CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 05: Virtual Memory

Rahmat M. Samik-Ibrahim

University of Indonesia

https://os.vlsm.org/
Always check for the latest revision!

REV174 11-Dec-2018

Operating Systems 2018-2 (Room 3114) R/M (Tu/Th 13-15) \mid I (Tu/Th 15-17)

Week	Schedule	Topic	OSC10		
Week 00	04 Sep - 12 Sep 2018	Overview 1, Virtualization & Scripting	Ch. 1, 2, 18.		
Week 01	13 Sep - 19 Sep 2018	Overview 2, Virtualization & Scripting	Ch. 1, 2, 18.		
Week 02	20 Sep - 26 Sep 2018	Security, Protection, Privacy,	Ch. 16, 17		
'		& C-language			
Week 03	27 Sep - 03 Oct 2018	File System & FUSE	Ch. 13, 14, 15		
Week 04	04 Oct - 10 Oct 2018	Addressing, Shared Lib, & Pointer	Ch. 9		
Week 05	11 Oct - 17 Oct 2018	Virtual Memory	Ch. 10		
Reserved	18 Oct - 19 Oct 2018	'			
Mid-Term	24 Oct 2018	MidTerm (UTS): 09:00 - 11:30			
Week 06	30 Oct - 05 Nov 2018	Concurency: Processes & Threads	Ch. 3, 4		
Week 07	06 Nov - 12 Nov 2018	Synchronization & Deadlock	Ch. 6, 7, 8		
Week 08	13 Nov - 21 Nov 2018	Scheduling	Ch. 5		
Week 09	22 Nov - 28 Nov 2018	Storage, BIOS, Loader, & Systemd	Ch. 11		
Week 10	29 Nov - 05 Dec 2018	I/O & Programming	Ch. 12		
Reserved	06 Dec - 14 Dec 2018	'			
Final	19 Dec 2018	Final (UAS): 09:00 - 11:00	This schedule is		
Extra	12 Jan 2019	Extra assignment	subject to change		

The Weekly Check List

☐ Resources : https://os.vlsm.org/
☐ (THIS) Slides — https://github.com/UI-FASILKOM-OS/
SistemOperasi/tree/master/pdf/
☐ Demos — https://github.com/UI-FASILKOM-OS/
SistemOperasi/tree/master/demos/
☐ Extra — BADAK.cs.ui.ac.id:///extra/
□ Problems — rms46.vlsm.org/2/195.pdf, 196.pdf,, 205.pdf
☐ Text Book : any recent/decent OS book. Eg. (OSC10) Silberschatz
et. al.: Operating System Concepts , 10 th Edition, 2018.
☐ Encode your QRC with size upto 7cm x 7cm (ca. 400x400 pixels):
"OS182 CLASS ID SSO-ACCOUNT Your-Full-Name"
☐ For Week 00 , send your embedded QRC before the 2 nd lecture
mailto:operatingsystems@vlsm.org
With Subject: OS182 CLASS ID SSO-ACCOUNT Your-Full-Name
☐ Write your Memo (with QRC) every week.
☐ Login to badak.cs.ui.ac.id via kawung.cs.ui.ac.id for at least
10 minutes every week. Copy the weekly demo files to your own home
directory.
For (WeekOO): cp -r /extra/WeekOO/WOO-demos/ WOO-demos/

Week 05: Memory

- Start
- Schedule
- 3 Week 05
- 4 Week 05
- Virtual Memory
- 6 Memory Allocation Algorothm
- 7 TOP
- 8 06-memory
- The End

Week 05 Virtual Memory: Topics¹

- Review of physical memory and memory management hardware
- Virtual Memory
- Caching
- Memory Allocation
- Memory Performance
- Working sets and thrashing

¹Source: ACM IEEE CS Curricula 2013

Week 05 Virtual Memory: Learning Outcomes¹

- Explain memory hierarchy and cost-performance trade-offs.
 [Familiarity]
- Summarize the principles of virtual memory as applied to caching and paging. [Familiarity]
- Describe the reason for and use of cache memory (performance and proximity, different dimension of how caches complicate isolation and VM abstraction). [Familiarity]
- Defend the different ways of allocating memory to tasks, citing the relative merits of each. [Assessment]
- Evaluate the trade-offs in terms of memory size (main memory, cache memory, auxiliary memory) and processor speed. [Assessment]
- Discuss the concept of thrashing, both in terms of the reasons it occurs and the techniques used to recognize and manage the problem. [Familiarity]

