

第2章插值方法与曲线拟合

计算机学院 孙伟平

回 顾

- •误差,误差限
- •相对误差,相对误差限
- •绝对误差,绝对误差限
- •有效数字
- ◆ 有效数字位数的判定方法
- ◆ 算术运算中误差限的估计
- ◆ 近似计算中应注意的一些原则

1010

第2章

- 2.1 插值多项式的存在性与唯一性
- 2.2 拉格朗日(Lagrange)插值
- 2.3 牛顿(Newton)插值
- 2.4 赫密特 (Hermite) 插值
- 2.5 分段插值
- 2.7 曲线拟合的最小二乘法

在实际生产和科学实验中,插值法是函数逼近的重要方法之一,有着广泛的应用。

- ◈ 函数 y = f(x) 的显式表达式未知,x 与 y 的取值是通过实验或观测得到的一组离散数据。
- ◈ 函数 y = f(x) 的表达式非常复杂,不便于进行计算和研究。

000

例如:

i	0	1	2	3	••••	10
x_i	0.46	0.47	0.48	0.49	••••	0.56
$y_i = f(x_i)$	0.48465	0.49374	0.50298	0.52012	••••	0.61478

求当
$$x_i = 0.4773$$
 时 $y = f(x)$ 的函数值?

求
$$f(x) = \frac{\sqrt{\ln(x + \tan x) + e^{x^2 \sin x}}}{3\arctan^2 x} \int_2^{5x} e^{-t^2} dt$$

 \bullet 于是人们希望建立一个简单的而便于计算的函数 g (x) 使其近似的代替 f(x)。

被插值函数f(x)

插值函数 g(x)

插值条件 $y_i = f(x_i)$

主要研究 g(x) 为代数多项式

2.1 插值多项式的存在唯一性

◆ 已知某函数 f(x) 在 n+1 个互异的插值节点 x_i 上的函数值 $y_i = f(x_i)$, $i = 0,1,\dots,n$; 确定一个次数不高于 n 的代数多项式:

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

满足:

$$p_n(x_i) = a_0 + a_1x_i + a_2x_i^2 + \dots + a_nx_i^n = y_i, \quad i = 0,1,\dots,n$$

即共有n+1个限定条件:

$$\begin{cases} p_n(x_0) = y_0 \\ p_n(x_1) = y_1 \\ \vdots \\ p_n(x_n) = y_n \end{cases}$$

这是关于 $a_0, a_1, ..., a_n$ 的(\mathbf{n} 元一次)线性方程组,可以由克莱姆法则进行求解。

$$\begin{pmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^n \\
1 & x_1 & x_1^2 & \cdots & x_1^n \\
1 & x_2 & x_2^2 & \cdots & x_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^n
\end{pmatrix}
\begin{pmatrix}
a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n
\end{pmatrix} = \begin{pmatrix}
y_0 \\ y_1 \\ x_2 \\ \vdots \\ y_n \\ y_n$$

如果其系数行列式 不等于零,则方程 组的解存在且唯一。

范德蒙行列式

$$V = \prod_{0 \le i < j \le n} (x_j - x_i)$$

由于 $x_0, x_1, x_2, ..., x_n$ 是 n+1 个互异的节点,即: $x_i \neq x_j, \quad i \neq j$

- ◆ 因此范德蒙行列式 V≠0, 上述方程组有唯一解。
- ◈ 结论:插值多项式存在且唯一。
- 已知某函数 f(x) 在 n+1 个互异的插值节点 x_i 上的函数值 $y_i = f(x_i)$, $i = 0,1,\dots,n$; 确定一个次数不高于 n 的代数多项式: $p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ 满足: $p_n(x_i) = y_i$, $i = 0,1,\dots,n$ 这样的插值多项式存在且唯一。

$$\begin{pmatrix}
1 & x_0 & x_0^2 \\
1 & x_1 & x_1^2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^n \\
1 & x_1 & x_1^2 & \cdots & x_1^n \\
1 & x_2 & x_2^2 & \cdots & x_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^n
\end{pmatrix}
\begin{pmatrix}
a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n
\end{pmatrix} = \begin{pmatrix}
y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n
\end{pmatrix}$$

◆ 尽管采用直接求解线性方程组的 方法可以确定插值多项式 $p_n(x)$, 但是当n较大时,这种方法的计 算量非常大。

2.2 拉格朗日(Lagrange)插值

◆ 线性插值

点斜式:
$$y = y_0 + k(x - x_0)$$

$$y = y_0 + k(x - x_0)$$

$$k = \frac{y_1 - y_0}{x_1 - x_0}$$

$$\begin{aligned} p_1(x) &= y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \\ &= \frac{x_1 - x_0 - (x - x_0)}{x_1 - x_0} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 \\ &= \frac{x_1 - x}{x_1 - x_0} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 \\ &= \frac{x - x_1}{x_1 - x_0} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 \\ &= \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 \\ &= \frac{l_0(x)}{l_1(x_0)} \begin{cases} l_1(x_0) = 0 \\ l_1(x_1) = 1 \end{cases} \end{aligned}$$

$p_1(x) = y_0 l_0(x) + y_1 l_1(x)$

 $p_1(x)$ 可表示为插值基函数的线性组合

 $l_0(x)$ 和 $l_1(x)$ 均为一次代数多项式

$$p_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

◆ 例1 已知 ln2.00 = 0.6931, ln3.00 = 1.0986, 试用线性 插值法求 ln2.718

$$\begin{cases} x_0 = 2.00 \\ y_0 = 0.6931 \end{cases} \begin{cases} x_1 = 3.00 \\ y_1 = 1.0986 \end{cases} x = 2.718$$

$$p_1(x) = \frac{x - 3.00}{2.00 - 3.00} \times 0.6931 + \frac{x - 2.00}{3.00 - 2.00} \times 1.0986$$
$$= 0.4055x - 0.1179$$

$$\ln 2.718 \approx p_1(2.718) = 0.4055 \times 2.718 - 0.1179$$
$$\approx 0.9842$$

抛物线插值

- ◆ 线性插值只有在小的插值区间且在该区间上 f(x) 变 化较平稳时才较精确。
- ▶ 抛物线插值采用二次曲线替代复杂的未知曲线,可 在一定程度上克服线性插值的上述缺陷。

$$(x_0, y_0)$$
 (x_1, y_1)

$p_1(x) = y_0 l_0(x) + y_1 l_1(x)$

$l_0(x)$ 和 $l_1(x)$ 均为一次代数多项式

$$p_2(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x)$$

$$\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$

$$(x-x_0)(x-x_2)$$

$$(x_1 - x_0)(x_1 - x_2)$$

$$(x-x_0)(x-x_1)$$

$$(x_2 - x_0)(x_2 - x_1)$$

l₀(x), l₁(x) l₂(x) 均为 二次代数 多项式

$$\begin{cases} l_0(x_1) = 0 \\ l_0(x_2) = 0 \end{cases}$$

$$\begin{cases} l_1(x_0) = 0 \\ l_1(x_1) = 1 \\ l_1(x_2) = 0 \end{cases}$$

$$\begin{cases} l_2(x_0) = 0 \\ l_2(x_1) = 0 \end{cases}$$

 $l_2(x_2) \stackrel{17}{=} 1$

 $l_0(x_0) = 1$

$$l_1(x_0) = 0$$
 $l_1(x_1) = 1$ $l_1(x_2) = 0$

因为 $l_1(x)$ 为二次代数多项式,且 x_0, x_2 为它的两个零点,故可设:

$$l_1(x) = k(x - x_0)(x - x_2)$$

其中k为待定系数。

又因为 $l_1(x_1) = 1$ 所以:

$$k(x_1 - x_0)(x_1 - x_2) = 1$$
 $k = \frac{1}{(x_1 - x_0)(x_1 - x_2)}$

从丽:
$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

◆ 例2 已知 ln2.00 = 0.6931 , ln2.50 = 0.9163 , ln3.00 = 1.0986, 用抛物线插值法求 ln2.718

$$\begin{cases} x_0 = 2.00 \\ y_0 = 0.6931 \end{cases} \begin{cases} x_1 = 2.50 \\ y_1 = 0.9136 \end{cases} \begin{cases} x_2 = 3.00 \\ y_2 = 1.0986 \end{cases} x = 2.718$$

$$p_2(x) = \frac{(x - 2.50)(x - 3.00)}{(2.00 - 2.50)(2.00 - 3.00)} \times 0.6931$$

$$+ \frac{(x - 2.00)(x - 3.00)}{(2.50 - 2.00)(2.50 - 3.00)} \times 0.9136$$

$$+ \frac{(x - 2.00)(x - 2.50)}{(3.00 - 2.00)(3.00 - 2.50)} \times 1.0986$$

$$= -0.071x^2 + 0.7605x - 0.5439$$

1010

$$\ln 2.718 \approx p_2(2.718)$$

$$\approx -0.071 \times 2.718^2 + 0.7605 \times 2.718 - 0.5439$$

$$\approx 0.9986$$

比较:

ln2.718 = 0.999896 ·····

线性插值: $\ln 2.718 \approx 0.9842 \longrightarrow |\varepsilon_r| \approx 1.57\%$

抛物线插值: $\ln 2.718 \approx 0.9986$ → $|\varepsilon_r| \approx 0.13\%$

Lagrange 插值

② 已知某函数 f(x) 在 n+1 个互异的插值节点 x_i 上的函数值 $y_i = f(x_i)$, $i = 0,1,\dots,n$; 求作一个次数不高于 n 的代数多项式:

$$L_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

满足:

$$L_n(x_i) = a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n = y_i$$

$$i = 0, 1, \dots, n$$

$$L_n(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x) + \dots + y_n l_n(x) = \sum_{i=0}^n y_i l_i(x)$$

$$l_i(x_j) = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

Lagrange 插值基函数

- $l_i(x)$ 的最高次数与 $L_n(x)$ 相同
- ◆ $x_0, x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ 是 $l_i(x)$ 的零点(共有 n 个)
- ♦ $l_i(x)$ 在 x_i 处取值为 1

$$l_i(x_j) = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

因为 $l_i(x)$ 为 n 次代数多项式,且 $x_0, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n$ $l_i(x)$ 的 n 个零点,故可设:

$$l_i(x) = k(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)$$

$$=k\prod_{j=0,j\neq i}^{n}(x-x_{j})$$

k 为待定系数。

又因为 $l_i(x_i) = 1$ 所以:

$$1 = k \prod_{j=0, j \neq i}^{n} (x_i - x_j) \qquad k = 1 / \prod_{j=0, j \neq i}^{n} (x_i - x_j)$$

$$l_i(x) = \prod_{j=0, j \neq i}^{n} (x - x_j) / \prod_{j=0, j \neq i}^{n} (x_i - x_j) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

$$L_n(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x) + \dots + y_n l_n(x)$$

$$= y_0 \prod_{j=0, j \neq 0}^{n} \frac{x - x_j}{x_0 - x_j} + y_1 \prod_{j=0, j \neq 1}^{n} \frac{x - x_j}{x_1 - x_j} + y_2 \prod_{j=0, j \neq 2}^{n} \frac{x - x_j}{x_2 - x_j}$$

$$+\cdots+y_n\prod_{j=0,j\neq n}^n\frac{x-x_j}{x_n-x_j}$$

$$=\sum_{i=0}^n y_i \left(\prod_{j=0, j\neq i}^n \frac{x-x_j}{x_i-x_j} \right)$$

$$\frac{(x-x_0)(x-x_1)(x-x_3)\cdots(x-x_n)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)\cdots(x_2-x_n)}$$

- ◆ Lagrange插值多项式结构对称、简单、优雅。
- ◆ 只要取定节点就可写出基函数,进而得到插值多项式。
- ◈ 易于计算机实现。

◆ 问题: Lagrange插值的误差是多少?

Lagrange 插值误差分析 插值余项

◈ 在插值节点处:

$$L_n(x) = f(x), \quad x = x_0, x_1, \dots, x_n$$

◈ 在非插值节点处,一般有:

$$L_n(x) \neq f(x), \quad x \neq x_0, x_1, ..., x_n$$

◈ 插值余项(截断误差):

$$R_{n}(x) = f(x) - L_{n}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_{i}) \omega_{n+1}(x)$$

$$\omega_{n+1}(x)$$

f(x) 在插值区间 [a,b] 内有 n+1 阶导数

 $\xi \in (a,b)$

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i) \omega(x)$$

证:设 x 为插值区间 [a,b] 中的任意一点,若 x 为插值 节点 x_0, x_1, \dots, x_n ,显然:左边 = 右边 = 0

若x为非插值节点,则构造如下辅助函数 自变量为t

$$F(t) = f(t) - L_n(t) - \frac{\omega(t)}{\omega(x)} [f(x) - L_n(x)]$$

$$t = x_0, x_1, \dots, x_n$$
 $\forall f(t) = L_n(t), \omega(t) = 0 \longrightarrow F(t) = 0$

$$t = x 时 \qquad F(x) = \left[1 - \frac{\omega(x)}{\omega(x)}\right] [f(x) - L_n(x)] = 0$$

所以F(t)至少有n+2个零点: x,x_0,x_1,\cdots,x_n

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i) \frac{1}{\omega(x)}$$

罗尔定理

f(x) 为在区间 [a,b] 上连续,并 且 f(a) = f(b),则至少存在一 点

$$c \in (a,b)$$
 满足: $f'(c) = 0$

F'(t) 在 F(t) 的任意两个相邻零点之间至少存在一点

$$\tilde{\xi}$$
 满足: $F'(\tilde{\xi}) = 0$, $F'(t)$ 有 $n+1$ 个零点

反复运用 罗尔定理 F''(t)有n个零点

 $F^{(n+1)}(t)$ 有1个零点 $F^{(n+1)}(\xi) = 20$

$$F^{(n+1)}(\xi) = 20$$

$$F(t) = f(t) - L_n(t) - \frac{\omega(t)}{\omega(x)} [f(x) - L_n(x)]$$

$$L_n(t)$$
 为 n 次代数多项式 ——— $L_n^{(n+1)} = 0$

$$\omega(t) = \prod_{i=0}^{n} (t - x_i) = (t - x_0)(t - x_1) \cdots (t - x_n)$$
$$= t^{n+1} + k_n t^n + \dots + k_1 t + k_0$$

$$\boldsymbol{\omega}^{(n+1)}(t) = (n+1)!$$

$$F^{(n+1)}(\xi) = f^{(n+1)}(\xi) - \frac{(n+1)!}{\omega(x)} [f(x) - L_n(x)] = 0$$

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i) \frac{\omega(x_i)}{\omega(x_i)}$$

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i) \omega(x)$$

- ◆ ξ在 (a, b) 内的具体位置通常不可能给出。
- ◆ 如果我们可以估算出:

$$\max_{a < x < b} \left| f^{(n+1)}(x) \right| = M_{n+1}$$

则用 $L_n(x)$ 逼近 f(x) 的截断误差的绝对值:

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} \left| \prod_{i=0}^n (x-x_i) \right|$$

例3

已知 $\ln 2.00 = 0.6931$, $\ln 2.50 = 0.9163$, $\ln 3.00 = 1.0986$,用抛物线插值法求得 $\ln 2.718 \approx 0.9986$,试估算其相对误差

$$(\ln x)' = \frac{1}{x}$$
 $(\ln x)'' = -\frac{1}{x^2}$ $(\ln x)''' = \frac{2}{x^3}$

$$\max_{2.00 < x < 3.00} |(\ln x)'''| = \frac{2}{(2.00)^3} = \frac{1}{4} = 0.25 \longrightarrow M_3$$

$$|R_2(2.718)| \le \frac{0.25}{3!} \times$$

$$|(2.718 - 2.00)(2.718 - 2.50)(2.718 - 3.00)| \approx 0.001839$$

$$|\varepsilon_r(\ln 2.718)| \approx 0.001839/0.9986 \approx 0.00184 = 0.184\%$$

对比前例: $|\varepsilon_r|$ ≈ 0.13%

例4.1

已知 lnx的函数表如下 (ln11.25=2.420368):

X	10	11	12	13
lnx	2.302585	2.397895	2.484907	2.564949

用抛物线插值法计算ln11.25的近似值,并估计误差。

- (1) 取节点 $x_0=10$, $x_1=11$, $x_2=12$, 计算 $\ln 11.25$ 的近似值。 得 $\ln 11.25=2.420426$ $|R_2(11.25)| \le 0.000078$ 实际上,根据准确值计算得 $|R_2(11.25)| \approx 0.000058$
- (2) 取节点 $x_1=11$, $x_2=12$, $x_3=13$, 计算 $\ln 11.25$ 的近似值。 得 $\ln 11.25=2.420301$ $|R_2(11.25)| \le 0.000082$

例4.2

已知 lnx的函数表如下 (ln11.25=2.420368):

X	10	11	12	13
lnx	2.302585	2.397895	2.484907	2.564949

用三次多项式插值法计算In11.25的近似值。

节点
$$x_0=10, x_1=11, x_2=12, x_3=13$$

得 ln11.25=2.420374

 $|R_2(11.25)| \le 0.000010$

对比例4.1的结果:

ln11.25=2.420426

 $|R_2(11.25)| \le 0.000078$

ln11.25=2.420301

 $|R_2(11.25)| \le 0.000082$

Lagrange 插值误差分析(续)

由于 f(x) 的高阶导数一般无法确定,实用的截断误差估计可以采用以下的事后误差分析方法:

$$n+1$$
 个插值节点:
$$f(x)-L_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\prod_{i=0}^n(x-x_i)$$

增加一个节点 x_{n+1} ,用 x_1, x_2, \dots, x_{n+1} 这 n+1个插值节点 进行插值,其截断误差为:

$$f(x) - \tilde{L}_n(x) = \frac{f^{(n+1)}(\tilde{\xi})}{(n+1)!} \prod_{i=1}^{n+1} (x - x_i)$$

如果f(x) 在插值区间变化不剧烈,则 $f^{(n+1)}(\xi) \approx f^{(n+1)}(\tilde{\xi})$

$$f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

$$\frac{f(x) - L_n(x)}{f(x) - \tilde{L}_n(x)} \approx \frac{x - x_0}{x - x_{n+1}}$$

$$f(x) \approx \frac{x - x_{n+1}}{x_0 - x_{n+1}} L_n(x) + \frac{x - x_0}{x_{n+1} - x_0} \tilde{L}_n(x) \qquad (*)$$

—— 得到新的近似式

$$R_n(x) = f(x) - L_n(x) \approx \frac{x - x_0}{x_0 - x_{n+1}} [L_n(x) - \tilde{L}_n(x)] \qquad (**)$$

——得到新的误差估计式

已知 lnx的函数表如下 (ln11.25=2.420368):

