Mathematics 227 Span

1. Suppose that
$$\mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$
. Give a geometric description of Span $\{\mathbf{v}\}$.

2. Consider the two vectors in \mathbb{R}^3 :

$$\mathbf{e}_1 = \left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight], \qquad \mathbf{e}_2 = \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight].$$

What can you say about the components of a vector in Span $\{e_1, e_2\}$?

Give a geometric description of the vectors in Span $\{e_1, e_2\}$

3. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}.$$

Can every vector in \mathbb{R}^3 be written as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 ?

What is Span $\{v_1, v_2, v_3\}$?

4. If the span of a set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is \mathbb{R}^3 , what can you guarantee about the number of vectors in this set?

5. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}.$$

Can every vector in \mathbb{R}^3 be written as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 ?

Explain why v_3 can be written as a linear combination of v_1 and v_2 .

Explain why any linear combination $a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3$ can be written as a linear combination of just \mathbf{v}_1 and \mathbf{v}_2 .

Explain why $\text{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}=\text{Span}\{\mathbf{v}_1,\mathbf{v}_2\}.$