

RTOS PWM 开发指南

版本号: 1.1

发布日期: 2021.4.27

版本历史

版本号	日期	制/修订人	内容描述
1.0	2020.7.16	AWA1637	1. 添加初版说明
1.1	2021.4.27	AWA1637	1. 添加 F133 说明

目 录

1	前言	1
	1.1 文档简介	1
	1.2 目标读者	1
	1.3 适用范围	1
2	模块介绍	2
	2.1 模块功能介绍	2
	2.2 相关术语介绍	2
	2.3 模块配置介绍	3
	2.4 模块源码结构	3
3	模块接口说明	4
	3.1 接口列表	4
	3.2 接口使用说明	4
	3.2.1 PWM 初始化接口	4
	3.2.2 PWM 通道配置接口	4
	3.2.3 PWM 通道使能接口	5
	3.2.4 PWM 通道关闭接口	5
	3.2.5 PWM 去初始化接口	5
4	模块使用范例	6
5	FAQ	7

前言

1.1 文档简介

介绍 RTOS 中 PWM 驱动的接口及使用方法,为 PWM 使用者提供参考。

1.2 目标读者

PWM 驱动层/应用层开发/使用/维护人员。

1.3 适用范围

/I 驱动层/应用层开发/使用/维护人员。						
表 1-1: 适用产品列表						
产品名称	内核版本	驱动文件				
V459	Melis	hal_pwm.c				
R328	FreeRTOS	hal_pwm.c				
F133	Melis	hal_pwm.c				

2 模块介绍

2.1 模块功能介绍

模块带 16 个 PWM 通道,分 8 个 PWM 对: PWM01 对、PWM23 对、PWM45 对、PWM67 对 ~PWMcf 对,PWM01 对由 PWM0 和 PWM1 通道构成,PWM23 对由 PWM2 和 PWM3 通道构成,以此类推,PWM 具有以下特点:

- (1) 16 个 PWM 通道, 分 8 个 PWM 对;
- (2) 支持脉冲(脉冲个数可配)、周期和互补对输出;
- (3) 支持捕捉输入;
- (4) 带可编程死区发生器,死区时间可控;
- (5) 0-24M/100M 输出频率范围、0%-100% 占空比可调、最小分辨率 1/65536;
- (6) 支持 PWM 输出和捕捉输入产生中断;
- (7) 支持 PWM 组模式,分为 4 组,同组内各个通道起始相位可配置。

2.2 相关术语介绍

术语	解释说明
PWM	Pulse width modulation,脉冲宽度调制
Sunxi	指 Allwinner 的一系列 SOC 硬件平台
频率	PWM 的频率决定了所模拟电平的平滑度(逼真度),人耳感知的
	频率范围为 20Hz-16Khz,注意 PWM 的频率不要落在这个区间
占空比	决定了一个周期内 PWM 信号高低的比例,进而决定了一个周期
	内的平均电压,也就是所模拟的电平的电压
极性	决定了是高占空比的信号输出电平高,还是低占空比信号输出电平
	高。假设一个信号的占空比为 100%,如果为正常极性,则输出电
	平最大, 如果为翻转的极性,则输出电平为 0
开关	控制 PWM 信号是否输出
PWM 对	电机等硬件需要两路脉冲信号来控制其正常运转,一般两路极性相
	关,频率,占空比参数相同的 PWM 构成一个 PWM 对

版权所有 © 珠海全志科技股份有限公司。保留一切权利

术语	解释说明
PWM 死区控制时间	大功率电机,变频器等由大功率管,IGBT等元件组成 H 桥或 3 相桥,每个桥的上半桥和下半桥是绝对不能导通的,在 PWM 信号驱动这些元件时,往往会由于没有延迟而造成未关断某路半桥,这样会造成功率元件的损坏,在 PWM 中加入死区时间的控制即是让上半桥关断后,自动插入一个事件,延迟后再打开下半桥

2.3 模块配置介绍

图 2-1: PWM menuconfig

2.4 模块源码结构

PWM 模块源码结构如下所示:

rtos-hal/

|--hal/source/pwm/hal_pwm.c //hal层接口代码

|--include/hal/sunxi_hal_pwm.h //头文件

模块接口说明

3.1 接口列表

PWM HAL 层提供的接口列表如下:

```
pwm_status_t hal_pwm_init(void);
pwm status t hal pwm control(int channel, struct pwm config *config pwm);
void hal_pwm_enable_controller(uint32_t channel_in);
void hal_pwm_disable_controller(uint32_t channel_in);
pwm_status_t hal_pwm_deinit(void);
                                      ER
```

3.2 接口使用说明

3.2.1 PWM 初始化接口

- 原型: pwm_status_t hal_pwm_init(void)
- 功能: PWM 模块初始化,主要完成 clk 初始化
- 参数: 无
- 返回值:
 - 0 代表成功
 - -1 代表失败

3.2.2 PWM 通道配置接口

- 原型: pwm status t hal pwm control(int channel, struct pwm config *config pwm)
- 功能:配置 PWM 模块某个通道,包括周期、占空比和极性
- 参数:
 - channel 代表通道号
 - config pwm 代表该通道的配置参数
- 返回值:
 - 0 代表成功
 - -1 代表失败

3.2.3 PWM 通道使能接口

• 原型: void hal_pwm_enable_controller(uint32_t channel_in)

• 功能: 使能 PWM 模块某个通道

• 参数:

• channel in 代表通道号

• 返回值:无

3.2.4 PWM 通道关闭接口

• 原型: void hal_pwm_disable_controller(uint32_t channel_in)

• 功能: 关闭能 PWM 模块某个通道

• 参数:

• channel in 代表通道号

• 返回值:无

3.2.5 PWM 去初始化接口

• 原型: pwm_status_t hal_pwm_deinit(void)

● 功能: PWM 模块去初始化,主要关闭 clk

• 参数: 无

• 返回值:

• 0 代表成功

• -1 代表失败

4 模块使用范例

可参考驱动 APIs 测试代码(hal/test/pwm/)。

5 FAQ

无

著作权声明

版权所有 © 2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。