Comparação de desempenho entre algoritmos

Leonardo D. Secchin

Tópicos em PO, 2021/1E

UFES

Julho de 2021

Considere dois algoritmos A e B aplicados aos problemas P1,...,Pn. Após a execução, o seguinte panorama foi observado:

- o Algoritmo A resolveu 65% dos problemas
- o Algoritmo B resolveu 72% dos problemas
- o tempo de execução do Algoritmo B foi, em média, 2 vezes o tempo do Algoritmo A.

Pergunta: Qual algoritmo foi melhor? Qual você indicaria?

Considere dois algoritmos A e B aplicados aos problemas P1,...,Pn. Após a execução, o seguinte panorama foi observado:

- o Algoritmo A resolveu 65% dos problemas
- o Algoritmo B resolveu 72% dos problemas
- o tempo de execução do Algoritmo B foi, em média, 2 vezes o tempo do Algoritmo A.

Pergunta: Qual algoritmo foi melhor? Qual você indicaria?

A resposta possivelmente dependa da situação, do tamanho dos problemas, do condicionamento dos dados, de paralelismo etc etc etc...

Considere dois algoritmos A e B aplicados aos problemas P1,...,Pn. Após a execução, o seguinte panorama foi observado:

- o Algoritmo A resolveu 65% dos problemas
- o Algoritmo B resolveu 72% dos problemas
- o tempo de execução do Algoritmo B foi, em média, 2 vezes o tempo do Algoritmo A.

Pergunta: Qual algoritmo foi melhor? Qual você indicaria?

A resposta possivelmente dependa da situação, do tamanho dos problemas, do condicionamento dos dados, de paralelismo etc etc etc...

ok, mas há uma forma de responder "balanceando" tempo vs eficácia?

