RBF Neural Network equations with derivations

Tanmay Khandait Viral Patel

November 9, 2018

Contents

1	Mo	del 1: RBFNN with weight and center update	2
	1.1	Key Equations	2
	1.2	Gradient Descent Learning	2
	1.3	Derivation of $\frac{\partial E}{\partial w_{kj}}$	2
	1.4	Derivation of $\frac{\partial E}{\partial c_{ij}}$	3
	1.5	Final equations of $\frac{\partial E}{\partial w_{kj}}$ & $\frac{\partial E}{\partial c_{ji}}$	4
2	Mo	del 2: RBFNN with weight, center and sigma update	5
	2.1	Key Equations	5
	2.2	Gradient Descent Learning	5
	2.3	Derivation of $\frac{\partial E}{\partial w_{kj}}$	5
	2.4	Derivation of $\frac{\partial E}{\partial c_{ij}}$	6
	2.5	Derivation of $\frac{\partial E}{\partial \sigma_i}$	7
	2.6	Final equations of $\frac{\partial E}{\partial w_{kj}}$, $\frac{\partial E}{\partial c_{ji}}$ & $\frac{\partial E}{\partial \sigma_j}$	8
3	Mo	del 3: Reversed RBFNN with weight and center update	9
	3.1	Key Equations	9
	3.2	Gradient Descent Learning	9
	3.3	Derivation of $\frac{\partial E}{\partial c_{kj}}$	9
	3.4	Derivation of $\frac{\partial E}{\partial w_{ii}}$	10
	3.5	Final equations of $\frac{\partial E}{\partial w_{ji}}$ & $\frac{\partial E}{\partial c_{kj}}$	11
4	Mo	del 4: Reversed RBFNN with weight, center and sigma update	12
	4.1	Key Equations	12
	4.2	Gradient Descent Learning	12
	4.3	Derivation of $\frac{\partial E}{\partial c_{k_i}}$	12
	4.4	Derivation of $\frac{\partial E}{\partial w_{ji}}$	13
	4.5	Derivation of $\frac{\partial \vec{E}}{\partial \sigma_k}$	14
	4.6	Final equations of $\frac{\partial E}{\partial w_{ji}}$, $\frac{\partial E}{\partial c_{kj}}$ & $\frac{\partial E}{\partial \sigma_k}$	15
5	Tab	ole of equations	16

Figure 1: RBFNN with weight and center update

1.1 Key Equations

- $y_k = \sum_j w_{kj} \phi_j$
- $\bullet \ \phi_j = e^{\frac{-z_j^2}{2\sigma_j^2}}$
- $z_j = ||X C_j|| = \sqrt{\sum_i (x_i c_{ji})^2}$
- Cost function: $E = \frac{1}{2} \sum_{k} (t_k y_k)^2$

1.2 Gradient Descent Learning

- $w_{kj}(t+1) = w_{kj}(t) \eta_w \frac{\partial E}{\partial w_{kj}}$
- $c_{ji}(t+1) = c_{ji}(t) \eta_c \frac{\partial E}{\partial c_{ji}}$

1.3 Derivation of $\frac{\partial E}{\partial w_{kj}}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial w_{kj}}$ as:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{kj}} \tag{1}$$

From key equations, We know that cost function, $E = \frac{1}{2} \sum_k (t_k - y_k)^2$, so $\frac{\partial E}{\partial y_k}$ will be:

$$\frac{\partial E}{\partial y_k} = \frac{\partial (\frac{1}{2} \sum_k (t_k - y_k)^2)}{\partial y_k}
= -(t_k - y_k)$$
(2)

From key equations, We know that $y_k = \sum_j w_{kj} \phi_j$, so $\frac{\partial y_k}{\partial w_{kj}}$ will be:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial (\sum_{j} w_{kj} \phi_{j})}{\partial w_{kj}}
= \phi_{j}$$
(3)

Using equations (2) & (3) we can rewrite equation (1) as:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{kj}}
= -(t_k - y_k)\phi_j$$
(4)

1.4 Derivation of $\frac{\partial E}{\partial c_{ii}}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial c_{ji}}$ as:

$$\frac{\partial E}{\partial c_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial y_{k}} \cdot \frac{\partial y_{k}}{\partial \phi_{j}} \right] \cdot \frac{\partial \phi_{j}}{\partial z_{j}} \cdot \frac{\partial z_{j}}{\partial c_{ji}}$$
 (5)

