Kombinatorické štruktúry :: sylabus

Askar Gafurov

16. januára 2019

Obsah

$\mathbf{\acute{U}vod}$

Cieľom tohto textu je urobiť prehľad o kľúčových pojmoch a tvrdeniach z teórie kombinatorických štruktúr a pomôcť tak pri príprave na skúšku. Daný materiál teda obsahuje úplné znenia definícií a viet, nemá však žiadne dôkazy. Je tomu tak hlavne z dôvodu, že väčšina preberaných tvrdení je buď "pod našu uroveň" alebo "nad našu uroveň". Tvrdenia prvého typu prenechávame čítateľovi na samostatné odvodenie (časom možno pribudnú odkazy na materiály s podrobnými dôkazmi). Tvrdenia druhého typu sú v texte oznáčené hviezdičkou.

Daný text nie je náhradou pre absolvovanie prednášok¹.

Pre ďalšie štúdium odporúčame knihy **TODO**.

Tento text je písaný na základe prednášok z predmetu Kombinatorické štruktúry v zimnom semestri akademického roku 2016/17.

¹a ani náhradou pre pestrú výživu :)

Latinské štvorce

1.1 Definícia, základné vlastnosti

Definícia 1.1.1. Tabuľka rozmerov $n \times n$ s prvkami z $\{1, \ldots, n\}$ je latinský štvorec rádu n, ak platí:

- 1. v každom riadku sa výskytuje všetkých n rôznych symbolov
- 2. v každom stlpci sa výskytuje všetkých n rôznych symbolov

Symbolom S_n značíme grupu permutácií veľkosti n.

Definícia 1.1.2. Nech $\phi, \psi \in S_n$ sú permutácie veľkosti n. Potom vzdialenosť $dist(\phi, \psi)$ dvoch permutácií definujeme ako počet prvkov, ktoré dané permutácie zobrazia rôzne. Formálne,

$$dist(\phi, \psi) := |\{x \mid x \in \{1, ..., n\} \land \phi(x) \neq \psi(x)\}|$$

Definícia 1.1.3. Nech $\phi \in S_n$ je permutácia veľkosti n. Potom $Fix(\phi)$ je množina všetkých pevných bodov permutácie ϕ . Formálne,

$$Fix(\phi) := \{x \mid x \in \{1, ..., n\} \land \phi(x) = x\}$$

Veta 1.1.1. Nech $\phi, \psi \in S_n$ sú permutácie veľkosti n. Potom platí:

- 1. $\forall \lambda \in S_n : dist(\lambda \phi, \lambda \psi) = dist(\phi, \psi)$
- 2. $dist(\phi, \psi) = dist(1, \phi^{-1}\psi) = n |Fix(\phi^{-1}\psi)|$

Veta 1.1.2. Funkcia $dist(\phi, \psi)$ je metrikou priestoru S_n , t.j. ona spĺňa nasledujúce podmienky:

- 1. $dist(\phi, \psi) = 0 \Leftrightarrow \phi = \psi$
- 2. $dist(\phi, \psi) = dist(\psi, \phi)$ (symetria)
- 3. $dist(\phi, \psi) + dist(\psi, \lambda) \geq dist(\phi, \lambda)$ (trojuholníková nerovnosť)

Definícia 1.1.4. Latinský obdĺžník rozmerov $k \times n$ je postupnosť $L = [\phi_1, \phi_2, \dots, \phi_k]$ permutácií z S_n takých, že všetky sú vo vzdialenosti n. Formálne,

$$\forall i, j \in \{1, \dots, n\} : i \neq j \Rightarrow dist(\phi_i, \phi_j) = n$$

Definícia 1.1.5. (Iná definícia latinských štvorcov) Latinský štvorec rádu n je latinský obdĺžnik typu $k \times n$ s maximálnou dĺžkou postupnosti. Inak povedané, latinský štvorec rádu n je postupnosť n permutácií z S_n , ktoré sú od seba vzdialené n.

Veta 1.1.3. Každý latinský obdĺžnik sa dá doplniť na latinský štvorec.

1.2 Ortogonálne latinské štvorce

Definícia 1.2.1. Nech $l = [\phi_1, \dots, \phi_n]$ a $l' = [\psi_1, \dots, \psi_n]$ sú latinské štvorce rádu n. Hovoríme, že l a l' sú ortogonálne (znáčime ako $l \perp l'$), ak platí:

$$\forall i, j, k, l \in \{1, \dots, n\} : (i, j) \neq (k, l) \Longrightarrow (\phi_i(j), \psi_i(j)) \neq (\phi_k(l), \psi_k(l))$$

Veta 1.2.1. Nech $l = [\phi_1, \dots, \phi_n]$ a $l' = [\psi_1, \dots, \psi_n]$ sú latinské štvorce rádu n. Zavedieme nasledovné značenia:

- Nech $\lambda \in S_n$, potom $\lambda l := [\lambda \phi_1, \dots, \lambda \phi_n]$ (λl je tiež latinský štvorec).
- Nech kompozícia l a l' je definovaná ako $l \circ l' := [\phi_1 \psi_1, \dots, \phi_n \psi_n].$

Potom platí:

- 1. $l \perp l' \Leftrightarrow [\psi_1 \phi_1^{-1}, \dots, \psi_n \phi_n^{-1}]$ je latinský štvorec
- 2. $Ak \lambda, \rho \in S_n \ a \ l \perp l', \ tak \ aj \ \lambda l \perp \rho l'$
- 3. $l \perp l' \Leftrightarrow existuje \ latinský \ štvorec \ l'' \ taký, \ že \ l' = l'' \circ l$

Definícia 1.2.2. Množina latinských štvorcov rádu n $\{l_1, \ldots, l_r\}$ je maximálna, ak $\forall i \neq j : l_i \perp l_j$ a nedá sa doplniť ďalším latinským štvorcom bez porušenia prvej podmienky.

