LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57061\pm0.00024$$
 MeV (S = 1.6) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

$\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors [a]

$$F_V = 0.0254 \pm 0.0017$$
 $F_A = 0.0119 \pm 0.0001$ F_V slope parameter $a = 0.10 \pm 0.06$ $R = 0.059^{+0.009}_{-0.008}$

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^+ DECAY MODES		Fraction (Γ	_i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\mu^+ u_\mu$	[<i>b</i>]	(99.9877	0 ± 0.0000	04) %	30
$\mu^+ u_\mu\gamma$	[c]	(2.00	±0.25	$) \times 10^{-4}$	30
$e^+ u_e$	[<i>b</i>]	(1.230	±0.004	$) \times 10^{-4}$	70
$e^+ u_{ar{e}}\gamma$	[c]	•		$) \times 10^{-7}$	70
$e^+ u_e \pi^0$		(1.036	±0.006	$) \times 10^{-8}$	4
$e^+ u_ee^+e^-$		(3.2	± 0.5	$) \times 10^{-9}$	70
$e^+ \nu_e \nu \overline{\nu}$		< 5		$\times 10^{-6} 90\%$	70

Lepton Family number (LF) or Lepton number (L) violating modes

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=134.9770\pm0.0005$$
 MeV (S $=1.1$) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $\tau=(8.52\pm0.18)\times10^{-17}$ s (S $=1.2$) $c\tau=25.5$ nm

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ_i)	Scale factor/ Confidence level	•
2γ	(98.823±0.	034) % S=1.5	67
$e^+e^-\gamma$	$(1.174\pm0.$	035) % S=1.5	67
γ positronium	($1.82 \pm 0.$	29) \times 10 ⁻⁹	67
$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0 .	16) \times 10 ⁻⁵	67
e^+e^-	$(6.46 \pm 0.$	33) \times 10 ⁻⁸	67
4 γ	< 2	$\times 10^{-8}$ CL=90%	67
$ u \overline{ u}$	[e] < 2.7	$\times 10^{-7} \text{ CL}=90\%$	67
$ u_{\mathbf{e}}\overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6}$ CL=90%	67
$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6}$ CL=90%	67
$ u_{ au} \overline{\overline{ u}}_{ au}$	< 2.1	$\times10^{-6}$ CL=90%	67
$\gamma \overline{ u}$	< 6	$\times 10^{-4} \text{ CL} = 90\%$	67

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times 10^{-8}$ CL=90%	67
μ^+ e $^-$	LF	< 3.8	$ imes$ 10 $^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.4	$\times 10^{-9}$ CL=90%	26
$\mu^{+} e^{-} + \mu^{-} e^{+}$	LF	< 3.6	$\times10^{-10}$ CL=90%	26

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m = 547.862 \pm 0.017$ MeV Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+\pi^-\pi^0 & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12})\times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11})\times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{quadrant asymmetry} = (-0.09\pm0.09)\times 10^{-2} \\ \pi^+\pi^-\gamma & \text{left-right asymmetry} = (0.9\pm0.4)\times 10^{-2} \\ \pi^+\pi^-\gamma & \beta \; (\textit{D-wave}) = -0.02\pm0.07 \; \; (\text{S}=1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-e^+e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\pm3.1) imes10^{-2}$

Dalitz plot parameter

$$\pi^0\pi^0\pi^0$$
 $\alpha=-0.0318\pm0.0015$ PARAMETER Λ IN $\eta\to~\mu^+\,\mu^-\,\gamma$ DECAY $=0.719~\pm~0.014~{\rm GeV}/c^2$

η DECAY MODES		Fraction (Γ_i/Γ)		Scale factor/ fidence level	
	Neur	tral modes			
neutral modes	ITCU	(72.12 ± 0.34)) %	S=1.2	_
2γ		(39.41±0.20	•	S=1.1	274
$3\pi^0$		(32.68±0.23	•	S=1.1	179
$\pi^0 2\gamma$		(2.56±0.22			257
$2\pi^0 2\gamma$		< 1.2	$\times 10^{-3}$	CL=90%	238
4 γ		< 2.8	$\times 10^{-4}$	CL=90%	274
invisible		< 1.0	$\times 10^{-4}$	CL=90%	_
	Char	ged modes			
charged modes		$(28.10\pm0.34$) %	S=1.2	_
$\pi^+\pi^-\pi^0$		$(22.92\pm0.28$) %	S=1.2	174
$\pi^+\pi^-\gamma$		(4.22 ± 0.08) %	S=1.1	236
$e^+e^-\gamma$		(6.9 ± 0.4	•	S=1.3	274
$\mu^+\mu^-\gamma$		(3.1 ± 0.4	•		253
e^+e^-		< 2.3	$\times 10^{-6}$	CL=90%	274
$\mu^+\mu^-$		(5.8 ± 0.8	,		253
$2e^{+}2e^{-}$		(2.40 ± 0.22	,		274
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$		(2.68 ± 0.11			235
$e^{+}e^{-}\mu^{+}\mu^{-}$		< 1.6	$\times 10^{-4}$	CL=90%	253
$2\mu^{+}2\mu^{-}$		< 3.6	$\times 10^{-4}$	CL=90%	161
$\mu^{+}\mu^{-}\pi^{+}\pi^{-}$		< 3.6	$\times 10^{-4}$	CL=90%	113
$\pi^+e^-\overline{\nu}_e+$ c.c.		< 1.7	\times 10 ⁻⁴	CL=90%	256
$\pi^+\pi^-2\gamma$		< 2.1	$\times 10^{-3}$		236
$\pi^+\pi^-\pi^0\gamma$		< 5	\times 10 ⁻⁴	CL=90%	174
$\pi^0 \mu^+ \mu^- \gamma$		< 3	\times 10 ⁻⁶	CL=90%	210
		tion (C) , Parit	,		
		x ion \times Parity (-	1	
		ber (<i>LF</i>) viola			
$\pi^0\gamma$	С	< 9	$\times 10^{-5}$		257
$\pi^{+}\pi^{-}$	P,CP	< 1.3	$\times 10^{-5}$		236
$2\pi^{0}$	P,CP	< 3.5	\times 10 ⁻⁴		238
$2\pi^0\gamma$	С	< 5	\times 10 ⁻⁴		238
$3\pi^0\gamma$	С	< 6	\times 10 ⁻⁵		179
3γ	С	< 1.6	$\times 10^{-5}$		274
$4\pi^{0}$	P,CP	< 6.9	$\times 10^{-7}$		40
$\pi^{0} e^{+} e^{-}$	-	f] < 4	\times 10 ⁻⁵		257
$\pi^{0}\mu^{+}\mu^{-}$	-	f] < 5	$\times 10^{-6}$		210
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF	< 6	× 10 ⁻⁶	CL=90%	264

 $f_0(500)$ or $\sigma^{[g]}$ was $f_0(600)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m = (400-550) MeVFull width $\Gamma = (400-700) \text{ MeV}$

f ₀ (500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	dominant	-
$\gamma\gamma$	seen	_

ρ(770) [h]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=775.26\pm0.25$ MeV Full width $\Gamma=149.1\pm0.8$ MeV $\Gamma_{ee}=7.04\pm0.06$ keV

ho(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	-
$\pi\pi$	$\sim~100$	%		363
	$ ho$ (770) $^{\pm}$ dec	cays		
$\pi^{\pm} \gamma \\ \pi^{\pm} \eta$	(4.5 ± 0.5	$) \times 10^{-4}$	S=2.2	375
$\pi^{\pm}\eta$	< 6	$\times 10^{-3}$	CL=84%	152
$\pi^{\pm} \pi^{+} \pi^{-} \pi^{0}$	< 2.0	\times 10 ⁻³	CL=84%	254
	$ ho$ (770) 0 dec	ays		
$\pi^+\pi^-\gamma$	(9.9 ± 1.6	$) \times 10^{-3}$		362
$\pi^{0} \gamma$	(4.7 ± 0.6	,		376
$\eta \gamma$	$(3.00\pm0.21$	$) \times 10^{-4}$		194
$^{\eta\gamma}_{\pi^0\pi^0}$	(4.5 ± 0.8	$) \times 10^{-5}$		363
$\mu^+\mu^-$	[i] (4.55 ± 0.28)	$) \times 10^{-5}$		373
e^+e^-	$[i]$ (4.72 ± 0.05	$) \times 10^{-5}$		388
$\pi^+\pi^-\pi^0$	$(1.01^{+0.54}_{-0.36}\pm$	$0.34) \times 10^{-4}$		323
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(1.8 ± 0.9	$) \times 10^{-5}$		251
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.6 ± 0.8	$) \times 10^{-5}$		257
$\pi^{0} e^{+} e^{-}$	< 1.2	× 10 ⁻⁵	CL=90%	376

ω(782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/30/2017 17:13

Mass $m=782.65\pm0.12$ MeV (S = 1.9) Full width $\Gamma=8.49\pm0.08$ MeV $\Gamma_{ee}=0.60\pm0.02$ keV

HTTP://PDG.LBL.GOV

Page 4

ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\frac{\pi^{+}\pi^{-}\pi^{0}}{\pi^{+}\pi^{-}\pi^{0}}$	· · · · · · · · · · · · · · · · · · ·		
	(89.2 ± 0.7) %		327
$\pi^{0} \gamma$	(8.40±0.22) %		380
$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})$ %	% S=1.2	366
neutrals (excluding $\pi^0\gamma$)	(7 +7)>	$< 10^{-3}$ S=1.1	_
$\eta\gamma$	(4.5 \pm 0.4) $ imes$	10^{-4} S=1.1	200
$\eta \gamma \over \pi^0 e^+ e^-$	$(7.7 \pm 0.6) \times$	$< 10^{-4}$	380
$\pi^{0}\mu^{+}\mu^{-}$	$(1.34\pm0.18) \times$	10^{-4} S=1.5	349
e^+e^-	$(7.36\pm0.15) \times$	10^{-5} S=1.5	391
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	< 2 ×	10^{-4} CL=90%	262
$\pi^+\pi^-\gamma$	< 3.6 ×	10^{-3} CL=95%	366
$\pi^+\pi^-\pi^+\pi^-$	< 1 ×	10^{-3} CL=90%	256
$\pi^0\pi^0\gamma$	(6.7 ± 1.1) \times	10^{-5}	367
$\eta \pi^{0} \gamma$	< 3.3 ×	10^{-5} CL=90%	162
$\mu^+\mu^-$	(9.0 \pm 3.1) \times	10^{-5}	377
3γ	< 1.9 ×	$< 10^{-4}$ CL=95%	391
Charge conjugati	on (C) violating	modes	
$\eta \pi^0$	< 2.2 ×	10^{-4} CL=90%	162
$2\pi^0$	< 2.2 ×	$< 10^{-4}$ CL=90%	367
$3\pi^0$ C		CL=90%	330

$\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=957.78\pm0.06~{
m MeV}$ Full width $\Gamma=0.196\pm0.009~{
m MeV}$

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi^+\pi^-\eta$	(42.6 ±0.7)%		232
$ ho^{f 0}\gamma$ (including non-resonant	(28.9 \pm 0.5) %		165
$\pi^+ \pi^- \gamma$)			
$\pi^{0}\pi^{0}\eta$	(22.8 \pm 0.8) %		239
$\omega \gamma$	(2.62 ± 0.13) %		159
ωe^+e^-	(2.0 \pm 0.4) $ imes$	10^{-4}	159
$\gamma\gamma$	$(2.22\pm0.08)\%$		479
$3\pi^0$	(2.54 ± 0.18) $ imes$	₁₀ -3	430
$\mu^+\mu^-\gamma$	$(1.09\pm0.27) \times$	10^{-4}	467
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	< 2.9 ×	10^{-5} 90%	401
$\pi^+\pi^-\pi^0$	$(3.61\pm0.17) \times$	₁₀ -3	428
$(\pi^+\pi^-\pi^0)$ S-wave	(3.8 \pm 0.5) $ imes$	₁₀ -3	428
$\pi^{\mp} \rho^{\pm}$	(7.4 ± 2.3) \times	10^{-4}	106

HTTP://PDG.LBL.GOV

Page 5

$\pi^{0} \rho^{0}$	< 4	%	90%	111
$2(\pi^{+}\pi^{-})$	(8.6 ± 0.9	$) \times 10^{-5}$		372
$\pi^{+}\pi^{-}2\pi^{0}$	(1.8 ± 0.4	$) \times 10^{-4}$		376
$2(\pi^+\pi^-)$ neutrals	< 1	%	95%	_
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.8	\times 10 ⁻³	90%	298
$2(\pi^+\pi^-)2\pi^0$	< 1	%	95%	197
$3(\pi^+\pi^-)$	< 3.1	\times 10 ⁻⁵	90%	189
$\mathcal{K}^{\pm}\pi^{\mp}$	< 4	$\times 10^{-5}$	90%	334
$\pi^{+}\pi^{-}e^{+}e^{-}$	$(\begin{array}{cc} 2.4 & +1.3 \\ -1.0 \end{array}$	$) \times 10^{-3}$		458
$\pi^+e^- u_e$ + c.c.	< 2.1	\times 10 ⁻⁴	90%	469
$\gamma e^+ e^-$	$(4.73\pm0.30$	$) \times 10^{-4}$		479
$\pi^0 \gamma \gamma$	< 8	\times 10 ⁻⁴	90%	469
$4\pi^0$	< 3.2	\times 10 ⁻⁴	90%	380
e^+e^-	< 5.6	\times 10 ⁻⁹	90%	479
invisible	< 5	$\times 10^{-4}$	90%	_

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	1.8	\times 10 ⁻⁵	90%	458
$\pi^{0}\pi^{0}$	P,CP	<	5	$\times 10^{-4}$	90%	459
$\pi^0 e^+ e^-$	C	[f]	1.4	$\times 10^{-3}$	90%	469
ηe^+e^-	C	[f]	2.4	$\times 10^{-3}$	90%	322
3γ	С	<	1.1	$\times 10^{-4}$	90%	479
$\mu^+\mu^-\pi^0$	C	[f]	6.0	\times 10 ⁻⁵	90%	445
$\mu^+\mu^-\eta$	С	[f]	1.5	$\times 10^{-5}$	90%	273
e μ	LF	<	4.7	$\times 10^{-4}$	90%	473

f₀(980) [/]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Created: 5/30/2017 17:13

Mass $m=990\pm20~{\rm MeV}$ Full width $\Gamma=10~{\rm to}~100~{\rm MeV}$

f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	dominant	476
$K\overline{K}$	seen	36
$\gamma \gamma$	seen	495

a₀(980) [j]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=980\pm20$ MeV Full width $\Gamma=50$ to 100 MeV

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	dominant	319
$K\overline{K}$	seen	†
$\gamma\gamma$	seen	490

ϕ (1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1019.460\pm0.016$ MeV Full width $\Gamma=4.247\pm0.016$ MeV (S =1.2)

ϕ (1020) DECAY MODES	Fraction (Γ_i/Γ)		le factor/ ence level	
K ⁺ K ⁻	(48.9 ± 0.5)) %	S=1.1	127
$K_I^0 K_S^0$	(34.2 ± 0.4)) %	S=1.1	110
$\rho \pi + \pi^{+} \pi^{-} \pi^{0}$	$(15.32 \pm 0.32$) %	S=1.1	_
$\eta\gamma$	(1.309 ± 0.024	,	S=1.2	363
$\pi^0 \gamma$	(1.31 ± 0.05	$) \times 10^{-3}$		501
$\ell^+\ell^-$	_			510
e^+e^-	(2.955 ± 0.029)	$) \times 10^{-4}$	S=1.1	510
$\mu^+\mu^-$	$(2.87 \begin{array}{c} +0.18 \\ -0.20 \end{array}$	$) \times 10^{-4}$		499
$\eta\mathrm{e^+e^-}$	(1.08 ± 0.04	$) \times 10^{-4}$		363
$\pi^+\pi^-$	(7.4 ± 1.3			490
$\omega \pi^0$	(4.7 ± 0.5	$) \times 10^{-5}$		171
$\omega\gamma$	< 5		CL=84%	209
$ ho\gamma$	< 1.2	_	CL=90%	215
$\pi^+\pi^-\gamma$	(4.1 ± 1.3	· .		490
$f_0(980)\gamma$	(3.22 ± 0.19)	•	S=1.1	29
$\pi^0 \pi^0 \gamma$	(1.13 ± 0.06	$) \times 10^{-4}$		492
$\pi^+\pi^-\pi^+\pi^-$	$(4.0 \begin{array}{c} +2.8 \\ -2.2 \end{array}$			410
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 4.6	\times 10 ⁻⁶	CL=90%	342
$\pi^0e^+e^-$	$(1.33 \begin{array}{c} +0.07 \\ -0.10 \end{array}$	$) \times 10^{-5}$		501
$\pi^{0}\eta\gamma$	(7.27 ± 0.30)	$) \times 10^{-5}$	S=1.5	346
$a_0(980)\gamma$	(7.6 ± 0.6	$) \times 10^{-5}$		39
$K^0\overline{K}{}^0\gamma$	< 1.9	$\times 10^{-8}$	CL=90%	110
$\eta'(958)\gamma$	(6.25 ± 0.21	$) \times 10^{-5}$		60

$\eta \pi^0 \pi^0 \gamma$	< 2	$\times10^{-5}$ CL=90%	293
$\mu^+\mu^-\gamma$	(1.4 ± 0)	$0.5) \times 10^{-5}$	499
$ ho\gamma\gamma$	< 1.2	$\times10^{-4}$ CL=90%	215
$\eta\pi^+\pi^-$	< 1.8	$\times 10^{-5} \text{ CL} = 90\%$	288
$\eta \mu^+ \mu^-$	< 9.4	$\times 10^{-6}$ CL=90%	321
$\etaU ightarrow \eta { m e}^+ { m e}^-$	< 1	$\times10^{-6}$ CL=90%	_

Lepton Family number (LF) violating modes

 $e^{\pm}\,\mu^{\mp}$ LF < 2 imes 10⁻⁶ CL=90% 504

$h_1(1170)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=1170\pm 20~{
m MeV}$ Full width $\Gamma=360\pm 40~{
m MeV}$

$h_1(1170)$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $ho\pi$ seen 308

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

b ₁ (1235) DECAY MODES	Fraction (Γ	· _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\frac{1}{\omega \pi}$ [D/S amplitude ratio = 0.277]	dominar $\pm~0.027$	nt		348
$\pi^{\pm}\gamma$	(1.6±0	.4) × 10	-3	607
ηho	seen			†
$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	< 50	%	84%	535
$K^*(892)^\pm K^\mp$	seen			†
$(K\overline{K})^{\pm}\pi^{0}$	< 8	%	90%	248
$K_S^0 K_I^0 \pi^\pm$	< 6	%	90%	235
$K_{S}^{0}K_{L}^{0}\pi^{\pm}$ $K_{S}^{0}K_{S}^{0}\pi^{\pm}$	< 2	%	90%	235
$\phi\pi$	< 1.5	%	84%	147

a₁(1260) [k]

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

Created: 5/30/2017 17:13

Mass $m=1230\pm40$ MeV ^[/] Full width $\Gamma=250$ to 600 MeV

a ₁ (1260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$(\rho\pi)_{S-wave}$	seen	353
$(ho\pi)_{D-wave}$	seen	353
$(ho(1450)\pi)_{S-wave}$	seen	†
$(ho(1450)\pi)_{D-wave}$	seen	†
$\sigma\pi$	seen	_
$f_0(980)\pi$	not seen	179
$f_0(1370)\pi$	seen	†
$f_2(1270)\pi$	seen	†
$K\overline{K}^*$ (892) $+$ c.c.	seen	†
$\pi\gamma$	seen	608

f₂(1270)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1275.5\pm0.8~{\rm MeV}$ Full width $\Gamma=186.7^{+2.2}_{-2.5}~{\rm MeV}~{\rm (S=1.4)}$

f ₂ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\pi\pi$	(84.2 +2.9) %	S=1.1	623
$\pi^{+}\pi^{-}2\pi^{0}$	$(7.7 \ ^{+1.1}_{-3.2})\%$	S=1.2	563
$K\overline{K}$	$(4.6 \begin{array}{c} +0.5 \\ -0.4 \end{array})\%$	S=2.7	404
$2\pi^{+}2\pi^{-}$	$(2.8 \pm 0.4)\%$	S=1.2	560
$\eta\eta$	(4.0 \pm 0.8) $ imes$	10^{-3} S=2.1	326
$4\pi^0$	(3.0 ± 1.0) $ imes$	10^{-3}	565
$\gamma \gamma$	(1.42 ± 0.24) $ imes$	10^{-5} S=1.4	638
$\eta\pi\pi$	< 8 ×	10^{-3} CL=95%	478
$K^0K^-\pi^+ + \text{c.c.}$	< 3.4 ×	10^{-3} CL=95%	293
e^+e^-	< 6 ×	10 ⁻¹⁰ CL=90%	638

$f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1281.9\pm0.5$ MeV (S =1.8) Full width $\Gamma=22.7\pm1.1$ MeV (S =1.5)

f ₁ (1285) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
4π	$(33.5^{+}_{-}\ \overset{2.0}{1.8})\ \%$	S=1.3	568
$\pi^0\pi^0\pi^+\pi^-$	$(22.3 + 1.3 \atop -1.2) \%$	S=1.3	566

HTTP://PDG.LBL.GOV

Page 9

$2\pi^+2\pi^-$	$(11.2^{+}_{-}\ \stackrel{0.7}{0.6})\ \%$	S=1.3	563
$ ho^{0}\pi^{+}\pi^{-}$	$(11.2^{+}_{-}\ \stackrel{0.7}{0.6})\ \%$	S=1.3	336
$4\pi^{0} \rho^{0} \rho^{0}$	seen		†
$4\pi^0$	$< 7 \times 10^{-4}$	CL=90%	568
$\eta \pi^+ \pi^-$	$(35 \pm 15)\%$		479
$\eta \pi \pi$	$(52.0 + 1.8 \atop -2.1) \%$	S=1.2	482
$a_0(980)\pi$ [ignoring $a_0(980) ightarrow K$ \overline{K}]	(38 ± 4) %		238
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	(14 \pm 4) %		482
$K\overline{K}\pi$	($9.1\pm~0.4)~\%$	S=1.1	308
$K\overline{K}^*$ (892)	not seen		†
$\pi^+\pi^-\pi^0$	$(3.0\pm\ 0.9)\times10^{-3}$		603
$ ho^{\pm}\pi^{\mp}$	$< 3.1 \times 10^{-3}$	CL=95%	390
$\gamma ho^{f 0}$	$(5.3\pm~1.2)~\%$	S=2.9	406
$\phi\gamma$	$(7.5\pm\ 2.7)\times10^{-4}$		236

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=1294\pm 4$ MeV (S =1.6) Full width $\Gamma=55\pm 5$ MeV

η (1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^+\pi^-$	seen	487
$a_0(980)\pi$	seen	248
$\eta \pi^0 \pi^0'$	seen	490
$\eta(\pi\pi)_{\mathcal{S}}$ -wave	seen	-

π (1300)

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

Created: 5/30/2017 17:13

Mass $m=1300\pm 100$ MeV ^[/] Full width $\Gamma=200$ to 600 MeV

π (1300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	404
$\pi(\pi\pi)_{S}$ -wave	seen	-

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Mass $m=1318.3^{+0.5}_{-0.6}$ MeV (S =1.2) Full width $\Gamma=107\pm5$ MeV $^{[I]}$

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	$(70.1 \pm 2.7)\%$	S=1.2	624
$\eta\pi$	(14.5 ± 1.2) %		535
$\omega \pi \pi$	(10.6 \pm 3.2) %	S=1.3	366
$K\overline{K}$	(4.9 \pm 0.8) %		437
$\eta'(958)\pi$	($5.5~\pm0.9~) imes1$	0-3	288
$\pi^{\pm}\gamma$	$(2.91\pm0.27)\times1$	0-3	652
$\gamma\gamma$	(9.4 ± 0.7) $ imes 1$	0-6	659
e^+e^-	< 5 × 1	0^{-9} CL=90%	659

f₀(1370) [j]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m=1200 to 1500 MeV Full width $\Gamma=200$ to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	672
4π	seen	617
$4\pi^0$	seen	617
$2\pi^{+}2\pi^{-}$	seen	612
$\pi^+\pi^-2\pi^0$	seen	615
ho ho	dominant	†
$2(\pi\pi)_{S ext{-wave}}$	seen	_
$\pi(1300)\pi$	seen	†
$a_1(1260)\pi$	seen	35
$\eta\eta$	seen	411
K K	seen	475
$K\overline{K}n\pi$	not seen	†
6π	not seen	508
$\omega \omega$	not seen	†
$\gamma\gamma$	seen	685
e^+e^-	not seen	685

$\pi_1(1400)^{[n]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{-})$$

Mass $m=1354\pm25$ MeV (S = 1.8) Full width $\Gamma=330\pm35$ MeV

π_1 (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^0$	seen	557
$\eta\pi^-$	seen	556

η (1405) $^{[o]}$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=1408.8\pm1.8$ MeV $^{[f]}$ (S = 2.1) Full width $\Gamma=51.0\pm2.9$ MeV $^{[f]}$ (S = 1.8)

η (1405) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}\overline{K}\pi$	seen		424
$\eta\pi\pi$	seen		562
$a_0(980)\pi$	seen		345
$\eta(\pi\pi)_{\mathcal{S}}$ -wave	seen		_
$f_0(980)\eta$	seen		†
4π	seen		639
$ ho^{oldsymbol{ ho}}_{\gamma}^{ ho ho}$	<58 %	99.85%	†
$ ho^{0}\gamma$	seen		491
K*(892)K	seen		123

f₁(1420) [p]

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1426.4\pm0.9$ MeV (S =1.1) Full width $\Gamma=54.9\pm2.6$ MeV

f_1 (1420) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}\overline{K}\pi$	dominant	438
$K\overline{K}^*$ (892) $+$ c.c.	dominant	163
$\eta\pi\pi$	possibly seen	573
$\phi \gamma$	seen	349

ω (1420) [q]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass m (1400–1450) MeV Full width Γ (180–250) MeV

HTTP://PDG.LBL.GOV

Page 12

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	dominant	486
$\omega \pi \pi$	seen	444
$b_1(1235)\pi$	seen	125
e^+e^-	seen	710

a₀(1450) [j]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=1474\pm19~{
m MeV}$ Full width $\Gamma=265\pm13~{
m MeV}$

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\eta$	$0.093\!\pm\!0.020$	627
$\pi \eta'(958)$ $K \overline{K}$	0.033 ± 0.017	410
$K\overline{K}$	0.082 ± 0.028	547
$\omega \pi \pi$	DEFINED AS 1	484
$a_0(980)\pi\pi$	seen	342
$\gamma\gamma$	seen	737

ρ(1450) [r]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Created: 5/30/2017 17:13

Mass $m=1465\pm25$ MeV $^{[I]}$ Full width $\Gamma=400\pm60$ MeV $^{[I]}$

ρ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	720
4π	seen	669
e^+e^-	seen	732
ηho	seen	311
$a_2(1320)\pi$	not seen	54
$K\overline{K}$	not seen	541
$K\overline{K}^*(892)+$ c.c.	possibly seen	229
$\eta\gamma$	seen	630
$f_0(500)\gamma$	not seen	_
$f_0(980)\gamma$	not seen	398
$f_0(1370)\gamma$	not seen	92
$f_2(1270)\gamma$	not seen	177

η(1475) ^[o]

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=1476\pm 4$ MeV (S = 1.3) Full width $\Gamma=85\pm 9$ MeV (S = 1.5)

η (1475) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	dominant	477
$K\overline{K}^*$ (892) $+$ c.c.	seen	245
$a_0(980)\pi$	seen	396
$\gamma \gamma$	seen	738
$K_S^0 K_S^0 \eta$	possibly seen	†

f₀(1500) [n]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1504\pm 6$ MeV (S =1.3) Full width $\Gamma=109\pm 7$ MeV

$f_0(1500)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
.0(=====	(1, 1)		(*****)
$\pi\pi$	$(34.9\pm2.3)\%$	1.2	740
$\pi^+\pi^-$	seen		739
$2\pi^0$	seen		740
4π	$(49.5\pm3.3)~\%$	1.2	691
$4\pi^0$	seen		691
$2\pi^{+}2\pi^{-}$	seen		686
$2(\pi\pi)_{S ext{-wave}}$	seen		_
ho ho	seen		†
$\pi(1300)\pi$	seen		143
$a_1(1260)\pi$	seen		217
$\eta\eta$	$(5.1\pm0.9)\%$	1.4	515
$\eta \eta'(958)$	$(1.9\pm0.8)\%$	1.7	†
$K\overline{K}$	$(8.6\pm1.0)\%$	1.1	568
$\gamma\gamma$	not seen		752

$f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1525\pm 5$ MeV $^{[I]}$ Full width $\Gamma=73^{+6}_{-5}$ MeV $^{[I]}$

$f_2'(1525)$ DECAY MODES	Fraction (Γ	$_{i}/\Gamma)$ p (MeV	//c)
KK	(88.7 ±2.2	2)%	581
$\eta\eta$	(10.4 ± 2.2)	2)%	530
HTTP://PDG LBL GOV	Page 14	Created: 5/30/2017 17:	13

$\pi\pi$	$(8.2 \pm 1.5) \times 10^{-3}$	750
$\gamma \gamma$	$(1.10\pm0.14)\times10^{-6}$	763

$\pi_1(1600)^{[n]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

Mass $m=1662^{+8}_{-9}$ MeV Full width $\Gamma=241\pm40$ MeV (S=1.4)

π_1 (1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	not seen	803
$ ho^{0}\pi^{-}$	not seen	641
$f_2(1270)\pi^-$	not seen	318
$b_1(1235)\pi$	seen	357
η^{\prime} (958) π^{-}	seen	543
$f_1(1285)\pi$	seen	314

$\eta_2(1645)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-}+)$$

Mass $m=1617\pm 5~{
m MeV}$ Full width $\Gamma=181\pm 11~{
m MeV}$

η_2 (1645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$a_2(1320)\pi$	seen	242
$K\overline{K}\pi$	seen	580
$K^*\overline{K}$	seen	404
$\eta \pi^+ \pi^-$	seen	685
$a_0(980)\pi$	seen	499
$f_2(1270)\eta$	not seen	†

ω (1650) [s]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/30/2017 17:13

Mass $m=1670\pm30~{\rm MeV}$ Full width $\Gamma=315\pm35~{\rm MeV}$

ω (1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	647
$\omega\pi\pi$	seen	617
$\begin{array}{c} \omega\eta \\ e^+e^- \end{array}$	seen	500
e^+e^-	seen	835

$$\omega_3$$
(1670)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4~{
m MeV}$ Full width $\Gamma=168\pm 10~{
m MeV}$ [/]

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	seen	645
$\omega\pi\pi$	seen	615
$b_1(1235)\pi$	possibly seen	361

$\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-}+)$$

Mass $m=1672.2\pm3.0$ MeV $^{[I]}$ (S =1.4) Full width $\Gamma=260\pm9$ MeV $^{[I]}$ (S =1.2)

π_2 (1670) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	p (MeV/c)
3π	(95.8±1.4) %		809
$f_2(1270)\pi$	(56.3±3.2) %		328
$ ho\pi$	$(31 \pm 4)\%$		648
$\sigma\pi$	$(10.9\pm3.4)~\%$		_
$\pi(\pi\pi)_{S ext{-wave}}$	(8.7±3.4) %		_
$K\overline{K}^*$ (892) $+$ c.c.	$(4.2\pm1.4)\%$		455
ωho	$(2.7\pm1.1)\%$		304
$\pi^{\pm}\gamma$	$(7.0\pm1.1)\times$	10^{-4}	830
$\gamma\gamma$	< 2.8 ×	10^{-7} 90%	836
$ ho$ (1450) π	< 3.6 ×	10^{-3} 97.7%	147
$b_1(1235)\pi$	< 1.9 ×	10^{-3} 97.7%	365
$f_1(1285)\pi$	possibly seen		323
$a_2(1320)\pi$	not seen		292

ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/30/2017 17:13

Mass $m=1680\pm20$ MeV ^[/] Full width $\Gamma=150\pm50$ MeV ^[/]

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}^*(892)$ + c.c.	dominant	462
$K_{\underline{S}}^{0}K\pi$	seen	621
$K\overline{K}$	seen	680
e^+e^-	seen	840

$\omega \pi \pi$	not seen	623
$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^-$	seen	544
$\eta\phi$	seen	290
$\eta \gamma$	seen	751

$\rho_{3}(1690)$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

Mass $m=1688.8\pm 2.1$ MeV $^{\mbox{[$I$]}}$ Full width $\Gamma=161\pm 10$ MeV $^{\mbox{[$I$]}}$ (S =1.5)

$ ho_3$ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
4π	(71.1 \pm 1.9) %		790
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$		787
$\omega\pi$	$(16 \pm 6)\%$		655
$\pi\pi$	(23.6 \pm 1.3) %		834
$K\overline{K}\pi$	(3.8 ± 1.2) %		629
$K\overline{K}$	($1.58\pm~0.26$) %	1.2	685
$\eta \pi^+ \pi^-$	seen		727
$ ho$ (770) η	seen		520
$\pi\pi\rho$ Excluding 2ρ and $a_2(1320)\pi$.	seen		633
$a_2(1320)\pi$	seen		307
ho ho	seen		335

ρ (1700) [r]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Created: 5/30/2017 17:13

Mass $m=1720\pm20$ MeV $^{[I]}$ $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes) Full width $\Gamma=250\pm100$ MeV $^{[I]}$ $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes)

ho(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	large	803
$ ho\pi\pi$	dominant	653
$ ho^0\pi^+\pi^-\ ho^\pm\pi^\mp\pi^0$	large	651
	large	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	447
π (1300) π	seen	349
ho ho	seen	372
$^{ ho ho}_{\pi^+\pi^-}$	seen	849
$\pi\pi$	seen	849

$K\overline{K}^*(892) + \text{c.c.}$	seen	496
ηho	seen	545
$a_2(1320)\pi$	not seen	334
$K\overline{K}$	seen	704
e^+e^-	seen	860
$\pi^0 \omega$	seen	674

f₀(1710) [t]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1723^{+6}_{-5}$ MeV (S =1.6) Full width $\Gamma=139\pm8$ MeV (S =1.1)

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}$	seen	706
$\eta \eta$	seen	665
$\pi\pi$	seen	851
$\omega \omega$	seen	360

$\pi(1800)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1812\pm12$ MeV (S = 2.3) Full width $\Gamma=208\pm12$ MeV

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	879
$f_0(500)\pi^-$	seen	_
$f_0(980)\pi^-$	seen	625
$f_0(1370)\pi^-$	seen	368
$f_0(1500)\pi^-$	not seen	250
$ ho\pi^-$	not seen	732
$\eta\eta\pi^-$	seen	661
$a_0(980)\eta$	seen	473
$a_2(1320) \eta$	not seen	†
$f_2(1270)\pi$	not seen	442
$f_0(1370)\pi^-$	not seen	368
$f_0(1500)\pi^-$	seen	250
$\eta\eta'(958)\pi^-$	seen	375
$K_0^*(1430)K^-$	seen	†
$K^{*}(892)K^{-}$	not seen	570

$$\phi_3$$
(1850)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1854\pm7~{
m MeV}$ Full width $\Gamma=87^{+28}_{-23}~{
m MeV}~({
m S}=1.2)$

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	785
$K\overline{K}^{*}(892) + \text{c.c.}$	seen	602

$\pi_2(1880)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-})$$

Mass $m=1895\pm16$ MeV Full width $\Gamma=235\pm34$ MeV

$f_2(1950)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1944\pm12$ MeV (S = 1.5) Full width $\Gamma=472\pm18$ MeV

f ₂ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\overline{K}^*(892)$	seen	387
$\pi^+\pi^-$	seen	962
$\pi^0\pi^0$	seen	963
4π	seen	925
$\eta \eta$	seen	803
$K\overline{K}$	seen	837
$\gamma \gamma$	seen	972
$\rho \overline{\rho}$	seen	254

$f_2(2010)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2011^{+60}_{-80}$ MeV Full width $\Gamma=202\pm60$ MeV

f ₂ (2010) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\phi\phi$	seen	†
$K\overline{K}$	seen	876

a₄(2040)

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

Mass $m=1995^{+10}_{-8}~{
m MeV}~{
m (S}=1.1)$ Full width $\Gamma=257^{+25}_{-23}~{
m MeV}~{
m (S}=1.3)$

HTTP://PDG.LBL.GOV

Page 19

a ₄ (2040) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	867
$\pi^+\pi^-\pi^0$	seen	973
$ ho\pi$	seen	841
$f_2(1270)\pi$	seen	579
$\omega\pi^-\pi^0$	seen	818
ωho	seen	623
$\eta\pi$	seen	917
$\eta'(958)\pi$	seen	760

f₄(2050)

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

 $\begin{array}{ll} \mathsf{Mass}\ m = 2018 \pm 11\ \mathsf{MeV}\quad (\mathsf{S} = 2.1) \\ \mathsf{Full}\ \mathsf{width}\ \Gamma = 237 \pm 18\ \mathsf{MeV}\quad (\mathsf{S} = 1.9) \end{array}$

f ₄ (2050) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\omega\omega$	seen	637	
$\pi\pi$	(17.0±1.5) %	1000	
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	880	
$\eta\eta$	$(2.1\pm0.8)\times10^{-3}$	848	
$\eta \eta \ 4\pi^0$	< 1.2 %	964	
$a_2(1320)\pi$	seen	567	

ϕ (2170)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/30/2017 17:13

Mass $m=2188\pm 10$ MeV (S = 1.8) Full width $\Gamma=83\pm 12$ MeV

ϕ (2170) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	seen	1094
$\phi f_0(980)$	seen	433
$K^+K^-\mathit{f}_0(980) ightarrow$	seen	_
$K^{+}K^{-}\pi^{+}\pi^{-}$ $K^{+}K^{-}f_{0}(980) \rightarrow K^{+}K^{-}\pi^{0}\pi^{0}$	seen	_
$K^{*0}K^{\pm}\pi^{\mp}$	not seen	779
$K^*(892)^0\overline{K}^*(892)^0$	not seen	634

 $f_2(2300)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28~{\rm MeV}$ Full width $\Gamma=149\pm40~{\rm MeV}$

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	529
$K\overline{K}$	seen	1037
$\gamma \gamma$	seen	1149

$f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 2345^{+50}_{-40} \text{ MeV}$ Full width $\Gamma = 322^{+70}_{-60} \text{ MeV}$

f ₂ (2340) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	580
$\eta\eta$	seen	1037

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+ = u\overline{s}$, $K^0 = d\overline{s}$, $\overline{K}^0 = \overline{d}s$, $K^- = \overline{u}s$, similarly for K^* 's

Κ±

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=493.677\pm0.016$ MeV $^{[u]}$ (S =2.8) Mean life $\tau=(1.2380\pm0.0020)\times10^{-8}$ s (S =1.8) $c\tau=3.711$ m

CPT violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\%$$

 $\Delta(K^{\pm} \rightarrow \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\%^{[\nu]}$

CP violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = (-2.2 \pm 1.6) \times 10^{-2}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = 0.010 \pm 0.023$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \gamma) = (0.0 \pm 1.2) \times 10^{-3}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (0.04 \pm 0.06)\%$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (-0.02 \pm 0.28)\%$$

HTTP://PDG.LBL.GOV

Page 21

T violation parameters

$$K^+ \to \pi^0 \mu^+ \nu_{\mu}$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$ $K^+ \to \mu^+ \nu_{\mu} \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$ $K^+ \to \pi^0 \mu^+ \nu_{\mu}$ $Im(\xi) = -0.006 \pm 0.008$

Slope parameter $g^{[x]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} g = -0.21134 \pm 0.00017$$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$
 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} g = 0.626 \pm 0.007$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$

K^{\pm} decay form factors [a,y]

Assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e 3}^{+}) = (2.97 \pm 0.05) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.95 \pm 0.12) \times 10^{-2}$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.98 \pm 0.05) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu 3}^{+}) = (2.96 \pm 0.17) \times 10^{-2}$
 $\lambda_{0}(K_{\mu 3}^{+}) = (1.96 \pm 0.13) \times 10^{-2}$

 K_{e3} form factor quadratic fit

$$\lambda'_{+} (K_{e3}^{\pm}) \text{ linear coeff.} = (2.49 \pm 0.17) \times 10^{-2}$$

$$\lambda''_{+} (K_{e3}^{\pm}) \text{ quadratic coeff.} = (0.19 \pm 0.09) \times 10^{-2}$$

$$K_{e3}^{+} |f_{S}/f_{+}| = (-0.3_{-0.7}^{+0.8}) \times 10^{-2}$$

$$K_{e3}^{+} |f_{T}/f_{+}| = (-1.2 \pm 2.3) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{S}/f_{+}| = (0.2 \pm 0.6) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-$$

Charge radius

$$\langle r \rangle = 0.560 \pm 0.031 \text{ fm}$$

Forward-backward asymmetry
$$\mathsf{A}_{FB}(\mathcal{K}_{\pi\,\mu\,\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{K\,\mu}) > 0) - \Gamma(\cos(\theta_{K\,\mu}) < 0)}{\Gamma(\cos(\theta_{K\,\mu}) > 0) + \Gamma(\cos(\theta_{K\,\mu}) < 0)} < 2.3 \times 10^{-2}, \; \mathsf{CL}$$

$$= 90\%$$

 K^- modes are charge conjugates of the modes below.

K+ DECAY MODES	Frac	tion (Γ_i/Γ)		cale factor/ idence level(-
Leptor	nic and sen	nileptonic mode	es		
$e^+ u_e$	(1.582 ± 0.007)			247
$\mu^+ u_{\mu}$	(63.56 ± 0.11)	%	S=1.2	236
$\pi^0 e^+ \nu_e$	(5.07 ± 0.04)	%	S=2.1	228
Called K_{e3}^+ .					
$\pi^0 \mu^+ u_\mu$	($3.352 \pm 0.033)$	%	S=1.9	215
Called $K_{\mu 3}^+$.					
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	($2.55\ \pm0.04\)$		S=1.1	206
$\pi^+\pi^-e^+\nu_e$	($4.247 \pm 0.024)$			203
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	(1.4 ± 0.9)			151
$\pi^{0} \pi^{0} \pi^{0} e^{+} \nu_{e}$	<	3.5	\times 10 ⁻⁶	CL=90%	135
	Hadronio	modes			
$\pi^+\pi^0$	(20.67 ± 0.08)	%	S=1.2	205
$\pi^{+}\pi^{0}\pi^{0}$	($1.760 \pm 0.023)$	%	S=1.1	133
$\pi^+\pi^+\pi^-$	($5.583 \pm 0.024)$	%		125
Leptonic and	semileptor	nic modes with	photon	s	
$\mu^+ \nu_\mu \gamma$	[z,aa] (6.2 ± 0.8)	\times 10 ⁻³		236
$\mu^+ \stackrel{\cdot}{\nu_\mu} \gamma(SD^+)$	[a,bb] (1.33 ± 0.22)	\times 10 ⁻⁵		_
$\mu^+ \dot{\nu_\mu} \gamma (SD^+ INT)$	[a,bb] <	2.7	\times 10 ⁻⁵	CL=90%	_
$\mu^+ u_\mu \gamma (SD^- + SD^- INT)$	[a,bb] <	2.6	\times 10 ⁻⁴	CL=90%	_
$e^+ \nu_e \gamma$	(9.4 ±0.4)	$\times 10^{-6}$		247
$\pi^0 e^+ \nu_e \gamma$	[z,aa] (2.56 ± 0.16)			228
$\pi^0 e^+ \nu_e \gamma(SD)$	[a,bb]<	5.3	\times 10 ⁻⁵	CL=90%	228
$\pi^0 \mu^+ \nu_\mu \gamma$	[z,aa] (1.25 ± 0.25)	\times 10 ⁻⁵		215
$\pi^0\pi^0\mathrm{e}^+\nu_e\gamma$	<	5	\times 10 ⁻⁶	CL=90%	206
Hadronic r	nodes with	photons or $\ell \overline{\ell}$	pairs		
$\pi^+\pi^0\gamma$ (INT)		- 4.2 ±0.9)	-		_
$\pi^+\pi^0\gamma(DE)$		6.0 ± 0.4)	_		205
$\pi^+\pi^0\pi^0\gamma$	[z,aa] ($7.6 \begin{array}{c} +6.0 \\ -3.0 \end{array}$	× 10 ⁻⁶		133
$\pi^+\pi^+\pi^-\gamma$	[z,aa] (1.04 ± 0.31)	\times 10 ⁻⁴		125
$\pi^+ \gamma \gamma$		1.01 ± 0.06)			227
$\pi^+ 3\gamma$	[z]			CL=90%	227
$\pi^+ e^+ e^- \gamma$	($1.19\ \pm0.13$)	\times 10 ⁻⁸		227
HTTP://PDG.LBL.GOV	Page	23 Cre	ated: 5	5/30/2017	17:13

Leptonic modes with $\ell \overline{\ell}$ pairs

$e^+ u_e u \overline{ u}$	<	6	$\times 10^{-5}$	CL=90%	247
$\mu^+ u_{\mu} u\overline{ u}$	<	2.4	\times 10 ⁻⁶	CL=90%	236
$e^+ \nu_e e^+ e^-$	(2.48 ± 0.20	$) \times 10^{-8}$		247
$\mu^+ u_\mu\mathrm{e}^+\mathrm{e}^-$	($7.06\ \pm0.31$	$) \times 10^{-8}$		236
$e^{+}\nu_{e}\mu^{+}\mu^{-}$	(1.7 ± 0.5	$) \times 10^{-8}$		223
$\mu^+ u_\mu \mu^+ \mu^-$	<	4.1	$\times 10^{-7}$	CL=90%	185

Lepton family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%	203
$\pi^+\pi^+\mu^-\overline{ u}_{\mu}$	SQ	<	3.0	$\times 10^{-6}$	CL=95%	151
$\pi^+e^+e^-$	<i>S</i> 1	(3.00	$\pm 0.09\) imes 10^{-7}$		227
$\pi^+\mu^+\mu^-$	<i>S</i> 1	(9.4	± 0.6) $\times 10^{-8}$	S=2.6	172
$\pi^+ u \overline{ u}$	S1	(1.7	± 1.1) × 10 ⁻¹⁰		227
$\pi^+\pi^0 u\overline{ u}$	S1	<	4.3	\times 10 ⁻⁵		205
$\mu^- u \mathrm{e}^+ \mathrm{e}^+$	LF	<	2.1	$\times 10^{-8}$	CL=90%	236
$\mu^+ \nu_{\mathbf{e}}$	LF	[d]	4	\times 10 ⁻³		236
$\pi^+\mu^+e^-$	LF	<	1.3	\times 10 ⁻¹¹		214
$\pi^+\mu^-e^+$	LF	<	5.2	$\times10^{-10}$	CL=90%	214
$\pi^-\mu^+e^+$	L	<	5.0	$\times10^{-10}$	CL=90%	214
$\pi^{-} e^{+} e^{+}$	L	<	6.4	$\times10^{-10}$	CL=90%	227
$\pi^{-}\mu^{+}\mu^{+}$	L	[d]	1.1	\times 10 ⁻⁹	CL=90%	172
$\mu^+ \overline{\nu}_e$	L	[d]	3.3	\times 10 ⁻³	CL=90%	236
$\pi^0 e^+ \overline{ u}_e$	L	<	3	$\times 10^{-3}$	CL=90%	228
$\pi^+\gamma$		[dd] <	2.3	× 10 ⁻⁹	CL=90%	227

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

$$50\% \ K_S$$
, $50\% \ K_L$

Mass
$$m=497.611\pm0.013~{
m MeV}~{
m (S}=1.2)$$
 $m_{K^0}-m_{K^\pm}=3.934\pm0.020~{
m MeV}~{
m (S}=1.6)$

Mean square charge radius

$$\langle \mathit{r}^2 \rangle = -0.077 \pm 0.010 \; \mathrm{fm}^2$$

T-violation parameters in $K^0 - \overline{K}^0$ mixing [y]

Asymmetry A_T in K^0 - \overline{K}^0 mixing $= (6.6 \pm 1.6) \times 10^{-3}$

CP-violation parameters

$${
m Re}(\epsilon) = (1.596 \pm 0.013) imes 10^{-3}$$

CPT-violation parameters [y]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [ee] $(\Gamma_{K^0} - \Gamma_{\overline{K}^0}) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

 $Re(x_{+})$, K_{e3} parameter = $(-0.9 \pm 3.0) \times 10^{-3}$

K_S^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life $au=(0.8954\pm0.0004)\times 10^{-10}$ s $(\mathsf{S}=1.1)$ Assuming CPT

Mean life $au = (0.89564 \pm 0.00033) imes 10^{-10}$ s $\,$ Not assuming $\,$ CPT $\,$

 $c\tau = 2.6844$ cm Assuming *CPT*

CP-violation parameters [ff]

$$Im(\eta_{+-0}) = -0.002 \pm 0.009$$

$$Im(\eta_{000}) = -0.001 \pm 0.016$$

$$\left|\eta_{000}\right| = \left|A(K_S^0 o 3\pi^0)/A(K_L^0 o 3\pi^0)\right| < 0.0088, \, {\sf CL} = 90\%$$

CP asymmetry *A* in $\pi^{+}\pi^{-}e^{+}e^{-} = (-0.4 \pm 0.8)\%$

κ_S^0 DECAY MODES

Fraction	(Γ_i/Γ)

Scale factor/
$$p$$

Confidence level (MeV/ c)

	Hadronic modes	
$\pi^0\pi^0$	$(30.69\pm0.05)~\%$	209
$\pi^+\pi^-$	(69.20±0.05) %	206
$\pi^+\pi^-\pi^0$	$(3.5 \ ^{+1.1}_{-0.9}) \times 10^{-7}$	133

Modes with photons or $\ell \overline{\ell}$ pairs

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_e$$
 $[hh]$ $(7.04 \pm 0.08) \times 10^{-4}$ 229

HTTP://PDG.LBL.GOV

Page 25

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

				• •	
$3\pi^0$	CP	< 2.6	\times 10 ⁻⁸	CL=90%	139
$\mu^+\mu^-$	<i>S</i> 1	< 9	\times 10 ⁻⁹	CL=90%	225
e^+e^-	<i>S</i> 1	< 9	\times 10 ⁻⁹	CL=90%	249
$\pi^0 e^+ e^-$	S1	$[gg]$ (3.0 $^{+1}_{-1}$	$\frac{5}{2}$) × 10 ⁻⁹		230
$\pi^0 \mu^+ \mu^-$	<i>S</i> 1	$(2.9 \begin{array}{c} +1 \\ -1 \end{array})$	$^{5}_{2}$) × 10 ⁻⁹		177

K_L⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} \textit{m}_{\textit{K}_{\textit{L}}} - \textit{m}_{\textit{K}_{\textit{S}}} \\ = (0.5293 \pm 0.0009) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad (\text{S} = 1.3) \quad \text{Assuming } \textit{CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \; \text{MeV} \quad \text{Assuming } \textit{CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad \text{Not assuming } \textit{CPT} \\ \text{Mean life } \tau = (5.116 \pm 0.021) \times 10^{-8} \; \text{s} \quad (\text{S} = 1.1) \\ \textit{c}\tau = 15.34 \; \text{m} \end{array}$$

Slope parameters [x]

(See Particle Listings for other linear and quadratic coefficients)

$$K_L^0 \rightarrow \pi^+ \pi^- \pi^0$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $K_L^0 \rightarrow \pi^+ \pi^- \pi^0$: $h = 0.076 \pm 0.006$
 $K_L^0 \rightarrow \pi^+ \pi^- \pi^0$: $k = 0.0099 \pm 0.0015$
 $K_L^0 \rightarrow \pi^0 \pi^0 \pi^0$: $h = (0.6 \pm 1.2) \times 10^{-3}$

K_L decay form factors [y]

Linear parametrization assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$

 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

Quadratic parametrization assuming $\mu\text{-}e$ universality

$$\lambda'_{+}(K^{0}_{\mu3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda''_{+}(K^{0}_{\mu3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda_{0}(K^{0}_{\mu3}) = (1.16 \pm 0.09) \times 10^{-2} \quad (S = 1.2)$$

Created: 5/30/2017 17:13

Pole parametrization assuming μ -e universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e 3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$
 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\Lambda_{+} = (0.251 \pm 0.006) \times 10^{-1}$$
 (S = 1.5)
 $\ln(C) = (1.75 \pm 0.18) \times 10^{-1}$ (S = 2.0)

$$\begin{array}{lll} \mathcal{K}_{e3}^{0} & \left| f_{S}/f_{+} \right| = (1.5^{+1.4}_{-1.6}) \times 10^{-2} \\ \mathcal{K}_{e3}^{0} & \left| f_{T}/f_{+} \right| = (5^{+4}_{-5}) \times 10^{-2} \\ \mathcal{K}_{\mu 3}^{0} & \left| f_{T}/f_{+} \right| = (12 \pm 12) \times 10^{-2} \\ \mathcal{K}_{L} \rightarrow \ell^{+}\ell^{-}\gamma, \, \mathcal{K}_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-} \colon \alpha_{K^{*}} = -0.205 \, \pm \\ & 0.022 & (S = 1.8) \\ \mathcal{K}_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, \, \mathcal{K}_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-} \colon \alpha_{DIP} = -1.69 \, \pm \\ & 0.08 & (S = 1.7) \\ \mathcal{K}_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-} \colon a_{1}/a_{2} = -0.737 \, \pm 0.014 \, \text{GeV}^{2} \\ \mathcal{K}_{L} \rightarrow \pi^{0}2\gamma \colon & a_{V} = -0.43 \, \pm 0.06 & (S = 1.5) \end{array}$$

CP-violation parameters [ff]

$$A_L = (0.332 \pm 0.006)\%$$
 $|\eta_{00}| = (2.220 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $|\eta_{00}/\eta_{+-}| = 0.9950 \pm 0.0007^{[ii]} \quad (S = 1.6)$
 $Re(\epsilon'/\epsilon) = (1.66 \pm 0.23) \times 10^{-3}^{[ii]} \quad (S = 1.6)$

Assuming CPT

$$\begin{split} \phi_{+-} &= (43.51 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.3) \\ \phi_{\epsilon} &= \phi_{\mathsf{SW}} = (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \mathsf{Im}(\epsilon'/\epsilon) &= -(\phi_{00} \ - \ \phi_{+-})/3 = (-0.002 \pm 0.005)^{\circ} \quad (\mathsf{S} = 1.7) \end{split}$$

Not assuming CPT

$$\phi_{+-} = (43.4 \pm 0.5)^{\circ} \quad (S = 1.2)$$
 $\phi_{00} = (43.7 \pm 0.6)^{\circ} \quad (S = 1.2)$
 $\phi_{\epsilon} = (43.5 \pm 0.5)^{\circ} \quad (S = 1.3)$

$$\begin{array}{l} \textit{CP} \; \text{asymmetry} \; \textit{A} \; \text{in} \; \textit{K}_L^0 \rightarrow \; \pi^+\pi^-\,e^+\,e^- = (13.7 \pm 1.5)\% \\ \textit{\beta}_{\textit{CP}} \; \text{from} \; \textit{K}_L^0 \rightarrow \; e^+\,e^-\,e^+\,e^- = -0.19 \pm 0.07 \\ \textit{\gamma}_{\textit{CP}} \; \text{from} \; \textit{K}_L^0 \rightarrow \; e^+\,e^-\,e^+\,e^- = 0.01 \pm 0.11 \quad (S = 1.6) \\ \textit{j} \; \text{for} \; \textit{K}_L^0 \rightarrow \; \pi^+\pi^-\pi^0 = 0.0012 \pm 0.0008 \\ \textit{f} \; \text{for} \; \textit{K}_L^0 \rightarrow \; \pi^+\pi^-\pi^0 = 0.004 \pm 0.006 \\ \left|\eta_{+-\gamma}\right| = (2.35 \pm 0.07) \times 10^{-3} \\ \phi_{+-\gamma} = (44 \pm 4)^\circ \\ \left|\epsilon_{+-\gamma}'\right|/\epsilon \; < \; 0.3, \; \text{CL} = 90\% \\ \left|g_{E1}\right| \; \text{for} \; \textit{K}_L^0 \rightarrow \; \pi^+\pi^-\gamma < \; 0.21, \; \text{CL} = 90\% \end{array}$$

T-violation parameters

$${
m Im}(\xi) \ {
m in} \ {
m K}_{\mu 3}^0 = -0.007 \pm 0.026$$

CPT invariance tests

HTTP://PDG.LBL.GOV

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

$\Delta S = -\Delta Q$ in $\mathcal{K}_{\ell 3}^{0}$ decay

Re
$$x = -0.002 \pm 0.006$$

Im $x = 0.0012 \pm 0.0021$

Im $x = 0.00$	12 ± 0.0021			
K _L ⁰ DECAY MODES	F	Fraction (Γ_i/Γ)	Scale factor/ Confidence level(-
	Semilen	otonic modes		
$\pi^{\pm}e^{\mp} u_{e}$ Called K_{e3}^{0} .	•	(40.55 ±0.11)%	S=1.7	229
$\pi^{\pm}\mu^{\mp} u_{\mu}$ Called $K_{\mu3}^{0}$.	[<i>hh</i>]	(27.04 ±0.07)%	S=1.1	216
$(\pi\mu atom) \nu$		$(1.05 \pm 0.11) \times 10$	₎ —7	188
$\pi^0\pi^{\pm}e^{\mp}\nu$	[<i>hh</i>]	(5.20 ± 0.11) \times 10	₎ —5	207
$\pi^{\pm} e^{\mp} \nu e^{+} e^{-}$		(1.26 ± 0.04) \times 10		229
Hadronic modes, includi	ng Charge co	oniugation×Parity V	iolating (CPV)	modes
$3\pi^0$		$(19.52 \pm 0.12)\%$	S=1.6	139
$\pi^{+}\pi^{-}\pi^{0}$		(13.52 ± 0.12) // (12.54 ± 0.05) %	3-1.0	133
$\pi^+\pi^-$	CPV [ii]	$(1.967\pm0.010)\times10$	S=1.5	206
$\pi^0\pi^0$	CPV [J]	$(8.64 \pm 0.06) \times 10^{-10}$		209
Sci	emilentonic n	nodes with photons		
$\pi^{\pm} e^{\mp} \nu_e \gamma$	-	$(3.79 \pm 0.06) \times 10^{-10}$	₁ –3	229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$	[44,111,111]	$(5.65 \pm 0.23) \times 10^{-10}$		216
Hadro	onic modes w	vith photons or $\ell \overline{\ell}$ p	airs	
$\pi^0\pi^0\gamma$		< 2.43 × 10		209
$\pi^+\pi^-\gamma$	[aa,kk]	$(4.15 \pm 0.15) \times 10$	s=2.8	206
$\pi^+\pi^-\gamma$ (DE)		$(2.84 \pm 0.11) \times 10$		206
$\pi^0 2\gamma$	[<i>kk</i>]	$(1.273\pm0.033)\times10$	₎ –6	230
$\pi^0 \gamma e^+ e^-$		(1.62 ± 0.17) \times 10	₎ –8	230
Oth	er modes wit	th photons or $\ell \overline{\ell}$ pai	irs	
2γ		$(5.47 \pm 0.04) \times 10$		249
3γ		< 7.4 × 10		249
$e^+e^-\gamma$		$(9.4 \pm 0.4) \times 10$	s=2.0	249
$\mu^+\mu^-\gamma$		$(3.59 \pm 0.11) \times 10$	s=1.3	225

Page 28

$$e^{+}e^{-}\gamma\gamma$$
 [kk] (5.95 ±0.33) × 10⁻⁷ 249
 $\mu^{+}\mu^{-}\gamma\gamma$ [kk] (1.0 +0.8)×10⁻⁸ 225

Charge conjugation \times Parity (*CP*) or Lepton Family number (*LF*) violating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes

-		`
$\mu^+\mu^-$	S1 (6.84 ±0.11)	$\times10^{-9}$
e^+e^-	$(9 \begin{array}{cc} +6 \\ -4 \end{array})$	$\times 10^{-12}$ 249
$\pi^{+}\pi^{-}e^{+}e^{-}$	$S1 [kk] (3.11 \pm 0.19)$	$\times 10^{-7}$ 206
$\pi^0 \pi^0 e^+ e^-$	<i>S1</i> < 6.6	$\times 10^{-9}$ CL=90% 209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S1</i> < 9.2	$\times10^{-11}\text{CL}{=}90\%\qquad57$
$\mu^+\mu^-e^+e^-$	$S1$ (2.69 ± 0.27)	$\times 10^{-9}$ 225
$e^{+}e^{-}e^{+}e^{-}$	$S1$ (3.56 ± 0.21)	$\times 10^{-8}$ 249
$\pi^{0} \mu^{+} \mu^{-}$	CP,S1 [II] < 3.8	$\times 10^{-10}$ CL=90% 177
$\pi^0e^+e^-$	CP,S1 [II] < 2.8	$\times 10^{-10}$ CL=90% 230
$\pi^0 u \overline{ u}$	CP,S1[nn] < 2.6	$\times 10^{-8}$ CL=90% 230
$\pi^0\pi^0 u\overline{ u}$	<i>S1</i> < 8.1	$\times 10^{-7}$ CL=90% 209
$e^{\pm}\mu^{\mp}$	LF [hh] < 4.7	$\times 10^{-12}$ CL=90% 238
$e^\pme^\pm\mu^\mp\mu^\mp$	LF [hh] < 4.12	$\times 10^{-11}$ CL=90% 225
$\pi^0\mu^\pme^\mp$	LF [hh] < 7.6	$\times 10^{-11}$ CL=90% 217
$\pi^0\pi^0\mu^\pm e^\mp$	LF < 1.7	$\times10^{-10}$ CL=90% 159

