III.5 Fonctions mesurables, intégrale de Lebesgue

Nous décrivons dans cette section une procédure permettant de définir la notion d'intégrale pour une classe très générale de fonctions.

III.5.1 Fonctions mesurables

Rappelons qu'une application d'un espace mesurable (X, A) dans (X', A') est dite mesurable si l'image réciproque par f de tout élément de A' est dans A.

Dans le cas où l'espace d'arrivée est \mathbb{R} , on le considèrera par défaut muni de la tribu des boréliens, engendrée par les intervalles de type $]-\infty,b]$ (voir proposition III.2.6, page 58).

Dans le cas où l'espace d'arrivée est $\overline{\mathbb{R}} = [-\infty, \infty]$, on le considèrera aussi, sans qu'il soit besoin de le préciser, muni de sa tribu borélienne, engendrée par les $[-\infty, b]$ (voir proposition III.2.7, page 58).

On parlera donc simplement de fonction mesurable de (X, \mathcal{A}, μ) à valeurs dans \mathbb{R} ou dans $\overline{\mathbb{R}}$, en gardant en tête que ces espaces sont munis de leurs tribus boréliennes. Si l'espace de départ est lui-même \mathbb{R} (ou \mathbb{R}^d), on parle de fonction mesurable de \mathbb{R} dans \mathbb{R} , où l'on considère l'espace de départ muni de la tribu de des boréliens.

Le caractère mesurable de telles fonctions se caractérise de façon élémentaire, comme l'exprime la proposition suivante.

Proposition III.5.1. (\bullet): Soit (X, A) un espace mesurable, et f une fonction de X dans \mathbb{R} . La fonction f est mesurable si et seulement si, pour tout b réel

$$f^{-1}(]-\infty,b]) \in \mathcal{A}.$$

Pour une fonction à valeurs dans $\overline{\mathbb{R}}$, la condition est la même, pour les intervalles du type $[-\infty, b]$.

Démonstration. C'est une conséquence directe de la proposition III.2.11, page 60, qui donne un critère simple de mesurabilité d'une application : si la tribu sur l'espace d'arrivée est engendrée par une certaine famille, il suffit de vérifier que l'image réciproque de chaque élément de cette famille est dans la tribu sur l'espace de départ. \Box

Proposition III.5.2. Soit (X, \mathcal{A}, μ) un espace mesuré, et (f_n) une suite de fonctions mesurables de X dans $[-\infty, +\infty]$. On a alors

- a) Les fonctions sup f_n et inf f_n sont mesurables.
- b) Les fonctions $\limsup f_n$ et $\liminf f_n$ (voir définition IV.1.23) sont mesurables.

Démonstration. Soit (f_n) une suite de fonctions mesurables. On définit $f_{\sup} = \sup(f_n)$ et $f_{\inf} = \inf(f_n)$. On a, pour tout b dans \mathbb{R} ,

$$f_{\sup}^{-1}([-\infty,b]) = \bigcup_n f_n^{-1}([-\infty,b]), \ f_{\inf}^{-1}([-\infty,b]) = \bigcap_n f_n^{-1}([-\infty,b]),$$

qui sont tous deux mesurables (stabilité par union et intersection de la tribu A).

Soit maintenant f_{\limsup} définie par

$$f_{\limsup}(x) = \limsup f_n(x) = \lim_{n \to +\infty} \sup_{k > n} f_k(x).$$

On a

$$f_{\limsup}^{-1}([-\infty,b]) = \bigcap_n \bigcup_{k>n} f_k^{-1}([-\infty,b]),$$

qui est dans A. Soit enfin f_{liminf} définie par

$$f_{\lim\inf}(x) = \lim\inf f_n(x) = \lim_{n \to +\infty} \inf_{k > n} f_k(x).$$

On a

$$f_{liminf}^{-1}([-\infty,b]) = \bigcup_n \bigcap_{k \ge n} f_k^{-1}([-\infty,b]),$$

qui termine la preuve.

Proposition III.5.3. Soit (X, \mathcal{A}, μ) un espace mesuré. Pour tous f, g mesurables, pour tout $\alpha \in \mathbb{R}$, αf et f + g sont mesurables.

Démonstration. Si $\lambda = 0$, $(\alpha f)^{-1}([-\infty, c]$ est soit vide, soit X tout entier. Pour $\alpha > 0$

$$(\alpha f)^{-1}([-\infty, c] = \{ x, f(x) \le c/\alpha \},$$

qui est dans \mathcal{A} . Si $\alpha < 0$, on a

$$(\alpha f)^{-1}([-\infty, c] = \{ x, \alpha f(x) \le c \} = \{ f(x) \ge c/\alpha \} = \{ x, f(x) < c/\alpha \}^c = \left(\bigcup_{x \in \mathbb{Z}} \{ x, f(x) \le c/\alpha - 1/2^n \} \right)^c$$

qui est bien dans \mathcal{A} par mesurabilité de f.

Considérons maintenant f et g mesurables. Montrons que f(x) + g(x) < c si et seulement s'il existe un nombre rationnel q tel que

$$f(x) + q < c \text{ et } g(x) < q.$$

La condition suffisante est immédiate. Pour la condition nécessaire, on choisit un rationnel q tel que g(x) < q < c - f(x) (il existe par densité des rationnels dans \mathbb{R}). Si l'on note (q_n) une énumération des rationnels, on a

$$\{x, f(x) + g(x) \le c\} = \bigcap_{n=0}^{+\infty} \{x, f(x) + g(x) < c + 1/2^n\}$$
.

Chacun des ensembles ci-dessus est du type

$$\{x, f(x) + g(x) < c'\} = \bigcup_{n} \{x, f(x) + q_n < c \text{ et } g(x) < q_n\}$$

qui est mesurable comme union dénombrable de parties mesurables. L'ensemble

$$\{x, f(x) + g(x) \le c\}$$

est donc mesurable comme intersection dénombrable d'ensembles mesurables.

Proposition III.5.4. (•) Soit un espace topologique, et \mathcal{B} sa tribu des boréliens (engendrée par les ouverts, ou de façon équivalente par les fermés). Toute fonction f continue de (X,\mathcal{B}) dans $\overline{\mathbb{R}}$ est mesurable.

Démonstration. Pour tout $b \in \mathbb{R}$, l'intervalle $[-\infty, b]$ étant un fermé, son image réciproque par f est un fermé, il est donc dans \mathcal{B} .

III.5.2 Intégrale de fonctions étagées

Définition III.5.5. (Fonction simple, fonction étagée (●))

Soit X un ensemble. On appelle fonction *simple* une application de X dans \mathbb{R} qui prend un nombre fini de valeurs $\alpha_1, \ldots, \alpha_n$.

