FUNDAMENTOS DE MATEMÁTICA ELEMENTAR GEOMETRIA ANALÍTICA

68 exercícios resolvidos com resposta

289 exercícios propostos com resposta

216 testes de vestibular com resposta

18

Capa

Roberto Franklin Rondino Sylvio Ulhoa Cintra Filho Rua Inhambu. 1235 — S. Paulo

Composição e desenhos

AM Produções Gráficas Ltda. Rua Castro Alves, 135 - S. Paulo

Artes

Atual Editora Ltda.

Fotolitos

Marka Silk Screen Ltda. Rua Albuquerque Maranhão, 272 - S. Paulo

Impressão e acabamento

Companhia Melhoramentos de São Paulo Indústrias de papel Rua Tito, 479 - S. Paulo

> CIP-Brasil. Catalogação-na-Fonte Câmara Brasileira do Livro, SP

Fundamentos de matemática elementar (por) Gelson Iezzi (e outros) São Paulo, Atual Ed., 1977-78 F977 Co-autores: Carlos Murakami, Osvaldo Dolce e Samuel Hazzan; a autoria dos volumes individuais varia entre os 4 autores. Conteúdo: v.1. Conjuntos, funções. 1977.-v.2. Logaritmos, 1977,-v.3, Trigonometria, 1978,v.4. Segullências, matrizes determinantes, sistemas 1977.-v.5. Combinatória, probabilidade. 1977.v.6. Complexos, polinômios, equações. 1977.-v.7. Geometria analitica. 1979. 1. Matemática (29 grau) I. Dolce, Osvaldo, 1938-II. Iezzi, Gelson, 1939- III. Hazzan, Samuel, 1946-IV. Murakami, Carlos, 1943-CDD-510 77-1473

Indice para catálogo sistemático:
1. Matemática 510

Todos os direitos reservados a

ATUAL EDITORA LTDA

Rua José Antônio Coelho, 785 Telefones: 71-7795 e 549-1720 CEP 04011 - São Paulo - SP - Brasil

Para mais, acesse: http://fuvestibular.com.br/

Para mais, acesse: http://fuvestibular.com.br/

APRESENTAÇÃO

"Fundamentos de Matemática Elementar" é uma coleção em dez volumes elaborada com a pretensão de dar ao estudante uma visão global da Matemática, ao nível da escola de 2º grau. Desenvolvendo os programas em geral adotados para o curso colegial, os "Fundamentos" visam aos alunos em preparativos para exames vestibulares, aos universitários que necessitam rever a Matemática Elementar e também, como é óbvio, àqueles alunos de colegial mais interressados na "rainha das ciências".

No desenvolvimento dos inúmeros capítulos dos livros de "Fundamentos" procuramos seguir uma ordem lógica na apresentação de conceitos e propriedades. Salvo algumas exceções bem conhecidas da Matemática Elementar, as proposições e teoremas estão sempre acompanhados das respectivas demonstrações.

Na estruturação das séries de exercícios, buscamos sempre uma ordenação crescente de dificuldade. Partimos de problemas simples e tentamos chegar a questões que envolvem outros assuntos já vistos, obrigando o estudante a uma revisão. A següência do texto sugere uma dosagem para teoria e exercícios. Os exercícios resolvidos, apresentados em meio aos propostos, pretendem sempre dar explicação sobre alguma novidade que aparece. No final do volume o aluno pode encontrar a resposta para cada problema proposto e asim, ter seu reforço positivo ou partir à procura do erro cometido.

A última parte de cada volume é constituída por testes de vestibulares até 1.977 selecionados e resolvidos o que pode ser usado para uma revisão da matéria estudada.

Queremos consignar aqui nossos agradecimentos sinceros ao Prof. Dr. Fernando Furguim de Almeida cujo apoio foi imprescindível para que pudéssemos homenagear nesta coleção alguns dos grandes matemáticos, relatando fatos notáveis de suas vidas e sua obras.

Finalmente, como há sempre uma enorme distância entre o anseio dos autores e o valor de sua obra, gostaríamos de receber dos colegas professores uma apreciação sobre este trabalho, notadamente os comentários críticos, os quais agradecemos.

Os autores

ÍNDICE

CAPITULO I - COORDENADAS CARTESIANAS NO PLANO

I.	Noções básicas	1 – G
11.	Posições de um ponto em relação ao sistema	3-6
III.	Distância entre dois pontos	6-6
IV.	Razão de secção	10-0
V.	Coordenadas do ponto divisor	12-0
VI.	Condição para alinhamento de três pontos	18-0
VII.	Complemento-Cálculo de determinantes	21-0
VIII.	Demonstração de teorema de geometria plana	24-0
CAPÍ	TULO II – EQUAÇÃO DA RETA	
	Equação geral	25 0
	· · · · · · ·	25-C
	Intersecção de duas retas	31-0
	Posições relativas de duas retas	38-0
	Feixe de retas concorrentes	43-0
	Feixe de retas paralelas	45-0
VI.	Formas da equação da reta	45-6
CAPI	TULO III – TEOREMA ANGULAR	
1.	Coeficiente angular	51-0
	Cálculo de m	53-0
Ш.	Equação de uma reta passando por $P(x_0, y_0)$	56-6
IV.	Condição de paralelismo	58-G
V.	Condição de perpendicularismo	61-G
	Ângulo de duas retas	70-0

CAPITULO IV – DISTÂNCIA DE PONTO A RETA		RESPOSTAS
Pa	ara mais, acesse: http://fuvestil	
I. Translação de sistema	. 77–G	Capítulo I
II. Distância entre ponto e reta	. 78–G	Capítulo II
III. Área do triângulo		Capítulo III 185-G
IV. Variação de sinal da função E(x, y) = ax + by + c		Capítulo IV
V. Inequações do 1º grau		Capítulo V 190-G
VI. Bissetrizes dos ângulos de duas retas		Capítulo VI 191–G
VII. Complemento-Rotação de sistema	. 98–G	Capítulo VII 194–G
CAPITULO V – CIRCUNFERÊNCIA		TESTES
I F ~ due ide	00. C	Ponto e reta
I. Equação reduzida		Circunferência
II. Equação normal		Cônicas
III. Reconhecimento		Lugares geométricos
IV. Ponto e circunferência		Respostas
V. Inequações do 2º grau	. 100-G	nespostas 223 d
VI. Reta e circunferência		
VII. Duas circunferências	. 11/-G	
CAPITULO VI – PROBLEMAS SOBRE CIRCUNFERÊNCIAS		
I. Problemas de tangência	123-G	
II. Determinação de circunferências	. 129–G	
III. Complemento		
Th. Complemento : : : : : : : : : : : : : : : : : : :		
CAPÍTULO VII – CÔNICAS		
	142 C	
I. Elípse		
II. Hipérbole	. 148–G	
III. Parábola	. 153–G	
IV. Reconhecimento de uma cônica	. 158–G	
V. Intersecções de cônicas	. 104-G	
VI. Tangentes a uma cônica	. 100—G	
CAPITULO VIII – LUGARES GEOMÉTRICOS		
I. Equação de um L.G	171–G	
1. Equação de um L.G	. 176_G	

René Descartes (1596 - 1650)

Geometria e Álgebra fazem as pazes

René Descartes nasceu na França, de família nobre, recebeu suas primeiras instruções no colégio jesuíta de La Flèche, graduando-se em Direito, em Poitier.

Foi participante ativo de várias campanhas militares como a de Maurice, o Príncipe de Nassau, a do Duque Maximiliano I da Baviera e a do exército francês no cerco de La Rochelle. Foi amigo dos maiores sábios da época como Faulhaber, Desargues e Mersenne e é considerado o "Pai da Filosofia Moderna".

Em 1637 escreveu seu mais célebre tratado, o "Discurso do Método" onde expõe sua teoria de que o universo era todo feito de matéria em movimento e qualquer fenômeno poderia ser explicado através das forças exercidas pela matéria contígua. Esta teoria só foi superada pelo raciocínio matemático de Newton.

Suas idéias filosóficas e científicas eram muito avançadas para a época mas sua matemática guardava características da antigüidade tendo criado a Geometria Analítica numa tentativa de volta ao passado.

Durante o período em que Descartes permaneceu com o exército bávaro, em 1619, descobriu a fórmula sobre poliedros que usualmente leva o nome de Euler: v + f = a + 2 onde v, f e a são respectivamente o número de vértices, faces e arestas de um poliedro simples.

Em 1628 já estava de posse da Geometria Cartesiana que hoje se confunde com a Analítica, embora os objetivos do autor fossem diferentes tanto que em seu "Discurso" se mostra imparcial quando discute os méritos da Geometria e da Álgebra. Seu objetivo era por processos algébricos libertar a Geometria da utilização de tantos diagramas que fatigavam a imaginação, e dar significado às operações da Álgebra, tão obscura e confusa para a mente, através de interpretações geométricas.

Descartes estava convencido de que todas as ciências matemáticas partem do mesmo princípio básico e aplicando seus conceitos conseguiu resolver o problema das três e quatro retas de Pappus. Percebendo a eficiência de seus métodos publicou "A Geometria", que consta de três livros, onde dá instruções detalhadas para resolver equações quadráticas geometricamente, por meio de parábolas; trata das ovais de Descartes importantes em Óptica e ensina como descobrir raízes racionais e achar solução algébrica de equações cúbicas e quadráticas.

Em 1649, convidado pela Rainha Cristina da Suécia, estabeleceu uma Academia de Ciências em Estocolmo e como nunca gozou de boa saúde não suportou o inverno escandinavo, morrendo prematuramente em 1650.

CAPÍTULO I

COORDENADAS CARTESIANAS NO PLANO

I. NOCŌES BÁSICAS

1. Consideremos dois eixos x e y perpendiculares em O, os quais determinam o plano α .

Dado um ponto P qualquer, $P \in \alpha$, conduzamos por ele duas retas:

Denominemos P_1 a intersecção de x com y' e P_2 a intersecção de y com x'

Nestas condições definimos:

- a) abscissa de P é o número real $x_P = \overline{OP}_1$
- b) ordenada de P é o número real $y_P = \overline{OP}_2$
- c) coordenadas de P são os números reais x_P e y_P , geralmente indicados na forma de um par ordenado (x_P, y_P) onde x_P é o primeiro termo.
 - d) eixo das abscissas é o eixo x (ou Ox)
 - e) eixo das ordenadas é o eixo y (ou Oy)
- f) sistema de eixos cartesiano ortogonal (ou ortonormal ou retangular) é o sistema xOy.
 - g) origem do sistema é o ponto O
 - h) plano cartesiano é o plano α

2. Exemplo

Vamos localizar os pontos A(2, 0), B(0, -3), C(2, 5), D(-3, 4). E(-7, -3), F(4, -5), G($\frac{5}{2}$, $\frac{9}{2}$) e H(- $\frac{5}{2}$, - $\frac{9}{2}$)

no plano cartesiano lembrando que, no par ordenado, o primeiro número representa a abscissa e o segundo a ordenada do ponto.

3. Teorema

Entre o conjunto dos pontos P do plano cartesiano e o conjunto dos pares ordenados (xp, yp) de números reais existe uma correspondência biunívoca.

Demonstração

1ª Parte

As definições dadas anteriormente indicam que a todo ponto P, $P \subseteq \alpha$, corresponde um único par de pontos (P1, P2) sobre os eixos x e y respectivamente e, portanto, um único par ordenado de números reais (xp, yp) tais que $x_P = \overline{OP}_1$ e $y_P = \overline{OP}_2$.

Esquema: $P \longrightarrow (P_1, P_2) \longrightarrow (x_P, y_P)$

Para mais, acesse: http://fuvestibular.com.br/Dado o par ordenado de números reais (x_P, y_P) , existem $P_1 \in x$ e $P_2 \in V$ tais que $\overline{OP_1} = X_P$ e $\overline{OP_2} = Y_P$.

> Se construirmos x' // x por P₂ e y' // y por P₁, essas retas vão concorrer em P. Assim, a todo par (x_P, y_P) corresponde um único ponto P, $P \in \alpha$.

Esquema:
$$(x_P, y_P) \longrightarrow (P_1, P_2) \longrightarrow P$$

Notemos que os pares ordenados (4, 2) e (2, 4) não são iguais. Eles se diferenciam pela ordem de seus termos e, portanto, não representam o mesmo ponto do plano cartesiano.

2ª Parte

De maneira mais geral, se a e bsão números reais distintos, então:

$$(a, b) \neq (b, a)$$

- A principal consequência do teorema do item 3 é que em Geometria Analítica Plana:
 - a) "dar um ponto P" significa dar o par ordenado (xp, yp);
 - b) "pedir um ponto P" significa pedir o par de coordenadas (x_P, y_P) ;
 - c) todo ponto P procurado representa duas incógnitas (xp e yp).

II. POSIÇÕES DE UM PONTO EM RELAÇÃO AO SISTEMA

Os eixos x e y dividem o plano cartesiano em quatro regiões angulares chamadas quadrantes, que recebem os nomes indicados na figura. É evidente que:

Um ponto pertence ao eixo das abscissas se, e somente se, sua ordenada é nula:

$$P \in Ox \iff y_P = 0$$

Isto significa que o eixo das abscissas é o conjunto dos pontos de ordenada nula:

$$Ox = \{(a, 0) \mid a \in IR\}$$

Notemos que, para todo número real a, o ponto (a. 0) pertence ao eixo das abscissas.

Um ponto pertence ao eixo das ordenadas se, e somente se, sua abscissa é nula:

$$P \in O_V \iff x_P = 0$$

Isto significa que o eixo das ordenadas é o conjunto dos pontos de abscissa nula:

$$O_V = \{(0, b) \mid b \in R\}$$

Notemos que, para todo número real b, o ponto (0, b) pertence ao eixo das ordenadas.

Um ponto pertence à bissetriz dos quadrantes impares se, e somente se, tiver coordenadas iguais:

$$P \in b_{13} \iff x_P = V_P$$

Isto significa que a bissetriz b₁₃ é o conjunto dos pontos de coordenadas iquais:

$$b_{13} = \{(a, a) \mid a \in |R\}$$

Notemos que, para todo a real, o ponto (a, a) pertence à bissetriz b₁₃.

Para mais, acesse: http://fuvestibular.com.br/

10. Um ponto pertence à bissetriz dos Para mais, acesse: http://fuvestibular.cuadrantes pares se, e somente se, tiver coordenadas simétricas:

$$P \in b_{24} \iff x_P = -y_P$$

Isto significa que a bissetriz b24 é o conjunto dos pontos de coordenadas simétricas.

$$b_{24} = \{(a, -a) \mid a \in |R\}$$

Notemos que, para todo a real, o ponto (a, -a) pertence à bissetriz b24.

11. Se uma reta é paralela ao eixo das abscissas, então todos os seus pontos têm a mesma ordenada.

Se uma reta é paralela ao eixo das ordenadas, então todos os seus pontos têm a mesma abscissa.

Também valem as recíprocas dessas duas propriedades.

EXERCÍCIO

Dados os pontos:

A(500, 500)	E(0, 0)
B(-600, -600)	F(711, 0)
C(715, -715)	G(0, -517)

$$J(\pi, \pi\sqrt{3})$$

$$K(\sqrt{2}, -\sqrt{2})$$

$$L(\frac{9}{2}, \frac{18}{4})$$

1(0, 8198)

Pergunta-se quais são pertencentes:

- a) ao primeiro quadrante;
- b) ao segundo quadrante;
- ao terceiro quadrante;
- d) ao quarto quadrante;
- e) ao eixo das abscissas:
- f) ao eixo das ordenadas;
- g) à bissetriz dos quadrantes (mpares;
- h) à bissetriz dos quadrantes pares.

DISTÂNCIA ENTRE DOIS PONTOS

Para mais, acesse: http://fuvestibular.com.hr/

Dados dois pontos $A(x_1, y_1)$ e $B(x_2, y_2)$, calculemos a distância d entre eles.

1.9 Caso: AB
$$/\!\!/$$
 Ox
d = $d_{A_1B_1} = |x_2 - x_1|$

20 Caso: AB // Oy

$$d = d_{A_2 B_2} = |y_2 - y_1|$$

3º Caso: AB X Ox e AB X Oy

Temos inicialmente:

$$\begin{array}{cccc} AC \ /\!\!/ \ Ox & \Longrightarrow & y_C = y_1 \\ BC \ /\!\!/ \ Oy & \Longrightarrow & x_C = x_2 \end{array} \right\} \implies C(x_2, y_1)$$

De acordo com os casos iniciais, temos:

$$d_{AC} = |x_C - x_A| = |x_2 - x_1|$$

 $d_{BC} = |y_B - y_C| = |y_2 - y_1|$

Aplicando o teorema de Pitágoras ao triângulo ABC temos:

$$d^2 = d_{AC}^2 + d_{BC}^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

então:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Calcular a distância entre os pontos A(-2, 5) e B(4, -3).

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} =$$

$$= \sqrt{(4 + 2)^2 + (-3 - 5)^2} =$$

$$= \sqrt{36 + 64} = 10$$

13. Exemplo

Observemos que, se mudarmos a ordem das diferencas, d não se altera:

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
$$= \sqrt{(-2 - 4)^2 + (5 + 3)^2}$$
$$= \sqrt{36 + 64} = 10$$

Convém observarmos que, como a ordem dos termos nas diferenças de abscissas e ordenadas não influi no cálculo de d, uma forma simples da fórmula da distância é:

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

onde
$$\Delta x = x_2 - x_1$$
 ou $\Delta x = x_1 - x_2$ (é indiferente)
 $\Delta y = y_2 - y_1$ ou $\Delta y = y_1 - y_2$ (é indiferente)

EXERCÍCIOS

- **G.2** Calcular a distância entre os pontos A(1, 3) e B(-1, 4).
- Calcular a distância do ponto P(-6, 8) à origem do sistema cartesiano. G.3
- Calcular a distância entre os pontos A(a 3, b + 4) e B(a + 2, b 8).
- Calcular o perímetro do triângulo ABC, sendo dados A(2, 1), B(-1, 3) e C(4, -2).

G.6 Provar que o triângulo cujos vértices são A(2, 2), B(-4, -6) e C(4, -12) é retângulo.

Solução

Para mais, acesse: http://fuvestibular.com.br/

Para demonstrar que um triangulo é retângulo basta provar que as medidas dos seus lados verificam a relação de Pitágoras: "o quadrado da medida do maior lado é igual à soma dos quadrados das medidas dos outros dois lados".

$$\begin{array}{llll} d_{AB}^2 &=& (\triangle x)^2 + (\triangle y)^2 = (2+4)^2 + (2+6)^2 = 100 \\ d_{BC}^2 &=& (\triangle x)^2 + (\triangle y)^2 = (4+4)^2 + (-6+12)^2 = 100 \\ d_{CA}^2 &=& (\triangle x)^2 + (\triangle y)^2 = (2-4)^2 + (2+12)^2 = 200 \\ então & d_{CA}^2 &=& d_{AB}^2 + d_{BC}^2 \end{array}$$

- G.7 Determinar x de modo que o triângulo ABC seja retângulo em B. São dados: A(4, 5), B(1, 1) e C(x, 4).
- G.8 Se P(x, y) equidista de A(-3, 7) e B(4, 3), qual é a relação existente entre x e y?

Solução

$$dpA = dpB \implies (x + 3)^2 + (y - 7)^2 = (x - 4)^2 + (y - 3)^2$$
 então

$$\frac{x^2 + 6x + \frac{9}{2} + \underline{y^2} - 14y + 49 = \underline{x^2} - 8x + 16 + \underline{y^2} - 6y + \underline{9}}{(6x - 14y + 49) - (-8x + 16 - 6y) = 0}$$

$$14x - 8y + 33 = 0$$

Resposta: 14x - 8y + 33 = 0

- G.9 Dados A(x, 5), B(-2, 3) e C(4, 1), obter x de modo que A seja eqüidistante de B e C.
- G.10 Determinar o ponto P, pertencente ao eixo das abscissas, sabendo que é equidistante dos pontos A(1, 3) e B(-3, 5).
- G.11 Determinar o ponto P, da bissetriz dos quadrantes pares, que equidista de A(8, -8) e B(12, -2).
- G:12 Dados os pontos A(8, 11), B(-4, -5) e C(-6, 9), obter o circuncentro do triânquio ABC.

Solução

O circuncentro (centro da circunferência circunscrita ao triângulo) é um ponto P equidistante dos três vértices.

$$P(x, y) \begin{cases} 1) & dpA = dpB \\ 2) & dpB = dpC \end{cases}$$

$$3x + 4y = 18$$
 (1)

(2)
$$(x + 4)^2 + (y + 5)^2 = (x + 6)^2 + (y - 9)^2$$

 $\frac{x^2 + 8x + 16 + y^2}{-4x + 28y = 76} + 10y + 25 = \frac{x^2}{-4} + 12x + 36 + \frac{y^2}{-4} - 18y + 81$

$$x - 7y = -19$$
 (2)

De (2), temos
$$x = 7y - 19$$
 que substituindo em (1) dá: $3(7y - 19) + 4y = 18 \implies 25y = 75 \implies y = 3 \implies x = 7 \cdot 3 - 19 = 2$ Resposta: P(2, 3).

- G.13 Dados os pontos M(a, O) e N(O, a), determinar P de modo que o triângulo MNP seja equilátero.
- G.14 Dados os pontos B(2, 3) e C(-4, 1), determinar o vértice A do triângulo ABC, sabendo que é o ponto do eixo y do qual se vê BC sob ângulo reto.

$A(x, y) \begin{cases} 1) & A \in y \\ .2) & AC \perp AB \end{cases} \implies$

$$\Longrightarrow \begin{cases} 1) & x = 0 \\ 2) & d_{AC}^2 + d_{AB}^2 = d_{BC}^2 \end{cases}$$

De (2) temos:

Solução

$$(x + 4)^2 + (y - 1)^2 + (x - 2)^2 + (y - 3)^2 = (2 + 4)^2 + (3 - 1)^2$$

Levando em conta que x = 0, temos:

$$16 + (y^2 - 2y + 1) + 4 + (y^2 - 6y + 9) = 36 + 4$$
$$2y^2 - 8y - 10 = 0 \implies y^2 - 4y - 5 = 0 \implies y = -1 \text{ ou } y = 5$$

Resposta: A(0, -1) ou A(0, 5)

- G.15 Dados A(-2, 4) e B(3, -1) vértices consecutivos de um quadrado, determinar os outros dois vértices.
- **G.16** Dados A(8, 7) e C(-2, -3), extremidades da diagonal de um quadrado, calcular as coordenadas dos vértices B e D, sabendo que $x_{\rm B} > x_{\rm D}$.

8-G

IV. RAZÃO DE SECCÃO

15. Dados três pontos colineares A, B e C (com A \neq B \neq C), chama-se razão de secção do segmento AB pelo ponto C o número real r tal que:

Exemplo

Para esclarecermos a definição dada, consideremos sobre um eixo e os pontos C. D. E. F. G. H. I. J tais que os segmentos CD, DE, EF, FG, GH, HI e IJ têm comprimento ℓ . Tomemos A = F e B = H e calculemos as razões (ABC), (ABD), (ABE), (ABF), (ABG), (ABH), (ABI), (ABJ).

$$(ABC) = \frac{\overline{AC}}{\overline{CB}} = \frac{-3 \, \ell}{5 \, \ell} = -\frac{3}{5}$$

$$(ABG) = \frac{\overline{AG}}{\overline{GB}} = \frac{\ell}{\ell} = 1$$

$$(ABD) = \frac{\overline{AD}}{\overline{DB}} = \frac{-2 \, \ell}{4 \, \ell} = -\frac{1}{2}$$

(ABH) =
$$\frac{\overline{AH}}{\overline{HB}} = \frac{2 \, \ell}{\Omega}$$
 (não existe)

$$(ABE) = \frac{\overline{AE}}{\overline{EB}} = \frac{-\ell}{3\ell} = -\frac{1}{3}$$

$$(ABI) = \frac{\overline{AI}}{\overline{IB}} = \frac{3 \ell}{-\ell} = -3$$

$$(ABF) = \frac{\overline{AF}}{\overline{FB}} = \frac{0}{2V} = \vec{0}$$

$$(ABJ) = \frac{\overline{AJ}}{\overline{JB}} = \frac{4 \, \ell}{-2 \, \ell} = -2$$

16. O sinal da razão r não depende da orientação do eixo que contém \overrightarrow{AB} nem do sistema cartesiano; depende de uma camparação de sentidos entre AC e CB. Podem ser verificadas facilmente as sequintes propriedades da razão de secção.

- 1) $r > 0 \iff C$ é inteiror a \overrightarrow{AB}
- II) r < 0 ⇒ C é exterior a AB
- III) $r = 0 \iff C = A$
- IV) r = 1 ← C é médio de \overrightarrow{AB}
- V) \forall C, $r \neq -1$.

17. Uma perqunta importante é "como se poderia calcular o valor de r quando Para mais, acesse: http://fuvestibular.com.br/

Uma primeira idéia seria escrever:

$$r - \frac{\overline{AC}}{\overline{CB}} = \frac{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}}{\sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}}$$

mas esta não é uma boa saída pois:

1º) $r = \frac{\overline{AC}}{\overline{CR}}$ e não $r = \frac{|\overline{AC}|}{|\overline{CB}|} = \frac{d_{AC}}{d_{CR}}$, isto é, a fórmula acima daria sempre $r \ge 0$ e quando C é exterior a \overrightarrow{AB} incorreríamos em erro.

- 2º) é muito trabalhosa por causa da fórmula da distância.
- 3º) dados A, B e r, não é possível determinar C pois teríamos duas incógnitas (x_C, y_C) e uma só equação.

Contornamos essas dificuldades com a seguinte teoria

1.º Caso: AB não é paralelo a Ox e nem a Ov.

Aplicando o teorema de Tales às transversais AB e A₁B₁ do feixe de paralelas $\overrightarrow{AA_1}$, $\overrightarrow{BB_1}$, $\overrightarrow{CC_1}$ e notando que se \overrightarrow{AC} e \overrightarrow{CB} concordam ou não em sentido o mesmo ocorre com $\overrightarrow{A_1C_1}$ e $\overrightarrow{C_1B_1}$ temos:

$$r = \frac{\overline{AC}}{\overline{CB}} = \frac{\overline{A_1C_1}}{\overline{C_1B_1}}$$
 (1)

Aplicando analogamente o Teorema de Tales para as transversais. AB e A₂B₂ do feixe de paralelas AA₂, BB₂, CC₂, temos:

$$r = \frac{\overline{AC}}{\overline{CB}} = \frac{\overline{A_2C_2}}{\overline{C_2B_2}}$$
 (2)

Se tivermos $A(x_1, y_1)$, $B(x_2, y_2)$ e $C(x_3, y_3)$, então teremos a partir de (1) e (2):

$$r = \frac{\overline{A_1C_1}}{\overline{C_1B_1}} = \frac{\overline{A_2C_2}}{\overline{C_2B_2}} = \frac{x_3 - x_1}{x_2 - x_3} = \frac{y_3 - y_1}{y_2 - y_3}$$

2º caso: \overrightarrow{AB} é paralelo a Ox

Neste caso, temos $y_1 = y_2 = y_3$ e somente podemos escrever:

$$r = \frac{y_3 - y_1}{r} \implies r \cdot y_2 - r \cdot y_3 = y_3 - y_1 \implies y_3 + r \cdot y_3 = y_1 + r \cdot y_2 \implies r \cdot y_2 - r \cdot y_3 = y_3 - y_1 \implies y_3 + r \cdot y_3 = y_1 + r \cdot y_2 \implies r \cdot y_3 = y_3 - y_1 \implies y_3 + y_3 + y_3 = y_1 + y_3 = y_3 + y_3 + y_3 = y_3 + y_3 + y_3 = y_3 +$$

$$\implies \boxed{ y_3 = \frac{y_1 + r + y_2}{1 + r} }$$

$$I = \frac{x_3 - x_1}{x_2 - x_3}$$

3.º caso: AB é paralelo a Oy

Neste caso, temos $x_1 = x_2 = x_3$ e somente podemos escrever:

$$r = \frac{y_3 - y_1}{y_2 - y_3}$$

19. Exemplo

Dados A(3, 7), B(5, 11) e C(6, 13) calculemos a razão (ABC): pelas projeções no eixo Ox

$$r = \frac{x_3 - x_1}{x_2 - x_3} = \frac{6 - 3}{5 - 6} = -3$$

pelas projeções no eixo Oy

$$r = \frac{y_3 - y_1}{y_2 - y_3} = \frac{13 - 7}{11 - 13} = -3$$

É evidente que só poderíamos obter resultados iguais.

V. COORDENADAS DO PONTO DIVISOR

20. Dados $A(x_1, y_1)$, $B(x_2, y_2)$ e'r(r \neq -1), calculemos as coordenadas (x_3, y_3) do ponto C que devide \overrightarrow{AB} na razão r. Temos:

$$r = \frac{x_3 - x_1}{x_2 - x_3} \implies r \cdot x_2 - r \cdot x_3 = x_3 - x_1 \implies x_3 + r \cdot x_3 = x_1 + r \cdot x_2 \implies$$

$$\implies x_3 + r \cdot x_3 = x_1 + r \cdot x_2 \implies$$

Exemplo

Obter as coordenadas do ponto C que divide \overrightarrow{AB} na razão 2, quando A = (1, 5) e B(4, 17).

$$x_{3} = \frac{x_{1} + r \cdot x_{2}}{1 + r} = \frac{1 + 2 \cdot 4}{1 + 2} = \frac{9}{3} = 3$$

$$y_{3} = \frac{y_{1} + r \cdot y_{2}}{1 + r} = \frac{5 + 2 \cdot 17}{1 + 2} = \frac{39}{3} = 13$$

$$\Rightarrow C(3, 13)$$

21. No caso particular de C ser o ponto médio de AB então r = 1 é:

$$x_3 = \frac{x_1 + x_2}{2}$$
 $y_3 = \frac{y_1 + y_2}{2}$

Exemplo

Obter o ponto médio do segmento AB quando A = (7, -1) e B = (-3, 11).

$$x_3 = \frac{x_1 + x_2}{2} = \frac{(7) + (-3)}{2} = 2$$

$$y_3 = \frac{y_1 + y_2}{2} = \frac{(-1) + (11)}{2} = 5$$

$$\Rightarrow C(2, 5)$$

EXERCÍCIOS

- **G.17** Calcular a razão (ABC) sendo dados os pontos A(2, 3), B(1, -2) e C($\frac{4}{3}$, $-\frac{1}{3}$).
- G.18 Dados A(4, 3) e B(2, 1), seja C a intersecção da reta AB com o eixo das abscissas. Calcular a razão (ABC).

G.19 Determinar as coordenadas dos pontos que dividem o segmento. AB em três partes iguais, sabendo que A = (-1, 7) e B = (11, -8).

Para mais, acesse: http://fuvestibular.com.br/

Solução

C divide o segmento \overrightarrow{AB} na razão $\frac{1}{3}$:

$$x_{C} = \frac{x_{A} + r \cdot x_{B}}{1 + r} = \frac{(-1) + (\frac{1}{2})(11)}{1 + \frac{1}{2}} = \frac{\frac{9}{2}}{\frac{3}{2}} = 3$$

$$y_C = \frac{y_A + r \cdot y_B}{1 + r} = \frac{(7) + (\frac{1}{2})(-8)}{1 + \frac{1}{2}} = \frac{\frac{6}{2}}{\frac{3}{2}} = 2$$

D divide o segmento AB na razão 2:

$$x_D = \frac{x_A + r' \cdot x_B}{1 + r'} = \frac{(-1) + 2 \cdot 11}{1 + 2} = \frac{21}{3} = 7$$

$$y_D = \frac{y_A + r' \cdot y_B}{1 + r'} = \frac{7 + 2 \cdot (-8)}{1 + 2} = \frac{-9}{3} = -3$$

Observemos também que D é ponto médio de BC:

$$x_D = \frac{x_B + x_C}{2} = \frac{(11) + (3)}{2} = 7$$
 $y_D = \frac{y_B + y_C}{2} = \frac{(-8) + 2}{2} = -3$

$$y_D = \frac{y_B + y_C}{2} = \frac{(-8) + 2}{2} = -3$$

Resposta: $C(3, 2) \in D(7, -3)$

- **G.20** Determinar os pontos que dividem AB em quatro partes iguais quando A = (-1, -3)e B = (23, 33).
- G.21 Até que ponto o segmento de extremos A(+1, -1) e B(4, 5) deve ser prolongado no sentido AB, para que seu comprimento triplique?
- G.22 Calcular o comprimento da mediana AM do triângulo ABC cujos vértices são os pontos A(0, 0), B(3, 7) e C(5, -1).

Solução

14-G

Oponto M é tal que:

$$x_{M} = \frac{x_{B} + x_{C}}{2} = \frac{3+5}{2} = 4$$

$$v_{M} = \frac{v_{B} + v_{C}}{2} = \frac{7 + (-1)}{2} = 3$$

Para mais, acesse: http://fuvestibular.com.br/

O comprimento da mediana AM é a distância entre A e M:

$$d_{AM} = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2} = \sqrt{16 + 9} = 5$$

Resposta: $d_{\Delta M} = 5$

- **★G.23** Dados os vértices consecutivos, A(-2, 1) e B(4, 4), de um paralelogramo, e o ponto E(3, -1), intersecção de suas diagonais, determinar os outros dois vértices.
 - G.24 Do triângulo ABC são dados: o vértice A(2, 4), o ponto M(1, 2) médio do lado AB e o ponto N(-1, 1) médio do lado BC. Calcular o perímetro do triângulo ABC.

Solução

1º) M é o ponto médio de AB então:

$$x_M = \frac{x_A + x_B}{2} \implies 1 = \frac{2 + x_B}{2} \implies x_B = 0$$

$$y_M = \frac{y_A + y_B}{2} \implies 2 = \frac{4 + y_B}{2} \implies y_B = 0$$

portanto, B(0, 0)

2º) N é o ponto médio de BC então:

$$x_N = \frac{x_B + x_C}{2} \implies -1 = \frac{0 + x_C}{2} \implies x_C = -2$$

$$y_N = \frac{y_B + y_C}{2} \implies 1 = \frac{0 + y_C}{2} \implies y_C = 2$$

portanto, C(-2, 2)

3°) perímetro =
$$d_{AB} + d_{BC} + d_{CA} =$$

$$= \sqrt{(2-0)^2 + (4-0)^2} + \sqrt{(0+2)^2 + (0-2)^2} + \sqrt{(2+2)^2 + (4-2)^2} =$$

$$= \sqrt{(2-0)^2 + (4-0)^2} + \sqrt{(0+2)^2 + (0-2)^2} + \sqrt{(2+2)^2}$$

$$= \sqrt{20} + \sqrt{8} + \sqrt{20} = 4\sqrt{5} + 2\sqrt{2} = 2(2\sqrt{5} + \sqrt{2})$$

Resposta:
$$2(2\sqrt{5} + \sqrt{2})$$

- G.25 Se M(2, 1), N(3, 3) e P(6, 2) são os pontos médios dos lados AB, BC e CA, respectivamente, de um triângulo ABC, determinar as coordenadas de A, B e C.
- G.26 Calcular as coordenadas do baricentro do triângulo ABC cujos vértices são $A(x_1, y_1)$, $B(x_2, y_2) \in C(x_3, y_3).$

Solução

O baricentro G é a intersecção das medianas do triângulo.

Tomando um triângulo ABC e construindo as medianas AM e BN, formamos os triângulos ABG e MNG que são semelhantes, portanto:

$$\frac{AG}{GM} = \frac{AB}{MN} = \frac{\cancel{x}}{\cancel{2}} = 2$$

Ν

Para mais, acesse: http://fuvestibular.com.br/

$$x_G = \frac{x_A + 2x_M}{1 + 2} = \frac{x_1 + 2\frac{x_2 + x_3}{2}}{2} = \frac{x_1 + x_2 + x_3}{3}$$

$$y_G = \frac{y_A + 2y_M}{1 + 2} = \frac{y_1 + 2\frac{y_2 + y_3}{2}}{3} = \frac{y_1 + y_2 + y_3}{3}$$

Resposta: $G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

doravante em outros problemas de Analítica.

A conclusão tirada no problema anterior, isto é, o fato de que "as coordenadas do baricentro são as médias aritméticas das coordenadas dos vértices" poderá ser utilizada

- G.27 O baricentro de um triângulo é G(1, 6) e dois de seus vértices são A(2, 5) e B(4, 7). Determinar o terceiro vértice.
- **G.28** O baricentro de um triângulo é $G(-\frac{4}{3}, \frac{4}{3})$, o ponto médio do lado BC é $N(-\frac{5}{2}, -1)$ e o ponto médio do lado AB é $M(0, \frac{1}{2})$. Determinar os vértices A, B, C.
- **G.29** Determinar os vértices B e C de um triângulo èquilátero ABC, sabendo que o ponto médio do lado AB é $M(\sqrt{3}, 1)$ e A é a origem do sistema.

Solução

10) Obter B
$$x_{M} = \frac{x_{A} + x_{B}}{2} \implies \sqrt{3} = \frac{0 + x_{B}}{2}$$

$$\implies x_{B} = 2\sqrt{3}$$

$$y_{M} = \frac{y_{A} + y_{B}}{2} \implies 1 = \frac{0 + y_{B}}{2}$$

$$\implies y_{B} = 2$$

2°) Obter C

Temos

$$\ell = d_{AB} = \sqrt{(2\sqrt{3} - 0)^2 + (2 - 0)^2} = 4$$

$$C(x, y) \begin{cases} 1) & d_{AC} = \ell \\ 2) & d_{BC} = \ell \end{cases} \implies \begin{cases} 1) & (x - 0)^2 + (y - 0)^2 = 16 \\ 2) & (x - 2\sqrt{3})^2 + (y - 2)^2 = 16 \end{cases}$$

$$\Rightarrow \begin{cases} 1) & x^2 + y^2 = 16 \\ 2) & x^2 + y^2 - 4\sqrt{3}x - 4y = 0 \end{cases}$$

De (1) em (2) resulta: $16 - 4\sqrt{3}x - 4y = 0 \implies y = 4 - \sqrt{3}x$ que substituindo em (1) dá:

$$x^{2} + (4 - \sqrt{3}x)^{2} - 16 \implies x^{2} + 16 - 8\sqrt{3}x + 3x^{2} - 16 \implies$$

 $\Rightarrow 4x^{2} - 8\sqrt{3}x = 0 \implies x = 0 \text{ ou } x = 2\sqrt{3} \implies$
 $\Rightarrow y = 4 \text{ ou } y = -2 \text{ (respective mente)}$

Resposta: B($2\sqrt{3}$, 2) e C(0, 4) ou C($2\sqrt{3}$, -2)

- G.30 Num triângulo ABC são dados:
 - 1) A(2, 0)
 - II) M(-1, 4) ponto médio de AB
 - III) $d_{AC} = 10$
 - IV) $d_{BC} = 10\sqrt{2}$

Obter o vértice C do triângulo.

G.31 Provar que os pontos médios dos lados do quadrilátero de vértices A(a, b), B(c, d), C(e, f) e D(q, h) são vértices de um paralelogramo.

Solução

10) Aplicando a fórmula do ponto médio determinemos M, N, P e Q:

$$M(\frac{a+c}{2}, \frac{b+d}{2});$$

$$N(\frac{c+e}{2},\frac{d+f}{2});$$

$$P(\frac{e+g}{2}, \frac{f+h}{2});$$

$$Q(\frac{a+g}{2}, \frac{b+h}{2}).$$

2º) Provemos que as diagonais do quadrilátero MNPQ se cortam ao meio, isto é, os seus pontos médios, R e S, são coincidentes:

$$R \begin{cases} x_{R} = \frac{x_{N} + x_{Q}}{2} = \frac{\frac{c+e}{2} + \frac{a+g}{2}}{2} = \frac{a+c+e+g}{4} \\ y_{R} = \frac{y_{N} + y_{Q}}{2} = \frac{\frac{d+f}{2} + \frac{b+h}{2}}{2} = \frac{b+d+f+h}{4} \end{cases}$$

$$S \begin{cases} x_{S} = \frac{x_{M} + x_{P}}{2} = \frac{\frac{a+c}{2} + \frac{e+g}{2}}{2} = \frac{a+c+e+g}{4}, \\ y_{S} = \frac{y_{M} + y_{P}}{2} = \frac{\frac{b+d}{2} + \frac{f+h}{2}}{2} = \frac{b+d+f+h}{4}. \end{cases}$$

R = S => MNPQ é paralelogramo

G.32 O quadrilátero de vértices $A(-\frac{3}{2}, \frac{1}{2})$, $B(\frac{1}{2}, 2)$, $C(2, -\frac{3}{2})$ e $D(0, -\frac{5}{2})$ é um paralelogramo? Justifique.

VI. CONDIÇÃO PARA ALINHAMENTO DE TRÊS PONTOS

Para mais, acesse: http://fuvestibular am br/

D = 0 A, B, C colineares

22. Teorema

Três pontos $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ são colineares se, e somente se,

$$D = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0.$$

Hipótese

Tese

1ª parte:

A, B, C colineares
$$\longrightarrow$$
 D = 0

Demonstração

Consideremos os 3 casos possíveis:

10 caso: dois dos pontos coincidem (C = A, por exemplo)

então
$$\begin{cases} x_1 = x_3 \\ y_1 = y_3 \end{cases} \longrightarrow D = 0 \text{ (tem 1. e 3. linhas iguais)}$$

2º caso: os três pontos são distintos e pertencem a uma reta paralela a um dos eixos (// Ox, por exemplo) então

$$y_1 = y_2 = y_3 \implies D = 0$$
 (tem 2. e 3. colunas proporcionais)

3.º caso: os três pontos são distintos e pertendem a uma reta não paralela a Ox nem a Ov.

Seja r a razão em que C divide AB($r \neq -1$). Temos:

$$r = \frac{x_3 - x_1}{x_2 - x_3} = \frac{y_3 - y_1}{y_2 - y_3} \implies (x_3 - x_1)(y_2 - y_3) =$$

$$= (x_2 - x_3)(y_3 - y_1) \implies x_3y_2 - x_1y_2 + x_1y_3 - x_2y_3 + x_2y_1 - x_3y_1 = 0$$

$$\implies x_3(y_1 - y_2) - y_3(x_1 - x_2) + (x_1y_2 - x_2y_1) = 0 \implies \boxed{D = 0}$$

D (segundo teorema de Laplace)

Ver nota sobre o teorema de Laplace no final deste capítulo.

Preliminar: transformemos a hipótese para uma forma mais conveniente:

$$D = 0 \iff x_3(y_1 - y_2) - y_3(x_1 - x_2) + (x_1y_2 - x_2y_1) = 0 \iff$$

$$\iff$$
 $(x_3 - x_1) \cdot (y_2 - y_3) = (x_2 - x_3) \cdot (y_3 - y_1)$ (H)

Tese

Demonstração

Consideremos os 3 casos possíveis:

Hipótese

1.0 caso:
$$x_2 - x_3 = 0$$
 $\Longrightarrow x_2 = x_3$

de (H), temos $(x_3 - x_1) \cdot (y_2 - y_3) = 0$ então

ou
$$y_2 - y_3 = 0 \implies y_2 = y_3 \implies B = C$$

existe uma reta contendo $B = C$ e A, isto é,
A, B, C são colineares.

ou
$$x_3 - x_1 = 0$$
 e $y_2 - y_3 = 0 \Longrightarrow B = C$ e A, B, C pertencem à mesma reta paralela a Oy, isto é, A, B, C são colineares.

2º caso:
$$y_3 - y_1 = 0$$
 \Longrightarrow $y_3 = y_1$

de (H), temos $(x_3 - x_1) \cdot (y_2 - y_3) = 0$ então:

ou
$$x_3 - x_1 = 0 \implies x_3 = x_1 \implies A = C$$

existe uma reta contendo $A = C$ e B, isto é,
A, B, C são colineares.

ou
$$y_2 - y_3 = 0 \implies y_2 = y_3 = y_1 \implies A, B, C$$

pertencem à mesma reta paralela a Ox, isto é,

A, B, C são colineares.

ou
$$x_3 - x_1 = 0$$
 e $y_2 - y_3 = 0 \implies A = C$ e A, B, C
pertencem à mesma paralela a Ox, isto é,
A, B, C são colineares.

3. caso: $x_2 - x_3 \neq 0$ e $y_3 - y_1 \neq 0$

VII. COMPLEMENTO - CÁLCULO DE DETERMINANTES

Para mais, acesse: http://fuvestibular.com.br/

de (H) temos $(x_3 - x_1) \cdot (y_2 - y_3) \neq 0 \Longrightarrow \begin{cases} x_3 - x_1 \neq 0 \\ y_2 - y_3 \neq 0 \end{cases}$

ainda de (H), $(x_3 - x_1)(y_2 - y_3) = (x_2 - x_3)(y_3 - y_1)$ vem:

(1)
$$\frac{x_3 - x_1}{x_2 - x_3} = \frac{y_3 - y_1}{y_2 - y_3} \neq -1$$

chamemos de r a estes dois quocientes iguais e consideremos o ponto C'(x4, y4) que divide \overrightarrow{AB} na razão r.

Pelo item 18, temos:

(2)
$$r = \frac{x_4 - x_1}{x_2 - x_4} = \frac{y_4 - y_1}{y_2 - y_4}$$

comparando (1) e (2), temos:

$$\frac{x_4 - x_1}{x_2 - x_4} = r = \frac{x_3 - x_1}{x_2 - x_3} \quad e \quad \frac{y_4 - y_1}{y_2 - y_4} = r = \frac{y_3 - y_1}{y_2 - y_3}$$

$$\implies x_3 = x_4 \quad e \quad y_3 = y_4 \quad \implies C = C'$$

uma vez que A, B, C' são colineares e C = C', então A, B, C são colineares,

23. Exemplos

1.0) Mostrar que A(-1, 1), B(1, 3) e C(7, 9) são colineares.

$$D = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 1 & 1 \\ 1 & 3 & 1 \\ 7 & 9 & 1 \end{vmatrix} = -\begin{vmatrix} 3 & 1 \\ 9 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 7 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} = +6 + 6 - 12 = 0 \implies A, B, C colineares$$

20) Para que valores de x os pontos A(x, x), B(3, 1) e C(7, -3), são colineares?

A, B, C colineares
$$\Longrightarrow$$
 D = $\begin{vmatrix} x & x & 1 \\ 3 & 1 & 1 \\ 7 & -3 & 1 \end{vmatrix} = 0$
D = $x \cdot \begin{vmatrix} 1 & 1 \\ -3 & 1 \end{vmatrix} - x \cdot \begin{vmatrix} 3 & 1 \\ 7 & 1 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 7 & -3 \end{vmatrix} = 4x + 4x - 16 =$
= $8x - 16 = 0 \Longrightarrow x = 2$

Um determinante de 2ª ordem

$$D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

é calculado pela fórmula:

$$D = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Exemplo

$$D = \begin{vmatrix} 1 & -5 \\ 4 & 7 \end{vmatrix} = 1 \cdot 7 - (-5) \cdot 4 = 7 + 20 = 27$$

Um determinante de 3ª ordem

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

de acordo com o Teorema de Laplace, é calculado da seguinte maneira:

- 10) escolhe-se uma linha ou coluna qualquer de D;
- 20) multiplica-se cada elemento da linha ou coluna escolhida pelo determinante de ordem 2 que se obtém suprimindo em D a linha e a coluna à qual pertence o elemento tomado;
- 30) multiplica-se cada produto assim obtido por +1 ou -1 conforme se tenha, respectivamente, soma de índices par ou ímpar no elemento tomado como primeiro fator em cada produto;
 - 4º) somam-se os três produtos obtidos.

Exemplos

10) Desenvolvimento de D pela 3ª linha:

$$D = (+1) \cdot a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} + (-1) \cdot a_{32} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} + (+1) \cdot a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} =$$

$$= a_{31}(a_{12} \cdot a_{23} - a_{22} \cdot a_{13}) - a_{32}(a_{11} \cdot a_{23} - a_{21} \cdot a_{13}) + a_{33}(a_{11} \cdot a_{22} - a_{21} \cdot a_{12})$$

2º) Calcular D

$$D = \begin{vmatrix} 1 & 3 & 2 \\ 2 & 5 & 2 \\ 4 & 3 & 1 \end{vmatrix}$$

Temos, pela 1º linha:

$$D = +1 \cdot \begin{vmatrix} 5 & 2 \\ 3 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} 2 & 2 \\ 4 & 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & 5 \\ 4 & 3 \end{vmatrix} = Para mais, acesse: http://fuvestibular.com.br/G.40 Da= +1(5 \cdot 1 - 3 \cdot 2) - 3(2 \cdot 1 - 4 \cdot 2) + 2(2 \cdot 3 - 4 \cdot 5) = qui= 1(5 - 6) - 3(2 - 8) + 2(6 - 20) = -1 + 18 - 28 = -11$$

EXERCÍCIOS

G.33 Calcular os determinantes:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 7 & 9 \\ 6 & 14 & 22 \end{bmatrix} \quad B = \begin{bmatrix} x & y & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 1 & 1 \\ 5 & 4 & 7 \\ 25 & 16 & 49 \end{bmatrix} \quad D = \begin{bmatrix} 3 & 7 & 1 \\ 11 & 0 & 1 \\ 0 & -6 & 1 \end{bmatrix}$$

- G.34 Os pontos A(1, 3), B(2, 5) e C(49, 100) são colineares?
- G.35 Determinar y para que os pontos A(3, 5), B(-3, 8) e C(4, y) sejam colineares.

Solução

A, B, C colineares
$$\implies \begin{vmatrix} 3 & 5 & 1 \\ -3 & 8 & 1 \\ 4 & y & 1 \end{vmatrix} = 0 \implies$$

$$\implies 4(5 - 8) - y(3 + 3) + (24 + 15) = 0 \implies -12 - 6y + 39 = 0 \implies$$

$$\implies 6y = 27 \implies y = \frac{9}{2}$$

Resposta:
$$y = \frac{9}{2}$$

- **G.36** Mostrar que A(a, 2a 1). B(a + 1, 2a + 1) e C(a + 2, 2a + 3) são colineares para todo valor real dado a a.
- G.37 Se A(0, a). B(a, -4) e C(1, 2), para que valores de a existe o triângulo ABC?

Solução

Existe o triângulo se a E IR e os pontos A, B, C não são colineares. Impondo o alinhamento:

$$D = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = \begin{vmatrix} 0 & a & 1 \\ a & -4 & 1 \\ 1 & 2 & 1 \end{vmatrix} = 0 \text{ então} \begin{vmatrix} -a \cdot \begin{vmatrix} a & 1 \\ 1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} a & -4 \\ 1 & 2 \end{vmatrix} = 0$$

isto é:

$$-a(a - 1) + (2a + 4) = 0 \implies a^2 - 3a - 4 = 0$$
 donde $a = -1$ ou $a = 4$
Resposta: a real, $a \neq -1$ e $a \neq 4$.

G.38 Dados A(1, 1) e B(10, -2), obter o ponto em que a reta AB intercepta o eixo das abscissas.

G.39 Dados A(3, 1) e B(5, 5), obter o ponto em que a reta AB intercepta o eixo das orde-

- G.40 Dados A(2, -3) e B(8, 1), obter o ponto em que a reta AB intercepta a bissetriz dos quadrantes impares.
- G.41 Dados A(7, 4) e B(-4, 2), obter o ponto em que a reta AB intercepta a bissetriz dos quadrantes pares.
- G.42 Dados A(-3, 4), B(2, 9), C(2, 7) e D(4, 5), obter a intersecção das retas AB e CD.

Solução

Seia P(x, y) a intersecção das retas. Como P, B, A colineares, temos:

$$\begin{vmatrix} x & y & 1 \\ 2 & 9 & 1 \\ -3 & 4 & 1 \end{vmatrix} = 0 \implies$$

$$\implies 5x - 5y + 35 = 0 \implies x - y = -7 \qquad (1)$$

Como P, C, D colineares, temos:

$$\begin{bmatrix} x & y & 1 \\ 2 & 7 & 1 \\ 4 & 5 & 1 \end{bmatrix} = 0 \implies 2x + 2y - 18 = 0 \implies x + y = 9$$
 (2)

Somando (1) e (2), vem: $2x = 2 \implies x = 1 \implies 1 + y = 9$ Resposta: P(1, 8)

- G.43 Determinar $P(x_0, y_0)$ colinear simultaneamente com A(-1, -2) e B(2, 1) e com C(-2, 1) e D(1, -4).
- G.44 Determinar o ponto P da reta AB que está à distância 5 da origem. Dados A(0, -25) e B(-2, -11).

Solução

$$P(x, y) \begin{cases} 1) \ d_{OP} = 5 \\ 2) \ P, \ A, \ B \ colineares \end{cases} \implies \begin{cases} 1) \ (x - 0)^2 + (y - 0)^2 = 25 \\ x \ y \ 1 \\ 0 \ -25 \ 1 \\ -2 \ -11 \ 1 \end{cases} = 0$$

De (2): -14x - 2y - 50 = 0 \Rightarrow y = -7x - 25 que substituindo em (1) dá: $x^2 + (-7x - 25)^2 = 25 \implies x^2 + 49x^2 + 350x + 625 = 25 \implies$ \implies 50x² + 350x + 600 = 0 \implies x = -3 ou x = -4 \implies \rightarrow y = -4 ou y = +3 (respectivemente)

Resposta: P(-3, -4) ou P(-4, 3)

G.45 Determinar na reta AB os pontos equidistantes dos eixos cartesianos. Dados: A(~1, 5) e B(4, -2)

VIII. DEMONSTRAÇÃO DE TEOREMAS DE GEOMETRIA **PLANA**

Para mais, acesse: http://fuvestibular.com.br/

1º) Faz-se a figura correspondente ao teorema

29) Escolhe-se um sistema cartesiano em posição conveniente

30) Fixam-se as coordenadas dos pontos da figura impondo as hipóteses

4º) Faz-se a demonstração

EXERCICIOS

G.46 Demonstrar que a mediana relativa à hipotenusa de um triângulo retângulo é igual à metade da hipotenusa.

Coordenadas:

A(0, 0), B(a, 0), C(0, b)

Temos:

$$x_{M} = \frac{x_{B} + x_{C}}{2} = \frac{a}{2}$$

$$y_M = \frac{y_B + y_C}{2} = \frac{b}{2}$$

Demonstração

$$\frac{d_{AM} = \sqrt{(\frac{a}{2} - 0)^2 + (\frac{b}{2} - 0)^2} = \frac{\sqrt{a^2 + b^2}}{2}}{d_{BC} = \sqrt{(a - 0)^2 + (0 - b)^2} = \sqrt{a^2 + b^2}}$$
 \implies AM = $\frac{B6}{2}$

G.47 Demonstrar que as diagonais de um trapézio isósceles são iguais.

Coordenadas

Demonstração
$$d_{AC} = \sqrt{(b-0)^2 + (c-0)^2} = \sqrt{b^2 + c^2}$$

$$d_{BD} = \sqrt{(a-b-a)^2 + (c-0)^2} = \sqrt{b^2 + c^2}$$
AC - BD

G.48 Provar analiticamente que o segmento, cujas extremidades são os pontos médios dos lados de um triângulo, é paralelo ao terceiro lado e igual à metade deste.

G.49 (EPUSP-47) Demonstrar que, num trapézio, os pontos médios das bases, a intersecção das diagonais e o ponto de intersecção dos lados não paralelos são colineares.

G.50 (EPUSP-44) Demonstrar que, num quadrilátero ABCD, os pontos médios das diagonais e o ponto médio do segmento cujos extremos são os pontos de intersecção de dois lados opostos são colineares.

CAPÍTULO II

EQUAÇÃO DA RETA

I. EQUAÇÃO GERAL

25. Teorema

"A toda reta r do plano cartesiano está associada ao menos uma equação da forma ax + by + c = 0 onde a, b, c são números reais, a \neq 0 ou b \neq 0, e (x, y) representa um ponto genérico de r".

