

Universidade Federal de Santa Catarina Campus Araranguá Engenharia de Computação ARA7502 — Lógica Aplicada a Computação Prof. Gustavo Mello Machado

Trabalho Prolog 02 - Aula 01/11/2016

Orientações preliminares.

- É permitida a realização deste trabalho individualmente ou em duplas.
- > As entregas serão aceitas exclusivamente via Moodle
- Este trabalho comporá a nota da avaliação E1 como previsto no plano de ensino.

OPERADORES EM PROLOG

Operadores Aritméticos

Prolog oferece um conjunto de operadores aritméticos como representado na tabela abaixo

OPERADOR	FUNCIONALIDADE
+	Soma
-	Subtração
*	Multiplicação
mod	Resto da divisão
/	Divisão de números reais
//	Divisão de números inteiros
^	Potência
is	Usado para se obter o resultado de uma expressão

O operador is funciona como um predicado especial, que tem o propósito de se obter o resultado de uma determinada expressão. Por exemplo, o comando abaixo

?- X is 2+3.

Terá como resultado

X = 5

Exemplo 3.1. Países

```
% país, área, população
país(brasil, 9, 130).
país(china, 12, 1800).
país(eua, 9, 230).
país(índia, 3, 450).
```

Observe que, linhas iniciando como % ou trechos entre /* e */ são tidos como comentários pelo interpretador Prolog. No exemplo 3.1, construímos uma tabela relacionando cada país a sua respectiva área e população. Tendo em vista este exemplo podemos determinar a densidade demográfica do Brasil por meio da seguinte consulta.

```
?- país(brasil,A,P), D is P/A.
A = 9
P = 130
D = 14.4444
```

Ou podemos determinar a diferença entre a população da China e da Índia da seguinte maneira.

```
?- país(china,_,X), país(índia,_,Y), Z is X-Y. X = 1800 Y = 450 Z = 1350
```

Operadores Relacionais

Os operadores relacionais permitem realizar comparações numéricas. Em Prolog temos os seguintes operadores

OPERADORES FUNCIONALIDADE (TESTA)

O	
=:=	Igualdade
=\=	Diferença
>	Maior que
>=	Maior ou igual
<	Menor que
=<	Menor ou igual

Tendo estes operadores em mãos podemos realizar consultas, por exemplo, como "A área do Brasil é igual à área dos Estados Unidos?" da seguinte maneira.

```
?- país(brasil, X,_), país(eua, Y,_), X =:= Y.
X = 9
Y = 9
Yes
```

Ou a consulta "A população dos Estados Unidos é maior do que a população da Índia?" assim.

```
?- país(eua,_,X), país(índia,_,Y), X > Y. No
```

MODELO RELACIONAL

A tabela abaixo relaciona funcionários por seu código, nome, salário e dependentes.

CÓDIGO	NOME	SALÁRIO	DEPENDENTES
1	Ana	R\$ 1000.90	Ary
2	Bia	R\$ 1200.00	-
3	Ivo	R\$ 903.50	Raí, Eva

Uma representação em banco de dados para esta tabela, tendo em vista a primeira forma normal (1FN) onde todos os dados em colunas estão representados de forma atômica, seria possível por meio de duas tabelas: a primeira relacionando código, nome e salário de funcionários e a segunda relacionando código a dependentes individualmente. Em Prolog podemos representar esta mesma tabela por meio de dois predicados: func e dep.

Exemplo 4.1. Funcionários

```
% código, nome, salário
func(1, ana, 1000.90).
func(1, bia, 1200.00).
func(2, ivo, 903.50).

% código, nome do dependente
dep(1, ary).
dep(3, raí).
dep(3, eva).
```

Com base no exemplo 4.1 podemos realizar consultas para, por exemplo, obter os dependentes do Ivo.

```
?- func(C,ivo,_), dep(C,N).
C = 3
N = rai;
C = 3
N = eva
```

Também podemos descobrir de quem Ary é dependente.

```
?- dep(C, ary), fun(C, N, _).
C = 1
N = ana
```

