

Functional Dependencies & Normalization for Relational DBs

Chapter 6

Contents

d rpmbs argnl

Ds l argml j benel bel ageq

Lmpk jgx rgml

Contents

1 Introduction

Ds l argml j benel bel ageq

L mpk jgx rgml

- C af pcj rgml qafck aml qgqrq md lsk cp md rrpg srcq lbrfcpcj rgml jbr qcqafck aml qgqrq md lsk cp mdpcj rgml qafck q
- rrpg srcq pcepmsncbrmdmpk pcjrgml qafck
- Lccb qmk cdmpk jk cqspc mdu fwml cepms ngle md rrpg srcqglrm pcjrgml qafck kw ccrrcprfl lmrfcp

- Emmbled ke de bed
 - Kigle qspcrfrrfcqcklrgaq modrfcrrpgsrcqgqajcp glrfcqafck
 - Pebslblrgldmpk rgmlglrsnjeqlbSnbrelmk jgeq kmbgdpargmlbejergmlglqeprgml
 - PcbsagerfcLSJJt jscqg rsnjcq
 - Bgq jjmu gjerf c nmqqg gjgrwmdecl cp rgjeqns pgns qrs njcq

Redundant information glasnjeq rfc rrpg srct jseq nepr gleg e rm n prgasj pben prkel r BLSK CP BL KC BKEPQQL pe pene reb dapetepwek njawee u f mu mpi qdaprf r ben prkel r

Ename	San	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	- 5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

- Update anomalies k mbgba rgm bcjcrgm g qcprgm
 - K mbggga rgml
 - qrfck lecpmd bcnr af lecquef termsnbrck lw t jscq aampbglermck njmwccqu mpigledmprfrbcnr
 - C qwrmk icrfcB inconsistent

Ename	San	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	- 5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Bejergmigd mpe HkeqC je teque bejere f gqrsnje lb jmqe rfe evgqrgd e molbenr rfelke molbenr lb uf mgqrfek leepmolbenr

Ename	San	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	- 5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

- G qcprgm
 - Fmu a lucapere ben prkelr echipe lweknjmweeq pe qqgelebring

Ename	San	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	- 5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

- PcbsagerfcLSJJt jscqg rsnjcq
 - Ck njmwccq lmr qqgelcbrm lwbcnr u qrcrfcqrmpec qn ac
 - Mrfcpbgdgasjrgcq eepcergmlmncprgmlqceAMSLRQSK lbhmglq

Bgq jjmu gjerf c nmqqg gjgrwmdecl cp rgjeqns pgms qrs njcq

CKN NPMH QQL NLsk cpFmspqCL kc NL kc NJ margml

CKN J MAQ CL kc NJ ma rgml
CKN NPMH QQL NLsk cp F ms pq NL kc NJ ma rgml

▶ Ecleprend modelt jeb lbqnspensqbr bspele HMGLQ NJmarend eqrfc rrpg srcrf rpcj rcqCKNJMAQ lb CKNNPMH lbNJmarend eqleefcp npek pwicwlmp dnpcgelicwelegrfcpCKNJMAQmpCKNNPMH

Begg jjmu glerfcnmqqg gjgrwmdeclcprgleqnspgmsqrsnjcq

EMP_LOCS

Ename	Plocation
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford
Zelaya, Alicia J.	Stafford
Jabbar, Ahmad V.	Stafford
Wallace, Jennifer S.	Stafford
Wallace, Jennifer S.	Houston
Borg, James E.	Houston

EMP_PROJ1

Ssn	Pnumber	Hours	Pname	Plocation
123456789	1	32.5	ProductX	Bellaire
123456789	2	7.5	ProductY	Sugarland
666884444	3	40.0	ProductZ	Houston
453453453	. 1	20.0	ProductX	Bellaire
453453453	2	20.0	ProductY	Sugarland
333445555	2	10.0	ProductY	Sugarland
333445555	3	10.0	ProductZ	Houston
333445555	10	10.0	Computerization	Stafford
333445555	20	10.0	Reorganization	Houston
999887777	30	30.0	Newbenefits	Stafford
999887777	10	10.0	Computerization	Stafford
987987987	10	35.0	Computerization	Stafford
987987987	30	5.0	Newbenefits	Stafford
987654321	30	20.0	Newbenefits	Stafford
987654321	20	15.0	Reorganization	Houston
888665555	20	NULL	Reorganization	Houston

