19. Перспектива

Проекционният апарат на метода перспектива се състои от:

1) Две взаимно перпендикулярни равнини π и Σ .

Проекционната равнина π се нарича картинна равнина (екран).

Равнината Σ се нарича *предметната равнина*. Върху нея се поставя изобразяваният предмет.

Правата $l = \pi \cap \Sigma$ се нарича основа на картината.

- 2) Проекционен център S, $(S \notin \Sigma, \pi)$ който е крайна точка *точка на гледане*.
- 3) Петата S_0 на перпендикуляра спуснат от проекционния център S към проекционната равнина π се нарича главна точка на картината ($S_0 \in \pi$, $SS_0 \perp \pi$). Разстоянието от центъра S до $S_0 d = |SS_0| = d(S, \pi)$ се нарича дистаниия.

4) Нека Σ_0 е равнината през S, успоредна на Σ . Правата $h=\Sigma_0 \cap \pi$ се нарича xopusoum. Очевидно $S_0 \in h$ и $h \parallel l$.

Проекционният център S и изобразяваният предмет се разполагат в различни полупространства относно картинната равнина π .

І. Изобразяване на крайни точки и прави

1) Нека \overline{A} е крайна точка и $\overline{A}_{\!\!1}$ е ортогоналната проекция на \overline{A} в Σ , ($\overline{AA}_{\!\!1} \perp \Sigma$, $\overline{A}_{\!\!1} \in \Sigma$). Точката $A = S\overline{A} \cap \pi$ се нарича nepcnekmusa на точката \overline{A} , а $A_{\!\!1} = S\overline{A}_{\!\!1} \cap \pi$ — smopuvha npoekuus на \overline{A} . Правата $\overline{AA}_{\!\!1}$ е перпендикулярна на Σ и тъй като равнината π също е перпендикулярна на Σ , то $\overline{AA}_{\!\!1}$ е успоредна на π . Тогава пресечницата $AA_{\!\!1}$ на π с равнината $\left(S, \overline{A}, \overline{A}_{\!\!1}\right)$ е успоредна на $\overline{AA}_{\!\!1}$, т.е. $AA_{\!\!1} \perp \dot{\Sigma}$. Следователно $AA_{\!\!1} \! \perp h$ и $AA_{\!\!1} \! \perp l$.

Така в перспектива точка \overline{A} се задава от наредената двойка точки (A,A_1) , като $AA_1\bot h$.

Обратно, ако (A,A_1) са двойка точки от π , такива че $AA_1\bot h$, то съществува единствена точка \overline{A} в пространството, за която A е перспектива и A_1 е вторична проекция. Наистина, ако $\overline{A}_1=SA_1\cap\Sigma$ и p е перпендикулярът от \overline{A}_1 към Σ , то $p\cap SA=\overline{A}$.

Ако \overline{B} е точка от π , то $\overline{B} \equiv B$ и \overline{B}_1 лежи на основата l.

 $\overline{B}(B,B_1)\in\pi$ $\overline{C}(C,C_1)\in\Sigma$

Ако \overline{C} е точка от Σ , то $\overline{C} \equiv \overline{C}_1$ и оттук $C \equiv C_1$. Следователно:

$$\overline{B}(B,B_{\scriptscriptstyle \parallel})\in\pi\iff B_{\scriptscriptstyle \parallel}\!\in\! I,\ BB_{\scriptscriptstyle \parallel}\!\perp\! h\,;\qquad \overline{C}(C,C_{\scriptscriptstyle \parallel})\in\Sigma\iff C\equiv C_{\scriptscriptstyle \parallel}\,.$$

2) Нека \overline{a} е крайна права и \overline{a}_1 е ортогоналната се проекция в Σ . Правата $a=(S,\overline{a})\cap\pi$ се нарича перспектива на \overline{a} , а правата $a_1=(S,\overline{a}_1)\cap\pi$ — вторичен образ на \overline{a} .

Така в перспектива правата \overline{a} се задава еднозначно от наредената двойка прави $(a,a_1)-\overline{a}(a,a_1)$.

Ясно е, че точката $\overline{A}(A,A_1)$ лежи на правата $\overline{a}(a,a_1)$, точно когато $A\in a,\ A_1\in a_1,\ AA_1\perp h$.

