學號: B02902044 系級: 資工四 姓名: 陳映紅

1. 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何?

A. 模型架構

如上表(因模型圖過長,所以已先切割),我使用「Con2D, Activation, Con2D, Activation, Batch Normalization, MaxPooling2D, Dropout」的架構,重複三次後接一層 Dense,最後輸出。

我使用 keras.callbacks 的 EarlyStopping,如下圖。

我也使用 keras.preprocessing.image 的 ImageDataGenerator,如下圖,試著將訓練資料隨機轉動、隨機水平或垂直平移、隨機翻轉。

另外,我以前10%的訓練資料作為Validation Set。

B. 訓練過程

如下表,比較有無使用 ImageDataGenerator 的差別(CNN 架構不變)。 雖然使用前的 validation loss 和 accuracy 看起來都有明顯進步,但是仍 然較使用 ImageDataGenerator 後差。

另外,不管有無使用 ImageDataGenerator,執行 $10\sim15$ 個 epoch 即自行停止,但使用 ImageDataGenerator 時每個 epoch 大約執行 470 秒,不使用時大約執行 40 秒。

C. 準確率

下表為兩個版本的 CNN 於 Kaggle Public Set 上的成績,使用 ImageDataGenerator 可顯著提升模型表現。

With ImageDataGenerator	Without ImageDataGenerator
0.69351	0.61577

2. 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼?

A. 參數數量

CNN	DNN
Total params: 1,268,135 Trainable params: 1,266,727 Non-trainable params: 1,408	Total params: 1,268,450 Trainable params: 1,267,876 Non-trainable params: 574

B. 模型架構

如下表(因模型圖過長,所以已先切割),我使用「Dense, Dense, Batch Normalization, Dropout」的架構,重複四次後輸出。和上一題的 CNN 架構比起來,我的 DNN 比較寬,深度較淺。

C. 訓練過程

EarlyStopping 和取 Validation Set 的方式不變,每個 epoch 大約執行 10 秒,執行 25 個 epoch 後自行停止。與 CNN 相比,DNN 在第一個 epoch 的表現就比較差,且訓練時的 loss 和 accuracy 的進步速度較慢,即使 訓練較多個 epoch,最後的表現也較差。

D. 準確率

Kaggle Public Score: 0.32488

3. 觀察答錯的圖片中,哪些 class 彼此間容易用混?

A. Confusion Matrix

- B. 容易混淆的 Class (≥ 0.15)
 - i. Sad 誤認為 Neutral
 - ii. Fear 誤認為 Sad
 - iii. Angry 誤認為 Sad
 - iv. Fear 誤認為 Angry

觀察可發現,容易混淆的 Class 大致偏向負面情緒,我推測可能是嘴型 張大或下垂會讓模型混淆。

4. 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

分類時幾乎都針對五官(尤其眼睛和嘴巴), 臉頰也會影響分類結果。

5. 承(1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate。

Filters of layer activation_1 (# Ascent Epoch 200)

Output of layer0 (Given image320)

由第一張圖可發現,可讓激活各 filter 的圖大不相同,有的是明顯的長條紋,有些則是點狀、網狀紋路。

對照第一張與第二張圖可發現,經過某些 filter 後幾乎認不出原圖,而經橫/ 直條紋後的圖形較明顯,我認為是因為原本的 input 所包含的橫/直條紋較多, 因此經過 filter 後的結果也較明顯。

再比對第二及第三張圖, image2044 原圖的橫線部分較 image320 多, 而 image320 的直條紋路又較 image2044 多, 因此兩張圖對 filter 的反應也不同: image2044 對橫條紋 filter 的反應明顯, image320 則對直條紋 filter 反應明顯。

註:其他 python 檔案的執行方式

- dnn.py、plot_filter.py、plot_layer_output.py、plot_saliency.py: 直接執行 python3
- plot_struct_confusion.py :python3 plot_struct_confusion.py [model_structure.png] [confusion_matrix.png]
- plot_chart.py:
 python3 plot_chart.py [training_history.csv] [chart_title]
 training history.csv 是我在訓練時自行產生的檔案