Veta 1.2.2. Maximálna množina latinských štvorcov rádu n má najviac n-1 prvkov.

Definícia 1.2.3. Latinský štvorec je v normánom tvare, ak prvý riadok tabuľky je rovný $(1, \ldots, n)$ a prvý stlpec je rovný $(1, \ldots, n)^T$.

Definícia 1.2.4. Latinské štvorce l a l' sú izotopické, ak sa dajú permutáciou riadkov, stĺpcov a názvov prvkov previesť na rovnaký latinský štvorec v normálnom tvare.

Poznámka 1.2.1. Latinský štvorec v normálnom tvare zodpovedá tabuľke binárnej operácie kvazigrupy (kvazigrupa je množina s invertovateľnou binárnou operáciou a neutrálnym prvkom¹).

Platí, že 2 kvazigrupy sú izomorfné práve vtedy, keď príslušné latinské štvorce sú izotopické.

Definícia 1.2.5. Latinský štvorec si vieme predstaviť ako maximálnu (na inklúziu) množinu A trojíc $(r, c, s) \in \{1, ..., n\}^3$, kde r zodpovedá číslu riadku, c zodpovedá číslu stlpca a s zodpovedá hodnote v políčku (i, j), takú, že platí:

- všetky dvojice (r, c) sú rôzne ("máme n^2 políčok")
- \bullet všetky dvojice (r,s)sú rôzne ("v každom riadku sa vyskytnú všetky hodnoty od 1 pon")
- všetky dvojice (c, s) sú rôzne ("v každom stl
pci sa vyskytnú všetky hodnoty od 1 pon")

Konjugáciou latinského štvorca voláme množinu trojíc A', ktorá vznikne z A permutáciou trojíc. Formálne, nech $\lambda \in S_3$ je permutácia veľkosti 3, potom

$$A' = \left\{ (a_{\lambda(1)}, a_{\lambda(2)}, a_{\lambda(3)}) \mid (a_1, a_2, a_3) \in A \right\}$$

Latinské štvorce, ktoré sa dajú jeden z druhého dostať pomocou konjugácie, voláme konjugované. Latinské štvorce, ktoré sa dajú jeden z druhého dostať pomocou konjugácie a izotopie, voláme paratopické.

 $^{^1\}mathrm{d}\acute{\mathrm{a}}$ sa to neformálne predstaviť ako grupu bez zaručenej asociativity

Veta 1.2.3. (Stevens, 1935) $Ak \ n = p^{\alpha}$, $kde \ p \ je \ prvočíslo, tak maximálna množina latinských štvorcov má <math>n-1$ prvkov.

Konštrukcia. Číslo n je mocninou prvočísla, preto existuje konečné pole F := GF(n) príslušnej veľkosti. Očíslujeme prvky poľa F v ľubovoľnom poradí, ale nech $a_0 = 0$.

k-tý latinský štvorec si označme ako $l_k = \left(a_{ij}^{(k)}\right)$.

$$a_{ij}^{(k)} := a_i a_k + a_j$$

Definícia 1.2.6. MOLS(n) je mohutnosť maximálnej množiny latinských štvorcov rádu n.

 $Poznámka 1.2.2. \ MOLS(6) = 1$

Veta* 1.2.4. (Bose, Parker, Schrickhande, 1960)

$$\forall n \geq 3 \land n \neq 6 : MOLS(n) \geq 2$$

Veta 1.2.5.
$$MOLS(n_1) \ge m \land MOLS(n_2) \ge m \Rightarrow MOLS(n_1n_2) \ge m$$

Konštrukcia. k-tý latinský štvorec rádu n_1n_2 sa dá získať pomocou Kroneckerovho súčinu k-tých príslušných latinských štvorcov rádu n_1 a n_2 .

Formálne, nech l_1, \ldots, l_m sú ortogonálne latinské štvorce rádu n_1 a l'_1, \ldots, l'_m sú ortogonálne latinské štvorce rádu n_2 . Potom množina matíc $\{l_k \otimes l'_k \mid k \leq m\}$, kde \otimes je Kroneckerov súčin matíc, je množina ortogonálnych latinských štvorcov rádu $n_1 n_2$.

Dôsledok 1.2.5.1.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r} \Rightarrow MOLS(n) \ge \min_{i \le r} (p_i^{\alpha_i} - 1)$$

Veta 1.2.6.

$$n = 2m - 1 \Rightarrow MOLS(n) \ge 2$$

Konštrukcia. Pohybujeme sa v cyklickej grupe $(\mathbb{Z}_n, +) = \{0, \dots, n-1\}.$

$$A := (a_{ij}), a_{ij} := m(i+j) \pmod{n}$$

$$B := (b_{ij}), b_{ij} := (i - j) \pmod{n}$$

Blokové plány

2.1 Definícia, základné vlastnosti

Definícia 2.1.1. Vyvážený nekompletný blokový plán (angl. balanced incomplete block design) $BIBD(v, b, r, k, \lambda)$ je usporiadaná dvojica (X, \mathcal{B}) , kde X je množina objektov a $\mathcal{B} \subset \mathcal{P}(X)$ je množina podmnožín objektov (tieto podmnožiny voláme bloky), pričom sú splnené nasledujúce podmienky:

- 1. v = |X| je mohutnosť množiny objektov.
- 2. $b = |\mathcal{B}|$ je mohutnosť množiny blokov.
- 3. každý blok má mohutnosť k.
- 4. každý bod je obsiahnutý v práve r blokoch.
- 5. každá dvojica bodov sa vyskytuje v práve λ blokoch.

