Assignment 2

Please make sure that you always use notations consistent with lecture notes. Different notations will not be accepted.

The deadline for assignment 2 is: Fri 22nd, April 5:00 pm

Question 1 (15 marks)

Consider a relation R (A, B, C, D, E, G, H, I, J) and its FD set F = {EC -> B, C->D, G->BH, H->ACD, E->GHI, IJ->EG}

- 1) Find all the candidate keys for *R*, and list the prime and non-prime attributes of R (2 marks)
- 2) Calculate the total number of super keys can be found for R? List 5 of them. (2 marks)
- 3) Determine the highest normal form of R with respect to F. Justify your answer. (2 marks)
- 4) Find a minimal cover F_m for F. (2 marks)
- 5) Regarding F, is the decomposition R1 = {ABE}, R2 = {CDH}, R3 = {EGHIJ} of *R* dependency-preserving? Please justify your answer. (2 marks)
- 6) Regarding F, does the decomposition R1 = {ABE}, R2 = {CDH}, R3 = {EGHIJ} of *R* satisfy the lossless join property? Please justify your answer. (2 marks)
- 7) Provide a step-by-step lossless decomposition of R into BCNF normal form. (3 marks)

Question 2 (10 marks)

Consider the schedule below. Here, R(*) and W(*) stand for 'Read' and 'Write', respectively. T1, T2, T3, T4 and T5 represent five transactions and t_i represents a time slot.

	t_1	t_2	t 3	t4	t ₅	t ₆	t ₇	t ₈	t9	t 10	t 11	t 12	t 13	t 14	t 15	t 16	t 17	t 18
<i>T1</i>			R(A)				R(B)		W(A)						W(B)			
<i>T2</i>	R(C)				W(C)													
<i>T3</i>		R(B)									R(C)					W(B)	W(C)	
<i>T4</i>				R(D)								W(D)	R(A)					W(A)
T5						R(C)		R(A)		W(C)				W(A)				

Each transaction begins at the time slot of its first Read and commits right after its last Write (same time slot).

Regarding the following questions, give and justify your answers.

- 1) Assume a checkpoint is made between t_5 and t_6 , what should be done to the five transactions when the crash happens between t_{15} and t_{16} . (2 marks)
- 2) Is the transaction schedule conflict serializable? Give the precedence graph to justify your answer. (2 marks)
- 3) Construct a schedule (which is different from above) of these five transactions which **causes** deadlock when using two-phase locking protocol. You should clearly indicate all the locks and the corresponding unlocks in your schedule. If no such schedule exists, explain why. (3 marks)
- 4) Construct a schedule (which is different from above) of these five transactions which **does not cause** deadlock when using two-phase locking protocol. You should clearly indicate all the locks and the corresponding unlocks in your schedule. If no such schedule exists, explain why. (3 marks)

Assignment Submission

- Students must submit an electronic copy of their answers to the above questions to the course website in Moodle.
- Only .doc or .pdf file is accepted. The file name should be ass2_studentID.doc or ass2_studentID.pdf (e.g., ass2_z5100000.doc or ass2_z5100000.pdf).

Note:

- 1. For any problems in submissions, please email to comp9311unsw@gmail.com
- 2. All submissions will be checked for plagiarism.
- 3. We do not accept e-mail submissions.

The university regards plagiarism as a form of academic misconduct and has very strict rules regarding plagiarism. For UNSW policies, penalties, and information to help avoid plagiarism, please see:

https://student.unsw.edu.au/plagiarism as well as the guidelines in the online ELISE tutorials for all new UNSW students:

https://subjectguides.library.unsw.edu.au/elise

Late Submission Penalty

- A hefty 20% of your final mark will be deducted for each additional day (24hr) after the specified submission time and date.
- Submissions that are more than five days late will not be marked.