සුවෙන් පෙරට e ඉගෙනුම් පියස මිනුවන්ගොඩ අධාාපන කලාපය

වාරය - 2

ලේණිය : 10

පාඩම : මුලදුවා හා සංයෝග පුමාණනය

නම : O.W.T.C. ආරියතිලක

පාසල : මිනු/ කලහුගොඩ මඩවල ඒ.ක.වි

පදාර්ථ වල ස්කන්ධ මැනීම සදහා විවිධ ඒකක භාවිතා කරයි.

උදා: කිලෝග්රෑම්, ග්රෑම්, ම්ලග්රෑම්

නමුත් පරමාණුවක,අණුවක හෝ සංයෝගයක ස්කන්ධය මැනීම අපහසු වන්නේ මේවයේ ස්කන්ධයන් අතිශය කුඩා අගයන් වන බැවිනි.

උදා: හයිඩ්රජන් (H) පරමාණුවක ස්කන්ධය 1.674 x 10⁻²⁴ g

එබැවින් තෝරාගත් යම් පරමාණුවක ස්කන්ධය හෝ ස්කන්ධයෙන් කොටසක් ස්කන්ධ ඒකකයක් ලෙස සලකා එයට සාපේක්ෂව අනෙකුත් පරමාණුවල ස්කන්ධ පුකාශ කරයි.

මෙය **සාපේක්ෂ පරමාණුක ස්කන්ධය** යි

X 16

පරමාණුක ස්කන්ධ එකකය

පරමාණුවල ස්කන්ධය පුකාශ කරනුයේ යමකට සාපේක්ෂව ද, එය පරමාණුක ස්කන්ධ ඒකකය ලෙස හැඳින්වේ.

වර්තමානයේ පරමාණුක ස්කන්ධ ඒකකය ලෙස භාවිත කරනුයේ $^{12}_{6}\mathrm{C}$ සමස්ථානිකයේ පරමාණුවක ස්කන්ධයෙන් 1/12 කි.

පරමාණුක ස්කන්ධ ඒකකය
$$= \frac{\frac{12}{6} \text{C සමස්ථානිකයේ පරමාණුවක ස්කන්ධය}}{12}$$

$$= \frac{1.99 \times 10^{-23} \text{ g}}{12}$$

$$= 1.66 \times 10^{-24} \text{ g}$$

කාපෙක්ෂ පර්මාණුක ස්කන්ධය

මූලදුවප පරමාණුවක ස්කන්ධය ${}^{12}_{6}C$ සමස්ථානිකයේ පරමාණුවක ස්කන්ධයෙන් 1/12 මෙන් කී වාරයක් වේද යන්න එම මූලදුවපයේ සාපෙක්ෂ පරමාණුක ස්කන්ධය නම් වේ.

 Q_1 . ඔක්සිජන් පරමාණුවක ස්කන්ධය 2.66 x 10^{-23} g වේ. $^{12}_6$ C පරමාණුවක ස්කන්ධය 1.99 x 10^{-23} g වේ නම් ඔක්සිජන්හි සාපේක්ෂ පරමාණුක ස්කන්ධය සොයන්න

ඔක්සිජන් (O) හි සාපේක් පරමාණුක ස්කන්ධය =
$$\dfrac{\frac{0}{12} \times \frac{12}{6} \, \mathrm{C}}{\frac{1}{12} \times \frac{12}{6} \, \mathrm{C}} \, \mathrm{E}$$
 පරමාණුවක ස්කන්ධය = $\dfrac{2.66 \times 10^{-23} \, \mathrm{g}}{\frac{1}{12} \times 1.99 \times 10^{23} \, \mathrm{g}} = 16.02$

 Q_2 . සෝඩියම් පරමාණුවක ස්කන්ධය $3.819 \times 10^{-23} \, \mathrm{g}$ වේ. පරමාණුක ස්කන්ධ ඒකකයේ අගය $1.67 \times 10^{-24} \, \mathrm{g}$ වේ නම් සෝඩියම් වල සා.ප.ස් සොයන්න.

