# ARM STM32 GPIO

#### **Features**

- ARM Cortex-M4
  - frequency up to 80 MHz
  - MPU
  - 100DMIPS/1.25DMIPS/MHz (Dhrystone 2.1)
  - DSP instructions
- Memories
  - 1MB Flash
  - 128KB SRAM
- 51 GPIO pins
- Timers
- Communication interfaces
  - I2C, SPI, CAN, USART, USB,...
- 12-bit ADC and DAC

CIRCUIT DIAGRAM

#### STM32L476



# Block diagram

- Advanced Microcontroller Bus Architecture (AMBA)
  - Advanced High-performance Bus (AHB)
  - Advanced Peripheral Bus (APB)



Note: AF: alternate function on I/O pins.

## General-purpose inputs/outputs (GPIO)

- STM32L476 have port A~H GPIO port connect on AHB2 bus
- Except port H, each port have 16 pins
- Our STM32L476RG chip can use
  - PA[0..15], PB[0..15], PC[0..15]
  - PF[0..1], PF[4..7], PD2, PD8



#### Nucleo Board Extension Connector

- •用於連接GPIO與外部電路
- 同學可參考Reference manual了解內部連接方式









## **GPIO Memory Address**

- In STM32L4 system all GPIO port connect on AHB2 bus
- Port A system memory address start from *0x4800000*

Table 1. STM32L4x6 memory map and peripheral register boundary addresses

| Bus  | Boundary address          | Size (bytes) | Peripheral | Peripheral register map               |
|------|---------------------------|--------------|------------|---------------------------------------|
|      | 0x5006 0800 - 0x5006 0BFF | 1 KB         | RNG        | Section 24.4.4: RNG register map      |
|      | 0x5006 0400 - 0x5006 07FF | 1 KB         | Reserved   | -                                     |
|      | 0x5006 0000 - 0x5006 03FF | 1 KB         | AES        | Section 25.14.18: AES register map    |
|      | 0x5004 0400 - 0x5005 FFFF | 127 KB       | Reserved   | -                                     |
|      | 0x5004 0000 - 0x5004 03FF | 1 KB         | ADC        | Section 16.6.4: ADC register map      |
|      | 0x5000 0000 - 0x5003 FFFF | 16 KB        | OTG_FS     | Section 43.15.54: OTG_FS register map |
|      | 0x4800 2000 - 0x4FFF FFFF | ~127 MB      | Reserved   | -                                     |
|      | 0x4800 1C00 - 0x4800 1FFF | 1 KB         | GPIOH      | Section 7.4.13: GPIO register map     |
| AHB2 | 0x4800 1800 - 0x4800 1BFF | 1 KB         | GPIOG      | Section 7.4.13: GPIO register map     |
|      | 0x4800 1400 - 0x4800 17FF | 1 KB         | GPIOF      | Section 7.4.13: GPIO register map     |
|      | 0x4800 1000 - 0x4800 13FF | 1 KB         | GPIOE      | Section 7.4.13: GPIO register map     |
|      | 0x4800 0C00 - 0x4800 0FFF | 1 KB         | GPIOD      | Section 7.4.13: GPIO register map     |
|      | 0x4800 0800 - 0x4800 0BFF | 1 KB         | GPIOC      | Section 7.4.13: GPIO register map     |
|      | 0x4800 0400 - 0x4800 07FF | 1 KB         | GPIOB      | Section 7.4.13: GPIO register map     |
|      | 0x4800 0000 - 0x4800 03FF | 1 KB         | GPIOA      | Section 7.4.13: GPIO register map     |
|      | 0x4002 4400 - 0x47FF FFFF | ~127 MB      | Reserved   | -                                     |

#### **GPIO Pin Structure**



1.  $V_{DD\_FT}$  is a potential specific to five-volt tolerant I/Os and different from  $V_{DD}$ .

#### **GPIO** Registers

- Clock enable register
  - AHB2 peripheral clock enable register (RCC\_AHB2ENR)
- Control registers
  - GPIO port mode register (GPIOx\_MODER) (x =A..H)
  - GPIO port output type register (GPIOx\_OTYPER) (x = A..H)
  - GPIO port output speed register (GPIOx\_OSPEEDR)
  - GPIO port pull-up/pull-down register (GPIOx\_PUPDR)
  - ...
- Data registers
  - Output: GPIOx\_ODR, 16bits
  - Input: GPIOx\_IDR, 16bits

### Output Signal Path



### Push-Pull vs Open-Drain Output

- Open-Drain
  - Output voltage level determine by external circuit
  - A "0" in the Output register activates the N-MOS whereas a "1" in the Output register leaves the port in Hi-Z (the P-MOS is never activated)
- Push-Pull
  - Output voltage level determine by internal Vdd\_io
  - A "0" in the Output register activates the N-MOS whereas a "1" in the Output register activates the P-MOS







## Input Signal Path

#### Input data register(IDR) Mode register(MODER)



1.  $V_{DD\_FT}$  is a potential specific to five-volt tolerant I/Os and different from  $V_{DD}$ .

