PROBLEM SET 2 Simple Kriging

1. Given the three measurements of elevation of land surface $(V_1, V_2, \text{ and } V_3)$, use simple kriging to estimate the elevation V_0 and the variance of this estimate.

Measured values and coordinates (with respect to an origin at V_0) are:

	Elevation		
	(ft above msl)	x coordinate	y coordinate
$\overline{V_1}$	10	300	0
V_2	100	500	0
V_3	15	-300	-200

The estimated mean elevation (m) in this area is 40 ft and the estimated variance (σ^2) is 10 ft². Assume a variogram structure based on the omnidirectional "spherical" model given below.

$$\gamma(h) = \begin{cases} 0 & \text{if } h = 0\\ \sigma^2 \left[1.5 \frac{h}{a} - .5 \left(\frac{h}{a} \right)^3 \right] & \text{if } 0 < h < a\\ \sigma^2 & \text{if } h \ge a \end{cases}$$

where a is the variogram range and h is distance. The range of correlation (a) has been estimated to be 600 ft.

- (a) Plot this variogram model and the corresponding covariance model.
- (b) Write the simple kriging system of equations (use covariances $[C_{ij}]$ instead of variogram values). Please also show these equations in matrix form.
- (c) Does your estimated value of V_0 make sense? Are any of the weights negative? If so, briefly explain why.
- (d) True or false: The kriging weights do not depend on the actual data values (V_i) . Explain.
- **2.** Show that if the variogram model were a pure nugget effect, the simple kriging estimate of V_0 would be 40.
- **3.** If the variogram model were a pure nugget effect, what would the ordinary kriging estimate of V_0 be?