Soluciones propuestas

2° de Secundaria

Unidad 3

2022-2023

Educación para la vida

Preparación para el Examen de la Unidad 3

Nombre del alumno:	Fecha:
Aprendizajes:	Puntuación:
Describe la generación, diversidad y comportamiento de las ondas elec-	Pregunta Puntos Obtenidos
tromagnéticas como resultado de la interacción entre electricidad y	1 10
magnetismo.	2 10
	3 10
Describe cómo se lleva a cabo la exploración de los cuerpos celestes	4 10
por medio de la detección de las ondas electromagnéticas que emiten.	5 10
Describe algunos avances en las características y composición del Uni-	6 10
verso (estrellas, galaxias y otros sistemas).	7 10
	o 10

Frecuencia y longitud de onda

Describe las características y dinámica del Sistema Solar.

Identifica algunos aspectos sobre la evolución del Universo.

La frecuencia f de una onda electromagnética es:

$$f = \frac{\nu}{\lambda}$$
 y $\lambda = \frac{\nu}{f}$ (1)

donde ν es la velocidad de propagación de la onda ($\nu=3\times10^8~{\rm m/s})$ y λ la longitud de onda.

Energía de un fotón

La energía E asociada a dicha onda es:

$$E = h \times f \tag{2}$$

10

Total

10

10

100

donde h se conoce como constante de Planck ($h = 6.626 \times 10^{-34} \text{ Js}$).

Ejercicio 1		10 puntos
Relaciona cada grupo de galaxias con su descripción.		
Grupo formado por la Vía Láctea y unas 30 galaxias más. \Box	\square Supercúmulo	
Grupo formado por la Vía Láctea y otras 14 galaxias gigantes que integra una estructura en forma de anillo. $\hfill\Box$	\Box Concilio de Gigantes	
Grupo de galaxias cuyos tamaños típicos son de 2 a 3 $${\rm Mpc.}\ \square$	☐ Cúmulos de galaxias	
Grupo formado por cúmulos de galaxias. \Box	\square Grupo local	

Ejercicio 2 10 puntos

Elige la respuesta correcta.

- a Indica que el Universo se expande.
 - (A) El corrimiento al azul de la luz que emiten las galaxias.
 - (B) El corrimiento al rojo de la luz que emiten las galaxias.
 - C Todas las galaxias se alejan de la Vía Láctea.
 - (D) La Teoría de la Relatividad General
- b La relación de proporcionalidad entre la velocidad con la que se alejan las galaxias y la distancia a la que se encuentran.
 - (A) Ley de Hook
 - (B) Ley de Faraday
 - (C) Ley de Hubble
 - (D) Ley de Moore

Ejemplo 1

Completa el Cuadro 1 escribiendo los datos que faltan en notación científica.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Microondas	2×10^{-2}	1.5×10^{10}	9.939×10^{-24}
Rayos X	3×10^{-10}	1×10^{18}	6.626×10^{-16}
Radiación infraroja	6×10^{-6}	13.3×10^{13}	8.83 $\times 10^{-20}$

Tabla 1: Comparación entre algunos tipos de ondas electromagnéticas.

Solución:

Microondas:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{2 \times 10^{-2}} = 1.5 \times 10^{10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1.5 \times 10^{10} = 9.939 \times 10^{-24}$$

Rayos X:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{18}} = 3 \times 10^{-10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{18} = 6.626 \times 10^{-16}$$

Radiación infrarroja:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{6 \times 10^{-6}} = 13.3 \times 10^{13} \qquad E = h \times f = 6.626 \times 10^{-34} \times 13.3 \times 10^{13} = 8.83 \times 10^{-20}$$

Ejercicio 3 10 puntos

Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia $(1/s)$	Energía (J)
Rayos gamma	1.2×10^{-11}	2.5×10^{19}	1.6565×10^{-14}
Luz visible	3×10^{-7}	1×10^{15}	6.262×10^{-19}
Ondas de radio	1.5 $\times 10^5$	2×10^3	1.3252×10^{-31}

Solución:

Rayos gamma:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{1.2 \times 10^{-11}} = 2.5 \times 10^{19} \text{ 1/s} \qquad E = h \times f = 6.626 \times 10^{-34} \times 2.5 \times 10^{19} = 1.6565 \times 10^{-14} \text{ J}$$

Luz visible:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{15}} = 3 \times 10^{-7} \text{ m} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{15} = 6.262 \times 10^{-19} \text{ J}$$

Ondas de radio:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{2 \times 10^3} = 1.5 \times 10^5 \text{ m}$$
 $E = h \times f = 6.626 \times 10^{-34} \times 2 \times 10^3 = 1.3252 \times 10^{-31} \text{ J}$

Ejercicio 4 10 puntos

Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Microondas	1×10^{-2}	3×10^{10}	1.98×10^{-23}
Rayos X	2×10^{-10}	1.5×10^{18}	9.939×10^{-16}
Radiación infraroja	8.33×10^{-6}	3.6 $\times 10^{13}$	2.3×10^{-20}

Tabla 2: Comparación entre algunos tipos de ondas electromagnéticas.

