- Quantizer
 - n-level -> split into n intervals
- Uniform
 - $Q(x) = \left[\frac{x-d_0}{\Lambda}\right]$ // this gives i where $x \in [d_i \ d_{i+1})$ //Exercise: Prove that
 - $Q^{-1}(i) = d_0 + \left(i + \frac{1}{2}\right)\Delta$ // that is because $Q^{-1}(i) \stackrel{\text{def}}{=} r_i$ and $r_i = d_0 + \left(i + \frac{1}{2}\right)\Delta$
- Non-uniform
 - o q: binary search
 - o deq: use r_i
- Semi uniform
 - Quantization: as in uniform quantizers, $Q(x) = \left[\frac{x d_0}{\Lambda}\right]$, which takes O(1) time
 - Dequantization: $Q^{-1}(i) = r_i$, which takes a constant time (O(1))
- Max LLOYD
 - NON-UNIFORM
 - o Initial the value as uniform q
 - o loop
 - ri= average in [di,di+1)
 - di = (ri-1+ri)/2
 - o until di doesn't change much
- Transform
 - · Specifically, the transforms must have the following properties:
 - · Decorrelation of data
 - Separation of data into vision-sensitive data and vision-insensitive data
 - · Energy compaction: concentrating the important data into a very small subset
 - · Invertability: since data loss should occur only in quantization, transforms must be lossless
 - decorrelated data: less blurring, less loss of patterns.

• Example:
$$\begin{bmatrix} 1 & 5 \\ 3 & 4 \\ 2 & 1 \end{bmatrix}$$
. $\begin{bmatrix} 2 & 4 & 1 & 3 \\ 1 & 2 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 14 & 21 & 28 \\ 10 & 20 & 19 & 29 \\ 5 & 10 & 6 & 11 \end{bmatrix}$

THE MATRIX OF THE HADAMARD TRANSFORM

• To express a_{kl} , we need to express k and l in binary (using $n = \log N$ bits)

•
$$k = k_{n-1}k_{n-2} \dots k_1k_0$$
, $l = l_{n-1}l_{n-2} \dots l_1l_0$

•
$$a_{kl} = \sqrt{\frac{1}{N}} (-1)^{k_{n-1}l_{n-1}+k_{n-2}l_{n-2}+\cdots+k_1l_1+k_0l_0}$$

$$\bullet \ A_N^{-1} = A_N^T = A_N$$

AN ALTERNATIVE DEFINITION OF THE MATRIX OF THE HADAMARD TRANSFORM

• The Hadamard matrix can be defined recursively (where N is a power of 2, i.e., $N=2^n$ for some positive integer n)

•
$$A_1 = (1)$$
 and $\forall N > 1, A_N = \sqrt{\frac{1}{2} \begin{pmatrix} A_N & A_N \\ \frac{N}{2} & -A_N \\ \frac{N}{2} & -A_N \\ \frac{N}{2} \end{pmatrix}}$

- Exercise: Derive A_2 , A_4 and A_8 using this recursive definition
- Exercise: Compare the values A_2 , A_4 and A_8 with their values on the previous slide to verify that the two definitions are equivalent
- Exercise: Using the recursive definition of A_N , prove by induction on n that A_N is a symmetric matrix, and that $A_N A_N = I_N$, i.e., $A_N^{-1} = A_N$.
- Note: In Matlab, if you call hadamard(N), it returns to you the Hadamard matrix A_N but without the constant multiplier $\sqrt{\frac{1}{N}}$

