

L1 ANSWER 1 OF 1 WPIX COPYRIGHT 2006 THE THOMSON CORP on STN
 AN 2000-018706 [02] WPIX Full-text
 DNC C2000-004296

TI New imidazo naphthyridine derivatives and their salts - used as type IV phosphodiesterase inhibitors for treating e.g. asthma.

DC B02

PA (YAMA) YAMANOUCHI PHARM CO LTD

CYC 1

PI JP 11292878 A 19991026 (200002)* 13 C07D471-14 <--

ADT JP 11292878 A JP 1998-97094 19980409

PRAI JP 1998-97094 19980409

IC ICM C07D471-14

ICS A61K031-435; A61K031-505

AB JP 11292878 A UPAB: 20000112 NOVELTY - Imidazonaphthyridine derivatives (I) and their pharmaceutical acceptable salts are new. DETAILED DESCRIPTION - Imidazonaphthyridine derivatives of formula (I) and their pharmaceutical acceptable salts are new. R1-R3 = H, halo, lower alkyl, -O-lower alkyl, S-lower alkyl, CO-lower alkyl, NO₂, CN, OH, SH, CO₂H, NR₆R₇, CO₂-lower alkyl, CONR₆R₇, NR₆CO-lower alkyl, cycloalkyl or aryl; A = optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl or optionally substituted hetero-aryl; X = N or C-R₈; R₄-R₈ = H or lower alkyl; the dotted line = a single or double bond. INDEPENDENT CLAIMS are also included for (A) a pharmaceutical containing or its salts as active component; and (B) a type IV phosphodiesterase inhibitor containing (I) or its salts as active component. USE - (I) and its salts show type IV phosphodiesterase inhibitor activity. (I) is used in preventing and treating respiratory illness (e.g. bronchial asthma (including atopic asthma), chronic bronchitis, pneumonic diseases, ARDS). (I) is also used in preventing and treating other diseases such as where cytokine (IL-1, IL-4, IL-6 and TNF (tumour necrosis factor) participates (e.g. rheumatoid arthritis, ulcerative colitis, Crohn's disease, septicemia, septic shock, endotoxin shock, Gram negative bacterial blood poisoning, toxic shock syndrome, nephritis, hepatitis) ADVANTAGE - (I) shows excellent inhibitory effect of type IV phosphodiesterase. Dwg.0/0

FS CPI

FA AB; GI; DCN

MC CPI: B06-D17; B14-A01; B14-C09B; B14-D07A; B14-E08; B14-E10; B14-K01;
 B14-N10; B14-N12; B14-S06

START LOCAL KERMIT RECEIVE PROCESS

BINARY DATA HAS BEEN DOWNLOADED TO MULTIPLE FILES 'IMAGEnnn.TIF'

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-292878

(43)公開日 平成11年(1999)10月26日

(51)Int.Cl.⁶
C 07 D 471/14
A 61 K 31/435
31/505

識別記号
102
ACD
AED

F I
C 07 D 471/14
A 61 K 31/435
31/505

102
ACD
AED

審査請求 未請求 請求項の数3 O.L (全 13 頁)

(21)出願番号 特願平10-97094

(22)出願日 平成10年(1998)4月9日

(71)出願人 000006677
山之内製薬株式会社
東京都中央区日本橋本町2丁目3番11号
(72)発明者 高山 和久
茨城県つくば市御幸が丘21 山之内製薬株
式会社内
(72)発明者 岩田 正洋
茨城県つくば市御幸が丘21 山之内製薬株
式会社内
(72)発明者 河野 則征
茨城県つくば市御幸が丘21 山之内製薬株
式会社内
(74)代理人 弁理士 長井 省三 (外2名)
最終頁に続く

(54)【発明の名称】 イミダゾナフチリジン誘導体

(57)【要約】

【課題】 IV型ホスホジエステラーゼが関与する種々の疾患の処置に用いることができる化合物の提供。

【解決手段】 一般式(I)で示される化合物又はその塩。

【化1】

(式中の記号は以下の意味を示す。

R¹、R²及びR³:同一又は異なって、-H、-ハロゲン、-低級アルキル、-O-低級アルキル、-S-低級アルキル、-CO-低級アルキル、-NO₂、-CN、-OH、-SH、-CO₂H、-NR⁶R⁷、-CO₂-低級アルキル、-CONR⁶R⁷、-NR⁶CO-低級アルキル、-シクロアルキル又はアリール、A:置換され

ていてもよいシクロアルキル、置換されていてもよいシクロアルケニル、置換されていてもよいアリール又は置換されていてもよいヘテロアリール、
X:N 又は C-R⁸、
R⁴、R⁵、R⁶、R⁷及びR⁸:同一又は異なって、-H
又は-低級アルキル、
点線:単結合又は二重結合。)

【特許請求の範囲】

【請求項1】 一般式(I)で示される化合物又はその製薬学的に許容される塩。

【化1】

(式中の記号は以下の意味を示す。

R¹、R²及びR³: 同一又は異なって、-H、-ハロゲン、-低級アルキル、-O-低級アルキル、-S-低級アルキル、-CO-低級アルキル、-NO₂、-CN、-OH、-SH、-CO₂H、-NR⁶R⁷、-CO₂-低級アルキル、-CONR⁶R⁷、-NR⁶CO-低級アルキル、-シクロアルキル又は-アリール、

A: 置換されていてもよいシクロアルキル、置換されていてもよいシクロアルケニル、置換されていてもよいアリール又は置換されていてもよいヘテロアリール、

X: N 又はC-R⁸、

R⁴、R⁵、R⁶、R⁷及びR⁸: 同一又は異なって、-H又は-低級アルキル、

点線: 単結合又は二重結合。)

【請求項2】 請求項1記載の化合物又はその製薬学的に許容される塩を有効成分とする医薬。

【請求項3】 請求項1記載の化合物又はその製薬学的に許容される塩を有効成分とするIV型ホスホジエステラーゼ阻害剤。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、医薬、特に新規なイミダゾナフチリジン誘導体又はその塩、及び、それらを有効成分とするIV型ホスホジエステラーゼ阻害剤に関する。

【0002】

【従来の技術】 喘息は気道の収縮による喘鳴と発作を繰り返す呼吸器疾患である。その患者数はこれまで増加の一途をたどっており、今後もさらに増えることが予想される。喘息の治療には現在、気管支拡張薬としてアミノフィリンやテオフィリン等のキサンチン誘導体及びプロカテロール等のβ刺激薬が主に使用されている。

【0003】 これら化合物の作用機序は、気道平滑筋において細胞内アデノシン3',5'-サイクリックアーリン酸(cAMP)の産生酵素であるアデニル酸シクラーゼを活性化し、あるいはcAMPの分解酵素であるホスホジ

