Utiliser le calcul littéral pour résoudre ou démontrer

I. <u>Identités remarquables</u>

Quelques soient les nombres relatifs a et b on a :

Sens du développement $(a + b)^2 = a^2 + 2ab b^2$ $(a - b)^2 = a^2 - 2ab + b^2$ $(a + b)(a - b) = a^2 - b^2$

Sens de la factorisation

Exemples: Développer en utilisant les identités remarquables

$$A = (x + 3)^{2}$$

$$= x^{2} + 6x + 9$$

$$= x^{2} + 6x$$

B =
$$(4 - 3x)^2$$
 $(a - b)^2 = a^2 - 2ab + b^2$
= $16 - 24x + 9x^2$ $a \text{ est représenté donc } a^2 \text{ vaut}$
b est représenté par donc 2ab vaut 2
et $b^2 \text{ vaut } (3x)^2$
 $C = (2x + 3)(2x - 3)$ $(a + b)(a - b) = a^2$

a est représenté par 4 :
donc
$$a^2$$
 vaut 4^2 =16

b est représenté par $3x$:
donc $2ab$ vaut $2 \times 4 \times 3 x = 24 x$

et b^2 vaut $(3x)^2 = 9x^2$

$$(a+b)(a-b) = a^2 - b^2$$

a est représenté par $2x$:
donc a^2 vaut $(2x)^2 = 4x^2$

b est représenté par 3 :

donc b^2 vaut $3^2 = 9$

Exemples: Factoriser les expressions suivantes.

$$4x^{2} + 12x + 9 = (2x + 3)^{2}$$

$$a^{2} + 2ab + b^{2} = (a + b)^{2} \qquad \text{avec} \quad a = 2x \text{ et } b = 3$$

$$x^{2} - 2x + 1 = (x - 1)^{2}$$

$$a^{2} - 2ab + b^{2} = (a - b)^{2} \qquad \text{avec} \quad a = x \text{ et } b = 1$$

$$25x^{2} - 49 = (5x + 7)(5x - 7)$$

$$a^{2} - b^{2} = (a + b)(a - b)$$
avec $a = 5x$ et $b = 7$

II. <u>Résolution algébrique d'une</u> <u>équation du 1er degré</u>

Résoudre l'équations suivante :

$$4x-13 = -5x+1$$

Le but est de réunir la « famille des x » dans le membre de gauche et la « famille des nombres » dans le membre de droite.

$$4x + 5x = +1 + 13$$

On passe -13 de gauche à droite: il se transforme en son opposé c-a-d +13... Et on passe le -5x de droite à gauche: il se transforme en son opposé c-a-d +5x

$$9x = 14$$

On divise alors le membre de droite de l'équation par le facteur de x: ici par 9

$$x = \frac{14}{9}$$

La solution de cette équation est $x = \frac{14}{9}$

cette solution est unique

III. <u>Inéquations du 1er degré à une</u> inconnue

1) Ordre et inégalités

Règle n°1 : On ne change pas le sens d'une inégalité si on ajoute ou on retranche un même nombre (positif ou négatif) aux deux membres d'une inéquation.

Règle n°2 : On ne change pas le sens d'une inégalité si on multiplie ou on divise les deux membres d'une inéquation par un même nombre POSITIF.

Règle n°2 bis: On change le sens d'une inégalité si on multiplie ou on divise les deux membres d'une inéquation par un même nombre NEGATIF.

2) Résolution d'une inéquation

Inéquation inégalité qui contient une inconnue x.

Résoudre une inéquation c'est trouver toutes les valeurs de x qui vérifient cette inégalité. il s'agit d'un ensemble de valeurs.

Remarque: On résout une inéquation du 1er degré à une inconnue de la même manière qu'une équation du 1er degré à une inconnue, en veillant à bien appliquer les règles 1, 2 et 2bis.

Exemples : Résoudre les inéquations suivantes et représenter les solutions sur une droite graduée.

$$2x+3<4-5x$$

$$2x+5x<4-3$$

$$7x<1$$

$$x<\frac{1}{7}$$
solutions
$$1/7$$

Les solutions sont tous les nombres strictement inférieurs à $\frac{1}{7}$.

$$2(x-4) \le 4x-5$$

$$2x-8 \le 4x-5$$

$$2x-4x \le 8-5$$

$$-2x \le 3$$

$$x \ge -\frac{3}{2}$$
On divise par un nombre négatif donc on change le sens de l'inégalité.
$$x \ge -\frac{3}{2}$$
solutions

Les solutions sont tous les nombres supérieurs ou égaux à $-\frac{3}{2}$

IV. <u>Désignation de nombres</u>

n désigne un entier relatif

- · le suivant du nombre n est n+1
- · le précédent du nombre n est n-1
- · un multiple de 4 s'écrit sous la forme 4n avec n non nul

n désigne un entier

- un nombre pair s'écrit sous la forme 2n
- · un nombre impair s'écrit sous la forme 2n+1