

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à n'utiliser que pour les
commandes de reproduction)

(21) N° d'enregistrement national : 97 12034

2 769 088

(51) Int Cl⁶ : G 01 D 5/244

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 26.09.97.

(30) Priorité :

(43) Date de mise à la disposition du public de la demande : 02.04.99 Bulletin 99/13.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule

(60) Références à d'autres documents nationaux apparentés :

(71) Demandeur(s) : SNR ROULEMENTS SOCIETE ANONYME — FR.

(72) Inventeur(s) : TRAVOSTINO FRANCIS, SANTOS JOHN, LACROIX MARC et LYLE STEVE.

(73) Titulaire(s) :

(74) Mandataire(s) : CABINET BALLOT SCHMIT.

(54) CAPTEUR DIGITAL DE POSITION RELATIVE.

(57) L'invention concerne un capteur numérique de position relative, comprenant un anneau magnétique multipolaire circulaire mobile en rotation en face d'un capteur magnétique fixe composé d'au moins deux éléments sensibles, respectivement positionnés en regard de la piste principale (4) et de la piste de référence "top tour" (5), et un dispositif de traitement des signaux de sortie, tel que, sur l'anneau (1), est réalisé un motif magnétique (10) à partir d'une paire de pôles Nord et Sud dont la transition est différente de la transition entre chaque pôle Nord et Sud de l'anneau (1), et dont la largeur angulaire du pôle Nord est différente au niveau de la piste de référence "top tour" (5). Les éléments sensibles peuvent être au nombre de trois, dont le premier (7) est situé en regard de la piste de référence (5) et dont les deux autres (61 et 62) sont situés en regard de la piste principale (4), ou bien réalisés sous forme de deux barrettes (20 et 21) parallèles.

FR 2 769 088 - A1

CAPTEUR NUMÉRIQUE DE POSITION RELATIVE

L'invention se rapporte à un capteur numérique de position relative, de type magnétique, délivrant une impulsion de référence par tour, plus particulièrement utilisé dans les roulements capteurs pour des applications automobiles ou industrielles. Un tel capteur peut être monté dans des roulements de roue ou dans des roulements de colonne de direction de véhicules automobiles pour renseigner les systèmes de navigation ou pour contrôler la trajectoire du véhicule, ou bien encore dans des systèmes de contrôle et de pilotage de la position d'un robot ou d'un moteur électrique par exemple.

Un capteur de position relative qui délivre en plus un signal de sortie, dit "top tour", constitué par une seule impulsion par tour, dont la longueur ou la durée peut varier en fonction des dispositifs, est très intéressant car ce signal peut être utilisé comme référence pour effectuer des réinitialisations des systèmes de traitement connectés en aval au capteur, et connaître par comptage/décomptage la position d'un rotor par rapport à cette position de référence.

Il existe actuellement des capteurs de position relative de type codeur optique, qui délivrent en sortie des signaux numériques, possédant chacun un nombre d'impulsions déterminé par tour et déphasés de 90° électrique l'un par rapport à l'autre afin de discriminer le sens de rotation. De tels signaux sont représentés sur la figure 1, où ils sont référencés A et B ainsi qu'un signal C de référence "top tour",

constitué d'une seule impulsion par tour, dont le front montant correspond à un front quelconque d'un des deux signaux A ou B, mais dont le front descendant correspond au front suivant de l'autre signal.

5

Pour des raisons de fiabilité, l'utilisation de ces capteurs de type optique est limitée à des applications réalisées dans des ambiances peu sévères, présentant un faible niveau de pollution et une température ambiante 10 inférieure à 100°C.

Il existe également des capteurs de type magnétique qui peuvent fonctionner dans des conditions industrielles plus sévères et qui sont économiquement avantageux. Ils 15 peuvent être constitués d'une part d'un anneau magnétique multipolaire, sur lequel est imprimée une succession de pôles Nord et Sud et qui est lié à la partie mobile de l'organe en rotation dont on cherche la position relative, et d'autre part d'un ou plusieurs 20 capteurs magnétiques liés à la partie fixe dudit organe. Ces capteurs magnétiques sont par exemple des sondes à effet Hall ou des sondes magnétorésistives qui peuvent être intégrées dans des roulements.

25 Par contre, dans le cas où un tel capteur de position relative, de type magnétique, doit délivrer une information de référence "top tour", les pistes magnétiques, principale et "top tour", doivent être suffisamment écartées l'une de l'autre en raison des 30 fortes influences magnétiques s'exerçant entre elles, ce qui provoque un important encombrement. Ce qui est particulièrement vrai si on souhaite utiliser les signaux issus de la piste principale pour augmenter électroniquement la résolution des signaux de sortie

par des procédés d'interpolation connus. Cet inconvénient peut empêcher le montage d'un tel capteur dans certains organes, où la place est réduite.