Demonstração

Sejam $Q(x_1, y_1)$ e $R(x_2, y_2)$ dois pontos distintos do plano cartesiano. Isto significa que x₁, y₁, x₂, y₂ são números reais (constantes) conhecidos.

Seja r a reta definida pelos pontos $Q \in R$. Se P(x, y) é um ponto que percorre r. então x e y são variáveis. Como P, Q, R são colineares temos necessariamente:

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

Desenvolvendo esse determinante pela regra de Laplace, temos:

$$\begin{vmatrix} x \cdot \begin{vmatrix} y_1 & 1 \\ y_2 & 1 \end{vmatrix} - y \cdot \begin{vmatrix} x_1 & 1 \\ x_2 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = 0$$

$$\underbrace{(y_1 - y_2)}_{a} \cdot x + \underbrace{(x_2 - x_1)}_{b} \cdot y + \underbrace{(x_1y_2 - x_2y_1)}_{c} = 0$$

Fazendo $y_1 - y_2 = a$, $x_2 - x_1 = b$ e $x_1y_2 - x_2y_1 = c$, decorre que todo ponto P∈r deve verificar a equação

Para mais, acesse: http://fuvestibulagura.com hr/

$$ax + by + c = 0$$

chamada equação geral de r.

26. Comentários

- 19) Ficou provado que toda reta (por mais "esquisita" que seja sua posição) tem equação geral.
- 2º) Convém notar que a mesma reta admite várias (infinitas) equações gerais pois, se usarmos $Q'(x'_1, y'_1)$ e $R'(x'_2, y'_2)$ para definirmos r. com $Q' \neq Q$ e R' \neq R, obteremos provavelmente uma outra equação: a'x + b'y + c' = 0. Veremos, no item 35, que a'x + b'y + c' = 0 é, entretanto, equivalente a ax + by + c = 0

Isto significa que a toda reta r do plano cartesiano está associado um conjunto de equações equivalentes entre si.

30) Os coeficientes a e b não podem ser simultaneamente nulos pois:

e $Q \neq R$ por hipótese.

27. Exemplos

1º) Obter a equação da reta que passa por Q(4, 3) e R(0, 7).

Entendemos por equação da reta QR a condição que as coordenadas do ponto P(x, y) devem satisfazer para que P seja colinear com Q e R. Se P, Q e R são colineares, então:

2º) Obter a equação da reta da fi-

Devemos escolher dois pontos dados para montar o determinante juntamente com o ponto (x, y) variável. Se escolhermos (2, 1) e (1, 0) vem:

$$\begin{vmatrix} x & y & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 0 \implies x - y - 1 = 0$$

Se escolhermos (4, 3) e $\{0, -1\}$ vem: (0, -1)

que é equivalente à anterior. Assim, a equação da reta é
$$x - y - 1 = 0$$
 (a mais simples) ou qualquer equação equivalente a esta.

28. Teorema

"A toda equação da forma ax + by + c = 0, com a, b, $c \in \mathbb{R}$, $a \neq 0$ ou $b \neq 0$, está associada uma única reta r do plano cartesiano cujos pontos P(x, y) são as soluções da equação dada".

Demonstração

Faremos a demonstração apenas para o caso geral em que a $\neq 0$ e b $\neq 0$. Sejam $P_1(x_1, y_1)$, $P_2(x_2, y_2)$ e $P_3(x_3, y_3)$ três pontos dois a dois distintos que satisfazem a equação dada. Então temos:

$$ax_1 + by_1 + c = 0 \implies ax_1 = -by_1 - c$$

 $ax_2 + by_2 + c = 0 \implies ax_2 = -by_2 - c$
 $ax_3 + by_3 + c = 0 \implies ax_3 = -by_3 - c$

Temos ainda:

$$\frac{x_3 - x_1}{x_2 - x_3} = \frac{ax_3 - ax_1}{ax_2 - ax_3} = \frac{(-by_3 - c) - (-by_1 - c)}{(-by_2 - c) - (-by_3 - c)} = \frac{by_1 - by_3}{by_3 - by_2} = \frac{y_3 - y_1}{y_2 - y_3}$$

portanto P₁, P₂ e P₃ são colineares.

Está provado que todo ponto P_3 (variável), que satisfaz a condição ax + by + c = 0, pertence necessariamente à reta P_1P_2 (que existe e é única), à qual daremos o nome r.

29. Comentários

1.0) Este teorema mostra que, dada a equação ax + by + c = 0, o conjunto dos pares (x, y) que a satisfazem é uma reta.

Exemplo

Construir o gráfico dos pontos que verificam a equação x + 2y - 6 = 0.

'Como já sabemos, o grafico é uma reta e, para localizá-la, basta localizar dois de seus pontos. Assim, temos:

$$x = 0 \implies 0 + 2y - 6 = 0 \implies y = 3$$

$$x = 6 \implies 6 + 2y - 6 = 0 \implies y = 0$$

isto é, os pontos (0, 3) e (6, 0) definem a reta.

2º) Este teorema mostra também que só os pontos que satisfazem à equação ax + by + c = 0 pertencem à reta, portanto, um ponto está sobre uma reta somente se suas coordenadas verificam a equação da reta.

Exemplo

Verificar se A(2, 2), B(4, 1) ϵ C(7, -1) pertencem à reta r de equação x + 2y - 6 = 0.

Basta substituir x e y na equação dada pelas coordenadas de cada ponto e verificar se a igualdade obtida é verdadeira ou falsa:

$$A \longrightarrow (2) + 2(2) - 6 = 0$$
 (verdadeira) $\longrightarrow A \in r$

$$B \longrightarrow (4) + 2(1) - 6 = 0$$
 (verdadeira) $\longrightarrow B \in r$

$$C \longrightarrow (7) + 2(-1) - 6 = 0$$
 (falsa) $\longrightarrow C \notin r$

- 30. A principal consequência dos teoremas dos itens 25 e 28 é que em Geometria Analítica Plana:
 - a) "dar uma retaj" significa dar uma das equações da reta;
 - b) "pedir uma reta" significa pedir uma das equações da reta.

31. O anulamento de um dos coeficientes da equação geral da reta revela uma propriedade especial da reta. Assim, temos:

1)
$$a = 0 \iff y_1 - y_2 = 0 \iff y_1 = y_2 \iff r / x$$

isto é, quando a equação não tem o termo em x (exemplos: 3y - 4 = 0, 7y + 11 = 0), a reta é paralela ao eixo das abscissas.

II)
$$b = 0 \iff x_2 - x_1 = 0 \implies x_1 = x_2 \iff r // y$$

isto é, quando a equação não tem o termo em y (exemplos: 7x + 5 = 0, 9x - 4 = 0), a reta é paralela ao eixo das ordenadas.

III)
$$c = 0 \iff ax + by = 0 \iff (0, 0)$$
 satisfaz a equação pois $a \cdot 0 + b \cdot 0 = 0 \iff (0, 0) \in r$

isto é, quando a equação não tem o termo independente (exemplos: 3x + 4y = 0, 2x - 13y = 0), a reta passa pela origem.

Já vimos que a = 0 e b = 0 é impossível, mas é possível:

IV)
$$(a = 0 \ e \ c = 0) \implies (r / x \ e \ (0, 0) \in r) \implies r = x$$

V)
$$(b = 0 e c = 0) \implies (r // y e (0, 0) \in r) \implies r = y$$

Assim: x = 0, 7x = 0, $\sqrt{2} \cdot x = 0$ são equações do eixo dos y. y = 0, 5y = 0, -513y = 0 são equações do eixo dos x.

EXERCÍCIOS

G.51 Determinar as equações das retas suportes dos lados do triângulo cujos vértices são A(0, 0), B(1, 3) e C(4, 0).

Solução

Cada reta é definida por dois vértices: reta AB

$$\begin{vmatrix} x & y & 1 \\ 1 & 3 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0 \implies 3x - y = 0$$

reta BC

$$\begin{vmatrix} x & y & 1 \\ 1 & 3 & 1 \\ 4 & 0 & 1 \end{vmatrix} = 0 \implies 3x + 3y - 12 = 0 \implies x + y - 4 = 0$$

reta CA

$$\begin{vmatrix} x & y & 1 \\ 4 & 0 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0 \implies 4y = 0 \implies y = 0$$

Resposta: 3x - y = 0, x + y - 4 = 0, y = 0.

Vamos resolver o sistema pelo mé-

Para mais, acesse: http://fuvestibulatodo.lda adição:

- G.53 A reta determinada por A(a, 0) e B(0, b) passa por C(3, 4). Qual é a relação entre a e b?
- G:54 A reta determinada por A(p, q) e B(3, -2) passa pela origem. Qual é a relação
- G.55 Provar que os pontos A(a; b + c), B(b; a + c) e C(c; a + b) são colineares e determinar a equação da reta que os contém.
- G.56 Dados A(-5, -5), B(1, 5), C(19, 0) e (r) 5x 3y = 0, verificar se r passa pelo baricentro do triângulo ABC.

Solução

Conforme vimos no G.26, as coordenadas do baricentro são:

$$x_G = \frac{x_A + x_B + x_C}{3} = \frac{(-5) + (1) + (19)}{3} = 5$$

$$y_G = \frac{y_A + y_B + y_C}{3} = \frac{(-5) + (5) + (0)}{3} = 0$$

Substituindo G(5, 0) na equação de r. temos:

$$5(5) - 3(0) = 0$$
 (falsa) $\implies G \not\in r$

Resposta: G ∉ r

G.57 Desenhar no plano cartesiano as retas cujas equações são dadas abaixo:

a)
$$y = 2x$$

b)
$$x + y = 5$$

c)
$$x - y + 5 = 0$$

a)
$$y = 2x$$

b) $x + y = 5$
d) $x + y + 3 = 0$
e) $2y + x = 0$

e)
$$2y + x = 0$$

c)
$$x - y + 5 = 0$$

f) $x - y - 4 = 0$

II. INTERSECÇÃO DE DUAS RETAS

32. Todo ponto de intersecção de duas retas tem de satisfazer às equações de ambas as retas, portanto, obtemos o ponto comum $P(x_0, y_0)$ a duas retas concorrentes resolvendo o sistema formado pela suas equações:

(S)
$$\begin{cases} (r) \ a_1 \cdot x + b_1 \cdot x + c_1 = 0 \\ (s) \ a_2 \cdot x + b_2 \cdot y + c_2 = 0 \end{cases}$$

Exemplo

Obter a intersecção das retas:

(r)
$$x - y + 1 = 0$$
 e (s) $2x + y - 2 = 0$

- $1 \frac{1}{3} y + 1 = 0 \Longrightarrow y = \frac{4}{3}.$

Logo a intersecção de r com s é $P(\frac{1}{3}, \frac{4}{3})$

III. POSIÇÕES RELATIVAS DE DUAS RETAS

Dadas duas retas r e s cujas equações são:

$$(\Sigma) \begin{cases} (r) \ a_1 x + b_1 y = c_1 & (1) \\ (s) \ a_2 x + b_2 y = c_2 & (1) \end{cases}$$

elas podem ocupar apenas três posições relativas no plano cartesiano. Essas posições são definidas com base no número de pontos comuns às retas, isto é:

> r e s concorrentes \iff um único ponto comum r e s paralelas e distintas ⇔ nenhum ponto comum

r e s coincidentes \iff infinitos pontos comuns

Com o símbolo r X s indicaremos que r e s são concorrentes; com $r \cap s = \phi$ indicaremos que r e s são paralelas e distintas; com r = s indicaremos que r e s são coincidentes (ou paralelas coincidentes).

Notemos que $r /\!\!/ s$ significa $r \cap s = \phi$ ou r = s.

34. Todo ponto comum a r e s é solução do sistema (Σ) . o sistema (Σ) pelo método da adição, temos:

Fazendo:

$$\begin{vmatrix} a_1 b_2 - a_2 b_1 & = & \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} & = D$$

$$\begin{vmatrix} c_1 b_2 - c_2 b_1 & = & \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} & = D_1$$

$$\begin{vmatrix} a_1 c_2 - a_2 c_1 & = & \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} & = D_2$$

o sistema (Σ) fica reduzido a:

$$(\overline{\Sigma}) \begin{cases} D \cdot x = D_1 & (II) \\ D \cdot y = D_2 & (IV) \end{cases}$$

cuja discussão é imediata.

35. São possíveis três casos:

10 caso:

 $D \neq 0 \iff (\overline{\Sigma})$ tem uma única solução \iff r X s

20 caso:

$$\begin{array}{c} D=0 \\ D_1 \ (\text{ou} \ D_2) \ \neq \ 0 \end{array} \right\} \iff (\overline{\Sigma}) \ \ \text{não tem solução} \iff r \cap s = \phi$$

3º caso:

$$\begin{array}{c|c} D &= 0 \\ D_1 &= 0 \\ D_2 &= 0 \end{array} \right\} \iff (\overline{\Sigma}) \text{ tem infinitas soluç3es} \iff r = s$$

. Resolvendo

Quando $a_2 \neq 0$, $b_2 \neq 0$ e $c_2 \neq 0$, temos

Para mais, acesse: http://fuvestibular.com.br/

e a teoria pode ser simplificada para:

$$r \times s \iff \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$r \cap s = \phi \iff \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$r = s \iff \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

36. Exemplos

1.0) As retas (r) x + 2y + 3 = 0 e (s) 2x + 3y + 4 = 0 são concorrentes pois

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
, isto é $\frac{1}{2} \neq \frac{2}{3}$

2.9) As retas (r) x + 2y + 3 = 0 e (s) 3x + 6y + 1 = 0 são paralelas e distintas pois

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
, isto é, $\frac{1}{3} = \frac{2}{6} \neq \frac{3}{1}$

30) As retas (r) x + 2y + 3 = 0 e (s) 2x + 4y + 6 = 0 são coincidentes pois

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
, isto é $\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$

 4°) As retas (r) x - 2 = 0 e (s) y + 4 = 0 são concorrentes pois

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$$

5. As retas (r) x + y + m = 0 e (s) x + y + 2 = 0 são paralelas pois

$$\frac{a_1}{a_2} = \frac{b_1}{b_2}$$
, isto é, $\frac{1}{1} = \frac{1}{1}$

para m = 2, temos r = s (coincidentes)

para $m \neq 2$ e $m \in \mathbb{R}$, temos $r \cap s = \phi$ (paralelas distintas)

EXERCICIOS

G.58 (MAPOFE1-74) Determinar a intersecção das retas x + 2y = 3 e 2x + 3y = 5.

G.59 As retas suportes dos lados do triânqulo ABC são (AB) 3x - 4y = 0. (BC) x + y - 7 = 0 e (CA) 4x - 3y = 0. Mostrar que ABC é um triângulo isósceles.

Solução

Cada vértice do triângulo é a intersecção de duas retas suportes:

$$\{A\} = AB \cap CA \rightarrow \begin{cases} 3x - 4y = 0 \\ 4x - 3y = 0 \end{cases}$$

$$\{B\} = AB \cap BC \rightarrow \begin{cases} 3x - 4y = 0 \\ x + y - 7 = 0 \end{cases}$$

$$\{C\} = BC \cap CA \rightarrow \begin{cases} x + y - 7 = 0 \\ 4x - 3y = 0 \end{cases}$$

Resolvendo os três sistemas formados, temos:

$$A = (0, 0), B = (4, 3) e C = (3, 4)$$

Calculemos as medidas dos lados AB e AC

$$\frac{d_{AB} = \sqrt{(0-4)^2 + (0-3)^2} - 5}{d_{AC} = \sqrt{(0-3)^2 + (0-4)^2} = 5}$$
 $\Rightarrow \overrightarrow{AB} \equiv \overrightarrow{AC}$

G.60 Provar que as retas de equações 2x + 3y - 1 = 0, x + y = 0 e 3x + 4y - 1 = 0, concorrem no mesmo ponto P.

Solução

Determinemos P, intersecção da 1^a com a 2^a

$$\begin{cases} 2x + 3y - 1 = 0 \\ x + y = 0 \end{cases} \xrightarrow{\text{resolvendo}} x = -1 \quad \text{e} \quad y = +1 \longrightarrow P(-1, +1)$$

20) Provemos que P pertence à 3ª reta

$$3xp + 4yp - 1 = 3(-1) + 4(+1) - 1 = -3 + 4$$

G.61 Demonstrar que as retas

Para mais, acesse: http://fuvestibular.com.br/(r) x - 2y = 0, (s) x + 2y - 8 = 0 e (t) (1 + k)x + 2(1 - k)y - 8 = 0são concorrentes no mesmo ponto P. \forall k \in IR.

Solução

10) Obtemos a intersecção de res

$$\begin{cases} x - 2y = 0 \\ x + 2y - 8 = 0 \end{cases} \xrightarrow{\text{resolvendo}} x = 4 \text{ e } y = 2 \rightarrow P(4, 2)$$

2°) Provamos que P∈t

$$(1 + k)x_p + 2(1 - k)y_p - 8 = (1 + k)4 + 2 (1 - k)2 - 8 =$$

= 4 + 4k + 4 - 4k - 8 = 0, \forall k \subseteq |R

G.62 Determinar a para que as retas de equações x + 2y - 2a = 0, ax - y - 3 = 0e 2x - 2y - a = 0 sejam concorrentes no mesmo ponto.

G.63 Demonstrar que as retas de equações 2x + 3y = 0, (2k + 1)x + (3k - 2)y + 5 = 0e x - 2y + 5 = 0 são concorrentes no mesmo ponto, qualquer que seja k.

G.64 Determinar m de modo que as retas de equações 3x + y - m = 0, 3x - y + 1 = 0e 5x - y - 1 = 0 definam um triângulo.

⊈ G.65 Qual é a equação da reta que passa por P(3, 1), intercepta (r) 3x - y = 0 em A e (s) x + 5y = 0 em B tais que P é médio do segmento AB.

Solução

10) Se A ∈ r, então as coordenadas de A verificam a equação de r. Fazendo $x\Delta = a$, decorre:

$$y_A = 3x_A \Rightarrow y_A = 3a \Rightarrow A(a, 3a)$$

Se B∈s, então as coordenadas de B verificam a equação de s. Fazendo $y_B = b$, decorre: $x_B = -5y_B \Rightarrow x_B = -5b \Rightarrow B(-5b, b)$

30) P é ponto médio de AB, então:

$$xp = \frac{xA + xB}{2} \Rightarrow 3 = \frac{a - 5b}{2} \Rightarrow a - 5b = 6$$
 (1)
$$yp = \frac{yA + yB}{2} \Rightarrow 1 = \frac{3a + b}{2} \Rightarrow 3a + b = 2$$
 (2)

Resolvendo o sistema formado por (1) e (2), temos a = 1 e b = -1, portanto, A = (1, 3) e B = (5, -1).

$$\begin{vmatrix} x & y & 1 \\ 1 & 3 & 1 \\ 5 & -1 & 1 \end{vmatrix} = 0 \Rightarrow 4x + 4y - 16 = 0$$

$$\Rightarrow x + y - 4 = 0$$

- 💥 G.66 (EPUSP-63) Dado o ponto A(1, 2), determine as coordenadas de dois pontos P e Q, situados respectivamente sobre as retas y = x e y = 4x, de tal modo Para mais, acesse: http://fuvestibular.com.hr. que A seja o ponto médio do segmento PQ.
- G.67 Determinar o ponto B da bissetriz do 20 e 40 quadrantes de tal forma que o ponto médio do segmento AB pertenca à retair, São dados; A(+3, +1) e (r) x - 2y + + 1 = 0.
 - G.68 Determinar o ponto B da reta s de tal forma que o segmento AB intercepte a reta r no ponto C que o divide na razão $\frac{1}{3}$. São dados: A(-3, +1), (r) x + y = 0, e (s) 2y - 3x + 1 = 0
 - G.69 Determinar o perímetro do triângulo ABC que verifica as seguintes condições:
 - a) o vértice. A pertence ao eixo dos x;
 - b) o vértice B pertence ao eixo dos v;
 - c) a reta BC tem equação x v = 0:
 - d) a reta AC tem equação x + 2y 3 = 0.

Solução

$$A(x_A, y_A) \begin{cases} 1) & A \subseteq x \Rightarrow y_A = 0 \\ 2) & A \subseteq AC \Rightarrow x_A + 2y_A - 3 = 0 \end{cases} \Rightarrow A(3, 0)$$

$$B(x_B, y_B) \begin{cases} 1) & B \in y \Rightarrow x_B = 0 \\ 2) & B \in BC \Rightarrow x_B - y_B = 0 \end{cases} \implies B(0, 0)$$

$$C(x_{C}, y_{C}) \begin{cases} 1) & C \in AC \Rightarrow x_{C} + 2y_{C} - 3 = 0 \\ 2) & C \in BC \Rightarrow x_{C} - y_{C} = 0 \end{cases} \Rightarrow C(1, 1)$$

per(metro =
$$d_{AB} + d_{BC} + d_{CA} = \sqrt{3^2 + 0^2} + \sqrt{1^2 + 1^2} + \sqrt{2^2 + 1^2} = 3 + \sqrt{2} + \sqrt{5}$$

Resposta: $3 + \sqrt{2} + \sqrt{5}$

- G.70 Num triângulo ABC sabe-se que:
 - I, A pertence ao eixo das abscissas
 - 11. B pertence à bissetriz bis
 - III. a equação da reta AC é x + y + 5 = 0
 - IV. a equação da reta BC é 2x y 2 = 0
 - Calcular o perímetro do triângulo ABC.
- G.71 Determinar y de modo que P(3, y) seja ponto interior do triângulo definido pelas retas 2x - y = 0, x + y = 0 e 7x + y - 36 = 0
- G.72 Determinar a posição relativa das seguintes retas, tomadas duas a duas:
 - (r) 2x y + 3 = 0

(s) x - 2y + 3 = 0

- (t) 2x y + 5 = 0
- (s) x 2y + 3 = 0(u) 2x + 4y + 3 = 0
- (v) 3x 6y = -3

- (z) 4x 2y = -6
- Para mais, acesse: http://fuvestibular.com.br/

- G.73 Discutir a posição relativa das retas
 - (r) (m-1)x + my 1 = 0 e (s) (1-m)x + (m+1)y + 1 = 0

Solução

Calculemos D e os valores de m que anulam D:

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} m-1 & m \\ 1-m & m+1 \end{vmatrix} = (m^2-1) - m(1-m) = 2m^2 - m - 1$$

$$D = 0 \Rightarrow 2m^2 - m - 1 = 0 \Rightarrow m - \frac{1 \pm \sqrt{9}}{4} \Rightarrow \begin{cases} m = 1 \\ \text{ou} \\ m = -\frac{1}{2} \end{cases}$$

É evidente que, quando D \neq 0, as retas são concorrentes então:

$$m \in |R, \, m \neq 1 \ e \ m \neq - \ \frac{1}{2} \implies D \neq 0 \implies r \ X \ s$$

Por outro lado, quando D = 0, trocamos m pelos valores críticos (1 e - $\frac{1}{2}$) nas equações iniciais e verificamos o que ocorre:

$$m = 1 \implies \begin{cases} (r) \ y - 1 = 0 \\ (s) \ 2y + 1 = 0 \end{cases} \implies r \cap s = \phi$$

$$m = -\frac{1}{2} \implies \begin{cases} (r) - \frac{3}{2} \times -\frac{1}{2} y - 1 = 0 \\ (s) \frac{3}{2} \times +\frac{1}{2} y + 1 = 0 \end{cases} \implies r = s$$

G.74 Discutir em função de m e p a posição relativa das retas (r) mx + y - ρ = 0 e(s) 3x + 3y - 7 = 0.

É evidente que: $m \in \mathbb{R}$, $m \neq 1 \Rightarrow D \neq 0 \Rightarrow r X$

Quando D = 0, temos:

$$m=1 \implies \begin{cases} (r) \quad x+y-p=0 \\ \\ (s) \quad 3x+3y-7=0 \end{cases} \qquad \text{ent} \tilde{ao} \qquad \begin{cases} \text{se} \quad p=\frac{7}{3} \text{ , } r=s \\ \\ \text{se} \quad p\neq\frac{7}{3} \text{ , } r\cap s=\phi \end{cases}$$

Resposta: $m \in \mathbb{R}, m \neq 1 \Rightarrow r \times s$

$$m = 1$$
 e $p = \frac{7}{3} \Rightarrow r = s$

$$m = 1 e p \neq \frac{7}{3} \Rightarrow r \cap s = \phi$$

G.75 Discutir a posição relativa das retas (r) 3mx - my - 4 = 0 e (s) 12x - 4my - m = 0em função de m.

Para mais, acesse: http://fuvestibular.com.br/

G.76 Discutir em função de m a posição relativa das retas

(r)
$$2x - y + 2 = 0$$
 e (s) $3x - my + 2m = 0$

- G.77 (MAPOFEI-74) Para que valores de k as retas (k-1)x + 6y + 1 = 0 e 4x + (k + 1)y - 1 = 0 são paralelas?
- G.78 Discutir em função de a e b a posição relativa das retas (r) ax + 3y b = 0 e (s) 2x + 9y - 1 = 0.
- G.79 (EPUSP-65) Entre os triângulos OAB com o vértice O na origem e os outros dois vértices A e B, respectivamente, nas retas y = 1 e y = 3 e alinhados com o ponto P(7, 0) determinar aquele para o qual é mínima a soma dos quadrados dos lados.

IV. FEIXE DE RETAS CONCORRENTES

37. Exemplo preliminar

Consideremos as retas (r) x - y + 1 = 0 e (s) 2x + y - 4 = 0. Essas retas são concorrentes e seu ponto de intersecção é P(1, 2).

Vamos agora repetir a mesma experiência três vezes; vamos multiplicar as equações de r e s por números reais (arbitrários e não ambos nulos), somar os resultados obtidos e analisar como é a nova reta em relação a P.

$$(1) \times 2 \rightarrow 2x - 2y + 2 = 0$$

Substituindo P, vem:

$$8(1) + (2) - 10 = 0 \implies P \in t$$

(u)
$$x - 7y + 13 = 0$$

Substituindo P. vem:

$$(1) - 7(2) + 13 = 0 \implies P \in u$$

Substitutindo P, vem. $-6(1) + 3(2) = 0 \implies P \in V$

As três novas retas obtidas também passam por P. Será que isso foi por acaso, isto é, será que isso aconteceu por causa dos multiplicadores escolhidos? Ou será que a nova reta passará por P. quaisquer que seiam os multiplicadores? A teoria seguinte vai explicar.

38. Definição

Feixe de retas concorrentes é um conjunto de retas coplanares, concorrentes num único ponto $P(x_0, y_0)$.

Um feixe de concorrentes fica definido por seu centro $P(x_0, y_0)$ ou por duas de suas retas.

Consideremos o feixe definido pelas retas:

(r)
$$a_1x + b_1y + c_1 = 0$$

(s) $a_2x + b_2y + c_2 = 0$ concorrentes em $P(x_0, y_0)$

Temos:

$$P \in r \Rightarrow a_1 \cdot x_0 + b_1 \cdot y_0 + c_1 = 0 \quad (1)$$

$$P \in s \Rightarrow a_2 \cdot x_0 + b_2 \cdot y_0 + c_2 = 0$$
 (2)

Consideremos a equação:

$$k_1 \cdot (a_1x + b_1y + c_1) + k_2 \cdot (a_2x + b_2y + c_2) = 0$$
 (3)

onde $k_1 \in \mathbb{R}$, $k_2 \in \mathbb{R}$ e $k_1 \neq 0$ ou $k_2 \neq 0$.

Esta equação representa uma reta pois, desenvolvendo e ordenando, temos:

$$(k_1 a_1 + k_2 a_2)x + (k_1 b_1 + k_2 b_2)y + (k_1 c_1 + k_2 c_2) = 0$$

O ponto $P(x_0, y_0)$ pertence a essa reta pois:

$$k_{1} \underbrace{(a_{1} x_{0} + b_{1} y_{0} + c_{1})}_{\text{veja (1)}} + k_{2} \underbrace{(a_{2} x_{0} + b_{2} y_{0} + c_{2})}_{\text{veja (2)}} = k_{1} \cdot 0 + k_{2} \cdot 0 = 0 \quad \forall k_{1}, \forall k_{2} \cdot 0 = 0$$

Isto significa que a equação (3), para cada valor atribuído a k_1 e k_2 , representa uma reta t passando por P. Variando k_1 e k_2 , essa preta ta seesse: http://fuvestibularEXERCÍCIOS "movimenta" descrevendo o feixe de centro P. A equação (3) representa, pois, o feixe de retas concorrentes em P.

39. Exemplos

1.0) As retas (r) x - y + 1 = 0 e (s) 2x + y - 4 = 0 definem um feixe de retas concorrentes cuja equatão é:

$$k_1(x - y + 1) + k_2(2x + y - 4) = 0$$

onde k₁ e k₂ são reais e não nulos simultaneamente.

2º) O feixe de concorrentes cuja equação é:

$$k_1(2x - 3y) + k_2(x + 3y - 9) = 0$$

tem centro no ponto de intersecção das retas (r) 2x - 3y = 0 e (s) x + 3y - 9 = 0, isto é, P(3, 2).

Esse ponto pode também ser determinado, achando a intersecção de duas retas quaisquer do feixe:

$$k_1 = 1$$
 e $k_2 = 2 \Rightarrow (2x - 3y) + (2x + 6y - 18) = 0 \Rightarrow 4x + 3y - 18 = 0$
 $k_1 = 2$ e $k_2 = 3 \Rightarrow (4x - 6y) + (3x + 9y - 27) = 0 \Rightarrow 7x + 3y - 27 = 0$

e, resolvendo o último sistema, temos x = 3, y = 2.

 3°) É comum apresentar-se a equação de um feixe em função de um só parâmetro (k) em vez de dois (k₁ e k₂). No exemplo anterior, supondo k₁ \neq 0 e dividindo por k₁, temos:

$$(2x - 3y) + \frac{k_2}{k_1} \cdot (x + 3y - 9) = 0$$

e fazendo $\frac{k_2}{k_1} = k$, resulta:

$$(2x - 3y) + k \cdot (x + 3y - 9) = 0$$

Notemos, porém, que está última equação exclui uma reta do feixe: a reta x + 3y - 9 = 0, correspondente a $k_1 = 0$.

- **G.80** (MAPOFEI-74) O que representa a equação 2x + y + 1 + t(x 2y 7) = 0, sendo t uma variável real?
- G.81 Determinar o centro do feixe de retas concorrentes cuja equação é:

$$k_1(7x - 11y + 1) + k_2(3x + 11y + 9) = 0$$

G.82 Determinar a equação da reta que pertence ao feixe definido pela equação:

$$(7x + 3y - 15) + k \cdot (3x - 3y - 5) = 0$$

e que passa pela origem do sistema cartesiano.

- G.83 Determinar a equação da reta comum aos feixes:
 - (1) $(x + y + 1) + m \cdot (x y 3) = 0$
 - (2) $(2x + 3y 5) + p \cdot (4x + y 5) = 0$

Solução

1.º) Determinemos o centro do feixe (1), achando a intersecção de duas retas:

$$m = 1$$
 $\Rightarrow (x + y + 1) + 1 \cdot (x - y - 3) = 0 \Rightarrow 2x - 2 = 0$
 $m = 0$ $\Rightarrow (x + y + 1) + 0 \cdot (x - y - 3) = 0 \Rightarrow x + y + 1 = 0$
e, resolvendo o sistema, vem $x = 1$ e $y = -2$.

2°) Analogamente para o feixe (2):

$$p = 0 \Rightarrow 2x + 3y - 5 = 0$$

$$p = -3 \Rightarrow -10x + 10 = 0$$

$$\Rightarrow x = 1 \text{ e } y = 1$$

3. A reta comum aos dois feixes é aquela definida pelos pontos (1, -2) e (1, 1):

$$\begin{vmatrix} x & y & 1 \\ 1 & -2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0 \Rightarrow -3x + 3 = 0 \Rightarrow x = 1$$

Resposta: x = 1

G.84 São dados os feixes de retas concorrentes:

$$x + y + 1 + k(x - y + 1) = 0$$

 $2x + 2y + 6 + \ell(2x - 2y + 1) = 0$

Obter a equação da reta comum aos dois feixes.

G.85 Calcular o valor de m para que os três feixes definidos pelas equações:

$$x - y + 1 + k_1(mx - y + 1) = 0$$

 $x - y - 1 + k_2(3x - y - 3) = 0$
 $mx - my + k_3(4x - my - 1) = 0$

tenham uma reta comum.

onde m e uma variável real passam por um mesmo ponto.

Solução 1

A equação dada representa um conjunto de retas pois m é variável. Tomemos duas retas particulares do conjunto:

$$m = 0 \Rightarrow 2x - 4 = 0$$

$$m = -2 \Rightarrow 2y - 6 = 0$$

A intersecção dessas retas é o ponto P(2, 3). Provemos que P pertence a qualquer reta do conjunto, substituindo-o na equação dada:

$$(m + 2) \cdot x_p - m \cdot y_p - 4 + m = (m + 2) \cdot 2 - m \cdot 3 - 4 + m = 2m + 4 - 3m - 4 + m = 0, \forall m \in [R]$$

Solução 2

Desenvolvendo a equação dada, temos: mx + 2x - my - 4 + m = 0 isto é,

(x - y + 1)m + (2x - 4) = 0 que é a equação de um feixe de concorrentes.

Solução 3

Temos:

$$mx + 2x - my - 4 + m = 0$$

 $(x - y + 1)m + (2x - 4) = 0$

impondo que o polinômio do 1° membro, na variável m, seja idêntico a zero, temos:

$$\begin{cases} x - y + 1 = 0 \\ 2x - 4 = 0 \end{cases} \xrightarrow{\text{resolvendo}} x = 2 \text{ e } y = 3$$

Portanto o ponto P(2, 3) anularo 1º membro ∀ m ∈ IR, isto é, ele pertence a todas as retas cujas equações são obtidas atribuindo valores a m, logo, todas essas retas passam pelo mesmo ponto P.

- Demonstrar que as retas de equações (2m + 1)x + (1 3m)y 1 = 0 onde m é uma variável real, passam por um mesmo ponto.
- **G.88** Demonstrar que as retas de equações (m + 2)x my 4 + m = 0 onde m é uma variável real, passam por um mesmo ponto.
- G.89 Provar que as retas de equações $(m^2 + 6m + 3)x (2m^2 + 18m + 2)y 3m + 2 = 0$ onde m é uma variável real, passam pelo mesmo ponto.
- **G.90** (MACK-70) Dadas as retas r_m : (2m+1)x (3m-1)y + 3m 1 = 0, onde m é um número real qualquer, pergunta-se:
 - a) As retas passam por um ponto fixo?
 - b) Existe m para o qual $\ensuremath{r_{m}}$ coincide com um dos eixos? Justifique as respostas.

Para mais, acesse: http://fuvestibular.com.br/

40. Exemplo preliminar

Como poderíamos construir a equação de uma reta paralela a

(r)
$$3x + 4y + 1 = 0$$
?

Uma paralela a r deve ter coeficientes a e b respectivamente proporcionais a 3 e 4; em particular se a = 3 e b = 4 fica garantido o paralelismo. Assim, são paralelas a r as retas: 3x + 4y = 0, 3x + 4y + 500 = 0; $3x + 4y - \sqrt{2} = 0$, $3x + 4y - \frac{5}{3} = 0$, 6x + 8y + 1 = 0, etc.

Como vemos, desde que $\frac{a}{3} = \frac{b}{4}$, o termo independente pode ser qualquer número real que o paralelismo já está garantido.

41. Definição

Feixe de retas paralelas é um conjunto de retas coplanares, todas paralelas a uma reta dada (logo paralelas entre si).

Um feixe de paralelas está determinado quando conhecemos uma de suas retas (ou sua direção).

Consideremos o feixe de retas paralelas determinado pela reta r de equação geral:

$$a \cdot x + b \cdot v + c = 0$$

Consideremos a equação:

$$ax + by + c' = 0$$
 (c' $\in |R|$)

Para cada valor atribuído a c' esta equação representa uma reta s paralela a r, pois:

$$D = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix} = 0$$

Variando c', essa reta s se "movimenta" descrevendo o feixe de paralelas a r. A equação ax + by + c' = 0 representa, pois, o feixe de retas paralelas à reta r. Para mais, acesse: http://fuvestibular.com.br/

42. Exemplos

VI. FORMAS DA EQUAÇÃO DA RETA

1.0) A equação do feixe de paralelas à reta (r) 3x + 4y - 2 = 0 é 3x + 4y + c' = 0 onde $c' \in \mathbb{R}$.

Pertencem a esse feixe, por exemplo, as retas

(s)
$$3x + 4y + 1 = 0$$
 e (t) $3x + 4y - 5 = 0$

2?) A equação do feixe de paralelas à reta (r) 5x + 11y - 51 = 0 é 5x + 11y + c' = 0 onde $c' \in |R|$.

Em particular a paralela a r passando por P(2, -1) é tal que:

$$5(2) + 11(-1) + c' = 0 \implies c' = 1$$

portanto sua equação é 5x + 11y + 1 = 0.

EXERCÍCIOS

- **G.91** Dada a equação da reta r: $7x + 3y + \sqrt{2} = 0$, pede-se:
 - a) a equação do feixe de paralelas a r;
 - b) a equação da paralela a r pela origem;
 - c) a equação da paralela a r por P(9, -10).

Solução

- a) Para construir a equação do feixe basta copiar a e b e deixar "livre" o termo independente: 7x + 3y + c = 0, c ∈ IR.
- b) A reta do feixe que passa pela origem apresenta c = 0, portanto sua equação é 7x + 3y = 0.
- c) O ponto P deve verificar a equação da paralela, logo:

$$7xp + 3vp + c = 7 \cdot (9) + 3(-10) + c = 0 \Rightarrow c = -33$$

logo sua equação é 7x + 3y - 33 = 0.

- **G.92** Determinar a equação do feixe de paralelas à reta 3x 5y + 1 = 0.
- **G.93** Determinar a reta do feixe $k_1 \cdot (x + 3y 8) + k_2 \cdot (5x 7y + 4) = 0$ que é paralela à reta (r) 11x 5y + 7 = 0.
- **G.94** Dois dos lados de um paralelogramo acham-se sobre as retas (r) 2x + 3y 7 = 0 e (s) x 3y + 4 = 0. Obter as equações das retas suportes dos outros dois lados, sabendo que um dos vértices do paralelogramo é o ponto (3; 2).
- **G.95** Demonstrar que os pontos do plano cartesiano cujas coordenadas satisfazem a equação sen(x y) = 0 constituem um feixe de retas paralelas.
- G.96 Demonstrar que os pontos do plano cartesiano cujas coordenadas satisfazem à equação tg x = tg y constituem um feixe de retas paralelas.

43. Forma geral

Vimos no item **25 que**, dada uma reta r, podemos determinar pelo menos uma equação do tipo

$$ax + by + c = 0$$

denominada equação geral da reta r, a qual é satisfeita por todos os pontos P(x, y) pertencentes à reta r.

44. Forma reduzida

Dada a equação geral da reta r, ax + by + c = 0, se $b \neq 0$, temos:

by = -ax - c
$$\Rightarrow$$
 y = $\left(-\frac{a}{b}\right)x + \left(-\frac{c}{b}\right) \Rightarrow \boxed{y = mx + q}$

que é denominada equação reduzida da reta r.

Conforme veremos, m é o coeficiente angular da reta (item 53) e q é a medida do segmento que r define no eixo Oy (item 45).

Exemplo

Se uma reta r passa por A(0, 3) e B(-1, 0) qual é sua equação reduzida?

$$\begin{vmatrix} x & y & 1 \\ 0 & 3 & 1 \\ -1 & 0 & 1 \end{vmatrix} = 0 \implies \underbrace{3x - y + 3 = 0}_{\text{equação geral}} \implies \underbrace{y = 3x + 3}_{\text{equação reduzida}}$$

45. Forma segmentária

a) Consideremos uma reta r que intercepta os eixos cartesianos nos pontos Q(0, q) e P(p, 0), distintos.

A equação dessa reta é:

$$\begin{vmatrix} x & y & 1 \\ 0 & q & 1 \\ p & 0 & 1 \end{vmatrix} = 0 \Rightarrow$$

$$\Rightarrow qx + py - pq = 0 \Rightarrow$$
$$\Rightarrow qx + py = pq \Rightarrow$$

$$\Rightarrow \boxed{\frac{x}{p} + \frac{y}{q} = 1}$$

denominada equação segmentária.

Exemplo

Obter a equação geral da reta que intercepta os eixos em P(2, 0) e Q(0, -3).

A equação segmentária é $\frac{x}{2} + \frac{y}{-3} = 1$ e a equação geral é obtida eliminando os denominadores: 3x - 2y - 6 = 0.

b) Consideremos uma reta r de equação geral ax + by + c = 0 com a \neq 0, b \neq 0 e c \neq 0 para que a reta corte os eixos em pontos distintos P(p, 0) e Q(0, q). Determinemos p e q:

$$P \in r \Rightarrow a \cdot p + b \cdot 0 + c = 0 \Rightarrow \boxed{p = -\frac{c}{a}}$$

$$Q \in r \Rightarrow a \cdot 0 + b \cdot q + c = 0 \Rightarrow q = -\frac{c}{b}$$

c) A equação segmentária é obtida a partir da equação geral da seguinte

$$ax + by + c = 0 \Rightarrow ax + by = -c \Rightarrow -\frac{a}{c}x - \frac{b}{c}y = 1 \Rightarrow \frac{x}{-\frac{c}{a} - \frac{c}{b}} = 1 \Rightarrow \frac{x}{p} + \frac{y}{q} = 1$$

Exemplo

Obter a equação segmentária da reta (r) 7x + 11y + 3 = 0.

$$7x + 11y = -3 \Rightarrow -\frac{7}{3}x - \frac{11}{3}y = 1 \Rightarrow -\frac{x}{\frac{3}{7}} + \frac{y}{\frac{3}{11}} = 1$$

46. Forma paramétrica

As equações geral, reduzida e segmentária relacionam diretamente entre si as coordenadas (x, y) de um ponto genérico da reta. As equações paramétricas dão as coordenadas (x, y) de um ponto qualquer da reta em função (geralmente função linear) de uma terceira variável t (parâmetro).

$$x = f_1(t)$$
 e $y = f_2(t)$

A partir das equações paramétricas obtém-se a equação geral da reta eliminando o parâmetro t.

Exemplo

Qual é a equação geral da reta em que $x = \frac{t+1}{2}$ e y = 3t - 2?

Temos t = 2x - 1 e $t = \frac{y + 2}{3}$ então:

$$2x - 1 = \frac{y + 2}{3} \Rightarrow 6x - 3 = y + 2 \Rightarrow 6x - y - 5 = 0$$

- 47. Como norma geral, no caso em que é dada a equação de uma reta na forma
- e pede-se a forma (B), devemos usar o esquema

Para mais, acesse: http://fuvestibular.com.br/

$$A$$
 \longrightarrow equação geral \longrightarrow B

isto é, devemos comecar obtendo a equação geral.

Exemplo

Obter a equação segmentária da reta cujas equações paramétricas são

$$x = 3t + 1$$
 e $y = 4t + 5$.

$$t = \frac{x-1}{3}$$

$$t = \frac{y-5}{4}$$

$$\Rightarrow \frac{x-1}{3} = \frac{y-5}{4} \Rightarrow \underbrace{4x-3y+11=0}_{geral}$$

$$4x - 3y = -11 \implies -\frac{4}{11}x + \frac{3}{11}y = 1 \implies \frac{x}{-\frac{11}{4}} + \frac{y}{\frac{11}{3}} = 1$$

EXERCÍCIOS

- G.97 Determinar a equação reduzida da reta AB quando A(-1, 1) e B(7, 25).
- G.98 Dados A(3, 10) e B(-6, -5), determinar a equação segmentária da reta AB.
- G.99 Determinar a equação geral das retas abaixo:

G.100 Dadas as equações paramétricas de uma reta (r) x = 5t - 3 e y = 2t + 4, sua equação segmentária.

G.101 (MAPOFEI-75) Achar as coordenadas do ponto de intersecção das retas

- G.102 Qual é a posição relativa das retas (r) $\frac{x}{2} + \frac{y}{4} = 1$ e (s) x = 8t, y = 1 16t?
- **G.103** Obter uma reta paralela a (r) 2x + y = 0 e que define com os eixos um triângulo cuia área é 16.

Solução

Solução A equação da paralela tem a forma 2x + y + c = 0. Como a área é 16, temos:

$$S = \frac{|p| \cdot |q|}{2} = \frac{\left|-\frac{c}{2}\right| \cdot \left|-\frac{c}{1}\right|}{2} =$$
$$= \frac{c^2}{4} = 16$$

então
$$c^2 = 64 \implies c = \pm 8$$

Resposta: 2x + v + 8 = 0 ou 2x + v - 8 = 0

G.104 Provar que se uma reta se desloca de modo que a soma das medidas p e q dos segmentos determinados por ela sobre os eixos seja igual ao produto dessas medidas, então a reta passa por um ponto fixo P do plano cartesiano.

Solução

A reta tem equação segmentária

$$\frac{x}{p} + \frac{y}{q} = 1$$
 onde p e q são variáveis reais mas p + q = pq, por hipótese.

Vamos eliminar o parâmetro q da equação da reta, usando a hipótese:

$$\frac{x}{p} + \frac{y}{\frac{p}{p-1}} = 1 \implies \frac{x}{p} + \frac{(p-1)y}{p} = 1 \implies x + (p-1)y = p$$
 (1)

Dando a p dois valores arbitrários e diferentes de 0 e 1, temos:

$$p = 2 \Longrightarrow x + y = 2$$
 (r) $p = 3 \Longrightarrow x + 2y = 3$ (s)

As retas r e s, concorrentes em (1, 1), são elementos do conjunto de retas dado por (1), que é um feixe de concorrentes em (1, 1) pois

$$(1) + (p-1)(1) = p, \forall p \in \mathbb{R} - \{0, 1\}$$

G.105 (EPUSP-56) Provar que se uma reta se desloca de modo que a soma dos inversos das medidas dos segmentos por ela determinados sobre os eixos seja $\frac{1}{L}$ (constante), então a reta passa por um ponto fixo P do plano cartesiano.

Os conjuntos invadem a geometria

David Hilbert nasceu em Konigsberg, na Prússia Oriental.

Dinâmico e com idéias notavelmente originais, participou de quase todos os Congressos internacionais de Matemática que, a partir de 1893, passaram a ser realizados com freqüência.

Em 1899 publicou os "Fundamentos da Geometria", que exerceu grande influência sobre a Matemática do século XX.

Hilbert percebeu que nem todos os termos podem ser definidos e por esta razão iniciou sua Geometria com três objetos não definidos — ponto, reta e plano — e seis relações não definidas — estar sobre, estar em, estar entre, ser congruente, ser paralelo e ser contínuo —, formulando vinte e um postulados conhecidos como Axiomas de Hilbert. A Teoria dos Conjuntos passa a invadir a Geometria num grau crescente de generalização e abstração.

Em 1900, Hilbert já era afamado professor em Göttingen, Alemanha, e depois de muito analisar as pesquisas dos fins do século XIX, durante sua participação no Congresso de Paris, apresentou e propôs vinte e três problemas os quais, segundo acreditava, ocupariam a atenção dos matemáticos do século XX, numa tentativa de prenunciar os rumos que tomaria o progresso neste século. Dizia ele: "se quisermos ter uma idéia do desenvolvimento provável do conhecimento matemático no futuro imediato devemos fazer passar por nossas mentes as questões não resolvidas e olhar os problemas que a Ciência de hoje coloca e cujas soluções esperamos no futuro. Destes problemas, o primeiro trata de Teoria dos Conjuntos, o segundo é sobre os axiomas da Matemática, e os outros são sobre Topologia, Equações Diferenciais, Cálculo das Variações e demais campos. Pode-se afirmar que muitos deles ainda não estão resolvidos e que a Matemática neste século se desenvolveu em muitas direções não previstas como disse o próprio Hilbert: "Enquanto um ramo da Ciência oferece uma abundância de problemas, ele está vivo".

Depois do Congresso de 1900, os matemáticos se agruparam em duas escolas, dependendo da sua linha de pensamento: os "formalistas" liderados por Hilbert, e os "logicistas" tendo à frente Russel.

Hilbert interessou-se por todos os aspectos da Matemática Pura, contribuindo para a Teoria dos Números, Lógica Matemática, Equações Diferenciais e também para a Física Matemática, sendo considerado uma figura importante de transição entre os séculos XIX e XX.

CAPÍTULO III

TEORIA ANGULAR

I. COEFICIENTE ANGULAR

48. Dada uma reta r, fixemos em r dois pontos distintos A e B. Se y_A = y = y_B, r é paralela ao eixo x; neste caso, adotaremos como sentido positivo da reta r o sentido positivo do eixo x.

Se $y_A \neq y_B$, então $y_A > y_B$ ou $y_B > y_A$; neste caso, adotaremos como sentido positivo da reta r aquele em que se parte do ponto de menor ordenada (A ou B) e se chega ao ponto de maior ordenada (B ou A, respectivamente).

Ângulo que uma reta r forma com o eixo x é o ângulo rx assim definido:

Para mais, acesse: http://fuvestibular.com.b t_{i}^{a}) se \hat{rx} é agudo, então m é positivo

se r∥x, r̂x é nulo;

2ª) se rx é obtuso, então m é negativo

São evidentes as seguintes propriedades do coeficiente angular:

5ª) dar o declive de uma reta equivale a dar a direção da reta; assim,

se r ¼ x, r̂s é o ângulo convexo formado pelas semi-retas lx e lr, onde I é o ponto de intersecção de r com x.

se rx é nulo, então m é nulo

se rx é reto, então não se define m

auando dizemos que uma reta r tem declive m = 1, r forma com o eixo Ox um ângulo de 45°, portanto r é qualquer reta do feixe de paralelas da figura; analogamente, se o declive de r é m = -1, então $\widehat{rx} = 135^{\circ}$, portanto r pode ser qualquer reta do outro feixe de paralelas.

rs obtuso

0

50. Coeficiente angular ou declive de uma reta r não perpendicular ao eixo das abscissas (*) é o número real m tal que:

II. CÁLCULO DE m

- 51. Só é possível calcular o coeficiente angular de uma reta guando dela se conhece:
 - dois pontos distintos:

ou

- 2º) a equação geral;

(*) Doravante em vez de "perpendicular ao eixo das abscissas" diremos só que r é "vertical".

3º) a direção (por exemplo, sabe-se que a reta é paralela a uma reta dada).

52. Vamos calcular o coeficiente angular de uma reta que passa por dois pontos conhecidos: $A(x_1, y_1)$ e $B(x_2, y_2)$.

Para mais, acesse: http://fuvestibula

Projetemos AB sobre os eixos do sistema cartesiano e apliquemos o teorema da projeção:

sôbre x
$$\overline{A_1B_1} = \overline{AB} \cdot \cos \alpha$$

sobre y $\overline{A_2B_2} = \overline{AB} \cdot \cos \beta = \overline{AB} \cdot \cos (90^\circ - \alpha) = \overline{AB} \cdot \sin \alpha$

Temos:

$$\frac{\overline{A_2}\overline{B_2}}{\overline{A_1}\overline{B_1}} = \frac{\overline{AB} \cdot \operatorname{sen} \alpha}{\overline{AB} \cdot \cos \alpha} = \operatorname{tg} \alpha = \operatorname{m}$$

mas $\overline{A_2B_2} = y_2 - y_1$ e $\overline{A_1B_1} = x_2 - x_1$, logo:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} \qquad (\mathbf{x}_2 \neq \mathbf{x}_1)$$

Preferimos a notação

$$\mathbf{m} = \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}} \qquad (\Delta \mathbf{x} \neq \mathbf{0})$$

onde Δx e Δy são, respectivamente, a diferença de abscissas e a diferença de ordenadas entre A e B, calculadas no mesmo sentido.

Assim, por exemplo, o declive da reta que passa por A(-5, 4) e B(1, 10) é:

$$m = \frac{\Delta y}{\Delta x} = \frac{(10) - (4)}{(1) - (-5)} = \frac{(4) - (10)}{(-5) - (1)} = 1$$

53. Vamos calcular o coeficiente angular de uma reta cuja equação geral é conhecida: ax + by + c = 0.

Lembremos que, dados $A(x_1, y_1)$ e $B(x_2, y_2)$ pertencentes à reta, a equação geral é:

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

isto é,

$$(y_1 - y_2) \cdot x + (x_2 - x_1) \cdot y + (x_1y_2 - x_2y_1) = 0$$

Como vimos $m = \frac{y_2 - y_1}{x_2 - x_1}$, portanto resulta:

$$\mathbf{m} = -\frac{\mathbf{a}}{\mathbf{b}} \qquad (\mathbf{b} \neq \mathbf{0})$$

Assim, por exemplo, o coeficiente angular da reta (r) $\sqrt{3}x - 3y + K = 0$ é:

$$m = -\frac{a}{b} = -\frac{\sqrt{3}}{-3} = \frac{\sqrt{3}}{3}$$

Notemos que o termo independente K não tem influência no cálculo de m, isto é, retas como $\sqrt{3}x - 3y + 1 = 0$ e $\sqrt{3}x - 3y + 500 = 0$ têm o mesmo declive.

54. No item 44 do capítulo II demonstramos que a equação reduzida de uma reta é

$$y = mx + q$$

portanto, sempre que uma reta tiver equação reduzida (isto é, $b \neq 0$), ao expressarmos y em função de x o coeficiente de x é m.

Exemplo

Dada a equação geral 2x - 7y + 1 = 0, temos que a equação reduzida é $y = \frac{2}{7}x + \frac{1}{7}$, logo, $m = \frac{2}{7}$.

G.106 Calcular o coeficiente angular das retas:

a)
$$x - 3y + 4 = 0$$

b)
$$5x + 1 - 3y$$

c)
$$y = -3x + 4$$

d)
$$\frac{x}{5} + \frac{y}{2} = 1$$

$$e) \begin{cases} x = 4t \\ y = 1 - 7t \end{cases}$$

f)
$$x = 11$$

q)
$$2v = -3$$

h)
$$2x + 3y = 0$$

i)
$$\mu(x + 2y - 1) + \lambda(x - y + 1) = 0$$

j)
$$x \cdot \cos 30^{\circ} + y \sin 30^{\circ} = 7$$

k) contém
$$\begin{cases} A(a; b) \\ B(b; a) \end{cases}$$

III. EQUAÇÃO DE UMA RETA PASSANDO POR $P(x_0, y_0)$

55. Seja $P(x_0, y_0)$ um ponto conhecido. Se quisermos obter a equação de y l uma reta que, entre outras propriedades, tem à propriedade de passar por P. podem ocorrer dois casos:

1.0) essa reta (r) não é perpendicular ao eixo dos x, portanto, existe o coeficiente angular de r que é

$$m = \frac{y - y_0}{x - x_0}$$

(x, y) representa um ponto genérico Q, pertencente à reta.

Neste caso, a equação da reta é:

2º) essa reta (s) é perpendicular ao eixo dos x, portanto sua equação é:

$$\mathbf{x} = \mathbf{x}_0 \tag{2}$$

Para mais, acesse: http://fuvestibular.com.br/Conduzir por P(5, 4) retas que formam com o eixo dos x os seguintes ângulos: a) 45° ; b) 90° ; c) 135° ; d) 60° ; e) arc tg (- $\frac{4}{3}$)

a)
$$y - 4 = 1(x - 5)$$

isto é: $x - y - 1 = 0$

b)
$$x - 5 = 0$$

c)
$$y - 4 = -1(x - 5)$$

isto $e: x + y - 9 = 0$

d)
$$y - 4 = \sqrt{3} (x - 5)$$

isto é:
$$\sqrt{3}x - y + 4 - 5\sqrt{3} = 0$$

e)
$$y - 4 = -\frac{4}{3}(x - 5)$$

isto é:
$$4x + 3y - 32 = 0$$

57. Se fizermos, na equação (1), m assumir todos os valores reais, para cada m teremos a equação de uma reta passando por P e formando com o eixo dos x um ângulo cuja tangente é m; assim, a equação (1) representa um conjunto de infinitas retas que passam por P, contidas no plano cartesiano. Só não pertence a esse conjunto a reta s, que não tem coeficiente angular. O feixe de retas concorrentes em P é:

$$\{r \subset \alpha \mid P \in r \in \exists m_r\} \cup \{s \subset \alpha \mid P \in s \in \not\exists m_s\}$$

portanto a equação do feixe é:

$$y - y_0 = m(x - x_0)$$
 ou $x = x_0$ (m variável real)

EXERCÍCIOS

G.107 Determinar a equação da reta que passa por P e tem inclinação α em relação ao eixo dos x nos casos seguintes:

1.0)
$$P(-1, -3) e \alpha = 45^{\circ}$$

4°) P(-1, +3) e
$$\alpha = \arcsin \frac{3}{5}$$

$$2^{\circ}$$
) P(+2, -4) e $\alpha = 60^{\circ}$

$$5^{\circ}$$
) P(7, 2) e $\alpha = 0^{\circ}$

3°)
$$P(-1, -4) e \alpha = 90^{\circ}$$

6°)
$$P(-1, +5) = \alpha = arc tg 2$$

G.108 Qual é a equação do feixe de retas concorrentes em P(5, 2)?

