પ્રશ્ન 1(a) [3 ગુણ]

યોગ્ય રેખાકૃતિ સાથે સ્ત્રોત પરિવર્તન સમજાવો.

ઉत्तर:

સ્ત્રોત પરિવર્તન એ વોલ્ટેજ સ્ત્રોતને કરંટ સ્ત્રોતમાં અથવા તેનાથી વિપરીત રૂપાંતરિત કરવાની પદ્ધતિ છે જેમાં બાહ્ય સર્કિટનું વર્તન બદલાતું નથી.

આકૃતિ:

• **વોલ્ટેજથી કરંટ સ્ત્રોત**: I = V/R, સમાન R સમાંતરમાં

• કરંટથી વોલ્ટેજ સ્ત્રોત: V = I×R, સમાન R શ્રેણીમાં

મેમરી ટ્રીક: "મૂલ્ય રહે છે, રેસિસ્ટન્સ બદલાય છે" (V=IR હંમેશા લાગુ પડે છે)

પ્રશ્ન 1(b) [4 ગુણ]

શ્રેણીમાં જોડાયેલા બે કેપેસિટર માટે વોલ્ટેજ, કરંટ અને પાવર સંબંધ મેળવો.

ઉत्तर:

કોષ્ટક: શ્રેણીમાં કેપેસિટર્સ

પરિમાણ	સૂત્ર	સમજૂતી
કુલ કેપેસિટન્સ	$1/C_{T} = 1/C_{1} + 1/C_{2}$	પ્રતિરોધી યોગ
વોલ્ટેજ વિતરણ	$V_1/V_2 = C_2/C_1$	કેપેસિટન્સ રેશિયોના વ્યસ્ત
કરંટ	= ₁ $= $ ₂	બધા દ્વારા સમાન કરંટ વહે છે
યાર્જ	$Q = Q_1 = Q_2$	દરેક કેપેસિટર પર સમાન ચાર્જ
પાવર	$P = VI = V^2/X_C$	જ્યાં X _C = 1/2πfC

• વોલ્ટેજ વિભાજન: V₁ = V × C₂/(C₁+C₂)

• **યાર્જ સંગ્રહ**: Q = C₁C₂V/(C₁+C₂)

મેમરી ટ્રીક: "શ્રેણીમાં કેપેસિટર્સ: કરંટ સમાન, કેપેસિટન્સ ઘટે"

પ્રશ્ન 1(c) [7 ગુણ]

રેસિસ્ટરના શ્રેણી અને સમાંતર જોડાણ વચ્ચેનો તફાવત આપો અને સમાંતર જોડાણના કુલ રેસિસ્ટન્સનું સમીકરણ મેળવો.

ઉત્તર:

કોષ્ટક: શ્રેણી વિરુદ્ધ સમાંતર રેસિસ્ટર્સ

પરિમાણ	શ્રેણી જોડાણ	સમાંતર જોડાણ
કુલ રેસિસ્ટન્સ	વધે છે (R _T = R ₁ + R ₂ +)	ઘટે છે (R _T < સોંથી નાના R)
કરંટ	બધામાં સમાન (l)	વિભાજન થાય (I _T = I ₁ + I ₂ +)
વોલ્ટેજ	વિભાજન થાય (V _T = V ₁ + V ₂ +)	બધા પર સમાન (V)
પાવર	$P_T = P_1 + P_2 +$	$P_T = P_1 + P_2 +$

સમાંતર રેસિસ્ટન્સ માટેનું વ્યુત્પત્તિ:

કિરયોફના કરંટ નિયમ અનુસાર:

$$|_{T} = |_{1} + |_{2} + ... + |_{n}$$

I = V/R બદલતાં:

 $V/R_T = V/R_1 + V/R_2 + ... + V/R_n$

V થી ભાગીને:

 $1/R_T = 1/R_1 + 1/R_2 + ... + 1/R_n$

બે રેસિસ્ટર્સ માટે:

 $1/R_{T} = 1/R_{1} + 1/R_{2}$, જે આપે છે $R_{T} = R_{1}R_{2}/(R_{1} + R_{2})$

મેમરી ટ્રીક: "સમાંતરમાં, વ્યસ્ત મૂલ્યો ઉમેરાય છે"

પ્રશ્ન 1(c) OR [7 ગુણ]

- 1) યુનિલેટરલ, બાયલેટરલ નેટવર્ક, મેશ અને લૂપ વ્યાખ્યાયિત કરો.
- 2) વોલ્ટેજ ડિવિઝન સર્કિટ દોરો અને સમીકરણ લખો.

