Asynchronous Parallel Processor Demonstrator

tt_um_async_proc_paulschulz :	
	er_output_ ocessing) ata ready)

Figure 1: picture

Author: Paul Schulz

• Description: Implementation for an Asynchronous Parallel Processor

Language: Verilog

How it works

 $See\ Github:\ https://github.com/PaulSchulz/tt05-async-proc$

This circuit is an investigation into an asynchronous parallel processor.

The design in a work in progress.

Note: This is a very early design, which doesn't yet do much.

A processing node follows the following state flow: - Wait for valid data; - Process the data to produce an output value, and let neighboring nodes know that processing in being done; - Make the result available; and wait for more data to process.

In this example, the processing node is doing a calculation on four(4) inputs of 4 bits. The calculation is based on a deconstruction of the the "Arctic Circle Theorem" model. (video)

How to test

TBD

Experiment by changing the input values.

10

#	Input	Output	Bidirectional
0	input bit 0	segment a	second counter bit 0
1	input bit 1	segment b	second counter bit 1
2	input bit 2	segment c	second counter bit 2
3	input bit 3	segment d	second counter bit 3
4	load input 0	segment e	second counter bit 4
5	load input 1	segment f	second counter bit 5
6	load input 2	segment g	second counter bit 6
7	load input 3	dot	second counter bit 7