SPEED OF THE TRANSFORM

-- 2D SIGNALS --

- For 2D input signals, i.e., an $N \times M$ image X
- Recall that $Y = A_N X A_M^T$ (i.e., we transform every column then every row)
- Every column of A takes $O(N^2)$ time to compute, and so the M columns take $O(MN^2)$ time
- Every row takes $O(M^2)$ time to compute, and so the N columns take $O(NM^2)$
- Thus, the 2D transform takes $O(MN^2 + NM^2) = O(N^3)$ for N = M
- For N=1000, $O(N^3)=1$ second on a 1GFLOPS device (or 17 mins on a 1MFLOPS)
- But even on a 1GFLOPS device, applying the 2D transform on all the frames of a 2-hour video (with a 30fps rate) takes 2.5 days!
- Lossless

o DPCM

DPCM

-- MAIN METHOD (FOR 1D DATA): PARAMETER --

- The choice of the parameter a is up to the user, and can be adapted to your data/apps
- · It can also be optimized to fit your input data:
 - Let $E(a) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (x_i ax_{i-1})^2$, assuming that $x_0 = 0$
 - The smaller the magnitudes of the residuals e_i , the better, since that would increase the redundancy (and make certain residual values occur with high probabilities)
 - Therefore, we are interested in minimizing E(a)
 - To get the optimal value of a that minimizes E(a), compute the derivative E'(a), set it to NINT(z) = nearest
 - $E'(a) = -2\sum_{i=1}^{n} x_{i-1}(x_i ax_{i-1}) = -2[\sum_{i=1}^{n} x_{i-1}x_i a\sum_{i=1}^{n} x_{i-1}^2],$

 - Setting E'(a) = 0, and solving, we get $a = \frac{\sum_{i=1}^{n} x_{i-1} x_i}{\sum_{i=1}^{n} x_i}$
 - If x is integers and you want to keep the residues integer, take $a = \text{NINT}(\frac{\sum_{i=1}^{n} x_{i-1} x_i}{x_i})$

integer to z

Ex: NINT[1.7]=2,

NINT[1.3]=1

NINT[1.5]=2

n i Data Compression

DPCM

-- MAIN METHOD: FOR 2D DATA--

- DPCM for 2D data (i.e., an image A)
- DPMC for 2D data takes three parameters (a, b, c)

Coder Method (to code image A):

- Compute a residual image B: B[i,j] = A[i,j] - (aA[i,j-1] + bA[i-1,j-1] + cA[i-1,j]);// any pixel out of boundary is assumed = 0
- Code the residual B with Huffman (or any other suitable lossless coder like Bitplane Coding to be covered later)

Decoder Method:

- 1. Decode the coded bitstream with the right decoder, to get the residual image B
- For i = 1: n do // image is an $n \times m$ matrix. For i = 1: m do // pixels out of boundary are = 0 A[i,j] = B[i,j] + (aA[i,j-1] + bA[i-1,j-1] + cA[i-1,j]);

DPCM

-- MAIN METHOD (FOR 2D DATA): PARAMETERS --

- The choice of the parameters (a, b, c) is up to the user, and can be adapted to your data/applications
- . It can also be optimized to fit your input data:
 - Let $E(a,b,c) = \sum_{i=1}^n \sum_{j=1}^m B_{ij}^2 = \sum_{i=1}^n \sum_{j=1}^m [A[i,j] (aA[i,j-1] + bA[i-1,j-1] + cA[i-1,j])]^2$
 - Compute the partial derivatives of E with respect to a, b, and c, set them to 0, and solve the system of 3 linear equations with three unknowns (the unknowns are a, b, and c)
- Exercise: Carry out the above step, and derive formulas for optimal a, b, and c.
- . Note: If you would like to keep every thing integer (like the pixels in image B), take the NINT values of the optimal values of a, b, and c.

Gray codes

■ make adjacent binary only change 1 number

GRAY CODES

-- CONSTRUCTION EXAMPLES --

- Let $G_n = 0G_{n-1}$, $1G_{n-1}^R$, that is concatenate the two sequence $0G_{n-1}$ and $1G_{n-1}^R$
- Construct G₂ from G₁:
 - 1. We saw that G_1 is: 0,1 and so $0G_1$ is 00,01
 - 2. G_1^R is: 1,0 and so $1G_1^R$ is: 11, 10
 - 3. Hence, $G_2 = 0G_1$, $1G_1^R$ is: 00, 01, 11, 10
- Construct G₃ from G₂:
 - 1. $G_2: 00, 01, 11, 10 \Rightarrow 0G_2: 000, 001, 011, 010$
 - 2. $G_2^R: 10, 11, 01, 00 \rightarrow 1G_2^R: 110, 111, 101, 100$
 - 3. $G_3 = 0G_2, 1G_2^R$ is: 000,001,011,010,110,111,101,100
- Construct $G_4 = 0G_3$, $1G_3^R$: 0000, 0001, 0011, 0010, 0101, 0111, 0101, 0100,

