INORGANIC QUALITATIVE ANALYSIS

Qualitative analysis deals with the detection of an unknown powder or solution by the systematic chemical methods. The substance under analysis is generally composed of two parts. Each known as a radical.

- 1. Positive radical or cation.
- 2. Negative radical or anion.

Usually the substance under analysis is subjected to:

Dry Tests: (For substance in the solid state only)

Wet Tests: (For the solutions prepared from solid state).

DRY TESTS:

The procedure for the analysis of the solid substances is as follows:

[A] PHYSICAL PROPERTIES:

- 1. State
- 2. Colour
- 3. Odour
- 4. Solubility in water
- 5. Action of litmus paper

[B] DRY TESTS FOR POSITIVE RADICAL OR CATION:

- 1. Heating in a dry test tube
- 2. Mirror test
- 3. Charcoal cavity test
- 4. Cobalt nitrate test
- 5. Borax bead test
- 6. Flame test
- 7. Test of NH₄⁺ (Sodium hydroxide test)

[C] DRY TESTS FOR NEGATIVE RADICAL OR ANION:

- 1. Test for CO_3^{2-} and S^{2-}
- 2. Test for Cl⁻, Br⁻, I⁻

- 3. Test for NO_3^- (perform this test when halides are absent).
- 4. Test for phosphate (PO₄³⁻)
- 5. Test for CrO_4^{2-} and $Cr_2O_7^{2-}$
- 6. Test for SO_4^{2-}

[A] PHYSICAL PROPERTIES:

	0	() () (11)		
1	State	(a) Crystalline	Radicals like K ⁺ , NH ₄ ⁺ , Cl̄, Br̄, NO ₄ ̄,	
		(Sandy powder)	SO ₄ ²⁻ may be present.	
		(b) Amorphous	Radicals like CO_3^{2-} , S^{2-} , PO_4^{3-} , O^{2-}	
		(Soft powder)	may be present.	
2	Colour	(a) White	Generally compounds of Al ³⁺ , Zn ²⁺ ,	
			Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Mg ²⁺ , K ⁺ , NH ₄ ⁺ may be	
			present.	
		(b) Black	Suplhides like CuS etc. may be present.	
		(c) Green	Fe ²⁺ (ous) Ni ²⁺ , FeSO ₄ may be present.	
		(d) Blue	Cu ²⁺ , Cu ₃ (PO ₄) ₂ may be present.	
		(e) Orange	Cr ₂ O ₇ ² - may be present.	
		(f) Light Pink	MnCl ₂ , or MnSO ₄ may be present.	
		(g) Reddish Brown	CdS may be present.	
3	Odour	(a) Ammonical	Salts of NH ₄ ⁺ may be present.	
	(smell)			
		(b) Smell of Rotten	Sulphides may be present.	
		eggs (like H ₂ S)		
4	Solubility in	(a) Soluble	K ⁺ , NH ₄ ⁺ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , SO ₄ ⁻² may be	
	water		present.	
		(b) Insoluble	CO ₃ ²⁻ , S ²⁻ , PO ₄ ³⁻ , O ²⁻ may be present.	
		I		

5	Action on	(a) Acidic	Salts of strong acid and weak base may be
	litmus paper		present.
	(this test can	(b) Basic	Salts of weak acid and strong base may be
	be carried out		present.
	only for	(c) Neutral	Salts of strong acid and strong base may
	water soluble		be present.
	compound)		

[B] DRY TEST FOR POSITIVE RADICAL OR CATION:

1	Heating in a dry test	tube		7
		(a)	Substance melts	Salts of K ⁺ , some salts
				containing water of
				crystallization may be
				present.
		(b)	Substance produces cracking	Nitrates like Pb(NO ₃)
			noise.	₂ crystalline salts like
				KBr may be present.
		(c)	Water condensing on the	Crystalline salts may
			cooler part of the test tube.	be present.
		(d)	Sublimation takes place on	NH ₄ ⁺ may be present.
			the cooler part of the test tube	
			(PERFORM MIRROR	
			TEST)	
		(e)	CHANGE OF COLOUR	
		•	Blackening at high	Cu ²⁺ , Mn ²⁺ , Ni ²⁺ may
			temperature	be present.
		•	Yellow when hot and white	Salt of Zn ²⁺ may be
			when cold.	present.

