P36-6

(1)

 $L(G_1)$ 是 $0^{\circ}9$ 组成的数字串

(2)

最左推导:

$$N \Rightarrow ND \Rightarrow NDD \Rightarrow NDDD \Rightarrow DDDD \Rightarrow 01DD \Rightarrow 012D \Rightarrow 012D \Rightarrow 0127$$

$$N \Rightarrow ND \Rightarrow DD \Rightarrow 3D \Rightarrow 34$$

$$N \Rightarrow ND \Rightarrow NDD \Rightarrow DDD \Rightarrow 5DD \Rightarrow 56D \Rightarrow 568$$

最右推导:

$$N \Rightarrow ND \Rightarrow N7 \Rightarrow ND7 \Rightarrow N27 \Rightarrow ND27 \Rightarrow N127 \Rightarrow D127 \Rightarrow 0127$$

$$N \Rightarrow ND \Rightarrow N4 \Rightarrow D4 \Rightarrow 34$$

$$N \Rightarrow ND \Rightarrow N8 \Rightarrow ND8 \Rightarrow N68 \Rightarrow D68 \Rightarrow 568$$

P36-7

G(S)

 $O \rightarrow 1|3|5|7|9$

 $N \to 2|4|6|8|O$

 $D \rightarrow 0 | N$

 $S \rightarrow O|AO$

 $A \rightarrow AD | N$

P36-8

文法:

$$E \to T|E + T|E - T$$

$$T \to F|T * F|T / F$$

$$F \to (E)|i$$

最左推导:

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow i + T \Rightarrow i + T * F \Rightarrow i + F * F \Rightarrow i + i * F \Rightarrow i + i * i$$

$$E \Rightarrow T \Rightarrow T * F \Rightarrow F * F \Rightarrow i * F \Rightarrow i * (E) \Rightarrow i * (E + T) \Rightarrow i * (T + T) \Rightarrow i * (F + T)$$

$$\Rightarrow i * (i + T) \Rightarrow i * (i + F) \Rightarrow i * (i + i)$$

最右推导:

$$E \Rightarrow E + T \Rightarrow E + T * F \Rightarrow E + T * i \Rightarrow E + F * i \Rightarrow E + i * i \Rightarrow T + i * i \Rightarrow F + i * i \Rightarrow i + i * i$$

$$E \Rightarrow T \Rightarrow F * T \Rightarrow F * F \Rightarrow F * (E) \Rightarrow F * (E + T) \Rightarrow F * (E + F) \Rightarrow F * (E + i)$$

$$\Rightarrow F * (T + i) \Rightarrow F * (F + i) \Rightarrow F * (i + i) \Rightarrow i * (i + i)$$

*************/

P36-9

句子 iiiei 有两个语法树:

 $S \Rightarrow iSeS \Rightarrow iSei \Rightarrow iiSei \Rightarrow iiiei$ $S \Rightarrow iS \Rightarrow iiSeS \Rightarrow iiSei \Rightarrow iiiei$

P36-10

/*****

 $S \rightarrow TS \mid T$

 $T \rightarrow (S) \mid ()$

P36-11

/*****

L1:

 $S \rightarrow AC$

 $A \rightarrow aAb \mid ab$

 $C \to cC \mid \varepsilon$

L2:

 $S \rightarrow AB$

 $A \rightarrow aA \mid \varepsilon$

 $B \rightarrow bBc \mid bc$

L3:

 $S \rightarrow AB$

 $A \to aAb \mid \varepsilon$

 $B\to aBb\mid \varepsilon$

L4:

 $S \to A \mid B$

 $A \rightarrow 0A1 \mid \varepsilon$

 $B \rightarrow 1B0 \mid A$

第三章

P64 - 7

(1)

确定化:

	0	1
{X}	ф	{1, 2, 3}
ф	ф	ф
{1, 2, 3}	{2, 3}	{2, 3, 4}
{2, 3}	{2, 3}	{2, 3, 4}
{2, 3, 4}	{2, 3, 5}	{2, 3, 4}
{2, 3, 5}	{2, 3}	{2, 3, 4, Y}
{2, 3, 4, Y}	{2, 3, 5}	{2, 3, 4}

1 1

最小化:

P64 - 8

- (1)
- $(1|0)^*01$
- (2)

 $(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*(0|5)|(0|5)$

(3)

 $0^*1(0|10^*1)^*|1^*0(0|10^*1)^*$

P64 - 12

(a)

确定化:

a	b
	I

{0}	{0, 1}	{1}
{0, 1}	{0, 1}	{1}
{1}	{0}	ф
ф	ф	ф

给状态编号:

	a	b
0	1	2
1	1	2
2	0	3
3	3	3

最小化:

a

已经确定化了,进行最小化

最小化:

