Package 'MetaMicrobiome'

January 30, 2019

Type Package

Title An R package for meta-analysis and visualization of Microbiome.
Version 1.0
Date 2019-01-04
Author Shuangbin Xu
Maintainer Shuangbin Xu <xshuangbin@163.com></xshuangbin@163.com>
Description MetaMicrobiome was designed to performance the meta-analysis, visualization and the module building. MetaMicrobiome provides function for computing the count data for the measures of risk and a chi-squared test. the package also provides a function for creating forest plots for the results of the measures of risk. Moreover, the package also provides functions for the module building and testing based on the randomforest, and a function for the visualization for the result with the ROC curves.
Depends epiR, metafor
Imports ggplot2, dplyr, tidyr, caret, pROC
License GPL (>= 2.0)
RoxygenNote 6.1.1
R topics documented:
droptax get_mapply_predict_test get_train_test_data getthresholds ggforest high_low_vector make_RF_model MultiHighLow multiRunRR multiVarRRTab predict_test predict_train 1

2 droptax

ROCplot 12 run_rr 15 RunPoolEffect 14 tidy_data 15	Index		1
		run_rr	13 14

droptax

Dropping Species with Few abundance and Few Occurrences

Description

Drop species or features from the feature data frame that occur fewer than or equal to a threshold number of occurrences and fewer abundance than to a threshold abundance.

Usage

```
droptax(taxtab, rmode = FALSE, minocc = 0, minabu = 0)
```

Arguments

taxtab	dataframe; a dataframe of species (or features), default is (n_sample, n_feature).
rmode	boolean; whether transpose the taxtab, default is False.
minocc	numeric; the threshold number of occurrences to be dropped, if < 1.0 , it will be the threshold ratios of occurrences, default is 0.
minabu	numeric: the threshold abundance, if fewer than the threshold will be dropped, default is 0.

Value

a list contained feature dataframe dropped, and the call, arguments.

Author(s)

Shuangbin Xu

```
library("MetaMicrobiome")
data <- read.csv(system.file("data", package="MetaMicrobiome", "Baxter_16_crc_genera_group.csv.gz"))
data$Group <- NULL
dim(data)
head(data)
newdat <- droptax(data, rmode=FALSE, minocc=0.2, minabu=0)
dim(newdat)
head(newdat)</pre>
```

```
get_mapply_predict_test
```

model predictions

Description

predict the multi-test datasets with the results of the multi-models.

Usage

```
get_mapply_predict_test(study, dataset, models, classvariable, classtype)
```

Arguments

study character, the names of the specified test dataset.

dataset list, a list contained multi test datasets.

models list, a list contained multi model object for predictions.

classvariable character, the header name of the train of test dataframe for the classification.

classtype character, the name of the positive group for classification.

Details

TODO

Author(s)

Shuangbin Xu

Description

Build the train and test datasets with a multi-datasets.

Usage

```
get_train_test_data(test_study, datasets)
```

Arguments

test_study character, the names of the list datasets.

datasets list, a list contianed the multi-dataframes with features and target infromation.

Details

TODO

4 getthresholds

Value

a list contianed the test datasets and train datasets.

Author(s)

Shuangbin Xu

 ${\tt getthresholds}$

Creat the thresholds vector.

Description

Creat the thresholds for the high_low_vector

Usage

```
getthresholds(dataset, var_of_interest, type = "median")
```

Arguments

```
dataset dataframe, a dataframe contain interesting variable.

var_of_interest

character, a vector interesting variables

type character, the method of choose thresholds, (median or mean), default is median
```

Details

TODO

Value

a vector thresholds of interesting variable.

Author(s)

Shuangbin Xu

ggforest 5

ggforest	forest plot base ggplot2 with the result of RunPoolEffect and multiVar-RRTab.
----------	---

Description

Polt a forest with the result of RunPoolEffect and multiVarRRTab base-on the ggplot.

