Definition and existence of integral

6.1 Definition Let [a, b] be a given interval. By a partition P of [a, b] we mean a finite set of points x_0, x_1, \ldots, x_n , where

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b.$$

We write

$$\Delta x_i = x_i - x_{i-1} \qquad (i = 1, \ldots, n).$$

Now suppose f is a bounded real function defined on [a, b]. Corresponding to each partition P of [a, b] we put

$$M_{i} = \sup f(x) \qquad (x_{i-1} \le x \le x_{i}),$$

$$m_{i} = \inf f(x) \qquad (x_{i-1} \le x \le x_{i}),$$

$$U(P, f) = \sum_{i=1}^{n} M_{i} \Delta x_{i},$$

$$L(P, f) = \sum_{i=1}^{n} m_{i} \Delta x_{i},$$

(2)
$$\int_{\underline{a}}^{b} f \, dx = \sup L(P, f),$$

where the inf and the sup are taken over all partitions P of [a, b]. The left members of (1) and (2) are called the *upper* and *lower Riemann integrals* of f over [a, b], respectively.

If the upper and lower integrals are equal, we say that f is *Riemann-integrable* on [a, b], we write $f \in \mathcal{R}$ (that is, \mathcal{R} denotes the set of Riemann-integrable functions), and we denote the common value of (1) and (2) by

$$\int_a^b f \, dx,$$

or by

$$\int_a^b f(x) \, dx.$$

This is the *Riemann integral* of f over [a, b]. Since f is bounded, there exist two numbers, m and M, such that

$$m \le f(x) \le M$$
 $(a \le x \le b)$.

Hence, for every P,

$$m(b-a) \le L(P,f) \le U(P,f) \le M(b-a),$$

so that the numbers L(P, f) and U(P, f) form a bounded set. This shows that the upper and lower integrals are defined for every bounded function f.

Problem When is f integrable?

This problem can be investigated in a more general situation.

6.2 Definition Let α be a monotonically increasing function on [a, b] (since $\alpha(a)$ and $\alpha(b)$ are finite, it follows that α is bounded on [a, b]). Corresponding to each partition P of [a, b], we write

$$\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1}).$$

It is clear that $\Delta \alpha_i \geq 0$. For any real function f which is bounded on [a, b] we put

$$U(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i,$$

$$L(P, f, \alpha) = \sum_{i=1}^{n} m_i \, \Delta \alpha_i,$$

where M_i , m_i have the same meaning as in Definition 6.1, and we define

(6)
$$\int_{\underline{a}}^{b} f \, d\alpha = \sup L(P, f, \alpha),$$

the inf and sup again being taken over all partitions.

If the left members of (5) and (6) are equal, we denote their common value by

(7)
$$\int_{a}^{b} f \, d\alpha$$

or sometimes by

(8)
$$\int_a^b f(x) \, d\alpha(x).$$

This is the Riemann-Stieltjes integral (or simply the Stieltjes integral) of f with respect to α , over [a, b].

If (7) exists, i.e., if (5) and (6) are equal, we say that f is integrable with respect to α , in the Riemann sense, and write $f \in \mathcal{R}(\alpha)$.

By taking $\alpha(x) = x$, the Riemann integral is seen to be a special case of the Riemann-Stieltjes integral.

6.3 Definition We say that the partition P^* is a refinement of P if $P^* \supset P$ (that is, if every point of P is a point of P^*). Given two partitions, P_1 and P_2 , we say that P^* is their common refinement if $P^* = P_1 \cup P_2$.

6.4 Theorem If P^* is a refinement of P, then

(9)
$$L(P, f, \alpha) \leq L(P^*, f, \alpha)$$
 and $U(P^*, f, \alpha) \leq U(P, f, \alpha)$.

