

Markov Chains

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu

http://www.ece.rochester.edu/~gmateosb/

October 3, 2018

Limiting distributions

Limiting distributions

Ergodicity

Queues in communication networks: Limit probabilities

Limiting distributions

- ▶ MCs have one-step memory. Eventually they forget initial state
- \triangleright Q: What can we say about probabilities for large n?

$$\pi_j := \lim_{n \to \infty} P\left(X_n = j \mid X_0 = i\right) = \lim_{n \to \infty} P_{ij}^n$$

- \Rightarrow Assumed that limit is independent of initial state $X_0 = i$
- ightharpoonup We've seen that this problem is related to the matrix power \mathbf{P}^n

$$\begin{array}{ll} \textbf{P} = \left(\begin{array}{cc} 0.8 & 0.2 \\ 0.3 & 0.7 \end{array} \right), & \textbf{P}^7 = \left(\begin{array}{cc} 0.6031 & 0.3969 \\ 0.5953 & 0.4047 \end{array} \right) \\ \textbf{P}^2 = \left(\begin{array}{cc} 0.7 & 0.3 \\ 0.45 & 0.55 \end{array} \right), & \textbf{P}^{30} = \left(\begin{array}{cc} 0.6000 & 0.4000 \\ 0.6000 & 0.4000 \end{array} \right) \end{array}$$

- ▶ Matrix product converges \Rightarrow probs. independent of time (large n)
- ▶ All rows are equal ⇒ probs. independent of initial condition

Periodicity

▶ **Def:** Period *d* of a state *i* is (gcd means greatest common divisor)

$$d=\gcd\left\{n:P_{ii}^n\neq 0\right\}$$

- ▶ State *i* is periodic with period *d* if and only if
 - $\Rightarrow P_{ii}^n \neq 0$ only if n is a multiple of d
 - \Rightarrow d is the largest number with this property
- Positive probability of returning to i only every d time steps
 - \Rightarrow If period d = 1 state is aperiodic (most often the case)
 - ⇒ Periodicity is a class property

- ► State 1 has period 2. So do 0 and 2 (class property)
- ▶ Ex: One dimensional random walk also has period 2

Periodicity example

Example

$$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ 0.5 & 0.5 \end{pmatrix}, \quad \mathbf{P}^2 = \begin{pmatrix} 0.50 & 0.50 \\ 0.25 & 0.75 \end{pmatrix}, \quad \mathbf{P}^3 = \begin{pmatrix} 0.250 & 0.750 \\ 0.375 & 0.625 \end{pmatrix}$$

- ▶ $P_{11} = 0$, but $P_{11}^2, P_{11}^3 \neq 0$ so $gcd\{2, 3, ...\} = 1$. State 1 is aperiodic
- ▶ $P_{22} \neq 0$. State 2 is aperiodic (had to be, since $1 \leftrightarrow 2$)

Example

$$\mathbf{P} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \quad \mathbf{P}^2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \quad \mathbf{P}^3 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \dots$$

- $P_{11}^{2n+1} = 0$, but $P_{11}^{2n} \neq 0$ so $gcd\{2, 4, ...\} = 2$. State 1 has period 2
- ▶ The same is true for state 2 (since $1 \leftrightarrow 2$)

Positive recurrence and ergodicity

- ▶ **Recall:** state *i* is recurrent if the MC returns to *i* with probability 1
 - \Rightarrow Define the return time to state i as

$$T_i = \min\{n > 0 : X_n = i \mid X_0 = i\}$$

▶ **Def:** State i is positive recurrent when expected value of T_i is finite

$$\mathbb{E}\left[T_{i} \mid X_{0} = i\right] = \sum_{n=1}^{\infty} n P\left(T_{i} = n \mid X_{0} = i\right) < \infty$$

- ▶ **Def:** State *i* is null recurrent if recurrent but $\mathbb{E}\left[T_i \mid X_0 = i\right] = \infty$
 - ⇒ Positive and null recurrence are class properties
 - ⇒ Recurrent states in a finite-state MC are positive recurrent
- ▶ **Def:** Jointly positive recurrent and aperiodic states are ergodic
 - ⇒ Irreducible MC with ergodic states is said to be an ergodic MC

Null recurrent Markov chain example

$$P(T_0 = 2 | X_0 = 0) = \frac{1}{2}$$

$$P(T_0 = 3 | X_0 = 0) = \frac{1}{2} \times \frac{1}{3}$$

$$P(T_0 = 4 | X_0 = 0) = \frac{1}{2} \times \frac{2}{3} \times \frac{1}{4} = \frac{1}{3 \times 4} \dots P(T_0 = n | X_0 = 0) = \frac{1}{(n-1) \times n}$$

▶ State 0 is recurrent because probability of not returning is 0

$$P(T_0 = \infty \mid X_0 = 0) = \lim_{n \to \infty} \frac{1}{(n-1) \times n} \to 0$$