- 5 L'invention vise à pallier ces inconvénients en proposant un capteur de position relative capable de générer un signal de référence "top tour", de dimensions réduites et capables de s'affranchir des diverses tolérances d'assemblage des éléments capteurs
10 magnétiques face aux anneaux magnétiques multipolaires solidaires en rotation des organes tournants.

Pour cela, l'objet de l'invention est un capteur numérique de position relative, comprenant d'une part
15 un anneau magnétique multipolaire circulaire, sur lequel sont aimantées une pluralité de paires de pôles Nord et Sud, équirépartis, de largeur angulaire déterminée constante, mobile en rotation en face d'un capteur magnétique fixe composé d'au moins deux
20 éléments sensibles, situés sur un même rayon de l'anneau et distants d'une longueur d , respectivement positionnés en regard de la piste principale et de la piste de référence "top tour", et d'autre part d'un dispositif de traitement des signaux de sortie émis par
25 les éléments sensibles, destiné à donner une impulsion de référence par tour d'un organe en rotation solidaire de l'anneau multipolaire, caractérisé en ce que, sur l'anneau multipolaire, est réalisé un motif magnétique à partir d'une paire de pôles Nord et Sud dont la
30 transition est différente de la transition entre chaque pôle Nord et Sud de l'anneau, et dont la largeur angulaire du pôle Nord est d'une part égale à celle du pôle Sud au niveau de la piste principale et d'autre

part différente au niveau de la piste de référence "top tour".

Selon une autre caractéristique de l'invention, le
5 capteur magnétique est composé de trois éléments
sensibles dont le premier est situé en regard de la
piste de référence "top tour", et dont les deux autres
sont situés en regard de la piste magnétique principale
de telle sorte que l'un des deux est situé sur le même
10 rayon de l'anneau magnétique que l'élément sensible de
la piste de référence à une distance d, et qu'ils sont
décalés l'un par rapport à l'autre le long de la piste
principale afin de délivrer des signaux respectifs en
quadrature.

15

Selon une autre caractéristique de l'invention, le
capteur magnétique est composé de deux barrettes
d'éléments magnétiques sensibles, situées en regard des
deux pistes magnétiques principale et de référence "top
20 tour", sont parallèles et distantes d'une longueur d,
et sont composées d'une pluralité d'éléments sensibles,
de préférence en nombre pair et égal pour les deux
barrettes, chaque élément sensible d'une barrette étant
situé en regard d'un élément sensible de l'autre
25 barrette.

L'invention sera avantageusement utilisée dans des
roulements capteurs pour des applications automobiles
telles que la navigation et le contrôle de trajectoire,
30 par l'intermédiaire des roulements de roue ou de
colonne de direction, ou pour des applications
industrielles lorsqu'il faut contrôler et piloter la
position d'un organe, un moteur électrique par exemple.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, de plusieurs exemples de réalisation non limitatifs, illustrée par les figures suivantes qui sont :

- 5 - la figure 1 : une représentation graphique des signaux de sortie d'un capteur numérique de position relative avec impulsion de référence "top tour" ;
- les figures 2, 7, 10 : une portion d'un capteur numérique selon l'invention, suivant une vue de face de différents modes de réalisation;
- 10 - les figures 3_a et 3_b : une représentation graphique des profils de champ magnétique observés le long d'un rayon d'un codeur magnétique multipolaire ;
- les figures 4_a à 4_j : différents motifs magnétiques d'un capteur numérique selon l'invention ;
- 15 - les figures 5, 8, 11 : un schéma électronique de différents modes de réalisation du dispositif de traitement des signaux du capteur numérique selon l'invention ;
- 20 - les figures 6, 9, 12 : une représentation graphique des signaux électriques disponibles dans le dispositif de traitement du capteur numérique selon l'invention ;
- les figures 13 à 15 : différents signaux électriques analogiques caractéristiques du dispositif de traitement des différents capteurs digitaux selon 25 l'invention.

Les éléments portant les mêmes références, sur les différentes figures, remplissent les mêmes fonctions en 30 vue des mêmes résultats.

Le capteur numérique de position relative, objet de l'invention, est réalisé à partir d'un anneau magnétique multipolaire, circulaire, solidaire de la

partie mobile d'un organe dont on mesure la position angulaire relative, de telle sorte qu'il soit entraîné en rotation en même temps que lui.

5 Comme le montre la figure 2, cet anneau magnétique 1 comporte, sur une de ses faces, une pluralité de pôles Nord et Sud, équirépartis, se succédant de telle sorte qu'un pôle Nord, respectivement Sud, soit toujours entouré de deux pôles Sud, respectivement Nord. La largeur angulaire moyenne des pôles Nord et Sud reste
10 constante.

