Systematic Diagnosis of Noise in SC Qubits

Focus: Prioritized noise categories & diagnostic methodologies (Single- and Two-Qubit Systems)

Noise Categories & Prioritization

1. SPAM Errors

State prep & readout errors

2. Intrinsic Decoherence

- T₁ (energy relaxation)
- T₂ (dephasing via 1/f, etc.)

3. Control & Gate Errors

Pulse calibration imperfections (single- and two-qubit)

4. Leakage Errors

Transitions out of the computational subspace

5. Crosstalk & Correlated Noise

O Inter qubit interference & common mode noice

SPAM Errors (Highest Priority)

- Objective: Ensure accurate initialization & measurement.
- Diagnosis:
 - \circ Build confusion matrices from repeated $|0\rangle/|1\rangle$ preparations.
 - Use active reset / heralding techniques.
- Key Methods:
 - Fast, non-destructive readout
 - Measurement-based reset

References: Krantz et al. (2019); Ristè et al. (2012)

Intrinsic Decoherence

T₁ and T₂ Measurements

- T₁ (Relaxation):
 - Inversion Recovery experiments.
- T₂ (Dephasing):
 - Ramsey & Echo sequences.

Noise Spectroscopy

- Technique:
 - Use CPMG / decoupling sequences to extract noise PSD.

References: Krantz et al. (2019); Müller et al. (2019)

Control & Gate Errors

Single-Qubit Gates

• Diagnostics:

- Rabi, Ramsey experiments for pulse calibration.
- DRAG pulse shaping to cancel leakage & AC Stark shifts.

Benchmarking:

Randomized Benchmarking (RB) / Gate Set Tomography (GST).

Two-Qubit Gates

Spectroscopy:

- Chevron plots to extract coupling strengths.
- Diagnostics & Benchmarking:

Leakage Errors

• Issue:

 \circ Undesired excitations to $|2\rangle$ or higher.

• Diagnosis:

- \circ Modified readout to distinguish $|2\rangle$.
- Leakage randomized benchmarking.

• Mitigation:

- Pulse shaping (DRAG, adiabatic pulses).
- Optional active reset of leaked states.

References: Chen et al. (2016); Motzoi et al. (2009)

Crosstalk & Correlated Noise

Key Sources:

- Control line interference, residual ZZ coupling.
- Global environmental events (e.g., cosmic rays).

• Diagnosis:

- Measure crosstalk matrix (single-qubit pulses vs. neighbors).
- Simultaneous RB & GST on multi-qubit systems.
- Cross-correlation analysis over time.

• Mitigation:

- Active compensation via pre-distortion.
- Architectural isolation & tailored decoupling (e.g., CA-DD).

Prioritized Workflow Summary

1. SPAM Calibration:

Build confusion matrices; implement active reset.

2. Intrinsic Decoherence:

○ Measure T₁ and T₂; perform noise spectroscopy.

3. Gate Error Diagnostics:

Calibrate pulses (Rabi, Ramsey, DRAG); benchmark via RB/GST.

4. Leakage Detection:

Use modified readout/tomography; optimize pulse shaping.

5. Crosstalk Analysis:

Characterize with simultaneous RB & cross-correlation studies.

Conclusion

- Prioritize SPAM & intrinsic decoherence measurements to establish a baseline.
- Use a combination of spectroscopic, benchmarking, and tomography techniques to diagnose control errors and leakage.
- Characterize crosstalk using simultaneous multi-qubit measurements.
- Iteratively apply context-aware mitigation (CA-DD/CA-EC) based on these diagnostics.

References

- 1. Krantz, P. et al. (2019). A Quantum Engineer's Guide to Superconducting Qubits. DOI: 10.1063/1.5091792
- 2. Motzoi, F. et al. (2009). Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits. 10.1103/PhysRevLett.103.110501
- 3. Rol, M. et al. (2019). 10.1038/s41534-019-0132-2
- 4. Poletto, S. et al. (2012). 10.1103/PhysRevLett.109.240505
- 5. Chen, Z. et al. (2016). 10.1103/PhysRevLett.116.020501
- 6. Suppressing Correlated Noise via Context-Aware Dynamical Decoupling, (2024). arXiv:2403.06852
- 7. Two-Qubit Spectroscopy of Spatiotemporally Correlated Quantum Noise,