Lista 4

Contents

Problem 1.																					1
Problem 2.																					
Problem 3.																					4
Problem 4.																					Ę

Problema 1 Let M be a compact, connected, orientable n-dimensional manifold. Let $\Lambda_0, \Lambda_1 \in \Omega^n(M)$ be two volume forms on M such that $\int_M \Lambda_0 = \int_M \Lambda_1$. Show that there is a diffeomorphism $\phi \in Dif(M)$ such that $\phi^*(\Lambda_1) = \Lambda_0$.

Solução. Aqui sigo as definições em Lee, p. 380. Como M é orientada, em cada ponto podemos pegar um marco orientado (i.e. que em cada ponto pertence à clase de equivalencia dada pela orientação) E_1, \ldots, E_n tal que as formas Λ_0 e Λ_1 são sempre positivas ou sempre negativas. Mas ainda, como $\int_M \Lambda_0 = \int_M \Lambda_1 > 0$,

$$\Lambda_0(E_1,\ldots,E_0), \Lambda(E_1,\ldots,E_n) > 0$$

para qualquer marco orientado. Daí é claro que $\Lambda_t(E_1, ..., E_n) > 0$, de modo que Λ_t não pode ser a forma zero em nenhum ponto de M, i.e. é uma forma de volumen.

Para ver que $[\Lambda_0] = [\Lambda_1]$ lembre que $H^n(M)$ tem dimensão 1. Daí existe um escalar α tal que $[\Lambda_0] = \alpha \, [\Lambda_1]$. Mas, como a integral está bem definida em classes de cohomologia, $\int_M [\Lambda_0] = \int_M [\Lambda_1] \implies \alpha = 1$.

Para concluir só devemos aplicar o Método de Moser. Já temos uma família de formas cohomologas, assim existe uma isotopía ϕ_t tal que $\phi_t^* \Lambda_t = \Lambda_0$. Pegando t=1 obtemos o difeomorfismo buscado.

Problem 2 Give an example of two symplectic forms on \mathbb{R}^4 that induce the same orientation, but admit a convex combination that is degenerate. Is it possible to find an example like that, but admitting another of *symplectic* forms from one to the other? What happens if we consider \mathbb{R}^2 instead of \mathbb{R}^4 ?

Solução. (See StackExchange.) Lembre que no problema 1 da lista 1 vimos que uma 2-forma ω é não degenerada se é só se $\omega^n \neq 0$. No nosso caso, qualquer 2-forma em \mathbb{R}^4 pode ser expressada como

$$\omega = \alpha \, dx \wedge dy + \beta \, dx \wedge dz + \gamma \, dx \wedge dw + \delta \, dy \wedge dz + \varepsilon \, dy \wedge dw + \varphi \, dz \wedge dw.$$

Daí,

$$\omega \wedge \omega = 2F dx \wedge dy \wedge dz \wedge dw$$

onde $F = \alpha \varphi - \beta \varepsilon + \gamma \delta$ (vou fazer essa conta num caso análogo abaixo). Segue que ω é não degenerada se e só se $F \neq 0$.

Nosso primeiro problema é achar ω_0 e ω_1 tais que as suas funções associadas como acima, F_0 e F_1 , sejam não-zero, mas que exista uma combinação convexa delas ω_t cuja função F_t sim seja zero. Note que se $\omega_t = (1-t)\omega_0 + t\omega_1$,

$$\begin{split} \omega_t \wedge \omega_t &= \left((1-t)\omega_0 + t\omega_1 \right) \wedge \left((1-t)\omega_0 + t\omega_1 \right) \\ &= (1-t)^2 \omega_0 \wedge \omega_0 + t(1-t) \Big(\omega_0 \wedge \omega_1 + \omega_1 \wedge \omega_0 \Big) + t^2 \omega_1 \wedge \omega_1 \\ &= (1-t)^2 \omega_0 \wedge \omega_0 + \Big(2t(1-t) \Big) \omega_0 \wedge \omega_1 + t^2 \omega_1 \wedge \omega_1 \end{split}$$