From equation (2), we know that $\frac{\partial E}{\partial y_k} = -(t_k - y_k)$

From key equations, We know that $y_k = \sum_j w_{kj} \phi_j$, so $\frac{\partial y_k}{\partial \phi_j}$ will be:

$$\frac{\partial E}{\partial \phi_j} = \frac{\partial (\sum_j w_{kj} \phi_j)}{\partial \phi_j}$$

$$= w_{kj}$$
(6)

From key equations, We know that $\phi_j = e^{\frac{-z_j^2}{2\sigma_j^2}}$, so $\frac{\partial \phi_j}{\partial z_j}$ will be:

$$\frac{\partial \phi_j}{\partial z_j} = \frac{\partial (e^{\frac{-z_j^2}{2\sigma_j^2}})}{\partial z_j}$$

$$= -\frac{z_j \times e^{\frac{-z_j^2}{2\sigma_j^2}}}{\sigma_j^2}$$

$$= -\frac{z_j \times \phi_j}{\sigma_j^2}$$
(7)

From key equations, We know that $z_j = \sqrt{\sum_i (x_i - c_{ji})^2}$, so $\frac{\partial z_j}{\partial c_{ji}}$ will be:

$$\frac{\partial z_j}{\partial c_{ji}} = \frac{\partial (\sqrt{\sum_i (x_i - c_{ji})^2})}{\partial c_{ji}}$$

$$= -\frac{2 \times (x_i - c_{ji})}{2 \times \sqrt{\sum_i (x_i - c_{ji})^2}}$$

$$= -\frac{(x_i - c_{ji})}{z_j}$$
(8)

Using equations (2), (6), (7) & (8) we can rewrite equation (5) as:

$$\frac{\partial E}{\partial c_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial y_{k}} \cdot \frac{\partial y_{k}}{\partial \phi_{j}} \right] \cdot \frac{\partial \phi_{j}}{\partial z_{j}} \cdot \frac{\partial z_{j}}{\partial c_{ji}}
= \left[\sum_{k} -(t_{k} - y_{k}) w_{kj} \right] \times \frac{-(z_{j} \times \phi_{j})}{\sigma_{j}^{2}} \times \frac{-(x_{i} - c_{ji})}{z_{j}}
= \left[\sum_{k} -(t_{k} - y_{k}) w_{kj} \right] \times \frac{\phi_{j}}{\sigma_{j}^{2}} \times (x_{i} - c_{ji})$$
(9)

- 1.5 Final equations of $\frac{\partial E}{\partial w_{kj}}$ & $\frac{\partial E}{\partial c_{ji}}$
 - $\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{kj}} = -(t_k y_k)\phi_j$

$$\bullet \ \ \frac{\partial E}{\partial c_{ji}} = \left[\sum_k \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial \phi_j} \right] \cdot \frac{\partial \phi_j}{\partial z_j} \cdot \frac{\partial z_j}{\partial c_{ji}} = \left[\sum_k -(t_k - y_k) w_{kj} \right] \times \frac{\phi_j}{\sigma_j^2} \times (x_i - c_{ji})$$

Figure 2: RBFNN with weight, center and sigma update

2.1 Key Equations

- $y_k = \sum_j w_{kj} \phi_j$
- $\bullet \ \phi_j = e^{\frac{-z_j^2}{2\sigma_j^2}}$
- $z_j = ||X C_j|| = \sqrt{\sum_i (x_i c_{ji})^2}$
- Cost function: $E = \frac{1}{2} \sum_{k} (t_k y_k)^2$

2.2 Gradient Descent Learning

- $w_{kj}(t+1) = w_{kj}(t) \eta_w \frac{\partial E}{\partial w_{kj}}$
- $c_{ji}(t+1) = c_{ji}(t) \eta_c \frac{\partial E}{\partial c_{ji}}$
- $\sigma_j(t+1) = \sigma_j(t) \eta_\sigma \frac{\partial E}{\partial \sigma_j}$

2.3 Derivation of $\frac{\partial E}{\partial w_{kj}}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial w_{kj}}$ as:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{kj}} \tag{10}$$

From key equations, We know that cost function, $E = \frac{1}{2} \sum_k (t_k - y_k)^2$, so $\frac{\partial E}{\partial y_k}$ will be:

$$\frac{\partial E}{\partial y_k} = \frac{\partial (\frac{1}{2} \sum_k (t_k - y_k)^2)}{\partial y_k}
= -(t_k - y_k)$$
(11)