• Yellow	Pb ²⁺ may be present.
• Brown	Salt of Cd ²⁺ may be
	present.
• Green	Cr ₂ O ₇ ^{2–} may be
	present.
No change	A1 ³⁺ , Ca ³⁺ , Ba ²⁺ , Sr ²⁺ ,
i.e. white remains white.	Mg ²⁺ may be present.
(f) EVOLUTION OF GAS	
• Reddish brown gas turns	Br may be present.
starch paper yellow	
Reddish brown gas no effect	NO ₃ ⁻ may be present.
on starch paper	
Greenish yellow gas, having	Cl ⁻ may be present.
pungent odour, bleaches	
litmus paper (blue to white) • Ammonia gas recognized by	NII. + may be present
smell, alkaline to litmus,	1114 may be present.
white fumes with a drop of	
conc. HCL and Turns	
turmeric paper brown.	
• SO ₂ gas (acidic pungent gas	S ^{2–} may be present.
turns dichromate paper green)	
• White fumes of SO ₃ acidic to	SO ₄ ²⁻ may be present.
litmus and having pungent	
smell.	
Substance is orange and gives	Cr ₂ O ₇ ²⁻ may be
sparks on heating and	present.
becomes dark green on	
cooling	

2	MIRROR TEST: (Perform when white sublimation takes place)				
	Sub. + Na ₂ CO ₃ +	Ammonia recognized by smell	NH ₄ ⁺ may be present.		
	Charcoal dust	fumes with a drop of conc. HCL	,		
	(Mixed thoroughly	turns turmeric paper brown.			
	and heat the mixture				
	in dry test tube)				
3	CHARCOAL CAVIT	TY TEST:			
	Mix the powder	a) Deflagration (burning of	NO ₃ ⁻ , Cr ₂ O ₇ ²⁻ may be		
	with equal amount	charcoal)	present.		
	of sodium	b) Substance fuses and sinks in	K ⁺ may be present.		
	carbonate. Make a	charcoal.			
	cavity in charcoal	c) Sublimation	NH ₄ ⁺ may be present.		
	and moisten it with	d) White infusible mass which	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Al ³⁺ ,		
	a drop of water. Put	glows when heated (Perform	Zn ²⁺ , Mg ⁻²⁺ may be		
	the mix in cavity	Co(NO ₃) ₂ Test)	present.		
	along with a very	e) Coloured infusible mass	Cu ²⁺ , Mn ²⁺ , Fe ²⁺ , Ni ²⁺ ,		
	small amount of	(Perfrom Borax Bead Test)			
	charcoal dust and	(remem zeran zeas rece)	Cr^{2+} , $\operatorname{Cr}_2\operatorname{O_7}^{2-}$ may be		
	blow in reducing		present.		
	flame.	(f) METALLIC BEADS			
		(f) METALLIC BEADSWhite soft bead marking on	D1-2+1		
	λV		Pb ²⁺ may be present.		
		paper and yellow encrustation	0.2+ 1		
		• Red scales	Cu ²⁺ may be present.		
		Brown encrustation	Cd ²⁺ may be present.		
		• No bead, yellow when hot and	Zn ²⁺ may be present.		
		when white when cold.			

