Vector vs Raster Graphics

Vector Graphics

Raster Graphics

Raster Graphics

- Raster Image = rectangular grid of colored elements
- Higher realisme = higher resolution

Vector Graphics

- Geometrical representation
- Can be exact
 - Vector representation of a triangle

Vector Graphics

- Arbitrary zoom levels
- Easy to do in software
- Hard to make them general + fast in hardware

Arbitrary Content

raster

vector

Zoom

Style

Style

Pixel

- "Picture element"
- Physical point in a raster image
- Certain amount of bits per pixel

Bits per Pixel

Amount of bits used to store color information

Frame Buffer

- A.k.a. frame store
- Portion of RAM (often in video memory)
- Contains a raster image of the rendered image
- Resolution
 - Width x height of pixels
 - VGA = 640*480
 - XGA= 1024*768
 - HD=1280*720
 - FullHD = 1920*1080

Frame Buffer Memory Requirements

- VGA = 640*480, 8bit per pixel
 - 640*480*1 = 307KB
- XGA= 1024*768, 16bit per pixel
 - 1024*768*2=1,5MB
- HD=1280*720, 24bit per pixel
 - 1280*720*3 = 2,6MB
- FullHD = 1920*1080, 32bit per pixel
 - 1920*1080*4=8MB
- 4k = 3840*2160, 32bit per pixel
 - 3840*2160 *4= 32MB

Double Buffering (2 Frame Buffer)

Double Buffering

Vertical Synchronisation (VSync)

Tripple Buffering

