CURSO BÁSICO DE FÍSICA TEÓRICA

Volumen 4: Física Teórica 3 [Mecánica Estadística]

E.F. Lavia

versión 0.1

25 de enero de 2018

Contenidos

1	Básicos de termodinámica1.1Energía y entropía	1 1 3 4
2	Conjuntos estadísticos	7
3	Gases clásicos ideales	9
4	Gases imperfectos	10
5	Gas de Fermi	11
6	Gas de Bose	12
7	Elementos de la teoría de fenómenos críticos	13
8	Evolución temporal de sistemas macroscópicos	14
9	Gases diluidos en las proximidades del equilibrio	15
	9.0.1 Construcción de una cuenta	17
	9.0.2 otra	19
	9.1 Teorema H y consecuencias	20
10	Introducción al estudio de procesos de relajación	22
	10.1 Procesos de Markov	22
	10.1.1 Ecuación maestra	23
	10.1.2 Camino aleatorio y ecuación de difusión	24
	10.2 Cadenas de Markov	25
	10.3 Solución general a través de descomposición espectral	27

Básicos de termodinámica

1.1 Energía y entropía

Una de las formulaciones de la 2da ley es definir la entropía. Surge de:

$$\frac{Q_1}{Q_2} = -\frac{T_1}{T_2} \qquad \Rightarrow \frac{Q_1}{Q_2} + \frac{T_1}{T_2} = 0 \text{ reversible}$$

$$\int \frac{dQ}{T} \leq 0 \qquad \text{desigualdad de Clausius}$$

Proceso reversible en un sistema aislado

$$S_{A\to B} = \int_{A}^{B} dS = 0$$

pues

$$dS = \frac{dU}{T} - \frac{p}{V}dV + \frac{\mu}{T}dN = 0$$

pero en procesos irreversibles la variación de S es cota superior:

$$\int_A^B \frac{dQ}{T} < \int_A^B dS = S_{A \to B}.$$

Luego, para un sistema aislado, en un proceso irreversible

$$dS_I = 0$$
 \Rightarrow $\frac{dQ_I}{T} = 0$

La existencia de S es independiente de su cálculo

y entonces

$$0 < \int_A^B dS = S_{A \to B}$$

La entropía solo aumenta. Podría calcular $S_{A \to B}$ con un proceso reversible de $A \to B$ pero ahí ya tengo que intervenir sobre el sistema (no hay procesos espontáneos –en un sistema aislado– reversibles).

En reversibles

$$dU = TdS - pdV + \mu dN$$

mientras que en irreversibles

$$dU = ddQ_I - pdV + \mu dN$$
, pero $dQ_I < TdS$

y entonces

$$dU < TdS - pdV + \mu dN$$

Si S es homogénea, se tiene

$$S = S(\lambda U, \lambda X, \{\lambda N_i\}) = \lambda S(U, X, \{N_i\})$$

En un sistema PVT Y = -p.

y además si

$$\begin{split} TdS &= dU - YdX - \mu_i dN_i \\ \frac{dS}{d\lambda} &= S = \frac{\partial S}{\partial \lambda U} \frac{d\lambda U}{d\lambda} + \frac{\partial S}{\partial \lambda X} \frac{d\lambda X}{d\lambda} + \frac{\partial S}{\partial \lambda N_i} \frac{d\lambda N_i}{d\lambda} \\ S &= \frac{\partial S}{\partial \lambda U} U + \frac{\partial S}{\partial \lambda X} X + \frac{\partial S}{\partial \lambda N_i} N_i \\ \frac{\partial}{\partial \lambda U} \left[S(\lambda U) \right] &= \frac{\partial}{\partial \lambda U} \left[\lambda S(U) \right] = \frac{\partial S}{\partial U} = \frac{1}{T} \end{split}$$

y procediendo del mismo modo con Y, μ

$$S = \frac{1}{T}U + \frac{-Y}{T}X + \frac{-\mu_i}{T}N_i$$

y arribamos a la ecuación fundamental

$$TS = U - YX - \mu_i N_i$$

o bien

$$U = TS + YX + \sum_{i} \mu_{i} N_{i}$$

La primera ley (en sistemas reversibles) era

$$dU = TdS + YdX + \sum_i \mu_i dN_i$$

y a S, V, N constantes

$$dU^R=0 \qquad dU^I < 0$$

la mínima U es equilibrio. Si existe trabajo que no es de volumen resulta

$$dU < -dW_{\text{libre}}$$

$$\frac{dQ}{dT} = \frac{dU}{T} + \frac{p}{T}dV - \frac{\mu}{T}dN = \frac{dQ}{dT} \le dS$$

Si el sistema está aislado será

$$0 \le dS$$
 condición de equilibrio

alcanzando el máximo ya no puede disminuir la entropía.

1.2 Transformadas de Legendre de las funciones termodinámicas

$$f(x,y,z) \qquad \text{con pendientes} \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

entonces

$$\varphi(f_x, y, z) = f(x, y, z) - x \frac{\partial f(x, y, z)}{\partial x} \Big|_{y, z}$$

es la transformada de Legendre respecto de x, mientras que

$$\varphi(f_x,f_y,z) = f(x,y,z) - x\frac{\partial f}{\partial x} - y\frac{\partial f}{\partial y}$$

es la transformada de Legendre respecto de y.

La transformada de Legendre transforma una función homogénea en otra función homogénea, mantiene el carácter de función de estado.

$$d\varphi(f_x,y,z) = df - dx \frac{\partial f}{\partial x} - xd \left(\frac{\partial f}{\partial y}\right)$$

Para el caso de la energía

$$U = U(S, V, N) \qquad \qquad dU = TdS - pdV + \mu dN$$

y entonces

$$A = U - S \frac{\partial U}{\partial S} \Big|_{V,N} = U - ST$$
 \Rightarrow $A = A(T,V,N)$

$$\begin{split} H &= U - V \frac{\partial U}{\partial V} \bigg|_{S,N} = U + pV & \Rightarrow & H = H(S,p,N) \\ G &= U - S \frac{\partial U}{\partial S} \bigg|_{V,N} - V \frac{\partial U}{\partial V} \bigg|_{S,N} = U - ST + pV & \Rightarrow & G = G(T,p,N) \\ dA &= dU - SdT - TdS = -SdT - pdV + \mu dN \\ dA &\leq -SdT - pdV + \mu dN \end{split}$$

entonces A mínimo es equilibrio a T, V, N constantes.