Proof To prove (9), suppose first that P^* contains just one point more than P. Let this extra point be x^* , and suppose $x_{i-1} < x^* < x_i$, where x_{i-1} and x_i are two consecutive points of P. Put

$$w_1 = \inf f(x)$$
 $(x_{i-1} \le x \le x^*),$
 $w_2 = \inf f(x)$ $(x^* \le x \le x_i).$

Clearly $w_1 \ge m_i$ and $w_2 \ge m_i$, where, as before,

$$m_i = \inf f(x)$$
 $(x_{i-1} \le x \le x_i).$

Hence

$$L(P^*, f, \alpha) - L(P, f, \alpha)$$

$$= w_1[\alpha(x^*) - \alpha(x_{i-1})] + w_2[\alpha(x_i) - \alpha(x^*)] - m_i[\alpha(x_i) - \alpha(x_{i-1})]$$

$$= (w_1 - m_i)[\alpha(x^*) - \alpha(x_{i-1})] + (w_2 - m_i)[\alpha(x_i) - \alpha(x^*)] \ge 0.$$

If P^* contains k points more than P, we repeat this reasoning k times, and arrive at (9). The proof of (10) is analogous.

6.5 Theorem
$$\int_a^b f d\alpha \le \int_a^b f d\alpha$$
.

Proof Let P^* be the common refinement of two partitions P_1 and P_2 . By Theorem 6.4,

$$L(P_1, f, \alpha) \le L(P^*, f, \alpha) \le U(P^*, f, \alpha) \le U(P_2, f, \alpha).$$

Hence

(11)
$$L(P_1, f, \alpha) \le U(P_2, f, \alpha).$$

If P_2 is fixed and the sup is taken over all P_1 , (11) gives

(12)
$$\underline{\int} f \, d\alpha \leq U(P_2, f, \alpha).$$

The theorem follows by taking the inf over all P_2 in (12).

6.6 Theorem $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition P such that

(13)
$$U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon.$$

Proof For every P we have

$$L(P, f, \alpha) \leq \int_{\underline{f}} f d\alpha \leq \int_{\underline{f}} f d\alpha \leq U(P, f, \alpha).$$

Thus (13) implies

$$0 \le \overline{\int} f d\alpha - \underline{\int} f d\alpha < \varepsilon.$$

Hence, if (13) can be satisfied for every $\varepsilon > 0$, we have

$$\int f d\alpha = \int f d\alpha,$$

that is, $f \in \mathcal{R}(\alpha)$.

Conversely, suppose $f \in \mathcal{R}(\alpha)$, and let $\varepsilon > 0$ be given. Then there exist partitions P_1 and P_2 such that

(14)
$$U(P_2, f, \alpha) - \int f d\alpha < \frac{\varepsilon}{2},$$

(15)
$$\int f d\alpha - L(P_1, f, \alpha) < \frac{\varepsilon}{2}.$$

We choose P to be the common refinement of P_1 and P_2 . Then Theorem 6.4, together with (14) and (15), shows that

$$U(P, f, \alpha) \leq U(P_2, f, \alpha) < \int f d\alpha + \frac{\varepsilon}{2} < L(P_1, f, \alpha) + \varepsilon \leq L(P, f, \alpha) + \varepsilon,$$

so that (13) holds for this partition P.

6.7 Theorem

- (a) If (13) holds for some P and some ε , then (13) holds (with the same ε) for every refinement of P.
- (b) If (13) holds for $P = \{x_0, ..., x_n\}$ and if s_i , t_i are arbitrary points in $[x_{i-1}, x_i]$, then

$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \ \Delta \alpha_i < \varepsilon.$$

(c) If $f \in \mathcal{R}(\alpha)$ and the hypotheses of (b) hold, then

$$\left| \sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f \ d\alpha \right| < \varepsilon.$$

Proof Theorem 6.4 implies (a). Under the assumptions made in (b), both $f(s_i)$ and $f(t_i)$ lie in $[m_i, M_i]$, so that $|f(s_i) - f(t_i)| \le M_i - m_i$. Thus

$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \ \Delta \alpha_i \le U(P, f, \alpha) - L(P, f, \alpha),$$

which proves (b). The obvious inequalities

$$L(P, f, \alpha) \leq \sum f(t_i) \Delta \alpha_i \leq U(P, f, \alpha)$$

and

$$L(P, f, \alpha) \leq \int f d\alpha \leq U(P, f, \alpha)$$

prove (c).

6.8 Theorem If f is continuous on [a, b] then $f \in \mathcal{R}(\alpha)$ on [a, b].

Proof Let $\varepsilon > 0$ be given. Choose $\eta > 0$ so that

$$[\alpha(b) - \alpha(a)]\eta < \varepsilon.$$

Since f is uniformly continuous on [a, b], there exists a $\delta > 0$ such that

$$|f(x) - f(t)| < \eta$$

if $x \in [a, b]$, $t \in [a, b]$, and $|x - t| < \delta$.

