pro

保证所有题时空限制均为 std 的两倍以上。

题目名称	Α	В	С	D
题目类型	传统型	传统型	传统型	传统型
可执行文件名	Α	В	С	D
输入文件名	A.in	B.in	C.in	D.in
输出文件名	A.out	B.out	C.out	D.out
每个测试点时限	1秒	1秒	30 秒	1秒
内存限制	256 MiB	256 MiB	256 MiB	256 MiB
测试点数目	10	10	10	10
测试点是否等分	是	是	是	是
分值	100	100	100	100

A

题目描述

一共有 n 个数和 n 个待填空位(每个数和每个空位——对应), Dr.K 手上有 m 个数(其中 $n \leq m$), Dr.K 可以从这 m 个数选取 n 个数填入空位中,她可以得到的分数就是每个空位对应的数乘上 Dr.K 在空位上填入的数字的和。

现在 Dr.K 想问你,她可以得到的最大分数是多少?

注意: Dr.K 必须将所有空格都填上数字。

输入格式

第一行两个数,n 和 m,分别代表代填空位有 n 个,Dr.K 手上有 m 个数。第二行 n 个数,表示第 i 个代填空位对应的数。第三行 m 个数,表示 Dr.K 可以填入空位的数(每个数只能用一次)。

输出格式

一个数 ans 表示 Dr.K 可以得到的最大分数。

样例 #1

样例输入#1

```
1 | 3 3
2 | 1 2 3
3 | 1 1 1
```

样例输出#1

1 6

样例 #2

见下发文件

数据范围

对于所有数据保证 $|a_i|, |b_i| \leq 10^5$

测试点	$m \leq$
$1\sim 1$	10
$4\sim 5$	10^3
$6\sim 10$	10^5

B

题目描述

有 n 名乘客准备登机,第 i 个人的重量为 a_i 。登机没有廊桥,而是有一辆摆渡车往返于登机口和飞机,摆渡车的载重量为 m。n 个人依次经过检票口准备登上摆渡车,假设当第 i 个人经过检票口时摆渡车恰好到来,则这个人成为"幸运儿"优先登上摆渡车。除此之外如果摆渡车无法承载已经过检票口的 $1\sim i-1$ 的这些人,则会想办法让更多的人上车。未上车的人则被滞留。

请你计算出对于所有可能的 i,假设第 i 个人经过检票口的时候摆渡车刚好到来,会有多少个已经通过检票口的人无法上车被滞留?

输入描述

第一行为测试数据组数 $T(1 \le T \le 10)$ 。 每组测试数据的第一行为乘客数量 n 及摆渡车载重量 m。 接下来第二行,包含 n 个整数,分别表示第 i 位个人的重量,保证乘客重量为正整数。

输出描述

对于每组测试数据,输出一行包括 n 个整数,表示当 i 在 $1 \sim n$ 取值时被滞留的人数。

样例 #1

样例输入#1

```
      1
      2

      2
      7
      15

      3
      1
      2
      3
      4
      5
      6
      7

      4
      5
      100
      5
      80
      40
      40
      60
```

样例输出#1

```
1 | 0 0 0 0 0 2 3
2 | 0 1 1 2 3
```

样例 #2

见下发文件

数据范围

测试点	$n \leq$	$m \leq$
$1\sim 3$	100	100
$3\sim 5$	1000	100
$5\sim 8$	10^5	10^5
$9\sim 10$	10^5	10^{9}

C

题目描述

Dr. K 带着新买的糖果来拜访舅舅家,舅舅家的 k 个孩子看见 Dr.K 带着糖果来拜访变得欣喜若狂,他们都希望吃到好吃的糖果。正当Dr.K 妹妹准备给 k 个孩子分糖果时,舅舅却让 Dr.K 尽量少分点,免得孩子们蛀牙。

Dr. K 带来的糖果比较特别,一共有 n 个糖果连成一串,编号为 $1\sim n$,第 i 个糖果有一个数值 a_i 表示蛀牙的可能性,数值越大的糖果越容易导致蛀牙,多个糖果的蛀牙值认为是各个糖果的蛀牙值之和。

现在Dr. K 打算取 n 个糖果的前若干个,分成 k 个连续的区间分给 k 个孩子。Dr. K 该怎么分糖果,才能使分到的糖果的蛀牙值最大值最小?

