Datta_Saurav_Lab3_Draft

Saurav Datta 3/24/2018

```
#install.packages("sqldf")
# Sys.setenu(JAVA_HOME='/Library/Java/JavaVirtualMachines/jdk1.8.0_151.jdk/Contents/Home')
# install.packages("rJava")
# install.packages("RH2")
#install.packages("gridExtra")
library(sqldf)
## Loading required package: gsubfn
## Warning: package 'gsubfn' was built under R version 3.4.4
## Loading required package: proto
## Loading required package: RSQLite
# library(RH2)
library(ggplot2)
library(gridExtra)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.1. https://CRAN.R-project.org/package=stargazer
library(car)
getwd()
## [1] "/Users/sdatta/Documents/1. Personal/MIDS/W203/Course material/Lab3"
setwd("/Users/sdatta/Documents/1. Personal/MIDS/W203/Course material/Lab3")
#db = dbConnect(SQLite(), dbname="lab3.sqllite")
#sqldf("attach 'lab3.sqllite' as new")
#dbRemoveTable(db, "crime0")
crime0=read.csv("crime_v2.csv",
                   header = TRUE
crime1=crime0
sqldf("select * from crime1 limit 5")
##
                                       prbconv prbpris avgsen
     county year
                             prbarr
                                                                     polpc
                    crmrte
## 1
        1 87 0.0356036 0.298270 0.527595997 0.436170 6.71 0.00182786
         3 87 0.0152532 0.132029 1.481480002 0.450000 6.35 0.00074588
## 2
## 3
         5 87 0.0129603 0.444444 0.267856985 0.600000 6.76 0.00123431
## 4
         7 87 0.0267532 0.364760 0.525424004 0.435484 7.14 0.00152994
## 5
        9 87 0.0106232 0.518219 0.476563007 0.442623 8.22 0.00086018
```

```
taxpc west central urban pctmin80
       density
                                                        wcon
## 1 2.4226327 30.99368
                                         0 20.21870 281.4259 408.7245
                           0
                                  1
## 2 1.0463320 26.89208
                                         0 7.91632 255.1020 376.2542
## 3 0.4127659 34.81605
                                   0
                                         0 3.16053 226.9470 372.2084
                           1
## 4 0.4915572 42.94759
                           0
                                   1
                                         0 47.91610 375.2345 397.6901
## 5 0.5469484 28.05474
                                         0 1.79619 292.3077 377.3126
                                   0
                           1
         wtrd
                 wfir
                                  wmfg
                                         wfed
                                                wsta
                                                       wloc
                           wser
## 1 221.2701 453.1722 274.1775 334.54 477.58 292.09 311.91 0.08016878
## 2 196.0101 258.5650 192.3077 300.38 409.83 362.96 301.47 0.03022670
## 3 229.3209 305.9441 209.6972 237.65 358.98 331.53 281.37 0.46511629
## 4 191.1720 281.0651 256.7214 281.80 412.15 328.27 299.03 0.27362204
## 5 206.8215 289.3125 215.1933 290.89 377.35 367.23 342.82 0.06008584
       pctymle
## 1 0.07787097
## 2 0.08260694
## 3 0.07211538
## 4 0.07353726
## 5 0.07069755
```

Converting prbconv from factor to numeric

We see that column proconv is factor datatype

```
crime1$prbconv_cast=as.numeric(as.matrix(crime1$prbconv))

## Warning: NAs introduced by coercion

crime_tmp=sqldf("SELECT * FROM crime1 WHERE NOT ( prbconv_cast<0 OR  prbarr<0 or prbpris<0)")

crime1=crime_tmp
sqldf("SELECT count(*) from crime1")

## count(*)
## 1 91</pre>
```

