

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

Notas de Aula de Análise

Renan Wenzel - 11169472

Alexandre Nolasco de Carvalho - andcarva@icmc.usp.br

27 de março de 2023

Conteúdo

1	Aul	a 01 - 13/03/2023	
	1.1	Motivação	
	1.2	Os Números Naturais	
	1.3	Números Inteiros e Racionais	
2			
	2.1	Motivações	
	2.2	Propriedades de $\mathbb Q$ e sua Ordem	
	2.3	Incompletude de $\mathbb Q$	
	2.4	Os Números Reais (\mathbb{R})	
3	Aula	a 03 - 17/03/2023	
	3.1	Motivações	
	3.2	Cortes - Soma e Ordem	
4	Aula	a 04 - 20/02/2023	
	4.1	Motivações	
	4.2	Cortes - Multiplicação	
	4.3	$\mathbb R$ Como Corpo Ordenado Completo	
5	Aula	a 05 - 22/03/2023	
	5.1	Motivações	
	5.2	Sequências de Números Reais	
6	Aula	a 06 - 24/03/2023	
	6.1	Motivações	
	6.2	Propriedades de Sequências	
7	Aula	a 07 - 27/03/2023	
	7.1	Motivações	
	7.2	Exemplos de Sequências	
	7.3	Teoremas da Comparação e do Sanduíche	

1 Aula 01 - 13/03/2023

1.1 Motivação

- Relembrar sistemas básicos da matemática;
- Relembrar propriedades básicas das principais estruturas (N, Z, Q).

1.2 Os Números Naturais

Os números naturais são os que utilizamos para contar objetos, e são caracterizados pelos Axiomas de Peano:

- 1) Todo número natural tem um único sucessor;
- 2) Números naturais diferentes têm sucessores diferentes;
- 3) Existe um único número natural, zero (0), que não é sucessor de nenhum número natural.
- 4) Seja $X \subseteq \mathbb{N}$ tal que $0 \in X$ e, se n pertence a X, seu sucessor n+1 também pertence a X. Então, $X = \mathbb{N}$. (Propriedade de Indução).

<u>Definição.</u> Definimos a adição por: $n+0=n, n\in\mathbb{N},\ e\ n+(p+1)=(n+p)+1, p\in\mathbb{N}.$ Além disso, a multiplicação é dada por: $n.0=0, n.(p+1)=n.p+n, n, p\in\mathbb{N}.$ Ou seja, sabendo somar ou multiplicar um número, sabemos somar e multiplicar seu sucessor.

Com relação ao quarto axioma, ele leva este nome porque um dos métodos de demonstração, conhecido como prova por indução. Nele, mostramos um caso base, o caso 0, e utilizamos a segunda parte para provar que, se um resultado vale para o caso n, ele vale para n+1, portanto sendo verdadeiro para todos os naturais.

Lema. Para todo n natural, 1 + n = n + 1.

<u>Prova.</u> Note que o resultado é verdadeiro para n=0. Suponha que o resultado seja válido para n=k e mostremos que vale também para n=k+1. Com efeito, segue pela propriedade de indução e pela definição de soma que

$$1 + (k+1) = (1+k) + 1 = (k+1) + 1.$$

Segue que o resultado vale para todo n natural. ■

A seguir, mostramos a associatividade e a comutatividade, respectivamente, das operações nos naturais.

<u>Lema.</u> Para todo n, p, r naturais, (n + p) + r = n + (p + r).

<u>Prova</u>. Note que o resultado é válido trivialmente para r = 0 e r = 1. Suponha que o resultado seja válido para r = k e mostremos que vale também para r = k + 1. Com efeito, pela hipótese de indução e definição de adição,

$$n + (p + (k + 1)) = n + ((p + k) + 1) = (n + (p + k)) + 1 = ((n + p) + k) + 1 = (n + p) + (k + 1).$$

Segue o resultado por indução.

Lema. Para todo n, p naturais, n + p = p + n.

<u>Prova.</u> Observe que já mostramos o caso em que p = 1. Suponha que o resultado vale para p = k e vamos mostrar o caso p = k + 1. De fato, pela hipótese de indução e definição de adição, junto do lema de associatividade, temos

$$n + (k + 1) = (n + k) + 1 = (k + n) + 1 = 1 + (k + n) = (1 + k) + n = (k + 1) + n.$$

Por indução, segue que isso vale para todo natural n.

Definição. Definimos uma ordem em \mathbb{N} colocando que $m \leq n$ se existe p natural tal que $n = m + p.\square$

A relação de ordem possui as seguintes propriedades:

- i) Reflexiva: Para todo n natural, $n \leq n$;
- ii) Antissimétrica: Se $m \le n$ e $n \le m$, então m = n;
- iii) Transitiva: Se $m \le n$ e $n \le p$, então $m \le p$;
 - i Dados m, n naturais, temos ou $m \le n$, ou $n \le m$;
 - v Se $m \le n$ e p é um natural, então $n + p \le n$ e $mp \le np$

1.3 Números Inteiros e Racionais

Usualmente, construimos os inteiros a partir dos naturais tomando os pares ordenados de números naturais com a seguinte identificação $(a, b) \sim (c, d)$ se a + d = b + c. Assim, podemos representar

$$\mathbb{N} = \{(0,0), (1,0), (2,0), (3,0), \ldots\}, \quad -\mathbb{N}^* = \{\cdots, (0,3), (0,2), (0,1)\}.$$

Tomar o sucessor será somar 1 à primeira coordenada e, para os inteiros negativos, voltar a identificar (1, n) com (0, n-1).

Os números racionais são construídos tomando o conjunto $\mathbb{Z} \times \mathbb{Z}^*$ e identificando os pares $(a,b) \sim (c,d)$ para os quais ad = bc. Representamos um par (a, b) neste conjunto por $\frac{a}{b}$. A soma e o produto em \mathbb{Q} são dados, respectivamente, por:

$$\frac{a}{b} + \frac{c}{d} := \frac{ad + bc}{bd}$$
$$\frac{a}{b} \cdot \frac{c}{d} := \frac{ac}{bd}.$$

Chamamos a adição a operação que a cada par $(x,y) \in \mathbb{Q} \times \mathbb{Q}$ associa sua soma $x+y \in \mathbb{Q}$ e chamamos multiplicação a operação que a cada par $(x,y) \in \mathbb{Q} \times \mathbb{Q}$ associa seu produto $x.y \in \mathbb{Q}$. A terna $(\mathbb{Q},+,\cdot)$ satisfaz as propriedades de um corpo, i.e.,

$$\begin{split} &(A1)(x+y)+z=x+(y+z), \quad \forall x,y,z\in\mathbb{Q}\\ &(A2)x+y=y+x, \quad \forall x,y\in\mathbb{Q}\\ &(A3)\exists 0\in\mathbb{Q}:x+0=x, \quad \forall x\in\mathbb{Q}\\ &(A4)\forall x\in\mathbb{Q},\exists y\in\mathbb{Q}(y=-x):x+y=0\\ &(M1)(xy)z=x(yz), \quad \forall x,y,z\in\mathbb{Q}\\ &(M2)xy=yx, \quad x,y\in\mathbb{Q}\\ &(M3)\exists 1\in\mathbb{Q}:1.x=x.1=x, \quad \forall x\in\mathbb{Q}\\ &(M4)\forall x\in\mathbb{Q}^*,\exists y=\frac{1}{x}\in\mathbb{Q}:x.y=1\\ &(D)x(y+z)=xy+xz, \quad \forall x,y,z\in\mathbb{Q}. \end{split}$$

2 Aula 02 - 15/03/2023

2.1 Motivações

- Propriedades básicas dos racionais;
- Construção do corpo dos reais a partir dos racionais;
- Cortes de Dedekind.