Agora, tente dar uma "resposta média" olhando a tabela... !!!!! :(

Row	Prob	n	m	st	it	f	viab	KKT	tempo	metodo
1 2 3 4	lp_adlittle lp_adlittle lp_adlittle lp_adlittle	138 138 138 138	56 56 56 56	1 0 0 1	8 13 13 20	NaN 225495.0 225495.0 NaN	4.59223e12 1.38656e-10 1.38062e-9 1.24738e-10	5.6862e8 2.17674e-10 4.6669e-12 2.84205e-8	0.00625257 0.00219731 0.00212062 0.00350535	afimescala pred-corr_p2 pred-corr_p3 seguidor
5 6 7 8	lp_afiro lp_afiro lp_afiro lp_afiro	51 51 51 51	27 27 27 27 27	4 0 0 0	18 8 8 16	-464.754 -464.753 -464.753 -464.753	10.071 6.56722e-12 9.48886e-12 5.10003e-12	0.00554879 7.32249e-10 1.60566e-10 2.49791e-9	0.00123545 0.000450609 0.000536535 0.000865001	afimescala pred-corr_p2 pred-corr_p3 seguidor
9 10 11 12	lp_agg lp_agg lp_agg lp_agg	615 615 615 615	488 488 488 488	1 0 0 0	33 27 39 57	NaN -3.59918e7 -3.59918e7 -3.59918e7	3.52612e15 2.7054e-5 1.0664e-5 0.0658189	6.39858e7 1.92828e-9 6.31478e-13 1.56728e-9	0.0930459 0.0961403 0.142016 0.143155	afimescala pred-corr_p2 pred-corr_p3 seguidor
13 14 15 16	lp_agg2 lp_agg2 lp_agg2 lp_agg2	758 758 758 758 758	516 516 516 516	4 0 0 0	61 20 19 30	-1.99724e7 -2.02393e7 -2.02393e7 -2.02393e7	137955.0 2.11389e-7 2.02984e-5 0.00172784	0.00798686 7.04435e-12 1.72002e-10 6.43798e-9	0.203749 0.0931601 0.0913567 0.0974315	afimescala pred-corr_p2 pred-corr_p3 seguidor
17 18 19 20	lp_agg3 lp_agg3 lp_agg3 lp_agg3	758 758 758 758	516 516 516 516 516	1 0 0 0	50 20 18 32	NaN 1.03121e7 1.03121e7 1.03121e7	5.01421e15 3.48558e-7 9.58804e-6 0.000617788	2.92043e8 1.30753e-9 9.13078e-11 1.45328e-9	0.163052 0.0950648 0.0866596 0.109657	afimescala pred-corr_p2 pred-corr_p3 seguidor
21 22 23 24	lp_bandm lp_bandm lp_bandm lp_bandm	472 472 472 472 472	305 305 305 305 305	4 0 0 0	16 19 19 31	-139.181 -158.628 -158.628 -158.628	25.8847 6.21731e-10 3.3434e-10 3.01558e-10	0.370008 5.5994e-9 1.92558e-12 6.49026e-9	0.0234934 0.0289009 0.0266341 0.0348959	afimescala pred-corr_p2 pred-corr_p3 seguidor
25 26 27 28	lp_beaconfd lp_beaconfd lp_beaconfd lp_beaconfd	295 295 295 295 295	173 173 173 173	4 0 0 0	16 11 10 18	33574.4 33592.5 33592.5 33592.5	3230.33 1.33872e-5 1.61167e-8 2.93402e-9	0.219422 6.59554e-9 6.77704e-12 4.69255e-9	0.0131723 0.0102533 0.00898379 0.0125896	afimescala pred-corr_p2 pred-corr_p3 seguidor
29 30 31 32	lp_blend lp_blend lp_blend lp_blend	114 114 114 114	74 74 74 74	4 0 0 0	20 14 13 20	-29.8934 -30.8121 -30.8121 -30.8121	7.46157 1.47306e-11 3.29287e-11 2.25261e-11	0.0660842 9.00176e-10 1.70695e-11 9.91278e-9	0.00431388 0.00327916 0.00308425 0.00369068	afimescala pred-corr_p2 pred-corr_p3 seguidor
33 34 35 36	lp_bnl2 lp_bnl2 lp_bnl2 lp_bnl2	4486 4486 4486 4486	2324 2324 2324 2324 2324	1 4 4 0	45 40 36 68	NaN 1811.24 1811.24 1811.24	1.10967e15 0.00125769 0.000585816 5.68037e-7	3.02111e10 3.42411e-8 1.59491e-8 6.48521e-10	1.10452 1.74602 1.58145 1.65283	afimescala pred-corr_p2 pred-corr_p3 seguidor
37 38 39 40	lp_d2q06c lp_d2q06c lp_d2q06c lp_d2q06c	5831 5831 5831 5831 5831	2171 2171 2171 2171 2171	4 4 0 0	13 26 30 62	2.52971e5 1.22829e5 1.22784e5 1.22784e5	2.17288e5 8.90209e-5 3.41739e-5 1.17896e-5	1.49644 0.000328237 2.07375e-9 1.63516e-9	0.412703 1.29015 1.47965 1.80164	afimescala pred-corr_p2 pred-corr_p3 sequidor

- Tempo de execução: útil para comparar algoritmos de diferentes naturezas. Veremos mais a frente alguns cuidados ao contabilizar tempo de CPU.
- **Número de iterações:** útil quando os algoritmos têm iterações com custo computacional parecido. Exemplos:

- Tempo de execução: útil para comparar algoritmos de diferentes naturezas. Veremos mais a frente alguns cuidados ao contabilizar tempo de CPU.
- Número de iterações: útil quando os algoritmos têm iterações com custo computacional parecido. Exemplos:
 - Pontos interiores primal dual afim escala, seguidor de caminhos e preditor-corretor – custo por iteração parecido

- Tempo de execução: útil para comparar algoritmos de diferentes naturezas. Veremos mais a frente alguns cuidados ao contabilizar tempo de CPU.
- **Número de iterações:** útil quando os algoritmos têm iterações com custo computacional parecido. Exemplos:
 - Pontos interiores primal dual afim escala, seguidor de caminhos e preditor-corretor – custo por iteração parecido
 - Método do gradiente e Newton custo por iteração muito diferente.
 O primeiro necessita apenas de ∇f; o segundo, resolver um sistema linear com ∇²f.
 - ⇒ Não faz sentido comparar por número de iterações (gradiente pode dar mais iterações e mesmo assim ser muito mais rápido)