Si (X, \mathcal{A}) est un espace mesurable, et que l'application simple f est mesurable, c'est-à-dire $f^{-1}(\{\alpha_i\}) \in \mathcal{A}$ pour tout i, on parle de fonction étagée.

On note $\mathcal{E}(X)$ ou simplement \mathcal{E} l'espace vectoriel des fonctions étagées sur X, et \mathcal{E}^+ le sousensemble des fonctions étagée à valeurs positives.

Définition III.5.6. (Intégrale d'une fonction étagée positive (●))

Soit (X, \mathcal{A}, μ) un espace mesuré, c'est-à-dire un ensemble muni d'une tribu \mathcal{A} (définition III.2.12). Soit f une fonction étagée :

$$f(x) = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{A_i}, \qquad (III.5.1)$$

où les A_i sont mesurables, disjoints, et les α_i sont des réels positifs. On définit ⁹ l'intégrale de f sur X comme la quantité

$$\int_{X} f(x)d\mu(x) = \sum_{i=1}^{N} \alpha_{i}\mu(A_{i}).$$
(III.5.2)

Pour tout $A \in \mathcal{A}$, on définit de la même manière

$$\int_{A} f(x)d\mu(x) = \sum_{i=1}^{N} \alpha_{i}\mu(A_{i} \cap A).$$

$$\sum_{i=1}^{N'} \alpha_i' \mu(A_i'),$$

on a, par additivité de la mesure, et du fait que $\alpha_i=\alpha_j'$ sur $A_i\cap A_j',$

$$\sum_{i=1}^{N} \alpha_i \mu(A_i) = \sum_{i=1}^{N} \sum_{j=1}^{N'} \alpha_i \mu(A_i \cap A'_j) = \sum_{j=1}^{N'} \sum_{i=1}^{N} \alpha'_i \mu(A_i \cap A'_j) = \sum_{j=1}^{N'} \alpha'_i \mu(A'_i).$$

^{9.} Si l'on n'impose pas $A_i = f^{-1}(\{\alpha_i\})$, l'écriture (III.5.1) de f n'est pas unique. On peut néanmoins vérifier que la quantité définie par (III.5.2) ne dépend pas de l'écriture choisie. En effet, si l'on considère une autre écriture

Remarque III.5.7. On peut illustrer cette approche dans le contexte des images telles que celles qui sont stockées sur ordinateur. On peut voir une telle image (disons en noir et blanc pour simplifier) comme un tableau à $N \times N$ nombres dans l'intervalle [0,1], qui correspondent aux niveaux de gris. Ces niveaux de gris sont en général stockés en format 8 bits, ce qui signifie que chaque niveau peut prendre l'une des 256 valeurs de la subdivision uniforme de [0,1]. Si l'on cherche à calculer la somme des niveaux de gris sur l'ensemble de l'image, l'approche usuelle (qui correspond à la philosophie de l'intégrale de Riemann) consiste à sommer les valeurs des pixels successifs :

$$S = \sum_{i=1}^{N} \sum_{j=1}^{N} u_{ij}.$$

L'approche suivie ici pour définir l'intégrale correspondrait à la démarche suivante, structurée par l'espace d'arrivée (les niveaux de gris), et pas l'espace de départ (les pixels) : pour chaque valeur g_k de niveau de gris, on considère l'ensemble A_k des pixels qui réalisent cette valeur. La somme est alors estimée selon la formule

$$S = \sum_{k=0}^{255} g_k \times \operatorname{Card}(A_k).$$

Cette approche repose implicitement sur l'histogramme de l'image, qui est la représentation de la distribution des niveaux de gris : en abscisse les 256 niveaux de gris, et en ordonnée les cardinaux des ensembles A_k correspondants.

Proposition III.5.8. (•) Soit (X, \mathcal{A}, μ) un espace mesuré, f et g deux fonctions de \mathcal{E}^+ , et $\alpha \geq 0$. On a

$$\int_{X} (\alpha f) \, d\mu = \alpha \int_{X} f \, d\mu \,, \, \int (f + g) \, d\mu = \int_{X} f \, d\mu + \int_{X} g \, d\mu,$$

et

$$f(x) \le g(x) \quad \forall x \in X \quad \Longrightarrow \quad \int_X f \, d\mu \le \int_X f \, d\mu.$$

Proposition III.5.9. (\bullet) Soit (X, \mathcal{A}, μ) un espace mesuré, f une fonction de \mathcal{E}^+ , et (f_n) une suite de fonctions de \mathcal{E}^+ (fonctions étagées positives). On suppose que (f_n) est croissante, c'est-à-dire que $(f_n(x))$ est une suite croissante pour tout x de X, et que f_n converge simplement vers f, c'est à dire que

$$\lim_{n \to +\infty} f_n(x) = f(x) \quad \forall x \in X.$$

L'intégrale de f est alors la limite des intégrales des f_n :

$$\int_X f \, d\mu = \lim_{n \to +\infty} \int_X f_n \, d\mu.$$

Démonstration. On a, d'après la proposition III.5.8, $\int f_n \leq \int f$ pour tout $n \in \mathbb{N}$. La suite des intégrales, croissante, converge donc vers une valeur $\lim \int f_n \leq \int f$. Montrons que cette inégalité est en fait une égalité. On sait que f peut s'écrire

$$f = \sum_{i=1}^{N} a_i \mathbb{1}_{A_i},$$

où les A_i sont des éléments disjoints de A, et les a_i des réels strictement positifs. Soit $\varepsilon > 0$. Pour $i = 1, \ldots, N$, on introduit

$$A_i^n = \{ x \in A_i , f_n(x) \ge (1 - \varepsilon)a_i \} \in \mathcal{A}.$$

Pour tout i, la suite des (A_i^n) est croissante d'après la croissance de f_n , et l'union des A_i^n est égale à A_i par convergence simple de f_n vers f. On a donc, d'après la proposition III.3.5, page 64,

$$\lim_{n} \mu\left(A_{i}^{n}\right) = \mu(A_{i}).$$

On considère maintenant la fonction g_n définie par

$$g_n = \sum_{i=1}^{N} (1 - \varepsilon) a_i \mathbb{1}_{A_i^n}.$$

C'est une fonction étagée, qui vérifie $g_n \leq f_n \leq f$, et la suite (g_n) est croissante. La suite réelle $(\int g_n)$ converge donc, et l'on a

$$\lim_{n} \int f_n \ge \lim_{n} \int g_n = \lim_{n} \left(\sum_{i=1}^{N} (1 - \varepsilon) a_i \mu(A_i^n) \right) = (1 - \varepsilon) \sum_{i=1}^{N} a_i \mu(A_i) = (1 - \varepsilon) \int f.$$

Cette inégalité étant vérifiée pour tout $\varepsilon > 0$, on a bien $\lim_n \int f_n \ge \int f$, ce qui termine la preuve.

