Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления»

Кафедра «Автоматизированные системы обработки информации и управления»

Отчет Лабораторная работа № 1

По курсу «Технологии машинного обучения»

«Разведочный анализ данных. Исследование и визуализация данных»

Тарасов Владислвав Группа ИУ5-64 "__"___2020 г. ПРЕПОДАВАТЕЛЬ: Гапанюк Ю.Е.

ИСПОЛНИТЕЛЬ:

Цель работы

Изучить различные методы визуализации данных

Задание

- Выбрать набор данных
- Создать ноутбук, который содержить следующие разделы:
 - Текстовое описание выбранного наборы данных
 - Основные характеристики датасета
 - Визуальное исследование датасета
 - Информация о корелляции признаков
- Сформировать отчет и разместить его на своем репозитории GitHub

Ход выполнения лабораторной работы

1. Набор данных

Этот набор данных содержит информацию о бронировании для городской гостиницы и курортного отеля и включает в себя такую информацию, как, например, время бронирования, продолжительность пребывания, количество взрослых, детей и / или детей и количество доступных парковочных мест.

- hotel Отель (H1 = Курортный отель или H2 = Городской отель)
- is_canceled
- lead_time время выполнения заказа
- · arrival_date_year
- arrival_date_month
- arrival_date_week_number
- arrival_date_day_of_month
- stays_in_weekend_nights
- stays_in_week_nights
- · adults
- children

- babies
- meal Тип еды забронирован. Категории представлены в стандартных пакетах питания для гостей: Undefined / SC без питания; BB кровать и завтрак; HB полупансион (завтрак и еще один прием пищи обычно ужин); FB полный пансион (завтрак, обед и ужин)
- country
- market_segment Обозначение сегмента рынка. В категориях термин «ТА» означает «Туристические агенты», а «ТО» означает «Туроператоры».
- distribution_channel Канал распределения бронирования. Термин «ТА» означает «Туристические агенты», а «ТО» означает «Туроператоры».
- is_repeated_guest
- previous_cancellations Количество предыдущих заказов, которые были отменены клиентом до текущего бронирования
- · previous bookings not canceled
- reserved_room_type
- · assigned room type
- booking changes
- deposit type
- agent
- company
- days_in_waiting_list
- customer_type
- adr Средняя дневная ставка, определенная путем деления суммы всех транзакций на проживание на общее количество ночей проживания.
- required_car_parking_spaces
- total_of_special_requests
- reservation_status
- · reservation_status_date

```
In [10]: import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas
%matplotlib inline
sns.set(style="ticks")

data = pandas.read_csv('../data/hotel_bookings.csv')
```

2. Основные харектеристики датасета

In [12]: data.head(10)

Out[12]:

	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number	arrival_date_day_of_month	stays_in_weekend_nights
0	Resort Hotel	0	342	2015	July	27	1	C
1	Resort Hotel	0	737	2015	July	27	1	С
2	Resort Hotel	0	7	2015	July	27	1	C
3	Resort Hotel	0	13	2015	July	27	1	C
4	Resort Hotel	0	14	2015	July	27	1	C
5	Resort Hotel	0	14	2015	July	27	1	С
6	Resort Hotel	0	0	2015	July	27	1	С
7	Resort Hotel	0	9	2015	July	27	1	С
8	Resort Hotel	1	85	2015	July	27	1	C
9	Resort Hotel	1	75	2015	July	27	1	С

10 rows × 32 columns

In [13]: data.shape

Out[13]: (119390, 32)

In [15]: data.dtypes

0+ [1 = 1 .	1		
Out[15]:		object	
	is_canceled	int64 int64	
	<pre>lead_time arrival_date_year arrival_date_month</pre>		
	arrival_date_week_number	int64	
	arrival_date_day_of_month	int64	
	stays_in_weekend_nights	int64	
	stays_in_week_nights	int64	
	adults	int64	
	children	float64	
	babies	int64	
	meal	object	
	country	object	
	market_segment	object	
	distribution_channel	object	
	is_repeated_guest	int64	
	previous_cancellations	int64	
	previous_bookings_not_canceled	int64	
	reserved_room_type	object	
	assigned room type	object	
	booking changes	int64	
	deposit_type	object	
	agent	float64	
	company	float64	
	days in waiting list	int64	
	customer type	object	
	adr	float64	
	required car parking spaces	int64	
	total_of_special_requests	int64	
	reservation status	object	
	reservation status date	object	
	dtype: object	22,200	
	1F3. 02J000		

```
In [16]: data.describe()
```

Out[16]:

	is_canceled	lead_time	arrival_date_year	arrival_date_week_number	arrival_date_day_of_month	stays_in_weekend_nights	stays_in_week_
count	119390.000000	119390.000000	119390.000000	119390.000000	119390.000000	119390.000000	119390.
mean	0.370416	104.011416	2016.156554	27.165173	15.798241	0.927599	2.
std	0.482918	106.863097	0.707476	13.605138	8.780829	0.998613	1.9
min	0.000000	0.000000	2015.000000	1.000000	1.000000	0.000000	0.
25%	0.000000	18.000000	2016.000000	16.000000	8.000000	0.000000	1.0
50%	0.000000	69.000000	2016.000000	28.000000	16.000000	1.000000	2.
75%	1.000000	160.000000	2017.000000	38.000000	23.000000	2.000000	3.
max	1.000000	737.000000	2017.000000	53.000000	31.000000	19.000000	50.

```
In [17]: data['is_repeated_guest'].unique()
```