1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

GRAY CODES

-- CODING OF INTEGERS--

- Once we have a Gray code G_n , we can code any integer k (i.e, a pixel value between 0 and $2^{n}-1$) into the k^{th} binary string in G_{n}
- · Example:
 - k: 0, 1, 2, 3, 4, 5, 6, 7
 - G_3 : 000, 001, 011, 010, 110, 111, 101, 100

Gray_code(0)=000, Gray_code(2)=011 Gray_code(4)=110, Gray_code(7)=100

- For speed reason, it is convenient to know the Gray code $g_{n-1} \dots g_1 g_0$ of an integer k, directly from k, without having to have all G_n (of 2^n strings)
 - Method: input is k, output is the Gray code of k, denoting it $g_{n-1} \dots g_1 g_0$
 - 1. Convert k to regular binary $b_{n-1} \dots b_1 b_0$, using decimal-to-binary conversion
 - 2. Set $g_{n-1} = b_{n-1}$
 - 3. For i=0 to n-2 do: $g_i = b_i \text{ XOR } b_{i+1}$;

Recall that $(0 \times 0 \times 0) = (1 \times 0 \times 1) = 0$, and (1 XOR 0) = (0 XOR 1) = 1

- Gray-to-binary conversion (for decoding): to get $b_{n-1} \dots b_1 b_0$ from $g_{n-1} \dots g_1 g_0$

 - For i=n-2 down to 0 do: $b_i = g_i \times OR b_{i+1}$;

GRAY CODES

-- PROOF OF CORRECTNESS--

Theorem: G_n is a Gray code for all $n \ge 1$, and the last string and 1^{st} string (of G_n) differ by

Proof: We will prove by induction on n that every two successive strings in G_n differ by exactly one bit, and so do the 1st and last string.

- Basis step: n = 1. Prove that the theorem is true for n=1. Well, $G_1: 0, 1$, and so its only two successive strings 0 and 1 different by exactly one bit.
- · Induction step:
 - Assume the theorem is true for n-1, i.e., every two successive strings in G_{n-1} differ by exactly one bit, and so do the 1^{st} and last string in G_{n-1} . This is called the induction hypothesis (IH)
 - Prove that every two successive strings in G_n differ by exactly one bit, and so do the 1st and last
 - Take two successive strings W_1 and W_2 in $G_n = 0G_{n-1}$, $1G_{n-1}^R$. We have three cases:
 - W_1 and W_2 are in $0G_{n-1}$: so $W_1 = 0V_1$ and $W_2 = 0V_2$ where V_1 and V_2 are two successive strings in G_{n-1} , and so, by the IH, they differ by only one bit. Therefore, since W_1 and W_2 agree in the left most bit (0), they differ in only one bit.
 - b. W_1 and W_2 are in $1G_{n-1}^R$: the proof is very similar to part (a)
- c. W_1 is the last string in $0G_{n-1}$, and W_2 is the 1st string in $1G_{n-1}^R$. So, $W_1 = 0V_1$ and $W_2 = 1V_2$ but also observe that $V_1 = V_2$ because the first string in G_{n-1}^R is the last string of G_{n-1} . Hence, $W_1 = 0V_1$ and $W_2 = 1V_1$, and so they differ by only the leftmost bit.
- One thing remains: W_1 is the first string of $0G_{n-1}$, and W_2 is the last string in $1G_{n-1}^R$. That is similar to case (c) above.

