Math 435 10/08/2025 Notes

October 8, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. A map $f: X \to Y$ is a continuous function if inverse images of open sets of Y are open in X.

Today

- An example of homeomorphic spaces
- Homeomorphism theorems
- Topological properties
- Hausdorffness is a topological property
- Connectedness

Figure 1: An example of homeomorphic spaces

Theorem 1. Let (X, \mathcal{U}_x) and (Y, \mathcal{U}_y) be spaces. A continuous map $f: X \to Y$ is a homemorphism iff

- 1. $f: X \to Y$ is a bijection, and
- 2. $f: \mathcal{U}_x \to \mathcal{U}_y$ is a bijection

Proof sketch: This is really saying that a homeomorphism is a bijection and that it maps open sets to open sets. Let $U \in \mathscr{U}_x$. For $f^{-1}: Y \to X$ to be continuous, $(f^{-1})^{-1}(U)$ must be open in Y for all open U in X. But $(f^{-1})^{-1} = f(U)$ because f is a bijection.

Remark 1. Consider the following:

- 1. The identity map on any set X is a homeomorphism.
- 2. If $f: X \to Y$ is a homeomorphism, then $f^{-1}: Y \to X$ is also a homeomorphism.
- 3. If $f: X \to Y$ and $g: Y \to Z$ are homemorphisms then $g \circ f$ is a homeomorphism as well.

Theorem 2. Homeomorphism preserves Hausdorffness. I.e., if $f: X \to Y$ is a homeomorphism and X is Hausdorff, then Y must be Hausdorff.

Proof: Let $x \neq y \in Y$. Then $f^{-1}(x) \neq f^{-1}(y)$ since f is a bijection, and $\exists U, V \subseteq X$ open with $U \cap V = \emptyset$, $f^{-1}(x) \in U$ and $f^{-1}(y) \in V$. Then $x \in f(U)$ and $y \in f(V)$. These are disjoint open sets since f is a bijection.

Definition 2. Any property of a space that is preserved by homeomorphism is called a topological property.

Definition 3. A space X is disconnected if there exists $U, V \subseteq X$ open with $U \cap V = \emptyset$ and $U \cup V = X$.

Definition 4. A space is connected iff it is not disconnected.