La idea de las transformadasd de Legendre es pasar la dependencia de cierto juego de variables a otro que podría ser más apropiado par el sistema en cuestión.

Sistema aislado en equilibrio, entonces se tendrá S máxima y como S(U,V,N) y considero fluctuación energética

$$\begin{split} \frac{\partial S}{\partial U} \Big|_{\rm eq} &= 0 \qquad \frac{\partial 2}{\partial S} U \Big|_{\rm eq} < 0 \\ \delta S_{\rm orden2} &= \frac{1}{2} \left. \frac{\partial 2}{\partial S} U \right|_{\rm so} \delta U^2 \end{split}$$

1.3 Gas de Van der Waals

Van der Waals incorpora la interacción molecular.

$$\left(p+\frac{an^2}{V^2}\right)(V-nb)=nRT$$

donde a,b(T) caracterizan al gas en cuestión.

La función p = p(V) tiene tres extremos para $T < T_c$,

$$\frac{\partial p}{\partial V} = 0$$

En $T=T_c$ es

$$\left. \frac{\partial p}{\partial V} \right|_{T_c} = 0 \qquad \left. \frac{\partial^2 p}{\partial V^2} \right|_{T_c} = 0$$

punto de inflexión

$$v_c = 3b \qquad p_c = \frac{a}{27b^2} \qquad T_c = \frac{8a}{27Rb}$$

Esta subsección tiene cinco gráficos

y eso lleva a la ley de estados correspondientes

$$\left(\bar{p} + \frac{3}{\bar{v}^2}\right)(3\bar{v} - 1) = 8\bar{T}$$

De Van der Waals al virial

$$p = \frac{nRT}{(V - nb)} - a\left(\frac{n}{V}\right)^2 = \frac{nRT}{V(1 - b/v)} - \frac{a}{v^2}$$

$$p = \frac{RT}{v} \left[1 + \frac{b}{v} - \frac{a}{vRT}\right] = p = \frac{RT}{v} \left[1 + \frac{1}{v}\left(b - \frac{a}{RT}\right)\right]$$

y el último paréntesis es el primer coeficiente del virial.

Un potencial intermolecular está compuesto de una zona repulsiva (carozo duro) y una atractiva (cola)

$$V_{eff}=V-b \qquad \text{(menorvolumenporelcarozo)}$$

$$p=\frac{RT}{V-b}-\left(\frac{a}{V}\right)^2 \qquad \text{(menorpresi\'on porla atractividad)}$$

y entonces, por mol de sustancia,

$$\left(p + \frac{a^2}{V^2}\right)(V - b) = RT$$

b corrige el volumen que es ahora menor porque las partículas ocupan espacio. a corrige la presión dado que la atracción tiende a formar pares bajando la presión sobre las paredes.

Las funciones respuesta tienen signo errado dentro de la zona del rulo

$$\frac{\partial p}{\partial V} > 0 \to \frac{\partial v}{\partial p} > 0 \Rightarrow \kappa_T < 0 \qquad \text{(MAL)}$$

$$dT = -SdT + VdP + udN$$

dada la isoterma y que N es constante

$$dG = Vdp \rightarrow dg = vdP \pmod{molar}$$

G es cóncava en p entonces

$$v = \left. \frac{\partial g}{\partial p} \right|_{T,N}, \qquad \left. \frac{\partial v}{\partial p} = \left. \frac{\partial^2 g}{\partial p^2} \right|_{T,N} < 0$$

Recordemos que

$$-\frac{1}{v}\frac{\partial v}{\partial p} = \kappa_T > 0$$

y luego

$$\Delta g = \int_{p_{-}}^{p_{G}} v dp = 0$$

entonces

$$\int_C^D + \int_D^E + \int_E^F + \int_F^G = 0$$

y si se invierten puntos para tener un recorrido según las flechas se llega a

$$\int_{C}^{D} - \int_{E}^{D} = \int_{F}^{E} - \int_{F}^{G}$$

Áreas inguales determinan entonces los puntos C y G de forma que se corrige Van Der Waals para dar curvaturas correctas. En la región de coexistencia hemos trocado

$$\frac{\partial p}{\partial V} > 0$$
 por $\frac{\partial p}{\partial V} = 0$

lo cual da $\kappa_T \to \infty$ en lugar del $\kappa_T < 0$ (que es incorrecto).

Conjuntos estadísticos

La cantidad

$$\rho(\{\vec{q}_i, \vec{p}_i\}, t)d^{3N}qd^{3N}p$$

es el número de microestados en el elemento $d^{3N}qd^{3N}p$ al tiempo t centrado en q,p. Si los microestados son equiprobables $\rho\equiv cte$.. El conjunto $\{\vec{q}_i,\vec{p}_i\}$ son 6N coordenadas.

$$\Omega = \int p d^{3N} q d^{3N} p$$

XXX Dibujos XXXX

el volumen en $\mathbb F$ es proporcional al número de microestados compatibles con E,N, el volumen $\mathbb F$ del macroestado es $\Omega\{n_i\}$

 $n_i=f_id^3qd^3p$ es el número de partículas en una celda i (con su $\vec p$ en $\vec p+d\vec p$ y con su $\vec q$ en $\vec q+d\vec q$)

Un microestados determina una distribución f que da un conjunto $\{n_i\}$. Pero una f determina muchos microestados porque la función de distribución no distingue entre partículas (importan los números de ocupación); entonces una f determina un volumen en \mathbb{F} .

Suponemos que todos los microestados en $\mathbb F$ son igualmente probables. La f que determina el mayor volumen en $\mathbb F$ es la más probable. Suponemos que en el equilibrio el sistema toma la f más probable. Si f_i es el valor de f en cada celda i

$$f_i = \frac{n_i}{d^3pd^3q} \quad \text{promediada en el ensamble} \quad \bar{f_i} = \frac{< n_i>}{d^3pd^3q} \quad \text{en el equilibrio}$$

La integral Ω es imposible porque es difícil determinar el volumen de integración.

