Exercice 1

Voir correction —

Déterminer la nature des intégrales impropres suivantes :

1)
$$\int_0^{+\infty} \frac{1}{t^t + t^{1/t}} \, \mathrm{d}t$$

4)
$$\int_0^{\pi/2} \sqrt{\tan(u)} \, \mathrm{d}u$$

7)
$$\int_0^{+\infty} \frac{(1+x)^{1/3} - x^{1/3}}{x^{2/5}} \, \mathrm{d}x$$

$$2) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan(x) \, \mathrm{d}x$$

5)
$$\int_0^{+\infty} \frac{\ln(1+t)}{t} \, \mathrm{d}t$$

$$8) \int_0^{+\infty} \frac{\mathrm{d}t}{t - \sin^2(t)\sqrt{t}}$$

$$3) \int_0^9 \frac{1}{3 - \sqrt{9 - t}} \, \mathrm{d}t$$

6)
$$\int_0^{+\infty} \frac{e^{-t}}{1 + \tan^2(t)} dt$$

9)
$$\int_0^1 \frac{\mathrm{d}x}{\ln x}$$

* ^ * Exercice 2

— Voir correction —

Partie A : séries de Riemann convergentes

1) Soit $\alpha>0$ un réel. Montrer que pour tout $k\in\mathbb{N}^*$ et tout $t\in[k;k+1]$ on a :

$$\frac{1}{(k+1)^{\alpha}} \leq \frac{1}{t^{\alpha}} \leq \frac{1}{k^{\alpha}}$$

et en déduire que

$$\frac{1}{(k+1)^{\alpha}} \le \int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \frac{1}{k^{\alpha}}$$

2) En déduire que pour tout entier naturel n non nul :

$$\int_{1}^{n+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \sum_{k=1}^{n} \frac{1}{k^{\alpha}} \le 1 + \int_{1}^{n} \frac{\mathrm{d}t}{t^{\alpha}}$$

3) Montrer que $\sum_{k\geq 1} \frac{1}{k^{\alpha}}$ converge si et seulement si $\alpha>1.$

Partie B: deux équivalents

4) En reprenant l'encadrement de la question 2), montrer que

$$\sum_{k=1}^{n} \frac{1}{k} \quad \mathop{\sim}_{n \to \infty} \quad \ln(n)$$

5) Soit $\lambda < 1$. Montrer que de même que

$$\sum_{k=1}^{n} \frac{1}{k^{\lambda}} \quad \underset{n \to \infty}{\sim} \quad \frac{n^{1-\lambda}}{1-\lambda}$$

6) Trouver tous les nombres réels $\alpha, \beta \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^n k^{\alpha} = \left(\sum_{k=1}^n k\right)^{\beta}$$

Partie C: cas général

7) Montrer que si f est une fonction positive, continue et décroissante sur l'intervalle $[0; +\infty[$, alors pour tout entier naturel n

$$0 \le \int_0^{n+1} f(t) \, \mathrm{d}t \le \sum_{k=0}^n f(k) \le f(0) + \int_0^n f(t) \, \mathrm{d}t$$

- 8) En déduire que la série $\sum f(n)$ et l'intégrale $\int_0^{+\infty} f(t) dt$ sont de même nature (toutes deux convergentes ou bien toutes deux divergentes).
- 9) Donner un contre exemple d'une fonction positive non monotone f telle que $\sum f(n)$ converge mais $\int_0^{+\infty} f(t) dt$ diverge, et un contre exemple d'une fonction positive non monotone g telle que $\sum g(n)$ diverge mais $\int_0^{+\infty} g(t) dt$ converge.
- 10) En utilisant une comparaison série-intégrale, déterminer $\lim_{a\to +\infty}\sum_{n=1}^{+\infty}\frac{a}{n^2+a^2}$

Partie D: transformation d'Abel

- 11) Montrer à l'aide d'une intégration par partie que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.
- 12) Soit x un réel qui n'est pas un multiple de 2π . Montrer que pour tout entier $n \in \mathbb{N}$,

$$\sum_{k=-n}^{n} e^{ikx} = \frac{\sin\left(\left(n + \frac{1}{2}\right)\right)x}{\sin\left(\frac{x}{2}\right)}$$

- 13) En déduire qu'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}^*$, $\left| \sum_{k=1}^n \sin k \right| \leq M$.
- 14) On pose $S_n = \sum_{k=1}^n \sin k$, et $S_0 = 0$. En utilisant le fait que $\forall n \in \mathbb{N}^*$, $\sin n = S_n S_{n-1}$ Montrer que pour tout entier naturel n non nul:

$$\sum_{k=1}^{n} \frac{\sin k}{k} = \frac{S_n}{n} + \sum_{k=1}^{n} S_k \left(\frac{1}{k} - \frac{1}{k+1} \right)$$

15) En déduire la nature de la série de terme général $\frac{\sin n}{n}$

(D'après ESCP voie ECS 2013) Pour toutes fonctions f et g continues sur $\mathbb R$ et telles que pour tout réel x, $\int_{-\infty}^{+\infty} |f(t)g(x-t)| \, \mathrm{d}t \text{ converge, on note } \forall x \in \mathbb R, \ (f\star g)(x) = \int_{-\infty}^{+\infty} f(t)g(x-t) \, \mathrm{d}t. \text{ La fonction } f\star g \text{ ainsi définie s'appelle le produit de convolution de } f \text{ et } g.$

- 1) On suppose dans cette question que $\int_{-\infty}^{+\infty} |f(t)| dt$ converge et que g est bornée sur \mathbb{R} . Montrer que $f \star g$ est définie et bornée sur \mathbb{R} .
- 2) On suppose dans cette question que $\int_{-\infty}^{+\infty} |f(t)|^2 dt$ et $\int_{-\infty}^{+\infty} |g(t)|^2 dt$ convergent. Montrer que $f \star g$ est définie et bornée sur \mathbb{R} .
- 3) Pour tout $n \in \mathbb{N}^*$, on pose $\lambda_n = \int_{-1}^1 (1-t^2)^n dt$ et

$$\forall t \in \mathbb{R}, \quad h_n(t) = \begin{cases} & \frac{(1-t^2)^n}{\lambda_n} & \text{si } t \in [-1;1] \\ & 0 & \text{sinon} \end{cases}$$

- a) Montrer à l'aide du changement de variable $t = \cos \theta$ que $\lambda_n = 2 \int_0^{\pi/2} (\sin \theta)^{2n+1} d\theta$. On admet que $\lambda_n \sim \sqrt{\frac{\pi}{n}}$ lorsque n tend vers $+\infty$
- b) Montrer que $\int_{-\infty}^{+\infty} h_n(t) dt = 1$.
- c) Montrer que pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \int_{-\infty}^{-\varepsilon} h_n(t) dt = \lim_{n \to +\infty} \int_{\varepsilon}^{+\infty} h_n(t) dt = 0$$

d) Déterminer pour tout réel x, $\lim_{n\to+\infty} (f\star h_n)(x)$ pour f continue et bornée sur \mathbb{R} .

