

ESTIMATIVAS ANUAIS DE EMISSÕES DE GASES DE EFEITO ESTUFA NO BRASIL

2ª Edição

REPÚBLICA FEDERATIVA DO BRASIL

PRESIDENTE DA REPÚBLICA FEDERATIVA DO BRASIL

DILMA ROUSSEFF

MINISTRO DE ESTADO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

CLÉLIO CAMPOLINA DINIZ

SECRETÁRIO-EXECUTIVO

ALVARO TOUBES PRATA

SECRETÁRIO DE POLÍTICAS E PROGRAMAS DE PESQUISA E DESENVOLVIMENTO

CARLOS AFONSO NOBRE

DIRETOR DO DEPARTAMENTO DE POLÍTICAS E PROGRAMAS TEMÁTICOS

OSVALDO LUIZ LEAL DE MORAES

COORDENADOR-GERAL DE MUDANÇAS GLOBAIS DE CLIMA

GUSTAVO LUEDEMANN MÁRCIO ROJAS DA CRUZ – COORDENADOR SUBSTITUTO

EQUIPE TÉCNICA

MAURO MEIRELLES DE OLIVEIRA SANTOS¹ GISELLE PARNO GUIMARÃES² DANIELLY GODIVA SANTANA MOLLETA ³ MÁRCIO ROJAS DA CRUZ⁴

Supervisor Especialista em Análise de Emissões de Gases de Efeito Estufa do Programa das Nações Unidas para o Desenvolvimento (PNUD) para a Terceira Comunicação Nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima (CQNUMC).

² Consultora Técnica do Inventário Nacional de Emissões de Gases de Efeito Estufa – Rede CLIMA/CNPa

³ Supervisora do Inventário Nacional de Emissões de Gases de Efeito Estufa do PNUD para a Terceira Comunicação Nacional do Brasil à CQNUMC.

⁴ Analista de Ciência e Tecnologia do MCTI e diretor nacional do Projeto do PNUD para a Terceira Comunicação Nacional do Brasil à CQNUMC.

Esta edição é o resultado final de um trabalho de equipe que contou com diversos colaboradores e revisores, aos quais são dedicados agradecimentos especiais pela significativa contribuição para realização deste relatório.

INSTITUIÇÕES COLABORADORAS

ABAL - Associação Brasileira do Alumínio

ABCM - Associação Brasileira de Carvão Mineral

Abiquim - Associação Brasileira da Indústria Química

ABPC - Associação Brasileira dos Produtores de Cal

Abracal - Associação Brasileira dos Produtores de Calcário Agrícola

Anda - Associação Nacional de Defensivos Agrícolas

Embrapa - Empresa Brasileira de Pesquisa Agropecuária

EPE - Empresa de Planejamento Energético (vinculada ao Ministério das Minas e Energia - MME)

IABr - Instituto Aço Brasil

Ibama - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

Rima Industrial

Snic - Sindicato Nacional da Indústria do Cimento

REVISORES

ALEXANDRE BERNDT - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)

ANA PAULA CONTADOR PACKER - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)

BRUNO JOSÉ RODRIGUES ALVES - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)

CAROLINA DUBEUX - COPPE/Universidade Federal do Rio de Janeiro (UFRJ)

EDUARDO DELGADO ASSAD - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)

JEAN PIERRE HENRY BALBAUD OMETTO - Instituto Nacional de Pesquisas Espaciais (INPE)

MAGDA APARECIDA DE LIMA - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)

MERCEDES MARIA DA CUNHA BUSTAMANTE – Universidade de Brasília (UnB)

RENATO DE ARAGÃO RIBEIRO RODRIGUES - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)

ROBERTO SCHAEFFER - COPPE/Universidade Federal do Rio de Janeiro (UFRJ)

WALKYRIA BUENO SCIVITTARO - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Esplanada dos Ministérios, Bloco E

Telefone: 55 61 2033 7923

CEP: 70.067-900 - Brasília - DF

Página eletrônica: http://www.mcti.gov.br

FALTA ISBN

Sumário

Apresentação	11
Sumário Executivo	13
1. Setor Energia	37
2. Setor Processos Industriais	55
3. Setor Agropecuária	65
4. Setor Mudança do uso da terra e florestas	74
5. Setor Tratamento de resíduos	91

Tabelas

Tabela I - Gases de efeito estufa e valor correspondente para o GWP	14
Tabela II - Emissões em $\mathrm{CO_2}$ eq por setor, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012	15
Tabela III - Emissões em termos de setores e gases para os anos de 1990, 1995, 2000, 2005, 2011 e 2012	18
Tabela IV - Estimativa de emissões, em CO ₂ eq, para os subsetores do setor Energia	20
Tabela V - Estimativa de emissões, em CO ₂ eq, para os subsetores do setor Processos Industriais	22
Tabela VI - Contribuição dos subsetores para as emissões do setor Processos Industriais em 2012	22
Tabela VII - Estimativa de emissões, em CO2eq, para os subsetores do setor Agropecuária	24
Tabela VIII - Contribuição dos subsetores para as emissões do setor Agropecuária em 2012	24
Tabela IX - Estimativa de emissões, em CO ₂ eq, para os subsetores do setor Mudança de Uso da Terra e Florestas	26
Tabela X - Contribuição dos diferentes biomas e de calagem para as emissões do setor Mudança de Uso da Terra e Florestas em 2012	26
Tabela XI - Estimativa de emissões, em CO ₂ eq, para os subsetores do setor Tratamento de Resíduos	27
Tabela XII - Resultados das estimativas de emissões para 2012 e compromisso nacional voluntário para 2020	33
Tabela XIII - Incerteza associada às emissões de CO ₂	34
Tabela XIV - Incerteza associada às emissões de CH₄	35
Tabela XV - Incerteza associada às emissões de N ₂ O	36
Tabela XVI - Incerteza associada às emissões totais (CO ₂ , CH ₄ , N ₂ O), por meio da combinação entre os três gases,	
pode-se calcular a incerteza do resultado final em CO ₂ eq	36
Tabela 1.1 - Emissões de CO ₂ , Estimativas e II Inventário, dos subsetores de Queima de Combustíveis Fósseis do setor	
Energia, para os anos 1990, 1995, 2000, 2005, 2011 e 2012	42
Tabela 1.2 - Emissões de CH ₄ , Estimativas e II Inventário, dos subsetores de Queima de Combustíveis Fósseis do setor	
Energia, para os anos 1990, 1995, 2000, 2005, 2011 e 2012	44
Tabela 1.3 - Emissões de N ₂ O, Estimativas e II Inventário, dos subsetores de Queima de Combustíveis Fósseis do setor Energia,	
para os anos 1990, 1995, 2000, 2005, 2011 e 2012	46
Tabela 1.4 - Emissões de CO ₂ do subsetor Fugitivas de Petróleo e Gás do setor de Energia, para os anos de 1990, 1995, 2000,	48
2005, 2011 e 2012	51
Tabela 1.5 - Produção de carvão mineral por estado entre 2006 e 2012	51
Tabela 1.6 - Produção de carvão mineral por tipo de mina do estado do Paraná de 2005 a 2012	52
Tabela 1.7 - Produção de carvão mineral por tipo de mina do estado do Rio Grande do Sul de 2005 a 2012	52
Tabela 1.8 - Produção de carvão mineral por tipo de mina do estado de Santa Catarina de 2005 a 2012	52
Tabela 1.9 - Produção de carvão mineral por tipo de mina do Brasil de 2006 a 2012	52
Tabela 1.10 - Emissões fugitivas de CH ₄ da produção de carvão mineral por tipo de mina do Brasil de 2006 a 2012	53
Tabela 1.11 - Emissões fugitivas de CO ₂ da produção de carvão mineral por tipo de mina do Brasil de 2006 a 2012	
Tabela 1.12 - Emissões de CO ₂ , CH ₄ e N ₂ O, Estimativas e II Inventário, do setor Energia, para os anos de 1990, 1995, 2000, 2005,	54
2011 e 2012	

Tabelas

Tabela 2.1 -	Emissões de CO ₂ , CH4, N ₂ O, HFCs, CF ₄ , C2F ₆ e SF ₆ , Estimativas e II Inventário, do setor Processos Industriais, para	
	os anos de 1990, 1995, 2000, 2005, 2011 e 2012	63
Tabela 3.1 -	Emissões de CH ₄ e N ₂ O, Estimativas e II Inventário, do setor Agropecuária, para os anos de 1990, 1995, 2000, 2005,	
	2011 e 2012	73
Tabela 4.1 -	Taxa de desmatamento anual na Amazônia Legal (em km²), por estado	78
Tabela 4.2 -	Proporção do desmatamento anual em relação à média de 1995 a 2002 (oito anos) em cada estado	
	da Amazônia Legal	78
Tabela 4.3 -	Emissões brutas para o período de 1994 a 2002 e a média anual do período para o setor de Mudança do Uso da Terra	
	e Florestas	82
Tabela 4.4 -	Taxa de desmatamento por bioma	83
Tabela 4.5 -	Variações de desmatamento anual por bioma de 2003 a 2012	84
Tabela 4.6 -	Remoções totais e anuais entre 1994 e 2012 para cada bioma	84
Tabela 4.7 -	Emissões de CO ₂ , Estimativas e II Inventário, do setor Mudança do Uso da Terra e Florestas, sem incluir as de	
	calagem, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012	89
Tabela 4.8 -	Emissões de CH_4 e N_2O , Estimativas e II Inventário, do setor Mudança do Uso da Terra e Florestas, para os anos de	
	1990, 1995, 2000, 2005, 2011 e 2012	92
Tabela 5.1 -	Emissões de CO ₂ , CH ₄ e N ₂ O, Estimativas e II Inventário, do setor Tratamento de Resíduos, para os anos de 1990,	
	1995, 2000, 2005, 2011 e 2012	101

Figuras

Figura I - Emissões de gases de efeito estufa no Brasil, por setor, de 1990 a 2012 (Tg = milhões de toneladas	16
Figura II - Variação da participação nas emissões para cada setor, de 2005 para 2012	17
Figura III - Variação das emissões por gás, de 2005 para 2012	18
Figura IV - Comparação das Estimativas com o II Inventário Brasileiro	19
Figura V - Comparação entre as emissões brutas e líquidas	19
Figura VI - Estimativa de emissões, em CO ₂ eq, para o setor Energia	20
Figura VII - Estimativa de emissões, em CO ₂ eq, para o setor Processos Industriais	21
Figura VIII - Estimativa de emissões, em CO ₂ eq, para o setor Agropecuária	23
Figura IX - Estimativa de emissões, em CO ₂ eq, para o setor Mudança de Uso da Terra e Florestas	25
Figura X - Estimativa de emissões, em CO2eq, para o setor Tratamento de Resíduos	27
Figura XI - Estimativas de emissões, II Inventário brasileiro e limite de emissões para 2020 definido por decreto	28
Figura XII - Estimativas de emissões, Il Inventário brasileiro e limite de emissões em 2020 para o setor Energia	29
Figura XIII - Estimativas de emissões, II Inventário brasileiro e limite de emissões em 2020 para o setor Agropecuário	a 30
Figura XIV - Estimativas de emissão, Il Inventário brasileiro e limite de emissão em 2020 para o setor Mudança do Uso de	a Terra
e Florestas	31
Figura XV - Estimativas de emissão, Il Inventário brasileiro e trajetória de emissão para os setores Processos Industri	iais e
Tratamento de Resíduos	32
Figura 1.1 - Emissões de CO ₂ da queima de combustíveis fósseis – setor Energia	43
Figura 1.2 - Estimativas de emissões de CO ₂ da queima de combustíveis fósseis, por subsetor	43
Figura 1.3 - Emissões de CH ₄ da queima de combustíveis fósseis – setor Energia	44
Figura 1.4 - Estimativas de emissões de CH ₄ da queima de combustíveis fósseis, por subsetor	45
Figura 1.5 - Emissões de $N_2^{\rm O}$ da queima de combustíveis fósseis – setor Energia	46
Figura 1.6 - Estimativas de emissões de N ₂ O da queima de combustíveis fósseis, por subsetor	47
Figura 1.7 - Emissões da queima de combustíveis fósseis – setor Energia, em CO ₂ eq	47
Figura 1.8 - Emissões CO ₂ eq fugitivas de petróleo e gás, comparação II Inventário e Estimativas, para o setor Energ	ia 49
Figura 1.9 - Emissões de CO2 fugitivas de petróleo e gás, comparação II Inventário e Estimativas, para o setor Energ	gia 49
Figura 1.10 - Emissões de CH ₄ fugitivas de petróleo e gás, comparação II Inventário e Estimativas, para o setor Ene	rgia 50
Figura 1.11 - Emissões de $\mathrm{N_2O}$ fugitivas de petróleo e gás, comparação II Inventário e Estimativas, para o setor Ene	rgia 50
Figura 1.12 - Correlação entre a produção e as emissões fugitivas de carvão mineral	53
Figura 1.13 - Emissões CO ₂ eq, comparação II Inventário e Estimativas, para o setor Energia	54
Figura 2.1 - Emissões de CO ₂ eq, comparação II Inventário e Estimativas, para o setor Processos Industriais	61
Figura 2.2 - Emissões de CO ₂ , comparação II Inventário e Estimativas, para o setor Processos Industriais	61
Figura 2.3 - Emissões de CH ₄ , comparação II Inventário e Estimativas, para o setor Processos Industriais	62
Figura 2.4 - Emissões N ₂ O, comparação II Inventário e Estimativas, para o setor Processos Industriais	62

Figuras

Figura	3.1 -	Percentual de emissões de CH ₄ dos subsetores para o setor Agropecuária	70
Figura	3.2 -	Percentual de emissões de N ₂ O dos subsetores para o setor Agropecuária	71
Figura	3.3 -	Emissões CH ₄ , comparação II Inventário e Estimativas, para o setor Agropecuária	71
Figura	3.4 -	Emissões de N ₂ O, comparação II Inventário e Estimativas, para o setor Agropecuária	72
Figura	3.5 -	Contribuição percentual dos gases CH ₄ e N ₂ O para as emissões em CO ₂ eq do setor Agropecuária em 2012	72
Figura	4.1 -	Área desmatada anualmente na Amazônia Legal entre 1990 e 2012, conforme dados do Prodes citados	80
Figura	4.2 -	Variação das áreas desmatadas anualmente nos estados da Amazônia Legal entre 1995 e 2012, conforme dados do	
		Prodes	80
Figura	4.3 -	Emissões de CO ₂ do bioma Amazônia, por estado, no período 1994-2002	80
Figura	4.4 -	Emissões líquidas de CO ₂ do bioma Amazônia, incluindo o novo resultado com a modulação por estado	82
Figura	4.5 -	Emissões líquidas de CO ₂ do bioma Cerrado	85
Figura	4.6 -	Emissões líquidas de CO ₂ do bioma Mata Atlântica	85
Figura	4.7 -	Emissões líquidas de CO ₂ do bioma Caatinga	86
Figura	4.8 -	Emissões líquidas de CO ₂ do bioma Pantanal	86
Figura	4.9 -	Emissões líquidas de CO ₂ do bioma Pampa	87
Figura	4.10	- Contribuição percentual dos biomas para as emissões líquidas de CO ₂ em 2012 para o setor de Mudança do Uso da	
		Terra e Florestas	87
Figura	4.11	- Emissões líquidas de CO ₂ do setor de Mudança do Uso da Terra e Florestas, incluindo calagem	88
Figura	4.12	- Contribuição de cada gás no setor Mudança do Uso da Terra e Florestas em 2012	90
Figura	5.1 -	Emissões de CH ₄ da disposição de resíduos sólidos	93
Figura	5.2 -	Emissões de CH ₄ do tratamento de efluentes domésticos	95
Figura	5.3 -	Emissões de N ₂ O do tratamento de efluentes domésticos	95
Figura	5.4 -	Emissões de CH ₄ do tratamento de efluentes industriais	97
Figura	5.5 -	Contribuição percentual das emissões de CH ₄ de diferentes indústrias para o subsetor de Efluentes Industriais em 2012	97
Figura	5.6 -	Emissões de CO ₂ da incineração de resíduos	98
Figura	5.7 -	Emissões de N ₂ O da incineração de resíduos	99
Figura	5.8 -	Emissões de CH ₄ do setor de Tratamento de Resíduos	99
Figura	5.9 -	Emissões de N ₂ O do setor de Tratamento de Resíduos	100
Figura	5.10	- Emissões de CO ₂ do setor de Tratamento de Resíduos	100

Anexos

Tabela 1 - Emissões de dióxido de carbono (CO₂) do Setor Energia (em Gg)	104
Tabela 2 - Emissões de metano (CH ₄) do Setor Energia (em Gg)	106
Tabela 3 - Emissões de óxido nitroso (N ₂ O) do Setor Energia (em Gg)	108
Tabela 4 - Emissões de dióxido de carbono (CO ₂) do Setor Processos Industriais	110
Tabela 5 - Emissões de metano (CH ₄) do Setor Processos Industriais	110
Tabela 6 - Emissões de óxido nitroso (N ₂ O) do Setor Processos Industriais	112
Tabela 7 - Emissões de HFCs, PFCs e SF ₆ do Setor Processos Industriais	112
Tabela 8 - Emissões de metano (CH ₄) do Setor Agropecuária	114
Tabela 9 - Emissões de óxido nitroso (N ₂ O) do Setor Agropecuária	116
Tabela 10 - Emissões de CH ₄ do Setor Agropecuária, por estado	118
Tabela 11 - Emissões de N ₂ O do Setor Agropecuária, por estado	120
Tabela 12 - (Tabela 20 do Relatório de Referência) – Emissões líquidas de CO ₂ no bioma Amazônia, 1994 a 2002 (em Gg)	122
Tabela 13 - Emissões líquidas de CO ₂ no bioma Amazônia, estado do Pará, 1994 a 2002 (em Gg)	124
Tabela 14 - Emissões líquidas de CO ₂ no bioma Amazônia, estado do Mato Grosso,1994 a 2002 (em Gg)	124
Tabela 15 - Emissões líquidas de CO ₂ no bioma Amazônia, estado de Rondônia,1994 a 2002 (em Gg)	126
Tabela 16 - Emissões líquidas de CO ₂ no bioma Amazônia, estado do Maranhão,1994 a 2002 (em Gg)	126
Tabela 17 - Emissões líquidas de CO ₂ no bioma Amazônia, estado do Amazonas,1994 a 2002 (em Gg)	128
Tabela 18 - Emissões líquidas de CO ₂ no bioma Amazônia, estado do Acre,1994 a 2002 (em Gg)	128
Tabela 19 - Emissões líquidas de CO ₂ no bioma Amazônia, estado de Roraima,1994 a 2002 (em Gg)	130
Tabela 20 - Emissões líquidas de CO ₂ no bioma Amazônia, estado do Tocantins,1994 a 2002 (em Gg)	130
Tabela 21 - Emissões líquidas de CO ₂ no bioma Amazônia, estado do Amapá,1994 a 2002 (em Gg)	132
Tabela 22 - (Tabela 22 do Relatório de Referência) – Emissões líquidas de CO ₂ no bioma Cerrado, 1994 a 2002 (em Gg)	134
Tabela 23 - (Tabela 21 do Relatório de Referência) – Áreas das transições identificadas no	
bioma Cerrado, 1994 a 2002 (em hectares)	136
Tabela 24 - (Tabela 25 do Relatório de Referência) – Áreas das transições identificadas no	
bioma Mata Atlântica, 1994 a 2002 (em hectares)	138
Tabela 25 - (Tabela 23 do Relatório de Referência) – Áreas das transições identificadas no	
bioma Caatinga, 1994 a 2002 (em hectares)	140
Tabela 26 - (Tabela 29 do Relatório de Referência) – Áreas das transições identificadas no	
bioma Pantanal, 1994 a 2002 (em hectares)	142
Tabela 27 - (Tabela 27 do Relatório de Referência) – Áreas das transições identificadas no	
bioma Pampa, 1994 a 2002 (em hectares)	142
Tabela 28 - Emissões brutas, remoções e emissões líquidas de CO ₂ por mudança do uso da	
terra e florestas, para todos os biomas brasileiros	146
Tabela 29 - Emissões de CO ₂ por calagem, por Estado	148
Tabela 30 - Emissões de CO ₂ do Setor Mudança de Uso da Terra, por estado, sem incluir as de calagem	150
Tabela 31 - Emissões de CH ₄ e N ₂ O para todos os biomas brasileiros	152
Tabela 32 - Emissões de CH ₄ do Setor Mudança de Uso da Terra, por estado	156
Tabela 33 - Emissões de N ₂ O do Setor Mudança de Uso da Terra, por Estado	156
Tabela 34 - Reduções de CH₄ pelos projetos MDL brasileiros	158
Tabela 35 - Emissões de CO ₂ provenientes do Setor Tratamento de Resíduos, 1990 a 2012	160
Tabela 36 - Emissões de CH ₄ provenientes do Setor Tratamento de Resíduos, 1990 a 2012	160
Tabela 37 - Emissões de N ₂ O provenientes do Setor Tratamento de Resíduos, 1990 a 2012	160

Apresentação

O Brasil instituiu a Política Nacional sobre a Mudança do Clima (PNMC), por meio da Lei nº 12.187/2009 que define o compromisso nacional voluntário de adoção de ações de mitigação com vistas a reduzir suas emissões de gases de efeito estufa (GEE) entre 36,1% e 38,9% em relação às emissões projetadas até 2020. Segundo o Decreto nº 7.390/2010, que regulamenta a Política Nacional sobre Mudança do Clima, a projeção de emissões de gases de efeito estufa para 2020 foi estimada em 3,236 Gt CO₂eq. Dessa forma, a redução correspondente aos percentuais estabelecidos encontra-se entre 1,168 Gt CO₂eq e 1,259 Gt CO₂eq, respectivamente, para o ano em questão.

A fim de acompanhar o cumprimento do compromisso nacional voluntário para a redução das emissões (Art. 12 da Lei nº 12.187/2009) até o ano de 2020, foi estabelecido no Art. 11 do Decreto nº 7.390/2010 que serão publicadas, a partir de 2012, estimativas anuais de emissões de gases de efeito estufa no Brasil em formato apropriado para facilitar o entendimento por parte dos segmentos da sociedade interessados. A responsabilidade da elaboração dessas estimativas, bem como do aprimoramento da metodologia de cálculo da projeção de emissões, é de grupo de trabalho coordenado pelo Ministério da Ciência, Tecnologia e Inovação. Em cumprimento à responsabilidade designada, esse Ministério executou sua competência apresentando o presente relatório de estimativas anuais dentro do prazo determinado.

As presentes estimativas nacionais – tratadas a partir daqui simplesmente como "Estimativas" – foram elaboradas tomando-se por base a metodologia empregada nos relatórios de referência publicados no II Inventário Brasileiro de Emissões Antrópicas por Fontes e Remoções por Sumidouros de Gases de Efeito Estufa não Controlados pelo Protocolo de Montreal, de 2010 – tratado a partir daqui simplesmente como II Inventário Brasileiro ou apenas II Inventário. Portanto, como diretriz técnica básica, foram utilizados os documentos elaborados pelo Painel Intergovernamental de Mudança Climática (*Intergovernmental Panel on Climate Change – IPCC*): o documento "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories" publicado em 1997, o documento "Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", publicado em 2000, e o documento "Good Practice Guidance for Land Use, Land Use Change and Forestry", publicado em 2003. Algumas das estimativas já levam em conta informações publicadas no documento "2006 IPCC Guidelines for National Greenhouse Gas Inventories", publicado em 2006.

As Estimativas pretendem avançar a partir dos resultados do II Inventário, de 1990 a 2005, estendendo o período analisado para até 2012. Cabe ressaltar que o presente exercício não tem a mesma

acurácia reservada ao Inventário. O III Inventário, atualmente em fase de elaboração, referir-se-á à série 1990-2010. As Estimativas foram submetidas à análise de especialistas de cada setor ligados à Rede Clima, como parte do processo de controle e garantia de qualidade. Os comentários recebidos foram analisados pela equipe e incorporados, quando pertinentes ao escopo do exercício.

Em relação à edição anterior dessas Estimativas¹, há algumas evoluções. O Setor Energia foi recalculado de forma mais detalhada, com a identificação de alguns pontos de correção e ajuste. Para os setores Agropecuária, Mudança do Uso da Terra e Florestas e Tratamento de Resíduos, as emissões são apresentadas por estado. Nesta edição incluem-se também as incertezas dos resultados.

¹ MCTI, 2013. Estimativas anuais de emissões de gases de efeito estufa. Disponível em: <www.mct.gov.br/upd_blob/0226/226591.pdf>.

SUMÁRIO EXECUTIVO

Gases

Fazem parte das Estimativas todos os gases de efeito estufa direto já considerados no II Inventário Brasileiro, não sendo estimados os gases de efeito estufa indireto. Para compará-los e somá-los, foi utilizada a métrica usual do Potencial de Aquecimento Global (*Global Warming Potential* – GWP) atualmente utilizada para inventários nacionais como fator de ponderação², para se chegar à unidade comum, o equivalente de dióxido de carbono (CO₂eq). São apresentados na Tabela I os gases e seus respectivos GWPs.

Tabela I - Gases de efeito estufa e valor correspondente para o GWP.

Gás	Símbolo	GWP
Dióxido de carbono	CO ₂	1
Metano	CH ₄	21
Óxido nitroso	N ₂ O	310
	HFC-23	11.700
	HFC-125	2.800
Hidrofluorocarbonos	HFC-134a	1.300
	HFC-143a	3.800
	HFC-152a	140
Perfluorcarbonos	CF ₄	6.500
r et tidot cai portos	C ₂ F ₆	9.200
Hexafluoreto de enxofre	SF ₆	23.900

² IPCC – Segundo Relatório de Avaliação, 1995. Disponível em: <www.ipcc.ch/pdf/climate-changes-1995/ipcc-2nd-assessment/2nd-assessment-en.pdf>. Apesar de o relatório AR5 do IPCC ter apresentado em 2013 novos valores para o GWP num horizonte de 100 anos, optou-se por abordagem conservadora, mantendo-se os mesmos coeficientes utilizados no Segundo Inventário.

Setores

Os setores em que se divide o inventário, segundo suas diretrizes, são:

ENERGIA

Emissões devido à queima de combustíveis e emissões fugitivas da indústria de petróleo, gás e carvão mineral. As emissões de CO_2 , devido ao processo de redução nas usinas siderúrgicas, foram consideradas no setor de Processos Industriais.

PROCESSOS INDUSTRIAIS

Emissões resultantes dos processos produtivos nas indústrias e que não são resultado da queima de combustíveis. Subsetores: produtos minerais, metalurgia e química, além da produção e consumo de HFCs e SF_e.

AGROPECUÁRIA

Emissões devido à fermentação entérica do gado, manejo de dejetos animais, solos agrícolas, cultivo de arroz e queima de resíduos agrícolas.

MUDANÇA NO USO DA TERRA E FLORESTAS

Emissões e remoções resultantes das variações da quantidade de carbono, seja da biomassa vegetal, seja do solo, considerandose todas as transições possíveis entre diversos usos, além das emissões de CO₂ por aplicação de calcário em solos agrícolas e das emissões de CH₄ e N₂O pela queima de biomassa nos solos. O crescimento da vegetação, em áreas consideradas manejadas, gera remoções de CO₂.

TRATAMENTO DE RESÍDUOS

Emissões pela disposição de resíduos sólidos e pelo tratamento de esgotos, tanto doméstico/comercial, quanto industrial, além das emissões por incineração de resíduos e pelo consumo humano de proteínas.

Estimativas de emissões

Em princípio foram utilizadas as mesmas metodologias aplicadas no II Inventário Brasileiro. As planilhas de cálculo de então foram acrescidas dos dados mais atualizados que estivessem disponíveis, sem a busca de novos parâmetros e fatores de emissão, dos quais um trabalho científico mais apurado se incumbirá para a terceira edição do Inventário.

Em alguns casos, diante da disponibilidade de novas informações para a série histórica de 1990 a 2005, foram feitos recálculos para as emissões divulgadas no último Inventário. Em vista disso, os valores publicados no II Inventário Brasileiro são indicados junto aos novos valores das presentes Estimativas para maior clareza. A seguir, são apresentados os resultados totais e em termos de setores e gases.

Figura I - Emissões de gases de efeito estufa no Brasil, por setor, de 1990 a 2012 (Tg = milhões de toneladas).

Tabela II - Emissões em CO₂eq por setor, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012.

Catavas	1990	1995	2000	2005	2011	2012	Vari	ação
Setores		1995-2005	2005-2012					
Energia	187.739	227.604	298.611	328.377	407.544	446.154	44,3%	35,9%
Processos Industriais	52.537	63.065	71.674	77.943	86.173	85.365	23,6%	9,5%
Agropecuária	303.772	335.775	347.882	415.724	449.853	446.445	23,8%	7,4%
Florestas	815.965	1.940.420	1.343.136	1.179.067	310.486	175.685	-39,2%	-85,1%
Resíduos	29.061	33.677	38.517	41.887	48.139	49.775	24,4%	18,8%
TOTAL	1.389.074	2.600.543	2.099.820	2.042.998	1.302.195	1.203.424	-21,4%	-41,1%

Gg = milhares de toneladas

 $Figura\ II-\ Variação\ da\ participação\ nas\ emissões\ para\ cada\ setor,\ de\ 2005\ para\ 2012.$

Tabela III - Emissões em termos de setores e gases para os anos de 1990, 1995, 2000, 2005, 2011 e 2012.

Catamaa	C	1990	1995	2000	2005	2011	2012	Vari	ação
Setores	Gases			1995-2005	2005-2012				
	CO ₂	176,2	217,3	287,5	313,1	393,2	431,5	44,1%	37,8%
Energia	CH ₄	9	7,7	8,3	11,5	9,8	9,9	50,4%	-13,9%
	N ₂ O	2,5	2,7	2,8	3,7	4,5	4,7	38,2%	28,2%
	CO ₂	45,3	52,8	63,2	65,5	78,7	77,4	24,0%	18,2%
Processos	CH ₄	0,1	0,1	0,2	0,2	0,2	0,2	43,3%	21,8%
Industriais	N ₂ O	3,3	5,4	6,2	7,1	0,3	0,2	30,9%	-96,5%
	Outros	3,9	4,7	2,1	5,2	6,9	7,5	10,2%	43,9%
Agropecuária	CH ₄	200,3	219,4	226,2	268,1	281,4	278,7	22,2%	3,9%
Agropecuaria	N ₂ O	103,5	116,4	121,7	147,6	168,5	167,8	26,8%	13,7%
	CO ₂	766,5	1840,8	1272,4	1113,6	286,5	158,2	-39,5%	-85,8%
Uso da Terra e Florestas	CH ₄	44,9	90,4	64,2	59,4	21,8	15,9	-34,2%	-73,3%
	N ₂ O	4,6	9,2	6,5	6	2,2	1,6	-34,2%	-73,3%
	CO ₂	О (0,1	0,1	0,1	0,1	0,1	39,4%	28,0%
Tratamento de Resíduos	CH ₄	26,2	30,2	34,6	37,5	43,4	45	24,1%	20,1%
	N ₂ O	2,8	3,4	3,9	4,3	4,6	4,6	26,6%	7,8%
TOTAL		1.389,10	2.600,50	2.099,80	2.043,00	1.302,20	1.203,40	-21,4%	-41,1%

Emissões CO₂eq em 2005

Figura III - Variação das emissões por gás, de 2005 para 2012.

Emissões CO₂eq em 2012

Figura IV - Comparação das Estimativas com o II Inventário Brasileiro.

Figura V - Comparação entre as emissões brutas e líquidas.

A diferença observada entre os resultados das emissões líquidas e brutas corresponde às remoções devido, principalmente, ao crescimento de florestas consideradas manejadas.

Setor Energia

No Setor Energia, a redução de emissões observada em 2009 corresponde a uma queda no consumo de combustíveis fósseis, como reflexo da crise internacional.

Figura VI – Estimativa de emissões, em CO₂eq, para o setor Energia.

Tabela IV – Estimativa de emissões, em CO₂eq, para os subsetores do setor Energia.

SETOR	1990	1995	2000	2005	2011	2012	Vari	ação
SETUR		1995-2005	2005-2012					
ENERGIA	187.739	227.604	298.611	328.377	407.544	446.154	44,3%	35,9%
Queima de Combustíveis	178.488	218.496	285.506	310.725	390.532	428.253	42,2%	37,8%
Emissões Fugitivas	9.252	9.108	13.105	17.652	17.011	17.901	93,8%	1,4%

Setor Processos Industriais

Assim como o observado no Setor Energia, a crise internacional de 2009 se refletiu nas emissões industriais, especialmente, por conta do setor de Ferro-gusa e Aço. A Indústria Química tem reduções significativas de 2005 a 2011 por causa das atividades de projeto no âmbito do Mecanismo de Desenvolvimento Limpo (MDL) em indústrias de produção de ácido adípico e ácido nítrico. O Uso de $\rm SF_6$ cai de 2005 a 2011 devido também a projeto MDL na produção de magnésio, que substituiu o uso desse gás por $\rm SO_2$.

Figura VII - Estimativa de emissões, em CO eq, para o setor Processos Industriais.

Tabela V - Estimativa de emissões, em ${\rm CO_2eq}$, para os subsetores do setor Processos Industriais.

SETOR	1990	1995	2000	2005	2011	2012	Vari	ação
SETOR				1995-2005	2005-2012			
PROCESSOS INDUSTRIAIS	52.537	63.065	71.674	77.943	86.173	85.365	23,6%	9,5%
Produção de Cimento	11.062	11.528	16.047	14.349	22.493	25.309	24,5%	76,4%
Produção de Cal	3.688	4.104	5.008	5.356	6.337	6.403	30,5%	19,5%
Outros Usos do Calcário e da Dolomita	1.630	1.728	1.756	1.815	3.309	3.321	5,0%	83,0%
Uso da Barrilha	182	247	243	248	375	375	0,3%	51,2%
Indústria Química	7.200	9.882	8.983	10.224	3.752	3.446	3,5%	-66,3%
Produção de Ferro-gusa e Aço	24.756	30.686	35.437	38.283	40.590	36.655	24,8%	-4,3%
Produção de Alumínio	3.781	4.197	3.176	3.373	3.115	3.126	-19,6%	-7,3%
Uso de HFCs	1	355	661	3.694	6.020	6.542	940,9%	77,1%
Uso de SF ₆	237	339	365	602	182	188	77,4%	-68,7%

Tabela VI - Contribuição dos subsetores para as emissões do setor Processos Industriais em 2012.

Produção de Ferro-gusa e Aço	42,9%
Produção de Cimento	29,6%
Uso de HFCs	7,7%
Produção de Cal	7,5%
Indústria Química	4,0%
Outros Usos do Calcário e da Dolomita	3,9%
Produção de Alumínio	3,7%
Uso da Barrilha	0,4%
Uso de SF ₂	0,2%

Setor Agropecuária

As principais emissões desse setor são devido à fermentação entérica do gado bovino, produzindo metano, e à aplicação de adubos e fertilizantes sintéticos com forte emissão de óxido nitroso. Em 2007, é possível observar uma ligeira diminuição das emissões devido a uma queda significativa da população de bovinos, com recuperação gradual desde então. A pequena diminuição de 2011 para 2012 reflete novamente uma diminuição de rebanhos.

Figura VIII - Estimativa de emissões, em CO2eq, para o setor Agropecuária.

Tabela VII - Estimativa de emissões, em CO2eq, para os subsetores do setor Agropecuária.

