Strutture algebriche

Andrea Canale

December 14, 2024

Contents

1	Str	utture algebriche	2		
2	Strutture algebriche note				
	2.1	Strutture algebriche su numeri	3		
	2.2	Monoide delle parole(o monoide libero su A) $\dots \dots \dots \dots \dots$	3		
	2.3	Gruppo delle permutazioni su X $\dots \dots \dots \dots \dots \dots \dots \dots$	4		
	2.4	Gruppo delle matrici quadrate	4		
3	Not	azione moltiplicativa e additiva	4		
4	Gruppi				
	4.1	Proprietà di un gruppo	5		
	4.2	Prodotto diretto tra gruppi	5		
5	Sottogruppi				
		$5.0.1$ Sottogruppi di \mathbb{Z}	6		
	5.1	Laterali	6		
	5.2	Teorema di Lagrange	7		
6	Omomorfismi				
	6.1	Omomorfismi ben definiti	7		
	6.2	Proprietà degli omomorfismi	7		
	6.3	Immagini e Nucleo	8		
	6.4	Classificazione di omomorfismi	8		
7	Isor	norfismi	8		

8	Gruppi ciclici			
	8.1	Generatori di \mathbb{Z}_N	9	
	8.2	Gruppi finiti di ordine primo	9	
	8.3	Teorema di classificazione di gruppi ciclici	10	
	8.4	Periodo di un gruppo ciclico	10	
	8.5	Piccolo teorema di Fermat	10	
	8.6	Criteri di ciclicità di prodotti ciclici	11	

1 Strutture algebriche

Una struttura algebrica è un insieme sul quale sono definite delle operazioni binarie(noi ne tratteremo solo una).

Una struttura algebrica può essere di tre tipi:

- Semigruppo se l'operazione è associativa
- Monoide se l'operazione è associativa ed esiste un elemento neutro
- Gruppo se l'operazione è associativa, esiste elemento neutro ed esiste un inverso y tale che $x \cdot y = y \cdot x = e$

Se l'operazione commuta, la struttura si dice commutativa o abeliana(solo nel caso di gruppi).

L'operazione deve essere ben definita per tutti gli elementi della struttura algebrica (il dominio e il codominio devono coincidere con l'insieme nella struttura)

Un sottoinsieme $Y \subset X$ si dice stabile o chiuso rispetto a * se $\forall a, b \in Y, a * b \in Y$

2 Strutture algebriche note

2.1 Strutture algebriche su numeri

- $(\mathbb{N}\setminus 0,+)$ È un semigruppo commutativo. La somma è associativa ma manca l'elemento neutro. La somma è commutativa
- \bullet (N, +) È un monoide commutativo. Infatti manca l'inverso
- $(\mathbb{Z}, +)$ È un gruppo abeliano. Esiste l'opposto.
- $(\mathbb{Z}_n, +)$ È un gruppo abeliano.
- (\mathbb{Z}_n,\cdot) È un monoide commutativo. Non sempre esiste l'inverso

Strutture algebriche su insiemi Sia $Y \neq \emptyset, X = P(Y)$ La struttura (X, \cup)

- È associativa
- $\bullet\,$ Ha elemento neutro \emptyset
- Non ha un inverso

La struttura (X, \cap)

- È associativa
- ullet Ha elemento neutro Y
- Non ha un inverso

Sono entrambi dei monoidi commutativi

2.2 Monoide delle parole(o monoide libero su A)

A partire da un alfabeto (insieme non vuoto. $P = \{\text{stringhe finite su A}\}$ Definiamo su P l'operazione di concatenazione di parole: $x_1, ..., x_n * y_1, ..., y_n = x_1, ..., (x_n y)_1, ..., y_n$ (P, *) È una struttura algebrica:

- È associativa
- Ha elemento neutro λ
- Non ha un inverso

Concludiamo che è un monoide non commutativo.

2.3 Gruppo delle permutazioni su X

Dato il gruppo delle funzioni biettive su $X: X = f \in f(x)$ |f biettiva) È un gruppo non abeliano. È anche chiamato gruppo simmetrico su X. Notiamo che è l'insieme delle permutazione su X.

2.4 Gruppo delle matrici quadrate

Dato l'insieme $X = a \in M(n, K) | deta \neq 0$), è detto gruppo lineare di ordine n a coefficienti in K. È un gruppo non commutativo se $n \geq 2$.