 $\{\{0,1\}, \{2,3,4,5\}\}$

$$\{0,1\}_a = \{1\}$$

$${0,1}_b = {2,4}$$

$${2,3,4,5}_{a} = {1,3,0,5}$$

$${2,3,4,5}_a = {1,3,0,5}$$
 ${2,3,4,5}_b = {2,3,4,5}$

$${2,4}_a = {1,0}$$
 ${2,4}_b = {3,5}$

$$\{2,4\}_{b} = \{3,5\}$$

$${3,5}_a = {3,5}$$
 ${3,5}_b = {2,4}$

$$\{\{0,1\},\{2,4\},\{3,5\}\}$$

$$\{0,1\}_a = \{1\}$$

$${0,1}_a = {1}$$
 ${0,1}_b = {2,4}$

$$\{2,4\}_a = \{1,0\}$$

$${2,4}_a = {1,0}$$
 ${2,4}_b = {3,5}$

$${3,5}_a = {3,5}$$

$${3,5}_a = {3,5}$$
 ${3,5}_b = {2,4}$

P64 - 14

(1)

(2):

确定化:

	0	1
$\{X, 1, Y\}$	{1, Y}	{2}
{1, Y}	{1, Y}	{2}
{2}	{1, Y}	ф
ф	ф	ф

给状态编号:

	0	1
0	1	2
1	1	2
2	1	3
3	3	3

最小化:

$$\{0,1\},\{2,3\}$$

$$\{0,1\} = \{1\}$$

$${0,1}_0 = {1}$$
 ${0,1}_1 = {2}$

$${2,3}_0 = {1,3}$$

$${2,3}_1 = {3}$$

$$\{0,1\},\{2\},\{3\}$$

第四章

```
P81 - 1
(1) 按照 T, S 的顺序消除左递归
G'(S)
S \rightarrow a \, |^{\wedge} | \, (T)
T \rightarrow ST'
T' \rightarrow ST' \mid \varepsilon
递归子程序:
procedure S;
begin
    if sym='a' or sym='^'
         then abvance
         else if sym='('
             then begin
                 advance;T;
                 if sym=')' then advance;
                     else error;
                  end
             else error
end;
procedure T;
begin
    S;T'
end;
procedure T';
begin
    if sym=','
         then begin
             advance;
             S; T'
        end
end;
其中:
sym: 是输入串指针 IP 所指的符号
advance: 是把 IP 调至下一个输入符号
error:是出错诊察程序
```

```
(2)
FIRST(S)={a, ^, (}
FIRST(T)={a, ^, (}
FIRST(T')={,, &}

FOLLOW(S)={),,,#}
FOLLOW(T)={)}
FOLLOW(T')={)}
```

预测分析表

	a	^	()	,	#
S	$S \rightarrow a$	$S \rightarrow^{\wedge}$	$S \rightarrow (T)$			
T	$T \rightarrow ST'$	$T \rightarrow ST'$	$T \rightarrow ST'$			
T'				$T' \to \varepsilon$	$T' \rightarrow , ST'$	

是 LL(1) 文法

P81 - 2

文法:

 $E \rightarrow TE'$

 $E' \rightarrow +E \mid \varepsilon$

 $T \rightarrow FT'$

 $T' \to T \mid \varepsilon$

 $F \rightarrow PF'$

 $F' \to *F' \mid \varepsilon$

 $P \rightarrow (E) |a| b|^{\wedge}$

(1)

 $FIRST(E) = \{(a, b, ^{\hat{}})\}$

FIRST (E') = $\{+, \epsilon\}$

 $FIRST(T) = \{ (, a, b, ^) \}$

 $FIRST(T') = \{(a, b, \hat{a}, \epsilon)\}$

 $FIRST(F) = \{ (, a, b, ^) \}$

FIRST (F') = $\{*, \epsilon\}$

 $FIRST(P) = \{ (, a, b, ^) \}$

FOLLOW (E) = $\{\#, \}$

FOLLOW (E') = {#,)}

 $FOLLOW(T) = \{+, \}, \#\}$

FOLLOW(T') = {+,),#}

FOLLOW (F) = { (, a, b, ^, +,), #}

FOLLOW(F')={(,a,b,^,+,),#}

FOLLOW(P) = {*, (, a, b, ^, +,), #}

```
考虑下列产生式:

E' \rightarrow +E|\varepsilon

T' \rightarrow T|\varepsilon

F' \rightarrow *F'|\varepsilon

P \rightarrow (E)|^{|a|b}

FIRST (+E) \cap FIRST (\varepsilon) = {+} \cap {\varepsilon} = \Phi

FIRST (+E) \cap FOLLOW (E') = {+} \cap {#, )} = \Phi

FIRST (T) \cap FIRST (\varepsilon) = {(, a, b, ^} \cap {\varepsilon} = \Phi

FIRST (T) \cap FOLLOW (T') = {(, a, b, ^} \cap {+, ), #} = \Phi

FIRST (*F') \cap FIRST (\varepsilon) = {*} \cap {\varepsilon} = \Phi

FIRST (*F') \cap FOLLOW (F') = {*} \cap {(, a, b, ^, +, ), #} = \Phi

FIRST ((E)) \cap FIRST (a) \cap FIRST (b) \cap FIRST (\circ) = \Phi
```

(3)

所以,该文法式 LL(1) 文法.

