Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Trabajo Final de Graduación Proyecto: Método basado en aprendizaje reforzado para el control automático de una planta no lineal. Estudiante: Oscar Andrés Rojas Fonseca

I Semestre 2024 Firma del asesor

Bitácora de trabajo

Fecha	Actividad	Anotaciones	Horas
2 00110	1100171444	111100000101101	dedicadas
15/04/2024	1. Redefinición de la conversión del código para valores discretos (CartPole) a valores continuos (Pendulum).	 a) El error en select_action() se corrigió pero desconfiguró parte de la función optimize_model(). b) Corrección del error en optimize_model(). c) Persisten los problemas de indexado y proceso. 	6 horas
15/04/2024	2. Pruebas de entrenamiento del modelo (<i>Pendulum</i>).	a) Se entrenaron cuatro modelos diferentes a 600 episodios para comparar el efecto de cuatro propuestas de redes neuronales artificiales (ANN).	6 horas
16/04/2024	2. Búsqueda de la teoría de los métodos <i>PPO</i> y actor – critic dada la necesidad del manejo del action space con valores continuos.	a) SASASASAS.	4 horas
17/04/2024	3. Reunión de seguimiento con el asesor del proyecto.	 a) Revisión de avance en el código y errores de forma. b) Se acordó continuar con el interés en los métodos como PPO como opción para el control. 	2 horas
17/04/2024	${f 2}$. Búsqueda de métodos para el manejo de valores continuos en DQN .	a) Aparece el DDPG.b) Opción de discretizar el action space.	4 horas
17/04/2024	2. Prueba de discretización del action space del env Pendulum.	 a) Se logró adaptar el código del PendulumDQN a una versión discretizada PendulumDQN_discrete, depende principalmente de la resolución seleccionada (n_actions). b) Pruebas de entrenamiento de hasta 100 episodios. 	4 horas

19/04/2024	4. Corrección de potenciales errores en el código $PendulumDQN$ señalados por asesor.	 a) Replanteo de función de recompensa calculate_reward() para evitar salto. b) Adición de lógica para guardado de checkpoints al entrenamiento y corrección del guardado del modelo. 	6 horas
20/04/2024	4. Montaje y primera prueba del código <i>PPO</i> para <i>Pendulum</i> .	a) Revisión del error por cambio de versión Gym a $Gymnasium$.	6 horas
21/04/2024	4. Prueba de entrenamiento con versión base del <i>PPO</i> para <i>Pendulum</i> .	 a) Entrenamiento del modelo con render ("human") de 200k episodios. Mal desempeño. b) Entrenamiento del modelo con render ("rgb_array") de 200M de episodios. En proceso. 	6 horas
Total de horas de trabajo:			

Contenidos de actividades

AAA [1].

Referencias

 $[1]\,$ A. Paszke and M. Towers, "Reinforcement learning (dqn) tutorial," PyTorch.