Algorithmes de chiffrement symétrique par bloc (DES et AES)

Pierre-Alain Fouque
Equipe de Cryptographie
Ecole normale supérieure

Chiffrement symétrique

<u>Définition</u>: Un algorithme de chiffrement symétrique transforme un message en clair P avec une clé secrète K. Le résultat est un message chiffré C

Chiffrement symétrique

La fonction de chiffrement doit être inversible

Deux grandes catégories

Chiffrement par bloc

- P est traité par blocs de données (ex: 64 bits ou 128 bits)
- Algorithmes : DES, AES, IDEA, RC6, BLOWFISH, ...

Chiffrement par flot

- P est traité bit par bit
- Algorithmes :RC4,
 Bluetooth E0/1, GSM A5/1,

Chiffrement par bloc

- Une des primitives (« briques ») les plus largement utilisées en cryptographie
 - Chiffrement symétrique
 - Protection de l'intégrité
 - Construction de fonctions de hachage, de générateur pseudo-aléatoire, etc

Historique

- Algorithmes « historiques » (avant 1970)
- 1970-2000 : **DES** (Data Encryption Standard) et autres algorithmes (FEAL, IDEA, RC5, ...)
- 2000-2004 : AES (Advanced Encryption Standard) et algorithmes récents (RC6, CAMELLIA, ...)

Sécurité

- Deux principaux paramètres de sécurité
 - La taille du bloc (e.g. n = 64 ou 128 bits). Les modes opératoires permettent généralement des attaques quand plus de 2^{n/2} blocs sont chiffrés avec une même clé
 - La taille de clé (e.g. k = 128 bits). Pour un bon algorithme, la meilleure attaque doit coûter 2^k opérations (recherche exhaustive)

Construction

- Algorithmes itératifs : une fonction de tour est itérée t fois
- Génération de clés de tour (ou sous-clés) à partir de la clé secrète K
- Utilisation d'opérations simples et efficaces (+, XOR, *, tableaux)

Construction

Schémas de Feistel

Fonction de tour inversible même si F ne l'est pas !!

Substitution-Permutation

Le DES

- Algorithme développé par IBM dans les années 1970 (Lucifer)
- Adopté comme standard US par le NBS (FIPS 46-2), en 1977
- Taille de bloc = 64 bits
- Taille de clé = 56 bits
- Schéma de Feistel à 16 tours

Le DES (schéma du NIST)

INPUT INITIAL PERMUTATION PERMUTED R0 INPUT **Tour numéro 1** $R1 = L_0(+)f(R_1K_0)1$ L1 = R0-K2 Tour numéro 2 L2 = R1 R2 = L1(+)f(R,K1)2L15 = R14 R15 = L14(+)f(R,K14)15K16 Tour numéro 16 PRE-OUTPUT R16 = L15(+)f(R,K15)16L16 = R15 INVERSE INITIAL PERMUTATION OUTPUT

La permutation initiale

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Le bit numéro 21 de la sortie

. . .

provient du bit numéro 30 de l'entrée

Intuition

- La fonction de tour n'a pas besoin d'être inversible
- Expansion de l'état interne de 32 à 48 bits
- Ajout de la sous-clé
- Réduction de l'état interne de 48 à 32 bits grâce aux boîtes S (non-linéarité)
- Permutation (diffusion)

Expansion (32 → 48)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Le bit numéro 15 de la sortie

• • •

provient du bit numéro 10 de l'entrée

Certains bits de l'entrée sont dupliqués (ex: bit 32)

Ajout de la sous-clé

Il s'agit d'un simple XOR, bit à bit, entre

- l'état après expansion (48 bits)
- la sous-clé du tour correspondant (48 bits)

Les boîtes S

- On applique, en parallèle, 8 boîtes (fonction fixe) de 6 bits vers 4 bits
- Ceci réduit donc l'état interne de 8 x 6 = 48 bits à 8 x 4 = 32 bits
- Chaque boîte S est codée comme un tableau avec 2⁶ = 64 entrées