Defining common function

```
f_check_null <- function(in_field_name ){
    sql=sprintf("SELECT COUNT(1) as COUNT_NULL_OR_NA FROM crime1 WHERE (%s IS \"NA\" or %s IS NULL)", in_sqldf(sql)
}

f_plot_one <- function(in_db_field_name,in_main_title ){
    title_log=paste("log of",in_main_title, sep = " ")

    par(mfrow=c(2,2))
    hist(in_db_field_name, main=in_main_title)
    hist(log(in_db_field_name), main=title_log)
    boxplot(in_db_field_name, main=in_main_title)
}</pre>
```

```
f_plot_two <- function(in_field_name1,in_xlabel,in_field_name2,in_y_label, in_main_title ){
    theme_update(plot.title = element_text(hjust = 0.5))</pre>
```

```
p1<-ggplot(crime1, aes_string(in_field_name1,in_field_name2)) +</pre>
         geom_point() +
         geom_smooth(na.rm = FALSE, method = loess)
 p1 + ggtitle(in_main_title) +xlab(in_xlabel) + ylab(in_y_label)
f_plot_three <- function(in_field_x,in_xlabel,in_field_y,in_y_label){</pre>
corr_val=round(cor(in_field_y, in_field_x),4)
main_title=paste(in_xlabel, 'v/s', in_y_label, sep = ' ')
plot(in_field_x, in_field_y,
     main = main title,
      sub=paste("Corr. coefficient:",corr_val),
     xlab=in xlabel,
      ylab=in_y_label)
m = lm( in_field_y ~ in_field_x)
abline(m)
}
sqldf("select count(8) from crime1 where west=1 and central=1")
     count(8)
## 1
            1
We see that the same county is marked as both west and central.
Analyzing regions
crime_tmp = sqldf("SELECT *, CASE WHEN urban=1 THEN \'URBAN\'
                                ELSE \'RURAL\'
                          END AS 'urbanorrural'
                FROM crime1"
)
##END regionofcrime
crime1=crime_tmp
sqldf("SELECT urbanorrural as urbanorrural, count(8) as countofcrimes from crime1 GROUP BY urbanorrural
     urbanorrural countofcrimes
## 1
            RURAL
                             83
## 2
            URBAN
                               8
Analyzing crmrte
f_check_null("crmrte")
    COUNT_NULL_OR_NA
##
## 1
f plot one(crime1$crmrte, "crimes committed per person")
crime1$logcrmrte=log(crime1$crmrte)
```

crimes committed per person

log of crimes committed per person

crimes committed per person

Analyzing the 6 records with missing crmrte values

```
sqldf("SELECT * FROM crime1 WHERE (crmrte IS \"NA\" or crmrte IS NULL) ")
```

```
[1] county
                                                               prbconv
##
                      year
                                   crmrte
                                                 prbarr
   [6] prbpris
                      avgsen
                                   polpc
                                                 density
                                                               taxpc
## [11] west
                      central
                                   urban
                                                 pctmin80
                                                               wcon
## [16] wtuc
                      wtrd
                                   wfir
                                                 wser
                                                               wmfg
## [21] wfed
                      wsta
                                   wloc
                                                 mix
                                                               pctymle
## [26] prbconv_cast urbanorrural logcrmrte
## <0 rows> (or 0-length row.names)
```

We see that all relevant columns of these 6 records are NA. So we can safely delete them

Warning in rsqlite_fetch(res@ptr, n = n): Don't need to call dbFetch() for ## statements, only for queries

```
crime1=crime_tmp
sqldf("SELECT count(*) FROM crime1 ")
```

count(*)
1 91

Reanalyzing regions after deleting NAs

```
sqldf("SELECT urbanorrural as urbanorrural, count(8) as countofcrimes from crime1 GROUP BY urbanorrural
)
```

```
## urbanorrural countofcrimes
## 1 RURAL 83
## 2 URBAN 8
```