From key equations, We know that $y_k = \sum_j w_{kj} \phi_j$, so $\frac{\partial y_k}{\partial w_{kj}}$ will be:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial (\sum_{j} w_{kj} \phi_{j})}{\partial w_{kj}}$$

$$= \phi_{j}$$
(12)

Using equations (11) & (12) we can rewrite equation (10) as:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{kj}}
= -(t_k - y_k)\phi_j$$
(13)

2.4 Derivation of $\frac{\partial E}{\partial c_{ji}}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial c_{ji}}$ as:

$$\frac{\partial E}{\partial c_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial y_{k}} \cdot \frac{\partial y_{k}}{\partial \phi_{j}} \right] \cdot \frac{\partial \phi_{j}}{\partial z_{j}} \cdot \frac{\partial z_{j}}{\partial c_{ji}}$$
(14)

From equation (11), we know that $\frac{\partial E}{\partial y_k} = -(t_k - y_k)$

From key equations, We know that $y_k = \sum_j w_{kj} \phi_j$, so $\frac{\partial y_k}{\partial \phi_j}$ will be:

$$\frac{\partial E}{\partial \phi_j} = \frac{\partial (\sum_j w_{kj} \phi_j)}{\partial \phi_j}$$

$$= w_{kj}$$
(15)

From key equations, We know that $\phi_j = e^{\frac{-z_j^2}{2\sigma_j^2}}$, so $\frac{\partial \phi_j}{\partial z_j}$ will be:

$$\frac{\partial \phi_j}{\partial z_j} = \frac{\partial (e^{\frac{-z_j^2}{2\sigma_j^2}})}{\partial z_j}$$

$$= -\frac{z_j \times e^{\frac{-z_j^2}{2\sigma_j^2}}}{\sigma_j^2}$$

$$= -\frac{z_j \times \phi_j}{\sigma_j^2}$$
(16)

From key equations, We know that $z_j = \sqrt{\sum_i (x_i - c_{ji})^2}$, so $\frac{\partial z_j}{\partial c_{ji}}$ will be:

$$\frac{\partial z_j}{\partial c_{ji}} = \frac{\partial (\sqrt{\sum_i (x_i - c_{ji})^2})}{\partial c_{ji}}$$

$$= -\frac{2 \times (x_i - c_{ji})}{2 \times \sqrt{\sum_i (x_i - c_{ji})^2}}$$

$$= -\frac{(x_i - c_{ji})}{z_j}$$
(17)

Using equations (11), (15), (16) & (17) we can rewrite equation (14) as:

$$\frac{\partial E}{\partial c_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial y_{k}} \cdot \frac{\partial y_{k}}{\partial \phi_{j}} \right] \cdot \frac{\partial \phi_{j}}{\partial z_{j}} \cdot \frac{\partial z_{j}}{\partial c_{ji}}
= \left[\sum_{k} -(t_{k} - y_{k}) w_{kj} \right] \times \frac{-(z_{j} \times \phi_{j})}{\sigma_{j}^{2}} \times \frac{-(x_{i} - c_{ji})}{z_{j}}
= \left[\sum_{k} -(t_{k} - y_{k}) w_{kj} \right] \times \frac{\phi_{j}}{\sigma_{j}^{2}} \times (x_{i} - c_{ji})$$
(18)

2.5 Derivation of $\frac{\partial E}{\partial \sigma_j}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial \sigma_i}$ as:

$$\frac{\partial E}{\partial \sigma_j} = \left[\sum_k \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial \phi_j} \right] \cdot \frac{\partial \phi_j}{\partial \sigma_j} \tag{19}$$

From equation (11), we know that $\frac{\partial E}{\partial y_k} = -(t_k - y_k)$

From equation (15), we know that $\frac{\partial y_k}{\partial \phi_i} = w_{kj}$

From key equations, We know that $\phi_j=e^{rac{-z_j^2}{2\sigma_j^2}}$, so $rac{\partial\phi_j}{\partial\sigma_j}$ will be:

$$\frac{\partial \phi_j}{\partial \sigma_j} = \frac{\partial (e^{\frac{-z_j^2}{2\sigma_j^2}})}{\partial \sigma_j}$$

$$= \frac{z_j^2 \times e^{\frac{-z_j^2}{2\sigma_j^2}}}{\sigma_j^3}$$

$$= \frac{z_j^2 \times \phi_j}{\sigma_j^3}$$
(20)

