Statistique mathématique: TD5

Exercice 1 (Propositions du cours). Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires qui converge presque sûrement vers X, montrer que pour tout fonction continue f,

$$f(X_n) \xrightarrow[n \to \infty]{p.s.} f(X).$$

Soit $(v_n)_{n\in\mathbb{N}}$ une suite de réels convergeant vers v, montrer que

$$v_n X_n \xrightarrow[n \to \infty]{p.s.} vX.$$

Soit $(Y_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires convergeant presque sûrement vers Y, montrer que

$$X_n + Y_n \xrightarrow[n \to \infty]{p.s.} X + Y.$$

Exercice 2. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables indépendantes, satisfaisant

$$\mathbb{P}(X_1 = 1) = p > 1/2 \ et \ \mathbb{P}(X_1 = -1) = 1 - p.$$

On pose $S_n = \sum_{i=1}^n X_i$. Les X_i modélisent les pas d'un marcheur, qui avancerait ou reculerait d'un pas à chaque seconde, de manière aléatoire et indépendante. La variable aléatoire S_n modélise alors la distance du marcheur à 0, son point d'origine.

Montrez que la suite de variables aléatoires S_n diverge presque sûrement vers $+\infty$, c'est à dire

$$\mathbb{P}(\forall M > 0, \exists N \in \mathbb{N}, \forall n \geq N, S_n \geq M) = 1.$$

Exercice 3. Un groupe promouvant un référendum estime que 60% de la population est disposée à signer une pétition pour appuyer la proposition de référendum. On suppose que les personnes à qui l'ont demande de signer sont choisies au hasard. Si l'on doit recueillir 30000 signatures, combien de personnes est-il nécessaire de contacter pour que ce seuil soit atteint avec une probabilité d'au moins 0.95 ?

Exercice 4. Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de loi $\mathcal{N}(m,1)$ où la moyenne m est inconnue.

- 1. Donner un estimateur fortement consistant de m.
- 2. Quelle est la loi de $S_n = \frac{1}{n} \sum_{i=1}^n X_i$?
- 3. Pour une variable Y de loi $\mathcal{N}(0,1)$, donner un intervalle de la forme [-a,a] tel que $\mathbb{P}(Y \in a) \geq 0.95$.
- 4. En déduire un intervalle de confiance de niveau 0.95 pour m.
- 5. Grâce à l'inégalité de Tchebychev, obtenir un autre intervalle de confiance de niveau 0.95 pour m.
- 6. Lequel de ces deux intervalles est le plus précis? Pourquoi?

Exercice 5. Supposons qu'une banque A propose à ses clients un placement dont le taux d'intérêt est variable, réévalué chaque année. Ces taux annuels sont modélisés par des variables aléatoires i.i.d. $(T_i)_{i\in\mathbb{N}}$, de loi exponentielle de paramètre 1/a.

- 1. Pour un investissement initial de 1000 euros, on note Y_n la quantité d'argent disponible après n années. Exprimer Y_n en fonction des variables T_i , $i \leq n$.
- 2. Donner un estimateur de a construit à partir de $(Y_i)_{1 \le i \le n}$? Converge-t-il?
- 3. Donner un intervalle de confiance pour a.
- 4. Une seconde banque B propose quant à elle un taux d'intérêt fixe de b. Est-il plus intéressant de choisir ce placement lorsque n tend vers l'infini? (Donner la réponse en fonction de a et b.)

Exercice 6. Soit X une variable aléatoire de densité

$$\forall x \in \mathbb{R}, f_{\alpha}(x) = (\alpha + 1)x^{\alpha}1_{[0,1]}(x).$$

Le paramètre α est inconnu, on veut l'estimer à partit de X_1, \ldots, X_n tirages indépendants de même loi de X.

- 1. Calculer l'espérance de X en fonction de α . On la note m_{α} .
- 2. Proposer un estimateur de m_{α} et construire un intervalle de confiance pour m_{α} de niveau 95% (on pourra calculer la variance et la majorer indépendamment de α).
- 3. En déduire un estimateur consistant de α et un intervalle de confiance pour α .
- 4. Déterminer α_n l'estimateur du maximum de vraissemblance de α .
- 5. Montrer que α_n est un estimateur fortement consistant de α .