- Tempo de execução: útil para comparar algoritmos de diferentes naturezas. Veremos mais a frente alguns cuidados ao contabilizar tempo de CPU.
- Número de iterações: útil quando os algoritmos têm iterações com custo computacional parecido. Exemplos:
 - Pontos interiores primal dual afim escala, seguidor de caminhos e preditor-corretor – custo por iteração parecido
 - Método do gradiente e Newton custo por iteração muito diferente. O primeiro necessita apenas de ∇f ; o segundo, resolver um sistema linear com $\nabla^2 f$.
 - ⇒ Não faz sentido comparar por número de iterações (gradiente pode dar mais iterações e mesmo assim ser muito mais rápido)
- Número de avaliações de funções e/ou gradientes: útil quando avaliar funções e seus gradientes é caro (problemas de grande porte, funções resultantes de processos iterativos)

OK, independentemente da medida de comparação, queremos uma forma fácil de comparar o desempenho entre dois algoritmos.

OK, independentemente da medida de comparação, queremos uma forma fácil de comparar o desempenho entre dois algoritmos.

Como comparar de forma mais fácil?

Perfis de desempenho: uma forma visual para comparar algoritmos.

OK, independentemente da medida de comparação, queremos uma forma fácil de comparar o desempenho entre dois algoritmos.

Como comparar de forma mais fácil?

Perfis de desempenho: uma forma visual para comparar algoritmos.

Os perfis de desempenho que veremos foram idealizados por Elizabeth D. Dolan e Jorge J. Moré.

Dolan, Elizabeth D.; Moré, Jorge J. Benchmarking optimization software with performance profiles. Math. Program., Ser. A 91: 201-213 (2002)

Eles são muito utilizados pelos pesquisadores em otimização.

Vamos fixar **tempo de execução** como medida (as outras serão a mesma coisa).

Vamos fixar **tempo de execução** como medida (as outras serão a mesma coisa).

Sejam

- P o conjunto dos problemas-teste (instâncias);
- \mathcal{A} o conjunto dos algoritmos aplicados à cada problema $p \in \mathcal{P}$;
- $t_{p,a}$ o tempo de execução do algoritmo $a \in \mathcal{A}$ para resolver $p \in \mathcal{P}$.

 Definimos $t_{p,a} = \infty$ caso a não resolveu p.

O índice de desempenho do algoritmo a no problema p é a razão

$$r_{p,a} = rac{t_{p,a}}{\min\{t_{p, ilde{a}} \mid ilde{a} \in \mathcal{A}\}} \geq 1$$

Observe que

- $r_{p,a} = 1 \implies$ algoritmo a resolveu p mais rápido;
- quanto maior $r_{p,a}$, mais lento foi a em p (talvez nem resolveu)
- convencionamos $r_{p,a} = \infty$ caso $t_{p,a} = \infty$ (note que o denominador pode ser ∞ caso nenhum algoritmo tenha resolvido p).

Definimos a função de desempenho (ou perfil de desempenho) do algoritmo $a \in \mathcal{A}$ por

$$ho_{\mathsf{a}}: [1,\infty) o [0,1], \qquad
ho_{\mathsf{a}}(au) = rac{1}{\# \mathcal{P}} \operatorname{\mathsf{card}} \left\{ p \in \mathcal{P} \mid \mathit{r}_{\mathsf{p},\mathsf{a}} \leq au
ight\}.$$

- $\rho_a(1)$ é a proporção de problemas que a resolve no menor tempo;
- $\rho_a(\tau)$ é a proporção de problemas que *a* resolve **em até** τ **vezes** o tempo do algoritmo mais rápido.

Definimos a função de desempenho (ou perfil de desempenho) do algoritmo $a \in \mathcal{A}$ por

$$ho_{\mathsf{a}}: [1,\infty) o [0,1], \qquad
ho_{\mathsf{a}}(au) = rac{1}{\# \mathcal{P}} \operatorname{\mathsf{card}} \left\{ p \in \mathcal{P} \mid \mathit{r}_{\mathsf{p},\mathsf{a}} \leq au
ight\}.$$

- $\rho_a(1)$ é a proporção de problemas que a resolve no menor tempo;
- $\rho_a(\tau)$ é a proporção de problemas que *a* resolve **em até** τ **vezes** o tempo do algoritmo mais rápido.
- a função ρ_a balanceia tempo e eficácia.
 - qual o algoritmo mais rápido, desconsiderando eficácia?
 (isto é, sem olhar para a % de problemas resolvidos)
 - qual o algoritmo é mais rápido, considerando uma taxa de resolução de 70% dos problemas?