X	10	11	12	13
lnx	2.302585	2.397895	2.484907	2.564949

用抛物线插值法计算ln11.25的近似值,并估计误差。

- (1) 取节点 $x_0=10$, $x_1=11$, $x_2=12$, 得 $\ln 11.25=2.420426$
- (2) 取节点 $x_1=11$, $x_2=12$, $x_3=13$, 得 $\ln 11.25=2.420301$
- (3) 用公式(*) 再计算 ln11.25 的近似值,得 ln11.25=2.420374 —结果同例4.2!
- 用公式(**) 再计算误差,得 $R_2(11.25) \approx 0.000052$

别走得太快,等一等灵魂……

$$(x_0, y_0), (x_1, y_1), \dots (x_n, y_n)$$
 $y_i = f(x_i)$ 简单 复杂
$$L_n(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x) + \dots + y_n l_n(x) = \sum_{i=0}^{n} y_i l_i(x)$$

$$l_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}$$
 n次多项式
与所有节点有关

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i) \frac{\omega(x)}{(n+1)!}$$

2.3 牛顿(Newton)插值

Lagrange 插值:

- ◈ 优点:公式对称简单,规律性强,便于记忆和编程
- ◆ 缺点:每增加一个节点,原有的插值基函数 l_i(x) 必须重新计算,从而不具有承袭性

Newton 插值:

- ◆ 优点: 具有承袭性, 能够利用以前计算的结果
- ◆ 不足: 公式结构不对称, 不便于记忆

n次牛顿插值多项式

◈ 求作 n 次代数多项式:

满足: $N_n(x_i) = f(x_i)$ $i = 0,1,2,\dots,n$

$$\begin{cases} \varphi_0(x) = 1 \\ \varphi_i(x) = (x - x_{i-1})\varphi_{i-1}(x) & i = 1, 2, \dots, n \end{cases}$$

$$\varphi_0(x) = 1$$
, $\varphi_1(x) = (x - x_0)$, $\varphi_2(x) = (x - x_0)(x - x_1)$,...

$$N_n(x) = c_0 \varphi_0(x) + c_1 \varphi_1(x) + \dots + c_n \varphi_n(x) = \sum_{i=0}^n c_i \varphi_i(x)$$

将 x_0, x_1, \dots, x_n 分别代入 $N_n(x)$

利用 $N_n(x_i) = f(x_i)$ 即可确定系数 c_0, c_1, \dots, c_n

$$x = x_0$$
 $N_n(x_0) = c_0 = f(x_0)$

$$x = x_1$$
 $N_n(x_1) = c_0 + c_1(x_1 - x_0) = f(x_1)$

$$c_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$x = x_{2} N_{n}(x_{2}) = c_{0} + c_{1}(x_{2} - x_{0}) + c_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$= f(x_{2})$$
⁴⁰

$$c_1 = f(x_0)$$

$$c_1 = \frac{f(x_0)}{x_0 - x_1} + \frac{f(x_1)}{x_1 - x_0}$$

$$c_2 = \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)}{(x_2 - x_0)(x_2 - x_1)}$$

差商

• 给定区间 [a,b] 中两两互不相同的点 x_0,x_1,x_2,\cdots 及在这些点处相应的函数值 $f(x_0), f(x_1), f(x_2), \cdots$ 记:

$$f[x_i] = f(x_i), \quad i = 0,1,2,\dots$$

f(x) 在 x_i 处的零阶差商

$$f[x_{i}, x_{i+1}] = \frac{f[x_{i+1}] - f[x_{i}]}{x_{i+1} - x_{i}}$$

一阶差商

$$f[x_{i}, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}}$$

二阶差商

$$x_{i+k} - x$$

$x_{\rm i}$	$f(x_i)$	一阶	二阶差商	三阶差商		n阶差商
		差商				
x_0	$f(x_0)$					
x_1	$f(x_1)$	$f[x_0,x_1]$				
x_2	$f(x_2)$	$f[x_1,x_2]$	$f[x_0,x_1,x_2]$		•••	
x_3	$f(x_3)$	$f[x_2,x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$		
:	:					:
$x_{\rm n}$	$f(x_{\rm n})$	$f[x_{n-1},x_n]$	$f[x_{n-2},x_{n-1},x_n]$	$f[x_{n-3},x_{n-2},x_{n-1},x_n]$		$f[x_0,x_1,\ldots,x_n]$

差商表

10/0/

◈ 例:

x_i	5	7	11	13	21
$f(x_i)$	150	392	1452	2366	9702

◈ 差商表为:

x_i	零阶差商	一阶差商	二阶差商	三阶差商	四阶差商
5	150				
7	392	121			44
11	1452	265	24		
13	2366	457	32	1	
21	9702	917	46	1	0

差商的性质

◆ 差商与函数值的关系为

$$f[x_0, x_1, \cdots, x_k]$$

k 阶差商是其各节点

$$=\sum_{j=0}^{k}\frac{f(x_{j})}{(x_{j}-x_{0})(x_{j}-x_{1})\cdots(x_{j}-x_{j-1})(x_{j}-x_{j+1})\cdots(x_{j}-x_{k})}$$

证明: k=1 时:

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$= \frac{-f(x_0)}{x_1 - x_0} + \frac{f(x_1)}{x_1 - x_0} = \frac{f(x_0)}{x_0 - x_1} + \frac{f(x_1)}{x_1 - x_0}$$

$$f[x_0, x_1, \dots, x_k]$$

$$= \sum_{j=0}^k \frac{f(x_j)}{(x_j - x_0)(x_j - x_1) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)}$$

假设 k=n-1 时也成立,即:

$$f[x_0, x_1, \dots, x_{n-1}] = \sum_{j=0}^{n-1} \frac{f(x_j)}{(x_j - x_0)(x_j - x_1) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_{n-1})}$$

考查 k = n 时:

$$\begin{split} f[x_0, x_1, \cdots, x_n] &= \frac{f[x_1, x_2, \cdots, x_n] - f[x_0, x_1, \cdots, x_{n-1}]}{x_n - x_0} \\ &= \frac{1}{x_n - x_0} \left[\sum_{j=1}^n \frac{f(x_j)}{(x_j - x_1)(x_j - x_2) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)} \right. \\ &\left. - \sum_{j=0}^{n-1} \frac{f(x_j)}{(x_j - x_0)(x_j - x_1) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_{n-1})} \right] \end{split}$$

$$f[x_{0},x_{1},\dots,x_{n}] = \frac{1}{x_{n}-x_{0}} \left[\sum_{j=1}^{n} \frac{f(x_{j})}{(x_{j}-x_{1})(x_{j}-x_{2})\cdots(x_{j}-x_{j-1})(x_{j}-x_{j+1})\cdots(x_{j}-x_{n})} - \sum_{j=0}^{n-1} \frac{f(x_{j})}{(x_{j}-x_{0})(x_{j}-x_{1})\cdots(x_{j}-x_{j-1})(x_{j}-x_{j+1})\cdots(x_{j}-x_{n-1})} \right]$$

$$= \frac{1}{x_{n}-x_{0}} \left[\frac{f(x_{n})}{(x_{n}-x_{1})(x_{n}-x_{2})\cdots(x_{n}-x_{n-1})} + \sum_{j=1}^{n-1} \frac{f(x_{j})}{(x_{j}-x_{1})(x_{j}-x_{2})\cdots(x_{j}-x_{j-1})(x_{j}-x_{j+1})\cdots(x_{j}-x_{n-1})(x_{j}-x_{n})} - \sum_{j=1}^{n-1} \frac{f(x_{j})}{(x_{j}-x_{0})(x_{j}-x_{1})(x_{j}-x_{2})\cdots(x_{j}-x_{j-1})(x_{j}-x_{j+1})\cdots(x_{j}-x_{n-1})} \right]$$

$$-\sum_{j=1}^{n-1} \frac{f(x_{j})}{(x_{j} - x_{0})(x_{j} - x_{1})(x_{j} - x_{2})\cdots(x_{j} - x_{j-1})(x_{j} - x_{j+1})\cdots(x_{j} - x_{n-1})}$$

$$-\frac{f(x_{0})}{(x_{0} - x_{1})(x_{0} - x_{2})\cdots(x_{0} - x_{n-1})}$$

$$f(x_{n})$$

$$f(x_{0})$$

$$\frac{f(x_{0}-x_{1})(x_{0}-x_{2})\cdots(x_{0}-x_{n-1})}{f(x_{n})} + \frac{f(x_{0})}{(x_{0}-x_{1})(x_{0}-x_{2})\cdots(x_{0}-x_{n})} + \frac{1}{x_{n}-x_{0}} \sum_{j=1}^{n-1} \frac{f(x_{j})[(x_{j}-x_{0})-(x_{j}-x_{n})]}{(x_{j}-x_{1})\cdots(x_{j}-x_{j-1})(x_{j}-x_{j+1})\cdots(x_{j}-x_{n})}$$

$$\begin{split} f[x_0,x_1,\cdots,x_n] &= \frac{f(x_n)}{(x_n-x_0)(x_n-x_1)\cdots(x_n-x_{n-1})} + \frac{f(x_0)}{(x_0-x_1)(x_0-x_2)\cdots(x_0-x_n)} \\ &+ \frac{1}{x_n-x_0} \sum_{j=1}^{n-1} \frac{f(x_j)\Big[(x_j-x_0)-(x_j-x_n)\Big]}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_n)} \end{split}$$

$$= \frac{f(x_n)}{(x_n - x_0)(x_n - x_1)\cdots(x_n - x_{n-1})} + \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)\cdots(x_0 - x_n)} + \sum_{j=1}^{n-1} \frac{f(x_j)}{(x_j - x_0)(x_j - x_1)\cdots(x_j - x_{j-1})(x_j - x_{j+1})\cdots(x_j - x_n)}$$

$$= \sum_{j=0}^{n} \frac{f(x_j)}{(x_j - x_0)(x_j - x_1)\cdots(x_j - x_{j-1})(x_j - x_{j+1})\cdots(x_j - x_n)}$$