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

 $K^*(892)^{\pm}$ hadroproduced mass $m=891.76\pm0.25~{
m MeV}$ $K^*(892)^{\pm}$ in au decays mass $m=895.5\pm0.8~{
m MeV}$ $K^*(892)^0$ mass $m=895.55\pm0.20~{
m MeV}$ (S = 1.7) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma=50.3\pm0.8~{
m MeV}$ $K^*(892)^{\pm}$ in au decays full width $\Gamma=46.2\pm1.3~{
m MeV}$ $K^*(892)^0$ full width $\Gamma=47.3\pm0.5~{
m MeV}$ (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	~ 100	%	290
$K^0\gamma$	(2.46 ± 0.21)		307
$\kappa^{\pm}\dot{\gamma}$	(1.00 ± 0.09)	$\times 10^{-3}$	309
$K\pi\pi$	< 7	$\times 10^{-4}$ 95%	223

 $K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Created: 5/30/2017 17:13

Mass $m=1272\pm7~\mathrm{MeV}$ [/] Full width $\Gamma=90\pm20~\mathrm{MeV}$ [/]

K₁(1270) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\rho$	(42 ±6)%	46
$K_0^*(1430)\pi$	(28 ±4)%	†
$\check{K^*}(892)\pi$	(16 ± 5)%	302
$K\omega$	$(11.0\pm2.0)~\%$	†
$K f_0(1370)$ γK^0	(3.0±2.0) %	†
γK^0	seen	539

$K_1(1400)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1403\pm7$ MeV Full width $\Gamma=174\pm13$ MeV (S = 1.6)

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	(94 ±6)%	402
$K \rho$	(3.0±3.0) %	293
$K f_0(1370)$	(2.0 ± 2.0) %	†
$K\omega$	$(1.0\pm1.0)\%$	284
$K_0^*(1430)\pi \\ \gamma K^0$	not seen	†
γK^0	seen	613

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1421\pm 9~{\rm MeV}$ Full width $\Gamma=236\pm 18~{\rm MeV}$

K*(1410) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	р (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	416
$K\pi$	(6.6±	1.3) %		617
$K \rho \gamma K^0$	< 7	%	95%	313
γK^0	< 2.2	× 10 [—]	90%	623

K*(1430) [00]

$$I(J^P) = \frac{1}{2}(0^+)$$

Created: 5/30/2017 17:13

Mass $m=1425\pm 50~{\rm MeV}$ Full width $\Gamma=270\pm 80~{\rm MeV}$

K *(1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(93 ±10)%	619
$K\eta$	$(8.6^{+}_{-}$ $^{2.7}_{3.4})$ %	486
$K \eta'(958)$	seen	†

K₂*(1430)

$$I(J^P) = \frac{1}{2}(2^+)$$

 $K_2^*(1430)^\pm$ mass $m=1425.6\pm1.5$ MeV (S = 1.1) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=98.5\pm2.7$ MeV (S = 1.1) $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K*(1430) DECAY MODES	Fraction (Γ_i/Γ_j)	Scale factor/ Confidence level	p (MeV/ c)
$K\pi$	(49.9±1.2) S	%	619
$K^*(892)\pi$	(24.7 ± 1.5) 5	%	419
$K^*(892)\pi\pi$	(13.4 ± 2.2)	%	372
$K \rho$	(8.7 ± 0.8)	% S=1.2	318
$K\omega$	(2.9 ± 0.8)	%	311
$K^+\gamma$	(2.4 ± 0.5)	$\times 10^{-3}$ S=1.1	627
$K\eta$	$(1.5^{+3.4}_{-1.0})$	$\times 10^{-3}$ S=1.3	486
$K\omega\pi$	< 7.2	\times 10 ⁻⁴ CL=95%	100
$K^0\gamma$	< 9	\times 10 ⁻⁴ CL=90%	626

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Created: 5/30/2017 17:13

Mass $m=1718\pm18$ MeV Full width $\Gamma=322\pm110$ MeV (S = 4.2)

K*(1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	782
$K\rho$	$(31.4^{+5.0}_{-2.1})$ %	571
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})\%$	618
$K\phi$	seen	387

K₂(1770) [pp]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1773\pm 8~{
m MeV}$ Full width $\Gamma=186\pm 14~{
m MeV}$

K₂(1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$		794
$K_2^*(1430)\pi$	dominant	288
$K^*(892)\pi$	seen	654
$K f_2(1270)$	seen	53
$K\phi$	seen	441
$K\omega$	seen	607

$K_3^*(1780)$

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=1776\pm7$ MeV (S = 1.1) Full width $\Gamma=159\pm21$ MeV (S = 1.3)

K ₃ *(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	(31 ± 9)%		613
$K^*(892)\pi$	$(20 \pm 5)\%$		656
$K\pi$	$(18.8 \pm \ 1.0) \%$		813
$K\eta$	$(30 \pm 13)\%$		719
$K_2^*(1430)\pi$	< 16 %	95%	291

K₂(1820) [qq]

$$I(J^P) = \frac{1}{2}(2^-)$$

Created: 5/30/2017 17:13

Mass $m=1819\pm12~{
m MeV}$ Full width $\Gamma=264\pm34~{
m MeV}$

K₂(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K_2^*(1430)\pi$	seen	329
$K^{-}(892)\pi$	seen	683
$K f_2(1270)$	seen	191
$K\omega$	seen	640
$K\phi$	seen	483

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m=2045\pm 9$ MeV (S = 1.1) Full width $\Gamma=198\pm 30$ MeV

K [*] ₄ (2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(9.9±1.2) %	958
$K^*(892)\pi\pi$	(9 ±5)%	802
$K^*(892)\pi\pi\pi$	(7 ±5)%	768
$ ho$ K π	(5.7±3.2) %	741
ω K π	$(5.0\pm3.0)~\%$	738
ϕ K π	$(2.8\pm1.4)~\%$	594
ϕK^* (892)	$(1.4\pm0.7)~\%$	363

CHARMED MESONS $(C = \pm 1)$

 $D^+=c\overline{d},\ D^0=c\overline{u},\ \overline{D}{}^0=\overline{c}\,u,\ D^-=\overline{c}\,d,\quad$ similarly for D^* 's

 D^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1869.59\pm0.09$$
 MeV Mean life $au=(1040\pm7)\times10^{-15}$ s $c au=311.8~\mu\mathrm{m}$

c-quark decays

$$\Gamma(c \rightarrow \ell^{+} \text{ anything})/\Gamma(c \rightarrow \text{ anything}) = 0.096 \pm 0.004 \, ^{[rr]}$$

 $\Gamma(c \rightarrow D^{*}(2010)^{+} \text{ anything})/\Gamma(c \rightarrow \text{ anything}) = 0.255 \pm 0.017$

CP-violation decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$$

$$A_{CP}(K_L^0 e^{\pm}\nu) = (-0.6 \pm 1.6)\%$$

$$A_{CP}(K_S^0 \pi^{\pm}) = (-0.41 \pm 0.09)\%$$

$$A_{CP}(K^{\mp}2\pi^{\pm}) = (-0.18 \pm 0.16)\%$$

$$A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}) = (-0.3 \pm 0.7)\%$$

$$A_{CP}(K_S^0 \pi^{\pm}\pi^{0}) = (-0.1 \pm 0.7)\%$$

$$A_{CP}(K_S^0 \pi^{\pm}\pi^{+}\pi^{-}) = (0.0 \pm 1.2)\%$$

$$A_{CP}(\pi^{\pm}\pi^{0}) = (2.9 \pm 2.9)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (1.0 \pm 1.5)\% \quad (S = 1.4)$$

$$A_{CP}(\pi^{\pm}\eta'(958)) = (-0.5 \pm 1.2)\% \quad (S = 1.1)$$

$$A_{CP}(\overline{K}^0/K^0 K^{\pm}) = (0.11 \pm 0.17)\%$$

$$A_{CP}(K_S^0 K^{\pm}) = (-0.11 \pm 0.25)\%$$

$$A_{CP}(K^+ K^- \pi^{\pm}) = (0.37 \pm 0.29)\%$$

$$A_{CP}(K^{\pm} K^{*0}) = (-0.3 \pm 0.4)\%$$

$$A_{CP}(\phi \pi^{\pm}) = (0.09 \pm 0.19)\% \quad (S = 1.2)$$

$$A_{CP}(K^{\pm} K_0^*(1430)^0) = (8_{-6}^{+7})\%$$

$$A_{CP}(K^{\pm} K_2^*(1430)^0) = (43_{-26}^{+20})\%$$

$$A_{CP}(K^{\pm} K_0^*(800)) = (-12_{-13}^{+18})\%$$

$$A_{CP}(a_0(1450)^0 \pi^{\pm}) = (-19_{-16}^{+14})\%$$

$$A_{CP}(\phi(1680) \pi^{\pm}) = (-9 \pm 26)\%$$

$$A_{CP}(K^0 K^{\pm} \pi^+ \pi^-) = (-4 \pm 7)\%$$

$$A_{CP}(K^0 K^{\pm} \pi^0) = (-4 \pm 11)\%$$

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} = 78.1\%$$

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm} = 31\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-12 \pm 11) \times 10^{-3} [ss]$$

D⁺ form factors

$$\begin{split} f_{+}(0) \middle| V_{cs} \middle| & \text{ in } \overline{K}^{0} \ell^{+} \nu_{\ell} = 0.725 \pm 0.015 \quad \text{(S} = 1.7) \\ r_{1} &\equiv a_{1}/a_{0} & \text{ in } \overline{K}^{0} \ell^{+} \nu_{\ell} = -1.8 \pm 0.4 \\ r_{2} &\equiv a_{2}/a_{0} & \text{ in } \overline{K}^{0} \ell^{+} \nu_{\ell} = -3 \pm 12 \quad \text{(S} = 1.5) \\ f_{+}(0) \middle| V_{cd} \middle| & \text{ in } \pi^{0} \ell^{+} \nu_{\ell} = 0.146 \pm 0.007 \\ r_{1} &\equiv a_{1}/a_{0} & \text{ in } \pi^{0} \ell^{+} \nu_{\ell} = -1.4 \pm 0.9 \\ r_{2} &\equiv a_{2}/a_{0} & \text{ in } \pi^{0} \ell^{+} \nu_{\ell} = -4 \pm 5 \\ f_{+}(0) \middle| V_{cd} \middle| & \text{ in } D^{+} \rightarrow \eta e^{+} \nu_{e} = 0.086 \pm 0.006 \\ r_{1} &\equiv a_{1}/a_{0} & \text{ in } D^{+} \rightarrow \eta e^{+} \nu_{e} = -1.8 \pm 2.2 \\ r_{v} &\equiv V(0)/A_{1}(0) & \text{ in } D^{+} \rightarrow \omega e^{+} \nu_{e} = 1.24 \pm 0.11 \\ r_{2} &\equiv A_{2}(0)/A_{1}(0) & \text{ in } D^{+}, D^{0} \rightarrow \varrho e^{+} \nu_{e} = 1.48 \pm 0.16 \\ r_{v} &\equiv V(0)/A_{1}(0) & \text{ in } D^{+}, D^{0} \rightarrow \varrho e^{+} \nu_{e} = 0.83 \pm 0.12 \\ r_{v} &\equiv V(0)/A_{1}(0) & \text{ in } \overline{K}^{*}(892)^{0} \ell^{+} \nu_{\ell} = 1.49 \pm 0.05 \quad \text{(S} = 2.1) \\ r_{2} &\equiv A_{2}(0)/A_{1}(0) & \text{ in } \overline{K}^{*}(892)^{0} \ell^{+} \nu_{\ell} = 0.802 \pm 0.021 \\ r_{3} &\equiv A_{3}(0)/A_{1}(0) & \text{ in } \overline{K}^{*}(892)^{0} \ell^{+} \nu_{\ell} = 0.0 \pm 0.4 \\ \Gamma_{L}/\Gamma_{T} & \text{ in } \overline{K}^{*}(892)^{0} \ell^{+} \nu_{\ell} = 1.13 \pm 0.08 \\ \Gamma_{+}/\Gamma_{-} & \text{ in } \overline{K}^{*}(892)^{0} \ell^{+} \nu_{\ell} = 0.22 \pm 0.06 \quad \text{(S} = 1.6) \\ \end{split}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D+ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level						
Inclusive modes								
e^+ semileptonic	$(16.07\pm0.30)\%$		_					
μ^+ anything	(17.6 ± 3.2) %		_					
K^- anything	$(25.7 \pm 1.4)\%$		_					
\overline{K}^0 anything $+ K^0$ anything	$(61 \pm 5)\%$		_					
K^+ anything	(5.9 ± 0.8) %		_					
$K^*(892)^-$ anything	$(6 \pm 5)\%$		_					
$\overline{K}^*(892)^0$ anything	$(23 \pm 5)\%$		_					
$K^*(892)^0$ anything	< 6.6 %	CL=90%	_					
η anything	(6.3 ± 0.7) %		_					
η' anything	(1.04 ± 0.18) %		_					
ϕ anything	(1.03 ± 0.12) %		_					
Leptonic and	semileptonic mode	es						
$\mathrm{e^+} u_e$		10^{-6} CL=90%	935					
$\mu^+ \nu_\mu$	$(3.74\pm0.17) \times$	10^{-4}	932					
	< 1.2 ×		90					
$\frac{\tau^+ \nu_{\tau}}{K^0 e^+ \nu_e}$	(8.82±0.13) %		869					
$\overline{K}^0 \mu^+ \nu_{\mu}$	(8.74±0.19) %		865					
$\kappa^-\pi^+e^+ u_e$	$(3.89\pm0.13)\%$	S=2.1	864					
$\overline{K}^*(892)^0 e^+ \nu_a$, $\overline{K}^*(892)^0 \rightarrow$	(3.66±0.12) %		722					
$K^{-}\pi^{+}$ $(K^{-}\pi^{+})_{[0.8-1.0]\text{GeV}}e^{+}\nu_{e}$	(3.39±0.09) %		864					
$(K^-\pi^+)_{S-wave}e^+ u_e$	(2.28 ± 0.11) $ imes$	10 ⁻³	_					
$\overline{\mathit{K}}^{*}(1410)^{0}e^{+} u_{e}$,	< 6 ×	10^{-3} CL=90%	_					
$\overline{K}^*(1410)^0 \rightarrow K^-\pi^+$								
$\overline{K}_2^*(1430)^0e^+ u_e$,	< 5 ×	10^{-4} CL=90%	_					
$\overline{K}_2^*(1430)^0 ightarrow K^-\pi^+$								
$K^-\pi^+e^+\nu_e$ nonresonant	< 7 ×	10^{-3} CL=90%	864					
$K^-\pi^+\mu^+ u_\mu$	$(3.65\pm0.34)\%$		851					
$\overline{\mathit{K}}^{*}$ (892) $^{0'}\mu^{+} u_{\mu}$,	$(3.52\pm0.10)\%$		717					
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$								
${\cal K}^-\pi^+\mu^+ u_\mu$ nonresonant	($1.9~\pm0.5$) $ imes$		851					
$K^-\pi^+\pi^0\mu^+\dot{ u_{\mu}}$	< 1.5 ×	10^{-3} CL=90%	825					
$\pi^0 e^+ \nu_e$	(4.05 ± 0.18) $ imes$	10^{-3}	930					

$$\begin{array}{llll} \eta \, e^+ \, \nu_e & (\ 1.14 \pm 0.10) \times 10^{-3} & 855 \\ \rho^0 \, e^+ \, \nu_e & (\ 2.18 ^{+0.17}_{-0.25}) \times 10^{-3} & 774 \\ \rho^0 \, \mu^+ \, \nu_\mu & (\ 2.4 \ \pm 0.4 \) \times 10^{-3} & 770 \\ \omega \, e^+ \, \nu_e & (\ 1.69 \pm 0.11) \times 10^{-3} & 771 \\ \eta' (958) \, e^+ \, \nu_e & (\ 2.2 \ \pm 0.5 \) \times 10^{-4} & 689 \\ \phi \, e^+ \, \nu_e & < \ 1.3 & \times 10^{-5} & \text{CL} = 90\% & 657 \\ \end{array}$$

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{K}^*(892)^0 e^+ \nu_e$	(5.40±0.10) %		S=1.1	722
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	(5.25 ± 0.1	5) %		717
$\overline{K}_{0}^{*}(1430)^{0} \mu^{+} \nu_{\mu} \overline{K}^{*}(1680)^{0} \mu^{+} \nu_{\mu}$	< 2.3	$\times 10^{-4}$	CL=90%	380
$\overline{K}^*(1680)^0 \mu^+ \nu_{\mu}$	< 1.5	$\times 10^{-3}$	CL=90%	105

Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$									
$K_S^0 \pi^+$		$(1.47\pm0.08)\%$	S=3.0	863					
$\mathcal{K}_L^{0}\pi^+$		$(1.46\pm0.05)\%$		863					
$K^-2\pi^+$	[tt]	(8.98±0.28) %	S=2.2	846					
$(K_{\underline{}}^-\pi^+)_{S-\text{wave}}\pi^+$		(7.20±0.25) %		846					
$\overline{K}_0^*(1430)^0\pi^+$,	[uu]	$(1.19\pm0.07)\%$		382					
$\overline{K}_0^*(1430)^0 \to K^-\pi^+$									
$\overline{K}_{-}^{*}(892)^{0}\pi^{+}$,		$(10.0 \pm 1.1) \times 10^{-3}$		714					
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$									
$\overline{K}^*(1410)^0\pi^+$, \overline{K}^{*0} $ ightarrow$		not seen		381					
$\frac{K^-\pi^+}{K_2^*(1430)^0\pi^+}$,	ſ1	(22 107)×10 ⁻⁴		271					
Z `	[uu]	$(2.2 \pm 0.7) \times 10^{-4}$		371					
$\overline{K}_{2}^{*}(1430)^{0} \rightarrow K^{-}\pi^{+}$		4							
$\overline{K}^*(1680)^0\pi^+$, $\overline{K}^*(1680)^0 ightarrow$	[uu]	$(2.1 \pm 1.0) \times 10^{-4}$		58					
		(1 20 0 06) 0/							
$K^{-}(2\pi^{+})_{I=2} \ K^{0}_{s} \pi^{+} \pi^{0}$	F 1	$(1.39\pm0.26)\%$		-					
3	[tt]	,		845					
$K_S^0 ho^+$		$(5.9 \ ^{+0.6}_{-0.4}) \%$		677					
$K_S^0 ho (1450)^+, \ ho^+ ightarrow \ \pi^+ \pi^0$		$(1.5 \ ^{+1.1}_{-1.4}) \times 10^{-3}$		_					
$\overline{K}_{-}^{*}(892)^{0}\pi^{+}$,		$(2.52\pm0.31)\times10^{-3}$		714					
$\overrightarrow{K}^*(892)^0 \rightarrow K_S^0 \pi^0$									
$\overline{K}_0^*(1430)^0\pi^+$, \overline{K}_0^{*0} $ ightarrow$		$(2.6 \pm 0.9) \times 10^{-3}$		_					
$K_S^0\pi^0$									
$\overline{K}_0^*(1680)^0\pi^+$, $\overline{K}_0^{*0} ightarrow$		$(9 \begin{array}{cc} +7 \\ -9 \end{array}) \times 10^{-4}$		_					
$K_{S}^{0}\pi^{0}$		· _9 / · ·							
$\overline{\kappa}{}^0\pi^+$, $\overline{\kappa}{}^0 o K^0_S\pi^0$		$(5.4 \begin{array}{c} +5.0 \\ -3.5 \end{array}) \times 10^{-3}$		_					
n n , n ' ns n		-3.5°							

$K^0_S \pi^+ \pi^0$ nonresonant		(3 ±4	$\times 10^{-3}$		845
$K_S^0\pi^+\pi^0$ nonresonant and		(1.31^{+0}_{-0})	.21, %		_
$\frac{\kappa_{\mathcal{S}}^{\kappa}}{\kappa_{\mathcal{S}}^{0}} \pi^{+}$		(1.51 – 0	.35) /0		
$(\kappa_S^0 \pi^0)_{S-wave} \pi^+$		(1.22^{+0}_{-0})	.26, %		845
9	_	O	.52		
$K^{-}2\pi^{+}\pi^{0}$		(5.98 ± 0)	•		816
$K_S^0 2\pi^+\pi^-$		$(2.97\pm0$			814
$K^{-}3\pi^{+}\pi^{-}$	[tt]		$0.5) \times 10^{-3}$	S=1.1	772
$\overline{K}^*(892)^0 2\pi^+\pi^-$,		(1.2 ± 0)	$0.4) \times 10^{-3}$		645
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$		(0 0 1 0			
$\overline{K}^*(892)^0 ho^0\pi^+$, $\overline{K}^*(892)^0 ightarrow~K^-\pi^+$		(2.2 ± 0)	$0.4) \times 10^{-3}$		239
		(00 11	0) 10-3		
$\overline{K}^*(892)^0 a_1(1260)^+ \ K^- ho^0 2\pi^+$	[xx]		1.8×10^{-3}		†
$K^-3\pi^+\pi^-$ nonresonant			$(.27) \times 10^{-3}$		524
$K^+ 2K_S^0$			$(0.8) \times 10^{-4}$		772
			$(.13) \times 10^{-3}$		545
$K^+K^-K^0_S\pi^+$		(2.3 ± 0)	$0.5 \) \times 10^{-4}$		436
	Pionic	modes			
$\pi^+\pi^0$		$(1.17\pm0$	$(.06) \times 10^{-3}$		925
$2\pi^+\pi^-$		$(3.13\pm0$	$(.19) \times 10^{-3}$		909
$ ho^{0}\pi^+$		(8.0 ± 1	$.4) \times 10^{-4}$		767
$\pi^+(\pi^+\pi^-)_{S-wave}$		$(1.75\pm0$	$(.16) \times 10^{-3}$		909
$\sigma\pi^+$, $\sigma ightarrow \ \pi^+\pi^-$		$(1.32\pm0$	$(.12) \times 10^{-3}$		_
$\mathit{f}_{0}(980)\pi^{+}$,		$(1.50\pm0$	$(.32) \times 10^{-4}$		669
$f_0(980) \rightarrow \pi^+\pi^-$					
$f_0(1370)\pi^+$,		(8 ± 4)	\times) \times 10 ⁻⁵		_
$f_0(1370) \to \pi^+ \pi^-$			_		
$f_2(1270)\pi^+$,		(4.8 ± 0	$(.8) \times 10^{-4}$		485
$f_2(1270) \to \pi^+\pi^-$			_		
$\rho(1450)^0 \pi^+$,		< 8	$\times 10^{-5}$	CL=95%	338
$\rho(1450)^0 \rightarrow \pi^+\pi^-$					
$f_0(1500)\pi^+$,		(1.1 ± 0)	$(0.4) \times 10^{-4}$		_
$f_0(1500) \rightarrow \pi^+\pi^-$			-		
$f_0(1710)\pi^+$,		< 5	× 10 ⁻⁵	CL=95%	_
$f_0(1710) \rightarrow \pi^+\pi^-$			F		
$f_0(1790)\pi^+$,		< 6	× 10 ⁻⁵	CL=95%	_
$f_0(1790) \to \pi^+\pi^-$			4		
$(\pi^+\pi^+)_{S-wave}\pi^-$		< 1.2	$\times 10^{-4}$	CL=95%	909
$2\pi^+\pi^-$ nonresonant		< 1.1		CL=95%	909
$\pi^{+} 2\pi^{0}$		•	$0.4) \times 10^{-3}$		910
$2\pi^{+}\pi^{-}\pi^{0}$		(1.11±0	,		883
$3\pi^{+}2\pi^{-}$		$(1.59\pm0$	$(0.16) \times 10^{-3}$	S=1.1	845

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\eta\pi^+$	$(3.33\pm0.21)\times10^{-3}$	S=1.4	848
$\eta \pi^+ \pi^0$	$(1.38\pm0.35)\times10^{-3}$		830
$\omega \pi^+$	$(2.8 \pm 0.6) \times 10^{-4}$		764
$\eta'(958)\pi^+$	$(4.60\pm0.31)\times10^{-3}$		681
$\eta'(958)\pi^+\pi^0$	$(1.6 \pm 0.5) \times 10^{-3}$		654

Hadronic modes with a $K\overline{K}$ pair									
$K^+K^0_S$		$(2.83\pm0.16)\times10^{-3}$	S=2.8	793					
$K^+K^-\pi^+$	[tt]	$(9.51\pm0.34)\times10^{-3}$	S=1.6	744					
$\phi\pi^+$, ϕo K^+K^-		$(2.64\pm0.11)\times10^{-3}$		647					
$K^+\overline{K}^*(892)^0$, $\overline{K}^*(892)^0 ightarrow K^-\pi^+$		$(2.44^{+0.11}_{-0.15}) \times 10^{-3}$		613					
$K^{+} \overline{K}_{0}^{*}(1430)^{0}$, $\overline{K}_{0}^{*}(1430)^{0} \rightarrow K^{-} \pi^{+}$		$(1.79\pm0.34)\times10^{-3}$		_					
$K_0^{(1430)^3} \rightarrow K^- \pi^+$ $K^+ \overline{K}_2^* (1430)^0, \overline{K}_2^* \rightarrow K^- \pi^+$		(1.6 $^{+1.2}_{-0.8}$) \times 10 ⁻⁴		_					
$K^+ \overline{K}_0^* (800), \overline{K}_0^* \rightarrow K^- \pi^+$		($6.7 \ ^{+3.4}_{-2.1}$) $\times 10^{-4}$		_					
$a_0(1450)^0\pi^+$, $a_0^0 ightarrow$		$(4.4 \begin{array}{c} +7.0 \\ -1.8 \end{array}) \times 10^{-4}$		-					
$\phi(1680)\pi^+, \ \phi \rightarrow \ K^+K^-$		(4.9 $^{+4.0}_{-1.9}$) \times 10 ⁻⁵		_					
$K_S^0 K_S^0 \pi^+$		$(2.70\pm0.13)\times10^{-3}$		741					
$K^{+}_{S}K^{0}_{S}\pi^{+}\pi^{-}$		$(1.67\pm0.18)\times10^{-3}$		678					
$K_S^0 K^- 2\pi^+$		$(2.28\pm0.18)\times10^{-3}$		678					
$K^{+}K^{-}2\pi^{+}\pi^{-}$		(2.2 ± 1.2) \times 10 ⁻⁴		600					

A few poorly measured branching fractions:

$\phi\pi^+\pi^0$	(2.3 ± 1.0)	%		619
ϕho^+	< 1.4	%	CL=90%	260
$\mathit{K}^{+}\mathit{K}^{-}\pi^{+}\pi^{0}$ non- ϕ	$(1.5 \begin{array}{c} +0.7 \\ -0.6 \end{array})$	%		682
$K^*(892)^+ K_S^0$	(1.6 ± 0.7)	%		611

Doubly Cabibbo-suppressed modes

$K^+\pi^0$	$(1.81\pm0.27)\times10^{-4}$	S=1.4	864
$K^+ \eta$	$(1.02\pm0.16)\times10^{-4}$		776
$K^+ \eta'(958)$	$(1.73\pm0.22)\times10^{-4}$		571
$K^+\pi^+\pi^-$	$(5.19\pm0.26)\times10^{-4}$		846
$\mathcal{K}^+ ho^0$	$(2.0 \pm 0.5) \times 10^{-4}$		679

$$K^*(892)^0\,\pi^+$$
 , $K^*(892)^0$ \rightarrow ($2.4\,\pm 0.4$) \times 10^{-4} 714 $K^+\pi^ K^+f_0(980)$, $f_0(980)$ \rightarrow ($4.6\,\pm 2.8$) \times 10^{-5} $\pi^+\pi^ K_2^*(1430)^0\,\pi^+$, $K_2^*(1430)^0$ \rightarrow ($4.2\,\pm 2.8$) \times 10^{-5} $K^+\pi^ K^+\pi^+\pi^-$ nonresonant not seen 846 $2K^+K^-$ ($8.5\,\pm 2.0$) \times 10^{-5} 550

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF) or Lepton number (L) violating modes

	•	•	` '	•	
$\pi^+e^+e^-$	C1	< 1.1		CL=90%	930
$\pi^+\phi$, $\phi ightarrow { m e}^+{ m e}^-$		$[yy]$ (1.7 $\frac{+}{-}$	(0.9) $\times 10^{-6}$		_
$\pi^+\mu^+\mu^-$	C1	< 7.3	$\times 10^{-8}$	CL=90%	918
$\pi^+\phi$, $\phi \rightarrow \mu^+\mu^-$		$[yy]$ (1.8 \pm	$(0.8) \times 10^{-6}$		_
$\rho^+\mu^+\mu^-$	C1	< 5.6	\times 10 ⁻⁴	CL=90%	757
$K^+e^+e^-$		[zz] < 1.0	$\times 10^{-6}$	CL=90%	870
$K^+\mu^+\mu^-$		[zz] < 4.3	$\times 10^{-6}$	CL=90%	856
$\pi^+\mathrm{e}^+\mu^-$	LF	< 2.9	\times 10 ⁻⁶	CL=90%	927
$\pi^+\mathrm{e}^-\mu^+$	LF	< 3.6	\times 10 ⁻⁶	CL=90%	927
$\mathit{K}^{+}e^{+}\mu^{-}$	LF	< 1.2	\times 10 ⁻⁶	CL=90%	866
$K^+e^-\mu^+$	LF	< 2.8	\times 10 ⁻⁶	CL=90%	866
π^-2e^+	L	< 1.1	\times 10 ⁻⁶	CL=90%	930
$\pi^{-}2\mu^{+}$	L	< 2.2	\times 10 ⁻⁸	CL=90%	918
$\pi^-\mathrm{e}^+\mu^+$	L	< 2.0	\times 10 ⁻⁶	CL=90%	927
$ ho^- 2\mu^+$	L	< 5.6	\times 10 ⁻⁴	CL=90%	757
K^-2e^+	L	< 9	\times 10 ⁻⁷	CL=90%	870
$K^-2\mu^+$	L	< 1.0	\times 10 ⁻⁵	CL=90%	856
$\mathcal{K}^- \mathrm{e}^+ \mu^+$	L	< 1.9	\times 10 ⁻⁶	CL=90%	866
$K^*(892)^- 2\mu^+$	L	< 8.5	\times 10 ⁻⁴	CL=90%	703

 D^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Created: 5/30/2017 17:13

Mass
$$m=1864.83\pm0.05~{
m MeV}$$
 $m_{D^\pm}-m_{D^0}=4.75\pm0.08~{
m MeV}$ Mean life $\tau=(410.1\pm1.5)\times10^{-15}~{
m s}$ $c au=122.9~{
m \mu m}$

Mixing and related parameters

$$\begin{split} \left| m_{D_1^0} - m_{D_2^0} \right| &= (0.95^{+0.41}_{-0.44}) \times 10^{10} \; \hbar \; \text{s}^{-1} \\ \left(\Gamma_{D_1^0} - \Gamma_{D_2^0} \right) / \Gamma &= 2y = (1.29^{+0.14}_{-0.18}) \times 10^{-2} \\ \left| q/p \right| &= 0.92^{+0.12}_{-0.09} \\ A_{\Gamma} &= (-0.125 \pm 0.526) \times 10^{-3} \end{split}$$

 $K^+\pi^-$ relative strong phase: $\cos\delta=0.97\pm0.11$ $K^-\pi^+\pi^0$ coherence factor $R_{K\pi\pi^0}=0.82\pm0.06$ $K^-\pi^+\pi^0$ average relative strong phase $\delta^{K\pi\pi^0}=(199\pm14)^\circ$ $K^-\pi^-2\pi^+$ coherence factor $R_{K3\pi}=0.53^{+0.18}_{-0.21}$ $K^-\pi^-2\pi^+$ average relative strong phase $\delta^{K3\pi}=(125^{+22}_{-14})^\circ$ $D^0\to K^-\pi^-2\pi^+$, $R_{K3\pi}$ (y $\cos\delta^{K3\pi}-\sin\delta^{K3\pi}$) = $(-3.0\pm0.7)\times10^{-3}$ TeV $^{-1}$ $K^0_SK^+\pi^-$ coherence factor $R_{K^0_SK\pi}=0.70\pm0.08$ $K^0_SK^+\pi^-$ average relative strong phase $\delta^{K^0_SK\pi}=(0\pm16)^\circ$ K^*K coherence factor $R_{K^*K}=0.94\pm0.12$ K^*K average relative strong phase $\delta^{K^*K}=(-17\pm18)^\circ$

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$A_{CP}(K^+K^-) = (-0.07 \pm 0.11)\%$$

$$A_{CP}(2K_S^0) = (-5 \pm 5)\%$$

$$A_{CP}(\pi^+\pi^-) = (0.13 \pm 0.14)\%$$

$$A_{CP}(\pi^0\pi^0) = (0.0 \pm 0.6)\%$$

$$A_{CP}(\rho\gamma) = (6 \pm 15) \times 10^{-2}$$

$$A_{CP}(K^*(892)^0\gamma) = (-0.3 \pm 2.0) \times 10^{-2}$$

$$A_{CP}(\pi^+\pi^-\pi^0) = (0.3 \pm 0.4)\%$$

$$A_{CP}(\rho(770)^+\pi^- \to \pi^+\pi^-\pi^0) = (1.2 \pm 0.9)\% [aaa]$$

$$A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1 \pm 3.0)\% [aaa]$$

$$A_{CP}(\rho(770)^-\pi^+ \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\% [aaa]$$

$$A_{CP}(\rho(1450)^+\pi^- \to \pi^+\pi^-\pi^0) = (-20 \pm 40)\% [aaa]$$

$$A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 14)\% [aaa]$$

$$A_{CP}(\rho(1700)^+\pi^- \to \pi^+\pi^-\pi^0) = (-5 \pm 14)\% [aaa]$$

$$A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (13 \pm 9)\% [aaa]$$

$$A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (13 \pm 9)\% [aaa]$$

$$A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (25 \pm 18)\% [aaa]$$

$$A_{CP}(f_0(1370)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\% [aaa]$$

$$A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\% [aaa]$$

$$A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\% [aaa]$$

$$A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% [aaa]$$

$$A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% [aaa]$$

$$A_{CP}(f_0(1400)\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% [aaa]$$

$$A_{CP}(K^*(892)^+K^- \to K^+K^-\pi^0) = (-13 \pm 23)\% [aaa]$$

$$A_{CP}(K^*(892)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\% [aaa]$$

$$A_{CP}(K^*(1410)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\% [aaa]$$

$$A_{CP}(K^*(1410)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\% [aaa]$$

$$A_{CP}(K^*(1410)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\% [aaa]$$

```
A_{CP}(\phi(1020)\pi^0 \to K^+K^-\pi^0) = (1.1 \pm 2.2)\% [aaa]
A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\% [aaa]
A_{CP}(a_0(980)^0\pi^0 \rightarrow K^+K^-\pi^0) = (-5 \pm 16)\%^{[aaa]}
A_{CP}(f_2'(1525)\pi^0 \rightarrow K^+K^-\pi^0) = (0 \pm 160)\% [aaa]
A_{CP}(\bar{K}^*(892)^-K^+ \to K^+K^-\pi^0) = (-5 \pm 4)\%^{[aaa]}
A_{CP}(K^*(1410)^-K^+ \to K^+K^-\pi^0) = (-17 \pm 29)\% [aaa]
A_{CP}((K^-\pi^0)_{S-wave}K^+ \rightarrow K^+K^-\pi^0) = (-10 \pm 40)\% [aaa]
A_{CP}(K_S^0\pi^0) = (-0.20 \pm 0.17)\%
A_{CP}(K_{S}^{0}\eta) = (0.5 \pm 0.5)\%
A_{CP}(K_S^0 \eta') = (1.0 \pm 0.7)\%
A_{CP}(K_S^0\phi) = (-3 \pm 9)\%
A_{CP}(K^-\pi^+) = (0.3 \pm 0.7)\%
A_{CP}(K^+\pi^-) = (0.0 \pm 1.6)\%
A_{CP}(D_{CP(\pm 1)} \to K^{\mp} \pi^{\pm}) = (12.7 \pm 1.5)\%
A_{CP}(K^-\pi^+\pi^0) = (0.1 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^0) = (0 \pm 5)\%
A_{CP}(K_S^0\pi^+\pi^-) = (-0.1 \pm 0.8)\%
A_{CP}(K^{\tilde{*}}(892)^{-}\pi^{+} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (0.4 \pm 0.5)\%
A_{CP}(K^*(892)^+\pi^- \to K_S^0\pi^+\pi^-) = (1 \pm 6)\%
A_{CP}(\overline{K}^{0}\rho^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (-0.1 \pm 0.5)\%
A_{CP}(\overline{K}^0\omega \to K_S^0\pi^+\pi^-) = (-13 \pm 7)\%
A_{CP}(\overline{K}^0 f_0(980) \rightarrow K_S^0 \pi^+ \pi^-) = (-0.4 \pm 2.7)\%
A_{CP}(\overline{K}^0 f_2(1270) \rightarrow \overline{K}_5^0 \pi^+ \pi^-) = (-4 \pm 5)\%
A_{CP}(\overline{K}^0 f_0(1370) \to K_S^{0} \pi^+ \pi^-) = (-1 \pm 9)\%
A_{CP}(\overline{K}^0 \rho^0 (1450) \rightarrow \overline{K}_5^0 \pi^+ \pi^-) = (-4 \pm 10)\%
A_{CP}(\overline{K}^0 f_0(600) \rightarrow K_S^0 \pi^+ \pi^-) = (-3 \pm 5)\%
A_{CP}(K^*(1410)^-\pi^+ \to K_S^0\pi^+\pi^-) = (-2 \pm 9)\%
A_{CP}(K_0^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (4 \pm 4)\%
A_{CP}(K_0^*(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (12 \pm 15)\%
A_{CP}(K_2^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (3 \pm 6)\%
A_{CP}(K_2^*(1430)^+\pi^- \rightarrow K_5^0\pi^+\pi^-) = (-10 \pm 32)\%
A_{CP}(K^-\pi^+\pi^+\pi^-) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^+\pi^-) = (-2 \pm 4)\%
A_{CP}(K^+K^-\pi^+\pi^-) = (-8 \pm 7)\%
A_{CP}(K_1^*(1270)^+K^- \rightarrow K^{*0}\pi^+K^-) = (-1 \pm 10)\%
A_{CP}(K_1^*(1270)^-K^+ \rightarrow \overline{K}^{*0}\pi^-K^+) = (-10 \pm 32)\%
A_{CP}(K_1^*(1270)^+K^- \rightarrow \rho^0K^+K^-) = (-7 \pm 17)\%
A_{CP}(K_1^*(1270)^-K^+ \rightarrow \rho^0K^-K^+) = (10 \pm 13)\%
A_{CP}(K^{*}(1410)^{+}K^{-} \rightarrow K^{*0}\pi^{+}K^{-}) = (-20 \pm 17)\%
A_{CP}(K^*(1410)^-K^+ \rightarrow \overline{K}^{*0}\pi^-K^+) = (-1 \pm 14)\%
A_{CP}(K^{*0}\overline{K}^{*0} S-wave) = (10 \pm 14)\%
A_{CP}(\phi \rho^0 \text{ S-wave}) = (-3 \pm 5)\%
```

$$A_{CP}(\phi \rho^0 \ D\text{-wave}) = (-37 \pm 19)\%$$
 $A_{CP}(\phi(\pi^+\pi^-)_{S-wave}) = (-9 \pm 10)\%$ $A_{CP}((K^-\pi^+)_{P-wave} \ (K^+\pi^-)_{S-wave}) = (3 \pm 11)\%$ CP -even fraction in $D^0 \to \pi^+\pi^-\pi^0$ decays $= (97.3 \pm 1.7)\%$ CP -even fraction in $D^0 \to K^+K^-\pi^0$ decays $= (73 \pm 6)\%$ CP -even fraction in $D^0 \to \pi^+\pi^-\pi^+\pi^-$ decays $= (73.7 \pm 2.8)\%$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.12 \pm 0.13)\%$$
 (S = 1.8)

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^0$$
, $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^0 = 4.9\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^+\pi^- = 41\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K_S^0\pi^+\pi^- = 96\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^0 = 16.6\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^+\pi^- = 9.1\%$

T-violation decay-rate asymmetry

$$A_T(K^+K^-\pi^+\pi^-) = (1.7 \pm 2.7) \times 10^{-3}$$
 [ss]

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

$$\begin{array}{l} \mathbf{r}_{V} \equiv \mathsf{V}(0)/\mathsf{A}_{1}(0) \text{ in } D^{0} \rightarrow \; \mathsf{K}^{*}(892)^{-}\,\ell^{+}\,\nu_{\ell} = 1.7 \pm 0.8 \\ \mathbf{r}_{2} \equiv \mathsf{A}_{2}(0)/\mathsf{A}_{1}(0) \text{ in } D^{0} \rightarrow \; \mathsf{K}^{*}(892)^{-}\,\ell^{+}\,\nu_{\ell} = 0.9 \pm 0.4 \\ f_{+}(0) \text{ in } D^{0} \rightarrow \; \mathsf{K}^{-}\,\ell^{+}\,\nu_{\ell} = 0.736 \pm 0.004 \\ f_{+}(0)\big|V_{cs}\big| \text{ in } D^{0} \rightarrow \; \mathsf{K}^{-}\,\ell^{+}\,\nu_{\ell} = 0.719 \pm 0.004 \\ r_{1} \equiv a_{1}/a_{0} \text{ in } D^{0} \rightarrow \; \mathsf{K}^{-}\,\ell^{+}\,\nu_{\ell} = -2.40 \pm 0.16 \\ r_{2} \equiv a_{2}/a_{0} \text{ in } D^{0} \rightarrow \; \mathsf{K}^{-}\,\ell^{+}\,\nu_{\ell} = 5 \pm 4 \\ f_{+}(0) \text{ in } D^{0} \rightarrow \; \pi^{-}\,\ell^{+}\,\nu_{\ell} = 0.637 \pm 0.009 \\ f_{+}(0)\big|V_{cd}\big| \text{ in } D^{0} \rightarrow \; \pi^{-}\,\ell^{+}\,\nu_{\ell} = 0.1436 \pm 0.0026 \quad (\mathsf{S} = 1.5) \\ r_{1} \equiv a_{1}/a_{0} \text{ in } D^{0} \rightarrow \; \pi^{-}\,\ell^{+}\,\nu_{\ell} = -1.97 \pm 0.28 \quad (\mathsf{S} = 1.4) \\ r_{2} \equiv a_{1}/a_{0} \text{ in } D^{0} \rightarrow \; \pi^{-}\,\ell^{+}\,\nu_{\ell} = -0.2 \pm 2.2 \quad (\mathsf{S} = 1.7) \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

-0							cale factor/	
D ⁰ DECAY MODES		Fraction	(Γ_{i})	/Γ)		Conf	idence leve(N	/leV/ <i>c</i>)
	Topolo	gical mo	ode	S				
0-prongs	[bbb]	(15	\pm	6) %			_
2-prongs		(70	\pm	6) %			_
4-prongs		(14.5						_
6-prongs	[ddd]	(6.4	\pm	1.3) × 1	0^{-4}		_
	Inclus	sive mod	les					
e^+ anything	[eee]	(6.49	\pm	0.11) %			_
μ^+ anything		(6.7	\pm	0.6) %			_
K^- anything		(54.7	\pm	2.8) %		S=1.3	_
\overline{K}^0 anything $+ K^0$ anything		(47	\pm	4) %			_
\mathcal{K}^+ anything		(3.4	\pm	0.4) %			_
$K^*(892)^-$ anything		(15	\pm	9) %			_
$\overline{K}^*(892)^0$ anything		(9	\pm	4) %			_
$K^*(892)^+$ anything		< 3.6			%		CL=90%	_
$K^*(892)^0$ anything		(2.8	\pm	1.3) %			_
$\eta_{oldsymbol{\cdot}}$ anything		(9.5) %			_
η' anything		(2.48			•			_
ϕ anything		(1.05			,	_		_
invisibles		< 9.4			\times 1	0-5	CL=90%	_
	Semilep	tonic m	ode	es				
$K^-e^+ u_e$		(3.530	\pm C	0.028	8) %		S=1.1	867
$\mathcal{K}^-\mu^+ u_\mu$		(3.31	\pm	0.13) %			864
$K^*(892)^- e^+ \nu_e$		(2.15	\pm	0.16) %			719
$K^*(892)^- \mu^+ \nu_{\mu}$		(1.86	\pm	0.24) %			714
$K^{-}\pi^{0}e^{+}\nu_{e}$		(1.6	+	1.3 0.5) %			861
$\overline{K}{}^0\pi^-e^+\nu_e$		(2.7	+	0.9 0.7) %			860
$K^-\pi^+\pi^-e^+\nu_e$		(2.8	+	1.4 1.1) × 1	.0-4		843
$K_1(1270)^- e^+ \nu_e$		(7.6	+	4.0 3.1) × 1	.0-4		498
$K^-\pi^+\pi^-\mu^+ u_{\mu}$		< 1.2			\times 1	0-3	CL=90%	821
$(\overline{K}^*(892)\pi)^{\mu}\mu^+\nu_{\mu}$		< 1.4				0-3	CL=90%	692
$\pi^-e^+\nu_e$		(2.91		0 04			S=1.1	927
$\pi^-\mu^+\nu_\mu$		(2.37					5—1.1	924
$\rho^- e^+ \nu_e$		(1.77						771
γ C Ve		(1.11		0.10	, ^ 1	J		111
HTTP://PDG.LBL.GOV	Pa	ige 43		C	reate	ed: 5,	/30/2017	17:13

Hadronic modes with one \overline{K}

Hadronic modes with one \overline{K}									
$K^-\pi^+$		(3.89	\pm	0.04) %	S=1.1	861	
$K^+\pi^-$		(1.385	$5\pm$	0.02	$7) \times 10^{-4}$		861	
$K_S^0 \pi^0$ $K_L^0 \pi^0$		(1.19	\pm	0.04) %		860	
$K_I^0 \pi^0$		(10.0	\pm	0.7	$) \times 10^{-3}$		860	
$\mathcal{K}_{\mathcal{S}}^{ar{0}}\pi^{+}\pi^{-}$	$[tt]% \begin{center} fig:continuous_continuo_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_c$	(2.75	\pm	0.18) %	S=1.1	842	
$K_{\mathcal{S}}^{0} ho^{0}$		(6.2	+	0.6 0.8	$) \times 10^{-3}$		674	
$K^0_S\omega$, $\omega \to \pi^+\pi^-$		(2.0	\pm	0.6	$) \times 10^{-4}$		670	
$K_{S}^{0}(\pi^{+}\pi^{-})_{S-wave}$						$) \times 10^{-3}$		842	
$K_S^0 f_0(980)$,) × 10 ⁻³		549	
$f_0(980) \rightarrow \pi^+ \pi^-$		(1.10	_	0.23) × 10		349	
$K_S^0 f_0(1370), f_0 \to \pi^+ \pi^-$		(2.7	+	0.8 1.3	$) \times 10^{-3}$		†	
$K_S^0 f_2(1270), f_2 \to \pi^+ \pi^-$		(9	+	10 6	$)\times10^{-5}$		262	
$K^*(892)^-\pi^+$, $K^*(892)^- o K^0_S\pi^-$		(1.62	+	0.14 0.17) %		711	
$K_0^*(1430)^-\pi^+, \ K_0^{*-} \to K_S^0\pi^-$		(2.63	+	0.40 0.32) × 10 ⁻³		378	
$K_2^*(1430)^-\pi^+, K_2^{*-} \rightarrow K_5^0\pi^-$		(3.3	+	1.8 1.0) × 10 ⁻⁴		367	
$K^*(1680)^-\pi^+, K^{*-} \rightarrow K_S^0\pi^-$		(4.3	±	3.5	$)\times10^{-4}$		46	
$K^*(892)^+\pi^-$, $K^*(892)^+ o K^0_S\pi^+$	[fff]	(1.11	+	0.60 0.33) × 10 ⁻⁴		711	
$K_0^*(1430)^+\pi^-, K_0^{*+} \rightarrow K_0^0\pi^+$	[fff]	<	1.4			× 10 ⁻⁵	CL=95%	_	
$K_2^*(1430)^+\pi^-, K_2^{*+} \rightarrow K_5^0\pi^+$	[fff]	<	3.3			× 10 ⁻⁵	CL=95%	-	
$K_S^0\pi^+\pi^-$ nonresonant		(2.5	+	6.0 1.6) × 10 ⁻⁴		842	
$K^{-}\pi^{+}\pi^{0}$	[<i>tt</i>]	(14.2	±	0.5) %	S=1.9	844	
$\mathcal{K}^- ho^+$			11.1					675	
$K^{-}\rho(1700)^{+}, \ \rho^{+} \rightarrow \pi^{+}\pi^{0}$						$) \times 10^{-3}$		†	
$K^*(892)^-\pi^+$,		(2.27	+	0.40) %		711	
$K^*(892)^- \rightarrow K^- \pi^0$		(۷.۷۱	_	0.20	, /0		111	
$\overline{K}^*(892)^0\pi^0$, $\overline{K}^*(892)^0 \to K^-\pi^+$		(1.93	±	0.24) %		711	
$K_0^*(1430)^-\pi^+, K_0^{*-} \rightarrow K^-\pi^0$		(4.7	±	2.2	$)\times10^{-3}$		378	

$\overline{K}_0^*(1430)^0\pi^0$, $\overline{K}_0^{*0} o$		(5.8	+	5.0 1.6	$) \times 10^{-3}$		379
$K^-\pi^+$ $K^*(1680)^-\pi^+$, $K^{*-}\to$		(1.8	土	0.7	$) \times 10^{-3}$		46
$\kappa^-\pi^0$					0 50			
$K^-\pi^+\pi^0$ nonresonant		(1.14	+	0.50 0.20) %		844
$K_S^0 2\pi^0$		(9.1	\pm	1.1	$) \times 10^{-3}$	S=2.2	843
$K_S^0(2\pi^0)$ - S -wave		(2.6	\pm	0.7	$) \times 10^{-3}$		_
$\overline{K}^*(892)^0 \pi^0, \ \overline{K}^{*0} \to \ K_S^0 \pi^0$		(7.8	\pm	0.7	$) \times 10^{-3}$		711
$\overline{K}^*(1430)^0\pi^0$, $\overline{K}^{*0} \rightarrow K_S^0\pi^0$		(4	±	23) × 10 ⁻⁵		_
$\overline{K}^*(1680)^0\pi^0, \ \overline{K}^{*0} ightarrow K_0^0\pi^0$		(1.0	±	0.4	$) \times 10^{-3}$		_
$K_{S}^{0} f_{2}(1270), f_{2} \rightarrow 2\pi^{0}$		(2.3	+	1.1) × 10 ⁻⁴		_
$2K_S^0$, one $K_S^0 o 2\pi^0$						$) \times 10^{-4}$		_
$K^-2\pi^+\pi^-$	[tt]				0.15		S=1.1	813
$K^-\pi^+\rho^0$ total	[]				0.31		5-1.1	609
$\kappa^-\pi^+\rho^0$ 3-body						$) \times 10^{-3}$		609
$\overline{K}^*(892)^0 \rho^0$,					0.23			416
$\overline{\mathcal{K}}^*(892)^0 \rightarrow \mathcal{K}^-\pi^+$		`				,		
K^{-} $a_{1}(1260)^{+}$,		(3.6	\pm	0.6) %		327
$a_1(1260)^+ \rightarrow 2\pi^+\pi^-$								
$\overline{\mathit{K}}^*(892)^0\pi^+\pi^-$ total,		(1.6	\pm	0.4) %		685
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$						_		
$\overline{\mathcal{K}}^*(892)^0\pi^+\pi^-$ 3-body, $\overline{\mathcal{K}}^*(892)^0 ightarrow \mathcal{K}^-\pi^+$		(9.9	±	2.3) × 10 ⁻³		685
$K_1(1270)^-\pi^+$,	ggg]	(2.9	\pm	0.3	$) \times 10^{-3}$		484
$K_1(1270)^- \to K^- \pi^+ \pi^-$								
$K^-2\pi^+\pi^-$ nonresonant		(1.89	\pm	0.26) %		813
<i>-</i>	hhh]				0.6			813
$K^0_{\mathcal{S}}\eta, \eta \rightarrow \pi^+\pi^-\pi^0$		(1.02	\pm	0.09	$) \times 10^{-3}$		772
$K_{S}^{ar{0}}\omega$, $\omega ightarrow\pi^{+}\pi^{-}\pi^{0}$		(9.9	\pm	0.5	$) \times 10^{-3}$		670
$K^{-}2\pi^{+}\pi^{-}\pi^{0}$		(4.2	\pm	0.4) %		771
$\overline{K}_{\underline{*}}(892)^{0}\pi^{+}\pi^{-}\pi^{0}$,		(1.3	\pm	0.6) %		643
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$								
$K^-\pi^+\omega$, $\omega \to \pi^+\pi^-\pi^0$					0.5			605
$\overline{K}^*(892)^0\omega$, \overline{K}^{*0}		(6.5	\pm	3.0	$) \times 10^{-3}$		410
$K^-\pi^+$, $\omega \rightarrow$								
$K^-\pi^+, \omega \rightarrow \pi^+\pi^-\pi^0$ $K^0_S\eta\pi^0$		1	55	+	1 1	$) \times 10^{-3}$		721
K_{0}^{0} (080) $x_{0} = 0$						$) \times 10^{-3}$		- 121
$\frac{K_S^0}{K} a_0(980), \ a_0 \to \eta \pi^0$ $\frac{1}{K} (892)^0 \eta, \ K^{*0} \to K_S^0 \pi^0$								_
						$) \times 10^{-3}$		766
$K_S^0 2\pi^+ 2\pi^-$						$) \times 10^{-3}$		768
$K_{S}^{0} \rho^{0} \pi^{+} \pi^{-}$, no $K^{*}(892)^{-}$		(1.0	土	U. <i>1</i>	$) \times 10^{-3}$		_

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 45

$$K^*(892)^- 2\pi^+ \pi^-$$
, $(4 \pm 7) \times 10^{-4}$ 642 $K^*(892)^- \to K_S^0 \pi^-$, no ρ^0 $K^*(892)^- \rho^0 \pi^+$, $(1.6 \pm 0.6) \times 10^{-3}$ 230 $K^*(892)^- \to K_S^0 \pi^ K_S^0 2\pi^+ 2\pi^-$ nonresonant $(2.2 \pm 0.6) \times 10^{-4}$ 713

Fractions of many of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. (Modes for which there are only upper limits and $\overline{K}^*(892) \rho$ submodes only appear below.)

