Aufgabe 1

(a) Geben Sie einen deterministischen endlichen Automaten (DEA) mit minimaler Anzahl an Zuständen an, der dieselbe Sprache akzeptiert wie folgender deterministischer endlicher Automat. Dokumentieren Sie Ihr Vorgehen geeignet.

flaci.com/Aj5aei652

Minimierungstabelle (Table filling)

— Der Minimierungs-Algorithmus (auch Table-Filling-Algorithmus genannt) trägt in seinem Verlauf eine Markierung in alle diejenigen Zellen der Tabelle ein, die zueinander nicht äquivalente Zustände bezeichnen. Die Markierung " x_n " in einer Tabellenzelle (i,j) bedeutet dabei, dass das Zustandspaar (i,j) in der k-ten Iteration des Algorithmus markiert wurde und die Zustände i und j somit zueinander (k-1)-äquivalent, aber nicht k-äquivalent und somit insbesondere nicht äquivalent sind. Bleibt eine Zelle bis zum Ende unmarkiert, sind die entsprechenden Zustände zueinander äquivalent. —

z_0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
z_1	x_3	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
z_2	x_3	x_4	Ø	Ø	Ø	Ø	Ø	Ø	Ø
<i>z</i> ₃		<i>x</i> ₃	<i>x</i> ₃	Ø	Ø	Ø	Ø	Ø	Ø
z_4	x_3	x_4		x_3	Ø	Ø	Ø	Ø	Ø
z_5	x_3	x_4		x_3		Ø	Ø	Ø	Ø
<i>z</i> ₆	x_2	x_2	x_2	x_2	x_2	x_2	Ø	Ø	Ø
z ₇	x_2	x_2	x_2	x_2	x_2	x_2	x_2	Ø	Ø
z_8	x_1	x_1	x_1	x_1	x_1	x_1	x_1	x_1	Ø
	z_0	z_1	z_2	z_3	z_4	z_5	z ₆	z ₇	z_8

- x_1 Paar aus End-/ Nicht-Endzustand kann nicht äquivalent sein.
- x_2 Test, ob man mit der Eingabe zu einem bereits markiertem Paar kommt.
- x_3 In weiteren Iterationen markierte Zustände.
- *x*₄ ...

Übergangstabelle

Zustandspaar	0	1
(z_0, z_1)	(z_2, z_5)	$(z_1, z_7)^{-x_3} x_3$
(z_0,z_2)	(z_2, z_3)	$(z_1, z_7) x_3$
(z_0, z_3)	(z_2, z_5)	(z_1, z_1)
(z_0, z_4)	(z_2, z_3)	$(z_1, z_7) x_3$
(z_0, z_5)	(z_2, z_0)	$(z_1, z_7) x_3$
(z_0, z_6)	(z_2, z_8)	$(z_1, z_4) x_2$
(z_0, z_7)	(z_2, z_6)	$(z_1, z_8) x_2$
(z_1, z_2)	(z_5, z_3)	$(z_7, z_7) x_4$
(z_1, z_3)	(z_5,z_5)	$(z_7, z_1) x_3$
(z_1, z_4)	(z_5, z_3)	$(z_7, z_7) x_4$
(z_1, z_5)	(z_5, z_0)	$(z_7, z_7) x_4$
(z_1, z_6)	(z_5, z_8)	$(z_7, z_4) x_2$
(z_1, z_7)	(z_5, z_6)	$(z_7, z_8) x_2$
(z_2,z_3)	(z_3,z_5)	$(z_7, z_1) x_3$
(z_2, z_4)	(z_3,z_3)	(z_7,z_7)
(z_2, z_5)	(z_3, z_0)	(z_7,z_7)
(z_2, z_6)	(z_3, z_8)	$(z_7, z_4) x_2$
(z_2, z_7)	(z_3, z_6)	$(z_7, z_8) x_2$
(z_3, z_4)	(z_5, z_3)	$(z_1, z_7) x_3$
(z_3,z_5)	(z_5, z_0)	$(z_1, z_7) x_3$
(z_3, z_6)	(z_5, z_8)	$(z_1, z_4) x_2$
(z_3,z_7)	(z_5, z_6)	$(z_1, z_8) x_2$
(z_4, z_5)	(z_3, z_0)	(z_7,z_7)
(z_4, z_6)	(z_3, z_8)	$(z_7, z_4) x_2$
(z_4, z_7)	(z_3, z_6)	$(z_7, z_8) x_2$
(z_5, z_6)	(z_0, z_8)	$(z_7, z_4) x_2$
(z_5, z_7)	(z_0, z_6)	$(z_7, z_8) \ x_2$ $(z_4, z_8) \ x_2$
(z_6, z_7)	(z_8, z_6)	$(z_4, z_8) x_2$

- (b) Beweisen oder widerlegen Sie für folgende Sprachen über dem Alphabet $\Sigma = \{a, b, c\}$, dass sie regulär sind.
 - (i) $L_1 = \{ a^i c u b^j v a c^k \mid u, v \in \{a, b\}^* \text{ und } i, j, k \in \mathbb{N}_0 \}$

Die Sprache L_1 ist regulär. Nachweis durch regulären Ausdruck:

$$a^*c(a|b)^*b^*(a|b)^*ac^*$$

(ii) $L_2 = \{ a^i c u b^j v a c^k \mid u, v \in \{a, b\}^* \text{ und } i, j, k \in \mathbb{N}_0 \text{ mit } k = i + j \}$

Die Sprache L_2 ist nicht regulär. Widerlegung durch das Pumping-Lemma.

TODO

(c) Sei L eine reguläre Sprache über dem Alphabet Σ . Für ein festes Element $a \in \Sigma$ betrachten wir die Sprache $L_a = \{aw \mid w \in \Sigma^*, wa \in L\}$. Zeigen Sie, dass L_a regulär ist.