

Nagar Yuwak Shikshan Sannstha's

Yeshwantrao Chavan College of Engineering
(An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur.

ODD Town 2025 22	
ODD Term—2021-22 Semester I	Mid Semester Exam - II
	Det Blaces
Subject Code CSD2101/AIML2101/AIDS2101	Subject : Calculus, Sequence and series
Time :1½ Hours	Max. Marks: 30

☐ Each Question is Compulsory.

☐ NON programmable calculators are only allowed.
☐ Assume suitable data wherever it is necessary.

Q.1 (A) Show that $\int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta = \frac{\pi}{\sqrt{2}}$			
01	[5]	CO-3	L3
(B) Trace the curve $y^2 = x^2(1-x^2)$	[5]	CO-3	L3
(A) Evaluate by changing the order of integration $\int_{0}^{4} \int_{y}^{4} \frac{x}{x^{2} + y^{2}} dxdy$	[5]	CO-3	L3
Q.2 (B) Evaluate $\iint_{-1}^{1} \int_{x-z}^{z+z} (x+y+z) dy dx dz$	[5]	CO-3	L3

(A)	Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-2x} + \sin x$ The radial displacement u in a rotating disc at a distance r from the axis is given by	[5]	CO-4	L
(B)	$r^2 \frac{d^2u}{dr^2} + r \frac{du}{dr} - u + Kr^3 = 0$, where K is a constant. Solve the equation under the condition $u = 0$ when $r = 0$, $u = 0$ when $r = a$.	[5]	CO-4	L3