エステラーゼ(PDE)を阻害することにより細胞内のcAMP濃度を上昇させ、気道平滑筋の収縮を緩解するものである。(内科 69, 207-214 (1992))。細胞内cAMP濃度の上昇は、気道平滑筋では収縮の抑制を引き起こすことが知られており(Clin. Exp. Allergy, 22, 337-344 (1992)、Drugs of the Future, 17, 799-807 (1992))、喘息症状の改善に有効である。

【0004】 しかしながら、キサンチン誘導体は血圧低下や強心作用等の全身性副作用を発現すること(J. Cyclic Nucleotide and Protein Phosphorylation Res., 10, 551-564 (1985)、J. Pharmacol. Exp. Ther., 257, 741-747 (1991))、また、β刺激薬は脱感作を生じやすく、使用量が増加すると手指振戦、動悸等の副作用を生ずることが知られている。一方、PDEは少なくともI~V型の5つの異なるタイプに分けられ、それぞれ分布又は機能に違いがあることが解明されてきた(Pharmacol. Ther., 51, 13-33 (1991))。特にIV型のPDEは、ヌクレオチドの中でもグアノシン3',5'-サイクリックアーリン酸(cGMP)に作用することなく、cAMPを特異的に分解するものであり、気道平滑筋及び浸潤細胞の両者でその存在が認められている。

【0005】 また、IV型PDE阻害剤は、モルモットにおける抗原及び血小板活性化因子による好酸球浸潤に対し、抑制作用を示し(Eur. J. Pharmacol., 255, 253-256 (1994))、好酸球からの障害性蛋白(MBP、EC-P)の遊離を抑制する(Br. J. Pharmacol., 115, 39-47 (1995))ことが報告されている。さらに収縮物質(ヒスタミン、メサコリン、LT-D₄)による気道平滑筋の収縮に対し抑制作用を示すこと(Br. J. Pharmacol., 13, 1423-1431 (1994))、喘息に深く関与すると言われているサイトカインであるIL-4の産生を阻害すること(J. Invest. Dermatol., 100, 681-684 (1993))、気道における血管透過性の亢進に対して抑制作用を発現すること(Fundam. Clin. Pharmacol., 6, 247-249 (1992))、気道過敏症に対して抑制作用を示すこと(Eur. J. Pharmacol., 275, 75-82 (1995))が報告されている。よって、IV型PDE阻害剤は副作用の少ない喘息治療剤となり得ることが期待されている。

【0006】 IV型PDE阻害活性を有するナフチリジン誘導体として、下記一般式で示される1H,5H-又は3H,5H-イミダゾ[4,5-c][1,8]ナフチリジン-4-オン誘導体がJ. Med. Chem., 35, 4866-4878 (1992)及びEP459505号公報に報告されている。

【0007】

【化2】

【0008】(式中、X-Y-Zは-N(R²)-C(R³)=N-又は-N=C(R³)-N(R²)-を、R¹は低級アルキル又は置換されていてもよいアリールをそれぞれ示す。(以下、当該公報参照。))

【0009】

【発明が解決しようとする課題】本発明者等は、IV型PDEを良好かつ選択的に阻害し、副作用の少ない気管支喘息等の呼吸器疾患の予防・治療に有用な新規化合物を提供すること、さらにはこれらを含有する医薬を提供することを目的として研究を行った。

【0010】

【課題を解決するための手段】本発明者等は、IV型PDEに対して阻害活性を有する化合物につき鋭意検討した結果、従来のIV型PDE阻害剤とは構造を全く異なるイミダゾナフチリジン誘導体が良好かつ選択的なIV型PDE阻害作用を有することを見出し、本発明を完成した。即ち、本発明は、下記一般式(I)で示される新規なイミダゾナフチリジン誘導体又はその製薬学的に許容される塩、並びにこれらを有効成分として含む医薬に関する。

【0011】

【化3】

【0012】(式中の記号は以下の意味を示す。

R¹、R²及びR³:同一又は異なって、-H、-ハロゲン、-低級アルキル、-O-低級アルキル、-S-低級アルキル、-CO-低級アルキル、-NO₂、-CN、-OH、-SH、-CO₂H、-NR⁶R⁷、-CO₂-低級アルキル、-CONR⁶R⁷、-NR⁶CO-低級アルキル、-シクロアルキル又はアリール、A:置換されていてもよいシクロアルキル、置換されていてもよいシクロアルケニル、置換されていてもよいアリール又は置換されていてもよいヘテロアリール、

X:N又はC-R⁸、

R⁴、R⁵、R⁶、R⁷及びR⁸:同一又は異なって、-H

4

又は-低級アルキル、

点線:単結合又は二重結合。以下同様。)また、本発明によれば、イミダゾナフチリジン誘導体又はその塩を含有することを特徴とする医薬、殊にIV型PDE阻害剤が提供される。

【0013】

【発明の実施の形態】以下、本発明を詳細に説明する。本明細書中、「低級」なる語は、炭素数1~6個の直鎖状又は分枝状の炭化水素鎖を意味する。「低級アルキル」としては、好ましくは炭素数1~3個のアルキルであり、特に好ましくはメチル及びエチルである。「シクロアルキル」は、好ましくは炭素数3~8個のシクロアルキルである。「シクロアルケニル」は、好ましくは炭素数5~8個のシクロアルケニルである。「アリール」は、炭素数6~14個の芳香族炭化水素基を意味し、好ましくはフェニルである。「ヘテロアリール」は、好ましくは、酸素原子、硫黄原子及び窒素原子からなる異項原子を1~2個有する单環の5~6員芳香族ヘテロ環基であり、好ましくは、ピリジル、ピリミジニル、チアソリル、チエニルである。

【0014】置換されていてもよい「シクロアルキル」、「シクロアルケニル」、「アリール」又は「ヘテロアリール」の具体的な置換基としては、-ハロゲン、-低級アルキル、-O-低級アルキル、-S-低級アルキル、-CO-低級アルキル、-NO₂、-CN、-OH、-SH、-CO₂H、-NR^aR^b、-CO₂-低級アルキル、-CONR^aR^b、-NR^aCO低級アルキルが挙げられ(R^a及びR^bは、同一又は異なって-H又は-低級アルキル)、好ましくは-ハロゲン、-低級アルキルである。「ハロゲン」は、F、Cl、Br及びIを示す。

【0015】本発明化合物は、一般式(I)において、X=C-R⁸の場合、イミダゾ[1,2-a][1,8]ナフチリジン骨格を、X=Nの場合、イミダゾ[1,2-a]ピリド[3,2-e]ピリミジン骨格をそれぞれ有する。本明細書においては、これらの両骨格を有する本発明化合物をあわせて、「イミダゾナフチリジン誘導体」と記載する。