Agora vou calcular $\omega_0 \wedge \omega_1$:

$$\begin{split} &\omega_0 \wedge \omega_1 \\ &= \left(\alpha_1 \, dx \wedge dy + \beta_1 \, dx \wedge dz + \gamma_1 \, dx \wedge dw + \delta_1 \, dy \wedge dz + \epsilon_1 \, dy \wedge dw + \varphi_1 \, dz \wedge dw\right) \\ &\wedge \left(\alpha_2 \, dx \wedge dy + \beta_2 \, dx \wedge dz + \gamma_2 \, dx \wedge dw + \delta_2 \, dy \wedge dz + \epsilon_2 \, dy \wedge dw + \varphi_2 \, dz \wedge dw\right) \\ &= 2\alpha_1 \varphi_2 dx \wedge dy \wedge dz \wedge dw + 2\beta_1 \epsilon_2 dx \wedge dz \wedge dy \wedge dw + 2\gamma_1 \delta_2 dx \wedge dw \wedge dy \wedge dz \end{split}$$

de forma que

$$\omega_0 \wedge \omega_1 = 2 \Big(\alpha_1 \varphi_2 - \beta_1 \varepsilon_2 + \gamma_1 \delta_2 \Big) dx \wedge dy \wedge dz \wedge dz$$

Definamos $F_{01} := \alpha_1 \phi_2 - \beta_1 \varepsilon_2 + \gamma_1 \delta_2$.

Agora pegue $\alpha_1=\alpha_2=\varphi_1=\varphi_2=\beta_1=1$, $\epsilon_2=2$ e o resto zero. Obtemosque $F_0=F_1=1$, e que $F_{01}=-1$. Então

$$\begin{split} \omega_t \wedge \omega_t &= 2 \left((1-t)^2 - 2t(1-t) + t^2 \right) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \left(1 - 2t + t^2 - 2t + 2t^2 + t^2 \right) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \left(1 - 4t + 4t^2 \right) dx \wedge dy \wedge dz \wedge dw \\ &= 2 (1 - 2t)^2 dx \wedge dy \wedge dz \wedge dw \end{split}$$

Por fim, ω_t é degenerada quando t = 1/2.

Para mostrar que existe uma trajetória de formas simpléticas conectando ω_0 e ω_1 note que o espaço de 2-formas pode ser identificado com \mathbb{R}^6 com coordenadas $(\alpha, \beta, \gamma, \delta, \epsilon, \varphi)$. Pelas observações anteriores, vemos que o conjunto de formas degeneradas é a variedade (algébrica) [F=0]. Duas formas determinan a mesma orientação quando estão no mesmo conjunto [F>0] ou [F<0]. Por exemplo, as formas ω_0 e ω_1 estão em [F>0].

Mostrar que existe um caminho que conecta essas formas (o quaisquer duas que induzam a mesma orientação) é tanto como mostrar que [F>0] (e [F<0]) é un conjunto conexo. Aseguir mostrarei que de fato a variedade [F=0] separa \mathbb{R}^6 em duas componentes conexas [F>0] e [F<0].

Primeiro note que o gradiente de F é $\nabla F = (\varphi, -\epsilon, \delta, \gamma, -\beta, \alpha)$. Ele é não-zero em $\mathbb{R}^6 \setminus 0$, de modo que, $[F=0] \setminus 0$ é uma variedade suave. Como $0 \in [F=0]$, podemos fixar nossa atenção em $\mathbb{R}^6 \setminus 0$, que é um retrato por deformação de $S^5 \subset \mathbb{R}^6$ e mostrar que $F|_{S^5}$ induiz duas componentes conexas.

Como S^5 é compacto, $F|_{S^5}$ tem pelo menos um máximo local em [F>0] e um mínimo local em [F<0]. Note que dado um ponto no conjunto [F>0], existe um caminho, determinado pelo gradiente, que conduiz até um ponto máximo local dentro de [F>0]. Dados dois pontos em [F>0], podemos achar um caminho entre eles dentro de [F>0] se conseguimos mostrar que qualquer par de maximos locais está conectado por um caminho dentro de [F>0]. O mesmo acontece para pontos em [F<0]. Então a prova está concluida se mostramos que os pontos críticos (máximos ou mínimos) de F estão na mesma componente conexa (i.e. [F>0] ou [F<0], respectivamente).

Como ∇F é um vetor que aponta na direção de maior pendente, um ponto $p \in S^5$ é critico se e só se ∇F_p é paralelo p. Podemos ver ∇F como uma transformação linear $\mathbb{R}^6 \longrightarrow \mathbb{R}^6$, $p \mapsto \nabla_p F$. De fato, ela é dada pela matriz H que tem (1,-1,1,-1,1) na antidiagonal e zero no resto. Então vemos que os pontos críticos são exatamente os vetores próprios dessa matriz.

Fazendo as contas de álgebra linear, pode comprovar que os valores próprios de H são ± 1 , cada um com multiplicade 3. Assim, temos dois espaços próprios de dimensão 3. Quando intersectamos esses espaços com S^5 , obtemos duas esferas de dimensão 2. Essas esferas são disjuntas e conexas, e representas os conjuntos de pontos críticos de F.

