import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Load the dataset

In [4]:

df=pd.read_csv("D:\\Users\ELCOT\Abalone_IBM.csv")
df

								(Out[4]:
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12
4155		0 1							

 $4177 \text{ rows} \times 9 \text{ columns}$

In [5]:

df.head()

Out[5]:

C	Lanath	Diameter	Haiabt	Whole	Shucked	Viscera	Shell	Rings
sex	Length	Diameter	Height	weight	weight	weight	weight	Kings

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

Univariate Analysis

<pre>sns.displot(df.Rings)</pre>	In [6]:
	Out[6]:
<pre>df.hist('Rings')</pre>	In [7]:
array([[]], dtype=object)	Out[7]:

Bi-variate analysis

In [9]:
sns.scatterplot(x=df.Length,y=df.Height)
Out[9]:

Multivariate Analysis

In [10]:
sns.pairplot(df)
Out[10]:

Perform descriptive statistic on dataset

In [11]:

df.describe()

								Out[11]:
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
coun t	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00
mea n	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

Check the missing values & deal with them

In [12]:
df.isna()

Out[12]: Whole Shucked Viscera Shell Length Height Diameter Rings weight weight weight weight False False

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4	False	False	False	False	False	False	False	False	False
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False
4177	rows×	9 column	S						
df.i	snull	().sum()					lı	า [13]:
Heig Whol Shuc Visc Shel Ring	eter ht e wei ked w era w l wei	eight eight ght	0 0 0 0 0 0 0					Ou	ut[13]:

Find & replace the outliers

In [14]:
sns.boxplot(x=df['Rings'])
Out[14]:

check for categorical columnsand perform encoding

```
df['Sex'].replace({'M':0,'F':1})
df.head()
```

								0	ut[15]:
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

Split the data into dependent & independent variables

```
In [16]:
y=df['Whole weight']
print(y)
           0.5140
1
            0.2255
            0.6770
            0.5160
            0.2050
4172 0.8870
4173 0.9660
4174 1.1760
4175 1.0945
4176
            1.9485
Name: Whole weight, Length: 4177, dtype: float64
                                                                                                                             In [17]:
x=df.drop(columns=['Whole weight'])
print(x)
        Sex Length Diameter Height Shucked weight Viscera weight

      M
      0.455
      0.365
      0.095
      0.2245
      0.1010

      M
      0.350
      0.265
      0.090
      0.0995
      0.0485

      F
      0.530
      0.420
      0.135
      0.2565
      0.1415

      M
      0.440
      0.365
      0.125
      0.2155
      0.1140

      I
      0.330
      0.255
      0.080
      0.0895
      0.0395

0
1
4172 F 0.565 0.450 0.165
4173 M 0.590 0.440 0.135
4174 M 0.600 0.475 0.205
                                                                              . . .
                                                                  0.3700
0.4390
0.5255
                                                                                                       0.2390
                                                                                                         0.2145
                                                                                                         0.2875
```

```
      4175
      F
      0.625
      0.485
      0.150
      0.5310

      4176
      M
      0.710
      0.555
      0.195
      0.9455

                                                                          0.2610
                                                                           0.3765
       Shell weight Rings
             0.1500 15
             0.0700
                            7
1
                           9
              0.2100
              0.1550
                           10
             0.0550
                            7
                . . .
                           . . .
            0.2490
4172
                            11
             0.2605
                           10
4173
4174
             0.3080
                             9
4175
             0.2960
                           10
4176
             0.4950
                           12
```

[4177 rows x 8 columns]

x=df.iloc[:,1:6].Height

Scale the independent variables

```
In [18]:
x=df.drop(columns=['Viscera weight'])
print(x)
      Sex Length Diameter Height Whole weight Shucked weight \
      M 0.455 0.365 0.095 0.5140

M 0.350 0.265 0.090 0.2255

F 0.530 0.420 0.135 0.6770

M 0.440 0.365 0.125 0.5160

I 0.330 0.255 0.080 0.2050
Ω
                                                                          0.2245
                                                                          0.0995
1
                                                                          0.2565
3
                                                                          0.2155
                                                                         0.0895
4172 F 0.565 0.450 0.165 0.8870

4173 M 0.590 0.440 0.135 0.9660

4174 M 0.600 0.475 0.205 1.1760

4175 F 0.625 0.485 0.150 1.0945

4176 M 0.710 0.555 0.195 1.9485
                                                                         0.3700
                                                                          0.4390
                                                                          0.5255
                                                                          0.5310
                                                                         0.9455
        Shell weight Rings
0
              0.1500 15
1
              0.0700
                              7
                            9
              0.2100
              0.1550
                            10
              0.0550
                             7
                 . . .
4172
4173
             0.2490
                             11
                            10
              0.2605
4174
             0.3080
                             9
4175
              0.2960
                            10
             0.4950
4176
                            12
[4177 rows x 8 columns]
                                                                                           In [21]:
from sklearn import preprocessing
                                                                                           In [24]:
```

```
print(x)
      0.095
1
      0.090
      0.135
      0.125
      0.080
       . . .
4172
      0.165
4173 0.135
4174
      0.205
4175
      0.150
4176
      0.195
Name: Height, Length: 4177, dtype: float64
```

