Analysis 1 – Kurztest

Es besteht kein Zusammenhang zur Prüfungsrelevanz des hier präsentierten Stoffes. Die Bearbeitungszeit dieses Kurztests beträgt 20 Minuten.

Aufgabe 1. Beweise: $\forall n \in \mathbb{N} : n \geq 4 \implies n! > 2^n$.

Aufgabe 2. Stelle folgende komplexe Zahlen in kartesischen Koordinaten dar:

$$z_1 = (4-3i)(-2i+8), \quad z_2 = (1+2i)^{-1}, \quad z_3 = |3-4i|.$$

Aufgabe 3. Es seien $z \in \mathbb{C}$ und $U \subseteq \mathbb{C}$. Definiere folgende Aussage mithilfe eines prädikatenlogischen Ausdrucks: "U ist eine offene Umgebung von z."

Aufgabe 4. Es sei $(z_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$. Definiere folgende Aussage mithilfe eines prädikatenlogischen Ausdrucks: " $(z_n)_{n\in\mathbb{N}}$ konvergiert in \mathbb{C} ."

Aufgabe 5. Bestimme, im Falle der Existenz, das Supremum, Infimum, Minimum und Maximum der Menge $M = [0,1] \cap \left(\bigcup_{n \in \mathbb{N}} \left[\frac{1}{n}, n\right]\right)$.

Aufgabe 6.

- (a) Zeige: Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^3}$ konvergiert.
- (b) Berechne $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
- (c) Berechne $\lim_{n\to\infty} n \sin\left(\frac{1}{n}\right)$.

Aufgabe 7. Zeige, dass die komplexe Konjugation $\overline{\cdot}: \mathbb{C} \to \mathbb{C}$ eine stetige Abbildung ist.

Aufgabe 8. Berechne schnell:

(a)
$$\frac{d}{dx}\log\left(x+\sqrt{1+x^2}\right), \quad x>0,$$

(b)
$$\frac{d}{dx}\exp\left(-x^{3/2}\right), \quad x > 0.$$