Analyzing prbarr

f_check_null("prbarr")

f_plot_one(crime1\$prbarr,"probability of arrest")

probability of arrest

log of probability of arrest

probability of arrest

${\bf Analyzing\ prbconv_cast}$

f_check_null("prbconv_cast")

f_plot_one(crime1\$prbconv_cast,"probability of conviction")

probability of conviction

log of probability of conviction

probability of conviction

Analyzing avgsen

```
f_check_null("avgsen")
```

COUNT_NULL_OR_NA
1 0

f_plot_one(crime1\$avgsen,"avg. sentence, days")
crime1\$logavgsen = log(crime1\$avgsen)

avg. sentence, days

log of avg. sentence, days

avg. sentence, days

Analyzing polpc

police per capita

log of police per capita

police per capita

Analyzing density

We see that log1p of density is closer to normal distribution than either log or exp (tried it offline).

```
f_check_null("density")
```

people per sq. mile

Superior of the second of the

log of people per sq. mile

people per sq. mile

Histogram of log1p(crime1\$density)

crime1\$log1pdensity=log1p(crime1\$density)

Analyzing taxpc

tax revenue per capita

log of tax revenue per capita

tax revenue per capita

Outlier of taxpc=120

Analyzing Crimes committed per person by region

f_plot_two("urbanorrural","Urban or rural","logcrmrte","Crimes committed per person","Crimes per person

Crimes per person by Region of crime

Analyzing Crimes committed per person by region

f_plot_two("county","County identifier","logcrmrte","Log of crimes committed per person","Log of crimes

Log of crimes per person by County identifier

sqldf("SELECT county,crmrte,logcrmrte FROM crime1 WHERE logcrmrte>=-2.5 ")

```
## county crmrte logcrmrte
## 1 51 0.0883849 -2.426054
## 2 119 0.0989659 -2.312980
## 3 129 0.0834982 -2.482930
```

Analyzing percent minority

perc. minority, 1980

log of perc. minority, 1980

perc. minority, 1980

Analyzing percent minority by region

f_plot_two("urbanorrural","Region of crime","pctmin80","Percent minority","Percent minority by Region o

Percent minority by Region of crime

Analyzing pctymle

f_plot_one(crime1\$pctymle,"Percent young male")

Percent young male

log of Percent young male

Percent young male

Analyzing pctymle by region

f_plot_two("urbanorrural", "Region of crime", "pctymle", "Percent young male", "Percent young male by Region

We see that the UKNOWN region has the highest percent of young male

f_plot_two("county","County identifier","pctymle","Percent young male","Percent young male by County id

Percent young male by County identifier

sqldf("SELECT county,pctymle from crime1 WHERE pctymle>=0.20")

county pctymle
1 133 0.2487116

scatterplotMatrix(crime1[,c("logcrmrte","prbarr", "prbconv_cast", "logavgsen")], diagonal = "histogram"


```
sub=paste("Corr. coefficient:",corr_val),
         xlab=in xlabel,
#
         ylab=in_y_label)
\# m = lm(in\_field\_x \sim in\_field\_y)
# abline(m)
par(mfrow = c(4, 2))
f_plot_three(crime1$prbarr, "Probability of arrest",crime1$logcrmrte,"Crimes committed per person" )
f_plot_three(crime1$pctymle, "% of young males",crime1$logcrmrte,"Crimes committed per person" )
f plot three(crime1$prbconv cast, "Prob of conviction", crime1$logcrmrte, "Crimes committed per person")
f_plot_three(crime1$logavgsen, "Log of avg sentence",crime1$logcrmrte,"Crimes committed per person" )
bម្ហីlity of arrest v/s Crimes committed py ្គីoung males v/s Crimes committed pe
Crimes committed per
                                         Crimes committed per
                     0.6
                          8.0
                               1.0
                                                      0.10
                                                            0.15
                                                                   0.20
                                                                          0.25
              Probability of arrest
                                                        % of young males
            Corr. coefficient: -0.4714
                                                     Corr. coefficient: 0.2789
conviction v/s Crimes committed pri grug sentence v/s Crimes committed μ
Crimes committed per
                                         Crimes committed per
                    1.0
                          1.5
                                2.0
                                                                          3.0
       0.0
              0.5
                                                           2.2
                                                                  2.6
               Prob of conviction
                                                       Log of avg sentence
            Corr. coefficient: -0.4469
                                                     Corr. coefficient: 0.0299
par(mfrow = c(3, 2))
f_plot_three(crime1$prbpris, "Prob of imprisonment",crime1$logcrmrte,"Crimes committed per person" )
f_plot_three(crime1$logavgsen, "Average sentence",crime1$logcrmrte, "Crimes committed per person")
```