Ou mesmo, recuperar a informação sobre quais são os dependentes de funcionários que recebem salário inferior a R\$ 950,00.

```
?- func(C,_,S), dep(C,N), S<950.
C = 3
S = 903.5
N = raí;
C = 3</pre>
```

```
S = 903.5
N = eva
```

Finalmente, poderíamos consultar a base por funcionários sem dependentes.

```
?- func(C,N,_), not dep(C,_)
C = 2
N = bia
```

O operador Prolog not neste caso é chamado de negação por falha. Ele não tem um comportamento semelhante à negação da lógica proposicional. Neste caso, ela está relacionada à suposição de que o que não é reconhecido como verdadeiro, falso o é. Ou mesmo, se uma fórmula não é considerada nem verdadeira nem falsa, ou seja, desconhecida, a sua negação é, portanto, verdadeira. Observe que, no nosso exemplo, dentre as chaves C encontradas, foram relacionadas aquelas em que não foram encontradas entradas para o predicado dep.

Modelo de Dados Relacional

A programação em lógica fornece uma poderosa extensão do modelo de dados relacional. Conjuntos de fatos correspondem às tabelas e as operações básicas da álgebra relacional (e.g., seleção, projeção, união, diferença simétrica e produto cartesiano) podem ser facilmente implementadas através de regras.

Exemplo 4.2. Filmes

```
% título, gênero, ano, duração
filme('Uma linda mulher', romance, 1990, 119).
filme('Sexto sentido', suspense, 2001, 108).
filme('A cor púrpura', drama, 1985, 152).
filme('Copcabana', comédia, 2001, 92).
filme('E o vento levou', drama, 1939, 233).
filme('Carrington', romance, 1995, 130).
```

Suponha que queremos uma tabela com filmes clássicos apenas, considerando clássico todo e qualquer filme lançado anteriormente ao ano de 1985. Neste caso poderíamos construir uma regra para realizar uma seleção da seguinte maneira:

```
clássico(T,G,A,D) :- filme(T,G,A,D), A =< 1985
```

Suponha ainda que gostaríamos de obter uma tabela de clássicos que relacionasse apenas nomes e genêros. Neste caso teríamos que realizar uma *projeção*:

```
clássico(T,G) :- filme(T,G,A, ), A =< 1985
```

Agora podemos realizar a seguinte consulta pelos filmes clássicos:

```
?- clássico(T,G).
T = 'A cor púrpura'
G = drama;
T = 'E o vento levou'
G = drama
```

EXERCÍCIOS

- 1) Inclua ao exemplo 3.1 uma regra dens(P,D) que relacione cada país P a sua respectiva densidade demográfica D. Realize as seguintes consultas:
 - a) Qual a densidade demográfica de cada um dos países?
 - b) A Índia é mais populosa do que a China?
- 2) Inclua no exemplo 4.1 as informações da tabela abaixo e faça as seguintes consultas

CÓDIGO	NOME	SALÁRIO	DEPENDENTES
4	Leo	R\$ 2.500,35	Lia, Noé
5	Clô	R\$ 1.800,00	Eli
6	Gil	R\$ 1.100,00	-

- a) Quem tem salário entre R\$ 1.500,00 e R\$ 3.000,00?
- b) Quem não tem dependentes e ganha menos de R\$ 1.200,00?
- c) Quem depende de funcionário que ganha mais do que R\$ 1.700,00?
- 3) Inclua no exemplo 4.2 as seguintes regras
 - a) Um filme é longo se tem duração superior a 150 minutos.
 - b) Um filme é lançamento se foi lançado a menos de 1 ano.
- 4) Codifique um programa com as informações da tabela abaixo e faça as seguintes consultas

NOME	SEXO	IDADE	ALTURA	PESO
ANA	fem	23	1.55	56.0
BIA	fem	19	1.71	61.3
IVO	masc	22	1.80	70.5
LIA	fem	17	1.85	57.3
EVA	fem	28	1.75	68.7
ARY	masc	25	1.72	68.9

- a) Quais mulheres tem mais de 20 anos de idade?
- b) Quem tem ao menos 1,70m de altura e menos de 65kg?
- c) Quais os possíveis casais onde o homem é mais alto do que a mulher?