Predictive Pre-Training of Tennis Shot Embeddings

Final Project Presentation

Project/Team ID: TECO George Tamer (gyt2107) Flor Sanders (fps2116) Tawab Safi (as7092)

EECS E6691 Advanced Deep Learning, 2024 Spring

Outline

- 1. Introduction
- 2. Methodology
- 3. Automated Video Annotation
- 4. Deep Learning Model Architecture
- 5. Model Pre-Training
- 6. Downstream Task Fine-Tuning
- 7. Conclusion
- 8. Future Work
- 9. References

Introduction

<u>Tennis = Skill + Strategy</u>

- Lots can be learned from:
 - player movements
 - ball trajectories
- Game analysis and coaching are big businesses
- Prohibitively expensive for most people

→ Solve using Deep Learning

- Predictive pre-training of shot embeddings
- Use embeddings as features in downstream tasks

Methodology

Video Annotation - Dataset

Tenniset

- 2012 London Olympic Games
- Five full-length tennis matches
 - o (V006 V010)
- Start/end frame annotations
- Serve in/out annotations
- Hit type annotations
 - flat/topspin/slice/unsure
 - forehand/backhand

Video Annotation - Ball, Court & Player Detection

TennisProject

- Ball Detection
 - Tracknet
- Court Detection
 - Modified Tracknet
 - 14 Court Points
- Player Detection
 - Faster R-CNN trained on COCO
 - Heuristics to identify playes
- → Extract 2D player position on court using homography.

Video Annotation - 2D & 3D Player Pose Detection

MMPose

- Framework for pose detection models
- 2D Pose Detection
 - RTMDet + RTMPose
 - Refine bounding box estimates
- 3D Pose Detection
 - MotionBERT
 - Fix orientation by matching 3D to 2D poses
- Total of 3,183 processed shot segments
- → Reduced frame dimensionality from
 1280x720x3 pixels to 2x17x3 coordinates

Deep Learning Model Architecture

Model Pre-Training

Pre-Training Task

- Goal: Learn meaningful embedding
- Task: Predict next 3D pose
 - Inspired by ELMo
- Train model end-to-end
- Test Loss: 0.0331

Training History

Model Pre-Training Results

Pretrained Model Evaluation

From the first 3D pose and 2D position, predict all subsequent 3D poses iteratively.

→ Record quality drift over time

Downstream Task - Shot Classification

- Task: given an embedding of the shot, predict the shot type
- 11 classes in original test dataset
- Kept top 4 classes due to extreme shot imbalance

Downstream Task - Network Surgery and Fine-Tuning

Procedure

- Add a simple MLP head to the model
- Freeze all weights except for the MLP
- Train for N epochs
- Unfreeze all weights
- Continue training

Downstream Task - Results

Accuracy: 0.7605

• Precision: 0.7626

• Recall: 0.7605

• F1 Score: 0.7601

Conclusion

- Learning representations of sports shots through video -> 3d workspace -> graph construction is a promising direction for future research.
- Performing sequence modelling over continuous action spaces is a challenging task, and requires careful data curation and network architecting.
- The learnt representations are capable enough to serve as inputs to downstream tasks.

Future Work

Data Collection

- Quantity
 - Process more tennis matches
- Quality
 - Hand-keypoint extraction
 - Track ball and racket in 3d
- Modality
 - Collect { shot-video , caption }
 data samples to enable novel
 downstream tasks such as
 searching and coaching

Model Improvements

- Graph Construction
 - Use a temporal graph
 - Multiplayer graphs
- Encoder Variants
 - Try pre-training with BERT-style masking & reconstruction
- Multimodal
 - Contrastive learning on graph and text modalities
- Learning player style

References

- Our Github: https://github.com/ecbme6040/e6691-2024spring-project-TECO-as7092-gyt2107-fps2116
- Tenniset: https://github.com/HaydenFaulkner/Tennis
- TennisProject: https://github.com/yastrebksv/TennisProject
 - TrackNet: https://arxiv.org/abs/1907.03698
 - TennisCourtDetector: https://github.com/yastrebksv/TennisCourtDetector
 - Faster R-CNN: https://arxiv.org/abs/1506.01497
- MMPose: https://github.com/open-mmlab/mmpose
 - o RTMDet: https://arxiv.org/abs/2212.07784
 - RTMPose: https://arxiv.org/abs/2303.07399
 - MotionBERT: https://arxiv.org/abs/2210.06551
- RNN Literature Review: https://arxiv.org/abs/1912.05911
- Graph Attention Network: https://arxiv.org/abs/1710.10903
- BERT: https://arxiv.org/abs/1810.04805
- CLIP multimodal embeddings: https://arxiv.org/abs/2103.00020
- V-JEPA: https://ai.meta.com/research/publications/revisiting-feature-prediction-for-learning-visual-representations-from-video/