f_plot_three(crime1\$logpolpc, "Police per capita",crime1\$logcrmrte,"Crimes committed per person")


```
par(mfrow = c(3, 2))

f_plot_three(crime1$pctmin80, "Perc. minority",crime1$logcrmrte,"Crimes committed per person" )

f_plot_three(crime1$log1pdensity, "People per sq. mile",crime1$logcrmrte,"Crimes committed per person"

f_plot_three(crime1$wcon, "Weekly wage, construction",crime1$logcrmrte,"Crimes committed per person" )
```

c. minority v/s Crimes committed per e per sq. mile v/s Crimes committed p

age, construction v/s Crimes committe

Weekly wage, construction Corr. coefficient: 0.3934

```
par(mfrow = c(3, 2))

f_plot_three(crime1$wtuc, "Wkly wge, trns, util, commun",crime1$logcrmrte,"Crimes committed per person"

f_plot_three(crime1$wfir, "Wkly wge, fin, ins, real est",crime1$logcrmrte,"Crimes committed per person"

f_plot_three(crime1$wser, "Wkly wge, service industry",crime1$logcrmrte,"Crimes committed per person")
```

trns, util, commun v/s Crimes committ, fin, ins, real est v/s Crimes committe

Wkly wge, fin, ins, real est Corr. coefficient: 0.2886

, service industry v/s Crimes committe

Wkly wge, service industry Corr. coefficient: -0.1134

```
par(mfrow = c(3, 2))

f_plot_three(crime1$wmfg, "Wkly wge, manufacturing",crime1$logcrmrte,"Crimes committed per person" )

f_plot_three(crime1$wfed, "Wkly wge, fed employees",crime1$logcrmrte,"Crimes committed per person" )

f_plot_three(crime1$wsta, "Wkly wge, state employees",crime1$logcrmrte,"Crimes committed per person" )

f_plot_three(crime1$wloc, "Wkly wge, local gov emps",crime1$logcrmrte,"Crimes committed per person" )
```

e, manufacturing v/s Crimes committee, fed employees v/s Crimes committe

, state employees v/s Crimes committe, local gov emps v/s Crimes committe

Strong positive correlation:

crmrte v/s polpc crmrte v/s density crmrte v/s w
con crmrte v/s wser crmrte v/s wmfg crmrte v/s wfed crmrte v/s wloc

Weak positive correlation:

crmrte v/s pctymle crmrte v/s percent of minority crmrte v/s wkly wge, fin, ins, real est crmrte v/s wtuc

Strong negative correlation:

crmrte v/s prbarr

Weak negative correlation:

 ${\rm crmrte}\ {\rm v/s}\ {\rm prbconv}$

Model 1: Crime related variables

```
\label{logcrmrte} $\log(\text{crime rate}) = \log(\text{beta0} + \text{beta1}polpc + beta2\text{density})$$ $\log(\text{crime rate}) = lm(\log(\text{crime rate}) + \log(\text{crime rate})) + log(\text{crime rate}) + log(\text{
```

```
##
## Call:
## lm(formula = logcrmrte ~ logpolpc + log1pdensity + prbarr, data = crime1)
##
## Coefficients:
## (Intercept) logpolpc log1pdensity prbarr
## -1.7284 0.2938 0.6193 -1.3316
plot(logcrmrte.lm1, which =1)
```

