

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 December 2002 (19.12.2002)

PCT

(10) International Publication Number
WO 02/100415 A2

(51) International Patent Classification⁷: **A61K 31/7068, 31/7072, 31/7076, 31/708, C07H 19/06, 19/16, A61P 31/14**

2-11-19, Higashikaigan-Manami, Chigasaki-shi, Kanagawa-ken 253-0054 (JP). TSUKUDA, Takuo; 540-22 Rensyoji, Odawara-shi, Kanagawa-ken 250-0865 (JP).

(21) International Application Number: PCT/EP02/06256

(74) Agent: RAUBER, Beat; 124 Grenzacherstrasse, CH-4070 Basle (CH).

(22) International Filing Date: 7 June 2002 (07.06.2002)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

— without international search report and to be republished upon receipt of that report

(30) Priority Data:
0114286.8 12 June 2001 (12.06.2001) GB

(71) Applicant: F. HOFFMANN-LA ROCHE AG [CH/CH]; 124, Grenzacherstrasse, CH-4070 Basle (CH).

(72) Inventors: DEVOS, Rene, Robert; 4 Salmon Close, Welwyn Garden City, Hertfordshire AL7 1TR (GB). HOBBS, Christopher, John; 9 Magnolia Close, Hertford, Hertfordshire SG13 7UR (GB). JIANG, Wen-Rong; 602 Teredo Drive, Redwood City, CA 94065 (US). MARTIN, Joseph, Armstrong; 350 Sharon Park Drive, Abt. I-26, Menlo Park, CA 94025 (US). MERRETT, John, Herbert; 23 Bush Spring, Baldock, Hertfordshire SG7 6QT (GB). NAJERA, Isabel; 49 Salisbury Avenue, St. Albans, Hertfordshire AL1 4TZ (GB). SHIMMA, Nobuo;

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: 4'-SUBSTITUTED NUCLEOSIDES

WO 02/100415 A2

(57) Abstract: The present invention relates to the use of nucleoside derivatives of Formula (I) wherein B signifies a 9-purinyl residue B1 of Formula (B1) or a 1-pyrimidyl residue B2 of Formula (B2) wherein the symbols are as defined in the specification, and of pharmaceutically acceptable salts thereof; for the treatment of diseases mediated by the Hepatitis C Virus (HCV), for the preparation of a medicament for such treatment and to pharmaceutical compositions containing such compounds.

4'-Substituted Nucleosides

The invention relates to nucleoside derivatives as inhibitors of HCV replicon RNA replication. In particular, the invention is concerned with the use of purine and pyrimidine nucleoside derivatives as inhibitors of subgenomic Hepatitis C Virus (HCV) RNA replication and pharmaceutical compositions containing such compounds.

Hepatitis C virus is the leading cause of chronic liver disease throughout the world. Patients infected with HCV are at risk of developing cirrhosis of the liver and subsequent hepatocellular carcinoma and hence HCV is the major indication for liver transplantation. Only two approved therapies are currently available for the treatment of HCV infection (R. G. Gish, Sem. Liver. Dis., 1999, 19, 35). These are interferon- α monotherapy and, more recently, combination therapy of the nucleoside analogue, ribavirin (Virazole), with interferon- α .

Many of the drugs approved for the treatment of viral infections are nucleosides or nucleoside analogues and most of these nucleoside analogue drugs inhibit viral replication, following conversion to the corresponding triphosphates, through inhibition of the viral polymerase enzymes. This conversion to the triphosphate is commonly mediated by cellular kinases and therefore the direct evaluation of nucleosides as inhibitors of HCV replication is only conveniently carried out using a cell-based assay. For HCV the availability of a true cell-based viral replication assay or animal model of infection is lacking.

Hepatitis C virus belongs to the family of Flaviridae. It is an RNA virus, the RNA genome encoding a large polyprotein which after processing produces the necessary replication machinery to ensure synthesis of progeny RNA. It is believed that most of the non-structural proteins encoded by the HCV RNA genome are involved in RNA replication. Lohmann et al. [V. Lohmann et al., Science, 1999, 285,

- 2 -

110-113] have described the construction of a Human Hepatoma (Huh7) cell line
 in which subgenomic HCV RNA molecules have been introduced and shown to
 replicate with high efficiency. It is believed that the mechanism of RNA replication
 in these cell lines is identical to the replication of the full length HCV RNA genome
 5 in infected hepatocytes. The subgenomic HCV cDNA clones used for the isolation
 of these cell lines have formed the basis for the development of a cell-based assay
 for identifying nucleoside analogue inhibitors of HCV replication.

10 The compounds of formula I have been shown to be inhibitors of
 subgenomic Hepatitis C Virus replication in a hepatoma cell line. These
 compounds have the potential to be efficacious as antiviral drugs for the treatment
 of HCV infections in human.

The invention is concerned with the use of compounds of the formula I

wherein

15 R is hydrogen or $-[P(O)(OH)-O]_nH$ and n is 1, 2 or 3;
 R¹ is alkyl, alkenyl, alkynyl, haloalkyl, alkylcarbonyl,
 alkoxy carbonyl, hydroxyalkyl, alkoxyalkyl, alkoxy, cyano,
 azido, hydroxyiminomethyl, alkoxyiminomethyl, halogen,
 alkylcarbonylamino, alkylaminocarbonyl, azidoalkyl,
 20 aminomethyl, alkylaminomethyl, dialkylaminomethyl or
 heterocyclyl;

R² is hydrogen, hydroxy, amino, alkyl, hydroxyalkyl, alkoxy,
 halogen, cyano, or azido;

R³ and R⁴ are hydrogen, hydroxy, alkoxy, halogen or hydroxyalkyl,
 25 provided that at least one of R³ and R⁴ is hydrogen; or

R³ and R⁴ together represent $=CH_2$ or $=N-OH$, or

R³ and R⁴ both represent fluorine;

X is O, S or CH₂;

B signifies a 9-purinyl residue B1 of formula

wherein

- R^5 is hydrogen, hydroxy, alkyl, alkoxy, alkylthio, NHR^8 , halogen or SH ;
- 5 R^6 is hydroxy, NHR^8 , $NHOR^9$, $NHNR^8$, $-NHC(O)OR^9$ or SH ;
- R^7 is hydrogen, hydroxy, alkyl, alkoxy, alkylthio, NHR^8 , halogen, SH or cyano;
- R^8 is hydrogen, alkyl, hydroxyalkyl, arylcarbonyl or alkylcarbonyl;
- R^9 is hydrogen or alkyl;
- 10 $R^{9'}$ is alkyl; and
- B signifies a 1-pyrimidyl residue B2 of formula

wherein

- Z is O or S;
- 15 R^{10} is hydroxy, NHR^8 , $NHOR^9$, $NHNR^8$, $-NHC(O)OR^9$ or SH ;
- R^{11} is hydrogen, alkyl, hydroxy, hydroxyalkyl, alkoxyalkyl, haloalkyl or halogen;
- R^8 R^9 and $R^{9'}$ are as defined above;
- and of pharmaceutically acceptable salts thereof;

20 for the treatment of diseases mediated by the Hepatitis C Virus (HCV) or for the preparation of medicaments for such treatment.

In compounds, wherein R is a phosphate group $-[P(O)(OH)-O]_nH$, n is preferably 1. The phosphate group may be in the form of a stabilized monophosphate prodrug or other pharmaceutically acceptable leaving group which 25 when administered in vivo, is capable of providing a compound wherein R is monophosphate. These "pronucleotides" can improve the properties such as activity, bioavailability or stability of the parent nucleotide.

Examples of substituent groups which can replace one or more of the hydrogens in the phosphate moiety are described in C. R. Wagner et al., Medicinal Research Reviews, 2000, 20(6), 417 or in R. Jones and N. Bischofberger, Antiviral Research 1995, 27, 1. Such pronucleotides include alkyl and aryl phosphodiesters, steroid phosphodiesters, alkyl and aryl phosphotriesters, cyclic alkyl phosphotriesters, cyclosaligenyl (CycloSal) phosphotriesters, S-acyl-2-thioethyl

(SATE) derivatives, dithioethyl (DTE) derivatives, pivaloyloxymethyl phosphoesters, para-acyloxybenzyl (PAOB) phosphoesters, glycerolipid phosphodiesters, glycosyl lipid phosphotriesters, dinucleosidyl phosphodiesters, dinucleoside phosphotriesters, phosphorodiamides, cyclic phosphoramidates, phosphoramidate monoesters and phosphoramidate diesters.

The invention also includes pro-drugs or bioprecursors of the parent nucleoside which are converted *in vivo* to the compound of formula I wherein R is hydrogen, or at least one of R², R³ and R⁴ is hydroxy. Preferred pro-drug derivatives include carboxylic esters in which the non-carbonyl moiety of the ester group is selected from straight or branched alkyl (e.g. methyl, n-propyl, n-butyl or tert.-butyl), alkoxyalkyl (e.g. methoxymethyl), aralkyl (e.g. benzyl), aryloxyalkyl (e.g. phenoxyethyl), aryl (e.g. phenyl optionally substituted by halogen, C₁₋₄ alkyl or C₁₋₄ alkoxy or amino); sulphonate esters such as alkylsulphonyl or arylsulphonyl (e.g. methanesulphonyl); amino acid esters (e.g. L-valyl or L-isoleucyl) or pharmaceutically acceptable salts thereof. The preparation is carried out according to known methods in the art, for example methods known from textbooks on organic chemistry (e.g. from J. March (1992), "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 4th ed. John Wiley & Sons).

