Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER:NJM2112

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

Spice Model


```
* PART NUMBER:NJM2112
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2112 OUT1 -IN1 +IN1 V+ +IN2 -IN2 OUT2 OUT3 -IN3 +IN3 V-
+ +IN4 -IN4 OUT4
X U1
       +IN1 -IN1 V+ V- OUT1 NJM2112 S
X U2 +IN2 -IN2 V+ V- OUT2 NJM2112 S
X U3 +IN3 -IN3 V+ V- OUT3 NJM2112 S
X_U4 +IN4 -IN4 V+ V- OUT4 NJM2112_S
.ends NJM2112
.subckt NJM2112 S 12345
 c1 11 12 8.6603E-12
 c2 6 7 29.500E-12
 cee 10 99 1.0000E-30
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 187.00E3 -1E3 1E3 190E3 -190E3
 ga 6 0 11 12 2.4968E-3
 gcm 0 6 10 99 431.78E-9
 iee 3 10 dc 99.202E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 400.52
 rc2 4 12 400.52
 re1 13 10 1
 re2 14 10 1
 ree 10 99 2.0161E6
 ro1 8 5 50
 ro2 7 99 25
    3 4 125.31
 vb 9 0 dc 0
    3 53 dc 1.0309
 VC
```

```
ve 54 4 dc 1.0309

vlim 7 8 dc 0

vlp 91 0 dc 1.5000

vln 0 92 dc 1.5000

.model dx D(Is=800.00E-18)

.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)

.model qx1 PNP(Is=800.00E-18 Bf=463.27)

.model qx2 PNP(Is=828.3277E-18 Bf=520.23)

.ends

*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
V+	+2.2	+2.1959	-0.186
V-	-2.2	-2.1959	-0.186

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	1	1.0458	4.58

Slew Rate

Simulation result

Evaluation circu

	Measurement	Simulation	%Error
Slew Rate(v/us)	3.2	3.286	2.688

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb(nA)	100	96.489	-3.511

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	9	8.6837	-3.514
Av-dc	80	78.924	-1.345

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(8834.867/2.0248) = 72.796 dB

	Measurement	Simulation	%Error
CMRR(dB)	74	72.796	-1.627

Remark Output Voltage Swing

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

