm{gcm}^{-3}]$

ahum	Absolute Luftfeuchte	$[gcm^{-3}]$
temp Elevation	Array von Temperatur-Stationshöhen	[m]
tempXCoord	Array von Temperatur-Stations-x-Koordinaten	[-]
tempYCoord	Array von Temperatur-Stations-y-Koordinaten	[-]
rhum Elevation	Array von Relative-Luftfeuchte-	[m]
	Messstationshöhen	
rhum X Coord	Array von Relative-Luftfeuchte-Messstations-x-	[-]
	Koordinaten	
rhum YCoord	Array von Relative-Luftfeuchte-Messstations-y-	[-]
	Koordinaten	
regCoeffAhum	Bestimmtheitsmaß für Absolute-Luftfeuchte-	[-]
	Stationen	

1.2 Globalstrahlung

Sourcen:

org.unijena.regionWK.AP1.CalcDailySolarRadiation.java

Beschreibung:

Die Globalstrahlung (R_G) wird aus der extraterrestrischen Strahlung (R_0) und der Bewölkung errechnet. Der Bewölkungsgrad wird hierbei aus dem Verhältnis der gemessenen Sonnenscheindauer (S) zur astronomisch möglichen Sonnenscheindauer (S_0) bei unbedecktem Himmel unter Zuhilfenahme einer empirischen Beziehung nach der Formel von Ångström appoximiert. Die Globalstrahlung berechnet sich nach:

$$R_G = R_0 \cdot (a + b \cdot \frac{S}{S_0}) \quad [\text{Wm}^{-2}]$$
(3)

Literatur

JAMSWIKI (2008): Hydrologisches Modell J2000,

 $\langle http://jams.uni-jena.de/jamswiki/index.php/Hydrologisches_Modell_J2000 \rangle$

(Stand: 18.2.2008) (Zugriff: 14.12.2008).

Eingabe:

time	Zeitpunkt	
tempRes	zeitliche Auflösung	[d h m]
sunh	Sonnenscheindauer	$[\mathrm{hd}^{-1}]$
actSlAsCf	Korrekturfaktor für Slope und Aspect	[-]
latitude	geographische Breite	[°]
actExtRad	extraterrestrische Strahlung	$[\mathrm{MJm}^{-2}\mathrm{d}^{-1}]$
$angstrom_a$	Ångström Faktor a	[-]
$angstrom_b$	Ångström Faktor b	[-]

Interne Variablen:

declinationDeklination der Sonne[rad]latRadgeographische Breite[rad]sunsetHourAngleStundenwinkel zum Sonnenuntergang[rad]

Ausgabe:

sunhmax maximale Sonnenscheindauer [h]

solRad tägliche Globalstrahlung [MJm $^{-2}d^{-1}$]

1.3 Kurzwellige Ausstrahlung

Sourcen:

org.unijena.region WK. AP1. Calc Short Wave Radiation. java

Beschreibung:

Die kurzwellige Ausstrahlung (swR) hängt von der Globalstrahlung (R_G) und dem Rückstreuvermögen einer Oberfläche, dem Albedo (alb), ab. Sie berechnet sich nach:

$$swR = (1 - alb) \cdot R_G \quad [MJm^{-2}] \tag{4}$$

Eingabe:

$$solRad$$
 Globalstrahlung [MJm $^{-2}d^{-1}$] $albedo$ Albedo [$-$]

$$swRad$$
 kurzwellige Ausstrahlung [MJm $^{-2}$]

1.4 Langwellige Ausstrahlung

Sourcen:

org.unijena.regionWK.AP1.CalcLongWaveRadiation.java

Beschreibung:

Die langwellige Ausstrahlung der Erdoberfläche und die atmosphärische Gegenstrahlung werden gemeinsam als effektive langwellige Ausstrahlung (RL) berechnet. In die Berechnung gehen die Schwarzkörperstrahlung nach Boltzmann, der Bewölkungsgrad und eine empirische Funktion des Wasserdampfgehaltes der Luft ein:

$$RL = B \cdot T^4 \cdot (0.34 - 0.14 \cdot \sqrt{ea}) \cdot (1.35 \cdot \frac{Rs}{Rs0} - 0.35) \quad [\text{MJm}^{-2}]$$
 (5)

mit

B	Stefan Boltzmann Konstante (=4.903E-9)	$[\mathrm{MJm^{-2}K^{-4}}]$
T	absolue Lufttemperatur	[K]

ea Dampfdruck [kPa]

Rs Globalstrahlung [MJm⁻²d⁻¹]

Rs0 astronomisch mögliche Solarstrahlung ohne $[\mathrm{MJm^{-2}d^{-1}}]$

Bewölkung

Literatur

JAMSWIKI (2008): Hydrologisches Modell J2000,

 $\langle http://jams.uni-jena.de/jamswiki/index.php/Hydrologisches_Modell_J2000\rangle$

(Stand: 18.2.2008) (Zugriff: 14.12.2008).