## Input Configure Example

- Mode=00
- PUPD= 00

Figure 19. Input floating/pull up/pull down configurations



Output disable

# Basic GPIO Configuration

Table 32. Port bit configuration table<sup>(1)</sup> MODE(i) OSPEED(i) PUPD(i) OTYPER(i) I/O configuration [1:01 [1:0] 0 0 GP output PP + PU 0 0 GP output 0 1 PP + PD GP output 0 SPEED Reserved 01 1 [1:0] 0 OD GP output 1 0 GP output OD + PU 1 1 OD + PD GP output Output setting 1 1 Reserved (GP output OD) 0 PP + PU 0 1 0 PP + PD 0 SPEED Reserved [1:0] OD OD + PU 1 OD + PD 1 1 0 AF X X 0 Input Floating X X 0 1 Input X 00 X X 1 0 Input Input setting X X X 1 Reserved (input floating) 0 1 X X 11 0 Reserved X X 1

GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function.

Configuration Reference



Reference: http://wiki.csie.ncku.edu.tw/embedded/GPIO

## RCC\_AHB2ENR

Use for enable clock of GPIO bus

#### 6.4.17 AHB2 peripheral clock enable register (RCC\_AHB2ENR)

Address offset: 0x4C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral registers read or write access is not

supported.

| 3 | 31                | 30         | 29   | 28    | 27   | 26         | 25        | 24        | 23               | 22               | 21               | 20               | 19               | 18               | 17               | 16               |
|---|-------------------|------------|------|-------|------|------------|-----------|-----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| R | es.               | Res.       | Res. | Res.  | Res. | Res.       | Res.      | Res.      | Res.             | Res.             | Res.             | Res.             | Res.             | RNG<br>EN        | Res.             | AESEN            |
|   |                   |            |      |       |      |            |           |           |                  |                  |                  |                  |                  | rw               |                  | rw               |
|   |                   |            |      |       |      |            |           |           |                  |                  |                  |                  |                  |                  |                  |                  |
| 1 | 15                | 14         | 13   | 12    | 11   | 10         | 9         | 8         | 7                | 6                | 5                | 4                | 3                | 2                | 1                | 0                |
|   | 1 <b>5</b><br>es. | 14<br>Res. |      | OTGES |      | 10<br>Res. | 9<br>Res. | 8<br>Res. | 7<br>GPIOH<br>EN | 6<br>GPIOG<br>EN | 5<br>GPIOF<br>EN | 4<br>GPIOE<br>EN | 3<br>GPIOD<br>EN | 2<br>GPIOC<br>EN | 1<br>GPIOB<br>EN | 0<br>GPIOA<br>EN |

#### GPIOx\_MODER

#### 7.4.1 GPIO port mode register (GPIOx\_MODER) (x =A..H)

Address offset:0x00

#### Reset values:

- 0xABFF FFFF for port A
- 0xFFFF FEBF for port B
- 0xFFFF FFFF for ports C..G,
- 0x0000 000F for port H

| 31   | 30      | 29   | 28      | 27   | 26      | 25   | 24      | 23   | 22      | 21   | 20      | 19   | 18      | 17   | 16      |
|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|
| MODE | 15[1:0] | MODE | 14[1:0] | MODE | 13[1:0] | MODE | 12[1:0] | MODE | 11[1:0] | MODE | 10[1:0] | MODE | E9[1:0] | MODE | 8[1:0]  |
| rw   | rw      |
| 15   | 14      | 13   | 12      | 11   | 10      | 9    | 8       | 7    | 6       | 5    | 4       | 3    | 2       | 1    | 0       |
| MODE | E7[1:0] | MODE | 6[1:0]  | MODE | 5[1:0]  | MODE | [4[1:0] | MODE | 3[1:0]  | MODE | E2[1:0] | MODE | E1[1:0] | MODE | [0[1:0] |
| rw   | rw      |

Bits 2y+1:2y **MODEy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O mode.

