Задача 1

Индивидуальное задание: вариант 5, последовательность s = 100011001000.

- Так как в последовательности присутствует три нуля подряд, если бы n было равно 3, то в какой-то момент состояние генератора было бы равно 000, и последовательность бы была нулевая.
- Рассмотрим n=4:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

, из чего легко получить единственное решение $c_1=1, c_4=1, c_3=1, c_2=1$. Генератор с такими значениями порождает последовательность $s'=\mathbf{100011000}$ 110001, что не совпадает с нашей последовательностью.

• Рассмотрим n=5:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

, легко видеть, что эта система приводится к нижнетреугольному виду, из которого получаем единственное решение $c_5=0, c_4=0, c_3=0, c_2=1, c_1=1$. Такой генератор порождает последовательность s'=1001010111110000 **1000110010** 10111, что не является подходящей для нас последовательностью.

• Рассмотрим n=6:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

, приведем систему заменой строк на линейные комбинации и перестановкой строк к виду

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_3 \\ c_2 \\ c_4 \\ c_5 \\ c_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

, из чего получаем $c_6=0, c_5=1, c_4=1, c_2=0, c_3=0, c_1=1$. Такой генератор порождает последовательность

s' = 1001000001011101101101001111 **100011001000** 0010111011010101111100011

Таким образом, следующие 10 символов последовательности: 0010111011.

Рис. 1: Схема генератора к заданию 1.

Задача 2

Для получения РС-кода с конструктивным расстоянием d можно просто взять произвольный b и порождающий полином $g(x) = \prod_{i=b}^{b+d-2} (x-\alpha^i)$. Таким образом, будет существовать:

- 1 код с k=n и конструктивным расстоянием 1 (тривиальный)
- n кодов с k = n 1 и конструктивным расстоянием 2
- n кодов с k = n 2 и конструктивным расстоянием 3
- . . .
- n кодов с k=1 и конструктивным расстоянием n
- 1 код с k = 0 (вырожденный)

Рассмотрим теперь пример PC-кода над GF(7) с конструктивным расстоянием 5 (исправляющего две ошибки). В качестве генератора мультипликативной группы возьмем $\alpha = 3$, тогда:

$$q(x) = (x - \alpha^{1})(x - \alpha^{2})(x - \alpha^{3})(x - \alpha^{4}) = (x - 3)(x - 2)(x - 6)(x - 4) = 4 + 2x + 3x^{2} + 6x^{3} + x^{4}$$

$$G = \begin{bmatrix} 4 & 2 & 3 & 6 & 1 & 0 \\ 0 & 4 & 2 & 3 & 6 & 1 \end{bmatrix}$$

Пусть при передаче информационной последовательности m=00, которой соответствует кодовое слово c=000000, произошла ошибка e=503000, и было получено v=c+e=503000.

- Декодируем по алгоритму ПГЦ:
 - 1. Кодовое слово c(x) = 0
 - 2. Выход канала $v(x) = 5 + 3x^2$
 - 3. Синдромный многочлен $S(x) = 4x + 3x^2 + x^3 + 4x^4$
 - 4. Система уравнений для коэффициентов многочлена локаторов ошибок:

$$\left(\begin{array}{cc} 4 & 3 \\ 3 & 1 \end{array}\right) \left(\begin{array}{c} \Lambda_2 \\ \Lambda_1 \end{array}\right) = \left(\begin{array}{c} 6 \\ 3 \end{array}\right)$$

, из которой получим полином локаторов ошибок $\Lambda(x) = 1 + 4x + 2x^2$

- 5. Корнями полинома локаторов ошибок являются x=4 и x=1, локаторы ошибок 2 и 1 как обратные к корням элементы. Эти элементы имеют степени 2 и 0 соответственно, что действительно является позициями ошибок.
- 6. система уравнений для значений ошибок:

$$\left(\begin{array}{cc} 2 & 1 \\ 4 & 1 \end{array}\right) \left(\begin{array}{c} Y_1 \\ Y_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 3 \end{array}\right)$$

, из которой получим $Y_1=3, Y_2=5,$ что действительно является значениями ошибок на позициях 2 и 0 соответственно. Таким образом, вектор ошибок действительно равен $e(x)=3x^2+5,$ после вычитания его из v(x), получим кодовое слово, которое отправляли.

• Рассчитаем полином локаторов ошибок по алгоритму БМ:

r	Δ	B(x)	$\Lambda(x)$	L
1	4	2	3x + 1	1
2	1	2x	x+1	1
3	4	2x + 2	$6x^2 + x + 1$	2
4	2	$2x^2 + 2x$	$2x^2 + 4x + 1$	2

Многочлен локаторов ошибок $\Lambda(x) = 1 + 4x + 2x^2$, что совпадает с многочленом, рассчитанным по алгоритму ПГЦ.

Найдем значения ошибок по алгоритму Форни:

$$\Omega(x) = S(x)\Lambda(x) \mod x^2 = 5x + 4; \Lambda'(x) = 4x + 4$$
, из чего по формуле $Y_i = \frac{-\Omega(X_i^{-1})}{\Lambda'(X_i^{-1})}$ получаем $Y_1 = 3, Y_2 = 5$, что совпадает с значениями ошибок, рассчитанными по алгоритму ПГЦ.