【0016】本発明化合物は置換基の種類によっては幾何異性体や互変異性体が存在する場合があるが、本発明にはこれらの異性体の分離したもの、あるいは混合物が含まれる。また、本発明化合物は不齊炭素原子を有する場合があり、これに基づく(R)体、(S)体の光学異性体が存在しうる。本発明はこれらの光学異性体の混合物や単離されたものを全て包含する。

【0017】本発明化合物は、酸付加塩又は置換基の種類によっては塩基との塩を形成する場合もある。かかる塩としては、製薬学的に許容される塩であり、具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の無機酸、辛酸、酢酸、プロピオン酸、シウ酸、マロン酸、コハク酸、フマル酸、マイレン酸、乳

5

酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、アスパラギン酸、グルタミン酸等の有機酸との酸付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等の無機塩基、メチルアミン、エチルアミン、エタノールアミン、リジン、オルニチン等の有機塩基との塩やアンモニウム塩等が挙げられる。さらに、本発明は、本発明化合物(Ⅰ)及びその塩の各種の水和物や溶媒和物及び結晶多形の物質をも包含する。

【0018】(製造法) 本発明化合物及びその製薬学的に許容される塩は、その基本骨格あるいは置換基の種類に基づく特徴を利用し、種々の公知の合成法を適用して製造することができる。その際、官能基の種類によっては、当該官能基を原料ないし中間体の段階で適当な保護基、即ち容易に当該官能基に転化可能な基に置き換えておくことが製造技術上効果的な場合がある。しかるのち、必要に応じて保護基を除去し、所望の化合物を得ることができる。このような官能基としては例えば水酸基やカルボキシル基等を挙げることができ、それらの保護基としては例えばグリーン(Greene)及びウツ(Wuts)著、「Protective Groups in Organic Synthesis (第2版)」に記載の保護基を挙げることができ、これらを反応条件に応じて適宜用いればよい。

第1製法

【0019】

【化 4】

【0022】(式中、 R^X は一炭素数1~5個のアルキルを示す。 L^2 は L^1 と同様の脱離基を示す。)

本発明化合物中R¹がアルキル基である化合物(Ic)はR¹がメチル基である本発明化合物(Ib)をアルキル化することによっても製造することができる。反応は芳香族炭化水素類、エーテル類、アルコール類(メタノール、エタノール等)、DMF、ジメチルスルホキシド等の反応不活性溶媒中、化合物(Ib)と化合物

の反応に不活性な有機溶媒中、化合物 (Ib) と化合物 (IV) を当量あるいは一方を過剰量用いて、金属塗膜

【0020】(式中、L'は脱離基を示す。)
本製法はピリジルケトン誘導体(II)に一般式(III)で示されるイミダゾール誘導体を反応させ本発明化合物(Ia)を得る方法である。L'が示す脱離基としては、好ましくは、ハロゲンや、メタンスルホニルオキシ、p-トルエンスルホニルオキシ等の有機スルホン酸残基が挙げられる。反応はジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン、ジクロロベンゼン等の芳香族炭化水素類、エーテル、テトラヒドロフラン、ジオキサン、ジフェニルエーテル等のエーテル類、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、N-メチルピロリドン等の反応に不活性な有機溶媒中または無溶媒下、室温下～加熱下に行われる。反応に際しては、ピリジルケトン誘導体(II)と一般式(II I)で示されるイミダゾール誘導体とを当量若しくは一方を過剰に用いることができ、有機塩基(好ましくは、トリエチルアミン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン)の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。

第2製法

[0021]

〔七五〕

基（水素化ナトリウム、tert-ブトキシカリウム、ブチルリチウム、リチウムジイソプロピルアミド、ナトリウムアミド、臭化メチルマグネシウム等）の存在下、冷却下～加熱下に行われる。

第3製法

[0023]

【化6】

【0025】(式中、R^Yは一低級アルキルを示す。)

本製法はイミダゾリジンチオオン誘導体(V)をアルキル化後、引き続きアミノ化環化することにより本発明化合物(Id)を得る方法である。アルキル化反応は、ハロゲン化炭化水素類、芳香族炭化水素類、エーテル類、ケトン類(アセトン、2-ブタノン等)、DMF、DMA及びN-メチルピロリドン等の反応に不活性な有機溶媒中、化合物(V)とアルキル化剤とを当量あるいは一方を過剰量用いて、前記の有機又は金属塩基、又は無機塩基(好ましくは、水酸化ナトリウム、炭酸カリウム)の存在下、冷却下～加熱下に行われる。アルキル化剤としては、好ましくは、ヨウ化メチル、ヨウ化イソプロピルで

本製法は本発明化合物(Id)を脱水素することにより本発明化合物(Ie)を得る方法である。反応は脱水素化の常法を用いることができ、例えば日本化学会編「実験化学講座」(丸善)等に記載の方法が挙げられる。

【0024】第4製法

【化7】

ある。

【0026】アミノ化環化反応はハロゲン化炭化水素類、芳香族炭化水素類、エーテル類、アルコール類又は水等反応に不活性な溶媒中またはそれらの混合溶媒下、化合物(VI)とアミノ化剤とを当量あるいは一方を過剰量用いて室温下～加熱下に行われる。アミノ化剤としては、好ましくは、アンモニア、ギ酸アンモニウム、酢酸アンモニウムである。上記の原料化合物(V)は、下記反応式で示される製法あるいはそれに準じた方法によって容易に合成できる。

【0027】

【化8】

【0028】本反応はピリジン誘導体(II)に一般式(VII)で示されるエチレンジアミン誘導体を反応させ化合物(VIII)とし、引き続き環化することによりイミダゾリジンチオオン誘導体(V)を得る工程である。置換反応は芳香族炭化水素類、エーテル類、アルコール類又は水等反応に不活性な溶媒中またはそれらの混合溶媒下、化合物(II)と化合物(VII)とを当量あるいは一方を過剰量用いて室温下～加熱下に行う。反応に際しては、前記の有機塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。環化反応はハロゲン化炭化水素類、芳香族炭化水素類又はエーテル類

等反応に不活性な溶媒中、化合物(VIII)と環化剤を当量あるいは一方を過剰量用いて、冷却下～加熱下に行われる。環化剤としては、好ましくは、チオカルボニルジイミダゾール、チオホスゲンである。反応に際しては、前記の有機塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。原料化合物(II)は、W097/19078公報19-21頁に記載の方法によって合成できる。

【0029】上記各製造法により得られた反応生成物は、遊離の化合物、塩あるいは水和物、各種溶媒和物として単離・精製される。塩は通常の造塩処理に付すこと

により得られる。単離・精製は抽出、濃縮、溶媒留去、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適宜適用して行うことができる。各種異性体は異性体間の物理化学的な差を利用して常法により単離できる。光学異性体は一般的な光学分割法、例えば分別結晶化又はクロマトグラフィー処理により分離できる。あるいは適当な光学活性な原料から製造することもできる。