4	COBALT NITRATE TEST: (This test should be performed only when white				
	infusible mass is obtained in Charcoal cavity test) Put one to two drops of				
	Co(NO ₃) ₂ solution on white infusible mass obtained in the charcoal cavity test and				
	heat it strongly in oxid	izing f	flame.		
		(a)	Green mass	Zn ⁺² may be present.	
		(b)	Blues mass	$A1^{+3}$ or PO_4^{-3} may be	
				present.	
		(c)	Pink mass	Mg ⁺² may be present.	
		(d)	No Green, blue or pink	Ca ⁺² , Ba ⁺² , Sr ⁺² may	
			mass	be present.	
5	BORAX BEAD TEST	: (Per	form this test only when the s	substance is coloured and	
	leaves coloured infusib	le ma	ss in the charcoal cavity test)	(i.e. when any one of	
	Cu ²⁺ , Fe ²⁺ , Ni ²⁺ , Mn ²⁻	+, Cr ₂ 0	O_7^{2-} , is suspected to be preser	nt).	
	Colour of bead from		Colour of bead from	Radicals	
	oxidizing flame		reducing flame		
(a)	oxidizing flame Green		reducing flame Green	$\text{Cr}_2\text{O}_7^{2-}$ may be present.	
(a) (b)	_	blue		$Cr_2O_7^{2-}$ may be present. Cu^{2+} may be present.	
, ,	Green	blue	Green		
, ,	Green Green when hot and	blue	Green		
(b)	Green Green when hot and when cold.	blue	Green Red and opaque	Cu ²⁺ may be present.	
(b)	Green Green when hot and when cold. Yellow	blue	Green Red and opaque Light green	Cu ²⁺ may be present. Fe ²⁺ may be present.	
(b) (c) (d)	Green Green when hot and when cold. Yellow Violet	blue	Green Red and opaque Light green Colourless	Cu^{2+} may be present. Fe^{2+} may be present. Mn^{2+} may be present.	
(b) (c) (d)	Green Green when hot and when cold. Yellow Violet	blue	Green Red and opaque Light green Colourless	Cu^{2+} may be present. Fe^{2+} may be present. Mn^{2+} may be present.	
(b) (c) (d)	Green Green when hot and when cold. Yellow Violet	blue	Green Red and opaque Light green Colourless	Cu^{2+} may be present. Fe^{2+} may be present. Mn^{2+} may be present.	
(b) (c) (d)	Green Green when hot and when cold. Yellow Violet	blue	Green Red and opaque Light green Colourless	Cu^{2+} may be present. Fe^{2+} may be present. Mn^{2+} may be present.	
(b) (c) (d)	Green Green when hot and when cold. Yellow Violet	blue	Green Red and opaque Light green Colourless	Cu^{2+} may be present. Fe^{2+} may be present. Mn^{2+} may be present.	
(b) (c) (d)	Green Green when hot and when cold. Yellow Violet	blue	Green Red and opaque Light green Colourless	Cu^{2+} may be present. Fe^{2+} may be present. Mn^{2+} may be present.	

6	FLAME TEST: Prepare a paste of the substance in conc. HCl or Conc. Solution of				
	substance in con. HCl and perform flame test.				
	C	Colour of the flame			
	(a) Brick red	Ca ²⁺ may be present.		
	(b) Crimson	Sr ²⁺ may be present.		
	(0)) Light green	Ba ²⁺ may be present.		
	(d) Violet (Pink)	K ⁺ may be present.		
	(e) Green	Cu ²⁺ may be present.		
	(f)	Bluish white	Pb ²⁺ may be present.		
7	TEST FOR NH ₄ ⁺ : (SOI	FOR NH₄⁺: (SODIUM HYDROXIDE TEST) Sub. + NaOH (heat)			
	E	Evolution of NH3 gas recognized NH4 ⁺ may be present.			
	by	smell; alkaline to litmus, giv	ves		
	w	hite fumes with drop of con. He	CI.		

[C] DRY TEST FOR NEGATIVE RADICAL (ANION)

1	TEST FOR CO_3^{2-} , S^{2-} :				
	Sub. + Dil HCl	Efferences of CO ₂ gas	CO ₃ ^{2–} may be present.		
	Sub. + Dil HCl (heat)		S ^{2–} may be present.		
2	TEST FOR CI, Br:				
	Sub. Con. H ₂ SO ₄ + MnO ₂	Greenish yellow gas with	Cl ⁻ may be present.		
	(heat)	pungent smell and bleaches			
		litmus paper.			
		• Reddish brown gas turning	Br may be present.		
		starch paper yellow.			
3	TEST FOR NO ₃ ⁻ : (perform when halides are absent)				
	Sub. + conc. H ₂ SO ₄ + Cu	• Reddish brown gas, no effect	NO ₃ ⁻ may be present.		
	foil (heat)	on starch paper.			

4	TEST FOR PO ₄ ³⁻ :		
	Dissolve Sub in few drops	Canary yellow ppt	PO ₄ ⁻³ may be present.
	con. HNO ₃ , and excess		
	(NH ₄) ₂ MoO ₄ (Ammonium		
	molybdate) solution. (heat)		
5	TEST FOR Cr ₂ O ₇ ²⁻ :		
	If given sub is orange, add	Solution turns yellow	Cr ₂ O ₇ ²⁻ may be present.
	dil. NaOH solution to its		
	aqueous solution		
6	TEST FOR SO ₄ ²⁻ :		
	Crystalline sub. + H ₂ O	Soluble	SO ₄ ²⁻ may be present.
7	If all the above radicals are	absent and the given salt is an am	orphous solid insoluble
	in the water then O ²⁻ may be	e present	

Note: Sulfates of Lead, Calcium, Barium and Strontium are sparingly soluble in water.

