Day 15 Notes

Zach Neveu

May 30, 2019

1 Agenda

- Wrap up advanced ILP techniques
- Applying branch and bound

2 Advanced LP Techniques

• Review of cutting plane example from day 14.

3 Branch and Bound Beyond ILP

- Job scheduling problem
- Given a set of jobs to process.
- Each job takes the same amount of time to process.
- Setup time depends on the current job and the previous job
- Goal: minimize total time same as minimizing setup time
- Brute force O(n!)

Table 1: Job Scheduling Example Problem

Type	1	2	3	4	5
None	4	5	8	9	4
1	0	7	12	10	9
2	6	0	10	14	11
3	10	11	0	12	10
4	7	8	15	0	7
5	12	9	8	16	0

- Branch and Bound technique
- Possible starting bounds
 - $-\infty$
 - 0

- min value * num jobs 20 in this case
- \sum min value in each column 30 in this case
- Can't easily tighten this now, but as tree progresses can tighten quickly
- Assume schedule begins with (3,1) cost so far 8 + 10 = 18
- To compute bound, eliminate rows none and 3
- Take minimum from remaining problems excepting these rows
- Optimistic bound 8 + 10 + 7 + 10 + 7 = 42
- This bound is infeasible solution jobs 2 and 4 both done directly after job 1
- This seems similar to the infeasible optimistic bounds from solving ILP using LP!
- If bound is feasible, then this path is fathomed!

Figure 1: Job Scheduling Search Tree

Knapsack w/ Branch & Bound

Table 2: Knapsack Instance, cost limit = 100

	1	2	3	4	5	6
ν_i	10	35	40	18	2	4
w_i	10	50	100	45	5	20
ratio	1	0.7	0.4	0.4	0.2	

- Sort by value/weight ratio
- Start tree at highest ratio item
- Optimistic bound:

Figure 2: Knapsack Example