Por exemplo, o modelo SMA(1).

$$Z_t = a_t - \Theta a_{t-12}$$

terá autocorrelação não-nula, somente no "lag" 12, ou seja,

$$\rho_{12} = \frac{-\Theta}{1 + \Theta^2}, \quad \rho_j = 0, \ j \neq 0, \ \pm 12.$$

Exemplo 10.3 Um modelo auto-regressivo sazonal puro, SAR(P), é da forma

$$Z_t = \Phi_1 Z_{t-12} + \dots + \Phi_P Z_{t-12P} + a_t.$$

A fac será não-nula somente nos "lags" múltiplos de 12. O modelo SAR(1)

$$Z_t = \Phi Z_{t-12} + a_t.$$

tem fac dada por

$$\rho_{12} = \Phi,$$

$$\rho_{24} = \Phi^2,$$
:

(10.27)

$$\rho_{12j} = \Phi^j, \ j = 0, 1, \dots$$

Observamos também que o modelo SAR(1) é estacionário se  $|\Phi|<1$ e o efeito sazonal é transitório e vai se amortecendo. Do mesmo modo, o modelo SMA(1) é invertivel se  $|\Theta| < 1$ .

**Exemplo 10.4** Um modelo SARIMA(0,1,1)  $\times$  (0,1,1)<sub>12</sub> tem a forma

$$(1-B)(1-B^{12})Z_t = (1-\theta B)(1-\Theta B^{12})a_t$$

on

$$W_t = (1 - B)(1 - B^{12})Z_t = (1 - \theta B - \Theta B^{12} + \theta \Theta B^{13})a_t.$$

Este modelo é frequentemente utilizado em aplicações e é chamado "airline model" (veja Box, Jenkins e Reinsel, 1994).

Calculando a função de autocovariância temos

$$\begin{split} \gamma(0) &= \sigma^2 (1 + \theta^2 + \Theta^2 + \theta^2 \Theta^2), \\ \gamma(1) &= \sigma^2 (-\theta - \theta \Theta^2), \end{split}$$

$$\gamma(2) = 0 \ (-9 - 99),$$
  
 $\gamma(2) = \gamma(3) = \dots = \gamma(10) = 0.$ 

$$|11\rangle = \sigma^2(\theta\Theta)$$

$$\gamma(11) = \sigma^2(\theta\Theta),$$
  
$$\gamma(12) = \sigma^2(-\Theta - \theta^2\Theta).$$

$$\gamma(13) = \sigma^2(\theta\Theta).$$

$$\gamma(j) = 0, j > 1$$

## 10.3. SAZONALIDADE ESTOCÁSTICA

ou seja, a fac tem valores diferentes de zero nos "lags" 1, 11, 12 e 13 com  $\rho(11)$  =

Um modelo um pouco mais geral, com  $\rho(11) \neq \rho(13)$  é o modelo não-multiplicativo

$$W_t = (1 - \theta B - \theta_1 B^{12} - \theta_2 B^{13}) a_t$$

com

$$\gamma(0) = \sigma^2(1+\theta^2+\theta_1^2+\theta_2^2),$$

$$\gamma(1) = \sigma^2(-\theta + \theta_1\theta_2),$$

$$\gamma(11) = \sigma^2(\theta\theta_1),$$

$$\gamma(12) = \sigma^2(-\theta_1 + \theta\theta_2),$$

$$\gamma(13) = -\sigma^2 \theta_2 \neq \gamma(11).$$

Exemplo 10.5 O programa X-12-ARIMA de ajustamento sazonal, do Bureau do Censo dos Estados Unidos, talvez seja o procedimento de ajustamento sazonal mais utilizado na prática, notadamente por agências governamentais.

O procedimento consiste, basicamente, em aplicar filtros lineares (médias móveis) simétricos. A composição de tais filtros pode ser escrita na forma

$$S_t = \sum_{-M}^{M} \nu_{|j|} Z_{t-j} = \nu(B) Z_t, \tag{10.28}$$

onde  $M=82,\,84$  ou 89, de acordo com o filtro usado para remover a tendência.

Cleveland (1972a) e Cleveland e Tiao (1976) tentaram identificar modelos ARL-MA que fossem compatíveis com (10.28) e encontraram dois modelos que são da

$$(1-B)(1-B^{12})Z_t = \theta(B)a_t,$$

onde  $\theta(B)$  é um operador de médias móveis de ordem 24 em B.

10.3.1 Identificação, estimação e verificação

Não há, em princípio, nenhuma dificuldade adiciónal ha identificação, estimação e verificação de modelos sazonais. A diferença é que temos que diferençar a série com respeito a  $\Delta$  e  $\Delta_{12}$  (por simplicidade, estamos considerando só séries mensais com período s=12), a fim de produzir estacionariedade. Com isto obtemos valores para  $d \in D$  que, na maioria das vezes, assumem valores no máximo iguais a 2.

Depois, inspecionamos as fac e facp amostrais da série adequadamente diferençada nos "lags" 1, 2, 3, ... para obter valores de p e q e nos "lags" 12, 24, 36, ... para obter valores de P e Q, selecionando-se, desse modo, um modelo tentativo,

madores de máxima verossimilhança, de maneira análoga ao que foi feito na seção Em seguida, estimamos os valores dos parametros identificados, utilizando esti10.3.

Finalmente, para verificar se o modelo proposto é adequado, utilizamos os testes de autocorrelação residual, Box-Pierce, periodograma acumulado, como na seção 8.2.

Pode-se calcular a previsão para um modelo sazonal multiplicativo de modo análogo ao do modelo ARIMA(p,d,q), utilizando-se uma das três formas da seção o 3

Exemplo 10.6 Suponha que o modelo ajustado seja

$$(1-B)(1-B^{12})Z_t = (1-\theta B)(1-\Theta B^{12})a_t$$

ou seja, um modelo SARIMA $(0,1,1) \times (0,1,1)_{12}$ .

Desenvolvendo, temos que, no instante t+h

$$Z_{t+h} = Z_{t+h-1} + Z_{t+h-12} - Z_{t+h-13} + a_{t+h} - \theta a_{t+h-1} - \theta a_{t+h-12} + \theta \theta a_{t+h-13}.$$

Portanto, a previsão de EQM mínimo, feita na origem t, é

$$\hat{Z}_t(h) = [Z_{t+h-1}] + [Z_{t+h-12}] + \dots + [\theta\Theta a_{t+h-13}],$$

onde continuam a valer as regras (9.14).

Se h = 4, temos

$$\hat{Z}_t(4) = \hat{Z}_t(3) + Z_{t-8} - Z_{t-9} - \theta a_{t-8} + \theta \Theta a_{t-9}$$

no

$$\hat{Z}_{t}(4) = \hat{Z}_{t}(3) + Z_{t-8} - Z_{t-9} - \theta[Z_{t-8} - \hat{Z}_{t-9}(1)] + \theta\Theta[Z_{t-9} - \hat{Z}_{t-10}(1)],$$

do que decorre, finalmente,

$$\hat{Z}_t(4) = \hat{Z}_t(3) + \theta \hat{Z}_{t-9}(1) - \theta \Theta \hat{Z}_{t-10}(1) + (1-\theta)Z_{t-8} - (1-\theta\Theta)Z_{t-9}.$$

Pode-se verificar que a função de previsão é a solução da equação de diferenças

$$\phi(B)\Phi(B^{12})(1-B)^d(1-B^{12})^D \hat{Z}_t(h) = 0.$$

Box, Jenkins e Reinsel (1994) fornecem a solução da equação acima para vários operadores auto-regressivos.

**Exemplo 10.7** Vamos considerar a Série A<sub>3</sub> - Lavras, com 384 observações mensais (janeiro de 1966 a dezembro de 1997). Utilizaremos 372 observações para a identificação, estimação e verificação do modelo; as 12 últimas observações servirão como base para comparar as previsões.

A Figura 10.2 apresenta o gráfico da série, o periodograma e as funções de autecorrelação e autocorrelação parcial amostrais. O periodograma apresenta um pied

# na freqüência $\frac{32}{384}$ ciclos, indicando (como veremos no Capítulo 15) uma componente periódica de 12 meses. A existência dessa componente periódica também se reflete no comportamento senoidal do correlograma e indica a necessidade de se aplicar uma diferença sazonal de ordem 12, à série original, com o objetivo de eliminar essa componente.

