Ejercicio de identificación de un modelo ARIMA

Datos

Cargue la serie de datos simulados f7dcbd-12.gdt

open IdentificaEstosARIMA/f7dcbd-12.gdt

Tareas a realizar

- 1. Realice un primer análisis gráfico: haga un gráfico de la serie y un gráfico rango-media
- 2. Determine si es necesario transformar logarítmicamente los datos
- 3. Determine si es necesario tomar una o más diferencias regulares de la serie
- 4. Determine si es necesario tomar una diferencia estacional de la serie
- 5. Encuentre un modelo ARIMA para la serie que sea lo más parsimonioso posible, pero cuyos residuos se puedan considerar *ruido blanco*.
- 6. Ficheros https://github.com/mbujosab/EconometriaAplicada-SRC/tree/main/Ejercicios
 - Versión en pdf
 - Datos: f7dcbd-12.gdt
 - Guión de gretl: EjercicioIdentificacionARIMA.inp

Primer análisis gráfico

Estacionariedad en varianza

A la luz de los anteriores gráficos, donde se aprecia que la variabilidad de los datos aumenta con el nivel de la serie, parece necesaria la transformación logarítmica.

Transforme logarítmicamente los datos y grafíquelos

```
logs x
gnuplot 1_x --time-series --with-lines --output="SerieEnLogs.png"
rmplot 1_x --output="rango-media-enLogs.png"
```


La serie en logs ya parece estacionaria en varianza.

Estacionariedad en media

El gráfico de la serie 1_x parece mostrar una evolución en su nivel (una tendencia). Por tanto, parece indicado tomar una diferencia ordinaria.

No obstante, probemos a ajustar un modelo AR(1), probablemente obtendremos un polinomio autoregresivo con una raíz muy próxima a uno (o incluso menor que uno en valor absoluto).

```
AR1 <- arima 1 0 0 ; 1_x
```

Evaluaciones de la función: 93 Evaluaciones del gradiente: 24

AR1: ARMA, usando las observaciones 1985:01-2024:12 (T = 480)

Estimado usando AS 197 (MV exacta)

Variable dependiente: l_x

Desviaciones típicas basadas en el Hessiano

	coeficient	e Desv. t	ípica	z	valor p	o O
const phi_1	2,43628 0,998052	1,7155 0,0017		1,420 558,6	0,1556 0,0000	***
Media de 1	a vble. dep.	4,117853	D.T.	de la vble.	dep.	1,982703
Media de i	nnovaciones	-0,000257	D.T.	innovaciones	S	0,124169
R-cuadrado)	0,996075	R-cua	drado corre	gido	0,996075
Log-verosi	militud	317,4684	Crite	erio de Akail	ke -	-628,9367
Criterio d	le Schwarz	-616,4154	Crit.	de Hannan-O	Quinn -	-624,0149

		Real Ima	Real Imaginaria		ecuencia
AR					
Raíz	1	1,0020	0,0000	1,0020	0,0000

AR1 guardado

Tal como se anticipaba, la raíz es casi 1. También podemos probar con los test formales de raíz unitaria

Test ADF

```
Contraste aumentado de Dickey-Fuller (GLS) para 1_x contrastar hacia abajo desde 17 retardos, con el criterio AIC modificado, Perron-Qu tamaño muestral 477 la hipótesis nula de raíz unitaria es: [a=1] contraste con constante incluyendo 2 retardos de (1-L)1_x modelo: (1-L)y = b0 + (a-1)*y(-1) + \dots + e valor estimado de (a-1): -0.00213547 estadístico de contraste: tau = -1.19526 valor p aproximado 0.226 Coef. de autocorrelación de primer orden de e: -0.013 diferencias retardadas: F(2, 474) = 156.788 [0.0000]
```

Test KPSS

```
Contraste KPSS para 1_x

T = 480

Parámetro de truncamiento de los retardos = 5

Estadístico de contraste = 1,77747

10% 5% 1%

Valores críticos: 0,348 0,462 0,742

Valor p < .01
```

El p-valor es menor al 1%, por lo que se rechaza la H_0 de que la serie es I(0). Todas las evidencias apuntan a que es necesaria tomar una diferencia ordinaria

Repetición del análisis con la serie diferenciada

```
diff 1_x
gnuplot d_1_x --time-series --with-lines --output="SerieLogEnDiferencias.png"
```


El gráfico de la serie transformada no muestra tener una clara tendencia o evolución a largo plazo de su nivel.