split the data into training and testing

```
In [28]:
from sklearn import tree
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeRegressor
                                                                In [29]:
x train, x test, y train, y test=train test split(x, y, test size=0.2, random sta
x train.shape
                                                               Out[29]:
(3341,)
                                                                In [30]:
x test.shape
                                                               Out[30]:
(836,)
                                                                In [31]:
y test.shape
                                                               Out[31]:
(836,)
                                                                In [32]:
x=df.drop('Sex',axis=1)
print(x)
     Length Diameter Height Whole weight Shucked weight Viscera weigh
t.
0
      0.455
              0.365 0.095
                                 0.5140
                                                 0.2245
                                                               0.101
0
      0.350
              0.265
                     0.090
                                  0.2255
                                                 0.0995
1
                                                                0.048
5
2
      0.530
              0.420
                     0.135
                                  0.6770
                                                0.2565
                                                               0.141
5
3
      0.440 0.365 0.125
                                 0.5160
                                         0.2155
                                                        0.114
     0.330 0.255 0.080 0.2050 0.0895 0.039
4
5
       . . .
                ...
                                    . . .
                                                   . . .
```

•

0	0.565	0.450 0	.165 0.	8870	0.3700	0.239
4173	0.590	0.440 0	.135 0.	9660	0.4390	0.214
5 4174	0.600	0.475 0	.205 1.	1760	0.5255	0.287
5 4175	0.625	0.485 0	.150 1.	0945	0.5310	0.261
0 4176	0.710	0.555 0	.195 1.	9485	0.9455	0.376
5						
0	Shell weigh					
0 1	0.150 0.070					
2	0.210					
3	0.155					
4	0.055	7				
4172	0.249					
4173	0.260 0.308					
4174 4175	0.308					
4176	0.495					
[4177	rows x 8 co	lumns]				In [27]:
x=nd	cet dummies (df.column	s=["Length"])			In [37]:
print	_	21 , CO141111	S-[Heligeli],			
			Whole weight			
0	М 0.36				245	0.1010
1	М 0.26				1995	0.0485
2	F 0.42				1565	0.1415
3 4	M 0.36	0.125	0.5160		155	0.1140
	T 0.25		0 2050	U . U		0 0305
	I 0.25	0.080			1895	0.0395
		0.080				
4172	F 0.45	0.080 0 0.165	0.8870	0.3	5700	0.2390
	F 0.45	0.080 0.165 0.135		0.3		
4172 4173	F 0.45 M 0.44	0.080 0.165 0.135 0.205	0.8870 0.9660	0.3 0.4 0.5	 3700 390	0.2390 0.2145
4172 4173 4174	F 0.45 M 0.44 M 0.47	0.080 0.165 0.135 0.205 0.150	0.8870 0.9660 1.1760	0.3 0.4 0.5 0.5	 1700 1390 1255	0.2390 0.2145 0.2875
4172 4173 4174 4175	F 0.45 M 0.44 M 0.47 F 0.48	0.080 0.165 0.135 0.205 0.150 0.195	0.8870 0.9660 1.1760 1.0945	0.3 0.4 0.5 0.5	 3700 390 255 310	0.2390 0.2145 0.2875 0.2610 0.3765