▶ Also null recurrent because expected return time is infinite

$$\mathbb{E}\left[T_0 \,\middle|\, X_0 = 0\right] = \sum_{n=2}^{\infty} n \mathsf{P}\left(T_0 = n \,\middle|\, X_0 = 0\right) = \sum_{n=2}^{\infty} \frac{1}{(n-1)} = \infty$$

Limit distribution of ergodic Markov chains

Theorem

For an ergodic (i.e., irreducible, aperiodic and positive recurrent) MC, $\lim_{n\to\infty} P_{ij}^n$ exists and is independent of the initial state i, i.e.,

$$\pi_j = \lim_{n \to \infty} P_{ij}^n$$

Furthermore, steady-state probabilities $\pi_j \geq 0$ are the unique nonnegative solution of the system of linear equations

$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \qquad \sum_{j=0}^{\infty} \pi_j = 1$$

- ▶ Limit probs. independent of initial condition exist for ergodic MC
 - \Rightarrow Simple algebraic equations can be solved to find π_i
- ▶ No periodic, transient, null recurrent states, or multiple classes

Algebraic relation to determine limit probabilities

- ▶ Difficult part of theorem is to prove that $\pi_j = \lim_{n \to \infty} P_{ij}^n$ exists
- ▶ To see that algebraic relation is true use total probability

$$P_{kj}^{n+1} = \sum_{i=0}^{\infty} P(X_{n+1} = j | X_n = i, X_0 = k) P_{ki}^n$$
$$= \sum_{i=0}^{\infty} P_{ij} P_{ki}^n$$

▶ If limits exists, $P_{kj}^{n+1} \approx \pi_j$ and $P_{ki}^n \approx \pi_i$ (sufficiently large n)

$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}$$

▶ The other equation is true because the π_j are probabilities

Vector/matrix notation: Matrix limit

- ▶ More compact and illuminating using vector/matrix notation
 - \Rightarrow Finite MC with J states
- ightharpoonup First part of theorem says that $\lim_{n \to \infty} \mathbf{P}^n$ exists and

$$\lim_{n \to \infty} \mathbf{P}^n = \begin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_J \\ \pi_1 & \pi_2 & \dots & \pi_J \\ \vdots & \vdots & \ddots & \vdots \\ \pi_1 & \pi_2 & \dots & \pi_J \end{pmatrix}$$

- ► Same probabilities for all rows ⇒ Independent of initial state
- Probability distribution for large n

$$\lim_{n\to\infty} \mathbf{p}(n) = \lim_{n\to\infty} (\mathbf{P}^T)^n \mathbf{p}(0) = [\pi_1, \dots, \pi_J]^T$$

 \Rightarrow Independent of initial condition $\mathbf{p}(0)$

Vector/matrix notation: Eigenvector

- ▶ **Def:** Vector limit (steady-state) distribution is $\boldsymbol{\pi} := [\pi_1, \dots, \pi_J]^T$
- ▶ Limit distribution is unique solution of $(\mathbf{1} := [1, 1, ...]^T)$

$$\pi = \mathbf{P}^T \pi, \qquad \pi^T \mathbf{1} = 1$$

- \blacktriangleright π eigenvector associated with eigenvalue 1 of \mathbf{P}^T
 - ► Eigenvectors are defined up to a scaling factor
 - ▶ Normalize to sum 1
- ▶ All other eigenvalues of **P**^T have modulus smaller than 1
 - ▶ If not, P^n diverges, but we know P^n contains *n*-step transition probs.
 - $ightharpoonup \pi$ eigenvector associated with largest eigenvalue of \mathbf{P}^T
- ightharpoonup Computing π as eigenvector is often computationally efficient

Vector/matrix notation: Rank

► Can also write as (I is identity matrix, $\mathbf{0} = [0, 0, ...]^T$)

$$\left(\mathbf{I} - \mathbf{P}^T\right) \boldsymbol{\pi} = \mathbf{0} \qquad \boldsymbol{\pi}^T \mathbf{1} = 1$$

- \blacktriangleright π has J elements, but there are J+1 equations \Rightarrow Overdetermined
- ▶ If 1 is eigenvalue of \mathbf{P}^T , then 0 is eigenvalue of $\mathbf{I} \mathbf{P}^T$
 - ▶ $\mathbf{I} \mathbf{P}^T$ is rank deficient, in fact rank $(\mathbf{I} \mathbf{P}^T) = J 1$
 - ► Then, there are in fact only *J* linearly independent equations
- $ightharpoonup \pi$ is eigenvector associated with eigenvalue 0 of $I P^T$
 - lacktriangleright π spans null space of lacktriangleright (not much significance)

Ergodic Markov chain example

▶ MC with transition probability matrix

$$\mathbf{P} = \left(\begin{array}{ccc} 0 & 0.3 & 0.7 \\ 0.1 & 0.5 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{array}\right)$$

