Firefox about:blank

C*-Algebra K-theory: Suggested Problems

Problem Set 1

1. (RLL Exercise 1.3) Unitization. Let A be a C^* -algebra (with or without a unit). Set

$$\tilde{A} := \{(a, \alpha) : a \in A, \alpha \in \mathbb{C}\}\$$

and define addition and scalar multiplication coordinate-wise on $\tilde{A},$ and define multiplication and involution by

$$(a, \alpha) \cdot (b, \beta) = (ab + \beta a + \alpha b, \alpha \beta),$$
 $(a, \alpha)^* = (a^*, \overline{\alpha})$

Let $\iota: A \to \tilde{A}$ and $\pi: \tilde{A} \to \mathbb{C}$ be given by $\iota(a) = (a,0)$ and $\pi(a,\alpha) = \alpha$ respectively.

(i) Justify that \tilde{A} is a *-algebra. Show that the element (0,1) in \tilde{A} is a unit for \tilde{A} , that ι is an injective *-homomorphism, and that π is a surjective *-homomorphism. We shall hereafter denote the unit element (0,1) in \tilde{A} by $1_{\tilde{A}}$ or simply by 1.

Suppressing ι we obtain that A is contained in \tilde{A} and that

$$\tilde{A} = \{ a + \alpha \cdot 1 : a \in A, \alpha \in \mathbb{C} \}$$

Let $\|\cdot\|_A$ be the norm on A. For each $x\in \tilde{A},$ set

$$|||x|||_{\tilde{A}} = \sup\{||ax||_A : a \in A, ||a||_A \leq 1\}$$

and define $||x||_{\tilde{A}} = \max\{||x||_{\tilde{A}}, |\pi(x)|\}.$

- (ii) Show that $||a||_{\tilde{A}} = ||a||_A$ for all $a \in A$.
- (iii) Let $x \in \tilde{A}$. Show that x = 0 if $||x||_{\tilde{A}} = 0$.
- (iv) Show that \tilde{A} is a unital C^* -algebra. More specifically, show that $\|\cdot\|_{\tilde{A}}$ is a norm, that $\|xy\|_{\tilde{A}} \leq \|x\|_{\tilde{A}} \|y\|_{\tilde{A}}$, and that $\|x^*x\|_{\tilde{A}} = \|x\|_{\tilde{A}}^2$ for all $x, y \in \tilde{A}$, and show that \tilde{A} is complete with respect to $\|\cdot\|_{\tilde{A}}$.
- (v) Show that the sequence

$$0 \longrightarrow A \stackrel{\iota}{\longrightarrow} \tilde{A} \stackrel{\pi}{\longleftrightarrow} \mathbb{C} \longrightarrow 0$$

is split exact. Conclude that A is an ideal in \tilde{A} .

- (vi) Show that \tilde{A} is isomorphic to $A \oplus \mathbb{C}$ (as C^* -algebras) if and only if A is unital.
- 2. (RLL Exercise 1.4) Recall that an element p in a C^* -algebra A is a projection if $p = p^* = p^2$, and an element u in a unital C^* -algebra is said to be unitary if $uu^* = u^*u = 1$. Let A be a (not necessarily unital) C^* -algebra.
 - (i) Let $p \in A$ be a projection. Show that $sp(p) \subset \{0, 1\}$.
 - (ii) Suppose $p \in A$ is normal and $\operatorname{sp}(p) \subset \{0,1\}$. Show that p is a projection.
 - (iii) Assume A is unital and let $u \in A$ be unitary. Show that $\operatorname{sp}(u) \subset \mathbb{T}$. Recall

$$\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}$$

(iv) Assume A is unital and $u \in A$ is a normal element such that $\operatorname{sp}(u) \subset \mathbb{T}$. Show that u is unitary.

Firefox about:blank

- 3. (RLL Exercise 1.6) Let A be a unital C^* -algebra, and let $a \in A$.
 - (i) Show that a is invertible if and only if both aa^* and a^*a are invertible, and show that $a^{-1} = (a^*a)^{-1}a^* = a^*(aa^*)^{-1}$ in this case.
 - (ii) Suppose that b is an invertible and normal element in A. Show that $b^{-1} = f(b)$ for some function $f \in C(\operatorname{sp}(b))$.
 - (iii) Show that if a is invertible, then $a^{-1} \in C^*(a)$. [Hint: Use (i) and (ii).]
- 4. (RLL Exercise 1.8) Let A and B be C^* -algebras, and let $\varphi: A \to B$ be a *-homomorphism.
 - (i) Assume A and B are unital and that φ is a unital *-homomorphism. Show that $\operatorname{sp}(\varphi(a)) \subset \operatorname{sp}(a)$ for each $a \in A$; and show that these two sets are equal if φ is injective.
 - (ii) Still assuming A and B are unital and that φ is a unital *-homomorphism, show that ||φ(a)|| ≤ ||a|| for all a ∈ A (i.e. φ is contractive); and show that if in addition φ is injective, then ||φ(a)|| = ||a|| for all a ∈ A (i.e. φ is isometric). [Hint: Use (i) applied to a*a together with the fact that r(c) = ||c|| for every normal element c ∈ A.]
 - (iii) Show that $\|\varphi(a)\| \le \|a\|$ for all $a \in A$; and show that $\|\varphi(a)\| = \|a\|$ for all $a \in A$ if φ is injective. Notice we are no longer assuming A and B are unital.
 - (iv) Conclude that the image of φ is a C^* -algebra.
- 5. (Based on the first lecture.) Let R be a unital ring. Consider the map