Задача 3

Код Рида-Соломона длины 7 должен быть построен над полем $GF(2^3)$, для его построения построим его как поле полиномов по модулю $p(x) = x^3 + x + 1$:

Степень	Элемент
0	1
1	a
2	a^2
3	a+1
4	$a^2 + a$
5	$a^2 + a + 1$
6	$a^2 + 1$

Чтобы код исправлял двойные ошибки, необходимо хотя бы d=5, возьмем в качестве порождающего многочлена $g(x)=(x-a^1)(x-a^2)(x-a^3)(x-a^4)=a^3+ax+x^2+a^3x^3+x^4$. Получили код с конструктивным расстоянием 5 и k=3.

Пусть при передаче информационной последовательности m=000, которой соответствует кодовое слово c=0000000, произошла ошибка $e=00a^3a^2000$, и было получено $v=c+e=00a^3a^2000$.

- Декодируем по алгоритму ПГЦ:
 - 1. Кодовое слово c(x) = 0
 - 2. Выход канала $v(x) = a^3x^2 + a^2x^3$
 - 3. Синдромный многочлен $S(x) = a^3x^2 + ax^3 + a^5x^4$

4. Система уравнений для коэффициентов многочлена локаторов ошибок:

$$\left(\begin{array}{cc} 0 & a^3 \\ a^3 & a \end{array}\right) \left(\begin{array}{c} \Lambda_2 \\ \Lambda_1 \end{array}\right) = \left(\begin{array}{c} a \\ a^5 \end{array}\right)$$

, из которой получим полином локаторов ошибок $\Lambda(x) = 1 + a^5 x + a^5 x^2$

- 5. Корнями полинома локаторов ошибок являются $x=a^4$ и $x=a^5$, локаторы ошибок a^3 и a^2 как обратные к корням элементы. Эти элементы имеют степени 3 и 2 соответственно, что действительно является позициями ошибок.
- 6. система уравнений для значений ошибок:

$$\left(\begin{array}{cc}a^3 & a^2\\a^6 & a^4\end{array}\right)\left(\begin{array}{c}Y_1\\Y_2\end{array}\right)=\left(\begin{array}{c}0\\a^3\end{array}\right)$$

, из которой получим $Y_1=a^2, Y_2=a^3$, что действительно является значениями ошибок на позициях 3 и 2 соответственно. Таким образом, вектор ошибок действительно равен $e(x)=a^3x^2+a^2x^3$, после вычитания его из v(x), получим кодовое слово, которое отправляли.

• Рассчитаем полином локаторов ошибок по алгоритму БМ:

r	Δ	B(x)	$\Lambda(x)$	L
\overline{r}	Δ	$\Lambda(x)$	L	
1	0	x	1	0
2	a+1	$a^2 + a$	$(a+1) x^2 + 1$	2
3	a	$(a^2 + a) x$	$(a+1) x^2 + (a^2 + a + 1) x + 1$	2
4	$a^2 + a + 1$	$(a^2 + a) x^2$	$(a^2 + a + 1) x^2 + (a^2 + a + 1) x + 1$	2

Многочлен локаторов ошибок $\Lambda(x) = 1 + a^5x + a^5x^2$, что совпадает с многочленом, рассчитанным по алгоритму ПГЦ.

Найдем значения ошибок по алгоритму Форни:

 $\Omega(x)=S(x)\Lambda(x)\mod x^4=(a+1)\,x;$ $\Lambda'(x)=a^2+a+1,$ из чего по формуле $Y_i=\frac{-\Omega(X_i^{-1})}{\Lambda'(X_i^{-1})}$ получаем $Y_1=a^2,Y_2=a+1=a^3,$ что совпадает с значениями ошибок, рассчитанными по алгоритму ПГЦ.

Задача 6

Индивидуальное задание: вариант 5

Примитивный полином 73: $p(x) = 1 + t + t^2 + 0 + t^4 + t^5$

Выход канала 4602671437: $v(x) = x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{22} + x^{21} + x^{18} + x^{17} + x^{16} + x^{14} + x^{13} + x^{11} + x^5 + x^4 + x$

Циклическое представление мультипликативной группы поля:

Теория кодирования

теории под	цирования
Степень	Элемент
0	1
1	a
2	a^2
3	a^3
4	a^4
5	$a^4 + a^2 + a + 1$
6	$a^4 + a^3 + 1$
7	$a^2 + 1$
8	$a^3 + a$
9	$a^4 + a^2$
10	$a^4 + a^3 + a^2 + a + 1$
11	$a^3 + 1$
12	$a^4 + a$
13	$a^4 + a + 1$
14	$a^4 + 1$
15	$a^4 + a^2 + 1$
16	$a^4 + a^3 + a^2 + 1$
17	$a^3 + a^2 + 1$
18	$a^4 + a^3 + a$
19	a+1
20	$a^2 + a$
21	$a^3 + a^2$
22	$a^4 + a^3$
23	$a^2 + a + 1$
24	$a^3 + a^2 + a$
25	$a^4 + a^3 + a^2$
26	$a^3 + a^2 + a + 1$
27	$a^4 + a^3 + a^2 + a$
28	$a^3 + a + 1$
29	$a^4 + a^2 + a$
30	$a^4 + a^3 + a + 1$

