

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 - 2019/2020

Multiple Imputation Modelling and Diagnostics

What is multiple imputation?

• This statistical technique (algorithm) takes the incomplete dataset (i.e., including missing data) and returns m imputed datasets with no missing values.

m is a user-selected parameter

Multiple imputation

• Each missing feature is imputed (filled in) with a set of m>1 plausible values which reflect the uncertainty about the missing feature.

Multiple imputation modelling techniques

Multivariate Imputation by Chained Equations (MICE)

Bootstrapped Expectation-Maximisation (BEM)

Multiple Imputation using an approximate Bayesian framework (MI)

Multiple imputation modelling techniques

 Bootstrapped Expectation-Maximisation (BEM)

Visualising BEM vs. MICE using scatter plot

Multiple Imputation Modelling: BEM vs. MICE

Impact of a method (BEM or MICE)

Using different multiple imputation methods may affect the final results (e.g., classification results)

BEM		Reference subgroup			
		WNT	SHH	Grp 3	Grp 4
Predicted Subgroup	WNT	22	0	0	0
	SHH	0	23	0	0
	Grp 3	0	0	23	0
	Grp 4	0	0	0	28
	NC+	2	4	1	0
	Total	24	27	24	28

	MICE	Reference subgroup			
		WNT	SHH	Grp 3	Grp 4
Predicted Subgroup	WNT	22	0	0	0
	SHH	0	22	0	0
	Grp 3	0	1	23	0
Predic	Grp 4	0	0	0	28
	NC	2	5	0	0
	Total	24	28	23	28

Summarising the performance of a classification algorithm using a "confusion matrix". A matrix (table) shows the discrepancy between predicted and reference subgroup.

*NC: Non-classifiable

Efficiency of Multiple Imputation

Efficiency of an estimate based on m imputation is approximately:

$$(1+\frac{\gamma}{m})^{-1}$$

Where γ is the fraction of missing information for the quality being estimated.

¹⁾ Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys . J. Wiley & Sons, New York.

²⁾ Schafer, Joseph L. and Maren K. Olsen. 1998. Wultiple imputation for multivariate missing-data problems: A data analyst's perspective." Multivariate Behavioral Research 33(4):545-571.

Efficiency of m imputations for 17 probes

Feature #	missing fraction	Efficiency of m imputation per feature	Average of efficiency (12 feature)
1	0.165048544	0.991815118	0.995782732
2	0.048543689	0.997578693	m=20
3	0.038834951	0.998062016	
4	0	-	
5	0.077669903	0.996131528	
6	0.009708738	0.999514799	
7	0.155339806	0.992292871	
8	0.009708738	0.999514799	
9	0.077669903	0.996131528	
10	0.038834951	0.998062016	
11	0	-	
12	0.242718447	0.988009592	
13	0	-	
14	0.019417476	0.999030068	
15	0	-	
16	0	-	
17	0.13592233	0.993249759	

Installation and Updates from R

To install the Amelia package on any platform, simply type the following at the R command prompt,

- > install.packages("Amelia")
- > update.packages()