Algoritmo para Solução de um Sistema de Equações lineares pelo Método de Gauss

Gaussian Elimination with Backward Substitution

To solve the $n \times n$ linear system

$$E_1: a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = a_{1,n+1}$$

$$E_2: a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = a_{2,n+1}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$E_n: a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = a_{n,n+1}$$

INPUT number of unknowns and equations n; augmented matrix $A = [a_{ij}]$, where $1 \le i \le n$ and $1 \le j \le n + 1$.

OUTPUT solution x_1, x_2, \dots, x_n or message that the linear system has no unique solution.

Step 1 For
$$i = 1, ..., n - 1$$
 do Steps 2–4. (*Elimination process.*)

Step 2 Let p be the smallest integer with $i \le p \le n$ and $a_{pi} \ne 0$. If no integer p can be found then OUTPUT ('no unique solution exists'); STOP.

Step 3 If $p \neq i$ then perform $(E_p) \leftrightarrow (E_i)$.

Step 4 For j = i + 1, ..., n do Steps 5 and 6.

Step 5 Set $m_{ii} = a_{ii}/a_{ii}$.

Step 6 Perform $(E_j - m_{ji}E_i) \rightarrow (E_j)$;

Step 7 If $a_{nn} = 0$ then OUTPUT ('no unique solution exists'); STOP.

Step 8 Set $x_n = a_{n,n+1}/a_{nn}$. (Start backward substitution.)

Step 9 For
$$i = n - 1, ..., 1$$
 set $x_i = \left[a_{i,n+1} - \sum_{j=i+1}^{n} a_{ij} x_j \right] / a_{ii}$.

Step 10 OUTPUT $(x_1, ..., x_n)$; (Procedure completed successfully.) STOP.