00: Input mode

01: General purpose output mode

10: Alternate function mode

11: Analog mode (reset state)

## GPIOx\_OTYPER

#### 7.4.2 GPIO port output type register (GPIOx\_OTYPER) (x = A..H)

Address offset: 0x04

Reset value: 0x0000 0000

| 31         | 30   | 29         | 28   | 27         | 26         | 25       | 24       | 23       | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
|------------|------|------------|------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Res.       | Res. | Res.       | Res. | Res.       | Res.       | Res.     | Res.     | Res.     | Res.     | Res.     | Res.     | Res.     | Res.     | Res.     | Res.     |
|            |      |            |      |            |            |          |          |          |          |          |          |          |          |          |          |
|            |      |            |      |            |            |          |          |          |          |          |          |          |          |          |          |
| 15         | 14   | 13         | 12   | 11         | 10         | 9        | 8        | 7        | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
| 15<br>OT15 |      | 13<br>OT13 |      | 11<br>OT11 | 10<br>OT10 | 9<br>OT9 | 8<br>OT8 | 7<br>OT7 | 6<br>OT6 | 5<br>OT5 | 4<br>OT4 | 3<br>OT3 | 2<br>OT2 | 1<br>OT1 | 0<br>OT0 |

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OTy:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output type.

0: Output push-pull (reset state)

1: Output open-drain

### GPIOx\_OSPEEDR

#### 7.4.3 GPIO port output speed register (GPIOx\_OSPEEDR) (x = A..H)

Address offset: 0x08

Reset value:

0x0C00 0000 for port A

• 0x0000 0000 for the other ports

| 31 | 30          | 29          | 28          | 27 | 26          | 25 | 24          | 23 | 22          | 21 | 20          | 19 | 18          | 17          | 16          |
|----|-------------|-------------|-------------|----|-------------|----|-------------|----|-------------|----|-------------|----|-------------|-------------|-------------|
|    | ED15<br>:0] |             | ED14<br>:0] |    | ED13<br>:0] |    | ED12<br>:0] |    | ED11<br>:0] |    | ED10<br>:0] |    | EED9<br>:0] | OSPE<br>[1: | EED8<br>:0] |
| rw | rw          | rw          | rw          | rw | rw          | rw | rw          | rw | rw          | rw | rw          | rw | rw          | rw          | rw          |
| 15 | 14          | 13          | 12          | 11 | 10          | 9  | 8           | 7  | 6           | 5  | 4           | 3  | 2           | 1           | 0           |
|    | EED7<br>:0] | OSPE<br>[1: | EED6<br>:0] |    | EED5<br>:0] |    | EED4<br>:0] |    | EED3<br>:0] |    | EED2<br>:0] |    | EED1<br>:0] |             | EED0<br>:0] |
| rw | rw          | rw          | rw          | rw | rw          | rw | rw          | rw | rw          | rw | rw          | rw | rw          | rw          | rw          |

Bits 2y+1:2y **OSPEEDy[1:0]**: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.

00: Low speed

01: Medium speed

10: High speed

11: Very high speed

Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed.

### GPIOx\_PUPDR

#### 7.4.4 GPIO port pull-up/pull-down register (GPIOx\_PUPDR) (x = A..H)

Address offset: 0x0C

Reset values:

0x6400 0000 for port A

0x0000 0100 for port B

0x0000 0000 for other ports

| 31   | 30      | 29   | 28      | 27   | 26      | 25   | 24      | 23   | 22      | 21   | 20      | 19   | 18     | 17   | 16     |
|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|--------|------|--------|
| PUPD | 15[1:0] | PUPD | 14[1:0] | PUPD | 13[1:0] | PUPD | 12[1:0] | PUPD | 11[1:0] | PUPD | 10[1:0] | PUPD | 9[1:0] | PUPD | 8[1:0] |
| rw   | rw      | rw   | rw     | rw   | rw     |
| 15   | 14      | 13   | 12      | 11   | 10      | 9    | 8       | 7    | 6       | 5    | 4       | 3    | 2      | 1    | 0      |
| PUPD | 7[1:0]  | PUPD | 6[1:0]  | PUPD | 5[1:0]  | PUPD | 4[1:0]  | PUPD | 3[1:0]  | PUPD | 2[1:0]  | PUPD | 1[1:0] | PUPD | 0[1:0] |
| rw   | rw      | rw   | rw     | rw   | rw     |

Bits 2y+1:2y **PUPDy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up 10: Pull-down 11: Reserved

#### 7.4.13 GPIO register map

The following table gives the GPIO register map and reset values.

