1. 计算机控制系统通常由那几部分组成?

计算机控制系统常由计算机、接口电路、外部通用设备和工业生产对象等组成

2. 简述计算机控制系统的分类?

操作指导控制系统、直接数字控制系统、监督控制系统、分散型(集散型)控制系统、现场总线控制系统

3. 简述嵌入式系统的概念?

以应用为中心、以计算机技术为基础,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的

1. 限入式系统的定义 ①国框 E 义、收入人系统是"劳动、监视或者辅助设备、机器和车间运行的装置。 应被入人系统是以证师为中心、以计算机技术为部品、采用可谓成款银行、运用于对功 图、可靠性、成本、体积、为权等有严格变流的"专用证算机系统"。

満足

■ 软硬件可以剪裁

专用性 面向具体应用 功能、成本、体积、功耗

硬件

软件

专用计算机系统。

4. 简述嵌入式系统的三个关键属性? 嵌入性、专用性、计算机系统

5. 简述 Keil MDK 和 Protues 软件的功能?

Keil MDK 的功能主要包括:

- 1. 代码编辑与管理: 提供一个用户友好的环境,用于编写、编辑和管理微控制器的源代码。 2. 编译与汇编: 将编写的代码转换成机器代码,以便微控制器可以执行。 3. 调试支持: 提供调试工具,允许开发者在硬件或软件仿真环境中测试和调试他们的应用程序。 4. 硬件仿真: 通过使用模拟器,可以在没有物理硬件的情况下测试微空制器应用程序。

- 5. 性能分析: 提供工具来分析和优化代码的性能。

Proteus 的功能主要包括:

- 1. 电路仿真: 允许用户在软件中构建和测试电子电路,包括模拟电路和数亨电路。
- 2. 微控制器仿真: 支持多种微控制器的仿真, 使开发者能够在没有实际硬件的情况下测试微控制器程序。
- 3. PCB 设计: 提供工具来设计和布局印刷电路板 (PCB).
- 4. 原理图捕获: 允许用户绘制电路的原理图, 这是设计电子系统的第一步。
- 5. 代码调试: 与 Keil MDK 等开发环境配合,可以在 Proteus 中直接进行代码的调试。

1. 简述 STM32F103 系列单片机每个 GPI0 端口都有哪些相关寄存器?

两个32位配置寄存器(GPIOx CRL, GPIOx CRH)

两个 32 位数据寄存器 (GPIOx_IDR 和 GPIOx_ODR)

- 一个 32 位的置位/复位寄存器(GPIOx_BSRR)
- 一个16位复位寄存器(GPIOx BRR)
- 一个 32 位锁定寄存器 (GPIOx LCKR)
- 一个32位锁定寄存器(GPIOx_LCKR)

2. 简述 STM32F103 系列单片机 GPIO 端口都有工作方式?

输入模式:输入浮空;输入上拉;输入下拉;模拟输入

输出模式: 开漏输出; 推挽式输出; 推挽式复用功能; 开漏复用功能

4. 简述中断的概念, STM32F103 单片机抢占式优先级和响应式优先级在中断嵌套中发挥什么作用, GP10 中断是如何分组的每个 外部中断可以实现哪3种事件检测出发中断?

中断是指计算机运行过程中,出现某些意外情况需主机干预时,机器能自动停止正在运行的程序并转入处理新情况的程序,处理完毕后又返回原被暂停的程序继续运行。STM32F103 单片机当发生中断嵌套或同时多个中断发生时,先比较抢占式优先级,如果两个中断的抢占式优先级相同,再比较响应式优先级。每个输入线可以独立地配置对应的触发事 件上升沿、下降沿、双边沿触发三种方式。

1. STM32F103 定时器的时钟源有哪些?

5个时钟源:HSI、HSE、LSI、LSE、PLL

- HS1 (High Speed Internal) 高速内部时钟
- HSE (High Speed External)高速外部时钟 LSI (Low Speed Internal)低速内部时钟,
- LSE (Low Speed External)低速外部时钟

2. 简述看门狗定时器的作用?

看门狗定时器(WDT, Watch Dog Timer)是单片机的一个组成部分,它实际上是一个计数器,一般给看门狗一个数字,程序开始运行后看门狗开始计数。如果程序运行正常,过一段时间 CPU 应发出指令让看门狗置零,重新开始计数。如果看门狗增加到设定值就认为程序没有正常工作,强制整个系统复位。

3. 简述同步通信与异步通信的区别?