IV. CONDIÇÃO DE PARALELISMO

0. Exemplos

Para mais, acesse: http://fuvestibular.com/ $\sqrt[6]{}$ (r) 3x + 6y - 1 = 0 e (s) 2x + 4y + 7 = 0 são paralelas pois:

58. Teorema

"Duas retas r e s, não verticais, são paralelas entre si se, e somente se, seus coeficientes angulares são iguais".

Demonstração

59. Observação

No item 35 do capítulo 11 vimos que: "duas retas (r) $a_1 x + b_1 y + c_1 = 0$ e (s) $a_2 x + b_2 y + c_2 = 0$ são paralelas (distintas ou não) se, e somente se,

$$D = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = 0''.$$

Nos casos em que $\ r$ e s não são verticais, vamos provar que as condições de paralelismo $\ D=0$ e $m_r=m_s$ são equivalentes. Lembrando que $\ b_1\neq 0$ e $\ b_2\neq 0$, temos:

Nos casos em que $r /\!\!/ s /\!\!/ Oy$ só vale a condição D = 0 pois não existem os coeficientes angulares m_r e m_e .

$\begin{cases} m_r = -\frac{a_1}{b_1} = -\frac{3}{6} = -\frac{1}{2} \\ m_s = -\frac{a_2}{b_2} = -\frac{2}{4} = -\frac{1}{2} \end{cases} \implies m_r = m_s$

e também:

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} 3 & 6 \\ 2 & 4 \end{vmatrix} = 12 - 12 = 0$$

20) (r) 500x - 1 = 0 e (s) 71x - 13 = 0 são paralelas pois:

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} 500 & 0 \\ 71 & 0 \end{vmatrix} = 0$$

embora \(\frac{1}{2}\) m_r e \(\frac{1}{2}\) m_s.

61. Construção importante

5x + 7y + 5 = 0

Obter uma reta s que passa por um ponto P (dado) e é paralela a uma reta r (dada, não vertical).

Por exemplo vamos resolver este problema quando r tem equação

$$5x + 7y + 1 = 0$$
 e $P = (6, -5)$:

$$m_r = -\frac{a}{b} = -\frac{5}{7}$$

$$s / r \Rightarrow m_s = m_r = -\frac{5}{7}$$

Como s passa por P, vamos aplicar a teoria do item 55; a equação de s

 $y - (-5) = -\frac{5}{7} (x - 6)$ 7(y + 5) = -5(x - 6) 7y + 35 = -5x + 30

é:

62. Vimos no item 44 que a equação reduzida de uma reta r é

$$y = mx + q$$

Para mais, acesse: http://fuvestibular.com.br/

onde $m=-\frac{a}{b}$ é o coeficiente angular de r e $q=-\frac{c}{b}$ é a ordenada do ponto onde r corta o eixo Oy.

Supondo m constante e q variável, a equação reduzida passa a representar um conjunto de retas paralelas (mesmo declive), isto é, um feixe de retas paralelas.

Assim, por exemplo, y = 3x + q é a equação do feixe de retas paralelas com coeficiente angular 3.

EXERCÍCIOS

G.109 Determinar a equação da reta (s) que contém P(-5, +4) e é paralela à reta (r) cujas equações paramétricas são x = 3t e y = 2 - 5t.

Solução

1^a) coeficiente angular de (r)

$$t = \frac{x}{3} = \frac{2 - y}{5} \implies 5x = 6 - 3y \implies 5x + 3y - 6 = 0$$

 $m_r = -\frac{a}{b} = -\frac{5}{2}$

2ª) equação de (s)

$$s /\!\!/ r \implies m_s = m_r = -\frac{5}{3}.$$

$$P \in s \implies y - 4 = m_s(x + 5) \implies y - 4 = -\frac{5}{3}(x + 5) \implies$$

 $\implies 3y - 12 = -5x - 25 \implies 5x + 3y + 13 = 0$

Resposta: (s) 5x + 3y + 13 = 0

G.110 Determinar a equação da reta que passa por P(-5, 2) e é paralela à reta definida por

$$A(\frac{1}{2}, \frac{6}{5}) e B(\frac{3}{2}, -\frac{4}{5}).$$

G.111 Determinar a equação da reta u que passa pelo ponto de intersecção das retas r e t e é paralela à reta s. Dados:

(r)
$$\frac{x}{2} + \frac{y}{2} = 1$$
, (s) $x = 3t \ e \ y = 2 + 3t \ e$ (t) $3x + 4y = 0$.

G.112 Dois lados de um paralelogramo ABCD estão contidos nas retas (r) y = 2x e (s) x = 2y. Dado o vértice A(5, 4), determinar B, C e D.

V. CONDIÇÃO DE PERPENDICULARISMO

63. Teorema

"Duas retas r e s, não verticais, são perpendiculares entre si se, e somente se, o produto de seus coeficientes angulares é -1".

$$r \perp s \iff m_r \cdot m_s = -1$$

Demonstração

$$r \perp s \implies m_r \cdot m_s = -1$$

Conforme o caso, das figuras acima tiramos:

$$\alpha_2 = \alpha_1 + \frac{\pi}{2}$$
 ou $\alpha_1 = \alpha_2 + \frac{\pi}{2}$

[o ângulo externo é igual à soma dos internos não adjacentes] então:

$$\operatorname{tg} \alpha_2 = \operatorname{tg} (\alpha_1 + \frac{\pi}{2}) \Longrightarrow \operatorname{tg} \alpha_2 = \operatorname{cotg} (-\alpha_1) \Longrightarrow \operatorname{tg} \alpha_2 = -\frac{1}{\operatorname{tg} \alpha_1} \Longrightarrow \operatorname{tg} \alpha_1 \cdot \operatorname{tg} \alpha_2 = -1 \Longrightarrow \operatorname{m}_r \cdot \operatorname{m}_s = -1$$

$$m_r \cdot m_s = -1 \implies r \perp s$$

1.0) $m_r \cdot m_s = -1 \implies m_r = -\frac{1}{m_e} \quad y$ isto é, $m_r \neq m_s$ portanto as retas r e s são concorrentes e formam um ângulo θ tal que

20) Temos:

$$m_1 = -\frac{1}{m_2} \implies \operatorname{tg} \alpha_1 = -\frac{1}{\operatorname{tg} \alpha_2} \implies \operatorname{tg} \alpha_1 = -\operatorname{cotg} \alpha_2 \implies$$

$$\Rightarrow \operatorname{tg} \alpha_1 = \operatorname{tg} \left(\frac{\pi}{2} + \alpha_2 \right) \Rightarrow \alpha_1 = \frac{\pi}{2} + \alpha_2$$

Comparando (i) e (ii):
$$\theta = \frac{\pi}{2} \implies \boxed{r1s}$$

64. Exemplos

19) (r) 3x + 2y - 1 = 0 e (s) 4x - 6y + 3 = 0 são perpendiculares pois

$$m_{r} = -\frac{a_{1}}{b_{1}} = -\frac{3}{2}$$

$$m_{s} = -\frac{a_{2}}{b_{2}} = +\frac{4}{6} = \frac{2}{3}$$

$$\implies m_{r} \cdot m_{s} = -1$$

29)(r) 3x - 11y + 4 = 0 e (s) $11x + 3y - \sqrt{2} = 0$ são perpendiculares pois:

$$m_r = -\frac{a_1}{b_1} = \frac{3}{11}$$
 $m_s = -\frac{a_2}{b_2} = -\frac{11}{3}$
 $\implies m_r \cdot m_s = -1$

39)(r) x = 3 e (s) y = -1 são perpendiculares pois r # y e s # x.

Notemos que neste último caso não vale a relação $m_r \cdot m_s = -1$ uma vez que r é vertical.

Comentário

Existe uma condição de perpendicularismo que vale também no caso de uma das retas ser vertical. Deixamos como exercício a sua demonstração:

"Duas retas (r) $a_1 x + b_1 y + c_1 = 0$ e (s) $a_2 x + b_2 y + c_2 = 0$ são perpendiculares se, e somente se, $a_1 a_2 + b_1 b_2 = 0$ ".

Assim, por exemplo as retas x = 3 e y = -1 são perpendiculares pois: $a_1 a_2 + b_1 b_2 = 1 \cdot 0 + 0 \cdot 1 = 0$

Construção importante

Obter uma reta s que passa por um ponto P (dado) e é perpendicular a uma reta r (dada, não horizontal).

Por exemplo vamos resolver este problema quando r tem equação

$$5x + 7y + 1 = 0$$
 e $P = (6, -5)$:

$$m_r = -\frac{a}{b} = -\frac{5}{7}$$

$$s \perp r \implies m_s = -\frac{1}{m_r} = -\frac{1}{-\frac{5}{7}} = \frac{7}{5}$$

Como s passa por P, vamos aplicar a teoria do item 55; a equação de s é:

$$y - (-5) = \frac{7}{5} (x - 6)$$

$$5(y + 5) = 7(x - 6)$$

$$5v + 25 = 7x - 42$$

EXERCÍCIOS

G. 13 Demonstrar que (r) $\frac{x}{7} + \frac{y}{9} = 1$ e (s) $\frac{x}{9} = \frac{y}{7}$ são retas perpendiculares.

G.1/4 Determinar p de modo que as retas (r) $p^2x + py + 2 = 0$ e (s) 3x + (p + 1)y + 7 = 0sejam perpendiculares.

G.115 Dentre os seguintes pares de retas, qual não é formado por retas paralelas ou perpendiculares?

Para mais, acesse: http://fuvestibular.com/er/(r) x + y - 1 = 0.

1.)
$$3x - 5y + 4 = 0$$
 e $\frac{x}{3} + \frac{y}{5} = 1$

20)
$$\begin{cases} x = 4t - 1 \\ y = 4 - 2t \end{cases}$$
 e $4x - 2y + 7 = 0$

$$3^{\circ}$$
) $3x + 4 = 0$ e $5y - 3 = 0$

4°)
$$x = \sqrt{3}$$
 $e^{-x} = \sqrt{2}$

5°)
$$(a + 1)x + (a - 1)y = 0$$
 e $(a - 1)x = (a + 1)y$

G.\h\16 Determinar a equação da reta s que contém P(3, 4) e é perpendicular à reta (r) 2x + 3y = 0.

(r) x = 2t, v = 3t.

G.1 1/7 Determinar a projeção ortogonal do ponto P(-7, 15) sobre a reta

Solução

1ª) coeficiente angular de r

$$t = \frac{x}{2} = \frac{y}{3} \implies 3x = 2y \implies 3x - 2y = 0$$

$$m_r = -\frac{a}{b} = -\frac{3}{2} = \frac{3}{2}$$

2ª) equação de s tal que sir, por P

$$s \perp r \Longrightarrow m_s = -\frac{1}{m_r} = -\frac{2}{3}$$

$$P \in s \Longrightarrow y - 15 = m_s(x + 7) \Longrightarrow$$

$$\Rightarrow y - 15 = -\frac{2}{3}(x + 7) \Longrightarrow$$

$$\Rightarrow$$
 2x + 3y - 31 = 0

3ª) intersecção de r com s

$$\begin{cases} (r) \ 3x - 2y = 0 \\ (s) \ 2x + 3y = 31 \end{cases}$$

Resolvendo o sistema, obtemos $x = \frac{62}{13}$, $y = \frac{93}{13}$

Resposta: $M(\frac{62}{13}, \frac{93}{13})$

- G. 18 Determinar o pé da perpendicular baixada de P(2, 6) sobre (r) x + y 2 = 0.
- G.1 9 (MAPOFEI-75) São dados a reta r: x y + 1 = 0 e o ponto P = (3, 2). Determinar as coordenadas da projeção ortogonal de P sobre a reta r.

М

G.120 Determinar o ponto Q, simétrico de P em relação à reta (r). Dados P(-3, +2) $\frac{1}{2}$ $\frac{$

Solução

1^a) s, por P, perpendicular a r

$$m_r = -\frac{a}{b} = -1 \Longrightarrow$$

$$\Rightarrow m_s = -\frac{1}{m_r} = +1$$

$$P \in S \Longrightarrow V - 2 = 1(x + 3) \Longrightarrow$$

$$\Rightarrow$$
 x - y + 5 = 0

2ª) intersecção de r com s

$$\int (r) x + y - 1 = 0$$

$$\begin{cases} (s) & x - y + 5 = 1 \end{cases}$$

Resolvendo o sistema, obtemos x = -2 e y = 3, portanto M = (-2, 3)

3ª) Q M é o ponto médio de PQ, então:

$$x_{M} = \frac{x_{P} + x_{Q}}{2} \Rightarrow x_{Q} = 2x_{M} - x_{P} = -4 + 3 = -1$$

$$y_{M} = \frac{y_{P} + y_{Q}}{2} \Rightarrow y_{Q} = 2y_{M} - y_{P} = 6 - 2 = 4$$

Resposta: Q(-1, 4)

- G.121 (MAPOFEI-74) Em um sistema cartesiano ortogonal xOy são dados os pontos A, sobre Ox de abscissa +1, e B sobre Oy de ordenada +2. Calcular as coordenadas do ponto P simétrico da origem O em relação à reta AB.
- G.122 Determinar a reta s, simétrica de (r) x y + 1 = 0 em relação a (t) 2x + y + 4 = 0.

Solução

1ª) intersecção de r com t

$$\begin{cases} (F) & x - y + 1 = 0 \\ \frac{4}{3} & 2x + y + 4 = 0 \end{cases}$$

Resolvendo o sistema, obtemos

$$x = -\frac{5}{3} e y = -\frac{2}{3}$$

portanto R =
$$(-\frac{5}{3}, -\frac{2}{3})$$
.

- 2^a) tomar $P \in r$ tal que $P \neq R$ (r) y = x + 1, portanto yp = xp + 1Fazendo xp = 0, obtemos yp = 1, isto é. P = (0, 1)
- 3ª) equação de ult. por P

$$\begin{aligned} m_t &= -\frac{a}{b} = -2 \Longrightarrow m_u = -\frac{1}{m_t} = \frac{1}{2} \\ P &\in u \Longrightarrow y - 1 = \frac{1}{2} (x - 0) \Longrightarrow (u) \ x - 2y + 2 = 0 \end{aligned}$$

4ª) intersecção de u com t

$$\begin{cases} (u) & x - 2y + 2 = 0 \\ (t) & 2x + y + 4 = 0 \end{cases}$$

Resolvendo o sistema, obtemos x = -2 e y = 0, portanto M = (-2, 0)

5ª) Q. simétrico de P em relação a t

$$x_M = \frac{x_P + x_Q}{2} \Longrightarrow -2 = \frac{0 + x_Q}{2} \Longrightarrow x_Q = -4$$

$$y_M = \frac{y_P + y_Q}{2} \Rightarrow 0 = \frac{1 + y_Q}{2} \Rightarrow y_Q = -1$$

portanto Q = (-4, -1)

6ª) s é a reta RQ

$$\begin{vmatrix} x & y & 1 \\ x_R & y_R & 1 \\ x_Q & y_Q & 1 \end{vmatrix} = 0 \implies \begin{vmatrix} x & y & 1 \\ -\frac{5}{3} & -\frac{2}{3} & 1 \\ -4 & -1 & 1 \end{vmatrix} = 0 \implies$$

$$\implies \frac{x}{3} - \frac{7y}{3} - 1 = 0$$

$$x - 7y - 3 = 0$$

- G.123 Determinar a equação da reta s simétrica da reta (r) x + 2y 3 = 0 em relação à bissetriz do 2º quadrante.
- G.124 (MAPOFEI-75) Escrever a equação cartesiana da reta simétrica da reta 2x y 4 = 0 em relação à reta 4x - 2y + 3 = 0
- **G.125** Dados P(-3, -3) e (r) 4x + 5y 14 = 0, pede-se:
 - a) equação de s perpendicular a r por P;
 - b) o ponto M pé da perpendicular a r por P
 - c) o ponto Q simétrico de P em relação a r:
 - d) a reta t simétrica de r em relação a P.

G.126 Determinar a simétrica da reta (r) x - 8y + 16 = 0 em relação:

Para mais, acesse: http://fuvestibular.com.br/a) ao eixo dos x;

- h) ao eixo dos v:
- c) à reta (s) 2x 3y 7 = 0
- G.127 Determinar as equações das alturas do triângulo ABC e provar que elas concorrem no mesmo ponto H (ortocentro).

Dados: A(0, -3), B(-4, 0) e C(2, 1)

Solução

1ª) equação de ha tal que ha LBC, por A.

$$m_{BC} = \frac{\Delta y}{\Delta x} = \frac{y_C - y_B}{x_C - x_A} = \frac{1. - 0}{2 + 4} = \frac{1}{6}$$

$$m_{h_a} = -\frac{1}{m_{BC}} = -6$$

$$A \in h_a \Longrightarrow y + 3 = -6(x - 0) \Longrightarrow$$

$$\Rightarrow$$
 6x + y + 3 = 0 (h_a)

$$m_{CA} = \frac{\Delta y}{\Delta x} = \frac{1+3}{2-0} = 2 \Longrightarrow m_{hb} = -\frac{1}{2}$$

$$B \in h_b \Longrightarrow y - 0 = -\frac{1}{2} (x + 4) \implies 2y = -x - 4 \Longrightarrow x + 2y + 4 = 0 \quad (h_b)$$

3ª) equação de ha tal que hal AB, por C

$$m_{AB} = \frac{\Delta y}{\Delta x} = \frac{0+3}{-4-0} = -\frac{3}{4} \Rightarrow m_{hc} = \frac{4}{3}$$

$$C \in h_C \Longrightarrow y - 1 = \frac{4}{3}(x - 2) \Longrightarrow 3y - 3 = 4x - 8 \Longrightarrow 4x - 3y - 5 = 0$$

 4^a) Provemos que existe $H \in h_a \cap h_b \cap h_c$

$$\{H\} = h_a \cap h_b \begin{cases} 6x + y + 3 = 0 \\ x + 2y + 4 = 0 \end{cases} \xrightarrow{\text{resolvendo}} H(-\frac{2}{11}, -\frac{21}{11})$$

$$H \in h_c$$
 pois $4x_H - 3y_H - 5 = -\frac{8}{11} + \frac{63}{11} - 5 = \frac{-8 + 63 - 55}{11} = 0$

- G.128 Determinar o ortocentro H do triângulo ABC cujos vértices são A(1, 3), B(2, 1) e C(4, 5).
- G.129 Dados os pontos A(0, 0), B(4, 4) e C(-1, 3), determinar a razão entre as áreas dos triângulos ABC e BCD, onde D é o pé da altura do triângulo ABC, traçada por C.
- **G.130** Dados H(0, 0), (r) x + 2y 6 = 0 e (s) x + y + 3 = 0, obter a reta t que determina com r e s um triângulo cujo ortocentro é H.

| ha

A(a, b), B(a + 4, b + 3), C(a + 7, b + 7) e D(a + 3, b + 4) Para mais, acesse: http://fuvestibular.com.br/

é um losango.

Solução

Uma das maneiras de provar que ABCD é losango é mostrar que seus lados são paralelos dois a dois e suas diagonais são perpendiculares.

$$m_{CD} = \frac{\Delta y}{\Delta x} = \frac{(b + 7) - (b + 4)}{(a + 7) - (a + 3)} = \frac{3}{4}$$

$$\Rightarrow AB //CD$$

$$m_{BC} = \frac{\Delta y}{\Delta x} = \frac{(b+7) - (b+3)}{(a+7) - (a+4)} = \frac{4}{3}$$

$$m_{AD} = \frac{\Delta y}{\Delta x} = \frac{(b+4) - b}{(a+3) - a} = \frac{4}{3}$$

$$\Rightarrow BC //AD$$

$$m_{AC} = \frac{\Delta y}{\Delta x} = \frac{(b+7)-b}{(a+7)-a} = 1$$

$$m_{BD} = \frac{\Delta y}{\Delta x} = \frac{(b+4)-(b+3)}{(a+3)-(a+4)} = -1$$

$$\Rightarrow AC \perp BD$$

- G.132 Obter os vértices de um losango ABCD tal que:
 - a) A está no eixo dos v.
 - b) B está no eixo dos x.
 - c) a diagonal AC está contida em (r) 2x + y 3 = 0.
 - d) as diagonais se interceptam em E(x, 1).
- **G.133** Obter uma reta perpendicular a (r) 4x + 3y = 0 e que defina com os eixos coordenados um triângulo de área 6.

Solução

$$m_r = -\frac{4}{3} \Rightarrow m_s = +\frac{3}{4}$$

A equação reduzida da reta s é:

$$y = \frac{3}{4}x + q$$

Fazendo 4q = c, a equação geral de

$$3x - 4y + c = 0$$

A reta s corta os eixos nos pontos $(0, \frac{c}{4})$ e $(-\frac{c}{2}; 0)$. Como a área do

triângulo é 6, temos:

$$6 = \frac{\left|\frac{c}{4}\right| \cdot \left|\frac{c}{3}\right|}{2} \Rightarrow 12 = \frac{c^2}{12} \Rightarrow c^2 = 144 \Rightarrow c = \pm 12$$

Resposta: 3x - 4y + 12 = 0

- G 134 (EESCUSP-69) Encontrar a equação da reta que é perpendicular a reta x + y 3 = 0 e forma com os eixos coordenados um triângulo de área 8 unidades de área, de modo que este triângulo tenha intersecção não vazia com a reta x - 2y = 1.
- G.135 (EPUSP-51) Dados os pontos A(a, 0) e B(0, b), tomemos sobre a reta AB um ponto C de modo que $\overline{BC} = m \cdot \overline{AB}$ (m \neq 0 real). Pede-se a equação da reta perpendicular a AB, a qual passa pelo ponto médio do segmento AC.
- G.136 (MAPOFEI-73) O ponto P = (2, 4) é o centro de um feixe de retas no plano cartesiano. Pede-se determinar as equações das retas desse feixe, perpendiculares entre si, que interceptam o eixo. Ox nos pontos. A e. B., e tais que a distância entre eles seja 10.
- G.137 (EPUSP-54) Dados o ponto A(3, 1) e a reta r cuja equação é y = 2x, traçam-se por A as retas ABlx e AClr, onde B e C são respectivamente os pés das perpendiculares AB e AC. Provar que a reta determinada pelos pontos médios de OA e BC é perpendicular a BC.
- G.138 Dados A(4, 2), B(0, 4), C(3, 0) e P(3, 4), traçam-se por P as perpendiculares aos lados do triângulo ABC. Pede-se:
 - a) obter os pés das perpendiculares
 - b) provar que são colineares,
- G.139 (MAPOFEI-70) Pelo ponto P de coordenadas cartesianas ortogonais $\cos \beta$, sen α $(0 \leqslant \alpha < \beta \leqslant \frac{\pi}{2})$ passam duas retas r e s paralelas aos eixos coordenados (ver figura).
 - a) Determinar as coordenadas das interseccões de r e s com a circunferência $x^2 + y^2 = 1$.
 - b) Determinar a equação da reta PM, onde M é o ponto médio do segmento AB.
 - c) Demonstrar analiticamente que as retas CD e PM são perpendiculares.

G.140 (EPUSP-42) Dado um ponto P situado no prolongamento do lado AB de um quadrado ABCD, traçam-se as retas PC e PD; pelo ponto E, intersecção de BC e PD, conduzimos a reta AE cuja intersecção com PC é o ponto F. Provar que BF e PD são perpendiculares.

VI. ÄNGULO DE DUAS RETAS

Unificando as duas possibilidades, temos:

Para mais, acesse: http://fuvestibular.com.br/

67. Dadas duas retas (r) $a_1x + b_1y + c_1 = 0$ e (s) $a_2x + b_2y + c_2 = 0$, vamos calcular os ângulos que elas determinam.

Se $r /\!\!/ s$ ou $r \perp s$ o problema é imediato, portanto, deixaremos esses dois casos de lado.

Quando duas retas são concorrentes, elas determinam quatro ângulos, dois a dois opostos pelos vértices (congruentes).

É evidente que θ_1 e θ_2 são suplementares, portanto, quem conhece a medida de um deles, automaticamente tem a medida do outro.

Também é evidente que $tg \theta_1$ e $tg \theta_2$ são simétricas, isto é, $tg \theta_1 = -tg \theta_2$.

68. Calculemos θ_1 , ângulo agudo formado por r e s:

10 caso: uma das retas (s, por exemplo) é vertical.

$$\theta_1 = \frac{\pi}{2} - \alpha_1$$

$$tg \theta_1 = tg \left(\frac{\pi}{2} - \alpha_1\right)$$

$$tg \theta_1 = cotg \alpha_1$$

$$tg \theta_1 = \frac{1}{m_r}$$

$$\theta_1 = \alpha_1 - \frac{\pi}{2}$$

$$tg \theta_1 = tg (\alpha_1 - \frac{\pi}{2})$$

$$tg \theta_1 = -cotg \alpha_1$$

$$tg \theta_1 = -\frac{1}{m_e}$$

nais assessed by the Uferrastibular some by

Resumo

Dadas r e s, se uma delas não tem coeficiente angular, a tangente do ângulo agudo rs é o módulo do inverso do declive da outra.

2º caso: nenhuma das retas é vertical

Portanto, em qualquer situação, temos:

$$\operatorname{tg}\theta_1 = \left| \frac{m_{\tilde{\mathbf{t}}} - m_{\mathbf{r}}}{1 + m_{\mathbf{s}} \cdot m_{\mathbf{r}}} \right|$$

Nas duas situações, se obtivermos $\mbox{ tg } \theta > 0$, teremos calculado a $\mbox{ tg } \theta_1$; se $\mbox{ tg } \theta < 0$, então calculamos $\mbox{ tg } \theta_2$ e, para obtermos $\mbox{ tg } \theta_1$, bastará uma troca de sinal.

Resumo

Dadas r e s, se as duas têm coeficiente angular, a tangente do ângulo agudo \widehat{rs} é o módulo da diferença dos declives dividida por 1 somado ao produto dos declives.

Para mais, acesse: http://fuvestibular.com.br/

10) Calcular o ângulo agudo formado pelas retas

(r)
$$3x - y + 5 = 0$$
 e (s) $2x + y + 3 = 0$.

$$\operatorname{tg} \theta = \left| \frac{\mathsf{m}_2 - \mathsf{m}_1}{1 + \mathsf{m}_2 \, \mathsf{m}_1} \right| = \left| \frac{(3) - (-2)}{1 + 3 \cdot (-2)} \right| = \left| \frac{5}{-5} \right| = 1 \Longrightarrow \theta = \frac{\pi}{4}$$

2º) Calcular o ângulo formado pelas retas cuias equações são

(r)
$$2x + 3y - 1 = 0$$
 e (s) $6x - 4y + 5 = 0$.

$$m_1 = -\frac{2}{3}$$
 e $m_2 = +\frac{3}{2} \implies m_1 m_2 = -1 \implies r \perp s \implies \theta = \frac{\pi}{2}$

3º) Calcular o ângulo agudo formado pelas retas

(r)
$$4x + 2y - 1 = 0$$
 e (s) $3x - 4 = 0$

40) Calcular o ângulo formado pelas retas

(r)
$$5x + 2y = 0$$
 e (s) $10x + 4y - 7 = 0$

$$m_r = -\frac{5}{2}$$

$$m_s = -\frac{10}{4} = -\frac{5}{2}$$

$$\Rightarrow m_r = m_s \Rightarrow r /\!\!/ s \Rightarrow \theta = .0$$

Comentário

Existe uma fórmula para calcular o ângulo agudo entre duas retas que só não é válida se as retas forem perpendiculares.

Deixamos como exercício a sua demonstração:

"O ângulo agudo formado pelas retas

(r)
$$a_1x + b_1y + c_1 = 0$$
 e (s) $a_2x + b_2y + c_2 = 0$

$$\dot{\theta}$$
 tal que tg θ = $\frac{a_1b_2 - a_2b_1}{a_1a_2 + b_1b_2}$ $(a_1a_2 + b_1b_2 \neq 0)$ ".

Obter uma reta s que passa por um ponto P (dado) e forma ângulo agudo θ (dado) com uma reta r (dada, não vertical).

Por exemplo, vamos resolver este problema com os seguintes dados:

$$tg \theta = \left| \frac{m_s - m_r}{1 + m_s \cdot m_r} \right| \Rightarrow tg 45^\circ = \left| \frac{m_s - (-\frac{5}{7})}{1 + m_s(-\frac{5}{7})} \right| \Rightarrow 1 = \left| \frac{7m_s + 5}{7 - 5m_s} \right| \Rightarrow$$

$$\Rightarrow 1 = \frac{(7m_s + 5)^2}{(7 - 5m_s)^2} \Rightarrow 49 - 70m_s + 25m_s^2 = 49m_s^2 + 70m_s + 25 \Rightarrow$$

$$\Rightarrow 24m_s^2 + 140m_s - 24 = 0 \Rightarrow m_s = \frac{1}{6} \quad \text{ou} \quad m_s = -6$$

Como s passa por P, vamos aplicar a teoria do item 55; existem duas possibilidades para a equação de s:

1a 2a

$$y - (-5) = \frac{1}{6}(x - 6)$$
 $y - (-5) = -6(x - 6)$
 $6(y + 5) = (x - 6)$ $y + 5 = -6(x - 6)$
 $6y + 30 = x - 6$ $y + 5 = -6x + 36$
 $x - 6y - 36 = 0$ ou $6x + y - 31 = 0$

EXERCICIOS

G.141 Calcular o ângulo agudo formado pelas seguintes retas:

1. caso: (r)
$$x + y + 1 = 0$$
 e (s) $4x - 3y + 1 = 0$

20 caso: (r)
$$\frac{x}{2} + \frac{y}{4} = 1$$
 e (s) $\begin{cases} x = 2t - 5 \\ y = 7 - t \end{cases}$

30 caso: (r) x cos
$$45^{\circ}$$
 + y sen 45° = 5 e (s) 2y - $\sqrt{3}$ = 0

4. caso: (r)
$$\frac{x}{5} + \frac{y}{-3} = 1$$
 e (s) $3x - 4 = 0$

- G.142 (EESCUSP-69) Em um plano, munido de um sistema cartesiano ortogonal de referência. são dados os pontos A(2; 3), B(9; 4) e M(5, k). Determinar o valor de para mais acesse http://fuvestibular.com.br/ k para o qual o ângulo BÂM = 45°.
- G.143 Dados os pontos A(3, 0), B(1, 0) e C(4 + $\sqrt{3}$, 1 + $\sqrt{3}$) calcular os ângulos
- **G.144** Conduzir por P(0, 0) as retas que formam ângulo $\theta = \frac{\pi}{4}$ com (r) 6x + 2y 3 = 0.

Solução

A equação de uma reta qualquer passando por P é: y - 0 = m(x - 0), isto é, mx - v = 0.

Para obter m vamos impor que essa reta forme ângulo $\theta = 45^{\circ}$ com r:

$$\operatorname{tg} \theta = \left| \frac{\mathsf{m} - \mathsf{m}_1}{1 + \mathsf{m}_1} \right| \Rightarrow 1 = \left| \frac{\mathsf{m} - (-3)}{1 + \mathsf{m}(-3)} \right| \Rightarrow 1 = \left| \frac{\mathsf{m} + 3}{1 - 3\mathsf{m}} \right|$$

então: 1 - 3m = m + 3 ou 1 - 3m = -(m + 3)

isto é:
$$m = -\frac{1}{2}$$
 ou $m = 2$

As retas procuradas têm equações: $-\frac{1}{2}x - y = 0$ ou 2x - y = 0

Resposta:
$$x + 2y = 0$$
 ou $2x - y = 0$

- **G.145** Dados o ponto P(5, 4) e a reta (r) 2x y + 7 = 0, pede-se conduzir as seguintes retas por P:
 - s paraleia a r
 - t perpendicular a r
 - u formando θ = arc tg 3 com r
 - v paralela ao eixo Ox
 - z paralela ao eixo Oy

Solução

A principal finalidade deste problema é mostrar que as retas s, t, u, v são retas que passam por P e têm coeficiente angular, portanto, suas equações são da forma:

$$v - 4 = m \cdot (x - 5)$$

e o que as distingue é o valor de m.

Assim, temos:

74-G

$$\begin{cases} s /\!\!/ r \implies m_s = m_r = 2 \\ t \perp r \implies m_t = -\frac{1}{m_r} = -\frac{1}{2} \\ \\ \widehat{ur} = \operatorname{arc} tg \ 3 \implies 3 = \left| \frac{m_u - 2}{1 + m_u \cdot 2} \right| \implies m_u = -1 \quad \text{ou} \quad m_u = -\frac{1}{7} \\ v /\!\!/ 0x \implies m_v = 0 \end{cases}$$

A reta z passa por P e não tem declive, portanto, sua equação é:

$$x - 5 = 0$$

Resposts: (s) $y - 4 = 2 \cdot (x - 5)$

(t)
$$y - 4 = -\frac{1}{2} \cdot (x - 5)$$

(u)
$$y - 4 = -1 \cdot (x - 5)$$
 ou $y - 4 = -\frac{1}{7} \cdot (x - 5)$

- (v) y 4 = 0
- (z) x 5 = 0
- **G.146** Determinar as equações das retas s₁ e s₂ que passam por P e formam ângulo θ com a reta r nos sequintes casos:

1. caso:
$$P(0, 0) \theta = 45^{\circ}$$
 (r) $x - 2y + 4 = 0$

$$(r) x - 2y + 4 = 0$$

2° caso: P(1, 1)
$$\theta = 30^{\circ}$$
 (r) $6x + 3y - 1 = 0$

(r)
$$6x + 3y - 1 = 0$$

3. caso: P(0, 0)
$$\theta = \text{arc tg } 3$$
 (r) $x - y + 2 = 0$

G.147 Determinar a reta s. simétrica de $\{r\}$ x - y + 1 = 0 em relação a $\{t\}$ 2x + y + 4 = 0.

Solução

- 1ª) intersecção de r com t Já vimos no G.122 que é R $(-\frac{5}{2}, -\frac{2}{3})$
- 2ª) ângulo agudo rt $tg \theta = \left| \frac{m_r - m_t}{1 + m_r \cdot m_e} \right| = \left| \frac{1 - (-2)}{1 + (1) \cdot (-2)} \right| = 3$
- 3ª) declive da reta s $\operatorname{tg} \theta = \left| \frac{\mathsf{m}_{\mathsf{S}} - \mathsf{m}_{\mathsf{t}}}{1 + \mathsf{m}_{\mathsf{s}} \cdot \mathsf{m}_{\mathsf{s}}} \right| \Longrightarrow 3 = \left| \frac{\mathsf{m}_{\mathsf{S}} - (-2)}{1 + \mathsf{m}_{\mathsf{s}} \cdot (-2)} \right| \Longrightarrow 3 = \left| \frac{\mathsf{m}_{\mathsf{S}} + 2}{1 - 2 \cdot \mathsf{m}_{\mathsf{s}}} \right| \Longrightarrow$ $\Rightarrow 9(1 - 2m_s)^2 = (m_s + 2)^2 \implies 35m_s^2 - 40m_s + 5 = 0 \implies m_s = 1$ ou $m_s = \frac{1}{3}$
- 4ª) equação de s Como $m_s = \frac{1}{7}$ (pois $m_s = 1$ não convém uma vez que acarreta r = s) e R∈s, a equação de s é: $y - (-\frac{2}{3}) = \frac{1}{3}(x - (-\frac{5}{3})) \Rightarrow x - 7y - 3 = 0$

Resposta: (s)
$$x - 7y - 3 = 0$$

G.148 Conduzir pelo ponto P(3, 0) uma reta igualmente inclinada em relação a (r) y = 2x e(s) x = 2y.

Solução

Seia m o declive da reta t procurada.

Temos:

$$\widehat{rt} = \widehat{st}$$

então

$$\left|\frac{m-2}{1+2m}\right| = \left|\frac{m-\frac{1}{2}}{1+\frac{m}{2}}\right|$$

$$\frac{(m-2)^2}{(1+2m)^2} = \frac{(2m-1)^2}{(2+m)^2}$$

donde vem:

$$(m + 2)^2 (m - 2)^2 = (2m + 1)^2 (2m - 1)^2 \Rightarrow 15m^4 = 15 \Rightarrow m = \pm 1$$

Resposta: v - 0 = +1(x - 3)

- G.149 (MACK-70) Determine as equações das retas que contêm os lados de um triângulo, conhecendo-se:
 - o seu vértice A de coordenadas (0, 1),
 - a reta r: 3x 4y + 41 = 0, que contém uma altura,
 - a reta s: x + 2y 7 = 0, que contém uma bissetriz,

sendo a altura e a bissetriz relativas a dois vértices distintos.

- G.150 Demonstrar que, em um triângulo retângulo, a reta determinada pélo vértice do ângulo reto e o centro do quadrado construído sobre a hipotenusa, externamente ao triângulo, é a bissetriz do ângulo reto.
- G.151 No retângulo ABCD traçam-se por A e C as perpendiculares à diagonal BD.

 Demonstrar que os pés das perpendiculares, A e C formam um paralelogramo.

CAPÍTULO IV

DISTÂNCIA DE PONTO A RETA

I. TRANSLAÇÃO DE SISTEMA

72. Sejam P(x, y) e $O'(x_0, y_0)$ dois pontos referidos a um sistema cartesiano xOy.

Se x'O'y' é um sistema tal que P_2 $x' /\!\!/ x$, $y' /\!\!/ y$ e x', y' tem respectivamente o mesmo sentido positivo de x, y, dizemos que x'O'y' foi obtido por uma translação de xOy.

Nosso problema é estabelecer uma relação entre as coordenadas de P no "novo" sistema x'O'y' e no "antigo" xOy.

$$\overline{OP}_1 = \overline{OO'_1} + \overline{O'_1P_1} \implies$$

No eixo dos y, temos:

$$\overline{OP}_2 = \overline{OO}'_2 + \overline{O'_2P}_2 \implies$$

$$y = y_0 + y'$$

 $x = x_0 + x'$

Para mais, acesse: http://fuvestibular.com.br/

73. Consideremos, por exemplo, a reta de equação x + y - 7 = 0. Eis alguns pontos que pertencem a essa reta:

Se é dada uma translação no sistema xOy de modo que a nova origem seja O'(2,1), todos os pontos citados mudam de coordenadas, obedecendo à lei:

$$x' = x - 2$$

(nova) (antiga) (origem O')
 $y' = y - 1$

portanto, temos:

A equação da reta no sistema x'O'y' é obtida a partir de x + y - 7 = 0, assim:

$$x + y - 7 = 0 \Rightarrow (x' + 2) + (y' + 1) - 7 = 0 \Rightarrow x' + y' - 4 = 0$$

II. DISTÂNCIA ENTRE PONTO E RETA

74. Calculemos a distância entre a origem O e uma reta r cuja equação geral é:

$$ax + by + c = 0$$
 - (1)

A reta s, perpendicular a r passando por O tem equação geral:

$$bx - ay = 0 (2)$$

Se resolvêssemos o sistema formado pelas equações (1) e (2), obteríamos $\Omega(x, y)$ ponto de intersecção de r com s.

O que nos interessa, no entanto, é a distância $d = OQ = \sqrt{x^2 + y^2}$, então operamos assim:

e, finalmente temos a fórmula:

$$d_{O,r} = \left| \frac{c}{\sqrt{a^2 + b^2}} \right|$$

Assim, por exemplo, a distância da reta (r) 3x + 4y - 25 = 0 à origem é dada por:

$$d_{O,r} = \left| \frac{c}{\sqrt{a^2 + b^2}} \right| = \left| \frac{-25}{\sqrt{3^2 + 4^2}} \right| = \frac{25}{5} = 5$$

75. Calculemos a distância entre um y ponto $P(x_0, y_0)$ e uma reta

(r)
$$ax + by + c = 0$$
.

A idéia é transformar P em origem do sistema e, então, aplicar a fórmula já deduzida no item anterior.

Dando uma translação no sistema xOy de modo que P seja a origem do sistema x'Py', a equação da reta r no "novo" sistema é:

$$ax + by + c = 0 \Longrightarrow a(x' + x_0) + b(y' + y_0) + c = 0 \Longrightarrow$$

$$\Longrightarrow ax' + by' + (ax_0 + by_0 + c) = 0$$

Conforme vimos no item 74, a distância da origem (P) à reta r é:

$$d\rho_{,r} = \left| \frac{c'}{\sqrt{a^2 + b^2}} \right|$$

donde vem a fórmula importantíssima:

$$d_{P,r} = \left| \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}} \right|$$

2º) a distância de P até r é:

Para mais, acesse: http://fuvestibular.com.br
$$dp$$
, $r = \begin{vmatrix} ax_0 + by_0 + c \\ \sqrt{a^2 + b^2} \end{vmatrix} = \begin{vmatrix} (-c') + c \\ \sqrt{a^2 + b^2} \end{vmatrix}$

então vem a fórmula:

$$d_{r,s} = \left| \frac{c - c'}{\sqrt{a^2 + b^2}} \right|$$

Resumo

Calculamos d substituindo as coordenadas de P. no primeiro membro da equação de r e dividindo o resultado por $\sqrt{a^2 + b^2}$.

Assim, por exemplo, a distância do ponto P(2, -3) à reta (r) 3x - 4y + 2 = 0 é dada por:

$$d = \left| \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}} \right| = \left| \frac{3(2) - 4(-3) + 2}{\sqrt{3^2 + 4^2}} \right| = \left| \frac{20}{5} \right| = 4$$

76. Observações

- 1ª) A distância d é, em qualquer caso, um número real não negativo, isto é:
 d ≥ 0 quaisquer que sejam P e r.
- 2ª) A fórmula deduzida no item 74 (distância de r à origem) passa a ser um caso particular da fórmula deduzida no item 75.

De fato, a distância de (r) ax + by + c = 0 ao ponto P = (0, 0) é:

$$d = \left| \frac{a \cdot 0 + b \cdot 0 + c}{\sqrt{a^2 + b^2}} \right| = \left| \frac{c}{\sqrt{a^2 + b^2}} \right|$$

77. Uma aplicação notável da fórmula da distância entre ponto e reta é o seguinte problema: calcular a distância entre as retas paralelas

(r)
$$ax + by + c = 0$$
 e

(s)
$$ax + by + c' = 0$$

Como sabemos, a distância entre r e s é igual à distância de um ponto qualquer $P \in s$ até a reta r, então:

1.0) seja $P(x_0, y_0)$ pertencente a s $P \in s \Longrightarrow ax_0 + by_0 + c' = 0 \Longrightarrow$ $\Longrightarrow ax_0 + by_0 = -c'$

EXERCÍCIOS

G.152 Calcular a distância da origem à reta (r) $ax + by + \sqrt{a^2 + b^2} = 0$

Solução

$$d_{0r} = \left| \frac{c}{\sqrt{a^2 + b^2}} \right| = \left| \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}} \right| = 1$$

Resposta: 1

G.153 (MAPOFEI-76) Achar a distância da reta $r\begin{cases} x = -2 + 3t \\ y = -7 + 2t \end{cases}$ $(t \in |R|)$ a origin.

G.154 Calcular a distância do ponto P à reta r nos seguintes casos:

$$1.0$$
) P(-3; -1) e (r) $3x - 4y + 8 = 0$

$$2^{\circ}$$
) P(+3; +2) e (r) $5x_1 - 5y_1 + 2 = 0$

3°.) P(+1; -2) e (r)
$$\frac{x}{12} + \frac{y}{5} = 1$$

4.) P(-2; +3) e (r)
$$\begin{cases} x = 7t - 1 \\ y = 24t + 1 \end{cases}$$

5°) P(-1; -2) e (r)
$$x \cdot \cos \frac{\pi}{3} + y \cdot \sin \frac{\pi}{3} = 5$$

G.155 Calcular o comprimento da altura AH, do triângulo de vértices A(-3, 0), B(0, 0) e C(6, 8).

Solução

10) equação geral da reta BC

$$\begin{vmatrix} x & y & 1 \\ 6 & 8 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0 \Longrightarrow 8x - 6y = 0 \\ 4x - 3y = 0$$

2°) AH₁ = dA, BC

AH₁ = dA, BC =
$$\left| \frac{4(-3) - 3(0)}{\sqrt{4^2 + 3^2}} \right| = \left| \frac{-12}{5} \right| = \frac{12}{5}$$

Resposta: $AH_1 = \frac{12}{5}$

- G.156 Calcular a altura do trapézio cujos vértices são A(0,0), B(7,1), C(6,5) e D(-8,3),
- G.157 (MAPOFEI-74) O ponto P = (2, -5) é um vértice de um quadrado que tem: um is, acesse: http://fuvestibular.com.hr/ dos seus lados não adjacentes a P sobre a reta x - 2y - 7 = 0. Qual é a área do quadrado?
- G.158 Calcular a distância entre as retas

(r)
$$3x + 4y - 13 = 0$$
 e (s) $3x + 4y + 7 = 0$

Solução

Distância entre duas retas paralelas é a distância de um ponto P, pertencente a uma delas, até a outra.

$$P \in r \Longrightarrow 3xp + 4yp - 13 = 0$$

$$xp = -1 \Longrightarrow yp = \frac{13 - 3(-1)}{4} = 4$$

portanto P(-1, 4)

20) Calculemos dr s

$$d_{r, s} = d_{p, s} = \left| \frac{3(-1) + 4(4) + 7}{\sqrt{9 + 16}} \right| = \left| \frac{20}{5} \right| = 4$$

Resposta: $d_{r,s} = 4$

- G.159 Calcular a distância entre as retas cujas equações são ax + by + c = 0 e ax + by c = 0.
- G.160 Determinar os pontos da reta (r) y = 2x que estão à distância 2 da reta (s) 4x + 3y = 0.
- G.161 Determinar as equações das retas que formam 45° com o eixo dos x e estão à distância $\sqrt{2}$ do ponto P(3, 4).

Solução

$$\widehat{rx} = 45^{\circ} \Longrightarrow m_{\Gamma} = +1 = -\frac{a}{b}$$

Facamos a = 1 e b = -1, então a equação de (r) é

$$x - y + c = 0.$$

Mas $dp_r = \sqrt{2}$, então:

$$\left| \frac{(3) - (4) + c}{\sqrt{1^2 + 1^2}} \right| = \sqrt{2} \implies \left| \frac{-1 + c}{\sqrt{2}} \right| = \sqrt{2} \implies$$

$$\Rightarrow$$
 $|c-1|=2 \Rightarrow c-1=\pm 2 \Rightarrow c=-1$ ou $c=3$

Resposta: $(r_1) \times -y + 3 = 0$ ou $(r_2) \times +y - 1 = 0$

G.162 Obter uma reta paralela a (r) x + y + 6 = 0 e distante $\sqrt{2}$ do ponto C(1, 1).

- G.163 Determinar as equações das perpendiculares à reta (r) 7x 24y + 1 = 0, as quais estão à distância 3 unidades do ponto P(1; 0).
- - G.164 Determinar a equação de uma reta que passa por P(3:0) e dista 2 unidades da origem.

III. ÁREA DO TRIÂNGULO

78. Calculemos a área do triângulo cuios vértices são

$$A(x_1, y_1), B(x_2, y_2) \in C(x_3, y_3).$$

(I) Lembrando a fórmula da área do triângulo da Geometria Plana:

área =
$$\frac{1}{2}$$
 · base · altura

temos:

$$S = \frac{1}{2} \cdot BC \cdot AH$$

(II) Aplicando a fórmula da distância entre dois pontos:

$$BC = \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}$$

(III) A equação geral da reta BC é:

$$\begin{vmatrix} x & y & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0 \Longrightarrow \underbrace{[y_2 - y_3]}_{a} x + \underbrace{[x_3 - x_2]}_{b} y + \underbrace{[x_2y_3 - x_3y_2]}_{c} = 0$$

(IV) A distância do ponto A à reta BC

$$A(x_1, y_1)$$

$$(BC) ax + by + c = 0$$

$$\Rightarrow d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

então:

$$AH = d = \left| \frac{(y_2 - y_3)x_1 + (x_3 - x_2)y_1 + (x_2y_3 - x_3y_2)}{\sqrt{(y_2 - y_3)^2 + (x_3 - x_2)^2}} \right| = \left| \frac{\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}}{\sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}} \right|$$

(V) Indicando
$$D_{ABC} = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
, temos:

Para mais, acesse: http://fuvestibular.comsolução

$$S = \frac{1}{2} \cdot BC \cdot AH = \frac{1}{2} \cdot \sqrt{(x_2 - x_3)^2 + (y_3 - y_2)^2} \cdot \frac{|D_{ABC}|}{\sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}}$$

donde vem a fórmula:

$$S = \frac{1}{2} \cdot |D_{ABC}|$$

Assim, por exemplo, a área do triângulo cujos vértices são A(4, 1), B(-2, 3) e C(0, -6) é:

$$D_{ABC} = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = \begin{vmatrix} 4 & 1 & 1 \\ -2 & 3 & 1 \\ 0 & -6 & 1 \end{vmatrix} = 36 + 2 + 12 = 50$$

$$S = \frac{1}{2} \cdot |D_{ABC}| = \frac{1}{2} \cdot 50 = 25$$

79. Observações

- 1a) Para todo triângulo ABC, a área é um número real S>0.
- 2^{a}) Se A, B e C são colineares, isto é, se não existe o triângulo ABC, temos $D_{ABC} = 0$ e S = 0.
- 3ª) A unidade de área, raramente indicada nos problemas de Analítica, é o quadrado da unidade de comprimento utilizada nos eixos.

EXERCÍCIOS

- G.165 Calcular a área do triângulo cujos vértices são A(a, a + 3), B(a 1, a) e C(a + 1, a + 1).
- G.166 (FAUUSP-68) Determine a área do triângulo ABC onde A, B e C são, respectivamente, os pontos médios dos segmentos MN, NP e PM, sendo M(-1, -5), N(1, 3) e P(7, -5).

1°) área do ΔABC

$$S_{ABC} = \frac{|D_{ABC}|}{2} = 22$$

 $2^{\rm O}$) área do $\Delta {\sf ACD}$

$$D_{ACD} = \begin{bmatrix} 0 & 0 & 1 \\ 6 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} = 24 \quad -$$

$$S_{ACD} = \frac{|D_{ACD}|}{2} = 12$$

$$3^{\circ}$$
) $S_{ABCD} = S_{ABC} + S_{ACD} = 22 + 12 = 34$

Resposta: S = 34.

G.168 Calcular a área do quadrilátero cujos vértices são A(-1, 1), B(5, 0), C(7, 3) e D(3, -11).

G 167 Calcular a área do quadrilátero ABCD, dados: A(0,0), B(4,-2), C(6,8) e D(0,4).

- G.169 Calcular a área do pentágono ABCDE, dados: A(0, 0), B(0, -1), C(-2, -5), D(-4, 0) e E(-2, +3).
- G.170 Determinar y de modo que o triângulo de vértices A(1, 4), B(4, 1) e C(0, y) tenha área 6.

Solução

$$D_{ABC} = \begin{vmatrix} 1 & 4 & 1 \\ 4 & 1 & 1 \\ 0 & y & 1 \end{vmatrix} = 3y - 15$$

$$S = \frac{|DABC|}{2} \Rightarrow 6 = \frac{|3y - 15|}{2} \Rightarrow 4 = |y - 5| \Rightarrow y - 5 = \pm 4 \Rightarrow y = 5 \pm 4$$

Resposta: y = 9 ou y = 1.

- G.171 Dados os pontos A(1, 4), B(3, -2) e C(2, y), calcular y para que a área do triângulo ABC seja 10.
- G.172 Num triângulo ABC, temos:
 - 1°) AB \subset r tal que (r) y = 3x
 - 2°) AC \subseteq s tal que (s) x = 3y
 - 3°) BC \subset t tal que t # u e (u) x + y = 0
 - 4°) a área do triângulo ABC é 4.

Obter a equação da reta t.

Solução

Seja x + y + c = 0 a equação da reta $t /\!\!/ u$. Falta apenas determinar o coeficiente c.

$$\begin{cases} y = 3x & \frac{\text{resolvendo}}{x = 3y} \\ x = 3y & \frac{1}{2} \end{cases} \quad x = y = 0 \longrightarrow A(0, 0)$$

$$2^{\circ}$$
) determinemos $r \cap t$

$$\begin{cases} y = 3x \\ x + y + c = 0 \end{cases} \xrightarrow{\text{resolvendo}} x = -\frac{c}{a} \ e \ y = -\frac{3c}{4} \rightarrow B(-\frac{c}{4}, -\frac{3c}{4})$$

$$\begin{cases} x = 3y \\ x + y + c = 0 \end{cases} \xrightarrow{\text{resolvendo}} x = -\frac{3c}{4} \quad \text{e} \quad y = -\frac{c}{4} \rightarrow C(-\frac{3c}{4}, -\frac{c}{4})$$

$$dABC = \begin{vmatrix} 0 & 0 & 1 \\ -\frac{c}{4} & -\frac{3c}{4} & 1 \\ -\frac{3c}{4} & -\frac{c}{4} & 1 \end{vmatrix} = \frac{c^2}{16} - \frac{9c^2}{16} = -\frac{c^2}{2}$$

$$S_{ABC} = \frac{|D_{ABC}|}{2} \Rightarrow 4 = \frac{c^2}{4} \Rightarrow c^2 = 16 \Rightarrow c = \pm 4$$

Resposta: (t) $x + y \pm 4 = 0$

- G.173 Calcular as coordenadas do vértice C do triângulo ABC de área 6, sabendo que A = (0, 2), B é a intersecção da reta (r) x y 4 = 0 com o eixo dos $x \in C \subseteq r$.
- G.174 (FAUUSP-69) Determinar a área do triângulo ABC sabendo-se que:
 - a) $A \equiv (1, -1)$ e $B \equiv (-3, 2)$
 - b) y = -x 1 é a equação do lado BC
 - c) o coeficiente angular da reta AC é 1
- G.175 Determinar o vértice C de um triângulo ABC, de área igual a 1,5, no qual A(2, -3), B(3, -2) e cujo baricentro está sobre a reta 3x y 8 = 0.
- G.176 Num triângulo ABC, onde A(0, 0), B(5, 1) e C(1, 5), toma-se M na reta BC tal que as áreas dos triângulos AMC e AMB ficam na razão $\frac{1}{4}$. Calcular as coordenadas de M.
- G.177 Os vértices de um triângulo são A(O O), B(7, 11) e C(8, 1). Pede-se:
 - a) obter o baricentro G do triângulo.
 - b) mostrar que os triângulos ABG, ACG e BCG têm a mesma área.