Beg jjmu glerfcnmqqg gjgrwmdeclcprgleqnspgmsqrsnjcq

Ssn	Pnumber	Hours	Pname	Plocation	Ename
123456789	-1	32.5	ProductX	Bellaire	Smith, John B.
123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
123456789	2	7.5	ProductY	Sugarland	Smith, John B.
123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
453453453	1	20.0	ProductX	Bellaire	Smith, John B.
453453453	1	20.0	ProductX		Harris and the second

- Emmbled cqq k c qspcq
 - Pebslblrgldmpk rgmlglrsnjeq
 - Snbrclmk jegqkmbester regnlbejeregnled qepregnl
 - PcbsagerfcLSJJt jscqg rsnjcq
 - Bgq jjmu gjerf c nmqqg gjgrwmdecl cp rgjeqns pgms qrs njcq
- Normalization

- Lmpk jgx rgml fcjnq B bcqgelcpq bcrcpk glcrfc cqr pcj rgml qafck q
 - dmpk jdpkcumpidmpljwxglepcjrgmlqafckqqcbml rfcgpicwqlbmlrfcdslargmljbcnclbclagcqkmlerfcgp rrpgsrcq
 - opgeq mell mpk jempk reqrept ral cappgeb msrml glbgtgbs jpej rgml qafek qqmrf rrfepej rgml jbr qeal elmpk jgxebrm lwbeqgoeb beepee
- Gregor qcb ml rfc aml acnr mdl mpk j dmpk LD LD LD ALD LD LD
- Or gq npmacqqufgafclqspcqrfrrfcbrgqqrpsarspcbglqsafuwrfrrpgsrcqpcepmsncbugfrfcNIrpgsrcqrfrbmlmrbgpcarjwbcnclbmlNIkwccvrparcbrmdmpklcupcjrgml

Rfcpc pcrumgknmprlrnpmncprgcqmdbcanknmqgrgmlq

l ml bbgggc mpjmqqjcqql cqq mdrf c amppcqnml bgl e lmgl npcqcpt rgml mdrf c ds l argml j bcncl bcl agcq

Lmrcrfrnpmncprw gqcvrpckcjwgknmprlrlballmrcqapgdgacbNpmncprw gqjcqqqrpgleclrlbkwcqapgdgacb

Contents

O rpmbs argnl

2 Functional dependencies

L mpk jgx rgml

- Definition of FDs
- Bgocar gl bgocar n prg j bcncl bcl agcq
- d dcpcl ac Ps jcq dpp DBq
- Cos gt jcl ac mdQcrq mdDBq
- Kggk jQcrqmdDBq

- Dslargmi jbenelbelageq DBq pesqebrmqneagdw dmpk jke qspeq mdrfe emmbleqq mdpejrgmi j beqgelq
- DBq lbicwq pcsqcbrmbcdgclmpk jdmpkqdmp pcjrgmlq
- DBq pcamlqrpglrqrfrpcbcpgtcbdpmkrfckclgle lbglrcppcjrgmlqfgnqmdrfcbrrpgsrcq
- qcr md rrpg srcq V <u>functionally determines</u> qcr md rrpg srcq Wgdrf c t js c mdV bcrcpk gl cq sl gosc t js c dnp W

 $X \rightarrow Y$

- V → Wf mjbqgdufclctcprumrsnjcqf tcrfcqkct jscdmp V rfcwksqrf tcrfcqkct jscdmpW
- Dmp lwrumrsnjcqr lbrgl lwpcjrgmlglqrlacpP
 Gdr V r V rfcl r W r W
- ▶ V → Wgł P qncagggcq aml qrp glr ml jj pcj rgml gl qr lacq p P
- Cv k njcq
 - populas pgrwlsk cpbcrcpkglcqcknjmwcclkc
 QQL → CLkc
 - NLsk cpbcrcpkglcqnpmbcarl kc lbjmargml
 NLkcNJmargml
 - ck njmwccqql lb npmbcarlsk cpbcrcpkglcqrfcfmspqncp uccirfrrfcck njmwccumpiqmlrfc npmbcar

QQL NLsk cp \rightarrow Fmspq

CdI gq icwmdP rfcl I dslargml jjwbcrcpk glcq jj rrpg srcqgl P qglacuclctcpf tcrumbgqrglarrsnjcq ugfr I r I