Eingabe:

tmean	Mittlere Lufttemperatur	$[^{\circ}C]$
rhum	Relative Luftfeuchte	[%]
extRad	extraterrestrische Strahlung	$[\mathrm{MJm}^{-2}\mathrm{d}^{-1}]$
solRad	Globalstrahlung	$[{\rm MJm^{-2}d^{-1}}]$
elevation	Höhe	[m]

Interne Variablen:

 $sat_vapour_pressure$ Sättigungsdampfdruck [kPa] $act_vapour_pressure$ Dampfdruck [kPa]

clearSkyRad astronomisch mögliche Solarstrah- [MJm $^{-2}d^{-1}$]

lung ohne Bewölkung

BOLTZMANN Stefan Boltzmann Konstante [MJm $^{-2}$ K $^{-4}$]

Ausgabe:

lwRad langwellige Ausstrahlung [MJm $^{-2}$]

1.5 Nettostrahlung

Sourcen:

org.unijena.regionWK.AP1.CalcDailyNetRadiation.java

Beschreibung:

Die Nettostrahlung ist die Differenz aus kurz- und langwelliger Ausstrahlung.

Literatur

```
JAMSWIKI (2008): Hydrologisches Modell J2000,
```

 $\langle http://jams.uni-jena.de/jamswiki/index.php/Hydrologisches_Modell_J2000\rangle$

 $(Stand:\ 18.2.2008)\ (Zugriff:\ 14.12.2008).$

Eingabe:

```
swRad kurzwellige Ausstrahlung [MJm<sup>-2</sup>]
lwRad langwellige Ausstrahlung [MJm<sup>-2</sup>]
```

Ausgabe:

netRad Nettostrahlung [MJm $^{-2}$]

2 Berechnung der potentiellen Evapotranspiration

2.1 Verfahren von Turc-Wendling

Sourcen:

org.unijena.regionWK.AP2.TurcWendling.java

Beschreibung:

Die potentielle Evapotranspiration wird aus der mittleren Lufttemperatur und der Globalstrahlung berechnet. Zusätzlich wird die Entfernung zur Küste berücksichtigt. Die Berechnung erfolgt nach folgender Formel:

$$potET = \frac{(R_G + 93 \cdot f_K) \cdot (T + 22)}{150 \cdot (T + 123)}$$
(6)

mit

 R_G Globalstrahlung [Wm⁻²] T mittlere Temperatur [°C] f_K Küstenfaktor, Entfernung zur Küste > 50 km [-] $f_K = 1.0$, sonst $f_K = 0.6$

Literatur

DVWK (1996): Ermittlung der Verdunstung von Land- und Wasserflächen. Merkblätter zur Wasserwirtschaft, 238. Bonn.

Eingabe:

tmean Mittlere Lufttemperatur [°C] solRad Globalstrahlung [Wm $^{-2}$] coastalFactor Küstenfaktor [-]

Ausgabe:

potET Potentielle Evapotranspiration [mmd⁻¹]

2.2 Verfahren von Haude

Sourcen:

org.unijena.regionWK.AP2.Haude.java

Beschreibung:

Die potentielle Evapotranspiration wird aus dem von Temperatur und relativer Luftfeuchte abgeleiteten Sättigungsdefizit der Luft mit Wasserdampf und dem empirischen Faktor für die jeweilige Landnutzungen, dem Haude-Faktor, wie folgt berechnet:

$$potET = est \cdot \left(1 - \frac{(rhum)}{100}\right) \cdot f \tag{7}$$

mit

Das Haude-Verfahren wurde für die Berechnung von Monatssummen der Evapotranspiration entwickelt. Für die Berechnung von Tagessummen ist es zu ungenau.

Literatur

DVWK (1996): Ermittlung der Verdunstung von Land- und Wasserflächen. Merkblätter zur Wasserwirtschaft, 238. Bonn.

Eingabe:

tmean	Mittlere Lufttemperatur	$[^{\circ}C]$
rhum	Relative Luftfeuchte	[%]
haude Factor	Haude-Faktor	$[\mathrm{mmhpa}^{-1}]$
area	Fläche	$[\mathrm{m}^2]$

Interne Variablen:

est Sättigungsdampfdruck [kPa]

Ausgabe:

pET Potentielle Evapotranspiration [mmtimeUnit $^{-1}$]

2.3 Verfahren von Penman

Sourcen:

org.unijena.regionWK.AP2.Penman.java

Beschreibung:

Die potentielle Evapotranspiration wird nach Penman (1948) aus der temperaturabhängigen Steigung der Dampfdruckkurve, der effektiven Strahlungsbilanz (Nettostrahlung - Bodenwärmestrom), der speziellen Verdunstungswärme, dem Luftdruck und dem Sättigungsdefizit der Luft (Sättigungsdampfdruck - Dampfdruck) berechnet. Zusätzlich wird die Windgeschwindigkeit und die Bewuchshöhe/ astronomisch mögliche Sonnenscheindauer berücksichtigt. ??? Die Berechnung erfolgt nach folgender Formel:

$$potET = \frac{s}{s+\gamma} \cdot \frac{R_N - G}{L} + \frac{\gamma}{s+\gamma} \cdot 0.063 \cdot (1 + 1.08 \cdot v) \cdot (e_s - e) \cdot S_R$$
 (8)

mit

s	Steigung der Dampfdruckkurve	$[\mathrm{kPaK^{-1}}]$
γ	Psychrometerkonstante	$[kPaK^{-1}]$
R_N	Nettostrahlung	$[\mathrm{Wm}^{-2}]$
G	Bodenwärmestrom	$[\mathrm{Wm}^{-2}]$
L	Latente Verdunstungswärme	$[\mathrm{Wm}^{-2}]\mathrm{pro}[\mathrm{mm}\mathrm{d}^{-1}]$
e_s	Sättigungsdampfdruck	[kPa]
e	Dampfdruck	[kPa]
v	Windgeschwindigkeit	$[\mathrm{ms}^{-1}]$
S_R	Verhältnis der astronomisch möglichen	[-]
	Sonnenscheindauer zu der bei Tag- und	
	Nachtgleiche	

Literatur

PENMAN, H.L. (1948): Natural evaporation from open water, bare soil and grass. Proc. Royal Soc. London A 193, 120-145.

DVWK (1996): Ermittlung der Verdunstung von Land- und Wasserflächen. Merkblätter zur Wasserwirtschaft, 238. Bonn.

Eingabe:

time	Zeitpunkt	
tempRes	Zeitliche Auflösung	[d h m]
wind	Windgeschwindigkeit	$[\mathrm{ms}^{-1}]$
tmean	Mittlere Lufttemperatur	$[^{\circ}C]$
rhum	Relative Luftfeuchte	[%]
netRad	Nettostrahlung	$[\mathrm{Wm}^{-2}]$
elevation	Höhe	[m]
area	Fläche	$[\mathrm{m}^2]$
latitude	geographische Breite	[°]

Interne Variablen:

$delta_s$	Steigung	der	$[\mathrm{kPaK}^{-1}]$
	Sättigungsdampfdruckkurve		
pz	athmosphärischer Luftdruck		[kPa]
est	Sättigungsdampfdruck		[kPa]
ea	tatsächlicher Dampfdruck		[kPa]
latH	latente Verdunstungswärme		$[\mathrm{Wm}^{-2}]\mathrm{pro}[\mathrm{mmd}^{-1}]$
psy	Psychrometerkonstante		$[kPaK^{-1}]$
G	Bodenwärmestrom		$[\mathrm{Wm}^{-2}]$
declination	Deklination der Sonne		[rad]
latRad	geographische Breite		[rad]
sunset Hour Angle	Stundenwinkel zum Sonnenun	ter-	[rad]
	gang		
maximum Sunshine	maximale Sonnenscheindauer		[h]
sr	Verhältnis der astronom	isch	[-]
	möglichen Sonnenscheindauer	zu	
	der bei Tag- und Nachtgleiche	9	

Ausgabe:

potET Potentielle Evapotranspiration [mmtimeUnit $^{-1}$]

2.4 Verfahren von Penman-Monteith

Sourcen:

org.unijena.regionWK.AP2.PenmanMonteith.java

Beschreibung:

Die potentielle Evapotranspiration wird aus der temperaturabhängigen Steigung der Dampfdruckkurve, der effektiven Strahlungsbilanz (Nettostrahlung - Bodenwärmestrom), der Dichte der Luft, der spezifischen Wärmekapazität der Luft bei konstantem Druck und dem Sättigungsdefizit der Luft (Sättigungsdampfdruck - Dampfdruck) berechnet. Zusätzlich wird der Einfluss unterschiedlicher Vegetation auf die Verdunstung in der Berechnung berücksichtigt. Dafür dienen der Oberflächenwiderstand, d.h. der von der Blattfläche und der Wassermenge abhängige Stomatawiederstand der einzelnen Blätter (DYCK & PESCHKE 1995) sowie der Oberflächenwiderstand von unbewachsenem Boden und der von der effektiven Bewuchshöhe und der Windgeschwindigkeit verursachte aerodynamische Widerstand. Die Berechnung erfolgt nach folgender Formel:

$$potET = \frac{1}{L} \cdot \frac{s \cdot (R_N - G) + \rho \cdot c_p \cdot \frac{(e_s - e)}{r_a}}{s + \gamma \cdot (1 + \frac{r_s}{r_a})}$$
(9)