- ▶ Q: Does P correspond to an ergodic MC?
 - ► Irreducible: all states communicate with state 2 ✓
 - ► Positive recurrent: irreducible and finite ✓
 - ▶ Aperiodic: period of state 2 is 1 ✓
- ▶ Then, there exist π_1 , π_2 and π_3 such that $\pi_j = \lim_{n\to\infty} P_{ij}^n$
 - \Rightarrow Limit is independent of *i*

Ergodic Markov chain example (continued)

- ▶ Q: How do we determine the limit probabilities π_i ?
- ▶ Solve system of linear equations $\pi_j = \sum_{i=1}^3 \pi_i P_{ij}$ and $\sum_{j=1}^3 \pi_j = 1$

$$\begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0.1 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.7 & 0.4 & 0.7 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{pmatrix}$$

- \Rightarrow The blue block in the matrix above is \mathbf{P}^T
- There are three variables and four equations
 - ► Some equations might be linearly dependent
 - ▶ Indeed, summing first three equations: $\pi_1 + \pi_2 + \pi_3 = \pi_1 + \pi_2 + \pi_3$
 - ▶ Always true, because probabilities in rows of P sum up to 1
 - ightharpoonup A manifestation of the rank deficiency of $\mathbf{I} \mathbf{P}^T$
- ▶ Solution yields $\pi_1 = 0.0909$, $\pi_2 = 0.2987$ and $\pi_3 = 0.6104$

Stationary distribution

- ▶ Limit distributions are sometimes called stationary distributions
 - \Rightarrow Select initial distribution to P $(X_0 = i) = \pi_i$ for all i
- ▶ Probabilities at time n = 1 follow from law of total probability

$$P(X_1 = j) = \sum_{i=1}^{\infty} P(X_1 = j | X_0 = i) P(X_0 = i)$$

▶ Definitions of P_{ij} , and $P(X_0 = i) = \pi_i$. Algebraic property of π_j

$$P(X_1 = j) = \sum_{i=1}^{\infty} P_{ij}\pi_i = \pi_j$$

- ⇒ Probability distribution is unchanged
- ▶ Proceeding recursively, system initialized with $P(X_0 = i) = \pi_i$
 - \Rightarrow Probability distribution invariant: $P(X_n = i) = \pi_i$ for all n
- ▶ MC stationary in a probabilistic sense (states change, probs. do not)

Ergodicity

Limiting distributions

Ergodicity

Queues in communication networks: Limit probabilities

Ergodicity

▶ **Def:** Fraction of time $T_i^{(n)}$ spent in *i*-th state by time *n* is

$$T_i^{(n)} := \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{ X_m = i \}$$

▶ Compute expected value of $T_i^{(n)}$

$$\mathbb{E}\left[T_i^{(n)}\right] = \frac{1}{n} \sum_{m=1}^n \mathbb{E}\left[\mathbb{I}\left\{X_m = i\right\}\right] = \frac{1}{n} \sum_{m=1}^n \mathsf{P}\left(X_m = i\right)$$

▶ As $n \to \infty$, probabilities $P(X_m = i) \to \pi_i$ (ergodic MC). Then

$$\lim_{n\to\infty} \mathbb{E}\left[T_i^{(n)}\right] = \lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^n P(X_m = i) = \pi_i$$

► For ergodic MCs same is true without expected value ⇒ Ergodicity

$$\lim_{n\to\infty} T_i^{(n)} = \lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I}\left\{X_m = i\right\} = \pi_i, \quad \text{a.s.}$$

Ergodic Markov chain example

► Recall transition probability matrix

$$\mathbf{P} := \left(\begin{array}{ccc} 0 & 0.3 & 0.7 \\ 0.1 & 0.5 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{array} \right)$$

Visits to states, $nT_i^{(n)}$

Ergodic averages, $T_i^{(n)}$

▶ Ergodic averages slowly converge to $\pi = [0.09, 0.29, 0.61]^T$

Function's ergodic average

Theorem

Consider an ergodic Markov chain with states $X_n = 0, 1, 2, ...$ and stationary probabilities π_j . Let $f(X_n)$ be a bounded function of the state X_n . Then,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{m=1}^n f(X_m)=\sum_{j=1}^\infty f(j)\pi_j,\quad \text{a.s.}$$

- lacktriangle Ergodic average ightarrow Expectation under stationary distribution π
- ▶ Use of ergodic averages is more general than $T_i^{(n)}$
 - $\Rightarrow T_i^{(n)}$ is a particular case with $f(X_m) = \mathbb{I}\{X_m = i\}$
- ▶ Think of $f(X_m)$ as a reward (or cost) associated with state X_m
 - \Rightarrow $(1/n)\sum_{m=1}^{n} f(X_m)$ is the time average of rewards (costs)

Function's ergodic average (cheat's proof)

Proof.