【0030】

【発明の効果】 PDE 阻害作用についてはこれまでに I ~ V型の 5 タイプが知られているが、本発明化合物は、特に IV型 PDE の阻害活性に優れており、IV型 PDE が関与する呼吸器疾患（例えば気管支喘息（アトピー性喘息を含む）、慢性気管支炎、肺炎性疾患、成人呼吸窮迫症候群（ARDS）等）の予防・治療剤として有用である。特に気管支喘息の予防・治療薬として期待できる。

【0031】更に、本発明の化合物は、IV型 PDE の関与が知られているその他の疾患、例えばサイトカイン（IL-1、IL-4、IL-6 及び TNF（腫瘍壞死因子））等の関与する疾患（例えば、慢性関節リウマチ、潰瘍性大腸炎、クローゼン病、敗血症、敗血症性ショック、内毒素性ショック、グラム陰性菌性敗血症、トキシックショック症候群、腎炎、肝炎、感染（細菌及びウイルス）、循環不全（心不全、動脈硬化、心筋梗塞、脳卒中）等）等の予防・治療薬としても有用である。

【0032】本発明化合物の選択的 IV型 PDE 阻害活性は、以下の試験により確認された。

（1）IV型 PDE 阻害活性測定試験

1) IV型 PDE の精製

健常人のヘパリン処理済末梢血 500 μl にデキストラン（3%）生理食塩水 200 μl を添加し、37°C、40 分間インキュベートして赤血球を沈殿させた。赤血球沈殿後の上清を回収し、1 回遠心後、沈殿を緩衝液 A（140 mM NaCl、5 mM KC1、5 mM グルコース、10 mM hepes、pH=7.4）に浮遊させ、密度勾配遠心分離用液（フィコール液）に重層、450G、40 分間室温で遠心し、単核球分画と顆粒球分画とを分離した。顆粒球分画を緩衝液 B（140 mM NaCl、5 mM KC1、1 mM CaCl2、1 mM MgCl2、5 mM グルコース、10 mM hepes、pH=7.4）で 1 回洗浄後、各種蛋白分解酵素阻害剤（50 μM phenyl-methyl-sulfonyl-fluoride、5 μM pepstatin A、40 μM leupeptin、20 μM aprotinin、2 mM benzamidine）を含む緩衝液 C（20 mM bis-Tris、5 mM ジチオエリスリトール、2 mM EGTA、50 mM 酢酸ナトリウム、pH=6.5）に懸濁後、ポリトロン及び超音波破碎機で細胞を破壊し、超遠心（4°C、100,000G、60 分間）することにより可溶性分画を得た。

【0033】緩衝液 C で平衡化された 1.6×10 cm Q セファロースカラムに、得られた可溶性分画を充填した。次いで該カラムを緩衝液 C 300 μl で洗浄し、未結合蛋白を除去した。0.05~1.25 M 酢酸ナトリウムの線形勾配液

を含有する緩衝液 C 200 μl を用いて PDE を溶離し、5.0 μl 分画 40 本を回収した。各分画を cAMP 及び cGMP 代謝 PDE 活性について検査した。各分画中 cGMP ではなく cAMP の代謝活性を有し、かつ、10 μM ロリプラム（rolipram：IV型 PDE 選択的阻害剤）により代謝活性を消失した分画を集め、IV型 PDE 阻害活性を検査するための貯蔵溶液として使用した。

【0034】2) 阻害活性測定法

試験化合物は所望の濃度を 40 nM トリス-HCl (pH=8.0)、5 mM MgCl2、4 mM 2-メルカプトエタノール、0.3 μM シロスタミド（cilostamide：III型 PDE 選択的阻害薬）、1 μM cAMP、10 nM3H-cAMP 及び IV型 PDE 貯蔵溶液の含有している反応混合液中で 30°C、10 分間反応させた。反応液を 90°C 1 分間加熱した後、氷冷し、更に 1 ユニットの 5'-ヌクレオチダーゼを加え 30°C、10 分間反応させ、メタノール 1 μl を加え反応を停止させた。反応液は Dowex 1×8 カラムを通して未分解物を吸着させた後、放射活性を測定した。IC50 は IV型 PDE の代謝活性を 50% 阻害する試験化合物濃度として、各化合物について算出した。

【0035】（2）各種 PDE に対する阻害活性測定法
1) 本発明化合物の IV型 PDE に対する選択性を評価するために、WO97/19078 公報中 37 頁に記載の方法と同様にして I 型、II 型、III 型及び V 型 PDE を精製した。
2) 阻害活性は、前記 IV型 PDE 阻害活性測定法の 0.3 μM シロスタミドを 10 μM ロリプラムに代えて、同様に行なった。ただし、V 型 PDE の場合は、1 μM cAMP、10 nM3H-cAMP をそれぞれ 1 μM cGMP、10 nM3H-cGMP に代えて行なった。上記阻害活性測定試験の結果、本発明化合物は優れた選択的 IV型 PDE 阻害活性を有することが確認された。

【0036】本発明化合物又はその塩の 1 種又は 2 種以上を有効成分として含有する製剤は通常製剤化に用いられる担体や賦形剤、その他の添加剤を用いて調製される。投与は錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤等による経口投与、あるいは静注、筋注等の注射剤、坐剤、経皮剤、経鼻剤あるいは吸入剤等による非経口投与のいずれの形態であってもよい。投与量は症状、投与対象の年齢、性別等を考慮して個々の場合に応じて適宜決定されるが、通常、経口投与の場合、成人 1 日当たり 0.001 mg/kg 乃至 100 mg/kg 程度であり、これを 1 回で、あるいは 2~4 回に分けて投与する。また、症状によって静脉投与される場合は、通常、成人 1 回当たり 0.001 mg/kg 乃至 10 mg/kg の範囲で 1 日に 1 回乃至複数回投与される。また、吸入の場合は、通常、成人 1 回当たり 0.0001 mg/kg 乃至 1 mg/kg の範囲で 1 日に 1 回乃至複数回投与され、塗布の場合は 0.0001 mg/kg 乃至 1 mg/kg の範囲で 1 日に 1 回乃至複数回投与される。

【0037】本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このよ

うな固体組成物においては、一つ又はそれ以上の活性物質が、少なくとも一つの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルビロリドン、メタケイ酸アルミン酸マグネシウム等と混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸又はアスパラギン酸のような溶解補助剤を含有していてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等の糖衣又は胃溶性若しくは腸溶性物質のフィルムで被膜してもよい。

【0038】経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタノールを含む。この組成物は不活性な希釈剤以外に湿润剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。