Using equations (11), (15) & (20) we can rewrite equation (19) as:

$$\frac{\partial E}{\partial c_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial y_{k}} \cdot \frac{\partial y_{k}}{\partial \phi_{j}} \right] \cdot \frac{\partial \phi_{j}}{\partial \sigma_{j}}
= \left[\sum_{k} -(t_{k} - y_{k}) w_{kj} \right] \times \frac{(z_{j}^{2} \times \phi_{j})}{\sigma_{j}^{3}}$$
(21)

2.6 Final equations of $\frac{\partial E}{\partial w_{kj}}$, $\frac{\partial E}{\partial c_{ji}}$ & $\frac{\partial E}{\partial \sigma_j}$

•
$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{kj}} = -(t_k - y_k)\phi_j$$

$$\bullet \ \ \frac{\partial E}{\partial c_{ji}} = \left[\sum_k \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial \phi_j} \right] \cdot \frac{\partial \phi_j}{\partial z_j} \cdot \frac{\partial z_j}{\partial c_{ji}} = \left[\sum_k -(t_k - y_k) w_{kj} \right] \times \frac{\phi_j}{\sigma_j^2} \times (x_i - c_{ji})$$

$$\bullet \ \frac{\partial E}{\partial \sigma_j} = \left[\sum_k \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial \phi_j} \right] \cdot \frac{\partial \phi_j}{\partial \sigma_j} = \left[\sum_k -(t_k - y_k) w_{kj} \right] \times \frac{z_j^2 \times \phi_j}{\sigma_j^3}$$

Figure 3: Reversed RBFNN with weight and center update

3.1 Key Equations

•
$$s_j = \sum_i w_{ji} x_i$$

$$\bullet \ \phi_k = e^{\frac{-z_k^2}{2\sigma_k^2}}$$

•
$$z_k = ||S - C_k|| = \sqrt{\sum_j (s_j - c_{kj})^2}$$

• Cost function:
$$E = \frac{1}{2} \sum_{k} (t_k - \phi_k)^2$$

3.2 Gradient Descent Learning

•
$$w_{ji}(t+1) = w_{ji}(t) - \eta_w \frac{\partial E}{\partial w_{ji}}$$

•
$$c_{kj}(t+1) = c_{kj}(t) - \eta_c \frac{\partial E}{\partial c_{kj}}$$

3.3 Derivation of $\frac{\partial E}{\partial c_{kj}}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial c_{kj}}$ as:

$$\frac{\partial E}{\partial c_{kj}} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial c_{kj}}$$
(22)

From key equations, We know that cost function, $E = \frac{1}{2} \sum_k (t_k - \phi_k)^2$, so $\frac{\partial E}{\partial \phi_k}$ will be:

$$\frac{\partial E}{\partial \phi_k} = \frac{\partial (\frac{1}{2} \sum_k (t_k - \phi_k)^2)}{\partial \phi_k}
= -(t_k - \phi_k)$$
(23)

From key equations, We know that $\phi_k = e^{\frac{-z_k^2}{2\sigma_k^2}}$, so $\frac{\partial \phi_k}{\partial z_k}$ will be:

$$\frac{\partial \phi_k}{\partial z_k} = \frac{\partial \left(e^{\frac{-z_k^2}{2\sigma_k^2}}\right)}{\partial z_k}$$

$$= -\frac{z_k \times e^{\frac{-z_k^2}{2\sigma_k^2}}}{\sigma_k^2}$$

$$= -\frac{z_k \times \phi_k}{\sigma_k^2}$$
(24)

From key equations, We know that $z_k = \sqrt{\sum_j (s_j - c_{kj})^2}$, so $\frac{\partial z_k}{\partial c_{kj}}$ will be:

$$\frac{\partial z_k}{\partial c_{kj}} = \frac{\partial \left(\sqrt{\sum_j (s_j - c_{kj})^2}\right)}{\partial c_{kj}}$$

$$= -\frac{2 \times (s_j - c_{kj})}{2 \times \sqrt{\sum_j (s_j - c_{kj})^2}}$$

$$= -\frac{s_j - c_{kj}}{z_k}$$
(25)

Using equations (23), (24) & (25) we can rewrite equation (22) as:

$$\frac{\partial E}{\partial c_{kj}} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial c_{kj}}
= -(t_k - \phi_k) \times \frac{-(z_k \times \phi_k)}{\sigma_k^2} \times \frac{-(s_j - c_{kj})}{z_k}
= -(t_k - \phi_k) \times \frac{\phi_k}{\sigma_k^2} \times (s_j - c_{kj})$$
(26)