▶ Because $\mathbb{I}\{X_m = i\} = 1$ if and only if $X_m = i$ we can write

$$\frac{1}{n}\sum_{m=1}^{n}f(X_{m})=\frac{1}{n}\sum_{m=1}^{n}\left(\sum_{i=1}^{\infty}f(i)\mathbb{I}\left\{X_{m}=i\right\}\right)$$

▶ Change order of summations. Use definition of $T_i^{(n)}$

$$\frac{1}{n}\sum_{m=1}^{n}f(X_{m})=\sum_{i=1}^{\infty}f(i)\left(\frac{1}{n}\sum_{m=1}^{n}\mathbb{I}\left\{X_{m}=i\right\}\right)=\sum_{i=1}^{\infty}f(i)T_{i}^{(n)}$$

▶ Let $n \to \infty$, use ergodicity result for $\lim_{n \to \infty} T_i^{(n)} = \pi_i$ [cf. page 17]

Ensemble and ergodic averages

▶ Ensemble average: across different realizations of the MC

$$\mathbb{E}\left[f(X_n)\right] = \sum_{i=1}^{\infty} f(i) P\left(X_n = i\right) \to \sum_{i=1}^{\infty} f(i) \pi_i$$

► Ergodic average: across time for a single realization of the MC

$$\bar{f}_n = \frac{1}{n} \sum_{m=1}^n f(X_m)$$

- ▶ These quantities are fundamentally different
 - \Rightarrow But $\mathbb{E}[f(X_n)] = \bar{f}_n$ almost surely, asymptotically in n
- ▶ One realization of the MC as informative as all realizations
 - ⇒ Practical value: observe/simulate only one path of the MC

Ergodicity in periodic Markov chains

- ▶ Ergodic averages still converge if the MC is periodic
- ► For irreducible, positive recurrent MC (periodic or aperiodic) define

$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \qquad \sum_{j=0}^{\infty} \pi_j = 1$$

- ▶ **Claim 1:** A unique solution exists (we say π_i are well defined)
- ▶ Claim 2: The fraction of time spent in state *i* converges to π_i

$$\lim_{n\to\infty} T_i^{(n)} = \lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I}\left\{X_m = i\right\} \to \pi_i$$

- ▶ If MC is periodic the probabilities P_{ii}^n oscillate
 - \Rightarrow But fraction of time spent in state i converges to π_i

Periodic irreducible Markov chain example

▶ Matrix **P** and state transition diagram of a periodic MC

$$\mathbf{P} := \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0.3 & 0 & 0.7 \\ 0 & 1 & 0 \end{array} \right)$$

▶ MC has period 2. If initialized with $X_0 = 1$, then

$$P_{11}^{2n+1} = P(X_{2n+1} = 1 | X_0 = 1) = 0,$$

 $P_{11}^{2n} = P(X_{2n} = 1 | X_0 = 1) = 1 \neq 0$

▶ Define $\boldsymbol{\pi} := [\pi_1, \pi_2, \pi_3]^T$ as solution of

$$\begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0.3 & 0 \\ 1 & 0 & 1 \\ 0 & 0.7 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{pmatrix}$$

 \Rightarrow Normalized eigenvector for eigenvalue 1 ($\pi = \mathbf{P}^T \pi$, $\pi^T \mathbf{1} = 1$)

Periodic irreducible MC example (continued)

▶ Solution yields $\pi_1 = 0.15$, $\pi_2 = 0.50$ and $\pi_3 = 0.35$

lacktriangle Ergodic averages $T_i^{(n)}$ converge to the ergodic limits π_i

Periodic irreducible MC example (continued)

▶ Powers of the transition probability matrix do not converge

$$\mathbf{P}^2 = \left(\begin{array}{ccc} 0.3 & 0 & 0.7 \\ 0 & 1 & 0 \\ 0.3 & 0 & 0.7 \end{array} \right), \qquad \mathbf{P}^3 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0.3 & 0 & 0.7 \\ 0 & 1 & 0 \end{array} \right) = \mathbf{P}$$

- \Rightarrow In general we have $\mathbf{P}^{2n} = \mathbf{P}^2$ and $\mathbf{P}^{2n+1} = \mathbf{P}$
- ightharpoonup At least one other eigenvalue of \mathbf{P}^T has modulus 1

$$\left|\operatorname{eig}_{2}\left(\mathbf{P}^{T}\right)
ight|=1$$

 \Rightarrow In this example, eigenvalues of \mathbf{P}^T are 1, -1 and 0

Reducible Markov chains

- ▶ If MC is not irreducible it can be decomposed in transient (\mathcal{T}_k) , ergodic (\mathcal{E}_k) , periodic (\mathcal{P}_k) and null recurrent (\mathcal{N}_k) components \Rightarrow All these are (communication) class properties
- Limit probabilities for transient states are null

$$P(X_n = i) \rightarrow 0$$
, for all $i \in \mathcal{T}_k$

▶ For arbitrary ergodic component \mathcal{E}_k , define conditional limits

$$\pi_{j} = \lim_{n \to \infty} P\left(X_{n} = j \mid X_{0} \in \mathcal{E}_{k}\right), \quad \text{for all } j \in \mathcal{E}_{k}$$