A maneira fácil de visualizar o comparativo entre algoritmos é traçando os gráficos de $\rho_a(\tau)$ em função de τ , para os vários algoritmos.

É bastante utilizada pelos pesquisadores para tirar conclusões entre diferentes algoritmos.

Os perfis ρ_a podem ser definimos para qualquer medida de comparação (iterações, avaliações de função etc) de forma inteiramente análoga.

Para tanto, basta definir $t_{p,a}$ como a medida de interesse, mantendo $t_{p,a}=\infty$ quando a não resolve p.

Exemplo 1

Comparativo para até 10 vezes o tempo do algoritmo mais rápido ($\tau \in [1, 10]$)

LOQO é mais rápido em $\approx 60\%$ dos problemas, mas não é o mais eficaz

MINOS é o mais eficaz se esperamos até 10x o tempo do alg. mais rápido

LOQO e SNOPT têm eficácia similar, porém LOQO é muito mais rápido

A eficácia entre LOQO e SNOPT se equiparam somente se esperarmos até 8,5x o tempo do alg. mais rápido

MINOS tem eficácia superior se esperamos até cerca de 4x do algoritmo mais rápido

LANCELOT é pior em eficácia e tempo

Exemplo 2

Comparativo para até 100 vezes o tempo do algoritmo mais rápido ($\tau \in [1, 100]$)

SNOPT é o mais eficaz, porém para resolver $\approx 90\%$ dos problemas devemos esperar mais de 40x o tempo do algoritmo mais rápido

LANCELOT aumenta sua eficácia se esperamos mais tempo

LOQO resolve apenas poucos problemas a mais para $\tau \geq 50$

MINOS não é mais eficaz se esperamos mais tempo

Escala logarítmica

As vezes o gráfico fica ilegível próximo de $\tau=1$. Podemos usar uma escala logarítmica de base 2 (proposto por Dolan e Moré) no eixo τ para melhor visualização.

Na verdade, a proposta é plotar

$$ho_{\mathsf{a}}: [1,\infty) o [0,1], \qquad
ho_{\mathsf{a}}(au) = rac{1}{\# \mathcal{P}} \operatorname{\mathsf{card}} \left\{ p \in \mathcal{P} \mid \log_2(r_{p,\mathsf{a}}) \leq au
ight\}.$$

A escala logarítmica serve para dar mais ênfase aos valores de au menores

"estica o eixo" para au pprox 1 e "comprimi o eixo" para $au \gg 1$.

"Problema": a leitura fica menos intuitiva...

Exemplo

Eixo horizontal: à esquerda, $\tau \ge 1$; à direita, $\log_2(\tau) \ge 0$.

Obs: $\log_2(40) \approx 5,322, \log_2(100) \approx 9,966$

O pacote Julia BenchmarkProfiles.jl

O pacote BenchmarkProfiles.jl gera facilmente perfis de desempenho a partir da tabela dos dados.

O pacote Julia BenchmarkProfiles.jl

O pacote BenchmarkProfiles.jl gera facilmente perfis de desempenho a partir da tabela dos dados.

Exercício:

Gere uma tabela 25 x 3 fictícia para 3 algoritmos e 25 problemas: julia> T = 10 * rand(25,3);

```
Insira alguns tempos infinitos nos dados:
julia> T[1:7:end] .= Inf;
```

- Gere um perfil dos dados T com a legenda "Alg 1", "Alg 2", "Alg 3": julia> fig = performance_profile(ArrayFloat64(T), ["Alg 1","Alg 2","Alg 3"], title="Tempo CPU", logscale=false)
- Salve a figura em PDF (carregue Plots antes): julia> savefig(fig, "fig.pdf")
- Gere o mesmo perfil com escala logarítmica (padrão) e salve a figura.