A Figura 10.3 apresenta as fac e facp da série  $(1-B^{12})Z_1$ , com os respectivos intervalos de confiança. A análise do correlograma revela, nitidamente, a presença de correlações altas nos "lags" 12, 15 e 16. Além disso, as demais autocorrelações são não significantes, indicando um comportamento estacionário na série com uma diferença sazonal. Isto sugere, como modelo preliminar, um SARIMA(0,0,0) ×  $(0,1,1)_{12}$  com uma constante:

$$(1 - B^{12})Z_t = (1 - \Theta_1 B^{12})a_t + \theta_0. \tag{10.29}$$

O Quadro 10.2 apresenta a estimação dos parâmetros utilizando o MINITAB. As fac e facp dos resíduos do modelo (10.29) estão na Figura 10.4. Analisando os resultados do Quadro 10.2, vemos que  $\theta_0$  não é significante devendo, portanto, ser retirado do modelo. A análise residual (Figura 10.4) sugere a introdução de um polinômio autoregressivo no modelo, pois  $\phi_{IJ}$ ,  $\phi_{99}$  e  $\phi_{15,15}$  são significantemente diferentes de zero, indicando como modelo alternativo

$$(1 - \phi_1 B - \phi_9 B^9 - \phi_{15} B^{15})(1 - B^{12}) Z_t = (1 - \Theta_1 B^{12}) a_t. \tag{10.30}$$

Analisando o Quadro 10.3, podemos verificar que todos os parâmetros são siguficantes. A Figura 10.5 indica um bom ajustamento do modelo, uma vez que o comportamento da fac residual é compatível com a de um processo de ruído branco.



Figura 10.2: Série A $_1$ - Lavras, periodograma e funções de autocorrelação e autocorrelação pareial (SPlus).



Figura 10.3: Fac e fac<br/>p da série  $(1-B^{12})Z_t$  (SPlus)

| Δ                                                  | 000,0  | 0,456    | Differencing: O regular, 1 seasonal of order 12<br>Number of observations: Original series 372, after differencing<br>Residuals: SS = 2201414 (backforecasts excluded)<br>MS = 6149 DF = 358 |
|----------------------------------------------------|--------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E                                                  |        | 0,75 0,  | order ]<br>es 372,                                                                                                                                                                           |
|                                                    |        |          | sonal of<br>nal seri<br>(backfor<br>F = 358                                                                                                                                                  |
| arameters<br>SE Coef                               | 0,0271 | 0,3741   | lar, 1 seasonal of order 12<br>ns: Original series 372, after di<br>2201414 (backforecasts excluded)<br>6149 DF = 358                                                                        |
| ates of P<br>Coef                                  | 0,9468 | 0,2792   | g: 0 regu<br>bservatio<br>SS ==<br>MS ==                                                                                                                                                     |
| Final Estimates of Parameters<br>Type Coef SE Coef | SMA 12 | Constant | Differencing: 0 regular, 1 seasonal of order 12 Number of observations: Original series 372, at Residuals: SS = 2201414 (backforecasts ex. MS = 6149 DF = 358                                |

360

Quadro 10.2: Ajustamento de um modelo SARIMA(0,0,0) ×  $(0,1,1)_{12}$  com  $\theta_0$  à série  $A_3$  - Lavras (MINITAB).

Assim, um modelo proposto para a Série  ${\bf A}_3$ - Lavras é dado por

$$(1+0.1143B-0.1207B^9+0.1248B^{15})(1-B^{12})Z_t = (1-0.9797B^{12})a_t$$
. (10.31)

 $com \ \hat{\sigma}_u^2 = (76.41)^2.$ 

As previsões para precipitação em Lavras durante o ano de 1997, com origem em dezembro de 1996 (t=372), estão na Tabela 10.5. O EQMP de origem 372 é dado por 2276.20. As previsões atualizadas a cada nova observação estão na Tabela 10.6. A representação gráfica dessas tabelas estão nas Figuras 10.6 e 10.7, respectivamente.



Figura 10.4: Fac e facp dos residuos do modelo (10.29) (MINITAB)

| ia i            | ,         | 0        | 90.  |       | .05  | 0          |      |             | 01   | 0.1   | 0        | 0.1  |
|-----------------|-----------|----------|------|-------|------|------------|------|-------------|------|-------|----------|------|
| ָ<br>װֻ<br>ע    | .05       | .05      | .05  | .05   | .05  | .05        | .05  | .05         | .05  |       |          |      |
| 2-2             |           | <b>.</b> |      |       |      |            | ٠    | •           |      | 4.    | 4.       | δ.   |
| ,               | 0.1       | +0       | 0    | .07   | .01  | .04        | .02  | .01         | 00   | 0     | c        | -    |
| ST.E.           | .05       | .05      | 90.  | 0     | 0    | 0          | 0    | 0           | C    | •     |          |      |
| œ               | •         | 8.3      | 8.3  | 6.6   | 6.6  | 10.5       | 10.6 | 10.7        | 10.7 | 11.9  | 12       | 12.9 |
| ŧ               | 1.0 -     | 8.0      | 9.6  | 0.4 - | 0.2  | 0.0        | 0.2  | • •         | 9.0  | 0.8   |          |      |
| 0.0             |           |          |      |       |      | 1 1 1      | Ė    | i<br>i<br>t | +    | +     | +        |      |
| 0.0             |           |          |      |       | - +  |            |      |             |      |       |          |      |
| 3 0.06          |           |          |      |       | - +  | 4 4        |      |             |      |       |          |      |
| 0.0             |           |          |      |       | - +  |            |      |             |      |       |          |      |
| 0.0             |           |          |      |       | - +  | - +<br>- > |      |             |      | -     |          |      |
| -0.0            |           |          |      |       | . 4  |            | -    |             |      |       |          |      |
| -0.0            |           |          |      |       | . +  |            |      |             |      |       |          |      |
| 0.0-            |           |          |      |       | - 4  |            |      |             |      |       |          |      |
| 0               |           |          |      |       | ٠ -  |            |      |             |      |       |          |      |
|                 |           |          |      |       | ٠ -  |            | _    |             |      |       |          |      |
|                 |           |          |      |       | +    |            |      |             |      |       |          |      |
| 7               |           |          |      |       | +    |            |      |             |      |       |          |      |
| 7 -0.0          |           |          |      |       | +    |            |      |             |      |       |          |      |
| 3 -0.0          |           |          |      |       | *    |            |      |             |      |       |          |      |
| 4 -0.0          |           |          |      |       | +    |            |      |             |      |       |          |      |
| 5 0.0           |           |          |      |       | +    | +          |      |             |      |       |          |      |
| PARTIAL AUTOO   | CORREL    | ATION    | S    |       |      |            |      |             |      |       |          |      |
| 1 - 12          | 2 .01 .05 | .05      | 0    | .02   | .04  | - 02       | _    | Č           | _    | C     | ς.       | •    |
| E.E             | .05       | .05      | .05  | .05   | 9    |            |      |             | •    |       |          | † ·  |
|                 |           |          |      | •     | •    |            |      | >           |      |       | .0.      |      |
| 13- 24<br>ST.E. | . 07      | 40.      | .02  | 80.   | .02  | 40.        | .01  | 01          | 03   | 07    | .05      | 01   |
| 1               | >         | >        | >    | ć.    | _    | .05        | 0    | .05         |      |       | .05      | .05  |
| ī               | 1.0 -0    | .8 -0    | 0-9- | 4.    | 0.2  | 0.0        | 0.2  | 0.4         | 9.0  | 8.0   |          |      |
| 0.0             |           |          |      |       | 1 1  |            |      | -           | 1    | 1 + + | <b>+</b> |      |
|                 |           |          |      |       | - 4  | >          |      |             |      |       |          |      |
| 0.0             |           |          |      |       | - 4  |            |      |             |      |       |          |      |
| 0.0             |           |          |      |       | - 4  |            |      |             |      |       |          |      |
| 0.0             |           |          |      |       | - +  |            |      |             |      |       |          |      |
| -0.0            |           |          |      |       | . +  | - +        |      |             |      |       |          |      |
| 0               |           |          |      |       |      | + +        |      |             |      |       |          |      |
| -0.0            |           |          |      |       |      |            |      |             |      |       |          |      |
| -0.0            |           |          |      |       |      | + +        |      |             |      |       |          |      |
| 0.0- 0          |           |          |      |       |      |            |      |             |      |       |          |      |
| 1 0.0           |           |          |      |       |      |            |      |             |      |       |          |      |
| 2 -0.0          |           |          |      |       |      |            |      |             |      |       |          |      |
| 0               |           |          |      |       |      |            |      |             |      |       |          |      |
| 4 -0 0          |           |          |      |       | 1441 |            |      |             |      |       |          |      |
|                 |           |          |      |       | +    | +          |      |             |      |       |          |      |