CETOR	1990	1995	2000	2005	2011	2012	Vari	ação
SETOR	Gg CO₂eq				1995-2005	2005-2012		
AGROPECUÁRIA	303.772	335.775	347.882	415.724	449.853	446.445	23,8%	7,4%
Fermentação Entérica	176.804	192.667	201.586	241.225	251.127	249.405	25,2%	3,4%
Manejo de Dejetos Animais	16.449	18.161	17.796	19.155	21.616	21.417	5,5%	11,8%
Solos Agrícolas	98.472	110.756	116.567	141.622	161.185	160.311	27,9%	13,2%
Emissões Diretas	65.979	74.227	77.864	94.790	107.637	106.940	27,7%	12,8%
Animais em Pastagem	51.375	55.706	56.049	67.290	69.436	68.627	20,8%	2,0%
Fertilizantes Sintéticos	3.417	4.975	7.314	9.652	14.759	15.059	94,0%	56,0%
Aplicação de adubo	4.095	4.523	4.355	4.845	5.581	5.516	7,1%	13,8%
Resíduos Agrícolas	4.753	6.137	6.711	9.021	13.220	12.989	47,0%	44,0%
Solos Orgânicos	2.338	2.886	3.434	3.982	4.640	4.750	38,0%	19,3%
Emissões Indiretas	32.493	36.530	38.703	46.832	53.549	53.370	28,2%	14,0%
Deposição Atmosférica	6.541	7.254	7.506	9.013	9.979	9.915	24,2%	10,0%
Fertilizantes Sintéticos	380	553	813	1.072	1.640	1.673	94,0%	56,0%
Adubo Animal	6.161	6.701	6.694	7.940	8.339	8.242	18,5%	3,8%
Lixiviação	25.952	29.275	31.197	37.819	43.570	43.456	29,2%	14,9%
Fertilizantes Sintéticos	2.847	4.146	6.095	8.043	12.299	12.549	94,0%	56,0%
Adubo Animal	23.105	25.130	25.102	29.776	31.271	30.906	18,5%	3,8%
Cultura de Arroz	7.626	9.286	8.251	8.940	9.764	8.610	-3,7%	-3,7%
Queima de Cana e Algodão	4.420	4.905	3.682	4.782	6.162	6.703	-2,5%	40,2%

Tabela VIII - Contribuição dos subsetores para as emissões do setor Agropecuária em 2012.

Fermentação Entérica	55,90%
Solos Agrícolas	35,90%
Manejo de Dejetos Animais	4,80%
Cultura de Arroz	1,90%
Queima de Cana e Algodão	1 50%

Setor Mudança do Uso da Terra e Florestas

Em 2012, as emissões do setor Mudança de Uso da Terra e Florestas foram dominadas pelo Bioma Cerrado, por causa das significativas reduções de desmatamento, desde 2004, do Bioma Amazônia, que passa a ficar em segundo lugar em termos das emissões do setor.

Os resultados apresentados para esse setor (Figura IX e Tabelas IX e X) correspondem somente às emissões líquidas.

Figura IX - Estimativa de emissões, em CO₂eq, para o setor Mudança de Uso da Terra e Florestas.

Tabela IX - Estimativa de emissões, em CO₂eq, para os subsetores do setor Mudança de Uso da Terra e Florestas.

SETOR	1990 1995 2000 2005 2011 2012				Variação			
SETOR		Gg CO ₂ eq						2005-2012
LULUCF	816	1.940	1.343	1.179	310	176	-39,2%	-85,1%
Mudança no Uso da Terra	811	1.935	1.334	1.172	298	161	-39,5%	-86,3%
Bioma Amazônia	492	1.477	876	848	169	33	-42,5%	-96,1%
Bioma Cerrado	247	318	318	278	109	109	-12,5%	-60,9%
Bioma Mata Atlântica	24	83	83	3	-5	-5	-96,7%	-277,5%
Bioma Caatinga	29	40	40	12	6	6	-69,1%	-53,2%
Bioma Pantanal	19	17	17	12	3	2	-28,0%	-79,6%
Bioma Pampa	0	0	0	17	16	16	-	-9,8%
Calagem	5	5	9	7	13	15	38,5%	100,2%

Tabela X - Contribuição dos diferentes biomas e de calagem para as emissões do setor Mudança de Uso da Terra e Florestas em 2012.

Bioma Cerrado	62,0%		
Bioma Amazônia	18,7%		
Bioma Pampa	8,9%		
Bioma Caatinga	3,3%		
Bioma Pantanal	1,4%		
Bioma Mata Atlântica	-2,8%		
Calagem - Geral	8,5%		

Setor Tratamento de Resíduos

As emissões da disposição de resíduos sólidos e do tratamento de esgotos domésticos variam basicamente pelo aumento da população, sendo que as da disposição de resíduos sólidos incluem tanto crescimento pelo aumento da geração de lixo quanto decrescimento por conta dos diversos projetos MDL em curso no Brasil desde 2004. O tratamento de esgotos industriais reflete aumentos das atividades mais produtoras de carga orgânica cujo tratamento gera metano, sendo que, em 2012, a produção de cerveja foi responsável por 59% das emissões, seguida da produção de leite cru, com 13%. Embora a maior carga orgânica gerada pela indústria seja o vinhoto do setor sucroalcooleiro, ele é aplicado diretamente no solo e não gera emissões de metano.

Figura X - Estimativa de emissões, em CO₂eq, para o setor Tratamento de Resíduos.

Tabela XI - Estimativa de emissões, em CO₂eq, para os subsetores do setor Tratamento de Resíduos.

SETOR	1990	1995	2000	2005	2011	2012	Vari	ação
SETOR		Gg CO ₂ eq					1995-2005	2005-2012
TRATAMENTO DE RESÍDUOS	29.061	33.677	38.517	41.887	48.139	49.775	24,4%	18,8%
Resíduos sólidos	16.723	19.667	22.703	24.748	27.958	29.487	25,8%	19,2%
Efluentes	12.338	14.010	15.814	17.139	20.181	20.288	22,3%	18,4%
Industriais	2.044	3.285	3.921	4.333	6.470	6.463	31,9%	49,2%
Domésticos	10.294	10.725	11.893	12.806	13.712	13.824	19,4%	8,0%

Comparação das Estimativas com as projeções e ações estabelecidas no Decreto nº 7.390/2010

Segundo o Decreto nº 7.390/2010, a projeção de emissões de gases de efeito estufa foi estimada em 3.236 milhões de toneladas CO_2 eq para 2020. A fim de alcançar esse compromisso nacional voluntário, as ações previstas no decreto almejam reduzir tais emissões entre 1.168 milhões de toneladas CO_2 eq e 1.259 milhões de toneladas CO_2 eq, que correspondem a reduções de 36,1% e 38,9%, respectivamente, do total, limitando as emissões em até 2.068 milhões de toneladas CO_2 eq para o ano em questão. A Figura XI apresenta a estimativa das emissões totais e o limite máximo de emissões para 2020 estabelecido no decreto.

Figura XI - Estimativas de emissões, Il Inventário brasileiro e limite de emissões para 2020 definido por decreto.

Em virtude da ausência de valores no Decreto nº 7.390/2010 que indiquem a trajetória de emissões, como um todo, de 2005 até o ano de 2020, foi considerada uma extrapolação do dado de 2005 do II Inventário para o limite de emissões esperado em 2020, por meio do cálculo de uma trajetória exponencial. Com essa trajetória hipotética, é possível analisar o cenário de emissões em 2012, identificando que as emissões para este ano são 44% menores do que o projetado. Essa aferição permite conjecturar o pleno cumprimento do compromisso nacional voluntário em 2020.

SUMÁRIO EXECUTIVO

O decreto considera o percentual de redução de emissões de gases de efeito estufa contido no Plano Decenal de Expansão de Energia (PDE), de 27% em 2020, para o setor Energia. Conforme consta na Figura XII, essa redução corresponderá a um limite de emissão por este setor em até 634 Tg CO₂eq. Em relação à trajetória exponencial hipotética para a meta, a estimativa de emissões do setor Energia, em 2012, está dentro do esperado.

Figura XII - Estimativas de emissões, Il Inventário brasileiro e limite de emissões em 2020 para o setor Energia.

Para o Setor Agropecuária, são apresentados a trajetória de emissões e a projeção para 2020 existentes no decreto e o limite máximo de emissão de 596 Tg CO₂eq de acordo com o indicado pelo potencial de mitigação apresentado no Plano ABC (Agricultura de Baixa Emissão de Carbono) do Ministério da Agricultura, Pecuária e Abastecimento³ (Figura XIII). Os valores da trajetória do ano de 2005 até a emissão máxima prevista pelo Plano ABC em 2020 foram calculados por meio de uma trajetória exponencial, permitindo identificar que o setor emitiu, em 2012, 9% a menos.

Figura XIII - Estimativas de emissões, II Inventário brasileiro e limite de emissões em 2020 para o setor Agropecuária.

³ Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura, disponível em: <a href="mailto:www.mma.gov.br/images/arquivo/80076/Plano_ABC_VERSAO_FINAL_13jan2012.pdf.

SUMÁRIO EXECUTIVO

Para o Setor Mudança de Uso da Terra e Florestas, o Decreto nº 7.390/2010 estabelece uma redução de 80% do desmatamento do bioma Amazônia em relação à média verificada entre 1996 e 2005 e de 40% do desmatamento do bioma Cerrado em relação à média entre os anos de 1999 a 2008. Essas reduções foram aplicadas sobre as projeções de emissões para 2020 nos dois biomas, compondo-se uma redução geral de 63,2%. Na Figura XIV, são apresentados, de acordo com esse compromisso voluntário de redução de emissões, o limite de emissão para 2020 e a trajetória exponencial hipotética para atingir esse objetivo a partir de 2005. Em 2012, é possível aferir uma redução de emissão de 87%.

Figura XIV - Estimativas de emissão, II Inventário brasileiro e limite de emissão em 2020 para o setor Mudança do Uso da Terra e Florestas

Para os Setores Processos Industriais e Tratamento de Resíduos, apresenta-se a projeção de emissões até 2020 estabelecida pelo Decreto nº 7.390/2010 (Figura XV). Para esses setores não há definido, até o presente momento, nenhum compromisso de redução de emissões. De toda forma, esses setores emitiram 15% a menos do que o previsto no decreto para o ano de 2012.

Figura XV – Estimativas de emissão, Il Inventário brasileiro e trajetória de emissão para os setores Processos Industriais e Tratamento de Resíduos.

Conclusão

Conforme se pode perceber pelas comparações setoriais, sintetizadas na Tabela XII, o cenário demonstrado para o ano de 2012 indica que as emissões setoriais se mantiveram menores que o previsto, permitindo avaliar de forma positiva a implementação das ações de mitigação para os diferentes setores, em especial, para o setor Mudança do Uso da Terra e Floresta.

Tabela XII - Resultados das estimativas de emissões para 2012 e compromisso nacional voluntário para 2020.

Emissões de Estimativa para 2012		exponencial entre	Projeção Business As Usual	Limite de emi:	Compromisso de redução para 2020		
	para 2012	2005 (II Inventário) e 2020 (limite de emissão)	para 2020 Valor		Fonte	Valor	Fonte
Mudança Uso da Terra e Floresta	176	855	1.404	516	Decreto	887	Decreto
Energia	446	447	868	634	Decreto	234	Decreto
Agropecuária	446	492	730	596	Plano ABC	133,9	Plano ABC
Indústria & Resíduos	135	163	234	234	Projeção do Decreto	-	-
TOTAL	1203	1957	3.236	2068	Decreto	1168	Decreto

Unidade: TgCO₂eq

Incertezas

As incertezas destas Estimativas foram determinadas e estão nas tabelas (Tabelas XIII a XVI), apenas para o CO_2 , CH_4 e N_2O , com a aplicação dos mesmos critérios utilizados para se calcular as incertezas no II Inventário, apenas alterando-se o ano de análise. Numa primeira aproximação, toda a série poderia ser estimada com a mesma incerteza apresentada para 2012.

Tabela XIII - Incerteza associada às emissões de CO₂.

Setor	Incerteza	Emissões 2012	
Secor	(%)	(Gg)	
Energia	3	431.485	
Queima de Combustíveis Fósseis	3	417.221	
Emissões Fugitivas	26	14.264	
Mineração de Carvão	32	1.336	
Extração e Transporte de Petróleo e Gás Natural	28	12.928	
Processos Industriais	3	77.406	
Produção de Cimento	4	25.309	
Produção de Cal	10	6.403	
Produção de Amônia	11	1.758	
Produção de Alumínio	6	2.380	
Produção de Ferro e Aço	6	36.655	
Outras Indústrias	14	4.901	
Mudança no Uso da Terra e Florestas	31	158.206	
Tratamento de Resíduos	27	141	
TOTAL	8	667.237	

Tabela XIV - Incerteza associada às emissões de CH₄.

Setor	Incerteza	Emissões 2012
Setor	(%)	(Gg)
Energia	24	473
Queima de Combustíveis	29	303
Emissões Fugitivas	44	171
Mineração de Carvão	73	47
Extração e Transporte de Petróleo e Gás Natural	54	124
Processos Industriais (Indústria Química)	14	11
Agropecuária	31	13.270
Fermentação Entérica	34	11.876
Manejo de Dejetos de Animais	38	799
Cultura de Arroz	45	410
Queima de Resíduos Agrícolas	32	185
Mudança no Uso da Terra e Florestas	72	756
Tratamento de Resíduos	39	2.143
Resíduos sólidos	56	1.397
Efluentes	36	745
Industriais	56	308
Domésticos	47	438
TOTAL	25	16.653

Tabela XV - Incerteza associada às emissões de ${
m N_2O}$.

Setor	Incerteza	Emissões 2012
Setor	(%)	(Gg)
Energia	25	15,2
Processos Industriais (Indústria Química)	6	0,8
Agropecuária	48	541,2
Manejo de Dejetos de Animais	43	15
Solos Agrícolas	51	517,1
Animais em Pastagem	81	221,4
Outras fontes diretas	56	123,6
Emissões Indiretas	102	172,2
Queima de Resíduos Agrícolas	51	9,1
Mudança no Uso da Terra e Florestas	101	5,2
Tratamento de Resíduos	56	15
TOTAL	45	577,4

Tabela XVI - Incerteza associada às emissões totais (CO_2 , CH_4 , N_2O), por meio da combinação entre os três gases, pode-se calcular a incerteza do resultado final em CO2eq:

Setor	Emissões 2012 Incerteza		GWP	Emissões 2012
Setor	(Gg)	(%)	GWP	(Gg CO ₂ eq)
CO ₂	667.237	8	1	667.237
CH ₄	16.653	25	21	349.718
N ₂ O	577	45	310	178.974
TOTAL		11		1.195.929

SETOR ENERGIA

As estimativas para o Setor Energia para os anos de 2006 a 2012 baseiam-se no II Inventário Brasileiro, detalhado nos seus relatórios de referência⁴.

Novos dados:

Foram utilizados os dados atuais do Balanço Energético Nacional² (BEN) até 2012 e novas estimativas da Petrobras, não publicadas, para as emissões fugitivas de petróleo e gás. Os fatores de conversão de unidades naturais para toneladas equivalentes de petróleo (tep) utilizados nestas Estimativas foram os extraídos do próprio BEN e não da tabela usada no II Inventário, que se revelou desatualizada.

Hipóteses simplificadoras:

Algumas hipóteses simplificadoras foram utilizadas para se avançar além de 2005 nos dois grupos em que se divide o Setor Energia – Queima de Combustíveis Fósseis e Emissões Fugitivas:

- 1) A queima de combustíveis fósseis foi estimada a partir da metodologia de referência (*Bottom-Up*)⁶ tomando-se por base o consumo de combustíveis informado no BEN, com a utilização dos fatores de emissão e coeficientes de destinação utilizados no II Inventário. Exceções foram feitas para os setores de transporte rodoviário e aéreo. O Balanço de Energia Útil (BEU) de 2003, última versão existente, é utilizado sem alterações para os anos até 2012.
- 2) Para o setor de transporte rodoviário, os gases não ${\rm CO_2}$ foram estimados com os mesmos fatores de emissão implícitos do II Inventário, sendo que as emissões de 2006 a 2012 mantiveram os mesmos fatores de 2005. Os fatores de emissão implícitos para a gasolina usada no País são relativos à soma, em unidades energéticas, da gasolina automotiva com o álcool anidro informados pelo BEN, conforme a metodologia do II Inventário.
- 3) Para o transporte aéreo foram usados os mesmos volumes de combustíveis e os fatores de emissão implícitos para os gases não CO_2 do II Inventário para o período de 1990 a 2007, último ano do Relatório de Referência. Para o período posterior foi calculada a fração do consumo total de querosene de aviação do BEN que é destinada aos voos domésticos para o ano de 2007 e mantida essa fração para os anos seguintes. Os fatores de emissão implícitos para os anos de 2008 a 2012 são baseados nas seguintes médias: CH_4 de 2005 a 2006; N_2O de 2005 a 2007, segundo indicações do Relatório de Referência. Para o CO_2 do querosene de aviação e todos os gases relativos à gasolina de aviação, o cálculo das emissões se baseia nos fatores de emissão únicos indicados no Relatório de Referência.

⁴ Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa – Relatórios de Referência do Setor Energia. Disponível em: http://www.mct.gov.br/index.php/content/view/330039/Setor_Energia.html.

⁵ Matrizes 49 x 47 – 1970 em diante, disponível em http://www.mme.gov.br/mme/menu/todas_publicacoes.html>.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa por Queima de Combustíveis: Abordagem Bottom-Up. Disponível em: http://www.mct.gov.br/upd blob/0228/228959.pdf>.

- 4) As emissões de CO₂ relativas ao "Consumo não energético", que não teve carbono estocado em produtos, foram abatidas das emissões de CO₂ relatadas em processos industriais devido a consumos de combustíveis como matéria-prima. Aquelas emissões estão incluídas no Subsetor Industrial, por se tratarem de consumo da indústria química, de acordo com o BEN.
- 5) As emissões fugitivas relativas à indústria de petróleo e gás⁷, cuja série estava calculada até 2008, foram estendidas até 2012, conforme informações diretas da Petrobras, tendo havido recálculos de 2003 a 2008.
- 6) As novas emissões fugitivas relativas à indústria de carvão mineral foram calculadas com correlações, devido à insuficiência de dados sobre a produção detalhada segundo os tipos de carvões, conteúdo de carbono na produção bruta (ROM), nos produtos acabados e nos rejeitos, e segundo sua origem de minas subterrâneas ou de minas a céu aberto. Em relação a CO₂, a melhor correlação foi "produção ROM x emissões", chegando a 46%. Em relação a CH₄, como essas emissões estão ligadas à fase de mineração, com fatores de emissão diferentes para minas subterrâneas e a céu aberto, as produções disponíveis no portal eletrônico da Associação Brasileira de Carvão Mineral (ABCM) para os três estados produtores foram divididas segundo os tipos de minas encontrados em 2005, nas mesmas proporções, para uso dos respectivos fatores de emissão.
- 7) Para as emissões de CO₂ do Óleo Diesel, foram descontadas as quantidades de biodiesel que passam a existir a partir do ano de 2006.

Novo sistema de cálculo para as emissões relativas à Queima de Combustíveis Fósseis

Para essas Estimativas, foi refeito o sistema de cálculo para as emissões do setor Energia — Queima de Combustíveis Fósseis, de modo a aprimorar o controle de qualidade, explicitando toda a metodologia e os dados empregados, com destaque para: as informações decenais do BEU — edições de 1983, 1993 e 2003 — transformadas em informações anuais, de 1990 a 2012; os fatores de conversão utilizados, de unidades naturais para tep; e cálculo das emissões da queima de combustíveis em uma única planilha, embora utilizando resultados resumidos dos Relatórios de Referência de Transportes Rodoviários e da Aviação Civil.

⁷ MCTI, Relatório de Referência: Emissões Fugitivas de Gases de Efeito Estufa na Indústria de Petróleo e Gás Natural. Disponível em: http://www.mct.gov.br/upd_blob/0228/228954.pdf>.

1) Queima de combustíveis fósseis

A partir da reestruturação das planilhas de cálculo, foram identificados alguns erros e inconsistências, agora corrigidos, conforme a lista a seguir.

- 1) Alterações mais significativas:
 - a. Os fatores de emissão para Gás Natural Seco e Gás Natural Úmido estavam trocados no II Inventário:
 - b. Outros Energéticos de Petróleo usados em Centrais Elétricas Autoprodutoras (erro, a maior, na conversão de unidades naturais para tep);
 - c. As emissões de ${\rm CO}_2$ referentes ao consumo não energético de combustíveis consideradas no II Inventário incluíam consumo dos mesmos combustíveis usados como matérias-primas em Processos Industriais, na produção de diversos produtos químicos, para os quais havia emissões ali reportadas. Para se corrigir esse problema de dupla contagem, as emissões em Processos Industriais da indústria química, devido ao consumo de combustíveis fósseis, foram diminuídas das emissões calculadas para o consumo não energético de combustíveis no setor Energia. O que resta aqui faz parte da indústria química também, de acordo com as destinações constantes no BEN;
 - d. Os consumos de Outras Renováveis (nomenclatura do BEN, coluna Y, até 2009) ou Outras Primárias (nomenclatura do BEN, coluna Y, a partir de 2010), em vez de serem arbitrados fatores para divisão entre renováveis e não renováveis foram divididos conforme o próprio BEN, com suas colunas Outras Renováveis Biomassa (coluna BB), Outras Não Renováveis Gás Industrial (coluna BH) e Outras Não Renováveis Outras Não Renováveis (coluna BI);
 - e. O consumo referente a Outras Não Renováveis Outras Não Renováveis (coluna BI) em Calor de Processo na indústria do Cimento não havia sido considerado em toda a série;
 - f. O consumo de Bagaço em Centrais Elétricas Autoprodutoras não havia sido considerado em toda a série;
 - g. O consumo de Carvão Metalúrgico em Ferro-gusa e Aço não havia sido considerado na destinação Calor de Processo, tendo havido, segundo o BEU, uma transição total de Aquecimento Direto em 1993 (100%) para Calor de Processo em 2003 (100%). Para acerto da falta de fatores de emissão para Calor de Processo foi considerado que não houve mudança de destinação em 2003, permanecendo Aquecimento Direto em toda a série;
 - h. O consumo de Carvão Vapor 4500 não havia sido considerado para Centrais Elétricas de Serviço Público em 1998 e 2005;
 - i. O consumo de Carvão Vapor 4700 não havia sido considerado para Centrais Elétricas Autopro-

dutoras em toda a série.

- 2) Alguns fatores de emissão e/ou destinações foram acertados de acordo com o publicado nos Relatórios de Referência para:
 - a. Óleo diesel em Alimentos e Bebidas;
 - b. Óleo Combustível em Agropecuária;
 - c. Coque de Petróleo em indústrias em geral;
 - d. Carvão Vapor em indústrias em geral;
 - e. Carvão Metalúrgico em Mineração;
 - f. Gás Natural Seco em Química;
 - g. Gás de Refinaria em Outras Indústrias;
 - h. Lenha em Outras Indústrias;
 - i. Lenha no Setor Energético;
 - j. Carvão Vegetal em Papel e Celulose;
 - k. Outras Primárias Fósseis em Química.
- 3) Alguns erros, com pouco impacto no setor, foram corrigidos em:
 - a. Óleo Combustível em Transporte Ferroviário;
 - b. GLP em Cimento;
 - c. Carvão Vapor em Transporte Ferroviário;
 - d. Carvão Metalúrgico em Cimento;
 - e. Alcatrão em Cimento;
 - f. Coque de Carvão Mineral em Papel e Celulose;
 - g. Gás de Refinaria em Cerâmica;
 - h. Outros Energéticos de Petróleo no setor energético em geral;
 - i. Gás Canalizado Rio em Outras Indústrias:
 - j. Gás Canalizado Rio em Ferro-gusa e Aço;
 - k. Gás Canalizado Rio em Alimentos e Bebidas:
 - I. Gás de Coqueria em Ferro-gusa e Aco:
 - m. Resíduos Vegetais em Outras Indústrias;
 - n. Resíduos Vegetais em Cimento;
 - o. Outras Primárias Fósseis em Química;
 - p. Outras Primárias Fósseis em Centrais Elétricas Autoprodutoras;
 - q. Outras Primárias Fósseis em Ferro-gusa e Aço;

Após os recálculos indicados, as emissões de cada um dos gases de efeito estufa diretos relativos à Queima de Combustíveis podem ser apresentadas e comparadas.

Emissões de CO,

Tabela 1.1 Emissões de CO₂, Estimativas e II Inventário, dos subsetores de Queima de Combustíveis Fósseis do setor Energia, para os anos 1990, 1995, 2000, 2005, 2011 e 2012.

Gg CO ₂		1990	1995	2000	2005	2011	2012
Ouries de Combretérie	Estimativas	168.942	210.033	277.066	299.828	379.659	417.221
Queima de Combustíveis	II Inventário	172.371	214.438	279.088	299.941		
Subsetor Energético	Estimativas	22.651	26.336	43.278	51.457	58.385	74.876
Jubsetor Lifergetico	II Inventário	22.668	26.663	43.595	48.601		
Subsetor Industrial	Estimativas	42.515	52.604	78.924	81.660	104.377	106.712
Subsetor industrial	II Inventário	36.835	46.638	71.115	75.620		
Camayuna mãa amayaética	Estimativas	0	0	0	0	0	0
Consumo não-energético	II Inventário	6.499	7.109	8.832	8.303		
Culpantou Tunnan auto	Estimativas	77.787	98.629	119.564	132.862	180.264	198.330
Subsetor Transporte	II Inventário	79.914	101.003	120.130	133.431		
Subsetor Residencial	Estimativas	13.696	15.775	16.999	15.429	17.307	17.416
Subsetor Residencial	II Inventário	13.818	15.928	17.044	15.484		
Culpanton Agricultura	Estimativas	9.743	13.084	14.004	14.808	16.646	17.380
Subsetor Agricultura	II Inventário	10.052	13.430	14.051	14.809		
Subsetor Comercial	Estimativas	2.051	1.549	2.197	1.886	1.445	1.685
Subsetor Comercial	II Inventário	2.075	1.577	2.218	1.954		
Subsetor Público	Estimativas	498	2.055	2.100	1.725	1.234	822
Subsetor Publico	II Inventário	509	2.090	2.104	1.739		

Obs: Nessas Estimativas, as emissões relativas ao "Consumo não energético" estão incluídas no Subsetor Industrial, ao contrário do II Inventário.

Figura 1.1 Emissões de CO, da queima de combustíveis fósseis - setor Energia

A redução das emissões em 2009 deve-se à diminuição das emissões do subsetores industrial e energético.

Figura 1.2 Estimativas de emissões de CO, da queima de combustíveis fósseis, por subsetor

Emissões de CH₄

Tabela 1.2 Emissões de CH₄, Estimativas e II Inventário, dos subsetores de Queima de Combustíveis Fósseis do setor Energia, para os anos 1990, 1995, 2000, 2005, 2011 e 2012

Gg CH₄		1990	1995	2000	2005	2011	2012
Queima de Combustíveis	Estimativas	336,24	276,96	268,05	346,31	304,05	302,52
Queima de Compustiveis	II Inventário	335,79	276,50	266,99	343,96		
Cubastau Fuavaática	Estimativas	170,00	137,15	125,76	167,14	137,39	135,33
Subsetor Energético	II Inventário	169,49	136,45	124,80	165,13		
Subsetor Industrial	Estimativas	58,10	52,86	54,16	72,71	68,62	68,67
Subsetor industrial	II Inventário	57,92	52,81	53,97	72,28		
61	Estimativas	10,35	12,35	11,46	10,28	14,60	15,50
Subsetor Transporte	II Inventário	10,59	12,60	11,50	10,28		
Subsetor Residencial	Estimativas	75,65	57,66	61,53	77,01	61,54	61,22
Subsetor Residencial	II Inventário	75,64	57,67	61,58	77,11		
Culposton Assignations	Estimativas	20,56	15,44	13,74	17,79	20,11	20,03
Subsetor Agricultura	II Inventário	20,59	15,47	13,74	17,78		
Subsetan Companiel	Estimativas	1,50	1,41	1,34	1,34	1,76	1,76
Subsetor Comercial	II Inventário	1,50	1,41	1,34	1,34		
Subsetor Público	Estimativas	0,07	0,09	0,06	0,04	0,02	0,02
Subsetor Publico	II Inventário	0,07	0,09	0,06	0,04		

Setor Energia - Queima de combustíveis CH_4

Figura 1.3 Emissões de $\mathrm{CH_4}$ da queima de combustíveis fósseis – setor Energia

Nota-se uma queda das emissões de $\mathrm{CH_4}$ em 2009, não recuperada nos anos seguintes. Essa redução deve-se à diminuição do consumo de lenha pelo Subsetor Carvoarias e do carvão vegetal no Subsetor Ferro-gusa e Aço. De 2010 para 2012, há queda devido à diminuição de consumo de bagaço nos Subsetores Energético e Alimento e Bebidas.

Figura 1.4 Estimativas de emissões de CH₄ da queima de combustíveis fósseis, por subsetor

Emissões de N₂0

Tabela 1.3 Emissões de N_2O , Estimativas e II Inventário, dos subsetores de Queima de Combustíveis Fósseis do setor Energia, para os anos 1990, 1995, 2000, 2005, 2011 e 2012.

Gg N ₂ O		1990	1995	2000	2005	2011	2012
Queima de Combustíveis	Estimativas	8,015	8,540	9,067	11,692	14,479	15,092
Queima de Combustiveis	II Inventário	8,396	9,001	9,488	11,882		
Subsetor Energético	Estimativas	1,326	1,451	1,296	1,870	2,665	2,809
	II Inventário	1,267	1,364	1,174	1,571		
Subsetor Industrial	Estimativas	3,294	3,561	3,939	5,149	6,207	6,394
Subsetor industrial	II Inventário	3,597	3,948	4,306	5,450		
Subsetor Transporte	Estimativas	1,527	1,993	2,255	2,712	3,868	4,154
	II Inventário	1,663	2,150	2,429	2,886		
Subsetor Residencial	Estimativas	1,385	1,068	1,146	1,426	1,138	1,132
Subsetor Residencial	II Inventário	1,385	1,068	1,145	1,426		
Culo at an April and thems	Estimativas	0,452	0,433	0,397	0,497	0,566	0,567
Subsetor Agricultura	II Inventário	0,454	0,435	0,397	0,497		
Culoatan Camanaial	Estimativas	0,028	0,025	0,027	0,031	0,031	0,032
Subsetor Comercial	II Inventário	0,028	0,026	0,029	0,042		
Subsetor Público	Estimativas	0,003	0,010	0,007	0,007	0,004	0,004
Subsetor Publico	II Inventário	0,003	0,010	0,008	0,009		

Setor Energia - Queima de combustíveis N₂O

Figura 1.5 Emissões de N₂O da queima de combustíveis fósseis - setor Energia

Nota-se a mesma redução da série do CO_2 em 2009 também na série de $\mathrm{N}_2\mathrm{O}$, devido às reduções nos subsetores energético e industrial. De 2010 para 2011, há queda devido à diminuição de consumo de bagaço nos subsetores Energético e Alimento e Bebidas; também há diminuição de consumo de lenha no Subsetor Residencial, que são retomados em 2012.

Figura 1.6 Estimativas de emissões de N_oO da queima de combustíveis fósseis, por subsetor

Em termos de CO₂eq, o Setor Energia – Queima de combustíveis tem o perfil apresentado abaixo.

Figura 1.7 Emissões da queima de combustíveis fósseis - setor Energia, em CO2eq

2) Emissões Fugitivas de Petróleo e Gás

Para as emissões fugitivas de petróleo e gás, as estimativas vieram diretamente da Petrobras. Foram apresentadas estimativas para 2009 até 2012, ao mesmo tempo em que foram revistos valores anteriormente liberados para os anos de 2003 a 2008, conforme o correspondente Relatório de Referência do II Inventário Brasileiro. Houve recálculos e inclusão de novas fontes de emissão.

As emissões dos anos de 1990 a 2002 são baseadas nas médias das emissões de cada gás entre 2003 a 2008, no caso dos setores de Exploração e Produção – E&P e de Refino; para o setor Transporte, as médias compreenderam os anos de 2004 a 2008, já que o ano 2003 apresentou problemas de medição, sendo estimado como os anos anteriores. As médias do setor E&P são feitas em relação à soma da produção de óleo condensado com a de LGN (em barris processados por dia – bpd); as médias do setor de Refino são feitas em relação ao volume de petróleo processado (bpd); e as do setor Transporte, em relação às emissões somadas dos dois setores (E&P e Refino).

A tabela abaixo resume as emissões do setor:

Tabela 1.4 Emissões de CO₂ do subsetor Fugitivas de Petróleo e Gás do setor de Energia, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012.

Emissões	1990	1995	2000	2005	2011	2012				
Lillissues	Gg CO₂eq									
E&P	5.920.916	6.304.434	9.154.643	12.354.798	12.119.864	12.927.892				
Refino	916.661	999.082	1.714.121	3.245.139	2.365.462	2.599.592				
Transporte	18.369	20.069	34.969	63.179	53.284	47.518				
TOTAL	6.855.946	7.323.585	10.903.734	15.663.116	14.538.610	15.575.002				

Em termos de CO₂eq, o gráfico a seguir mostra a diferença entre os valores do II Inventário e as Estimativas.

Figura 1.8 Emissões CO₂eq fugitivas de petróleo e gás, comparação II Inventário e Estimativas, para o setor Energia

Os gráficos abaixo mostram as alterações em relação aos anos do II Inventário, para cada um dos três gases.

Figura 1.9 Emissões de CO, fugitivas de petróleo e gás, comparação II Inventário e Estimativas, para o setor Energia

Figura 1.10 Emissões de CH₄ fugitivas de petróleo e gás, comparação II Inventário e Estimativas, para o setor Energia

Figura 1.11 Emissões de N₂O fugitivas de petróleo e gás, comparação II Inventário e Estimativas, para o setor Energia

3) Emissões Fugitivas da Produção de Carvão Mineral

Para as emissões fugitivas da produção de carvão mineral, o II Inventário Brasileiro estimou emissões de CO₂ e de CH₄.

Para o cálculo das emissões de CH₄, é necessária a produção bruta de carvão mineral (carvão run-of-mine – ROM) das minas subterrâneas e das minas a céu aberto. O portal eletrônico da Associação Brasileira de Carvão Mineral – ABCM apresenta o total por estado dessa produção, sem informar como se divide pelos dois tipos de minas. Seguiu-se o perfil da produção de 2005 para se fazer essa divisão. Com os fatores de emissão aplicados por tipo de mina, resultam as emissões do subsetor.

Tabela 1.5 Produção de carvão mineral por estado entre 2006 e 2012.

Produção	Estado	2006	2007	2008	2009	2010	2011	2012
	PR	314.370	408.401	415.227	351.930	293.329	344.161	315.131
ROM	RS	4.298.862	4.507.268	4.881.637	4.585.050	5.010.779	5.153.199	5.134.217
(t)	SC	7.097.804	7.228.895	9.522.597	8.208.063	6.278.327	6.570.292	6.097.496
	Total	11.711.036	12.144.564	14.819.461	13.145.043	11.582.435	12.067.652	11.546.844

Fonte: Portal Eletrônico da ABCM.

Divisão entre minas subterrâneas e minas a céu aberto:

Tabela 1.6 Produção de carvão mineral por tipo de mina do estado do Paraná de 2005 a 2012

Produção	Tipo	2005*	2006	2007	2008	2009	2010	2011	2012
	CA	0	0	0	0	0	0	0	0
ROM - PR (t)	SS	287.573	314.370	408.401	415.227	351.930	293.329	344.161	315.131
(5)	Total	287.573	314.370	408.401	415.227	351.930	293.329	344.161	315.131

^{*} II Inventário Brasileiro.