- ▶ Bcdg grgml mdDBq
- Direct, indirect, partial dependencies
- d dcpcl ac Ps jcq dpp DBq
- Cos gt jcl ac mdQcrq mdDBq
- Kggk jQcrqmdDBq

▶ Direct and fully dependency jj rrpg srcqgl P k sqr c ds jjwds l argnl jjwbcncl bcl r ml rf c npgk pw i cw mprf c NI gq bcrcpk gl l r md jj rrpg srcqgl P QQL → L k c B rc bbpcqq BLM

CK NJ MWCC

- Indirect dependency T js c md l rrpg s rc gq l mr bcrcpk gl cb bgpcarjw wrf c npgk pwi cw BLM→BL k c
- ▶ QQL → Bl k c gq transitive dependency rf pms ef BLM CK N BCNR

Partial dependency

- Ank nmagre berepk gl lr kmperf l mlet jse gapeos goeb rmberepk glerfet jse mod l mrfep rrpg sre rfe ank gl rgml modt jseq gapa jjeb ank nmagre berepk gl lr QQL NLsk ep gleck N NPMH QQL NLsk ep → Fmspq
- N prg j benel bel aw gdrf et jse mod l rrpg sre bmeqlm benel b ml lel rgpe amk nmagre berepk gllr sr mljw n pr modgr rfe pej rgml qf gn gqilmu l qrfe n prg j benel bel aw

 $QQL \rightarrow CL \ kc$ Nlsk cp \rightarrow NL kc NJ ma rgml

QQI. NI.sk._cn F.vs.no CI..k.c NI..k.c NLvv.rgnl

- ▶ Bcdg grgnl mdDB
- Bgocar gl bgocar n prg j bcncl bcl agcq
- Inference Rules for FDs
- Cos gt jcl ac mdQcrq mdDBq
- ▶ Kglgk jQcrqmdDBq

- Egt cl qcr mdDBqDucalgldcp bbggml jDBqrf r f mjb u f cl ct cprf c DBqgl Df mjb
- Armstrong's inference rules:
 - ▶ IR1. (Reflexive) $GdW \subseteq V$ rf cl $V \rightarrow W$
 - ► IR2. (Augmentation) GdV → Wrf cl VX → WX
 L mr rgml VX qr l bq dmpV U X
 - ▶ IR3. (Transitive) $GV \rightarrow W \mid b W \rightarrow X \text{ rf cl } V \rightarrow X$

- Qmk c bbgrgml jgldcpclacpsjcqrf r pcsqcdsj

 - Decomposition: GdV WXrnf cl V W hb V X rf
 Union: GdV W hb V X rf cl V WXrnf
 Psuedotransitivity: GdV W hb U W X rf cl U V X rf
- Rfcj qrrfpccgldcpcl acpsjcq qucjj q lwmfcp glocpclacps jcqal cbcbs acb domk (P (P lb (P amk njerel egg npmeprw
- Armstrong's inference rules:
 - ▶ IR1. (Reflexive) $GlW \subseteq V$ rf cl $V \rightarrow W$
 - ▶ IR2. (Augmentation) $GdV \rightarrow Wrf cl VX \rightarrow WX$ Lmr rgml VX qr lbq dmp V U X
 - ▶ IR3. (Transitive) $GdV \rightarrow W \mid b W \rightarrow X \text{ rf cl } V \rightarrow X$

- Ajmospemod qer DmodDBqgqrfeqer F+mod jj DBqrf ra l e globppeb opmk D
- Ajmospemol qermol rrpg sreq V u grf peqnear rmD gqrf e qer X+ mol jj rrpg sreq rf r pe dslargml jjwberepk gleb wV
- X a l cajasj rcb wpcnc rcbjw nnjwgle OP OP sqglerfc DBqglD

Exercise

Aml qgbcp pcj rgml R A, B, C, D, E u grf rf c dnjjmu gle benel bel ageq D

B

$$\rightarrow$$
 A

$$AB \rightarrow C$$

$$BC \rightarrow$$

- ▶ Dg b
- Dg b D

- ▶ Bcdg grgnl mdDB
- Bgocar gl bgocar n prg j bcncl bcl agcq
- d dcpcl ac Ps jcq dpp DBq
- Equivalence of Sets of FDs
- ▶ Kglgk jQcrqmdDBq

- ▶ Ru mqcrq mdDBq D l b E pc equivalent gdF+ G+
- Bcdg grgml
 - ▶ D covers E $gdG^+ \subseteq F^+$
 - D l b E pc equivalent gdD amt cpq E l b E amt cpq D
- Rf cpc gq l jempgrf k dmp af cai gle cos gt jcl ac mdqcrq mdDBq