Figura 10.5: Fac e facp dos resíduos do modelo (10.30). (SCA)

| T                  | 48.62<br>-2.17<br>2.29<br>-2.38  |                                           |
|--------------------|----------------------------------|-------------------------------------------|
| STD<br>ERROR       | .0202<br>.0526<br>.0527<br>.0524 |                                           |
| VALUE              | .9797<br>1143<br>.1207<br>1248   | 345<br>0.609<br>0.764146E+02              |
| ORDER              | 122                              | 0.764                                     |
| FACTOR             | пене                             | IONS                                      |
| NUM./<br>DENOM.    | MA<br>AR<br>AR                   | F OBSERVATIONS .                          |
| VARIABLE<br>NAME   | CHUVA<br>CHUVA<br>CHUVA          | UMBER OF C                                |
| Parameter<br>Label | ы (V (V 4                        | EFFECTIVE NUMBER OF OBSERVATIONS R-SQUARE |

Quadro 10.3: Ajustamento do modelo (10.30) à série  ${\rm A}_3$  - Lavras (SCA).

Tabela 10.5: Previsões para a série A3 - Lavras, utilizando o modelo (10.31), com origem em t=372 e  $h=1,2,3,\ldots,12$ .

| t + h | $Z_t(h)$ | Erro padrão | $Z_{t+h}$ |
|-------|----------|-------------|-----------|
| 373   | 277,2163 | 76,4146     | 383,3000  |
| 374   | 204,9797 | 76,9122     | 114,5000  |
| 375   | 147,3592 | 76,9187     | 96,5000   |
| 376   | 84,2264  | 76,9188     | 61,1000   |
| 377   | 36,1203  | 76,9188     | 41,0000   |
| 378   | 43,3006  | 76,9188     | 52,6000   |
| 379   | 16,4859  | 76,9188     | 5,6000    |
| 380   | 36,8743  | 76,9188     | 1,2000    |
| 381   | 70,1048  | 76,9188     | 38,8000   |
| 382   | 123,3342 | 77,4694     | 164,1000  |
| 383   | 205,4861 | 77,4981     | 194,8000  |
| 384   | 275,8692 | 77,4990     | 253,6000  |

Previsões atualizadas para a série A<sub>3</sub> - Lavras, utilizando o modelo (10.31). Tabela 10.6:

| Airestations | And the second s |             |           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| +            | $Z_{t-1}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Erro padrão | $Z_{t+h}$ |
| 373          | 277,2163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76,4146     | 383,3000  |
| 374          | 192,8538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76,4146     | 114,5000  |
| 375          | 157,7015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76,4146     | 96,5000   |
| 376          | 90,0398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76,4146     | 61,1000   |
| 377          | 38,7638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76,4146     | 41,0000   |
| 378          | 42,7428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76,4146     | 52,6000   |
| 379          | 15,4229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76,4146     | 5,6000    |
| 380          | 38,1187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76,4146     | 1,2000    |
| 381          | 74,0926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76,4146     | 38,8000   |
| 382          | 139,7024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76,4146     | 164,1000  |
| 383          | 189,9089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76,4146     | 194,8000  |
| 384          | 270,9539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76,4146     | 253,6000  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |



Figura 10.6: Série  $A_3$  - Lavras, observações de jan. 94 a dez. 97 e previsões (linha tracejada) para o ano de 1997, utilizando o modelo (10.31), com origem em dez. 96 e h = 1, 2, ..., 12.



existência de um pico significante, na freqüência  $\frac{16}{187}$  ciclos, no periodograma. A Exemplo 10.8 Vamos analisar agora a série A<sub>8</sub> - IPI, no período compreendido entre janeiro de 1985 e julho de 2000. Observamos, Figura 10.8, que a série apresenta uma componente sazonal de período 12 meses. Tal observação é comprovada pela uma diferença sazonal de ordem 12, com o objetivo de eliminá-la ou mesmo atenuáexistência da componente sazonal implica na necessidade de se aplicar nos dados

Na Figura 10.8 temos a representação gráfica da série, o periodograma e as funções de autocorrelação e autocorrelação parcial. Como no exemplo anterior, a A Figura 10.9 e a Tabela 10.7 apresentam as fac e facp das séries  $(1-B)Z_t$ , fac reflete a componente sazonal existente na série.

 $(1-B^{12})Z_t$ e  $(1-B)(1-B^{12})Z_t$ . Uma análise dessas funções sugere dois modelos preliminares:

(i) SARIMA(0,0,1) ×  $(0,1,1)_{12}$  com  $\theta_0$ , isto é,

$$(1 - B^{12})Z_t = \theta_0 + (1 - \theta_1 B)(1 - \Theta_1 B^{12})a_t \tag{10.3}$$

(ii) SARIMA $(0, 1, 1) \times (0, 1, 1)_{12}$ , isto é,

$$(1-B)(1-B^{12})Z_t = (1-\theta_1 B)(1-\Theta_1 B^{12})a_t, (10.33)$$

revisões, separamos as 7 últimas observações da série (jan./2000 a jul./2000); isto que serão estimados, verificados e comparados com relação ao ajustamento e à capacidade de prever valores futuros da série. Tendo em vista o objetivo de comparar significa que todo o ajustamento será feito com 180 observações (jan./85 a dez./99). amos iniciar, agora, a análise dos dois modelos propostos.





Figura 10.9: Fac e facp das séries  $(1-B)Z_t$ ,  $(1-B^{12})Z_t$  e  $(1-B)(1-B^{12})Z_t$ .

### (a) Modelo preliminar (10.32)

A Figura 10.10 e o Quadro 10.4 apresentam o ajustamento do modelo (10.32) e as funções de autocorrelação e autocorrelação parcial dos resíduos. Verificamos, utilizando o Quadro 10.4, que todos os parâmetros são significantes, entretanto, a análise da Figura 10.10 nos mostra que o modelo não é adequado, uma vez que várias autocorrelações residuais são significativamente diferentes de zero. Valores altos de 72, ф99 e ф14,14 sugerem o modelo alternativo

$$(1-B^{12})(1-\phi_9B^9-\phi_{14}B^{14})Z_t=\theta_0+(1-\theta_1B-\theta_2B^2)(1-\Theta_1B^{12})a_t \quad (10.34)$$

que tem seu ajustamento e fac e facp residuais apresentados no Quadro 10.5 e Figura 10.11, respectivamente. Analisando o Quadro 10.5, constatamos que todos os parâmetros são significantes; além disso, a análise das fac e facp residuais não revelam nenhuma quebra de comportamento de ruído branco.

10.3. SAZONALIDADE ESTOCÁSTICA

Tabela 10.7: Fac e facp das séries (a)  $(1-B)Z_t$ , (b)  $(1-B^{12})Z_t$ , (c)  $(1-B)(1-B^{12})Z_t$ .