▶ Results in pages 8 and 19 are true with this (re)defined π_i , where

$$\pi_j = \sum_{i \in \mathcal{E}_k} \pi_i P_{ij}, \quad \sum_{j \in \mathcal{E}_k} \pi_j = 1, \quad ext{for all } j \in \mathcal{E}_k$$

Reducible Markov chains (continued)

▶ Likewise, for arbitrary periodic component \mathcal{P}_k (re)define π_j as

$$\pi_j = \sum_{i \in \mathcal{P}_k} \pi_i P_{ij}, \quad \sum_{j \in \mathcal{P}_k} \pi_j = 1, \quad \text{for all } j \in \mathcal{P}_k$$

- ▶ Probabilities P $(X_n = j \mid X_0 \in \mathcal{P}_k)$ do not converge (they oscillate)
- ▶ A conditional version of the result in page 22 is true

$$\lim_{n\to\infty} T_i^{(n)} := \lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I}\left\{X_m = i \mid X_0 \in \mathcal{P}_k\right\} \to \pi_i$$

▶ Limit probabilities for null-recurrent states are null

$$P(X_n = i) \rightarrow 0$$
, for all $i \in \mathcal{N}_k$

Reducible Markov chain example

▶ Transition matrix and state diagram of a reducible MC

$$\mathbf{P} := \begin{pmatrix} 0 & 0.6 & 0.2 & 0 & 0.2 \\ 0.6 & 0 & 0 & 0.2 & 0.2 \\ 0 & 0 & 0.3 & 0.7 & 0 \\ 0 & 0 & 0.6 & 0.4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- ▶ States 1 and 2 are transient $\mathcal{T} = \{1, 2\}$
- ▶ States 3 and 4 form an ergodic class $\mathcal{E}_1 = \{3,4\}$
- ▶ State 5 (absorbing) is a separate ergodic class $\mathcal{E}_2 = \{5\}$

Reducible MC example - Matrix powers

▶ 5-step and 10-step transition probabilities

$$\mathbf{P}^5\!=\!\begin{pmatrix} 0 & 0.08 & 0.24 & 0.22 & 0.46 \\ 0.08 & 0 & 0.19 & 0.27 & 0.46 \\ 0 & 0 & 0.46 & 0.54 & 0 \\ 0 & 0 & 0.46 & 0.54 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{P}^{10}\!=\!\begin{pmatrix} 0.00 & 0 & 0.23 & 0.27 & 0.50 \\ 0 & 0.00 & 0.23 & 0.27 & 0.50 \\ 0 & 0 & 0.46 & 0.54 & 0 \\ 0 & 0 & 0.46 & 0.54 & 0 \\ 0 & 0 & 0.46 & 0.54 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- Transition into transient states is vanishing (columns 1 and 2)
 - \Rightarrow From $\mathcal{T}=\{1,2\}$ will end up in either $\mathcal{E}_1=\{3,4\}$ or $\mathcal{E}_2=\{5\}$
- ▶ Transition from 3 and 4 into 3 and 4 only
 - \Rightarrow If initialized in ergodic class $\mathcal{E}_1 = \{3,4\}$ stays in \mathcal{E}_1
- ► Transition from 5 only into 5 (absorbing state)

Reducible MC example - Matrix decomposition

► Matrix **P** can be decomposed in blocks

$$\mathbf{P} = \left(\begin{array}{ccccc} \mathbf{0} & \mathbf{0.6} & \mathbf{0.2} & \mathbf{0} & \mathbf{0.2} \\ \mathbf{0.6} & \mathbf{0} & \mathbf{0} & \mathbf{0.2} & \mathbf{0.2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0.3} & \mathbf{0.7} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0.6} & \mathbf{0.4} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{array} \right) = \left(\begin{array}{cccc} \mathbf{P_T} & \mathbf{P_T} \mathcal{E}_1 & \mathbf{P_T} \mathcal{E}_2 \\ \mathbf{0} & \mathbf{P_{\mathcal{E}_1}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{P_{\mathcal{E}_2}} \end{array} \right)$$