Cтьпкa на правата \overline{a} се нарича пресечната $\mathfrak E$ точка $\overline{G}^{\overline{a}}$ с равнината π . Тъй като $\overline{G}^{\overline{a}} \in \pi$, то $\overline{G}_1^{\overline{a}} \in l$. От друга страна $\overline{G}^{\overline{a}} \in \overline{a}$, т.е. $G^{\overline{a}} \in a$ и $G_1^{\overline{a}} \in a_1$. Така ако е зададена правата $\overline{a}(a,a_1)$, то перспективата и вторичният образ на стъпката $\mathfrak E$ се определят по следния начин: $G_1^{\overline{a}} = a_1 \cap l$, $G^{\overline{a}} \in a$, $G^{\overline{a}} G_1^{\overline{a}} \perp h$.

II. Изобразяване на безкрайни точки и безкрайни прави

Перспективата $U^{\bar a}$ на безкрайната точка $\bar U^{\bar a}$ на правата $\bar a$ се нарича убежна точка на правата $\bar a$.

Перспективата $u^{\bar{\alpha}}$ на безкрайната права $\bar{u}^{\bar{\alpha}}$ на равнината $\bar{\alpha}$ се нарича убежна права на равнината $\bar{\alpha}$.

- 1. Изобразяване на безкрайни точки от Σ . Нека $\overline{U}^{\overline{m}} \in \Sigma$. Ако $\overline{U}_1^{\overline{m}}$ е ортогоналната проекция на $\overline{U}^{\overline{m}}$ в Σ , то $U^{\overline{m}} \equiv U_1^{\overline{m}}$ и $S\overline{U}^{\overline{m}} \cap \pi = U^{\overline{m}} = U_1^{\overline{m}}$. Правата $S\overline{U}^{\overline{m}}$ минава през S и е успоредна на \overline{m} . Следователно тя лежи в равнината Σ_0 . Тогава точката $U^{\overline{m}}$ ще лежи върху h. В общия случай правата $S\overline{U}^{\overline{m}}$ не е успоредна на π и точката $U^{\overline{m}} \equiv U_1^{\overline{m}}$ е крайна. И така за убежната точка $U^{\overline{m}}(U^{\overline{m}},U_1^{\overline{m}})$ на една права \overline{m} , която е успоредна или лежи в предметната равнина Σ имаме $U^{\overline{m}} \equiv U_1^{\overline{m}} \in h$.
- 2. Нека сега $\overline{a}(a,a_1)$ е произволна крайна права. Ортогоналната проекция $\overline{U}_1^{\bar{a}}$ на $\overline{U}^{\bar{a}}$ в Σ е безкрайна точка, тъй като правата, съединяваща $\overline{U}^{\bar{a}}$ с безкрайната точка P^{∞} , която е перпендикулярна на Σ , е безкрайна права и ще пресича Σ в безкрайна точка. Следователно вторичният образ $U_1^{\bar{a}}$ на точката $\overline{U}^{\bar{a}}$ ще лежи върху h. Освен това $U_1^{\bar{a}} \in a_1$, $U^{\bar{a}} \in a$ и $U_1^{\bar{a}} U^{\bar{a}} \perp h$.

3. Ако $\overline{\alpha}$ е равнина и $\overline{u}^{\bar{\alpha}}$ е безкрайната се права, от горните разсъждения следва, че вторичната проекция $u_1^{\bar{\alpha}}$ съвпада с h. В общия случай (когато $\overline{\alpha}$ не е успоредна на π), перспективата $u^{\bar{\alpha}}$ на $\overline{u}^{\bar{\alpha}}$ е крайна права $-u^{\bar{\alpha}}=\pi \cap \left(S\,\overline{u}^{\bar{\alpha}}\right)$, като равнината $\left(S\,\overline{u}^{\bar{\alpha}}\right)$ минава през S и е успоредна на $\overline{\alpha}$. Следователно $\overline{u}^{\bar{\alpha}}(u^{\bar{\alpha}},h)$.

Взаимно положение на две прави

Нека в картинната равнина π са зададени крайните прави $\overline{a}(a,a_1)$ и $\overline{b}(b,b_1)$.

а) Нека $\overline{a} \cap \overline{b} = \overline{C}$, като $\overline{C}(C,C_1)$ е крайна точка. Тогава $a \cap b = C$, $a_1 \cap b_1 = C_1$ и $CC_1 \perp h$, като $C_1 \not\in h$. Следователно необходимите и достатъчни условия, две крайни прави $\overline{a}(a,a_1)$ и $\overline{b}(b,b_1)$ да са *пресекателни* са:

$$a \cap b = C$$
, $a_1 \cap b_1 = C_1$, $CC_1 \perp h$, $C_1 \notin h$.

