Math Camp

Hyoungchul Kim

July 9, 2024

1 Day 1

Important notes

- Due to housing issue, I might have to miss the first day.
- Due to this problem, I will be manually studying for about 5 to 6 subsections using the notes given by the instructor.

Short notes in class

- Part 1: real calculus.
- Part 2: linear algebra.
- Part 3: probability and optimization.
- Each part lasts two weeks.
- HW assignment every week but not graded.
- Friday: Quiz (2 hours).
- Only thing that matters is math camp exam: Mostly everyone passes if one takes classes.
- Communication done through canvas.
- Part 1 deals with mathematical logic, spaces (metrics, topology), correspondence.

Some notation

- N: Natural numbers.
- \mathbb{Z} : Integer numbers.
- Q: Rational numbers.
- \mathbb{R} : Real numbers.

Binary relation

Binary relation R on set X is a subset of $X \times X$.

1. R is reflexive if: $\forall x \in X, xRx$

- 2. R is symmetric if: $\forall x, y \in X, xRy \implies yRx$
- 3. R is transitive if: $\forall x, y \in X, xRy, yRz \implies xRz$

Def: A binary relation is an equivalence relation if it is reflexive, symmetric and transitive. We denote this as $x \sim y$.

Def: R is antisymmetric if $\forall x, y \in X, xRy$ and $yRx \implies x = y$.

Def: R is partial order on X if it is reflexive, antisymmetric and transitive.

Def: $x, y \in X$ are comparable if xRy or yRx.

Def: A partial order R is a total order if every two elements are comparable.

Def: $f: X \to Y$ is an injection if $\forall a, b \in X, a \neq b \implies f(a) \neq f(b)$.

Def: $f: X \to Y$ is an surjection if $Y = f(X) = \{y \in Y | \exists x \in X : f(x) = y\}$.

Def: $f: X \to Y$ is called bijection if it is both an injection and surjection.

Fact: $f: X \to Y$ is an injection if $\forall y \in Y$, $f^{-1}(\{y\})$ has no more than one element.

Fact: $f: X \to Y$ is an surjection if $\forall y \in Y$, $f^{-1}(\{y\})$ has at least one element.

Fact: $f: X \to Y$ is an bijection if $\forall y \in Y, \#f^{-1}(\{y\}) = 1$.

Fact: f have inverse \iff f is a bijection.

Proof. i. f^{-1} exists $\Longrightarrow f$ is a bijection: $f^{-1}\left(\{y\}\right)=\{f^{-1}\left(y\right)\}$. Assume not $\Longrightarrow \exists a\in f^{-1}\left(\{y\}\right) s.t.a\neq f^{-1}\left(y\right)$. But $f(a)=y\Longrightarrow f^{-1}\left(f(a)\right)=f^{-1}\left(y\right)$.

ii. f is a bijection $\Longrightarrow f^{-1}$ exists. Construct g s.t. g(y) is the only element of $f^{-1}(\{y\})$. $f \cdot g : f(g(y)) = y$; $g \cdot f : g(f(x)) = y$.

Fact: Bijection between two finite sets exists only if #A = #B.

Def: A and B have equal cardinality if there is a bijection $f: A \to B$.

Fact: Having the same cardinality is an equivalence relation.

Proof. i. reflexivity: id_A is a bijection.

ii. symmetry: $f: A \to B$ is a bijection $\implies f^{-1}$ is also a bijection.

iii. transitivity: $f:A\to B$ and $g:B\to C$ is bijection, then $g\cdot f$ is also bijection. \square

Def: A is denumerable if $\#A = \#\mathbb{N}$. (countably infinite) A is countable if it is finite or denumerable. A is uncountable if it is not countable.

Ex: Show $\mathbb{N} \times \mathbb{N}$ is denumerable.

Proof. (0,0), (0,1) ... $(1,0), (1,1) \dots$ Just go diagonal. Then it will get you a mapping that is bijection. $f(m,n) = \frac{(m+n)(m+n+1)}{2} + m.$ Corr: $\forall k > 0$, \mathbb{N}^k is denumerable. Proof. later. **Prob:** Let $A \subset B$. A is infinite and B is denumerable. Then A is denumerable. *Proof.* $f: \mathbb{N} \to B$. $f^{-1}(A) \subset \mathbb{N}$ Later solve it. **Corr:** Let $f: A \to B$ be a surjection. If A is denumerable and B is infinite, then B is denumerable. Proof. Later. **Def:** We say $\#A \leq \#B$ if there is an injection $f: A \to B$. If there is no bijection from A to B, we can say that the cardinality of A is strictly smaller than that of B. **Prob:** Prove that $\{0,1\}^{\mathbb{N}}$ is uncountable. Proof. Later. But just use the fact that if denumerable, its element can be written as a sequence. **Def:** The set of all subsets of A is called power set of A and is noted as 2^A . **Prob:** If A is finite $\implies \#2^A = 2^{\#A}$.