Out[17]: array([0, 1])

```
In [18]: # Проверим наличие пустых значений
         # Иикл по колонкам датасета
         for col in data.columns:
             # Количество пустых значений - все значения заполнены
             temp null count = data[data[col].isnull()].shape[0]
             print('{} - {}'.format(col, temp null count))
         hotel - 0
         is canceled - 0
         lead time - 0
         arrival date year - 0
         arrival date month - 0
         arrival date week number - 0
         arrival date day of month - 0
         stays in weekend nights - 0
         stays in week nights - 0
         adults - 0
         children - 4
         babies - 0
         meal - 0
         country - 488
         market segment - 0
         distribution channel - 0
         is repeated guest - 0
         previous cancellations - 0
         previous bookings not canceled - 0
         reserved room type - 0
         assigned room type - 0
         booking changes - 0
         deposit type - 0
         agent - 16340
         company - 112593
         days in waiting list - 0
         customer type - 0
         adr - 0
         required_car_parking spaces - 0
         total of special requests - 0
         reservation status - 0
         reservation status date - 0
```

3. Визуальное исследования датасета

Диаграмма расеяния

```
In [30]: fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='reserved_room_type', y='lead_time', data=data)
```

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x127dcba10>

По диаграмме расеяния можно понять, что в среденем люди бронируют раньше тип А. Но если исследовать более глубоко, то в комнату В

в среднем бранируют за более ранний срок.

```
df[df['reserved_room_type'] == 'A']['lead_time'].mean() === 110
df[df['reserved_room_type'] == 'b']['lead_time'].mean() === 113
```

Гистограмма

```
In [41]: fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['arrival_date_week_number'])
```

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x128c7cf10>


```
In [44]: sns.jointplot(x='arrival_date_week_number', y='lead_time', data=data, kind="hex")
```

Out[44]: <seaborn.axisgrid.JointGrid at 0x12e1373d0>

Можно сделать вывод что чем позже в году прибытие, тем дольше время прибывания.

Парная диаграмма

In [48]: sns.pairplot(data)

Out[48]: <seaborn.axisgrid.PairGrid at 0x1eb58b210>

Ящик с усами

```
In [50]: sns.boxplot(x=data['lead_time'])
```

Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x1eca81f10>

Информация о корреляции признаков

Построим корреляционную матрицу по всему набору данных Проверка корреляции признаков позволяет решить две задачи:

- Понять какие признаки (колонки датасета) наиболее сильно коррелируют с целевым признаком (в нашем примере это колонка "lead_team"). Именно эти признаки будут наиболее информативными для моделей машинного обучения. Признаки, которые слабо коррелируют с целевым признаком, можно попробовать исключить из построения модели, иногда это повышает качество модели. Нужно отметить, что некоторые алгоритмы машинного обучения автоматически определяют ценность того или иного признака для построения модели.
- Понять какие нецелевые признаки линейно зависимы между собой. Линейно зависимые признаки, как правило, очень плохо влияют на качество моделей. Поэтому если несколько признаков линейно зависимы, то для построения модели из них выбирают какой-то один признак.

In [51]: data.corr()

Out[51]:

	is_canceled	lead_time	arrival_date_year	arrival_date_week_number	arrival_date_day_of_month	stays_in_weekend_night
is_canceled	1.000000	0.293123	0.016660	0.008148	-0.006130	-0.00179
lead_time	0.293123	1.000000	0.040142	0.126871	0.002268	0.08567
arrival_date_year	0.016660	0.040142	1.000000	-0.540561	-0.000221	0.02149
arrival_date_week_number	0.008148	0.126871	-0.540561	1.000000	0.066809	0.01820
arrival_date_day_of_month	-0.006130	0.002268	-0.000221	0.066809	1.000000	-0.01635
stays_in_weekend_nights	-0.001791	0.085671	0.021497	0.018208	-0.016354	1.00000
stays_in_week_nights	0.024765	0.165799	0.030883	0.015558	-0.028174	0.49896
adults	0.060017	0.119519	0.029635	0.025909	-0.001566	0.09187
children	0.005048	-0.037622	0.054624	0.005518	0.014544	0.04579
babies	-0.032491	-0.020915	-0.013192	0.010395	-0.000230	0.01848
is_repeated_guest	-0.084793	-0.124410	0.010341	-0.030131	-0.006145	-0.08723

Видим, что: lead_time кореллирует с is_canceled (0.3). От того что отменена бронь или нет, сильно зависит время с покупки до вьезда

In [54]: sns.heatmap(data.corr())

Out[54]: <matplotlib.axes._subplots.AxesSubplot at 0x229bf04d0>