If P is any partition of [a, b] such that $\Delta x_i < \delta$ for all i, then (16) implies that

$$(17) M_i - m_i \le \eta (i = 1, \ldots, n)$$

and therefore

$$\begin{split} U(P,f,\alpha) - L(P,f,\alpha) &= \sum_{i=1}^{n} (M_i - m_i) \, \Delta \alpha_i \\ &\leq \eta \sum_{i=1}^{n} \Delta \alpha_i = \eta [\alpha(b) - \alpha(a)] < \varepsilon. \end{split}$$

By Theorem 6.6, $f \in \mathcal{R}(\alpha)$.

6.9 Theorem If f is monotonic on [a, b], and if α is continuous on [a, b], then $f \in \mathcal{R}(\alpha)$.

Proof Let $\varepsilon > 0$ be given. For any positive integer n, choose a partition P such that

$$\Delta \alpha_i = \frac{\alpha(b) - \alpha(a)}{n}$$
 $(i = 1, ..., n).$

This is possible since α is continuous

We suppose that f is monotonically increasing (the proof is analogous in the other case). Then

$$M_i = f(x_i), \qquad m_i = f(x_{i-1}) \qquad (i = 1, ..., n),$$

so that

$$U(P, f, \alpha) - L(P, f, \alpha) = \frac{\alpha(b) - \alpha(a)}{n} \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})]$$
$$= \frac{\alpha(b) - \alpha(a)}{n} \cdot [f(b) - f(a)] < \varepsilon$$

if n is taken large enough. By Theorem 6.6, $f \in \mathcal{R}(\alpha)$.

6.10 Theorem Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b], and α is continuous at every point at which f is discontinuous. Then $f \in \mathcal{R}(\alpha)$.

6.11 Theorem Suppose $f \in \mathcal{R}(\alpha)$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M], and $h(x) = \phi(f(x))$ on [a, b]. Then $h \in \mathcal{R}(\alpha)$ on [a, b].

6.11 Theorem Suppose $f \in \mathcal{R}(\alpha)$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M], and $h(x) = \phi(f(x))$ on [a, b]. Then $h \in \mathcal{R}(\alpha)$ on [a, b].

Proof Choose $\varepsilon > 0$. Since ϕ is uniformly continuous on [m, M], there exists $\delta > 0$ such that $\delta < \varepsilon$ and $|\phi(s) - \phi(t)| < \varepsilon$ if $|s - t| \le \delta$ and $s, t \in [m, M]$.

Since $f \in \mathcal{R}(\alpha)$, there is a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] such that

(18)
$$U(P, f, \alpha) - L(P, f, \alpha) < \delta^2.$$

Let M_i , m_i have the same meaning as in Definition 6.1, and let M_i^* , m_i^* be the analogous numbers for h. Divide the numbers $1, \ldots, n$ into two classes: $i \in A$ if $M_i - m_i < \delta$, $i \in B$ if $M_i - m_i \ge \delta$.

For $i \in A$, our choice of δ shows that $M_i^* - m_i^* \le \varepsilon$.

For $i \in B$, $M_i^* - m_i^* \le 2K$, where $K = \sup |\phi(t)|$, $m \le t \le M$. By (18), we have

$$\delta \sum_{i \in B} \Delta \alpha_i \leq \sum_{i \in B} (M_i - m_i) \, \Delta \alpha_i < \delta^2$$

so that $\sum_{i \in B} \Delta \alpha_i < \delta$. It follows that

$$U(P, h, \alpha) - L(P, h, \alpha) = \sum_{i \in A} (M_i^* - m_i^*) \Delta \alpha_i + \sum_{i \in B} (M_i^* - m_i^*) \Delta \alpha_i$$

$$\leq \varepsilon [\alpha(b) - \alpha(a)] + 2K\delta < \varepsilon [\alpha(b) - \alpha(a) + 2K].$$

6.12 Theorem

(a) If $f_1 \in \mathcal{R}(\alpha)$ and $f_2 \in \mathcal{R}(\alpha)$ on [a, b], then

$$f_1 + f_2 \in \mathcal{R}(\alpha)$$
,

 $cf \in \mathcal{R}(\alpha)$ for every constant c, and

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha,$$
$$\int_{a}^{b} cf d\alpha = c \int_{a}^{b} f d\alpha.$$