3 Notazione moltiplicativa e additiva

La notazione moltiplicativa si usa per gruppi del tipo (G, *):

- a*b=ab
- $a^n = a \cdot a \cdot \dots \cdot a$

• a^{-1} è l'inverso di a

La notazione additiva si usa per gruppi del tipo (G, +):

- $\bullet \ \ a*b=a+b$
- na = a + a + ... + a
- $\bullet \ -a$ è l'inverso di a

4 Gruppi

4.1 Proprietà di un gruppo

Dato un gruppo G, valgono le seguenti proprietà:

- L'elemento neutro è unico
- L'inverso di un elemento è unico
- $(x*y)^{-1} = y^{-1} \cdot x^{-1}$
- Valgono le leggi di cancellazione destra e sinistra: x * y = x * z si può semplificare y = z

Se G è finito, la sua cardinalità si dice ordine di G

4.2 Prodotto diretto tra gruppi

Dati due gruppi G_1 e G_2 possiamo costruire il prodotto scalare tra due gruppi e definirlo come prodotto diretto tra gruppi:

$$(a_1, b_1) * (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

Dove $(a_1, b_1) \in G_1$ e $(a_2, b_2) \in G_2$

Il risultato di $G_1 \times G_2$ sarà anch'esso un gruppo. Inoltre, il prodotto diretto tra gruppi abeliani è anch'esso abeliano.

Notiamo che $G^N = G \times G \times G \dots$

5 Sottogruppi

Dato un gruppo (G,*), un sottogruppo H di G è un sottoinsieme di G tale che (H,*) è un gruppo. Viene indicato come: $H \leq G$

Un sottogruppo deve rispettare tre proprietà:

• H stabile rispetto a *

- \bullet H ha lo stesso elemento neutro di G
- \bullet H contiene l'inverso di ogni suo elemento e coincide con quello di G

Notiamo che un gruppo G ha sempre almeno due sottogruppi detti sottogruppi banali: G e $\{e\}$

Inoltre l'intersezione tra sottogruppi è un sottogruppo tale che $H_1, H_2 \leq G$, allora $H_1 \cap H_2 \leq G$

5.0.1 Sottogruppi di \mathbb{Z}

Tutti i sottogruppi di \mathbb{Z} sono del tipo $N\mathbb{Z}$ per qualche $N \in \mathbb{N}$ Inoltre: $N\mathbb{Z} \cap M\mathbb{Z} = m\mathbb{Z}$ dove m = mcm(N, M)

5.1 Laterali

Dato un gruppo G e un suo sottogruppo $H \leq G$, definiamo le relazioni:

- $X \sim_1 Y \text{ Se } xy^{-1} \in H$
- $X \sim_2 Y$ Se $y^{-1}x \in H$

Queste due relazioni sono relazioni di equivalenza su G.

Sia G un gruppo e $H \leq G$. Dato un elemento $g \in G$ detto **rappresentante del laterale** si dice:

- Laterale sinistro di H il sottoinsieme: $gH = \{gh|h \in H\} \subset G$
- Laterale destro di H il sottoinsieme: $Hg = \{hg | h \in H\} \subset G$

Esempio:

$$G = S_3 = \{(1), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}\ H = \{(1), (1\ 2)\}\$$

I laterali destri saranno della forma:

$$H(1) = \{(1), (1\ 2)\} = H(1\ 2)$$

$$H(1\ 3) = \{(1)(1\ 3), (1\ 2)(1\ 3)\} = \{(1\ 3), (1\ 3\ 2)\} = H(1\ 3\ 2)$$

E così via...

Per i laterali sinistri vale la stessa regola ma si inverte la moltiplicazione

$$(1)H = \{(1), (1\ 2)\} = (1\ 2)H$$

$$(1\ 3)H = \{(1\ 3)(1), (1\ 3)(1\ 2)\} = \{(1\ 3), (1\ 2\ 3)\} = (1\ 2\ 3)H$$

Se G è commutatitivo i laterali destri e sinistri coincidono.

Valgono queste proprietà per i laterali destri e sinistri:

- La funzione $\theta: H \to Hx$ che manda $h \to hx$ (e il suo analogo sinistro) è biettiva
- ullet Se G è finito, tutti i laterali destri e sinistri hanno la stessa cardinalità.

5.2 Teorema di Lagrange

Sia G un gruppo finito e $H \leq G$. L'ordine di H divide l'ordine di G.

Notiamo che il teorema di Lagrange non si inverte tranne per i gruppi abeliani.

6 Omomorfismi

Siano $(G_1, *_1)$ e $(G_2, *_2)$ gruppi, una funzione $f: G_1 \to G_2$ si dice omomorfismo se:

$$f(x *_1 y) = f(x) *_2 f(y)$$

6.1 Omomorfismi ben definiti

Un omomorfismo deve essere ben definito, ad esempio:

$$f: \mathbb{Z}_8 \to \mathbb{Z}_{12}$$

Se prendiamo $[1]_8 = [9]_8$, allora f(1) = f(9)

Quindi deve mantenere le proprietà del gruppo

In generale se a = b allora f(a) = f(b)

6.2 Proprietà degli omomorfismi

Dato un omomorfismo $f: G_1 \to G_2$, valgono le seguenti proprietà:

- $f(eG_1) = eG_2$
- $f(x^{-1}) = f(x)^{-1} \ \forall x \in G_1$
- $\bullet \ f(x^n) = f(x)^n$
- Dato un sottogruppo H di G_1 , allora $f(H) \leq G_2$ dove f(H) è la funzione applicata su tutti gli elementi di H
- Dato un sottogruppo H di G_2 , allora $f^{-1}(H) \leq G_1$

Se non valgono queste proprietà, la funzione non è omomorfismo.

