ACM ICPC REGIONAL 2012

1. Generales

1.1. LIS en O(nlgn).

```
vector<int> LIS(vector<int> X) {
   int n = X.size(), L = 0, M[n+1], P[n];
   int lo, hi, mi;

L = 0;
   M[0] = 0;

for(int i=0, j; i<n; i++) {
   lo = 0; hi = L;

   while(lo!=hi) {
      mi = (lo+hi+1)/2;
      if(X[M[mi]] < X[i]) lo = mi;
      else hi = mi-1;
   }

   j = lo;</pre>
```

1.2. Problema de Josephus.

```
int survivor(int n, int m) {
  for (int s=0,i=1;i<=n;++i) s = (s+m)%i;</pre>
```

1.3. Contar inversiones.

```
#define MAX_SIZE 100000
int A[MAX_SIZE],C[MAX_SIZE],pos1,pos2,sz;
```

```
P[i] = M[j];

if(j==L || X[i]<X[M[j+1]]) {
    M[j+1] = i;
    L = max(L,j+1);
}

int a[L];

for(int i=L-1,j=M[L];i>=0;i--) {
    a[i] = X[j];
    j = P[j];
}

return vector<int>(a,a+L);
}
```

```
return (s+1);
```

```
long long countInversions(int a, int b) {
   if (a==b) return 0;

int c = ((a+b)>>1);
```

```
long long aux = countInversions(a,c)+countInversions(c+1,b);
pos1 = a; pos2 = c+1; sz = 0;

while(pos1<=c && pos2<=b){
   if(A[pos1]<A[pos2]) C[sz] = A[pos1++];
   else{
      C[sz] = A[pos2++];
      aux += c-pos1+1;
   }
   ++sz;</pre>
```

1.4. Números dada la suma de pares.

```
bool solve(int N, int sums[], int ans[]){
  int M = N*(N-1)/2;
  multiset<int> S;
  multiset<int> :: iterator it;

  sort(sums,sums+M);

  for(int i = 2;i<M;++i) {
    if((sums[0]+sums[1]-sums[i])%2!=0) continue;

    ans[0] = (sums[0]+sums[1]-sums[i])/2;
    S = multiset<int>(sums,sums+M);

  bool valid = true;

  for(int j = 1;j<N && valid;++j) {</pre>
```

2.1. Ciclo de Euler.

```
// Las listas de adyacencia se deben ordenar de forma ascendente para
// obtener el ciclo lexicografico minimo deacuerdo a la numeracion
// de las aristas
#define MAX_V 44
#define MAX_E 1995
int N,deg[MAX_V],eu[MAX_E],ev[MAX_E];
list<int> G[MAX_V],L;
```

```
if(pos1>c) memcpy(C+sz,A+pos2,(b-pos2+1)*sizeof(int));
else memcpy(C+sz,A+pos1,(c-pos1+1)*sizeof(int));

sz = b-a+1;
memcpy(A+a,C,sz*sizeof(int));

return aux;
}

ans[j] = (*S.begin())-ans[0];

for(int k = 0;k<j && valid;++k){
    it = S.find(ans[k]+ans[j]);

    if(it==S.end()) valid = false;
    else S.erase(it);
    }
}

if(valid) return true;
}</pre>
```

2. Grafos

```
bool visited[MAX_V];
stack<int> S;
queu<int> Q;

bool connected() {
   int cont = 0;
   Q.push(0);
   memset(visited,false,sizeof(visited));
   visited[0] = true;
```

```
while(!Q.empty()){
      int v = Q.front(); Q.pop();
      ++cont;
      for(list<int>::iterator it = G[v].begin();it!=G[v].end();++it){
            int e = *it;
            int w = eu[e] == v? ev[e] : eu[e];
         if(!visited[w]){
            visited[w] = true;
            Q.push(w);
   return cont == N;
bool eulerian(){
   if(!connected()) return false;
   for (int v = 0; v < N; ++v)
      if(deg[v]&1)
         return false;
   return true;
void take_edge(int v, int w){
   --deg[v]; --deg[w];
   int e = G[v].front();
   G[v].pop_front();
   for(list<int>::iterator it = G[w].begin();it!=G[w].end();++it){
      if(*it==e){
         G[w].erase(it);
         break;
```

```
void euler(int v) {
  while(true) {
      if(G[v].empty()) break;
      int e = G[v].front();
      int w = eu[e] == v? ev[e] : eu[e];
      S.push(e);
      take_edge(v,w);
      v = w;
bool find_cycle(int s) {
  if(!eulerian()) return false;
  int v = s,e;
  L.clear();
   do {
      euler(v);
      e = S.top(); S.pop();
      L.push_back(e);
     v = eu[e] == v? ev[e] : eu[e];
   }while(!S.empty());
  return true;
void print_cycle(int s){
  if(!find_cycle(s)) printf("-1\n");
   else{
      bool first = true;
      reverse(L.begin(), L.end());
      for(list<int>::iterator e = L.begin();e!=L.end();++e){
            if(!first) printf(""");
           first = false;
        printf("%d",1+(*e));
     printf("\n");
```

2.2. Euler (Directed graph).

```
int V,E,to[32000],nxt[32000],last[1000],now[1000];
int ans[32000];

void init(){
    memset(last,-1,sizeof(last));
    E = 0;
}

void make_edge(int u, int v){
    to[E] = v; nxt[E] = last[u]; last[u] = E++;
}

// A : vertice inicial
void euler(int A){
    for(int i = 0;i < V;++i)
        now[i] = last[i];

    stack<int> S;
    S.push(A);
```

2.3. Punto de articulación.

```
#define SZ 100
bool M[SZ][SZ];
int N,colour[SZ],dfsNum[SZ],num,pos[SZ],leastAncestor[SZ],parent[SZ];

int dfs(int u) {
   int ans = 0,cont = 0,v;

   stack<int> S;
   S.push(u);

   while(!S.empty()) {
      v = S.top();
      if(colour[v]==0) {
       colour[v] = 1;
       dfsNum[v] = num++;
       leastAncestor[v] = num;
      }

   for(;pos[v]<N;++pos[v]) {
      if(M[v][pos[v]] && pos[v]!=parent[v]) {</pre>
```

```
int cur,sz = 0;
while(!S.empty()) {
    cur = S.top();

    if(now[cur] != -1) {
        S.push(to[now[cur]]);
        now[cur] = nxt[now[cur]];
    }else{
        ans[sz++] = cur;
        S.pop();
    }
}
for(int i = sz - 1;i > 0;--i)
    printf("%d_%d\n",ans[i] + 1,ans[i - 1] + 1)
}
```

```
if(colour[pos[v]]==0) {
    parent[pos[v]]=v;
    S.push(pos[v]);
    if(v==u) ++cont;
    break;
    }else leastAncestor[v]<?=dfsNum[pos[v]];
}

if(pos[v]==N) {
    colour[v] = 2;
    S.pop();

    if(v!=u) leastAncestor[parent[v]]<?=leastAncestor[v];
}

if(cont>1) {
    ++ans;
    printf("%d\n",u);
```

```
for(int i = 0;i<N;++i) {
    if(i==u) continue;
    for(int j = 0;j<N;j++)
        if(M[i][j] && parent[j]==i && leastAncestor[j]>=dfsNum[i]) {
            printf("%d\n",i);
            ++ans;
            break;
        }
}
return ans;
```

2.4. Detección de puentes.

```
#define SZ 100
bool M[SZ][SZ];
int N, colour[SZ], dfsNum[SZ], num, pos[SZ], leastAncestor[SZ], parent[SZ];
void dfs(int u){
   int v;
   stack<int> S;
   S.push(u);
   while(!S.empty()){
      v = S.top();
      if(colour[v] == 0) {
          colour[v] = 1;
         dfsNum[v] = num++;
         leastAncestor[v] = num;
      for(;pos[v]<N;++pos[v]){</pre>
         if(M[v][pos[v]] && pos[v]!=parent[v]){
             if(colour[pos[v]] == 0) {
                parent[pos[v]] = v;
               S.push(pos[v]);
             }else leastAncestor[v] <?= dfsNum[pos[v]];</pre>
      if (pos[v] ==N) {
```

```
void Articulation_points() {
   memset(colour, 0, sizeof(colour));
   memset (pos, 0, sizeof (pos));
   memset (parent, -1, sizeof (parent));
   num = 0;
   int total = 0;
   for(int i = 0;i<N;++i) if(colour[i]==0) total += dfs(i);</pre>
  printf("#_Articulation_Points_:_%d\n",total);
         colour[v] = 2;
         S.pop();
         if(v!=u) leastAncestor[parent[v]] <?= leastAncestor[v];</pre>
void Bridge_detection(){
   memset(colour, 0, sizeof(colour));
   memset(pos, 0, sizeof(pos));
  memset(parent,-1, sizeof(parent));
  num = 0;
   int ans = 0;
   for(int i = 0;i<N;i++) if(colour[i]==0) dfs(i);</pre>
   for (int i = 0; i < N; i++)</pre>
      for(int j = 0; j<N; j++)</pre>
         if(parent[j]==i && leastAncestor[j]>dfsNum[i]) {
             printf("%d_-_%d\n",i,j);
             ++ans;
   printf("%d_bridges\n",ans);
```