ઉत्तर:

કોષ્ટક: નેટવર્ક વ્યાખ્યાઓ

чε	વ્યાખ્યા	ઉદાહરણ
યુનિલેટરલ નેટવર્ક	માત્ર એક દિશામાં કરંટ પસાર થવા દે છે	ડાયોડ સર્કિટ
બાયલેટરલ નેટવર્ક	બંને દિશામાં કરંટ પસાર થવા દે છે	RLC સર્કિટ
મેશ	સપાટ નેટવર્ક પાથ જેમાં કોઈ બીજો પાથ નથી	એક બંધ પાથ
qч	નેટવર્કમાં કોઈપણ બંધ પાથ	અન્ય તત્વો શામેલ કરી શકે

વોલ્ટેજ ડિવિઝન સર્કિટ:

વોલ્ટેજ ડિવિઝન સમીકરણ:

$$V_0 = V_{in} \times R_2/(R_1 + R_2)$$

• સમાનુપાતિક: રેસિસ્ટન્સ જેના પર વોલ્ટેજ માપવામાં આવે છે

• વ્યસ્ત સમાનુપાતિક: કુલ રેસિસ્ટન્સ

મેમરી ટ્રીક: "આઉટપુટ વોલ્ટેજ ઈનપુટ ગુણ્યા રેસિસ્ટન્સના ગુણોત્તર"

પ્રશ્ન 2(a) [3 ગુણ]

T-type નેટવર્કને π-type નેટવર્કમાં કન્વર્ટ કરવા માટે સમીકરણો મેળવો.

ઉત્તર:

આકૃતિ: T થી π રૂપાંતરણ

રૂપાંતરણ સમીકરણો:

•
$$Z_{12} = (Z_1Z_2 + Z_2Z_3 + Z_3Z_1)/Z_3$$

•
$$Z_{23} = (Z_1Z_2 + Z_2Z_3 + Z_3Z_1)/Z_1$$

•
$$Z_{31} = (Z_1Z_2 + Z_2Z_3 + Z_3Z_1)/Z_2$$

જ્યાં Z_1 , Z_2 , Z_3 એ T-નેટવર્કના ઇમ્પીડન્સ છે અને Z_{12} , Z_{23} , Z_{31} એ π -નેટવર્કના ઇમ્પીડન્સ છે.

મેમરી ટ્રીક: "બધા ગુણનનો સરવાળો વિભાજિત સામેના દ્વારા"

પ્રશ્ન 2(b) [4 ગુણ]

ઓપન સર્કિટ ઇમ્પીડન્સ પેરામીટર (Z પેરામીટર) સમજાવો.

ઉत्तर:

Z-પેરામીટર્સ: આને ઓપન-સર્કિટ ઇમ્પીડન્સ પેરામીટર્સ પણ કહેવામાં આવે છે કારણ કે તેઓ આઉટપુટ પોર્ટ્સને ખુલ્લા રાખીને માપવામાં આવે છે.

કોષ્ટક: Z-પેરામીટર સમીકરણો

પેરામીટર	વ્યાખ્યા	ગણતરી
Z ₁₁	આઉટપુટ ખુલ્લું હોય ત્યારે ઇનપુટ ઇમ્પીડન્સ	Z ₁₁ = V ₁ /I ₁ (જ્યારે I ₂ =0)
Z ₁₂	પોર્ટ 2 થી પોર્ટ 1 સુધીનો ટ્રાન્સફર ઇમ્પીડન્સ	Z ₁₂ = V ₁ /l ₂ (જ્યારે l ₁ =0)
Z ₂₁	પોર્ટ 1 થી પોર્ટ 2 સુધીનો ટ્રાન્સફર ઇમ્પીડન્સ	Z ₂₁ = V ₂ /I ₁ (જ્યારે I ₂ =0)
Z ₂₂	ઇનપુટ ખુલ્લું હોય ત્યારે આઉટપુટ ઇમ્પીડન્સ	Z ₂₂ = V ₂ /I ₂ (જ્યારે I ₁ =0)

મેટ્રિક્સ ફોર્મ:

 $[V_1] = [Z_{11} \ Z_{12}] \times [I_1]$

 $[V_2] \ [Z_{21} \ Z_{22}] \ [I_2]$

• સિમેટ્રિકલ નેટવર્ક: Z₁₂ = Z₂₁

• **એકમો**: ઓસ (Ω)

મેમરી ટ્રીક: "Vs તે Zs ગુણ્યા Is"

પ્રશ્ન 2(c) [7 ગુણ]

સિમેટ્રિકલ T-type નેટવર્ક માટે કેરેક્ટેરિસ્ટિક ઇમ્પીડન્સ (Z_{ot}) નું સૂત્ર મેળવો.

ઉत्तर:

આકૃતિ: સિમેટ્રિકલ T-નેટવર્ક

વ્યુત્પત્તિ:

1. સિમેટ્રિકલ T-નેટવર્ક માટે, Z₁ બે ભાગમાં સરખે ભાગે વિભાજિત થાય છે (દરેક Z₁/2)

2. ઇમેજ ઇમ્પીડન્સ મેચિંગ માટે: Z_{0t} = Z_{0t}'

વોલ્ટેજ ડિવિઝન દ્વારા:

 $V_2/V_1 = Z_{0t}/(Z_1/2 + Z_{0t} + Z_2 | |Z_{0t})$

મેચ્ડ કન્ડિશન માટે:

 $Z_{0t}^2 = (Z_1/2)(Z_1/2 + Z_2)$

તેથી:

 $Z_{0t} = \sqrt{[(Z_1/2)(Z_1/2 + Z_2)]}$

 $Z_{0t} = \sqrt{[Z_1^2/4 + Z_1Z_2/2]}$

 $Z_{ot} = \sqrt{[Z_1(Z_1+2Z_2)/4]}$

મેમરી ટ્રીક: "Z₁ અને તેની સાથે જોડાયેલા Z₁ના વર્ગમૂળ"

પ્રશ્ન 2(a) OR [3 ગુણ]

π-type નેટવર્કને T-type નેટવર્કમાં કન્વર્ટ કરવા માટે સમીકરણો મેળવો.