$K_{\mathcal{S}}^{0}\eta$	$(4.80 \pm 0.30) \times 10^{-3}$		772
$K_S^0 \omega$	(1.11 ± 0.06) %		670
$K_{S}^{0} \eta'(958)$	$(9.4 \pm 0.5) \times 10^{-3}$		565
$K^- a_1(1260)^+$	$(7.9\pm1.1)\%$		327
$K^- a_2(1320)^+$	$< 2 \times 10^{-3}$	CL=90%	198
$\overline{K}^*(892)^0\pi^+\pi^-$ total	$(2.4 \pm 0.5)\%$		685
$\overline{\mathit{K}}^{*}(892)^{0}\pi^{+}\pi^{-}$ 3-body	(1.48 ± 0.34) %		685
$\overline{K}^*(892)^0 \rho^0$	(1.58 ± 0.35) %		417
$\overline{K}^*(892)^0 \rho^0$ transverse	(1.7 ± 0.6) %		417
$\overline{\mathit{K}}^*(892)^0 ho^0\mathit{S}$ -wave	$(3.0 \pm 0.6)\%$		417
$\overline{K}^*(892)^0 \rho^0 S$ -wave long.	$< 3 \times 10^{-3}$	CL=90%	417
$\overline{\mathit{K}}^*(892)^0 ho^0\mathit{P}$ -wave	$< 3 \times 10^{-3}$	CL=90%	417
$\overline{\mathit{K}}^*(892)^0 ho^0\mathit{D}$ -wave	$(2.1 \pm 0.6)\%$		417
$K_1(1270)^-\pi^+$	[ggg] (1.6 ± 0.8) %		484
$K_1(1400)^-\pi^+$	< 1.2 %	CL=90%	386
$\overline{K}^*(892)^0 \pi^+ \pi^- \pi^0$	(1.9 ± 0.9) %		643
$K^-\pi^+\omega$	$(3.0 \pm 0.6)\%$		605
$\overline{K}^*(892)^0 \omega$	(1.1 \pm 0.5) %		410
$K^-\pi^+\eta'(958)$	$(7.5 \pm 1.9) \times 10^{-3}$		479
$\overline{K}^*(892)^0 \eta'(958)$	$< 1.1 \times 10^{-3}$	CL=90%	119

Hadronic modes with three K's

$K^+ 2K^- \pi^+$	$(2.22 \pm 0.31) \times 10^{-4}$	434
$K^+K^-\overline{K}^*(892)^0$, $\overline{K}^{*0} \rightarrow$	(4.4 \pm 1.7) \times 10 ⁻⁵	†
$K^-\pi^+ \atop K^-\pi^+\phi, \;\; \phi ightarrow \;\; K^+K^-$	(40 17) × 10-5	422
$\phi \overline{K}^*(892)^0, \ \phi \rightarrow K^+K^-,$	$(4.0 \pm 1.7) \times 10^{-5}$	422
$\frac{\varphi R}{K^{*0}} K^{-}\pi^{+}$	$(1.06 \pm 0.20) \times 10^{-4}$	†
$K^+2K^-\pi^+$ nonresonant	$(3.3 \pm 1.5) \times 10^{-5}$	434
$2K_S^0K^{\pm}\pi^{\mp}$	$(5.8 \pm 1.2) \times 10^{-4}$	427
3	Pionic modes	
$\pi^+\pi^-$	$(1.407 \pm 0.025) \times 10^{-3}$	S=1.1 922
$2\pi^0$	$(8.22 \pm 0.25) \times 10^{-4}$	923
$\pi^+\pi^-\pi^0$	$(8.22 \pm 0.25) \times 10$ $(1.47 \pm 0.06) \%$	
$\rho^+\pi^-$,	S=2.1 907
ρ^{\prime} π^{\prime} ρ^{\prime} π^{\prime} 0	$(10.0 \pm 0.4) \times 10^{-3}$	764
,	$(3.81 \pm 0.23) \times 10^{-3}$	764
$\rho^-\pi^+$	$(5.08 \pm 0.25) \times 10^{-3}$	764
$\rho(1450)^{+}\pi^{-}, \ \rho^{+} \rightarrow \pi^{+}\pi^{0}$	$(1.6 \pm 2.0) \times 10^{-5}$	_
$\rho(1450)^0\pi^0, \ \rho^0 \to \pi^+\pi^-$	$(4.4 \pm 1.9) \times 10^{-5}$	_
$ ho(1450)^-\pi^+$, $ ho^- ightarrow~\pi^-\pi^0$	$(2.6 \pm 0.4) \times 10^{-4}$	_
$ ho(1700)^{+}\pi^{-}$, $ ho^{+} ightarrow \pi^{+}\pi^{0}$	$(6.0 \pm 1.5) \times 10^{-4}$	_
$ ho(1700)^0\pi^0$, $ ho^0 o \pi^+\pi^-$	$(7.3 \pm 1.7) \times 10^{-4}$	_
$\rho(1700)^-\pi^+, \ \rho^- \to \pi^-\pi^0$	$(4.7 \pm 1.1) \times 10^{-4}$	_
$f_0(980)\pi_0^0, f_0 \to \pi^+\pi^-$	$(3.7 \pm 0.8) \times 10^{-5}$	_
$f_0(500)\pi^0$, $f_0 \to \pi^+\pi^-$	$(1.20 \pm 0.21) \times 10^{-4}$	_
$f_0(1370)\pi^0$, $f_0 o \pi^+\pi^-$	$(5.4 \pm 2.1) \times 10^{-5}$	_
$\mathit{f}_{0}(1500)\pi^{0}$, $\mathit{f}_{0} ightarrow \pi^{+}\pi^{-}$	$(5.7 \pm 1.6) \times 10^{-5}$	_
$f_0(1710)\pi^0$, $f_0 o \pi^+\pi^-$	$(4.5 \pm 1.6) \times 10^{-5}$	_
$\mathit{f}_{2}(1270)\pi^{0}$, $\mathit{f}_{2} ightarrow \ \pi^{+}\pi^{-}$	$(1.94 \pm 0.21) \times 10^{-4}$	_
$\pi^+\pi^-\pi^0$ nonresonant	$(1.2 \pm 0.4) \times 10^{-4}$	907
$3\pi^0$	$< 3.5 \times 10^{-4}$	CL=90% 908
$2\pi^{+}2\pi^{-}$	$(7.45 \pm 0.20) \times 10^{-3}$	880
$a_1(1260)^+\pi^-$, $a_1^+ ightarrow$	$(4.47 \pm 0.31) \times 10^{-3}$	_
$2\pi^+\pi^-$ total	,	
$a_1(1260)^+\pi^-$, $a_1^+\to$	$(3.23 \pm 0.25) \times 10^{-3}$	_
$\rho^0\pi^+$ S-wave	,	
$a_1(1260)^+\pi^-$, $a_1^+ \to$	$(1.9 \pm 0.5) \times 10^{-4}$	_
$ ho^0\pi^+$ <i>D</i> -wave	(1.5 ± 0.5) × 10	
$a_1(1260)^+\pi^-$, $a_1^+ ightarrow$	(62 07) × 10-4	
- ` , <u>I</u>	$(6.2 \pm 0.7) \times 10^{-4}$	_
$\sigma\pi^+$ 2 $ ho^0$ total	(1 02 0 12 \ \ 10-3	F10
•	$(1.83 \pm 0.13) \times 10^{-3}$	518
$2\rho^0$, parallel helicities	$(8.2 \pm 3.2) \times 10^{-5}$	_
$2\rho^0$, perpendicular helici-	$(4.8 \pm 0.6) \times 10^{-4}$	_
ties $2 ho^0$, longitudinal helicities	$(1.25 \pm 0.10) \times 10^{-3}$	_
2p , longitudinal nenerties	(1.25 ± 0.10) \ 10	

Resonant $(\pi^+\pi^-)\pi^+\pi^-$		(1.49	\pm	$0.12) \times 10^{-3}$		_
3-body total					_		
$\sigma \pi^+ \pi^-$		(6.1		$0.9) \times 10^{-4}$		_
$f_0(980)\pi^+\pi^-$, $f_0 \to$		(1.8	\pm	$0.5) \times 10^{-4}$		_
$f_2(1270)\pi^+\pi^-$, f_2 $ ightarrow$		(3.7	\pm	0.6) × 10 ⁻⁴		_
$_{\pi^{+}\pi^{-}2\pi^{0}}^{\pi^{+}\pi^{-}}$		(1 00	+	0.09) %		882
$\eta \pi^0$	[iii]	•			0.69×10^{-4}		846
$\omega \pi^0$	[<i>iii</i>]	•			$0.35) \times 10^{-4}$		761
$2\pi^{+}2\pi^{-}\pi^{0}$	[]				0.5°) × 10^{-3}		844
$\eta \pi^+ \pi^-$	[<i>iii</i>]				$0.16) \times 10^{-3}$		827
$\omega \pi^+ \pi^-$					$0.5) \times 10^{-3}$		738
$3\pi^{+}3\pi^{-}$	[]	(4.2	±	$1.2) \times 10^{-4}$		795
$\eta'(958)\pi^{0}$					1.4) \times 10 ⁻⁴		678
$\eta'(958)\pi^{+}\pi^{-}$					1.7 $) \times 10^{-4}$		650
2η					$0.20^{\circ}) \times 10^{-3}$		754
$\eta \eta'(958)$					$0.26^{\circ}) \times 10^{-3}$		537
Hadronic	mode				_		
K+K-		•			$0.07) \times 10^{-3}$	S=1.4	791
$2K_S^0$					$0.12) \times 10^{-4}$		789
$K_{S}^{0}K^{-}\pi^{+}$					$0.5) \times 10^{-3}$	S=1.1	739
$\overline{K}^*(892)^0 K_S^0, \overline{K}^{*0} \rightarrow$		(8.1	\pm	1.6) \times 10 ⁻⁵		608
$K^-\pi^+ K^*(892)^+K^-, K^{*+} \rightarrow K^0$		(1.86	±	0.30) \times 10 ⁻³		_
$\frac{\mathcal{K}_{S}^{0}\pi^{+}}{\overline{\mathcal{K}}^{*}(1410)^{0}\mathcal{K}_{S}^{0}}, \ \overline{\mathcal{K}}^{*0} \rightarrow$		(1.2	\pm	1.8) × 10 ⁻⁴		_
$K^-\pi^+ \ K^*(1410)^+ K^-, \ K^{*+} ightarrow \ K^0_5 \pi^+$		(3.1	±	1.9) × 10 ⁻⁴		_
		(ΕO		20) × 10-4		720
$(K^{-}\pi^{+})_{S-wave}K_{S}^{0}$					$2.8) \times 10^{-4}$		739
$(K_S^0 \pi^+)_{S-wave} K^-$	-				1.0) \times 10 ⁻⁴		739
$a_0(980)^-\pi^+, a_0^- \rightarrow K_S^0K^-$					1.4) \times 10 ⁻⁴		_
$a_0(1450)^-\pi^+$, $a_0^-\to$		(2.4	±	$2.0) \times 10^{-5}$		_
$K^0_S K^-$							
$a_2(1320)^-\pi^+,\;\;a_2^- ightarrow \mathcal{K}_5^0\mathcal{K}^-$		(5	±	$5) \times 10^{-6}$		-
$\rho(1450)^{-}\pi^{+}, \ \rho^{-} \rightarrow \ K_{S}^{0}K^{-}$	-	(4.6	+	$2.5) \times 10^{-5}$		_
$K_{S}^{0}K^{+}\pi^{-}$					$0.34) \times 10^{-3}$	S=1.1	739
$K^*(892)^0 K^0_{S}, K^{*0} \rightarrow$					$0.34) \times 10^{-4}$ $0.21) \times 10^{-4}$	5—1.1	608
$K^+\pi^-$		(1.10	_	0.21 / 10		000
$K^{*}(892)^{-}K^{+}, K^{*-} \rightarrow$		(6.1	±	$1.0) \times 10^{-4}$		_

$K^*(1410)^0K^0_{\mathcal{S}},\;\;K^{*0}$ $ ightarrow$	(5	\pm	8	$) \times 10^{-5}$		_
$\mathcal{K}^+\pi^+$							
$K^*(1410)^-K^+, K^{*-} \to$	(2.5	\pm	2.0	$) \times 10^{-4}$		_
$K_S^0\pi^-$							
$(K^+\pi^-)_{S-wave}K^0_S$	(3.6	\pm	1.9	$) \times 10^{-4}$		739
$({\it K}^0_S\pi^-)_{S-wave}{\it K}^+$					$) \times 10^{-4}$		739
$a_0(980)^+\pi^-$, $a_0^+ \to K_S^0K^+$) × 10 ⁻⁴		_
$a_0(1450)^+\pi^-, a_0^+\to$) × 10 ⁻⁵		_
$K_{S}^{0}K^{+}$	(5.2	_	2.5) × 10		
$\rho(1700)^{+}\pi^{-}, \ \rho^{+} \rightarrow \ K_{S}^{0}K^{+}$	(1 1		0.6) v 10=5		
					$) \times 10^{-5}$		
$K^{+}K^{-}\pi^{0}$					$) \times 10^{-3}$		743
$K^*(892)^+K^-, K^*(892)^+ ightarrow K^+\pi^0$	(1.50	±	0.07	$) \times 10^{-3}$		_
$K^{+}\pi^{\circ}$ $K^{*}(892)^{-}K^{+}, K^{*}(892)^{-} \rightarrow$	(E /	_	0.4) × 10 ⁻⁴		_
$\kappa^- \pi^0$	(3.4	Τ.	0.4) × 10		
$(K^{-}\pi^{0})_{S-wave}K^{-}$	(2.40	\pm	0.17	$) \times 10^{-3}$		743
$(K^-\pi^0)_{S-wave}^{S-wave}K^+$					$) \times 10^{-4}$		743
$f_0(980)\pi^0, f_0 \to K^+K^-$) × 10 ⁻⁴		_
$\phi \pi^0$, $\phi \rightarrow K^+ K^-$					$) \times 10^{-4}$		_
$2K_{S}^{0}\pi^{0}$					× 10 ⁻⁴		740
$K^{+}K^{-}\pi^{+}\pi^{-}$					$) \times 10^{-3}$		677
$\phi(\pi^+\pi^-)_{S-wave}, \phi \rightarrow$					$) \times 10^{-4}$		614
K^+K^-	(2.51	_	0.55) ^ 10		014
$(\phi ho^0)_{S-wave}, \; \phi ightarrow \; K^+ K^-$	(9.3	\pm	1.2	$) \times 10^{-4}$		250
$(\phi ho^0)_{D-wave}$, $\phi ightarrow K^+ K^-$					$) \times 10^{-5}$		_
$(K^{*0}\overline{K}^{*0})_{S-wave}$, $K^{*0} \rightarrow$) × 10 ⁻⁴		_
$K^{\pm}\pi^{\mp}$	(, = 0		
$(K^{-}\pi^{+})_{P-wave}$,	(2.7	\pm	0.5	$) \times 10^{-4}$		_
$(K^+\pi^-)_{S-wave}$	•				,		
$K_1(1270)^+ K^-, K_1^+ \rightarrow$	(1.8	\pm	0.5	$) \times 10^{-4}$		_
$\kappa^{*0}\pi^{+}$	`						
$K_1(1270)^+ K^-, K_1^+ \rightarrow$	(1.14	\pm	0.26	$) \times 10^{-4}$		_
$\rho^0 K^+$	`				,		
$K_1(1270)^- K^+, K_1^- \rightarrow$	(2.2	+	1.2	$) \times 10^{-5}$		_
$\frac{1}{K}$ *0 π	`						
$K_1(1270)^- K^+, K_1^- \rightarrow$	(1.46	\pm	0.25	$) \times 10^{-4}$		_
$\rho^0 K^-$	`				,		
$K^*(1410)^+ K^-, K^{*+} \rightarrow$	(1.02	+	0.26	$) \times 10^{-4}$		_
1 1 1 1 1 1 1 1 1 1	(, = 0		
$K^* (1410)^- K^+, K^{*-} \rightarrow K^{*0} \pi^-$	(1.14	\pm	0.25	$) \times 10^{-4}$		_
$K^{*0}\pi^{-}$					2		
$2K_{S}^{0}\pi^{+}\pi^{-}$	(1.20	\pm		$) \times 10^{-3}$		673
$K_S^0 K^- 2\pi^+ \pi^-$	<	1.4			$\times 10^{-4}$	CL=90%	595
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.1	\pm	2.0	$) \times 10^{-3}$		600

Other $K\overline{K}X$ modes. They include all decay modes of the ϕ , η , and ω .

$\phi\eta$	(1.4 ± 0.5	$) \times 10^{-4}$		489
$\phi \omega$	< 2.1	$\times 10^{-3}$	CL=90%	238

Radiative modes

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

- ,	•	` '	•		
$\gamma \gamma$	C1	< 8.5	\times 10 ⁻⁷	CL=90%	932
e^+e^-	C1	< 7.9	\times 10 ⁻⁸	CL=90%	932
$\mu^+\mu^-$	C1	< 6.2	$\times 10^{-9}$	CL=90%	926
$\pi^{0} e^{+} e^{-}$	C1	< 4.5	$\times10^{-5}$	CL=90%	928
$\pi^{0} \mu^{+} \mu^{-}$	C1	< 1.8	\times 10 ⁻⁴	CL=90%	915
$\eta e^+ e^-$	C1	< 1.1	\times 10 ⁻⁴	CL=90%	852
$\eta \mu^+ \mu^-$	C1	< 5.3	\times 10 ⁻⁴	CL=90%	838
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1	< 3.73	\times 10 ⁻⁴	CL=90%	922
$ ho^0e^+e^-$	C1	< 1.0	\times 10 ⁻⁴	CL=90%	771
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1	< 5.5	\times 10 ⁻⁷	CL=90%	894

HTTP://PDG.LBL.GOV

Page 50

$ ho^0 \mu^+ \mu^-$	C1	<	2.2	$\times10^{-5}$	CL=90%	754
$\omega e^+ e^-$	C1	<	1.8	\times 10 ⁻⁴	CL=90%	768
$\omega \mu^+ \mu^-$	C1	<	8.3	\times 10 ⁻⁴	CL=90%	751
$K^- K^+ e^+ e^-$	C1	<	3.15	$\times10^{-4}$	CL=90%	791
ϕe^+e^-	C1	<	5.2	$\times10^{-5}$	CL=90%	654
$K^-K^+\mu^+\mu^-$	C1	<	3.3	$\times10^{-5}$	CL=90%	710
$\phi \mu^+ \mu^-$	C1	<	3.1	$\times10^{-5}$	CL=90%	631
$\overline{K}{}^0 e^+ e^-$		[zz] <	1.1	$\times10^{-4}$	CL=90%	866
$\overline{K}{}^0\mu^+\mu^-$		[zz] <	2.6	$\times10^{-4}$	CL=90%	852
$K^{-}\pi^{+}e^{+}e^{-}$	<i>C</i> 1	<	3.85	$\times10^{-4}$	CL=90%	861
$\overline{K}^*(892)^0 e^+ e^-$		[zz] <	4.7	$\times10^{-5}$	CL=90%	719
$K^{-}\pi^{+}\mu^{+}\mu^{-}$	C1		3.59	$\times10^{-4}$	CL=90%	829
$K^-\pi^+\mu^+\mu^-$, 675 $<$		(4.2 ± 0.4	_		_
$m_{\mu\mu}$ $<$ 875 MeV						
$\overline{K}^*(892)^0 \mu^+ \mu^-$		[zz] <	2.4	$\times10^{-5}$	CL=90%	700
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1		8.1	$\times 10^{-4}$	CL=90%	863
μ^\pme^\mp	LF	[<i>hh</i>] <		$\times10^{-8}$	CL=90%	929
$\pi^0\mathrm{e}^\pm\mu^\mp$	LF	[hh] <		$\times10^{-5}$	CL=90%	924
$\etae^{\pm}\dot{\mu^{\mp}}$	LF	[hh] <		$\times 10^{-4}$	CL=90%	848
$\pi^{+}\pi^{-}e^{\pm}\mu^{\mp}$	LF	[hh] <		$\times10^{-5}$	CL=90%	911
$ ho^0e^\pm\mu^\mp$	LF	[hh] <	4.9	\times 10 ⁻⁵	CL=90%	767
$\omega e^{\pm} \mu^{\mp}$	LF	[hh] <	1.2	$\times 10^{-4}$	CL=90%	764
$\mathit{K^-K^+e^\pm\mu^\mp}$	LF	[hh] <	1.8	$\times10^{-4}$	CL=90%	754
$\phie^\pm\mu^\mp$	LF	[hh] <	3.4	$\times10^{-5}$	CL=90%	648
$\overline{\mathcal{K}}{}^0e^\pm\mu^\mp$	LF	[hh] <	1.0	$\times10^{-4}$	CL=90%	863
$\mathit{K}^-\pi^+e^\pm\mu^\mp$	LF	[hh] <	5.53	$\times10^{-4}$	CL=90%	848
$\overline{K}^*(892)^0 e^{\pm} \mu^{\mp}$	LF	[hh] <	8.3	$\times10^{-5}$	CL=90%	714
$2\pi^{-}2e^{+}$ + c.c.	L	<	1.12	\times 10 ⁻⁴	CL=90%	922
$2\pi^{-}2\mu^{+}$ + c.c.	L	<	2.9	$\times10^{-5}$	CL=90%	894
$K^{-}\pi^{-}2e^{+}$ + c.c.	L	<	2.06	$\times10^{-4}$	CL=90%	861
$K^-\pi^-2\mu^+ + \text{c.c.}$	L	<	3.9	$\times10^{-4}$	CL=90%	829
$2K^{-}2e^{+}$ + c.c.	L	<	1.52	\times 10 ⁻⁴	CL=90%	791
$2K^{-}2\mu^{+}$ + c.c.	L	<	9.4	$\times10^{-5}$	CL=90%	710
$\pi^-\pi^-e^+\mu^++$ c.c.	L	<	7.9	$\times10^{-5}$	CL=90%	911
$K^-\pi^-e^+\mu^+ + \text{c.c.}$	L	<	2.18	$\times 10^{-4}$	CL=90%	848
$2K^{-}e^{+}\mu^{+}+\text{c.c.}$	L	<	5.7	$\times 10^{-5}$	CL=90%	754
pe ⁻	L,B	[jjj]	1.0	$\times10^{-5}$	CL=90%	696
$\overline{p}e^+$	L,B	[kkk] <	1.1	$\times10^{-5}$	CL=90%	696

$$D^*(2007)^0$$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass
$$m=2006.85\pm0.05~{\rm MeV}~{\rm (S=1.1)}$$
 $m_{D^{*0}}-m_{D^0}=142.016\pm0.030~{\rm MeV}~{\rm (S=1.5)}$ Full width $\Gamma~<~2.1~{\rm MeV},~{\rm CL}=90\%$

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

D*(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(64.7±0.9) %	43
$D^0\gamma$	$(35.3\pm0.9)\%$	137

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass $m = 2010.26 \pm 0.05 \text{ MeV}$

$$m_{D^*(2010)^+} - m_{D^+} = 140.67 \pm 0.08 \text{ MeV}$$

$$m_{D^*(2010)^+} - m_{D^0} = 145.4257 \pm 0.0017 \text{ MeV}$$

Full width $\Gamma = 83.4 \pm 1.8 \text{ keV}$

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

$D^*(2010)^{\pm}$ DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$D^0\pi^+$	(67.7±0.5) %	39
$D^+\pi^0$	$(30.7\!\pm\!0.5)~\%$	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

$D_0^*(2400)^0$

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass
$$m=2318\pm29~{\rm MeV}~{\rm (S}=1.7)$$
 Full width $\Gamma=267\pm40~{\rm MeV}$

$D_0^*(2400)^0$ DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

$$D^{+}\pi^{-}$$

seen

385

$D_1(2420)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I needs confirmation.

Mass
$$m = 2420.8 \pm 0.5 \text{ MeV}$$
 (S = 1.3)

$$m_{D_1^0} - m_{D^{*+}} = 410.6 \pm 0.5 \quad (S = 1.3)$$

Full width
$$\Gamma = 31.7 \pm 2.5 \text{ MeV}$$
 (S = 3.5)

HTTP://PDG.LBL.GOV

Page 52

 $\overline{D}_1(2420)^0$ modes are charge conjugates of modes below.

D ₁ (2420) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2010)^+\pi^-$	seen	353
$D^0\pi^+\pi^-$	seen	425
$D^+\pi^-$	not seen	472
$D^{*0}\pi^{+}\pi^{-}$	not seen	279

$D_2^*(2460)^0$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $\overline{J^P = 2^+}$ assignment strongly favored.

Mass
$$m=2460.7\pm0.4$$
 MeV (S = 3.1) $m_{D_2^{*0}}-m_{D^+}=591.1\pm0.4$ MeV (S = 2.6) $m_{D_2^{*0}}-m_{D^{*+}}=450.4\pm0.4$ MeV (S = 2.9) Full width $\Gamma=47.5\pm1.1$ MeV (S = 1.8)

 $\overline{D}_2^*(2460)^0$ modes are charge conjugates of modes below.

D ₂ *(2460) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^+\pi^-$	seen	505
$D^*(2010)^+\pi^-$	seen	389
$D^0\pi^+\pi^-$	not seen	462
$D^{*0}\pi^{+}\pi^{-}$	not seen	324

$D_2^*(2460)^{\pm}$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $\overline{J^P = 2^+}$ assignment strongly favored.

Mass
$$m=2465.4\pm1.3$$
 MeV (S = 3.1) $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7$ MeV Full width Γ = 46.7 ± 1.2 MeV

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

D_2^* (2460) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^+$	seen	513
$D^{st 0} \pi^+$	seen	396
$D^+\pi^+\pi^-$	not seen	462
$D^{*+}\pi^+\pi^-$	not seen	326

CHARMED, STRANGE MESONS $(C = S = \pm 1)$

 $D_s^+ = c\overline{s}, D_s^- = \overline{c}s$, similarly for D_s^* 's

 D_{s}^{\pm}

$$I(J^P) = 0(0^-)$$

Mass $m=1968.28\pm0.10$ MeV $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05$ MeV Mean life $\tau=(500\pm7)\times10^{-15}$ s ~(S=1.3) $c au=149.9~\mu{\rm m}$

CP-violating decay-rate asymmetries

 $A_{CP}(\mu^{\pm}\nu) = (5 \pm 6)\%$ $A_{CP}(K^{\pm}K_S^0) = (0.08 \pm 0.26)\%$ $A_{CP}(K^+K^-\pi^{\pm}) = (-0.5 \pm 0.9)\%$ $A_{CP}(\phi \pi^{\pm}) = (-0.38 \pm 0.27)\%$ $A_{CP}(K^{\pm}K_{5}^{0}\pi^{0}) = (-2 \pm 6)\%$ $A_{CP}(2K_S^0\pi^{\pm}) = (3 \pm 5)\%$ $A_{CP}(K^{+}K^{-}\pi^{\pm}\pi^{0}) = (0.0 \pm 3.0)\%$ $A_{CP}(K^{\pm}K_S^0\pi^+\pi^-) = (-6 \pm 5)\%$ $A_{CP}(K_S^0K^{\mp}2\pi^{\pm}) = (4.1 \pm 2.8)\%$ $A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}) = (-0.7 \pm 3.1)\%$ $A_{CP}(\pi^{\pm}\eta) = (1.1 \pm 3.1)\%$ $A_{CP}(\pi^{\pm}\eta') = (-2.2 \pm 2.3)\%$ $A_{CP}(\eta \pi^{\pm} \pi^{0}) = (-1 \pm 4)\%$ $A_{CP}(\eta' \pi^{\pm} \pi^{0}) = (0 \pm 8)\%$ $A_{CP}(K^{\pm}\pi^{0}) = (-27 \pm 24)\%$ $A_{CP}(\overline{K}^0/K^0\pi^{\pm}) = (0.4 \pm 0.5)\%$ $A_{CP}(K_S^0\pi^{\pm}) = (3.1 \pm 2.6)\%$ (S = 1.7) $A_{CP}(K^{\pm}\pi^{+}\pi^{-}) = (4 \pm 5)\%$ $A_{CP}(K^{\pm}\eta) = (9 \pm 15)\%$ $A_{CP}(K^{\pm}\eta'(958)) = (6 \pm 19)\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-14 \pm 8) \times 10^{-3} [ss]$$

$D_s^+ \rightarrow \phi \ell^+ \nu_\ell$ form factors

 $r_2 = 0.84 \pm 0.11$ (S = 2.4) $r_v = 1.80 \pm 0.08$ $\Gamma_L/\Gamma_T = 0.72 \pm 0.18$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

		Scale factor/	р					
D+ DECAY MODES	Fraction (Γ_i/Γ)	•						
	Inclusive modes							
e^+ semileptonic	[///] (6.5 ± 0.4) %	/ 0	_					
π^+ anything	(119.3 ± 1.4) 9		_					
π^- anything	(43.2 ± 0.9)		_					
π^{0} anything	(123 ± 7)		_					
K^- anything	(18.7 ± 0.5)		_					
K^+ anything	(28.9 ± 0.7)		_					
K_S^0 anything	(19.0 ± 1.1)	6	_					
η anything	$[nnn]$ (29.9 \pm 2.8) %	%	_					
ω anything	(6.1 ± 1.4)	%	_					
η' anything	[000] (10.3 ± 1.4) %	% S=1.1	_					
$f_0(980)$ anything, $f_0 ightarrow \pi^+\pi^-$	- < 1.3	% CL=90%	_					
ϕ anything	(15.7 ± 1.0) $\%$	%	_					
K^+K^- anything	(15.8 ± 0.7) $\%$	%	_					
$K^0_SK^+$ anything	(5.8 ± 0.5)	6	_					
$K_S^0K^-$ anything	(1.9 ± 0.4)	%	_					
$2K_S^0$ anything	(1.70 ± 0.32) %	%	_					
$2K^{+}$ anything	< 2.6	$< 10^{-3}$ CL=90%	_					
$2K^-$ anything	< 6	$< 10^{-4}$ CL=90%	_					
Leptonio	and semileptonic mod	es						
$e^+\nu_e$	< 8.3		984					
$\mu^+ \nu_{\mu}$	(5.50±0.23) >	_	981					
$ au^+ u_ au$	(5.48±0.23) %		182					
$K^+K^-e^+\nu_e$	—		851					
$\phi e^+ \nu_e$	[ppp] (2.39±0.23) %	% S=1.8	720					
$\eta e^{+} \nu_{e} + \eta'(958) e^{+} \nu_{e}$	[ppp] (2.96±0.29) %		_					
$\eta e^+ \nu_e$	[ppp] (2.29±0.19) %		908					
$\eta'(958) e^+ \nu_e$	[ppp] (7.4 ±1.4) >	< 10 ⁻³	751					
$\omega e^+ \nu_e$		$< 10^{-3}$ CL=90%	829					
$K^0 e^+ \nu_e$	(3.9 ± 0.9)	< 10 ⁻³	921					
$K^*(892)^0 e^+ \nu_e$	$[ppp]$ (1.8 \pm 0.4)	< 10 ⁻³	782					
Hadroni	Hadronic modes with a $K\overline{K}$ pair							
	(1.50 ± 0.05) 9		850					
$K^{+} K^{0}_{5} K^{+} \overline{K}^{0}$	(2.95 ± 0.14) %		850					
$K^+K^-\pi^+$	[tt] (5.45 ± 0.17) %		805					
$\phi \pi^+$	$[ppp,rrr]$ (4.5 \pm 0.4) %		712					
$\phi \pi^+$, $\phi \to K^+ K^-$	[rrr] (2.27±0.08) %		712					
HTTP://PDG.LBL.GOV	Page 55 Cr	eated: 5/30/201	7 17:13					

$K^+ \overline{K}{}^* (892)^0$, $ \overline{K}{}^{*0} ightarrow$		(2.61±0.09) %		416
$K^-\pi^+$					
$f_0(980)\pi^+, f_0 \rightarrow K^+K^-$		•	$1.15\pm0.32)\%$		732
$f_0(1370)\pi^+, f_0 \to K^+K^-$			7 ± 5) $\times 10^{-4}$		_
$f_0(1710)\pi^+, f_0 \to K^+K^-$		(6.7 ± 2.9) \times 10 ⁻⁴		198
$K^+\overline{K}_0^*(1430)^0$, $\overline{K}_0^*\to$		($1.9 \pm 0.4 \times 10^{-3}$		218
$K^{+}_{S}K^{0}_{S}\pi^{0}$		($1.52 \pm 0.22) \%$		805
$2K_S^0\pi^+$		($7.7 \pm 0.6) \times 10^{-3}$		802
$K^0 \overline{K}{}^0 \pi^+$			_		802
$K^*(892)^+ \overline{K}{}^0$	[ppp]	(5.4 ± 1.2) %		683
$K^+K^-\pi^+\pi^0$		(6.3 \pm 0.6) %		748
ϕho^+	[ppp]	(8.4 $^{+1.9}_{-2.3}$) %		401
$K_{S}^{0}K^{-}2\pi^{+}$		($1.67 \pm 0.10) \%$		744
$K^*(892)^+\overline{K}^*(892)^0$	[ppp]	(7.2 \pm 2.6) %		416
$K^+K_5^0\pi^+\pi^-$			$1.03\pm0.10)$ %		744
$K^{+}K^{-}2\pi^{+}\pi^{-}$		($8.7 \pm 1.5 \times 10^{-3}$		673
$\phi 2\pi^+\pi^-$	[ppp]		$1.21\pm0.16)~\%$		640
$\mathit{K^+K^- ho^0\pi^+}$ non- ϕ		<	2.6×10^{-4}	CL=90%	249
$\phi ho^0 \pi^+$, $\phi ightarrow K^+ K^-$		($6.5 \pm 1.3) \times 10^{-3}$		181
ϕ a $_1(1260)^+$, $\phi ightarrow$		(7.5 ± 1.2) $\times 10^{-3}$		†
$\mathit{K}^{+}\mathit{K}^{-}$, $\mathit{a}_{1}^{+} ightarrow \mathit{ ho}^{0} \pi^{+}$					
K^+K^- , $a_1^+ ightarrow ho^0\pi^+$ $K^+K^-2\pi^+\pi^-$ nonresonant		(9 ±7)×10 ⁻⁴		673
		(9 ± 7) $\times 10^{-4}$ 9 ± 4) $\times 10^{-4}$		673 669
$K^+K^-2\pi^+\pi^-$ nonresonant $2K_S^02\pi^+\pi^-$	nic mo	(
$K^+K^-2\pi^+\pi^-$ nonresonant $2K^0_S2\pi^+\pi^-$ Hadron $\pi^+\pi^0$	ic mo	(9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's	CL=90%	
$K^+K^-2\pi^+\pi^-$ nonresonant $2K_S^02\pi^+\pi^-$ Hadron $\pi^+\pi^0$ $2\pi^+\pi^-$	ic mo	(des < (9 ± 4) \times 10 ⁻⁴ without K 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) %	CL=90% S=1.1	669
$K^+K^-2\pi^+\pi^-$ nonresonant $2K_S^02\pi^+\pi^-$ Hadron $\pi^+\pi^0$ $2\pi^+\pi^ \rho^0\pi^+$	ic mo	(des < (9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴		669 975
$K^+K^-2\pi^+\pi^-$ nonresonant $2K_S^02\pi^+\pi^-$ Hadron $\pi^+\pi^0$ $2\pi^+\pi^ \rho^0\pi^+$ $\pi^+(\pi^+\pi^-)_{S-\text{wave}}$	ic mo	(des < (9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³		975 959
$K^+K^-2\pi^+\pi^-$ nonresonant $2K_S^02\pi^+\pi^-$ Hadron $\pi^+\pi^0$ $2\pi^+\pi^ \rho^0\pi^+$ $\pi^+(\pi^+\pi^-)s$ —wave $f_2(1270)\pi^+, f_2 \rightarrow \pi^+\pi^-$		(des < ((9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³		975 959 825
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$		(des < ((9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³ 3.0 \pm 2.0) \times 10 ⁻⁴		975 959 825 959
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$		(des < ((9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³		975 959 825 959 559
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$		(des < ((((((((((((((((((9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³ 3.0 \pm 2.0) \times 10 ⁻⁴ 6.5 \pm 1.3) \times 10 ⁻³	S=1.1	975 959 825 959 559 421 960 935
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$ $\eta\pi^{+}$	[sss]	(des < ((((((((((((((((((9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³ 3.0 \pm 2.0) \times 10 ⁻⁴ 6.5 \pm 1.3) \times 10 ⁻³ — 1.70 \pm 0.09) %		975 959 825 959 559 421 960 935 902
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})s$ —wave $f_{2}(1270)\pi^{+}$, $f_{2}\to\pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}$, $\rho^{0}\to\pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$ $\eta\pi^{+}$ $\omega\pi^{+}$	[sss]	(des < ((((((((((((((((((9 ± 4) \times 10 ⁻⁴ without K 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³ 3.0 \pm 2.0) \times 10 ⁻⁴ 6.5 \pm 1.3) \times 10 ⁻³ — 1.70 \pm 0.09) % 2.4 \pm 0.6) \times 10 ⁻³	S=1.1	975 959 825 959 559 421 960 935 902 822
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$ $\eta\pi^{+}$ $\omega\pi^{+}$ $3\pi^{+}2\pi^{-}$	[sss]	(des < ((((((((((((((((((9 ± 4) \times 10 ⁻⁴ without <i>K</i> 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³ 3.0 \pm 2.0) \times 10 ⁻⁴ 6.5 \pm 1.3) \times 10 ⁻³ — 1.70 \pm 0.09) %	S=1.1	975 959 825 959 559 421 960 935 902 822 899
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$ $\eta\pi^{+}$ $\omega\pi^{+}$ $3\pi^{+}2\pi^{-}$ $2\pi^{+}\pi^{-}2\pi^{0}$	[sss] [ppp] [ppp]	(des < ((((((((((((((((((9 ± 4) \times 10 ⁻⁴ without K 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³ 3.0 \pm 2.0) \times 10 ⁻⁴ 6.5 \pm 1.3) \times 10 ⁻³ — 1.70 \pm 0.09) % 2.4 \pm 0.6) \times 10 ⁻³ 8.0 \pm 0.8) \times 10 ⁻³	S=1.1	975 959 825 959 559 421 960 935 902 822 899
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})s$ —wave $f_{2}(1270)\pi^{+}$, $f_{2}\to\pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}$, $\rho^{0}\to\pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$ $\eta\pi^{+}$ $\omega\pi^{+}$ $3\pi^{+}2\pi^{-}$ $2\pi^{+}\pi^{-}2\pi^{0}$ $\eta\rho^{+}$	[sss]	(des < ((((((((((((((((((9 ± 4) $\times 10^{-4}$ without K's 3.5 $\times 10^{-4}$ 1.09 ± 0.05) % 2.0 ± 1.2) $\times 10^{-4}$ 9.1 ± 0.4) $\times 10^{-3}$ 1.10 ± 0.20) $\times 10^{-3}$ 3.0 ± 2.0) $\times 10^{-4}$ 6.5 ± 1.3) $\times 10^{-3}$ — 1.70 ± 0.09) % 2.4 ± 0.6) $\times 10^{-3}$ 8.0 ± 0.8) $\times 10^{-3}$ 8.9 ± 0.8) %	S=1.1	975 959 825 959 559 421 960 935 902 822 899 902 724
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$ $\eta\pi^{+}$ $\omega\pi^{+}$ $3\pi^{+}2\pi^{-}$ $2\pi^{+}\pi^{-}2\pi^{0}$ $\eta\rho^{+}$ $\eta\pi^{+}\pi^{0}$	[sss] [ppp] [ppp]	(des < ((((((((((((((((((9 ± 4) $\times 10^{-4}$ without K 's 3.5 $\times 10^{-4}$ 1.09 ± 0.05) % 2.0 ± 1.2) $\times 10^{-4}$ 9.1 ± 0.4) $\times 10^{-3}$ 1.10 ± 0.20) $\times 10^{-3}$ 3.0 ± 2.0) $\times 10^{-4}$ 6.5 ± 1.3) $\times 10^{-3}$ — 1.70 ± 0.09) % 2.4 ± 0.6) $\times 10^{-3}$ 8.0 ± 0.8) $\times 10^{-3}$ 8.0 ± 0.8) $\times 10^{-3}$ 8.9 ± 0.8) % 9.2 ± 1.2) %	S=1.1	975 959 825 959 559 421 960 935 902 822 899 902 724 885
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$ $\eta\pi^{+}$ $\omega\pi^{+}$ $3\pi^{+}2\pi^{-}$ $2\pi^{+}\pi^{-}2\pi^{0}$ $\eta\rho^{+}$ $\eta\pi^{+}\pi^{0}$ $\omega\pi^{+}\pi^{0}$	[sss] [ppp] [ppp]	(des < ((((((((((((((((((9 ± 4) \times 10 ⁻⁴ without K 's 3.5 \times 10 ⁻⁴ 1.09 \pm 0.05) % 2.0 \pm 1.2) \times 10 ⁻⁴ 9.1 \pm 0.4) \times 10 ⁻³ 1.10 \pm 0.20) \times 10 ⁻³ 3.0 \pm 2.0) \times 10 ⁻⁴ 6.5 \pm 1.3) \times 10 ⁻³ — 1.70 \pm 0.09) % 2.4 \pm 0.6) \times 10 ⁻³ 8.0 \pm 0.8) \times 10 ⁻³ 8.9 \pm 0.8) % 9.2 \pm 1.2) % 2.8 \pm 0.7) %	S=1.1	975 959 825 959 559 421 960 935 902 822 899 902 724 885 802
$K^{+}K^{-}2\pi^{+}\pi^{-}$ nonresonant $2K_{S}^{0}2\pi^{+}\pi^{-}$ Hadron $\pi^{+}\pi^{0}$ $2\pi^{+}\pi^{-}$ $\rho^{0}\pi^{+}$ $\pi^{+}(\pi^{+}\pi^{-})_{S-\text{wave}}$ $f_{2}(1270)\pi^{+}, f_{2} \rightarrow \pi^{+}\pi^{-}$ $\rho(1450)^{0}\pi^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ $\pi^{+}2\pi^{0}$ $2\pi^{+}\pi^{-}\pi^{0}$ $\eta\pi^{+}$ $\omega\pi^{+}$ $3\pi^{+}2\pi^{-}$ $2\pi^{+}\pi^{-}2\pi^{0}$ $\eta\rho^{+}$ $\eta\pi^{+}\pi^{0}$	[sss] [ppp] [ppp]	(des < ((((((((((((((((((9 ± 4) $\times 10^{-4}$ without K 's 3.5 $\times 10^{-4}$ 1.09 ± 0.05) % 2.0 ± 1.2) $\times 10^{-4}$ 9.1 ± 0.4) $\times 10^{-3}$ 1.10 ± 0.20) $\times 10^{-3}$ 3.0 ± 2.0) $\times 10^{-4}$ 6.5 ± 1.3) $\times 10^{-3}$ — 1.70 ± 0.09) % 2.4 ± 0.6) $\times 10^{-3}$ 8.0 ± 0.8) $\times 10^{-3}$ 8.0 ± 0.8) $\times 10^{-3}$ 8.9 ± 0.8) % 9.2 ± 1.2) %	S=1.1	975 959 825 959 559 421 960 935 902 822 899 902 724 885

$\eta'(958)\pi^+ $ [or $3\pi^+2\pi^-2\pi^0$	oo,ppp] (3.94±0.2	25) %		743 803
$\omega \eta \pi^+$	[nnn] <	2.13	0/0	CL=90%	654
11> 1		5.8 ± 1.5		CL—3070	465
$\eta'(958)\pi^{+}\pi^{0}$		5.6 ± 0.8			720
$\eta'(958)\pi^+\pi^0$ nonresonant		5.1	%	CL=90%	720
, ,				0_ 00/0	0
		or three	_		
$K^{+}\pi^{0}$	($\times 10^{-4}$		917
$K_S^0 \pi^+$	($(6) \times 10^{-3}$		916
$K_{+}^{+}\eta$		1.77 ± 0.3			835
$K^+\omega$	[<i>ppp</i>] <		$\times 10^{-3}$	CL=90%	741
$K^+ \eta'(958)$		1.8 ± 0.6			646
$K^{+}\pi^{+}\pi^{-}$		6.6 ± 0.4			900
$K^{+}\rho^{0}$	(10^{-3}		745
$K^{+}\rho(1450)^{0}$, $\rho^{0} \rightarrow \pi^{+}\pi^{-}$	(1) × 10 ⁻⁴		
$K^*(892)^0\pi^+$, $K^{*0} \rightarrow$	(1.42 ± 0.2	$(24) \times 10^{-3}$		775
$K^+\pi^- \ K^*(1410)^0\pi^+$, $K^{*0} ightarrow$	(1.24 ± 0.2	$(29) \times 10^{-3}$		_
$K^*(1430)^0\pi^+$, K^{*0} $ ightarrow$	(5.0 ±3.5	$5) \times 10^{-4}$		_
$K^+\pi^-$ $K^+\pi^+\pi^-$ nonresonant	(1.04 ± 0.3	$(34) \times 10^{-3}$		900
$K^0\pi^+\pi^0$	(1.00 ± 0.1	•		899
$\kappa_{5}^{0} 2\pi^{+} \pi^{-}$	($) \times 10^{-3}$		870
$K^+\omega\pi^0$	[<i>ppp</i>] <		× 10 ⁻³	CL=90%	684
$K^+\omega\pi^+\pi^-$		5.4		CL=90%	603
$K^+\omega\eta$		7.9	2	CL=90%	366
$2K^{+}K^{-}$		2.18 ± 0.2	_		627
ϕK^+ , $\phi \rightarrow K^+ K^-$	($) \times 10^{-5}$		_
Doubly Ca	abibbo-su	ppressed	modes		
$2K^+\pi^-$	(1.27 ± 0.1	$(3) \times 10^{-4}$		805
$K^+K^*(892)^0$, $K^{*0} \to$		6.0 ± 3.4			_
$K^+\pi^-$					
Bary	on-antiba	ryon mod	е		
р <u>п</u>	(1.3 ± 0.4	10^{-3}		295
$\Delta C = 1$ weak Lepton		current (<i>C</i> mber (<i>LF</i>	,	,	
Lepton nu	$mber\;(L)$	violating	modes		
$\pi^{+} e^{+} e^{-}$	[zz] <	1.3	$\times10^{-5}$	CL=90%	979
$\pi^+\phi$, $\phi ightarrow e^+e^-$	[yy] (6 +8 -4	$) \times 10^{-6}$		_
$\pi^{+}\mu^{+}\mu^{-}$	[zz] <	4.1	$\times 10^{-7}$	CL=90%	968
• •	<	3.7	$\times 10^{-6}$	CL=90%	922
HTTP://PDG.LBL.GOV	Page 5	57	Created:	5/30/2017	17:13

$K^+\mu^+\mu^-$	C1	<	2.1	$\times10^{-5}$	CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4	$\times 10^{-3}$	CL=90%	765
$\pi^+e^+\mu^-$	LF	<	1.2	\times 10 ⁻⁵	CL=90%	976
$\pi^+e^-\mu^+$	LF	<	2.0	\times 10 ⁻⁵	CL=90%	976
$K^+e^+\mu^-$	LF	<	1.4	\times 10 ⁻⁵	CL=90%	919
$K^+e^-\mu^+$	LF	<	9.7	\times 10 ⁻⁶	CL=90%	919
$\pi^{-}2e^{+}$	L	<	4.1	\times 10 ⁻⁶	CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	1.2	\times 10 ⁻⁷	CL=90%	968
$\pi^-e^+\mu^+$	L	<	8.4	\times 10 ⁻⁶	CL=90%	976
$K^{-}2e^{+}$	L	<	5.2	\times 10 ⁻⁶	CL=90%	922
$K^-2\mu^+$	L	<	1.3	\times 10 ⁻⁵	CL=90%	909
$K^-e^+\mu^+$	L	<	6.1	\times 10 ⁻⁶	CL=90%	919
$K^*(892)^- 2\mu^+$	L	<	1.4	$\times 10^{-3}$	CL=90%	765

$$I(J^P) = 0(??)$$

 J^P is natural, width and decay modes consistent with 1^- .

Mass
$$m=2112.1\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 D_s^{*-} modes are charge conjugates of the modes below.

D _s *+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D_s^+ \gamma$	(93.5±0.7) %	139
$D_{s}^{+} \gamma D_{s}^{+} \pi^{0} D_{s}^{+} e^{+} e^{-}$	(5.8±0.7) %	48
$D_s^+e^+e^-$	$(6.7\pm1.6)\times10^{-3}$	139

$D_{s0}^*(2317)^{\pm}$

$$I(J^P) = 0(0^+)$$

 $I(J^P) = 0(0^+)$ J, P need confirmation.

Created: 5/30/2017 17:13

 J^P is natural, low mass consistent with 0^+ .

Mass
$$m=2317.7\pm0.6$$
 MeV (S = 1.1) $m_{D_{s0}^*(2317)^\pm}-m_{D_s^\pm}=349.4\pm0.6$ MeV (S = 1.1) Full width Γ < 3.8 MeV, CL = 95%

 $D_{s0}^{*}(2317)^{-}$ modes are charge conjugates of modes below.

D_{s0}^* (2317) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ \begin{array}{c} D_s^+ \pi^0 \\ D_s^+ \pi^0 \pi^0 \end{array} $	seen	298
$D_s^+ \pi^0 \pi^0$	not seen	205

$$D_{s1}(2460)^{\pm}$$

$$I(J^P) = 0(1^+)$$

Mass
$$m=2459.5\pm0.6$$
 MeV (S = 1.1) $m_{D_{s1}(2460)^{\pm}}-m_{D_s^{*\pm}}^{}=347.3\pm0.7$ MeV (S = 1.2) $m_{D_{s1}(2460)^{\pm}}-m_{D_s^{\pm}}^{}=491.2\pm0.6$ MeV (S = 1.1) Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^-$ modes are charge conjugates of the modes below.

D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$D_s^{*+} \pi^0$ $D_s^{+} \gamma$	(48 ±11) %		297
$D_s^+ \gamma$	$(18 \pm 4)\%$		442
$D_s^+ \pi^+ \pi^-$	$(4.3\pm~1.3)~\%$	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	$(3.7^{+}_{-})^{5.0}$		138

$D_{s1}(2536)^{\pm}$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass $m=2535.10\pm0.06$ MeV Full width $\Gamma=0.92\pm0.05$ MeV

 $D_{\rm s1}(2536)^-$ modes are charge conjugates of the modes below.

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ± 0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$D^+\pi^-K^+$	$0.028 \!\pm\! 0.005$		176
$D^*(2007)^0 K^+$	DEFINED AS 1		167
D^+K^0	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_{s}^{*+}\gamma$	possibly seen		388
$D_s^+\pi^+\pi^-$	seen		437

$D_{s2}^*(2573)$

$$I(J^P) = 0(2^+)$$

Created: 5/30/2017 17:13

 ${\it J}^{\it P}$ is natural, width and decay modes consistent with 2^+ .

Mass
$$m=2569.1\pm0.8$$
 MeV (S = 2.4) Full width $\Gamma=16.9\pm0.8$ MeV

 $D_{\rm s2}^*(2573)^-$ modes are charge conjugates of the modes below.

D* _{\$2} (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 K^+$	seen	431
$D^*(2007)^0 K^+$	not seen	238

$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

Mass $m=2708.3^{+4.0}_{-3.4}$ MeV Full width $\Gamma=120\pm11$ MeV

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}$, $B^0 = d\overline{b}$, $\overline{B}^0 = \overline{d}b$, $B^- = \overline{u}b$, similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^\pm , B^0 , and B^\pm B^0 Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

 \bullet B^{\pm} mass, mean life, CP violation, branching fractions \bullet B^0

mass, mean life, B^0 - \overline{B}^0 mixing, CP violation, branching fractions

- B^{\pm}/B^0 Admixtures CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions
- B* mass
- $B_1(5721)^+$ mass
- $B_1(5721)^0$ mass
- $B_2^*(5747)^+$ mass
- $B_2^*(5747)^0$ mass
- $B_J^*(5970)^+$ mass
- $B_J^*(5970)^0$ mass
- B_s^0 mass, mean life, B_s^0 - \overline{B}_s^0 mixing, CP violation, branching fractions
- B_s^* mass
- $B_{s1}(5830)^0$

mass

- $B_{s2}^* (5840)^0$ mass
- $\bullet B_c^{\pm}$

mass, mean life, branching fractions

At the end of Baryon Listings:

Λ_b
 mass, mean life, branching fractions

- $\Lambda_b(5912)^0$ mass, mean life
- $\Lambda_b(5920)^0$ mass, mean life
- \bullet Σ_b mass
- \bullet Σ_b^* mass
- $\bullet \equiv_b^0, \equiv_b^-$

mass, mean life, branching fractions

- $\Xi_b'(5935)^-$ mass
- $\Xi_b(5945)^0$ mass
- $\Xi_b^*(5955)^-$ mass
- $\bullet \Omega_b^-$

mass, branching fractions

 b-baryon Admixture mean life, branching fractions

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.32\pm0.14$$
 MeV $~({\rm S}=1.1)$ Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)K^{+}) = 0.003 \pm 0.006 \quad (S = 1.8)$$
 $A_{CP}(B^{+} \rightarrow J/\psi(1S)\pi^{+}) = (0.1 \pm 2.8) \times 10^{-2} \quad (S = 1.2)$
 $A_{CP}(B^{+} \rightarrow J/\psi \rho^{+}) = -0.11 \pm 0.14$
 $A_{CP}(B^{+} \rightarrow J/\psi K^{*}(892)^{+}) = -0.048 \pm 0.033$
 $A_{CP}(B^{+} \rightarrow \eta_{c}K^{+}) = 0.01 \pm 0.07 \quad (S = 2.2)$
 $A_{CP}(B^{+} \rightarrow \psi(2S)\pi^{+}) = 0.03 \pm 0.06$
 $A_{CP}(B^{+} \rightarrow \psi(2S)K^{+}) = 0.012 \pm 0.020 \quad (S = 1.5)$

$$A_{CP}(B^+ \to \psi(2S)K^*(892)^+) = 0.08 \pm 0.21$$

$$A_{CP}(B^+ \to \chi_{c1}(P)\pi^+) = 0.07 \pm 0.18$$

$$A_{CP}(B^+ \to \chi_{c0}K^+) = -0.20 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^+ \to \chi_{c1}K^+) = -0.009 \pm 0.033$$

$$A_{CP}(B^+ \to \chi_{c1}K^*(892)^+) = 0.5 \pm 0.5$$

$$A_{CP}(B^+ \to \chi_{c1}K^*(892)^+) = 0.5 \pm 0.5$$

$$A_{CP}(B^+ \to \chi_{c1}K^*(892)^+) = 0.5 \pm 0.07$$

$$A_{CP}(B^+ \to D^0 \ell^+ \nu_{\ell}) = (-0.14 \pm 0.20) \times 10^{-2}$$

$$A_{CP}(B^+ \to D_{cP}(+1)\pi^+) = -0.008 \pm 0.005$$

$$A_{CP}(B^+ \to D_{CP}(+1)\pi^+) = 0.017 \pm 0.026$$

$$A_{CP}(B^+ \to D_{CP}(-1)\pi^+) = 0.017 \pm 0.026$$

$$A_{CP}(B^+ \to D_{CP}(-1)\pi^+) = 0.010 \pm 0.010 \quad (S = 1.5)$$

$$A_{CP}(B^+ \to D^0 K^+) = -0.008 \pm 0.010 \quad (S = 1.5)$$

$$A_{CP}(B^+ \to D^0 K^+) = -0.008 \pm 0.010 \quad (S = 1.5)$$

$$A_{CP}(B^+ \to D^0 K^+) = -0.008 \pm 0.010 \quad (S = 1.5)$$

$$A_{CP}(B^+ \to D^0 K^+) = -0.03 \pm 0.21$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = -0.58 \pm 0.21$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = 0.07 \pm 0.30 \quad (S = 1.5)$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = 0.05 \pm 0.09$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = -0.03 \pm 0.16$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+) = -0.03 \pm 0.04$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+) = -0.03 \pm 0.04$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+) = -0.016 \pm 0.020$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+) = -0.03 \pm 0.04$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+) = -0.02 \pm 0.15$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+) = -0.02 \pm 0.15$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+) = -0.02 \pm 0.15$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = 0.4 \pm 1.0$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = 0.4 \pm 1.0$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = 0.04 \pm 0.09$$

$$A_{CP}(B^+ \to [K^0_S K^-\pi^+]_D K^+) = 0.02 \pm 0.034$$

$$A_{CP}(B^+ \to [K^0_S K^-\pi^+]_D K^+) = 0.03 \pm 0.11$$

$$A_{CP}(B^+ \to [K^0_S K^-\pi^+]_D K^+) = 0.03 \pm 0.11$$

$$A_{CP}(B^+ \to [K^0_S K^-\pi^+]_D K^+) = 0.03 \pm 0.11$$

$$A_{CP}(B^+ \to [K^0_S K^-\pi^+]_D K^+) = 0.03 \pm 0.01$$

$$A_{CP}(B^+ \to [K^0_S K^-\pi^+]_D K^+) = 0.02 \pm 0.030$$

$$A_{CP}(B^+ \to [K^0_S K^-\pi^+]_D K^+) = 0.010 \pm 0.032$$

$$A_{ADS}(B^+ \to D_{CP}(+1)K^+) = 0.11 \pm 0.04 \quad (S = 2.3)$$

$$A_{ADS}(B^+ \to D_{CP}(-1)K^+) = 0.10 \pm 0.07$$

$$A_{CP}(B^+ \to D_{CP}(-1)K$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.04 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.05 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.023$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.019 \pm 0.015$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.019$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.051$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.02 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.02 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.02 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}] = -0.02 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}] = -0.015 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow [K^{+}\pi^{-}]_{D}\pi^{+}] = -0.015 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow [K^{+}\pi^{-}]_{D}\pi^{+}] = -0.017 \pm 0.016$$

$$A_{CP}(B^{+} \rightarrow [K^{+}\pi^{-}]_{D}\pi^{+}] = -0.02 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow [K^{+}\pi^{-}]_{D}\pi^{+}] = -0.06 \pm 0.24$$

$$A_{CP}(B^{+} \rightarrow [K^{+}\pi^{-}]_{D}\pi^{+}] = -0.06 \pm 0.24$$

$$A_{CP}(B^{+} \rightarrow [K^{+}\pi^{-}]_{D}\pi^{+}] = -0.06 \pm 0.26$$

$$A_{CP}(B^{+} \rightarrow$$

$$A_{CP}(B^{+} \rightarrow \omega \rho^{+}) = -0.20 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow \eta \pi^{+}) = -0.14 \pm 0.07 \quad (S = 1.4)$$

$$A_{CP}(B^{+} \rightarrow \eta \rho^{+}) = 0.11 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow \eta' \pi^{+}) = 0.06 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow \eta' \rho^{+}) = 0.26 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \rho \bar{\rho} \pi^{+}) = 0.05 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow \rho \bar{\rho} \pi^{+}) = 0.00 \pm 0.04 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow \rho \bar{\rho} K^{+}) = 0.00 \pm 0.04 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow \rho \bar{\rho} K^{+}) = 0.17 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \rho \bar{\rho} \pi^{0}) = 0.17 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \rho \bar{\rho} \pi^{0}) = 0.01 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}) = -0.02 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}) = 0.011 \pm 0.017$$

$$A_{CP}(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}) = 0.011 \pm 0.017$$

$$A_{CP}(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}) = -0.11 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow K^{*} \mu^{+} \mu^{-}) = -0.12 \pm 0.24$$

$$\gamma(B^{+} \rightarrow K^{*} \mu^{+} \mu^{-}) = -0.12 \pm 0.24$$

$$\gamma(B^{+} \rightarrow D^{*} K^{+} \pi^{-} \pi^{+}, D \pi^{+} \pi^{-} \pi^{+}) = (74 \pm 20)^{\circ}$$

$$\gamma = (72.8^{+5.3}_{-6.3})^{\circ}$$

$$\gamma(B^{+} \rightarrow D^{(*)0} K^{(*)+}) = (70 \pm 9)^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0} K^{+}) = 0.1033 \pm 0.0049$$

$$\delta_{B}(B^{+} \rightarrow D^{0} K^{+}) = (137.4^{+5.3}_{-5.9})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0} K^{+}) = (129^{+25}_{-0.049})^{\circ}$$

$$\delta_{B}(B^{+} \rightarrow D^{0} K^{+}) = (129^{+25}_{-33})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{*} K^{+}) = 0.117 \pm 0.024$$

$$\delta_{B}^{*}(B^{+} \rightarrow D^{*} K^{+}) = 0.117 \pm 0.024$$

$$\delta_{B}^{*}(B^{+} \rightarrow D^{*} K^{+}) = (311^{+13}_{-17})^{\circ}$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

-1							ale factor/				
B ⁺ DECAY MODES		Frac	ction (I	- _i /[_)	Confid	dence level(MeV/ <i>c</i>)			
Semileptonic and leptonic modes											
$\ell^+ u_\ell$ anything	[ttt]	(10.99	\pm	0.28) %	ó		_			
$e^+ \nu_e X_c$		(10.8	\pm	0.4) %	ó		_			
$D\ell^+\nu_\ell$ anything		(9.8	\pm	0.7) %	ó		_			
$\overline{D}^0 \ell^+ \nu_{\ell}$	[ttt]	•			0.11) %			2310			
$\overline{D}^0 \tau^+ \nu_{\tau}$					2.5) ×			1911			
$\overline{D}^*(2007)^0 \ell^+ \nu_{\ell}$	[ttt]	•			0.19) %			2258			
$\overline{D}^*(2007)^0 \tau^+ \nu_{\tau}$,			0.20) %			1839			
$D^{-}\pi^{+}\ell^{+}\nu_{\ell}$		(0.5) ×			2306			
$\overline{D}_0^*(2420)^0\ell^+\nu_\ell, \ \overline{D}_0^{*0} \rightarrow$		(2.5	土	0.5) ×	10-3		_			
$\overline{D}_2^*(2460)^0 \ell^+ \nu_\ell, \ \overline{D}_2^{*0} \to$,	1 52	1	0.16	10-3		2065			
$D_2(2400)^* \ell \cdot \nu_\ell, \ D_2^* \rightarrow 0$		(1.53	土	0.16) ×	10		2065			
$D^{(*)} {f n} \pi^+ u_\ell({f n} \geq 1)$		(1 27	+	0.26) %	<u>'</u>		_			
$D^{*-}\pi^+\ell^+ u_\ell$		(0.20) ×			2254			
$\overline{D}_1(2420)^0\ell^+\nu_\ell, \ \overline{D}_1^0 \rightarrow$		(0.20) ×			2084			
- ` ' ' '		(0.00	_	0.20	. 10		200 1			
${D^{*-}\pi^+\over \overline D_1'(2430)^0}\ell^+ u_\ell$, $\overline D_1'^0-$	\rightarrow	(2.7	\pm	0.6) ×	10-3		_			
$D^{*-}\pi^{+}$		`			,						
$\overline{D}_{2}^{*}(2460)^{0}\ell^{+} u_{\ell}$,		(1.01	\pm	0.24) ×	10^{-3}	S=2.0	2065			
$^{-}\overline{D}_{2}^{*0} ightarrow~D^{*-}\pi^{+}$											
$\overline{D}{}^0\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		(1.6	\pm	0.4) ×	10-3		2301			
$\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\overset{\circ}{\nu_{\ell}}$		(5) ×			2248			
$D_s^{(*)-}$ K $^+$ ℓ^+ $ u_\ell$		(1.0) ×			_			
$D_s^-K^+\ell^+ u_\ell$		(1.4 1.2) ×			2242			
$D_s^{*-}K^+\ell^+ u_\ell$		(1.2) ×			2185			
$\pi^0\ell^+ u_\ell$		(0.27) ×			2638			
$\eta \ell^+ u_\ell$		(0.21) ×	_		2611			
$\eta'\ell^+ u_\ell$		(0.0) ×			2553			
$\omega \ell^+ \nu_{\ell}$	[+++]				0.09) ×			2582			
$\rho^0\ell^+ u_\ell$					0.11) ×			2583			
$p \overline{p} \ell^+ \nu_{\ell}$	[000]				2.6 2.3) ×						
· · · · · · · · · · · · · · · · · · ·							CL=90%	2467			
$p\overline{p}\mu^+\nu_\mu$		<					CL=90%	2446			
$p\overline{p}e^+\nu_e$					4.0 3.3) ×		GL 000/	2467			
$e^+ \nu_e$		<					CL=90%	2640			
$\mu^+_+ \nu_\mu$		<				_	CL=90%	2639			
$ au^+ u_ au$		(1.09	土	0.24) ×	10-4	S=1.2	2341			

$\ell^+ \nu_\ell \gamma$		<					CL=90%				
$e^+ \nu_e \gamma$		<					CL=90% CL=90%	2640 2639			
$\mu^+ u_\mu \gamma$						X 10	CL=90/0	2039			
Inclusive modes											
$\frac{D^0 X}{\overline{D}^0 X}$,	8.6			•		_			
D^+X		•	79 2.5			,		_			
D^-X			9.9					_			
$D_s^+ X$											
3			7.9		1.0			_			
$D_s^- X$			1.10					_			
$\Lambda_c^+ X$			2.1					-			
$\overline{\Lambda}_c^- X$		(2.8	+	1.1 0.9) %		-			
<u>₹</u> X		(97	\pm	4) %		_			
cX		(23.4	+	2.2 1.8) %		_			
$c/\overline{c}X$		(1	.20	±	6) %		_			
	D, D*, c	or <i>E</i>) _e mo	de	S						
$\overline{D}{}^0\pi^+$	_,_,		_			$) \times 10^{-3}$		2308			
$D_{CP(+1)}\pi^+$	[uuu]	•				$) \times 10^{-3}$		_			
$D_{CP(-1)}^{(+1)}\pi^{+}$	[uuu]	(2.1	\pm	0.4	$) \times 10^{-3}$		_			
$\overline{D}^0 \rho^+$		(1.34	\pm	0.18) %		2237			
$\overline{D}{}^0K^+$		(3.74	\pm	0.16	$) \times 10^{-4}$		2281			
$D_{CP(+1)}K^+$	[<i>uuu</i>]	(1.86	\pm	0.12	$) \times 10^{-4}$		_			
$D_{CP(-1)}K^+$	[uuu]	(2.02	\pm	0.19	$) \times 10^{-4}$		_			
$[K^-\pi^+]_DK^+$	[vvv]	<	2.8			\times 10 ⁻⁷		_			
$[K^{+}\pi^{-}]_{D}K^{+}$	[vvv]	<	1.5			$\times 10^{-5}$	CL=90%	_			
$[K^-\pi^+\pi^0]_DK^+$		S	een					_			
$[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$		S	een					_			
$[K^-\pi^+\pi^+\pi^-]_D K^+$ $[K^+\pi^-\pi^+\pi^-]_D K^+$			een					_			
$[K^-\pi^+]_D\pi^+$	[rand]		een	_	1 1) × 10 ⁻⁷		_			
$[K^+\pi^-]_D\pi^+$	[vvv]					$) \times 10^{-4}$		_			
$[K^{-}\pi^{+}\pi^{0}]_{D}\pi^{+}$			een	_	0.52) ^ 10		_			
$[K^{+}\pi^{-}\pi^{0}]_{D}\pi^{+}$			een					_			
$[K^{-}\pi^{+}\pi^{+}\pi^{-}]_{D}\pi^{+}$		S	een					_			
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}^{-}\pi^{+}$		S	een					_			
$[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$		(4.6	\pm	0.9	$) \times 10^{-6}$		_			
$[K_{S}^{0}K^{+}\pi^{-}]_{D}K^{+}$		S	een					_			
$[K_S^0 K^- \pi^+]_D K^+$		S	een					_			
$[K^*(892)^+K^-]_DK^+$		S	een					_			