2.5. Componentes biconexas (Tarjan).

```
#define MAXN 100000
int V;
vector<int> adj[MAXN];
int dfn[MAXN],low[MAXN];
vector< vector<int> > C;
stack< pair<int, int> > stk;
void cache_bc(int x, int y) {
   vector<int> com;
   int tx,ty;
   do{
      tx = stk.top().first, ty = stk.top().second;
      stk.pop();
      com.push_back(tx), com.push_back(ty);
   }while(tx!=x || ty!=y);
   C.push_back(com);
void DFS(int cur, int prev, int number) {
   dfn[cur] = low[cur] = number;
   for (int i = adj[cur].size()-1;i>=0;--i){
      int next = adj[cur][i];
      if (next==prev) continue;
```

2.6. DFS para calcular low iterativo.

```
#define MAXN 100001
#define MAXE 500000

int last[MAXN],nxt[2 * MAXE],to[2 * MAXE],ne = 0;

void add_edge(int &u, int &v) {
   to[ne] = v; nxt[ne] = last[u]; last[u] = ne++;
   to[ne] = u; nxt[ne] = last[v]; last[v] = ne++;
}

int low[MAXN],parent[MAXN],level[MAXN],comp[MAXN];
```

```
if (dfn[next] ==-1) {
         stk.push(make_pair(cur,next));
         DFS (next, cur, number+1);
         low[cur] = min(low[cur], low[next]);
         if(low[next]>=dfn[cur]) cache_bc(cur,next);
      }else low[cur] = min(low[cur],dfn[next]);
void biconn_comp() {
   memset(dfn,-1,sizeof(dfn));
  C.clear();
  DFS(0,0,0);
   int comp = C.size();
  printf("%d\n",comp);
   for (int i = 0; i < comp; ++i) {</pre>
      sort(C[i].begin(),C[i].end());
      C[i].erase(unique(C[i].begin(),C[i].end()),C[i].end());
      int m = C[i].size();
      for(int j = 0; j < m; ++j) printf("%d.", 1 + C[i][j]);</pre>
      printf("\n");
```

```
void dfs(int r) {
    int u,v;

    stack<int> S;

    S.push(r);
    comp[r] = r;
    low[r] = level[r] = 0;
    parent[r] = -1;

while(!S.empty()) {
        u = S.top();
    }
}
```

```
for(int &e = last[u];e != -1;e = nxt[e]) {
    v = to[e];

if(comp[v] != -1 && v != parent[u] && level[u] > level[v]) {
        low[u] = min(low[u],level[v]);
    }else if(comp[v] == -1) {
        S.push(v);
        comp[v] = r;
        low[v] = level[v] = level[u] + 1;
        parent[v] = u;
```

2.7. Componentes fuertemente conexas (Tarjan).

```
#define MAX_V 100000
vector<int> L[MAX_V],C[MAX_V];
int V, dfsPos, dfsNum[MAX_V], lowlink[MAX_V], num_scc, comp[MAX_V];
bool in_stack[MAX_V];
stack<int> S;
void tarjan(int v) {
   dfsNum[v] = lowlink[v] = dfsPos++;
   S.push(v); in_stack[v] = true;
   for(int i = L[v].size()-1;i>=0;--i){
      int w = L[v][i];
      if(dfsNum[w] ==-1){
         tarjan(w);
         lowlink[v] = min(lowlink[v],lowlink[w]);
      }else if(in_stack[w]) lowlink[v] = min(lowlink[v], lowlink[w]);
   if(dfsNum[v] == lowlink[v]) {
      vector<int> &com = C[num_scc];
      com.clear();
      int aux;
```

2.8. Ciclo de peso promedio mínimo (Karp).

```
#define MAX_V 676
vector< pair<int, int> > L[MAX_V+1];
```

```
break;
      if(last[u] == -1){
        S.pop();
         if(u != r)
            low[ parent[u] ] = min(low[ parent[u] ],low[u]);
      do {
         aux = S.top(); S.pop();
         comp[aux] = num_scc;
         com.push_back(aux);
         in_stack[aux] = false;
      }while (aux!=v);
      ++num_scc;
void build_scc(int _V) {
  V = V;
  memset (dfsNum, -1, sizeof (dfsNum));
  memset(in_stack, false, sizeof(in_stack));
  dfsPos = num_scc = 0;
   for (int i = 0; i < V; ++i)
      if(dfsNum[i]==-1)
         tarjan(i);
int dist[MAX_V+1][MAX_V+2];
```

2.9. Minimum cost arborescence.

```
#define MAX_V 1000
typedef int edge_cost;
edge_cost INF = INT_MAX;

int V,root,prev[MAX_V];
bool adj[MAX_V][MAX_V];
edge_cost G[MAX_V][MAX_V],MCA;
bool visited[MAX_V],cycle[MAX_V];

void add_edge(int u, int v, edge_cost c){
   if(adj[u][v]) G[u][v] = min(G[u][v],c);
   else G[u][v] = c;
   adj[u][v] = true;
}

void dfs(int v){
   visited[v] = true;

for(int i = 0;i<V;++i)
   if(!visited[i] && adj[v][i])</pre>
```

```
if (dist[i][n]!=INT_MAX)
         flag = false;
   if(flag){
      //El grafo es aciclico
      return;
   double ans = 1e15;
   for (int u = 0; u+1 < n; ++u) {
      if (dist[u][n] == INT_MAX) continue;
      double W = -1e15;
      for (int k = 0; k < n; ++k)
         if (dist[u][k]!=INT_MAX)
             W = max(W, (double) (dist[u][n]-dist[u][k])/(n-k));
      ans = min(ans, W);
         dfs(i);
bool check() {
   memset(visited, false, sizeof(visited));
  dfs(root);
   for (int i = 0; i < V; ++i)</pre>
      if(!visited[i])
         return false;
   return true;
int exist_cycle(){
  prev[root] = root;
   for (int i = 0; i < V; ++i) {</pre>
      if(!cycle[i] && i!=root){
```

prev[i] = i; G[i][i] = INF;

```
for (int j = 0; j<V; ++j)</pre>
             if(!cycle[j] && adj[j][i] && G[j][i] <G[prev[i]][i])</pre>
                prev[i] = j;
   }
   for (int i = 0, j; i < V; ++i) {</pre>
      if(cycle[i]) continue;
      memset (visited, false, sizeof (visited));
      j = i;
      while(!visited[j]){
          visited[j] = true;
          j = prev[j];
      if(j==root) continue;
      return j;
   return -1;
void update(int v) {
   MCA += G[prev[v]][v];
   for(int i = prev[v];i!=v;i = prev[i]){
      MCA += G[prev[i]][i];
      cycle[i] = true;
   for (int i = 0; i < V; ++i)</pre>
      if(!cycle[i] && adj[i][v])
         G[i][v] -= G[prev[v]][v];
```

2.10. Stable marriage.

```
#define MAX_N 500
int N,pref_men[MAX_N][MAX_N],pref_women[MAX_N][MAX_N];
int inv[MAX_N][MAX_N],cont[MAX_N],wife[MAX_N],husband[MAX_N];
```

```
for(int j = prev[v]; j!=v; j = prev[j]) {
      for(int i = 0; i<V; ++i) {</pre>
         if(cycle[i]) continue;
         if(adj[i][j]){
             if(adj[i][v]) G[i][v] = min(G[i][v],G[i][j]-G[prev[j]][j]);
             else G[i][v] = G[i][j]-G[prev[j]][j];
             adj[i][v] = true;
         if(adj[j][i]){
             if(adj[v][i]) G[v][i] = min(G[v][i],G[j][i]);
             else G[v][i] = G[j][i];
             adj[v][i] = true;
bool min_cost_arborescence(int _root) {
   root = _root;
   if(!check()) return false;
   memset(cycle, false, sizeof(cycle));
  MCA = 0;
   int v;
   while((v = exist_cycle())!=-1)
      update(v);
   for (int i = 0; i < V; ++i)</pre>
      if(i!=root && !cycle[i])
         MCA += G[prev[i]][i];
   return true;
void stable_marriage() {
      for(int i = 0; i<N; ++i)</pre>
             for (int \dot{j} = 0; \dot{j} < N; ++\dot{j})
```

inv[i][pref_women[i][j]] = j;

