Summary of symmetry calculations

October 26, 2021

Contents

1	DBH_model	5
2	hydons_model	11
3	linear_model	15

4 CONTENTS

Chapter 1

DBH_{model}

$Run~11_43PM_26_October-2021$

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{dw_1}{dt} = -w_1w_2 - w_1w_3 + w_2w_3,$$

$$\frac{dw_2}{dt} = -w_1w_2 + w_1w_3 - w_2w_3,$$

$$\frac{dw_3}{dt} = w_1w_2 - w_1w_3 - w_2w_3.$$

The calculated generators are:

$$X_1 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3,$$

$$X_2 = (1) \partial t$$
,

$$X_3 = (t+2) \partial t + (1-2tw_1) \partial w_1 + (1-2tw_2) \partial w_2 + (1-2tw_3) \partial w_3$$

The execution time of the script was:

0 hours 0 minutes 25 seconds.

$Run~11_44PM_26_October-2021$

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\begin{aligned} \frac{\mathrm{d}w_1}{\mathrm{d}t} &= -w_1w_2 - w_1w_3 + w_2w_3, \\ \frac{\mathrm{d}w_2}{\mathrm{d}t} &= -w_1w_2 + w_1w_3 - w_2w_3, \\ \frac{\mathrm{d}w_3}{\mathrm{d}t} &= w_1w_2 - w_1w_3 - w_2w_3. \end{aligned}$$

The calculated generators are:

$$X_1 = (1) \partial t$$
,

$$X_2 = (-1+t)\,\partial t + (w_1)\,\partial w_1 + (w_2)\,\partial w_2 + (w_3)\,\partial w_3,$$

$$X_3 = (t+2) \partial t + (1 - 2tw_1) \partial w_1 + (1 - 2tw_2) \partial w_2 + (1 - 2tw_3) \partial w_3$$

The execution time of the script was:

0 hours 0 minutes 25 seconds.

Run 11_44PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\begin{split} \frac{\mathrm{d}w_1}{\mathrm{d}t} &= -w_1w_2 - w_1w_3 + w_2w_3, \\ \frac{\mathrm{d}w_2}{\mathrm{d}t} &= -w_1w_2 + w_1w_3 - w_2w_3, \\ \frac{\mathrm{d}w_3}{\mathrm{d}t} &= w_1w_2 - w_1w_3 - w_2w_3. \end{split}$$

The calculated generators are:

$$X_1 = (t+2) \partial t + (1-2tw_1) \partial w_1 + (1-2tw_2) \partial w_2 + (1-2tw_3) \partial w_3$$

$$X_2 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3$$

$$X_3 = (1) \partial t$$
.

The execution time of the script was:

0 hours 0 minutes 25 seconds.

Run 11_45PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}w_1}{\mathrm{d}t} = -w_1w_2 - w_1w_3 + w_2w_3,$$

$$\frac{\mathrm{d}w_2}{\mathrm{d}t} = -w_1w_2 + w_1w_3 - w_2w_3,$$

$$\frac{\mathrm{d}w_3}{\mathrm{d}t} = w_1w_2 - w_1w_3 - w_2w_3.$$

The calculated generators are:

$$X_1 = (t+2) \partial t + (1 - 2tw_1) \partial w_1 + (1 - 2tw_2) \partial w_2 + (1 - 2tw_3) \partial w_3$$

$$X_2 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3,$$

$$X_3 = (1) \partial t$$
.

The execution time of the script was:

0 hours 0 minutes 25 seconds.

Run 11_48PM_26_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}w_1}{\mathrm{d}t} = -w_1w_2 - w_1w_3 + w_2w_3,$$

$$\frac{\mathrm{d}w_2}{\mathrm{d}t} = -w_1w_2 + w_1w_3 - w_2w_3,$$

$$\frac{\mathrm{d}w_3}{\mathrm{d}t} = w_1w_2 - w_1w_3 - w_2w_3.$$

$$X_1 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3,$$

$$X_2 = (1) \partial t$$
,

$$X_3 = (-1) \partial t$$
,

$$X_4 = (t+2) \partial t + (1-2tw_1) \partial w_1 + (1-2tw_2) \partial w_2 + (1-2tw_3) \partial w_3$$

$$X_{5} = (t) \partial t + (w_{2}w_{3} f_{1}(t) - w_{1}w_{2} f_{1}(t) - w_{1}w_{3} f_{1}(t)) \partial w_{1} + (w_{1}w_{3} f_{1}(t) - w_{1}w_{2} f_{1}(t) + -w_{2}w_{3} f_{1}(t)) \partial w_{2} + (w_{1}w_{2} f_{1}(t) - w_{1}w_{3} f_{1}(t) - w_{2}w_{3} f_{1}(t)) \partial w_{3}$$

 f_1

The execution time of the script was:

0 hours 3 minutes 28 seconds.