The term "alkyl" as used herein denotes a straight or branched chain hydrocarbon residue containing 1 to 12 carbon atoms. Preferably, the term "alkyl" denotes a straight or branched chain hydrocarbon residue containing 1 to 7 carbon atoms. Most preferred are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert. - butyl or pentyl. The alkyl may be unsubstituted or substituted. The substituents are selected from one or more of cycloalkyl, nitro, amino, alkyl amino, dialkyl amino, alkyl carbonyl and cycloalkyl carbonyl.

The term "cycloalkyl" as used herein denotes an optionally substituted cycloalkyl group containing 3 to 7 carbon atoms, e. g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.

The term "alkoxy" as used herein denotes an optionally substituted straight or branched chain alkyl-oxy group wherein the "alkyl" portion is as defined above such as methoxy, ethoxy, n-propyloxy, i-propyloxy, n-butyloxy, i-butyloxy, tert. - butyloxy, pentyloxy, hexyloxy, heptyloxy including their isomers.

The term "alkoxyalkyl" as used herein denotes an alkoxy group as defined above which is bonded to an alkyl group as defined above. Examples are

methoxymethyl, methoxyethyl, methoxypropyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, propyloxypropyl, methoxybutyl, ethoxybutyl, propyloxybutyl, butyloxybutyl, tert. -butyloxybutyl, methoxypentyl, ethoxypentyl, propyloxpentyl including their isomers.

5 The term "alkenyl" as used herein denotes an unsubstituted or substituted hydrocarbon chain radical having from 2 to 7 carbon atoms, preferably from 2 to 4 carbon atoms, and having one or two olefinic double bonds, preferably one olefinic double bond. Examples are vinyl, 1-propenyl, 2-propenyl (allyl) or 2-but enyl (crotyl).

10 The term "alkynyl" as used herein denotes to unsubstituted or substituted hydrocarbon chain radical having from 2 to 7 carbon atoms, preferably 2 to 4 carbon atoms, and having one or where possible two triple bonds, preferably one triple bond. Examples are ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl or 3-butynyl.

15 The term "hydroxyalkyl" as used herein denotes a straight or branched chain alkyl group as defined above wherein 1, 2, 3 or more hydrogen atoms are substituted by a hydroxy group. Examples are hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, hydroxyisopropyl, hydroxybutyl and the like.

20 The term "haloalkyl" as used herein denotes a straight or branched chain alkyl group as defined above wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen. Examples are 1-fluoromethyl, 1-chloromethyl, 1-bromomethyl, 1-iodomethyl, trifluoromethyl, trichloromethyl, tribromomethyl, triiodomethyl, 1-fluoroethyl, 1-chloroethyl, 1-bromoethyl, 1-idoethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-idoethyl, 2,2-dichloroethyl, 3-bromopropyl or 2,2,2-trifluoroethyl and the like.

25 The term "alkylthio" as used herein denotes a straight or branched chain (alkyl)S- group wherein the "alkyl" portion is as defined above. Examples are methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio or tert.-butylthio.

30 The term "aryl" as used herein denotes an optionally substituted phenyl and naphthyl (e. g. 1-naphthyl, 2-naphthyl or 3-naphthyl). Suitable substituents for aryl can be selected from those named for alkyl, in addition however, halogen, hydroxy

and optionally substituted alkyl, haloalkyl, alkenyl, alkynyl and aryloxy are substituents which can be added to the selection.

The term "heterocyclyl" as used herein denotes an optionally substituted saturated, partially unsaturated or aromatic monocyclic, bicyclic or tricyclic heterocyclic systems which contain one or more hetero atoms selected from nitrogen, oxygen and sulfur which can also be fused to an optionally substituted saturated, partially unsaturated or aromatic monocyclic carbocycle or heterocycle.

Examples of suitable heterocycles are oxazolyl, isoxazolyl, furyl, tetrahydrofuryl, 1,3-dioxolanyl, dihydropyranyl, 2-thienyl, 3-thienyl, pyrazinyl, isothiazolyl, dihydrooxazolyl, pyrimidinyl, tetrazolyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, pyrrolidinonyl, (N-oxide)-pyridinyl, 1-pyrrolyl, 2-pyrrolyl, triazolyl e. g. 1,2,3-triazolyl or 1,2,4-triazolyl, 1-pyrazolyl, 2-pyrazolyl, 4-pyrazolyl, piperidinyl, morpholinyl (e. g. 4-morpholinyl), thiomorpholinyl (e. g. 4-thiomorpholinyl), thiazolyl, pyridinyl, dihydrothiazolyl, imidazolidinyl, pyrazolinyl, piperazinyl, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl, thiadiazolyl e. g. 1,2,3-thiadiazolyl, 4-methylpiperazinyl, 4-hydroxypiperidin-1-yl.

Suitable substituents for heterocyclyl can be selected from those named for alkyl, in addition however, optionally substituted alkyl, alkenyl, alkynyl, an oxo group (=O) or aminosulphonyl are substituents which can be added to the selection.

The term "acyl" ("alkylcarbonyl") as used herein denotes a group of formula C(=O)R wherein R is hydrogen, an unsubstituted or substituted straight or branched chain hydrocarbon residue containing 1 to 7 carbon atoms or a phenyl group. Most preferred acyl groups are those wherein R is hydrogen, an unsubstituted straight chain or branched hydrocarbon residue containing 1 to 4 carbon atoms or a phenyl group.

The term halogen stands for fluorine, chlorine, bromine or iodine, preferable fluorine, chlorine, bromine.

Within the invention the term "X" represents O, S or CH₂, preferably O or CH₂. Most preferred "X" represents O.

Within the invention the term "Z" represents O or S, preferably O.

In the pictorial representation of the compounds given throughout this application, a thickened tapered line (—) indicates a substituent which is above

the plane of the ring to which the asymmetric carbon belongs and a dotted line (".....") indicates a substituent which is below the plane of the ring to which the asymmetric carbon belongs.

Compounds of formula I exhibit stereoisomerism. These compounds can be
5 any isomer of the compound of formula I or mixtures of these isomers. The compounds and intermediates of the present invention having one or more asymmetric carbon atoms may be obtained as racemic mixtures of stereoisomers which can be resolved.

Compounds of formula I exhibit tautomerism that means that the
10 compounds of this invention can exist as two or more chemical compounds that are capable of facile interconversion. In many cases it merely means the exchange of a hydrogen atom between two other atoms, to either of which it forms a covalent bond. Tautomeric compounds exist in a mobile equilibrium with each other, so that attempts to prepare the separate substances usually result in the formation of a
15 mixture that shows all the chemical and physical properties to be expected on the basis of the structures of the components.

The most common type of tautomerism is that involving carbonyl, or keto, compounds and unsaturated hydroxyl compounds, or enols. The structural change is the shift of a hydrogen atom between atoms of carbon and oxygen, with the
20 rearrangement of bonds. For example, in many aliphatic aldehydes and ketones, such as acetaldehyde, the keto form is the predominant one; in phenols, the enol form is the major component.

Compounds of formula I which are basic can form pharmaceutically acceptable salts with inorganic acids such as hydrohalic acids (e.g. hydrochloric acid
25 and hydrobromic acid), sulphuric acid, nitric acid and phosphoric acid, and the like, and with organic acids (e.g. with acetic acid, tartaric acid, succinic acid, fumaric acid, maleic acid, malic acid, salicylic acid, citric acid, methanesulphonic acid and p-toluene sulphonic acid, and the like). The formation and isolation of such salts can be carried out according to methods known in the art.

30 Preferred is the use of compounds of formula I, wherein

R is hydrogen;

R¹ is alkyl, alkenyl, alkynyl, haloalkyl, alkylcarbonyl, alkoxy, hydroxymethyl, cyano, azido, alkoxyiminomethyl,

alkylcarbonylamino, alkylaminomethyl or dialkylaminomethyl;

R^2 is hydrogen, hydroxy, alkoxy or halogen;

R^3 and R^4 are hydrogen, hydroxy, alkoxy, halogen or hydroxyalkyl,
5 provided that at least one of R^3 and R^4 is hydrogen; or

R^3 and R^4 represent fluorine;

X is O or CH_2 ; and

B signifies a 9-purinyl residue B1 or a 1-pyrimidyl residue B2 as defined above.

