

OUTILS ANALYTIQUES ET PHYSIQUE DE LA MÉCATRONIQUE 31 DÉCEMBRE 2022

MASTER 1 2EEEA OPTION PHYSIQUE NUMÉRIQUE

Conception optimale d'un actionneur pour tuyère de fusée

Élèves :

Mohamed Reda YACOUBI

Enseignants FREDERIC MESSINE François Pigache

Table des matières

1	Intr	roduction	2			
2	Mo	Modèle analytique et problème à optimiser				
3	Par	tie optimisation	3			
	3.1	Définition des 3 critères à optimiser	3			
		3.1.1 Volume d'aimant	3			
		3.1.2 Volume utile	4			
		3.1.3 Pertes joules	5			
	3.2	Définition des paramètres et contraintes	6			
		3.2.1 Paramètres fixes et variables	6			
		3.2.2 Contraintes	6			
	3.3	Comparaison des résultats des différents algorithmes	7			
		3.3.1 Minimisation du volume d'aimant	7			
			7			
		3.3.3 Minimisation du pertes joules	7			
	3.4	Minimisation simultanée de V_a , V_u et P_j				
	3.5		8			
4	Cor	nclusion	9			

1 Introduction

L'objectif de ce bureau d'étude sera d'optimiser sous contraintes une machine synchrone à aimants permanents sans encoches à l'aide du logiciel de simulation MATLAB.

2 Modèle analytique et problème à optimiser

FIGURE 1 – Géométrie de la machine

Les équations issues de ce modèle analytique donnant le couple électromagnétique et le champ magnétique dans l'entrefer sont les suivantes :

$$\Gamma_{em} = \frac{\pi}{2\lambda} (1 - K_f) D^2 (D + E) B_e \sqrt{k_r \beta E_{ch} E}$$
(2.1)

$$E_{ch} = A.J_{cu} = k_r E J_{cu}^2 (2.2)$$

$$K_f = \frac{3}{2}p\beta \frac{e+E}{D} \tag{2.3}$$

$$B_e = \frac{2l_a M}{D.\ln(\frac{D+2E}{D-2(l_a+e)})}$$
 (2.4)

$$C = \frac{\pi \beta B_e}{4pB_{iron}} D \tag{2.5}$$

$$p = \frac{\pi D}{2\Delta_p} \tag{2.6}$$

Où les paramètres du problèmes à optimisés sont :

D en (m)	diamètre d'alésage	[0.01, 0.5]
λ	rapport diamètre/longueur	[1,2.5]
l_a en (m)	épaisseur d'aimant	[0.003, 0.05]
E en (m)	épaisseur du bobinage	[0.001,0.05]
C en (m)	épaisseur de la culasse	[0.001,0.05]
β	facteur d'arc polaire	[0.8 ,1]
B_e en (T)	champ magnétique dans l'entrefer	[0.1 ,1]
J_{cu} en (A/m^2)	densité de courant dans le cuivre	$[10^5, 10^7]$
K_f	coefficient de fuites interpolaires	[0.01, 0.3]
<i>e</i> en (m)	entrefer	[0.001,0.005]

Tandis que les autres paramètres sont fixes :

p	nombre de paires de pôles	4
Δ_p (m)	pas polaire	0.05
k_r	coefficient de remplissage	0.7
B _{iron} en (T)	champ magnétique de saturation dans le fer	1.5
E_{ch} en (A/m)	facteur d'échauffement	1011
Γ_{em} en (N.m)	couple électromagnétique	10
M en (T)	aimantation de l'aimant	0.9
$ ho_{cu}$ en Ω . m	résistivité du cuivre	$0.018e^{-6}$

Ceci est un problème de dimensionnant optimal de machines tournantes sans encoche à aimants permanents. Les critères qu'on cherche à minimiser sont :

- Le volume des aimants V_a (comparable à une minimisation de coût).
- Le volumes des parties actives V_u .
- Les pertes Joules P_i .

