Final Project — Columbia Engineering Data Analytics Bootcamp

Vipul Aggarwal, Kannika Phadoungxath, June Wang, Liliana Joya

MOVIE RECOMMENDATIONS!

A website that gives customized recommendations based on each user

INTRODUCTION

THE DATA

movield	title	genres	userld	rating	rating_timestamp
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	2	3.5	2006-03-03 19:57:00
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	3	4.0	2015-08-13 13:23:35
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	4	3.0	2019-11-16 22:44:12
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	5	4.0	1997-03-17 19:12:29
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	8	4.0	1998-03-21 15:01:57

Source: MovieLens 25M Dataset

https://grouplens.org/datasets/movielens/

OUR SCOPE

- 1.Pull data visualizations from the dataset and find fun facts about the data
- 2.Build machine learning models with a hybrid approach to predict movie recommendations based on various features including: genre, ratings and user rating history.
- 3.Create an interactive site that will provide the user recommendations after login.

ETL + DATA VISUALIZATIONS

Rating distribution shows that users tend to rate movies highly.

Having fun with the data...

Adventure Comedy Documentary No Mystery Children Romance Comedy Romance Romance Children Ro

Titles and Genres

CONTENT BASED MODEL VS COLLABORATIVE FILTERING MODEL WITH ALS

Content-based filtering uses item features to recommend other items similar to what the user likes, based on their previous actions or explicit feedback.

Collaborative filtering is a method of making automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating).

CONTENT BASED RECOMMENDATION MODEL FOR NEW USERS

DataSet Sampling using below conditions:

- Remove Movies with Unknown Genre
- Keep movies with rating greater than or equal to 4
- Keep movies with rating equal or greater than 3.2 and released in 1995 or later

Create Count Vector for feature column and calculate cosine similarity between each count vector to calculate similarity between movies based on feature

Recommend movies similar to another movie based on the similarity matrix created between movies.


```
from sklearn.feature extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine similarity
cv = CountVectorizer()
count_matrix = cv.fit_transform(samples_movie df['feature'])
#print(count matrix)
#creating a similarity score matrix
sim = cosine similarity(count matrix)
print(sim)
#print(movies df['comb'])
[[1.
             0.61237244 0.23570226 ... 0.
                                                              0.182574191
 [0.61237244 1.
                                                              0.2236068 1
 [0.23570226 0.
 10.
             0.
                        0.
                                                              0.31622777]
 .01
 [0.18257419 0.2236068 0.
                                                   0.31622777 1.
```

COLLABORATIVE FILTERING RECOMMENDATION MODEL FOR RETURNING USERS

- Sample dataset taking only rating for movies having average rating greater than 4 and not having Unknown Genres and random sampling to get 50K records.
- Divide the original data into train and test data
- Create the basic model with ALS
- Fit cross validator to the 'train' dataset to find the best model
- Get rating predictions
- Evaluate the model with RMSE

```
#Create Basic Model
als = ALS(nonnegative=True)\
.setMaxIter(5)\
.setRegParam(0.01)\
.setUserCol("userId")\
.setItemCol("movieId")\
.setRatingCol("rating")\

# Confirm that a model called "als" was created type(als)
pyspark.ml.recommendation.ALS

alsModel = als.fit(training)

predictions = alsModel.transform(test)
```

++	+
userId movieId rating prediction	ļ +
	+
++++	•
63474 471 5.0 NaN	
78436 471 3.0 NaN	
3917 471 3.0 NaN	
155398 471 4.5 NaN	
73492 833 3.0 0.24391115	
6779 1088 3.0 NaN	Ĺ
33357 1088 4.0 1.6808618	
65092 1088 4.0 NaN	
110826 1088 3.0 NaN	
84752 1342 2.0 2.2990913	
72055 1342 3.5 NaN	1
45029 1580 3.5 NaN	
132461 1580 5.0 0.084586374	
45583 1580 3.0 NaN	

```
# View the predictions
test_predictions = alsmodel.transform(test)
RMSE = evaluator.evaluate(test_predictions)
print(RMSE)
```

1.6720604233002658

FUTURE PROJECTS

Add more features to our model to yield better predictions

Add learning and memory capabilities to the model, based on user input

Improve
user interface with
more movie information
and images

THANK YOU! QUESTIONS?