(b) If $f_1(x) \le f_2(x)$ on [a, b], then

$$\int_a^b f_1 \ d\alpha \le \int_a^b f_2 \ d\alpha.$$

(c) If $f \in \mathcal{R}(\alpha)$ on [a, b] and if a < c < b, then $f \in \mathcal{R}(\alpha)$ on [a, c] and on [c, b], and

$$\int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha.$$

(d) If $f \in \mathcal{R}(\alpha)$ on [a, b] and if $|f(x)| \leq M$ on [a, b], then

$$\left|\int_a^b f \, d\alpha\right| \le M[\alpha(b) - \alpha(a)].$$

(e) If $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$, then $f \in \mathcal{R}(\alpha_1 + \alpha_2)$ and

$$\int_a^b f d(\alpha_1 + \alpha_2) = \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 ;$$

if $f \in \mathcal{R}(\alpha)$ and c is a positive constant, then $f \in \mathcal{R}(c\alpha)$ and

$$\int_a^b f d(c\alpha) = c \int_a^b f d\alpha.$$

Proof If $f = f_1 + f_2$ and P is any partition of [a, b], we have

(20)
$$L(P, f_1, \alpha) + L(P, f_2, \alpha) \le L(P, f, \alpha)$$

$$\leq U(P, f, \alpha) \leq U(P, f_1, \alpha) + U(P, f_2, \alpha)$$

(20) $L(P, f_1, \alpha) + L(P, f_2, \alpha) \le L(P, f, \alpha)$ $\le U(P, f, \alpha) \le U(P, f_1, \alpha) + U(P, f_2, \alpha).$ If $f_1 \in \mathcal{R}(\alpha)$ and $f_2 \in \mathcal{R}(\alpha)$, let $\varepsilon > 0$ be given. There are partitions P_j (j=1,2) such that $U(P_j,f_j,\alpha)-L(P_j,f_j,\alpha)<\varepsilon.$

$$U(P_j, f_j, \alpha) - L(P_j, f_j, \alpha) < \varepsilon.$$

These inequalities persist if P_1 and P_2 are replaced by their common refinement P. Then (20) implies

$$U(P, f, \alpha) - L(P, f, \alpha) < 2\varepsilon,$$
 $\Re(\alpha).$

which proves that $f \in \mathcal{R}(\alpha)$.

With this same P we have

$$U(P, f_j, \alpha) < \int f_j d\alpha + \varepsilon$$
 $(j = 1, 2);$

hence (20) implies

$$\int f d\alpha \leq U(P, f, \alpha) < \int f_1 d\alpha + \int f_2 d\alpha + 2\varepsilon.$$

Since ε was arbitrary, we conclude that

(21)
$$\int f d\alpha \le \int f_1 d\alpha + \int f_2 d\alpha.$$

If we replace f_1 and f_2 in (21) by $-f_1$ and $-f_2$, the inequality is reversed, and the equality is proved.

The proofs of the other assertions of Theorem 6.12 are so similar.

6.13 Theorem If
$$f \in \mathcal{R}(\alpha)$$
 and $g \in \mathcal{R}(\alpha)$ on $[a, b]$, then

(a)
$$fg \in \mathcal{R}(\alpha)$$
;

(b)
$$|f| \in \mathcal{R}(\alpha)$$
 and $\left| \int_a^b f \, d\alpha \right| \leq \int_a^b |f| \, d\alpha$.

Proof If we take $\phi(t) = t^2$, Theorem 6.11 shows that $f^2 \in \mathcal{R}(\alpha)$ if $f \in \mathcal{R}(\alpha)$. The identity

$$4fg = (f+g)^2 - (f-g)^2$$

completes the proof of (a).

If we take $\phi(t) = |t|$, Theorem 6.11 shows similarly that $|f| \in \mathcal{R}(\alpha)$. Choose $c = \pm 1$, so that

$$c \int f d\alpha \geq 0.$$

Then

$$|\int f d\alpha| = c \int f d\alpha = \int cf d\alpha \le \int |f| d\alpha,$$

since $cf \leq |f|$.