- oper mod DB q gq k gl gk j gd gr q rgqdgc q rf c drijimu gl e aml b grgml q
 - Ct cpwbcncl bcl awgl Df q qglejc rrpg s rc drp grq PFQ
 - Ucallmrpckmtc lwbcnclbclawdpmk D lbf tc qcr mdbcnclbclagcqrf rgqcosgt jclrrmD
 - ▶ U c a l l mr pcnj ac l wbcncl bcl awV → gl Du gf bcncl bcl awW→ u f cpc Wnpmcp qs qcr mdV → W qs qcr mdV → l b qrgj f t c qcr mdbcncl bcl agcq rf r gq cos gt jcl r rmD

- CtcpwqcrmdDBqfqlcosgtjclrkglgkjqcr
- Rfcpcal cqctcpjcosgtjclrkglgkjqcrq
- Rfcpcgqlmqgknjcjempgfkdmpamknsrgle kglgkj qcrmdDBqrfrgqcosgtjclrrmqcrDmdDBq
- Rmqwlrfcqgxc qcrmdpcjrgmlquc qqskcrfruc qrprugrf qcrmdbcnclbclagcqrfrgq minimalset

Contents

O rpmbs argnl

Ds l argml j benel bel ageq

3 Normalization

- Normalization Rf c npmacqq mddecomposing slq rgqd armpw b pcj rgml q w pc i gle sn rf cgp rrpg srcq gl rmqk jjcp pcj rgml q
- Lmpk jdmpk Sqgleicwq lbDBqmd pcjrgmlrm acprgdwufcrfcp pcjrgmlqafck gqgl nprgasjp lmpk jdmpk
- Lmpk jex regnlequa poperbmosrel no areac qmrf rrfc pcqsjrele bcqeelq pcmdfeefos jerw lbkccrrfc bcqep jcnpmncprecq
- Rfcbr qcbcqgelcpqneednotlmpkjgxcrmrfc fgefcqrnmqqgjclmpkjdmpkLDALDmpLD

- Ru ml cu am acnrq
 - Prime attribute k sqr c k ck cp mdqmk c a l bgb rc i cw
 - Nonprime attribute galmonpgk crrpg srcgrgalmok ck cpmd lwa lbgbrcicw

- LD l b bcncl bcl awnpm jck q
- LD quit cq n prg j bcncl bcl aw
- LD qmjt cq gl bgcar bcncl bcl aw
- ALD u cjj l mpkrjjgxcb pcj rgml q

- First normal form (1NF): rf cpc gq ml jwml c t js c r rf c gl rcpqcargml mdc af pmu l b amjs k l md pcj rgml l mqcr t js cb rrpg s rcq gl L D
 - → Bgq jjmu qamk nmqgrc rrpg srcq k sjrgt jscb rrpg srcq l b nested relations
- Rm cn prmdrfcdmpk jbcdglgrgmlmd pcjrgmlglrfc qgadjr pcjrgmljkmbcj

(7a)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
A		A :	A
			1 1

(b)

DEPARTMENT

רם מתמר	<u>השמווומעה</u>	וועם jūgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

EMP_PROJ

		PRO	DJS
SSN	ENAME	PNUMBER	HOURS

EMP_PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0

EMP_PROJ

			<u></u>	\downarrow	
SSN	PNUMBER	HOURS	ENAME	PNAME	PLOCATION
123456789	1,	32 <u>5</u> 0	Smith. John.R	ProductX	Relaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong,Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	n Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya,Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya,Alicia J.	Computerization	n Stafford
987987987	10	35.0	Jabbar,Ahmad V.	Computerization	n Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford

CKN NPMH QQL NLsk cpFmspqCL kc NL kc NJ ma rgml

QQL NLsk $cp \rightarrow Fmspq$ QQL $\rightarrow CL$ k c NLsk $cp \rightarrow NL$ k c NJ ma rgml

CKN NPMH QQL NLsk cp Fmspq CKN QQL CL kc NPMH NLsk cp NL kc NJ ma rgml

> QQL NLSK $CP \rightarrow FMSPQ$ QQL $\rightarrow CL$ KC NLSK $CP \rightarrow NL$ KC NJ MA RGML

