ဌ
~
က္က
¥
Ç
₹.
ĭ
ပ္
5
₹
CAGTCAGACTCTGAC
\mathbf{c}
텄
¥
¥
ತ್ತ
Z
TTACAG
3
ري
CTGGCT
\ddot{o}
Ģ
CI
õ
13
CTCC
õ
೮
ğ
3
Ħ
AGT
\mathbf{c}
E
ຽ
õ
8
¥
AGAAGG
≤
$\overline{\mathbf{G}}$
Ä
¥
H
\$
Q
≶
₹
ΤĀ
A
H
GAC
IG
\Box
'AC
ည
ຽ
2
TITC
H
_

- MetAlaMetMetGluValGlnGlyGLyProSerLeuGlyGlnThrCysValLeuIleValIlePheThrValLeuLeuGlnSerLeuCys ATGCCTATGATGGAGGTCCAGGGGGACCCAGCCTGGGACCAGACCTGCGTGATCGTGATCTTCACAGTGCTCCTGCAGTCTTCTTGT
- GTGGCTGTAACTTACGTGTACTTTACCAACGAGCTGAAGCAGATGCAGGACAAGTACTCCAAAAGTGGCATTGCTTGTTTCTTAAAAGAA 181
- ValAlaValThrTyrValTyrPheThrAsnGluLeuLysGlnMetGlnAspLysTyrSerLysSerGlyIleAlaCysPheLeuLysGlu 31
- 271 61
- ATGATITIGAGAACCICIGAGGAAACCATITCIACAGITCAAGAAAAGCAACAAAATATITCICCCCIAGIGAGAAAAGGGGTCCICAG 361
 - 91
- AGAGTAGCAGCTCACATAACTGGGACCAGAGGAAGAAGCAACACATTGTCTTCTCCAAAACTCCAAGAATGAAAAGGCTCTGGGCCGCAAA ArgValAlaAlaHisIleThrGlyThrArgGlyArgSerAsnThrLeuSerSerProAsnSerLysAsnGluLysAlaLeuGlyArgLys 451 121
- **ATAAA**CTCCTGGGAATCATCAAGGAGTGGGCATTCATTCCTGAGCAACTTGCACTTGAGGAATGGTGAACTGGTCATCATGAAAAAGGG
- $Ileasn Ser Trp \\ Glu Ser Ser Arg Ser Gly \\ His Ser \\ Phe Leu Ser \\ Asn Leu \\ His Leu \\ Arg \\ Asn Gly \\ Glu \\ Leu \\ Vall \\ Ile \\ His Glu \\ Ly \\ Ser \\ Ile \\ His Glu \\ Ly \\ Ser \\ Ile \\ His Glu \\ Ly \\ Ser \\ Ile \\ His Glu \\ Ly \\ Ser \\ Ile \\ His Glu \\ Ly \\ Ser \\ Ile \\ His Glu \\ Ly \\ Ser \\ Ile \\ His Glu \\ Ly \\ Ser \\ Ile \\ His Glu \\ Ly \\ Ser \\ His Glu \\ His Gl$
 - Phe Tyr Tyr I le Tyr Ser Gln Thr Tyr Phe Arg Phe Gln Glu Glu I le Lys Glu Asn Thr Lys Asn Asp Lys Gln Met Val Gln Tyr I legan and the Control of the Contr631
- TACAAATACACAAGTTATCCTGACCCTATATTGTTGATGAAAAGTGCTAGAAATAGTTGTTGGTCTAAAAGATGCAGAATATGGACTCTAT 721 211
 - IyrLysTyrThrSerTyrProAspProIleLeuLeuMetLysSerAlaArgAsnSerCysTrpSerLysAspAlaGluTyrGlyLeuTyr
- TCCATCTATCAAGGGGGAATATTTGAGCTTAAGGAAAATGACAGAATTTTTTGTTTCTGTAACAAATGAGCACTTGATAGACATGGACCAT SerIleTyrGlnGlyGlyIlePheGluLeuLysGluAsnAspArgIlePheValSerValThrAsnGluHIsLeuIleAspMetAspHIsSuIleAs
- - GluAlaSerPhePheGlyAlaPheLeuValGlyStp
- 991

DPACLLDLRQGMFAQLIVAQNVLLIDGFLSWYSDPGLAGVSLTG-GLSYKEDTKFLWVA VSHRYPRIQSIKVQFTEYKKEKGF-ILTSQKEDE-IMKVQMNSVIIN QQQLPLESLGWDVAFIQINHTGPQQDPRLYWQGGPALGRSFIHGPEIDKGQIBIH LCILKRAPFKKSWAYLQVA	E.————————————————————————————————————
80 52 45 87 77 77 77 52 113 134	137 97 100 135 128 129 103 165 186 178 178 178 178 178 178 178 178 178 178
41BBL 0X40L CD27L CD30L TNF LTb LTa CD40L APo1L	41BBL 0X40L CD27L CD30L ITNF LTD LTD CD40L AP01L AP01L CD30L CD27L CD30L TNF LTD AP01L AP01L AP01L

FIG. 1E

FIG. 4

FIG. 2E

FIG. 2B

FIG. 2C

FIG. 2D

9D CELLS CONTROL

APO-2L

ANTI-APO-1

FIG. 2A