CORRIGE TYPE DE TD 1 MTH 104

Exercice III

1. Expression des nombres $C_k(F)$ en fonction des nombres $C_k(f)$. Par définition on a

$$C_k(F) = \int_{-\frac{1}{2}}^{\frac{1}{2}} F(x) x^k dx.$$

Intégrons par parties $C_k(F)$. Pour cela posons

$$u(x) = F(x) \text{ et } v'(x) = x^k$$
 on $\mathbf{a}u'(x) = f(x) \text{ et } v(x) = \frac{1}{k+1}x^{k+1}$

Ainsi

$$\begin{split} C_k(F) &= \left[u(x)v(x) \right]_{-\frac{1}{2}}^{\frac{1}{2}} - \int_{-\frac{1}{2}}^{\frac{1}{2}} u'(x)v(x) dx \\ &= \frac{1}{k+1} \left[F(x)x^{k+1} \right]_{-\frac{1}{2}}^{\frac{1}{2}} - \frac{1}{k+1} \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)x^{k+1} dx \\ C_k(F) &= \frac{1}{k+1} \left[\frac{1}{2^{k+1}} C_0\left(f\right) - C_{k+1}\left(f\right) \right] \quad \mathbf{car} \left\{ \begin{array}{l} F\left(-\frac{1}{2}\right) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) dx = 0 \\ \mathbf{et} \\ F\left(\frac{1}{2}\right) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)x^0 dx = C_0(f). \end{array} \right. \end{split}$$

2. Expression simple de $\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)P(x)dx$ en fonction des nombres $C_k(f)$.

Soit $P(x) = \sum_{k=0}^{n} a_k x^k$ un polynôme de degré n tel que pour tout $k \in \{0, 1, \dots, n\}$, $a_k \in \mathbb{R}$.

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) P(x) dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) \left(\sum_{k=0}^{n} a_k x^k \right) dx$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{k=0}^{n} f(x) a_k x^k dx$$

$$= \sum_{k=0}^{n} a_k \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) x^k dx$$

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) P(x) dx = \sum_{k=0}^{n} a_k C_k (f) .$$

3. * Montrons que la fonction F est continue sur $\left[-\frac{1}{2};\frac{1}{2}\right]$.

$$F(x) = f(x) \int_{-\frac{1}{2}}^{\frac{1}{2}} g(t)dt.$$

La fonction g étant intégrable sur $\left[-\frac{1}{2};\frac{1}{2}\right]$, l'intégrale $\int_{-\frac{1}{2}}^{\frac{1}{2}}g(t)dt$ est une constante réelle que nous posons $A=\int_{-\frac{1}{2}}^{\frac{1}{2}}g(t)dt$. f est continue sur $\left[-\frac{1}{2};\frac{1}{2}\right]$ car f appartient à l'ensemble C. Ainsi

la fonction F est continue sur $\left[-\frac{1}{2};\frac{1}{2}\right]$ car elle est le produit d'une fonction continue sur $\left[-\frac{1}{2};\frac{1}{2}\right]$ et de la constante A.

* Extrema de F en fonction de m et de M.

Posons $m' = \min_{x \in I} F(x)$ et $M' = \max_{x \in I} F(x)$ avec $I = \left[-\frac{1}{2}; \frac{1}{2} \right]$.

$$F(x) = f(x)A$$
 avec $A = \int_{-\frac{1}{2}}^{\frac{1}{2}} g(t)dt$.

$$g\geqslant 0\, \mathbf{sur}\, \left[-\frac{1}{2};\frac{1}{2}\right] \Longrightarrow A\geqslant 0.$$

Ainsi

$$m' = \min_{x \in I} F(x) = A \min_{x \in I} f(x) = Am$$

 \mathbf{et}

$$M' = \max_{x \in I} F(x) = A \max_{x \in I} f(x) = AM$$

* Déduisons que $\exists c \in \left[-\frac{1}{2}; \frac{1}{2}\right]$ tel que $\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)g(t)dt = f(c)\int_{-\frac{1}{2}}^{\frac{1}{2}} g(t)dt$

 $\forall t \in \left[-\frac{1}{2}; \frac{1}{2}\right], \ m \leqslant f(t) \leqslant M$.

Donc

$$mg(t) \leqslant f(t)g(t) \leqslant Mg(t) \operatorname{car} g \geqslant 0 \operatorname{sur} I.$$

En passant à l'intégrale, on obtient

$$m \int_{-\frac{1}{2}}^{\frac{1}{2}} g(t)dt \leqslant \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)g(t)dt \leqslant M \int_{-\frac{1}{2}}^{\frac{1}{2}} g(t)dt,$$

soit encore
$$mA \leqslant \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)g(t)dt \leqslant MA$$
.