[D] CONCLUSION FROM DRY TEST:

Probable Cation:

Probable Anion:

[E] PREPARATION OF SOLUTION FOR WET TEST:

(a)	Sub. + distlled H ₂ O (warm if it	Soluble	O.S. (Possibility of K ⁺ , NH ₄ ⁺ ,
	remains insoluble)		NO3 ⁻ , SO ₄ ²⁻ , C1 ⁻ , Br ⁻)
(b)	Sub. + dil HCl (Heat if it is	Soluble	O.S. (Possibility of CO ₃ ²⁻ , PO ₄ ³⁻)
	insoluble at room temp.)		
(c)	Sub. + conc. HCl try to dissolve as	Soluble	O.S.
	much of substance as possible		
	decant the solution and dilute with		
	distilled water.		

Note:

- If insoluble sulphide is present boil the salt with HCl to expel H₂S gas till the lead acetate paper does not turn black.
- ullet If the salt is insoluble in water and PO₄³⁻ is detected then follow the 'Phosphate scheme' for the identification of the metallic radical after the 1st and 2nd groups.
- If the substance is soluble in water and phosphate is detected then phosphate of K⁺, NH₄⁺ may be present.

[F] WET TEST FOR POSITIVE RADICAL (CATION):

1	O.S. + Dil HCl	• White ppts.	Gr. I present i.e. Pb ⁺
			present
2	O.S. dil. HCl	Coloured ppts or white	Gr. II is present.
	H ₂ S (excess)	turbidity.	
		Black or brown ppt.	Cu ²⁺ , Pb ²⁺ may be present.
		• Yellow ppt.	Cd ⁺² may be present.

Note: If PO_4^{3-} is present & substance is insoluble in H_2O and 1^{st} and 2^{nd} Groups are absent then follow the insoluble phosphate scheme (page no. 19)

3	O.S. + NH ₄ Cl (excess or	White or coloured ppt.	Gr. IIIA is present
	in solid form) + NH4OH	• White gelatinous ppt.	Al ³⁺ present
	till the solution becomes	• Green ppt.	Fe ⁺² present
	alkaline		
4	O.S. + NH ₄ Cl +	White, buff or black ppt.	Gr. IIIB present i.e. Mn ²⁺ ,
	NH ₄ OH + H ₂ S		Zn ²⁺ , Ni ²⁺ present
\		(a) White ppts, insoluble	Zn ²⁺ present
		in CH₃COOH	
		(b) Buff ppt soluble in	Mn ²⁺ present
		СН₃СООН	
		(c) Black ppts	Ni ²⁺ present

5	O.S.	+	NH ₄ C1	+	White ppts soluble in HCl	Gr. IV present i.e. Ca ²⁺ ,
	NH4O	H +	(NH4) 2CC)3	with effervescence	Ba ²⁺ , Sr ²⁺ present.
6	O.S.	+	NH ₄ C1	+	White ppts	Gr. V is present
	NH ₄ O	H +]	Na ₂ HPO ₄			i.e. Mg ²⁺ present
If a	If all the above groups (i.e. from gr. I to V) are absent then K ⁺ or NH ₄ ⁺ may be present.					

[G] SEPERATION OF GROUP RADICALS, GENERAL SCHEME:

GROUP - I

O.S. + dil HCl	White ppt.	Gr. I present i.e. Pb ²⁺
		present
Above white ppts + NH ₄ OH	ppts unaffected	Pb ²⁺ present

<u>C.T. For Pb</u>²⁺:

(1)	O.S. + K ₂ CrO ₄	Yellow ppts (PbCrO ₄) soluble in	Pb ²⁺ is confirmed.
		hot NaOH	
(2)	O.S. + K1	Yellow ppts (Pbl ₂) soluble in hot	Pb ²⁺ is confirmed.
		water, recrystallises into golden	
		yellow needle on cooling.	
(3)	O.S. + NaOH	White ppts of [Pb(OH)2] soluble	Pb ²⁺ is confirmed.
	AVY	in excess NaOH	

