คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานชีวมวลผลิตไฟฟ้า

รายการอุปกรณ์ชุดทดลอง

- 1. เตาเผาเชื้อเพลิงชีวมวล
- 2. หม้อต้มแรงดัน
- 3. ชุดกังหันไอน้ำซึ่งต่ออยู่กับเครื่องกำเนิดไฟฟ้า
- 4. ตู้ควบคุม
- 5. หน้าจอแสดงผล
- 6. Emergency Switch
- 7. สวิตช์เปิด-ปิด เครื่อง

หน้าจอแสดงผลและควบคุม

- 1. ปรับระดับความร้อน
- 2. แสดงอัตราการใช้ชีวมวล (กิโลกรัม/วินาที)
- 3. ส่วนควบคุมการ เริ่ม หยุด และรีเซต
- 4. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 5. แสดงการจับเวลา
- 6. แสดงผลอุณหภูมิและความชื้น

Web application

- 1. ปุ่มปรับระดับความร้อน
- 2. ปุ่มกดเชื่อมต่อกับชุดแลปสาธิต เริ่ม หยุด และแสดงผลเวลา
- 3. แสดงผลอัตราการใช้ชีวมวล (กิโลกรัม/วินาที) และความร้อน (จูล)
- 4. แบบทดสอบ
- 5. แสดงผลอุณหภูมิและความชื้น
- 6. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 7. คู่มือปฏิบัติการ
- 8. คีย์แสดงผลการจับคู่
- 9. ข้อมูลโรงไฟฟ้าชีวมวล

หลักการและทฤษฎี

ชีวมวล (Biomass) เป็นแหล่งกักเก็บพลังงานจากธรรมชาติที่อยู่ในรูปของสารอินทรีย์และสามารถนำ พลังงานที่กักเก็บไว้เหล่านั้นมาใช้ผลิตพลังงานได้ สารอินทรีย์ที่เป็นแหล่งกักเก็บพลังงาน ได้แก่ เศษไม้ ขยะ วัสดุเหลือใช้ทางการเกษตร เป็นต้น การผลิตพลังงานจากชีวมวลอาจทำได้โดยการนำมาเผาเพื่อนำความร้อน ไปผลิตกระแสไฟฟ้าแทนการใช้พลังงานจากฟอสซิลซึ่งเป็นพลังงานที่มีอยู่อย่างจำกัด ตัวอย่างชีวมวลใน ประเทศไทย เช่น แกลบ ชานอ้อย เศษไม้ กากปาล์ม กากมัน ซังข้าวโพด เป็นต้น การผลิตไฟฟ้าจากเชื้อเพลิง ชีวมวลสามารถทำได้โดยการเผาไหม้ชีวมวลโดยตรง (Direct Combustion) และกระบวนการเคมีความร้อน (Thermochemical Conversion)

ชีวมวลที่ใช้กันอยู่ทั่วไปในปัจจุบัน ได้แก่ แกลบ ชานอ้อย เศษไม้ยางพารา กะลาปาล์มและเส้นใย ปาล์มนั้น ส่วนหนึ่งถูกนำไปใช้เกือบหมดแล้ว เช่น ใช้เป็นเชื้อเพลิงสำหรับการผลิตในโรงงานอุตสาหกรรม การเกษตรและถูกนำไปจำหน่ายเป็นเชื้อเพลิงสำหรับโรงงานอื่น ๆ ในบริเวณใกล้เคียง ในส่วนของชีวมวลที่มี ศักยภาพเป็นปริมาณมากนั้นเป็นชีวมวลประเภทที่ยังไม่ได้มีการนำมาใช้อย่างแพร่หลาย เช่น ฟางข้าว ใบอ้อย และยอดอ้อย เหง้ามันสำปะหลัง ทะลายปาล์มเปล่าและซังข้าวโพด ซึ่งมีศักยภาพมากสำหรับการนำมาใช้ ประโยชน์ ทั้งนี้ปัจจัยที่จะสร้างความเป็นไปได้ในการนำชีวมวลกลุ่มนี้มาใช้ประโยชน์

ชีวมวลบางส่วนได้ถูกนำไปใช้เพื่อการผลิตอยู่แล้ว เช่น แกลบจะถูกนำมาผลิตไอน้ำแล้วนำไปขับกังหัน ใช้งานในโรงสีข้าว กากอ้อยและกากปาล์มจะถูกนำมาเผาเพื่อผลิตไอน้ำไฟฟ้าและใช้ขับเครื่องจักรไอน้ำใน กระบวนการผลิต เศษไม้ยางพาราจะถูกนำมาเผาเพื่อผลิตลมร้อนสำหรับใช้อบไม้ยางพารา เป็นต้น และข้อมูล ทางเทคนิคของเชื้อเพลิงชีวมวลที่นำมาผลิตไฟฟ้าเป็นดังนี้