Exemplo – pontos interiores (Tempo CPU)

afimescala é **pior** em tempo e eficácia; $pre\text{-}corr_p3$ é **melhor** em tempo e eficácia; seguidor é **mais lento** que $pre\text{-}corr_p3$ porém, **se esperamos** $\approx 1,9$ **vezes o tempo do mais rápido** ($pre\text{-}corr_p3$), ele é mais eficaz que $pre\text{-}corr_p2$.

Exemplo – pontos interiores (Número de iterações)

As conclusões são parecidas com o perfil de tempo, pois todos os métodos têm iterações com custo similar.

Exemplo – pontos interiores (Tempo CPU)

Eixo horizontal: à esquerda, $\tau \ge 1$; à direita, $\log_2(\tau) \ge 0$.

Exemplo – pontos interiores (Número de iterações)

Eixo horizontal: à esquerda, $\tau \ge 1$; à direita, $\log_2(\tau) \ge 0$.

Dicas no Julia

- É recomendável usar a estrutura DataFrames para gerenciar tabelas.
 - Pacote DataFrames.jl
 - Similar ao dataframes do Python
 - Veja https://leonardosecchin.github.io/juliaopt_ex12
- Para evitar erros, sempre converta os dados para Float64 (esse tipo aceita o "número" Inf)
- É recomendável salvar os resultados em arquivos.
 Recomendo arquivos binários pois preservam a estrutura dos objetos.

```
Veja https://leonardosecchin.github.io/juliaopt_ex11/
```

• Você pode configurar o perfil de desempenho como uma figura Plots.

Veja a seção "Configurando gráficos" em https://leonardosecchin.github.io/juliaopt_ex5

A captura do tempo de execução pode sofrer oscilações de processos do sistema, processos concorrentes, paralelismo ou alterações na frequência do processador.

Dicas para minimizá-las:

- não trabalhe na máquina em que está executando os testes;
- fique atento à swaps. Eles destroem qualquer contagem de tempo!
 Se seu computador não possui memória RAM suficiente, não insista;
- se possível, "trave" o processador na sua frequência base, evitando TurboBoost ou similares. Talvez requeira acesso como root (Linux);

 se sua aplicação não requer paralelismo, pode ser bom executar cada problema com 1 thread apenas. Lembre-se que mesmo um programa serial pode ter trechos em paralelo pois vários resolvedores de sistemas lineares / pacotes de álgebra linear rodam em paralelo.

Geralmente você pode definir o número de *threads* por variáveis de ambiente (Linux). Algumas delas:

- OPENBLAS_NUM_THREADS=1, GOTO_NUM_THREADS=1 : OpenBlas
- OMP_NUM_THREADS=1 : threads para códigos com trechos OpenMP
- MKL_NUM_THREADS=1: Intel© Math Kernel Library© (BLAS da Intel para seus processadores)

Consulte a documentação do software que está utilizando.

Inconsistências surgem ainda de oscilações naturais na contagem (rode um algoritmo várias vezes, você verá que o tempo é diferente a cada execução).

- \bullet Se seu algoritmo leva "muito" tempo para resolver um problema (p. ex. >15 seg), então essas oscilações naturais não devem representar grandes variações percentuais...
- \bullet Porém, se seu algoritmo é muito rápido num dado problema (p. ex., $<1~{\rm seg}$), pequenas oscilações naturais no tempo representam grandes variações percentuais.
 - Isso compromete a comparação entre algoritmos em tais problemas.

Como minimizar as variações naturais?

 Utilize sempre as melhores maneiras para contar tempo (aliás, essa dica vale para problemas demorados também).

Por exemplo, no Julia use os comandos @time ou @elapsed → consulte https://leonardosecchin.github.io/juliaopt_ex14

 Rode cada problema N vezes até somar um tempo "confortável", por exemplo, 15 seg. O tempo de execução do problema será a média aritmética

tempo total das execuções

Isso deve ser implementado!
Isso minimiza **muito** o efeito de oscilações nos problemas pequenos.

• Você pode simplesmente descartar os problemas cuja execução é muito rápida caso não sejam relevantes para sua análise.

Exercícios, códigos e referências

Veja

https://leonardosecchin.github.io/topicospo