华东师范大学期中试卷 A 2018—2019 年第一学期

	课程名称:	概	率论与数	(理统计_								
	学生姓名:						学	号:				
	专 业:	·					年级/	班级: _	17	级	-	
	课程性质:	程性质:公共必修、公共选修、 专业必修 、专业选										
			三	四	五	六	七	八	九	总分	阅卷人签名	
—,			厦2分,		分)							
1.	下列命											
	(A) 若事件 A 发生的概率为 0 ,则 A 为不可能事件;											
	(B) 若随机变量X与Y不独立,则 $E(X + Y) = E(X) + E(Y)$ 不一定成立;											
		是连续	卖型随	机变量	t,且f	(x)是i	生续函	数,则	Y = f((X)不一	定是连续型	随机
变:	量;											
	(D) 随	, ->		, . ,,,,	, _, -		_ , , ,					
2.	2. 将一枚硬币独立地掷两次,设事件 $A = {掷第一次出现正面}, B = {掷第二次出现$							出现				
	正面},	$C = \{ \mathbf{I} \}$	三面出現	见两次	, D =	{正、	反面各	出现一	一次},	则事件	()	
	(A) A, B, D相互独立. (B) A, B, D两两独立.											
	(C) B,	C, D	相互犯	过.	(D)	В, С,	D 两	两独立				
3.	设随机图	变量()	$(X,Y)\sim l$	V(3,2,4	4,9,0.4),则	().					
	(A) Cov	$\gamma(X,Y)$) = 0.4	· (I	3) Cov	(X,Y)	= 4					
	(C) Cov	$\gamma(X,Y)$	= 9	(I	O) Cov	(X,Y)	= 2.4					
4.	设随机图	变量X,	,Y不相	关,	E(X)	= 2, E	(Y) =	1, D(<i>X</i>	()=3,	则 $E(X($	(X+Y-2)	=
	()											
	(A) -3		(B) 3		(C) -	5	(D)) 5				
5.	设两个	随机变	全量的 分	分布函	数和密	度函数	数分别:	是 $F_1(x)$	$F_2(x)$:)和f ₁ (x	$(x), f_2(x)$ 。则	()
	A. $F_1(x) + F_2(x)$ 是分布函数 B. $F_1(x) \cdot F_2(x)$ 是分布函数											
_	C. $f_1(x)$, ,
6.					_				_		1},则必有(()
	$(A)\mu_1 >$											
7.				-							函数 ()	
	(A)是连	续函数	数; (B)是阶	梯函数	(C))恰有-	一个间	断点;	(D)至少	少有两个间断	f点.

8. 设二维随机变量(X,Y)的分布律为下表,若随机事件 $\{X=0\}$ 与 $\{X+Y=1\}$ 相互独立, 则()

Y	0	1
0	0.4	a
1	b	0.1

(A) a=0.2,b=0.3 (B) a=0.1,b=0.4 (C) a=0.4,b=0.1 (D) a=0.3,b=0.2

9. 设相互独立的两个随机变量 X 与 Y 都服从 N(0,1) ,则()

 $(A)P\{X+Y>0\}=1/4; \qquad \qquad (B)\ P\{X-Y>0\}=1/4;$

(C) $P\{\max(X,Y)>0\}=3/4$; (D) $P\{\min(X,Y)>0\}=3/4$.

10. 设随机变量X服从参数 $\lambda = 3$ 的泊松分布, $Y \sim N(3,1)$,X, Y相互独立,根据切比雪 夫不等式有P(X-3 < Y < X+3)=()

(A) ≤ 0.25 (B) $\leq \frac{5}{9}$ (C) ≥ 0.75 (D) $\geq \frac{5}{9}$

二、 填空题 (每题 4 分, 共 20 分)

- 1. 设随机变量X的分布函数 $F(x) = 0.4\Phi(x) + 0.6\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准正态分布 函数,则 $E(X) = _____$ 。
- 2. 设随机事件A与B相互独立, A与C相互独立, BC = Φ , 若 P(A) = P(B) = $\frac{1}{2}$, 又 $P(AC|AB\cup C) = \frac{1}{4}, \ \text{MP}(C) = \underline{\hspace{1cm}}$
- 3. 设随机变量 X 的密度函数 $f(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, 其它 \end{cases}$, Y 表示 X 的 3 次独立重复事 件 $\{X \leq \frac{1}{2}\}$ 次数,则 P $\{Y=2\}=$ ____。
- 4. 设随机变量(X,Y)的联合分布函数是

$$F(x,y) = \begin{cases} 0, \min(x,y) < 0\\ \min(x,y), 0 \le \min(x,y) < 1\\ 1, \min(x,y) \ge 1 \end{cases}$$

则X的分布函数为____。

5. 设随机变量X的分布函数为 $F(x) = \begin{cases} 0, x < 10 \\ 1 - \frac{10}{x}, x \ge 10 \end{cases}$ 用Y表示对X的 72 次独立重复 观察中事件中(X > 30)出现的次数,则由中心极限定理得:Y近似服从____。

三、 计算题 (每题 10 分, 共 60 分)

附表: (其中 $\Phi(x)$ 是标准正态分布函数)

x	0.10	0.20	0.40	0.78	0.94	1.00	1.11	1.20	1.40	1.50	1.60	2.00	2.50
$\Phi(x)$	0.530	0.579	0.655	0.783	0.827	0.841	0.867	0.885	0.919	0.933	0.945	0.977	0.994

- 1. 观察进入华师大车辆的情况,设每小时进入华师大的车辆数服从参数为 λ 的 Poisson 分布,但每天 24 小时中 3 个时间段参数 λ 不一样:在高峰时段(早上 7:00~10:00), λ = 20;平时时段(10:00~20:00) λ =15;而其余时段则是 λ =5. 现 观察者随机观察某一个小时发现进了 10 辆车,试求属于高峰时段的概率.
- 2. 设X的密度函数为 $f(x) = \frac{1}{2}e^{-|x|}, x \in (-\infty, +\infty)$
 - (1)E(X).(2分)
 - (2)D(X). (2分)
 - (3)cov(X, |X|). (3 分)
 - $(4)E\left(\sqrt{|X|}\right)$. (3分)
- 3. 设离散型随机变量 X 和 Y 的联合分布律如下:

Y	0	1
X		
0	0.1	0.2
1	0.3	0.4

- 求(1)E(X-1). (3分)
 - (2) E(XY). (4分)
 - (3) ρ_{XY} .(3分)
- 4. 设二维随机变量(X,Y)服从区域 G 上的均匀分布,G 是由直线 y=1-|x|与 y=0 围成,求:
 - a) 求 X、Y 的边缘概率密度函数; (5分)
 - b) 当 $0 \le x < 1$, 计算 $f_{Y|X}(y|x)$. (5分)

5. 设随机变量X与Y相互独立,X,Y的概率密度函数分别为

$$f_X(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, \text{其它} \end{cases}, f_Y(y) = \begin{cases} e^{-y}, y > 0 \\ 0, \text{其它} \end{cases}$$

求(1)(X,Y)的概率密度(3分);

- (2) Z = X + Y,试求随机变量Z的概率密度函数 $f_z(z)$ (7分).
- 6. 学校某食堂出售盒饭,共有三种价格: 4元,5元和6元。出售哪种盒饭是随机的,售出三种价格盒饭的概率分布0.3,0.5和0.2,已知某天售出400盒。
 - 求(1)这天售出盒饭的收入不少于1925元的概率(5分)
 - (2) 这天售出6元盒饭不多于100盒的概率(5分)