පරමාණුක ස්කන්ධ එකකය

සෝඩියම්
$$(Na)$$
 සාපේක්ෂ පරමාණුක $=$ සෝඩියම් පරමාණුවක ස්කන්ධය ස්කන්ධ $=$ පරමාණුක ස්කන්ධ ඒකකය $=\frac{3.819\times 10^{-23}g}{1.66\times 10^{-24}~g}$ $=23$

 Q_3 . Y නම් පරමාණුවක ස්කන්ධය $^{12}{}_6$ C පරමාණුවක ස්කන්ධය මෙන් දෙගුණයකි. Y හි සා.ප.ස් සොයන්න.

$$^{12}C$$
 පරමාණුවක ස්කන්ධය = a Y පරමාණුවක ස්කන්ධය = 2a

සාපේක්ෂ පරමාණුක ස්කන්ධය (A,) =
$$\frac{\mathsf{Y}}{1}$$
 මූලදුවා පරමාණුවක ස්කන්ධය $\frac{\mathsf{Y}}{12} \times \frac{\mathsf{Y}}{\mathsf{Y}} \times \frac{\mathsf{Y}}{$

$$= \frac{2 \text{ a}}{\frac{1}{12}} \times \text{a}$$

$$= 2 \text{ a} \times \frac{12}{\alpha}$$

$$= 24$$

පරමාණුක කුමාංකය	මූලදුවාය	සංකේතය	සාපේඎ පරමාණුක ස්කන්ධය
1	හයිඩ්රජන්	Н	1
2	හීලි යම්	He	4
3	ලිතියම්	Li	7
4	බෙරිලියම්	Be	9
5	බෝරෝත්	В	11
6	කාබන්	С	12
7	නයිට්රජන්	N	14
8	ඔක්සිජන්	0	16
9	ෆ්ලුවොරීන්	F	19
10	නියෝන්	Ne	20
11	සෝ ඩියම්	Na	23
12	මැග්නීසියම්	Mg	24
13	ඇලුමිනියම්	A1	27
14	සිලිකන්	Si	28
15	<u>මෙනස්පරස්</u>	P	31
16	සල්ෆර්	S	32
17	ක්ලොරීන්	C1	35.5
18	ආගත්	Ar	40
19	<u>පොටෑසි</u> යම්	K	39
20	කැල්සියම්	Ca	40

සාපේක්ෂ අණුක ස්කන්ඛය (Relative molecular mass)

මූලදුවප හෝ සංයෝග අණුවක ස්කන්ධය, C - 12 සමස්ථානිකයේ පරමාණුවක ස්කන්ධයෙන් 1/12 ක් මෙන් කී වාරයක් වේ දැ යි දක්වන සංඛපාව එම මූලදුවපයේ හෝ අණුවේ සාපේක්ෂ අණුක ස්කන්ධයයි.

සාපේක්ෂ අණුක ස්කන්ධය (M)
$$= \frac{\begin{tabular}{l} \begin{tabular}{l} \begin{tabular}{l}$$

 Q_4 . CO_2 අණුවක ස්කන්ධය $7.31 \times 10^{-23} \, \mathrm{g}$ වේ. $^{12}_6 \, \mathrm{C}$ පරමාණුවක ස්කන්ධය $1.99 \times 10^{-23} \, \mathrm{g}$ වේ නම් CO_2 හි සාපේක්ෂ අණුක ස්කන්ධය සොයන්න

$$ext{CO}_2$$
 හි සාපේකෂ අණුක ස්කන්ධය = $rac{ ext{CO}_2}{rac{1}{12} imes rac{12}{6} ext{C}}$ පරමාණුවක ස්කන්ධය = $rac{ ext{CO}_2}{rac{1}{12} imes rac{12}{6} ext{C}}$ පරමාණුවක ස්කන්ධය = $rac{ ext{7.31} imes 10^{-23} ext{g}}{rac{1}{12} imes 1.99 imes 10^{-23} ext{ g}}$ = 44

 Q_5 . H_2O අණුවක ස්කන්ධය $2.99 \times 10^{-23} \, g$ වේ. $^{12}_6 C$ පරමාණුවක ස්කන්ධය $1.99 \times 10^{-23} \, g$ වේ නම් H_2O හි සාපේක්ෂ අණුක ස්කන්ධය සොයන්න.