- LD l b bcncl bcl awnpm jck q
- ▶ 2NF solves partial dependency
- LD qmjt cq gl bgcar bcncl bcl aw
- ALD u cjj l mpkrjjgxcb pcj rgml q

- Quantiblimpk jethpk LD jj rappg srcqksqr cesjjw dslargmi jjwbenelbelrmi rfenpgk pwiew
- LDqmjtcqn prg j bcncl bcl awnpm jck gl LD
- Kerfmb gbelrgdwnpgk pwiewq lbepmsn rrpgsreq rfrpejrermrfeiewrmeerfeprmdmpk qen preleu pejrgmlq

EMP_DEPT

EMP_DEPT → Problem with 2NF

Ename	San	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

- LD l b bcncl bcl awnpm jck q
- LD quitcqn prg j bcncl bcl aw
- ▶ 3NF solves indirect dependency
- ALD u cjj l mpkrjjgxcb pcj rgml q

pcj rgml qaf ck Pgqg third normal form 3NF gdgr gqg LD and 1 ml ml npgk rcg rrpg s rc gl Pgq rp l qgrgt cjwbcncl bcl r ml rflc npgk pwi cw

NOTE:

 $0.00 ext{ V} o W ext{ lbW} o X ext{ u grf V qrf c npgk pwi cwu c aml qgbcp rf gq npm jck ml jwgdWgqlmr a lbgb rc i cwU f cl Wgq a lbgb rc i cwrf cpc gql mnpm jck u grf rf c rp l qgrgt c bcncl bcl aw$

Ce AmlqgbcpCKNQQLCknQjpw FcpcQQL \rightarrow Ckn \rightarrow QjpwlbCkngqalbgbrcicw

- LDqmjtcqglbgpcar rplqgrgtc bcnclbclagcqnpmjck glLDlbLD
- K crf mb gbcl rgdw jj rp l qgrgt c benel bel ageq l b c af rp l qgrgt c benel bel awu gj dmpk l cu pej rgml u gf l ml npgk reg rrpg s req n prgagn rgle gl rf c rp l qgrgt c benel bel aw l b rf c rrpg s re u f gaf berepk gl eq mrf epq qrf c rrpg s req dmprf c l cu pej rgml

EMP_DEPT

Aml qgbcprf c s l gt cpq j pcj rgml P A, B, C, D, E, F, G, H, I, J l b rf c qcr mdds l argml j bcncl bcl agcq

- 1. $A, B \rightarrow C$
- 2. $A \rightarrow D, E$
- 3. $B \rightarrow F$
- 4. $F \rightarrow G H$
- 5. $D \rightarrow I J$

- ▶ 1NF and dependency problems
- 2NF solves partial dependency
- ▶ 3NF solves indirect dependency
- ALD u cjj l mpkrjjgxcb pcj rgml q

SUMMARY OF NORMAL FORMS based on Primary Keys

Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form	Test	Remedy (Normalization)
First (1NF)	Relation should have no multivalued attributes or nested relations.	Form new relations for each multi- valued attribute or nested relation.
Second (2NF)	For relations where primary key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the primary key.	Decompose and set up a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it.
Third (3NF)	Relation should not have a nonkey attribute functionally determined by another nonkey attribute (or by a set of nonkey attributes). That is, there should be no transitive dependency of a nonkey attribute on the primary key.	Decompose and set up a relation that includes the nonkey attribute(s) that functionally determine(s) other nonkey attribute(s).

General Normal Form Definitions

- Rf c mt c bcdd grgml q aml qgbcprf c npgk pwi cwml jw
- Rfcdnjimu gle k mpcecl cp j bcdgl grgml qr i c glrm aamslrpcj rgml qu grfk s jrgnjca l bgbrci cwq

General Normal Form Definitions

- pcj rgml qaf ck Pgqgl second normal form (2NF) gd ct cpwl ml npgk c rrpg src gl Pgql mr n prg jjwbcncl bcl r ml lwi cwmdP
- pcj rgml qaf ck P gq gl third normal form 3NF gd u f cl ct cp DB V -> f mjbq gl P rf cl cgrf cp

Vgq qsncpicwmdPmp gq npgkc rrpg srcmdP

- LD lbbcnclbclawnpm jck q
- LD quitcqn prg j bcncl bcl aw
- LD qmjt cq gl bgcar bcncl bcl aw
- BCNF well-normalized relations

pcj rgml qaf ck Pgqg Boyce-Codd Normal Form BCNF gdu f cl ct cp l DB V-> f mjbqg P rf cl Vgq qs ncpi cwmdP