Cada microestado tiene su f.

 f_i es la distribución para un miembro en el ensamble.

Necesito $\Omega = \Omega\{n_i\}$ para obtener el $\{\tilde{n}_i\}$.

Esta \bar{f}_i es la de equilibrio, pero la cuenta no es fácil. Asumiremos que la f de equilibrio es la más probable (la de mayor volumen en $\mathbb F$); entonces maximizaremos dicho volumen para hallarla.

Un microestado determina una f; diferentes microestados pueden determinar otras f pero muchos coincidirán en una misma f.

La f en el equilibrio es la que tiene mayor cantidad de microestados (la más probable) pero

$$\bar{f}_i = \frac{< n_i>}{d^3pd^3q}$$

es el promedio en el ensamble y no será exactamente igual a la f_i del mayor volumen, salvo que el volumen de f sea mucho mayor al ocupado por f', f'', etc.

Dado el volumen $\Omega\{n_i\}$ extremaremos el mismo sujeto a las condiciones

$$E = \sum_{i}^{K} n_{i} e_{i} \qquad \qquad N = \sum_{i}^{K} n_{i}$$

y llegamos a la f de equilibrio que es f_{MB} .

El volumen Ω se escribe en función de los números de ocupación

$$\Omega\left(\left\{n_{i}\right\}\right) = \frac{N!}{\prod_{i}^{K} n_{i}!} \prod_{i}^{K} g_{i}^{n_{i}} \qquad (i = 1, 2, ..., K \quad \text{identifica celdas en } \mu)$$

$$\Omega\left(\left\{n_{i}\right\}\right)=N!\prod_{i}^{K}\frac{g_{i}^{n_{i}}}{n_{i}!}$$

donde g_i son los subniveles en que podríamos dividir la celda K; es por matemática conveniencia y para abarcar más casos (luego será $g_i=1 \forall i$).

El conjunto $\{\tilde{n}_i\}$ que extrema $\Omega\left(\{n_i\}\right)$ es el más probable y consideraremos

$$\{\tilde{n}_i\} = \langle n_i \rangle$$

Estaremos pensando que cuando $N\to\infty$ la mayor parte de los microestados van a una distribución f_{MB}

Gases clásicos ideales

Gases imperfectos

Gas de Fermi

Gas de Bose

Elementos de la teoría de fenómenos críticos

Evolución temporal de sistemas macroscópicos

Gases diluidos en las proximidades del equilibrio

Sistema clásico diluido, procesos colisionales en términos de σ , sistema grande con paredes reflejantes

$$f(\mathbf{x}, \mathbf{p}, t)d^3xd^3p \equiv \#$$
de partículas en el cubo d^3p , d^3x

siendo f la función de distribución de un cuerpo.

La teoría cinética busca hallar $f(\mathbf{x},\mathbf{p},t)$ para una dada interacción molecular. Sabemos que la interacción es a través de colisiones.

Sin colisiones las moléculas evolucionan de acuerdo a

$$t \to t + \delta t$$
 $\mathbf{x} \to \mathbf{x} + \mathbf{v}\delta t$ $\mathbf{p} \to \mathbf{p} + \mathbf{F}\delta t$
$$f(\mathbf{x}, \mathbf{p}, t)d^3xd^3p = f(\mathbf{x} + \mathbf{v}\delta t, \mathbf{p} \to \mathbf{p} + \mathbf{F}\delta t, \mathbf{p}, t + \delta t)d^3x'd^3p'$$

El volumencillo con sus partículas evoluciona en el espacio de fases μ . El volumen evoluciona de acuerdo al jacobiano.

$$d^3r'd^3p' = |J|d^3rd^3p$$

pero

$$J = \frac{\partial(x',y',z',p_x',p_y',p_z')}{\partial(x,y,z,p_x,p_y,p_z)}$$

da

$$1 + \mathcal{O}(\delta t^3)$$

Clásico implica

$$\lambda_{ ext{deB}} \ll (V/N)^{1/3}, h/p \ll v^{1/3}$$
 o bien $\frac{h}{\sqrt{2mkT}} \ll v^{1/3}$

con lo cual si $\delta t \ll 1$ será $d^3r'd^3p' = d^3rd^3p$ y entonces

$$f(\mathbf{x} + \mathbf{v}\delta t, \mathbf{p} \to \mathbf{p} + \mathbf{F}\delta t, \mathbf{p}, t + \delta t) = f(\mathbf{x}, \mathbf{p}, t)$$

pero si hay colisiones

$$\begin{split} f(\mathbf{x} + \mathbf{v}\delta t, \mathbf{p} &\to \mathbf{p} + \mathbf{F}\delta t, \mathbf{p}, t + \delta t) = f(\mathbf{x}, \mathbf{p}, t) + \left. \frac{\partial f}{\partial t} \right|_{\text{col}} \delta t \\ &\frac{\partial f}{\partial t} \delta t d^3 r d^3 p = (\bar{R} - R) \delta t d^3 r d^3 p \end{split}$$

donde $\bar{R}\delta t d^3r'd^3p'$ es el número de colisiones durante δt en las que una partícula se halla al final en $d^3r'd^3p'$ y $R\delta t d^3r d^3p$ es correspondientemente el número de colisiones durante δt en las que una partícula se halla al comienzo en $d^3r d^3p$.

De t a $t+\delta t$ algunas moléculas de A pasan a B y otras van hacia otros lados. Hacia B llegan moléculas de A y desde fuera.

Dada la dilución consideramos colisiones binarias.