Le coin de Khûbes

Exercice 4 — Voir correction —

(D'après ESCP 2024)

Soient 0 < a < b des réels et $f: \mathbb{R}^* \to \mathbb{R}$ définie pour tout $x \neq 0$ par :

$$f(x) = \int_{ax}^{bx} \frac{\sin t}{t^2} \, \mathrm{d}t$$

- 1) Justifier que f est dérivable sur \mathbb{R}^* et calcule sa dérivée f'
- 2) Montrer que pour tout t > 0, on a :

$$\frac{1}{t} - \frac{t}{6} \le \frac{\sin t}{t^2} \le \frac{1}{t}$$

- 3) En déduire que f admet un prolongement par continuité en 0. Dans la question suivante, on note encore f la fonction ainsi prolongée.
- 4) f est-elle de classe C^1 ?

Correction des exercice

Correction de l'exercice 1 :

1) La fonction $f: t \mapsto t^t + t^{1/t} = \exp(t \ln t) + \exp(\ln(t)/t)$ est continue sur $]0; +\infty[$ par opérations usuelles de fonctions usuelles. Il y a deux impropriétés, une en 0 et une en $+\infty$

 $\underline{\operatorname{En}} + \underline{\infty}$: pour $t \geq 2$ on a $t^t \geq t^2$ et comme $t^{1/t} \geq 0$ on a $t^t + t^{1/t} \geq t^2$ d'où $\frac{1}{t^t + t^{1/t}} \leq \frac{1}{t^2}$. Puisque $\int_2^{+\infty} \frac{\mathrm{d}t}{t^2}$ converge selon le critère de Riemann, on en déduit par le théorème de comparaison pour les intégrales de fonctions positives que $\int_2^{+\infty} \frac{1}{t^t + t^{1/t}} \, \mathrm{d}t$ converge.

 $\underline{\text{En }0:} t \ln t \xrightarrow[t \to 0]{} 0 \text{ et } \frac{\ln t}{t} \xrightarrow[t \to 0]{} -\infty \text{ donc } \lim_{t \to 0} f(t) = \exp(0) = 1 \text{ par composition de limites. } f \text{ se prolonge par continuit\'e}$ en 0 donc l'intégrale $\int_{0}^{2} f(t) \, \mathrm{d}t$ converge.

Finalement, l'intégrale $\int_0^{+\infty} \frac{1}{t^t + t^{1/t}} dt$ converge.

2) $x \mapsto \tan x$ est continue sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, il y a donc deux impropriétés : en $-\frac{\pi}{2}$ et en $\frac{\pi}{2}$. En $-\frac{\pi}{2}$: Sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, une primitive de $\tan x$ est $x \mapsto -\ln(\cos x)$ donc pour $A \in \left] -\frac{\pi}{2}; 0\right[$ on a

$$\int_{A}^{0} \tan x \, dx = \left[-\ln(\cos x) \right]_{A}^{0} = -\ln(1) + \ln(\cos(A)) \xrightarrow[A \to -\frac{\pi}{2}]{} -\infty$$

donc l'intégrale $\int_{-\frac{\pi}{2}}^{0} \tan x \, \mathrm{d}x$ diverge.

En $\frac{\pi}{2}$: De même, pour tout $A \in \left]0; \frac{\pi}{2}\right[$,

$$\int_{0}^{A} \tan x \, dx = \left[-\ln(\cos x) \right]_{0}^{A} = -\ln(1) + \ln(\cos(A)) \xrightarrow[A \to \frac{\pi}{2}]{} + \infty$$

donc $\int_0^{\frac{\pi}{2}} \tan x \, dx$ diverge aussi.

3) La fonction $f: t \mapsto \frac{1}{3-\sqrt{9-t}}$ est continue sur]0;9] par opérations usuelles de fonctions usuelles. Il y a une seule impropriété en 0.

$$3 - \sqrt{9 - t} = 3 - 3\sqrt{1 - \frac{t}{9}}$$

$$= 3 - 3(1 - \frac{t}{18} + o(t))$$

$$= \frac{t}{t \to 0} \frac{t}{6} + o(t)$$

$$\sim \frac{t}{t \to 0} \frac{t}{6}$$

donc $f(t) \sim \frac{6}{t}$, or $\int_0^1 \frac{6}{t} dt$ est une intégrale de Riemann divergente, donc par comparaison $\int_0^1 f(t) dt$ diverge donc l'intégrale diverge.

4) La fonction $f: u \mapsto \sqrt{\tan u}$ est continue sur $\left[0; \frac{\pi}{2}\right[$ comme composée de fonctions continues. Il y a une seule impropriété en $\frac{\pi}{2}$.

Pour $A \in \left]0; \frac{\pi}{2}\right[$ et avec le changement de variable $x = \frac{\pi}{2} - u$, dx = -du, on a :

$$\int_0^A \sqrt{\tan u} \, du = \int_0^A \sqrt{\frac{\sin u}{\cos u}} \, du = -\int_{\frac{\pi}{2}}^{\frac{\pi}{2} - A} \sqrt{\frac{\cos x}{\sin x}} \, dx = \int_{\frac{\pi}{2} - A}^{\frac{\pi}{2}} \sqrt{\frac{\cos x}{\sin x}} \, dx$$

Or lorsque x tend vers 0, $\frac{\cos x}{\sin x} \sim \frac{1}{x}$ donc $\sqrt{\frac{\cos x}{\sin x}} \sim \frac{1}{\sqrt{x}}$ et l'intégrale $\int_0^1 \frac{1}{\sqrt{x}}$ converge donc l'intégrale précédente admet une limite finie lorsque A tend vers $\frac{\pi}{2}$. On en conclut que l'intégrale converge.

- 5) La fonction $f: t \mapsto \frac{\ln(1+t)}{t}$ est continue sur $]0; +\infty[$ et prolongeable par continuité en 0 car $\lim_{t\to 0} \frac{\ln(1+t)}{t} = 1$. Il y a donc une seule impropriété en $+\infty$. Pour $t \ge 1$ on a $\frac{\ln(1+t)}{t} \ge \frac{\ln 2}{t}$ et $\int_1^{+\infty} \frac{1}{t} dt$ est une intégrale de Riemann divergente donc $\int_1^{+\infty} \frac{\ln 2}{t} dt$ diverge, et donc par comparaison $\int_1^{+\infty} \frac{\ln(1+t)}{t} dt$ diverge, donc l'intégrale diverge.
- 6) La fonction $t \mapsto \frac{e^{-t}}{1 + \tan^2(t)}$ est continue sur $[0; +\infty[$, il y a donc une seule impropriété en $+\infty$.

