출력 일자: 2003/10/28

110-053

방송번호 : 9-5-2003-041631992

발송일자 : 2003,10.27 제출기일: 2003, 12, 27

수신 : 서울 종로구 내자동 219 한누리빌딩(김&

장 특허법률사무소)

장수길 귀하

목허청 의**견제출통**지서

출원인

명칭 산요덴키가부시**키가이샤 (출원인코드: 51**9980961320)

주소 일본 오사카후 **모리구치시 게이한 혼도오리** 2초메 5반 5고

대리인

성명 장수길 외 2명

주소 서울 종호구 내자용 219 한누리빌딩(김&장 특허법률사우소)

발명의 명칭

반도체 장치와 그 제조 방법

이 출원에 대한 심사결과 아래와 같은 **거절이유가 있어 특허법 제63**조의 규정에 의하여 이를 통지하 오나 의견이 있거나 보정이 필요할 경**우에는 살기 제출기일까지** 의견서[특허법시행규칙 별자 제25 호의2시식] 또는/및 보정서[특허법시**행규칙 별지 제5호서식]를 제출하**여 주시기 바랍니다.(상기 제 출기일에 대하여 매화 1월 단위로 연**장을 신청할 수 있으며, 이 신청에** 대하여 별도의 기간연장중인 통지는 하지 않습니다.)

이 출원의 독허청구범위 제1-8항에 **기재된 발명은 그 출원전에 이 발명**이 속하는 기술분야에서 통상 의 지식을 가진 자가 아래에 지적한 **것에 의하여 윤이하게 발명할** 수 있는 것이므로 특허법 제29조 제2항의 규정에 의하여 **묵허를** 받**을 수 없습니다.**

본원의 청구범위 세1-9항은 반도체 장치 및 그 제조발발에 관한 것으로, 빈도체충상에 제1,제2계이 트절연약성에 걸치도록 형성된 게이트 전국, 보다영역, 소소/드레인영역을 갖는 반도체 장치에서 제1게이트 정연약은 LOCOS법에 의해 **왕성된 것 등을 목경으로 하나**, 이는 인용발명1(일본록개병 4-1541/3호)의 또면 제2.3도에 개시된 반도체 잘치의 구성과, 인용발명2(한국공개특허1999-41054호) 메 개시된, 고전압 전력소자의 구성으로부터 **동상의 지식을 가진** 자가 용이하게 발명할 수 있습니

[전 무]

점보 1 일본공개축허공보 평04-154173호(1992.05.27) 1부 청부2 한국공개특허공보 1999-41054**호(1999.06.15) 1부 골,**

2003.10,27

특허청

심사4국

반도체2심사담당관실

심사관 임동우

Also published as:

EP0481454 (A: US5306938 (A:

EP0481454 (A:

EP0481454 (B'

SEMICONDUCTOR DEVICE

Patent number:

JP4154173

Publication date:

1992-05-27

Inventor:

cì.

SHIRAI KOJI

Applicant:

TOSHIBA CORP

Classification:

- international:

H01L29/784

- european:

Application number:

JP19900280202 19901017

Priority number(s):

Abstract of JP4154173

PURPOSE:To improve electrostatic surge resistance of a lateral MOSFET by forming a back gate region (in which its partial surface is a channel region) so as to be brought into contact with the part of the outer periphery of the drain region and to surround the drain region at a position separate therefrom.

CONSTITUTION:A first impurity diffused layer 11

for a P-type drain region is formed partly on the surface of a semiconductor substrate 10, and a second impurity diffused region 12 for leading a P<+> type drain electrode is formed in the region 11. A third impurity diffused layer 13 for an N-type back gate region (in which its partial surface is a channel region) having higher impurity concentration than that of the substrate 10 is formed partly on the substrate 10 so as to surround the layers 11 and 12. If a high voltage electrostatic surge is input to a drain electrode D

toward a peripheral back gate region, the rise of the potential of the drain region is reduced so as to scarcely exceed the absolute resistance of a gate insulating film 15 and to improve an electrostatic surge resistance.

formed in contact with the layer 12, a surge current dispersively flows from the drain region

\$8 D 16 G 15 58

Data supplied from the esp@cenet database - Worldwide

19日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報(A) 平4-154173

®Int. Cl. 5

識別記号

庁内整理番号

國公開 平成 4年(1992) 5月27日

H 01 L 29/784

8422-4M 8422-4M

H 01 L 29/78

301 Ď

3 0 1

審査請求 未請求 請求項の数 4 (全7頁)

