

Digital Filtering Lecture Outline

- 1) Characteristics of Filters
- 2) Types of Filters
- 3) Difference Equations
- 4) Block Convolution

Digital Filters

(Frequency-selective) Digital Filter

is a discrete-time system whose main purpose is to modify certain frequencies relative to others

Digital filters are used for two general purposes:

- separation of signals that have been combined
 Signal separation is needed when a signal has been contaminated with interference, noise, or other signals
- restoration of signals that have been distorted in some way

The main characteristics of digital filters are:

- Impulse response
- Frequency response
- Step response

Filter Responses

Step Response

Step Response is an output signal of a system when the input signal is a unit step

Characteristics of Filters

Filter Kernel

Filter Kernel is the impulse response of a digital filter

If we implement a real-time DSP system, we can operate only with the data we already have, and therefore, the *causal* filters are the only option.

On the other hand, if the full amount of data is available (e.g., fully loaded image), we may use non-causal filters for signal processing.

In terms of impulse response, a digital system is causal if and only if:

h[n]=0, n<0

Frequency Response

Classification of Filters

Shape of the phase response:

- > Zero phase filters
- > Linear phase filters
- > Nonlinear phase filters

Shape of the frequency response:

- **Low-pass filters**
- > High-pass filters
- **>** Band-pass filters
- **>** Band-reject filters
- > Custom filters

Type of the impulse response:

- > FIR (Finite Impulse Response) filters
- > IIR (Infinite Impulse Response) filters

The Shape of Frequency Response

Phase Response

Kernels of filters:

Difference Equations

Just as continuous-time systems are described by the differential equations, discrete-time systems are described by the difference equations:

FILTER:
$$y[n] = \sum_{k=0}^{N} a_k x[n-k] - \sum_{m=1}^{M} b_m y[n-m]$$

Recursive part (with feedback coefficients)

FIR FILTER:
$$y[n] = \sum_{k=0}^{N} a_k x[n-k]$$

Find the impulse response of the following filter (assuming it's causal, and all coefficients are nonzero):

$$y[n] = a_0 x[n] - \sum_{m=1}^{M} b_m y[n-m]$$

Let's feed a unit impulse to the filter $(x[n] = \delta[n])$ and see what the output result will be:

$$\begin{aligned} &h[0] = a_0 x[0] - b_1 h[-1] = a_0 \\ &h[1] = a_0 x[1] - (|b_1 h[0]| + |b_0 h[-1]|) = -b_1 h[0] \\ &h[2] = a_0 x[2] - (|b_2 h[1]| + |b_1 h[0]| + |b_0 h[-1]|) = -(|b_2 h[1]| + |b_1 h[0]|) \end{aligned} \qquad h[n] = a_0 \delta[n] - \sum_{m=1}^M b_m h[n-m]$$

•••

Consequently, this filter has *infinite impulse response* h[n].

Furthermore, any filter that requires the feedback coefficients is IIR, since each sample of its impulse response is nonzero, and computed from the previous samples of its impulse response

Moving Average Filter

Find the impulse response of the *L*-point moving average filter:

$$y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]$$

$$h[n] = \frac{1}{L} \sum_{k=0}^{L-1} \delta[n-k] = \begin{cases} \frac{1}{L} &, n = 0, 1, 2, ..., L-1 \\ 0 &, n \ge L \end{cases}$$

The same output signal can be obtained by the following recursive formula

$$y[n] = y[n-1] + \frac{1}{L}(x[n] - x[n-L])$$

Moving Average Filter

Find the impulse response of 5-point moving average filter:

$$y[n] = \frac{1}{5} (x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4])$$

$$h[n] = [1/5 \quad 1/5 \quad 1/5 \quad 1/5 \quad 1/5]$$

$$y[n+1] = \frac{1}{5} (x[n+1] + x[n] + x[n-1] + x[n-2] + x[n-3])$$
$$y[n+1] = y[n] + \frac{1}{5} (x[n+1] - x[n-4])$$

This formula is much faster and looks like a description of an IIR filter, but don't be confused! Although the moving average filter can be implemented recursively, it is characterized by the **finite impulse response!**

Moving Average Filter

Relatives of Moving Average

Gaussian filter

$$h[n] = \frac{1}{\sqrt{2\pi}\sigma} e^{-n^2/2\sigma^2}$$

Blackman filter

$$h[n] = 0.42 - 0.5\cos(\frac{2\pi}{M}n) + 0.08\cos(\frac{4\pi}{M}n)$$

Neither MA filter nor its relatives have good frequency selective properties!