Probemos a ajustar un modelo AR a los datos diferenciados

ARIMA110 <- arima 1 1 0 ; d_1_x

Evaluaciones de la función: 24 Evaluaciones del gradiente: 5

ARIMA110: ARIMA, usando las observaciones 1985:03-2024:12 (T = 478)

Estimado usando AS 197 (MV exacta) Variable dependiente: (1-L) d_l_x

Desviaciones típicas basadas en el Hessiano

coeficien	ite Desv	. típica	z	valor p	
const -0,000361 phi_1 -0,755554	,	0262948 299328	-0,1373 -25,24	0,8908 1,40e-140) ***
Media de la vble. dep. Media de innovaciones R-cuadrado Log-verosimilitud Criterio de Schwarz	-0,000553 0,000017 0,388386 417,9912 -817,4736	D.T. i R-cuad Criter	le la vble. .nnovaciones !rado correg rio de Akaik de Hannan-C	s 0,10 gido 0,38 se -829,	
	Real Imag	inaria	Módulo Fr	recuencia	

		Real I	Real Imaginaria		ecuencia
AR.					
Raíz	1	-1,3235	0,0000	1,3235	0,5000

ARIMA110 guardado

El parámetro ϕ_1 está lejos de la unidad (consecuentemente, también lo está la raíz autorregresiva). Repitamos también los tests formales

Test ADF

adf -1 d_l_x --c --gls --test-down --perron-qu

Contraste aumentado de Dickey-Fuller (GLS) para d_l_x contrastar hacia abajo desde 17 retardos, con el criterio AIC modificado, Perron-Qu

```
tamaño muestral 468 la hipótesis nula de raíz unitaria es: [a = 1] contraste con constante incluyendo 10 retardos de (1-L)d_1x modelo: (1-L)y = b0 + (a-1)*y(-1) + \dots + e valor estimado de (a - 1): -0,145647 estadístico de contraste: tau = -3,18886 valor p aproximado 0,001 Coef. de autocorrelación de primer orden de e: 0,001 diferencias retardadas: F(10, 457) = 35,578 [0,0000]
```

Test KPSS

El p-valor no es muy concluyente: NO se rechaza la H_0 de que la serie es I(0) al 1%, pero sí se rechaza al 5%. En cualquier caso, las evidencias apuntan mayoritariamente a que NO es necesario tomar una segunda diferencia ordinaria

Diferencias estacionales

Observemos el gráfico de la serie diferenciada y su correlograma.

corrgm d_l_x 36 --plot="d_l_x_ACF-PACF.png"

Ni en el gráfico de la serie se aprecia ninguna pauta estacional, ni en la función de autocorrelación simple las correlaciones correspondientes a los retardos estacionales son significativas (y deberían ser **muy prominentes** si fuera necesaria una diferencia estacional).

Además, si tratamos de ajustar un AR(1) estacional:

ARIMA010X100 <- arima 0 1 0 ; 1 0 0 ; 1_x --nc

Evaluaciones de la función: 15 Evaluaciones del gradiente: 3

ARIMAO10X100:

ARIMA, usando las observaciones 1985:02-2024:12 (T = 479)

Estimado usando AS 197 (MV exacta) Variable dependiente: (1-L) l_x

Desviaciones típicas basadas en el Hessiano

	coeficiente	Desv. típica	z	valor p
Phi_1	0,0578266	0,0459270	1,259	0,2080

Media de la vble. dep. -0,003555 D.T. de la vble. dep. 0,124351 -0,003470 Media de innovaciones D.T. innovaciones 0,124062 R-cuadrado 0,996083 R-cuadrado corregido 0,996083 Criterio de Akaike Log-verosimilitud 319,9682 -635,9364 Criterio de Schwarz -627,5930 Crit. de Hannan-Quinn -632,6565

	Real In	maginaria 	Módulo Fi	recuencia
AR (estacional) Raíz 1	17,2931	0,0000	17,2931	0,0000

ARIMA010X100 guardado

constatamos que la estimación del parámetro Φ_1 no es significativa.