ઉत्तर:

આકૃતિ: π થી T રૂપાંતરણ

રૂપાંતરણ સમીકરણો:

- $Z_1 = (Z_{12}Z_{31})/(Z_{12} + Z_{23} + Z_{31})$
- $Z_2 = (Z_{23}Z_{12})/(Z_{12} + Z_{23} + Z_{31})$
- $Z_3 = (Z_{31}Z_{23})/(Z_{12} + Z_{23} + Z_{31})$

જ્યાં Z_{12} , Z_{23} , Z_{31} એ π -નેટવર્કના ઇમ્પીડન્સ છે અને Z_1 , Z_2 , Z_3 એ T-નેટવર્કના ઇમ્પીડન્સ છે.

મેમરી ટ્રીક: "આસન્ન જોડીઓના ગુણાકાર વિભાજિત બધાના સરવાળા દ્વારા"

પ્રશ્ન 2(b) OR [4 ગુણ]

એડમિટન્સ પેરામીટર (Y પેરામીટર) સમજાવો.

ઉત્તર:

Y-પેરામીટર્સ: આને શોર્ટ-સર્કિટ એડમિટન્સ પેરામીટર્સ પણ કહેવામાં આવે છે કારણ કે તેઓ આઉટપુટ પોર્ટ્સને શોર્ટ રાખીને માપવામાં આવે છે.

કોષ્ટક: Y-પેરામીટર સમીકરણો

પેરામીટર	વ્યાખ્યા	ગણતરી
Y ₁₁	આઉટપુટ શોર્ટેડ હોય ત્યારે ઇનપુટ એડમિટન્સ	Y ₁₁ = I ₁ /V ₁ (જ્યારે V ₂ =0)
Y ₁₂	પોર્ટ 2 થી પોર્ટ 1 સુધીનો ટ્રાન્સફર એડમિટન્સ	Y ₁₂ = I ₁ /V ₂ (જ્યારે V ₁ =0)
Y ₂₁	પોર્ટ 1 થી પોર્ટ 2 સુધીનો ટ્રાન્સફર એડમિટન્સ	Y ₂₁ = I ₂ /V ₁ (જ્યારે V ₂ =0)
Y ₂₂	ઇનપુટ શોર્ટેડ હોય ત્યારે આઉટપુટ એડમિટન્સ	Y ₂₂ = I ₂ /V ₂ (જ્યારે V ₁ =0)

મેટ્રિક્સ ફોર્મ:

 $[I_1] = [Y_{11} \ Y_{12}] \times [V_1]$ $[I_2] \ [Y_{21} \ Y_{22}] \ [V_2]$

• સિમેટ્રિકલ નેટવર્ક: Y₁₂ = Y₂₁

• **એકમો**: સીમેન્સ (S)

મેમરી ટ્રીક: "Is તે Ys ગુણ્યા Vs"

પ્રશ્ન 2(c) OR [7 ગુણ]

સિમેટ્રિકલ π -type નેટવર્ક માટે કેરેક્ટેરિસ્ટિક ઇમ્પીડન્સ ($Z_0\pi$) નું સૂત્ર મેળવો.

ઉत्तर:

આકૃતિ: સિમેટ્રિકલ π-નેટવર્ક

વ્યુત્પત્તિ:

- 1. સિમેટ્રિકલ π -નેટવર્ક માટે, શંટ આર્મ્સમાં એડમિટન્સ Y_1 બે સરખા ભાગમાં વહેંચાય છે ($Y_3 = Y_1/2$)
- 2. ઇમેજ ઇમ્પીડન્સ મેચિંગ માટે: $Z_0\pi = Z_0\pi'$

કરંટ ડિવિઝન દ્વારા:

$$I_2/I_1 = Z_0\pi/(Z_0\pi + Z_1 + Z_0\pi | |2Z_3)$$

મેચ્ડ કન્ડિશન માટે:

$$Z_0\pi^2 = Z_1(2Z_3)/(Z_1 + 2Z_3)$$

સરળીકરણ:

$$Z_0\pi = \sqrt{[Z_1(2Z_3)/(Z_1 + 2Z_3)]}$$

$$Z_0\pi = \sqrt{[2Z_1Z_3/(Z_1 + 2Z_3)]}$$

મેમરી ટ્રીક: "પાઈનો ઇમ્પીડન્સ તે જુએ છે તેનો જ્યામિતીય મધ્યવર્તી"

પ્રશ્ન 3(a) [3 ગુણ]

ડ્યુઆલિટીનો સિદ્ધાંત સમજાવો.

ઉत्तर:

ક્યુઆલિટીનો સિદ્ધાંત: દરેક ઇલેક્ટ્રીકલ નેટવર્ક માટે, એક ક્યુઅલ નેટવર્ક અસ્તિત્વમાં છે જેનું વર્તન સમાન છે પરંતુ તત્વો બદલાયેલા છે.