Pour tout $t \ge 0$, $1 + \tan^2(t) \ge 1$ donc $\frac{\mathrm{e}^{-t}}{1 + \tan^2 t} \le \mathrm{e}^{-t}$ et $\int_0^{+\infty} \mathrm{e}^{-t} \, \mathrm{d}t$ converge (en calculant la primitive, ou en comparant avec une intégrale convergente grâce à $t^2 \, \mathrm{e}^{-t} \xrightarrow[t \to 0]{} 0$ par exemple).

Ainsi l'intégrale converge d'après le théorème de comparaison pour les intégrales de fonctions positives.

7) La fonction $x \mapsto \frac{(1+x)^{1/3} - x^{1/3}}{x^{2/5}}$ est continue sur $]0; +\infty[$, il y a donc deux impropriétés : en 0 et en $+\infty$.

En 0 on a simplement $(1+x)^{1/3} - x^{1/3} \xrightarrow[x \to 0]{} 1$ donc $\frac{(1+x)^{1/3} - x^{1/3}}{x^{2/5}} \sim \frac{1}{x^{2/5}}$ et $\int_0^1 \frac{1}{x^{2/5}} dx$ est une intégrale de Riemann convergente car $\frac{2}{5} < 1$. Ainsi, $\int_0^1 \frac{(1+x)^{1/3} - x^{1/3}}{x^{2/5}} dx$ converge.

$$\begin{split} & \text{En} + \infty, \text{on a } (1+x)^{1/3} - x^{1/3} = x^{1/3} \left(1 + \frac{1}{x}\right)^{1/3} - x^{1/3} = x^{1/3} \left(1 + \frac{1}{3x} + o\left(\frac{1}{x}\right)\right) - x^{1/3} = \frac{1}{3x^{2/3}} + o\left(\frac{1}{x^{2/3}}\right) \sim \frac{1}{3x^{2/3}}. \\ & \text{Ainsi, } \frac{(1+x)^{1/3} - x^{1/3}}{x^{2/5}} \sim \frac{1}{3x^{2/3} \times x^{2/5}} \sim \frac{1}{3x^{16/15}}. \text{ Or } \int_{1}^{+\infty} \frac{1}{x^{16/15}} \, \mathrm{d}x \text{ est une intégrale de Riemann convergente car} \\ & \frac{16}{15} > 1 \text{ donc l'intégrale } \int_{1}^{+\infty} \frac{(1+x)^{1/3} - x^{1/3}}{x^{2/5}} \, \mathrm{d}x \text{ converge par comparaison.} \end{split}$$

8) La fonction $t \mapsto t - \sin^2(t) \sqrt{t}$ est continue sur $[0; +\infty[$. Pour t > 1 on a $0 \le \sin^2(t) \le 1$ et $\sqrt{t} < t$ donc $t - \sin^2(t) \sqrt{t} > 0$ donc ne s'annule pas sur $]1; +\infty[$.

Sur [0;1], montrons que l'équation $t - \sin^2(t)\sqrt{t} = 0$ admet 0 comme unique solution : $t - \sin^2(t)\sqrt{t} = 0 \iff \sqrt{t}(\sqrt{t} - \sin^2 t) = 0 \iff t = 0$ ou $\sqrt{t} - \sin^2(t) = 0 \iff t = 0$ ou $t = \sin^4(t)$. car $t \ge 0$

Or, $\forall t \in]0;1]$, $\sin t < t$ donc $\sin^4 t < t^4 \le t$ car $t \le 1$. donc l'équation $t - \sin^2(t)\sqrt{t}$ admet 0 pour seule solution sur $[0;+\infty[$. Ainsi l'intégrale n'a que deux impropriétés : en 0 et en $+\infty$

En 0 on a $\sin(t) = t + o(t)$ donc $t - \sin^2(t)\sqrt{t} = t - t^{3/2} + o(t^{3/2}) \sim t$. Or $\int_0^1 \frac{1}{t} dt$ diverge donc $\int_0^1 \frac{1}{t - \sin^2(t)\sqrt{t}} dt$ diverge.

En $+\infty$, $t - \sin^2 \sqrt{t} \sim t$ car $\frac{\sin^2(t)\sqrt{t}}{t} = \frac{\sin^2 t}{\sqrt{t}}$ avec $\sin^2 t$ est borné et $\lim_{t \to +\infty} \sqrt{t} = +\infty$, donc $\frac{\sin^2 t}{\sqrt{t}} \xrightarrow[t \to +\infty]{} 0$.

L'intégrale $\int_1^{+\infty} \frac{1}{t} dt$ diverge également donc $\int_1^{+\infty} \frac{1}{t - \sin^2(t)\sqrt{t}} dt$ diverge aussi.

9) La fonction $x \mapsto \frac{1}{\ln x}$ est continue sur]0;1[et se prolonge par continuité en 0 car $\lim_{t\to 0} \frac{1}{\ln t} = 0$. Il y a donc une seule impropriété en 1. En posant le changement de variable u = 1 - x on a pour tout $A \in]0;1[$

$$\int_0^A \frac{\mathrm{d}x}{\ln x} = \int_1^{1-A} \frac{-1}{\ln(1-u)} \, \mathrm{d}u = \int_{1-A}^1 \frac{\mathrm{d}u}{\ln(1-u)}$$

Or $\ln(1-u) \underset{u\to 0}{\sim} -u$ et $\int_0^1 \frac{1}{u} du$ diverge donc par comparaison d'intégrale de fonctions positives $\int_0^1 \frac{-1}{\ln(1-u)} du$ diverge donc $\int_0^1 \frac{1}{\ln(1-u)} du$ diverge donc l'intégrale diverge.

Correction de l'exercice 2 :

1) Soit $k \in \mathbb{N}^*$. La fonction $t \mapsto \frac{1}{t^{\alpha}}$ est décroissante sur [k, k+1]. Pour tout $t \in [k, k+1]$ on a $k \le t \le k+1$ donc:

$$\frac{1}{(k+1)^{\alpha}} \le \frac{1}{t^{\alpha}} \le \frac{1}{k^{\alpha}}$$

puis en intégrant cette inégalité sur [k, k+1] on obtient :

$$\frac{1}{(k+1)^{\alpha}} \le \int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \frac{1}{k^{\alpha}}$$

car l'intégrale d'une constante sur l'intervalle [k, k+1] est égale à cette constante.

2) Par somme d'inégalités on a d'une part :

$$\int_{1}^{n+1} \frac{\mathrm{d}t}{t^{\alpha}} = \sum_{k=1}^{n} \int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \sum_{k=1}^{n} \frac{1}{k^{\alpha}}$$

et d'autre part :

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} = 1 + \sum_{k=1}^{n-1} \frac{1}{(k+1)^{\alpha}} \le 1 + \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\alpha}} \le 1 + \int_{1}^{n} \frac{\mathrm{d}t}{t^{\alpha}}$$

d'où l'encadrement voulu.