ARITHMETIC CODING (AC)

-- METHOD --

Input: a binary stream $x = x_1 x_2 ... x_n$, and a probabilistic model of x

Output: a coded bitstream

Method:

1. Let I = [L, R) where initially L = 0, R = 1;

There is a patent on AC by IBM called the Q-Coder

Observation 1: Every subinterval is nested inside the earlier intervals

- 2. For i=1 to n do
 - a. Let $P_i = \Pr[0/x_1x_2...x_{(i-1)}]$; // regardless of what x_i is
 - b. Let $\Delta = R L$: // length of the interval now
 - **c.** Split interval I into 2 subintervals: $[L, L + P_i \Delta)$ and $[L + P_i \Delta, R)$;
 - **d.** Choose: If $(x_i == 0)$, reduce I to $[L, L + P_i \Delta)$, i.e., $R := L + P_i \Delta$; If $(x_i==1)$, reduce I to $[L+P_i\Delta,R)$, i.e., $L:=L+P_i\Delta$;
- 3. Let $t = [-\log \Delta]$, and $r = \frac{L+R}{2}$ expressed in binary as $0.r_1r_2...r_t...$ (stop at r_t)
- 4. Output:= $r_1r_2 \dots r_t$, i.e., code the input $x_1x_2 \dots x_n$ as $r_1r_2 \dots r_t$

Observation 2: r is in every subinterval that was chosen. Why?

 $t = [-\log(\text{length of last subinterval})]$

ARITHMETIC CODING (AC)

-- EXAMPLE (1/2) --

• Binary Markov Source $Pr[0/0] = Pr[1/1] = \frac{3}{4}$, $Pr[0/1] = Pr[1/0] = \frac{1}{4}$, and $Pr[0] = Pr[1] = \frac{1}{2}$

Split at L+P₁ Δ =1/2

• Code input x = 110

•
$$i = 1, x_1 = 1, \Delta = 1, P_1 = \Pr[0] = \frac{1}{2}$$
: L=0

• Since $x_1 = 1$, choose right interval

•
$$i = 2, x_2 = 1, \Delta = \frac{1}{2}, P_2 = \Pr[0/1] = \frac{1}{4}$$
: Split at L+P₂ Δ =5/8

• Since $x_2 = 1$, choose right interval

•
$$i = 3, x_3 = 0, \Delta = \frac{3}{8}, P_3 = \Pr[0/1] = \frac{1}{4}$$
:

• Since $x_3 = 0$, choose left interval

CS63S1 Data Compression

Lossless Compression Part II

R=1

R=1

R=1

ARITHMETIC CODING (AC)

-- EXAMPLE (2/2) --

• The final interval was:

input is small

• Therefore,
$$L = \frac{5}{8}$$
, $R = \frac{23}{32}$, $\Delta = R - L = \frac{3}{32}$

•
$$t = [-\log \Delta] = \left[-\log \frac{3}{32}\right] = [3.4150] = 4$$

· So the coded bitstream will have 4 bits

• $\frac{L+R}{2} = \frac{43}{64}$, convert to binary, we get $\frac{L+R}{2} = 0.101011$

• Take the first 4 bits after the point: 1010

• Therefore, the coded bitstream r is: 1010

· Done with the example

For realistic input, there will be

compression, usually CR ≈ 2

CS8351 Data Compression

Lossless Compression Part II

- decode-> stop at ceil(-log delta) = t
- LZ compression

LEMPEL-ZIV (LZ) COMPRESSION

-- REMARKS --

- The dictionary is not stored/transmitted in the coded bitstream
- Rather, it is used by the coder to carry out the coding, and then discarded
- · As will be seen, the decoder will be able to reconstruct the dictionary from the coded bitstream alone
- · No probabilities were needed or used
- The LZ bitrate is asymptotically optimal (i.e., approaches the entropy of the source with memory) without the need to know or compute the underlying probability model of the input data.
- The proof will not be provided. See paper if interested