Usage

```
ggforest(dataset, manualcolors, manualshapes, Logscale = TRUE, x, y,
  lower, upper, pointsize = 2, linesize = 0.4, errorbarhheight = 0.2,
  colorVar, shapeVar, facetx = NULL, facety = NULL, xlabs, ylabs,
  setTheme = TRUE)
```

Arguments

dataset	dataframe; a dataframe of result of RunPoolEffect and multiVarRRTab
manualcolors	character; the ponit colors.
manualshapes	character; the point shape.
Logscale	logical; log2 for x-axis (default) or not?
x	character; the header name in the dataframe for map to axes of point.
у	character; the header name in the dataframe for map to ayes of point.
lower	character; the header name in the dataframe for map to lower of the errorbar.
upper	character; the header name in the dataframe for map to upper of the errorbar.
pointsize	numeric; the point size, default is 3.0.
linesize	numeric; the errorbar line size, default is 0.4.
errorbarhheigh	t
	numeric; the errorbar height size, default is 0.2.
colorVar	character; the header name in the dataframe for map to the color of point.
shapeVar	character; the header name in the dataframe for map to the shape of point.
facetx	character; the header name in the dataframe for map to the facet of row, default is NULL.
facety	character; the header name in the dataframe for map to the facet of col, default is NULL.
xlabs	character; label for the x-axis.
ylabs	character; label for the y-axis.
setTheme	logical; whether set the default theme.

Details

TODO

Value

Returns a ggplot object.

6 ggforest

Author(s)

Shuangbin Xu

```
library("MetaMicrobiome")
data <- system.file("data", package="MetaMicrobiome", "ggforestDemo.rda")</pre>
load(data)
head(ggforestDemoData)
ggforestDemoData$study <- factor(ggforestDemoData$study,</pre>
                                 levels=rev(unique(ggforestDemoData$study)))
print(levels(ggforestDemoData$study))
pointcolors <- rev(c("#E41A1C",</pre>
                      "#4DAF4A",
    "#984EA3",
    "#FF7F00",
    "#FFFF33",
    "#A65628",
    "#F781BF",
    "#999999"))
pointshape <- c(18, 20)
data1 <- ggforestDemoData[ggforestDemoData$measure=="Shannon",]</pre>
head(data1)
data2 <- ggforestDemoData</pre>
head(data2)
p1 <- ggforest(dataset=data1,</pre>
      manualcolors=pointcolors,
      manualshapes=pointshape,
      x="est",
      y="study",
      Logscale=TRUE,
      lower="lower",
      upper="upper",
      colorVar="study",
      shapeVar="unite",
      pointsize=3,
      linesize=0.4,
      errorbarhheight=0.05,
      xlabs="Odds Ratio",
      ylabs="",
      setTheme=TRUE)
p2 <- ggforest(dataset=data2,</pre>
         manualcolors=pointcolors,
         manualshapes=pointshape,
         x="est",
         y="study",
         Logscale=TRUE,
         lower="lower",
         upper="upper",
         colorVar="study",
         shapeVar="unite",
         pointsize=3,
         linesize=0.4,
         errorbarhheight=0.05,
```

high_low_vector 7

```
xlabs="Odds Ratio",
ylabs="",
facetx="measure",
facety="group",
setTheme=TRUE)
```

high_low_vector

creat a vector with high/low versus the threshold.

Description

Creat a vector with hith/low versus the threshold, suitable for analysis with [metafor]{rma}.

Usage

```
high_low_vector(var_of_interest, dataset, threshold)
```

Arguments

var_of_interest

character, the interesting variable names.

datasrame. a dataframe contain the interesting variable.

threshold numeric, the threshold.

Details

TODO

Value

a vector with high/low versus the threshold.

Author(s)

Shuangbin Xu

```
library("MetaMicrobiome")
testfile <- system.file("data", package="MetaMicrobiome", "Baxter_16_alpha_data.csv.gz")
data <- read.csv(testfile, header=TRUE, check.names=FALSE)
thresVetor <- getthresholds(dataset=data,
c("Shannon", "Observe", "J"),
type="median")
highlowVector <- high_low_vector(dataset=data,
threshold=thresVetor,
var_of_interest="Shannon")
head(highlowVector)</pre>
```

8 MultiHighLow

Description

build a model with training datasets.

Usage

```
make_RF_model(train_data, study, numtree = 500, number_try,
numbercv = 10, classvariable)
```

Arguments

train_data	list or dataframe, the dataframe contianed the features or a list contianed multi-dataframe with features.
study	character,if train_data is a list, we can use 'study' extract the dataframe, default is NULL.
numtree	numeric, the number of trees for randomforest, see [randomForest] details.
number_try	numeric, the number of variables randomly sampled as candidates at each split, see [randomForest] details, default is 'round(sqrt(ncol(train_data)))'.
numbercv	numeric, the number of cross-validation.
classvariable	character, the header name of the train dataframe for the classification.

Details

TODO

Value

```
a model object, see [randomForest] details.
```

Author(s)

Shuangbin Xu

MultiHighLow	creat list of vectors with high/low versus the threshold.