R es el número de colisiones en las cuales la partícula se halla en A y consecuentemente no llega a B (pérdida) (en el cubo d^3V_2) y \bar{R} es el número de colisiones en las cuales la partícula se halla fuera de A y consecuentemente por colisión llega a B (ganancia) (en el cubo d^3V_2).

$$\underbrace{f(\mathbf{v}_2,t)d^3V_2}_{\text{d. blancos}}\underbrace{[\mathbf{V}_2-\mathbf{V}_1]}_{\text{condición de colisión}}\underbrace{f(\mathbf{v}_1,t)d^3V_1}_{\text{d. incidentes}}\underbrace{\mathcal{O}}_{V_1V_2\to V_1'V_2'}d^3V_1'd^3V_2'$$

Si quiero conocer R debo integrar: si la partícula con \mathbf{V}_2 se halla en A integrao en todas las \mathbf{V}_1 y en todos los destinos \mathbf{V}_1' y \mathbf{V}_2' .

$$\underbrace{f(\mathbf{v}_2',t)d^3V_2'}_{\text{d. blancos}}\underbrace{[\mathbf{V}_2'-\mathbf{V}_1']}_{\text{condición de colisión}}\underbrace{f(\mathbf{v}_1',t)d^3V_1'}_{\text{d. incidentes}}\underbrace{\sigma}_{V_1V_2\to V_1'V_2'}d^3V_1d^3V_2$$

Si quiero conocer \bar{R} debo integrar: si la partícula con \mathbf{V}_2 se halla en B integrao en todas las \mathbf{V}_1' \mathbf{V}_2' (orígenes) y en todos los destinos \mathbf{V}_1' .

$$\begin{split} d^3V_2R &= \int_{V_1} \int_{V_1'} \int_{V_2'} f(\mathbf{V}_2,t) d^3V_2 |\mathbf{V}_2 - \mathbf{V}_1| f(\mathbf{V}_1,t) d^3V_1 \underbrace{\sigma}_{12 \to 1'2'} d^3V_1' d^3V_2' \\ d^3V_2\bar{R} &= \int_{V_1} \int_{V_1'} \int_{V_2'} f(\mathbf{V}_2',t) d^3V_2' |\mathbf{V}_2' - \mathbf{V}_1'| f(\mathbf{V}_1',t) d^3V_1' \underbrace{\sigma}_{1'2' \to 12} d^3V_1 d^3V_2 \\ d^3V_2R &= \int_{V_1} \int_{V_1'} \int_{V_2'} f_2f_1 |\mathbf{V}_2 - \mathbf{V}_1| \underbrace{\sigma}_{12 \to 1'2'} d^3V_1' d^3V_2' d^3V_2 d^3V_1 \end{split}$$

 $R\delta t d^3r d^3p$ será finalmente el número de partículas en el cubo $d^3r d^3p$.

Queremos ver cómo varía f en

$$d^3V_2\bar{R} = \int_{V_1} \int_{V_1'} \int_{V_2'} f_2' f_1' |\mathbf{V}_2' - \mathbf{V}_1'| \underbrace{\sigma}_{1'2' \to 12} d^3V_1 d^3V_2 d^3V_2' d^3V_1'$$

y si usamos que $|\mathbf{V}_2-\mathbf{V}_1|=|\mathbf{V}_2'-\mathbf{V}_1'|$ y $\underbrace{\sigma}_{12\to1'2'}=\underbrace{\sigma}_{1'2'\to12}$ entonces

$$\left. \frac{\partial f_2}{\partial t} \right|_{\mathrm{col}} = (\bar{R} - R) d^3 V_2 = \int_{V_1} \int_{V_1'} \int_{V_2'} (f_1' f_2' - f_1 f_2) |\mathbf{V}_2 - \mathbf{V}_1| \underbrace{\sigma}_{12 \to 1'2'} d^3 V_1' d^3 V_2' d^3 V_2 d^3 V_1 d^3 V_2' d^3$$

Bajo estas líneas pueden verse los esquemas de integración,

9.0.1 Construcción de una cuenta

Volumen dentro del cual una partícula con \mathbf{V}_1 chocaría a una de $\mathbf{V}_2.$

$$\frac{\overbrace{|\mathbf{V}_2 - \mathbf{V}_1|\delta t \delta A}^{}}{\delta t \delta A} \qquad \underbrace{f(\mathbf{V}_1,t) d^3 V_1}_{\text{densidad de incidente}}$$

es el # de partículas incidentes con \mathbf{V}_1 que podría colisionar con una de \mathbf{V}_2 en la unidad de tiempo y por unidad de área.

$$\sigma(\mathbf{V}_1\mathbf{V}_2 \to \mathbf{V}_1'\mathbf{V}_2')d^3V_1'd^3V_2'$$

es la sección eficaz de dispersión del proceso $V_1V_2 \to V_1'V_2'$ teniendo como destinos \mathbf{V}_1' y \mathbf{V}_2' .

$$\left[|\mathbf{V}_2 - \mathbf{V}_1| f(\mathbf{V}_1, t) d^3 V_1 \right] \sigma_{12 \to 1'2'} d^3 V_1' d^3 V_2'$$

es el # de partículas incidentes con V_1 dispersadas en V_1' y con el blanco yendo a V_2' por unidad de tiempo y volumen.

$$[f(\mathbf{V}_{2},t)d^{3}V_{2}]|\mathbf{V}_{2}-\mathbf{V}_{1}|f(\mathbf{V}_{1},t)d^{3}V_{1}\sigma d^{3}V_{1}'d^{3}V_{2}'$$

es el # de partículas dispersadas hacia \mathbf{V}_1' y \mathbf{V}_2' proviniendo de \mathbf{V}_1 y \mathbf{V}_2 por unidad de tiempo y de volumen.

Quisiera conocer $Rdtd^3rd^3v$ (# de colisiones durante dt en las cuales una partícula incial –blanco– se halla en d^3r con d^3v_2)

pérdida; si golpeo un blanco en \mathbf{V}_2 lo saco del volumen

$$Rdtd^{3}rd^{3}v = \int_{V_{-}} \int_{V'_{-}} \int_{V'_{-}} dtd^{3}r f(\mathbf{V}_{2},t) d^{3}V_{2} |\mathbf{V}_{2} - \mathbf{V}_{1}| f(\mathbf{V}_{1},t) d^{3}V_{1} \sigma d^{3}V_{1}' d^{3}V_{2}'$$

Se integra en las incidentes V_1 gamlasides timpe V_1', V_2' .