Le capteur numérique comprend également au moins deux éléments 6 et 7 sensibles, distants d'une longueur r suivant un rayon r , et respectivement positionnés en
15 regard de la piste principale 4 et de la piste de référence "top tour" 5. L'élément sensible 6 du dispositif capteur magnétique 11 lit le champ magnétique émis par la piste magnétique principale 4, tandis que, simultanément, l'élément sensible 7 lit le
20 champ magnétique émis par la piste de référence 5.

Selon une caractéristique fondamentale de l'invention, l'anneau magnétique 1 comporte un motif magnétique spécifique 10, constitué de deux pôles adjacents, Nord et Sud, séparés par une transition magnétique de forme particulière, différente de la transition radiale théorique entre les autres pôles de l'anneau, de telle sorte que la largeur angulaire des pôles Nord et Sud du motif angulaire, au niveau de la piste de référence
25 "top tour" 5, soit différente de celles des autres pôles.

Dans un premier mode de réalisation, correspondant au cas particulier de la figure 2, où la piste magnétique

principale 4 est un cercle divisant l'anneau magnétique 1 en deux parties d'égales largeurs, la transition magnétique 3 entre les deux pôles Nord et Sud du motif spécifique 10, se fait suivant un segment de droite, 5 incliné d'un angle α par rapport à la direction des transitions entre les pôles Nord et Sud des autres paires de l'anneau, ici confondue avec un rayon r de l'anneau, en pointillés, le centre R de la rotation d'angle α se trouvant sur la piste principale 4. Le 10 second élément sensible 7 du dispositif capteur magnétique 11 est situé sur un cercle de diamètre différent, en l'occurrence supérieur à celui de la piste principale 4, de sorte que le champ magnétique qu'il lit sur cette piste de référence présente une 15 particularité au niveau du motif magnétique 10 dont les deux pôles Nord et Sud sont de largeurs différentes.

Dans le cas d'un anneau dont la surface cylindrique extérieure est aimantée réalisant un codeur magnétique multipolaire linéaire, sur lequel les transitions entre les pôles sont confondues avec des directrices de la couronne cylindrique extérieure, le motif présente une transition inclinée d'un angle α par rapport à la transition entre les autres pôles.

25 Les figures 3_a et 3_b montrent un relevé typique du champ magnétique B disponible suivant une direction y passant par un rayon de l'anneau magnétique multipolaire 1, de préférence au centre d'un pôle, 30 respectivement dans le cas d'un anneau dont une des faces est aimantée et dans le cas d'un anneau linéaire. Les deux courbes présentent chacune un plateau 18 au-dessus du matériau magnétique aimanté, entre les diamètres intérieur Φ_{INT} et extérieur Φ_{EXT} , et des

décroissances 19 dès que l'on se rapproche du bord de la partie aimantée. Soit d , la distance entre les éléments sensibles, placés au-dessus des deux pistes magnétiques 4 et 5, et soit $2T$, les tolérances mécaniques de positionnement suivant la direction d'un rayon y du capteur 11 par rapport aux pistes 4 et 5, pour s'affranchir des tolérances de montage suivant ce rayon y , il faut que la longueur du plateau 18 soit égale au moins à $d+2T$ de façon à obtenir un champ magnétique utile constant et un bon fonctionnement du traitement spécifique "top tour".

Les figures 4_a et 4_b représentent un motif magnétique réalisé sur un anneau multipolaire 1, dont la piste principale n'est pas centrée au milieu mais décalée vers le diamètre intérieur et vers le diamètre extérieur respectivement. La transition se fait comme celle de la figure 2, c'est-à-dire suivant un segment de droite obtenu par rotation d'un rayon r d'angle α et de centre R situé sur la piste principale 4. Cette conception permet d'optimiser la largeur de l'anneau magnétique, en réduisant sa largeur par exemple.

Les figures 4_c et 4_d représentent un deuxième mode de réalisation d'un motif magnétique, dont la transition spécifique 3 est composée de deux segments de droite, un premier segment 31 selon un rayon r de l'anneau magnétique 1 qui divise le motif en deux parties égales pour conserver une largeur de pôle angulaire constante au niveau de la piste principale 4 ainsi qu'au niveau des diamètres adjacents situés à $\pm 2T$, et un second segment 32 incliné d'un angle β par rapport au premier segment au niveau de la piste de référence 5.