可见 k=n 时也成立。由数学归纳法可知:

$$f[x_0, x_1, \cdots, x_k]$$

$$= \sum_{j=0}^{k} \frac{f(x_j)}{(x_j - x_0)(x_j - x_1)\cdots(x_j - x_{j-1})(x_j - x_{j+1})\cdots(x_j - x_k)}$$

- ◆ 差商的值与节点的排列顺序无关
 - $f[x_0,\dots,x_i,\dots,x_j,\dots,x_n] = f[x_0,\dots,x_j,\dots,x_i,\dots,x_n]$
- * 若 $f[x,x_0,x_1,\dots,x_k]$ 是 x 的 n 次多项式,则 $f[x,x_0,x_1,\dots,x_{k+1}]$ 是 x 的 n-1 次多项式

$$f[x, x_0, x_1, \dots, x_{k+1}] = \underbrace{\frac{f[x_0, x_1, \dots, x_{k+1}] - f[x, x_0, x_1, \dots, x_k]}{x_{k+1} - x}}_{x_{k+1} - x}$$

$$x = x_{k+1}$$
 $\forall f[x_0, x_1, \dots, x_{k+1}] - f[x_{k+1}, x_0, x_1, \dots, x_k] = 0$

n 次代数多项式含有因子 $x-x_{k+1}$

所以: $f[x,x_0,x_1,\dots,x_{k+1}]$ 是x的n-1次多项式。

◆ 若 f(x) 是 x 的 m 次代数多项式,且 $n \ge m$,则: $f[x,x_0,x_1,\dots,x_n] = 0$

f[x] = f(x)是 x 的 m 次代数多项式 $f[x,x_0]$ 是 x 的 m-1 次代数多项式 $f[x,x_0,x_1]$ 是 x 的 m-2 次代数多项式 \vdots $f[x,x_0,\cdots,x_{m-1}]$ 是 x 的 0 次代数多项式

从 $f[x,x_0,\dots,x_m]$ 起所有的高阶差 商均为0,故: $f[x,x_0,x_1,\dots,x_n]$ = 0

 $f[x, x_{0}, \dots, x_{m-1}] = c \qquad f[x_{m}, x_{0}, \dots, x_{m-1}]$ $= f[x_{0}, \dots, x_{m-1}, x_{m}] = c$ $f[x, x_{0}, \dots, x_{m}] = \frac{f[x_{0}, x_{1}, \dots, x_{m}] - f[x, x_{0}, \dots, x_{m-1}]}{x_{m}} = 0$ = 0

$$f[x,x_0] = \frac{f(x_0) - f(x)}{x_0 - x}$$

$$f[x,x_0,x_1] = \frac{f[x_0,x_1] - f[x,x_0]}{x_1 - x}$$

$$f[x,x_0,x_1,x_2] = \frac{f[x_0,x_1,x_2] - f[x,x_0,x_1]}{x_2 - x}$$

$$f(x) = f(x_0) + f[x, x_0](x - x_0)$$

$$f[x, x_0] = f[x_0, x_1] + f[x, x_0, x_1](x - x_1)$$

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$+ f[x, x_0, x_1](x - x_0)(x - x_1)$$

$$f[x, x_0, x_1] = f[x_0, x_1, x_2] + f[x, x_0, x_1, x_2](x - x_2)$$

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ f[x, x_0, x_1, x_2](x - x_0)(x - x_1)(x - x_2)$$

牛顿插值公式

$$c_{0} = f(x_{0})$$

$$+f[x_{0},x_{1}](x-x_{0})$$

$$+f[x_{0},x_{1},x_{2}](x-x_{0})(x-x_{1})$$

$$+f[x_{0},x_{1},x_{2},x_{3}](x-x_{0})(x-x_{1})(x-x_{2})$$

$$\vdots$$

$$+f[x_{0},x_{1},\cdots,x_{n}](x-x_{0})(x-x_{1})\cdots(x-x_{n-1})$$

$$+f[x,x_{0},x_{1},\cdots,x_{n}](x-x_{0})(x-x_{1})\cdots(x-x_{n})$$

$$R_{n}(x)$$

一般的:
$$c_i = f[x_0, x_1, \dots, x_i]$$
 $i = 0, 1, \dots, n$

◈ 由插值多项式的唯一性可知: $N_n(x) = L_n(x)$, 因此二者的余项也应相等。

$$f[x,x_{0},x_{1},\cdots,x_{n}](x-x_{0})(x-x_{1})\cdots(x-x_{n})$$

$$=\frac{f^{(n+1)}(\bar{\xi})}{(n+1)!}\prod_{\underline{i=0}}^{n}(x-x_{i})$$

$$f[x,x_{0},x_{1},\cdots,x_{n}]=\frac{f^{(n+1)}(\bar{\xi})}{(n+1)!}$$

$$f[x,x_{0},x_{1},\cdots,x_{n-1}]=\frac{f^{(n)}(\tilde{\xi})}{n!}$$

$$f[x_{n},x_{0},x_{1},\cdots,x_{n-1}]=f[x_{0},x_{1},\cdots,x_{n-1},x_{n}]=\frac{f^{(n)}(\xi)}{n!}$$
so

1010

例1 给定数据表 $f(x) = \ln x$

x_i	2.20	2.40	2.60	2.80	3.00
$f(x_i)$	0.7884574	0.8754687	0.9555114	1.0296194	1.0986123

- ◆ 构造差商表
- \bullet 用二次 Newton 插值多项式,近似计算 f(2.718) 的值
- ◆ 写出四次 Newton 插值多项式 N₄(x)

解: 由已知可构造如下差商表

	v	f[v]	一阶	二阶	三阶	四阶
	x_i	$f[x_i]$	差商	差商	差商	差商
	2.20	0.7884574				
	2.40	0.8754687	0.4350565			
0.710	2.60	0.9555114	0.4002135	-0.0871075		
2.718-	2.80	1.0296194	0.3705400	-0.0741838	0.0215395	
	3.00	1.0986123	0.3449645	-0.0639388	0.0170750	-0.0055806

x_i	2.20	2.40	2.60	2.80	3.00
$f(x_i)$	0.7884574	0.8754687	0.9555114	1.0296194	1.0986123

x_i	$f[x_i]$	一阶差商	二阶差商	三阶差商	四阶差商
2.20	0.7884574				
2.40	0.8754687	0.4350565			
2.60	0.9555114	0.4002135	-0.0871075		
2.80	1.0296194	0.3705400	-0.0741838	0.0215395	The state of
3.00	1.0986123	0.3449645	-0.0639388	0.0170750	-0.0055806

 $N_2(x)$ 有多种形式,如果取 $x_0=2.4$, $x_1=2.6$, $x_2=2.8$:

$$N_2(x) = 0.8754687 + 0.4002135(x - 2.40)$$

$$-0.0741838(x-2.40)(x-2.60)$$

$$f(2.718) \approx N_2(2.718) \approx 0.9999529$$

$$\ln 2.718 = 0.9998963\cdots$$

$$\varepsilon_r \approx 0.037\%$$

$$N_4(x) = 0.7884574$$

$$+0.4350565(x-2.20)$$

$$-0.0871075(x-2.20)(x-2.40)$$

$$+0.0215395(x-2.20)(x-2.40)(x-2.60)$$

$$-0.0055806(x-2.20)(x-2.40)(x-2.60)(x-2.80)$$

56

插值条件

Lagrange插值 Newton插值

Hermite插值

2.4 赫密特(Hermite)插值

◆ 己知 f(x) 在区间 [a, b] 上 n+1 个互异节点 $a \le x_0, x_1, x_2, \dots, x_n \le b$ 上的函数值及一阶导数值:

$$f(x_i) = y_i$$
 $f'(x_i) = y_i'$ $i = 0,1,2,\dots,n$

求作一个次数不高于 2n+1 次的插值多项式 H(x),满足以下 2n+2 条件:

$$H(x_i) = y_i$$
 $H'(x_i) = y_i'$ $i = 0,1,2,\dots,n$

- ◆ 称 H(x) 为函数 f(x) 的 Hermite 插值多项式,因其最高次数不超过 2n+1,常记为 $H_{2n+1}(x)$
- $H_{2n+1}(x)$ 不仅在节点处与 f(x) 有相同的函数值,且在这些节点处与 f(x) 相切

$$H_{2n+1}(x) = \sum_{i=0}^{n} \left[y_i \alpha_i(x) + y_i' \beta_i(x) \right]$$

$$\alpha_{i}(x_{j}) = \delta_{ij} = \begin{cases} 0 & j \neq i \\ 1 & j = i \end{cases}$$

$$\alpha'_{i}(x_{j}) = 0$$

$$\beta_i(x_j) = 0$$

$$\beta_i'(x_j) = \delta_{ij} = \begin{cases} 0 & j \neq i \\ 1 & j = i \end{cases}$$

 $\alpha_i(x)$, $\beta_i(x)$ 均为 2n+1 次代数多项式

$$\alpha_i(x)$$
, $\beta_i(x)$ 均含因子 $(x-x_i)^2$

$$j = 0, 1, \dots, i - 1, i + 1, \dots, n$$

赫密特插 值基函数

$$l_i(x_j) = \begin{cases} 0 & j \neq i \\ 1 & j = i \end{cases}$$

$$l_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} = \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