Veta 2.1.1. $\exists BIBD(v, b, r, k, \lambda) \iff \lambda$ -násobný kompletný multigraf rádu $v \ \lambda K_v$ sa dá rozložiť na b hranovo disjunktných klík rádu $k \ (K_k)$.

Veta 2.1.2. Nech existuje $BIBD(v, b, r, k, \lambda)$. Potom:

- 1. vr = bk
- 2. $\lambda(v-1) = r(k-1)$

Dôsledok 2.1.2.1. Preto namiesto značenia $BIBD(v,b,r,k,\lambda)$ budeme často použivať značenie $BIBD(v,k,\lambda)$, nakoľko zvyšné parametre vieme dorátať:

$$r:=\frac{\lambda(v-1)}{k-1},\ b:=\frac{\lambda v(v-1)}{k(k-1)}$$

Veta 2.1.3. Nech existuje $BIBD(v, b, r, k, \lambda)$, $kde\ X = \{x_1, x_2, \dots, x_v\}$ a $\mathcal{B} = \{B_1, \dots, B_b\}$. Nech matica incidencie $A \in \{0, 1\}^{v \times b}$ je matica typu $v \times b$, $kde\ A_{ij} = 1$ práve vtedy, $ked\ x_i \in B_j$. Potom $AA^T = (r - \lambda)I_v + \lambda J_v$, $kde\ I_v$ je matica identity rádu v a J_v je matica jednotiek typu $v \times v$.

Lema 2.1.4. Nech A je matica incidencie blokového plánu $BIBD(v, b, r, k, \lambda)$. Potom $det(AA^T) = (r - \lambda)^{v-1}(v\lambda - \lambda + r)$.

Dôsledok 2.1.4.1. Ak $BIBD(v, b, r, k, \lambda)$ je blokový plán a b = v, tak matica incidencie A je regulárna a matici A^T tiež zodpovedá nejaký blokový plán.

Poznámka 2.1.1. Blokové plány také, že b = v, voláme symetrické.

Veta 2.1.5. (Fisherova nerovnosť) Nech existuje blokový plán $BIBD(v, b, r, k, \lambda)$. Potom $b \geq v$.

Dôsledok 2.1.5.1. Nech existuje blokový plán $BIBD(v, b, r, k, \lambda)$. Potom $r \geq k$.

2.2 Cyklické blokové plány a diferenčné množiny

Definícia 2.2.1. Množina $D = \{d_1, \ldots, d_k\} \subset \mathbb{Z}_v$ mohutnosti k sa volá (v, k, λ) -diferenčnou množinou, ak pre každý nenulový prvok $a \in \mathbb{Z}_v$ existuje práve λ usporiadaných dvojíc $(d_i, d_i) \in D^2$ takých, že $d_i - d_i \equiv a \mod v$.

 $Poznámka~2.2.1.~{\rm Množina}~\{0,1,3\}~{\rm je}~(7,3,1)$ -diferenčnou množinou.

Poznámka~2.2.2. Podobným spôsobom je možné definovať diferenčné množiny nad konečnými grupami rádu v.

Definícia 2.2.2. (v, k, λ) -BIBD je cyklický, ak existuje permutácia s cyklom dlžky v taká, že zachováva bloky¹. Formálne, blokový plán je cyklický, ak existuje permutácia $\phi \in S_v$ s cyklom dlžky v taká, že

$$\mathcal{B} = \{ \{ \phi(x_1), \dots, \phi(x_k) \} \mid \{x_1, \dots, x_k\} \in \mathcal{B} \}$$

Veta 2.2.1. Množina $D = \{d_1, \ldots, d_k\}$ je (v, k, λ) -diferenčná množina práve vtedy, keď (X, \mathcal{B}) , kde $X = \mathbb{Z}_v$ a $\mathcal{B} = \{D + i \mid \forall i \in \mathbb{Z}_v\}$ $(D + i := \{d_1 + i, \ldots, d_k + i\})$ je cyklický (v, k, λ) -BIBD.

Definícia 2.2.3. Nech F je konečné pole. Nech $V \cong F^{n+1}$ je vektorový priestor dimenzie n+1 nad poľom F. Definujeme reláciu \sim nad prvkami $V^* := V - \left\{\vec{0}\right\}$:

$$\forall \vec{a}, \vec{b} \in V^* : \left(\vec{a} \sim \vec{b} \overset{def}{\Longleftrightarrow} \exists k \in F : \vec{a} = k\vec{b} \right)$$

Potom rozklad V^* na triedy ekvivalencie $\mathbb{P}^n(V) := V^* /_{\sim}$ je n-rozmerná projektívna rovina nad F.