同步通信要求接收端时钟频率和发送端时钟频率一致,发送端发送连续的比特流;异步通信不要求接收端时钟和发送端时钟同步,发送端发送完一个字节后,可经过任意长的时间间隔再发送下一个字节。

可针问少,及之则及之元。 同步通信效率高; 异步通信效率较低。 同步通信较复杂,双方时钟的允许误差较小; 异步通信简单,双方时钟可允许一定误差。

4. IIC 通讯中如何定义设备地址及读写操作?

主机在发送开始信号之后,第 2 个时序应该立即给出要通信的目标从机物理地址。这时候 I2C 的读写地址除了 7bit 物理地之外,还有 lbit 用来标识读/写方向。这样 I2C 的从设备读写地址通常是一个字节,其中高 7bit 是上面描述的物理地址,最低位用来读写方向(0 为写操作,1 为读操作)

5. IIC 串行通信中如何进行定义起始条件和停止条件的?

在无数据通信时,IIC 总线的 SCL 和 SDA 都是高电平; 当主机要发送数据时,SDA 在 SCL 为高电平时拉低发送起始信号,SDA 在 SCL 为高电平时拉高发送停止信号。

6. 简述 SPI 和 I1C 两种种通讯方式的区别?

- 1. IIC 为半双工, SPI 为全双工 2. IIC 有应答机制, SPI 无应答机制 3. IIC 通过向总线广播从机地址来寻址, SPI 通过向对应从机发送使能信号来寻址(硬件资源占用多, 节约时间) 4. IIC 的时钟极性和时钟相位固定, SPI 的时钟极性和时钟相位可调。

7. ADC 的性能指标有哪些?

分辨率, 转换速度, 线性度

8. 简述 ADC 参考电压和分辨率之间有什么关系?

相同参考电压下,分辨率高则对应最小识别电压单位小,测量越精细。

9. 简述 STM32F103AD 转换配置过程?

第一步: 开启 PA 口和 ADC1 时钟,设置 PAI 为模拟输入 第二步: 初始化 ADC1 参数,设置 ADC1 的工作模式以及规则序列的相关信息 第三步: 设置 ADC1 分频因子,确定工作时钟 第四步: 设置 ADC 转换通道顺序及采样时间 第五步: 配置使能 ADC 转换完成中断(如果需要 ADC 中断处理才执行这个步骤)

第六步:使能 ADC

第七步: ADC 校准

1. 什么是直接数字控制,直接数字控制与传统 PID 控制分别有哪些优缺点?

再把计算机控制系统经过适当的变换,变

缺点:需要被控对象准确的数学模型。

2. 什么是积分饱和?它是怎样引起的,消除积分饱和有哪几种方法?

由于 PD 积分项的存在而造成的 PID 运算的"饱和"现象,称为**积分饱和。** 在数字 PID 控制系统中,当系统启动、停止或大幅度改变给定值时,系统输出会出现 较大的偏差,经过积分项累积后,可能使控制量 U(k) >Umax 或 U(k) <Umin,即超出执行机定的极限。此时,控制量不能真正取得计算值,而只能取 Umax 或取 Umin 从而影响控制效果。 消除积分饱和的**方法**主要有有效偏差法、积分分离法、遇限削弱积分法和变速积分法等。 即超出执行机构由机械或物理性能所决

3. 在数字 PID 控制器的设计中,采样周期的选择萎考荚哪些因素?

- (1) 采样周期 T 必须满足采样定理.

- (2)过程的扰动信号则。 (3)执行机构的类型。 (4)给定值的变化频率。

- (5)被投机象的特性。 (6)控制算法的类型。 (7)计算机的工作量及每个调节回路的计算成本。
- (8) 计算机能否精确执行控制算法。

4. 分别写出位置型和增量型数字 PID 算法表达式?

$$\frac{-}{U(k)} = K_P \{ E(k) + \frac{T}{T_I} \sum_{j=0}^{k} E(j) + \frac{T_D}{T} [E(k) - E(k-1)] \}$$

$$U(k) = U(k-1) + K_{P}[E(k) - E(k-1)] + K_{I}E(k) + K_{D}[E(k) - 2E(k-1) + E(k-2)]$$

5. 增量式 PID 与位置式 PID 相比有何优缺点?