	+	*	()	a	b	^	#
Е			$E \rightarrow TE'$		$E \rightarrow TE'$	$E \rightarrow TE'$	$E \rightarrow TE'$	
E'	$E' \rightarrow +E$			$E' \rightarrow \varepsilon$				$E' \to \varepsilon$
T			$T \rightarrow FT'$		$T \rightarrow FT'$	$T \rightarrow FT'$	$T \rightarrow FT'$	
T'	$T' \to \varepsilon$		$T' \rightarrow T$	$T' \to \varepsilon$	$T' \rightarrow T$	$T' \rightarrow T$	$T' \rightarrow T$	$T' \to \varepsilon$
F			$F \rightarrow PF'$		$F \rightarrow PF'$	$F \rightarrow PF'$	$F \rightarrow PF'$	
F'	$F' \to \varepsilon$	$F' \rightarrow *F'$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$
Р			$P \rightarrow (E)$		$P \rightarrow a$	$P \rightarrow b$	$P \rightarrow^{\wedge}$	

```
(4)
procedure E;
begin
    if sym='(' or sym='a' or sym='b' or sym='^'
        then begin T; E' end
        else error
end

procedure E';
begin
    if sym='+'
        then begin advance; E end
        else if sym<')' and sym<', "#' then error
end</pre>
```

```
if sym='(' or sym='a' or sym='b' or sym='^'
        then begin F; T' end
        else error
end
procedure T';
begin
   if sym='(' or sym='a' or sym='b' or sym='^'
        then T
        else if sym='*' then error
end
procedure F;
begin
   if sym='(' or sym='a' or sym='b' or sym='^'
        then begin P; F' end
        else error
end
procedure F';
begin
   if sym='*'
        then begin advance; F' end
end
procedure P;
begin
    if sym='a' or sym='b' or sym='^'
        then advance
        else if sym='(' then
        begin
            advance; E;
            if sym=')' then advance
                 else error
        end
        else error
end;
```

P81 - 3

/*****

- (1) 是,满足三个条件。
- (2) 不是,对于 A 不满足条件 3。
- (3) 不是, A、B均不满足条件 3。

(4) 是,满足三个条件。

第五章

P133 - 1

 $E \Rightarrow E + T \Rightarrow E + T * F$

短语: E+T*F, T*F,

直接短语: T*F 句柄: T*F

3111. - -

P133 - 2

文法:

$$S \to a|^{\wedge}|(T)$$
$$T \to T, S|S$$

(1)

最左推导:

$$S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (S,S) \Rightarrow (a,S) \Rightarrow (a,(T)) \Rightarrow (a,(T,S)) \Rightarrow (a,(S,S)) \Rightarrow (a,(a,S)) \Rightarrow (a,(a,a))$$

$$S \Rightarrow (T,S) \Rightarrow (S,S) \Rightarrow ((T),S) \Rightarrow ((T,S),S) \Rightarrow ((T,S,S),S) \Rightarrow ((S,S,S),S) \Rightarrow (((T),S,S),S))$$

$$\Rightarrow (((T,S),S,S)),S) \Rightarrow (((S,S),S,S),S) \Rightarrow (((a,a),S,S),S) \Rightarrow (((a,a),S,S),S))$$

$$\Rightarrow (((a,a),S,S),S) \Rightarrow (((a,a),S,S),S) \Rightarrow (((a,a),S,S),S) \Rightarrow (((a,a),S,S),S))$$

$$\Rightarrow (((a,a),S,S),S) \Rightarrow (($$

最右推导:

$$S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (T,(T)) \Rightarrow (T,(T,S)) \Rightarrow (T,(T,a)) \Rightarrow (T,(S,a)) \Rightarrow (T,(a,a))$$

$$\Rightarrow (S,(a,a)) \Rightarrow (a,(a,a))$$

$$S \Rightarrow (T,S) \Rightarrow (T,a) \Rightarrow (S,a) \Rightarrow ((T),a) \Rightarrow ((T,S),a) \Rightarrow ((T,(T)),a) \Rightarrow ((T,(S)),a)$$

$$\Rightarrow ((T,(a)),a) \Rightarrow ((T,S,(a)),a) \Rightarrow ((T,^{\wedge},(a)),a) \Rightarrow ((S,^{\wedge},(a)),a) \Rightarrow (((T,S),^{\wedge},(a)),a)$$

$$\Rightarrow (((T,S),^{\wedge},(a)),a) \Rightarrow (((T,a),^{\wedge},(a)),a) \Rightarrow (((S,a),^{\wedge},(a)),a) \Rightarrow (((a,a),^{\wedge},(a)),a)$$

