

FIG.\_1













. |





FIG.\_4









7/20



FIG.\_6A



FIG.\_6F

FIG.\_6B



FIG.\_6C

9/20



FIG. 6D



10/20











14/20



FIG.\_9



# Original Image

|                                        | 2-D coordinates                    | 4-D coordinates                         |
|----------------------------------------|------------------------------------|-----------------------------------------|
| Vertex 0                               | (x <sub>0</sub> , y <sub>0</sub> ) | (x <sub>0</sub> , y <sub>0</sub> , 0,1) |
| Vertex 1                               | $(x_1, y_1)$                       | $(x_1, y_1, 0, 1)$                      |
| Vertex 2                               | $(x_2, y_2)$                       | $(x_2, y_2, 0, 1) > 134$                |
| Vertex 3<br>The i <sup>th</sup> vertex | $(x_3, y_3)$<br>$(x_i, y_i)$       | $(x_3, y_3, 0,1)$<br>$(x_i, y_i, 0,1)$  |
|                                        | 130                                | 132                                     |

FIG.\_10A



FIG.\_10B



#### **Perspective Correction Transformation**

1. Translate outwards:

$$T_a = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & f & 1 \end{bmatrix}$$
 136

2. Three rotations:

$$\Theta_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_{x} & \sin\theta_{x} & 0 \\ 0 & -\sin\theta_{x} & \cos\theta_{x} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \Theta_{y} = \begin{bmatrix} \cos\theta_{y} & 0 & -\sin\theta_{y} & 0 \\ 0 & 1 & 0 & 0 \\ \sin\theta_{y} & 0 & \cos\theta_{y} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Theta_z = \begin{bmatrix} \cos\theta_z & \sin\theta_z & 0 & 0 \\ -\sin\theta_z & \cos\theta_z & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 138

3. Translate inwards:

$$T_b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -f & 1 \end{bmatrix}$$

4. Effect of focal length on Perspective:

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/f \\ 0 & 0 & 0 & 1 \end{bmatrix} / 146$$

FIG.\_10C

# JAN 1 3 2003 E

### **Perspective Correction**

erspective Corrected Image Vertices given by:

$$\hat{p}_i = p_i T_a \Theta_z \Theta_y \Theta_x T_b P = \underbrace{\left[\hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i, \hat{\mathbf{z}}_i, \hat{\mathbf{w}}_i,\right]}^{150}$$

Sut:  $\widehat{\mathbf{w}}_{i} = -\frac{\mathbf{x}_{i}}{f} \left( -\sin\theta_{z}\sin\theta_{x} + \cos\theta_{z}\sin\theta_{y}\cos\theta_{y} \right) + \frac{\mathbf{y}_{i}}{f} \left( \cos\theta_{z}\sin\theta_{x} + \sin\theta_{z}\sin\theta_{y}\cos\theta_{x} \right) + \cos\theta_{y}\cos\theta_{x}$ 

and  $x_i$  and  $y_i$  from the perspective corrected image are given by:

$$x_i' = \frac{\widehat{x}_i}{\widehat{w}_i}$$
 and  $y_i' = \frac{\widehat{y}_i}{\widehat{w}_i}$ 

Therefore we can write:

$$F_{xi}(\theta_z, \theta_y, \theta_x, f) - \mathbf{x}'_i = 0$$

Taking:

$$t = [\theta_x \ \theta_y \ \theta_z \ f] / 160$$

We can write:

$$-\mathbf{F(t)} = \begin{bmatrix} \mathbf{x}_o - F_{x_o}(\mathbf{\theta}_z, \mathbf{\theta}_y, \mathbf{\theta}_x, f) \\ \mathbf{y}_o - F_{y_o}(\mathbf{\theta}_z, \mathbf{\theta}_y, \mathbf{\theta}_x, f) \\ \\ \mathbf{x}_i - F_{x_i}(\mathbf{\theta}_z, \mathbf{\theta}_y, \mathbf{\theta}_x, f) \\ \\ \mathbf{y}_i - F_{y_i}(\mathbf{\theta}_z, \mathbf{\theta}_y, \mathbf{\theta}_x, f) \end{bmatrix}$$



# **Newton's Method**

By Newton's method of numerical computation, **t** is an estimate of the values

$$[\theta_x \quad \theta_y \quad \theta_z \quad f]$$

then:

$$t_{new} = t - J^{-l}F(t)$$
 166

is a better estimate of the values.

Where  $J^{-1}$  is the matrix of partial derivatives:

$$J_{i,j} = \frac{\partial F_i}{\partial t_j} 164$$

FIG.\_10E

& MADEMARY