Projektívnu rovinu dimenzie n nad konečným poľom s $q=p^r$ prvkami oznáčujeme ako $PG(n,q):=\mathbb{P}^n\left(\mathbb{Z}_p^r\right)$

 $Veta* 2.2.2. (Typ \ S \ dif. \ množín — Singerove \ dif. \ množiny)^2$

Nech množina D obsahuje všetky nadroviny konečnej projektívnej roviny PG(n,q) (nadrovina je faktorový obraz vektorového podriestoru dimenzie n). Potom D je (v,k,λ) -diferenčná množina s parametrami:

$$v = \frac{q^{n+1} - 1}{q - 1}, k = \frac{q^n - 1}{q - 1}, \lambda = \frac{q^{n-1} - 1}{q - 1}$$

Veta* 2.2.3. (Typ Q dif. množín — kvadratické reziduá, angl. Paley-type)

Nech $F := GF(p^l)$ je konečné pole mohutnosti p^l , kde $p^l \equiv 3 \mod 4$. Nech $r \in F$ je generátor grupy $F^* := (F - \{0\}, *)$. Potom množina kvadratických reziduí grupy F^* $QR(F^*) := \{r^a \mod p^l \mid a \in \{0, \dots, p^l - 1\} \land a \text{ je párne}\}$ je (v, k, λ) -diferenčnou množinou s parametrami:

$$v = p^l = 4t - 1, k = 2t - 1, \lambda = t - 1$$

Poznámka 2.2.3. Existujú aj ďalšie triedy differenčných množín, napríklad bikvadratické reziduá alebo tzv. twin prime power difference set.

TODO rozpísať bikvadratické rezidua, resp. twin prime power.

 $^{^1}$ bijektívne zobrazenia množiny na ňu samu, ktoré zachovávajú vzťahy medzi objektami, sa všeobecne nazývajú automorfizmy

²TODO je to bez dokazu ci s dokazom?

2.3 Hadamardove matice

Definícia 2.3.1. Matica $H \in \{-1, +1\}^{n \times n}$ je Hadamardovou maticou rádu n, ak $HH^T = nI_n$ (t.j. všetky riadky sú navzájom ortogonálne).

Veta 2.3.1. Nech matica H je Hadamardova matica rádu n. Potom platí:

- 1. vymenou riadkov (stlpcov) matice H dostaneme Hadamardovu maticu
- 2. matica H je normálna, t.j. $HH^T = H^TH$

Definícia 2.3.2. Hadamardova matica je v normálnom tvare, ak prvý riadok aj prvý stlpec obsahujú iba hodnoty +1.

Veta* 2.3.2. Nech H je Hadamardova matica rádu n. Potom $\det H = \sqrt{n^n}$.

Veta* 2.3.3. (Hadamardov odhad)

Nech $M \in \mathbb{C}^{n \times n}$ je komplexná matica typu $n \times n$, kde $|(M)_{ij}| \leq 1$. Nech H je ľubovoľná Hadamardova matica rádu n. Potom platí:

$$\det M \le \det H = \sqrt{n^n}$$

Veta 2.3.4. Ak H je Hadamardova matica rádu n, tak n je buď 1, 2 alebo násobok 4.

Hypotéza 2.3.1. (Hadamard)

 $\forall n \in \{1,2\} \cup \{4k \mid k \in \mathbb{N}\} \Longrightarrow existuje \ Hadamardova \ matica \ r\'adu \ n.$

Veta 2.3.5. (Hadamard, Sylvester)

Ak H, H' su Hadamardove matice, tak aj $H \otimes H'$ je tiež Hadamardova matica (\otimes je Kroneckerov súčin matíc).

Veta 2.3.6. Normalizovaná Hadamardova matica rádu 4μ existuje práve vtedy, keď existuje $(4\mu - 1, 2\mu - 1, \mu - 1)$ -diferenčná množina (typ Q).

2.4 Konečné projektívne roviny

Jedna (algebraická) definícia konečnej projektívnej roviny (angl. *finite projective plane*, alebo skrátene FPP) už bola daná v sekcii o diferenčných množinách (definícia ??). V tejto sekcii uvedieme iné dve definície: axiomatickú a kombinatorickú.

Definícia 2.4.1. (Axiómy konečnej projektívnej roviny)

Pojmy bodu a priamky sú brané ako primitívne pojmy. Relácie "bod leží na priamke" (značíme $p \in l$) a "priamka prechádza bodom" považujeme za primitívne relácie.

Usporiadana trojiica $\pi = (X, \mathfrak{P}, \in)$, kde X je konečná množina bodov, \mathfrak{P} je konečná množina priamok a \in je relácia "patrí" medzi bodmi a priamkami, je konečnou projektívnou rovinou, ak spĺňa nasledujúce axiómy:

- 1. Každými dvomi rôznymi bodmi prechádza **práve 1** priamka.
- 2. Každé dve rôzne priamky majú **práve 1** spoločný bod.
- 3. existujú 4 body vo všeobecnej geometrickej polohe, t.j. žiadnou trojicou z týchto bodov nevedie žiadna priamka.

Veta* 2.4.1. (Desarguesova veta)

TODO obrázok

Veta 2.4.2. V konečnej projektívnej rovine (v zmysle definície ??) existujú 4 priamky také, že žiadna trojica z týchto priamok nemá spoločný bod.

Čítateľ si môže všimnúť, že ak vymeníme v danom axiomatickom systéme pojmy "priamka" a "bod", tak dostaneme ekvivalentný systém axióm. Je ľahko nahliadnuť, že ak v ľubovolnom platnom tvrdení o konečných projektívnych rovinách vymeníme tieto pojmy, tak znovu dostaneme platné tvrdenie. Takéto trvdenia voláme duálne (napríklad, prvá axióma je duálna ku druhej a tretia axióma je duálna ku vete ??).