3.4 Derivation of $\frac{\partial E}{\partial w_{ji}}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial w_{ji}}$ as:

$$\frac{\partial E}{\partial w_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial \phi_{k}} \cdot \frac{\partial \phi_{k}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial s_{j}} \right] \cdot \frac{\partial s_{j}}{\partial w_{ji}}$$
(27)

From equation (23) we know that $\frac{\partial E}{\partial \phi_k} = -(t_k - \phi_k)$

From equation (24) we know that $\frac{\partial \phi_k}{\partial z_k} = -\frac{z_k \times \phi_k}{\sigma_k^2}$

From key equations, We know that $z_k = \sqrt{\sum_j (s_j - c_{kj})^2}$, so $\frac{\partial z_k}{\partial s_j}$ will be:

$$\frac{\partial z_k}{\partial s_j} = \frac{\partial \left(\sqrt{\sum_j (s_j - c_{kj})^2}\right)}{\partial s_j}$$

$$= \frac{2 \times (s_j - c_{kj})}{2 \times \sqrt{\sum_j (s_j - c_{kj})^2}}$$

$$= \frac{s_j - c_{kj}}{z_k}$$
(28)

From key equations, We know that $s_j = \sum_i w_{ji} x_i$, so $\frac{\partial s_j}{\partial w_{ji}}$ will be:

$$\frac{\partial s_j}{\partial w_{ji}} = \frac{\partial (\sum_i w_{ji} x_i)}{\partial w_{ji}}
= x_i$$
(29)

Using equations (23), (24), (28) & (29), we can rewrite equation (27) as:

$$\frac{\partial E}{\partial w_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial \phi_{k}} \cdot \frac{\partial \phi_{k}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial s_{j}} \right] \cdot \frac{\partial s_{j}}{\partial w_{ji}}$$

$$= \left[\sum_{k} -(t_{k} - \phi_{k}) \times \frac{-(z_{k} \times \phi_{k})}{\sigma_{k}^{2}} \times \frac{(s_{j} - c_{kj})}{z_{k}} \right] \times x_{i}$$

$$= \left[\sum_{k} (t_{k} - \phi_{k}) \times \frac{\phi_{k}}{\sigma_{k}^{2}} \times (s_{j} - c_{kj}) \right] \times x_{i}$$
(30)

- 3.5 Final equations of $\frac{\partial E}{\partial w_{ji}}$ & $\frac{\partial E}{\partial c_{kj}}$
 - $\bullet \ \ \tfrac{\partial E}{\partial c_{kj}} = \tfrac{\partial E}{\partial \phi_k} \cdot \tfrac{\partial \phi_k}{\partial z_k} \cdot \tfrac{\partial z_k}{\partial c_{kj}} = -(t_k \phi_k) \times \tfrac{\phi_k}{\sigma_k^2} \times (s_j c_{kj})$

•
$$\frac{\partial E}{\partial w_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial \phi_{k}} \cdot \frac{\partial \phi_{k}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial s_{j}}\right] \cdot \frac{\partial s_{j}}{\partial w_{ji}} = \left[\sum_{k} (t_{k} - \phi_{k}) \times \frac{\phi_{k}}{\sigma_{k}^{2}} \times (s_{j} - c_{kj})\right] \times x_{i}$$

Figure 4: Reversed RBFNN with weight, center and sigma update

4.1 Key Equations

- $s_j = \sum_i w_{ji} x_i$
- $\bullet \ \phi_k = e^{\frac{-z_k^2}{2\sigma_k^2}}$
- $z_k = ||S C_k|| = \sqrt{\sum_j (s_j c_{kj})^2}$
- Cost function: $E = \frac{1}{2} \sum_{k} (t_k \phi_k)^2$

4.2 Gradient Descent Learning

- $w_{ji}(t+1) = w_{ji}(t) \eta_w \frac{\partial E}{\partial w_{ji}}$
- $c_{kj}(t+1) = c_{kj}(t) \eta_c \frac{\partial E}{\partial c_{kj}}$
- $\sigma_k(t+1) = \sigma_k(t) \eta_\sigma \frac{\partial E}{\partial \sigma_k}$