$[K_{S}^{0}K^{-}\pi^{+}]_{D}\pi^{+}$		S	een					_
$[K^*(892)^+K^-]_D\pi^+$		S	een					_
$[K_S^0K^+\pi^-]_D\pi^+$		S	een					_
$[K^*(892)^-K^+]_D\pi^+$		S	een					_
$\overline{D}{}^0 K^*(892)^+$		(5.3	\pm	0.4	$) \times 10^{-4}$		2213
$D_{CP(-1)}{\cal K}^*(892)^+$	[uuu]	(2.7	\pm	8.0	$) \times 10^{-4}$		_
$D_{CP(+1)}K^*(892)^+$	[uuu]	(5.8	\pm	1.1	$) \times 10^{-4}$		_
$\overline{D}{}^0$ K $+$ π $+$ π $-$		(5.4	\pm	2.2	$) \times 10^{-4}$		2237
$\overline{D}{}^0{\mathcal K}^+\overline{{\mathcal K}}{}^0$		($) \times 10^{-4}$		2189
$\overline{D}{}^{0}K^{+}\overline{K}^{*}(892)^{0}$		($) \times 10^{-4}$		2071
$\overline{D}{}^{0}\frac{\pi^{+}\pi^{+}\pi^{-}}{\pi^{-}}$		($) \times 10^{-3}$	S=3.6	2289
$\overline{D}{}^0\pi^+\pi^+\pi^-$ nonresonant		($) \times 10^{-3}$		2289
$\overline{D}^0\pi^+\rho^0$		($) \times 10^{-3}$		2208
\overline{D}^0 $a_1(1260)^+$ \overline{D}^0 ω π^+		($) \times 10^{-3}$		2123
$D^*(2010)^-\pi^+\pi^+$		($) \times 10^{-3}$		2206
$\overline{D}_1(2420)^0\pi^+, \ \overline{D}_1^0 \rightarrow$		($) \times 10^{-3}$ $) \times 10^{-4}$		2247 2081
$D_1(2420)^{-}\pi^{-}$, $D_1 \rightarrow D^*(2010)^{-}\pi^{+}$		(5.5	_	2.3) × 10		2001
$D^{-}\pi^{+}\pi^{+}$		(1 07		0.05) × 10 ⁻³		2299
$D^-K^+\pi^+$		($) \times 10^{-5}$		2260
$D_0^*(2400)^0 K^+, D_0^{*0} \rightarrow$		($) \times 10^{-6}$		
		(0.1	_) /\ 10		
$D^-\pi^+ \ D_2^*(2460)^0 K^+, \ D_2^{*0} ightarrow$		(2.32	\pm	0.23	$) \times 10^{-5}$		_
$D^-\pi^+ \ D_1^*(2760)^0 K^+, \ D_1^{*0} \to$								
$D_1^*(2760)^0 K^+, D_1^{*0} o$		(3.6	\pm	1.2	$) \times 10^{-6}$		_
$D^{-}\pi^{+}$		_	2.0			10-6	CL 000/	0070
$D^+K^+\pi^-$		< (2.9		1 1	$\times 10^{-6}$	CL=90%	2278 2260
$D_2^*(2460)^0 K^+, D_2^{*0} \rightarrow$		(<	6.3		1.1	_	CL=90%	2200
$D_{2}^{(2+00)} R^{+}, D_{2}^{-}$			0.5			× 10	CL—90/0	
$D^+ K^{*0}$		<	4.9			$\times10^{-7}$	CL=90%	2211
$D^+\overline{K}^{*0}$		<	1.4				CL=90%	2211
$\overline{D}^*(2007)^0 \pi^+$		(5.18	\pm	0.26	$) \times 10^{-3}$		2256
$\overline{D}_{CP(+1)}^{*0}\pi^+$	[xxx]	(2.9	\pm	0.7	$) \times 10^{-3}$		_
$D_{CP(-1)}^{*0}\pi^{+}$	[xxx]	(2.6	\pm	1.0	$) \times 10^{-3}$		_
$\overline{D}^*(2007)^0 \omega \pi^+$		() × 10 ⁻³		2149
$\overline{D}^*(2007)^0 \rho^+$		($) \times 10^{-3}$		2181
$D^*(2007)^0 K^+$		() × 10 ⁻⁴		2227
$\overline{D}_{CP(+1)}^{*0}$ K^+	[xxx]	($) \times 10^{-4}$		_
$\overline{D}_{CP(-1)}^{*0}K^{+}$	[xxx]	(2.31) × 10 ⁻⁴		_
$\overline{D}^*(2007)^0 K^*(892)^+$	[,1					$) \times 10^{-4}$		2156
$\frac{D}{D}^*(2007)^0 K^+ \overline{K}^0$		(<				$\times 10^{-3}$	CI —00%	2156 2132
$\overline{D}^*(2007)^0 K^+ \overline{K}^*(892)^0$		($\times 10^{-3}$	CL—90/0	2009
_ (200.) (002)		(1.5	_	J. F	, . 10		_003
HTTP://PDG.LBL.GOV	Pag	ge 6	59		Cı	reated: 5,	/30/2017	17:13

$\overline{D}^*(2007)^0\pi^+\pi^+\pi^-$	(1 03	± 0.1	2) %		2236
$\frac{(2007)^{0}}{D}^{*}(2007)^{0} a_{1}(1260)^{+}$	(\pm 0.5			2063
$\overline{D}^*(2007)^0\pi^-\pi^+\pi^+\pi^0$	(± 0.4			2219
$\overline{D}^{*0}3\pi^{+}2\pi^{-}$	($(2) \times 10^{-3}$		2196
$D^*(2010)^+\pi^0$	<	3.6		× 10 ⁻⁶		2255
$D^*(2010)^+ K^0$	<	9.0		$\times 10^{-6}$	CL=90%	2225
$D^*(2010)^-\pi^+\pi^+\pi^0$	(1.5	± 0.7	')%		2235
$D^*(2010)^-\pi^+\pi^+\pi^+\pi^-$	(2.6	± 0.4	$\times 10^{-3}$		2217
$\overline{D}^{**0}\pi^+$ [yy	y] (5.9		$3) \times 10^{-3}$		_
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$	(1.5	± 0.6	$(5) \times 10^{-3}$	S=1.3	2082
$\overline{D}_1(2420)^0\pi^+\! imesB(\overline{D}_1^0 o$	(2.5	+ 1.6	$(1) \times 10^{-4}$	S=4.0	2082
$\overline{D}{}^0\pi^+\pi^-)$				•		
$\overline{D}_1(2420)^0\pi^+ imes B(\overline{D}_1^0 o$	(2.3	\pm 1.0) $\times 10^{-4}$		2082
$\overline{D}{}^0\pi^+\pi^-$ (nonresonant))						
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$	(3.56	± 0.2	$24) \times 10^{-4}$		_
$ imes$ B(\overline{D}_2^* (2462) $^0 ightarrow D^- \pi^+$)						
$\overline{D}_2^*(2462)^{\overline{0}}\pi^+ \times B(\overline{D}_2^{*0} \to$	(2.3	± 1.1	(10^{-4})		_
$^{-}\overline{D}{}^{0}\pi^{-}\pi^{+})$						
$\overline{D}_2^*(2462)^0\pi^+ \times B(\overline{D}_2^{*0} \to$	<	1.7		$\times10^{-4}$	CL=90%	_
$\overline{D}{}^0\pi^-\pi^+$ (nonresonant))						
$\overline{D}_2^*(2462)^0\pi^+ \times \overline{B}(\overline{D}_2^{*0} \to$	(2.2	± 1.1	$)\times10^{-4}$		_
$D^*(2010)^-\pi^+)$						
$\overline{D}_0^*(2400)^0 \pi^+$	(6.4	± 1.4	$\times 10^{-4}$		2128
\times B(\overline{D}_0^* (2400) $^0 \rightarrow D^-\pi^+$)						
$\overline{D}_1(2421)^{\bar{0}}\pi^+$	(6.8	± 1.5	$(5) \times 10^{-4}$		_
\times B(\overline{D}_1 (2421) $^0 \rightarrow D^{*-}\pi^+$)						
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$	(1.8	± 0.5	$(5) \times 10^{-4}$		-
$_{-}$ \times B($\overline{D}_{2}^{*}(2462)^{0} \rightarrow D^{*-}\pi^{+})$						
$\overline{D}'_1(2427)^0 \pi^+$	(5.0	\pm 1.2	$(2) \times 10^{-4}$		_
$ imes$ B($\overline{D}_1'(2427)^0 ightarrow D^{*-}\pi^+)$						
$\overline{D}_1(2420)^{ar{0}}\pi^+\! imes\!B(\overline{D}_1^0\to$	<	6		\times 10 ⁻⁶	CL=90%	2082
$\overline{D}^{*0}\pi^+\pi^-)$						
$\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$	<	1.4		\times 10 ⁻³	CL=90%	1996
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$	<	1.3		\times 10 ⁻³	CL=90%	2063
$\overline{D}_2^*(2460)^0\pi^+\! imes\!B(\overline{D}_2^{*0}\to$	<	2.2		$\times 10^{-5}$	CL=90%	2063
$\overline{D}^{*0}\pi^{+}\pi^{-})$						
$\overline{D}_1^*(2680)^0\pi^+$, $\overline{D}_1^*(2680)^0$ $ ightarrow$	(8.4	± 2.1	(10^{-5})		_
$D^{-}\pi^{+}$ $\overline{D}_{3}^{*}(2760)^{0}\pi^{+}$,				-		
	(1.00	\pm 0.2	$(22) \times 10^{-5}$		_
$\overline{D}_3^*(2760)^0\pi^+ \to D^-\pi^+$						

Page 71

Created: 5/30/2017 17:13

HTTP://PDG.LBL.GOV

$\overline{D}^{*0}D_{sJ}(2573), \ D_{sJ}^{+} \rightarrow$	<	2		× 10 ⁻⁴	CL=90%	1306
$D^0 K^+ \over D^* (2007)^0 D_{sJ} (2573), D^+_{sJ} \rightarrow$	<	5		× 10 ⁻⁴	CL=90%	1306
$\overline{D}{}^0 D_s^0 K^+$	(7.6	+ 16) × 10 ⁻³		1734
$\overline{D}^*(2007)^0 D_s^+$	($) \times 10^{-3}$		1737
$\overline{D}^*(2007)^0 D_s^{*+}$	(± 0.2			1651
$D^{(*)+}\overline{D}^{**0}$	(,		1031
<i>S</i>	(± 1.2			1710
$\overline{D}^*(2007)^0 D^*(2010)^+ \ \overline{D}^0 D^*(2010)^+ +$	(1.30) × 10 ⁻⁴ %	CL=90%	1713
$\frac{D}{D}^*(2007)^0D^+$	<	1.50		/0	CL=90/6	1792
$\overline{D}^0 D^*(2010)^+$	(3.9	+ 0.5	$) \times 10^{-4}$		1792
$\overline{D}^0 D^+$	($) \times 10^{-4}$		1866
$\overline{D}{}^0D^+K^0$	($1) \times 10^{-3}$		1571
$D^{+}\overline{D}^{*}(2007)^{0}$	() × 10 ⁻⁴		1791
$\overline{D}^*(2007)^0 D^+ K^0$	($) \times 10^{-3}$		1475
$\overline{D}^{0} D^{*}(2010)^{+} K^{0}$	($) \times 10^{-3}$		1476
$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$	($) \times 10^{-3}$		1362
$\overline{D}{}^0 D^0 K^+$	($3) \times 10^{-3}$	S=2.6	1577
$\overline{D}^*(2007)^0 D^0 K^+$	(2.26	± 0.2	$3) \times 10^{-3}$		1481
$\overline{D}{}^0 D^* (2007)^0 K^+$	(6.3	± 0.5	$) \times 10^{-3}$		1481
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+$	(1.12	± 0.1	3)%		1368
$D^-D^+K^+$	(2.2	± 0.7	$) \times 10^{-4}$		1571
$D^-D^*(2010)^+K^+$	(6.3	\pm 1.1	$) \times 10^{-4}$		1475
$D^*(2010)^- D^+ K^+$	($) \times 10^{-4}$		1475
$D_{-}^{*}(2010)^{-}D^{*}(2010)^{+}K^{+}$	(1.32	± 0.1	$8) \times 10^{-3}$		1363
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(± 0.3	,		_
$D_{s}^{+}\pi^{0}$	(1.6	± 0.5	$) \times 10^{-5}$		2270
$D_s^{*+}\pi^0$	<	2.6		$\times 10^{-4}$	CL=90%	2215
$D_s^+ \eta$	<	4		$\times 10^{-4}$	CL=90%	2235
$D_{s}^{*+}\eta$	<	6		$\times 10^{-4}$	CL=90%	2178
$D_s^+ \rho^0$	<	3.0		$\times 10^{-4}$	CL=90%	2197
$D_{s}^{*} \pi$ $D_{s}^{*+} \pi^{0}$ $D_{s}^{*+} \eta$ $D_{s}^{*+} \eta$ $D_{s}^{*+} \rho^{0}$ $D_{s}^{*+} \rho^{0}$ $D_{s}^{*+} \omega$ $D_{s}^{*+} \omega$ $D_{s}^{*+} \omega$ $D_{s}^{*+} \omega$ $D_{s}^{*+} \omega$ $D_{s}^{*+} \omega$	<	4		$\times10^{-4}$	CL=90%	2138
$D_{s}^{+}\omega$	<	4		$\times10^{-4}$	CL=90%	2195
$D_{c}^{*+}\omega$	<	6		$\times10^{-4}$	CL=90%	2136
$D^{\stackrel{\$}{+}}$ $a_1(1260)^0$		1.8		$\times10^{-3}$		2079
$D_s^{++} a_1 (1260)^0$	<			× 10 ⁻³		2015
$D_s^+ \phi$	(1.7	+ 1.2 - 0.7	$) \times 10^{-6}$		2141
$D_s^{*+}\phi$	<	1.2		$\times10^{-5}$	CL=90%	2079
$D^{+}\overline{K}^{0}$	<			\times 10 ⁻⁴		2242
$D_s^{*+} \phi$ $D_s^{+} \overline{K}^0$ $D_s^{*+} \overline{K}^0$	<				CL=90%	2185
- s ··	_	_		. 10	J_ JU/U	

$D_s^+ \overline{K}^* (892)^0$ < $D_s^+ K^{*0}$ <	<	4.4	$\times 10^{-6}$	CL=90%	2172
	<	3.5	$\times 10^{-6}$	CL=90%	2172
5 ()	<	3.5	$\times 10^{-4}$	CL=90%	2112
$D_s^-\pi^+K^+$	($1.80\ \pm\ 0.22$	$) \times 10^{-4}$		2222
$D_s^{*-}\pi^+K^+$	($1.45~\pm~0.24$	$) \times 10^{-4}$		2164
$D_s^- \pi^+ K^*(892)^+$	<	5	$\times 10^{-3}$	CL=90%	2138
$D_s^{*-}\pi^+K^*(892)^+$	<	7	$\times 10^{-3}$	CL=90%	2076
3	($9.7 \pm \ \ 2.1$	$) \times 10^{-6}$		2149
$D_s^{*-}K^+K^+$	<	1.5	$\times 10^{-5}$	CL=90%	2088
Charmoni	ium	modes			
1		96 + 11) × 10-4		1752
II c IX		9.0 ± 1.1	1 X 1U .		1757

Charmonium modes										
$\eta_c K^+$	($) \times 10^{-4}$		1752				
$\eta_c K^+$, $\eta_c o K^0_{S} K^{\mp} \pi^{\pm}$	(2.7	± 0.6	$) \times 10^{-5}$		_				
$\eta_c K^*(892)^+$	(1.0	$^{+}$ 0.5 $^{-}$ 0.4	$) \times 10^{-3}$		1646				
$\eta_c K^+ \pi^+ \pi^-$	<	3.9		$\times10^{-4}$	CL=90%	1684				
$\eta_c K^+ \omega(782)$	<	5.3		$\times 10^{-4}$	CL=90%	1476				
$\eta_c K^+ \eta$	<	2.2		$\times 10^{-4}$	CL=90%	1588				
$\eta_c K^+ \pi^0$	<	6.2		$\times10^{-5}$	CL=90%	1723				
$\eta_c(2S)K^+$	(3.4	± 1.8	$) \times 10^{-4}$		1319				
$\eta_c(2S)K^+$, $\eta_c o p\overline{p}$	<	1.06		\times 10 ⁻⁷	CL=95%	_				
$\eta_c(2S)K^+$, $\eta_c ightarrow K_S^0K^\mp\pi^\pm$	(3.4	+ 2.3 - 1.6	$) \times 10^{-6}$		_				
$h_c(1P) \overset{3}{K}^+, h_c \rightarrow J/\psi \pi^+ \pi^-$	<	3.4		\times 10 ⁻⁶	CL=90%	1401				
$X(3730)^0 K^+, X^0 \to \eta_c \eta$	<	4.6		$\times10^{-5}$	CL=90%	_				
$X(3730)^0 K^+, X^0 \to \eta_c \pi^0$	<	5.7		$\times 10^{-6}$	CL=90%	_				
$X(3872)K^{+}$	<	3.2			CL=90%	1141				
$X(3872)K^+, X \rightarrow p\overline{p}$	<	1.7			CL=95%	_				
$X(3872)K^+, X \rightarrow$	(± 0.8	$) \times 10^{-6}$		1141				
$J/\psi \pi^+\pi^-$										
$X(3872)K^+$, $X o J/\psi\gamma$	(2.1	± 0.4	$) \times 10^{-6}$	S=1.1	1141				
$X(3872)K^+$, $X \rightarrow \psi(2S)\gamma$	($) \times 10^{-6}$		1141				
$X(3872)K^+, X \rightarrow$	<	7.7		$\times 10^{-6}$	CL=90%	1141				
$J/\psi(1S)\eta$										
$X(3872)K^+,\;\;X o\;D^0\overline{D}{}^0$	<	6.0		$\times 10^{-5}$	CL=90%	1141				
$X(3872)K^{+}, X \rightarrow D^{+}D^{-}$	<	4.0		$\times10^{-5}$	CL=90%	1141				
$X(3872)K^{+}, X \rightarrow D^{0}D^{0}\pi^{0}$	(1.0	± 0.4	$) \times 10^{-4}$		1141				
$X(3872)K^+, X \rightarrow \overline{D}^{*0}D^0$	(8.5	± 2.6	$) \times 10^{-5}$	S=1.4	1141				
$X(3872)^0 K^+, X^0 \rightarrow$	<			$\times 10^{-5}$		_				
$\eta_c \pi^+ \pi^-$										
$X(3872)^0 K^+, X^0 \to$	<	6.9		$\times10^{-5}$	CL=90%	_				
$\eta_c \omega$ (782)										

$X(3872)K^{+}, X \rightarrow \chi_{c1}(1P)\pi^{+}\pi^{-}$	<	1.5		× 10 ⁻⁶	CL=90%	-
$X(3915)^0 K^+, X^0 \rightarrow \eta_c \eta$		2.2		v 10-5	CL=90%	
		3.3			CL=90% CL=90%	_
$X(3915)^0 K^+, X^0 \to \eta_c \pi^0$	<	1.8				_
$X(4014)^0 K^+, X^0 \to \eta_c \eta$	<	3.9			CL=90%	_
$X(4014)^0 K^+, X^0 \to \eta_c \pi^0$	<	1.2			CL=90%	_
$X(3900)^0 K^+, X^0 \rightarrow$	<	4.7		× 10 °	CL=90%	_
$\chi^{\eta_c \pi^+ \pi^-} \chi^{(4020)^0 K^+}, \ \chi^0 \to \eta_c \pi^+ \pi^-$	<	1.6		× 10 ⁻⁵	CL=90%	_
$X(3872)K^*(892)^+, X \rightarrow$	<	4.8		× 10 ⁻⁶	CL=90%	939
$J/\psi \gamma$ $X(3872)K^*(892)^+, X \rightarrow$	<	2.8		$\times10^{-5}$	CL=90%	939
$\psi(2S)\gamma \ X(3872)^{+}K^{0}, X^{+} \rightarrow [zzz] \ J/\psi(1S)\pi^{+}\pi^{0}$	<	6.1		× 10 ⁻⁶	CL=90%	-
$X(3872)K^0\pi^+, X \rightarrow$	(1.06	± 0.31	$) \times 10^{-5}$		_
$J/\psi(1S)\pi^{+}\pi^{-}$ $X(4430)^{+}K^{0}, X^{+} \rightarrow J/\psi\pi^{+}$		1.5		·· 10-5	CL=95%	
$X(4430)^{+}K^{0}, X^{+} \rightarrow J/\psi \pi^{+}$					CL=95% CL=95%	_
$\psi(2S)\pi^+$	<	4.1		X 10	CL=95/6	_
$X(4260)^0 K^+, X^0 \rightarrow J/\psi \pi^+ \pi^-$	<	2.9		$\times 10^{-5}$	CL=95%	-
$X(3915)K^+, X \rightarrow J/\psi\gamma$		1 /		× 10 ⁻⁵	CI -00%	_
$X(3930)^0 K^+, X^0 \rightarrow J/\psi \gamma$	<			× 10 × 10 ⁻⁶		_
$J/\psi(1S)K^+$	($1) \times 10^{-3}$	CL=3070	1684
$J/\psi(1S)K^0\pi^+$	($) \times 10^{-3}$		1651
$J/\psi(1S)K^{+}\pi^{+}\pi^{-}$	($) \times 10^{-4}$	S-2 5	1612
$J/\psi(1S)K^+K^-K^+$	($) \times 10^{-5}$	5-2.5	1252
$X(3915)K^+, X \rightarrow p\overline{p}$	•			× 10 ⁻⁸	CI =95%	_
$J/\psi(1S)K^*(892)^+$				$) \times 10^{-3}$	CL-3370	1571
$J/\psi(1S)K(1270)^+$				$) \times 10^{-3}$		1390
$J/\psi(1S)K(1400)^+$	<		_ 0.0		CL=90%	1308
$J/\psi(1S)\eta K^+$			+ 0.14) × 10 ⁻⁴		1510
$X^{c-odd}(3872)K^{+},$	<	3.8		× 10 ⁻⁶	CI = 90%	_
$X^{c-odd} ightarrow J/\psi \eta$						
ψ (4160) K^+ , $\psi \stackrel{\prime}{ ightarrow} J/\psi \eta$	<	7.4		$\times 10^{-6}$	CL=90%	_
$J/\psi(1S)\eta'K^{+}$	<	8.8		$\times10^{-5}$		1273
$J/\psi(1S)\phi K^+$	($) \times 10^{-5}$		1227
$J/\psi(1S)K_1(1650), K_1 \rightarrow \phi K^+$	(6	$^{+10}_{-6}$			-
$J/\psi(1S)K^*(1680)^+,\;\;K^* o \phiK^+$	(3.4	+ 1.9 - 2.2	$) \times 10^{-6}$		-

$J/\psi(1S)K_2^*(1980),\;\;K_2^* ightarrow \phiK^+$	(1.5	+	0.9 0.5	$) \times 10^{-6}$		-
$J/\psi(1S) K(1830)^+, \ K(1830)^+ o \phi K^+$	(1.3	+	1.3 1.1) × 10 ⁻⁶		_
$X(4140)K^+, X ightharpoonup J/\psi(1S)\phi$	(10	\pm	4	$)\times10^{-6}$		-
$X(4274)K^+, X ightharpoonup J/\psi(1S)\phi$	(3.6	+	2.2 1.8	$) \times 10^{-6}$		-
$X(4500)K^+, X \rightarrow J/\psi(1S)\phi$	(3.3	+	2.1 1.7) × 10 ⁻⁶		_
$X(4700)K^+$, $X o J/\psi(1S)\phi$	(6	+	5 4	$)\times10^{-6}$		_
J/ψ (1S) ω K $^+$	(3.20	+	0.60 0.32	$)\times10^{-4}$		1388
$X(3872)K^+$, $X o J/\psi\omega$	(6.0	\pm	2.2	$) \times 10^{-6}$		1141
$X(3915)K^+$, $X o J/\psi\omega$	(3.0	+	0.9 0.7	$) \times 10^{-5}$		1103
$J/\psi(1S)\pi^+$	(4.1	\pm	0.4	$) \times 10^{-5}$	S=2.2	1728
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(1.18	\pm	0.13	$) \times 10^{-5}$		1635
ψ (2S) $\pi^+\pi^+\pi^-$	(1.9	\pm	0.4	$) \times 10^{-5}$		1304
$J/\psi(1S) ho^+$	(5.0	\pm	8.0	$) \times 10^{-5}$		1611
$J/\psi(1S)\pi^+\pi^0$ nonresonant	<	7.3			$\times 10^{-6}$	CL=90%	1717
$J/\psi(1S)a_1(1260)^+$	<	1.2			$\times 10^{-3}$	CL=90%	1415
$J/\psi(1S) ho \overline{ ho} \pi^+$	<	5.0			$\times 10^{-7}$	CL=90%	643
$J/\psi(1S) ho\overline{\Lambda}$	(1.18	\pm	0.31	$) \times 10^{-5}$		567
$J/\psi(1S)\overline{\Sigma}{}^0 p$	<	1.1			$\times 10^{-5}$		_
$J/\psi(1S)D^+$	<	1.2			$\times 10^{-4}$		871
$J/\psi(1S)\overline{D}{}^0\pi^+$	<	2.5			$\times 10^{-5}$	CL=90%	665
$\psi(2S)\pi^+$	(2.44	\pm	0.30	$) \times 10^{-5}$		1347
$\psi(2S)K^+$	($) \times 10^{-4}$		1284
$\psi(2S) K^*(892)^+$	($) \times 10^{-4}$	S=1.3	1115
$\psi(2S) K^+ \pi^+ \pi^-$	($) \times 10^{-4}$		1179
$\psi(2S)\phi(1020)K^+$	($) \times 10^{-6}$		417
$\psi(3770)K^{+}$	($) \times 10^{-4}$		1218
$\psi(3770)K+,\psi \rightarrow D^0\overline{D}^0$	($) \times 10^{-4}$	S=1.4	1218
$\psi(3770)K+,\psi \rightarrow D^+D^-$	($) \times 10^{-5}$		1218
$\psi(4040)K^{+}$	<	1.3			$\times 10^{-4}$	CL=90%	1003
$\psi(4160)K^{+}$	($) \times 10^{-4}$		868
$\psi(4160)K^+, \ \psi \rightarrow \overline{D}{}^0D^0$	(±	5	$) \times 10^{-5}$		_
$\chi_{c0}\pi^+, \ \chi_{c0} \rightarrow \ \pi^+\pi^-$	<					CL=90%	1531
$\chi_{c0} K^+$	(1.50	+	0.15 0.14) × 10 ⁻⁴		1478
$\chi_{c0} K^*(892)^+$	<	2.1			$\times 10^{-4}$	CL=90%	1341
$\chi_{c1}(1P)\pi^{+}$	(2.2	\pm	0.5	$) \times 10^{-5}$		1468
$\chi_{c1}(1P)K^+$	(4.79	\pm	0.23	$) \times 10^{-4}$		1412

$\chi_{c1}(1P)K^*(892)^+$	(3.0	\pm	0.6	$) \times 10^{-4}$	S=1.1	1265		
$\chi_{c1}(1P) K^0 \pi^+$	($) \times 10^{-4}$		1370		
$\chi_{c1}(1P) K^+ \pi^0$	(3.29	\pm	0.35	$) \times 10^{-4}$		1373		
$\chi_{c1}(1P) K^+ \pi^+ \pi^-$	($) \times 10^{-4}$		1319		
$\chi_{c1}(2P) K^+$, $\chi_{c1}(2P) ightarrow$	<	1.1			$\times 10^{-5}$	CL=90%	_		
$\pi^{+}\pi^{-}\chi_{c1}(1P)$									
$\chi_{c2}K^+$	(1.1	\pm	0.4	$) \times 10^{-5}$		1379		
$\chi_{c2} K^*(892)^+$	<				$\times 10^{-4}$	CL=90%	1227		
$\chi_{c2} K^0 \pi^+$	($) \times 10^{-4}$		1336		
$\chi_{c2}K^{+}\pi^{0}$	<				$\times 10^{-5}$	CL=90%	1339		
$\chi_{c2} K^{+} \pi^{+} \pi^{-}$	($) \times 10^{-4}$		1284		
$\chi_{c2}(2P)\pi^+, \ \chi_{c2} \to \pi^+\pi^-$	<	1			× 10 ⁻⁷		1437		
$h_c(1P)K^+$	<	3.8			$\times 10^{-5}$		1401		
$h_c(1P)K^+$, $h_c o p\overline{p}$	<	6.4			× 10 ⁻⁸	CL=95%	_		
K or K* modes									
$K^0\pi^+$	•				$) \times 10^{-5}$		2614		
$K^+\pi^0$					$) \times 10^{-5}$		2615		
$\eta^\prime {\sf K}^+$	(7.06	\pm	0.25	$) \times 10^{-5}$		2528		
$\eta' K^*(892)^+$	(4.8	+	1.8 1.6	$) \times 10^{-6}$		2472		
$\eta' K_0^* (1430)^+$	(5.2	\pm	2.1	$) \times 10^{-6}$		_		
$\eta' K_2^*(1430)^+$	(2.8	\pm	0.5	$) \times 10^{-5}$		2346		
$\eta K^{ ilde{+}}$	(2.4	\pm	0.4	$) \times 10^{-6}$	S=1.7	2588		
$\eta K^*(892)^+$	($) \times 10^{-5}$		2534		
$\eta K_0^* (1430)^+$	(1.8	\pm	0.4	$) \times 10^{-5}$		_		
$\eta K_{2}^{*}(1430)^{+}$	(9.1	\pm	3.0	$) \times 10^{-6}$		2414		
$\eta(1295)\mathrm{K}^+ \times\mathrm{B}(\eta(1295) \to$	(2.9	+	0.8 0.7	$) \times 10^{-6}$		2455		
$\eta \pi \pi$)									
$\eta(1405)K^+ \times B(\eta(1405) \rightarrow$	<	1.3			× 10 ⁻⁶	CL=90%	2425		
$\eta \pi \pi$)					6				
$\eta(1405) {\cal K}^+ imes {\sf B}(\eta(1405) ightarrow \ {\cal K}^* {\cal K})$	<	1.2			× 10 ⁻⁰	CL=90%	2425		
$\eta(1475)K^+ \times B(\eta(1475) \rightarrow$	(1 20	+	0.21) × 10 ⁻⁵		2406		
K^*K	(1.50	_	0.18) ^ 10		2400		
$f_1(1285)K^+$	<	2.0			$\times 10^{-6}$	CL=90%	2458		
$f_1(1420)K^+ \times B(f_1(1420) \rightarrow$	<	2.9			$\times10^{-6}$	CL=90%	2420		
$\eta \pi \pi$)									
$f_1(1420)K^+ \times B(f_1(1420) \to$	<	4.1			\times 10 ⁻⁶	CL=90%	2420		
K* K)									
$\phi(1680) K^+ \times B(\phi(1680) \to 0.00)$	<	3.4			× 10 ⁻⁶	CL=90%	2344		
K*K)		<u> </u>			6				
$f_0(1500)K^+$	($) \times 10^{-6}$		2398		
ωK^+	(6.5	土	0.4	$) \times 10^{-6}$		2558		

$\omega K^*(892)^+$	<	7.4			\times 10 ⁻⁶	CL=90%	2503
$\omega(\kappa\pi)_0^{*+}$	(2.8	\pm	0.4	$) \times 10^{-5}$		_
$\omega K_0^*(1430)^+$	($) \times 10^{-5}$		_
$\omega K_2^*(1430)^+$	(2.1	\pm	0.4	$) \times 10^{-5}$		2380
$a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow$	<	3.9				CL=90%	_
$\eta\pi^+)$							
$a_0(980)^0{\cal K}^+ imes {\sf B}(a_0(980)^0 o \eta\pi^0)$	<	2.5			× 10 ⁻⁶	CL=90%	_
$K^*(892)^0\pi^+$	(1.01	\pm	0.09	$) \times 10^{-5}$		2562
$K^*(892)^+\pi^0$	(8.2	\pm	1.9	$) \times 10^{-6}$		2563
$K^{+}\pi^{-}\pi^{+}$	($) \times 10^{-5}$		2609
$K^+\pi^-\pi^+$ nonresonant	(1.63	+	0.21	$) \times 10^{-5}$		2609
ω (782) K^{+}	(6			$) \times 10^{-6}$		2558
$K^+ f_0(980) \times B(f_0(980) \rightarrow$	(0.1) × 10 ⁻⁶		2522
$\pi^+\pi^-$)	(<i>3.</i> ∓	_	1.2) ~ 10		2322
$f_2(1270)^0 K^+$	(1.07	\pm	0.27	$) \times 10^{-6}$		_
$f_0(1370)^0 K^+ \times$	<	1.07			$\times 10^{-5}$	CL=90%	_
$B(f_0(1370)^0 \to \pi^+\pi^-)$							
$ ho^0(1450)K^+ imes$	<	1.17			$\times 10^{-5}$	CL=90%	_
$B(ho^0(1450) o \ \pi^+\pi^-)$							
$f_2'(1525)K^+ \times$	<	3.4			\times 10 ⁻⁶	CL=90%	2392
$B(f_2'(1525) \to \pi^+\pi^-)$	<	3.4			× 10 ⁻⁶	CL=90%	2392
<u> -</u> · · · · · · · · · · · · · · · · · ·			土	0.5	$\times 10^{-6}$) $\times 10^{-6}$	CL=90%	2392 2559
$B(f_2'(1525) \to \pi^+\pi^-)$		3.7) × 10 ⁻⁶	CL=90% S=1.5	
$B(f_2'(1525) o \ \pi^+\pi^-) \ K^+ ho^0$	(3.7 4.5	+	0.9 0.7) × 10 ⁻⁶		2559
$B(f_2'(1525) o \pi^+\pi^-) \ \mathcal{K}^+ ho^0 \ \mathcal{K}_0^*(1430)^0\pi^+ \ \mathcal{K}_2^*(1430)^0\pi^+$	(3.7 4.5 5.6	+ - + -	0.9 0.7 2.2 1.5	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$		2559 2445
$B(f_2'(1525) o \pi^+\pi^-) \ \mathcal{K}^+ ho^0 \ \mathcal{K}_0^*(1430)^0 \pi^+ \ \mathcal{K}_2^*(1430)^0 \pi^+ \ \mathcal{K}^*(1410)^0 \pi^+ \ \mathcal{K}^*(1680)^0 \pi^+$	(3.7 4.5 5.6	+ - + -	0.9 0.7 2.2 1.5	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$	S=1.5	2559 2445 2445
$B(f_2'(1525) o \pi^+\pi^-) \ K^+ ho^0 \ K_0^*(1430)^0 \pi^+ \ K_2^*(1430)^0 \pi^+ \ K^*(1410)^0 \pi^+ \ K^*(1680)^0 \pi^+ \ K^+ \pi^0 \pi^0$	(((< <	3.7 4.5 5.6 4.5 1.2	+ - + -	0.9 0.7 2.2 1.5	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$	S=1.5 CL=90%	2559 2445 2445 2446
$B(f_2'(1525) o \pi^+\pi^-) \ K^+ ho^0 \ K_0^*(1430)^0 \pi^+ \ K_2^*(1430)^0 \pi^+ \ K^*(1410)^0 \pi^+ \ K^*(1680)^0 \pi^+ \ K^+\pi^0\pi^0 \ f_0(980) K^+ imes B(f_0 o \pi^0\pi^0)$	(((< < < <	3.7 4.5 5.6 4.5 1.2	+ - + -	0.9 0.7 2.2 1.5	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$	S=1.5 CL=90%	2559 2445 2445 2446 2358
$\begin{array}{c} B(f_2'(1525) \to \pi^+\pi^-) \\ K^+\rho^0 \\ K_0^*(1430)^0\pi^+ \\ K_2^*(1430)^0\pi^+ \\ K^*(1410)^0\pi^+ \\ K^*(1680)^0\pi^+ \\ K^+\pi^0\pi^0 \\ f_0(980)K^+\timesB(f_0\to\pi^0\pi^0) \\ K^-\pi^+\pi^+ \end{array}$	((((((((((((((((((((3.7 4.5 5.6 4.5 1.2 1.62	+ - + -	0.9 0.7 2.2 1.5	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-8}$	S=1.5 CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0 \rightarrow \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant	((((((((((((((((((((3.7 4.5 5.6 4.5 1.2 1.62 2.8	+ - + -	0.9 0.7 2.2 1.5	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-8}$ $\times 10^{-5}$	S=1.5 CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522
$B(f_2'(1525) \to \pi^+\pi^-)$ $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+ \times B(f_0 \to \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$	((((((((((((((((((((3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6	+ - + -	0.9 0.7 2.2 1.5	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-8}$ $\times 10^{-5}$ $\times 10^{-5}$	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0\rightarrow\pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$ $K_1(1400)^0\pi^+$	((((< < ()	3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6 5.6 4.0 3.9	+ - + -	0.9 0.7 2.2 1.5	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-8}$ $\times 10^{-5}$ $\times 10^{-5}$	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609 2609 2484 2451
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0 \rightarrow \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$ $K_1(1400)^0\pi^+$ $K^0\pi^+\pi^0$		3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6 5.6 4.0 3.9 6.6	+ - + - ± ±	0.9 0.7 2.2 1.5 0.19 0.8	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-8}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609 2609 2484 2451 2609
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0 \rightarrow \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$ $K_1(1400)^0\pi^+$ $K^0\pi^+\pi^0$ $K^0\rho^+$		3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6 5.6 4.0 3.9 6.6 8.0	+- +- ± ±	0.9 0.7 2.2 1.5 0.19 0.8	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609 2609 2484 2451 2609 2558
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0 \rightarrow \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$ $K_1(1400)^0\pi^+$ $K^0\pi^+\pi^0$ $K^0\rho^+$ $K^*(892)^+\pi^+\pi^-$		3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6 5.6 4.0 3.9 6.6 8.0 7.5	± ± ±	0.9 0.7 2.2 1.5 0.19 0.8	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-8}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $) \times 10^{-6}$ $) \times 10^{-6}$	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609 2609 2484 2451 2609 2558 2557
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0 \rightarrow \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$ $K_1(1400)^0\pi^+$ $K^0\pi^+\pi^0$ $K^0\rho^+$ $K^*(892)^+\pi^+\pi^ K^*(892)^+\rho^0$		3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6 5.6 4.0 3.9 6.6 8.0 7.5 4.6	+-+- +- +- +- +- +- +-	0.9 0.7 2.2 1.5 0.19 0.8 1.5 1.0	$) \times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $) \times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $) \times 10^{-6}$ $) \times 10^{-6}$ $) \times 10^{-6}$	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609 2609 2484 2451 2609 2558 2557 2504
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0 \rightarrow \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$ $K_1(1400)^0\pi^+$ $K^0\pi^+\pi^0$ $K^0\rho^+$ $K^*(892)^+\pi^+\pi^ K^*(892)^+\rho^0$ $K^*(892)^+f_0(980)$		3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6 5.6 4.0 3.9 6.6 8.0 7.5 4.6 4.2	+-+- +- +± ±	0.9 0.7 2.2 1.5 0.19 0.8 1.5 1.0 1.1) × 10 ⁻⁶) × 10 ⁻⁵) × 10 ⁻⁵ × 10 ⁻⁵) × 10 ⁻⁵) × 10 ⁻⁶ × 10 ⁻⁵ × 10 ⁻⁵ × 10 ⁻⁵) × 10 ⁻⁶) × 10 ⁻⁶) × 10 ⁻⁶	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609 2609 2484 2451 2609 2558 2557
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0 \rightarrow \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$ $K_1(1400)^0\pi^+$ $K^0\pi^+\pi^0$ $K^0\rho^+$ $K^*(892)^+\rho^0$ $K^*(892)^+\rho^0$ $K^*(892)^+f_0(980)$ $a_1^+K^0$		3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6 5.6 4.0 3.9 6.6 8.0 7.5 4.6 4.2 3.5	+ + + + + + + + + + + + + + + + + + + +	0.9 0.7 2.2 1.5 0.19 0.8 1.5 1.0 1.1 0.7) × 10 ⁻⁶) × 10 ⁻⁵) × 10 ⁻⁵ × 10 ⁻⁵) × 10 ⁻⁶ × 10 ⁻⁸ × 10 ⁻⁵ × 10 ⁻⁵ × 10 ⁻⁵) × 10 ⁻⁶) × 10 ⁻⁶) × 10 ⁻⁶) × 10 ⁻⁶	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609 2609 2484 2451 2609 2558 2557 2504
B($f_2'(1525) \rightarrow \pi^+\pi^-$) $K^+\rho^0$ $K_0^*(1430)^0\pi^+$ $K_2^*(1430)^0\pi^+$ $K^*(1410)^0\pi^+$ $K^*(1680)^0\pi^+$ $K^+\pi^0\pi^0$ $f_0(980)K^+\times B(f_0 \rightarrow \pi^0\pi^0)$ $K^-\pi^+\pi^+$ $K^-\pi^+\pi^+$ nonresonant $K_1(1270)^0\pi^+$ $K_1(1400)^0\pi^+$ $K^0\pi^+\pi^0$ $K^0\rho^+$ $K^*(892)^+\pi^+\pi^ K^*(892)^+\rho^0$ $K^*(892)^+f_0(980)$		3.7 4.5 5.6 4.5 1.2 1.62 2.8 4.6 5.6 4.0 3.9 6.6 8.0 7.5 4.6 4.2 3.5 9.6	+ + + + + ± ± ± ± ± ± ±	0.9 0.7 2.2 1.5 0.19 0.8 1.5 1.0 1.1) × 10 ⁻⁶) × 10 ⁻⁵) × 10 ⁻⁵ × 10 ⁻⁵) × 10 ⁻⁵) × 10 ⁻⁶ × 10 ⁻⁵ × 10 ⁻⁵ × 10 ⁻⁵) × 10 ⁻⁶) × 10 ⁻⁶) × 10 ⁻⁶	S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2559 2445 2445 2446 2358 2610 2522 2609 2609 2484 2451 2609 2558 2557 2504

$K_1(1400)^+ ho^0$	<	7.8			× 10 ⁻⁴	CL=90%	2388
$K_2^*(1430)^+ \rho^0$	<	1.5			$\times 10^{-3}$	CL=90%	2381
$b_1^0 K^+ imes B(b_1^0 o \ \omega \pi^0)$	(9.1	\pm	2.0	$) \times 10^{-6}$		_
$b_1^+ K^{*0} \! imes B(\bar{b}_1^+ o \omega \pi^+)$	<	5.9			$\times 10^{-6}$	CL=90%	_
$b_1^{ar{0}}K^{*+} imesB(b_1^{ar{0}} o\omega\pi^0)$	<	6.7			$\times10^{-6}$	CL=90%	_
$K^+\overline{K}^0$	(1.31	\pm	0.17	$) \times 10^{-6}$	S=1.2	2593
$\overline{K}{}^0K^+\pi^0$	<	2.4				CL=90%	2578
$K^+K^0_SK^0_S$	(1.08	\pm	0.06	$) \times 10^{-5}$		2521
$f_0(980)K^+, f_0 \to K_S^0 K_S^0$	($) \times 10^{-5}$		_
$\mathit{f}_{0}(1710)\mathit{K}^{+}$, $\mathit{f}_{0} ightarrow \mathit{K}^{0}_{\mathit{S}}\mathit{K}^{0}_{\mathit{S}}$	(4.8	+	4.0 2.6	$) \times 10^{-7}$		_
$K^+K^0_SK^0_S$ nonresonant	(2.0	\pm	0.4	$) \times 10^{-5}$		2521
$K_{5}^{0}K_{5}^{0}\pi^{+}$	<				$\times 10^{-7}$	CL=90%	2577
$K^+K^-\pi^+$	($) \times 10^{-6}$		2578
$\mathcal{K}^+ \mathcal{K}^- \pi^+$ nonresonant	<	7.5				CL=90%	2578
$K^{+}\overline{K}^{*}(892)^{0}$	<	1.1			$\times10^{-6}$	CL=90%	2540
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	<	2.2			$\times10^{-6}$	CL=90%	2421
$K^+K^+\pi^-$	<	1.1			$\times 10^{-8}$	CL=90%	2578
${\it K}^+{\it K}^+\pi^-$ nonresonant	<	8.79			$\times10^{-5}$	CL=90%	2578
$f_2'(1525)K^+$	(1.8	\pm	0.5	$) \times 10^{-6}$	S=1.1	2392
$\bar{\mathcal{K}^{*+}}\pi^+\mathcal{K}^-$	<					CL=90%	2524
$K^*(892)^+ K^*(892)^0$	(9.1	\pm	2.9	$) \times 10^{-7}$		2484
$K^{*+}K^+\pi^-$	<					CL=90%	2524
$K^+K^-K^+$	(3.40	\pm	0.14	$) \times 10^{-5}$	S=1.4	2523
$K^+\phi$	(8.8	+	0.7 0.6	$) \times 10^{-6}$	S=1.1	2516
$f_0(980)K^+ imesB(f_0(980) o$	(9.4	\pm	3.2	$) \times 10^{-6}$		2522
$K^+K^-)$							
$a_2(1320) K^+ imes$	<	1.1			$\times 10^{-6}$	CL=90%	2449
$B(a_2(1320) \to K^+K^-)$							
$X_0(1550)K^+ \times$	(4.3	\pm	0.7	$) \times 10^{-6}$		_
$B(X_0(1550) \to K^+K^-)$					7		
$\phi(1680) K^+ imes B(\phi(1680) ightarrow K^+ K^-)$	<	8			× 10 ⁻⁷	CL=90%	2344
$f_0(1710)K^+ \times B(f_0(1710) \rightarrow$	(1.1	土	0.6) × 10 ⁻⁶		2330
K^+K^-)	·				•		
$K^+K^-K^+$ nonresonant	(2.38	+	0.28 0.50	$) \times 10^{-5}$		2523
$K^*(892)^+ K^+ K^-$	(3.6	\pm	0.5	$) \times 10^{-5}$		2466
$K^*(892)^+ \phi$) × 10 ⁻⁶	S=1.7	2460
$\phi(\kappa\pi)_0^{*+}$	() × 10 ⁻⁶		_
$\phi K_1(1270)^+$	($) \times 10^{-6}$		2375
$\phi K_1(1400)^+$	<				$^{'} \times 10^{-6}$	CL=90%	2339
$\phi K^*(1410)^+$	<	4.3			$\times 10^{-6}$	CL=90%	_

$\phi K_0^* (1430)^+$	(7.0	\pm	1.6	$) \times 10^{-6}$		_
$\phi K_2^{0}(1430)^+$	(8.4		2.1) × 10 ⁻⁶		2333
$\phi K_2^*(1770)^+$	<	1.50				CL=90%	_
$\phi K_{2}^{*}(1820)^{+}$	<	1.63			$\times10^{-5}$	CL=90%	_
$a_1^+ \bar{K}^{*0}$	<	3.6			\times 10 ⁻⁶	CL=90%	_
$K^+\phi\phi$	(5.0	\pm	1.2	$) \times 10^{-6}$	S=2.3	2306
$\eta'\eta'K^+$	<	2.5				CL=90%	2338
$\omega \phi K^+$	<	1.9				CL=90%	2374
$X(1812)K^+ \times B(X \rightarrow \omega \phi)$ $K^*(892)^+ \gamma$	<	3.2	1	0.10		CL=90%	2564
	($) \times 10^{-5}$		2564
$K_1(1270)^+ \gamma$	(4.4		0.7	$) \times 10^{-5}$		2486
$\eta K^+ \gamma$	(7.9			$) \times 10^{-6}$		2588
$\eta' K^+ \gamma$	(2.9	_	1.0 0.9) × 10 ⁻⁶		2528
$\phi K^+ \gamma$	(2.7			$) \times 10^{-6}$	S=1.2	2516
$K^{+}\pi^{-}\pi^{+}\gamma$	($) \times 10^{-5}$	S=1.3	2609
$K^*(892)^0\pi^+\gamma \ K^+ ho^0\gamma$	($) \times 10^{-5}$		2562
• •	(8.2			$) \times 10^{-6}$		2559
$(K^+\pi^-)_{NR}\pi^+\gamma$	(9.9		1.7 2.0	$) \times 10^{-6}$		2609
$K^0\pi^+\pi^0\gamma$	(4.6			$) \times 10^{-5}$		2609
$K_1(1400)^+ \gamma$	(10	+	5 4) × 10 ⁻⁶		2453
\mathcal{K}^* (1410) $^+$ γ	(2.7	+	0.8 0.6	$)\times10^{-5}$		_
$K_0^*(1430)^0\pi^+\gamma$	(1.32	+	0.26 0.32	$) \times 10^{-6}$		2445
$K_2^*(1430)^+ \gamma$	(1.4	\pm	0.4	$) \times 10^{-5}$		2447
$K^*(1680)^+\gamma$	(6.7	+	1.7 1.4	$) \times 10^{-5}$		2360
$K_3^*(1780)^+ \gamma$	<	3.9			$\times10^{-5}$	CL=90%	2341
$K_4^*(2045)^+\gamma$	<	9.9			$\times10^{-3}$	CL=90%	2244
Light unfla	vored	meso	n r	node	es		
$\rho^+ \gamma$	(9.8	\pm	2.5	$) \times 10^{-7}$		2583
$\pi^+\pi^0$	•				$) \times 10^{-6}$	S=1.2	2636
$\pi^+\pi^+\pi^-$					$) \times 10^{-5}$		2630
$ ho^0\pi^+$	($) \times 10^{-6}$		2581
$\pi^+ f_0(980), f_0 \rightarrow \pi^+ \pi^-$	<				× 10 ⁻⁶	CL=90%	2545
$\pi^+ f_2(1270)$	(1.6	+	0.7 0.4	$) \times 10^{-6}$		2484
$ ho (1450)^0 \pi^+$, $ ho^0 ightarrow \ \pi^+ \pi^-$	(1.4	+	0.6 0.9	$) \times 10^{-6}$		2434
$f_0(1370)\pi^+$, $f_0 \to \pi^+\pi^-$	<	4.0			\times 10 ⁻⁶	CL=90%	2460
$f_0(500)\pi^+, f_0 \to \pi^+\pi^-$	<	4.1			\times 10 ⁻⁶	CL=90%	_
$\pi^+\pi^-\pi^+$ nonresonant	(5.3	+	1.5 1.1	$) \times 10^{-6}$		2630

Charged particle (h^{\pm}) modes

$$h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$$

$$h^+\pi^0$$
 (1.6 $^+$ 0.7 $_{-}$ 0.6) \times 10⁻⁵ 2636 ω h^+ (1.38 $^+$ 0.27 $_{-}$ 0.24) \times 10⁻⁵ CL=90% -

Baryon modes

$p \overline{p} K^*(892)^+$	(3.6	+	0.8 0.7	$) \times 10^{-6}$		2215
$f_{J}(2220)K^{*+}$, $f_{J} \rightarrow p\overline{p}$	<	7.7				CL=90%	2059
pΛ	<	3.2			$\times 10^{-7}$	CL=90%	2430
$p\overline{\Lambda}\gamma$	(2.4	+	0.5 0.4	$) \times 10^{-6}$		2430
$p\overline{\Lambda}\pi^0$	(3.0	+	0.7 0.6	$) \times 10^{-6}$		2402
$p\overline{\Sigma}(1385)^0$	<	4.7			\times 10 ⁻⁷	CL=90%	2362
$\Delta^{+}\overline{\Lambda}$	<	8.2			$\times 10^{-7}$	CL=90%	_
$p\overline{\Sigma}\gamma$	<	4.6				CL=90%	2413
$p \overline{\Lambda} \pi^+ \pi^-$	(5.9	\pm	1.1	$) \times 10^{-6}$		2367
$ \rho \overline{\Lambda} \rho^0 $	(4.8		0.9	$) \times 10^{-6}$		2214
$p \Lambda f_2(1270)$	(2.0	\pm	8.0	$) \times 10^{-6}$		2026
$\Lambda \overline{\Lambda} \pi^+$	<	9.4				CL=90%	2358
$\Lambda \overline{\Lambda} K^+$	(3.4	\pm	0.6	$) \times 10^{-6}$		2251
$\Lambda \overline{\Lambda} K^{*+}$	(2.2	+	1.2 0.9	$) \times 10^{-6}$		2098
$\overline{\Delta}{}^0 p$	<	1.38	}		$\times 10^{-6}$	CL=90%	2403
$\Delta^{++}\overline{p}$	<	1.4			$\times10^{-7}$	CL=90%	2403
$D^+ p \overline{p}$	<	1.5				CL=90%	1860
$D^*(2010)^+ \rho \overline{\rho}$	<	1.5			$\times 10^{-5}$	CL=90%	1786
$\overline{D}{}^0 ho \overline{ ho} \pi^+$	(3.72	<u>±</u>	0.27	$) \times 10^{-4}$		1789
$\overline{D}^{*0} p \overline{p} \pi^+$	(3.73	3 ±	0.32	$) \times 10^{-4}$		1709
$D^- \rho \overline{ ho} \pi^+ \pi^-$	(1.66	5 ±	0.30	$) \times 10^{-4}$		1705
$D^{*-} \rho \overline{\rho} \pi^+ \pi^-$	(1.86	5 ±	0.25	$) \times 10^{-4}$		1621
$p\overline{\Lambda}^0\overline{D}^0$	(1.43	3 ±	0.32	$) \times 10^{-5}$		_
$p \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0}$	<	5			$\times 10^{-5}$	CL=90%	_
$\overline{\Lambda}_c^- p \pi^+$	(2.2	\pm	0.4	$) \times 10^{-4}$	S=2.2	1980
$\overline{\Lambda}^{-}_{-}\Delta(1232)^{++}$	<	1.9			$\times 10^{-5}$	CL=90%	1928
$\overline{\Lambda}_c^c \Delta_X^c (1600)^{++}$	(4.6	\pm	0.9	$) \times 10^{-5}$		_
$\overline{\Lambda}_{c}^{-}\Delta_{X}(2420)^{++}$	($) \times 10^{-5}$		_
$(\overline{\Lambda}_{c}^{-}p)_{s}\pi^{+}$	[bbaa] ($) \times 10^{-5}$		_
$\frac{\overline{\Sigma}_c(2520)^0}{p}$	<	3			× 10 ⁻⁶	CL=90%	1904
$\overline{\Sigma}_c(2800)^0 p$	($) \times 10^{-5}$		_
$\overline{\Lambda}_{\rho\pi}^{-} \pi^{+} \pi^{0}$	() × 10 ⁻³		1935
$\overline{\Lambda}_{c}^{c} p \pi^{+} \pi^{+} \pi^{-}$	() × 10 ⁻³		1880
$\frac{1}{\Lambda} \frac{c}{\rho} p \pi^+ \pi^+ \pi^- \pi^0$	<	1.34			%	CL=90%	1823
$\Lambda_c^+ \Lambda_c^- K^+$) × 10 ⁻⁴	CL-3070	1025
$\frac{N_c}{\Sigma_c} (2455)^0 p$	(1020
$\frac{\Sigma_c(2455)^5 p}{\Sigma_c(2455)^0 p \pi^0}$	($) \times 10^{-5}$		1938
$\frac{\Sigma_c(2455)^0 p \pi^-}{\Sigma_c(2455)^0 p \pi^- \pi^+}$	($) \times 10^{-4}$		1896
	($) \times 10^{-4}$		1845
$\overline{\Sigma}_c(2455)^{} p \pi^+ \pi^+$	(2.34	+ ±	0.20	$) \times 10^{-4}$		1845

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

violating indues, or/	allu 🛆	D - 1 We	eak neutral current (DI) IIIOUES	1
$\pi^+\ell^+\ell^-$	В1	<	4.9 × 10 ⁻	8 CL=90%	2638
$\pi^{+}e^{+}e^{-}$	В1	<	8.0 × 10 ⁻	8 CL=90%	2638
$\pi^+\mu^+\mu^-$	В1	($1.79~\pm~0.23~)\times10^{-}$	3	2634
$\pi^+ u \overline{ u}$	B1	<		⁵ CL=90%	2638
$K^+ \ell^+ \ell^-$	B1	[ttt] (4.51 \pm 0.23) $\times10^{-1}$	7 S=1.1	2617
$K^+ e^+ e^-$	B1	($5.5 \pm 0.7 \times 10^{-1}$		2617
$\mathcal{K}^+ \mu^+ \mu^-$	B1	(4.43 \pm 0.24) \times 10 $^{-1}$	7 S=1.2	2612
$K^+ au^+ au^-$	B1	<		³ CL=90%	1687
$K^+ \overline{\nu} \nu$	B1	<		⁵ CL=90%	2617
$ ho^+ u\overline{ u}$	B1	<		⁴ CL=90%	2583
$K^*(892)^+ \ell^+ \ell^-$	B1	[ttt] ($1.01~\pm~0.11$) $\times10^-$	6 S=1.1	2564
$K^*(892)^+ e^+ e^-$	B1	($1.55 \ ^{+}_{-} \ 0.40 \) imes 10^{-}$	6	2564
$K^*(892)^+ \mu^+ \mu^-$	B1	(9.6 ± 1.0 $) imes 10^{-1}$	7	2560
$K^*(892)^+ u\overline{ u}$	B1	<		⁵ CL=90%	2564
$K^+\pi^+\pi^-\mu^+\mu^-$	B1	($4.4 \pm 0.4 \times 10^{-1}$	7	2593
$\phi K^+ \mu^+ \mu^-$	B1	(7.9 $^{+}_{-}$ 2.1) \times 10 $^{-}$	8	2490
$\pi^+\mathrm{e}^+\mu^-$	LF	<	6.4 × 10	³ CL=90%	2637
$\pi^+e^-\mu^+$	LF	<		³ CL=90%	2637
$\pi^+\mathrm{e}^\pm\mu^\mp$	LF	<		⁷ CL=90%	2637
$\pi^+ e^+ \tau^-$	LF	<		5 CL=90%	2338
$\pi^+e^-\tau^+$	LF	<		⁵ CL=90%	2338
$\pi^+e^{\pm}\tau^{\mp}$	LF	<		5 CL=90%	2338
$\pi^{+}\mu^{+}\tau^{-}$	LF	<		5 CL=90%	2333
$\pi^{+}\mu^{-}\tau^{+}$	LF	<		5 CL=90%	2333
$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<		⁵ CL=90%	2333
$K^+e^+\mu^-$	LF	<		8 CL=90%	2615
$K^{+}e^{-}\mu_{-}^{+}$	LF	<		⁷ CL=90%	2615
$K^+e^{\pm}\mu^{\mp}$	LF	<		⁸ CL=90%	2615
$K^+e^+\tau^-$	LF	<		5 CL=90%	2312
$K^{+}e^{-}\tau^{+}$	LF	<		5 CL=90%	2312
$K^+e^\pm au^\mp$	LF	<		5 CL=90%	2312
$K^+\mu^+\tau^-$	LF	<		5 CL=90%	2298
$K^+\mu^-\tau^+$	LF	<		5 CL=90%	2298
$K^+\mu^{\pm}\tau^{\mp}$	LF	<		5 CL=90%	2298
$K^*(892)^+ e^+ \mu^-$	LF	<		6 CL=90%	2563
$K^*(892)^+e^-\mu^+$	LF	<		⁷ CL=90%	2563
$K^*(892)^+e^\pm\mu^\mp$	LF	<	1.4 × 10 ⁻	6 CL=90%	2563

 B^0

$$I(J^P) = \frac{1}{2}(0^-)$$

 $I,\ J,\ P$ need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.63\pm0.15~{\rm MeV}~{\rm (S=1.1)}$$
 $m_{B^0}-m_{B^\pm}=0.31\pm0.06~{\rm MeV}$ Mean life $\tau_{B^0}=(1.520\pm0.004)\times10^{-12}~{\rm s}$ $c\tau=455.7~\mu{\rm m}$ $\tau_{B^+}/\tau_{B^0}=1.076\pm0.004~{\rm (direct\ measurements)}$

$B^0-\overline{B}^0$ mixing parameters

$$\begin{array}{l} \chi_d = 0.1860 \pm 0.0011 \\ \Delta m_{B^0} = m_{B^0_H} - m_{B^0_L} = (0.5064 \pm 0.0019) \times 10^{12} \; \hbar \; \mathrm{s}^{-1} \\ \qquad \qquad = (3.333 \pm 0.013) \times 10^{-10} \; \mathrm{MeV} \\ \chi_d = \Delta m_{B^0} / \Gamma_{B^0} = 0.770 \pm 0.004 \\ \mathrm{Re} \big(\lambda_{CP} \; / \; \big| \lambda_{CP} \big| \big) \; \mathrm{Re}(\mathrm{z}) = 0.047 \pm 0.022 \\ \Delta \Gamma \; \mathrm{Re}(\mathrm{z}) = -0.007 \pm 0.004 \\ \mathrm{Re}(\mathrm{z}) = (-4 \pm 4) \times 10^{-2} \quad (\mathrm{S} = 1.4) \\ \mathrm{Im}(\mathrm{z}) = (-0.8 \pm 0.4) \times 10^{-2} \end{array}$$

