In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\saranya\Downloads\drug200.csv")
df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug	
0	23	F	HIGH	HIGH	25.355	drugY	
1	47	М	LOW	HIGH	13.093	drugC	
2	47	М	LOW	HIGH	10.114	drugC	
3	28	F	NORMAL HIGH 7.7		7.798	drugX	
4	61	F	LOW	HIGH	18.043	drugY	
195	56	F	LOW	HIGH	11.567	drugC	
196	16	М	LOW	HIGH	12.006	drugC	
197	52	М	NORMAL	HIGH	9.894	drugX	
198	23	М	NORMAL	NORMAL	14.020	drugX	
199	40	F	LOW	NORMAL	11.349	drugX	

200 rows × 6 columns

In [3]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
 #
                  Non-Null Count Dtype
     Column
0
     Age
                  200 non-null
                                  int64
 1
     Sex
                  200 non-null
                                  object
 2
     BP
                  200 non-null
                                  object
 3
     Cholesterol 200 non-null
                                  object
 4
     Na_to_K
                  200 non-null
                                  float64
 5
                  200 non-null
                                  object
     Drug
dtypes: float64(1), int64(1), object(4)
memory usage: 9.5+ KB
```

```
In [4]:
df['Sex'].value_counts()
Out[4]:
     104
Μ
F
      96
Name: Sex, dtype: int64
In [5]:
df['BP'].value_counts()
Out[5]:
HIGH
          77
LOW
          64
NORMAL
          59
Name: BP, dtype: int64
In [6]:
df['Cholesterol'].value_counts()
Out[6]:
HIGH
          103
NORMAL
           97
Name: Cholesterol, dtype: int64
In [7]:
df['Drug'].value_counts()
Out[7]:
drugY
         91
drugX
         54
         23
drugA
drugC
         16
drugB
         16
```

Name: Drug, dtype: int64

In [8]:

```
convert={"Sex":{"M":1,"F":0}}
df=df.replace(convert)
df
```

Out[8]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	0	HIGH	HIGH	25.355	drugY
1	47	1	LOW	HIGH	13.093	drugC
2	47	1	LOW	HIGH	10.114	drugC
3	28	0	NORMAL	HIGH	7.798	drugX
4	61	0	LOW	HIGH	18.043	drugY
195	56	0	LOW	HIGH	11.567	drugC
196	16	1	LOW	HIGH	12.006	drugC
197	52	1	NORMAL	HIGH	9.894	drugX
198	23	1	NORMAL	NORMAL	14.020	drugX
199	40	0	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [9]:

```
convert={"BP":{"HIGH":1,"NORMAL":2,"LOW":3}}
df=df.replace(convert)
df
```

Out[9]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	0	1	HIGH	25.355	drugY
1	47	1	3	HIGH	13.093	drugC
2	47	1	3	HIGH	10.114	drugC
3	28	0	2	HIGH	7.798	drugX
4	61	0	3	HIGH	18.043	drugY
195	56	0	3	HIGH	11.567	drugC
196	16	1	3	HIGH	12.006	drugC
197	52	1	2	HIGH	9.894	drugX
198	23	1	2	NORMAL	14.020	drugX
199	40	0	3	NORMAL	11.349	drugX

200 rows × 6 columns

In [10]:

```
convert={"Cholesterol":{"HIGH":1,"NORMAL":2}}
df=df.replace(convert)
df
```

Out[10]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	0	1	1	25.355	drugY
1	47	1	3	1	13.093	drugC
2	47	1	3	1	10.114	drugC
3	28	0	2	1	7.798	drugX
4	61	0	3	1	18.043	drugY
195	56	0	3	1	11.567	drugC
196	16	1	3	1	12.006	drugC
197	52	1	2	1	9.894	drugX
198	23	1	2	2	14.020	drugX
199	40	0	3	2	11.349	drugX

200 rows × 6 columns

In [11]:

```
x=["Sex","BP","Cholesterol"]
y=["DrugY","DrugX","DrugA","DrugC","DrugB"]
all_inputs=df[x]
all_classes=df["Drug"]
```

In [12]:

```
x_train,x_test,y_train,y_test=train_test_split(all_inputs,all_classes,test_size=0.3)
clf=DecisionTreeClassifier(random_state=0)
clf.fit(x_train,y_train)
```

Out[12]:

DecisionTreeClassifier(random_state=0)

In [13]:

```
score=clf.score(x_test,y_test)
print(score)
```

0.3833333333333336

In	[]:				