- (a) Block P_T describes transition between transient states
- (b) Blocks $P_{\mathcal{E}_1}$ and $P_{\mathcal{E}_2}$ describe transitions within ergodic components
- (c) Blocks $P_{\mathcal{T}\mathcal{E}_1}$ and $P_{\mathcal{T}\mathcal{E}_2}$ describe transitions from \mathcal{T} to \mathcal{E}_1 and \mathcal{E}_2
- ▶ Powers of *n* can be written as

$$\mathbf{P}^n = \left(\begin{array}{ccc} \mathbf{P}^n_{\mathcal{T}} & \mathbf{Q}_{\mathcal{T}\mathcal{E}_1} & \mathbf{Q}_{\mathcal{T}\mathcal{E}_2} \\ 0 & \mathbf{P}^n_{\mathcal{E}_1} & 0 \\ 0 & 0 & \mathbf{P}^n_{\mathcal{E}_2} \end{array}\right)$$

▶ The transient transition block vanishes, $\lim_{n\to\infty} P_T^n = 0$

Reducible MC example - Limiting behavior

- ► As *n* grows the MC hits an ergodic state almost surely
 - ⇒ Henceforth, MC stays within ergodic component

$$P(X_{n+m} \in \mathcal{E}_i \mid X_n \in \mathcal{E}_i) = 1$$
, for all m

- ► For large *n* suffices to study ergodic components
 - \Rightarrow Behaves like a MC with transition probabilities $P_{\mathcal{E}_1}$
 - \Rightarrow Or like one with transition probabilities $P_{\mathcal{E}_2}$
- We can think of all MCs as ergodic
- Ergodic behavior cannot be inferred a priori (before observing)
- ▶ Becomes known a posteriori (after observing sufficiently large time)

Cultural aside: Something is known a priori if its knowledge is independent of experience (MCs exhibit ergodic behavior). A posteriori knowledge depends on experience (values of the ergodic limits). They are inherently different forms of knowledge (search for Immanuel Kant).

Queues in communication systems

Limiting distributions

Ergodicity

Queues in communication networks: Limit probabilities

Non-concurrent communication queue

- ► Communication system: Move packets from source to destination
- ▶ Between arrival and transmission hold packets in a memory buffer
- ► Example engineering problem, buffer design:
 - ▶ Packets arrive at a rate of 0.45 packets per unit of time
 - Packets depart at a rate of 0.55 packets per unit of time
 - ► How big should the buffer be to have a drop rate smaller than 10⁻⁶? (i.e., one packet dropped for every million packets handled)
- ▶ Model: Time slotted in intervals of duration Δt . Each time slot n
 - \Rightarrow A packet arrives with prob. λ , arrival rate is $\lambda/\Delta t$
 - \Rightarrow A packet is transmitted with prob. μ , departure rate is $\mu/\Delta t$
- lacktriangle No concurrence: No simultaneous arrival and departure (small Δt)

Queue evolution equations (reminder)

- $ightharpoonup Q_n$ denotes number of packets in queue (backlog) in n-th time slot
- ▶ $\mathbb{A}_n = \text{nr. of packet arrivals, } \mathbb{D}_n = \text{nr. of departures (during } n\text{-th slot)}$
- ▶ If the queue is empty $Q_n = 0$ then there are no departures
 - \Rightarrow Queue length at time n+1 can be written as

$$Q_{n+1} = Q_n + \mathbb{A}_n$$
, if $Q_n = 0$

▶ If $Q_n > 0$, departures and arrivals may happen

$$Q_{n+1} = Q_n + \mathbb{A}_n - \mathbb{D}_n$$
, if $Q_n > 0$

- $All A_n \in \{0,1\}$, $\mathbb{D}_n \in \{0,1\}$ and either $\mathbb{A}_n = 1$ or $\mathbb{D}_n = 1$ but not both
 - ⇒ Arrival and departure probabilities are

$$P(A_n = 1) = \lambda, \qquad P(D_n = 1) = \mu$$

Queue evolution probabilities (reminder)

- ► Future queue lengths depend on current length only
- ▶ Probability of queue length increasing

$$P(Q_{n+1} = i + 1 | Q_n = i) = P(A_n = 1) = \lambda,$$
 for all i

▶ Queue length might decrease only if $Q_n > 0$. Probability is

$$P\left(Q_{n+1}=i-1 \mid Q_n=i\right)=P\left(\mathbb{D}_n=1\right)=\mu, \qquad ext{for all } i>0$$

Queue length stays the same if it neither increases nor decreases

$$P\left(Q_{n+1}=i \mid Q_n=i\right)=1-\lambda-\mu, \qquad \text{for all } i>0$$

$$P\left(Q_{n+1}=0 \mid Q_n=0\right)=1-\lambda$$

 \Rightarrow No departures when $Q_n = 0$ explain second equation

Queue as a Markov chain (reminder)

- ▶ MC with states 0, 1, 2, . . . Identify states with queue lengths
- ▶ Transition probabilities for $i \neq 0$ are

$$P_{i,i-1} = \mu, \qquad P_{i,i} = 1 - \lambda - \mu, \qquad P_{i,i+1} = \lambda$$

