Основы теории множеств. І Семестр

Лектор: Селиванов Виктор Львович Автор конспекта: Буглеев Антон

2022

1 Мощность. Характеристическая функция

Def. Мощностью |A| называется число элементов в A.

Def. Фиксируем произвольное множество U, элементами которого являются множества $A_1, ..., A_n$.

 ${f Xapaktepuctuчeckoй\ функцией\ (индикатором)}$ множества $X\subset$

$$U$$
 называют функцию $\chi_X(u) = egin{cases} 1, u \in X \\ 0, u
otin X \end{cases}$

Основные свойства, если $A, B \subset U$:

1.
$$\chi_{A \cap B} = \chi_A \cdot \chi_B$$

2.
$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$$

3.
$$\chi_{A \triangle B} = \chi_A + \chi_B - 2\chi_{A \cap B}$$

4.
$$\chi_{A^c} = \chi_A$$

Theorem. $|A_1 \cup ... \cup A_n|$ равно

$$\sum_{i} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}| + \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{k}| - \dots$$

Proof.

$$\chi_{A_1 \cup ... \cup A_n} = 1 - (1 - \chi_{A_1}) \cdot ... \cdot (1 - \chi_{A_n})$$

Раскрыв скобки получаем

$$\sum_{i} \chi_{A_{i}} - \sum_{i < j} \chi_{A_{i}} \chi_{A_{j}} + \sum_{i < j < k} \chi_{A_{i}} \chi_{A_{j}} \chi_{A_{k}} - \dots$$
$$\sum_{i} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}| + \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{K}| - \dots$$

что и требовалось.

Theorem. $|A_1 \triangle ... \triangle A_n|$ равно

$$\sum_{i} |A_{i}| - 2 \sum_{i < j} |A_{i}A_{j}| + 4 \sum_{i < j < k} |A_{i}A_{j}A_{k}| - \dots$$

Def. Множества называются **Равномощными**, если между ними можно установить взаимно-однозначное соответствие.

2 Отношения

Def. Отношением называется любое множество $R\subset A\times B$, где A и B - какие-то множества

Def. Бинарное отношение - отношение вида $R \subset X \times X$

Свойства отношений:

- 1. $\forall x \in X : xRx$ (рефлексивность)
- 2. $\forall x, y \in X : xRy \Rightarrow yRx$ (симметричность)
- 3. $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$ (транзитивность)
- 4. $\forall x, y \in X : xRy \land yRx \Rightarrow a = b$ (антисимметричность)
- 5. $\forall x, y \in X : xRy \lor yRx$ (связность)

Def. Отношение эквивалентности - всякое симметричное, рефлексивное и транзитивное отношение

Пример: X - множество прямых в плоскости, тогда всякие прямые $a,b\in X$ находятся в отношении эквивалентности $(a\sim b)$.

Отношение равномощности есть отношение эквивалентности. Примеры:

1. Множество бесконечных последовательностей единиц и нулей равномощно множеству всех подмножеств натуральных чисел. ((010101...) соответствует ряду чётных чисел)

2. Множество подмножеств любого множества U = P(U) равномощно множеству всех функций, которые ставят в соответствие каждому элементу $x \in U$ либо 0, либо 1. Другими словами, каждому $(X \subset P(U))$ соответствует своя характеристическая функция

Def. Отношение частичного порядка - всякое рефлексивное, транзитивное и антисимметричное отношение.

Пример: пусть $X = \mathcal{P}(M)$ - множество всех подмножеств множества M. Два произвольные множества $A, B \subset X$ находятся в отношении частичного порядка $(A \leq B)$.

Def. Отношение линейного порядка - всякое связное отношение частичного порядка.

3 Счётные множества

Def. Множество называется *счётным*, если оно равномощно \mathbb{N} .

Пример: множество $\mathbb Z$ счётно, так как множество $\mathbb Z$ можно представить в виде: $\{0,1,-1,2,-2,\dots\}$.

Theorem. Подмножество счётного множества конечно или счётно.

Proof. Возьмём счётное множество $A = \{a_0, a_1, a_2, \dots\}$. Множество B образуем следующим образом: вычёркиваем из A те элементы, которые $\notin B$, сохраняя порядок оставших. Очевидно, оставшиеся члены образуют бесконечную последовательность (тогда B - счётно, так как сохранился пронумерованный порядок), либо B конечно. \square

Theorem. Всякое бесконечное множество содержит счётное множество.

Proof. Пусть имеется бесконечное множество B. Возьмём некоторый элемент $b_1 \in B$. Так как B бесконечно, возьмём какой-либо другой элемент $b_2 \in B$, и так далее. Множество $\{b_1, b_2, \ldots, b_n\} \subset B$ является счётным.

Theorem. Объединение конечного или счётного числа конечных или счётных множеств конечно или счётно.