Prediction of Health Status Based on BMI

HYPOTHESIS

Prediction of health status based on BMI

BMI prediction is constantly mocked by the media and the general public. "Is B.M.I. a

Scam?" is a question that most people and the media ask.

I would like to prove my hypothesis and demonstrate how beneficial BMI checking and

keeping track of your weight in line with your height is for a human being to live a healthy life. Using Kaggle datasets and machine learning models of random forest/linear regression to train existing datasets and do predictions for the new dataset.

DATA

RAW

COLLECTION:

	_															
Gender	Age	Height	Weight	family_hi	sto FAVC	FCVC	NCP	CAEC	SMOKE	CH2O	SCC	FAF	TUE	CALC	MTRANS	NObeyesdad
Male	2:	174	96	yes	no	2		3 Sometimes	no		2 no	0		1 no	Public_Trans	Normal_Weight
Male	2.	189	87	yes	no	3		3 Sometimes	yes		3 yes	3		0 Sometimes	Public_Trans	Normal_Weight
Female	23	185	110	yes	no	2		3 Sometimes	no		2 no	2		1 Frequently	Public_Trans	Normal_Weight
Female	27	195	104	no	no	3		3 Sometimes	no		2 no	2		0 Frequently	Walking	Overweight_Level_I
Male	22	149	61	no	no	2		1 Sometimes	no		2 no	0		0 Sometimes	Public_Trans	Overweight_Level_II
Male	29	189	104	no	yes	2		3 Sometimes	no		2 no	0		0 Sometimes	Automobile	Normal_Weight
Male	23	147	92	yes	yes	3		3 Sometimes	no		2 no	1		0 Sometimes	Motorbike	Normal_Weight
Male	22	154	111	no	no	2		3 Sometimes	no		2 no	3		0 Sometimes	Public_Trans	Normal_Weight
Male	24	174	90	yes	yes	3		3 Sometimes	no		2 no	1		1 Frequently	Public_Trans	Normal_Weight
Female	22	169	103	yes	yes	2		3 Sometimes	no		2 no	1		1 no	Public_Trans	Normal_Weight

Raw data

The original sources that the Kaggle dataset came from Pubmed.GOV, UC Machine Learning Repository. There is 19 attributes and 2111 rows in the original dataset; useful fields are person's gender, height, weight, and index.

Gender	Height	Weight	Index
Male	174	96	4
Male	189	87	2
Female	185	110	4
Female	195	104	3
Male	149	61	3
Male	189	104	3
Male	147	92	5
Male	154	111	5
Male	174	90	3

DATA COLLECTION:

CLEANED

Male	158	127	5
Female	188	99	3
Male	145	142	5
Male	161	115	5
Male	198	109	3
Male	147	142	5
Male	154	112	5
Female	178	65	2
Male	195	153	5
Female	167	79	3
Male	183	131	4
Female	164	142	5
Male	167	64	2
Female	151	55	2
Female	147	107	5
Female	155	115	5
Female	172	108	4
Female	142	86	5
Male	146	85	4
Female	188	115	4
Male	173	111	4
Female	160	109	5
Male	187	80	2
Male	198	136	4
Female	179	150	5
Female	164	59	2
Female	146	147	5
Female	198	50	О
Female	170	53	1
Male	152	98	5
Female	150	153	5
Female	184	121	4
Female	141	136	5
Male	150	95	5

Dataset cleaned

Final Cleaned FOUR Columns: "Gender", "Height", "Weight", "Index"

Total = 500 rows; 4 columns

DATA FORMATTING: JUPTER NOTEBOOK

Merge and Join the datasets

Merge DataFrame objects with a database-style join

In [7]: left = pd.DataFrame(data1)
 right = pd.DataFrame(data2)
merging data1 and data2
data merge = pd.merge(left, right, how="left", validate="many_to_many", on=["Gender", "Height", "Weight", "Index"])

In [8]: #display data_merge

Out[8]:

	Gender	Height	Weight	Index	Age	family_history_with_overweight	FAVC	FCVC	NCP	CAEC	SMOKE	CH2O	scc	FAF	TUE	CA
0	Male	174	96	4	21.000000	yes	no	2.0	3.0	Sometimes	no	2.000000	no	0.000000	1.0	
1	Male	189	87	2	21.000000	yes	no	3.0	3.0	Sometimes	yes	3.000000	yes	3.000000	0.0	Sometir
2	Female	185	110	4	23.000000	yes	no	2.0	3.0	Sometimes	no	2.000000	no	2.000000	1.0	Freque
3	Female	195	104	3	27.000000	no	no	3.0	3.0	Sometimes	no	2.000000	no	2.000000	0.0	Freque
4	Female	195	104	3	18.000000	yes	no	2.0	3.0	Sometimes	no	2.000000	no	0.000000	0.0	
		122	972		222			1200		1122211	250			922		
517	Female	150	153	5	19.000000	yes	yes	3.0	1.0	Always	no	1.000000	yes	0.000000	0.0	
518	Female	184	121	4	18.000000	yes	yes	2.0	3.0	Sometimes	no	2.000000	no	0.000000	2.0	Sometir
519	Female	141	136	5	20.000000	no	no	2.0	3.0	Sometimes	no	2.000000	no	1.000000	1.0	Sometir
520	Male	150	95	5	25.196214	yes	yes	3.0	3.0	Sometimes	no	1.152736	no	0.319156	1.0	Sometir
521	Male	173	131	5	18.503343	yes	yes	3.0	3.0	Sometimes	no	1.115967	no	1.541072	1.0	Sometir

Tabular representation of data

Clean data

Out[9]:		Gender	Height	Weight	Index	
	0	Male	174	96	4	
	1	Male	189	87	2	
	2	Female	185	110	4	
	3	Female	195	104	3	
	4	Female	195	104	3	
		****			***	
	517	Female	150	153	5	
	518	Female	184	121	4	
	519	Female	141	136	5	
	520	Male	150	95	5	
	521	Male	173	131	5	

Missing Data for Data1 and Data2

- detect missing values in datasets
- Total null values in each feature

In [4]: #missing values total df = pd.DataFrame(data2) df detect = df.isnull().sum() df detect Out[4]: Gender Height 1611 Weight 1611 family history with overweight FAVC FCVC NCP CAEC SMOKE CH2O SCC FAF TUE CALC MTRANS NObeyesdad Unnamed: 17 2111 Index 1611 dtype: int64

Adding Column in final dataset

- Index
- . 0 Extremely Weak 1 Weak 2 Normal 3 Overweight 4 Obesity 5 Extreme Obesity
- · Gender: Male / Female

n [30]: M def convert_status_to_description(x): if x['Index'] == 0: return 'Extremely Weak' elif x['Index'] == 1: return 'Weak' elif x['Index'] == 2: return 'Normal' elif x['Index'] == 3: return 'Overweight' elif x['Index']== 4: return 'Obesity' elif x['Index'] == 5: return 'Extreme Obesity' data['Status'] = data.apply(convert status to description,axis=1) data Out[30]: Gender Height Weight Index

-		Centre	rieignic	vieigni	illucx	Status
	0	Male	174	96	4	Obesity
	1	Male	189	87	2	Normal
	2	Female	185	110	4	Obesity
	3	Female	195	104	3	Overweight
	4	Male	149	61	3	Overweight

DATA FORMATTING: JUPTER NOTEBOOK

Pie-Plot Comparision of Female Vs Male

DATA VISUALITION

WORLD BMI VISUAL

RAW DATA SUMMARY

Male Vs Female

BMI CALCULATION

BMI = weight(kg) / height(cm)* height(cm)
Index = scaling BMI
Index: 0 - Extremely Weak 1 - Weak 2 - Normal 3 - Overweight 4 - Obesity 5 - Extreme Obesity

SCATTER PLOT:

DIFFERENT CATEGORIES FOR ALL POINTS IN DATA

CONCLUSION

Concluding of Hypothesis

- Finally, based on the BMI hypothesis, you can predict your health state.
- Weight, according to the statistics, is a good determinant of overall health.
- To live a healthy life, a human being must check their BMI on a scale of 0-5 and keep track of their weight in relation to their height.
- In this research, bigdata analysis assists us in determining the appropriate BMI index scale for any gender.
- Exposure of data: I learned more about data preparation, such as merging, cleansing, and male/female classification.
- To demonstrate in a visual effect in order to gain a better understanding of the data.
- As a result, our hypothesis has been validated in this instance.

REFERENCES

Obesity Dataset Raw and Data Synthetic:

https://archive.ics.uci.edu/ml/datasets/Estimation+of+obesity+levels+based+on+eatin

g+habits+and+ physical+condition+

https://pubmed.ncbi.nlm.nih.gov/12942320/

https://pubmed.ncbi.nlm.nih.gov/260

36702/

DQI: 10/1007/s00431-003-1292-x gov/236

DOI: 10:1093/pubmed/fdv067