D'après l'astérisque précédent, on a $F\left(\left[-\frac{1}{2};\frac{1}{2}\right]\right)=[mA;MA]$. Comme $\int_{-\frac{1}{2}}^{\frac{1}{2}}f(t)g(t)dt\in[mA;MA]$ et que F est continue sur $\left[-\frac{1}{2};\frac{1}{2}\right]$, d'après le théorème des valeurs intermédiaires , il existe un réel $c\in\left[-\frac{1}{2};\frac{1}{2}\right]$ tel que $F(c)=\int_{-\infty}^{\frac{1}{2}}f(t)g(t)dt$.

Ainsi

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)g(t)dt = f(c)\int_{-\frac{1}{2}}^{\frac{1}{2}} g(t)dt.$$

exercice IV

a) • Relation entre I_n et I_{n+2}

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t dt$$

$$I_{n+2} = \int_0^{\frac{\pi}{2}} \sin^{n+2} t dt$$

Procedons par intégration par parties. Posons $u' = \sin t$ et $v = \sin^{n+1} t$. On a $u = -\cos t$ et $v' = (n+1)\cos t \sin^n t$. Ainsi on a:

$$I_{n+2} = \left[-\cos t \sin^{n+1} t \right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \cos^2 t \sin^n t dt.$$

$$= (n+1) \int_0^{\frac{\pi}{2}} \sin^n t dt - (n+1) \int_0^{\frac{\pi}{2}} \sin^{n+2} t dt$$

$$= (n+1) I_n - (n+1) I_{n+2}$$
Donc on a $I_{n+2} = \left(\frac{n+1}{n+2} \right) I_n \ \forall n \in I_n.$

$$(1)$$

*Calcul de I_n pour n pair. D'après la relation (1), on a:

Pour
$$n = 0,$$
 $I_2 = \frac{1}{2}I_0$
Pour $n = 2,$ $I_4 = \frac{3}{4}I_2$

Pour
$$n = 2, I_4 = \frac{3}{4}I_2$$

Pour
$$n = 4, I_6 = \frac{5}{6}I_4$$

Pour
$$n = 2k - 2$$
, $I_{2k} = \frac{2k - 1}{2k}I_{2k-2}$

Ainsi on a

$$I_{2k} = rac{1 imes 3 imes 5 imes \ldots imes (2k-1)}{2 imes 4 imes 6 imes \ldots imes 2k} I_0.$$
 $I_{2k} = rac{(2k)!}{4(k!)^2} rac{\pi}{2} \mathbf{car} \ I_0 = rac{\pi}{2}$

*Calcul de I_n pour n impair. D'après la relation (1), on a

Pour
$$n = 1, I_3 = \frac{2}{3}I_1$$

Pour
$$n = 3$$
, $I_5 = I_3$

Pour
$$n = 5, N = \frac{6}{7}I_5$$

Pour
$$n = 2k - 1$$
, $I_{2k+1} = \frac{2k}{2k+1}I_{2k-1}$

Ainsi on a

$$I_{2k+1} \neq \frac{2 \times 4 \times 6 \times \ldots \times 2k}{3 \times 5 \times \ldots \times (2k+1)} I_1.$$

$$I_{2k+1} = \frac{4(k!)^2}{(2k+1)!} \mathbf{car} \ I_1 = 1.$$

b)

• Calcul de
$$I = \int \frac{3(x^4 + 2x^2 - 2)}{(x^3 - 1)(x^2 + 2x + 2)} dx$$

$$\frac{3(x^4 + 2x^2 - 2)}{(x^3 - 1)(x^2 + 2x + 2)} = \frac{a}{x - 1} + \frac{bx + c}{x^2 + x + 1} + \frac{dx + e}{x^2 + 2x + 2} \text{ et on trouve } a = 1; \ b = 2; \ c = 1; \ d = 0 \text{ et } e = -6. \text{ On a alors}$$

$$I = \ln|x - 1| + \ln(x^2 + x + 1) - 6\arctan(x + 1) + C$$

$$I = \ln|x - 1| + \ln(x^2 + x + 1) - 6\arctan(x + 1) + \frac{1}{2}$$

• Calcul de $J = \int_0^1 \frac{t dt}{(1+t')\sqrt{1-t^4}}$.

Posons
$$u = t^2$$
. On a $du = 2tdt$ et $J = \frac{1}{2} \int_0^1 \frac{du}{(1+u)\sqrt{1-u^2}}$.

