

1. Download the dataset

2 Load Data

	 pandas as pd	
import warnings		

Rownumber Customeria Surname Creditocore Geography Gender Age Tel							
0	1	156346	902 Hargrave	619	France Fema		
1	2	156473	811 Hil	608	Spain Fema		

3. Perform Below Visualizations.

import matplotlib.pyplot as plt import seaborn as sns

df.hist(column="Age",grid=False,edgecolor='black')
array([[<AxesSubplot:title={'center':'Age'}>]], dtyp

Multi - Variate Analysis

Prure

4. Perform descriptive statistics on the dataset

0
 1

6. Find the outliers and replace the outliers

5. Handle the Missing values

df.isnull().sum(

Our [25], <AxesSubplot:xlabel='CreditScore'>

400 500 600 700 CreditScore Trem microm.natact import load poston

0 = np.percontile(dff("castisfores"), 25, interpolation = "midpoint")

03 = np.percontile(dff("castisfores"), 75, interpolation = "midpoint")

03 = np.percontile(dff("castisfores"), 75, interpolation = "midpoint")

03 = np.percontile(dff("castisfores")) = (031.5*128))

upper = np.mhere(dff("castisfores")) = (031.5*128))

df.dorp(upper(0), inplace = True)

df.dorp(upper(0), inplace = True)

ans.hosplot(x="Creditiones", data=dff) Old Shape: (9984, 14) New Shape: (9984, 14) <AxesSubplot:xlabel='CreditScore'>

600 700 CreditScore 7. Check for Categorical columns and perform encoding

| Rose-Name | Constructive | Survivarior | Constructive | Construc 8. Split the data into dependent and independent variables

[[1 15634602 'Hargrave' ... 1 1 101348.88] [2 15647311 'Hill' ... 0 1 112542.58] [3 15619304 'Onio' ... 1 0 113931.57] [9998 15584532 'Liu' ... 0 1 42085.58] [9999 15682355 'Sabbatini' ... 1 0 92888.52] [10000 15628319 'Walker' ... 1 0 38190.78]]

B = df.iloc[:, -1].values print(B) [1 0 1 ... 1 1 0] 9. Scale the independent variables from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df("Customarid")] = scaler.fit_transform(df(["Cutomarid")])

9996	99	97 0.01676	5 Johns	tone	516	France Male 3	5
9997	99	98 0.07532	7	Liu	709	France Female 3	6
9998	99	99 0.46663	7 Sabba	tini	772	Germany Male 4	2
9999	100	00 0.25048	3 Wa	lker	792	France Female 2	8
	Tenure	Balance Nu	mOfProducts	HasCrCard	IsActive	tember \	
0	2	0.00		1	1	1	
1	1	83807.86		1	0	1	
2	8	159660.80		3	1	0	
3	1	0.00		2	0	0	
4	2	125510.82		1	1	1	
		0.00		2	1	0	
		57369.61		1	1	1	
		0.00		1	0	1	
9998	3	75075.31		2	1	0	
9999	4	130142.79		1	1	0	
	Estimat	edSalary	Exited				
0	1	01348.88	1				
1		12542.58					
2	1	13931.57	1				
3		93826.63	0				
4		79084.10	0				
9995		96270.64	0				
9996	1	01699.77	0				
9997		42085.58	1				
9998		92888.52	1				

10. Split the data into training and testing

from sklears.nodel selection import train test split
training_data, testing_data = train_test_split(df, test_size=0.2, random_state=0.5)
print(fflo, of razining examples: (razining_data happe(0)))
print(fflo, of testing examples: (razining_data_shappe(0)))
No. of training examples: 1997
No. of testing_examples: 1997