设
$$\begin{cases} \alpha_i(x) = (a_1x + b_1)l_i^2(x) \\ \beta_i(x) = (a_2x + b_2)l_i^2(x) \end{cases} i = 0,1,\dots,n$$
 待定系数法

$$\begin{cases} \alpha_i(x_i) = (a_1 x_i + b_1) l_i^2(x_i) = 1 & l_i(x_i) = 1 \\ \alpha'_i(x_i) = a_1 l_i^2(x_i) + (a_1 x_i + b_1) \cdot 2l_i(x_i) \cdot l'_i(x_i) = 0 \end{cases}$$

$$\begin{cases} a_1 x_i + b_1 = 1 \\ a_1 + 2l'_i(x_i) = 0 \end{cases}$$

$$l_{i}(x) = \frac{(x - x_{0})\cdots(x - x_{i-1})(x - x_{i+1})\cdots(x - x_{n})}{(x_{i} - x_{0})\cdots(x_{i} - x_{i-1})(x_{i} - x_{i+1})\cdots(x_{i} - x_{n})}$$

$$\begin{split} \ln l_i(x) &= \\ \ln (x - x_0) + \dots + \ln (x - x_{i-1}) + \ln (x - x_{i+1}) + \dots + \ln (x - x_n) \\ - \ln (x_i - x_0) \dots (x_i - x_{i-1}) (x_i - x_{i+1}) \dots (x_i - x_n) \end{split}$$

$$\frac{l'_i(x)}{l_i(x)} = \frac{1}{x - x_0} + \dots + \frac{1}{x - x_{i-1}} + \frac{1}{x - x_{i+1}} + \dots + \frac{1}{x - x_n}$$

$$l'_{i}(x) = l_{i}(x) \sum_{j=0, j \neq i}^{n} \frac{1}{x - x_{j}}$$

$$l'_{i}(x_{i}) = l_{i}(x_{i}) \sum_{j=0, j \neq i}^{n} \frac{1}{x_{i} - x_{j}} = \sum_{j=0, j \neq i}^{n} \frac{1}{x_{i} - x_{j}}$$

$$\begin{cases} a_1 x_i + b_1 = 1 \\ a_1 + 2l'_i(x_i) = 0 \end{cases} \qquad l'_i(x_i) = \sum_{j=0, j \neq i}^n \frac{1}{x_i - x_j}$$

$$a_1 = -2\sum_{j=0, j\neq i}^{n} \frac{1}{x_i - x_j}$$

$$a_1 x_i + b_1 + a_1 x = 1 + a_1 x$$

$$a_1 x + b_1 = 1 + a_1 (x - x_i)$$

$$= 1 - 2(x - x_i) \sum_{j=0, j \neq i}^{n} \frac{1}{x_i - x_j}$$

$$\alpha_i(x) = (a_1 x + b_1) l_i^2(x)$$

$$= \left[1 - 2(x - x_i) \sum_{j=0, j \neq i}^{n} \frac{1}{x_i - x_j}\right] l_i^2(x)$$

$$\beta_i(x_j) = 0$$
, $\beta'_i(x_j) = 0$, $\beta'_i(x_i) = 1$

$$\beta_i(x) = (a_2x + b_2)l_i^2(x)$$
 $i = 0,1,\dots,n$

$$\begin{cases} \beta_i(x_i) = (a_2 x_i + b_2) l_i^2(x_i) = 0 \\ \beta_i'(x_i) = a_2 l_i^2(x_i) + (a_2 x_i + b_2) \cdot 2 l_i(x_i) \cdot l_i'(x_i) = 1 \end{cases}$$

$$\begin{cases} a_2 x_i + b_2 = 0 \\ a_2 + 0 \times 2l'_i(x_i) = 1 \end{cases} \begin{cases} a_2 = 1 \\ b_2 = -x_i \end{cases}$$

所以:
$$\beta_i(x) = (x - x_i)l_i^2(x)$$

$$H_{2n+1}(x) = \sum_{i=0}^{n} \left\{ y_i \left[1 - 2(x - x_i) \sum_{j=0, j \neq i}^{n} \frac{1}{x_i - x_j} \right] l_i^2(x) + y_i' \left(x - x_i \right) l_i^2(x) \right\}$$

$$\beta_i(x)$$

$$R_{2n+1}(x) = f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \left[\prod_{i=0}^{n} (x - x_i) \right]^2$$
$$= \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \omega_{n+1}^2(x) \qquad \xi \in (a,b)$$

设 $f(x) \in C^4[0,2]$,满足

$$\begin{array}{c|cccc}
 x & 0 & 1 & 2 \\
 \hline
 f & 1 & 0 & 3 \\
 \hline
 f' & 0 &
 \end{array}$$

求f(x)的三次插值多项式 $H_3(x)$,并给出余项。

记
$$y_0 = 1, y_1 = 0, y_2 = 3, y_3 = 0$$

◈ 方法一(基函数法)

设
$$H_3(x) = y_0 \varphi_0(x) + y_1 \varphi_1(x) + y_2 \varphi_2(x) + y_3 \varphi_3(x)$$

 $= \varphi_0(x) + 3\varphi_2(x)$
 $\varphi_0(x) = c(x-1)^2(x-2) = -\frac{1}{2}(x-1)^2(x-2)$
 $\varphi_2(x) = dx(x-1)^2 = \frac{1}{2}x(x-1)^2$
故 $H_3(x) = -\frac{1}{2}(x-1)^2(x-2) + \frac{3}{2}x(x-1)^2$

$$=(x-1)^2(x+1)$$

$$\begin{array}{c|ccccc}
x & 0 & 1 & 2 \\
\hline
f & 1 & 0 & 3 \\
\hline
f' & 0 &
\end{array}$$

◆ 方法二 (待定系数法)

设
$$H_3(x) = (x-1)^2 (ax+b)$$

$$H_3(0)=1 \Rightarrow \begin{cases} b=1 \\ H_3(2)=3 \end{cases} \Rightarrow \begin{cases} a=1 \\ 2a+b=3 \end{cases} \Rightarrow \begin{cases} a=1 \\ b=1 \end{cases}$$

故
$$H_3(x) = (x-1)^2(x+1)$$

余项

$$R_3(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!} x(x-1)^2 (x-2)$$

求作 Hermite 插值多项式 H,(x)满足:

求作 Hermite 插值多项式 $H_3(x)$ 满足:

$$\begin{cases} H_2(x_0) = y_0 \\ H_2(x_1) = y_1 \\ H'_2(x_0) = y'_0 \end{cases}$$

 $\begin{cases} H_3(x_0) = y_0 & \begin{cases} H'_3(x_0) = y'_0 \\ H_3(x_1) = y_1 \end{cases} & H'_3(x_1) = y'_1 \end{cases}$

1. 首先讨论 $x_0 = 0$, $x_1 = 1$ 这种特殊情况。设:

$$H_2(x) = y_0 \alpha_0(x) + y_1 \alpha_1(x) + y_0' \beta_0(x)$$

 $\alpha_0(x)$, $\alpha_1(x)$, $\beta_0(x)$ 为基函数,它们均为二次代数多项式,满足:

$$\begin{cases} \alpha_0(0) = 1 \\ \alpha_0(1) = 0 \end{cases} \begin{cases} \alpha_1(0) = 0 \\ \alpha_1(1) = 1 \end{cases} \begin{cases} \beta_0(0) = 0 \\ \beta_0(1) = 0 \end{cases}$$
$$\alpha_1'(0) = 0 \end{cases} \begin{cases} \alpha_1(0) = 0 \\ \beta_0'(0) = 0 \end{cases}$$

显然它们满足:

$$H_2(0) = y_0, \quad H_2(1) = y_1, \quad H_2'(0) = y_0'$$

$$\begin{cases} \alpha_0(1) = 0 & \alpha_1(1) = 1 \\ \alpha_0'(0) = 0 & \alpha_1'(0) = 0 \end{cases} \begin{cases} \beta_0(1) = 0 \\ \beta_0'(0) = 1 \end{cases}$$

$$\begin{cases} \alpha_0(x) = (x-1)(ax+b) \\ \alpha_0(0) = -b = 1 & b = -1 \\ \alpha_0'(x) = (ax+b) + a(x-1) \\ \alpha_0'(0) = b - a = 0 & a = b = -1 \end{cases}$$

$$\begin{cases} \alpha_0(x) = (x-1)(-x-1) \\ = -(x-1)(x+1) \\ = -(x^2-1) \\ = 1-x^2 \end{cases}$$

$$\begin{cases} \alpha_1(x) = x(ax+b) \\ \alpha_1(1) = a+b = 1 \\ \alpha_1'(x) = (ax+b) + ax \\ \alpha_1'(0) = b = 0 & a = 1 \end{cases}$$

$$\begin{cases} \alpha_1(x) = x(x+0) \\ = x^2 \end{cases}$$

$$\begin{cases} \alpha_1(x) = x(x+0) \\ = x^2 \end{cases}$$

$$\begin{cases} \alpha_1(x) = x(x+1) \\ = x(x+1) \end{cases}$$

$$\begin{cases} \alpha_1(x) = x(x+1) \\ = x(x+$$

 $\alpha_1(0) = 0$

 $\beta_0(0) = 0$

 $=x(1-x)^{-70}$

 $\alpha_0(0) = 1$

 $\beta_0'(0) = -a = 1 \longrightarrow a = -1$

$$\alpha_0(x) = 1 - x^2$$
, $\alpha_1(x) = x^2$, $\beta_0(x) = x(1 - x)$

$$H_2(x) = y_0(1-x^2) + y_1x^2 + y_0'x(1-x)$$
 $0 \le x \le 1$

◈ 若 x_0 , x_1 为任意两个插值节点

$$x_0 \le x \le x_1$$
 $0 \le x - x_0 \le x_1 - x_0$ $0 \le \frac{x - x_0}{x_1 - x_0} \le 1$