2.2 Propriedades de \mathbb{Q} e sua Ordem

Com as 9 propriedades de corpo, conseguimos obter novas regras nos racionais, como a famosa lei do cancelamento:

Proposição. $Em \mathbb{Q}$, vale

$$x + z = y + z \Rightarrow x = y$$

 $e, se z \neq 0,$

$$xz = yz \Rightarrow x = y$$

Prova.

$$x = x + 0 = x + (z + (-z)) = (x + z) + (-z) = (y + z) + (-z) = y + (z + (-z)) = y + 0 = y$$

$$x = x \cdot 1 = x(z \cdot \frac{1}{z}) = (xz)\frac{1}{z} = (yz)\frac{1}{z} = y(z\frac{1}{z}) = y \cdot 1 = y. \blacksquare$$

Proposição. Os elementos neutros da adição e multiplicação são únicos. Os elementos oposto e inverso $tamb\'{e}m$ o $s\~{a}o$.

Proposição. Para todo x racional, $x.\theta = \theta$.

Proposição. Para todo x racional, -x = (-1)x.

A maioria desses resultados acima seguem diretamente da lei do cancelamento. Suas demonstrações ficam como exercício.

Definição. Diremos que

$$\frac{a}{b} \in \mathbb{Q} = \left\{ \begin{array}{ll} n\tilde{a}o\text{-}negativo, & ab \in \mathbb{N} \\ positivo, & ab \in \mathbb{N}, a \neq 0 \end{array} \right.$$

e diremos que

$$\frac{a}{b} \in \mathbb{Q} = \left\{ \begin{array}{cc} \textit{n\~{a}o-positivo}, & \frac{a}{b} \textit{ n\~{a}o for postivo} \\ \textit{negativo}, & \frac{a}{b} \textit{ n\~{a}o for n\~{a}o-negativo}. \end{array} \right. \square$$

<u>Definição</u>. Sejam x, y racionais. Diremos que x é menor e que y e escrevemos "x < y" se existir t racional positivo tal que

$$y = x + t$$
.

Neste mesmo caso, podemos dizer que y é maior que x, escrevendo "x > y". Em particular, temos x > 0 se x for positivo e x < 0 se x for negativo.

Ademais, se x < y ou x = y, escrevemos " $x \le y$ " se existir racional t não-negativo tal que

$$y = x + t$$

e, se x > y ou x = y, escrevemos " $x \ge y$ " caso exista racional t não-positivo com

$$y = x + t.\square$$

A quádrupla $(\mathbb{Q}, +, \cdot, \leq)$ satisfaz as propriedades de um corpo ordenado, i.e.,

$$\begin{split} &(O1)x \leq x \forall x \in \mathbb{Q}; \\ &(O2)x \leq y \text{ e } y \leq x \Rightarrow x = y \forall x, y \in \mathbb{Q}; \\ &(O3)x \leq y, y \leq z \Rightarrow x \leq z \forall x, y, z \in \mathbb{Q}; \\ &(O4)\forall x, y \in \mathbb{Q}, x \leq y \text{ ou } y \leq x; \\ &(OA)x \leq y \Rightarrow x + z \leq y + z; \\ &(OM)x < y \text{ e } z > 0 \Rightarrow xz < yz. \end{split}$$

Proposição. Para quaisquer x, y, z, w no corpo ordenado dos racionais, valem

$$\begin{split} i.)x &< y \Longleftrightarrow x + z < y + z \\ ii.)z &> 0 \Longleftrightarrow \frac{1}{z} > 0 \\ iii.)z &> 0 \Longleftrightarrow -z < 0 \\ iv.)z &> 0 \Longrightarrow x < y \Longleftrightarrow xz < yz \\ v.)z &< 0 \Longrightarrow x < y \Longleftrightarrow xz > yz \\ vi.)xz &< yw \Longleftrightarrow \left\{ \begin{array}{l} 0 \leq x < y \\ 0 \leq z < w \end{array} \right. \\ viii.)0 &< x < y \Longleftrightarrow 0 < \frac{1}{y} < \frac{1}{x} \\ viii.)x &< y ou x = y ou x > y \\ ix.)xy &= 0 \Longleftrightarrow x = 0 ou y = 0. \\ x.) \left. \begin{array}{l} x \leq y \\ z \leq w \end{array} \right\} \Longrightarrow x + z \leq y + w \\ xi.) \left. \begin{array}{l} 0 \leq x \leq y \\ z \leq w \end{array} \right\} \Longrightarrow xz \leq yw. \end{split}$$

2.3 Incompletude de \mathbb{Q}

Os números racionais podem ser representados por pontos em uma reta horizontal ordenada, chamada reta real. Se P for a representação de um número racional x, diremos que x é a abscissa de P. Note que nem todo ponto da reta real é racional. Para isso, considere um quadrado de lado 1 e diagonal d. Pelo Teorema de Pitágoras, $d^2 = 1^2 + 1^2 = 2$. Agora, seja P a intersecção do eixo x com a circunferência de centro em 0 e raio d. Mostremos que P é um ponto da reta com abscissa $x \notin \mathbb{Q}$.

Proposição. Seja a um inteiro. Então, se a for ímpar, seu quadrado também será. Além disso, se a for par, seu quadrado também é par.

Proposição. A equação $x^2 = 2$ não admite solução racional.

A ideia da prova é escrever um x na forma de fração e chegar na contradição de que tanto o numerador quanto o denominador serão números pares. Com isso, conclui-se que não existe racional irredutível com quadrado igual a 2, portanto não existe racional satisfazendo a equação.

Essa discussão mostra que existem vãos na "reta" dos racionais, requerindo a adoção de um novo corpo. Essa é a principal motivação por trás dos números reais, "preencher"os buracos deixados pelos racionais.

Proposição. (Exercício.) Sejam p_1, \ldots, p_n números primos distintos. Então, a equação $x^2 = p_1 p_2 \cdots p_n$ não tem solução racional.

Vimos que os números racionais com a sua adição, multiplicação e relação de ordem é um corpo ordenado. Nos interessamos, também, pelo corpo dos reais e dos racionais (\mathbb{R}, \mathbb{C}) . De forma abstrata, um corpo é um conjunto não-vazio \mathbb{F} em que estão definidas duas operações binárias

$$+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}, \quad (x, y) \mapsto x + y$$

 \mathbf{e}

$$: \mathbb{F} \times \mathbb{F} \to \mathbb{F}, \quad (x, y) \mapsto xy$$

em que valem as oito propriedades vistas previamente para a definição das operações em \mathbb{Q} Se, ainda por cima, no corpo \mathbb{F} está definida uma ordem com propriedades análogas às vistas para a quádrupla $(\mathbb{Q}, +, \cdot, \leq)$, diremos que $(\mathbb{F}, +, \cdot, \leq)$ é um corpo ordenado.

<u>Definição</u>. Diremos que um subconjunto A de um corpo \mathbb{F} ordenado é limitado superiormente se existe um L neste corpo tal que $a \leq L$ para todo a de A.

Definimos para um subconjunto limitado superiormente um número $\sup(A) \in \mathbb{F}$ como o menor limitante superior de A, i.e., se $a \leq \sup(A)$ para todo a de A e se existe $f \in \mathbb{F}$ com $f < \sup(A)$, então existe um a em A com f < a.

Por fim, diremos que um corpo ordenado é completo se todo subconjunto limitado superiormente possui supremo. \Box

Nem todo subconjunto limitado superiormente de \mathbb{Q} tem supremo, ou seja, \mathbb{Q} não é completo.

2.4 Os Números Reais (\mathbb{R})

A ideia que iremos usar para construir o conjunto dos reais é que o conjunto dos números reais preenche toda a reta real. Os Elementos de \mathbb{R} serão os subconjuntos de \mathbb{Q} à esquerda de um ponto da reta real e serão chamados de cortes.

Definição. Um corte é um subconjunto $\alpha \subsetneq \mathbb{Q}$ com as seguintes propriedades:

- i) $\alpha \neq \emptyset$ $e \alpha \neq \mathbb{Q}$;
- ii) Se $p \in \alpha$ e q é um racional com q < p, então $q \in \alpha$ (todos os racionais à esquerda de um elemento de α estão em α);
- iii) Se $p \in \alpha$, existe um $r \in \alpha$ com p < r (α não tem um maior elemento). \square

Essa ideia foi proposta inicialmente por Julius Wilhelm Richard Dedekind, um matemático alemão, em 1872, com o objetivo de encontrar uma explicação e construção elementar para os números reais.

