Tópicos de Matemática

— 1º teste (15 de novembro de 2017) — duração: 2 horas _____

- 1. Considere que as variáveis proposicionais p, q e r representam as afirmações seguintes:
 - p: A Maria tem 20 valores no teste.
 - q: A Maria resolve todos os exercícios do livro.
 - r: A Maria é aprovada na disciplina de Tópicos de Matemática.

Recorrendo às variáveis anteriores, represente por fórmulas do Cálculo Proposicional as afirmações F_1 , F_2 e F_3 a seguir indicadas.

- F_1 : A Maria não resolve todos os exercícios do livro, mas é aprovada na disciplina de Tópicos de Matemática
- F_2 : A Maria não tem 20 valores no teste sempre que não resolve todos os exercícios do livro.
- F₃: A Maria é aprovada na disciplina de Tópicos de Matemática só se resolve todos os exercícios do livro e se tem 20 valores no teste.
- 2. Diga, justificando, se são verdadeiras ou falsas, as afirmações seguintes.
 - (a) A fórmula $(p \to \neg q) \land \neg (p \lor (q \leftrightarrow p))$ tem valor lógico verdadeiro sempre que p tem valor lógico falso.
 - (b) Se φ e ψ são fórmulas proposicionais logicamente equivalentes, então $\neg \varphi \to \neg (\varphi \lor \psi)$ é uma tautologia.
- 3. Considerando que p representa a proposição $\forall_{x \in A} ((\exists_{y \in A} \ x = 3 + y) \to (y \le 0 \lor y \ge 2)),$
 - (a) Diga, justificando, se p é verdadeira para:
 - (i) $A = \{-5, -2, 2, 5\}$;
 - (ii) $A = \{-5, -2, 1, 4, \}.$
 - (b) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 4. Mostre que, para qualquer inteiro n, se $(n+1)^2$ não é múltiplo de 2, então $3n^2+6n-3$ não é múltiplo de 6.
- 5. Considere os conjuntos

$$A = \{0, 17, \{5, 8\}\}, \quad B = \{1, 2\}, \quad C = \{0, (\{5, 8\}, 1), \{17, 2\}, (0, 2), (2, 17)\}, \quad D = \{x \in \mathbb{Z} : 2|x| + 1 \in A\}.$$

- (a) Determine $(A \times B) \cap C$.
- (b) Dê exemplo de um conjunto E tal que $A \cap \mathcal{P}(E) \neq \emptyset$ e $D \setminus E = \emptyset$.
- 6. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira para quaisquer conjuntos $A, B \in C$.
 - (a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
 - (b) Se $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(C)$, então $A \subseteq C$ e $B \subseteq C$.
 - (c) Se $A \setminus B = A \setminus C$, então $A \cap B = A \cap C$.
- 7. Prove, por indução nos naturais, que, para todo o natural n,

$$3 \cdot 8 + 6 \cdot 11 + \ldots + 3n(3n+5) = 3n(n+1)(n+3).$$