10 Examples of preferred compounds are listed below

Compound no.	STRUCTURE	Name
compound 6		4'-C-(Hydroxymethyl)cytidine
compound 7		5-Fluoro-4'-C-(hydroxymethyl)-uridine
compound 8		4'-C-Methoxyuridine
compound 10		(E and/or Z)-4'-C-Azidouridine 4-oxime

compound 11		4'-C-(Trifluoromethyl)cytidine
compound 12		4'-C-(Trifluoromethyl)-5-methyl-cytidine
compound 13		1-[4(S)-Azido-2(S),3(R)-dihydroxy-4-(hydroxymethyl)-1(R)-cyclopentyl]cytosine
compound 14		4'-C-(Hydroxymethyl)adenosine
compound 15		9-[4-C-(Hydroxymethyl)-beta-D-ribofuranosyl]-6-mercaptopurine
compound 16		4'-C-Azidoguanosine
compound 16-1		4'-C-Azidoinosine (9-(5-Azido-3,4-dihydroxy-5-hydroxymethyl-tetrahydro-furan-2-yl)-1,9-dihydro-purin-6-one)

- 10 -

compound 17		2-Amino-4'-C-Azidoadenosine
compound 18		4'-C-Azidoadenosine
compound 19		4'-C-(1-Propynyl)guanosine
compound 20		2-Amino-4'-C-(1-propynyl)-adenosine
compound 21		4'-C-(1-Propynyl)adenosine

An especially preferred group of compounds for the treatment of HCV are those of formula I-a

I-a

wherein

R¹ is alkyl, alkenyl, alkynyl, haloalkyl, alkylcarbonyl, alkoxy, hydroxymethyl, cyano, azido, alkoxyiminomethyl, alkylcarbonylamino, alkylaminomethyl or dialkylaminomethyl;

5 R² is hydrogen, hydroxy, alkoxy, or halogen;

R³ and R⁴ are hydrogen, hydroxy, alkoxy, halogen or hydroxyalkyl, provided that at least one of R³ and R⁴ is hydrogen; or

R³ and R⁴ represent fluorine.

and pharmaceutically acceptable salts.

10

Examples of such especially preferred compounds are listed below

Compound no.	Structure	Name
compound 9		4'-C-Methoxycytidine
compound 22		4'-C-(Fluoromethyl)cytidine
compound 23		4'-C-Methylcytidine
compound 24		4'-C-Azido-2'-deoxy-2',2'-difluorocytidine

compound 25		2'-Deoxy-4'-C-fluoro-2',2'-difluorocytidine
compound 26		2'-Deoxy-4'-C-ethynyl-2',2'-difluorocytidine
compound 27		4'-C-Azido-3'-O-methylcytidine
compound 28		4'-C-Azido-3'-deoxycytidine
compound 29		4'-C-Azido-3'-deoxy-3'-fluorocytidine
compound 30		4'-C-(1-Propynyl)cytidine

compound 31		4'-C-(1-Butynyl)cytidine
compound 32		4'-C-Vinylcytidine
compound 33		(E)-4'-C-(1-Propenyl)cytidine
compound 34		(Z)-4'-C-(1-Propenyl)cytidine
compound 35		4'-C-Ethylcytidine
compound 36		4'-C-Propylcytidine

compound 37		4'-C-Acetamidocytidine
compound 38		(E)-4'-C-(Methoxyimino)cytidine
compound 39		(E)-4'-C-(Ethoxyimino)cytidine
compound 40		4'-C-[(Methylamino)methyl]-cytidine
compound 41		4'-C-[(Ethylamino)methyl]cytidine
compound 42		4'-C-[(Dimethylamino)methyl]-cytidine

compound 43		4'-C-Azido-5-methylcytidine
compound 43-1		4'-C-Azido-5-methyluridine
compound 44		4'-C-Azido-5-fluorocytidine
compound 44-1		4'-C-Azido-5-fluorouridine
compound 45		4'-C-Azido-5-hydroxycytidine
compound 46		4'-Azido-2'-deoxyadenosine

compound 47		4'-C-Azido-2'-deoxy inosine
compound 48		4'-C-Azido- 5-methyluridine

Most preferred compounds for the treatment of HCV are listed below:

Compound no.	Structure	Name
compound 1 (Example 1)		4'-C-Azidocytidine
compound 2 (Example 2)		4'-C-Cyanocytidine
compound 3 (Example 3)		4'-C-Ethynylcytidine hydrochloride (1:1)
compound 4		4'-C-Ethoxycytidine

compound 5		4'-C-Acetylcytidine
------------	--	---------------------

The compounds of formula I may be prepared by various methods known in the art of organic chemistry in general and nucleoside analogue synthesis in particular. The starting materials for the syntheses are either readily available from commercial sources or are known or may themselves be prepared by techniques known in the art. General reviews of the preparation of nucleoside analogues are included in the following publications:

A M Michelson "The Chemistry of Nucleosides and Nucleotides", Academic Press, New York 1963.

10 L Goodman "Basic Principles in Nucleic Acid Chemistry" Ed P O P Ts' O, Academic Press, New York 1974, Vol. 1, chapter 2.

"Synthetic Procedures in Nucleic acid Chemistry" Ed W W Zorbach and R S Tipson, Wiley, New York, 1973, Vol. 1 and 2.

15 The synthesis of carbocyclic nucleosides has been reviewed by L Agrofoglio *et al.*, Tetrahedron, 1994, 50, 10611.

The strategies available for the synthesis of compounds of formula I include:

1. modification or interconversion of performed nucleosides; or

2. construction of the heterocyclic base after glycosylation; or

3. condensation of a protected furanose, thifuranose or cyclopentane derivative with a pyrimidine (B2) or purine (B1) base.

These methods will be further discussed below:

1. Modification or inter-conversion of preformed nucleosides.

Such methods include on the one hand modification of the 9-purinyl or 1-pyrimidyl residue or on the other hand modification of the carbohydrate moiety.

25 A. Modification of the purinyl or pyrimidyl moiety:

a) The deamination of aminopurine or aminopyrimidine nucleosides as described by J. R. Tittensor and R. T. Walker European Polymer J., 1968, 4, 39 and H. Hayatsu, Progress in Nucleic Acid Research and Molecular Biology 1976, Vol. 16, p75.

5 b) The conversion of the 4-hydroxy group of 4-hydroxypyrimidine nucleosides to a leaving group and displacement with nucleophilic reagents. Such leaving groups include halogen as described by J. Brokes and J. Beranek, Col. Czech. Chem. Comm., 1974, 39, 3100 or 1,2,4-triazole as described by K. J. Divakar and C. B. Reece, J. Chem. Soc. Perkin Trans. I, 1982, 1171.

10 c) 5-Substitution of pyrimidine nucleosides has been achieved by the use of 5-metalloc derivatives such as 5-mercuri or 5-palladium for example as described by D. E. Bergstrom and J. L. Ruth J. Amer. Chem. Soc., 1976, 98, 1587. Introduction of fluoro into the 5 position of pyrimidine nucleosides can be achieved with reagents such as trifluoromethyl hypofluorite as described by M. J. Robins, Ann New York Acad. Sci. 1975, 255, 104.

15 d) Modified purine nucleosides may be prepared from the corresponding purine nucleoside derivatives wherein the 2, 6 or 8 substituent is a suitable leaving group such as halogen or sulphonate or 1,3,4-triazole. 6 substituted purine nucleosides may be prepared by treatment of the appropriate 6-halopurine or 6-(1,2,4-triazol-4-yl)-purine nucleoside derivatives with the appropriate nucleophilic reagent as described by V. Nair and A. J. Fassbender Tetrahedron, 1993, 49, 2169 and by V. Samano, R. W. Miles and M. J. Robins, J. Am. Chem. Soc., 1994, 116, 9331.

20 Similarly 8-substituted purine nucleosides can be prepared by treatment of the corresponding 8-halopurine nucleoside with the appropriate nucleophilic reagent as described by L. Tai-Shun, C. Jia-Chong, I. Kimiko and A. C. Sartorelli, J. Med. Chem., 1985, 28, 1481; Nandanan *et al*, J. Med. Chem., 1999, 42, 1625; J. Jansons, Y.

25 Maurinsh, and M. Lidaks, Nucleosides Nucleotides, 1995, 14, 1709. Introduction of an 8-cyano substituent can be accomplished by displacement using a metal cyanide as described by L-L. Gundersen, Acta. Chem. Scand. 1996, 50, 58. 2-Modified purine nucleoside may be prepared in a similar fashion as described by T.

30 Steinbrecher, C. Wamelung, F. Oesch and A. Seidl, Angew. Chem. Int. Ed. Engl., 1993, 32, 404.

e) Where the substituent at the 2 or 8-position of the purine nucleoside is linked via a carbon carbon bond e. g. alkyl, then metal catalysed cross-coupling procedures can be used starting with the appropriate 2 or 8-halo substituted purine nucleoside analogue as described by A. A. Van Aerschott, *et al*, J. Med. Chem., 1993, 36, 2938;

V.Nair and G.S. Buenger, J.Am.Chem.Soc., 1989, 111(22), 8502; C. Tu, C. Keane and B. E. Eaton Nucleosides Nucleotides, 1995, 14, 1631.

B. Modification of the carbohydrate moiety:

Following introduction of protecting groups which are compatible with the further chemistry:

- Azide may be introduced at the 4'-position by treatment of the 4',5'-didehydro nucleoside with iodine azide as exemplified by H.Maag *et al*, J. Med.Chem., 1992, 35, 1440. An alkoxide may be introduced at the 4'-position by treatment of the 4',5'-didehydro nucleoside with iodine followed by an alcohol and lead carbonate as exemplified by J.P.Verheyden and J.G.Moffatt, J.Am.Chem.Soc., 1975, 97(15), 4386.

Fluoride may be introduced at the 4'-position by treatment of the 4',5'-didehydro nucleoside with iodine followed by silver(I)fluoride as described by G.R.Owen *et al*, J.Org.Chem., 1976, 41(8), 3010 or A. Maguire *et al*, J. Chem. Soc. Perkin Trans. 1, 1993, 1(15), 1795. A 4'-formyl group can be introduced and subsequently converted to a wide range of substituents including but not limited to 4'-haloalkyl, 4'-ethynyl, 4'-oximinomethyl, and 4'-cyano as exemplified by M. Nomura *et al.*, J. Med. Chem., 1999, 42, 2901.