mit

L	Latente Verdunstungswärme	$[\mathrm{Wm}^{-2}]\mathrm{pro}[\mathrm{mm}\mathrm{d}^{-1}]$
s	Steigung der Dampfdruckkurve	$[kPaK^{-1}]$
R_N	Nettostrahlung	$[\mathrm{Wm}^{-2}]$
G	Bodenwärmestrom	$[\mathrm{Wm}^{-2}]$
ho	Dichte der Luft	$[\mathrm{kgm}^{-3}]$
c_p	Spezifische Wärmekapazität der	
	Luft bei konstantem Druck	$[Jkg^{-1}K^{-1}]$
e_s	Sättigungsdampfdruck	[kPa]
e	Dampfdruck	[kPa]
r_a	aerodynamischer Widerstand	$[\mathrm{sm}^{-1}]$
r_s	Oberflächenwiderstand der Bodenbede-	$[\mathrm{sm}^{-1}]$
	ckung	
γ	Psychrometerkonstante	$[kPaK^{-1}]$

Literatur

DYCK, S. & G. PESCHKE (1995): Grundlagen der Hydrologie.Berlin: Verlag für Bauwesen.

JAMSWIKI (2008): Hydrologisches Modell J2000, $\langle http://jams.uni-jena.de/jamswiki/index.php/Hydrologisches_Modell_J2000 \rangle$ (Stand: 18.2.2008) (Zugriff: 12.12.2008).

KRAUSE, P. (2001): Das hydrologische Modellsystem J2000-Beschreibung und Anwendung in großen Flussgebieten. Reihe Umwelt/ Environment 29. Jülich: Forschungszentrum Jülich.

Eingabe:

time	Zeitpunkt	
tempRes	Zeitliche Auflösung	[d h m]
wind	Windgeschwindigkeit	$[\mathrm{ms}^{-1}]$
tmean	Mittlere Lufttemperatur	$[^{\circ}C]$
rhum	Relative Luftfeuchte	[%]
netRad	Nettostrahlung	$[\mathrm{Wm}^{-2}$
actRsc0	Oberflächenwiderstand	$[\mathrm{sm}^{-1}]$
elevation	Höhe	[m]
area	Fläche	$[\mathrm{m}^2]$
actLAI	Blattflächenindex LAI	
actEffH	effektive Bewuchshöhe	[m]

Interne Variablen:

abs_temp	Temperatur	[K]
$delta_s$	Steigung der Sättigungsdampfdruckkurve	$[kPaK^{-1}]$
pz	athmosphärischer Luftdruck	[kPa]
est	Sättigungsdampfdruck	[kPa]
ea	tatsächlicher Dampfdruck	[kPa]
latH	latente Verdunstungswärme	$[\mathrm{Wm}^{-2}]\mathrm{pro}[\mathrm{mmd}^{-1}]$
psy	Psychrometerkonstante	$[kPaK^{-1}]$
G	Bodenwärmestrom	$[\mathrm{Wm}^{-2}]$
vT	virtuelle Temperatur	[K]
pa	Dichte der Luft	$[\mathrm{kgm}^{-3}]$

potET	Potentielle Evapotranspiration	$[\mathrm{mmtimeUnit}^{-1}]$
actET	Aktuelle Evapotranspiration	$[\mathrm{mmtimeUnit}^{-1}]$
ra	Aerodynamischer Widerstand	$[\mathrm{sm}^{-1}]$
rs	Oberflächenwiderstand der Bodenbeckung	$[\mathrm{sm}^{-1}]$

2.5 Gras-Referenzverdunstung

Sourcen:

org.unijena.regionWK.AP2.RefET.java

Beschreibung:

Die Gras-Referenzverdunstung wurde von Allen et al. (1994) als Referenz für Verdunstungsberechnungen entwickelt. Sie gilt für Grasflächen ohne Wasserstress mit einer Wuchshöhe von 0.12 m (DVWK 1996). Sie wurde von der Penman-Monteith-Beziehung abgeleitet und berechnet sich wie folgt:

$$potET = \frac{0.408 \cdot s \cdot (R_N - G) + \gamma \cdot \frac{tempFactor}{T + 273} \cdot v \cdot (e_s - e)}{s + \gamma \cdot (1 + 0.34 \cdot v)}$$
(10)

mit

s	Steigung der Dampfdruckkurve	$[kPaK^{-1}]$
R_N	Nettostrahlung	$[\mathrm{Wm}^{-2}]$
G	Bodenwärmestrom	$[\mathrm{Wm}^{-2}]$
tempFactor	Faktor fuer Berechnung je nach zeitlicher	[-]
	Auflösung	
T	mittlere tägliche Lufttemperatur	$[^{\circ}C]$
v	Windgeschwindigkeit	$[\mathrm{ms}^{-1}]$
e_s	Sättigungsdampfdruck	[kPa]
e	Dampfdruck	[kPa]
γ	Psychrometerkonstante	$[kPaK^{-1}]$

Literatur

ALLEN, R.G., L.S. PEREIRA, D. RAES & M. SMITH (1998): Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56,

 $\langle http://www.fao.org/docrep/X0490E/x0490e06.htm\#equation \rangle$ (Stand: 1998) (Zugriff: 13.1.2009).