કોષ્ટક: ક્યુઅલ તત્વ જોડીઓ

મૂળ સર્કિટ	ડ્યુઅલ સર્કિટ
વોલ્ટેજ (V)	કરંટ (I)
કરંટ (I)	વોલ્ટેજ (V)
રેસિસ્ટન્સ (R)	·કડક્ટન્સ (G)
ઇન્ડક્ટન્સ (L)	કેપેસિટન્સ (C)
શ્રેણી જોડાણ	સમાંતર જોડાણ
KVL	KCL
મેશ એનાલિસિસ	નોડલ એનાલિસિસ

- નેટવર્ક ટ્રાન્સફોર્મેશન: દરેક તત્વને તેના ડ્યુઅલથી બદલો
- ટોપોલોજી ટ્રાન્સફોર્મેશન: દરેક નોડને લૂપથી અને દરેક લૂપને નોડથી બદલો

મેમરી ટ્રીક: "શ્રેણીથી સમાંતર, સ્ત્રોત બદલે ક્યુઅલ, V બને I અને I બને V"

પ્રશ્ન 3(b) [4 ગુણ]

થેવેનિનનો પ્રમેય જણાવો અને સમજાવો.

ઉत्तर:

થેવેનિનનો પ્રમેય: કોઈપણ લીનીયર બે-ટર્મિનલ નેટવર્કને શ્રેણીમાં વોલ્ટેજ સ્ત્રોત (V_{th}) અને રેસિસ્ટન્સ (R_{th}) ધરાવતા સમકક્ષ સર્કિટથી બદલી શકાય છે.

આકૃતિ:

થેવેનિન સમકક્ષ શોધવું:

- 1. લોડ રેસિસ્ટન્સ દૂર કરો
- 2. ઓપન-સર્કિટ વોલ્ટેજ (V_{th}) ગણો

3. R_{th} શોધવા માટે:

- ૦ બધા સ્ત્રોતોને નિષ્ક્રિય કરો (V=0, I=0)
- ૦ ટર્મિનલ્સ વચ્ચેનો રેસિસ્ટન્સ ગણો

મેમરી ટ્રીક: "વોલ્ટેજ માટે ખુલ્લું, રેસિસ્ટન્સ માટે મૃત"

પ્રશ્ન 3(c) [7 ગુણ]

ઉદાહરણ સાથે KCL અને KVL જણાવો અને સમજાવો.

ઉत्तर:

કોષ્ટક: કિરચોફના નિયમો

નિચમ	અભિદ્યાન	ગાણિતિક રૂપ	અમલીકરણ
KCL	નોડમાં પ્રવેશતા કરંટનો સરવાળો નોડથી બહાર નીકળતા કરંટના સરવાળા બરાબર છે	$\sum I_{in} = \sum I_{out}$	નોડલ એનાલિસિસ
KVL	કોઈપણ બંધ લૂપ ફરતે વોલ્ટેજ ડ્રોપનો સરવાળો શૂન્ય છે	∑N = 0	મેશ એનાલિસિસ

KCL ઉદાહરણ:

KVL ઉદાહરણ:

મેમરી ટ્રીક: "નોડ પર કરંટનો સરવાળો શૂન્ય, લૂપ આસપાસ વોલ્ટેજના પણ"

પ્રશ્ન 3(a) OR [3 ગુણ]

મેશ એનાલિસિસ દ્વારા નેટવર્કનું સોલ્યુશન સમજાવો.

ઉत्तर:

મેશ એનાલિસિસ: એક સર્કિટ એનાલિસિસ પદ્ધતિ જે અજાણી કરંટ અને વોલ્ટેજને શોધવા માટે મેશ કરંટનો ચલ તરીકે ઉપયોગ કરે છે.

આકૃતિ: સિમ્પલ ટુ-મેશ સર્કિટ

પગલાં:

- 1. મેશ (બંધ લૂપ) ઓળખો
- 2. ઘડિયાળના કાંટાની દિશામાં મેશ કરંટ (I₁, I₂) આપો
- 3. દરેક મેશ પર KVL લાગુ કરો
- 4. પરિણામી સમકાલીન સમીકરણોનો ઉકેલ મેળવો

ઉદાહરણ સમીકરણો:

- મેરા 1: V₁ = I₁(R₁+R₂) I₂R₂
- મેરા 2: $-V_2 = -I_1R_2 + I_2(R_2 + R_3)$

મેમરી ટ્રીક: "આપો, KVL લાગુ કરો, ગોઠવો, અને ઉકેલો"

પ્રશ્ન 3(b) OR [4 ગુણ]

નોર્ટનનો પ્રમેય જણાવો અને સમજાવો.

ઉत्तर:

નોર્ટનનો પ્રમેય: કોઈપણ લીનીયર બે-ટર્મિનલ નેટવર્કને સમાંતરમાં કરંટ સ્ત્રોત (I_N) અને રેસિસ્ટન્સ (R_N) ધરાવતા સમકક્ષ સર્કિટથી બદલી શકાય છે.