Uma solução mais terrenal. Contudo, uma prova mais directa consiste em observar o seguinte: os valores de β_1 e ϵ_2 não alteram o fato de que as formas ω_0 e ω_1 sejam formas não degeneradas (e que induzem a mesma orientação), enquanto que $\omega_t \wedge \omega_t$ sí pode mudar. Vamos mostrar que as formas ω_0 e ω_1 definidas acima podem ser conectadas por um caminho de formas simpléticas trocando β_1 e ϵ_0 por funções de t.

Primeiro fixe os mesmos valores $\alpha_1, \alpha_2, \dots$ como no caso anterior, mas deixe β_1 e ϵ_2 sem definir. Obtemos que:

$$\begin{split} \omega_t \wedge \omega_t &= 2 \left((1-t)^2 + 2t(1-t)\beta_1 \epsilon_2 + t^2 \right) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \Big(1 - 2t + t^2 + 2t\beta_1 \epsilon_2 - 2t^2\beta_1 \epsilon_2 + t^2 \Big) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \Big((2 - 2\beta_1 \epsilon_2) t^2 - 2t(\beta_1 \epsilon_2 - 1)t + 1 \Big) dx \wedge dy \wedge dz \wedge dw \end{split}$$

Agora defina

$$\beta_1 = -2(t - 1/2),$$
 $\epsilon_0 = 4(t - 1/2)$

e considere a família de formas $\omega_t' = (1-t)\omega_0(t)\omega_1(t)$. Note que $\omega_0' = \omega_0$ e $\omega_1' = \omega_1$.

Daí,

$$\begin{split} \omega_{t} \wedge \omega_{t} &= 2 \Bigg(\big((2 - 2 \big(\underbrace{-2(t - 1/2)}_{\beta_{1}} \big) \underbrace{4(t - 1/2)}_{\epsilon_{2}} \big) t^{2} \\ &- 2t \Big(\big(\underbrace{-2(t - 1/2)}_{\beta_{1}} \big) \underbrace{4(t - 1/2)}_{\epsilon_{2}} - 1 \Big) t + 1 \Bigg) dx \wedge dy \wedge dz \wedge dw \end{split}$$

Para calcular isso calculei que

$$\beta_1\epsilon_2 = -8t^2 - 4t + 1$$

daí cheguei a que

$$\omega_t \wedge \omega_t = 2(32t^4 - 32t^3 + 6t^2 + 1) dx \wedge dy \wedge dz \wedge dw$$

de modo que F_t nunca se anula.

Em fim, no caso de \mathbb{R}^2 , suponha que ω_0 e ω_1 são duas formas não degeneradas. Sabemos que em qualquer ponto de \mathbb{R}^2 elas são um múltiplo da outra. Portanto, uma combinação convexa delas não pode ser degenerada porque é da forma

$$\omega_t = (1-t)\omega_0 + t\lambda\omega_0 = (1-t+\lambda t)\omega_0.$$

Problem 3 Let (V, Ω) be a symplectic vector space (or vector bundle) and let $W \subseteq V$ be a coisotropic subspace (or bundle).

- a. Let E be a complement of W^{Ω} in W, i.e., $W=W^{\Omega}\oplus E$. Show that the restriction of Ω to E is nondegenerate.
- b. Let J be a Ω-compatible complex structure, with g the associated inner product. Show that Ω induces an identification of $J(W^{\Omega}) = W^{\perp}$ with $(W^{\Omega})^*$. Taking E

as the orthogonal complement (with respect to g) to W^{Ω} in W (this means that $W = W^{\Omega} \oplus E$), show that the identification

$$V \cong E \oplus (W^{\Omega} \oplus (W^{\Omega})^*),$$

is an isomorphism of symplectiv vector spaces (bundles)—on the right-hand-side, E is equipped with its induced symplectic form (see a. above) and $W^\Omega \oplus (W^\Omega)^*$ with its canonical symplectic form.

Solução.

- a. Basta ver que $\ker \Omega|_{\mathsf{E}}=0$. Se $e\in\ker\Omega|_{\mathsf{E}}$, então eu gostaria de ver que $e\in W^\Omega$ para concluir que e=0. Seja $w\in W$. Então $\Omega(e,w)=\Omega(e,w_1+w_2)$ com $w_1\in W^\Omega$ e $w_2\in\mathsf{E}$. Daí $\Omega(e,w)=0$ já que tanto $\Omega(e,w_1)=0$ porque $e\in\mathsf{E}\subset W$ quanto $\Omega(e,w_2)=0$ porque $w_2\in\mathsf{E}$.
- b. Considere o mapa

$$J(W^{\Omega}) \longrightarrow (W^{\Omega})^*$$
$$Jw \longmapsto i_w \Omega = \Omega(w, \cdot)$$

Note que $J(W^{\Omega})$ e W^{Ω} são espaços vetorias de dimensões iguais, e que esse mapa tem kernel trivial pela não degeneração de Ω . Isso explica que é um isomorfismo.