La permutation (32 → 32)

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Le bit numéro 11 de la sortie

. . .

provient du bit numéro 23 de l'entrée

Commentaires

Ces choix peuvent paraître arbitraires mais :

- Toutes les briques sont très simples à coder et efficaces en hardware
- Les boîtes S apportent la non-linéarité
- Expansion et permutation garantissent une diffusion rapide

Dérivation des sous-clés

- A chaque tour, on choisit 48 des 56 bits de la clé pour former la sous-clé
- Cette sélection se fait grâce à des permutations circulaires de la clé et des tables d'extraction fixes

Attaques contre le DES

- Avant 1990, attaques contre des versions réduites (t < 16 tours)
- 1990-1992 : cryptanalyse différentielle (Biham et Shamir)
- 1993-1994 : cryptanalyse linéaire (Matsui)
- autres attaques (DaviesMurphy, bilinear ...)

En pratique, le plus efficace reste la recherche exhaustive

Problèmes du DES

- Taille de clé (recherche exhaustive en 2⁵⁶ est réaliste) → utilisation du Triple-DES
- Taille du bloc (attaques avec 2³² messages)
- Cryptanalyse linéaire et différentielle

Malgré tout, le DES est un algorithme très bien conçu : il a plutôt bien résisté à 30 ans de cryptanalyse

Double-DES

Attaque par le milieu

Attaque pour retrouver les clés secrètes

 L'attaquant doit avoir accès à seulement 2 couples (clair, chiffré) connus

 Objectif: retrouver les clés secrètes avec la même complexité que pour un simple DES

Attaque par le milieu

- Attaque naïve : recherche exhaustive des 2¹¹² clés possibles
- Attaque par le milieu : compromis tempsmémoire pour diminuer la complexité
 - 2⁵⁶ opérations
 - 2⁵⁶ couples (clair,chiffré) en mémoire

Attaque par le milieu

Étant donné un couple clair-chiffré (M,C):

- calculer N_i = DES_i (M) pour 0 ≤ i < 2⁵⁶ (*i.e.* pour chacune des 2⁵⁶ valeurs possibles de K_1)
- calculer P_j = DES⁻¹_j (C) pour 0 ≤ j < 2⁵⁶ (*i.e.* pour chacune des 2⁵⁶ valeurs possibles de K_2)
- On cherche les indices (i,j) tels que

$$P_j = N_i$$

On a:

- 2⁵⁶ chiffrés N_i
- 2⁵⁶ déchiffrés P_i

 N_i et P_j font 64 bits, donc on a :

 $(2^{56} \times 2^{56}) / 2^{64} = 2^{48}$ collisions en moyenne

II existe donc 2⁴⁸ couples (i,j) tels que N_i=P_i

Donc 2^{48} bi-clés $(K_1 = i, K_2 = j)$ possibles

On cherche toutes les collisions

$$N_i = P_j$$

et on obtient 248 bi-clés possibles

 À l'aide d'un second couple (clair, chiffré) connu, on peut alors vérifier quel bi-clé (K₁,K₂) est le bon

Complexité

• Attaque en 2⁵⁶ en temps et 2⁵⁶ couples (chiffré, clé) en mémoire

Par conséquent :

la sécurité du double DES n'atteint pas 2^{112} mais seulement 2^{56} , comme le DES

Triple-DES

Problème du Triple-DES

- Certaines variantes ne sont pas sûres (même type d'attaque que contre le Double-DES)
- Version recommandée par le NIST (FIPS 46-3)
 - Triple-DES avec 1,2 ou 3 clés différentes
 - EDE (Encryption-Decryption-Encryption)

Problèmes du Triple-DES

- Le Triple-DES permet d'éviter les problèmes liés à la taille de clé trop courte du DES
- Mais:
 - Le problème de la taille du bloc subsiste
 - Le Triple-DES n'est pas très rapide

⇒ Migration vers un algorithme plus récent. Quelles sont les autres solutions ?