| (;               | pacf | -0,17 | -0,23 | -0,10 | -0.22 | -0,11 | -0,03 | -0,27    | -0,20 | 0,13  | 0,00  | 0,13  | -0,31 | -0,28 | -0,05 | -0,05 | -0,15 | 0,04  | 0,00  | -0,10 | -0,11 | 0,13  | 0,02  |
|------------------|------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| (၁)              | acf  | -0,17 | -0,19 | -0,01 | -0,14 | 0,01  | 0,08  | -0,20    | -0,03 | 0,29  | -0,05 | 0,07  | -0,30 | -0,18 | 0,22  | 0,08  | -0,10 | 0,15  | 00,00 | -0,03 | 0,11  | -0,07 | -0,15 |
| Č                | pacf | 0,51  | -0,10 | 0,01  | -0,11 | 0,05  | -0,03 | -0,11    | 0,15  | 0,11  | -0,20 | -0,11 | -0,26 | 0,19  | 0,20  | -0,01 | 0,00  | 0,10  | -0,07 | -0,03 | 0,05  | 90,0  | -0,17 |
| (q)              | acf  | 0,51  | 0,19  | 90,0  | -0,07 | -0,05 | -0,04 | -0,12    | 0,00  | 0,14  | -0,01 | -0,12 | -0,31 | -0,21 | 90,0  | 0,11  | 0,10  | 0,19  | 0,13  | 0,07  | 0,04  | -0,09 | -0,14 |
|                  | pacf | 0,14  | 0,19  | -0,05 | -0,36 | -0,26 | -0,39 | -0,31    | -0,37 | -0,15 | -0,16 | -0,36 | 0,33  | -0,20 | 0,01  | -0,08 | -0,03 | 0,03  | -0,16 | 0,02  | 0,05  | -0,13 | -0,04 |
| ( <b>&amp;</b> ) | acf  | 0,14  | 0,21  | 0,01  | -0,31 | -0,30 | -0,49 | -0,34    | -0.25 | 80,0  | 0,21  | 0,23  | 0,70  | 0,11  | 0,27  | -0,04 | -0,28 | -0,23 | -0,51 | -0,25 | -0,16 | 0,02  | 0,21  |
|                  | lag  | 1     | 7     | က     | 4     | ഹ     | 9     | <b>~</b> | ∞     | 6     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    |

| T                       | 7.23                    |                                           |
|-------------------------|-------------------------|-------------------------------------------|
| STD                     | .3313                   |                                           |
| ORDER VALUE             | 2.3943<br>5004<br>.5489 | 168<br>0.906<br>0.563744E+01              |
|                         | 0<br>1<br>12            | 0.563                                     |
| NUM. / FACTOR<br>DENOM. | 7 7 7                   |                                           |
| NUM./<br>DENOM.         | CNST<br>MA<br>MA        | BSERVATI<br><br>OR                        |
| VARIABLE<br>NAME        | IPI<br>IPI              | NUMBER OF OBSERVATIONS TANDARD ERROR      |
| Parameter<br>Label      | 1 CNST 2 3              | EFFECTIVE NUMBER OF OBSERVATIONS R-SQUARE |

Quadro 16.4. Ajustamento do modelo (10.32) à série  $\mathsf{A_s}$  - IPI (SCA).

# CAPÍTULO 10. MODELOS SAZONAIS | 10.3. SAZONALIDADE ESTUCASTICA

| 1 OH       | 71    | AUTOCORRELATIONS<br>1- 12 .08 | ÷25      |          | 06     | 04   | 90.    | 14                    | 00   | .23         | 04  | 11.   | 70.  |
|------------|-------|-------------------------------|----------|----------|--------|------|--------|-----------------------|------|-------------|-----|-------|------|
| 0 1        |       | 80.                           | .08      | •        | ۰,     | ۹,   |        | ۰.                    | ۹,   | ٠,          | 50. | 60.00 | . 0. |
| 1          |       | 1.0                           | 9.1      | ٠        |        |      | 14.1   | •                     | •    | 9.97        | :   |       | •    |
|            | 4     |                               | ~        | .02      | 00     | .14  | .04    | 00                    | .10  | 02          | 12  | .13   | 16   |
| T.E        |       | 60.                           | .09      | ۰.       | •      | •    | ۰.     | ۰.                    | ٩,   | ∹,          | ٦,  | ٦,    | ٦,   |
| œ          |       | o.                            | •        | 41.0     | 41.0   | 4    |        |                       | •    | ٠           | •   |       |      |
|            | 1     | -                             | æ        | 9        | 4.     |      |        |                       | 4.0  | 9.0         | 8.0 | 1.0   |      |
|            | 0.08  | +                             | :<br>+   | <u> </u> | +      | +    | IXX    | !<br>!<br>! +         |      |             |     |       |      |
|            | 0.22  |                               |          |          |        |      | XXXXXX | ×+×                   |      |             |     |       |      |
| _          | 0.14  |                               |          |          |        | +    | 1XXX+  | +<br>*                |      |             |     |       |      |
|            | 0     |                               |          |          |        | + -  | XX:    | + -                   |      |             |     |       |      |
|            | -0.04 |                               |          |          |        | + -  | 7 X    | + +                   |      |             |     |       |      |
|            |       |                               |          |          |        | + +  | +XXX1  | . +                   |      |             |     |       |      |
| •          |       |                               |          |          |        | +    | H      | +                     |      |             |     |       |      |
|            | 0.23  |                               |          |          |        | +    | 1XX    | 1XX+XX                |      |             |     |       |      |
|            |       |                               |          |          |        | +    | ΧI     | +                     |      |             |     |       |      |
|            |       |                               |          |          |        | +    | 1XXX+  | +<br>*                |      |             |     |       |      |
| 7.5        | 0.07  |                               |          |          |        | + 4  | + 1XX  | + +                   |      |             |     |       |      |
| n .        |       |                               |          |          |        | F 4  | 144    | 17774                 |      |             |     |       |      |
| <b>4</b> E |       |                               |          |          |        | +    | ×      | ¢ +                   |      |             |     |       |      |
| n v        | 9.0   |                               |          |          |        | +    | ÷ 1    | +                     |      |             |     |       |      |
| ٠, د       | •     |                               |          |          |        | +    | IXXX   |                       |      |             |     |       |      |
| - 00       | . 0   |                               |          |          |        | +    | XI     |                       |      |             |     |       |      |
| 6          | 0.00  |                               |          |          |        | +    | н      | +                     |      |             |     |       |      |
| 0          | ٦.    |                               |          |          |        | +    | IXXX   | +<br>*                |      |             |     |       |      |
|            |       | AUTOCORRELATIONS              | ELAT     |          | -      | ٠    | -      | 9                     | -    | <b>~</b> >8 | i   | 0.1   | 0.   |
| - E        | 7 4   | 0.0                           | . 08     | . 0.     | 8 .0   | 80.  | 80.    |                       | •    | •           |     | 0     | 80.8 |
| ,          |       | Č                             | -46      | <b>C</b> | 1      | Ċ    | ١      | 0,                    | 0.   | 0           | 0.1 | ٥.    | 1    |
| ST.        | ž Pį  |                               | .08      |          | . 0    | 0    | •      | 0                     |      | •           | 0   | 0     | 80.8 |
|            |       | 0                             | -0.8     | 9.0~     | 4.0-   | -0.2 |        | 0.5                   | 4.0  | 9.0         | 8.0 | 1.0   |      |
| ~          |       | +                             | <u> </u> | +        | ;<br>+ | i +  | IXX    | i<br>+<br>+<br>+<br>+ | <br> | 1           |     |       |      |
| ~          |       |                               |          |          |        | +    | X      | IXXX+X                |      |             |     |       |      |
| ٣          |       |                               |          |          |        | + -  | X.     | ÷ .                   |      |             |     |       |      |
| 4 n        |       |                               |          |          |        | + +  | TYXY + | + +                   |      |             |     |       |      |
| n ve       |       | _                             |          |          |        | +    | Ä      | IXXX+                 |      |             |     |       |      |
| ,          |       | _                             |          |          |        | +    | ×      | +                     |      |             |     |       |      |
| 00         |       |                               |          |          |        | +    | ×      | +                     |      |             |     |       |      |
| 6          |       |                               |          |          |        | + -  | :      | IXXX+XXX              | ×    |             |     |       |      |
| 10         |       | ۵.                            |          |          |        | +    |        | +                     |      |             |     |       |      |
| = :        |       |                               |          |          |        | + +  | × +    | + +                   |      |             |     |       |      |
| 7          |       | -4 0                          |          |          |        | ٠ +  | ~      | +                     |      |             |     |       |      |
| 14         |       |                               |          |          |        | +    |        | XX+XX                 |      |             |     |       |      |
|            |       | 01                            |          |          |        | +    |        | +                     |      |             |     |       |      |
| 16         |       | ere i                         |          |          |        | + -  |        | + -                   |      |             |     |       |      |
| <u>ا</u> ا | 000   | φ.<br>6.00                    |          |          |        | + 4  | XXI X  | + +<br>×              |      |             |     |       |      |
| 20 0       |       | N (                           |          |          |        | ٠ ٦  | Κ.     |                       |      |             |     |       |      |
| 5          |       | o .                           |          |          |        | +    |        | +                     |      |             |     |       |      |

| T                             | 2.80<br>-7.57<br>-2.65<br>9.73<br>3.87<br>3.71 |                                     |
|-------------------------------|------------------------------------------------|-------------------------------------|
| STD<br>ERROR                  | .4301<br>.0789<br>.0804<br>.0623<br>.0764      |                                     |
| VALUE                         | .2025<br>5969<br>2131<br>.6061<br>.2953        | 154<br>0.919<br>0.523181E+01        |
| ORDER                         | 0 1 2 2 4 1                                    | . 0.52                              |
| JOR<br>B                      |                                                |                                     |
| FACTOR                        | нннинн                                         | TIONS                               |
| NUM./<br>DENOM.               | CNST<br>MA<br>MA<br>MA<br>AR<br>AR             | F OBSERVATIONS                      |
| VARIABLE NUM./<br>NAME DENOM. | IPI<br>IPI<br>IPI<br>IPI                       | NUMBER OF OBSERVATIONS              |
| PARAMETER<br>LABEL            | 1 CNST<br>2 2<br>3 4<br>4 6                    | EFFECTIVE NUMBER OF OBSER' R-SQUARE |

Quadro 10.5: Ajustamento do modelo (10.34) à série  $\mathbf{A_8}$  - IPI (SCA).