• Декодируем по алгоритму ПГЦ:

- 1. Синдромный многочлен $S(x)=\left(a^4+a^3+a+1\right)x^4+\left(a^2+a+1\right)x^3+\left(a^4+a^2+1\right)x^2+\left(a^2+a+1\right)x$
- 2. Система уравнений для коэффициентов многочлена локаторов ошибок:

$$\begin{pmatrix} a^2 + a + 1 & a^4 + a^2 + 1 \\ a^4 + a^2 + 1 & a^2 + a + 1 \end{pmatrix} \begin{pmatrix} \Lambda_2 \\ \Lambda_1 \end{pmatrix} = \begin{pmatrix} a^2 + a + 1 \\ a^4 + a^3 + a + 1 \end{pmatrix}$$

, из которой получим полином локаторов ошибок $\Lambda(x) = (a^4 + a^2)x^2 + (a^2 + a + 1)x + 1$

- 3. Корнями полинома локаторов ошибок являются $x = a^3 + a^2 + a + 1$ и $x = a^4 + a^3 + a^2 + a$, локаторы ошибок $a^4 + a^2 + a + 1$ и a^4 как обратные к корням элементы. Эти элементы имеют степени 5 и 4 соответственно, что является позициями ошибок.
- 4. система уравнений для значений ошибок:

Система уравнении для значении опиоок.
$$\begin{pmatrix} a^4 + a^2 + a + 1 & a^4 \\ a^4 + a^3 + a^2 + a + 1 & a^3 + a \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} a^2 + a + 1 \\ a^4 + a^2 + 1 \end{pmatrix}$$

, из которой получим $Y_1=1,Y_2=1,$ что является значениями ошибок на позициях 5 и 4 соответственно. Таким образом, вектор ошибок равен $e(x)=x^5+x^4,$ после

вычитания его из v(x), получим кодовое слово $c(x) = x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{22} + x^{21} + x^{18} + x^{17} + x^{16} + x^{14} + x^{13} + x^{11} + x$

- 5. разделив кодовое слово на порождающий многочлен $g(x)=x^4+(a^4+a^3+a^2+a)\,x^3+a^2x^2+ax+a^4+a^3+a^2+a+1,$ получим информационный многочлен $m(x)=x^{26}+(a^4+a^3+a^2+a+1)\,x^{25}+(a^4+a^3+a^2)\,x^{24}+(a^4+a^3+a^2+1)\,x^{23}+(a^4+a^3+a+1)\,x^{22}+(a^4+a^3+a^2)\,x^{21}+(a^4+a+1)\,x^{20}+a^2x^{19}+(a^4+a^3+1)\,x^{18}+(a^4+a^2)\,x^{17}+(a^4+a)\,x^{16}+(a^4+a^2)\,x^{15}+(a^2+1)\,x^{14}+a^4x^{13}+(a^4+a+1)\,x^{12}+a^2x^{11}+(a^4+a^3)\,x^{10}+(a^3+a+1)\,x^9+(a^3+a^2+a+1)\,x^8+(a^4+a^2+a+1)\,x^7+(a^4+a^3+a^2+1)\,x^6+(a^3+a^2)\,x^5+(a^4+a^3+1)\,x^4+(a^4+a^3+a+1)\,x^3+(a^4+a)\,x^2+(a^3+a^2)\,x,$ причем остаток от деления равен 0, как и должно быть.
- Рассчитаем полином локаторов ошибок по алгоритму БМ:

r	Δ	B(x)	$\Lambda(x)$	L
1	$a^2 + a + 1$	$a^3 + a$	$(a^2 + a + 1)x + 1$	1
2	0	$(a^3+a)x$	$(a^2 + a + 1)x + 1$	1
3	a	$(a^4 + a^3)x + a^4 + a^3 + a + 1$	$(a^4 + a^2) x^2 + (a^2 + a + 1) x + 1$	2
4	0	$(a^4 + a^3) x^2 + (a^4 + a^3 + a + 1) x$	$(a^4 + a^2) x^2 + (a^2 + a + 1) x + 1$	2

Многочлен локаторов ошибок $\Lambda(x) = (a^4 + a^2) x^2 + (a^2 + a + 1) x + 1$, что совпадает с многочленом, рассчитанным по алгоритму ПГЦ.

Найдем значения ошибок по алгоритму Форни:

 $\Omega(x)=S(x)\Lambda(x)\mod x^4=a^2+a+1;\ \Lambda'(x)=a^2+a+1,$ из чего по формуле $Y_i=rac{-\Omega(X_i^{-1})}{\Lambda'(X_i^{-1})}$ получаем $Y_1=1,Y_2=1,$ что совпадает с значениями ошибок, рассчитанными по алгоритму ПГЦ.