Chapter 2.1

1.
$$-2A = (-2)\begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix} = \begin{bmatrix} -4 & 0 & 2 \\ -8 & 10 & -4 \end{bmatrix}$$
. Next, use $B - 2A = B + (-2A)$:

$$B - 2A = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix} + \begin{bmatrix} -4 & 0 & 2 \\ -8 & 10 & -4 \end{bmatrix} = \begin{bmatrix} 3 & -5 & 3 \\ -7 & 6 & -7 \end{bmatrix}.$$

The product AC is not defined because the number of columns of A does not match the number of rows of C. $CD = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 \cdot 3 + 2(-1) & 1 \cdot 5 + 2 \cdot 4 \\ -2 \cdot 3 + 1(-1) & -2 \cdot 5 + 1 \cdot 4 \end{bmatrix} = \begin{bmatrix} 1 & 13 \\ -7 & -6 \end{bmatrix}$. For mental computation, the row-column rule is probably easier to use than the definition.

2.
$$A + 2B = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix} + 2 \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix} = \begin{bmatrix} 2+14 & 0-10 & -1+2 \\ 4+2 & -5-8 & 2-6 \end{bmatrix} = \begin{bmatrix} 16 & -10 & 1 \\ 6 & -13 & -4 \end{bmatrix}$$

The expression 3C - E is not defined because 3C has 2 columns and -E has only 1 column.

$$CB = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix} = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 1 & 1(-5) + 2(-4) & 1 \cdot 1 + 2(-3) \\ -2 \cdot 7 + 1 \cdot 1 & -2(-5) + 1(-4) & -2 \cdot 1 + 1(-3) \end{bmatrix} = \begin{bmatrix} 9 & -13 & -5 \\ -13 & 6 & -5 \end{bmatrix}$$

The product EB is not defined because the number of columns of E does not match the number of rows of B.

10.
$$AB = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}, AC = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}$$

- **13**. Use the definition of *AB* written in reverse order: $[A\mathbf{b}_1 \cdots A\mathbf{b}_p] = A[\mathbf{b}_1 \cdots \mathbf{b}_p]$. Thus $[Q\mathbf{r}_1 \cdots Q\mathbf{r}_p] = QR$, when $R = [\mathbf{r}_1 \cdots \mathbf{r}_p]$.
- **39**. [M] The matrix S "shifts" the entries in a vector (a, b, c, d, e) to yield (b, c, d, e, 0). The entries in S^2 result from applying S to the columns of S, and similarly for S^3 , and so on. This explains the patterns of entries in the powers of S:

 S^5 is the 5×5 zero matrix. S^6 is also the 5×5 zero matrix.

40. [**M**]
$$A^5 = \begin{bmatrix} .3318 & .3346 & .3336 \\ .3346 & .3323 & .3331 \\ .3336 & .3331 & .3333 \end{bmatrix}, A^{10} = \begin{bmatrix} .3333337 & .333330 & .3333336 \\ .3333330 & .333334 & .333333 \end{bmatrix}$$

The entries in A^{20} all agree with .3333333333 to 9 or 10 decimal places. The entries in A^{30} all agree with .3333333333333 to at least 14 decimal places. The matrices appear to approach the matrix

$$\begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$
. Further exploration of this behavior appears in Sections 4.9 and 5.2.

Chapter 2.2

1.
$$\begin{bmatrix} 8 & 6 \\ 5 & 4 \end{bmatrix}^{-1} = \frac{1}{32 - 30} \begin{bmatrix} 4 & -6 \\ -5 & 8 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -5/2 & 4 \end{bmatrix}$$

5. The system is equivalent to
$$A\mathbf{x} = \mathbf{b}$$
, where $A = \begin{bmatrix} 8 & 6 \\ 5 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, and the solution is $\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 2 & -3 \\ -5/2 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ -9 \end{bmatrix}$. Thus $x_1 = 7$ and $x_2 = -9$.