$$\Phi: \left\{ \begin{array}{c} \text{Idempotents in } M_n(R) \\ \text{for some } n \end{array} \right\} \to \left\{ \begin{array}{c} \text{Isomorphism classes of finitely} \\ \text{generated projective right } R\text{-modules} \end{array} \right\}$$

$$e \in M_n(R) \qquad \mapsto \qquad [eR^n]$$

where [M] denotes the isomorphism class of a right R-module M. (Assume for the moment that the codomain of this map is really a set)

- (i) Show that Φ is a well-defined surjection.
- (ii) Show that if $e \in M_n(R)$ and $f \in M_m(R)$, then $\Phi(e) = \Phi(f)$ if and only if e and f are Murray-von Neumann equivalent, meaning that there exist $u \in \operatorname{Hom}_R(R^m, R^n)$ and $v \in \operatorname{Hom}_R(R^n, R^m)$ such that e = uv and f = vu.
- (iii) Show, in ZFC, that the codomain of Φ is really a set (and not a proper class). Moreover, show that $[M] + [N] := [M \oplus N]$ is a well-defined binary operation on the codomain of Φ giving it the structure of an abelian monoid.
- (iv) Show that Φ is a homomorphism of abelian monoids. That is, if $e \in M_n(R)$ and $f \in M_m(R)$, then the idempotent

$$e \oplus f = \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix} \in M_{n+m}(R)$$

satisfies $\Phi(e \oplus f) = \Phi(e) + \Phi(f)$.

6. (An application to geometry: the Hopf line bundle on S^2 .) Let σ_1, σ_2 , and σ_3 be three matrices in $M_2(\mathbb{C})$ satisfying the canonical anticommutation relations, i.e.

$$\sigma_i \sigma_i + \sigma_i \sigma_i = 2\delta_{ij}$$

2 of 4

for all i, j = 1, 2, 3 (where δ is Kronecker's delta).

2

- (i) Find explicitly three matrices σ_1, σ_2 , and σ_3 in $M_2(\mathbb{C})$ satisfying the above relations.
- (ii) Viewing S^2 as the level set of $x_1^2 + x_2^2 + x_3^2 1$ in \mathbb{R}^3 , define a continuous function $F: S^2 \to M_2(\mathbb{C})$ by $F(x_1, x_2, x_3) = x_1\sigma_1 + x_2\sigma_2 + x_3\sigma_3$. Show that

$$e:=\frac{1+F}{2}$$

defines an idempotent in $M_2(C(S^2))$ (which we naturally identify with $C(S^2, M_2(\mathbb{C}))$).

(iii) As we will see later, by the Serre-Swan theorem, e gives rise to a (smooth) subbundle E of the trivial bundle $S^2 \times \mathbb{C}^2$ given by

$$E = \{(x, v) \in S^2 \times \mathbb{C}^2 : e(x)v = v\}$$

Show that rank(e(x)) = 1 for all $x \in S^2$ and conclude that the rank of E is one.

(iv) Let $f: S^2 \to \mathbb{C}P^1$ be the (smooth) map given by $f(x) = \operatorname{im}(e(x))$. Recall that the canonical line bundle on $\mathbb{C}P^1$ is the (holomorphic) line bundle L on $\mathbb{C}P^1$ given by

$$L := \{(x, v) \in \mathbb{C}P^1 \times \mathbb{C}^2 : v \in x\}$$

Show that f is a homeomorphism (in fact it is a diffeomorphism) and that $E = f^*L$.

(v) Let us view S^3 as the level set of $|z_1|^2 + |z_2|^2 - 1$ in \mathbb{C}^2 . Recall that the line bundle associated to the Hopf fibration $S^1 \hookrightarrow S^3 \to S^2$ is the line bundle $(S^3 \times \mathbb{C})/S^1$ where $((z_1, z_2), w) \sim ((e^{it}z_1, e^{it}z_2), e^{-it}w)$. Show E is isomorphic to the line bundle associated to the Hopf fibration. [Hint: First define a map $S^3 \times \mathbb{C} \to L$ and show it descends to an isomorphism of the associated bundle with L. Then use part (iv).]

about:blank

Firefox about:blank

3

4 of 4 2023-09-11, 1:34 p.m.