Todas las evidencias apuntan a que NO es necesaria tomar ninguna diferencia estacional Recuerde que los test ADF y KPSS no sirven para determinar si es necesario tomar diferencias estacionales (solo sirven para las diferencias regulares).

Búsqueda de un modelo ARIMA

Observando al ACF y la PACF de aprecia que la ACF decae a una tasa exponencial, y la PACF se trunca tras el segundo retardo, lo cual es compatible con un AR(2).

Por tanto, parece que la serie en logaritmos sigue un modelo ARIMA(2, 1, 0). Veamos si es así:

ARIMA210cte <- arima 2 1 0 ; 1_x

Evaluaciones de la función: 27 Evaluaciones del gradiente: 6

ARIMA210cte:

ARIMA, usando las observaciones 1985:02-2024:12 (T = 479)

Estimado usando AS 197 (MV exacta) Variable dependiente: (1-L) l_x

Desviaciones típicas basadas en el Hessiano

	coeficiente	Desv. típ:	.ca z	valor	p
const	-0,00612415 0,0933620	0,0144972 0,0365714	•	•	
phi_2	0,604952	0,036596	•	•	
Media de la vi Media de inno R-cuadrado Log-verosimil Criterio de S	vaciones 0,0 0,9 itud 439	00230 D 97634 R- ,7655 C	T. de la v T. innovac cuadrado c riterio de rit. de Han	ciones corregido Akaike	0,124351 0,096517 0,997629 -871,5310 -864,9712
	Real	Imaginar:	.a Módu 	lo Frecuenc	cia
AR Raíz 1 Raíz 2	-1,3652 1,2108	•	•	•	

ARIMA210cte guardado

Los parámetros autorregresivos son significativos y el modulo de las raíces es claramente mayor que la unidad en ambos casos. No obstante, la constante no es significativa.

Reestimemos el modelo sin constante:

```
ARIMA210 <- arima 2 1 0 ; l_x --nc
```

Evaluaciones de la función: 21 Evaluaciones del gradiente: 4

ARIMA210: ARIMA, usando las observaciones 1985:02-2024:12 (T = 479)

Estimado usando AS 197 (MV exacta) Variable dependiente: (1-L) l_x

Desviaciones típicas basadas en el Hessiano

	coeficiente	Desv. típic	a z	valor p	
phi_1 phi_2	0,0936419 0,605180	0,0365721 0,0365994	2,560 16,54	0,0105 2,05e-61	** ***
Media de la Media de in R-cuadrado Log-verosim Criterio de	novaciones -0,0 0,9 nilitud 439	001626 D.T 997634 R-c 9,6762 Cri	. de la vble . innovacion uadrado corre terio de Aka: t. de Hannan	es (egido (0,124351 0,096534 0,997629 873,3525 868,4326
	Rea:	l Imaginaria	Módulo 1	Frecuencia	a.
AR Raíz 1 Raíz 2	-1,3655 1,2104	•	•	0,500	

ARIMA210 guardado

Análisis de los residuos

Todo parece OK, pero debemos ver el gráfico de los residuos y su correlograma, así como los estadísticos Q de Ljung-Box para constatar que podemos asumir que son la realización de un proceso de ruido blanco. También conviene mirar si tienen distribución gaussiana:

```
series residuos = $uhat

gnuplot residuos --time-series --with-lines --output="Residuos.png"
corrgm residuos 15 --plot="residuosACF-PACF.png"
```


corrgm residuos 15

Función de autocorrelación para residuos ***, ** y * indica significatividad a los niveles del 1%, 5% y 10% utilizando la desviación típica $1/T^0$,5

RETAR	DO FAC	FACP	Estad-Q	. [valor p]
1	-0,0115	-0,0115	0,0643	[0,800]
2	0,0078	0,0077	0,0940	[0,954]
3	-0,0064	-0,0062	0,1135	[0,990]
4	0,0112	0,0110	0,1747	[0,996]
5	0,0218	0,0222	0,4057	[0,995]
6	-0,0419	-0,0416	1,2590	[0,974]
7	0,0250	0,0239	1,5640	[0,980]
8	-0,0067	-0,0054	1,5857	[0,991]
9	-0,0195	-0,0211	1,7719	[0,995]
10	-0,0009	-0,0004	1,7723	[0,998]
11	0,0433	0,0449	2,6954	[0,994]
12	-0,0331	-0,0353	3,2347	[0,994]
13	0,0462	0,0479	4,2881	[0,988]
14	0,0159	0,0178	4,4136	[0,992]
15	0,0652	0,0623	6,5238	[0,970]

El gráfico de los residuos no presenta ninguna estructura reconocible y ninguna autocorrelación es significativa.