Obéissant aux relations suivantes:

$$V_a = \pi \beta l_a \frac{D}{\lambda} (D - 2e - l_a) \tag{2.7}$$

$$V_{u} = \pi \beta \frac{D}{\lambda} (D + E - e - l_{a})(2C + E + e + l_{a})$$
(2.8)

$$P_j = \pi \rho_{cu} \frac{D}{\lambda} (D + E) E_{ch} \tag{2.9}$$

3 Partie optimisation

3.1 Définition des 3 critères à optimiser

3.1.1 Volume d'aimant

Le problème d'optimisation à résoudre sous matlab pour la fonction critère volume de l'aimant est :

$$(P_1): \begin{cases} \min_{x \in \mathbb{R}^{10}} V_a(D, \lambda, l_a, E, C, \beta, B_e, J_{cu}, K_f, e) \\ \frac{\pi}{2\lambda} (1 - K_f) D^2(D + E) B_e \sqrt{k_{rch}E} - \Gamma_{em} = 0 \\ k_r E J_{cu}^2 - E_{ch} = 0 \\ \frac{3p\beta(e+E)}{2D} - K_f = 0 \\ \frac{2l_a M}{D \cdot ln(\frac{D+2E}{D-2(l_a+e)})} - B_e = 0 \\ \frac{\pi\beta B_e D}{4pB} - C = 0 \\ \frac{\pi D}{2\Delta p} - p = 0 \end{cases}$$

```
function res = f_va(x)

D=x(1);

lambda=x(2);

la=x(3);

E=x(4);

C=x(5);

beta=x(6);

Be=x(7);

Jcu=x(8);

Kf=x(9);

e=x(10);

res= pi*beta*la*(D/lambda)*(D-2*e-la);

end
```

FIGURE 2 - Fonction volume aimant

3.1.2 Volume utile

Le problème d'optimisation à résoudre sous matlab pour la fonction critère volume utile est :

$$(P_1): \begin{cases} \min_{x \in \mathbb{R}^{10}} V_u(D, \lambda, l_a, E, C, \beta, B_e, J_{cu}, K_f, e) \\ \frac{\pi}{2\lambda} (1 - K_f) D^2(D + E) B_e \sqrt{k_{rch}E} - \Gamma_{em} = 0 \\ k_r E J_{cu}^2 - E_{ch} = 0 \\ \frac{3p\beta(e+E)}{2D} - K_f = 0 \\ \frac{2l_a M}{D.ln(\frac{D+2E}{D-2(l_a+e)})} - B_e = 0 \\ \frac{\pi\beta B_e D}{4pB} - C = 0 \\ \frac{\pi D}{2\Delta p} - p = 0 \end{cases}$$

FIGURE 3 – Fonction volume utile

3.1.3 Pertes joules

Le problème d'optimisation à résoudre sous matlab pour la fonction critère pertes joules est :

$$\begin{cases} min_{x \in \mathbb{R}^{10}} & P_{j}(D, \lambda, l_{a}, E, C, \beta, B_{e}, J_{cu}, K_{f}, e) \\ \frac{\pi}{2\lambda}(1 - K_{f})D^{2}(D + E)B_{e}\sqrt{k_{rch}E} - \Gamma_{em} = 0 \\ k_{r}EJ_{cu}^{2} - E_{ch} = 0 \\ \frac{3p\beta(e+E)}{2D} - K_{f} = 0 \\ \frac{2l_{a}M}{D.ln(\frac{D+2E}{D-2(l_{a}+e)})} - B_{e} = 0 \\ \frac{\pi\beta B_{e}D}{4pB} - C = 0 \\ \frac{\pi D}{2\Delta p} - p = 0 \end{cases}$$

```
function res = f_p_i(x)
           global rho_cuivre Ech
           D=x(1);
           lambda=x(2);
           la=x(3);
5
6
7
8
9
           E=x(4);
           C=x(5);
           beta=x(6);
           Be=x(7);
10
           Jcu=x(8);
11
           Kf=x(9);
12
           e=x(10);
13
14
           res= pi*rho_cuivre*(D/lambda)*(D+E)*Ech;
```