Veta 2.4.3. Nech π je konečná projektívna rovina a nech n je prirodzené číslo väčšie alebo rovné 2. Potom nasledujúce tvrdenia sú ekvivalentné:

- 1. $každ\acute{a}$ priamka obsahuje práve n+1 bodov
- 2. $ka\check{z}d\acute{y}$ bod $le\check{z}\acute{i}$ na práve n+1 priamkach (duálne ku 1.)
- 3. nejaká priamka obsahuje práve n+1 bodov
- 4. nejaký bod leží na práve n + 1 priamkach (duálne ku 3.)
- 5. konečná projektívna rovina π má práve $n^2 + n + 1$ priamok
- 6. konečná projektívna rovina π má práve $n^2 + n + 1$ bodov (duálne ku 5.)

Definícia 2.4.2. (Kombinatorická definícia FPP)

Konečná projektívna rovina rádu n je $BIBD(v, k, \lambda)$ s parametrami:

$$v = n^2 + n + 1, k = n + 1, \lambda = 1$$

Veta 2.4.4. Kombinatorická a axiomatická definície konečnej projektívnej roviny sú ekvivalentné.

Veta* 2.4.5. Ak n je mocninou prvočísla, tak existuje konečná projektívna rovina rádu n.

Hypotéza 2.4.1. Ak existuje konečná projektívna rovina rádu n, tak n je mocninou pr-

Definícia 2.4.3. Matica $C = (c_{ij})$ typu $n \times m$, kde $n \geq 4, m \geq 4$ a $c_{ij} \in \{1, \ldots, n\}$, má latinskú vlastnosť, ak lubovoľná podmatica z dvoch stlpcov matice C nemá rovnaké riadky. Formálne,

$$\forall (i,j) \neq (k,l) : (c_{ij},c_{il}) \neq (c_{ik},c_{il})$$

Navyše, ak podmatica matice C, tvorená prvými dvomi stl
pcami, obsahuje postupne všetky dvojice čísel $\{1, \ldots, n\}$ v lexikografickom poradí, tak ju voláme matica s latinskou vlastnosťou v normálnom tvare.

Veta 2.4.6. Nech $n \geq 3, t \geq 2$. Potom množina t navzájom ortogonálnych latinských štvorcov rádu n existuje práve vtedy, keď existuje matica typu $n^2 \times (t+2)$ s latinskou vlastnosťou v normálnom tvare.

Veta 2.4.7. Existencia konečnej projektívnej roviny rádu n je ekvivalentná s existenciou (n-1) navzájom ortogonálnych latinských štvorcov rádu n.

Konštrukcia. TODO

2.5 Steinerovské systémy trojíc, zovšeobecnenia

Definícia 2.5.1. Blokové plány typu BIBD(v, 3, 1) sa volajú Steinerovské systémy trojíc (angl. *Steiner triplet system*, skrátene STS).

Poznámka 2.5.1. Existencia STS je ekvivalentná s existenciou rozkladu kompletného grafu K_v na trojuholníky.

Veta 2.5.1. Ak v je počet objektov STS, tak $v \equiv 1 \mod 6$ alebo $v \equiv 3 \mod 6$.

Veta* 2.5.2. (Kirkman)

Ak v spĺňa podmienky z vety ??, tak existuje STS s práve v objektmi.

Veta 2.5.3. (Projektívne STS)³

Nech $X := (\mathbb{Z}_2)^{n+1} - \{\vec{0}\}$ je množina vektorov vektorového priestoru dimenzie n+1 nad poľom \mathbb{Z}_2 bez nulového vektora a $\mathcal{B} := \{\{\vec{x}, \vec{y}, \vec{z}\} \mid \vec{x} + \vec{y} + \vec{z} = \vec{0}\}$. Potom dvojica (X, \mathcal{B}) je STS. Alternatívne, množina priamok projektívnej roviny PG(2, n) tvorí STS.

Veta 2.5.4. $(Afinné\ STS)^4$

Nech $X := (\mathbb{Z}_3)^n$ je množina vektorov vektorového priestoru dimenzie n nad polom \mathbb{Z}_3 . Nech $\mathcal{B} := \{ \{\vec{x}, \vec{y}, \vec{z}\} \mid \vec{x} + \vec{y} + \vec{z} = \vec{0} \}$. Potom dvojica (X, \mathcal{B}) je STS.

Veta 2.5.5. (Karteziansky súčin STS)

Nech dvojice (X, \mathcal{B}) a (Y, \mathcal{C}) sú STS. Potom dvojica $(X \times Y, \mathcal{D})$, kde:

1.
$$y \in Y, \{b_1, b_2, b_3\} \in \mathcal{B} \Longrightarrow \{(b_1, y), (b_2, y), (b_3, y)\} \in \mathcal{D}$$

2.
$$x \in X, \{c_1, c_2, c_3\} \in \mathcal{C} \Longrightarrow \{(x, c_1), (x, c_2), (x, c_3)\} \in \mathcal{D}$$

3.
$$\{b_1, b_2, b_3\} \in \mathcal{B}, \{c_1, c_2, c_3\} \in \mathcal{C}, \phi \in S_3 \Longrightarrow \{(b_1, c_{\phi(1)}), (b_2, c_{\phi(2)}), (b_3, c_{\phi(3)})\} \in \mathcal{D}$$

(kde ϕ je permutácia veľkosti 3)

Potom $(X \times Y, \mathcal{D})$ je STS.

Veta 2.5.6. (Vzťah STS a grupoidov)

Nech (X, \mathcal{B}) je STS. Potom množina X s binárnou operáciou *, definovanou nasledovne:

$$\forall \{x, y, z\} \in \mathcal{B}:$$
 $x * y = y * x = z$
 $x * z = z * x = y$
 $y * z = z * y = x$
 $x * x = x$

je idempotentný komutatívny grupoid.