记:
$$h = x_1 - x_0$$
, $X = \frac{x - x_0}{h}$ 则: $x = x_0 + hX$, $dx = hdX$

显然:
$$x = x_0$$
 时, $X = 0$, $x = x_1$ 时, $X = 1$ 记为 $F(X)$

$$f(x) = f(x_0 + hX)$$

$$F'(X) = \frac{\mathrm{d}F(X)}{\mathrm{d}X} = \frac{\mathrm{d}x}{\mathrm{d}X} \cdot \frac{\mathrm{d}F(X)}{\mathrm{d}x} = h\frac{\mathrm{d}f(x)}{\mathrm{d}x} = hf'(x)$$

$$x = x_0$$
: $F(0) = f(x_0) = y_0$ $F'(0) = hf'(x_0) = hy_0'$

$$x = x_1$$
: $F(1) = f(x_1) = y_1$

$$\alpha_0(x) = 1 - x^2$$

$$\alpha_1(x) = x^2$$

$$\beta_0(x) = x(1 - x)$$

$$X = \frac{x - x_0}{h}$$

$$p_2(X) = y_0(1-X^2) + y_1X^2 + hy_0'X(1-X), \quad 0 \le X \le 1$$

$$p_{2}\left(\frac{x-x_{0}}{h}\right) = y_{0}\left[1-\left(\frac{x-x_{0}}{h}\right)^{2}\right] + y_{1}\left(\frac{x-x_{0}}{h}\right)^{2} + hy_{0}'\left(\frac{x-x_{0}}{h}\right)\left[1-\left(\frac{x-x_{0}}{h}\right)\right]$$

$$H_2(x) = y_0 \alpha_0 \left(\frac{x - x_0}{h} \right) + y_1 \alpha_1 \left(\frac{x - x_0}{h} \right) + h y_0' \beta_0 \left(\frac{x - x_0}{h} \right)$$

$$x_0 \le x \le x_1$$

1010

求作 Hermite 插值多项式 $H_2(x)$ 满足:

 $H_2(x)$ 满足: $(H_2(x_0) = v_0)$

$$\begin{cases} H_2(x_0) = y_0 \\ H_2(x_1) = y_1 \\ H'_2(x_0) = y'_0 \end{cases}$$

求作 Hermite 插值多项式 $H_3(x)$ 满足:

$$\begin{cases} H_3(x_0) = y_0 & \begin{cases} H'_3(x_0) = y'_0 \\ H_3(x_1) = y_1 \end{cases} & H'_3(x_1) = y'_1 \end{cases}$$

2. 先讨论 $x_0 = 0$, $x_1 = 1$ 这种特殊情况。设:

$$H_3(x) = y_0 \alpha_0(x) + y_1 \alpha_1(x) + y_0' \beta_0(x) + y_1' \beta_1(x)$$

 $\alpha_0(x)$, $\alpha_1(x)$, $\beta_0(x)$, $\beta_1(x)$ 为基函数,它们均为三次代数多项式,满足:

$$\begin{cases} \alpha_0(0) = 1 & \begin{cases} \alpha_1(0) = 0 & \beta_0(0) = 0 \\ \alpha_0(1) = 0 & \alpha_1(1) = 1 \end{cases} & \beta_0(1) = 0 \\ \alpha_0'(0) = 0 & \alpha_1'(0) = 0 \\ \alpha_0'(1) = 0 & \alpha_1'(1) = 0 \end{cases} & \beta_0'(0) = 1 \\ \beta_0'(1) = 0 & \beta_1'(0) = 0 \\ \beta_1'(1) = 0 \end{cases} & \beta_1'(1) = 1$$

显然它们满足:

$$H_3(0) = y_0, H_3(1) = y_1, H_3'(0) = y_0', H_3'(1) = y_1'$$

$$\begin{bmatrix}
\alpha_0(0) = 1 & \alpha_1(0) = 0 & \beta_0(0) = 0 & \beta_1(0) = 0 \\
\alpha_0(1) = 0 & \alpha_1(1) = 1 & \beta_0(1) = 0 & \beta_1(1) = 0 \\
\alpha'_0(0) = 0 & \alpha'_1(0) = 0 & \beta'_0(0) = 1 & \beta'_1(0) = 0 \\
\alpha'_0(1) = 0 & \alpha'_1(1) = 0 & \beta'_0(1) = 0 & \beta'_1(1) = 1
\end{bmatrix}$$

$$\overrightarrow{\alpha}_0(x) = (x - 1)(ax^2 + bx + c)$$

$$\alpha_0(0) = -c = 1$$

$$\alpha'_0(x) = (ax^2 + bx + c) + (x - 1)(2ax + b)$$

$$\alpha'_{0}(0) = c - b = 0 \qquad b = c = -1$$

$$\alpha'_{0}(1) = a + b + c = 0 \qquad a = -(b + c) = 2$$

$$\alpha_{0}(x) = (x - 1)(2x^{2} - x - 1) = (x - 1)^{2}(2x + 1)$$

$$\alpha_{1}(x) = x(ax^{2} + bx + c)$$

$$\alpha_{1}(1) = a + b + c = 1 \qquad a + b = 1 \qquad b = 3$$

$$\alpha'_{1}(x) = (ax^{2} + bx + c) + x(2ax + b)$$

$$\alpha'_{1}(0) = c = 0 \qquad c = 0$$

$$\alpha'_{1}(1) = (a + b + c) + (2a + b) = 0 \qquad a = -(a + b) - 1 = -2$$

 $\alpha_1(x) = x(-2x^2 + 3x) = x^2(-2x + 3)$

$$\begin{cases} \alpha_0(0) = 1 & \begin{cases} \alpha_1(0) = 0 & \beta_0(0) = 0 \\ \alpha_0(1) = 0 & \alpha_1(1) = 1 \end{cases} & \beta_0(1) = 0 & \beta_1(1) = 0 \\ \alpha'_0(0) = 0 & \alpha'_1(0) = 0 & \beta'_0(0) = 1 \\ \alpha'_0(1) = 0 & \alpha'_1(1) = 0 \end{cases} & \beta'_0(0) = 1 & \beta'_1(0) = 0 \\ \beta'_1(1) = 0 & \beta'_1(1) = 1 \end{cases}$$

$$(ax + b)$$

-a = -b = 1

a=1

设
$$\beta_0(x) = x(x-1)(ax+b)$$

$$\beta_0'(x) = (2x-1)(ax+b) + (x^2-x)a$$

$$\beta_0'(0) = -b = 1 \qquad b = -1$$

$$\beta_0'(1) = a + b = 0$$

$$\beta_0(x) = x(x-1)(x-1) = x(x-1)^2$$

设
$$\beta_1(x) = x(x-1)(ax+b)$$

$$\beta'(x) = (2x-1)(ax+b) + (x^2-x)a$$

$$\beta_1'(x) = (2x-1)(ax+b) + (x^2-x)a$$

$$\beta_1'(0) = -b = 0 \qquad b = 0$$

$$\beta_1'(1) = a + b = 1$$

$$\beta_1(x) = x(x-1)x = x^2(x-1)$$

$$\begin{cases} \alpha_0(x) = (x-1)^2(2x+1) & \beta_0(x) = x(x-1)^2 \\ \alpha_1(x) = x^2(-2x+3) & \beta_1(x) = x^2(x-1) \end{cases}$$

$$H_3(x) = y_0(x-1)^2(2x+1) + y_1x^2(-2x+3)$$
$$+y_0'x(x-1)^2 + y_1'x^2(x-1) \qquad 0 \le x \le 1$$

◆ 若 x_0 , x_1 为任意两个插值节点

记:
$$h = x_1 - x_0$$

$$H_3(x) = y_0 \alpha_0 \left(\frac{x - x_0}{h}\right) + y_1 \alpha_1 \left(\frac{x - x_0}{h}\right)$$
$$+ h y_0' \beta_0 \left(\frac{x - x_0}{h}\right) + h y_1' \beta_1 \left(\frac{x - x_0}{h}\right)$$

$$x_0 \le x \le x_1$$

$$f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \left[\prod_{i=0}^{n} (x - x_i) \right]^2$$

$$\begin{split} f(x) - H_3(x) &= \frac{f^{(4)}(\xi)}{4!} \Big[(x - x_0)(x - x_1) \Big]^2 \qquad \xi \in (x_0, x_1) \\ g(x) &= \Big[(x - x_0)(x - x_1) \Big]^2 \\ g'(x) &= 2(x - x_0)(x - x_1) \Big[(x - x_1) + (x - x_0) \Big] \\ &= 4(x - x_0)(x - x_1) \left(x - \frac{x_0 + x_1}{2} \right) = 0 \\ x &= x_0, x_1 \text{ Ft}, \quad g(x) &= 0 \\ x &= \frac{x_0 + x_1}{2} \text{ Ft}, \quad g(x) &= \left[\left(\frac{x_0 + x_1}{2} - x_0 \right) \left(\frac{x_0 + x_1}{2} - x_1 \right) \right]^2 \\ &= \left[\left(\frac{x_1 - x_0}{2} \right) \left(-\frac{x_1 - x_0}{2} \right) \right]^2 = \frac{h^4}{16} \quad \text{最大值} \end{split}$$

$$f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!} \left[(x - x_0)(x - x_1) \right]^2$$

$$\begin{aligned} |R_{3}(x)| &= |f(x) - H_{3}(x)| \\ &\leq \left| \frac{f^{(4)}(\xi)}{4!} \right| \cdot \frac{h^{4}}{16} \\ &\leq \frac{h^{4}}{384} \max_{x_{0} \leq x \leq x_{1}} |f^{(4)}(x)| \qquad h = x_{1} - x_{0} \end{aligned}$$

