

# **Time Series Analysis**

Axel Werwatz Franziska Plitzko

Technische Universität Berlin
Institut für Volkswirtschaftslehre und Wirtschaftsrecht
FG Ökonometrie und Wirtschaftsstatistik

Axel Werwatz@tu-berlin.de

Office hours: Tuesday 12:15 - 13:30 H 5103C

Lecture: Friday 12:15 - 13:45 H 0106

Franziska Plitzko franziska.plitzko@tu-berlin.de

Office hours: appointments via Mail

Tutorial (Ü): Thursday 8:30 - 10:00 **TEL 206\_rechts** 

occasionally EW 202

Next week (26.10.): Introduction to STATA



# Check the homepage and the FAQ-Site!

#### www.statistik.tu-berlin.de/menue/home/





# TEL TU Hochhaus, Ernst-Reuter-Platz 7



#### Course web page:

https://www.isis.tu-berlin.de/

- Fakultät VII
- Institut für Volkswirtschaftslehre und Wirtschaftsrecht
- Time Series Analysis WS17/18

Password: Zeit1718

#### **Proposed** examination date:

23.2.2018 A151 (first week of semester break)

12:00-14:00





#### Registration for the exam:

#### **TU STUDENTS:**

- 1. Write down the asked information into the JOURNAL ("Registration for exam at our institute") on the ISIS-System
- Register via QISPOS or "Prüfungsamt". QISPOS registration is possible from 16<sup>th</sup> October 2017 till 28<sup>th</sup> January 2018. You can withdraw from the exam until the day before the actual exam via QISPOS.

Yellow Sheets ("Gelbe Zettel") from the Prüfungsamt have to be given to our secretary Carola Haring (or the mailbox in front of our office H5103) until **28**<sup>th</sup> **January 2018**. We won't accept those later on!



#### Registration for the exam:

Follow the instruction in the Journal on ISIS!



#### Make-up exam:

There is (potentially) a make-upexam at the end of the semester break. It is **only for those** 

- who failed the exam in February
- or who were sick at the first and have a **medical certificate** (Attest) please sent the original to the Prüfungsamt within the given deadline of your field of study and a scan or copy to our secretary (carola.haring@tu-berlin.de).

People who simply didn't show up at the first exam are not eligible for the make-up exam.

#### Registration for the exam for guests:

E-Mail to Franziska Plitzko (franziska.plitzko@tu-berlin.de) not later than 28.01.2018 including:

- course: Time Series Analysis
- last name,
- given name,
- student ID number (Msc. Statistics students **HU** and (if existent) TU no.),
- name of degree program (e.g. Wirtschaftsingenieurwesen, ...),
- aspired degree (e.g. Bachelor, Master, Diplom, PhD, ...),
- university

# Please sign up for STATA!





### Lehrveranstaltungen - Übersicht

|                                | Lehrveranstaltung                                     | sws | ECTS | WS/SS | Bachelor         |                  | Master           |                  | Ph.D. |
|--------------------------------|-------------------------------------------------------|-----|------|-------|------------------|------------------|------------------|------------------|-------|
|                                |                                                       |     |      |       | BE               | Wi-Ing           | MINE             | Wi-Ing           | ,,    |
| Grundlagen<br>Bachelor         | Statistik I (IV +TUT)                                 | 6   | 6    | WS/SS | Pflicht          |                  |                  |                  |       |
|                                | Statistik II (IV +TUT)                                | 6   | 6    | WS/SS | Pflicht          | Wahl-<br>pflicht |                  |                  |       |
|                                | Einführung in die Statistik (IV +TUT)                 | 6   | 6    | WS/SS |                  | Pflicht          |                  |                  |       |
|                                | Ökonometrie (VL+Ü)                                    | 4   | 6    | WS    | Pflicht          | Wahl-<br>pflicht |                  |                  |       |
|                                | Seminar "Angewandte Ökonometrie"                      | 2   | 6    | SS    | Wahl-<br>pflicht | Wahl-<br>pflicht |                  |                  |       |
| Vertiefungen<br>Master / Ph.D. | Microeconometrics (VL+Ü)                              | 4   | 6    | WS    |                  |                  | Pflicht          | Wahl-<br>pflicht |       |
|                                | Treatment Effect Analysis (VL+Ü)                      | 4   | 6    | SS    |                  |                  | Wahl-<br>pflicht | Wahl-<br>pflicht | Wahl  |
|                                | Longitudinal- and Panel Data (VL+Ü)                   | 4   | 6    | ws    |                  |                  | Wahl-<br>pflicht | Wahl-<br>pflicht | Wahl  |
|                                | Seminar "Produktivität, Innovation und Firmenerfolg"  | 2   | 6    | SS    |                  |                  | Wahl-<br>pflicht | Wahl-<br>pflicht | Wahl  |
|                                | Time Series Analysis (VL+Ü)                           | 4   | 6    | WS    |                  |                  | Wahl-<br>pflicht | Wahl-<br>pflicht |       |
|                                | Financial Econometrics (VL+Ü)                         | 4   | 6    | SS    |                  |                  | Wahl-<br>pflicht | Wahl-<br>pflicht |       |
|                                | Multivariate Analysis / Business<br>Statistics (VL+Ü) | 4   | 6    | SS    |                  |                  | Wahl-<br>pflicht | Wahl-<br>pflicht |       |
|                                | Engineering Statistics (VL+Ü)                         | 4   | 6    | WS    |                  |                  | Wahl-<br>pflicht | Wahl-<br>pflicht |       |
|                                | Studienprojekt                                        | 4   | 12   | WS    |                  |                  | Wahl-<br>pflicht |                  |       |