4.3 Derivation of $\frac{\partial E}{\partial c_{kj}}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial c_{kj}}$ as:

$$\frac{\partial E}{\partial c_{kj}} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial c_{kj}} \tag{31}$$

From key equations, We know that cost function, $E = \frac{1}{2} \sum_k (t_k - \phi_k)^2$, so $\frac{\partial E}{\partial \phi_k}$ will be:

$$\frac{\partial E}{\partial \phi_k} = \frac{\partial (\frac{1}{2} \sum_k (t_k - \phi_k)^2)}{\partial \phi_k}
= -(t_k - \phi_k)$$
(32)

From key equations, We know that $\phi_k=e^{\frac{-z_k^2}{2\sigma_k^2}}$, so $\frac{\partial \phi_k}{\partial z_k}$ will be:

$$\frac{\partial \phi_k}{\partial z_k} = \frac{\partial (e^{\frac{-z_k^2}{2\sigma_k^2}})}{\partial z_k}$$

$$= -\frac{z_k \times e^{\frac{-z_k^2}{2\sigma_k^2}}}{\sigma_k^2}$$

$$= -\frac{z_k \times \phi_k}{\sigma_k^2}$$
(33)

From key equations, We know that $z_k = \sqrt{\sum_j (s_j - c_{kj})^2}$, so $\frac{\partial z_k}{\partial c_{kj}}$ will be:

$$\frac{\partial z_k}{\partial c_{kj}} = \frac{\partial \left(\sqrt{\sum_j (s_j - c_{kj})^2}\right)}{\partial c_{kj}}$$

$$= -\frac{2 \times (s_j - c_{kj})}{2 \times \sqrt{\sum_j (s_j - c_{kj})^2}}$$

$$= -\frac{s_j - c_{kj}}{z_k}$$
(34)

Using equations (32), (33) & (34) we can rewrite equation (31) as:

$$\frac{\partial E}{\partial c_{kj}} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial c_{kj}}$$

$$= -(t_k - \phi_k) \times \frac{-(z_k \times \phi_k)}{\sigma_k^2} \times \frac{-(s_j - c_{kj})}{z_k}$$

$$= -(t_k - \phi_k) \times \frac{\phi_k}{\sigma_k^2} \times (s_j - c_{kj})$$
(35)

4.4 Derivation of $\frac{\partial E}{\partial w_{ii}}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial w_{ji}}$ as:

$$\frac{\partial E}{\partial w_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial \phi_{k}} \cdot \frac{\partial \phi_{k}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial s_{j}} \right] \cdot \frac{\partial s_{j}}{\partial w_{ji}}$$
(36)

From equation (32) we know that $\frac{\partial E}{\partial \phi_k} = -(t_k - \phi_k)$

From equation (33) we know that $\frac{\partial \phi_k}{\partial z_k} = -\frac{z_k \times \phi_k}{\sigma_k^2}$

From key equations, We know that $z_k = \sqrt{\sum_j (s_j - c_{kj})^2}$, so $\frac{\partial z_k}{\partial s_j}$ will be:

$$\frac{\partial z_k}{\partial s_j} = \frac{\partial (\sqrt{\sum_j (s_j - c_{kj})^2})}{\partial s_j}$$

$$= \frac{2 \times (s_j - c_{kj})}{2 \times \sqrt{\sum_j (s_j - c_{kj})^2}}$$

$$= \frac{s_j - c_{kj}}{z_k}$$
(37)

From key equations, We know that $s_j = \sum_i w_{ji} x_i$, so $\frac{\partial s_j}{\partial w_{ji}}$ will be:

$$\frac{\partial s_j}{\partial w_{ji}} = \frac{\partial(\sum_i w_{ji} x_i)}{\partial w_{ji}} \\
= x_i$$
(38)

Using equations (32), (33), (37) & (38), we can rewrite equation (36) as:

$$\frac{\partial E}{\partial w_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial \phi_{k}} \cdot \frac{\partial \phi_{k}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial s_{j}} \right] \cdot \frac{\partial s_{j}}{\partial w_{ji}}$$

$$= \left[\sum_{k} -(t_{k} - \phi_{k}) \times \frac{-(z_{k} \times \phi_{k})}{\sigma_{k}^{2}} \times \frac{(s_{j} - c_{kj})}{z_{k}} \right] \times x_{i}$$

$$= \left[\sum_{k} (t_{k} - \phi_{k}) \times \frac{\phi_{k}}{\sigma_{k}^{2}} \times (s_{j} - c_{kj}) \right] \times x_{i}$$
(39)