【0039】非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水及び生理食塩水が含まれる。非水性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート80(商品名)等がある。このような組成物は、さらに防腐剤、湿润剤、乳化剤、分散剤、安定化剤(例えばラクトース)、溶解補助剤(例えばグルタミン酸、アスパラギン酸)のような補助剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。

【0040】

【実施例】以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。また原料化合物の製法を参考例に示す。

【0041】参考例1

2-クロロピリジンを、リチウムジイソプロピルアミド及び3-クロロベンズアルデヒドと反応後、二酸化マンガンで酸化して2-クロロ-3-(3-クロロベンゾイル)ピリジンを得た。

参考例2

2-クロロベンゾニトリルを、水素化ナトリウム存在下、アセトニトリルと反応後、3N塩酸水で加水分解して、3-(2-クロロフェニル)-3-オキソプロパンニトリルを得、さらにポリリン酸で加水分解して、3-(2-クロロフェニル)-3-オキソプロパンアミドを得た。これを、1,1-

ジメトキシ-3-ブタノンと反応後、オキシ塩化リンと反応させて、2-クロロ-3-(2-クロロベンゾイル)-6-メチルピリジンを得た。

参考例3

2-クロロ-6-メチルニコチン酸を4-クロロフェニルマグネシウムプロミドと反応させ、2-クロロ-3-(4-クロロベンゾイル)-6-メチルピリジンを得た。

参考例4

- 3-プロモベンゾニトリルを用い、参考例3と同様に3-(3-プロモベンゾイル)-6-メチル-2-ピリドンを得、これをp-トルエンスルホニルクロリドと反応させて、3-(3-プロモベンゾイル)-6-メチル-2-(p-トルエンスルホニルオキシ)ピリジンを得た。

参考例5

シクロヘキサンカルボン酸メチルを、n-ブチルリチウム存在下、アセトニトリルと反応させ、以下、参考例3及び4と同様にして、3-シクロヘキサンカルボニル-6-メチル-2-(p-トルエンスルホニルオキシ)ピリジンを得た。

参考例6

- 参考例4で得た化合物を、エチレンジアミンと反応させ、次いで、1,1-チオカルボニルビス-1H-イミダゾールで処理して3-(3-プロモベンゾイル)-2-(イミダゾリジン-2-チオン-1-イル)-6-メチルピリジンを得た。参考例3と同様にして表1に示す参考例7~10の化合物を、参考例4と同様にして表1に示す参考例11及び12の化合物を、参考例6と同様にして表2に示す参考例13~19の化合物それぞれ得た。その他、W097/19078公報40~52頁参考例2、4、10、21、48及び64に記載の原料化合物を使用した。参考例1~19の化合物の構造及びNMRデータを表1及び2に示す。

【0042】実施例1

- 3-(3-プロモベンゾイル)-2-(イミダゾリジン-2-チオン-1-イル)-6-メチルピリジン3.20 g、無水炭酸カリウム1.17 g、ヨウ化メチル1.05 mL及びアセトン60 mLの混合物を3時間加熱還流した。反応液を濃縮後、得られた残渣にクロロホルムを加え、水及び飽和食塩水で洗浄した。有機層を乾燥後、溶媒を留去して、粗製の3-(3-プロモベンゾイル)-2-(4,5-ジヒドロ-2-メチルチオ-1H-イミダゾール-1-イル)-6-メチルピリジン3.4 gを得た。該化合物に酢酸アンモニウム3.28 g及びエタノール100 mLを加え、60℃で17時間攪拌した。反応液を濃縮し、得られた残渣に1M水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、乾燥後溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール-29%アンモニア水)で精製し、次いで得られた結晶を2-プロパノールから再結晶して5-(3-プロモフェニル)-2-メチル-8,9-ジヒドロイミダゾ[1,2-a]ピリド[3,2-e]ピリミジン376 mgを得た。

【0043】実施例2

5-(3-プロモフェニル)-2-メチル-8,9-ジヒドロイミダゾ[1,2-a]ピリド[3,2-e]ピリミジン796 mg、塩化ベンジルトリエチルアンモニウム424 mg、水5 mL及びベンゼン15 mLの混合物に、室温攪拌下、過マンガン酸カリウム295 mgの水10 mL溶液を滴下し、2時間攪拌した。不溶物を濾去後トルエンで抽出した。有機層を飽和食塩水で洗浄し、乾燥後、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)で精製し、次いでジイソプロピルエーテルから再結晶して2-ブチル-5-(3-クロロフェニル)イミダゾ[1,2-a][1,8]ナフチリジン460 mgを得た。

【0044】実施例3

2-クロロ-3-(3-クロロベンゾイル)-6-エチルピリジン6.4 g、2-メチルイミダゾール6.0 g、炭酸カリウム10.0 g及びN-メチルピロリドン50 mLの混合物を、160°Cで2日間攪拌した。室温まで冷却後、飽和塩化アンモニウム水溶液および酢酸エチルを加えた。不要物を濾去後、有機層を水、飽和食塩水で洗浄した。有機層を乾燥後、溶媒を留去し得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)で精製し、次いで酢酸エチル-ジイソプロピルエーテルから再結晶して2-エチル-5-(3-クロロフェニル)イミダゾ[1,2-a][1,8]ナフチリジン791 mgを得た。

【0045】実施例4

ジイソプロピルアミン650 mgのテトラヒドロフラン30 mL溶液に、-78°Cに冷却下、1.6 Mブチルリチウムヘキサン溶液3.7 mLを加え、30分間反応させた後、5-(3-クロロフェニル)-2-メチルイミダゾ[1,2-a][1,8]ナフチリジ

ン1.00 gを加え1時間攪拌した。さらに、ヨウ化プロパン3.00 gを加え30分間攪拌した後、室温まで昇温しさらに1時間攪拌した。反応溶液に水を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。有機層を乾燥後、溶媒を留去し得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)で精製し、次いでジイソプロピルエーテルから再結晶して2-ブチル-5-(3-クロロフェニル)イミダゾ[1,2-a][1,8]ナフチリジン460 mgを得た。

【0046】実施例1と同様にして表3の実施例5~11の化合物を、実施例2と同様にして表4の実施例12~18の化合物を、実施例3と同様にして表5の実施例19~30の化合物を、実施例4と同様にして表5の実施例31及び32の化合物を得た。これらの実施例化合物の構造及びNMRデータを表3~5に示す。尚、NMRの測定溶媒には実施例17はDMSO-d₆を、その他はCDCl₃を使用した。また、表6及び7に本発明の別の化合物の構造を示す。これらは、上記の製造法や実施例に記載の方法及び当業者にとって自明である方法、又はこれらの変法を用いることにより、容易に合成することができる。また、表中、下記に示す略号を用いる。

