

Big Data Computing 2021-2022

Fake News Detection using Pyspark

A presentation by: Albiona Guri

Outline

- 1. Introduction
- 2. Dataset
- 3. Models
- 4. Experimental results
- 5. Conclusion
- 6. A functional Application

Introduction

- ❖ The main objective of our project is to determine if a given text data by the user is fake or real.
- * It consists of a binary classification problem.
- ❖ In order to automate the news qualifying procedure we implemented 4 machine learning algorithms to predict the news.

Dataset

- ❖ The dataset we used is derived from Kaggle resource and is composed by text data.
- ❖ It consists of around 44900 training examples.
- ❖ The ratio between minority class and majority is particularly small.

Feature Engineering

Pre-Processing

TEXT

Clean

Trim

Filter Punctuations

Remove extra Whitespaces

Tokenize

Stopwords Removal

Stemming

- Countvectorizer
 - Bag of Words

TF-IDF

Models

- 1. Logistic Regression
 - Logistic Regression
- 2. Random Forest
 - Random Forest Classifier
- 3. Multilayer Perceptron
 - MultilayerPerceptronClassifier
- 4. Transformers
 - Hugging Face Transformer

Experimental Results

***** Logistic Regression

Train set

Test set

Random Forest

Train set

Test set

MultiLayer Perceptron

Train set

Test set

Results Summary

Metrics	Logistic Regression	Random Forest	Multilayer Perceptron	Transformers
Accuracy	0.98831	0.99309	0.98353	0.99867
F1-Score Class 0	0.98851	0.99323	0.98381	-
F1-Score Class 1	0.98810	0.99295	0.98325	0.99587
AUC	0.99678	0.99876	0.99717	0.99852

Conclusion

* Among all tested models in our dataset, we noticed that the best performance comes from:

Random Forest and Transformers

- ❖ We built a small Application that can be used to get informed if the news are real or fake. The used model in our specific case is Transformers.
- * We have saved all the models, so we can adapt the Application for using each of them.

A functional Application

- ❖ To put into practice our model, we built a small application where the user can enter the news and receive a feedback whether it is FAKE or REAL
- Technologies used:
 - > Flask
 - ➤ React.js
 - > Docker
- Links to the docker images:
 - ➤ https://hub.docker.com/repository/docker/elvinalika/fake-news-detector-fe
 - ➤ https://hub.docker.com/repository/docker/elvinalika/fake-news-detector-be

