CS2100 - Tutorial 8 - Set-Associative Cache & Performance

1. SA Cache block size = 2^3 bytes, no. of cache sets = $16/2/2 = 2^2$

No.	Memory A	ddress [Dec: Binary]	Cache Hit / Miss
1	4:	0000 0000 0100	М
2	16:	0000 0001 0000	M
3	32:	0000 0010 0000	M
4	20:	0000 0001 0100	Н
5	80:	0000 0101 0000	M
6	68:	0000 0100 0100	М
7	76:	0000 0100 1100	M
8	224:	0000 1110 0000	М
9	36:	0000 0010 0100	M
10	44:	0000 0010 1100	М
11	16:	0000 0001 0000	Н
12	172:	0000 1010 1100	М
13	20:	0000 0001 0100	Н
14	24:	0000 0001 1000	М
15	36:	0000 0010 0100	Н
16	68:	0000 0100 0100	М

Cache set	Valid bit	Tag	Word0	Word1	Valid bit	Tag	Word0	Word1
0	1	1	Mem [32]	Mem[36]	١	2	Mem[14]	Mem [68]
1	١	5	Mem [168]	Mem[172]	۱ ا	ı	Mem (40)	Mem[44]
2	1	0	Men[16]	Mem[20]	l	2	Mem [80]	Mem [84]
3	1	0	Mem (24)	Mem (28)	0			

2. Performance

(a).
$$CPI_{overall} = \sum_{k=1}^{2} CPI_k \times F_k$$

$$= 2 \times 0.15 + 2 \times 0.25 + 4 \times 0.15 + 1 \times 0.35 + 1 \times 0.05 + 10 \times 0.05$$

$$= 2.30$$
(b). $CPI_{mew} = 2 \times 0.15 + 2 \times 0.25 + 4 \times 0.15 + 1 \times 0.35 + 1 \times 0.05 + 3 \times 0.05$

$$= 1.95$$
Speedup = $\frac{CPI_{mew}}{CPI_{mew}}$

$$= \frac{2.10}{1.95}$$

$$= 1.1395$$

3. The Malleable Truth

(a).
$$CPI_{overall} = 1 \times 0.20 + 4 \times 0.40 + 4 \times 0.20 + 2 \times 0.20$$

$$= 3.00$$

$$= 1 \times 10^{9} / 3.00$$

$$= 3.3 \times 10^{8} \text{ instructions/s}$$

(b).

$$= 3.00$$
Reformance = $1 \times 10^9 / 3.00$

$$= 3.3 \times 10^8 \text{ instructions/s}$$

$$= 4.301 \times 10^{8} \text{ instructions/s}$$

Speedup =
$$\frac{3.00}{2.315}$$

= 1.2903

Performance = 1×109/0.625

4.8

Speedup = 0.625

$$= \frac{1}{4}(1 \times 0.50)$$

$$= 0.625$$

$$\frac{1}{4}(1 \times 0.50)$$

= 1.6×10^{9} instructions/s