2.11. Bipartite matching (Hopcroft Karp).

```
#define MAX_V1 50000
#define MAX_V2 50000
#define MAX_E 150000
int V1, V2, left[MAX_V2], right[MAX_V1];
int E, to[MAX_E], next[MAX_E], last[MAX_V1];
void hk_init(int v1, int v2){
  V1 = v1; V2 = v2; E = 0;
   memset(last,-1, sizeof last);
void hk_add_edge(int u, int v) {
   to[E] = v; next[E] = last[u]; last[u] = E++;
bool visited[MAX_V1];
bool hk_dfs(int u) {
   if(visited[u]) return false;
  visited[u] = true;
   for(int e = last[u], v; e != -1; e = next[e]) {
      v = to[e];
      if(left[v] == -1 || hk_dfs(left[v])){
         right[u] = v;
         left[v] = u;
```

```
if(husband[w]<0 || inv[w][m]<inv[w][husband[w]]) break;
}

dumped = husband[w];
husband[w] = m;
wife[m] = w;
m = dumped;
}
}</pre>
```

```
return true;
   return false;
int hk_match(){
   memset(left,-1,sizeof left);
  memset(right, -1, sizeof right);
  bool change = true;
   while (change) {
      change = false;
      memset (visited, false, sizeof visited);
      for(int i = 0; i < V1; ++i)</pre>
         if(right[i] == -1)
            change |= hk_dfs(i);
   int ret = 0;
   for(int i = 0;i < V1;++i)</pre>
      if(right[i] != -1) ++ret;
   return ret;
```

2.12. Algoritmo húngaro.

```
// Maximiza costo del matching
#define MAX V 500
int V, cost[MAX_V][MAX_V];
int lx[MAX_V], ly[MAX_V];
int max_match, xy[MAX_V], yx[MAX_V], prev[MAX_V];
bool S[MAX_V], T[MAX_V];
int slack[MAX_V], slackx[MAX_V];
int q[MAX_V], head, tail;
void init labels() {
   memset(lx,0,sizeof(lx));
   memset(ly,0,sizeof(ly));
   for (int x = 0; x < V; ++x)
      for (int y = 0; y < V; ++y)
         lx[x] = max(lx[x], cost[x][y]);
void update_labels() {
   int x,y,delta = INT_MAX;
   for(y = 0;y<V;++y) if(!T[y]) delta = min(delta,slack[y]);</pre>
   for (x = 0; x < V; ++x) if (S[x]) lx[x] -= delta;
   for(y = 0; y < V; ++y) if(T[y]) ly[y] += delta;
   for(y = 0;y<V;++y) if(!T[y]) slack[y] -= delta;</pre>
void add_to_tree(int x, int prevx) {
   S[x] = true;
   prev[x] = prevx;
   for (int y = 0; y < V; ++y) {
      if(lx[x]+ly[y]-cost[x][y]<slack[y]){
         slack[y] = lx[x]+ly[y]-cost[x][y];
         slackx[y] = x;
void augment(){
   int x,y,root;
```

```
head = tail = 0;
memset(S, false, sizeof(S));
memset(T, false, sizeof(T));
memset (prev, -1, sizeof (prev));
for (x = 0; x < V; ++x) {
   if (xy[x]==-1) {
      q[tail++] = root = x;
      prev[root] = -2;
      S[root] = true;
      break;
for(y = 0;y<V;++y){
   slack[y] = lx[root]+ly[y]-cost[root][y];
   slackx[y] = root;
while (true) {
   while(head<tail) {</pre>
      x = q[head++];
      for (y = 0; y < V; ++y) {
         if(cost[x][y]==lx[x]+ly[y] && !T[y]){
             if(yx[y]==-1) break;
            T[y] = true;
             q[tail++] = yx[y];
             add_to_tree(yx[y],x);
      if(y<V) break;</pre>
   if(y<V) break;</pre>
   update_labels();
   head = tail = 0;
   for(y = 0;y<V;++y) {
      if(!T[y] && slack[y]==0){
```

```
if(yx[y]==-1) {
    x = slackx[y];
    break;
}

T[y] = true;

if(!S[yx[y]]) {
    q[tail++] = yx[y];
    add_to_tree(yx[y],slackx[y]);
    }
}

if(y<V) break;
}
++max_match;</pre>
```

2.13. Non bipartite matching.

```
#define MAXN 222
int n;
bool adj[MAXN][MAXN];
int p[MAXN], m[MAXN], d[MAXN], c1[MAXN], c2[MAXN];
int q[MAXN], *qf, *qb;
int pp[MAXN];
int f(int x) {return x == pp[x] ? x : (pp[x] = f(pp[x]));}
void u(int x, int y) \{pp[f(x)] = f(y);\}
int v[MAXN];
void path(int r, int x) {
  if (r == x) return;
   if (d[x] == 0) {
      path(r, p[p[x]]);
      int i = p[x], j = p[p[x]];
      m[i] = j; m[j] = i;
   else if (d[x] == 1) {
      path(m[x], c1[x]);
```

```
for (int cx = x, cy = y, ty; cx!=-2; cx = prev[cx], cy = ty) {
      ty = xy[cx];
      yx[cy] = cx;
      xy[cx] = cy;
int hungarian(){
   int ret = 0;
   \max \ \text{match} = 0;
  memset(xy,-1,sizeof(xy));
  memset (yx, -1, sizeof(yx));
   init_labels();
   for(int i = 0;i<V;++i) augment();</pre>
   for (int x = 0; x < V; ++x) ret += cost[x][xy[x]];
   return ret;
      path(r, c2[x]);
      int i = c1[x], j = c2[x];
      m[i] = j; m[j] = i;
int lca(int x, int y, int r) {
  int i = f(x), j = f(y);
   while (i != j && v[i] != 2 && v[j] != 1){
     v[i] = 1; v[j] = 2;
      if (i != r) i = f(p[i]);
      if (j != r) j = f(p[j]);
   int b = i, z = j;
  if(v[j] == 1) swap(b, z);
   for (i = b; i != z; i = f(p[i])) v[i] = -1;
  v[z] = -1;
   return b;
void shrink_one_side(int x, int y, int b) {
```

```
for(int i = f(x); i != b; i = f(p[i])){
      u(i, b);
      if(d[i] == 1) c1[i] = x, c2[i] = y, *qb++ = i;
bool BFS(int r) {
   for (int i=0; i<n; ++i)</pre>
      pp[i] = i;
   memset(v, -1, sizeof(v));
   memset(d, -1, sizeof(d));
   d[r] = 0;
   qf = qb = q;
   *qb++ = r;
   while(qf < qb) {</pre>
      for(int x=*qf++, y=0; y<n; ++y) {</pre>
         if(adj[x][y] && m[y] != y && f(x) != f(y)){
            if (d[y] == -1) {
               if(m[y] == -1) {
                                      path(r, x);
                                      m[x] = y; m[y] = x;
                                      return true;
                else{
```

2.14. Flujo máximo.

```
struct flow_graph{
   int MAX_V,E,s,t;
   int *cap,*to,*next,*last;
bool *visited;

flow_graph() {}

flow_graph(int V, int MAX_E) {
   MAX_V = V; E = 0;
   cap = new int[2*MAX_E], to = new int[2*MAX_E], next = new int[2*MAX_E];
   last = new int[MAX_V], visited = new bool[MAX_V];
   fill(last,last+MAX_V,-1);
}

void clear() {
```

```
p[y] = x; p[m[y]] = y;
                                     d[y] = 1; d[m[y]] = 0;
                                     *qb++ = m[y];
            else if(d[f(y)] == 0){
                              int b = lca(x, y, r);
                              shrink_one_side(x, y, b);
                              shrink_one_side(y, x, b);
   return false;
int match(){
  memset(m, -1, sizeof(m));
  int c = 0;
  for (int i=0; i<n; ++i)</pre>
     if (m[i] == -1)
        if (BFS(i)) c++;
        else m[i] = i;
   return c;
      fill(last, last+MAX_V, -1);
      E = 0;
  void add edge(int u, int v, int uv, int vu = 0){
     to[E] = v, cap[E] = uv, next[E] = last[u]; last[u] = E++;
      to[E] = u, cap[E] = vu, next[E] = last[v]; last[v] = E++;
  int dfs(int v, int f){
     if(v==t || f<=0) return f;
      if(visited[v]) return 0;
      visited[v] = true;
```

for(int e = last[v];e!=-1;e = next[e]) {

```
int ret = dfs(to[e],min(f,cap[e]));

if(ret>0) {
    cap[e] -= ret;
    cap[e^1] += ret;
    return ret;
    }
}

return 0;
}

int max_flow(int source, int sink) {
```