<u>GROUP – II</u>

Identification of Cu²⁺, Pb²⁺

O.S. + NaOH	Bluish ppts turns black on	Cu ²⁺ is present
	heating	
	• White ppts of [Pb(OH) ₂] soluble	Pb ²⁺ is confirmed.
	in excess NaOH	

Identification of group II, Cd²⁺ (Yellow ppt. From grp.-II divided into two parts)

Yellow ppts + Conc. HCl	ppts soluble	Cd ²⁺ is present
Yellow ppts + (NH ₄) ₂ S _x	ppts insoluble	Cd ²⁺ is present
(ammonium poly sulphide)		

<u>C.T. For Cu²⁺:</u>

(1)	O.S. + NaOH	Blue ppts turns black on heating	Cu ²⁺ is confirmed.
(2)	O.S. + NH ₄ OH	Bluish ppts soluble in excess	Cu ²⁺ is confirmed.
		NH ₄ OH giving deep blue solution	
(3)	O.S. + KI	Dirty green ppts (Cu ₂ I ₂) appearing	Cu ²⁺ is confirmed.
		brown due to liberation of I2	
(4)	O.S. $+ K_4[Fe(CN)_6]$	Reddish brown ppts Cu ₂ [Fe(CN) ₆]	Cu ²⁺ is confirmed.

<u>C.T. For Cd</u>²⁺:

(1)	O.S. + Na2CO3	White ppts of CdCO ₃	Cd ²⁺ is confirmed.
(2)	O.S. + NaOH	White ppts Insoluble in excess NaOH	Cd ²⁺ is confirmed.
(3)	O.S. + H ₂ S	Yellow ppts Insoluble in yellow ammonium poly sulphide	Cd ²⁺ is confirmed.

GROUP - IIIA

O.S. + NH ₄ Cl (excess) +	(a)	Gelatinous white ppts (O.S.	Al ³⁺ is present.
NH4OH till alkaline		Colourless)	
	(b)	Dirty green ppts turns brown on surface due to exposure in air	Fe ²⁺ (ous) present

C.T. For $A1^{3+}$:

(1)	O.S. + NaOH	White gelatinous ppts soluble in	Al ³⁺ is confirmed.
		excess and reprecipitated by	
		NH ₄ Cl	
(2)	O.S. + NH ₄ OH	White ppts of Al(OH) 3	Al ³⁺ is confirmed.
(3)	O.S. + K ₄ [Fe(CN) ₆]	No ppts	Al ⁺³ is confirmed.

<u>C.T. For Fe²⁺</u>:

(1)	O.S. + $K_3[Fe(CN)_6]$	Dark blue ppts	Fe ²⁺ is confirmed.
(2)	O.S. + K ₄ [Fe(CN) ₆]	Bluish white ppts of FeK ₂ [Fe(CN)	Fe ²⁺ is confirmed.
		6]	
(3)	O.S. + NaOH	Dirty green ppts of Fe(OH)	Fe ²⁺ is confirmed.
		turning reddish brown on expose in	
		air.	

GROUP – III B

O.S. + NH ₄ Cl +	(a) White ppts insoluble in acetic acid	Zn ²⁺ is present.
NH ₄ OH + H ₂ S		
	(b) Pink or white or Buff ppts soluble	Mn ²⁺ is present.
	in acetic acid	
	(c) Black ppts	Ni ²⁺ is present.

<u>C.T. For Zn</u>²⁺:

(1)	O.S. + K ₄ [Fe(CN) ₆]	White ppts of Zn ₂ [Fe(CN) ₆]	Zn ²⁺ is confirmed.
		insoluble in dil. HCl	
(2)	O.S. + NH ₄ OH or	White ppts of Zn(OH) ₂ soluble in	Zn ²⁺ is confirmed.
	NaOH	excess.	
(3)	O.S. + K ₃ [Fe(CN) ₆]	Orange ppts soluble in dil. HCl	Zn ²⁺ is confirmed.