50発明の名称 半導体装置

> @特 平2-280202

22出 題 平 2 (1990)10月17日

@発 明者 白 井 浩

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝多摩

川工場内

勿出 願 株式会社東芝 神奈川県川崎市幸区堀川町72番地

倒代 理 人 弁理十 鈴江 武彦 外3名

1. 発明の名称

半導体装置

- ? 特許請求の範囲
- 横型MOS FETが形成された半導体 装置において、上記機型MOS FETH.

第1導電型の半導体基板の表面の一部に形成さ れた第2導電型のドレイン領域用の第1の不純物 拡散層と、

この第1の不純物拡散層の領域内部に存在し、 この第1の不純物拡散層よりも基板表面から接合 面までの深さ方向の距離が浅く形成され、この第 1 の不純物拡散層より高い不純物濃度を有する第 2 導電型のドレイン電極取り出し用の第2の不鈍 物拡散層と、

前記第1の不純物拡散層の外周の一部に接し、 前記第1の不純物拡散層および第2の不純物拡散 層を取り囲むように前記半導体基板の表面の一部 に形成され、上記半導体基板より高い不純物濃度 を有する第1 導電型のバックゲート領域用の第3

の不純物拡散層と、

この第3の不純物拡散層が前記第1の不純物拡 散層に接する領域内部に存在し、この第3の不純 物拡散層よりも基板表面から接合面までの深さ方 向の距離が浅く形成され、前記第1の不純物拡散 層より高い不純物濃度を有する第2導電型のソー ス領域用の第4の不純物拡散層と、

この第4の不純物拡散層と前記第1の不純物拡 散層との間の前記第3の不純物拡散層の表面のチ + ネル領域上にゲート絶録膜を介して形成された ゲート電極と、

前記第2の不純物拡散層にコンタクトして形成 されたドレイン電極と、

前記第3の不純物拡散層および第4の不純物拡 散層に共通にコンタクトして形成されたソース・ バックゲート共通電極

とを具備することを特徴とする半導体装置。

(2) 請求項1記載の半導体装置において、前 記半導体基板はシリコン単結晶基板であり、前記 ゲート絶縁限は二酸化シリコン膜であることを特 徴とする半導体装置。

2

- (3) 請求項1記載の半導体装置において、前記第1導電型の半導体基板は、第2導電型の半導体基板は、第2導電型の半導体基板より高い不能物濃度を有する第1導電型の半導体領域により囲まれていることを特徴とする半導体装置。
- (4) 請求項3記載の半導体装置において、前記第2専電型の半導体基板上には請求項1記載の業子とは別の業子が形成されていることを特徴とする集積回路化された半導体装置。
- 3. 発明の詳細な説明

[発明の目的]

(産業上の利用分野)

本発明は、個別半導体素子あるいは半導体集で 積回路などの半導体装置に係り、特に半導体基板 上に形成される二重拡散型の横型MOS FET (絶縁ゲート型電界効果トランジスタ)の構造に 関する。

(従来の技術)

一般に、二重拡散型のMOS FETを

は、ドレイン電極58に高電圧の静電サージが入力した場合、第6図中に示す矢印のように、寄生ダイオードの順方向、つまり、ドレイン領域用のP型拡散層53の経路に沿ってサージ電流が流れる。しかし、この時、N型拡散層53の観点のP型拡散層51の電位が上昇し、この電位がゲート絶縁膜55の絶縁耐量を越えた場合にはゲート絶縁膜55が破壊し、素子の静電破壊が生じてしまう。

(発明が解決しようとする課題)

上記したように従来の模型MOS FETは、 素子の静電サージ耐量(静電破壊電圧)が低いと いう問題がある。

本発明は、上記問題点を解決すべくなされたもので、その目的は、模型MOS FETの静電サージ耐量の向上を図り得る半導体装置を提供することにある。

CMOS (相補性MOS) により構成する場合、 PチャネルMOSトランジスタまたはNチャネルMOSトランジスタのいずれか一方は模型 MOS FETとして構成している。