DVWK (1996): Ermittlung der Verdunstung von Land- und Wasserflächen. Merkblätter zur Wasserwirtschaft, 238. Bonn.

Eingabe:

time	Zeitpunkt	
tempRes	Zeitliche Auflösung	[d h m]
wind	Windgeschwindigkeit	$[\mathrm{ms}^{-1}]$
tmean	Mittlere Lufttemperatur	$[^{\circ}C]$
rhum	Relative Luftfeuchte	[%]
netRad	Nettostrahlung	$[\mathrm{Wm^{-2}}]$
elevation	Höhe	[m]
area	Fläche	$[\mathrm{m}^2]$

Interne Variablen:

ra	Konstante für Aerodynamischen Wider-	$[\mathrm{sm}^{-1}]$
	stand (208)	
rs	Konstante für Oberflächenwiderstand der	$[\mathrm{sm}^{-1}]$
	Bodenbeckung (70)	
tempFactor	Faktor fuer Berechnung je nach zeitlicher	[-]
	Auflösung	
abs_temp	Temperatur	[K]
$delta_s$	Steigung der Sättigungsdampfdruckkurve	$[kPaK^{-1}]$
pz	athmosphärischer Luftdruck	[kPa]
est	Sättigungsdampfdruck	[kPa]
ea	tatsächlicher Dampfdruck	[kPa]
latH	latente Verdunstungswärme	$[\mathrm{Wm}^{-2}]\mathrm{pro}[\mathrm{mmd}^{-1}]$
psy	Psychrometerkonstante	$[\mathrm{kPaK}^{-1}]$
G	Bodenwärmestrom	$[\mathrm{Wm}^{-2}]$

refET	Potentielle Evapotranspiration	$[\mathrm{mmd}^{-1}]$
actET	Aktuelle Evapotranspiration	$[\mathrm{mmd}^{-1}]$

3 Methoden zur Korrektur von Niederschlagsmesswerten

3.1 Niederschlagskorrektur nach Richter (1995) (auf Tagesbasis)

Sourcen:

org.unijena.regionWK.AP3.RainCorrectionRichter.java

Beschreibung:

Bei der Niederschlagsmessung können einerseits gerätebedingte Fehler und andererseits Messfehler auftreten. Messfehler werden unter anderem durch Benetzung und Verdunstung sowie durch Winddrift verursacht.

Der Benetzungs- und Verdunstungsfehler (BV) bei Hellmann-Niederschlagsmessern wurde von RICHTER (1995) für das Nordostdeutsche Tiefland und die südlich angrenzenden Mittelgebirge untersucht und in Abhängigkeit der Niederschlagssumme eines Tages tabelliert. Um eine stetige Korrektur dieses Fehlers zu ermöglichen, wurden logarithmische Funktionen separat für das Sommer- (April - September) und Winterhalbjahr (Oktober - März) an die diskreten, tabellierten Werte approximiert (Krause 2001). Übersteigt die Niederschlagshöhe den Wert von 9 mm, wird der Benetzungs- und Verdunstungsfehler auf einen konstanten Wert gesetzt.

Für Niederschlagshöhen $(N) < 9.0 \,\mathrm{mm}$ berechnet sich der Benetzungs- und Verdunstungsfehler nach:

$$BV_{Som} = 0.08 \cdot \log(N) + 0.225 \text{ [mm]}$$
 (11)
 $BV_{Win} = 0.05 \cdot \log(N) + 0.13 \text{ [mm]}$

Für Niederschlagshöhen $\geq 9.0\,\mathrm{mm}$ beträgt der Benetzungs- und Verdunstungsfehler:

$$BV_{Som} = 0.47 \text{ [mm]}$$
 (12)
 $BV_{Win} = 0.3 \text{ [mm]}$

Der durch Winddrift verursachte Windfehler beeinflusst die Niederschlagsmessung stärker als der Benetzungs- und Verdunstungsfehler. RICHTER (1995) quantifizierte diesen Einfluss durch Vergleichsmessungen auf Bodenniveau oder den Einsatz von Windschutzvorrichtungen. Der Windfehler wird dadurch als Funktion der Niederschlagshöhe und der Stationslage betrachtet. Zur Korrektur des Fehlers wurden zwei Korrekturfunktionen an die Werte von RICHTER approximiert (KRAUSE

2001).