Figure 4 – Fonction Pertes joules

3.2 Définition des paramètres et contraintes

3.2.1 Paramètres fixes et variables

On commence par définir les paramètres constants de notre problème comme des paramètres fixes globales dans un fichier nommé **param.m** et ceci pour être accessibles par tous les autres fichiers.

```
global p delta_p Kr B_iron Ech Cem M rho_cuivre
p=4;
delta_p=0.05;
Kr=0.7;
B_iron=1.5;
Ech=1e+11;
Cem=10;
M=0.9;
rho_cuivre=0.018e-6;
```

FIGURE 5 – Paramètres fixes du problème

Ainsi pour les variables à optimiser pour dimensionner notre machine sont définis par des intervalles et donc pour utiliser un nompre de variable le plus petit (Formulation compacte), on rassemble tous ces paramètres dans un tableau (vecteur) nommé X:

```
D=x(1);
lamda=x(2);
la=x(3);
E=x(4);
C=x(5);
beta=x(6);
Be=x(7);
Jcu=x(8);
Kf=x(9);
e=x(10);
```

Figure 6 – Paramètres à optimiser

3.2.2 Contraintes

On a crée une fonction nommée **cont.m** qui retourne deux vecteurs; l'un pour les contraintes égalités et l'autre pour les contraintes inégalités qui sera dans un premier temps libre car au début on a aucune contrainte d'inégalité :

FIGURE 7 – Contraintes

3.3 Comparaison des résultats des différents algorithmes

3.3.1 Minimisation du volume d'aimant

Méthode	Point de départ	Nombre d'itérations	Durée	V_a optimale
SQP	x_0	23	$0.3637 \ s$	$8.506 \times 10^{-5} m^{-3}$
Interior-point	x_0	118	1.094s	$8.57 \times 10^{-5} m^{-3}$

3.3.2 Minimisation du volume utile

Méthode	Point de départ	Nombre d'itérations	Durée	V_a optimale
SQP	x_0	5	$0.36 \mathrm{\ s}$	$4.57 \times 10^{-5} m^{-3}$
Interior-point	x_0	37	0.61s	$4.89 \times 10^{-6} m^{-3}$

3.3.3 Minimisation du pertes joules

Méthode	Point de départ	Nombre d'itérations	Durée	V_a optimale
SQP	x_0	11	$0.278 \; s$	37.58W
Interior-point	x_0	64	0.73s	37.32

```
Le diametre est D = 0.1273 m

Le rapport diametre /longuer : lamda est = 1.3705

L'épaisseur d'aimant l_a est = 0.0030 m

L'épaisseur de bobinage E = 0.0040 m

Le facteur d'arc polaire beta = 0.8001

Le champ magnétique dans l'entrefer Be = 0.3384 T

La densité de courant dans le cuivre Jcu = 6000938.0973 (A/m^2)

Le coefficient de fuite interpolaire Kf = 0.1873

L'entrefer e = 0.0010 m
```

FIGURE 8 – Paramètres optimaux

On remarque bien que les solutions des différents algorithmes **SQP** ou **Interior-point** convergent vers presques les mêmes valeurs pour les trois critères avec une solution plus lente à trouver pour l'algorithme SQP que pour l'algorithme Interior-point.

3.4 Minimisation simultanée de V_a , V_u et P_j

On désire maintenant minimiser les trois critères en même temps. Cependant, on sait qu'il n'y a pas de solution à proprement parler car ce problème exige la définition d'un ordre dans \mathbb{R}^3 . Une manière concrète de répondre à cette question est de choisir l'un des critères et de rajouter des butées sur les deux autres critères qui passent en contraintes inégalités.