3) Supposons que $\alpha > 1$. Alors $\int_1^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge donc la suite $\left(\int_1^n \frac{\mathrm{d}t}{t^{\alpha}}\right)_{n \ge 1}$ converge donc est majorée. Ainsi $\left(\sum_{k=1}^n \frac{1}{k^{\alpha}}\right)_{n \ge 1}$ est croissante et majorée donc converge.

Supposons que $\sum_{k\geq 1} \frac{1}{k^{\alpha}}$ converge. Alors la suite $\left(\sum_{k=1}^{n} \frac{1}{k^{\alpha}}\right)_{n\geq 1}$ est majorée, donc $\int_{1}^{n+1} \frac{\mathrm{d}t}{t^{\alpha}}$ est majorée. Puisque la fonction $A\mapsto \int_{1}^{A} \frac{\mathrm{d}t}{t^{\alpha}}$ est croissante cela signifie que cette fonction est majorée donc elle admet une limite lorsque $A\to +\infty$. Ainsi $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge donc $\alpha>1$.

4) Pour $\alpha = 1$ on a:

$$\int_{1}^{n+1} \frac{\mathrm{d}t}{t} \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \int_{1}^{n} \frac{\mathrm{d}t}{t}$$

donc

$$\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln(n)$$

 $\text{Comme } \frac{\ln(n+1)}{\ln(n)} = \frac{\ln(n) + \ln(1+\frac{1}{n})}{\ln(n)} \xrightarrow[n \to +\infty]{} 1 \text{ et } \frac{1 + \ln(n)}{\ln(n)} \xrightarrow[n \to +\infty]{} 1, \text{ en divisant par } \ln(n) \text{ dans l'encadrement } \lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=1}^{n} \frac{1}{k} = 1, \text{ donc } \sum_{k=1}^{n} \sum_{n \to +\infty}^{\infty} \ln(n).$

5) Si $\lambda < 1$, alors pour tout $n \in \mathbb{N}^*$

$$\int_{1}^{n+1} \frac{\mathrm{d}t}{t^{\lambda}} \le \sum_{k=1}^{n} \frac{1}{k^{\lambda}} \le 1 + \int_{1}^{n} \frac{\mathrm{d}t}{t^{\lambda}}$$

donc

$$\frac{1 - (n+1)^{-\lambda + 1}}{-\lambda + 1} \le \sum_{k=1}^{n} \frac{1}{k^{\lambda}} \le 1 + \frac{1 - n^{-\lambda + 1}}{-\lambda + 1}$$

Or $\frac{1-(n+1)^{1-\lambda}}{1-\lambda} \underset{n\to+\infty}{\sim} \frac{1-n^{1-\lambda}}{1-\lambda} \underset{n\to+\infty}{\sim} \frac{n^{1-\lambda}}{1-\lambda}$ donc en divisant par $\frac{n^{1-\lambda}}{1-\lambda}$ dans l'inégalité précédente on obtient par encadrement :

$$\lim_{n \to +\infty} \frac{1 - \lambda}{n^{1 - \lambda}} \sum_{k=1}^{n} \frac{1}{k^{\lambda}} = 1$$

d'où
$$\sum_{k=1}^{n} \frac{1}{k^{\lambda}} \underset{n \to +\infty}{\sim} \frac{n^{1-\lambda}}{1-\lambda}$$

6) On a pour tout $n \ge 1$, $\left(\sum_{k=1}^n k\right)^{\beta} = \frac{n^{\beta}(n+1)^{\beta}}{2^{\beta}}$. Supposons que $\sum_{k=1}^n k^{\alpha} = \left(\sum_{k=1}^n k\right)^{\beta}$. On distingue plusieurs cas:

— Si $\alpha < -1$, alors $\sum_{k \ge 1} k^{\alpha}$ converge, donc si on note S > 0 sa somme on a :

$$\sum_{k=1}^{n} k^{\alpha} \underset{n \to +\infty}{\sim} S$$

 $\triangleright \text{ Si } \beta > 0, \lim_{n \to +\infty} \frac{n^{\beta} (n+1)^{\beta}}{2^{\beta}} = +\infty \text{ donc contradit } \lim_{n \to +\infty} \sum_{k=1}^{n} k^{\alpha} = S.$

 $\,\triangleright\,$ Si $\beta=0,$ le membre de droite est constant mais pas le membre de gauche.

 $\triangleright \text{ Si } \beta < 0, \text{ alors } \lim_{n \to +\infty} \frac{n^{\beta} (n+1)^{\beta}}{2} = 0 \text{ ce qui contredit aussi le fait que } \lim_{n \to +\infty} \sum_{k=1}^{n} k^{\alpha} = S > 0.$

— Si $\alpha = -1$, alors $\sum_{k=1}^{n} k^{-1} \underset{n \to +\infty}{\sim} \ln(n)$ d'après la question 4)

$$\triangleright \text{ Si } \beta > 0, \lim_{n \to +\infty} \frac{n^{\beta}(n+1)^{\beta}}{2} \sim \frac{n^{2\beta}}{2} \text{ et } \lim_{n \to +\infty} \frac{n^{2\beta}}{2\ln(n)} = +\infty \text{ donc } \frac{n^{2\beta}}{2^{\beta}} \neg \underset{n \to +\infty}{\sim} \ln(n).$$

 \triangleright Si $\beta = 0$, le membre de droite est constant mais pas le membre de gauche.

$$\triangleright \text{ Si } \beta < 0, \text{ alors } \lim_{n \to +\infty} \frac{n^{\beta} (n+1)^{\beta}}{2} = 0 \text{ ce qui contredit le fait que } \lim_{n \to +\infty} \sum_{k=1}^{n} k^{-1} = +\infty$$

— Si
$$\alpha > -1$$
, alors $\sum_{k=1}^n k^{\alpha} = \sum_{k=1}^n \frac{1}{k^{-\alpha}} \underset{n \to +\infty}{\sim} \frac{n^{1+\alpha}}{1+\alpha}$ d'après la question 5)

 $> \text{Si } \beta > 0, \text{ on a } \frac{n^{\beta}(n+1)^{\beta}}{2} \sim \frac{n^{2\beta}}{2}. \text{ Si l'égalité est vérifiée, il faut nécessairement que } \frac{n^{1+\alpha}}{1+\alpha} \sim \frac{n^{2\beta}}{2^{\beta}}, \text{ donc que } \lim_{n \to +\infty} n^{1+\alpha-2\beta} = \frac{1+\alpha}{2^{\beta}}.$

Il faut donc nécessairement $1 + \alpha - 2\beta = 0$ et donc $1 + \alpha = 2^{\beta}$.