б) Нека $\overline{a} \parallel \overline{b}$. Тогава $\overline{a} \cap \overline{b} = \overline{U}^{\overline{a}} \equiv \overline{U}^{\overline{b}}$. Оттук следва, че $a \cap b = U^{\overline{a}}$ и $a_1 \cap b_1 = U_1^{\overline{a}}$, като $U_1^{\overline{a}} \in h$ и $U^{\overline{a}}U_1^{\overline{a}} \perp h$. Следователно необходимите и достатъчни условия, две крайни прави $\overline{a}(a,a_1)$ и $\overline{b}(b,b_1)$ да са успореднии са:

$$a \cap b = U^{\bar{a}}, \ a_1 \cap b_1 = U_1^{\bar{a}} \in h, U^{\bar{a}}U_1^{\bar{a}} \perp h.$$

Да отбележим, че ако правите \overline{a} и \overline{b} лежат една равнина през S, то $a\equiv b$. Тогава \overline{a} и \overline{b} ще се пресичат, точно когато $a_1\cap b_1=C_1\not\in h$ и ще са успоредни, когато $a_1\cap b_1=C_1\in h$.

Ако правите \overline{a} и \overline{b} лежат една равнина, перпендикулярна на Σ , то $a_1\equiv b_1$. Нека $C=a\cap b$ и $C_1=a_1\cap h$. Тогава \overline{a} и \overline{b} ще се пресичат, точно когато $CC_1\perp h$ и ще са успоредни, когато $CC_1\perp h$.

Направените изводи ни дават възможност да решим следната: Задача. Дадени са точка $\overline{A}(A,A_{\!\scriptscriptstyle 1})$ и права $\overline{b}(b,b_{\!\scriptscriptstyle 1}),\ \overline{A}\not\in\overline{b}$. Да се намери права $\overline{a}(a,a_{\!\scriptscriptstyle 1})$ такава, че $\overline{A}\in\overline{a}$ и $\overline{a}\parallel\overline{b}$.

Peшeнue: От $\overline{a} \parallel \overline{b}$ следва, че $\overline{U}^{\overline{a}} \equiv \overline{U}^{\overline{b}}$. Тогава $b_1 \cap h = U_1^{\overline{h}}$, а $U^{\overline{b}} \in b$, като $U_1^{\overline{b}} U^{\overline{b}} \perp h$. Тъй като $\overline{a} = \overline{A} \overline{U}^{\overline{a}}$, то $a = A U^{\overline{a}}$, $a_1 = A_1 U_1^{\overline{a}}$ и правата \overline{a} се задава от двойката (a, a_1) , т.е. $\overline{a}(a, a_1)$.

III. Задаване на равнина.

Една равнина може да бъде зададена чрез три свои неколинеарни точки, или чрез неколинеарни точка и права от нея, чрез две пресичащи се прави или чрез две успоредни прави.

Обикновено в перспектива една равнина $\bar{\alpha}$ се задава с убежната си права $\bar{u}^{\bar{\alpha}}(u^{\bar{\alpha}},h)$ и пресечницата $\bar{\alpha}$ с проекционната равнина $\bar{\pi} - \bar{g}^{\bar{\alpha}}(g^{\bar{\alpha}},g^{\bar{\alpha}})$.

Правата $\,\overline{g}^{\bar{\alpha}}\,$ се нарича $\,\partial ups\,(cne\partial a)\,$ на $\,\overline{\alpha}\,$.

Тъй като $\,\overline{g}^{\,\bar{\alpha}}\,$ е права от π , то $\,g^{\,\bar{a}}\equiv \overline{g}^{\,\bar{a}}\,$ и $\,\overline{g}_{1}^{\,\bar{a}}\equiv l\,$.

От друга страна $u^{\overline{\alpha}} = \pi \cap (S\overline{u}^{\overline{a}})$, като равнината $(S\overline{u}^{\overline{a}})$ е успоредна на $\overline{\alpha}$.

Следователно правите $g^{\bar{\alpha}}$ и $u^{\bar{\alpha}}$ са успоредни, като пресечници на π с две успоредни равнини, т.е. $g^{\bar{\alpha}} \| u^{\bar{\alpha}}$.