Theorem For every $A, \#2^A > \#A$.

Proof. Injection: $x \to \{x\}$ from A to 2^A .

Suppose there is a bijection $f:A\to 2^A$. $B=\{x\in A|xnot\in f(x)\}=2^A$. $\Longrightarrow \exists y\in As.t. f(y)=B$.

- 1. $y \in B \implies ynot \in f(y) = B$ by def of B.
- 2. $ynot \in B \implies y \in f(y) = B$ by def of B.

This is contradiction. Thus done.

Prob: $\#\mathbb{R} = \#2^{\mathbb{N}}$.

Proof. Later.

Proof. We show that $[0,1] = 2^{\mathbb{N}}$ in cardinality.

Prob: $\forall n \in \mathbb{N}, \mathbb{R}^n \sim \mathbb{R}$.

Proof. Later. **Theorem** If $\#A \leq \#B$ and vice versa, then the cardinality for both set is same.

Some Exercises

Exercise 1.3.11: Why such partition exists only for equivalence relation? Are all three properties required for existence of such partition?

Proof. car

Exercise 1.3.20: Let's define a binary relation R on \mathbb{N} in a following way: xRy if y is divisible by x. Is this relation a partial order, a total order or it is not order at all?

Proof. car \Box

Exercise 1.4.10: Define a bijection in a similar way (using preimages).

Proof. car

Exercise 1.4.11: Show that $f: X \to Y$ and $g: Y \to Z$ both are bijections, then $g \cdot f: X \to Z$ is a bijection too.

Proof. car

Exercise 1.4.15: $f: X \to Y$ has an inverse if and only if it is a bijection.

Proof. car

2 Day 2

PS1 review

PS 1.

Proof. This is false. Let $p(x,y) \implies x+y=5$.

PS 2.

Proof. Obvious. \Box

PS 3.

Proof. (i) $xRy \iff x \neq y$.

(ii)
$$xRy \iff x < y + 1$$
.

(iii)
$$xRy \iff x > y$$
.

PS 4.

Proof. Obvious. \Box

PS extra. Set of all ftns on \mathbb{R} fRg if $\forall x \in \mathbb{R}$ $f(x) \leq g(x)$. Is it a total order, partial order or not an order?

Proof. (1) reflexive: fRf (2) transitive: $fRggRh$. (3) antisymmetric.	
PS 5.	
Proof. No.	
PS 6.	
Proof. Check my notes in github.	
PS 7.	
<i>Proof.</i> We know that $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$. We just need to show there is bijection between $\mathbb{Q} \times \mathbb{N}$ and $\mathbb{N} \times \mathbb{N}$. We use the fact there is bijection from rationa number to natural number.	
PS 8.	
<i>Proof.</i> (iii) Try to use that $(0,1) \times \mathbb{N} \to \mathbb{R}$ is injection and there is bijection from $(0,1)$ to real number. (iv) set of all finite seq of $\mathbb{N} = \bigcup_{n \in \mathbb{N}} \{\text{all seq of length n}\}.$	n
PS 9.	
Proof. Later.	
PS 10.	
Proof. X is set of a possible bijections from one countable set to another. (i) Sps A and B have different cardinality \Longrightarrow zero. (ii) If they have same cardinality $m:m!$. (iii) If they have same cardinality to $\mathbb N$: continuum. Let X be set of all bijections from natural number to natural number. Need to show that $f:2^{\mathbb N}\to X$ and vice versa is injection.	
PS 11.	
Proof. No. i. A is finite. Then 2^A is finite. ii. If A is infinite. $A \sim \mathbb{N} \implies \#2^A > \mathbb{N}$	
PS 12.	
<i>Proof.</i> i. X is finite. Then $X=\{0,1,\ldots,n\}$. Later. Just remember to move them or shift them.	e
Short notes in class	

 $\mathbf{Def:}$ Vector space over R is a nonempty set V on which two binary operations (scalar multiplication and vector addition is defined). It has following properties:

1.
$$u + (v + w) = (u + v) + w$$
.