Sur les figures 4_e et 4_f, la transition magnétique 3 entre les deux pôles Nord et Sud du motif 10 est composée d'un premier segment de droite 33, qui est confondu avec un rayon r de l'anneau magnétique 1 divisant le motif 10 en deux parties égales, selon la transition classique au niveau de la piste principale 4 et des diamètres adjacents à $\pm 2T$, et d'un second segment de droite 34, qui est confondu avec un rayon r', décalé d'un angle δ par rapport au rayon r. Ce second segment de droite divise le motif 10 en deux parties inégales mais conserve une largeur de pôle angulaire constante au niveau de la piste de référence 5 et des diamètres adjacents à $\pm 2T$, lors du traitement électronique du signal de référence "top tour", que l'anneau magnétique multipolaire 1 soit aimanté sur une face plane ou sur sa couronne cylindrique extérieure.

Une variante de la transition précédente est représentée sur les figures 4_g et 4_h, pour lesquelles les segments de droite 33 et 34, situés au niveau des deux pistes magnétiques 4 et 5, sont reliées au niveau du milieu de l'anneau multipolaire par une boucle 35 destinée à atténuer les influences magnétiques entre les pistes.

Une autre variante du même type de transition est représentée sur les figures 4_i et 4_j, pour lesquels les segments de droite 33 et 34 sont reliés par une boucle 36 en forme de S au niveau du milieu de l'anneau.

Les deux éléments sensibles 6 et 7 du dispositif capteur magnétique 11 délivrent respectivement les signaux électriques S₆ et S₇, dont le traitement électronique par un dispositif spécifique 12 permet

d'obtenir un signal de référence "top tour" C, représenté sur la figure 5. Ce dispositif 12 de génération d'une impulsion de référence est constitué tout d'abord par un circuit différentiateur 8, 5 effectuant la différence analogique entre les signaux d'entrée S_6 et S_7 , pour délivrer un signal analogique de référence "top tour" S_{TT} . Le dispositif 12 est ensuite constitué par un circuit comparateur 9, destiné à comparer ledit signal analogique de référence S_{TT} à 10 un seuil fixe de référence S_{SE} , qui est choisi compris entre les limites supérieure et inférieure du signal S_{TT} , quelle que soit la température de fonctionnement. Ainsi, l'amplitude du signal analogique de référence S_{TT} est pondérée d'une part par un premier facteur de 15 fonctionnement aux hautes températures, qui la diminue au niveau de la transition entre les pôles Nord et Sud du motif magnétique 10, et d'autre part par un second facteur de fonctionnement aux basses températures, qui l'augmente en dehors du motif. En sortie du comparateur 20 9, est généré un signal numérique C de référence "top tour", qui sert d'impulsion de référence, que les signaux électriques S_6 , S_7 , S_{TT} et S_{SE} soient des tensions ou des courants.

Ces différents signaux sont représentés graphiquement 25 sur la figure 6, pour la portion de l'anneau magnétique multipolaire 1 considérée sur la figure 2.

Pour s'affranchir de l'influence des variations de température d'une part et d'entrefer d'autre part, 30 l'entrefer étant la distance entre la surface de l'anneau magnétique multipolaire 1 et les éléments sensibles du capteur magnétique 11, l'invention propose un traitement électronique des signaux émis par les éléments sensibles du capteur 11 qui soit ratiométrique

- par rapport à un autre signal dont l'amplitude varie parallèlement à la leur. En effet, le champ magnétique ainsi que la sensibilité des capteurs magnétiques décroissent notablement lorsque la température 5 augmente, de même que le champ magnétique décroît également quand l'entrefer croît. Aussi est-il intéressant de prendre en compte la conjonction de ces deux phénomènes physiques.
- 10 Selon une première variante de réalisation du capteur magnétique 11, faisant partie du capteur numérique de position relative selon l'invention, ce capteur magnétique 11 est composé de trois éléments sensibles, dont le premier 7 est situé en regard de la piste de 15 référence 5 comme précédemment et dont les deux autres 61 et 62 sont situés en regard de la piste magnétique principale 4 pour lire le champ magnétique émis par l'anneau magnétique multipolaire 1.
- 20 Ces éléments sensibles 61 et 62, dont l'un d'eux est situé sur le même rayon de l'anneau magnétique que l'élément sensible de la piste de référence, sont décalés l'un par rapport à l'autre le long de la piste principale 4 de telle sorte que, lorsqu'un de ces 25 éléments, 61 par exemple, est situé en face d'une transition magnétique entre deux pôles Nord et Sud, l'autre élément, 62 dans ce cas, est situé au milieu d'un pôle magnétique, autrement dit qu'ils soient en quadrature.
- 30 Dans le cas de la figure 7, les deux éléments sensibles 61 et 62 de la piste principale 4 apparaissent au-dessus du même pôle Sud, mais l'anneau étant en

rotation, ils peuvent se trouver au-dessus de deux pôles distincts.