И така в перспектива една равнина $\overline{\alpha}$ се задава еднозначно чрез наредената двойка прави $[\overline{u}^{\bar{\alpha}}, \overline{g}^{\bar{\alpha}}]$ или

$$\overline{lpha}[u^{ar{lpha}},g^{ar{lpha}}]$$
, като $g^{ar{lpha}}\|u^{ar{lpha}}$, а $u^{ar{lpha}}_1\equiv h$ и $\overline{g}^{\ ar{lpha}}_1\equiv l$.

Инцидентност на права и равнина

Ще намерим критерий една права $\bar{a}(a, a_1)$ да лежи в дадена равнина $\bar{\alpha}[u^{\bar{\alpha}},g^{\bar{\alpha}}]$.

Нека $\overline{a}\in\overline{lpha}$. Тогава $\overline{U}^{\overline{a}}\in\overline{u}^{\overline{a}}$ и следователно $U^{\overline{a}}\in u^{\overline{a}}$. От друга страна $\overline{a} \cap \pi = \overline{G}^{\overline{a}}$, а $\overline{\alpha} \cap \pi = \overline{g}^{\overline{\alpha}}$, така че $\overline{G}^{\overline{a}} \in \overline{g}^{\overline{a}}$ и $G^{\overline{a}} \in g^{\overline{a}}$.

Обратно, ако $U^{\bar a}\in u^{\bar a}$ и $G^{\bar a}\in g^{\bar a}$, то точките $\bar U^{\bar a}$ и $\bar G^{\bar a}$ от правата \overline{a} лежат в равнината \overline{a} , откъдето следва, че $\overline{a} \in \overline{\alpha}$.

Пресечница на две равнини

Полученият критерий дава възможност да се намери пресечницата \bar{s} на две равнини $\overline{\alpha}[u^{\overline{\alpha}}, g^{\overline{\alpha}}] \cup \overline{\beta}[u^{\overline{\beta}}, g^{\overline{\beta}}] - \overline{s} = \overline{\alpha} \cap \overline{\beta}.$

От $\overline{s} \in \overline{\alpha}$ следва, че $U^{\overline{s}} \in u^{\overline{\alpha}}$, $G^{\overline{S}} \in g^{\overline{\alpha}}$, а от $\overline{s} \in \overline{\beta}$ – $U^{\bar{s}}\in u^{\bar{\beta}}$, $G^{\bar{S}}\in g^{\bar{\beta}}$. Тогава $u^{\bar{\alpha}}\cap u^{\bar{\beta}}=U^{\bar{S}}$, $g^{\bar{\alpha}}\cap g^{\bar{\beta}}=G^{\bar{S}}$ и $s=U^{\bar{s}}G^{\bar{s}}$. За точките върху вторичната проекция на \bar{s} имаме: $U_{{}_{\!\!1}}^{\,\bar{S}}\in h$, $U^{\bar{S}}U_{{}_{\!\!1}}^{\,\bar{S}}\perp h$ и $G_{{}_{\!\!1}}^{\,\bar{S}}\in l$, $G^{\bar{S}}G_{{}_{\!\!1}}^{\,\bar{S}}\perp h$. И така ако $\overline{s}(s,s_1)$ е пресечницата на $\overline{\alpha}[u^{\bar{\alpha}},g^{\bar{\alpha}}]$ и $\overline{\beta}[u^{\bar{\beta}},g^{\bar{\beta}}]$, то: $s = U^{\overline{s}}G^{\overline{s}}$, $s_1 = U_1^{\overline{s}}G_1^{\overline{s}}$.

Успоредни равнини

Ако равнините $\bar{\alpha}[u^{\bar{\alpha}}, g^{\bar{\alpha}}]$ и $\bar{\beta}[u^{\bar{\beta}}, g^{\bar{\beta}}]$ са успоредни, то $\overline{u}^{\bar{\alpha}} \equiv \overline{u}^{\bar{\beta}}$ и следователно $u^{\bar{\alpha}} \equiv u^{\bar{\beta}}$. Обратно, ако $u^{\bar{\alpha}} \equiv u^{\bar{\beta}}$, то $\overline{u}^{\bar{\alpha}} \equiv \overline{u}^{\bar{\beta}}$, откъдето $\bar{\alpha} \parallel \bar{\beta}$. Тъй като $g^{\bar{\alpha}} \parallel u^{\bar{\alpha}}$ и $g^{\bar{\beta}} \parallel u^{\bar{\beta}}$, то $g^{\bar{\alpha}} \parallel g^{\bar{\beta}}$, като при $\bar{\alpha} \neq \bar{\beta}$ имаме $g^{\bar{\alpha}} \neq g^{\bar{\beta}}$. И така:

$$\overline{\alpha}[u^{\bar{\alpha}},g^{\bar{\alpha}}] \parallel \overline{\beta}[u^{\bar{\beta}},g^{\bar{\beta}}] \iff u^{\bar{\alpha}} \equiv u^{\bar{\beta}}, \ g^{\bar{\alpha}} \parallel g^{\bar{\beta}}, \ g^{\bar{\alpha}} \neq g^{\bar{\beta}}.$$

Горния резултат можем да използваме за определянето на равнина $\bar{\beta}[u^{\bar{\beta}}, g^{\bar{\beta}}],$ минаваща през дадена точка $\overline{B}(B,B_1)$ и успоредна на дадена равнина $\bar{\alpha}[u^{\bar{\alpha}},g^{\bar{\alpha}}]$. Тъй като при $\bar{\alpha}\parallel\bar{\beta}$ имаме $u^{\bar{\alpha}} \equiv u^{\bar{\beta}}$, то трябва да намерим само $g^{\bar{\beta}} \parallel u^{\bar{\alpha}}$. Правата $g^{\bar{\beta}}$ минава през стъпката $G^{\bar{a}}$ на всяка права $\bar{a} \in \bar{B}$. Убежната точка $U^{\bar{a}}$ на тази права лежи върху $u^{\bar{\alpha}} \equiv u^{\bar{\beta}}$. Тъй като $\overline{B} \in \overline{\beta}$, то $\overline{B} \in \overline{a}$. Оттук следва търсеното построение:

Избираме $U^{\bar{a}} \in u^{\bar{\alpha}}$, $U^{\bar{a}} \in h$, $U^{\bar{a}}U^{\bar{a}} \perp h$; Определяме правата $\overline{a}(a,a_1) = \overline{B}\overline{U}^{\overline{a}}$, $a = BU^{\overline{a}}$, $a_1 = B_1U_1^{\overline{a}}$; Намираме стъпката $\bar{G}^{\bar{a}}(G^{\bar{a}},G^{\bar{a}})$ на \bar{a} :

$$G^{\bar{a}} \in a, G_1^{\bar{a}} \in l, G^{\bar{a}}G_1^{\bar{a}} \perp h.$$

Правата $g^{\bar{\beta}}$ е определена от $G^{\bar{a}} \in g^{\bar{\beta}}, \ g^{\bar{\beta}} \parallel u^{\bar{a}} \equiv u^{\bar{\beta}}$. Така е определена равнината $\bar{\beta}[u^{\bar{\beta}}, g^{\bar{\beta}}]$.

Пробод на права и равнина

Нека са дадени равнина $\ \overline{\alpha}[u^{\bar{\alpha}},g^{\bar{\alpha}}]$ и права $\ \overline{a}(a,a_{_{\! 1}}),\ \overline{a}\not\in\overline{\alpha}\ ,\ \overline{a}\not\mid\overline{\alpha}$. Ще намерим пресечната точка $\ \overline{P}(P,P_{_{\! 1}})$ на $\ \overline{a}$ и $\ \overline{\alpha}-\overline{P}=\overline{a}\cap\overline{\alpha}$. Нека $\ \overline{\beta}[u^{\bar{\beta}},g^{\bar{\beta}}]$ е произволна равнина през $\ \overline{a}$, т.е. $\ U^{\bar{\alpha}}\in u^{\bar{\beta}}$, $\ G^{\bar{a}}\in g^{\bar{\beta}}$ и $\ u^{\bar{\beta}}\parallel g^{\bar{\beta}}$. Тогава, ако $\ \overline{m}=\overline{\alpha}\cap\overline{\beta}$, то $\ \overline{P}=\overline{a}\cap\overline{m}$.

Ще отбележим, че е достатъчно да определим само правата $\overline{m}=U^{\overline{m}}G^{\overline{m}}$. Тогава $P=a\cap m$ и $P_1\in a_1$, $PP_1\perp h$.