Posons ensuite $u = \sin x$. **On a** $du = \cos x dx = \sqrt{1 - u^2} dx$ **et** $J = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sin x}$.

Posons enfin $t = \tan\left(\frac{x}{2}\right)$. On a $dx = \frac{2dt}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$ et

$$J = \int_0^1 \frac{dt}{(1+t)^2} = \frac{1}{2}$$

c) Détermination des primitives de fonctions.

• Par les formules trigonoétriques on montre que
$$f(x) = \frac{1-\cos(\frac{x}{3})}{\sin(\frac{x}{2})} = \frac{2\sin(\frac{x}{6})}{3-4\sin^2(\frac{x}{6})}$$
.

Ainsi
$$\int f(x)dx = \int \frac{2\sin\left(\frac{x}{6}\right)}{3 - 4\sin^2\left(\frac{x}{6}\right)}dx$$
.

Posons $u = \cos\left(\frac{x}{6}\right)$. On a $du = -\frac{1}{6}\sin\left(\frac{x}{6}\right)dx$. Par consequent,

$$\int f(x)dx = -12 \int \frac{du}{4u^2 - 1} = -3 \int \left(\frac{1}{u - \frac{1}{2}} - \frac{1}{u + \frac{1}{2}} \right) du = 3 \ln \left| \frac{2u + 1}{2u - 1} \right| + C$$

$$\int f(x)dx = 3 \ln \left| \frac{2\cos\left(\frac{x}{6}\right) + 1}{2\cos\left(\frac{x}{6}\right) - 1} \right| + C$$

Posons
$$t = \frac{x}{6}$$
, on a $\int f(x)dx = 12 \int \frac{\sin(t)}{3 - 4\sin^2(t)} dt$

Posons ensuite
$$u = \cos t$$
. On a $du = -\sin t \, dt$ et $\sin^2 t = 1 - \cos^2 t = 1 + u^2$. Ainsi
$$\int f(x) dx = 12 \int \frac{\sin(t)}{3 - 4\sin^2(t)} dt = -12 \int \frac{dt}{tu^2 - 1}.$$

La suite s'obtient dans la première méthode.

La suite s'obtient dans la première méthode.
$$g(x) = \frac{1}{x^8 + x^4 + 1} \text{ en éléments simples dans } \mathbb{C} \text{ phis obtenir la décomposition dans } \mathbb{R}.$$

$$g(x) = \frac{1}{x^8 + x^4 + 1} = \frac{1}{(x^4 + 1)^4 - x^4}$$

$$g(x) = \frac{1}{[(x^2 + 1)^2 - 3x^2][(x^2 + 1)^2 - x^2]} = \frac{1}{(x^2 - \sqrt{3}x + 1)(x^2 + \sqrt{3}x + 1)(x^2 + x + 1)(x^2 - x + 1)}$$

 $g(x) = \frac{1}{[(x^2+1)^2-3x^2][(x^2+1)^2-x^2]} = \frac{1}{(x^2-\sqrt{3}x+1)(x^2+\sqrt{3}x+1)(x^2+x+1)(x^2-x+1)}$ En déterminant les racines des polynômes $(x^2-\sqrt{3}x+1), (x^2+\sqrt{3}x+1, (x^2+x+1))$ et (x^2-x+1) dans \mathbb{C} , on remarque que: $(x^2-\sqrt{3}x+1) = (x-\alpha)(x-\bar{\alpha}), (x^2+\sqrt{3}x+1) = (x+\alpha)(x+\bar{\alpha}), (x^2+x+1) = (x-\beta)(x-\bar{\beta})$ et $(x^2-x+1) = (x+\beta)(x+\bar{\beta})$ avec $\alpha = \frac{\sqrt{3}+i}{2} = e^{i\frac{\pi}{6}}$ et $\beta = \frac{-1+i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}$. Ainsi $g(x) = \frac{1}{(x-\alpha)(x-\bar{\alpha})(x+\bar{\alpha})(x+\bar{\alpha})(x-\bar{\beta})(x+\bar{\beta})(x+\bar{\beta})}.$

$$g(x) = \frac{1}{(x-\alpha)(x-\bar{\alpha})(x+\alpha)(x+\bar{\alpha})(x-\beta)(x-\bar{\beta})(x+\beta)(x+\bar{\beta})}$$