(2)

$$(((\underline{a}, a), \hat{}, (a)), a)$$

$$(((\underline{S}, a), \hat{}, (a)), a)$$

$$(((T, \underline{a}), \hat{a}), (a)), a)$$

$$(((\underline{T,S}), \hat{,} (a)), a)$$

$$(((T), \hat{}, (a)), a)$$

$$((\underline{S}, \hat{}, (a)), a)$$

$$((T, \hat{}, (a)), a)$$

((T, S), a)

```
(<u>(T)</u>, a)
 (<u>S</u>, a)
 (\underline{\mathsf{T,S}})
<u>(T)</u>
S
```

"移进	-归约"过程:		
步骤	栈	输入串	动作
0	#	(((<u>a</u> , a), ^, (a)), a)#	预备
1	#($((\underline{\mathbf{a}}, \mathbf{a}), \hat{\ }, (\mathbf{a})), \mathbf{a}) \#$	进
2	#(((<u>a</u> , a), ^, (a)), a)#	进
3	#(((<u>a</u> , a), ^, (a)), a)#	进
4	#(((a	, a), ^, (a)), a)#	进
5	#(((S	, a), ^, (a)), a)#	归
6	#(((T	, a), ^, (a)), a)#	归
7	#(((T,	a), ^, (a)), a)#	进
8	#(((T, a), ^, (a)), a)#	进
9	#(((T,S), ^, (a)), a)#	归
10	#(((T), ^, (a)), a)#	归
11	#((T)	, ^, (a)), a)#	进
12	#((S	, ^, (a)), a)#	归
13	#((T	, ^, (a)), a)#	归
14	#((T,	^, (a)), a)#	进
15	#((T,^	, (a)), a)#	进
16	#((T,S	, (a)), a)#	归
17	#((T	, (a)), a)#	归
18	#((T,	(a)), a)#	进
19	#((T,(a)),a)#	进
20	#((T, (a)),a)#	进
21	#((T,(S)),a)#	归
22	#((T,(T)),a)#	归
23	#((T,(T)),a)#	进
24	#((T,S),a)#	归
25	#((T),a)#	归
26	#((T)	, a)#	进
27	#(S	, a)#	归
28	# (T	, a)#	归
29	#(T,	a)#	进
30	#(T, a)#	进
31	#(T, S)#	归
32	#(T)#	归
33	#(T)	#	进
34	#S	#	归

P133 - 3

FIRSTVT(S) = $\{a, \hat{}, (\}$

 $FIRSTVT(T) = \{,,a,\hat{},(\}$

LASTVT(S) = $\{a, \hat{,}\}$

 $LASTVT(T) = \{,,a,\hat{},)\}$

(2)

	a	`	()	,
a				>	>
^				>	>
(<	<	<	=	<
)				>	>
,	<	<	<	>	>

 G_6 是算符文法,并且是算符优先文法

(3)优先函数

	a	`	()	,
f	4	4	2	4	4
g	5	5	5	2	3

(4)

栈	输入字符串	动作
#	(a, (a, a)) #	预备
#(a, (a, a))#	进
#(a	, (a, a))#	进
#(s	, (a, a))#	归
#(t	, (a, a))#	归
# (t,	(a, a)) #	进
# (t, (a,a)) #	进
# (t, (a	,a)) #	进

success

P134 - 5

(1)

0.
$$S' \rightarrow \cdot S$$
 1. $S' \rightarrow S \cdot$ 2. $S \rightarrow \cdot AS$ 3. $S \rightarrow A \cdot S$
4. $S \rightarrow AS \cdot$ 5. $S \rightarrow \cdot b$ 6. $S \rightarrow b \cdot$ 7. $A \rightarrow \cdot SA$
8. $A \rightarrow S \cdot A$ 9. $A \rightarrow SA \cdot$ 10. $A \rightarrow \cdot a$ 11. $A \rightarrow a \cdot$

确定化:

	S	A	a	b
$\{0, 2, 5, 7, 10\}$	{1, 2, 5, 7, 8, 10	$\{2, 3, 5, 7, 10\}$	{11}	{6}
	}			
{1, 2, 5, 7, 8, 10	{2, 5, 7, 8, 10}	{2, 3, 5, 7, 9, 10	{11}	{6}
}		}		
{2, 3, 5, 7, 10}	{2, 4, 5, 7, 8, 10	$\{2, 3, 5, 7, 10\}$	{11}	{6}
	}			
{2, 5, 7, 8, 10}	$\{2, 5, 7, 8, 10\}$	{2, 3, 5, 7, 9, 10	{11}	{6}
		}		
{2, 3, 5, 7, 9, 10	{2, 4, 5, 7, 8, 10	$\{2, 3, 5, 7, 10\}$	{11}	{6}
}	}			
{2, 4, 5, 7, 8, 10	{2, 5, 7, 8, 10}	{2, 3, 5, 7, 9, 10	{11}	{6}
}		}		
{11}	ф	ф	ф	ф
{6}	ф	ф	ф	ф

DFA

构造 LR(0)项目集规范族也可以用 GO 函数来计算得到。所得到的项目集规范族与上图中的项目集一样:

$$I_0 = \{ S' \rightarrow \cdot S, S \rightarrow \cdot AS, S \rightarrow \cdot b, A \rightarrow \cdot SA, A \rightarrow \cdot a \}$$

$$\begin{array}{llll} & \text{GO}\,(I_3\;,\;\mathbf{a}) = \{ & A \to & a & \cdot \; \} = I_1 \\ & \text{GO}\,(I_3\;,\;\mathbf{b}) = \{ & S \to & b & \cdot \; \} = I_2 \\ & \text{GO}\,(I_3\;,\;\mathbf{S}) = \{ & A \to S \cdot A\;,\;\; S \to \cdot AS\;,\;\; S \to \cdot b\;,\;\; A \to \cdot SA\;,\;\; A \to \cdot a\; \} = I_5 \\ & \text{GO}\,(I_3\;,\;\mathbf{A}) = \{ & A \to SA \cdot,\;\; S \to A \cdot S\;,\;\; S \to \cdot AS\;,\;\; S \to \cdot b\;,\;\; A \to \cdot SA\;,\;\; A \to \cdot a\; \} = I_6 \end{array}$$

$$\mathrm{GO}\left(I_{\scriptscriptstyle{4}}\,,\ \mathrm{A}\right) = \left\{\ S \to A \cdot S \;,\ S \to \cdot AS \;,\ S \to \cdot b \;,\ A \to \cdot SA \;,\ A \to \cdot a \;\right\} = I_{\scriptscriptstyle{4}}$$

$$GO(I_5, a) = \{ A \rightarrow a \cdot \} = I_1$$

$$GO(I_5, b) = \{ S \rightarrow b \cdot \} = I_2$$

$$GO(I_5, S) = \{A \rightarrow S \cdot A, S \rightarrow \cdot AS, S \rightarrow \cdot b, A \rightarrow \cdot SA, A \rightarrow \cdot a\} = I_5$$

$$\mathrm{GO}\left(I_{5},\ \mathrm{A}\right) = \{\ A \to SA \cdot ,\ S \to A \cdot S \ ,\ S \to \cdot AS \ ,\ S \to \cdot b \ ,\ A \to \cdot SA \ ,\ A \to \cdot a \ \} = I_{6}$$

$$GO(I_6, a) = \{ A \rightarrow a \cdot \} = I_1$$

$$GO(I_6, b) = \{ S \rightarrow b : \} = I_2$$

$$\mathrm{GO}\left(I_{_{6}},\ \mathrm{A}\right) = \{\ S \to A \cdot S\ ,\ S \to \cdot AS\ ,\ S \to \cdot b\ ,\ A \to \cdot SA\ ,\ A \to \cdot a\ \} = I_{_{4}}$$

$$GO(I_7, a) = \{ A \rightarrow a \cdot \} = I_1$$

$$\operatorname{GO}\left(I_{7}, b\right) = \{S \rightarrow b : \} = I_{2}$$

GO(
$$I_7$$
, S)={ $A \rightarrow S \cdot A$, $S \rightarrow A \cdot A \cdot S \rightarrow b$, $A \rightarrow A \cdot S \cdot A \rightarrow a$ }= I_5

$$\mathrm{GO}\left(I_7,\ \mathrm{A}\right) = \{\quad A \to SA \cdot ,\quad S \to A \cdot S \ ,\quad S \to \cdot AS \ ,\quad S \to \cdot b \ ,\quad A \to \cdot SA \ ,\quad A \to \cdot a \ \} = I_6$$

项目集规范族为 $C=\{I_1, I_2, I_3, I_4, I_5, I_6, I_7\}$

(3) 不是 SLR 文法

状态 3,6,7 有移进归约冲突

状态 3: FOLLOW(S')={#}不包含 a, b

状态 6: FOLLOW(S)={#, a, b} 包含 a, b, ; 移进归约冲突无法消解

状态 7: FOLLOW (A) = {a, b} 包含 a, b; 移进归约冲突消解

所以不是 SLR 文法。

(4) 构造例如 LR(1)项目集规范族

见下图:

对于状态 5,因为包含项目 $[A \to AS \cdot a/b]$,所以遇到搜索符号 a 或 b 时,应该用 $A \to AS$ 归约。又因为状态 5 包含项目 $[A \to a a/b]$,所以遇到搜索符号 a 时,应该移进。因此存在"移进—归约"矛盾,所以这个文法不是 LR(1) 文法。

P135 - 8

```
答:
因为 FIRST(AaAb )={a},FIRST(BbBa )={b}
FIRST(AaAb )∩FIRST(BbBa )=∅
所以该是文法 LL(1)的。
求该文法的 LR(0)项目集规范族如下:
I_0=\{ S \rightarrow \bullet AaAb, S \rightarrow \bullet BbBa, A \rightarrow \bullet, B \rightarrow \bullet \}
I_1 = \{ S \rightarrow A \cdot aAb \}
I_2 = \{S \rightarrow B \cdot bBa\}
I_3=\{ S \rightarrow Aa \cdot Ab, A \rightarrow \cdot \}
I_4 = \{S \rightarrow Bb \cdot Ba, B \rightarrow \bullet \}
I_5 = \{ S \rightarrow AaA \cdot b \}
I_6 \!\!=\!\! \{S \!\!\rightarrow\! BbB \bullet a\}
I_7 = \{ S \rightarrow AaAb \cdot \}
I_8 = \{S \rightarrow BbBa \bullet \}
考虑 I<sub>0</sub>:
FOLLOW(A)=FOLLOW(B)=\{a, b\}
A→•和 B→•的冲突无法消解,所以该文法不是 SLR(1)的。
```

第六章

P164 - 1

答:表达式(4*7+1)*2的附注语法树如下图:

P164 - 2

答:

(1)

(2)

P164 - 5

```
(1)
E \rightarrow E_1 + T {if (E_1. \text{ type = int}) and (T. \text{ type = int})
                then E. type := int
                else E. type := real}
E \rightarrow T
                 \{E. type := T. type\}
T \rightarrow \text{num.num} \{T. \text{type} := \text{real}\}
                \{T. type := int\}
T \rightarrow num
(2)
E \rightarrow E_1 + T {if (E_1 type = int) and (T. type = int)
                then begin
                      E. type := int
                      E.code:=E_1.code \parallel T.code \parallel +
                 else if (E1. type = real) and (T. type = real)
                 then begin
                      E. type := real;
                      E.code:=E_1.code \parallel T.code \parallel +
                End
                Else if (E1. type = int)
                 then begin
                      E. type := real;
                      E.code:=E_1.code || inttoreal || T.code || +
                End
                Else begin
```

```
E. type := real;
                       E.code:=E_1.code || T.code || inttoreal || +
                 end
E \rightarrow T
                 \{E. \text{ type } := T. \text{ type};
                       E.code:= T.code
T \rightarrow \text{num. num } \{T. \text{ type } := \text{real } \}
                       E.code:= num. num
                 {T. type := int}
T \rightarrow num
                       E.code:= num
P164 - 7
                 \{S. val := L1. val + (L2. val/2^{L2.length})\}
S \rightarrow L1 \mid L2
S \rightarrow L
                 \{S. va1 := L. va1\}
L \rightarrow L1B
                 \{L. val := 2*L1. val + B. val;
                  L. length:=L1. length+1}
L \rightarrow B
                 \{L. val := B. c;
                  L. length :=1}
B \rightarrow 0
                 \{B. c := 0\}
                 \{B. c := 1\}
B \rightarrow 1
P165 - 11
答: (1)
      D \rightarrow id L
                            {D.type:= L.type; addtype(id.type,L.type)}
      L \rightarrow, id L_1
                             \{L.type:= L_1.type; addtype(id.type,L_1.type)\}
      L \rightarrow : T
                            {L.type:= T.type}
      T→integer
                            { T.type := integer}
      T→ real
                            { T.type := real}
 (2) 假设 Ttype 为已定义的表示"类型"的数据结构,预测翻译器如下:
   procedure D;
    var l_type:Ttype
   begin
       if sym= "id" then
          begin
            advance;
```

```
1_type:=L;
        addtype(id.entry, l_type)
      end
   else error
end;
procedure L;
    var l_type:Ttype;
begin
   if sym= "," then
      begin
       advance;
       if sym= "id" then
        begin
         advance;
         l_type:=L;
         addtype(id.entry, l_type)
        end
         else error;
   end
   else if sym= ":" then
      begin
       advance;
       1_type:=T;
      end
   else error;
   return(l_type);
end;
procedure T;
   var t_type:Ttype
  begin
    if sym= "integer" then
      begin
        advance;
        t_type:=integer;
       end
   else if sym= "real" then
      begin
        advance;
        t_type:=real;
      end
   else error;
   return(t_type);
end;
```

