Trabajo Práctico 5

Problema 2

El problema nos pide escribir una simulación del modelo de Ising. En nuestro caso, vamos a trabajar en la configuración sin campo, donde el hamiltoniano es

$$\mathcal{H} = -J\sum_{i,j} \sigma_i \cdot \sigma_j.$$

Vamos a trabajar a temperatura T=0. Por otro lado, la topología elegida es una red tipo Watts-Strogatz, en la configuración de una dimensión. En este modelo, los N nodos se disponen inicialmente conformando un anillo (es decir, cada nodo i está conectado con los nodos [i+1,i-1], con condiciones periódicas de contorno). Luego, para cada nodo i, se sortea con probabilidad p un nuevo enlace entre i y otro nodo j al azar.

Entonces, lo primero que vamos a hacer es implementar esta red. Para simular luego el modelo de Ising sobre esta topología, es conveniente representarla por medio de la lista de vecinos, para lo cual vamos a utilizar diccionarios.

```
function WS 1D(N: entero, p: flotante, semilla: entero) -> diccionario
// Generador de números aleatorios
    rng = MersenneTwister(semilla)
    nl = diccionario vacío
    para i de 2 a N-1 hacer
        nl[i] = lista vacía
        agregar nl[i], i-1, i+1
    fin para
   nl[1] = [2, N] // Condiciones periódicas
   nl[N] = [1, N-1]
   nodos = crear lista de 1 a N
    para i de 1 a N hacer
        si random(rng) < p entonces
            j = i
            mientras i == j hacer
                j = random(rng, nodos, 1)[0]
            fin mientras
            agregar nl[i], j
            agregar nl[j], i
        fin si
    fin para
    devolver nl
end function
```

Con la topología ya construida, podemos hacer implementar el algoritmo para simular el modelo de Ising haciendo Montecarlo.

1. El primer paso es implementar una función que calcule el ΔE de hacer flip en un spin i del sistema.

```
function get_E(nl:diccionario,spins:vector,i:entero) -> entero
E0 = - suma(spins[i] * spins[j] para todo j en nl[i])
E = - sum((-spins[i]) * spins[j] para todo j en nl[i])
```

```
devolver E - E0
end
```

2. Completar la implementación de la dinámica

```
function Ising(N,p,t,seed)
    rng = MersenneTwister(seed)
    nl = WS_1D(N,p,seed)
    // Inicializamos aleatoriamente N spines up (1) y down (-1)
    spins = sample(rng, [-1,1], N)
    nodes = collect(1:N)
    for t in 1:t
        i = rand(rng,nodes,1)[1]
        deltaE = get_E(nl,spins,i)
        if deltaE < 0</pre>
            spins[i] = - spins[i]
        elseif deltaE == 0
            if rand(rng) < 0.5
                 spins[i] = - spins[i]
            end
        end
    end
    return spins
end
```

La función implementada hace t iteraciones en las que intenta flipear un spin. Ahora, para un sistema de 10^5 spines, evolucionar el sistema durante 10^6 Montecarlo steps (lo que pide el ejercicio) implica un total de 10^1 1 iteraciones. En mi máquina eso demora un total de 13 hs. Por lo tanto, lo que hice fue bajar un orden de magnitud el sistema, y simular una cadena de 10^4 spines, durante 10^6 MC steps.

La simulación se corrió una vez para diferentes p = 0.01, 0.02, 0.04, 0.06, 0.10. Con el sistema relajado, lo que se hizo fue medir la función de correlación

$$C(r, t = 10^6) = \langle \sigma_i \sigma_{i+r} \rangle$$

para $r \in [0, 1000]$. Esto nos permitirá estimar la longitud de correlación ξ , definida por $C(\xi, t = 10^6) = 0.5$. Las curvas se ven en la Fig. 1.

Revisando los datos obtenidos, se encuentran las siguientes longitudes de correlación ξ para cada p estudiado, tal como se ve en la Fig. 2.

Con estas longitudes de correlación, es posible hacer un reescaleo de las curvas de la Fig. 1, definiendo una distancia reducida r/ξ . Con esto, se puede ver en la Fig. 3 que todas las curvas colapsan para valores pequeños de r/ξ .

Figure 1: Curvas $C(r, t = 10^6)$ para todos los p. La línea horizontal a trazos intersecta las curvas, punto en el cual se define la longitud de correlación ξ .

Figure 2: ξ estimado para cada valor de p. La línea continua es una función tipo hipérbola, para guiar al ojo y mostrar que la longitud de correlación va aproximadamente como el inverso de p.

Figure 3: Curvas $C(r/\xi,t=10^6)$ para todos los p.