- Modification of either the 2'-hydroxy substituent or 3'-hydroxy substituent in the nucleoside analogue is possible.

- Conversion of the 3- hydroxy to a leaving group such as halo by reaction with for example triphenyl phosphine and a tetrahaloalkane as described for example by L. De Napoli *et al*, Nucleosides Nucleotides, 1993, 12, 981, followed by reduction provides the 3-deoxysugar derivatives as described by D. G. Norman and C. B. Reese, Synthesis 1983, 304.

- Derivatisation of the 3 hydroxy group by conversion to a triflate group followed by reduction using sodium borohydride as described by S. A. Surzhykov *et al*, Nucleosides Nucleotides, 1994, 13(10), 2283. Direct introduction of a fluorine substituent can be accomplished with fluorinating agents such as diethylamino-sulphur trifluoride as described by P. Herdewijn, A. Van Aerschot and L. Kerremans, NucleosidesNucleotides, 1989, 8, 65.

- Conversion of the hydroxy substituent to a leaving group such as halo or sulphonate also allows displacement using nucleophilic reagents such as tetrabutylammonium fluoride, lithium azide, or metal cyanides as exemplified by H. Hrebabecky, A. Holy and E. de Clercq, Collect. Czech. Chem. Comm. 1990, 55,

1800; K. E. B. Parkes and K. Taylor, *Tet. Lett.*, 1988, 29, 2995; H. M. Pfundheller *et al*, *Helv. Chim. Acta*, 2000, 83, 128.

- Reaction of 2'-keto nucleosides with fluorinating agents such as diethylamino sulfur trifluoride can be used to prepare 2',2'-difluoronucleosides as described by D. Bergstrom, E. Romo and P. Shum *Nucleosides Nucleotides*, 1987, 6, 53.

5

2. Construction of the heterocyclic base after glycosylation.

a) those which for example utilise furanosylamine derivatives as described by N. J. Cusack, B. J. Hildick, D. H. Robinson, P. W. Rugg and G. Shaw *J. Chem. Soc. Perkin Trans., I* 1973, 1720 or G. Shaw, R. N. Warrener, M. H. Maguire and R. K. Ralph, *J. Chem. Soc.*, 1958, 2294.

b) those which utilise for example furanosylureas for pyrimidine nucleoside synthesis as described by J. Šmejkal, J. Farkas, and F. Šorm, *Coll. Czech. Chem. Comm.*, 1966, 31, 291.

c) the preparation of purine nucleosides from imidazole nucleosides is reviewed by L. B. Townsend, *Chem. Rev.*, 1967, 67, 533.

d) the preparation of compounds of formula I wherein X is CH₂ can be accomplished from 1-hydroxymethyl-4-aminocyclopentane derivatives as described by Y. F. Shealy and J. D. Clayton *J. Am. Chem. Soc.*, 1969, 91, 3075; R. Vince and S. Daluge *J. Org. Chem.*, 1980, 45, 531; R. C. Cermak and R. Vince, *Tet. Lett.*, 1981, 2331; R. D. Elliott *et al*, *J. Med. Chem.*, 1994, 37, 739.

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840<br

- with alkoxy pyrimidines are described by K. A. Watanabe, D. H. Hollenberg and J. J. Fox., Carbohydrates. Nucleosides and Nucleotides. 1974, 1,1.

- with silyl derivatives of purines or pyrimidines as described by U. Niedballa and H. Vorbruggen, J. Org. Chem., 1976, 41, 2084; U. Niedballa and H. Vorbruggen, J.

5 Org. Chem., 1974, 39, 3672. A. J. Hubbard, A. S. Jones and R. T. Walker, Nucleic Acids Res., 1984, 12, 6827.

Furthermore

- the fusion of per-acylated sugars with purines under vacuum in the presence of p-toluene sulphonic acid has been described by T. Simadate, Y. Ishudo and T. Sato, Chem. Abs., 1962, 56, 11 692 and W. Pfleiderer, R. K. Robins, Chem. Ber. 1965, 98, 1511.

- the condensation reactions have been described by K. A. Watanabe, D. H. Hollenberg and J. J. Fox, Carbohydrates Nucleosides and Nucleotides, 1974, 1,1.

15 Examples for the condensation reaction of a protected cyclopentane derivative with an appropriate purine derivative or pyrimidine derivative are given in H. Kapeller, H. Baumgartner and H. Griengl, Monatsh Chem., 1997, 128, 191 and P. Wang *et al*, Tet. Lett., 1997, 38, 4207; or by T. Jenny *et al*. Helv. Chim. Acta, 1992, 25, 1944.

Such methods often result in mixtures of anomeric nucleoside derivatives which can be separated by standard techniques known to the art such as recrystallisation, column chromatography, high performance liquid chromatography or super critical fluid chromatography.

20 The purine derivatives and pyrimidines derivatives for above condensation reactions can be obtained commercially or can be prepared by procedures known to the art.

25 The preparation of purine derivatives is reviewed by G. Shaw in "Comprehensive Heterocyclic Chemistry" pub Pergamon Press Vol. 5 chapter 4. 09, p 499 and "Comprehensive Heterocyclic Chemistry II" publ. Pergamon Press, Vol 7, chapter 7. 11, p 397.

30 The preparation of pyrimidines derivatives is reviewed by D. J. Brown in "The Chemistry of Heterocyclic Compounds – The Pyrimidines" 1962 and Supplement 1, 1970, pub John Wiley and Sons, New York, by D. J. Brown in "Comprehensive Heterocyclic Chemistry" pub Pergamon Press Vol. 5 chapter 4. 09, p 499 and by K.

Unheim and T. Benneche in "Comprehensive Heterocyclic Chemistry II" pub
Pergamon Press Vol. 6 chapter 6. 02 p 93.

5 Furanose derivatives can be prepared from commercially available carbohydrate starting materials such as the D forms of ribose, arabinose, xylose or lyxose, following introduction of protecting groups which are compatible with the chemistry.

10 4-Substituted furanoses with the substituent containing a carbon attached to the 4-position of the furanose, for example alkyl, alkenyl, alkynyl, haloalkyl, acyl, alkoxy carbonyl, hydroxy alkyl, alkoxy alkyl, cyano, oximinomethyl, alkoxyimino-methyl, alkylaminocarbonyl and acyl can be prepared from the corresponding 4-formyl furanose. The preparation of one such 4-formylfuranose is described by H. Ohrui *et al.*, J. Med. Chem., 2000, 43, 5416. 4-Haloalkyl furanoses may be prepared from the corresponding 4-hydroxymethyl furanoses (e. g., K. Kitano *et al.*, Tetrahedron, 1997, 53(39), 13315). 4-Methyl furanoses can be prepared by the 15 method described by T. Waga *et al.*, Biosci. Biotech. Biochem. 1993, 19(7), 408.

20 2,2-Difluorofuranose derivatives can be prepared from D-glucose or D-mannose as described by R. Fernandez, M. I. Mateu, R. Echarri and S. Castillon Tetrahedron, 1998, 54, 3523. The thiofuranose derivatives can be prepared by literature procedures such as L. Bellon, J. L. Barascut, J. L. Imbach, Nucleosides and Nucleotides 1992, 11, 1467 and modified in a similar fashion to the furanose analogues described above.

The cyclopentane derivatives can be prepared by methods known in the art of organic chemistry and by methods and references included in L. Agrofolio *et al.*, Tetrahedron, 1994, 50, 10611.

25 The preformed nucleoside derivatives are either available commercially or synthesised in accordance with the methods described above.

The methods discussed above are described in more details below:

The compounds of formula I, wherein R¹ is N₃, R² and R³ are hydroxy and B is B2 can be prepared according to Reaction Scheme A:

Scheme A

5

wherein Ac is acetyl, Bz is benzoyl and R¹¹ is as defined above.

Compounds of Formula II may be iodinated using a mixture of triphenylphosphine, iodine and pyridine as exemplified by H. Maag *et al*, J. Med. Chem., 1992, 35, 1440. The acetonide protecting group can be removed by treatment with an acid, for instance acetic acid, as described by J. P. Verheyden *et al*, J. Org. Chem., 1970, 35(7), 2319, to give nucleosides of formula III. Following protection of the 2' and 3' hydroxyls with acetic anhydride and pyridine elimination of hydrogen iodide, with for example silver fluoride in pyridine and removal of the acetyl

protecting groups with methanolic ammonia as described by J. P. Verheyden *et al.*, *J. Org. Chem.*, 1974, 39(24), 3573, gives 4',5' didehydro nucleosides of formula V. Addition of iodine azide to the double bond can be accomplished by treatment of V with a mixture of iodine chloride and sodium azide in N,N-dimethylformamide as described by H. Maag *et al*, *J. Med. Chem.*, 1992, 35, 1440, to give nucleosides of formula VI. Protection of the hydroxy groups in VI can be accomplished by treatment of VI with benzoyl chloride in pyridine, giving nucleosides of formula VII, which can then be converted into the 5'-benzoyl nucleosides of formula VIII by treatment with *meta*-chloroperbenzoic acid in dichloromethane, which can then be deprotected with a base, eg sodium methoxide, in methanol to give nucleosides of formula IX, all as described by H. Maag *et al*, *J. Med. Chem.*, 1992, 35, 1440. In the case where B2 in the compound of formula VIII is uracil or 5'-substituted uracil, following protection of the 3'-hydroxy group with acetic anhydride and pyridine, conversion to the corresponding cytidine of formula XII can be accomplished by the method described by A. D. Borthwick *et al.*, *J. Med. Chem.*, 1990, 33(1), 179, whereby nucleosides of formula X can be treated with 4-chlorophenyl dichlorophosphate and triazole to give 4-triazolyl nucleosides of formula XI, followed by treatment of nucleosides XI with aqueous ammonia giving 5'-substituted cytidines of formula XII.

