Table 2: FT-IR Spectral Data

Structure	Wavenumber (cm ⁻¹) Literature Experimental		Intensity	Functional Group
Br	3034	3036	Weak	$C_{\rm sp^2}$ -H
	2992	2986	Weak	$C_{sp^3}^{-1}$ -H
	966	966	Medium	Ĉ-X
	910	761	Strong	1-sub. benzene
	695	694	Strong	1-sub. benzene

Table 3: ¹H NMR Spectral Data

Assignment	δ (ppm)	Integration	Multiplicity				
A	1.95	3	d				
В	5.17	1	q				
С	7.32	5	m				
D	7.32	5	m				
E	7.32	5	m				
F	7.32	5	m				
G	7.32	5	m				
	Assignment A B C D E F	Assignment δ (ppm) A 1.95 B 5.17 C 7.32 D 7.32 E 7.32 F 7.32	Assignment δ (ppm) Integration A 1.95 3 B 5.17 1 C 7.32 5 D 7.32 5 E 7.32 5 F 7.32 5 F 7.32 5				

3 Chemistry

The reaction performed in this experiment, treating an alkene with H-X, is known as a hydrohalogenation reaction, and follows this specific mechanism:

The regiochemistry of this reaction must be considered as there are two vinylic positions that could have beared the hydrogen. Hence, these are the two possible products of this reaction:

(1-bromoethyl)benzene Markovnikov product (2-bromoethyl)benzene *anti*-Markovnikov product

Table 2: FT-IR Spectral Data

Structure	Wavenumber (cm ⁻¹) Literature Experimental		Intensity	Functional Group
ОН	3366	3401	Strong	-OH str.
	3063	3063	Medium	$C_{\rm sp^2}$ -H str.
	2965	2972	Strong	$C_{\rm sp^3}$ -H str.
	746	738	Strong	monosub. benzene
	700	701	Strong	monosub. benzene

Table 3: ¹H NMR Spectral Data

Structure	Assignment	δ (ppm)	Integration	Multiplicity
OH	A	7.30	5	S
(A) (E)	В	4.55	1	t
(A) (B) (D)	C	2.24	1	bs
(D)	D	1.68	2	q
(A) (A)	E	1.06	1	m

3 Chemistry

In order to perform this reaction, a Grignard reagent first needed to be made. This is typically performed by reacting an alkyl halide with Mg, as shown below. C is far more electronegative than Mg, withdrawing electron density from Mg to give it a δ – charge. The difference is so large that it can be depicted as an ionic bond³.

This allows the Grignard reagent to react as a carbon nucleophile, attacking the electrophilic carbonyl group as shown below.