Residuals vs Fitted

Fitted values
Im(logcrmrte ~ logpolpc + log1pdensity + prbarr)

The regression lines is close to 0 residual. This indicates there is a linear relationship among logcrmrte with logpolpc $+ \log 1$ pdensity.

plot(logcrmrte.lm1, which =2)

The Normal QQ plot is roughly on a straight line. This indicates that our data has been sourced from a normal distribution

of the points have Cook's distance greater than 1. However, Points 5, 23 and 72 have higher leverage than all other points. Let us observe the points:

```
crime1[5,]
                             prbarr
                                         prbconv prbpris avgsen
     county year
                    crmrte
             87 0.0106232 0.518219 0.476563007 0.442623 8.22 0.00086018
## 5
                  taxpc west central urban pctmin80
##
                                                          wcon
                                          0 1.79619 292.3077 377.3126
## 5 0.5469484 28.05474
                            1
                                    0
##
         wtrd
                  wfir
                            wser
                                   wmfg
                                          wfed
                                                 wsta
                                                         wloc
## 5 206.8215 289.3125 215.1933 290.89 377.35 367.23 342.82 0.06008584
        pctymle prbconv_cast urbanorrural logcrmrte logavgsen logpolpc
                    0.476563
                                     RURAL -4.544715
## 5 0.07069755
                                                       2.10657 -7.058369
    log1pdensity
## 5
        0.4362842
crime1[23,]
                                          prbconv prbpris avgsen
##
      county year
                     crmrte
                               prbarr
               87 0.0883849 0.155248 0.259833008 0.407628 11.93 0.00190802
## 23
          51
                  taxpc west central urban pctmin80
       density
                                                          wcon
                                                                  wtuc
## 23 3.934551 35.69936
                                          1 37.7792 283.6695 412.472 213.7524
                            0
                                    0
                                         wsta
                                                                  pctymle
          wfir
                   wser
                          wmfg
                                  wfed
                                                wloc
                                                            mix
## 23 324.8357 257.3344 441.72 433.94 367.34 333.71 0.1047432 0.1422378
      prbconv_cast urbanorrural logcrmrte logavgsen logpolpc log1pdensity
## 23
          0.259833
                          URBAN -2.426054 2.479056 -6.261689
                                                                    1.596262
crime1[72,]
                    crmrte prbarr
      county year
                                        prbconv prbpris avgsen
                                                                      polpc
               87 0.036233 0.24359 0.492940009 0.476563
## 72
         159
                                                            8.64 0.00158619
##
       density
                  taxpc west central urban pctmin80
                                                         wcon
                                                                   wtuc
                                          0 16.9913 334.1035 475.3228 260.271
## 72 2.019268 27.76489
                           0
                                    1
                          wmfg
                   wser
                                wfed
                                         wsta
                                                wloc
                                                                    pctymle
          wfir
                                                            \mathtt{mix}
## 72 329.5464 265.4315 374.41 491.16 346.81 351.74 0.09146758 0.07705218
      prbconv_cast urbanorrural logcrmrte logavgsen logpolpc log1pdensity
           0.49294
                          RURAL -3.317785 2.156403 -6.44642
## 72
Checking for multicollinearity
## Reference: https://www.r-bloggers.com/collinearity-and-stepwise-vif-selection/
## https://datascienceplus.com/multicollinearity-in-r/
vif(logcrmrte.lm1)
##
       logpolpc log1pdensity
                                    prbarr
##
       1.288271
                    1.409444
                                  1.333396
Since vif output for both th variable sis less than 10, there does not exist a multicollinearity between the
variables.
Model 2: Wage variable wcon
\log(\text{crime rate}) = \log(\text{beta0} + \text{beta1*wcon} + \text{error})
logcrmrte.lm2 = lm( logcrmrte ~ wcon, data=crime1)
logcrmrte.lm2
```

