Control Systems Track: Comprehensive Program Overview

Mastering Feedback Control for Industrial Applications

Agnes

Phase 1: System Modeling & Time Domain Analysis

Introduction to Control Systems & MATLAB Basics

Laying the groundwork by defining control systems and introducing MATLAB as a primary tool for analysis and design.

Transfer Functions & Block Diagram Algebra

Representing dynamic systems with mathematical models and using block diagram reduction to simplify complex loops.

Time Domain Analysis

Exploring transient response (rise time, overshoot) and steady-state error to understand system behavior over time.

Stability Criteria: Routh-Hurwitz Method

Introducing essential methods to determine system stability,

Key Control Mechanism: The PID Controller

Overview

The Proportional-Integral-Derivative (PID) controller is the cornerstone of feedback control, found in ~98% of industrial

Error Calculation & Control Action

A PID controller continuously computes an error signal (setpoint vs. actual value) and corrects it using three terms: Proportional,

Applications

Essential for managing variables like pressure, flow, and temperature in chemical processing, water treatment, and food

Phase 1: Frequency Domain Analysis & PID Control

Frequency Domain Analysis

Bode Plots: Graphically represent system gain and phase vs. frequency, crucial for assessing stability margins.

Nyquist Plots: Offer a comprehensive view of stability by plotting frequency response in the complex plane, essential for robust design.

System Stability

Feedback Mechanism:

Continuously calculates an 'error signal' by comparing the desired setpoint to the measured process variable.

Three Control Terms:

Utilizes Proportional (P), Integral (I), and Derivative (D) actions to achieve precise control in a closed-loop system.

Feedback Control

Design &

Practical

Introduction to Modern Control & Applications

Exploring State-Space, System Properties, and Industrial Implementations

State Space Representation: A Modern Approach

State-space is a model of a physical system as a set of input, output, and state variables related by first-order differential equations.

Key Components:

- **State Variables:** Minimal set of variables describing the system's dynamic state.
- **State & Output Equations:** Describe how states change and how outputs relate to states and inputs.

Advantages:

- Effective for multi-input, multi-output (MIMO) systems.
- Naturally incorporates initial conditions for complete analysis.
- Can be extended to represent non-linear systems.

Conversion: Techniques allow for seamless conversion between Transfer Function models and State-Space form, offering engineers flexibility in analysis and design.

System Analysis: Controllability & Observability

A system is **controllable** if an input can move it from any initial state to any desired final state in finite time.

A system is **observable** if the initial state can be determined from its outputs over a finite time.

These concepts are fundamental for designing effective state-feedback controllers and state observers like Kalman filters.

Control Design

Industrial Automation: Real-World Applications

Modern control systems are the backbone of industrial automation, enabling precision and

Phase 2: Capstone Mini Project Kick-off

Strategic Planning: Scoping & Team Formation

Defining Scope: Clearly articulate project goals, boundaries, and expected deliverables to ensure alignment.

Team Dynamics: Identify key roles, assign responsibilities, and establish communication protocols for effective collaboration.

Foundation: Laying a robust groundwork is crucial for the successful execution of the capstone project.

Project Planning

Foundational Analysis: Modeling & Objectives

System Representation: Develop precise mathematical models (e.g., transfer function) of the chosen system.

Target Definition: Define specific control objectives like desired setpoint tracking, efficient disturbance rejection, and optimal response time.

Precision: An accurate model and well-defined objectives are paramount for effective controller design.

System Dynamics

State Space Applications & Industrial Case Studies

Advanced State Space Control

Moving beyond basic state-space representation, advanced techniques leverage the system's internal states for superior control performance and robustness. These methods offer systematic approaches to achieve precise and optimal control.

Pole Placement

A direct design method where feedback gains are selected to explicitly assign the closed-loop poles (eigenvalues) of the system to desired locations, achieving predictable transient response characteristics like settling time and overshoot.

SYSTEM OPTIMIZATION

Linear Quadratic Regulator (LQR)

An optimal control approach that determines state-feedback gains by minimizing a quadratic cost function, achieving an optimal balance between precise performance and minimal control effort. resulting in smoother control and better stability.

Diverse Industrial Applications

Process Control

Maintains precise conditions in chemical reactors, power generation, and water treatment, ensuring quality, efficiency, and safety.

Industry Implementation

Distributed Control Systems (DCS)

Integrated systems for complex, continuous process industries (e.g., power plants, refineries) providing centralized control and high reliability.

Robotics

Image Sources: Smart Manufacturing Plant Stock Photos, Tech Robotics Stock P

Career Launchpad & Program Conclusion

Final Project: Showcase Your Expertise

Culminating Effort: The final project serves as the pinnacle of the program, integrating all learned concepts in a practical, real-world control system challenge.

Presentation & Defense: Formally present your solutions, methodologies, and results to a panel of instructors and industry experts, honing essential professional communication skills.

Comprehensive Documentation: Prepare a detailed project report and technical documentation, reinforcing structured problem-solving and technical writing.

Project Culmination

Innovation & Application

Thank You & Further Engagement