输入格式

第一行为测试数据组数 $T(1 \le T \le 4)$ 每组测试数据的第一行为糖果数量 n及孩子个数 k。接下来第二行,包含 n 个整数,分别表示第 i 个糖果的蛀牙值 a_i 。

输出格式

每组测试数据输出一行,包含一个整数,表示 k 个孩子中分到最大蛀牙值最小是多少。

样例 #1

样例输入#1

```
1 | 2
2 | 4 | 2
3 | 3 | -2 | 4 | -2
4 | 5 | 4
5 | -1 | -1 | -1 | 6
```

样例输出#1

```
1 | 2
2 | -1
```

样例 #2

见下发文件

数据范围

对于所有数据保证 $|a_i| \leq 10^9$

测试点	$n \leq$	$k \leq$
$1\sim 3$	100	100
$4\sim 5$	$1 imes10^5$	1
$6\sim 10$	$1 imes10^5$	$1 imes10^5$

D

题目描述

在流水线最后,有两条传送带和一个加工机器。两条传送带会送来两串宝石原料,在每一时刻,工作人员可以决定是变卖传送带 1 最前面的原料(会获得一定的利润),还是变卖传送带 2 最前面的原料(同理),又或者是将两传送带最前面的原料加工成一个成品宝石,并且出售掉获得利润。

这位聪明的老板发现了一种奇妙的价值鉴定方法。具体的,如果把一个价值为 a 的宝石原料和一个价值为 b 的宝石原料进行加工,会得到一个售卖价格为 a+b 元的宝石。

现在有两列宝石原料,长度分别为 n,m,价值分别为 a_i 和 b_i ,如果直接变卖,获利分别是 d_i 和 e_i ,按顺序排成一排。

老板又苦恼地发现,两个宝石进行加工所需的成本无法简单确定,只好一对一对地估量成本。具体地,如果将第一列第i个宝石原料与第二列第j个宝石原料进行加工,需要花费 $c_{i,j}$ 元。老板把这一切告诉了小明和小红。

现在老板出题了:作为盈利工厂,工厂显然是希望获得最大利润的。如果我现在选定 l_1, r_1, l_2, r_2 ,并将第一列编号在 $[l_1, r_1]$ 区间内的宝石原料按照编号从小到大的顺序,从前到后放在传送带 1 上,将第二列编号在 $[l_2, r_2]$ 区间内的宝石原料同理放在传送带 2 上,执行加工流程,工厂最多能获利(售卖总价 — 加工总成本售卖总价 — 加工总成本售卖总价 — 加工总成本

并且老板脑子太好使了,直接问了小明二人 q 个问题,你能帮帮他们吗?

注意, 本题编号从1开始, 并且宝石原料不能与空气合成。

输入描述

第一行三个正整数 n, m, q,表示第一列宝石原料个数、第二列宝石原料个数以及老板问题的个数。

第二行 n 个正整数 a_i ,表示第一列宝石原料价值。

第三行 m 个正整数 b_i ,表示第二列宝石原料价值。

第四行 n 个正整数 d_i ,表示第一列宝石原料变卖获利。

第五行 m 个正整数 e_i ,表示第二列宝石原料变卖获利。

之后的 n 行, 第 i 行 m 个正整数 $c_{i,i}$, 表示加工成本。

之后的 a 行,每行四个正整数 l_1, r_1, l_2, r_2 ,代表一个问题。

输出描述

共 q 行,每行一个正整数,表示最大盈利。

样例#0

样例输入#0

```
      1
      3 2 2

      2
      2 2 2 2

      3
      3 2

      4
      1 2 1

      5
      1 0

      6
      1 1

      7
      2 1

      8
      0 1

      9
      1 3 1 2

      10
      2 2 2 2 2
```

样例输出#0

```
1 | 9
2 | 3
```

样例 #1、2、3、4、5、6

见下发文件

数据范围

测试点	$n imes m \leq$	特殊性质
$1\sim 2$	1000	无
$3\sim 4$	$5 imes10^4$	n=1
$5\sim 6$	$5 imes 10^4$	$l_1=1, r_1=n$
$7\sim 10$	$5 imes10^4$	无