ඡලයේ සාපේක්ෂ අණුක ස්කන්ධය

ජලය අණුවක ස්කන්ධය
$$\frac{1}{12} \times {}^{12}_{6}$$
 C පරමාණුවක ස්කන්ධය

$$= \frac{2.99 \times 10^{-23} \text{ g}}{\frac{1}{12} \times 1.99 \times 10^{-23} \text{ g}}$$

= 18

යම් මුලදුවායක හෝ සංයෝගයක අණුක සුතුය දන්නේ නම් එහි අඩංගු පරමාණුවල සාපේක්ෂ පරමාණුක ස්කන්ධයන්ගේ වීජීය එකතුවෙන් එහි සාපේක්ෂ අණුක ස්කන්ධය ගණනය කළ හැකිය.

නිදසුනක් ලෙස සැලකු විට ජලය (H_2O) අණුවක හයිඩ්ජන් (H) පරමාණු දෙකක් සමග ඔක්සිජන් (O) පරමාණු එකක් බැඳී පවතී. එබැවින් ජලයේ සාපේක අණුක ස්කන්ධය වනුයේ H පරමාණු දෙකකත් O පරමාණු එකකත් සාපේක පරමාණුක ස්කන්ධවල ඓකායයි.

සාපේක් පරමාණුක ස්කන්ධ H - 1 හා O - 16 බැවින් ජලයේ සාපේක්ෂ අණුක ස්කන්ධය මෙසේ ගණනය කළ හැකි ය.

$$H_2O = (2 \times 1) + 16 = 18$$

පහත දැක්මවන සංඛයාගවල සාමේක්ෂ අණුක ස්කන්ධ සොයන්න. (සා.ප.ස්: H=1, C=12, O=16, Cl=35.5, N=14, Na=23, S=32, Al=27, Ca=40)

1) H ₂ = 1 x 2	2)Cl ₂ = 35.5 x 2	3)NH ₃ .=. 14 .+. (1 x. 3)
.= 2	. = 71	.=.17
	•••••	

$$4) CaCO_3$$
 $5) C_6 H_{12} O_6$ $6) NaNO_3$ $= 40 + 12 + (16 \times 3)$ $= (12 \times 6) + (1 \times 12) + (16 \times 6) = 23 + 14 + (16 \times 3)$ $= 72 + 12 + 96$ $= 23 + 14 + 48$ $= 180$ $= 85$

$$7)H_2SO_4$$
 8)NaCl 9)Al₂(SO₄)₃ = (1.x.2).+.32.+.(16.x.4)... = .23.+.35.5... = (27.x.2).+.(32.x.3).+.(16.x.12) = .58.5... = .54.+.96.+.192... = .342

幸記の記録 (AVOGADRO CONSTANT)

ඕනෑම මූලදුවෳයක සාපේකුෂ පරමාණුක ස්කන්ධයට සමාන ස්කන්ධයක් ගුෑම්වලින් ගත් කළ මූල දුවෳය කුමක් වුවත් එහි අතේතේ එක ම පරමාණු සංබනවකි.

ඕනෑ ම දුවෑයක සාපේක්ෂ පුණුක ස්කන්ධයට සමාන ස්කන්ධයක් නෑම්වලින් නත් කළ දුවෑය කුමක් වුවත් එක ම පුණු සංඛ්යාවක් පැත.

මෙම සංඛූතාව 6.022×10^{23} වේ. ශ්‍රෙෂ්ඨ විදුපාඥ ඇම්ඩියෝ ඇවගාඩ්රෝට ගරු කිරීමක් ලෙස මෙම හියන සංඛූතාව ඇවගාඩ්රෝ වියනය ලෙස හඳුන්වනු ලැබේ.