Compounds of formula I, wherein R¹ is -C≡CH, -CH=CHCl, -CH=N-OH, -CN, R² and R³ are hydroxy and B is B1 or B2 can be prepared according to Reaction Scheme B.

Scheme B

5

10

Compounds of formula XIII can be silylated with *tert*-butyldimethylsilyl-chloride (TBSCl) and imidazole to give the tri-*tert*-butyldimethylsilyl compounds of formula XIV. The 5'-*tert*-butyldimethylsilyl ether can be deprotected using 80% acetic acid to give the 5-hydroxy nucleosides XV, which can then be oxidised to the 5'-formyl nucleosides XVI using a mixture of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDAC) and dimethylsulphoxide (DMSO) in a suitable solvent, eg benzene. Alkylation of XVI with formaldehyde and sodium hydroxide gives the 4'-hydroxymethyl compounds XVII which can be reduced to the 4'-

dihydroxymethyl compounds XVIII. Selective protection of the hydroxymethyl on the α face of the nucleoside with trityl chloride in pyridine gives the 4'-trityl compounds XIX, followed by protection of the hydroxymethyl on the β -face of the nucleoside with *tert*-butyldimethylsilylchloride (TBSCl) and imidazole gives compounds of formula XX. Deprotection of the trityl group with bromocatecholborane gives the 4'-hydroxymethyl compound XXI, which can be oxidised with trifluoromethanesulphonic anhydride and dimethylsulphoxide to give the 4'-formyl compound of formula XXII.

5

The aldehyde of formula XXII can be used as starting material for a wide range of 4'-substituted nucleosides as depicted in Scheme C:

10

Scheme C

Treatment of the aldehyde XXII with hydroxylamine hydrochloride and pyridine gives the 4'-hydroxyimine of formula XXIII. Water is eliminated from compound XXIII to give 4'-cyano compounds of formula XXIV. Treatment of 4'-formyl compounds of formula XXII with chloromethylphosphonium chloride and butyl lithium gives the 4'-(2-chloroethenyl) compounds XXVI. Treatment of compounds XXVI with butyllithium results in the elimination of hydrogen chloride to give the 4'-ethynyl compounds of formula XXVII. Removal of the silyl protecting groups from the tri *tert*-butyldimethylsilylchloride protected compounds XXIII, XXVII and XXIV can be carried out with a fluoride source such as ammonium 5
flouride in methanol or tetrabutylammonium fluoride absorbed on silica in tetrahydrofuran, to give the respective 4'-substituted nucleosides XXV, XXVIII and XXIX.
10

Suitably protected 4'-substituted uridines (for example XXIV and XXVII) can be converted to the corresponding 4'-substituted cytidines according to Reaction 15
Scheme D.

Scheme D

The tri-*tert*butyldimethylsilyl (TBS) protected uridines of formula XXX can be treated with tri-isopropylbenzenesulphonyl chloride, triethylamine and 20
dimethylaminopyridine to give the 4-triazolyl nucleosides XXXI. The 4-triazolyl compounds XXXI can be converted to the 4-amino compounds XXXII with

aqueous ammonia. Deprotection of the silyl groups with a mixture of methanol and hydrochloric acid in dioxan gives the cytidine derivatives XXXIII.

Compounds of formula I, wherein R¹ is alkoxy, R² and R³ are hydroxy and B is a 9-purinyl residue B1 or a 1-pyrimidyl residue B2 can be prepared according to the procedures described by J.P. Verheyden *et al.* US patent no. 3 910 885

Compounds of formula I in which R¹ is trifluoromethyl, methyl or ethynyl can be prepared as depicted in Reaction Scheme E:

Scheme E

10

for example by coupling the appropriate protected 4'-substituted ribofuranoside XXXIV with a silylated base in the presence of a Lewis acid, eg trimethylsilyltrifluoromethanesulphonate (TMSOTf) or tin tetrachloride, in an appropriate solvent, eg acetonitrile or 1,2-dichloroethane, to give compound of formula XXXV. The protecting groups can be removed by treatment of XXXV with a base, for example sodium methoxide, in compatible solvent for instance methanol to give compounds of formula XXXVI.

Methods for the monophosphorylation of organic compounds including nucleosides have been reviewed by L A Slotin, *Synthesis*, 1977, 737. More recently other nucleoside phosphorylation procedures have been described: M Uchiyama et al *J. Org. Chem.*, 1993, 58, 373; R Caputo et al, *Synlett.*, 1997, 739 and M Taktakishvili and V Nair *Tet. Lett.* 2000, 41, 7173. Other procedures for monophosphorylation that may be useful for nucleosides are described by C E McKenna and J Schmidhauser, *J. Chem. Soc., Chem. Commun.*, 1979, 739 and J K Stowell and T S Widlanski *Tet. Lett.*, 1995, 1825. Synthesis of di and triphosphate

derivatives are reviewed in K H Scheit, Nucleotide Analogues, 1980, Wiley Interscience and by K Burgess and D Cook Chemical Reviews, 2000, 100, 2047.

The following Examples illustrate methods for the preparation of compounds of formula I:

5

Example 1

Preparation of compound 1, according to the method of schemes 1 and 1a

Scheme 1

10

1.1. Compound (i)

Compound (i) was purchased from Lancaster (Cat. no.: 206-647-7, CAS 362-43-6)

1.2. Compound (ii)

Triphenylphosphine (1.57 g, 6.0 mmol) and iodine (1.52 g, 6.0 mmol) were added to compound (i) (1.14 g, 4.0 mmol) in dioxan (20 ml) containing pyridine

(0.65 mmol, 8.0 mmol). The mixture was stirred overnight and quenched with methanol (1 ml). The solvent was evaporated *in vacuo*. The residue was dissolved in ethyl acetate (200 ml), washed with water (100 ml), 10% aqueous sodium thiosulphate (100 ml), brine (100 ml) and dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate evaporated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with 1:1 ethyl acetate/petrol) to afford compound (ii) as a colourless oil which slowly solidified to a colourless waxy solid (1.5 g) mass spectrum (CI) m/z 395 [M+H]⁺.

10 **1.3. Compound (iii)**

Compound (iii) was prepared from compound (ii) as described by J. P. Verheyden *et al.*, J. Org. Chem., 1970, 35(7), 2319.

11 **1.4. Compound (iv)**

Compound (iv) was prepared from compound (iii) as described by J. P. Verheyden

15 *et al.*, J. Org. Chem., 1974, 39(24), 3573.

12 **1.5. Compound (v)**

Compound (v) was prepared from compound (iv) as described by H. Maag *et al.*, J. Med. Chem., 1992, 35, 1440-1451.

13 **1.6. Compound (vi)**

20 To a solution of compound (v) (482 mg, 0.80 mmol) in dichloromethane saturated with water (10 ml) was added 55% metachloroperbenzoic acid (1.0g, 4.95 mmol).

The mixture was stirred for 2 h. Additional metachloroperbenzoic acid (0.50 g) was added and the mixture was stirred for an additional 3 h. Ethyl acetate (100 ml) was added and the solution washed with 10% sodium metabisulphite solution (50 ml),

25 followed by saturated sodium hydrogen carbonate solution (50 ml). The ethyl acetate was dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate was evaporated *in vacuo*. The residue was subjected to flash chromatography, eluting with 1:1 ethyl acetate/ petrol 1:1 to afford compound (vi) as a colourless glass (200 mg); mass spectrum (ESI) m/z 535

30 [M+H+CH₃CN]⁺

14 **1.7. Compound (vii)**

To a solution of compound (vi) (170 mg, 0.35 mmol) in methanol (2 ml) was added a solution of sodium methoxide in methanol (0.5 M, 0.5 ml). The solution

was stirred for 2 h at room temperature. The solution was neutralised with ion exchange resin (Amberlite IRC 50 (H^+), Aldrich, cat. no. 42,883-3) and stirred for 10 min. The resin was removed by filtration. The filtrate was evaporated *in vacuo* and the residue was subjected to flash chromatography eluting with 1:1 ethyl acetate/ acetone) to afford a colourless oil. Trituration with ethyl acetate afforded compound (vii) as a colourless solid (35 mg); mass spectrum (CI) m/z 286 [M+H]⁺.