LZ DECODER

-- METHOD --

Input: a coded bitstream $y = y_1 y_2 \dots$; **Output**: the original data x

- 1. $i=1, W_1=\text{empty}, a_1=y_1, \text{DICT}[1]=W_1a_1 \text{ (i.e., } y_1), x=W_1a_1 \text{ (i.e., } y_1);$
- 2. i=2;
- 3. While (the coded bitstream is not fully scanned) do
 - a. j=decimal(the next [log i] bits from y);
 - b. $W_i = DICT[j];$
 - c. a_i =the next symbol from y;
 - d. append $W_i a_i$ to the right of x;
 - - Which is what we want based on what
 - e. DICT[i]= $W_i a_i$ f. i++;

Observe that:

we observed in the LZ coder

// if a_i =empty, at end of decoding, simply append W_i to the right of x

LZ DECODER

-- EXAMPLE--

Decoding y=01110 0110100110110111 from the previous example

i	[log i]	j=next [log i] bits of y	W _i =Dict[j]	a_i	$\mathbf{DICT[i]} = W_i a_i$	$\mathbf{x} = (\mathbf{previous}(\mathbf{x}))(W_i a_i)$
1	0	empty	empty	0	0	0
2	1	(1)2=1	0	1	01	001
3	2	(10)2=2	01	0	010	001010
4	2	(11)2=3	010	0	0100	0010100100
5	3	(100)2=4	0100	1	01001	001010010001001
6	3	(101)2=5	01001	1	010011	001010010001001010011
7	3	(011)2=3	010	1	0101	0010100100010010100110101

Decoded data x = 00101001000100100110101

Lossless Compression Part II

COMPRESSION PERFORMANCE METRICS

-- SIZE REDUCTION MEASURES --

- Bit Rate (or bitrate or BR): Average number of bits per original data element, after compression
 - In text compression: BR= avg. number of bits per character = $\frac{\#bits \ in \ the \ coded \ bits tream}{\#characters \ in \ the \ original \ tex}$ In images/videos: BR= average number of bits per pixel = $\frac{\#bits \ in \ the \ coded \ bits tream}{\#pixel \ in \ the \ in \ the \ coded \ bits tream}}{\#bits \ in \ the \ coded \ bits tream}$ In audio: BR= avg. num. of bits per sound sample= $\frac{\#bits \ in \ the \ coded \ bits tream}{\#samples \ in \ the \ audio \ file}$
- Compression Ratio (CR) = $\frac{\text{size of the uncompressed data (in bits)}}{\text{size of the coded bitstream (in bits)}} = \frac{|I|}{|b|}$
- Exercise: A file has 1000 characters, and takes 8K bits before compression. After compression, its size became 4K bits. What is the bitrate? What the CR?

BASIC DEFINITIONS IN COMPRESSION/CODING

-- QUALITY MEASURES: SNR --

- Let I be an original signal (e.g., an image), and \hat{I} be its lossily reconstructed counterpart
- · Signal-to-Noise Ratio (SNR) in the case of lossy compression:
 - It is a measure of the quality of the reconstructed (decompressed/decoded) data
 - . More accurately, it is the fidelity of the decoded data w.r.t. the original
 - Mathematically: SNR = $10\log_{10}\left(\frac{\|I\|^2}{\|I-I\|^2}\right) = 20\log_{10}\left(\frac{\|I\|}{\|I-I\|}\right)$ where for any vector/matrix/set of number $E = \{x_1, x_2, ..., x_N\}$, $\|E\|^2 = x_1^2 + x_2^2 + \cdots + x_N^2$
- The unit of SNR is "decibel" (or dB for short)
- So, if SNR = 23, we say the SNR is 23 dB

Question: Does it make sense to compute SNR for lossless compression? Why or why not?