<u>C.T. For Mn</u>²⁺:

(1)	$O.S. + K_4[Fe(CN)_6]$	No. ppts if O.S. is acidic	Mn ²⁺ is confirmed.
(2)	O.S. + KCN	Pink white ppts	Mn ²⁺ is confirmed.
(3)	$O.S. + PbO_2 + Con.$	Pink colour of KMnO ₄	Mn ²⁺ is confirmed.
	HNO ₃ boil & dilute		
	with water and allow		
	it settle		

<u>C.T. For Ni²⁺:</u>

(1)	O.S. + Br ₂ water + NaOH in excess	Black ppts	Ni ²⁺ is confirmed.
(2)	O.S. + Dimethylglyoxime $(C_4H_7O_2N_2) + NH_4OH$	Brick red ppts	Ni ²⁺ is confirmed.
(3)	O.S. + NaOH or NH ₄ OH	Light green ppts soluble in excess.	Ni ²⁺ is confirmed.

GROUP – IV

O.S. + NH ₄ Cl + NH ₄ OH +	White ppts soluble in HCl with	Ca^{2+} , Ba^{2+} , Sr^{2+}
(NH ₄) ₂ CO ₃	effervescence	present.
SEPERATION OF Ca ²⁺ , Ba ²	$^{2+}$ and Sr^{2+} (GROUP IV): O.S. + Ca	aSO ₄
	White ppts immediately	Ba ²⁺ is present.
	White ppts on warming	Sr ²⁺ is present.
	No ppts	Ca ²⁺ is present.

C.T. For Ca²⁺:

(1)	O.S. + (NH ₄) ₂ CO ₃	White ppts soluble in acid with	Ca ²⁺ is confirmed.
		effervescence of CO ₂	
(2)	$O.S. + (NH_4)_2C_2O_4$	White ppts soluble in acid	Ca ²⁺ is confirmed.

C.T. For Sr^{2+} :

(1)	$O.S. + K_2CrO_4$	Yellow ppts soluble in acetic	Sr ²⁺ is confirmed.
		acid	
(2)	$O.S. + (NH_4)_2C_2O_4$	White ppts soluble in dil. acetic	Sr ²⁺ is confirmed.
		acid.	

<u>C.T. For Ba</u>²⁺:

(1)	$O.S. + (NH_4)_2C_2O_4$	White ppts soluble in dil. acetic acid	Ba ²⁺	is
			confirmed.	
(2)	O.S. + dil. K ₂ CrO ₄	Yellow ppts turns orange by addition of	Ba ²⁺	is
		acid.	confirmed.	

<u>GROUP – V</u>

(1)	$O.S. + NH_4Cl + NH_4OH + Na_2HPO_4$	White ppts	Mg ²⁺	is
(-)		· · · · · · · · · · · · · · · · · · ·	confirmed.	13

C.T. For Mg²⁺:

(1)	HYPO-IODIDE TEST : To NaOH adds	Reddish brown ppts	Mg ²⁺ is confirmed.
	equal amount of KI and few drops of I2		
	solution till yellow colour is obtained.		
	Few drops of above solution + O.S.		
(2)	O.S. + NaOH	White ppts soluble in	Mg ²⁺ is confirmed.
		NH ₄ Cl and HCl	
(3)	O.S. + NH ₄ OH	White ppts soluble in	Mg ²⁺ is confirmed.
		NH ₄ Cl and HCl	

Separation of NH_4^+ and K^+

(1)	O.S. + Sodiumcobaltinitrite (Freshly prepared)	Yellow ppts	NH ₄ ⁺ or K ⁺ may be present.
(2)	O.S. + NaOH (Heat)	• NH ₃ gas is evolved turns	NH ₄ ⁺ is present.
		litmus paper blue.	K ⁺ is present.
		No evolution of gas	ii io present.

To prepapre sodium cobaltinitrite: - Take solid NaNO₂ 1–2 gms. Add to it few drops of Co(NO₃)₂ solution and then add acetic acid till reddish brown colour solution is obtained. Test with KI solution give yellow ppt.

Note: Phosphates and carbonates of NH_4^+ or K^+ are soluble in water and all other phosphates and carbonates are insoluble in water.

C.T. For NH_4^+ :

(1)	O.S. + Nessler's reagent (HgCl ₂ + KI	Brown ppts	NH ₄ ⁺ is
	till ppt. dissolved + NaOH in equal		confirmed.
	amount)		
(2)	O.S. + Sodiumcobaltinitrite	Yellow ppts	NH ₄ ⁺ is
	[Na ₃ Co(NO ₂) ₆] (Freshly prepared)		confirmed.

