الدورة الإستثنائية للعام 2010	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية
الاسم:	مسابقة في مادة الرياضيات	دائرة الامتحانات عدد المسائل: اربع
الرقم:	المدة ساعتان	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

I- (4 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Écrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond :

N	Questions	Réponses			
11		a	b	С	d
1	$\left(e^{i\frac{\pi}{12}} + e^{-i\frac{\pi}{12}}\right)^2 =$	0	$2+\sqrt{3}$	$2-\sqrt{3}$	$\sqrt{3}$
2	La forme exponentielle de $z = \sin\theta - i\cos\theta$ est:	$\mathrm{e}^{\mathrm{i}\theta}$	$e^{-i\theta}$	$e^{i(\frac{\pi}{2}-\theta)}$	$e^{i(\theta-\frac{\pi}{2})}$
3	A, B et C sont les points d'affixes respectives $z_A = -3i$, $z_B = i$ et $z_C = 3i$. Le point M d'affixe z, tel que $ z + 3i = -i $ décrit:	La médiatrice du segment [AB]	Le cercle de centre A et de rayon 1	Le cercle de centre C et de rayon 1	La médiatrice du segment [CB]
4	Si $Z = \frac{iz}{z+1-i}$ alors:	$\overline{Z} = \frac{i\overline{z}}{\overline{z} - 1 + i}$	$\overline{Z} = \frac{i \overline{z}}{\overline{z} + 1 + i}$	$\overline{Z} = \frac{-i\overline{z}}{\overline{z} - 1 + i}$	$\overline{Z} = \frac{-i\overline{z}}{\overline{z} + 1 + i}$

II- (4 points)

Dans une boutique il y a deux tiroirs T_1 et T_2 contenant des cravates.

Le tiroir T_1 contient 15 cravates en soie : 3 rouges, 5 vertes et 7 bleues.

Le tiroir T_2 contient 10 cravates en polyester : 2 rouges, 5 vertes et 3 bleues.

 ${\bf A}$ - On choisit au hasard, une cravate de T_1 et une de T_2 . On désigne par E et F les deux événements suivants :

E : « les deux cravates choisies sont de même couleur »

F: « les deux cravates choisies sont l'une rouge et l'autre bleue »

- 1) Démontrer que la probabilité P(E) est égale à $\frac{26}{75}$.
- 2) Calculer P(F).
- **B** Dans cette partie, on choisit au hasard un des deux tiroirs et de ce tiroir on choisit au hasard une cravate. On considère les événements suivants :

R: « la cravate choisie est rouge »

 T_1 : « la cravate choisie provient du tiroir T_1 »

- 1) Calculer $P(R/T_1)$ et $P(R \cap T_1)$.
- 2) Calculer P(R).
- C- On suppose que les 25 cravates sont placées dans un même tiroir T et on choisit simultanément et au hasard trois cravates de T.

Le prix d'une cravate en soie est 50 000LL et celui d'une cravate en polyester est 10 000LL.

On désigne par X la somme des prix des trois cravates choisies.

Calculer $P(X \le 100\ 000)$.

III- (4 points)

Dans l'espace rapporté à un repère orthonormé direct (O; i, j, k) on donne le point A (1;1;2),

où m est un paramètre réel.

- 1) Montrer que la droite (d) est contenue dans le plan (P) et que A n'appartient pas à (P).
- 2) Trouver une équation du plan (Q) déterminé par le point A et la droite (d).
- 3) Montrer que le point A' $(\frac{-1}{3}; \frac{-1}{3}; \frac{10}{3})$ est symétrique de A par rapport à (P).
- 4) Soit (Q') le plan déterminé par A'et (d). Vérifier qu'une équation de (Q') est x + 5y 3z + 12 = 0.
- 5) Soit H le projeté orthogonal de A sur (d) et α l'angle aigu des deux plans (Q) et (Q'). Montrer que l'angle aigu des deux droites (HA) et (HA') est égal à α et calculer $\cos \alpha$.

IV- (8 points)

On considère la fonction f définie sur $]0;+\infty[$ par $f(x)=x-\frac{\left(\ln x\right)^2}{x}$. (C) est la courbe représentative de f dans un repère orthonormé $(0;\overline{i},\overline{j})$. (unité : 1 cm)

- 1) Déterminer $\lim_{x\to 0} f(x)$. Déduire une asymptote à (C).
- 2) Déterminer $\lim_{x\to +\infty} f(x)$ et vérifier que la droite (D) d'équation y=x est une asymptote à (C).
- 3) Le tableau ci-contre donne les variations de la fonction ϕ définie sur $]0;+\infty[$ par : $\phi(x) = x^2 + (\ln x)^2 2\ln x$.

Vérifier que $f'(x) = \frac{\varphi(x)}{x^2}$. En déduire que f est strictement croissante.

- 4) a- Démontrer que (D) est tangente à (C) au point A(1;1) et que (D) est au-dessus de (C) pour x ≠1.
 b- Vérifier que la tangente (T) à (C) au point d'abscisse e² est parallèle à (D).
- 5) Démontrer que l'équation f(x) = 0 admet une racine unique α et vérifier que $0.5 < \alpha < 0.6$.
- 6) Tracer (D), (T) et (C).
- 7) On désigne par (C') la courbe représentative de la fonction réciproque f ⁻¹ de f . Tracer (C') dans le même repère que (C).
- 8) a- Calculer $\int_{\alpha}^{1} f(x) dx$ en fonction de α .
 - b- Déduire, en fonction de α , l'aire du domaine limité par (C), (C') et les deux droites d'équations x=0 et y=0.

2