Des (Mole)

අන්තර්ජාතික එකක කුමයේ දුවප පුමාණය මැනීම සඳහා භාවිත කරන එකකය වනුයේ මවුලයයි.

යම් දුව් මවුලයක අන්තර්ගත මූලික ඒකක සංඛ්‍යාව නියතයක් වන අතර එය 6.022×10^{23} හෙවත් අවෙගාඩ්රෝ නියතයට සමාන වේ.

ඕනෑ ම මූලදුවෳයක සාපේක්ෂ පරමාණුක ස්කන්ධයට සමාන ස්කන්ධයක් ග්රෑම්වලින් ගත් කළ එහි පරමාණු මවුලයක් එනම් පරමාණු 6.022 x 10²³ ක් අඩංගු වේ.

ඕනෑ ම දුවායක එහි සාපේෂ අණුක ස්කන්ධයට සමාන ස්කන්ධයක් ග්රෑම්වලින් ගත් කළ එහි අණු මවුලයක්, එනම් අණු 6.022×10^{23} ක් අඩංගු ය.

6.022×10^{23}

60220000000000000000000

ලෝකයේ ළමයි මිලියන 1000ක් ඇත්තේ යැයි සිතමු. මෙය දහයේ බලවලින් ලියූ විට, මිලියන 1000 = 1000 X 10° = 10°කි. සීනි බෝල මවුලයක් මෙම ළමයි අතර සම සේ බෙදුව හොත්,

එක ළමයෙකුට ලැබෙන සීනිබෝල ගණන =
$$\frac{6.022 \times 10^{23}}{10^9}$$

$$= 6.022 \times 10^{14}$$

= 602200000000000

යම් මූලදුවෳයක පරමාණු මවුලයක් ගැනීමට එහි සාපේක පරමාණුක ස්කන්ධය ගුෑම්වලින් කිරා ගත යුතු යි.

සෝඩියම්වල සාපේක්ෂ පරමාණුක ස්කන්ධය 23කි. එනම්,

සෝඛ්යම් පරමාණු 1 mol = සෝඛ්යම් 23 g

යම් සංයෝගයක අණු මවුලයක් ගැනීමට නම් එහි සාපේක්ෂ අණුක ස්කන්ධය ග්රූම්වලින් කිරා ගත යුතු යි.

ග්ලූකෝස්වල ($C_6H_{12}O_6$) සාපේක්ෂ අණුක ස්කන්ධය 180කි. එනම්

ග්ලූකෝස් අණු 1 mol = ග්ලූකෝස් 180 g

១០១២៣ ដងរាវាជា៤ (Molar mass)

මවුලික ස්කන්ධය යනු ඕනෑම දුවපයක මවුලයක ස්කන්ධයයි.

මවුලික ස්කන්ධයේ එකක මවුලයට ග්රෑම් (g mol $^{-1}$) ලෙස හෝ මවුලයට කිලෝ ග්රෑම් (kg mol $^{-1}$) ලෙස හෝ සඳහන් කරනු ලැබේ.

```
    සෝඩියම්වල (Na) සාපේක්ෂ පරමාණුක ස්කන්ධය = 23 g mol<sup>-1</sup>
    කාබන් ඩයොක්සයිඩ්වල (CO<sub>2</sub>) සාපේක්ෂ අණුක ස්කන්ධය = 44 කාබන් ඩයොක්සයිඩ්වල මවුලික ස්කන්ධය = 44 g mol<sup>-1</sup>
    සෝඩියම් ක්ලෝරයිඩ්වල (NaCl) සූනු ස්කන්ධය = 58.5 g mol<sup>-1</sup>
```

ඕනෑ ම දුමසයක ඇති දුමස පුමාණය මවුළමළින් සෙවීම

දවා පුමාණය (මවුල ගණන) = ———— එම දුවායයේ ස්කන්ධය

එම දුවාගේ මවුලික ස්කන්ධය

$$n = \frac{m}{M}$$

කාබන්වල මවුලික ස්කන්ධය 12 gmol^{-1} වේ කාබන් 24 g වල අඩංගු මවුල පුමාණය සොයන්න.

