Characterizing Data Complexity in Machine Learning

Complexity in Machine Learning

Why data complexity is important?

- Impacts model selection
- **Explains** learning difficulty
- Generalize to unseen data
- Helps in meta-learning and benchmarking

Why does my favorite model perform better on dataset X but not on dataset Y?

Data complexity types

Intrinsic

Inherent structure of the data which makes it difficult to learn independent of the algorithm.

- Class distribution
- Non-linear decision boundaries
- Higher-order correlations
- Noise

Extrinsic

Complexity from externa factors dependent on the algorithm or preprocessing.

- Preprocessing issues
- · Misalignment between model and data
- Learning limitations of models

Intrinsic Complexity

Overlapping class distributions in feature space

Extrinsic Complexity

Linearly separable data

Data complexity measures

Intrinsic

Dimensional

- Intrinsic Dimension (Rank)
- Manifold (Fractal Dimension)
- Volume
- Effective rank
- Eigenspectra

Distributional

- Kurtosis & Skewness
- Mutual Information
- Sparsity
- Entropy
- Condition Number

Geometric

- Manifolds
- Clusters
- Density
- Topological Data Analysis
- Graph-based measures

Sampling

- Class imbalance ratio
- Class overlap measures
- Margin of separation between classes
- Sampling density variation

 \frown Rank of data (k)

Fractal Dimension

Eigenspectrum

Dimensional

Distributional

Leptokurtic

Mesokurtic

Platykurtic-

Skewness & Kurtosis

ļ.

Mutual Information

Sparsity

Manifold

Kernel Density

1

Networks

Geometric

Class separation

Sampling variation

Class overlap

Sampling

How should we use it?

Helps in meta-learning and benchmarking

Or you can ask Sage!