Rex：参考例番号、Ex：実施例番号、Co：化合物番号、c-Pen：シクロペンチル、c-Hex：シクロヘキシル、c-He p：シクロヘプチル、Imt：イミダゾリジン-2-チオ-1-イル、OTs：p-トルエンスルホニルオキシ、Py：ピリジル、Py_m：ピリミジン、ThN：チアゾリル、Th：チエニル。

【0047】

【表1】

Res	R ¹	A	Y	NMR
1	H	3-Cl-Ph	Cl	7.33-7.82 (6H, m), 8.58 (1H, dH, J=4.9, 2.0Hz)
2	Me	2-Cl-Ph	Cl	2.61 (3H, s), 7.18 (1H, d, J=7.7Hz), 7.24-7.62 (4H, m), 7.81 (1H, d, J=7.7Hz)
3	Me	4-Cl-Ph	Cl	2.63 (3H, s), 7.24 (1H, d, J=7.6Hz), 7.46 (2H, d, J=8.8Hz), 7.65 (1H, d, J=7.6Hz), 7.75 (2H, d, J=8.8Hz)
4	Me	3-Br-Ph	OTs	2.44 (3H, s), 2.55 (3H, s), 7.19 (1H, d, J=7.6Hz), 7.24-7.34 (3H, m), 7.63 (1H, m), 7.68 (1H, m), 7.74 (2H, d, J=8.4Hz), 7.82 (2H, m)
5	Me	c-Hex	OTs	1.15-1.45 (5H, m), 1.60-1.95 (5H, m), 2.44 (3H, s), 2.47 (3H, s), 3.20-3.30 (1H, m), 7.07 (1H, d, J=7.9Hz), 7.37 (2H, d, J=8.1Hz), 7.94 (1H, d, J=7.9Hz), 8.02 (2H, d, J=8.1Hz)
6	Me	3-Br-Ph	Imt	2.60 (3H, s), 3.59 (2H, t, J=8.8Hz), 4.41 (2H, t, J=8.8Hz), 6.16 (1H, brs), 7.17 (1H, d, J=7.8Hz), 7.32 (1H, m), 7.66 (1H, m), 7.79 (1H, d, J=7.8Hz), 7.83 (1H, m), 7.93 (1H, m)
7	Me	3-MeO-Ph	Cl	2.63 (3H, s), 3.86 (3H, s), 7.15-7.19 (1H, m), 7.22 (1H, d, J=7.4Hz), 7.26-7.29 (1H, m), 7.36 (1H, t, J=7.9Hz), 7.40-7.43 (1H, m), 7.64 (1H, d, J=7.4Hz)
8	Me	3-F-Ph	Cl	2.64 (3H, s), 7.24 (1H, d, J=7.6Hz), 7.28-7.36 (1H, m), 7.42-7.56 (3H, m), 7.66 (1H, d, J=7.6Hz)
9	Me	3-CF ₃ -Ph	Cl	2.65 (3H, s), 7.27 (1H, d, J=7.8Hz), 7.64 (1H, t, J=7.8Hz), 7.69 (1H, d, J=7.8Hz), 7.88 (1H, d, J=7.8Hz), 7.96 (1H, d, J=7.8Hz), 8.08 (1H, s)
10	Me	c-Pen	Cl	1.62-1.98 (8H, m), 2.57 (3H, s), 3.66 (1H, m), 7.15 (1H, d, J=7.7Hz), 7.66 (1H, d, J=7.7Hz)
11	Me	Ph	OTs	2.41 (3H, s), 2.54 (3H, s), 7.17 (1H, d, J=7.8Hz), 7.24 (2H, d, J=8.3Hz), 7.43-7.47 (2H, m), 7.56-7.62 (1H, m), 7.72-7.76 (4H, m), 7.80 (1H, d, J=7.8Hz)
12	Me	2-Cl-Ph	OTs	2.44 (3H, s), 2.49 (3H, s), 7.16 (1H, d, J=7.8Hz), 7.25-7.47 (6H, m), 7.75-7.80 (2H, m), 8.04 (1H, d, J=7.8Hz)

【表2】

13	Me	Ph	Imt	2.60 (3H, s), 3.54-3.61 (2H, m), 4.33-4.43 (2H, m), 6.00 (1H, brs), 7.15 (1H, d, J=7.6Hz), 7.40-7.46 (2H, m), 7.51-7.57 (1H, m), 7.79 (1H, d, J=7.6Hz) 7.84-7.88 (2H, m)
14	Me	2-Cl-Ph	Imt	2.59 (3H, s), 3.20-3.35 (2H, m), 4.10-4.35 (2H, m), 5.78-6.07 (1H, m), 7.23 (1H, d, J=7.8Hz), 7.29-7.35 (2H, m), 7.37-7.43 (1H, m), 7.91-7.95 (1H, m), 8.00 (1H, d, J=7.8Hz)
15	Me	3-Cl-Ph	Imt	2.60 (3H, s), 3.59 (2H, t, J=8.9Hz), 4.40 (2H, t, J=8.9Hz), 6.20-6.30 (1H, m), 7.16 (1H, d, J=7.8Hz), 7.37 (1H, m), 7.50 (1H, m), 7.74-7.82 (3H, m)
16	Me	3-Me-Ph	Imt	2.39 (3H, s), 2.59 (3H, s), 3.58 (2H, m), 4.39 (2H, m), 6.02 (1H, brs), 7.14 (1H, d, J=8.2Hz), 7.26-7.45 (2H, m), 7.52-7.83 (3H, m)
17	Me	3-F-Ph	Imt	2.60 (3H, s), 3.61 (2H, m), 4.43 (2H, m), 6.00 (1H, brs), 7.08-7.83 (6H, m)
18	Et	3-Cl-Ph	Imt	1.34 (3H, t, J=7.6Hz), 2.86 (2H, q, J=7.6Hz), 3.60 (2H, m), 4.43 (2H, m), 6.05 (1H, brs), 7.15 (1H, d, J=7.7Hz), 7.32-7.63 (2H, m), 7.70-7.90 (3H, m)
19	Me	c-Hex	Imt	1.05-2.14 (10H, m), 2.56 (3H, s), 3.05 (1H, m), 3.79 (2H, m), 4.40 (2H, m), 6.64 (1H, brs), 7.16 (1H, d, J=8.0Hz), 7.94 (1H, d, J=8.0Hz)