2.15. Flujo máximo (Dinic).

```
struct flow_graph{
                                                                                                  while(head < tail) {</pre>
   static const int MAX_V = 500;
                                                                                                     int v = q[head]; ++head;
   static const int MAX_E = 10000;
                                                                                                     for(int e = last[v];e != -1;e = next[e]){
  int E,s,t,head,tail;
                                                                                                        if(cap[e^1] > 0 && dist[to[e]] == -1){
  int cap[2 * MAX_E], to[2 * MAX_E], next[2 * MAX_E], last[MAX_V], dist[MAX_V], q[MAX_V], now[MAX_V];
                                                                                                           q[tail] = to[e]; ++tail;
                                                                                                           dist[to[e]] = dist[v]+1;
   flow_graph(){
     E = 0;
      memset(last,-1,sizeof last);
                                                                                                  return dist[s] != -1;
   void clear(){
     E = 0;
                                                                                               int dfs(int v, int f){
      memset(last,-1,sizeof last);
                                                                                                  if(v == t) return f;
  void add_edge(int u, int v, int uv) {
                                                                                                  for(int &e = now[v];e != -1;e = next[e]){
     to[E] = v, cap[E] = uv, next[E] = last[u]; last[u] = E++;
                                                                                                     if(cap[e] > 0 && dist[to[e]] == dist[v]-1) {
      to[E] = u, cap[E] = 0, next[E] = last[v]; last[v] = E++;
                                                                                                        int ret = dfs(to[e],min(f,cap[e]));
                                                                                                        if(ret > 0){
   bool bfs(){
                                                                                                           cap[e] -= ret;
      memset(dist,-1,sizeof dist);
                                                                                                           cap[e^1] += ret;
     head = tail = 0;
                                                                                                           return ret;
      q[tail] = t; ++tail;
      dist[t] = 0;
```

s = source, t = sink;

x = dfs(s,INT_MAX);
if(x==0) break;
f += x;

fill (visited, visited+MAX_V, false);

int f = 0, x;

while(true) {

return f;

};

```
return 0;
}
int max_flow(int source, int sink) {
   s = source; t = sink;
   int f = 0, df;

while(bfs()) {
   for(int i = 0; i <= sink; ++i) now[i] = last[i];
}</pre>
```

2.16. Flujo máximo - Costo Mínimo (Succesive Shortest Path).

```
#define MAX V 350
#define MAX_E 2*12500
typedef int cap_type;
typedef long long cost_type;
const cost_type INF = LLONG_MAX;
int V, E, prev[MAX_V], last[MAX_V], to[MAX_E], next[MAX_E];
bool visited[MAX V];
cap_type flowVal, cap[MAX_E];
cost_type flowCost,cost[MAX_E],dist[MAX_V],pot[MAX_V];
void init(int _V) {
   memset(last,-1, sizeof(last));
   V = _{V}; E = 0;
void add_edge(int u, int v, cap_type _cap, cost_type _cost) {
   to[E] = v, cap[E] = \_cap;
   cost[E] = _cost, next[E] = last[u];
  last[u] = E++;
  to[E] = u, cap[E] = 0;
  cost[E] = -_cost, next[E] = last[v];
   last[v] = E++;
// only if there is initial negative cycle
void BellmanFord(int s, int t) {
   bool stop = false;
   for(int i = 0;i<V;++i) dist[i] = INF;</pre>
   dist[s] = 0;
```

```
while(true) {
            df = dfs(s,INT_MAX);
            if(df == 0) break;
             f += df;
      return f;
};
   for(int i = 1;i<=V && !stop;++i){</pre>
      stop = true;
      for (int j = 0; j < E; ++ j) {</pre>
         int u = to[j^1], v = to[j];
         if(cap[j]>0 && dist[u]!=INF && dist[u]+cost[j]<dist[v]) {</pre>
             stop = false;
            dist[v] = dist[u]+cost[j];
   for(int i = 0;i<V;++i) if (dist[i]!=INF) pot[i] = dist[i];</pre>
void mcmf(int s, int t){
   flowVal = flowCost = 0;
   memset (pot, 0, sizeof (pot));
   BellmanFord(s,t);
   while(true) {
      memset (prev, -1, sizeof (prev));
      memset (visited, false, sizeof (visited));
      for(int i = 0;i<V;++i) dist[i] = INF;</pre>
      priority_queue< pair<cost_type, int> > Q;
      Q.push(make_pair(0,s));
      dist[s] = prev[s] = 0;
      while(!Q.empty()){
```

```
int aux = Q.top().second;
Q.pop();

if(visited[aux]) continue;
visited[aux] = true;

for(int e = last[aux];e!=-1;e = next[e]) {
    if(cap[e]<=0) continue;
    cost_type new_dist = dist[aux]+cost[e]+pot[aux]-pot[to[e]];
    if(new_dist<dist[to[e]]) {
        dist[to[e]] = new_dist;
        prev[to[e]] = e;
        Q.push(make_pair(-new_dist,to[e]));
    }
}</pre>
```

2.17. Flujo máximo (Dinic + Lower Bounds).

```
struct flow_graph{
  int V,E,s,t;
  int *flow, *low, *cap, *to, *next, *last, *delta;
  int *dist,*q,*now,head,tail;
  flow_graph(){}
   flow_graph(int V, int E) {
      (*this).V = V; (*this).E = 0;
     int TE = 2 \star (E+V+1);
     flow = new int[TE]; low = new int[TE]; cap = new int[TE];
     to = new int[TE]; next = new int[TE];
     last = new int[V+2]; delta = new int[V];
     dist = new int[V+2]; q = new int[V+2]; now = new int[V+2];
  void clear(int V) {
      (*this).V = V; (*this).E = 0;
      fill(last, last+V, -1);
  void add_edge(int a, int b, int 1, int u) {
     to[E] = b; low[E] = 1; cap[E] = u; flow[E] = 0;
     next[E] = last[a]; last[a] = E++;
     to[E] = a; low[E] = 0; cap[E] = 0; flow[E] = 0;
```

```
if (prev[t]==-1) break;
   cap_type f = cap[prev[t]];
   for(int i = t;i!=s;i = to[prev[i]^1]) f = min(f,cap[prev[i]]);
   for(int i = t;i!=s;i = to[prev[i]^1]){
      cap[prev[i]] -= f;
      cap[prev[i]^1] += f;
   flowVal += f;
   flowCost += f*(dist[t]-pot[s]+pot[t]);
   for(int i = 0; i < V; ++i) if (prev[i]!=-1) pot[i] += dist[i];</pre>
   next[E] = last[b]; last[b] = E++;
bool bfs() {
   fill (dist, dist+V+2,-1);
   head = tail = 0;
   q[tail] = t; ++tail;
   dist[t] = 0;
   while(head<tail){</pre>
      int v = q[head]; ++head;
      for(int e = last[v];e!=-1;e = next[e]){
         if(cap[e^1]>flow[e^1] && dist[to[e]]==-1){
            q[tail] = to[e]; ++tail;
            dist[to[e]] = dist[v]+1;
   return dist[s]!=-1;
int dfs(int v, int f) {
```

if(v==t) return f;

```
for(int &e = now[v];e!=-1;e = next[e]){
      if(cap[e]>flow[e] && dist[to[e]] == dist[v]-1) {
         int ret = dfs(to[e],min(f,cap[e]-flow[e]));
         if(ret>0){
            flow[e] += ret;
            flow[e^1] -= ret;
            return ret;
   return 0;
int max_flow(int source, int sink) {
   fill(delta,delta+V,0);
   for(int e = 0; e < E; e += 2) {</pre>
      delta[to[e^1]] -= low[e];
      delta[to[e]] += low[e];
      cap[e] -= low[e];
   last[V] = last[V+1] = -1;
   int sum = 0;
   for(int i = 0;i<V;++i){</pre>
      if(delta[i]>0){
         add_edge(V,i,0,delta[i]);
         sum += delta[i];
      if(delta[i]<0) add_edge(i,V+1,0,-delta[i]);</pre>
   add_edge(sink, source, 0, INT_MAX);
   s = V; t = V+1;
   int f = 0, df;
```

```
fill(flow,flow+E,0);
      while(bfs()){
         for(int i = V+1;i>=0;--i) now[i] = last[i];
         while(true) {
           df = dfs(s,INT_MAX);
            if(df==0) break;
            f += df;
        }
      if(f!=sum) return -1;
      for(int e = 0; e < E; e += 2) {</pre>
         cap[e] += low[e];
         flow[e] += low[e];
         flow[e^1] -= low[e];
         cap[e^1] -= low[e];
      s = source; t = sink;
      last[s] = next[last[s]];
      last[t] = next[last[t]];
      E = 2;
      while(bfs()){
         for(int i = V-1;i>=0;--i) now[i] = last[i];
         while(true) {
            df = dfs(s,INT_MAX);
            if(df==0) break;
            f += df;
      return f;
};
```

2.18. Corte mínimo de un grafo (Stoer - Wagner).

```
#define MAX_V 500
int M[MAX_V][MAX_V], w[MAX_V];
bool A[MAX_V], merged[MAX_V];
int minCut(int n) {
   int best = INT_MAX;
   for(int i=1;i<n;++i) merged[i] = false;</pre>
   merged[0] = true;
   for(int phase=1;phase<n;++phase) {</pre>
      A[0] = true;
      for (int i=1; i<n; ++i) {</pre>
          if(merged[i]) continue;
         A[i] = false;
          w[i] = M[0][i];
      int prev = 0,next;
      for(int i=n-1-phase; i>=0; --i) {
          // hallar siguiente vertice que no esta en A
          next = -1;
          for (int j=1; j<n; ++j)</pre>
             if(!A[j] && (next==-1 || w[j]>w[next]))
```

