Sharing code, figures and tables in the laboratory ...

... using GitHub

Sergio Martínez Cuesta

Overview

- The laboratories and context
- The past: Redmine
- The present: GitHub
 - Structure
 - Case study: The glioblastoma project

Materials available at ...

https://github.com/semacu/talks folder: 20170703_GitHubintheLab_CRUK-CI/

The laboratories

The Balasubramanian group

The laboratories

Nucleotide modifications

- Mapping modified bases (e.g. 5hmC and 5fC) in genomes and transcriptomes
- Quantifying abundances using mass spectrometry
- Chemical synthesis

G-quadruplexes

- Mapping in DNA and RNA
- Biophysical characterization
- Drug discovery

The context

 Most projects have both an experimental and a computational leader

Classical ways of sharing:

The needs

We strive for an environment where:

Computational colleagues can ...

- ... share code and results
- ... review work
- ... get credit for the collaborative project work

Experimental colleagues can ...

- ... follow development
- ... access results
- ... learn computational methods

The needs

Reproducibility

WWW.PHDCOMICS.COM

Project timeline

Close data

Open data

Private code

Public code

The past: Redmine

The past: Redmine

Open source

Accessibility

- Multiple projects
- Version control

Occumentation and wikis

Biscontinued Feb 2015

The present: GitHub

Structure

Public

/projects/20150501_methylation_brain

/projects/FAIRE-seq_Robert

/epigenetics-of-glioblastoma

/dna-secondary-struct-chrom-lands

Early stages

Pre/post-publication stage

Documentation ...

Python R C Java Bash

Markdown (.md)

Structure

Contributors: computational colleagues

Collaborators: computational and experimental colleagues

Costs ...

sblab-bioinformatics developer plan

- private (\$) and public (free) repositories
- USD \$7 / month https://github.com/pricing

Case study: The glioblastoma project

Early 2014:

- Investigate relationship between nucleotide modifications (5mC and 5hmC) and genomic variation in human glioblastoma samples
- Collaboration with neurosurgeons (Addenbrooke's) and Illumina

2014 – 2016: development

- In *projects/* private repository

Feb – Oct 2016: pre-publication

- In *epigenetics-of-glioblastoma/* private repository

Case study: The glioblastoma project

Oct 2016: submission

- epigenetics-of-glioblastoma/ goes public

March 2017: published

BRIEF COMMUNICATION OPEN

Base resolution maps reveal the importance of 5-hydroxymethylcytosine in a human glioblastoma

Eun-Ang Raiber¹, Dario Beraldi¹, Sergio Martínez Cuesta¹, Gordon R. McInroy², Zoya Kingsbury³, Jennifer Becq³, Terena James³, Margarida Lopes³, Kieren Allinson⁴, Sarah Field¹, Sean Humphray³, Thomas Santarius⁵, Colin Watts⁵, David Bentley³ and Shankar Balasubramanian^{1,2,6}

2017: post-publication

- continue development of public *epigenetics-of-glioblastoma/*

Future?

Thanks!

Acknowledgements

The Balasubramanian group

Dario Beraldi