3º PERÍODO DE ENGENHARIA DE SOFTWARE ANO 2020 PROGRAMAÇÃO DE COMPUTADORES

PROFESSOR: FÁBIO GARCEZ BETTIO

ESTUDANTE: CLÍSTENES GRIZAFIS BENTO

APS 2 - EXERCÍCIOS DE PESQUISA

1 – Faça o teste de mesa do exercício do código abaixo com n=6:

```
double fatorial(int n);
int main(void) {
    int numero;
    double f;
    printf("Digite o numero que deseja calcular o fatorial: ");
    scanf("%d", &numero);
    f = fatorial(numero);
    printf("Fatorial de %d = %.01f", numero, f);
    getch();
    return 0;
double fatorial(int n) {
    double vfat;
    if ( n <= 1 )
       return (1);
    else{
        vfat = n * fatorial(n - 1);
        return (vfat);
```


2 – Faça o teste de mesa do código abaixo, com n=5:

```
int pesqSeq(int chave, int v[], int n) {
    int i;
    for (i = 0; i < n; i++) {
        if (v[i] == chave) {
            return (i);
        }
    }
    return (-1); // indice inválido
}</pre>
```

2-Façao	leste de mesa	do cóligo a	enterior, com n=5
A sh orders	A 16 80		
Entrada	: Chave= 4		
	VET = & 1,5,	4,7,103	
	n =5		Recurcinidad
1			
Step descricos	chave n	i VLiI	
1 inicio	7 5		
2 declare vor	7 5	5- 5- 5- 5	t- Faca o teste exte
3 Entre no logo	7 5	0 1	
9 if(vco1=7)		a the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 incremento i		1 1	
6 volte 600		1 -5	
(if(va=1)		1 5	Branch E
1 incremento:		2 5	
o volta 1000	7 5	2 4	E Charles Call
9 if (V(2)=1)	7 5	2 4	of Classic Association
10 incrementai	1 5	3 4	The Allestan Committee of the Committee
11 volte laço	7 5	3 7	rada
(2 H(VG)=7)	7 5	3 7:	VONE NO.
13 Returno 3	7 5	3 7	a Fish and in
14 fim forces	7 5	3 7	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
11 1/1 13.000			

3 – Faça o teste de mesa do código abaixo, com n=5:

```
int pesqSeqSent(int chave, int v[], int n) {
   int i = 0;
   vet[n] = chave;
   while (vet[i] != chave) {
       i++;
   }
   if( i < n )
       return i;
   return (-1); // indice inválido
}</pre>
```

	Chave	mesa do código a			
		81, 5, 4, 7, 10, 23			
	n=5	- No			
step	descrição	chave n	VIn?	ie I	V[i]
1	micio fonçes	7 5	?	-	-
2	inti	7 5	3	0	1

		2		data	/ T Q Q		
step	descrição	chave	n	VIn	i	VCil	
. 3.	VEn] = chove	7	5	7	0	1	
4	while (VCi)! = chove)	7	5	7	0	1	
5	1++ 5	7	5	7	1	5	
6	while (vas! = chove)	7	5	7.	1	5	
7	1++	7	5	7	2	4	
9	while(vzi]!=chale)	7	5	1	2	4	
9	i + t	. 7	5	7.	3	7	
10	while(vas!=Cheve)	7	5	7	3	7	
-	if(i < n)	7	5	7	3	7	
- 12	return i	7 5	5	7	3	1	
• 13	Pin foncão		_	-	_	-1	

4 – Faça o teste de mesa do código abaixo, com n=10:

```
int pesqBin(int chave, int v[], int n) {
   int inicio = 0;
   int meio;
   int fim = n - 1;
   while (inicio <= fim) {</pre>
       meio = (inicio + fim) / 2;
       if (chave < v[meio]) {</pre>
           fim = meio - 1;
       else if (chave > v[meio]) {
           inicio = meio + 1;
       else {
           return meio;
   return -1; // indice Impossivel
        4-faca o teste de mesa do código anterior com n=10.
                  Chave = 7
                 VET5 {1,5,7,9,10,(1,12,14,16,173
       Step description chave inico meio Pin Vimeio]
        1 miclo Puncão
       2 inicio = 0
       3 melo
       a fin=11-1
       5 while (inicio sein)
       6 meio = (inicio+fim)/2 7
       7 - If (chave eveneros) 7
                                        4
       9 fim=meio-1 7
                                                    10
       10 while linicio & fim) 7
                                                    10
                                                     5
       11 melo= (iniclo+ Eim) /2 7
                                                     5
      12 else if (Chove 7 Venneies) ?
```