Table 33. GPIO register map and reset values

| Offset | Register                                   | 30            | 23             | 27         | 26            | 25            | 24   | ន្តន           | 21             | 20   | 19            | 18       | 16           | 15             | 4        | 13           | 12     | <del>-</del> 2 | 6           | 8            | 7      | 9            | 5            | က            | 7       | - 0          |
|--------|--------------------------------------------|---------------|----------------|------------|---------------|---------------|------|----------------|----------------|------|---------------|----------|--------------|----------------|----------|--------------|--------|----------------|-------------|--------------|--------|--------------|--------------|--------------|---------|--------------|
|        |                                            | [0:           | <u>[0</u>      | 3          | 2             | 0             | +    | <u>Ö</u>       | ē              | •    | [0:           | -        | <u>6</u>     | ٥              | <u>,</u> | 0.           |        | [0:            | Ę           |              | Ş      |              | [0]          | 0.           |         | [O:          |
| 0x00   | GPIOA_MODER                                | MODE15[1:0]   | MODE14[1:0]    | 200        | 2             | MODE12[1:0]   | '    | E11[1:0]       | MODE 10[1:0]   |      | MODE9[1:0]    |          | MODE8[1:0]   | MODE 214-01    | į        | MODE6f1:01   |        | MODE5[1:0]     | 10.114.00   | 141          | 1      | MODES[1:0]   | MODE2[1:0]   | MODE 1[1:0]  |         | MODE0[1:0]   |
|        |                                            |               |                |            |               |               |      | МОР            |                |      | MOI           |          |              | M              |          | MO           |        |                | 2           | Š            | 2      | Š            |              |              |         |              |
|        | Reset value                                | 1 0           | 1 0            |            |               | 1             | _    | 1 1            | 1              | 1    | 1             | 1        | 1 1          | 1              |          | 1            | 1      | 1 1            | 1           | _            | 1      | -            | 1 1          | 1            | 1       | 1 1          |
| 0x00   | GPIOB_MODER                                | MODER15[1:0]  | MODER14[1:0]   | 200        | WODEN 13[1:0  | MODER12[1:0]  |      | MODER11[1:0]   | MODER 1011:01  |      | MODER9[1:0]   |          | MODER8[1:0]  | MODER 711-01   |          | MODER6[1:0]  |        | MODER5[1:0]    | MODERATE:   | MODER 4 1:0  | 0.170  | MODERS[1:0]  | MODER2[1:0]  | MODER 1[1:0] |         | MODER0[1:0]  |
|        | Reset value                                | 1 1           | 1 1            | 1          | 1             | 1             | 1    | 1 1            | 1              | 1    | 1             | 1        | 1 1          | 1              | 1        | 1            | 1      | 1 1            | 1           | 0            | 1      | 0            | 1 1          | 1            | 1       | 1 1          |
| 0x00   | GPIOx_MODER<br>(where x = CH)              | MODE15[1:0]   | MODE14[1:0]    | 0.121      | -             | MODE12[1:0]   |      | MODE11[1:0]    | MODE 10/1:01   |      | MODE9[1:0]    |          | MODE8[1:0]   | MODE2[4-0]     |          | MODE6[1:0]   | ,      | MODE5[1:0]     | MODEAR4-01  | MODE4[1:0]   | 10.170 | MODES(1:0)   | MODE2[1:0]   | MODE1[1:0]   |         | MODE0[1:0]   |
|        | Reset value                                | 1 1           | 1 1            | 1          | 1             | 1             | 1    | 1 1            | 1              | 1    | 1             | 1        | 1 1          | 1              | 1        | 1            | 1      | 1 1            | 1           | 1            | 1      | 1            | 1 1          | 1            | 1       | 1 1          |
| 0x04   | GPIOx_OTYPER<br>(where x = AH)             | Res.          | Res.           | Res.       | Res.          | Res.          | Xes. | Res.           | Res.           | Res. | Res.          | Res.     | Res.         | OT 15          | OT 14    | OT 13        | OT 12  | OT11<br>OT10   | OT9         | ОТВ          | OT7    | ОТ6          | OT5          | ОТЗ          | OT2     | OT0          |
|        | Reset value                                |               | ++             | H          |               | $\vdash$      | +    |                | Н              |      | Н             | $\dashv$ | +            | 0              | 0        | 0            | 0      | 0 0            | 0           | 0            | 0      | 0            | 0 0          | 0            | 0       | 0 0          |