Assim, um primeiro modelo adequado à série A<br/>s - IPI é dado por

$$(1 - B^{12})(1 - 0, 2953B^9 - 0, 2829B^{14})Z_t$$

$$= 0, 2025 + (1 + 0, 5969B + 0, 2131B^2)(1 - 0, 6061B^{12})a_t,$$

$$(10.35)$$

com  $\hat{\sigma}_a^2 = (5, 23)^2$ .

A presença de um termo constante no modelo indica a existência de uma tendência determinística na série original, que pode ser "visualizada" na Figura 10.8, principalmente na segunda metade das observações.

nova observação. Observe que, na última linha dessas tabelas, apresentamos os erros quadrático médio de previsão, que serão utilizados na comparação dos dois modelos As previsões, com origem em  $t=180~(\mathrm{de}x./99)$ , para os meses de janeiro a julho 10.12. A Tabela 10.9 e a Figura 10.13 apresentam as previsões atualizadas a cada de 2000 encontram-se na Tabela 10.8 e a respectiva representação gráfica na Figura propostos para a série A<sub>8</sub> - IPI.

Tabela 10.8: Previsões para a série  $A_8$  - IPI, utilizando o modelo (10.35), com origem em t = 180 e h = 1, 2, ..., 7.

|            |          | 1       |          |
|------------|----------|---------|----------|
| 101        | 107 7847 | 5.2318  | 100.1300 |
| - 6<br>- 6 | 08 0509  | 6.0929  | 99.9000  |
| 1 2        | 108 4795 | 6.1941  | 105,3800 |
| 202        | 106 1330 | 6.19.11 | 101.9600 |
| 0 0        | 100.001  | 6.19.11 | 116.1900 |
| 200        | 130.021  | 6.19.11 | 124,6600 |
| 0 10       | 141 3677 | 0.1911  | 131.1000 |

| œ             |        | 9          | 0      | 90.   | 80.  | .08  | .08   |          | 0   |     |     | 0    |             |
|---------------|--------|------------|--------|-------|------|------|-------|----------|-----|-----|-----|------|-------------|
|               |        | 7          | 2.0    | 5.7   | 6.3  | •    | œ     | 12.      | 12  | 12. | 12  | 12.8 | 13.         |
|               | 24     | 0          | 0      | 0     | 0    | 0    | 0     | 0        | ٥.  | 0   | 0   | 0    | 0           |
| . 0           |        | 13.8       | 14.3   | 15.3  | .09  | .09  | 16    | .09      | 17  | .09 | 18  | .09  | .09<br>19.6 |
|               | ,      | -1.0       | - 8.0- | 9.0   | -0.4 | -0.2 | 0.0   | 0.2      | ₽.  | 9.0 | 8.0 | 1.0  |             |
| 7             | ٠.     |            |        |       |      | +    | H     | <u> </u> | +   | -   | -   | †    |             |
| 77 1          | 0.11   |            |        |       |      | +    | TXXX+ | ±        |     |     |     |      |             |
|               | 3 6    |            |        |       |      | +    | IXXI  | ×        |     |     |     |      |             |
|               | ٠,٠    |            |        |       |      | + +  | XX    | + -      |     |     |     |      |             |
|               |        |            |        |       |      | + +  | 7 7   | + +      |     |     |     |      |             |
|               | 7      |            |        |       |      | X    |       | . +      |     |     |     |      |             |
|               | 0.0    |            |        |       |      | +    | + XXI | +        |     |     |     |      |             |
| σ,            | 0      |            |        |       |      | +    | ı     | +        |     |     |     |      |             |
| 1 10          | 5 6    |            |        |       |      | +    | н i   |          |     |     |     |      |             |
| 12            | 2 0    |            |        |       |      | + +  | X     |          |     |     |     |      |             |
| 1 2           | :      |            |        |       |      | + +  | 4 1 2 | + +      |     |     |     |      |             |
| <u>.</u>      | 0.0    |            |        |       |      | +    | XIX   |          |     |     |     |      |             |
| 15            | 0      |            |        |       |      | +    | IXX   |          |     |     |     |      |             |
| 16            | 0:0    |            |        |       |      | +    | ΧI    | +        |     |     |     |      |             |
| 17            | 0      |            |        |       |      | +    | IXX   | +        |     |     |     |      |             |
| 8 5           | 9 0    |            |        |       |      | +    | ΧI    | +        |     |     |     |      |             |
| 20            | 0      |            |        |       |      | + -  | H .   | + -      |     |     |     |      |             |
| ,             |        |            |        |       |      | +    | XXI   | +        |     |     |     |      |             |
| PARTIAL       |        | CORRE      | LATIO  | u     | Ċ    | •    | -     | •        | •   | ;   | ,   |      |             |
|               |        | 0. 80. 80. | .08    | ဂထ    | 80.  | .08  | . e   | 11       | .05 | 00. | .08 | .03  | 00          |
|               | 4      | 9          | •      | -     |      |      |       | :        |     |     |     |      |             |
| ού c          |        | 80.        | 80.    | .08   | 90.  | 80.  | 90.   | .08      | .08 | 90  | 90  | .08  | 02          |
|               | Ť      | 1.0        | 9.6    | 9.0   | 4.0  | 0.2  | 0.0   | 0.2      | 4.0 | 9.0 | 9.0 | 1.0  |             |
|               | 9      | •          | !<br>! | 1 1 1 | +    | +    | + +   | <u> </u> | 1   | -+  |     | †    |             |
|               | 7      |            |        |       |      | +    | XXX   | - +      |     |     |     |      |             |
|               |        |            |        |       |      | +    | IXXXX | ×        |     |     |     |      |             |
| •             | )<br>) |            |        |       |      | × :  | XXI   | +        |     |     |     |      |             |
|               |        |            |        |       |      | * +  |       | + +      |     |     |     |      |             |
| •             | -      |            |        |       |      | . ×  | v i x |          |     |     |     |      |             |
| ı             | ۰      |            |        |       |      | +    | X     | +        |     |     |     |      |             |
| on c          | ٠,٠    |            |        |       |      | +    | н     | +        |     |     |     |      |             |
| <b>&gt;</b> ~ | ુ વ    |            |        |       |      | + -  | X     | +        |     |     |     |      |             |
|               | 9      |            |        |       |      | + +  | X,    | + -      |     |     |     |      |             |
| !<br>!        |        |            |        |       |      | + +  | + XXI | + +      |     |     |     |      |             |
| _             | ۰.     |            |        |       |      | +    | ï×    | +        |     |     |     |      |             |
| ın v          | ۰,     |            |        |       |      | +    | IXX   | +        |     |     |     |      |             |
| 16            | 0.01   |            |        |       |      | +    | Н     | +        |     |     |     |      |             |
| - m           | 9 0    |            |        |       |      | + -  | ×     |          |     |     |     |      |             |
|               |        |            |        |       |      |      |       |          |     |     |     |      |             |
| æ             | 90     |            |        |       |      | + 4  | -, }  | ٠.       |     |     |     |      |             |

Figura 10.11: Fac e facp dos resíduos do modelo (10.34). (SCA).