BASIC DEFINITIONS IN COMPRESSION/CODING

-- QUALITY MEASURES: MEAN-SQUARE ERROR --

- Mean-Square Error (MSE): MSE = $\frac{1}{N} \left\| I \hat{I} \right\|^2$
- Relative Mean-Square Error (RMSE): RMSE = $\frac{\|I-I\|^2}{\|I\|^2}$
- Therefore, $SNR = -10 \log_{10} RMSE$
- · Observations:
 - · The smaller the RMSE (or the MSE), the higher the SNR
 - · Therefore, the higher the SNR, the better the quality of the reconstructed data
- Exercise: Prove that if RMSE is decreased by a <u>factor</u> of 10, then SNR increases by 10 decibels.
- That justifies the multiplicative factor in the definition of the SNR.

• Therefore, Entropy of S, denoted H(S), is:

$$H(S) = -(p_1 \log p_1 + p_2 \log p_2 + \dots + p_n \log p_n) = -\sum_{i=1}^n p_i \log p_i$$

INFORMATION THEORY (ADJOINT SOURCES)

· Adjoint Source of Order N of a source with memory:

• The entropy of this adjoint source is: $H_N(S) = -\sum_A P_A \log P_A$

- **Theorem** (Shannon): $\frac{H_N(S)}{N} \to H(S)$ as $N \to \infty$ As N gets larger, $\frac{H_N(S)}{N}$ gets smaller until $\approx H(S)$
- This implies that for any source S with memory, if we divide it into blocks of large enough size
 N and then block-code it without taking advantage of inter-block correlation, then we still
 approximate the performance of the best coder S.
- Therefore, block coding is a good way to go when we have correlation

HUFFMAN CODING

- THE CODING ALGORITHM-

Input: alphabet $\{a_1, a_2, ..., a_n\}$ and symbol probabilities $\{p_1, p_2, ..., p_n\}$

Output: the codewords of the alphabet symbols

Method: (a Greedy method for creating a Huffman tree as follows)

- 1. Create a node for each symbol a_i // these nodes will be the leaves
- 2. While (there are two or more uncombined nodes) do
 - Select 2 uncombined nodes a and b of minimum probabilities
 - Create a new node c of prob $P_a + P_b$, and make a and b children of c
- 3. Label the tree edges: left edges with 0, right edges with 1
- 4. The codeword of each alphabet symbol a_i (a leaf) is the binary string that labels the path from the root down to leaf a_i

CS6351 Data Compression

Lossless Compression Part I

HUFFMAN CODING

-- ILLUSTRATION OF THE CODING ALGORITHM --

 $\textbf{Alphabet=\{A,B,C,D,E,F,G,H\}}, P_A = \frac{1}{2}, P_B = \frac{1}{4}, P_C = \frac{1}{16}, P_D = \frac{1}{16}, P_E = P_F = P_G = P_H = \frac{1}{32}$

HUFFMAN CODING

-- CODING PERFORMANCE --

- In lossless compression of memoryless sources
 - If the coder works by computing a codeword for each alphabet symbol
 - Then, we can compute a coder bitrate, independent of any actual input data
- · Notation:
 - For any binary string s, denote by |s| the number of bits in s
 - Let codeword(a_i) denote the codeword for symbol a_i
- Coder bitrate: BR = $\sum_{i=1}^{n} p_i | \text{codeword}(a_i) |$
- Source Entropy: $H = -\sum_{i=1}^{n} p_i \log p_i$

Example: the Huffman coder just presented

· The codewords and the probabilities are

Codewords	Length	Probabilities	
A: 0		1/2	
B: 10	2	1/4	
C: 1100	4	1/16	
D: 1101	4	1/16	
E: 11100	5	1/32	
F: 11101	5	1/32	
G: 11110	5	1/32	
H: 11111	5	1/32	

- BR= $1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 4 \times \frac{1}{16} + 4 \times \frac{1}{16} + 5 \times \frac{1}{32} + 5 \times \frac{1}{32} + 5 \times \frac{1}{32} + 5 \times \frac{1}{32} = \frac{69}{32} = 2.125 \ bits/symbol$
- Entropy: $H = -\left(\frac{1}{2}\log\frac{1}{2} + \frac{1}{4}\log\frac{1}{4} + \frac{1}{16}\log\frac{1}{16} + \frac{1}{16}\log\frac$

