

Artificial Neural Networks

- * Connectionist, PDP, etc. models
- A biologically-inspired approach for
 - □ intelligent computing machines
 - massive parallelism
 - distributed computing
 - □ learning, generalization, adaptivity
 - □ Tolerant of fault, uncertainty, imprecise info

Compared to Von Neumann

898	Von Neumann computer	Biological neural systems
Processor	complex, high speed, few	simple, low speed, many
Memory	separate from processor,	integrated into processor,
	non-content addressable	content addressable
Computing	centralized, sequential stored programs	distributed, parallel self- learning
Reliability	vulnerable	fault tolerant

Anatomy and Pathway

- Brain
 - Cerebrum
 - > Frontal, parietal, temporal and occipital lobes
 - Cerebellum
 - Brainstem
- Spinal Cord
 - Housed in vertebral column
- Receptors to afferent neurons to brain (neocortex) to efferent neurons to effectors

Central Nervous System

FIGURE 1.1

Two views of the human brain: (a) cross-sectional side view showing the major parts: cerebrum, cerebellum, and brainstem; (b) view showing cortex and lobes.

CNS

Neocortex

- □ Gray matter (surface layer of cerebrum)
- White matter (connection fiber)
- A crumbled paper analogy (folded and refolded many times to fit)
- □ Regions (lobes) for different functions

It is the

- Activities of neurons (resting or depolarization)
- Topology of the connection
- Strength and direction (forward & backward) of connection In the cortex that defines intelligence

Biological Neural Networks

- soma (cell body)
- dendrites (receivers)
- axon (transmitters)
- synapses (connection points, axon-soma, axon-dendrite, axon-axon)
- Chemicals (neurotransmitters)
- 10^{11} neurons
- each makes about $10^3 \sim 10^4$ connections
- with an operating speed of a few milliseconds
- one-hundred-step rule

That is not Quite Right

- Bipolar
 - □ E.g., found in eyes (retinal cells)
- Pseudounipolar
 - □ Two axons one to spinal cord one to skin and

muscle

- Multipolar
 - □ Axons + dendrites

Bipolar Neuron

Glia

- Support cells
 - Clean up brain debris
 - □ Transport nutrients to neurons
 - Hold neurons in place
 - Digest dead neurons
 - Regulate content of extracellular space
- Insulation (myelin)
- Difference
 - □ Star shaped no axons
 - No action potential
 - No synapses
 - □ A lot more (10 to 50 times more)

Signal Generation

Resting potential

□ Charge difference across neuron membrane approximately –70mV

Graded potential

Stimulus across synapses of post-synaptic neuron

Action potential

- □ If accumulation of graded potential across neuron membrane over a short period of time is higher than ~15mV, action potential is generated and propagated across axon
- □ Same form and amplitude regardless of stimulus, signal by frequency rather than amplitude

Signal Generation

Signal Generation

Resting

- □ A-: protein
- □ K+: potassium
 - Can go out
- □ Cl-: cloride
- □ Na+: sodium
 - Cannot go out

Excited

- •Think about electrical circuit
- •Flow one way due to charge (concentration) difference
- •Flow the other way using cell's ion pumps (battery)

Signal Flow in Dendritic Trees and Axons

- Flow is usually one dimensional
- Longitudinal flow (little transverse flow) with no loss (active transmission line)
- Myelindated
 - □ Wrapped in sheath of myelin, 100m/s
- Unmyelinated
 - \square 1m/s

FIGURE 1.4

Local currents in an axon. During the generation of an action potential, the cell membrane becomes very permeable to Na+ (positively charged sodium) ions, which flow inside, causing the membrane potential to rise. After a short while, the membrane becomes impermeable to Na+ ions but permeable to K+ (positively charged potassium) ions, which move outside to restore the membrane to its resting potential. (a) Unmyelinated axon; (b) myelinated axon.

synapses

- Electrical
 - □ Fixed, simultaneous control

Chemical

Pattern and strength can be learned and adjusted

Signal Flow Across Synapses

- Action potential causes release of neurotransmitters from synaptic vesicles
- ❖ ~100 different neurotransmitters, e.g., dopamine, serotonin, and acetylcholine
- * The release, diffusion and reception of neurotransmitters cause delay of 0.5 to 2ms
- Synaptic plasticity: either facilitate or inhibit chemical synapses

Signal Flow Across Synapses

Connection Patterns

- Divergent (fan-out):
 - parallel processing, afferent neurons
- Convergent (fan-in):
 - □ Efferent neurons to effectors
- Chain and loop

Connection Patterns

FIGURE 1.8
Divergent connections.

A single neurons with thousands of synapses (light yellow dots)

Computational Neuron Model

(McCulloch and Pitts)

- frequency response?

$$O = \theta(\sum_{i=1}^{n} w_i x_i - u)$$

$$\theta(x) = \frac{1}{1 + e^{-x}}, 0 \le \theta \le 1$$

$$\theta(x) = \tanh(x), -1 \le \theta \le 1$$

Computational Network Architecture

ANN Formulation

- ❖ Learning rules Basic "workhorse" mechanism in adjusting weights of neurons
 - □ Error-correcting learning (gradient descent)
 - □ Memory-based learning (nearest neighbor)
 - □ Hebbian learning (mutual excitation)
 - □ Competitive learning (winner-take-all)
 - □ Boltzmann learning (statistical mechanics)

ANN Formulation (cont.)

- ❖ Learning paradigms the big picture
 - Supervised (learning w. a teacher): correct I/O association is provided
 - □ Unsupervised (learning w/o. a teacher): discover similarity, inherent structure, and interesting patterns
 - □ Delayed (learning w. a critic):
- Theory
 - capacity: how many patterns can be stored
 - sample complexity: how many training patterns
 - computational complexity: training time

Relation to Pattern Recognition

- Supervised mode
 - □ Single & multi-layer perceptrons for learning complicated decision boundaries
- Unsupervised mode
 - Competitive and self-organization maps for constructing clusters