Step	description	chave	inicio meio lim	V[meio]	
13	miclo = meiot1	7	2 1 3	5	
14	while (inicio sfin)	7	2 1 3	5	
15	melo=(inide +(in)/2	7	2 2 3	7	
16	else	7	2 2 3	7	
17	acturn meio	7	2 1 3	1	
18	Rim Calco	- 1	一种创造性的	-	

- 5 Implemente uma versão recursiva da função pesquisa binária, teste com n=5.
 - Protótipo da função: int pesqBinRec(int chave, int v[], int ini, int fim);

```
#include<stdio.h>
#include<locale.h>
/*5. Implemente uma versão recursiva da função pesquisa binária,
teste com n = 5.
Protótipo da função: int pesqBinRec(int chave, int v[], int ini, int
fim);
int pesqBin(int chave, int v[],int ini, int fi);
int main() {
    setlocale(LC ALL, "portuguese");
    int vetor[10]={1,3,5,9,10,11,12,14,16,17};
    int key = 5;
    int inicio =0;
    int size = 10;
    int indiceDoArmazenamento;
    indiceDoArmazenamento = pesqBin(key, vetor, inicio, size);
    printf("O indice é%d", indiceDoArmazenamento);
    return 0;
int pesqBin(int chave, int v[],int ini, int fi){
    int inicio = ini;
    int meio;
    int fim = fi-1;
    if(inicio<=fim) {</pre>
        meio = (inicio+fim)/2;
        if (chave<v[meio]) {</pre>
            fim = meio;
            return pesqBin(chave, v, inicio, fim);
        else if(chave>v[meio]) {
            inicio = meio+1;
            fim +=1;
            return pesqBin(chave, v, inicio, fim);
        else
            return meio;
    else
        return -1;
```

6 – Faça o teste de mesa do código abaixo, com n=10:

```
int pesqInter(int chave, int v[], int n) {
  int ini = 0, meio, fim = n - 1;
  while (ini <= fim) {
      meio = ini + ((fim-ini)*(chave-v[ini])) / (v[fim]-v[ini]);
      printf("\n 0 indice do meio foi: %i", meio);
      if (chave < v[meio]) {
         fim = meio - 1;
      }
  else if (chave > v[meio]) {
      ini = meio + 1;
    }
  else {
      return meio;
      }
  }
  return -1; // indice Impossivel
}
```

6	-faça o teste de	mes	ia do	Codi	go anterior	Com	n=10
	Chave = 7				1077		
	V[] = 81,5,1,9,	10,1	1,12,10	1,16	, 173	-	
	n=10					-	
Ste	p description	ch	ve inic	cio mi	eio fam Vlinicio	1 VEnces	of VIRINI
1	micio Ponca.	7	1010	_63	- ste - 12 -	0.000	4-12
2	inicioso, men fim sul	7	0	-	9 1	-	17
3	while Cinicio & Cim)	7	0	-	9 /	-	1.7
4	meio = * practox	7	9	3	9 1	9	17
5	Printf	7	0	3	9 (9	17
6	if (clave < VI meio)	7	0	3	9 1	9	17
1	fim = meio-1	7	0	3	2 1	9	7
8	whilelinido stim)	7	0	3	2 (9	7
9	meio = * Operaco *	7	0	2	2 1	7	7
10	Printe	7	0	2	2 1	7	7
11	else	7	0	2	2 1	1	7
12	Relarn meio	7	0	2	2 1	7	Z
	fim funcco	-	13- 1 L	-	4 307 330	4	-

