Inverse Trigonometric Functions

$$y = \arcsin x$$
, Domain = [-1, 1], Range = $[-\frac{\pi}{2}, \frac{\pi}{2}]$,

$$y = \arccos x$$
, Domain = $[-1, 1]$, Range = $[0, \pi]$,

$$y = \arctan x$$
, Domain $= (-\infty, \infty)$, Range $= (-\frac{\pi}{2}, \frac{\pi}{2})$.

By definition,

$$y = \arcsin x$$
 implies $x = \sin y$,

$$y = \arccos x$$
 implies $x = \cos y$,

$$y = \arctan x$$
 implies $x = \tan y$.

Graphs of inverse trigonometric functions:

Note that $y = \arcsin x$ is an increasing functions while $y = \arccos x$ is a decreasing function. $y = \arctan x$ (shown below) is also an increasing function.

Example 1. Evaluate (a) $\arcsin\left(\frac{1}{\sqrt{2}}\right)$ (b) $\arccos\left(-\frac{\sqrt{3}}{2}\right)$ (c) $\arctan(-\sqrt{3})$.

(a) Let
$$\theta = \operatorname{arc} 8 \operatorname{in} \left(\frac{1}{12}\right) \Rightarrow \operatorname{sin} \theta = \frac{1}{12}$$

So, θ is the (unique) angle between $-\frac{11}{12}$ to $\frac{11}{2}$

Whose $\operatorname{sin} \operatorname{ratio}$ is $\frac{1}{12}$ range of $\operatorname{arc} 8 \operatorname{in}$

We know $\operatorname{sin} \frac{11}{12} = \frac{1}{12}$
 $\Rightarrow \theta = \frac{11}{14} \Rightarrow \operatorname{arc} 8 \operatorname{in} \left(\frac{1}{12}\right) = \frac{11}{14}$

Let
$$0 = \arccos(-\frac{13}{2}) \Rightarrow \cos 0 = -\frac{13}{2}$$

 $\Rightarrow 0$ is (unique) angle between 0 to TT range of arc cos whose cos ratio is $-\frac{13}{2}$.

Note that Cos is negative in the second quadrant. We know that
$$Cos \frac{\pi}{6} = \frac{13}{3} \Rightarrow Cos \left(\pi - \frac{\pi}{6}\right) = -\frac{13}{2}$$
. Therefore, $O = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \Rightarrow arc \cos \left(-\frac{13}{3}\right) = \frac{5\pi}{6}$.

(C) Let $O = arc \tan \left(-\frac{13}{3}\right) \Rightarrow arc \cos \left(-\frac{13}{3}\right) = \frac{5\pi}{6}$.

So, $O = arc \tan \left(-\frac{13}{3}\right) \Rightarrow arc \cos \left(-\frac{13}{3}\right) = \frac{5\pi}{6}$.

We know that $Tan \frac{\pi}{3} = 13 \Rightarrow Tan \left(-\frac{\pi}{3}\right) = -\frac{13}{3}$.

 $O = arc \tan \left(-\frac{\pi}{3}\right) = -\frac{\pi}{3}$.

Example 2. Find an algebraic expression for tan(arcsin 2x).

Let
$$O = arcsin(2x)$$
. We want to find $Tan O$.

By definition, $sin O = 2x = 2x$

We know $sin O = P = 2x$

Let $P = 2x$. Then $H = 1$

By Pythagoras theorem, $P^2 + B^2 = H^2$
 $\Rightarrow (2x)^2 + B^2 = (1)^2 \Rightarrow Hx^2 + B^2 = 1$
 $\Rightarrow B = \pm \sqrt{1-4x^2}$

We reject $-\sqrt{1-4x^2}$ because in the range $(-\frac{11}{2}, \frac{11}{2})$,

 $\Rightarrow Tan O = P = 2x$

This is determined by $Sign of x$.

Example 3. Evaluate $\sin(\arccos(-3/4))$.

Let
$$Q = \operatorname{arc} \operatorname{Cos} \left(-\frac{3}{4} \right) \Rightarrow \operatorname{Cos} Q = -\frac{3}{4}$$

and $Q \leq Q \leq TT$
Tange of $\operatorname{arc} \operatorname{Cos}$
lince $\operatorname{Cos} Q = \operatorname{arc} \operatorname{Cos} Q = \operatorname{arc} Q = \operatorname{arc$

need to find
$$P^{2}+B^{2}=H^{2}$$

$$\Rightarrow P^{2}+(-3)^{2}=(H)^{2}$$

$$(080 = \frac{-3}{4} = \frac{8}{H}$$

Let
$$B=-3$$
, then $H=H$
 $P^2 + B^2 = H^2$

$$\Rightarrow P^2 + (-3)^2 = (4)^2$$

$$\Rightarrow$$
 $P^2 + 9 = 16 \Rightarrow P^2 = 7$

$$\Rightarrow P = \pm 17$$

From the figure, it is clear that P is the in the 2nd quadrant So we reject - 17.

$$\Rightarrow$$
 $\sin\left(\operatorname{arc}\left(\cos\left(-\frac{3}{4}\right)\right) = \frac{17}{4}$