MACHINE LEARNING

1. What is the most appropriate no. of clusters for the data points represented by the following dendrogram:

- a) 2
- b) 4
- c) 6
- d) 8

Ans - b)4

- 2. In which of the following cases will K-Means clustering fail to give good results?
 - 1. Data points with outliers
 - 2. Data points with different densities
 - 3. Data points with round shapes
 - 4. Data points with non-convex shapes

Options:

- a) 1 and 2
- b) 2 and 3
- c) 2 and 4
- d) 1, 2 and 4

Ans - d)1, 2 and 4

- 3. The most important part of _____ is selecting the variables on which clustering is based.
 - a) interpreting and profiling clusters
 - b) selecting a clustering procedure
 - c) assessing the validity of clustering
 - d) formulating the clustering problem

Ans - d)formulating the clustering problem

- 4. The most commonly used measure of similarity is the _____or its square.
 - a) Euclidean distance
 - b) city-block distance
 - c) Chebyshev's distance
 - d) Manhattan distance

Ans - a)Euclidean distance

- 5. is a clustering procedure where all objects start out in one giant cluster. Clusters are formed by dividing this cluster into smaller and smaller clusters.
 - a) Non-hierarchical clustering
 - b) Divisive clustering
 - c) Agglomerative clustering
 - d) K-means clustering

Ans - b) Divisive clustering

- 6. Which of the following is required by K-means clustering?
 - a) Defined distance metric
 - b) Number of clusters
 - c) Initial guess as to cluster centroids
 - d) All answers are correct

Ans - d)All answers are correct

- 7. The goal of clustering is to
 - a) Divide the data points into groups
 - b) Classify the data point into different classes
 - c) Predict the output values of input data points
 - d) All of the above

Ans - a)Divide the data points into groups

- 8. Clustering is a
 - a) Supervised learning
 - b) Unsupervised learning
 - c) Reinforcement learning
 - d) None

Ans - b)Unsupervised learning

- 9. Which of the following clustering algorithms suffers from the problem of convergence at local optima?
 - a) K- Means clustering
 - b) Hierarchical clustering
 - c) Diverse clustering
 - d) All of the above

Ans - d)All of the above

- 10. Which version of the clustering algorithm is most sensitive to outliers?
 - a) K-means clustering algorithm
 - b) K-modes clustering algorithm
 - c) K-medians clustering algorithm
 - d) None

Ans - a)K-means clustering algorithm

- 11. Which of the following is a bad characteristic of a dataset for clustering analysis
 - a) Data points with outliers
 - b) Data points with different densities
 - c) Data points with non-convex shapes
 - d) All of the above

Ans - d)All of the above

- 12. For clustering, we do not require
 - a) Labeled data
 - b) Unlabeled data
 - c) Numerical data
 - d) Categorical data

Ans - a)Labeled data

13. How is cluster analysis calculated?

Ans -

14. How is cluster quality measured?

- Ans If all the data objects in the cluster are highly similar then the cluster has high quality. We can measure the quality of Clustering by using the Dissimilarity/Similarity metric in most situations. But there are some other methods to measure the Qualities of Good Clustering if the clusters are alike.
- 1. Dissimilarity/Similarity metric: The similarity between the clusters can be expressed in terms of a distance function, which is represented by d(i, j). Distance functions are different for various data types and data variables. Distance function measure is different for continuous-valued variables, categorical variables, and vector variables. Distance function can be expressed as Euclidean distance, Mahalanobis distance, and Cosine distance for different types of data.
- Cluster completeness: Cluster completeness is the essential parameter for good clustering, if any two data objects are having similar characteristics then they are assigned to the same category of the cluster according to ground truth. Cluster completeness is high if the objects are of the same category.
- 3. Ragbag: In some situations, there can be a few categories in which the objects of those categories cannot be merged with other objects. Then the quality of those cluster categories is measured by the Rag Bag method. According to the rag bag method, we should put the heterogeneous object into a rag bag category.
 - 4. Small cluster preservation: If a small category of clustering is further split into small pieces, then those small pieces of cluster become noise to the entire clustering and thus it becomes difficult to identify that small category from the clustering. The small cluster preservation criterion states that

are splitting a small category into pieces is not advisable and it further decreases the quality of clusters as the pieces of clusters are distinctive.

15. What is cluster analysis and its types?

Ans - Cluster Analysis is the process to find similar groups of objects in order to form clusters. It is an unsupervised machine learning-based algorithm that acts on unlabeled data. A group of data points would comprise together to form a cluster in which all the objects would belong to the same group.

Types of Cluster Analysis -

Hierarchical Cluster Analysis-

In this method, first, a cluster is made and then added to another cluster (the most similar and closest one) to form one single cluster. This process is repeated until all subjects are in one cluster. This particular method is known as Agglomerative method. Agglomerative clustering starts with single objects and starts grouping them into clusters.

The divisive method is another kind of Hierarchical method in which clustering starts with the complete data set and then starts dividing into partitions.

Centroid-based Clustering -

In this type of clustering, clusters are represented by a central entity, which may or may not be a part of the given data set. K-Means method of clustering is used in this method, where k are the cluster centers and objects are assigned to the nearest cluster centers.

Distribution-based Clustering -

It is a type of clustering model closely related to statistics based on the modals of distribution. Objects that belong to the same distribution are put into a single cluster. This type of clustering can capture some complex properties of objects like correlation and dependence between attributes.

Density-based Clustering -

In this type of clustering, clusters are defined by the areas of density that are higher than the remaining of the data set. Objects in sparse areas are usually required to separate clusters.