2.19. Graph Facts.

```
Un grafo es bipartito si y solo si no contiene ciclos de longitud impar.

Todos los arboles son bipartitos.

Las aristas que forman un ciclo, se encuentran en una misma componente biconexa.

Minimum Vertex Cover: para V = (S,T)

DFS desde los vertices que no estan cubiertos por alguna arista del matching, para moverse:

- De izq. a der. usar las aristas que no estan en el matching
```

```
next = j;
         A[next] = true;
         if(i>0){
            prev = next;
            // actualiza los pesos
            for(int j=1; j<n;++j)
               if(!A[j]) w[j] += M[next][j];
      if(best>w[next]) best = w[next];
      // mezcla s y t
      for (int i=0; i<n; ++i) {</pre>
         M[i][prev] += M[next][i];
         M[prev][i] += M[next][i];
      merged[next] = true;
   return best;
- De der. a izq. usar las aristas que estan en el matching
Estan en el vertex cover(independent set):
- De S los no alcanzados (los alcanzados)
- De T los alcanzados(los no alcanzados)
Para usar Teorema de Dilworth colocar tambien aristas que resulten de la transitividad.
Un grafo con grados de vertices iguales a 1 o 2, consiste solo de caminos y ciclos.
```

3.1. Knuth-Morris-Pratt.

```
#define MAX_L 70
int f[MAX_L];

void prefixFunction(string P) {
   int n = P.size(), k = 0;
   f[0] = 0;

   for(int i=1;i<n;++i) {
      while(k>0 && P[k]!=P[i]) k = f[k-1];
      if(P[k]==P[i]) ++k;
      f[i] = k;
   }
}
```

3.2. Aho-Corasick.

```
struct AhoCorasick{
   static const int UNDEF = 0;
   static const int MAXN = 360;
  static const int CHARSET = 26;
  int end, have;
  int tag[MAXN];
   int fail[MAXN];
   int trie[MAXN][CHARSET];
   void init(){
      tag[0] = UNDEF;
      fill(trie[0],trie[0] + CHARSET,-1);
     end = 1;
     have = 0;
   void add(int len, const int* s) {
      int p = 0;
      for(int i = 0; i < len; ++i){</pre>
         if(trie[p][*s] == -1) {
            tag[end] = UNDEF;
            fill(trie[end], trie[end] + CHARSET, -1);
```

```
int KMP(string P, string T){
  int n = P.size(), L = T.size(), k = 0, ans = 0;
   for (int i=0; i<L; ++i) {</pre>
      while (k>0 \&\& P[k]!=T[i]) k = f[k-1];
      if(P[k]==T[i]) ++k;
      if(k==n){
         ++ans;
         k = f[k-1];
   return ans;
            trie[p][*s] = end++;
         p = trie[p][*s];
      tag[p] = (1 \ll have);
      ++have;
   void build() {
      queue<int> bfs;
      fail[0] = 0;
      for(int i = 0;i < CHARSET;++i) {</pre>
         if(trie[0][i] != -1){
            fail[trie[0][i]] = 0;
            bfs.push(trie[0][i]);
         }else{
            trie[0][i] = 0;
```

```
while(!bfs.empty()) {
   int p = bfs.front();
   tag[p] |= tag[fail[p]];
   bfs.pop();

for(int i = 0;i < CHARSET;++i) {
    if(trie[p][i] != -1) {
      fail[trie[p][i]] = trie[fail[p]][i];
    }
}</pre>
```

3.3. Algoritmo Z.

```
int next[MAX_P_LEN];
// next[i] : lcp entre la cadena y su sufijo
// a partir del i-esimo caracter

void prefix_kmp(char *P) {
    int L = strlen(P),p = 0,t;

    for(int i = 1; i < L; i++) {
        if(i < p && next[i-t] < p-i) next[i] = next[i-t];
        else {
            int j = max(0, p-i);

            while(i+j < L && P[i+j] == P[j]) ++j;

            next[i] = j;
            p = i + j;
            t = i;
        }
}</pre>
```

3.4. Palíndromos.

```
void manacher(int n, const char s[], int p[]) {
  for (int i = 0, j = 0, k = 0; i <= 2 * (n - 1); ++i) {
    int l = i < k ? min(p[j + j - i], (k - i) / 2) : 0;
    int a = i / 2 - 1, b = (i + 1) / 2 + 1;

  while (0 <= a && b < n && s[a] == s[b]) {
      --a;
      ++b;
      ++1;
    }
}</pre>
```

```
bfs.push(trie[p][i]);
           }else{
            trie[p][i] = trie[fail[p]][i];
};
void LCP(char * P, char *T, int *lcp) {
  int LP = strlen(P),LT = strlen(T);
  int p = 0,t;
  for (int i = 0; i < LT; i++) {</pre>
     if(i 
       int j = max(0, p-i);
       while (i+j < LT && T[i+j] == P[j]) ++j;
       lcp[i] = j;
       p = i + j;
       t = i;
```

```
p[i] = 1;
if(k < 2 * b) {
    j = i;
    k = 2 * b;
}
</pre>
```

4. Geometría

4.1. Punto y Línea.

```
const double eps = 1e-9;
struct point{
    double x,y;

    point(){}
    point(double _x, double _y) : x(_x), y(_y){}

    double cross(point P){
        return x * P.y - y * P.x;
    }

    bool operator < (const point &p) const{
        if(fabs(x-p.x)>eps) return x<p.x;
        return y>p.y;
    }
};

double cross(point a, point b){
    return a.x * b.y - a.y * b.x;
}
```

4.2. Ángulo entre dos vectores.

```
double get_angle(point P1, point P2){
   double sina = P1.y / P1.abs(),cosa = P1.x / P1.abs();
   double sinb = P2.y / P2.abs(),cosb = P2.x / P2.abs();
   double sinc = sinb * cosa - sina * cosb;
   double cosc = cosb * cosa + sina * sinb;
```

4.3. Círculos.

```
point get_center(point A, point B, point C) {
   point v1 = (B - A).perp(),v2 = C - A;
   point m1 = (A + B) * 0.5;
   point m2 = (A + C) * 0.5;
```

```
bool polar_cmp(point a, point b) {
   if(a.x >= 0 && b.x < 0) return true;</pre>
   if(a.x < 0 && b.x >= 0) return false;
   if(a.x == 0 && b.x == 0){
      if(a.y > 0 && b.y < 0) return false;</pre>
      if(a.y < 0 && b.y > 0) return true;
   return cross(a,b) > 0;
struct line{
   point p1,p2;
   line(){}
   line(point _p1, point _p2){
      p1 = _p1; p2 = _p2;
      if(p1.x>p2.x) swap(p1,p2);
};
   double x = atan2(sinc,cosc);
   if(x < 0) x += 2 * M_PI;</pre>
   return x;
   double k = (m2 - m1).dot(v2) / v1.dot(v2);
   return m1 + v1 * k;
```

4.4. Polígonos.

```
//verdadero : sentido anti-horario, Complejidad : O(n)
bool ccw(const vector<point> &poly) {
   //primero hallamos el punto inferior ubicado mas a la derecha
   int ind = 0,n = poly.size();
   double x = poly[0].x,y = poly[0].y;
   for (int i=1; i < n; i++) {</pre>
      if (poly[i].y>y) continue;
      if (fabs(poly[i].y-y)<eps && poly[i].x<x) continue;</pre>
      ind = i;
      x = poly[i].x;
      y = poly[i].y;
   if (ind==0) return ccw(poly[n-1],poly[0],poly[1]);
   return ccw(poly[ind-1],poly[ind],poly[(ind+1)%n]);
bool isInConvex(vector <Point> &A, const Point &P) {
 int n = A.size(), lo = 1, hi = A.size() - 1;
 if(area(A[0], A[1], P) <= 0) return 0;</pre>
 if(area(A[n-1], A[0], P) <= 0) return 0;</pre>
 while(hi - lo > 1) {
   int mid = (lo + hi) / 2;
   if(area(A[0], A[mid], P) > 0) lo = mid;
   else hi = mid;
 return area(A[lo], A[hi], P) > 0;
```