Exemplo 1. Se q é um racional, definimos $q^* = \{r \in \mathbb{Q} : r < q\}$. Então, q^* é um corte que chamamos de racional. Os cortes que não são desse tipo se chamam cortes irracionais.

Exemplo 2. $\sqrt{2} = \{q \in \mathbb{Q} : q^2 < 2\} \cup \{q \in \mathbb{Q} : q < 0\}$ é um corte irracional.

Observe que se α é um corte, p é um ponto dele e q não é, então p < q. Além disso, se r pertence a α e r < s, então s não pertence ao corte.

Definição. Diremos que $\alpha < \beta$, em que α e β são cortes, se $\alpha \subsetneq \beta$.

Proposição. Se α, β, γ são cortes,

- i) $\alpha < \beta$ e $\beta < \gamma$ implica que $\alpha < \gamma$;
- ii) Exatamente uma das seguintes relações é válida: $\alpha < \beta$ ou $\alpha = \beta$ ou $\beta < \alpha$
- iii) Todo subconjunto não-vazio e limitado superiormente de $\mathbb R$ tem supremo.

3 Aula 03 - 17/03/2023

Motivações 3.1

- Finalizar a construção de \mathbb{R} por cortes;
- Definir um corpo ordenado com base nos cortes;

3.2 Cortes - Soma e Ordem

Coloquemos, para fins de conveniência, \mathbb{R} como a união de todos os cortes.

Vamos mostrar que os cortes racionais são, de fato, cortes. Considere, dado um racional q, $q^* = \{p \in \mathbb{Q} : q \in \mathbb{Q} :$ p < q. Ele não pode completar todos os racionais, pois q + 1 não pertence a q^* . Além disso, ele é não vazio, visto que q-1 pertence a ele, mostrando a primeira propriedade dos cortes.

Ademais, se r pertence a q^* e p é um racional menor que r, segue da transitividade da ordem que p é menor que q, já que r também é. Assim, p pertence a q^* , mostrando a segunda propriedade dos cortes. Por fim, dado um r em q^* , seja $s = \frac{r+q}{2}$. Então,

$$r - \frac{r+q}{2} = \frac{r-q}{2} < 0,$$

tal que s é menor que r e, logo, pertence a q^* . Portanto, q^* forma um corte.

Daremos continuidade às atividades da aula anterior demonstrando a última proposição vista.

Proposição. Se α, β, γ são cortes,

- i) $\alpha < \beta$ e $\beta < \gamma$ implica que $\alpha < \gamma$;
- ii) Exatamente uma das seguintes relações é válida: $\alpha < \beta$ ou $\alpha = \beta$ ou $\beta < \alpha$
- iii) Todo subconjunto não-vazio e limitado superiormente de \mathbb{R} tem supremo.

<u>Prova.</u> As duas primeiras partes seguem automaticamente da forma que definimos a ordem \leq para os cortes. Resta mostrar a última.

Vamos exibir o supremo explicitamente. Com efeito, seja $A \subseteq \mathbb{R}$ um coleção de cortes limitada superiormente, i.e., existe um l em \mathbb{R} tal que $\alpha \leq l$ para todo α em \mathcal{A} . Defina $\mathcal{S} = \bigcup_{\alpha \in \mathcal{A}} \alpha$. Mostremos que \mathcal{S} é um corte. Com efeito, que S é não-vazio e diferente de $\mathbb Q$ é automático. Além disso, dado q em S e r < q, segue que $r \in \alpha_0$ para algum α_0 em \mathcal{A} .

Para ver que S é o supremo, suponha que S' < S. Então, existe r em S/S'. Como r pertence a S, rpertence a α_0 para algum $\alpha_0 \in \mathcal{A}$. Logo, $\alpha_0 > \mathcal{S}'$. Portanto, \mathcal{S} é o menor limitante superior de \mathcal{A} , ou seja, seu supremo.

Definição. Se α, β são cortes, definimos $\alpha + \beta$ como o conjunto de todos os racionais da forma r + s, com $\overline{r \ em \ \alpha \ es} \ em \ \beta$. Ademais, tome $0^* = \{s \in \mathbb{Q} : s < 0\}$. \square

Vamos conferir a definição, i.e., que $\alpha + \beta$ é um corte. Com efeito, $\alpha + \beta \neq \emptyset$, pois $\alpha \neq \emptyset$ e $\beta \neq \emptyset$. Além disso, se p não pertence a α e q não pertence a β , mas r pertence a α e s a β , então r+s< p+q, tal que p+q não pertence a $\alpha+\beta$.

Além disso, tome r+s em $\alpha+\beta$ e p< r+s. Escreva $p=r'+s'=\underbrace{p-r}_{\in\beta}+\underbrace{r}_{\in\alpha}$. Assim, p pertence a

 $\alpha + \beta$.

Por fim, tome r+s em $\alpha+\beta$ e seja r'>r (ambos em α). Logo, $\underbrace{r'+s}_{\in\alpha+\beta}>r+s$. Portanto, $\alpha+\beta$ é um corte.

Fica de exercício mostrar que 0* é um corte. Agora, mostremos os axiomas de corpo.

A comutatividade e associatividade da adição são triviais. Além disso, dado r em α e s em 0^* ,

$$r + s < r + 0 = r \Rightarrow r + s \in \alpha.$$

Logo, $\alpha + 0^* \subseteq \alpha$. Por outro lado, dado r em α , existe r' em α tal que r' > r. Assim, $r = \underbrace{r'}_{\alpha} + \underbrace{(r - r')}_{\in 0^*}$, pois r - r' < 0. Portanto, $\alpha \subseteq \alpha + 0^*$ e $\alpha = \alpha + 0^*$.

Proposição. Dado um corte α , existe um único corte β tal que $\alpha + \beta = 0^*$, em que

$$\beta = \{ -p \in \mathbb{Q} : p - r \not\in \alpha \text{ para algum } r \in \mathbb{Q}, r > 0 \}$$

 $e \ \acute{e} \ denotado \ por -\alpha.$

Prova. Começamos mostrando que β é um corte. Feito isso, vamos mostrar que $\beta + \alpha = 0^*$.

Com efeito, dado -p em β , segue que p não pertence a β . Caso s = p + r, -s pertence a β , tal que β é não-vazio. Ademais, se $p \in \alpha$, $-p \notin \beta$, tal que β é diferente de \mathbb{Q} .

Além disso, se -q < -p e $-p \in \beta$, então $-q \in \beta$. Por fim, se -p pertencer a β , $-p + \frac{r}{2} \in \beta$. Portanto, β é um corte.

Agora, vamos conferir o outro item. De fato, se r pertence a α e s a $-\alpha$, então $-s \notin \alpha$ e r < -s, i.e., r+s < 0. Segue que $\alpha + (-\alpha) \subseteq 0^*$. Por outro lado, se $-2r \in 0^*$ com r > 0, existe um inteiro n tal que $nr \in \alpha$ e $(n+1)r \notin \alpha$. Escolha $p = -(n+2)r \in -\alpha$ e escreva -2r = nr + p. Portanto, $0^* \subseteq \alpha + (-\alpha)$ e os conjuntos são iguais. \blacksquare

4 Aula 04 - 20/02/2023

4.1 Motivações

- Definir multiplicação de cortes;
- $\bullet\,$ Definir conceito de distância entre números de $\mathbb R$

4.2 Cortes - Multiplicação

Definição. Se α , β são cortes,

$$\alpha\beta = \begin{cases} \alpha0^*, & \forall \alpha \in \mathbb{R} \\ \{p \in \mathbb{Q} : \exists 0 < r \in \alpha \ e \ 0 < s \in \alpha : p \le rs\}, & \alpha, \beta > 0^* \\ (-\alpha)(-\beta), & \alpha, \beta < 0^* \\ -[(-\alpha)\beta], & \alpha < 0^*e\beta > 0^* \\ -[\alpha(-\beta)], & \alpha > 0^*e\beta < 0^* \end{cases}$$

 $Definimos,\ tamb\'em,\ 1^*\{s\in\mathbb{Q}:s<1\}.$

4.3 \mathbb{R} Como Corpo Ordenado Completo

Temos $\mathbb{Q} \subseteq \mathbb{R}$ e diremos que todo número que não é real é irracional.