▶ For i = 0: $P_{00} = 1 - \lambda$ and $P_{01} = \lambda$

Numerical example: Limit probabilities

- ▶ Build matrix **P** truncating at maximum queue length L = 100
 - \Rightarrow Arrival rate $\lambda = 0.3$. Departure rate $\mu = 0.33$
- \triangleright Find eigenvector of \mathbf{P}^T associated with eigenvalue 1
 - \Rightarrow Yields limit probabilities $\pi = \lim_{n \to \infty} \mathbf{p}(n)$ (ergodic MC)

- ► Limit probabilities appear linear in logarithmic scale
 - \Rightarrow Seemingly implying an exponential expression $\pi_i \propto \alpha^i$ (0 < α < 1)

Limit distribution equations

► Total probability yields

$$P(X_{n+1} = i) = \sum_{j=i-1}^{i+1} P(X_{n+1} = i | X_n = j) P(X_n = j)$$

► Limit distribution equations for state 0 (empty queue)

$$\pi_0 = (1 - \lambda)\pi_0 + \mu\pi_1$$

▶ For the remaining states $i \neq 0$

$$\pi_i = \lambda \pi_{i-1} + (1 - \lambda - \mu)\pi_i + \mu \pi_{i+1}$$

Verification of candidate solution

▶ Substitute candidate solution $\pi_i = c\alpha^i$ in equation for π_0

$$c\alpha^0 = (1 - \lambda)c\alpha^0 + \mu c\alpha^1 \quad \Rightarrow \quad 1 = (1 - \lambda) + \mu \alpha$$

- \Rightarrow The above equation holds for $\alpha = \lambda/\mu$
- ▶ Q: Does $\alpha = \lambda/\mu$ verify the remaining equations?
- ▶ From the equation for generic π_i (divide by $c\alpha^{i-1}$)

$$c\alpha^{i} = \lambda c\alpha^{i-1} + (1 - \lambda - \mu)c\alpha^{i} + \mu c\alpha^{i+1}$$
$$\mu \alpha^{2} - (\lambda + \mu)\alpha + \lambda = 0$$

- \Rightarrow The above quadratic equation is satisfied by $\alpha = \lambda/\mu$
- \Rightarrow And $\alpha = 1$, which is irrelevant

Compute normalization constant

▶ Next, determine c so that probabilities sum to 1 $(\sum_{i=0}^{\infty} \pi_i = 1)$

$$\sum_{i=0}^{\infty} \pi_i = \sum_{i=0}^{\infty} c(\lambda/\mu)^i = \frac{c}{1 - \lambda/\mu} = 1$$

- \Rightarrow Used geometric sum, need $\lambda/\mu < 1$ (queue stability condition)
- ▶ Solving for c and substituting in $\pi_i = c\alpha^i$ yields

$$\pi_i = (1 - \lambda/\mu) \left(\frac{\lambda}{\mu}\right)^i$$

- ▶ The ratio μ/λ is the queue's stability margin
 - \Rightarrow Probability of having fewer queued packets grows with μ/λ

Queue balance equations

▶ Rearrange terms in equation for limit probabilities [cf. page 38]

$$\lambda \pi_0 = \mu \pi_1$$

$$(\lambda + \mu)\pi_i = \lambda \pi_{i-1} + \mu \pi_{i+1}$$

- $\rightarrow \lambda \pi_0$ is average rate at which the queue leaves state 0
- Likewise $(\lambda + \mu)\pi_i$ is the rate at which the queue leaves state i
- $\blacktriangleright \mu \pi_1$ is average rate at which the queue enters state 0
- $\lambda \pi_{i-1} + \mu \pi_{i+1}$ is rate at which the queue enters state i
- ▶ Limit equations prove validity of queue balance equations

Rate at which leaves = Rate at which enters

Concurrent arrival and departures

- ▶ Packets may arrive and depart in same time slot (concurrence)
 - ⇒ Queue evolution equations remain the same [cf. page 34]
 - ⇒ But queue probabilities change [cf. page 35]
- Probability of queue length increasing (for all i)

$$P(Q_{n+1} = i + 1 | Q_n = i) = P(A_n = 1) P(D_n = 0) = \lambda(1 - \mu)$$

▶ Queue length might decrease only if $Q_n > 0$ (for all i > 0)

$$P(Q_{n+1} = i - 1 | Q_n = i) = P(A_n = 0) P(D_n = 1) = (1 - \lambda)\mu$$

Queue length stays the same if it neither increases nor decreases

P
$$(Q_{n+1} = i \mid Q_n = i) = \lambda \mu + (1 - \lambda)(1 - \mu) = \nu$$
, for all $i > 0$
P $(Q_{n+1} = 0 \mid Q_n = 0) = (1 - \lambda) + \lambda \mu$