Constructions classiques

- Schéma de Feistel (cas du DES)
- Variations du schéma de Feistel :
 - Schéma de Feistel généralisé (ex : RC6)
 - Schéma de Lai-Massey (ex : IDEA)
- Réseau SP (Substitution-Permutation)
 - Exemple de l'AES

Feistel

Feistel généralisés

Structure inversible pour toute fonction F

Lai-Massey

Structure inversible pour toute fonction F

Réseau SP

Entrée du tour

Sortie du tour

Toutes les couches doivent être inversibles!

AES

- Nouveau standard américain (NIST, 2000), remplaçant du DES
- Processus de sélection (1997-2000) :
 - 15 candidats initiaux
 - 5 retenus pour le second tour
 - Rijndael (Daemen-Rijmen, Belgique)
 - MARS (IBM, USA)
 - SERPENT (Biham-Knudsen-Anderson)
 - RC6 (RSA Labs)
 - Twofish (USA)

AES

- Le 2 octobre 2000, l'algorithme belge Rijndael est retenu par le NIST
- FIPS 197
- Taille de bloc de 128 bits
- Tailles de clé de 128, 192 et 256 bits

Structure générale

Les données sont stockées dans un « carré » de 4 x 4 = 16 cases

X_1	X_2	X_3	X ₄
X ₅	X ₆	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

Chaque case contient 1 octet (8 x 16 = 128 bits d'état interne)

Fonction de tour

Entrée du tour (128 bits)

Substitution par Octet

X_1	X ₂	X_3	X ₄	
X ₅	X ₆	X ₇	X ₈	
X ₉	X ₁₀	X ₁₁	X ₁₂	
X ₁₃	X ₁₄	X ₁₅	X ₁₆	

Y_1	Y ₂	Y ₃	Y ₄
Y ₅	Y_6	Y ₇	Y ₈
Y ₉	Y ₁₀	Y ₁₁	Y ₁₂
Y ₁₃	Y ₁₄	Y ₁₅	Y ₁₆

Pour tout $1 \le i \le 16$, $Y_i = S(X_i)$

Substitution par Octet

- S est une fonction fixe de 8 bits vers 8 bits
 - Définie comme un tableau à 28 = 256 entrées
 - Nécessite donc 256 octets de mémoire
- Basée sur une opération algébrique :

S(X) = Affine(Inverse(X))

où l'inverse est pris dans GF(28)

La boîte S

	99	124	119	123	242	107	111	197	48	1	103	43	254	215	171	118
	202	130	201	125	250	89	71	240	173	212	162	175	156	164	114	192
	183	253	147	38	54	63	247	204	52	165	229	241	113	216	49	21
	4	199	35	195	24	150	5	154	7	18	128	226	235	39	178	117
	9	131	44	26	27	110	90	160	82	59	214	179	41	227	47	132
	83	209	0	237	32	252	177	91	106	203	190	57	74	76	88	207
	208	239	170	251	67	77	51	133	69	249	2	127	80	60	159	168
Sbox =	81	163	64	143	146	157	56	245	188	182	218	33	16	255	243	210
	205	12	19	236	95	151	68	23	196	167	126	61	100	93	25	115
	96	129	79	220	34	42	144	136	70	238	184	20	222	94	11	219
	224	50	58	10	73	6	36	92	194	211	172	98	145	149	228	121
	231	200	55	109	141	213	78	169	108	86	244	234	101	122	174	8
	186	120	37	46	28	166	180	198	232	221	116	31	75	189	139	138
	112	62	181	102	72	3	246	14	97	53	87	185	134	193	29	158
	225	248	152	17	105	217	142	148	155	30	135	233	206	85	40	223
	140	161	137	13	191	230	66	104	65	153	45	15	176	84	187	22