<u>Teorema.</u> A quádrupla $(\mathbb{R}, +, \cdot, \leq)$ satisfaz as condições de corpo ordenado, de corpo e é completo.

Definição. Seja $x \in \mathbb{R}$. O módulo, ou valor absoluto de x, é dado por

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Disto segue que $|x| \ge 0$ e $-|x| \le x \le |x|$ para todo x real.

Exemplo 3. Mostre que $|x|^2 = x^2$, ou seja, o quadrado de um número real não muda quando se troca seu $\frac{1}{\sin al}$

Exemplo 4. A equação |x|=r, com r maior que θ , tem como soluções apenas r e -r.

Sejam P e Q dois pontos da reta real de abscissas x e y. Então, a distância de P a Q é definida por |x-y|. Assim, |x-y| é a medida do segmento PQ. Em particular, como |x| = |x-0|, |x| é a distância de x a 0.

Exemplo 5. Seja r maior que 0. Então, |x| < r se, e somente se, -r < x < r. Logo, o intervalo (-r, r) \acute{e} o conjunto dos pontos reais cuja disância de 0 \acute{e} menor que r.

Exemplo 6. Para quaisquer x, y reais, vale

$$|xy| = |x||y|.$$

Exemplo 7. Para quaisquer x, y reais, temos

$$|x+y| < |x| + |y|$$
.

Com efeito, somando $-|x| \le x \le |x|$ $|e-|y| \le y \le |y|$, obtemos $-|x| - |y| \le x + y \le |x| + |y|$.

Definição. Um intervalo em \mathbb{R} é um subconjunto de \mathbb{R} que tem uma das seguintes formas:

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}, \qquad (Intervalo\ fechado.)$$

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}, \qquad (Intervalo\ aberto.)$$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$(-\infty,b] = \{x \in \mathbb{R} : x \le b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} : x > b\}$$

$$[a,+\infty) = \{x \in \mathbb{R} : x \ge a\}$$

$$(a,+\infty) = \{x \in \mathbb{R} : a < x\}$$

$$(-\infty,+\infty) = \mathbb{R}.$$

Definição. Um conjunto A de \mathbb{R} é dito limitado se existir L positivo tal que $|x| \leq L$ para todo x em A.

Proposição. Um conjunto A de \mathbb{R} é limitado se, e só se, existir L positivo, tal que A está contido em [-L, L]

Exemplo 8. a) A = [0,1] é limitado;

b) ℕ não é limitado;

c)
$$B = \left\{ \frac{2^n - 1}{2^n} : n \in \mathbb{N} \right\}$$
 é limitado;

d)
$$C = \left\{ \frac{2^n - 1}{2^n} : n \in \mathbb{N}^* \right\} \text{ \'e limitado.}$$

Definição. Seja $A \subseteq \mathbb{R}$.

- A será dito limitado superiormente se existir um L real tal que $x \leq L$ para todo x de A. Diremos que $L \not e o limitante superior de A.;$
- A será dito limitado inferiormente se existir um L real tal que $x \ge L$ para todo x de A. Diremos que L é o limitante inferior de A.;

Caso ambos ocorram, diremos que A é limitado.

Definição. Seja A um subconjunto dos reais limitado superiormente e não-vazio. Diremos que \overline{L} é o supremo de A se for um limitante superior e para qualquer outro limitante superior L de A, tivermos $\overline{L} < L$. Quando o supremo pertencer ao conjunto, chamaremos ele de máximo.

Vimos que todo subconjunto não-vazio e limitado superiormente de \mathbb{R} tem supremo.

Definição. Seja A um subconjunto dos reais limitado inferiormente e não-vazio. Diremos que \bar{l} \epsilon \text{o ínfimo} de A se for um limitante inferior e para qualquer outro limitante inferior l de A, tivermos $\bar{l} > l$. Quando o ínfimo pertencer ao conjunto, chamaremos ele de mínimo.

Proposição. Dado um subconjunto A dos reais não-vazio e limitado superiormente, $L = \sup A$ se, e somente

- a) L for limitante superior de A;
- b) para todo $\epsilon > 0$, existe $a \in A$ tal que $a > L \epsilon$.

Teorema. O conjunto $A = \{nx : n \in \mathbb{N}\}\$ será ilimitado para todo x não-nulo.

<u>Prova.</u> Se x > 0, suponhamos, por absurdo, que A seja limitado e seja L seu supremo. Como x > 0, deve existir um natural m tal que

$$L-x < mx$$
 $eL = \sup A < (m+1)x$.

Mas isso é uma contradição.

A prova para x < 0 é análoga e será deixada como exercício.

a) Considere A = [0,1). Então, -2 e 0 são limitantes inferiores de A enquanto $1, \pi, 101$ são limitantes superiores de A.

- b) \mathbb{N} não é limitado, mas é limitado inferiormente por 0, visto que $0 \leq x$ para todo x natural.
- c) $B = \{x \in \mathbb{Q} : x \leq \sqrt{2}\}$ não é limitado, mas é limitado superiormente por L, em que $L \geq 2$.

Corolário. Para todo $\epsilon > 0$, existe um n natural tal que

$$\frac{1}{n} < \epsilon, \quad \frac{1}{n\sqrt{2}} < \epsilon, \quad 2^{-n} < \epsilon.$$

Já sabemos, por construção, que entre dois números reais distintos existe um número racional. O mesmo vale para irracionais. De fato, sejam a e b números reais distintos. Se a < b e $\epsilon = b - a > 0$, do corolário, tome um natural n tal que $\frac{1}{n\sqrt{2}} < \frac{1}{n} < \epsilon$. Se a é racional, $r = a + \frac{1}{n\sqrt{2}}$ é irracional e a < r < b. Por outro lado, se a é irracional, $r = a + \frac{1}{n}$ também é, tal que a < r < b. Portanto, dados dois números reais quaisquer,

existe um número irracional.

Corolário. Qualquer intervalo aberto e não-vazio contém infinitos números racionais e infinitos irracionais.

Corolário. Se
$$A = \left\{ \frac{1}{n} : n \in \mathbb{N}^* \right\}$$
, então inf $A = 0$.

Exemplo 10.

(a) $Seja \ A = (0, 1]$. $Ent\tilde{ao}$, $\inf A = 0$, $\max A = 1$;

$$(b)\sqrt{2} = \{r \in \mathbb{Q} : r \leq 0\} \cup \{r \in \mathbb{Q} : r^2 < 2\} \text{ \'e um corte.} \quad (c)C = \{x \in \mathbb{Q} : x^2 < 2\} \Rightarrow \sqrt{2} = \sup C \text{ e inf } C = -\sqrt{2}.$$

Vamos analisar mais cautelosamente o item b e prová-lo. De fato, se $0 < r \in \mathbb{Q}$ e $r^2 < 2$, existe n natural tal que $[2r+1]\frac{1}{n} < 2 - r^2$ e $(r+\frac{1}{n})^2 < 2$. As outras propriedades de cortes são triviais.

Olhando também para o item C, como todos seus elementos são racionais saitsfazendo $x^2 < 2, \sqrt{2}$ é um limitante superior de C. Agora, se $0 < L < \sqrt{2}$, existe um racional $r \in (L, \sqrt{2})$ e $L^2 < r^2 < 2$. Logo, r pertence a C e L não é limitante superior para C, provando o resultado.