$Run~11_52PM_26_October-2021$

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{dw_1}{dt} = -w_1w_2 - w_1w_3 + w_2w_3,$$

$$\frac{dw_2}{dt} = -w_1w_2 + w_1w_3 - w_2w_3,$$

$$\frac{dw_3}{dt} = w_1w_2 - w_1w_3 - w_2w_3.$$

$$X_1 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3,$$

$$X_2 = (-1) \partial t$$
,

$$X_3 = (t+2) \partial t + (1 - 2tw_1) \partial w_1 + (1 - 2tw_2) \partial w_2 + (1 - 2tw_3) \partial w_3$$

$$X_4 = (1) \partial t$$
,

$$X_5 = (t) \partial t + (w_2 w_3 f_1(t) - w_1 w_2 f_1(t) - w_1 w_3 f_1(t)) \partial w_1 + (w_1 w_3 f_1(t) - w_1 w_2 f_1(t) + -w_2 w_3 f_1(t)) \partial w_2 + (w_1 w_2 f_1(t) - w_1 w_3 f_1(t) - w_2 w_3 f_1(t)) \partial w_3$$

 f_1

The execution time of the script was:

0 hours 3 minutes 29 seconds.

$Run~11_55PM_26_October-2021$

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{dw_1}{dt} = -w_1w_2 - w_1w_3 + w_2w_3,$$

$$\frac{dw_2}{dt} = -w_1w_2 + w_1w_3 - w_2w_3,$$

$$\frac{dw_3}{dt} = w_1w_2 - w_1w_3 - w_2w_3.$$

$$X_1 = (1) \partial t$$
,

$$X_2 = (t+2) \partial t + (1 - 2tw_1) \partial w_1 + (1 - 2tw_2) \partial w_2 + (1 - 2tw_3) \partial w_3$$

$$X_3 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3,$$

$$X_4 = (-1) \partial t$$
,

$$X_5 = (t) \partial t + (w_2 w_3 f_1(t) - w_1 w_2 f_1(t) - w_1 w_3 f_1(t)) \partial w_1 + (w_1 w_3 f_1(t) - w_1 w_2 f_1(t) + -w_2 w_3 f_1(t)) \partial w_2 + (w_1 w_2 f_1(t) - w_1 w_3 f_1(t) - w_2 w_3 f_1(t)) \partial w_3$$

 f_1

The execution time of the script was:

0 hours 3 minutes 35 seconds.

Run $11_59PM_26_October-2021$

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\begin{split} \frac{\mathrm{d}w_1}{\mathrm{d}t} &= -w_1w_2 - w_1w_3 + w_2w_3, \\ \frac{\mathrm{d}w_2}{\mathrm{d}t} &= -w_1w_2 + w_1w_3 - w_2w_3, \\ \frac{\mathrm{d}w_3}{\mathrm{d}t} &= w_1w_2 - w_1w_3 - w_2w_3. \end{split}$$

The calculated generators are:

$$X_1 = (t+2) \,\partial t + (1 - 2tw_1) \,\partial w_1 + (1 - 2tw_2) \,\partial w_2 + (1 - 2tw_3) \,\partial w_3$$

$$X_2 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3$$

$$X_3 = (1) \partial t$$
,

$$X_4 = (-1) \partial t$$
,

$$X_5 = (t) \partial t + (w_2 w_3 f_1(t) - w_1 w_2 f_1(t) - w_1 w_3 f_1(t)) \partial w_1 + (w_1 w_3 f_1(t) - w_1 w_2 f_1(t) + -w_2 w_3 f_1(t)) \partial w_2 + (w_1 w_2 f_1(t) - w_1 w_3 f_1(t) - w_2 w_3 f_1(t)) \partial w_3$$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 3 minutes 33 seconds.

Chapter 2

hydons_model

Run 11_29PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2.$$

The execution time of the script was:

0 hours 0 minutes 5 seconds.

