WE CLAIM:

1. A copolymer prepared by copolymerization of a first monomer having the structure of formula (I)

$$(I) \qquad \qquad \underset{\mathbb{R}^{2b}}{\overset{\mathbb{R}^{2}}{\bigcap}}$$

wherein

R¹ is H, F, CN, CH₃, CF₃, CF₂H, or CFH₂;

R^{2a} and R^{2b} are independently H or F; and

 R^3 is CN or COOR, wherein R is selected from the group consisting of H, C_{1-12} alkyl and C_{1-12} fluoroalkyl, or is selected so as to render R^3 acid-cleavable; and a second monomer having the structure of formula (II)

(II)
$$\mathbb{R}^{7}$$

$$\mathbb{R}^{5}$$

wherein

 R^4 is H, C_{1-12} alkyl, or C_{3-15} alicyclic,

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic, or R^4 and R^5 together form a five-, six-, or seven-membered ring,

 R^6 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^4 and R^6 together form a five-, six-, or seven-membered ring, and

 R^7 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^7 and R^5 together represent -X- $(CR^8R^9)_n$ -, in which case R^4 and R^6 are H, X is O or CH₂, n is 1 or 2, R^8 and R^9 are H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R^8 and R^9 together form =O, n is 1.

- 2. The copolymer of Claim 1, wherein R¹ is CF₃.
- 3. The copolymer of Claim 2, wherein R³ is COOR.
- 4. The copolymer of Claim 2, wherein R³ is CN.
- 5. The copolymer of Claim 1, wherein R¹ and R² are F and R³ is COOR.
- 6. The copolymer of Claim 1, wherein R¹ is CN and R² is H.
- 7. The copolymer of Claim 3, wherein R is C_{1-12} alkyl.
- 8. The copolymer of Claim 5, wherein R is C_{1-12} alkyl.
- 9. The copolymer of Claim 3, wherein R is selected to render R³ acid-cleavable.

- 10. The copolymer of Claim 5, wherein R is selected to render R³ acid-cleavable.
- 11. The copolymer of Claim 10, wherein R is a tertiary alkyl substituent.
- 12. The copolymer of Claim 11, wherein R is *t*-butyl.
- 13. The copolymer of Claim 11, wherein R is a C₅-C₁₂ cyclic or alicyclic substituent with a tertiary attachment point.
- 14. The copolymer of Claim 13, wherein R is selected from the group consisting of 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 1-methylcyclopentyl, and 1-methylcyclohexyl.
- 15. The copolymer of Claim 1, wherein the second monomer has the structure of formula (III)

wherein

R⁴ is H, C₁₋₁₂ alkyl, or C₃₋₁₅ alicyclic; and

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic.

16. The copolymer of Claim 1, wherein the second monomer has a structure selected from the group consisting of (IV), (V), and (VI)

(IV)
$$\times$$
 $(CR^8R^9)_n$ (V)

$$(VI) \qquad \qquad R^7 \qquad Q$$

wherein

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic,

 R^7 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl,

X is O or CH_2 ,

m is an integer between 1 and 3, and

 R^8 and R^9 are H, $C_{1\text{-}12}$ alkyl, or $C_{1\text{-}12}$ fluoroalkyl.

- 17. The copolymer of Claim 1, wherein the copolymer is substantially transparent to radiation having a wavelength of less than about 250 nm.
- 18. The copolymer of Claim 17, wherein the copolymer is substantially transparent to radiation having a wavelength of less than about 193 nm.
- 19. The copolymer of Claim 18, wherein the copolymer is substantially transparent to radiation having a wavelength of 157 nm.
- 20. The copolymer of Claim 1, further comprising at least one additional monomer having a structure that is different that the first and second monomers.
- 21. A lithographic photoresist composition comprising the copolymer of Claim 1 and a radiation-sensitive acid generator.
- 22. The lithographic photoresist composition of Claim 18, further comprising a second polymer.
 - 23. A process for generating a resist image on a substrate, comprising the steps of:
- (a) coating a substrate with a film of a photoresist comprised of a radiation-sensitive acid generator and a copolymer synthesized from a first monomer having the structure of formula (I)

wherein

R¹ is H, F, CN, CH₃, CF₃, CF₂H, or CFH₂;

R^{2a} and R^{2b} are independently H or F; and

 R^3 is CN or COOR, wherein R is selected from the group consisting of H, C_{1-12} alkyl and C_{1-12} fluoroalkyl, or is selected so as to render R^3 acid-cleavable, with the proviso that when R^3 is CN, then R^1 is CF_3 and R^{2a} and R^{2b} are H; and a second monomer having the structure of formula (II)

(II)
$$R^{7}$$

$$R^{5}$$

wherein

R⁴ is H, C₁₋₁₂ alkyl, or C₃₋₁₅ alicyclic,

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic, or R^4 and R^5 together form a five-, six-, or seven-membered ring,

 R^6 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^4 and R^6 together form a five-, six-, or seven-membered ring,

 R^7 is H, $C_{1\text{-}12}$ alkyl, or $C_{1\text{-}12}$ fluoroalkyl, or R^7 and R^5 together represent

-X- $(CR^8R^9)_n$ -, in which case R^4 and R^6 are H, X is O or CH_2 , n is 1 or 2, R^8 and R^9 are H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R^8 and R^9 together form =O, n is 1

- (b) exposing the film selectively to a predetermined pattern of radiation so as to form a latent, patterned image in the film; and
 - (c) developing the latent image with a developer.
- 24. In a lithographic photoresist composition comprised of a polymer transparent to deep ultraviolet radiation and a radiation-sensitive acid generator, the improvement comprising employing as the polymer a copolymer synthesized from a first monomer having the structure of formula (I)

(I)
$$R^{2a} \longrightarrow R^1$$

wherein

R¹ is H, F, CN, CH₃, CF₃, CF₂H, or CFH₂;

 R^{2a} and R^{2b} are independently H or F; and

 R^3 is CN or COOR, wherein R is selected from the group consisting of H, C_{1-12} alkyl and C_{1-12} fluoroalkyl, or is selected so as to render R^3 acid-cleavable, with the proviso that when R^3 is CN, then R^1 is CF_3 and R^2 is H; and

a second monomer having the structure of formula (II)

(II)
$$\mathbb{R}^{7}$$
 \mathbb{R}^{5}

wherein

 R^4 is H, C_{1-12} alkyl, or C_{3-15} alicyclic,

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic, or R^4 and R^5 together form a five-, six-, or seven-membered ring,

 R^6 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^4 and R^6 together form a five-, six-, or seven-membered ring;

 R^7 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^7 and R^5 together represent -X- $(CR^8R^9)_n$ -, in which case R^4 and R^6 are H, X is O or CH₂, n is 1 or 2, R^8 and R^9 are H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R^8 and R^9 together form =O, n is 1.

- 25. The lithographic photoresist composition of Claim 24, wherein the photoresist composition is a positive resist and further comprises a photoacid-cleavable monomeric or polymeric dissolution inhibitor.
- 26. The lithographic photoresist composition of Claim 24, wherein the photoresist composition is a negative resist and further comprises a crosslinking agent.

- 27. The lithographic photoresist composition of Claim 26, wherein the crosslinking agent is a glycoluril compound.
- 28. The lithographic photoresist composition of Claim 27, wherein the glycoluril compound is selected from the group consisting of tetramethoxymethyl glycoluril, methylpropyltetramethoxymethyl glycoluril, methylphenyltetramethoxymethyl glycoluril, and mixtures thereof.