Master Thesis Report

Process Enhancement by Incorporating Negative Instances in Model Repair

Group Report

Kefang Ding

19 Feb 2019

Outlines

- Problem Introduction
- Algorithm & Implementation
 - Add long-term dependency
 - Create dfg model
- Demo Presentation
- Evaluation

Problem Introduction

Description

- Given event log, process model and KPIs, how to incorporate negative KPIs outcomes to repair the process model for better performance?

Input

- Event log
- Existing process model
- KPIs

Output

Repaired process model

Algorithm – generate dfg model

Items

- Weight from existing dfg
 - Transition system
- Weight from positive event log
 - Inductiver Miner
- Weight from negative enent log
 - Inductiver Miner
- Control Parameters
 - ✓ Ext 0-1
 - Pos 0-1.0
 - ✓ Negative 0-1.0

Algorithm – generate dfg model

Directly-follows relation

Existing model, positive and negative event log

$$W(A, B) := W(E_{G_{ext}}(A, B)) + W(E_{G_{pos}}(A, B)) - W(E_{G_{neg}}(A, B)), with$$

$$W(E_{G_{ext}}(A,B)) = C_{ext} \bullet \frac{1}{|*|}, *the set of all possible activities$$

after A, |*| is the size of this set.

 C_{ext} is the control weight on existing model from Plugin.

$$W(E_{G_{pos}}(A, B)) = C_{pos} \bullet \frac{Cardinality_{pos}(E(A, B))}{Cardinality_{pos}(E(A, *))},$$

$$W(E_{G_{pos}}(A, B)) = C_{pos} \bullet \frac{Cardinality_{pos}(E(A, B))}{Cardinality_{pos}(E(A, B))},$$

$$W(E_{G_{neg}}(A,B)) = C_{neg} \bullet \frac{Cardinality_{neg}(E(A,B))}{Cardinality_{neg}(E(A,*))},$$

Keep this directly-follows relation if

$$W(A,B) > threshold, with -1 < W(A,B) < 2$$

Choose, threshold=0.5

Long-term dependency

- Choices Dependency
 - exclusive blocks => xor bloc
 - not loop
- Partial Order
 - Least Common Ancestor is
 - A < C < B, D < F
 - In same level
 - A,B,C pair
 - D,F pair

Long-term dependency

- Choices Dependency
 - exclusive blocks => xor block
 - not loop
- Relation xor branches
 - Significant correlation

Correlation Defintion

New generated model, positive and negative event log

$$Wlt(XORB_{X},XORB_{Y}) = Wltext(XORB_{X},XORB_{Y}) + Wltpos(XORB_{X},XORB_{Y})$$

$$- Wltneg(XORB_{X},XORB_{Y}), with$$

$$Wltext(XORB_{X},XORB_{Y}) = C_{model} \bullet \frac{1}{|XORB_{*}|}, XORB_{*}$$

$$* \text{ is the set of all xor branches from } XORB_{X}$$

$$Wltpos(XORB_{X},XORB_{Y}) = C_{pos} \bullet \frac{F_{pos}(XORB_{X},XORB_{Y})}{F_{pos}(XORB_{X},XORB_{Y})}$$

$$Wltneg(XORB_{X},XORB_{Y}) = C_{neg} \bullet \frac{F_{neg}(XORB_{X},XORB_{Y})}{F_{neg}(XORB_{X},XORB_{Y})}$$

$$F_{pos}(XORB_{X},XORB_{Y}), F_{neg}(XORB_{X},XORB_{Y}) \text{ are the frequency of coexistence of } XORB_{X}, XORB_{Y}$$

Significant Correlation

 $Wlt(XORB_X, XORB_Y) > \text{lt-threshold}, \quad with -1 < Wlt(XORB_X, XORB_Y) < 1.5$

Long-term dependency Situations

3.
$$LT = \{X1-Y1, X2-Y2\}$$

7. empty set

Situation 1 is full dependency, it keeps the original model

- Expressed On Petri net
 - Duplicate Transition
 - Keep track of added xor branches for source and target xor branches S and T