Tabela 1.7 Produção de carvão mineral por tipo de mina do estado do Rio Grande do Sul de 2005 a 2012.

Produção	Tipo	2005*	2006	2007	2008	2009	2010	2011	2012
	CA	4.250.367	4.298.862	4.507.268	4.881.637	4.585.050	5.010.779	5.153.199	5.134.217
ROM - RS (t)	SS	0	0	0	0	0	0	0	0
(5)	Total	4.250.367	4.298.862	4.507.268	4.881.637	4.585.050	5.010.779	5.153.199	5.134.217

^{*} II Inventário Brasileiro

Tabela 1.8 Produção de carvão mineral por tipo de mina do estado de Santa Catarina de 2005 a 2012.

Produção	Tipo	2005*	2006	2007	2008	2009	2010	2011	2012
	CA	131.720	145.352	148.036	195.008	168.088	128.570	134.549	124.867
ROM - SC (t)	SS	6.300.417	6.952.452	7.080.859	9.327.589	8.039.975	6.149.757	6.435.743	5.972.629
(0)	Total	6.432.137	7.097.804	7.228.895	9.522.597	8.208.063	6.278.327	6.570.292	6.097.496

^{*} II Inventário Brasileiro

Tabela 1.9 Produção de carvão mineral por tipo de mina do Brasil de 2006 a 2012.

Produção	Tipo	2006	2007	2008	2009	2010	2011	2012
ROM - Brasil (t)	CA	4.444.214	4.655.304	5.076.645	4.753.138	5.139.349	5.287.748	5.259.084
	SS	7.266.822	7.489.260	9.742.816	8.391.905	6.443.086	6.779.904	6.287.760
(4)	Total	11.711.036	12.144.564	14.819.461	13.145.043	11.582.435	12.067.652	11.546.844

Estimativas das emissões de CH₄:

Tabela 1.10 Emissões fugitivas de CH, da produção de carvão mineral por tipo de mina do Brasil de 2006 a 2012.

Emissões	s - Gg CH ₄	2006	2007	2008	2009	2010	2011	2012
	CA	1,042	1,092	1,190	1,115	1,205	1,240	1,23
Brasil	SS	53,070	54,694	71,152	61,286	47,054	49,514	45,92
	Total	54,112	55,786	72,342	62,401	48,259	50,754	47,15

Para o cálculo das emissões de CO₂, oriundas da queima espontânea nas pilhas de rejeitos, são necessários dados detalhados para um balanço de carbono, envolvendo o conteúdo de carbono na produção de ROM, nos produtos acabados e nos rejeitos dos diversos tipos de carvões. Na falta de tais dados, buscou-se uma correlação entre essas emissões e a produção bruta de carvão mineral (ROM) ou a produção de carvão mineral como produto final. A que melhor correlação apresentou foi com a produção de ROM.

Correlação entre emissões de CO₂ e produção de ROM (variações em relação a 1990)

Figura 1.12 Correlação entre a produção e as emissões fugitivas de carvão mineral

Com a equação definida no gráfico acima, onde y representa a variação das emissões de CO_2 em relação a 1990 e x, a variação da produção de ROM, foram calculadas as variações das emissões de CO_2 para 2006 até 2012 em relação a 1990 e, em seguida, as emissões para o período. O resultado está abaixo:

Tabela 1.11 Emissões fugitivas de CO, da produção de carvão mineral por tipo de mina do Brasil de 2006 a 2012

Emissões - Gg CO ₂	2006	2007	2008	2009	2010	2011	2012	
Brasil	1.358	1.418	1.784	1.555	1.341	1.407	1.336	

4) Resultados

A tabela a seguir mostra as estimativas das emissões para o Setor de Energia, com os valores publicados no II Inventário Brasileiro.

Tabela 1.12 Emissões de CO_2 , CH_4 e N_2O , Estimativas e II Inventário, do setor Energia, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012.

Gás	Fonte	1990	1995	2000	2005	2011	2012	
Gas		Gg						
60	Estimativas	176.216,0	217.257,5	287.511,6	313.139,6	393.185,6	431.484,7	
CO ₂	II Inventário	179.948,4	221.986,4	289.957,7	313.695,2			
CLI	Estimativas	429,6	365,7	393,1	550,1	467,4	473,5	
CH ₄	II Inventário	427.2	363.3	388.5	541.0			
N.O.	Estimativas	8,1	8,6	9,2	11,9	14,7	15,2	
N ₂ O	II Inventário	8,5	9,1	9,6	12,1			

O gráfico abaixo apresenta o Setor Energia completo, em CO2eq.

Figura 1.13 Emissões CO₂eq, comparação II Inventário e Estimativas, para o setor Energia

Nas Tabelas 1, 2 e 3 do Anexo são apresentados, de forma detalhada, os resultados das estimativas de emissão de CO_2 , CH_4 e N_2O do Setor Energia, em Gg, referentes aos anos de 1990 a 2012.

SETOR **PROCESSOS** INDUSTRIAIS

As estimativas para o Setor de Processos Industriais para os anos de 2006 a 2012 baseiam-se na série 1990-2005 do II Inventário Brasileiro, cuja metodologia está detalhada nos seus relatórios de referência⁸, e incorporam informações e dados atualizados para as diferentes fontes de emissão, sempre que possível. As emissões deste setor não se referem ao uso da energia, exceto para o setor siderúrgico, devido à impossibilidade de separação entre as emissões de processo e as energéticas.

1) Cimento 9 – CO_9

As emissões originadas da produção de cimento são devido à calcinação do calcário.

Novos dados:

Foram utilizados os dados de produção total de clínquer de 2008 a 2012, fornecidos pelo Sindicato Nacional da Indústria do Cimento – SNIC, que já havia informado os dados até 2007 para o Il Inventário

Hipóteses simplificadoras:

Na falta de atualização das emissões medidas pelas indústrias, ainda não disponíveis, o fator de emissão implícito entre emissões de CO₂ e produção total de clínquer de 2001 a 2007 foi usado de 2008 a 2012.

A Tabela 4 (no Anexo) mostra as estimativas das emissões de CO, para esta categoria.

As emissões provenientes da produção de cal são devido à calcinação do calcário.

Novos dados:

Para as estimativas de 2008 a 2012, foram utilizados os dados obtidos da Associação Brasileira dos Produtores de Cal – ABPC e do Anuário Estatístico do Setor de Transformação de Não Metálicos¹¹ do MME (que possui dados somente até 2011 sendo repetidos os valores em 2012).

A Tabela 4 (no Anexo) mostra as estimativas das emissões de CO, para esta categoria.

⁸ Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatórios de Referência do Setor Processos Industriais. Disponível em: <www.mct.gov.br/index.php/content/view/330037/Processos Industriais.html>.

⁹ MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa nos Processos Industriais – Produtos Minerais. Parte I: Produção de Cimento. Disponível em: swww.mct.gov.br/upd_blob/0228/228962.pdf>.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa nos Processos Industriais - Produtos Minerais. Parte II: Produção de Cal, Outros Usos do Calcário e Dolomita; Produção e Uso de Barrilha. Disponível em: <www.mct.gov.br/upd_blob/0228/228965.pdf>.

¹¹ Disponível em: <www.mme.gov.br/sgm/galerias/arguivos/publicacoes/Anuarios/anuario nao metalicos 2012.pdf>.

3) Outros usos do calcário e da dolomita¹²- CO₂

As emissões originadas da produção de cal são provenientes da calcinação do calcário e da dolomita, fora os usos na produção de cimento e de cal. Da mesma forma que no II Inventário, foram estimados os usos na indústria siderúrgica, de vidro e de magnésio.

Novos dados:

Para o setor siderúrgico, foi utilizado o consumo de calcário e dolomita constante no Anuário Estatístico do Setor Metalúrgico¹³ do MME, com o devido desconto da produção de cal do setor. Para a produção de vidro, foram utilizados os dados do Anuário Estatístico do Setor de Transformação de Não Metálicos do MME, que possui dados somente até 2011. Dessa forma, foram repetidos os dados de 2011 para o ano de 2012. Para a produção de magnésio, relatórios de monitoramento do projeto MDL da indústria indicaram a produção de magnésio primário para os anos de 2009 a 2012.

A Tabela 4 (no Anexo) mostra as estimativas das emissões de CO₂ para esta categoria.

4) Uso de barrilha 14 – CO_{2}

O uso de barrilha gera emissões de CO₂. Seu consumo é baseado nas importações, pois já não se produz no País desde 2001.

Novos dados:

Para as estimativas de 2008 a 2012, foram utilizados os dados de consumo a partir do Anuário da Indústria Química, produzido pela Associação Brasileira da Indústria Química — Abiquim.

A Tabela 4 (no Anexo) mostra as estimativas das emissões de CO, para esta categoria.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa nos Processos Industriais - Produtos Minerais. Parte II: Produção de Cal, Outros Usos do Calcário e Dolomita; Produção e Uso de Barrilha. Disponível em: <www.mct.gov.br/upd_blob/0228/228965.pdf >.

¹³ Disponível em: <www.mme.gov.br/sgm/galerias/arquivos/publicacoes/Anuarios/anuario_setor_metalurgico_2012.pdf>.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa nos Processos Industriais - Produtos Minerais. Parte II: Produção de Cal, Outros Usos do Calcário e Dolomita; Produção e Uso de Barrilha. Disponível em: <www.mct.gov.br/upd_blob/0228/228965.pdf >.

5) Siderurgia¹⁵ – \mathbf{CO}_{9}

A redução do minério de ferro no alto-forno com a utilização de coque de carvão mineral é a principal fonte de emissão de ${\rm CO_2}$, seguida da sinterização, um preparo em que os finos de minério de ferro são aglutinados antes de irem para o alto-forno. Essas emissões envolvem também a parte energética que não pode ser separada, sendo incluída neste setor, em conformidade com a metodologia do IPCC para inventários.

Novos dados:

Os dados de produção de sínter e aço foram obtidos para o período de 2007 até 2012 do Instituto Aço Brasil – IABr, completando a série que havia sido publicada até 2006 no II Inventário.

Hipóteses simplificadoras:

Foram utilizados os mesmos fatores de emissão implícitos que haviam sido calculados para 2006.

A Tabela 4 (no Anexo) mostra as estimativas das emissões de CO, para esta categoria.

6) Alumínio¹⁶ – CO_2 , CF_4 e C_2F_6

As emissões de CO₂ na produção de alumínio estão ligadas à queima de eletrodos de origem fóssil. Já as emissões de PFCs acontecem em virtude do efeito anódico nas cubas de redução da alumina, material oriundo da bauxita. O efeito anódico é fator de ineficiência da indústria e vem sendo combatido desde o início dos anos 90.

Novos dados:

Os dados de produção de alumínio primário de 2008 a 2012, pelas rotas *Soderberg* e *Prebaked*, foram obtidos da Associação Brasileira do Alumínio — ABAL, completando a série que havia sido publicada até 2007 no II Inventário.

Hipóteses simplificadoras:

Para cada rota tecnológica, foram utilizados os mesmos fatores de emissão implícitos que haviam sido calculados para 2007, os menores da série decrescente, que evidenciava constante aprimoramento no sentido de redução de emissões.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa nos Processos Industriais – Produção de Metais: Ferro e Aço. Disponível em: kwww.mct.gov.br/upd_blob/0228/228964.pdf>.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa nos Processos Industriais – Produção de Metais: Alumínio. Disponível em: <www.mct.gov.br/upd_blob/0228/228963.pdf>.

A Tabela 4 e a Tabela 7 (no Anexo) mostram as estimativas das emissões de CO_2 , CF_4 e C_2F_6 para este setor.

7) Produtos químicos¹⁷ – CO_2 , CH_4 e N_2O

Diversos processos na área da química geram gases de efeito estufa. Para cada produto químico, as emissões de um gás podem ser obtidas com o dado dessa produção multiplicado pelo fator de emissão desse gás, que pode variar segundo a tecnologia empregada.

Novos dados:

Para o setor químico, os dados de atividade de 2008 a 2012 foram obtidos da Abiquim, assim como foi feito até 2007 para o Relatório de Referência do II Inventário. Alguns dados de produção de 2006 e 2007 foram corrigidos. As emissões de N₂O referentes à produção de ácido adípico e ácido nítrico foram obtidas através dos relatórios de monitoramento dos projetos MDL disponíveis na internet¹⁸.

Hipóteses simplificadoras:

Para as estimativas de 2008 a 2012, os mesmos fatores de emissão usados em 2007 foram utilizados até 2012. Para as produções de carbureto de cálcio, óxido de eteno, acrilonitrila e negro de fumo foram repetidos os valores de produção de 2010 e, para as produções de cloreto de vinila e ácido adípico, foram repetidos os valores de 2011 fornecidos pela Abiquim, pela falta de dados mais atualizados. Para a produção de ácido fosfórico, cujas emissões derivam do concentrado fosfático – não disponível para 2011, tomou-se a mesma relação existente entre as duas substâncias em 2010, aplicando-se à produção de ácido fosfórico de 2011 do Anuário.

As Tabelas 4, 5 e 6 (no Anexo) mostram as estimativas das emissões de CO_2 , CH_4 e N_2O para este subsetor.

8) Produção e consumo de HFCs¹⁹

A produção de HCFC-22, que gera HFC-23, não acontece mais no País, tendo sido encerrada em 1999. O consumo das diversas espécies de HFCs, em geral potentes gases de efeito estufa que passaram a substituir em alguns casos os CFCs devido ao Protocolo de Montreal, tem aumentado nos últimos anos.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa nos Processos Industriais: Indústria Química. Disponível em: <www.mct.gov.br/upd_blob/0228/228961.pdf>.

¹⁸ Disponível em http://cdm.unfccc.int/.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa nos Processos Industriais - Emissões na Produção e no Consumo de HFCs e PFCs. Disponível em: www.mct.gov.br/upd_blob/0228/228960.pdf>.

Hipóteses simplificadoras:

Para o período de 2006 a 2012, preliminarmente, foram estimadas as emissões desses gases conforme regressão linear das emissões no período 2000-2005, publicadas no II Inventário.

A Tabela 7 (no Anexo) mostra as estimativas das emissões de HFCs para este subsetor.

9) Consumo de SF₆

O uso de SF_6 , potente gás de efeito estufa, dá-se basicamente na produção de magnésio e no setor elétrico, onde é usado em chaves e disjuntores de grande porte. A produção de magnésio passou a utilizar SO_2 em vez de SF_6 por conta de um projeto MDL, eliminando seu uso a partir do segundo semestre de 2009.

Hipóteses simplificadoras:

Para os anos de 2006 a 2012, preliminarmente, foram estimadas as emissões de SF₆ do setor elétrico conforme regressão linear das emissões no período 2000-2005, publicadas no II Inventário. Para a indústria de magnésio, preliminarmente, foram consideradas para 2008 as mesmas emissões de 2007 e para 2009, metade delas, já que o primeiro relatório de monitoramento indica início efetivo do projeto MDL apenas no segundo semestre de 2009; assim, fica completa a série que havia até 2007 com base nas informações da própria indústria, por ocasião do II Inventário.

A Tabela 7 (no Anexo) mostra as estimativas das emissões de SF₆ para este subsetor.

Resultados

Os gases de efeito estufa estimados para o Setor de Processos Industriais envolvem os gases dióxido de carbono (CO_2) , metano (CH_4) , óxido nitroso (N_2O) , os hidrofluorcabonos (HFCs), os perfluorcarbonos (PFCs) e o hexafluoreto de enxofre (SF_6) . O gráfico abaixo apresenta o resultado das emissões do setor em dióxido de carbono equivalente $-CO_2$ eq, de 1990 a 2012.

SETOR PROCESSOS INDUSTRIAIS

Figura 2.1 Emissões de CO₂eq, comparação II Inventário e Estimativas, para o setor Processos Industriais

A seguir, os gráficos de CO_2 – principal gás emitido no setor, CH_4 e N_2O , mostrando-se também a comparação com o publicado no II Inventário Brasileiro, de 1990 a 2005.

Figura 2.2 Emissões de CO₂, comparação II Inventário e Estimativas, para o setor Processos Industriais

Figura 2.3 Emissões de CH₄, comparação II Inventário e Estimativas, para o setor Processos Industriais

Figura 2.4 Emissões N₂O, comparação II Inventário e Estimativas, para o setor Processos Industriais

SETOR PROCESSOS INDUSTRIAIS

Dignas de nota, a baixa em 2009 das emissões de ${\rm CO_2}$ devido à queda na produção de ferro e aço pela crise internacional e a queda, a partir de 2007, das emissões de ${\rm N_2O}$ pela introdução do MDL nas indústrias de ácido adípico e ácido nítrico.

A tabela a seguir mostra as estimativas das emissões para o Setor de Processos Industriais, juntamente com os valores publicados no II Inventário Brasileiro.

Tabela 2.1 Emissões de CO₂, CH₄, N₂O, HFCs, CF₄, C₂F₆ e SF₆, Estimativas e II Inventário, do setor Processos Industriais, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012.

G.		1990	1995	2000	2005	2011	2012	
Gás	Fonte	Gg						
60	II Inventário	45.265	52.806	63.220	65.474			
CO ₂	Estimativas	45.265	52.806	63.220	65.478	78.711	77.406	
CH	II Inventário	5,15	6,44	8,88	9,23			
CH ₄	Estimativas	5,15	6,44	8,89	9,23	11,17	11,24	
N,O	II Inventário	10,68	17,44	19,94	22,82			
N ₂ O	Estimativas	10,69	17,44	19,94	22,83	0,93	0,8	
HFC-23	II Inventário	0,1202	0,153	0	0			
HFC-23	Estimativas	0,1202	0,153	0	0	0	0	
HFC125	II Inventário	0	0	0,0071	0,1249			
TIFC123	Estimativas	0	0	0,0071	0,1249	0,2697	0,2936	
HFC134a	II Inventário	0,0004	0,273	0,4713	2,2819			
TIFC154a	Estimativas	0,0004	0,273	0,4713	2,2819	3,3894	3,6808	
HFC143a	II Inventário	0	0	0,0075	0,0929			
пгС145а	Estimativas	0	0	0,0075	0,0929	0,2155	0,2346	
HFC152a	II Inventário	0	0	0,0001	0,1748			
TIFCIJZa	Estimativas	0	0	0,0001	0,1748	0,2823	0,3098	
CF₄	II Inventário	0,3022	0,306	0,1465	0,1239			
Cr ₄	Estimativas	0,3022	0,306	0,1465	0,1239	0,1011	0,1026	
CE	II Inventário	0,0263	0,0264	0,0117	0,0104			
C ₂ F ₆	Estimativas	0,0263	0,0264	0,0117	0,0104	0,0086	0,0086	
SE	II Inventário	0,0099	0,0142	0,0153	0,0252			
SF ₆	Estimativas	0,0099	0,0142	0,0153	0,0252	0,0076	0,0079	

3. SETOR AGROPECUÁRIA

As estimativas para o Setor Agropecuária para os anos de 2006 a 2012 baseiam-se na série 1990-2005 do II Inventário Brasileiro, cuja metodologia está detalhada nos seus relatórios de referência²⁰, e incorporam informações e dados atualizados para as diferentes fontes de emissão, sempre que possível.

1) Emissões de metano por fermentação entérica e manejo de dejetos de animais²¹

Este item apresenta as estimativas de emissão de metano (CH₄) proveniente da fermentação entérica e do manejo de dejetos animais no País.

A produção de metano é parte do processo digestivo normal dos herbívoros ruminantes e ocorre em parte do seu estômago compartimentado (rúmen e retículo). Da mesma forma, ocorre a emissão de metano, quando o material orgânico dos dejetos animais é decomposto sob condições anaeróbias. Essas condições são favorecidas quando os dejetos são estocados na forma líquida (em lagoas, charcos e tanques). A fermentação entérica é a principal fonte de emissão de metano do setor. Os dejetos animais sob condições anaeróbias constituem importante fonte de emissão de metano em sistemas intensivos de manejo de animais confinados.

As categorias de animais considerados pelas metodologias do IPCC 1996 incluem: animais ruminantes (gado de leite, gado de corte, búfalos, ovelhas e cabras) e animais não ruminantes (cavalos, mulas, asnos e suínos). A categoria de aves é incluída apenas na estimativa das emissões pelo manejo de dejetos animais. As emissões de metano a partir de dejetos animais estão associadas a dejetos de animais confinados manejados em condições anaeróbias.

Novos dados:

Foram utilizados os dados de população animal para todas as categorias, a partir das séries disponibilizadas pelo IBGE.

Hipóteses simplificadoras:

Para os demais dados, como tipos de manejo e características dos rebanhos, foram utilizados os mesmos de 2005 ou 2006, caso este último dado já estivesse publicado no Relatório de Referência.

A Tabela 8 (no Anexo) mostra as emissões de metano para as categorias de fermentação entérica e manejo de dejetos de animais, para todos os anos, e a Tabela 10, as emissões por estado.

Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatórios de Referência do Setor Agricultura. Disponível em: <www.mct.gov.br/index.php/content/view/330035/Agricultura.html>.

²¹ MCTI, Relatório de Referência: Emissões de Metano por Fermentação Entérica e Manejo de Dejetos de Animais. Disponível em: < www.mct.gov.br/upd blob/0228/228968.pdf>.

2) Emissões de metano do cultivo de arroz²²

As emissões de metano são estimadas, genericamente, multiplicando-se um fator de emissão pela área colhida anual, considerando as diferentes condições de cultivo de arroz irrigado por inundação do solo no País (regime contínuo, intermitente e de várzea). O arroz de sequeiro, menos produtivo, por ser produzido em ambiente oxidado, não emite metano. Esse sistema de cultivo predominava no período coberto pelo II Inventário Brasileiro, respondendo por 63% do total da área colhida no País em 2005; a partir de então, houve redução gradativa na área cultivada com arroz de sequeiro, de forma que representava 44% do total em 2011.

Para o cálculo das emissões de metano por cultivo de arroz são consideradas as seguintes informações: (i) a área colhida de arroz por regime de manejo de água; (ii) os fatores de emissão de metano integrados ao fator de sazonalidade, para diferentes ecossistemas de arroz (em função de regimes de água); e (iii) informação sobre a aplicação de fertilizantes orgânicos e/ou a quantidade de biomassa vegetal (resíduos) incorporada ao sistema por ocasião do cultivo do arroz.

Novos dados:

Para as estimativas de 2006 a 2012, foram utilizados os dados de área colhida de arroz obtidos em base de dados disponibilizada pela Embrapa Arroz e Feijão — CNPAF, que compila informações provenientes do Levantamento Sistemático da Produção Agrícola do IBGE, sendo mantidos os mesmos parâmetros de 2006 publicados no Relatório de Referência do II Inventário.

Hipóteses simplificadoras:

Os parâmetros (fatores de emissão e de escala) utilizados de 1990 a 2006, disponíveis no II Inventário, foram mantidos para as estimativas até 2012.

A Tabela 8 (no Anexo) mostra as emissões de CH₄ para a categoria de cultivo de arroz, para todos os anos, e a Tabela 10, as emissões por Estado.

MCTI, Relatório de Referência: Emissões de Metano do Cultivo de Arroz. Disponível em: < www.mct.gov.br/upd_blob/0228/228967.pdf>.

3) Emissões de metano e óxido nitroso por queima de resíduos agrícolas²³

A queima de resíduos agrícolas, responsável pela emissão de metano (CH_4) e óxido nitroso (N_2O) , foi considerada para dois tipos de cultura, algodão herbáceo e cana-de-açúcar, embora para a primeira, de acordo com especialistas, a queima já tenha parado de acontecer em 1996, quando esta prática foi substituída por métodos mecânicos e químicos de erradicação dos resíduos após a colheita. Sendo assim, de 2006 a 2012, apenas foi considerada a queima dos resíduos de cana-de-açúcar.

Conforme mencionado no II Inventário, a adoção da colheita mecanizada (sem queima), para o estado de São Paulo, ocorreu a partir de 1996 correspondendo a 10% da área total plantada. A partir de 1997, houve um aumento de área colhida mecanicamente nesse estado, conforme dados apresentados no Relatório de Referência.

Novos dados:

Como único acerto para o período do II Inventário, foi utilizada a fração de 10% de área mecanizada para o Paraná em 2005, pois, apesar de o Relatório de Referência mencionar esse dado, ele não havia sido incluído no cálculo das emissões.

Para o período de 2007 a 2012, foram utilizadas as frações de mecanização para os estados de Pernambuco e Alagoas, 4% e 3%, respectivamente, a partir da safra de 2007, de acordo com levantamento de dados da Conab. Os dados de fração queimada em campo também foram atualizados para o estado de São Paulo.

As informações de produção de cana-de-açúcar e área colhida foram obtidas do Levantamento Sistemático da Produção Agrícola — LSPA do IBGE para o período de 2006 a 2012, assim como o considerado para o II Inventário.

Hipóteses simplificadoras:

Para os outros estados, em razão da ausência de dados e de indicações fornecidas por especialistas quanto às frações gradativas de ocorrência de mecanização, assumiu-se que, da mesma forma que em 2006, toda a área colhida de cana-de-açúcar estava sujeita à queima até 2012. Para a relação entre a produção de palhiço e a produção de colmos na cultura da cana-de-açúcar, o mesmo valor usado de 1997 a 2006 foi mantido até 2012.

As Tabelas 8 e 9 (no Anexo) mostram as emissões de metano e de óxido nitroso, respectivamente, para a categoria de queima de resíduos agrícolas, para todos os anos.

²³ MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa na Queima de Resíduos Agrícolas. Disponível em: www.mct.gov.br/upd blob/0228/228966.pdf>.

4) Emissões de óxido nitroso de solos agrícolas e de manejo de dejetos²⁴

Conforme detalhado no Relatório de Referência do II Inventário Brasileiro, as emissões diretas de óxido nitroso (N_2O) ocorrem pela adição de fertilizantes sintéticos e estercos animais aos solos, pela incorporação no solo de resíduos de colheita e pela mineralização de nitrogênio associada ao cultivo de solos orgânicos.

As emissões indiretas de N_2O são calculadas da porção do nitrogênio adicionado aos solos como fertilizantes e estercos, que é volatilizada como NH_3 e NOx e depositada nos solos, e também daquela perdida por lixiviação.

Por último, devem ser reportadas como emissões de N_2O de solos agrícolas aquelas diretas e indiretas provenientes da deposição de excretas (fezes e urina) de animais em pastagens. Aqui também são incluídas as emissões de N_2O provenientes dos sistemas de tratamento de dejetos animais

Novos dados:

Para a produção agrícola de 2006 a 2012, foram consideradas as mesmas culturas: soja, cana, feijão, arroz, mandioca, milho e outras culturas temporárias (abacaxi, algodão, amendoim, aveia, batata doce, batata inglesa, centeio, cevada, ervilha, fava, girassol, linho, mamona, melancia, melão, sorgo, tomate, trigo e triticale). Os respectivos valores de produção foram obtidos pelo Censo Agropecuária do IBGE. Da mesma forma foram obtidos os dados de população animal, conforme indicado no item acima.

Hipóteses simplificadoras:

Foram mantidos os mesmos parâmetros para as culturas, usados de 1990 a 2006, até 2012. A equação linear que estimou o uso de solos orgânicos, com taxa anual de crescimento de 18,7 mil hectares, foi mantida até 2012. Para a quantidade de nitrogênio contido nos fertilizantes sintéticos, buscou-se uma correlação linear entre a quantidade consumida de fertilizante (disponível no portal eletrônico da Associação Nacional de Defensivos Agrícolas — Anda) e a de nitrogênio nela contido (disponível no Relatório de Referência do II Inventário), entre os anos de 1998 e 2006, para se chegar aos valores até 2012.

A Tabela 9 (no Anexo) mostra os resultados das estimativas para as emissões diretas e indiretas de N_2O de solos agrícolas e de manejo de dejetos de animais, para todos os anos, e a Tabela 11, as emissões por estado.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa na Queima de Resíduos Agrícolas. Disponível em: www.mct.gov.br/upd blob/0228/228966.pdf>.

Resultados

O gráfico a seguir apresenta as parcelas de contribuição das diferentes fontes do setor para as emissões de CH₄ no ano de 2012, sendo a fermentação entérica do gado de corte a principal fonte, responsável por 75% das emissões, seguida da fermentação entérica do gado de leite, 12%. O quantitativo das populações de bovinos de corte e leite explica essa diferença de contribuição de emissões. As contribuições restantes, da fermentação entérica de outros animais, do manejo de dejetos animais, da queima de resíduos agrícolas da cana-de-açúcar e do cultivo de arroz totalizam 13% das emissões.

Figura 3.1 Percentual de emissões de CH, dos subsetores para o setor Agropecuária

O gráfico a seguir apresenta as parcelas de contribuição das diferentes atividades do setor para a emissão de N₂O no ano de 2012. Pode-se observar que as emissões diretas dos solos agrícolas – provenientes do esterco dos animais em pastagem, do uso de fertilizantes sintéticos, da aplicação de adubo, da incorporação no solo dos resíduos agrícolas e das áreas de cultivo de solos orgânicos – contribuem com 64% das emissões totais. A maior contribuição identificada dentro das emissões diretas é oriunda dos animais em pastagem (41% do total).

Figura 3.2 Percentual de emissões de N₂O dos subsetores para o setor Agropecuária

Os gases de efeito estufa estimados para o Setor Agropecuária restringem-se ao metano (CH_4) e ao óxido nitroso (N_2O). O gráfico abaixo apresenta o resultado das emissões para esses gases no Brasil, de 1990 a 2012, mostrando também a comparação com o publicado no II Inventário Brasileiro, de 1990 a 2005.

Figura 3.3 Emissões CH₄, comparação II Inventário e Estimativas, para o setor Agropecuária

Figura 3.4 Emissões de N₂O, comparação II Inventário e Estimativas, para o setor Agropecuária

A Figura 3.5 a seguir apresenta a contribuição dos dois gases em termos de CO_2 eq no setor, sendo que, no Anexo, as Tabelas 10 e 11 apresentam sua distribuição por estado, respectivamente para CH_4 e N_2O .

Figura 3.5 Contribuição percentual dos gases CH, e N,O para as emissões em CO,eq do setor Agropecuária em 2012

SETOR AGROPECUÁRIA

A tabela abaixo mostra as estimativas das emissões de $\mathrm{CH_4}$ e $\mathrm{N_2O}$ para o Setor Agropecuária, com os valores publicados no II Inventário Brasileiro.

Tabela 3.1 Emissões de CH_4 e N_2O , Estimativas e II Inventário, do setor Agropecuária, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012

Gás	Forto	1990	1995	2000	2005	2011	2012		
Gas	Fonte	Gg							
CII	II Inventário	9.539	10.447	10.772	12.768	-	-		
CH ₄	Estimativas	9.539	10.447	10.772	12.767	13.399	13.270		
N.O.	II Inventário	334	375	393	476	-	-		
N ₂ O	Estimativas	334	375	393	476	543	541		

Emissões de CO₂

As estimativas para o Setor Mudança do Uso da Terra e Florestas para os anos de 2006 a 2012 baseiam-se na mesma metodologia empregada nos anos de 2003 a 2005 no II Inventário Brasileiro, tendo como base o Relatório de Referência²⁵ que analisou o período 1994-2002 através da comparação de imagens de satélite.

Unicamente neste setor, são estimadas remoções de CO₂ (quando há crescimento da vegetação, com a transformação de CO₂ em carbono fixado e liberação de oxigênio, pelo processo de fotossíntese) além de emissões de CO₂ (quando há perda de carbono para a atmosfera, pelo processo de oxidação). Lembrando que só se contabilizam emissões e remoções antrópicas as emissões de CO₂, devido ao desmatamento, e outras mudanças de uso da terra são parcialmente compensadas por remoções de CO₂ das áreas onde há interferência humana, não só as de reflorestamento e de vegetação secundária, como também outras áreas consideradas manejadas, conforme a metodologia do IPCC. No Brasil, as áreas de floresta e de vegetação nativa não florestal contidas em Terras Indígenas e no Sistema Nacional de Unidades de Conservação da Natureza são áreas submetidas a processo de planejamento e implementação de práticas para manejo e uso da terra com vista a cumprir relevantes funções ecológicas, econômicas e sociais, sendo consideradas, de acordo com essa metodologia, manejadas. Excetuam-se, por enquanto, as Reservas Particulares do Patrimônio Natural.

Por isso, aparecem aqui as expressões "emissões brutas", "remoções" e "emissões líquidas" de CO₂.

Hipóteses usadas no II Inventário

1.Para a Amazônia, as emissões brutas de ${\rm CO}_2$ de 1994-2002 (intervalo de oito anos entre as imagens) foram distribuídas nesse período conforme o desflorestamento bruto dado pelo Prodes de 1995 a 2002 (dados de oito anos), considerando-se o bioma Amazônia igual à Amazônia Legal, visto que, em termos florestais, ambos possuem praticamente a mesma área. Da área da Amazônia Legal, é desconsiderado quase 1 milhão de km² de áreas de não floresta, segundo o Prodes, situadas nos limites dos biomas Cerrado e Pantanal, conforme o Relatório de Referência. Assim, o período de análise de imagens de 1994 a 2002 transformou-se no período 1995-2002 do inventário. De 2003 a 2005, a mesma variação dos números do PRODES foi aplicada às emissões brutas do bioma Amazônia de 2002. Já as remoções calculadas no período 1994-2002 foram divididas por oito (intervalo de anos) e mantidas constantes dentro desse período e até 2005.

Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Dióxido de Carbono no Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Disponível em: www.mct.gov.br/upd_blob/0228/228952.pdf>.

- 2. Para o Cerrado, após 2002, foi usada uma relação entre o desmatamento médio do período 1994-2002, dado pelo Relatório de Referência, e o do período 2002-2008, dado pelo PPCerrado, para corrigir as emissões brutas de CO₂. Além disso, da mesma forma que para o bioma Amazônia, as remoções calculadas no período 1994-2002 foram divididas por oito e mantidas constantes, não só dentro desse período como até 2005.
- 3. Para os demais biomas, simplesmente dividiram-se as emissões líquidas de 1994-2002 por oito, mantendose o resultado para 1995 até 2005.

Hipóteses simplificadoras para as estimativas até 2012

- 1. Para a Amazônia, a disponibilidade dos dados anuais do Prodes permite continuar o mesmo raciocínio usado de 2003-2005 também para 2006-2012. Dessa vez, porém, como as emissões do bioma Amazônia foram separadas por estado, em função da disponibilidade dos polígonos de cálculo usados no II Inventário, aliado ao fato de que o Prodes é disponibilizado também por estado, as modulações das emissões brutas seguiram essa categorização.
- 2. Passaram a ser disponíveis dados de desmatamento bruto através do "Projeto de Monitoramento do Desmatamento dos Biomas Brasileiros por Satélite" para todos os outros biomas nos períodos 2002-2008, 2008-2009. Adicionalmente, no período de 2009-2010, há dados para o Cerrado. Assim, pode-se usar agora a mesma metodologia usada no II Inventário para o Cerrado também para os outros biomas, corrigindo-se as emissões brutas conforme os desmatamentos médios anuais, respeitando-se os períodos mencionados. Para os demais biomas no ano de 2010 (exceto para o Cerrado que já tem número publicado), o desmatamento considerado será o mesmo de 2009. Para os anos de 2011 e 2012, na falta de novas informações, os mesmos valores utilizados para 2010 foram utilizados. Já as remoções calculadas no período 1994-2002 foram divididas por oito e mantidas constantes, da mesma forma que no II Inventário, não só dentro desse período como até 2012.
- 3. Foram incluídas as remoções de CO₂ relativas às áreas consideradas manejadas (áreas de floresta e de vegetação nativa não florestal contidas em Terras Indígenas e no Sistema Nacional de Unidades de Conservação da Natureza, excetuando-se as Reservas Particulares do Patrimônio Natural), incluídas entre 1994-2002, e que haviam sido contadas pela metade após 2002. As remoções de carbono das áreas manejadas são estimadas com a média de 0,62 tC/ha/ano. Para as áreas de proteção criadas durante o período de 1994-2002, foi usado, por simplificação, o valor médio de 0,31 tC/ha/ano, pois em média teriam sido criadas no meio do período, mas o valor de 0,62 tC/ha/ano deveria ter sido usado após 2002, o que não aconteceu no II Inventário. Nessas estimativas isso é corrigido, embora não tenham sido acrescentadas as novas reservas criadas após 2002.