Par conséquent, la décomposition de g dans $\mathbb C$ donne

$$g(x) = \frac{a_1}{x - \alpha} + \frac{a_2}{x - \overline{\alpha}} + \frac{1}{x + \alpha} + \frac{b_2}{x + \overline{\alpha}} + \frac{c_1}{x - \beta} + \frac{c_2}{x - \overline{\beta}} + \frac{d_1}{x + \beta} + \frac{d_2}{x + \overline{\beta}}.$$
 (1)

La fonction g étant paire on a aussi

$$g(x) = -\frac{a_1}{x+\alpha} + \frac{a_2}{x+\bar{\alpha}} + \frac{b_1}{x-\alpha} - \frac{b_2}{x-\bar{\alpha}} - \frac{c_1}{x+\beta} - \frac{c_2}{x+\bar{\beta}} - \frac{d_1}{x-\beta} - \frac{d_2}{x-\bar{\beta}}.$$
 (2)

En identifiant (1) et (2) on a: $\begin{cases} a_1 = -b_1 \\ a_2 = -b_2 \\ c_1 = -d_1 \\ c_2 = -d_2 \end{cases}$ Il ne reste qu'à déterminer a_1, a_2, c_1 et c_2 . On a :

$$a_{1} = \frac{1}{2\alpha(\alpha^{2} + \bar{\alpha}^{2})(\alpha^{2} - \beta^{2})(\alpha^{2} - \bar{\beta}^{2})} = \frac{1}{i(\sqrt{3} + i)(\sqrt{3})(1 + i\sqrt{3})(1)} = -\frac{1}{4\sqrt{3}}$$

$$a_{2} = \frac{1}{2\bar{\alpha}(\alpha^{2} - \alpha^{2})(\bar{\alpha}^{2} - \beta^{2})(\bar{\alpha}^{2} - \bar{\beta}^{2})} = \frac{1}{-i(\sqrt{3})(\sqrt{3} - i)(1)(1 - i\sqrt{3})} = -\frac{1}{4\sqrt{3}}$$

$$c_{1} = \frac{1}{2\beta(\beta^{2} - \alpha^{2})(\beta^{2} - \bar{\alpha}^{2})(\beta^{2} - \bar{\beta}^{2})} = \frac{1}{(-1 + i\sqrt{3})(-1 - i\sqrt{3})(-1)(-i\sqrt{3})} = -\frac{i}{4\sqrt{3}}$$

$$c_{2} = \frac{1}{2\bar{\beta}(\bar{\beta}^{2} - \alpha^{2})(\bar{\beta}^{2} - \bar{\alpha}^{2})(\bar{\beta}^{2} - \bar{\beta}^{2})} = \frac{1}{(-1 - i\sqrt{3})(-1)(-1 + i\sqrt{3})(i\sqrt{3})} = \frac{i}{4\sqrt{3}}$$

Ainsi la décomposition de g dans \mathbb{C} est donnée par:

$$g(x) = -\frac{1}{4\sqrt{3}(x-\alpha)} - \frac{1}{4\sqrt{3}(x-\bar{\alpha})} + \frac{1}{4\sqrt{3}(x+\alpha)} + \frac{1}{4\sqrt{3}(x+\bar{\alpha})} - \frac{i}{4\sqrt{3}(x-\beta)} + \frac{i}{4\sqrt{3}(x-\bar{\beta})} + \frac{i}{4\sqrt{3}(x+\beta)} - \frac{i}{4\sqrt{3}(x+\bar{\beta})}$$

Ainsi dans \mathbb{R} , on a: $g(x) = -\frac{2x-\sqrt{3}}{4\sqrt{3}(x^2-\sqrt{3}x+1)} + \frac{2x+\sqrt{3}}{4\sqrt{3}(x^2+\sqrt{3}x+1)} + \frac{1}{4(x^2+x+1)} + \frac{1}{4(x^2+x+1)}$

$$\int g(x)dx = \frac{1}{4\sqrt{3}} \ln \left(\frac{x^2 + \sqrt{3}x + 1}{x^2 - \sqrt{3}x + 1} \right) + \frac{1}{3} \int \frac{dx}{\left(\frac{2}{\sqrt{3}} \left(x + \frac{1}{2} \right) \right)^2 + 1} + \frac{1}{3} \int \frac{dx}{\left(\frac{2}{\sqrt{3}} \left(x - \frac{1}{2} \right) \right)^2 + 1}$$

$$\int g(x)dx = \frac{1}{4\sqrt{3}} \ln \left(\frac{x^2 + \sqrt{3}x + 1}{x^2 - \sqrt{3}x + 1} \right) + \frac{\sqrt{3}}{6} \left[\arctan \left(\frac{2}{\sqrt{3}}x + \frac{1}{\sqrt{3}} \right) + \arctan \left(\frac{2}{\sqrt{3}}x - \frac{1}{\sqrt{3}} \right) \right] + C; \ C \in \mathbb{R}.$$