- Schlittgen, Streitberg: Zeitreihenanalyse (5. Aufl.)
- Harvey: Time Series Models
- Harvey: Forecasting, Structural Time Series Models and the Kalman Filter
- *Pindyck, Rubinfeld*: Econometric Models and Economic Forecasts (2. Aufl.)
- Kirchgässner, Wolters: Einführung in die moderne Zeitreihenanalyse























#### Deterministic Models

- Components of a Time Series
- Additive and Multiplicative Models
- Simple Trend Models
- Smoothing Techniques
- · Seasonal Adjustment

# Stationary Stochastic Processes

- Introduction
- Identification
  - Autocorrelation Function
  - Moving Average and Autoregressive Models
  - Partial Autocorrelation Function
  - ARMA Models
- Estimation
- · Diagnostic Checking
- Forecasting

#### Nonstationary Stochastic Processes

- Introduction
- · Nonstationarity and Trends
- ARIMA Models
- Unit Root Tests
- Seasonal ARIMA



# Time Series Analysis: Dynamics!!





0009 0009 0009 0009 1970m1 1972m1 1974m1 1976m1 1978m1 1980m1

monthly U.S. real GDP Jan 1960 – June 2010

monthly U.S. real GDP Jan 1970 – Dec 1979



#### **Motivation for Univariate Time Series Analysis**

To obtain a forecast for a variable  $y_t$  from a regression equation may result in large forecast errors, when the future values of the explanatory are unknown and they have themselves large forecast errors.

In this situation it may be easier to forecast the variable  $y_t$  itself. Therefore the prediction is solely based on the past behavior of the variable by constructing an model for the time series which replicate its past behavior in a way that might help to forecast its future behavior.





Brockwell/Davis (1996) "Introduction to Time Series and Forecasts"





Brockwell/Davis (1996) "Introduction to Time Series and Forecasts"



#### Introduction – Deterministic Time Series Analysis



Brockwell/Davis (1996) "Introduction to Time Series and Forecasts"



#### Introduction – Deterministic Time Series Analysis

#### **Smoothing/filtering** via moving average (of order 4)

 $\widetilde{y}_{t} = \frac{1}{2} \cdot \left[ \frac{1}{4} (y_{t+1} + y_{t} + y_{t-1} + y_{t-2}) + \right] + \frac{1}{2} \cdot \left[ \frac{1}{4} (y_{t+2} + y_{t+1} + y_{t} + y_{t-1}) \right]$ 



#### Introduction – Deterministic Time Series Analysis

#### **Moving Averages**

"Zur deutlicheren Kennzeichnung der konjunkturellen Entwicklung sind in den Schaubildern in der Regel neben saisonbereinigten Monatswerten daraus errechnete gleitende Durchschnitte dargestellt; die Zahl der in die Berechnung einbezogenen Werte ist an der jeweiligen Kurve (in Klammern) angegeben."

Deutsche Bundesbank (Mai 1997), Saisonbereinigte Wirtschaftszahlen, S. 86



Deutsche Bundesbank (Mai 1997), Saisonbereinigte Wirtschaftszahlen, S. 35



Univariate Box-Jenkins models for stationary time series

Key: time series is a realization of a stochastic process

Which process? B+J: ARMA model

How can we find the right ARMA model?

#### **General Procedure:**

- 1. Identification
- 2. Estimation
- 3. Diagnostic Checking
- 4. Forecasting



Box-Jenkins models for stationary time series...

What is stationary?