Single-Pole Low-pass Filter

$$y[n] = a_0x[n] - b_1y[n-1]$$

$$a_0 = 1 - e^{-\omega_c} = 1 - e^{-2\pi f_c / f_s}$$

$$b_1 = -e^{-\omega_c} = -e^{-2\pi f_c/f_s}$$

Single-Pole Low-pass Filter

$$y[n] = 0.1148 x[n] + 0.8752 y[n-1]$$

x = 10*sin(2*pi*3000*n/16000) + 10*sin(2*pi*50*n/16000)

Single-Pole High-pass Filter

$$y[n] = a_0x[n] + a_1x[n-1] - b_1y[n-1]$$

$$a_0 = (1 + e^{-\omega_c})/2$$

$$a_1 = -(1 + e^{-\omega_c})/2$$

$$b_1 = -e^{-\omega_c}$$

Single-Pole High-pass Filter

$$y[n] = 0.8376 x[n] - 0.8376 x[n-1] + 0.6752 y[n-1]$$

x = 10*sin(2*pi*3000*n/16000) + 10*sin(2*pi*50*n/16000)

Four Stage Low-pass Filter

$$y[n] = a_0x[n] - b_1y[n-1] - b_2y[n-2] - b_3y[n-3] - b_4y[n-4]$$

$$a_0 = (1 - e^{-14.445 f_c / f_s})^4$$

$$b_1 = -4e^{-14.445f_c/f_s}$$

$$b_2 = 6e^{-14.445*2f_c/f_s}$$

$$b_3 = -4e^{-14.445*3f_c/f_s}$$

$$b_{\Delta} = e^{-14.445*4f_c/f_s}$$

$$f_c / f_s = 0.1$$

Band-pass Filter

$$y[n] = a_0x[n] + a_1x[n-1] + a_2x[n-2] - b_1y[n-1] - b_2y[n-2]$$

$$a_0 = 1 - K$$

$$a_1 = 2(K - R)\cos(\omega_c)$$

$$a_2 = R^2 - K$$

$$b_1 = -2R\cos(\omega_c)$$

$$b_2 = R^2$$

$$K = \frac{1 - 2R\cos(\omega_c) + R^2}{2 - 2\cos(\omega_c)}$$
$$R = 1 - 3B_W / f_s$$

Band-reject Filter

$$y[n] = a_0x[n] + a_1x[n-1] + a_2x[n-2] - b_1y[n-1] - b_2y[n-2]$$

$$a_0 = K$$

$$a_1 = -2K \cos(\omega_c)$$

$$a_2 = K$$

$$b_1 = -2R \cos(\omega_c)$$

$$b_2 = R^2$$

$$K = \frac{1 - 2R\cos(\omega_c) + R^2}{2 - 2\cos(\omega_c)}$$
$$R = 1 - 3B_W / f_s$$

How to apply a filter?

Basically, there are three ways to carry out digital filtering:

Using the *difference equations* to obtain the output signal **TIME DOMAIN**

- **Convolution** of the signal with the filter kernel **TIME DOMAIN**
- Fast Convolution of the signal with the filter kernel FREQUENCY DOMAIN

via Block Convolution

How to apply a filter?

FIR FILTER:

$y[n] = \sum_{k=0}^{N} a_k x[n-k]$

Impulse response

$$h = \{a_0, a_1, a_2, ..., a_N\}$$

IIR FILTER:

32

$$h = \{h_0, h_1, h_3, ...\}$$

Sample number

127

Block Convolution

The input signal is segmented into sections of length *L*.

Each section is convolved with the finite-length *P*-point filter kernel and the filtered sections are fitted together in an appropriate specific way.

For example, if we need to apply the filter with the kernel of length P=351, we may choose the length of each section L=162 so that the FFT size is a power of 2: L+P-1=351+162-1=512.

Or we may choose the length of each section **L=674** so that the FFT size is 1024, etc.

Overlap-Add Method

Overlap-Save Method

Overlap-Add Filtering

Design a band-reject FIR filter with edge frequencies of 1200 Hz and 2400 Hz, and filter the noisy signal x[n]