CP violation parameters

$$\begin{aligned} &\text{Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2) = (-0.5 \pm 0.4) \times 10^{-3} \\ &A_{T/CP}(B^0 \leftrightarrow B^0) = 0.005 \pm 0.018 \\ &A_{CP}(B^0 \to B^0) = 0.005 \pm 0.018 \\ &A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0) = -0.03 \pm 0.04 \\ &R_d^+ = \Gamma(B^0 \to [\pi^+K^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^-K^+]_D K^{*0}) = \\ &0.06 \pm 0.032 \\ &R_d^- = \Gamma(\overline{B}^0 \to [\pi^-K^+]_D K^{*0}) / \Gamma(\overline{B}^0 \to [\pi^+K^-]_D K^{*0}) = \\ &0.06 \pm 0.032 \\ &A_{CP}(B^0 \to K^+\pi^-) = -0.082 \pm 0.006 \\ &A_{CP}(B^0 \to \eta' K^*(892)^0) = -0.19 \pm 0.17 \\ &A_{CP}(B^0 \to \eta' K^*(892)^0) = 0.19 \pm 0.17 \\ &A_{CP}(B^0 \to \eta' K^*(892)^0) = 0.19 \pm 0.05 \\ &A_{CP}(B^0 \to \eta' K^*(892)^0) = 0.19 \pm 0.05 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = 0.06 \pm 0.13 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \psi K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \psi K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \psi K^*(1430)^0) = -0.037 \pm 0.17 \\ &A_{CP}(B^0 \to \psi K^*(1430)^0) = -0.031 \pm 0.17 \\ &A_{CP}(B^0 \to \psi K^*(1430)^0) = -0.01 \pm 0.33 \\ &A_{CP}(B^0 \to \phi (1450)^-K^+) = -0.10 \pm 0.33 \\ &A_{CP}(B^0 \to \kappa^+\pi^-\pi^0) \text{nonresonant}) = 0.10 \pm 0.18 \\ &A_{CP}(B^0 \to K^*(892)^+\pi^-) = -0.22 \pm 0.06 \\ &A_{CP}(B^0 \to K^*(892)^+\pi^-) = -0.22 \pm 0.06 \\ &A_{CP}(B^0 \to K^*(892)^+\pi^-) = -0.15 \pm 0.11 \\ &A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.01 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.01 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.01 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.01 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.2 \pm 0.04 \\ &A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.2 \pm 0.$$

$$A_{CP}(B^0 \to K_*^*(1430)^0) = -0.11 \pm 0.10$$

$$A_{CP}(B^0 \to K^*(892)^0\gamma) = -0.002 \pm 0.015$$

$$A_{CP}(B^0 \to K_*^*(1430)^0\gamma) = -0.08 \pm 0.15$$

$$A_{CP}(B^0 \to \rho^+\pi^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to \rho^+\pi^-) = -0.08 \pm 0.08$$

$$A_{CP}(B^0 \to \rho_-\pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to \rho_-\pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to \rho_-\pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to \rho_-\pi^+) = 0.04 \pm 0.07$$

$$A_{CP}(B^0 \to \rho_-\pi^-) = 0.04 \pm 0.07$$

$$A_{CP}(B^0 \to \rho_-\pi^-) = 0.04 \pm 0.07$$

$$A_{CP}(B^0 \to K^{*0}\ell^+\ell^-) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to K^{*0}\ell^+\ell^-) = -0.03 \pm 0.10$$

$$A_{CP}(B^0 \to K^{*0}\ell^+\ell^-) = -0.034 \pm 0.024$$

$$C_{D^*-D^+}(B^0 \to D^*(2010) \to D^+) = -0.72 \pm 0.15$$

$$C_{D^*-D^+}(B^0 \to D^*(2010) \to D^+) = -0.72 \pm 0.15$$

$$C_{D^*+D^-}(B^0 \to D^*(2010) \to D^+) = -0.73 \pm 0.14$$

$$C_{D^*+D^*}(B^0 \to D^*+D^*-) = -0.01 \pm 0.09 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^*+D^*-) = -0.01 \pm 0.09 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^*+D^*-) = -0.09 \pm 0.14 \quad (S = 1.8)$$

$$C_{L}(B^0 \to D^*+D^*-) = 0.11 \pm 1.6 \quad (S = 3.5)$$

$$C(B^0 \to D^*+D^*-) = 0.11 \pm 1.6 \quad (S = 3.5)$$

$$C(B^0 \to D^*+D^*-) = 0.11 \pm 1.6 \quad (S = 3.5)$$

$$C(B^0 \to D^*(2010) + D^*(2010) - K_S^0) = 0.01 \pm 0.29$$

$$S(B^0 \to D^*(2010) + D^*(2010) - K_S^0) = 0.11 \pm 0.4$$

$$C_{D^+D^-}(B^0 \to D^+D^-) = -0.22 \pm 0.24 \quad (S = 2.5)$$

$$S_{D^+D^-}(B^0 \to D^+D^-) = -0.76^{+0.15}_{-0.13} \quad (S = 1.2)$$

$$C_{J/\psi}(1S)_{\pi^0}(B^0 \to J/\psi(1S)_{\pi^0}) = -0.13 \pm 0.13$$

$$S_{J/\psi}(1S)_{\pi^0}(B^0 \to D^+D^-) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)_{\rho^0}) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)_{\rho^0}) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)_{\rho^0}) = -0.06 \pm 0.12$$

$$C_{CP}h^0(B^0 \to K^0\pi^0) = 0.58 \pm 0.17$$

$$C_{H}(958)_{K_S^0}(B^0 \to H^0(958)_{K_S^0}) = -0.04 \pm 0.20 \quad (S = 2.5)$$

$$S_{H}(958)_{K_S^0}(B^0 \to H^0(958)_{K_S^0}) = -0.04 \pm 0.20 \quad (S = 2.5)$$

$$S_{H}(958)_{K_S^0}(B^0 \to H^0(958)_{K_S^0}) = -0.04 \pm 0.20 \quad (S = 2.5)$$

$$S_{H}(958)_{K_S^0}(B^0 \to H^0(958)_{K_S^0}) = -0.04 \pm 0.20$$

$$C_{H}(95)_{H_S^0}(B^0 \to H^0(958)_{K_S^0}) = -0.04 \pm 0.20$$

$$C_{H}(95)_{H_S^0}(B^0 \to H^0(958)_{K_S^0}) = 0.04 \pm 0.20$$

$$C_{H}(95)_{H_S^0}(B^0 \to H^0(958)_{K_S^0}) = 0.04 \pm 0.20$$

$$C_{H}(95)_{H_S^0}(B^0 \to H^0(958)_{K_S^0}) = 0.04 \pm 0.1$$

$$\begin{split} &C_{\omega K_S^0} \left(B^0 \to \omega K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 3.0)} \\ &S_{\omega K_S^0} \left(B^0 \to \omega K_S^0 \right) = 0.70 \pm 0.21 \\ &C \left(B^0 \to K_S^0 \pi^0 \pi^0 \right) = 0.2 \pm 0.5 \\ &S \left(B^0 \to K_S^0 \pi^0 \pi^0 \right) = 0.7 \pm 0.7 \\ &C_{\rho^0 K_S^0} \left(B^0 \to \rho^0 K_S^0 \right) = -0.04 \pm 0.20 \\ &S_{\rho^0 K_S^0} \left(B^0 \to \rho^0 K_S^0 \right) = 0.50_{-0.21}^{+0.17} \\ &C_{f_0 K_S^0} \left(B^0 \to f_0 (980) K_S^0 \right) = 0.29 \pm 0.20 \\ &S_{f_0 K_S^0} \left(B^0 \to f_0 (980) K_S^0 \right) = -0.50 \pm 0.16 \\ &S_{f_2 K_S^0} \left(B^0 \to f_2 (1270) K_S^0 \right) = -0.5 \pm 0.5 \\ &C_{f_2 K_S^0} \left(B^0 \to f_2 (1270) K_S^0 \right) = 0.3 \pm 0.4 \\ &S_{f_2 K_S^0} \left(B^0 \to f_2 (1300) K_S^0 \right) = 0.13 \pm 0.35 \\ &S_{K_0 \pi^0 \pi^+ \pi^-} \left(B^0 \to K_0^0 \pi^+ \pi^- \text{nonresonant} \right) = -0.01 \pm 0.33 \\ &C_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_0 K_S^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.4)} \\ &S_{K_0 K_0 K_0^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 3.0)} \\ &C_{K_0 K_0 K_0^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 3.0)} \\ &C_{K_0 K_0 K_0^0} \left(B^0 \to K_2^0 K_S^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 3.0)} \\ &C_{K_0 K_0 K_0^0} \left(B^0 \to K_2^0 K_0^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 3.0)} \\ &C_{K_0 K_0 K_0^0} \left(B^0 \to K_2^0 K_0^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 3.0)} \\ &C_{K_0 K_0 K_0} \left(B^0 \to K_2^0 K_0^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 3.0)} \\ &C_{K_0 K_0 K_0} \left(B^0 \to K_2^0 K_0^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 3.0)} \\ &S_{K_0 K_0 K_0} \left(B^0 \to K_2^0 K_0^0 \right) = 0.0 \pm 0.4 \quad \text{(S = 1.2)} \\ &S_{K_0 K_0 K_0} \left(B^0 \to K_$$

$$\begin{array}{l} C_{K^0\phi\gamma}\left(B^0\to K^0\phi\gamma\right) = -0.3\pm0.6\\ S_{K^0\phi\gamma}\left(B^0\to K^0\phi\gamma\right) = 0.7^{+0.7}_{-1.1}\\ C(B^0\to K^0_0\rho^0\gamma) = -0.05\pm0.19\\ S(B^0\to K^0_0\rho^0\gamma) = -0.04\pm0.23\\ C\left(B^0\to \rho^0\gamma\right) = 0.4\pm0.5\\ S\left(B^0\to \rho^0\gamma\right) = -0.8\pm0.7\\ C_{\pi\pi}\left(B^0\to \pi^+\pi^-\right) = -0.31\pm0.05\\ S_{\pi\pi}\left(B^0\to \pi^+\pi^-\right) = -0.67\pm0.06\\ C_{\pi^0\pi^0}(B^0\to \pi^0\pi^0) = -0.43\pm0.24\\ C_{\rho\pi}\left(B^0\to \rho^+\pi^-\right) = 0.05\pm0.07\\ \Delta C_{\rho\pi}\left(B^0\to \rho^+\pi^-\right) = 0.05\pm0.07\\ \Delta C_{\rho\pi}\left(B^0\to \rho^+\pi^-\right) = 0.01\pm0.08\\ C_{\rho^0\pi^0}\left(B^0\to \rho^0\pi^0\right) = -0.27\pm0.06\\ \Delta S_{\rho\pi}\left(B^0\to \rho^0\pi^0\right) = 0.27\pm0.24\\ S_{\rho\pi}\left(B^0\to \rho^0\pi^0\right) = -0.23\pm0.34\\ C_{a_1\pi}\left(B^0\to a_1(1260)^+\pi^-\right) = -0.05\pm0.11\\ S_{a_1\pi}\left(B^0\to a_1(1260)^+\pi^-\right) = -0.43\pm0.14\\ S_{a_1\pi}\left(B^0\to a_1(1260)^+\pi^-\right) = -0.24\pm0.4\\ \Delta C_{a_1\pi}\left(B^0\to a_1(1260)^+\pi^-\right) = -0.11\pm0.12\\ C\left(B^0\to b_1^-K^+\right) = -0.22\pm0.24\\ \Delta C\left(B^0\to b_1^-K^+\right) = -1.04\pm0.24\\ C_{\rho\rho}\left(B^0\to \rho^0\rho^0\right) = 0.2\pm0.9\\ S_{\rho\rho}\left(B^0\to \rho^0\rho^0\right) = 0.3\pm0.7\\ C_{\rho\rho}\left(B^0\to \rho^0\rho^0\right) = 0.03\pm0.7\\ C_{\rho\rho}\left(B^0\to \rho^0\rho^0\right) = 0.03\pm0.7\\ C_{\rho\rho}\left(B^0\to \rho^0\rho^0\right) = 0.03\pm0.7\\ C_{\rho\rho}\left(B^0\to \rho^0\rho^0\right) = 0.03\pm0.7\\ C_{\rho\rho}\left(B^0\to \rho^0\rho^0\right) = 0.03\pm0.$$

$$\begin{split} & S_{J/\psi(\text{nS})} \kappa_0 \ (B^0 \to J/\psi(\text{nS}) \kappa^0) = 0.676 \pm 0.021 \\ & C_{J/\psi K^{*0}} \ (B^0 \to J/\psi K^{*0}) = 0.03 \pm 0.10 \\ & S_{J/\psi K^{*0}} \ (B^0 \to J/\psi K^{*0}) = 0.60 \pm 0.25 \\ & C_{\chi_{c0} K_S^0} \ (B^0 \to \chi_{c0} K_S^0) = -0.3^{+0.5}_{-0.4} \\ & S_{\chi_{c0} K_S^0} \ (B^0 \to \chi_{c0} K_S^0) = -0.7 \pm 0.5 \\ & C_{\chi_{c1} K_S^0} \ (B^0 \to \chi_{c1} K_S^0) = 0.06 \pm 0.07 \\ & S_{\chi_{c1} K_S^0} \ (B^0 \to \chi_{c1} K_S^0) = 0.63 \pm 0.10 \\ & \sin(2\beta_{\text{eff}}) (B^0 \to \phi K^0) = 0.22 \pm 0.30 \\ & \sin(2\beta_{\text{eff}}) (B^0 \to \phi K_0^0 (1430)^0) = 0.97_{-0.52}^{+0.03} \\ & \sin(2\beta_{\text{eff}}) (B^0 \to K^+ K^- K_S^0) = 0.77_{-0.12}^{+0.13} \\ & \sin(2\beta_{\text{eff}}) (B^0 \to [K_S^0 \pi^+ \pi^-]_{D(*)} h^0) = 0.37 \pm 0.22 \\ & \beta_{\text{eff}} (B^0 \to [K_S^0 \pi^+ \pi^-]_{D(*)} h^0) = (12 \pm 8)^\circ \\ & 2\beta_{\text{eff}} (B^0 \to J/\psi \rho^0) = (42_{-11}^{+10})^\circ \\ & |\lambda| \ (B^0 \to [K_S^0 \pi^+ \pi^-]_{D(*)} h^0) = 1.01 \pm 0.08 \\ & |\sin(2\beta + \gamma)| > 0.40, \ \text{CL} = 90\% \\ & 2\beta + \gamma = (83 \pm 60)^\circ \\ & \alpha = (93 \pm 5)^\circ \\ & \gamma (B^0 \to D^0 K^{*0}) = (81 \pm 29)^\circ \ (S = 1.5) \\ & \chi_+ (B^0 \to D K^{*0}) = 0.04 \pm 0.17 \\ & \chi_- (B^0 \to D K^{*0}) = -0.16 \pm 0.14 \\ & y_+ (B^0 \to D K^{*0}) = -0.68 \pm 0.22 \\ & y_- (B^0 \to D K^{*0}) = 0.20 \pm 0.25 \ (S = 1.2) \\ & r_{B^0} (B^0 \to D K^{*0}) = 0.222_{-0.045}^{+0.041} \\ & \delta_{B^0} (B^0 \to D K^{*0}) = (194_{-22}^{+27})^\circ \end{split}$$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES	I	- rac	ction (Γ _i	/Γ)		ale factor/ dence level	
$\ell^+ u_\ell$ anything	[ttt]	(10.33±	0.28)	%		_
$e^+ \nu_e X_c$		(10.1 ±	0.4)	%		_
$D\ell^+ u_\ell$ anything		(9.2 ±	0.8)	%		_
$D^-\ell^+ u_\ell$	[ttt]	($2.19\pm$	0.12)	%		2309
$D^- au^+ u_ au$		($1.03\pm$	0.22)	%		1909
$D^*(2010)^-\ell^+ u_\ell$	[ttt]	($4.93\pm$	0.11)	%		2257
$D^*(2010)^- \tau^+ \nu_{\tau}$		($1.67\pm$	0.13)	%	S=1.1	1838
$\overline{D}{}^0\pi^-\ell^+ u_\ell$		(4.3 ±				2308
$D_0^*(2400)^-\ell^+ u_\ell,\ D_0^{*-}-\overline{D}^0\pi^-$	\rightarrow	(3.0 ±	1.2)	\times 10 ⁻³	S=1.8	_
$D_2^*(2460)^-\ell^+\nu_\ell, \ D_2^{*-}-\frac{1}{D^0\pi^-}$	\rightarrow	($1.21\pm$	0.33)	\times 10 ⁻³	S=1.8	2065
$\overline{\it D}^{(*)}{\sf n}\pi\ell^{+} u_{\ell}({\sf n}\ \geq\ 1)$		(2.3 ±	0.5)	%		_
$\overline{D}^{*0}\pi^{-}\ell^{+}\nu_{\ell}$		•	4.9 ±		_		2256
$D_1(2420)^{-}\tilde{\ell}^+\nu_{\ell}, D_1^-$	>	(,	\times 10 ⁻³		_
$\overline{D}*0_{\pi}$		`		,			
$D_1'(2430)^-\ell^+\nu_\ell, \ D_1'^\overline{D}^{*0}\pi^-$	\rightarrow	(3.1 ±	0.9)	$\times 10^{-3}$		-
$D_2^*(2460)^-\ell^+ u_\ell,\ D_2^{*-}-\overline{D}^{*0}\pi^-$	\rightarrow	(6.8 ±	1.2)	× 10 ⁻⁴		2065
$D^{-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		(1.3 ±	05)	√ 10−3		2299
$D^{*-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$			1.4 ±		_		2247
$\rho^-\ell^+ u_\ell$	[+++]	•	2.94±	,			2583
$\pi^-\ell^+ u_\ell$			1.45±				2638
$\pi^- \tau^+ u_{ au}$	[222]	<				CL=90%	2338
$n \rightarrow r \tau$	l				× 10	CL—3070	2550
\mathcal{K}^\pm anything	Inclusiv			0)	0/		_
$D^0 X$		•	78 ±	,			_
$\frac{D}{D^0}X$			8.1 ± 47.4 ±				_
D^+X		`		,	%	CI _009/	_
D^-X			3.9			CL=90%	_
			36.9 ±				_
$D_s^+ X$		(10.3 +	1.8	%		_
$D_s^- X$		<	2.6		%	CL=90%	_
$\Lambda_c^{\frac{3}{4}}X$		<	3.1		%	CL=90%	_
$\overline{\Lambda}_c^- X$		(5.0 +	$\frac{2.1}{1.5}$)	%		_
$\overline{c}X$		(95 ±	5)	%		_
cX		•	24.6 ±	,			_
c cX			119 ±				_
		`		,			

D, D^* , or D_s modes

υ,	D^{*} , or D_{3}	_s moae	5		
$D^-\pi^+$	($2.52\pm$	$0.13)\times10^{-3}$	S=1.1	2306
$D^- \rho^+$	($1.3) \times 10^{-3}$		2235
$D^- K^0 \pi^+$	($0.9\)\times 10^{-4}$		2259
$D^-K^*(892)^+$	($0.7\)\times 10^{-4}$		2211
$D^-\omega\pi^+$	($0.6 \)\times 10^{-3}$		2204
D^-K^+	($0.20) \times 10^{-4}$		2279
$D^{-}K^{+}\pi^{+}\pi^{-}$	($0.8\)\times 10^{-4}$		2236
$D^-K^+\overline{K}^0$	<		× 10 ⁻⁴	CL=90%	2188
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	(8.8 ±	$1.9\)\times 10^{-4}$		2070
$\overline{D}{}^0\pi^+\pi^-$	($0.5\)\times 10^{-4}$		2301
$D^*(2010)^-\pi^+$	($2.74\pm$	$0.13) \times 10^{-3}$		2255
$\overline{D}{}^0K^+K^-$	(4.9 ±	$1.2\)\times 10^{-5}$		2191
$D^-\pi^+\pi^+\pi^-$	($6.0 \pm$	$0.7) \times 10^{-3}$	S=1.1	2287
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	($1.9) \times 10^{-3}$		2287
$D^-\pi^+ ho^0$	($1.1~\pm$	$1.0) \times 10^{-3}$		2206
$D^-a_1(1260)^+$	($3.3) \times 10^{-3}$		2121
$D^*(2010)^-\pi^+\pi^0$	($1.5~\pm$	0.5) %		2248
$D^*(2010)^- ho^+$	(2.2 +	$^{1.8}_{2.7}$) $ imes$ 10 ⁻³	S=5.2	2180
$D^*(2010)^- K^+$	($2.12\pm$	$0.15)\times10^{-4}$		2226
$D^*(2010)^- K^0 \pi^+$			$0.8\)\times 10^{-4}$		2205
$D^*(2010)^- K^*(892)^+$	($0.6\)\times 10^{-4}$		2155
$D^*(2010)^{-1}K^{+1}\overline{K^0}$	<	4.7		CL=90%	2131
$D^*(2010)^- K^+ \overline{K}^*(892)^0$	($1.29\pm$	$0.33) \times 10^{-3}$		2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	($7.21\pm$	$0.29) \times 10^{-3}$		2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	(0.0 ±	$2.5) \times 10^{-3}$		2235
resonant $D^*(2010)^-\pi^+ ho^0$	(5.7 ±	$3.2) \times 10^{-3}$		2150
$D^*(2010)^- a_1(1260)^+$		$1.30\pm$			2061
$\overline{D}_1(2420)^0\pi^-\pi^+, \overline{D}_1^0 \rightarrow$	($0.35) \times 10^{-4}$		_
$D^{*-}\pi^+ \ D^*(2010)^- K^+\pi^-\pi^+$	(4.7	0.4.) \(10-4		2101
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$	($0.4) \times 10^{-4}$		2181
$D^{*-}3\pi^{+}2\pi^{-}$	•	1.76±	· · · · · ·		2218
$\frac{D}{D}^*(2010)^- \omega \pi^+$	•		0.9×10^{-3}	C 10	2195
,			$0.18) \times 10^{-3}$	S=1.2	2148
$D_1(2430)^0\omega,\ D_1^0\to D^{*-}\pi^+$	(2.7 +	$0.8 \\ 0.4$) × 10 ⁻⁴		1992
-	(1.07+	0.40		
$\overline{D}^{*-} \rho(1450)^{+}$			$0.40 \\ 0.34) \times 10^{-3}$		_
$\overline{D}_1(2420)^0 \omega$			$2.2) \times 10^{-5}$		1995
$\overline{D}_{2}^{*}(2460)^{0}\omega$	(4.0 ±	1.4) \times 10 ⁻⁵		1975
$\overline{D}^{*-} b_1(1235)^-, b_1^- \to \omega \pi^-$	<		× 10 ⁻⁵	CL=90%	_
$\overline{D}^{**-}\pi^+$	[<i>yyy</i>] ($1.9~\pm$	$0.9\)\times 10^{-3}$		_

$D_1(2420)^-\pi^+, D_1^- \rightarrow$	($9.9 \ \begin{array}{rrr} + \ 2.0 \\ - \ 2.5 \end{array}$	$)\times10^{-5}$		-
$D^-\pi^+\pi^ D_1(2420)^-\pi^+$, $D_1^- \to$	<	3.3	× 10 ⁻⁵	CL=90%	_
$D_2^{*-}\pi^+\pi^-$ $\overline{D}_2^*(2460)^-\pi^+, (D_2^*)^- \to$	(2.38± 0.16	$(5) \times 10^{-4}$		2062
$\overline{D}_0^0(2400)^-\pi^+, (D_0^*)^- \to$	(7.6 ± 0.8	$)\times10^{-5}$		2090
$D_2^0 \pi^ D_2^* (2460)^- \pi^+, (D_2^*)^- \rightarrow$	<	2.4	$\times 10^{-5}$	CL=90%	_
$D^{*-}\pi^{+}\pi^{-}$ $\overline{D}_{2}^{*}(2460)^{-}\rho^{+}$ $D^{0}\overline{D}^{0}$ $D^{*0}\overline{D}^{0}$	(4.9 1.4 ± 0.7 2.9	$) \times 10^{-5}$		1974 1868 1794
D^-D^+	(2.11± 0.18	$(3) \times 10^{-4}$		1864
$D^{\pm}D^{*\mp}(\mathit{CP} ext{-averaged})$		$6.1\ \pm\ 0.6$			_
$D^-D_s^+$		$7.2 ~\pm~ 0.8$			1813
$D^*(2010)^- D_s^+$		8.0 ± 1.1			1735
$D^-D_s^{*+}$	($7.4 ~\pm~ 1.6$	$) \times 10^{-3}$		1732
$D^*(2010)^-D_s^{*+}$	(1.77 ± 0.14	1) %		1649
$D_{s0}(2317)^- K^+, \ D_{s0}^- \to D_s^- \pi^0$	(4.2 ± 1.4	$)\times10^{-5}$		2097
$D_{s0}(2317)^{-}\pi^{+}, D_{s0}^{-} \rightarrow D_{s}^{-}\pi^{0}$	<	2.5	× 10 ⁻⁵	CL=90%	2128
$D_{sJ}(2457)^{-}K^{+}, \ D_{sJ}^{-} \rightarrow D_{s}^{-}\pi^{0}$	<	9.4	× 10 ⁻⁶	CL=90%	_
D_s^{π} $D_{sJ}(2457)^-\pi^+, \ D_{sJ}^- \to D_s^-\pi^0$	<	4.0	× 10 ⁻⁶	CL=90%	-
$D_s^- D_s^+$	<	3.6	$\times 10^{-5}$	CL=90%	1759
$D^{*-}D^{+}$	<	1.3	$\times 10^{-4}$	CL=90%	1675
$D_s D_s + D_s$	<	2.4	$\times 10^{-4}$	CL=90%	1584
$D_{s0}^{*}(2317)^{+}D^{-}, D_{s0}^{*+} \rightarrow D_{s}^{+}\pi^{0}$	(1.09± 0.16			1602
$D_{s0}(2317)^{+}D^{-}, D_{s0}^{+} \rightarrow D_{s}^{*+}\gamma$	<	9.5	× 10 ⁻⁴	CL=90%	-
D_s^{-} $D_{s0}(2317)^+ D^*(2010)^-,$ $D_{s0}^+ \rightarrow D_s^+ \pi^0$	(1.5 ± 0.6) × 10 ⁻³		1509
$D_{s1}(2457)^+D^-$	(3.5 ± 1.1	$) \times 10^{-3}$		_
$D_{sJ}(2457)^+D^-, \ D_{sJ}^+ \to$		6.5 ± 1.7 6.5 ± 1.7			
$D_{sJ}(2457) \cdot D$, $D_{sJ} \rightarrow D_{s}$	(0.5 - 1.4) × 10 .		_

$D_{sJ}(2457)^+D^-, D_{sJ}^+ \to$	<	6.0	× 10 ⁻⁴	CL=90%	_
$D_s^{*+} \gamma \ D_{sJ}(2457)^+ D^-, \ D_{sJ}^+ \to D_s^+ \pi^-$	<	2.0	× 10 ⁻⁴	CL=90%	_
$D_{sJ}^{+}\pi^{+}\pi^{-}$ $D_{sJ}(2457)^{+}D^{-}, D_{sJ}^{+} \rightarrow D_{s}^{+}\pi^{0}$	<	3.6	× 10 ⁻⁴	CL=90%	_
$D^*(2010)^- D_{sJ}(2457)^+$	(9.3 ±	$2.2) \times 10^{-3}$		_
$D_{sJ}(2457)^+ D^*(2010), \ D_{sJ}^+ o D_s^+ \gamma$	(2.3 +	$_{0.7}^{0.9}) \times 10^{-3}$		_
$D^{-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow D^{*0}K^{+} + D^{*+}K^{0}$	(2.8 ±	$0.7) \times 10^{-4}$		1444
$D^{-}D_{s1}^{+}(2536)^{+}, D_{s1}^{+} \rightarrow D^{*0}K^{+}$	(1.7 ±	$0.6\) \times 10^{-4}$		1444
$D^{-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow D^{*+}K^{0}$	(2.6 ±	$1.1) \times 10^{-4}$		1444
$D^{*}(2010)^{-}D_{s1}(2536)^{+},$ $D_{s1}^{+} \rightarrow D^{*0}K^{+} + D^{*+}K^{0}$	(5.0 ±	$1.4) \times 10^{-4}$		1336
$D_{s1}^{+} \rightarrow D^{-}K^{+} + D^{-}K^{-}$ $D^{*}(2010)^{-}D_{s1}(2536)^{+},$ $D_{s1}^{+} \rightarrow D^{*0}K^{+}$	(3.3 ±	$1.1) \times 10^{-4}$		1336
$D^{*-} \stackrel{{\it J}_{1}}{D_{s1}} (2536)^{+}, \;\; D^{+}_{s1} \rightarrow$	(5.0 ±	$1.7) \times 10^{-4}$		1336
$D^{-}D_{sJ}^{*+}K^{0}$ $D^{-}D_{sJ}^{*}(2573)^{+}, D_{sJ}^{+} \rightarrow$	(3.4 ±	$1.8) \times 10^{-5}$		1414
$D^0 K^+$ $D^*(2010)^- D_{sJ}(2573)^+$,	<	2	$\times 10^{-4}$	CL=90%	1304
$D_{sJ}^{+} ightarrow\ D^{0}K^{+} \ D^{-}D_{sJ}(2700)^{+},\ D_{sJ}^{+} ightarrow \ D^{0}K^{+}$	(7.1 ±	$1.2) \times 10^{-4}$		_
$D^{+}\pi^{-}$	(7.4 ±	1.3) \times 10 ⁻⁷		2306
$D_s^+\pi^-$			$0.26) \times 10^{-5}$		2270
$D_{s}^{*+}\pi^{-}$ $D_{s}^{+}\rho^{-}$ $D_{s}^{*+}\rho^{-}$ $D_{s}^{*+}a_{0}^{-}$ $D_{s}^{*+}a_{0}^{-}$	($2.1~\pm$	$0.4\)\times 10^{-5}$	S=1.4	2215
$D_s^+ \rho^-$	<	2.4	$\times10^{-5}$	CL=90%	2197
$D_s^{*+}\rho^-$	(4.1 ±	$1.3\)\times 10^{-5}$		2138
$D_{s}^{+}a_{0}^{-}$	<	1.9	$\times10^{-5}$	CL=90%	_
$D_{s}^{*+}a_{0}^{-}$	<	3.6	$\times10^{-5}$	CL=90%	_
$D_s^+ a_1(1260)^-$	<	2.1	$\times10^{-3}$	CL=90%	2080
$D_s^{*+} a_1(1260)^-$	<	1.7	$\times10^{-3}$	CL=90%	2015
$D_{s}^{+}a_{2}^{-}$	<	1.9	$\times10^{-4}$	CL=90%	_
$D_{s}^{*+} \bar{a}_{2}^{-}$	<	2.0	$\times10^{-4}$	CL=90%	_
$D_s^- K^{\mp}$	($2.7~\pm$	$0.5\)\times 10^{-5}$	S=2.7	2242
$D_{s}^{s+} + a_{2}^{-}$ $D_{s}^{-} K^{+}$ $D_{s}^{*-} K^{+}$	($2.19\pm$	$0.30)\times10^{-5}$		2185
$D_s^- K^*(892)^+$	($3.5~\pm$	$1.0\)\times 10^{-5}$		2172
HTTP://PDG.LBL.GOV	Page 9	2	Created: !	5/30/2017	17:13

$D_s^{*-} K^*(892)^+$	($3.2 \ ^{+}_{-} \ ^{1.5}_{1.3} \) \times 10^{-5}$		2112
$D_s^-\pi^+K^0$	($9.7 \pm 1.4) \times 10^{-5}$		2222
$D_s^{*-}\pi^+K^0$		1.10×10^{-4}	CL=90%	2164
$D_{s}^{s}K^{+}\pi^{+}\pi^{-}$		$1.7 \pm 0.5) \times 10^{-4}$		2198
$D_s^s \pi^+ K^* (892)^0$	<	3.0×10^{-3}	CI =90%	2138
	<	1.6×10^{-3}		2076
$\frac{D_s^{*-}\pi^+K^*(892)^0}{D_s^0K^0}$		$5.2 \pm 0.7 \times 10^{-5}$	CL=30/0	2280
$\overline{D}^0 K^+ \pi^-$	($8.8 \pm 1.7 \times 10^{-5}$		2261
$\overline{D}^{0} K^{*}(892)^{0}$	($4.5 \pm 0.6 \times 10^{-5}$		2213
$\overline{D}^0 K^* (1410)^0$	•	6.7×10^{-5}	CI =90%	2059
$\overline{D}^0 K_0^*(1430)^0$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL=30/0	2057
$\overline{D}^0 K_2^*(1430)^0$	($2.1 \pm 0.9 \times 10^{-5}$		2057
$D_0^*(2400)^-, D_0^{*-} \rightarrow \overline{D}{}^0\pi^-$	($1.9 \pm 0.9 \times 10^{-5}$		_
$D_0^*(2460)^- K^+, D_0^{*-} \rightarrow$	($2.03 \pm 0.35) \times 10^{-5}$		2029
$\frac{D_2(2400)}{\overline{D}^0\pi^-}$	(2.03 ± 0.33) × 10		2029
$D_3^*(2760)^- K^+, D_3^{*-} \rightarrow \overline{D}^0 \pi^-$	<	1.0×10^{-6}	CL=90%	_
$\overline{D}^0 \overset{D^+ \pi}{K^+ \pi^-}$ non-resonant	<	3.7×10^{-5}	CI =90%	_
$\overline{D}^0\pi^0$		$2.63\pm 0.14) \times 10^{-4}$	02 0070	2308
$\overline{D}{}^0 \rho^0$		$3.21\pm 0.21) \times 10^{-4}$		2237
$\overline{D}^0 f_2$	($1.56\pm 0.21) \times 10^{-4}$		_
$\overline{D}^0 \eta$	($2.36\pm 0.32) \times 10^{-4}$	S=2.5	2274
$\overline{D}{}^0 \stackrel{\cdot}{\eta'}$	($1.38\pm 0.16) \times 10^{-4}$	S=1.3	2198
$\overline{D}{}^{0}\omega$	($2.54 \pm 0.16) \times 10^{-4}$		2235
$D^0 \phi$	<	1.16×10^{-5}	CL=90%	2183
$D^0 K^+ \pi^-$	($5.3~\pm~3.2~)\times10^{-6}$		2261
$D^0 K^*(892)^0$	<	1.1×10^{-5}		2213
$\overline{D}^{*0}\gamma$	<	2.5×10^{-5}		2258
$\overline{D}^*(2007)^0_0 \pi^0_0$	($2.2 \pm 0.6 \times 10^{-4}$	S=2.6	2256
$\overline{D}^*(2007)^0 \rho^0$	<	7, 20		2182
$\overline{D}^*(2007)^0 \eta$		$2.3 \pm 0.6 \times 10^{-4}$	S=2.8	2220
$\overline{D}^*(2007)^0 \eta'$	($1.40 \pm 0.22) \times 10^{-4}$		2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	($6.2 \pm 2.2 \times 10^{-4}$		2249
$\overline{D}^*(2007)^0 K^0$	($3.6 \pm 1.2 \times 10^{-5}$		2227
$\overline{D}^*(2007)^0 K^*(892)^0$	<	6.9×10^{-5}		2157
$D^*(2007)^0 K^*(892)^0$	<		CL=90%	2157
$D^*(2007)^0 \pi^+ \pi^+ \pi^- \pi^-$	(2.7 ± 0.5) $\times 10^{-3}$		2219
$\frac{D^*(2010)^+D^*(2010)^-}{\overline{D}^*(2007)^0\omega}$	(8.0 ± 0.6) $\times 10^{-4}$	S=3.1	1711
$D^*(2007)^+\omega^-$ $D^*(2010)^+D^-$	($3.6 \pm 1.1 \times 10^{-4}$ $6.1 \pm 1.5 \times 10^{-4}$		2180
$D^*(2010)^*D^*$ $D^*(2007)^0\overline{D}^*(2007)^0$	(S=1.6 CL=90%	1790 1715
$D = D^0 K^+$		$1.07 \pm 0.11) \times 10^{-3}$	CL—90/0	1574
$D^-D^*(2007)^0K^+$		$3.5 \pm 0.4 \times 10^{-3}$		1478
1-0011 II	(35 + 114 1 × 111 ×		14/8

$D^*(2010)^- D^0 K^+$	$(2.47\pm 0.21) \times 10^{-3}$	1479
$D^*(2010)^- D^*(2007)^0 K^+$	$(1.06\pm\ 0.09)\ \%$	1366
$D^{-}D^{+}K^{0}$	$(7.5 \pm 1.7) \times 10^{-4}$	1568
$D^*(2010)^- D^+ K^0 +$	$(6.4 \pm 0.5) \times 10^{-3}$	1473
$D^-D^*(2010)^+K^0$		
$D^*(2010)^- D^*(2010)^+ K^0$	$(8.1 \pm 0.7) \times 10^{-3}$	1360
$D^{*-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow$	$(8.0 \pm 2.4) \times 10^{-4}$	1336
$D^{*+}K^{0}$		
$\overline{D}^0 D^0 K^0$	$(2.7 \pm 1.1) \times 10^{-4}$	1574
$\overline{D}{}^0 D^* (2007)^0 K^0 +$	$(1.1 \pm 0.5) \times 10^{-3}$	1478
$\overline{D}^*(2007)^0 D^0 K^0$		
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	$(2.4 \pm 0.9) \times 10^{-3}$	1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(3.68± 0.26) %	_
Cha	rmonium modes	
$\eta_c K^0$	$(8.0 \pm 1.2) \times 10^{-4}$	1751
V*(000)0	$(6.0 \pm 1.2) \times 10^{-4}$	1646

Charmonium modes							
$\eta_c K^0$	($1.2) \times 10^{-4}$		1751		
$\eta_c K^* (892)^0$			$0.9) \times 10^{-4}$		1646		
$\eta_{c}(2S) K^{*0}$	<	3.9	\times 10 ⁻⁴	CL=90%	1157		
$h_c(1P) K^{*0}$	<	4	\times 10 ⁻⁴	CL=90%	1253		
$J/\psi(1S)K^0$	($8.73\pm$	$0.32) \times 10^{-4}$		1683		
$J/\psi(1S)K^+\pi^-$	($1.15\pm$	$0.05) \times 10^{-3}$		1652		
$J/\psi(1S)K^*(892)^0$	($1.28\pm$	$0.05) \times 10^{-3}$		1571		
$J/\psi(1S)\etaK^0_S$	($5.4~\pm$	$0.9) \times 10^{-5}$		1508		
$J/\psi(1S)\eta'K_S^0$	<	2.5	$\times 10^{-5}$	CL=90%	1271		
$J/\psi(1S)\phi K^0$	($4.9~\pm$	$1.0) \times 10^{-5}$	S=1.3	1224		
$J/\psi(1S)\omega K^0$	($2.3~\pm$	$0.4) \times 10^{-4}$		1386		
$X(3872) K^0$, $X ightarrow J/\psi\omega$	($6.0~\pm$	$3.2) \times 10^{-6}$		1140		
X (3915), $X o J/\psi\omega$	($2.1~\pm$	$0.9) \times 10^{-5}$		1102		
$J/\psi(1S) K(1270)^0$	($1.3~\pm$	$0.5) \times 10^{-3}$		1391		
$J/\psi(1S)\pi^0$	($0.16) \times 10^{-5}$	S=1.1	1728		
$J/\psi(1\mathcal{S})\eta$	($1.08\pm$	$0.23) \times 10^{-5}$	S=1.5	1673		
$J/\psi(1S)\pi^+\pi^-$	($0.18) \times 10^{-5}$		1716		
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<		$\times 10^{-5}$	CL=90%	1716		
$J/\psi(1S) f_0(500), f_0 \to \pi \pi$	(8.1 +	$^{1.1}_{0.9}~)\times 10^{-6}$		_		
$J/\psi(1S) f_2$	(3.3 +	$^{0.5}_{0.6}~)\times 10^{-6}$	S=1.6	_		
$J/\psi(1S) ho^0$	(2.55 ⁺ _	$^{0.18}_{0.16})\times 10^{-5}$		1612		
$J/\psi(1S) f_0(980), \ f_0 ightarrow$	<	1.1	\times 10 ⁻⁶	CL=90%	_		
$J/\psi(1S) ho(1450)^0$, $ ho^0 ightarrow$	(3.0 +	$^{1.6}_{0.7}$) × 10 ⁻⁶		_		
$J/\psi \rho (1700)^0, \;\; \rho^0 \to \; \pi^+ \pi^-$			1.3) \times 10 ⁻⁶		_		
$J/\psi(1S)\omega$	(1.8 +	$0.7 \ 0.5$) × 10 ⁻⁵		1609		

$J/\psi(1S) K^+ K^-$ $J/\psi(1S) a_0(980), a_0 \rightarrow$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1533 —
K^+K^- $J/\psi(1S)\phi$		1.9	× 10 ⁻⁷	CI90%	1520
$J/\psi(1S)\psi$ $J/\psi(1S)\eta'(958)$		7.6 \pm 2.4)	_	CL—90/0	1546
$J/\psi(1S) K^0 \pi^+ \pi^-$	(•	_		1611
$J/\psi(1S)K^0K^-\pi^+ + \text{c.c.}$	<		_	CI =90%	1467
$J/\psi(1S)K^0K^+K^-$		2.5 ± 0.7		S=1.8	1249
$J/\psi(1S)K^0\rho^0$		5.4 ± 3.0		5-1.0	1390
$J/\psi(1S)K^*(892)^+\pi^-$		8 ± 4	_		1514
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	•	1.45± 0.13)			1670
$J/\psi(1S) f_1(1285)$		8.2 ± 2.1			1385
$J/\psi(1S)K^*(892)^0\pi^+\pi^-$	(6.6 ± 2.2)			1447
$X(3872)^{-}K^{+}$	<			CI =90%	_
	<				_
$J/\psi(1S)\pi^{-}\pi^{0}$					
$X(3872)K^{0}, X \rightarrow J/\psi \pi^{+}\pi^{-}$	(4.3 ± 1.3)	× 10 ⁻⁶		1140
$X(3872)K^0, X \rightarrow J/\psi\gamma$	<	,	_	CL=90%	1140
$X(3872)K^*(892)^0, X \rightarrow$	<	2.8			940
$J/\psi\gamma$					
$X(3872)K^0$, $X \rightarrow \psi(2S)\gamma$	<	6.62	× 10 ⁻⁶	CL=90%	1140
$X(3872) K^*(892)^0, X \rightarrow$	<	4.4	× 10 ⁻⁶	CL=90%	940
$\psi(2S)\gamma$					
$X(3872)K^{0}, X \rightarrow D^{0}\overline{D}{}^{0}\pi^{0}$	(1.7 ± 0.8)	\times 10 ⁻⁴		1140
$X(3872)K^{0}, X \to \overline{D}^{*0}D^{0}$	(1.2 ± 0.4)	$\times 10^{-4}$		1140
$X(3872)K^{+}\pi^{-}, X \rightarrow$	(_
$J/\psi \pi^+\pi^-$					
$X(3872) K^*(982)^0$, $X o$	(4.0 ± 1.5)	\times 10 ⁻⁶		_
$J/\psi \pi^+\pi^-$					
$X(4430)^{\pm}K^{\mp}, X^{\pm} \rightarrow$	($6.0 + \frac{3.0}{-2.4}$)	× 10 ⁻⁵		583
$\psi(2S)\pi^{\pm}$	(- 2.4			
$X(4430)^{\pm} K^{\mp}, X^{\pm} \rightarrow J/\psi \pi^{\pm}$	(5.4 + 4.0)	× 10-6		583
		1.2	_		303
$X(3900)^{\pm} K^{\mp}, X^{\pm} \rightarrow J/\psi \pi^{\pm}$	<	_	\times 10 ⁻⁷		_
$X(4200)^{\pm} K^{\mp}$, $X^{\pm} \rightarrow J/\psi \pi^{\pm}$	($2.2 \begin{array}{c} + & 1.3 \\ - & 0.8 \end{array}$	$\times 10^{-5}$		_
$J/\psi(1S) p \overline{p}$	<	5.2	× 10 ⁻⁷	CL=90%	862
$J/\psi(1S)\gamma$				CL=90%	1732
$J/\psi(1S)\overline{D}^0$		1.3			877
$J/\psi(1S)\overline{D}^0 \ \psi(2S)\pi^0$		1.17± 0.19)			1348
$\psi(2S)K^0$		5.8 ± 0.5			1283
$\psi(3770)K^0, \ \psi \rightarrow \overline{D}{}^0D^0$				CL=90%	1217
$\psi(3770)K^{0}, \ \psi \to D^{-}D^{+}$		1.88			1217
$\psi(2S)\pi^+\pi^-$		2.3 ± 0.4)			1331
	١,	,	/\ _		
$\psi(2S)K^+\pi^-$		5.8 ± 0.4	_		1239

$ \psi(2S) K^{*}(892)^{0} $ $ \chi_{c0} K^{0} $ $ \chi_{c1} K^{0} $ $ \chi_{c1} \pi^{0} $ $ \chi_{c1} K^{0} $ $ \chi_{c1} K^{+}(892)^{0} $ $ \chi_{c1} K^{+}(892)^{0} $ $ \chi(4051)^{-} K^{+}, X^{-} \rightarrow \chi_{c1} \pi^{-} $	((((((((((((((((((((5.9 ± 0.4) $\times 10^{-4}$ 1.47 ± 0.27) $\times 10^{-4}$ 1.7 ± 0.4) $\times 10^{-4}$ 1.12 ± 0.28) $\times 10^{-5}$ 3.93 ± 0.27) $\times 10^{-4}$ 4.97 ± 0.30) $\times 10^{-4}$ 2.39 ± 0.19) $\times 10^{-4}$ 3.0 ± 0.19 $\times 10^{-5}$	S=1.2	1116 1477 1341 1468 1411 1371 1265
$X(4248)^{-}K^{+}, X^{-} \rightarrow \chi_{c1}\pi^{-}$	($4.0 \ ^{+20.0}_{-\ 1.0}\)\times 10^{-5}$		_
$\chi_{c1} \pi^{+} \pi^{-} K^{0}$ $\chi_{c1} \pi^{-} \pi^{0} K^{+}$ $\chi_{c2} K^{0}$ $\chi_{c2} K^{*} (892)^{0}$ $\chi_{c2} \pi^{-} K^{+}$ $\chi_{c2} \pi^{+} \pi^{-} K^{0}$ $\chi_{c2} \pi^{-} \pi^{0} K^{+}$	(3.2 ± 0.5) $\times 10^{-4}$ 3.5 ± 0.6) $\times 10^{-5}$ 1.5×10^{-5} 4.9 ± 1.2) $\times 10^{-5}$ 7.2 ± 1.0) $\times 10^{-5}$ 1.70×10^{-4} 7.4×10^{-5}	S=1.1 CL=90%	1318 1321 1379 1228 1338 1282 1286
, and the second se	or <i>K</i> * r	nodes		
$K^{+}\pi^{-}$ $K^{0}\pi^{0}$ $\eta' K^{0}$ $\eta' K^{*}(892)^{0}$ $\eta' K_{0}^{*}(1430)^{0}$ $\eta' K_{2}^{*}(1430)^{0}$	(((((((((((((((((((($1.96 \pm 0.05) \times 10^{-5}$ $9.9 \pm 0.5) \times 10^{-6}$ $6.6 \pm 0.4) \times 10^{-5}$ $2.8 \pm 0.6) \times 10^{-6}$ $6.3 \pm 1.6) \times 10^{-6}$ $1.37 \pm 0.32) \times 10^{-5}$	S=1.4	2615 2615 2528 2472 2346 2346
$ \eta K^{0} $ $ \eta K^{*}(892)^{0} $ $ \eta K_{0}^{*}(1430)^{0} $ $ \eta K_{2}^{*}(1430)^{0} $ $ \omega K^{0} $ $ a_{0}(980)^{0} K^{0}, \ a_{0}^{0} \rightarrow \eta \pi^{0} $	(($1.23^{+}_{-} \begin{array}{l} 0.27 \\ 0.24 \end{array}) \times 10^{-6}$ $1.59 \pm 0.10) \times 10^{-5}$ $1.10 \pm 0.22) \times 10^{-5}$ $9.6 \pm 2.1) \times 10^{-6}$ $4.8 \pm 0.4) \times 10^{-6}$ 7.8×10^{-6}	CL=90%	2587 2534 2415 2414 2557
$b_1^0 {\sf K}^0$, $b_1^0 ightarrow \omega \pi^0$			CL=90%	_
$a_0(980)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \eta \pi^{\pm}$		1.9×10^{-6}	CL=90%	_
$b_{1}^{-}K^{+}, b_{1}^{-} \rightarrow \omega \pi^{-}$ $b_{1}^{0}K^{*0}, b_{1}^{0} \rightarrow \omega \pi^{0}$ $b_{1}^{-}K^{*+}, b_{1}^{-} \rightarrow \omega \pi^{-}$ $a_{0}(1450)^{\pm}K^{\mp}, a_{0}^{\pm} \rightarrow \eta \pi^{\pm}$ $K_{S}^{0}X^{0}$ (Familon) $\omega K^{*}(892)^{0}$ $\omega (K\pi)_{0}^{*0}$	< < < <	$\begin{array}{ccc} 2.0 & \pm & 0.5 \) \times 10^{-6} \\ 1.84 \pm & 0.25) \times 10^{-5} \end{array}$	CL=90%	- - - - - 2503
$\omega K_0^* (1430)^0$	($1.60 \pm 0.34) \times 10^{-5}$		2380

·· K*(1420)0		(1 01	0.00\ \ 10-5		2200
$\omega K_2^* (1430)^0$				$0.23) \times 10^{-5}$		2380
$\omega K^+\pi^-$ nonresonant $K^+\pi^-\pi^0$				$1.0) \times 10^{-6}$		2542
$K^+\pi^-\pi^-$				$0.32) \times 10^{-5}$		2609
		($0.9) \times 10^{-6}$		2559
$K^{+} \rho(1450)^{-}$		(1.2) \times 10 ⁻⁶		_
$K^{+}\rho(1700)^{-}$		(7) $\times 10^{-7}$		_
$(K^+\pi^-\pi^0)$ non-resonant		($0.6) \times 10^{-6}$		_
$(K\pi)_0^{*+}\pi^-, \ (K\pi)_0^{*+} o \ K^+\pi^0$		(3.4 ±	$0.5) \times 10^{-5}$		_
$(K\pi)^{*0}_{0}\pi^{0},\ (K\pi)^{*0}_{0} ightarrow$		(8.6 ±	$1.7) \times 10^{-6}$		_
$K_2^*(1430)^0\pi^0$		<	4.0	\times 10 ⁻⁶	CL=90%	2445
$K^*(1680)^0\pi^0$				$\times 10^{-6}$		2358
$K^{*0}_{}\pi^{0}$	[ccaa]			1.6) \times 10 ⁻⁶		_
$K^0\pi^+\pi^-$	[]			$0.24) \times 10^{-5}$	S=1.3	2609
$K^0\pi^+\pi^-$ non-resonant		•		$0.40 \\ 0.26) \times 10^{-5}$		_
$\kappa^0 \rho^0$		(0550
$K^*(892)^+\pi^-$		($0.6) \times 10^{-6}$		2558
				0.8) \times 10 ⁻⁶		2563
$K_0^*(1430)^+\pi^-$				$0.7) \times 10^{-5}$	S=2.0	_
$K_{x}^{*+}\pi^{-}$	[ccaa]			1.6) \times 10 ⁻⁶		_
$K^*(1410)^+\pi^-, K^{*+} \rightarrow K^0\pi^+$		<	3.8	× 10 ⁻⁶	CL=90%	_
$f_0(980)K^0$, $f_0 \to \pi^+\pi^-$		(7.0 ±	$0.9) \times 10^{-6}$		2522
$f_2(1270) K^0$		(2.7 +	$^{1.3}_{1.2}$) × 10 ⁻⁶		2459
$f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}$		($1.8~\pm$	$0.7) \times 10^{-6}$		_
$K^*(892)^0 \pi^0$		($3.3~\pm$	$0.6) \times 10^{-6}$		2563
$K_2^*(1430)^+\pi^-$		<	6	$\times 10^{-6}$	CL=90%	2445
$K^{*}(1680)^{+}\pi^{-}$		<	1.0	$\times 10^{-5}$	CL=90%	2358
$K^+\pi^-\pi^+\pi^-$	[ddaa]	<	2.3	$\times 10^{-4}$	CL=90%	2600
$ ho^0$ K $^+$ π^-				$0.7) \times 10^{-6}$		2543
$f_0(980) K^+ \pi^-, \ f_0 \to \pi \pi$		(1.4 +	$_{0.6}^{0.5}$) × 10 ⁻⁶		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant		<	2.1	× 10 ⁻⁶	CL=90%	2600
$K^*(892)^0 \pi^+ \pi^-$				$0.5) \times 10^{-5}$		2557
$K^*(892)^0 \rho^0$				1.3) \times 10 ⁻⁶	S=1.9	2504
$K^*(892)^0 f_0(980), f_0 \rightarrow \pi \pi$	Г			$\frac{2.1}{1.8}$) × 10 ⁻⁶		2466
$K_1(1270)^+\pi^-$		<	3.0	× 10 ⁻⁵	CL=90%	2484
$K_1(1400)^+\pi^-$				× 10 ⁻⁵		2451
$a_1(1260)^- K^+$	[ddaa]			$0.4) \times 10^{-5}$		2471
$K^*(892)^+ \rho^-$	[]			$0.26) \times 10^{-5}$		2504
$K_0^*(1430)^+ \rho^-$		•		$1.2) \times 10^{-5}$		
$K_1(1400)^0 \rho^0$		<	3.0	2	CL=90%	2388
(1) P		_	5.0	∧ 1 0	CL-90/0	2300

$K_0^*(1430)^0 \rho^0$	($2.7~\pm~0.6$) $\times10^{-5}$		2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi$		$2.7~\pm~0.9~)\times10^{-6}$		_
$K_2^*(1430)^0 f_0(980), f_0 \to \pi\pi$	(8.6 \pm 2.0 $)\times10^{-6}$		_
$K^{+}K^{-}$	($7.8~\pm~1.5~)\times10^{-8}$		2593
$K^0\overline{K}^0$	($1.21\pm 0.16) \times 10^{-6}$		2592
$K^0K^-\pi^+$	($6.5~\pm~0.8~)\times10^{-6}$		2578
$K^*(892)^{\pm}K^{\mp}$	<		CL=90%	2540
$\overline{K}^{*0}K^{0}' + K^{*0}\overline{K}^{0}$	<	9.6 $\times 10^{-7}$	CL=90%	_
$K^{+}K^{-}\pi^{0}$	($2.2 \pm 0.6 \times 10^{-6}$		2579
$K_{S}^{0}K_{S}^{0}\pi^{0}$	<		CL=90%	2578
$K_{S}^{0}K_{S}^{0}\eta$	<		CL=90%	2515
$K_{S}^{0}K_{S}^{0}\eta'$	<		CL=90%	2453
$K^{0}K^{+}K^{-}$	($2.49 \pm 0.31) \times 10^{-5}$	S=3.0	2522
$\mathcal{K}^{0}\phi$	($7.3 \pm 0.7) \times 10^{-6}$		2516
$f_0(980)K^0$, $f_0 \to K^+K^-$	($7.0 \ ^{+}_{-} \ ^{3.5}_{3.0} \) \times 10^{-6}$		_
$f_0(1500) K^0$	($1.3 \ ^{+}_{-} \ 0.7_{0.5} \) \times 10^{-5}$		2398
$f_2'(1525)^0 K^0$	($\begin{array}{cccccccccccccccccccccccccccccccccccc$		_
$f_0(1710)K^0$, $f_0 \to K^+K^-$	(4.4 \pm 0.9) \times 10 ⁻⁶		_
$K^0K^+K^-$ nonresonant	($3.3~\pm~1.0~)\times10^{-5}$		2522
$K_S^0 K_S^0 K_S^0$		$6.0~\pm~0.5~)\times10^{-6}$	S=1.1	2521
$f_0(980)K^0$, $f_0 o K_S^0K_S^0$	($2.7~\pm~1.8~)\times10^{-6}$		_
$f_0(1710)K^0$, $f_0 \rightarrow K_S^0 K_S^0$	($5.0 \ ^{+}_{-} \ ^{5.0}_{2.6} \) \times 10^{-7}$		_
$f_0(2010)K^0$, $f_0 ightarrow K^0_SK^0_S$	($5 \pm 6) \times 10^{-7}$		_
$K_S^0 K_S^0 K_S^0$ nonresonant	($1.33 \pm \ 0.31) \times 10^{-5}$		2521
$K_{S}^{0} \tilde{K}_{S}^{0} \tilde{K}_{I}^{0}$	<		CL=90%	2521
$K^*(892)^{0}K^+K^-$	($2.75 \pm 0.26) \times 10^{-5}$		2467
$\hat{K}^*(892)^0 \phi$	($1.00\pm 0.05) \times 10^{-5}$		2460
$K^+K^-\pi^+\pi^-$ nonresonant	<	7.17×10^{-5}	CL=90%	2559
$K^*(892)^0 K^- \pi^+$	($4.5 \pm 1.3 \times 10^{-6}$		2524
$K^*(892)^0\overline{K}^*(892)^0$	($8 \pm 5) \times 10^{-7}$	S=2.2	2485
$K^+K^+\pi^-\pi^-$ nonresonant	<		CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<		CL=90%	2524
$K^*(892)^0 K^*(892)^0$	<		CL=90%	2485
$K^*(892)^+ K^*(892)^-$	<		CL=90%	2485
$K_1(1400)^0 \phi$			CL=90%	2339
$\phi(K\pi)_0^{*0}$	•	$4.3 \pm 0.4 \times 10^{-6}$		_
$\phi(K\pi)^{*0}_{0}$ (1.60< $m_{K\pi}$ <2.15)eeaa]	<		CL=90%	_
$K_0^*(1430)^0 K^- \pi^+$	<		CL=90%	2403
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<		CL=90%	2360
$K_0^*(1430)^0\overline{K}_0^*(1430)^0$	<	8.4×10^{-6}	CL=90%	2222

$K_0^*(1430)^0 \phi$	(30 +	0.8) \times 10 ⁻⁶		2333
$K_0^*(1430)^0 K^*(892)^0$	<	1.7	× 10 ⁻⁶	CI -00%	2360
$K_0^*(1430)^0 K_0^*(1430)^0$	<	4.7		CL=90%	2222
$K_0^*(1430)^0 \phi$				CL=90%	
	<	3.5			2238
$K^*(1780)^0 \phi$	<	2.7		CL=90%	_
$K^*(2045)^0 \phi$	<	1.53		CL=90%	-
$K_2^*(1430)^0 \rho^0$	<	1.1	$\times 10^{-3}$		2381
$K_{\frac{3}{2}}^{\frac{1}{2}}(1430)^{0}\phi$	($0.9) \times 10^{-6}$	S=1.2	2333
$K^{\bar{0}}\phi\phi$	($0.9) \times 10^{-6}$		2305
$\eta'\eta'_{0}K^{0}$	<		× 10 ⁻⁵	CL=90%	2337
$\eta K^0 \gamma$	(1.8) \times 10 ⁻⁶		2587
$\eta' K^0 \gamma$	<		× 10 ⁻⁶	CL=90%	2528
$K^0 \phi \gamma$	($0.7) \times 10^{-6}$		2516
$K^+\pi^-\gamma$	($4.6~\pm$	1.4) \times 10 ⁻⁶		2615
$K^*(892)^0 \gamma$	($4.33\pm$	$0.15) \times 10^{-5}$		2565
$\mathcal{K}^*(1410)\gamma$	<		$\times 10^{-4}$		2449
$K^+\pi^-\gamma$ nonresonant	<	2.6	\times 10 ⁻⁶	CL=90%	2615
$K^*(892)^0 X(214), X \to$	$[\mathit{ffaa}] <$	2.26	$\times 10^{-8}$	CL=90%	_
$\mu^+\mu^-$					
$K^0\pi^+\pi^-\gamma$	($1.99\pm$	$0.18) \times 10^{-5}$		2609
$K^+\pi^-\pi^0\gamma$	($4.1\ \pm$	$0.4) \times 10^{-5}$		2609
$K_1(1270)^0 \gamma$	<	5.8	$\times 10^{-5}$		2486
$K_1(1400)^0 \gamma$	<	1.2	$\times 10^{-5}$	CL=90%	2454
$K_2^*(1430)^0 \gamma$	($1.24\pm$	$0.24) \times 10^{-5}$		2447
$K^{\overline{*}}(1680)^{0}\gamma$	<	2.0	$\times 10^{-3}$	CL=90%	2360
$K_3^*(1780)^0 \gamma$	<	8.3	$\times10^{-5}$	CL=90%	2341
$K_{4}^{*}(2045)^{0}\gamma$	<	4.3	$\times 10^{-3}$	CL=90%	2244
7					
Light un	flavored r	neson	modes		

Light annavored meson medes								
$ ho^{0} \gamma$		(8.6 ±	1.5) $\times 10^{-7}$		2583		
$\rho^0 X(214)$,	$X \rightarrow \mu^{+}\mu^{-}$	$[\mathit{ffaa}] <$	1.73	$\times 10^{-8}$	CL=90%	_		
$\omega \gamma$		(4.4 +	$^{1.8}_{1.6}$) $ imes$ 10 ⁻⁷		2582		
$\phi\gamma$		<	1.0	\times 10 ⁻⁷	CL=90%	2541		
$\pi^+\pi^-$		($5.12\pm$	$0.19) \times 10^{-6}$		2636		
$\pi^{0} \pi^{0}$		($1.91 \pm$	$0.22) \times 10^{-6}$		2636		
$\eta \pi^0$		(4.1 ±	$1.7) \times 10^{-7}$		2610		
$\eta\eta$		<	1.0	$\times 10^{-6}$	CL=90%	2582		
$\eta' \pi^0$		($1.2~\pm$	$0.6) \times 10^{-6}$	S=1.7	2551		
$\eta'\eta'$		<	1.7	$\times 10^{-6}$	CL=90%	2460		
$\eta'\eta$		<	1.2	$\times 10^{-6}$	CL=90%	2523		
$\eta' ho^{0}$		<	1.3	$\times 10^{-6}$	CL=90%	2492		
	$f_0 \rightarrow \pi^+\pi^-$	<	9	\times 10 ⁻⁷	CL=90%	2454		
ηho^{0}		<	1.5	\times 10 ⁻⁶	CL=90%	2553		