આકૃતિ:

નોર્ટન સમકક્ષ શોધવું:

- 1. લોડ રેસિસ્ટન્સ દૂર કરો
- 2. શોર્ટ-સર્કિટ કરંટ (I_N) ગણો
- 3. R_N શોધવા માટે:
 - ૦ બધા સ્ત્રોતોને નિષ્ક્રિય કરો (V=0, I=0)
 - ૦ ટર્મિનલ્સ વચ્ચેનો રેસિસ્ટન્સ ગણો (R_N = R_{th})

મેમરી ટ્રીક: "કરંટ માટે શોર્ટ, રેસિસ્ટન્સ માટે મૃત"

પ્રશ્ન 3(c) OR [7 ગુણ]

મહત્તમ પાવર ટ્રાન્સફર પ્રમેચ જણાવો અને સમજાવો. મહત્તમ પાવર ટ્રાન્સફર માટેની સ્થિતિ મેળવો.

ઉत्तर:

મહત્તમ પાવર ટ્રાન્સફર પ્રમેય: જ્યારે લોડનો રેસિસ્ટન્સ નેટવર્કના થેવેનિન સમકક્ષ રેસિસ્ટન્સ બરાબર હોય ત્યારે લોડને મહત્તમ પાવર મળે છે. આકૃતિ:

વ્યુત્પત્તિ:

- 1. લોડને મળતો પાવર: $P = I^2R_L$
- 2. સર્કિટમાં કરંટ: $I = V_{th}/(R_{th} + R_L)$
- 3. બદલતાં: $P = V_{th}^2 R_I / (R_{th} + R_I)^2$
- 4. R_L ના સંદર્ભમાં ડિફરેન્શિએટ કરીને શૂન્ય સુયોજિત કરતાં: dP/dR_L = 0
- 5. આ આપે છે: R_I = R_{th}
- 6. ਮੁੰਦਰਮ ਪਾਪਟ: $P_{max} = V_{th}^2/(4R_{th})$

મેમરી ટ્રીક: "મેચ કરો, મહત્તમ બનાવો"

પ્રશ્ન 4(a) [3 ગુણ]

કોઇલ માટે Q પરિબળનું સમીકરણ મેળવો.

ઉत्तर:

Q ફેક્ટર (ક્વોલિટી ફેક્ટર) કોઇલ માટે ઇન્ડક્ટિવ રિએક્ટન્સનો રેસિસ્ટન્સ સાથેનો ગુણોત્તર દર્શાવે છે.

આકૃતિ: રેસિસ્ટન્સ સાથેની કોઇલ

વ્યુત્પત્તિ:

- 1. રેસિસ્ટન્સ સાથેની ઇન્ડક્ટર માટે, ઇમ્પીડન્સ Z = R + jωL
- 2. Q ફેક્ટર વ્યાખ્યા: Q = રિએક્ટિવ પાવર / એક્ટિવ પાવર
- 3. $Q = \omega L/R$

જ્યાં:

- L = ઇન્ડક્ટન્સ હેનરીમાં
- R = શ્રેણી રેસિસ્ટન્સ ઓહ્મમાં
- ω = 2πf, એન્ગ્યુલર ફ્રીક્વન્સી

મેમરી ટીક: "ક્વોલિટી તે રિએક્ટન્સ ભાગે રેસિસ્ટન્સ"

પ્રશ્ન 4(b) [4 ગુણ]

સમાંતર RLC સર્કિટ માટે રેઝોનન્ટ ફ્રીક્વન્સીનું સમીકરણ મેળવો.

ઉत्तर:

આકૃતિ: સમાંતર RLC સર્કિટ

વ્યુત્પત્તિ:

- 1. સમાંતર RLC નો એડમિટન્સ: Y = 1/R + jωC + 1/jωL = 1/R + j(ωC 1/ωL)
- 2. રેઝોનન્સ પર, કાલ્પનિક ભાગ શૂન્ય છે: ωC 1/ωL = 0
- 3. ω માટે ઉકેલતાં: ω² = 1/LC
- 4. તેથી: ω = 1/√(LC)
- 5. રેઝોનન્સ ફ્રીક્વન્સી: f_r = 1/(2π√(LC))

નોંધ: R બેન્ડવિડ્થને અસર કરે છે પરંતુ રેઝોનન્સ ફ્રીક્વન્સીને નહીં.

મેમરી ટ્રીક: "એક ભાગે બે પાઈ ગુણ્યા LC ના વર્ગમૂળ"

પ્રશ્ન 4(c) [7 ગુણ]

જરૂરી ડાયાગ્રામ સાથે કપલ્ડ સર્કિટના પ્રકારો લખો અને આયર્ન કોર ટ્રાન્સફોર્મર સમજાવો.