第5図(a)および(b)は来の横型のPチャネルMOSトランジスタの一例についい示している。第5図(a)および(b)においで示しりはN~型の半導体基板、51はドレイン領域しのP・型拡散層、52はドレイン電域のリカンが一ト型拡散層、53はチャネル領はアート型拡散層、53はチャネル領はアート型拡散層、55名はデルーのP・型拡散層、55名はデルーののP・型拡散層、55名はデルーののP・型拡散層、55名はデルーののP・型拡散層、55名はデルーののP・型拡散層、55名はデルーのので、9ヶはアート共通電極のコンクをで、ソース・バックゲート共通電極のコンクトので、タケート共通をで、タケート共通でのコンクトで、タケート共通である。クロに必ずゲート電極59ヶは、ドレクンので、タクートである。

このような従来の模型MOS FETにおいて

[発明の構成]

(課題を解決するための手段)

本発明は、横型MOS FETが形成された 半導体装置において、上記機型MOS 第1導電型の半導体基板の表面の一部に形成され た第2導電型のドレイン領域用の第1の不純物拡 散層と、この第1の不純物拡散層の領域内部に存 在し、この第1の不純物拡散層よりも基板表面か ら接合面までの深さ方向の距離が浅く形成され、 この第1の不純物拡散層より高い不純物濃度を有 する第2導電型のドレイン電極取り出し用の第2 の不純物拡散層と、前記第1の不純物拡散層の外 周の一部に接し、前記第1の不純物拡散層および 第2の不純物拡散層を取り囲むように前記半導体 基板の表面の一部に形成され、上記半導体基板よ り高い不純物濃度を有する第1導電型のバックゲ - ト領域用の第3の不純物拡散層と、この第3の 不鈍物拡散層が前記第1の不純物拡散層に接する 領域内部に存在し、この第3の不純物拡散層より も基板表面から接合面までの深さ方向の距離が浅 く形成され、前記第1の不純物拡散層よりの高ののでは、前記第1の不純物拡散層を有する第2導電型のソース純物拡散層は、第4の不純物拡散層と、の前記第3の初記第3の不純物拡散層の表面のチャルの間の前記第3の形成がある。 物が放散層に対して形成されたゲートとでが成立に、前記第3の不純物拡散層に対して形成されたゲートとでが成立れたがからでは、前記第3の不純物拡散層に対してがある。 電極と、前記第3の不純物拡散層および第4の不 ・ では、前記第3の不純物な散層に対して形成がである。 ・ では、前記第3の不純物な散層に対して形成がである。

(作用)

A.

ドレイン領域の外周の一部に接し、これから 離れた位置でこれを取り囲むようにバックゲート 領域(一部の表面はチャネル領域となる。)が形成されているので、ドレイン電極に高電圧の静電 サージが入力した場合には、サージ電流がドレイン領域から周囲のバックゲート領域の方向に分散 して流れるので、ドレイン領域の電位の上昇が少なくなり、この電位がゲート絶縁膜の絶縁耐量を

され、この第1の不純物拡散層11より高い不純 物濃度を有するP・型のドレイン電極取り出し用 の第2の不執物拡散層である。13は前記第1の 不純物拡散層11の外周の一部に接し、前記第1 の不純物拡散層11および第2の不純物拡散層 12を取り囲むように前記半導体基板10の表 面の一部に形成され、上記半導体基板10より高 い不純物濃度を有するN型のバックゲート領域用 の第3の不純物拡散層である。14はこの第3の 不純物拡散層13が前記第1の不純物拡散隔11 に接する領域内部に存在し、この第3の不純物拡 数層 1 3 よりも基板表面から接合面までの深さ方 向の距離が強く形成され、前記第1の不純物拡散 層 1 1 より高い不純物濃度を有する P ↑ 型のソー ス領域用の第4の不純物拡散層である。Gはこの 第4の不純物拡散層14と前記第1の不純物拡散 層11との間の前記第3の不純物拡散層13の表 面のチャネル領域CH上にゲート絶縁膜(例えば 二酸化シリコン膜; SiOュ膜) 1.5 を介して形 成されたゲート電極である。Dは前記第2の不鈍

越え難くなり、ゲート絶縁膜の破壊、素子の静電 破壊が抑制される。

(実施例)