¹Source: ACM IEEE CS Curricula 2013

Virtual Memory

- Reference: (OSC10-ch10 demo-w05)
- Virtual Memory: Separation Logical from Physical.
- Virtual Address Space: logical view.
- Demand Paging
- Page Flags: Valid / Invalid
- Page Fault
- Demand Paging Performance
- Copy On Write (COW)
- Page Replacement Algorithm
 - Reference String
 - First-In-First-Out (FIFO)
 - Belady Anomaly
 - Optimal Algorithm
 - Least Recently Used (LRU)
 - LRU Implementation
 - Lease Frequently Used (LFU)
 - Most Frequently Used (MFU)

Allocation Algorothm

- Page-Buffering Algorithms
- Allocation of Frames
- Fixed Allocation
- Priority Allocation
- Global vs. Local Allocation
- Non-Uniform Memory Access (NUMA)
- Thrashing
- Working-Set Model
- Shared Memory via Memory-Mapped I/O
- Kernel
 - Buddy System Allocator
 - Slab Allocator

TOP

Figure: top

TOP (2)

000		CONTRACT.									
	@rmsba:							_			
гоо ×	- Dec 500000					@r ×		@r ×		× @r × 🔒 💌	
top - 18:37:28 up 14:07, 1 user, load average: 2.77, 2.71, 2.74											
Tasks: 128 total, 1 running, 127 sleeping, 0 stopped, 0 zombie											
%Cpu(s): 14.6 us, 17.2 sy, 0.0 ni, 68.1 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st											
KiB Mem: 8197060 total, 935152 used, 7261908 free, 191512 buffers											
KiB Swap: 683004 total, 0 used, 683004 free. 639140 cached Mem											
PTD	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MFM	TTMF+	COMMAND	
		20		162032	112	0 9		0.0	1882:33		
3448	root	20	0	0	0	0 9	14.0	0.0		kworker/0:2	
3198	root	20	0	0	0	0 9	9.6	0.0	5:29.03	kworker/4:0	
3062	root	20	0	0	0	0 9	5.0	0.0	11:55.39	kworker/1:2	
3289	root	20	0	0	0	0 9	2.3	0.0	3:41.00	kworker/6:1	
7	root	20	0	0	0	0 9	2.0	0.0	1:08.44	rcu_sched	
3376	root	20	0	Θ	0	0 9		0.0	0:18.73	kworker/5:0	
1914	root	20		0	0	0 9		0.0		kworker/2:1	
1	root	20		28684	4736	3012 5		0.1	0:02.91		
	root	20		0	0	0 9		0.0		kthreadd	
3	root	20		0	0	0 9		0.0	0:15.26	ksoftirqd/0	
1.5	root	0		0	0	0 9		0.0		kworker/0:+	
8	root	20	0	0	0	0 9		0.0	0:00.00		
9	root	rt	0	0	0	0 9		0.0		migration/0	
10	root	rt		0	0	0 9		0.0		watchdog/0	
100000		rt		0	0	0 9		0.0		watchdog/1	
1000000	root	rt	0	0	0	0 9		0.0		migration/1	
13	root	20	0	0	0	0 9	0.0	0.0	0:06.80	ksoftirqd/1	

Figure: "h" = help

TOP (3)

```
@rmsbase: ~
      | @r... × |
Fields Management for window 1:Def, whose current sort field is %CPU
  Navigate with Up/Dn, Right selects for move then <Enter> or Left commits,
   'd' or <Space> toggles display, 's' sets sort. Use 'q' or <Esc> to end!
 PID
          = Process Id
                            TTY
                                     = Controlling T
                                                       USED
                                                                = Res+Swap Size
 USFR
          = Effective Use
                            TPGTD
                                     = Tty Process G
                                                       nsIPC
                                                                = IPC namespace
 PR
          = Priority
                            SID
                                     = Session Id
                                                       nsMNT
                                                                = MNT namespace
 NI
          = Nice Value
                            nTH
                                     = Number of Thr
                                                       nsNET
                                                                = NET namespace
 VIRT
          = Virtual Image
                            P
                                     = Last Used Cpu
                                                       nsPID
                                                                = PID namespace
 RES
          = Resident Size
                            TIME
                                     = CPU Time
                                                       nsUSER
                                                                = USER namespac
 SHR
                            SWAP
                                                       nsUTS
                                                                = UTS namespace
          = Shared Memory
                                     = Swapped Size
          = Process Statu
                            CODE
                                     = Code Size (Ki
 %CPU
         = CPU Usage
                            DATA
                                     = Data+Stack (K
 %MEM
         = Memory Usage
                            nMai
                                     = Major Page Fa
 TIME+
          = CPU Time, hun
                            nMin
                                     = Minor Page Fa
 COMMAND = Command Name/
                            nDRT
                                     = Dirty Pages C
 PPID
          = Parent Proces
                            WCHAN
                                     = Sleeping in F
 UID
                                     = Task Flags <s
          = Effective Use
                            Flags
 RUID
          = Real User Id
                            CGROUPS = Control Group
 RUSER
                            SUPGIDS = Supp Groups I
          = Real User Nam
 SUID
          = Saved User Id
                            SUPGRPS = Supp Groups N
 SUSER
          = Saved User Na
                            TGID
                                     = Thread Group
 GID
                            ENVIRON = Environment v
          = Group Id
 GROUP
          = Group Name
                            vMj
                                     = Major Faults
  PGRP
          = Process Group
                            vMn
                                     = Minor Faults
```