ઉत्तर:

કોષ્ટક: કપલ્ડ સર્કિટના પ્રકાર

увіг	કપલિંગ માધ્યમ	અમલીકરણ
ડાયરેક્ટ કપલિંગ	વાહકથી જોડાયેલ	DC એમ્પ્લિફાયર્સ
કેપેસિટિવ કપલિંગ	કેપેસિટર	AC સિગ્નલ કપલિંગ
ઇન્ડક્ટિવ કપલિંગ	ચુંબકીય ક્ષેત્ર	ટ્રાન્સફોર્મર્સ
રેસિસ્ટિવ કપલિંગ	રેસિસ્ટર	ઓછી આવૃત્તિના સિગ્નલ

આકૃતિ: આયર્ન કોર ટ્રાન્સફોર્મર

આયર્ન કોર ટ્રાન્સફોર્મર:

• **સિદ્ધાંત**: આયર્ન કોર દ્વારા મ્યુચ્યુઅલ ઇન્ડક્ટન્સ

• કાર્ય: ઇલેક્ટ્રોમેગ્નેટિક ઇન્ડક્શન દ્વારા સર્કિટ્સ વચ્ચે ઊર્જા ટ્રાન્સફર કરે છે

• **કપલિંગ કોઇફિશિયન્ટ**: k ≈ 1 (લગભગ પરફેક્ટ કપલિંગ)

• ટર્ન્સ રેશિયો: V₂/V₁ = N₂/N₁

• **ફાયદા**: ઉચ્ચ કાર્યક્ષમતા, સારું કપલિંગ

મેમરી ટ્રીક: "પ્રાથમિક ઉત્તેજિત કરે, કોર વહન કરે, સેકન્ડરી પહોંચાડે"

પ્રશ્ન 4(a) OR [3 ગુણ]

કેપેસિટર માટે Q પરિબળનું સમીકરણ મેળવો.

ઉત્તર:

Q ફેક્ટર (ક્વોલિટી ફેક્ટર) કેપેસિટર માટે કેપેસિટિવ રિએક્ટન્સનો રેસિસ્ટન્સ સાથેનો ગુણોત્તર દર્શાવે છે.

આકૃતિ: રેસિસ્ટન્સ સાથેની કેપેસિટર

વ્યુત્પત્તિ:

- 1. સીરીઝ રેસિસ્ટન્સ સાથેની કેપેસિટર માટે, ઇમ્પીડન્સ Z = R j/(ωC)
- 2. Q ફેક્ટર વ્યાખ્યા: Q = રિએક્ટિવ પાવર / એક્ટિવ પાવર
- 3. $Q = 1/(\omega CR)$

જ્યાં:

- C = કેપેસિટન્સ ફેરડમાં
- R = સીરીઝ રેસિસ્ટન્સ ઓહ્મમાં
- ω = 2πf, એન્ગ્યુલર ફ્રીક્વન્સી

મેમરી ટ્રીક: "ક્વોલિટી તે એક ભાગે રેસિસ્ટન્સ ગુણ્યા રિએક્ટન્સ"

પ્રશ્ન 4(b) OR [4 ગુણ]

શ્રેણી રેઝોનન્સ સર્કિટ માટે રેઝોનન્સ ફ્રીક્વન્સીનું સમીકરણ મેળવો.

ઉत्तर:

આકૃતિ: શ્રેણી RLC સર્કિટ

વ્યુત્પત્તિ:

- 1. શ્રેણી RLC નો ઇમ્પીડન્સ: Z = R + jωL j/(ωC) = R + j(ωL 1/ωC)
- 2. રેઝોનન્સ પર, કાલ્પનિક ભાગ શૂન્ય છે: ωL 1/ωC = 0
- 3. ω માટે ઉકેલતાં: ω² = 1/LC
- 4. તેથી: ω = 1/√(LC)
- 5. રેઝોનન્સ ફ્રીક્વન્સી: f_r = 1/(2π√(LC))

મુખ્ય મુદ્દાઓ:

- રેઝોનન્સ પર, ઇમ્પીડન્સ માત્ર રેસિસ્ટિવ છે: Z = R
- સર્કિટ રેસિસ્ટર જેવું દેખાય છે
- રેઝોનન્સ પર કરંટ મહત્તમ છે

મેમરી ટ્રીક: "એક ભાગે બે પાઈ ગુણ્યા LC ના વર્ગમૂળ"

પ્રશ્ન 4(c) OR [7 ગુણ]

ચુંબકીય રીતે જોડાયેલા કોઇલની પેર વચ્ચે કોએફિસિયન્ટ ઓફ કપલિંગનું સમીકરણ મેળવો.

ઉत्तर:

આકૃતિ: ચુંબકીય રીતે જોડાયેલા કોઇલ્સ

```
uuuu k uuuu
O--WWWW------WWWW--O
L1 L2
```

વ્યુત્પત્તિ:

- 1. મ્યુચ્યુઅલ ઇન્ડક્ટન્સ (M) વ્યક્તિગત ઇન્ડક્ટન્સથી સંબંધિત છે: $M = k \sqrt{(L_1 L_2)}$
- 2. k માટે ઉકેલીને: k = M/√(L₁L₂)

જ્યાં:

- k =કોએફિસિયન્ટ ઓફ કપલિંગ $(0 \le k \le 1)$
- M = મ્યુચ્યુઅલ ઇન્ડક્ટન્સ હેનરીમાં
- L₁, L₂ = કોઇલ્સના સેલ્ફ-ઇન્ડક્ટન્સ હેનરીમાં

કોષ્ટક: કપલિંગ કોએફિસિયન્ટના મૂલ્યો

k નું મૂલ્ચ	કપલિંગનો પ્રકાર	અમલીકરણ
k = 0	કોઈ કપલિંગ નહીં	અલગ સર્કિટ્સ
0 < k < 0.5	લૂઝ કપલિંગ	RF ટ્રાન્સફોર્મર્સ
0.5 < k < 1	ટાઇટ કપલિંગ	પાવર ટ્રાન્સફોર્મર્સ
k = 1	પરફેક્ટ કપલિંગ	આદર્શ ટ્રાન્સફોર્મર

મેમરી ટ્રીક: "મ્યુચ્યુઅલ ભાગે ગુણાકારના વર્ગમૂળ"

પ્રશ્ન 5(a) [3 ગુણ]

Neper અને dB ને વ્યાખ્યાયિત કરો. નેપર અને ડીબી વચ્ચે સંબંધ સ્થાપિત કરો.