y también $\bar{R}dtd^3rd^3v$ (# de colisiones durante dt en las cuales una partícula final se halla en d^3r con d^3v_2)

$$\bar{R}dtd^3rd^3v = \int_{V_*} \int_{V_*'} \int_{V_*'} dtd^3r f(\mathbf{V}_2',t) d^3V_2' |\mathbf{V}_2' - \mathbf{V}_1'| f(\mathbf{V}_1',t) d^3V_1' \sigma d^3V_1 d^3V_2$$

$$\left. \frac{\partial f}{\partial t} \right|_{col} \delta t = (\bar{R} - R) \delta t$$

Usando

$$\begin{split} |\mathbf{V}_2 - \mathbf{V}_1| &= |\mathbf{V}_2' - \mathbf{V}_1'| \quad \sigma(12 \rightarrow 1'2') = \sigma(1'2' \rightarrow' 2) \\ \frac{\partial f}{\partial t} \Big|_{\mathrm{col}} &= \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' |\mathbf{V}_2 - \mathbf{V}_1| \sigma(f(\mathbf{V}_1', t) f(\mathbf{V}_2', t) - f(\mathbf{V}_1, t) f(\mathbf{V}_2, t)) \end{split}$$

Por otro lado

$$f(\mathbf{r} + \mathbf{v}\delta t, \mathbf{p} + \mathbf{F}\delta t, t + \delta t) - f(\mathbf{r}, \mathbf{p}, t) = f(\mathbf{r}, \mathbf{v} + \frac{\mathbf{F}}{m}\delta t, t + \delta t) - f(\mathbf{r}, \mathbf{v}, t)$$
$$\frac{\partial f}{\partial \mathbf{r}} \mathbf{v}\delta t + \frac{\partial f}{\partial \mathbf{v}} \frac{\mathbf{F}}{m}\delta t + \frac{\partial f}{\partial t}\delta t = \mathbf{v} \cdot \nabla_{\mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{v}} + \frac{\partial f}{\partial t}\delta t$$

y entonces con $\delta t \to 0$ es

$$\left(\mathbf{v} \cdot \nabla_{\mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{p}} + \frac{\partial}{\partial t}\right) f = \left. \frac{\partial f}{\partial t} \right|_{col}$$

y somos conducidos a

$$(\mathbf{v}\cdot\nabla_{\mathbf{r}}+\frac{\mathbf{F}}{m}\cdot\nabla_{\mathbf{v}}+\frac{\partial}{\partial t})f_2=\int_{V_1}\int_{V_1'}\int_{V_2'}d^3v_1d^3v_1'd^3v_2'V\sigma(f_1'f_2'-f_1f_2)$$

la ecuación de transporte de Boltmann.

Se ha supuesto CAOS MOLECULAR, de modo que la correlación de dos cuerpos (función de distribución de dos cuerpos en el mismo punto espacial)

$$f(\mathbf{r}, \mathbf{v}_1, \mathbf{v}_2, t) = f(\mathbf{r}, \mathbf{v}_1, t) f(\mathbf{r}, \mathbf{v}_2, t)$$

y esto nos lleva a que las velocidades de dos partículas en el elemento d^3r no están correlacionadas. La probabilidad de encontrarlas simultáneamente es el producto de hallarlas a cada una por separado.

Una condición suficiente es

$$f_1'f_2' - f_1f_2 = 0 \Rightarrow \frac{\partial f}{\partial t}\Big|_{\text{col}} = 0$$

y veremos que es también necesaria.

La solución de equilibrio será aquella independiente del tiempo. Es decir $\frac{\partial f}{\partial t}=0$, $\int\int\int dV...V\sigma(f_1'f_2'-f_1f_2)=0$

9.0.2 otra

Supusimos un sistema diluido, con colisiones binarias y llegamos a

$$\left(\mathbf{v}\cdot\nabla_{\vec{r}}+\frac{1}{m}\mathbf{F}\cdot\nabla_{\vec{v}}+\frac{\partial}{\partial t}\right)f_{2}=\frac{\partial f_{2}}{\partial t}=\int\int\int d^{3}v_{1}d^{3}v_{1}'d^{3}v_{2}'V\sigma(f_{1'}f_{2'}-f_{1}f_{2}) \tag{1}$$

Pensamos que en el equilibrio será $\partial f_2/\partial t=0$ y sabemos que

$$\operatorname{si} f_{1'} f_{2'} - f_1 f_2 = 0 \Rightarrow \frac{\partial f}{\partial t} = 0$$

La función del equilibrio es MB, $f_0(\mathbf{v}) o rac{\partial f_0}{\partial t} = 0$

Definiendo $H(t) = \int d^3V f(\mathbf{v}, t) \log(f(\mathbf{v}, t))$ vemos que

si
$$\frac{\partial f(\mathbf{v},t)}{\partial t} = 0 \Rightarrow \frac{dH}{dt} = 0$$

Ahora, considerando que f satisface (1) probamos que

si
$$f$$
 verifica (1) $\Rightarrow \frac{dH}{dt} \leq 0$

pero como el integrando en dH/dt no cambia de signo nunca debe anularse para obtener el cero con lo cual

$$\frac{dH}{dt} = 0 \Rightarrow f_{1'}f_{2'} - f_1f_2 = 0 \Rightarrow \frac{\partial f}{\partial t} = 0$$

y en definitiva

$$\frac{dH}{dt} = 0 \Leftrightarrow \frac{\partial f}{\partial t} = 0$$

y prueba que con

$$f(\mathbf{v},t)_{t\to\infty} \to f_0(\mathbf{v})$$
 con $\frac{\partial f_0}{\partial t} = 0$

La ecuación (1) asume la hipótesis de CAOS MOLECULAR para su validez.