Proposição. Se A é um subconjunto não-vazio e limitado inferiormente, então $-A = \{-x : x \in A\}$ será limitado superiormente e inf $A = -\sup(-A)$. Analogamente, se for limitado superiormente, o conjunto -A será limitado inferiormente, e $\sup A = -\inf(-A)$

<u>Prova.</u> Se A for limitado inferiormente, inf $(A) \le x$ para todo x de A e, dado $\epsilon > 0$, deve existir a em A tal que $a < \inf(A) + \epsilon$, ou, trocando o sinal, $-\inf(A) \ge -x$ para todo -x de -A e, dado $\epsilon > 0$, deve existir b = -a em -A tal que $-a > -\inf(A) - \epsilon$.

Com isso, segue que -A será limitado superiormente, e $\sup(-A) = -\inf(A)$. A outra prova fica como exercício. \blacksquare

Corolário. Todo conjunto A não-vazio e limitado inferiormente de \mathbb{R} tem ínfimo.

Corolário. Todo conjunto A não-vazio e limitado de \mathbb{R} tem ínfimo e supremo.

Definição. Uma vizinhança de um número real a é qualquer intervalo aberto da reta contendo a.

Exemplo 11. Se $\delta > 0, V_{\delta}(a) := (a - \delta, a + \delta)$ é uma vizinhança de a que será chamada de δ -vizinhança de

<u>Definição.</u> Sejam A um subconjunto de \mathbb{R} e b um número real. Se, para todo $\delta > 0$, existir $a \in V_{\delta}(b) \cap A$, $a \neq b$, então b será dito um ponto de acumulação de A.

Exemplo 12. a) O conjunto dos pontos de acumulação de (a, b) é [a, b];

- b) Seja $B = \mathbb{Z}$. Então, B não tem pontos de acumulação;
- c) Subconjuntos finitos de $\mathbb R$ não têm pontos de acumulação;
- d) O conjunto dos pontos de acumulação de \mathbb{Q} é \mathbb{R} .

<u>Definição</u>. Seja $B \subseteq \mathbb{R}$. Um ponto b de B será dito um ponto isolado de B, se existir $\delta > 0$ tal que $V_{\delta}(b)$ não contém pontos de B distintos de b. □

Exemplo 13. Seja $B = \{1, \frac{1}{2}, \frac{1}{3}, \cdots\}$. Então, o conjunto dos pontos de acumulação de $B \notin \{0\}$ e o conjunto dos pontos isolados de $B \notin \{0\}$ e o conjunto B.

Observe que existem conjuntos infinitos sem pontos de acumulação, tal como \mathbb{Z} . Por outro lado, todo conjunto infinito e limitado possui pelo menos um ponto de acumulação.

<u>Teorema</u>. Se A é um subconjunto infinito e limitado de \mathbb{R} , então A possui pelo menos um ponto de acumulação.

Prova. Se $A \subseteq [-L, L]$ e $[a_n, b_n]$, $n \in \mathbb{N}$ são escolhidos tais que $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$, $b_0 = -a_0 = L$, $b_n - a_n = \frac{2L}{2^n}$, $n \in \mathbb{N}^*$ e $[a_n, b_n]$ contém infinitos elementos de A. Seja $a = \sup\{a_n : n \in \mathbb{N}\}$.

Note que $[a_n, b_n] \subseteq a_j, b_j, j \le n$ e $[a_j, b_j] \subseteq [a_n, b_n], j > n$. Em qualquer um dos casos, $a_n \le b_j$ para todo $j \in \mathbb{N}$. Logo, $a \le b_j, j \in \mathbb{N}$. Segue que $a_n \le a = \sup\{s_n : n \in \mathbb{N}\} \le b_n$ para todo $n \in \mathbb{N}$ e $a \in \bigcap_{j=1}^n [a_n, b_n]$.

Dado $\delta > 0$, escolha $n \in \mathbb{N}$ tal que $\frac{2L}{2^n} < \delta$. Segue que $a \in [a_n, b_n] \subseteq (a - \delta, a + \delta) = V_{\delta}(a)$ e a é ponto de acumulação de A.

5 Aula 05 - 22/03/2023

5.1 Motivações

- Sequências de Números Reais;
- Convergência de Sequências;

5.2 Sequências de Números Reais

Definição. Uma sequência é uma função definida no conjunto dos números reais que, para cada n natural, associa um número real a_n .

$$\mathbb{N} = \{0, 1, 2, \dots\}$$
$$f : \mathbb{N} \to \mathbb{R}$$
$$n \mapsto a_n.$$

Denotamos a função por $\{a_n\}\square$

Exemplo 14. Sendo $a_n = \frac{f_1}{n+1}$ para todo n natural, temos a sequência $\{1, \frac{1}{2}, \frac{1}{3}, \cdots\}$.

Exemplo 15. Sendo $a_n = 6$ para todo n natural, temos a sequência constante

$$\{6, 6, 6, \cdots\}.$$

Exemplo 16. Coloque $a_{2n+1} = 7$, $a_{2n} = 4$ para todo n natural. Temos

$$\{4, 7, 4, 7, \cdots\}$$

Consideremos as sequências

$$\alpha_n = n$$
, $\beta_n = (-1)^n$, $e \gamma_n = \frac{1}{n}$.

Como funções, elas podem ter os gráficos traçados, mas não são muito significativos, visto que consistem em coletâneas de pontos discretos. Ademais, note que a sequência (α_n) "diverge" para infinito, a sequência (β_n) "oscila" e a sequência (γ_n) "converge para 0". Precisamente,

<u>Definição</u>. A sequência $\{a_n\}$ é dita convergente com limite l se, para todo $\epsilon > 0$, existe um natural N dependendo de $\epsilon(N = N(\epsilon) \in \mathbb{N})$ tal que n > N implica em $|a_n - l| < \epsilon$. Ou seja, a partir de um certo N, os a_n estão no intervalo $(l - \epsilon, l + \epsilon)$ e, como ϵ é arbitrário, os a_n se juntam em torno de l. Disto, segue que a condição exigida equivale a

$$l - \epsilon < a_n < l + \epsilon, \quad n \ge N.$$

Denotamos esse fenômeno por $\lim_{n\to\infty} a_n = l$, ou $a_n \to l$, ou $a_n \xrightarrow{n\to\infty} a.\Box$.

Exemplo 17. $\circ \frac{1}{n} \to 0, n \to \infty$. De fato, dado $\epsilon > 0$, da propriedade arquimediana, segue que existe um N natural tal que $N\epsilon > 1$. Logo, para todo $n \ge N$, temos

$$0 - \epsilon < \frac{1}{n} \le \frac{1}{N} < 0 + \epsilon.$$

 $\circ \frac{n}{n+1} \to 1, n \to \infty$. Com efeito, dado $\epsilon > 0$, queremos encontrar N natural não-nulo tal que se n é maior que N, temos

$$\left| \frac{n}{n+1} - 1 \right| < \epsilon.$$

No entanto, $\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}$ e, da propriedade Archimediana, existe N em \mathbb{N}^{\times} tal que $(N+1)\epsilon>1$. Logo, se n>N.

$$1 - \epsilon < \frac{n}{n+1} < 1 + \epsilon.$$

Definição. Uma sequência $\{a_n\}$ será divergente quando ela não for convergente.

- I) Sequência divergente para $+\infty$: Este caso ocorre se dado K>0, existe N natural tal que se $n>N, a_n>K.$
- II) Sequência divergente para $-\infty$: Acontece quando dado K>0, existe N natural tal que se $n>N, a_n<-K$.
- III) Sequência oscilante: Por fim, ocorre quando a sequência diverge, mas nem para $+\infty$ e nem para $-\infty.\Box$

Note que, como sequências são funções, podemos multiplicá-las por constante, somar, dividir e multiplicar por outras sequência. De fato,

Definição. Dadas sequências $\{a_n\}, \{b_n\}$ e um número real c, deifnimos

$$i)\{a_n\} + \{b_n\} = \{a_n + b_n\}$$

$$ii)c\{a_n\} = \{c \cdot a_n\}$$

$$iii)\{a_n\}\{b_n\} = \{a_nb_n\}$$

$$iv) Se \ b_n \neq 0 \forall n \in \mathbb{N}, \frac{\{a_n\}}{\{b_n\}} = \left\{\frac{a_n}{b_n}\right\} \square$$

Definição. Seja $\{a_n\}$ uma sequência de número reais. Diremos que $\{a_n\}$ é limitada se sua imagem for um subconjunto limitado de \mathbb{R} .