BCNF

BCNF

RC AF Qrs bcl r Ams pqc d qrps armp

FD1: {Student, Course} → Instructor

FD2:12 Instructor → Course

TEACH

Student	Course	Instructor
Narayan	Database	Mark
Smith	Database	Navathe
Smith	Operating Systems	Ammar
Smith	Theory	Schulman
Wallace	Database	Mark
Wallace	Operating Systems	Ahamad
Wong	Database	Omiecinski
Zelaya	Database	Navathe
Narayan	Operating Systems	Ammar

BCNF

- Rf pcc nmqqg jc n gpq
 - 1. {Student, Instructor} and {Student, Course}.
 - 2. {Course, Instructor} and {Course, Student}.
 - 3. {Instructor, Course} and {Instructor, Student}.
- jj rf pcc bcank nmqgrgnl q lose the functional dependency FD1 Rf c bcqgp jc bcank nmqgrgnl mdrf mqc hs qr qf mu l gq ca s qc gr u gj l mr ecl cp rc qns pgns q rs njcq dcp hmgl

Nonadditive Join Decomposition into BCNF Schemas

Algorithm 16.5. Pcj rgnl j Bcank nmqggnl gl rm ALDu gf Lml bbggg c Hngl Npmcprw

Input: slgtcpq jpcj rgml R lb qcr mddslargml j benel bel ageq F ml rf c rrpg srcq mdR

- **1.** Qcr *D R*
- 2. Uf gic rf cpc gq pcj rgml qaf ck Q gl D rf r gq l mr gl ALD bm

af mmqc pcj rgml qaf ck Q gl D rf r gq l mr gl ALD dgl b ds l argml j bcncl bcl awX Y gl Q rf r t gmj r cq ALD pcnj ac Q gl D wru mpcj rgml qaf ck q Q Y l b $X \cup Y$

Contents

d rpmbs argnl

Ds l argml j benel bel ageq

Lmpk jgx rgml

Aml qgbcprf c s l gt cpq j pcj rgml P A, B, C, D, E, F, G, H, I, J l b rf c qcr mdds l argml j bcncl bcl agcq

- 1) $A, B \rightarrow C$
- 2) $B, D \rightarrow E, F$
- 3) $A, D \rightarrow G, H$
- 4) $A \rightarrow I$
- 5) $H \rightarrow J$ Beamk nmage R gl rm LD rf cl LD pej rgml q

Second (2NF)

For relations where primary key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the primary key.

Decompose and set up a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it.

Third (3NF)

Relation should not have a nonkey attribute functionally determined by antiner nohkey attribute (or by a set of nonkey attributes). That is, there should be no transitive dependency of a nonkey attribute on the primary key.

Decompose and set up a relation that includes the nonkey attribute(s) that functionally determine(s) other nonkey attribute(s).

- And qgbcprf c pcj rgnl
 BOOK (Book_Name, Author, Edition, Year)
- och mi amkkmi qclqesibcpqrlbglemdrfcbr ufrpcrfcnmqqgjcalbgbrcicwqmdrfgqpcjrgml

Book_Name	Author	Edition	Copyright_Year
DB_fundamentals	Navathe	4	2004
DB_fundamentals	Elmasri	4	2004
DB_fundamentals	Elmasri	5	2007
DB_fundamentals	Navathe	5	2007

Rp le F zaf I fm RNF AK PHIẾU ĐIỂM - Học kỳ 1 năm 2008

- ► MSSV:
- Tên sinh viên: Leswl Tl
- Dia chi: I RV zaf I f m
- Khoa: Ifmfairfsrkzwrlf

Mã môn học	Tên môn học	Nhóm	Số TC	Điểm KT	Điểm thi	Điểm tổng kết
	ARBJ ER	RL				
	AQB J	A				

• Ghi chú: R wr lek lfaqaf qa gkigkrp ty gkrfgifzalf s gkrleir arlfb rpl gk IR gkrfgtyazaf q lyw

Key finding algorithms

Extended part

Key and super key

- ▶ Superkey of R: A set of attributes SK of R such that no two tuples in any valid relation instance r(R) will have the same value for SK. That is, for any distinct tuples t1 and t2 in r(R), t1[SK] \neq t2[SK]
- ▶ **Key** of R: A "minimal" superkey; that is, a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey
- If K is a key of R, then K functionally determines all attributes in R

Key-finding algorithm (1)

Input: A relation R and a set of functional dependencies F on the attributes of R.