Tabela 10.9: Previsões atualizadas para a série  $A_8$  - IPI, utilizando o modelo (10.35).

| t + h | $\hat{Z}_t(1)$  | Erro padrão | $Z_{t+h}$ |
|-------|-----------------|-------------|-----------|
| 180   | 107,7847        | 5,2318      | 100,1300  |
| 181   | 93,4812         | 5,2318      | 99,9000   |
| 182   | 110,6794        | 5,2318      | 105,3800  |
| 183   | 104,3379        | 5,2318      | 101,9600  |
| 184   | 123,4756        | 5,2318      | 116,1900  |
| 185   | 126,0315        | 5,2318      | 124,6600  |
| 186   | 141,9963        | 5,2318      | 131,1000  |
| EQM   | EQMP(1) = 43,89 | 89          |           |



Figura 10.12: Série  $A_8$  - IPI, observações de jan. 90 a jul. 2000 e previsões (linha tracejada) para os meses de janeiro a julho de 2000, utilizando o modelo (10.35), com origem em dez. 99 e  $h=1,2,\ldots,7$ .



Figura 10.13: Série A<sub>8</sub> - IP1, observações de jan. 90 a jul. 2000 e previsões atualizadas (linha tracejada) para os meses de janciro a julho de 2000, utilizando o modelo (10.35).

## (b) Modelo preliminar (10.33)

O Quadro 10.6 e a Figura 10.14 apresentam o ajustamento do modelo (10.33) e as fac e facp residuais. Todos os parâmetros do modelo são significantes, entretanto, o comportamento da fac mostra que o modelo é inadequado. Os valores grandes de  $\hat{\phi}_{qq}$  e  $\hat{\phi}_{77}$  sugerem a inclusão de um polinômio AR no modelo, isto é,

$$(1 - \phi_4 B^4 - \phi_7 B^7)(1 - B)(1 - B^{12})Z_t = (1 - \theta_1 B)(1 - \Theta_1 B^{12})a_t.$$
 (10.36)

O ajustamento do modelo (10.36) bem como o comportamento dos resíduos são apresentados no Quadro 10.7 e Figura 10.15, respectivamente. O comportamento das fac e facp revela que o modelo (10.36) pode ser melhorado, introduzindo um parâmetro AR de ordem 5 no modelo ( $\hat{\phi}_{55} = -0$ , 18 está no limite do intervalo de confiança). Assim, o novo modelo proposto é

$$(1 - \phi_4 B^4 - \phi_5 B^5 - \phi_7 B^7)(1 - B)(1 - B^{12}) Z_t = (1 - \theta_1 B)(1 - \Theta_1 B^{12}) a_t, (10.37)$$

com ajustamento e fac e facp residual apresentados no Quadro 10.8 e Figura 10.16, respectivamente. Substituindo os valores estimados dos parâmetros em (10.37), temos que um segundo modelo adequado à série A<sub>8</sub> - IPI é dado por

$$(1+0,2562B^4+0,1587B^5+0,2984B^7)(1-B)(1-B^{12})Z_t$$

$$= (1-0,5409B)(1-0,6584B^{12})a_t,$$
(10.38)

com  $\sigma_a^2 = (5, 51)^2$ .

| PARAMETER<br>LABEL                          | VARIABLE<br>NAME       | NUM./<br>DENOM. | FACTOR | ORDER VALUE | VALUE                        | STD<br>ERROR | T<br>VALUE |
|---------------------------------------------|------------------------|-----------------|--------|-------------|------------------------------|--------------|------------|
| 7 7                                         | IPI                    | MA WA           | 7 7    | 1<br>12     | .6361                        | .0614        | 5.30       |
| EFFECTIVE NUMBER OF OBSERVATIONS . R-SQUARE | NUMBER OF OBSERVATIONS | BSERVAT         | IONS   | 0.595       | 167<br>0.895<br>0.595373E+01 |              |            |

Quadro 10.6: Ajustamento do modelo (10.33) à série  $A_8$  - IPI (SCA).

| .03<br>.09<br>40.6<br>.09                                 |      |                                         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .09<br>.09<br>40.4<br>.15                                 | . 0  | <b>1</b>                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 03<br>.09<br>39.5<br>10                                   | 8.09 | 1                                       | <b>4</b> 8 8 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| .25<br>.09<br>.39.4                                       | . 0  | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 03<br>.09<br>28.5                                         |      | †                                       | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26<br>.08<br>28.3                                         | 55.7 | 1+++++++                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 00.04                                                     | 5.0  | + + XXI                                 | .1006<br>.08 .08<br>.0105<br>.08 .08<br>.08 .08 |
| 13<br>.08<br>16.7                                         | 55.  | † 2 2 ********                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13                                                        | 53.6 | †                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.2                                                       | 52.  | IONS                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| s<br>12<br>.08<br>3.2<br>3.2<br>.16                       | 5.0  | RELAI                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AUTOCORRELATIONS 1-12 .06 ST.E08 Q .7 Q .7 13-2419 ST.E09 | 47.3 | ÷ 82                                    | 2000 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CORREL<br>12<br>.E.<br>24<br>.E.                          |      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AUTOC<br>1-<br>ST.<br>0<br>13-<br>ST.                     | ø    | 4 4 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 13 - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                           |      | ' (                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Figura 10.14: Fac e facp dos resíduos do modelo (10.33) (SCA).

|                 | . 08       | .08        | . 80  | .08  | .08        | .08                                   | 80.        | 80.  | .08  | 60.    | 60.  | . 60 |
|-----------------|------------|------------|-------|------|------------|---------------------------------------|------------|------|------|--------|------|------|
| o               |            | 4          |       | •    |            | •                                     |            | •    | •    |        |      |      |
| 13- 24          | -:1        | Τ.         | 0     | 0    | 0          | 0                                     | 0          | 0    | 0    | -      | 0    | Ö    |
| H.              | 18         | 20.0       | 20.0  | 20.2 | 20.4       | 20.9                                  | 20.9       | 21.1 | 21.2 | 22.9   | 23.2 | 23.2 |
|                 | -1.0       | . 8 . 0    | -0.6  | 0.4  | -0.2       | 0.0                                   | 0.2        | 0.4  | 9.0  | 9.8    | 1.0  |      |
|                 | .11        |            |       |      | +          | IXXX                                  |            |      |      |        |      |      |
| 7 0             | Ξ.8        |            |       |      | X.         | TXXX+                                 | +          |      |      |        |      |      |
| i               | ٠,         |            |       |      | ÷ .        | Z :                                   | + -        |      |      |        |      |      |
| <b>1</b>        | • -        |            |       |      | + 3        | T >                                   | + +        |      |      |        |      |      |
| 1               | : 0        |            |       |      | <b>?</b> + | Į X                                   | <b>-</b> + |      |      |        |      |      |
|                 | ۰.         |            |       |      | +          | <b>-</b>                              | +          |      |      |        | •    |      |
| ŧ               | ٥.         |            |       |      | +          | IXI                                   | +          |      |      |        |      |      |
| on .            | ٦.         |            |       |      | +          | IXXX                                  | ×          |      |      |        |      |      |
| ٥.              | ٠,         |            |       |      | +          | н                                     | +          |      |      |        |      |      |
| ;<br>c          | <u>ء</u> د |            |       |      | + -        | ı,                                    | + -        |      |      |        |      |      |
| 1 1             | ÷ -        |            |       |      | + ;        | + + + + + + + + + + + + + + + + + + + | + +        |      |      |        |      |      |
| . 4             | : -:       |            |       |      | +          | 17.                                   | + +        |      |      |        |      |      |
| ı,              | . 0        |            |       |      | +          | H                                     | . +        |      |      |        |      |      |
| ص ر             |            |            |       |      | +          | X                                     | . +        |      |      |        |      |      |
| _               | ٥.         |            |       |      | +          | XI                                    | +          |      |      |        |      |      |
| œ               | ٠.         |            |       |      | +          | X                                     | +          |      |      |        |      |      |
| ō               | ۰.         |            |       |      | +          | н                                     | +          |      |      |        |      |      |
| ī<br>o          | ۰.         |            |       |      | +          | XI                                    | +          |      |      |        |      |      |
| PARTIAL         | AUTOCORR   | ORRELATION | SNC   |      |            |                                       |            |      |      |        |      |      |
| - 12            |            | 13         | 06    | 05   | 18         | 06                                    | 02         | 14   | .15  | 10     | 04   | 02   |
| ST.E.           | 0          |            | 80.   | .08  |            |                                       | .08        | 80.  |      | .08    | .08  | 90.  |
| 13- 24<br>ST.E. | 17         | .17        | 10    | .02  | .03        | 06                                    | .08        | 03   | 02   | .01    | 02   | .02  |
|                 | -1.0       | 8.0-       | - 9.6 | 4.0  | 0.2        | 0.0                                   | 0.2        | 4.0  | 9.0  | 8.0    | 1.0  |      |
|                 | . 11       |            |       |      |            | TXXX                                  | ÷ .        | 1    | -    | i<br>! | ţ    |      |
| 7               | .13        |            |       |      | ×          | XXX                                   | . +        |      |      |        |      |      |
| ١               | ۰.         |            |       |      | +          | XI                                    | +          |      |      |        |      |      |
| •               | ٠, ٠       |            |       |      | +          | i X                                   | +          |      |      |        |      |      |
| •               | ٦.         |            |       |      | XX +       | ;;                                    | + -        |      |      |        |      |      |
| '               |            |            |       |      | + 4        | , L                                   | ٠ .        |      |      |        |      |      |
| •               | ٠.         |            |       |      | IXXX+      |                                       | . +        |      |      |        |      |      |
|                 | ٦.         |            |       |      | +          | IXXXX                                 | ×          |      |      |        |      |      |
| 0               |            |            |       |      | + XXI      | IX.                                   | +          |      |      |        |      |      |
|                 | ۰.         |            |       |      | +          | Χĭ                                    | +          |      |      |        |      |      |
| 1               | ٠, -       |            |       |      | +          |                                       | + -        |      |      |        |      |      |
|                 | • -        |            |       |      | 444        | >                                     | + >        |      |      |        |      |      |
| ייי             | : -        |            |       |      |            | ¥¥¥¥                                  | < 1        |      |      |        |      |      |
| ٠               | 0          |            |       |      | +          | I                                     | . +        |      |      |        |      |      |
| 7               | ٥.         |            |       |      |            | IXX                                   | +          |      |      |        |      |      |
| 8               | ٥.         |            |       |      |            | XXI                                   | +          |      |      |        |      |      |
| on<br>on        | 9          |            |       |      |            | XX                                    | 4          |      |      |        |      |      |
|                 | 2          |            |       |      |            | 4                                     |            |      |      |        |      |      |