Der relative Windfehler (KRWind) für sowohl Regen- als auch Schneeniederschläge verhält sich deutlich umgekehrt proportional zu den Niederschlagshöhen (P_m). Bei kleinen Niederschlagshöhen ist er hoch, während er bei höheren Niederschlägen abnimmt. Die Berechnung erfolgt bei Niederschlagshöhen > 0.1 mm nach folgenden Gleichungen:

$$KR_{Wind} = \begin{cases} 0.1349 \cdot Pm^{-0.494} & \text{für } T_{mean} > T_{crit} \\ 0.5319 \cdot Pm^{-0.197} & \text{für } T_{mean} \le T_{crit} \end{cases}$$
 [-] (13)

Für Niederschlagshöhen $\leq 0.1\,\mathrm{mm}$ beträgt der Windkorrekturfaktor:

$$KR_{Wind} = \begin{cases} 0.492 & \text{für } T_{mean} > T_{crit} \\ 0.938 & \text{für } T_{mean} \le T_{crit} \end{cases}$$
 [-] (14)

Die Berechnung der um Verdunstungs- und Windfehler korrigierten Niederschlagshöhe (P_{korr}) erfolgt schließlich nach:

$$P_{korr} = P_m + P_m \cdot KR_{Wind} + BV_{Som}, BV_{Win} \quad [\text{mmd}^{-1}] \tag{15}$$

Literatur

RICHTER, D. (1995): Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagsmessers. Berichte des Deutschen Wetterdienstes, 194. Offenbach am Main: Selbstverlag des Deutschen Wetterdienstes.

KRAUSE, P. (2001): Das hydrologische Modellsystem J2000-Beschreibung und Anwendung in großen Flussgebieten. Reihe Umwelt/ Environment 29. Jülich: Forschungszentrum Jülich.

Eingabe:

time Zeitpunkt $temperature \qquad \text{Mittlere Lufttemperatur} \quad [^{\circ}\text{C}]$ $precip \qquad \text{Niederschlag} \quad [\text{mm}]$

Interne Variablen:

statWeights	2-dimensionales Array zum Wichten der Temperatur-	$[^{\circ}C]$
	stationen	
rainTemp	Temperatur für jede Niederschlagsstation	$[^{\circ}C]$
pSnow	relativer Schneeanteil in Abhängigkeit von der Tem-	[-]
	peratur	
windErr	relativer Windfehler nach RICHTER 1995	[-]
wetErr	Benetzungs- und Verdunstungsfehler nach RICHTER	[mm]
	1995	

rcorr	korrigierten Niederschlagswerte	[mm]
temp Elevation	Array von Temperatur-Stationshöhen	[m]
tempXCoord	Array von Temperatur-Stations-x-Koordinaten	[-]
tempYCoord	Array von Temperatur-Stations-y-Koordinaten	[-]
tempRegCoeff	Regressionskoeffizient für Temperatur	[-]
rain Elevation	Array von Niederschlags-Messstationshöhen	[m]
rain X Coord	Array von Niederschlags-Messstations-x-	[-]
	Koordinaten	
rain Y Coord	Array von Niederschlags-Messstations-y-	[-]
	Koordinaten	
tempNIDW	Anzahl Temperatur-Stationen für IDW	[-]
pIDW	Potenz-Wert für IDW-Funktion	[-]
regThres	Regressions-Grenzwert	[-]
$snow_trs$	Temperaturwert bei dem 50 % Regen und 50 %	[°C]
	Schnee fallen	
$snow_trans$	halbe Breite des Temperatur-	[K]
	Übergangsbereiches von Mischniederschlägen	

3.2 Niederschlagskorrektur nach Richter (1995) und Sevruk (1989)

Sourcen:

org.unijena.regionWK.AP3.RainCorrectionSevruk.java

Beschreibung:

Der Benetzungs- und Verdunstungsfehler wird wie in 3.1 berechnet. Die Korrektur des Windfehlers erfolgt mit der Berechnung eines multiplikativen Korrekturfaktors (KS_{Wind}) nach Sevruk (1989). Dabei wird angenommen, dass der Windfehler von der Windgeschwindigkeit und der Lufttemperatur abhängt. Bei diesem Verfahren werden für Schneeniederschläge deutlich höhere Korrekturwerte als für Regen berechnet. Demnach muss gegebenenfalls sichergestellt werden, dass es sich bei dem zu korrigierenden Niederschlag auch tatsächlich mehrheitlich um Schnee handelt. Aus diesem Grund kann hier bestimmt werden, welcher Temperaturwert (T_{corr}) für die Korrekturgleichung herangezogen werden soll. Es besteht die Wahl zwischen der Minimumtemperatur, der mittleren Tagestemperatur, dem Mittelwert aus diesen beiden Temperaturen (1. Quartil), der Maximumtemperatur und dem Mittel aus Maximal- und Mittelwert der Temperaturen (3. Quartil). Der Korrekturfaktor für den Windfehler berechnet sich nach folgenden Gleichungen:

$$KS_{Wind} = 1 + 0.550 \cdot v^{1.4}$$
 für $T_{corr} < -27^{\circ}C$ (16)
 $KS_{Wind} = 1 + 0.280 \cdot v^{1.3}$ für $-27^{\circ}C \leq T_{corr} < -8^{\circ}C$
 $KS_{Wind} = 1 + 0.150 \cdot v^{1.18}$ für $-8^{\circ}C \leq T_{corr} < T_{crit}$
 $KS_{Wind} = 1 + 0.015 \cdot v$ für $T_{corr} > T_{crit}$

mit

$$v$$
 Windgeschwindigkeit in 1 m Höhe [ms⁻¹] T_{corr} Vom Anwender gewählter Wert der Tagestemperatur [°C] T_{crit} Lufttemperatur unterhalb derer mehrheitlich mit [°C] Schneeniederschlag zu rechnen ist.

