请扫码登记

无线网名称: B3A06, 无线网密码: beihang41

助教: 芦家琪 李伟祥

微电子器件实验

彭守仲

北京航空航天大学 集成电路学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年12月2日

回顾: 共漏放大电路(源随器)

- 1. 使 E_D =5V, E_G =5V
- 2.任意波形发生器输出

1KHz、500mV_{PP}信号v_{in} gds

3.断开 R_L ,用示波器测量 v_{in}

和 v_{outl} ,用万用表测量 i_{in} 和 i_d

4.计算电压放大倍数 A_{ν} 、

输入电阻 R_{in} 和交流跨导 g_m G \hookrightarrow

5.连接 R_L 测量 v_{out2} ,计算电流 v_{gs}

放大倍数 A_i 和输出电阻 R_{out}

回顾: 共漏放大电路(源随器)

■ 放大电路参数测量

用万用表测量 i_{in}

理论上: $R_{in} \approx R_G = 100 \text{K}\Omega$

实验上:

- ightharpoonup 手持万用表测得 i_{in} =1.5μA, 计算得到 R_{in} =118KΩ
- > 台式万用表测得 $i_{in}=1.85 \mu A$,

计算得到 R_{in} =95.7K Ω

注意: 低精度测量时选用

台式万用表

- 场效应管单管放大电路
 - 共源放大电路
 - 共漏放大电路(源随器)
 - 共栅放大电路

V_{DD}

R_D

V_{out}

V_b

V_{in}

V_{in}

共源

共漏(源随器)

共栅

回顾:场效应管的模型参数测量

- 场效应管的低频小信号等效电路
- > 低频跨导:

$$g_m = \frac{\partial i_D}{\partial v_{GS}} \bigg|_O = \frac{i_d}{v_{gs}}$$

回顾: 场效应管的模型参数测量

■ 饱和区低频跨导(忽略沟道长度调制效应)

$$\therefore I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

$$\therefore g_m = \frac{\partial I_D}{\partial V_{GS}}$$

$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$= \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

$$= \frac{2I_D}{V_{CS} - V_{TH}}$$

回顾:场效应管的模型参数测量

- 饱和区低频跨导(忽略沟道长度调制效应)
 - 直流工作点确定后, I_D 和 g_m 保持不变

回顾:场效应管的模型参数测量

- 饱和区低频跨导(忽略沟道长度调制效应)
 - 直流工作点确定后, I_D 和 g_m 保持不变

思考:如何改变低频跨导 g_m ?

步骤1: 放大电路参数计算

■ 放大电路参数计算

- 1. 画出低频交流小信号等效电路
- 2. 设 g_m =0.01S,计算出 电压放大倍数 A_v 、电流放 大系数 A_i 、输入电阻 R_{in} 、 输出电阻 R_{out} 的具体数值 (课堂测试)

步骤2:直流工作点设置

■ 直流工作点设置

- 1.自行设置 E_G 和 E_D
- $2.测量<math>V_{DS}$ 和 I_D 并画图,确保工作在放大区
- $3.测量v_{gs}$ 和 i_d 并计算 低频跨导 g_m
- $4.调节E_G和E_D$,使低频 跨导 g_m =0.01S

步骤3: 放大电路参数测量

■ 放大电路参数测量

- 1.保持直流工作点不变
- 2.任意波形发生器输出

1KHz、500mV_{PP}信号v_{in} gds

3.断开 R_L ,用示波器测量 v_{in}

和 v_{outl} ,用万用表测量 i_{in}

4.计算电压放大倍数 A_{ν} 、

输入电阻R_{in}

5.连接 R_L 测量 v_{out2} ,计算电流 v_{gs}

放大倍数 A_i 和输出电阻 R_{out}

课后思考

■ 课后思考

- 1. 利用交流等效电路计算出放大电路的电压放大倍数 $A_{v_{i}}$ 电流放大系数 $A_{i_{i}}$ 、输入电阻 R_{in} 和输出电阻 R_{out} 的数值大小(需要先根据测量结果计算出交流跨导 g_{m}),并与实验测量结果进行对比。
- 2. 对比和分析共漏放大电路和共栅放大电路的参数和特点。

步骤1: 放大电路参数计算

■ 放大电路参数计算

- 1. 画出低频交流小信号等效电路
- 2. 设 $g_m = 0.01S$,计算出电压放大倍数 A_v 、电流放大系数 A_i 、输入电阻 R_{in} 、输出电阻 R_{out} 的具体数值(课堂测试)

步骤2:直流工作点设置

■ 直流工作点设置

- 1.自行设置 E_G 和 E_D
- $2.测量<math>V_{DS}$ 和 I_D 并画图,确保工作在放大区
- $3.测量v_{gs}$ 和 i_d 并计算 低频跨导 g_m
- $4.调节E_G和E_D$,使低频 跨导 g_m =0.01S

步骤3: 放大电路参数测量

■ 放大电路参数测量

- 1.保持直流工作点不变
- 2.任意波形发生器输出

1KHz、500mV_{PP}信号v_{in} gds

3.断开 R_L ,用示波器测量 v_{in}

和 v_{outl} ,用万用表测量 i_{in}

4.计算电压放大倍数 A_{ν} 、

输入电阻R_{in}

5.连接 R_L 测量 v_{out2} ,计算电流 v_{gs}

放大倍数 A_i 和输出电阻 R_{out}

·东京京东大学 北京苏京东大学 北京苏京东大学

谢谢!

■ 电压或电流放大倍数(增益)的测量方法

任何放大电路均可视为二端口网络。

放大倍数/增益:输出量与输入量之比。注意:是变化量之比。

$$A_v = \frac{\dot{U}_o}{\dot{U}_i}$$
 最常用

$$A_i = \frac{\dot{I}_o}{\dot{I}_i}$$

$$A_{ui} = \frac{U_o}{\dot{I}_i}$$

$$A_{iu} = \frac{I_o}{\dot{U}_i}$$

■ 输入电阻和输出电阻的测量方法

对输出电阻的直观理解:将放大器的输出等效为电压源,其内阻就是输出电阻。可用戴维南定理求解(从负载端看进去,令 $\dot{U_o}'=0$)。

■ 输入电阻和输出电阻的测量方法

对输出电阻的直观理解:将放大器的输出等效为电压源,其内阻就是输出电阻。可用戴维南定理求解(从负载端看进去,令

$$\dot{U}_{o}^{\prime}=0$$
) .