දුවා පුමාණය (මවුල ගණන)
$$= \frac{ }{ }$$
 එම දුවාගයේ ස්කන්ධය එම දුවාගේ මවුලික ස්කන්ධය $n = \frac{m}{M}$

කාබන් 24 g අඩංගු කාබන් මවුල පුමාණය
$$= \frac{m}{M}$$
 $= \frac{24 \text{ g}}{12 \text{g mol}^{-1}}$ $= 2 \text{ mol}$

ජලයේ මවුලික ස්කන්ධය 18 g mol⁻¹ වේ. ජලය 90 g ක අඩංගු මවුල පුමාණය සොයන්න.

දුවා පුමාණය (මවුල ගණන)
$$= \frac{ }{ }$$
 එම දුවාසයයේ ස්කන්ධය එම දුවාසයේ මවුලික ස්කන්ධය $n = \frac{m}{M}$

ජලය 90 g අඩංගු ජලය මවුල පුමාණය
$$=\frac{m}{M}$$

$$=\frac{90 \text{ g}}{18 \text{ g mol}^{-1}}$$
 $=5 \text{ mol}$

$CaCO_3$ [කැල්සියම් කාබනේව්] $10 \, g$ ක අඩංගු $CaCO_3$ පුමාණය මවුලවලින් කොපමණ ද?

= 0.1 mol

$CO(NH_2)_2$ [යූරියා] 2 mol ක ස්කන්ධය කොපමණ ද?

ස්කන්ධය = මවුල පුමාණය imes මවුලික ස්කන්ධය

 $= 2 \text{ mol x } 60 \text{ g mol}^{-1}$

= 120 g

මවුලික ස්කන්ධය

කාබන් 5 mol ක ඇති පරමාණු සංඛපාව සොයන්න.

කාබන් 1 mol ක ඇති පරමාණු සංඛ්‍යාව = 6.022×10^{23} කාබන් 5 mol ක ඇති පරමාණු සංඛ්‍යාව = $6.022 \times 10^{23} \times 5$ = 3.011×10^{24}

කාබන් ඩයෝක්සයිඩ් 220 g ක අඩංගු

- 1. කාබන් ඩයෝක්සයිඩ් මවුල සංඛ්යාව සොයන්න.
- 2. 碑剪 缶იඛ51包 缶15对න.
- 4. ඔක්සිජන් පරමාණු සංඛ්යාව සොයන්න.

1.කාබන් ඩයෝක්සයිඩ් මවුල සංඛපාව

කාබන් ඩයොක්සයිඩ් 220 g අඩංගු මවුල පුමාණය
$$= \frac{m}{M}$$
 $= \frac{220 \text{ g}}{44 \text{ g mol}^{-1}}$

2. 碑迹 茜0加512

 CO_2 අණු 1 mol හි ඇති CO_2 අණු සංඛ්‍යාව = 6.022 x 10 23 CO_2 අණු 5 mol හි ඇති CO_2 අණු සංඛ්‍යාව = 6.022 x 10 23 x 5 = 3.011 x 10 24

3. මුළු පරමාණු සංඛූූූාව

CO2 අණුවක ඇති මුළු පරමාණු සංඛ්‍යාව = 3

CO₂ අණු 5 mol ක ඇති මුළු පරමාණු සංඛ්යාව = 3.011 x 10 ²⁴ x 3

 $= 9.033 \times 10^{24}$

4. ඔක්සිජන් පරමාණු සංඛ්යාව

CO₂ අණුවක ඇති ඔක්සිජන් පරමාණු සංඛ්‍යාව = 2

CO2 අණු 5 mol ක ඇති ඔක්සිජන් පරමාණු සංඛ්යාව = 3.011 x 10 24 x 2

 $= 6.022 \times 10^{24}$

Thank you!

