SOMMAIRE

- Informations pratiques
- Introduction
- Notions Algorithmiques
- Méthodes Algorithmiques pour la géométrie
- Modéliser le monde
- Méthodes géométriques
 - Notions de base en géométrie
 - Méthodes applicables aux modèles discrets
 - Méthodes applicables aux modèles continus

- Définition géométrie discrète
 - Étude des propriétés géométriques d'ensembles de points représentés sur un maillage et produits par la discrétisation d'objets et de courbes du plan analogique (Rosenfeld, 89)
 - Traduction de notions géométriques rigoureusement définies dans l'espace analogique, pour l'espace discret

- Espace discret : Pavages et maillages
 - · Repose sur un ens dénombrable
 - Obtenu à partir de l'espace analogique en s'appuyant sur la construction de pavages et de maillages
 - 1 élt de l'espace discret = représentant d'1 élt de la surface de pavage (en imagerie = pixel = picture element)
 - Pavage défini par l'ens des points P et des surfaces élémentaires Vp (Voisinage de P) qui leur sont associées
 - Utilisation répétitive des mêmes configurations de base pour Vp + juxtaposition régulière
 - Infinité de pavages du plan envisageables mais des contraintes particulières sont imposées
 - Disposition des points P
 - · Forme et régularité des surfaces Vp
 - Propriétés du pavage résultant
 - ..

- 2 méthodes pour obtenir un pavage
 - Pavage par propagation à partir de germes
 - Positionnement des points P (aléatoire ou régulier)
 - Pts P sont considérés comme les germes de cellules que l'on fait isotropiquement grossir en //
 - Propagation stoppée en chaque point où il y a rencontre entre 2 cellules (lieux de rencontre s'étendent segments de droite ⇔ arêtes des surfaces Vp ou tesselles Vp)
 - Tesselles Vp obtenues sont convexes
 - Pavage unique pour une distribution de germes donnée

Pavage irrégulier = partitionnement du plan en polygone de Voronoï

Pavage régulier

- 2 méthodes pour obtenir un pavage (suite)
 - Pavage par tesselles
 - On génère un modèle de formes (tesselle Vp) auquel on associe un pt P représentatif
 - Forme répétée indéfiniment sur le plan de manière à couvrir une image de taille quelconque
 - Contraintes sur Vp (liées à des caractéristiques, de régularité, d'isotropie, de simplicité, et à la réalisation des surfaces sensibles des capteurs) :
 - polygones convexes et réguliers (côtés et angles égaux)
 - 1 sommet S du polygone ne peut être en contact qu'avec d'autres sommets de polygones et pas avec des arêtes

- 2 méthodes pour obtenir un pavage (suite)
 - Pavage par tesselles (suite)

Pavages autorisés: par triangles, carrés , hexagones

- Espace discret : Pavages et maillages (suite)
 - Maillage associé à un pavage
 - A tout point p est associé un point q tels que Vp et Vq ont une arête commune
 - L'ensemble de tous les segments (P,Q) ainsi définis forme le maillage associé au pavage

- Segments de maillage forment un nouveau pavage pour lesquels les points représentatifs des tesselles sont les sommets du pavage initial
- pavage et maillage sont des représentations duales du partitionnement du plan

- Espace discret : Pavages et maillages (suite)
 - Maillage associé à un pavage (suite)
 - Cas d'un pavage non régulier
 - Maillage dual de l'ensemble des points P dans le cas de partitionnement par polygones de Voronoï à partir des germes P = Triangulation de Delaunay

• Voisin de p = points q tels que Vp et Vq ont une arête commune

- Espace discret: Pavages et maillages (suite
 - Maillage associé à un pavage (suite)
 - Codage du pavage
 - Réalisé par le biais du codage du maillage associé
 - Pts d'intersection du maillage = pts p
 - Voisins immédiats de p sont donnés par les arêtes du maillage issues de p
 - A chaque pt p sera associé la valeur de la fonction Intensité I calculée en fonction des valeurs de I sur Vp
 - Pour que les données soient directement manipulables, il est indispensable que l'accès aux voisins se fasse de manière implicite
 - Ex: maillage carré ⇔ structure de données = matrice

- Maillage carré : Voisinage et métriques
 - 4-voisinage de P ou voisins directs de P:
 - 4 pts Q distincts de P qui vérifient d₄ (P,Q) ≤1 avec

$$d_4(P,Q) = |i_P - i_Q| + |j_P - j_Q|$$
 city block distance

- 8-voisinage de P
 - 8 pts Q distincts de P qui vérifient d₈ (P,Q) ≤1 avec

$$d_8(P,Q) = \max(|i_P - i_O|, |j_P - j_O|)$$
 Chessboard distance

- Adjacents directs de P
- Adjacents indirects (ou diagonaux) de P

- Maillage carré (suite)
 - Chemin connexe:
 - 1 chemin de P à Q est une suite de points du maillage telle que Pi est adjacent à Pi-1 pour 1≤i ≤n