4.5 Derivation of $\frac{\partial E}{\partial \sigma_k}$

Using chain rule, we can rewrite $\frac{\partial E}{\partial \sigma_k}$ as:

$$\frac{\partial E}{\partial \sigma_k} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial \sigma_k} \tag{40}$$

From equation (32) we know that $\frac{\partial E}{\partial \phi_k} = -(t_k - \phi_k)$

From key equations, We know that $\phi_k = e^{\frac{-z_k^2}{2\sigma_k^2}}$, so $\frac{\partial \phi_k}{\partial \sigma_k}$ will be:

$$\frac{\partial \phi_k}{\partial \sigma_k} = \frac{\partial (e^{\frac{-z_k^2}{2\sigma_k^2}})}{\partial \sigma_k}
= \frac{z_k^2 \times e^{\frac{-z_k^2}{2\sigma_k^2}}}{\sigma_k^3}
= \frac{z_k^2 \times \phi_k}{\sigma_k^3}$$
(41)

Using equations (32) & (41), we can rewrite equation (40) as:

$$\frac{\partial E}{\partial \sigma_k} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial \sigma_k}
= -(t_k - \phi_k) \times \frac{z_k^2 \times \phi_k}{\sigma_k^3}$$
(42)

4.6 Final equations of $\frac{\partial E}{\partial w_{ji}}$, $\frac{\partial E}{\partial c_{kj}}$ & $\frac{\partial E}{\partial \sigma_k}$

•
$$\frac{\partial E}{\partial c_{kj}} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial c_{kj}} = -(t_k - \phi_k) \times \frac{\phi_k}{\sigma_k^2} \times (s_j - c_{kj})$$

•
$$\frac{\partial E}{\partial w_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial \phi_{k}} \cdot \frac{\partial \phi_{k}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial s_{j}}\right] \cdot \frac{\partial s_{j}}{\partial w_{ji}} = \left[\sum_{k} (t_{k} - \phi_{k}) \times \frac{\phi_{k}}{\sigma_{k}^{2}} \times (s_{j} - c_{kj})\right] \times x_{i}$$

•
$$\frac{\partial E}{\partial \sigma_k} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial \sigma_k} = -(t_k - \phi_k) \times \frac{\phi_k \times z_k^2}{\sigma_k^3}$$

5 Table of equations

Table 1: Key equation, and back-propagation derivation results of all RBFNN models