4.5. Convex Hull (Monotone Chain).

```
vector<point> ConvexHull(vector<point> P) {
  sort(P.begin(),P.end());
  int n = P.size(),k = 0;
  point H[2*n];
  for(int i=0;i<n;++i) {</pre>
```

```
bool PointInsidePolygon(const point &P, const vector<point> &poly) {
   int n = poly.size();
   bool in = 0;
   for (int i = 0, j = n-1; i < n; j = i++) {
      double dx = poly[j].x-poly[i].x;
      double dy = poly[j].y-poly[i].y;
      if((poly[i].y<=P.y+eps && P.y<poly[j].y) ||</pre>
          (poly[j].y<=P.y+eps && P.y<poly[i].y))</pre>
         if(P.x-eps<dx*(P.y-poly[i].y)/dy+poly[i].x)</pre>
            in \hat{}=1;
   return in;
//valor positivo : vertices orientados en sentido antihorario
//valor negativo : vertices orientados en sentido horario
double signed_area(const vector<point> &poly) {
 int n = poly.size();
 if(n<3) return 0.0;
 double S = 0.0;
 for (int i=1; i<=n; ++i)</pre>
  S += poly[i%n].x*(poly[(i+1)%n].y-poly[i-1].y);
 S /= 2;
 return S;
      while (k>=2 \&\& !ccw(H[k-2],H[k-1],P[i])) --k;
      H[k++] = P[i];
   for (int i=n-2, t=k; i>=0; --i) {
```

while (k>t && !ccw(H[k-2],H[k-1],P[i])) --k;

```
H[k++] = P[i];
```

4.6. Teorema de Pick.

```
A = I + B/2 - 1, donde:
A = Area de un poligono de coordenadas enteras
I = Numero de puntos enteros en su interior
B = Numero de puntos enteros sobre sus bordes

int IntegerPointsOnSegment(const point &P1, const point &P2) {
    point P = P1-P2;
    P.x = abs(P.x); P.y = abs(P.y);
```

4.7. Par de puntos más cercano (Sweep Line).

```
#define MAX_N 100000
#define px second
#define py first
typedef pair<long long, long long> point;

int N;
point P[MAX_N];
set<point> box;

bool compare_x(point a, point b) { return a.px<b.px; }

inline double dist(point a, point b) {
   return sqrt((a.px-b.px)*(a.px-b.px)+(a.py-b.py)*(a.py-b.py));
}

double closest_pair() {
   if(N<=1) return -1;</pre>
```

4.8. Par de puntos más cercano (Divide and Conquer).

```
void closest_pair(int 1, int r) {
   if(1 == r) return;
```

```
return vector<point> (H,H+k);
  if(P.x == 0) return P.y;
  if(P.y == 0) return P.x;
   return (__gcd(P.x,P.y));
Se asume que los vertices tienen coordenadas enteras. Sumar el valor de esta
funcion para todas las aristas para obtener el numero total de punto en el borde
del poligono.
   sort(P,P+N,compare_x);
  double ret = dist(P[0], P[1]);
  box.insert(P[0]);
   set<point> :: iterator it;
   for (int i = 1, left = 0; i < N; ++i) {</pre>
      while(left<i && P[i].px-P[left].px>ret) box.erase(P[left++]);
      for(it = box.lower_bound(make_pair(P[i].py-ret,P[i].px-ret));
         it!=box.end() && P[i].py+ret>=(*it).py;++it)
            ret = min(ret, dist(P[i],*it));
      box.insert(P[i]);
   return ret;
  int mi = (1 + r) >> 1;
```

int X = p[mi].x;

```
closest_pair(1,mi);
closest_pair(mi + 1,r);
int m = 0;

for(int i = 1;i <= r;++i)
    if(abs(X - p[i].x) <= best)
        aux[m++] = point(p[i].y,p[i].x,p[i].id);

sort(aux,aux + m);

for(int i = 0;i < m;++i){
    int e = i + 1;</pre>
```

4.9. Unión de rectángulos (Área).

```
#define MAX_N 10000
struct event {
   int ind;
  bool type;
   event(){};
   event(int ind, int type) : ind(ind), type(type) {};
};
struct point{
   int x,y;
};
int N;
point rects[MAX_N][2];
// rects[i][0] : esquina inferior izquierda
// rects[i][1] : esquina superior derecha
event events_v[2*MAX_N], events_h[2*MAX_N];
bool in_set[MAX_N];
bool compare_x(event a, event b) {
   return rects[a.ind][a.type].x<rects[b.ind][b.type].x;</pre>
bool compare_y (event a, event b) {
   return rects[a.ind][a.type].y<rects[b.ind][b.type].y;</pre>
```

```
while(e < m && aux[e].x - aux[i].x <= best + EPS) {
    double d = dist(aux[i],aux[e]);

    if(d < best) {
        best = d;
        id1 = aux[i].id;
        id2 = aux[e].id;
    }

    ++e;
}</pre>
```

```
long long union_area() {
   int e = 0:
   for(int i = 0;i<N;++i){</pre>
      events_v[e] = event(i,0);
      events_h[e] = event(i,0);
      events_v[e] = event(i,1);
      events_h[e] = event(i,1);
      ++e;
   sort (events_v, events_v+e, compare_x);
   sort(events_h, events_h+e, compare_y);
   memset(in_set, false, sizeof(in_set));
   in set[events v[0].ind] = true;
   long long area = 0;
   int prev_ind = events_v[0].ind, cur_ind;
   int prev_type = events_v[0].type, cur_type;
   for (int i = 1; i < e; ++i) {</pre>
      cur_ind = events_v[i].ind; cur_type = events_v[i].type;
      int cont = 0, dx = rects[cur_ind][cur_type].x-rects[prev_ind][prev_type].x;
      int begin_y;
```

4.10. Geometría 3D.

```
struct XYZ{
    double x,y,z;

XYZ(){}

XYZ(double _x, double _y, double _z) :
    x(_x), y(_y), z(_z){}

void normalize(){
    double r = sqrt(x * x + y * y + z * z);
    x /= r; y /= r; z /= r;
}

XYZ cross(XYZ p){
    return XYZ(y * p.z - z * p.y,z * p.x - x * p.z,x * p.y - y * p.x);
}

double dot(XYZ p){
    return x * p.x + y * p.y + z * p.z;
};

// rotar p con eje de rotacion r
```

```
}

}

in_set[cur_ind] = (cur_type==0);

prev_ind = cur_ind; prev_type = cur_type;
}

return area;
}
```

```
XYZ rotate(XYZ p, XYZ r, double theta) {
  XYZ q(0,0,0);
  double costheta, sintheta;
  r.normalize();
  costheta = cos(theta);
  sintheta = sin(theta);
  q.x += (costheta + (1 - costheta) * r.x * r.x) * p.x;
  q.x += ((1 - costheta) * r.x * r.y - r.z * sintheta) * p.y;
  q.x += ((1 - costheta) * r.x * r.z + r.y * sintheta) * p.z;
  q.y += ((1 - costheta) * r.x * r.y + r.z * sintheta) * p.x;
  q.y += (costheta + (1 - costheta) * r.y * r.y) * p.y;
  q.y += ((1 - costheta) * r.y * r.z - r.x * sintheta) * p.z;
  q.z += ((1 - costheta) * r.x * r.z - r.y * sintheta) * p.x;
  q.z += ((1 - costheta) * r.y * r.z + r.x * sintheta) * p.y;
  q.z += (costheta + (1 - costheta) * r.z * r.z) * p.z;
  return q;
```

5. Matemática

5.1. GCD extendido.

```
// a*x + b*y = gcd(a,b)
int extGcd(int a, int b, int &x, int &y) {
   if(b == 0) {
      x = 1;
      y = 0;
      return a;
   }
   int g = extGcd(b,a % b,y,x);
   y -= a / b * x;
```

5.2. Teorema chino del resto.

```
// rem y mod tienen el mismo numero de elementos
long long chinese_remainder(vector<int> rem, vector<int> mod) {
   long long ans = rem[0],m = mod[0];
   int n = rem.size();

   for(int i=1;i<n;++i) {
      int a = modular_inverse(m,mod[i]);
   }
}</pre>
```

5.3. Número combinatorio.

```
long long comb(int n, int m) {
   if(m>n-m) m = n-m;

  long long C = 1;
    //c^{n}_{ii} -> c^{n}_{ii+1}
   for(int i=0;i<m;++i) C = C*(n-i)/(1+i);
   return C;
}

Cuando n y m son grandes y se pide comb(n,m)%MOD, donde MOD es un numero primo, se puede usar el Teorema de Lucas.

#define MOD 3571

int C[MOD][MOD];

void FillLucasTable() {
   memset(C,0,sizeof(C));</pre>
```

```
return q;
// ASSUME: gcd(a, m) == 1
int modInv(int a, int m) {
   int x,y;
   extGcd(a, m, x, y);
   return (x % m + m) % m;
      int b = modular_inverse(mod[i],m);
      ans = (ans*b*mod[i]+rem[i]*a*m)%(m*mod[i]);
      m \star = mod[i];
   return ans;
   for(int i=0;i<MOD;++i) C[i][0] = 1;</pre>
   for(int i=1;i<MOD;++i) C[i][i] = 1;</pre>
   for (int i=2; i < MOD; ++i)</pre>
      for(int j=1; j<i; ++j)</pre>
         C[i][j] = (C[i-1][j]+C[i-1][j-1]) %MOD;
int comb(int n, int k){
   long long ans = 1;
   while(n!=0){
      int ni = n%MOD,ki = k%MOD;
      n /= MOD; k /= MOD;
      ans = (ans*C[ni][ki])%MOD;
   return (int)ans;
```