高次插值的 Runge 现象

$$f(x) = \frac{1}{1+x^2}$$
$$-5 \le x \le 5$$

当点一后节的逼越插数定,点增近来 随处程随个加精越节到度着数,度差

2.5 分段插值

- * 将插值区间 [a, b] 作一划分 Δ: $a = x_0 < x_1 < x_2 < \cdots < x_n = b$
- 在每个小区间 $[x_i, x_{i+1}]$ 上构造次数较低的插值多项式 $p_i(x)$
- 将每个小区间上的插值多项 式拼接在一起作为f(x)在区 间 [a,b]上的插值函数 $g(x) = p_i(x), x ∈ [x_i, x_{i+1}]$

分段线性插值

◆ 已知划分 Δ 的每个节点 x_i 处对应的 y_i ,求作具有划 分 Δ 的分段一次代数多项式 $S_1(x)$,满足:

$$S_1(x_i) = y_i$$
 $i = 0,1,\dots,n$

 $S_1(x)$ 在每个小区间 $[x_i, x_{i+1}]$ 上是一个一次插值多项式,则插值基函数 $\varphi_0(x)$, $\varphi_1(x)$ 均为一次式,且:

$$\varphi_0(x) = \begin{cases} 1 & x = x_i \\ 0 & x = x_{i+1} \end{cases} \qquad \varphi_1(x) = \begin{cases} 0 & x = x_i \\ 1 & x = x_{i+1} \end{cases}$$

$$S_{1}^{[i]}(x) = y_{i} \frac{x - x_{i+1}}{x_{i} - x_{i+1}} + y_{i+1} \frac{x - x_{i}}{x_{i+1} - x_{i}} \qquad x \in [x_{i}, x_{i+1}]$$

$$i = 0, 1, \dots, n^{\frac{82}{-}} 1$$

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

$$f(x) - S_1^{[i]}(x) = \frac{f''(\xi)}{2!} (x - x_i)(x - x_{i+1}) \quad \xi \in [x_i, x_{i+1}]$$

$$[(x-x_i)(x-x_{i+1})]' = (x-x_i) + (x-x_{i+1}) = 0 \longrightarrow x = \frac{x_i + x_{i+1}}{2}$$

$$\left|f(x)-S_1^{[i]}(x)\right|$$

$$\leq \frac{\max_{x_{i} \leq x \leq x_{i+1}} |f''(x)|}{2!} \cdot \left| \left(\frac{x_{i} + x_{i+1}}{2} - x_{i} \right) \left(\frac{x_{i} + x_{i+1}}{2} - x_{i+1} \right) \right|$$

$$= \frac{1}{8} h_i^2 \max_{x_i \le x \le x_{i+1}} |f''(x)| \qquad \qquad h_i = |x_{i+1} - x_i|_{83}$$

分段线性插值的插值余项:

$$|f(x) - S_1(x)| \le \frac{1}{8} h^2 \max_{a \le x \le b} |f''(x)|$$
 $h = \max h_i$

- ◆ 上式表明插值余项与 h 相关
- ◆ h 越小,则分段线性插值的插值余项越小,因此用分段线性插值法是一个较好的提高逼近精度的方法

分段三次(Hermite)插值

◆ 已知划分 Δ 的每个节点 x_i 处对应的 y_i 和 y_i' ,求作具有划分 Δ 的分段三次代数多项式 $S_3(x)$,满足:

$$S_3(x_i) = y_i, \quad S_3'(x_i) = y_i' \qquad i = 0, 1, \dots, n$$

 $S_3(x)$ 在每个小区间 $[x_i, x_{i+1}]$ 上是一个三次 Hermite 插值多项式,且:

$$\begin{cases} S_3^{[i]}(x_i) = y_i \\ S_3^{\prime [i]}(x_i) = y_i' \end{cases} \begin{cases} S_3^{[i]}(x_{i+1}) = y_{i+1} \\ S_3^{\prime [i]}(x_{i+1}) = y_i' \end{cases}$$

$$H_{3}(x) = y_{0}\alpha_{0}\left(\frac{x - x_{0}}{h}\right) + y_{1}\alpha_{1}\left(\frac{x - x_{0}}{h}\right) + hy'_{0}\beta_{0}\left(\frac{x - x_{0}}{h}\right) + hy'_{1}\beta_{1}\left(\frac{x - x_{0}}{h}\right) \qquad h = x_{1} - x_{0}$$

$$\begin{cases} \alpha_{0}(x) = (x - 1)^{2}(2x + 1) & \beta_{0}(x) = x(x - 1)^{2}(2x + 1) \\ \alpha_{1}(x) = x^{2}(-2x + 3) & \beta_{1}(x) = x^{2}(x - 1) \end{cases}$$

$$S^{[i]}(x) = y_{0}\alpha \left(\frac{x - x_{i}}{h}\right) + y_{0}\alpha \left(\frac{x - x_{i}}{h}\right) \qquad x \in [x_{i}, x_{i+1}]$$

$$S_{3}^{[i]}(x) = y_{i}\alpha_{0}\left(\frac{x - x_{i}}{h_{i}}\right) + y_{i+1}\alpha_{1}\left(\frac{x - x_{i}}{h_{i}}\right) \qquad x \in [x_{i}, x_{i+1}]$$

$$+h_{i}y_{i}'\beta_{0}\left(\frac{x - x_{i}}{h_{i}}\right) + h_{i}y_{i+1}'\beta_{1}\left(\frac{x - x_{i}}{h_{i}}\right) \qquad i = 0,1,\dots,n-1$$

1010

分段三次 Hermite 插值的插值余项:

$$|f(x) - S_3(x)| \le \frac{1}{384} h^4 \max_{a \le x \le b} |f^{(4)}(x)| \qquad h = \max h_i$$

- ♠ h 足够小(例如小于1)时,分段三次 Hermite 插值的插值余项远小于分段线性插值的插值余项,因此前者的插值精度更高
- ◆ 分段三次 Hermite 插值的插值曲线比分段线性插值 的插值曲线更光滑

分段插值法

- ◈ 简单
- ◆ 只要插值节点的间距充分小,分段插值收敛性有保证,不会出现Runge现象。
- ◆ 局部性

- ◆ 分段低次lagrange插值 在插值节点处曲线不光 滑。
- ◆ 三次Hermite插值要求给 出插值节点处的导数值 。其光滑性也不高。

例 题

例1 设 $f(x) = \frac{1}{1+x^2}$, 将区间[-5, 5] 分为10等分。

用分段线性插值法求 f(3.5) 的近似值,并估计误差。

解: 取
$$x_i = 3$$
, $x_{i+1} = 4$, 则 $y_i = \frac{1}{10}$, $y_{i+1} = \frac{1}{17}$

$$s_1(3.5) = \frac{1}{10} \times \frac{3.5 - 4}{3 - 4} + \frac{1}{17} \times \frac{3.5 - 3}{4 - 3} = \frac{27}{340}$$

本题中h=1。当 $x \in [3,4]$ 时

$$|f(x) - s_1(x)| \le \frac{1}{8} \max_{3 \le x \le 4} |f''(x)|$$

$$f(x) = \frac{1}{1+x^2}, \qquad f'(x) = \frac{-2x}{(1+x^2)^2},$$

$$f''(x) = \frac{6x^2 - 2}{(1 + x^2)^3}, \quad f'''(x) = \frac{24x(1 - x^2)}{(1 + x^2)^4}.$$

当
$$x \in [3,4]$$
 时 $f'''(x) \le 0$, 故

$$|f(3.5) - s_1(3.5)| \le \frac{1}{8} \max_{3 \le x \le 4} |f''(x)| = \frac{1}{8} f''(3) = 0.0065$$

2.7 曲线拟合的最小二乘法

- ◈ 函数的逼近方式
 - 插值 —— 满足给定的插值条件
 - 拟合 —— 反映给定数据的分布
- ◈ 插值存在的问题
 - 整体插值: Runge现象
 - 分段插值: 函数光滑性受限
- ◆ 曲线拟合: 给定函数类H,按照某种准则,找到一条曲线,既能反映给定数据的总体分布形式,又不致于出现局部较大的波动。

最小二乘法

• 给定数据点 $(x_i, y_i)(i = 1, 2, \dots, N)$, 记 $\varepsilon_i = y_i - g(x_i)$ $(i = 1, 2, \dots N)$ 称为残差。

 \bullet 曲线拟合的最小二乘法:函数类H中找一个函数 g(x)使得残差的平方和最小,即

$$\sum_{i=0}^{N} \varepsilon_i^2 = \sum_{i=0}^{N} (y_i - g(x_i))^2 = \min_{h(x) \in H} \sum_{i=0}^{N} (y_i - h(x_i))^2$$