Uma parceria do Centro de Sensoriamento Remoto do Ibama, Secretaria de Biodiversidade e Florestas do Ministério do Meio Ambiente e Pnud. Disponível em: http://siscom.ibama.gov.br/monitorabiomas/index.htm>.

A. Mudança do Uso da Terra e Florestas

Biomas

1) Amazônia

Para separar as emissões brutas e as remoções que, somadas, perfazem as emissões líquidas, foi usado o resultado do estudo feito para o período 1994-2002 do II Inventário, uma vez que foi gerada uma tabela detalhada e que permite tal separação, a Tabela 12 (no Anexo). Agora, com a utilização dos polígonos de cálculo usados para a geração dessa tabela, pôde-se separar o bioma segundo os vários estados, ou seja, a Tabela 12 divide-se nas Tabelas 13 a 21, segundo cada um deles. Para o cálculo das emissões brutas, foi considerada a soma dos valores positivos em cada célula das respectivas tabelas, exceto as de somatório; para o período em questão, 3.225.789 Gg CO₂ – Pará; 2.302.577 Gg CO₂ – Mato-Grosso; 1.358.021 Gg CO₂ – Rondônia; 636.326 Gg CO₂ – Maranhão; 364.875 Gg CO₂ – Amazonas; 313.353 Gg CO₂ – Acre; 128.400 Gg CO₂ – Roraima; 106.553 Gg CO₂ – Tocantins e 29.897 Gg CO₂ – Amapá.

Para o bioma Amazônia, conforme a edição anterior das Estimativas, usou-se a mesma hipótese adotada no II Inventário, considerando a transformação das emissões calculadas para o período único de 1994-2002 nas emissões anuais equivalentes de 1995 a 2002. Nesta edição, no entanto, as emissões dos estados incluídos no bioma Amazônia puderam ser calculadas por meio da variação anual da taxa de desmatamento de cada estado, conforme informado nas estatísticas do Prodes. Com isso, é possível obter para cada ano as emissões brutas compatíveis com o cenário de desmatamento de cada estado.

As taxas anuais de desmatamento do Prodes²⁷, em km², estão mostradas a seguir.

²⁷ Projeto de Monitoramento do Desflorestamento na Amazônia Legal – Prodes, Taxas anuais do desmatamento de 1988 até 2011. Disponível em: http://www.obt.inpe.br/prodes/prodes/ 1988 2011.htm>.

Tabela 4.1 Taxa de desmatamento anual na Amazônia Legal (em km²), por estado

	1995	1996	1997	1998	1999	2000	2001	2002
Acre	1.208	433	358	536	441	547	419	883
Amazonas	2.114	1.023	589	670	720	612	634	885
Amapá	9	-	18	30	-	-	7	-
Maranhão	1.745	1.061	409	1.012	1.230	1.065	958	1.085
Mato Grosso	10.391	6.543	5.271	6.466	6.963	6.369	7.703	7.892
Pará	7.845	6.135	4.139	5.829	5.111	6.671	5.237	7.510
Rondônia	4.730	2.432	1.986	2.041	2.358	2.465	2.673	3.099
Roraima	220	214	184	223	220	253	345	84
Tocantins	797	320	273	576	216	244	189	212
Amazônia Legal	29.059	18.161	13.227	17.383	17.259	18.226	18.165	21.651

Tabela 4.2 Proporção do desmatamento anual em relação à média de 1995 a 2002 (oito anos) em cada estado da Amazônia Legal.

	1995	1996	1997	1998	1999	2000	2001	2002
Acre	2,003	0,718	0,594	0,889	0,731	0,907	0,695	1,464
Amazonas	2,334	1,129	0,650	0,740	0,795	0,676	0,700	0,977
Amapá	1,125	0,000	2,250	3,750	0,000	0,000	0,875	0,000
Maranhão	1,630	0,991	0,382	0,945	1,149	0,995	0,895	1,013
Mato Grosso	1,443	0,909	0,732	0,898	0,967	0,885	1,070	1,096
Pará	1,295	1,012	0,683	0,962	0,844	1,101	0,864	1,239
Rondônia	1,737	0,893	0,729	0,750	0,866	0,905	0,982	1,138
Roraima	1,010	0,982	0,845	1,024	1,010	1,161	1,584	0,386
Tocantins	2,255	0,906	0,773	1,630	0,611	0,691	0,535	0,600
Amazônia Legal	1,518	0,949	0,691	0,908	0,902	0,952	0,949	1,131

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	1.078	728	592	398	184	254	167	259	280	305
	1.558	1.232	775	788	610	604	405	595	502	523
	25	46	33	30	39	100	70	53	66	27
	993	755	922	674	631	1.271	828	712	396	269
:	10.405	11.814	7.145	4.333	2.678	3.258	1.049	871	1.120	757
	7.145	8.870	5.899	5.659	5.526	5.607	4.281	3.770	3.008	1.741
	3.597	3.858	3.244	2.049	1611	1136	482	435	865	773
	439	311	133	231	309	574	121	256	141	124
	156	158	271	124	63	107	61	49	40	52
	25.396	27.772	19.014	14.286	11.651	12.911	7.464	7.000	6.418	4.571

2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
1,787	1,207	0,982	0,660	0,305	0,421	0,277	0,429	0,464	0,506
1,720	1,360	0,856	0,870	0,673	0,667	0,447	0,657	0,554	0,577
3,125	5,750	4,125	3,750	4,875	12,500	8,750	6,625	8,250	3,375
0,928	0,705	0,861	0,630	0,589	1,187	0,773	0,665	0,370	0,251
1,445	1,641	0,992	0,602	0,372	0,453	0,146	0,121	0,156	0,105
1,179	1,464	0,974	0,934	0,912	0,925	0,707	0,622	0,496	0,287
1,321	1,417	1,191	0,753	0,592	0,417	0,177	0,160	0,318	0,284
2,015	1,427	0,610	1,060	1,418	2,635	0,555	1,175	0,647	0,569
0,442	0,447	0,767	0,351	0,178	0,303	0,173	0,139	0,113	0,147
1,327	1,451	0,993	0,746	0,609	0,675	0,390	0,366	0,335	0,239

A figura a seguir representa o perfil de desmatamento da Amazônia Legal.

Figura 4.1 Área desmatada anualmente na Amazônia Legal entre 1990 e 2012, conforme dados do Prodes citados

A figura abaixo ilustra as diferentes taxas de desmatamento para os estados constituintes da Amazônia Legal ou, conforme explicado anteriormente, do próprio bioma Amazônia.

Figura 4.2 Variação das áreas desmatadas anualmente nos estados da Amazônia Legal entre 1995 e 2012, conforme dados do Prodes.

O valor médio das emissões brutas no período de 1994 a 2002 (oito anos entre imagens) foi então multiplicado pela proporção calculada anteriormente, para cada um dos anos do período 1995 a 2002, como também para os demais até 2012, para cada estado, fornecendo as emissões brutas anuais dos estados do bioma Amazônia.

Para as remoções, foi considerada a soma de todos os valores negativos no período 1994-2002, também em cada estado. A média dos oito anos desse período foi o valor adotado de 1995 a 2002 (oito anos de inventário). De 2003 até 2012 adicionaram-se ao valor das remoções de 2002 as remoções corrigidas das áreas tornadas manejadas entre 1994 e 2002, conforme assinalado anteriormente (transição "floresta não manejada" para "floresta manejada").

As emissões líquidas são calculadas pela soma das emissões brutas com as remoções (valores negativos), agregando-se finalmente os valores estaduais para se chegar às emissões do bioma Amazônia, sendo o resultado apresentado na Tabela 28 (no Anexo).

A figura a seguir mostra como as emissões do bioma Amazônia se dividem pelos estados que o compõem.

Figura 4.3 Emissões de CO, do bioma Amazônia, por estado, no período 1994-2002

A figura abaixo representa as estimativas das emissões líquidas de CO_2 para a Amazônia, o resultado do II Inventário para esse bioma, além do resultado da edição anterior das Estimativas, feito sem considerar a divisão por estado.

Figura 4.4 Emissões líquidas de CO, do bioma Amazônia, incluindo o novo resultado com a modulação por estado

2) Demais biomas

Para separar as emissões brutas e as remoções em cada bioma, também foi usado o resultado do estudo feito para o período 1994-2002, conforme a Tabela 22 (no Anexo) exemplificada para o Cerrado. Para as emissões brutas foi considerada a soma dos valores positivos de cada célula da tabela, exceto as de somatório, para o período em questão. Dividindo-se esse valor por oito chega-se à média anual para as emissões brutas de 1995 a 2002, em cada bioma. A tabela abaixo mostra as emissões brutas para cada bioma.

Tabela 4.3 Emissões brutas para o período de 1994 a 2002 e a média anual do período para o setor de Mudança do Uso da Terra e Florestas.

Bioma	Emissões brutas no período 1994-2002	Emissões brutas anuais				
БЮПа	$GgCO_2$					
Cerrado	2.622.510,23	327.813,78				
Mata Atlântica	728.885,93	91.110,74				
Caatinga	343.820,79	42.977,60				
Pantanal	136.159,60	17.019,95				
Pampa	757,05	94,63				

As emissões brutas, a partir de 2003, são calculadas levando-se em consideração a variação na taxa média de desmatamento por bioma. No período do Relatório de Referência do II Inventário, de 1994 a 2002, para a área de desmatamento foi considerado o aumento da área antropizada, calculado pela diferença entre a soma das áreas antropizadas de 2002 e a soma das áreas antropizadas de 1994, que podem ser retiradas desde a Tabela 23 até a Tabela 27 (no Anexo). As áreas antropizadas foram consideradas como sendo a soma das categorias de uso da terra FSec – Floresta secundária; Ref – Reflorestamento; GSec – Campo com vegetação secundária; Ap – Pastagem plantada; Ac – Área agrícola; S – Área urbana; Res – Reservatórios (área manejada); e O – Outros usos, em 2002 e em 1994.

A tabela a seguir mostra os dados de desmatamento contidos no "Projeto de Monitoramento do Desmatamento dos Biomas Brasileiros por Satélite", já citado.

Tabela 4.4 Taxa de desmatamento por bioma

Desmatamento	Cerrado	Mata Atlântica	Caatinga	Pantanal	Pampa
Desmatamento 1994-2002	125.582,0	20.935,1	47.236,7	7.692,3	16,4
Taxa Anual	15.698,0	2.616,9	5.904,6	961,5	2,0
Desmatamento 2002-2008	85.074,0	2.742,0	16.576,0	4.279,6	2.183,0
Taxa Anual	14.179,0	457,0	2.762,7	713,3	363,8
Desmatamento 2008-2009	7.637,0	248,0	1.921,0	188,5	331,0
Desmatamento 2009-2010	6.469,0	248,0	1.921,0	188,5	331,0
Desmatamento 2010-2011	6.469,0	248,0	1.921,0	188,5	331,0
Desmatamento 2011-2012	6.469,0	248,0	1.921,0	188,5	331,0

Obs.: Para os todos os biomas, com exceção do Cerrado, foi utilizado em 2009-2010 o mesmo valor determinado para o período de 2008-2009. Já para o período entre 2010-2012, assumiu-se a mesma taxa de desmatamento do período 2009-2010 para todos os biomas.

Assim, a partir da Tabela 4.4, pode-se chegar à variação das emissões brutas por período, considerando-se os anos de transição 2003 (variação da média anual 1994-2002 para a média anual de 2002-2008), 2009 (variação da média anual 2002-2008 para o desmatamento de 2008-2009) e 2010 (variação do desmatamento de 2008-2009 para o desmatamento de 2009-2010 – para o Cerrado). Para todos os demais anos a variação das emissões brutas é nula, pois não há informação de variação de desmatamento, além das citadas. A Tabela 4.5 a seguir resume os percentuais de variação adotados para se corrigir as emissões brutas dos biomas, de 2003 a 2012.

Tabela 4.5 Variações de desmatamento anual por bioma de 2003 a 2012

Resumo das variações	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Cerrado	-9,7%	0,0%	0,0%	0,0%	0,0%	0,0%	-46,1%	-15,3%	0,0%	0,0%
Mata Atlântica	-82,5%	0,0%	0,0%	0,0%	0,0%	0,0%	-45,7%	0,0%	0,0%	0,0%
Caatinga	-53,2%	0,0%	0,0%	0,0%	0,0%	0,0%	-30,5%	0,0%	0,0%	0,0%
Pantanal	-25,8%	0,0%	0,0%	0,0%	0,0%	0,0%	-73,6%	0,0%	0,0%	0,0%
Pampa	17.680,5%	0,0%	0,0%	0,0%	0,0%	0,0%	-9,0%	0,0%	0,0%	0,0%

Obs: Note-se que a variação ocorrida no bioma Pampa em 1993 é devida à mudança da taxa de desmatamento de 2,0463 km² (média de 1994 a 2002) para 363,8333 km² (média de 2002 a 2008), possivelmente resultado de metodologias diferentes. Todas as variações serão revistas na próxima edição do inventário nacional.

Para as remoções, foi considerada a soma de todos os valores negativos da Tabela 22 (no Anexo) (exemplo para o Cerrado), relativo ao período 1994-2002. Dividindo por oito, chegou-se às remoções anuais de cada bioma.

Tabela 4.6 Remoções totais e anuais entre 1994 e 2012 para cada bioma

	Remoções totais	Remoções anuais	Remoções anuais					
Bioma	entre 1994 e 2002	de 1994 a 2002	a partir de 2003*					
	Gg CO₂							
Cerrado	(200.790)	(25.099)	(31.244)					
Mata Atlântica	(96.018)	(12.002)	(13.875)					
Caatinga	(42.794)	(5.349)	(8.780)					
Pantanal	(6.787)	(848)	(971)					
Pampa	(1.575)	(197)	(220)					

^{*} Da mesma forma que o explicado para o bioma Amazônia, de 2003 a 2011 foram acrescidas as remoções completas das áreas tornadas manejadas de 1994 a 2002.

As emissões líquidas de CO₂ são calculadas pela soma das emissões brutas com as remoções (valores negativos), sendo o resultado apresentado na Tabela 28 (no Anexo).

As figuras a seguir mostram as estimativas das emissões líquidas de CO_2 para cada um dos biomas, com os valores publicados no II Inventário. A redução das taxas de desmatamento observada para os biomas Mata Atlântica, Caatinga e Pantanal é responsáveis pela queda das emissões a partir de 2003 em relação ao II Inventário. Para o caso do bioma Pampa, o que se verificou foi um aumento significativo das emissões, pelo aumento do desmatamento, segundo o método adotado. Ao observar as figuras seguintes, atentar também para as diferentes escalas em cada caso.

Figura 4.5 Emissões líquidas de CO, do bioma Cerrado

Figura 4.6 Emissões líquidas de CO₂ do bioma Mata Atlântica

Figura 4.7 Emissões líquidas de ${\rm CO_2}$ do bioma Caatinga

Figura 4.8 Emissões líquidas de ${\rm CO_2}$ do bioma Pantanal

Obs: Vide texto acima para a explicação da variação neste bioma Figura 4.9 Emissões líquidas de CO, do bioma Pampa

A figura abaixo mostra as contribuições dos biomas para as emissões líquidas de CO_2 do setor Mudança do Uso da Terra e Florestas em 2012.

Figura 4.10 Contribuição percentual dos biomas para as emissões líquidas de CO₂ em 2012 para o setor de Mudança do Uso da Terra e Florestas

B. Aplicação de calcário nos solos

As emissões de CO₂ por calagem, que devem ser incluídas no Setor Mudança do Uso da Terra e Florestas, são calculadas a partir da quantidade consumida de calcário na agricultura no País, utilizando-se o fator de emissão de 0,44 t CO₂/t CaCO₃. Os dados de consumo são provenientes da Associação Brasileira dos Produtores de Calcário – Abracal. As estimativas de emissões por calagem estão na Tabela 29 por estado (no Anexo).

C. Resumo de CO, no setor

A Figura 4.11 apresenta o resultado das emissões em CO₂ do Setor Mudança do Uso da Terra e Florestas no Brasil, de 1990 a 2012, incluindo alguns recálculos de 1990 a 2005, mostrando também a comparação com o publicado no II Inventário Brasileiro, de 1990 a 2005. Pequenas variações observadas de 1994 a 2002 são devido à nova modulação das emissões do bioma Amazônia por estado.

As variações encontradas entre 2002 e 2005 devem-se, basicamente, a dois fatores:

- Incorporação de dados de desmatamento, que não se achavam disponíveis a tempo para o II Inventário, para os biomas Mata Atlântica, Caatinga e Pantanal. Tais dados indicaram redução do desmatamento em relação ao período 1994-2002. O bioma Pampa apresentou significativo aumento de emissões após 2002, devido à variação da mudança de sua taxa anual de desmatamento, de cerca de 2 km² para cerca de 360 km², possivelmente resultado de metodologias diferentes de medição.
- Inclusão das remoções de CO₂ relativas às áreas de proteção criadas entre 1994-2002, e que haviam sido contadas pela metade após 2002.

Figura 4.11 Emissões líquidas de CO, do setor de Mudança do Uso da Terra e Florestas, incluindo calagem

Tabela 4.7 Emissões de CO₂, Estimativas e II Inventário, do setor Mudança do Uso da Terra e Florestas, sem incluir as de calagem, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012

C to	Fonto	1990	1995	2000	2005	2011	2012				
Gás	ás Fonte		Gg								
60	II Inventário	766.493	1.841.615	1.258.345	1.258.626						
CO ₂	Estimativas	766.493	1.840.843	1.272.369	1.113.594	286.488	158.206				

O cálculo das estimativas de CO₂ feito para o II Inventário baseia-se na divisão do País em polígonos, de modo que cada um seja de uma só característica (bioma, vegetação, carbono de solo, uso do solo, divisão política), com uma só transição entre 1994 e 2002. Baseando-se nesses polígonos, pode-se separar os biomas por estado. Aplicando-se os mesmos critérios descritos acima para os biomas, chega-se à divisão das emissões de CO₂ por estado. A Tabela 30 (Anexo) apresenta as emissões de CO₂ (sem calagem) divididas dessa forma.

Emissões de gases não CO,

Hipóteses usadas no II Inventário

No II Inventário, das emissões brutas anuais de CO₂, estimou-se o valor de carbono emitido (relação 44/12). Desse valor descontaram-se as quantidades de carbono referentes à lenha extraída, madeira em toro extraída e carvão vegetal produzido, conforme publicado pelo IBGE, pois tais valores descontados teriam sido incluídos no Setor Energia. Do resultado, o que teria permanecido no campo, tomou-se a metade, atribuída às queimadas. Em seguida são aplicados os fatores de emissão *default* do IPCC para queimadas (Tabela 5.7 do Manual de Referência do IPCC Revised Guidelines – 1996): as emissões de CH₄ são obtidas multiplicando-se a quantidade de carbono levado à queima por 0,016, e as de N₂O, multiplicando-se a mesma quantidade de carbono por 0,00011.

Hipóteses para as estimativas até 2012

Verifica-se que não foram computadas no cálculo do II Inventário as quantidades de lenha, madeira e carvão da silvicultura, ou seja, das florestas plantadas. Mesmo somando-se as duas séries de lenha e carvão por extração vegetal e por silvicultura, fornecidas pelo IBGE, os valores estão bem abaixo dos encontrados no Balanço Energético Nacional – BEN. Outro problema foi o fato de as quantidades descontadas do carbono das emissões brutas não serem as mesmas que foram contabilizadas no Setor Energia, que se baseou exclusivamente no BEN.

Assim, preferiu-se descontar apenas o carbono da lenha informada pelo BEN. O carvão ficaria de fora, já que a lenha usada para carvoejamento está incluída no primeiro valor. Também não se retira madeira em toro, considerando-se a hipótese de que, caso fosse queimada fora dos campos, sua queima estaria incluída nas estatísticas de lenha do BEN. Permanece a posterior divisão por dois para se estimar a parte queimada

no campo. Acrescente-se que a quantidade de carbono presente na lenha é calculada retirando-se 25% de umidade para se chegar à matéria seca e depois 50% para calcular o carbono presente na matéria seca, conforme dados do Relatório de Referência do Setor Energia²⁸.

A repercussão disso no resultado final dos gases não CO₂ está apresentada na tabela abaixo:

Tabela 4.8 Emissões de CH_4 e N_2O , Estimativas e II Inventário, do setor Mudança do Uso da Terra e Florestas, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012

Gás	Fonte	1990	1995	2000	2005	2011	2012		
	ronte	Gg							
CII	II Inventário	1.996	4.157	3.026	3.045	-	-		
CH ₄	Estimativas	2.139	4.305	3.059	2.830	1.037	756		
NO	II Inventário	13,7	28,6	20,8	20,9	-			
N ₂ O	Estimativas	14,7	29,6	21,0	19,5	7,1	5,2		

A Tabela 31 (no Anexo) apresenta as emissões de CH₄ e N₂O para os biomas brasileiros.

A figura abaixo ilustra a contribuição do ${\rm CO_2}$, ${\rm CH_4}$ e ${\rm N_2O}$ (em ${\rm CO_2eq}$) para o setor.

Contribuição de cada gás (em CO₂eq) para o setor de Mudança de Uso da Terra e Florestas, em 2012

Figura 4.12 Contribuição de cada gás no setor Mudança do Uso da Terra e Florestas em 2012

Para a divisão das emissões por estado, usando-se a Tabela 30, aplicou-se a mesma relação de CO₂ para os outros dois gases, resultando a Tabela 32 e a Tabela 33, com as estimativas de CH₄ e N₂O, respectivamente, por Estado.

MCTI, Relatório de Referência: Emissões de Gases de Efeito Estufa por Queima de Combustíveis: Abordagem *Bottom-Up*. Disponível em: <www.mct.gov.br/upd_blob/0219/219295.pdf>.

5. SETOR TRATAMENTO DE RESIDUOS

As estimativas para o Setor Tratamento de Resíduos para os anos de 2006 a 2012 baseiam-se na série 1990-2005 do II Inventário Brasileiro, cuja metodologia está detalhada em seu Relatório de Referência²⁹, e incorporam informações e dados atualizados para as diferentes fontes de emissão, sempre que possível.

1) Disposição de resíduos sólidos

Esse item apresenta as estimativas de emissão de metano (CH_4) proveniente do tratamento de resíduos sólidos no País.

A deposição de resíduos sólidos em aterros e lixões gera metano em decorrência da condição anaeróbica desses resíduos. Essa geração varia de local para local, em função de fatores como quantidade de resíduos, idade do local de depósito, materiais tóxicos, umidade, acidez e condições construtivas e de manejo.

A metodologia básica utilizada no II Inventário está indicada no Relatório de Referência. São necessários dados relativos à quantidade total de resíduo sólido urbano gerado no ano e à fração dele destinada aos aterros/lixões, bem como parâmetros como o potencial de geração de metano, o fator de correção do metano referente ao gerenciamento dos locais de disposição, o carbono orgânico degradável e a fração do carbono orgânico que se decompõe. A eventual recuperação do metano também é levada em conta. Como alternativa à quantidade total de resíduo sólido urbano gerado no ano associada à fração de resíduo destinada ao aterro, o II Inventário utilizou a taxa de resíduo coletada per capita multiplicada pela população urbana.

Novos dados:

Foram utilizados os dados de população urbana, a partir das informações disponibilizadas pelo Censo de 2010 do IBGE, com aplicação da variação linear entre 2000 e 2010, como já era feito para os intervalos anteriores, 1970-1980, 1980-1991, 1991-2000. Para os anos de 2011 e 2012, a população urbana é obtida do IBGE que informa ao Tribunal de Contas da União (TCU) as estimativas da população em 01 de julho de cada ano³⁰.

Foram consideradas nos cálculos das estimativas (2006 a 2012) as taxas de geração de resíduos fornecidas pela Abrelpe³¹, relativas a 2011, para todos os municípios apresentados; para os demais, foi usada uma função linear por região, conforme a mesma publicação.

²⁹ Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Gases de Efeito Estufa no Tratamento e Disposição de Resíduos. Disponível em: <www.mct.gov.br/upd_blob/0228/228953.pdf>.

³⁰ IBGE – Estimativas de população. Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/estimativa2013/>.

³¹ Panorama dos Resíduos Sólidos no Brasil 2011, Abrelpe. Disponível em: <www.cidadessustentaveis.org.br/sites/default/files/arquivos/panorama_residuos_solidos_abrelpe_2011.pdf>.

SETOR TRATAMENTO DE RESÍDUOS

Adicionalmente foi corrigido um erro no modelo de cálculo do II Inventário, envolvendo cidades que não existiam em 1970, que ocasionava uma pequena redução nos resultados.

Foram incorporadas, no período de 2006 a 2012, as reduções de metano ocorridas, conforme registrado nos relatórios de monitoramento de cada um dos projetos de aterro incluídos no MDL, a partir do portal eletrônico do Conselho Executivo³². Essas reduções são precisas e verificadas por Entidades Operacionais Designadas (EODs) do MDL.

Hipóteses simplificadoras:

Não foram introduzidas novas informações sobre situação de aterros/lixões nas cidades.

No gráfico a seguir, são apresentadas as emissões de metano devido à disposição de resíduos sólidos no País, onde é possível observar o pequeno recálculo da série até 2005. Para efeito de comparação, são mostrados os resultados do II Inventário, das estimativas atuais (onde estão incluídas as reduções devido aos projetos MDL) e o que seriam as estimativas de emissões caso não tivesse havido a entrada dos projetos MDL, que passaram a destruir metano. Nota-se uma diminuição das reduções de metano nos últimos anos, principalmente em São Paulo e na Bahia. Na Tabela 34 do Anexo, são apresentadas as reduções de metano devido ao MDL, por município.

Figura 5.1 Emissões de $\mathrm{CH_4}$ da disposição de resíduos sólidos

2) Tratamento de efluentes domésticos

O tratamento de efluentes domésticos contribui com as emissões de metano (CH_4) e óxido nitroso (N_2O) .

Esses efluentes possuem alto teor de matéria orgânica e, portanto, têm um alto potencial para emissão de CH₄. A matéria orgânica presente nesses efluentes é expressa em termos de Demanda Bioquímica de Oxigênio (DBO) que é o principal fator determinante do potencial de geração de metano. Diferentemente do setor de resíduos sólidos, o País dispõe de várias tecnologias de tratamento de efluentes, desde as convencionais aeróbias, até tecnologias mais recentes, como os reatores anaeróbios de alta carga.

Pouco se conhece sobre a contribuição dos processos de tratamento de esgotos na geração e emissão de N_2O para a atmosfera, embora se concorde que essas emissões sejam bastante inferiores às das atividades agrícolas, principais fontes antrópicas desse gás. Emissões de N_2O ocorrem tanto diretamente das estações de tratamento de esgoto quanto dos corpos d'água (rios, estuários e mares) aos quais seus efluentes são lançados.

Novos dados:

Foram utilizados os dados de população, a partir das informações disponibilizadas pelo Censo de 2010 do IBGE, com aplicação da variação linear entre 2007 (contagem) e 2010, como já era feito para os intervalos anteriores. Para 2011 e 2012, foi usada a estimativa oficial do IBGE para o Tribunal de Contas da União – TCU³³.

Observaram-se dois erros no modelo de cálculo para as emissões de CH₄ no II Inventário. O primeiro era relativo à contribuição das valas abertas e do lançamento em rios. O segundo era que havia uma hipótese diferente para os tratamentos de 1990 a 1994, conforme citadas no Relatório de Referência, mas não implementada no modelo. O primeiro erro gerava emissões maiores e o segundo, emissões menores.

Para o cálculo das estimativas de $\rm N_2O$ foram obtidos valores atualizados de consumo de proteína da FAO (Food and Agriculture Organization, das Nações Unidas), que apresentou pequenas diferenças em relação ao consumo usado no II Inventário.

Hipóteses simplificadoras:

As mesmas configurações para os tratamentos de efluentes em 2006 foram utilizadas até 2012.

No cálculo das emissões de N_2O , a informação de consumo de proteína apresentada pela FAO para os anos 2005-2007 foi empregada para os anos de 2008 a 2012.

³³ Disponível em: https://www.ibge.gov.br/home/estatistica/populacao/estimativa2011/default.shtm, acessado em 15/01/2014.

SETOR TRATAMENTO DE RESÍDUOS

O gráfico a seguir mostra as emissões de CH₄, para a categoria de tratamento de efluentes domésticos, para todos os anos. Devido à inconsistência metodológica e ao erro de fórmula observados nos cálculos do II Inventário, conforme relatado acima, é possível identificar uma diferença entre as estimativas atuais e os resultados publicados no II Inventário.

Figura 5.2 Emissões de CH, do tratamento de efluentes domésticos

A figura a seguir mostra as emissões de N₂O de efluentes domésticos.

Figura 5.3 Emissões de N₂O do tratamento de efluentes domésticos

Para os efluentes domésticos, as emissões de ${\rm CH_4}$ e ${\rm N_2O}$ podem ser apresentadas por estado, conforme a Tabela 36 e a Tabela 37 do Anexo.

3) Tratamentos de efluentes industriais

De acordo com a Norma Brasileira - NBR 9800/1987, efluente líquido industrial é o despejo líquido proveniente de estabelecimento industrial, compreendendo emanações de processo industrial, águas de refrigeração poluídas, águas pluviais poluídas e esgoto.

A fração orgânica presente nesses efluentes varia de acordo com os produtos e processos envolvidos. Com base nos dados do Relatório de Referência foram identificados os setores industriais mais representativos, em termos de emissões de CH₄.

Os setores produtivos selecionados no II Inventário e usados para essa estimativa foram: cerveja, leite cru, algodão, papel, suínos, leite pasteurizado, aves e bovinos. Continuou sem utilização a produção de açúcar e álcool, que, embora com alto potencial de geração de metano, seu efluente, a vinhaça, foi considerado não emissor, por ser lançado ao solo como fertilizante, em condições aeróbicas.

Novos dados:

Os valores da produção anual para esses itens foram obtidos no portal eletrônico do IBGE (Pesquisa Industrial Anual por produto — PIA e Pesquisa Trimestral de Abate de Animais) e no relatório anual da Associação Brasileira de Celulose e Papel — Bracelpa.

Hipóteses simplificadoras:

Os sistemas de tratamento de efluentes utilizados de 1990 a 2005 continuaram a ser considerados até 2012.

A produção de papel foi atualizada para 2012 a partir dos dados da Bracelpa.

A produção de leite cru foi mudada para considerar toda a série do IBGE, em vez de considerar a série da ABIA que havia sido usada até 2005.

A produção de cerveja usou dados repetidos de 2011 em 2012 por não estarem disponíveis novos dados.

A produção de algodão para 2006-2012 foi considerada em função da produção de algodão herbáceo em caroço. A quantidade de leite pasteurizado para 2006-2012 foi estimada em comparação com a produção de leite cru entre 2000 e 2005.

O gráfico seguinte exibe a série das emissões de CH, para os efluentes industriais.

SETOR TRATAMENTO DE RESÍDUOS

Figura 5.4 Emissões de CH, do tratamento de efluentes industriais

Dentre os setores produtivos, cujos efluentes industriais contribuem para a emissão de CH_4 , há a predominância do setor de cervejas, responsável por 59% das emissões em 2012, como pode ser observado na figura a seguir.

Figura 5.5 Contribuição percentual das emissões de CH, de diferentes indústrias para o subsetor de Efluentes Industriais em 2012

4) Incineração de resíduos sólidos

A incineração de resíduos sólidos urbanos vem sendo considerada com maior frequência em grandes metrópoles à medida que o custo do transporte do resíduo, para aterros cada vez mais distantes das regiões metropolitanas, aumenta. No Brasil, essa prática é aplicada a uma fração pequena do resíduo total tratado, sendo mais utilizada para o tratamento de resíduos perigosos de origem industrial e resíduos dos serviços de saúde que, em geral, não podem ser dispostos em aterros comuns, necessitando de tratamento especial.

Essa atividade emite os gases óxido nitroso (N_2O) e dióxido de carbono (CO_2) , sendo este último apenas calculado para a incineração da parte do resíduo com origem fóssil, como plásticos.

Para o cálculo dessas emissões foram considerados no II Inventário os dados de incineradores que queimam resíduos sólidos urbanos, resíduos perigosos (incluindo os resíduos industriais e de serviços de saúde), resíduos de serviços de saúde e lodo de esgoto.

Hipóteses simplificadoras:

Por dificuldade de obtenção, no momento, de todos os dados das unidades incineradoras utilizadas no II Inventário, os valores de emissão de ${\rm CO_2}$ e ${\rm N_2O}$ de 2006 a 2012 foram obtidos simplesmente por meio de regressão de crescimento linear.

Os gráficos a seguir apresentam as emissões de CO_2 e N_2O de incineração de resíduos, de 1990 a 2012.

Figura 5.6 Emissões de CO, da incineração de resíduos

Figura 5.7 Emissões de N₂O da incineração de resíduos

5) Resultados

Os gráficos seguintes apresentam os resultados das estimativas das emissões de gases de efeito estufa (CH₄, N₂O e CO₂) para o Setor Tratamento de Resíduos no Brasil, de 1990 a 2012, mostrando também a comparação com o publicado no II Inventário Brasileiro, de 1990 a 2005.

Figura 5.8 Emissões de CH4 do setor de Tratamento de Resíduos

Figura 5.9 Emissões de N₂O do setor de Tratamento de Resíduos

Figura 5.10 Emissões de CO₂ do setor de Tratamento de Resíduos

SETOR TRATAMENTO DE RESÍDUOS

A tabela abaixo mostra as estimativas das emissões de ${\rm CO_2}$, ${\rm CH_4}$ e ${\rm N_2O}$ para o Setor Tratamento de Resíduos, com os valores publicados no II Inventário Nacional. Os resultados detalhados das estimativas das emissões desses gases, para o período de 1990 a 2011, provenientes do tratamento e disposição de resíduos estão apresentados na Tabela 35, Tabela 36 e Tabela 37 (no Anexo).