5.4. Test de Miller-Rabin.

```
typedef unsigned long long ULL;
ULL mulmod(ULL a, ULL b, ULL c) {
   ULL x = 0, y = a % c;
   while(b > 0){
      if(b & 1) x += y;
      v <<= 1;
      if(x >= c) x -= c;
      if(y >= c) y -= c;
      b >>= 1;
   return x;
ULL pow(ULL a, ULL b, ULL c) {
  ULL x = 1, y = a;
   while(b > 0){
      if(b \& 1) x = mulmod(x,y,c);
      y = mulmod(y, y, c);
      b >>= 1;
   return x;
```

5.5. Polinomios.

```
vector<int> add(vector<int> &a, vector<int> &b) {
   int n = a.size(), m = b.size(), sz = max(n,m);
   vector<int> c(sz,0);

for(int i = 0;i<n;++i) c[i] += a[i];
   for(int i = 0;i<m;++i) c[i] += b[i];

   // mejor no quitar si son reales
while(sz>1 && c[sz-1]==0) {
    c.pop_back();
    --sz;
}
```

```
bool miller_rabin(ULL p, int it) {
   if(p < 2) return false;</pre>
  if(p == 2) return true;
  if((p & 1) == 0) return false;
  ULL s = p - 1;
   while(s % 2 == 0) s >>= 1;
   while (it--) {
      ULL a = rand() % (p-1) + 1, temp = s;
      ULL mod = pow(a,temp,p);
      if (mod == -1 | | mod == 1) continue;
      while(temp != p-1 && mod != p-1) {
         mod = mulmod(mod, mod, p);
         temp <<= 1;
      if (mod != p-1) return false;
   return true;
   return c;
vector<int> multiply(vector<int> &a, vector<int> &b){
   int n = a.size(), m = b.size(), sz = n+m-1;
   vector<int> c(sz,0);
   for (int i = 0; i < n; ++i)</pre>
      for(int j = 0; j<m; ++j)
         c[i+j] += a[i]*b[j];
      // mejor no quitar si son reales
```

while(sz>1 && c[sz-1]==0){

```
c.pop_back();
    --sz;
}

return c;
}
bool is_root(vector<int> &P, int r){
    int n = P.size();
```

5.6. Fast Fourier Transform.

```
struct Complex{
   double x,y;
   Complex(){}
   Complex(double _x, double _y):
      x(_x), y(_y){}
   void operator += (Complex &c) {
      x += c.x; y += c.y;
   Complex operator -= (Complex &c) {
      x -= c.x; y -= c.y;
   Complex operator * (Complex &c) {
      return Complex(x * c.x - y * c.y, x * c.y + y * c.x);
};
#define MAXN 262144
Complex A2[MAXN];
void fft(int n, Complex A[], int s){
   int p = __builtin_ctz(n);
   memcpy(A2, A, sizeof(Complex) * n);
   for (int i = 0; i < n; ++i) {</pre>
      int rev = 0;
      for(int j = 0; j < p; ++j) {</pre>
         rev <<= 1;
```

```
long long y = 0;
   for (int i = 0; i < n; ++i) {</pre>
      if(abs(y-P[i])%r!=0) return false;
      y = (y-P[i])/r;
   return y==0;
         rev |= ((i >> j) & 1);
      A[i] = A2[rev];
   Complex w,wn;
   int M = 2, K = 1;
   for(int i = 1;i <= p;++i,M <<= 1,K <<= 1) {</pre>
      wn = Complex(cos(s * 2 * M_PI / M), sin(s * 2 * M_PI / M);
      for(int j = 0; j < n; j += M) {
         w = Complex(1,0);
         for(int 1 = j;1 < K+j;++1){</pre>
            Complex t = w * A[1 + K], u = A[1];
            A[1] += t;
            u -= t;
            A[1 + K] = u;
            w = w * wn;
   if(s == -1)
      for (int i = 0; i < n; ++i)
         A[i].x /= n, A[i].y /= n;;
Complex R[MAXN];
int nR;
```

```
void fft_mult(int nP, Complex P[], int nQ, Complex Q[]) {
    nR = nP + nQ;
    while(_builtin_popcount(nR) > 1)    nR += nR & -nR;

    for(int i = nP;i < nR;++i) P[i] = Complex(0,0);
    for(int i = nQ;i < nR;++i) Q[i] = Complex(0,0);</pre>
```

```
fft (nR,P,1);
fft (nR,Q,1);

for (int i = 0;i < nR;i++) R[i] = P[i] * Q[i];

fft (nR,R,-1);</pre>
```

5.7. Stern Brocott.

```
const int MAX_DEN = 3000;
vector<int> Fnum,Fden;

void build(int lnum = 0, int lden = 1, int rnum = 1, int rden = 1) {
   int a = lnum+rnum,b = lden+rden;
   if(b>MAX_DEN) return;
```

```
build(lnum,lden,a,b);
Fnum.push_back(a);
Fden.push_back(b);
build(a,b,rnum,rden);
}
```

6. Estructuras de datos

6.1. Lowest Common Ancestor.

```
#define MAX_N 100000
#define LOG2_MAXN 16

// NOTA : memset (parent, -1, sizeof (parent));
int N, parent [MAX_N], L[MAX_N];
int P[MAX_N] [LOG2_MAXN + 1];

int get_level (int u) {
    if (L[u]!=-1) return L[u];
    else if (parent[u]==-1) return 0;
    return 1+get_level (parent[u]);
}

void init() {
    memset (L, -1, sizeof (L));
    for (int i = 0; i < N; ++i) L[i] = get_level (i);
    memset (P, -1, sizeof (P));

for (int i = 0; i < N; ++i) P[i][0] = parent[i];</pre>
```

```
for(int i = log;i>=0;--i) {
   if(P[p][i]!=-1 && P[p][i]!=P[q][i]) {
      p = P[p][i];
      q = P[q][i];
}
```

6.2. Heavy-Light Descomposition.

```
struct HeavyLight{
   static const int MAXN = 100005;
   int N;
   vector<int> E[MAXN];
   int nodedad[MAXN];
   int treesize[MAXN];
   int pos,cntchain;
   int chainleader[MAXN];
   int homechain[MAXN];
   int homepos[MAXN];
   void init(int n){
     N = n;
     for(int i = 0;i < n;++i) E[i].clear();</pre>
     pos = cntchain = 0;
   void add_edge(int u, int v) {
      E[u].push_back(v);
      E[v].push_back(u);
   void explore(int x = 0, int dad = -1){
      nodedad[x] = dad;
     treesize[x] = 1;
      int sz = E[x].size();
```

6.3. **Treap.**

```
typedef long long ptype;
```

```
return parent[p];
      for(int i = 0;i < sz;++i){</pre>
         if(E[x][i] != dad) {
            explore(E[x][i], x);
            treesize[x] += treesize[ E[x][i] ];
  void heavy_light(int x = 0, int dad = -1, int k = -1, int p = 0) {
     if(p == 0){
         k = cntchain++;
         chainleader[k] = x;
      homechain[x] = k;
      homepos[x] = pos++;
      int mx = -1, sz = E[x].size();
      for (int i = 0; i < sz; ++i)
         if(E[x][i]] = dad \&\& (mx == -1 || treesize[E[x][i]] > treesize[E[x][mx]]))
            mx = i;
      if(mx != -1) heavy_light(E[x][mx], x, k, p + 1);
      for(int i = 0; i < sz; ++i)</pre>
         if(E[x][i] != dad && i != mx)
            heavy_light(E[x][i], x, -1, 0);
};
```

```
ptype seed = 47;
ptype my_rand(){
   seed = (seed * 279470273) % 4294967291LL;
   return seed;
typedef struct node * pnode;
struct node {
 int x, y, cnt;
 pnode L, R;
 node() {}
 node(int x, int y): x(x), y(y), cnt(1), L(NULL), R(NULL) {}
pnode T;
inline int cnt(pnode &it) {
 return it ? it->cnt : 0;
inline void upd_cnt(pnode &it) {
 if (it) {
  it->cnt = cnt(it->L) + cnt(it->R) + 1;
// Split Treap
void split(pnode t, int x, pnode &L, pnode &R) {
 if (!t) L = R = NULL;
 else
  if (x < t->x)
    split (t->L, x, L, t->L), R = t;
    split (t->R, x, t->R, R), L = t;
   upd cnt(t);
// Split Implicit Treap
void split(pnode t, pnode &L, pnode &R, int key) {
 if (!t) L = R = NULL;
 else
   int cntL = cnt(t->L);
  if (key <= cntL)</pre>
```

```
split (t->L, L, t->L, key), R = t;
    split (t->R, t->R, R, key - cntL - 1), L = t;
   upd_cnt(t);
// For Treap & Implicit Treap
void merge (pnode &t, pnode L, pnode R) {
 if (!L) t = R;
 else if(!R) t = L;
 else if (L->V > R->V)
  merge (L->R, L->R, R), t = L;
  merge (R->L, L, R->L), t = R;
 upd_cnt(t);
// Combines 2 treaps
pnode unite (pnode 1, pnode r) {
 if (!1 || !r) return 1? 1: r;
 if (1->y > r->y) swap (1, r);
 pnode lt, rt;
 split (r, 1->x, lt, rt);
 1->L = unite(1->L, lt);
 1->R = unite(1->R, rt);
 return 1;
// Find in Treap
bool find (pnode &t, int x) {
 if(!t) return 0;
 else if (t->x == x) return 1;
 else return find (x < t->x ? t->L: t->R, x);
// Erase from Treap
void erase (pnode &t, int x) {
 if (t-> x == x)
  merge (t, t->L, t->R);
  erase (x < t->x ? t->L: t->R, x);
// Insert into Treap
void insert(pnode &t, pnode it) {
```

```
if (!t) t = it;
else if (it->y > t->y)
    split (t, it->x, it->L, it->R), t = it;
else insert (it->x < t->x ? t->L: t->R, it);
}

// Insert into Treap and return the # of greater elements
int insert(pnode &t, pnode it) {
    int ret = 0;
    if (!t) t = it;
else if (it->y > t->y)
    split (t, it->x, it->L, it->R), t = it, ret = cnt(t->R);
else if (it->x < t->x)
```

```
ret = 1 + cnt(t->R) + insert(t->L, it);
else
  ret = insert(t->R, it);
upd_cnt(t);
return ret;
}

// Safely insert into Treap
void insert(int x)
{
  if(!find(T, x))
    insert(T, new node(x, rand()));
}
```

