What flexibility do we have in defining the vector potential given the Coulomb gauge ($\nabla \cdot \mathbf{A} = 0$)? That is, what can \mathbf{A}' be that gives us the same \mathbf{B} ?

A.
$$\mathbf{A}' = \mathbf{A} + C$$

B. $\mathbf{A}' = \mathbf{A} + \mathbf{C}$
C. $\mathbf{A}' = \mathbf{A} + \nabla C$
D. $\mathbf{A}' = \mathbf{A} + \nabla \cdot \mathbf{C}$
E. Something else?

The vector potential A due to a long straight wire with current I along the z-axis is in the direction parallel to:

A. \hat{z}

B. $\hat{\phi}$ (azimuthal)

C. \hat{s} (radial)

Assume the Coulomb Gauge

Consider a fat wire with radius a with uniform current I_0 that runs along the +z-axis. We can compute the vector potential due to this wire directly. What is J?

A.
$$I_0/(2\pi)$$

B.
$$I_0/(\pi a^2)$$

C.
$$I_0/(2\pi a)\hat{z}$$

D.
$$I_0/(\pi a^2)\hat{z}$$

E. Something else!?

Consider a fat wire with radius a with uniform current I_0 that

runs along the +z-axis. Given
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\Re} d\tau'$$
,

which components of **A** need to be computed?

A. All of them

B. Just A_x

C. Just A_y

D. Just A_z

E. Some combination

Consider line of charge with uniform charge density, $\lambda = \rho \pi a^2$. What is the magnitude of the electric field outside of the line charge (at a distance s > a)?

$$A. E = \lambda/(4\pi\varepsilon_0 s^2)$$

B.
$$E = \lambda/(2\pi\varepsilon_0 s^2)$$

$$C. E = \lambda/(4\pi\varepsilon_0 s)$$

D.
$$E = \lambda/(2\pi\varepsilon_0 s)$$

E. Something else?!

Use Gauss' Law

Consider a shell of charge with surface charge σ that is rotating at angular frequency of ω . Which of the expressions below describe the surface current, \mathbf{K} , that is observed in the fixed frame.

A. $\sigma \omega$

B. $\sigma \dot{\mathbf{r}}$

 $C. \sigma \mathbf{r} \times \omega$

 $D. \sigma \omega \times \mathbf{r}$

E. Something else?

What is the physical interpretation of $\oint \mathbf{A} \cdot d\mathbf{l}$?

- A. The current density ${f J}$
- B. The magnetic field ${f B}$
- C. The magnetic flux Φ_B
- D. It's none of the above, but is something simple and concrete
- E. It has no particular physical interpretation at all

Consider a square loop enclosing some amount of magnetic field lines with height H and length L. We intend to compute $\Phi_B = \oint \mathbf{A} \cdot d\mathbf{l}$? What happens to Φ_B as H becomes vanishingly small?

A. Φ_B stays constant

B. Φ_B gets smaller but doesn't vanish

 $\mathsf{C}.\,\Phi_{\mathsf{R}}\to 0$

Consider a square loop enclosing some amount of magnetic field lines with height H and length L. If $\Phi_B \to 0$ as $H \to 0$ (or $L \to 0$), what does that say about the continuity of \mathbf{A} ?

$$\Phi_B = \oint \mathbf{A} \cdot d\mathbf{l}$$

A. A is continuous at boundaries

B. A is discontinuous at boundaries

C. ???

The leading term in the vector potential multipole expansion involves:

$$\oint d\mathbf{l'}$$

What is the magnitude of this integral?

A.R

B. $2\pi R$

C. 0

D. Something entirely different/it depends!

Two magnetic dipoles m_1 and m_2 (equal in magnitude) are oriented in three different ways.

Which ways produce a dipole field at large distances?

A. None of these

B. All three

C. 1 only

D. 1 and 2 only

E. 1 and 3 only