 $f(\mathbf{p},t)$ en principia
o sólo satisface la ecuación de transporte de Boltzmann cuando vale CAOS MOLECULAR. Una ta
lfes tal que

 $\frac{dH}{dt} \leq 0$ H es decreciente siempre (un instante luego del CAOS MOLECULAR)

$$\frac{dH}{dt} = 0 \qquad \text{si } f(\mathbf{p},t) = f_{MB} \operatorname{con} \frac{\partial f}{\partial t} = 0$$

CAOS MOLECULAR entonces significa que H es máximo local, luego decrece rápidamente y además se sale de f_{MB}

9.1 Teorema H y consecuencias

$$\begin{split} H(t) &= \int d^3p f(\mathbf{p},t) \log(f(\mathbf{p},t)) = <\log f(\mathbf{p},t)>_{\text{no normalizado}} \\ &\frac{\partial H(t)}{\partial t} = \int d^3p \left(\frac{\partial f}{\partial t} \log f + f \frac{1}{f} \frac{\partial f}{\partial t}\right) \\ &\frac{\partial H(t)}{\partial t} = \int d^3p \frac{\partial f}{\partial t} \left(1 + \log f\right) \\ &\text{Si } \frac{\partial f}{\partial t} = 0 \Rightarrow \frac{\partial H}{\partial t} = 0 \end{split}$$

Entonces la anulación de la derivada de H es condición necesaria pero no suficiente para que la derivada de f se anule.

Por otro lado, también vale que si f satisface la ecuación de Boltzmann, entonces

$$\frac{dH}{dt} = \frac{d}{dt} < \log f(\mathbf{p}, t) >_{\text{no normalizado}} \le 0$$
$$\frac{\partial H(t)}{\partial t} = \int d^3 p \frac{\partial f}{\partial t}(\mathbf{p}, t) (1 + \log f)$$

y si consideramos función de \mathbf{v}_2 ,

$$\frac{dH}{dt} = \int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_1'f_2' - f_1f_2) [1 + \log f_2]$$

pero el intercambio de ${\cal V}_1$ con ${\cal V}_2$ no afecta la integral y podemos sumar dos medios,

$$\begin{split} \frac{dH}{dt} &= \frac{1}{2} \left[\int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2'f_1' - f_2f_1) [1 + \log f_1] + \right. \\ & \left. \int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_1'f_2' - f_1f_2) [1 + \log f_2] \right] \\ \\ \frac{dH}{dt} &= \frac{1}{2} \left[\int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_1'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2'f_1' - f_2f_1) [2 + \log(f_1f_2)] \right] \end{split}$$

pero intercambio de V_1', V_2' con V_1, V_2 tampoco afecta, entonces

$$\begin{split} \frac{dH}{dt} &= \frac{1}{4} \left[\int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2 f_1 - f_2' f_1') [2 + \log(f_1' f_2')] + \right. \\ &\left. int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2' f_1' - f_2 f_1) [2 + \log(f_1 f_2)] \right] \\ \frac{dH}{dt} &= \frac{1}{4} \int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2 f_1 - f_2' f_1') [\log \left(\frac{f_1' f_2'}{f_1 f_2}\right)] \end{split}$$

y como siempre es

$$(X-Y)\log\left(\frac{Y}{X}\right) \leq 0$$

luego

$$\frac{dH}{dt} \le 0$$

y si

$$\frac{\partial f}{\partial t} = 0 \Rightarrow \frac{dH}{dt} = 0$$

pero de la prueba que acabamos de finalizar vemos que si

$$\frac{dH}{dt} = 0 \Rightarrow f_1 f_2 - f_1' f_2' = 0 \Rightarrow \frac{\partial f}{\partial t} = 0$$

luego

$$\frac{dH}{dt} = 0 \qquad \Leftrightarrow \qquad \frac{\partial f}{\partial t}(\mathbf{v}, t) = 0$$

con f de Boltzmann.

Entonces dH/dt=0 si y sólo si $f_1f_2=f_1'f_2'$ para todas las colisiones. Esta condición se conoce como *balance detallado* y es la condición de equilibrio para el gas.

$$E = \int d^3V f(\mathbf{v}, t) |\mathbf{v}|^2 < \infty$$
$$H = \int d^3V f(\mathbf{v}, t) \log f(\mathbf{v}, t)$$

H es el promedio en la distribución de $\log f(\mathbf{p},t)$ no normalizado.

Introducción al estudio de procesos de relajación

10.1 Procesos de Markov

Sea Y una variable estocástica que puede tomar valores y_1,y_2,\dots

Las P son densidades de probabilidad, cuando el espacio muestral sea continuo.

$$P_1(y_1,t) \equiv \mbox{Prob.}$$
 de tomar y_1 en t (1 paso)

 $P_2(y_1,t_1;y_2,t_2) \equiv$ Prob. conjunto de tomar y_1 en t_1 y y_2 en t_2

 $P_{1/1}(y_1,t_1|y_2,t_2) \equiv \text{Prob.}$ condicional de tomar y_2 en t_2 habiendo tomado y_1 en t_1 (certeza de y_1)

Abreviaremos obviando el tiempo. Además se tiene

$$P(y_1;y_2) \leq P(y_1|y_2)$$

donde el lhs evalúa los caminos que comunican y_1,y_2 del total y el rhs evalúa los c
minos que comunican y_1,y_2 del subconjunto de los que parten de
 y_1 .

Además

$$P_2(y_1;y_2) = P_1(y_1)P_{1/1}(y_1|y_2)$$

cumpliéndose lo siguiente

- $\int P_1(y_1)dy_1 = 1$ normalización
- $\int P_{1/1}(y_1|y_2)dy_2 = 1$ normalización
- $\int P_2(y_1;y_2)dy_1 = \int P_1(y_1)P_{1/1}(y_1|y_2)dy_1 = P_1(y_2)$ reducción

Ejemplito numérico

$$P(y_1; y_2) = P(y_1)P(y_1|y_2) = \frac{4}{4}\frac{1}{2} = \frac{2}{7}$$

$$P(y_2; y_1) = P(y_2)P(y_2|y_1) = \frac{3}{7}\frac{2}{3} = \frac{2}{7}$$

Notemos que $P(A|B) \neq P(B|A)$ aunque P(A;B) = P(B;A)

Las densidades de muchos pasos: $P(y_1;y_2;y_3)$ son relevantes cuando el sistema tiene "memoria".