- G.178 Demonstrar que uma mediana de um triângulo divide-o em partes equivalentes.
- s, acesse: http://fuvestib.**G.179**n.Demonstrar que a área de um triângulo é o quádruplo da área do triângulo cujos vértices são os pontos médios de seus lados.
 - G.180 Determinar uma reta perpendicular a (r) 3x + 4y = 0 que defina com as bissetrizes dos quadrantes um triângulo de área 28 unidades.
 - G.181 Obter uma reta que passe por P(-4, 6) e defina com os eixos coordenados um triângulo de área 6, no primeiro quadrante.
 - G.182 (MAPOFEI-69) São dados, num plano, as duas retas r_1 , de equação y = 1, e r_2 com equações paramétricas $x = -2 + \lambda$ e $y = 1 + 2\lambda$ e o ponto A = (1, 2).
 - a) Entre as retas que passam por A, determinar a reta r para a qual as distâncias de A às intersecções com r₁ e r₂ são iguais.
 - Satisfeita a condição do item anterior, determinar a área do triângulo formado pelas retas r, r₁ e r₂.

IV. VARIAÇÃO DE SINAL DA FUNÇÃO E(x, y) = ax + by + c

80. Consideremos o trinômio:

$$E(x, y)$$
 ou $E(P) = ax + by + c$ $(a \neq 0 \text{ ou } b \neq 0)$

função de duas variáveis x e y cujo domínio é o conjunto dos infinitos pares ordenados (x, y), isto é, é o conjunto de pontos P do plano cartesiano.

Sabemos que os pontos $P(x_0, y_0)$ para os quais $\cdot E(P) = ax_0 + by_0 + c = 0$ estão todos sobre a mesma reta r do plano cartesiano.

Consideremos dois pontos $Q(x_1, y_1)$ e $R(x_2, y_2)$, não pertencentes à reta r, os quais determinam a reta s concorrente com r em M(x, y).

O ponto M divide \overrightarrow{QR} na razão. k, então:

$$x = \frac{x_1 + k \cdot x_2}{1 + k} \quad e$$

$$y = \frac{y_1 + k \cdot y_2}{1 + k}$$

Por outro lado, M pertence à reta, r então deve satisfazer sua equação:

Para mais, acesse: http://fuvestibular.com.br.

$$a \cdot \left[\frac{x_1 + k \cdot x_2}{1 + k} \right] + b \cdot \left[\frac{y_1 + k \cdot y_2}{1 + k} \right] + c = 0$$

$$a(x_1 + k \cdot x_2) + b \cdot (y_1 + k \cdot y_2) + c \cdot (1 + k) = 0$$

donde tiramos:

$$k = -\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c} = -\frac{E(Q)}{E(R)}$$

Finalmente temos:

1.9) Se Q e R estão no mesmo semi-plano em relação a r, então M é exterior a \overrightarrow{QR} o que implica k < 0, isto é, $ax_1 + by_1 + c$ e $ax_2 + by_2 + c$ de mesmo sinal. Em símbolos

Q num semi-plano
$$\Rightarrow E(Q) \cdot E(R) > 0$$
 R no mesmo semi-plano

20) Se Q e R estão em semi-planos opostos em relação a r então M é interior a \overrightarrow{QR} o que implica k > 0, isto é, $ax_1 + by_1 + c$ e $ax_2 + by_2 + c$ de sinais contrários. Em símbolos:

$$\left. egin{array}{ll} Q & \text{num semi-plano} \\ R & \text{no outro} \end{array} \right\} \Longrightarrow E(Q) \cdot E(R) < 0$$

81. Resumo

- 1) o conjunto de pontos $P(x_0, y_0) \in r$ anulam E(x, y);
- 2) o conjunto de pontos $Q(x_1, y_1)$ pertencentes a um mesmo semi-plano e não pertencentes a (r) tornam E(x, y) > 0 e
- 3) o conjunto de pontos $R(x_2, y_2)$ pertencentes ao outro semi-plano e não pertencentes a (r) tornam E(x, y) < 0.

82. Exemplos

1. Estudar a variação de sinal de E = 2x + y - 2.

pontos que anulam E:

$$E = 0 \Longrightarrow 2x + y - 2 = 0 \longrightarrow r$$

1.9) Determinemos o conjunto dos

2⁰.) Determinemos o sinal de E no semi-plano da origem

$$E(0) = 2 \cdot 0 + 0 - 2 = -2 < 0$$

- 3°) concluímos que, para todo ponto do semi-plano $r\alpha$, temos E > 0 e, de $r\beta$, temos E < 0 (veja figura).
 - 2. Estudar a variação de sinal de

$$E = x - y$$

10)
$$E = 0 \implies x - y = 0 \longrightarrow r$$

$$2^{\circ}$$
) $E(1, 0) = 1 - 0 = 1 > 0$

39) Conclusão:

$$P \in r \implies E(P) = 0$$

$$P \in r\alpha \implies E(P) > 0$$

$$P \in r\beta \implies E(P) < 0$$

83. Regra prática

Do estudo da variação de sinais do trinômio E(x, y) = ax + by + c, podemos tirar a seguinte regra prática:

- 1.0) Dado o trinômio E(x, y) = ax + by + c, buscamos os pontos que o anulam (pontos da reta r de equação ax + by + c = 0);
- 2°) Calculamos o sinal de E na origem O(0, 0). Este sinal é o de c, pois $E(0) = a \cdot 0 + b \cdot 0 + c = c$. Aplicamos a teoria concluindo que o sinal E(0) é o sinal de E em qualquer ponto do semi-plano onde está O.
- 3º) Atribuímos a E, nos pontos do semi-plano oposto ao anterior, sinal contrário ao de c.

Observamos que, se a reta r contiver O, o raciocínio anterior não é válido. Neste caso, em vez de O, temos de tomar P qualquer, fora de r. (Por exemplo num quadrante onde não passa a reta r).

Para mais, acesse: http://fuvestibular.conSolução

84. A principal aplicação do estudo de sinais ora concluído é na resolução de inequações do primeiro grau a duas incógnitas, as quais só admitem solução gráfica.

Exemplos

- 1. Resolver x y + 1 > 0
 - 1.0) equação de r $E = 0 \Rightarrow x - y + 1 = 0$
 - 20) $E(0) = 1 > 0 \Rightarrow E > 0 \text{ em } r\alpha$
 - 3°) E < 0 em r β

Resposta: região ra

- 2. Resolver $2x + y \ge 0$
 - 1.0) equação de r $F = 0 \Rightarrow 2x + y = 0$
 - 29) E(1, 1) $E(1, 1) = 2 \cdot 1 + 1 = 3 > 0$ então E > 0 em $r\alpha$
 - 3°) E < 0 em r β

Resposta: $r\alpha \cup r$

EXERCÍCIOS

G.183 Estudar a variação de sinais dos trinômios:

- a) E = x + y 2
- b) E = 2x 3y + 6
- c) E = -x + 2y + 4
- d) E' = 3x + 2y + 12
- e) E = 4x + 3y

1º) equação de r

$$E = 2x + 3y - 6 = 0$$

×	у	ponto
0	2	Α
3	0	В

20) valor de E na origem

$$E(0) = 2(0) + 3(0) - 6 = -6$$

E ≤ 0 no semi-plano rβ

E ≥ 0 no semi-plano rα

3°.) $E(x, y) \ge 0 \Rightarrow (x, y) \in r\alpha$

Resposta: semi-plano rα (incluindo r)

G.185 Resolver graficamente as inequações:

a)
$$2x + 3y + 1 > 0$$

b)
$$3x - 4y - 6 < 0$$

c)
$$2x - y < 0$$

d)
$$2x - 4y + 4 \ge 0$$

e)
$$3x + 4y \ge 0$$

f)
$$5x + y - 5 \le 0$$

G.186 Resolver a inequação $\frac{x-y+2}{x+y-2} \ge 0$.

Solução

1.) Variação de $E_1 = x - y + 2$ $E_1 = 0 \Rightarrow x - y + 2 = 0$ (r) $E_1(0) = +2 > 0$

3°) $\frac{E_1}{E_2} \geqslant 0 \Rightarrow \begin{cases} E_1 & e & E_2 \text{ com sinais iguais} \\ ou & E_1 & = 0 & e & E_2 \neq 0 \end{cases}$

Resposta: a inequação é satisfeita pelos pontos (x, y) dos dois ângulos opostos pelo vértice da figura, com exceção dos pontos da reta s.

91-G

Para mais, acesse: http://fuvestibular.com.br/

1. caso:
$$x - y + 1 < 0$$
 e $x + y + 2 < 0$

2° caso:
$$x + 3y < 0$$
 $e \times \ge 0$

3. caso:
$$y \ge 1$$
 e x - 2 > 0

4. caso:
$$6x + 3y - 6 \le 0$$
 e $3x + 6y \ge -12$

5° caso:
$$2x - 5y < 10$$
 e $y \ge 2$

G.188 Resolver a inequação $|x + y| \le 1$.

Solução

1°)
$$|x+y| \le 1 \iff (x+y)^2 \le 1 \iff (x+y+1)(x+y-1) \le 0$$

2°) variação de
$$E_1 = x + y + 1$$

$$E_1 = 0 \implies x + y + 1 = 0 \text{ (r) } r$$

$$E_1(0) = 1 > 0$$

4°)
$$E_1 \cdot E_2 \leqslant 0 \Longrightarrow \begin{cases} E_1 \ e \ E_2 \ com \ sinais \ contrários \ ou \ E_1 = 0 \ ou \ E_2 = 0 \end{cases}$$

Resposta: a inequação é satisfeita pelos pontos (x, y) da faixa de plano compreendida entre r e s, incluindo as retas r e s.

G.189 Determinar os pontos P do plano cartesiano cujas coordenadas satisfazem as desiqualdades:

$$1^{\circ}_{caso}$$
: $|x| > 1$

$$4^{\circ}_{caso}$$
: $|x| + |y| \leq 1$

$$2^{\circ}_{\cdot}$$
 caso: $|x + y| < 1$

5° caso:
$$y - 2 > 0$$
 e $|x| \le 1$

30 caso:
$$|x| + y > 1$$

6° caso:
$$1 < |y| < 2$$
 e $1 < |x| < 3$.

G.190 Determinar os pontos P do plano cartesiano cujas coordenadas satisfazem as desiqualdades:

10 caso:
$$(3x - y + 6)(2x + 4y - 12) < 0$$

2° caso:
$$(4x + 2y + 4)(x - y - 1) \ge 0$$

3º caso:
$$\frac{x + y - 1}{2x - y + 2} \ge 0$$

4° caso:
$$\frac{x + y - 2}{x - y + 1} \le 0$$
 e $y \ge 0$

G.191 Assinalar no plano cartesiano o conjunto no qual estão contidas todas as retas de equação x + y + c = 0 com $c \le -1$.

VI BISSETRIZES DOS ÁNGULOS DE DUAS RETAS

85. Vamos obter as equações das bissetrizes dos ângulos definidos pelas retas concorrentes (r) $a_1x + b_1y + c_1 = 0$ e (s) $a_2x + b_2y + c_2 = 0$.

A reta r divide o plano em dois semi-planos nos quais o trinômio E₁ = $= a_1 x + b_1 x + c_1$ assume valores numéricos de sinais contrários, excluídos os pontos de r. Analogamente, a reta s divide o plano em dois semi-planos nos quais o trinômio $E_2 = a_2 x + b_2 y + c_2$ assume valores de sinais contrários, excluídos os pontos de s.

Verificamos que sempre r e s determinam dois ângulos opostos pelo vértice (assinalados na figura) onde E₁ e E₂ assumem valores numéricos de mesmo sinal e determinam dois outros ângulos opostos pelo vértice onde E₁ e E2 assumem sinais contrários.

Temos então:

1.) Se
$$P(x, y) \in t_2$$
 então $d_{Pr} = d_{Ps}$, isto é,

$$\left| \frac{\mathsf{E}_{1}(\mathsf{P})}{\sqrt{\mathsf{a}_{1}^{2} + \mathsf{b}_{1}^{2}}} \right| = \left| \frac{\mathsf{E}_{2}(\mathsf{P})}{\sqrt{\mathsf{a}_{2}^{2} + \mathsf{b}_{2}^{2}}} \right|$$

sendo
$$E_1(P) \cdot E_2(P) > 0$$

$$\frac{\mathbf{a}_1 \mathbf{x} + \mathbf{b}_1 \mathbf{y} + \mathbf{c}_1}{\sqrt{\mathbf{a}_1^2 + \mathbf{b}_1^2}} = \frac{\mathbf{a}_2 \mathbf{x} + \mathbf{b}_2 \mathbf{y} + \mathbf{c}_2}{\sqrt{\mathbf{a}_2^2 + \mathbf{b}_2^2}}$$

que é a equação da reta t₂.

20) Se $P(x, y) \in t_1$ então $d_{Pr} = d_{Ps}$, isto é

$$\left| \frac{\mathsf{E}_1(\mathsf{P})}{\sqrt{\mathsf{a}_1^2 + \mathsf{b}_1^2}} \right| = \left| \frac{\mathsf{E}_2(\mathsf{P})}{\sqrt{\mathsf{a}_2^2 + \mathsf{b}_2^2}} \right|$$

sendo $E_1(P) \cdot E_2(P) < 0$ então

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = -\frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$$

que é a equação da reta t₁

Resumo

As equações das bissetrizes são

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}} = 0$$

86. Exemplo

Obter as equações das bissetrizes dos ângulos formados pelas retas

(r)
$$3x + 4y - 1 = 0$$
 e (s) $12x - 5y = 0$

(s)
$$12x - 5y = 0$$

As equações são:

$$\frac{3x + \frac{4y - 1}{\sqrt{9 + 16}}}{\sqrt{9 + 16}} \pm \frac{12x - 5y}{\sqrt{144 + 25}} = 0 \implies$$

$$\Rightarrow \frac{3x + 4y - 1}{5} \pm \frac{12x - 5y}{13} = 0 \Rightarrow 13(3x + 4y - 1) \pm 5(12x - 5y) = 0$$

Resposta:
$$99x + 27y - 13 = 0$$
 ou $-21x + 77y - 13 = 0$

Observemos que as bissetrizes são perpendiculares:

$$m_1 = -\frac{99}{27} = -\frac{11}{3}$$
 $m_2 = -\frac{-21}{77} = \frac{3}{11}$
 $\Rightarrow m_1 \cdot m_2 = -1 \Rightarrow t_1 \perp t_2$

EXERCÍCIOS

Para mais, acesse: http://fuvestibula

G. 192 Obter as equações das bissetrizes dos ângulos formados por (r) 3x + 4y = 0 e (s) 8x - 6y - 1 = 0.

Solução

Pela teoria, temos:

$$\frac{3x + 4y}{\sqrt{9 + 16}} \pm \frac{8x - 6y - 1}{\sqrt{64 + 36}} = 0$$

$$2(3x + 4y) \pm (8x - 6y - 1) = 0$$

$$(6x + 8y) \pm (8x - 6y - 1) = 0$$

Separando as equações, vem:

$$\begin{cases} (6x + 8y) + (8x - 6y - 1) = 0 \implies 14x + 2y - 1 = 0 \\ ou \\ (6x + 8y) - (8x - 6y - 1) = 0 \implies -2x + 14y + 1 = 0 \end{cases}$$

Resposta: 14x + 2y - 1 = 0 e 2x - 14y - 1 = 0

- G.193 Determinar as equações das bissetrizes dos ângulos formados por (r) 3x + 3y 1 = 0 e(s) 2x - 2y + 1 = 0
- G.194 Qual é a equação do logar geométrico dos pontos P(x, y) equidistantes das retas (r) 4x - 3y - 10 = 0 e (s) 12x + 5y - 13 = 0
- G.195 Qual é a equação do lugar geométrico dos pontos P(x, y) equidistantes das retas (r) 3x + 4y - 15 = 0 e (s) 24x + 7y + 25 = 0.
- G.196.Qual é a bissetriz do ângulo agudo formado pelas recas (r) 2x + 3y 1 = 0 e (s) 3x + 2y + 1 = 0?

Solução

10) obtemos as duas bissetrizes

$$\frac{2x + 3y - 1}{\sqrt{4 + 9}} \pm \frac{3x + 2y + 1}{\sqrt{9 + 4}} = 0$$

$$(2x + 3y - 1) \pm (3x + 2y + 1) = 0$$

$$\text{então} \begin{cases} (t_1) & 2x + 3y - 1 + 3x + 2y + 1 = 0 \implies x + y = 0 \\ (t_2) & 2x + 3y - 1 - 3x - 2y - 1 = 0 \implies x - y + 2 = 0 \end{cases}$$

20) determinemos qual delas é a bissetriz do ângulo agudo.

> Para isso tomamos qualquer P∈r e calculamos dpt, e dpt2.

A menor distância corresponde à bissetriz do ângulo agudo.

Resposta:
$$(t_1) (3\sqrt{13} + \sqrt{5})x - (\sqrt{13} + 5\sqrt{5})y = 0$$

- Fazendo $x_p = 2$ resulta $y_p = -1$.
- Seja $P(2, -1) \in r$. Temos:

$$dp_{t_{1}} = \left| \frac{(2) + (-1)}{\sqrt{1 + 1}} \right| = \left| \frac{1}{\sqrt{2}} \right| = \frac{1}{\sqrt{2}}$$

$$dp_{t_{2}} = \left| \frac{(2) - (-1) + 2}{\sqrt{1 + 1}} \right| = \left| \frac{5}{\sqrt{2}} \right| = \frac{.5}{\sqrt{2}}$$

$$\implies dp_{t_{1}} < dp_{t_{2}}$$

- Resposta: $(t_1) x + y = 0$
- **G.197** Determinar a bissetriz do ângulo agudo definido pelas retas (r) x + 5y = 0 e (s) $4x - \sqrt{10 \cdot y} = 0$.
- G.198 Qual é a equação da bissetriz interna, por A, no triângulo de vértices A(0, 0) B(2, 6) e C(5, 1)?

Solução ·

1º) equações de AB e AC

$$\begin{vmatrix} x & y & 1 \\ 2 & 6 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0 \Longrightarrow 6x - 2y = 0 \Longrightarrow 1$$

$$\begin{vmatrix} x & y & 1 \\ 5 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0 \Longrightarrow x - 5y = 0$$

20) equações das bissetrizes

$$\frac{3x - y}{\sqrt{10}} \pm \frac{x - 5y}{\sqrt{26}} = 0$$

$$\sqrt{13} (3x - y) \pm \sqrt{5} (x - 5y) = 0$$

então
$$\begin{cases} (t_1) & (3\sqrt{13} + \sqrt{5})x \sim (\sqrt{13} + 5\sqrt{5})y = 0 \\ (t_2) & (3\sqrt{13} - \sqrt{5})x - (\sqrt{13} - 5\sqrt{5})y = 0 \end{cases}$$

3º) uma diferença básica entre as duas bissetrizes é que a interna deixa B e C em semi-planos opostos enquanto a externa deixa no mesmo semi-plano. Tomando a bissetriz tili e fazendo

$$\begin{aligned} E_1 &= (3\sqrt{13} + \sqrt{5})x - (\sqrt{13} + 5\sqrt{5})y, \text{ temos:} \\ E_1(B) &= (3\sqrt{13} + \sqrt{5}) \cdot 2 - (\sqrt{13} + 5\sqrt{5}) \cdot 6 = -28\sqrt{5} < 0 \\ E_1(C) &= (3\sqrt{13} + \sqrt{5}) \cdot 5 - (\sqrt{13} + 5\sqrt{5}) \cdot 1 = 14\sqrt{13} > 0 \end{aligned}$$

- G.199 Obter a equação da bissetriz interna, por B, do triângulo cujos vértices são A(5, 4), B(1, 1) e C(4, -3).
- G.200 Dados A(0, 0), B(3, 0) e C(0, 4), obter o centro da circunferência inscrita no triângulo ABC.
- G.201 Dados A(0, 0), B(3, 4) e C(12, -5), calcular o comprimento da bissetriz interna AP do triângulo ABC.

Solução

1°.) Aplicando determinante, obtemos as equações dos lados do triângulo:

(AB)
$$4x - 3y = 0$$
, (BC) $x + y - 7 = 0$, (CA) $5x + 12y = 0$

20) As equações das bissetrizes por A são:

$$\frac{4x - 3y}{\sqrt{16 + 9}} \pm \frac{5x + 12y}{\sqrt{25 + 144}} = 0 \Rightarrow 13(4x - 3y) \pm 5(5x + 12y) = 0$$

donde vem
$$\begin{cases} (t_1) & 11x + 3y = 0 \\ (t_2) & 3x - 11y = 0 \end{cases}$$

 3°) Fazendo E = 11x + 3y, temos:

$$E(B) = 11(3) + 3(4) = 45$$

$$E(C) = 11(12) + 3(-5) = 117$$

então a bissetriz interna é (t_2) 3x - 11y = 0

4°.) A intersecção de t₂ com BC é a solução do sistema

$$\begin{cases} 3x - 11y = 0 \\ x + y - 7 = 0 \end{cases} \longrightarrow x = \frac{11}{2}, \quad y = \frac{3}{2} \Rightarrow P(\frac{11}{2}, \frac{3}{2})$$

5°) A distância AP é AP = $\sqrt{(\frac{11}{2} - 0)^2 + (\frac{3}{2} - 0)^2} = \frac{\sqrt{130}}{2}$

Resposta:
$$\frac{\sqrt{130}}{2}$$

G.202 Calcular o comprimento da bissetriz interna AS do triângulo cujos vértices são A(0, 0), B(12, 5) e C(8, 15). 87. Seja P(x, y) um ponto referido a um sistema cartesiano ortogonal xOy.

Se XOY é um sistema ortogonal com mesma origem que xOy e o ângulo entre os eixos x e X é α , dizemos que XOY foi obtido por uma rotação de xOy.

Nosso problema é estabelecer uma relação entre as coordenadas de P no novo sistema (XOY) e no antigo (xOy).

Notemos que:

$$x = \overline{OP_1}, y = \overline{OP_2}$$

$$X = \overline{OP_3} = \overline{P_4P}, \quad Y = \overline{OP_4} = \overline{P_3P}$$

Temos

19)
$$\overrightarrow{OP} = \overrightarrow{OP_3} + \overrightarrow{P_3P}$$

Projetando os três segmentos sobre Ox, temos:

proj.
$$\overrightarrow{OP} = \text{proj. } \overrightarrow{OP}_3 + \text{proj. } \overrightarrow{P_3P}$$

 $\overrightarrow{OP}_1 = \overrightarrow{OP}_3 \cdot \cos \alpha + \overrightarrow{P_3P} \cdot \cos (\frac{\pi}{2} + \alpha)$

P.

$$x = X \cdot \cos \alpha - Y \cdot \sin \alpha$$

2°)
$$\overrightarrow{OP} = \overrightarrow{OP_4} + \overrightarrow{P_4P}$$

Projetando os três segmentos sobre Oy, temos:

proj.
$$\overrightarrow{OP} = \text{proj. } \overrightarrow{OP_4} + \text{proj. } \overrightarrow{P_4P}$$

 $\overrightarrow{OP_2} = \overrightarrow{OP_4} \cdot \cos \alpha + \overrightarrow{P_4P} \cdot \cos (\frac{\pi}{2} - \alpha)$

$$y = X \cdot sen \alpha + Y \cdot cos \alpha$$

CIRCUNFERÊNCIAS

I. EQUAÇÃO REDUZIDA

88. Definição

Dados um ponto C, pertencente a um plano α , e uma distância r não nula, chama-se circunferência o conjunto dos pontos de α que estão à distância r do ponto C.

circunferência =
$$\{P \in \alpha \mid PC = r\}$$

89. Consideremos a circunferência λ de centro $\,$ C(a, b) $\,$ e raio $\,$ r.

Um ponto P(x, y) pertence a λ se, e somente se, a distância PC é igual ao raio r.

Chama-se equação da circunferência aquela que é satisfeita por todo ponto P(x, y) pertencente à curva. É imediato que um ponto genérico $P \in \lambda$ verifica a condição PC = r, portanto temos:

$$P \in \lambda \iff PC = r \iff \sqrt{(x - a)^2 + (y - b)^2} = r$$

e, daí, vem a equação reduzida da circunferência

$$(x-a)^2 + (y-b)^2 = r^2$$
 (1)

Assim, por exemplo, a circunferência de centro C(5, 6) e rajo r = 2 tem equação $(x - 5)^2 + (y - 6)^2 = 4$; a circunferência de centro $C(-1_{\text{Rara}} 2)_{\text{mis}} e_{\text{cesse} \cdot \text{httn://flivestibular}} e_{\text{tesse}}$ represente uma circunferência? raio r = 3 tem equação $(x + 1)^2 + (y + 2)^2 = 9$; a circunferência de centro C(0, 0) e rajo r = 4 tem equação $x^2 + y^2 = 16$.

Inversamente, toda equação da forma (1), com $r^2 > 0$, representa em um sistema cartesiano ortogonal uma circunferência de centro C(a, b) e raio r.

Assim, por exemplo, a equação $(x-2)^2 + (y-3)^2 = 1$ representa uma circunferência de centro C(2, 3) e raio r = 1; a equação $(x + 2)^2 + (y + 3)^2 = 1$ representa uma circunferência de centro C(-2, -3) e rajo r = 1; a equação $x^2 + y^2 = 1$ representa uma circunferência de centro C(0, 0) e raio r = 1.

II. EQUAÇÃO NORMAL

Desenvolvendo a equação reduzida (1), obtemos:

$$(x^2 - 2ax + a^2) + (y^2 - 2by + b^2) = r^2$$

isto ė.

$$x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) = 0$$
 (II)

chamada equação normal da circunferência.

Assim, por exemplo, a equação $x^2 + y^2 - 2x - 2y - 7 = 0$ representa uma circunferência de centro C(1, 1) e raio r = 3 pois equivale a

$$(x - 1)^2 + (y - 1)^2 = 9$$

III. RECONHECIMENTO

91. Vamos examinar agora um problema importantíssimo: "dada uma equação do 2º grau, em x e y, com coeficientes reais.

$$Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$$
 (111)

pergunta-se:

Para mais, acesse: http://fuvestibular.com.br/

- 1) quais são as condições que A, B, C, D, E, F devem obedecer para
- 2) quais são as coordenadas do centro?
- 3) qual é o raio?"

Para resolver o problema, comparemos as equações:

$$x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) = 0$$
 (11)

$$x^2 + \frac{B}{A}y^2 + \frac{C}{A}xy + \frac{D}{A}x + \frac{E}{A}y + \frac{F}{A} = 0$$
 (III')

Notemos que (II) é certamente a equação de uma circunferência e (III') foi obtida dividindo (III) por A (suposto não nulo), portanto (III') equivale a (III).

Para que as equações (II) e (III') representem a mesma curva (circunferência). devem ser satisfeitas pelos mesmos pares ordenados (x, y), isto é, devem ser equivalentes e, para isso, devem apresentar coeficientes respectivamente iguais:

termo
$$y^2 \rightarrow \frac{B}{A} = 1 \implies B = A \neq 0$$

termo xy
$$\rightarrow \frac{C}{\Delta} = 0 \implies C = 0$$

termo x
$$\rightarrow \frac{D}{A} = -2a \Longrightarrow a = -\frac{D}{2A}$$

termo y
$$\rightarrow \frac{E}{\Delta} = -2b \Longrightarrow b = -\frac{E}{2A}$$

termo independente
$$\rightarrow \frac{F}{A} = a^2 + b^2 - r^2 \Longrightarrow r^2 = a^2 + b^2 - \frac{F}{A} =$$

$$= \frac{D^2}{4\Delta^2} + \frac{E^2}{4\Delta^2} - \frac{F}{A} = \frac{D^2 + E^2 - 4AF}{4\Delta^2}$$

Notemos que r é número real positivo então $r^2 > 0$ portanto

$$D^2 + E^2 - 4AF > 0$$

é condição necessária para a existência da circunferência.

Vamos responder as três perguntas feitas pelo problema:

1)
$$B = A \neq 0$$
, $C = 0$, $D^2 + E^2 - 4AF > 0$

Quer dizer que uma equação do 2º grau só representa circunferência se x² e y² tiverem coeficientes iguais, se não existir termo misto xy e se

$$r^2 = \frac{D^2 + E^2 - 4AF}{4A^2}$$
 for real e positivo

Para mais, acesse: http://fuvestibular.com.ba/ $n\tilde{a}o_{1}$ porque A = 1 e B = 3 (x^{2} e y^{2} $n\tilde{a}o$ têm coeficientes iguais)

2) centro
$$\left(-\frac{D}{2A}, -\frac{E}{2A}\right)$$

3) raio =
$$\frac{\sqrt{D^2 + E^2 - 4AF}}{2 \cdot |A|}$$

92. Observações

1ª) Se uma das três condições necessárias

$$(A = B \neq 0, C = 0, D^2 + E^2 - 4AF > 0)$$

não for satisfeita, a equação $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$ não representa circunferência mas pode representar uma cônica ou a reunião de duas retas ou um ponto ou o conjunto vazio. Sobre este assunto deve-se ler o item 159 deste livro.

 2^{a} .) Quando a equação de uma circunferência apresenta x^{2} e y^{2} com coeficientes unitários (A = B = 1) as coordenadas do centro e o raio podem ser calculados assim:

$$a = -\frac{D}{2}$$
, $b = -\frac{E}{2}$, $r = \sqrt{a^2 + b^2 - F}$

3ª.) Outro processo prático, quando A = B = 1, para obter centro e raio é passar a equação para a forma reduzida $(x - a)^2 + (y - b)^2 = r^2$, onde a leitura de a, b, r é imediata.

93. Exemplos

1º) Qual das equações abaixo representa uma circunferência?

a)
$$x^2 + 3y^2 - 5x - 7y - 1 = 0$$

b)
$$x^2 + y^2 + xy - 4x - 6y - 9 = 0$$

c)
$$3x^2 + 3y^2 + 4x - 6y + 15 = 0$$

d)
$$x^2 + y^2 - 2x - 2y + 2 = 0$$

e)
$$2x^2 + 2y^2 - 4x - 6y - 3 = 0$$

c) não, porque
$$D^2 + E^2 - 4AF = 16 + 36 - 180 = -138 \le 0$$

(o raio seria um número complexo)

d) não, porque
$$D^2 + E^2 - 4AF = 4 + 4 - 8 = 0$$
 (o raio seria nulo)

ce) sim, porque
$$A = B = 2$$
, $C = 0$, $D^2 + E^2 - 4AF = 16 + 36 + 24 = 76 > 0$

$$x^2 + y^2 - 2x + y - 1 = 0$$

Solução

Solução

Temos A = B = 1, D = -2, E = 1, F = -1, então:

$$a = -\frac{D}{2} = 1$$
, $b = -\frac{E}{2} = -\frac{1}{2}$, $r^2 = a^2 + b^2 - F = 1 + \frac{1}{4} + 1 = \frac{9}{4}$

Resposta: centro
$$(1, -\frac{1}{2})$$
 e raio = $\frac{3}{2}$

 3°) Obter o centro e o raio da circunferência λ cuja equação é

$$4x^2 + 4y^2 - 4x - 12y + 6 = 0$$

Solução

Dividimos a equação por 4:

$$x^2 + y^2 - x - 3y + \frac{3}{2} = 0$$

e aplicamos as fórmulas simplificadas:

$$a = -\frac{D}{2} = \frac{1}{2}, \quad b = -\frac{E}{2} = \frac{3}{2}$$

$$r^2 = a^2 + b^2 - F = \frac{1}{4} + \frac{9}{4} - \frac{3}{2} = 1$$

Resposta: centro $(\frac{1}{2}, \frac{3}{2})$ e raio = 1

G.203 Determinar a equação da circunferência de centro C e raio r nos seguintes casos:

 1°) C(0, 0) e r = 3

- 4°) C(2.4) e r = 1
- 2°) C(2, 0) e r = 4
- 5°) C(0, -3) e r = 2
- 3°) C(-1, -2) e r = 5
- 6°) $C(\frac{1}{2}, \frac{3}{2})$ e r = 4

G.204 Qual é a equação da circunferência de centro C(1, 2) que passa por P(5, 5)?

G.206 Determinar o centro e o raio das seguintes circunferências:

- 1°) $x^2 + y^2 6x + 4y 12 = 0$ 4°) $2x^2 + 2y^2 8x 6y = 0$
- 2°) $x^2 + y^2 8x + 7 = 0$
- 5.0) $3x^2 + 3y^2 6x + 12y + 14 = 0$
- 3°) $x^2 + y^2 + 8y + 6x = 0$

G.207 (MAPOFEI-76) Achar a equação da reta que passa pelo centro da circunferência
$$(x - 3)^2 + (y - 2)^2 = 8$$
 e é perpendicular à reta $x - y - 16 = 0$.

G.208 (MAPOFEI-74) Determinar o centro e o raio da circunferência cuja equação é
$$4x^2 + 4y^2 - 12x + 12y - 7 = 0$$
.

G.209 (MAPOFEI-76) Se
$$Ax^2 + Ay^2 + Bx + Cy + D = 0$$
 (A \neq 0) é a equação de uma circunferência, determinar o centro e o raio.

G.210 Para que valores de m e k a equação
$$mx^2 + y^2 + 4x - 6y + k = 0$$
 representa uma circunferência?

Solução

$$A = B \implies m = 1$$

$$D^2 + E^2 - 4AF > 0 \implies 16 + 36 - 4mk > 0 \implies 16 + 36 > 4k \implies k < \frac{.52}{4} \implies k < 13$$

Resposta: m = 1 e k < 13.

G.211 Para que valores de m e k a equação abaixo representa uma circunferência?

- 1°) $mx^2 + v^2 + 4x + 6v + k = 0$
- 2°) $mx^2 + 2v^2 + 2x + 8v k = 0$
- 3°) $mx^2 + v^2 + 2x 4v + k = 0$
- G.212 Determinar a, b, c de modo que a equação $2x^2 + ay^2 + bxy + 3x + 4y + c = 0$ represente uma circunferência.

Solução

1º) Vamos impor duas condições necessárias para que a equação represente circun-

$$\begin{array}{cccc} A &= B & \Longrightarrow & \alpha &= 1 \\ C &= 0 & \Longrightarrow & \beta &= 0 \end{array}$$

 2^{0}) Se r = 6, temos:

$$r^2 = \frac{D^2 + E^2 - 4AF}{4A^2} = \frac{36 + 64 - 4\gamma}{4} = 36 \implies \gamma = \frac{36 + 64 - 144}{4} = -11$$

Resposta: $\alpha = 1$, $\beta = 0$ e $\gamma = -11$.

G.214 Qual deve ser a relação entre m, n, p para que a circunferência de equação $x^2 + y^2 - mx - ny + p = 0$ passe pela origem?

Solução

1.) Para que a circunferência passe pela origem, o ponto (0, 0) deve anular o 1º membro da equação, portanto:

$$0^2 + 0^2 - m \cdot 0 - n \cdot 0 + n = 0 \implies n = 0$$

20) Para que a circunferência exista, devemos impor:

$$D^2 + E^2 - 4AF = m^2 + n^2 - 4 \cdot 1 \cdot 0 = m^2 + n^2 > 0$$

Resposta: p = 0 e $m^2 + n^2 > 0$

G.215 Qual deve ser a relação entre m, n, p para que a circunferência de equação $x^2 + y^2 - mx - ny + p = 0$ tenha centro na origem?

Solução

1.0) Para que a circunferência tenha centro na origem devemos impor:

$$a = -\frac{D}{2A} = \frac{m}{2} = 0 \implies m = 0$$

$$b = -\frac{E}{2A} = \frac{n}{2} = 0 \Longrightarrow n = 0$$

2. Para que a circunferência exista, devemos impor:

$$D^2 + E^2 - 4AF = 0^2 + 0^2 - 4 \cdot 1 \cdot p > 0 \Longrightarrow p < 0$$

Resposta: m = n = 0 e p < 0

G.216 Dada a circunferência de equação $x^2 + y^2 - mx - ny + p = 0$ pede-se a relação entre m, n e p para que a circunferência tangencie os eixos.

G.217 Um quadrado tem vértices consecutivos A(5, 0) e B(-1, 0). Determinar a equação da circunferência circunscrita ao quadrado.

IV. PONTO E CIRCUNFERÊNCIA

membro, isto é:

94. Vamos resolver o problema: "dados um ponto $P(x_0, y_0)$ e uma circunferência λ de equação $(x - a)^2 + (y - b)^2 = r^2$, qual é a posição de P em relação a λ?"

Calculemos a distância de $P(x_0, y_0)$ até o centro C(a, b) e comparemos com o raio r.

São possíveis três casos:

10 caso: P é exterior a λ

Isto ocorre se e somente se

isto é

$$(x_0 - a)^2 + (y_0 - b)^2 > r^2$$

ou melhor

$$(x_0 - a)^2 + (y_0 - b)^2 - r^2 > 0$$

2º caso: P pertence a λ

Isto ocorre se, e somente se

$$PC = r$$

isto é

$$(x_0 - a)^2 + (y_0 - b)^2 = r^2$$

ou melhor

$$(x_0 - a)^2 + (y_0 - b)^2 - r^2 = 0$$

 3^{o} caso: P é interior a λ

Isto ocorre se, e somente se

isto é

$$(x_0 - a)^2 + (y_0 - b)^2 < r^2$$

ou melhor

$$(x_0 - a)^2 + (y_0 - b)^2 - r^2 < 0$$

0

To

Podemos resumir esta teoria assim: dada a circunferência λ de equação Para mais, acesse: http://fuvestibular.cex2 bt/ y^2 - 2ax - 2by + a^2 + b^2 - r^2 = 0, seja f(x, y) o polinômio do primeiro

$$f(x, y) = (x - a)^2 + (y - b)^2 - r^2$$

Quando é dado $P(x_0, y_0)$, cuja posição em relação a λ queremos determinar, substituímos (x₀, y₀) em f, isto é, calculamos:

$$f(x_0, y_0) = (x_0 - a)^2 + (y_0 - b)^2 - r^2$$

então, conforme vimos:

$$f(x_0, y_0) > 0 \iff P \text{ exterior a } \lambda$$

 $f(x_0, y_0) = 0 \iff P \in \lambda$
 $f(x_0, y_0) < 0 \iff P \text{ interior a } \lambda$

95. Exemplos

1.9) Qual é a posição de P(2, 3) e (
$$\lambda$$
) $x^2 + y^2 - 4x = 0$?
Temos f(x, y) = $x^2 + y^2 - 4x$

então:

$$f(2, 3) = 2^2 + 3^2 - 4(2) = 5 > 0 \Rightarrow P \text{ exterior a } \lambda$$

2°) Qual é a posição de P(0, 0) e (
$$\lambda$$
) $x^2 + y^2 - \sqrt{3}x + \sqrt{2}y = 0$?
Temos $f(x, y) = x^2 + y^2 - \sqrt{3}x + \sqrt{2}y$

então:

$$f(0, 0) = 0^2 + 0^2 - \sqrt{3} \cdot 0 + \sqrt{2} \cdot 0 = 0 \implies P \in \lambda$$

3. Determinar a posição de P(0, 1) e (
$$\lambda$$
) 2x² + 2y² + 5x + y - 11 = 0.
Temos f(x, y) = 2x² + 2y² + 5x + y - 11 = 0

então:

$$f(0, 1) = 2(0)^2 + 2(1)^2 + 5(0) + 1 - 11 = -8 < 0 \Rightarrow P$$
 interior a λ

96. Notemos que substituir $P(x_0, y_0)$ na função f(x, y) é muito mais simples que calcular PC e comparar com o raio r, pois obter C e r é uma operação trabalhosa principalmente se a equação da circunferência tiver coeficientes irracionais.

Para mais, acesse: http://fuvestibular.com.br/

Para mais, acesse: http://fuvestibular.com.br/ Solução

- G.223 Resolver o sistema de inequações: $\begin{cases} x^2 + y^2 \leq 9 \\ x + y \leq 3 \end{cases}$

- 2^{0}) P(-4 -5) e (λ) $x^{2} + y^{2} + 2x + 2y 2 = 0$
- 3°) P(0 0) e (λ) $x^2 + y^2 \sqrt{3}x + \pi y 1 = 0$
- G.220 Determinar p de modo que o ponto A(7, 9) seja exterior à circunferência de equação $x^2 + y^2 - 2x - 2y - p = 0$.

Solução

Fazendo
$$f(x, y) = x^2 + y^2 - 2x - 2y - p$$
, devemos ter: $f(7, 9) > 0$
 $f(7, 9) = 7^2 + 9^2 - 2 \cdot 7 - 2 \cdot 9 - p = 98 - p > 0$

portanto: p < 98.

Para a existência da circunferência, devemos ter

$$D^2 + E^2 - 4AF = 4 + 4 + 4p > 0 \Rightarrow p > -2$$
.

Resposta: -2 .

- G.221 Resolver as sequintes inequações:
 - 1^{a}) $x^{2} + y^{2} \leq 9$
- 3^a) $x^2 + y^2 + 2x + 2y 7 \le 0$
- 2^{a}) $x^{2} + y^{2} \ge 4$
- 4^{a}) $x^{2} + y^{2} 2x 2y + 1 > 0$
- **G.222** Resolver o sistema de inequações: $\begin{cases} x^2 + y^2 \leq 25 \\ x^2 + y^2 \geqslant 4 \end{cases}$

Şolução

1.0) Conforme vimos, o conjunto-solução da inequação

$$f(x, y) = x^2 + y^2 - 25 \le 0$$

é o círculo de centro na origem e raio 5.

2. Também vimos que o conjunto-solução da inequação

$$q(x, y) = x^2 + y^2 - 4 \ge 0$$

é o plano cartesiano menos o coniunto dos pontos interiores à circunferência de centro na origem e raio 2.

Como as condições são simultaneas, basta fazer a intersecção dos dois conjuntos já obtidos.

Resposta: o conjunto-solução do sistema é a coroa circular da figura ao lado.

10) Conforme vimos, o conjunto solução da inequação

ê o círculo de centro na origem e raio 3.

20) Também vimos no capítulo V que o conjunto-solução da inequação

$$E(x, y) = x + y - 3 \leqslant 0$$

é o semi-plano que contém a origem, definido pela reta

$$x + y - 3 = 0$$

30) Como as inequações são simultâneas, basta fazer a intersecção dos dois conjuntos já obtidos.

Resposta: o conjunto-solução do sistema é o segmento circular da figura ao lado.

G.224 Resolver os sequintes sistemas:

10)
$$\begin{cases} x^2 + y^2 \ge 1 \\ x^2 + y^2 \le 9 \end{cases}$$

19)
$$\begin{cases} x^2 + y^2 \geqslant 1 \\ x^2 + y^2 \leqslant 9 \end{cases}$$
 39)
$$\begin{cases} x^2 + y^2 \leqslant 25 \\ x^2 + y^2 - 12x + 20 \geqslant 0 \end{cases}$$

2^o)
$$\begin{cases} x^2 + y^2 \le 4 \\ (x - 1)^2 + y^2 \ge 4 \end{cases}$$
 4^o)
$$\begin{cases} x^2 + y^2 \le 1 \\ x + y \ge 1 \end{cases}$$

$$4^{0})\begin{cases} x^{2} + y^{2} \leqslant \\ x + y \geqslant 1 \end{cases}$$

- G.225 (MAUÁ-65) Achar a região do plano de pontos P, cujas coordenadas (x, y) satisfazem as relações $x + y \le 2$ e $x^2 + y^2 \le 16$. Pede-se fazer o gráfico da solução.
- G.226 Dados os conjuntos:

$$A = \{(x, y) \mid x^2 + y^2 \leq 25\}$$

$$B = \{(x, y) \mid x^2 + y^2 - 2x + k \leq 0\}$$

determinar k para que B seja subconjunto de A.

G 227 (MACK-71) São dados os conjuntos:

$$A = \{(x, y) \mid x^2 + y^2 - 4x + 6y \le 3\}$$

- $B = \{(x, y) \mid x + 3y \le k\}$
- a) Determine os valores de k para os quais A é um subconjunto de B.
- b) Determine os valores de k para os quais A e B são disjuntos.

99. Intersecção

Dadas uma reta (s) Ax + By + C = 0 e uma circunferência (λ) $(x - a)^2 + (y - b)^2 = r^2$, achar a intersecção de r com λ é determinar os pontos P(x, y) que pertencem às duas curvas.

É imediato que $P \in r$ e $P \in \lambda$, portanto, P satisfaz o sistema:

$$\begin{cases} Ax + By + C = 0 \\ (x - a)^2 + (y - b)^2 = r^2 \end{cases}$$

que pode ser resolvido facilmente por substituição.

100. Exemplos

1?) Obter a intersecção de (s) y = x com (λ) $x^2 + y^2 = 2$.

Substituindo, temos:

$$x^2 + (x)^2 = 2 \Longrightarrow 2x^2 = 2 \Longrightarrow \begin{cases} x = 1 = y \\ \text{ou} \\ x = -1 = y \end{cases}$$

Os pontos comuns a s e λ são P(1, 1) e Q(-1, -1).

Resposta: $s \cap \lambda = \{(1, 1), (-1, -1)\}$

2°) Obter a intersecção de (t) y = x - 2 com (λ) $x^2 + y^2 = 2$.

Substituindo, temos:

$$x^{2} + (x - 2)^{2} = 2 \Longrightarrow 2x^{2} - 4x + 2 = 0 \Longrightarrow x = 1 \Longrightarrow y = -1$$

Só há um ponto comum a t e λ , que é P(1, -1)

Resposta: $t \cap \lambda = \{(1, -1)\}$

- 3º) Obter a intersecção de
 - (e) v = x 3 com
 - (λ) $x^2 + y^2 = 2$.

Substituindo, temos:

$$x^2 + (x - 3)^2 = 2 \Longrightarrow$$

 $\Rightarrow 2x^2 - 6x + 7 = 0 \Longrightarrow \cancel{A} x \in \mathbb{R}$

Não há ponto comum a e e \lambda

Resposta: $e \cap \lambda = \emptyset$

101. Posições relativas

A posição relativa de uma reta (s) Ax + By + C = 0 e uma circunferência (λ) $(x - a)^2 + (y - b)^2 = r^2$ é determinada pesquisando o número de soluções do sistema:

$$\begin{cases} Ax + By + C = 0 \\ (x - a)^2 + (y - b)^2 = r^2 \end{cases}$$

Conforme vimos, aplicando o método da substituição, a equação da circunferência se reduz a uma equação do 2º grau a uma incógnita.

É o discriminante (△) dessa equação que define o número de soluções do sistema e, portanto, a posição da reta e da circunferência.

102. Exemplos

1°.) A reta y = 2x + 1 e a circunferência $x^2 + y^2 - 2x = 0$ são exteriores pois, substituindo y, temos:

$$x^2 + (2x + 1)^2 - 2x = 0 \implies 5x^2 + 2x + 1 = 0$$

 $\Delta = b^2 - 4ac = 4 - 20 = -16 < 0$

2°.) A reta 3x + 4y = 0 e a circunferência $x^2 + y^2 + x + y - 1 = 0$ são secantes pois, substituindo y, temos:

$$x^{2} + (-\frac{3x}{4})^{2} + x + (-\frac{3x}{4}) - 1 = 0 \implies 25x^{2} + 4x - 16 = 0$$

 $\Delta = 4^{2} - 4(25)(-16) = 1616 > 0$

103. A posição relativa de uma reta (u) Ax + By + C = 0 e uma circunferência (λ) $(x - a)^2 + (y - b)^2 = r^2$ pode ser determinada com mais facilidade, comparando a distância entre o centro e a reta com o raio. São possíveis três casos:

$$R = \sqrt{a^2 + b^2 - F} = \sqrt{\frac{25}{4} + \frac{49}{4} + 1} = \frac{\sqrt{78}}{2} \cong 4.4.$$

A distância do centro à reta r é:

$$d = \left| \frac{4(-\frac{5}{2}) + 3(\frac{7}{2})}{\sqrt{16 + 9}} \right| = \left| \frac{21 - 20}{10} \right| = \frac{1}{10} = 0,1$$

Como d < R, r é secante.

G.230 Dadas a reta (r)
$$3x + 2y + 17 = 0$$
 e a circunferência (λ) $x^2 + y^2 + 6x + 8y + 12 = 0$, pede-se:

G.231 Determinar os pontos P e Q onde a circunferência
$$x^2 + y^2 - 5x + 4y + 4 = 0$$

encontra o eixo dos x.

G.232 Determinar os pontos P e Q onde a circunferência
$$x^2 + y^2 + 4x + 6y = 0$$
 encontra a reta cuja equação é $3x + 2y + 12 = 0$.

G.233 Dadas a circunferência
$$(x-1)^2 + y^2 = 4$$
 e a reta $x = k$ para que valores de k a reta intercepta a circunferência em pontos distintos?

G.234 Determinar c de modo que a reta (r)
$$4x - 3y + c = 0$$
 seja exterior à circunferência $(\lambda) x^2 + y^2 - 2x - 2y + 1 = 0$.

Solução 1.

Da 1ª equação tiramos $y = \frac{4x + c}{2}$ e substituímos na 2ª:

$$x^2 + (\frac{4x + c}{3})^2 - 2x - 2(\frac{4x + c}{3}) + 1 = 0$$

donde vem: $25x^2 + (8c - 42)x + (c^2 - 6c + 9) = 0$ cujo discriminante é $\Lambda = (8c - 42)^2 - 100(c^2 - 6c + 9) = -36c^2 - 72c + 864$

Para que r seia exterior a λ devemos impor $\Delta < 0$, portanto:

$$-36c^2 - 72c + 864 < 0 \Rightarrow c^2 + 2c - 24 > 0 \Rightarrow c < -6 \text{ ou } c > 4$$

Solução 2

A circunferência λ tem equação reduzida $(x-1)^2 + (y-1)^2 - 1 = 0$ portanto seu centro é C(1, 1) e seu raio é R = 1.

Para que a reta r seja exterior a λ devemos impor $d_{Cr} > R$, portanto:

$$dC_{\Gamma} = \left| \frac{4(1) - 3(1) + c}{\sqrt{16 + 9}} \right| = \left| \frac{c + 1}{5} \right| > 1$$

 $(c + 1)^2 > 25 \Rightarrow c^2 + 2c - 24 > 0 \Rightarrow c < -6 \text{ ou } c > 4$ isto é

Resposta: c < -6 ou c > 4.

10 caso

$$\frac{Aa + Bb + C}{\sqrt{A^2 + B^2}}$$
 < r \iff secantes

2º caso

$$\left| \begin{array}{c} Aa + Bb + C \\ \hline \sqrt{A^2 + B^2} \end{array} \right| = r \iff \text{tangentes}$$

30 caso

$$\left| \begin{array}{c} A_a + Bb + C \\ \sqrt{A^2 + B^2} \end{array} \right| > r \iff \text{exteriores}$$

Assim, por exemplo, qual é a posição da reta (u) 3x + 4y - 10 = 0 e da circunferência (λ) $x^2 + y^2 = 9$?

$$d_{uC} = \left| \frac{3(0) + 4(0) - 10}{\sqrt{3^2 + 4^2}} \right| = 2 < 3 = r$$

então u e \(\lambda\) são secantes.

EXERCÍCIOS

G.228 Calcular a distância do centro da circunferência $x^2 + y^2 + 5x - 7y - 1 = 0$ à reta 4x + 3y = 0

G.229 Qual é a posição da reta (r) 4x + 3y = 0 em relação à circunferência

$$x^2 + y^2 + 5x - 7y - 1 = 0$$
?

Solução 1

Da 1.ª equação $x = -\frac{3y}{4}$; substituindo na segunda:

$$\left(-\frac{3y}{4}\right)^2 + y^2 + 5\left(-\frac{3y}{4}\right) - 7y - 1 = 0$$

$$9y^2 + 16y^2 - 60y - 112y - 16 = 0$$

 $25v^2 - 172v - 16 = 0 \Rightarrow \triangle = b^2 - 4ac > 0 \Rightarrow r \text{ \'e secante}$

Solução 2

A circunferência tem centro $C(-\frac{5}{3}, \frac{7}{3})$ e raio

Para mais, acesse: http://fuvestibular.com.br/

G.235 Dadas a reta $\{r\}$ x + y + c = 0 e a circunferência $\{\lambda\}$ $x^2 + y^2 - 2x = 0$, obter c de modo que r seja exterior a λ

Para mais, acesse: http://fuvestibular.com.br/

- **G.236** Determinar as equações das paralelas à reta 3x 4y + 1 = 0 exteriores à circunferência $x^2 + y^2 = 25$.
- **G.237** (EPUSP-59) Quais são as equações das retas paralelas ao eixo dos x e tangentes à circunferência $(x-1)^2 + (y-2)^2 = 9$?
- **G.238** (FAUUSP-68) Determine a equação da reta que passa pelo centro da circunferência de equação $2x^2 + 2y^2 + 4x + 1 = 0$ e é perpendicular à reta de equação x + 2y 1 = 0.
- **G.239** Obter a equação da circunferência de centro C(-2, +1) e que tangencia a reta de equação 4x + 3y = 0.
- **G.240** Qual é o comprimento da corda que a reta (s) 7x 24y 4 = 0 determina na circunferência (λ) $x^2 + y^2 2x + 6y 15 = 0$.

Solução 1

Vamos resolver o sistema formado pelas equações de s e λ:

1) em 2
$$\Rightarrow x^2 + (\frac{7x-4}{24})^2 - 2x + 6(\frac{x-4}{24}) - 15 = 0 \Rightarrow$$

⇒
$$25x^2 - 8x - 368 = 0$$
 ⇒ $x = 4$ ou $x = -\frac{92}{25}$

em 1
$$y = \frac{7x - 4}{24}$$
 portanto
$$\begin{cases} x = 4 \Rightarrow y = 1 \\ x = -\frac{92}{25} \Rightarrow y = -\frac{31}{25} \end{cases}$$

Assim, os pontos de intersecção de r com λ são A(4, 1) e B($-\frac{92}{25}$, $-\frac{31}{25}$), logo:

$$\ell = d_{AB} = \sqrt{(4 + \frac{92}{25})^2 + (1 + \frac{31}{25})^2} = \frac{200}{25} = 8$$

Solução 2

A circunferência λ tem equação reduzida:

$$(x - 1)^2 + (y + 3)^2 - 25 = 0$$

então seu centro é C(1, -3) e seu raio é r = 5.

$$d_{Cs} = \left| \frac{7(1) - 24(-3) - 4}{\sqrt{49 + 576}} \right| = \frac{75}{25} = 3$$

Pelo teorema de Pitágoras:

$$\frac{\ell^2}{4} + d^2 = r^2 \implies \frac{\ell}{2} = \sqrt{r^2 - d^2} = \sqrt{25 - 9} = 4 \implies \ell = 8$$

Resposta: $\ell = 8$

Para mais, acesse: http://fuvestibular.com.br/

- **G.241** Determinar o comprimento da corda determinada pela reta x y = 0 sobre a circunferência $(x + 2)^2 + (y 2)^2 = 16$.
- **G.242** Determinar o comprimento da corda determinada pela reta x + y 2 = 0 sobre a circunferência de centro C(1, 1) e raio $2\sqrt{2}$.
- G.243 Determinar as áreas dos triângulos isósceles inscritos na circunferência (λ) $x^2 + y^2 = 100$ e que têm base sobre a reta (r) 3x 4y + 30 = 0.
- **G.244** Determinar os vértices do triângulo retângulo inscrito na circunferência de equação $x^2 + y^2 2x + 4y = 0$ o qual tem hipotenusa paralela à reta 2x + y 1 = 0 e um cateto paralelo à reta x 4 = 0.
- G.245 (MACK-72) Dadas a circunferência $x^2 + y^2 4x y + 1 = 0$ e a reta 3x + 2y 500 = 0, determinar a área de um triângulo inscrito na circunferência e com lados paralelos aos eixos cartesianos e à reta dada.

VII. DUAS CIRCUNFERÊNCIAS

104. Intersecção

Dadas duas circunferências

$$(\lambda_1)(x - a_1)^2 + (y - b_1)^2 = r_1^2$$

e

$$(\lambda_2)(x - a_2)^2 + (y - b_2)^2 = r_2^2$$

achar a intersecção de λ_1 com λ_2 é determinar os pontos P(x, y) que pertencem às duas curvas.

Se P(x, y) pertence a λ_1 e λ_2 , então P satisfaz o sistema:

$$\begin{cases} (x - a_1)^2 + (y - b_1)^2 = r_1^2 \\ (x - a_2)^2 + (y - b_2)^2 = r_2^2 \end{cases}$$

que pode ser resolvido assim:

- 1) subtrai-se membro a membro as equações;
- II) isola-se uma das incógnitas da equação do 1º grau obtida e substitui-se em uma das equações do sistema.

