

Kourosh Davoudi kourosh@ontariotechu.ca

Lecture 12: Flow Graphs

CSCI 3070U: Design and Analysis of Algorithms

Learning Outcomes

- Flow Networks:
 - Concepts and Foundations
 - Algorithms

Flow Network

• A flow network G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$

Flow Network

- We distinguish two vertices in a flow network:
 - Source *s*
 - Sink *t*
- We assume that each vertex
 lies on a path from source to sink
 - For all $v \in V$, we have a path

$$s \sim \nu \sim t$$

Flow Networks Properties

• A flow network G = (V, E) is a directed graph in which each edge $u \in E$ has a nonnegative capacity $c(u, v) \ge 0$

- If $(u, v) \in E$, then $(v, u) \notin E$
- If $(v, u) \notin E$, then c(v, u) = 0

Flow Definition

- Flow is a function $f: V \times V \to \mathbb{R}$ satisfying:
 - Capacity Constraint:

For all
$$u, v \in V, 0 \le f(u, v) \le c(u, v)$$

• Flow Conservation:

Value of Flow

Value of flow f is defined as follows:

Value of flow
$$f = |f|$$

$$= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

$$= \text{flow out of source - flow into source}$$

Example:

$$|f| = ?$$

Answer = 3

Maximum Flow Problem

• Given G, s, t, and c, find a flow whose value is maximum

Maximum rate of shipping product from Vancouver to Winnipeg through intermediate cities

Antiparallel Edges

• Definition of flow network does not allow both (u, v) and (v, u) to be edges. These edges would be **antiparallel**

What if we really need antiparallel edges?

Networks with Multiple Sources and Sinks

Residual Network

• Given a flow f in network G = (V, E), the residual network of G is G_f

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E, \\ f(v, u) & \text{if } (v, u) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

Augmenting Paths

- Given a flow network G = (V, E) and a flow f, an augmenting path p is a simple path from s to t in the residual network G_f .
 - A simple path is a path without cycle.

Residual Capacity

$$s \sim t$$

• How much more flow can we push from s to t along augmenting path p?

$$c_f(p) = \min \{c_f(u, v) : (u, v) \text{ is on } p\}$$

Augmenting Paths

The shaded path is an augmenting path

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\} = \min\{5, 4, 5\} = 4$$

Augmenting Paths

 Insight: We can increase the flow through each edge of this path by up to 4 units without violating the capacity constraint:

• Given G, s, t, and c, it finds a flow whose value is maximum

- General ideas:
 - In each iteration of the Ford-Fulkerson method, we find some augmenting path p and use p to modify the flow f
 - That is, adding flow when the residual edge in p is an original edge and subtracting it otherwise
 - When no augmenting paths exist, the flow f is a maximum flow.

Are there any augmenting path?

No Augmenting Path!


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```



```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

O(E)

3 while there exists a path p from s to t in the residual network G_f O(|f^*|)

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)

O(E|f^*|)

O(E|f^*|)
```

 $|f^*|$ denotes a maximum flow in the network

- Why we come up with maximum flow when there is no augmentation path in \mathbf{G}_f ?
- Theorem (Max-flow min-cut theorem): The following are equivalent:
 - f is a maximum flow
 - G_f has no augmenting path

The Edmonds-Karp Algorithm

• We can improve the bound on Ford-Fulkerson by finding the augmenting path p in line 3 with a breadth-first search

• That is, we choose the augmenting path as a *shortest* path from s to t in the residual network, where each edge has unit distance (weight)

• The Edmonds-Karp algorithm runs in $O(VE^2)$

Wrap-up

- We learned about flow networks
 - Definitions
 - Properties
 - Max flow problem
 - Ford-Fulkerson
 - Edmonds-Karp