4172 4173 4174 4175	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55	0.080 0.165 0.135 0.205 0.150 0.195 Rings	0.8870 0.9660 1.1760 1.0945 1.9485	0.3 0.4 0.5 0.5	7700 390 255 310 455	0.2390 0.2145 0.2875 0.2610 0.3765
4172 4173 4174 4175 4176	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070	0.080 0.165 0.135 0.205 0.150 0.195 Rings 15	0.8870 0.9660 1.1760 1.0945 1.9485	0.3 0.4 0.5 0.5 0.9	 3700 390 255 310 455 Length	0.2390 0.2145 0.2875 0.2610 0.3765
4172 4173 4174 4175 4176	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070 0.210	0.080 0.165 0.135 0.205 0.150 0.195 Rings 15 7	 0.8870 0.9660 1.1760 1.0945 1.9485 Length_0.075 0	0.3 0.4 0.5 0.5 0.9 Length_0.11 0	 3700 390 255 3310 455 Length	0.2390 0.2145 0.2875 0.2610 0.3765 -0.745 \ 0 0
4172 4173 4174 4175 4176	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070 0.210 0.155	0.080 0.165 0.135 0.205 0.150 0.195 Rings 15 0 9	0.8870 0.9660 1.1760 1.0945 1.9485 Length_0.075 0	0.3 0.4 0.5 0.5 0.9 Length_0.11 0 0	 3700 390 2255 3310 455 Length	0.2390 0.2145 0.2875 0.2610 0.3765 0.745 \ 0 0 0 0
4172 4173 4174 4175 4176	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070 0.210 0.155 0.055	0.080 0.165 0.135 0.205 0.150 0.195 Rings 15 0 7 9 10	 0.8870 0.9660 1.1760 1.0945 1.9485 Length_0.075 0	0.3 0.4 0.5 0.5 0.9 Length_0.11 0	 390 255 310 455 Length 	0.2390 0.2145 0.2875 0.2610 0.3765 -0.745 \ 0 0
4172 4173 4174 4175 4176	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070 0.210 0.155 0.055	0.080 0.165 0.135 0.205 0.150 0.195 Rings 15 7 9 0 10 7	 0.8870 0.9660 1.1760 1.0945 1.9485 Length_0.075 0 0 0	0.3 0.4 0.5 0.5 0.9 Length_0.11 0 0 0	 3700 3390 2255 3310 2455 Length 	0.2390 0.2145 0.2875 0.2610 0.3765 0.745 \ 0 \ 0 \ 0 \ 0 \ 0 \
 4172 4173 4174 4175 4176 0 1 2 3 4 4172	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070 0.210 0.155 0.055	0.080 0.165 0.135 0.205 0.150 0.195 Rings 15 0 7 9 10 0 7	0.8870 0.9660 1.1760 1.0945 1.9485 Length_0.075 0 0 0	0.3 0.4 0.5 0.5 0.9 Length_0.11 0 0 0	 3700 3390 2255 3310 2455 Length_ 	0.2390 0.2145 0.2875 0.2610 0.3765 0.745 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
0 1 2 3 4 4 4 4 4 4 7 5 4 1 7 6 0 1 2 3 4 4 1 7 2 4 1 7	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070 0.210 0.155 0.055 0.249 0.260	0.080 0.165 0.135 0.205 0.150 0.195 Rings 15 0 9 10 0 7 	0.8870 0.9660 1.1760 1.0945 1.9485 Length_0.075 0 0 0	0.3 0.4 0.5 0.5 0.9 Length_0.11 0 0 0 0	 3700 3390 2255 3310 4455 Length	0.2390 0.2145 0.2875 0.2610 0.3765 0.745 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
0 1 2 3 4 4 176 0 1 2 3 4 4 172 4 173 4 174	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070 0.210 0.155 0.055 0.249 0.260 0.308	0.080 0.165 0.135 0.205 0.150 0.195 Rings 15 0 9 10 7 11 10 9	0.8870 0.9660 1.1760 1.0945 1.9485 Length_0.075 0 0 0	0.3 0.4 0.5 0.5 0.9 Length_0.11 0 0 0	 3700 3390 2255 3310 2455 Length_ 	0.2390 0.2145 0.2875 0.2610 0.3765 0.745 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
0 1 2 3 4 4 4 4 4 4 7 5 4 1 7 6 0 1 2 3 4 4 1 7 2 4 1 7	F 0.45 M 0.44 M 0.47 F 0.48 M 0.55 Shell weigh 0.150 0.070 0.210 0.155 0.055 0.249 0.260	0.080 0.165 0.135 0.205 0.150 0.195 E. Rings 0.7 0.9 0.7 0.11 0.9 0.9	0.8870 0.9660 1.1760 1.0945 1.9485 Length_0.075 0 0 0	0.3 0.4 0.5 0.5 0.9 Length_0.11 0 0 0 0	 3700 3390 2255 3310 2455 Length	0.2390 0.2145 0.2875 0.2610 0.3765 0.745 0 0 0 0