105. Exemplo

Obter a intersecção da circunferência de centro $C_1(0,2)$ e raio $r_1=2$ e raio $r_1=2$ com a circunferência de centro $C_2(1,0)$ e raio $r_2=1$.

Temos:

$$\begin{cases} (x - 0)^2 + (y - 2)^2 = 4 \\ (x - 1)^2 + (y - 0)^2 = 1 \end{cases} \Rightarrow \begin{cases} x^2 + y^2 - 4y = 0 \\ x^2 + y^2 - 2x = 0 \end{cases}$$

Subtraindo, vem: $-4xy + 2x = 0 \Rightarrow x = 2y$

Substituindo na 1ª circunferência, vem:

$$(2y - 0)^2 + (y - 2)^2 = 4 \Rightarrow 5y^2 - 4y = 0$$

donde
$$\begin{cases} y = 0 \implies x = 2y = 0 \\ ou \\ y = \frac{4}{5} \implies x = 2y = \frac{8}{5} \end{cases}$$

Assim, as circunferências têm dois pontos em comum: $P(0, 0) = Q(\frac{8}{5}, \frac{4}{5})$

Resposta: $\lambda_1 \cap \lambda_2 = \{(0, 0), (\frac{8}{5}, \frac{4}{5})\}$

106. Posições relativas

A posição relativa de duas circunferências

$$(\lambda_1)(x-a_1)^2+(y-b_1)^2=r_1^2$$
 e $(\lambda_2)(x-a_2)^2+(y-b_2)^2=r_2^2$

é determinada comparando a distância C_1C_2 entre os centros com a soma $r_1 + r_2$ ou com a diferença $|r_1 - r_2|$ dos raios.

Calculada a distância entre os centros:

$$d = C_1 C_2 = \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2}$$

são possíveis seis casos distintos:

10 casa:

pois

$$d = \underbrace{C_1 P_1}_{r_1} + \underbrace{P_1 P_2}_{r_2} + \underbrace{P_2 C_2}_{r_2} > r_1 + r_2$$

circunferências exteriores

20 caso:

$$d = r_1 + r_2$$
 pois

$$d = \underbrace{C_1 P}_{r_1} + \underbrace{PC_2}_{r_2}$$

circunferências tangentes exteriormente

30 caso:

$$d = |r_1 - r_2|$$
 pois

$$d = \underbrace{C_1 P}_{r_1} - \underbrace{PC_2}_{r_2}$$

circunferências tangentes interiormente

40 caso:

$$|r_1 - r_2| < d < r_1 + r_2$$
 pois

$$d = \underbrace{C_1 P_1}_{r_2} + \underbrace{C_2 P_2}_{r_2} - \underbrace{P_1 P_2}_{r_2} < r_1 + r_2$$

$$d = \underbrace{C_1 P_1}_{F_1} + \underbrace{P_1 C_2}_{> 0} > r_1 - r_2$$

circunferências secantes

5^O caso:

$$0 \leqslant d < |r_1 - r_2| \quad \text{pois}$$

$$d = \underbrace{C_1 P_1}_{r_1} - \underbrace{C_2 P_2}_{r_2} - \underbrace{P_1 P_2}_{>0} < r_1 - r_2$$

circunferência de menor raio é interior — O à outra.

Para mais, acesse: http://fuvestibular.com.br/

circunferências concêntricas (é caso particular do 5º)

107. Exemplo

Qual é a posição das circunferências

$$(\lambda_1) x^2 + y^2 = 49$$
 e $(\lambda_2) x^2 + y^2 - 6x - 8y - 11 = 0?$

Temos:

$$\lambda_1 \rightarrow \text{centro} \quad C_1(0, 0) \quad \text{e raio} \quad r_1 = 7$$
 $\lambda_2 \rightarrow \text{centro} \quad C_2(3, 4) \quad \text{e raio} \quad r_2 = 6$

$$d_{C_1C_2} = \sqrt{(3 - 0)^2 + (4 - 0)^2} = 5$$

Comparando com a soma dos raios: $C_1 C_2 = 5$ e $r_1 + r_2 = 13$ portanto $C_1 C_2 < r_1 + r_2$, concluímos que λ_1 e λ_2 não podem ser exteriores, nem tangentes exteriormente.

Comparando com a diferença dos raios: $C_1\,C_2=5$ e $r_1-r_2=1$ portanto $C_1\,C_2>r_1-r_2$, concluímos que λ_1 e λ_2 não podem ser concêntricas, uma interior à outra ou tangentes interiormente.

Por exclusão, λ_1 e λ_2 são secantes.

Notemos que este é o caso que exige mais cuidado pois são necessárias duas comparações $(C_1\,C_2 < r_1 + r_2 - e - C_1\,C_2 > r_1 - r_2)$; nos demais casos, ao comparar $C_1\,C_2$ com $r_1 + r_2$ ou com $r_1 - r_2$, já podemos tirar a conclusão.

EXERCÍCIOS

G.246 Qual é a posição relativa das circunferências

$$x^2 + y^2 = 49$$
 e $x^2 + y^2 - 6x - 8y + 21 = 0?$

Solução

Temos:
$$x^2 + y^2 = 49 \implies C_1(0, 0) = r_1 = 7$$

 $x^2 + y^2 - 6x + 8y + 21 = 0 \implies C_2(3, 4) = r_2 = 2$
 $d_{C_1C_2} = \sqrt{(3 - 0)^2 + (4 - 0)^2} = 5 - r_1 - r_2$

Resposta: tangentes interiormente

G.247 Qual é a posição relativa de (λ) e (λ') nos seguintes casos:

3°)
$$(\lambda) x^2 + y^2 = 8$$
 e $(\lambda') x^2 + y^2 + 6x + 6y + 17 - 0$

$$3^{(1)}$$
 (λ) $x^2 + y^2 - 8$ e (λ ') $x^2 + y^2 + 6x + 6y + 17 - 0$
 $4^{(2)}$ (λ) $x^2 + y^2 + 8x - 6y = 0$ e (λ ') $x^2 + y^2 - 2x = 0$

$$5^{\circ}$$
 (λ) $x^2 + y^2$ 49 e (λ ') $x^2 + y^2 + 6x + 8y + 21 = 0$

G.248 Obter a intersecção das circunferências

(
$$\lambda$$
) $x^2 + y^2 = 100$ e (λ ') $x^2 + y^2 - 12x - 12y + 68 = 0$.

Solução

Subtraindo membro a membro, temos:

$$(x^2 + y^2 - 100) - (x^2 + y^2 - 12x - 12y + 68) = 0$$

 $12x + 12y - 168 = 0 \Rightarrow x + y - 14 = 0 \Rightarrow y = 14 - x$

Substituindo y em λ:

$$x^{2} + (14 - x)^{2} = 100 \implies 2x^{2} - 28x + 96 = 0 \implies$$

$$\begin{cases} x = 6 \implies y = 14 - 6 = 8 \\ \text{ou} \\ x = 8 \implies y = 14 - 8 = 6 \end{cases}$$

G.249 (MAPOFEI-74) Dadas as circunferências

Resposta: $\lambda \cap \lambda' = \{(6, 8), (8, 6)\}$

$$x^2 + y^2 - 8x - 2y + 7 - 0$$
 e $x^2 + y^2 - 6x - 4y + 9 = 0$,

achar seus pontos de intersecção.

G.250 (FAUUSP-69) As circunferências de equação

$$x^2 + y^2 - 6x - 2y + 6 = 0$$

 $x^2 + y^2 - 8x - 4y + 10 = 0$

interceptam-se nos pontos A e B. Determinar a distância do centro da circunferência de raio maior à reta AB.

G.251 Obter as circunferências de centro C(3, 1) e tangentes à circunferência

$$x^2 + y^2 + 2x + 6y = 0$$
.

CAPÍTULO VI

PROBLEMAS SOBRE CIRCUNFERÊNCIAS

Há duas coleções de problemas clássicos sobre circunferências que merecem um destaque especial: problemas de tangência (entre reta e circunferência) e problemas de determinação de circunferências.

I. PROBLEMAS DE TANGÊNCIA

108. 1º Problema

"Conduzir as tangentes a uma circunferência dada, paralelas a uma reta dada".

dados
$$\begin{cases} (\lambda) (x-a)^2 + (y-b)^2 = r^2 \\ (s) Ax + By + C = 0 \end{cases}$$

obter:
$$t_1$$
 e t_2 $\begin{cases} paralelas a s \\ tangentes a \lambda \end{cases}$

Solução

 I) Consideremos a equação do feixe de retas paralelas a s (veja item 41):

$$Ax + By + k = 0$$

II) às retas t_1 e t_2 desse feixe correspondem dois valores particulares de k na equação do feixe. Para determinar esses dois valores (k_1 e k_2), devemos impor a condição de tangência:

$$d_{Ct_1} = d_{Ct_2} = r$$

$$\frac{A \cdot a + B \cdot b + k}{\sqrt{A^2 + B^2}} = r$$

$$(Aa + Bb + k)^2 = r^2 \cdot (A^2 + B^2)$$

donde vem:

$$k^2 + 2(Aa + Bb)k + (A^2a^2 + B^2b^2 - A^2r^2 - B^2r^2) = 0$$

equação do 2º grau cujas raízes são k₁ e k₂.

Resposta: $Ax + By + k_1 = 0$ e $Ax + By + k_2 = 0$

109. Aplicação

Determinar as equações das retas t que são paralelas a (s) 12x + 5y + 1 = 0e tangentes a (λ) $x^2 + y^2 - 2x - 4y - 20 = 0$.

Solução

 1°) centro e raio de λ

(
$$\lambda$$
) é $(x-1)^2 + (y-2)^2 - 25 = 0 \implies C(1, 2)$ e $r = 5$

2º) equação de t

$$t // s \implies (t) 12x + 5y + c = 0$$

$$d_{Ct} = r \implies \left| \frac{12(1) + 5(2) + c}{\sqrt{144 + 25}} \right| = 5$$

$$|c + 22| = 65$$

$$c + 22 = \pm 65 \implies c = 43$$
 ou $c = -87$

Resposta: 12x + 5y + 43 = 0 ou 12x + 5y - 147 = 0

EXERCICIOS

G.252 Determinar as equações das retas (t) tangentes à circunferência (λ) e paralelas à reta (r) nos seguintes casos:

$$(\lambda) (\lambda) x^2 + y^2 = 4$$

e (r)
$$\frac{x}{2} + \frac{y}{2} = 1$$

20)
$$(\lambda) x^2 + y^2 - 6x + 4y = 0$$
 e (r) $y = 3x$

$$e (r) y = 3x$$

3°.) (
$$\lambda$$
) $x^2 + y^2 + 4x - 10y + 4 = 0$ e (r) $5x + 2y + 7 = 0$

G 253 (MAPOFEI-75) Escrever as equações das retas tangentes à circunferência

Para mais, acesse: http://fuvestibular.com.hr/ $x^2 + y^2 - 8x - 8y + 24 = 0$, paralelas à reta y = x.

G 254 (MAPOFEI-74) Determinar as equações das retas tangentes à circunferência $x^2 + y^2 - 2x - 2y + 1 = 0$ e perpendicular à reta x = -y

G.255 Obter as equações das retas (t) tangentes à circunferência (λ) e que formam ângulo θ com a reta (r) nos seguintes casos:

$$1^{\circ}$$
) (λ) $x^2 + y^2 - 4x - 6y - 12 = 0$, $\theta = 90^{\circ}$ e (r) $x + 2y = 0$

$$(\lambda) x^2 + y^2 - 8y + 12 = 0$$
, $\theta = 90^\circ$ e (r) $x + 3y = 0$

$$e(r) x + 3y = 0$$

3°) (
$$\lambda$$
) $x^2 + y^2 - 100$, $\theta = 45°$ e (r) $3x + y - 7 = 0$

$$e(r) 3x + y - 7 = 0$$

G.256 Obter a equação de uma reta paralela a (r) y = 3x que determine na circunferência (λ) $x^2 + y^2 = 25$ uma corda de comprimento $\hat{\chi} = 6$.

110. 29 Problema

"Conduzir por um ponto dado as retas tangentes a uma circunferência dada".

dados
$$\begin{cases} (\lambda) (x - a)^2 + (y - b)^2 = r^2 \\ P(x_0, y_0) \end{cases}$$

obter
$$t_1$$
 e t_2 $\begin{cases} passando por P \\ tangentes a \lambda \end{cases}$

Solução

Utilizando a teoria do item 94, verificamos inicialmente qual é a posição P em relação a λ. Existem três casos possíveis:

10 caso: $(x_0 - a)^2 + (y_0 - b)^2 < r^2 \rightarrow P_0$ é interior à circunferência e o problema não tem solução.

20 caso: $(x_0 - a)^2 + (y_0 - b)^2 = r^2 \rightarrow P_0$ pertence à circunferência: o problema tem uma única solução: $t_1 = t_2$.

II) se
$$y_0 = b \longrightarrow a$$
 equação da tangente é $x = x_0$

III) se
$$x_0 = a$$
 e $y_0 = b$, consideremos o feixe de retas de centro P_0 :
 $y - y_0 = m(x - x_0)$

e determinemos m impondo a condição de tangência:

$$t \perp P_0 C \Rightarrow m = -\frac{1}{m_{P_0 C}} = -\frac{x_0 - a}{y_0 - b} = \frac{a - x_0}{y_0 - b}$$

a equação da tangente é
$$y - y_0 = \frac{a - x_0}{y_0 - b} (x - x_0)$$

39 caso:
$$(x_0 - a)^2 + (y_0 - b)^2 > r^2 \rightarrow P_0$$
 é exterior à circunferência: o problema tem duas solucões.

I) Consideremos o feixe de retas concorrentes em P_0 . Sua equação é:

$$y - y_0 = m \cdot (m - x_0)$$
 isto é.

$$mx - y + (y_0 - mx_0) = 0$$

 II) As retas t₁ e t₂ constituem retas particulares desse feixe que obedecem à condição de tangência:

$$d_{Ct_1} = d_{Ct_2} = r$$

Calculemos os valores de m para satisfazer a condição de tangência:

$$\left| \frac{m \cdot a - b + (y_0 - m \cdot x_0)}{\sqrt{m^2 + 1}} \right| = r$$

equação do 2º grau (geralmente) donde se tiram m₁ e m₂ (*)

Resposta:

$$y - y_0 = m_1(x - x_0)$$
 e
 $y - y_0 = m_2(x - x_0)$

111. Aplicação

Determinar as equações das retas t que passam por P(2, 3) e são tangentes a (λ) $x^2 + y^2 - 2x - 2y - 3 = 0$.

Solução

- 1º) centro e raio de· λ
 - (λ) é $(x-1)^2 + (y-1)^2 5 = 0 \implies C(1, 1)$ e $r = \sqrt{5}$
- 2°) número de soluções $d_{CP} = \sqrt{(2-1)^2 + (3-1)^2} = \sqrt{5} = r \implies P \in \lambda \implies 1 \text{ solução}$
- 39) t, por P, perpendicular a CP $m_{CP} = \frac{\Delta y}{\Delta x} = \frac{3-1}{2-1} = 2 \implies m_t = \frac{1}{m_{CP}} = -\frac{1}{2}$ $P \in t$ $m_t = -\frac{1}{2}$ (t) é y 3 = $-\frac{1}{2}$ (x 2) \implies x + 2y 8 = 0

Resposta: x + 2y - 8 = 0

EXERCÍCIOS

- G.257 Obter as equações das retas (t) tangentes à circunferência (λ) conduzidas pelo ponto P nos seguintes casos:
 - 19) (λ) $x^2 + y^2 = 25$ e P(-3, 4)
 - 2°) $(\lambda) x^2 + y^2 6x + 2y 15 = 0$ e P(6, 3)
 - 3.0 (λ) $x^2 + y^2 12x 12y + 47 = 0$ e P(6, 13)
 - 4°) (λ) $x^2 + y^2 4x 5 = 0$ e P(-1, 7)
- (+) Pode ocorrer que a equação acima seja do 1º. grau: isto significa que uma das tangentes é perpendicular ao eixo Ox e, portanto, não tem coeficiente angular. Sua equação é:

$$x - x_0$$

- G.258 (MAPOFEI-71) É dada a circunferência $x^2 + y^2 + 2ay = 0$, a > 0, e a reta x + a = 0. Seja P um ponto do eixo Ox de abscissa λ . Por esse ponto conduzem-se as tangentes à circunferência.
 - a) Exprimir as coordenadas dos pontos de tangência em função de λ e de a.
 - b) Provar que os pontos de tangência e o ponto Q, de ordenada λ , da reta x+a=0, estão alinhados.
- **G.259** Determinar as tangentes à circunferência $x^2 + y^2 + 6x 6y 7 = 0$ nos seus pontos de abscissa 1.
- **G.260** (MAUÁ-66) Determinar as retas do feixe: $\lambda(3x + 4y 10) + \mu(3x y 5) = 0$ tangentes à circunferência de equação $x^2 + y^2 + 2x 4y = 0$.
- **G.261** Determinar as retas do feixe $\lambda(x+2y)+\mu(x-3y)=0$ tangentes à circunferência $x^2+y^2+4x+6y+9=0$.
- **G.262** Determinar o coeficiente angular das retas que passam pelo ponto P(-2, 3) e são externas à circunferência $x^2 + y^2 2x + 4y = 0$.
- G.263 Determinar as equações das retas pela origem externas às circunferências

$$x^2 + y^2 - 12x + 2y + 36 = 0$$

е

$$x^2 + y^2 - 6x - 4y + 12 = 0$$

- **G.264** A circunferência $x^2 + y^2 + 5x + 4y + a = 0$ determina no eixo Ox uma corda de comprimento 3. Calcular a.
- **G.265** Obter a equação de uma reta que passe pela origem e determine na circunferência $(\lambda) (x 1)^2 + (y + 1)^2 = 4$ uma corda de comprimento $x = 2\sqrt{3}$.
- **G.266** Obter a equação de uma reta que contenha P(2, 3) e determine na circunferência $(\lambda) x^2 + y^2 = 9$ uma corda de comprimento $\ell = 2\sqrt{5}$.
- G.267 (MACK-68) A reta 2x + y = 0 contém o diâmetro de uma circunferência. Uma reta, que forma ângulo de 45° com a primeira e tem declive positivo, corta a circunferência no ponto (1,1) e determina sobre a mesma uma corda de comprimento $\sqrt{10}$ unidades. Estabelecer as equações da segunda reta e da circunferência.
- **G.268** Obter a equação da reta que contém P(1, 2) e determina na circunferência de equação $x^2 + y^2 = 25$ uma corda cujo ponto médio é P.
- **G.269** Determinar a área da superfície delimitada pelos eixos e pela tangente à circunferência $x^2 + y^2 = 8$ no seu ponto (2, 2).
- **G.270** Obter as equações das tangentes comuns às circunferências $x^2 + y^2 = 64$ e $(x \frac{25}{3})^2 + y^2 = 9$.

II. DETERMINAÇÃO DE CIRCUNFERÊNCIAS

112. Em Geometria Analítica, "obter" ou "construir" ou "determinar" uma circunferência significa obter a sua equação:

$$(x - a)^2 + (y - b)^2 = r^2$$

pois, tendo-se a equação, estão determinados o centro. C(a, b) e o raio r e, assim, a circunferência está localizada perfeitamente no plano cartesiano.

A maioria dos problemas de determinação de circunferência apresenta como incógnitas a, b e r, portanto, necessita de três equações independentes para ser resolvida.

- 113. Não devemos, na resolução desses problemas, esquecer os seguintes três tópicos da teoria já dada: $y \downarrow$ $P(x_0, y_0)$
- 1.9) Um ponto $P(x_0, y_0)$ pertence a uma circunferência λ de centro C(a, b) e raio r se, e somente se, a distância entre C e P é igual ao raio.

$$P \in \lambda \iff (a - x_0)^2 + (b - y_0)^2 = r^2$$

20) Uma reta (s) Ax + By + C = 0 y é tangente a uma circunferência λ de centro C(a, b) e raio r se, e somente se, a distância entre s e C é igual ao raio.

s tg
$$\lambda \iff \left| \begin{array}{c} Aa + Bb + C \\ \sqrt{A^2 + B^2} \end{array} \right| = r$$

 3°) Uma circunferência λ_0 de centro $C_0(a_0,b_0)$ e raio r_0 é tangente a outra circunferência λ de centro C(a,b) e raio r se, e somente se, a distância entre C_0 e C é igual à soma ou à diferença dos raios.

$$\lambda_0 \text{ tg } \lambda \iff (a - a_0)^2 + (b - b_0)^2 = (r \pm r_0)^2$$

Para mais, acesse: http://fuvestibular.com.br/

Vejamos agora alguns problemas clássicos.

114. 1º Problema

"Determinar uma circunferência λ que passa pelos pontos $P_1(x_1, y_1)$, e $P_2(x_2, y_2)$ e $P_3(x_3, y_3)$ ".

Solução

$$P_1 \in \lambda \iff (a - x_1)^2 + (b - y_1)^2 = r^2$$

$$P_2 \in \lambda \iff (a - x_2)^2 + (b - y_2)^2 = r^2$$

$$P_3 \in \lambda \iff (a - x_3)^2 + (b - y_3)^2 = r^2$$

Este sistema é equivalente ao seguinte:

$$x_1(-2a) + y_1(-2b) + 1(a^2 + b^2 - r^2) = -(x_1^2 + y_1^2)$$

$$x_2(-2b) + y_2(-2b) + 1(a^2 + b^2 - r^2) = -(x_2^2 + y_2^2)$$

$$x_3(-2c) + y_3(-2b) + 1(a^2 + b^2 - r^2) = -(x_3^2 + y_3^2)$$

cujas incógnitas são -2a, -2b, $a^2 + b^2 - r^2$.

Resolvido o sistema, tiramos a, b, r.

Um exemplo deste problema é o G.12 do capítulo I.

"Determinar uma circunferência λ que passa pelos pontos $P_1(x_1,y_1)$ e $P(x_2,y_2)$ e tem raio r (dado)".

Solução

115. 2º Problema

$$P_1 \in \lambda \iff (x_1 - a)^2 + (y_1 - b)^2 = r^2$$

$$P_2 \in \lambda \iff (x_2 - a)^2 + (y_2 - b)^2 = r^2$$
S

O sistema (S), resolvido, dá os valores de a e b (incógnitos).

Exemplo

Determinar a equação da circunferência que contém A(-3, 0) e B(0, 3) e tem raio 3.

$$A \in \lambda \iff (a+3)^2 + (b-0)^2 = 9$$

$$B \in \lambda \iff (a-0)^2 + (b-3)^2 = 9$$
(I)

Desenvolvendo e subtraindo membro a membro, obtemos:

$$6a + 6b = 0 \Rightarrow a = -b$$

Substituindo (II) em (1), vem:

$$(a + 3)^2 + (-a - 0)^2 = 9 \implies 2a^2 + 6a = 0$$

donde
$$\begin{cases} a = 0 \Rightarrow b = 0 \Rightarrow C(0, 0) \\ ou \\ a = -3 \Rightarrow b = 3 \Rightarrow C(-3, 3) \end{cases}$$

Resposta: $x^2 + y^2 = 9$ ou $(x + 3)^2 + (y - 3)^2 = 9$

116. 3º Problema

"Determinar uma circunferência λ de centro C(a,b) dado, que é tangente Para mais, acesse: http://fuvestibular.com.br/" (s) Ax + By + C = 0 dada".

Para mais, acesse: http://fuvestibular.com.br/

$$\begin{cases} \mathsf{A} x + \mathsf{B} y + \mathsf{C} = 0 & \to \text{ equação da reta tangente} \\ (x - \mathsf{a})^2 + (y - \mathsf{b})^2 = \mathsf{r}^2 & \to \begin{cases} \mathsf{equação} \text{ de uma circunferência} \\ \mathsf{de centro} \text{ C} \text{ e raio } \mathsf{r} \end{cases}$$

Por substituição obtemos uma equação do 2° grau em x ou em y. A condição de tangência é que $\Delta = 0$ · nessa equação. Impondo essa condição, calculamos r (única incógnita).

Solução 2

Notamos que r é a distância de C à reta dada, isto é:

$$r = \frac{Aa + Bb + C}{\sqrt{A^2 + B^2}}$$

Exemplo

Obter uma circunferência de centro no ponto C(1, 2) e tangente à reta (s) x - y + 3 = 0.

$$r = d_{Cs} = \left| \frac{1 - 2 + 3}{\sqrt{1^2 + 1^2}} \right| = \frac{2}{\sqrt{2}} = \sqrt{2}$$

Resposta: $(x - 1)^2 + (y - 2)^2 = 2$

117. 40 Problema

"Determinar uma circunferência λ que passa pelos pontos $P_1(x_1, y_1)$ e $P_2(x_2, y_2)$ dados e é tangente à reta (s) Ax + By + C = 0 dada".

Solução

$$P_{1} \in \lambda \iff (a - x_{1})^{2} + (b - y_{1})^{2} = r^{2}$$

$$P_{2} \in \lambda \iff (a - x_{2})^{2} + (b - y_{2})^{2} = r^{2}$$

$$s tg \lambda \iff \left(\frac{Aa + Bb + C}{\sqrt{A^{2} + B^{2}}}\right)^{2} = r^{2}$$

$$(S)$$

Resolvido o sistema (S), obtemos as incógnitas a, b, r.

Obter uma circunferência que passa por A(0, 1) e B(1, 0) e é tangente à reta $(s) \times + y + 1 = 0$

$$A \in \lambda \iff (a - 0)^2 + (b - 1)^2 = r^2 \qquad \boxed{1}$$

$$B \in \lambda \iff (a - 1)^2 + (b - 0)^2 = r^2 \qquad \boxed{1}$$

$$s \text{ tg } \lambda \iff \left(\frac{a + b + 1}{\sqrt{2}}\right)^2 = r^2 \qquad \boxed{11}$$

Desenvolvendo e subtraindo (1) e (11) membro a membro temos:

$$2a - 2b = 0 \Rightarrow a = b$$

(V) em (I)
$$\Rightarrow a^2 + (a - 1)^2 = r^2$$

(IV) em (III)
$$\Rightarrow \left(\frac{a+a+1}{\sqrt{2}}\right)^2 = r^2$$

Donde vem:

$$a^{2} + (a - 1)^{2} = \left(\frac{2a + 1}{\sqrt{2}}\right)^{2} \Rightarrow 2a^{2} - 2a + 1 = \frac{4a^{2} + 4a + 1}{?}$$

 $\Rightarrow a = \frac{1}{8} \Rightarrow b = \frac{1}{8} \Rightarrow r^{2} = \frac{1}{64} + \frac{49}{64} = \frac{25}{32}$

Resposta:
$$(x - \frac{1}{8})^2 + (y - \frac{1}{8})^2 = \frac{25}{32}$$

118. 50 Problema

"Determinar uma circunferência λ que passa por $P(x_1, y_1)$ dado e é tangente às retas (s) $A_1 \times + B_1 y + C_1 = 0$ e (t) $A_2 \times + B_2 y + C_2 = 0$ dadas".

Solução

$$P \in \lambda \iff (a - x_1)^2 + (b - y_1)^2 = r^2$$

$$s \text{ tg } \lambda \iff \left(\frac{A_1 a + B_1 b + C_1}{\sqrt{A_1^2 + B_1^2}}\right)^2 = r^2$$

$$t \text{ tg } \lambda \iff \left(\frac{A_2 a + B_2 b + C_2}{\sqrt{A_2^2 + B_2^2}}\right)^2 = r^2$$

Resolvido o sistema (S), obtemos as incógnitas a, b, r.

Obter uma circunferência que passa por P(0, 0) e é tangente às retas dadas

(s)
$$3x + 4y + 2 = 0$$
 e (t) $4x - 3y + 1 = 0$.

$$P \in \lambda \iff (a - 0)^2 + (b - 0)^2 = r^2$$

s tg
$$\lambda \iff \left| \frac{3a + 4b + 2}{5} \right| = r$$

t tg
$$\lambda \iff \left| \frac{4a - 3b + 1}{5} \right| = r$$

Comparando (II) e (III), vem:
$$\left| \frac{3a + 4b + 2}{5} \right| = \left| \frac{4a - 3b + 1}{5} \right|$$

Temos então, duas possibilidades:

$$(1^a)$$
 3a + 4b + 2 = 4a - 3b + 1 \implies a = 7b + 1

2a)
$$3a + 4b + 2 = -(4a - 3b + 1) \implies b = -7a - 3$$

Substituindo (IV) em (II), decorre:

$$\left| \frac{3(7b+1)+4b+2}{5} \right| = r \implies r = |5b+1|$$

Substituindo (V) e (V), em (I), decorre:

$$(7b + 1)^2 + b^2 = (5b + 1)^2 \implies 25b^2 + 4b = 0$$

$$b = 0 \Longrightarrow a = 1 \Longrightarrow r = 1$$
 (1ª solução)

$$b = -\frac{4}{25} \stackrel{\text{(I)}}{\Rightarrow} a = -\frac{3}{25} \stackrel{\text{(I)}}{\Rightarrow} r = \frac{1}{5} \text{ (2a. solução)}$$

Por outro lado, substituindo (V) em (II), decorre:

$$\left| \frac{3a + 4(-7a - 3) + 2}{5} \right| = r \implies r = |-5a - 2|$$

Substituindo (V) e (V') em (I), decorre:

$$a^2 + (7a + 3)^2 = (5a + 2)^2 \Rightarrow 25a^2 + 22a + 5 = 0$$

donde a $\not\in$ IR pois $\Delta < 0$, isto é, não há solução.

Resposta:
$$(x - 1)^2 + y^2 = 1$$
 ou $(x + \frac{3}{25})^2 + (y + \frac{4}{25})^2 = \frac{1}{25}$

(s) $A_1x + B_1y + C_1 = 0$, (t) $A_2x + B_2y + C_2 = 0$ e (u) $A_3x + B_3y + C_3 = 0$."

(s)
$$A_1 \times + B_1 y + C_1 = 0$$
, (t) $A_2 \times + B_2 y + C_2 = 0$ e (u) $A_3 \times + B_3 y + C_3 = 0$.

Solução

$$\begin{cases}
 t \text{ tg } \lambda \iff \left(\frac{A_2 a + B_2 b + C_2}{\sqrt{A_2^2 + B_2^2}} \right)^2 - r^2
\end{cases}$$

utg
$$\lambda \iff \left(\frac{A_3a + B_3b + C_3}{\sqrt{A_3^2 + B_3^2}}\right)^2 = r^2$$

120. 7º Problema

"Determinar uma circunferência λ que tem centro em C(a, b) dado e é tangente à circunferência $(\lambda_0)(x - a_0)^2 + (y - b_0)^2 = r_0^2$ dada.

Solução

Vamos impor a condição de tangência:

$$\lambda \ tg \lambda_0 \iff d_{CC_0} = r \pm r_0 \iff (a - a_0)^2 + (b - b_0)^2 = (r \pm r_0)^2$$

Dessa equação tiramos r que é a única incógnita.

Exemplo

Obter uma circunferência λ de centro C(4, 5) tangente a

$$(\lambda_0)(x-1)^2 + (y-1)^2 = 4.$$

$$\lambda \text{ tg } \lambda_0 \iff d_{CC_0} = r \pm r_0 \iff (4 - 1)^2 + (5 - 1)^2 = (r \pm 2)^2$$

então
$$(r \pm 2)^2 = 25 \Rightarrow r \pm 2 = 5 \Rightarrow r = 7$$
 ou $r = 3$

Resposta:
$$(x-4)^2 + (y-5)^2 = 49$$
 ou $(x-4)^2 + (y-5)^2 = 9$

Para mais, acesse: http://fuvestibular.com.br/

"Determinar uma circunferência λ de raio r dado que tangencia a circunferência $(\lambda_0)(x-a_0)^2+(y-b_0)^2=r_0^2$ dada no ponto $P(x_0,y_0)$ dado".

Solução

Para obter os centros (C ou C') das soluções do problema é conveniente usar a teoria da razão:

C divide $\overrightarrow{C_0P}$ na razão

$$\frac{\overline{C_0 \ C}}{\overline{CP}} \quad = \quad \frac{r_0 \ - \ r}{r}$$

C' divide $\overrightarrow{C_0P}$ na razão

$$\frac{\overline{C_0 C'}}{\overline{C'P}} = \frac{r_0 + r}{-r}$$

Exemplo

Obter uma circunferência de raio 3 que tangencia (λ_0) $x^2 + y^2 = 25$ no ponto P(4, 3).

 λ_0 tem centro $C_0(0, 0)$ e raio r = 5.

C divide
$$\overrightarrow{C_0P}$$
 na razão $\frac{\overrightarrow{C_0P}}{\overrightarrow{CP}} = \frac{5-3}{3} = \frac{2}{3}$, então

$$a = \frac{0 + \frac{2}{3} \cdot 4}{1 + \frac{2}{3}} = \frac{8}{5} \quad e \quad b = \frac{0 + \frac{2}{3} \cdot 3}{1 + \frac{2}{3}} = \frac{6}{5}$$

C' divide
$$\overrightarrow{C_0P}$$
 na razão $\frac{\overrightarrow{C_0C'}}{\overrightarrow{C'P}} = \frac{5+3}{-3} = -\frac{8}{3}$

$$a' = \frac{0 + \left(-\frac{8}{3}\right) \cdot 4}{1 + \left(-\frac{8}{3}\right)} = \frac{32}{5} e b' = \frac{0 + \left(-\frac{8}{3}\right) \cdot 3}{1 + \left(-\frac{8}{3}\right)} = \frac{24}{5}$$

Resposta:
$$(x - \frac{8}{5})^2 + (y - \frac{6}{5})^2 = 9$$
 ou $(x - \frac{32}{5})^2 + (y - \frac{24}{5})^2 = 9$

"Determinar uma circunferência λ que passa por $P_1(x_1, y_1)$ e $P_2(x_2, y_2)$ e é tangente a $(\lambda_0)(x - a_0)^2 + (y - b_0)^2 = r_0^2$ ".

Solução

$$\begin{cases}
P_1 \in \lambda & \iff (a - x_1)^2 + (b - y_1)^2 = r^2 \\
P_2 \in \lambda & \iff (a - x_2)^2 + (b - y_2)^2 = r^2 \\
\lambda_0 \text{ tg } \lambda & \iff (a - a_0)^2 + (b - b_0)^2 = (r \pm r_0)^2
\end{cases}$$

Resolvido o sistema (S), obtemos as incógnitas a, b, r.

Exemplo

Obter uma circunferência λ que passa por $P_1(4, -1)$ e $P_2(0, 3)$ e é tangente a (λ_0) $x^2 + y^2 = 1$.

$$\begin{cases} P_1 \in \lambda \iff (a-4)^2 + (b+1)^2 = r^2 & \text{i} \\ P_2 \in \lambda \implies (a-0)^2 + (b-3)^2 = r^2 & \text{ii} \\ \lambda_0 \text{ tg } \lambda \implies (a-0)^2 + (b-0)^2 = (r \pm 1)^2 & \text{iii} \end{cases}$$

Comparando (I) e (II) resulta:

$$(a-4)^2 + (b+1)^2 = a^2 + (b-3)^2 \Rightarrow a = b+1$$

Comparando (II) e (III), resulta:

$$a^2 + (b - 3)^2 = a^2 + b^2 \pm 2r - 1 \Rightarrow r = \pm (3b - 5)$$
 V

Substituindo (V) e (V) em (I), resulta:

$$(b-3)^2 + (b+1)^2 = (3b-5)^2 \Rightarrow 7b^2 - 26b + 15 = 0$$

então
$$\begin{cases} b=3 \Rightarrow a=4 \Rightarrow r=4 \\ ou \\ b=\frac{5}{7} \Rightarrow a=\frac{12}{7} \Rightarrow r=\frac{1}{7} \end{cases}$$

Resposta:
$$(x-4)^2 + (y-3)^2 = 16$$
 ou $(x-\frac{12}{7})^2 + (y-\frac{5}{7})^2 = \frac{1}{49}$

EXERCÍCIOS

Para mais, acesse: http://fuvestibular.com.br/

"Determinar uma circunferência λ que passa por $P_1(x_1, y_1)$ e é tangente às circunferências $(\lambda_0)(x - a_0)^2 + (y - b_0)^2 = r_0^2$ e $(\lambda_1)(x - a_1)^2 + (y - b_1)^2 = r_1^2$

Solução

$$\begin{cases}
P_1 \in \lambda \iff (a - x_1)^2 + (b - y_1)^2 = r^2 \\
\lambda_0 \text{ tg } \lambda \iff (a - a_0)^2 + (b - b_0)^2 = (r \pm r_0)^2 \\
\lambda_1 \text{ tg } \lambda \iff (a - a_1)^2 + (b - b_1)^2 = (r \pm r_1)^2
\end{cases}$$

Resolvido o sistema (S), obtemos as incógnitas a, b, r.

Exemplo

Obter uma circunferência \(\lambda\) que passa por P(0, 2) e é tangente a

$$(\lambda_0)(x-3)^2 + (y-4)^2 = 9 e (\lambda_1)(x-3)^2 + (y+4)^2 = 9$$

Solução

$$\begin{cases} P \in \lambda \implies (a - 0)^2 + (b - 2)^2 = r^2 \\ \lambda_0 \operatorname{tg} \lambda \implies (a - 3)^2 + (b - 4)^2 = (r \pm 3)^2 \\ \lambda_1 \operatorname{tg} \lambda \implies (a - 3)^2 + (b + 4)^2 = (r \pm 3)^2 \end{cases}$$

Há quatro possibilidades por causa dos duplos sinais em (II) e (III):

a = 0, b = 0 e r = -2 < 0 (não serve)

- 1^a) usando + e + e resolvendo, obtemos: a = 0, b = 0 e r = 2
- usando e . obtemos:
- usando + e -, obtemos: $a = \frac{2-4\sqrt{7}}{3}$, $b = -2-2\sqrt{7}$, $r = \frac{8+8\sqrt{7}}{3}$
- usando e +, obtemos $a = \frac{2+4\sqrt{7}}{3}$, $b = -2+2\sqrt{7}$, $r = \frac{-8+8\sqrt{7}}{3}$

- G.271 Determinar o centro e o raio da circunferência que passa pelos pontos de intersecção das retas x + y + 1 = 0, x = 0 e y = 0.
- G.272 Determinar a circunferência circunscrita ao triângulo de vértices A(5, 4), B(6, 1) e = C(-3, -2).
- G.273 Obter uma circunferência de raio 3 que tem centro na bissetriz do 1º e 3º quadrantes e tangencia a reta 3x + 4y + 1 = 0.
- G.274 Obter uma circunferência, cujo centro está no eixo dos x, sabendo que é tangente às retas x + y - 3 = 0 e x - y - 1 = 0
- G.275 Achar as circunferências de raio 10 que são tangentes à reta 4x + 3y 70 = 0 no ponto (10, 10).
- G.276 Obter a equação da circunferência que passa pela origem, tem centro na reta v = 2 e tangencia a reta (r) x + y - 8 = 0.
- G.277 Achar as equações das circunferências tangentes aos eixos e cujos centros estão sobre a reta x - 3v + 4 = 0.
- G.278 Obter a equação da circunferência que passa pela origem e é tangente às retas (r) 2x + 3y = 0 e (s) 3x + 2y + 2 = 0.
- G.279 (EPUSP-64) Achar a equação da circunferência de raio não unitário que passa pelo ponto A(1, -2) e tangencia as retas x = 0 e y = 0.
- G.280 Obter a equação da circunferência que passa por A(6, 0) e é tangente à reta x + y = 0 na origem.
- G.281 Achar as circunferências que passam por P(6, 8) e P'(24, 32) e são tangentes \dot{a} reta (t) v = 0.
- G.282 Achar a equação da circunferência que tangencia o eixo dos y no ponto (0, 5) e determina no semi-eixo negativo dos x uma corda de comprimento 24.
- G.283 (MACK-69) As retas r, s, t são tais que:
 - 1°) A equação de r é x + y + 1 = 0
 - 2°) As retas r e s formam um ângulo de $\frac{\pi}{4}$ rad
 - 3.0) s passa pela origem
 - t passa por (1, 2)
 - 50) s é perpendicular a t

Pede-se:

- b) a equação de t a) a equação de s
- _{r/}c) a equação de uma das circunferências tangentes a -r, s, t.

- G.284 Achar as circunferências de raio 3 que são tangentes a (λ) $x^2 + y^2 = 100$ no ponto P(6, 8).
- **G.285** Achar as circunferências de centro C(5, 12) e tangentes a $x^2 + y^2 = 1$.
- **G.286** Determinar as equações das circunferências tangentes à circunferência $x^2 + y^2 = 25$ no ponto (4, 3) e que têm raio unitário.
- **G.287** Achar as circunferências que passam por P(0, 3) e P'(4, -1) e são tangentes externas a (λ) x² + y² = 1
- G.288 Obter a equação da circunferência tangente à reta 3x + 4y 12 = 0 e à circunferência $x^2 + y^2 + 2x 8 = 0$ no ponto P(2, 0).
- G.289 (MACK-71) Mostre que existem duas circunferências, C_1 e C_2 , de centros fora do eixo Ox, raio 12, passando pela origem e tangentes à circunferência C de equação $x^2 + y^2 40x + 384 = 0$. Determine as coordenadas dos centros e as coordenadas dos pontos de contacto de C com C_1 e de C com C_2 .
- **G.290** Escrever a equação da circunferência que tangencia a reta 2x + y + 4 = 0 no ponto de ordenada 2 e determina na circunferência $x^2 + y^2 = 1$ uma corda paralela ao eixo dos x.
- **G.291** Provar que as circunferências $(x-1)^2 + (y-2)^2 5$ e $(x+2)^2 + (y-1)^2 = 5$ são ortogonais, isto é, as retas que ligam cada centro a um ponto de intersecção das circunferências são perpendiculares.

III. COMPLEMENTO

124 Dados um ponto $P(x_0, y_0)$ e uma circunferência $(\lambda)(x-a)^2 + (y-b)^2 = r^2$, chama-se potência de P em relação a λ o número real

$$k = (x_0 - a)^2 + (y_0 - b)^2 - r^2$$

Confrontando com a teoria do item 94, observamos que:

- a) se P é exterior a λ , então k > 0
- b) se P pertence a λ , então k=0
- c) se P é interior a λ , então k < 0

125. Dadas duas circunferências não concêntricas

$$(\lambda_1)(x - a_1)^2 + (y - b_1)^2 = r_1^2 + (\lambda_2)(x - a_2)^2 + (y - b_2)^2 = r_2^2$$

chama-se eixo radical o conjunto dos pontos do plano cartesiano que são equipotentes em relação às duas.

Se
$$P(x, y)$$
 é ponto do eixo radical, então $k_1 = k_2$, isto é:

$$(x - a_1)^2 + (y - b_1)^2 - r_1^2 = (x - a_2)^2 + (y - b_2)^2 - r_2^2$$

donde vem:

$$2(a_2 - a_1)x + 2(b_2 - b_1)y + (a_1^2 + b_1^2 + r_2^2 - a_2^2 - b_2^2 - r_1^2) = 0$$

que é a equação do eixo radical. Como $a_2 \neq a_1$ e $b_2 \neq b_1$ pois as circunferências não são concêntricas, está provado que o eixo radical é uma reta.

126. Assim, por exemplo, o eixo radical das circunferências $x^2 + y^2 = 9$ e $(x - 1)^2 + (y - 1)^2 = 4$ tem equação:

$$x^2 + y^2 - 9 = (x - 1)^2 + (y - 1)^2 - 4$$

donde vem:

$$2x + 2y - 7 = 0$$

Matemático foge para a religião

Para mais, acesse: http://fuvestibular.com.br/

Blaise Pascal, francês, tinha como o pai, Etienne Pascal, inclinação para a Matemática.

Pascal, aos doze anos, participava com seu pai de reuniões informais na Academia de Mersenne em Paris, onde conheceu as idéias de Desargues. Baseado nelas, aos dezesseis anos publicou "Ensaio para as Cônicas" com apenas uma página mas a de maior importância para a História. Nela estava o Teorema de Pascal sobre hexágonos inscritos numa cônica, a partir do que deduziria muitos corolários como, por exemplo, o que dá a construção da tangente a uma cônica por um ponto dela.

Aos dezoito anos Pascal dedicou-se à construção de uma máquina de calcular e no ano sequinte vendeu aproximadamente cinquenta delas.

Em 1648 interessou-se por hidrostática do que resultaram experiências sobre peso do ar e pressão de fluidos.

Em 1654 voltou à Matemática com o trabalho "Obra Completa sobre Cônicas", que não chegou a ser publicada mas onde, segundo Leibniz, se utilizava de métodos sintéticos pois, Pascal não dava a merecida atenção e importância ao uso da álgebra simbólica e suas notações, estando neste aspecto bem atrasado em relação a seu tempo.

Em uma carta enviada a Fermat, Pascal dá o ponto de partida real para a moderna teoria das probabilidades, ligando este assunto ao triângulo aritmético de Cardan, que, desde então, é conhecido como "triângulo de Pascal", descobrindo algumas novas propriedades.

Em 1654, com habilidade excepcional no esclarecimento de conceitos, torna--se responsável, com Fermat e outros, pelo desenvolvimento dos métodos intuitivos ou "inducão matemática

Blaise Pascal (1623 - 1662)

A 23 de novembro de 1654 Pascal abandona a Matemática e Ciência, dedicando-se inteiramente à Teologia sobre a qual escreveu a obra "Cartas Provinciais" e "Pensamentos".

Mas, numa noite de 1658, impedido de dormir por uma dor de dentes ou malestar e, para distrair-se, começou a estudar as ciclóides, achando volumes, áreas e centros de gravidade. A dor passou milagrosamente e Pascal tomou isso como sinal de aprovação de Deus ao seu estudo da Matemática. Esta foi a última notícia que se tem da obra deste matemático extremamente religioso.

CAPÍTULO VII

CÔNICAS

I. ELIPSE

127. Definição

Dados dois pontos distintos F_1 e F_2 , pertencentes a um plano α , seja 2c a distância entre eles.

Elipse é o conjunto dos pontos de a cuja soma das distâncias a F₁ e F₂ é a constante 2a(2a > 2c).

elipse =
$$\{P \in \alpha \mid PF_1 + PF_2 = 2a\}$$

Assim. temos:

$$QF_1 + QF_2 = 2a$$

 $RF_1 + RF_2 = 2a$
 $SF_1 + SF_2 = 2a$
 $A_1F_1 + A_1F_2 = 2a$
 $A_1F_1 + B_1F_2 = 2a$
 $A_2F_1 + A_2F_2 = 2a$
 $A_2F_1 + A_2F_2 = 2a$
 $A_2F_1 + B_2F_2 = 2a$

Notemos que $A_1 A_2 = 2a$ pois:

$$A_1 F_1 + A_1 F_2 = A_2 F_2 + A_2 F_1$$

então

$$x + (x + 2c) = y + (y + 2c)$$

portanto x = y.

$$A_1 A_2 = A_1 F_1 + F_1 F_2 + F_2 A_2 = x + 2c + y = 2(x + c) = 2a$$

128. Elementos principais

 $F_1 \in F_2 \rightarrow focos$ O → centro $A_1 A_2 \rightarrow eixo maior$

 $B_1B_2 \rightarrow eixo menor$

2c → distância focal

2a → medida do eixo maior

2h → medida do eixo menor

→ excentricidade

Tomemos um sistema cartesiano ortogonal tal que

$$A_1A_2\subseteq x$$
 e $B_1B_2\subseteq y$.

É evidente que os focos são os pontos:

$$F_1(-c, 0) e F_2(c, 0)$$

Nestas condições, chama-se equação reduzida da elipse a equação que P(x, y), ponto genérico da curva, vai verificar.

A dedução é imediata:

$$P \in elipse \iff PF_1 + PF_2 = 2a$$

então:

$$\sqrt{(x+c)^{2} + (y-0)^{2}} + \sqrt{(x-c)^{2} + (y-0)^{2}} = 2a$$

$$\sqrt{(x+c)^{2} + y^{2}} = 2a - \sqrt{(x-c)^{2} + y^{2}}$$

$$(x+c)^{2} + y^{2} = 4a^{2} - 4a\sqrt{(x-c)^{2} + y^{2}} + (x-c)^{2} + y^{2}$$

$$\frac{x^{2} + 2cx + c^{2} + y^{2}}{2cx^{2} + 2cx^{2}} = 4a^{2} - 4a\sqrt{(x-c)^{2} + y^{2}} + x^{2} - 2cx + c^{2} + y^{2}$$

$$\frac{4cx - 4a^{2} = -4a\sqrt{(x-c)^{2} + y^{2}}}{a\sqrt{(x-c)^{2} + y^{2}}} = a^{2} - cx \implies a^{2}(x-c)^{2} + a^{2}y^{2} = (a^{2} - cx)^{2}$$

$$a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2}$$

$$a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2}$$
Para

P(x, y) B_2

 $a^2x^2 - c^2x^2 + a^2y^2 = a^4 - a^2c$

Para mais, acesse: http://fuvestibular.com.br/ $(a^2 - c^2)x^2 + a^2v^2 = a^2(a^2 - c^2)$

$$b^2 x^2 + a^2 y^2 = a^2 b^2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Assim, por exemplo, uma elipse com eixo maior 10 e distância focal 6 apresenta:

$$\begin{vmatrix}
a &= 5 \\
c &= 3
\end{vmatrix} \Rightarrow b^2 = a^2 - c^2 = 25 - 9 = 16$$

Se a posição da elipse é a indicada na figura, isto é.

$$A_1 A_2 \subseteq x \ e \ B_1 B_2 \subseteq y$$
,

então sua equação é:

$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

130. Analogamente ao que vimos no item 129, se a elipse apresentar

$$A_1A_2 \subseteq y$$
 e $B_1B_2 \subseteq x$,

temos:

$$PF_1 + PF_2 = 2a$$

$$\sqrt{(x-0)^2 + (y+c)^2} + \sqrt{(x-0)^2 + (y-c)^2} = 2a$$

(notemos que esta relação é a mesma que se obtém permutando x com y na relação inicial do item 129) e, daí, decorre a equação da elipse:

Assim, por exemplo, uma elipse com eixo maior 10 e eixo menor 8. na posição indicada na figura, isto é, $A_1 A_2 \subset y$ e $B_1 B_2 \subset x$, tem equação:

$$\frac{y^2}{25} + \frac{x^2}{16} = 1$$

ou ainda:

$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$

131. Se uma elipse tem centro no ponto $O'(x_0, y_0)$ e $A_1 A_2 / x$, sua equação em relação ao sistema auxiliar x'O'y' é:

$$\frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} = 1$$

portanto, de acordo com as fórmulas da translação vistas no item 72, sua equação relativamente ao sistema xOy é:

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1$$

Analogamente, se uma elipse tem centro no ponto $O'(x_0, y_0)$ e $A_1 A_2 /\!\!/ y$, sua equação relativamente ao sistema xOy é:

$$\frac{(y-y_0)^2}{a^2} + \frac{(x-x_0)^2}{b^2} = 1$$

Assim, por exemplo, uma elipse que tem centro no ponto O'(7,8) semi-eixo maior a = 5 e semi-eixo menor b = 4 apresenta equação:

$$\frac{(x^2-7)^2}{25}$$
 + $\frac{(y-8)^2}{16}$ = 1 se $A_1 A_2 /\!\!/ x$

ou

$$\frac{(x-7)^2}{16} + \frac{(y-8)^2}{25} = 1 \text{ se } A_1 A_2 // y$$

EXERCÍCIOS

G.292 Determinar as equações das elipses seguintes:

G.293 Determinar as coordenadas dos focos de cada elipse do problema anterior.

G.294 (MAPOFEI-76) O ponto C = (3, 2) é o centro de uma elipse tangente aos eixos coordenados. Se os eixos de simetria são paralelos aos eixos coordenados, escreva a equação da elipse.

G.295 (MAPOFE1-75) As metades do eixo maior e da distância focal, de uma elipse medem, respectivamente, 10 cm e 6 cm, e seu centro é o ponto (4, -2). Se o eixo menor é paralelo ao eixo coordenado Ox, escrever a equação reduzida dessa elípse.

G.296 Calcular a distância focal e a excentricidade da elipse $(\lambda) 25x^2 + 169y^2 = 4225$.

G.297 Determinar a equação da elipse com centro na origem, que passa pelo ponto P(1, 1) e tem um foco F_1 (- $\frac{\sqrt{6}}{2}$ 0).

G.298 Construir o gráfico da cônica cuja equação é 25x² + 16y² - 400 e obter as coordenadas dos focos.

G.299 Determinar os focos da cônica de equação $\frac{(x-1)^2}{25} + \frac{(y-1)^2}{9}$.

G.299 Determinar os focos da cônica de equação $\frac{(x-1)^2}{25} + \frac{(y-1)^2}{9} - 4$.

G.300 Qual é a equação do conjunto dos pontos P(x, y) cuja soma das distâncias a $F_1(0, -6)$ e F(0, 10) é 34?

II. HIPÉRBOLE

132. Definição

Dados dois pontos distintos F_1 e F_2 , pertencentes a um plano α , seja 2c a distância entre eles. Hipérbole é o conjunto dos pontos de α cuja diferença (em valor absoluto) das distâncias a F_1 e F_2 é a constante 2a (0 < 2a < 2c).

hipérbole =
$$\{P \in \alpha \mid |PF_1 - PF_2| = 2a\}$$

Assim, temos:

se: http://fuvestibular.com
$$\Phi F_2 - QF_1 = 2a$$

$$RF_2 - RF_1 = 2a$$

$$SF_1 - SF_2 = 2a$$

$$A_1 F_2 - A_1 F_1 = 2a$$

$$A_2 F_1 - A_2 F_2 = 2a$$

Notemos que o módulo é abolido desde que façamos a diferença da maior para a menor distância. Se um ponto X está no ramo da direita temos:

$$XF_1 - XF_2 = 2a$$
 pois $XF_1 > XF_2$

Se X está no ramo da esquerda, temos:

$$XF_2 - XF_1 = 2a$$
 pois $XF_2 > XF_1$.

133. Elementos principais

$$F_1 \in F_2 \rightarrow focos$$

$$A_1 A_2 \rightarrow eixo real ou transverso$$

$$\frac{c}{a} \rightarrow \text{excentricidade}$$

relação notável:

$$c^2 = a^2 + b^2$$

Notemos que, sendo a hipérbole uma curva aberta, o significado geométrico do eixo imaginário B_1B_2 é, por enquanto, abstrato.

134. Equação reduzida

Tomemos um sistema cartesiano ortogonal tal que

$$A_1 A_2 \subseteq x \ e \ B_1 B_2 \subseteq y$$
.

É evidente que os focos são os pontos:

$$F_1(-c, 0) \in F_2(c, 0)$$

Nestas condições, chama-se equação reduzida da hipérbole a equação que P(x, y), ponto genérico da hipérbole, vai verificar.