• Chemin 4-connexe

ou

8-connexe

Composante connexe

Soient P et Q, 2 pts de l'image Soit S, un sous ensemble de points de l'image contenant P et Q Tous les points de S sont supposés avoir la même valeur

P et Q sont connectés dans S ssi il existe un chemin connexe inclus dans S reliant P et Q

• Étiquetage des composantes connexes = association entre les points qui appartiennent à une même composante connexe

Composantes 8-connexes

- Maillage carré (suite)
 - Arc

Soit S, un sous ensemble non vide de points de l'image

S est un arc ssi chacun de ses points excepté deux d'entre eux (extrémités de l'arc) possède exactement 2 points adjacents

Arc 8-connexe

- Maillage carré (suite)
 - Courbe

Soit S, un sous ensemble non vide de points de l'image

S est une courbe ssi S est connexe et si chacun des points possède exactement 2 points adjacents dans S

Courbe 4-connexe

Courbe 8-connexe

Théorème de Jordan et maillages carrés

=> Théorème non vérifié

1 courbe 4-connexe 1 complémentaire formé de 3 composantes 4-connexes

1 courbe C 1 complémentaire formé de Int(C) et Ext(C)

=> Théorème vérifié

1 courbe 4-connexe 1 complémentaire formé de 2 composantes 8-connexes

 Rq: pb de transcription dans l'espace discret du théorème n'existe pas pour les maillages hexagonaux

- Formulation discrète du théorème de Jordan
 - Le complémentaire de toute courbe discrète 4-connexe (resp. 8-connexe) est formé de 2 composantes 8-connexes (resp. 4-connexes):

l'une est l'intérieur de la courbe discrète l'autre l'extérieur

- Intérieur et Extérieur d'une courbe S 4-connexe et 8-connexe
 - Étiquetage préalable des composantes connexes du complémentaire de S pour distinguer fond et trous

Ou

 Tout chemin connexe issu de P (P(a,b) ∉ S) coupe nécessairement la courbe S et il suffit de se limiter à la ½ droite horizontale D issue de P et de caractériser les intersections entre D et S

- Intérieur et Extérieur d'une courbe S 4-connexe et 8-connexe (suite)
 - Intersection de D et S est formée de
 - Sections horizontales connexes
 - Ensemble de points connexes de même abscisse
 - Section caractérisée par ses coordonnées extrémales (a , j_k) et (a , j_{k+r})
 - Les points de S qui continuent la courbe de part et d'autre d'une section ont pour abscisse a+1 ou a-1
 - S'ils ont la même abscisse => D et S sont en contact
 - Sinon D traverse S

- Intérieur et Extérieur d'une courbe S 4-connexe et 8-connexe (suite)
 - Intersection (suite)

Si le nombre de sections pour lesquelles D traverse S est impair

⇒P est à l'intérieur de S

Sinon P est à l'extérieur de S

- Propositions complémentaires liées au théorème de Jordan
 - Si S est une courbe 4-connexe (resp. 8-connexe), tout chemin 8-connexe (resp. 4-connexe) reliant un point de l'intérieur de S à un point de l'extérieur de S contient au moins un point de S

Chemin connexe reliant l'int et l'ext d'1 courbe 4-connexe

Chemin connexe reliant l'int et l'ext d'1 courbe 8-connexe

 Tout point d'une courbe S est adjacent (au sens de la connexité du complémentaire de S) à l'intérieur et à l'extérieur de la courbe

- Concepts géométriques discrets
 - Segment de droite discret
 - Plusieurs méthodes pour obtenir un segment de droite discret à partir d'un segment analogique
 - Plus proche voisin discret (pavé semi-ouvert)
 - Pb: composante 8-connexe n'est pas nécessairement un arc
 - Plus proche voisin discret d'un même côté
 - On retient les points discrets situés du même côté du segment analogique chaque fois que celui-ci coupe une arête du maillage
 - Arc discret 8-connexe

- Plusieurs méthodes (suite)
 - Plus proche voisin selon une direction du maillage
 - permet d'obtenir un arc 8-connexe positionné de manière équitable par rapport au segment analogique
 - Si pente du segment analogique (-1≤ p ≤1) => 1 pixel sur chaque verticale
 A chaque point P du maillage est associé le segment vertical semi-ouvert en bas, centré en P et de longueur 1