Call:

```
## lm(formula = logcrmrte ~ wcon, data = crime1)
##
## Coefficients:
## (Intercept) wcon
## -4.834926 0.004524

par(mfrow =c(2,2))
plot(logcrmrte.lm2,which=c(1,2,4))
par(mfrow =c(1,1))
```


Theoretical Quantiles

The regression lines is close to 0 residual. This indicates there is a linear relationship among logcrmrte with wcon. The Normal QQ plot is roughly on a straight line. This indicates that our data has been sourced from a normal distribution None of the points have Cook's distance greater than 1.

Model 2: Wage variable wmfg

```
log(crime rate) = log(beta0 + beta1*wmfg + error)
logcrmrte.lm3 = lm( logcrmrte ~ wmfg, data=crime1)
logcrmrte.lm3

##
## Call:
## lm(formula = logcrmrte ~ wmfg, data = crime1)
##
## Coefficients:
## (Intercept) wmfg
## -4.18842 0.00192
```

```
par(mfrow =c(2,2))
plot(logcrmrte.lm3,which=c(1,2,4))
par(mfrow =c(1,1))
```


Theoretical Quantiles

The regression lines is varying from residual 0. This indicates there is no linear relationship between logcrmrte and wmfg. The Normal QQ plot is roughly on a straight line. This indicates that our data has been sourced from a normal distribution None of the points have Cook's distance greater than 1.

Model 3: All variables with strong positive or negative correlation

```
logcrmrte.lm4 = lm( logcrmrte ~ logpolpc + log1pdensity +prbarr + wcon + wser + wfed + wloc, data=crim
logcrmrte.lm4
##
## lm(formula = logcrmrte ~ logpolpc + log1pdensity + prbarr + wcon +
##
       wser + wfed + wloc, data = crime1)
##
##
  Coefficients:
##
    (Intercept)
                     logpolpc
                                log1pdensity
                                                    prbarr
                                                                     wcon
                                   0.5438489
##
     -1.4051226
                    0.3205103
                                                -1.3763408
                                                                0.0006770
##
           wser
                          wfed
                                        wloc
     -0.0004309
                    0.0010619
                                  -0.0019969
plot(logcrmrte.lm4, which =1)
```


Fitted values
Im(logcrmrte ~ logpolpc + log1pdensity + prbarr + wcon + wser + wfed + wloc ...

The regression lines is close to 0 residual. This indicates there is a linear relationship between logcrmrte and (logpolpc + log1pdensity + prbarr + wcon + wser + wfed + wloc)

plot(logcrmrte.lm4, which =2)

The Normal QQ plot is roughly on a straight line. This indicates that our data has been sourced from a

Im(logcrmrte ~ logpolpc + log1pdensity + prbarr + wcon + wser + wfed + wloc ...

normal distribution

plot(logcrmrte.lm4, which =4)

Im(logcrmrte ~ logpolpc + log1pdensity + prbarr + wcon + wser + wfed + wloc ...

None of the points have Cook's distance greater than 1. However, Points 5, 23 and 72 have higher leverage than all other points.

vif(logcrmrte.lm4)

##	logpolpc 1	Log1pdensity	prbarr	wcon	wser
##	1.393731	2.250659	1.396847	1.665406	1.036813
##	wfed	wloc			
##	2.050598	1.781272			

There is no multicollinearity since none of the vif values are more than 10.

Comparing the models

```
summary(logcrmrte.lm1)$r.squared

## [1] 0.5612806

summary(logcrmrte.lm2)$r.squared

## [1] 0.1547315

summary(logcrmrte.lm3)$r.squared

## [1] 0.0953937

summary(logcrmrte.lm4)$r.squared
```

[1] 0.6027055

Based on the r-squared output logcrmrte.lm1 or logcrmrte.lm3 is preferred.