Si $\alpha = 2\beta - 1$, l'équation $1 + \alpha = 2^{\beta}$ équivaut à $2\beta = 2^{\beta}$. La fonction $f: x \mapsto 2^x - 2x = e^{x \ln(2)} - 2x$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = \ln(2)2^x - 2 = 2(\ln(2)2^{x-1} - 1)$$

donc
$$f'(x) \ge 0 \Longleftrightarrow 2^{x-1} \ge \frac{1}{\ln(2)} \Longleftrightarrow e^{(x-1)\ln(2)} \ge \frac{1}{\ln(2)} \Longleftrightarrow x \ge 1 - \frac{\ln(\ln(2))}{\ln(2)}$$

Or $\sqrt{e} < 2 < e \text{ donc } \frac{1}{2} < \ln(2) < 1 \text{ donc } -\ln(2) < \ln(\ln(2)) < 0 \text{ d'où }$:

$$1 < 1 - \frac{\ln(\ln(2))}{\ln(2)} < 2$$

Notons $x_0 = 1 - \frac{\ln(\ln(2))}{\ln(2)}$. On en déduit le tableau de variation suivant pour f:

x	0		x_0		$+\infty$
f'(x)		_	Ö	+	
f	1 _		$f(x_0)$	/	$+\infty$

Calculons $f(x_0)$:

$$\begin{split} f(x_0) &= 2^{1 - \frac{\ln(\ln(2))}{\ln(2)}} - 2 + \frac{2\ln(\ln(2))}{\ln(2)} \\ &= \frac{2}{2^{\ln(\ln(2))/\ln(2)}} - 2 + \frac{2\ln(\ln(2))}{\ln(2)} \\ &= \frac{2}{\ln(2)} - 2 + \frac{2\ln(\ln(2))}{\ln(2)} \\ &= 2\left(\frac{1 + \ln(\ln(2))}{\ln(2)} - 1\right) \end{split}$$

Or pour tout $x \in]0, +\infty[$, $1 + \ln x \le x$ avec égalité si et seulement si x = 1 (facile à montrer par une étude de fonction ou par convexité), donc $1 + \ln(\ln(2)) < \ln(2)$ d'où $f(x_0) < 0$ d'où l'on déduit grâce au théorème des valeurs intermédiaires que f ne s'annule que deux fois. Or f a deux racines évidentes : 1 et 2 donc ce sont les seules solutions de l'équation $2^x = 2x$. Cela donne deux couples de solutions : $(\alpha, \beta) = (1, 1)$ et $(\alpha, \beta) = (3, 2)$. L'égalité $\sum_{k=1}^n k^1 = (\sum_{k=1}^n k)^1$ est triviale, et on a de plus :

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4} = \left(\frac{n(n+1)}{2}\right)^2 = \left(\sum_{k=1}^{n} k\right)^2$$

 $\,\triangleright\,$ Si $\beta=0,$ alors le membre de droite est constant mais pas le membre de gauche

$$\triangleright \text{ Si } \beta < 0, \text{ alors } \lim_{n \to +\infty} \frac{n^{\beta} (n+1)^{\beta}}{2^{\beta}} = 0 \text{ ce qui contredit } \lim_{n \to +\infty} \sum_{k=1}^{n} k^{\alpha} = +\infty.$$

Finalement, les seuls réels pour lesquels l'égalité est vraie pour tout entier n sont $\alpha=1,\beta=1$ et $\alpha=3,\beta=2$.

7) On peut s'inspirer de la partie A : pour tout entier $k \ge 0$ on a $\forall t \in [k, k+1], f(k) \ge f(t) \ge f(k+1)$ donc en intégrant sur [k, k+1] on obtient :

$$f(k+1) \le \int_k^{k+1} f(t) \, \mathrm{d}t \le f(k)$$

En faisant la somme pour k allant de 0 à n:

$$\int_0^{n+1} f(t) \, dt \le \sum_{k=0}^n f(k)$$

et

$$\sum_{k=0}^{n} f(k) = f(0) + \sum_{k=0}^{n-1} f(k+1) \le f(0) + \int_{0}^{n} f(t) dt$$

d'où l'encadrement voulu.

8) f est positive donc la série $\sum f(n)$ converge si et seulement si la suite des sommes partielle est majorée. Si $\int_0^{+\infty} f(t) dt$ converge, la suite $\left(\int_0^n f(t) dt\right)_{n \geq 0}$ converge donc est majorée, donc d'après l'encadrement précédent, la suite des sommes partielles $\left(\sum_{k=0}^n f(k)\right)_{n \in \mathbb{N}}$ est majorée, donc converge.

Réciproquement, si $(\sum_{k=0}^n f(k))_{n\in\mathbb{N}}$ converge alors elle est majorée donc $\left(\int_0^{n+1} f(t) \, \mathrm{d}t\right)_{n\in\mathbb{N}}$ est majorée par un réel M. Pour tout réel A on a donc $\int_0^A f(t) \, \mathrm{d}t \leq \int_0^{\lfloor A\rfloor+1} f(t) \, \mathrm{d}t \leq M$ par positivité de f, donc $\int_0^A f(t) \, \mathrm{d}t$ admet une limite lorsque A tend vers $+\infty$. L'intégrale $\int_0^{+\infty} f(t) \, \mathrm{d}t$ converge.

9) Si on pose $f(x) = |\sin(\pi x)|$, alors f(n) = 0 pour tout entier naturel n donc la somme $\sum f(n)$ converge. Pour tout entier k, $\int_{k}^{k+1} |\sin(\pi x)| dx = \frac{2}{\pi}$ (distinguer les cas k pair et k impair) donc $\int_{0}^{n} f(x) dx = \frac{2(n+1)}{\pi} \xrightarrow[n \to +\infty]{} +\infty$ donc $\int_{0}^{+\infty} f(x) dx$ diverge.

Si pour tout $k \geq 2$, on définit f sur l'intervalle $[k-\frac{1}{2};k+\frac{1}{2}]$ par

$$f(x) = \begin{cases} 0 & \text{si } x \in [k - \frac{1}{2}, k - \frac{1}{k^2}] \\ k^2 \left(x - k + \frac{1}{k^2}\right) & \text{si } x \in [k - \frac{1}{k^2}, k] \\ -k^2 \left(x - k - \frac{1}{k^2}\right) & \text{si } x \in [k, k + \frac{1}{k^2}] \\ 0 & \text{si } x \in [k + \frac{1}{k^2}] \end{cases}$$

autrement dit:

$$\forall x \in [k - \frac{1}{2}, k + \frac{1}{2}], f(x) = \max(0, 1 - |k^2(x - k)|)$$

L'aire sous chaque triangle est $\frac{1}{4}$ pui $\frac{1}{9}$ puis $\frac{1}{16}$, etc. et $\sum_{k=2}^{+\infty} \frac{1}{k^2}$ converge. En revanche, $\sum_{n\geq 2} f(n) = \sum_{n\geq 1} 1$ diverge.