Loosely speaking: "stable" stochastics

Looked at from *t*=0, process generating series has

$$\mu_{y} = E(y_{t}) = E(y_{t+m})$$

$$\sigma_{y}^{2} = E[(y_{t} - \mu_{y})^{2}] = E[(y_{t+m} - \mu_{y})^{2}]$$

$$\gamma_{k} = Cov(y_{t}, y_{t+k}) = E[(y_{t} - \mu_{y})(y_{t+k} - \mu_{y})] = Cov(y_{t+m}, y_{t+m+k})$$
for any  $t, k$ , and  $m$ 

# **Example:** 100 quarterly observations of the US saving rate for years 1955-1979



Note that the data are seasonally adjusted prior to publication by the U.S. Department of Commerce.

Pankratz (1983) "Forecasting with univariate Box-Jenkins models"

# **Example:** 100 monthly observations of simple returns of Merck stock for years 1946-1954





#### **Dependency?** → **Correlation**

$$\hat{\rho} = \frac{\sum_{t=1}^{T-1} (y_t - \bar{y})(y_{t+1} - \bar{y})}{\sum_{t=1}^{T-1} (y_t - \bar{y})^2}$$

Correlation of time series with its own past

→ <u>Auto</u>correlation









$$\hat{\rho} = \frac{\sum_{t=1}^{T-1} (y_t - \overline{y})(y_{t+1} - \overline{y})}{\sum_{t=1}^{T-1} (y_t - \overline{y})^2}$$

$$= 0.77$$

#### **Example:** Scatterplots



1 period apart  $\hat{\rho}_1 = 0.77$ 

-2

0 savingrate\_I1\_avg 2

4





2 periods apart  $\hat{\rho}_2 = 0.65$ 

#### Sample Autocorrelation Function with lag k:

$$\hat{\rho}_{k} = \frac{\sum_{t=1}^{T-k} (y_{t} - \overline{y})(y_{t+k} - \overline{y})}{\sum_{t=1}^{T-k} (y_{t} - \overline{y})^{2}}$$
A function of k

ACF: description of dependency structure in the series ACF is key tool for finding a suitable time series model Compare sample ACF with theoretical ACF of a model

Note: ACF is <u>symmetrical</u> and so  $\rho_k$  is plotted only for different <u>positive</u> values of k.

#### Sample Autocorrelation Function with lag k:

$$\hat{\rho}_{k} = \frac{\sum_{t=1}^{T-k} (y_{t} - \overline{y})(y_{t+k} - \overline{y})}{\sum_{t=1}^{T-k} (y_{t} - \overline{y})^{2}}$$
A function of k

Note how ACF hinges on stationarity:

$$\rho_k = \frac{Cov(y_t, y_{t+k})}{\sigma_{y_t} \sigma_{y_{t+k}}} \qquad \qquad \rho_k = \frac{E[(y_t - \mu_y)(y_{t+k} - \mu_y)]}{\sigma_y^2}$$
autocorrelation in general
autocorrelation under stationarity

Prof. Axel Werwatz, Ph.D. Franziska Plitzko

#### **Example:** ACF of the saving rate



#### **White Noise:**

$$y_t = \varepsilon_t$$
 with  $\varepsilon_t \sim i.i.d.$  and  $E(\varepsilon_t) = 0$ 

The autocorrelation function of white noise is given by  $\rho_0 = 1$  and  $\rho_k = 0$  for k > 0.



#### Simulated values of i.i.d. N(0, 1) noise:



## Autocorrelation Function for simulated values of i.i.d. N(0, 1) noise:



#### **Autoregressive Process of order 1, AR(1):**

$$\begin{aligned} y_t &= \phi_1 y_{t-1} + \delta + \epsilon_t \\ \text{with} &|\phi_1| < 1 \text{ (stationarity)} \end{aligned} \quad \epsilon_t \sim i.i.d. \Big(0, \sigma_\epsilon^2\Big)$$

$$E(y_t) = \mu = \frac{\delta}{1 - \phi_1} \qquad \qquad E(y_{T+1} | \Omega_T) = \phi_1 y_T + \delta$$

$$Var(y_t) = \frac{\sigma_{\epsilon}^2}{1 - \phi_1^2} \qquad Var(y_{T+1}|\Omega_T) = \sigma_{\epsilon}^2$$

#### Theoretical ACF of an AR(1) process:



#### **Examples: Models and their ACFs**

$$\mathbf{y}_{t} = \boldsymbol{\varphi}_{1} \mathbf{y}_{t-1} + \boldsymbol{\varphi}_{2} \mathbf{y}_{t-2} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{t}$$

$$\mathbf{y}_{t} = \boldsymbol{\mu} + \boldsymbol{\varepsilon}_{t} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{t-1} - \boldsymbol{\theta}_{2} \boldsymbol{\varepsilon}_{t-2}$$



Theoretical ACF for  $\varphi_1 = 0.9$  and  $\varphi_2 = -0.7$ :