A dedução é imediata:

$$P \in \text{hipérbole} \iff |PF_1 - PF_2| = 2a$$

nipérbole
$$\iff$$
 $|PF_1 - PF_2| = 2a$

$$\sqrt{(x+c)^2 + (y-0)^2} - \sqrt{(x-c)^2 + (y-0)^2} = \pm 2a$$

$$\sqrt{(x+c)^2 + y^2} = \sqrt{(x-c)^2 + y^2} \pm 2a$$

$$(x+c)^2 + y^2 = (x-c)^2 + y^2 \pm 4a \sqrt{(x-c)^2 + y^2} + 4a^2$$

$$\underline{4cx - 4a^2} = \pm 4a \sqrt{(x-c)^2 + y^2} \implies cx - a^2 = \pm a \sqrt{(x-c)^2 + y^2}$$

$$(cx - a^2)^2 = a^2 \cdot (x-c)^2 + a^2 y^2$$

$$c^2 x^2 - \underline{2a^2 cx} + a^4 = a^2 x^2 - \underline{2a^2 cx} + a^2 c^2 + a^2 y^2$$

$$(c^2 - a^2)x^2 - a^2 y^2 = a^2 (c^2 - a^2) \implies b^2 x^2 - a^2 y^2 = a^2 b^2$$

Assim, por exemplo, uma hipérbole com eixo real 6 e distância focal 10, apresenta:

$$b^2 = c^2 - a^2 = 25 - 9 = 16$$

Se a posição da hipérbole é a indicada na figura, isto é, $A_1 A_2 \subset x$ e B₁B₂ ⊂ y, então sua equação é:

$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

P(x, y

 A_2

Αı

135. Analogamente ao que vimos no item 134, se a hipérbole apresentar $A_1 A_2 \subseteq y$ e $B_1 B_2 \subseteq x$, temos: . acesse: http://fuvestibular.

$$PF_1 - PF_2 = \pm 2a$$

$$\sqrt{(x-0)^2+(y+c)^2}-\sqrt{(x-0)^2+(y-c)^2}=\pm 2a$$

(notemos que esta relação é a mesma que se obtém permutando x com y na relação inicial do item 134) e, daí, decorre a equação da hipérbole:

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Assim, por exemplo, uma hipérbole com eixo real 6 e distância focal 10. na posição indicada na figura, isto é. $A_1 A_2 \subset y$ e $B_1 B_2 \subset x$, tem equação

$$\frac{y^2}{9} - \frac{x^2}{16} = 1$$

que evidentemente não é equivalente a:

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

136. Se uma hipérbole tem centro no ponto O' (x_0, y_0) e $A_1 A_2 // x$, sua y = 0equação em relação ao sistema auxiliar. x'0'v' é:

$$\frac{(x')^2}{a^2} - \frac{(y')^2}{b^2} = 1$$

portanto, sua equação relativamente ao yo sistema xOy é:

$$\frac{(x - x_0)^2}{a^2} - \frac{(y - y_0)^2}{b^2} = 1$$

O

P(x, y)

Analogamente, se uma hipérbole tem centro no ponto $O'(x_0, y_0)$ e A₁A₂ // y, sua equação relativamente ao sistema xOv é:

Assim, por exemplo, uma hipérbole que tem centro no ponto O'(7, 8), semi-eixo real a = 4 e semi-eixo imaginário b = 3 apresenta equação: $\frac{1}{0}$

$$\frac{(x-7)^2}{16} - \frac{(y-8)^2}{9} = 1 \qquad \text{se } A_1 A_2 /\!\!/ x$$

se
$$A_1 A_2 /\!\!/ x$$

Ο,

ou
$$\frac{(y-8)^2}{16} - \frac{(x-7)^2}{9} = 1$$
 se $A_1 A_2 /\!\!/ y$

EXERCÍCIOS

G.301 Determinar as equações das hipérboles seguintes:

F₂(6, 0)

A₁(2, 0)

- G.302 Obter a distância focal da hipérbole cuja equação é $\frac{x^2}{36} \frac{y^2}{64} = 1$.
 - G.303 Calcular a excentricidade da hipérbole cuja equação é $9x^2 25y^2 = 1$
 - G.304 Construir os gráficos das cônicas (λ) $x^2 y^2 = 1$ e (λ ') $y^2 x^2 = 1$. São coincidentes?
 - **G.305** Determinar as coordenadas dos focos da hipérbole cuja equação é $9y^2 16x^2 = 144$.
 - **G.306** Obter os focos da cônica cuja equação é $\frac{(x-1)^2}{7} = \frac{(y-1)^2}{2} = 1$
 - G.307 Determinar a equação da hipérbole que tem as sequintes propriedades:
 - a) seu centro é a origem
 - b) um de seus focos é F₁ (0, -2)
 - c) um de seus pontos é $P(1, \sqrt{3})$

III. PARÁBOLA

137. Definição

Dados um ponto F e uma reta d, pertencentes a um plano α , com F ∉ d, seja p a distância entre F e d. Parábola é o conjunto dos pontos de α que estão a mesma distância de F e de d.

parábola =
$$\{P \in \alpha \mid PF = Pd\}$$

Assim, temos:

VF = VV'

PF = PP'

QF = QQ'

RF = RR'

SF = SS'

138. Elementos principais

F → foco

d → diretriz

p → parâmetro

V → vértice

reta VF → eixo de simetria relação notável:

c)

139. Equação reduzida

Tomemos um sistema cartesiano ortogonal com origem no vértice da parábola e eixo das abscissas passando po pelo foco. É evidente que o foco é

$$F(\frac{p}{2}, 0)$$

e a diretriz d tem equação

$$x = -\frac{p}{2}.$$

Nestas condições, chama-se equação reduzida da parábola a equação que ponto genérico da curva, vai verificar.

A dedução é imediata:

então:

$$\sqrt{(x - \frac{p}{2})^2 + (y - 0)^2} = \sqrt{(x + \frac{p}{2})^2 + (y - y)^2}$$

$$(x - \frac{p}{2})^2 + y^2 = (x + \frac{p}{2})^2$$

$$\underline{x}^2 - px + \underline{\frac{p^2}{4}} + y^2 = \underline{x}^2 + px + \underline{\frac{p^2}{4}}$$

$$y^2 = 2px$$

Assim, por exemplo, uma parábola com parâmetro p = 2, vértice na origem e foco no eixo dos x, tem equação:

$$y^2 = 4x$$
 se F à direita de V

 $v^2 = -4x$ se F à esquerda de V

P(x, y)

140. Analogamente ao que vimos no Para mais, acesse: http://fuvestibular.com/hr/139, se a parabola apresentar vértice na origem e foco no eixo das ordenadas. temos:

$$PF = PP'$$

$$\sqrt{(x-0) + (y-\frac{p}{2})^2} = \sqrt{(x-x)^2 + (y+\frac{p}{2})^2}$$

(notemos que esta relação é a mesma que se obtém permutando x com y na relação inicial do item 139); e, daí, decorre a equação da parábola

Assim, por exemplo, uma parábola com parâmetro p = 2, vértice na origem e foco no eixo y tem equação:

$$x^2 = 4y$$
, se F acima de V ou

$$x^2 = -4y$$
, se F abaixo de V

$$(y')^2 = 2px'$$

portanto, sua equação relativamente ao sistema xOy é:

$$(y - y_0)^2 = 2p(x - x_0)$$

Analogamente, se uma parábola tem vértice no ponto

$$V(x_0, y_0)$$
 e $VF /\!\!/ y$,

sua equação relativamente ao sistema xOy é:

Assim, por exemplo, uma parábola de vértice V(7, 8) e parâmetro $3 - \frac{1}{100}$ apresenta equação:

Notemos ainda que uma parábola y de vértice V(7, 8) e parâmetro 3 apresenta equação

$$(y - 8)^2 = -6(x - 7)$$

se VF // x e F à esquerda de V

$$(x - 7)^2 = -6(y - 8)$$

se VF∥v e Fabaixo de V

EXERCÍCIOS

G.308 Determinar as equações das parábolas seguintes:

0 F(2, 0)

F(0, -2)

G.309 (MAPOFEI-76) Achar as coordenadas do foco F e a equação da diretriz da parábola $y^2 = -8x$.

G.310 Determinar o foco e o vértice da parábola (λ) (y - 3)² = 8(x-1).

G.311 Achar a equação da diretriz da parábola representada pela equação $v = (x - 3)^2$

G.312 Achar a equação da parábola que tem eixo de simetria vertical e passa pelos pontos

G.313 Obter a equação da parábola cuja diretriz é (d) x = 0 e cujo foco é F(2, 2).

G.314 Qual é a equação do conjunto dos pontos P(x, y) que são equidistantes da reta (d) y = 5 e do ponto F(0, 0).

G.315 (MAPOFEI-74) Achar a distância do ponto P = (2, 4) à reta determinada pelos pontos de intersecção da função $f(x) = x^2 - x$ com a sua inversa.

G.316 (MAPOFEI-75) Representar graficamente o conjunto dos pontos (x, y) do plano que satisfazem a inequação: $(y - x^2)(x + y - 2) \ge 0$.

G.317 (MAPOFEI-75) Obter a equação da mediatriz do segmento cujas extremidades são os vértices das parábolas $y = x^2 + 4x + 6$ e $y = x^2 - 4x + 2$.

G.318 (MAPOFEI-76) Dada a parábola de equação $x = y^2 - 6y + 8$, determinar as coordenadas do vértice.

Para mais, acesse: http://fuvestibular.com.br/

IV. RECONHECIMENTO DE UMA CÔNICA

142. Comparando entre si as equações do item 131:

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1 \text{ (elipse com eixo maior horizontal)}$$

$$\frac{(y - y_0)^2}{a^2} + \frac{(x - x_0)^2}{b^2} = 1 \text{ (elipse com eixo maior vertical)}$$

concluímos que:

1º) uma equação do 2º grau nas incógnitas x e y representa uma elipse com eixo maior paralelo a Ox ou Oy se, e somente se, for redutível à forma:

$$\frac{(x-x_0)^2}{k_1} + \frac{(y-y_0)^2}{k_2} = 1 \quad \text{com } k_1 > 0, \quad k_2 > 0 \quad \text{e} \quad k_1 \neq k_2;$$

- 2°) quando $k_1 > k_2$, $k_1 = a^2$ e $k_2 = b^2$, portanto, o eixo maior é horizontal:
- 3.9) quando $k_1 < k_2$, $k_1 = b^2$ e $k_2 = a^2$, portanto, o eixo major é vertical:
 - 4°) (x_0, y_0) é o centro da elipse.

143. Comparando entre si as equações do item 136:

$$\frac{(x - x_0)}{a^2} + \frac{(y - y_0)^2}{-b^2} = 1 \text{ (hipérbole com eixo real horizontal)}$$

$$\frac{(x - x_0)^2}{-b^2} + \frac{(y - y_0)^2}{a^2} = 1 \text{ (hipérbole com eixo real vertical)}$$

concluímos que:

10) uma equação do 20 grau nas incógnitas x e y representa uma hipérbole com eixo real paralelo a Ox ou Oy se, e somente se, for redutível à forma:

$$\frac{(x - x_0)^2}{k_1} + \frac{(y - y_0)^2}{k_2} = 1$$

onde k₁ e k₂ têm sinais contrários:

- 2. quando $k_1 > 0$ e $k_2 < 0$, temos $k_1 = a^2$ e $k_2 = -b^2$, portanto. o eixo real é horizontal:
- 3.) quando $k_1 < 0$ e $k_2 > 0$, temos $k_1 = -b^2$ e $k_2 = a^2$, portanto, o eixo real é vertical:
 - 4.0) (x₀, y₀) é o centro da hipérbole

144. Desenvolvendo as equações do item 141, temos:

Para mais, acesse: http://fuvestibular.com.br/
$$x = \frac{1}{2p} \cdot y^2 - \frac{y_0}{p} \cdot y + \frac{y_0^2 + 2px_0}{2p}$$
 (parábola com eixo horizontal) $y = \frac{1}{2p} \cdot x^2 - \frac{x_0}{p} \cdot x + \frac{x_0^2 + 2py_0}{2p}$ (parábola com eixo vertical)

Comparando as duas, concluímos que:

1.0) uma equação do 2.0 grau nas incógnitas x e y representa uma parábola com eixo paralelo a Ox ou Oy se, e somente se, for redutível às formas:

$$(a \neq 0)$$
 $(a \neq 0)$ ou

(II)
$$y = ax^2 + bx + c$$
 $(a \neq 0)$

2º) quando redutível à forma (1), a parábola tem eixo horizontal e $a = \frac{1}{2p}$, $b = -\frac{y_0}{p}$, $c = \frac{y_0^2 + 2px_0}{2p}$;

3º) quando redutível à forma (II), a parábola tem eixo vertical e $a = \frac{1}{2p}$, $b = -\frac{x_0}{p}$, $c = \frac{x_0^2 + 2py_0}{2p}$;

 4°) (x_0, y_0) é o vértice da parábola.

145. Aplicações

1.9) Caracterizar a cônica representada pela equação $4x^2 + 9y^2 = 36$ e esbocar seu gráfico.

Solução

Dividindo por 36, temos:

$$\frac{4x^2}{36} + \frac{9y^2}{36} = \frac{36}{36} \Rightarrow \frac{x^2}{9} + \frac{y^2}{4} = 1$$

portanto a cônica é uma elipse com centro na origem e eixo maior horizontal tal que:

$$\begin{vmatrix} a^2 = 9 \\ b^2 = 4 \end{vmatrix} \Rightarrow c = \sqrt{a^2 - b^2} = \sqrt{5}$$

2°) Caracterizar a cônica representada pela equação $4x^2 - 9y^2 = 36$ e r" = 30 e Para mais, acesse: http://fuvestibular.com.br/ Solução

esboçar seu gráfico.

Solução

$$4x^2 - 9y^2 = 36 \Rightarrow \frac{x^2}{9} - \frac{y^2}{4} = 1$$

portanto a cônica é uma hipérbole com centro (0, 0), eixo real horizontal pois a diferença é feita de x² para y² e

$$\begin{vmatrix} a^2 = 9 \Rightarrow a = 3 \\ b^2 = 4 \Rightarrow b = 2 \end{vmatrix} \implies c = \sqrt{13}$$

3º) Qual é a cônica representada pela equação $v^2 = 6x$? Esbocar seu gráfi-CO.

Solução

$$v^2 = 6x \Rightarrow v^2 = 2 \cdot 3 \cdot x$$

portanto a cônica é uma parábola com vértice na origem, eixo horizontal e parametro p = 3.

4°) Qual é a distância entre os focos da cônica cuja equação é $9x^2 + 4y^2 = 36$?

Solução

$$9x^2 + 4y^2 = 36 \Rightarrow \frac{x^2}{4} + \frac{y^2}{9} = 1$$

A cônica é uma elipse com centro (0, 0) e eixo maior vertical tal que:

$$\begin{vmatrix} a^2 &= 9 \\ b^2 &= 4 \end{vmatrix} \implies c = \sqrt{a^2 - b^2} = \sqrt{5}$$

portanto os focos são

$$F_1(0, -\sqrt{5})$$
 e $F_2(0, \sqrt{5})$

$$F_1(0, -\sqrt{5})$$
 e $F_2(0, \sqrt{5})$
e a distância entre eles é $2c = 2\sqrt{5}$

5°.) Quais são os focos da cônica cuja equação é $x^2 - y^2 = 1$?

$$x^2 - y^2 = 1 \implies \frac{x^2}{1} - \frac{y^2}{1} = 1$$

A cônica é uma hipérbole com centro (0, 0) e eixo real hirozontal tal que:

$$\begin{vmatrix} a^2 &= 1 \\ b^2 &= 1 \end{vmatrix} \implies c = \sqrt{a^2 + b^2} = \sqrt{2}$$

portanto os focos são

$$F_1(-\sqrt{2}, 0) = F_2(\sqrt{2}, 0)$$

6°) Qual é a cônica representada pela equação $9x^2 + 16y^2 - 90x - 160y + 160y$ + 481 = 0? Esboçar seu gráfico:

Solução

Tendo os termos x^2 e y^2 , é evidente que a equação só pode representar elipse ou hipérbole.

Vamos identificá-la com a equação teórica

$$\frac{(x - x_0)^2}{k_1} + \frac{(y - y_0)^2}{k_2} = 1$$

isto é,

$$k_2 x^2 + k_1 y^2 - 2k_2 x_0 x - 2k_1 y_0 y + (k_2 x_0^2 + k_1 y_0^2 - k_1 k_2) = 0$$

Temos coeficientes respectivamente iguais aos da equação dada, portanto:

$$k_2 = 9$$
, $k_1 = 16$, $2k_2x_0 = 90$, $2k_1y_0 = 160$, $k_2x_0^2 + k_1y_0^2 - k_1k_2 = 481$

donde vem:

$$k_2 = 9$$
, $k_1 = 16$, $x_0 = 5$, $y_0 = 5$

Como $k_1 > k_2 > 0$, a equação representa uma elipse com eixo maior horizontal, centro (5, 5), sendo

A equação reduzida é

$$\frac{(x-5)^2}{16} + \frac{(y-5)^2}{9} = 1$$

7.9) Caracterizar a cônica representada pela equação $x = \frac{1}{4}y^2 - \frac{1}{2}y + \frac{5}{4}$ e esboçar seu gráfico.

Solução

Evidentemente a equação representa uma parábola com eixo horizontal Identificando-a com a equação teó-

rica

$$x = \frac{1}{2p} \cdot y^2 - \frac{y_0}{p} \cdot y + \frac{y_0^2 + 2px_0}{2p}$$

decorre:

$$\frac{1}{2p} = \frac{1}{4}, \frac{y_0}{p} = \frac{1}{2}, \frac{y_0^2 + 2px_0}{2p} = \frac{5}{4}$$

donde tiramos:

$$p = 2$$
, $y_0 = 1$, $x_0 = 1$

Assim, a parábola tem vértice (1, 1) e parâmetro p = 2.

A equação reduzida é:

$$(y - 1)^2 = 4(x - 1)$$

89) Qual é a cônica representada pela equação $4x^2 - y^2 - 32x + 8y + 52 = 0$? Esbocar seu gráfico.

Tendo os termos x² e y², é evidente que a equação só pode representar elipse ou hipérbole.

Se identificarmos a equação dada y com a teórica

$$\frac{(x - x_0)^2}{k_1} + \frac{(y - y_0)^2}{k_2} = 1$$

obteremos:

$$k_1 = -1$$
, $k_2 = 4$, $x_0 = 4$, $y_0 = 4$

Como $k_1 < 0$ e $k_2 > 0$, a equação representa uma hipérbole com eixo real vertical, centro (4, 4), sendo $a^2 = 4$ $e b^2 = 1.$

A equação reduzida é

$$\frac{(y-4)^2}{4} - \frac{(x-4)^2}{1} = 1$$

146. Estamos observando que a teoria dos itens 142, 143 e 144 só permite caracterizar a cônica representada por uma equação do 2º grau do tipo.

$$Ax^{2} + By^{2} + Cxy + Dx + Ey + F = 0$$

com C = 0, isto é, sem o termo xy.

Para discutir o caso quando $C \neq 0$ é preciso ver o capítulo seguinte.

EXERCÍCIOS

G.319 Caracterizar a cônica representada por cada uma das equações abaixo:

a)
$$3x^2 + 2y^2 - 12x - 4y + 8 = 0$$

b)
$$2v = x^2 + 2x + 7$$

c)
$$4x^2 - 3y^2 + 6y - 15 = 0$$

d)
$$x = y^2 + y + 1$$

e)
$$4x^2 + 9y^2 - 8x - 36y + 4 = 0$$

G.320 Uma cônica tem equação $x^2 + 2y^2 - 4x + 2 = 0$. Caracterizar a cônica, determinar seus focos e sua excentricidade.

Para mais, acesse: http://fuvestibular.com.br/

147. É regra geral na Geometria Analítica que, dadas duas curvas f(x, y) = 0 e g(x, y) = 0, a intersecção delas é o conjunto dos pontos que satisfazem o sistema:

 $\begin{cases} f(x, y) = 0 \\ g(x, y) = 0 \end{cases}$

Já aplicamos este conceito para achar a intersecção de duas retas (item 32), de uma reta e uma circunferência (item 99) e de duas circunferências (item 103). O mesmo conceito se aplica para obter a intersecção de uma reta e uma cônica, de uma circunferência e uma cônica, de duas cônicas, etc.

148. Aplicação

Achar os pontos comuns à reta (r) x - y = 0 e a parábola (λ) $y = x^2$.

Solução

Vamos resolver o sistema de equações

$$\begin{cases} x = y & \downarrow \\ y = x^2 & \downarrow \end{pmatrix}$$

Substituindo (1) em (11), resulta:

$$y = (y)^2 \longrightarrow y^2 - y = 0$$

$$\begin{cases} y = 0 & \Longrightarrow & x = 0 \\ ou & & \\ y = 1 & \Longrightarrow & x = 0 \end{cases}$$

Resposta: $r \cap \lambda = \{(0, 0), (1, 1)\}$

EXERCÍCIOS

G.321 Calcular o comprimento da corda que a reta (r) y = -x define na elipse

$$(\lambda) x^2 + 4y^2 = 20.$$

G.322 Achar a intersecção da circunferência $(\lambda)x^2 + y^2 - 17$ com a hipérbole $(\lambda')x^2 - y^2 = 1$.

G.323 Obter a intersecção da parábola $(\lambda)y^2 = x$ com a elipse $(\lambda')x^2 + 2y^2 = 3$.

- 149. Vamos resolver dois problemas clássicos de tangência entre uma cônica e uma reta:
- 1º Problema: obter as retas (t) tangentes a uma dada cônica (λ) e paralelas a uma dada reta (r).
- 2° . Problema: obter as retas (t) tangentes a uma dada cônica (λ) e passando por um dado ponto (P).

Para a resolução desses dois problemas é fundamental notar que uma reta t e uma cônica λ , coplanares, são tangentes se, e somente se, têm único ponto comum. (x)

A reta (t)ax + by + k = 0 e a cônica (λ)f(x, y) = 0 têm um único ponto comum se o sistema de equações:

$$\begin{cases} ax + by + k = 0 & 1 \\ f(x, y) = 0 & 1 \end{cases}$$

admitir uma única solução (x₀, y₀).

Seja \triangle o discriminante da equação do 2^o grau resultante da substituição da incógnita y de \bigcirc em \bigcirc em \bigcirc A reta t e a cônica λ são tangentes se, e somente se: \triangle = 0.

150. Solução do 1º problema

Se a reta dada é (r)ax + by + c = 0 e a cônica dada é $(\lambda)f(x, y) = 0$ temos:

10)
$$t / r \implies (t)ax + by + k = 0$$

2°) como t é tangente a $\lambda,$ determinamos k impondo Δ = 0 (conforme item 149).

^(*) No caso da parábola deve-se exigir que a reta tenha um único ponto comum com a curva e não seja paralela ao eixo da parábola.

151. Aplicações

3. Dadas a reta $(r)y = -\frac{1}{3}x$ e a parábola $(\lambda)y = x^2 - x - 2$, pede-se a Para mais, acesse: http://fuvestibular.com.br/te a λ que é perpendicular a r bem como o ponto de tangência.

1. Obter as tangentes à elipse $(\lambda)2x^2 + 3y^2 = 6$ que são paralelas à reta (r)y = x.

Solução

10)
$$t / r \longrightarrow (t)y = x + k$$

2°) sistema
$$\begin{cases} 2x^2 + 3y^2 = 6 \\ y = x + k \end{cases}$$

Substituindo, temos:

$$2x^2 + 3(x + k)^2 = 6$$

 $5x^2 + 6kx + (3k^2 - 6) = 0$

$$\Delta = (6k)^2 - 4 \cdot 5 \cdot (3k^2 - 6) = 36k^2 - 60k^2 + 120 =$$

$$= -24k^2 + 120 = 0 \implies k = \pm \sqrt{5}$$

Resposta: $y = x + \sqrt{5}$ ou $y = x - \sqrt{5}$

Solução

1°)
$$t /\!\!/ r \implies (t)y = 2x + k$$

2°) sistema
$$\begin{cases} x^2 - y^2 = 1 \\ y = 2x + k \end{cases}$$

Substituindo, temos:

$$x^{2} - (2x + k)^{2} = 1$$

 $3x^{2} + 4kx + (k^{2} + 1) = 0$

3°) t tangente a $\lambda \longrightarrow \Delta = 0$

$$\triangle = (4k)^2 - 4 \cdot 3 \cdot (k^2 + 1) = 4k^2 - 12 = 0 \implies k = \pm \sqrt{3}$$

Resposta: $y = 2x + \sqrt{3}$ ou $y = 2x - \sqrt{3}$

19)
$$t \perp r \implies m_t = -\frac{1}{m_r} = -\frac{1}{\frac{1}{3}} = 3$$

então (t)v = 3x + k

Substituindo, temos:

$$3x + k = x^2 - x - 2$$

 $x^2 - 4x - (k + 2) = 0$

3.0) t tangente a
$$\lambda \implies \Delta = 0$$

$$\Delta = (-4)^2 + 4 \cdot 1 \cdot (k + 2) = 16 + 4k + 8 =$$

= $4k + 24 \implies k = -6 \implies (t)y = 3x - 6$

 4° .) Obtemos o ponto de tangência fazendo k=-6 na equação do 2° . grau em x:

$$x^2 - 4x - (-6 + 2) = x^2 - 4x + 4 = 0 \implies x = 2$$

Substituindo na equação da reta t, resulta:

$$y = 3(2) - 6 = 0$$

portanto P(2, 0)

Resposta: y = 3x - 6 e P(2, 0).

152. Solução do 2º problema

Se o ponto dado é $P(x_0, y_0)$ e a cônica dada é $(\lambda)f(x, y) = 0$, temos:

10)
$$P \in t \implies (t)y - y_0 = m(x - x_0)$$

2.0) como t é tangente a λ , determinamos m impondo Δ = 0 (conforme item 149).

153. Aplicações

3.0) t tangente a $\lambda \implies \Delta = 0$

Para mais, acesse: http://fuvestibular.com. $M = 3^2 - 4m^2 \cdot 3 = 9 - 12m^2 = 0 \implies m = \pm \frac{\sqrt{3}}{2}$

1. Obter as tangentes à elipse $(\lambda)4x^2 + 9y^2 = 36$ que passam por P(7, 2).

Solução

10)
$$P \in t \longrightarrow y-2 = m(x-7) = y = mx - 7m + 2$$

2°) o sistema é:
$$\begin{cases} y = mx - 7 + 2 \\ 4x^2 + 9y^2 = 36 \end{cases}$$

Substituindo, temos:

$$4x^{2} + 9(mx - 7m + 2)^{2} = 36$$

 $4x^{2} + 9(m^{2}x^{2} + 49m^{2} + 4 - 14m^{2}x - 28m + 4mx) = 36$
 $(9m^{2} + 4)x^{2} + 18m(2 - 7m) \cdot x + 63m(7m - 4) = 0$

3.) t tangente a
$$\lambda \implies \Delta = 0$$

 $\Delta = 18^2 \cdot m^2 \cdot (2 - 7m)^2 - 4 \cdot (9m^2 + 4) \cdot 63m \cdot (7m - 4) = 576m \cdot (7 - 10m) = 0 \Longrightarrow$

$$\implies \begin{cases} m = 0 \\ ou \\ m = \frac{7}{10}. \end{cases}$$

Resposta:
$$y = 2$$
 ou $y = \frac{7}{10} \cdot x - \frac{29}{10}$

2. Conduzir por P(0, 0) as tangentes à parábola $(\lambda)x = \frac{y^2 + 3}{3}$ e calcular o ângulo θ entre elas.

Solução

1°)
$$P \in t \longrightarrow (t)y = mx$$

2°) o sistema é
$$\begin{cases} y_1 - mx \\ x = \frac{y^2 + 3}{3} \end{cases}$$

Substituindo, temos:

$$x = \frac{m^2 x^2 + 3}{3}$$
$$m^2 x^2 - 3x + 3 - 0$$

portanto (t) é
$$y = \frac{\sqrt{3}}{2} x$$
 ou $y = -\frac{\sqrt{3}}{2} x$

4°)
$$tg \theta = \left| \frac{m - m'}{1 + mm'} \right| = \frac{\sqrt{3}}{1 - \frac{3}{4}} = 4\sqrt{3}$$

Resposta:
$$\theta = \text{arc tg } 4\sqrt{3}$$

154. Demonstra-se que toda hipérbole admite duas retas, s_1 e s_2 , passando pelo seu centro e tangenciando os dois ramos da curva no ponto impróprio (ponto infinitamente afastado da reta).

As retas s_1 e s_2 recebem o nome de assíntotas.

Suas equações, no caso em que o centro da hipérbole é a origem, são:

$$(s_1)y = \frac{b}{a} \cdot x$$

$$(s_2)y = -\frac{b}{a} \cdot x$$

EXERCÍCIOS

- **G.324** Obter uma reta t paralela à bissetriz dos quadrantes ímpares e tangente à parábola $(\lambda)y = x^2 x + 3$. Achar o ponto T de tangência.
- **G.325** Obter uma reta t perpendicular à reta (r)x + 2y + 1 = 0 e tangente à hipérbole $(\lambda)5x^2 y^2 = 1$.
- **G.326** Conduzir por P(0, 0) as retas t que são tangentes à elipse $(\lambda)x^2 + 2y^2 8y + 6 = 0$.
- **G.327** Conduzir por P(0, 3) as retas t que são tangentes à hipérbole $(\lambda)x^2 y^2 = 1$.
- **G.328** Obter as equações das retas t que passam por P(5, 0) e são tangentes à parábola $(\lambda)x = -v^2$.
- **G.329** Achar as equações das assíntotas da hipérbole $(\lambda)9x^2 3y^2 = 1$.

- **G.330** (EESCUSP-69) Achar as coordenadas de quatro pontos da curva $b^2x^2 + a^2y^2 = a^2b^2$ com a > 0, b > 0, de modo que eles sejam os vértices de um quadrado cujas diagocesse: http://fuvestibular.com.br/nais passam pela origem.
- G.331 (MAPOFEI-69) Determinar a equação reduzida da elipse cujo eixo menor tem por extremos os focos da hipérbole $9x^2 16y^2 = -144$ e cuja excentricidade é o inverso da excentricidade da hipérbole dada.
- G.332 (MAPOFEI-70) É dada a parábola de equação $y = x^2$ em coordenadas cartesianas ortogonais. Sendo $A = (a, a^2)$, $B = (b, b^2)$ e $X = (x, x^2)$ três pontos distintos da parábola:
 - a) determinar a área do triângulo ABX.
 - b) para cada x, distinto de a e de b, seja f(x) a área (positiva) do triângulo ABX, esboçar o gráfico da função f.
 - c) determinar o valor de x para o qual f(x) é máximo local (ou relativo).

CAPÍTULO VIII

LUGARES GEOMÉTRICOS

I. EQUAÇÃO DE UM L.G.

155. Definição

Uma figura é um lugar geométrico (l.g.) de pontos quando todos os seus pontos, e apenas eles, têm uma certa propriedade comum.

156. Exemplos

19) Sejam A e B dois pontos distintos de um plano α .

O lugar geométrico dos pontos de α equidistantes de A e B é a mediatriz do segmento AB.

Isto significa que, no plano α todos os pontos que estão à mesma distância de A e de B pertencem necessaria-

mente à mediatriz m, e reciprocamente, todo ponto de m é equidistante de A e B.

29) Seja O um ponto pertencente a um plano α e r \neq 0 uma distância.

O lugar geométrico dos pontos de α que estão à distância r de 0 é a circunferência de centro 0 e rajo r.

Isto significa que, no plano α , todos os pontos que estão a distância r de O pertencem necessariamente à circunferência λ , e reciprocamente, todo ponto de λ está a distância r de O.

157. Em Geometria Analítica, "obter um lugar geométrico" significa obter a equação que representa o l.g. e interpretar a equação, isto é, dizer qual é a equação que representa o l.g. e interpretar a equação, isto é, dizer qual é a equação que representa o l.g. e interpretar a equação, isto é, dizer qual é a equação que representa o l.g. e interpretar a equação, isto é, dizer qual é a equação que representa o l.g. e interpretar a equação, isto é, dizer qual é a equação que representa o l.g. e interpretar a equação, isto é, dizer qual é a equação que representa o l.g. e interpretar a equação, isto é, dizer qual é a equação que representa o l.g. e interpretar a equação, isto é, dizer qual é a equação que representa o l.g. e interpretar a equação que representa de l.g. e interpret por ela representada.

Os problemas de l.g. devem ser resolvidos pelo seguinte processo:

- 1. Colocam-se no plano cartesiano os dados do problema:
- 2º) Toma-se um ponto P(X, Y) pertencente a l.g.;
- 3º) Impõe-se analiticamente que P obedeca as condições válidas para qualquer ponto do l.g.;
- 4º) Obtém-se a equação do l.g., na qual devem figurar apenas as variáveis (X e Y) e os parâmetros indispensáveis do problema:
- 50) Caracteriza-se a curva representada pela equação do l.g.

158. Aplicações

- 1. Veja item 25 do capítulo II.
- 2. Veia item 85 do capítulo IV.
- 3. Veia item 89 do capítulo V.
- 4. Veja itens 129, 134 e 139 do capítulo VII.
- 5. Determinar o l.g. dos pontos do plano cartesiano situados à distância d da reta Ax + By + C = 0.

Solução

Se P(X, Y) pertence ao I.g., isto é, está à distância d da reta dada, deve obedecer à condição:

$$\left| \frac{AX + BY + C}{\sqrt{A^2 + B^2}} \right| = d \implies (AX + BY + C)^2 = d^2(A^2 + B^2) \implies$$

$$AX + BY + C - d\sqrt{A^2 + B^2} = 0$$

 $AX + BY + C + d\sqrt{A^2 + R^2} = 0$

equação do lugar geométrico.

Conclusão

O lugar geométrico é a reunião das retas paralelas à reta dada, à distância d.

6. Determinar o I.g. dos pontos do plano cartesiano dos quais as tangentes

Solução

Sejam P(X, Y) pertencente ao I.g. e $P_0(x_0, y_0)$ o ponto de tangência na circunferência:

$$\overline{OP}^2 = \overline{OP}_0^2 + \overline{P_0P}^2$$

então:

$$(X - a)^2 + (Y - b)^2 = r^2 + \ell^2$$

fazendo $r^2 + k^2 = k^2$, temos:

equação do l.g.

Conclusão

O lugar geométrico é a circunferência de centro O(a, b) e raio $k = \sqrt{r^2 + \ell^2}$

7. Determinar o l.g. dos pontos cuja soma das distâncias aos eixos coordenados é igual ao quadrado da distância até a origem.

Solução

Seia P(X, Y) pertencente ao l.g.

então:

$$d_{Px} + d_{Py} = d_{OP}^2$$

$$|\mathbf{Y}| + |\mathbf{X}| = \mathbf{X}^2 + \mathbf{Y}^2$$

equação do l.g.

Temos, então quatro possibilidades:

1. quando
$$X \ge 0$$
 e $Y \ge 0$, $|X| = X$ e $|Y| = Y$,

então a equação fica:

$$X^2 + Y^2 - X - Y = 0$$

2ª) quando $X \leqslant 0$ e $Y \geqslant 0$ a ___ equação fica:

$$X^2 + Y^2 + X - Y = 0$$
 -

3.1) quando $X \le 0$ e $Y \le 0$, temos $X^2 + Y^2 + X + Y = 0$

4ª) quando
$$X \ge 0$$
 e $Y \le 0$, temos $X^2 + Y^2 - X + Y = 0$

O lugar geométrico é a reunião de 4 arcos de circunferência com a origem.

8. Sejam r = r(m) e s = s(m) duas retas, cujas posições dependem da variável m, dadas pelas equações

$$(r)X - 2Y + 12m = 0$$
 e $(s)5X - Y - 3m = 0$

Qual é o l.q. das intersecções de r com s?

Solução

Seja P(X, Y) um ponto de intersecção de r com s. Temos:

$$P \in r \implies X - 2Y = -12m$$

$$P \in s \implies 5X - Y = 3m$$

Resolvendo o sistema I, II, obtemos X = 2m e Y = 7m. A equação do I.g. relaciona X e Y entre si, portanto, vamos eliminar m:

$$\left.\begin{array}{c}
 m = \frac{X}{2} \\
 m = \frac{Y}{7}
\end{array}\right\} \longrightarrow \frac{X}{2} = \frac{Y}{7} \longrightarrow 7X - 2Y = 0$$

Conclusão

O lugar geométrico é a reta que passa pela origem e tem declive $\frac{7}{2}$.

Para mais, acesse: http://fuvestibular.com.br/, **EXERCÍCIOS**

- G.333 Determinar o l.g. dos pontos equidistantes de A(a, b) e B(c, d) com $A \neq B$.
- **G.334** Determinar o i.g. dos pontos equidistantes das retas (r)ax + by + c = 0 e (s) ax + by + c' = 0 com $c \neq c'$.
- G.335 Determinar o 1.g. dos pontos cuja distância ao eixo dos x é o dobro da distância ao eixo dos y.
- G.336 Determinar o I.g. Los pontos cuja distância à reta (r)3x + 4y 5 = 0 é o triplo da distância à leta (s)4x 3y + 5 = 0.
- **G.337** Determinar o i.g. dos pontos equidistantes do ponto F(0, 0) e da reta (d) 3x + 4y 10 = 0,
- G.338 Determinar o I.g. dos pontos dos quais se vê o segmento AB sob ângulo de 45°. Dados: A(-5, 0) e B(+5, 0).
- G.339 Determinar o I.g. dos pontos dos quais se vê o segmento AB sob ângulo de 30°. Dados: A(0, 0) e B(20, 0).
- G.340 Determinar o l.g. dos pontos P que ligados a $\Omega(0, 0)$ determinam retas que interceptam (r)x + y + 1 = 0 em pontos R tais que $\overline{PQ}/\overline{QR} = 1$.
- **G.341** Determinar o l.g. dos pontos P que ligados a Q(0, 3) determinam retas que interceptam a circunferência $x^2 + y^2 = 1$ em pontos R tais que $\overline{PQ}/\overline{QR} = 1$.
- **G.342** Determinar o I.g. dos pontos P que ligados a Q(0, 0) determinam retas que interceptam a parábola $y = x^2 x$ em pontos R tais que $\overline{PQ}/\overline{QR} = 2$.
- G.343 São dados os pontos O(0, 0), A(1, 0) e B(0, 1) e considera-se uma reta variável A'B' paralela a AB. Determinar o l.g. dos pontos I de intersecção das retas variáveis AB' e A'B, sabendo que $B \in OB$ e $A' \in OA$.
- G.344 Num plano são dados uma reta r e um ponto O cuja distância a r é maior que um número dado d. Sobre a circunferência que passa por O e tem diâmetro d consideremos o ponto M mais próximo de r. Qual é o l.g. dos pontos M?
- G.345 (MAPOFEI-72) Consideremos um sistema cartesiano retangular e nele os pontos $O=(0,0),\ A(3,0)$ e P(x,y). Determinar o lugar geométrico dos pontos P(x,y) tais que $\overline{OP}=2\cdot\overline{AP}$.
- G.346 (EPUSP-52) Dados o centro C(2,0), o raio r = 2 de uma circunferência e a reta de equação x = -2, seja P um ponto qualquer dessa circunferência e Q a intersecção da paralela por P ao eixo, com a reta dada. Determinar a equação do l.g. descrito pelo ponto médio M do segmento PQ, quando P descreve a circunferência.

G.347 Dada a elipse $x^2 + 4y^2 = 4$, determinar o l.q. dos pontos M externos à elipse tais que as tangentes à elipse, tracados por M. sejam perpendiculares.

G.348 (EPUSP-50) Os vértices de um triângulo ABC têm para coordenadas A(0, 0), B(0, 4) e C(2, 0). Sendo P um ponto do plano ABC tal que a reta AP encontre a mediana BM, relativa ao lado AC, num ponto Q, determinar a equação do l.g. de P quando Q percorre a mediana, sabendo-se que a relação simples $\frac{\overrightarrow{AQ}}{\overrightarrow{PQ}} = \frac{1}{2}$

INTERPRETAÇÃO DE UMA EQUAÇÃO DO 2º GRAU

159 Uma equação do 2º grau nas incógnitas x e y:

$$Ax^{2} + By^{2} + Cxy + Dx + Ey + F = 0$$

pode representar vários tipos de curvas: circunferência, reunião de duas retas, elipse, hipérbole, parábola, ponto ou conjunto vazio.

160. Já vimos que no item 91 que essa equação representa uma circunferência se forem obedecidas três condições:

$$A = B \neq 0$$
, $C = 0$, $D^2 + E^2 - 4AF > 0$

161. Uma equação em x e y, do 2º grau, representa a reunião de duas retas se, e somente se, o primeiro membro for fatorável num produto de dois polinômios do 1º grau com coeficientes reais:

$$(a_1x + b_1y + c_1)(a_2x + b_2y + c_2) = 0$$

pois, nesse caso, temos a equivalência entre a equação

$$Ax^{2} + By^{2} + Cxy + Dx + Ey + F = 0$$

e o sistema

$$a_1x + b_1y + c_1 = 0$$
 ou $a_2x + b_2y + c_2 = 0$

162. Exemplos

1. As equações x = y e $x^2 = y^2$ representam o mesmo lugar geométrico?

Solução

A equação x = y é satisfeita por todos os pontos cuia abscissa é igual à Para mais, acesse: http://fuvestibularondelnada, isto é, por todos os pontos pertencentes à bissetriz do 1.º e 3.º quadrantes.

A equação $x^2 = y^2$ é equivalente à

$$x^2 - y^2 = 0$$
 \Longrightarrow $(x + y)(x - y) = 0$ \Longrightarrow
$$\begin{cases} x + y = 0 \\ ou \\ x - y = 0 \end{cases}$$

portanto ela é satisfeita por todos os pontos da bissetriz do 1º e 3º quadrantes ou da bisssetriz do 2º e 4º quadrantes.

Resposta: As equações não representam o mesmo l.g.

2°) Provar que a equação $2x^2 - xy + x - y^2 - y = 0$ representa duas retas concorrentes.

Solução

Temos:

$$x^{2} - xy + x^{2} - y^{2} + x - y = 0$$

$$x(x - y) + (x + y)(x - y) + (x - y) = 0$$

$$(x - y)(x + x + y + 1) = 0$$

$$(x - y)(2x + y + 1) = 0$$

$$x - y = 0 ou 2x + y + 1 = 0$$

Os pontos que satisfazem a equação dada pertencem a r ou s que são concorrentes pois:

$$\frac{a_1}{a_2} = \frac{1}{2}$$
 e $\frac{b_1}{b_2} = \frac{-1}{+1}$ \Longrightarrow $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

163. A equação $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$ (1) pode ser encarada como equação 2º grau em x:

Para mais. acesse: http://fuvestibular.com.br/

 $\Delta = 49v^2 - 14v + 1 = (7v - 1)^2$

 $Ax^{2} + (Cv + D)x + (Bv^{2} + Ev + F) = 0$

As raízes da equação do 2º grau em x:

A forma fatorada dessa equação é:

$$3x^2 + (5y + 1)x - (2y^2 - 2y) = 0$$

$$A \cdot (x - x_1) \cdot (x - x_2) = 0$$

são calculadas pela fórmula clássica:

Para m = 1, temos:

onde x₁ e x₂ são as raízes da equação calculadas pela fórmula:

$$\frac{-(Cy + D) \pm \sqrt{(Cy + D)^2 - 4 \cdot A \cdot (By^2 + Ey + F)}}{2\Delta}$$

$$\frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(5y + 1) \pm (7y - 1)}{6}$$

$$x_1 = \frac{-(5y + 1) - (7y - 1)}{6}$$

$$x_2 = \frac{-(5y + 1) + (7y - 1)}{6}$$

Concluímos, então, que a equação (1) é fatorável num produto de dois polinômios do 1º grau se, e somente se, x₁ e x₂ forem polinômios do 1º grau em y. Isto também poderia ser dito assim:

donde vem $x_1 = -2y$ e $x_2 = \frac{y-1}{2}$

"A equação (1) representa a reunião de retas se, e somente se, o discriminante $\Delta = (Cy + D)^2 - 4 \cdot A \cdot (By^2 + Ey + F)$ for polinômio quadrado perfeito." A forma fatorada da equação do 2° grau é:

165. Já vimos nos itens 142, 143 e 144 que a equação

$3(x - x_1)(x - x_2) = 0$

$$3(x + 2y)(x - \frac{y - 1}{3}) = 0$$

e, finalmente, obtemos as equações das retas:

$$x + 2y = 0$$
 ou $3x - y + 1 = 0$

cunferência nem reunião de duas retas. Sejam:

cujos gráficos são r e s respectivamente.

164. Exemplos

19) Determinar m de modo que a equação $3x^2 - 2y^2 + 5xy + mx + 2y = 0$ represente a reunião de duas retas.

Solução

Temos:

$$3x^{2} + (5y + m)x - (2y^{2} - 2y) = 0$$

 $\triangle = (5y + m)^{2} + 4 \cdot 3 \cdot (2y^{2} - 2y) =$
 $- (25y^{2} + 10my + m^{2}) + (24y^{2} - 24y) =$
 $= 49y^{2} + (10m - 24)y + m^{2}$

Este último polinômio é um quadrado perfeito somente se o seu discriminante for nulo:

$$\triangle = (10m - 24)^2 - 4 \cdot 49 \cdot m^2 =$$

$$= -96m^2 - 480m + 576 =$$

$$= -96(m^2 + 5m - 6) = 0 \implies m = 1 \text{ ou } m = -6$$

Resposta: m = 1 ou m = -6

 $\alpha = \begin{bmatrix} 2A & C & D \\ C & 2B & E \\ D & C & 2B \end{bmatrix}, \beta = 4AB - C^2 \quad e \quad \gamma = A + B$

como fazer o reconhecimento dessa cônica nos casos em que $C \neq 0$.

 $Ax^{2} + By^{2} + Cxy + Dx + Ey + F = 0$

pode representar uma cônica (elipse, hipérbole ou parábola) mas não vimos ainda

Consideremos uma equação da forma acima e que não representa nem cir-

Usaremos, sem demonstração, o seguinte resultado:

 $\alpha \neq 0$, $\beta > 0$ e $\alpha \gamma < 0 \iff$ a equação representa uma elipse

 $\alpha \neq 0$, $\beta < 0 \iff$ a equação representa uma hipérbole

 $\alpha \neq 0$, $\beta = 0 \iff$ a equação representa uma parábola

2º) No problema anterior, achar as equações das retas e esbocar o seu gráfico. para m = 1.

Solução

178-G

Para mais, acesse: http://fi.vestibular $\alpha \neq 0$, $\beta > 0$ e $\alpha \gamma > 0$ \Longrightarrow a equação representa o conjunto vazio.

10) Qual é a cônica representada pela equação xy = 5?

Solução

Temos A = B = D = E = 0, C = 1, F = -5, então:

$$\alpha = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -10 \end{vmatrix} = 10 \quad e \quad \beta = 4 \cdot 0 \cdot 0 - 1^2 = -1,$$

portanto $\alpha > 0$ e $\beta < 0$.

Resposta: hipérbole.

20) Qual é a cônica representada pela equação

$$x^2 + 4y^2 - 4xy - 3y - y - 1 = 0$$
?

Solução

Temos A = 1, B = 4, C = -4, D = -3, E = -1, F = -1 portanto

$$\alpha = \begin{vmatrix} 2 & -4 & -3 \\ -4 & 8 & -1 \\ -3 & -1 & -2 \end{vmatrix} = -98 \text{ e } \beta = 4 \cdot 1 \cdot 4 - (-4)^2 = 0,$$

isto é: $\alpha < 0$ e $\beta = 0$

Resposta: parábola.

3º): Qual a cônica representada pela equação

$$x^2 + 3y^2 + xy - 2x + 4y - 5 = 0$$
?

Solução

Temos A = 1, B = 3, C = 1, D = -2, E = 4, F = -5 portanto

$$\alpha = \begin{vmatrix} 2 & 1 & -2 \\ 1 & 6 & 4 \\ -2 & 4 & -10 \end{vmatrix} = -182, \ \beta = 4 \cdot 1 \cdot 3 - 1^2 = 11, \ \gamma = 1 + 3 = 4$$

isto é: $\alpha < 0$. $\beta > 0$ e $\alpha \gamma < 0$

Resposta: elipse.

Assim, por exemplo, a equação $x^2 + 3y^2 - 2x - 6y + 9 = 0$ representa o conjunto vazio pois:

167. Ainda de acordo com a notação do item 165, vamos aceitar o resultado:

$$\alpha = \begin{vmatrix} 2 & 0 & -2 \\ 0 & 6 & -6 \\ -2 & -6 & 9 \end{vmatrix} = 12, \ \beta = 4 \cdot 1 \cdot 3 - (-2)^2 = 8, \ \gamma = 1 + 3 = 4$$

Isto significa que nenhum ponto tem coordenadas que verifiquem a equação dada.

168. Finalmente, a equação do 2º grau em x e y representa um ponto se for redutível à forma $k_1(x - x_0)^2 + k_2(y - y_0)^2 = 0$ com $k_1 > 0$ e $k_2 > 0$. pois só o ponto (x_0, y_0) verifica esta equação.

Assim, por exemplo, a equação $x^2 + y^2 = 0$ representa o ponto (0, 0); a equação $(x-1)^2 + (y-2)^2 = 0$ representa o ponto (1, 2) e a equação $2(x-1)^2 + 3(y+4)^2 = 0$ representa o ponto (1, -4).

EXERCÍCIOS

- **G.349** Demonstrar que a equação $x^2 y^2 + x + y = 0$ representa duas retas concorrentes.
- G.350 (MAPOFEI-74) Mostrar que a equação $y^2 xy 6x^2 = 0$ representa um par de retas concorrentes na origem de um sistema cartesiano ortogonal.
- G.351 Esbocar o gráfico cartesiano dos pontos P(x, y) que verificam a condição

$$x^2 + 2xy + y^2 - 4 = 0$$
.

- **G.352** Provar que a equação $2x^2 2y^2 + 3xy = 0$ representa um par de retas perpendiculares.
- G.353 Calcular o ângulo formado pelas retas representadas pela equação:

a)
$$5x^2 + 5xy - 9x + y - 2 = 0$$

b)
$$x^2 - y^2 + x + 5y - 6 = 0$$

c)
$$x^2 + y^2 + 2xy + x + y = 0$$

- **G.354** Obter m de modo que a equação: $x^2 mv^2 + xv + 5x mv + 4 = 0$ represente a reunião de duas retas.
- G.355 Caracterizar a cônica definida pela equação xy = 1.
- **G.356** Qual é a curva representada pela equação $x^2 y^2 xy = 0$?
- **G.357** Qual é o gráfico da relação $R = \{(x, y) \mid x^2 + 4y^2 + 2mxy 1 = 0\}$?

RESPOSTAS

G.33 A = 0

B = x - 2y

C = -6

D = -125

CAPÍTULO I

G.1 a) A, E, F, I, J, L
b) D, E, H, I
c) B, E, G, H
d) C, E, F, G, K
e) E, F, H
f) E, G, I
g) A, B, E, L
h) C, D, E, K
G.2
$$d = \sqrt{5}$$

G.3 $d = 10$
G.4 $d = 13$
G.5 $2\sqrt{13} + 5\sqrt{2}$
G.7 $x = -3$
G.9 $x = 2$
G.10 P(-3, 0)
G.11 P(-5, 5)
G.13 P($\frac{a+a\sqrt{3}}{2}$, $\frac{a+a\sqrt{3}}{2}$) ou
P($\frac{a-a\sqrt{3}}{2}$, $\frac{a-a\sqrt{3}}{2}$) ou
P($\frac{a-a\sqrt{3}}{2}$, $\frac{a-a\sqrt{3}}{2}$)
G.15 $\begin{cases} C(8, 4) \in D(3, 9) \\ C(-2, -6) \in D(-7, -1) \end{cases}$
G.16 B(8, -3) $\in D(-2, 7)$
G.17 (ABC) = 2
G.18 (ABC) --3
G.20 (5, 6), (11, 15) $\in (17, 24)$
G.21 P(10, 17),
G.23 C(8, -3) $\in D(2, -6)$
G.25 A(5, 0), B(-1, 2), C(7, 4)
G.27 C(-3, 6)
G.28 A(1, 6), B(-1, -5), C(-4, 3)
G.30 C(10, 6) ou C(-6, -6)

e) E, F, H
f) E, G, I
g) A, B, E, L
h) C, D, E, K

G.2
$$d = \sqrt{5}$$

G.3 $d = 10$
G.4 $d = 13$

G.5 $2\sqrt{13} + 5\sqrt{2}$

G.7 $x = -3$

G.9 $x = 2$

G.10 $P(-3, 0)$

G.11 $P(-5, 5)$

G.13 $P(\frac{a+a\sqrt{3}}{2}, \frac{a+a\sqrt{3}}{2})$

G.15 $\begin{cases} C(8, 4) \in D(3, 9) \\ C(-2, -6) \in D(-7, -1) \end{cases}$

G.16 $B(8, -3) \in D(-2, 7)$

G.17 $(ABC) = 2$

G.18 $(ABC) = -3$

G.20 $(5, 6), (11, 15) \in (17, 24)$

G.21 $P(10, 17)$

G.22 $C(-3, 6)$

G.24 $(-13, -13)$

G.35 $(-12, -32)$

G.45 $(-12, -32)$

G.45 $(-12, -32)$

G.52 $(-12, -32)$

G.52 $(-12, -32)$

G.53 $(-12, -32)$

G.54 $(-12, -32)$

G.55 $(-12, -32)$

G.57 $(-12, -32)$

G.70 $(-12, -32)$

G.71 $(-12, -32)$

G.72 $(-12, -32)$

G.73 $(-12, -32)$

G.74 $(-13, -13)$

G.75 $(-12, -32)$

G.77 $(-12, -32)$

G.78 $(-12, -32)$

G.79 $(-12, -32)$

G.70 $(-12, -32)$

G.70 $(-12, -32)$

G.71 $(-12, -32)$

G.72 $(-12, -32)$

G.73 $(-12, -32)$

G.74 $(-13, -13)$

G.75 $(-12, -32)$

G.76 $(-12, -32)$

G.77 $(-12, -32)$

G.77 $(-12, -32)$

G.78 $(-12, -32)$

G.79 $(-12, -32)$

G.70 $(-12, -32)$

G.70 $(-12, -32)$

G.71 $(-12, -32)$

G.72 $(-12, -32)$

G.73 $(-12, -32)$

G.74 $(-12, -32)$

G.75 $(-12, -32)$

G.75 $(-12, -32)$

G.77 $(-12, -32)$

G.78 $(-12, -32)$

G.79 $(-12, -32)$

G.79 $(-12, -32)$

G.70 $(-12, -32)$

G.71 $(-12, -32)$

G.72 $(-12, -32)$

G.73 $(-12, -32)$

G.74 $(-12, -32)$

G.75 $(-12, -32)$

G.75 $(-12, -32)$

G.76 $(-12, -32)$

G.77 $(-12, -32)$

G.78 $(-12, -32)$

G.79 $(-12, -32)$

G.79 $(-12, -32)$

G.70 $(-12, -32)$

G.70 $(-12, -32)$

G.71 $(-12, -32)$

G.72 $(-12, -32)$

G.73 $(-12, -32)$

G.74 $(-12, -32)$

G.75 $(-12, -32)$

G.77 $(-12, -32)$

G.78 $(-12, -32)$

G.79 $(-12, -32)$

G.79 $(-12, -32)$

G.70 $(-12, -32)$

G.71 $(-12, -32)$

G.72 $(-12, -32)$

G.73 $(-12, -32)$

G.74 $(-12, -32)$

G.75 $(-12, -32)$

G.75

concorrentes res, reu, rev, set, seu, sez, teu, tev, G.106 a)
$$\frac{1}{3}$$

G.75
$$m = 1 \Rightarrow r /\!\!/ s$$

 $m = 0 \Rightarrow \not \equiv r$
 $m \in \mathbb{R}, m \neq 1, m \neq 0 \Rightarrow r \times s$

G.76
$$m = \frac{3}{2} \Rightarrow r - s$$

 $m \in \mathbb{R}, m \neq \frac{3}{2} \Rightarrow r \times s$

G.77
$$k = 5$$
 ou $k = -5$

G.78
$$a \in \mathbb{R}$$
, $a \neq \frac{2}{3} \Rightarrow r \times s$
 $a = \frac{2}{3} e b \neq \frac{1}{3}$, $b \in \mathbb{R}$
 $\Rightarrow r \cap s = \phi$
 $a = \frac{2}{3} e b = \frac{1}{3} \Rightarrow r = s$

G.80 Representam uma família de retas concorrentes no ponto (1, -3).

