记号说明

Notation 多项式的根包含重数, 对解集中重根取无交并.

Example $(x-1)^2$ 的零点为 $\{1\} \sqcup \{1\}$, 简写作 $\{1,1\}$.

Lemma (代数基本定理, Bézout 定理) n 次多项式 $f(x) \in \mathbb{C}[x]$ 在 \mathbb{C} 上有 n 个根.

Lemma (连续函数介值定理推论) 设 $f_{\alpha}(x) = \sum_{0 \leq k \leq n} c_k(\alpha) x^k \in \mathbb{C}[x]$ 为含参数 $\alpha \in [0,1]$ 的多项式, $c_k(\alpha)$ 关于 $\alpha \in [0,1]$ 一致连续且 $c_n(\alpha) \neq 0$, 则 $f_{\alpha}(x)$ 的根 $\{r_k(\alpha)\}_{1 \leq k \leq n}$ 由 n 条 \mathbb{C} 上一致连续的曲线组成.

Notation $\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$, $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$. 称 $\overline{\mathbb{R}}$ 为球面 $\overline{\mathbb{C}}$ 的赤道.

Example f(x) = x - 1 作为三次多项式, 零点为 $\{1, \infty, \infty\}$.

Notation 取 $S \subseteq \mathbb{R}$ 为无重复元的有限集, 采用 \subseteq 表示 S 中点赤道上的相邻关系.

Example 取 $S = \{1, -2, 4, \infty, 0\}$, 则 $1 \le 4 \le \infty \le -2 \le 0 \le 1$.

Lemma n 次多项式 $f(x) \in \mathbb{R}[x]$ 在 \mathbb{R} 上有 n-2k 个根, $k \in \mathbb{N}$. 记 S 为 f 在 \mathbb{C} 上的解集,则 S 在共轭作用下不变,即 $z \in S \Leftrightarrow \overline{z} \in S$ (含重数).

实多项式的根

Theorem 若 f 与 g 均为 n 次实多项式, 其根均为实数. 记 f 的根为

$$r_1 \leqq r_2 \leqq \cdots \leqq r_n \leqq r_1,$$

记g的根为

$$s_1 \leqq s_2 \leqq \cdots \leqq s_n \leqq s_1.$$

若满足交错根条件,即

$$r_1 \leq s_1 \leq r_2 \leq s_2 \leq \cdots \leq r_n \leq s_n \leq r_1$$

则对任意 $\alpha \in \mathbb{R}$, $f + \alpha g$ 作为 n 次多项式在 $\overline{\mathbb{R}}$ 上有 n 个相异的根.

Proof 考虑 $h_t = tf + (1 - t)g$ ($0 \le t \le 1$), 则根据引理, h_t 的根为 n 条 $\overline{\mathbb{C}}$ 上一致连续(采用球面通常度量)的曲线之并, 记曲线为 $l_i := \gamma_i([0,1]), 1 \le i \le n$.

这些曲线有如下显然的性质:

- 1. 不妨设 $\gamma_i(0) = s_i$, 则存在置换 $\sigma \in S_n$ 使得 $\gamma_i(1) = r_{\sigma(i)}$.
- 2. 对任意 $t = t_0, \{\gamma_1(t_0), \dots, \gamma_n(t_0)\}$ 关于赤道对称.
- 3. 对任意 $t \in (0,1)$ 与 γ_i , $\gamma_i(t)$ 不为任一 f 或 g 的根; 反之 f 与 g 有相同的根, 与题 设矛盾.

根据一致连续性与赤道对称性, 存在 $\varepsilon \in (0,1)$ 使得 $\bigcup_{1 \leq i \leq n} \gamma_i([0,\varepsilon])$ 为 n 条 \mathbb{R} 上弧线的 无交并. 考查所有符合上述条件的 ε , 存在上确界 $\varepsilon_0 \in (0,1]$.

兹有断言 $\varepsilon_0 = 1$. 若不然, 存在 i < j 使得 $\gamma_i([0, \varepsilon_0]) \cap \gamma_j([0, \varepsilon_0]) \neq \emptyset$. 根据连续性, $\gamma_i(t)$ 与 $\gamma_j(t)$ 在 $t \in [0, \varepsilon_0]$ 时均位于赤道, 而交错根条件表明某一 $\gamma(t)$ 在 $t \in (0, 1)$ 时业已通过 f 的一根, 矛盾.

由上述可知 h_t 在 $t \in [0,1]$ 时恒有 n 个两两不交的根, σ 为恒等映射或轮换 $\binom{1 \cdot 2 \cdots n}{2 \cdot 3 \cdots 1}$.

Exercise 考察上图中 0 与 ∞ 的位置,以此证明 f 与 g 的最高次项系数同号,常数项系数亦同号.

Exercise 记 $f + \alpha g$ ($\alpha \in \mathbb{R}$) 的解曲线为 $\{\gamma_i'(\alpha) \mid \alpha \in \mathbb{R}\}_{1 \leq i \leq n}$, 证明恰有

$$\left(igsqcup_{1\leq i\leq n}igsqcup_{lpha\in\mathbb{R}}\gamma_i'(lpha)
ight)\cup\{s_i\}_{1\leq i\leq n}=\overline{\mathbb{R}}.$$

即,每一 γ_i' 不走回头路,且所有 $\gamma_i'(\mathbb{R})$ 的无交并恰为 \mathbb{R} 去掉g的解集.