<u>**Teorema.**</u> Seja $\{a_n\}$ uma sequência de números reais.

- a) $a_n \xrightarrow{n \to \infty} a$ se, e somente, toda vizinhança de a contém todo, exceto uma possível quantidade finita de a_n 's.
- b) O limite é único.
- c) Se $\{a_n\}$ é convergente, então $\{a_n\}$ é limitada
- d) Se $a_n \xrightarrow{n \to \infty} a$, exite N natural tal que $a_n > 0$ para todo $n \ge N$.
- e) Se $A \subseteq \mathbb{R}$ e a é um ponto de acumulação de A, então existe uma sequência $\{a_n\}$ de elementos de A que converge para a.

Prova. O item a é trivial. Mostremos a unicidade do limite: Suponha que a_n converge para a e para b, com a diferente de b. Então, dado $\epsilon > 0$, existem naturais N_1, N_2 tais que se $n \geq N_1, |a_n - a| < \epsilon$ e se $n \geq N_2, |a_n - b| < \epsilon$. Tome $N = \min N_1, N_2$ e suponha que $n \geq N$. Então, temos

$$|b - a| \le |b - a_n| + |a_n - a| = |b - a_n| + |a - a_n| < 2\epsilon.$$

(P.S.: pode ser boa prática tomar $\frac{\epsilon}{2}$ ao invés de ϵ , pois assim obtemos $|b-a| < \frac{2\epsilon}{2} = \epsilon$.)

Como ϵ é abritrário, podemos selecionar ϵ infinitamente próximo de 0. Portanto, b=a.

Para o item c, suponha que a_n converge para a, isto ϵ , dado $\epsilon > 0$, $\epsilon = 1$ em particular, existe $N \in \mathbb{N}$ tal que se $n \ge N, |a_n - a| < 1$. Logo, $a_n \in (a - 1, a + 1)$ para n maior que N suficientemente grande. Restam os N-1 primeiros elementos da sequência. Assim, tome $R = \max \left\{ |a_1|, \cdots, |a_{N-1}|, |a+1|, |a-1| \right\}$. Deste modo, $a_n \in [-R, R]$ para todo n natural.

Com relação ao item d, basta tomar $\epsilon = \frac{a}{2} > 0$.

Por fim, quanto ao item e, suponha o que é dito no enunciado. Como a é ponto de acumulação, dado $\epsilon > 0$, existe $a' \in A, a' \neq a$ tal que

$$a' \in V_{\epsilon}(a) = (a - \epsilon, a + \epsilon).$$

Logo, tomadno $\epsilon = \frac{1}{n}$, podemos encontrar $a_n \in A, a_n \neq a$ tal que $a_n \in \left(a - \frac{1}{n}, a + \frac{1}{n}\right)$. A sequência $\{a_n\}$ converge para a. De fato, dado $\epsilon > 0$, tome N natural tal que $N\epsilon > 1$. Assim, se $n \geq N, a_n \in (a - \frac{1}{n}, a + \frac{1}{n}) \subseteq a - \epsilon, a + \epsilon$. Portanto, $a_n \to a$.

<u>Teorema</u>. Seja $a_n \xrightarrow{n \to \infty} a, b_n \xrightarrow{n \to \infty} b$ e c um número real. Então,

$$a)a_n + b_n \xrightarrow{n \to \infty} a + b.$$

$$b)ca_n \xrightarrow{n \to \infty} ca$$

$$c)a_n b_n \xrightarrow{n \to \infty} ab$$

$$d)Seb \neq 0, b_n \neq 0 \forall n \in \mathbb{N}, \frac{a_n}{b_n} \xrightarrow{n \to \infty} \frac{a}{b}.$$

Prova. Item c). Suponha $a_n \stackrel{n \to \infty}{\longrightarrow} a, b_n \stackrel{n \to \infty}{\longrightarrow} b$. Note que

$$|a_n b_n - ab| = a_n b_n - a_n b + a_n b - ab \le |a_n| |b_n - b| + |b| |a_n - a|$$

Como $\{a_n\}$ é convergente, ela é limitada pelo teorema anterior. Assim, existe M > 0 tal que $|a_n| \leq M$ para todo n natural, tal que Assim,

$$|a_n b_n - ab| \le |a_n||b_n - b| + |b||a_n - a| \le M|b_n - b| + (|b| + 1)|a_n - a|.$$

Agora, dado $\epsilon > 0$, existem naturais N_1, N_2 tais que

$$|a_n - a| < \frac{\epsilon}{2(|b| + 1)}, \quad \forall n \ge N_1$$

 $|b_n - b| < \frac{\epsilon}{2M}, \quad \forall n \ge N_2.$

Logo, tomando $N = \max\{N_1, N_2\}$, se $n \ge N$,

$$|a_n b_n - ab| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Portanto, $a_n b_n \stackrel{n \to \infty}{\longrightarrow} ab$.

Definição. Seja $\{a_n\}$ uma sequência. Diremos que $\{b_n\}$ é uma subsequência de $\{a_n\}$ se existir uma função estritamente crescente $s: \mathbb{N} \to \mathbb{N}$ tal que $b_k = a_{s(k)}$ para todo k natural. \square

<u>Definição.</u> Seja $\{a_n\}$ uma sequência. Diremos que $\{a_n\}$ é de Cauchy se, dado $\epsilon > 0$, existe um natural $\overline{N = N(\epsilon)}$ tal que $|a_n - a_m| < \epsilon$ para todo $n, m \ge N$.

<u>Teorema.</u> a) Uma sequência é convergente se, e somente se, toda subsequência dela converge para o mesmo limite.

- b) Toda sequência convergente é de Cauchy;
- c) Toda sequência limitada tem subsequência convergente;
- d) Toda sequência de Cauchy é limitada;
- e) Toda sequência de Cauchy que tem subsequência convergente é convergente.
- f) Toda sequência de Cauchy é convergente;
- g) Toda sequência crescente e limitada é convergente;
- h) Toda sequência decrescente e limitada é convergente.

6 Aula 06 - 24/03/2023

6.1 Motivações

- Provar o teorema da aula anterior;
- Exemplos.

6.2 Propriedades de Sequências

Recapitulemos o teorema da aula anterior:

<u>Teorema.</u> a) Uma sequência é convergente se, e somente se, toda subsequência dela converge para o mesmo limite.

- b) Toda sequência convergente é de Cauchy;
- c) Toda sequência limitada tem subsequência convergente;
- d) Toda sequência de Cauchy é limitada;
- e) Toda sequência de Cauchy que tem subsequência convergente é convergente.
- f) Toda sequência de Cauchy é convergente;
- g) Toda sequência crescente e limitada é convergente;
- h) Toda sequência decrescente e limitada é convergente.

Prova. $a.) \Leftarrow$ Se toda subsequência de $\{a_n\}$ converge, então $\{a_n\}$ converge, pois ela é uma subsequência de si mesma (basta tomar $s: \mathbb{N} \to \mathbb{N}, s(n) = n.$)'

- \Rightarrow) Suponha que $a_n \stackrel{n \to \infty}{\longrightarrow} l$ e $\{b_n\}$ é uma subsequência de $\{a_n\}$, existe $s: \mathbb{N} \to \mathbb{N}$ estritamente crescente tal que $b_k = a_{s(k)}$. Dado $\epsilon > 0$, seja N o natural tal que $|a_n l| < \epsilon$ para todo $n \ge N$. Note que $s(n) \ge n$, tal que se $n \ge N$, então $s(n) \ge N$, de forma que $|a_{s(n)} l| < \epsilon$. Portanto, qualquer subsequência de $\{a_n\}$ é convergente.
 - b.) Se $a_n \longrightarrow l$, então dado $\epsilon > 0$, existe N natural tal que

$$|a_n - l| < \frac{\epsilon}{2}, \quad \forall n \ge N.$$

Logo, $|a_n - a_m| = |a_n - l + l - a_m| \le |a_n - l| + |l - a_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ para todo $n, m \ge N$.

c.) Suponha que $\{a_n\}$ é uma sequência limitada. Recorde que, do teorema de Bolzano-Weierstrass, todo conjunto inifinito e limitado possui um ponto de acumulação. Segue que a imagem I da sequência é finita ou infinita.