Décalage par ligne

X_1	X ₂	X_3	X ₄
X ₅	X ₆	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

X_1	X_2	X_3	X ₄
X ₆	X ₇	X ₈	X ₅
X ₁₁	X ₁₂	X ₉	X ₁₀
X ₁₆	X ₁₃	X ₁₄	X ₁₅

Décalage circulaire (vers la gauche) de i cases pour la ligne numéro i, $0 \le i \le 3$

Mélange par colonne

MixColumn() est appliquée à chaque colonne

Mélange par colonne

Opérations linéaires dans GF(28)

Corps finis: GF(28)

 Cet objet mathématique est utilisé pour définir la boîte S et dans MixColumn()

- Unique corps fini à 256 éléments
 - Addition = XOR
 - Multiplication = ?

GF(2⁸): Définition

- GF(2) = F₂ = unique corps fini à 2 éléments
 = {0,1} avec les opérations booléennes usuelles
- F₂[X] = ensemble des polynômes à coefficients dans F₂
- Soit P(X) un polynôme irréductible de degré 8 appartenant à F₂[X]
- Par définition, GF(2⁸) = F₂[X] / P

GF(2⁸): Exemple

- Prenons $P(X) = X^8 + X^4 + X^3 + X + 1$
- Éléments dans GF(28)
 - = polynômes réduits « modulo P »
 - = polynômes de degré < 8
- Exemple

$$a = X^6 + X^4 + X^2$$

GF(2⁸): Exemple

Soient a et b dans GF(2⁸)

$$a = X^6 + X^4 + X^2$$

 $b = X^2$

Addition :

$$a+b = (X^6 + X^4 + X^2) + (X^2) = X^6 + X^4$$

Multiplication :

a x b =
$$(X^8 + X^6 + X^4)$$
 modulo $(X^8 + X^4 + X^3 + X + 1)$
a x b = $(X^6 + X^4) + X^4 + X^3 + X + 1$

GF(28): représentation

Chaque élément de GF(2⁸) est représenté
 b₇X⁷ + b₆X⁶ + ... + b₁X + b₀

- On le stocke sur l'octet représenté en binaire par (b₇,...,b₀)
- Représentation entre 0 et 255

Addition de la sous-clé

X_1	X ₂	X ₃	X ₄		Y ₁	Y ₂	Y ₃	Y ₄
X_5	X ₆	X ₇	X ₈	Λ .	Y ₅	Y ₆	Y ₇	Y ₈
X ₉	X ₁₀	X ₁₁	X ₁₂		Y ₉	Y ₁₀	Y ₁₁	Y ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆		Y ₁₃	Y ₁₄	Y ₁₅	Y ₁₆

$$Y_i = X_i \oplus K_i$$

K ₁	K_2	K_3	K ₄
K ₅	K ₆	K ₇	K ₈
K ₉	K ₁₀	K ₁₁	K ₁₂
K ₁₃	K ₁₄	K ₁₅	K ₁₆

«Key Schedule»

 Algorithme de dérivation des sous-clés à partir de la clé secrète

 Basé sur les mêmes primitives que la fonction de tour

Nombre de tours

Pour AES-128 (clé de taille 128 bits)

$$t = 10 \text{ tours}$$

Pour AES-192

$$t = 12 tours$$

Pour AES-256

$$t = 14 \text{ tours}$$

Sécurité de l'AES

- L'algorithme est encore jeune mais
- Il a été conçu pour résister aux attaques classiques (différentielle, linéaire, ...)
 - → Inversion dans GF(28)
- Attaques contre des version réduites (à 6 ou 7 tours)?
- Attaques algébriques en utilisant la structure mathématique simple de l'AES ?

Synthèse

- Un algorithme de chiffrement par bloc est une primitive de base («brique»)
- Reste à se poser la question de son utilisation!

Exemple : modes opératoires pour chiffrer des messages de taille arbitraire

En pratique

- Algorithmes utilisés
 - DES dans les anciens produits
 - AES dans les nouveaux produits
- Autres algorithmes utilisés ponctuellement
 - IDEA (PGP)
 - BlowFish

— ...