Limit distribution from queue balance equations

- ▶ Write limit distribution equations ⇒ Queue balance equations
 - \Rightarrow Rate at which leaves = Rate at which enters

$$\lambda(1-\mu)\pi_0 = \mu(1-\lambda)\pi_1 (\lambda(1-\mu) + \mu(1-\lambda))\pi_i = \lambda(1-\mu)\pi_{i-1} + \mu(1-\lambda)\pi_{i+1}$$

• Again, try an exponential solution $\pi_i = c\alpha^i$

Solving for limit distribution

• Substitute candidate solution in equation for π_0

$$\lambda(1-\mu)c = \mu(1-\lambda)c\alpha \quad \Rightarrow \quad \alpha = \frac{\lambda(1-\mu)}{\mu(1-\lambda)}$$

▶ Same substitution in equation for generic π_i

$$\mu(1-\lambda)c\alpha^2 + (\lambda(1-\mu) + \mu(1-\lambda))c\alpha + \lambda(1-\mu)c = 0$$

- \Rightarrow As before is solved for $\alpha = \lambda(1-\mu)/\mu(1-\lambda)$
- ▶ Find constant c to ensure $\sum_{i=0}^{\infty} c\alpha^i = 1$ (geometric series). Yields

$$\pi_i = (1 - \alpha)\alpha^i = \left(1 - \frac{\lambda(1 - \mu)}{\mu(1 - \lambda)}\right) \left(\frac{\lambda(1 - \mu)}{\mu(1 - \lambda)}\right)^i$$

Limited queue size

- ▶ Packets dropped if queue backlog exceeds buffer size *J*
 - \Rightarrow Many packets \rightarrow large delays \rightarrow packets useless upon arrival
 - ⇒ Also preserve memory

► Should modify equation for state *J* (Rate leaves = Rate enters)

$$\mu(1-\lambda)\pi_J = \lambda(1-\mu)\pi_{J-1}$$

• $\pi_i = c\alpha^i$ with $\alpha = \lambda(1-\mu)/\mu(1-\lambda)$ also solves this equation (Yes!)

Compute limit distribution

- ► Limit probabilities are not the same because constant *c* is different
- ▶ To compute c, sum a finite geometric series

$$1 = \sum_{i=0}^{J} c\alpha^{i} = c \frac{1 - \alpha^{J+1}}{1 - \alpha} \quad \Rightarrow \quad c = \frac{1 - \alpha}{1 - \alpha^{J+1}}$$

► Limit probabilities for the finite queue thus are

$$\pi_i = \frac{1-\alpha}{1-\alpha^{J+1}} \alpha^i \approx (1-\alpha)\alpha^i$$

- \Rightarrow Recall $\alpha = \lambda(1-\mu)/\mu(1-\lambda)$, and \approx valid for large J
- ▶ Large J approximation yields same result as infinite length queue

Simulations: Process realization

- Arrival rate $\lambda = 0.3$. Departure rate $\mu = 0.33$. Resulting $\alpha \approx 0.87$
- ▶ Maximum queue length J = 100. Initial state $Q_0 = 0$ (queue empty)

Queue lenght as function of time

Simulations: Average occupancy and limit distribution

- ▶ Can estimate average time spent at each queue state
 - \Rightarrow Should coincide with the limit (stationary) distribution π

- ▶ For i = 60 occupancy probability is $\pi_i \approx 10^{-5}$
 - \Rightarrow Explains inaccurate prediction for large *i* (rarely visit state *i*)

Buffer overflow

- ► Closing the loop, recall our buffer design problem
 - Arrival rate $\lambda = 0.45$ and departure rate $\mu = 0.55$
 - ► How big should the buffer be to have a drop rate smaller than 10⁻⁶? (i.e., one packet dropped for every million packets handled)
- ▶ Q: What is the probability of buffer overflow (non-concurrent case)?
- ▶ A: Packet discarded if queue is in state J and a new packet arrives

$$P(\text{overflow}) = \lambda \pi_J = \frac{1 - \alpha}{1 - \alpha^{J+1}} \lambda \alpha^J \approx (1 - \alpha) \lambda \alpha^J$$

- \Rightarrow With $\lambda = 0.45$ and $\mu = 0.55$, $\alpha \approx 0.82$ \Rightarrow $J \approx 57$
- A final caveat
 - ⇒ Still assuming only 1 packet arrives per time slot
 - ⇒ Lifting this assumption requires continuous-time MCs

Glossary

- Periodicty
- Aperiodic state
- ▶ Positive recurrent state
- ► Null recurrent state
- Ergodic state
- Limit probabilities
- Stationary distribution
- Ergodic average
- ► Ensemble average
- Oscillating probabilities

- ► Reducible Markov chain
- ► Ergodic component
- ► Non-concurrent queue
- Queue limit probabilities
- ▶ Queue stability condition
- Stability margin
- ► Balance equations
- Concurrency
- ▶ Limited queue size
- Buffer overflow