- แกลบ เป็นชีวมวลที่ได้จากโรงสีข้าว เมื่อนำข้าวเปลือก 1 ตัน ผ่านกระบวนการแปรรูปต่าง ๆ แล้ว จะใช้พลังงานทั้งสิ้น 30-60 kWh เพื่อให้ได้ข้าวประมาณ 650-700 กิโลกรัมและมีวัสดุที่เหลือจากกระบวนการ ผลิตหรือแกลบประมาณ 220 กิโลกรัมหรือเทียบเท่าพลังงานไฟฟ้าได้ 90-125 kWh
- กากอ้อย เป็นชีวมวลที่ได้จากโรงงานน้ำตาล เมื่อนำอ้อย 1 ตันผ่านกระบวนการแปรรูปต่าง ๆ แล้ว จะใช้พลังงานทั้งสิ้น 25-30 kWh และใช้ไอน้ำอีก 0.4 ตัน เพื่อให้ได้น้ำตาลทรายประมาณ 100-121 กิโลกรัม และมีวัสดุที่เหลือจากกระบวนการผลิตหรือกากอ้อยประมาณ 290 กิโลกรัมหรือเทียบเท่าพลังงานไฟฟ้าได้ 100 kWh
- เปลือกปาล์ม ทะลายปาล์ม กะลาปาล์มและเส้นใย เป็นชีวมวลที่ได้จากโรงงานหีบน้ำมันปาล์ม เมื่อ นำปาล์ม 1 ตัน ผ่านกระบวนการแปรรูปต่าง ๆ แล้วจะใช้พลังงานทั้งสิ้น 20-25 kWh และใช้ไอน้ำอีก 0.73 ตัน เพื่อให้ได้น้ำมันปาล์มประมาณ 140-200 กิโลกรัมและมีวัสดุที่เหลือจากกระบวนการผลิตหรือเปลือกปาล์ม ประมาณ 190 กิโลกรัม และได้ทะลายปาล์ม 230 กิโลกรัมหรือเทียบเท่าพลังงานไฟฟ้าได้ 120 kWh และมี ของเสียจากโรงงานเทียบเท่าก๊าซชีวภาพได้ 20 ลูกบาศก์เมตร

• เศษไม้ เป็นชีวมวลที่ได้จากโรงเลื่อยไม้ เมื่อนำไม้ 1 ลูกบาศก์เมตรผ่านกระบวนการแปรรูปต่าง ๆ แล้วใช้พลังงานทั้งสิ้น 35-45 kWh เพื่อให้ได้ไม้แปรรูปประมาณ 0.5 ลูกบาศก์เมตรและมีวัสดุที่เหลือจาก กระบวนการผลิตหรือเศษไม้ประมาณ 0.5 ลูกบาศก์เมตรหรือเทียบเท่าพลังงานไฟฟ้าได้ 80 kWh

รูปที่ 2 ตัวอย่างการใช้ประโยชน์จากเชื้อเพลิงชีวมวลเพื่อผลิตไฟฟ้า

ในการประเมินประสิทธิภาพของการผลิตไฟฟ้าจากพลังงานชีวมวลจะประเมินจากสัดส่วนระหว่าง พลังงานที่ได้จากชีวมวล กับ พลังงานไฟฟ้าที่ผลิตได้

ประสิทธิภาพของการผลิตไฟฟ้า = พลังงานที่ได้จากชีวมวล/พลังงานไฟฟ้าที่ผลิตได้ โดยที่

พลังงานที่ได้จากชีวมวล = (ปริมาณชีวมวล×ค่าความร้อนของชีวมวล)/1000

- พลังงานที่ได้จากชีวมวล คือ พลังงานที่ได้จากการเผาชีวมวล ในหน่วย เมกะจูล (MJ)
- ปริมาณชีวมวล คือ ปริมาณชีวมวล ในหน่วย kg
- ค่าความร้อนของชีวมวล คือ ค่าพลังงานความร้อนที่ได้จากชีวมวล ดังแสดงในตาราง
 ที่ 1

และ

พลังงานไฟฟ้าที่ผลิตได้ = กำลังไฟฟ้า (กิโลวัตต์) x เวลา (ชั่วโมง)