Die Berechnung der um Verdunstungs- und Windfehler korrigierten Niederschlagshöhe (P_{korr}) erfolgt schließlich nach:

$$P_{korr} = P_m + P_m \cdot KS_{Wind} + BV_{Som}, BV_{Win} \quad [mm] \tag{17}$$

Literatur

Sevruk, B. (1989): Reliability of precipitation measurement. WMO IAHS ETH International Workshop on Presipitation Measurement. St. Moritz.

Krause, P. (2001): Das hydrologische Modellsystem J2000-Beschreibung und Anwendung in großen Flussgebieten. Reihe Umwelt/ Environment 29. Jülich: Forschungszentrum Jülich.

Eingabe:

 $\begin{array}{lll} time & \mbox{Zeitpunkt} \\ temperature & \mbox{Mittlere Lufttemperatur} & [^{\circ}\mathrm{C}] \\ precip & \mbox{Niederschlag} & [\mathrm{mm}] \\ wind & \mbox{Windgeschwindigkeit} & [\mathrm{ms}^{-1}] \end{array}$

1995

Interne Variablen:

tempStatWeights	2-dimensionales Array zum Wichten der Temperatur-	$[^{\circ}C]$
	stationen	
windStatWeights	2-dimensionales Array zum Wichten der Windmess-	$[\mathrm{ms}^{-1}]$
	stationen	
rainTemp	Temperatur für jede Niederschlagsstation	$[^{\circ}C]$
rainWind	Windgeschwindigkeit für jede Niederschlagsstation	$[\mathrm{ms}^{-1}]$
windErr	Korrekturfaktor für Windfehler nach Sevruk 1989	[-]
wetErr	Benetzungs- und Verdunstungsfehler nach RICHTER	[mm]

rcorr	korrigierten Niederschlagswerte	[mm]
temp Elevation	Array von Temperatur-Stationshöhen	[m]
tempXCoord	Array von Temperatur-Stations-x-Koordinaten	[-]
tempYCoord	Array von Temperatur-Stations-y-Koordinaten	[-]
tempRegCoeff	Regressionskoeffizient für Temperatur	[-]
rain Elevation	Array von Niederschlags-Messstationshöhen	[m]
rain X Coord	Array von Niederschlags-Messstations-x-	[-]
	Koordinaten	
wind Elevation	Array von Windmess-Stationshöhen	[m]
wind X Coord	Array von Wind-Stations-x-Koordinaten	[-]
windYCoord	Array von Wind-Stations-y-Koordinaten	[-]
wind Reg Coeff	Regressionskoeffizient für Windgeschwindigkeit	[-]
rain Y Coord	Array von Niederschlags-Messstations-y-	[-]
	Koordinaten	
tempNIDW	Anzahl Temperatur-Stationen für IDW	[-]
windNIDW	Anzahl Windmess-Stationen für IDW	[-]
pIDW	Potenz-Wert für IDW-Funktion	[-]
regThres	Regressions-Grenzwert	[-]
tbase Lufttemperatur unterhalb derer mehrheitlich		$[^{\circ}C]$
	mit Schneeniederschlag zu rechnen ist	

3.3 Niederschlagskorrektur nach Richter (1995) (auf Monatsbasis)

Sourcen:

org.unijena.regionWK.AP3.RainCorrectionRichterMonthly.java

Beschreibung:

Die Niederschlagskorrektur auf Monatsbasis erfolgt nach den empirischen Ergebnissen für das Nordostdeutsche Tiefland und die südlich angrenzenden Mittelgebirge von RICHTER (1995). Dabei wird in Abhänigkeit des jeweiligen Monats ein additiver Korrekturfaktor verwendet:

$$P_{korr} = P_m + P_m \cdot corrFactor \quad [mm] \tag{18}$$

mit

$$P_{korr}$$
 korrigierter monatlicher Niederschlag [mm]
 P_m gemessener monatlicher Niederschlag [mm]
 $corrFactor$ Korrekturfaktor [-]

Literatur

RICHTER, D. (1995): Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagsmessers. Berichte des Deutschen Wetterdienstes, 194. Offenbach am Main: Selbstverlag des Deutschen Wetterdienstes.