Output: a key K of R

- 1. Set K to contain all attributes in R
- For each attribute A in K {
 compute (K A)⁺ with respect to F;
 if (K A)⁺ contains all attributes in R, then set K := K {A}
 };

Key-finding algorithm (1)

- In algorithm (1), we start by setting K to all the attributes of R; we then remove one attribute at a time and check whether the remaining attributes still form a superkey.
- The algorithm (1) determines only **one key** out of the possible candidate keys for R; the key returned depends on the order in which attributes are removed from R in step 2.

Key-finding algorithm (2)

Input: A relation R and a set of functional dependencies F on the attributes of R. *Output:* all candidate keys of R

Let:

- ▶ U contain all attributes of R
- ullet U_I contain attributes of R that occur only on the left-hand side of FDs in F
- ullet U_r contain attributes of R that occur only on the right-hand side of FDs in F
- $lackbox{U}_b$ contain attributes of R that occur on **both sides** of FDs in F

Note:

- $U_l \cap U_r = \emptyset$, $U_l \cap U_b = \emptyset$ and $U_r \cap U_b = \emptyset$
- $U_l \cup U_r \cup U_b = U$
- For every attribute $A \in U$, if $A \in U_l$, then A must be part of every candidate key of \mathbf{R} .
- For every attribute $A \in U$, if $A \in U_r$, then A will <u>not</u> be part of any candidate key of R.

Key-finding algorithm (2)

Input: A relation R and a set of functional dependencies F on the attributes of R.

Output: all candidate keys of R

- 1. Determine U_l , U_r and U_b
- If $U_l^+ = U$ under F, then U_l forms the only key of R and the algorithm stops here.
 - Else: move to step 3 // $U_l^+ \neq U$ under F
- Consider every subsets U_{bi} of U_b : $U_{bi} \subset U_b$ For each U_{bi} , if $(U_l \cup U_{bi})^+ = U$ under F, then $K_i = (U_l \cup U_{bi})$ is a candidate key of R $^{(*)}$
- (*) If $K_i = (U_l \cup U_{bi})$ is a candidate key of R, then we need not to check $U_{bj} \subset U_b$ where $U_{bi} \subset U_{bj}$

Key-finding algorithm (2)

- A simple categorization of attributes into the sets U_l , U_r and U_b allows to distinguish between those attributes that will participate in the candidate keys of a relational database schema and those that do not.
- ▶ The algorithm (2) finds all candidate keys.

- 1) $A \rightarrow B$
- 2) $C, D \rightarrow A$
- 3) $B, C \rightarrow D$
- 4) $A, E \rightarrow F$
- 5) $C, E \rightarrow D$

Uf rgqrfcicwdmp R?

- 1) $A, D \rightarrow B$
- 2) $A, B \rightarrow E$
- 3) $C \rightarrow D$
- 4) $B \rightarrow C$
- 5) $A, C \rightarrow F$

Uf rgqrfcicwdmp R? Bcamk nmqc Rglrm LDrfcl LDpcj rgmlq EclcpjLmpk jDmpk Bcdglgrgmlq

Am qgbcprfcslgtcpqjpcjrgmlP A, B, C, D, E, F lbrfcqcr mdcslargmljbcnclbclagcq

- 1) $A \rightarrow$
- 2) $C \rightarrow D$
- 3) $A, F \rightarrow A, E$

Uf rgqrfcicwdmpR? Bcamk nmqcRglrm LD LD lb ALD pcj rgmlq

$$\rightarrow$$

$$A \rightarrow$$

$$A \rightarrow B$$

$$D \rightarrow A$$

$$D \rightarrow B$$

Which of the following dependencies may hold in the above relation

Α	В	С	TUPLE#
10	b1	c1	1
10	b2	c2	2
11	b4	c1	3
.12	<u></u>	C C	4
13	b1	c1	5

i. $A \rightarrow B$, ii. $B \rightarrow C$, iii. $C \rightarrow B$, iv. $B \rightarrow A$, v. $C \rightarrow A$

QUIZ 2

- Leywigk rp
- ▶ MIjglc IcJ
 - Rp al ef g k a s
 - Rf geg l nf r
- ▶ L gbsle
 - Af le Pcj rgml j jec p
 - ▶ Af le QOJ
 - Af le Lmpk jgx rgml