ઉत्तर:

કોષ્ટક: Neper અને dB વ્યાખ્યાઓ

એકમ	વ્યાખ્યા	સૂત્ર	ઉપયોગ
Neper (Np)	કુદરતી લોગેરિદ્યમિક ગુણોત્તર	N = ln(V ₁ /V ₂) અથવા ln(I ₁ /I ₂)	પાવર સિસ્ટમ એનાલિસિસ
Decibel (dB)	સામાન્ય લોગેરિદ્યમિક ગુણોત્તર	dB = 20log ₁₀ (V ₁ /V ₂) અથવા 10log ₁₀ (P ₁ /P ₂)	સિગ્નલ લેવલ માપન

સંબંધ:

- 1. $N = ln(V_1/V_2)$
- 2. $dB = 20log_{10}(V_1/V_2)$
- 3. જેમ ln(x) = 2.303 × log₁₀(x)
- 4. તેથી: N = 2.303 × dB/20 = 0.1152 × dB
- 5. વિપરીતરીતે: dB = 8.686 × N

મેમરી ટ્રીક: "એક Neper એ 8.686 dB છે"

પ્રશ્ન 5(b) [4 ગુણ]

વિવિદ્ય પ્રકારના એટેન્યુએટરનું વર્ગીકરણ કરો.

ઉत्तर:

કોષ્ટક: એટેન્યુએટરના પ્રકાર

явіз	રચના	લાક્ષણિકતાઓ	ઉપયોગો
T-type	T આકારમાં ત્રણ રેસિસ્ટર	ફિક્સ્ડ ઇમ્પીડન્સ, સારું બેલેન્સ	સિગ્નલ લેવલ કંટ્રોલ
π-type (Pi)	π આકારમાં ત્રણ રેસિસ્ટર	બેહતર આઇસોલેશન, વધુ સામાન્ય	RF સિગ્નલ એટેન્યુએશન
L-type	L આકારમાં બે રેસિસ્ટર	સરળ, અસંતુલિત	બેસિક લેવલ એડજસ્ટમેન્ટ
Bridged T	બ્રિજિંગ રેસિસ્ટર સાથે T	સતત ઇમ્પીડન્સ	ઓડિયો એપ્લિકેશન્સ
Balanced	સિમેટ્રિકલ ડિઝાઇન	સારો CMRR	બેલેન્સ્ક ટ્રાન્સમિશન
Lattice	હીરા આકારનું	બેલેન્સ્ડ, સિમેટ્રિકલ	ટેલીફ્રોન સિસ્ટમ્સ

આકૃતિ: મૂળભૂત એટેન્યુએટર પ્રકાર

મેમરી ટ્રીક: "Tees, Pies અને Ells સિગ્નલને સારી રીતે એટેન્યુએટ કરે છે"

પ્રશ્ન 5(c) [7 ગુણ]

નીચે બતાવેલ લો-પાસ ફિલ્ટરની કટ-ઓફ આવૃત્તિ અને નોમિનલ ઈંપીડન્સ નક્કી કરો.

ઉत्तर:

આકૃતિ: લો-પાસ ફિલ્ટર સેક્શન્સ

T-સેક્શન માટે:

• કટ-ઓફ ફ્રીક્વન્સી: f_c = 1/(π√(LC))

• નોમિનલ ઇમ્પીડન્સ: R₀ = √(L/C)

• જ્યાં L = 10 mH, C = 0.1 µF

ગણતરી:

$$\begin{split} f_C &= 1/(\pi\sqrt{(10\times10^{-3}\times0.1\times10^{-6})}) = 1/(\pi\sqrt{(10^{-9})}) = 1/(\pi\times10^{-4.5}) = 3.18 \text{ kHz} \\ R_0 &= \sqrt{(10\times10^{-3}/0.1\times10^{-6})} = \sqrt{(10^5)} = 316.23 \text{ }\Omega \end{split}$$

π-સેક્શન માટે:

• કટ-ઓફ ફ્રીક્વન્સી: f_c = 1/(π√(LC))

• નોમિનલ ઇમ્પીડન્સ: R₀ = √(L/C)

• T-સેક્શન જેવા જ મૂલ્યો

મેમરી ટ્રીક: "કટ-ઓફ ફ્રીક્વન્સી એ LC ના વર્ગમૂળના વ્યસ્ત છે"

પ્રશ્ન 5(a) OR [3 ગુણ]

કોન્સ્ટન્ટ-કે પ્રકારના ફિલ્ટર્સની મર્યાદા સમજાવો.