Tout point du segment analogique, qui appartient à un tel segment de centre P définit le point P sur le segment discret

- Segment de droite discret (suite)
 - Algorithme naïf

```
Supposons
```

- int Round(float x){
 return((int)(x+0,5));
 } //associe à x la partie entière de x+0,5
- p = dy/dx la pente réelle de la droite D

pb : multiplication en virgule flottante + arrondi + addition pour chaque pixel

- Segment de droite discret (suite)
 - Algorithme incrémental de base
 - Calcul de chaque pixel à afficher en fonction du précédent

```
y_i = y_0 + p * i \Leftrightarrow y_{i+1} = y_0 + p * (i + 1) = y_0 + p * i + p
y_{i+1} = y_i + p
```

multiplication en virgule flottante (le + coûteux) à chaque étape est supprimée mais il reste une addition en virgule flottante et un calcul d'arrondi

- Segment de droite discret (suite)
 - Algorithme du point milieu = Algo incrémental de Bresenham
 - Calcul de chaque pixel à afficher en fonction du précédent par des opérations peu coûteuses d'arithmétique entière
 - Pour chaque verticale x = x₀ + i, on considère le point d'intersection Q entre la droite D et la verticale
 - Q est sur un segment vertical [P1(x,y1), P2(x,y2)]
 - Soit M le milieu de [P1,P2] => on doit dessiner le pixel centré sur l'extrémité du segment vertical qui se trouve du même côté que Q par rapport à M
 - Si M au dessous de Q=>P1
 - Si M au dessus de Q => P2

- Segment de droite discret (suite)
 - Algorithme du point milieu Bresenham (suite)
 - Comment Calculer le pixel (x_{p+1}, y_{p+1}) à partir de la connaissance du pixel précédent (x_p, y_p) ?
 - 2 possibilités pour ce pixel (x_{p+1},y_{p+1})
 le pixel E (point Est) de coordonnées (x_p+1, y_p)
 le pixel NE (point Nord-Est) de coordonnées (x_p+1, y_p+1)
 - Pb se réduit à trouver si M $(x_p + 1, y_p + 1/2)$ est au dessus ou au dessous de Q , M étant le milieu du segment [NE, E]
 - M au dessus ou au dessous de Q ⇔ position de M par rapport à D
 - Position de M par rapport à D ⇔ signe de F(x,y) au point M
 - Soit d_p = variable de décision de même signe que F(x,y) au point M

$$d_p$$
 = 2 F(x_p +1 , y_p + 1/2)
Si $d_p \le 0$ =>M est à droite de D => M au dessous de Q
=> on choisit le point NE
Si d_p > 0 => M est à gauche de D => M au dessus de Q
=> on choisit le point E

- Algorithme du point milieu Bresenham (suite)
 - Pb : calcul direct de d_p est trop coûteux
 ⇒Calcul incrémental de d_{p+1} à partir de d_p

$$d_{p+1} = 2 F(x_{p+1} + 1, y_{p+1} + 1/2)$$

2 cas différents:

Si le point de coordonnées (x_{p+1}, y_{p+1}) est E

$$\Rightarrow E(x_p + 1, y_p)$$

$$\Rightarrow d_{p+1} = 2 F(x_p + 2, y_p + 1/2)$$

$$\Rightarrow d_{p+1} = d_p + 2 dy$$

Si le point de coordonnées (x_{p+1} , y_{p+1}) est NE

$$\Rightarrow NE(x_p + 1, y_p + 1)$$

$$\Rightarrow d_{p+1} = 2 F(x_p + 2, y_p + 3/2)$$

$$\Rightarrow d_{p+1} = d_p + 2 (dy - dx)$$

- Segment de droite discret (suite)
 - Algorithme du point milieu Bresenham (suite)

```
Fonction Bresenham (x0, y0, x1, y1)
 dx = x1 - x0
 dy = y1 - y0
 dp = 2 * dy - dx // valeur intiale de dp
 x = x0
 y = y0
 AllumePixel(x,y)
  tant que x <x1
    si dp > 0 alors //on choisit le pt E
      dp = dp + 2 * dy
      x = x+1
    sinon
      dp = dp + 2 * (dy - dx) // on choisit le pt NE
      x=x+1
     y=y+1
    finsi
    AllumePixel(x,y)
  fintantque
```


- Algorithme du point milieu Bresenham (suite)
 - Cas général : segments dont la pente n'est pas comprise entre 0 et 1