Le traitement électronique des signaux S_{61} , S_{62} et S_7 , émis en sortie du capteur magnétique 11, est réalisé par un dispositif 120 de génération d'une impulsion de référence C, qui comprend, comme le montre la figure 8, tout d'abord un circuit différentiateur 80, destiné à effectuer la différence analogique entre le signal S_{61} émis par l'élément capteur de la piste principale 4 et le signal S_7 , émis par l'élément capteur 7 de la piste de référence 5 situé sur le même rayon de l'anneau 1 que lui. Il en résulte un signal analogique S_{TT} de référence "top tour". Le dispositif 120 comprend ensuite deux circuits comparateurs 91 et 92. Le premier comparateur 91 compare le signal S_{62} de l'élément sensible 62 en quadrature avec l'élément 61, avec le signal analogique "top tour" S_{TT} , pour délivrer un signal numérique D_1 qui est à l'état logique 1 quand le signal S_{62} est supérieur au signal S_{TT} et à l'état 0 inversement, et le second comparateur 92 compare ce même signal S_{62} avec le signal S_{61} émis par l'autre élément sensible 61, pour délivrer un signal numérique D_2 , qui est à l'état logique 1 quand le signal S_{62} est supérieur au signal S_{61} et à l'état 0 inversement. Le comparateur 92 est relié à un détecteur de front descendant 13, dont le signal D_3 de sortie génère une impulsion à chaque front descendant de signal logique D_2 . Puis, les signaux binaires D_1 et D_3 entrent dans une porte logique ET 14, pour générer un signal numérique D_4 constitué d'une impulsion unique 16 par tour de l'anneau magnétique multipolaire 1.

L'ensemble de ces signaux décrits est représenté graphiquement sur la figure 9.

- Cette impulsion unique 16, qui n'apparaît qu'une fois par tour et toujours à la même position par rapport à l'anneau magnétique 1, sert de front montant à l'impulsion de référence 17 du signal binaire C "top tour", dont la durée de l'état haut est ajustée par rapport au signal de sortie désiré par un circuit de synchronisation 15, recevant en entrée le signal numérique D₄ ainsi que les signaux A et B. Ce mode de réalisation du dispositif 120 de génération est un exemple non limitatif.
- 15 Selon une deuxième variante de réalisation des éléments sensibles de l'invention, le capteur numérique de position relative comprend deux barrettes d'éléments magnétiques sensibles 20 et 21, destinées à l'affranchir d'une part d'un positionnement précis entre deux éléments consécutifs situés en regard de la piste magnétique principale 4, et d'autre part d'une prise en compte des différentes largeurs angulaires possibles des pôles Nord et Sud.
- 20 25 Comme le montre la figure 10, les barrettes 20 et 21, situées en regard des deux pistes magnétiques principale 4 et "top tour" 5, sont parallèles et distantes d'une longueur d, et sont composées d'une pluralité d'éléments sensibles 20_i et 21_i respectifs, i étant un nombre entier positif, de préférence pair et égal pour les deux barrettes, chaque élément sensible d'une barrette étant situé en regard d'un élément sensible de l'autre barrette.

Le dispositif 121 de génération d'un signal de référence "top tour" C comporte, selon la figure 11, des moyens de sommation analogique 22 de la première moitié des signaux issus de la barrette 20, référencés 5 $S_{20(1)}$ à $S_{20(n)}$ pour délivrer un signal analogique E_1 , puis des moyens de sommation analogique 23 de la seconde moitié des signaux issus de cette même barrette 20, référencés $S_{20(n+1)}$ à $S_{20(2n)}$ pour délivrer un autre signal analogique E_2 , et enfin des moyens de 10 sommation analogique 24 des signaux issus de la seconde barrette 21 qui délivrent un troisième signal analogique E_3 . Le dispositif 121 comporte ensuite un circuit de sommation analogique 25 des signaux E_1 et E_2 , issus des sommateurs 22 et 23, qui délivre un 15 signal analogique S_{SIN} , puis deux circuits différentiateurs analogiques 81 et 82, dont l'un 81 effectue la différence des signaux E_1 et E_2 issus des sommateurs 22 et 23 pour délivrer un signal analogique S_{COS} et dont l'autre 82 effectue la différence entre le 20 signal S_{SIN} et le signal E_3 issus respectivement des sommateurs 25 et 24. Le signal de sortie du circuit différentiateur 82 est le signal analogique S_{TT} de référence "top tour".

25 Comme pour la variante de réalisation précédente, le dispositif 121 de génération comprend ensuite deux comparateurs, dont l'un 93 compare le signal S_{COS} issu du différentiateur avec le signal analogique "top tour" S_{TT} pour délivrer un signal numérique D_1 qui est à l'état logique 1 quand le signal S_{COS} est supérieur à S_{TT} et à l'état 0 inversement, et dont l'autre 94 compare ce même signal S_{COS} avec le signal S_{SIN} issu du sommeteur 25 pour délivrer un signal numérique D_2 , égal à 1 quand le signal S_{COS} est supérieur à S_{SIN} et égal à 0 inversement.