- พลังงานไฟฟ้าที่ผลิตได้ คือ พลังงานไฟฟ้าที่ผลิตได้จากเครื่องยนต์ ในหน่วย
 กิโลวัตต์-ชั่วโมง
- กำลังไฟฟ้า คือ กำลังไฟฟ้าที่ได้จากเครื่องยนต์ ในหน่วย กิโลวัตต์
- เวลา คือ จำนวนชั่วโมงที่ใช้ในการทดลอง (ชั่วโมง)

ตารางที่ 1 ค่าความร้อนของชีวมวลที่ใช้ในการประเมินพลังงานจากชีวมวล

ผลผลิตการเกษตร	วัสดุเหลือใช้	ค่าความร้อน (เมกะจูล/กก.)
ข้าว	ฟางข้าว	13.80
	แกลบ	14.54
อ้อย	ใบและยอดอ้อย	16.15
	กากอ้อย	16.21
ข้าวโพดเลี้ยงสัตว์	ลำต้นข้าวโพด	16.01
	ซังข้าวโพด	18.04
มันสำปะหลัง	เหง้ามันสำปะหลัง	16.11
	กากมันสำปะหลัง	16.11
	เปลือกมันสำปะหลัง	16.11
ปาล์มน้ำมัน	ลำต้นปาล์ม	16.32
	ใบและทางปาล์ม	16.32
	ทะลายปาล์มเปล่า	17.25
	กะลาปาล์ม	18.53
	ใยปาล์ม	16.32
ยางพารา	รากไม้	16.65
	ขึ้เลื่อย	16.65
	ปีกไม้	17.30
	ปลายไม้	16.65
ถั่วเหลือง	ลำต้น เปลือก และใบ	19.44
ถั่วเขียว	ลำต้น เปลือก และใบ	12.66
ถั่วลิสง	ลำต้น เปลือก และใบ	12.66

ที่มา : กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงานผลการศึกษาและประเมินศักยภาพแหล่งชีวมวล ในปี พ.ศ. 2548 โดย บริษัท เอทีที คอนซัลแตนท์ จำกัด บริษัท ที ไอ เอส คอนซัลแตนท์ จำกัด และบริษัท เอเบิล คอนซัลแตนท์ จำกั

ข้อดี-ข้อจำกัดของการผลิตไฟฟ้าจากพลังงานชีวมวล

ข้อดีและข้อจำกัดของการผลิตไฟฟ้าจากพลังงานชีวมวล สามารถสรุปได้ดังตารางดังนี้

	ข้อดี		ข้อจำกัด
1.	ใช้ประโยชน์จากเศษวัสดุเหลือใช้ทางการเกษตร	1.	ชีวมวลเป็นวัสดุที่เหลือใช้จากการแปรรูป
	จึงเป็นแหล่งพลังงานหมุนเวียน		ทางการเกษตรมีปริมาณสำรองที่ไม่แน่นอน
2.	เป็นการผลิตกระแสไฟฟ้าที่เป็นมิตรกับ	2.	การบริหารจัดการเชื้อเพลิงทำได้ยาก
	สิ่งแวดล้อมไม่ก่อให้เกิดสภาวะเรือนกระจก	3.	ราคาชีวมวลแนวโน้มสูงขึ้น เนื่องจากมีความ
3.	เสริมความมั่นคงต่อระบบผลิตไฟฟ้าเพิ่มขึ้น		ต้องการใช้เพิ่มขึ้นเรื่อยๆ
		4.	ชีวมวลที่มีศักยภาพเหลืออยู่ มักอยู่กระจัด
			กระจายมีความชื้นสูงจึงทำให้ต้นทุนการผลิต
			ไฟฟ้าสูงขึ้น เช่นใบอ้อยและยอดอ้อย ทะลาย
			ปาล์ม เป็นต้น

ขั้นตอนการใช้งาน

- 1. เสียบปลั๊กแหล่งจ่ายไฟฟ้ากระแสสลับ 220 โวลต์ให้กับชุดแลปสาธิต
- 2. ดำเนินการเปิดเบรกเกอร์ตัดต่อไฟฟ้าไปอยู่ตำแหน่ง ON

- 3. บิดสวิชท์ไปยังตำแหน่ง ON ด้านขวา
- 4. เข้า Web application URL : https://encamppowerplant.com/lablite/biomass/