Tabela 5.1 Emissões de CO_2 , CH_4 e N_2O , Estimativas e II Inventário, do setor Tratamento de Resíduos, para os anos de 1990, 1995, 2000, 2005, 2011 e 2012

Gás	Fonte	1990	1995	2000	2005	2011	2012			
Gas	ronte	Gg								
CO.	II Inventário	24,4	78,8	91,8	109,9					
CO ₂	Estimativas	24,4	78,8	91,8	109,9	136,1	140,6			
CH	II Inventário	1.227,30	1.455,00	1.657,60	1.743,30					
CH ₄	Estimativas	1.249,30	1.438,10	1.645,70	1.784,50	2.066,80	2.142,7			
NO	II Inventário	9	10,9	12,4	14					
N ₂ O	Estimativas	9	10,9	12,4	13,9	14,8	15			

ANEXOS TABELAS

TABELA 01 Emissões de dióxido de carbono (CO₂) do Setor Energia (em Gg)

$co_{\scriptscriptstyle 2}$	1990	1991	1992	1993	1994	1995	1996	1997	1998
ENERGIA	176.216	181.964	185.452	193.414	202.654	217.258	235.969	252.086	262.613
Queima de Combustíveis	168.942	174.873	178.291	186.122	194.954	210.033	228.451	243.809	253.553
Subsetor Energético	22.651	22.320	24.314	24.637	25.000	26.336	29.128	33.048	33.831
Centrais Elétricas de Serviço Público	5.923	6.796	7.449	6.537	7.150	8.655	9.697	11.434	11.957
Centrais Elétricas Autoprodutoras	3.361	3.530	4.264	4.330	3.728	4.048	4.479	4.764	5.237
Carvoarias	0	0	0	0	0	0	0	0	0
Outros	13.368	11.994	12.601	13.770	14.122	13.634	14.951	16.850	16.637
Subsetor Industrial	42.515	44.015	44.307	47.101	49.522	52.604	60.238	64.450	66.728
Ferro-gusa e Aço	3.611	3.764	3.761	5.196	5.986	5.555	7.734	8.501	9.232
Ferroligas	176	157	247	270	277	212	232	167	590
Indústria Química	8.562	8.736	8.977	8.487	9.035	9.956	11.371	13.222	12.227
Não ferrosos	3.125	3.231	3.256	4.137	3.912	4.646	5.763	5.060	5.253
Papel e celulose	2.429	2.688	3.079	2.870	2.921	3.350	3.970	3.670	3.911
Alimentos e Bebidas	3.197	3.207	3.503	3.580	3.597	4.024	4.489	4.062	4.284
Cimento	5.601	6.358	4.974	4.976	4.908	5.926	7.041	8.439	9.174
Mineração	2.405	2.381	2.620	2.770	3.184	3.224	3.818	3.709	3.872
Têxtil	1.584	1.514	1.491	1.581	1.325	1.315	1.439	1.232	1.240
Cerâmica	1.673	1.765	2.207	2.451	2.495	2.657	2.745	3.031	3.305
Outras Indústrias	3.936	4.014	3.951	4.337	4.738	4.897	4.897	5.448	5.703
Consumo não energético da Química	6.217	6.200	6.239	6.444	7.144	6.843	6.737	7.909	7.937
Subsetor Transporte	77.787	81.881	82.202	85.330	89.656	98.629	105.922	112.371	119.091
Transporte Aéreo	3.456	3.894	3.171	3.464	3.713	3.888	3.630	4.320	4.745
Transporte Rodoviário	69.372	73.170	74.015	76.365	81.214	89.982	96.767	103.951	109.928
Transporte Ferroviário	1.575	1.572	1.614	1.640	1.229	1.318	1.213	984	1.057
Transporte Hidroviário	3.384	3.245	3.401	3.862	3.500	3.441	4.311	3.115	3.361
Subsetor Residencial	13.696	14.071	14.562	15.097	15.079	15.775	16.425	16.445	16.585
Subsetor Agricultura	9.743	10.165	10.458	11.554	12.203	13.084	13.659	14.192	13.679
Subsetor Comercial	2.051	1.908	1.953	1.535	1.554	1.549	1.595	1.698	1.823
Subsetor Público	498	514	495	868	1.939	2.055	1.485	1.605	1.815
Emissões Fugitivas	7.274	7.091	7.161	7.291	7.700	7.225	7.518	8.278	9.060
Mineração de Carvão	1.353	1.316	1.200	1.247	1.348	920	654	902	1.004
Extração e Transporte de Petróleo e Gás Natural	5.921	5.775	5.961	6.044	6.352	6.304	6.863	7.376	8.057

Unidade: Gg

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	277.097	287.512	296.966	293.100	289.865	305.488	313.140	331.755	334.833	354.102	338.573	376.240	393.186	431.485
	267.220	277.066	285.684	282.286	279.069	295.227	299.828	318.880	321.632	339.943	320.692	362.024	379.659	417.221
	40.811	43.278	48.043	43.501	43.262	49.268	51.457	52.236	52.191	62.651	52.087	62.929	58.385	74.876
:	18.596	18.482	21.024	16.718	15.666	19.823	20.390	20.117	18.868	25.995	16.146	26.122	19.512	34.238
	6.355	7.538	8.823	7.983	7.588	8.403	8.519	9.006	9.260	10.742	8.989	12.347	13.395	14.134
:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
:	15.860	17.259	18.195	18.799	20.008	21.041	22.548	23.113	24.063	25.913	26.951	24.460	25.478	26.504
	72.814	78.924	78.142	77.423	77.062	79.220	81.660	95.373	91.161	91.808	86.363	97.987	104.377	106.712
:	10.576	12.617	13.137	12.816	13.940	15.402	15.088	27.888	16.903	17.272	13.771	16.383	17.435	20.322
	509	574	639	603	1.017	1.058	1.145	1.138	1.341	1.343	1.222	1.279	1.174	1.266
:	13.848	14.292	14.249	14.466	13.839	14.564	14.819	15.090	15.815	14.483	14.649	14.050	14.700	14.692
	5.866	6.446	5.960	6.383	7.578	7.926	8.081	8.334	8.889	8.480	7.542	11.051	12.881	12.718
:	4.215	4.270	4.039	4.242	3.948	3.707	3.801	3.211	3.490	3.383	3.334	3.592	3.898	3.697
	4.374	4.431	4.384	4.302	4.092	3.887	3.724	3.445	3.777	3.834	3.800	3.935	4.149	4.074
	10.067	10.463	10.991	10.227	8.738	7.872	8.708	9.642	10.862	12.054	13.042	14.203	16.022	16.816
	4.683	5.613	5.508	5.650	5.703	6.299	7.177	7.439	8.441	8.168	5.767	7.269	7.562	7.259
:	1.123	1.257	1.148	1.229	1.016	1.093	1.151	1.148	1.255	1.128	1.075	1.009	1.037	983
	3.109	3.354	3.267	3.508	3.531	3.526	3.781	3.920	4.509	4.602	4.583	4.878	5.270	5.217
:	6.155	7.047	6.568	6.453	5.873	6.011	6.206	6.228	7.065	7.879	7.979	8.284	8.931	8.561
	8.289	8.560	8.252	7.543	7.788	7.874	7.978	7.891	8.812	9.182	9.600	12.055	11.317	11.107
:	117.996	119.564	122.544	125.040	124.532	132.242	132.862	137.238	142.754	148.416	146.026	164.251	180.264	198.330
	4.970	5.207	5.516	5.661	4.958	5.226	5.302	5.574	5.991	6.403	6.440	7.262	8.117	8.559
:	108.508	110.195	112.385	114.706	114.856	121.833	122.269	126.526	130.767	135.571	133.447	149.989	165.071	181.791
	1.062	1.234	1.404	1.393	1.695	1.710	1.730	1.701	1.770	1.874	1.873	2.690	2.930	3.015
:	3.456	2.928	3.239	3.281	3.023	3.472	3.561	3.438	4.226	4.568	4.266	4.310	4.146	4.964
	16.916	16.999	17.067	16.501	15.371	15.699	15.429	15.454	15.957	16.359	16.565	17.071	17.307	17.416
	14.345	14.004	15.416	15.048	15.131	14.918	14.808	14.979	15.799	17.296	16.615	17.172	16.646	17.380
	1.955	2.197	2.318	2.584	1.870	2.015	1.886	1.945	1.977	1.772	1.354	1.434	1.445	1.685
:	2.383	2.100	2.154	2.189	1.841	1.866	1.725	1.654	1.793	1.643	1.682	1.180	1.234	822
	9.877	10.446	11.282	10.814	10.796	10.261	13.312	12.875	13.201	14.158	17.880	14.215	13.527	14.264
	1.150	1.291	1.656	867	945	1.044	957	1.358	1.418	1.784	1.555	1.341	1.407	1.336
	8.727	9.155	9.627	9.948	9.851	9.217	12.355	11.517	11.783	12.374	16.326	12.875	12.120	12.928

CH₄	1990	1991	1992	1993	1994	1995	1996	1997	1998
ENERGIA	429,54	407,29	380,76	383,97	384,74	365,68	339,34	347,60	344,33
Queima de Combustíveis	336,24	309,96	292,90	292,36	296,00	276,96	260,40	257,65	245,67
Subsetor Energético	170,00	151,31	139,43	145,94	148,48	137,15	123,65	120,78	109,82
Centrais Elétricas de Serviço Público	0,11	0,12	0,14	0,12	0,14	0,18	0,18	0,24	0,28
Centrais Elétricas Autoprodutoras	0,69	0,73	0,86	0,91	0,89	0,95	1,25	1,36	1,43
Carvoarias	160,58	140,83	129,29	136,10	137,78	126,81	112,41	108,12	98,46
Outros	8,61	9,63	9,14	8,81	9,67	9,21	9,80	11,06	9,65
Subsetor Industrial	58,10	52,05	49,75	52,68	55,46	52,86	50,63	50,25	48,78
Ferro-gusa e Aço	36,66	30,93	28,84	31,62	32,65	29,97	26,04	27,27	25,02
Ferroligas	3,03	4,09	3,46	4,21	3,67	3,19	4,87	3,30	2,78
Indústria Química	0,79	0,75	0,70	0,70	0,73	0,67	0,54	0,53	0,48
Não ferrosos	2,21	1,78	1,80	1,04	1,12	1,33	0,36	0,31	0,29
Papel e celulose	1,02	1,03	1,19	1,18	1,21	1,22	1,17	1,16	1,38
Alimentos e Bebidas	7,26	7,29	8,58	8,56	10,40	10,65	10,96	11,94	13,48
Cimento	3,03	2,20	1,81	2,00	2,26	2,47	3,17	2,16	1,87
Mineração	0,33	0,34	0,30	0,07	0,08	0,06	0,06	0,07	0,07
Têxtil	0,39	0,41	0,30	0,34	0,33	0,32	0,34	0,32	0,31
Cerâmica	2,17	2,06	1,86	2,02	2,03	1,93	2,14	2,19	2,11
Outras Indústrias	1,23	1,20	0,90	0,95	1,00	1,05	0,98	1,01	1,00
Consumo não energético da Química									
Subsetor Transporte	10,35	10,89	10,88	11,14	11,56	12,35	12,89	12,82	12,71
Transporte Aéreo	0,07	0,08	0,07	0,07	0,08	0,08	0,08	0,09	0,10
Transporte Rodoviário	9,95	10,49	10,48	10,70	11,17	11,95	12,45	12,45	12,32
Transporte Ferroviário	0,11	0,11	0,11	0,11	0,08	0,09	0,08	0,07	0,07
Transporte Hidroviário	0,22	0,21	0,22	0,26	0,23	0,23	0,28	0,21	0,22
Subsetor Residencial	75,65	75,16	74,85	65,81	63,90	57,66	56,28	56,93	58,14
Subsetor Agricultura	20,56	18,97	16,40	15,19	15,05	15,44	15,42	15,34	14,74
Subsetor Comercial	1,50	1,51	1,53	1,53	1,45	1,41	1,49	1,47	1,42
Subsetor Público	0,07	0,07	0,06	0,06	0,09	0,09	0,05	0,05	0,06
Emissões Fugitivas	93,31	97,34	87,86	91,61	88,74	88,72	78,94	89,95	98,65
Mineração de Carvão	49,66	54,26	44,18	47,00	42,37	41,15	25,55	32,58	33,02
Extração e Transporte de Petróleo e Gás Natural	43,65	43,08	43,68	44,62	46,37	47,58	53,39	57,37	65,64

Unidade: Gg

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	366,37	393,02	407,84	418,64	419,45	477,14	549,98	519,85	520,64	541,51	527,27	486,69	467,45	473,46
	258,83	268,05	262,05	279,50	312,86	345,86	346,31	346,74	352,89	357,43	282,21	304,55	304,05	302,52
	117,45	125,76	118,50	124,56	146,12	167,84	167,14	164,43	169,88	173,31	118,46	132,46	137,39	135,33
	0,41	0,39	0,66	0,74	0,74	1,09	1,07	0,99	0,61	1,23	0,46	1,30	0,80	1,81
': :	1,62	1,50	1,85	2,01	2,35	2,48	2,71	2,71	3,16	3,54	4,17	6,20	6,16	6,73
	106,69	116,66	108,39	113,52	133,47	154,59	152,89	149,16	152,45	151,43	98,04	108,48	116,90	113,08
	8,73	7,21	7,61	8,30	9,56	9,68	10,46	11,58	13,65	17,10	15,79	16,48	13,54	13,71
	53,44	54,16	53,12	56,28	64,15	73,11	72,71	74,73	77,48	76,64	58,27	67,11	68,62	68,67
	28,56	30,85	29,00	30,03	34,18	41,28	40,46	39,17	40,22	39,43	23,00	28,48	29,50	28,23
	3,09	3,68	2,28	2,89	4,56	4,80	4,90	4,95	5,29	5,40	4,17	4,89	4,38	4,29
	0,46	0,45	0,43	0,43	0,57	0,57	0,58	0,59	0,61	0,57	0,58	0,56	0,58	0,57
	0,14	0,17	0,17	0,19	0,21	0,22	0,22	0,23	0,24	0,24	0,21	0,31	0,34	0,34
	1,37	1,46	1,51	1,56	1,74	1,71	1,80	2,00	2,12	2,24	2,35	2,54	2,54	2,48
	14,49	11,88	14,42	16,05	17,15	18,27	18,65	21,46	22,68	21,82	22,88	24,52	24,08	25,35
Ϊ.	1,81	2,13	1,94	1,88	2,21	2,55	2,28	2,41	2,11	2,36	0,61	0,91	2,14	2,29
	0,08	0,09	0,09	0,09	0,10	0,10	0,11	0,12	0,13	0,13	0,10	0,13	0,14	0,14
	0,28	0,26	0,25	0,24	0,27	0,28	0,28	0,28	0,29	0,28	0,26	0,27	0,23	0,22
	2,17	2,17	2,09	1,99	2,04	2,14	2,27	2,33	2,50	2,82	2,77	3,03	3,17	3,26
	0,98	1,00	0,95	0,93	1,12	1,20	1,17	1,20	1,26	1,35	1,33	1,48	1,52	1,50
	12,08	11,46	11,04	10,92	10,31	10,62	10,28	10,63	11,51	12,68	12,76	14,05	14,60	15,50
	0,10	0,11	0,11	0,12	0,10	0,11	0,10	0,12	0,07	0,13	0,13	0,15	0,17	0,18
: "	11,67	11,08	10,61	10,49	9,89	10,17	9,83	10,16	11,04	12,12	12,21	13,42	13,95	14,78
	0,07	0,08	0,10	0,09	0,12	0,12	0,12	0,12	0,12	0,13	0,13	0,19	0,21	0,22
: -	0,23	0,19	0,21	0,22	0,20	0,23	0,24	0,23	0,28	0,30	0,28	0,29	0,28	0,33
	59,96	61,53	64,13	71,46	74,42	75,48	77,01	77,24	73,30	72,49	71,38	68,53	61,54	61,22
	14,42	13,74	13,92	15,01	16,45	17,44	17,79	18,29	19,23	20,79	19,80	20,73	20,11	20,03
اا	1,41	1,34	1,28	1,20	1,36	1,32	1,34	1,37	1,44	1,48	1,49	1,65	1,76	1,76
l: ⁻	0,08	0,06	0,06	0,06	0,05	0,05	0,04	0,04	0,05	0,04	0,04	0,02	0,02	0,02
	107,54	124,97	145,79	139,13	106,59	131,28	203,67	173,12	167,76	184,08	245,05	182,14	163,39	170,94
	34,05	43,35	59,97	43,96	40,99	47,99	49,14	54,11	55,79	72,34	62,40	48,26	50,75	47,15
	73,49	81,62	85,82	95,18	65,60	83,29	154,53	119,01	111,97	111,73	182,65	133,88	112,64	123,79

N ₂ O	1990	1991	1992	1993	1994	1995	1996	1997	1998	
ENERGIA	8,07	8,16	8,07	8,06	8,58	8,61	8,92	9,34	9,50	
Queima de Combustíveis	8,01	8,10	8,02	8,00	8,52	8,54	8,85	9,26	9,41	
Subsetor Energético	1,33	1,47	1,42	1,38	1,49	1,45	1,57	1,77	1,59	
Centrais Elétricas de Serviço Público	0,05	0,05	0,06	0,05	0,05	0,07	0,07	0,09	0,09	
Centrais Elétricas Autoprodutoras	0,10	0,11	0,12	0,13	0,13	0,14	0,17	0,19	0,20	:
Carvoarias	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	:
Outros	1,18	1,30	1,24	1,19	1,31	1,25	1,32	1,49	1,30	:
Subsetor Industrial	3,29	3,16	3,16	3,28	3,60	3,56	3,57	3,67	3,89	:
Ferro-gusa e Aço	0,75	0,64	0,60	0,67	0,70	0,64	0,59	0,63	0,60	:
Ferroligas	0,06	0,08	0,07	0,09	0,08	0,07	0,10	0,07	0,06	:
Indústria Química	0,12	0,12	0,10	0,11	0,11	0,11	0,10	0,10	0,10	:
Não ferrosos	0,07	0,06	0,06	0,06	0,06	0,07	0,05	0,04	0,04	:
Papel e celulose	0,31	0,29	0,33	0,33	0,36	0,37	0,33	0,32	0,40	:
Alimentos e Bebidas	1,32	1,33	1,45	1,45	1,69	1,71	1,75	1,86	2,06	:
Cimento	0,12	0,12	0,09	0,09	0,09	0,11	0,13	0,12	0,11	:
Mineração	0,02	0,02	0,03	0,02	0,03	0,03	0,04	0,03	0,04	:
Têxtil	0,05	0,05	0,03	0,03	0,03	0,03	0,03	0,03	0,03	:
Cerâmica	0,28	0,27	0,25	0,27	0,28	0,26	0,29	0,29	0,29	:
Outras Indústrias	0,18	0,19	0,15	0,16	0,17	0,17	0,17	0,17	0,17	:
Consumo não energético da Química										:
Subsetor Transporte	1,53	1,61	1,61	1,68	1,80	1,99	2,20	2,29	2,39	:
Transporte Aéreo	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,01	0,01	:
Transporte Rodoviário	1,48	1,57	1,56	1,63	1,75	1,95	2,15	2,26	2,35	:
Transporte Ferroviário	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
Transporte Hidroviário	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,03	:
Subsetor Residencial	1,38	1,38	1,38	1,21	1,18	1,07	1,05	1,06	1,08	
Subsetor Agricultura	0,45	0,45	0,42	0,42	0,42	0,43	0,43	0,44	0,42	
Subsetor Comercial	0,03	0,03	0,03	0,03	0,02	0,02	0,03	0,03	0,03	:
Subsetor Público	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	
Emissões Fugitivas	0,06	0,06	0,06	0,06	0,06	0,06	0,07	0,08	0,09	
Mineração de Carvão										
Extração e Transporte de Petróleo e Gás Natural	0.06	0,06	0,06	0.06	0.06	0.06	0.07	0.08	0,09	

Unidade: Gg

Ī	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	9,68	9,18	9,57	10,12	10,82	11,44	11,90	12,70	13,32	14,11	13,78	14,94	14,65	15,25
	9,58	9,07	9,45	9,99	10,70	11,34	11,69	12,55	13,17	13,94	13,49	14,75	14,48	15,09
	1,53	1,30	1,39	1,47	1,69	1,73	1,87	2,03	2,32	2,83	2,72	3,08	2,66	2,81
	0,13	0,13	0,13	0,10	0,10	0,12	0,12	0,13	0,08	0,09	0,07	0,09	0,07	0,12
	0,22	0,20	0,24	0,26	0,31	0,32	0,35	0,35	0,41	0,45	0,55	0,79	0,78	0,86
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
:	1,18	0,97	1,02	1,11	1,28	1,30	1,40	1,55	1,82	2,28	2,11	2,20	1,81	1,83
	4,15	3,94	4,15	4,35	4,70	5,08	5,15	5,73	5,86	5,84	5,54	6,12	6,21	6,39
:	0,69	0,75	0,72	0,74	0,83	1,00	0,97	1,11	0,98	0,97	0,60	0,75	0,78	0,79
	0,07	0,09	0,06	0,07	0,11	0,12	0,12	0,12	0,13	0,13	0,11	0,12	0,11	0,11
:	0,11	0,11	0,10	0,10	0,10	0,10	0,10	0,10	0,11	0,10	0,10	0,10	0,10	0,10
	0,04	0,05	0,04	0,05	0,05	0,05	0,05	0,06	0,06	0,05	0,05	0,09	0,11	0,11
	0,41	0,43	0,43	0,42	0,46	0,48	0,50	0,54	0,57	0,60	0,63	0,67	0,68	0,67
	2,18	1,84	2,16	2,35	2,48	2,64	2,69	3,06	3,23	3,13	3,27	3,52	3,47	3,64
:	0,11	0,12	0,12	0,11	0,11	0,11	0,11	0,12	0,12	0,14	0,09	0,13	0,20	0,21
	0,04	0,05	0,05	0,05	0,05	0,06	0,07	0,07	0,08	0,07	0,05	0,06	0,06	0,06
:	0,03	0,03	0,03	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,02
	0,30	0,30	0,28	0,27	0,28	0,29	0,31	0,32	0,34	0,38	0,37	0,41	0,43	0,44
	0,17	0,18	0,17	0,16	0,19	0,20	0,20	0,20	0,22	0,23	0,23	0,24	0,25	0,25
: -	2,33	2,25	2,26	2,37	2,43	2,61	2,71	2,80	3,06	3,32	3,33	3,66	3,87	4,15
	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
: _	2,29	2,22	2,22	2,32	2,39	2,56	2,66	2,76	3,01	3,26	3,27	3,60	3,81	4,08
	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,03	0,03
:	0,03	0,02	0,03	0,03	0,02	0,03	0,03	0,03	0,03	0,04	0,03	0,03	0,03	0,04
	1,12	1,15	1,19	1,33	1,38	1,40	1,43	1,43	1,36	1,34	1,31	1,27	1,14	1,13
: -	0,41	0,40	0,41	0,43	0,47	0,49	0,50	0,51	0,54	0,58	0,56	0,58	0,57	0,57
	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
:	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,00
:	0,10	0,11	0,12	0,13	0,12	0,10	0,20	0,15	0,15	0,17	0,29	0,19	0,17	0,15
	0,10	0,11	0,12	0,13	0,12	0,10	0,20	0,15	0,15	0,17	0,29	0,19	0,17	0,15

TABELA 04 Emissões de dióxido de carbono (CO₂) do Setor Processos Industriais

	1990	1991	1992	1993	1994	1995	1996	1997	1998	
Estimativas	1770	1771	1772	1773	Gg CO ₂	1773	1770	177/	1770	l
PROCESSOS INDUSTRIAIS	45.265	48.504	47.577	48.266	48.703	52.806	53.993	57.874	59.846	:
Produção de Cimento	11.062	11.776	9.770	10.164	10.086	11.528	13.884	15.267	16.175	:
Produção de Cal	3.688	3.755	3.948	4.241	4.098	4.104	4.248	4.338	4.141	
Outros Usos do Calcário e da Dolomita	1.630	1.746	1.589	1.491	1.480	1.728	1.701	2.015	1.932	:
Uso da Barrilha	182	191	166	187	187	247	215	224	233	:
Produção de Amônia	1.683	1.478	1.516	1.684	1.689	1.785	1.754	1.829	1.718	:
Produção de Carbureto de Cálcio	0	0	0	0	0	4	23	32	25	
Produção de Metanol	45	55	55	60	59	55	60	60	56	:
Produção de Eteno	3	3	3	3	4	4	4	4	4	
Produção de Cloreto de Vinila	141	98	98	112	120	114	127	123	122	:
Produção de Óxido de Eteno	66	78	74	78	85	84	78	113	135	
Produção de Acrilonitrila	18	15	17	17	18	19	18	20	15	:
Produção de Negro-de-fumo	355	363	371	392	406	399	402	413	420	
Produção de Ácido Fosfórico	62	72	62	75	87	86	84	94	97	:
Produção de Ferro-gusa e Aço	24.756	26.974	27.896	27.816	28.428	30.686	29.414	31.366	32.767	:
Produção de Alumínio	1.574	1.901	2.011	1.946	1.955	1.965	1.981	1.975	2.007	

TABELA 05 Emissões de metano (CH₄) do Setor Processos Industriais

Falinadina	1990	1991	1992	1993	1994	1995	1996	1997	1998
Estimativas					Gg CH₄				
PROCESSOS INDUSTRIAIS (Indústria Química)	5,150	5,120	5,275	5,943	6,526	6,439	6,445	7,327	7,745
Produção de Metanol	0,388	0,475	0,470	0,514	0,511	0,472	0,515	0,521	0,483
Produção de Eteno	4,499	4,346	4,517	5,128	5,687	5,643	5,627	6,379	6,764
Produção de Cloreto de Vinila	0,011	0,008	0,008	0,009	0,009	0,009	0,010	0,009	0,009
Produção de Óxido de Eteno	0,228	0,269	0,255	0,268	0,293	0,289	0,267	0,390	0,464
Produção de Acrilonitrila	0,014	0,011	0,013	0,013	0,014	0,014	0,014	0,016	0,012
Produção de Negro de fumo	0,011	0,011	0,011	0,012	0,012	0,012	0,012	0,012	0,013

ANEXOS - TABELAS

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
4	57.820	63.220	60.368	64.172	64.771	65.952	65.478	63.975	69.632	71.477	62.634	73.724	78.711	77.406
	16.439	16.047	15.227	14.390	13.096	13.273	14.349	15.832	17.616	19.019	19.160	20.989	22.493	25.309
	4.325	5.008	4.811	4.956	5.064	5.505	5.356	5.410	5.666	5.690	5.060	5.950	6.337	6.403
	1.800	1.756	1.595	1.751	1.936	2.050	1.815	1.301	1.395	1.731	1.887	3.060	3.309	3.321
:	233	243	259	176	196	196	248	308	333	357	320	396	375	375
:	1.943	1.663	1.396	1.567	1.690	1.934	1.922	1.968	1.866	1.811	1.576	1.739	1.995	1.758
	40	51	42	54	49	41	35	46	41	43	41	42	42	42
	58	56	65	64	64	73	64	64	64	59	30	56	58	46
:	5	5	5	5	5	5	5	5	6	5	5	6	5	6
:	125	125	110	114	167	173	179	202	201	198	201	213	206	206
:	136	133	145	131	146	154	155	151	161	139	138	146	146	146
:	19	20	17	19	19	19	18	20	20	16	20	22	22	22
	441	457	428	442	457	450	453	453	573	632	624	647	647	647
4	96	104	106	112	123	125	124	107	121	114	98	112	107	90
:	30.084	35.437	34.283	38.216	39.562	39.545	38.283	35.461	38.829	38.912	30.928	37.797	40.590	36.655
	2.079	2.116	1.879	2.176	2.198	2.408	2.472	2.647	2.738	2.749	2.545	2.549	2.379	2.380

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
4:														
◀	8,249	8,885	8,476	8,281	8,825	9,313	9,228	12,301	12,558	11,305	11,694	11,670	11,174	11,239
:	0,496	0,487	0,557	0,552	0,554	0,629	0,553	0,637	0,540	0,498	0,251	0,474	0,489	0,384
	7,248	7,901	7,386	7,243	7,728	8,108	8,099	11,098	11,412	10,278	10,912	10,636	10,125	10,295
	0,010	0,010	0,008	0,009	0,013	0,013	0,014	0,016	0,015	0,015	0,015	0,016	0,016	0,016
◀ .	0,468	0,458	0,498	0,450	0,503	0,531	0,532	0,519	0,554	0,478	0,476	0,503	0,503	0,503
٦.	0,014	0,016	0,013	0,014	0,014	0,015	0,014	0,015	0,016	0,012	0,016	0,017	0,017	0,017
	0,013	0,014	0,013	0,013	0,014	0,017	0,017	0,017	0,021	0,023	0,023	0,024	0,024	0,024

TABELA 06 Emissões de óxido nitroso (N2O) do Setor Processos Industriais

Estimativas	1990	1991	1992	1993	1994	1995	1996	1997	1998	
ESCIIIIdLIVAS					Gg N ₂ O					:
PROCESSOS INDUSTRIAIS	10,69	13,46	12,55	16,15	16,30	17,44	13,62	12,12	19,08	
Produção de Ácido Nítrico	1,81	1,93	1,89	2,00	2,01	2,05	2,07	2,12	2,06	
Produção de Ácido Adípico	8,63	11,25	10,41	13,84	13,99	15,08	11,22	9,66	16,75	:
Produção de Caprolactama	0,25	0,28	0,25	0,30	0,31	0,32	0,33	0,34	0,26	:

 TABELA 07
 Emissões de HFCs, PFCs e SF₆ do Setor Processos Industriais

Gg HFC-23	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Produção de HCFC-22	0,120	0,138	0,164	0,172	0,157	0,153	0,089	0,095	0,013	0,097
Gg HFC-125	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Uso de HFCs, PFCs e SF ₆										
Gg HFC-134a	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Uso de HFCs, PFCs e SF ₆	0,000	0,001	0,004	0,008	0,068	0,273	0,830	0,251	0,798	1,191
Gg HFC-143a	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Uso de HFCs, PFCs e SF ₆										
Gg HFC-152a	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Uso de HFCs, PFCs e SF ₆	1									
Gg CF ₄	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Produção de Alumínio	0,302	0,337	0,356	0,335	0,323	0,306	0,298	0,203	0,228	0,201
Gg C₂F ₆	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Produção de Alumínio	0,026	0,029	0,031	0,029	0,028	0,026	0,026	0,016	0,017	0,015
Gg SF ₆	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Uso de HFCs, PFCs e SF ₆	0,010	0,010	0,011	0,014	0,014	0,014	0,014	0,017	0,015	0,015
Produção de Magnésio	0,006	0,006	0,007	0,010	0,010	0,010	0,010	0,013	0,010	0,010
Uso de HFCs, PFCs e SF,	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,005	0,005

•	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010 201	1 2012	ı
	18,99	19,94	16,25	20,29	18,63	25,99	22,83	24,78	2,94	2,28	1,01	0,93 0,93	3 0,80	
	2,06	2,09	2,06	2,14	2,14	2,21	2,24	2,20	2,07	1,58	0,79	0,80 0,75	5 0,62	
	16,62	17,51	13,90	17,80	16,19	23,48	20,29	22,31	0,57	0,37	0,14	0,13 0,18	3 0,18	
	0,30	0,34	0,29	0,35	0,29	0,30	0,30	0,27	0,30	0,33	0,08	0,00 0,00	0,00	
								2004					2011	
	0,000		2001 0,000	0,000	0,000	2004 0,000	2005 0,000	2006 0,000	2007 0,000	2008 0,000	2009 0,000		2011 0,000	2012 0,000
			5,000	0,000	0,000		0,000	0,000	0,000	0,000	0,000	0,000		0,000
	2000		2001	2002	2003	2004	2005	2006	2007	2008	2009		2011	2012
ı.	0,007	7 (0,039	0,051	0,055	0,121	0,125	0,150	0,174	0,198	0,222	0,246	0,270	0,294
	2000		2001	2002	2003	2004	2005	2006	2007	2008	2009		2011	2012
	0,47		1,257	1,244	1,545	1,141	2,282	2,106	2,339	2,585	2,841		3,389	3,681
:	2000		2001	2002	2003	2004	2005	2006	2007	2008	2009		2011	2012
•	0,007		0,027	0,040	0,050	0,104	0,093	0,120	0,139	0,158	0,177		0,215	0,235
	0,000		2001 0,030	2002 0,008	2003 0,024	2004	2005	2006	2007	2008	2009		2011	2012
•	0,000		J,030	0,008	0,024	0,054	0,175	0,145	0,172	0,200	0,227	0,255	0,282	0,310
:	2000		2001	2002	2003	2004	2005	2006	2007	2008	2009		2011	2012
4	0,147		0,115	0,135	0,136	0,124	0,124	0,122	0,117	0,118	0,110		0,101	0,103
	2000		2001	2002	2003	2004	2005	2006	2007	2008	2009		2011	2012
	0,012	2 (0,009	0,012	0,011	0,010	0,010	0,010	0,010	0,010	0,009	0,009	0,009	0,009
	2000		2001	2002	2003	2004	2005	2006	2007	2008	2009		2011	2012
	0,01		0,015	0,018	0,020	0,023	0,025	0,028	0,033	0,033	0,020		0,008	0,008
	0,010		0,009	0,012	0,015	0,017	0,019	0,022	0,026	0,026	0,013		0,000	0,000
	0,00	o (0,005	0,005	0,006	0,006	0,006	0,006	0,007	0,007	0,007	0,007	0,008	0,008

Estimativas anuais de emissões de gases de efeito estufa - 2ª edição | 113

			$GgCH_{\scriptscriptstyle{4}}$						
	1990	1991	1992	1993	1994	1995	1996	1997	1998
AGROPECUÁRIA	9538,7	9829,2	10003,6	10043,1	10237,4	10447,2	10131,5	10253,2	10344,8
Fermentação Entérica	8419,2	8671,2	8801,6	8834,4	8995,2	9174,6	8979,9	9132,5	9221,8
Gado Bovino	8004,3	8250,4	8380,0	8427,3	8579,0	8751,8	8654,5	8806,2	8892,8
Gado de Leite	1197,7	1245,1	1279,3	1258,3	1262,8	1297,1	1081,0	1123,9	1136,7
Gado de Corte	6806,6	7005,3	7100,7	7169,0	7316,2	7454,6	7573,5	7682,3	7756,1
Outros Animais	415,0	420,8	421,6	407,1	416,2	422,8	325,4	326,3	329,0
Manejo de Dejetos Animais	635,2	652,8	662,7	659,0	675,3	695,2	627,8	640,7	646,6
Gado Bovino	191,2	197,6	200,4	201,2	204,6	208,8	200,3	204,7	207,0
Gado de Leite	35,9	37,5	38,4	37,7	37,6	38,5	31,1	32,6	33,0
Gado de Corte	155,3	160,1	162,0	163,5	167,0	170,2	169,2	172,1	174,0
Suínos	373,1	379,1	381,6	376,3	386,8	397,3	343,2	347,5	350,1
Aves	48,4	53,3	57,8	59,2	61,3	66,3	65,9	69,9	70,9
Outros Animais	22,5	22,8	22,9	22,3	22,6	22,9	18,4	18,6	18,7
Cultura de Arroz	363,1	385,3	416,0	439,9	436,3	442,2	391,2	367,7	361,0
Queima de Resíduos Agrícolas	121,1	119,8	123,4	109,9	130,5	135,1	132,6	112,3	115,4
Algodão	4,2	3,7	2,6	1,0	0,5	0,0	0,0	0,0	0,0
Cana-de-açúcar	116,9	116,1	120,8	108,8	130,0	135,1	132,6	112,3	115,4