0 inversement. Le comparateur 94 est relié à un détecteur de front descendant 13, dont le signal de sortie D_3 génère une impulsion à chaque front descendant du signal logique D_2 . Une porte logique ET 5 14, recevant les signaux binaires D_1 et D_3 , génère un signal numérique D_4 sous forme d'une impulsion unique 16 par tour de l'anneau magnétique 1.

Un circuit de synchronisation 15 reçoit cette impulsion 10 unique par tour, ainsi que les signaux A et B, pour ajuster la longueur de l'état haut de l'impulsion de référence 17 du signal de sortie "top tour" C par rapport au signal de sortie désiré. La figure 12 est une représentation graphique des différents signaux 15 obtenus au cours du traitement électronique des signaux issus des barrettes d'éléments capteurs magnétiques.

Les figures 13, 14 et 15 sont les représentations graphiques des signaux électriques E_3 , S_{SIN} et du 20 signal de référence "top tour" S_{TT} , précédemment décrits, et leurs équivalents sur les diamètres à + ou - $2T$, relatifs aux figures 4a à 4b, 4c à 4d et 4e à 4j.

Les éléments sensibles du capteur 6, 7, 61 et 62 comme 25 les barrettes 20 et 21 peuvent être du type sonde à effet Hall, ou sonde magnétorésistive amorphe ou sonde magnétorésistive géante.

REVENDICATIONS

1. Capteur numérique de position relative, comprenant d'une part un anneau magnétique multipolaire circulaire sur lequel sont aimantées une pluralité de paires de pôles Nord et Sud, équirépartis, de largeur angulaire déterminée constante, mobile en rotation en face d'un capteur magnétique fixe composé d'au moins deux éléments sensibles, situés sur un même rayon de l'anneau et distants d'une longueur (d), respectivement positionnés en regard de la piste principale et de la piste de référence "top tour", et d'autre part d'un dispositif de traitement des signaux de sortie émis par les éléments sensibles, destiné à donner une impulsion de référence par tour d'un organe en rotation solidaire de l'anneau multipolaire, caractérisé en ce que, sur l'anneau multipolaire (1), est réalisé un motif magnétique (10) à partir d'une paire de pôles Nord et Sud dont la transition est différente de la transition entre chaque pôle Nord et Sud de l'anneau (1), et dont la largeur angulaire du pôle Nord est d'une part égale à celle du pôle Sud au niveau de la piste principale (4) et d'autre part différente au niveau de la piste de référence "top tour" (5).
2. Capteur numérique selon la revendication 1, caractérisé en ce que la transition (3) entre les pôles Nord et Sud du motif magnétique (10) est un segment de droite, incliné d'un angle (α) par rapport à la direction des transitions entre les pôles Nord et Sud des autres paire de l'anneau multipolaire (1), le centre (R) de la rotation d'angle (α) se trouvant sur la piste principale (4).

3. Capteur numérique selon la revendication 1, caractérisé en ce que la transition (3) entre les pôles Nord et Sud du motif magnétique (10) est composée de deux segments de droite, un premier segment (31) selon un rayon de l'anneau magnétique (1) qui divise le motif en deux parties égales pour conserver une largeur de pôle angulaire constante au niveau de la piste principale (4) et un second segment (32) incliné d'un angle (β) par rapport au premier segment au niveau de la piste de référence (5).

4. Capteur numérique selon la revendication 1, caractérisé en ce que la transition (3) entre les pôles Nord et Sud du motif magnétique (10) est composée de deux segments de droite (33 et 34), dont l'un (33) est confondu avec un rayon (r) de l'anneau magnétique (1) divisant le motif (10) en deux parties égales et dont l'autre (34) est confondu avec un rayon (r'), décalé d'un angle (δ) par rapport au rayon (r), divisant le motif (10) en deux parties inégales.

5. Capteur numérique selon la revendication 4, caractérisé en ce que ces deux segments de droite (33 et 34) sont reliés par un arc de cercle.

6. Capteur numérique selon la revendication 4, caractérisé en ce que les segments de droite (33 et 34), situés au niveau des deux pistes magnétiques (4 et 5), sont reliés au niveau du milieu de l'anneau multipolaire (1) par une boucle (35) destinée à atténuer les influences magnétiques entre les pistes.

7. Capteur numérique selon la revendication 4, caractérisé en ce que les segments de droite (33 et

34), situés au niveau des deux pistes magnétiques (4 et 5), sont reliés au niveau du milieu de l'anneau multipolaire (1) par une boucle (36) en forme de S au niveau du milieu de l'anneau.