| 0x08   | GPIOA_OSPEEDR                              | OSPEED15[1:0] | OSPEED14[1:0]. | 20,100     | OSPEEDIS[1:0] | OSPEED12[1:0] |      | OSPEED11[1:0]. | OSPEED10(1:01  |      | OSPEED9[1:0]  |          | OSPEED8[1:0] | OSPEED 771-01  | 6:10     | OSPEED6(1:01 |        | OSPEED5[1:0]   | 10.174.01   | OSPEED4[1:0] |        | OSPEED3[1:0] | OSPEEDZ[1:0] | OSPEED1[1:0] |         | OSPEED0[1:0] |
|        | Reset value                                | 0 0           | 0 0            |            |               | 0             | 0    | 0 0            | 0              | 0    | 0             | 0        | 0 0          | 0              | 0        | 0            | 0      | 0 0            | 0           | 0            | 0      | 0            | 0 0          | 0            | 0       | 0 0          |
| 0x08   | GPIOx_OSPEEDR<br>(where x = BH)            | OSPEED15[1:0] | OSPEED14[1:0]  | 2.22       | OSPEED ISL.   | OSPEED12[1:0] |      | OSPEED11[1:0]  | OSPEED 10[1:0] |      | OSPEED9[1:0]  |          | OSPEED8[1:0] | OSPEEDZI1-01   | 500      | OSPEED6[1:0] |        | OSPEED5[1:0]   | 10.000      | OSPERD4[1:0] | 6      | OSPEED3[1:0] | OSPEED2[1:0] | OSPEED1[1:0] |         | OSPEED0[1:0] |
|        | Reset value                                | 0 0           | 0 0            |            | 0             | 0             | 0    | 0 0            | 0              | 0    | 0             | 0        | 0 0          | 0              | 0        | 0            | 0      | 0 0            | 0           | 0            | 0      | 0            | 0 0          | 0            | 0       | 0 0          |
| 0x0C   | GPIOA_PUPDR                                | [0:1]\$10dNd  | PUPD14[1:0]    | 10,100,100 | ניין פוס דטר  | PUPD12[1:0]   |      | PUPD11[1:0]    | PUPD1011:01    |      | PUPD9[1:0]    |          | PUPD8[1:0]   | 10-112Udi Id   |          | PUPD6f1:01   |        | PUPD5[1:0]     | 10.444.01   | 1            | 2000   | เขาโรกสา:ขุ  | PUPD2[1:0]   | PUPD1[1:0]   |         | PUPD0[1:0]   |
|        | Reset value                                | 0 1           | 1 0            | _          | 1             | _             | 0    | 0 0            | 0              | 0    | -             | 0        | 0 0          | 0              | 0        | 0            | 0      | 0 0            | 0           | 0            | 0      | -            | 0 0          | 0            | 0       | 0 0          |
| 0x0C   | GPIOB_PUPDR                                | PUPD15[1:0]   | PUPD14[1:0]    | 20,707     |               | PUPD12[1:0]   |      | PUPD11[1:0]    | PUPD 1011:01   |      | PUPD9[1:0]    |          | PUPD8[1:0]   | D 100711-01    | _        | PUPD6[1:0]   |        | PUPD5[1:0]     | 10-14-01 IG | _            | ē      | PUPU3[1:0]   | PUPD2[1:0]   | PUPD1[1:0]   | -       | PUPD0[1:0]   |
|        | Reset value                                | 0 0           | 0 0            | _          | 0             | _             | 0    | 0 0            | 0              | 0    | $\rightarrow$ | 0        | 0 0          | 0              | 0        | 0            | 0      | 0 0            | 0           | 1            | 0      | -            | 0 0          | 0            | 0       | 0 0          |
| 0x0C   | GPIOx_PUPDR<br>(where x = CH               | PUPD15[1:0]   | PUPD14[1:0]    | 2,707      |               | PUPD12[1:0]   |      | PUPD11[1:0]    | PUPD 1011:01   |      | PUPD9[1:0]    |          | PUPD8[1:0]   | DI IDD 7714-01 | _        | PUPD6[1:0]   |        | PUPD5[1:0]     | 10.474.01   | _            | 200    | FUPU3[1:0]   | PUPD2[1:0]   | PUPD1[1:0]   |         | PUPDO[1:0]   |
|        | Reset value                                | 0 0           | 0 0            | 0          | 0             | 0             | 0    | 0 0            | 0              | 0    | 0             | 0        | 0 0          | 0              | 0        | 0            | 0      | 0 0            | 0           | 0            | 0      | -            | 0 0          | 0            | 0       | 0 0          |
| 0x10   | GPIOx_IDR<br>(where x = AH)<br>Reset value | Res.          | Res.           | Res.       | Res.          | Res.          | Xes. | Res.           | Res.           | Res. | Res.          | Res.     | Res.         | x ID15         | x<br>D14 | x ID13       | × ID12 | x x D11        | <u>6</u>    | 8<br>x       | × ID7  | S<br>x       | x x          | <u>2</u>     | 20<br>× | x x          |
|        | Neset Value                                |               |                |            |               | $\Box$        |      |                | Ш              |      |               |          | _1_          | ^              | ۸        | ^            | ^      | ^ X            | ١,          | ^            | ۸.     | ^            | ^ _ ^        | ^            | ^       | A   X        |