No primeiro caso, se I é finito, um dos valores pertencentes a I é tal que $a_n=a$ para infinitos índices. Construiremos a sequência como segue - Coloque s(0) como o menor elemento do conjunto dos n's para os quais $a_n=a, i.e., \{n \in \mathbb{N} : a_n=a\}=A$. Além disso, tome s(1) como o menor elemento de A, com exceção do s(0). Repetindo esse processo, obtemos uma subsequência constante até que se obtenha s(n)=a, ou seja, ela será convergente.

Agora, se I é infinito, segue de Bolzano-Weierstrass que I tem um ponto de acumulação, nomeie-o de a. Dado $\epsilon > 0, (a - \epsilon, a + \epsilon)$ tem infinitos elementos do conjunto I. Analogamente ao anterior, coloque N = s(0) como o menor elemento de $\{n \in \mathbb{N} : a_n \neq a, a_n \in (a - \epsilon, a + \epsilon)\}$ e coloque, também, $\epsilon_1 = |a - a_{s(0)}|$. Em seguida, tome $s(1) = \{n \in \mathbb{N} : a_n \neq a, a_n \in (a - \frac{\epsilon}{2}, a + \frac{\epsilon}{2})\}$. Indutivamente, $b = a_{s(n)}$ é convergente para a.

d.) Dado $\epsilon = 1$, seja N um número natural tal que

$$|a_n - a_m| < 1, \quad \forall n \ge N.$$

Considere $M = \{|a_0|, |a_1|, \dots, |a_{N-1}|, |a_N+1|, |a_N-1|\}$. Assim, $a_n \in [-M, M]$ para todo n natural.

e.) Seja $\{a_n\}$ de Cauchy e $\{a_{s(n)}\}$ convergente para l. Dado $\epsilon > 0$, existe um natural N_1 tal que

$$|a_n - a_m| < \frac{\epsilon}{2}, \quad \forall n \ge N_1.$$

Além disso, existe N₂ natural tal que

$$|a_{s(n)} - l| < \frac{\epsilon}{2}, \quad \forall s(n) \ge N_2.$$

Seja $N = \max\{s(N_2), N_1\}$ e tome $n \ge N$.

$$|a_n - l| = |a_n - a_{s(N_2)} + a_{s(N_2)} - l| \le |a_n - a_{s(N_2)}| + |a_{s(N_2)} - l| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

f.) Segue os itens (e), (d) e (c), visto que toda subsequência de Cauchy terá subsequência convergente pelos itens (d) e (c).

g.) Seja $\{a_n\}$ limitada e crescente, $l=\sup\{a_n:n\in\mathbb{N}\}$. Então, para todo $n\geq N$, em que N é tal que $a_N\in(l-\epsilon,l)$

$$l - \epsilon < a_N \le a_n \le l.$$

h.) Análoga ao g.

Exemplo 18. Mostre que

- i) $\{a, a, a, \dots\}, a \in \mathbb{R} \ \acute{e} \ convergente;$
- ii) {0,1,0,1} $n\tilde{a}o$ \acute{e} convergente;
- iii) {n} não é convergente.

Exemplo 19. Se a é um número real mais ou igual a zero, então a sequência $\{a^n\}$ é convergente se $0 \le a \le 1$ e divergente se a > 1. Com efeito, se a > 1, a = 1 + h, h > 0. Então,

$$a^{n} = (1+h)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{n-k} h^{k} = 1 + nh + \dots > 1 + nh.$$

Mas, segue da Archimediana que 1 + nh sempre forma um conjunto ilimitado para n natural, ou seja, a_n é ilimitada. Logo, a sequência diverge.

Por outro lado, suponha que a pertence a (0, 1). Então, $a^{n+1} = aa^n < a^n$, ou seja, é uma sequência decrescente e limitada inferiormente. Portanto $\{a_n\}$ é convergente.

Exemplo 20. Mostre que, se a é diferente de 1,

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a}$$

e que a sequência $\left\{\frac{1-a^{n+1}}{1-a}\right\}$ é convergente se $0 \le a < 1$ e divergente se a > 1.

Exemplo 21. Mostre que a sequência $\{a_n\}$, com $a_n = \sum_{i=0}^n \frac{1}{i!}$ é convergente para todo n natural. (Crescente e limitada por 3.)

Exemplo 22. Mostre que as sequências $\left\{ (1+\frac{1}{n}^n) \right\}, \{n^{\frac{1}{n}}\}\ e \{a^{\frac{1}{n}}\}\ com\ a>0,\ s\~ao\ convergentes.$

$$\circ (1 + \frac{1}{n})^n = 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \dots + \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{1}{n}) (1 - \frac{2}{n}) \dots (1 - \frac{n-1}{n})$$

$$\circ n^{\frac{1}{n}} > (n+1)^{\frac{1}{n+1}} \iff n^{n+1} > (n+1)^n \iff n > (1 + \frac{1}{n})^n$$

$$\circ x = a^n < 1 \Rightarrow x < 1, x^n = a, x^{n+1} = a^{\frac{n+1}{n}}, \ e \ y^{n+1} = a \Rightarrow \left(\frac{x}{y}\right)^{n+1} = a^{\frac{1}{n}}.$$

7 Aula 07 - 27/03/2023

7.1 Motivações

- Exemplos de Sequências;
- Teorema da Comparação e do Sanduíche;
- Limites superior e inferior.

7.2 Exemplos de Sequências

Revisemos os exemplos da última aula, com um extra ao final.

Exemplo 23. Mostre que

- i) $\{a, a, a, \dots\}, a \in \mathbb{R} \ \acute{e} \ convergente;$
- ii) $\{0,1,0,1\}$ $n\~ao \'e convergente;$
- iii) {n} não é convergente.

Exemplo 24. Se a é um número real mais ou igual a zero, então a sequência $\{a^n\}$ é convergente se $0 \le a \le 1$ e divergente se a > 1. Com efeito, se a > 1, a = 1 + h, b > 0. Então,

$$a^{n} = (1+h)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{n-k} h^{k} = 1 + nh + \dots > 1 + nh.$$

Mas, segue da Archimediana que 1 + nh sempre forma um conjunto ilimitado para n natural, ou seja, a_n é ilimitada. Logo, a sequência diverge.

Por outro lado, suponha que a pertence a (0, 1). Então, $a^{n+1} = aa^n < a^n$, ou seja, é uma sequência decrescente e limitada inferiormente. Portanto $\{a_n\}$ é convergente.

Exemplo 25. Mostre que, se a é diferente de 1,

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a}$$

e que a sequência $\left\{\frac{1-a^{n+1}}{1-a}\right\}$ é convergente se $0 \le a < 1$ e divergente se a > 1.

Exemplo 26. Mostre que a sequência $\{a_n\}$, com $a_n = \sum_{i=0}^n \frac{1}{i!}$ é convergente para todo n natural. (Crescente e limitada por 3.)

De fato, é claro que $\{a_n\}$ é crescente e que $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$, para $n \geq 2$. Logo,

$$a_n \le 1 + \sum_{k=0}^n \frac{1}{2^k} = 1 + \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} < 3.$$

Portanto, $\{a_n\}$ é convergente, e denotamos seu limite por e.