$Run~11_29PM_26_October-2021$

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\begin{split} \frac{\mathrm{d}y_1}{\mathrm{d}t} &= \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}, \\ \frac{\mathrm{d}y_2}{\mathrm{d}t} &= \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}. \end{split}$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2.$$

The execution time of the script was:

0 hours 0 minutes 5 seconds.

Run 11_29PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2.$$

The execution time of the script was:

0 hours 0 minutes 5 seconds.

Run 11_30PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\begin{split} \frac{\mathrm{d}y_1}{\mathrm{d}t} &= \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}, \\ \frac{\mathrm{d}y_2}{\mathrm{d}t} &= \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}. \end{split}$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2.$$

The execution time of the script was:

0 hours 0 minutes 5 seconds.

Run 11_30PM_26_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$

$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2,$$

$$X_{2} = \left(-t^{2} f_{1}\left(t\right) + y_{1} y_{2} f_{1}\left(t\right)\right) \partial t + \left(y_{2}^{2} f_{1}\left(t\right) + t y_{1} f_{1}\left(t\right)\right) \partial y_{1} + \left(y_{1}^{2} f_{1}\left(t\right) + t y_{2} f_{1}\left(t\right)\right) \partial y_{2}$$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 0 minutes 23 seconds.

Run 11_30PM_26_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2,$$

$$X_{2} = \left(-t^{2} f_{1}\left(t\right) + y_{1} y_{2} f_{1}\left(t\right)\right) \partial t + \left(y_{2}^{2} f_{1}\left(t\right) + t y_{1} f_{1}\left(t\right)\right) \partial y_{1} + \left(y_{1}^{2} f_{1}\left(t\right) + t y_{2} f_{1}\left(t\right)\right) \partial y_{2}$$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 0 minutes 24 seconds.

$Run\ 11_31PM_26_October-2021$

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\begin{split} \frac{\mathrm{d}y_1}{\mathrm{d}t} &= \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}, \\ \frac{\mathrm{d}y_2}{\mathrm{d}t} &= \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}. \end{split}$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2,$$

$$X_{2} = \left(-t^{2} f_{1}\left(t\right) + y_{1} y_{2} f_{1}\left(t\right)\right) \partial t + \left(y_{2}^{2} f_{1}\left(t\right) + t y_{1} f_{1}\left(t\right)\right) \partial y_{1} + \left(y_{1}^{2} f_{1}\left(t\right) + t y_{2} f_{1}\left(t\right)\right) \partial y_{2}$$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 0 minutes 23 seconds.

Chapter 3

linear_model

Run 11_31PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

$$X_1 = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_2 = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_3 = \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2}\right) \partial u$$

$$+ \left(\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v$$

$$X_4 = \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v$$

$$X_5 = (1) \partial t,$$

$$\begin{split} X_6 = & \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4} \right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2} \right) \\ & + -\frac{ve^{2t}}{2} \right) \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2} \right) \partial v \end{split}$$

$$X_7 = \left(-\frac{1}{2} + \frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial u + \left(-\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_8 = \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \partial u + \left(\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_9 = \left(\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial v$$

$$X_{10} = (t) \partial t + (u f_1 (t) + v f_1 (t)) \partial u + (u f_1 (t) + v f_1 (t)) \partial v$$

 f_1

The execution time of the script was:

0 hours 0 minutes 12 seconds.

Run 11_32PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

$$\begin{split} X_1 = \left(-\frac{1}{2} + \frac{e^{-2t}}{4} + \frac{e^{2t}}{4} \right) \partial t + \left(-\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} \right) \\ + \frac{ve^{2t}}{2} \right) \partial u + \left(-\frac{v}{2} + \frac{ve^{2t}}{2} \right) \partial v \end{split}$$

$$X_{2} = \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2}\right) \partial u + \left(\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v$$

$$X_3 = \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v$$
$$X_4 = \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v$$
$$X_5 = (1) \partial t,$$

$$X_{6} = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_{7} = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_{8} = \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \partial u$$

$$+ \left(\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{9} = \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right)$$

$$X_{10} = (t) \partial t + (u f_1 (t) + v f_1 (t)) \partial u + (u f_1 (t) + v f_1 (t)) \partial v$$

 $+ - \frac{ve^{2t}}{2} \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2} \right) \partial v$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 0 minutes 12 seconds.