และกดปุ่มเชื่อมต่อ กรณีมีการเชื่อมต่ออยู่จะมีหน้าต่างแจ้งเตือน

เมื่อเชื่อมต่อได้แล้วจะแสดงผลค่าต่าง ๆ และคีย์การเชื่อมต่อ

และสถานะการเชื่อมต่อที่หน้าจอแสดงผลที่ชุดแลปสาธิตขึ้นสถานะ connect

5. กดปุ่มควบคุม On line เพื่อให้ควบคุมการทำงานผ่าน web application

6. เริ่มการทดลองโดยกดปุ่มเริ่มการทำงาน เวลาการทำการทดลองจะเริ่มจับเวลา

7. เมื่อทำการทดลองเสร็จให้กดหยุด และกดยกเลิกการเชื่อมต่อ

วัตถุประสงค์

- 1. เพื่อศึกษาหลักการทำงานของระบบผลิตไฟฟ้าจากเตาผลิตก๊าซชีวมวล
- 2. เพื่อศึกษาความสัมพันธ์ระหว่างพลังงานที่ได้จากชีวมวล กับพลังงานไฟฟ้าที่สามารถผลิตได้

วิธีการทดลอง

- 1. เริ่มจากเติมน้ำสะอาดในหม้อต้มแรงดัน (Boiler) โดยเติมน้ำประมาณ 3 ลิตร ปิดฝาให้แน่น
- 2. เตรียมเชื้อเพลิงชีวมวลให้มีขนาดที่เหมาะสม ขนาดความยาวประมาณ 1.5 ซม. และมีปริมาณ ความชื้นไม่เกินร้อยละ 20 ไมควรมีสิ่งเจือปนในเชื้อเพลิง เช่น เศษหิน ดิน ทราย และวัสดุอื่น ๆ
- 3. นำเชื้อเพลิงใส่เตาและจุดเตาเผาเพื่อผลิตความร้อนจากชีวมวล โดยความร้อนที่ได้จะนำไปต้มน้ำใน หม้อแรงดัน ทำการปรับระดับความแรงของพัดลมเติมอากาศที่จ่ายให้กับเตาเผา ทำให้ได้ความร้อน ในปริมาณที่แตกต่างกัน
- 4. ไอน้ำที่ได้จากหม้อแรงดันจะนำไปขับชุดกังหันไอน้ำซึ่งต่ออยู่กับเครื่องกำเนิดไฟฟ้า ได้เป็น กระแสไฟฟ้าจ่ายให้กับโหลด รอให้ค่าต่างๆ คงที่ แล้วจึงเริ่มจับเวลาและบันทึกผลการทดลอง จับ เวลา 5 นาทีแล้วจึงบันทึกผลอีกครั้ง
- 5. บันทึกผลค่าน้ำหนักเชื้อเพลิงเริ่มต้นและน้ำหนักเชื้อเพลิงเมื่อผ่านไป 5 นาที ความดันไอน้ำ ค่า แรงดันไฟฟ้า ค่ากระแสไฟฟ้า และค่ากำลังไฟฟ้า
- 6. ปรับระดับความแรงของพัดลมเติมอากาศที่จ่ายให้กับเตาเผา เพื่อให้ได้ค่าความร้อนที่แตกต่างกัน 3 ค่าและบันทึกผลการทดลอง

ตารางบันทึกผลการทดลอง

ครั้งที่	น้ำหนักเชื้อเพ	เลิง (กิโลกรัม)	แรงดันไฟฟ้า (V)	กระแสไฟฟ้า (A)	กำลังไฟฟ้า ที่อ่านค่าได้ (W)	ผลต่าง น้ำหนัก เชื้อเพลิง	จับ เวลา (Sec.)	อัตราการ สิ้นเปลือง เชื้อเพลิง	ค่าความร้อน เชื้อเพลิง (MJ/kg)	กำลังของ เชื้อเพลิง (W)	ประสิทธิภาพ ระบบผลิต ไฟฟ้า
	เริ่มจับเวลา	ผ่านไป 5 นาที				(kg)	(3 2 3 3)	(kg/s)	, .	, ,	(%)

หมายเหตุ : อัตราการสิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที) = ผลต่างน้ำหนักเชื้อเพลิง (กิโลกรัม) / ผลต่างเวลา (วินาที) กำลังของเชื้อเพลิง (วัตต์) = อัตราการสิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที) x ค่าความร้อนเชื้อเพลิง (เมกะจูล/กิโลกรัม) ประสิทธิภาพระบบผลิตไฟฟ้า (%) = [กำลังไฟฟ้าที่จ่ายโหลด (วัตต์) / กำลังของเชื้อเพลิง (วัตต์)] x 100

สรุปผลการทดลอง
สรุปผลการทดลอง