Veta 2.5.7. $((2v+1)-konštrukcia\ STS)$

Nech (X,\mathcal{B}) je STS a (X',\mathcal{B}') je jeho disjunktná izomorfná kópia $(t.j.\ X\cap X'=\varnothing)$. Obraz prvku x v tomto izomorfizme budeme značiť x'. Nech prvok $\infty\notin X\cup X'$. Potom dvojica (Y,\mathcal{C}) , $kde\ Y:=X\cup X'\cup \{\infty\}$ a $\mathcal{C}:=\mathcal{B}\cup \{\{x,y',z'\}\mid \{x,y,z\}\in \mathcal{B}\}\cup \{\{x,x',\infty\}\mid x\in X\}$, je STS.

TODO Paschovo prepnutie

TODO Wilson-Schreiberova konštrúkcia

TODO Boséova konštrukcia

TODO Skolemova konštrukcia

TODO Cyklické STS

TODO Symetrické v₃-konfigurácie (čiastočné STS)

³**TODO** treba dôkaz?

⁴**TODO** treba dôkaz?

Hypotéza 2.5.1. Každý bezmostový kubický graf má 6 1-faktorov takých, že každá hrana grafu leží v práve 2 z nich.

Definícia 2.5.2. Dvojica (X, \mathcal{B}) , kde $\mathcal{B} \in \mathcal{P}(X)$, je $t - (v, k, \lambda)$ -blokový plán (angl. t-design), ak:

- \bullet |X| = v
- $\forall B \in \mathcal{B} : |B| = k$
- $\bullet\,$ každá t-ticaobjektov z Xsa vyskytuje v práve λ blokoch z $\mathcal B$

Navyše, blokové plány typu t - (v, k, 1) budeme označovať ako S(t, k, v).

Poznámka 2.5.2. Existencia $t-(v,k,\lambda)$ -blokového plánu je ekvivalentná s existenciou rozkladu t-uniformného λ -násobného hypergrafu na hyperklíky veľkosti k.

Poznámka 2.5.3. STS s v prvkami môžeme značiť ako S(2,3,v).

Definícia 2.5.3. Blokové plány S(3,4,v) voláme Steinerovské systémy štvoríc (angl. SQS)

Veta* 2.5.8. $\exists S(3,4,v) \iff v \equiv 3,4 \mod 6$

Definícia 2.5.4. Blokové plány S(4,5,v) voláme Steinerovské systémy pätíc

Veta* 2.5.9. $\exists S(4,5,v) \Longrightarrow v \equiv 4,5 \mod 6 \land v \not\equiv 4 \mod 5$

TODO konečné jednoduché grupy.

Matroidy

3.1 Definícia, základné pojmy

Definícia 3.1.1. Dvojica (X, \mathcal{N}) , kde $\mathcal{N} \subseteq \mathcal{P}(X)$ a \mathcal{N} je konečná, je matroid, ak sú splnené nasledujúce podmienky:

- 1. $\varnothing \in \mathcal{N}$
- 2. $N \in \mathcal{N} \wedge N' \subseteq N \Longrightarrow N' \in \mathcal{N}$
- 3. $N, N' \in \mathcal{N} \land |N| < |N'| \Longrightarrow \exists x \in N' N : N \cup \{x\} \in \mathcal{N}$

Množiny z $\mathcal N$ voláme nezávislé množiny. Množiny mimo $\mathcal N$ voláme závislé.

Veta 3.1.1. (Matroid z vektorového priestoru)

Nech $V_n(F) \cong F^n$ je vektorový priestor dimenzie $n < \infty$ nad (nie nutné konečným) poľom F. Nech $(\vec{x}_1, \ldots, \vec{x}_r)$ je postupnosť (nie nutné rôznych) vektorov z $V_n(F)$. Nech $X := \{1, \ldots, r\}, \ \mathcal{N} := \{Q \mid Q \subseteq X \land \{\vec{x}_i \mid i \in Q\} \text{ je nezávislá v } V_n(F)\}$. Potom dvojica (X, \mathcal{N}) je matroid.

Veta 3.1.2. (Matroid z grafu)

Nech G = (V, E) je jednoduchý graf. Nech X := E. Nech množina hrán $A \subseteq E$ patrí do množiny $\mathcal N$ práve vtedy, keď indukovaný graf neobsahuje kružnice. Potom dvojica $M(G) = (X, \mathcal N)$ je matroid.

TODO konstrukcia matroidu cez signovane grafy?

Definícia 3.1.2. Nech $M = (X, \mathcal{N})$ je matroid a nech $A \subseteq X$. Množinu $B \subseteq A$ voláme bázou množiny A v matroide M, ak je to maximálna (na inklúziu) nezávislá množina v A. Formálne, B je bázou A v matroide $M = (X, \mathcal{N})$, ak:

$$B \subseteq A \land B \in \mathcal{N} \land (\forall B' \supset B : B' \subseteq A \Longrightarrow B' \notin \mathcal{N})$$

Špeciálne, bázy množiny X voláme bázy matroidu. Množinu báz matroidu M znáčime ako \mathcal{B} .

Veta 3.1.3. Nech (X, \mathcal{N}) je matroid a $A \subseteq X$. Nech N, N' sú bázy množiny A. Potom |N| = |N'|.

Definícia 3.1.3. Nech (X, \mathcal{N}) je matroid. Hodnosťou množiny $A \subseteq X$ voláme veľkosť nejakej bázy B množiny A a znáčime ako r(A) := |B|.

