視覚と行動の end-to-end 学習により経路追従行動を オンラインで模倣する手法の提案

(目標方向による経路選択機能の追加)

18C1096 春山健太

A proposal for an online imitation method of path-tracking behavior by end-to-end learning of vision and action (Addition of path selection function by target direction.)

Kenta HARUYMA

An end-to-end learning method using camera images as input has been studied to make a robot follow a certain path. We will add the target direction to the dataset from the previous research and addition of path selection function for branching paths. We propose a method to acquire autonomous running by end-to-end learning with camera images and target direction as input, which can select a path according to the target direction. The proposed method was described in two phases: learning phase and testing phase. The effectiveness of the proposed method was verified by simulator experiments using a turtlebot3 waffle and crossroad environment.

Key Words: end-to-end Learning, Navigation, Target Direction

1. 緒 言

近年、カメラ画像に基づいた自律移動の研究が行われている.Bojaski ら $^{(1)}$ は,人間のハンドル操作によるステアリング角度の模倣学習を行い,画像を用いて走行する手法を提案している.また岡田ら $^{(2)}$ は,LiDAR とオドメトリのデータを入力とするルールベースの制御器による経路追従行動を,カメラ画像による end-to-end 学習によって模倣する手法を提案している.上記の研究により,カメラ画像を用いて,ロボットが一定の経路を周回することが可能であると示されている.本研究では,岡田らの研究 $^{(2)}$ ("従来手法"とする)をベースに,end-to-end 学習による自律走行において図 1 のような分岐路で「,直進」と「左折」などの経路を選択可能な機能の追加を提案する.また提案する機能を用いた実験を行い,機能の有効性を検証する.

2. 提案手法

本研究のベースとなる従来手法を述べる.従来手法は,学習器の訓練を行う「学習フェーズ」と訓練した学習器の出力を用いて走行する「テストフェーズ」の2つにわけられる.学習フェーズでは,図2で

Fig. 1 Path selection

示すように,LiDAR とオドメトリを入力とする地図ベースの制御器による経路追従行動を,カメラ画像を用いた end-to-end で模倣学習する.学習器の訓練は,「訓練データ(カメラ画像,目標方向)を学習器へ入力し,結果を出力(角速度)」を1stepとして,設定した step数行う.その際,並進速度は固定した値を用いて走行する.学習器の訓練が,設定した step数に達し次第,図2で示すテストフェーズへ移行する.テストフェーズでは,カメラ画像を学習器へ入力し,学習器の出力(角速度)を用いて自律走行する.その際,並進速度は学習フェーズと同じ値を用いる.

次に,経路を選択する機能の追加のために用いる 目標とする進行方向の情報 (本研究では "目標方向指令"とする)を述べる.本研究で用いた目標方向指令とデータ形式を,表1に示す.分岐路以外での「道なり」を示す (continue) 分岐路を「直進 (go straight)」

Fig. 2 Learning phase

「左折 (turn left)」「右折 (turn right)」の計 4 つを用いる、次に従来手法へ,目標方向指令を加えること

Table 1 Target direction and data

Target direction	Data
continue	[100, 0, 0, 0]
go straight	[0, 100, 0, 0]
turn left	[0, 0, 100, 0]
turn right	[0, 0, 0, 100]

で,経路を選択する機能を追加する提案手法を述べる.提案手法の学習フェーズでは,図2に緑で示した,地図ベースの制御器へ目標方向指令の生成機能を追加し,データセットと学習器の入力へ目標方向指令の追加を行った.提案手法では,地図ベースの制御器による経路追従行動をカメラ画像と目標方向指令を用いて模倣学習する.

提案手法のテストフェーズでは図3の緑で示した, 学習器の入力へ目標方向指令を追加することで,学 習器の出力を用いた走行において,目標方向指令に よる経路の選択を行う.

3. 実 験

提案手法による機能の有効性の検証のため,シミュレータ上で実験を行う.実験装置として図2,図3で示した Turtlebot3 waffle ヘカメラを3つ追加したモデルを用いる.図4に用いた環境と経路,入力する目標方向指令を示す.環境は道幅が2.5[m]の十字路を用いる.図4中の経路を,下記の手順で走行する.

- 1. Start A Target point(B)
- 2. Start A Target point(C)
- 3. Start A Target point(D)

学習フェーズで 6000[step] の学習後, 訓練フェーズで 各経路を 10 回ずつ走行する. 両フェーズで用いる並 進速度は 0.2[m/s] とした. 実験ではテストフェーズ において「壁に衝突せず, 指定した目標地点へ到達」を成功「目標方向指令とは異なった経路を選択, または壁に衝突」を失敗とする.

Fig. 3 Test phase

Fig. 4 Environment and route for experiment

4. 実験結果

実験結果を表2に示す.すべての経路において,目標地点へ到達することに成功した.結果から,目標方向指令によって経路を選択可能な機能を追加する提案手法の有効性が確認できた.

Table 2 Number of successes experiment

Route and Target direction	Number of successes
Start - A - B	10/10
Start - A - C	10/10
Start - A - D	10/10

5. 結 言

本研究では、従来手法をベースに end-to-end 学習による自律走行において、経路選択する機能の追加を提案した、またシミュレータを用いた実験により、機能の有効性を検証した、

文 献

- [1] Mariusz Bojarski et al: "End to End Learning for Self-Driving Cars", arXiv: 1604.07316,(2016)
- [2] 岡田眞也, 清岡優祐, 上田隆一, 林原靖男: "視覚と行動の endto-end 学習により経路追従行動をオンラインで模倣する手 法の提案"