C.T. For K^+ :

(1)	O.S. + Sodiumcobaltinitrite	Yellow ppts	K ⁺ is confirmed.
(2)	O.S. + Picric acid	Yellow ppts	K ⁺ is confirmed.
(3)	O.S. + Tartaric acid	Yellow ppts	K ⁺ is confirmed.

Note:

- Use Ba(NO₃)₂ instead of BaCl₂ if 1st group is present.
- Wet-test for negative radical cannot be performed when the given substance is insoluble in water and C.T. for negative radical cannot be performed. It can be concluded only from the dry test.

[I] WET TESTS FOR NEGATIVE RADICAL (ANION)

When the substance is soluble in water, prepare the original solution in distilled water and detect the negative radical.

O.S. + AgNO ₃	(a)	White or yellowish white ppt.	CI ⁻ , Br ⁻ present.		
		Insoluble in dit. HNO ₃			
SEPARATION OF	SEPARATION OF CI ⁻ , Br ⁻ , I ⁻				
ppts obtained +	• W	hite ppts Dissolved	CI is present.		
NH4OH	• Y	ellowish ppts soluble in excess of NH ₄ OH	Br ⁻ is present.		
	(b)	Yellowish ppts soluble in dil. HNO ₃	PO ₄ ^{3–} is present.		
	(c)	Whitish grey ppts soluble in dil. HNO ₃	CO_3^{2-} is present.		
	(d)	Black or brown ppts soluble in dil. HNO ₃	S ² is present.		
	(e)	Scarlet red ppts soluble in dil. HNO ₃	$Cr_2O_7^{2-}$ is present.		
		• O.S. is orange colour turns yellow on	$Cr_2O_7^{2-}$ is present.		
		adding NaOH			
	(f)	No ppts	SO_4^{2-} or NO_3^- is		
			present.		
SEPARATION OF SO ₄ ² - & NO ₃ ⁻					
O.S. + BaCl ₂	• W	White ppts insoluble in acid.	SO_4^{2-} is present.		
	• N	o ppts	NO ₃ ⁻ is present.		

C.T. For Cl

(1)	O.S. + Lead acetate	White ppts soluble on heating and	CI is confirmed.
	(PbAc ₂)	reprecipitated on cooling.	
(2)	$O.S. + MnO_2 + conc.$	Greenish yellow gas having irritating	CI ⁻ is confirmed.
	H ₂ SO ₄ (Heat)	smell bleaches the litmus paper	
(3)	O.S. + CHCl ₃ + Cl ₂	Colourless layer	CI ⁻ is confirmed.
	water (shake well)		

C.T. For Br⁻:

(1)	O.S. + Lead acetate	White ppts soluble on heating	Br ⁻ is confirmed.
	Pb(CH ₃ COO) ₂		
(2)	$O.S. + MnO_2 + conc.$	Reddish brown gas turns starch paper	Br ⁻ is confirmed.
	H ₂ SO ₄ (Heat)	yellow	
(3)	O.S. + CHCl ₃ + Cl ₂	Yellow globules at the bottom of test	Br is confirmed.
	water (shake well)	tube	

C.T. For PO_4^{3-} :

(1)	O.S. + conc. HNO ₃ + (NH ₄)MoO ₄ in	Canary yellow ppts	PO ₄ ^{3–} is confirmed.
	excess (ammoniummolybdate) heat		
(2)	O.S. + Lead acetate	White ppts	PO_4^{3-} is confirmed.
(3)	O.S. + Magnesia mixture	White ppts	PO_4^{3-} is confirmed.
	(MgCl2 + NH4OH + NH4Cl)		

C.T. For CO₃²⁻:

(1)	O.S. + BaCl ₂	White ppts soluble in acids with	CO_3^{2-} is confirmed.
		effervescence in CO ₂	
(2)	O.S. + Lead acetate	White ppts	CO_3^{2-} is confirmed.
(3)	O.S. + AgNO ₃	Greyish white ppts soluble in HNO ₃	CO_3^{2-} is confirmed.
	XXX	with effervescence of CO ₂ gas.	
(4)	O.S. + dli. Acid	Effervescence of CO ₂ gas turns	CO_3^{2-} is confirmed.
		limewater milky.	