III.5.3 Intégrale de fonctions mesurables

Cette définition de l'intégrale pour les fonctions étagées peut-être étendue à une fonction f positive plus générale en considérant le supremum de l'ensemble des valeurs prises par les intégrales des fonctions étagées qui sont inférieures à f en tout point, comme le précise la définition suivante.

Définition III.5.10. (Intégrale d'une fonction mesurable positive (●))

Soit (X, \mathcal{A}, μ) un espace mesuré, et f une fonction mesurable de X dans $[0, +\infty]$. On définit l'intégrale de f sur X comme la quantité

$$\int_X f(x) d\mu = \sup_{g \in \mathcal{E}^+, g \le f} \left(\int_X g(x) d\mu \right) \in [0, +\infty].$$

On définit de la même manière l'intégrale de f sur toute partie A mesurable.

Exercice III.5.1. Montrer, en utilisant la définition précédente, que l'intégrale de la fonction indicatrice de l'ensemble des rationnels dans X =]0,1[est d'intégrale nulle sur X.

La définition de l'intégrale assure l'existence d'une suite maximisante dans \mathcal{E}^+ . La proposition suivante, illustrée par la figure III.5.1 dans le cas où X est un intervalle de \mathbb{R} , assure que cette suite peut être choisie croissante.

Proposition III.5.11. Soit (X, \mathcal{A}, μ) un espace mesuré, et f une fonction de X dans $\overline{\mathbb{R}}$, mesurable et à valeurs positives. Il existe une suite h_n dans \mathcal{E}^+ , croissante, telle que

$$\int f \, d\mu = \lim_{n \to +\infty} \int h_n \, d\mu.$$

FIGURE III.5.1 – Approximation inférieure d'une fonction f (en noir) par une suite croissante de fonctions étagées. Deux termes de cette suite sont représentés (la courbe rouge correspond au plus petit des indices).

Démonstration. La définition III.5.10 assure l'existence d'une suite maximisante, i.e. d'une suite (g_n) de fonctions de \mathcal{E}^+ qui sont inférieures à f, et telle que la suite des intégrales converge vers celle de f. On définit

$$h_n = \max(g_1, g_2, \dots, g_n).$$

Chaque h_n est inférieure à f, donc $\int h_n \leq \int f$, supérieur à g_n , donc $\int g_n \leq \int h_n$, on a donc convergence de $\int h_n$ vers $\int f$, et la suite des h_n est croissante par construction.

L'intégrale définie ci-dessus ne "voit" pas les ensembles négligeables :

Proposition III.5.12. Soit (X, \mathcal{A}, μ) un espace mesuré, f et g des fonctions mesurables de X dans $[0, +\infty]$. On suppose que f(x) = g(x) presque partout. Alors $\int_X f(x) d\mu(x) = \int_X g(x) d\mu(x)$.

Démonstration. On introduit $A \in \mathcal{A}$ sur lequel f et g s'identifient, tel que $\mu(A^c) = 0$. Toute fonction de $h \in \mathcal{E}^+$, inférieure à f, s'écrit

$$h = \sum_{i=1}^{N} a_i \mathbb{1}_{A_i} = \sum_{i=1}^{N} a_i \mathbb{1}_{A_i \cap A} + \sum_{i=1}^{N} a_i \mathbb{1}_{A_i \cap A^c}.$$

D'après les hypothèses, le premier terme de cette décomposition est une fonction \tilde{h} de \mathcal{E}^+ inférieure à g. On a

$$\int h = \sum_{i=1}^{N} a_i \, \mu(A_i \cap A) + \sum_{i=1}^{N} a_i \mu \, (A_i \cap A^c) \,.$$

Le second terme est nul car $\mu(A_i \cap A^c) \leq \mu(A^c) = 0$ pour tout i. Le premier terme est l'intégrale de la fonction étagée que nous avons appelée $\tilde{h} \in \mathcal{E}^+$ ci-dessus, qui est inférieure à g. Cette quantité est donc inférieure à $\int g \in [0, +\infty]$. On a donc montré $\int f \leq \int g$. Les rôles

de f et g étant interchangeables, on montre de la même manière $\int g \leq \int f$, d'où l'identité des valeurs des deux intégrales.

La proposition suivante, qui étend la proposition III.5.9 à une fonction mesurable quelconque (non nécessairement étagée), peut être vue comme une version préliminaire du théorème de convergence monotone, fondamental, qui sera énoncé plus loin.

Proposition III.5.13. (••) Soit (X, \mathcal{A}, μ) un espace mesuré, f une fonction mesurable de X dans $[0, +\infty]$, et (f_n) une suite de fonctions de \mathcal{E}^+ (fonctions étagées positives). On suppose que (f_n) est croissante, c'est-à-dire que $(f_n(x))$ est une suite croissante pour tout x de X, et que f_n converge simplement vers f, c'est-à-dire que

$$\lim_{n \to +\infty} f_n(x) = f(x) \quad \forall x.$$

L'intégrale de f est alors la limite des intégrales des f_n :

$$\int_{X} f \, d\mu = \lim_{n \to +\infty} \int_{X} f_n \, d\mu.$$

Démonstration. On a de façon évidente

$$\int_X f_1 d\mu \le \int_X f_2 d\mu \le \dots \le \int_X f d\mu,$$

d'où l'on déduit que la limite de $\int f_n$ existe, et vérifie $\lim \int f_n d\mu \leq \int f d\mu \in [0, +\infty]$. Établissons maintenant l'inégalité inverse. L'intégrale de f étant (définition III.5.10) le supremum des intégrales $\int g$, pour g décrivant l'ensemble des fonctions de \mathcal{E}^+ inférieures à f, il suffit de montrer que pour toute fonction g de ce type, on a $\int g \leq \lim \int f_n$. Soit g une telle fonction de \mathcal{E}^+ , inférieure à f. On considère la fonction $g_n = \min(g, f_n)$. La suite (g_n) est croissante car (f_n) l'est, et g_n converge simplement vers g. On a donc, d'après la proposition III.5.9,

$$\int g \, d\mu = \lim_n \int g_n.$$

Or on a $g_n \leq f_n$ pour tout n, d'où l'on déduit que le limite ci-dessus est majorée par $\int f_n$, d'où finalement

$$\int g \, d\mu \le \lim_n \int f_n,$$

qui conclut la preuve.

