FORMAL LANGUAGES AND AUTOMATA 22AIE302

Ayswarya R Kurup

Equivalence of NFA and DFA

- Two machines / automata are equal if they recognize the same language
- Converting an NFA to an equivalent DFA
- Two finite accepters, M_1 and M_2 , are equivalent, if they both accept the same language

$$L(M_1) = L(M_2)$$

Every NFA has an equivalent DFA

Equivalence of NFA and DFA..

Theorem

Let L be the language accepted by a nondeterministic finite accepter

$$M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

Then there exists a deterministic finite accepter

$$M_D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$
 such that $L(M_N) = L(M_D)$

Two steps in proof

Step 1. Define the DFA M_D

Step 2. Prove $L(M_N) = L(M_D)$

Proof

Procedure: Use the procedure **nfa-to-dfa** to construct the transition graph G_D for M_D .

 G_D should have the following

• Every vertex must have exactly $|\Sigma|$ outgoing edges, each labeled with a different element of Σ .

procedure: nfa-to-dfa

- **1** Create a graph G_D with vertex $\{q_0\}$. Identify this vertex as the initial vertex.
- 2 Repeat the following steps until no more edges are missing.
 - **1** Take any vertex $\{q_i,q_j,...,q_k\}$ of G_D that has no outgoing edge for some $a\in \Sigma$

Compute $\delta_N^*(q_i, a), \delta_N^*(q_j, a), ..., \delta_N^*(q_k, a)$

- If $\delta_N^*(q_i,a) \cup \delta_N^*(q_j,a) \cup ... \delta_N^*(q_k,a) = \{q_l,q_m,...q_n\}$ create a vertex for G_D labeled $q_l,q_m,...,q_n$ if it does not already exist. Add to G_D an edge from $\{q_i,q_j,...,q_k\}$ and label it with a.
- **3** Every state of G_D whose label contains any $q_f \in F_N$ is identified as a final vertex.
- **4** If M_N accepts λ , the vertex $\{q_0\}$ in G_D is also made a final vertex.

- 1. $L(M_N) \subseteq L(M_D)$
 - We need to prove that any string accepted by ${\cal M}_N$ is also accepted by ${\cal M}_D$.

- 1. $L(M_N) \subseteq L(M_D)$
 - We need to prove that any string accepted by ${\cal M}_N$ is also accepted by ${\cal M}_D.$
 - Let w be a string accepted by M_N .

- \bullet We need to prove that any string accepted by M_N is also accepted by $M_D.$
- Let w be a string accepted by M_N .
- That is there is a sequence of transitions in M_N starting from the initial state q_0 , reading the symbols of w, and ending in a state in F_N .

- We need to prove that any string accepted by ${\cal M}_N$ is also accepted by ${\cal M}_D.$
- Let w be a string accepted by M_N .
- That is there is a sequence of transitions in M_N starting from the initial state q_0 , reading the symbols of w, and ending in a state in F_N .
- By the construction of M_D , there exists a corresponding sequence of transitions in M_D that starts from $\{q_0\}$, reads the same symbols of w, and ends in a state in F_D .

- We need to prove that any string accepted by ${\cal M}_N$ is also accepted by ${\cal M}_D.$
- Let w be a string accepted by M_N .
- That is there is a sequence of transitions in M_N starting from the initial state q_0 , reading the symbols of w, and ending in a state in F_N .
- By the construction of M_D , there exists a corresponding sequence of transitions in M_D that starts from $\{q_0\}$, reads the same symbols of w, and ends in a state in F_D .
- Therefore, w is also accepted by M_D , and $L(M_N) \subseteq L(M_D)$.

- 2. $L(M_D) \subseteq L(M_N)$
 - We need to prove that any string accepted by M_D is also accepted by M_N .

- We need to prove that any string accepted by ${\cal M}_D$ is also accepted by ${\cal M}_N.$
- Let w be a string accepted by M_D .

- We need to prove that any string accepted by ${\cal M}_D$ is also accepted by ${\cal M}_N.$
- Let w be a string accepted by M_D .
- That is there is a sequence of transitions in M_D starting from $\{q_0\}$, reading the symbols of w, and ending in a state in F_D .

- We need to prove that any string accepted by ${\cal M}_D$ is also accepted by ${\cal M}_N.$
- Let w be a string accepted by M_D .
- That is there is a sequence of transitions in M_D starting from $\{q_0\}$, reading the symbols of w, and ending in a state in F_D .
- By the construction of M_D , this state in F_D corresponds to a subset of states in Q_N , denoted as S.
- $S \cap F_N \neq \emptyset$, there exists at least one state in S that is in F_N .

- We need to prove that any string accepted by ${\cal M}_D$ is also accepted by ${\cal M}_N.$
- Let w be a string accepted by M_D .
- That is there is a sequence of transitions in M_D starting from $\{q_0\}$, reading the symbols of w, and ending in a state in F_D .
- By the construction of M_D , this state in F_D corresponds to a subset of states in Q_N , denoted as S.
- $S \cap F_N \neq \emptyset$, there exists at least one state in S that is in F_N .
- Therefore, there exists a sequence of transitions in M_N that starts from q_0 , reads the symbols of w, and ends in a state in F_N .

- We need to prove that any string accepted by ${\cal M}_D$ is also accepted by ${\cal M}_N.$
- Let w be a string accepted by M_D .
- That is there is a sequence of transitions in M_D starting from $\{q_0\}$, reading the symbols of w, and ending in a state in F_D .
- By the construction of M_D , this state in F_D corresponds to a subset of states in Q_N , denoted as S.
- $S \cap F_N \neq \emptyset$, there exists at least one state in S that is in F_N .
- Therefore, there exists a sequence of transitions in M_N that starts from q_0 , reads the symbols of w, and ends in a state in F_N .
- Thus, w is also accepted by M_N , and $L(M_D) \subseteq L(M_N)$.

Examples

Convert the given nfa into an equivalent deterministic machine.

Examples

Convert the given nfa into an equivalent deterministic machine.

Reduction of the Number of States in Finite Automata

Process of simplifying the number of states in an automaton without affecting the language accepted by the automaton

- Unreachable States
- Equivalent States
- ε Closure Reduction