【0048】

【表3】

Ex	R ¹	A	NMR
1	Me	3-Br-Ph	2.53 (3H, s), 4.07-4.16 (2H, m), 4.17-4.25 (2H, m), 6.70 (1H, d, J=8.3Hz), 7.37 (1H, t, J=7.8Hz), 7.55-7.60 (2H, m), 7.66 (1H, m), 7.81 (1H, t, J=2.0Hz).
5	Me	Ph	2.52 (3H, s), 4.07-4.25 (4H, m), 6.68 (1H, d, J=8.3Hz), 7.46-7.55 (3H, m), 7.61-7.66 (3H, m)
6	Me	3-Cl-Ph	2.53 (3H, s), 4.07-4.16 (2H, m), 4.17-4.25 (2H, m), 6.70 (1H, d, J=8.0Hz), 7.43 (1H, m), 7.51 (2H, m), 7.58 (1H, d, J=8.0Hz), 7.65 (1H, m)
7	Me	3-Me-Ph	2.42 (3H, s), 2.52 (3H, s), 4.07-4.16 (2H, m), 4.17-4.25 (2H, m), 6.68 (1H, d, J=8.3Hz), 7.30-7.43 (3H, m), 7.49 (1H, m), 7.64 (1H, d, J=8.3Hz)
8	Me	3-F-Ph	2.59 (3H, s), 4.19 (2H, m), 4.37 (2H, m), 6.86 (1H, d, J=8.3Hz), 7.28 (1H, m), 7.40 (1H, m), 7.44-7.54 (2H, m), 7.77 (1H, d, J=8.3Hz)
9	Me	2-Cl-Ph	2.51 (3H, s), 4.09-4.17 (2H, m), 4.18-4.28 (2H, m), 6.64 (1H, d, J=7.8Hz), 7.15 (1H, d, J=7.8Hz), 7.37-7.50 (4H, m)
10	Me	c-Hex	1.20-1.45 (2H, m), 1.65-1.92 (8H, m), 2.50 (3H, s), 2.99 (1H, tt, J=11.5, 3.4Hz), 3.99-4.08 (2H, m), 4.09-4.18 (2H, m), 6.67 (1H, d, J=7.8Hz), 7.71 (1H, d, J=7.8Hz)
11	Et	3-Cl-Ph	(単離せず次の反応に用いた)

【0049】

【表4】

Ex	R ¹	X	A	NMR
2	Me	N	3-Br-Ph	2.81 (3H, s), 7.37 (1H, d, J=8.3Hz), 7.44 (1H, dd, J=8.3, 7.8Hz), 7.69 (2H, m), 7.81 (1H, m), 7.94 (1H, m), 8.27 (1H, d, J=8.3Hz), 8.35 (1H, s)
3	Et	CH	3-Cl-Ph	1.43 (3H, t, J=7.6Hz), 3.02 (2H, q, J=7.6Hz), 7.28 (1H, d, J=8.3Hz), 7.35-7.40 (1H, m), 7.43-7.49 (1H, m), 7.51 (1H, s), 7.68 (1H, d, J=1.5Hz), 8.00 (1H, d, J=8.3Hz), 8.53 (1H, m)
4	Bu	CH	3-Cl-Ph	1.09 (3H, t, J=7.3Hz), 1.40-1.51 (2H, m), 1.80-1.90 (2H, m), 2.98 (2H, t, J=7.8Hz), 7.26 (1H, d, J=8.3Hz), 7.35-7.39 (1H, m), 7.45-7.48 (3H, m), 7.50 (1H, s), 7.68 (1H, d, J=1.4Hz), 7.99 (1H, d, J=8.3Hz), 8.52 (1H, d, J=1.4Hz)
12	Me	N	Ph	2.81 (3H, s), 7.34 (1H, q, J=8.3Hz), 7.53-7.60 (3H, m), 7.75-7.80 (3H, m), 8.32 (1H, d, J=8.3Hz), 8.35 (1H, d, J=1.4Hz)
13	Me	N	3-Cl-Ph	2.82 (3H, s), 7.38 (1H, d, J=8.3Hz), 7.48-7.56 (2H, m), 7.66 (1H, dt, J=7.4, 1.4Hz), 7.79 (1H, t, J=2.0Hz), 7.81 (1H, d, J=1.8Hz), 8.29 (1H, d, J=8.3Hz), 8.36 (1H, d, J=1.8Hz)
14	Me	N	3-Me-Ph	2.47 (3H, s), 2.80 (3H, s), 7.35 (2H, m), 7.44 (1H, dd, J=7.9, 7.3Hz), 7.53 (1H, d, J=7.9Hz), 7.62 (1H, s), 7.78 (1H, d, J=1.4Hz), 8.33 (2H, m)
15	Me	N	3-F-Ph	2.82 (3H, s), 7.26 (1H, m), 7.37 (1H, d, J=8.3Hz), 7.48-7.58 (3H, m), 7.81 (1H, d, J=1.5Hz), 8.31 (1H, d, J=8.3Hz), 8.36 (1H, d, J=1.5Hz)
16	Me	N	2-Cl-Ph	2.80 (3H, s), 7.31 (1H, d, J=8.3Hz), 7.43-7.52 (2H, m), 7.53-7.58 (2H, m), 7.82 (1H, d, J=1.7Hz), 7.84 (1H, d, J=8.3Hz), 8.39 (1H, d, J=1.7Hz)
17	Me	N	c-Hex	1.30 (1H, m), 1.48-1.96 (9H, m), 2.74 (3H, s), 3.55 (1H, m, J=11.5, 3.2Hz), 7.60 (1H, d, J=8.3Hz), 7.62 (1H, d, J=1.5Hz), 8.28 (1H, d, J=1.5Hz), 8.72 (1H, d, J=8.3Hz)
18	Et	N	3-Cl-Ph	1.46 (3H, t, J=7.8Hz), 3.07 (2H, q, J=7.8Hz), 7.39 (1H, d, J=8.3Hz), 7.48-7.56 (2H, m), 7.66 (1H, m), 7.80 (2H, m), 8.31 (1H, d, J=8.3Hz), 8.38 (1H, d, J=1.5Hz)