10) D'abord la somme converge bien quelle que soit la valeur de a > 0 puisque $\frac{a}{n^2 + a^2} \sim \frac{a}{n^2}$ et $\sum_{n \ge 1} \frac{1}{n^2}$ converge.

Posons pour tout a > 0 et pour tout $x \in [1; +\infty[: f_a(x) = \frac{a}{x^2 + a^2}]$.

Pour tout a>0, f_a est positive et décroissante sur $[1;+\infty[$, et une primitive de f_a est $F_a:x\mapsto\arctan\left(\frac{x}{a}\right)$ donc l'encadrement de la question 7) donne :

$$\arctan\left(\frac{n+1}{a}\right) \le \sum_{k=0}^{n} f(k) \le \frac{1}{a} + \arctan\left(\frac{n}{a}\right)$$

donc en passant à la limite lorsque $n \to +\infty$ on obtient :

$$\frac{\pi}{2} \le \sum_{k=1}^{+\infty} \frac{a}{n^2 + a^2} \le \frac{1}{a} + \frac{\pi}{2}$$

et lorsque a tend vers $+\infty$ on a $\lim_{a\to +\infty}\frac{\pi}{2}=\lim_{a\to +\infty}\left(\frac{1}{a}+\frac{\pi}{2}\right)=\frac{\pi}{2}$ donc par encadrement :

$$\lim_{a \to +\infty} \sum_{k=1}^{+\infty} \frac{a}{n^2 + a^2} = \frac{\pi}{2}$$

11) La fonction $t \mapsto \frac{\sin t}{t}$ est continue, et $\lim_{t\to 0} \frac{\sin t}{t} = 1$ donc elle est prolongeable par continuité en 0. L'intégrale est donc faussement impropre en 0.

Soit A > 0 un réel. On a :

$$\int_{1}^{A} \frac{\sin t}{t} = \left[\frac{-\cos t}{t} \right]_{1}^{A} - \int_{1}^{A} \frac{\cos t}{t^{2}} dt$$
$$= \cos(1) - \frac{\cos(A)}{A} - \int_{1}^{A} \frac{\cos t}{t^{2}} dt$$

Or cos est bornée donc $\lim_{A\to +\infty} \frac{\cos A}{A} = 0$ et pour tout $t\geq 1, \left|\frac{\cos t}{t^2}\right| \leq \frac{1}{t^2}$. L'intégrale $\int_1^{+\infty} \frac{1}{t^2} \, \mathrm{d}t$ est une intégrale de Riemann convergente donc par comparaison $\int_1^{+\infty} \frac{\cos t}{t^2} \, \mathrm{d}t$ est absolument convergente donc convergente. On en déduit que $\int_1^A \frac{\cos t}{t^2} \, \mathrm{d}t$ admet une limite lorsque A tend vers $+\infty$ donc finalement $\int_1^A \frac{\sin t}{t} \, \mathrm{d}t$ admet une limite lorsque $A\to +\infty$ donc $\int_1^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t$ converge.

12) $x \in \mathbb{R} \setminus \{2k\pi, k \in \mathbb{Z}\}$ et $n \in \mathbb{N}$. On a :

$$\sum_{k=-n}^{n} e^{ikx} = \sum_{k=0}^{2n} e^{i(k-n)x}$$

$$= e^{-inx} \sum_{k=0}^{2n} (e^{ix})^k$$

$$= e^{-inx} \frac{e^{i(2n+1)x} - 1}{e^{ix} - 1}$$

$$= \frac{e^{i(n+1)x} - e^{-inx}}{e^{ix} - 1}$$

$$= \frac{e^{ix/2} (e^{i(n+\frac{1}{2})x} - e^{-i(n+\frac{1}{2})x})}{e^{ix/2} (e^{ix/2} - e^{-ix/2})}$$

$$= \frac{2i \sin \left(\left(n + \frac{1}{2} \right) x \right)}{2i \sin \left(\frac{x}{2} \right)}$$

$$= \frac{\sin \left(\left(n + \frac{1}{2} \right) x \right)}{\sin \left(\frac{x}{2} \right)}$$

13) Soit $n \in \mathbb{N}^*$. On a:

$$\sum_{k=1}^{n} \sin k = \sum_{k=1}^{n} \frac{e^{ik} - e^{-ik}}{2i}$$

$$= \frac{1}{2i} \left(\sum_{k=1}^{n} e^{ik} - \sum_{k=1}^{n} e^{-ik} \right)$$

$$= \frac{1}{2i} \left(\sum_{k=-n}^{n} e^{ik} - 1 \right)$$

$$= \frac{1}{2i} \left(\frac{\sin \left(\left(n + \frac{1}{2} \right) \right)}{\sin \left(\frac{1}{2} \right)} - 1 \right)$$

donc par inégalité triangulaire :

$$\left| \sum_{k=1}^{n} \sin k \right| \le \frac{1}{2} \left(\left| \frac{\sin \left(\left(n + \frac{1}{2} \right) \right)}{\left| \sin \left(\frac{1}{2} \right) \right|} \right| + 1 \right)$$

$$\le \frac{1}{2} \left(\frac{1}{\left| \sin \left(\frac{1}{2} \right) \right|} + 1 \right)$$

donc la suite $(\sum_{k=1}^{n} \sin k)_{n \in \mathbb{N}^*}$ est majorée.

14) Soit $n \ge 1$ un entier. On a :

$$\sum_{k=1}^{n} \frac{\sin k}{k} = \sum_{k=1}^{n} \frac{1}{k} (S_k - S_{k-1})$$

$$= \sum_{k=1}^{n} \frac{S_k}{k} - \sum_{k=1}^{n} \frac{S_{k-1}}{k}$$

$$= \sum_{k=1}^{n} \frac{S_k}{k} - \sum_{k=0}^{n-1} \frac{S_k}{k+1}$$

$$= \frac{S_n}{n} - S_0 + \sum_{k=1}^{n-1} S_k \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \frac{S_n}{n} + \sum_{k=1}^{n-1} S_k \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

15) La suite $(|S_n|)_{n\in\mathbb{N}}$ est majorée donc $(S_n)_{n\in\mathbb{N}}$ est bornée donc $\lim_{n\to+\infty}\frac{S_n}{n}=0$ et

$$\forall k \in \mathbb{N}^*, \quad \left| S_k \left(\frac{1}{k} - \frac{1}{k+1} \right) \right| = \frac{|S_k|}{k(k+1)}$$
$$\leq \frac{M}{k(k+1)}$$

Or $\frac{M}{k(k+1)} \underset{k \to +\infty}{\sim} \frac{M}{k^2}$ et la série $\sum \frac{1}{k^2}$ est une série de Riemann convergente donc par comparaison la série $\sum S_k(\frac{1}{k} - \frac{1}{k+1})$ est absolument convergente donc convergente. On en conclut que $\sum_{k=1}^n \frac{\sin k}{k}$ admet une limite lorsque $n \to +\infty$ donc la série de terme général $\frac{\sin n}{n}$ converge.

