TTIC 31230 Fundamentals of Deep Learning Quiz 2

Problem 1: Running Averages. Consider a sequence of vectors x_0, x_1, \ldots and two running averages y_t and z_t defined by as follows for $0 < \beta < 1$ and $\gamma > 0$.

$$y_0 = 0$$

$$y_{t+1} = \beta y_t + (1 - \beta)x_t$$

$$z_0 = 0$$

$$z_{t+1} = \beta z_t + \gamma x_t$$

(a) Suppose that the values x_t are drawn IID from a distribution with mean vector $\overline{x} = E x_t$. Give values for

$$\overline{y} = \lim_{t \to \infty} E \ y_t$$

and

$$\overline{z} = \lim_{t \to \infty} E \ z_t$$

as functions of β , γ and \overline{x}

Hint: Solve for $E y_{t+1}$ as a function of $E y_t$ and assume that a limiting expectation exists.

(b) Express z_t as a function of y_t , β and γ .

Problem 2. Adaptive SGD. This problem considers the question of whether the convergence theorem hold for adaptive methods — in the limit as the learning rate goes to zero do adaptive methods converge to a local minimum of the loss

Consider a generalization of RMSProp where we allow an arbitrary adaptation with with different learning rates for ifferent parameter values. More specifically consider the SGD update equation

(1)
$$\Phi_{t+1} = \Phi_t - \eta \left(A(\Phi_t, x_t, y_t) \odot \nabla_{\Phi} \mathcal{L}(\Phi_t, x_t, y_t) \right)$$

where $\langle x_t, y_t \rangle$ is the tth training pair, $A(\Phi_t, x_t, y_t)$ is an adaptation vector, and \odot is the Haddamard product $(x \odot y)[i] = x[i] y[i]$.

Consider the special case given by

$$\begin{split} A(\Phi,x,y)[i] &= \frac{1}{\sqrt{s(\Phi,x,y)} + \epsilon} \\ s(\Phi,x,y) &= \frac{1}{d} ||\nabla_{\Phi} \mathcal{L}(\Phi,x,y)||^2 \end{split}$$

where d is the dimension of Φ .

- (a) For the given interpretation of $A(\Phi,x,y)$, let Φ^* be a parameter setting that is a stationary point of the update equation (1) in the sense that expected update over a random draw from the population is zero. Write this stationary condition on Φ^* explicitly as an expectation equaling zero under the given interpretation of $A(\Phi,x,y)$.
- (b) Is Φ^* as defined in part (b) a stationary point of the original loss a point where the expected gradient of $\mathcal{L}(\Phi^*, x, y)$ equal to zero?
- (c) Do these observations have implications for the adaptive methods described in this class. Explain your answer.