C.T. For S^{2-} :

(1)	O.S. + PbAC ₂ (Lead	White ppts soluble in dil. HNO ₃	S^{2-} is confirmed.
	acetate)		
(2)	O.S. + HgCl ₂	Black ppts	S ^{2–} is confirmed.
(3)	O.S. + Sodiumnitropruside	Violet colouration	S ^{2–} is confirmed.

C.T. For NO_3^- :

(1)	O.S. + Cu-Foil + conc. H ₂ SO ₄	Reddish brown gas, no effect	NO ₃ ⁻ is confirmed.
	& Heat	on starch paper	
(2)	RING TEST: O.S. + Conc.	Brown ring at the junction of	NO ₃ ⁻ is confirmed.
	H ₂ SO ₄ cool and slowly add	two liquids.	
	freshly prepared FeSO ₄	•	
	solution from the side of the		
	test tube		

C.T. For SO₄²⁻:

(1)	O.S. + PbAC ₂ (Lead	White ppts soluble in	SO ₄ ²⁻ is confirmed.
	acetate)	ammoniumacetate (NH ₄ AC ₂)	
(2)	O.S. + BaCl ₂	White ppts insoluble in dil. acid.	SO_4^{2-} is confirmed.
(3)	O.S. + Pb(NO ₃) ₂	White ppts insoluble in acid and	SO ₄ ²⁻ is confirmed.
		soluble in NH ₄ AC ₂ (Ammonium	
		acetate)	

C.T. For $Cr_2O_7^{2-}$:

(1)	Colour of solution	Orange	$\text{Cr}_2\text{O}_7^{2-}$ is confirmed.
(2)	$O.S. + PbAC_2$	Yellow ppts	$\text{Cr}_2\text{O}_7^{2-}$ is confirmed.
(3)	O.S. + BaCl ₂	Yellow ppts	$\text{Cr}_2\text{O}_7^{2-}$ is confirmed.

[L] FINAL CONCLUSION:

CATION	ANION	FORMULA	NAME

INSOLUBLE PHOSPHATE SCHEME:

$O.S. + NH_4C1 + NH_4OH$	(a) Black ppts	Fe ²⁺ , Fe ³⁺ , Ni ²⁺ , is			
(till alkaline) + H ₂ S		present			
water in exess	(b) White ppts	$A1^{3+}$, Zn^{2+} , Ca^{2+} ,			
		Mg ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ⁺			
		is present.			
	(c) Buff coloured ppts soluble in	Mn ²⁺ is present.			
	acetic acid				
Separation of Black ppt. (Fe ²⁺ , Ni ²⁺):	7			
O.S. + NaOH	Dirty green ppts changing to	Fe ²⁺ is present.			
	reddish brown when exposed to				
	air				
	Light green ppts (O.S. Green	Ni ²⁺ is present.			
	colour)				
Separation of White ppt. ($(A1^{3+}, Zn^{2+}, Ca^{2+}, Ba^{2+}, Sr^{2+}, Mg^{2+})$:				
O.S. NaOH	(1) White ppts soluble in excess	Al ³⁺ , or Zn ²⁺ is			
	NaOH	present.			
Above solution + NH ₄ Cl	Reprecipitation	Al ³⁺ is present.			
	No ppts	Zn ²⁺ is present.			
	(2) White ppts insoluble in excess	Ca ²⁺ , Ba ²⁺ , Sr ²⁺ ,			
	NaOH	Mg ²⁺ , is present.			
Identification of Ca ²⁺ , Ba ²⁺	, Sr ²⁺ , Mg ²⁺ :				
O.S. + CaSO ₄	White ppts immediately	Ba ²⁺ is present.			
	White ppts slowly or on warming	Sr ²⁺ is present.			
	No ppts even on warming	Ca ²⁺ , Mg ²⁺ is			
		present.			
Identification of Ca ²⁺ , Mg ²	Identification of Ca ²⁺ , Mg ²⁺ :				
O.S. + Na ₂ CO ₃ till ppts	Reprecipitation	Ca ²⁺ is present.			
formed + acetic acid till	No ppts	Mg^{2+} is present.			

ppts just dissolve +				
Ammonium oxalate				
Distinguish between Ba ²⁺ and Sr ²⁺ by following test:				
O.S. + Na ₂ CO ₃ till ppts	• Yellow ppts	Ba ²⁺ is present.		
obtained + Acetic acid	• No ppts	Ca ²⁺ is present.		
$(excess) + K_2CrO_4$				