Run 11_32PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

The calculated generators are:

$$\begin{split} X_1 &= \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4} \right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2} \right) \partial u \\ &+ \left(\frac{v}{2} + \frac{ve^{2t}}{2} \right) \partial v \\ \\ X_2 &= \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4} \right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2} \right) \partial u \\ &+ \left(\frac{v}{2} - \frac{ve^{2t}}{2} \right) \partial v \\ \\ X_3 &= \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4} \right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2} \right) \end{split}$$

$$+ -\frac{ve^{2t}}{2} \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2} \right) \partial v$$
$$X_4 = \left(-\frac{1}{2} + \frac{e^{2t}}{2} \right) \partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2} \right) \partial v$$

$$X_5 = (1) \partial t,$$

$$X_{6} = \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v$$

$$X_{7} = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_{8} = \left(-\frac{1}{2} + \frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) + \frac{ve^{2t}}{2} \partial u + \left(-\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{9} = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_{10} = (t) \partial t + (u f_1 (t) + v f_1 (t)) \partial u + (u f_1 (t) + v f_1 (t)) \partial v$$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 0 minutes 11 seconds.

Run 11_32PM_26_October-2021

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

$$X_{1} = \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) + \frac{ve^{2t}}{2} \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{2} = \left(-\frac{1}{2} + \frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) + \frac{ve^{2t}}{2} \partial u + \left(-\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{3} = \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v$$

$$X_{4} = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_{5} = (1) \partial t,$$

$$X_6 = \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v$$

$$X_7 = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_8 = \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2}\right) \partial u$$

$$+ \left(\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v$$

$$X_9 = \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \partial u$$

$$+ \left(\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{10} = (t) \partial t + (u f_1 (t) + v f_1 (t)) \partial u + (u f_1 (t) + v f_1 (t)) \partial v$$

 f_1

The execution time of the script was:

0 hours 0 minutes 13 seconds.

Run 11_35PM_26_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

$$\begin{split} X_1 = \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2}\right) \partial u \\ + \left(\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v \end{split}$$

$$X_2 = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right)\partial t$$

$$X_3 = \left(-\frac{u^2}{4} - \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2}\right)\partial t$$

$$\begin{split} X_4 &= \left(-\frac{u}{8} - \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-2t}}{8} \right. \\ &+ \left. \frac{ve^{-4t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{u^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} \right. \\ &+ \left. -\frac{uv}{2} - \frac{v^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$\begin{split} X_5 &= \left(-\frac{3v}{8} + \frac{u}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-4t}}{8} \right. \\ &+ \left. -\frac{ve^{-2t}}{8} + \frac{ue^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} - \frac{uv}{2} - \frac{v^2e^{2t}}{2} \right. \\ &+ \left. -\frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} - \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$\begin{split} X_6 = & \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{u^2 e^{-2t}}{2} - \frac{uv}{2} - \frac{v^2 e^{-2t}}{2} + \frac{u^2 e^{-4t}}{4} \right. \\ & + \left. \frac{v^2 e^{-4t}}{4} + \frac{uv e^{-4t}}{2} \right) \partial t \end{split}$$

$$X_7 = \left(-\frac{3u}{8} + \frac{5v}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8}\right)$$

$$+ \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8} \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{v^2e^{-2t}}{2}\right)$$

$$+ \frac{v^2e^{2t}}{2} - \frac{u^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \partial u + \left(\frac{v^2}{2} + \frac{v^2e^{2t}}{2}\right)$$

$$+ \frac{v^2e^{2t}}{2} \partial v$$

$$X_8 = \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial v$$

$$X_9 = \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \partial u + \left(\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{10} = (1) \, \partial t,$$

$$X_{11} = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right)\partial t$$

$$\begin{split} X_{12} &= \left(-\frac{5v}{8} + \frac{3u}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ve^{-4t}}{8} \right. \\ &+ \left. \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{v^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} \right. \\ &+ \left. -\frac{uv}{2} - \frac{u^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$X_{13} = \left(-\frac{u}{8} + \frac{3v}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-4t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \right) \partial u + \left(\frac{v^2}{2} - \frac{v^2e^{2t}}{2} \right) \partial v$$

$$X_{14} = \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{v^2e^{-2t}}{2} - \frac{uv}{2} - \frac{u^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \right) \partial t$$

$$X_{15} = \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4} \right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2} + \frac{ve^{-2$$

$$f_1$$
 f_2
 f_3

The execution time of the script was:

0 hours 3 minutes 19 seconds.