Table 33. GPIO register map and reset values (continued)

|        |                              | ıa   | DIE   | 3    | 3.   | GP   | 'IO        | re   | gı   | ste  | er i | ma   | р    | an   | d r  | es   | et   | va    | lue   | es    | (CC   | ont   | in    | ue   | a)   |      |      |      |      |      |      |      |      |
|--------|------------------------------|------|-------|------|------|------|------------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|
| Offset | Register                     | 31   | 30    | 53   | 78   | 27   | <b>5</b> 8 | 52   | 54   | ន    | 22   | 7    | 20   | 19   | 48   | 11   | 16   | 15    | 4     | 13    | 15    | 7     | 9     | 6    | œ    | 7    | 9    | 2    | 4    | က    | 2    | -    | 0    |
| 0x14   | GPIOx_ODR<br>(where x = AH)  | Res. | Res.  | Res. | Res. | Res. | Res.       | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | OD15  | OD14  | OD13  | OD12  | OD 11 | OD10  | 6Q0  | OD8  | OD7  | 900  | ODS  | 004  | OD3  | OD2  | OD1  | ODO  |
|        | Reset value                  | Т    | Г     | Г    |      |      |            |      |      |      |      |      |      |      |      |      |      | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0x18   | GPIOx_BSRR<br>(where x = AH) | BR15 | BR 14 | BR13 | BR12 | BR11 | BR 10      | BR9  | BR8  | BR7  | BR6  | BR5  | BR4  | BR3  | BR2  | BR1  | BRO  | BS15  | BS14  | BS13  | BS12  | BS11  | BS10  | BS9  | BS8  | BS7  | BS6  | BSS  | BS4  | BS3  | BS2  | BS1  | BS0  |
|        | Reset value                  | 0    | 0     | 0    | 0    | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0x1C   | GPIOx_LCKR<br>(where x = AH) | Res. | Res.  | Res. | Res. | Res. | Res.       | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | LCKK | LCK15 | LCK14 | LCK13 | LCK12 | LCK11 | LCK10 | LCK9 | LCK8 | LCK7 | LCK6 | LCK5 | LCK4 | LCK3 | LCK2 | LCK1 | LCK0 |
|        | Reset value                  |      | T     |      |      |      |            |      |      |      | Г    |      |      |      |      |      | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0x20   | GPIOx_AFRL<br>(where x = AH) | AF   | SE    | L7[3 | 3:0] | AF   | SE         | L6[3 | 3:0] | AF   | SE   | L5[3 | 3:0] | AF   | SE   | L4[3 | 3:0] | AF    | SE    | L3[3  | :0]   | AF    | SEI   | L2[3 | 3:0] | AF   | SE   | L1[3 | 3:0] | AF   | SEI  | L0[3 | :0]  |
|        | Reset value                  | 0    | 0     | 0    | 0    | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0x24   | GPIOx_AFRH<br>(where x = AH) | AF   | SEL   | 15[  | 3:0] | AF   | SEL        | 14[  | 3:0] | AF   | SEL  | 13[  | 3:0] | AF   | SEL  | 12[  | 3:0] | AF    | SEL   | 11[   | 3:0]  | AF    | SEL   | 10[  | 3:0] | AF   | SE   | L9[3 | 3:0] | AF   | SEI  | L8[3 | :0]  |
|        | Reset value                  | 0    | 0     | 0    | 0    | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0x28   | GPIOx_BRR<br>(where x = AH)  | Res. | Res.  | Res. | Res. | Res. | Res.       | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | BR 15 | BR 14 | BR13  | BR12  | BR11  | BR 10 | BR9  | BR8  | BR7  | BR6  | BR5  | BR4  | BR3  | BR2  | BR1  | BR0  |
|        | Reset value                  |      |       |      |      |      |            |      |      |      |      |      |      |      |      |      |      | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0x2C   | GPIOx_ASCR<br>(where x = AH) | Res. | Res.  | Res. | Res. | Res. | Res.       | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | ASC15 | ASC14 | ASC13 | ASC12 | ASC11 | ASC10 | ASC9 | ASC8 | ASC7 | ASC6 | ASC5 | ASC4 | ASC3 | ASC2 | ASC1 | ASC0 |
|        | Reset value                  |      |       |      |      |      |            |      |      |      |      |      |      |      |      |      |      | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## Code Example

- Configure
  - Output
  - Pull-up
- Set PA pin 5 as output high

Why we need read this register value fist? Ans: JTAG/SWD is use PA13,14 as debug port, can't modify its mode configuration

```
.syntax unified
    .cpu cortex-m4
    .thumb
    .text
    .global main
                                         Memory mapped I/O register addresses
    .equ RCC AHB2ENR, 0x4002104C
    .equ GPIOA MODER, 0x48000000
    .equ GPIOA OTYPER, 0x48000004
    .equ GPIOA OSPEEDR, 0x48000008
    .equ GPIOA_PUPDR, 0x4800000C
    .equ GPIOA_ODR, 0x48000014
//LED on PA5
main:
   //Enable AHB2 clock
           r0, #0x1
                                 GPIOA_MODER = (GPIOA_MODER &0xFFFFF3FF) | 0x400
           r1, =RCC_AHB2ENR
           r0, [r1]
    //Set PA5 as output mode
           r0, #0x400
   ldr
           r1, =GPIOA_MODER
   ldr
           r2, [r1]
   and
           r2, #0xFFFFF3FF //Mask MODER5
   orrs
           r2, r2, r0
    str
           r2, [r1]
   //Default PA5 is Pull-up output, no need to set
   //Set PA5 as high speed mode
           r0, #0x800
   ldr
           r1, =GPIOA_OSPEEDR
   strh
           r0, [r1]
   ldr
           r1, =GPIOA ODR
L1:
           r0, #(1<<5)
   movs
           r0, [r1]
   strh
   B L1
```