CS8351 Data Compression

Lossless Compression Part

HUFFMAN CODING

-- OBSERVATIONS (1/2) --

- Observation 1 (about the example):
 - BR=H, i.e., the coder bitrate achieved the entropy, the best possible
 - Does that mean Huffman coding always achieves the entropy?
 - · No. See the theorem next
- Theorem: If all the probabilities (in a memoryless source) are powers of ½, then Huffman achieves BR=H. The further away the probabilities are from powers of ½, the further away BR is from entropy H (i.e., BR>H).
- We will not prove that theorem, but it is important that you keep it in mind

6351 Data Compression

Lossless Compression Part

RUN-LENGTH ENCODING (RLE)

-- RUN-SPLITTING EXAMPLE --

- Intermediate code: (a,11) (b,10) (d,8) (b,6) (c,6) (a,5)
- Assume M=3 (so, max run-length representable is 7=23-1)
- (a,11) is split into (a,7) (a,4), which in binary is (a,111) (a, 100)
- (b,10) is splits into (b,7) (b,3), which in binary is (b,111) (b,011)
- (d,8) is splits into (d,7) (d,1), which in binary is (d,111) (d,001)
- (b,6) (c,6) (a,5) need not be split: in binary (b,110) (c,110) (a,101)
- · So, the next intermediate code becomes:

(a,111) (a,100) (b,111) (b,011) (d,111) (d,001) (b,110) (c,110) (a,101)

CS6351 Data Compression

and the Person I

RLE DECODING

- It is an alternating sequence of decodings:
 - Huffman decoding, bin-2-dec of next M bits, Huffman decoding, bin-2-dec of the next M bits....
- This decodes to an intermediate representation of (a,L) pairs
- Finally, replace each (a,L) by aaaa...a, where the run is of length L
- Example: Codewords: a:0, b:10, c:110, d:111 M=3

 - Alternating decoding: (a,7) (a, 4) (b,7) (b,3) (d,7) (d,1) (b,6) (c,6) (a,5)
 - · Final decoding: aaaaaaa aaaa bbbbbbb bbb ddddddd d bbbbbb cccccc aaaaa

 - · You can verify that the decoded data is identical to the original data

CS6381 Data Compression Lossless Compression

GOLOMB CODING

-- PRELIMINARIES (2/2) --

- Golomb coding has a parameter m
 - m is a positive integer set by the algorithm implementer or by the user
 - the optimal value of m = the nearest power of 2 to $p \times \frac{\ln 2}{1-p}$ (proof is later)
 - where p is the probability of the more probable bit in the input stream
 - p is easily computable: count the number of 0's (say N_0) and the number of 1's (say N_1) in the input binary stream, then $p = \max(\frac{N_0}{N_0 + N_1}, \frac{N_1}{N_0 + N_1})$
 - · let's assume that the more probable bit (MPB) is 0
 - If the MPB is 1, then each run is of the form 1ⁱ0
- Note: Ln 2 = 0.6931

52

GOLOMB CODING

-- METHOD: ASSUME 0 IS THE MPB --

- 1. Break the input into runs of the form $0^{i}1$
- 2. Code each Golomb run $0^{i}1$ as $1^{q}0y$ where
 - Divide i by m, integer division, we get quotient q and a remainder r, i.e., i = qm + r
 - y is the binary representation of r, using $\log m$ bits: $y = (r)_2$.