Run 11_37PM_26_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

$$X_{1} = \left(-\frac{3v}{8} + \frac{u}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-4t}}{8}\right)$$

$$+ -\frac{ve^{-2t}}{8} + \frac{ue^{2t}}{8}\right) \partial t + \left(-\frac{v^{2}}{4} + \frac{u^{2}}{4} - \frac{uv}{2} - \frac{v^{2}e^{2t}}{2}\right)$$

$$+ -\frac{u^{2}e^{-4t}}{4} - \frac{v^{2}e^{-4t}}{4} - \frac{uve^{-4t}}{2}\right) \partial u + \left(-\frac{v^{2}}{2} - \frac{v^{2}e^{2t}}{2}\right) \partial v$$

$$X_{2} = \left(-\frac{u}{8} + \frac{3v}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-4t}}{8}\right) \partial t + \left(-\frac{u^{2}}{4} + \frac{v^{2}}{4} + \frac{uv}{2} - \frac{v^{2}e^{2t}}{2} + \frac{u^{2}e^{-4t}}{4} + \frac{v^{2}e^{-4t}}{4} + \frac{uve^{-4t}}{2}\right) \partial u + \left(\frac{v^{2}}{2} - \frac{v^{2}e^{2t}}{2}\right) \partial v$$

$$\begin{split} X_3 &= \left(\frac{u}{8} + \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8} \right. \\ &+ \frac{ue^{-2t}}{8} + \frac{3ve^{2t}}{8}\right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-2t}}{2} \right. \\ &+ \frac{v^2e^{2t}}{2} - \frac{v^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2}\right) \partial u + \left(\frac{v^2}{2} + \frac{v^2e^{2t}}{2}\right) \partial v \end{split}$$

$$X_4 = \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) + \left(-\frac{ve^{2t}}{2}\right) \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{5} = \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2}\right) \partial u + \left(\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v$$

$$X_6 = \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v$$
$$X_7 = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$
$$X_8 = (1) \partial t,$$

$$X_{9} = \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \partial u + \left(\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{10} = \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{u^2 e^{-2t}}{2} - \frac{uv}{2} - \frac{v^2 e^{-2t}}{2} + \frac{u^2 e^{-4t}}{4} + \frac{v^2 e^{-4t}}{4} + \frac{uv e^{-4t}}{2}\right) \partial t$$

$$\begin{split} X_{11} &= \left(-\frac{5v}{8} + \frac{3u}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ve^{-4t}}{8} \right. \\ &+ \left. \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{v^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} \right. \\ &+ \left. -\frac{uv}{2} - \frac{u^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$X_{12} = \left(-\frac{u}{8} - \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-2t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8} + \frac{3ve^{2t}}{8}\right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{u^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} + \frac{u^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2}\right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2}\right) \partial v$$

$$\begin{split} X_{13} &= \left(-\frac{3u}{8} + \frac{5v}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8} \right. \\ &+ \left. \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{v^2e^{-2t}}{2} \right. \\ &+ \left. \frac{v^2e^{2t}}{2} - \frac{u^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \right) \partial u + \left(\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$X_{14} = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_{15} = \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{v^2e^{-2t}}{2} - \frac{uv}{2} - \frac{u^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2}\right) \partial t$$

$$X_{16} = \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v$$

$$X_{17} = \left(-\frac{1}{2} + \frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} + \frac{ve^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial v$$

$$X_{18} = \left(-\frac{u^2}{4} - \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2}\right) \partial t$$

$$X_{19} = (u f_2(t) + v f_1(t) - v f_2(t) + f_3(t)) \partial t + (u f_3(t) + v f_3(t) + u^2 f_2(t) + v^2 f_1(t) - v^2 f_2(t) + uv f_1(t)) \partial u + (u f_3(t) + v f_3(t) + u^2 f_2(t) + v^2 f_1(t) - v^2 f_2(t) + uv f_1(t)) \partial v$$

 f_1 f_2 f_3

The execution time of the script was:

0 hours 2 minutes 6 seconds.