Para construir o isomorfismo requerido note que por definição $W \cong E \oplus W^{\Omega}$. E como mostramos que $W^{\perp} \cong (W^{\Omega})^*$, sabemos que $V \cong W \oplus (W^{\Omega})^*$. Daí o isomorfismo algébrico está comprovado por causa de que a soma direita é associativa. Issto é, temos um isomorfismo de espaços vetoriais

$$\Phi: V \longrightarrow E \oplus W^{\Omega} \oplus (W^{\Omega})^*$$
$$v \longmapsto (v_1, v_2, v_3)$$

onde
$$g(v_1, v_2) = 0$$
 e $g(v_1 + v_2, v_3) = 0$.

Agora vamos comprovar que esse mapa é um simplectomorfismo,

Problem 4 Prove the following generalizaion of Weinstein's lagrangian neighbourhood theorem to coisotropic submanifolds (due to Gotay, 1982): Let (M_0, ω_0) be and (M_1, ω_1) be symplectic manifolds, and $\iota_0: Q \longrightarrow M_0$, $\iota_1: Q \longrightarrow M_1$ be coisotropic embeddings. If $\iota_0^*\omega_0 = \iota_1^*\omega_1$ then there exist open neighbourhoods \mathcal{U}_0 and \mathcal{U}_1 of Q, in M_0 and M_1 , and a diffeomorphism $\phi: \mathcal{U}_0 \longrightarrow \mathcal{U}_1$ such that $\phi(\mathfrak{p}) = \mathfrak{p}$ for all $\mathfrak{p} \in Q$ and $\phi^*\omega_1 = \omega_0$.

Solução. Estamos aqui:

Em aula demostramos que:

Theorem (Teorema de Darboux generalizado Versão 2.0) Suponha que, além do diagrama anterior, temos um isomorfismo de fibrados simplécticos

tal que $\phi|_{TQ}$: $TQ \to TQ$ é id_{TQ} .

Então φ estende a derivada de um simplectomorfismo

$$U_0 \subset M_0 \xrightarrow{\phi} U_1 \subset M_1$$

$$Q$$

i.e.,

$$d\phi|_Q = \varphi : TM_0|_Q \to TM_1|_Q$$

Em palavras: a derivada do simplectomofismo (entre as vizinhanças de M_1 e M_2) que obtemos é estendida pelo isomorfismo simplético dos fibrados tangentes que nos foi dado.

Portanto, para nosso exercício só precisamos achar um simplectomorfismo φ de fibrados tangentes que restringe a identidade no TQ.

Também é bom lembrar que na prova do teorema das vizinhanças lagrangianas construimos esse simplectomorfismo de fibrados do seguinte jeito:

Issto é, mostrando que, no caso lagragiano, existe um isomorfismo de fibrados tangentes entre o fibrado tangente da variedade ambiente restrito à subvariedade lagrangiana e a soma direita $T\mathcal{L} \oplus (T\mathcal{L})^*$. Aplicando isso usando como variedade ambiente tanto M quanto T^*M construimos o diagrama anterior.

A estrutura complexa foi usada para obter a descomposição $T\mathcal{L} \oplus (T\mathcal{L})^*$: o que fizemos foi construir o complemento ortogonal usando a métrica compatível e daí mostramos que esse complemento é de fato isomorfo a $(T\mathcal{L})^*$.

No caso coisotrópico temos, pelo exercício anterior, dois isomorfismos de fibrados

$$\mathsf{T} \mathsf{M}_1 \cong \mathsf{E}_1 \oplus \Big(\mathsf{T} \mathsf{Q}^\omega \oplus (\mathsf{T} \mathsf{Q}^\omega)^* \Big), \qquad \qquad \mathsf{T} \mathsf{M}_2 \cong \mathsf{E}_2 \oplus \Big(\mathsf{T} \mathsf{Q}^\omega \oplus (\mathsf{T} \mathsf{Q}^\omega)^* \Big)$$

então é claro que se $E_1\cong E_2$ terminhamos. Mas E_i é só o complemento ortogonal de TQ^ω respeito à métrica compatível g_i em TQ, enquanto g_1 e g_2 coincidem em TQ já que $\omega_1|_Q=\omega_2|_Q$ por hipótese (o pullback das incluções coincide). Note que também é imediato que a restrição desse isomorfismo a TQ é a identidade.