$\eta f_0(980), f_0 \to \pi^+ \pi^-$	<	4	\times 10 ⁻⁷	CL=90%	2516
$\omega \eta$	($9.4 \begin{array}{l} + & 4.0 \\ - & 3.1 \end{array}$	$) \times 10^{-7}$		2552
$\omega \eta'$	($1.0 \begin{array}{l} + 0.5 \\ - 0.4 \end{array}$) × 10 ⁻⁶		2491
$\omega \rho^0$	<	1.6		CL=90%	2522
$\omega f_0(980), f_0 \to \pi^+ \pi^-$	<	1.5			2485
$\omega\omega$	(1.2 ± 0.4			2521
$\phi\pi^0$	<	1.5	_	CL=90%	2540
$\stackrel{'}{\phi}\eta$	<			CL=90%	2511
$\phi \eta'$	<	5			2448
$\phi \pi^+ \pi^-$	(1.8 ± 0.5			2533
$\phi \rho^0$	<			CL=90%	2480
$\phi f_0(980), f_0 \to \pi^+ \pi^-$	<	3.8	$\times10^{-7}$	CL=90%	2441
$\phi \omega$	<	7	$\times10^{-7}$	CL=90%	2479
$\phi\phi$	<	2.8	$\times 10^{-8}$	CL=90%	2435
$a_0(980)^{\pm}\pi^{\mp}$, $a_0^{\pm}\to \eta\pi^{\pm}$	<	3.1	$\times 10^{-6}$	CL=90%	_
$a_0(1450)^{\pm}\pi^{\mp}, \ a_0^{\pm} \rightarrow \eta \pi^{\pm}$	<	2.3	$\times 10^{-6}$	CL=90%	_
$\pi^+\pi^-\pi^0$	<	7.2	$\times 10^{-4}$	CL=90%	2631
$ ho^{0}\pi^{0}$	(2.0 ± 0.5	$) \times 10^{-6}$		2581
$ ho^{\mp}\pi^{\pm}$	[hh] (2.30± 0.23	_		2581
$\pi^+\pi^-\pi^+\pi^-$	<	1.12	$\times10^{-5}$	CL=90%	2621
$ ho^{0}\pi^{+}\pi^{-}$	<				2575
$\rho^0 \rho^0$	(_		2523
$f_0(980)\pi^+\pi^-, f_0 \rightarrow$	<		_	CL=90%	_
$ ho^0 f_0(980), \;\; f_0 ightarrow \;\; \pi^+ \pi^-$	(7.8 ± 2.5	\ × 10 ⁻⁷		2486
$f_0(980) f_0(980), f_0 \rightarrow$	<			CL=90%	2447
$\pi^{+}\pi^{-}, f_{0} \rightarrow \pi^{+}\pi^{-}$					2771
$f_0(980) f_0(980), f_0 \rightarrow \pi^+\pi^-,$	<	2.3	\times 10 ⁻⁷	CL=90%	2447
$f_0 \rightarrow K^+ K^-$	[,,]	0.6 0.5	· · · 10-5	C 10	0404
$a_1(1260)^{\mp}\pi^{\pm}$		2.6 ± 0.5	10-6	5=1.9	2494
$a_2(1320)^{\mp} \pi^{\pm}$ $\pi^+ \pi^- \pi^0 \pi^0$	[hh] <			CL=90% CL=90%	2473
$\rho^+\rho^-$	<	3.1		CL=90%	2622
$a_1(1260)^0\pi^0$		2.77± 0.19)		CL=90%	2523
$\omega \pi^0$	<	1.1		CL=90%	2495
$\frac{\omega^{\pi^{-}}}{\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}}$	<	5		CL=90%	2580 2609
		9.0		CL=90% CL=90%	
$a_1(1260)^+ \rho^-$	<	6.1		CL=90% CL=90%	2433
$a_1(1260)^0 ho^0 \ b_1^{\mp} \pi^{\pm}, \ b_1^{\mp} ightarrow \omega \pi^{\mp}$	<	2.4		CL=90%	2433
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1.09± 0.15)		CL 000/	_
$b_1^0\pi^0$, $b_1^0 ightarrow \omega\pi^0$	<	1.9		CL=90%	_
$b_{1}^{-}\rho^{+}, b_{1}^{-} \rightarrow \omega\pi^{-}$	<	1.4		CL=90%	_
$b_1^0 \rho^0$, $b_1^0 \rightarrow \omega \pi^0$	<	3.4	$\times 10^{-6}$	CL=90%	_

Baryon modes

	Dai yon in	ioues			
$p\overline{p}$	(1.5 +	$^{0.7}_{0.5}~)\times 10^{-8}$		2467
$ \rho \overline{\rho} \pi^+ \pi^- $	<	2.5	$\times10^{-4}$	CL=90%	2406
$p\overline{p}K^0$	($2.66\pm$	$0.32)\times10^{-6}$		2347
$\Theta(1540)^+\overline{p}, \ \Theta^+ \rightarrow \ pK_S^0$	[ggaa] <		$\times 10^{-8}$	CL=90%	2318
$f_J(2220)K^0$, $f_J \rightarrow p\overline{p}$	<	4.5		CL=90%	2135
$p \overline{p} K^* (892)^0$	(1.24 _	$^{0.28}_{0.25})\times 10^{-6}$		2216
$f_J(2220)K_0^*,\;\;f_J ightarrow\;p\overline{p}$	<	1.5	\times 10 ⁻⁷	CL=90%	_
$p\overline{\Lambda}\pi^-$	($3.14\pm$	$0.29)\times10^{\textstyle -6}$		2401
$p\overline{\Lambda}\pi^-\gamma$	<	6.5		CL=90%	2401
$p\overline{\Sigma}(1385)^-$	<	2.6	\times 10 ⁻⁷	CL=90%	2363
$\Delta_{-}^{0}\overline{\Lambda}$	<	9.3		CL=90%	2364
p <u>Λ</u> K ⁻	<	8.2		CL=90%	2308
$ \rho \overline{\Lambda} D^{-}$	($2.5~\pm$	$0.4) \times 10^{-5}$		1765
$p\overline{\Lambda}D^{*-}$	($3.4~\pm$	$0.8) \times 10^{-5}$		1685
$\frac{p}{\Lambda} \overline{\Sigma}{}^0 \pi^-$	<	3.8		CL=90%	2383
$\Lambda\Lambda$	<	3.2	$\times 10^{-7}$	CL=90%	2392
$\overline{\Lambda}\Lambda K^0$	(4.8 +	$^{1.0}_{0.9}~)\times 10^{-6}$		2250
<i>⊼∧K</i> * ⁰	(2.5 +	$^{0.9}_{0.8} \) \times 10^{-6}$		2098
$\overline{\Lambda}\Lambda D^0$	(1.00 +	$^{0.30}_{0.26})\times 10^{-5}$		1661
$D^0 \Sigma^0 \overline{\Lambda} + \text{c.c.}$	<	3.1	$\times 10^{-5}$	CL=90%	1611
$\Delta^0 \overline{\Delta}{}^0$	<	1.5		CL=90%	2335
$\Delta_{\perp}^{++}\overline{\Delta}^{}$	<	1.1	\times 10 ⁻⁴	CL=90%	2335
$\overline{D}{}^0 p \overline{p}$	($1.04\pm$	$0.07) \times 10^{-4}$		1863
$D_s^- \overline{\Lambda} p$	($2.8 \pm$	$0.9) \times 10^{-5}$		1710
$\overline{D}^*(2007)^0 \rho \overline{p}$	($9.9~\pm$	$1.1\)\times 10^{-5}$		1788
$D^*(2010)^- \rho \overline{n}$	($1.4~\pm$	$0.4) \times 10^{-3}$		1785
$D^- \rho \overline{\rho} \pi^+$	($3.32\pm$	$0.31) \times 10^{-4}$		1786
$D_{\bar{p}}^{*}(2010)^{-} \rho \bar{p} \pi^{+}$	($0.5) \times 10^{-4}$	S=1.2	1708
$\overline{D}{}^{0} p \overline{p} \pi^{+} \pi^{-}$	($3.0~\pm$	$0.5) \times 10^{-4}$		1708
$\overline{D}^{*0} \rho \overline{ ho} \pi^+ \pi^-$	($1.9~\pm$	$0.5) \times 10^{-4}$		1623
$\Theta_c \overline{p} \pi^+$, $\Theta_c \to D^- p$	<	9		CL=90%	_
$ \frac{\Theta_c \overline{p} \pi^+}{\overline{\Sigma}_c^- \Delta^{++}}, \Theta_c \rightarrow D^{*-} p $	<	1.4		CL=90%	_
$\Sigma_c^{}\Delta^{++}$	<	8		CL=90%	1839
$\overline{\Lambda}_c^- \rho \pi^+ \pi^-$	($1.01\pm$	$0.14)\times10^{-3}$	S=1.3	1934
$\overline{\Lambda}_c^{-} p$	($1.52\pm$	$0.18) \times 10^{-5}$		2021

HTTP://PDG.LBL.GOV

Page 101

$\overline{\Lambda}_{c}^{-} p \pi^{0}$	(1.53± 0.18	$(1) \times 10^{-4}$		1982
$\Sigma_c(2455)^- p$	<	2.4	$\times10^{-5}$		_
$\overline{\Lambda}_c^- p \pi^+ \pi^- \pi^0$	<	5.07	$\times 10^{-3}$	CL=90%	1882
$\overline{\Lambda}_c^- p \pi^+ \pi^- \pi^+ \pi^-$	<	2.74	$\times 10^{-3}$	CL=90%	1821
$\overline{\varLambda}_c^- p \pi^+ \pi^-$ (nonresonant)	($5.4\ \pm\ 1.0$	$) \times 10^{-4}$	S=1.3	1934
$\overline{\Sigma}_c(2520)^{} p \pi^+$	(1.01± 0.18	,		1860
$\overline{\Sigma}_c(2520)^0 p\pi^-$	<	3.1	\times 10 ⁻⁵	CL=90%	1860
$\overline{\Sigma}_c(2455)^0 p\pi^-$	(1.07 ± 0.16	$() \times 10^{-4}$		1895
$\overline{\Sigma}_c(2455)^0N^0$, $N^0 ightarrow$	($6.3\ \pm\ 1.6$	$) \times 10^{-5}$		_
$p\pi^-$			4		
$\overline{\Sigma}_c(2455)^{}p\pi^+$		1.81± 0.24			1895
$\Lambda_c^- p K^+ \pi^-$	($3.4\ \pm\ 0.7$	$) \times 10^{-5}$		_
$\overline{\Sigma}_c(2455)^{} p K^+, \ \overline{\Sigma}_c^{} ightarrow$	($8.7\ \pm\ 2.5$	$) \times 10^{-6}$		1754
$\overline{\Lambda}_c^-\pi^-$					
$\Lambda_c^- p K^* (892)^0$	<	2.42	$\times 10^{-5}$	CL=90%	_
$\Lambda_c^- p K^+ K^-$	($2.0\ \pm\ 0.4$	$) \times 10^{-5}$		_
$\Lambda_c^- p\phi$	<	9	$\times 10^{-6}$	CL=90%	_
$\Lambda_c^- p \overline{p} p$	<	2.8	$\times 10^{-6}$		_
$\overline{\Lambda}_{c}^{-} \Lambda K^{+}$	($4.8\ \pm\ 1.1$	$) \times 10^{-5}$		1767
$\overline{\Lambda}_{c}^{-}\Lambda_{c}^{+}$	<	1.6	$\times10^{-5}$	CL=95%	1319
$\overline{\Lambda}_c(2593)^- / \overline{\Lambda}_c(2625)^- p$	<	1.1	$\times 10^{-4}$	CL=90%	_
$\overline{\Xi}_{c}^{-} \Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{-} \rightarrow \overline{\Xi}^{+} \pi^{-} \pi^{-}$	($1.7 ~\pm~ 1.8$	$) \times 10^{-5}$	S=2.2	1147
$\Lambda_c^+ \Lambda_c^- K^0$	(4.3 ± 2.2	$) \times 10^{-4}$		_

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

B1	<	3.2	$\times 10^{-7}$ CL=90%	2640
B1	<	8.3	$\times 10^{-8}$ CL=90%	2640
B1	<	1.2	$\times 10^{-7}$ CL=90%	2640
B1	(1.8 ± 3.1	$) \times 10^{-10}$ S=2.6	2638
B1	<	1.6	$\times 10^{-7}$ CL=90%	2638
B1	<	5.3	$\times 10^{-9}$ CL=90%	2629
B1 [hhaa]	<	5.1	$\times 10^{-9}$ CL=90%	_
B1	<	4.1	$\times 10^{-3} \text{ CL}=90\%$	1952
B1	<	5.3	$\times 10^{-8}$ CL=90%	2638
B1	<	8.4	$\times 10^{-8}$ CL=90%	2638
B1	<	6.9	$\times 10^{-8}$ CL=90%	2634
B1	<	6.4	$\times 10^{-8}$ CL=90%	2611
B1	<	1.08	$\times 10^{-7}$ CL=90%	2611
B1	<	1.12	$\times 10^{-7}$ CL=90%	2607
B1	<	6.9	$\times10^{-5}$ CL=90%	2638
	B1 B1 B1 B1 B1 [hhaa] B1 B1 B1 B1 B1 B1 B1	B1	B1	B1 <

$K^0 \ell^+ \ell^-$	В1	[ttt] ($3.1 {}^{+}_{-} {}^{0.8}_{0.7}$) × 10 ⁻⁷	2616
$K^0e^+e^-$	В1	($1.6 \begin{array}{c} + & 1.0 \\ - & 0.8 \end{array}$	$) \times 10^{-7}$	2616
$K^0\mu^+\mu^-$	B1	(3.39± 0.34	$(1) \times 10^{-7}$	2612
$K^0 \nu^{\frac{1}{\overline{\nu}}}$	B1	<		$\times 10^{-5}$ CL=90%	2616
$ ho^{0} u \overline{ u}$	B1	<	2.08	$\times10^{-4}$ CL=90%	2583
$K^*(892)^0 \ell^+ \ell^-$	В1	[ttt] ($9.9 \ + \ 1.2 \ - \ 1.1$) × 10 ⁻⁷	2565
$K^*(892)^0 e^+ e^-$	В1	($1.03^{+}_{-} \begin{array}{c} 0.19 \\ 0.17 \end{array}$	$) \times 10^{-6}$	2565
$K^*(892)^0 \mu^+ \mu^-$	B1	(1.03 ± 0.06	$) \times 10^{-6}$	2560
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	($2.1\ \pm\ 0.5$	$) \times 10^{-8}$	2626
$K^*(892)^0 \nu \overline{ u}$	B1	<	5.5	$\times 10^{-5}$ CL=90%	2565
invisible	B1	<	2.4	$\times 10^{-5}$ CL=90%	_
$ u \overline{ u} \gamma$	B1	<	1.7	$\times 10^{-5}$ CL=90%	2640
$\phi u \overline{ u}$	B1	<	1.27	$\times 10^{-4}$ CL=90%	2541
$e^{\pm}\mu^{\mp}$	LF	[hh] <	2.8	$\times 10^{-9}$ CL=90%	2639
$\pi^0e^\pm\mu^\mp$	LF	<	1.4	$\times 10^{-7}$ CL=90%	2637
$K^0e^\pm\mu^\mp$	LF	<	2.7	$\times 10^{-7}$ CL=90%	2615
$K^*(892)^0e^+\mu^-$	LF	<	5.3	$\times 10^{-7}$ CL=90%	2563
$K^*(892)^0 e^- \mu^+$	LF	<	3.4	$\times 10^{-7}$ CL=90%	2563
$K^*(892)^0e^\pm\mu^\mp$	LF	<	5.8	$\times 10^{-7}$ CL=90%	2563
$e^{\pm} au^{\mp}$	LF	[hh] <	2.8	$\times 10^{-5}$ CL=90%	2341
$\mu^{\pm} au^{\mp}$	LF	[hh] <	2.2	$\times 10^{-5}$ CL=90%	2339
$\Lambda_c^+ \mu^-$	L,B	<	1.4	$\times10^{-6}$ CL=90%	2143
$\Lambda_c^+e^-$	L,B	<	4	$\times 10^{-6}$ CL=90%	2145

B^{\pm}/B^{0} ADMIXTURE

CP violation

$$A_{CP}(B \to K^*(892)\gamma) = -0.003 \pm 0.017$$

$$A_{CP}(b \to s\gamma) = 0.015 \pm 0.020$$

$$A_{CP}(b \to (s+d)\gamma) = 0.010 \pm 0.031$$

$$A_{CP}(B \to X_s \ell^+ \ell^-) = 0.04 \pm 0.11$$

$$A_{CP}(B \to X_s \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4) = -0.06 \pm 0.22$$

$$A_{CP}(B \to X_s \ell^+ \ell^-) (10.1 < q^2 < 12.9 \text{ or } q^2 > 14.2 \text{ GeV}^2/c^4)$$

$$= 0.19 \pm 0.18$$

$$A_{CP}(B \to K^* e^+ e^-) = -0.18 \pm 0.15$$

$$A_{CP}(B \to K^* \mu^+ \mu^-) = -0.03 \pm 0.13$$

$$A_{CP}(B \to K^* \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \eta \text{ anything}) = -0.13^{+0.04}_{-0.05}$$

$$\Delta A_{CP}(X_s \gamma) = A_{CP}(B^\pm \to X_s \gamma) - A_{CP}(B^0 \to X_s \gamma) = 0.05 \pm 0.04$$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that B($\Upsilon(4S) \rightarrow B\overline{B}$) = 100%.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 5/30/2017 17:13

Semileptonic and leptonic modes

```
\ell^+ \nu_\ell anything
                                          [ttt,iiaa]
                                                               10.86 \pm 0.16) %
   D^-\ell^+\nu_\ell anything
                                                                2.8 \pm 0.9 ) %
                                                [ttt]
   \overline{D}^0 \ell^+ \nu_{\ell} anything
                                                [ttt]
                                                                7.3 \pm 1.5 ) %
   \overline{D}\ell^+\nu_\ell
                                                                2.42 \pm 0.12)%
                                                                                                                   2310
   D^{*-}\ell^{+}\nu_{\ell} anything
                                               [jjaa]
                                                                6.7 \pm 1.3 ) \times 10<sup>-3</sup>
   D^*\ell^+\nu_\ell
                                                                4.95 \pm 0.11 ) %
                                                                                                                   2257
                                             [kkaa]
   \overline{D}^{**}\ell^+\nu_{\ell}
                                                                2.7 \pm 0.7 ) %
                                           [ttt,llaa]
       \overline{D}_1(2420)\ell^+\nu_\ell anything
                                                                      \pm 1.3 \times 10^{-3}
                                                                3.8
                                                                                                      S = 2.4
       D\pi\ell^+\nu_\ell anything +
                                                                        \pm 0.5 )%
                                                                                                      S=1.5
            D^*\pi\ell^+\nu_\ell anything
       D\pi\ell^+\nu_\ell anything
                                                                      \pm 0.6 ) %
       D^*\pi\ell^+\nu_\ell anything
                                                                1.9 \pm 0.4) %
       \overline{D}_{2}^{*}(2460)\ell^{+}\nu_{\ell} anything
                                                                4.4 \pm 1.6 \times 10^{-3}
       D^{*-}\pi^{+}\ell^{+}\nu_{\ell} anything
                                                                1.00 \pm 0.34 ) %
   \overline{D}\pi^+\pi^-\ell^+\nu_\ell
                                                                1.62 \pm 0.32 \times 10^{-3}
                                                                                                                   2301
   \overline{D}^* \pi^+ \pi^- \ell^+ \nu_\ell
                                                                9.4 \pm 3.2 \times 10^{-4}
                                                                                                                   2247
   D_s^- \ell^+ \nu_\ell anything
                                                                                     \times 10^{-3} CL=90%
                                                [ttt] <
       D_s^- \ell^+ \nu_\ell K^+ anything
                                                                                     \times 10^{-3} CL=90%
                                                [ttt] <
       D_s^- \ell^+ \nu_\ell K^0 anything
                                                [ttt] <
                                                                                      \times 10^{-3} CL=90%
   X_c \ell^{\frac{s}{+}} \nu_{\ell}
                                                               10.65 \pm 0.16) %
   X_u^-\ell^+\nu_\ell
                                                                2.14 \pm 0.31 \times 10^{-3}
   K^+ \ell^+ \nu_\ell anything
                                                                6.3 \pm 0.6 ) %
                                                [ttt]
```

```
K^-\ell^+\nu_\ell anything
                                                                 \pm 4
                                                                           ) \times 10^{-3}
                                           [ttt] (
                                                        10
   K^0/\overline{K}^0\ell^+\nu_\ell anything
                                           [ttt]
                                                                \pm 0.5 ) %
                                                          4.6
\overline{D}\tau^+\nu_{\tau}
                                                          9.8 \pm 1.3 \times 10^{-3}
                                                                                                       1911
D^* \tau^+ \nu_{\tau}
                                                          1.58 \pm 0.12)%
                                                                                                       1838
                                        D, D^*, or D_s modes
D^{\pm} anything
                                                        24.1 \pm 1.4 ) %
D^0/\overline{D}^0 anything
                                                        62.4 \pm 2.9 ) %
                                                                                           S = 1.3
D^*(2010)^{\pm} anything
                                                        22.5 \pm 1.5 ) %
D^*(2007)^0 anything
                                                        26.0 \pm 2.7 ) %
D_s^{\pm} anything
                                                          8.3 \pm 0.8 ) %
                                           [hh]
D_{s}^{*\pm} anything
                                                                \pm 1.0 )%
\underline{D}_{s}^{\check{*}\pm}\overline{D}^{(*)}
                                                                \pm 0.6 ) %
\overline{D}D_{s0}(2317)
                                                                                                       1605
                                                       seen
DD_{sJ}(2457)
                                                       seen
D^{(*)} \overline{D}^{(*)} K^0 +
                                                               + 2.7
- 17)%
                                     [hh,nnaa]
                                                          7.1
     D^{(*)}\overline{D}^{(*)}K^{\pm}
b \rightarrow c \overline{c} s
                                                        22
                                                                           ) %
D_s^{(*)} \overline{D}^{(*)}
                                     [hh,nnaa] (
                                                          3.9 \pm 0.4) %
D^* D^* (2010)^{\pm}
                                                                            \times 10^{-3} CL=90%
                                           [hh] <
                                                          5.9
                                                                                                       1711
DD^*(2010)^{\pm} + D^*D^{\pm}
                                                                            \times 10^{-3} CL=90%
                                           [hh] <
                                                          5.5
DD^{\pm}
                                                                            \times 10^{-3} CL=90%
                                                          3.1
                                           [hh] <
                                                                                                       1866
D_{s}^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})
                                     [hh,nnaa] (
                                                                           ) %
                                                                           \times 10^{-3} CL=90%
D^*(2010)\gamma
                                                          1.1
                                                                                                       2257
D_s^+\pi^- , D_s^{*+}\pi^- , D_s^+\rho^- ,
                                                                             \times 10^{-4} CL=90%
                                           [hh] <
    D_s^{*+}\rho^-, D_s^+\pi^0, D_s^{*+}\pi^0, D_s^{*+}\pi^0, D_s^+\eta, D_s^+\rho^0,
     D_s^{*+}\rho^0, D_s^+\omega, D_s^{*+}\omega
                                                                             \times 10^{-3} CL=90%
D_{s1}(2536)^{+} anything
                                                          9.5
                                                 <
                                        Charmonium modes
J/\psi(1S) anything
                                                          1.094 \pm 0.032) \%
                                                                                           S = 1.1
   J/\psi(1S) (direct) anything
                                                          7.8 \pm 0.4 \times 10^{-3}
                                                                                           S=1.1
                                                          3.07 \pm 0.21 \times 10^{-3}
\psi(2S) anything
                                                          3.55 \pm 0.27 \times 10^{-3}
\chi_{c1}(1P) anything
                                                                                           S = 1.3
   \chi_{c1}(1P) (direct) anything
                                                          3.09 \pm 0.19 \times 10^{-3}
                                                        10.0 \pm 1.7 \times 10^{-4}
\chi_{c2}(1P) anything
                                                                                           S=1.6
   \chi_{c2}(1P) (direct) anything
                                                          7.5 \pm 1.1 \times 10^{-4}
\eta_c(1S) anything
                                                                             \times 10^{-3} CL=90%
KX(3872), X \rightarrow D^0 \overline{D}{}^0 \pi^0
                                                          1.2 \pm 0.4 \times 10^{-4}
                                                                                                       1141
   KX(3872), X \rightarrow D^{*0}D^{0}
                                                          8.0 \pm 2.2 \times 10^{-5}
                                                                                                       1141
KX(3940), X \rightarrow D^{*0}D^{0}
                                                                             \times 10^{-5} CL=90%
                                                          6.7
                                                                                                       1084
KX(3915), X \rightarrow \omega J/\psi
                                        [ooaa] (
                                                          7.1 \pm 3.4 \times 10^{-5}
                                                                                                       1103
                                                                      Created: 5/30/2017 17:13
```

K or K* modes K^{\pm} anything 78.9 $\pm\ 2.5$) % [hh] K^+ anything \pm 5) % 66 K^- anything 13 \pm 4) % K^0/\overline{K}^0 anything 64 \pm 4) % [hh] $K^*(892)^{\pm}$ anything \pm 6 18) % $K^*(892)^0 / \overline{K}^*(892)^0$ anything [hh] 14.6 \pm 2.6) % $K^*(892)\gamma$ \pm 0.6 $) \times 10^{-5}$ 4.2 2565 $+\ 1.8 \\ -\ 1.6$ $) \times 10^{-6}$ $\eta K \gamma$ (2588 $K_1(1400)\gamma$ $\times 10^{-4}$ CL=90% 1.27 < 2454 $K_2^*(1430)\gamma$ 1.7 $) \times 10^{-5}$ (2447 $K_2(1770)\gamma$ $\times 10^{-3}$ CL=90% 2342 < 1.2 $\times 10^{-5}$ CL=90% $K_3^*(1780)\gamma$ < 3.7 2341 $K_{4}^{*}(2045)\gamma$ < $\times 10^{-3}$ CL=90% 2244 1.0 $\pm 1.1) \times 10^{-5}$ $K \eta'(958)$ 8.3 2528 $K^*(892)\eta'(958)$ 4.1 \pm 1.1 $) \times 10^{-6}$ 2472 ($K\eta$ $\times 10^{-6}$ CL=90% 5.2 2588 $K^*(892)\eta$ 1.8 $\pm 0.5) \times 10^{-5}$ 2534 $K\phi\phi$ $) \times 10^{-6}$ 2.3 \pm 0.9 2306 $b \rightarrow \overline{s}\gamma$ $3.49 \pm 0.19 \times 10^{-4}$ $\overline{b} \rightarrow \overline{d} \gamma$ 9.2 \pm 3.0) × 10⁻⁶ $\overline{b} \rightarrow \overline{s}$ gluon 6.8 % < CL=90% $^{+\ \, 0.5}_{-\ \, 0.8}$ $) \times 10^{-4}$ η anything 2.6 (η' anything $) \times 10^{-4}$ 4.2 ± 0.9 K^+ gluon (charmless) $\times 10^{-4}$ CL=90% 1.87 < K^0 gluon (charmless) $\pm 0.7) \times 10^{-4}$ Light unflavored meson modes $1.39 \pm 0.25 \times 10^{-6}$ S=1.22583 $\rho\gamma$ $1.30 \pm 0.23 \times 10^{-6}$ S = 1.2 $\rho/\omega\gamma$ π^{\pm} anything [hh,ppaa] 358 \pm 7) % π^0 anything 235 ± 11) % η anything 17.6 \pm 1.6) % ρ^0 anything 21 ± 5) % ω anything < 81 % CL=90%

 π^+ gluon (charmless)

 ϕ anything

 $\phi K^*(892)$

(

3.7

<

 3.43 ± 0.12) %

 \pm 0.8) × 10⁻⁴

 $\times 10^{-5}$ CL=90%

Created: 5/30/2017 17:13

2460

Baryon modes

$\Lambda_c^+ / \overline{\Lambda}_c^-$ anything	(3.5 ± 0.4	1) %		_
Λ_c^+ anything	<	1.3	%	CL=90%	_
$\overline{\Lambda}_c^-$ anything	<	7	%	CL=90%	_
$\overline{\Lambda}_c^- \ell^+$ anything	<	9	$\times 10^{-4}$	CL=90%	_
$\overline{\Lambda}_c^- e^+$ anything	<	1.8	$\times 10^{-3}$	CL=90%	_
$\overline{\Lambda}_c^- \mu^+$ anything	< -	1.4	\times 10 ⁻³	³ CL=90%	_
$\overline{\Lambda}_{c}^{-}$ p anything	(2.02 ± 0.3	33)%		_
$\overline{\Lambda}_{c}^{c} p e^{+} \nu_{e}$	<	8	$\times 10^{-4}$	CL=90%	2021
$\overline{\Sigma}_{c}^{}$ anything	(3.3 ± 1.7	7) $\times 10^{-3}$		_
$\overline{\Sigma}_{c}^{c}$ anything	<	8	$\times 10^{-3}$	CL=90%	_
$\overline{\Sigma}_{c}^{0}$ anything	(3.6 ± 1.7	7) $\times 10^{-3}$		_
$\overline{\Sigma}_{c}^{0} N(N = p \text{ or } n)$	<	1.2	$\times 10^{-3}$	CL=90%	1938
Ξ_c^0 anything, $\Xi_c^0 \to \Xi^- \pi^+$	(1.93 ± 0.3	$30) \times 10^{-4}$	S=1.1	_
$\Xi_c^+, \ \Xi_c^+ \rightarrow \ \Xi^-\pi^+\pi^+$	($4.5 \begin{array}{c} + 1.3 \\ - 1.2 \end{array}$	$\frac{3}{2}$) × 10 ⁻⁴		_
$ ho/\overline{ ho}$ anything	[hh] (8.0 ± 0.4	1) %		_
p/\overline{p} (direct) anything	[hh] (5.5 ± 0.5			_
$\overline{p}e_{\underline{}}^{+}\nu_{e}$ anything	<	5.9	$\times 10^{-4}$	CL=90%	_
$\Lambda/\overline{\Lambda}$ anything	[hh] (4.0 ± 0.5	5)%		_
$\underline{\Lambda}$ anything	S	een			_
$\overline{\Lambda}$ anything	S	een			_
$\overline{\Xi}^-/\overline{\overline{\Xi}}^+$ anything	[hh] (2.7 ± 0.6	$(5) \times 10^{-3}$		_
baryons anything	(6.8 ± 0.6	5)%		_
$ ho \overline{ ho} $ anything	(2.47 ± 0.2	23)%		_
$\Lambda \overline{p}/\overline{\Lambda} p$ anything	[<i>hh</i>] (2.5 ± 0.4	1) %		_
$\Lambda \overline{\Lambda}$ anything	<	5	$\times 10^{-3}$	CL=90%	_

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

			(,			
se^+e^-	B1	(6.7 ± 1.7) ×	10^{-6}	S=2.0	_
$s\mu^+\mu^-$	B1	(4.3 ± 1.0) ×	10^{-6}		_
$s\ell^+\ell^-$	B1	[ttt] (5.8 \pm 1.3) $ imes$	10^{-6}	S=1.8	_
$\pi \ell^+ \ell^-$	B1	<	5.9 ×	10^{-8}	CL=90%	2638
πe^+e^-	B1	<	1.10 ×	10^{-7}	CL=90%	2638
$\pi \mu^+ \mu^-$	B1	<	5.0 ×	10^{-8}	CL=90%	2634
$K e^+ e^-$	B1	(4.4 \pm 0.6) \times	10^{-7}		2617
$K^*(892)e^+e^-$	B1	($1.19~\pm~0.20$) $ imes$	10^{-6}	S=1.2	2565
$K\mu^+\mu^-$	B1	(4.4 \pm 0.4) \times	10^{-7}		2612
$K^*(892)\mu^+\mu^-$	B1	($1.06~\pm~0.09$) $ imes$	10^{-6}		2560
$K\ell^+\ell^-$	B1	(4.8 ± 0.4) ×	10^{-7}		2617
$K^*(892)\ell^+\ell^-$	B1	(1.05 \pm 0.10) $ imes$	10^{-6}		2565
$K \nu \overline{\nu}$	B1	<	1.7 ×	10^{-5}	CL=90%	2617

$K^* u \overline{ u}$	B1	<	7.6	\times 10 ⁻⁵ CL=90%	_
$se^\pm\mu^\mp$	LF	[hh] <	2.2	$\times10^{-5}$ CL=90%	_
$\pi e^{\pm} \mu^{\mp}$	LF	<	9.2	$\times 10^{-8}$ CL=90%	2637
$ hoe^{\pm}\mu^{\mp}$	LF	<	3.2	$\times 10^{-6}$ CL=90%	2582
K e $^\pm$ μ^\mp	LF	<	3.8	$\times 10^{-8}$ CL=90%	2616
K^* (892) $e^\pm\mu^\mp$	LF	<	5.1	$\times 10^{-7}$ CL=90%	2563

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

mixture

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life
$$au=(1.566\pm0.003)\times10^{-12}$$
 s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged *b*-hadron admixture Mean life $au=(1.58\pm0.14)\times10^{-12}$ s Neutral *b*-hadron ad-

$$au_{
m charged\ b-hadron}/ au_{
m neutral\ b-hadron}=1.09\pm0.13 \ \left|\Delta au_b
ight|/ au_{b,\overline{b}}=-0.001\pm0.014 \
m Re(\epsilon_b)\ /\ (1+|\epsilon_b|^2)=(1.2\pm0.4) imes10^{-3}$$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. The production fractions in b-hadronic Z decay or $p\overline{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b} \to B^+) = \mathsf{B}(\overline{b} \to B^0) \\ \mathsf{B}(\overline{b} \to B^+) + \mathsf{B}(\overline{b} \to B^0) + \mathsf{B}(\overline{b} \to B^0_s) + \mathsf{B}(b \to b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

$$cor(B_s^0, b\text{-baryon}) = -0.254$$

 $cor(B_s^0, B^{\pm} = B^0) = -0.143$
 $cor(b\text{-baryon}, B^{\pm} = B^0) = -0.921.$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	(40.4 ± 0.6) % -
B^0	(40.4 ± 0.6) % -
B_s^0	(10.3 \pm 0.5) %
<i>b</i> -baryon	(8.8 ± 1.2) %

DECAY MODES

Semileptonic and leptonic modes

•		-		
u anything		(23.1 ± 1.5) %		_
$\ell^+ u_\ell$ anything	[ttt]	$(~10.69\pm~0.22)~\%$		_
$e^+ u_e$ anything		$(~10.86\pm~0.35)~\%$		_
$\mu^+ u_\mu$ anything		$(\ 10.95 ^{+}_{-}\ 0.29_{-0.25})\ \%$		_
$D^-\ell^+ u_\ell$ anything	[ttt]	(2.30 ± 0.34) %	S=1.6	_
$D^-\pi^+\ell^+ u_\ell$ anything		$(4.9 \pm 1.9) \times 10^{-3}$		_
$D^-\pi^-\ell^+ u_\ell$ anything		$(2.6 \pm 1.6) \times 10^{-3}$		_
$\overline{D}{}^0\ell^+ u_\ell$ anything	[ttt]	$(6.83\pm\ 0.35)\ \%$		_
$\overline{D}{}^0\pi^-\ell^+ u_\ell$ anything		$(1.07\pm~0.27)~\%$		_
$\overline{\it D}{}^0\pi^+\ell^+ u_\ell$ anything		$(2.3 \pm 1.6) \times 10^{-3}$		-
$D^{*-}\ell^+ u_\ell$ anything	[ttt]	$(2.75\pm\ 0.19)\ \%$		_

Page 109

Created: 5/30/2017 17:13

HTTP://PDG.LBL.GOV

Charmonium modes

$$J/\psi(1S)$$
 anything $(1.16\pm~0.10)~\%$ $-\psi(2S)$ anything $(2.83\pm~0.29)\times10^{-3}$ $-\chi_{c1}(1P)$ anything $(1.4\pm~0.4)~\%$

K or K* modes

$\overline{s}\gamma$		$(3.1 \pm 1.1) \times 10^{-4}$	_
$\overline{s}\overline{\nu}\nu$	B1	$<$ 6.4 $\times 10^{-4}$ CL=90%	_
K^{\pm} anything		$(74 \pm 6)\%$	_
${\mathcal K}^0_{\mathcal S}$ anything		(29.0 ± 2.9) %	_

Pion modes

$$\pi^{\pm}$$
 anything (397 ± 21) % π^{0} anything [ppaa] (278 ± 60) % ϕ anything ($2.82\pm~0.23)$ % $-$

Baryon modes

$$p/\overline{p}$$
 anything $(13.1 \pm 1.1)\%$ $\Lambda/\overline{\Lambda}$ anything $(5.9 \pm 0.6)\%$ b -baryon anything $(10.2 \pm 2.8)\%$

Other modes

charged anything [ppaa]
$$(497 \pm 7)\%$$
 - hadron⁺ hadron⁻ $(1.7 + 1.0 \atop -0.7) \times 10^{-5}$ - charmless $(7 \pm 21) \times 10^{-3}$ -

$\Delta B = 1$ weak neutral current (B1) modes

$$\mu^+\mu^-$$
 anything B1 < 3.2 \times 10⁻⁴ CL=90% -

$$I(J^P) = \frac{1}{2}(1^-)$$

Created: 5/30/2017 17:13

 $I,\ J,\ P$ need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*} = 5324.65 \pm 0.25$$
 MeV $m_{B^*} - m_B = 45.18 \pm 0.23$ MeV $m_{B^{*+}} - m_{B^+} = 45.34 \pm 0.23$ MeV

B* DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$B\gamma$	dominant	45	

$$B_1(5721)^+$$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

Mass
$$m=5725.9^{+2.5}_{-2.7}~{\rm MeV}$$
 $m_{B_1^+}-m_{B^{*0}}=401.2^{+2.4}_{-2.7}~{\rm MeV}$ Full width $\Gamma=31\pm6~{\rm MeV}~({\rm S}=1.1)$

B_1 (5721)+ DECAY MODESFraction (Γ_i/Γ) p (MeV/c) $B^{*0}\pi^+$ seen363

$B_1(5721)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^0$$
 MASS $= 5726.0 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^+} = 446.7 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^{*+}} = 401.4 \pm 1.2$ MeV (S $= 1.2$) Full width $\Gamma = 27.5 \pm 3.4$ MeV (S $= 1.1$)

B ₁ (5721) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^{*+}\pi^{-}$	dominant	363

$$B_2^*(5747)^+$$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

Mass
$$m=5737.2\pm0.7~{\rm MeV}$$
 $m_{B_2^{*+}}-m_{B^0}=457.5\pm0.7~{\rm MeV}$ Full width $\Gamma=20\pm5~{\rm MeV}~({\rm S}=2.2)$

B ₂ *(5747) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^0\pi^+$	seen	418
$B^{*0}\pi^+$	seen	374

$B_2^*(5747)^0$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

$$B_2^*(5747)^0$$
 MASS $= 5739.5 \pm 0.7$ MeV (S $= 1.4$) $m_{B_2^{*0}} - m_{B_1^0} = 13.5 \pm 1.4$ MeV (S $= 1.3$) $m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6$ MeV (S $= 1.4$) Full width $\Gamma = 24.2 \pm 1.7$ MeV

B ₂ *(5747) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^+\pi^-$	dominant	421
$B^{*+}\pi^-$	dominant	377

$B_J(5970)^+$

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

Mass
$$m=5964\pm5$$
 MeV $m_{B_J(5970)^+}-m_{B^0}=685\pm5$ MeV Full width $\Gamma=62\pm20$ MeV

B _J (5970) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^0\pi^+$	possibly seen	632
$B^{*0}\pi^+$	seen	591

$B_J(5970)^0$

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

Mass
$$m=5971\pm5$$
 MeV $m_{B_J(5970)^0}-m_{B^+}=691\pm5$ MeV Full width $\Gamma=81\pm12$ MeV

B _J (5970) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^+\pi^-$	possibly seen	638
$B^{*+}\pi^-$	seen	597

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

 B_s^0

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0} = 5366.89 \pm 0.19$$
 MeV $m_{B_s^0} - m_B = 87.42 \pm 0.19$ MeV Mean life $\tau = (1.505 \pm 0.005) \times 10^{-12}$ s $c\tau = 451.2~\mu\mathrm{m}$ $\Delta\Gamma_{B_s^0} = \Gamma_{B_{sL}^0} - \Gamma_{B_{sH}^0} = (0.086 \pm 0.006) \times 10^{12}~\mathrm{s}^{-1}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.757 \pm 0.021) \times 10^{12} \ \hbar \ {\rm s}^{-1}$$

$$= (1.1688 \pm 0.0014) \times 10^{-8} \ {\rm MeV}$$
 $x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.72 \pm 0.09$
 $\chi_s = 0.499304 \pm 0.000005$

CP violation parameters in B_s^0

$$\begin{array}{l} \operatorname{Re}(\epsilon_{B_s^0}) \ / \ (1 + \left| \epsilon_{B_s^0} \right|^2) = (-0.15 \pm 0.70) \times 10^{-3} \\ C_{KK}(B_s^0 \to K^+ K^-) = 0.14 \pm 0.11 \\ S_{KK}(B_s^0 \to K^+ K^-) = 0.30 \pm 0.13 \\ \gamma = (65 \pm 7)^\circ \\ \delta_B(B_s^0 \to D_s^\pm K^\mp) = (3 \pm 20)^\circ \\ r_B(B_s^0 \to D_s^\mp K^\pm) = 0.53 \pm 0.17 \\ CP \ \text{Violation phase} \ \beta_s = (1.5 \pm 1.6) \times 10^{-2} \ \text{rad} \\ \left| \lambda \right| \ (B_s^0 \to J/\psi(1S)\phi) = 0.964 \pm 0.020 \\ \left| \lambda \right| = 1.03_{-0.04}^{+0.05} \\ A, \ CP \ \text{violation parameter} = 0.5_{-0.7}^{+0.8} \\ C, \ CP \ \text{violation parameter} = -0.3 \pm 0.4 \\ S, \ CP \ \text{violation parameter} = -0.1 \pm 0.4 \\ A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.06 \\ A_{CP}^{\parallel}(B_s \to J/\psi \overline{K}^*(892)^0) = 0.17 \pm 0.15 \\ A_{CP}^{\perp}(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10 \\ A_{CP}(B_s \to \pi^+ K^-) = 0.26 \pm 0.04 \\ \end{array}$$

$$A_{CP}(B_s^0 \to [K^+K^-]_D \overline{K}^*(892)^0) = -0.04 \pm 0.07$$

 $A_{CP}(B_s^0 \to [\pi^+K^-]_D K^*(892)^0) = -0.01 \pm 0.04$
 $A_{CP}(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0) = 0.06 \pm 0.13$
 $A^{\Delta}(B_s \to \phi \gamma) = -1.0 \pm 0.5$
 $\Delta a_{\perp} < 1.2 \times 10^{-12} \text{ GeV}, \text{ CL} = 95\%$
 $\Delta a_{\parallel} = (-0.9 \pm 1.5) \times 10^{-14} \text{ GeV}$
 $\Delta a_X = (1.0 \pm 2.2) \times 10^{-14} \text{ GeV}$
 $\Delta a_Y = (-3.8 \pm 2.2) \times 10^{-14} \text{ GeV}$
 $Re(\xi) = -0.022 \pm 0.033$
 $Im(\xi) = 0.004 \pm 0.011$

These branching fractions all scale with $B(\overline{b} \to B_s^0)$.

The branching fraction B($B_s^0 \to D_s^- \ell^+ \nu_\ell$ anything) is not a pure measurement since the measured product branching fraction B($\overline{b} \to B_s^0$) \times B($B_s^0 \to D_s^- \ell^+ \nu_\ell$ anything) was used to determine B($\overline{b} \to B_s^0$), as described in the note on " $B^0 - \overline{B}^0$ Mixing"

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B _s ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
$\overline{D_s^-}$ anything	(93 ±25) %	6	_
$\ell \nu_\ell X$	(9.6 ± 0.8) %	6	_
$e^+ \nu X^-$	(9.1 ± 0.8) %	6	_
$\mu^+ \nu X^-$	(10.2 \pm 1.0) $\%$	6	_
$D_s^-\ell^+ u_\ell$ anything	[rraa] ($8.1~\pm~1.3$) $\%$	6	_
$D_s^{*-}\ell^+ u_\ell$ anything	(5.4 ± 1.1) %	6	_
$D_{s1}(2536)^- \mu^+ \nu_{\mu}$,	(2.6 ± 0.7)	$< 10^{-3}$	_
$D_{s1}^- \rightarrow D^{*-}K_S^0$			
$D_{s1}(2536)^- X \mu^+ \nu$,	$(4.4 \pm 1.3) >$	$< 10^{-3}$	_
$D_{\epsilon 1}^- \rightarrow \overline{D}{}^0 K^+$			
$D_{s2}(2573)^{-} X \mu^{+} \nu$,	(2.7 ± 1.0)	$< 10^{-3}$	_
$D_{s2}^- ightarrow \overline{D}{}^0 K^+$			
$D_{s}^{-}\pi^{+}$	(3.00 ± 0.23) >	$< 10^{-3}$	2320
$D_{s}^{-} \rho^{+}$	$(6.9 \pm 1.4) >$	$< 10^{-3}$	2249
$D_{s}^{-}\pi^{+}\pi^{+}\pi^{-}$	$(6.1 \pm 1.0) >$	$< 10^{-3}$	2301
$D_{s1}(2536)^{-}\pi^{+}$,	$(2.5 \pm 0.8) >$	$< 10^{-5}$	_
$D_{s1}^{-} \rightarrow D_{s}^{-} \pi^{+} \pi^{-}$			
$D_s^{\mp} K^{\pm}$	(2.27± 0.19) >	< 10 ⁻⁴	2293
$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$	(3.2 ± 0.6) >		2249
S	(

HTTP://PDG.LBL.GOV

Page 115

$D_{s}^{+}D_{s}^{-}$	$(4.4 \pm 0.5) \times 10^{-3}$		1824
$D_s^- D_+^+$	$(2.8 \pm 0.5) \times 10^{-4}$		1875
D^+D^-	$(2.2 \pm 0.6) \times 10^{-4}$		1925
$D^0 \overline{D}{}^0$	$(1.9 \pm 0.5) \times 10^{-4}$		1930
$D_{s}^{*-}\pi^{+}$	$(2.0 \pm 0.5) \times 10^{-3}$		2265
$D_s^{*\mp}K^\pm$	$(1.33\pm\ 0.35)\times10^{-4}$		_
$D^{*-}_{-}\rho^{+}$	$(9.6 \pm 2.1) \times 10^{-3}$		2191
$D_{c}^{*+}D_{c}^{-} + D_{c}^{*-}D_{c}^{+}$	(1.37± 0.16) %		1742
$D_{-}^{*+}D_{-}^{*-}$	(1.43± 0.19) %	S=1.1	1655
$D_{s}^{s+}D_{s}^{-} + D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*+}D_{s}^{*-}$ $D_{s}^{(*)+}D_{s}^{(*)-}$ $\overline{D}_{s}^{*0}\overline{K}^{0}$	(4.5 ± 1.4) %		_
$\frac{D_s}{D_s} 0 \frac{D_s}{K_0}$	$(2.8 \pm 1.1) \times 10^{-4}$		2278
$\overline{D}^0 \overline{K}^0$	$(4.3 \pm 0.9) \times 10^{-4}$		2330
$\overline{D}^0 K^- \pi^+$	$(1.04\pm 0.13) \times 10^{-3}$		2312
$\overline{D}^0 \overline{K}^* (892)^0$	$(4.4 \pm 0.6) \times 10^{-4}$		2264
$\frac{1}{D^0} \frac{1}{K} * (1410)$	$(3.9 \pm 3.5) \times 10^{-4}$		2114
$\overline{D}^0 \overline{K}_0^* (1430)$	$(3.0 \pm 0.7) \times 10^{-4}$		2113
$\overline{D}{}^{0}\overline{K}_{2}^{0}(1430)$	$(1.1 \pm 0.4) \times 10^{-4}$		2113
$\overline{D}^0 \overline{K}^{\stackrel{?}{\stackrel{\checkmark}{=}}} (1680)$		CL=90%	1997
$\overline{D}^0 \overline{K}_0^* (1950)$	$< 1.1 \times 10^{-4}$		1890
$\overline{D}^0 \overline{K}_3^* (1780)$	$< 2.6 \times 10^{-5}$		1971
$\overline{D}^0 \overline{K}_4^* (2045)$	$< 3.1 \times 10^{-5}$		1837
$\overline{D}{}^0K^{4}\pi^+$ (non-	$(2.1 \pm 0.8) \times 10^{-4}$		2312
resonant)			
$D_{52}^{*}(2573)^{-'}\pi^{+}$,	$(2.6 \pm 0.4) \times 10^{-4}$		_
$D_{s2}^* ightarrow \overline{D}{}^0 K^-$,		
$D_{s1}^{*}(2700)^{-}\pi^{+}$,	(1.6 \pm 0.8) \times 10 ⁻⁵		_
$D_{s1}^* \rightarrow \overline{D}{}^0 K^-$,		
$D_{s1}^*(2860)^-\pi^+$,	$(5 \pm 4) \times 10^{-5}$		_
$D_{s1}^* \rightarrow \overline{D}^0 K^-$	(3 = 1) / 13		
$D_{s3}^*(2860)^-\pi^+$,	$(2.2 \pm 0.6) \times 10^{-5}$		_
$D_{s3}^*(2000) \stackrel{\pi}{\sim} ,$ $D_{s3}^* \rightarrow \overline{D}{}^0 K^-$	(2.2 ± 0.0) × 10		
$\overline{D}^0 K^+ K^-$	(4 4 + 0.0) 10=5		20.42
$\frac{D^{0}}{D^{0}} f_{0}(980)$	$(4.4 \pm 2.0) \times 10^{-5}$ $< 3.1 \times 10^{-6}$	CL 000/	2243
$\overline{D}^0 \phi$		CL=90%	2242
$D^{*\mp}\pi^{\pm}$	$(3.0 \pm 0.8) \times 10^{-5}$ $< 6.1 \times 10^{-6}$	CL=90%	2235
$J/\psi(1S)\phi$	$(1.08 \pm 0.08) \times 10^{-3}$	CL-90/0	1588
	·		
$J/\psi(1S)\phi\phi$	$(1.25^{+}_{-0.19}) \times 10^{-5}$		764
$J/\psi(1S)\pi^0$	$< 1.2 \times 10^{-3}$		1787
$J/\psi(1S)\eta$	$(4.0 \pm 0.7) \times 10^{-4}$	S=1.4	1733
$J/\psi(1S)K_S^0$	$(1.88 \pm 0.15) \times 10^{-5}$		1743
$J/\psi(1S)\overline{K}^*(892)^0$	$(4.1 \pm 0.4) \times 10^{-5}$		1637

$J/\psi(1S)\eta'$	(3.3 ±	$0.4) \times 10^{-4}$		1612
$J/\psi(1S)\pi^+\pi^-$		$0.18) \times 10^{-4}$		1775
$J/\psi(1S) f_0(500), f_0 \to \pi^+\pi^-$	< 1.7	\times 10 ⁻⁶	CL=90%	_
$J/\psi(1S) ho,\;\; ho ightarrow \pi^+\pi^-$	< 1.2	$\times 10^{-6}$	CL=90%	_
$J/\psi(1S) f_0(980), f_0 \to$	($1.19\pm$	$0.22) \times 10^{-4}$	S=2.0	_
$J/\psi(1S) f_0(980)_0$,	(5.1 \pm	$0.9\)\times 10^{-5}$		_
$f_0 \rightarrow \pi^+\pi^- \ J/\psi(1S) f_2(1270),$	($1.1~\pm$	$0.4)\times 10^{-6}$		_
$f_2 ightarrow \pi^+ \pi^- \ J/\psi(1S) f_2(1270)_0,$	(2.6 ±	$0.7) \times 10^{-7}$		_
$egin{array}{ll} f_2 & ightarrow & \pi^+ \pi^- \ J/\psi(1S) f_2(1270)_{\parallel}, \end{array}$	(3.8 ±	1.3) × 10 ⁻⁷		_
$f_2 ightarrow \ \pi^+ \pi^- \ J/\psi(1S) f_2(1270)_\perp$,	(16 +	2.8) \times 10 ⁻⁷		_
$f_2 \rightarrow \pi^+\pi^-$	·	,		
$J/\psi(1S) f_0(1370), \ f_0 ightarrow \ \pi^+ \pi^-$	(4.5 +	$^{0.7}_{4.0}$) × 10 ⁻⁵		_
$J/\psi(1S) f_0(1500),$	(7.4 +	$^{1.6}_{1.4}$) $ imes$ 10 ⁻⁶		_
$f_0 ightarrow \pi^+ \pi^- \ J/\psi(1S) f_2'(1525)_0,$	($3.7 \pm$	$1.0) \times 10^{-7}$		_
$f_2' \rightarrow \pi^+\pi^-$, , , +	10.0 \ 10-8		
$J/\psi(1S)f_2'(1525)_{\parallel}, \ f_2' ightarrow \pi^+\pi^-$	(4.4 <u>'</u>	$\frac{10.0}{3.1}$) × 10^{-8}		_
$J/\psi(1S)f_2'(1525)_{\perp}$, $f_2' ightarrow \pi^+\pi^-$	(1.9 \pm	$1.4) \times 10^{-7}$		_
$J/\psi(1S) f_0(1790),$	(1.7 +	$^{4.0}_{0.4}$) × 10 ⁻⁶		_
$f_0 \rightarrow \pi^+ \pi^-$		0.4		
$J/\psi(1S)\pi^+\pi^-$ (nonres- onant)	(1.8 +	$^{1.1}_{0.4}$) × 10 ⁻⁵		1775
$J/\psi(1S)\overline{K}^0\pi^+\pi^-$	< 4.4	$\times10^{-5}$	CL=90%	1675
$J/\psi(1S)K^{+}K^{-}$	(7.9 \pm	$0.7) \times 10^{-4}$		1601
$J/\psi(1S)K^{0}K^{-}\pi^{+} + \text{c.c.}$		$1.3) \times 10^{-4}$		1538
$J/\psi(1S)\overline{K}^0K^+K^-$	•	$\times 10^{-5}$	CL=90%	1333
$J/\psi(1S)f_2'(1525)$	(2.6 \pm	$0.6) \times 10^{-4}$		1304
$J/\psi(1S) p\overline{p}$		$\times 10^{-6}$	CL=90%	982
$J/\psi(1S)\gamma$		\times 10 ⁻⁶		1790
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$		$0.9) \times 10^{-5}$		1731
$J/\psi(1S)f_1(1285)$		$1.4) \times 10^{-5}$		1460
$\psi(2\dot{S})\eta$	($3.3 \pm$	$0.9) \times 10^{-4}$		1338

1 (5.0)		4		
$\psi(2S)\eta'$		$(1.29\pm 0.35) \times 10^{-4}$		1158
$\psi(2S)\pi^+\pi^-$		$(7.3 \pm 1.2) \times 10^{-5}$		1397
$\psi(2S)\phi$		$(5.4 \pm 0.6) \times 10^{-4}$		1120
$\psi(2S)\underline{K}^-\pi^+$		$(3.12\pm 0.30) \times 10^{-5}$		1310
$\psi(2S)\overline{K}^{*}(892)^{0}$		$(3.3 \pm 0.5) \times 10^{-5}$		1196
$\chi_{c1}\phi$		$(2.05\pm 0.30) \times 10^{-4}$		1274
$\pi^+\pi^-$		$(6.8 \pm 0.8) \times 10^{-7}$		2680
$\pi^{0}\pi^{0}$		$< 2.1 \times 10^{-4}$	CL=90%	2680
$\eta\pi^0$		$< 1.0 \times 10^{-3}$	CL=90%	2654
$\eta \eta$		$< 1.5 \times 10^{-3}$	CL=90%	2627
$ ho^0 ho^0$		$< 3.20 \times 10^{-4}$	CL=90%	2569
$\eta'\eta'$		$(3.3 \pm 0.7) \times 10^{-5}$		2507
$\phi f_0(980), f_0(980) \to$		$(1.12\pm\ 0.21)\times10^{-6}$		_
$\pi^+\pi^-$				
$\phi f_2(1270)$,		$(6.1 \ \frac{+}{-} \ \frac{1.8}{1.5}) \times 10^{-7}$		_
$f_2(1270) \to \pi^+\pi^-$		· – 1.5 /		
$\phi \rho^0$		$(2.7 \pm 0.8) \times 10^{-7}$		2526
$\phi \pi^+ \pi^-$		$(3.5 \pm 0.5) \times 10^{-6}$		2579
$\phi \dot{\phi}$		$(1.87\pm 0.15) \times 10^{-5}$		2482
$\pi^+ K^-$		$(5.6 \pm 0.6) \times 10^{-6}$		2659
K^+K^-		$(2.54\pm 0.16) \times 10^{-5}$		2638
$K^0\overline{K}^0$		$(2.0 \pm 0.6) \times 10^{-5}$		2637
$\mathcal{K}^0\pi^+\pi^-$		$(1.5 \pm 0.4) \times 10^{-5}$		2653
$\mathcal{K}^0\mathcal{K}^\pm\pi^\mp$		$(7.7 \pm 1.0) \times 10^{-5}$		2622
$K^*(892)^-\pi^+$		$(3.3 \pm 1.2) \times 10^{-6}$		2607
$K^*(892)^{\pm}K^{\mp}$		$(1.25\pm 0.26) \times 10^{-5}$		2585
$K_S^0 \overline{K}^* (892)^0 + \text{c.c.}$		$(1.6 \pm 0.4) \times 10^{-5}$		2585
$K^{0}K^{+}K^{-}$		$< 3.5 \times 10^{-6}$	CL=90%	2568
$\overline{K}^*(892)^0 \rho^0$		$< 7.67 \times 10^{-4}$	CL=90%	2550
$\frac{K}{K}$ *(892) ⁰ K *(892) ⁰		$(1.11\pm 0.27) \times 10^{-5}$	CL-3070	2531
$\phi K^*(892)^0$		$(1.11\pm 0.27) \times 10^{-6}$		2507
р <u></u>		$(2.8 + 2.2 \atop -1.7) \times 10^{-8}$		2514
$\Lambda_c^- \Lambda \pi^+$		$(3.6 \pm 1.6) \times 10^{-4}$		_
$\Lambda_c^- \Lambda_c^+$		$< 8.0 \times 10^{-5}$	CL=95%	_
$\gamma\gamma$	B1	$< 3.1 \times 10^{-6}$	CL=90%	2683
$\phi \gamma$		$(3.52\pm0.34)\times10^{-5}$		2587

Lepton Family number (LF) violating modes or $\Delta B=1$ weak neutral current (B1) modes

$\mu^+\mu^-$	B1	(2.4	$^{+~0.9}_{-~0.7}~)\times 10^{-9}$	S=1.5	2681
$e^+ e^-$	B1	< 2.8	\times 10 ⁻⁷	CL=90%	2683
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	< 1.2	$\times 10^{-8}$	CL=90%	2673

$$I(J^P) = 0(1^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m=5415.4^{+1.8}_{-1.5}~{
m MeV}~{
m (S}=2.9)$$
 $m_{B_s^*}-m_{B_s}=48.5^{+1.8}_{-1.5}~{
m MeV}~{
m (S}=2.8)$

B* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$B_s \gamma$$

dominant

48

$$B_{s1}(5830)^0$$

$$I(J^P) = 0(1^+)$$

I, J, P need confirmation.

Mass
$$m=5828.63\pm0.27$$
 MeV $m_{B_{s1}^0}-m_{B^{*+}}=503.98\pm0.18$ MeV Full width $\Gamma=0.5\pm0.4$ MeV

$B_{s1}(5830)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$R^{*+}K^{-}$$

dominant

91

$$B_{s2}^*(5840)^0$$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.85\pm0.17$$
 MeV (S = 1.1) $m_{B_{s2}^{*0}}-m_{B^{+}}=560.53\pm0.17$ MeV (S = 1.1) Full width $\Gamma=1.47\pm0.33$ MeV

B_{s2}^* (5840) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/30/2017 17:13

 B^+K^-

dominant

252

BOTTOM, CHARMED MESONS $(B=C=\pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predicitions.

Mass
$$m = 6274.9 \pm 0.8 \; {\rm MeV}$$

Mean life $\tau = (0.507 \pm 0.009) \times 10^{-12} \; {\rm s}$

 B_c^- modes are charge conjugates of the modes below.