ઉत्तर:

કોષ્ટક: કોન્સ્ટન્ટ-k ફિલ્ટર્સની મર્યાદાઓ

મર્યાદા	વિવરણ	અસર
ઇમ્પીડન્સ મેચિંગ	ઇમ્પીડન્સ ફ્રીક્વન્સી સાથે બદલાય છે	સિગ્નલ પરાવર્તન, પાવર નુકસાન
એટેન્યુએશન બેન્ડ	કટ-ઓફ પર ધીમું પરિવર્તન	નબળી ફ્રીક્વન્સી સિલેક્ટિવિટી
ફેઝ રિસ્પોન્સ	નોન-લિનિયર ફેઝ લાક્ષણિકતા	સિગ્નલ ડિસ્ટોર્શન
પાસબેન્ડ રિપલ	પાસબેન્ડમાં અસમાન રિસ્પોન્સ	સિગ્નલ એમ્પ્લિટ્યુડ વેરિએશન
રોલ-ઓફ રેટ	ધીમો રોલ-ઓફ (20 dB/decade)	નબળું સ્ટોપ-બેન્ડ રિજેક્શન

• મુખ્ય સમસ્યા: પાસ બેન્ડથી સ્ટોપ બેન્ડમાં નબળું પરિવર્તન

• સુધારો: m-derived ફિલ્ટર્સનો ઉપયોગ

મેમરી ટ્રીક: "નબળું મેચિંગ અને ટ્રાન્ઝિશન ડિસ્ટોર્શનમાં પરિણમે"

પ્રશ્ન 5(b) OR [4 ગુણ]

T-પ્રકાર કોન્સ્ટન્ટ-કે હાઇ પાસ ફિલ્ટર માટે કટ-ઓફ આવૃત્તિનું સમીકરણ મેળવો.

ઉत्तर:

આકૃતિ: T-પ્રકાર કોન્સ્ટન્ટ-k હાઇ પાસ ફિલ્ટર

વ્યુત્પત્તિ:

1. હાઇ-પાસ ફિલ્ટર માટે, સીરીઝ એલિમેન્ટ્સ કેપેસિટર છે અને શંટ એલિમેન્ટ્સ ઇન્ડક્ટર છે

2. ટ્રાન્સફર ફંક્શન: $H(j\omega) = Z_2/(Z_1 + Z_2)$

3. જ્યાં $Z_1 = 1/(j\omega C)$ અને $Z_2 = j\omega L$

4. કટ-ઓફ માટે ઇમ્પીડન્સ કન્ડિશન: $Z_1/Z_2 = 4$ અથવા $Z_1/4Z_2 = 1$

5. બદલવાથી: 1/(jωC) = 4jωL

6. ω માટે ઉકેલવાથી: ω² = 1/(4LC)

7. કટ-ઓફ ફ્રીક્વન્સી: f_c = 1/(4π√(LC))

મેમરી ટ્રીક: "હાઇ પાસ એક ભાગે ચાર પાઈ એલ-સી નીચેની ફ્રીક્વન્સી કાપે"

પ્રશ્ન 5(c) OR [7 ગુણ]

વ્યાખ્યાઓ અને લાક્ષણિકતાઓના ગ્રાફનો ઉપયોગ કરીને ફિલ્ટર્સનું વર્ગીકરણ આપો.

ઉत्तर:

કોષ્ટક: ફિલ્ટર વર્ગીકરણ

ફિલ્ટર પ્રકાર	પસાર કરે છે	અટકાવે છે	અમલીકરણો
લો-પાસ	f _c નીચેની ફ્રીક્વન્સીઓ	f _c ઉપરની ફ્રીક્વન્સીઓ	ઓડિયો એમ્પ્લિફાયર્સ, પાવર સપ્લાઈ
હાઇ-પાસ	f _c ઉપરની ફ્રીક્વન્સીઓ	f _c નીચેની ફ્રીક્વન્સીઓ	નોઈઝ એલિમિનેશન, ટ્રેબલ કંટ્રોલ
બેન્ડ-પાસ	f _L અને f _H વચ્ચેની રેન્જ	રેન્જની બહારની ફ્રીક્વન્સીઓ	રેડિયો ટ્યુનિંગ, ઇક્વલાઇઝર્સ
બેન્ડ-સ્ટોપ	રેન્જની બહારની ફ્રીક્વન્સીઓ	f _L અને f _H વચ્ચેની રેન્જ	નોઈઝ એલિમિનેશન, નોચ ફિલ્ટર્સ
ઓલ-પાસ	યુનિટી ગેઇન સાથે બધી ફ્રીક્વન્સીઓ	કોઈ નહીં (માત્ર ફેઝ બદલે છે)	ફેઝ કરેક્શન, ટાઇમ ડિલે

લાક્ષણિક રિસ્પોન્સ ગ્રાફ:

ફિલ્ટર અમલીકરણો:

• **પેસિવ**: R, L, C ઘટકોનો ઉપયોગ કરે છે

• **એક્ટિવ**: RC નેટવર્ક સાથે ઓપ-એમ્પ્સનો ઉપયોગ કરે છે

• **ડિજિટલ**: DSP એલ્ગોરિધમનો ઉપયોગ કરે છે

મેમરી ટ્રીક: "લો-હાઇ-બેન્ડ-સ્ટોપ સિગ્નલને પરફેક્ટ બનાવે છે"