- 9. a. True, by definition of *invertible*. b. False. See Theorem 6(b).
 - **c**. False. If $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, then $ab cd = 1 0 \neq 0$, but Theorem 4 shows that this matrix is not invertible, because ad bc = 0.
 - **d.** True. This follows from Theorem 5, which also says that the solution of $A\mathbf{x} = \mathbf{b}$ is unique, for each **b**.
 - e. True, by the box just before Example 6.

30.
$$[A \quad I] = \begin{bmatrix} 5 & 10 & 1 & 0 \\ 4 & 7 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1/5 & 0 \\ 4 & 7 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1/5 & 0 \\ 0 & -1 & -4/5 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & 1/5 & 0 \\ 0 & 1 & 4/5 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -7/5 & 2 \\ 0 & 1 & 4/5 & -1 \end{bmatrix}. \quad A^{-1} = \begin{bmatrix} -7/5 & 2 \\ 4/5 & -1 \end{bmatrix}$$

31.
$$[A \quad I] = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ -3 & 1 & 4 & 0 & 1 & 0 \\ 2 & -3 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & -3 & 8 & -2 & 0 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 0 & 2 & 7 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 2 & 7 & 3 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & 7/2 & 3/2 & 1/2 \end{bmatrix} . \quad A^{-1} = \begin{bmatrix} 8 & 3 & 1 \\ 10 & 4 & 1 \\ 7/2 & 3/2 & 1/2 \end{bmatrix}$$

Chapter 2.3

- 1. The columns of the matrix $\begin{bmatrix} 5 & 7 \\ -3 & -6 \end{bmatrix}$ are not multiples, so they are linearly independent. By (e) in the IMT, the matrix is invertible. Also, the matrix is invertible by Theorem 4 in Section 2.2 because the determinant is nonzero.
- 2. The fact that the columns of $\begin{bmatrix} -4 & 6 \\ 6 & -9 \end{bmatrix}$ are multiples is not so obvious. The fastest check in this case may be the determinant, which is easily seen to be zero. By Theorem 4 in Section 2.2, the matrix is not invertible.
- 3. Row reduction to echelon form is trivial because there is really no need for arithmetic calculations:

$$\begin{bmatrix} 5 & 0 & 0 \\ -3 & -7 & 0 \\ 8 & 5 & -1 \end{bmatrix} \sim \begin{bmatrix} 5 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 5 & -1 \end{bmatrix} \sim \begin{bmatrix} 5 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 The 3×3 matrix has 3 pivot positions and hence is

invertible, by (c) of the IMT. [Another explanation could be given using the transposed matrix. But see the note below that follows the solution of Exercise 14.]

4. The matrix $\begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix}$ obviously has linearly dependent columns (because one column is zero), and

so the matrix is not invertible (or singular) by (e) in the IMT.

- 11. a. True, by the IMT. If statement (d) of the IMT is true, then so is statement (b).
 - **b**. True. If statement (h) of the IMT is true, then so is statement (e).
 - c. False. Statement (g) of the IMT is true only for invertible matrices.
 - **d.** True, by the IMT. If the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, then statement (d) of the IMT is false. In this case, all the lettered statements in the IMT are false, including statement (c), which means that A must have fewer than n pivot positions.
 - **e**. True, by the IMT. If A^T is not invertible, then statement (1) of the IMT is false, and hence statement (a) must also be false.
- 12. a. True. If statement (k) of the IMT is true, then so is statement (j).
 - **b**. True. If statement (e) of the IMT is true, then so is statement (h).
 - c. True. See the remark immediately following the proof of the IMT.
 - **d**. False. The first part of the statement is not part (i) of the IMT. In fact, if A is any $n \times n$ matrix, the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n into \mathbb{R}^n , yet not every such matrix has n pivot positions.
 - **e**. True, by the IMT. If there is a **b** in \mathbb{R}^n such that the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent, then statement (g) of the IMT is false, and hence statement (f) is also false. That is, the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot be one-to-one.
- **15**. If *A* has two identical columns then its columns are linearly dependent. Part (e) of the IMT shows that *A* cannot be invertible.
- **16**. Part (h) of the IMT shows that a 5×5 matrix cannot be invertible when its columns do not span \mathbb{R}^5 .