Más importante aún, los correlogramas no muestran ninguna pauta reconocible, se parecen mucho entre sí y los estadísticos Q muestran p-valores muy elevados, por lo que podemos asumir que estos residuos son "ruido blanco".

También conviene mirar si los residuos tienen distribución gaussiana:

modtest --normality

Distribución de frecuencias para uhat10, observaciones 2-480 número de cajas = 21, Media = -0,00162572, Desv.típ.=0,0967229

interva	alo pui	nto medio	frecuencia	rel	acum.	
<	-0,27429	-0,28731	2	0,42%	0,42%	
-0,27429 -	-0,24825	-0,26127	2	0,42%	0,84%	
-0,24825 -	-0,22222	-0,23524	7	1,46%	2,30%	
-0,22222 -	-0,19618	-0,20920	5	1,04%	3,34%	
-0,19618 -	-0,17014	-0,18316	3	0,63%	3,97%	
-0,17014 -	-0,14411	-0,15712	19	3,97%	7,93%	*
-0,14411 -	-0,11807	-0,13109	21	4,38%	12,32%	*
-0,11807 -	-0,092032	-0,10505	32	6,68%	19,00%	**
-0,092032 -	-0,065995	-0,079013	31	6,47%	25,47%	**
-0,065995 -	-0,039958	-0,052976	38	7,93%	33,40%	**
-0,039958 -	-0,013921	-0,026939	36	7,52%	40,92%	**
-0,013921 -	0,012116	-0,00090204	4 56	11,69%	52,61%	****
0,012116 -	0,038154	0,025135	60	12,53%	65,14%	****
0,038154 -	0,064191	0,051172	45	9,39%	74,53%	***
0,064191 -	0,090228	0,077209	46	9,60%	84,13%	***
0,090228 -	0,11626	0,10325	25	5,22%	89,35%	*
0,11626 -	0,14230	0,12928	21	4,38%	93,74%	*
0,14230 -	0,16834	0,15532	13	2,71%	96,45%	
0,16834 -	0,19438	0,18136	9	1,88%	98,33%	
0,19438 -	0,22041	0,20739	6	1,25%	99,58%	
>=	0,22041	0,23343	2	0,42%	100,00%	

Contraste de la hipótesis nula de distribución Normal: Chi-cuadrado(2) = 6,694 con valor p 0,03519

Claramente tienen distribución normal.

Además, si en la ventana del modelo estimado pincha en el menú desplegable Gráficos ->Espectro con respecto al periodograma espectral verá que el espectro teórico del modelo se ajusta perfectamente al periodograma de la serie.

Por tanto, podemos concluir que la serie f7dcbd-12.gdt, una vez transformada logarítmicamente, sigue un proceso ARIMA(2,1,0) con media cero.

Modelo efectivamente simulado

Veamos si ese es el modelo usado en su simulación. Si miramos la línea 37 del fichero 000-Etiquetas-12.txt que se encuentra en el directorio de donde hemos obtenido los datos encontramos lo siguiente:

```
f7dcbd, logs, mu = 2.5, ar = (1 - 0.8B)(1 + 0.8B), ma = ", i = (1 - B),
```

Efectivamente, requería la transformación logarítmica. La media era 2,5, (es decir la constante simulada no era cero). El polinomio AR era de grado 2: $\phi = (1-0.8 \text{B})(1+0.8 \text{B}) = (1+0 \text{B}-0.64 \text{B}^2)$, no tenía estructura MA y la serie requería una diferencia regular (1-B).

Por supuesto que la estimación de los parámetros no coincide exactamente con los parámetros del modelo simulado, pero la identificación del modelo ha sido PERFECTA.

Ahora escoja al azar nuevas series del directorio (dispone de centenares de series simuladas con distintos modelos) y practique la identificación hasta que adquiera seguridad.