Un proceso es de Markov cuando el estado del sistema depende del paso inmediato anterior únicamente. Se define por

$$P_1(y_1),\quad P_{1/1}(y_1|y_2)\equiv$$
 Probabilidad de transición
$$P_{3/1}(y_1,y_2,y_3|y_4)\underset{\rm Markov}{\to}P_{1/1}(y_3|y_4)$$

Se puede demostrar una ecuación de Chapman-Kolmogorov

$$P_{1/1}(y_1|y_3) = \int P_{1/1}(y_1|y_2) P_{1/1}(y_2|y_3) dy_2$$

10.1.1 Ecuación maestra

Queremos ver la evolución de la $P_1(y_1,t)$

$$\frac{dP_1(y,t)}{dt} = \lim_{\tau \to 0} \frac{P_1(y,t+\tau) - P_1(y,t)}{\tau}$$

Usando que

$$\begin{split} P_1(y_2,t+\tau) &= \int dy_1 P_1(y_1,t) P_{1/1}(y_1,t|y_2,t+\tau) \\ P_1(y_2,t) &= \int dy_1 P_1(y_1,t) P_{1/1}(y_1,t|y_2,t) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) \left[\lim_{\tau \to 0} \frac{1}{\tau} (P_{1/1}(y_1,t|y_2,t+\tau) - P_{1/1}(y_1,t|y_2,t)) \right] \end{split}$$

que se puede escribir de modo que

$$\frac{1}{\tau} \left\{ [1 - \tau \int dy W(y_1,y)] \delta(y_1 - y_2) + \tau W(y_1,y_2) - \delta(y_1 - y_2) \right\}$$

y entonces

$$\begin{split} \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) \left[-\int dy W(y_1,y) \delta(y_1-y_2) + W(y_1,y_2) \right] \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - \int dy_1 P_1(y_1,t) \int dy W(y_1,y) \delta(y_1-y_2) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - \int dy P_1(y_2,t) W(y_2,y) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - P_1(y_2,t) \int dy W(y_2,y) \end{split}$$

donde el primer término en el rhs se interpreta como ganancia (lo que entra) y el segundo pérdida (pues la integral es lo que sale).

$$W(y_1,y_2) \equiv \text{Transiciones} \; y_1 \rightarrow y_2 \; \text{por la unidad de tiempo}$$

10.1.2 Camino aleatorio y ecuación de difusión

Si $\ell, {\bf T}$ son escalas y n_2, s un número entero de pasos

$$P_1(n_2\ell,s\mathbf{T}) = \sum_{n_1} P_1(n_1\ell,[s-1]\mathbf{T}) P_{1/1}(n_1\ell,[s-1]\mathbf{T}|n_2\ell,s\mathbf{T})$$

Quiero saber cuáles son las chances de estar en $n_2\ell$ al tiempo $s{\rm T}$ sumando todas las transiciones desde diferentes lugares $n_1\ell$.

Si la probabilidad es uniforme

$$\begin{split} P_{1/1}(n_1\ell,[s-1]\mathrm{T}|n_2\ell,s\mathrm{T}) &= \frac{1}{2}\delta(n_2-[n_1+1]) + \frac{1}{2}\delta(n_2-[n_1-1]) = \frac{1}{2} \begin{cases} \sin n_2 = n_1+1 \\ \sin n_2 = n_1-1 \end{cases} \\ P_1(n_2\ell,s\mathrm{T}) &= \sum_{r} P_1(n_1\ell,[s-1]\mathrm{T}) \left\{ \frac{1}{2}\delta(n_2-[n_1+1]) + \frac{1}{2}\delta(n_2-[n_1-1]) \right\} \end{split}$$

y sumando y restando convenientemente,

$$P_1(n_2\ell,s\mathbf{T}) = -\frac{1}{2}P_1([n_2-1]\ell,[s-1]\mathbf{T}) + \frac{1}{2}P_1([n_2+1]\ell,[s-1]\mathbf{T}) + P_1(n_2\ell,[s-1]\mathbf{T}) - P_1(n_2\ell,[s-1]\mathbf{T})$$

$$\begin{split} \frac{P_{1}(n_{2}\ell,s\mathrm{T})-P_{1}(n_{2}\ell,s\mathrm{T})}{\mathrm{T}} = \\ \frac{\ell^{2}}{2\mathrm{T}} \left[\frac{P_{1}([n_{2}-1]\ell,[s-1]\mathrm{T})-2P_{1}(n_{2}\ell,[s-1]\mathrm{T})+P_{1}([n_{2}+1]\ell,[s-1]\mathrm{T})}{\ell^{2}} \right] \end{split} \tag{1.1}$$

Pero esto no es otra cosa que expresiones de las derivadas, de manera que

$$\frac{\delta P(n_2\ell,s\mathbf{T})}{\delta\mathbf{T}} = \frac{\ell^2}{2\mathbf{T}} \frac{\delta^2 P(n_2\ell,[s-1]\mathbf{T})}{\delta\ell^2}$$

Esta es la ecuación de Fokker-Planck

$$\frac{\partial P(x,t)}{\partial t} = C \frac{\partial^2 P(x,t)}{\partial x^2}$$

una ecuación de onda para la probabilidad (?)

10.2 Cadenas de Markov

Espacio muestral discreto (dimensión L); medimos el tiempo en pasos

$$P_1(y_j, 1) = \sum_{i}^{L} P_1(y_i, 0) P_{1/1}(y_i, 0 | y_j, 1)$$

donde la información sobre las transiciones se introduce en

$$Q: Q_{ij} \equiv P_{1/1}(y_i, 0|y_j, 1)$$

que es la matriz estocástica. Se verifica

$$\sum_{i}^{L} Q_{ij} = 1 \,\forall i$$

y entonces las filas son vectores de probabilidad

$$\underbrace{\overrightarrow{P(1)}}^{1 \times L} = \underbrace{\overrightarrow{P(0)}}^{1 \times L} \underbrace{\widehat{Q}}^{L \times L}$$