The Akaike information criterion (AIC) is an estimator of the relative quality of statistical models AIC(logcrmrte.lm1, logcrmrte.lm2, logcrmrte.lm3, logcrmrte.lm4)

```
## df AIC
## logcrmrte.lm1 5 82.17264
## logcrmrte.lm2 3 137.84992
## logcrmrte.lm3 3 144.02387
## logcrmrte.lm4 9 81.14706
```

Based on the AIC output logcrmrte.lm1 or logcrmrte.lm3 is preferred.

```
stargazer(logcrmrte.lm1, logcrmrte.lm2,logcrmrte.lm3, type = "latex",
    report = "vc", # Don't report errors, since we haven't covered them
    title = "Linear Models Predicting Crime rate per persone",
    keep.stat = c("rsq", "n"),
    omit.table.layout = "n") # Omit more output related to errors
```

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Mar 30, 2018 - 20:15:39

Table 1: Linear Models Predicting Crime rate per persone

	Depe	endent vari	able:
		logcrmrte	
	(1)	(2)	(3)
logpolpc	0.294		
log1pdensity	0.619		
prbarr	-1.332		
wcon		0.005	
wmfg			0.002
Constant	-1.728	-4.835	-4.188
Observations	91	91	91
\mathbb{R}^2	0.561	0.155	0.095

```
library(corrplot)
## corrplot 0.84 loaded
corrplot(cor(crime_west[,
                         c("logcrmrte","crmrte", "prbarr", "prbconv_cast", "prbpris", "logavgsen",
                           "logpolpc", "log1pdensity", "taxpc", "pctmin80", "wcon",
                           "mix", "pctymle")]), type = "upper")
                               ogavgsen
            ogcrmrte
                       orbconv
                    prbarr
                                                                 1
logcrmrte
                                                                0.8
       crmrte
                                              prbarr
                                                                0.6
       prbconv_cast
                                                                0.4
                  prbpris
                                                                0.2
                  logavgsen
                                                  logpolpc
                                                                 0
                                                      log1pdensity
                                                                -0.2
                                  taxpc
                                                                -0.4
                                  pctmin80
                                                                -0.6
                                          wcon
                                                                -0.8
                                               pctymle
\label{logcrmrte} {\tt logcrmrte.west.lm5 = lm( logcrmrte - logpolpc + log1pdensity , data=crime\_west)}
logcrmrte.west.lm5
##
## Call:
## lm(formula = logcrmrte ~ logpolpc + log1pdensity, data = crime_west)
##
## Coefficients:
##
    (Intercept)
                      logpolpc log1pdensity
        -5.9189
                       -0.1974
                                       1.1140
##
corrplot(cor(crime_central[,
                         c("logcrmrte", "crmrte", "prbarr", "prbconv_cast", "prbpris", "logavgsen",
                           "logpolpc", "log1pdensity", "taxpc", "pctmin80", "wcon",
```

"mix", "pctymle")]), type = "upper")


```
logcrmrte.central.lm6 = lm( logcrmrte ~ logpolpc + log1pdensity + prbconv_cast , data=crime_central)
logcrmrte.central.lm6
##
## Call:
## lm(formula = logcrmrte ~ logpolpc + log1pdensity + prbconv_cast,
       data = crime_central)
##
##
## Coefficients:
##
    (Intercept)
                     logpolpc log1pdensity prbconv_cast
         0.8912
                       0.7057
                                     0.4325
                                                  -0.3425
##
summary(logcrmrte.lm1)$r.squared
## [1] 0.5612806
summary(logcrmrte.lm2)$r.squared
## [1] 0.1547315
summary(logcrmrte.lm3)$r.squared
## [1] 0.0953937
summary(logcrmrte.lm4)$r.squared
## [1] 0.6027055
```

summary(logcrmrte.west.lm5)\$r.squared

```
## [1] 0.703168
```

summary(logcrmrte.central.lm6)\$r.squared

[1] 0.8194858