Exemplo 27. Mostre que as sequências $\left\{(1+\frac{1}{n}^n)\right\}, \{n^{\frac{1}{n}}\}\ e\ \{a^{\frac{1}{n}}\}\ com\ a>0,\ s\~ao\ convergentes.$

$$\circ (1 + \frac{1}{n})^n = 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \dots + \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{1}{n}) (1 - \frac{2}{n}) \dots (1 - \frac{n-1}{n})$$

$$\circ n^{\frac{1}{n}} > (n+1)^{\frac{1}{n+1}} \iff n^{n+1} > (n+1)^n \iff n > (1 + \frac{1}{n})^n$$

$$\circ x = a^n < 1 \Rightarrow x < 1, x^n = a, x^{n+1} = a^{\frac{n+1}{n}}, \ e \ y^{n+1} = a \Rightarrow \left(\frac{x}{y}\right)^{n+1} = a^{\frac{1}{n}}.$$

Ainda mais, uma delas têm como limite o número e definido no exemplo anterior. Para observar isso, considere o primeiro exemplo. Note que

$$b_n = 1 + \binom{n}{1} n^{-1} + \binom{n}{2} n^{-2} + \dots + \binom{n}{n-1} n^{-n+1} + \binom{n}{n} n^{-n}$$

$$= 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \dots + \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{1}{n}) (1 - \frac{2}{n}) \dots (1 - \frac{n-1}{n})$$

$$\leq 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} = a_n < e$$

Como cada termo da soma que define b_n é crescente, obtemos que b_n é crescente, tal que ela converge com limite $l = \sup \{b_n : n \in \mathbb{N}\}.$

Com relação ao último item, resta elaborar como ele converge para 1. Lembre-se que $a^{\frac{1}{n}}$ é o único número real positivo x tal que $x^n = a$. Logo, se $x = a^n$ e $y = a^{\frac{1}{n+1}}$, temos $x^{n+1} = y^{n+1}x$ e, deste modo,

$$(a)0 < a < 1 \Rightarrow x < 1 \ e\left(\frac{x}{y}\right)^{n+1} = x < 1 \ e, \ assim, \ x < y.$$

$$(b)a > 1 \Rightarrow x > 1 \ e\left(\frac{x}{y}\right)^{n+1} = x > 1 \ tal \ que \ x > y.$$

Logo, se $a < 1, \{a^{\frac{1}{n}}\}$ é crescente e limitada superiormente por 1, mostrando que ela é convergente. Além disto, se $a > 1, \{a^{\frac{1}{n}}\}$ é descrescente e limitada inferiormente por 1, também sendo convergente. Por fim, segue de $a^{\frac{1}{n(n+1)}} = \frac{a^{\frac{1}{n}}}{a^{\frac{1}{n+1}}}$. Portanto, do item (a) do teorema junto com a regra para quociente de sequências, segue que l = 1 é o limite dela.

Exemplo 28. Mostre que a sequência $\{c_n\}$, $c_0 = 1$, $c_n = n^{\frac{1}{n}}$, $n \ge 1$, é convergente. Com efeito, lembre-se que, para $n \ge 3$, $n > b_n = (1 + \frac{1}{n})^n$. Logo, para $n \ge 3$, $n^{n+1} > (n+1)^n$ e, consequentemente, $n^{\frac{1}{n}} > (n+1)^{\frac{1}{n+1}}$. Disto segue de $\{n^{\frac{1}{n}}\}$ é limitada e, por (h), que $\{c_n\}$ é convergente com limite $l \ge 1$. Ainda mais, $(2n)^{\frac{1}{2n}}(2n)^{\frac{1}{2n}} = (2n)^{\frac{1}{n}} = 2^{\frac{1}{n}}n^{\frac{1}{n}}$ e, portanto, usamos (a) e o exemplo da última aula para mostrar que $l^2 = l = 1$.

7.3 Teoremas da Comparação e do Sanduíche

Notação: Se uma sequência tem limite 0, ela é chamada infinitésima.

Teorema. Se $\{a_n\}$ é limitada e $\{b_n\}$ é infinitésima, então $\{a_n \cdot b_n\}$ é infinitésima.

<u>Prova</u>. Como $\{a_n\}$ é limitada, seja M>0 tal que $|a_n|\leq M$ para todo n natural. Como $\{b_n\}$ é infinitésima, dado $\epsilon>0$, seja N outro natural tal que $|b_n|<\frac{\epsilon}{M}$ para todo $n\geq N$. Segue que

$$|a_n b_n| \le M|b_n| < M\frac{\epsilon}{M} = \epsilon, \quad \forall n \ge N.$$

Portanto, $\{a_nb_n\} \stackrel{n\to\infty}{\longrightarrow} 0.\blacksquare$

Exemplo 29. Mostre que $\left\{\frac{n+\cos{(n)}}{n+1}\right\}$ converge.

Os resultados a seguir são os dois mencionados previamente, o teorema da comparação e o do sanduíche, respectivamente.

Prova. Dado $\epsilon > 0$, existe $N_1 \leq N$ tal que, para todo $n \geq N_1$,

$$a - \epsilon < a_n < a + \epsilon$$
 $e \quad b - \epsilon < b_n < b + \epsilon$.

Logo, para todo $n \geq N$,

$$a - \epsilon < a_n \le b_n < b + \epsilon$$
.

Desta forma, $a - b < \epsilon$ para todo $\epsilon > 0$ e, portanto, $a - b \le 0$.

<u>Teorema.</u> Se $a_n \xrightarrow{n \to \infty} l, c_n \xrightarrow{n \to \infty} l$ e existe um N natural tal que, para todo $n \ge N, a_n \le b_n \le c_n$, então $b_n \xrightarrow{n \to \infty} l$.

<u>Prova.</u> Dado $\epsilon > 0$, existe $N_1 \geq N$ tal que, para todo $n \geq N_1$,

$$l - \epsilon < a_n < l + \epsilon$$
 e $l - \epsilon < c_n < l + \epsilon$.

Logo, para todo $n \geq N_1$,

$$l - \epsilon < a_n \le b_n \le c_n < l + \epsilon.$$

Disto segue que $|b_n - l| < \epsilon$ para todo $n \ge N_1$ e que, portanto, $\{b_n\}$ é convergente para l.

Exemplo 30. Vamos mostrar que

$$e = \lim_{n \to \infty} \underbrace{(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!})}_{a_n} = \lim_{n \to \infty} \underbrace{(1 + \frac{1}{n})^n}_{b_n} = l.$$

De fato, como $a_n \ge b_n$ para todo n natural, segue do Teorema da Comparação que $e \ge l$. Por outro lado, se $n \ge p \ge 2$,

$$b_n > 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \dots + \frac{1}{p!}(1 - \frac{1}{n})(1 - \frac{2}{n}) \dots (1 - \frac{p-1}{n}).$$

Agora, novamente pelo Teorema da Comparação, $l = \lim_{n \to \infty} b_n \ge a_p$ para todo natural p. Portanto, $l = \lim_{n \to \infty} b_n \ge \sup\{a_n : n \in \mathbb{N}\} = \lim_{n \to \infty} a_n = e$. \blacksquare

Definição. Seja $\{a_n\}$ uma sequência. Um número real a é um valor de aderência de $\{a_n\}$ se a sequência $\{a_n\}$ possui uma subsequência convergente para a. \square

<u>Definição.</u> Seja $\{a_n\}$ uma sequência limitada. Definimos o limite superior $\limsup_{n\to\infty} a_n$ (inferior $\liminf_{n\to\infty} a_n$) da sequência $\{a_n\}$ por

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k \ge n} a_k$$
$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{k > n} a_k \quad \Box$$

Uma consequência direta do Teorema do Confronto que utiliza os conceitos acima nos permite dizer se uma sequência converge apenas utilizando as ideias de limite superior e inferior:

Teorema. Se a é um valor de aderência da sequência $\{a_n\}$, então

$$\liminf_{n \to \infty} a_n \le a \le \limsup_{n \to \infty} a_n.$$

Além disso, uma sequência é convergente se, e somente se, $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$.