

Taller Práctico 2

Diseño y Simulación de Circuitos Digitales

Ejercicios prácticos

- 1. Implementar un circuito sumador de 2 bits, es decir que sume dos palabras binarias $A_1A_0 + B_1B_0 = C_2S_1S_0$. Verificar el correcto funcionamiento de su circuito para varias combinaciones de
 - entrada, con y sin acarreo.
- 2. Observar que las salidas del circuito corresponden a la representación binaria de los valores 0..7. Para visualizar el número equivalente, se puede utilizar un display de 7 segmentos, el cual posee 7 LEDs dispuestos de forma que se pueden mostrar todos los digitos decimales:

El circuito display de 7 segmentos, corresponde a 7 LEDs (más otro para el punto) identificados con las letras A,..,G como se ilustra en la siguiente figura:

Un circuito decodificador de binario a 7 segmentos es un circuito que toma una palabra de entrada binaria y produce 7 salidas, una por cada uno de los LEDs, con el fin de visualizar el valor decimal correspondiente a la entrada binaria. En la siguiente tabla se ilustra la salida correspondiente al segmento A el cual se enciende para los valores 0, 2, 3, 5, 6, 7. Completar la tabla de verdad para los segmentos D..G.

Decimal	Binario (C ₂ S ₁ S ₀)	Α	В	С	D	E	F	G
0	000	1	1	1				
1	001	0	1	1				
2	010	1	1	0				
3	011	1	1	1				
4	100	0	1	1				
5	101	1	0	1				
6	110	1	0	1				
7	111	1	1	1				

3. Utilizando cualquiera de las formas normales (FNC o FND) se puede obtener la expresión lógica para un segmento. Por ejemplo la expresión lógica para el segmento A es:

$$A \equiv (C_2 v S_1 v \neg S_0) \wedge (\neg C_2 v S_1 v S_0)$$

Obtener las expresiones lógicas para los segmentos D hasta G.

4. Implementar el circuito lógico correspondiente al decodificador de 7 segmentos, de forma que se pueda visualizar el resultado de la suma en un display de 7

segmentos.

LogiSim dispone del display de 7 segmentos dentro del grupo Input/Output. A continuación se ilustra la conexión del display

Entrega:

Implementar los circuitos lógicos del sumador de 2 bits y de las 7 salidas del decodificador de 7 segmentos. Utilizar las salidas del sumador como las entradas del decodificador.

Nombrar el archivo conteniendo los circuitos Practica2-<*NombreApellido>-<ID>*.circ. Incluir las expresiones lógicas obtenidas en el punto 3 como una etiqueta de texto junto a su respectivo circuito. Remitir el archivo por correo electrónico al docente del curso.

 $\Lambda \neg V \rightarrow \longleftrightarrow \equiv \bigoplus$