

Introduction to Natural Language Processing

Natural Language Processing with Disaster Tweets

Predict which Tweets are about real disasters & which ones are not

Data Description

Size: ~11K Tweets

(70% Training + 30% Test)

Evaluation Metric

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

Set **Beta** = **0.5**

(Precision is *more important* than **R**ecall)

Data Analysis

Data Preprocessing

Applying Models

Evaluation

Features of Interest

BEFORE

URL

Punctuation

Hashtag

Mention

count per

Tweet

Most common

Hashtags

Keywords

Locations

Named entity types

AFTER

Character

Word

Unique word

Average word length

count per

Tweet

Unigrams
Most Bigrams

common Trigrams

Fourgrams

Transformation

Remove URLs, HTML tags, Emojis, punctuation marks

Apply Wordnet lemmatizer

Adding Potential Indicators

From most common N-grams to Disaster/Non-Disaster N-gram count

The greater the number N, the more disaster-relevant/irrelevant the most common N-grams in Disaster/Non-Disaster Tweets become, but also the less frequent they are.

Problem:

- Has any of the most common N-grams in Disaster Tweets as potential indicator?
 - \Rightarrow For large N, many Disaster Tweets will be flagged as No.

Solution:

- 1. Create two lists of disaster-relevant/irrelevant N-grams from the most common [N+2]-grams in Disaster/Non-Disaster Tweets
- 2. Count the number of N-grams of each Tweet in each of those lists

Stratified Cross Validation

Data Analysis Data Preprocessing

Applying Models

Evaluation

Embedders

	Implementation	Vector Dimension
Bag-of- Words	Use sklearn.CountVectorizer to embed Tweets	Vocabulary size
GloVe	 Download the pretrained corpus model glove.twitter.27B.50d.txt Embed words then Tweets by using the downloaded model 	50
Sentence- BERT	 Continue training the fine-tuned Sentence Transformer model paraphrase-MiniLM-L6-v2 on pairs of Disaster and/or Non-Disaster Tweets Use the continue-trained model to embed Tweets 	384
TF-IDF	Use sklearn. Tfidf Vectorizer to embed Tweets	Vocabulary size
Word2Vec	 Download the pretrained corpus model word2vec-google-news-300 Embed words then Tweets by using the downloaded model 	300

Classifiers

Logistic Regression

L2 Regularization

Inverse of regularization strength

C = 1.0

Multilayer Perceptron **ReLU** activation One hidden layer - 100 neurons Max #Iterations 200 **Constant** learning rate **0.001**

Results

Discussion

PROBLEM

Possibility of overfitting data

and inadequately cleaned Tweets

OPTIMIZATION

Apply stronger regularization

and stricter data cleaning

Label test set with a gold standard model Human error during labeling test set -No hyperparameter tuning Hyperparameter Optimization with Random Search & Grid Search for Logistic Regression Classifier Increase the number of training epochs Only one training epoch for Sentence-BERT Embedder for Sentence-BERT Embedder Inaccurate & incomplete training samples Evaluate & generate samples systematically before training for Sentence-BERT Embedder Possibility of added potential indicators Treat potential indicator choices being insignificant as hyperparameters during fine-tuning