NAME: Final version 029

MAT-181 FINAL TAKE-HOME EXAM

This exam is to be taken without discussion or correspondance with any human. Please show work!

question	available points	earned points
1	10	
2	15	
3	10	
4	10	
5	10	
6	10	
7	15	
8	20	
EC	5	
EC	5	
Total	100	

1. (10 Points)

For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of test scores on a very difficult exam, in which most students have poor to average scores, but a few did quite well.
- (b) The distribution of lengths of newborn babies
- (c) The distribution of quiz scores on an easy quiz. Most students did very well, but a few did poorly.
- (d) The distribution of hours that students studied for an exam when about half of students studied a lot and a similar number of students studied very little.

2. (15 Points)

In a deck of strange cards, there are 759 cards. Each card has an image and a color. The amounts are shown in the table below.

	gray	green	violet	white	yellow	Total
dog	20	47	22	16	39	144
horn	14	50	18	46	10	138
kite	24	37	38	49	27	175
needle	33	35	43	23	26	160
wheel	41	36	13	21	31	142
Total	132	205	134	155	133	759

(a) What is the probability a random card is a needle?

(b) What is the probability a random card is either a kite or green (or both)?

(c) What is the probability a random card is both a dog and yellow?

(d) What is the probability a random card is a wheel given it is yellow?

(e) What is the probability a random card is green given it is a wheel?

(f) What is the probability a random card is gray?

(g) Is a horn or a kite more likely to be yellow?

3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	78	14
В	114	15
C	113	6
D	143	13

One specimen of each type is weighed. The results are shown below.

Type of fruit	Mass of specimen (g)
Α	62.88
В	123.8
C	104.4
D	151.6

Which specimen is the most unusually small (relative to others of its type)?

4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 134.1 millimeters and a standard deviation of 3.1 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 131.5 and 139.6 millimeters?

5. (10 points)

A species of duck is known to have a mean weight of 179.5 grams and a standard deviation of 70 grams. A researcher plans to measure the weights of 49 of these ducks sampled randomly. What is the probability the **sample mean** will be between 170.5 and 194.5 grams?

6. (10 points)

An ornithologist wishes to characterize the average body mass of *Porzana carolina*. She randomly samples 20 adults of *Porzana carolina*, resulting in a sample mean of 66.46 grams and a sample standard deviation of 9.57 grams. Determine a 95% confidence interval of the true population mean.

_	, . –	
7.	(15	points)

A student is taking a multiple choice test with 600 questions. Each question has 2 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 323 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

8. (20 points) [Note: this question uses 2 pages.] You have collected the following data:

X	У	xy
26	4.5	
20	4.3	
59	7.3	
66	8.1	
21	6.7	
76	7.2	
34	6.1	
98	10	
$\sum X =$	$\sum y =$	$\sum xy =$
$\bar{X} =$	$\bar{y} =$	
$S_X =$	S _y =	

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (b and a) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of *a* and *b*.)

(e) Please plot the data and a corresponding regression line.

9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.57. If 183 trials occur, what is the probability of getting more than 103 but less than 108 successes?

In other words, let $X \sim \text{Bin}(n = 183, p = 0.57)$ and find P(103 < X < 108).

Use a normal approximation along with the continuity correction.

10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean μ = 120. You decide to run two-tail test on a sample of size n = 8 using a significance level α = 0.02.

You then collect the sample:

130.8	127.7	161.8	133.7	153.8
129.3	146.7	111		

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?