Veta 3.1.4. Nech (X, \mathcal{N}) je matroid a $r : \mathcal{P}(X) \to \mathbb{N}_0$ je jeho hodnostná funkcia. Potom platí:

1.
$$r(\emptyset) = 0$$

2.
$$r(\{x\}) \le 1$$

3.
$$A \subseteq B \Longrightarrow r(A) \le r(B)$$

4.
$$r(A \cup B) \le r(A) + r(B) - r(A \cap B)$$
 (semimodularita)

Navyše, ak nejaká funkcia $r': \mathcal{P}(X) \to \mathbb{N}_0$ spĺňa vyššie uvedené podmienky, tak existuje jediný matroid, ktorého hodnostnou funkciou je práve r'.

Veta 3.1.5. Nech (X, \mathcal{N}) je matroid a \mathcal{B} je množina jeho báz. Potom platí:

B1: žiadné 2 prvky množiny B nie sú v inklúzii

$$B2: B, B' \in \mathcal{B} \Longrightarrow \forall x \in B - B' \exists y \in B' - B: (B - \{x\}) \cup \{y\} \in \mathcal{B}$$

Navyše, ak množina \mathcal{B}' spĺňa vyššie uvedené podmienky B1 a B2, tak existuje jediný matroid, ktorého množinou báz je práve \mathcal{B}' .

Definícia 3.1.4. Nech $M = (X, \mathcal{N})$ je matroid a $A \subseteq X$. Prvok $x \in X$ voláme závislý od množiny A v matroide M, ak $r(A) = r(A \cup \{x\})$.

Definícia 3.1.5. Nech $M = (X, \mathcal{N})$ je matroid a $A \subseteq X$. Úzaverom množiny A v matroide M voláme množinu \bar{A} všetkých závislých prvkov od A. Formálne,

$$\bar{A} := \{ x \in X \mid r(A) = r(A \cup \{x\}) \}$$

Veta 3.1.6. Nech $M = (X, \mathcal{N})$ je matroid a $A \subseteq X$. Potom platí:

1.
$$A \subseteq \bar{A}$$

$$2. \ \bar{A} = \bar{\bar{A}}$$

3.
$$\bar{A} = \bigcup_{B \in \mathcal{P}(X)} \{ B \mid B \supseteq A \land r(B) = r(A) \}$$

4.
$$r(A) = r(\bar{A})$$

Veta 3.1.7. Nech $M = (X, \mathcal{N})$ je matroid a $\Phi : \mathcal{P}(X) \to \mathcal{P}(X)$ je jeho úzaverová funkcia (t.j. $\Phi(A) = \bar{A}$). Potom platí:

U1:
$$\forall A \subseteq X : A \in \bar{A}$$

$$U2: A \subseteq \bar{B} \Longrightarrow \bar{A} \subseteq \bar{B}$$

$$\textit{U3: } x \not\in A \land x \in \overline{A \cup \{y\}} \Longrightarrow y \in \overline{A \cup \{x\}}$$

Navyše, ak existuje funkcia $\Phi': \mathcal{P}(A) \to \mathcal{P}(A)$, ktorá spĺňa podmienky U1 — U3, tak existuje jediný matroid, ktorého úzaverovou funkciou je práve Φ' .

Definícia 3.1.6. Nech (X, \mathcal{N}) je matroid. Množina $K \subseteq X$ sa volá kružnica, ak je to najmenšia (na inklúziu) závislá množina. Formálne, množina $K \subseteq X$ je kružnica, ak:

$$K \notin \mathcal{N} \land (\forall K' \subseteq K : K' \in \mathcal{N})$$

Množinu všetkých kružníc matroidu označujeme ako \mathcal{K} .

Veta 3.1.8. Nech (X, \mathcal{N}) je matroid a \mathcal{K} je množina všetkých jeho kružníc. Potom platí:

K1: žiadne dva prvky množiny K nie sú v inklúzii

$$K2: K, K' \in \mathcal{K} \land K \neq K' \land \exists x \in K \cap K' \Longrightarrow \exists L \in \mathcal{K} : L \subseteq (K \cup K') - \{x\}$$

Navyše, ak existuje množina K', ktorá spĺňa podmienky K1 a K2, tak existuje jediný matroid, ktorého množinou kružníc je práve K'.

3.2 Dualita matroidov a triedy matroidov

Veta 3.2.1. (veta o dualite)

Nech $M = (X, \mathcal{N})$ je matroid. Nech \mathcal{B} je množina báz matroidu M a $r : \mathcal{P}(X) \to \mathbb{N}_0$ je hodnostná funkcia matroidu M. Ďalej nech:

- $\bullet \ \mathcal{B}^* := \{X B \mid B \in \mathcal{B}\}\$
- $\bullet \ \mathcal{N}^* := \{ X A \mid A \subseteq X \land r(A) = r(X) \}$
- $r^*: \mathcal{P}(A) \to \mathbb{N}_0 \ tak\acute{a}, \ \check{z}e \ r^*(A) := |A| r(X) + r(X A) = |A| (r(X) r(X A))$

Potom platí:

- 1. $množina \mathcal{B}^*$ je systémom báz nejakého matroidu
- 2. $množina \mathcal{N}^*$ je systémom nezávislých množín nejakého matroidu
- 3. funkcia r* je hodnostnou funkciou nejakého matroidu
- 4. navyše, všetky 3 vyššie uvedené matroidy sú rovnaké

Takýmto spôsobom zostrojený matroid sa volá duálny a značí sa ako $M^* = (X, \mathcal{N}^*)$.