Theoretical ACF for  $\theta_1 = -0.6$ ,  $\theta_2 = 0.3$ 

### Autoregressive-Moving Average Models

#### ARMA(p,q):

$$y_{t} = \underbrace{\phi_{1}y_{t-1} + ... + \phi_{p}y_{t-p}}_{\text{AR(p)}} + \delta + \epsilon_{t} - \theta_{1}\epsilon_{t-1} - ... - \theta_{q}\epsilon_{t-q}$$

#### **Examples:**

$$\begin{split} \text{AR} \, \textbf{(1)} : \, y_t &= \phi_1 y_{t-1} + \delta + \epsilon_t \\ \text{MA} \, \textbf{(2)} : \, y_t &= \mu + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} \\ \text{ARMA} \, \textbf{(1,1)} : \, y_t &= \phi_1 y_{t-1} + \delta + \epsilon_t - \theta_1 \epsilon_{t-1} \end{split}$$

# Theoretical ACF of an AR(1) process:

## **Empirical** ACF of the saving rate series





#### Example: AR(1) model

ARIMA regression

| Sample: 1955   | Number           |                   | =     | 100   |        |          |           |
|----------------|------------------|-------------------|-------|-------|--------|----------|-----------|
| Log likelihood | d = -106.0871    | Wald ch<br>Prob > |       | =     | 169.73 |          |           |
|                |                  |                   |       |       |        |          |           |
| _              | <br>  Coef.<br>+ |                   |       |       | _      | Conf.    | Interval] |
| savingrate     | <br>  6.013607   |                   |       |       |        | 4934     | 6.812281  |
| ARMA ar        | +<br> <br>       |                   |       |       |        |          |           |
| L1.            |                  | .0623055          | 13.03 | 0.000 | .689   | 6067     | .9338398  |
| /sigma         |                  | .0296021          | 23.49 | 0.000 | .637   | 2581<br> | .7532963  |

#### **Autoregressive Process of order 1, AR(1):**

$$\mathbf{y}_{t} = \boldsymbol{\varphi}_{1} \mathbf{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{t}$$

#### **Estimation:**

$$\hat{\mathbf{y}}_t = \hat{\boldsymbol{\varphi}}_1 \mathbf{y}_{t-1} + \hat{\boldsymbol{\delta}}$$

$$\hat{\varphi}_1 = .8117232$$

$$\hat{\delta} = 6.013607 \cdot (1 - .8117232) = 1.1322227$$

$$\hat{\mathbf{y}}_t = .8117232 \cdot \mathbf{y}_{t-1} + 1.1322227$$

#### Residuals:

$$\boldsymbol{\hat{\varepsilon}}_t = \boldsymbol{y}_t - \boldsymbol{\hat{y}}_t$$

#### **Example:** ACF of the residuals



The ACF of the residuals suggests that the AR(1) model is not adequate because of the significant spike at lag 2.

## **Example:** Saving Rate Prediction for years 1980-1981 with an ARMA(1,2) model



## **Example:** Checking the ARMA(1,2) model for its ability to forecast

| Time |   | Forecast Values | Observed Values | Forecast Errors (in percent) |  |
|------|---|-----------------|-----------------|------------------------------|--|
| 1978 | 1 | 5.5948          | 5.3             | -5.56                        |  |
|      | 2 | 5.4931          | 5.0             | -9.86                        |  |
|      | 3 | 5.7277          | 4.8             | -19.33                       |  |
|      | 4 | 5.8864          | 4.7             | -25.24                       |  |
| 1979 | 1 | 5.9937          | 5.0             | -19.87                       |  |
|      | 2 | 6.0663          | 5.4             | -12.34                       |  |
|      | 3 | 6.1153          | 4.3             | -42.22                       |  |
|      | 4 | 6.1485          | 3.5             | -75.67                       |  |



#### What about trends and other forms of nonstationarity?







ACF of monthly U.S. real GDP



#### We can incorporate trends (in two ways)



Figure 2: Actual, fitted, and forecast values from the trend and random walk models of the oil price, with 95% confidence intervals for the forecasts.



#### Deterministic Models

- · Components of a Time Series
- · Additive and Multiplicative Models
- Smoothing Techniques
- · Seasonal Adjustment

# Stationary Stochastic Processes

- Introduction
- Identification
  - Autocorrelation Function
  - Moving Average and Autoregressive Models
  - Partial Autocorrelation Function
  - ARMA Models
- Estimation
- · Diagnostic Checking
- Forecasting

#### Nonstationary Stochastic Processes

- Introduction
- Nonstationarity and Trends
- ARIMA Models
- Unit Root Tests
- Seasonal ARIMA

#### What we don't cover in this class



changing conditional variance