	•	•		•	
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
4172	0	0	0	0	0
4173	0	0	0	0	0
4174	0	0	0	0	0
4175	0	0	0	0	0
4176	0	0	0	0	0
41/0	V	O	O	O	O
	Length 0.775	Length 0.78	Length 0.8	Length 0.815	
0	Length_0.775	Length_0.78	Length_0.8	Length_0.815	
0	Length_0.775 0 0	Length_0.78 0 0	Length_0.8 0 0	Length_0.815 0 0	
0 1 2	Length_0.775 0 0	Length_0.78 0 0 0	Length_0.8 0 0	Length_0.815 0 0	
0 1 2	Length_0.775 0 0 0	Length_0.78 0 0 0	Length_0.8 0 0 0	Length_0.815 0 0 0 0	
•	Length_0.775 0 0 0 0	Length_0.78 0 0 0 0	Length_0.8 0 0 0 0	Length_0.815 0 0 0 0	
0 1 2 3 4	Length_0.775 0 0 0 0 0	Length_0.78 0 0 0 0 0	Length_0.8 0 0 0 0	Length_0.815 0 0 0 0 0	
4	Length_0.775 0 0 0 0 0	Length_0.78 0 0 0 0	Length_0.8 0 0 0 0	Length_0.815 0 0 0 0 0	
4 4172	Length_0.775 0 0 0 0 0 0	Length_0.78	Length_0.8	Length_0.815 0 0 0 0 0 0	
4	Length_0.775 0 0 0 0 0 0 0	Length_0.78	Length_0.8 0 0 0 0 0 0 0 0	Length_0.815 0 0 0 0 0 0	
4 4172	Length_0.775 0 0 0 0 0 0 0 0 0 0	Length_0.78 0 0 0 0 0 0 0 0 0 0 0 0	Length_0.8 0 0 0 0 0 0 0 0 0 0	Length_0.815 0 0 0 0 0 0 0 0 0	

[4177 rows x 142 columns]

4176

Bulid, Test & Train the model

```
In [38]:
df.info()
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):
    Column Non-Null Count Dtype
0 Sex
                  4177 non-null object
1 Length
                  4177 non-null float64
                 4177 non-null float64
   Diameter
 2
                  4177 non-null
                                 float64
   Height
   Whole weight 4177 non-null float64
   Shucked weight 4177 non-null float64
 6 Viscera weight 4177 non-null float64
7
    Shell weight 4177 non-null
                                 float64
   Rings
                  4177 non-null
                                  int64
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
                                                                 In [39]:
df.shape
                                                                 Out[39]:
(4177, 9)
                                                                 In [41]:
df.corr()
                                                                 Out[41]:
```

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720	
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660	
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467	
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390	
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884	
Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819	
Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574	
Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000	
x=df[['Sh y=df[['Ri	-	ght ',' Dia	ameter',	'Height']]				In [47]:	
_	_test,y_	_train,y_	_test=tra	ain_test_s	plit(x,y,t	test_size	= 0.4 , ranc	In [48]: lom_sta	
te=100) from skle	earn.line	ear mode	l import	LogisticR	egression			In [52]:	
		_	-	-	J			In [53]:	
D:\Educat y:63: Dat as expect ng ravel(<pre>lr=LogisticRegression() lr.fit(x_train,y_train) D:\Education Content\anaconda3\lib\site-packages\sklearn\utils\validation.p y:63: DataConversionWarning: A column-vector y was passed when a 1d array w as expected. Please change the shape of y to (n_samples,), for example usi ng ravel().</pre>								
return LogisticF		, **kwarq	gs)					Out[53]:	
y_pred=lr print(x_t	predict)					In [54]:	
print(y_r She 551 3245	ored) ell weigh 0.345 0.440	50 0	.490 0	ight .155 .160					

Measure the performance metrics

```
In [55]:
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error

In [56]:
x_actual=[5,1,2,9]
y_pred=[3.5,0.9,2,9.9]

In [57]:
print(r2_score(x_actual,y_pred))
0.9207741935483871

In [58]:
print(mean_absolute_error(x_actual,y_pred))
0.6250000000000001

In [59]:
print( mean squared error(x actual,y_pred))
```