Correction de l'exercice 3:

1) g est bornée sur \mathbb{R} , soit donc $M \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}, |g(x)| \leq M$.

Alors, pour tout $x \in \mathbb{R}$ et tout $t \in \mathbb{R}$, $|f(t)g(x-t)| \leq M|f(t)|$, donc pour tout réels A < B, $\int_A^B |f(t)g(x-t)| dt = 1$ du de $\int_A^{+\infty} |f(t)g(x-t)| dt$ pour tout réel x, et donc celle de $\int_{-\infty}^{+\infty} |f(t)g(x-t)| dt$ (qui est absolument convergente donc convergente). Ainsi, pour tout $x \in \mathbb{R}$, $(f \star g)(x)$ est bien définie. De plus, par passage à la limite et par inégalité triangulaire on obtient

$$\left| \int_{-\infty}^{+\infty} f(t)g(x-t) \, \mathrm{d}t \right| \le \int_{-\infty}^{+\infty} |f(t)g(x-t)| \, \mathrm{d}t \le M \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t$$

Ainsi, $f \star g$ est bien définie sur \mathbb{R} et bornée : $\forall x \in \mathbb{R}, |f \star g(x)| \leq M \int_{-\infty}^{+\infty} |f(t)| dt$.

2) Pour tout réels $a,b, |ab| \le \frac{a^2+b^2}{2}$ (il suffit de développer dans les inégalité $(a-b)^2 \ge 0$ et $(a+b)^2 \ge 0$) Ainsi, pour tout réels x et $t, |f(t)g(x-t)| \le \frac{1}{2} \left((f(t)^2 + g(x-t)^2) \right)$.

Or l'intégrale $\int_{-\infty}^{+\infty} (f(t))^2 dt$ converge et $\int_{-\infty}^{+\infty} (g(x-t))^2 dt$ est de même nature que $\int_{-\infty}^{+\infty} (g(t))^2 dt$ par le changement de variable u = x - t, donc convergente. Ainsi d'après le théorème de comparaison pour les intégrales de fonctions positives, $\int_{-\infty}^{+\infty} |f(t)g(x-t)| dt$ converge. De plus,

$$\left| \int_{-\infty}^{+\infty} f(t)g(x-t) \, \mathrm{d}t \right| \le \int_{-\infty}^{+\infty} |f(t)g(x-t)| \, \mathrm{d}t \qquad \text{par inégalité triangulaire}$$

$$\le \frac{1}{2} \int_{-\infty}^{+\infty} (f(t))^2 \, \mathrm{d}t + \frac{1}{2} \int_{-\infty}^{+\infty} (g(x-t))^2 \, \mathrm{d}t$$

$$\le \frac{1}{2} \int_{-\infty}^{+\infty} (f(t))^2 \, \mathrm{d}t + \frac{1}{2} \int_{-\infty}^{+\infty} (g(u))^2 \, \mathrm{d}u \qquad \text{en posant } u = x - t$$

donc $f \star g(x)$ est bornée.

3) On pose $t = \cos \theta$, avec $dt = -\sin \theta d\theta$. cos est bijective de $[0; \pi/2]$ sur [0; 1] et $\cos(0) = 1$ et $\cos(\pi/2) = 0$. Ainsi :

$$\int_{-1}^{1} (1-t^2)^n = 2 \int_{0}^{1} (1-t^2)^n dt$$
 par parité
$$= 2 \int_{\pi/2}^{0} (1-\cos^2(\theta))^n (-\sin\theta) d\theta$$

$$= 2 \int_{0}^{\pi/2} \sin^{2n}\theta \sin\theta d\theta$$

$$= 2 \int_{0}^{\pi/2} \sin^{2n+1}\theta d\theta$$

- 4) Par définition de λ_n , $\int_{-\infty}^{+\infty} h_n(t) dt = \int_{-1}^1 \frac{(1-t^2)^n}{\lambda_n} dt = \frac{1}{\lambda_n} \times \lambda_n = 1$.
- 5) Soit $\varepsilon > 0$. Alors pour tout $t \in [-1; -\varepsilon] \cup [\varepsilon; 1]$ on a $t^2 \ge \varepsilon^2$ donc $1 t^2 < 1 \varepsilon^2$ donc $h_n(t) \le \frac{(1 \varepsilon^2)^n}{\lambda_n}$. On a donc

$$\int_{-\infty}^{-\varepsilon} h_n(t) dt = \int_{\varepsilon}^{+\infty} h_n(t) dt$$
 par parité de h_n
$$= \int_{\varepsilon}^{1} h_n(t) dt$$
$$\leq \int_{\varepsilon}^{1} \frac{(1 - \varepsilon^2)^n}{\lambda_n}$$
$$\leq (1 - \varepsilon) \times \frac{(1 - \varepsilon^2)^n}{\lambda_n}$$

Or $\lambda_n \sim \frac{\sqrt{\pi}}{n} \sim \frac{\sqrt{\pi}}{n^{1/2}}$ d'après l'énoncé, et $(1 - \varepsilon^2) < 1$ donc par croissance comparée $\lim_{n \to +\infty} \frac{(1 - \varepsilon^2)^n}{\lambda_n} = 0$ et donc $\lim_{n \to +\infty} \int_{-\infty}^{-\varepsilon} h_n(t) dt = \lim_{n \to +\infty} \int_{\varepsilon}^{+\infty} h_n(t) dt = 0$.

6) Commençons par remarquer que f est continue et $\int_{-\infty}^{+\infty} h_n(t) dt$ converge donc $f \star g$ est bien défini sur \mathbb{R} .