以下、図面を参照して本発明の実施例を詳細に説明する。

第1図は、第1実施例に係る個別半導体装置における構型のPチャネルMOSトランジスタの平面パターンを示しており、この構型のPチャネルMOSトランジスタの形成方法の一例を第2図(a)乃至(m)に示しており、第2図(m)は第1図中のX-X線に沿う断面構造を示している。

第1 図および第2 図(m)において、10は第1 導電型(本例ではN型)の比較的低い不純物濃度を有するN・型の半導体基板(例えばシリコン単結晶基板)、11 はこの半導体基板10の表面の一部に形成された第2導電型(本例ではP型)のドレイン領域用の第1の不純物拡散層である。12はこの第1の不純物拡散層11の領域内部に存在し、この第1の不純物拡散層11よりも基板表面から接合面までの深さ方向の距離が浅く形成

物拡散層12にコンタクトして形成されたドレイン電極である。ここで、ドレインコンタクトを D′で示している。S・Bはこのドレインコンタクト部 D′から離れた位置でこれを取り囲み、前記第3の不純物拡散層13および第4の不純物拡散層13および第4の不純物なとので、以上の人が一下共通電極、16は層間絶線膜(Si02)である。ここで、ソースコンタクト部を B′で示している。

次に、上記したような模型の P チャネル M O S トランジスタの形成方法の一例について第 2 図 (a) 乃至 (m) を参照しながら簡単に説明する。まず、第 2 図 (a) に示すように、N - 型シリコン基板 1 0 に対して 1 0 0 0 でのドライ酸化により表面に 0.1 μ m の絶縁膜 (SiO2) 2 1 を形成する。

次に、第2図(b)に示すように、フォトエッチング法により 表面にフォトレジストパターン 22を形成し、イオン注入法により全面に P 型不 純物のイオン(例えばボロンイオンB°)を注入する。

次に、第2図(c)に示すように、1200℃ の熱処理によりボロンを拡散させ、P型のドレイ ン領域用の不純物拡散層11を形成する。

次に、第2図(d)に示すように、1000℃ のスチーム酸化により表面に1.0μmの絶縁膜 (SiO₂)23を成長させる。

次に、第2図(e)に示すように、フォトエッチング法により前記絶縁膜23の一部を開口する。次に、第2図(f)に示すように、1000℃のドライ酸化により上記開口部の表面に 0.1μmのゲート絶繰膜(SiO2)15を形成する。次に、第2図(g)に示すように、 C V D (化学気相成長)法により基板全面にポリシリコン膜を 0.5μmの厚さに堆積した後、 フォトエッチング法により前記ポリシリコン膜をバターニング

次に、第2図 (h) に示すように、フォトエッチング法により表面にフォトレジストパターン

してゲート電極Gを形成する。

次に、第2図(m)に示すように、基板全質ののではAI)を1. 0μmの見ばAI)を1. 0μmの見にになり、基板を関係ではAI)を1. 0μmの見にには数値をがある。 がったが、からにはなり、では、ないのでは、では、ないのでは、では、ないのでは、では、ないのでは、ないのでで、ないのでで、ないのでは、ないでは、ないので

上記したような第1実施例の機型のPチャネルMOSトランジスタによれば、ドレイン領域11の外周の一部に接し、これから離れた位置でこれを取り囲むようにバックゲート領域13が形成されているので、ドレイン電極Dに高電圧の静むインの域11から周囲のバックゲート領域13の方向に分散して流れるようになり、ドレイン領域11

24を形成し、全面にイオン注入法によりN型不 純物のイオン(例えばリンイオンP^)を注入す

次に、第2図(i)に示すように、1200℃ の熱処理によりリンを拡散させ、N型のバックゲート領域用の不純物拡散層13を形成する。

次に、第2図(j)に示すように、フォトエッチング法により表面にフォトレジストパターン25を形成し、イオン注入法により全面にポロンイオンB・を注入する。

次に、第2図(k)に示すように、CVD法により基板全面に層間絶線膜(SiO2)16を1.0μmの厚さに堆積した後、1000℃の熱処理により、上記層間絶線膜16のアニールおよびボロンの拡散を行い、P型のドレイン電極取り出し用の不純物拡散層12とソース領域用の不純物拡散層14を形成する。