 B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$) Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Created: 5/30/2017 17:13

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \to B_c).$

$J/\psi(1S)\ell^+ u_\ell$ anything	$(5.2 \begin{array}{c} +2.7 \\ -2.7 \end{array}$	$_{1}^{4}) \times 10^{-5}$		_
$J/\psi(1S)\pi^+$	seen			2371
$J/\psi(1S)K^+$	seen			2341
$J/\psi(1S)\pi^+\pi^+\pi^-$	seen			2350
$J/\psi(1S)a_1(1260)$	< 1.2	$\times10^{-3}$	90%	2169
$J/\psi(1S) K^+ K^- \pi^+$	seen			2203
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen			2309
$\psi(2S)\pi^+$	seen			2052
$J/\psi(1S)D_s^+$	seen			1822
$J/\psi(1S)D_s^{*+}$	seen			1728
$J/\psi(1S) ho \overline{ ho} \pi^+$	seen			1792
$\chi_c^0\pi^+$	$(2.4 \begin{array}{c} +0. \\ -0. \end{array})$	$_{8}^{9}) \times 10^{-5}$		2205
$ ho \overline{ ho} \pi^+$	not seen			2970
$D^*(2010)^+ \overline{D}{}^0$	< 6.2	\times 10 ⁻³	90%	2467
$D^+\underline{K}^{*0}$	< 0.20	\times 10 ⁻⁶	90%	2783
$D^+\overline{K}^{*0}$	< 0.16	\times 10 ⁻⁶	90%	2783
$D_s^+ K^{*0}$	< 0.28	\times 10 ⁻⁶	90%	2751
$D^{+}\overline{K}^{*0}$		$\times 10^{-6}$	90%	2751
b _s '\	< 0.4	× 10 °	3370	
$D_s^+ \phi$	< 0.4 < 0.32	_	90%	2727
$D_s^+ \overline{K}^{*0}$ $D_s^+ \phi$ $K^+ K^0$				

cc MESONS

 $\eta_c(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m = 2983.4 \pm 0.5 \text{ MeV}$ (S = 1.2) Full width $\Gamma=31.8\pm0.8~\text{MeV}$

 $\eta_{c}(1S)$ DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Created: 5/30/2017 17:13

Decays inv	olving hadronic re	esonances		
$\eta'(958)\pi\pi$	(4.1 ± 1	.7) %		1323
ho ho	(1.8 ± 0	.5) %		1274
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.0 ± 0	.7) %		1277
$K^*(892)\overline{K}^*(892)$	(7.0 ± 1	$.3) \times 10^{-3}$		1196
$K^*(892)^0 \overline{K}^*(892)^0 \pi^+ \pi^-$	($1.1~\pm 0$.5) %		1073
$\phi K^+ K^-$	($2.9~\pm1$	$.4) \times 10^{-3}$		1104
$\phi \phi$	(1.75 ± 0)	$(20) \times 10^{-3}$		1089
$\phi 2(\pi^+\pi^-)$	< 4	\times 10 ⁻³	90%	1251
$a_0(980)\pi$	< 2	%	90%	1327
$a_2(1320)\pi$	< 2	%	90%	1196
$K^*(892)\overline{K}+$ c.c.	< 1.28	%	90%	1309
$f_2(1270)\eta$	< 1.1	%	90%	1145
$\omega \omega$	< 3.1	$\times 10^{-3}$	90%	1270
$\omega \phi$	< 1.7	\times 10 ⁻³	90%	1185
$f_2(1270) f_2(1270)$	(9.8 ± 2	$.5) \times 10^{-3}$		774
$f_2(1270)f_2'(1525)$	(9.7 ± 3	$.2) \times 10^{-3}$		513
$f_0(980)\eta$	seen			1264
$f_0(1500)\eta$	seen			1026
$f_0(2200)\eta$	seen			496
$a_0(980)\pi$	seen			1327
$a_0(1320)\pi$	seen			_
$a_0(1450)\pi$	seen			1123
$a_0(1950)\pi$	seen			859
$a_2(1950)\pi$	not seen			_
$K_0^*(1430)\overline{K}$	seen			_
$K_2^*(1430)\overline{K}$	seen			_

 $K_0^*(1950)\overline{K}$

seen

Decays into stable hadrons

$K\overline{K}\pi$	(7.3 ± 0.5) %	1381
$K\overline{K}\eta$	(1.35±0.16) %	1265
$\eta \pi^+ \pi^-$	(1.7 ±0.5)%	1427
$\eta^{2}(\pi^{+}\pi^{-})$	(4.4 ±1.3) %	1385
$\overset{'}{K^{+}}\overset{'}{K^{-}}\pi^{+}\pi^{-}$	$(6.9 \pm 1.1) \times 10^{-3}$	1345
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.5 ±0.6) %	1304
$K^{0}K^{-}\pi^{+}\pi^{-}\pi^{+}+c.c.$	(5.6 ±1.5) %	_
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	$(7.5 \pm 2.4) \times 10^{-3}$	1253
$2(K^{+}K^{-})$	$(1.46\pm0.30)\times10^{-3}$	1055
$\pi + \pi - \pi^{0} \pi^{0}$	(4.7 ±1.0) %	1460
$2(\pi^{+}\pi^{-})$	$(9.7 \pm 1.2) \times 10^{-3}$	1459
$2(\pi^{+}\pi^{-}\pi^{0})$	(17.4 ±3.3) %	1409
$3(\pi^{+}\pi^{-})$	(1.8 ±0.4) %	1406
$p\overline{p}$	$(1.50\pm0.16)\times10^{-3}$	1160
$p \overline{p} \pi^0$	$(3.6 \pm 1.3) \times 10^{-3}$	1101
$\Lambda \overline{\Lambda}$	$(1.09\pm0.24)\times10^{-3}$	990
$\Sigma^+ \overline{\Sigma}^-$	$(2.1 \pm 0.6) \times 10^{-3}$	900
<u>=-</u> =+	$(8.9 \pm 2.7) \times 10^{-4}$	692
$\pi^+\pi^-p\overline{p}$	$(5.3 \pm 1.8) \times 10^{-3}$	1027
·· ·· r r	() =-	

Radiative decays

 $\gamma\gamma$ ($1.59\pm0.13)\times10^{-4}$ 1492

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	1.1	$\times 10^{-4}$	90%	1485
$\pi^0\pi^0$	P,CP	<	4	\times 10 ⁻⁵	90%	1486
K ⁺ K ⁻	P,CP	<	6	\times 10 ⁻⁴	90%	1408
$K_S^0 K_S^0$	P,CP	<	3.1	\times 10 ⁻⁴	90%	1406

$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3096.900\pm0.006$ MeV Full width $\Gamma=92.9\pm2.8$ keV (S = 1.1) $\Gamma_{e\,e}=5.55\pm0.14\pm0.02$ keV

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level(MeV/ c)
hadrons	(87.7 ±0.5)	% –
virtual $\gamma ightarrow $ hadrons	(13.50 ± 0.30)	% –
ggg	(64.1 ± 1.0)	%
$\gamma g g$	(8.8 ± 1.1)	% –
e^+e^-	(5.971 ± 0.032)	% 1548
$e^+e^-\gamma$	[ssaa] (8.8 ± 1.4)	$\times 10^{-3}$ 1548
$\mu^+\mu^-$	(5.961 ± 0.033)	% 1545

HTTP://PDG.LBL.GOV

Page 122

Decays involving hadronic resonances

2.7		(1.60	0 1E) 0/	C 24	1448
$ ho\pi_{ ho^0\pi^0}$			±0.15	$) \times 10^{-3}$	S=2.4	1448
$a_2(1320)\rho$			± 0.7 ± 0.22			1123
$\omega \pi^{+} \pi^{+} \pi^{-} \pi^{-}$		•		$) \times 10^{-3}$		1392
$\omega \pi + \pi - \pi^0$				$) \times 10^{-3}$		1418
$\omega \pi^+ \pi^-$				$) \times 10^{-3}$	S=1.1	1435
$\omega f_2(1270)$		(4.3	± 0.6	$) \times 10^{-3}$	0 1.1	1142
$K^*(892)^0 \overline{K}^*(892)^0$				$) \times 10^{-4}$		1266
$K^*(892)^{\pm} K^*(892)^{\mp}$		(1.00	$+0.22 \\ -0.40$) × 10 ⁻³		1266
$K^*(892)^{\pm}K^*(800)^{\mp}$		(1.1	$^{+1.0}_{-0.6}$	$) \times 10^{-3}$		_
$K_S^0 \pi^- K^*(892)^+ + \text{c.c.}$		(2.7	± 0.9	$) \times 10^{-3}$		1342
$K_S^0 \pi^- K^*(892)^+ + \text{c.c.} \rightarrow$		(6.7	± 2.2	$) \times 10^{-4}$		_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$						
$\eta K^*(892)^0 \overline{K}^*(892)^0$		(1.15	± 0.26	$) \times 10^{-3}$		1003
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$				$) \times 10^{-3}$		1012
$K^*(892)^+ K_2^*(1430)^- + \text{c.c.}$				$) \times 10^{-3}$		1012
$K^*(892)^+ K_2^*(1430)^- + \text{c.c.} \rightarrow$		(4	± 4	$) \times 10^{-4}$		_
$K^*(892)^{\frac{1}{4}}K_5^0\pi^- + \text{c.c.}$						
$K^*(892)^0 \overline{K}_2(1770)^0 + \text{c.c.} \rightarrow$		(6.9	± 0.9	$) \times 10^{-4}$		_
$K^*(892)^{\overline{0}}K^-\pi^+ + \text{c.c.}$		`		•		
$\omega K^*(892)\overline{K}$ + c.c.		(6.1	± 0.9	$) \times 10^{-3}$		1097
$K^+K^*(892)^- + \text{c.c.}$				$) \times 10^{-3}$		1373
$K^{+}K^{*}(892)^{-} + \text{c.c.} \rightarrow$		(1.97	± 0.20	$) \times 10^{-3}$		_
$K^{+}K^{-}\pi^{0}$		(2 0		\ 10-3		
$K^+ K^* (892)^- + \text{c.c.} ightarrow K^0 K^\pm \pi^\mp + \text{c.c.}$		(3.0	±0.4	$) \times 10^{-3}$		_
$K^0 \overline{K}^* (892)^0 + \text{c.c.}$		(4 30	+0.31) × 10 ⁻³		1373
$K^0 \overline{K}^* (892)^0 + \text{c.c.} \rightarrow$				$) \times 10^{-3}$		-
$K^0K^{\pm}\pi^{\mp}$ + c.c.		(3.2) / 20		
$K_1(1400)^\pmK^\mp$		(3.8	± 1.4	$) \times 10^{-3}$		1170
$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$		seen				1343
$\omega \pi^{0} \pi^{0}$				$) \times 10^{-3}$		1436
$b_1(1235)^{\pm}\pi^{\mp}$	[hh]	(3.0	± 0.5	$) \times 10^{-3}$		1300
$\omega K^{\pm} K_{S}^{0} \pi^{\mp}$	[<i>hh</i>]	(3.4	± 0.5	$) \times 10^{-3}$		1210
$b_1(1235)^0\pi^0$				$) \times 10^{-3}$		1300
$\eta K^{\pm} K_S^0 \pi^{\mp}$	[<i>hh</i>]			$) \times 10^{-3}$		1278
$\phi K^*(892)\overline{K} + \text{c.c.}$		(2.18	± 0.23	$) \times 10^{-3}$		969
$\omega K \overline{K}$				$) \times 10^{-3}$		1268
$\omega f_0(1710) \rightarrow \omega K K$		(4.8	± 1.1	$) \times 10^{-4}$		878
$\phi 2(\pi^+\pi^-)$				$) \times 10^{-3}$		1318
$\Delta(1232)^{++}\overline{p}\pi^-$		(1.6	± 0.5	$) \times 10^{-3}$		1030

$\omega \eta$			±0.20) \times		S=1.6	1394
$\phi K \overline{K}$		(1.77	±0.16) \times		S=1.3	1179
$\phi K_S^0 K_S^0$		(5.9		10^{-4}		1176
$\phi f_0(1710) \rightarrow \phi K \overline{K}$		(3.6		10^{-4}		875
ϕ K $^+$ K $^-$		(8.3		10^{-4}		1179
$\phi f_2(1270)$		(3.2		10^{-4}		1036
$\Delta(1232)^{++} \overline{\Delta}(1232)^{}$			± 0.29) \times			938
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$ (or c.c.)	[hh]		± 0.05) \times			697
$K^+ K^- f_2'(1525)$		(1.04	± 0.35) \times	10^{-3}		892
$\phi f_2'(1525)$		8)	± 4) \times	10^{-4}	S=2.7	871
$\phi \pi^+ \pi^-$		(8.7		10^{-4}	S=1.4	1365
$\phi \pi^0 \pi^0$		(5.0	± 1.0) $ imes$	10^{-4}		1366
$\phi \mathit{K}^{\pm} \mathit{K}^{0}_{S} \pi^{\mp}$	[hh]	(7.2	\pm 0.8) $ imes$	10^{-4}		1114
$\omega f_1(1420)$		(6.8	± 2.4) $ imes$	10^{-4}		1062
$ \phi \eta \\ \equiv 0 \overline{\equiv} 0 $		(7.5	\pm 0.8) $ imes$	10^{-4}	S=1.5	1320
<u>=0</u> =0		(1.20	± 0.24) $ imes$	$^{10}^{-3}$		818
$\Xi(1530)^{-}\overline{\Xi}^{+}$		(5.9		10^{-4}		600
$pK^{-}\overline{\Sigma}(1385)^{0}$		(5.1	\pm 3.2) $ imes$	10^{-4}		646
$\omega \pi^0$		(4.5	± 0.5) $ imes$	10^{-4}	S=1.4	1446
$\phi \eta'(958)$		(4.6	± 0.5) $ imes$	10^{-4}	S=2.2	1192
$\phi f_0(980)$		(3.2	± 0.9) $ imes$	10^{-4}	S=1.9	1178
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$		(2.60	± 0.35) \times	10^{-4}		_
$\phi f_0(980) \rightarrow \phi \pi^0 \pi^0$		(1.8		10^{-4}		_
$\phi \pi^0 f_0(980) \to \phi \pi^0 \pi^+ \pi^-$		(4.5	± 1.0) $ imes$	10^{-6}		_
$\phi \pi^0 f_0(980) \to \phi \pi^0 p^0 \pi^0$		(1.7	\pm 0.6) $ imes$	10^{-6}		1045
$\eta \phi f_0(980) \rightarrow \eta \phi \pi^+ \pi^-$		(3.2	± 1.0) $ imes$	10^{-4}		_
$\phi a_0(980)^0 \rightarrow \phi \eta \pi^0$		(5	± 4) \times	10^{-6}		_
$\Xi(1530)^0\overline{\Xi}^0$		(3.2	± 1.4) $ imes$	10^{-4}		608
$\Sigma(1385)^{-}\overline{\Sigma}^{+} ext{(or c.c.)}$	[hh]	(3.1	± 0.5) $ imes$	10^{-4}		855
$\phi f_1(1285)$		(2.6		10^{-4}		1032
$\phi f_1(1285) \rightarrow$		(9.4	± 2.8) \times	10^{-7}		952
$\phi\pi^0f_0(980) \rightarrow$						
$\phi\pi^0\pi^+\pi^-$				-		
$\phi f_1(1285) \rightarrow$		(2.1	±2.2) \times	10-7		955
$ \begin{array}{c} \phi \pi^0 f_0(980) \rightarrow \\ \phi \pi^0 \pi^0 \pi^0 \end{array} $						
$\phi \pi^0 \pi^0 \pi^0$				4		
$\eta \pi^+ \pi^-$			± 1.7) $ imes$			1487
$\eta \rho$		•	±0.23)×	_		1396
$\omega \eta'(958)$			±0.21)×	_		1279
$\omega f_0(980)$		•	± 0.5) \times			1267
$\rho \eta'(958)$		•	± 0.18) \times			1281
$a_2(1320)^{\pm}\pi^{\mp}$		< 4.3		10^{-3}	CL=90%	1263
$K\overline{K}_{2}^{*}(1430) + \text{c.c.}$		< 4.0		10^{-3}	CL=90%	1159
$K_1(1270)^{\pm} K^{\mp}$	•	< 3.0	×	10 ⁻³	CL=90%	1231

$K_S^0 \pi^- K_2^* (1430)^+ + \text{c.c.}$	$(3.6 \pm 1.8) \times 10^{-3}$		1117
			1111
$K_S^0 \pi^- K_2^* (1430)^+ + \text{c.c.} \rightarrow$	$(4.5 \pm 2.2) \times 10^{-4}$		_
$K_{S}^{0}K_{S}^{0}\frac{\pi^{+}\pi^{-}}{\pi^{-}}$			
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	$< 2.9 \times 10^{-3}$	CL=90%	604
$\phi\pi^{f 0}$	$3 imes 10^{-6}$ or $1 imes 10^{-7}$		1377
$\phi \eta$ (1405) $\rightarrow \phi \eta \pi^+ \pi^-$	$(2.0 \pm 1.0) \times 10^{-5}$		946
$\omega f_2'(1525)$	$< 2.2 \times 10^{-4}$	CL=90%	1003
$\omega X(1835) \rightarrow \omega \rho \overline{\rho}$	$< 3.9 \times 10^{-6}$	CL=95%	_
$\phi X(1835) \rightarrow \phi p \overline{p}$	$< 2.1 \times 10^{-7}$	CL=90%	_
$\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-$	$< 2.8 \times 10^{-4}$	CL=90%	578
$\phi X(1870) \rightarrow \phi \eta \pi^+ \pi^-$	$< 6.13 \times 10^{-5}$	CL=90%	_
$\eta \phi(2170) \rightarrow \eta \phi f_0(980) \rightarrow$	$(1.2 \pm 0.4) \times 10^{-4}$		628
$\eta \phi \pi^+ \pi^-$, , , , ,		
$\eta \phi(2170) ightarrow$	$< 2.52 \times 10^{-4}$	CL=90%	_
$\eta K^*(892)^0 \overline{K}^*(892)^0$			
$\Sigma (1385)^{0} \overline{\Lambda} + \text{c.c.}$	$< 8.2 \times 10^{-6}$	CL=90%	912
$\Delta(1232)^{+}\overline{p}$	$< 1 \times 10^{-4}$		1100
$\Lambda(1520)\overline{\Lambda} + \text{c.c.} \rightarrow \gamma \Lambda \overline{\Lambda}$	$< 4.1 \times 10^{-6}$	CL=90%	_
$\Theta(1540) \overline{\Theta}(1540) \rightarrow$	$< 1.1 \times 10^{-5}$	CL=90%	_
$K_{S}^{0} p K^{-} \overline{n} + \text{c.c.}$			
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	$< 2.1 \times 10^{-5}$	CL=90%	_
$\Theta(1540)K_0^0 \overline{p} \rightarrow K_0^0 \overline{p}K_n^+ n$	$< 1.6 \times 10^{-5}$	CL=90%	_
$\frac{\overline{\Theta}(1540)K_{S}^{+}\rho}{\overline{\Theta}(1540)K^{+}n\rightarrow K_{S}^{0}\overline{\rho}K^{+}n}$	< 5.6	CL=90%	
` '			_
$\overline{\Theta}(1540) K_S^0 p \rightarrow K_S^0 p K^- \overline{n}$	$< 1.1 \times 10^{-5}$	CL=90%	
$\Sigma^0 \overline{\Lambda}$	$< 9 \times 10^{-5}$	CL=90%	1032
Decays i	nto stable hadrons		
$2(\pi^{+}\pi^{-})\pi^{0}$	(4.1 ± 0.5) %	S=2.4	1496
$3(\pi^{+}\pi^{-})\pi^{0}$	$(2.9 \pm 0.6)\%$		1433
$\pi + \pi - \pi 0$	(2.11 ±0.07) %		1533
$\pi^+\pi^-\pi^0 {\it K}^+ {\it K}^-$	(1.79 ±0.29)%		1368
$4(\pi^+\pi^-)\pi^0$	$(9.0 \pm 3.0) \times 10^{-3}$		1345
$\pi^{+}\pi^{-}K^{+}K^{-}$	$(6.84 \pm 0.32) \times 10^{-3}$		1407
$\pi^{+}\pi^{-}K_{S}^{0}K_{L}^{0}$	$(3.8 \pm 0.6) \times 10^{-3}$		1406
$\pi^{+}\pi^{-}\mathcal{K}^{0}_{S}\mathcal{K}^{0}_{L} \ \pi^{+}\pi^{-}\mathcal{K}^{0}_{S}\mathcal{K}^{S}_{S}$	$(1.68 \pm 0.19) \times 10^{-3}$		1406
$K^+K^-K_S^0K_S^0$	$(4.1 \pm 0.8) \times 10^{-4}$		1127
$\pi^+\pi^-K^+K^-n$	$(1.84 \pm 0.28) \times 10^{-3}$		1221
$\pi^0 \pi^0 K^+ K^-$	$(2.12 \pm 0.23) \times 10^{-3}$		1410
$K\overline{K}\pi$	$(6.1 \pm 1.0) \times 10^{-3}$		1442
$2(\pi^{+}\pi^{-})$	$(3.57 \pm 0.30) \times 10^{-3}$		1517
$3(\pi^{+}\pi^{-})$	$(4.3 \pm 0.4) \times 10^{-3}$		1466
$2(\pi^{+}\pi^{-}\pi^{0})$	$(1.62 \pm 0.21)\%$		1468
$2(\pi^+\pi^-)\eta$	$(2.29 \pm 0.24) \times 10^{-3}$		1446
-(n n) n	(2.23 ±0.24) × 10		144U

$3(\pi^+\pi^-)\eta$	(7.2	± 1.5) $\times 10^{-4}$		1379
p p	(2.120	$0\pm0.029)\times10^{-3}$		1232
$p\overline{p}\pi^0$	(1.19	$\pm 0.08) \times 10^{-3}$	S=1.1	1176
$p\overline{p}\pi^+\pi^-$		± 0.5) $\times 10^{-3}$	S=1.3	1107
$p \overline{p} \pi^+ \pi^- \pi^0$	[ttaa] (2.3	± 0.9) $\times 10^{-3}$	S=1.9	1033
$p\overline{p}\eta$	(2.00	$\pm 0.12\) \times 10^{-3}$		948
$p\overline{p}\rho$	< 3.1	$\times 10^{-4}$	CL=90%	774
$p\overline{p}\omega$	(9.8	± 1.0) × 10 ⁻⁴	S=1.3	768
$p\overline{p}\eta'(958)$		± 0.4) × 10 ⁻⁴		596
$p\overline{p}a_0(980) \rightarrow p\overline{p}\pi^0\eta$		± 1.8) $\times 10^{-5}$		_
$ ho \overline{ ho} \phi$	(5.19	$\pm 0.33\) \times 10^{-5}$		527
n n	(2.09	± 0.16) $\times 10^{-3}$		1231
$n\overline{n}\pi^+\pi^-$	(4	± 4) × 10 ⁻³		1106
$\Sigma^+ \overline{\Sigma}^-$		$\pm 0.24) \times 10^{-3}$		992
$\Sigma^0 \overline{\Sigma}{}^0$	(1.29	$\pm 0.09) \times 10^{-3}$		988
$2(\pi^{+}\pi^{-})K^{+}K^{-}$	(4.7	± 0.7) × 10 ⁻³	S=1.3	1320
$ ho \overline{n} \pi^-$	(2.12	$\pm 0.09) \times 10^{-3}$		1174
n N(1440)	seen			984
nN(1520)	seen			928
nN(1535)	seen			914
<u>=</u> _ = + '	(9.7	± 0.8) $\times 10^{-4}$	S=1.4	807
$\Lambda \overline{\Lambda}$		± 0.15) $\times 10^{-3}$	S=1.9	1074
$\Lambda \overline{\Sigma}^- \underline{\pi}^+$ (or c.c.)		± 0.7) × 10 ⁻⁴	S=1.2	950
pK [−] ⊼		± 1.6) × 10 ⁻⁴		876
$2(K^{+}K^{-})$	(7.4	± 0.7) $\times 10^{-4}$		1131
$pK^{-}\overline{\Sigma}^{0}$	(2.9	•		819
K^+K^-	(2.86	$\pm 0.21) \times 10^{-4}$		1468
$K_S^0 K_L^0$	(2.1	± 0.4) $\times 10^{-4}$	S=3.2	1466
$\Lambda \overline{\Lambda} \pi^+ \pi^-$		± 1.0) × 10 ⁻³		903
$A\overline{A}\eta$	(1.62	± 0.17) $\times 10^{-4}$		672
$\Lambda \overline{\Lambda} \pi^0$	(3.8	± 0.4) $\times 10^{-5}$		998
$\overline{\Lambda}nK_S^0$ + c.c.	(6.5	± 1.1) × 10 ⁻⁴		872
$\pi^+\pi^-$	(1.47	± 0.14) $\times 10^{-4}$		1542
$\Lambda \overline{\Sigma} + \text{c.c.}$	(2.83	$\pm 0.23\) \times 10^{-5}$		1034
$K_S^0 K_S^0$	< 1	$\times 10^{-6}$	CL=95%	1466
	Dadiativa da			
3	Radiative dec	_		1540
3γ	•	$\pm 0.22) \times 10^{-5}$	CI 000/	1548
4γ 5γ	< 9	$\times 10^{-6} \times 10^{-5}$	CL=90%	1548
$\frac{5\gamma}{\gamma\pi^0\pi^0}$	< 1.5	_	CL=90%	1548
$\frac{\gamma \pi}{\gamma \eta \pi^0}$		± 0.05) × 10^{-3}		1543
$\gamma \eta \pi^{\circ}$ $\gamma a_0 (980)^0 \rightarrow \gamma \eta \pi^0$		$\pm 0.31) \times 10^{-5} \times 10^{-6}$	CL. 0E0/	1497
$\gamma a_0(980)^0 \rightarrow \gamma \eta \pi^0$ $\gamma a_2(1320)^0 \rightarrow \gamma \eta \pi^0$	< 2.5	$\times 10^{-6}$	CL=95%	_
$\gamma a_2(1320)^{-} \rightarrow \gamma \eta \pi^{-}$	< 6.6	× 10 °	CL=95%	_

$\gamma \eta_c(1S)$		(1.7	± 0.4) %	S=1.5	111
$\gamma \eta_{m{c}}(1S) ightarrow 3 \gamma$		(3.8	$+1.3 \\ -1.0$	$) \times 10^{-6}$	S=1.1	_
$\gamma \pi^{+} \pi^{-} 2\pi^{0}$		(8.3	± 3.1	$) \times 10^{-3}$		1518
$\gamma \eta \pi \pi$		(6.1	± 1.0	$) \times 10^{-3}$		1487
$\gamma \eta_2$ (1870) $\rightarrow \gamma \eta \pi^+ \pi^-$		(6.2	± 2.4	$) \times 10^{-4}$		_
$\gamma \eta (1405/1475) \rightarrow \gamma K \overline{K} \pi$	[0]	(2.8	± 0.6	$) \times 10^{-3}$	S=1.6	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \rho^0$		(7.8	± 2.0	$) \times 10^{-5}$	S=1.8	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \eta \pi^+ \pi^-$		(± 0.5	$) \times 10^{-4}$		_
$\gamma \eta (1405/1475) ightarrow \gamma \gamma \phi$		<			\times 10 ⁻⁵	CL=95%	_
$\gamma ho ho$		`	4.5	± 0.8	,		1340
$\gamma ho \omega$		<			× 10 ⁻⁴	CL=90%	1338
$\gamma \rho \phi$		<			$\times 10^{-5}$	CL=90%	1258
$\gamma \eta'(958) \ \gamma 2\pi^+ 2\pi^-$					$) \times 10^{-3}$	S=1.3	1400
$\gamma 2\pi + 2\pi$ $\gamma f_2(1270) f_2(1270)$		($) \times 10^{-3}$ $) \times 10^{-4}$	S=1.9	1517
$\gamma f_2(1270) f_2(1270)$ $\gamma f_2(1270) f_2(1270)$ (non reso-		`	9.5 8.2	± 1.7 ± 1.9	, a		878
nant)		(0.2	⊥1.9) \ 10		
$\gamma K^+ K^- \pi^+ \pi^-$		(2.1	± 0.6) × 10 ⁻³		1407
$\gamma f_4(2050)$		($) \times 10^{-3}$		891
$\gamma \omega \omega$,			$) \times 10^{-3}$		1336
$\gamma \eta (1405/1475) \rightarrow \gamma \rho^0 \rho^0$		($) \times 10^{-3}$	S=1.3	1223
$\gamma f_2(1270)$		(1.64		$) \times 10^{-3}$	S=1.3	1286
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$			4.2		$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$		(1.00	$^{+0.11}_{-0.09}$	$) \times 10^{-3}$	S=1.5	1075
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$		(3.8	± 0.5	$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$		(3.1		$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$		(2.4	$^{+1.2}_{-0.7}$	$) \times 10^{-4}$		_
$\gamma\eta$		(1.104	4±0.03	4) \times 10 ⁻³		1500
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$					$) \times 10^{-4}$		1220
$\gamma f_1(1285)$			6.1	± 0.8	$) \times 10^{-4}$		1283
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$		(4.5	± 1.2	$) \times 10^{-4}$		-
$\gamma f_2'(1525)$		(5.7	$^{+0.8}_{-0.5}$	$) \times 10^{-4}$	S=1.5	1173
$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$		(3.4	± 1.4	$) \times 10^{-5}$		_
$\gamma f_2(1640) \rightarrow \gamma \omega \omega$		(2.8	± 1.8	$) \times 10^{-4}$		_
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$		(2.0	± 1.4	$) \times 10^{-4}$		_
$\gamma f_0(1800) \rightarrow \gamma \omega \phi$		(2.5	± 0.6	$) \times 10^{-4}$		_
$\gamma f_2(1810) \rightarrow \gamma \eta \eta$		(5.4	$+3.5 \\ -2.4$	$) \times 10^{-5}$		_
γ f_2 (1950) $ ightarrow$		(7.0	± 2.2	$) \times 10^{-4}$		_
$\gamma K^*(892) \overline{K}^*(892)$							
$\gamma K^*(892)\overline{K}^*(892)$		(4.0	± 1.3	$) \times 10^{-3}$		1266
$\gamma \phi \phi$		(4.0	± 1.2	$) \times 10^{-4}$	S=2.1	1166

0/ P =	(20 11	10 \ 10-4		1020
$\gamma p \overline{p}$		$1.0) \times 10^{-4}$		1232
$\gamma \eta$ (2225)		$0.50 \ 0.19$) $\times 10^{-4}$		752
$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$	•	$0.9) \times 10^{-4}$		1048
$\gamma\eta(1760) \rightarrow \gamma\omega\omega$		$0.33) \times 10^{-3}$		_
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	$(2.77 \begin{array}{c} +0 \\ -0 \end{array})$	$(0.34) \times 10^{-4}$	S=1.1	1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	`	$(0.5, 0.9) \times 10^{-5}$		-
$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	(3.3 + 2)	$\begin{array}{cc} 2.0 \\ 1.3 \end{array}$) × 10 ⁻⁵		-
$\gamma X(1840) \rightarrow \gamma 3(\pi^+\pi^-)$	(2.4 + 0.00)	$0.70.8) \times 10^{-5}$		_
$\gamma(\overline{K}\pi)[J^{PC}=0^{-+}]$	(7 ±4	4) $\times 10^{-4}$	S=2.1	1442
$\gamma\pi^{0}$	$(3.49 ^{+0}_{-0}$	$0.33 \) \times 10^{-5}$		1546
$\gamma \rho \overline{\rho} \pi^+ \pi^-$	< 7.9	× 10 ⁻⁴	CL=90%	1107
$\gamma \overline{\Lambda} \overline{\Lambda}$	< 1.3	$\times 10^{-4}$	CL=90%	1074
$\gamma f_0(2100) \rightarrow \gamma \eta \eta$	(1.13 + 0)	$0.60 \ 0.30$) $\times 10^{-4}$		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$		$1.0) \times 10^{-4}$		_
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	(5.9 ± 1)			_
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	< 3.9	$\times 10^{-5}$	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma K K$	< 4.1	$\times 10^{-5}$	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	(1.5 ± 0)	$0.8) \times 10^{-5}$		_
$\gamma f_2(2340) \rightarrow \gamma \eta \eta$	$(5.6 + \frac{1}{2})$	$(2.4 \ 2.2) \times 10^{-5}$		_
$\gamma f_0(1500) \rightarrow \gamma \pi \pi$	(1.09 ± 0	$0.24) \times 10^{-4}$		1183
$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	(1.7 + 0)	$^{0.6}_{1.4}$) × 10 ⁻⁵		_
$\gamma A \rightarrow \gamma$ invisible	[<i>uuaa</i>] < 6.3	\times 10 ⁻⁶	CL=90%	_
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[<i>vvaa</i>] < 5	$\times 10^{-6}$	CL=90%	_
	Dalitz decays			
$\pi^{0} e^{+} e^{-}$	(7.6 ±1	1.4) \times 10 ⁻⁷		1546
$\eta e^+ e^-$		$0.09) \times 10^{-5}$		1500
$\eta'(958) e^+ e^-$	(5.81 ± 0	$0.35) \times 10^{-5}$		1400
	Weak decays			
$D^-e^+ u_e^{}+$ c.c.	< 1.2	$\times10^{-5}$	CL=90%	984
$\overline{D}{}^0 e^+ e^- + \text{c.c.}$	< 1.1	$\times 10^{-5}$	CL=90%	987
$D_{s}^{-}e^{+}\nu_{e}+$ c.c.	< 1.3	$\times10^{-6}$	CL=90%	923
$D_{s}^{*-}e^{+}\nu_{e}+$ c.c.	< 1.8	$\times 10^{-6}$	CL=90%	828
$D^{-}\pi^{+}$ + c.c.	< 7.5	$\times 10^{-5}$	CL=90%	977
$\overline{D}^0 \overline{K}^0 + \text{c.c.}$	< 1.7	$\times 10^{-4}$	CL=90%	898
$\overline{D}^0\overline{K}^{*0}$ + c.c.	< 2.5	$\times 10^{-6}$	CL=90%	670
$D_s^- \pi^+ + \text{c.c.}$	< 1.3	× 10 ⁻⁴	CL=90%	916
$D_s^- \rho^+ + \text{c.c.}$	< 1.3	× 10 ⁻⁵	CL=90%	663
HTTP://PDG.LBL.GOV	Page 128	Created:	5/30/2017	17:13

Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes

$\gamma \gamma$	С	< 2.7	$\times 10^{-7}$	CL=90%	1548
$\gamma\phi$	С	< 1.4	\times 10 ⁻⁶	CL=90%	1381
$e^{\pm}\mu^{\mp}$	LF	< 1.6	\times 10 ⁻⁷	CL=90%	1547
$e^{\pm} au^{\mp}$	LF	< 8.3	$\times 10^{-6}$	CL=90%	1039
$\mu^{\pm} au^{\mp}$	LF	< 2.0	$\times 10^{-6}$	CL=90%	1035

Other decays

invisible $< 7 \times 10^{-4} \text{ CL}=90\%$

 $\chi_{c0}(1P)$

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3414.75\pm0.31~{\rm MeV}$ Full width $\Gamma=10.5\pm0.6~{\rm MeV}$

		Scale factor/	p
$\chi_{c0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
Hadro	onic decays		
$2(\pi^{+}\pi^{-})$	$(2.24\pm0.18)\%$		1679
$\rho^0 \pi^+ \pi^-$	$(8.7 \pm 2.8) \times$	₁₀ -3	1607
$f_0(980) f_0(980)$	$(6.5 \pm 2.1) \times$		1391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(3.3 \pm 0.4)\%$		1680
$\rho^{+}\pi^{-}\pi^{0}$ + c.c.	$(2.8 \pm 0.4)\%$		1607
$4\pi^0$	$(3.2 \pm 0.4) \times$	10-3	1681
$\pi^+\pi^-K^+K^-$	$(1.75\pm0.14)\%$		1580
$egin{align*} & {\mathcal K}_0^* (1430)^0 \overline{\mathcal K}_0^* (1430)^0 ightarrow \ & \pi^+ \pi^- {\mathcal K}^+ {\mathcal K}^- \ & \end{array}$	$(9.6 \begin{array}{c} +3.5 \\ -2.8 \end{array}) \times$	10 ⁻⁴	_
$K_0^*(1430)^0 \overline{K}_2^*(1430)^0 + \text{c.c.} \rightarrow$	$(7.8 \ ^{+1.9}_{-2.4} \) \times$	10 ⁻⁴	_
$\pi^{+}\pi^{-}K^{+}K^{-}$ $K_{1}(1270)^{+}K^{-}+\text{c.c.} ightarrow$ $\pi^{+}\pi^{-}K^{+}K^{-}$	(6.1 \pm 1.9) \times	10-3	_
$K_1(1400)^+ K^- + \text{c.c.} \rightarrow \pi^+ \pi^- K^+ K^-$	< 2.6 ×	10 ⁻³ CL=90%	_
$f_0(980) f_0(980)$	(1.6 $^{+1.0}_{-0.9}$) $ imes$	10 ⁻⁴	1391
$f_0(980) f_0(2200)$	$(7.8 \begin{array}{c} +2.0 \\ -2.5 \end{array}) \times$	10-4	584
$f_0(1370) f_0(1370)$	< 2.7 ×	10 ⁻⁴ CL=90%	1019
$f_0(1370)f_0(1500)$	< 1.7 ×	10 ⁻⁴ CL=90%	921
$f_0(1370) f_0(1710)$	$(6.6 \begin{array}{c} +3.5 \\ -2.3 \end{array}) \times$	10-4	720
$f_0(1500) f_0(1370)$	2.0	10 ⁻⁴ CL=90%	921
$f_0(1500)f_0(1570)$		10^{-5} CL=90%	807
$f_0(1500) f_0(1710)$		10^{-5} CL=90%	557

Page 129

_			
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(8.6 \pm 0.9) \times 10^{-3}$		1545
$K_S^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(4.2 \pm 0.4) \times 10^{-3}$		1544
$K^+K^-\pi^0\pi^0$	$(5.4 \pm 0.9) \times 10^{-3}$		1582
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0}+\text{c.c.}$	$(2.44\pm0.33)~\%$		1581
$ ho^{+} K^{-} K^{0} + \text{c.c.}$	$(1.18\pm0.21)~\%$		1458
$K^*(892)^-K^+\pi^0 ightarrow$	$(4.5 \pm 1.1) \times 10^{-3}$		_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.			
$K_S^0 K_S^0 \pi^+ \pi^-$	$(5.6 \pm 1.0) \times 10^{-3}$		1579
$K^+ K^- \eta \pi^0$	$(3.0 \pm 0.7) \times 10^{-3}$		1468
$3(\pi^+\pi^-)$	(1.20 ± 0.18) %		1633
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(7.2 \pm 1.6) \times 10^{-3}$		1523
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.7 \pm 0.6) \times 10^{-3}$		1456
$\pi\pi$	$(8.33\pm0.35)\times10^{-3}$		1702
$\pi^0 \eta$	$< 1.8 \times 10^{-4}$		1661
$\pi^0 \eta'$	$< 1.1 \times 10^{-3}$		1570
$\pi^0 \eta_c$	$< 1.6 \times 10^{-3}$	CL=90%	384
$\eta\eta$	$(2.95\pm0.19)\times10^{-3}$		1617
$\eta\eta'$	$< 2.3 \times 10^{-4}$	CL=90%	1521
$\eta'\eta'$	$(1.96\pm0.21)\times10^{-3}$		1413
$\omega\omega$	$(9.5 \pm 1.1) \times 10^{-4}$		1517
$\omega \phi$	$(1.16\pm0.21)\times10^{-4}$		1447
$\omega K^+ K^-$	$(1.94\pm0.21)\times10^{-3}$		1457
K^+K^-	$(5.91\pm0.32)\times10^{-3}$		1634
$K_S^0 K_S^0$	$(3.10\pm0.18)\times10^{-3}$		1633
$\pi^+\pi^-\eta$	$< 1.9 \times 10^{-4}$	CL=90%	1651
$\pi^+\pi^-\dot{\eta}'$	$< 3.5 \times 10^{-4}$	CL=90%	1560
$\overline{K}^{0}K^{+}\pi^{-}$ + c.c.	$< 9 \times 10^{-5}$	CL=90%	1610
$K^+K^-\pi^0$	$< 6 \times 10^{-5}$	CL=90%	1611
$K^+K^-\eta$	$< 2.2 \times 10^{-4}$	CL=90%	1512
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	$(1.4 \pm 0.5) \times 10^{-3}$		1331
$K^+K^-K^+K^-$	$(2.75\pm0.28)\times10^{-3}$		1333
$K^+K^-\phi$	$(9.5 \pm 2.4) \times 10^{-4}$		1381
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.7 \pm 0.6) \times 10^{-3}$		1326
$K^+K^-\pi^0\phi$	$(1.90\pm0.35)\times10^{-3}$		1329
$\phi \pi^{+} \pi^{-} \pi^{0}$	$(1.18\pm0.15)\times10^{-3}$		1525
$\phi \phi$	$(7.7 \pm 0.7) \times 10^{-4}$		1370
$p\overline{p}$	$(2.25\pm0.09)\times10^{-4}$		1426
$p \overline{p} \pi^0$	$(6.8 \pm 0.7) \times 10^{-4}$	S=1.3	1379
$p\overline{p}\eta$	$(3.5 \pm 0.4) \times 10^{-4}$		1187
$p\overline{p}\omega$	$(5.1 \pm 0.6) \times 10^{-4}$		1043
$p\overline{p}\phi$	$(5.9 \pm 1.4) \times 10^{-5}$		876
$p\overline{p}\pi^+\pi^-$	$(2.1 \pm 0.7) \times 10^{-3}$	S=1.4	1320
$p \overline{p} \pi^0 \pi^0$	$(1.02\pm0.27)\times10^{-3}$		1324
$p\overline{p}K^+K^-$ (non-resonant)	$(1.19\pm0.26)\times10^{-4}$		890
,	, ,		

KO KO	10-4	CI 000/	004
$p\overline{p}K_S^0K_S^0$	$< 8.8 \times 10^{-4}$	CL=90%	884
$ ho \overline{n} \pi^-$	$(1.24\pm0.11)\times10^{-3}$		1376
$\overline{p}n\pi^+$	$(1.34\pm0.12)\times10^{-3}$		1376
$p\overline{n}\pi^-\pi^0$	$(2.29\pm0.21)\times10^{-3}$		1321
$\overline{p}\underline{n}\pi^{+}\pi^{0}$	$(2.16\pm0.18)\times10^{-3}$		1321
$\Lambda \overline{\Lambda}$	$(3.21\pm0.25)\times10^{-4}$		1292
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.15\pm0.13)\times10^{-3}$		1153
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$< 5 \times 10^{-4}$	CL=90%	1153
$\Sigma(1385)^+\overline{\varLambda}\pi^-+$ c.c.	$< 5 \times 10^{-4}$	CL=90%	1083
$\Sigma(1385)^-\overline{\varLambda}\pi^++$ c.c.	$< 5 \times 10^{-4}$	CL=90%	1083
$K^+ \overline{p} \Lambda + \text{c.c.}$	$(1.22\pm0.12)\times10^{-3}$	S=1.3	1132
$K^{+}\overline{p}\Lambda(1520)+$ c.c.	$(2.9 \pm 0.7) \times 10^{-4}$		858
$\Lambda(1520)\overline{\Lambda}(1520)$	$(3.1 \pm 1.2) \times 10^{-4}$		779
$\sum_{i=0}^{\infty} \overline{\sum}_{i=0}^{\infty} $	$(4.4 \pm 0.4) \times 10^{-4}$		1222
$\Sigma^{+}\overline{\Sigma}^{-}$	$(3.9 \pm 0.7) \times 10^{-4}$	S=1.7	1225
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$(1.6 \pm 0.6) \times 10^{-4}$		1001
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$(2.3 \pm 0.6) \times 10^{-4}$		1001
$K \stackrel{\sim}{=} \Lambda \overline{\Xi} + c.c.$	$(1.90\pm0.34)\times10^{-4}$		873
$\underline{\underline{=}}^0 \underline{\underline{\overline{=}}}^0$	$(3.1 \pm 0.8) \times 10^{-4}$		1089
<u>=-</u> =+	$(4.7 \pm 0.7) \times 10^{-4}$		1081
$\eta_c \pi^+ \pi^-$	< 7 $\times 10^{-4}$	CL=90%	308
	Radiative decays		
$\gamma J/\psi(1S)$	$(1.27\pm0.06)~\%$		303
$\gamma \rho^0$	$< 9 \times 10^{-6}$	CL=90%	1619
$\gamma\omega$	$< 8 \times 10^{-6}$	CL=90%	1618
$\gamma \phi$	$< 6 \times 10^{-6}$	CL=90%	1555
$\gamma \gamma$	$(2.23\pm0.13)\times10^{-4}$		1707
, ,	, ,		

$\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m = 3510.66 \pm 0.07 \text{ MeV}$ (S = 1.5) Full width $\Gamma=0.84\pm0.04~\text{MeV}$

$\chi_{c1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
	Hadronic decays		
$3(\pi^+\pi^-)$	(5.8 ± 1.4)	$\times 10^{-3}$ S=1.2	1683
$2(\pi^{+}\pi^{-})$	(7.6 ± 2.6)	$\times 10^{-3}$	1728
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.22 ± 0.16)	%	1729
$ ho^{+}\pi^{-}\pi^{0}+$ c.c.	(1.48 ± 0.25)	%	1658
$ ho^0\pi^+\pi^-$ 4 π^0	(3.9 ± 3.5)	$\times 10^{-3}$	1657
	(5.5 ± 0.8):		1729
$\pi^+\pi^-$ K ⁺ K ⁻	(4.5 ± 1.0):	× 10 ⁻³	1632
HTTP://PDG.LBL.GOV	Page 131 C	reated: 5/30/201	7 17:13

$\mathcal{K}^+\mathcal{K}^-\pi^0\pi^0$	$(1.14\pm0.28)\times10^{-3}$		1634
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.15\pm0.13)\%$		1598
$K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$(7.5 \pm 0.8) \times 10^{-3}$		1596
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	$(8.7 \pm 1.4) \times 10^{-3}$		1632
$ ho^- K^+ \overline{K}{}^0 + ext{c.c.}$	$(5.1 \pm 1.2) \times 10^{-3}$		1514
$K^*(892)^0 \overline{K}{}^0 \pi^0 \rightarrow$	$(2.4 \pm 0.7) \times 10^{-3}$		_
$K^+\pi^-\overline{K}^0\pi^0+\text{c.c.}$,		
$K^+K^-\eta\pi^0$	$(1.14\pm0.35)\times10^{-3}$		1523
$\pi^+\pi^-K^0_SK^0_S$	$(7.0 \pm 3.0) \times 10^{-4}$		1630
$K^+K^-\eta$	(3.2 ± 1.0) $\times 10^{-4}$		1566
$\overline{K}^0 K^+ \pi^- + \text{c.c.}$	$(7.1 \pm 0.6) \times 10^{-3}$		1661
$K^*(892)^0 \overline{K}{}^0 + { m c.c.}$	$(1.0 \pm 0.4) \times 10^{-3}$		1602
$K^*(892)^+ K^- + \text{c.c.}$	$(1.5 \pm 0.7) \times 10^{-3}$		1602
$K_I^*(1430)^0\overline{K}^0+ ext{c.c.} o$	$< 8 \times 10^{-4}$	CL=90%	_
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K_I^*(1430)^+ K^- + \text{c.c.} \rightarrow$	$< 2.2 \times 10^{-3}$	CL=90%	_
$K_{S}^{0}K^{+}\pi^{-}+\text{c.c.}$	× =.= // =3	0_ 0070	
$K^+K^-\pi^0$	(1 0E 0 0E) × 10=3		1660
$\eta \pi^+ \pi^-$	$(1.85\pm0.25)\times10^{-3}$		1662
$a_0(980)^+\pi^- + \text{c.c.} \rightarrow \eta \pi^+\pi^-$	$(4.9 \pm 0.5) \times 10^{-3}$		1701
$f_2(1270)\eta$ + c.c. $\rightarrow \eta \eta \uparrow \eta$	$(1.8 \pm 0.6) \times 10^{-3}$		1467
$\frac{12(1270)\eta}{\pi^{+}\pi^{-}\eta'}$	$(2.7 \pm 0.8) \times 10^{-3}$		1467
$K^+K^-\eta'(958)$	$(2.3 \pm 0.5) \times 10^{-3}$ $(8.8 \pm 0.9) \times 10^{-4}$		1612
• • •			1461
$K_0^*(1430)^+ K^- + \text{c.c.}$	$(6.4 \begin{array}{c} +2.2 \\ -2.8 \end{array}) \times 10^{-4}$		_
$f_0(980)\eta'(958)$	$(1.6 \begin{array}{c} +1.4 \\ -0.7 \end{array}) \times 10^{-4}$		1460
	-		1100
$f_0(1710)\eta'(958)$	$(7 {}^{+7}_{-5}) \times 10^{-5}$		1106
$f_2'(1525)\eta'(958)$	$(9 \pm 6) \times 10^{-5}$		1225
$\pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-$	$< 6 \times 10^{-6}$	CL=90%	_
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}$ + c.c.	$(3.2 \pm 2.1) \times 10^{-3}$		1577
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.5 \pm 0.4) \times 10^{-3}$		1512
$K^+K^-K^0_SK^0_S$	$<$ 4 \times 10 ⁻⁴	CL=90%	1390
$K^+K^-K^+K^-$	$(5.5 \pm 1.1) \times 10^{-4}$		1393
$K^+K^-\phi$	$(4.2 \pm 1.6) \times 10^{-4}$		1440
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.3 \pm 0.5) \times 10^{-3}$		1387
$\mathit{K^{+}K^{-}\pi^{0}\phi}$	$(1.62\pm0.30)\times10^{-3}$		1390
$\phi \pi^+ \pi^- \pi^0$	$(7.5 \pm 1.0) \times 10^{-4}$		1578
$\omega \omega$	(5.8 ± 0.7) $\times 10^{-4}$		1571
$\omega K^+ K^-$	$(7.8 \pm 0.9) \times 10^{-4}$		1513
$\omega \phi$	(2.1 ± 0.6) $\times10^{-5}$		1503
$\phi \phi$	(4.2 ± 0.5) $\times 10^{-4}$		1429
$p\overline{p}$	$(7.72\pm0.35)\times10^{-5}$		1484

$ ho \overline{ ho} \pi^0$	$(1.59\pm0.19)\times10^{-4}$		1438
$p\overline{p}\eta$	$(1.39\pm0.19) \times 10^{-4}$		1254
	$(2.16\pm0.31)\times10^{-4}$		
$p\overline{p}\omega$	·	CL=90%	1117
$ \begin{array}{c} \rho \overline{\rho} \phi \\ \rho \overline{\rho} \pi^+ \pi^- \end{array} $		CL=90%	962
$p\overline{p}K^+K^-$ (non-resonant)	$(5.0 \pm 1.9) \times 10^{-4}$		1381
	$(1.30\pm0.23)\times10^{-4}$	CI 000/	974
$p\overline{p}K_S^0K_S^0$	$< 4.5 \times 10^{-4}$	CL=90%	968
$p\overline{n}\pi^-$	$(3.9 \pm 0.5) \times 10^{-4}$		1435
$\overline{p}n\pi^+$	$(4.0 \pm 0.5) \times 10^{-4}$		1435
$p\overline{n}\pi^-\pi^0$	$(1.05\pm0.12)\times10^{-3}$		1383
$\overline{p} \underline{n} \pi^+ \pi^0$	$(1.03\pm0.12)\times10^{-3}$		1383
$\Lambda \overline{\Lambda}$	$(1.16\pm0.12)\times10^{-4}$		1355
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(3.0 \pm 0.5) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \pi^+ \pi^- (\underline{\text{non-resonant}})$	$(2.5 \pm 0.6) \times 10^{-4}$		1223
$\Sigma(1385)^+\overline{\Lambda}\pi^-+\text{ c.c.}$	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^-\overline{\Lambda}\pi^++$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$K^{+}\overline{p}\Lambda$	$(4.2 \pm 0.4) \times 10^{-4}$	S=1.1	1203
$K^+\overline{p}\Lambda(1520)$ + c.c.	$(1.7 \pm 0.5) \times 10^{-4}$		950
$\Lambda(1520)\overline{\Lambda}(1520)$	$< 1.0 \times 10^{-4}$	CL=90%	879
$\sum_{i=1}^{n} \overline{\sum_{i=1}^{n}} 0$	$<$ 4 \times 10 ⁻⁵	CL=90%	1288
$\Sigma^{+}\overline{\Sigma}^{-}$	$< 6 \times 10^{-5}$	CL=90%	1291
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$< 1.0 \times 10^{-4}$	CL=90%	1081
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$< 5 \times 10^{-5}$	CL=90%	1081
$K - \Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.38\pm0.25)\times10^{-4}$		963
<u>=</u> 0 <u>=</u> 0	$< 6 \times 10^{-5}$	CL=90%	1163
<u>=-</u> =+	$(8.2 \pm 2.2) \times 10^{-5}$		1155
$\pi^{+}\pi^{-} + K^{+}K^{-}$	$< 2.1 \times 10^{-3}$		_
$K_S^0 K_S^0$	$< 6 \times 10^{-5}$	CL=90%	1683
$\eta_c \pi^+ \pi^-$	$< 3.2 \times 10^{-3}$	CL=90%	413
	Radiative decays		
$\gamma J/\psi(1S)$	(33.9 ±1.2) %		389
$\gamma \rho^0$	$(2.20\pm0.18)\times10^{-4}$		1670
$\gamma \omega$	$(6.9 \pm 0.8) \times 10^{-5}$		1668
$\gamma \phi$	$(2.5 \pm 0.5) \times 10^{-5}$		1607
, , ,	,		

$$h_c(1P)$$

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

Mass $m=3525.38\pm0.11~{\rm MeV}$ Full width $\Gamma=0.7\pm0.4~{\rm MeV}$

h _c (1P) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi\pi$	not seen		312
$rac{ ho\overline{ ho}}{\pi^+\pi^-\pi^0}$	$< 1.5 \times 10^{-}$	-4 90%	1492
$\pi^+\pi^-\pi^0$	< 2.2 × 10 ⁻¹	-3	1749
$2\pi^{+}2\pi^{-}\pi^{0}$	$(2.2^{+0.8}_{-0.7})\%$		1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 2.9 %		1661
	Radiative decays		
$\gamma\eta$	$(4.7\pm2.1)\times10^{-1}$	-4	1720
$\gamma \eta'$ (958)	$(1.5\pm0.4)\times10^{-1}$	-3	1633
$\gamma \eta_c(1S)$	(51 ± 6)%		500

$\chi_{c2}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3556.20\pm0.09$ MeV Full width $\Gamma=1.93\pm0.11$ MeV

2/ -	(1 D)	DECAY	MODES
X ~7	\ +	DECAI	IVIUULU

HTTP://PDG.LBL.GOV

Fraction (Γ_i/Γ)

Confidence level (N

Created: 5/30/2017 17:13

$\chi_{c2}(1P)$ DECAY MODES	Fraction (I _i /I)	Confidence level	(MeV/c)
	Hadronic decays		
$2(\pi^{+}\pi^{-})$	(1.07±0.10) %		1751
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.91±0.25) %		1752
$ ho^{+}\pi^{-}\pi^{0}+$ c.c.	($2.3~\pm0.4$) %		1682
$4\pi^0$	$(1.16\pm0.16) \times 1$	0-3	1752
$\mathit{K^{+}K^{-}\pi^{0}\pi^{0}}$	($2.2~\pm0.4$) $ imes$ 1	0-3	1658
$K^+\pi^-\overline{K}{}^0\pi^0+$ c.c.	$(1.44\pm0.21)\%$		1657
$ ho^ K^+$ $\overline{K}{}^0$ $+$ c.c.	(4.3 ± 1.3) $ imes 1$	0-3	1540
$K^*(892)^0 K^- \pi^+ \rightarrow$	($3.1~\pm0.8$) $ imes$ 1	0-3	_
$K^{-}\pi^{+}K^{0}\pi^{0} + \text{c.c.}$ $K^{*}(892)^{0}\overline{K^{0}}\pi^{0} \to K^{+}\pi^{-}\overline{K^{0}}\pi^{0} + \text{c.c.}$	(4.0 ± 0.9) $ imes$ 1	0-3	_
$K^*(892)^- K^+ \pi^0 \rightarrow K^+ \pi^- \overline{K}^0 \pi^0 + \text{c.c.}$	($3.9~\pm0.9$) \times 1	0-3	_
$K^+\pi^-\overline{K}^0\pi^0 + \text{c.c.}$ $K^*(892)^+\overline{K}^0\pi^- \rightarrow K^+\pi^-\overline{K}^0\pi^0 + \text{c.c.}$	($3.1~\pm0.8$) \times 1	0-3	_
$K^+K^-\eta\pi^0$	($1.3~\pm0.5$) $ imes$ 1	0-3	1549
$K^+K^-\pi^+\pi^-$	$(8.9 \pm 1.0) \times 1$	0-3	1656
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.17±0.13) %		1623

Page 134

$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(7.3 \pm 0.8) \times 10^{-3}$		1621
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(2.2 \pm 1.1) \times 10^{-3}$		1602
$K^*(892)^0 \overline{K}^*(892)^0$	(2.4 ± 0.5) $\times 10^{-3}$		1538
$3(\pi^{+}\pi^{-})$	(8.6 ± 1.8) $\times 10^{-3}$		1707
$\phi \phi$	$(1.12\pm0.10)\times10^{-3}$		1457
$\omega\omega$	$(8.8 \pm 1.1) \times 10^{-4}$		1597
ω K ⁺ K ⁻	$(7.3 \pm 0.9) \times 10^{-4}$		1540
$\pi\pi$	$(2.33\pm0.12)\times10^{-3}$		1773
$ ho^0\pi^+\pi^-$	$(3.8 \pm 1.6) \times 10^{-3}$		1682
$\pi^+\pi^-\eta$	$(5.0 \pm 1.3) \times 10^{-4}$		1724
$\pi^+\pi^-\eta'$	(5.2 ± 1.9) $ imes 10^{-4}$		1636
$\eta\eta$	$(5.7 \pm 0.5) \times 10^{-4}$		1692
K^+K^-	$(1.05\pm0.07)\times10^{-3}$		1708
$K_S^0 K_S^0$	$(5.5 \pm 0.4) \times 10^{-4}$		1707
$\frac{K_S^0 K_S^0}{K^0 K^+ \pi^- + \text{c.c.}}$	$(1.34\pm0.19)\times10^{-3}$		1685
$K^+K^-\pi^0$	$(3.2 \pm 0.8) \times 10^{-4}$		1686
$K^+K^-\eta$	$< 3.4 \times 10^{-4}$	90%	1592
$K^{+}K^{-}\eta'(958)$	$(1.94\pm0.34)\times10^{-4}$		1488
$\eta \eta'$	$< 6 \times 10^{-5}$	90%	1600
$\eta'\eta'$	$< 1.0 \times 10^{-4}$	90%	1498
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	$(2.3 \pm 0.6) \times 10^{-3}$		1655
$K^+K^-K_S^0K_S^0$	$<$ 4 \times 10 ⁻⁴	90%	1418
$K^+K^-K^+K^-$	$(1.73\pm0.21)\times10^{-3}$		1421
$K^+K^-\phi$	$(1.48\pm0.31)\times10^{-3}$		1468
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(4.8 \pm 0.7) \times 10^{-3}$		1416
$K^+K^-\pi^0\phi$	$(2.7 \pm 0.5) \times 10^{-3}$		1419
$\phi\pi^+\pi^-\pi^0$	$(9.3 \pm 1.2) \times 10^{-4}$		1603
$p\overline{p}$	(7.5 \pm 0.4) $ imes$ 10 ⁻⁵		1510
$ ho \overline{ ho} \pi^0$	$(4.9 \pm 0.4) \times 10^{-4}$		1465
$p\overline{p}\eta$	$(1.82\pm0.26)\times10^{-4}$		1285
$p\overline{p}\omega$	$(3.8 \pm 0.5) \times 10^{-4}$		1152
$ ho \overline{ ho} \phi$	$(2.9 \pm 0.9) \times 10^{-5}$		1002
$p\overline{p}\pi^+\pi^-$	$(1.32\pm0.34)\times10^{-3}$		1410
$p \overline{p} \pi^0 \pi^0$	$(8.2 \pm 2.5) \times 10^{-4}$		1414
$p\overline{p}K^+K^-$ (non-resonant)	$(2.00\pm0.34)\times10^{-4}$		1013
$p\overline{p}K_S^0K_S^0$	$< 7.9 \times 10^{-4}$	90%	1007
$p \overline{n} \pi^-$	$(8.9 \pm 1.0) \times 10^{-4}$		1463
$\overline{p}n\pi^+$	$(9.3 \pm 0.9) \times 10^{-4}$		1463
$p\overline{n}\pi^-\pi^0$	$(2.27\pm0.19)\times10^{-3}$		1411
$\frac{1}{p} \underline{n} \pi^+ \pi^0$	$(2.21\pm0.20)\times10^{-3}$		1411
$\Lambda \overline{\Lambda}$	$(1.92\pm0.16)\times10^{-4}$		1385
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.31\pm0.17)\times10^{-3}$		1255
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(6.9 \pm 1.6) \times 10^{-4}$		1255
$\Sigma(1385)^+\overline{\Lambda}\pi^- + \text{c.c.}$	$< 4 \times 10^{-4}$	90%	1192

$\Sigma(1385)^-\overline{\varLambda}\pi^++$ c.c.	< 6	\times 10 ⁻⁴	90%	1192
$K^+\overline{p}\Lambda$ + c.c.	($8.1 \pm 0.$	$6) \times 10^{-4}$		1236
$K^+\overline{p}\Lambda(1520)+$ c.c.	($2.9~\pm0.$	$(7) \times 10^{-4}$		992
$\Lambda(1520)\overline{\Lambda}(1520)$	(4.8 ± 1 .	$5) \times 10^{-4}$		923
$\Sigma^0 \overline{\Sigma}{}^0$	< 6	\times 10 ⁻⁵	90%	1319
$\Sigma + \overline{\Sigma} -$	< 7	\times 10 ⁻⁵	90%	1322
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 1.6	\times 10 ⁻⁴	90%	1118
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	< 8	\times 10 ⁻⁵	90%	1118
$K^- \Lambda \overline{\Xi}^+ + \text{c.c.}$	(1.84 ± 0 .	$(34) \times 10^{-4}$		1004
=0 $=0$	< 1.1	\times 10 ⁻⁴	90%	1197
<i>≣</i> − <i>≣</i> +	(1.48±0.	$(33) \times 10^{-4}$		1189
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5	%	90%	185
$\pi^0 \eta_c$	< 3.2	\times 10 ⁻³	90%	512
$\eta_{c}(1S)\pi^{+}\pi^{-}$	< 5.4	\times 10 ⁻³	90%	459
	Radiative decays			
$\gamma J/\psi(1S)$	$(19.2 \pm 0.$	7)%		430
$\gamma \rho^0$	< 2.0	× 10 ⁻⁵	90%	1694
$\gamma\omega$	< 6	$\times10^{-6}$	90%	1692
$\gamma \phi$	< 8	$\times10^{-6}$	90%	1632
$\gamma\gamma$	(2.74±0.	$14) \times 10^{-4}$		1778

$\eta_c(2S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 5/30/2017 17:13

Quantum numbers are quark model predictions.