ı														
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	10483,8	10771,5	11159,4	11503,5	12065,8	12604,9	12767,3	12711,3	12401,7	12657,3	12864,4	13136,8	13398,8	13270,2
	9296,6	9599,3	9965,6	10297,3	10832,5	11322,0	11486,9	11437,0	11120,1	11296,8	11473,4	11741,4	11958,4	11876,4
	8961,2	9255,6	9620,3	9956,1	10485,8	10971,3	11128,9	11076,9	10767,5	10942,8	11121,0	11381,8	11591,9	11523,3
	1143,1	1177,9	1206,7	1236,6	1268,8	1320,5	1371,4	1396,3	1408,0	1452,6	1512,2	1553,3	1591,3	1566,0
	7818,1	8077,7	8413,6	8719,5	9217,0	9650,8	9757,5	9680,5	9359,5	9490,2	9608,8	9828,5	10000,6	9957,2
	335,4	343,7	345,3	341,2	346,6	350,7	358,1	360,1	352,6	354,0	352,4	359,6	366,5	353,2
	660,2	677,8	701,0	693,1	713,1	717,7	722,9	725,3	742,0	760,8	778,8	794,4	805,7	799,1
:_	209,0	215,9	224,4	223,6	235,9	248,5	254,0	252,8	245,4	249,0	253,4	258,7	263,0	261,0
	33,2	34,1	34,7	35,5	36,4	38,5	39,7	40,4	40,6	41,5	43,1	44,0	44,6	43,7
:	175,8	181,8	189,7	188,1	199,5	210,0	214,3	212,5	204,7	207,5	210,3	214,7	218,4	217,3
	357,7	364,6	375,0	369,2	374,1	363,1	357,7	359,5	372,5	381,4	392,8	401,2	405,5	404,0
:	74,6	78,1	82,4	81,2	83,8	86,6	91,5	93,2	104,9	111,2	113,7	115,3	117,8	115,3
	18,9	19,2	19,2	19,1	19,4	19,5	19,7	19,7	19,3	19,2	19,0	19,2	19,4	18,7
	417,4	392,9	384,4	397,9	393,0	433,6	425,7	407,2	392,1	430,0	439,2	421,9	464,9	410,0
[:	109,6	101,5	108,3	115,2	127,3	131,6	131,8	141,8	147,5	169,7	172,9	179,1	169,8	184,7
	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	109,6	101,5	108,3	115,2	127,3	131,6	131,8	141,8	147,5	169,7	172,9	179,1	169,8	184,7

				Gg N₂O						
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
AGROPECUÁRIA	333,74	343,06	352,49	356,32	369,04	375,43	352,67	362,97	371,38	374,70
Manejo de Dejetos Animais	10,03	10,57	10,92	10,92	11,21	11,49	10,62	10,89	10,87	11,16
Gado Bovino	2,90	2,96	3,00	3,01	3,04	3,07	2,84	2,89	2,92	2,92
Gado de Leite	1,2	1,2	1,2	1,2	1,2	1,3	1,0	1,0	1,1	1,1
Gado de Corte	1,73	1,76	1,77	1,77	1,80	1,80	1,84	1,86	1,86	1,86
Suínos	2,4	2,5	2,5	2,4	2,5	2,5	1,9	2,0	2,0	2,0
Aves	4,40	4,83	5,13	5,18	5,39	5,58	5,60	5,79	5,72	5,95
Outros Animais	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2
Solos Agrícolas	317,65	326,50	335,43	339,96	351,38	357,28	335,51	346,54	354,82	358,13
Emissões Diretas	212,83	218,60	224,87	227,43	235,01	239,44	224,47	231,96	237,10	240,04
Animais em Pastagem	165,73	170,97	173,49	173,44	176,18	179,70	167,64	171,46	173,43	175,22
Bovinos	144,0	149,0	151,4	152,3	154,7	158,0	150,4	154,1	156,0	157,5
Outros	21,74	22,02	22,12	21,14	21,48	21,71	17,21	17,41	17,46	17,71
Fertilizantes Sintéticos	11,0	11,1	12,2	14,4	16,6	16,0	16,9	18,4	20,6	19,7
Aplicação de adubo	13,21	13,68	13,97	13,97	14,28	14,59	12,98	13,26	13,39	13,68
Bovinos	4,7	4,8	4,9	4,9	5,0	5,0	4,6	4,7	4,8	4,8
Outros	8,47	8,84	9,06	9,05	9,31	9,56	8,34	8,54	8,60	8,90
Resíduos Agrícolas	15,33	14,99	16,92	17,07	18,95	19,80	17,25	18,80	19,33	20,71
Soja	4,85	3,64	4,68	5,50	6,07	6,26	5,64	6,43	7,63	7,55
Cana	1,0	1,0	1,1	1,0	1,2	1,2	1,5	1,5	1,7	1,7
Feijão	0,77	0,95	0,97	0,86	1,17	1,02	0,85	0,98	0,76	0,98
Arroz	0,9	1,1	1,1	1,2	1,2	1,3	1,0	1,0	0,9	1,3
Milho	3,48	3,85	4,97	4,90	5,29	5,91	4,83	5,37	4,82	5,25
Mandioca	2,7	2,7	2,4	2,4	2,7	2,8	1,9	2,2	2,1	2,3
Outras	1,68	1,75	1,68	1,28	1,38	1,34	1,45	1,33	1,45	1,63
Solos Orgânicos	7,5	7,9	8,3	8,6	9,0	9,3	9,7	10,0	10,4	10,7
Emissões Indiretas	104,82	107,90	110,56	112,53	116,36	117,84	111,04	114,59	117,72	118,09
Deposição Atmosférica	21,10	21,75	22,20	22,43	23,04	23,40	21,89	22,51	22,98	23,13
Fertilizantes Sintéticos	1,22	1,23	1,36	1,59	1,85	1,78	1,88	2,05	2,29	2,19
Adubo Animal	19,88	20,52	20,84	20,84	21,19	21,62	20,01	20,46	20,69	20,94
Bovinos	15,58	16,11	16,36	16,46	16,71	17,06	16,20	16,59	16,79	16,95
Outros	4,3	4,4	4,5	4,4	4,5	4,6	3,8	3,9	3,9	4,0
Lixiviação	83,72	86,15	88,36	90,10	93,33	94,44	89,15	92,08	94,74	94,95
Fertilizantes Sintéticos	9,18	9,21	10,20	11,96	13,87	13,37	14,11	15,35	17,15	16,42
Adubo Animal	74,53	76,94	78,16	78,14	79,45	81,06	75,04	76,73	77,59	78,54
Bovinos	58,4	60,4	61,4	61,7	62,7	64,0	60,8	62,2	63,0	63,6
Outros	16,10	16,55	16,79	16,41	16,78	17,10	14,27	14,53	14,61	14,98
Queima de Resíduos Agrícolas	6,06	5,99	6,14	5,44	6,45	6,67	6,54	5,54	5,69	5,40
Algodão	0,29	0,26	0,18	0,07	0,04	0,00	0,00	0,00	0,00	0,00
Cana-de-açúcar	5,8	5,7	6,0	5,4	6,4	6,7	6,5	5,5	5,7	5,4

ı							Gg N₂O						
ı	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	392,52	405,72	423,65	456,50	466,10	476,16	480,44	491,48	494,68	495,91	520,83	543,48	541,20
ı	11,49	11,88	11,80	12,16	11,28	12,82	12,93	13,69	14,31	14,65	14,84	15,15	14,96
1:	2,98	3,05	3,13	3,22	2,13	3,29	3,29	3,26	3,33	3,40	3,46	3,53	3,51
`:	1,1	1,1	1,1	1,1	0,0	1,2	1,2	1,2	1,3	1,3	1,4	1,4	1,4
:	1,89	1,94	2,01	2,08	2,12	2,10	2,07	2,02	2,04	2,06	2,08	2,11	2,09
	2,1	2,1	2,0	2,0	2,1	2,2	2,2	2,2	2,2	2,3	2,4	2,4	2,3
-	6,20	6,47	6,40	6,65	6,78	7,11	7,19	7,97	8,50	8,71	8,78	9,02	8,88
	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
	376,02	388,50	406,17	438,06	448,33	456,85	460,51	470,51	472,00	472,73	497,15	519,95	517,13
:	251,17	260,65	272,03	293,42	300,98	305,77	308,26	314,25	317,22	317,49	333,08	347,22	344,97
:	180,80	186,80	195,13	204,87	213,70	217,06	216,19	210,42	213,07	216,43	220,90	223,99	221,38
	162,7	168,7	177,2	186,8	195,4	198,4	197,5	192,2	194,8	198,4	202,7	205,6	203,8
:	18,08	18,09	17,88	18,12	18,32	18,62	18,70	18,25	18,23	18,00	18,24	18,41	17,62
	23,6	23,2	25,7	31,4	31,7	31,1	32,5	39,0	35,4	33,6	40,4	47,6	48,6
:	14,05	14,50	14,49	14,85	13,36	15,63	15,90	16,41	16,96	17,40	17,70	18,00	17,79
	4,9	5,0	5,1	5,3	3,6	5,5	5,5	5,4	5,6	5,7	5,8	5,9	5,9
:	9,17	9,51	9,37	9,58	9,80	10,17	10,41	10,97	11,41	11,73	11,93	12,12	11,94
	21,65	24,73	24,95	30,12	29,67	29,10	30,49	34,87	37,89	35,76	39,50	42,65	41,90
:	8,00	9,24	10,26	12,65	12,07	12,47	12,78	14,10	14,58	13,97	16,75	18,23	16,04
	1,8	1,9	2,0	2,1	2,2	2,4	2,9	3,8	4,6	5,3	5,5	6,0	5,3
i	1,06	0,85	1,06	1,14	1,03	1,05	1,20	1,10	1,20	1,21	1,09	1,19	0,97
	1,3	1,2	1,2	1,2	1,5	1,5	1,3	1,3	1,4	1,5	1,3	1,5	1,3
Ė	5,27	6,84	5,86	7,88	6,81	5,72	6,95	8,49	9,60	8,27	9,02	9,07	11,58
	2,5	2,5	2,5	2,4	2,6	2,8	2,9	2,9	2,9	2,7	2,7	2,8	2,5
Ė,	1,71	2,29	2,07	2,79	3,39	3,17	2,43	3,17	3,58	2,93	3,14	3,80	4,12
	11,1	11,4	11,8	12,1	12,5	12,8	13,2	13,6	13,9	14,3	14,6	15,0	15,3
Ė,	124,85	127,85	134,14	144,64	147,36	151,07	152,25	156,26	154,78	155,24	164,07	172,74	172,16
	24,21	24,88	25,99	27,69	28,24	29,07	29,20	29,48	29,48	29,73	31,00	32,19	31,98
i,	2,62	2,58	2,85	3,49	3,53	3,46	3,61	4,33	3,93	3,74	4,49	5,29	5,40
	21,59	22,30	23,13	24,20	24,71	25,61	25,59	25,14	25,55	25,99	26,51	26,90	26,59
i,	17,49	18,12	19,00	19,99	20,43	21,21	21,12	20,58	20,87	21,26	21,71	22,03	21,84
	4,1	4,2	4,1	4,2	4,3	4,4	4,5	4,6	4,7	4,7	4,8	4,9	4,7
i	100,63	102,97	108,16	116,95	119,12	122,00	123,05	126,79	125,30	125,51	133,07	140,55	140,18
ij	19,66	19,33	21,40	26,20	26,46	25,95	27,07	32,50	29,49	28,04	33,65	39,67	40,48
	80,97	83,64	86,76	90,75	92,66	96,05	95,98	94,29	95,80	97,47	99,43	100,87	99,70
ازا	65,6	67,9	71,3	75,0	76,6	79,5	79,2	77,2	78,3	79,7	81,4	82,6	81,9
I:	15,38	15,70	15,49	15,78	16,06	16,52	16,77	17,13	17,53	17,75	18,02	18,27	17,80
	5,01	5,34	5,68	6,28	6,49	6,50	6,99	7,28	8,37	8,53	8,84	8,38	9,11
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	5,0	5,3	5,7	6,3	6,5	6,5	7,0	7,3	8,4	8,5	8,8	8,4	9,1

				Gg CH₄						
Estado	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Rondônia	96,1	155,5	153,7	180,8	189,0	212,9	215,9	237,7	278,0	296,6
Acre	21,8	22,4	22,5	24,6	25,7	25,9	45,9	46,4	48,7	50,1
Amazonas	35,9	36,7	36,1	39,1	42,3	45,6	41,2	43,3	45,5	46,5
Roraima	20,5	20,5	21,0	19,3	18,0	18,4	24,8	23,0	25,2	28,1
Pará	373,8	394,7	414,8	440,5	448,1	477,7	384,8	424,6	467,5	496,5
Amapá	8,2	8,3	8,2	11,8	13,8	14,6	11,0	11,6	12,7	12,7
Tocantins	232,9	249,1	260,1	285,9	301,1	312,2	296,3	294,9	303,7	328,4
Maranhão	260,6	262,7	257,9	262,9	267,3	270,6	238,4	235,6	237,7	239,6
Piauí	146,2	152,7	150,8	146,2	150,8	156,2	124,1	124,4	123,1	123,7
Ceará	183,5	185,6	185,5	151,7	157,4	164,2	162,7	162,0	143,1	146,4
Rio Grande do Norte	62,4	63,6	61,4	38,1	43,8	48,9	59,2	59,5	50,9	48,9
Paraíba	91,5	89,6	89,5	58,2	66,1	72,5	81,9	81,6	59,1	57,2
Pernambuco	147,9	147,3	145,7	97,0	106,1	107,8	138,6	122,6	108,0	102,1
Alagoas	72,5	75,9	75,8	61,6	65,5	68,2	64,4	73,0	70,1	64,2
Sergipe	68,9	69,6	69,8	60,6	54,9	53,1	58,8	59,8	58,3	59,5
Bahia	745,2	766,8	789,9	654,6	643,9	645,8	597,3	606,6	567,7	571,8
Minas Gerais	1233,1	1250,3	1270,6	1265,8	1249,4	1220,4	1230,4	1235,3	1234,6	1209,8
Espírito Santo	116,4	121,7	125,1	130,4	129,9	132,4	121,6	127,2	126,0	123,1
Rio de Janeiro	143,5	145,1	147,6	148,6	150,1	146,3	141,0	140,9	142,0	141,6
São Paulo	822,2	819,5	833,1	851,4	876,3	886,8	865,9	850,1	847,4	861,9
Paraná	529,4	528,4	528,0	534,5	554,2	588,5	620,9	624,4	619,3	605,9
Santa Catarina	229,9	233,4	236,3	236,7	236,0	241,6	249,5	248,9	243,3	247,0
Rio Grande do Sul	1094,2	1115,7	1162,0	1196,6	1225,4	1216,4	1135,7	1136,1	1148,6	1190,1
Mato Grosso do Sul	1200,1	1217,1	1264,6	1333,2	1360,8	1367,0	1254,7	1265,8	1288,6	1292,8
Mato Grosso	621,3	669,5	686,4	774,5	833,7	921,3	1003,4	1047,8	1073,1	1103,4
Goiás ————————	974,9	1021,6	1000,7	1031,1	1020,3	1024,3	956,1	962,8	1015,8	1028,9
Distrito Federal	6,1	5,9	6,5	7,3	7,4	7,4	6,9	7,4	6,8	7,0
Região	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Norte	789,2	887,2	916,6	1001,9	1038,0	1107,4	1019,9	1081,4	1181,4	1258,9
 Nordeste	1778,6	1813,7	1826,3	1531,0	1555,7	1587,3	1525,4	1525,1	1417,9	1413,3
Sudeste	2315,2	2336,7	2376,3	2396,2	2405,8	2385,9	2359,0	2353,4	2350,0	2336,4
Sul	1853,4	1877,5	1926,4	1967,8	2015,6	2046,4	2006,1	2009,5	2011,3	2043,0
Centro-Oeste	2802,4	2914,1	2958,1	3146,2	3222,2	3320,1	3221,1	3283,9	3384,2	3432,0
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Brasil	9538,7	9829,2	10003,6	10043,1	10237,4	10447,2	10131,5	10253,2	10344,8	10483,8

İ	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	308,7	360,3	432,2	493,9	561,0	596,8	602,6	581,7	590,6	609,3	625,7	642,0	649,0
1:	55,6	91,0	97,6	100,1	110,0	120,6	129,2	127,0	130,0	134,9	138,3	137,4	137,8
1	47,5	48,7	50,0	61,4	63,4	65,6	68,2	64,7	71,2	73,0	73,9	79,2	79,4
	28,0	25,9	26,2	27,1	29,5	32,2	31,2	29,8	30,3	28,5	33,7	38,6	40,3
:	572,2	619,3	670,5	734,2	940,4	975,1	943,6	836,7	881,8	912,7	957,3	992,1	1007,5
	13,7	14,0	13,6	13,3	13,9	16,3	17,7	17,6	16,9	17,5	18,7	20,7	22,6
	340,5	362,1	379,8	413,6	431,7	434,0	413,8	398,4	401,4	412,0	436,0	448,0	448,1
	247,1	269,0	272,8	313,2	337,6	366,7	375,9	374,9	386,8	390,4	394,8	410,4	421,4
:	125,0	125,7	122,1	122,0	123,3	123,9	124,4	118,2	118,6	114,1	113,8	114,1	112,3
:	149,0	146,4	142,9	145,2	148,4	150,0	152,4	157,4	160,1	162,0	165,1	169,2	172,4
:	52,5	51,8	53,7	57,1	60,9	62,6	65,6	64,5	65,7	72,8	68,1	67,4	56,7
	62,0	61,1	60,7	61,6	64,7	67,0	69,6	72,2	76,0	78,5	78,2	84,7	61,3
	111,4	121,8	123,6	121,3	124,5	138,5	149,7	158,2	162,6	164,9	173,3	181,4	139,1
	62,7	67,0	61,2	63,0	66,2	70,1	72,3	77,3	81,5	82,3	82,9	87,6	84,7
:	56,3	55,6	53,6	55,1	57,9	62,9	67,8	68,9	69,6	72,5	72,1	74,4	72,8
	594,8	610,3	579,2	596,5	619,6	622,2	637,6	665,9	649,2	605,7	623,5	627,7	599,9
÷,	1201,9	1218,9	1219,0	1234,4	1283,1	1280,9	1325,4	1346,6	1344,4	1356,8	1375,6	1452,6	1453,7
	119,7	110,9	110,0	115,4	121,1	125,7	130,0	131,0	129,7	132,6	133,8	134,7	137,6
	146,4	147,5	144,6	146,9	152,6	152,5	151,6	148,6	152,0	156,2	161,1	163,8	167,2
	854,0	866,3	878,9	908,4	893,8	884,0	857,3	802,3	783,0	777,9	782,1	759,6	760,0
:	617,4	632,6	650,9	668,9	679,3	675,7	658,6	651,5	668,0	679,6	675,9	683,3	680,9
	253,1	258,4	267,7	277,9	285,5	296,7	303,9	310,8	338,8	347,3	350,6	357,3	357,4
	1179,3	1195,5	1251,8	1259,7	1289,3	1258,2	1252,9	1208,0	1299,9	1328,0	1323,8	1374,5	1323,0
	1335,1	1357,9	1361,7	1459,1	1438,7	1422,5	1374,5	1270,1	1292,3	1288,3	1297,3	1254,1	1246,4
	1198,2	1259,7	1356,9	1490,2	1565,5	1605,0	1580,3	1571,6	1596,7	1676,4	1755,5	1787,2	1767,5
	1032,4	1074,4	1115,2	1119,4	1135,9	1154,6	1148,8	1141,1	1154,6	1183,5	1219,0	1250,6	1264,5
:	7,1	7,2	7,1	7,0	7,1	6,7	6,5	6,8	5,6	6,7	6,6	6,3	6,6
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
:	1366,2	1521,3	1670,0	1843,7	2150,0	2240,8	2206,3	2055,9	2122,1	2187,9	2283,6	2357,9	2384,7
	1460,8	1508,8	1469,7	1534,9	1602,9	1663,9	1715,2	1757,4	1770,2	1743,3	1772,0	1817,0	1720,7
	2321,9	2343,6	2352,5	2405,0	2450,6	2443,1	2464,3	2428,5	2409,1	2423,4	2452,5	2510,6	2518,5
	2049,8	2086,5	2170,3	2206,5	2254,1	2230,6	2215,4	2170,3	2306,7	2354,9	2350,3	2415,0	2361,3
l:	3572,9	3699,2	3841,0	4075,7	4147,3	4188,8	4110,0	3989,5	4049,2	4154,8	4278,4	4298,2	4285,0
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	10771,5	11159,4	11503,5	12065,8	12604,9	12767,3	12711,3	12401,7	12657,3	12864,4	13136,8	13398,8	13270,2

TABELA 11 Emissões de N₂O do Setor Agropecuária, por estado

				Gg N ₂ O						
Estado	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Rondônia	3,63	5,54	5,59	6,44	6,34	7,09	6,55	7,06	8,28	8,80
Acre	0,80	0,83	0,83	0,95	0,98	0,98	1,41	1,43	1,50	1,57
Amazonas	1,24	1,25	1,22	1,32	1,44	1,55	1,42	1,51	1,59	1,65
Roraima	0,80	0,77	0,78	0,70	0,65	0,62	0,68	0,67	0,72	0,82
Pará	13,12	13,92	14,53	15,59	15,83	16,79	12,75	14,13	15,35	16,34
Amapá	0,28	0,28	0,27	0,39	0,45	0,47	0,36	0,38	0,41	0,41
Tocantins	7,40	7,64	8,00	8,47	8,88	9,24	8,29	8,50	8,76	9,31
Maranhão	9,30	9,38	9,10	9,27	9,53	9,61	8,17	8,15	8,23	8,31
Piauí	6,44	6,72	6,44	6,23	6,55	6,85	5,50	5,53	5,51	5,60
Ceará	7,60	7,80	7,66	6,43	6,84	6,96	6,79	6,81	6,16	6,39
Rio Grande do Norte	2,31	2,42	2,32	1,55	1,87	2,04	2,33	2,37	2,12	2,05
Paraíba	3,64	3,76	3,70	2,52	2,90	3,13	3,17	3,21	2,44	2,40
Pernambuco	6,62	6,74	6,73	4,91	5,51	5,65	6,57	6,22	5,34	5,03
Alagoas	3,23	3,25	3,37	2,54	3,21	3,23	3,24	3,34	3,28	2,89
Sergipe	2,28	2,32	2,31	2,05	1,93	1,87	1,99	1,97	1,96	1,97
Bahia	26,27	27,31	28,25	24,11	24,34	24,69	23,19	23,72	22,96	23,47
Minas Gerais	42,61	43,04	43,93	44,69	44,93	44,91	42,31	44,63	46,14	45,53
Espírito Santo	3,85	4,02	4,15	4,68	4,89	5,03	4,05	4,54	4,66	4,34
Rio de Janeiro	4,03	4,18	4,28	4,22	4,25	4,19	4,10	3,99	3,98	3,83
ão Paulo	36,90	37,31	38,58	39,15	41,40	41,94	40,36	40,57	40,59	39,75
Paraná	23,17	23,18	24,11	25,51	26,49	27,26	28,05	27,76	29,49	29,81
Santa Catarina	8,90	8,89	9,46	9,81	10,16	10,26	9,76	10,03	10,41	10,59
Rio Grande do Sul	34,75	33,79	36,24	37,34	38,84	37,47	32,39	33,48	34,34	33,83
Mato Grosso do Sul	29,84	30,53	31,73	34,41	35,61	35,69	32,63	33,32	34,14	34,45
Mato Grosso	15,22	16,54	17,24	19,82	21,98	24,12	26,01	28,08	29,22	30,78
Goiás	31,66	33,46	33,12	34,28	33,91	34,04	30,46	31,07	32,87	33,59
Distrito Federal	0,30	0,30	0,31	0,33	0,37	0,43	0,48	0,49	0,53	0,49
Região	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Norte	27,28	30,23	31.24	33.85	34,57	36,75	31.46	33.67	36,62	38.90
Nordeste	67,69	69,70	69,87	59,61	62,68	64,03	60,95	61,32	58,02	58,13
Sudeste	87,38	88,55	90,93	92,75	95,47	96,08	90,82	93,74	95,38	93,46
Sul	66,82	65,86	69,80	72,67	75,49	74,98	70,19	71,27	74,24	74,21
Centro-Oeste	77,03	80,83	82,40	88,83	91,88	94,28	89,58	92,95	96,76	99,29
Total	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Brasil - sem Solos orgânicos	326,20	335,16	344,24	347,72	360,08	366,12	343,01	352,95	361,01	363,97
iolos orgânicos	7,5	7,9	8,3	8,6	9,0	9,3	9,7	10,0	10,4	10,7
Brasil	333,74	343,06	352,49	356,32	369,04	375,43	352,67	362,97	371,38	374,70

i													
ı	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	9,13	10,46	12,48	14,73	16,66	17,77	17,79	17,30	17,55	18,10	18,59	18,88	18,74
	1,72	2,63	2,86	2,97	3,25	3,59	3,83	3,63	3,82	3,79	3,92	3,89	3,99
: -	1,68	1,72	1,80	2,07	2,12	2,22	2,29	2,05	2,35	2,41	2,44	2,64	2,62
	0,82	0,76	0,74	0,75	0,80	0,88	0,89	0,83	0,82	0,81	0,96	1,06	1,10
: -	18,47	19,40	21,37	23,17	28,75	29,83	28,94	26,09	26,92	27,65	28,46	29,68	30,16
	0,44	0,45	0,44	0,43	0,45	0,53	0,58	0,58	0,56	0,57	0,61	0,68	0,74
: -	9,83	10,47	11,09	12,28	12,66	12,80	12,55	12,15	12,18	12,49	13,16	13,32	13,67
	8,63	9,14	9,75	10,92	11,54	12,32	12,62	12,63	13,03	12,97	13,07	14,02	14,29
: -	5,70	5,70	5,68	5,85	5,85	5,94	6,01	5,76	5,89	5,47	5,48	5,81	5,73
	6,56	6,46	6,74	6,94	6,91	6,98	7,28	7,40	7,60	7,58	7,57	7,95	7,83
	2,25	2,19	2,42	2,59	2,69	2,79	2,90	2,92	2,91	3,06	2,92	2,90	2,53
	2,65	2,60	2,73	2,82	2,86	2,91	3,09	3,11	3,18	3,30	3,29	3,50	2,77
	5,56	5,97	6,20	6,20	6,16	6,69	7,33	7,66	7,89	8,07	8,40	8,53	7,06
	3,07	3,30	3,11	3,32	3,29	3,40	3,58	3,75	3,59	3,71	3,82	3,86	3,77
:	1,89	1,87	1,90	2,03	2,04	2,26	2,44	2,52	2,68	2,94	2,99	3,07	2,95
	25,03	25,15	25,47	26,56	27,56	28,05	28,62	29,95	29,11	28,50	29,77	30,21	29,19
:	46,82	46,84	47,47	50,52	51,04	54,24	55,30	57,95	56,21	57,63	59,56	64,66	65,57
	4,47	4,16	4,19	4,26	4,43	5,27	5,53	5,66	5,41	5,88	6,13	6,64	6,81
: :_	4,01	3,98	3,99	4,04	4,02	4,23	4,26	4,22	4,28	4,33	4,36	4,40	4,44
	40,67	41,81	42,91	45,76	44,85	45,57	46,74	47,90	45,96	45,57	47,00	48,89	47,18
: _	31,26	32,09	32,61	36,60	36,05	35,22	34,52	38,50	39,08	38,17	39,47	41,46	40,28
	11,41	12,09	12,48	13,09	12,51	13,63	13,92	15,29	15,95	16,52	16,36	16,65	16,09
:_	34,15	35,71	36,87	38,83	37,91	35,51	38,08	39,86	40,71	42,47	45,96	47,20	45,40
	35,81	36,70	37,63	41,30	40,63	39,99	39,18	37,53	38,56	38,06	39,47	39,02	39,77
	34,08	36,13	40,33	46,31	48,68	49,68	48,15	50,44	51,55	48,25	57,05	60,26	62,94
	34,79	35,96	38,01	39,36	39,32	40,33	40,21	41,57	42,40	42,75	44,78	48,60	49,57
:	0,53	0,52	0,57	0,65	0,60	0,71	0,61	0,66	0,60	0,60	0,62	0,73	0,70
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	42,10	45,90	50,80	56,40	64,69	67,61	66,88	62,64	64,19	65,82	68,13	70,15	71,02
	61,34	62,40	64,00	67,23	68,90	71,34	73,88	75,70	75,87	75,61	77,32	79,85	76,12
	95,97	96,79	98,57	104,58	104,34	109,30	111,82	115,73	111,86	113,41	117,04	124,59	123,99
	76,81	79,89	81,96	88,53	86,47	84,36	86,52	93,65	95,74	97,15	101,79	105,31	101,77
	105,22	109,31	116,53	127,62	129,22	130,70	128,15	130,20	133,12	129,65	141,92	148,62	152,98
:	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	381,44	394,29	411,86	444,36	453,61	463,32	467,24	477,92	480,78	481,65	506,21	528,51	525,88
	11,1	11,4	11,8	12,1	12,5	12,8	13,2	13,6	13,9	14,3	14,6	15,0	15,3
	392,52	405,72	423,65	456,50	466,10	476,16	480,44	491,48	494,68	495,91	520,83	543,48	541,20

TABELA 12(Tabela 20 do Relatório de Referência 34) – Emissões líquidas de CO_2 no bioma
Amazônia, 1994 a 2002 (em Gg)

			200	2			
	FNM	FM	Fsec	Ref	CS	GNM	GM
FNM	0,00	-518.424,14	56.600,46	11.106,78	40.770,15		
FM		-982.460,52	6.251,30	0,00	720,93		
Fsec			-9.406,33	15,34			
Ref			6,22	0,00			
cs							
GNM				-890,16		0,00	0,00
₊ GM				0,00			0,00
Gsec				-16,27			
Ар			-35.761,00	-2.042,30			
Ac			-4.372,16	-143,11			
S							
A							
Res							
o			-0,77	0,00			
NO							
Total 2002	0,00	-1.500.884,66	13.317,72	8.030,28	41.491,09	0,00	0,00

Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Dióxido de Carbono no Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Disponível em: <www.mct.gov.br/upd_blob/0219/219302.pdf>.

	-								
	Gsec	Ар	Ac	S	Α	Res	О	NO	Total 1994
		6.882.784,77	904.422,86	11.047,80		5.610,69	4.605,17		7.398.524,54
		322.777,25	39.564,07	1.101,07		145,09	2.943,49		-608.957,32
		98.194,82	30.527,83	264,49		0,12	144,67		119.740,93
	0,00	29,38	1.162,54	0,20		0,00	0,01		1.198,35
									0,00
	7,43	18.462,40	1.842,43	602,81		0,00	0,64		20.025,54
	0,31	459,04	0,00	5,22		0,00	0,00		464,57
	-47,09	15,25	15,08	2,17		0,00	0,00		-30,86
:	20,36	0,00	18.900,65	3.702,98		11,03	81,97		-15.086,31
	0,11	-24.005,45	0,00	297,88		0,07	0,00		-28.222,65
				0,00					0,00
					0,00	0,00			0,00
						0,00			0,00
	0,00	-666,83	-0,57	0,00		0,00	0,00		-668,18
•									0,00
	-18,88	7.298.050,62	996.434,90	17.024,61	0,00	5.767,01	7.775,94	0,00	6.886.988,63

 TABELA 13
 Emissões líquidas de CO2 no bioma Amazônia, estado do Pará, 1994 a 2002 (em Gg)

				2002				
	FNM	FM	Fsec	Ref	CS	GNM	GM	Gsec
FNM	0,00	-68.024,38	32.968,23	6.148,29	4.667,83			
FM		-372.393,84	3.591,04	0,00	45,41			
Fsec			-691,92	2,28				
Ref			0,00	0,00				0,00
cs								
GNM				0,00		0,00	0,00	0,14
GM				0,00			0,00	0,00
Gsec				0,00				-5,10
Ар			-13.999,72	-634,56				3,16
Ac			-1.331,48	0,00				0,00
s								
Α								
Res								
0			-0,39	0,00				0,00
NO								
Total 2002	0,00	-440.418,22	20.535,77	5.516,01	4.713,24	0,00	0,00	-1,80

TABELA 14 | Emissões líquidas de CO₂ no bioma Amazônia, estado do Mato Grosso,1994 a 2002 (em Gg)

					2002				
		FNM	FM	Fsec	Ref	CS	GNM	GM	Gsec
	FNM	0,00	-20.604,01	8.351,93	0,00	35.561,51			
	FM		-94.773,74	913,63	0,00	232,77			
	Fsec			-4.573,81	0,00				
	Ref			0,00	0,00				0,00
	cs								
	GNM				0,00		0,00	0,00	0,34
₹+	GМ				0,00			0,00	0,01
1994	Gsec				0,00				-31,82
	Ар			-11.240,72	0,00				14,40
	Ac			-2.153,67	0,00				-0,57
	s								
	Α								
	Res								
	О			-0,35	0,00				0,00
	NO								
	Total 2002	0,00	-115.377,76	-8.703,00	0,00	35.794,28	0,00	0,00	-17,65

	Ар	Ac	S	Α	Res	0	NO	Total 1994
	2.749.281,91	293.355,06	3.973,02		1.784,49	2.577,22		3.026.731,68
:	52.633,93	905,38	376,48		10,60	2.407,14		-312.423,85
:	43.023,39	5.030,80	63,52		0,00	61,29		47.489,36
:	17,68	1.162,54	0,00		0,00	0,00		1.180,22
								0,00
	10.185,01	109,67	38,77		0,00	0,00		10.333,58
:	278,58	0,00	0,50		0,00	0,00		279,08
:	14,85	8,34	0,00		0,00	0,00		18,09
:	0,00	10.022,78	929,88		1,98	20,10		-3.656,38
:	-1.298,61	0,00	87,39		0,00	0,00		-2.542,70
:			0,00					0,00
				0,00	0,00			0,00
					0,00			0,00
	-349,53	0,00	0,00		0,00	0,00		-349,92
								0,00
	2.853.787,20	310.594,58	5.469,54	0,00	1.797,07	5.065,75	0,00	2.767.059,16

	Ар	Ac	S	Α	Res	0	NO	Total 1994
	1.931.002,41	271.111,29	1.348,83		499,46	1.501,00		2.228.772,42
	5.967,92	37,17	0,00		7,42	52,23		-87.562,61
	14.932,95	21.078,75	0,39		0,12	60,69		31.499,09
:	0,00	0,00	0,00		0,00	0,00		0,00
:								0,00
	5.949,49	1.626,27	6,87		0,00	0,00		7.582,96
	58,35	0,00	0,00		0,00	0,00		58,36
:	0,84	1,15	0,00		0,00	0,00		-29,83
:	0,00	1.698,11	518,63		7,95	19,56		-8.982,07
:	-18.711,76	0,00	14,64		0,07	0,00		-20.851,28
			0,00					0,00
				0,00	0,00			0,00
					0,00			0,00
_:	-290,68	0,00	0,00		0,00	0,00		-291,02
								0,00
	1.938.909,53	295.552,75	1.889,36	0,00	515,03	1.633,48	0,00	2.150.196,02

TABELA 15 | Emissões líquidas de CO₂ no bioma Amazônia, estado de Rondônia,1994 a 2002 (em Gg)

			200	2			
	FNM	FM	Fsec	Ref	CS	GNM	GM
FNM	0,00	-38.443,88	1.281,70	0,00	103,55		
FM		-95.057,89	593,10	0,00	1,45		
Fsec			-778,17	0,00			
Ref			0,00	0,00			
cs							
GNM				0,00		0,00	0,00
GM				0,00			0,00
Gsec Gsec				0,00			
Ар			-4.501,54	0,00			
Ac			-682,59	0,00			
s							
Α							
Res							
o			-0,04	0,00			
NO							
Total 2002	0,00	-133.501,78	-4.087,54	0,00	105,00	0,00	0,00

			200	2			
	FNM	FM	Fsec	Ref	CS	GNM	GM
FNM	0,00	-3.663,21	17,54	4.500,20	415,18		
FM		-38.969,29	3,02	0,00	441,30		
Fsec			-109,99	13,06			
Ref			0,00	0,00			
cs							
GNM				0,00		0,00	0,00
gM				0,00			0,00
Gsec				0,00			
Ар			-410,29	-1.395,43			
Ac			0,00	-143,11			
S							
A							
Res							
o			0,00	0,00			
NO							
Total 2002	0,00	-42.632,50	-499,71	2.974,73	856,48	0,00	0,00