Run 11_40PM_26_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

$$\begin{split} X_1 &= \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \\ &\quad + - \frac{ve^{2t}}{2}\right) \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v \\ X_2 &= \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2}\right) \partial u \\ &\quad + \left(\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v \\ X_3 &= \left(\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right) \partial v \\ X_4 &= \left(-\frac{5v}{8} + \frac{3u}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ve^{-4t}}{8} \\ &\quad + \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8}\right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{v^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} + \frac{v^2e^{2t}}{2} \right) \partial t \\ &\quad + \frac{uv}{2} - \frac{u^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{2} + \frac{uve^{-4t}}{2}\right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2}\right) \partial v \\ &\quad X_5 &= \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t \\ &\quad X_7 &= \left(-\frac{u}{8} + \frac{3v}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-4t}}{8} + \frac{ve^{-4t}}{8}\right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} - \frac{v^2e^{2t}}{2}\right) \partial v \\ &\quad X_8 &= \left(-\frac{3u}{8} + \frac{5v}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8}\right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{v^2e^{2t}}{2}\right) \partial v \\ &\quad X_8 &= \left(-\frac{3u}{8} + \frac{5v}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8} - \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8}\right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{v^2e^{2t}}{2}\right) \partial v \\ &\quad X_8 &= \left(-\frac{3u}{8} + \frac{5v}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{-4t}}{8} - \frac{ve^{-4t}}{8}\right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{v^2e^{-2t}}{2}\right) \partial v \\ &\quad + \frac{v^2e^{2t}}{2} - \frac{u^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2}\right) \partial u + \left(\frac{v^2}{2} - \frac{v^2e^{-2t}}{2}\right) \partial v \\ &\quad + \frac{v^2e^{2t}}{2} - \frac{u^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2}\right) \partial u + \left(\frac{v^2}{2} - \frac{v^2e^{-2t}}{2}\right) \partial v \\ &\quad + \frac{v^2e^{2t}}{2} - \frac{u^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4}$$

$$X_9 = \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{v^2 e^{-2t}}{2} - \frac{uv}{2} - \frac{u^2 e^{-2t}}{2} + \frac{u^2 e^{-4t}}{4} + \frac{v^2 e^{-4t}}{4} + \frac{uv e^{-4t}}{2}\right) \partial t$$

$$X_{10} = \left(-\frac{u^2}{4} - \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2}\right)\partial t$$

$$\begin{split} X_{11} &= \left(-\frac{3v}{8} + \frac{u}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-4t}}{8} \right. \\ &+ \left. -\frac{ve^{-2t}}{8} + \frac{ue^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} - \frac{uv}{2} - \frac{v^2e^{2t}}{2} \right. \\ &+ \left. -\frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} - \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$\begin{split} X_{12} = & \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{u^2 e^{-2t}}{2} - \frac{uv}{2} - \frac{v^2 e^{-2t}}{2} + \frac{u^2 e^{-4t}}{4} + \frac{v^2 e^{-4t}}{4} + \frac{uv e^{-4t}}{2} \right) \partial t \end{split}$$

$$X_{13} = \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial v$$

$$\begin{split} X_{14} &= \left(-\frac{u}{8} - \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-2t}}{8} \right. \\ &\quad + \left. \frac{ve^{-4t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{u^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} \right. \\ &\quad + \left. -\frac{uv}{2} - \frac{v^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$\begin{split} X_{15} &= \left(\frac{u}{8} + \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8} \right. \\ &+ \left. \frac{ue^{-2t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-2t}}{2} \right. \\ &+ \left. \frac{v^2e^{2t}}{2} - \frac{v^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \right) \partial u + \left(\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$X_{16} = (1) \partial t$$
,

$$X_{17} = \left(-\frac{1}{2} + \frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) + \frac{ve^{2t}}{2} \partial u + \left(-\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{18} = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right)\partial t$$

$$X_{19} = (u f_2(t) + v f_1(t) - v f_2(t) + f_3(t)) \partial t + (u f_3(t) + v f_3(t) + u^2 f_2(t) + v^2 f_1(t) - v^2 f_2(t) + uv f_1(t)) \partial u + (u f_3(t) + v f_3(t) + u^2 f_2(t) + v^2 f_1(t) - v^2 f_2(t) + uv f_1(t)) \partial v$$

 f_1 f_2 f_3

The execution time of the script was:

0 hours 2 minutes 42 seconds.