- (1)而增量式 PID 只需计算增量,计算误差或精度不足时对控制量的计算影响较小。 (2)控制从手动切换到自动时易于实现手动到自动的无冲击切换. (3)当计算机发生故障理论上对执行机构无控制作用,对被控对象的影响较小。

缺点:

(2) 计算过程的表格如下; 4

e<u>†</u> €

序号。	偏差判别。	进給。	偏差计算。	终点判别。
0	40	4J	F ₀ =0+/	1=90
1	F ₀ =0	+Δx↔	F ₁ = F ₀ -y ₄ =-5 ₀	1=80
2€	F1=-5<0	+ <u>∆</u> y⊌	F ₂ = F ₁ +x ₅ =-1 ·	1=7·
3↔	F ₂ = -1<0↔	+ <u>∆</u> y ₄ ,	F ₃ = F ₂ +x ₄ =3	1=6₽
40	F ₃ = 3>00	$+\Delta x \omega$	F4= F3-y4=-20	1=4
50	F4= -2<00	+Δχυ	F ₅ = F ₄ +x ₅ =20	1=4+
6+	F ₅ =2>0+	+ <u>Δx</u> ↔	F6= F5-y+=-3+	1=30
7.	F ₆ =-3<0	$+\Delta y \omega$	$F_7 = F_6 + x_6 = 1 \omega$	1=2+
80	F ₇ = 1>0~	+ <u>Δx</u> ω	F ₈ = F ₇ -y _* =-4	1=10
9.	Fa=-4<0-	+Δγω	F ₀ = F ₈ + x _a =0	1=0.0

(3) 刀具的运行轨迹图。。

2 / 简答斯

AB是第一象限要加工的圆弧,圆弧的圆心在坐标原点(0,0),圆弧的起点为A(6,0),终点为B(0,6),若脉冲当量为1,试完成下列问题:

- (1) 求出需要的插补循环数总数;
- (2) 用逐点比较法完成对该段圆弧进行逆时针插补的过程;
- (3) 在图上画出刀具运动的轨迹。

序号↩	偏差判别↩	进给↔	偏差计算。	终点判别↩
0.0	41	42	F ₀ =0↔ x=6,y=0↔	1=12€
1₽	F ₀ =0 ₄ ,	- <u>∆x</u> + ¹	F ₁ = F ₀ -2x+1=-11\(\varphi\) x=6-1=5, y=0\(\varphi\)	1=114
2.	F ₁ =-11<0\(\varphi\)	+ <u>∆</u> y₊	F ₂ = F ₁ +2y+1=-10 ψ x=5, y=1 ψ	1=10↔
3₽	F ₂ =-10<0₽	+ <u>Δy</u> ₊	F ₃ =F ₂ +2y+1=-7\(\phi\) x=5, y=2\(\psi\)	1=9+
4₽	F ₃ = -7<04	$+\Delta y \omega$	F ₄ = F ₃ +2y+1=-2\(\phi\) x=5, y=3\(\phi\)	1=8+
5 <i>e</i>	F4= -2<04	+ <u>∆</u> y₊₁	F ₅ = F ₄ +2y+1=5+ x=5, y=4+	1=7₽
6₽	F ₅ = 5>04	- <u>∆x</u> +	F ₆ = F ₅ -2x+1=-4\(\nu\) x=5-1=4, y=4\(\nu\)	1=6⊬
7υ	F ₆ =-4<0↓	+Δχω	F7= F6+2y+1=5\(\phi\) x=4, y=5\(\phi\)	1=5₽
8₽	F>=5>0≠	- <u>Ax</u> 41	F ₈ = F ₇ -2x+1=-2\(\nu\) x=3, y=5\(\nu\)	1=40
9.	F ₈ =-2+	$+\Delta y \omega$	F ₉ = F ₁ +2y+1=9 ₄ x=3, y=6 ₄	1=3 <i>\omega</i>
100	F ₉ = 9>04	- <u>∆x</u> €	F ₁₀ = F ₉ -2x+1=4ω x=2, y=6ω	1=20
11₽	F ₁₀ =4>0	- <u>∆x</u> • ¹	F ₁₁ = F ₁₀ -2x+1=14 x=2-1=1, y=64	1=1+
124	F ₁₁ =1>04	$-\Delta x$	F ₁₂ = F ₁₁ -2x+1=0 φ x=1-1=0, y=6 φ	1=0,

3. (简答题)

如果要加工如图所示的扇形, 试完成下列问题:

- 1) 试说明该扇形在插补时由哪几部分(直线或曲线)组成;
- 2) 写出各部分(直线或曲线)的线型、步数、坐标(终点、起点)。

解

- 1) 该扇形是由R1, SR1, R3组成;
- 2) R1起点坐标为 (0,0) 终点坐标为 (2,5) 步数为7 SR1圆心坐标为 (0,0) ,起点坐标为 (2,5) 终点坐标为 (5,2) 步数为6 R3起点坐标为 (0,0) 终点坐标为 (-5,-2) 步数为7