- 1. Find the equation of the best fit line for the following data. Calculate R2 value and draw ROC curve
- 2. Find the equation of the best fit line for the following data. Create a scatter plot of the data with the estimated regression line.
- 3. build a decision tree, with Buys as the target variable, to help in buying lip-sticks in the future. Find the root node of decision tree. According to the decision tree you have made from previous training data set, what is the decision for the test data: [Age < 21, Income = Low, Gender = Female, Marital Status = Married]? Calculate entropy and Information gain
- 4. Calculate entropy and Information gain for the following data

price	maintenance	capacity	airbag	profitable
low	low	2	no	yes
low	med	4	yes	no
low	low	4	no	yes
low	high	4	no	no
med	med	4	no	no
med	med	4	yes	yes
med	high	2	yes	no
med	high	5	no	yes
high	med	4	yes	yes
high	high	2	yes	no
high	high	5	yes	yes

- 5. We have given a collection of 8 points. P1=[0.1,0.6] P2=[0.15,0.71] P3=[0.08,0.9] P4=[0.16, 0.85] P5=[0.2,0.3] P6=[0.25,0.5] P7=[0.24,0.1] P8=[0.3,0.2]. Perform the k-mean clustering with initial centroids as m1=P1 =Cluster#1=C1 and m2=P8=cluster#2=C2. Answer the following
- 1] Which cluster does P6 belongs to?
- 2] What is the population of cluster around m2?
- 3] What is updated value of m1 and m2?
- 6. Draw decision tree for following data
 outlook temperature humidity wind playtennis
 sunny hot high weak no
 sunny hot high strong no
 overcast hot high weak yes
 rain mild high weak yes
 rain cool normal weak yes
 rain cool normal strong no
 overcast cool normal strong yes
 sunny mild high weak no
 sunny cool normal weak yes

rain	mild	normal	weak	yes	
sunny	mild	normal	strong	yes	
overcas	t	mild	high	strong	yes
overcas	t	hot	normal	weak	yes
rain	mild	hiah	strong	no	

7. Apply KNN on IRIS data set having 4 attributes and 1 class label

5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa

KNN

Linear regression problem set

	Eagle Pairs
13	417
24	791
31	1188
32	1480
34	1757
36	1875
37	2238
38	2475
39	2680
40	3035
41	3399
42	3749
43	4015
44	4449
45	4712
46	5094
47	5295
48	5748
49	6104
50	6471
	24 31 32 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49

The sales of a company (in million dollars) for each year are shown in the table below.

x (year)	2005	2006	2007	2008	2009
y (sales)	12	19	29	37	45

- a) Find the least square regression line y = a x + b.
- b) Use the least squares regression line as a model to estimate the sales of the company in 2012.

Height (in cms) Weight (in kgs) T Shirt Size

158	58	M
158	59	M
158	63	M
160	59	M
160	60	M

163	60	M
163	61	M
160	64	L
163	64	L
165	61	L
165	62	L
165	65	L
168	62	L
168	63	L
168	66	L
170	63	L
170	64	L
170	68	L

New customer named 'Monica' has height 161cm and weight 61kg. apply KNN