第七章

P217 - 1

a*(-b+c)ab@c+*abcde/+*+ a+b*(c+d/e)-a+b*(-c+d)a@bc@d+*+ A (C or not D) A not C D not or not or (A and B) or (not C or D) AB and C not D or or (A or B) and (C or not D and E) AB or CD not E and or and if (x+y)*z = 0 then $(a+b) \uparrow c$ else $a \uparrow b \uparrow c$ $xy+z*0=ab+c\uparrow abc\uparrow \Upsilon$ 或 xy+z*0= P1 jez ab+c↑ P2 jump abc↑↑ P2 Р1

P217 - 3

-(a+b)*(c+d)-(a+b+c)的

三元式序列:

- (1) +, a, b
- (2) @, (1), -
- (3) +, c, d
- (4) *, (2), (3)
- (5) +, a, b
- (6) +, (5), c
- (7) -, (4), (6)

间接三元式序列:

三元式表:

- (1) +, a, b
- (2) @, (1), -
- (3) +, c, d
- (4) *, (2), (3)
- (5) +, (1), c
- (6) -, (4), (5)

间接码表:

- (1)
- (2)
- (3)
- (4)
- (1)

```
(5)
```

(6)

四元式序列:

- (1) +, a, b, T_1
- (2) $@, T_1, -, T_2$
- (3) +, c, d, T_3

- (4) *, T_2 , T_3 , T_4 (5) +, a, b, T_5 (6) +, T_5 , c, T_6 (7) -, T_4 , T_6 , T_7

P218 - 4

自下而上分析过程中把赋值句翻译成四元式的步骤:A:=B*(-C+D)

步骤	输入串	栈	PLACE	四元式
(1)	A := B * (-C+D)			
(2)	:=B*(-C+D)	i A		
(3)	B*(-C+D)	i:=	A-	
(4)	*(-C+D)	i:=i	A-B	
(5)	*(-C+D)	i:=E	A-B	
(6)	*(-C+D)	i:=E	A-B	
(7)	(-C+D)	i:=E* A-	В-	
(8)	-C+D)	i:=E*(A-	В	
(9)	C+D)	i:=E*(-	A-B	
(10)	+D)	i:=E*(-i	A-BC	
(11)	+D)	i:=E*(-E	A-BC	$(@, C, -, T_1)$
(12)	+D)	i:=E*(E	A-B T ₁	1
(13)	D)	i:=E*(E+	$A-B-T_1-$	
(14))	i:=E*(E+I	$A-B-T_1-D$	
(15))	i:=E*(E+E	$A-BT_1^1-D$	$(+, T_1, D, T_2)$
(16))	i:=E(E	$A-BT_2^1$	1 2
(17)		i:=E*(E)	AD CO	
(18)		i:=E+E	$A-B-T_2$	$(*, B, T_2, T_3)$
(19)		i:=E	$\begin{array}{c} A-B-T_2 \\ A-B-T_2 \\ A-T_3 \end{array}$	$(*, B, T_2, T_3)$ $(:=, T_3, -, A)$
(20)		A	3	3

产生的四元式:

$$(@, C, -, T_1)$$

$$(+, T_1, D, T_2)$$

 $(*, B, T_2, T_3)$
 $(:=, T_3, -, A)$

$$(*, B, T_2, T_3)$$

$$(:=, T_3, -, A)$$

P218 - 5

答:不妨设A:10*20,B、C、D:20,宽度为"w"则

T1:=i * 20

T1:=T1+j

T2:=A-C1

T3:=w*T1

T4 := i + j

T5:=B-C2

T6:=w*T4

T7:=T5[T6]

T8 := i * 20

T8:=T8+j

T9:=A-C1

T10:=w*T8

T11:=T9[T10]

T12 := i + j

T13:=D-C4

T14:=w*T12

T15:=T13[T14]

T16:=T11+T15

T17:=C-C3

T18:=w*T16

T19:=T17[T18]

T20:=T7+T19

T2[T3]:=T20

其中C1 = 21*w; C2=C3=C4=w。

P218 - 6

100. (jnz, A, -, 0)

101. (j, -, -, 102)

102. (jnz, B, -, 104)

103. (j, -, -, 0)

104. (jnz, C, -, 103)

105. (j, -, -, 106)