Figura 10.15: Fac e facp dos resíduos do modelo (10.36) (SCA).

Figura 10.16: Fac e facp dos resíduos do modelo (10.37) (SCA).

| AUTOCORRELA! | FIONS           |       |      |          |           |             |            |      |       |      |          |      |
|--------------|-----------------|-------|------|----------|-----------|-------------|------------|------|-------|------|----------|------|
| 1- 12        | . 13            | 7     | 14   | 03       | 03        | ,           | 0          | 12   | ~     | 0    | 0        | 04   |
| ST.E.        | .08             | ٠.    | .08  | 0        | 0         | •           | 0          | •    | 0     | 0    | 0        | 0    |
| 0 2.6        | 2.6             | *     | 8.0  | 8.3      | 8.4       | •           | 0.6        | 11.5 | 13.7  | 13.8 | 14.4     | 14.7 |
| :            | :               | •     |      | ,        |           | į           |            |      |       |      |          |      |
| 13- 24       | 11:             | 71.   | 3.5  | 5.0      | 50        | 200         | 5.0        |      | 00.   | 13   | 0.       | 00.  |
| 4            | 9 41            | 10.1  |      | >        | , ,       | , ,         | 60.00      |      | <br>V | 5.6  | 5        |      |
| ×            | ;               | :     | :    |          | •         | ;           | ;          | -    | ;     | ÷    | ÷        | ÷    |
| ·            | -1.0 -          | 8.0   | ٠.   | 4.0-     | -0.2      | 0           | 9          | 4.0  | 9.0   | 8.0  | 1.0      |      |
| •            | +               | +     | +    | <u> </u> | +-        | +           | +          | +    | +     |      | <b>†</b> |      |
| > <          |                 |       |      |          | +         | IXXX        | ŧ.         |      |       |      |          |      |
|              |                 |       |      |          | *         | XXX         | +          |      |       |      |          |      |
| 7.0          |                 |       |      |          | ÷         | XX          | +          |      |       |      |          |      |
| 0.0          |                 |       |      |          | +         | + XI        | +          |      |       |      |          |      |
| 0.0          |                 |       |      |          | +         | X           | +          |      |       |      |          |      |
| 0.0          |                 |       |      |          | +         | KXI         | +          |      |       |      |          |      |
| 0.0          |                 |       |      |          | +         | XI          | +          |      |       |      |          |      |
| -            |                 |       |      |          | 4         | 1444        |            |      |       |      |          |      |
| 6            |                 |       |      |          | +         | 4444        |            |      |       |      |          |      |
|              |                 |       |      |          |           | 7           |            |      |       |      |          |      |
| 0.0          |                 |       |      |          | +         | X.          | +          |      |       |      |          |      |
| 9            |                 |       |      |          | +         | ×           | +          |      |       |      |          |      |
| 0.0-         |                 |       |      |          | +         | + XI        | +          |      |       |      |          |      |
| . O- E       |                 |       |      |          | ¥         | XX          | +          |      |       |      |          |      |
| 4 0.1        |                 |       |      |          | +         | IXX         | ±          |      |       |      |          |      |
| 5 0.0        |                 |       |      |          | +         | Н           | +          |      |       |      |          |      |
| 0.0          |                 |       |      |          | +         | X           | +          |      |       |      |          |      |
| 7            |                 |       |      |          | 4         | ; ;         | ٠,         |      |       |      |          |      |
|              |                 |       |      |          |           | 4 :         |            |      |       |      |          |      |
|              |                 |       |      |          | +         | ¥ ;         | +          |      |       |      |          |      |
| 5 0          |                 |       |      |          | + -       | ž,          | + 1        |      |       |      |          |      |
| 0.0          |                 |       |      |          | +         | * IX        | +          |      |       |      |          |      |
| PARTIAL AUTO | AUTOCORRELATION | TTATE | SNO  |          |           |             |            |      |       |      |          |      |
| N            | .13             | 1     | , -: | 02       | 05        | 07          | .02        | 16   | 14    | 10   | 05       | 02   |
| H.           | .08             |       |      |          |           |             | .08        |      | .08   |      |          |      |
|              | ,               |       |      |          |           |             |            |      |       |      |          |      |
| 13- 24       | 15              | . 14  | 08   | .02      | .08       | 02          | .05        | 02   | 03    | 04   | 00.      | 03   |
|              | .08             | .08   | 80.  | 80.      | .08       | 80.         | .08        |      | 80.   | .08  | .08      | .08  |
|              |                 |       | ٠    |          |           |             |            |      |       |      |          |      |
| •            | . n.1-          | 2     |      | 4.0      | 7 1       |             | 7.7        | •    | 9.    | <br> | o .      |      |
|              |                 |       |      |          | +         | · 1-        | ÷          |      |       |      |          |      |
| -0.1         |                 |       |      |          | ÷         | LX.         | +          |      |       |      |          |      |
| -0           |                 |       |      |          | <b>\$</b> |             | . 4        |      |       |      |          |      |
| -0.0         |                 |       |      |          | •         | -           |            |      |       |      |          |      |
| 0.0-         |                 |       |      |          | +         | ' <u>`</u>  | . 4        |      |       |      |          |      |
|              |                 |       |      |          | . ,       |             | . 4        |      |       |      |          |      |
|              |                 |       |      |          | . ,       | , two       |            |      |       |      |          |      |
|              |                 |       |      |          | . \$      | 4 5         |            |      |       |      |          |      |
|              |                 |       |      |          |           | 7           | ٠ ۽        |      |       |      |          |      |
|              |                 |       |      |          | . :       | 7 7         | <b>s</b> - |      |       |      |          |      |
|              |                 |       |      |          | Ž .       | <u> </u>    |            |      |       |      |          |      |
| 9 6          |                 |       |      |          |           | + XI<br>+ . |            |      |       |      |          |      |
| 7            |                 |       |      |          | +         | ٠.          | +          |      |       |      |          |      |
| 7.00         |                 |       |      |          | 2         | ž           | + ;        |      |       |      |          |      |
|              |                 |       |      |          |           | TXXX        | ži i       |      |       |      |          |      |
| 0.0-         |                 |       |      |          |           | XXI         | +          |      |       |      |          |      |
| 0.0          |                 |       |      |          | + -       | ×           | +          |      |       |      |          |      |
|              |                 |       |      |          | +         | XXI         | +          |      |       |      |          |      |
| 20.0         |                 |       |      |          | +         | H i         | +          |      |       |      |          |      |
| 20 0 02      |                 |       |      |          | + -       | ×,          | +          |      |       |      |          |      |
| 0.0-0        |                 |       |      |          | +         |             | +          |      |       |      |          |      |

| T                  | 7.82<br>10.76<br>-3.88         |                                           |
|--------------------|--------------------------------|-------------------------------------------|
| Y.                 |                                |                                           |
| STD<br>ERROR       | .0679<br>.0595<br>.0728        |                                           |
| VALUE              | .5315<br>.6405<br>2827<br>2872 | 160<br>0.907<br>0.559879E+01              |
| ORDER              | 122                            | 0.559                                     |
| FACTOR             | - 2 - I                        |                                           |
| NUM./<br>DENOM.    | MA<br>MA<br>AR<br>AR           | F OBSERVATIONS                            |
| VARIABLE<br>NAME   | IPI<br>IPI<br>IPI              | NUMBER OF OT TANDARD ERR                  |
| PARAMETER<br>LABEL | H 0/ 15/ 4                     | EFFECTIVE NUMBER OF OBSERVATIONS R-SQUARE |

