27. МАКЕДОНСКА МАТЕМАТИЧКА ОЛИМПИЈАДА

РЕШЕНИЈА И РАСПРЕДЕЛБА НА ПОЕНИ

1. Нека a,b се природни броеви и p,q се прости броеви за кои $p \nmid q-1$ и $q \mid a^p-b^p$. Докажете дека $q \mid a-b$.

Решение. Ќе дадеме три докази.

Прв доказ. Доколку q го дели a или b тогаш ги дели обата броја, од што тврдењето следува непосредно. (1 π) Да претпоставиме дека $q \nmid a$ и $q \nmid b$. Тогаш постои $d \in \mathbb{N}$ таков што $ad \equiv b \pmod{q}$. (3 π) Следува дека $a^p d^p \equiv b^p \equiv a^p \pmod{q}$ и, оттука, $d^p \equiv 1 \pmod{q}$. (2 π) Од друга страна, согласно малата теорема на Ферма, имаме $d^{q-1} \equiv 1 \pmod{q}$. (2 π) Значи, редот на d (во однос на q) ги дели p и q-1. Бидејќи (p,q-1)=1, редот на d е 1, односно d=1 и $a \equiv b \pmod{q}$. (2 π)

Втор доказ. Да претпоставиме дека $q \nmid a - b$. Тогаш (од $q \mid a^p - b^p$) имаме $q \nmid a$ и $q \nmid b$. (1 π) Тврдиме дека за секои $m, n \in \mathbb{N}$ важи: ако $q \mid a^m - b^m$ и $q \mid a^n - b^n$ тогаш $q \mid a^{(m,n)} - b^{(m,n)}$. (1 π) Навистина, имајќи го предвид Евклидовиот алгоритам, доволно е да претпоставиме дека m > n и да ја потврдиме деливоста $q \mid a^{m-n} - b^{m-n}$. (2 π) Од друга страна, при направените претпоставки, оваа деливост следува од идентитетот $a^m - b^m = a^n(a^{m-n} - b^{m-n}) + b^{m-n}(a^n - b^n)$. (2 π) Да искористиме дека, согласно малата теорема на Ферма, $q \mid a^{q-1} - b^{q-1}$. (2 π) Значи, $q \mid a^{(p,q-1)} - b^{(p,q-1)}$. (1 π) Останува да забележиме дека (p,q-1) = 1, противречност. (1 π) \diamond

Трет доказ. Да претпоставиме дека $q \nmid a - b$. Оттука $q \nmid a$ и $q \nmid b$. (1п) Можеме да претпоставиме дека (a,b) = 1. (1п) Навистина, ако $a_0 = \frac{a}{(a,b)}$ и $b_0 = \frac{b}{(a,b)}$ тогаш (согласно направената претпоставка) $(a_0,b_0) = 1$, $q \mid a_0^p - b_0^p$ и $q \nmid a_0 - b_0$. (1п) Тврдиме дека, бидејќи (a,b) = 1, за секои $m,n \in \mathbb{N}$ важи $(a^m - b^m,a^n - b^n) = a^{(m,n)} - b^{(m,n)}$. Навистина, очигледно е исполнето $a^{(m,n)} - b^{(m,n)} \mid (a^m - b^m,a^n - b^n)$. За доказ на обратната деливост, имајќи го предвид Евклидовиот алгоритам, доволно е да земеме m > n и да потврдиме дека важи $(a^m - b^m, a^n - b^n) \mid a^{m-n} - b^{m-n}$. Но, последнава деливост е директна последица на идентитетот $a^m - b^m = a^n(a^{m-n} - b^{m-n}) + b^{m-n}(a^n - b^n)$. (3п) Следстветно, $(a^p - b^p, a^{q-1} - b^{q-1}) = a^{(p,q-1)} - b^{(p,q-1)} = a - b$. (1п) Останува да забележиме дека, од условот на задачата и малата теорема на Ферма, $q \mid (a^p - b^p, a^{q-1} - b^{q-1})$. (2п) Значи, $q \mid a - b$, противречност. (1п)

2. Нека $x_1, \ldots, x_n \ (n \ge 2)$ се реални броеви од интервалот [1, 2]. Докажете дека

$$|x_1 - x_2| + \dots + |x_n - x_1| \le \frac{2}{3} (x_1 + \dots + x_n),$$

со равенство ако и само ако n е парен и n-торката $(x_1,x_2,\ldots,x_{n-1},x_n)$ е еднаква на $(1,2,\ldots,1,2)$ или $(2,1,\ldots,2,1)$.

Решение. Ќе дадеме два докази.