- 7- Crie um programa em C que preencha um vetor de inteiros de 1000 posições com números aleatórios e implemente o menu de opções abaixo:
 - ♦ 1. Ordena Vetor (use qualquer método que aprendeu na aula passada)
 - ❖ 2. Pesquisa Sequencial (Solicite um número inteiro e informe seu tempo para localizá-lo)
 - ❖ 3. Pesquisa Sentinela (Solicite um número inteiro e informe seu tempo para localizá-lo)
 - ♦ 4. Pesquisa Binária (Solicite um número inteiro e informe seu tempo para localizá-lo)
 - ♦ 5. Pesquisa Interpolada (Solicite um número inteiro e informe seu tempo para localizá-lo)
 - **♦** 6. Sair

```
#include<stdio.h>
#include<stdlib.h>
#include<locale.h>
#include<time.h>
/*7. Crie um programa em C que preencha um vetor de inteiros de 1000
posi絥s com nmeros aleat□s e implemente o menu de op絥s abaixo:
1. Ordena Vetor (Use qualquer m鴯do que aprendeu na aula passada)
2. Pesquisa Sequencial (Solicite um numero inteiro e informe o tempo
para localiz□□o)
3. Pesquisa Sentinela (Solicite um numero inteiro e informe o tempo
para localiz□□o)
4. Pesquisa Bin□a (Solicite um numero inteiro e informe o tempo para
localiz□□o)
5. Pesquisa Interpolada (Solicite um numero inteiro e informe o
tempo para localizo□o)
6. Sair
int vetor[1001];
void gerarVetor();
void ordenaVetor();
int pesquisaSequencial(int key);
int pesquisaSentinela(int key);
int pesquisaBinaria(int key);
int pesquisaInterpolada(int key);
void bubbleSort();
void selectionSort();
void insertionSort();
void shelfSort();
int main(){
    setlocale(LC ALL, "portuguese");
    int opcao;
    int chave;
    gerarVetor();
    while(1){
        system("cls");
```

```
printf("SEJA BEM-VINDO");
       printf("\n\nPor gentileza escolha uma opção:");
       printf("\n1-Ordena vetor \n2-Pesquisa sequencial");
       printf("\n3-Pesquisa sentinela \n4-Pesquisa binária");
       printf("\n5-Pesquisa Interpolada \n6-Visualizar vetor");
       printf("\n7-sair");
       printf("\n\nEscolha: ");
       scanf("%d", &opcao);
       switch (opcao) {
            case 1:
                ordenaVetor();
                break;
            case 2:
                printf("\n\nDigite o valor que deseja buscar: ");
                scanf("%d", &chave);
                printf("\nO valor buscado encontra-se no índice
%d\n\n\n",pesquisaSequencial(chave));
                system("pause");
            break;
case 3:
                printf("\n\nDigite o valor que deseja buscar: ");
                scanf("%d", &chave);
                printf("\nO valor buscado encontra-se no índice
%d\n\n\n",pesquisaSentinela(chave));
                system("pause");
            break;
case 4:
                printf("\n\nDigite o valor que deseja buscar: ");
                scanf("%d", &chave);
                printf("\nO valor buscado encontra-se no índice
%d\n\n\n<mark>",</mark>pesquisaBinaria(chave));
                system("pause");
            case 5:
                printf("\n\nDigite o valor que deseja buscar: ");
                scanf("%d", &chave);
                printf("\nO valor buscado encontra-se no índice
%d\n\n\n",pesquisaInterpolada(chave));
                system("pause");
                break;
            case 6:
                printf("O vetor gerado foi: \n");
                for (int i=0;i<sizeof(vetor)/4-1;i++) {</pre>
                printf(" %d,",vetor[i]);
                printf("\n\n\n");
                system("pause");
                break;
            case 7:
                return 0;
break;
            default:
                system("cls");
```

```
printf("Opção inválida, digite novamente\n\n\n");
                 system("pause");
                 break;
    return 0;
void gerarVetor(){
    srand(time(NULL));
    for (int i=0;i<sizeof(vetor)/4-1;i++) {</pre>
        vetor[i]=rand()%(10*(sizeof(vetor)/4)-1);
        for (int j=i-1; j>=0; j--) {
             if (vetor[i] == vetor[j]) {
                 j=-1;
                 i--;
void ordenaVetor(){
    int opcao;
    printf("\n\nPor gentileza escolha uma opção");
    printf("\n1-Ordena o vetor por Bubble Sort ");
    printf("\n2-Ordena o Vetor por Selection Sort");
    printf("\n3-Ordena o Vetor por Insertion Sort");
printf("\n4-Ordena o Vetor por Shelf Sort");
    printf("\n5-Retorna ao menu principal");
    printf("\n\nEscolha: ");
    scanf("%d", &opcao);
    switch (opcao) {
        case 1:
            bubbleSort();
             break;
        case 2:
             selectionSort();
            break;
             insertionSort();
            break;
        case 4:
             shelfSort();
             break;