- 最小二乘条件 🧋

最小二乘法

- 函数类 $H \Longrightarrow g(x)$ 的形式
- 通常对给定的数据描图,通过图来寻找数据的分布规律,进而确定 g(x) 的形式。

$$g(x) = ax + b$$

$$g(x) = a + bx + cx^2$$

2.7.1 直线拟合

◆ 给定数据点 $(x_i, y_i)(i = 1, 2, \dots, N)$,求作一次式 g(x) = ax + b

使得如下的残差最小:

$$\sum_{i=0}^{N} (y_i - g(x_i))^2 = \sum_{i=0}^{N} [y_i - (a + bx_i)]^2$$

◈记

$$Q(a,b) = \sum_{i=0}^{N} [y_i - (a+bx_i)]^2$$

◆ 上述问题可归结为求二元函数 Q(a,b) 的极值。

即
$$\frac{\partial Q(a,b)}{\partial a} = 0, \frac{\partial Q(a,b)}{\partial b} = 0$$

$$Q(a,b) = \sum_{i=0}^{N} [y_i - (a+bx_i)]^2$$

$$\frac{\partial Q(a,b)}{\partial a} = 0$$

$$\sum_{i=0}^{N} 2[y_i - (a + bx_i)] \times (-1) = 0$$

$$Na + b \sum_{i=0}^{N} x_i = \sum_{i=0}^{N} y_i$$
 (1)

$$\frac{\partial Q(a,b)}{\partial b} = 0$$

$$\sum_{i=0}^{N} 2[y_i - (a + bx_i)] \times (-x_i) = 0$$

$$a\sum_{i=0}^{N} x_i + b\sum_{i=0}^{N} x_i^2 = \sum_{i=0}^{N} x_i y_i$$
 (2)

2.7.2 多项式拟合

• 给定数据点 $(x_i, y_i)(i = 1, 2, \dots, N)$, 求作m次多项式

$$g(x) = \sum_{j=0}^{m} a_j x^j$$

使得如下的残差最小:

$$Q = \sum_{i=1}^{N} (y_i - g(x_i))^2 = \sum_{i=1}^{N} [y_i - \sum_{j=0}^{m} a_j x_i^j]^2$$

◆ 上述问题可归结为求m元函数 Q 的极值。

$$Q = \sum_{i=0}^{N} [y_i - \sum_{j=0}^{m} a_j x_i^{j}]^2$$

$$\frac{\partial Q}{\partial a_j} = 0$$

$$a_0 N + a_1 \sum_{i=1}^{N} x_i + \dots + a_m \sum_{i=1}^{N} x_i^m = \sum_{i=1}^{N} y_i$$

$$a_0 \sum_{i=1}^{N} x_i + a_1 \sum_{i=1}^{N} x_i^2 + \dots + a_m \sum_{i=1}^{N} x_i^{m+1} = \sum_{i=1}^{N} x_i y_i$$

• • •

$$a_0 \sum_{i=1}^{N} x_i^m + a_1 \sum_{i=1}^{N} x_i^{m+1} + \dots + a_m \sum_{i=1}^{N} x_i^{2m} = \sum_{i=1}^{N} x_i^m y_i$$

(3)

- $i \exists \quad \varphi_0(x) = 1, \varphi_1(x) = x, \varphi_2(x) = x^2, \dots, \varphi_m(x) = x^m$
- * 记 $(\varphi_i, \varphi_j) = \sum_{l=1}^{N} \varphi_i(x_l) \varphi_j(x_l), \quad (f, \varphi_i) = \sum_{l=1}^{N} y_l \varphi_i(x_l)$

$$(\varphi_{0}, \varphi_{0}) = \sum_{l=1}^{N} 1 \times 1 = N$$

$$(\varphi_{m}, \varphi_{0}) = \sum_{l=1}^{N} x_{l}^{m} \times 1 = \sum_{l=1}^{N} x_{l}^{m}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a_{0}N + a_{1}\sum_{i=0}^{N} x_{i} + \dots + a_{m}\sum_{i=0}^{N} x_{i}^{m} = \sum_{i=0}^{N} y_{i}$$

$$(\varphi_{0}, \varphi_{0})a_{0} + (\varphi_{1}, \varphi_{0})a_{1} + \dots + (\varphi_{m}, \varphi_{0})a_{m} = (f, \varphi_{0})$$

$$\sum_{j=0}^{m} (\varphi_{j}, \varphi_{0})a_{j} = (f, \varphi_{0})$$

$$((\varphi_{0}, \varphi_{0}), (\varphi_{1}, \varphi_{0}), \dots, (\varphi_{m}, \varphi_{0})) \begin{pmatrix} a_{0} \\ a_{1} \\ \dots \\ a_{m} \end{pmatrix} = (f, \varphi_{0})$$

•
$$i \exists \quad \varphi_0(x) = 1, \varphi_1(x) = x, \varphi_2(x) = x^2, \dots, \varphi_m(x) = x^m$$

* 记
$$(\varphi_i, \varphi_j) = \sum_{l=1}^{N} \varphi_i(x_l) \varphi_j(x_l), \quad (f, \varphi_i) = \sum_{l=1}^{N} y_l \varphi_i(x_l)$$

$$a_0 N + a_1 \sum_{i=0}^{N} x_i + \dots + a_m \sum_{i=0}^{N} x_i^m = \sum_{i=0}^{N} y_i$$

$$a_0 \sum_{i=0}^{N} x_i + a_1 \sum_{i=0}^{N} x_i^2 + \dots + a_m \sum_{i=0}^{N} x_i^{m+1} = \sum_{i=0}^{N} x_i y_i$$

$$\dots$$

$$a_0 \sum_{i=0}^{N} x_i^m + a_1 \sum_{i=0}^{N} x_i^{m+1} + \dots + a_m \sum_{i=0}^{N} x_i^{2m} = \sum_{i=0}^{N} x_i^m y_i$$

$$\sum_{j=0}^{m} (\varphi_j, \varphi_k) a_j = (f, \varphi_k)$$
$$k = 0, 1, 2, \dots, m$$

正规方程组

$$\sum_{j=0}^{m} (\varphi_j, \varphi_k) a_j = (f, \varphi_k)$$

$$k = 0, 1, 2, \dots, m$$
(4)

- ◆ 正规方程组(4)是否有解?
- ◆ 该解是否是残差函数Q的最小值点?

定理2.8 正规方程组(4)的解存在且唯一,而且其解就是使 $Q(a_0, a_1, \dots, a_m)$ 达到最小值的极值点。

例 题

例1给定如下离散数据,试求拟合曲线。

x_{i}	-3	-2	-1	0	1	2	3	4
y_{i}	-3.2	-2.1	-1.2	0.1	0.9	2.1	3.3	4

解: 绘草图,确定拟合曲线类型。

从草图可判定拟合曲线为直线, 因此设

$$g(x) = a + bx$$

$$Q(a,b) = \sum_{i=0}^{7} [y_i - (a+bx_i)]^2$$

按最小二乘条件,令其偏导数为零得到二元一次方程组,得到a,b的值。

例 题

例1给定如下离散数据,试求拟合曲线。

x_{i}	-3	-2	-1	0	1	2	- 3	4
y_{i}	-3.2	-2.1	-1.2	0.1	0.9	2.1	3.3	4

解: 绘草图, 确定拟合曲线类型。

从草图可判定拟合曲线为直线,可设

$$\varphi_0(x) = 1, \varphi_1(x) = x$$
 $g(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x)$

$$\varphi_0 = (1,1,1,1,1,1,1,1)^T$$

$$\varphi_1 = (-3, -2, -1, 0, 1, 2, 3, 4)^T$$

$$f = (-3.2, -2.1, -1.2, 0.1, 0.9, 2.1, 3.3, 4)^T$$

例1 (续)

$$\varphi_0 = (1,1,1,1,1,1,1,1)^T$$
 $\varphi_1 = (-3,-2,-1,0,1,2,3,4)^T$

$$f = (-3.2,-2.1,-1.2,0.1,0.9,2.1,3.3,4)^T$$

$$(\varphi_0,\varphi_0) = 8$$
 $(\varphi_1,\varphi_0) = 4$ $(f,\varphi_0) = 3.9$

$$(\varphi_0, \varphi_1) = 4$$
 $(\varphi_1, \varphi_1) = 44$ $(f, \varphi_1) = 46$

$$\begin{cases} 8a_0 + 4a_1 = 3.9 \\ 4a_0 + 44a_1 = 46 \end{cases} \Rightarrow \begin{cases} a_0 = -0.0369 \\ a_1 = 1.0488 \end{cases}$$

从而拟合直线为: $g(x) = a_0 + a_1 x = -0.0369 + 1.0488x$

例 题

例2 对下列数据求形如y=aebx的拟合曲线

x_{i}	1	2	3	4	5	6	7	8
$y_{\rm i}$	15.3	20.5	27.4	36.6	49.1	65.6	87.8	117.6
$z_{\rm i}$	2.72785	3.02042	3.31054	3.60005	3.89386	4.18358	4.47506	4.76729

设z=lny,则 z=A+bx, 其中A=lna, 由z_i=lny_i 得

对z(x)作线性拟合曲线,取 $\varphi_0(x)=1, \varphi_1(x)=x$.

$$\varphi_0 = (1,1,1,1,1,1,1,1)^T$$
, $\varphi_1 = (1,2,3,4,5,6,7,8)^T$,

 $z=(2.72785, 3.02042, 3.31054, 3.60005, 3.89386, 4.18358, 4.47506, 4.76729)^T$

$$\begin{cases} 8A + 36b = 29.97865 \\ 36A + 204b = 147.13503 \end{cases}$$

解得 $A^*=2.43686$, $b^*=0.29122$, 于是有 $a^*=e^{A^*}=11.43707$

第2章 小结

- · Lagrange插值
- · Newton插值
- · Hermite插值
- 分段插值

- 直线拟合
- 多项式拟合

- ◈ 插值基函数
- ◆ 差商
- ◈ 插值余项-误差估计
- ◆ 不同插值方法的异同
- ◈ 拟合与插值的不同
- ◆ 典型例题

P52 3, 8(1); 14, 16; 19, 23; 27