A gentle introduction to ML via antibody-engineering

NCBI: Building Transparent ML/AI Solutions to Advance Biological Research Virtual Codeathon Feb. 26 – Mar 1, 2024 Final Presentation

https://github.com/NCBI-Codeathons/mlxai-2024-team-smith

Team Smith Roster

Role	Participant	Affiliation
Team Lead	Todd Smith, PhD	Digital World Biology, LLC
Tech Lead	Herminio Vazquez	Copado Inc.
Writer	Stephen Panossian	Unaffiliated
Flex	Zainab Adenaike	NIH/NLM/NCBI
Flex	Jake Lance	student, University of Toronto
Flex	Mohsen Sharifi Renani	Spotify AB

Background

Project based on Digital World Biology's work in community college biotech workforce education

InnovATEBIO.org

Biotech-Careers.org

NSF Advanced Technological Education (ATE)

Supports the education of technicians for the hightechnology fields that drive our nation's economy

Antibodies are major biotech products

>500 Companies develop antibody-based products

https://www.biotech-careers.org/company-coreactivity/antibodies

Project aims 1) develop modules to support **course-based undergraduate research experiences**. (CUREs); 2) **investigate hackathons** as a novel strategy for engaging participants in collaborative curriculum development.

Antibody Engineers is funded in part by the National Science Foundation DUE 2055036

Machine learning and antibodies

De novo antibody design

Immunotherapy

Humanizing mouse monoclonals | Improve stability/solubility

Tune binding affinities (specificity) | Convert Fab to VHH

CAR-T | Multivariate

Other applications

Diagnostic reagents | Flow cytometry | Staining ...

Detect proteins in non-model organisms

© <u>www.digitalworldbiology.com</u> image: Flaticon.com

Project goals

Motivation

- ML/Al is hot
- Antibodies are important
- Antibodies are used heavily in community college workforce education
- We get requests for ways to teach ML

ML Education Challenges

- Vocabulary, methods, appropriateness
- Infrastructure: data, tools, models
- Reproducing papers is hard
- Examples lack context
- Teaching: sysadmin >> coding

Can we?

- Focus on a few concepts (regression, neural net, language models)
- Identify illustrative data sets
- Create infrastructure, libraries, install commands/scripts
- Document steps and concepts
- Accommodate a range of experience

Antibody diversity results from genetic recombination

Deep Ab DNA sequencing: workflow & data

Tools and data

Tools

Data Science

```
# Operative System and Data Format
import os
import json
from pathlib import Path

# Data operations
import pandas as pd

# Data Quality
from cuallee import Check, CheckLevel, Control

# Plotting
import matplotlib.pyplot as plt
import seaborn as sns
```

Machine Learning

AbLang1/2

https://github.com/oxpig/AbLang, https://github.com/TobiasHeOl/AbLang2

Generative

Work in progress,

Data

Oxford Protein Informatics Group

https://opig.stats.ox.ac.uk/resources

- >1 billion sequences from 80 studies
- COV-AbDaB 12,916 sequence CSV

 (all published/patented antibodies and nanobodies able to bind to coronaviruses, including SARS-CoV2, SARS-CoV1, and MERS-CoV)
- iReceptor

http://ireceptor.irmacs.sfu.ca

- 5.2 Billion annotated sequences from 10,019 repositories
- Cancer case/control (1M+ sequences)
- Somatic Mutation (1M+ sequences)
- NCBI SRA
- IEDB

Exploring Data: TSV/CSV file (cancer case/control)

- AIRR => ~152 columns
- df.shape => (1063925, 152)
- +/- Does not include metadata (JSON file)

- Learn immune receptor biology from the data
- Many caveats: biology, lab, informatics

```
RangeIndex: 76 entries, 0 to 75
Data columns (total 64 columns):
     Column
                                                                      Non-Null Count Dtype
                                                                      76 non-null
                                                                                       object
     repertoire_id
                                                                      0 non-null
     repertoire name
                                                                                       object
     repertoire description
                                                                      0 non-null
                                                                                       object
     sample
                                                                      76 non-null
                                                                                       object
                                                                      76 non-null
     data_processing
                                                                                       object
                                                                      76 non-null
    organism
                                                                                       object
                                                                      76 non-null
    ir sra run id
                                                                                       object
    ir_sequence_count
                                                                      76 non-null
                                                                                       int64
    ir_fasta_file_name
                                                                      76 non-null
                                                                                       object
    ir_germline_database
                                                                      76 non-null
                                                                                       object
 10 ir_library_source
                                                                      76 non-null
                                                                                       object
11 ir_max_age
                                                                      76 non-null
                                                                                       int64
12 ir min age
                                                                      76 non-null
                                                                                       int64
13 ir_rearrangement_file_name
                                                                      76 non-null
                                                                                       object
14 ir_rearrangement_number
                                                                      76 non-null
                                                                                       int64
15 ir_rearrangement_tool
                                                                      76 non-null
                                                                                       object
16 ir record number
                                                                      76 non-null
                                                                                       int64
    ir_curator_count
                                                                      76 non-null
                                                                                       int64
18 ir_ancillary_rearrangement_file_name
                                                                      0 non-null
                                                                                       object
```