Quadro 10.7: Ajustamento do modelo (10.36) à série  $A_8$  - IPI (SCA).

| PARAMETER<br>LABEL                    | R VARIABLE NAME                                                   | NUM./                | FACTOR | ORDER                                       | VALUE                          | STD                              | E                               |  |
|---------------------------------------|-------------------------------------------------------------------|----------------------|--------|---------------------------------------------|--------------------------------|----------------------------------|---------------------------------|--|
|                                       | 191<br>191<br>191<br>191                                          | MA<br>MA<br>AR<br>AR | - 2    | 122 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | .5409<br>.6584<br>2562<br>1587 | .0669<br>.0586<br>.0729<br>.0737 | 8.09<br>11.23<br>-3.52<br>-2.15 |  |
| EFFECTIVE<br>R-SQUARE .<br>RESIDUAL S | EFFECTIVE NUMBER OF OBSERVATIONS R-SQUARE RESIDUAL STANDARD ERROR | F OBSERVATIONS FROR  |        | 0.5510                                      | 160<br>0.910<br>0.551065E+01   |                                  | •                               |  |

Quadro 10.8: Ajustamento do modelo (10.37) à série  $A_8$  - IPI (SCA).

As previsões para os meses de janeiro a julho de 2000, com origem em dez./99 (t=180), encontram-se na Tabela 10.10 e Figura 10.17. As previsões atualizadas a cada nova observação são apresentadas na Tabela 10.11 e Figura 10.18.

Finalmente, com o objetivo de comparar os dois modelos ajustados para a série As - IPI, expressões (10.35) e (10.38), apresentamos algumas medidas de ajustamento e adequação de previsão na Tabela 10.12.

Os valores EQMP $_{180}$  e EQMP(1) foram obtidos das Tabelas 10.8, 10.9, 10.10 e 10.11. Os valores AIC e BIC, das expressões (6.21) e (6.24), respectivamente.

10.3. SAZONALIDADE ESTOCÁSTICA

Tabela 10.10: Previsões para a série As - IPI, utilizando o modelo (10.38), com origem em t=180 e  $h=1,2,\ldots,7$ .

| t + h | $Z_t(h)$             | Erro padrão | $Z_{t+h}$ |
|-------|----------------------|-------------|-----------|
| 181   | 106,4046             | 5,5106      | 100,1300  |
| 182   | 98,2554              | 6,0637      | 99,9000   |
| 183   | 109,5588             | 6,5704      | 105,3800  |
| 184   | 109,7577             | 7,0407      | 101,9600  |
| 185   | 125,3837             | 7,1290      | 116,1900  |
| 186   | 131,6298             | 7,1998      | 124,6600  |
| 187   | 143,4999             | 7,3504      | 131,1000  |
| EOM   | $EOMP_{180} = 58.17$ | İ           | 2112      |

Tabela 10.11: Previsões atualizadas para a série  $\rm A_8$ - IPI, utilizando o modelo (10.38).

| $Z_{t+h}$        | 100,1300 | 0006,66 | 105,3800 | 101,9600 | 116,1900 | 124,6600 | 131,1000 |                 |
|------------------|----------|---------|----------|----------|----------|----------|----------|-----------------|
| Erro padrão      | 5,5106   | 5,5106  | 5,5106   | 5,5106   | 5,5106   | 5,5106   | 5,5106   |                 |
| $\hat{Z}_t(1)$ E | 106,4046 | 95,3746 | 108,7557 | 107,4047 | 122,1383 | 124,6206 | 136,7436 | EQMP(1) = 24,02 |
| t+h              | 180      | 181     | 182      | 183      | 184      | 185      | 186      | EQMI            |

Tabela 10.12: Medidas de qualidade de ajuste e previsão para os modelos (10.35) e (10.38).

| $\frac{\hat{\sigma}_d^2}{27.35} \frac{AIC}{3.38}$ | Prev                | Previsão |
|---------------------------------------------------|---------------------|----------|
| 27.35 3.38                                        | EQMP <sub>180</sub> | EQMP(1)  |
|                                                   | 57.22               | 43.89    |
| (10.38) 30.36 3.47 3.56                           | 58.17               | 24.02    |

279



Figura 10.17: Série A<sub>8</sub> - IPI, observações de jan. 90 a jul. 2000 e previsões (linha tracejada) para os meses de janeiro a julho de 2000, utilizando o modelo (10.38), com origem em dez. 99 e  $h=1,2,\ldots,7$ .



Figura 10.18: Série A<sub>8</sub> - IPI, observações de jan. 90 a jul. 2000 e previsões atualizadas (linha tracejada) para os meses de janeiro a julho de 2000, utilizando o modelo (10.38).

Analisando as informações da Tabela 10.12 podemos concluir que o modelo (10.35) é o que melhor se ajusta à série  $A_8$  - IPI e, também, o que faz melhores previsões para os meses de janeiro a julho de 2000 quando fixamos a origem da previsão em dezembro de 1999. Entretanto, o modelo (10.38) se comporta melhor quando se faz previsões atualizadas.

### 10.4 Problemas

10.4. PROBLEMAS

# 1. Considere o modelo SARIMA(0, 1, 2) × (0, 1, 1)<sub>12</sub>:

$$\Delta \Delta_{12} Z_t = (1 - \Theta B^{12})(1 - \theta_1 B - \theta_2 B^2) a_t.$$

- (a) Escreva o modelo na forma de um modelo ARMA.
- (b) Qual a ordem do modelo ARMA resultante?
- (c) Obtenha a fac do modelo.
- 2. Para o modelo SARIMA $(0,1,1) \times (0,1,1)_{12}$ :
- (a) escreva-o explicitamente;
- (b) obtenha a região de invertibilidade;
- (c) obtenha as autocorrelações do processo.
- 3. Usando um programa de computador apropriado, obtenha as autocorrelações estimadas para  $Z_t, \Delta Z_t, \Delta A_Z_t, \Delta \Delta_4 Z_t$ , sendo  $Z_t$  a série de consumo de gasolina da Tabela 3.14.
- (a) O que você pode observar nas autocorrelações de  $Z_t?$
- (b) A mesma pergunta para  $\Delta Z_t$ .
- (c) Qual das séries você consideraria estacionária?
- (d) Utilizando um programa de identificação, sugira um ou mais modelos adequados para a série; obtenha as estimativas preliminares para os parâmetros.
- (e) Obtenha as estimativas finais para os parâmetros do(s) modelo(s) através de um programa de estimação; verifique se o(s) modelo(s) é(são) adequado(s).
- (f) Obtenha previsões para 1974 utilizando o(s) modelo(s) estimado(s).
- 4. Considere a série A<sub>1</sub> Cananéia.
- (a) Utilizando um programa de identificação, sugira um ou mais modelos adequados para a série; obtenha as estimativas preliminares para os parâmetros.
  - (b) Obtenha as estimativas finais para os parâmetros do(s) modelo(s) através de um programa de estimação; verifique se o(s) modelo(s) é(são) adequado(s).
- (c) Obtenha previsões para 1986 utilizando os modelos estimados.
- Mesmas questões do Problema 4 para a Série A<sub>5</sub> Energia.
- 6. Identificar um modelo para a série que fornece a fac amostral da tabela a