 $P_i(1) = P_i(0)Q_{ij}$ Asumimos convención de Einstein

$$\vec{P(s)} = \vec{P(s-1)}Q = \vec{P(s-2)}QQ = \dots = \vec{P(0)}Q^s$$

y decimos que Q es estocástica regular si existe $k:[Q^k]_{ij}>0 \forall i,j.$

Si Q es estocástica regular entonces existe $s:Q^{s+1}=Q^s\equiv T$ y por lo tanto

$$QT=Q^{s+1}=T$$

Si n > s

$$\vec{P(n)} = \vec{P(0)}Q^n = \vec{P(0)}Q^{n-s}Q^s = \vec{P(0)}T$$

T es la solución de equilibrio, pues T = QT

$$\begin{split} \lambda_{\alpha} & \stackrel{1 \times L}{\widehat{P}^{\alpha}} = \stackrel{1 \times L}{\widehat{P}^{\alpha}} \stackrel{L \times L}{\widehat{Q}} & \rightarrow & 0 = \overrightarrow{P}^{\alpha}(Q - \lambda_{\alpha}\mathbb{1}) \\ \lambda_{\beta} & \stackrel{1 \times L}{\widehat{P}^{\beta}} = \stackrel{1 \times L}{\widehat{P}^{\beta}} & \widehat{Q} & \rightarrow & 0 = (Q - \lambda_{\beta}\mathbb{1})\overrightarrow{P}^{\beta} \\ \lambda_{\alpha}\chi_{j}^{\alpha} = \chi_{1i}^{\alpha}Q_{ij} & \overrightarrow{\chi} = (,,,) \end{split}$$

donde los índices j, 1i refieren a columnas y

$$\lambda_{eta}\psi_{i1}^{eta}=Q_{ij}\psi_{j1}^{eta} \qquad ec{\chi}=\left(
ight)$$

donde los índices i1, j1 refieren a filas.

Y entonces deducimos que

- Autovectores a izquierda $\vec{\chi}$ y a derecha $\vec{\psi}$ son ortogonales.
- Los autovalores son $|\lambda_{\gamma}| \leq 1$.
- $\lambda = 1$ es siempre autovalor.

Sabemos que

$$\begin{split} P(m,s) = \sum_n P(n,0)Q^s_{nm} & \to \text{con } s = 1 \\ P(m,1) = \sum_n P(n,0)Q_{nm} & \end{split}$$

y esto es

$$\chi_m = \sum_n \chi_n Q_{nm} \qquad (\lambda = 1 \text{autovalor de } \vec{\chi} \text{ estacionario})$$

Siempre hay solución estacionaria P = PQ.

Para el autovector a derecha

$$\lambda_{\beta}\psi_{\ell 1}^{\beta} = \sum_{\cdot} Q_{\ell i}\psi_{i1}^{\beta}$$

Si
$$\vec{\psi}^{\beta} = (1, 1, ..., 1)^t \rightarrow$$

$$\lambda_{\beta} \psi_{\ell}^{\beta} = \lambda_{\beta} = \sum_{i} Q_{\ell i} \psi_{i}^{\beta} = \sum_{i} Q_{\ell i} = 1$$

y $\lambda_{\beta}=1$ autovalor de

$$\vec{\psi}^{\beta} = \begin{pmatrix} 1\\1\\ \dots\\1 \end{pmatrix}$$

10.3 Solución general a través de descomposición espectral

$$\begin{split} \lambda_{\alpha}\chi_{i}^{\alpha} &= \sum_{j} \chi_{j}^{\alpha} Q_{ij} \\ \lambda_{\alpha}\psi_{\ell}^{\alpha}\chi_{i}^{\alpha} &= \sum_{j} \psi_{\ell}^{\alpha}\chi_{j}^{\alpha} Q_{ij} \\ \sum_{\alpha} \lambda_{\alpha}\psi_{\ell}^{\alpha}\chi_{i}^{\alpha} &= \sum_{j} \sum_{\alpha} \psi_{\ell}^{\alpha}\chi_{j}^{\alpha} Q_{ij} = \sum_{j} \delta_{\ell j} Q_{ji} = Q_{\ell i} \end{split}$$

y entonces

$$Q_{\ell i} = \sum_{\alpha} \lambda_{\alpha} \psi_{\ell}^{\alpha} \chi_{i}^{\alpha}$$

es una descomposición espectral. De esta forma

$$Q_{\ell i}^s = \sum_{\alpha} \lambda_{\alpha}^s \psi_{\ell}^{\alpha} \chi_i^{\alpha}$$

por ortogonalidad de $(\vec{\chi}, \vec{\psi})$.

$$Q_{\ell i}^s = \lambda_1^s \psi_\ell^1 \chi_i^1 + \sum_{\alpha=2} \lambda_\alpha^s \psi_\ell^\alpha \chi_i^\alpha$$

Y si $s \rightarrow \infty$ entonces $\lambda_1 = 1$ y $\psi^1 = (1,1,...,1)^t$ de modo que

$$\lim_{s \to \infty} Q_{\ell i}^s = \overbrace{\widetilde{\psi_\ell^1}}^{L \times 1} \overbrace{\widetilde{\chi_\ell^1}}^{L \times 1} = \left[\begin{pmatrix} 1 \\ 1 \\ \dots \\ 1 \end{pmatrix} (\chi_1^1 \chi_2^1 \dots \chi_L^1) \right]_{\ell i} = \chi_i^1$$

Todas las filas son iguales.

$$\lim_{s \to \infty} Q_{\ell i}^s = T_{\ell i} = \chi_i^1 \forall \ell$$

entonces

$$T = \begin{pmatrix} \begin{bmatrix} \chi^1 \ ; \end{bmatrix} \\ \begin{bmatrix} \chi^1 \ ; \end{bmatrix} \\ \dots \\ \begin{bmatrix} \chi^1 \ ; \end{bmatrix} \end{pmatrix}$$

Luego T tiene como filas al autovector que cumple

$$\vec{\chi} = c \vec{h} i Q$$
 El punto fijo de Q

Por otro lado

$$\lim_{s\to\infty}Q^s_{\ell i}=\lim_{s\to\infty}P_{1/1}(\ell,0|i,s)=P_1(i,0)$$

La probabilidad de un estado i final, una vez dentro del régimen estacionario, no depende del estado ℓ desde el cual partimos.

La solución de equilibrio claramente es

$$\vec{P} = \vec{P}Q$$

pues si $\vec{P}(s+1) = \vec{P}(s)Q$ y obtenemos

$$\vec{P}(s+1) = \vec{P}(s) = \vec{P}(s)Q$$

entonces resulta que

$$\vec{P}(s) = \vec{P}(s)Q$$

es lo que hay que buscar. La moraleja es que \vec{P} de equilibrio es el punto fijo de Q.