1

Прв доказ. Ако $a, b \in [1, 2]$ тогаш

$$|a-b| = \frac{1}{3}(a+b) - \frac{2}{3}(2\min\{a,b\} - \max\{a,b\}) \le \frac{1}{3}(a+b),$$
 (4 π)

со равенство ако и само ако $\{a,b\}=\{1,2\}$. (2π) Оттука,

$$|x_1 - x_2| + \dots + |x_n - x_1| \le \frac{1}{3} \left((x_1 + x_2) + \dots + (x_n + x_1) \right)$$
$$= \frac{2}{3} \left(x_1 + \dots + x_n \right), \quad (2\pi)$$

со равенство ако и само ако n е парен и (x_1,\ldots,x_n) е $(1,2,\ldots,1,2)$ или $(2,1,\ldots,2,1)$. (2 π) \diamond

Втор доказ. Најпрво да претпоставиме дека не постојат два последователни членови x_i (гледано циклично) кои се еднакви. Велиме дека x_i е локален минимум доколку $x_{i-1} > x_i$ и $x_i < x_{i+1}$ (циклично), и локален максимум ако $x_{i-1} < x_i$ а $x_i > x_{i+1}$ (циклично). Бројот на локални минимуми е еднаков со бројот на локални максимуми; да го означиме со k. (3 π) Тогаш левата страна на неравентсвото може да се презапише како

$$2\left(\sum_{x_i \text{ is local maximum}} x_i\right) - 2\left(\sum_{x_i \text{ is local minimum}} x_i\right),$$

па она што сакаме да го докажеме гласи

$$\frac{4}{3} \left(\sum_{x_i \text{ is local maximum}} x_i \right) \leq \frac{8}{3} \left(\sum_{x_i \text{ is local minimum}} x_i \right) + \frac{2}{3} \left(\sum_{x_i \text{ is neither}} x_i \right).$$

Но, последново неравенство непосредно следува од

$$\frac{4}{3} \left(\sum_{x_i \text{ is local maximum}} x_i \right) \le \frac{8k}{3} \le \frac{8}{3} \left(\sum_{x_i \text{ is local minimum}} x_i \right). \quad (3\pi)$$

Притоа, равенство важи ако и само ако: секој x_i е локален минимум или локален максимум, сумата на локалните минимуми изнесува k (односно секој локален минимум е еднаков на 1), и сумата на локалните максимуми изнесува 2k (односно секој локален максимум е еднаков на 2). Со други зборови, равенство важи ако и само ако n е парен и (x_1, \ldots, x_n) е $(1, 2, \ldots, 1, 2)$ или $(2, 1, \ldots, 2, 1)$. (2 π)

Во случај кога има еднакви последователни членови, можеме да избришеме еден од нив, и да ја разгледуваме добиената низа (y_1, \ldots, y_{n-1}) . Левата страна на соодветното неравенство за (y_i) е еднаква на левата страна на неравенството за (x_i) , додека десната страна е строго помала. Следствено, доволно е да го потврдиме неравенството за (y_i) . Ова размислување и редукција ги повторуваме додека не преостанат еднакви последователни членови, а потоа го применуваме неравенството покажано во претходниот случај. (2п)

3. Нека ABC е триаголник, и A_1, B_1, C_1 се точки на страните BC, CA, AB, соодветно, такви што AA_1, BB_1, CC_1 се симетрали на внатрешните агли на $\triangle ABC$. Опишаната кружница $k' = (A_1B_1C_1)$ ја допира страната BC во A_1 . Нека B_2 и C_2 , соодветно, се вторите пресечни точки на k' со правите AC и AB. Докажете дека |AB| = |AC| или $|AC_1| = |AB_2|$.

Решение. Со a,b,c ги означуваме должините на страните на $\triangle ABC$. Теоремата за симетрала на внатрешен агол кажува дека

$$\frac{\overline{BA_1}}{\overline{A_1C}} = \frac{c}{b} \quad , \quad \frac{\overline{CB_1}}{\overline{B_1A}} = \frac{a}{c} \quad , \quad \frac{\overline{AC_1}}{\overline{C_1B}} = \frac{b}{a} \, .$$

Оттука,

$$|BA_1| = \frac{ac}{b+c}, |A_1C| = \frac{ab}{b+c}, |CB_1| = \frac{ab}{a+c}, |B_1A| = \frac{bc}{a+c}, |AC_1| = \frac{bc}{a+b}, |C_1B| = \frac{ac}{a+b}.$$
 (2 π)

Земајќи ги предвид степените на точките A, B, C во однос на кружницата k', имаме

$$\overline{AC_1} \cdot \overline{AC_2} = \overline{AB_1} \cdot \overline{AB_2}$$
 , $\overline{BA_1}^2 = \overline{BC_1} \cdot \overline{BC_2}$, $\overline{CA_1}^2 = \overline{CB_1} \cdot \overline{CB_2}$. (2 π)

Нека $m=|AC_2|$ и $n=|AB_2|$. Комбинирајќи ги претходните заклучоци, добиваме дека

$$\frac{bc}{a+b}m = \frac{bc}{a+c}n \Rightarrow m = \frac{a+b}{a+c} \cdot n$$

$$\frac{a^2b^2}{(b+c)^2} = \frac{ab}{a+c}(b+n) \Rightarrow n = b \cdot \frac{a(a+c) - (b+c)^2}{(b+c)^2}$$

$$\frac{a^2c^2}{(b+c)^2} = \frac{ac}{a+b}(c+m) \Rightarrow$$

$$\frac{ac}{(b+c)^2} = \frac{1}{a+b}(c + \frac{a+b}{a+c} \cdot n) = \frac{1}{a+b}(c + \frac{a+b}{a+c} \cdot b \cdot \frac{a(a+c) - (b+c)^2}{(b+c)^2}).$$

