

문제해결기법

Week-01 Practice

컴퓨팅 단위

- ♣ 이진수, 십진수 대응
 - K → 2¹⁰ = 1024 ≈ 10³ (일천)
 - M → 2²⁰ ≈ 10⁶ (백만)
 - G → 2³⁰ ≈ 10⁹ (십억)

연산자+


```
public class Test {
    public static void main(String[] args) {
        String s1="123"+"456";
        System.out.println(s1);
        String s2="123"+456;
        System.out.println(s2);
        String s3=123+"456";
        System.out.println(s3);
        String s4=""+123+456;
        System.out.println(s4);
        String s5=123+456+"";
        System.out.println(s5);
```

정수 자료형

♣ 정수 자료형

- 3비트 2의 보수 정수 표현
 - **◆** -4, -3, -2, -1, 0, 1, 2, 3

$$-4 = -2^2$$

$$3 = 2^2 - 1$$

이진수	십진수
000	0
001	1
010	2
011	3
100	-4
101	-3
110	-2
111	-1

- 32비트 2의 보수 정수 표현
 - ◆ 최소값: -2³¹
 - ◆ 최대값: 231-1

자바 정수(int) 값 범위

```
public class Test {
    public static void main(String[] args) {
        System.out.println(Integer.MAX_VALUE);
        System.out.println(Integer.MIN_VALUE);
    }
}
```

2147483647 -2147483648

자바 정수(long) 값 범위

```
public class Test {
    public static void main(String[] args) {
        System.out.println(Long.MAX_VALUE);
        System.out.println(Long.MIN_VALUE);
    }
}
```

9223372036854775807 -9223372036854775808

자바 BigInteger

♣ long 자료형 범위 이상의 정수 표현

자바 배열 생성


```
public class Test {
    public static void main(String[] args) {
        int n[]={77,88,99};
        System.out.println(Arrays.toString(n));
    }
}
```

최대값 탐색


```
public class Test {
    public static void main(String[] args) {
        int n[]= {32,54,65,21,10};
        int max=n[0];
        for (int i = 0; i < n.length; i++) {
            if(n[i]>max) max=n[i];
        }
        System.out.println(max);
    }
}
```

0	1	2	3	4	max
32	54	65	21	10	32
max < 32 ?					32
	max < 54 ? max를 54로 변경				54
		max < 65 ? max를 65로 변경			65
			max < 21 ?		65
				max < 10 ?	65

버블 정렬

Reference: https://en.wikipedia.org/wiki/Bubble_sort

					오름차순 정렬 가정
4	3	5	2	1	최초 상태
4	3	5	2	1	4,3 비교 후 교환
3	4	5	2	1	4,5 비교
3	4	5	2	1	5,2 비교 후 교환
3	4	2	5	1	5,1 비교 후 교환
3	4	2	1	5	n=5인 경우, 총 4번 비교 후 최대값(5) 위치 결정
3	2	1	4	5	총 3회 비교 후 두번째 큰 값(4) 위치 결정
2	1	3	4	5	총 2회 비교 후 세번째 큰 값(3) 위치 결정
1	2	3	4	5	총 1회 비교 후 네번째 큰 값(2) 위치 결정

총 비교 횟수(n=5): 4+3+2+1

총 비교 횟수(n=1000): 999+998+ ... +2+1

$$1 + 2 + \dots (n - 1) = \frac{n(n - 1)}{2} = O(n^2)$$

정렬 알고리즘과 시간복잡도

Reference: https://en.wikipedia.org/wiki/Sorting_algorithm

♣ 정렬 알고리즘과 시간복잡도

최악의 경우 시간복잡도	정렬 알고리즘
$O(n^2)$	버블정렬, 선택정렬, 삽입정렬, 퀵정렬
$O(n \log n)$	합병정렬, 힙정렬

References

- ♣ C로 쓴 자료구조론 (Fundamentals of Data Structures in C, Horowitz et al.). 이석호 역. 사이텍미디어. 1993.
- ♣ 쉽게 배우는 알고리즘: 관계 중심의 사고법. 문병로. 한빛아카데 미. 2013.
- ♣ C언어로 쉽게 풀어 쓴 자료구조. 천인국 외 2인. 생능출판사. 2017.