106. (jnz, D, -, 104) --假链链首

107. (j, -, -, 100) --真链链首

P218 - 7

100. (j<, A, C, 102)

```
101. (j, -, -, 0)
102. (j<, B, D, 104)
103. (j, -, -, 101)
104. (j=, A, '1', 106)
105. (j, -, -, 109)
106. (+, C, '1', T1)
107. (:=, T1, -, C)
108. (j, -, -, 100)
109. (j≤, A, D, 111)
110. (j, -, -, 100)
111. (+, A, '2', T2)
112. (:=, T2, -, A)
113. (j, -, -, 109)
114. (j, -, - 100)
P219 - 12
/*******
(1)
MAXINT - 5
MAXINT - 4
MAXINT - 3
MAXINT - 2
MAXINT - 1
MAXINT
(2) S \rightarrow \text{ for id} := E_1 \text{ to } E_2 \text{ do } S_1
      改造成:
     S \rightarrow F S_1
     F \rightarrow \text{ for id}:=E_1 \text{ to } E_2 \text{ do}
      翻译模式:
      S \rightarrow F S_1
      {
          backpatch(S<sub>1</sub>.nextlist, nextquad)
          p:=nextquad+2;
          emit('j≠,' F.place',' F.final ',' p );
          S.nextlist := merge(F.nextlist, makelist(nextquad));
          emit('j,-,-,-');
          emit('succ, 'F.place', -, 'F.place);
          emit('j,-,-,'F.quad);
      }
      F \rightarrow \text{ for id}:=E_1 \text{ to } E_2 \text{ do}
```

```
INITIAL=NEWTEMP;
emit(':=, 'E₁.PLACE', -, 'INITIAL);
FINAL=NEWTEMP;
emit(':=, 'E₂.PLACE', -, 'FINAL);
p:= nextquad+2;
emit('j≤,' INITIAL ',' FINAL ',' p);
F.nextlist:=makelist(nextquad);
emit('j,-,-,-');

F.place:=lookup(id.name);
if F.place≠nil then
emit(F.place ':=' INITIAL)

F.quad:=nextquad;
F.final:=FINAL;
}
```

第九章

P270 - 9

- (1) 9
- (2) 8
- (3) 7
- (4) 2

第十章

P 306-1:

基本块为 B_1 、 B_2 、 B_3 、 B_4 程序流图如右:

P 306-2:

 L_1 : E:=B*B

F:=F+2

E:=E+F B_3

write E

if E > 100 goto L_2

halt B₄

 L_2 : F:=F-1

goto L_1 B_5

基本块为 B_1 、 B_2 、 B_3 、 B_4 、 B_5 程序流图如右:

P306-3

(1)

B1:

若只有 G,L,M 在基本块 后面还要被引用,优化后 的四元式序列是:

G:=B*C

S1:=G*G

L:=S1*G

M:=L

(S1 为临时变量)

若只有 L 在基本块后面 还要被引用,优化后的四 元式序列是:

S1:=B*C

S2:= S1*S1

L:=S2*S1

(S1,S2 为临时变量)

B2:

若只有 G,L,M 在基本块 后面还要被引用,优化后 的四元式序列是:

S1:=A+C

S2:=A*C

S3:=S1+S2

G:=3*S3

L:=15+S3

M:=L

(S1,S2,S3 为临时变量)

若只有 L 在基本块后面 还要被引用,优化后的四 元式序列是:

S1:=A+C

S2:=A*C

S3:=S1+S2

L:=15+S3

(S1,S2,S3 为临时变量)

P307-4

进行循环优化后,得到:

B2 和 B3 构成循环,进行循环优化后,得到:

第十一章

P 327-1:

四元式	目标代码	RVALUE	AVALUE
T1:=B-C	LD R_0 ,B	RVALUE(R_0)={T1}	AVALUE(T1)={ R_0 }
	SUB R_0 ,C	R₀ 含有 T 1	T1 在 R_0 中
T2:=A*T1	LD R ₁ ,A	RVALUE(R_0)={T1}	AVALUE(T1)={ R_0 }
	$MUL R_1, R_0$	RVALUE(R_1)={T2}	AVALUE(T2)= $\{R_1^{}\}$
T3:=D+1	LD R_0 , D	RVALUE(R_0)={T3}	AVALUE(T3)={ R_0 }
	ADD R_0 ,1	RVALUE(R_1)={T2}	AVALUE(T2)={ R_1 }
T4:=E-F	ST R_1 ,T2		AVALUE(T2)={T2}
	LD R_1 , E	RVALUE(R_0)={T3}	AVALUE(T3)={ R_0 }
	SUB R_1 , F	RVALUE(R_1)={T4}	AVALUE(T4)={ R_1 }
T5:=T3*T4	MUL R_0, R_1	RVALUE(R_0)={T5}	AVALUE(T2)={T2}
	0 1	v	$VALUE(T5)=\{R_0\}$
		RVALUE(R_1)={T4}	AVALUE(T4)={ R_1 }
W:=T2/T5	LD R_1 , T2	RVALUE(R_0)={T5}	$AVALUE(T2)=\{T2\}$
	1	V	AVALUE(T5)={ R_0 }
	DIV R_1, R_0	RVALUE(R_1)={W}	AVALUE(W)={ R_1 }
	ST R_1 , W		