The transformation of the azidouridine derivative to the corresponding azidocytidine derivative (compound 1) and its hydrochloride salt is depicted in

Scheme 1a

Scheme 1a

1.8. Compound (viii)

To a solution of compound (vi) (460 mg, 0.93 mmol) in pyridine (3 ml) was added acetic anhydride (1 ml) and the mixture was stirred for 4 h. Ethyl acetate (100 ml) was added and the mixture was washed with 2 N HCl (50 ml), followed by saturated sodium hydrogen carbonate solution (50 ml). The solution was dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate was evaporated *in vacuo*. The residue was subjected to

flash chromatography eluting with 1:1 ethyl acetate/ petrol to afford compound (viii) as a colourless gum (350 mg); mass spectrum (ESI) m/z 536 [M+H]⁺

1.9. Compound 1

To a solution of compound (viii) (1.5 g, 2.8 mmol) in pyridine (20 ml) was added 5 1,2,4-triazole (0.97 g, 14 mmol). 4-chlorophenyldichlorophosphate (1.36 ml, 8.4 mmol) was then added dropwise with stirring. The mixture was stirred for 16 h. Ethyl acetate (300 ml) was added and the mixture was washed with saturated sodium hydrogen carbonate solution (200 ml). The solution was dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by 10 filtration and the filtrate was evaporated *in vacuo*. The residue was subjected to flash chromatography eluting with 2:1 ethyl acetate/ petrol to afford a yellow foam (850 mg). The foam was treated with dioxan (8 ml) followed by aqueous ammonia solution (16 ml) and stirred for 16 h. The filtrate was evaporated *in vacuo* and the residue was subjected to flash chromatography eluting with 90:18:3:2 dichloro- 15 methane/methanol/acetic acid/water to afford compound 1 as a light tan foam (350 mg); mass spectrum (FAB) m/z 285 [M+H]⁺

1.10. Hydrochloride of Compound 1

Compound 1 (0.40g) was dissolved in methanol and treated with a solution of 20 hydrogen chloride in ethyl acetate. The product separated as a microcrystalline solid and was collected by filtration and dried *in vacuo* to afford the hydrochloride salt of compound 1 (0.22g); mass spectrum (ESI) m/z 285 [M+H]⁺

Example 2

Preparation of compound 2 according to the method of scheme 2

2.1. Compound (ix)

Compound (ix) was prepared from compound **(xiv)**, see example 3, as described by M. Nomura *et al.*, J. Med. Chem., 1999, 42, 2901-2908.

2.2. Compound (x)

A mixture of **(ix)** (600 mg, 0.98 mmol) and hydroxylamine hydrochloride (140 mg,

1.95 mmol) in pyridine was stirred at room temperature for 2 h. The reaction mixture was evaporated *in vacuo* and the residue was partitioned between ethyl acetate (30 ml) and water (30 ml). The ethyl acetate layer was separated and dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate evaporated *in vacuo* to afford compound (**x**) as a white foam (615 mg); mass spectrum (ESI) m/z 630 [M+H]⁺.

2.3. Compound (xi)

A mixture of compound (x) (550 mg, 0.87 mmol) and sodium acetate (720 mg, 5.25mmol) was suspended in acetic anhydride then heated at 130°C for 3 h. The reaction mixture was evaporated *in vacuo* and the residue partitioned between ethyl acetate (30 ml) and saturated sodium bicarbonate (30 ml). The ethyl acetate layer was separated and dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate evaporated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with 1:2 diethyl ether/hexane. Product containing fractions were combined and evaporated *in vacuo* 5 to afford compound (xi) as a colourless solid (285 mg). mass spectrum (ESI) m/z 10 612 [M+H]⁺.

2.4. Compound (xii)

4-chlorophenyl-dichlorophosphate (160 µL, 0.98 mmol) was added dropwise to a solution of compound (xi) (200 mg, 0.33 mmol) and 1,2,4-triazole (115 mg, 15 1.63 mmol) in anhydrous pyridine (5 ml) then stirred at room temperature for 16 h. The reaction mixture was evaporated *in vacuo* and the residue partitioned between ethyl acetate (30 ml) and 2M hydrochloric acid (30 ml). The ethyl acetate layer was separated, washed with saturated sodium bicarbonate (30 ml) and dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by 20 filtration and the filtrate evaporated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with 1:1 diethyl ether/hexane followed by 2:1 diethyl ether/hexane. Product containing fractions were combined and evaporated *in vacuo* to afford (xii) as a cream solid (65 mg). mass spectrum (ESI) m/z 663 [M+H]⁺.

2.5. Compound (xiii)

A solution of compound (xii) (60 mg, 0.09mmol) and aqueous ammonia (2 ml) in acetonitrile was stirred at room temperature for 16 h. The reaction mixture was evaporated *in vacuo* and the residue partitioned between ethyl acetate (10 ml) and 30 2 M hydrochloric acid (10 ml). The ethyl acetate layer was separated and dried over magnesium sulphate. The magnesium sulphate was removed by filtration and evaporated *in vacuo* to afford compound (xiii) as a pale yellow solid (45 mg); mass spectrum (ESI) m/z 611 [M+H]⁺

2.6. Compound 2

Tetrabutylammonium fluoride (1 M solution in THF, 0.3 ml) was added to a stirred solution of compound (**xiii**) (40 mg, 0.06 mmol) in dry tetrahydrofuran (10 ml) and stirred at room temperature for 2h. The solvent was removed by evaporation *in vacuo*. The residue was treated with pyridine (1ml) followed by acetic anhydride (0.3ml) and stirred for 4h at room temperature. The solvent was removed by evaporation *in vacuo*. The residue was treated with ethyl acetate (50ml) and washed with dilute hydrochloric acid (30ml) followed by a 5% aqueous sodium bicarbonate solution. The ethyl acetate was dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate evaporated *in vacuo*. The residue was subjected to flash column chromatography eluting with ethyl acetate to afford an oil. The oil was dissolved in methanol (1ml) and treated with sodium methoxide (0.5M solution in methanol, 0.05ml) and stood at room temperature for 3h. The mixture was neutralised with ion exchange resin (Amberlite IRC 50 (H^+)). The resin was removed by filtration, and the filtrate evaporated *in vacuo*. The residue was dissolved in water and freeze dried to afford compound 2 as an amorphous solid (7mg).

2.7. The corresponding 4'-cyanouridine can be prepared by deprotection of compound (**xi**).

The deprotection can be carried out as follows:

Compound (**xi**) (50 mg, 82 μ mol) was dissolved in tetrahydrofuran, treated with tetrabutylammonium fluoride on silica then stirred for 16 h at room temperature. The reaction mixture was filtered through Hyflo Super Cel (Fluka, cat no. 56678), evaporated *in vacuo*, then purified by flash column chromatography on silica gel, eluting with dichloromethane/methanol/acetic acid/water (240:24:3:2) followed by dichloromethane/methanol/acetic acid/water (90:18:3:2). Product containing fractions were combined and evaporated. The residue was dissolved in methanol/water (5:1), treated with Duolite C225 ion exchange resin (H^+ form, BDH, cat. no. 56678) and stirred for 15 min. The resin was removed by filtration and the filtrate evaporated *in vacuo* to low volume. The product was collected by filtration and dried *in vacuo* to afford 4'-cyanouridine as a white crystalline solid (15 mg); mass spectrum m/z (ESI) 270 [M+H]⁺.

Example 3

Preparation of compound 3 according to the method of Scheme 3

5 3.1. Compound (xiv)

This compound was prepared as described by M. Nomura *et al.*, J. Med. Chem., 1999, 42, 2901-2908.

3.2. Compound (xv)

Trityl chloride (3.2 g; 11.5 mmol) was added to a solution of compound (xiv) (3.0 g, 6.0 mmol) in pyridine (20 ml) and stirred at room temperature for 16 h. The solvent was evaporated *in vacuo* and the residue partitioned between ethyl acetate (50 ml) and 2 M hydrochloric acid (50 ml). The ethyl acetate layer was separated, washed with brine (50 ml) and dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate evaporated *in vacuo*. The crude material was purified by flash column chromatography on silica gel, eluting with 2:1 diethyl ether/hexane. Product containing fractions were combined and evaporated *in vacuo* to afford compound (xv) as a white solid (2.75 g); mass spectrum (ESI) m/z 767 [M+H]⁺.

3.3. Compound (xvi)

tert-Butyldimethylsilylchloride (0.67 g, 4.4 mmol) and imidazole (0.91 g, 13.3 mmol) was added to a stirred solution of compound (xv) (2.75 g, 3.7 mmol) in dimethylformamide (20 ml). The reaction was heated to 45°C for 16 h.

Additional *tert*-butyldimethylsilylchloride (0.67 g, 4.4 mmol) and imidazole (0.91 g, 13.3 mmol) were added and the mixture was heated to 60°C for 4 h. The solvent was removed by evaporation *in vacuo* and the residue was partitioned between ethyl acetate and brine. The ethyl acetate was separated and washed with more brine and dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate evaporated *in vacuo*. The residual colourless foam was purified by flash column chromatography on silica gel, eluting with 1:2 diethyl ether/hexane. Product containing fractions were combined and evaporated *in vacuo* to afford compound (**xvi**) as a white solid (3.1 g).

10 3.4. Compound (xvii**)**

Bromocatecholborane (355 mg, 1.77 mmol) was added to a stirred solution of compound (**xvi**) (1.5 g, 1.77 mmol) in dry dichloromethane (50 ml), under a nitrogen atmosphere at 0°C. The reaction was stirred for 15 min, diluted with dichloromethane (50 ml) then washed with saturated sodium bicarbonate (100 ml) and brine (100 ml). The dichloromethane was dried over anhydrous magnesium sulphate. The magnesium sulphate was removed by filtration and the filtrate evaporated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with 1:1 diethyl ether/hexane. Product containing fractions were combined and evaporated *in vacuo* to afford compound (**xvii**) as a white solid (930 mg).

3.5. Compound 3

was prepared from compound (**xvii**) as described by M. Nomura *et al.*, J. Med. Chem., 1999, 42, 2901-2908.