5

8. Capteur numérique selon l'une des revendications 1 à 7, caractérisé en ce que le profil d'aimantation de l'anneau magnétique multipolaire (1), le long d'un rayon au centre d'un pôle, possédant un plateau (18) et deux décroissances (19) vers les diamètres intérieur et extérieur de l'anneau, la longueur du plateau doit être au moins égale à la somme de la distance (d), entre les éléments sensibles du capteur situés en regard respectivement de la piste principale et de la piste de référence, et la tolérance de positionnement ($2T$) sur un rayon de l'anneau par rapport aux deux pistes magnétiques.

9. Capteur numérique selon l'une des revendications 1 à 8, caractérisé en ce que le capteur magnétique (11) est composé de trois éléments sensibles, dont le premier (7) est situé en regard de la piste de référence (5) et dont les deux autres (61 et 62) sont situés en regard de la piste magnétique principale (4) de telle sorte que l'un des deux (61) est situé sur le même rayon de l'anneau magnétique que l'élément sensible (7) de la piste de référence à une distance (d) et qu'ils sont décalés l'un par rapport à l'autre le long de la piste principale (4) afin de délivrer des signaux respectifs en quadrature, soit, lorsqu'un de ces éléments est situé en face d'une transition magnétique entre deux pôles Nord et Sud, l'autre élément est situé au milieu d'un pôle magnétique.

10. Capteur numérique selon l'une des revendications 1 à 8, le capteur magnétique (11) est composé de deux barrettes d'éléments magnétiques sensibles (20 et 21), situées en regard des deux pistes magnétiques principale (4) et de référence "top tour" (5), sont parallèles et distantes d'une longueur (d), et sont composées d'une pluralité d'éléments sensibles (20_i et 21_i) respectifs, i étant un nombre entier positif, de préférence pair et égal pour les deux barrettes, chaque élément sensible d'une barrette étant situé en regard d'un élément sensible de l'autre barrette.

11. Capteur numérique selon la revendication 1, caractérisé en ce que le dispositif de traitement électronique des signaux (S_6 et S_7) issus des deux éléments sensibles du capteur magnétique (11) comprend:

- un circuit différentiateur (8), effectuant la différence analogique entre les signaux d'entrée (S_6 et S_7), pour délivrer un signal analogique de référence "top tour" (S_{TT});
- un circuit comparateur (9), destiné à comparer ledit signal analogique de référence (S_{TT}) à un seuil fixe de référence (S_{SE}), compris entre les limites supérieure et inférieure du signal (S_{TT}), et générant un signal numérique (C) de référence "top tour", qui sert d'impulsion de référence.

12. Capteur numérique selon les revendications 1 et 9, caractérisé en ce que le dispositif de traitement électronique des signaux issus des trois éléments sensibles (7, 61, 62) du capteur magnétique (11) comprend:

- un circuit différentiateur (80), destiné à effectuer la différence analogique entre le signal (S_{61}) émis

- par l'élément capteur (6) de la piste principale (4) et le signal (S_7) émis par l'élément capteur (7) de la piste de référence (5) et situé sur le même rayon de l'anneau (1) que lui, et délivrant un signal analogique (S_{TT}) de référence "top tour";
- un premier circuit comparateur (91), comparant le signal (S_{62}) de l'élément sensible (62) en quadrature avec l'élément (61), avec le signal analogique "top tour" (S_{TT}), pour délivrer un signal numérique (D_1) qui est à l'état logique 1 quand le signal (S_{62}) est supérieur au signal (S_{TT}) et à l'état 0 inversement;
- un second circuit comparateur (92), comparant ce même signal (S_{62}) avec le signal (S_{61}) émis par l'autre élément sensible (61), pour délivrer un signal numérique (D_2), qui est à l'état logique 1 quand le signal (S_{62}) est supérieur au signal (S_{61}) et à l'état 0 inversement;
- un détecteur de front descendant (13) relié au comparateur (92), dont le signal (D_3) de sortie génère une impulsion à chaque front descendant de signal logique (D_2);
- une porte logique ET (14), recevant en entrée les signaux binaires (D_1 et D_3) pour générer un signal numérique (D_4) constitué d'une impulsion unique (16) par tour de l'anneau magnétique multipolaire (1), apparaissant toujours à la même position par rapport à l'anneau;
- un circuit de synchronisation (15), recevant en entrée le signal numérique (D_4) ainsi que les signaux (A et B) et générant le signal numérique de référence "top tour" (C).