#### RCC\_AHB2ENR

| 31         | 30         | 29          | 28    | 27         | 26         | 25        | 24        | 23               | 22               | 21               | 20               | 19               | 18               | 17               | 16               |
|------------|------------|-------------|-------|------------|------------|-----------|-----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Res.       | Res.       | Res.        | Res.  | Res.       | Res.       | Res.      | Res.      | Res.             | Res.             | Res.             | Res.             | Res.             | RNG<br>EN        | Res.             | AESEN            |
|            |            |             |       |            |            |           |           |                  |                  |                  |                  |                  | rw               |                  | rw               |
|            |            |             |       |            |            |           |           |                  |                  |                  |                  |                  |                  |                  |                  |
| 15         | 14         | 13          | 12    | 11         | 10         | 9         | 8         | 7                | 6                | 5                | 4                | 3                | 2                | 1                | 0                |
| 15<br>Res. | 14<br>Res. | 13<br>ADCEN | OTGES | 11<br>Res. | 10<br>Res. | 9<br>Res. | 8<br>Res. | 7<br>GPIOH<br>EN | 6<br>GPIOG<br>EN | 5<br>GPIOF<br>EN | 4<br>GPIOE<br>EN | 3<br>GPIOD<br>EN | 2<br>GPIOC<br>EN | 1<br>GPIOB<br>EN | 0<br>GPIOA<br>EN |

0x01

#### GPIOA\_MODER

| 31   | 30      | 29   | 28      | 27   | 26      | 25   | 24      | 23   | 22      | 21   | 20      | 19   | 18      | 17   | 16      |
|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|
| MODE | 15[1:0] | MODE | 14[1:0] | MODE | 13[1:0] | MODE | 12[1:0] | MODE | 11[1:0] | MODE | 10[1:0] | MODE | E9[1:0] | MODE | 8[1:0]  |
| rw   | rw      |
| 15   | 14      | 13   | 12      | 11   | 10      | 9    | 8       | 7    | 6       | 5    | 4       | 3    | 2       | 1    | 0       |
| MODE | E7[1:0] | MODE | E6[1:0] | MODE |         |      | E4[1:0] | MODE | 3[1:0]  | MODE | [2[1:0] | MODE | E1[1:0] | MODE | E0[1:0] |
| rw   | rw      |

0xFFFF**F3**FF

1 1 1 1 0 0 1 1 (F3)

0 0 0 0 0 1 0 0 (04)

GPIOA\_MODER = (GPIOA\_MODER &0xFFFFF3FF) | 0x400

# Lab 4 實驗零件

- Nucleo-L476RG board
- 麵包板
- 4DIP Switch
  - 1K排阻\*1
- LED \*4
  - 220歐姆電阻\*4





#### LED

- •特性類似二極體,導通時發光,導通電壓約為0.3 or 0.7V
- •二極體內阻小,使用上通常會加上限流電阻避免LED燒毀





### 電阻

• 利用色碼標示電阻值



# 排阻

- 集合式電阻
- 用數字標記電阻值,例如:103=10\*10^3 = 10K歐姆

直立式排列電阻 A 電路 Network Resistor Circuit - A Type



#### **DIP Switch**

- 用途類似開關
- 當切到ON時PIN腳兩端連通





# Negative logic and Positive logic

- logic 可指某個零件"動作"時CPU所收到邏輯準位
- 若某裝置動作時CPU收到的是High "1" 準位則稱Positive logic 或稱Active High
- 反之裝置位動作CPU收到的是Low "0" 準位則稱Negative logic或稱Active Low