G.81 P(-1, -
$$\frac{6}{11}$$
)

G.82
$$x = 6y = 0$$

G.84
$$5x \sim 3y + 5 = 0$$

$$\textbf{G.85} \quad m \; = \; 2$$

b) sim,
$$m = \frac{1}{3}$$

G.92
$$3x - 5y + c = 0$$
, $c \in \mathbb{R}$

G.93
$$11x - 5y - 12 = 0$$

G.94
$$2x + 3y - 12 = 0$$
 e $x - 3y + 3 = 0$

G.97
$$y = 3x + 4$$

G.98
$$\frac{x}{-3} + \frac{y}{5} = 1$$

G.99
$$3x - 2y + 6 = 0$$
,
 $x - 2y - 2 = 0$,
 $3x + 2y + 4 = 0$

G. 100
$$\frac{x}{-13} + \frac{y}{\frac{26}{5}} = 1$$

Para mais, acesse: http://fuvestibular.com.br/ m) = 0

d)
$$\frac{2}{5}$$
 e) $-\frac{7}{4}$ f) $\not\equiv$

g) 0 h)
$$-\frac{2}{3}$$
 i) $-\sqrt{3}$

$$j) \frac{\lambda + u}{\lambda - 2u} = k) -1$$

G.107
$$1^{\circ}$$
 $x - y - 2 = 0$

$$2^{\circ}$$
) $\sqrt{3} \cdot x - y - (2\sqrt{3} + 4) = 0$

$$3^{\circ}$$
) $x + 1 = 0$

$$4^{\circ}$$
) $3x - 4y + 15 = 0$

$$5.0$$
) $y - 2 = 0$

$$6.0$$
) $2x - y + 7 = 0$

G.108 y - 2 =
$$m(x - 5) \lor x + 5 = 0$$

G.110
$$2x + y + 8 = 0$$

$$G.111 \times - y - 14 = 0$$

G.114 p =
$$-\frac{1}{4}$$

G.115 nenhum

G.116 (s)
$$3x - 2y - 1 = 0$$

G.121 P(
$$\frac{8}{5}$$
, $\frac{4}{5}$)

G.123(s)
$$2x + y + 3 = 0$$

G.124 (t)
$$2x - y + 7 = 0$$

G.125 (s)
$$5x - 4y + 3 = 0$$

 $M(1), 2)$
 $Q(5, 7)$

(t)
$$4x + 5y + 68 = 0$$

G.126 1°0)
$$x + 8y + 16 = 0$$

2°0) $x + 8y - 16 = 0$

$$3^{\circ}$$
). $7x - 4y - 44 = 0$
G.128 H($\frac{1}{2}$, $\frac{13}{4}$)

G. 129
$$\frac{1}{3}$$

G.130
$$4x - 3y - 2 = 0$$

$$G.134 \times - y - 4 = 0$$

$$http://fuvestibular.com.br/ m) = 0$$

G.136 (r)
$$2x - y = 0$$
 e

(s)
$$x + 2y - 10 = 0$$

(r)
$$x - 2y + 6 = 0$$
 e

(s)
$$2x + y - 8 = 0$$

G.138 a)
$$(\frac{23}{5}, \frac{16}{5}), (\frac{27}{25}, \frac{64}{25}), (\frac{12}{5}, \frac{14}{5})$$

G.139 a)
$$A(\cos \alpha, \sin \alpha)$$
, $B(\cos \beta, \sin \beta)$
 $C(-\cos \alpha, \sin \alpha)$, $D(\cos \beta, -\sin \beta)$

G.135 $2ax - 2by + [b^2(1 + m) - a^2(1 -$

b)
$$\cos \frac{\alpha + \beta}{2} \cdot x - \sin \frac{\alpha + \beta}{2} \cdot y$$
 G.171 y = 11 ou y = -9
 $-\cos \frac{\beta - \alpha}{2} \cdot \cos(\beta + \alpha) = 0$ G.174 $\frac{7}{4}$

$$2^{\circ}$$
) arc tg $\frac{3}{4}$

$$3^{\circ}$$
) $\frac{\pi}{4}$

4°) arc tg
$$\frac{5}{3}$$

G.142 k = 7 ou k =
$$\frac{3}{4}$$

G.143
$$\frac{3\pi}{4}$$
 , $\frac{\pi}{6}$, $\frac{\pi}{12}$

G.146 1°)
$$3x - y = 0$$
 ou $x + 3y = 0$
2°) $(\sqrt{3} - 6)x - (3 + 2\sqrt{3})y +$

$$(\sqrt{3} - 6)x - (3 + 2\sqrt{3})y + 9 + \sqrt{3} = 0 \text{ ou}$$
$$(\sqrt{3} + 6)x + (3 - 2\sqrt{3})y - 9$$

$$9 + \sqrt{3} = 0$$

3.0 $2x + y = 0$ ou $x + 2y = 0$

G.149
$$4x + 3y - 3 = 0$$
, $y - 5 = 0$,

$$3x + 7y - 7 = 0$$

CAPITULO III

G.153
$$\frac{17\sqrt{13}}{13}$$

G.154 1°)
$$\frac{S}{5}$$
 2°) $\frac{7\sqrt{2}}{10}$ 3°) $\frac{79}{13}$

$$4^{\circ}$$
) $\frac{38}{25}$ 5°) $\frac{2\sqrt{3}+11}{2}$

G.156
$$\frac{29\sqrt{2}}{10}$$

$$159 \left| \frac{2c}{\sqrt{a^2 + b^2}} \right|$$

G.162
$$x + y = 0$$
 ou $x + y - 4 = 0$

G.163
$$24x + 7y + 51 = 0$$
 ou $24x + 7y - 99 = 0$

G.164 y =
$$\pm \frac{2}{\sqrt{5}}$$
 • (x - 3)

G.165
$$\frac{5}{2}$$

G.171
$$y = 11$$
 ou $y = -9$

G.174
$$\frac{7}{4}$$

G.175
$$(1, -1)$$
 ou $(-2, -10)$.

G.176
$$(\frac{9}{5}, \frac{21}{5})$$
 ou $(-\frac{1}{3}, \frac{19}{3})$

G.180
$$4x - 3y \pm 14 = 0$$

G.181
$$3x + 4y - 12 = 0$$

G.182 a)
$$x + 2y - 5 = .0$$

b) 5

G.193 12x + 1 = 0 ou 12y - 5 = 0
G.194 112x - 14y - 195 = 0 ou

$$8x + 64y + 65 = 0$$

G.195 39x + 27y - 50 = 0 ou
 $9x - 13y + 100 = 0$
G.197 3x - $(5 + \sqrt{10})y = 0$
G.199 x + 7y - 8 = 0
G.200 (1, 1)
G.202 $\frac{14\sqrt{221}}{1}$

CAPÍTULO IV

Para mais, acesse: http://fuvestibular.com.br/ **G.203** 1^{O}) $x^2 + y^2 = 9$

$$(x - 2)^2 + y^2 = 16$$

$$3.0$$
 $(x + 1)^2 + (y + 2)^2 = 25$

$$4^{\circ}$$
) $(x-2)^2 + (y-4)^2 = 1$

$$5^{\circ}$$
) $x^2 + (y + 3)^2 = 4$

6.0
$$(x - \frac{1}{2})^2 + (y - \frac{3}{2})^2 = 16$$

$$G.204 (x - 1)^2 + (y - 2)^2 = 25$$

G.204
$$(x - 1)^2 + (y - 2)^2 = 25$$

G.205 $a = b \neq 0$, $c = 0$, $d^2 + e^2 - af > 0$

G.206 1°.)
$$C(3, -2)$$
 e $r = 5$

$$2^{0}$$
) $C(4, 0)$ e $r = 3$

$$3.0$$
) C(-3, -4) e r = 5

4°)
$$C(2, \frac{3}{2})$$
 e $r = \frac{5}{2}$

5°) C(1, -2) e r =
$$\frac{\sqrt{3}}{3}$$

$$G.207 \times y - 5 = 0$$

G.208 C(
$$\frac{3}{2}$$
, $-\frac{3}{2}$) $r = \frac{5}{2}$

G.209 Centro O
$$\left(-\frac{B}{2a}, -\frac{C}{2A}\right)$$

raio $R = \frac{\sqrt{B^2 + C^2} - 4AD}{2A}$

com
$$B^2 + C^2 - 4AD > 0$$
.
G.211 1.0 m = 1 e k < 13

2°)
$$m = 2 e k > -\frac{17}{2}$$

3°)
$$m = 2 e k > -\frac{2}{2}$$

G.212 = 2, b = 0, c
$$< \frac{25}{8}$$

G.216
$$|m| = |n| \neq 0$$
 e $m^2 = 4p$
G.217 $(x - 2)^2 + (y \pm 3)^2 = 18$

G.217
$$(x - 2)^2 + (y \pm 3)^2 = 18$$

G.219 1°) exterior 2°) exterior 3°) interior

$$C(0, 0) r = 3$$

G.227 a)
$$k \ge -7 + 4 \sqrt{10}$$

b)
$$k < -7 - 4\sqrt{10}$$

G.228
$$\frac{1}{10}$$

G.230 a) secantes

$$G.233-1 < k < 3$$

G.235 c
$$<$$
 - 1 - $\sqrt{2}$ ou c $>$ - 1 + $\sqrt{2}$

G.236
$$3x - 4y + c = 0$$
 onde $c < -25$ ou $c > 25$

G.237
$$y = 5$$
 ou $y = -1$

G.238
$$2x - y + 2 = 0$$

$$G.239 (x + 2)^2 + (y - 1)^2 = 1$$

G.241 4
$$\sqrt{2}$$

G.242 4
$$\sqrt{2}$$

G.245 1°) secantes 2°) concêntricas 3°) exteriores 4°) secantes 5°) tangentes interiormente G.249 (1, 2), (3, 4) G.250 2 $\sqrt{2}$ G.251 (x - 3)² + (y - 1)² = $(4\sqrt{2} - \sqrt{10})^2$ out (x - 3)² + (y - 1)² = $(\sqrt{10} + 4\sqrt{2})^2$

CAPÍTULO V

G.252 1.0)
$$x + y \pm 2\sqrt{2} = 0$$

2.0) $y = 3x - 11 + \sqrt{130}$ ou $y = 3x - 11 - \sqrt{130}$
3.0) $5x + 2y \pm 5\sqrt{29} = 0$
G.253 $x - y + 4 = 0$ e $x - y - 4 = 0$.
G.254 $x - y \pm \sqrt{2} = 0$.
G.255 1.0) $2x - y - 1 \pm 5\sqrt{5} = 0$
2.0) $3x - y + 4 \pm 2\sqrt{10} = 0$
3.0) $2x - y \pm 10\sqrt{5} = 0$ ou $x + 2y \pm 10\sqrt{5} = 0$
G.256 $3x - y \pm 4\sqrt{10} = 0$
G.257 1.0) $3x - 4y + 25 = 0$
2.0) $3x + 4y - 30 = 0$
3.0) $y - 13 = \pm \frac{\sqrt{24}}{5} \cdot (x - 6)$
4.0) $20x + 21y - 127 = 0$ ou $x + 1 = 0$
G.258 a) $A(0, 0) = B(\frac{2a^2\lambda}{\lambda^2 + a^2}, \frac{-2a\lambda^2}{\lambda^2 + a^2})$
G.259 $4x + 3y - 22 = 0$ ou $4x - 3y - 4 = 0$
G.260 $x - 2y = 0$ ou $2x + y - 5 = 0$
G.261 $5x - 12y = 0$ ou $x = 0$
G.262 $m < \frac{-15 - \sqrt{145}}{4}$ ou $m > \frac{-15 + \sqrt{145}}{4}$
G.263 $x = 0$ ou $y = mx$ onde $m < -\frac{12}{35}$ ou $m > \frac{3 + \sqrt{3}}{4}$
ou $0 < m < \frac{3 - \sqrt{3}}{4}$
G.264 $a = 4$
G.265 $x = 0$ ou $y = 0$
G.266 $5x - 12y - 20 = 0$ ou $x = 2$
G.267
$$\begin{cases} 3x - y - 2 = 0 & e(x - \frac{1}{5})^2 + (y + \frac{2}{5})^2 = \frac{65}{25} \\ 3x - y - 2 = 0 & e(x + \frac{9}{5})^2 + (y - \frac{18}{5})^2 = \frac{73}{5} \end{cases}$$

Para mais, acesse: http://fuvestibula6.2590
$$3x - 4y - 40 = 0$$
 ou $3x + 4y - 40 = 0$ $6.271 \text{ C}(-\frac{1}{2}, -\frac{1}{2}) \text{ e} = \frac{\sqrt{2}}{2}$ $6.272 \text{ (x} - 1)^2 + (y - 1)^2 = 25$ $6.273 \text{ (x} - 2)^2 + (y - 2)^2 = 9$ ou $(x + \frac{16}{7})^2 + (y + \frac{16}{7})^2 = 9$ $6.274 \text{ (x} - 2)^2 + y^2 = \frac{1}{2}$ $6.275 \text{ (x} - 18)^2 + (y - 16)^2 = 100$ ou $(x - 2)^2 + (y - 4)^2 = 100$ $6.276 \text{ (x} - 2)^2 + (y - 2)^2 = 8$ ou $(x + 14)^2 + (y - 2)^2 = 200$ $6.277 \text{ (x} - 2)^2 + (y - 2)^2 = 4$ ou $(x + 11)^2 + (y - 1)^2 = 1$ $6.278 \text{ (x} - 4)^2 + (y - 2)^2 = 25$ $6.280 \text{ (x} - 3)^2 + (y - 3)^2 = 18$ $6.281 \text{ (x} - 20)^2 + (y - 3)^2 = 18$ $6.281 \text{ (x} - 20)^2 + (y - 3)^2 = 18$ $6.282 \text{ (x} + 13)^2 + (y - 5)^2 = 169$ $6.283 \text{ a)} \text{ x} = 0$ ou $y = 0$ b) $y = 2$ ou $x = 1$ c) $(x - \sqrt{2} + 1)^2 + (y - 5)^2 = 169$ $6.283 \text{ a)} \text{ x} = 0$ ou $y = 0$ b) $y = 2$ ou $x = 1$ c) $(x - \sqrt{2} + 1)^2 + (y - 12)^2 = 144$ ou $(x - 5)^2 + (y - 12)^2 = 196$ $6.285 \text{ (x} - 5)^2 + (y - 12)^2 = 144$ ou $(x - 5)^2 + (y - 12)^2 = 196$ $6.286 \text{ (x} - \frac{16}{5})^2 + (y - \frac{12}{5})^2 = 1$ ou $(x - \frac{24}{5})^2 - y - \frac{18}{5})^2 = 1$ $6.286 \text{ (x} - \frac{16}{5})^2 + (y - \frac{12}{5})^2 = 1$ ou $(x - \frac{24}{5})^2 - y - \frac{18}{5})^2 = 1$ $6.286 \text{ (x} - \frac{16}{5})^2 + (y - 3)^2 = 16$ $6.288 \text{ (x} - \frac{11}{4})^2 + y^2 = \frac{9}{16}$ $6.289 \text{ centros} \text{ (} \frac{36}{5}, \pm \frac{48}{5} \text{)}$ contactos $\text{(} \frac{84}{5}, \pm \frac{12}{5} \text{)}$ $\text{(} \text{(} \text{2.289 centros)} \text{ (} \frac{36}{5}, \pm \frac{48}{5} \text{)}$ contactos $\text{(} \frac{84}{5}, \pm \frac{12}{5} \text{)}$

CAPÍTULO VI

 $G.268 \times + 2 \vee -.5 = 0$

G.292 a)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

b) $\frac{x^2}{25} + \frac{y^2}{9} = 1$
c) $\frac{x^2}{4} + \frac{y^2}{13} = 1$
d) $\frac{(x-4)^2}{16} + \frac{y^2}{9} = 1$
e) $\frac{(x-4)^2}{5} + \frac{(y-4)^2}{1} = 1$
f) $\frac{(x+6)^2}{9} + \frac{(y-5)^2}{16} = 1$
G.293 a) $F_1(-\sqrt{5}, 0)$ e $F_2(\sqrt{5}, 0)$
b) $F_1(-4, 0)$ e $F_2(4, 0)$
c) $F_1(0, -3)$ e $F_2(0, 3)$
d) $F_1(4 - \sqrt{7}, 0)$ e $F_2(4 + \sqrt{7}, 0)$
e) $F_1(2, 4)$ e $F_2(6, 4)$
f) $F_1(-6, 5 - \sqrt{7})$ e $F_2(-6, 5 + \sqrt{7})$
G.294 $\frac{(x-3)^2}{64} + \frac{(y-2)^2}{4} = 1$
G.295 $\frac{(x-4)^2}{64} + \frac{(y-2)^2}{100} = 1$

G.296 2c = 24, e =
$$\frac{12}{13}$$

G.297 $\frac{x^2}{3}$ + $\frac{y^2}{3}$ = 1

G.299
$$F_1 = (-7, 1) e F_2 = (9, 1)$$

G.300
$$\frac{x^2}{225} + \frac{(y-2)^2}{289} = 1$$

G.301 a)
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
 b) $\frac{y^2}{4} - \frac{x^2}{12} = 1$ c) $\frac{(x-3)^2}{1} - \frac{y^2}{8} = 1$ d) $\frac{(x-4)^2}{1} - \frac{(y-3)^2}{3} = 1$

c)
$$\frac{(x-3)^2}{1} - \frac{y^2}{8} =$$

b)
$$\frac{y^2}{4} - \frac{x^2}{12} = 1$$

d)
$$\frac{(x-4)^2}{1} - \frac{(y-3)^2}{3} = 1$$

$$G.302 2c = 20$$

G.303 e =
$$\frac{\sqrt{34}}{5}$$

G.304

$$G.307 y^2 - x^2 = 2$$

G.308 a)
$$y^2 = 8x$$

c)
$$x^2 = -8y$$

a)
$$(x - 3)^2 - 4 \cdot (x - 2)$$

e)
$$(x - 3)^2 = 4 \cdot (y - 2)$$

b)
$$x^2 = 12y$$

d)
$$(y - 3)^2 = 4 \cdot (x - 3)$$

f)
$$(x - 1)^2 = -8 \cdot (y - 2)$$

$$G.309 F(-2, 0), x = 2.$$

G.311 y =
$$-\frac{1}{4}$$

$$G.312 v = x^2 - x$$

G.313
$$(y - 2)^2 = 4 \cdot (x - 1)$$

$$G.314 x^2 = -10y + 25$$

G.315
$$\sqrt{2}$$
.

Para mais, acesse: http://fuvestibular.com.l G.316

$$G.317 v = x.$$

G.318 vértice
$$V = (-1, 3)$$
 parâmetro $p = \frac{1}{2}$.

G.319 a) elipse,
$$a = \sqrt{3}$$
, $b = \sqrt{2}$, centro (2, 1)

b) parábola, p = 1, V(-1, 3), F(-1,
$$\frac{7}{2}$$
)

c) hipérbole,
$$a = \sqrt{3}$$
, $b = 2$, centro $(0, 1)$

d) parábola,
$$p = \frac{1}{2}$$
, $V(\frac{3}{4}, -\frac{1}{2})$, $F(1, -\frac{1}{2})$

e) elipse,
$$a = 3$$
, $b = 2$, centro (1, 2)

G.320 elipse,
$$a = \sqrt{2}$$
, $b = 1$, centro (2, 0) eixo maior horizontal

$$F_1(1, 0), F_2(3, 0), e = \frac{\sqrt{2}}{2}$$

G.321 4
$$\sqrt{2}$$

G.322
$$\lambda \cap \lambda' = \{(3, 2\sqrt{2}), (-3, -2\sqrt{2}), (-3, 2\sqrt{2}), (3, -2\sqrt{2})\}$$

G.323
$$\lambda \cap \lambda' = \{(1, 1), (1, -1)\}$$

G.324 (t)
$$x - y + 2 = 0$$
 T (1, 3)

G.326 y =
$$\pm \frac{\sqrt{6}}{2} \cdot x$$

G.327 v =
$$\pm \sqrt{10} \cdot x + 3$$

G.328 y =
$$\pm \frac{\sqrt{20}}{20} \cdot (x - 5)$$

G.329
$$y = \pm \sqrt{3} \cdot x$$

G.330
$$\left(\frac{ab}{\sqrt{a^2 + b^2}} - \frac{ab}{\sqrt{a^2 + b^2}}\right) - \left(\frac{ab}{\sqrt{a^2 + b^2}} - \frac{ab}{\sqrt{a^2 + b^2}}\right)$$

$$\left(\frac{ab}{\sqrt{a^2 + b^2}} - \frac{ab}{\sqrt{a^2 + b^2}}\right) - \left(\frac{ab}{\sqrt{a^2 + b^2}} - \frac{ab}{\sqrt{a^2 + b^2}}\right)$$

G.331
$$\frac{x^2}{\frac{625}{16}} + \frac{y^2}{25} = 1$$

G.332 a)
$$f(x) = \frac{|(b-a)(x-a)(x-b)|}{2}$$

c) $x = \frac{b+a}{2}$

TESTES

CAPITULO VII

G.333
$$2(c - a)x + 2(d - b)y + (a^2 + b^2 - c^2 - d^2) = 0$$

G.334
$$2ax + 2by + (c + c') = 0$$

$$G.335 v^2 = 4x^2$$

G.336
$$(9x - 13y + 20)(3x - y - 2) = 0$$

G.337
$$16x^2 + 9y^2 - 24xy + 60x + 80y - 100 = 0$$

G.338
$$\begin{cases} x^2 + y^2 - 10y - 25 = 0, \text{ se } y > 0 \\ x^2 + y^2 + 10y - 25 = 0, \text{ se } y < 0 \end{cases}$$

G.339
$$\begin{cases} x^2 + y^2 - 20x - 20\sqrt{3}y = 0, \text{ se } y > 0\\ x^2 + y^2 - 20x + 20\sqrt{3}y = 0, \text{ se } y < 0 \end{cases}$$

G.340
$$x + y - 1 = 0$$

G.341
$$(x - 6)^2 + y^2 = 1$$

$$G.342 2y = -x^2 - 2x$$

G.343
$$(x - y)(x + y - 1) = 0$$

G.344
$$x^2 + y^2$$
 (d - y_0)y + y_0^2 - dy₀ = 0 sendo r = x e 0 \in y

$$G.345 x^2 + y^2 - 8x + 12 = 0$$

$$G.346 4x^2 + v^2 = 4$$

$$G.347 x^2 + y^2 = 5$$

$$G.3484x + v - 12 = 0$$

G.350
$$(y - 3x)(y + 2x) = 0$$
 e representa as retas $y - 3x = 0$ e $y + 2x = 0$, cuja intersecção é $(0, 0)$.

G.351

b)
$$\frac{\pi}{2}$$

$$G.354 m = 2$$

G.357 se
$$m < -2$$
 ou $m > 2$, hipérbole

se
$$-2 \le m \le 2$$
, elipse

se
$$m = -2$$
 ou $m = 2$, duas retas

PONTO E RETA

- TG.1 (CESCEM-76) O ponto (a. -b) pertence ao interior do 2º quadrante. Os pontos (-a, b) e (-a, -b) pertencem, respectivamente, aos quadrantes:

 - a) 30 e 10 b) 30 e 40 c) 40 e 30 d) 40 e 10

- TG.2 (FFCLUSP-66) A distância do ponto (-2, 3) ao eixo das ordenadas é:
 - a) -2
- b) 2
- c) 1
- d) 5
- e) √13
- TG.3 (CESCEA-74) O ponto do eixo x equidistante de (0, -1) e (4, 3) é:
 - a) (-1, 0)
- b) (1, 0)
- c) (2, 0)
- d) (3, 0)
- e) não sei
- TG.4 (PUC-70) Sendo A(3, 1), B(4, -4) e C(-2, 2) vértices de um triângulo, então este triânquilo é:
 - a) triângulo retângulo e não isósceles
- b) triângulo retângulo e isósceles

c) triângulo equilátero

- d) triângulo isósceles não retângulo
- e) nenhuma das respostas anteriores
- TG.5 (E.E. LINS-68) Dados os vértices P(1, 1), Q(3, -4) e R(-5, 2) de um triângulo, o comprimento da mediana que tem extremidade no vértice Q é:
 - a) 12
- b) 10
- d) $\frac{\sqrt{221}}{2}$

- e) nenhuma das respostas anteriores,
- TG.6 (CESCEA-68) Dado o segmento AB de extremidades $A \equiv (-4, 1)$ e $B \equiv (5, 7)$ as coordenadas do ponto C que o divide na razão $\frac{\overline{AC}}{\overline{CB}} = 4$ são:
 - a) $\left(-\frac{11}{5}, \frac{12}{5}\right)$ b) $\left(\frac{16}{5}, \frac{29}{5}\right)$ c) (1, 8) d) $\left(\frac{1}{2}, 4\right)$ e) (9, 6)

- TG.7 (EPUSP-66) Seja C o ponto de encontro das medianas do triângulo OAB de ângulo reto A. Sendo O = (0, 0) e A(3, 0), a abscissa de C
 - a) é inferior a 1
- b) é 1

- c) é 1.5
- d) só pode ser conhecida se for dada a ordenada de B
- e) nenhuma das respostas anteriores

TG.8 (CESCEA-72) Uma das diagonais de um quadrado tem extremidades $A \equiv (1, 1)$

- a) (2, 3) e (3, 2)
- b) (3, 1) e (1, 3)
- c) (3, 0) e (1, 4)

- d) (5, 2) e (4, 1)

então k é igual a:

- e) não sei
- TG.9 (MACK-76) Se os pontos (2, -3), (4, 3) e (5, $\frac{k}{3}$) estão numa mesma reta,
 - a) -12
- b) -6
- c) 6
- d) 12
- e) 18
- TG.10 (EPUSP-67) O ponto P(3, m) é interno a um dos lados do triângulo A(1, 2), B(3, 1) e C(5, -4). Então:
 - a) m = -1

b) m = 0

d) m = 1

- e) nenhuma das respostas anteriores
- TG.11 (CESCEA-68) Sejam A, B e C números reais quaisquer.

Dada a equação Ax + By + C = 0, assinale dentre as afirmações abaixo a correta.

- a) se $A \neq 0$ e $B \neq 0$ então Ax + By + C = 0 é a equação de uma reta pela
- b) se $B \neq 0$ e C = 0, Ax + By + C = 0 é a equação de uma reta pela origem, não paralela a nenhum dos eixos
- c) se A = 0 e $C \neq 0$, Ax + By + C = 0 é a equação de uma reta paralela ao
- d) se $A \neq 0$, B = 0 e C = 0, Ax + By + C = 0 é a equação do eixo Oy
- e) se A = 0, B \neq 0 e C = 0, Ax + By + C = 0 é a equação do eixo Oy
- TG.12 (FEI-67) Para cada número real m, considere-se a reta r(m) de equação mx + y 2 = 0.
 - a) existem m_1 e m_2 , com $m_1 \neq m_2$, tais que $r(m_1)$ e $r(m_2)$ são paralelas
 - b) existe um valor de m para o qual a reta r(m) é paralela ao eixo dos y
 - c) qualquer que seja m, a reta r(m) passa pelo ponto (2, -1)
 - d) qualquer que seja m, a reta r(m) passa pelo ponto (0, 2)
 - e) nenhuma das afirmações é verdadeira
- TG.13 (GV-76) Dados, num sistema de coordenadas cartesianas, os pontos $A = \{1, 2\}$ B = (2, -2) e C = (4, 3), a equação da reta que passa por A e pelo ponto médio do segmento BC é:
 - e) x + 2y = 5
 - a) 3x + 4y = 11 b) $4x + \frac{7}{2}y = 11$ c) x + 3y = 7 d) 3x + 2y = 7
- TG.14 (CESCEA-73) A reta que passa pelo ponto P = (2, 3) e pelo ponto Q, simétrico
 - a) 2y = 3x
- b) v = 3x 3 c) v = 2x 1
- d) não sei
- TG.15 (CESCEA-72) A equação da reta que passa pelo ponto A = (2, 5) e que corta a reta de equação y = -x + 1 num ponto B, tal que $AB = 3\sqrt{2}$, é:
 - a) y = x + 3
- b) y 5 = -(x 2) c) y 5 = 3(x 2)

d) v = 2x + 1e) não sei

de P em relação à origem, é:

- TG.16 (PUC-77) Uma reta passa pelo ponto P = (1, -4) e corta os eixos coordenados e $C \equiv (3, 3)$. As coordenadas dos outros dois vértices do quadrado são:

 Para mais, acesse: http://fuvestibular.com.os/pontos A e B. Sabendo que $\frac{\overline{OA}}{\overline{OB}} = \frac{1}{2}$, então, a equação da reta é:
 - a) 2x + v + 4 = 0

b) 2x + v + 1 = 0

c) 2x + y - 1 = 0

d) 2x + y + 2 = 0

- e) 2x + y 2 = 0
- TG.17 (E.E. LINS-67) A equação da reta suporte de um segmento que tem centro P(3, 0) e extremidade em cada uma das retas 2x - y - 2 = 0 e x + y + 3 = 0 é:
 - a) 3x 4y + 9 = 0
- b) 8x y 24 = 0

- d) 2x + 8y 6 = 0
- e) nenhuma das respostas anteriores
- TG.18 (MACK-76) A abscissa do ponto, pertencente à reta y = 2x + 1 e equidistante dos pontos (0, 0) e (2, -2), é:
 - a) 2
- h) -2

- c) -3 d) $-\frac{1}{2}$ e) $-\frac{1}{3}$
- TG.19 (CESCEA-77) As retas 2x + 3y = 2 e x 3y = 1 passam pelo ponto (a, b). Então a + b é igual a:
 - a) $\frac{7}{3}$
- b) 0 c) $\frac{5}{2}$ d) 1 e) $\frac{2}{3}$
- TG.20 (CESCEA-75) A intersecção das retas r e s abaixo

- b) $(3, \frac{3}{2})$ c) $(\frac{10}{3}, 1)$ d) (3, 2) e) $(\frac{19}{6}, \frac{7}{6})$
- TG.21 (GV-76) Para que valores de a a intersecção da reta y = a(x + 2) com a reta y = -x + 2 se dá no quadrante $x \ge 0$, $y \ge 0$?
- a) $1 \leqslant a \leqslant 2$ b) $0 \leqslant a \leqslant 1$ c) $a \leqslant -2$ ou $a \geqslant 2$
- d) a ≤ -1
- e) a ≥ -2
- TG.22 (MACK-77) A reta y = x 1 intercepta o segmento de extremos (0, 0) e (a, b):
 - a) para todo (a, b) tal que a \neq b b) se a + b > 1
 - c) se a b > 1 d) se a b < 1 e) não sei

TG.23 (CESCEM-74) As retas de equações ax + y = a + 2 e $4x + ay = 4 - a^2$ são

- a) concorrentes, qualquer que seja o valor de a $\neq 0$
- b) parálelas, qualquer que seja o valor de a
- c) paralelas, se a = 2
- d) concorrentes, para todo a \neq 2
- e) concorrentes, para todo a \neq 4

TG.24 (MACK-73) A representação gráfica do conjunto solução do sistema

é uma reta. Então: 2x + py = 6

a) n = 2

b) p = 3

c) p = 4

- d) p é indeterminado
- e) não existe p nessas condições

TG.25 (GV-77) Os valores de k para os quais as retas x + 2y - 2k = 0, kx - y - 3 = 0e 2x - 2y - k = 0 são concorrentes num mesmo ponto, são:

- a) -2 e $\frac{3}{2}$ b) $\frac{1}{2}$ e 3

- d) 2 e $-\frac{3}{2}$ e) $\frac{1}{3}$ e $\frac{3}{2}$

TG.26 (CESCEM-72) O triângulo determinado pelas retas de equações x - 1 = 0, y = xe x + y - 4 = 0

- a) é equilátero
- b) é retângulo
- c) é obtusângulo

- d) é acutângulo
- e) está inscrito numa circunferência de centro na origem

TG.27 (MACK-77) Seja S a região do plano cartesiano limitada pelas retas

$$y = ax + a$$
; $y = -ax - a$; $x = a$.

Pode-se afirmar que:

- a) (0,0) pertence a S qualquer que seja a $\neq 0$
- b) (0, 0) pertence a S se a > 0
- c) (0, 0) pertence a S se a < 0 e a $\neq -1$
- d) (0, 0) não pertence a S, qualquer que seja a \neq 0
- e) não sei

TG.28 (GV-73) A retallt intercepta as retas rile sinos pontos (0, 3) e (0, 5) respectivamente. A reta u intercepta r e s nos pontos (4, -1) e (4, 1), respectivamente. Então podemos dizer que:

- a) t e u são paralelas
- b) t e u coincidem
- c) t e u se interceptam
- d) r e s se interceptam e) nenhuma das alternativas

TG.29 (MACK-74) O conjunto dos pontos P = (x, y) cujas coordenadas satisfazem a condição sen x = sen y, é constituído pelos pontos:

- a) de uma reta
- b) de duas retas concorrentes, mas não perpendiculares
- c) de duas retas perpendiculares
- d) de uma família de retas paralelas
- e) de duas famílias, com direções distintas, de retas paralelas

TG.30 (MAUÁ) Dado o feixe de retas $\alpha(x - 2y + 42) + \beta(12x + y + 54) = 0$ pergunta-se As equações das retas desse feixe que formam com os eixos coordenadas ortogonais Para mais, acesse: http://fuvestibular.com.br/iângulo retângulo de área igual a 9 unidades são

a)
$$21x + 8y - 18 = 0$$
 e $11x + 3y + 12 = 0$

b)
$$2x + y - 6 = 0$$
 e $9x + 2y + 18 = 0$

c)
$$18x + y - 18 = 0$$
 e $x + 18y - 18 = 0$

TG.31 (CESCEA-68) Dada a reta de equação

$$\left|\begin{array}{ccc} x & y & 1 \\ 3 & 2 & -1 \\ 1 & 0 & 1 \end{array}\right| = 0$$

a sua expressão sob a forma reduzida é:

a)
$$x - y - 5 = 0$$

- b) x = 3y + 2
- c) v = 3x + 2
- d) $y = \frac{1}{2}x \frac{1}{2}$ e) x y = 1

- mente. a) 3 e 1
- b) $3 e \frac{1}{3}$
- c) 3 e -1 d) $\frac{1}{2}$ e 1
- e) -3 e 1

TG.33 (CESCEA-74) O coeficiente angular da reta de equações paramétricas

$$\begin{cases} x = 2t - 1 \\ y = -3t + 4 \end{cases}$$

- a) $-\frac{3}{2}$ b) $-\frac{1}{2}$ c) -2 d) $-\frac{2}{3}$ e) não sei
- TG.34 (CESCEM-77) O cosseno do ângulo que a semi-reta $x + \sqrt{3}y 2\sqrt{3} = 0$, $y \ge 0$ forma com a parte positiva do eixo dos x é

- a) $\frac{\sqrt{3}}{2}$ b) $\frac{1}{2}$ c) $\frac{\sqrt{5}}{5}$ d) $-\frac{1}{2}$ e) $-\frac{\sqrt{3}}{2}$
- TG.35 (CESCEM-72) De todas as retas que passam pela origem somente não tem equação v = mx. m real:
 - a) a bissetriz dos quadrantes 1º e 3º
- b) o eixo dos x
- c) a bissetriz dos quadrantes 2º e 4º
- d) a reta de equação x = 2v

e) o eixo dos v

TG.36 (GV-73) Considere o gráfico:

A equação da reta r é:

a)
$$y = \sqrt{3} x + 1$$

b)
$$v = x + 1$$

c)
$$3y - \sqrt{3}x = 3$$

d)
$$3y + \sqrt{3}x = 1$$

e)
$$y + x = 1$$

TG.37 (CESCEM-73) A equação da reta cujo coeficiente angular é igual à metade do valor absoluto da raiz quadrada do logaritmo de dezesseis na base dois e que passa pela origem é:

b)
$$y = \frac{1}{2} \sqrt{x}$$

a)
$$y = 4x$$
 b) $y = \frac{1}{2}\sqrt{x}$ c) $y = x$ d) $y = \frac{1}{2} \log x$ e) $y = 2x$

e)
$$y = 2$$

TG.38 (GV-75) As retas r e s formam com os eixos coordenados triângulos de 6 unidades de área. Os coeficientes angulares dessas retas são iguais a $\frac{-3}{4}$. Suas equações são:

a)
$$4x + 3y - 12 = 0$$
 e $4x + 3y + 12 = 0$

b)
$$4x + 3y - 24 = 0$$
 e $4x + 3y + 24 = 0$

c)
$$3x + 4y - 12 = 0$$
 e $3x + 4y + 12 = 0$

d)
$$3x + 4y - 24 = 0$$
 e $3x + 4y + 24 = 0$

- e) nenhuma das alternativas anteriores
- TG.39 (CESCEM-77) Para que a reta x 3y + 15 = 0 seja paralela à reta determinada pelos pontos A(a, b) e B(-1, 2), deve-se ter a =

d)
$$-3b + 7$$

a)
$$-3b + 5$$
 b) $3b - 5$ c) $3b - 7$ d) $-3b + 7$ e) $\frac{b}{3} - \frac{7}{3}$

TG.40 (CESCEA-69) A equação da reta que passa pelo ponto (3, 4) e é paralela à bissetriz do 20 quadrante é:

$$a) y - x = 1$$

b)
$$y = -x - 7$$

a)
$$y - x = 1$$
 b) $y = -x - 7$ c) $y + x - 7 = 0$ d) $2y - 7 = x - 2$ e) $3x + 6y = 33$

TG.41 (CESCEA-73) No gráfico abaixo, a reta r é paralela à reta s.

Então, a equação da reta r é:

a)
$$y - x = \frac{1}{2}$$
 b) $2y - x = 1$ c) $4y - x = 2$ d) não sei

c)
$$4y - x = 2$$

- TG.42 (CESCEM-69) A equação da reta paralela à reta determinada pelos pontos de coordenadas (2; 3) e (1, -4) passando pela origem é:
 - a y = x

- b) v = 3x 4
- c) 7v = x

d) v = 7x

- e) nenhuma das respostas anteriores
- TG.43 (CESCEA-73) Se $\frac{x}{2} + \frac{y}{b} = 1$ e Ax + By + C = 0 são retas perpendiculares,

a)
$$Ab - aB = 0$$

b)
$$Aa + Bb = 0$$

c)
$$bA + aB = 0$$

TG.44 (CESCEM-70) Qual dos pares de retas abaixo são de retas perpendiculares?

a)
$$x + y - 1 = 0$$
; $-x - y = 0$

b)
$$y = 2x + 2$$
; $y = -2x - \frac{1}{2}$

c)
$$x + 2y + 13 = 0$$
; $-x + \frac{1}{2}y = 0$

d)
$$3x - y = \frac{1}{2}$$
; $-\frac{1}{3}x + y = 9$

e) nenhuma das respostas anteriores

TG.45 (CESGRANRIO-76) O valor de α para o qual as retas 2y - x - 3 = 0 e $3y + \alpha x - 2 = 0$ são perpendiculares é

b)
$$\frac{3}{2}$$

b)
$$\frac{3}{2}$$
 c) 5 d) $-\frac{2}{3}$ e) $-\frac{3}{2}$

e)
$$-\frac{3}{2}$$

TG.46 (CESCEM-73) Uma condição necessária e suficiente para que um paralelogramo seia um losango é que suas diagonais sejam perpendiculares. Considere-se o quadrilátero MNPQ em que as coordenadas cartesianas ortogonais dos vértices são:

$$M(0, 0)$$
, $N(0, 3)$, $P(a, a + 3)$ e $Q(a, a)$ com $a > 0$.

Assinale a assertiva correta.

a) Se a =
$$\frac{3\sqrt{2}}{2}$$
, (MNPQ) é um losango

b) Se a =
$$\frac{2\sqrt{3}}{3}$$
, (MNPQ) é um losango

- c) Se a = 1. (MNPQ) é um losango
- d) Se a = 3. (MNPQ) é um losango
- e) (MNPQ) não é um paralelogramo, logo não pode ser losango para nenhum valor de a > 0
- TG.47 (MACK-76) A equação da reta, que passa pelo ponto (-5, 4) e é perpendicular à reta 5x - 4y + 7 = 0, é:

a)
$$4x \sim 5y + 40 = 0$$

a)
$$4x - 5y + 40 = 0$$
 b) $5x - 4y + 41 = 0$ c) $5x + 4y + 9 = 0$ d) $4x + 5y + 9 = 0$ e) $4x + 5y = 0$

c)
$$5x + 4y + 9 = 0$$

d)
$$4x + 5y + 9 = 0$$

e)
$$4x + 5y = 0$$

TG 48 (MACK-75) A equação da reta perpendicular à reta v = x e que passa pela interseccão das retas 2x - 3y - 1 = 0 e 3x - y - 2 = 0 é:

a)
$$2x + 2y + 5 = 0$$

b) $-2x + 2y - 5 = 0$
c) $7x + 7y - 6 = 0$
d) $5x + 5y - 4 = 0$
e) $5x + 5y - 6 = 0$

c)
$$7x + 7y - 6 =$$

e)
$$5x + 5y - 6 = 0$$

TG.49 (CESCEM-77) Os pontos de intersecção dos eixos coordenados com a reta $y = \frac{x}{2} + 2$ determinam um segmento. A mediatriz deste segmento é a reta

- a) 2x + y 4 = 0
- b) 2x + y 3 = 0
- c) 2x + y 2 = 0

- d) 2x + v + 3 = 0
- e) 2x + y + 4 = 0
- TG.50 (CESCEM-72) O ponto A(-4, 5) é o vértice de um quadrado que possui uma diagonal contida na reta 7x - y + 8 = 0. A equação da reta suporte da outra diagonal é:
 - a) 3x 8y 4 = 0
- b) x + 7y 8 = 0
- c) x + 7y 14 = 0

- d) x + 7y 31 = 0
- e) x = 7y 8 = 0
- TG.51 (CESCEM-76) As equações y = kx 2, $k \in R$, representam retas de um feixe. A equação da reta deste feixe, perpendicular à reta de equação 2x + y - 5 = 0, é
 - a) 2x y 3 = 0 b) 2x y + 3 = 0 c) x + 2y + 6 = 0 d) x 2y 6 = 0 e) x y + 3 = 0

- TG.52 (CESCEA-72) O ponto de encontro das alturas do triângulo de vértices $A \equiv (1, 4)$.

 $B \equiv (0, 1) \ e \ C \equiv (3, 1) \ é$

- a) $(1, \frac{5}{2})$ b) (1, 3) c) $(1, \frac{3}{5})$ d) (2, 3) e) não sei
- TG.53 (CESCEA-71) A projeção perpendicular do ponto (2, 3) sobre a reta 3x 6y + 5 = 0é o ponto de coordenadas:
- a) $(\frac{27}{15}, -\frac{26}{15})$ b) $(\frac{27}{15}, \frac{26}{15})$ c) $(-\frac{37}{15}, -\frac{31}{15})$
- d) $(\frac{37}{45}, \frac{31}{45})$
- e) não sei
- TG.54 (CESCEM-72) Entre os pontos da reta de equação x + 3y 8 = 0 existe um ponto Q cuia distância ao ponto P = (1, 2) é mínima. As coordenadas do ponto Q são:
 - a) $(\frac{11}{10}, \frac{23}{10})$ b) (2, 2)

 - c) (8, 0) d) $(\frac{11}{5}, \frac{23}{5})$
 - e) (1, 2)
- TG.55 (GV-73) Dado o ponto P = (2, 3), o ponto simétrico de P com relação à reta y = x - 3 é:
 - a) (1, 4)
- b) (4, 1)
- c) (-1, 6) d) (6, -1)
 - e) (4, 6)
- TG.56 (CESCEA-71) A tangente de um dos ângulos formados pelas retas não perpendiculares $a_1x + b_1y + c_1 = 0$ e $a_2x + b_2y + c_2 = 0$ é:
 - a) $\frac{a_1b_2 a_2b_1}{a_1a_2 + b_1b_2}$ b) $\frac{a_1a_2 b_1b_2}{a_1a_2 + b_1b_2}$ c) $\frac{a_1 a_2}{1 + a_1a_2}$

- d) $\frac{a_1b_2 + a_2b_1}{a_1a_2 b_1b_2}$ e) não sei

- TG.57 (CESCEA-72) A tangente de um dos ângulos formados pelas retas 3x + 2y + 2 = 0Para mais, acesse: http://fuvestibular.com.br/
 - a) $-\frac{1}{2}$ b) 8 c) $\frac{5}{2}$ d) $-\frac{2}{7}$

- e) não sei
- TG.58 (CESCEM-73) Dados os pontos de coordenadas cartesianas ortogonais O(0, 0). B(1, 2) e C(2, 1), o ângulo φ entre as semi-retas OB e OC é tal que:
 - a) $tg \frac{\varphi}{2} = \frac{1}{3}$ b) $tg \frac{\varphi}{2} = \frac{2}{3}$ c) $\varphi = 30^{\circ}$ d) $\varphi = 45^{\circ}$ e) $\varphi = 60^{\circ}$
- TG.59 (EPUSP-67) A cotangente do ângulo agudo formado pelas retas x = 3y + 7 e x = 13y + 9 é:
- b) 8
- d) 14
- e) nenhuma das respostas anteriores
- TG.60 (CESCEM-76) A retair passa pelos pontos (1, 0) e (0, -2) e forma com a reta s um ângulo de $\frac{\pi}{4}$ orientado como na figura. O coeficiente angular de s é

- b) -3
- c) -2
- d) $-\frac{1}{3}$
- e) -1

TG.61 (CESCEA-73) Considere o gráfico abaixo:

- A equação da reta r é:
- a) 2y = x + 5 b) 3y = x + 5 c) y = -3 + 5
- d) não sei
- TG.62 (EESCUSP-66) x + 2y + c = 0 é equação de uma reta
 - a) perpendicular à reta 2x + y + c = 0
 - b) paralela à reta 2x 4y + c = 0
 - c) concorrente com a reta 3x + 6y + 2 = 0
 - d) cuja distância ao ponto (-c, 1) é igual a 0
 - e) formando um ângulo $\frac{\pi}{4}$ com a reta 3x + y + c = 0

- (CESCEA-68) Seja P o ponto de coordenadas (4, 3) num sistema de coordenadas, obtido do manterio se http://fuvestibular.com.br/44 s) 0 = (2 -1) então as coordenadas de a) TG.63 (CESCEA-68) Seja P o ponto de coordenadas (4, 3) num sistema cartesiano P no novo sistema serão:
 - a) (6, 2)
- b) (6 4)
- c) (3, 1)
- d) (2, 4)
- e) (2 2)
- TG.64 (CESCEA-69) Num sistema cartesiano ortogonal xOy, um ponto p tem coordenadas $(\frac{\sqrt{2}}{5}, -\frac{\sqrt{2}}{3})$. As coordenadas de p num outro sistema, obțido do anterior por uma rotação de $\alpha = \frac{\pi}{4}$, são:

- a) $(\frac{2}{15}, \frac{8}{15})$ b) $(\frac{1}{15}, \frac{4}{15})$ c) $(-\frac{1}{15}, -\frac{4}{15})$
- d) (0, 0)

- e) $\left(-\frac{2}{15}, -\frac{8}{15}\right)$
- TG.65 (PUC-76) A altura do triângulo ABC, relativa ao vértice A, onde A = (3, 2). B = (1, -3) e C = (-4, -1) é:
- a) $\sqrt{29}$ b) $3\sqrt{29}$ c) $\frac{\sqrt{29}}{2}$ d) $2\sqrt{29}$ e) $\frac{\sqrt{29}}{2}$
- TG.66 (CESCEM-74) Sabe-se que A = (1, 2) e B = (2, 1). A distância do centro do quadrado ABCD à origem é
 - a) 0 ou 1 b) 1 ou 2
 - c) $\frac{\sqrt{2}}{2}$ ou 2 d) $\sqrt{2}$ ou 2
 - e) $\sqrt{2}$ ou $2\sqrt{2}$
- TG.67 (CESCEM-73) Dado o ponto P(30, 600) e a família de retas y = mx, o valor de m, a fim de que a distância de P à reta seja mínima, é:
 - a) 30
- b) 20
- c) 1
- d) 0.05
- e) 0
- TG.68 (CESGRANRIO-76) O círculo C tem centro na reta y = x e somente o ponto $(0, 2\sqrt{2})$ em comum com a reta $y = x + 2\sqrt{2}$. Então, o raio de C é
 - a) $1 + \frac{\sqrt{2}}{2}$ b) $2\sqrt{2}$ c) $\sqrt{2}$
- d) 1
- e) 2
- TG.69 (CESCEA-72) A distância entre as retas paralelas 3y = 4x 2 e 3y = 4x + 8 é:
 - a) 10
- b) $\sqrt{5}$ c) $\sqrt{10}$
- d) 2
- e) não sei
- TG.70 (CESCEM-73) As retas x + 2y 3 = 0 e x + 2y + 5 = 0 são paralelas. A equação da reta paralela equidistante dessas duas é:
- b) x + 2y 1 = 0
- c) x + 2y 2 = 0

- a) x + 2y + 1 = 0b) x + 2y 1 = 0d) x + 2y + 2 = 0e) $x + 2y \frac{5}{3} = 0$

- TG.71 (CESCEA-72) Há dois pontos sobre a reta y = 2 que distam 4 unidades da reta 12v = 5x + 2. A soma das abscissas desses pontos é:
- c) 6
- d) 42
- e) não sei

TG.72 (GV-73) A área do triângulo ABC da

figura ao lado é:

- a) 48
- b) 24 c) 12
- d) 6 e) 1

- **TG.73** (PUC-77) Dados os pontos A = (0, -k), B = (k, 1) e C = (0, -1), sabendo que a área do triânqulo ABC é 10, então k é igual a:
 - a) 3 e -2
- b) 5 e -4
- c) 6 e -1
- d) 2 e -5
- TG.74 (MACK-75) A área do triângulo determinado pelas retas y = x, x = 4 e x + y 2 = 0é:
 - a) 4
- b) 6
- c) 9
- d) 12
- e) 16

TG.75 (GV-76) A área da figura hachurada, no

diagrama abaixo, vale:

- a) 4,0
- b) 3.5
- c) 3.0 d) 5.0
- e) 4,5

- TG.76 (CESCEM-76) A área do trapézio determinado pelas retas de equações x = 3. v = 5, v = x + 1 e pelo eixo dos y é
 - a) 7,5
- ь) 7
- c) 6.5
- d) 6
- e) 5,5

TG.77 (FUVEST-77) Na figura, A = (3, 4), M = (9, 12), AB // MN e AC // MP.

> A área do triângulo ABC é 8. A área do triângulo MNP é:

- c) 24
- d) $36\sqrt{3}$
- e) 72

Para mais, acesse: http://fuvestibular.com.br/

TG.79 (CESGRANRIO-77) O conjunto solução do sistema

$$\begin{cases} y > 2x \\ y > 4 - x \end{cases}$$

está contido na união dos quadrantes

- a) I e II
- b) II e III c) III e IV d) IV e I
- e) | e | | | |

TG.80 (MACK-69) O conjunto dos pontos do plano cartesiano que satisfazem a sentença |x| > 5 é:

- a) um par de retas paralelas
- b) um segmento de reta
- c) uma faixa do plano
- d) a reunião de dois semi-planos
- e) o plano todo

TG.81 (MACK-77) A representação gráfica dos pontos (x, y) tais que $\frac{y+2}{y-3} < 1$ é:

- a) um semi-plano
- b) um segmento
- c) o interior de um ângulo agudo
- d) o interior de dois ângulos opostos pelo vértice
- e) não sei

representa o conjunto solução do sistema

a)
$$\begin{cases} x + y \ge 0 \\ 2x + 2y \ge 7 \\ x \le 0 \end{cases}$$

$$\begin{cases} x + y \ge 0 \\ 2x + 2y \ge 7 \\ x \le 0 \end{cases} \qquad b) \begin{cases} x + y \le 0 \\ 2x + 2y \le 7 \\ x \ge 0 \end{cases} \qquad c) \begin{cases} x + y \le 0 \\ 2x + 2y \ge 7 \\ x \ge 0 \end{cases}$$

$$\begin{cases} x + y \leq 0 \\ 2x + 2y \geqslant 7 \\ x \geqslant 0 \end{cases}$$

$$\begin{cases}
 x + y \geqslant 0 \\
 2x + 2y \leqslant 7 \\
 x \geqslant 0
\end{cases}$$

e)
$$\begin{cases} x + y \ge 0 \\ 2x + 2y \le 7 \\ x \le 0 \end{cases}$$

TG.83 (GV-75) A parte sombreada do gráfico ao lado representa o conjunto de pontos cujas coordenadas (x, y) satisfazem simultaneamente a três das inequações abaixo. Quais?

(2)
$$x + 3y \ge 6$$

(3)
$$3x + 2y \leq 12$$

(4)
$$2x + 3y \leq 12$$

$$(5) \times + 6 > 6$$

(6)
$$3x + y \ge 6$$

TG.84 (MACK-74) As designaldades $y \le 4$, $x \le 1$ e $y + 2x \ge 0$ definem uma região de área:

- a) indefinida
- b) 1
- c) 7
- e) 13

TG.85 (CESCEM-74) As regiões do plano definidas por:

$$x_1 + 2x_2 \le 2, x_1 \ge 0$$

 $2x_1 + x_2 \le 2, x_2 \ge 0$

determinam um quadrilátero, no qual está definida a função y = x₁ + x₂. Sabendo-se que o máximo desta função está num dos vértices deste quadrilátero, o seu valor é

- a) $\frac{4}{3}$ b) $\frac{2}{3}$ c) $\frac{1}{3}$ d) 0 e) $-\frac{1}{3}$

 $v \leq -x + 4$ $y \leq x + 2$

 $v \geqslant 2x - 4$

c)
$$x^2 + y^2 = 9$$

d)
$$|x| = 3$$
 e $|y| = 3$

e)
$$|x - y| = 3$$

o ponto de major ordenada é:

- b) $\frac{8}{3}$, $\frac{4}{3}$ c) (1, 3)
- d) (0, 4)
- e) (6, 8)

TG.87 (ITA-75) Seja S o conjunto das soluções do sistema de desigualdades:

v ≥ 0

$$2x + y - 3 > 0$$

 $x - 2y + 1 < 0$
 $y - 3 < 0$
 $x + my - 5 < 0$, onde m é real

A representação geométrica de S. em coordenadas cartesianas ortogonais (x, y), é:

- a) um quadrilátero para qualquer m > 0
- b) um triângulo isósceles para qualquer m < 0
- c) um triângulo retângulo para m < 0 ou $\frac{5}{2}$ km < 4
- d) S é o conjunto vazio para m $> \frac{5}{3}$
- e) nenhuma das anteriores

TG.88 (SANTA CASA-77) O gráfico de |x| + |y| = 4 é melhor representado por:

TG.90 (FFCLUSP-66) $|x_1 + y_2| < 1$ representa-

a) interior de um círculo

- b) interior de um triângulo
- c) interior de um quadrado
- d) uma coroa circular
- e) um quadrante de círculo
- TG.91 (CESCEA-72) As equações das bissetrizes dos ângulos formados pelas retas 3x + 4y - 2 = 0 e -6x + 8y + 5 = 0 são:

a)
$$2x + y - 1 = 0$$
 e $x - 2y + 1 = 0$

b)
$$x = \frac{9}{12}$$
 e $y = -\frac{1}{16}$

c)
$$-32x + 16y + 25 = 0$$
 e $8x + 16y - 5 = 0$

d)
$$-16x + 16y + 15 = 0$$
 e $16x + 16y - 11 = 0$

e) não sei

TG.92 (EESCUSP-68) A bissetriz interna do ângulo agudo formado pelas retas

$$3x + 4y + 1 = 0$$
 e $3x - 4y - 1 = 0$ é

- a) 4x + 1 = 0
- b) x = 0
- c) 3x 1 = 0
- d) y = 0

- e) nenhuma das respostas anteriores
- TG.93 (CICE-68) Sejam M(-5, 2), N(-2, 5) e P(0, 0) pontos do plano, dados em coordenadas cartesianas. Assinale qual o número de lista abaixo que mais se aproxima do comprimento da bissetriz do ângulo P no triângulo MNP.
 - a) $4\frac{9}{10}$ b) $4\frac{1}{2}$ c) $3\frac{7}{10}$ d) 4 e) $4\frac{3}{10}$

CIRCUNFERÊNCIA

TG.94 (CESCEA-68) Assinale dentre as alternativas abaixo a correta:

- a) a equação $x^2 + y^2 + Ax + By + C = 0$ representa uma circunferência quaisquer que sejam A, B e C
- b) a equação $x^2 + y^2 + Ax + By + C = 0$ representa uma circunferência se $A^2 + B^2 - 4C > 0$.
- c) a equação $x^2 + y^2 + 1 = 0$ representa uma circunferência de raio 1 e centro no ponto $P \cong (0, 0)$
- d) os pontos A \equiv (0, 0), B \equiv (1, 3) e C \equiv (2, 0) estão sobre a circunferência de equação $x^2 - 10x + y^2 = 0$
- e) uma circunferência de centro na origem e raio unitário passa pelo ponto A = (1, 1)

- TG.95 (PUC-71) Os valores de m e k para os quais a equação $mx^2 + v^2 + 4x 6v + k = 0$ representa uma circunferência real são:
 - a) m = 1 e k < 10
- b) m = 1 e k < 13
- c) m = 2 Para mais, acesse: http://fuvestibular.com.lar/reta $y = x + \sqrt{7}$ respectivamente nos pontos P e Q. A distância PQ mede

- d) m = 2 e k < 1
- e) m = 1 e k = 1
- TG.96 (EESCUSP-66) Qual das seguintes equações representa uma circunferência com

- a) $x^2 + (y 1)^2 = 9$ b) $x^2 + y^2 = 7$ c) $1 x^2 = y^2$ d) $(x 2)^2 + (y 9)^2 = 16$ e) $x^2 + (2y 3)^2 = 1$

centro sobre um dos eixos mas não na origem?