Eingabe:

time Monat $inPrecip \qquad unkorrigierter \ Niederschlag \qquad [mm] \\ corrFac \qquad Stationslage (a - frei, b - leicht geschützt, c - mäßig \ [mm] \\ geschützt, d - stark geschützt)$

Interne Variablen:

$richter 3_a$	Array mit Korrekturfaktoren für alle Monate eines	[-]
	Jahres für freie Stationslage	
$richter3_b$	Array mit Korrekturfaktoren für alle Monate eines	[-]
	Jahres für leicht geschützte Stationslage	
$richter3_c$	Array mit Korrekturfaktoren für alle Monate eines	[-]
	Jahres für mäßig geschützte Stationslage	
$richter 3_d$	Array mit Korrekturfaktoren für alle Monate eines	[-]
	Jahres für stark geschützte Stationslage	
corrFactor	Korrekturfaktor	[-]

Ausgabe:

corrPrecip korrigierter Niederschlag [mm]

4 Methoden zur Bestimmung der Niederschlagsform

4.1 Bestimmung von Niederschlagsform sowie Schnee- und Regenanteilen

Sourcen:

org.unijena.regionWK.AP4.CalcRainSnowParts.java

Beschreibung:

In Abhängigkeit von der Temperatur wird bestimmt, ob es sich beim gemessenen Niederschlag um Schnee oder Regen handelt. Dabei wird angenommen, dass es einen Temperatur-Übergangsbereich gibt, in dem sowohl Regen als auch Schnee bzw. Mischniederschläge auftreten können. Es muss ein Temperaturwert (Trs in °C) angegeben werden, der der Temperatur entspricht, bei der 50% des Niederschlages als Schnee und 50% als Regen fallen. Zusätzlich muss ein Parameter Trans (in K) bestimmt werden, der der halben Breite des Übergangsbereiches entspricht. Der tatsächliche Schneeanteil (p(s)) am Tagesniederschlag in Abhängigkeit von der Lufttemperatur (T) berechnet sich dabei nach:

$$p(s) = \frac{TRS + Trans - T}{2 \cdot Trans} \quad [mm] \tag{19}$$

Die tägliche Schneemenge (N_S) bzw. Regenmenge (N_R) des gesamten Niederschlags (N) ergibt sich nach:

$$N_S = N \cdot p(s) \quad [mm] \tag{20}$$

$$N_R = N \cdot (1 - p(s)) \quad [mm] \tag{21}$$

Literatur

JAMSWIKI (2008): Hydrologisches Modell J2000,

 $\langle http://jams.uni-jena.de/jamswiki/index.php/Hydrologisches_Modell_J2000\rangle$

(Stand: 18.2.2008) (Zugriff: 15.12.2008).

Eingabe:

area	Größe des betrachteten Gebiets	$[\mathrm{m}^2]$
$snow_trs$	Temperaturwert bei dem 50% Regen und	$[^{\circ}C]$
	50% Schnee fallen	
$snow_trans$	Halbe Breite des Übergangsbereiches	[K]
tmean	Mittlere Temperatur	$[^{\circ}C]$
precip	Niederschlag	[mm]

Interne Variablen:

pSnowrelativer Schneeanteil in Abhängigkeit von der $\ [-]$ Temperatur

rain	Regen	[mm]
snow	Schnee	[mm]
mixPrecip	Mischniederschlag (ja nein)	$[{\rm true} {\rm false}]$

5 Methoden zur deskriptiven statistischen Auswertung von Zeitreihen

Sourcen:

org.unijena.regionWK.Statistik.DeskriptiveStatistik.java

Beschreibung:

Das Paket DeskriptiveStatistik ermöglicht die Berechnung von Lageparametern, Streuungsparametern, Formparametern und Extremwerten.

Folgende Lageparameter können berechnet werden:

- Arithmetisches Mittel,
- Median,
- erstes Quartil,
- drittes Quartil.

Zur Beschreibung der Streuung der Zeitreihe stehen folgende Maße zur Verfügung:

- Spannweite,
- Varianz,
- Standardabweichung,
- durchschnittliche Abweichung.

Formparameter beschreiben die Form der Verteilungsfunktion einer Zeitreihe und deren Abweichung von der Normalverteilung.

Uber die Schiefe (g) wird beschrieben ob und wie stark eine Verteilung in ihrer Symmetrie von der Normalverteilung abweicht.

Es gilt:

g = 0 für symmetrische Verteilungen (Median = Mittelwert),

q > 0 für linkssteile (= rechtsschiefe) Verteilungen (Median < Mittelwert),

g < 0 für rechtssteile (= linksschiefe) Verteilungen (Median > Mittelwert).

Der Exzess (Ez) beschreibt ob und wie stark eine Verteilung hinsichtlich ihrer Wölbung von der Normalverteilung (Exzess = 3) abweicht.

Es gilt:

Ez = 0 gleiche Wölbung wie Normalverteilung,

Ez > 0 geringere Wölbung als Normalverteilung,

Ez < 0 stärkere Wölbung als Normalverteilung.

Die Extrema einer Zeitreihe werden durch die Berechnung von Minimum und Maximum abgebildet.