Applications of pumping lemma

Let
$$L = \{ww^R \mid w \in \Sigma^*\}$$

- © For any chosen p,
- \odot let $x = \epsilon$, $y = 0^p$, $z = 110^p$.
- \odot For any split of y into u, v, w
- © $xuv^iwz = 0^q 110^p$, as long as i > 0. In particular, $xuv^2wz \notin L$.

We say that a language *L* satisfies **Property-NR**

if the following conditions hold:

- \odot $\forall p \geq 0$,
- $\exists x, y, z \text{ such that } x \cdot y \cdot z \in L$ and $|y| \ge p$,
- $\odot \exists i \ x \cdot u \cdot v^i \cdot w \cdot z \notin L.$

If L satisfies Property-NR then L is not regular.

Applications of pumping lemma

 $L = \{a^q \mid q \text{ is a prime number }\}$

- \odot For any chosen p,
- \bigcirc let $x, z = \epsilon$, $y = a^n$, $n \ge p$ and a prime.
- \odot For any split of y into u, v, w
- $xuv^{n+1}wz = a^{n(k+1)}$, where k := |v|. That is, $xuv^{n+1}wz = a^{n(k+1)} \notin L$.

We say that a language *L* satisfies **Property-NR**

if the following conditions hold:

- \odot $\forall p \geq 0$,
- $\exists x, y, z \text{ such that } x \cdot y \cdot z \in L$ and $|y| \ge p$,
- $\forall u, v, y \text{ such that } |v| > 0,$ $y = u \cdot v \cdot w,$
- $\exists i \ x \cdot u \cdot v^i \cdot w \cdot z \notin L.$

If L satisfies Property-NR then L is not regular.

Building on pumping lemma

The following language is not regular:

$$EQ = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \}$$

Suppose *D* is regular.

 $D \cap L(a^*b^*)$ is also regular, as the intersection of two regular languages is regular and any regular expression defines a regular language.

But $D \cap L(a^*b^*) = \{a^nb^n \mid n \ge 0\}$ is not regular, which we proved using the pumping lemma.

Pumping down

Let
$$L = \{0^i 1^j \mid i, j \in \mathbb{N} \text{ and } i > j\}$$
.
For any choice of $p \ge 0$,

Let
$$x = \epsilon$$
, $y = 0^{p+1}$, $z = 1^p$.
Then $x \cdot y \cdot z \in L$.

Now for any choice of u, v, w, s.t $u \cdot v \cdot w = y$ and |v| > 0 $x \cdot u \cdot v^0 \cdot w \cdot z = 0^{p'} 1^p$, where $p' \le p$.

$$\therefore x \cdot u \cdot v^0 \cdot w \cdot z \notin L$$
.

Relations on Σ

Let R be an equivalence relation on the set Σ^* , i.e. $R \subseteq \Sigma^* \times \Sigma^*$ such that

Reflexive $\forall x \in \Sigma^* \ R(x,x)$ holds.

Symmetric $\forall x, y \in \Sigma^* \ R(x, y) = R(y, x) \text{ hold.}$

TRANSITIVE $\forall x, y, z \in \Sigma^*$ if R(x, y), R(y, z) hold then R(x, z) also holds.

Relation of Σ^*

Let L be a regular language recognized by a DFA $A = (Q, \Sigma, \delta, q_0, F)$.

We say that $\forall x, y \in \Sigma^*$

$$x \equiv_A y$$
 iff $\tilde{\delta}(q_0, x) = \tilde{\delta}(q_0, y)$

state	state
reached	reached
on x	on y
from q ₀	from q_0

Assume that the auomaton is complete.

Observe that \equiv_A is an equivalence relation.

Example

Example of an equivalence relation.

Consider the following automaton, say A.

 $aab \equiv_A abababa.$

 $aabaaa \equiv_A a$.

The words with even number of a's form one equivalence class.

The words with odd number of a's form the other equivalence class.

There are no other equivalence classes.