$$\int g(x)dx = \frac{1}{4\sqrt{3}} \ln \left(\frac{x^2 + \sqrt{3}x + 1}{x^2 - \sqrt{3}x + 1} \right) + \frac{\sqrt{3}}{6} \left[\arctan \left(\frac{2}{\sqrt{3}}x + \frac{1}{\sqrt{3}} \right) + \arctan \left(\frac{2}{\sqrt{3}}x - \frac{1}{\sqrt{3}} \right) \right] + C$$

• $h(x) = \frac{\cos x + 2\sin x}{\sin x - \cos x} = \frac{\cos x + \sin x}{\sin x - \cos x} + \frac{\sin x}{\sin x - \cos x} = \frac{\cos x + \sin x}{\sin x - \cos x} + \frac{1}{2} \left(\frac{\cos x + \sin x}{\sin x - \cos x} + \frac{\sin x - \cos x}{\sin x - \cos x} \right) = \frac{3}{2} \frac{\cos x + \sin x}{\sin x - \cos x} + \frac{1}{2} \text{ Ainsi,}$

$$\int h(x)dx = \frac{3}{2}\ln|\sin x + \cos x| + \frac{1}{2}x + C.$$
Autre/méthode

On pourra aussi poser $t = \tan\left(\frac{x}{2}\right)$. Dans ce cas on a $dx = \frac{2dt}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$ et $\cos x = \frac{1-t^2}{1+t^2}$. Ainsi on a $\int h(x)dx = \int \frac{-2(t^2-4t-1)}{(t^2+2t-1)(1+t^2)}dt$. On passe donc par la décomposition en éléments simples pour en déduire les primitives de h(x).

• Primitives de $l(x)=\frac{1}{(x-1)^3(x^2+x+1)}$ La décomposition en éléments simples de l(x) dans $\mathbb R$ s'écrit:

$$\frac{1}{(x-1)^3(x^2+x+1)} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{(x-1)^3} + \frac{dx+e}{x^2+x+1}.$$
 (2)

-En multipliant (3) par $(x-1)^3$ et en prenant x=1, on obtient

$$c = \frac{1}{3}.$$

- le polynôme du second degré x^2+x+1 admet pour racine $j=-\frac{1}{2}+i\frac{\sqrt{3}}{2}=e^{i\frac{2\pi}{3}}$. En multipliant (3) par x^2+x+1 et en prenant x=j, on a

$$dj + e = \frac{1}{(j-1)^3}$$

$$\left(-\frac{d}{2} + e\right) + i\frac{\sqrt{3}}{2}d = \frac{1}{\left[e^{i\frac{\pi}{3}}\left(e^{i\frac{\pi}{3}} - e^{-i\frac{\pi}{3}}\right)\right]^3}$$

$$= \frac{-1}{(2i\sin\frac{\pi}{3})^3}$$

$$= \frac{1}{3i\sqrt{3}}$$

$$\left(-\frac{d}{2} + e\right) + i\frac{\sqrt{3}}{2}d = \frac{-i\sqrt{3}}{9}$$

Ainsi

$$e = \frac{d}{2} = \frac{-1}{9}$$
 et $d = \frac{-2}{9}$.

En prenant x = 0 et x = 2 dans (3), on obtient le système

$$\begin{cases} -a+b &= \frac{-5}{9} \\ a+b &= \frac{-1}{9} \end{cases}$$

Ainsi

$$a = \frac{2}{9}$$
 et $b = \frac{-1}{3}$.

On a alors

$$\frac{1}{(x-1)^3(x^2+x+1)} = \frac{2}{9(x-1)} - \frac{1}{3(x-1)^2} + \frac{1}{3(x-1)^3} - \frac{2x+1}{9(x^2+x+1)}.$$
 (3)

Finalement

$$\int l(x)dx = \frac{2}{9} \int \frac{1}{(x-1)} dx - \frac{1}{3} \int \frac{1}{(x-1)^2} dx + \frac{1}{3} \int \frac{1}{(x-1)^3} dx - \frac{1}{9} \int \frac{2x+1}{(x^2+x+1)} dx$$
$$= \frac{2}{9} \ln|x-1| + \frac{1}{3(x-1)} - \frac{1}{6(x-1)^2} - \frac{1}{9} \ln(x^2+x+1) + C \text{ avec } C \in \mathbb{R}.$$