次に、第2図(g)に示すように、フォトエッチング法により前記層間絶縁膜16の一部を開口 してコンタクトホールを形成する。

の電位の上昇が少なくなり、この電位がゲート絶録膜 1 5 の絶録耐量を越え難くなり、ゲート絶録 腰 1 5 の破壊、素子の静電破壊が抑制される。

第3 図および第4 図は、それぞれ本発明の素子を集積回路化した場合における横型の P チャネル M O S トランジスタの断面構造を示している。

され、上記NT型エピタキシャル層33の表面で上記P型拡散層11の外周の一部に接ずると世間するようにチャネル領域・バックゲート領域用のN型拡散層13が形成され、このN型拡散層13が形成された位置で和が上記深いN型拡散層31の内部に位置するバックゲート領域用のN型拡散層13である。

第 4 図は、 P - 型基板 4 0 上で N ・ 型埋め込み 層 4 1 により 囲まれて深く 形成された 島状の N - 型の埋め込みエピタキシャル層 4 2 上に横型の PチャネルMOSトランジスタを形成したものである。即ち、 P - 型基板 4 0 上に深く形成された凸

おいては、P・型基板30、40上に上記機型の PチャネルMOSトランジスタとは分離されて別 の素子が形成されている。

[発明の効果]

上述したように本発明の半導体装置によれば、模型MOS FETの静電サージ耐量の向上を図ることができる。因みに、従来例の模型MOS FETは、容量負荷がない場合の静電サージ耐量が~数百V程度しかなかったが、本発明の模型MOS FETは、千V以上の静電サージ耐量を実現できた。

4. 図面の簡単な説明

第1図は本発明の第1実施例に係る模型のPチャネルMOSトランジスタの平面パターンを示す図、第2図(a)乃至(m)は第1図中のMOSトランジスタの形成方法の一例を示す断面図、第3図は本発明の第2実施例に係る模型のPチャネルMOSトランジスタを示す断面図、第4図は本発明の第3実施例に係る模型のPチャネルMOSトランジスタを示す断面図、第5図(a)および

状のN・型埋め込み層41の内部にN・型の埋め 込みエピタキシャル層42が形成され、このN‐ 型エピタキシャル層42上にドレイン領域用のP 型拡散層11が形成され、上記N‐型エピタキシ ャル層42の表面で上記P型拡散層11の外周の 一部に接すると共に一部が上記 N * 型埋め込み層 41の内部に位置するようにチャネル領域・バッ クゲート領域用のN型拡散層13が形成され、こ のN型拡散層13に連なって前記P型拡散層11 を離れた位置で取り囲むように上記 N - 型エピタ キシャル層42の表面の一部およびN * 型埋め込 み層41の表面にバックゲート領域用のN型拡散 層13′が形成されている。なお、12はドレイ ---ン 領 域 電 極 取 り 出 し 用 の P ≛ -型 拡 散 層 、 1--4 *はペノニー ース領域用の P ・型拡散層、 1 5 はゲート絶録験、 Gはゲート電極、Dはドレイン電極、S・Bはソ ース・バックゲート共通電極、16は層間絶線膜、 35はバックゲート領域電板取り出し用の N· 型 拡散層である。

なお、第3図および第4図に示した集積回路に

(b) は従来の機型のMOS FETの平面パターンおよびそのB-B線断面を示す図、第6図は第5図(b)の機型のMOS FETに静電サージが入力した場合のサージ電流の流れを示す図である。

10… N - 型半導体基板、11…ドレイン領域用のP型拡散層、12…ドレイン領域電極取り出し用のP・型拡散層、CH…チャネル領域、13…チャネル領域・バックゲート領域用のN型拡散層、13…チャネル領域・バックゲート領域用のN型拡散層、13…バックゲート領域用のP・型拡散層、15…ゲート絶録限、G…ゲート電極、D…ドレインコンタクト部、B…ソースコンタクト部、Bが…バックゲート共通電極、Sが、いクト部、16…層間絶録限、30、40…P・型半導体基板、31…深いN・型拡散層、32…
N・型埋め込み層、33…島状のN・型半導体系、N・型埋め込み層、33…島状のN・型半導体系、35…バックゲート領域電極取り出し用のN・型

拡 散 層 、 4 1 … N ・型 埋 め 込 み 層 、 4 2 … 島 状 の N ・型 の 埋 め 込 み エ ピ タ キ シ ャ ル 層 。

出願人代理人 弁理士 鈴 江 武 彦

第 3 図

第 4 図

第 2 図

