α)

i.

Χρόνος <i>t</i> σε ημέρες	0	2	4	6
Ποσότητα $Q(t)$ του υγρού σε λίτρα.	8	4	2	1

- ii. Από το διάγραμμα προκύπτει ότι $Q_0 = Q(0) = 8 lt$.
- iii. Παρατηρούμε ότι $Q(0)=8\ lt$ και $Q(2)=4\ lt$. Δηλαδή η ποσότητα του υγρού θα μειωθεί στο μισό μετά από 2 ημέρες.
- β) Έχουμε ότι $Q_0=8$, οπότε

$$Q(2) = 4 \Leftrightarrow 8 \cdot 2^{-\frac{2}{c}} = 4 \Leftrightarrow$$

$$2^{-\frac{2}{c}} = \frac{1}{2} \Leftrightarrow 2^{-\frac{2}{c}} = 2^{-1} \Leftrightarrow$$

$$-\frac{2}{c} = -1 \Leftrightarrow c = 2.$$

γ) Τη χρονική στιγμή t υπάρχουν $Q(t)=8\cdot 2^{-\frac{t}{2}}$ λίτρα στο δοχείο. Μετά από δύο ημέρες θα υπάρχουν στο δοχείο $Q(t+2)=8\cdot 2^{-\frac{t+2}{2}}$ λίτρα. Αλλά,

$$Q(t+2) = 8 \cdot 2^{-\frac{t+2}{2}} = 8 \cdot 2^{-\frac{t}{2}-1} = 8 \cdot 2^{-\frac{t}{2}} \cdot 2^{-1} = \frac{Q(t)}{2}.$$

Άρα, μετά από δύο ημέρες, η ποσότητα του υγρού στο δοχείο μειώνεται στο μισό. Αντίστοιχα, μετά από δύο ημέρες εξατμίζεται η μισή ποσότητα του υγρού.