Gsec	Ар	Ac	S	Α	Res	О	NO	Total 1994
	983.790,32	222.666,14	744,37		5,29	112,08		1.170.259,56
	98.569,21	32.404,94	1,44		0,00	482,08		36.994,32
	9.178,39	1.908,51	43,51		0,00	18,58		10.370,81
0,00	0,00	0,00	0,00		0,00	0,00		0,00
								0,00
0,02	517,72	22,28	0,00		0,00	0,00		540,02
0,26	9,44	0,00	0,00		0,00	0,00		9,70
-0,26	0,46	0,00	0,00		0,00	0,00		0,20
0,78	0,00	4.166,12	615,66		0,00	42,31		323,32
0,68	562,76	0,00	177,72		0,00	0,00		58,57
			0,00					0,00
				0,00	0,00			0,00
					0,00			0,00
0,00	-26,40	-0,57	0,00		0,00	0,00		-27,01
								0,00
1,48	1.092.601,90	261.167,41	1.582,69	0,00	5,29	655,05	0,00	1.218.529,50

	Gsec	Ар	Ac	S	Α	Res	0	NO	Total 1994
		399.249,11	64.204,81	938,50		18,65	9,13		465.689,91
		145.517,38	5.327,39	632,35		30,05	1,79		112.984,00
		10.901,09	739,12	1,46		0,00	0,00		11.544,74
	0,00	0,00	0,00	0,00		0,00	0,00		0,00
:									0,00
:	0,00	18,60	0,00	0,00		0,00	0,00		18,60
	0,00	95,78	0,00	4,72		0,00	0,00		100,50
:	0,00	0,00	0,00	0,00		0,00	0,00		0,00
:	0,00	0,00	2.480,12	753,38		0,92	0,00		1.428,70
	0,00	-3.222,06	0,00	10,96		0,00	0,00		-3.354,20
				0,00					0,00
					0,00	0,00			0,00
						0,00			0,00
	0,00	0,00	0,00	0,00		0,00	0,00		0,00
■:									0,00
	0,00	552.559,90	72.751,45	2.341,36	0,00	49,61	10,92	0,00	588.412,25

TABELA 17 | Emissões líquidas de CO₂ no bioma Amazônia, estado do Amazonas,1994 a 2002 (em Gg)

			2002	2			
	FNM	FM	Fsec	Ref	CS	GNM	GM
FNM	0,00	-295.558,59	2.985,36	0,00	0,00		
FM		-241.820,71	282,22	0,00	0,00		
Fsec			-274,93	0,00			
Ref			6,22	0,00			
cs							
GNM				0,00		0,00	0,00
GM				0,00			0,00
Gsec				0,00			
Ар			-2.610,41	0,00			
Ac			-85,29	0,00			
s							
A							
Res							
o			0,00	0,00			
NO							
Total 2002	0,00	-537.379,30	303,17	0,00	0,00	0,00	0,00

 TABELA 18
 Emissões líquidas de CO2 no bioma Amazônia, estado do Acre,1994 a 2002 (em Gg)

			2002	2			
	FNM	FM	Fsec	Ref	CS	GNM	GM
FNM	0,00	-26.855,15	404,09	0,00	0,00		
FM		-45.203,10	34,82	0,00	0,00		
Fsec			-87,21	0,00			
Ref			0,00	0,00			
cs							
GNM				0,00		0,00	0,00
GM GM				0,00			0,00
Gsec				0,00			
Ар			-753,42	0,00			
Ac			-10,57	0,00			
s							
A							
Res							
o			0,00	0,00			
NO							
Total 2002	0,00	-72.058,24	-412,30	0,00	0,00	0,00	0,00

a :									
•	Gsec	Ар	Ac	S	Α	Res	0	NO	Total 1994
:		321.653,30	18.188,20	2.607,43		96,28	33,28		50.005,25
		8.984,70	427,77	86,14		97,02	0,00		-231.942,85
:		6.942,56	733,67	124,94		0,00	4,11		7.530,36
:	0,00	0,00	0,00	0,00		0,00	0,00		6,22
									0,00
	0,04	1.041,01	8,37	135,52		0,00	0,50		1.185,43
	0,04	0,00	0,00	0,00		0,00	0,00		0,04
:	-0,10	0,85	5,59	0,00		0,00	0,00		6,34
	0,06	0,00	2,19	419,96		0,18	0,00		-2.188,01
	0,00	-9,28	0,00	7,17		0,00	0,00		-87,39
				0,00					0,00
					0,00	0,00			0,00
_;						0,00			0,00
◀:	0,00	-0,00	0,00	0,00		0,00	0,00		-0,00
									0,00
	0,04	338.613,14	19.365,79	3.381,16	0,00	193,49	37,89	0,00	-175.484,61

⊿:									
◀	Gsec	Ар	Ac	S	Α	Res	0	NO	Total 1994
:		259.258,93	34.218,98	475,20		0,00	0,00		267.502,05
		9.317,06	141,67	4,66		0,00	0,00		-35.704,88
:		7.682,34	1.036,97	6,16		0,00	0,00		8.638,26
	0,00	0,00	0,00	0,00		0,00	0,00		0,00
									0,00
:	0,00	0,00	0,00	0,00		0,00	0,00		0,00
	0,00	0,00	0,00	0,00		0,00	0,00		0,00
:	0,00	0,00	0,00	0,00		0,00	0,00		0,00
	0,00	0,00	531,13	241,18		0,00	0,00		18,89
	0,00	-0,30	0,00	0,00		0,00	0,00		-10,87
:				0,00					0,00
:					0,00	0,00			0,00
:						0,00			0,00
◀.	0,00	0,00	0,00	0,00		0,00	0,00		0,00
									0,00
	0,00	276.258,03	35.928,74	727,21	0,00	0,00	0,00	0,00	240.443,44

TABELA 19 | Emissões líquidas de CO₂ no bioma Amazônia, estado de Roraima,1994 a 2002 (em Gg)

			200	2			
	FNM	FM	Fsec	Ref	CS	GNM	GM
FNM	0	-38.444	1.282	0	104		
FM		-95.058	593	0	1		
Fsec			-778	0			
Ref			0	0			
cs							
GNM				0		0	C
GM				0			C
Gsec				0			
Ар			-4.502	0			
Ac			-683	0			
S							
Α							
Res							
О			-0,038	0			
NO							
Total 2002	0	-133.502	-4.088	0	105	0	0

 $\begin{array}{c|c} \textbf{TABELA 20} & \text{Emiss\~oes l\'iquidas de CO}_2 \text{ no bioma Amaz\^onia, estado do Tocantins, 1994 a} \\ 2002 \text{ (em Gg)} \end{array}$

			2002	2			
	FNM	FM	Fsec	Ref	CS	GNM	GM
FNM	0,00	-79,56	60,22	0,00	1,82		
FM		-0,03	0,00	0,00	0,00		
Fsec			-96,48	0,00			
Ref			0,00	0,00			
cs							
GNM				0,00		0,00	0,00
GM ST				0,00			0,00
Gsec Gsec				0,00			
Ар			-1.388,02	0,00			
Ac			-108,56	0,00			
s							
Α							
Res							
o			0,00	0,00			
NO							
Total 2002	0,00	-79,60	-1.532,83	0,00	1,82	0,00	0,00

a :									
•	Gsec	Ар	Ac	S	Α	Res	0	NO	Total 1994
:		983.790	222.666	744		5	112		1.170.260
		98.569	32.405	1		0	482		36.994
:		9.178	1.909	44		0	18,582		10.371
	0	0	0	0		0	0		0
									0
:	0,020	518	22	0		0	0		540
:	0,260	9	0	0		0	0		10
	0	0	0	0		0	0		0
:	1	0	4.166	616		0	42		323
:	0,682	563	0	178		0	0		59
				0					0
					0	0			0
						0			0
	0	-26	-0,572	0		0	0		-27
									0
	1	1.092.602	261.167	1.583	0	5	655	0	1.218.530

4.									
•	Gsec	Ар	Ac	S	А	Res	0	NO	Total 1994
		101.790,03	0,00	28,10		3,06	0,00		101.803,67
		0,00	0,00	0,00		0,00	0,00		-0,03
:		4.397,95	0,00	0,00		0,00	0,00		4.301,47
	0,00	0,00	0,00	0,00		0,00	0,00		0,00
:									0,00
	0,00	185,58	0,00	0,00		0,00	0,00		185,58
	0,00	0,00	0,00	0,00		0,00	0,00		0,00
:	-0,30	-1,79	0,00	0,00		0,00	0,00		-2,09
:	0,00	0,00	0,00	86,31		0,00	0,00		-1.301,70
	0,00	-1.323,78	0,00	0,00		0,00	0,00		-1.432,34
				0,00					0,00
					0,00	0,00			0,00
						0,00			0,00
	0,00	0,00	0,00	0,00		0,00	0,00		0,00
									0,00
	-0,30	105.047,99	0,00	114,41	0,00	3,06	0,00	0,00	103.554,55

$\begin{array}{c|c} \textbf{TABELA 21} & \text{Emiss\~oes l\'iquidas de CO}_2 \text{ no bioma Amaz\^onia, estado do Amap\'a,1994 a 2002} \\ & \text{(em Gg)} \end{array}$

				2002	2			
		FNM	FM	Fsec	Ref	CS	GNM	GM
	FNM	0,00	-52.340,13	143,35	458,29	0,00		
	FM		-33.640,24	27,74	0,00	0,00		
	Fsec			-0,45	0,00			
	Ref			0,00	0,00			
	cs							
	GNM				-890,16		0,00	0,00
4	GM				0,00			0,00
1994	Gsec				-16,27			
•	Ар			-56,50	-12,31			
	Ac			0,00	0,00			
	S							
	Α							
	Res							
	0			0,00	0,00			
	NO							
	Total 2002	0,00	-85.980,37	114,14	-460,45	0,00	0,00	0,00

Total 1994	NO	О	Res	Α	S	Ac	Ар	Gsec
-24.188		296,38	0,00		848,22	0,00	26.405,53	
-32.804		0,25	0,00		0,00	0,00	807,51	
351		0,00	0,00		24,50	0,00	327,57	
11,		0,01	0,00		0,20	0,00	11,71	0,00
0								
-379		0,14	0,00		368,60	0,00	142,16	0,00
2		0,00	0,00		0,00	0,00	2,54	0,00
-14		0,00	0,00		2,17	0,00	0,04	-0,03
-38		0,00	0,00		29,57	0,00	0,00	0,70
0		0,00	0,00		0,00	0,00	0,00	0,00
0					0,00			
0			0,00	0,00				
0			0,00					
-0		0,00	0,00		0,00	0,00	-0,22	0,00
0								
-57.059	0,00	296,78	0,00	0,00	1.273,26	0,00	27.696,84	0,67

TABELA 22(Tabela 22 do Relatório de Referência 35) – Emissões líquidas de CO_2 no biomaCerrado, 1994 a 2002 (em Gg)

			Uso da Terra	a em 2002			
	FNM	FM	FSec	Ref	CS	GNM	GM
FNM		-49.158,28		13.166,00	6,93		
FM		-107.366,04		1.651,05			
FSec			-1,79	-0,08			
Ref							
² Cs							
Oso da Terra em 1994 GM GSec Ap Ac				-1.807,06			
€ GM				-12,01			0,00
GSec							
Ap			-3,30	-5.494,50			
S Ac			-20,80	-11.494,25			
⊃s							
Α							
Res							
o							
NO							
Total 2002	0,00	-156.524,30	-25,90	-3.990,90	6,90	0,00	0,00

Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Dióxido de Carbono no Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Disponível em: <www.mct.gov.br/upd_blob/0219/219302.pdf>.

GSec	Ар	Ac	S	Α	Res	0	NO	Total 1994
	1.200.920,16	1.052.361,61	26.450,64		13,19	172,14		2.243.932,40
	17.308,52	2.147,64	2.454,08					-83.804,70
	45,98	1,07						45,20
	11.970,73	9.554,05	35,53					21.560,30
								0,00
	95.944,49	139.042,14	3.436,65		0,02	37,42		236.653,70
	615,82	3.690,42	13,25					4.307,50
-2,74	4,65							1,90
0,01		33.115,24	4.089,44			11,36		31.718,30
0,00	-25.429,56		4.249,88		0,01	0,11		-32.694,60
								0,00
								0,00
								0,00
								0,00
								0,00
-2,70	1.301.380,80	1.239.912,20	40.729,50	0,00	13,20	221,00	0,00	2.421.719,80

TABELA 23 | (Tabela 21 do Relatório de Referência³⁶) – Áreas das transições identificadas no bioma Cerrado, 1994 a 2002 (em hectares)

			Uso da Terra	a em 2002			
	FNM	FM	FSec	Ref	CS	GNM	GM
FNM	68.710.165	5.405.969,00		58.003,00	41,00		
FM		5.903.558,00		5.685,00			
FSec			11,00	6,00			
Ref				2.085.353,00			
cs							
GNM				15.567,00		30.797.802,00	4.702.496,00
GM				95,00			2.601.324,00
GSec							
Ар			71,00	33.220,00			
Ac			308,00	67.408,00			
S							
Α							
Res							
О							
NO			1,00	2.573,00			
Total 2002	68.710.165,00	11.309.527,00	391,00	2.267.910,00	41,00	30.797.802,00	7.303.820,00

Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Dióxido de Carbono no Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Disponível em: <www.mct.gov.br/upd_blob/0219/219302.pdf>.

GSec	Ар	Ac	S	А	Res	0	NO	Total 1994
	4.567.523,00	3.770.666,00	74.151,00		37,00	462,00	295,00	82.587.270,0
	49.033,00	9.091,00	6.742,00					5.974.109,0
	1.236,00	7,00						1.261,0
	74.864,00	53.947,00	149,00					2.214.313,0
								0,0
	1.751.558,00	2.031.959,00	30.497,00		0,00	346,00		39.330.225,0
	10.586,00	58.937,00	134,00					2.671.075,0
62,00	2.468,00							2.530,0
1,00	18.127.826,00	1.628.748,00	71.139,00			150,00	71,00	19.861.226,0
0,00	1.559.291,00	47.960.236,00	98.645,00		0,00	3,00		49.685.890,0
			517.778,00					517.778,0
				670.327,00				670.327,0
					312.331,00			312.331,0
			571,00	3,00		7.274,00		7.848,0
	7.969,00	105.394,00	1.256,00					117.193,0
64,00	26.152.353,00	55.618.985,00	801.062,00	670.330,00	312.369,00	8.234,00	365,00	203.953.377,0

TABELA 24 | (Tabela 25 do Relatório de Referência³⁷) – Áreas das transições identificadas no bioma Mata Atlântica, 1994 a 2002 (em hectares)

				Uso da Terr	a em 2002			
		FNM	FM	FSec	Ref	CS	GNM	GM
	FNM	22.148.527	1.648.003,00		12.098,00			
	FM		3.698.170,00		762,00			
	FSec			887,00	0,00			
	Ref				2.906.756,00			
4	cs							
1994	GNM				8.731,00		3.399.016,00	77.423,00
em	GM							145.906,00
erra	GSec				112,00			
Uso da Terra em	Ар			57.511,00	41.428,00			
so c	Ac			1.961,00	13.950,00			
-	S							
	Α							
	Res							
	О							
	NO							
	Total 2002	22.148.527,00	5.346.174,00	60.359,00	2.983.836,00	0,00	3.399.016,00	223.329,00

³⁷ Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Dióxido de Carbono no Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Disponível em: <www.mct.gov.br/upd_blob/0219/219302.pdf>.

					ļ.			
GSec	Ар	Ac	S	Α	Res	0	NO	Total 1994
	1.562.565,00	101.748,00	103.214,00		129.965,00	235,00		25.706.290,00
	48.656,00	1.175,00	14.353,00		199,00			3.763.316,00
	4,00	10,00						966,00
	21.370,00	2.933,00	1.240,00		36,00			2.932.335,00
								0,00
	94.873,00	5.123,00	3.068,00		6.318,00			3.594.553,00
			374,00					146.280,00
1.562,00	212,00							1.886,00
5.071,00	42.021.625,00	188.554,00	115.738,00		1.604,00	0,00		42.431.530,00
60,00	182.664,00	30.817.351,00	112.970,00		772,00			31.129.727,00
			1.297.779,00					1.297.779,00
				518.146,00	145,00	20,00		518.311,00
					255.209,00			255.209,00
	146,00	512,00	844,00	52,00		10.193,00		11.747,00
								0,00
6.692,00	43.932.115,00	31.117.406,00	1.649.581,00	518.198,00	394.248,00	10.449,00	0,00	111.789.930,00

TABELA 25 | (Tabela 23 do Relatório de Referência³⁸) – Áreas das transições identificadas no bioma Caatinga, 1994 a 2002 (em hectares)

				Uso da Terr	a em 2002			
		FNM	FM	FSec	Ref	CS	GNM	GM
	FNM	42.851.867	3.018.045		1.214			
	FM		379.108					
	FSec							
	Ref				96.367			
4	cs							
1994	GNM				8		906.149	35.188
em	GM							118.938
erra	GSec							
la Te	Ар			158.754	1.323			
Uso da Terra em	Ac				2.302			
\supset	S							
	Α							
	Res							
	О							
	NO							
	Total 2002	42.851.867	3.397.152	158.754	101.213	0	906.149	154.126

³⁸ Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Dióxido de Carbono no Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Disponível em: <www.mct.gov.br/upd_blob/0219/219302.pdf>.

GSec	Ар	Ac	S	Α	Res	О	NO	Total 1994
	2.988.130	1.564.918	5.564		6	3.067		50.432.809
	11.821	240						391.169
								0
								96.367
								0
	111.954	30.373	133		0	35		1.083.839
	5.910							124.848
								0
	16.927.716	46.851	8.723		1	1.504		17.144.872
	38.720	12.478.417	7.080			737		12.527.256
			229.355					229.355
				277.947	258	44		278.249
					366.470			366.470
	5	0	0	0		113.220		113.225
								0
0	20.084.256	14.120.799	250.855	277.948	366.735	118.606	0	82.788.461

TABELA 26 | (Tabela 29 do Relatório de Referência³⁹) – Áreas das transições identificadas no bioma Pantanal, 1994 a 2002 (em hectares)

				Uso da Terr	a em 2002			
		FNM	FM	FSec	Ref	CS	GNM	GM
	FNM	8.905.227	108.265					
	FM		206.520					
	FSec							
	Ref							
4	cs							
1994	GNM						3.452.179	48.651
Uso da Terra em	GM							88.293
erra	GSec							
Ja T	Ар			5.900				
Soc	Ac			3				
	S							
	Α							
	Res							
	0							
	NO							
	Total 2002	8.905.227	314.785	5.903	0	0	3.452.179	136.944

³⁹ Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Dióxido de Carbono no Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Disponível em: <www.mct.gov.br/upd_blob/0219/219302.pdf>.

GSec	Ар	Ac	S	Α	Res	0	NO	Total 1994
	593.438	60.422	2.639		32	539		9.670.561
	80	0						206.600
								0
								0
								0
	107.745	4.153	10					3.612.738
								88.293
								0
276	849.394	45.027	568					901.166
	74.669	43.150						117.821
			6.781					6.781
				525.075	37	3		525.116
					580			580
	192	10				1.032		1.234
	132							132
276	1.625.650	152.762	9.998	525.075	649	1.574	0	15.131.022

TABELA 27 | (Tabela 27 do Relatório de Referência⁴⁰) – Áreas das transições identificadas no bioma Pampa, 1994 a 2002 (em hectares)

Uso da Terra em 2002 FNM FM FSec Ref CS GNM GM														
	FNM	FM	FSec	Ref	CS	GNM	GM							
FNM	3.618.971	20.001		9										
FM		120.410												
FSec														
Ref				222.347										
cs														
GNM GM GSec Ap				0		3.982.207	1.152							
GM							274.256							
GSec														
Ар				34										
Ac				1										
S														
Α														
Res														
0				21										
NO														
Total 2002	3.618.971	140.412	C	222.413	0	3.982.207	275.408							

Ministério da Ciência, Tecnologia e Inovação (MCTI), Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa - Relatório de Referência: Emissões de Dióxido de Carbono no Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Disponível em: <www.mct.gov.br/upd_blob/0219/219302.pdf>.

	GSec	Ар	Ac	S	А	Res	0	NO	Total 1994
\triangleleft		77	224	792					3.640.074
									120.410
									0
:				13					222.360
:									0
:		18	9	508					3.983.894
									274.256
									0
:		4.389.949	452	5.549					4.395.984
:		439	3.173.375	706					3.174.521
				116.877					116.877
:					638.996				638.996
						797			797
•		316,00		5,00			2.786		3.128
									0
	0	4.390.799	3.174.060	124.449	638.996	797	2.786	С	16.571.297

$\begin{array}{c|c} \textbf{TABELA 28} & \text{Emissões brutas, remoções e emissões líquidas de CO}_2 \text{ por mudança do uso da terra e florestas, para todos os biomas brasileiros} \end{array}$

Emissões líquidas - CO₂ (Tg)

		2 (. 0)				•					
					Tg C						
		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Amazô	nia	460,53	320,36	463,43	521,05	521,05	1399,93	810,35	528,14	772,13	748,73
Cerrad	0	233,00	233,00	233,00	233,00	233,00	302,71	302,71	302,71	302,71	302,71
Mata A	tlântica	22,17	22,17	22,17	22,17	22,17	79,11	79,11	79,11	79,11	79,13
Caating	ga	27,97	27,97	27,97	27,97	27,97	37,63	37,63	37,63	37,63	37,63
Pantan	al	17,83	17,83	17,83	17,83	17,83	16,17	16,17	16,17	16,17	16,17
Pampa		-0,10	-0,10	-0,10	-0,10	-0,10	-0,10	-0,10	-0,10	-0,10	-0,10
Total		761,39	621,23	764,30	821,92	821,92	1835,45	1245,87	963,66	1207,65	1184,2
Emissões k	orutas										
					Tg C	0,					
		1990	1991	1992	1993	1994	1995	1996	1997	1998	199
Amazô	nia	712,75	572,59	715,65	773,28	773,28	1597,28	1007,70	725,49	969,48	946,0
Cerrad	0	304,04	304,04	304,04	304,04	304,04	327,81	327,81	327,81	327,81	327,8
Mata A	tlântica	32,52	32,52	32,52	32,52	32,52	91,11	91,11	91,11	91,11	91,1
Caating	ga	28,85	28,85	28,85	28,85	28,85	42,98	42,98	42,98	42,98	42,9
Pantan	al	28,68	28,68	28,68	28,68	28,68	17,02	17,02	17,02	17,02	17,0
Pampa		0,05	0,05	0,05	0,05	0,05	0,09	0,09	0,09	0,09	0,0
Total b	ruto	1106,89	966,72	1109,79	1167,41	1167,41	2076,29	1486,71	1204,51	1448,50	1425,0
Remoções											
					Tg C	D_{2}					
		1990	1991	1992	1993	1994	1995	1996	1997	1998	199
Amazô	nia	(252,22)	(252,22)	(252,22)	(252,22)	(252,22)	(197,35)	(197,35)	(197,35)	(197,35)	(197,35
	0	(71,04)	(71,04)	(71,04)	(71,04)	(71,04)	(25,10)	(25,10)	(25,10)	(25,10)	(25,10
Mata A	tlântica	(10,35)	(10,35)	(10,35)	(10,35)	(10,35)	(12,00)	(12,00)	(12,00)	(12,00)	(12,00
Caating	ga	(0,89)	(0,89)	(0,89)	(0,89)	(0,89)	(5,35)	(5,35)	(5,35)	(5,35)	(5,35
–––– Pantan	al	(10,85)	(10,85)	(10,85)	(10,85)	(10,85)	(0,85)	(0,85)	(0,85)	(0,85)	(0,85
– Pampa		(0,15)	(0,15)	(0,15)	(0,15)	(0,15)	(0,20)	(0,20)	(0,20)	(0,20)	(0,20
—- Tota <u>l</u> de	e remoções	(345,50)	(345,50)	(345,50)	(345,50)	(345,50)	(240,85)	(240,85)	(240,85)	(240,85)	(240,85

I													
ĺ	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	828,13	791,82	1007,76	1125,61	1256,63	799,64	566,67	445,95	546,38	231,36	195,79	152,31	21,98
	302,71	302,71	302,71	264,85	264,85	264,85	264,85	264,85	264,85	128,24	103,85	103,85	103,85
	79,11	79,11	79,11	2,04	2,04	2,04	2,04	2,04	2,04	-5,24	-5,24	-5,24	-5,24
	37,63	37,63	37,63	11,33	11,33	11,33	11,33	11,33	11,33	5,20	5,20	5,20	5,20
	16,17	16,17	16,17	11,65	11,65	11,65	11,65	11,65	11,65	2,36	2,36	2,36	2,36
	-0,10	-0,10	-0,10	16,61	16,61	16,61	16,61	16,61	16,61	15,09	15,09	15,09	15,09
	1263,65	1227,34	1443,29	1432,09	1563,11	1106,12	873,15	752,43	852,86	377,02	317,05	273,57	143,24
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	1025,48	989,17	1205,11	1387,77	1518,78	1061,79	828,82	708,10	808,53	493,52	457,94	414,46	284,13
	327,81	327,81	327,81	296,10	296,10	296,10	296,10	296,10	296,10	159,48	135,09	135,09	135,09
	91,11	91,11	91,11	15,91	15,91	15,91	15,91	15,91	15,91	8,63	8,63	8,63	8,63
	42,98	42,98	42,98	20,11	20,11	20,11	20,11	20,11	20,11	13,98	13,98	13,98	13,98
	17,02	17,02	17,02	12,63	12,63	12,63	12,63	12,63	12,63	3,34	3,34	3,34	3,34
	0,09	0,09	0,09	16,83	16,83	16,83	16,83	16,83	16,83	15,31	15,31	15,31	15,31
	1504,50	1468,19	1684,13	1749,34	1880,35	1423,36	1190,39	1069,67	1170,10	694,26	634,29	590,82	460,49
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
ı	(197,35)	(197,35)	(197,35)	(262,15)	(262,15)	(262,15)	(262,15)	(262,15)	(262,15)	(262,15)	(262,15)	(262,15)	(262,15)
ļ	(25,10)	(25,10)	(25,10)	(31,24)	(31,24)	(31,24)	(31,24)	(31,24)	(31,24)	(31,24)	(31,24)	(31,24)	(31,24)
	(12,00)	(12,00)	(12,00)	(13,88)	(13,88)	(13,88)	(13,88)	(13,88)	(13,88)	(13,88)	(13,88)	(13,88)	(13,88)
	(5,35)	(5,35)	(5,35)	(8,78)	(8,78)	(8,78)	(8,78)	(8,78)	(8,78)	(8,78)	(8,78)	(8,78)	(8,78)
	(0,85)	(0,85)	(0,85)	(0,97)	(0,97)	(0,97)	(0,97)	(0,97)	(0,97)	(0,97)	(0,97)	(0,97)	(0,97)
Į	(0,20)	(0,20)	(0,20)	(0,22)	(0,22)	(0,22)	(0,22)	(0,22)	(0,22)	(0,22)	(0,22)	(0,22)	(0,22)
	(240,85)	(240,85)	(240,85)	(317,24)	(317,24)	(317,24)	(317,24)	(317,24)	(317,24)	(317,24)	(317,24)	(317,24)	(317,24)

$\begin{array}{c|c} \textbf{TABELA 29} & \mathsf{Emiss\~oes} \ \mathsf{de} \ \mathsf{CO_2} \ \mathsf{por} \ \mathsf{calagem}, \ \mathsf{por} \ \mathsf{Estado} \end{array}$

Estado	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Rondônia	0	0	0	3	3	0	0	0	0	0
Acre	0	0	0	0	0	0	0	0	0	0
Amazonas	0	0	0	0	0	0	0	0	0	0
Roraima	0	0	0	0	0	0	0	0	0	0
Pará	0	0	0	0	0	0	0	0	0	0
Amapá	0	0	0	0	0	0	0	0	0	0
Tocantins	92	132	66	242	26	13	132	35	35	33
Maranhão	35	53	76	62	176	79	123	97	121	95
Piauí	0	0	0	0	0	13	13	29	41	48
Ceará	0	0	0	0	0	29	29	29	0	26
Rio Grande do Norte	0	0	0	0	0	7	7	7	0	9
Paraíba	0	0	0	0	13	7	7	9	0	9
Pernambuco	0	0	0	40	69	26	26	26	18	25
Alagoas	0	0	0	29	46	26	26	38	0	52
Sergipe	0	0	84	9	15	0	0	5	19	5
Bahia	46	44	51	119	185	65	97	215	219	231
Minas Gerais	704	748	792	1012	1030	779	823	862	826	958
Espírito Santo	31	79	0	53	57	58	26	50	50	106
Rio de Janeiro	0	0	0	0	0	0	0	0	0	0
São Paulo	931	968	1509	1589	2009	1479	1512	1639	1583	1410
Paraná ————————————————————————————————————	1408	880	912	1237	1532	815	1066	1279	1114	953
Santa Catarina	37	31	418	323	337	355	306	407	325	218
Rio Grande do Sul	810	517	1240	1626	1374	612	792	1020	925	823
Mato Grosso do Sul	295	396	229	473	459	172	260	396	283	264
Mato Grosso	273	440	627	980	1005	340	591	552	842	595
Goiás	440	352	775	854	653	519	1034	811	700	876
Distrito Federal	0	79	0	0	0	0	0	0	0	0
Região	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Norte	92	132	66	245	29	13	132	35	35	33
	81	97	210	257	505	253	329	455	417	499
Sudeste	1666	1795	2301	2654	3097	2316	2361	2550	2458	2474
	2255	1428	2570	3186	3243	1782	2163	2707	2364	1995
Centro-Oeste	1008	1267	1632	2307	2118	1031	1885	1759	1825	1734
Total	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	5103	4719	6780	8650	8991	5395		7506	7100	6734
Brasil	5103	4/19	0/80	0000	0771	3375	6871	/506	/ 100	0/34

 $\mathsf{Gg}\,\mathsf{CO}_2$

1	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	0	0	0	2003	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	13	0	0	0	0	18	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	60	11	154	146	352	236	174	164	215	207	172	264	484
	167	176	154	220	220	37	88	103	110	0	150	0	0
	46	44	88	97	110	326	306	697	490	279	537	1259	1273
	31	31	0	31	0	31	0	0	31	16	31	72	73
	9	9	30	57	16	49	37	22	73	38	73	171	173
	13	13	0	18	18	52	49	111	78	44	85	198	200
	40	22	40	58	40	70	70	51	66	0	0	0	0
:	35	14	31	44	43	44	9	32	44	0	0	0	0
	23	22	31	26	5	13	13	29	20	21	40	93	94
	329	205	191	210	267	118	130	279	348	435	390	0	0
	1314	1031	1222	1285	1045	993	1468	1304	1329	865	1633	1895	2000
:	181	36	71	101	70	65	66	0	88	104	73	84	105
	0	0	0	0	0	0	0	0	0	0	0	0	0
:	1462	1380	1408	1691	1327	1476	1805	1865	1462	1154	1486	1758	1866
	1005	1220	1144	1671	1510	762	721	1121	1107	1297	1248	1158	1684
	262	261	484	319	422	264	233	275	397	153	268	402	505
	882	998	998	1242	1000	380	483	687	864	826	783	1072	1158
:	358	395	477	701	713	395	304	639	850	782	748	817	1307
	1364	1407	1964	2391	3105	1288	745	1463	1698	1479	1672	2346	2813
	1122	679	1320	1336	1320	857	715	908	1279	694	1035	1327	1229
'	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	73	11	154	146	352	254	174	164	215	207	172	264	484
	694	536	565	761	718	741	701	1324	1260	833	1304	1792	1812
	2958	2447	2701	3077	2442	2534	3339	3169	2878	2123	3193	3737	3971
	2149	2479	2626	3232	2931	1406	1436	2083	2368	2276	2300	2632	3347
	2844	2480	3760	4428	5138	2540	1764	3010	3827	2956	3456	4490	5349
					222								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	8717	7954	9806	11644	11581	7474	7414	9751	10548	8395	10424	12915	14963

 $\begin{array}{c|c} \textbf{TABELA 30} & \text{Emiss\~oes de CO}_2 \, \text{do Setor Mudança de Uso da Terra, por estado, sem incluir as} \\ \text{de calagem} & \text{de CO}_2 \, \text{do Setor Mudança de Uso da Terra, por estado, sem incluir as} \\ \end{array}$

Estado	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
———————————Rondônia	109,05	83,17	109,59	120,22	120,22	277,35	134,09	106,29	109,71	129,48
Acre	23,36	16,48	23,50	26,33	26,33	69,34	19,01	14,14	25,70	19,53
——————————————————————————————————————	-38,83	-48,17	-38,64	-34,80	-34,80	38,89	-16,04	-37,89	-33,81	-31,29
——————————Roraima	-5,08	-6,50	-5,05	-4,47	-4,47	6,57	6,13	3,92	6,79	6,57
——————————————————Pará	159,66	113,85	160,61	179,44	179,44	464,69	350,90	218,08	330,54	282,76
Amapá	-12,02	-12,38	-12,01	-11,86	-11,86	-6,67	-10,87	-2,46	3,14	-10,87
Tocantins	37,49	34,86	37,55	38,63	38,63	62,42	44,44	42,67	54,09	40,52
Maranhão	97,69	86,32	97,93	102,61	102,61	183,70	132,88	84,44	129,24	145,44
Piauí	9,03	9,03	9,03	9,03	9,03	12,04	12,04	12,04	12,04	12,04
Ceará	4,13	4,13	4,13	4,13	4,13	5,50	5,50	5,50	5,50	5,50
Rio Grande do Norte	1,39	1,39	1,39	1,39	1,39	2,27	2,27	2,27	2,27	2,27
Paraíba	1,25	1,25	1,25	1,25	1,25	1,84	1,84	1,84	1,84	1,84
Pernambuco	2,80	2,80	2,80	2,80	2,80	3,93	3,93	3,93	3,93	3,93
Alagoas	0,44	0,44	0,44	0,44	0,44	1,00	1,00	1,00	1,00	1,00
Sergipe	0,56	0,56	0,56	0,56	0,56	1,28	1,28	1,28	1,28	1,28
Bahia	40,78	40,78	40,78	40,78	40,78	71,09	71,09	71,09	71,09	71,09
Minas Gerais	49,76	49,76	49,76	49,76	49,76	82,56	82,56	82,56	82,56	82,56
Espírito Santo	0,84	0,84	0,84	0,84	0,84	2,63	2,63	2,63	2,63	2,63
Rio de Janeiro	-0,28	-0,28	-0,28	-0,28	-0,28	0,33	0,33	0,33	0,33	0,33
São Paulo	-2,71	-2,71	-2,71	-2,71	-2,71	-0,84	-0,84	-0,84	-0,84	-0,84
Paraná	-1,68	-1,68	-1,68	-1,68	-1,68	-1,41	-1,41	-1,41	-1,41	-1,41
Santa Catarina	0,14	0,14	0,14	0,14	0,14	1,01	1,01	1,01	1,01	1,01
Rio Grande do Sul	-0,13	-0,13	-0,13	-0,13	-0,13	0,04	0,04	0,04	0,04	0,04
Mato Grosso do Sul	11,68	11,68	11,68	11,68	11,68	11,72	11,72	11,72	11,72	11,72
Mato Grosso	214,24	177,78	214,99	229,98	229,98	473,86	320,03	269,18	316,95	336,82
Goiás	57,77	57,77	57,77	57,77	57,77	69,78	69,78	69,78	69,78	69,78
Distrito Federal	0,05	0,05	0,05	0,05	0,05	0,53	0,53	0,53	0,53	0,53
Região	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
 Norte	273,64	181,30	275,55	313,51	313,51	912,59	527,66	344,74	496,16	436,69
————————————Nordeste	158,07	146,70	158,31	162,99	162,99	282,65	231,83	183,39	228,19	244,38
 Sudeste	47,62	47,62	47,62	47,62	47,62	84,68	84,68	84,68	84,68	84,68
 Sul	-1,67	-1,67	-1,67	-1,67	-1,67	-0,35	-0,35	-0,35	-0,35	-0,35
Centro-Oeste	283,73	247,28	284,49	299,47	299,47	555,89	402,06	351,21	398,98	418,85
Total	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Brasil	761,390	621,228	764,297	821,919	821,919	1835,447	1245,868	963,660	1207,654	1184,247