### How to turn on single LED?

 Nucleo-L476RG has a onboard LED(LD2) connect at GPIOA pin5 which is an active high circuit

```
LD2 PA6 SB41 D12 SB24 PA7 SB40 D11 SB20 A'

SB21 CN5 PB8 D15
```

```
.syntax unified
    .cpu cortex-m4
    .thumb
    .text
    .global main
    .equ RCC_AHB2ENR, 0x4002104C
    .equ GPIOA MODER, 0x48000000
    .equ GPIOA OTYPER, 0x48000004
    .equ GPIOA OSPEEDR, 0x48000008
    .equ GPIOA PUPDR, 0x4800000C
    .equ GPIOA_ODR, 0x48000014
//LED on PA5
main:
    //Enable AHB2 clock
            r0, #0x1
            r1, =RCC_AHB2ENR
    ldr
            r0, [r1]
    //Set PA5 as output mode
            r0, #0x400
            r1, =GPIOA_MODER
            r2, [r1]
            r2, #0xFFFFF3FF //Mask MODER5
            r2, r2, r0
    orrs
            r2, [r1]
    str
    //Default PA5 is Pull-up output, no need to set
    //Set PA5 as high speed mode
            r0, #0x800
            r1, =GPIOA_OSPEEDR
    strh
            r0, [r1]
    ldr
            r1, =GPIOA ODR
L1:
            r0, #(1<<5)
    movs
    strh
            r0, [r1]
    B L1
```

# How to connect breadboard, LEDs and STM32

- An active low circuit
  - Output '0' LED燈亮





# How to move a single LED?

• Example codes

#### LED Blink

```
//Set data register address
                                                ldr
                                                           r1, =GPIOA_ODR
                                      LED:
                                                //Set PA5 as low then delay
                                                           r0, #0
                                                movs
                                                strh
                                                           r0, [r1]
                                                           delay
                                                bl
Set PA5 output level via ODR
                                                //Set PA5 as high then delay
                                                movs
                                                           r0, #(1<<5)
                                                           r0, [r1]
                                                strh
                                                           delay
                                                bl
                                                B LED
```

Note: 修改ODR會一次改到整個GPIO port的值,若只需改動到某一個pin腳時可利用BSRR register存取

#### Set Selected Bits

#### • Through ODR

```
GPIOD_ODR |= 0x0080; // PD7 = 1
GPIOD_ODR &= \sim 0x0400; // PD10 = 0
```

#### Through BSSR

```
LDR R0,=GPIOD ; GPIOD base address MOV R1,#0x0080 ; select PD7 STRH R1,[R0,#BSSRL] ; set PD7 = 1 MOV R1,#0x0400 ; selectPD10 STRH R1,[R0,#BSSRH] ; reset PD10 = 0
```

```
/* BSRRL refer to bits 0-15 of BSRR which set the corresponding bit of the port bits 0 - 15 of a port */ /* BSRRH refer to bits 16-31 of BSRR which reset the corresponding bit of the port bits 0 - 15 of a port */
```

| 0x14 | GPIOx_ODR<br>(where x = AH)  | Res.  | Res.  | Res. | Res.  | Res. | Res.  | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | Res. | OD15 | <b>OD14</b> | OD13 | <b>OD12</b> | OD 11 | OD10 | 6Q0 | OD8 | OD7 | 900 | ODS | 004 | OD3 | OD2 | OD1 | ODO |
|------|------------------------------|-------|-------|------|-------|------|-------|------|------|------|------|------|------|------|------|------|------|------|-------------|------|-------------|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|      | Reset value                  |       |       |      |       |      |       |      |      |      |      |      |      |      |      |      |      | 0    | 0           | 0    | 0           | 0     | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 0x18 | GPIOx_BSRR<br>(where x = AH) | BR 15 | BR 14 | BR13 | BR 12 | BR11 | BR 10 | BR9  | BR8  | BR7  | BR6  | BR5  | BR4  | BR3  | BR2  | BR1  | BR0  | BS15 | BS14        | BS13 | BS12        | BS11  | 70   | BS9 | BS8 | BS7 | BS6 | BSS | BS4 | BS3 | BS2 | BS1 | BS0 |
|      | Reset value                  | 0     | 0     | 0    | 0     | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0           | 0    | 0           | 0     | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

## How to delay 1 second?

- Each instruction has own execution cycles(e.g. MOV take 1 cycle, LDR/STR take 2 cycles,... etc.)
- By default, our CPU(STM32L476) runs on 4MHz, 1cycle = 0.25uS
- So se can simply write a busy loop code as a delay function.
- Example codes



#### Branch Hazards

#### How to read user button?

- Configure a GPIO pin as input
  - If external circuit has pull-up resister, the pin can configured as floating input state.



## GPIO Input Configure Example

Onboard user button connect on PC13



Note: Input預設為floating狀態 且不需設Speed register

#### Debounce



- Hardware method
  - Add a 濾波電容
- Software method
  - 讀取GPIO Pin後間隔一段時間再 讀取一次確認
  - 連續讀取N次, 看讀值是否穩定無 改變





### How to connect DIP switch and STM32

## A simple DIP Switch Circuit

- When switch 'ON' Px get GND level (0), 'OFF' get VCC level('1')
  - It an active low circuit





#### Reference

- STM32L4x6 Reference manual
  - http://www.st.com/resource/en/reference\_manual/dm00083560.pdf
- Embedded system course from NCKU
  - http://wiki.csie.ncku.edu.tw/embedded/GPIO