9/1/23

CS704

 $\Sigma = \{0,1\}$ Design a DFA that all words with even # 0's & even # 8\ 1's over Σ . $p = \text{even for } 0 \times 1$ $p = \text{even for } 0 \times 1$ $p = \text{even for } 0 \times 1$

0 & 1 T = odd for 0 & 1 9 = odd 0 & even 1 8 = odd 1 & even 0

 \leq = Finite alphabet E* = Set of all (finite) words over E. Et is a countably infinite set. a < b $Eg. \leq = \{a,b\}$ $\Sigma^* = \{ E, a, b, aa, ab, ba, bb, aaa, aab, aac... \}$ $\{ 1, 2, 3, 4, 5, \dots \}$

€ - finite alphabet 151 - no. of letters in 5. # of words over Σ of length $n = |\Sigma|'$ $n+1=|\leq|n+1|$)/ h 17 Let f(n) = 121"

 $| \leq^{*} = f(0) + f(1) + f(2) + \cdots$

Regular la	nguages		
- Mo	del (m/c) is	DFA	
-Regul	la languages	are rol	ust with
respect	to closure	propertie	8
L, - M, DFA			emplexity (size
L2-M2DFA	union - d intersection - d	/ 1	1
for L2	complement - con catenation -	closed — W	998t case 21M -1M1/+1M2)
	Kleene star -	closed -	_
	Set difference	- Closed	$-1M_{11}\times 1M_{2}$

$$\Sigma = \{a, b\}$$

 $L = \{w \in \Sigma^* \mid Third last letter from the right is a 'b' \}$

NFA, NFA = DFA E-NFA