Figure: Moving Fields: "f"

TOP (4)

```
@rmsbase: ~
      @r... × @r... × @r... × @je... × @r... × @r... ×
                                                           @r... × @r... × @r... ×
Fields Management for window 1:Def, whose current sort field is %CPU
  Navigate with Up/Dn, Right selects for move then <Enter> or Left commits,
   'd' or <Space> toggles display, 's' sets sort. Use 'g' or <Esc> to end!
 PID
         = Process Id
                            SUID
                                    = Saved User Td
                                                       vMn
                                                               = Minor Faults
                                    = Saved User Na
 VIRT
         = Virtual Image
                            SUSFR
                                                      nsIPC
                                                               = IPC namespace
 RES
         = Resident Size
                            GID
                                                      nsMNT
                                    = Group Id
                                                               = MNT namespace
 SHR
         = Shared Memory
                            GROUP
                                    = Group Name
                                                      nsNET
                                                               = NET namespace
 SWAP
         = Swapped Size
                            PGRP
                                    = Process Group
                                                      nsPID
                                                               = PID namespace
 CODE
         = Code Size (Ki
                            TTY
                                    = Controlling T
                                                      nsUSER
                                                              = USER namespac
 DATA
         = Data+Stack (K
                            TPGID
                                                      nsUTS
                                                               = UTS namespace
                                    = Tty Process G
 USED
         = Res+Swap Size
                            SID
                                    = Session Id
 nDRT
         = Dirty Pages C
                            nTH
                                    = Number of Thr
 PPID
         = Parent Proces
                            P
                                    = Last Used Cpu
 %MEM
         = Memory Usage
                            TIME
                                    = CPU Time
 USER
         = Effective Use
                            nMaj
                                    = Major Page Fa
 PR
         = Priority
                            nMin
                                    = Minor Page Fa
 NI
         = Nice Value
                            WCHAN
                                    = Sleeping in F
         = Process Statu
                            Flags
                                    = Task Flags <s
 %CPU
         = CPU Usage
                            CGROUPS = Control Group
 TIME+
         = CPU Time. hun
                            SUPGIDS = Supp Groups I
                            SUPGRPS = Supp Groups N
 COMMAND = Command Name/
 UID
                            TGID
         = Effective Use
                                    = Thread Group
 RUID
                            ENVIRON = Environment v
         = Real User Id
 RUSER
         = Real User Nam
                            vMi
                                    = Maior Faults
```

Figure: Moving Fields

TOP (5)

```
@rmsbase: ~/Downloads
       @r... × | @r... × | @r... × |
                           @r... × @je... × @r... × @r... × @r... × @r... × @r... × @r... ×
top - 19:57:14 up 11:38,  1 user,  load average: 0.43, 0.54, 0.58
Tasks: 285 total, 2 running, 283 sleeping, 0 stopped,
                                                             0 zombie
%Cpu(s): 3.8 us, 1.3 sy, 0.0 ni, 94.6 id, 0.3 wa, 0.0 hi, 0.0 si,
KiB Mem : 16385976 total, 269672 free, 3179788 used,12936516 buff/cache
KiB Swap: 1000444 total,
                            994752 free.
                                              5692 used. 12649780 avail Mem
 PID
         VIRT
                 RES
                        SHR
                              SWAP
                                      CODE
                                              DATA
                                                     USED nDRT
 3547 2377296 394828 165776
                                      196 1642748 394828
                                 0
                                                             0
 1234
      278216
               87880
                     59116
                                 0
                                      2288
                                             25164
                                                   87880
                                      196 1856708 433176
 3321 2683572 433176 149376
                                 0
 2708 1687448 214112
                                       12 1179008 214112
                     80608
                                 0
 2841 679488
              50860 30484
                                 0
                                       292
                                            389096
                                                    50860
 3748 1896812 321288
                     76656
                                 0 133688 1474084 321288
 3971 2047252 440112 97384
                                   133688 1587052 440112
32501 630768
              33500
                     27960
                                 0
                                        76
                                           373220
                                                   33500
 4067 8554396 320516 109756
                                 0
                                       196 7954584 320516
 4130 2391592 341632 117636
                                 0
                                      196 1717824 341632
22635 2198448 274812 108000
                                 0
                                       196 1532152 274812
 1292
                                 0
            0
                   0
                          0
                                        0
                                                 0
 2514
      930224
               34304
                      26028
                                 0
                                            448864
                                                    34304
                                        36
 3233 4515228 360812 126784
                                   133688 3757984 360812
32495
        33488
                3380
                       2836
                                 0
                                        96
                                              1264
                                                     3380
 2388
       44036
                4424
                       2724
                                       212
                                              1716
                                                     4424
                                 0
 2412 423204
              11380
                       5264
                                       152
                                            374232
                                 0
                                                    11380
 2512
      685824
               74188
                     36868
                                       552
                                            399836
                                                    74188
```