25 Further compounds can be prepared according to the methods described in the art, for example:

Compound no.	Structure	Name and preparation method
compound 6		4'-C-(Hydroxymethyl)cytidine G. H. Jones <i>et al.</i> , J. Org. Chem., 1979, 44(8), 1309.

compound 7		5-Fluoro-4'-C-(hydroxymethyl)uridine Youssefeyeh <i>et al.</i> , J. Org. Chem., 1979, 44, 1301.
compound 8		4'-C-Methoxyuridine J. A. Cook and J. L. Secrist, J. Am. Chem. Soc., 1979, 101, 1554
compound 9		4'-C-Methoxycytidine J. G. Moffatt and J. P. Verheyden, US patent no. 3 910 885
compound 22		4'-C-(Fluoromethyl)cytidine K. Kitano <i>et al.</i> , Tetrahedron, 1997, 53(39), 13315.
compound 23		4'-C-Methylcytidine T. Waga <i>et al.</i> , J. Biosci. Biotechnol. Biochem., 1993, 57(9), 1433

Additional compounds of formula I can be prepared in analogy to the methods described in the prior art listed below:

	4'-C-Allyluridine J. Secrist <i>et al.</i> , J. Am. Chem. Soc., 1978, 100, 2554.
	9-[4-C-(Hydroxymethyl)-beta-D-ribofuranosyl]-6-mercaptopurine Youssefeyeh <i>et al.</i> , J. Org. Chem., 1979, 44, 1301

	4'-C-(Hydroxymethyl)adenosine A. Rosenthal and M. Ratcliffe, Carbohydr. Res., 1977, 54, 61.
	4'-C-(Trifluoromethyl)-5-methyluridine J. Kozak and C. R. Johnson 1998, 17(12), 2221.
	4'-C-(Ethynyl)-5-methyluridine R. Yamaguchi <i>et al.</i> , J. Biosci. Biotechnol. Biochem., 1999, 63(4), 736
	4'-C-Methoxyadenosine C. M. Richards <i>et al.</i> , Carbohydr. Res., 1982, 100, 315.
	1-[4-C-(Hydroxymethyl)-beta-D-xylofuranosyl]uracil G. H. Jones <i>et al.</i> , J. Org. Chem., 1979, 44(8), 1309-1317
	1-[4-C-(Hydroxymethyl)-beta-D-arabinofuranosyl]cytosine T. Waga <i>et al.</i> , Nucleosides Nucleotides, 1996, 15(1-3) 287-304
	4'-C-(Hydroxymethyl)guanosine J. C. Martin and J. P. Verheyden, Nucleosides Nucleotides 1988, 7(3), 365
	9-[4-C-(Hydroxymethyl)-beta-D-xylofuranosyl]adenine D. L. Leland and M. P. Kotick, Carbohydr. Res., 1974, 38, C9-C11

	3'-Azido-3'-deoxy-4'-C-(hydroxymethyl)-5-methyluridine A. G. Olsen <i>et al.</i> , J. Chem. Soc. Perkin Trans. 1, 2000, 21, 3610
	1-(4-C-Ethynyl-beta-D-arabinofuranosyl)cytosine H. Ohrui <i>et al.</i> , J. Med. Chem., 2000, 43(23), 4516 or S. Kohgo <i>et al.</i> , Biosci. Biotechnol. Biochem., 1999, 63(6), 1146
	N4-Benzoyl-1-[4-C-methyl-beta-D-arabinofuranosyl]cytosine T. Yamaguchi <i>et al.</i> , Nucleosides Nucleotides, 1997, 16(7), 1347
	3'-Azido-3'-deoxy-4'-C-(hydroxymethyl)uridine S. A. Surzhikov and N. B. Dyatkina Russ. J. Biorg. Chem. (Engl. Transl.), 1993, 19(7), 408
	Preparation of 2'-deoxy-4'-azidonucleosides H. Maag, <i>et al.</i> Eur. Pat. Appl. EP 371366 A1

The following assay method demonstrates the ability of the compounds of formula I to inhibit HCV RNA replication, and therefore their potential utility for the treatment of HCV infections.

5 Renilla luciferase assay

This assay is based on the idea of using a reporter as a simple readout for intracellular HCV replicon RNA level. For this purpose Renilla luciferase gene was introduced into the first open reading frame of a replicon construct NK5.1 (Krieger *et al.*, J. Virol. 75:4614), immediately after the internal ribosome entry site (IRES) sequence, and fused with the neomycin phosphotransferase (NPTII) gene via a self-cleavage peptide 2A from foot and mouth disease virus (Ryan & Drew, EMBO Vol 13:928-933). After *in vitro* transcription the RNA was electroporated into human hepatoma Huh7 cells, and G418-resistant colonies were isolated and expanded.

Stably selected cell line 2209-23 was shown to contain replicative HCV subgenomic RNA, and the activity of Renilla luciferase expressed by the replicon reflects its RNA level in the cells.

For the assay procedure, Renilla Luciferase HCV replicon cells (2209-23) that
5 cultured in Dulbecco's MEM (GibcoBRL cat no. 31966-021) with 5% fetal calf serum (FCS, GibcoBRL cat. no. 10106-169) were plated onto a 96-well plate at 5000 cells per well, and incubated overnight. Twenty-four hours later, different dilutions of chemical compounds in the growth medium were added to the cells, which were then further incubated at 37°C for three days. The assay was carried out in
10 duplicate plates, one in opaque white and one in transparent, in order to measure the activity and cytotoxicity of a chemical compound in parallel ensuring the activity seen is not due to reduction on cell proliferation.

At the end of the incubation time, the cells in white plates were harvested and luciferase activity was measured by using Dual-Luciferase reporter assay system
15 (Promega cat no. E1960) All the reagents described in the following paragraph were included in the manufacturers kit, and the manufacturer's instructions were followed for preparations of the reagents. Briefly, the cells were washed twice with 200 µl phosphate buffered saline (pH 7.0) (PBS) per well and lysed with 25 µl of 1x passive lysis buffer prior to incubation at room temperature for 20 min. One
20 hundred microlitre of LAR II reagent was added to each well. The plate was then inserted into the LB 96V microplate luminometer (MicroLumatPlus, Berthold), and 100 µl of Stop & Glo reagent was injected into each well by the machine and the signal measured using a 2-second delay, 10-second measurement program.
25 IC50, the concentration of the drug required for reducing replicon level by 50% in relation to the untreated cell control value, can be calculated from the plot of percentage reduction of the luciferase activity vs. drug concentration. The results are compiled below.

For the cytotoxicity assay, WST-1 reagent from Roche Diagnostic (cat no. 1644807) was used. Ten microlitre of WST-1 reagent was added to each well
30 including wells that contain media alone as blanks. Cells were then incubated for 1 to 1.5 hours at 37°C, and the OD value was measured by a 96-well plate reader at 450nm (reference filter at 650nm). Again CC50, the concentration of the drug required for reducing cell proliferation by 50% in relation to the untreated cell control value, can be calculated from the plot of percentage reduction of the WST-1
35 value vs. drug concentration.

Compound no.	STRUCTURE	Name	IC50 (μ M)	CC50(μ M) WST-1
compound 1		4'-C-Azidocytidine	1.2	0% (100 μ M)
compound 2		4'-C-Cyanocytidine	99 (20 μ M)	100% (20 μ M)
compound 3		4'-C-Ethynyl- cytidine hydrochloride (1:1)	3% (20 μ M)	0% (20 μ M)
compound 4		4'-C-Ethoxy- cytidine	11% (20 μ M)	0% (20 μ M)
compound 6		4'-C-(Hydroxymethyl)-cytidine	13% (20 μ M)	2% (20 μ M)
compound 16-1		4'-C-Azidoinosine	>500 μ M	

compound 18		4'-C-Azido-adenosine	57	
compound 30		4'-C-(1-Propynyl)-cytidine	15% (20μM)	2% (20μM)
compound 44		4'-C-Azido-5-fluorocytidine	108	
compound 46		4'-Azido-2'-deoxyadenosine	13	0% (20μM)
compound 47		4'-C-Azido-2'-deoxy inosine	37	12% (20μM)
compound 48		4'-C-Azido- 5-methyluridine	8	0% (20μM)

As shown in above Table the compounds of formula I have the potential to be efficacious as antiviral drugs for the treatment of HCV infections in humans, or are metabolized to a compound that exhibit such activity.

such as an anti-hepatitis agent, including those of formula I. When the active compound or its derivative or salt are administered in combination with another antiviral agent the activity may be increased over the parent compound. This can easily be assessed by preparing the derivative and testing its anti-HCV activity according to the method described herein.

5 Administration of the active compound may range from continuous (intravenous drip) to several oral administrations per day (for example, Q.I.D) and may include oral, topical parenteral, intramuscular, intravenous, subcutaneous, transdermal (which may include a penetration enhancement agent), buccal and 10 suppository administration, among other routes of administration.

15 The 4'-substituted nucleoside derivatives as well as their pharmaceutically useable salts, can be used as medicaments in the form of any pharmaceutical formulation. The pharmaceutical formulation can be administered enterally, either orally, e.g. in the form of tablets, coated tablets, dragées, hard and soft gelatine capsules, solutions, emulsions, syrups, or suspensions, or rectally, e.g. in the form of suppositories. They can also be administered parenterally (intramuscularly, intravenously, subcutaneously or intrasternal injection or infusion techniques), e.g. in the form of injection solutions, nasally, e.g. in the form of nasal sprays, or inhalation spray, topically and so forth.