        case 5:
        default:
            system("cls");
             printf("Opção inválida!!!\n\n\n");
            system("pause");
            break;
```

```
int pesquisaSequencial(int key) {
    clock t inicio=clock(),fim;
    int size = sizeof(vetor)/4-1;
    for (int i=0; i < size; i++) {</pre>
        if (vetor[i] == key) {
             //system("pause");
             fim=clock();
             printf("O tempo de processamento foi de %d
milissegundos", fim-inicio);
            return i;
    //system("pause");
    fim=clock();
    printf("O tempo de processamento foi de %d milissegundos", fim-
inicio);
    return -1;
int pesquisaSentinela(int key) {
    clock t inicio=clock(),fim;
    int i=0,size=sizeof(vetor)/4-1;
    vetor[size] = key;
    while (vetor[i]!=key) {
        i++;
    if(i<size) {</pre>
        //system("pause");
        fim=clock();
        printf("O tempo de processamento foi de %d
milissegundos", fim-inicio);
        return i;
    //system("pause");
    fim=clock();
    printf("O tempo de processamento foi de %d milissegundos", fim-
inicio);
    return -1;
int pesquisaBinaria(int key) {
    //shelfSort();
    clock t start=clock(), stop;
    int inicio =0;
    int meio;
    int fim = sizeof(vetor)/4-2;
    while (inicio<=fim) {</pre>
        meio=(inicio+fim)/2;
        if (key<vetor[meio])</pre>
             fim = meio-1;
```

```
else if(key>vetor[meio])
            inicio = meio+1;
        else{
        // system("pause");
            stop=clock();
            printf("O tempo de processamento foi de %d
milissegundos",stop-start);
            return meio;
    //system("pause");
    fim=clock();
    printf("O tempo de processamento foi de %d milissegundos",stop-
start);
    return -1;
int pesquisaInterpolada(int key) {
    //shelfSort();
    clock t start=clock(), stop;
    int inicio =0;
    int meio;
    int fim = sizeof(vetor)/4-2;
    while (inicio<=fim) {</pre>
        meio=inicio+((fim-inicio)*(key-vetor[inicio]))/(vetor[fim]-
vetor[inicio]);
        if (key<vetor[meio])</pre>
            fim = meio-1;
        else if(key>vetor[meio])
            inicio = meio+1;
        // system("pause");
            stop=clock();
            printf("O tempo de processamento foi de %d
milissegundos",stop-start);
            return meio;
    //system("pause");
    fim=clock();
    printf("O tempo de processamento foi de %d milissegundos",stop-
start);
    return -1;
void bubbleSort() {
    int vetorAux[sizeof(vetor)/4-1];
    int auxiliar,j, verificador = 1, soma =0, size=(sizeof(vetor)/4)-
    for (int i=0;i<sizeof (vetor) /4-1;i++) {</pre>
        vetorAux[i]=0;
   while (verificador !=0) {
```

```
for (int i=0;i<size;i++) {</pre>
             auxiliar = vetor[i];
             j = i+1;
             if (vetor[i]>vetor[j]) {
                 vetor[i]=vetor[j];
                 vetor[j]=auxiliar;
         for (int i=0;i<sizeof(vetor)/4-1;i++) {</pre>
             soma+=abs(vetor[i]-vetorAux[i]);
        for (int i=0; i < sizeof (vetor) / 4-1; i++) {</pre>
             vetorAux[i]=vetor[i];
        verificador = soma;
        soma = 0;
        size--;
    printf("\n\nOperação concluída!\n\n");
    printf("\n\n\n\n");
    system("pause");
void selectionSort(){
    int auxiliar, indice, size=sizeof(vetor)/4-1;
    for (int i=0; i < size-1; i++) {</pre>
        auxiliar = vetor[i];
        indice = i;
         for(int j=i+1;j<size;j++) {</pre>
             if(auxiliar>vetor[j]){
                 auxiliar = vetor[j];
                 indice = j;
        vetor[indice]=vetor[i];
        vetor[i]=auxiliar;
    printf("\n\nOperação concluída!!\n\n");
    printf("\n\n\n\n");
    system("pause");
void insertionSort(){
    int auxiliar, j, k, size=sizeof(vetor)/4-1;
    for (int i=0; i < size-1; i++) {</pre>
        j=i+1;
        k=i;
         for(j;j>0;j--,k--){
             if (vetor[k]>vetor[j]) {
                 auxiliar=vetor[j];
                 vetor[j]=vetor[k];
                 vetor[k]=auxiliar;
```

```
else
                  j=0;
    printf("\n\nOperação concluída!!\n\n");
    printf("\n\n\n\n");
    system("pause");
void shelfSort(){
    int i, j, value, h=1, size=sizeof(vetor)/4-1;
    while (h<size) {</pre>
         h=3*h+1;
    while(h>0){
         for(i=h;i<size;i++) {</pre>
             value = vetor[i];
              j=i;
              while (j>h-1&&value<=vetor[j-h]) {</pre>
                   vetor[j]=vetor[j-h];
                   j=j-h;
                  vetor[j]=value;
         h=h/3;
    printf("\n\nOperação concluída!!\n\n");
printf("\n\n\n");
system("pause");
```