Date:_____

Lesson 1-8

POLYNOMIAL LONG DIVISION: THE ALGORITHM

Do Now: Solve $2,847 \div 5$ (No calculator!)

Check your division without the use of a calculator!

The result of this division can be written two ways:

or
$$569 + \frac{2}{5}$$

divisor dividend

Dividend: 2847

Divisor: 5

Quotient: 569

Remainder:

- **Dividend**: that which is being divided
- **Divisor:** that by which the dividend will be divided
- Quotient: the expression representing how many times the divisor will go into the dividend
- Remainder: the leftover portion, less than the divisor, which is not evenly divisible by the dividend.

We use the same long division algorithm to divide polynomials.

STEPS TO SUCCESS

Divide the first term of the dividend by the first term of the divisor, and put that in the quotient. **Multiply** each part of the divisor by that answer, and put that product below the dividend. **Subtract** to create a new polynomial.

Bring down the next term.

And **REPEAT** the process:)

Example 1: Divide $4x^2 - 7x - 2$ by x - 2.

$$\begin{array}{r}
4 \times +1 \\
 \times -a \overline{)4x^{2} - 7x - a} \\
 -(4x^{2} - 8x) \downarrow \\
 -(x - a) \\
 -(x - a)
\end{array}$$

Example 2: Divide:
$$\frac{2x^2 + 15x + 20}{x + 6}$$

$$x - ax = 3$$

we usually

whis

we use way!

The result of this division can be written two ways:

$$2x+3+\frac{2}{x+6}$$

Example 3: Write the rational expression $\frac{4x^2+4x-7}{2x+1}$ in the form: $q(x)+\frac{r}{b(x)}$.

How can we check our answer?

→ multiply the quotient and divisor

→ add the remainder

$$(2x+1)(2x+1) - 8$$

$$4x^{2} + 2x + 2x + 1 - 8$$

$$4x^{2} + 4x - 7$$

Algebra II

Date:_____

Lesson 1-8

POLYNOMIAL LONG DIVISION: THE ALGORITHM PRACTICE

#1: Write the rational expression $\frac{x^2 + 2x - 5}{x - 3}$ in the form: $q(x) + \frac{r(x)}{b(x)}$

$$\begin{array}{c} x+5 \\ x-3) \overline{x^2+2x-5} \\ -\underline{(x^2-3x)} \downarrow \\ 5x-5 \\ -\underline{(5x-15)} \\ 10 \end{array}$$

#2: Write the rational expression $\frac{2x^2 - 23x + 17}{x - 10}$ in the form: $q(x) + \frac{r}{b(x)}$

$$\begin{array}{r}
2x - 3 \\
X - 10) 2x^{2} - 23x + 17 \\
-(2x^{2} - 20x) \downarrow \\
-3x + 17 \\
-(-3x + 30) \\
\hline
-13
\end{array}$$

#3: Write the expression below in $q(x) + \frac{r}{x-a}$. The polynomial q(x) will now be a quadratic.

$$\frac{2x^3 - 11x^2 + 22x - 25}{x - 3}$$

$$\begin{array}{c|c}
2x^{2}-5x+7 \\
x-3 \overline{\smash)2x^{3}-11x^{2}+22x-25} \\
-(2x^{3}-6x^{2}) \downarrow \\
-5x^{2}+22x \\
-(-5x^{2}+15x) \downarrow \\
7x-25 \\
-(7x-21) \\
-4
\end{array}$$

$$2x^{2}-5x+7-\frac{4}{x-3}$$

#4: State the quotient, q(x), and the remainder, r, when $5x^3 - x^2 - 5x + 1$ is divided by x + 1.