Figure: Write Configuration .toprc: "W"

06-memory

```
/* Copyright (C) 2016-2018 Rahmat M. Samik-Ibrahim
 * https://rahmatm.samik-ibrahim.vlsm.org/
 * This program is free script/software. This program is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * REVO4 Mon Mar 12 17:33:30 WIB 2018
 * START Mon Oct 3 09:26:51 WIB 2016
 */
#define MSIZEO 0x10000
#define MSTZE1 0x10008
#define MSTZE2 0x10009
#define MSTZE3 0x1000A
#define MSIZE4 0x20978
#define MSIZE5 0x20979
#define MSIZE6 0x2097A
#define MSIZE7 0xF0000
#define MSTZE8 0x10000
#define MSTZE9 0x1000
#define LINE
#define MAXSTR 80
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
void printLine(int line) {
   while(line-- > 0) putchar('x');
  putchar('\n'):
  fflush(NULL):
```

06-memory (2)

```
void main (void) {
   int
        msize[] = {MSIZE0, MSIZE1, MSIZE2, MSIZE3, MSIZE4,
                    MSIZE5, MSIZE6, MSIZE7, MSIZE8, MSIZE97:
   int ii. ii:
   int myPID = (int) getpid();
   char strSYS1[MAXSTR], strOUT[MAXSTR];
   char* chrStr = strSYS1:
   char* chrPTR:
   printLine(LINE):
   sprintf(strSYS1, "top -b -n 1 -p%d | tail -5", myPID);
   system (strSYS1);
   sprintf(strSYS1, "top -b -n 1 -p%d | tail -1", mvPID);
  for (ii=0; ii< (sizeof(msize)/sizeof(int)); ii++){
     chrStr = malloc(msize[ii]);
     fgets(strOUT, sizeof(strOUT)-1, popen(strSYS1, "r"));
     strOUT[(int) strlen(strOUT)-1]='\0':
     printf("%s [%X]\n", strOUT, msize[ii]);
     free(chrStr):
   7
  for (ii=0: ii< (sizeof(msize)/sizeof(int)): ii++){
     chrPTR = chrStr = malloc(msize[ii]):
     for (ii=0:ii<msize[ii]:ii++)
         *chrPTR++='x':
     fgets(strOUT, sizeof(strOUT)-1, popen(strSYS1, "r"));
      strOUT[(int) strlen(strOUT)-1]='\0':
     printf("%s [%X]\n", strOUT, msize[ii]);
     free(chrStr);
}
```

06-memory (2)

>>>> \$./06-memory KiB Mem: 8197060 total, 957928 used, 7239132 free, 192520 buffers KiB Swap: 660108 cached 683004 total, 0 used, 683004 free. Mem PID VIRT RES SHR. SWAP CODE DATA USED nDRT [10000] [10008] Γ100091 [1000A] [20978] [20979] [2097A] [F0000] [10000] [1000]

06-memory (3)

4362	4376	1200	1068	0	4	524	1200	0	[1000]
4362	4376	1200	1068	0	4	524	1200	0	[10000]
4362	4376	1276	1068	0	4	524	1276	0	[10008]
4362	4376	1276	1068	0	4	524	1276	0	[10009]
4362	4376	1284	1068	0	4	524	1284	0	[1000A]
4362	4376	1284	1068	0	4	524	1284	0	[20978]
4362	4376	1352	1068	0	4	524	1352	0	[20979]
4362	4376	1352	1068	0	4	524	1352	0	[2097A]
4362	5340	2144	1068	0	4	1488	2144	0	[F0000]
4362	5340	2324	1068	0	4	1488	2324	0	[10000]
4362	5340	2324	1068	0	4	1488	2324	0	[1000]
>>>>> \$									

The End

- \square This is the end of the presentation.
- extstyle ext
- This is the end of the presentation.