

数论问题集

作者: 虞朝阳

版本: 1.00

目录

Preface	1
第一部分 理论	2
1 理论要点	3
1.1 Basic Axioms and Examples	3
第二部分 问题	4
2 数学归纳法和组合	5
第三部分 解答	6
3 解答	7

引言

这里的题目来自《1001 Problems in Classical Number Theory》,作者为 Jean-Marie De Koninck, Armel Mercier。

第一部分

理论

第一章 理论要点

1.1 Basic Axioms and Examples

In this section the basic algebraic structure to be studied in Part I is introduced and some examples are given.

定义 1.1

- (1) A binary operation \star on a set G is a function \star : $G \times G \to G$. For any $a, b \in G$ we shall write $a \star b$ for $\star(a, b)$.
- (2) A binary operation \star on a set G is associative if for all $a, b, c \in G$, $a \star (b \star c) = (a \star b) \star c$.
- (3) If \star is a binary operation on a set G we say elements a and b of G commute if $a \star b = b \star a$. We say \star (or G) is commutative if for all $a, b \in G$, $a \star b = b \star a$.

例 1.1

- (1) + (usual addition) is a commutative binary operation on \mathbb{Z} (or on \mathbb{Q} , \mathbb{R} , \mathbb{C} respectively).
- (2) \times (usual multiplication) is a commutative binary operation on $\mathbb Z$ (or on $\mathbb Q$, $\mathbb R$, $\mathbb C$ respectively).

第二部分

问题

第二章 数学归纳法和组合

△ 练习 2.1 证明对每一个正整数 n 成立如下等式:

$$\sum_{k=1}^{k} k = \frac{n(n+1)}{2}, \sum_{k=1}^{k} k^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{k=1}^{k} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

- △ 练习 2.2 证明任意一个正整数的立方都可以表示为两个平方数之差。
- \land 练习 2.3 求公式: $\sum_{k=1}^{n} \frac{1}{k^2-1}$. 这里 n 为正整数。
- ▲ 练习 2.4 求公式:前 n 个正偶数之和。
- ▲ 练习 2.5
- ▲ 练习 2.6

第三部分

解答

第三章 解答