Soit x un réel fixé. Montrons que $\lim_{n\to+\infty}(f\star h_n)(x)=f(x)$. Soit $\varepsilon>0$. f est continue en x donc il existe $\delta>0$ tel que $\forall t\in[x-\delta,x+\delta],\ |f(t)-f(x)|<\varepsilon$. Enfin, f est bornée donc soit $M\in\mathbb{R}$ tel que $\forall t\in\mathbb{R},\ |f(t)|\leq M$. Le changement de variable u=x-t donne $(f\star h_n)(x)=(h_n\star f)(x)$

$$(f \star h_n)(x) - f(x) = (h_n \star f)(x) - \int_{-\infty}^{+\infty} f(x)h_n(t) dt$$

$$= \int_{-\infty}^{+\infty} h_n(t)(f(x-t) - f(x)) dt$$

$$= \int_{-\infty}^{-\delta} h_n(t)(f(x-t) - f(x)) dt + \int_{-\delta}^{\delta} h_n(t)(f(x-t) - f(x)) dt + \int_{\delta}^{+\infty} h_n(t)(f(x-t) - f(x)) dt$$

Or,

$$\left| \int_{-\infty}^{-\delta} h_n(t)(f(x-t) - f(x)) dt \right| \le \int_{-\infty}^{-\delta} |h_n(t)| (|f(x-t) - f(x)|) dt$$

$$\le \int_{-\infty}^{-\delta} |h_n(t)| (|f(x-t)| + |f(x)|) dt$$

$$\le 2M \int_{-\infty}^{-\delta} h_n(t) dt \qquad \text{car } h_n(t) \ge 0$$

Or $\lim_{n\to +\infty} 2M \int_{-\infty}^{-\delta} h_n(t) \, \mathrm{d}t = 0$ d'après la question précédente. De même, $\lim_{n\to +\infty} \int_{\delta}^{+\infty} h_n(t) (f(x)-f(x-t)) \, \mathrm{d}t = 0$ donc il existe un rang n_0 tel que pour $n \geq n_0$, ces deux intégrales sont inférieures à ε en valeur absolue. Enfin, pour tout $t \in]-\delta, \delta[$, on a $|x-(x-t)|<\delta$ donc $|f(x)-f(x-t)|\leq \varepsilon$. Ainsi,

$$\left| \int_{-\delta}^{\delta} h_n(t) (f(x-t) - f(x)) dt \right| \le \int_{-\delta}^{\delta} h_n(t) |f(x-t) - f(x)| dt$$
$$\le \varepsilon \int_{-\delta}^{\delta} h_n(t) dt$$

Or $\int_{-\delta}^{\delta} h_n(t) dt \le \int_{-\infty}^{+\infty} h_n(t) dt \le 1$ car h_n est positive, donc finalement pour $n \ge n_0$,

$$|(f \star h_n)(x) - f(x)| \le 3\varepsilon$$

En posant au début $\varepsilon' = \frac{\varepsilon}{3}$ et en faisant ces mêmes raisonnements sur ε' , on obtient $|(f \star h_n)(x) - f(x)| \le \varepsilon$ à partir d'un certain rang, donc $\lim_{n \to +\infty} (f \star h_n)(x) = f(x)$.

Correction de l'exercice 4:

1) La fonction $t \mapsto \frac{\sin t}{t^2}$ est continue sur \mathbb{R}^* donc admet une primitive F_1 sur $]-\infty;0[$ et une primitive F_2 sur $]0;+\infty[$. Pour tout x>0, on a $f(x)=F_2(bx)-F_2(ax)$ donc f est dérivable sur $]0;+\infty[$ par somme et composition de fonctions dérivables et

$$\forall x > 0, \quad f'(x) = bF_2'(bx) - aF_2'(ax) = b\frac{\sin bx}{b^2x^2} - a\frac{\sin ax}{a^2x^2} = \frac{\sin bx}{bx^2} - \frac{\sin ax}{ax^2}$$

De même, pour tout x < 0, on a $f(x) = F_1(bx) - F_1(ax)$ donc f est dérivable sur $] - \infty; 0[$ par somme et composition de fonctions dérivables et

$$\forall x > 0, \quad f'(x) = bF'_1(bx) - aF'_1(ax) = b\frac{\sin bx}{b^2x^2} - a\frac{\sin ax}{a^2x^2} = \frac{\sin bx}{bx^2} - \frac{\sin ax}{ax^2}$$

Finalement f est dérivable sur \mathbb{R}^* et $f'(x) = \frac{\sin bx}{bx^2} - \frac{\sin ax}{ax^2}$

2) Soit t > 0. Pour tout $x \in [0, t]$ on a $\sin^{(3)}(x) = -\cos(x)$. L'inégalité de Taylor-Lagrange à l'ordre 2 donne :

$$|\sin t - t - 0| \le \frac{\sup_{x \in [0,t]} |\sin^{(3)}(x)|t^3}{6}$$

donc

$$|\sin t - t| \le \frac{t^3}{6}$$

donc pour tout réel t>0, $t-\frac{t^3}{6}\leq \sin t$ et l'inégalité $\sin t\leq t$ se démontre facilement en étudiant la fonction $t\mapsto t-\sin t$ d'où

$$t - \frac{t^3}{6} \le \sin t \le t$$

En divisant par t^2 on obtient donc bien :

$$\frac{1}{t} - \frac{t}{6} \le \frac{\sin t}{t^2} \le \frac{1}{t}$$

3) En intégrant l'inégalité ci-dessus on obtient pour tout x>0 :

$$\int_{ax}^{bx} \left(\frac{1}{t} - \frac{t}{6} \right) dt \le f(x) \le \int_{ax}^{bx} \frac{dt}{t}$$

donc

$$\ln\left(\frac{b}{a}\right) - \frac{b^2x^2 - a^2x^2}{12} \le f(x) \le \ln\left(\frac{b}{a}\right)$$

donc par encadrement $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \ln\left(\frac{b}{a}\right)$.

De plus on remarque que f est impaire donc on a aussi $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = 0$ Ainsi f est prolongeable par continuité en 0 en

posant $f(0) = \ln\left(\frac{b}{a}\right)$.

4) On sait déjà que f est dérivable sur \mathbb{R}^* . Étudions la dérivabilité en 0. On a, pour tout x > 0 et d'après la question précédente

$$-\frac{b^2x^2 - a^2x^2}{12} \le f(x) - \ln\left(\frac{b}{a}\right) \le 0$$

donc

$$-\frac{b^2x - a^2x}{12} \le \frac{f(x) - f(0)}{x} \le 0$$

d'où par encadrement $\lim_{x\to 0} \frac{f(x)-f(0)}{x}=0$. Ainsi f est dérivable en 0 et f'(0)=0.

f' est \mathcal{C}^1 sur \mathbb{R}^* par opérations. Étudions la limite lorsque $x\to 0,\, x\neq 0,$ de f'(x) :

$$\forall x \neq 0, \quad f'(x) = \frac{\sin(bx)}{bx^2} - \frac{\sin(ax)}{ax^2}$$

$$= \frac{bx - \frac{b^3x^3}{6} + o(x^3)}{bx^2} - \frac{ax - \frac{a^3x^3}{6} + ox^3}{ax^2}$$

$$= \frac{1}{x} - \frac{b^2x}{6} + o(x) - \frac{1}{x} + \frac{a^2x}{6} + o(x)$$

$$= \frac{a^2 - b^2}{6}x + o(x)$$

donc $\lim_{\substack{x\to 0\\x\neq 0}} f'(x) = 0 = f'(0)$. Ainsi f' est continue sur $\mathbb R$ donc f est $\mathcal C^1$.