6.3 Immagini e Nucleo

Dato un omomorfismo $f: G_1 \to G_2$:

L'insieme definito da $f(G_1)$ è detto immagini della funzione ed è denotato come im(f)

L'insieme definito come $\{x \in G_1 | f(x) = eG_2\}$ è detto nucleo ed è denotato come ker(f)

Un omomorfismo f è iniettivo, se e solo se, $ker(f) = \{eG_1\}$

6.4 Classificazione di omomorfismi

- Monomorfismo se è un omomorfismo iniettivo
- Epimorfismo se è suriettivo
- Isomorfismo se è biettivo
- Endomorfismo se $G_1 = G_2$ (cioè f agisce sullo stesso gruppo)
- Automorfismo se è endomorfismo e monomorfismo

7 Isomorfismi

Due gruppi si dicono isomorfi se esiste un isomorfismo $f:G_1\to G_2$. Viene indicato come $G_1\simeq G_2$

Due gruppi isomorfi hanno le stesse proprietà, ad esempio: se G_1 è finito, lo sarà anche G_2 oppure se G_1 è abeliano lo è anche G_2 , ecc...

8 Gruppi ciclici

Sia $(G_1, *)$ un gruppo, possiamo facilmente costruire sottogruppi di G_1 a partire da un elemento $g \in G_1$, definiamo un sottogruppo ciclico generato da x come:

$$\langle x \rangle = \{ g^n \in G_1 | n \in \mathbb{N} \}$$

Notiamo che questa notazione vale per gruppi scritti come notazione moltiplicativa, per gruppi in notazione additiva abbiamo:

$$\langle x \rangle = \{ ng \in G_1 | n \in \mathbb{N} \}$$

Se esiste un elemento x per il quale $\langle x \rangle = G_1$, il gruppo G_1 si dice ciclico e x è il generatore di G_1

Notiamo inoltre che se G è un gruppo ciclico, allora G è abeliano. Da ciò ne ricaviamo che qualsiasi gruppo non abeliano sicuramente non è ciclico. Tuttavia non tutti i gruppi abeliani sono ciclici.

Osserviamo anche che il prodotto di gruppi ciclici non è necessariamente un gruppo ciclico.

8.1 Generatori di \mathbb{Z}_N

I generatori del gruppo Z_N coincidono con gli elementi invertibili \mathbb{Z}_N^*

8.2 Gruppi finiti di ordine primo

Se l'ordine di un gruppo |G| = p è un numero primo e il gruppo è generato da x, per il teorema di Lagrange $|\langle x \rangle| = d$ divide p, tuttavia ciò è possibile solo se d = 1 o d = p. Se noi imponiamo $x \neq e$ otteniamo che l'unica possibilità è d = p.

Quindi se G ha un ordine primo, allora è generato da qualsiasi $x \neq e$. Concludiamo che G è un gruppo ciclico generato da qualsiasi suo elemento $\neq e$

Per quello che abbiamo detto prima, tutti i gruppi di ordine primo sono abeliani.

8.3 Teorema di classificazione di gruppi ciclici

Se G è un gruppo ciclico, allora:

- Se G è infinito, allora G è isomorfo a \mathbb{Z}
- Se G è finito con ordine |G| = n, allora $G \simeq \mathbb{Z}_N$

8.4 Periodo di un gruppo ciclico

Dato un gruppo G ciclico e un elemento (anche non generatore) $x \in G$, definiamo il suo periodo come:

$$per(x) = |\langle x \rangle|$$

Osserviamo che in generale, se $|\langle x \rangle|$ ha periodo finito, allora il periodo è il minimo numero n tale per cui $x^n = e$.

Inoltre per il teorema di Lagrange, se per(x) divide l'ordine di G

Ciò ci viene utile per risolvere potenze molto alte: poniamo $|G| = per(x) \cdot k$. Per risolvere x^n possiamo scrivere $x^{d \cdot k} = (x^d)^k$. Tuttavia $x^d = e$ quindi $x^n = e$.

Questo perchè: Ogni elemento di un gruppo finito elevato all'ordine del gruppo dà l'elemento neutro

Inoltre, l'unico elemento con periodo 1 è l'elemento neutro

Questo ha un applicazione particolare per il calcolo di potenze \mathbb{Z}_N^* .

Dato che in \mathbb{Z}_N^* , $|\mathbb{Z}_N^*| = \varphi(N)$, Otteniamo che $\overline{a}^{\varphi(N)} = \overline{1}$ se (a, N) = 1

8.5 Piccolo teorema di Fermat

Nel caso particolare in cui il modulo N sia un numero primo, si ha il piccolo teorema di Fermat:

$$p \nmid a \text{ allora } a^{p-1} \equiv 1 mod p$$

8.6 Criteri di ciclicità di prodotti ciclici

Dato due gruppi ciclici G_1 e G_2 , G_1 x G_2 è ciclico, se e solo se gli ordini di G_1 e G_2 sono coprimi. Notiamo che $|G_1$ x $G_2|=|G_1|\cdot |G_2|$