

Content

- Intro to time series forecasting
- Decomposition
- Simple Moving Average
- ACF and PACF
- Autoregressive Model (AR)
- ARMA Model
- ARIMA Model
- Stock forecasting with GARCH
- Release of Project 1
- Activity

1. Intro to Time Series forecasting

A **time series** is a series of data points indexed (or listed or graphed) in time order.

Most commonly, a time series is a sequence taken at successive equally spaced points in time.

Time series forecasting is the use of a model to predict future values based on previously observed values.

Examples of Time Series

Time Series Components

Trend	Reflects the long-term progression of the series
Cyclical	Reflects repeated but non-periodic fluctuations
Seasonal	Seasonal pattern exists when a time series is influenced by seasonal factors. Seasonality occurs over a fixed and known period (e.g., the quarter of the year, the month, or day of the week).
Noise	Represents the residuals or remainder of the time series after the other components have been removed.

Classical decomposition include additive and multiplicative decomposition **statsmodels.tsa.seasonal_decompose**

Time Series Components

Additive: y(t) = Trend-Cycle + Seasonality + Noise

Multiplicative: y(t) = Trend-Cycle * Seasonality * Noise

3. Simple Moving Average

A simple moving average (SMA) is an arithmetic moving average calculated by adding recent values and then dividing that by the number of time periods in the calculation average.

Formula

Simple Moving Average

$$egin{aligned} ar{p}_{ ext{SM}} &= rac{p_M + p_{M-1} + \dots + p_{M-(n-1)}}{n} \ &= rac{1}{n} \sum_{i=0}^{n-1} p_{M-i}. \end{aligned}$$

Weighted Moving Average

$$ext{WMA}_M = rac{np_M + (n-1)p_{M-1} + \cdots + 2p_{(M-n+2)} + p_{(M-n+1)}}{n + (n-1) + \cdots + 2 + 1}$$

Cumulative Moving Average

$$\mathit{CMA}_n = rac{x_1 + \dots + x_n}{n} \,.$$

Exponential Moving Average

$$egin{aligned} EMA_{ ext{Today}} &= \left(ext{Value}_{ ext{Today}} * \left(rac{ ext{Smoothing}}{1 + ext{Days}}
ight)
ight) \ &+ EMA_{ ext{Yesterday}} * \left(1 - \left(rac{ ext{Smoothing}}{1 + ext{Days}}
ight)
ight) \end{aligned}$$

Autocorrelation Function

Measures both direct and indirect effect

Partial Autocorrelation Function

Measures only the direct effect

$$\tilde{y} t = \phi 21 \tilde{y} t - 1 + \phi 22 \tilde{y} t - 2 + et$$

Autoregressive model (AR)

In an autoregression model, we forecast the variable of interest using a linear combination of past values of the variable.

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

ARMA model

- Autoregressive Moving Average(ARMA)
- ARMA(1,1), Blue -> AR, Orange-> MA

$$- \Lambda_{t} = \beta_{0} + \beta_{1} \Lambda_{t-1} + \Phi_{1} \varepsilon_{t-1} + \varepsilon_{t}$$

 Λ_t -> number of light bulbs in month t

- Λ_t (Predicted) = $\beta_0 + \beta_1 \Lambda_{t-1} + \Phi_1 \epsilon_t$ -> error in predicting light bulbs in month t
- ACF(Average Cost Function) determines MA(Moving Average) value
- PACF(Partial
 Average cost
 function) determines AR(
 Autoregressive) value

Stationarity

- To achieve stationarity, we need 3 parts:
- 1. Constant mean
- 2. Constant standard deviation
- 3. No seasonality

Stationarity

Not constant standard deviation > not stationary!

Not constant mean-> not stationary!

Seasonality -> not stationary!

ARIMA model

- Autoregressive Integrated Moving Average(ARIMA)
- ARIMA(1,1,1) -> P,D,Q:

$$- Z_{t} = \Phi_{1}Z_{t-1} + \theta_{1} \varepsilon_{t-1} + \varepsilon_{t}$$

A_t -> number of anchors in month t

ARIMA model (Optional)

- How to recover a_k?
- Suppose we have $a_0, a_1, ..., a_l$, (K>L)
- We want $a_k = z_{k-1} + a_{k-1} = z_{k-1} + z_{k-2} + a_{k-2}$
- = ...=

$$\sum_{k=1}^{K-L} Z_{k-i} + a_{L}$$

 A_t -> number of anchors in month t

8. Stock forecasting with GARCH

- We will exploring what we have learnt in this lesson so far with the GARCH model.
- Download the Jupyter Notebook here:
- https://github.com/NUS-FinTech-ML-Training-Wing/ML_ TrainingWing_Materials/blob/master/Session%203/Finte ch%20ML%20Training%20Wing%20Session%203%20No tebook-Time%20Series.ipynb

9. Project 1

- And... We hope that you are ready for your very first project at Fintech Society Training Wing!

9. Project 1

- Join Kaggle Competition: https://www.kaggle.com/t/a22be594f7964a11a05a7e178894b922
- Deadline: 3/10/2020 (Sat) 11:59pm
- Compulsory
- Push your code to Github & submit your answers to Kaggle
- We will be monitoring your progress!

9. Project 1

- Rubrics used to assess project performance

Component	Descriptors	
Algorithms	Use at least three difference machine learning algorithms	
Prediction	Root-mean squared error of stock prices prediction	
Github	Utilising Github for project management	
Code quality	Organised code into logical components, easy to understand code	

10. Activity Time!

- You will now be split into breakout rooms of 4-5 people! This
 discussion session will last for about 10 minutes.
- Look at project 1 and discuss among yourselves the following questions.
- Each group will send a representative to answer these questions:
- 1. What are the time series forecasting models that you know?
- 2. Which of these models will be relevant to this project and why?
- Plans for recess week :D

THANKS!

Any questions?

- Credits to Ritvimath
- https://www.youtube.com/channel/UCUcpVoi5KkJmnE3bvEhHR0Q
- https://machinelearningmastery.com/decompose-time-series-data-tren d-seasonality/
- https://otexts.com/fpp2/classical-decomposition.html
- https://en.wikipedia.org/wiki/Moving_average
- https://machinelearningmastery.com/gentle-introduction-autocorrelationn-partial-autocorrelation/