6.17 Theorem Assume α increases monotonically and $\alpha' \in \mathcal{R}$ on [a, b]. Let f be a bounded real function on [a, b].

Then $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$. In that case

(27)
$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f(x)\alpha'(x) \, dx.$$

Proof Let $\varepsilon > 0$ be given and apply Theorem 6.6 to α' : There is a partition $P = \{x_0, \ldots, x_n\}$ of [a, b] such that

(28)
$$U(P, \alpha') - L(P, \alpha') < \varepsilon.$$

The mean value theorem furnishes points $t_i \in [x_{i-1}, x_i]$ such that

$$\Delta \alpha_i = \alpha'(t_i) \, \Delta x_i$$

for i = 1, ..., n. If $s_i \in [x_{i-1}, x_i]$, then

(29)
$$\sum_{i=1}^{n} |\alpha'(s_i) - \alpha'(t_i)| \Delta x_i < \varepsilon,$$

by (28) and Theorem 6.7(b). Put $M = \sup |f(x)|$. Since

$$\sum_{i=1}^{n} f(s_i) \Delta \alpha_i = \sum_{i=1}^{n} f(s_i) \alpha'(t_i) \Delta x_i$$

it follows from (29) that

(30)
$$\left| \sum_{i=1}^{n} f(s_i) \, \Delta \alpha_i - \sum_{i=1}^{n} f(s_i) \alpha'(s_i) \, \Delta x_i \right| \leq M \varepsilon.$$

$$\sum_{i=1}^n f(s_i) \, \Delta \alpha_i \leq U(P, f\alpha') + M\varepsilon,$$

for all choices of $s_i \in [x_{i-1}, x_i]$, so that

$$U(P, f, \alpha) \leq U(P, f\alpha') + M\varepsilon.$$

The same argument leads from (30) to

$$U(P, f\alpha') \leq U(P, f, \alpha) + M\varepsilon$$
.

Thus

$$|U(P,f,\alpha)-U(P,f\alpha')|\leq M\varepsilon.$$

Now note that (28) remains true if P is replaced by any refinement. Hence (31) also remains true. We conclude that

$$\left| \int_a^b f \, d\alpha - \int_a^b f(x) \alpha'(x) \, dx \right| \leq M \varepsilon.$$

But ε is arbitrary. Hence

$$\overline{\int}_a^b f \, d\alpha = \overline{\int}_a^b f(x) \alpha'(x) \, dx,$$

for any bounded f. The equality of the lower integrals follows from (30) in exactly the same way. The theorem follows.

6.19 Theorem (change of variable) Suppose φ is a strictly increasing continuous function that maps an interval [A, B] onto [a, b]. Suppose α is monotonically increasing on [a, b] and $f \in \mathcal{R}(\alpha)$ on [a, b]. Define β and g on [A, B] by

$$\beta(y) = \alpha(\varphi(y)), \qquad g(y) = f(\varphi(y)).$$

Then $g \in \mathcal{R}(\beta)$ and

(37)
$$\int_{A}^{B} g \, d\beta = \int_{a}^{b} f \, d\alpha.$$

Proof To each partition $P = \{x_0, \ldots, x_n\}$ of [a, b] corresponds a partition $Q = \{y_0, \ldots, y_n\}$ of [A, B], so that $x_i = \varphi(y_i)$. All partitions of [A, B] are obtained in this way. Since the values taken by f on $[x_{i-1}, x_i]$ are exactly the same as those taken by g on $[y_{i-1}, y_i]$, we see that

(38)
$$U(Q, g, \beta) = U(P, f, \alpha), \qquad L(Q, g, \beta) = L(P, f, \alpha).$$

Since $f \in \mathcal{R}(\alpha)$, P can be chosen so that both $U(P, f, \alpha)$ and $L(P, f, \alpha)$ are close to $\int f d\alpha$. Hence (38), combined with Theorem 6.6, shows that $g \in \mathcal{R}(\beta)$ and that (37) holds. This completes the proof.

Let us note the following special case:

Take $\alpha(x) = x$. Then $\beta = \varphi$. Assume $\varphi' \in \mathcal{R}$ on [A, B]. If Theorem 6.17 is applied to the left side of (37), we obtain

(39)
$$\int_a^b f(x) \, dx = \int_A^B f(\varphi(y))\varphi'(y) \, dy.$$