Proposition III.5.14. Soit (X, \mathcal{A}, μ) un espace mesuré, f et g deux fonctions mesurables de X dans $[0, +\infty]$, et $\alpha \geq 0$. On a

$$\int_X (\alpha f) d\mu = \alpha \int_X f d\mu, \ \int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu,$$

et

$$f(x) \le g(x) \quad \forall x \in X \implies \int_X f \, d\mu \le \int_X f \, d\mu.$$

Intégrabilité des fonctions

Définition III.5.15. (Partie positive / négative d'une fonction (●))

Soit f une fonction d'un ensemble X dans \mathbb{R} . On appelle partie positive de f, et l'on note f^+ , la fonction qui à x associe $f^+(x) = \max(f(x), 0) = (f(x) + |f(x)|)/2$. La partie négative de f, notée f^- , est la partie positive de l'opposé de f, de telle sorte que l'on a

$$f = f^+ - f^-.$$

Définition III.5.16. (Intégrabilité (●))

Soit f une fonction mesurable de (X, \mathcal{A}, μ) dans $\overline{\mathbb{R}}$. On dit que f est intégrable si $\int f^+$ et $\int f^-$ sont finies. On définit alors l'intégrale de f comme

$$\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu.$$

Si une seule des deux quantités $\int f^+$ et $\int f^-$ est finie, on dit que l'intégrale existe, et prend la valeur $-\infty$ si $\int f^+$ est finie, et $+\infty$ dans le cas contraire.

Si l'espace de départ est \mathbb{R}^d , on dira simplement que f est intégrable au sens de Lebesgue.

Proposition III.5.17. Soit f une fonction mesurable de (X, \mathcal{A}, μ) dans $\overline{\mathbb{R}}$, et $A \subset \mathcal{A}$. Si f est intégrable sur X, alors f est intégrable sur A et A^c , et l'on a

$$\int_X f = \int_A f + \int_{A^c} f.$$

Démonstration. C'est une conséquence directe de la définition de l'intégrale d'une fonction positive (définition III.5.10). \Box

Proposition III.5.18. Soit f une fonction mesurable de (X, \mathcal{A}, μ) dans $\overline{\mathbb{R}}$. Alors f est intégrable si et seulement si |f| l'est, et l'on a

$$\left| \int f \, d\mu \right| \le \int |f| \, d\mu.$$

Démonstration. Si f est intégrable, alors les intégrales de f^+ et f^- sont finies, l'intégrale de $f^++f^-=|f|$ est donc finie. Inversement, l'intégrabilité de $|f|=f^++f^-$ assure l'intégrabilité de f^+ et f^- . On a

$$\left| \int f \, d\mu \right| = \left| \int f^+ \, d\mu - \int f^- \, d\mu \right| \le \int f^+ \, d\mu + \int f^- \, d\mu$$

qui est égal à $\int |f| d\mu$.

Proposition III.5.19. (•) Soit (X, \mathcal{A}, μ) un espace mesuré, f et g deux fonctions mesurables de X dans $(\mathbb{R}, \mathcal{B})$. On suppose que f et g sont égales presque partout, alors les fonctions sont indiscernables du point de vue de l'intégration, c'est-à-dire que f est intégrable si et seulement si g l'est , et alors $\int_A f = \int_A g$ pour tout $A \in \mathcal{A}$.

Démonstration. Si f et g s'identifient presque partout, il en est de même de leurs parties positives et négatives. La propriété est donc conséquence directe de la proposition III.5.12. \square

Proposition III.5.20. Soit (X, \mathcal{A}, μ) un espace mesuré et f une fonction mesurable à valeurs dans $[0, +\infty]$. Pour tout $t \in]0, +\infty[$ on introduit $A_t = \{x, f(x) \geq t\}$. On a

$$\mu(A_t) \le \frac{1}{t} \int_{A_t} f(x) d\mu \le \frac{1}{t} \int_X f(x) d\mu.$$

Démonstration. On a $0 \le t \mathbb{1}_{A_t} \le f \mathbb{1}_{A_t} \le f$, d'où

$$t\mu(A_t) \le \int_{A_t} f(x) \le \int_X f(x),$$

d'où l'on tire les inégalités annoncées en divisant par t.

Proposition III.5.21. Soit (X, \mathcal{A}, μ) un espace mesuré et f une fonction intégrable à valeurs dans $[-\infty, +\infty]$. Alors f est finie μ -presque partout, i.e.

$$\mu(\{x, |f(x)| = +\infty\}) = 0.$$

Démonstration. C'est une conséquence de la proposition III.5.20. On a effet pour tout $n \in \mathbb{N}$

$$\mu(\lbrace x, |f(x)| = +\infty \rbrace) \le \mu(\lbrace x, |f(x)| > n \rbrace) \le \frac{1}{n} \int_X |f| d\mu.$$

La quantité positive $\mu(\{x, |f(x)| = +\infty\})$ est donc majorée par des réels arbitrairement petits, elle est donc nulle.

III.5.4 Théorèmes fondamentaux

Nous pouvons maintenant démontrer le théorème de convergence monotone, qui constitue l'aboutissement des propositions III.5.9 et III.5.13. Ce théorème s'appuie sur une propriété d'approximation des fonctions mesurables positives par des fonctions étagées, que nous énonçons sous forme d'un lemme :

Lemme III.5.22. (Approximation d'une fonction mesurable par des fonctions étagées $(\bullet \bullet)$) Soit (X, \mathcal{A}, μ) un espace mesuré, et f une fonction mesurable de X dans $[0, +\infty]$. Il existe une suite (g_n) de fonctions de \mathcal{E}^+ , croissante, avec $g_n \leq f$ pour tout n, qui converge simplement vers f, c'est à dire que

$$f(x) = \lim_{n} g_n(x) \quad \forall x \in X.$$

Démonstration. La démonstration repose sur la construction explicite d'une fonction étagée, qui reproduit de façon abstraite ce que ferait un logiciel de traitement d'image pour échantillonner les niveaux de gris, de façon à limiter l'espace mémoire nécessaire pour stocker l'image. L'idée est simplement de pratiquer cet échantillonnage avec une précision arbitrairement grande (dans le cas d'une image, il s'agirait de faire tendre vers l'infini le nombre de bits utilisés pour encoder les niveaux de gris). La petite différence avec ce cadre informatique est qu'ici on ne peut pas supposer que les valeurs de la fonction sont bornées, on doit donc construire une approximation de plus en plus fine, mais qui s'étale aussi sur une plage de valeurs de plus en plus grande. Pour tout entier $n \geq 1$, tout $k = 1, \ldots, n2^n$, on définit dans cet esprit

$$A_{n,k} = \{x, (k-1)/2^n \le f(x) < k/2^n\}$$
.