TG.97 (GV-73) A equação da reta que passa pelo centro da circunferência

$$2x^2 + 2y^2 - 8x - 16y + 24 = 0$$

- e é paralela à reta -8x + 2v 2 = 0 é:
- a) v = 2x

- b) y = 4(x 1)
- c) y = x + 2

- d) v = 3x 2
- e) v = 4x 1
- TG.98 (MACK-75) São dadas a reta r de equação x + 2y 1 = 0 e a circunferência de equação $2x^2 + 2y^2 + 4x + \frac{3}{2} = 0$. A reta s passa pelo centro da circunferência
 - e é perpendicular à reta r. A área do triângulo formado pelas retas r, s e o eixo Ox é igual a:

 - a) $\frac{3}{4}$ b) $\frac{4}{5}$ c) 1 d) $\frac{4}{3}$ e) $\frac{5}{4}$

- TG.99 (EPUSP-67) O ponto simétrico da Origem com relação ao centro da circunferência $x^2 + v^2 + 2x + 4v = r^2$
 - a) é (-2, -4)
- b) é (1, 2)

c) é (2, 4)

- d) depende de r
- e) nenhuma das respostas anteriores
- TG.100 (E.E. LINS-68) A circunferência simétrica de $x^2 + y^2 3x 5y 7 = 0$ em relação ao eixo das ordenadas tem por equação:

 - a) $x^2 + y^2 + 3x 5y 7 = 0$ b) $x^2 + y^2 + 3x + 5y 7 = 0$
 - c) $x^2 + y^2 5x + 3y 7 = 0$
- d) $x^2 + y^2 3x + 5y 7 = 0$
- e) nenhuma das respostas anteriores
- TG.101 (CESCEA-71) A distância do ponto (-4, 3) à circunferência de equação $x^2 + y^2 - 16x - 6y + 24 = 0$ é:
 - a) 19
- b) 7
- c) 12
- d) 5
- e) não sei
- TG.102 (CESCEM-73) O ponto da circunferência $(x 4)^2 + (y + 3)^2 = 1$ que tem ordenada máxima é:
 - a) (4, -3)
- b) (4, -4)
- c) (4, -1)
- d) (4, -2)
- e) (3, -3)

- b) 8π
- d) 25π
- e) 64π

TG.104 (MACK-77) A sequência de circunferência (In)n e N tal que

b) $\sqrt{2}$

- l_1 é dada por $x^2 + v^2 = 2x$
- $\ln e dada por x^2 + v^2 = 3x$

TG.103 (CESCEM-74) A reta r não tem coeficiente angular. As retas s e t são distintas,

c) 2

perpendiculares a r, tangentes à circunferência $x^2 + y^2 = 1$ e concorrentes com

d) $2\sqrt{2}$

- I_3 é dada por $x^2 + y^2 = \frac{7}{2}x$
- 1_4 é dada por $x^2 + y^2 = \frac{15}{4} x$
- tende para uma circunferência I cuia equação é:
- a) $x^2 + y^2 = 4x$
- b) $x^2 + v^2 = 16x$
- c) $x^2 + y^2 = 4$
- d) $x^2 + v^2 = 6x$

- e) não sei
- TG.105 (CESCEM-74) Quer-se obter a circunferência $x^2 + y^2 = 1$ como reunião disjunta dos gráficos de duas funções y = f(x) e y = g(x). Domínios convenientes para tais funções são
 - a)]-1; 1[e]-1; 1[b)]-1; 1] e]-1; 1] c) [-1; 1] e]-1; 1] d) {-1; 1] e [-1; 1] e]-1; 1[

- TG.106 (CESCEM-67) Qual das circunferências abaixo passa pela origem?
 - a) $(x + a)^2 + (y a)^2 = a^2$ b) $x^2 + (y a)^2 = a^2$ c) $(x a)^2 + y^2 = 4a^2$ d) $x^2 + y^2 = a^2$

- e) $(x c)^2 + (y c)^2 = 4a^2$
- TG.107 (CESCEA-73) O valor de m para que a circunferência $x^2 + y^2 + 4x my 6 = 0$ passe pelo ponto (0, 1), é:
 - a) ~5
- b) -3
- c) -4
- d) não sei
- TG.108 (FEI-65) Q ponto A(1, $\sqrt{2}$) em relação à circunferência $x^2 + y^2 4x 4y + 4 = 0$ está situado:
 - a) no centro
 - b) interno ao círculo, fora do centro
 - c) na curva
 - d) externo ao círculo, mas na reta $y = \sqrt{2}x$
 - e) nenhuma das respostas anteriores
- TG.109 (CESCEM-77) A área do disco de equação $x^2 + y^2 4x + 6y + 8 \le 0$ é
 - a) 5π
- c) 10π

TG.110 (FFCLUSP-69) A representação gráfica do sistema $x^2 + y^2 > 9$ ou $x^2 + y^2 < 25$ no plano cartesiano (eixos ortogonais) é:

- a) a parte do plano compreendida entre as circunferências de centro na logicamise atésse: http://fuvestibular.com.lal/ encontram-se nos pontos (1, 0) e (0, -1) raios 3 e 5
- b) duas circunferências concêntricas
- c) o conjunto vazio
- d) o plano todo
- e) nenhuma das respostas anteriores

TG.111 (CESCEA-71) Seja (a, b) um ponto qualquer do conjunto

$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

- e seja B = $\{(x, y) \in \mathbb{R}^2 \mid (x a)^2 + (y b)^2 < r^2, r > 0\}$. Então:
- a) $B \subset A$, para todo r > 0
- b) B \cup A = A, para 0 < r < 1
- c) B \cap A = B. para $0 < r \le 1 \sqrt{a^2 + b^2}$
- d) B \supset A, para $r \ge 1 \sqrt{a^2 + b^2}$
- e) não sei
- **TG.112** (MACK-75) Dados os pontos A = (2, 3), B = (4, -1) e C = (x, 1), o valor de x, para que a área do triângulo ABC seja 5 e o ponto C seja externo ao círculo $x^2 + v^2 \le 25$. é:
 - a) 6
- b) $\frac{11}{2}$ c) 7
- e) -6

TG.113 (MACK-73) Os pontos P(x, y) cujas coordenadas satisfazem o sistema

$$\begin{cases} x^2 + y^2 = \\ x + y \leq 1 \end{cases}$$

- a) são colineares
- b) são equidistantes da reta x + y = 1
- c) são pontos de um arco de circunferência
- d) não existem
- e) existem e são em número finito
- TG.114 (GV-76) Seja C uma circunferência de equação $(x-1)^2 + (y-1)^2 = 8$, e seja r a reta de equação x + y = 6. Com relação à posição de C e r, podemos afirmar:
 - a) C e r são secantes

- b) C e r são tangentes
- c) C e r são externas uma à outra
- d) r passa pelo centro de C
- e) C e r se interceptam no ponto (4, 2)
- TG.115 (CICE-68) Em coordenadas cartesianas, sejam P = (a, b) e Q = (c, d) os pontos em que a reta 3x - 2y = 0 corta a curva $x^2 + 6x + y^2 - 4y - 12 = 0$. O produto da distância de P ao ponto R = (2, 3) pela distância de Q ao mesmo ponto R vale:
 - a) 0

- c) 2ab + 3cd
- d) $\sqrt{(a-c)^2 + (b-d)^2}$ e) $2|a-c| + 3 \cdot |b-d|$

- **TG.116** (GV-76) A reta x + y = 1 e a circunferência $x^2 + y^2 = 1$:

 - b) encontram-se nos pontos (1, 0) e (0, 1)
 - c) encontram-se nos pontos (-1, 0) e (0, 1)
 - d) não têm pontos em comum
 - e) são tais que a reta é tangente à circunferência
- **TG.117** (MACK-73) Sejam $C = \{(x, y) \mid x^2 + y^2 6x 7 = 0\}$ e $S = \{(x, y) \mid x = 0\}$ $p \in \mathbb{R}$. Sabe-se que $C \cap S \neq \emptyset$. Portanto p é tal que:
 - a) $-2 \le p \le 6$ b) $-1 \le p \le 7$ c) p > 0 d) $-3 \le p \le 3$ e) $-2 \le p \le 1$

- TG.118 (CESCEA-77) A reta x + 2y 7 = 0 é tangente a uma circunferência de centro (-2, 2). Então, a equação desta circunferência é:
 - a) $(x + 2)^2 + (y 2)^2 = 5$
- h) $(x + 2)^2 + (y 2)^2 = \sqrt{5}$
- c) $(x + 2)^2 + (y 2)^2 = 9$
- d) $(x 2)^2 + (y + 2)^2 = 5$
- e) $(x 2)^2 + (y + 2)^2 = 9$
- TG.119 (MACK-73) A reta $\frac{x}{a} + \frac{y}{b} = 1$ é tangente à circunferência $x^2 + y^2 = 1$. Pode-se
 - a) $\frac{1}{a^2} + \frac{1}{h^2} = 1$ b) $\frac{1}{a^2} + \frac{1}{h^2} = 2$ c) $\frac{1}{a^2} + \frac{1}{b^2} = -1$
- d) $a^2 + \frac{1}{12} = 1$ e) $\frac{1}{3} \frac{1}{12} = 1$
- **TG.120** (MACK-76) A circunferência $(x 1)^2 + (y 3)^2 = r^2$ é tangente à reta 5x + 12y = 60. O valor de r é:
 - a) $\sqrt{10}$ b) $\frac{25}{13}$ c) $\frac{13}{12}$ d) $\frac{60}{13}$ e) $\frac{19}{13}$

- TG.121 (CESCEM-72) A equação da reta que passa pelo ponto (1, 0) e é tangente à circunferência de centro no ponto (2, 2) e raio unitário, com ponto de tangência pertinente ao semi-plano x ≤ 2 é:
 - a) x = 2
 - b) x = 1
- (c) x + y = 1 d) y = 1 e) y = 2
- **TG.122** (EESCUSP-68) Dada a circunferência $x^2 + y^2 = r^2$ e um ponto (x_0, y_0) pertencente à mesma, assinalar qual das equações abaixo representa a reta que passa por (x₀, y₀) e é tangente à circunferência dada:
 - a) $xx_0 + y_0 = r^2$ b) $xx_0 + yy_0 = r^2$ c) $yx_0 + xy_0 = r^2$
- d) $x + yy_0 = r^2$ è) $xx_0 + y = r^2$
- TG.123 (CESCEM-67) Qual das circunferências abaixo tangencia o eixo dos x e o eixo dos y?
 - a) $(x + a)^2 + (y + a)^2 = a^2$ b) $x^2 + (y a)^2 = a^2$
 - c) $(x a)^2 + v^2 = 4a^2$
- d) $x^2 + v^2 = a^2$
- e) $(x a)^2 + (y a)^2 = 4a^2$
- Para mais, acesse: http://fuvestibular.com.br.

TG.124 (CESCEM-69). A equação da circunferência com centro no ponto (3, 4), e tangente aos eixos coordenados é:

a)
$$x^2 + y^2 - 6x - 8y + 25 = 0$$

b)
$$x^2 + y^2 - 6x - 6y + 9 = 0$$

c)
$$x^2 + y^2 - 8x - 8y + 16 = 0$$

d)
$$x^2 + y^2 - 6x - 8y + 49 = 0$$

e) nenhuma das respostas anteriores

TG.125 (CESCEM-68) A equação da circunferência que tangencia os eixos Ox e Oy e cujo centro está na reta x + y - 2 = 0 é:

a)
$$x^2 + y^2 - 2(x + y) = -1$$

b)
$$(x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 = (\frac{1}{2})^2$$

c)
$$x^2 + y^2 = 2(x + y)$$

d)
$$x^2 + y^2 = 2(x - y)$$

e) nenhuma das respostas anteriores

TG.126 (PUC-77) A equação da circunferência, situada no 10 quadrante, tangente à reta de equação 3x - 4y + 30 = 0 e aos eixos coordenados, é:

a)
$$x^2 + y^2 - 5x - 5y + 25 = 0$$

b)
$$x^2 + y^2 - 10x - 10y + 25 = 0$$

c)
$$x^2 + y^2 - 10x + 5y + 25 = 0$$

d)
$$x^2 + y^2 - 5x + 10y + 25 = 0$$

e)
$$x^2 + y^2 - 5x + 5y + 25 = 0$$

TG.127 (ITA-77) Num sistema de coordenadas cartesianas ortogonais, a equação da circunferência que passa pelos pontos P₁(0, -3) e P₂(4, 0), e cujo centro está sobre a reta x + 2y = 0, é:

a)
$$5(x^2 + y^2) + 2x + 3y = 0$$

a)
$$5(x^2 + y^2) + 2x + 3y = 0$$
 b) $5(x^2 + y^2) - 14x + 7y - 24 = 0$

c)
$$x^2 + y^2 + 4x - 2y - 15 = 0$$

d)
$$x^2 + y^2 - 2x + y + 5 = 0$$

a)
$$(x - 3)^2 + v^2 = 25$$

b)
$$(x - 6)^2 + y^2 = 16$$

c)
$$(x - 6)^2 + (y + 6)^2 = 100$$

d)
$$(x - 9)^2 + y^2 = 25$$

e)
$$(x - 12)^2 + (y + 4)^2 = 10$$

TG.129 (CESCEA-75) As retas y = x e y = -x tangenciam uma circunferência respectivamente nos pontos (3, 3) e (3, -3). O raio dessa circunferência vale:

a)
$$\sqrt{12}$$
 b) $\sqrt{17}$ c) $\sqrt{20}$ d) $\sqrt{18}$

)
$$\sqrt{20}$$

d)
$$\sqrt{18}$$

TG.130 (CESCEA-74) A equação da circunferência que tangencia as retas x + y = 0 e x + y = 8 e que passa pelo ponto (0, 0) é:

a)
$$2x^2 + 2y^2 - 4x - 4y = 0$$

b)
$$x^2 + y^2 - 2x - 6y = 0$$

c)
$$x^2 + y^2 - 4x - 4y = 0$$

d)
$$x^2 + y^2 + 4x + 4y = 0$$

TG.131 (MACK-73) A equação da circunferência que passa pelas intersecções das retas

$$y = x$$
; $y = 0$; $x = 4$, é:

a)
$$x^2 + y^2 - 4x - 4y = 0$$

c) $x^2 + y^2 - 6x - 6y = 0$

b)
$$x^2 + y^2 - 8x - 8y = 0$$

d)
$$x^2 + y^2 - 10x - 10y = 0$$

Para mais, acesse: http://fuvestibular.com.br/

TG.132 (CESCEA-70) Uma circunferência está inscrita num triângulo cujos vértices são (0, 0), Para mais, acesse: http://fuvestibular.com.br/(4, 0) e (0, 4). Então, a distância do vértice (0, 0) aos pontos de tangência situados sobre os eixos coordenados é:

a)
$$4 + 2\sqrt{2}$$

b)
$$4\sqrt{2}$$

$$4 - 2\sqrt{2}$$

$$(1) \ 2\sqrt{2}$$

c)
$$4 - 2\sqrt{2}$$
 d) $2\sqrt{2}$ e) $4 - \sqrt{2}$

TG.133 (CESGRANRIO-77) No plano são dados uma circunferência de raio 5 e um ponto P distante 13 unidades do centro da circunferência. Uma reta passando por P intercepta a circunferência nos pontos M e N. O produto das distâncias PM e PN é:

- a) 169
- b) 144
- c) 65π
- d) 45π
- e) 96

TG.134 (MACK-75) É dada a circunferência $x^2 + y^2 - 8x - 4y - 5 = 0$ e os pontos D = (-1, 2) e E = (8 5). Designando por DE o segmento fechado de extremidades D e E, podemos afirmar que:

- a) DE é um diâmetro da circunferência
- b) DE é uma corda da circunferência mas não contém o centro
- c) DE intercenta a circunferência em um único ponto
- d) DE não intercepta a circunferência
- e) DE intercepta a circunferência em dois pontos mas não é corda

TG 135 (PUC-76) A distância dos centros das circunferências de equações: $x^2 + y^2 - 1 = 0$ $e^{-x^2+v^2}-2x-v-1=0$ é:

a)
$$\frac{\sqrt{5}}{5}$$
 b) $\frac{\sqrt{5}}{2}$ c) $\frac{\sqrt{5}}{4}$ d) $\frac{\sqrt{5}}{3}$ e) $\sqrt{5}$

b)
$$\frac{\sqrt{5}}{2}$$

c)
$$\frac{\sqrt{5}}{4}$$

d)
$$\frac{\sqrt{5}}{3}$$

TG 136 (CESCEM-72) As circunferências $x^2 + y^2 = 1$ e $x^2 - 6x + y^2 = -8$ são:

a) secantes

- b) exteriores
- c) interiores

- d) tangentes interiormente e) tangentes exteriormente

TG.137 (CESCEA-68) Dadas as circunferências de equações $x^2 + y^2 - 2by + b^2 - 4 = 0$ $e^{-x^2+y^2-4x-2by+b^2}=0$ onde b é um número real qualquer, podemos afirmar que as circunferências:

- a) nunca se cortam
- b) se cortam nos pontos $P \equiv (1, 5)$ e Q(2, 0)
- c) se cortam em pontos pertencentes à reta x = 1
- d) se cortam em pontos pertencentes à reta v = 3
- e) são sempre tangentes

TG.138 (FEI-73) A equação da circunferência concêntrica com: $x^2 + y^2 - 2x - 4y = 4$ e contém o ponto (1, 0) é:

a)
$$(x - 1)^2 + (y - 2)^2 = 4$$

b)
$$(x + 1)^2 + (y - 2)^2 = 4$$

c)
$$(x-1)^2 + (y+2)^2 = 4$$

d)
$$(x + 1)^2 + (y + 2)^2 = 4$$

TG.139 (ITA-76) Num sistema de coordenadas cartesianas ortogonais, considere P₁ a circunferência de equação:

$$2x^2 + 2y^2 - 11x + 6y - 8 = 0$$

Então, a equação da circunferência que é tangente ao eixo das abscissas e com o mesmo centro de P₁ é dada por:

a)
$$(x + \frac{3}{2})^2 + (y - \frac{11}{4})^2 = \frac{4}{9}$$
 b) $(x + \frac{4}{11})^2 + (y - 2)^2 = \frac{2}{3}$

b)
$$(x + \frac{4}{11})^2 + (y - 2)^2 = \frac{2}{3}$$

c)
$$(x - \frac{11}{4})^2 + (y + \frac{3}{2})^2 = \frac{9}{4}$$

c)
$$(x - \frac{11}{4})^2 + (y + \frac{3}{2})^2 = \frac{9}{4}$$
 d) $2x^2 + 2y^2 - 11x + 6y - \frac{1}{8} = 0$

- e) nenhuma das respostas anteriores
- TG.140 (E.E. LINS-67) As circunferências de raio 15 tangentes à circunferência $x^2 + y^2 = 100$ no ponto (6, 8) têm centros nos pontos:

- TG.141 (MAUÁ-68) A intersecção das curvas $y = -1 \sqrt{19 x^2 2x}$ e $x = 3 \sqrt{9 y^2 4y}$ é constituída por:
 - a) um conjunto de dois pontos
- b) um conjunto vazio
- c) um conjunto de um ponto
- d) um conjunto de quatro pontos
- e) nenhuma das respostas anteriores
- TG.142 (CESCEM-73) Considere as circunferências de equações:

$$x^2 + y^2 = 1$$
 e $(x - \sqrt{2})^2 + y^2 = 1$.

A área da intersecção dos círculos determinados por estas circunferências é:

a)
$$\frac{2}{3}(\frac{\pi}{2}-1)$$
 b) $2(\frac{\pi}{4}+1)$ c) $2(\frac{\pi}{4}-1)$ d) $\frac{\pi}{2}-1$ e) $\frac{\pi}{2}+1$

b)
$$2(\frac{\pi}{4} + 1)$$

$$2(\frac{\pi}{4}-1)$$

d)
$$\frac{\pi}{2}$$
 –

e)
$$\frac{\pi}{2} + 1$$

CÔNICAS

- **TG.143** (CESCEM-68) A equação $\frac{x^2}{c^2} + \frac{y^2}{b^2} = c^2$; $(a \cdot b \cdot c \neq 0 \ e \ a \neq b)$
 - a) só é a equação de uma elipse se c = 1
 - b) é a equação de uma circunferência
 - c) é a equação de uma parábola se c = 0
 - d) é a equação de uma elipse
 - e) nenhuma das respostas anteriores
- TG.144 (GV-73) A equação da elipse que passa pelos pontos (2, 0), (-2, 0) e (0, 1) é:

a)
$$x^2 + 4y^2 = 4$$

a)
$$x^2 + 4y^2 = 4$$
 b) $x^2 + \frac{y^2}{4} = 1$ c) $2x^2 - 4y^2 = 1$

c)
$$2x^2 - 4y^2 = 1$$

d)
$$x^2 - 4y^2 = 4$$

e)
$$x^2 + y^2 = 4$$

- TG.145 (GV-76) A equação da elipse da figura ao lado é:
- Para mais, acesse: http://fuvestibular.com.br/ $_a$ } $_4x^2 + 9y^2 16x 36y + 36 = 0$
 - b) $9x^2 + 4y^2 16x 36y + 16 = 0$
 - c) $4x^2 + 9y^2 16x 36y + 16 = 0$

 - d) $4x^2 + 9y^2 36x 16y + 16 = 0$
 - e) $4x^2 + 9y^2 18x 8y + 8 0$

TG.146 (CESCEA-72) A equação da elipse de centro no ponto (2, -6), de distância focal $2c = 2\sqrt{216}$ e cujo eixo maior, paralelo a Oy, tem comprimento 2a = 30 é:

a)
$$\frac{(x-2)^2}{225} + \frac{(y+6)^2}{590} = 1$$
 b) $\frac{(x-2)^2}{9} + \frac{(y+6)^2}{216} = 1$

b)
$$\frac{(x-2)^2}{9} + \frac{(y+6)^2}{216} = \frac{1}{2}$$

c)
$$\frac{(x+6)^2}{15} + \frac{(y-2)^2}{\sqrt{216}} = 1$$
 d) $\frac{(x-2)^2}{9} + \frac{(y+6)^2}{225} = 1$

$$1 \frac{(x-2)^2}{9} + \frac{(y+6)^2}{225} = 1$$

- e) não sei
- TG.147 (CESCEA-75) Sabendo-se que a elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > 0 e b > 0, passapelos pontos (2, 3) e (0, $3\sqrt{2}$), então a + b vale:

a)
$$5\sqrt{2}$$
 b) $5\sqrt{4}$ c) $2\sqrt{2}$ d) $6\sqrt{2}$

$$2\sqrt{2}$$

- TG.148 (CESCEA-69) As coordenadas dos focos da elipse de equação 9x² + 25y² = 225 são:

a)
$$(\frac{1}{2}, 0)$$
 e $(-\frac{1}{2}, 0)$ b) $(2, 0)$ e $(-2, 0)$ c) $(0, 4)$ e $(0, -4)$

TG.149 (PUC-71) A equação $9x^2 + 4y^2 - 18x - 16y - 11 = 0$ é de uma elipse. Os semi-eixos maior e menor medem:

TG.150 (EESCUSP-69) O centro (x_0, y_0) , o eixo maior a e o eixo menor b da elipse $\frac{(x-2)^2}{4} + \frac{(y-3)^2}{16} = 1$ são dados por:

a)
$$x_0 = 4$$
, $y_0 = 16$, $a = 3$, $b = 3$

b) 4 e 2

a)
$$x_0 = 4$$
, $y_0 = 16$, $a = 3$, $b = 2$ b) $x_0 = 0$, $y_0 = 0$, $a = 2$, $b = 1$

c)
$$x_0 = -2$$
, $y_0 = -3$, $a = 16$, $b = -3$

c)
$$x_0 = -2$$
, $y_0 = -3$, $a = 16$, $b = 4$ d) $x_0 = 1$, $y_0 = 2$, $a = 10$, $b = 5$

e)
$$x_0 = 2$$
, $y_0 = 3$, $a = 4$, $b = 2$

- TG.151 (MACK-77) Se A = (10, 0) e B = (-5, y) são pontos de uma elipse cujos focos são $F_1 = (-8, 0)$ e $F_2 = (8, 0)$, o perímetro do triângulo BF_1F_2 é:
 - a) 24
- b) 36
- c) 40
- d) 60
- e) não sei
- TG:452 (CESCEA-69) A reta y = x + m intercepta a elipse $\frac{x^2}{4} + y^2 = 1$ se e somente se:

a)
$$m \geqslant \sqrt{5}$$
 ou $m \leqslant -\sqrt{5}$ b) $m \geqslant 0$ c) $-\sqrt{5} < m < \sqrt{5}$

c)
$$-\sqrt{5} < m < \sqrt{5}$$

d)
$$-\sqrt{5} \leqslant m \leqslant \sqrt{5}$$
 e) $m = \sqrt{5}$ ou $m = -\sqrt{5}$

Para mais, acesse: http://fuvestibular.com.br/

a)
$$P = (-1, -1)$$

 $2x^2 + v^2 + 2v - 1 = 0$ 6:

b)
$$P = (1, 1)$$

c)
$$P = (1, 2)$$

d)
$$P = (-1, 2)$$

e)
$$P = (2, -1)$$

TG.154 (CESCEA-71) A equação da circunferência com centro na origem e cujo raio é igual ao semi-eixo menor da elipse $x^2 + 4y^2 = 4$ é:

a)
$$x^2 + y^2 = \sqrt{2}$$

b)
$$x^2 + y^2 = 16$$

c)
$$x^2 + y^2 = 4$$

d)
$$x^2 + y^2 = 1$$

TG.155 (GV-73) Dados: a circunferência
$$C \equiv x^2 + y^2 = 4$$
, a elipse $E \equiv 9x^2 + y^2 = 9$ e o ponto $P \equiv \{1, 1\}$, a afirmação correta é:

- a) P é ponto interior de C e exterior de E
- b) P é ponto exterior de C e interior de E
- c) P é ponto interior de C e interior de E
- d) P é ponto exterior de C e exterior de E
- e) P está sobre E e é exterior a C

TG.156 (CESCEM-72) As elipses $9x^2 + 16y^2 = 25$ e $16x^2 + 9y^2 = 25$:

- a) não têm ponto em comum
- b) têm 1 ponto em comum

c) têm 2 pontos comuns

d) têm 3 pontos comuns

- e) têm 4 pontos comuns
- TG.157 (CESCEA-69) A equação de uma das assíntotas à hipérbole $\frac{x^2}{16} \frac{y^2}{64} = 1$ é:

a)
$$y = 2x - 1$$
 b) $y = 4x$ c) $y = x$

- d) v = 2x + 1 e) v = 2x

TG.158 (CESCEA-71) Os pontos de intersecção da reta $y = \frac{1}{4}x - 1$ com a hipérbole $x^2 - 4y^2 = 16$ são:

a)
$$(-4, 0)$$
 e $(-\frac{20}{3}, -\frac{8}{3})$ b) $(4, 0)$ e $(\frac{20}{3}, \frac{8}{3})$

b)
$$(4, 0)$$
 e $(\frac{20}{3}, \frac{8}{3})$

c)
$$(4, 0)$$
 e $(-\frac{20}{3}, \frac{8}{3})$

d) (4, 0) e
$$\left(-\frac{20}{3}, -\frac{8}{3}\right)$$

e) não sei

TG.159 (CESCEA-69) O conjunto de pontos em que a hipérbole $x^2 - 4y^2 = 4$ intercepta a circunferência $x^2 + y^2 = 9$ é:

a)
$$\{(1, -1), (2\sqrt{2}, -2\sqrt{2}), (-1, 1), (-2\sqrt{2}, 2\sqrt{2})\}$$

b)
$$\{(2\sqrt{2}, 1), (-1, 2\sqrt{2}), (-2\sqrt{2}, 1), (-1, -2\sqrt{2})\}$$

c)
$$\{(1, 2\sqrt{2}), (2\sqrt{2}, -1), (1 - 2\sqrt{2}), (-2\sqrt{2}, -1)\}$$

d)
$$\{(1, 2\sqrt{2}), (-1, 2\sqrt{2}), (1, -2\sqrt{2}), (-1, -2\sqrt{2})\}$$

e)
$$\{(2\sqrt{2}, 1), (2\sqrt{2}, -1), (-2\sqrt{2}, 1), (-2\sqrt{2}, -1)\}$$

- a) é a reunião de uma elipse com uma hipérbole
- b) é a intersecção de uma circunferência com uma hipérbole
- c) é formado por quatro pontos
- d) é vazio
- e) nenhuma das respostas anteriores
- TG.161 (EESCUSP-68) O gráfico ao lado representa aproximadamente uma das equacões abaixo. Assinale-a.

b)
$$x^2 - y = 0$$

c)
$$x - y^2 = 0$$

d)
$$y^2 + x = 0$$

$$e) y = log x$$

TG.162 (FFCLUSP-67) A parábola simétrica relativamente ao eixo dos y e que passa pelos pontos de intersecção da reta x + y = 0 com a circunferência x² + y² + 8y = 0 tem por equação:

a)
$$y = \frac{1}{4}x^2 + \frac{1}{8}$$
 b) $y = 4x^2$

b)
$$y = 4x^2$$

c)
$$y = -\frac{1}{4}x^2$$

d)
$$y = \frac{x^2}{4}$$

- e) nenhuma das respostas anteriores
- TG.163 (PUC-77) As coordenadas do vértice da parábola de equação $2x^2 + 4x + 3y 4 = 0$,

TG.164 (PUC-77) Os valores de a e b, de modo que a função $y = 2x^3 + ax^2 + b$, tenha máximo no ponto de coordenadas (-1, 2) são, respectivamente:

TG.165 (CESCEM-74) Os gráficos de $x^2 + y = 10$ e x + y = 10 interceptam-se em dois pontos: a distância entre esses pontos é

b)
$$\sqrt{2}$$

e) maior do que 2 d) 2

TG.166 (GV-77) Uma parábola de equação $y = ax^2 + bx + c$ contém a origem do sistema de coordenadas e é tangente à reta de equação y = 4, no ponto (2, 4). Então, a + b + c vale:

TG.167 (MACK-77) A reta y = ax + b é tangente à parábola $y = 3x^2 + c$ no ponto de abscissa 1. Os valores de b e c são tais que:

a)
$$c - b = 3$$
 b) $c + b = 3$ c) $c - b = -3$ d) $c + b = -3$ e) não sei

TG.168 (FUVEST-77) A equação da reta que é tangente à curva de equação y = x |x|, no ponto (-1, -1), é:

a)
$$v = 2x$$

a)
$$y = 2x$$

b) $y = -2x - 1$
d) $y = -2x + 1$

d)
$$y = -2x$$

$$v = 2x +$$

c) v = -2x - 3 Para mais, acesse: http://fuvestibular.com.br/

TG.169 (CESCEA-77) A parábola $y = -x^2 + 8x - 15$ intercepta o eixo dos x nos pontos A e B; o vértice da parábola é C. A área do triângulo ABC é:

- a) 1
- c) $\sqrt{2}$ d) $\sqrt{3}$

TG.170 (CESCEA-70) Os vértices de um triângulo estão sobre a parábola de equação $y = x^2 + x - 12$. Sabendo-se que dois dos vértices estão sobre o eixo dos x e que o terceiro vértice tem coordenadas (x, y) onde x é o ponto de mínimo de $v = x^2 + x - 12$, então a área do triângulo vale:

- a) $\frac{49}{8}$ b) $\frac{343}{8}$ c) 147 d) $\frac{171}{4}$ e) $\frac{3}{8}$

TG.171 (CICE-68) A circunferência $x^2 + y^2 - 4y + 3 = 0$ e a parăbola $3x^2 - y + 1 = 0$ têm:

- a) quatro pontos em comum
- b) três pontos em comum
- c) dois pontos em comum
- d) um ponto em comum
- e) nenhum ponto em comum

TG.172 (CESCEA-72) A reta que passa pelos pontos de intersecção da parábola y = x² com a elipse $\frac{(x-2)^2}{4} + \frac{y^2}{16} = 1$ é:

- a) v = -x b) v = 2x + 1 c) y = 2x d) y = 3x
- e) não sei

TG.173 (MACK-75) Os pontos do plano que verificam a designal dade $(y^2 - x)(x^2 + y^2 - 9) \le 0$ estão hachurados em:

e) nenhuma das anteriores

TG.174 (CESCEM-73) Seja C o conjunto dos pontos do plano que satisfazem as desigualdades

$$2x^{2} + 2y^{2} - 1 \le 0$$

y - $2x^{2} \ge 0$

$$y \leqslant \frac{1}{2}$$

Pode-se afirmar que:

- a) C é limitado por um arco de parábola e por um segmento
- c) C é limitado por um arco de parábola e por um arco de circunferência
- d) C é ilimitado
- e) C é limitado por um segmento e por um arco de circunferência

LUGARES GEOMÉTRICOS

TG.175 (MACK-74) O conjunto de pontos tais que a distância de cada ponto à reta y = 3 é igual à diferença entre a abscissa x e a ordenada y do ponto é:

- a) um par de semi-retas não colineares
- b) um losango

c) uma circunferência

- d) uma reta
- e) um conjunto finito de pontos

TG.176 (ITA-75) Uma equação do lugar geométrico das intersecções das diagonais dos retângulos inscritos no triângulo ABC e com um lado em AB (figura abaixo) é:

a)
$$x + \frac{2(a + b)}{c} y = a + b$$

b)
$$x + \frac{a + b}{c} y = \frac{a + b}{2}$$

c)
$$ax + 3(b + c)y = \frac{a + c}{2}$$

d)
$$x + cy + ab = 0$$

- TG.177 (GV-74) Considere os pontos A = (-K, 0) e B = (K, 0), com K > 0. Por A traça-se uma reta r que intercepta o eixo Oy no ponto C. Por B traça-se uma reta s, perpendicular a r. A intersecção de r com s é o ponto P. Quando r varia em volta de A, P descreve uma

 - a) elipse b) parábola
- c) hipérbole d) circunferência
- e) reta
- TG.178 (FFCLUSP-67) O l.g. de pontos de encontro de pares de reta, a primeira passando pela origem com coeficiente angular m₁ e a segunda passando pelo ponto (0, 2) e declive m_2 tal que $m_1^2 + m_2^2 = 1$ é:
 - a) uma reta

- b) uma circunferência de centro no eixo dos y
- c) uma parábola
- d) uma hipérbole
- e) nenhuma das respostas anteriores

TG.179 (GV-73) Num sistema cartesiano ortogonal a equação do lugar geométrico dos pontos que equidistam do eixo Oy e do ponto (4, 0) é:

a)
$$y^2 = 8(x - 1)$$

d) $y^2 = 8(x - 2)$

b) $y^2 = 4(x - 2)$ e) $y^2 = 2x - 1$ b) $v^2 = 4(x - 2)$

c) $v^2 = 4x - 2$

Para mais, acesse: http://fuvestibular.com.br/

TG.180 (FUVEST-77) O lugar geométrico dos pontos cuja soma das distâncias aos pontos fixos (-1; 0) e (1; 0) é sempre igual a 4, intercepta o eixo dos y em pontos de ordenada.

- a) 0 e 2

- b) $\pm \sqrt{2}$ c) ± 3 d) $\pm \sqrt{5}$ e) $\pm \sqrt{3}$

TG.181 (E. E. LINS-68) O lugar geométrico dos pontos P(x, y) tais que a soma dos quadrados das distâncias aos pontos $P_1(r, 0)$ e $P_2(-r, 0)$ é $4r^2$ tem por equação:

- a) $x^2 + v^2 = 2r^2$
- b) $x^2 + v^2 = r^2$
- c) x = 0

d) v = 0

e) nenhuma das respostas anteriores

TG.182 (PUC-71) Dados três pontos A(0, 0), B(1, 0) e C(0, 1) então a equação do lugar geométrico dos pontos P(x, y) tais que a área do triângulo de vértices P, A e B seja 3 vezes a área do triângulo de vértices P, A e C é:

- a) 5x 2y = 0
- c) $x^2 + v^2 x = 0$

- d) $x^2 xy = 0$
- b) 3x 2y = 0e) 3x y = 0
- TG.183 (PUC-70) Pelo ponto Q(2, 1) conduz-se uma reta r qualquer, a qual intercepta os eixos coordenados x e y respectivamente em A e B. Se M é o ponto médio de AB, toma-se sobre r o ponto P simétrico de Q em relação a M. Então a equação do lugar geométrico descrito por P ao variar r é:
 - a) xy = 2
- b) $x^2 + v^{\frac{1}{2}} = 2$
- c) $\frac{x^2}{2} + \frac{y^2}{4} = 1$ d) $\frac{x^2}{2} \frac{y^2}{4} = 1$
- e) nenhuma das respostas anteriores

TG.184 (PUC-77) Um segmento de comprimento 5 se desloca no plano, mantendo seus extremos P e Q sobre os eixos coordenados x e y, respectivamente. A equação do lugar geométrico descrito pelo ponto M, interno a PQ e situado a 3 unidades de P. é:

- a) $4x^2 + 9y^2 1 = 0$
- b) $4x^2 + 9y^2 6 = 0$
- c) $4x^2 + 9y^2 36 = 0$
- d) $9x^2 + 4y^2 6 = 0$ e) $9x^2 + 4y^2 - 36 = 0$
- TG.185 (EESCUSP-66) Um segmento de comprimento 2a desloca-se no plano de modo que uma de suas extremidades se mantém sobre o eixo y e o ponto médio se mantém sobre o eixo x. O lugar geométrico descrito pela outra extremidade é:
 - a) circunferência
- b) elipse

- c) hipérbole
- d) parábola e) nenhuma das respostas anteriores

TG.186 (CESCEM-68) Se num sistema de coordenadas cartesianas ortogonais representarmos no eixo das abscissas os valores do raio da base de um cilindro e no eixo das ordenadas os valores da altura do cilindro, então o lugar geométrico dos pontos do plano a que correspondem cilindros cujas superfícies laterais têm a mesma área é:

a) um arco de circunferência d) um ramo de hipérbole

b) 2

- b) um ponto c) uma semi-reta
- e) um arco de eliose

TG.187 (FFCLUSP-67) O número de intersecções das curvas de equações $y = x^2$ e $y = x^{3/2}$ é:

- a) 1

- c) 0

TG.188 (MACK-76) Os pontos de intersecção de xy = 12 e $x^2 + y^2 = 25$ são es vértices de:

a) um trapézio

- b) um quadrado
- c) um retângulo não quadrado
- d) um paralelogramo não retângulo
- e) nenhum dos anteriores

TG.189 (CESCEM-73) No plano xy a equação $(x - y + 1)^2 + (2x + 2y - 1)^2 = 0$ representa

- a) uma circunferência
- b) um único ponto
- c) duas retas perpendiculares
- d) duas retas paralelas e) o conjunto vazio

TG.190 (SANTA CASA-77) O gráfico da equação $x^2 + y^2 + 4x - 10y + 29 = 0$ é:

a) uma elipse

- b) uma circunferência
- c) duas retas concorrentes
- d) duas retas coincidentes

e) um ponto

TG.191 (CESCEM-67) A equação $x^2 - 4x + y^2 + 4y + 11 = 0$ representa:

- a) circunferência de centro (2. -2) e raio $\sqrt{3}$
- b) circunferência de centro (2, -2) e raio $-\sqrt{3}$
- c) uma parábola do 2º grau d) um par de retas paralelas
- e) nenhum ponto do plano cartesiano satisfaz a equação acima

TG.192 (FFCLUSP-69) A representação gráfica do plano cartesiano (eixos ortogonais) de:

$$x^2 + y^2 - 2x - 6y + 14 = 0$$
 é:

- a) uma circunferência de centro (-1, -3) e raio 1
- b) uma circunferência de centro (1, 3) e raio 1
- c) o conjunto vazio
- d) uma elinse e) nenhuma das respostas anteriores

TG.193 (CESCEM-68) O gráfico da equação $y^2 = 2xy - x^2$ é:

- a) uma circunferência
 - b) uma parábola
- c) uma reta
- d) um conjunto de duas retas perpendiculares
- e) uma elipse

223-G

TG.194 (CICE-68) Em coordenadas cartesianas, a equação $x^2 - 3xy + 2y^2 = 0$ representa:

- a) o ponto (0, 0)
- b) uma circunferência
- c) uma hipérbole
- d) duas retas coincidentes
- e) duas retas distintas

TG.195 (MAUÁ-68) A equação $x^2 + 2xy + y^2 - 1 = 0$ representa:

a) uma circunferência

d) duas retas coincidentes

- b) duas retas paralelas
- c) duas retas concorrentes Para mais, acesse: http://fuvestibular.com.br/ à equação |x y| = 1 e) nenhuma das respostas anteriores

TG 196 (FFI-67) O conjunto dos pontos do plano xy cujas coordenadas satisfazem a equação $x^2 - 6x + 8 = 0$ é:

- a) uma circunferência
- b) uma parábola
- c) duas retas paralelas

- d) duas retas ortogonais
- e) nenhuma das respostas anteriores

TG.197 (GV-77) O conjunto dos pontos $\{x, y\}$ tais que $2x^2 - xy + x - y^2 - y = 0$ tem como representação gráfica:

- a) uma hipérbole
- b) duas retas concorrentes e não perpendiculares
- c) duas retas concorrentes e perpendiculares
- d) uma circunferência
- e) duas retas paralelas

TG 198 (E.E. LINS-67) O conjunto de pontos (x, y) que satisfazem à equação

$$x^2 - y^2 + x + y = 0$$
 é:

a) uma circunferência

- b) uma hipérbole
- c) duas retas perpendiculares entre si
- d) duas retas paralelas entre si
- e) nenhuma das respostas anteriores

TG.199 (E.E. LINS-68) O lugar geométrico dos pontos P(x, y) cujas coordenadas satisfazem a equação $4x^2 - 9y^2 = 0$ é:

a) uma elipse

- b) uma hipérbole
- c) formado por duas retas concorrentes d) formado por duas retas paralelas
- e) nenhuma das respostas anteriores

TG.200 (CESCEA-74) A representação gráfica dos pontos P = (x, y) tais que $x^3 - xy^2 = 0$ é:

- a) uma reta
- b) duas retas
- c) três retas
- d) um ponto
- e) uma circunferência

TG.201 (EPUSP-66) Os pontos do plano xy cujas coordenadas satisfazem à equação sen(x - y) = 0 constituem:

a) uma reta

- b) um senóide
- c) uma elipse

- d) um feixe de retas paralelas
- e) nenhuma das respostas anteriores

TG.202 (EPUSP-68) Se o conjunto dos pontos que satisfazem a equação $x^2 + y^2 + 2axy = 0$ é a reunião de duas retas então:

- a) a = 0
- b) 0 < |a| < 1
- c) |a| = 1 d) |a| > 1
- e) nenhuma das respostas anteriores

TG.203 (EPUSP-65) O conjunto dos pontos do plano cartesiano cujas coordenadas satisfazem

- a) é uma reta c) é formado por duas retas perpendiculares
- d) é uma circunferência

e) nenhuma das respostas anteriores

b) é formado por duas retas concorrentes

TG.204 (FFCLUSP-69) Consideremos num plano cartesiano (eixos ortogonais) a cônica C de equação reduzida $\frac{x^2}{9} + \frac{y^2}{4+m} = 1$ onde m $\neq -4$ é um número real. Qual das alternativas abaixo é verdadeira?

- a) se m < -4. C é uma hipérbole
- b) se m > 0, C é uma elipse
- c) se 0 < m < 4. C é uma parábola
- d) para todo m ≠ -4. C é uma elipse
- e) nenhuma das respostas anteriores

TG.205 (CESCEA-68) A equação $y - 2x^2 - 7x + 8 = 0$ representa-

- a) uma reta perpendicular ao eixo dos x
- b) uma elipse
- c) uma hipérbole
- d) uma parábola e) uma circunferência

TG.206 (EPUSP-68) As equações f(x, y) = 0 e g(x, y) = 0 representam dois subconjuntos A e B do plano cuja intersecção A \cap B é não vazia. Se f(x, y) = g(x, y) = ax + by + c $(a \neq 0)$, a equação f(x, y) = g(x, y) representa sempre:

- b) uma reta que contém todos os pontos de A O B
- c) uma reta que contém pontos de A O B, mas não necessariamente todos
- d) uma reta que encontra A e B mas não encontra A O B
- e) nenhuma das respostas anteriores

TG.207 (MACK-74) O conjunto dos pontos P(x, y) tais que

$$\sqrt{(x-1)^2 + (y+2)^2} + \sqrt{(x-3)^2 + (y-1)^2} = \sqrt{13}$$
 é:

- a) uma reta
- b) uma semi-circunferência
- c) uma circunferência
- d) um segmento de reta
- e) uma parábola

TG.208 (MACK-76) O gráfico, em coordenadas cartesianas, de uma curva, cujas equações paramétricas são

$$x = sen^2 t$$
 e $y = 2 cos t$. $0 \le t \le 2\pi$. é:

a) uma parábola

b) um ramo de hipérbole

c) um arco de parábola

d) uma elipse

e) parte de uma senóide

função do tempo, na forma

$$\begin{cases} x = a \cos \frac{\pi}{2} t, & a > 0 \\ y = a \cos \pi t \end{cases}$$

A trajetória descrita por M é:

- a) um segmento de reta
- b) uma circunferência
- c) um arco de circunferência
- d) uma parábola
- e) um arco de parábola

TG.210 (MACK-73) A curva de equações paramétricas

$$\begin{cases} x = 2 - \cos t \\ y = -1 + 3 \cos t \end{cases}, \quad 0 \leqslant t \leqslant \pi, \quad \acute{e}:$$

a) uma circunferência

b) um arco de circunferência

- c) uma parábola
- d) uma reta
- e) um segmento de reta

TG.211 (MACK-74) São dados três pares de equações:

i)
$$x + y = 0$$
 e $x^2 + 2xy + y^2 = 0$

11)
$$x - 2y = 0$$
 e $x^3 - 2x^2y + xy^2 - 2y^3 = 0$

III)
$$x^2 - y^2 = 0$$
 e $x^4 - y^4 = 0$

A afirmação: "as duas equações do par têm o mesmo gráfico" é verdadeira para:

- a) | e || somente
- b) I e III somente
- c) II e III somente

d) I, II e III

e) nenhum par

TG.212 (GV~76) Dadas as equações
$$(1) \frac{(x+2)^2}{33} + \frac{(y+1)^2}{49} = 1$$

$$(2)$$
 5y² - 4x² - 10y + 16x - 31 = 0

$$(3) y^2 - 8x = 0$$

$$(4)$$
 $x^2 + y^2 + 6x - 8y + 9 = 0$

$$5 \frac{(x+4)^2}{16} - \frac{(y+2)^2}{36} = 1$$

Então:

- a) (1) representa uma elipse com diâmetro maior igual a 11
- b) (2) representa uma elipse com focos em (2, 4) e (2, -2)
- c) (3) representa uma circunferência com centro em (2, 0)
- d) (4) representa uma parábola com foco em (-3, 4)
- e) (5) representa uma hipérbole com focos em (2, 8) e (2, -2)

TG.213 (GV-73) Considere os gráficos A, B e

Para mais, acesse: http://fuvestibular.com.br/C dados ao lado e as equações:

- a) $x^2 + y^2 = 16$
- b) $9x^2 + 16y^2 144 = 0$
- c) $x^2 + y^2 8x + 7 = 0$
- d) $x^2 + 4y^2 = 12$

As únicas associações corretas estão na alternativa:

- a) (A, b); (B, a); (C, d)
- b) (A, a); (B, b); (C, d)
- c) (C, c); (B, d); (A, b)
- d) (B, c); (C, a); (A, b)
- e) (C, e); (B, a); (A, b)

a) o gráfico da equação $y + \sqrt{1 - x^2} = 0$ é:

В

b) o gráfico da equação $x^2 - 1 = 0$ é:

c) o gráfico da equação x = v2 é:

d) o gráfico da equação $\frac{x^2}{4} + \frac{y^2}{1} = 1$ é:

e) o gráfico da equação $x^2 - 2xy + y^2 = 0$ é:

RESPOSTAS

 $x - 2 = \sqrt{4 - y^2} \ge 0$ é:

Para mais, acesse: http://fuvestibular.com.br/

TG.216 (FUVEST-77) O gráfico que melhor se adapta ao lugar geométrico de equação $(|x|-1)^2 + (|y|-1)^2 = 1$ é:

ь)

e)	y 🛉	
		-
		×

Y	
_()	
	×
\smile	

TG.1 d	TG.44 e	TG.87 c	TG.130 c	TG.173 a
TG.2 b	TG.45 a	TG.88 c	TG.131 a	TG.174 a
TG.3 d	TG.46 a	TG,89 b	TG.131 a	TG.175 a
TG.4 d	TG.47 e	TG.90 c		TG ,176 b
TG.5 d	TG.48 c	TG.91 b	TG.133 b	TG.177 d
TG.6 b	TG.49 d	TG.92 a	TG.134 b	TG.178 d
TG.7 e	TG.50 d	TG.93 a	TG.135 b	TG.179 b
TG.8 b	TG.51 d	TG.94 b	TG.136 b	TG.180 e
TG.9 d	TG.52 a	TG.95 b	TG.137 c	TG.181 a
TG.10 a	TG.53 d	TG.96 a	TG.138 a	TG.182 e
TG.11 d	TG.54 a	TG.97 b	TG.139 c	TG.183 a
TG.12 d	TG.55 d	TG.98 b	TG.140 e	TG.184 c
TG.13 a	TG.56 a	TG.99 a	TG.141 a	TG.185 b
TG.14 a	TG.57 b	TG.100 a	TG.142 d	TG.186 d
TG.15 a	TG.58 a	TG.100 a	TG.143 d	TG.187 b
TG.16 d	TG.59 a		TG.144 a	TG.188 c
TG.17 b	TG.60 b	TG.102 d	TG.145 c	TG.189 b
TG.17 6	TG.61 b	TG.103 d	TG.146 d	TG.190 e
TG.19 d	TG.62 e	TG.104 a	TG.147 a	TG.191 e
	TG.63 d	TG.105 e	TG.148 d	TG.192 c
TG.20 a	TG.64 e	TG.106 b	TG.149 d	TG.193 c
TG.21 b	TG.65 a	TG.107 a	TG.150 e	TG.194 e
TG.22 c	TG.66 e	TG.108 b	TG.151 b	TG.195 b
TG.23 c	TG.67 b	TG.109 a	TG.152 d	TG.196 c
TG.24 c	TG.68 e	TG.110 d	TG.153 a	TG.197 b
TG.25 d	TG.69 d	TG.111 c	TG.154 d	TG.198 c
TG.26 b	TG.70 a	TG.112 b	TG.155 a	TG.199 c
TG.27 b		TG.113 c	TG.156 e	TG.200 c
TG.28 a	TG.71 a	TG.114 b	TG.157 e	TG.201 d
TG.29 e	TG.72 d	TG.115 b	TG.158 d	TG.202 d
TG.30 b	TG.73 b	TG.116 a	TG.159 e	TG.203 e
TG.31 d	TG.74 c	TG.117 b	TG.160 b	TG.204 a
TG.32 c	TG.75 e	TG.118 a	TG.161 c	TG.205 d
TG.33 a	TG.76 a	TG.119 a	TG.162 c	TG.206 b
TG.34 e	TG.77 e	TG.120 e	TG.163 c	TG,207 d
TG.35 e	TG.78 a	TG.121 b	TG.164 e	TG.208 c
TG.36 c	TG.79 a	TG.122 b	TG.165 b	TG.209 e
TG.37 c	TG.80 d	TG.123 a	TG.166 a	TG.210 e
TG.38 c	TG.81 d	TG.124 e	TG.167 a	TG.211 d
TG.39 c	TG.82 e	TG.125 a	TG.168 e	TG.212 a
TG.40 c	TG.83 a	TG.126 b	TG.169 a	TG.213 e
TG.41 b	TG.84 d	TG.127 b	TG.170 b	TG.214 c
TG.42 d	TG.85 a	TG.128 d	TG.171 b	TG.215 b
TG.43 c	TG.86 c	TG.129 d	TG.172 c	TG.216 d
				1 9.2 10 0

FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

Para mais, acesse: http://fuvestibular.com.br/

Vol 1 — Conjuntos e Funções

1. noções de lógica, 2. conjuntos, 3. conjuntos numéricos, 4. relações, 5. funções, 6. funções do 1º grau, 7. funções do 2º grau, 8. função modular, 9. função composta e função inversa.

Vol 2 - Logaritmos

1. potências, 2. função exponencial, 3. função logarítmica, 4. equações e inequações logarítmicas, 5. logaritmos decimais.

Vol 3 — Trigonometria

1. ciclo trigonométrico, 2. funções circulares, 3. principais identidades, 4. transformações, 5. equações, 6. funções circulares inversas, 7. inequações, 8. triânquios.

Vol 4 — Sequências, Matrizes, Determinantes, Sistemas

1. seqüências e progressões, 2. matrizes, 3. propriedades dos determinantes, 4. sistemas lineares: método do escalonamento.

Vol 5 - Combinatória, Binômio, Probabilidade

1. princípios fundamentais da contagem, 2. arranjos, 3. permutações, 4. combinações, 5. desenvolvimento binomial, 6. probabilidade em espaço amostral finito.

Vol 6 - Complexos, Polinômios, Equações

1. números complexos, 2. polinômios, 3. equações polinomiais, 4. transformações, 5. raízes múltiplas.

Vol 7 - Geometria Analítica

1. o ponto, 2. a reta, 3. a circunferência, 4. as cônicas, 5. lugares geométricos.

Vol 8 - Limites, Derivadas, Noções de Integral

definição de limite,
 propriedades operatórias,
 definição de derivadas,
 cálculo de derivadas,
 estudo de funções,
 noções de integral definida.

Vol 9 - Geometria Plana

1. triângulos, 2. paralelismo, 3. perpendicularismo, 4. circunferência, 5. semelhança, 6. relações métricas, 7. áreas das figuras planas.

Vol 10 - Geometria Espacial

1. Geometria de posição: paralelismo, perpendicularismo, diedros, triedros, poliedros; 2. Geometria Métrica: prisma, pirâmide, cilindro, cone, sólidos semelhantes, superfície e sólidos de revolução, sólidos esféricos.