7. Matrices

8. Mathematical facts

8.1. **Números de Catalan.** están definidos por la recurrencia:

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1}$$

8.2. Números de Stirling de primera clase. son el número de permutaciones de n elementos con exactamente k ciclos disjuntos.

8.3. Números de Stirling de segunda clase. son el número de particionar un conjunto de n elementos en k subconjuntos no vacíos.

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}$$

Además:

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n$$

8.4. **Números de Bell.** cuentan el número de formas de dividir n elementos en subconjuntos.

$$\mathcal{B}_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \mathcal{B}_k$$

X	0	1	2	3	4	5	6	7	8	9	10
\mathcal{B}_x	1	1	2	5	15	52	203	877	4.140	21.147	115.975

8.5. **Derangement.** permutación que no deja ningún elemento en su lugar original

$$!n = (n-1)(!(n-1)+!(n-2)); !1 = 0, !2 = 1$$

$$!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

8.6. Números armónicos.

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

$$\frac{1}{2n+1} < H_n - \ln n - \gamma < \frac{1}{2n}$$

 $\gamma = 0.577215664901532860606512090082402431042159335...$

8.7. Número de Fibonacci. $f_0 = 0, f_1 = 1$:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$f_{n+1}^2 + f_n^2 = f_{2n+1}, f_{n+2}^2 - f_n^2 = f_{2n+2}$$

$$f_n = \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n-j}{j}$$

8.8. Sumas de combinatorios.

$$\sum_{i=n}^{m} \binom{i}{n} = \binom{m+1}{n+1}$$

$$\sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}$$

8.9. Funciones generatrices. Una lista de funciones generatrices para secuencias útiles:

$(1,1,1,1,1,1,\ldots)$	$\frac{1}{1-z}$
$(1,-1,1,-1,1,-1,\ldots)$	$\frac{1}{1+z}$
$(1,0,1,0,1,0,\ldots)$	$\frac{1}{1-z^2}$
$(1,0,\ldots,0,1,0,1,0,\ldots,0,1,0,\ldots)$	$\frac{1}{1-z^2}$
$(1,2,3,4,5,6,\ldots)$	$\frac{1}{(1-z)^2}$
$(1, \binom{m+1}{m}, \binom{m+2}{m}, \binom{m+3}{m}, \dots)$	$\frac{1}{(1-z)^{m+1}}$
$(1,c,\binom{c+1}{2},\binom{c+2}{3},\ldots)$	$\frac{1}{(1-z)^c}$
$(1,c,c^2,c^3,\ldots)$	$\frac{1}{1-cz}$
$(0,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots)$	$\ln \frac{1}{1-z}$

Truco de manipulación:

$$\frac{1}{1-z}G(z) = \sum_{n} \sum_{k < n} g_k z^n$$

8.10. The twelvefold way. ¿Cuántas funciones $f: N \to X$ hay?

N	X	Any f	Injective	Surjective
dist.	dist.	x^n	$(x)_n$	$x!\binom{n}{x}$
indist.	dist.	$\binom{x+n-1}{n}$	$\binom{x}{n}$	$\binom{n-1}{n-x}$
dist.	indist.	$\binom{n}{1} + \ldots + \binom{n}{x}$	$[n \le x]$	$\binom{n}{k}$
indist.	indist.	$p_1(n) + \dots p_x(n)$	$[n \le x]$	$p_x(n)$

Where $\binom{a}{b} = \frac{1}{b!}(a)_b$ and $p_x(n)$ is the number of ways to partition the integer n using x summands.

8.11. **Teorema de Euler.** si un grafo conexo, plano es dibujado sobre un plano sin intersección de aristas, y siendo v el número de vértices, e el de aristas y f la cantidad de caras (regiones conectadas por aristas, incluyendo la región externa e infinita), entonces

$$v - e + f = 2$$

8.12. **Burnside's Lemma.** Si X es un conjunto finito y G es un grupo de permutaciones que actúa sobre X, sean $S_x = \{g \in G : g * x = x\}$ y $Fix(g) = \{x \in X : g * x = x\}$. Entonces el número de órbitas está

dado por:

$$N = \frac{1}{|G|} \sum_{x \in X} |S_x| = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$$

8.13. Ángulo entre dos vectores. Sea α el ángulo entre \vec{a} y \vec{b} :

$$\cos\alpha = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

8.14. Proyección de un vector. Proyección de \vec{a} sobre \vec{b} :

$$\operatorname{proy}_{\vec{b}} \vec{a} = (\frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}}) \vec{b}$$

ACM ICPC TEAM REFERENCE - CONTENIDOS

Universidad Nacional de Ingeniería - FIIS

Contents		3.2. Aho-Corasick	19
1. Generales	1	3.3. Algoritmo Z	20
	1	3.4. Palíndromos	20
1.1. LIS en O(nlgn)	1	4. Geometría	21
1.2. Problema de Josephus	1	4.1. Punto y Línea	21
1.3. Contar inversiones	1	4.2. Ángulo entre dos vectores	21
1.4. Números dada la suma de pares	2	4.3. Círculos	21
2. Grafos	2	4.4. Polígonos	22
2.1. Ciclo de Euler	2	4.5. Convex Hull (Monotone Chain)	22
2.2. Euler (Directed graph)	4	4.6. Teorema de Pick	23
2.3. Punto de articulación	4	4.7. Par de puntos más cercano (Sweep Line)	23
2.4. Detección de puentes	5	4.8. Par de puntos más cercano (Divide and Conquer)	23
2.5. Componentes biconexas (Tarjan)	6	4.9. Unión de rectángulos (Área)	$\frac{20}{24}$
2.6. DFS para calcular low iterativo	6	4.10. Geometría 3D	$\frac{24}{25}$
2.7. Componentes fuertemente conexas (Tarjan)	7	w 35	
2.8. Ciclo de peso promedio mínimo (Karp)	7		25
2.9. Minimum cost arborescence	8	5.1. GCD extendido	26
2.10. Stable marriage	9	5.2. Teorema chino del resto	26
2.11. Bipartite matching (Hopcroft Karp)	10	5.3. Número combinatorio	26
2.12. Algoritmo húngaro	11	5.4. Test de Miller-Rabin	27
2.13. Non bipartite matching	12	5.5. Polinomios	27
2.14. Flujo máximo	13	5.6. Fast Fourier Transform	28
2.15. Flujo máximo (Dinic)	14	5.7. Stern Brocott	29
2.16. Flujo máximo - Costo Mínimo (Succesive Shortest Path)	15	6. Estructuras de datos	29
2.17. Flujo máximo (Dinic + Lower Bounds)	16	6.1. Lowest Common Ancestor	29
2.18. Corte mínimo de un grafo (Stoer - Wagner)	18	6.2. Heavy-Light Descomposition	30
2.19. Graph Facts	18	6.3. Treap	30
3. Cadenas	18	7. Matrices	32
3.1. Knuth-Morris-Pratt	19	8. Mathematical facts	32
		8.1. Números de Catalan	32

Univers	Jniversidad Nacional de Ingeniería - FIIS						
		i					
8.2.	Números de Stirling de primera clase	32	8.9. Funciones generatrices	33			
8.3.	Números de Stirling de segunda clase	32	8.10. The twelvefold way	33			
8.4.	Números de Bell	32	8.11. Teorema de Euler	33			
8.5.	Derangement	32	8.12. Burnside's Lemma	33			
8.6.	Números armónicos	33	8.13. Ángulo entre dos vectores	34			
8.7.	Número de Fibonacci	33	8.14. Proyección de un vector	34			
8.8.	Sumas de combinatorios	33					