Pour tout n, les $A_{n,k}$ sont disjoints, et sont mesurables par mesurabilité de f. On définit maintenant la fonction f_n en affectant la valeur $(k-1)/2^n$ pour tout $x \in A_{n,k}$, et la valeur n pour les x qui ne sont dans aucun des $A_{n,k}$ (là où la valeur de f dépasse n). Les fonctions f_n sont étagées, la suite est croissante, et on a convergence simple de f_n vers f.

Théorème III.5.23. (Convergence monotone $(\bullet \bullet)$)

Soit (X, \mathcal{A}, μ) un espace mesuré, f une fonction mesurable de X dans $[0, +\infty]$, et (f_n) une suite de fonctions également mesurables et positives. On suppose que

- 1. la suite $(f_n(x))$ est croissante pour presque tout x (voir définition III.3.6),
- 2. f_n converge simplement vers f, presque partout, c'est-à-dire que, pour presque tout x, $f(x) = \lim_{n \to \infty} f_n(x)$.

L'intégrale de f est alors la limite des intégrales des f_n :

$$\int f \, d\mu = \lim_{n \to +\infty} \int f_n \, d\mu.$$

 $D\acute{e}monstration$. On suppose dans un premier temps que les propriétés de monotonie et de convergence ponctuelle sont vérifiées pour tout x dans X. La monotonicité de l'intégrale (proposition III.5.14) assure que

$$\int f_1 d\mu \le \int f_2 d\mu \le \dots \le \int f d\mu,$$

On a donc convergence de la suite $(\int f_n)$ vers un réel inférieur ou égal à $\int f$. Montrons maintenant l'inégalité inverse. Pour tout n, la fonction f_n peut être approchée inférieurement par une suite $(g_{n,j})_j$ (voir lemme III.5.22 ci-dessus). On définit maintenant la fonction h_n par

$$h_n = \max(g_{1,n}, g_{2,n}, \dots, g_{n,n}),$$

qui sont des fonctions de \mathcal{E}^+ par construction. Comme la suite $(g_{n,j})_j$ est croissante pour tout n, la suite (h_n) est croissante. On a par ailleurs, pour tout j et tout n,

$$g_{n,j} \leq f_n$$

d'où $h_n \leq f_n$. On a enfin convergence simple de h_n vers f. En effet, pour tout x, il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $0 \leq f(x) - f_n(x) < \varepsilon$. Par convergence croissante de $g_{N,j}$ vers f_N , existe $K \in \mathbb{N}$ tel que, pour tout $j \geq K$, on ait $0 \leq f_N(x) - g_{N,j}(x) < \varepsilon$, d'où

$$0 \le f(x) - g_{N,i}(x) < 2\varepsilon$$
.

Pour $j \ge \max(K, N)$, le terme $g_{N,j}$ est dans la collection des fonctions dont h_N est le maximum, on a donc $h_j(x) > f(x) - 2\varepsilon$, d'où la convergence de $h_n(x)$ vers f(x). D'après la proposition III.5.13, on a donc

$$\int f = \lim_{n} \int h_n \le \lim_{n} \int f_n,$$

ce qui conclut la première partie de la preuve.

Supposons maintenant que les propriétés de croissance et de convergence simple ne soient vérifiées que presque partout : il existe un ensemble $A \in \mathcal{A}$, dont le complémentaire est de

mesure nulle, et sur lequel les propriétés sont vérifiées. La suite $f_n \mathbb{1}_A$ (qui met à 0 toutes les valeurs sur A^c) vérifie les hypothèses vis-à-vis de la fonction cible $f\mathbb{1}_A$. On a donc, d'après ce qui précède, convergence de la suite des intégrales vers l'intégrale de f. Or, comme $f_n\mathbb{1}_A$ s'identifie à f_n presque partout, de même pour $f\mathbb{1}_A$ et f, les intégrales sont les mêmes (d'après la proposition III.5.12), ce qui conclut la preuve.

Lemme III.5.24. (Fatou)

Soit (X, \mathcal{A}, μ) un espace mesuré et (f_n) une suite de fonctions mesurables de X dans $[0, +\infty]$. On a

 $\int \liminf_{n} f_n \ d\mu \le \liminf_{n} \int f_n \ d\mu.$

Démonstration. Pour tout n on définit g_n par $g_n(x) = \liminf f_n(x) = \inf_{k \ge n} f_k(x)$. D'après la proposition III.5.2, chacune de ces fonctions est mesurable. Or, pour tout x,

$$g_1(x) \leq g_2(x) \leq \dots$$

donc $g_n(x)$ converge vers une limite que l'on note $g(x) \in [0, +\infty]$. D'après le théorème de convergence monotone III.5.23, on a donc

$$\int g = \lim_{n} \int g_{n}.$$

Or $g = \liminf f_n$ et, comme $g_n \leq f_n$, on a $\lim \int g_n \leq \liminf \int f_n$, d'où l'on déduit l'inégalité annoncée.

Théorème III.5.25. (Convergence dominée)

Soit (X, \mathcal{A}, μ) un espace mesuré, g une fonction intégrable de X dans $[0, +\infty]$, et (f_n) une suite de fonctions mesurables de X dans $[-\infty, +\infty]$. On suppose

$$f(x) = \lim_{n} f_n(x)$$
 pour presque tout x ,

et que, pour tout n,

$$|f_n(x)| \le g(x)$$

pour presque tout x dans X. Alors les fonctions f et f_n pour tout n sont intégrables sur X, et l'on a

$$\lim \int |f - f_n| \ d\mu = 0,$$

d'où en particulier $\lim \int f_n = \int f$.

Démonstration. Il existe un ensemble A dans A, dont le complémentaire est de mesure nulle 10 , tel que toutes les propriétés soient vérifiées. Pour tout x dans A, on a $|f_n(x)| \leq g(x)$ et, par passage à la limite, $|f(x)| \leq g(x)$. On a donc $\int |f_n| \leq \int g < +\infty$ et $\int |f| \leq \int g < +\infty$, qui exprime l'intégrabilité de f et des f_n . On a par ailleurs $|f_n + f| \leq |f_n| + |f| \leq 2g$, qui est donc intégrable. On applique le lemme de Fatou III.5.24 à la suite de fonctions positives $(2g - |f_n - f|)$:

$$\int \liminf (2g - |f_n - f|) \le \liminf \int (2g - |f_n - f|),$$

^{10.} Chacune des propriétés énoncée est vraie sur un ensemble dont le complémentaire est de mesure nulle. On exclut ici la réunion de tous ces ensembles sur lesquels les propriétés sont vérifiées, comme il s'agit d'une réunion dénombrable, cet ensemble reste de mesure nulle.

d'où l'on déduit, par linéarité de l'intégrale (et prenant garde de transformer les lim inf en \limsup quand on fait sortir le signe -),

$$\limsup \int |f_n - f| \le \int \limsup |f_n - f|.$$

Or, comme f_n converge vers f sur A, la fonction $\limsup |f_n - f|$ est identiquement nulle presque partout, d'où la nullité de son intégrale, ce qui exprime la convergence de $\int |f_n - f|$ vers 0.