Последното равенство се сведува на

$$a(a+b)(a+c)(c-b) = (b+c)^2(a+b+c)(c-b)$$
. (3 π)

Значи, ако не важи b=c, тогаш $a(a+b)(a+c)=(b+c)^2(a+b+c)$. (1п) Следствено,

$$|AB_{2}| = n$$

$$= b \cdot \frac{a(a+c) - (b+c)^{2}}{(b+c)^{2}}$$

$$= \frac{b}{a+b} \frac{a(a+b)(a+c) - (a+b)(b+c)^{2}}{(b+c)^{2}}$$

$$= \frac{b}{a+b} \frac{(a+b+c)(b+c)^{2} - (a+b)(b+c)^{2}}{(b+c)^{2}}$$

$$= \frac{bc}{a+b}$$

$$= |AC_{1}|. \quad (2\pi)$$

- **4.** Нека S е непразно конечно множество, и \mathcal{F} е колекција подмножества од S при што се задоволени следниве услови:
 - (i) $\mathcal{F} \setminus \{S\} \neq \emptyset$;
 - (ii) ако $F_1, F_2 \in \mathcal{F}$, тогаш $F_1 \cap F_2 \in \mathcal{F}$ и $F_1 \cup F_2 \in \mathcal{F}$.

Докажете дека постои $a \in S$ што припаѓа на најмногу половина од елементите на \mathcal{F} .

Решение. Ќе дадеме два докази. Најпрво ја воведуваме следнава нотација. За елемент $a \in S$, нека $\mathcal{F}(a) := \{U \in \mathcal{F} \mid a \in U\}$ и $\mathcal{F}(a)^c := \mathcal{F} \setminus \mathcal{F}(a)$. Она што сакаме да докажеме е дека за некое $a \in S$ важи $|\mathcal{F}(a)| \leq |\mathcal{F}(a)^c|$. (1 π)

Прв доказ. Ќе го искористиме следново: ако множества A, B, C задоволуваат $A \cup B = A \cup C$ и $A \cap B = A \cap C$, тогаш B = C. (Навистина, дадените две равенства повлекуваат дека $A \oplus B = A \oplus C$, од каде се добива $B \oplus C = (B \oplus A) \oplus (A \oplus C) = \emptyset$.) (Зп)

Разгледуваме максимален елемент M во делумно подреденото множество ($\mathcal{F} \setminus \{S\}, \subseteq$). Со други зборови, M е вистинско подмножество на S и воедно елемент на \mathcal{F} , и притоа не постои M' со истите особини за кое $M \subset M'$. (Напоменуваме дека вакво M постои бидејќи, според условот на задачата, S е непразно конечно множество и $\mathcal{F}\setminus\{S\}\neq\emptyset$.) Нека $a\in S\setminus M$. Согласно изборот на M, за секое $U \in \mathcal{F}(a)$ важи $M \cup U = S$. (3п) Следствено, пресликувањето $\mathcal{F}(a) \to \mathcal{F}(a)^c$ дефинирано со $U \mapsto M \cap U$ е инјекција. (2π) Значи $|\mathcal{F}(a)| \leq |\mathcal{F}(a)^c|$. (1π) Втор доказ. Да земеме $a \in S$ таков што $\mathcal{F}(a)^c$ е максимален елемент во делумно подреденото множество ($\{\mathcal{F}(b)^c \mid b \in S\}$, \subseteq). (На пример, секој a што го максимизира $|\mathcal{F}(a)^c|$ ја има наведената особина.) Од (i) добиваме $\mathcal{F}(a)^c \neq \emptyset$. Нека $F = \bigcup_{V \in \mathcal{F}(a)^c} V$. Бидејќи множеството S е конечно, (ii) повлекува $F \in \mathcal{F}$. (3π) Тврдиме дека пресликувањето $\mathcal{F}(a) \to \mathcal{F}(a)^c$ дефинирано со $U \mapsto F \cap U$ е инјекција. Навистина, да претпоставиме дека постојат различни $U',U''\in\mathcal{F}(a)$ такви што $F\cap U'=F\cap U''$. Без губење од општоста, нека $b\in U'\setminus U''$. Тогаш, бидејќи $b \notin F \cap U''(=F \cap U')$, имаме $b \notin F$. Следствено, $\mathcal{F}(a)^c \subseteq \mathcal{F}(b)^c$. (3п) Уште повеќе, со оглед на тоа дека $U'' \in \mathcal{F}(b)^c \setminus \mathcal{F}(a)^c$, важи $\mathcal{F}(a)^c \subset \mathcal{F}(b)^c$. (1п) Но, последниов заклучок противречи на направениот избор за а, што ја потврдува инјективноста на разгледуваното пресликување. (1п) Значи $|\mathcal{F}(a)| \leq |\mathcal{F}(a)^c|$. (1п)