ZK-SNARK and ZK-STARK

Yuncong Zhang

March 16, 2020

- Introduction
 - Background
 - Preliminaries
- ZK-SNARK
 - History
 - QAP
 - Groth 16
- ZK-STARK
 - History
 - ACSP
 - FRI
- 4 Conclusion

Background

NP language:

- Relation $R = \{(x, w)\}$
- Language $\mathcal{L} = \{x : \exists (x, w) \in R\}$
- NP = { \mathcal{L} : $\exists p.p.t \ \mathcal{V}(x, w) \text{ for } R$ }

Interactive Proofs:

- IP[r, k]: exists p.p.t. prover $\mathcal P$ and verifier $\mathcal V$
 - \mathcal{P} convinces \mathcal{V} ;
 - r rounds of interaction;
 - communication cost k-bits in each round.
- PCP[r, k]: exists p.p.t prover \mathcal{P} and verifier \mathcal{V}
 - ullet ${\cal P}$ outputs proof string: PCP
 - \bullet $\mathcal{V}^{\mathsf{PCP}}$ has oracle access to PCP
 - V consumes at most r bits randomness
 - V accesses at most k bits on PCP
- IOP: IP + PCP

PCP Theorem:

$$PCP[O(n), O(1)] = NP$$

Bilinear pairing based on Elliptic Curves:

- Groups $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$, all of size n
- Map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
- ullet Generators $g_1 \in \mathbb{G}_1, g_2 \in \mathbb{G}_2$, $e(g_1,g_2) \in \mathbb{G}_T$
- Bilinear: $e(a \cdot g_1, b \cdot g_2) = ab \cdot e(g_1, g_2)$

Notations:
$$[a]_1 := a \cdot g_1$$
, $[b]_2 := b \cdot g_2$, $[c]_T := c \cdot e(g_1, g_2)$

History

QAP

Groth 16

History

ACSP

FRI

Conclusion