DERIVATIVES REVIEW Math 1910

NAME: SOLUTIONS
August 24, 2017

RAPID REVIEW

(1) Given a function f, the **derivative** of f at the point a is defined by

$$f'(\alpha) := \lim_{h \to 0} \frac{f(\alpha+h) - f(\alpha)}{h} = \lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$$

- (2) The line tangent to (a, f(a)) is y f(a) = f'(a)(x a).
- (3) Differentiation rules:
 - (a) (cf)' = cf' if c is a constant.
 - (b) (f+g)' = f' + g'
 - (c) **Product rule**: (fg)' = f'g + fg'.
 - (d) Quotient rule: $\left(\frac{f}{g}\right)' = \frac{gf' fg'}{g^2}$.
 - (e) Chain rule: (f(g(x)))' = f'(g(x))g'(x).
- (4) **Implicit differentiation** is used to compute $\frac{dy}{dx}$ when the variables x and y are related by an equation, such as $x^3 y^3 = 4$. This is a special instance of the chain rule. To perform implicit differentiation, take the derivative of both sides. Remember that y is a function of x, so $\frac{d}{dx}f(y) = f'(y)y'$.
- (5) **The first derivative test:** If f is differentiable and c is a critical point, then the type of critical point can be found in the table.

Sign Change of $f'(x)$	Type of Critical Point
From + to -	Local max
From - to +	Local min

(6) A function f is **concave up** on (a, b) if f' is increasing, and **concave down** if f is decreasing. A **point of inflection** is a point (c, f(c)) where the concavity changes. We can use the first derivative test on the derivative f' to find the inflection points of f.

PROBLEMS

- (1) Compute $\frac{dy}{dx}$.
 - (a) $y = 3x^5 7x^2 + 4$ SOLUTION: $15x^4 - 14x$

(b) $y = \frac{x}{x^2 + 1}$

-) $y = \frac{x}{x^2 + 1}$ SOLUTION: $\frac{1 - x^2}{(x^2 + 1)^2}$
- (c) $y = (x^4 9x)^6$ Solution: $6(x^4 - 9x)^5(4x^3 - 9)$
- (d) $y = \sqrt{x + \sqrt{x}}$ Solution: $\frac{\frac{1}{2\sqrt{x}} + 1}{2\sqrt{x + \sqrt{x}}}$
- (e) y = tan(x)SOLUTION: $sec^2(x)$
- (f) $y = \sin(2x)\cos^2(x)$ SOLUTION: $2\cos^2(x)(2\cos(2x) - 1)$

- (g) $y = tan(\sqrt{1 + csc x})$ Solution: $-\frac{\cot(x)\csc(x)\sec^2\left(\sqrt{\csc(x) + 1}\right)}{2\sqrt{\csc(x) + 1}}$
- (h) $x^3 y^3 = 4$ SOLUTION: Use implicit differentiation. $\frac{dy}{dx} = \frac{x^2}{y^2} \text{ when } y \neq 0.$
- (i) $y = xy^2 + 2x^2$ SOLUTION: Use implicit differentiation. $\frac{dy}{dx} = \frac{4x + y^2}{1 - 2xy}$
- (j) $y = \sin(x+y)$ SOLUTION: Use implicit differentiation. $\frac{dy}{dx} = \frac{\cos(x+y)}{1-\cos(x+y)}$
- (2) Find the points on the graph of $f(x) = x^3 3x^2 + x + 4$ where the tangent line has slope 10. SOLUTION: The points are (-1, -1), (3, 7).
- (3) Find the critical points of f and determine if they are minima or maxima.
 - (a) $f(x) = x^3 4x^2 + 4x$ SOLUTION: maximum at $x = \frac{2}{3}$ and minimum at x = 2
 - (b) $f(x) = x^2(x+2)^3$ SOLUTION: maximum at $x = \frac{-4}{5}$; minimum at x = 0
 - (c) $f(x) = x^{2/3}(1-x)$ SOLUTION: maximum at $x = \frac{2}{5}$; minimum at x = 0
- (4) Find the points of inflection of the function f
 - (a) $f(x) = x^3 4x^2 + 4x$

SOLUTION: at $x = \frac{4}{3}$

(b) $f(x) = x - 2\cos x$ SOLUTION: at $x = \frac{(2n+1)\pi}{2}$ for all integers n

(c) $f(x) = \frac{x^2}{x^2+4}$ SOLUTION: at $x = \pm \frac{2}{\sqrt{3}}$

(5) Find conditions on a and b that ensure $f(x) = x^3 + ax + b$ is increasing on $(-\infty, \infty)$. SOLUTION: Whenever $a \ge 0$.