Solución:

Microondas:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{1 \times 10^{-2}} = 3 \times 10^{10}$$
 $E = h \times f = 6.626 \times 10^{-34} \times 3 \times 10^{10} = 1.98 \times 10^{-23}$

Rayos X:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1.5 \times 10^{18}} = 2 \times 10^{-10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1.5 \times 10^{18} = 9.939 \times 10^{-16}$$

Radiación infrarroja:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{8.33 \times 10^{-6}} = 3.6 \times 10^{13} \qquad E = h \times f = 6.626 \times 10^{-34} \times 3.6 \times 10^{13} = 2.3 \times 10^{-20}$$

Ejercicio 5 10 puntos
Elige la respuesta correcta. Células receptoras de luz capaces de percibir colores, pero para que funcionen es necesario que haya suficiente luz. A Bastones B Esferas C Conos D Rizos
 Perturbación eléctrica que se genera cuando una neurona recibe un estímulo. (A) Impulso eléctrico (B) Impulso nervioso (C) Impulso magnético (D) Impulso atómico
 C Pulso eléctrico que se propaga a través de la neurona. A Potencial de acción B Potencial eléctrico C Potencial magnético D Energía potencial

Ejercicio 6		10 puntos
Relaciona cada enunciado con su respuesta.		
Es un indicador de su distancia si se conoce cuán luminosa es una estrella. \Box	□ El color	
Nos indica la temperatura de una estrella. \Box	☐ Radiotelescopios	
Radiación que emiten algunos cuerpos celestes que nos permite obtener nueva afirmación acerca de ellos. \Box	□ Electromagnética	
Telescopios que permiten observar las ondas de radio emitidas por algunos cuerpos celestes. \Box		
	□ El brillo	

Ejercicio 7 10 puntos

El parsec (pc) puede definirse a partir del año luz: 1 pc = 3.26 años luz. Como no es muy diferente de él, en realidad lo práctico consiste en usar sus múltiplos, como el kiloparsec, 1 kpc = 10^3 pc, o el megaparsec, 1 Mpc = 10^6 pc. El uso del parsec en la astronomía es una cuestión más bien de tradición.

A cuántos metros equivale un parsec?

Solución:

Usando la fórmula d = vt, donde d es la distancia, v es la velocidad y t es el tiempo, la distancia d que hay en un año luz es:

$$d = (3 \times 10^8 \text{ m/s})(365.25 \times 24 \times 60 \times 60 \text{ s})$$

= $9.46 \times 10^{15} \text{ m}$

Si 1 año luz equivale a 9.46×10^{15} m, entonces 1pc=3.26 años luz $\cdot9.46\times10^{15}$ m = 3.08×10^{16} m

b La galaxia M31 está a 650 kpc de la Vía Láctea y se acerca a ella a una velocidad de unos 350 km/s. ¿En cuánto tiempo "chocará" con ella?

Solución:

Sabemos que 1 pc = 3.08×10^{13} km, entonces

$$650 \text{ kpc} = 650 \times 10^3 \text{ pc}$$

= $650 \times 10^3 \times 3.08 \times 10^{13} \text{ km}$
= $2.002 \times 10^{19} \text{ km}$

Usando la fórmula $t = \frac{d}{a}$, el tiempo t en segundos es:

$$\begin{split} t &= \frac{2.002 \times 10^{19} \text{ km}}{350 \text{ km/s}} \\ &= 5.72 \times 10^{16} \text{ s} \\ &= 1,812.5 \text{ millones de años} \end{split}$$

Ejercicio 8 10 puntos

Señala si son verdaderas o falsas las siguientes afirmaciones.

- En un eclipse solar se observa que la Luna pasa delante del Sol y que ambos tienen un tamaño en apariencia iguales. De ello se concluye que el Sol está a la misma distancia que la Luna.
 - (A) Verdadero (B) Falso
- **b** La sombra que la Tierra proyecta sobre la Luna en los eclipses lunares es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero (B) Falso
- c La Tierra no rota sobre su propio eje porque nosotros no percibimos que nos estamos moviendo.
 - (A) Verdadero (B) Falso
- d El hecho de que en el mar primero desaparece el casco y luego la vela de un navío es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero (B) Falso
- e Cuando se viaja de norte a sur, o viceversa, la altura aparente de las estrellas cambia.

Ejercicio 9 10 puntos

Elige la respuesta correcta a cada inciso.

- a Longitud del diámetro del Universo.
 - (A) Un millón de años luz.
 - (B) Cien mil millones de años luz.
 - C Un billón de años luz.
 - (D) Mil millones de años luz.
- b Porcentaje de energía oscura que hay en el Universo.
 - \bigcirc 4.9%
 - (B) 26.8 %
 - © 33.3 %
 - (D) 68.3 %
- c Porcentaje de materia oscura que hay en el Universo.
 - (A) 4.9%
 - (B) 26.8 %
 - (C) 33.3 %
 - (D) 68.3 %
- d Porcentaje de materia ordinaria que hay en el Universo.
 - (A) 4.9 %
 - (B) 26.8 %
 - (C) 33.3 %
 - (D) 68.3 %
- e Antigüedad estimada del Universo.
 - A 14,800 millones de años
 - (B) 10,800 millones de años
 - C 15,800 millones de años
 - (D) 13,800 millones de años

(C) Fotografía

(D) Espectroscopía

Ejercicio 10 10 puntos Elige la respuesta correcta. • Instrumento gracias al cual es posible observar cuerpos celestes muy lejanos. (A) Microscopio (B) Estetoscopio (C) Telescopio (D) Electroscopio b Variación aparente de la posición de un objeto al cambiar la posición del observador. (A) Eclipse B Declinación (C) Transformación (D) Paralaje C Aparato que sirve para medir ángulos muy pequeños que ayudó a medir la distancia a la cual se encuentran algunos objetos celestes. (A) Vernier (B) Micrómetro C Astrolabio (D) Transportador d Técnica gracias a la cual se puede comparar el cambio en la posición de una estrella al transcurrir cierto período de tiempo. (A) Radiografía (B) Radiometría