III.6 Intégrales multiples

Définition III.6.1. (Rectangles)

Soient (X_1, A_1) et (X_2, A_2) deux espaces mesurables. On appelle rectangle de $X_1 \times X_2$ un ensemble de la forme $A_1 \times A_2$, avec $A_1 \in A_1$, $A_2 \in A_2$, et l'on note \mathcal{R} l'ensemble de ces rectangles.

Proposition III.6.2. Soient (X_1, \mathcal{A}_1) et (X_2, \mathcal{A}_2) deux espaces mesurables. L'ensemble \mathcal{R} des rectangles est un π – système (définition III.2.16), c'est à dire qu'il est stable par intersection finie.

Démonstration. Pour tous rectangles $A_1 \times A_2$ et $A'_1 \times A'_2$ de $A_1 \otimes A_2$, on a

$$(A_1 \times A_2) \cap (A_1' \times A_2') = \left(\underbrace{A_1 \cap A_1'}_{\in A_1}\right) \times \left(\underbrace{A_2 \cap A_2'}_{\in A_2}\right),$$

qui appartient $A_1 \otimes A_2$.

Définition III.6.3. (Tribu produit)

Soient (X_1, \mathcal{A}_1) et (X_2, \mathcal{A}_2) deux espaces mesurables. On appelle tribu-produit de \mathcal{A}_1 et \mathcal{A}_2 la tribu de $X_1 \times X_2$ engendrée par les rectangles. On la note $\mathcal{A}_1 \otimes \mathcal{A}_2$.

Définition III.6.4. (Sections)

Soient X_1 et X_2 deux ensembles et $E \in X_1 \times X_2$. Pour $x_1 \in X_1$, on définit la section associée à X_1 par

$$E_{x_1} = \{x_2 \in X_2, (x_1, x_2) \in E\}$$

On définit de la même manière, pour $x_2 \in X_2$, la section $E^{x_2} = \{x_1 \in X_1, (x_1, x_2) \in E\}$.

Proposition III.6.5. Soient (X_1, A_1) et (X_2, A_2) deux espaces mesurables. Soit $E \in A_1 \otimes A_2$. Toute section E_{x_1} est dans A_2 , et toute section E^{x_2} est dans A_1 .

Démonstration. Soit $x_1 \in X_1$. On définit \mathcal{F} comme l'ensemble des parties E de $X_1 \times X_2$ telles que E_{x_1} est élément de \mathcal{A}_2 . Pour tout rectangle $E = A_1 \times A_2$, avec $A_i \in \mathcal{A}_i$, on a soit $E_{x_1} = \emptyset$ (si $x_1 \notin A_1$), soit $E_{x_1} = A_2$ (si $x_1 \in A_1$), d'où l'on déduit que \mathcal{F} contient tous les rectangles $A_1 \times A_2$. On a par ailleurs, pour toute partie E de l'espace produit,

$$(E^c)_{x_1} = (E_{x_1})^c$$

et, pour toute collection (E_n) ,

$$\left(\bigcup E_n\right)_{x_1} = \bigcup (E_n)_{x_1},$$

d'où l'on déduit que \mathcal{F} est stable par complémentarité et par union dénombrable. Il s'agit donc d'une tribu, qui contient donc la tribu engendrée par les rectangles, qui est $A_1 \otimes A_2$. Pour tout $E \subset \mathcal{A}_1 \otimes \mathcal{A}_2$, on a donc $E_{x_1} \in \mathcal{A}_2$. On démontre de la même manière que toute section E^{x_2} d'un ensemble $E \subset \mathcal{A}_1 \otimes \mathcal{A}_2$ est dans \mathcal{A}_1 .

Définition III.6.6. (Section d'une application)

Soit f une fonction définie sur un espace produit $X_1 \times X_2$. On note f_{x_1} la fonction (appelée section) définie sur X_2 par

$$f_{x_1}(x_2) = f(x_1, x_2).$$

On définit de la même manière $x_1 \longmapsto f^{x_2}(x_1) = f(x_1, x_2)$.

Proposition III.6.7. Soit f une application $\mathcal{A}_1 \otimes \mathcal{A}_2$ – mesurable à valeurs dans $[-\infty, +\infty]$, alors pour tout $x_1 \in X_1$, la section f_{x_1} est \mathcal{A}_2 – mesurable, et pour tout $x_2 \in X_2$, la section f_{x_2} est \mathcal{A}_1 – mesurable.

Démonstration. Pour tout $x_1 \in X_1$, tout $A_2 \in A_2$, tout borélien D de $\overline{\mathbb{R}}$, on a

$$(f_{x_1})^{-1}(D) = (f^{-1}(D))_{x_1},$$

Or $f^{-1}(D) \in \mathcal{A}_1 \otimes \mathcal{A}_2$ d'après l'hypothèse de mesurabibilité de f, et donc $(f^{-1}(D))_{x_1} \in \mathcal{A}_2$ d'après la proposition III.6.5. On montre de la même manière que, pour tout $x_2 \in X_2$, la section f_{x_2} est \mathcal{A}_1 – mesurable.

Proposition III.6.8. Soient $(X_1, \mathcal{A}_1, \mu_1)$ et $(X_2, \mathcal{A}_2, \mu_2)$ deux espaces mesurés, tels que μ_1 et μ_2 sont σ – finies. Pour tout $E \subset \mathcal{A}_1 \otimes \mathcal{A}_2$, les applications

$$x_1 \longmapsto \mu_2(E_{x_1}) \text{ et } x_2 \longmapsto \mu_1(E^{x_2})$$

sont respectivement A_1 – mesurable et A_2 – mesurable.