13. Capteur numérique selon les revendications 1 et 10, caractérisé en ce que le dispositif de traitement

électronique des signaux issus des deux barrettes d'éléments sensibles (20 et 21) comprend :

- des moyens de sommation analogique (22) de la première moitié des signaux issus de la barrette 5 (20), référencés [$S_{20(1)}$ à $S_{20(n)}$], délivrant un signal analogique (E_1);
- des moyens de sommation analogique (23) de la seconde moitié des signaux issus de cette même barrette (20), 10 référencés [$S_{20(n+1)}$ à $S_{20(2n)}$], délivrant un autre signal analogique (E_2);
- des moyens de sommation analogique (24) des signaux issus de la seconde barrette (21), délivrant un 15 troisième signal analogique (E_3);
- un circuit de sommation analogique (25) des signaux (18 et 19), issus des sommateurs (22 et 23), qui délivre un signal analogique (S_{SIN});
- un premier circuit différentiateur analogique (81), effectuant la différence des signaux (E_1 et E_2) issus des sommateurs (22 et 23) pour délivrer un signal 20 analogique (S_{COS});
- un deuxième circuit différentiateur (82), effectuant la différence entre le signal (S_{SIN}) et le signal (18) issus respectivement des sommateurs (25 et 24) pour délivrer le signal analogique (S_{TT}) de référence 25 "top tour";
- un premier comparateur (93), comparant le signal (S_{COS}) issu du différentiateur (81) avec le signal analogique "top tour" (S_{TT}) pour délivrer un signal numérique (D_1) qui est à l'état logique 1 quand le 30 signal (S_{COS}) est supérieur à (S_{TT}) et à l'état 0 inversement;
- un deuxième comparateur (94), comparant ce même signal (S_{COS}) avec le signal (S_{SIN}) issu du sommeteur (25), pour délivrer un signal numérique (D_2), égal à

- 1 quand le signal (S_{COS}) est supérieur à (S_{SIN}) et égal à 0 inversement;
- un détecteur de front descendant (13), relié au deuxième comparateur, générant une impulsion (D_3) à chaque front descendant du signal logique (D_2);
 - une porte logique ET (14), recevant les signaux binaires (D_1 et D_3), générant un signal numérique (D_4) sous forme d'une impulsion unique (16) par tour de l'anneau magnétique 1;
- 10 - un circuit de synchronisation (15) recevant cette impulsion unique (16) par tour, ainsi que les signaux (A et B), pour générer le signal de sortie "top tour" (C).
- 15 14. Capteur numérique selon les revendications 1 et 10, caractérisé en ce que les éléments sensibles du capteur (6, 7, 61 et 62) et les barrettes (20 et 21) d'éléments sensibles sont du type sonde à effet Hall.
- 20 15. Capteur numérique selon les revendications 1 et 10, caractérisé en ce que les éléments sensibles du capteur (6, 7, 61 et 62) et les barrettes (20 et 21) d'éléments sensibles sont du type sonde magnétorésistive amorphe.
- 25 16. Capteur numérique selon les revendications 1 et 10, caractérisé en ce que les éléments sensibles du capteur (6, 7, 61 et 62) et les barrettes (20 et 21) d'éléments sensibles sont du type sonde magnétorésistive géante.
- 30

1/15

FIG_1FIG_5

2/15

FIG_2

3/15

FIG_3aFIG_3b

4/15

FIG_4aFIG_4bFIG_4cFIG_4dFIG_4eFIG_4f

5/15

FIG_4g

FIG_4h

FIG_4i

FIG_4j

6/15

FIG_6

7/15

FIG_7

FIG-8

9/15

FIG_9

10/15

11/15

FIG_11

12/15

FIG.12

13/15

FIG_13

14/15

FIG_14

15/15

FIG_15

REPUBLIQUE FRANÇAISE

2769088

INSTITUT NATIONAL
de la
PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE
PRELIMINAIRE

établi sur la base des dernières revendications
déposées avant le commencement de la recherche

N° d'enregistrement
nationalFA 547376
FR 9712034

DOCUMENTS CONSIDERES COMME PERTINENTS		Revendications concernées de la demande examinée
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	
A	EP 0 098 551 A (HITACHI LTD) 18 janvier 1984 * page 4, ligne 13 - page 8, ligne 4; figures 1-5 * --- 	1,10,15, 16
A	US 4 262 526 A (MAKITA KUNIO ET AL) 21 avril 1981 * colonne 3, ligne 46 - colonne 4, ligne 45; figures 3-6 * --- 	1,11,12, 14-16
A	EP 0 469 318 A (BOSCH GMBH ROBERT) 5 février 1992 * colonne 4, ligne 26 - colonne 6, ligne 10; figures 1-3 * -----	1,2,14
		DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)
		G01D
1		
Date d'achèvement de la recherche		Examinateur
8 juin 1998		Chapple, I
CATEGORIE DES DOCUMENTS CITES X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : pertinent à l'encontre d'au moins une revendication ou arrière-plan technologique général O : divulcation non écrite P : document intercalaire T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant		
EPO FORM 1599/93/92 (PCT/C13)		