Sammenhængskomponenter i grafer

Ækvivalensrelationer

Repetition:

En relation R på en mængde S er en delmængde af $S \times S$. Når $(x,y) \in R$ siges x at stå i relation til y. Ofte skrives $x \sim y$, og relationen selv betegnes " \sim ".

Relation kaldes en ækvivalensrelation hvis der for alle $x, y, z \in S$ gælder:

- \rightarrow $x \sim x$.
- $ightharpoonup x \sim y \Rightarrow y \sim x.$
- $ightharpoonup x \sim y \wedge y \sim z \Rightarrow x \sim z.$

En ækvivalensrelation deler S i disjunkte delmængder (hver bestående af elementer som er i relation til hinanden, men ikke til andre elementer), og kaldes derfor også en partition.

Ækvivalensrelationer på en grafs knuder

Uorienterede grafer:

For $v, u \in V$:

$$v \sim u \Leftrightarrow \text{der er en (uorienteret) sti mellem } u \text{ og } v$$

Giver en partition af grafens knuder V:

De kaldes grafens sammenhængskomponenter (CC'er).

Finde dem? Via DFS eller BFS med GLOBAL ydre loop. Hvert kald fra ydre loop opdager præcis knuderne i én sammenhængskomponent (fra tidligere sætninger om $\operatorname{GENERICGRAPHTRAVERSAL}(s)$ ses, at et kald opdager præcis de knuder, som kan nås fra s via en sti af hvide knuder på tidspunktet for kaldet).

Tid?
$$O(n+m)$$
.

Ækvivalensrelationer på en grafs knuder

Orienterede grafer:

For $v, u \in V$:

$$v \sim u \quad \Leftrightarrow \qquad \qquad \mathsf{OG}$$
 der er en (orienteret) sti fra u til v

Giver en partition af grafens knuder V:

De kaldes grafens stærke sammenhængskomponenter (SCC'er).

Finde dem?

Finde stærke sammenhængskomponenter

Algoritme:

```
SCC(G) call DFS(G) to compute finishing times u.f for all u compute G^T call DFS(G^T), but in the main loop, consider vertices in order of decreasing u.f (as computed in first DFS) output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC
```

Her er G^T grafen G med alle kanter vendt.

Tid?
$$O(n+m)$$
.

Korrekthed? De næste sider...

Sætning:

Algoritmen SCC ovenfor er korrekt, dvs. træerne returneret fra det andet kald til DFS repræsenterer præcis G's SCC'er.

Bevis: Over de næste sider.

Bemærk først at

Der er en sti $u \rightsquigarrow v$ i $G \Leftrightarrow Der er en sti <math>v \rightsquigarrow u$ i G^T

Heraf følger

u og v i samme SCC i $G \Leftrightarrow u$ og v i samme SCC i G^T Så G og G^T har de samme SCC'er.

For en knudemængde $C \subseteq V$ defineres $f(C) = \max_{v \in C} v.f$ (hvor f angiver tiden fra første DFS i SCC-algoritmen).

Lemma 1:

Hvis C, C' er to forskellige SCC'er i G, og (x, y) er en kant i G med $x \in C$ og $y \in C'$, da gælder f(C) > f(C').

Bevis for Lemma 1 gives på næste side.

Da G^T er G med alle kanter vendt, og da SCC'erne er de samme i G^T og G, kan lemmaet også formuleres således:

Lemma 2:

Hvis C, C' er to forskellige SCC'er i G^T , og (x, y) er en kant i G^T med $x \in C$ og $y \in C'$, da gælder f(C) < f(C').

Bevis (Lemma 1):

Lad u være den første knude i $C \cup C'$ som opdages.

Case 1: $u \in C$. Her er der en sti fra u til w for alle $w \in C \cup C'$, så udsagnet følger af hvid-sti lemma.

Case 2: $u \in C'$. Her er der en sti fra u til w for alle $w \in C'$, så af hvid-sti lemma følger f(C') = u.f.

Antag at der fandtes en knude $v \in C \mod v.d < u.f$. Da u.d < v.d (eftersom u var den først opdagede i $C \cup C'$) giver parentesstrukturen for d- og f-tider at u.d < v.d < v.f < u.f. Dvs. at v og u er på stakken samtidig, med v øverst (push'et senest). Da det er en invariant under DFS at der i grafen findes en sti mellem knuderne på stakken (fra tidligere til senere push'ede knuder), ville dette betyde en sti fra $u \in C'$ til $v \in C$. Sammen med kanten (x,y) ville dette medføre at alle knuder i $C \cup C'$ var i samme SCC, i modstrid med at C og C' er to forskellige SCC'er.

Derfor haves v.d > u.f for alle $v \in C$, så f(C) > u.f = f(C').

Vi viser nu sætningen om korrekthed af SCC-algoritmen ved at vise at for alle k gælder:

Knuderne i de k første træer genereret under den anden DFS i SCC-algoritmen udgør hver især en SCC i G^T .

Da SCC'erne i G og G^T er de samme, og da alle knuder i grafen er i et af træerne, viser dette korrektheden.

Vi viser ovenstående udsagn via induktion på k.

Skridt: Antag sandt for k, vis sandt for k + 1.

Det (k+1)'te træ genereres ved det (k+1)'te kald til DFS-VISIT i **for**-løkken i det ydre loop i DFS. Lad u være knude, der kaldes på.

Hvis vi stiller knuderne op i **for**-løkkens rækkefølge (efter aftagende v.f-værdi), ser situationen sådan ud på tidspunktet for dette kald:

Sorte knuder er de indtil nu opdagede under DFS, hvide er de uopdagede.

Lad C være SCC'en indeholdende u, og lad T være træet genereret af kaldet på u. Af induktionsantagelsen udgør de sorte knuder præcis k af grafens SCC'er. Derfor må alle andre SCC'er ligge inden i de hvide knuder, og C er en af disse (da u er hvid).

Eftersom der ved starten af kaldet er en hvid sti fra u til alle $w \in C$, giver hvid-sti lemma at $C \subseteq T$.

Lad C' være en vilkårlig hvid SCC forskellig fra C. Pga. **for**-løkkens rækkefølge ses u.f = f(C) > f(C').

Hvis der var en kant i G^T , som gik fra C til C', ville Lemma 2 give f(C) < f(C').

Så ingen kant i G^T kan gå fra C til C'. Da $\mathrm{DFS\text{-}VISIT}$ ikke besøger de sorte knuder, kan den derfor ikke forlade C. Heraf ses $T \subseteq C$.

Vi har i alt vist T = C, hvilket viser udsagnet for k + 1.

Basis: Samme argument, blot lidt simplere (der er ingen sorte knuder, og u er første knude i rækkefølgen), viser udsagnet for k = 1.