Estadística Bayesiana

Clase 6: Modelo Multinomial y Familia Exponencial

Isabel Cristina Ramírez Guevara

Escuela de Estadística Universidad Nacional de Colombia, Sede Medellín

Medellín, 20 de agosto de 2020

Modelo Multinomial

La distribución multinomial es una extensión del modelo binomial para k grupos distintos en lugar de dos grupos. Suponga que $\mathbf{y}=(y_1,\cdots y_k)$ es un vector aleatorio que cuenta el número de observaciones en cada una de las k categorías, con lo que $\sum_{i=1}^k y_i = n$. Los parámetros se pueden pensar como las proporciones de los k grupos en la población total. Luego su distribución está parametrizada por el vector $\boldsymbol{\theta}=(\theta_1,\cdots\theta_k)$ y esá dada por la siguiente expresión,

$$p(\mathbf{y}|\boldsymbol{\theta}) = \binom{n}{y_1, \dots y_k} \prod_{i=1}^k \theta_i^{y_i} \qquad \theta_i > 0, \ \sum_{i=1}^k \theta_i = 1$$

donde $\binom{n}{y_1, \cdots y_k} = \frac{n!}{y_1! \cdots y_k!}$. Por lo tanto $\mathbf{y} \sim Multinomial (\theta_1, \cdots, \theta_k)$.

Modelo Multinomial

La distribución a priori conjugada es una generalización multivariada de la distribución beta conocida como la distribución Dirichlet la cual está dada por:

$$p(\boldsymbol{\theta}) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} \prod_{i=1}^k \theta_i^{\alpha_i - 1} \qquad \alpha_i > 0, \ \sum_{i=1}^k \theta_i = 1.$$

Por lo tanto $\theta \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_k)$. La distribución posterior $p(\theta|\mathbf{y})$ es,

$$egin{aligned}
ho(oldsymbol{ heta}|\mathbf{y}) &\propto
ho(\mathbf{y}|oldsymbol{ heta})
ho(oldsymbol{ heta})
ho(oldsymbol{ heta}|\mathbf{y}) &\propto \prod_{i=1}^k heta_i^{y_i} \prod_{i=1}^k heta_i^{lpha_i-1} \ &= \prod_{i=1}^k heta_i^{y_i+lpha_i-1} \ oldsymbol{ heta}|\mathbf{y} &\sim ext{Dirichlet}(y_1+lpha_1,\cdots,y_k+lpha_k) \end{aligned}$$

Modelo Multinomial

Ejemplo

En 1988 se hizo una encuesta pre-electoral sobre la elección presidencial de USA. De 1447 personas encuestadas, $y_1=727$ apoyaron a Bush, $y_2=583$ apoyaron a Michael Dukakis y $y_3=137$ apoyaron a otros candidatos. Realice inferencia sobre $\theta_1-\theta_2$ utilizando como distribución a priori Dirichlet(1,1,1).

La distribución posterior es:

$$\theta | \mathbf{y} \sim \mathsf{Dirichlet}(727 + 1,583 + 1,137 + 1)$$

El interés es hacer inferncia sobre $\theta_1-\theta_2$ por lo tanto con la distribución posterior vamos a realizar esta inferencia (ver ejemplo en R).

Definición

La densidad de probabilidad $p(x|\theta)$ donde $\theta \in \mathbb{R}$ pertenece a la familia exponencial de un parámetro si tiene la forma:

$$p(x|\theta) = C(\theta)h(x)\exp(\phi(\theta)s(x))$$

donde $C(\cdot)$, $h(\cdot)$, $\phi(\cdot)$, $s(\cdot)$ son funciones dadas.

Definición

La densidad de probabilidad $p(x|\theta)$ donde $\theta \in \mathbb{R}$ pertenece a la familia exponencial de un parámetro si tiene la forma:

$$p(x|\theta) = C(\theta)h(x)\exp(\phi(\theta)s(x))$$

donde $C(\cdot)$, $h(\cdot)$, $\phi(\cdot)$, $s(\cdot)$ son funciones dadas.

Teorema

La distribución a priori de la forma $p(\theta) \propto C(\theta)^a \exp(\phi(\theta)b)$ es conjugada para una verosimilitud que pertenezca a la familia exponencial.

Ejemplo

Muestre que la distribución Binomial pertenece a la familia exponencial y encuentre la distribución a priori conjugada utilizando el teorema anterior, ¿esta distribución pertenece a la familia de distribuciones Beta?

Ejemplo

Muestre que la distribución Binomial pertenece a la familia exponencial y encuentre la distribución a priori conjugada utilizando el teorema anterior, ¿esta distribución pertenece a la familia de distribuciones Beta?

Ejemplo

Se tiene una muestra aleatoria de una distribución Weibull cuya función de probabilidad es:

$$p(x|\theta) = \frac{k}{\theta} \left(\frac{x}{\theta}\right)^{k-1} \exp\left[-\left(\frac{x}{\theta}\right)^k\right]$$

Suponga que k=1. Muestre que esta distribución pertenece a la familia exponencial y encuentre la distribución a priori para θ utilizando el teorema anterior. También encuentre la distribución posterior de θ . ¿A cuál familia pertenecen estas dos distribuciones?

Definición

La densidad de probabilidad $p(x|\theta)$ donde $\theta \in \mathbb{R}^k$ pertenece a la familia exponencial con k parámetros si tiene la forma:

$$p(x|\theta) = C(\theta)h(x) \exp\left(\sum_{j=1}^{k} \phi_j(\theta)s_j(x)\right)$$

donde $C(\cdot)$, $h(\cdot)$, $\phi(\cdot)$, $s(\cdot)$ son funciones dadas.

Definición

La densidad de probabilidad $p(x|\theta)$ donde $\theta \in \mathbb{R}^k$ pertenece a la familia exponencial con k parámetros si tiene la forma:

$$p(x|\theta) = C(\theta)h(x) \exp\left(\sum_{j=1}^{k} \phi_j(\theta)s_j(x)\right)$$

donde $C(\cdot)$, $h(\cdot)$, $\phi(\cdot)$, $s(\cdot)$ son funciones dadas.

Teorema

La distribución a priori de la forma $p(\theta) \propto C(\theta)^a \exp\left(\sum_{j=1}^k \phi_j(\theta)b_j\right)$ es conjugada para una verosimilitud que pertenezca a la familia exponencial con k parámetros.

Ejemplo

Muestre que la distribución Multinomial pertenece a la familia exponencial y encuentre la distribución a priori conjugada utilizando el teorema anterior.