Run 11_43PM_26_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

$$X_{1} = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) \partial t$$

$$X_{2} = \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \partial u$$

$$+ \left(\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_3 = (1) \partial t,$$

$$\begin{split} X_4 &= \left(-\frac{5v}{8} + \frac{3u}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ve^{-4t}}{8} \right. \\ &+ \left. \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{v^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} \right. \\ &+ \left. -\frac{uv}{2} - \frac{u^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$X_{5} = \left(-\frac{u}{8} - \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-2t}}{8} + \frac{ve^{-2t}}{8} + \frac{ve^{-2t}}{2} + \frac{ve^{-2t}}{4} + \frac{ve^{-4t}}{4} + \frac{ve^{-4t}}{2} + \frac{ve^{-$$

$$\begin{split} X_6 = & \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4} \right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2} \right) \partial u \\ & + \left(\frac{v}{2} - \frac{ve^{2t}}{2} \right) \partial v \end{split}$$

$$\begin{split} X_7 &= \left(\frac{u}{8} + \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8} \right. \\ &\quad + \frac{ue^{-2t}}{8} + \frac{3ve^{2t}}{8} \left. \right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-2t}}{2} \right. \\ &\quad + \frac{v^2e^{2t}}{2} - \frac{v^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \right) \partial u + \left(\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$\begin{split} X_8 = & \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{u^2 e^{-2t}}{2} - \frac{uv}{2} - \frac{v^2 e^{-2t}}{2} + \frac{u^2 e^{-4t}}{4} \right. \\ & + \left. \frac{v^2 e^{-4t}}{4} + \frac{uv e^{-4t}}{2} \right) \partial t \end{split}$$

$$X_9 = \left(-\frac{u^2}{4} - \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2}\right)\partial t$$

$$\begin{split} X_{10} = & \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4} \right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2} \right) \\ & + -\frac{ve^{2t}}{2} \right) \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2} \right) \partial v \end{split}$$

$$X_{11} = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right)\partial t$$

$$X_{12} = \left(-\frac{3v}{8} + \frac{u}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-4t}}{8}\right)$$

$$+ -\frac{ve^{-2t}}{8} + \frac{ue^{2t}}{8}\right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} - \frac{uv}{2} - \frac{v^2e^{2t}}{2}\right)$$

$$+ -\frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2}\right) \partial u + \left(-\frac{v^2}{2} - \frac{v^2e^{2t}}{2}\right) \partial v$$

$$X_{13} = \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial v$$

$$\begin{split} X_{14} = & \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{v^2 e^{-2t}}{2} - \frac{uv}{2} - \frac{u^2 e^{-2t}}{2} + \frac{u^2 e^{-4t}}{4} + \frac{v^2 e^{-4t}}{4} + \frac{uv e^{-4t}}{2} \right) \partial t \end{split}$$

$$X_{15} = \left(-\frac{u}{8} + \frac{3v}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-2t}}{8} + \frac{ue^{-4t}}{8}\right)$$

$$+ \frac{ue^{2t}}{8} + \frac{ve^{-4t}}{8} \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} - \frac{v^2e^{2t}}{2}\right)$$

$$+ \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \partial u + \left(\frac{v^2}{2} - \frac{v^2e^{2t}}{2}\right) \partial v$$

$$X_{16} = \left(-\frac{3u}{8} + \frac{5v}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8}\right)$$

$$+ \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8} \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{v^2e^{-2t}}{2}\right)$$

$$+ \frac{v^2e^{2t}}{2} - \frac{u^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \partial u + \left(\frac{v^2}{2} + \frac{v^2e^{2t}}{2}\right) \partial v$$

$$X_{17} = \left(\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial v$$

$$X_{18} = \left(-\frac{1}{2} + \frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right) + \frac{ve^{2t}}{2} \partial u + \left(-\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{19} = (u f_2(t) + v f_1(t) - v f_2(t) + f_3(t)) \partial t + (u f_3(t) + v f_3(t) + u^2 f_2(t) + v^2 f_1(t) - v^2 f_2(t) + uv f_1(t)) \partial u + (u f_3(t) + v f_3(t) + u^2 f_2(t) + v^2 f_1(t) - v^2 f_2(t) + uv f_1(t)) \partial v$$

 f_1 f_2 f_3

The execution time of the script was:

0 hours 2 minutes 45 seconds.