Unidade: Tg

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	136,15	149,11	175,67	201,89	218,16	179,88	105,39	78,08	48,47	7,70	4,77	31,57	25,84
	26,41	18,10	48,23	57,54	34,81	25,98	13,38	-0,52	4,03	-1,63	4,35	5,71	7,34
	-36,73	-35,62	-22,99	-26,05	-42,46	-65,47	-64,82	-73,78	-74,08	-84,10	-74,53	-79,21	-78,16
	9,00	15,78	-3,44	21,10	11,67	-1,44	5,78	11,52	31,04	-2,33	7,62	-0,85	-2,11
	386,57	291,14	442,39	409,60	524,39	326,69	310,72	301,87	307,26	219,02	185,02	134,32	50,01
	-10,87	-7,60	-10,87	-5,73	4,08	-2,00	-3,40	0,81	29,30	15,29	7,35	13,42	-4,80
	41,57	39,50	40,37	34,03	34,11	38,37	32,83	30,53	32,19	15,53	12,42	12,08	12,53
	133,18	125,23	134,67	119,60	101,91	114,32	95,90	92,70	140,25	80,94	67,64	44,16	34,73
	12,04	12,04	12,04	6,54	6,54	6,54	6,54	6,54	6,54	1,97	1,31	1,31	1,31
	5,50	5,50	5,50	1,55	1,55	1,55	1,55	1,55	1,55	0,64	0,64	0,64	0,64
:	2,27	2,27	2,27	0,90	0,90	0,90	0,90	0,90	0,90	0,60	0,60	0,60	0,60
:	1,84	1,84	1,84	0,70	0,70	0,70	0,70	0,70	0,70	0,42	0,42	0,42	0,42
:	3,93	3,93	3,93	1,07	1,07	1,07	1,07	1,07	1,07	0,45	0,45	0,45	0,45
:	1,00	1,00	1,00	-0,03	-0,03	-0,03	-0,03	-0,03	-0,03	-0,15	-0,15	-0,15	-0,15
:	1,28	1,28	1,28	0,26	0,26	0,26	0,26	0,26	0,26	0,13	0,13	0,13	0,13
:	71,09	71,09	71,09	28,26	28,26	28,26	28,26	28,26	28,26	13,51	11,81	11,81	11,81
:	82,56	82,56	82,56	45,01	45,01	45,01	45,01	45,01	45,01	22,09	18,62	18,62	18,62
:	2,63	2,63	2,63	0,26	0,26	0,26	0,26	0,26	0,26	0,04	0,04	0,04	0,04
:	0,33	0,33	0,33	-0,71	-0,71	-0,71	-0,71	-0,71	-0,71	-0,80	-0,80	-0,80	-0,80
:	-0,84	-0,84	-0,84	-4,00	-4,00	-4,00	-4,00	-4,00	-4,00	-4,40	-4,43	-4,43	-4,43
:	-1,41	-1,41	-1,41	-2,36	-2,36	-2,36	-2,36	-2,36	-2,36	-2,42	-2,42	-2,42	-2,42
:	1,01	1,01	1,01	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,37	-0,37	-0,37	-0,37
:	0,04	0,04	0,04	16,47	16,47	16,47	16,47	16,47	16,47	14,92	14,92	14,92	14,92
:	11,72	11,72	11,72	9,14	9,14	9,14	9,14	9,14	9,14	2,91	2,44	2,44	2,44
:	313,08	366,40	373,96	459,02	515,34	328,69	216,28	150,12	173,30	46,83	33,91	43,87	29,36
:	69,78	69,78	69,78	57,88	57,88	57,88	57,88	57,88	57,88	30,13	25,27	25,27	25,27
:	0,53	0,53	0,53	0,40	0,40	0,40	0,40	0,40	0,40	0,08	0,03	0,03	0,03
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	552,10	470,41	669,36	692,39	784,75	502,01	399,88	348,51	378,21	169,50	146,99	117,03	10,65
	232,13	224,18	233,61	158,85	141,16	153,57	135,15	131,95	179,50	98,50	82,85	59,37	49,94
	84,68	84,68	84,68	40,57	40,57	40,57	40,57	40,57	40,57	16,93	13,43	13,43	13,43
	-0,35	-0,35	-0,35	13,85	13,85	13,85	13,85	13,85	13,85	12,13	12,13	12,13	12,13
	395,10	448,43	455,99	526,44	582,76	396,11	283,70	217,54	240,72	79,95	61,65	71,60	57,09
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	1263,652	1227,345	1443,286	1432,092	1563,107	1106,120	873,146	752,426	852,858	377,017	317,051	273,573	143,243

		1990	1991	1992	1993	1994	1995	1996	1997	1998	
	Amazônia	1377,19	1096,17	1404,79	1528,09	1527,74	3311,72	2054,45	1456,56	1977,47	:
	Cerrado	587,47	582,06	596,81	600,82	600,68	679,67	668,33	658,15	668,65	:
	Mata Atlântica	62,84	62,26	63,84	64,27	64,25	188,91	185,75	182,92	185,84	:
CH	Caatinga	55,75	55,24	56,64	57,02	57,01	89,11	87,62	86,29	87,66	:
	Pantanal	55,41	54,90	56,29	56,67	56,66	35,29	34,70	34,17	34,72	:
	Pampa	0,09	0,09	0,09	0,09	0,09	0,20	0,19	0,19	0,19	:
	Total	2138,75	1850,72	2178,47	2306,96	2306,43	4304,90	3031,05	2418,29	2954,53	:
	Amazônia	9,47	7,54	9,66	10,51	10,50	22,77	14,12	10,01	13,60	:
	Cerrado	4,04	4,00	4,10	4,13	4,13	4,67	4,59	4,52	4,60	:
	Mata Atlântica	0,43	0,43	0,44	0,44	0,44	1,30	1,28	1,26	1,28	:
0 ₂ N	Caatinga	0,38	0,38	0,39	0,39	0,39	0,61	0,60	0,59	0,60	:
	Pantanal	0,38	0,38	0,39	0,39	0,39	0,24	0,24	0,23	0,24	:
	Pampa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	:
	Total	14,70	12,72	14,98	15,86	15,86	29,60	20,84	16,63	20,31	

Unidade: Gg

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	1921,96	2085,28	2011,85	2465,60	2828,51	3093,37	2111,48	1616,33	1361,61	1568,63	907,47	817,51	727,80	466,26
	665,96	666,60	666,73	670,69	603,50	603,08	588,82	577,44	569,37	574,46	293,25	241,16	237,22	221,68
:	185,09	185,27	185,31	186,41	32,43	32,41	31,64	31,03	30,60	30,87	15,88	15,41	15,16	14,17
	87,31	87,39	87,41	87,93	40,98	40,96	39,99	39,21	38,67	39,01	25,71	24,96	24,55	22,94
:	34,58	34,61	34,62	34,82	25,73	25,71	25,11	24,62	24,28	24,49	6,13	5,96	5,86	5,47
:	0,19	0,19	0,19	0,19	34,29	34,27	33,46	32,81	32,35	32,64	28,15	27,33	26,88	25,12
	2895,08	3059,35	2986,10	3445,65	3565,46	3829,80	2830,49	2321,45	2056,87	2270,11	1276,59	1132,33	1037,47	755,65
:	13,21	14,34	13,83	16,95	19,45	21,27	14,52	11,11	9,36	10,78	6,24	5,62	5,00	3,21
:	4,58	4,58	4,58	4,61	4,15	4,15	4,05	3,97	3,91	3,95	2,02	1,66	1,63	1,52
:	1,27	1,27	1,27	1,28	0,22	0,22	0,22	0,21	0,21	0,21	0,11	0,11	0,10	0,10
:	0,60	0,60	0,60	0,60	0,28	0,28	0,27	0,27	0,27	0,27	0,18	0,17	0,17	0,16
:	0,24	0,24	0,24	0,24	0,18	0,18	0,17	0,17	0,17	0,17	0,04	0,04	0,04	0,04
:														
:	0,00	0,00	0,00	0,00	0,24	0,24	0,23	0,23	0,22	0,22	0,19	0,19	0,18	0,17
1	0,00 19,90	0,00 21,03	0,00 20,53	0,00 23,69	0,24 24,51	0,24 26,33	0,23 19,46	0,23 15,96	0,22 14,14	0,22 15,61	0,19 8,78	0,19 7,78	0,18 7,13	0,17 5,20

											1
Estado	1990	1991	1992	1993	1994	1995	1996	1997		1999	١.
Rondônia ————————————————————————————————————	254,24	202,36	259,34	282,10	282,04			,		298,63	
Acre	67,64	53,84	69,00	75,05	75,04	162,66	57,33	46,68	71,00	58,18	
Amazonas	91,77	73,04	93,61	101,83	101,80	220,68	105,01	59,54	68,81	73,64	
Roraima	13,97	11,12	14,25	15,50	15,50	33,60	32,14	27,21	33,51	32,92	
Pará	450,10	358,25	459,12	499,42	499,30	1082,35	832,30	552,96	791,16	690,91	
Amapá	3,62	2,89	3,70	4,02	4,02	8,72	0,00	16,88	28,59	0,00	
Tocantins	90,06	84,19	91,60	94,36	94,34	136,52	97,58	92,54	117,31	89,27	
Maranhão	226,16	202,30	230,22	241,01	240,96	401,86	291,55	189,86	284,27	316,02	
Piauí	23,77	23,55	24,15	24,31	24,31	30,95	30,44	29,97	30,45	30,33	
Ceará	8,27	8,19	8,40	8,45	8,45	13,21	12,99	12,79	13,00	12,94	:
Rio Grande do Norte	2,74	2,72	2,78	2,80	2,80	4,79	4,71	4,64	4,71	4,69	i
Paraíba	2,51	2,49	2,55	2,57	2,57	4,10	4,03	3,97	4,03	4,02	1
Pernambuco	5,59	5,54	5,68	5,72	5,72	9,31	9,15	9,01	9,16	9,12	:
Alagoas	1,07	1,06	1,08	1,09	1,09	2,58	2,53	2,50	2,54	2,53	:
Sergipe	1,18	1,17	1,19	1,20	1,20	2,81	2,76	2,72	2,76	2,75	:
Bahia	87,46	86,66	88,85	89,45	89,43	157,25	154,62	152,27	154,70	154,07	i
Minas Gerais	113,89	112,84	115,70	116,47	116,45	180,31	177,30	174,60	177,38	176,67	i
Espírito Santo	1,95	1,93	1,98	1,99	1,99	5,86	5,77	5,68	5,77	5,75	
Rio de Janeiro	0,77	0,76	0,78	0,78	0,78	2,30	2,26	2,23	2,26	2,25	
São Paulo	2,77	2,74	2,81	2,83	2,83	6,97	6,85	6,75	6,86	6,83	
Paraná	0,52	0,51	0,52	0,53	0,53	1,54	1,52	1,49	1,52	1,51	:
Santa Catarina	1,00	0,99	1,02	1,03	1,03	3,02	2,97	2,92	2,97	2,95	:
Rio Grande do Sul	0,30	0,30	0,30	0,31	0,31	0,83	0,82	0,80	0,82	0,81	:
Mato Grosso do Sul	32,79	32,49	33,32	33,54	33,53	26,83	26,38	25,98	26,40	26,29	1
Mato Grosso	531,78	457,10	541,72	574,97	574,84	1044,46	713,41	600,45	707,47	744,98	
Goiás	121,45	120,33	123,38	124,21	124,18	148,44	145,96	143,74	146,03	145,44	
Distrito Federal	1,37	1,36	1,39	1,40	1,40	1,58	1,56	1,53	1,56	1,55	
Região	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Norte	971,413	785,696	990,620	1072,282	1072,038	2255,897	1433,468	1044,387	1369,904	1243,570	
Nordeste	358,754	333,669	364,922	376,613	376,528	626,853	512,789	407,725	505,605	536,472	
Sudeste	119,372	118,272	121,271	122,085	122,057	195,443	192,182	189,254	192,273	191,498	
Sul	1,819	1,802	1,847	1,860	1,859	5,389	5,299	5,219	5,302	5,280	
Centro-Oeste	687,392	611,275	699,807	734,118	733,950	1221,313	887,310	771,701	881,450	918,263	
Total	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
	2138,75	1850,72	2178,47	2306,96	2306,43	4304,90	3031,05	2418,29	2954,53	2895,08	
	-										

Unidade: Gg CH₄

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	312,48	338,92	395,27	457,04	489,86	402,16	249,11	193,12	137,40	55,25	48,41	94,69	79,08
	72,24	55,34	117,33	142,69	96,30	76,45	50,41	22,98	32,00	19,94	30,03	31,93	32,50
	62,66	64,92	91,16	159,88	126,34	77,59	77,37	59,06	59,00	37,49	53,48	44,38	43,21
	37,90	51,69	12,66	65,91	46,66	19,48	33,19	43,77	82,04	16,39	33,67	18,24	14,99
	902,67	708,77	1022,43	969,05	1202,16	780,59	734,36	707,08	723,86	523,81	447,84	351,48	190,11
	0,00	6,65	0,00	23,80	43,77	30,66	27,33	35,03	90,63	60,13	44,20	54,14	20,70
	91,50	87,31	89,60	77,90	78,00	84,62	72,18	66,75	70,56	36,26	29,64	28,56	27,43
	291,40	275,29	296,23	267,39	231,19	250,39	209,62	200,55	294,59	170,15	141,45	97,91	76,01
	30,36	30,36	30,54	22,14	22,12	21,60	21,18	20,89	21,07	11,57	10,05	9,89	9,24
:	12,96	12,96	13,03	6,08	6,07	5,93	5,81	5,73	5,78	3,81	3,70	3,64	3,40
:	4,70	4,70	4,73	1,95	1,95	1,90	1,87	1,84	1,86	1,20	1,17	1,15	1,07
:	4,02	4,02	4,05	1,83	1,83	1,79	1,75	1,73	1,74	1,15	1,11	1,09	1,02
:	9,13	9,13	9,19	4,05	4,05	3,96	3,88	3,83	3,86	2,52	2,45	2,41	2,25
:	2,53	2,53	2,54	0,65	0,65	0,63	0,62	0,61	0,62	0,36	0,35	0,35	0,32
:	2,75	2,75	2,77	0,72	0,72	0,70	0,69	0,68	0,69	0,41	0,39	0,39	0,36
:	154,22	154,25	155,17	70,68	70,63	68,96	67,63	66,69	67,28	36,63	32,55	32,01	29,92
:	176,84	176,87	177,93	102,67	102,60	100,18	98,24	96,87	97,73	50,49	42,82	42,12	39,36
:	5,75	5,75	5,79	1,01	1,01	0,98	0,96	0,95	0,96	0,49	0,48	0,47	0,44
:	2,26	2,26	2,27	0,40	0,39	0,39	0,38	0,37	0,38	0,19	0,19	0,18	0,17
:	6,84	6,84	6,88	1,80	1,80	1,76	1,73	1,70	1,72	0,88	0,80	0,79	0,74
:	1,51	1,51	1,52	0,27	0,27	0,26	0,26	0,25	0,26	0,13	0,13	0,13	0,12
:	2,96	2,96	2,98	0,52	0,52	0,51	0,50	0,49	0,50	0,26	0,25	0,25	0,23
:	0,82	0,82	0,82	34,40	34,38	33,56	32,91	32,45	32,74	28,20	27,38	26,93	25,16
:	26,31	26,32	26,48	21,62	21,61	21,10	20,69	20,40	20,58	8,05	6,97	6,85	6,41
	697,41	806,01	826,26	1007,02	1121,04	723,36	490,15	356,08	404,25	150,57	123,13	138,60	105,71
	145,58	145,61	146,48	122,57	122,48	119,59	117,28	115,64	116,67	59,57	49,15	48,34	45,18
	1,55	1,55	1,56	1,41	1,41	1,37	1,35	1,33	1,34	0,68	0,56	0,55	0,52
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	1479,452	1313,604	1728,448	1896,272	2083,075	1471,564	1243,944	1127,791	1195,492	749,278	687,259	623,424	408,018
	512,063	495,995	518,246	375,495	339,218	355,871	313,061	302,543	397,496	227,806	193,221	148,838	123,606
	191,683	191,721	192,860	105,879	105,805	103,304	101,307	99,891	100,784	52,054	44,286	43,562	40,709
	5,285	5,287	5,318	35,189	35,165	34,333	33,670	33,199	33,496	28,585	27,752	27,298	25,510
	870,863	979,498	1000,775	1152,621	1266,537	865,418	629,466	493,447	542,843	218,870	179,810	194,350	157,808
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	3059,35	2986,10	3445,65	3565,46	3829,80	2830,49	2321,45	2056,87	2270,11	1276,59	1132,33	1037,47	755,65

-											
Estado	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Rondônia	1,75	1,39	1,78	1,94	1,94	4,20	2,13	1,71	1,78	2,05	
Acre	0,47	0,37	0,47	0,52	0,52	1,12	0,39	0,32	0,49	0,40	
Amazonas	0,63	0,50	0,64	0,70	0,70	1,52	0,72	0,41	0,47	0,51	
Roraima	0,10	0,08	0,10	0,11	0,11	0,23	0,22	0,19	0,23	0,23	
Pará	3,09	2,46	3,16	3,43	3,43	7,44	5,72	3,80	5,44	4,75	
Amapá ————————————————————————————————————	0,02	0,02	0,03	0,03	0,03	0,06	0,00	0,12	0,20	0,00	
Tocantins	0,62	0,58	0,63	0,65	0,65	0,94	0,67	0,64	0,81	0,61	
Maranhão	1,55	1,39	1,58	1,66	1,66	2,76	2,00	1,31	1,95	2,17	
Piauí	0,16	0,16	0,17	0,17	0,17	0,21	0,21	0,21	0,21	0,21	:1
Ceará	0,06	0,06	0,06	0,06	0,06	0,09	0,09	0,09	0,09	0,09	
Rio Grande do Norte	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,03	:
Paraíba	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,03	:
Pernambuco	0,04	0,04	0,04	0,04	0,04	0,06	0,06	0,06	0,06	0,06	:
Alagoas	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	:
Sergipe	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	:
Bahia	0,60	0,60	0,61	0,61	0,61	1,08	1,06	1,05	1,06	1,06	:
Minas Gerais	0,78	0,78	0,80	0,80	0,80	1,24	1,22	1,20	1,22	1,21	:
Espírito Santo	0,01	0,01	0,01	0,01	0,01	0,04	0,04	0,04	0,04	0,04	:
Rio de Janeiro	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	:
São Paulo	0,02	0,02	0,02	0,02	0,02	0,05	0,05	0,05	0,05	0,05	:
Paraná	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	:
Santa Catarina	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	:
Rio Grande do Sul	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	:
Mato Grosso do Sul	0,23	0,22	0,23	0,23	0,23	0,18	0,18	0,18	0,18	0,18	
Mato Grosso	3,66	3,14	3,72	3,95	3,95	7,18	4,90	4,13	4,86	5,12	
Goiás	0,83	0,83	0,85	0,85	0,85	1,02	1,00	0,99	1,00	1,00	
Distrito Federal	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
Região	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Norte	6,68	5,40	6,81	7,37	7,37	15,51	9,86	7,18	9,42	8,55	
Nordeste	2,47	2,29	2,51	2,59	2,59	4,31	3,53	2,80	3,48	3,69	
Sudeste	0,82	0,81	0,83	0,84	0,84	1,34	1,32	1,30	1,32	1,32	
Sul	0,01	0,01	0,01	0,01	0,01	0,04	0,04	0,04	0,04	0,04	
Centro-Oeste	4,73	4,20	4,81	5,05	5,05	8,40	6,10	5,31	6,06	6,31	
Total	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Brasil	14,70	12,72	14,98	15,86	15,86	29,60	20,84	16,63	20,31	19,90	
	_										

Unidade: Gg

ı	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Γ	2,15	2,33	2,72	3,14	3,37	2,76	1,71	1,33	0,94	0,38	0,33	0,65	0,54
	0,50	0,38	0,81	0,98	0,66	0,53	0,35	0,16	0,22	0,14	0,21	0,22	0,22
	0,43	0,45	0,63	1,10	0,87	0,53	0,53	0,41	0,41	0,26	0,37	0,31	0,30
	0,26	0,36	0,09	0,45	0,32	0,13	0,23	0,30	0,56	0,11	0,23	0,13	0,10
	6,21	4,87	7,03	6,66	8,26	5,37	5,05	4,86	4,98	3,60	3,08	2,42	1,31
	0,00	0,05	0,00	0,16	0,30	0,21	0,19	0,24	0,62	0,41	0,30	0,37	0,14
	0,63	0,60	0,62	0,54	0,54	0,58	0,50	0,46	0,49	0,25	0,20	0,20	0,19
	2,00	1,89	2,04	1,84	1,59	1,72	1,44	1,38	2,03	1,17	0,97	0,67	0,52
<u>.</u> L	0,21	0,21	0,21	0,15	0,15	0,15	0,15	0,14	0,14	0,08	0,07	0,07	0,06
	0,09	0,09	0,09	0,04	0,04	0,04	0,04	0,04	0,04	0,03	0,03	0,03	0,02
	0,03	0,03	0,03	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
	0,03	0,03	0,03	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
i.	0,06	0,06	0,06	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02
	0,02	0,02	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,02	0,02	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	1,06	1,06	1,07	0,49	0,49	0,47	0,46	0,46	0,46	0,25	0,22	0,22	0,21
iL	1,22	1,22	1,22	0,71	0,71	0,69	0,68	0,67	0,67	0,35	0,29	0,29	0,27
	0,04	0,04	0,04	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00
i L	0,02	0,02	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,05	0,05	0,05	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,02	0,02	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,01	0,01	0,01	0,24	0,24	0,23	0,23	0,22	0,23	0,19	0,19	0,19	0,17
	0,18	0,18	0,18	0,15	0,15	0,15	0,14	0,14	0,14	0,06	0,05	0,05	0,04
: [4,79	5,54	5,68	6,92	7,71	4,97	3,37	2,45	2,78	1,04	0,85	0,95	0,73
	1,00	1,00	1,01	0,84	0,84	0,82	0,81	0,80	0,80	0,41	0,34	0,33	0,31
L	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00
L													
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
L	10,17	9,03	11,88	13,04	14,32	10,12	8,55	7,75	8,22	5,15	4,72	4,29	2,81
	3,52	3,41	3,56	2,58	2,33	2,45	2,15	2,08	2,73	1,57	1,33	1,02	0,85
L	1,32	1,32	1,33	0,73	0,73	0,71	0,70	0,69	0,69	0,36	0,30	0,30	0,28
	0,04	0,04	0,04	0,24	0,24	0,24	0,23	0,23	0,23	0,20	0,19	0,19	0,18
-	5,99	6,73	6,88	7,92	8,71	5,95	4,33	3,39	3,73	1,50	1,24	1,34	1,08
	2000	2004	2000	2000	2004	2005	2001	2007	2000	2000	2212	2011	2040
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	21,03	20,53	23,69	24,51	26,33	19,46	15,96	14,14	15,61	8,78	7,78	7,13	5,20

TABELA 34 Reduções de CH₄ pelos projetos MDL brasileiros

Cidade	UF	2003	2004	2005	2006	
MANAUS	AM	-	-			
FEIRA DE SANTANA	ВА	-	-			
SALVADOR	ВА	-	13.594	25.959	30.782	
CARIACICA	ES	-	-		16	
VILA VELHA	ES	-	-			
BELO HORIZONTE	MG	-	-			
BELÉM	PA	-	-			
JOÃO PESSOA	РВ	-	-			
NOVA IGUAÇU	RJ	-	-			
MINAS DO LEÃO	RS	-	-			
IÇARA	SC	-	-			
BIGUAÇU	SC	-	-			
BRAGANÇA PAULISTA	SP	-	-			
CAIEIRAS	SP	-	-			
GUARULHOS	SP	-	-			
ITAPEVI	SP	-	-			
ITAQUAQUECETUBA	SP	-	-			
MAUÁ	SP	-	-		2.617	
PAULÍNIA	SP	-	-		2.616	
SANTA ISABEL	SP	-	-			
SANTOS	SP	-	-			
SÃO JOSÉ DOS CAMPOS	SP	-	-			
SÃO PAULO	SP	-	28.797	33.442	34.376	
TREMEMBÉ	SP	1.045	1.460	1.952	2.195	
TOTAL		1.045	43.850	61.353	72.603	

Unidade: t CH₄

	2007	2008	2009	2010	2011	2012
					5.394	16.288
		222	1.390			
	25.110	27.329	23.712			
	502	1.711	1.086	1.086	543	
		856	2.219	2.049		
1					3.946	
1	320	3.206	7.235	12.648	17.621	19.733
:		167	1.001	1.001	417	
:	3.238	3.902	3.969	4.855	5.903	4.882
		6.813	10.586	12.098	13.864	
		464	7.944	7.442	9.337	11.461
		1.248	1.945	2.909	3.511	2.341
:	8.141	21.664	30.378	34.871	41.014	45.600
	1.252	3.136	4.032	4.454	4.629	4.023
		2.672	12.843	5.182		
	10.810	19.391	26.336	22.957	7.821	
	10.468	13.763	16.199	25.427	30.767	24.358
	953	1.179	899	102		
		3.605	6.557	5.555		
		495	4.149	4.781	4.781	1.992
	59.959	69.823	54.136	44.881	30.307	14.335
	2.029	9.859	13.454	16.171	19.554	30.008
	122.781	191.505	230.069	208.469	199.408	175.020

TABELA 35 Emissões de CO₂ provenientes do Setor Tratamento de Resíduos, 1990 a 2012

Emissão Gás Carbônico					Gg CO ₂					
EIIIISSAO GAS CALDOIIICO	1990	1991	1992	1993	1994	1995	1996	1997	1998	
TRATAMENTO DE RESÍDUOS	24,450	38,445	69,981	58,526	62,502	78,831	62,766	63,192	70,397	
Resíduos sólidos (incineração)	24,450	38,445	69,981	58,526	62,502	78,831	62,766	63,192	70,397	
Efluentes										
Industriais										
Domésticos										

TABELA 36 Emissões de CH₄ provenientes do Setor Tratamento de Resíduos, 1990 a 2012

Fortage Madage					Gg CH ₄					
Emissão Metano	1990	1991	1992	1993	1994	1995	1996	1997	1998	
TRATAMENTO DE RESÍDUOS	1249,286	1284,444	1316,897	1353,100	1389,605	1438,148	1470,544	1510,239	1554,110	
Resíduos sólidos	795,147	822,987	851,578	879,457	906,696	932,721	959,817	988,937	1017,230	
Efluentes	454,139	461,457	465,319	473,643	482,909	505,427	510,727	521,302	536,881	
Industriais	97,335	99,625	98,460	101,757	105,995	156,430	157,089	160,502	168,918	
Domésticos	356,804	361,832	366,859	371,887	376,914	348,997	353,638	360,800	367,963	

TABELA 37 Emissões de N₂O provenientes do Setor Tratamento de Resíduos, 1990 a 2012

Emissão Óxido Nitroso					Gg N ₂ O				
EIIIISSAO OXIUO NILFOSO	1990	1991	1992	1993	1994	1995	1996	1997	1998
TRATAMENTO DE RESÍDUOS	9,0	9,2	9,3	9,8	10,4	11,0	11,1	11,3	11,7
Resíduos sólidos (incineração)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Efluentes	9,0	9,2	9,3	9,8	10,4	11,0	11,1	11,3	11,7
Industriais									
Domésticos	9,0	9,2	9,3	9,8	10,4	11,0	11,1	11,3	11,7

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
`:	84,017	91,836	76,299	79,860	111,170	110,714	109,872	113,284	117,841	122,397	126,954	131,511	136,067	140,624
	84,017	91,836	76,299	79,860	111,170	110,714	109,872	113,284	117,841	122,397	126,954	131,511	136,067	140,624

4	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
``	1594,846	1645,660	1682,804	1713,314	1750,386	1757,974	1784,521	1831,283	1850,159	1843,856	1877,974	1967,995	2066,829	2142,707
	1045,955	1076,638	1107,805	1143,329	1170,635	1157,789	1173,127	1200,449	1195,258	1175,199	1186,247	1259,690	1324,736	1397,330
	548,892	569,022	574,999	569,985	579,751	600,185	611,393	630,834	654,901	668,657	691,727	708,305	742,093	745,377
◀:	173,766	186,734	188,160	178,594	183,809	199,692	206,349	221,238	240,754	249,126	266,813	278,007	308,078	307,774
	375,125	382,288	386,839	391,391	395,942	400,493	405,045	409,596	414,147	419,531	424,914	430,298	434,016	437,603

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
``.	12,1	12,5	12,6	12,8	13,1	13,5	13,9	14,0	14,2	14,4	14,5	14,7	14,8	15,0
	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	12,1	12,5	12,6	12,8	13,1	13,5	13,9	14,0	14,2	14,4	14,5	14,7	14,8	15,0
	12,1	12,5	12,6	12,8	13,1	13,5	13,9	14,0	14,2	14,4	14,5	14,7	14,8	15,0

RESUMO DAS ESTIMATIVAS ANUAIS DE EMISSÕES DE GASES DE EFEITO ESTUFA NO BRASIL

1990 - 2012

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO SECRETARIA DE POLÍTICAS E PROGRAMAS DE PESQUISA E DESENVOLVIMENTO COORDENAÇÃO GERAL DE MUDANÇAS GLOBAIS DE CLIMA

RESUMO DAS ESTIMATIVAS ANUAIS DE EMISSÕES DE GASES DE EFEITO ESTUFA NO BRASIL

1990 - 2012

REPÚBLICA FEDERATIVA DO BRASIL

PRESIDENTE DA REPÚBLICA FEDERATIVA DO BRASIL

DII MA ROUSSEFE

MINISTRO DE ESTADO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

CLÉLIO CAMPOLINA DINIZ

SECRETÁRIO-EXECUTIVO

ALVARO TOUBES PRATA

SECRETÁRIO DE POLÍTICAS E PROGRAMAS DE PESQUISA E DESENVOLVIMENTO

CARLOS AFONSO NOBRE

DIRETOR DO DEPARTAMENTO DE POLÍTICAS E PROGRAMAS TEMÁTICOS

OSVALDO LUIZ LEAL DE MORAES

COORDENADOR-GERAL DE MUDANÇAS GLOBAIS DE CLIMA

GUSTAVO LUEDEMANN

MÁRCIO ROJAS DA CRUZ - COORDENADOR SUBSTITUTO

EQUIPE TÉCNICA

MAURO MEIRELLES DE OLIVEIRA SANTOS¹ GISELLE PARNO GUIMARÃES² DANIELLY GODIVA SANTANA MOLLETA ³ MÁRCIO ROJAS DA CRUZ⁴

¹ Supervisor Especialista em Análise de Emissões de Gases de Efeito Estufa do Programa das Nações Unidas para o Desenvolvimento (PNUD) para a Terceira Comunicação Nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima (CQNUMC).

² Consultora Técnica do Inventário Nacional de Emissões de Gases de Efeito Estufa – Rede CLIMA/CNPq

³ Supervisora do Inventário Nacional de Emissões de Gases de Efeito Estufa do PNUD para a Terceira Comunicação Nacional do Brasil à CQNUMC.

⁴ Analista de Ciência e Tecnologia do MCTI e diretor nacional do Projeto do PNUD para a Terceira Comunicação Nacional do Brasil à CQNUMC.

Sumário

Emissões líquidas brasileiras	6
Emissões brutas brasileiras	6
Perfil de emissões líquidas por setor	7
Perfil de emissões brutas por setor	7
Perfil de emissões líquidas por gás	8
Perfil de emissões brutas por gás	8
Evolução das Emissões Líquidas de 1990 a 2012	9
Evolução das Emissões Brutas de 1990 a 2012	9
Evolução das Emissões Líquidas de 2005 a 2012	10
Evolução das Emissões Brutas de 2005 a 2012	10
Setor Energia	11
Setor Energia - Participação dos subsetores nas emissões por	
queima de combustível (417.221 Gg CO ₂ em 2012)	12
Setor Processos Industriais	13
Setor Agropecuária	14
Setor Agropecuária - Participação nas emissões de metano	4.5
(13.270,2 Gg $\mathrm{CH_4}$ em 2012)	15
Setor Agropecuária - Participação nas emissões de óxido nitroso (541,2 Gg N ₂ O em 2012)	16
Setor Tratamento de Resíduos	17
Setor Mudança do Uso da Terra e Floresta	
(emissões líquidas)	18
Setor Mudança do Uso da Terra e Floresta	
(emissões brutas)	19

Resumo das Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil

	Catavas	1990	1995	2000	
	Setores	Gg CO ₂ eq			
	Energia	187.739	227.604	298.611	
	Processos Industriais	52.537	63.065	71.674	
	Agropecuária		335.775	347.882	
	Tratamento de Resíduos		33.677	38.517	
Emissões líquidas	Mudança do Uso da Terra e Floresta	815.965	1.940.420	1.343.136	
	TOTAL	1.389.074	2.600.543	2.099.820	
Emissõe brutas	Mudança do Uso da Terra e Floresta	1.161.461	2.181.266	1.583.981	
	TOTAL	1.734.570	2.841.388	2.340.666	

Gg = milhares de toneladas

2005	2011	2012	Variação	
Gg CO₂eq		1995-2005	2005-2012	
328.377	407.544	446.154	44,30%	35,90%
77.943	86.173	85.365	23,60%	9,50%
415.724	449.853	446.445	23,80%	7,40%
41.887	48.139	49.775	24,40%	18,80%
1.179.067	310.486	175.685	-39,20%	-85,10%
2.042.998	1.302.195	1.203.424	-21,40%	-41,10%
1.496.310	627.729	492.928	-31,40%	-67,10%
2.360.241	1.619.438	1.520.667	-16,90%	-35,60%

Emissões líquidas brasileiras

Tg = milhões de toneladas. GWP CH₄: 21; GWP N₂O: 310

Emissões brutas brasileiras

Tg = milhões de toneladas. GWP CH₄: 21; GWP N₂O: 310

Perfil de emissões líquidas por setor

Perfil de emissões brutas por setor

Perfil de emissões líquidas por gás

Perfil de emissões brutas por gás

Evolução das Emissões Líquidas de 1990 a 2012

Evolução das Emissões Brutas de 1990 a 2012

Evolução das Emissões Líquidas de 2005 a 2012

Evolução das Emissões Brutas de 2005 a 2012

Setor Energia

Setor Energia - Participação dos subsetores nas emissões por queima de combustível (417.221 Gg CO₂ em 2012)

Setor Processos Industriais

Uso de SF6

Setor Agropecuária

Setor Agropecuária - Participação nas emissões de metano (13.270,2 Gg CH₄ em 2012)

Setor Agropecuária - Participação nas emissões de óxido nitroso (541,2 Gg N,0 em 2012)

Setor Tratamento de Resíduos

Setor Mudança do Uso da Terra e Floresta

(emissões líquidas)

Setor Mudança do Uso da Terra e Floresta

(emissões brutas)

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Esplanada dos Ministérios, Bloco E Telefone: 55 61 2033 7923 CEP: 70.067-900 — Brasília — DF Página eletrônica: http://www.mcti.gov.br Ministério da Ciência, Tecnologia e Inovação