Definícia 3.2.1. Nech $X := \{1, \ldots, n\}, \ \mathcal{N} := \{A \mid A \subseteq X \land |A| \le k\}$. Potom dvojica $U_k^n = (X, \mathcal{N})$ je matroid.

Veta 3.2.2. $(U_k^n)^* = U_{n-k}^n$

Veta 3.2.3. Nech M(G) je grafový matroidu grafu G. Potom nasledujúce podmienky sú ekvivalentné:

- 1. M* je grafový matroid
- 2. G je planárny graf

Definícia 3.2.2. Nech $M=(X,\mathcal{N})$ je matroid a F je pole. Matroid M je F-reprezentovateľný, ak existuje vektorový priestor V konečnej dimenzie nad F a zobrazenie $f:X\to V$ také, že

$$\forall A \in X : (A \in \mathcal{N} \iff f(A) \text{ je lineárne nezávislá vo } V)$$

Definícia 3.2.3. Matroid je reprezentovateľný, ak je F-reprezentovateľný nad nejakým poľom F.

Definícia 3.2.4. Matroid je binárny, ak je GF(2)-reprezentovateľný.

Definícia 3.2.5. Matroid je regulárny, ak je F-reprezentovateľný nad každým poľom F.

Veta* 3.2.4. Každý grafový matroid je regulárny.

TODO Cayleho grafy?

TODO rezy a kruznice su kolme v kazdej reprezentacii?

Definícia 3.2.6. (Zúženie matroidu)

Nech $M = (X, \mathcal{N})$ je matroid a $Y \subseteq X$. Nech $\mathcal{N}_Y := \{A \mid A \subseteq Y \land \exists B \in \mathcal{N} : A = B \cap Y\}$. Potom $M_{/Y} := (Y, \mathcal{N}_Y)$ je matroid a nazýva sa zúžením matroidu M na množinu Y.

Definícia 3.2.7. (Kontrakcia matroidu)

Nech $M=(X,\mathcal{N})$ je matroid a $Y\subseteq X$. Nech $A\subseteq Y$ patrí do systému \mathcal{N}_Y práve vtedy, keď existuje báza B množiny X-Y v matroide M taká, že $A\cup B\in \mathcal{N}$. Potom dvojica $M.Y:=(Y,\mathcal{N}_Y)$ je matroid a nazýva sa kontrakciou matroidu M na množinu Y.

Veta 3.2.5.
$$(M.Y)^* = \frac{M^*}{V}$$

Definícia 3.2.8. Matroid M' je minorom matroidu M, ak sa matroid M' dá dostať z matroidu M pomocou postupnosti zúžení a kontrakcií.

TODO Fannov matroid

Veta* 3.2.6. (Charakterizácia tried matroidov)

Oznáčme Fannov matroid ako F.

- 1. matroid M je binárny $\iff U_2^4$ nie je minorom matroidu M.
- 2. matroid M je regulárny $\iff U_2^4$, \mathcal{F} , \mathcal{F}^* nie sú minormi matroidu M.
- 3. matroid M je grafový $\iff U_2^4$, \mathcal{F} , \mathcal{F}^* , $M^*(K_{3,3})$, $M^*(K_5)$ nie sú minormi matroidu M.
- 4. matroid M je kografový $\iff U_2^4$, \mathcal{F} , \mathcal{F}^* , $M(K_{3,3})$, $M(K_5)$ nie sú minormi matroidu M.
- 5. matroid M je planárny \iff matroid M je grafový a kografový.

3.3 Matroidové algoritmy

Definícia 3.3.1. Problém maximálnej množiny je trojica (X, \mathcal{M}, c) , kde $X = x_1, \ldots, x_n$ je množina objektov, $\mathcal{M} \subseteq \mathcal{P}(X)$ je množina prípustných riešení a $c: X \to \mathbb{R}^+ \cup \{0\}$ je cenová funkcia, rozširiteľná na $\mathcal{P}(X)$, a to takým spôsobom: $\forall A \in \mathcal{P}(X): c(A):=\sum_{x_i\in A}c(x_i)$. Riešením problému maximálnej množiny je množina $M^*\in \mathcal{M}$ s maximálnou cenou. Formálne,

$$M^* := \underset{M \in \mathcal{M}}{\arg\max} \ c(M)$$

Definícia 3.3.2. (Pažravý algoritmus)

Nech (X, \mathcal{M}, c) je problém maximálnej množiny. Potom nasledovný algoritmus je pažravým algoritmom pre najdenie riešenia daného problému:

- 1. $M_0 := \emptyset$
- 2. $M_{i+1} := M_i \cup \{x\}$, ak x spĺňa nasledovné podmienky:
 - (a) $x \notin M_i$
 - (b) $M_i \cup \{x\} \subseteq M' \in \mathcal{M}$ (t.j. existuje také $M' \in \mathcal{M}$)
 - (c) x má spomedzi všetkých prvkov, ktoré splňajú predchádzajúce podmienky, maximálnu cenu c(x)
- 3. Opakujeme krok 2. Ak x, vyhovujúce všetkým podmienkam z druhého kroku, neexistuje, tak algoritmus končí a odpoveďou je posledná množina M_i .

Veta 3.3.1. (Vzťah matroidov a pažravých algoritmov)

Nech X je konečná množina, $\mathcal{M} \subseteq \mathcal{P}(X)$. Potom nasledujúce podmienky sú ekvivalentné:

- 1. pre každé nezáporné ohodnotenie c množiny X pažravý algoritmus nájde optimálne riešenie
- 2. existuje matroid na množine X taký, že M je systémom báz daného matroidu