Description

Creat list of vetors with high/low versus the threshold, suitable for analysis with [metafor]{rma}

Usage

```
MultiHighLow(var_of_interest, dataset, threshold)
```

multiRunRR 9

Arguments

var_of_interest

vector, the vector of interesting variables.

dataframe, the dataframe contained the interesting variables.

threshold vector, the threshold values vector.

Details

TODO

Value

list of vector with high/low versus the threshold.

Author(s)

Shuangbin Xu

Examples

 ${\it multiRunRR}$

Summary measures base on epiR for multi variables

Description

Computes summary measures of risk and a chi-squared test for difference in the observed proportions from count data presented in a 2 by 2 table with high low vector. With multiple strata the function returns crude and Mantel-Haenszel adjusted measures of association and chi-squared tests of homogeneity for multi variables (based on [epiR]{epi.2by2}.

Usage

```
multiRunRR(multiHighLow = NULL, metadavector = NULL,
  prefix = "Disease", grouptype = "Case", method = "cohort.count",
  conf.level = 0.95, score = "OR.strata.score", ...)
```

10 multiVarRRTab

Arguments

multiHighLow list, mulit variable high-lower-vector.

metadavector dataframe, metada dataframe contained the group information.

prefix character, the header names of the metada data frame, default is 'Group'.

grouptype character, the positive group names, default is "Case".

method character, a character string indicating the study design on which the tabular data

has been based. Options are cohort.count, cohort.time, case.control, or

cross.sectional, default is cohort.count. See epi. 2by2 for details.

conf.level numeric, magnitude of the returned confidence intervals. Must be a single num-

ber between 0 and 1. See epi. 2by2 for details.

score character, Wald and score confidence intervals for the effect value for each strata,

default is OR. strata. score, See epi. 2by2 for details.

... Additional arguments passed to epi. 2by2.

Details

TODO

Value

the summary measures of risk and a chi-squared test

Author(s)

ShuangbinXu

multiVarRRTab

collate results for summary measure of multi-variables

Description

Collate results for summary measure of multi-variables.

Usage

```
multiVarRRTab(multiRunRRTab, var_of_interest)
```

Arguments

```
\label{list} \mbox{ multiRunRRTab} \quad list, the \ results \ of \ the \\ \mbox{ var\_of\_interest}
```

vector, the interesting variables.

Details

TODO

Author(s)

Shuangbin Xu

predict_test 11

Description

predict the test datasets with the results of the models.

Usage

```
predict_test(model, teststudy, dataset, classvariable, classtype,
    Trainstudy)
```

Arguments

model object, a model object for predict.

teststudy character, the names of the dataset, if the dataset is a list.

dataset list or dataframe, the test dataset.

classvariable character, the header name of the train or test dataframe for the classification.

classtype character, the name of the positive group for classification.

Trainstudy chraracter, the name of the origin data of the model.

Details

TODO

Value

a list contianed the predict prob and roc results with sensitivity and specificity.

Author(s)

Shuangbin Xu

Description

Predict the training datasets for a model

Usage

```
predict_train(model, study, minus = FALSE, classtype)
```

Arguments

model object, a model object.

study character, a names of training datasets.

minus logical, whether minus the part of the 'study', default is FALSE. classtype character, the name of the positive group for classification.

12 ROCplot

Details

TODO

Value

a dataframe for the roc curve plot.

Author(s)

Shuangbin Xu

ROCplot

plot the roc curve

Description

Plot the ROC curve base on the [ggplot2]

Usage

```
ROCplot(rocplotdata, x, y, xlab, ylab, roccolors, legendkeyheight = 0.05, legendposition = c(0.67, 0.17), ...)
```

Arguments

rocplotdata dataframe, a dataframe of result contained the sensitivity and specificity.

x character, the header name in dataframe.
y character, the header name in dataframe.

xlab character, the label for the x-axis.
ylab character, the label for the y-axis.
roccolors vector, the colors for the roc curve.

legendkeyheight

the height of the legend, default is 'unit(0.05, "mm")'.

legendposition vector, the position of legend, default is 'c(0.67, 0.17)'.

... Additional arguments passed to aes

Details

TO DO

Value

Returns a ggplot object.

Author(s)

Shuangbin Xu

run_rr

run_rr Summary measures base on epiR	
--------------------------------------	--

Description

Computes summary measures of risk and a chi-squared test for difference in the observed proportions from count data presented in a 2 by 2 table with high low vector. With multiple strata the function returns crude and Mantel-Haenszel adjusted measures of association and chi-squared tests of homogeneity(based on [epiR]{epi.2by2}.