	Key Equations	Gradient Descent Learning	Computation of $\frac{\partial E}{\partial w}$, $\frac{\partial E}{\partial c}$ & $\frac{\partial E}{\partial \sigma}$
	$y_k = \sum_j w_{kj} \phi_j$	Learning of weights:	$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{kj}} = -(t_k - y_k)\phi_j$
Model-1	$\phi_j = e^{\frac{-z_j^2}{2\sigma_j^2}}$	$w_{kj}(t+1) = w_{kj}(t) - \eta_w \frac{\partial E}{\partial w_{kj}}$	
	$z_j = X - C_j = \sqrt{\sum_i (x_i - c_{ji})^2}$	Learning of centers:	$\frac{\partial E}{\partial c_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial y_{k}} \cdot \frac{\partial y_{k}}{\partial \phi_{j}} \right] \cdot \frac{\partial \phi_{j}}{\partial z_{j}} \cdot \frac{\partial z_{j}}{\partial c_{ji}}$
	Cost function: $E = \frac{1}{2} \sum_{k} (t_k - y_k)^2$	$c_{ji}(t+1) = c_{ji}(t) - \eta_c \frac{\partial E}{\partial c_{ji}}$	$= \left[\sum_{k} -(t_k - y_k)w_{kj}\right] \times \frac{\phi_j}{\sigma_j^2} \times (x_i - c_{ji})$
		Learning of weights:	$\frac{\partial E}{\partial w_{k,i}} = \frac{\partial E}{\partial u_k} \cdot \frac{\partial y_k}{\partial w_{k,i}} = -(t_k - y_k)\phi_j$
	$y_k = \sum_j w_{kj} \phi_j$	$w_{kj}(t+1) = w_{kj}(t) - \eta_w \frac{\partial E}{\partial w_{kj}}$	$\partial w_{kj} \partial y_k \partial w_{kj} ($ $^{\leftarrow k} \mathcal{F}^{\kappa}) au f$
Model-2	$\phi_j = e^{\frac{-z_j^2}{2\sigma_j^2}}$	Learning of centers:	$\frac{\partial E}{\partial c_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial y_{k}} \cdot \frac{\partial y_{k}}{\partial \phi_{j}} \right] \cdot \frac{\partial \phi_{j}}{\partial z_{j}} \cdot \frac{\partial z_{j}}{\partial c_{ji}}$
	$z_j = X - C_j = \sqrt{\sum_i (x_i - c_{ji})^2}$	$c_{ji}(t+1) = c_{ji}(t) - \eta_c \frac{\partial E}{\partial c_{ji}}$	$= \left[\sum_{k} -(t_k - y_k)w_{kj}\right] \times \frac{\phi_j}{\sigma_j^2} \times (x_i - c_{ji})$
	Cost function: $E = \frac{1}{2} \sum_{k} (t_k - y_k)^2$	Learning of sigma:	$\frac{\partial E}{\partial \sigma_j} = \left[\sum_k \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial \phi_j} \right] \cdot \frac{\partial \phi_j}{\partial \sigma_j}$
		$\sigma_j(t+1) = \sigma_j(t) - \eta_\sigma \frac{\partial E}{\partial \sigma_j}$	$= \left[\sum_{k} -(t_k - y_k)w_{kj}\right] \times \frac{\phi_j \times z_j^2}{\sigma_j^3}$
	$s_j = \sum_i w_{ji} x_i$	Learning of weights:	$\frac{\partial E}{\partial w_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial \phi_{k}} \cdot \frac{\partial \phi_{k}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial s_{j}} \right] \cdot \frac{\partial s_{j}}{\partial w_{ji}}$
Model-3	$\phi_k = e^{\frac{-z_k^2}{2\sigma_k^2}}$	$w_{ji}(t+1) = w_{ji}(t) - \eta_w \frac{\partial E}{\partial w_{ji}}$	$= \left[\sum_{k} (t_k - \phi_k) \times \frac{\phi_k}{\sigma_k^2} \times (s_j - c_{kj})\right] \times c_{kj}$
	$z_k = S - C_k = \sqrt{\sum_{j} (s_j - c_{kj})^2}$	Learning of centers:	$\frac{\partial E}{\partial c_{kj}} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial c_{kj}}$
	Cost function: $E = \frac{1}{2} \sum_{k} (t_k - \phi_k)^2$	$c_{kj}(t+1) = c_{kj}(t) - \eta_c \frac{\partial E}{\partial c_{kj}}$	$= -(t_k - \phi_k) \times \frac{\phi_k}{\sigma_k^2} \times (s_j - c_{kj})$
		Learning of weights:	$\frac{\partial E}{\partial w_{ji}} = \left[\sum_{k} \frac{\partial E}{\partial \phi_{k}} \cdot \frac{\partial \phi_{k}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial s_{j}} \right] \cdot \frac{\partial s_{j}}{\partial w_{ji}}$
	$s_j = \sum_i w_{ji} x_i$	$w_{ji}(t+1) = w_{ji}(t) - \eta_w \frac{\partial E}{\partial w_{ji}}$	$= \left[\sum_{k} (t_k - \phi_k) \times \frac{\phi_k}{\sigma_k^2} \times (s_j - c_{kj})\right] \times s_k$
Model-4	$\phi_k = e^{\frac{-z_k^2}{2\sigma_k^2}}$	Learning of centers:	$\frac{\partial E}{\partial c_{kj}} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial c_{kj}}$
	$z_k = S - C_k = \sqrt{\sum_{j} (s_j - c_{kj})^2}$	$c_{kj}(t+1) = c_{kj}(t) - \eta_c \frac{\partial E}{\partial c_{kj}}$	$= -(t_k - \phi_k) \times \frac{\phi_k}{\sigma_k^2} \times (s_j - c_{kj})$
	Cost function: $E = \frac{1}{2} \sum_{k} (t_k - \phi_k)^2$	Learning of sigma:	$\frac{\partial E}{\partial \sigma_k} = \frac{\partial E}{\partial \phi_k} \cdot \frac{\partial \phi_k}{\partial \sigma_k}$
	-	$\sigma_k(t+1) = \sigma_k(t) - \eta_\sigma \frac{\partial E}{\partial \sigma_k}$	$= -(t_k - \phi_k) \times \frac{\phi_k \times z_k^2}{\sigma_k^3}$