【表5】

19	H	CH	3-Cl-Ph	7.36-7.40 (1H, m), 7.44 (1H, dd, J=8.3, 4.4Hz), 7.47-7.50 (3H, m), 7.58 (1H, s), 7.71 (1H, d, J=1.4Hz), 8.13 (1H, dd, J=8.3, 1.5Hz), 8.52 (1H, d, J=1.4Hz), 8.74 (1H, dd, J=4.4, 1.5Hz)
20	Me	CH	Pb	2.75 (3H, s), 7.24 (1H, d, J=8.3Hz), 7.45-7.56 (6H, m), 7.67 (1H, d, J=1Hz), 8.03 (1H, d, J=8.3Hz), 8.50 (1H, m)
21	Me	C-Me	Pb	2.44 (3H, s), 2.72 (3H, s), 7.14 (1H, d, J=8.3Hz), 7.27-7.31 (2H, m), 7.45-7.58 (4H, m), 7.67 (1H, d, J=1.4Hz), 8.52 (1H, d, J=1.4Hz)
22	Me	CH	2-Cl-Ph	2.75 (3H, s), 7.22 (1H, d, J=8.3Hz), 7.37-7.50 (4H, m), 7.54-7.58 (1H, m), 7.61 (1H, d, J=8.3Hz), 7.68 (1H, d, J=1.5Hz), 8.53 (1H, d, J=1.5Hz)
23	Me	CH	3-Cl-Ph	2.75 (3H, s), 7.26 (1H, d, J=8.3Hz), 7.36 (1H, m), 7.46 (2H, m), 7.50 (1H, s), 7.68 (1H, d, J=1.6Hz), 7.98 (1H, d, J=8.3Hz), 8.50 (1H, m)
24	Me	CH	4-Cl-Ph	2.76 (3H, s), 7.26 (1H, d, J=8.3Hz), 7.40-7.44 (2H, m), 7.48-7.53 (3H, m), 7.67 (1H, d, J=1.5Hz), 7.98 (1H, d, J=8.3Hz), 8.50 (1H, m)
25	Me	CH	3-Me-Ph	2.45 (3H, s), 2.75 (3H, s), 7.25-7.32 (4H, m), 7.38-7.44 (1H, m), 7.50 (1H, s), 7.66 (1H, d, J=1.4Hz), 7.98 (1H, d, J=8.3Hz), 8.50 (1H, m)
26	Me	CH	3-MeO-Ph	2.75 (3H, s), 3.87 (3H, s), 6.97-7.08 (3H, m), 7.24 (1H, d, J=8.3Hz), 7.40-7.46 (1H, m), 7.52 (1H, s), 8.06 (1H, d, J=8.3Hz), 8.49 (1H, m)
27	Me	CH	3-F-Ph	2.76 (3H, s), 7.15-7.22 (2H, m), 7.24-7.29 (2H, m), 7.46-7.53 (2H, m), 7.68 (1H, d, J=1.4Hz), 8.01 (1H, d, J=8.3Hz), 8.51 (1H, s)
28	Me	CH	3-CF ₃ -Pb	2.76 (3H, s), 7.28 (1H, d, J=8.3Hz), 7.53 (1H, s), 7.65-7.70 (3H, m), 7.73-7.78 (2H, m), 7.92 (1H, d, J=8.3Hz), 8.52 (1H, s)
29	Me	CH	c-Pen	1.72-1.94 (6H, m), 2.10-2.33 (2H, m), 2.73 (3H, s), 3.48-3.56 (1H, m), 7.30 (1H, d, J=8.3Hz), 7.44 (1H, s), 7.57 (1H, d, J=1.0Hz), 8.23 (1H, d, J=8.3Hz), 8.39 (1H, m)
30	Me	CH	c-Hex	1.36(1H,m), 1.52(4H,m), 1.80-2.07(5H,m), 2.73(3H,s), 3.03 (1H,m), 7.30(1H,d,J=8.3Hz), 7.41(1H,s), 7.57(1H,d,J=1.0Hz), 8.17(1H,d,J=8.3Hz), 8.39(1H,d,J=1.0Hz)
31	Pr	CH	3-Cl-Ph	1.04 (3H, t, J=7.3Hz), 1.85-1.95 (2H, m), 2.96 (2H, t, J=7.3Hz), 7.26 (1H, d, J=8.3Hz), 7.34-7.40 (1H, m), 7.44-7.49 (4H, m), 7.50 (1H, s), 7.68 (1H, d, J=1.4Hz), 8.00 (1H, d, J=8.3Hz), 8.52 (1H, m)
32	Pr	CH	3-F-Ph	1.04 (3H, t, J=7.5Hz), 1.85-1.95 (2H, m), 2.96 (2H, t, J=7.5Hz), 7.15-7.22 (2H, m), 7.24-7.90 (2H, m), 7.46-7.53 (2H, m), 7.68 (1H, d, J=1.4Hz), 8.03 (1H, d, J=8.3Hz), 8.52 (1H, m)

【0050】

【表6】

Co	R^1	R^4	R^5	X	A
1	Me	H	H	CH	3-Br-Ph
2	Me	H	H	CH	c-Hep
3	Me	H	H	CH	2,3-diCl-Ph
4	Me	H	H	CH	2,4-diCl-Ph
5	Me	H	H	CH	3,4-diCl-Ph
6	Me	H	H	CH	3,5-diCl-Ph
7	Me	H	H	CH	4-Py
8	Me	H	H	CH	2-Pym
9	Me	H	H	CH	2-ThN
10	Me	H	H	CH	2-Th
11	Et	H	H	CH	3-Br-Ph
12	Et	H	H	CH	3-Me-Ph
13	Et	H	H	CH	c-Hex
14	Me	H	H	CMe	3-Cl-Ph
15	Me	H	H	CMe	3-Me-Ph
16	Me	H	H	CMe	c-Hex
17	Me	H	Me	CH	3-Cl-Ph
18	Me	H	Me	CH	3-Me-Ph
19	Me	H	Me	CH	c-Hex
20	Me	Me	H	CH	3-Cl-Ph
21	Me	Me	H	CH	3-Me-Ph
22	Me	Me	H	CH	c-Hex
23	Me	H	H	N	3-Cl-Ph
24	Me	H	H	N	3-Me-Ph
25	Me	H	H	N	c-Hex
26	Et	H	H	N	3-Cl-Ph
27	Et	H	H	N	c-Hex

【0051】

【表7】

Co	R ¹	X	A	Co	R ¹	R ²	A
28	Me	CH	Pb	46	Et	CH	3-Br-Ph
29	Me	CH	3-F-Ph	47	Et	CH	3-Me-Ph
30	Me	CH	3-Cl-Ph	48	Et	CH	c-Pen
31	Me	CH	3-Ir-Ph	49	Et	CH	c-Hex
32	Me	CH	3-Me-Ph	50	Et	CH	c-Hep
33	Me	CH	c-Pen	51	Me	CMe	3-F-Ph
34	Me	CH	c-Hex	52	Me	CMe	3-Cl-Ph
35	Me	CH	c-Hep	53	Me	CMe	3-Br-Ph
36	Me	CH	2,3-diCl-Ph	54	Me	CMe	3-Me-Ph
37	Me	CH	2,4-diCl-Ph	55	Me	CMe	c-Pen
38	Me	CH	3,4-diCl-Ph	56	Me	CMe	c-Hex
39	Me	CH	3,5-diCl-Ph	57	Me	CMe	c-Hep
40	Me	CH	4-Py	58	Et	N	3-F-Ph
41	Me	CH	2-Pym	59	Et	N	3-Br-Ph
42	Me	CH	2-ThN	60	Et	N	3-Me-Ph
43	Me	CH	2-Th	61	Et	N	c-Pen
44	Et	CH	3-F-Ph	62	Et	N	c-Hex
45	Et	CH	3-Cl-Ph	63	Et	N	c-Hep

フロントページの続き

(72)発明者 福永 正浩

茨城県つくば市御幸が丘21 山之内製薬株
式会社内