Usage

```
run_rr(var_high_low, metadavector, prefix = "Group",
  grouptype = "Case", method = "cohort.count", conf.level = 0.95,
  score = "OR.strata.score", ...)
```

Arguments

var_high_low	list or vector, the list of vectors with high/low versus the threshold
metadavector	dataframe, metada dataframe contained the group information.
prefix	character, the header names of the metada data frame, default is 'Group'.
grouptype	character, the positive group names, default is "Case".
method	character, a character string indicating the study design on which the tabular data has been based. Options are cohort.count, cohort.time, case.control, or cross.sectional, default is cohort.count. See epi.2by2 for details.
conf.level	numeric, magnitude of the returned confidence intervals. Must be a single number between 0 and 1. See epi.2by2 for details.
score	character, Wald and score confidence intervals for the effect value for each strata, default is $OR.strata.score$, See $epi.2by2$ for details .
	Additional arguments passed to epi. 2by2.

Details

TODO

Value

the summary measures of risk and a chi-squared test

Author(s)

Shuangbin Xu

14 RunPoolEffect

RunPoolEffect	Calcutate effect sizes via linear	(Mixed-Effects) models
---------------	-----------------------------------	------------------------

Description

The function can be used to calculate various effect sizes. See [metafor]{rma} and [metafor]{escalc} details.

Usage

```
RunPoolEffect(var_of_interest, dataset, measure = "OR",
  methodtype = "REML")
```

Arguments

var_of_interest

vector, the interesting variables.

dataset dataframe, the results of multiRunRR.

measure character, a character string indicating which effect size or outcome measure

should be calculated. See [metafor]{rma} and [metafor]{escalc} details.

methodtype character, the specifying whether a fixed- or a random/mixed-effects model

should be fitted, See [metafor]{rma} details.

Details

TODO

Value

a results dataframe of the pooled data with the random-effect model of fixed-effect model. See the $metafor\{rma\}\ details$.

Author(s)

Shuangbin Xu

tidy_data 15

```
threholds <- mapply(getthresholds, data,</pre>
                     MoreArgs=list(var_of_interest=c("Observe", "Shannon", "J"),
                     type="median"), SIMPLIFY=FALSE)
multiHighLowVector <- mapply(MultiHighLow,</pre>
                          data,
                          threholds,
                          MoreArgs=list(var_of_interest=c("Observe",
"Shannon",
"J")),SIMPLIFY=FALSE)
multiRRresult <- mapply(multiRunRR,</pre>
                     multiHighLowVector,
                     data,
                     MoreArgs=list(prefix="Group", grouptype="CRC"),
                     SIMPLIFY=FALSE)
multistudyRRresult <- mapply(multiVarRRTab,</pre>
                              multiRRresult,
                              MoreArgs=list(var_of_interest=c("Observe",
"Shannon", "J")),
                              SIMPLIFY=FALSE)
multistudyRRresult2 <- dplyr::bind_rows(lapply(study,</pre>
                                                 function(x)
dplyr::mutate(multistudyRRresult[[x]], study=x)))
{\it multistudy} RR result 2\\
pooledREML <- dplyr::bind_rows(mapply(RunPoolEffect,</pre>
c("Observe", "Shannon", "J"),
                                        MoreArgs=list(dataset=multistudyRRresult2,
                                         methodtype="REML"),
                                         SIMPLIFY=FALSE))
head(pooledREML)
```

tidy_data

collate results for summary measure

Description

Collate results for summary measure

Usage

```
tidy_data(multiRunRRTab, var_of_int)
```

Arguments

```
multiRunRRTab list, the results of var_of_int vector, interesting variables
```

Details

TODO

16 tidy_data

Value

a results of dataframe for summary measure.

Author(s)

Shuang bin Xu

Index

```
aes, 12
droptax, 2
epi.2by2, 10, 13
get_mapply_predict_test, 3
get_train_test_data, 3
getthresholds, 4
ggforest, 5
ggplot, 5
high_low_vector, 4, 7
{\tt make\_RF\_model}, \textcolor{red}{8}
{\it MultiHighLow}, {\color{red} 8}
multiRunRR, 9
multiVarRRTab, 10
predict_test, 11
\verb|predict_train|, 11|
ROCplot, 12
run_rr, 13
{\tt RunPoolEffect}, \textcolor{red}{14}
tidy_data, 15
```