- 3. The final coded bitstream is: MPB code, code, ... code, tail? where
 - . MPB: the (1-bit) value of the more probable bit
 - · code; the code of the j-th Golomb run
 - tail?: a single bit that is 1 if the last run has a tail; it is 0 if the last run has no tail

CS6351 Data Compression Lossless Compression F

GOLOMB CODING

-- EXAMPLE--

- Input stream: $x = 0^9 10^{15} 11$
- · MPB=0 since 0 occurs 24 times, while 1 occurs 3 times;

•
$$p = \frac{24}{27}$$
, $p \times \frac{\ln 2}{1-n} = 8 \times 0.6931 = 5.54$, the closest 2-power to 5.54 is 4, so $m = 4$, $\log m = 2$;

• The Golomb runs of $x = 0^9 10^{15} 11$ are $0^9 1, 0^{15} 1$, and $1 = 0^0 1$

Code $0^i 1$ as $1^q 0 y$

- Code $0^91:9=2\times4+1$, so q=2 and $r=1=(01)_2$, thus code $(0^{10}1)=1^2$ 0 01
- Code $0^{15}1:15=3\times4+3$, so q=3 and $r=3=(11)_2$, thus code $(0^{15}1)=1^3$ 0 11
- Code $0^01: 0 = 0 \times 4 + 0$, so q = 0 and $r = 0 = (00)_2$, thus $code(0^01) = 1^0 \cdot 0 \cdot 00 = 000$
- · tail? = 1 because the last Golomb run has a tail
- The code of x is: 0 1²001 1³011 000 1, i.e., 0110011110110001
- $CR = \frac{27}{16} = 1.69$, $BR = \frac{16}{27} = 0.59$ bits/bit

ata Compression Lossless Compression

Input: a coded bistream (& parameter m); **Output**: the original data **Method**:

- 1. Grab first bit as the MPB, and the last bit of the coded bitstream as the tail
- 2. Set k=2 // index of the bits in the coded bitstream
- Scan the bitstream rightward from position k looking for successive 1's, keeping a count q, and incrementing k along the way
- 4. When a 0 is met, read the next $\log m$ bits as y, set $k=k+\log m$
- Set r=b2d(y) // binary to decimal conversion
- 6. Compute $i = q \times m + r$
- 7. Append $0^{i}1$ to the output (if MPB==0), else append $1^{i}0$ to the output
- 8. Repeat from 3 until the coded bitstream is exhausted
- 9. If the last bit (tail?) is 0, strip the final bit from the output

351 Data Compression Lossless Compre

GOLOMB DECODING

-- EXAMPLE --

- Example: coded bitstream 0110011110110001, and $m = 4 (\log m = 2)$
- MPB=0, tail=1;
- k=2, scan the first two 1's till 0, then read 2 bits: 0110011110110001
- So q=2, $y=(01)_0$, r=b2d(01)=1, $i=q\times m+r=2\times 4+1=9$, k=7
- Append 0⁹1 to output: output=0⁹1
- From k=7 scan for 1's till 0: three 1's, 0 and the next two bits 11: 0110011110110001
- So q=3, $y=(11)_2$, r=b2d(11)=3, $i=q\times m+r=3\times 4+3=15$, k=13
- Append 0¹⁵1 to output: output=0⁹10¹⁵1
- Look for 1's from position k=13; none found, so q=0; skip 0 and read the next 2 bits, y=00, so r=0; 0110011110110001; so i=0x4+0=0; append 0^01 : output= $0^910^{15}11$
- Now we reached the last bit, tail=1, so we keep the tail. Final output: 09101511

DIFFERENTIAL GOLOMB

-- CODING METHOD --

Input: $x = x_1 x_2 \dots x_n$ (& the parameter m)

Output: coded bitstream

Method:

	54		
ata Compression.	Losaless Compression Part I		
DIFFERENTIA DECODER 1			
Input: Coded bitstream (& the parame			
Output: Original data			
Method:			
1. Golomb-decode the coded bitstrea	$m into z' = z'_1 z'_2 \dots z'_n$		
2. Keep the first Golomb run's tail at 1			
3. Alternate the signs of the remaining	tails in z' , getting $z = z_1 z_2 \dots z_n$		
4. Set $x_1 = z_1$, and for $i = 2$ to n do: $x_i = 1$	$=x_{i-1}+z_i$		
5. Set output= $x_1x_2 \dots x_n$			
	_		
sata Compression	65 Lossless Compression Part I		