Démonstration. On suppose dans un premier temps que μ_2 est finie. D'après la proposition III.6.5, pour tout $x_1 \in X_1$, tout $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$. La section E_{x_1} est dans \mathcal{A}_2 , la quantité $\mu_2(E_{x_1})$ est donc bien définie. On introduit l'ensemble \mathcal{D} des éléments E de $\mathcal{A}_1 \otimes \mathcal{A}_2$ tels que la fonction $x_1 \longmapsto \mu_2(E_{x_1})$ est \mathcal{A}_1 – mesurable. Nous allons montrer que \mathcal{D} est une classe monotone qui contient le π – système des rectangles, dont nous déduirons que \mathcal{D} est la tribu produit toute entière. Pour tout rectangle $E = A_1 \times A_2$, cette fonction s'écrit

$$\mu_2(E_{x_1}) = \mu_2(A_2) \mathbb{1}_{A_1}(x_1),$$

elle est donc μ_1 – mesurable. En particulier, $X_1 \times X_2 \in \mathcal{D}$. Si maintenant E et F sont dans \mathcal{D} , avec $E \subset F$, on a

$$\mu_2((F \setminus E)_{x_1}) = \mu_2(F_{x_1}) - \mu_2(E_{x_1}),$$

d'où la mesurabilité de $x_1 \mapsto \mu_2((F \setminus E)_{x_1})$. Si maintenant (E_n) est une suite croissante d'éléments de \mathcal{D} , on a

$$\mu_2\left(\left(\bigcup E_n\right)_{x_1}\right) = \lim \mu_2\left((E_n)_{x_1}\right) = \sup \mu_2\left((E_n)_{x_1}\right),$$

qui est mesurable d'après la proposition III.5.2, page 76. L'ensemble \mathcal{D} est donc une classe monotone, qui contient le π - système \mathcal{R} des rectangles. Il contient donc la tribu engendrée par \mathcal{R} , qui est $\mathcal{A}_1 \otimes \mathcal{A}_2$ (définition III.6.3). Or \mathcal{D} a été défini comme l'ensemble des parties E telles que $x_1 \longmapsto \mu_2(E_{x_1})$ est μ_1 - mesurable. Cette propriété est donc vraie pour tout $E \in \mathcal{A}$. On montre symétriquement que $x_2 \longmapsto \mu_1(E^{x_2})$ est μ_2 - mesurable pour tout $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$.

Si maintenant μ_2 est σ – finie, on introduit une partition (D_n) de X_2 , constituée de parties de mesure finie (voir proposition III.3.2). Chacune des mesures μ_2^n définie par $\mu_2^n(A) = \mu_2(A \cap D_n)$ est donc finie. D'après ce qui précède, la fonction $x_1 \longmapsto \mu_2^n(E_{x_1})$ est μ_1 – mesurable, d'où

$$x_1 \longmapsto \mu_2(E_{x_1}) = \sum_{n=0}^{+\infty} \mu_2^n(E_{x_1})$$

est mesurable. On démontre de la même manière la propriété symétrique.

Théorème III.6.9. (Mesure – produit)

Soient $(X_1, \mathcal{A}_1, \mu_1)$ et $(X_2, \mathcal{A}_2, \mu_2)$ deux espaces mesurés, avec μ_1 et μ_2 des mesures que l'on suppose σ – finies. Il existe une unique mesure sur $(X_1 \times X_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$, appelée mesure produit de μ_1 et μ_2 , notée $\mu_1 \otimes \mu_2$, telle que

$$(\mu_1 \otimes \mu_2)(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2),$$

pour tous $A_1 \in \mathcal{A}_1$ et $A_2 \in \mathcal{A}_2$. Cette mesure vérifie en outre, pour tout $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$,

$$(\mu_1 \otimes \mu_2)(E) = \int_{X_1} \mu_2(E_{x_1}) d\mu_1(x_1) = \int_{X_2} \mu_1(E^{x_2}) d\mu_2(x_2).$$

Démonstration. D'après la proposition III.6.8, les fonctions $x_1 \longmapsto \mu_2(E_{x_1})$ et $x_2 \longmapsto \mu_1(E^{x_2})$ sont respectivement μ_1 – mesurable et μ_2 – mesurable. On peut ainsi définir deux fonctions de $\mathcal{A}_1 \otimes \mathcal{A}_2$ dans \mathbb{R}_+ comme suit

$$(\mu_1 \otimes \mu_2)_1(E) = \int_{X_1} \mu_2(E_{x_1}) d\mu_1(x_1), \ (\mu_1 \otimes \mu_2)_2(E) = \int_{X_2} \mu_1(E^{x_2}) d\mu_2(x_2).$$

On vérifie immédiatement que ce sont bien des mesures sur la tribu-produit $A_1 \otimes A_2$. Ces mesures prennent les mêmes valeurs sur les rectangles : pour tous $A_1 \in A_1$, $A_2 \in A_2$,

$$(\mu_1 \otimes \mu_2)_1(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2) = (\mu_1 \otimes \mu_2)_2(A_1 \times A_2).$$

Elles s'identifient donc sur l'ensemble \mathcal{R} des rectangles, qui constituent un π – système d'après la proposition III.6.2. La mesure μ_1 étant σ – finie, X_1 s'écrit comme union croissante dénombrable d'ensembles A_n^1 de mesure finie, de même X_2 est réunion croissante des A_n^2 , avec $\mu_2(A_n^2) < +\infty$ pour tout n. L'union des $C_n = A_n^1 \times A_n^2$, recouvre donc $X_1 \times X_2$, et l'on peut utiliser le corollaire III.3.11, page 66, qui assure que ces mesures s'identifient sur la tribu engendrée par \mathcal{R} , qui est par définition la tribu-produit $\mathcal{A}_1 \otimes \mathcal{A}_2$.

Théorème III.6.10. (Fubini – Tonelli)

Soient μ_1 et μ_2 deux mesures σ -finies sur les espaces mesurables (X_1, A_1) et (X_2, A_2) , respectivement. Soit f une fonction $A_1 \otimes A_2$ -mesurable de (X_1, X_2) dans $[0, +\infty]$. On suppose que f est mesurable pour $A_1 \otimes A_2$. Alors, pour μ_1 -presque tout x_1 , la section f_{x_1} est μ_2

mesurable sur X_2 et pour μ_2 -presque tout x_2 , la section f^{x_2} est μ_1 – mesurable sur X_1 , et l'on a

$$\int_{X_1 \times X_2} f(x_1, x_2) d(\mu_1 \otimes \mu_2) = \int_{X_1} \left(\int_{X_2} f_{x_1}(x_2) d\mu_2(x_2) \right) d\mu_1(x_1)
= \int_{X_2} \left(\int_{X_1} f^{x_2}(x_1) d\mu_1(x_1) \right) d\mu_2(x_2).$$