Corollary 若 f 为 n 次实多项式, q 为 n-1 次实多项式, f 与 q 的根均为实根, 且

$$r_1 \leq s_1 \leq r_2 \leq s_2 \leq \cdots \leq r_n \leq \infty$$
.

则 $\forall \alpha \in \mathbb{R}, f + \alpha g$ 在 \mathbb{R} 上恒有 n 个相异的实根.

Corollary (逆命题) 若对任意 $\alpha \in \mathbb{R}$, 实多项式 $f \vdash g$ 满足 $f + \alpha g$ 的根均为实数,则 $\deg f = \deg g + 1$, 且 $(x - \infty) \cdot g \vdash f$ 作为 n 次多项式有交错的根.

Theorem 若 n 次实多项式 f 与 g 的根均为实数, 分别记 $\{r_i\}_{1 \leq i \leq n}$ 与 $\{s_i\}_{1 \leq i \leq n}$ 为 f 与 g 的根. 若 f 与 g 在

$$\cdots \leqq s_i \leqq r_i \leqq r_{i+1} \leqq s_{i+1} \leqq \cdots \leqq r_j \leqq s_j \leqq s_{j+1} \leqq r_{j+1} \leqq \cdots$$

以外的部分交错,则对任意 $\alpha \in \mathbb{R}$, $f + \alpha g$ 至少有 n - 2 个两两不等的实根

Proof 显然有下图. 明所欲证.

特别地, 根曲线不自交(赤道对称性, f 与 g 无重根). 对称性表明 γ_i 与 γ_j 同时分叉且同时结束分叉.

Corollary 接以上. 存在 $x \leq y$, 使得

- 对于任意 $x \le \alpha \le y$, $f + \alpha g$ 有且仅有两个共轭复根;
- 对于任意 $y \le \alpha \le x$, $f + \alpha g$ 有 n 个两两不等的实根;
- 对 $\alpha = x, y, f + \alpha g$ 有n个实根,且其中有且仅有两个相等.

不妨取分叉起点 $\gamma_i(x) = \gamma_{i+1}(x) = \mathcal{F}_1$, 分叉终点 $\gamma_i(y) = \gamma_{i+1}(y) = \mathcal{F}_2$. 则

$$\cdots o \gamma_q(\infty) o \gamma_q(\mathcal{F}_1) o \gamma_q(\mathcal{F}_2) o \gamma_q(0) o \gamma_{q'}(\infty) o \cdots$$

表示分叉, 其中 i' = i - 1, j' = i + 1.

Definition 若 n 次实多项式 f 与 g 的根均为实数, 且 f 与 g 无重根. 分别记 $\{r_i\}_{1 \leq i \leq n}$ 与 $\{s_i\}_{1 \leq i \leq n}$ 为 f 与 g 的根. 记 \leq 顺序下形如 $s_i \leq s_j$ 或 $r_i \leq r_j$ 的式子的个数为同色数.

Example 若 $f(x)=x^3-x$, $g(x)=(x^2-rac{1}{4})(x-rac{1}{3})$, 则

$$r_1 \leqq s_1 \leqq r_2 \leqq s_2 \leqq s_3 \leqq r_3 \leqq r_1$$
.

从而 f 与 g 的同色数为 2.

Theorem 一般地, 若 n 次实多项式 f 与 g 的根均为实数, 且 f 与 g 无重根. 若 f 与 g 的同色数为 m, 则 $f + \alpha g$ 在 \mathbb{R} 上相异实根的数量取值为 $[\max\{n-2m,0\},n]$.

Example 若 $f = \prod_{k=1}^4 (x - r_k)$, $g = \prod_{k=1}^4 (x - s_k)$, 满足

$$r_1 \le r_2 \le r_3 \le r_4 \le s_1 \le s_2 \le s_3 \le s_4 \le r_1.$$

则存在 $a,b,c,d\in\overline{\mathbb{R}}$ ($a\leqq b\leqq c\leqq d$)使得

- $a \le \alpha \le b$ 或 $c \le \alpha \le d$ 时, $f + \alpha g$ 有四个两两不同的实根,
- $b \le \alpha \le c$ 时, $f + \alpha g$ 有且仅有两个共轭复根与两个两两不同的实根.

换言之, \mathbb{R} 上有一段孤立的开区间使得 $f + \alpha g$ 有且仅有两个不同的实根,且 $f + \alpha g$ 在该区间端点外的某段邻域内有四个实根.

Proof 显然三条 r-同色线段上只能包含 1 或 2 个分叉起点, 这说明 $\infty \le \alpha \le 0$ 时有且仅有一个分叉过程, $0 \le \alpha \le \infty$ 有且仅有两个分叉过程, 或反之. 显然分叉过程真包含于 $\infty \le \alpha \le 0$ 或 $0 \le \alpha \le \infty$, 从而得证.