- 2. u + w = w + u.
- 3. $\exists 0 \in V s.t. u + 0 = u.$
- 4. $\exists -u \in Vs.t. u + (-u) = 0.$
- 5. $\lambda(\mu v) = (\lambda \mu)v$.
- 6. $1 \cdot u = u$.
- 7. $(\lambda + \mu) u = \lambda u + \mu u$.
- 8. $\lambda(u+v) = \lambda u + \lambda v$.

Def: V is a v.s. Then norm can be defined as $||\cdot||: V \to \mathbb{R}_+$.

- 1. $||u|| = 0 \iff v = 0.$
- $2. \mid \alpha v \mid \mid = \mid \alpha \mid \cdot \mid \mid v \mid \mid .$
- 3. $||u+v|| \le ||v|| + ||u||$.

Ex. Let $X = (x_1, \dots, x_n) \in \mathbb{R}^n$. We can define norm as $||x|| = \sqrt{\sum_{i=1}^n X_i^2}$.

Note. Remember that there are many ways to construct norms.

Def: A metric on a set X is a function

$$d: X \times X \to \mathbb{R}_+, \forall x, y \in X.$$

- 1. d(x,y) = d(y,x).
- $2. \ d(x,y) = 0 \iff x = y.$
- 3. $d(x,z) \le d(x,y) + d(y,z)$.

Def: A metric on a set X is a function

$$d: X \times X \to \mathbb{R}_+.$$

- s.t. $\forall x, y \in X$,
- 1. d(x,y) = d(y,x).
- $2. \ d(x,y) = 0 \iff x = y.$
- 3. $d(x,y) \le d(x,y) + d(y,z)$.

Def: A pair (X, d) is called a metric space.

Ex: Trivial metric is d(x, y) where it is 0 if x = y and 1 otherwise.

Ex: Normed vector space $(V, ||\cdot||)$. In this case, d(x, y) = ||x - y|| induces a metric on it.

Def: A sequence is basically a function $f: \mathbb{N} \to X$ and we write it as $(x_n) \in X$.

Def: A cauchy sequence is a sequence such that: $\forall \varepsilon > 0, \exists N, s.t. \, \forall n, m > N, d(x_n, x_m) < \varepsilon$.

Def: A sequence (x_n) converges to x if

$$\forall \varepsilon > 0, \exists N : \forall i > N, d(x_n, x) < \varepsilon.$$

We denote this as $X_n \to x$; $\lim_{n\to\infty} x_n = x$.

Note: The convergence is unique. Assume it is not unique and the sequence converge to x and y. Then take $\varepsilon = \frac{d(x,y)}{3}$. There will be some N large enough for some i s.t. $d(x_i,x) < \varepsilon, d(x_i,y) < \varepsilon$). This implies that $d(x,y) < 2\varepsilon$. But this means $d(x,y) < 2\varepsilon = \frac{2}{3}d(x,y) \implies$ contradiction.

Prop: Every converging sequence is a cauchy sequence. But note that vice versa does not hold generally. Think about $x_n = \frac{1}{n}$ in (0,1).

Theorem In \mathbb{R} , every cauchy seq. converges.

Def: (X, d) is complete if any cauchy seq. converge (e.g. \mathbb{R}, \mathbb{R}^n with euclidean metric).

Ex: \mathbb{Q} is not complete space. Take any seq. converging to square 2.

Prop: C([a,b]) with sup metric is a complete space.

Proof. Let f_n be a cauchy seq. For $\forall x \in [a,b], |f_n(x) - f_m(x)| \le d(f_n, f_m) = \max |f_n(x) - f_m(x)|$. $\Longrightarrow \forall x \in [a,b], f_n$ is a cauchy seq. Define f s.t. $\forall x \in [a,b], f(x) = \lim_{n \to \infty} f_n(X) \Longrightarrow f_n \to f \dots$

Def: Mapping $A: X \to X$ is a contraction if $\exists \lambda \in [0,1)$ s.t. $\forall x,y \in X$ $d(A(x),A(y)) \leq \lambda \cdot d(x,y)$.

Def: $x \in X$ is a fixed point of $A: X \to X$ if A(x) = x.

Theorem (Banach fixed-point thm) A is a contraction on complete (X, d). Then A has unquie fixed point $x^* \in X$.

Bellman eq. $V(x) = max_a (u(a,x) + \beta V(x')), X' = g(a,x). A: f \rightarrow max_a (u(a,x) + \beta f(x')).$