On minimise donc V_u avec les deux contraintes suivantes :

- $\bullet \ V_a \leq 1.5 \times 10^{-4} m^{-3}$
- $P_i \le 45W$.

Le problème multicritère d'optimisation à résoudre est donc le suivant :

$$(P_4): \begin{cases} \min_{x \in \mathbb{R}^{10}} \ V_u(D, \lambda, l_a, E, C, \beta, B_e, J_{cu}, K_f, e) \\ V_a(D, \lambda, l_a, E, C, \beta, B_e, J_{cu}, K_f, e) - 0.0015 \leq 45 \\ P_j(D, \lambda, l_a, E, C, \beta, B_e, J_{cu}, K_f, e) - 45 \leq 0 \\ \frac{\pi}{2\lambda} (1 - K_f) D^2(D + E) B_e \sqrt{k_{rch}E} - \Gamma_{em} = 0 \\ k_r E J_{cu}^2 - E_{ch} = 0 \\ \frac{3p\beta(e+E)}{2D} - K_f = 0 \\ \frac{2l_a M}{D \cdot ln(\frac{D+2E}{D-2(l_a+e)})} - B_e = 0 \\ \frac{\pi\beta B_e D}{4pB} - C = 0 \\ \frac{\pi D}{2\Delta p} - p = 0 \end{cases}$$

Les valeurs optimales des paramètres dimensionnant notre machine en minimisant le volume utile avec les contraintes sur les pertes joules et le volume d'aimant sont les suivantes :

```
Le diametre est D = 0.1273 m
La valeur de lambda est = 2.0933
L'épaisseur d'aimant l_a est = 0.0076 m
L'épaisseur de bobinage E = 0.0035 m
Le facteur d'arc polaire beta = 0.8000
Le champ magnétique dans l'entrefer Be = 0.5401 T
La densité de courant dans le cuivre Jcu = 6382071.0494 (A/m^2)
Le coefficient de fuite interpolaire Kf = 0.1699
L'entrefer e = 0.0010 m
```

FIGURE 9 – Paramètres optimaux

3.5 Minimisation simultanée Version 2

Une autre approche serait d'utiliser fmincon pour résoudre le problème multicritère suivant :

$$min_{x \in \mathbb{R}^{10}} \frac{V_a}{10^{-5}} + \frac{V_u}{10^{-4}} + \frac{P_j}{50}$$

On code donc notre nouvelle fonction à optimiser sous matlab nommée g :


```
1 -
       function res=g(x)
2
           global resis Ech
3
           D=x(1);
 4
           lamda=x(2);
5
           la=x(3);
 6
           E=x(4);
 7
           C=x(5);
 8
           beta=x(6);
9
           Be=x(7);
10
           Jcu=x(8);
11
           Kf=x(9);
12
           e=x(10);
13
14
           va=pi*beta*la*(D/lamda)*(D-2*e-la) ;
15
           vu = pi*beta*la*(D/lamda)*(D+E-e-la)*(2*C+la+E+e);
           pj= pi*resis*(D/lamda)*(D+E)*Ech;
16
17
18
           res=(va/(1e-5))+(vu/(1e-4))+pj/50;
19
```

FIGURE 10 – Optimisation multicritère

Malheuereusement notre algorithme n'a pas marché et on a pas pu trouver les bonnes résultats afin de bien comparer les résultats avec ceux trouvés dans la partie précedente et de voir si les contraintes sont saturées ou non.

4 Conclusion

Ce Bureau d'étude nous a permis de se familariser avec la fonction Matlab "fmincon", Nous avons donc pu optimiser notre machine à aimants permanents sans encoche et trouver les paramètres optimaux avec différents algorithmes afin de minimiser trois principales fonctions : le volume d'aimant, le volume utile et les pertes joules afin de réduire le coût de notre machine.