Démonstration. On considère dans un premier temps le cas où f est la fonction indicatrice d'une partie $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$. Les sections f_{x_1} et f^{x_2} sont alors les fonctions indicatrices de E_{x_1} et E^{x_2} , respectivement :

$$f_{x_1}(x_2) = f(x_1, x_2) = \mathbb{1}_{E(x_1, x_2)} = \mathbb{1}_{E_{x_1}}(x_2), \ f^{x_2}(x_1) = \mathbb{1}_{E^{x_2}}(x_1).$$

elles sont donc respectivement μ_2 – mesurable et μ_1 – mesurables d'après la proposition III.6.8, et l'on a

$$\int_{X_2} f_{x_1}(x_2) d\mu_2(x_2) = \mu_2(E_{x_1}) \text{ et } \int_{X_1} f^{x_2} d\mu_1(x_2) = \mu_1(E^{x_2}).$$

On a d'après le théorème III.6.9, qui définit la mesure-produit,

$$\int_{X_1} \left(\int_{X_2} f_{x_1} d\mu_2(x_2) \right) d\mu_1(x_1) = \int_{X_1} \mu_2(E_{x_1}) d\mu_1(x_1)
= (\mu_1 \otimes \mu_2)(E)
= \int_{X_2} \mu_1(E^{x_1}) d\mu_2(x_2)
= \int_{X_2} \left(\int_{X_1} f^{x_2}(x_1) d\mu_1(x_1) \right) d\mu_2(x_2).$$

La propriété est donc vérifiée pour les fonctions indicatrices d'éléments de $\mathcal{A}_1 \otimes \mathcal{A}_2$. Elle donc vérifiée, par linéarité et homogénéité de l'intégrale, pour les fonctions étagées. Or toute fonction mesurable sur $\mathcal{A}_1 \otimes \mathcal{A}_2$ est limite croissante d'une suite de fonctions étagées (lemme III.5.22, page 84). Pour toute fonction étagée g sur $\mathcal{A}_1 \otimes \mathcal{A}_2$, la section g_{x_1} est également étagée :

$$g(x_1, x_2) = \sum \alpha_i \mathbb{1}_{C_i}(x_1, x_2), \ g_{x_1}(x_2) = \sum \alpha_i \mathbb{1}_{(C_i)_{x_1}}(x_2).$$

Pour toute suite croissante de telles fonctions, les sections sont également croissante, et la convergence simple implique la convergence de toute section vers la section correspondante de la limite. La proposition III.5.2, page 76, assure la mesurabilité des sections. Le théorème III.5.23 de convergence monotone assure la convergence des intégrales, ce qui conclut la preuve.

Théorème III.6.11. (Fubini – Lebesgue)

Soient μ_1 et μ_2 deux mesures σ -finies sur les espaces mesurables (X_1, A_1) et (X_2, A_2) , respectivement. Soit f une fonction $A_1 \otimes A_2$ -mesurable de (X_1, X_2) dans $[-\infty, +\infty]$. On suppose que f est mesurable $A_1 \otimes A_2$, et intégrable pour la mesure produit $\mu_1 \otimes \mu_2$. Alors

(i) Pour μ_1 -presque tout x_1 , la section f_{x_1} est μ_2 - intégrable sur X_2 et pour μ_2 -presque tout x_2 , la section f^{x_2} est μ_1 - intégrable sur X_1 ;

(ii) Les fonctions

$$x_1 \in X_1 \longmapsto I_f^1(x_1) = \begin{vmatrix} \int_{X_2} f_{x_1}(x_2) d\mu_2 & \text{si } f_{x_1} \text{ est } \mu_2 - \text{intégrable} \\ 0 & \text{sinon} \end{vmatrix}$$

et

$$x_2 \in X_2 \longmapsto I_f^2(x_2) = \begin{vmatrix} \int_{X_1} f^{x_2}(x_1) d\mu_1 & \text{si } f^{x_2} \text{ est } \mu_1 - \text{intégrable} \\ 0 & \text{sinon} \end{vmatrix}$$

sont respectivement μ_1 – intégrable et μ_2 – intégrable.

(iii) On a

$$\int_{X_1 \times X_2} f(x_1, x_2) d(\mu_1 \otimes \mu_2) = \int_{X_1} I_f^1(x_1) d\mu_1 = \int_{X_2} I_f^2(x_2) d\mu_2.$$

Démonstration. Soient f^+ et f^- les parties positive et négative de f. D'après la proposition III.6.7, les sections $(f^+)_{x_1}$, $(f^-)_{x_1}$ sont \mathcal{A}_2 mesurables. D'après le théorème III.6.10, les fonctions

$$x_1 \longmapsto \int_{X_2} (f^+)_{x_1} d\mu_2$$
 et $x_1 \longmapsto \int_{X_2} (f^-)_{x_1} d\mu_2$

sont \mathcal{A}_1 – mesurables et μ_1 –intégrables, et donc qu'elles sont finies μ_1 –presque partout. D'après la proposition III.5.21, ces fonctions sont donc finies μ_1 presque partout. La section f_{x_1} est donc intégrable pour presque tout x_1 . Soit N l'ensemble des x_1 tels que l'une ou l'autre des fonctions ci-dessus est infinie. L'ensemble N est dans \mathcal{A}_1 car

$$N = \left(\bigcap_{n} \left\{ x_1, \int_{X_2} (f^+)_{x_1} d\mu_2 > n \right\} \right) \bigcup \left(\bigcap_{n} \left\{ x_1, \int_{X_2} (f^-)_{x_1} d\mu_2 > n \right\} \right).$$

la fonction I_f^1 vaut 0 sur N, et prend la valeur

$$\int_{X_2} (f^+)_{x_1} d\mu_2 - \int_{X_2} (f^-)_{x_1} d\mu_2$$

sur son complémentaire. La fonction I_f^1 est donc μ_1 -intégrable. On a donc, d'après le théorème III.6.10 et la proposition III.5.19, page 83,

$$\int_{X_1 \times X_2} f \, d(\mu_1 \otimes \mu_2) = \int_{X_1 \times X_2} f^+ \, d(\mu_1 \otimes \mu_2) - \int_{X_1 \times X_2} f^- \, d(\mu_1 \otimes \mu_2) \\
= \int_{X_1} \int_{X_2} (f^+)_{x_1} \, d\mu_2 - \int_{X_1} \int_{X_2} (f^-)_{x_1} \, d\mu_2 = \int_{X_1} I_f^1 d\mu_1.$$

La même démarche appliquée aux sections $(f^+)^{x_2}$ et $(f^-)^{x_2}$ permet de conclure.