Given LT= {X1-Y1,X1-Y2,X2-Y2}

- Expressed On Petri net
 - Duplicate Transition
 - Keep track of added xor branches for source and target xor branches S and T
 - For every item It in LT, If source and target are already exist in S and T, then duplicate source and target in xor block

Given LT= {X1-Y1,X1-Y2,X2-Y2}

- Expressed On Petri net
 - Duplicate Transition
 - Keep track of added xor branches for source and target xor branches S and T
 - For every item It in LT, If source and target are already exist in S and T, then duplicate source and target in xor block
 - connect It source and target by adding one place and arcs

Given LT= {X1-Y1,X1-Y2,X2-Y2}

- Expressed On Petri net
 - Add silent transition
 - Get the source set LT-S and target set LT-T of LT
 - Create one control place as post-place post for every element in LT-S
 - Create one control place as pre-place before every element in LT-T

Given LT= {X1-Y1,X1-Y2,X2-Y2}

- Expressed On Petri net
 - Add silent transition
 - Get the source set LT-S and target set LT-T of LT
 - Create one control place as post-place post for every element in LT-S,
 - Create one control place as pre-place before every element in LT-T

Given LT= {X1-Y1,X1-Y2,X2-Y2}

- Expressed On Petri net
 - Add silent transition
 - Get the source set LT-S and target set LT-T of LT
 - Create one control place as post-place post for every element in LT-S,
 - Create one control place as pre-place before every element in LT-T
 - For every item in LT, create one silent transition to connect the corresponding post-place for It source and pre-place for It target

Given LT= {X1-Y1,X1-Y2,X2-Y2}

Soundness

Situation 2 and 3 are sufficient to create sound model

Proof:

For every xor block pair, M(s-sp)=1, other places p, M(p)=0

Soundness

Situation 2 and 3 are sufficient to create sound model

Proof:

For every xor block pair, M(s-sp)=1, other places p, M(p)=0

Xi is chosen, M(s-ep)=1, M(post-pi)=1, other places p, M(p)=0

Soundness

Situation 2 and 3 are sufficient to create sound model

Proof:

- For every xor block pair, M(s-sp)=1, other places p, M(p)=0
- × Xi is chosen, M(s-ep)=1, M(postpi)=1, other places p, M(p)=0
- After M, M(t-sp)=1, for any silent transiton st, |InEdge(ts)|=| OutEdge(ts)|=1, token number stays the same until pre places, Sum(M(pre-pi))=Sum(M(postpi))=1

Soundness

 Situation 2 and 3 are sufficient to create sound model

Proof:

- For every xor block pair, M(s-sp)=1,
 other places p, M(p)=0
- Xi is chosen, M(s-ep)=1, M(post-pi)=1, other places p, M(p)=0
- After M, M(t-sp)=1, for any silent transiton st, |InEdge(ts)|=|OutEdge(ts)| =1, token number stays the same until pre places, Sum(M(prepi))=Sum(M(post-pi))=1
- For any Yj, *Yj=2, able to fire, consume two tokens, and produce one token to Place t-ep

Soundness

Situation 4-7 can't create sound model

 Not proper to end: token remains before Y1

Dead part: Y1,Y2 can not be fired

Ignore those situations

Demo Representation

Repair Model

Sequence

```
Log={pos:<S1,A,B1,C,T1>,<S2,A,B1,C,T2>,<S2,A,B2,C,T2> neg:<S1,A,B2,C,T1>}
```

LT(Xor(S1,S2),Xor(B1,B2))= {S1-B1, S2-B1,S2-B2}
 LT(Xor(B1,B2), Xor(T1,T2))={B1-T1,B1-T2,B2-T2}
 LT(Xor(S1,S2),Xor(T1,T2))= {S1-T1(??), S2-T2}

Evaluation

Confusion Matrix

	Allowed behavior	Not allowed behavior
Positive Traces	AP(High)	NP(Low)
Negative Traces	AN(Low)	NN(High)

Precision = $\Sigma AP / \Sigma AP + NP$

Accuracy = $\Sigma AP + NN / \Sigma AP + AN + NP + NN$

Recall = $\Sigma AP / \Sigma AP + AN$