Exploring Data: Data correlations

Plots are used to visualize data correlations between columns

Machine learning: CoV-AbDab neutralizing Abs

General Steps

To import and prepare your data for analysis with machine learning models, focusing on VH (variable heavy chain) and VL (variable light chain) sequences along with their corresponding labels, follow these structured steps:

- 1. Import Libraries: Include necessary libraries for data manipulation (e.g., pandas), machine learning, and any specific libraries for handling VH and VL sequences, such as ablang and ablang for embedding generation.
- Load Your Data: Use pandas or a similar library to load your dataset from a CSV file or another data source. This dataset should include VH and VL sequences and their corresponding labels indicating antigen neutralization.
- 3. Preprocess Data: Prepare the sequence data according to the input requirements of your pretrained models (ablang and ablang).

 This might involve sequence cleaning, encoding, or formatting.
- Load Pretrained Models: Initialize ablang and ablang2 models with pretrained was sequences.
- 5. Generate Embeddings: Apply the pretrained models to your preprocessed VH and VL see
- embeddings transform the sequence data into a numerical format suitable for mac 6. Prepare Final Dataset: Combine the generated embeddings with the corresponding as the input for subsequent machine learning tasks, such as classification or cluster
- Machine Learning Analysis: Use the prepared dataset to train machine learning model predictions or exploratory data analysis.

Modeling Strategy

For binary classification tasks, initiating the modeling process with a simple logic architectures like neural networks (NN) or fully connected (FC) models is a pract

Here's an expanded view on developing a robust machine learning model, incorporating both simple and complex methodologies:

- Initial Simple Model: Starting with logistic regression is beneficial due to step allows for a preliminary assessment of the dataset's characteristics
- Progression to Complex Models: After evaluating the performance or a fully connected model can offer deeper insights and potentiall capturing nonlinear relationships and interactions within the data.

Improving the Model:

- Early Stopping: Implement early stopping to terminate the training process when the excessively.
- Regularization: Introduce regularization methods like L1 or L2 regularization to constrain complexity penalties on the model's loss function.
- Dropout: Add dropout layers to the neural network architecture to introduce regula ization
 which can help prevent overfitting

PDB ID 7M7B: SARS-CoV-2 Spike:Fab 3D11 complex focused

refinement

• • • •

Progress

Can we?	Progress
Focus on a few concepts (regression, neural net, language models)	 Working with very large TSV files + meta data Evaluating data quality, correlations Principle component analyses (PCA) Machine learning for classification
Identify illustrative data sets	 iReceptor cancer case/control: Pandas, clonality concepts, data correlation, distribution, basis for how to proceed OPIG CoV-AbDab: Pandas, data exploration, ML to predict neutralizing antibodies
Create infrastructure, libraries, install commands/scripts	 Many jupyter notebooks to build from Include the needed packages
Documents steps and concepts	 Some of the jupyter notebooks are well annotated & explanatory Markdown serves as documentation
Accommodate a range of experience	 Team was learning antibody concepts Members with strong computer backgrounds taught Use cases support novice and strong programming experience Data analysis concepts and introduction to machine learning

Love hackathons?

Next Hackathon: Mon Aug 5th - Thu Aug 8th, 2024

Required experience: students, faculty, new to programming, industry/academic experts

Projects:

- NIST CHO cells: cell line stability and developing the materials and an ELISA to measure the antibody
- **CEDAR:** IEDB's Cancer Epitope Database and Analysis Resource, explore neoantigens, antigen processing, and immunotherapies.
- Antibodies & AI: Continue the presented work
- Affordable Antibody Engineering: Purifying single-chain antibodies to green fluorescent protein and ELISAs
- Project Sea Star: Can we use homology modeling to find antibodies for non-model organisms?
- **Pathogens:** Use the iCn3D, the SabDab database, and viral sequence databases (<u>nextstrain.org</u>) to explore sequence variation and it's impact on antibody binding.
- Immune Defense: Help test an immunology-based video game
- iCn3D datasets and collections: Identify antibody-antigen structures that will be useful for teaching and developing protocols that faculty can use in creating their own molecular datasets.

Learn More: https://antibody-engineers.org/event/antibody-engineering-hackathon-august-2024

Questions: todd@digitalworldbiology.com