20 For the manufacture of pharmaceutical preparations, the 4'-substituted nucleoside derivatives, as well as their pharmaceutically useable salts, can be formulated with a therapeutically inert, inorganic or organic excipient for the production of tablets, coated tablets, dragées, hard and soft gelatine capsules, solutions, emulsions or suspensions.

25 The compounds of formula I can be formulated in admixture with a pharmaceutically acceptable carrier. For example, the compounds of the present invention can be administered orally as pharmacologically acceptable salts. Because the compounds of the present invention are mostly water soluble, they can be administered intravenously in physiological saline solution (e.g., buffered to a pH of about 7.2 to 7.5). Conventional buffers such as phosphates, bicarbonates or citrates can be used for this purpose. Of course, one of ordinary skill in the art may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity. In particular, the modification of the present compounds to 30
35

render them more soluble in water or other vehicle, for example, may be easily accomplished by minor modifications (salt formulation, esterification, etc.) which are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.

For parenteral formulations, the carrier will usually comprise sterile water or aqueous sodium chloride solution, though other ingredients including those which aid dispersion may be included. Of course, where sterile water is to be used and maintained as sterile, the compositions and carriers must also be sterilized. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.

Suitable excipients for tablets, coated tablets, dragées, and hard gelatin capsules are, for example, lactose, corn starch and derivatives thereof, talc, and stearic acid or its salts.

If desired, the tablets or capsules may be enteric-coated or sustained release by standard techniques.

Suitable excipients for soft gelatine capsules are, for example, vegetable oils, waxes, fats, semi-solid and liquid polyols.

Suitable excipients for injection solutions are, for example, water, saline, alcohols, polyols, glycerine or vegetable oils.

Suitable excipients for suppositories are, for example, natural and hardened oils, waxes, fats, semi-liquid or liquid polyols.

Suitable excipients for solutions and syrups for enteral use are, for example, water, polyols, saccharose, invert sugar and glucose.

The pharmaceutical preparations of the present invention may also be provided as sustained release formulations or other appropriate formulations.

The pharmaceutical preparations can also contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavourants, salts for adjustment of the osmotic pressure, buffers, masking agents or antioxidants.

The pharmaceutical preparations may also contain other therapeutically active agents known in the art.

The dosage can vary within wide limits and will, of course, be adjusted to the individual requirements in each particular case. For oral administration, a daily dosage of between about 0.01 and about 100 mg/kg body weight per day should be appropriate in monotherapy and/or in combination therapy. A preferred daily dosage is between about 0.1 and about 500 mg/kg body weight, more preferred 0.1 and about 100 mg/kg body weight and most preferred 1.0 and about 100 mg/kg body weight per day. A typical preparation will contain from about 5% to about 95% active compound (w/w). The daily dosage can be administered as a single dosage or in divided dosages, typically between 1 and 5 dosages per day.

In certain pharmaceutical dosage forms, the pro-drug form of the compounds, especially including acylated (acetylated or other) derivatives, pyridine esters and various salt forms of the present compounds are preferred. One of ordinary skill in the art will recognise how to readily modify the present compounds to pro-drug forms to facilitate delivery of active compounds to a target site within the host organism or patient. One of ordinary skill in the art will also take advantage of favourable pharmacokinetic parameters of the pro-drug forms, where applicable, in delivering the present compounds to targeted site within the host organism or patient to maximise the intended effect of the compound.

The nucleoside derivatives or the medicaments thereof may be used in monotherapy or combination therapy, i.e. the treatment may be in conjunction with the administration of one or more additional therapeutically active substance(s), for example, an immune system modulator such as an interferon, interleukin, tumor necrosis factor or colony stimulating factor; an antiviral agent or an anti-inflammatory agent. When the treatment is combination therapy, such administration may be concurrent or sequential with respect to that of the 4'-substituted nucleoside derivatives. Concurrent administration, as used herein thus includes administration of the agents at the same time or at different times.

It will be understood that references herein to treatment extend to prophylaxis as well as to the treatment of existing conditions, and that the treatment of animals includes the treatment of humans as well as other mammals. Furthermore, treatment of an Hepatitis C Virus (HCV) infection, as used herein, also includes treatment or prophylaxis of a disease or a condition associated with or mediated by Hepatitis C Virus (HCV) infection, or the clinical symptoms thereof.

In the present specification "comprise" means "includes or consists of" and "comprising" means "including or consisting of".

The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

Claims

1. Use of compounds of formula I

5

wherein

10

R is hydrogen or $-[P(O)(OH)-O]_nH$ and n is 1, 2 or 3;
 R¹ is alkyl, alkenyl, alkynyl, haloalkyl, alkylcarbonyl,
 alkoxy carbonyl, hydroxyalkyl, alkoxyalkyl, alkoxy, cyano,
 azido, hydroxyiminomethyl, alkoxyiminomethyl, halogen,
 alkylcarbonylamino, alkylaminocarbonyl, azidoalkyl,
 aminomethyl, alkylaminomethyl, dialkylaminomethyl or
 heterocycl;

15

R² is hydrogen, hydroxy, amino, alkyl, hydroxyalkyl, alkoxy,
 halogen, cyano, or azido;
 R³ and R⁴ are hydrogen, hydroxy, alkoxy, halogen or hydroxyalkyl,
 provided that at least one of R³ and R⁴ is hydrogen; or
 R³ and R⁴ together represent =CH₂ or =N-OH, or
 R³ and R⁴ both represent fluorine;
 X is O, S or CH₂;

20

B signifies a 9-purinyl residue B1 of formula

wherein

25

R⁵ is hydrogen, hydroxy, alkyl, alkoxy, alkylthio, NHR⁸,
 halogen or SH;
 R⁶ is hydroxy, NHR⁸, NHOR⁹, NHNR⁸, -NHC(O)OR⁹ or SH;
 R⁷ is hydrogen, hydroxy, alkyl, alkoxy, alkylthio, NHR⁸,
 halogen, SH or cyano;
 R⁸ is hydrogen, alkyl, hydroxyalkyl, arylcarbonyl or
 alkylcarbonyl;
 R⁹ is hydrogen or alkyl;
 R^{9'} is alkyl; and

B signifies a 1-pyrimidyl residue B2 of formula

wherein

- Z is O or S;
- 5 R¹⁰ is hydroxy, NHR⁸, NHOR⁹, NHNR⁸, -NHC(O)OR⁹ or SH;
- R¹¹ is hydrogen, alkyl, hydroxy, hydroxyalkyl, alkoxyalkyl, haloalkyl or halogen;
- R⁸ R⁹ and R⁹ are as defined above; and of pharmaceutically acceptable salts thereof;
- 10 for the treatment of diseases mediated by the Hepatitis C Virus (HCV) and for the preparation of a medicament for such treatment.

2. The use according to claim 1 of compounds of formula I

wherein

- 15 R is hydrogen;
- R¹ is alkyl, alkenyl, alkynyl, haloalkyl, alkylcarbonyl, alkoxy, hydroxymethyl, cyano, azido, alkoxyiminomethyl, alkylcarbonylamino, alkylaminomethyl or dialkylaminomethyl;
- 20 R² is hydrogen, hydroxy, alkoxy, or halogen;
- R³ and R⁴ are hydrogen, hydroxy, alkoxy, halogen or hydroxyalkyl, provided that at least one of R³ and R⁴ is hydrogen; or
- R³ and R⁴ represent fluorine;
- X is O or CH₂; and
- 25 B signifies a 9-purinyl residue B1 or a 1-pyrimidyl residue B2 as defined in claim 1.

3. The use according to claim 1 or claim 2 of the compounds of formula

wherein

R^1 is alkyl, alkenyl, alkynyl, haloalkyl, alkylcarbonyl, alkoxy, hydroxymethyl, cyano, azido, alkoxyiminomethyl, alkylcarbonylamino, alkylaminomethyl or dialkylaminomethyl;

R^2 is hydrogen, hydroxy, alkoxy, or halogen;

R^3 and R^4 are hydrogen, hydroxy, alkoxy, halogen or hydroxyalkyl, provided that at least one of R^3 and R^4 is hydrogen; or

R^3 and R^4 represent fluorine.

and pharmaceutically acceptable salts thereof.

4. The use of a compounds according to claim 3, wherein the compounds are

15 $4'$ -C-ethynylcytidine hydrochloride (1:1)

$4'$ -C-ethoxycytidine

$4'$ -C-acetylcytidine

5. The use of a compound according to claim 3, wherein the compound is

20 $4'$ -C-azidocytidine

6. A compound as defined in any one of claims 1 to 5 or a pharmaceutically acceptable salt thereof for the treatment of diseases mediated by the hepatitis C virus (HCV).

25 7. A compound as defined in any one of claims 1 to 5 or a pharmaceutically acceptable salt thereof for the preparation of medicaments for the treatment of diseases mediated by the hepatitis C virus (HCV).

8. A pharmaceutical composition on the basis of a pharmaceutically effective amount of a compound of formula I or I-a or a pharmaceutically acceptable salt thereof, as defined in any one of claims 1 to 5 for the treatment of diseases

mediated by the hepatitis C virus (HCV) or for the preparation of a medicament for such treatment.

9. The use of a pharmaceutical composition on the basis of a pharmaceutically effective amount of a compound of formula I or I-a or a pharmaceutically acceptable salt thereof as defined in any one of claims 1 to 5 for the treatment of diseases mediated by the hepatitis C virus (HCV).

10. The invention as hereinbefore described.