Mass
$$m=3639.2\pm1.2$$
 MeV Full width $\Gamma=11.3^{+3.2}_{-2.9}$ MeV

$\eta_{c}(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	not seen		_
$K\overline{K}\pi$	$(1.9\pm1.2)\%$		1730
$K\overline{K}\eta$	$(5 \pm 4) \times 10^{-3}$	-3	1638
$2\pi^{+}2\pi^{-}$	not seen		1793
$ ho^0 ho^0$	not seen		1646
$3\pi^{+}3\pi^{-}$	not seen		1750
$K^{+}K^{-}\pi^{+}\pi^{-}$	not seen		1701
$K^{*0}\overline{K}^{*0}$	not seen		1586
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.4\pm1.0)\%$		1668
$K^{+}K^{-}2\pi^{+}2\pi^{-}$	not seen		1628
$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	seen		1667
$2K^+2K^-$	not seen		1471

$\phi \phi$	not seen		1507
$p\overline{p}$	$< 2.0 \times 10^{-3}$	90%	1559
$\gamma\gamma$	$(1.9\pm1.3)\times10^{-4}$		1820
$\pi^+\pi^-\eta$	not seen		1767
$\pi^+\pi^-\eta'$	not seen		1681
$\pi^+\pi^-\eta_c(1S)$	< 25 %	90%	539

 $\psi(2S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3686.097\pm0.025$ MeV (S = 2.6) Full width $\Gamma=296\pm8$ keV $\Gamma_{e\,e}=2.34\pm0.04$ keV

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	(97.85 ±0.13)		
virtual $\gamma \to hadrons$	(1.73 ± 0.14)		_
ggg	(10.6 ± 1.6)		_
γ gg	(1.03 ± 0.29)		_
light hadrons	(15.4 ± 1.5)	%	_
e^+e^-	(7.89 ± 0.17)	$\times 10^{-3}$	1843
$\mu^+\mu^-$	(7.9 ± 0.9)	$\times 10^{-3}$	1840
$ au^+ au^-$	(3.1 ± 0.4)	\times 10 ⁻³	489
Decays into $J/$	$\psi(1S)$ and anyth	ing	
$J/\psi(1S)$ anything	(61.0 ± 0.6)	%	_
$J/\psi(1S)$ neutrals	(25.14 ± 0.33)	%	_
$J/\psi(1S)\pi^+\pi^-$	(34.49 ± 0.30)	%	477
$J/\psi(1S)\pi^0\pi^0$	(18.17 ± 0.31)	%	481
$J/\psi(1S)\eta$	(3.36 ± 0.05)	%	199
$J/\psi(1S)\pi^0$	(1.268 ± 0.032)	× 10 ⁻³	528
Hadro	onic decays		
$\pi^0 h_c(1P)$	(8.6 ± 1.3)	$\times 10^{-4}$	85
$3(\pi^{+}\pi^{-})\pi^{0}$	(3.5 ± 1.6)	$\times 10^{-3}$	1746
$2(\pi^{+}\pi^{-})\pi^{0}$	(2.9 ± 1.0)	$\times 10^{-3}$ S=4.7	1799
$\rho a_2(1320)$	(2.6 ± 0.9)	\times 10 ⁻⁴	1500
$p\overline{p}$	(2.88 ± 0.10)		1586
$\Delta + \Delta = \Delta$	(1.28 ± 0.35)		1371
$\Lambda \overline{\Lambda} \pi^0$	< 2.9	$\times 10^{-6}$ CL=90%	1412
$\Lambda \overline{\Lambda} \eta$	(2.5 ± 0.4)		1197
$\Lambda \overline{p} K^+$	(1.00 ± 0.14)		1327
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	(1.8 ±0.4)		1167
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(2.8 ± 0.6)	× 10 ⁻⁴	1346

$A\overline{A}$		± 0.18) $\times 10^{-4}$	1467
$\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$		$\pm 0.13) \times 10^{-4}$	1376
$\Lambda \overline{\Sigma}^- \pi^+ + \text{c.c.}$		± 0.14) $\times 10^{-4}$	1379
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$ $\Sigma^+ \overline{\Sigma}^-$		± 0.18) $\times 10^{-5}$	1291
$\sum_{i=1}^{n} \frac{\sum_{i=1}^{n} 0}{\sum_{i=1}^{n} 0}$	•	± 0.21) × 10 ⁻⁴ ± 0.16) × 10 ⁻⁴	1408 1405
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$		± 0.7) × 10 ⁻⁵	1218
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+}$		± 0.8) $\times 10^{-5}$	1218
<u>=</u> - <u>=</u> +		± 0.12) $\times 10^{-4}$	1284
$\equiv^0 \overline{\equiv}^0$		± 0.23) $\times 10^{-4}$	1291
$\Xi(1530)^0 \overline{\Xi}(1530)^0$	(5.2	$^{+3.2}_{-1.2}$) \times 10 ⁻⁵	1025
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	(3.9	± 0.4) $\times 10^{-5}$	1114
$\Xi(1690)^-\overline{\Xi}^+ \rightarrow K^-\Lambda\overline{\Xi}^+ +$	(5.2	± 1.6) × 10 ⁻⁶	_
Ξ (1820) $^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}+$	(1.20	± 0.32) $\times 10^{-5}$	_
$K^- \Sigma^0 \overline{\Xi}^+ + \text{c.c.}$	(3.7	± 0.4) $\times 10^{-5}$	1060
$\Omega^{-}\overline{\Omega}^{+}$		± 1.0) $\times 10^{-5}$	774
$\pi^0 \rho \overline{\rho}$		± 0.07) $\times 10^{-4}$	1543
$N(940)\overline{p}+ ext{c.c.} ightarrow \pi^0p\overline{p}$		$^{+1.8}_{-1.3}$) $\times10^{-5}$	_
$N(1440)\overline{p}+ ext{ c.c.} ightarrow \pi^0 p \overline{p}$	(7.3	$^{+1.7}_{-1.5}$) \times 10 ⁻⁵ S=2.5	_
$N(1520)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$	(6.4	$^{+2.3}_{-1.8}$) \times 10 ⁻⁶	_
$N(1535)\overline{p}+ ext{c.c.} ightarrow \ \pi^0p\overline{p}$	(2.5	± 1.0) $\times10^{-5}$	_
$N(1650)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$	(3.8	$^{+1.4}_{-1.7} \)\times 10^{-5}$	-
$N(1720)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(1.79	$^{+0.26}_{-0.70}\)\times 10^{-5}$	_
$N(2300)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(2.6	$^{+1.2}_{-0.7} \)\times 10^{-5}$	_
$N(2570)\overline{p}+ \text{c.c.} \rightarrow \pi^0 p\overline{p}$	(2.13	$^{+0.40}_{-0.31}\)\times 10^{-5}$	_
$\pi^0 f_0(2100) \rightarrow \pi^0 \rho \overline{\rho}$		± 0.4) $\times 10^{-5}$	_
$\eta p \overline{p}$		± 0.4) $\times 10^{-5}$	1373
$\eta f_0(2100) \rightarrow \eta p \overline{p}$		± 0.4) $\times 10^{-5}$	_
$N(1535)\overline{p} \rightarrow \eta p \overline{p}$		± 0.7) $\times 10^{-5}$	-
ω p p φ p p	(6.9 < 2.4	± 2.1) $\times 10^{-5}$ $\times 10^{-5}$ CL=90%	1247 1109
$\varphi \rho \rho = \pi^+ \pi^- \rho \overline{\rho}$		± 0.4) $\times 10^{-4}$	1491
$p\overline{n}\pi^-$ or c.c.		± 0.17) $\times 10^{-4}$	_
$p \overline{n} \pi^- \pi^0$	`	± 0.7) $\times 10^{-4}$	1492
$2(\pi^{+}\pi^{-}\pi^{0})$	•	± 1.5) $\times 10^{-3}$	1776
$\eta \pi^+ \pi^-$	< 1.6		1791
$\eta \pi^{+} \pi^{-} \pi^{0}$		± 1.7) $\times 10^{-4}$	1778
$2(\pi^+\pi^-)\eta$	(1.2	± 0.6) × 10 ⁻³	1758

$\eta' \pi^+ \pi^- \pi^0$	(4.5	± 2.1	$) \times 10^{-4}$		1692
$\omega \pi^+ \pi^-$	(7.3	± 1.2	$) \times 10^{-4}$	S=2.1	1748
$b_1^\pm\pi^\mp$	(4.0	± 0.6	$) \times 10^{-4}$	S=1.1	1635
$b_1^0 \pi^0$	(2.4	± 0.6	$) \times 10^{-4}$		_
$\omega f_2(1270)$	(2.2	± 0.4	$) \times 10^{-4}$		1515
$\pi^0\pi^0\overset{\frown}{K}^+\overset{\frown}{K}^-$	(2.6	± 1.3	$) \times 10^{-4}$		1728
$\pi^+\pi^-$ K $^+$ K $^-$	(7.3	± 0.5	$) \times 10^{-4}$		1726
$ ho^0$ K $^+$ K $^-$	(2.2	± 0.4	$) \times 10^{-4}$		1616
$K^*(892)^0 \overline{K}_2^*(1430)^0$	(1.9	±0.5	$) \times 10^{-4}$		1418
$K^{+}K^{-}\pi^{+}\pi^{-}\eta$	(1.3	± 0.7	$) \times 10^{-3}$		1574
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	(1.00		$) \times 10^{-3}$		1611
$K^+ K^- 2(\pi^+ \pi^-)$	(1.9	± 0.9	$) \times 10^{-3}$		1654
$K_1(1270)^{\pm} K^{\mp}$	(1.00	± 0.28	$) \times 10^{-3}$		1581
$K_S^0 K_S^0 \pi^+ \pi^-$	(2.2	± 0.4	$) \times 10^{-4}$		1724
$\rho^0 p \overline{p}$	(5.0	± 2.2	$) \times 10^{-5}$		1252
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	(6.7		$) \times 10^{-4}$		1674
$2(\pi^+\pi^-)$	(2.4	± 0.6	$) \times 10^{-4}$	S=2.2	1817
$ ho^0\pi^+\pi^-$	(2.2	± 0.6	$) \times 10^{-4}$	S=1.4	1750
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.26	±0.09	$) \times 10^{-3}$		1694
$\omega f_0(1710) \rightarrow \omega K^+ K^-$	(5.9	± 2.2	$) \times 10^{-5}$		_
$K^*(892)^0 K^- \pi^+ \pi^0 + \text{c.c.}$	(8.6	±2.2	$) \times 10^{-4}$		_
$K^*(892)^+ K^- \pi^+ \pi^- + \text{ c.c.}$	(9.6	± 2.8	$) \times 10^{-4}$		_
$K^*(892)^+ K^- \rho^0 + \text{c.c.}$	(7.3	± 2.6	$) \times 10^{-4}$		_
$K^*(892)^0 K^- \rho^+ + \text{ c.c.}$	(6.1	± 1.8	$) \times 10^{-4}$		_
$\eta K^+ K^-$, no $\eta \phi$	(3.1	± 0.4	$) \times 10^{-5}$		1664
$\omega K^+ K^-$			$) \times 10^{-4}$	S=1.1	1614
$\omega K^*(892)^+ K^- + \text{c.c.}$	(2.07		$) \times 10^{-4}$		1482
$\omega K_2^*(1430)^+ K^- + \text{c.c.}$	(6.1		$) \times 10^{-5}$		1253
$\omega \overline{K}^*(892)^0 K^0$			$) \times 10^{-4}$		1481
$\omega \overline{K}_{2}^{*}(1430)^{0} K^{0}$	(5.8	± 2.2	$) \times 10^{-5}$		1251
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	(1.6	± 0.4	$) \times 10^{-5}$		_
C.C.			· 5		
$\omega X(1440) \rightarrow \omega K^+ K^- \pi^0$			$) \times 10^{-5}$		_
$\omega f_1(1285) \to \omega K_S^0 K^- \pi^+ +$	(3.0	± 1.0	$) \times 10^{-6}$		_
$\omega f_1^{ ext{c.c.}} ightarrow \kappa f_1(1285) ightarrow \omega K^+ K^- \pi^0$	(12	+0.7	$) \times 10^{-6}$		_
$3(\pi^{+}\pi^{-})$			$) \times 10^{-4}$	S=2.8	1774
$p\overline{p}\pi^+\pi^-\pi^0$			$) \times 10^{-4}$	3—2.0	1435
K^+K^-			$) \times 10^{-5}$		1776
$K_{5}^{0}K_{1}^{0}$	`		$) \times 10^{-5}$		1775
$\pi^+\pi^-\pi^0$			$) \times 10^{-4}$	S=1.7	1830
$\rho(2150)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$			$) \times 10^{-4}$	5-1.1	
		0			_
$\rho(770)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	(3.2	± 1.2	$) \times 10^{-5}$	S=1.8	_

$\pi^+\pi^-$,		$) \times 10^{-6}$		1838
$K_1(1400)^\pmK^\mp$	< 3.1		$\times 10^{-4}$	CL=90%	1532
$K_2^*(1430)^{\pm}K^{\mp}$	(7.1	+1.3	$)\times 10^{-5}$		_
$K^{+}K^{-}\pi^{0}$		0.5	$) \times 10^{-5}$		1754
$K^+K^*(892)^- + \text{c.c.}$			$) \times 10^{-5}$	S=1.2	1698
$K^*(892)^0 K^0 + \text{c.c.}$	•		$) \times 10^{-4}$		1697
$\phi \pi^+ \pi^-$			$) \times 10^{-4}$	S=1.5	1690
$\phi f_0(980) \to \pi^+ \pi^-$	•		$) \times 10^{-5}$	S=1.6	_
$2(K^+K^-)$			$) \times 10^{-5}$		1499
$\phi K^+ K^-$			$) \times 10^{-5}$		1546
$2(K^+K^-)\pi^0$	(1.10	± 0.28	$) \times 10^{-4}$		1440
$\phi \eta$	(3.10	± 0.31	$) \times 10^{-5}$		1654
$\phi \eta'$	(3.1	± 1.6	$) \times 10^{-5}$		1555
$\omega \eta'$	(3.2	+2.5	$)\times 10^{-5}$		1623
$\omega \pi^0$			$) \times 10^{-5}$		1757
$ ho\eta'$			$) \times 10^{-5}$		1625
$ ho\eta$) × 10 ⁻⁵	S=1.1	1717
$\stackrel{\cdot}{\omega}\eta$	< 1.1			CL=90%	1715
$\phi\pi^0$	< 4		$\times10^{-7}$	CL=90%	1699
$\eta_c \pi^+ \pi^- \pi^0$	< 1.0		$\times10^{-3}$	CL=90%	513
$p\overline{p}K^+K^-$	(2.7	± 0.7	$) \times 10^{-5}$		1118
$\overline{\Lambda}nK_S^0+$ c.c.	(8.1	± 1.8	$) \times 10^{-5}$		1324
$\phi f_2'(1525)$	(4.4		$) \times 10^{-5}$		1321
$\Theta(1540)\overline{\Theta}(1540) o$	< 8.8		$\times10^{-6}$	CL=90%	_
$K_S^0 p K^{-} \overline{n} + c.c.$					
$\Theta(1540) K^- \overline{n} \rightarrow K_S^0 p K^- \overline{n}$	< 1.0		$\times10^{-5}$	CL=90%	_
$\Theta(1540)K_S^0\overline{p} \rightarrow K_S^0\overline{p}K^+n$	< 7.0		$\times10^{-6}$	CL=90%	_
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{5}^{0}\overline{p}K^{+}n$	< 2.6		$\times10^{-5}$	CL=90%	_
$\overline{\Theta}(1540)K_{S}^{0}p \rightarrow K_{S}^{0}pK^{-}\overline{n}$	< 6.0			CL=90%	_
$K_{S}^{0}K_{S}^{0}$	< 4.6		\times 10 ⁻⁶		1775
	adiativa daca	\ C			
	adiative deca	-	\ 0/		261
$\gamma \chi_{c0}(1P)$,	± 0.27	•		261
$ \gamma \chi_{c1}(1P) \\ \gamma \chi_{c2}(1P) $,	$\pm 0.31 \\ \pm 0.31$	•		171 128
$\gamma \chi_{c2}(17)$ $\gamma \eta_{c}(15)$,		$) \times 10^{-3}$	S=1.3	636
$\gamma \eta_c(15)$	•		$) \times 10^{-4}$	3—1.3	47
$\gamma \eta_{c}(2S) \\ \gamma \pi^{0}$	•		$) \times 10^{-6}$		1841
$\gamma \eta'(958)$	•		$) \times 10^{-4}$		1719
$\gamma f_2(1270)$			$) \times 10^{-4}$	S=1.8	1622
		0.20		2 1.0	
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$			$) \times 10^{-5}$		1588
$\gamma f_0(1500)$	(9.2	±1.9	$) \times 10^{-5}$		1536
HTTD://DDC.LDL.COV	D 140			- /20 /201	7 17.10

HTTP://PDG.LBL.GOV Page 140 Created: 5/30/2017 17:13

$\gamma f_2'(1525)$	(3.3	± 0.8	$) \times 10^{-5}$		1528
$\bar{\gamma} f_0(1710) \rightarrow \gamma \pi \pi$	(3.5	± 0.6	$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(6.6	±0.7	$) \times 10^{-5}$		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	(4.8	± 1.0	$) \times 10^{-6}$		1244
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	(3.2	± 1.0	$) \times 10^{-6}$		1193
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	<	5.8		$\times 10^{-6}$	CL=90%	1168
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	<	9.5		$\times 10^{-6}$	CL=90%	1168
$\gamma \gamma$	<	1.5		$\times 10^{-4}$	CL=90%	1843
$\gamma\eta$	(1.4	±0.5	$) \times 10^{-6}$		1802
$\gamma\eta\pi^+\pi^-$	(8.7	±2.1	$) \times 10^{-4}$		1791
$\gamma \eta(1405) ightarrow \gamma K \overline{K} \pi$	<	9		$\times 10^{-5}$	CL=90%	1569
$\gamma \eta (1405) ightarrow \eta \pi^+ \pi^-$	(3.6	±2.5	$) \times 10^{-5}$		_
$\gamma \eta($ 1475 $) ightarrow \ K \overline{K} \pi$	<	1.4			CL=90%	_
$\gamma \eta (1475) ightarrow \eta \pi^+ \pi^-$	<	8.8		$\times 10^{-5}$	CL=90%	_
$\gamma 2(\pi^+\pi^-)$	(4.0	± 0.6	$) \times 10^{-4}$		1817
$\gamma K^{*0}K^{+}\pi^{-}$ + c.c.	(3.7	±0.9	$) \times 10^{-4}$		1674
$\gamma K^{*0} \overline{K}^{*0}$	(2.4	±0.7	$) \times 10^{-4}$		1613
$\gamma K_{S}^{0} K^{+} \pi^{-} + \text{c.c.}$	(2.6	±0.5	$) \times 10^{-4}$		1753
$\gamma K^+ K^- \pi^+ \pi^-$	(1.9	±0.5	$) \times 10^{-4}$		1726
$\gamma p \overline{p}$	(3.9	± 0.5	$) \times 10^{-5}$	S=2.0	1586
$\gamma f_2(1950) \rightarrow \gamma p \overline{p}$	(1.20	± 0.22	$) \times 10^{-5}$		_
$\gamma f_2(2150) \rightarrow \gamma p \overline{p}$	(7.2	± 1.8	$) \times 10^{-6}$		_
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(4.6	$+1.8 \\ -4.0$	$) \times 10^{-6}$		_
$\gamma X \rightarrow \gamma p \overline{p}$	[xxaa] <	2		$\times 10^{-6}$	CL=90%	_
$\gamma \pi^+ \pi^- \rho \overline{\rho}$		2.8	± 1.4	$) \times 10^{-5}$		1491
$\gamma 2(\pi^{+}\pi^{-})K^{+}K^{-}$	<	2.2			CL=90%	1654
$\gamma 3(\pi^+\pi^-)$	<	1.7		$\times 10^{-4}$	CL=90%	1774
$\gamma \dot{K}^+ K^- \dot{K}^+ K^-$	<	4		$\times10^{-5}$	CL=90%	1499
$\gamma\gamma$ J/ ψ	(3.1	$^{+1.0}_{-1.2}$	$) \times 10^{-4}$		542
	Other de	ecays	,			
invisible	<	1.6		%	CL=90%	_

$$\psi$$
(3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=3773.13\pm0.35$$
 MeV (S = 1.1) Full width $\Gamma=27.2\pm1.0$ MeV $\Gamma_{ee}=0.262\pm0.018$ keV (S = 1.4)

In addition to the dominant decay mode to $D\overline{D}$, $\psi(3770)$ was found to decay into the final states containing the J/ψ (BAI 05, ADAM 06). ADAMS 06 and HUANG 06A searched for various decay modes with light hadrons and found a statistically significant signal for the decay to $\phi\eta$ only (ADAMS 06).

ψ (3770) DECAY MODES	Fraction (Γ_i/Γ_i)		cale factor/ idence level	<i>p</i> (MeV/ <i>c</i>)
$D\overline{D}$	$(93 \begin{array}{cc} +8 \\ -9 \end{array}$) %	S=2.0	286
$D^0 \overline{D}{}^0$	$(52 \begin{array}{cc} +4 \\ -5 \end{array}$) %	S=2.0	286
D^+D^-	(41 ± 4)) %	S=2.0	253
$J/\psi \pi^+ \pi^-$	$(1.93\pm0.2$			560
$J/\psi \pi^0 \pi^0$	(8.0 ± 3.0	,		564
$J/\psi \eta$	(9 ± 4)	$) \times 10^{-4}$		360
$J/\psi \pi^0$	< 2.8	\times 10 ⁻⁴	CL=90%	603
e^+e^-	(9.6 ± 0.7	$) \times 10^{-6}$	S=1.3	1887
Dec	ays to light hadror	ns		
$b_1(1235)\pi$	< 1.4	$\times10^{-5}$	CL=90%	1683
$\phi\eta'$	< 7	$\times 10^{-4}$	CL=90%	1607
$\omega \eta'$	< 4	$\times 10^{-4}$	CL=90%	1672
$ ho^{f 0}\eta'$	< 6	$\times 10^{-4}$	CL=90%	1674
$\phi\eta$	(3.1 ± 0.7	,		1703
$\omega \eta$	< 1.4	$\times 10^{-5}$	CL=90%	1762
$\rho^{0}\eta$	< 5	\times 10 ⁻⁴	CL=90%	1764
$\phi \pi^0$	< 3	\times 10 ⁻⁵	CL=90%	1746
$\omega \pi^0$	< 6	\times 10 ⁻⁴	CL=90%	1803
$\pi^+\pi^-\pi^0$	< 5	$\times 10^{-6}$	CL=90%	1874
$\rho\pi$	< 5	$\times 10^{-6}$	CL=90%	1804
$K^*(892)^+K^- + \text{c.c.}$	< 1.4	$\times 10^{-5}$	CL=90%	1745
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 1.2	$\times 10^{-3}$	CL=90%	1744
$K_S^0 K_L^0$	< 1.2	$\times 10^{-5}$	CL=90%	1820
$2(\pi^{+}\pi^{-})$	< 1.12	$\times 10^{-3}$	CL=90%	1861
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.06	× 10 ⁻³	CL=90%	1843
$2(\pi^{+}\pi^{-}\pi^{0})$	< 5.85	%	CL=90%	1821
$\omega \pi^+ \pi^-$	< 6.0	$\times 10^{-4}$	CL=90%	1794
$3(\pi^{+}\pi^{-})$	< 9.1	× 10 ⁻³	CL=90%	1819
$3(\pi^{+}\pi^{-})\pi^{0}$	< 1.37	%	CL=90%	1792
$3(\pi^+\pi^-)2\pi^0$	< 11.74	%	CL=90%	1760
HTTP://PDG.LBL.GOV	Page 142	Created:	5/30/2017	7 17:13

$\eta \pi^+ \pi^-$	< 1.24	$\times 10^{-3}$	CL=90%	1836
$\pi^{+}\pi^{-}2\pi^{0}$	< 8.9	$\times 10^{-3}$	CL=90%	1862
$ ho^0 \pi^+ \pi^-$	< 6.9	\times 10 ⁻³	CL=90%	1796
$\eta 3\pi$	< 1.34	$\times 10^{-3}$	CL=90%	1824
$\eta 2(\pi^+\pi^-)$	< 2.43	%	CL=90%	1804
$\eta ho^{0}\pi^{+}\pi^{-}$	< 1.45	%	CL=90%	1708
η' 3π	< 2.44	\times 10 ⁻³	CL=90%	1740
$K^+K^-\pi^+\pi^-$	< 9.0	$\times 10^{-4}$	CL=90%	1772
$\phi\pi^+\pi^-$	< 4.1	\times 10 ⁻⁴	CL=90%	1737
$K^+K^-2\pi^0$	< 4.2	$\times10^{-3}$	CL=90%	1774
$4(\pi^+\pi^-)$	< 1.67	%	CL=90%	1757
$4(\pi^+\pi^-)\pi^0$	< 3.06	%	CL=90%	1720
$\phi f_0(980)$	< 4.5	\times 10 ⁻⁴	CL=90%	1597
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	< 2.36	$\times10^{-3}$	CL=90%	1741
$\mathcal{K}^+\mathcal{K}^- ho^0\pi^0$	< 8	$\times 10^{-4}$	CL=90%	1624
$K^+K^-\rho^+\pi^-$	< 1.46	%	CL=90%	1622
$\omega K^+ K^-$	< 3.4	\times 10 ⁻⁴	CL=90%	1664
$\phi\pi^+\pi^-\pi^0$	< 3.8	$\times10^{-3}$	CL=90%	1722
$K^{*0}K^{-}\pi^{+}\pi^{0}$ + c.c.	< 1.62	%	CL=90%	1693
$K^{*+}K^{-}\pi^{+}\pi^{-}+$ c.c.	< 3.23	%	CL=90%	1692
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	< 2.67	%	CL=90%	1705
$K^+K^-2(\pi^+\pi^-)$	< 1.03	%	CL=90%	1702
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	< 3.60	%	CL=90%	1660
$\eta K^+ K^-$	< 4.1	$\times 10^{-4}$	CL=90%	1712
$\eta K^+ K^- \pi^+ \pi^-$	< 1.24	%	CL=90%	1624
$\rho^0 K^+ K^-$	< 5.0	\times 10 ⁻³	CL=90%	1665
$2(K^{+}K^{-})$	< 6.0	$\times 10^{-4}$	CL=90%	1552
$\phi K^+ K^-$	< 7.5	$\times10^{-4}$	CL=90%	1598
$2(K^{+}K^{-})\pi^{0}$	< 2.9	$\times 10^{-4}$	CL=90%	1493
$2(K^{+}K^{-})\pi^{+}\pi^{-}$	< 3.2	$\times10^{-3}$	CL=90%	1425
$\hat{K}_{S}^{0}K^{-}\pi^{+}$	< 3.2	\times 10 ⁻³	CL=90%	1799
$\kappa_S^0 \kappa^- \pi^+ \pi^0$	< 1.33	%	CL=90%	1773
$K_{S}^{0}K^{-}\rho^{+}$	< 6.6	× 10 ⁻³		1664
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}$	< 8.7		CL=90%	1739
$K_0^S K^- \pi^+ \rho^0$		%		
. ·	< 1.6		CL=90%	1621
$K_{S}^{0}K^{-}\pi^{+}\eta$	< 1.3	%	CL=90%	1669
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$	< 4.18	%	CL=90%	1703
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\eta$	< 4.8	%	CL=90%	1570
$K_S^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$	< 1.22	%	CL=90%	1658
$K_S^0 K^- \pi^+ 2\pi^0$ $K_S^0 K^- K^+ K^- \pi^+$	< 2.65	%	CL=90%	1742
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}$	< 4.9	$\times10^{-3}$	CL=90%	1490
$K_{5}^{0}K^{-}K^{+}K^{-}\pi^{+}\pi^{0}$	< 3.0	%	CL=90%	1427
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\eta$	< 2.2	%	CL=90%	1214
	\ _	/ U	SE-30/0	1417

$K^{*0}K^{-}\pi^{+}$ + c.c.	< 9.7	$\times 10^{-3}$	CL=90%	1722
$ ho \overline{ ho} \pi^0$	< 4	$\times 10^{-5}$	CL=90%	1595
$ ho \overline{ ho} \pi^+ \pi^-$	< 5.8	$\times 10^{-4}$	CL=90%	1544
$\Lambda \overline{\Lambda}$	< 1.2	$\times 10^{-4}$	CL=90%	1521
$ ho \overline{ ho} \pi^+ \pi^- \pi^0$	< 1.85	$\times 10^{-3}$	CL=90%	1490
$\omega p \overline{p}$	< 2.9	$\times 10^{-4}$	CL=90%	1309
$\Lambda \overline{\Lambda} \pi^0$	< 7	$\times 10^{-5}$	CL=90%	1468
$ ho \overline{ ho} 2 (\pi^+ \pi^-)$	< 2.6	$\times 10^{-3}$	CL=90%	1425
$\eta p \overline{p}$	< 5.4	$\times 10^{-4}$	CL=90%	1430
$\eta \rho \overline{\rho} \pi^+ \pi^-$	< 3.3	$\times 10^{-3}$	CL=90%	1284
$ ho^{f 0}$ p $\overline{f p}$	< 1.7	$\times 10^{-3}$	CL=90%	1313
$p\overline{p}K^+K^-$	< 3.2	$\times 10^{-4}$	CL=90%	1185
ηρ ρ Κ+Κ-	< 6.9	$\times 10^{-3}$	CL=90%	736
$\pi^0 p \overline{p} K^+ K^-$	< 1.2	$\times 10^{-3}$	CL=90%	1093
$\phi \rho \overline{ ho}$	< 1.3	$\times 10^{-4}$	CL=90%	1178
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.5	$\times 10^{-4}$	CL=90%	1404
$\Lambda \overline{\rho} K^+$	< 2.8	$\times 10^{-4}$	CL=90%	1387
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	< 6.3	$\times 10^{-4}$	CL=90%	1234
$\Lambda \overline{\Lambda} \eta$	< 1.9	$\times 10^{-4}$	CL=90%	1262
$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.0	$\times 10^{-4}$	CL=90%	1464
$\Sigma^0 \overline{\Sigma}{}^0$	< 4	$\times 10^{-5}$	CL=90%	1462
<u>=+=</u> -	< 1.5	$\times 10^{-4}$	CL=90%	1346
$\equiv^0 \overline{\equiv}^0$	< 1.4	$\times 10^{-4}$	CL=90%	1353
Ra	diative decays			
	< 6.4	$\times 10^{-4}$	CL=90%	211
$\gamma \chi_{c2}$	(2.48±0.2		CL—90/0	253
$\gamma \chi_{c1}$	(7.0 ± 0.6)	•		341
$\gamma \chi_{c0}$	(7.0 ±0.0 < 7	$\times 10^{-4}$	CL=90%	707
$\gamma \eta_c \gamma \eta_c (2S)$	< 9	× 10 × 10 ⁻⁴	CL=90% CL=90%	132
$\gamma \eta_c(23)$ $\gamma \eta'$	< 1.8	× 10 × 10 ⁻⁴	CL=90% CL=90%	1765
$\gamma \eta$ $\gamma \eta$	< 1.5	× 10 × 10 ⁻⁴	CL=90% CL=90%	1847
$\frac{\gamma \eta}{\gamma \pi}$ 0	< 2	× 10 × 10 ⁻⁴	CL=90% CL=90%	1884
<i>y</i>	< 2	× 10	CL=90%	1004

 $\psi(3823)$ was X(3823)

$$I^G(J^{PC}) = ?^?(2^{--})$$

J, P need confirmation.

Created: 5/30/2017 17:13

Mass $m=3822.2\pm1.2~{\rm MeV}$ Full width $\Gamma~<~16~{\rm MeV},~{\rm CL}=90\%$

ψ (3823) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\chi_{c1}\gamma$	seen	299
$\chi_{c2}\gamma$	not seen	257

X(3872)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3871.69\pm 0.17~{
m MeV}$ $m_{X(3872)}-m_{J/\psi}=775\pm 4~{
m MeV}$ Full width $\Gamma < 1.2~{
m MeV}$, CL =90%

X(3872) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-J/\psi(1S)$	> 2.6 %	650
$\omega J/\psi(1S)$	> 1.9 %	†
$D^0 \overline{D}{}^0 \pi^0$	>32 %	117
$\overline{D}^{*0} D^0$	>24 %	2
$\gamma J/\psi$	$> 6 \times 10^{-3}$	697
$\gamma \psi$ (2S)	> 3.0 %	181
$\pi^+\pi^-\eta_c(1S)$	not seen	746
$\pi^+\pi^-\chi_{c1}$	not seen	218
$\rho \overline{\rho}$	not seen	1693

X(3900)

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=3886.6\pm2.4$ MeV (S =1.6) Full width $\Gamma=28.1\pm2.6$ MeV

X(3900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\pi$	seen	699
$J/\psi\pi \ h_c\pi^\pm$	not seen	318
$\eta_c \pi^+ \pi^- (D \overline{D}^*)^{\pm}$	not seen	759
	seen	_
$D^0 D^{*-} + \text{c.c.}$	seen	150
$D^{-}D^{*0}$ + c.c.	seen	141
$\omega \pi^{\pm}$	not seen	1862
$J/\psi\eta$	not seen	509
$D^{+}D^{*-}$ + c.c	seen	_
$D^0\overline{D}^{*0}$ + c.c	seen	_

X(3915) was $\chi_{c0}(3915)$

$$I^{G}(J^{PC}) = 0^{+}(0 \text{ or } 2^{+})$$

Created: 5/30/2017 17:13

Mass $m=3918.4\pm1.9~{\rm MeV}$ Full width $\Gamma=20\pm5~{\rm MeV}~({\rm S}=1.1)$

X(3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega J/\psi$	seen	222
$\omega J/\psi \ \pi^+\pi^-\eta_c(1S)$	not seen	785
$\eta_c \eta_{\perp}$	not seen	665
$ \eta_c \eta $ $ \eta_c \pi^0 $ $ K\overline{K} $	not seen	815
$K\overline{K}$	not seen	1896
$\gamma\gamma$	seen	1959

$\chi_{c2}(2P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3927.2\pm2.6$ MeV Full width $\Gamma=24\pm6$ MeV

$\chi_{c2}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma\gamma_{-}$	seen	1964
$D\overline{D}$	seen	615
D^+D^-	seen	600
$D^0 \overline{D}{}^0$	seen	615
$\pi^+\pi^-\eta_c(1S)$	not seen	793
KK	not seen	1901

X(4020)

$$I(J^P) = 1(??)$$

Mass $m=4024.1\pm1.9~{\rm MeV}$ Full width $\Gamma=13\pm5~{\rm MeV}~({\rm S}=1.7)$

X(4020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c(1P)\pi$	seen	450
$D^*\overline{D}^*$	seen	85
$D\overline{D}^*$ + c.c.	not seen	542
$\eta_c \pi^+ \pi^-$	not seen	872

ψ (4040) $^{[yyaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/30/2017 17:13

Mass $m=4039\pm1$ MeV Full width $\Gamma=80\pm10$ MeV $\Gamma_{ee}=0.86\pm0.07$ keV $\Gamma_{ee}<2.9$ eV, CL =90% $\Gamma_{ee}<4.6$ eV, CL =90%

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4040) DECAY MODES	Fraction (Γ _i /Γ	-) Co	onfidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(1.07\pm0.16$	$) \times 10^{-5}$		2019
$D\overline{D}$	seen	,		775
$D^0 \overline{D}{}^0$	seen			775
D^+D^-	seen			764
$D^*\overline{D}$ + c.c.	seen			569
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen			575
$D^*(2010)^+D^-+$ c.c.	seen			561
$D^*\overline{D}^*$	seen			193
$D^*(2007)^0 \overline{D}{}^*(2007)^0$	seen			226
$D^*(2010)^+ D^*(2010)^-$	seen			193
$D^0D^-\pi^++$ c.c. (excl.	not seen			_
$D^*(2007)^0 \overline{D}^0 + \text{c.c.},$				
$D^*(2010)^+D^-$ +c.c.)				
$D\overline{D}^*\pi$ (excl. $D^*\overline{D}^*$)	not seen			_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+ D_s^-$	seen			452
$J/\psi \pi^+ \pi^-$	< 4	$\times 10^{-3}$	90%	794
$J/\psi \pi^0 \pi^0$	< 2	$\times 10^{-3}$	90%	797
$J/\psi\eta$	(5.2 ± 0.7)			675
$J/\psi\pi^0$	< 2.8	$\times 10^{-4}$		823
$J/\psi\pi^+\pi^-\pi^0$	< 2	$\times 10^{-3}$	90%	746
$\chi_{c1}\gamma$	< 3.4	$\times 10^{-3}$	90%	494
$\chi_{c2}\gamma$	< 5	$\times 10^{-3}$	90%	454
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 1.1	%	90%	306
$\chi_{c2}\pi^+\pi^-\pi^0$	< 3.2	%	90%	233
$h_c(1P)\pi^+\pi^-$	< 3	\times 10 ⁻³	90%	403
$\phi \underline{\pi}^+ \pi^-$	< 3	$\times 10^{-3}$	90%	1880
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.9	$\times 10^{-4}$	90%	1578
$\Lambda \overline{\Lambda} \pi^0$	< 9	$\times 10^{-5}$		1636
$\Lambda \overline{\Lambda} \underline{\eta}$	< 3.0	$\times 10^{-4}$	90%	1452
$\sum_{-0}^{+}\sum_{-0}^{-0}$	< 1.3	\times 10 ⁻⁴	90%	1632
$ \begin{array}{l} \Sigma + \frac{1}{\Sigma} - \\ \Sigma^{0} \overline{\Sigma}^{0} \\ \Xi + \overline{\Xi} - \\ \Xi^{0} \overline{\Xi}^{0} \end{array} $	< 7	$\times 10^{-5}$		1630
<u>=</u> + <u>=</u> -	< 1.6	$\times 10^{-4}$		1527
<u>=</u> 0 <u>=</u> 0	< 1.8	× 10 ⁻⁴	90%	1533

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=4146.8\pm2.5$ MeV (S =1.1) Full width $\Gamma=19^{+8}_{-7}$ MeV (S =1.4)

X(4140) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$J/\psi \phi$	seen	217	
$\gamma\gamma$	not seen	2073	

ψ (4160) [yyaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4191\pm 5$ MeV Full width $\Gamma=70\pm 10$ MeV $\Gamma_{ee}=0.48\pm 0.22$ keV $\Gamma_{ee}<2.2$ eV, CL =90%

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4160) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(6.9 \pm 3.3) \times 10$	_j –6	2096
$\mu^+\mu^-$	seen		2093
$D\overline{D}$	seen		956
$D^0 \overline{D}{}^0$	seen		956
D^+D^-	seen		947
$D^*\overline{D}+$ c.c.	seen		798
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen		802
$D_{-}^{*}(2010)^{+}D^{-}+\text{c.c.}$	seen		792
$D^* \overline{D}^*$	seen		592
$D^*(2007)^0 \overline{D}{}^*(2007)^0$	seen		604
$D^*(2010)^+ D^*(2010)^-$	seen		592
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen		_
$D^*(2007)^0 \overline{D}^0 + \text{c.c.},$			
$D^*(2010)^+ D^- + c.c.)$			
$D\overline{D}^*\pi+\text{c.c.}$ (excl. $D^*\overline{D}^*$)	seen		_
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen		_
$D^*(2010)^+ D^*(2010)^-)$			
$D_s^+ D_s^-$	not seen		720
$D_s^{*+}D_s^- + \text{c.c.}$	seen		385

HTTP://PDG.LBL.GOV

Page 148

$J/\psi \pi^+ \pi^-$	< 3	$\times 10^{-3}$	90%	919
$J/\psi \pi^0 \pi^0$	< 3	$\times 10^{-3}$	90%	922
$J/\psi K^+ K^-$	< 2	$\times 10^{-3}$	90%	407
$J/\psi\eta$	< 8	$\times 10^{-3}$	90%	822
$J/\psi \pi^0$	< 1	$\times 10^{-3}$	90%	944
$J/\psi\eta'$	< 5	$\times 10^{-3}$	90%	457
$J/\psi\pi^+\pi^-\pi^0$	< 1	$\times 10^{-3}$	90%	879
$\psi(2S)\pi^+\pi^-$	< 4	$\times 10^{-3}$	90%	396
$\chi_{c1}\gamma$	< 5	$\times 10^{-3}$	90%	625
$\chi_{c2}\gamma$	< 1.3	%	90%	587
$\chi_{c1} \pi^+ \pi^- \pi^0$	< 2	$\times 10^{-3}$	90%	496
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	< 8	$\times 10^{-3}$	90%	445
$h_c(1P)\pi^+\pi^-$	< 5	$\times 10^{-3}$	90%	556
$h_c(1P)\pi^0\pi^0$	< 2	$\times 10^{-3}$	90%	560
$h_c(1P)\eta$	< 2	$\times 10^{-3}$	90%	348
$h_c(1P)\pi^0$	< 4	\times 10 ⁻⁴	90%	600
$\phi\pi^+\pi^-$	< 2	$\times 10^{-3}$	90%	1961
$\gamma X(3872) ightarrow \gamma J/\psi \pi^+ \pi^-$	< 6.8	\times 10 ⁻⁵	90%	_
$\gamma X(3915) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.36	\times 10 ⁻⁴	90%	_
$\gamma X(3930) ightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.18	\times 10 ⁻⁴	90%	_
$\gamma X(3940) ightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.47	\times 10 ⁻⁴	90%	_
$\gamma X(3872) \rightarrow \gamma \gamma J/\psi$	< 1.05	\times 10 ⁻⁴	90%	_
$\gamma X(3915) ightarrow \gamma \gamma J/\psi$	< 1.26	$\times 10^{-4}$	90%	_
$\gamma X(3930) ightarrow \gamma \gamma J/\psi$	< 8.8	$\times 10^{-5}$	90%	_
$\gamma X(3940) \rightarrow \gamma \gamma J/\psi$	< 1.79	$\times 10^{-4}$	90%	_

X(4260)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

Mass $m=4230\pm 8$ MeV (S = 2.9) Full width $\Gamma=55\pm 19$ MeV (S = 4.4)

X(4260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi^+ \pi^-$	seen	950
$J/\psi f_0(980), \;\; f_0(980) ightarrow \; \pi^+$		_
$X(3900)^{\pm}\pi^{\mp}$, $X^{\pm} \rightarrow J/\psi$	π^\pm seen	_
$J/\psi \pi^0 \pi^0$	seen	952
J/\psiK^+K^-	seen	477
$J/\psiK^0_SK^0_S$	not seen	465
$X(3872)\gamma$	seen	343
$J/\psi \eta$	not seen	857
$J/\psi \pi^0$	not seen	974
$J/\psi \eta'$	not seen	520
$J/\psi \pi^+\pi^-\pi^0$	not seen	912
HTTP://PDG.LBL.GOV	Page 149	Created: 5/30/2017 17:13

0		
$J/\psi \eta \pi^0$	not seen	780
$J/\psi \eta \eta$	not seen	247
$\psi(2S)\pi^+\pi^-$	not seen	437
$\psi(2S)\eta$	not seen	†
$\chi_{c0}\omega$	not seen	205
$\chi_{c1}\gamma$	not seen	658
$\chi_{c2}\gamma$	not seen	620
$\chi_{c1}\pi^{+}\pi^{-}\pi^{0}$	not seen	537
$\chi_{c2}\pi^{+}\pi^{-}\pi^{0}$	not seen	489
$h_c(1P)\pi^+\pi^-$	not seen	593
$\phi \pi^+ \pi^-$	not seen	1982
$ \frac{\phi \pi^+ \pi^-}{\frac{\phi f_0(980)}{D}} \rightarrow \phi \pi^+ \pi^- $	not seen	_
$D\overline{D}$	not seen	998
$D^0 \overline{D}{}^0$	not seen	998
D^+D^-	not seen	989
$D^*\overline{D}$ +c.c.	not seen	887
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen	_
$D^*(2010)^+D^-+c.c.$	not seen	_
$D^*\overline{D}^*$	not seen	657
$D^*(2007)^0 \overline{D}^*(2007)^0$	not seen	668
$D^*(2010)^+ D^*(2010)^-$	not seen	657
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2007)^0 \overline{D}{}^{*0} + {\sf c.c.},$		
$D^*(2010)^+D^-$ +c.c.)		
$D\overline{D}^*\pi+$ c.c. (excl. $D^*\overline{D}^*$)	not seen	723
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2010)^+ D^*(2010)^-)$		
$D^0 D^*(2010)^- \pi^+ + \text{c.c.}$	not seen	716
$D^* \overline{D}{}^* \pi$	not seen	395
$D_s^+ D_s^-$	not seen	774
$D_{s}^{*+}D_{s}^{-}+c.c.$	not seen	615
$D_{s}^{*+}D_{s}^{*-}$	not seen	111
$D_{s}^{*+}D_{s}^{*-}$ $p\overline{p}$ $K_{S}^{0}K^{\pm}\pi^{\mp}$ $K^{+}K^{-}\pi^{0}$	not seen	1896
$K_{c}^{0}K^{\pm}\pi^{\mp}$	not seen	2037
$K^{+}K^{-}\pi^{0}$	not seen	2038
		2030

X(4360)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

X(4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\psi(2S)\pi^+\pi^-}$	seen	547
ψ (3823) $\pi^{+}\pi^{-}$	possibly seen	411

ψ (4415) $^{[yyaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4421\pm4$ MeV Full width $\Gamma=62\pm20$ MeV $\Gamma_{ee}=0.58\pm0.07$ keV $\Gamma_{ee}<3.6$ eV, CL =90% $\Gamma_{ee}<0.47$ eV, CL =90% $\Gamma_{ee}<2.3$ eV, CL =90%

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D\overline{D}$	seen		1187
$D^0 \overline{D}{}^0$	seen		1187
D^+D^-	seen		1179
$D^*\overline{D}$ + c.c.	seen		1063
$D^*(2007)^0\overline{D}{}^0+{ m c.c.}$	seen		1067
$D^*(2010)^+ D^- + \text{c.c.}$	seen		1059
$D^*\overline{D}^*$	seen		919
$D^*(2007)^0 \overline{D}^*(2007)^0 + \text{c.c.}$	seen		927
$D^*(2010)^+ D^*(2010)^- + \text{c.c.}$	seen		919
$D^0 D^- \pi^+ (\text{excl. } D^* (2007)^0 \overline{D}{}^0$	< 2.3 %	90%	_
$_{-}$ +c.c., $D^{*}(2010)^{+}D^{-}$ +c.c.			
$D\overline{D}_{2}^{*}(2460) \to D^{0}D^{-}\pi^{+}+c.c.$	(10 ± 4)%		_
$D^0 D^{*-} \pi^+ + c.c.$	< 11 %	90%	926
$D_s^+D_s^-$	not seen		1006
$\omega \chi_{c2}$	possibly seen		330
$D_{s}^{*+}D_{s}^{-}+\text{c.c.}$	seen		_
$D_{s}^{*+}D_{s}^{*-}$	not seen		652
$\psi(3823)\pi^{+}\pi^{-}$	possibly seen		494
$J/\psi\eta$	< 6 × 10	-3 90%	1022
$\chi_{c1}\gamma$	< 8 × 10	-4 90%	817
$\chi_{c2}\gamma$	< 4 × 10	-3 90%	780
e^+e^-	$(9.4\pm3.2)\times10^{-3}$	-6	2210

X(4430)±

$$I(J^P) = ?(1^+)$$

Quantum numbers not established.

Mass $m=4478^{+15}_{-18}~{\rm MeV}$ Full width $\Gamma=181\pm31~{\rm MeV}$

X(4430) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\psi(2S)$	seen	711
$\pi^+ J/\psi$	seen	1162

X(4660)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

$$X(4660)$$
 MASS $=4643\pm9$ MeV \quad (S $=1.2)$ $X(4660)$ WIDTH $=72\pm11$ MeV \quad Γ_{ee} $<$ 0.45 eV, CL $=90\%$ \quad Γ_{ee} $<$ 2.1 eV, CL $=90\%$

X(4660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\psi(2S)\pi^+\pi^-}$	seen	820

$b\overline{b}$ MESONS

$$\eta_b(1S)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 5/30/2017 17:13

Mass $m=9399.0\pm2.3~{\rm MeV}~{\rm (S=1.6)}$ Full width $\Gamma=10^{+5}_{-4}~{\rm MeV}$

$\eta_b(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	seen		_
$3h^{+}3h^{-}$	not seen		4673
$2h^{+}2h^{-}$	not seen		4689
$\gamma\gamma$	not seen		4700
$\mu^+\mu^ \tau^+\tau^-$	$< 9 \times 10^{-3}$	90%	4698
$ au^+ au^-$	<8 %	90%	4351

T(1*S*)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=9460.30\pm0.26$ MeV (S = 3.3) Full width $\Gamma=54.02\pm1.25$ keV $\Gamma_{ee}=1.340\pm0.018$ keV

T(15) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\tau^+\tau^-$	(2.60 ± 0.10) %	4384
e^+e^-	(2.38 ± 0.11)	•	4730
$\mu^+\mu^-$	(2.48 ± 0.05)) %	4729
Had	ronic decays		
ggg	(81.7 ± 0.7)) %	_
$\gamma g g$	(2.2 ± 0.6) %	_
$\eta'(958)$ anything	(2.94 ± 0.24	·	_
$J/\psi(1\mathcal{S})$ anything	•	$) \times 10^{-4}$ S=1.4	4223
$J/\psi(1S)\eta_{c}$	< 2.2	$\times 10^{-6}$ CL=90%	3624
$J/\psi(1S)\chi_{c0}$	< 3.4		3429
$J/\psi(1S)\chi_{c1}$	(3.9 ± 1.2	$) \times 10^{-6}$	3382
$J/\psi(1S)\chi_{c2}$	< 1.4	$\times 10^{-6}$ CL=90%	3359
$J/\psi(1S)\eta_{c}(2S)$	< 2.2	$\times 10^{-6}$ CL=90%	3316
$J/\psi(1S)X(3940)$	< 5.4	$\times 10^{-6}$ CL=90%	3148
$J/\psi(1S)X(4160)$	< 5.4	$\times 10^{-6}$ CL=90%	3018
X(4350) anything, $X ightarrow$	< 8.1	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\phi$			
$X(3900)^\pm$ anything, $X o$	< 1.3	$\times 10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^\pm$			
$X(4200)^\pm$ anything, $X o$	< 6.0	$\times 10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^\pm$			
$X(4430)^\pm$ anything, $X o$	< 4.9	$\times 10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^{\pm}$			
X_{cs}^{\pm} anything, $X ightarrow$	< 5.7	$\times 10^{-6}$ CL=90%	_
$J/\psi {\it K}^\pm$			
X(3872) anything, $X ightarrow$	< 9.5	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\pi^+\pi^-$			
$X(4260)$ anything, $X \rightarrow$	< 3.8	$\times 10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^+\pi^-$			
$X(4260)$ anything, $X \rightarrow$	< 7.5	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)K^+K^-$			
$X(4140)$ anything, $X \rightarrow$	< 5.2	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\phi$			
χ_{c0} anything	< 4	$\times 10^{-3}$ CL=90%	_
χ_{c1} anything	(1.90 ± 0.35	$) \times 10^{-4}$	_
χ_{c2} anything	(2.8 ± 0.8)		_

Created: 5/30/2017 17:13

HTTP://PDG.LBL.GOV Page 153

$\psi(2S)$ anything	(1.23	±0.20) ×	10^{-4}		_
$\psi(2S)\eta_c$	<	3.6		×	10^{-6}	CL=90%	3345
$\psi(2S)\chi_{c0}$	<	6.5		×	10^{-6}	CL=90%	3124
$\psi(2S)\chi_{c1}$	<	4.5		×	10^{-6}	CL=90%	3070
$\psi(2S)\chi_{c2}$	<	2.1		×	10^{-6}	CL=90%	3043
$\psi(2S)\eta_c(2S)$	<	3.2		×	10^{-6}	CL=90%	2993
$\psi(2S)X(3940)$	<	2.9		×	10^{-6}	CL=90%	2797
$\psi(2S)X(4160)$	<	2.9				CL=90%	2642
X(4260) anything, $X ightarrow$	<	7.9		×	10^{-5}	CL=90%	_
$\psi(2S)\pi^+\pi^-$							
X (4360) anything, $X ightarrow \psi(2S)\pi^+\pi^-$	<	5.2		×	10 ⁻⁵	CL=90%	-
$X(4660)$ anything, $X ightarrow \psi(2S)\pi^+\pi^-$	<	2.2		×	10-5	CL=90%	_
$X(4050)^\pm$ anything, $X o$	<	8.8		×	10-5	CL=90%	_
$\psi(2S)\pi^{\pm}$ $X(4430)^{\pm}$ anything, $X \rightarrow$	<	6.7		×	10-5	CL=90%	_
$\psi(2S)\pi^\pm$					6	GL 000/	
$\rho\pi$		3.68				CL=90%	4697
$\omega \pi^0$		3.90				CL=90%	4697
$\pi^+\pi^-$	<					CL=90%	4728
K+ K-	<					CL=90%	4704
$ \frac{\rho \overline{\rho}}{\pi^+ \pi^- \pi^0} $	<					CL=90%	4636
$\pi^+\pi^-\pi^ \phi K^+K^-$	•	2.1	±0.8) ×	10^{-6}		4725
$\omega \pi^+ \pi^-$,	2.4	± 0.5		10^{-6}		4622
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$,	4.5 4.4	$\pm 1.0 \\ \pm 0.8$		$^{10^{-6}}_{10^{-6}}$		4694 4667
	`		±0.6			CL=90%	
$\phi f_2'(1525)$	<						4549
$\omega f_2(1270)$		1.79				CL=90%	4611
$\rho(770) a_2(1320)$		2.24				CL=90%	4605
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$			± 0.8			.	4579
$K_1(1270)^{\pm} K^{\mp}$						CL=90%	4631
$K_1(1400)^{\pm}K^{\mp}$			± 0.4				4613
$b_1(1235)^{\pm}\pi^{\mp} \\ \pi^+\pi^-\pi^0\pi^0$		1.25				CL=90%	4649
			±0.30				4720
$K_0^0 K^+ \pi^- + \text{c.c.}$			± 0.4				4696
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$			± 0.9				4675
$K^*(892)^-K^+ + \text{c.c.}$						CL=90%	4675
$\frac{D^*}{2\pi}$ (2010) $^{\pm}$ anything	,		± 0.20	,			_
$\overline{^2H}$ anything	,		± 0.25	,			_
Sum of 100 exclusive modes	(1.20	0 ± 0.01	7) %	, D		_

Radiative decays

Madiative deca		
(6.3	± 1.8) $\times 10^{-5}$	4728
		4728
< 2.4	$\times 10^{-6}$ CL=90%	4713
[zzaa] (1.14	± 0.13) $ imes 10^{-5}$	4704
[<i>aabb</i>] < 6	$\times 10^{-6}$ CL=90%	4636
(7.0	± 1.5) × 10 ⁻⁴	4720
(5.4	± 2.0) × 10 ⁻⁴	4703
(7.4	± 3.5) $\times 10^{-4}$	4679
(2.9	± 0.9) $\times 10^{-4}$	4686
(2.5	± 0.9) × 10 ⁻⁴	4720
(2.5	± 1.2) × 10 ⁻⁴	4703
(2.4	± 1.2) × 10 ⁻⁴	4658
(1.5	± 0.6) $\times 10^{-4}$	4604
(4	± 6) × 10 ⁻⁵	4563
(2.0	± 2.0) × 10 ⁻⁵	4601
< 1.9	$\times 10^{-6}$ CL=90%	4682
< 1.0	$\times 10^{-6}$ CL=90%	4714
< 3	$\times 10^{-5}$ CL=90%	4678
(3.8	± 0.9) $\times 10^{-5}$	4607
(1.01	± 0.09) $\times 10^{-4}$	4644
< 8.2	$\times 10^{-5}$ CL=90%	4625
< 1.5	$\times 10^{-5}$ CL=90%	4611
< 2.6	$\times 10^{-4} \text{ CL} = 90\%$	4573
< 7	$\times 10^{-6}$ CL=90%	_
< 1.4	$\times10^{-6}$ CL=90%	_
< 1.8	$\times 10^{-6}$ CL=90%	_
< 5.3	$\times 10^{-5}$ CL=90%	4515
< 2	$\times 10^{-4}$ CL=90%	4475
< 8	$\times 10^{-7}$ CL=90%	4469
< 6	$\times 10^{-7}$ CL=90%	_
< 1.1	$\times 10^{-6}$ CL=90%	_
< 3	$\times 10^{-3} \text{ CL} = 90\%$	4469
< 5.7	$\times 10^{-5}$ CL=90%	4260
< 6.5	$\times 10^{-4}$ CL=90%	4114
< 2.3	$\times10^{-5}$ CL=90%	4079
< 7.6	$\times 10^{-6}$ CL=90%	4062
< 1.6	$\times 10^{-6}$ CL=90%	_
< 2.8	$\times 10^{-6} \text{ CL} = 90\%$	_
< 3.0	$\times 10^{-6}$ CL=90%	_
< 2.2	$\times 10^{-6}$ CL=90%	_
[bbbb] < 4.5	$\times 10^{-6}$ CL=90%	_
[ccbb]< 1	$\times 10^{-3} \text{ CL} = 90\%$	_
[ddbb] < 2.4	\times 10 ⁻⁴ CL=90%	_
	(1.7 < 2.4 [zzaa] (1.14 [aabb] < 6 (7.0 (5.4 (7.4 (2.9 (2.5 (2.5 (2.4 (1.5 (4 (2.0 < 1.9 < 1.0 < 3 (3.8 (1.01 < 3 (3.8 (1.01 < 3 (3.8 (1.01 < 3 (5.7 < 1.4 < 1.8 < 5.3 < 2.6 < 7 < 1.4 < 1.8 < 5.3 < 2 (3.8 (3.	

Lepton Family number (LF) violating modes

$$\mu^{\pm}\, au^{\mp}$$
 LF < 6.0 $imes 10^{-6}$ CL=95% 4563

Other decays

invisible $< 3.0 \times 10^{-4} \text{ CL} = 90\%$

 $\chi_{b0}(1P)^{\overline{[hhbb]}}$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 9859.44 \pm 0.42 \pm 0.31 \text{ MeV}$ Mass $m = 32.5 \pm 0.9 \text{ MeV}$

$\chi_{b0}(1P)$ DECAY MODES	Fraction $(\Gamma_i/$	Γ) Cor	ifidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma \gamma (1S)$	(1.94±0.2	27) %		†
$D^0 X$	< 10.4	%	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.6	$\times 10^{-4}$	90%	†
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	$\times 10^{-5}$	90%	†
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 5	$\times 10^{-4}$	90%	†
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-4}$	90%	†
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	(1.1 ± 0.6	$5) \times 10^{-4}$		†
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	$\times 10^{-4}$	90%	†
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 5	$\times 10^{-4}$	90%	†
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 1.6	$\times 10^{-4}$	90%	†
$3\pi^{+}3\pi^{-}$	< 8	$\times 10^{-5}$	90%	†
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	†
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2.4 ± 1.2	$2) \times 10^{-4}$		†
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.0	$\times 10^{-3}$	90%	†
$4\pi^+4\pi^-$	< 8	$\times 10^{-5}$	90%	†
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-3}$	90%	†
$J/\psiJ/\psi$	< 7	$\times 10^{-5}$	90%	†
$J/\psi \psi(2S)$	< 1.2	$\times 10^{-4}$	90%	†
$\psi(2S)\psi(2S)$	< 3.1	× 10 ⁻⁵	90%	†

$$\chi_{b1}(1P)^{[hhbb]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

 J needs confirmation.

Mass $m = 9892.78 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\frac{\gamma \Upsilon(1S)}{\gamma \Gamma(1S)}$	(35.0±2.1) %		423
$D^0 X$	(12.6 ± 2.2) %		_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(2.0\pm0.6) \times$		4892
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.3\pm0.5) \times$	10^{-4}	4892
$2\pi^+\pi^ K^ K_S^{0}$ $2\pi^0$	< 6 ×	10^{-4} 90%	4863
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(8.0\pm2.5) \times$	$< 10^{-4}$	4921
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(1.5 ± 0.5) $ imes$	$< 10^{-4}$	4878
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.5\pm1.2) \times$	$< 10^{-4}$	4863
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(8.6\pm3.2) \times$	$< 10^{-4}$	4845
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(9.3\pm3.3) \times$	$< 10^{-4}$	4844
$3\pi^{+}3\pi^{-}$	$(1.9\pm0.6) \times$	$< 10^{-4}$	4921
$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.7 ± 0.5) \times	$< 10^{-3}$	4898
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.6\pm0.8) \times$	$< 10^{-4}$	4844
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(7.5\pm2.6) \times$	$< 10^{-4}$	4825
$4\pi^{+}4\pi^{-}$	$(2.6\pm0.9) \times$	$< 10^{-4}$	4897
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.4\pm0.6) \times$	10^{-3}	4867
$J/\psiJ/\psi$	< 2.7 ×	10^{-5} 90%	3857
$J/\psi\psi(2S)$	< 1.7 ×	10^{-5} 90%	3594
$\psi(2S)\psi(2S)$	< 6 ×	10^{-5} 90%	3298

$h_b(1P)$

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

Created: 5/30/2017 17:13

Mass $m = 9899.3 \pm 0.8 \text{ MeV}$

h _b (1P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta_b(1S)\gamma$	(52^{+6}_{-5}) %	488

$$\chi_{b2}(1P)^{[hhbb]}$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.21 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(1S)$	$(18.8\pm1.1)~\%$		442
D^0X	< 7.9 %	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	$(8 \pm 5) \times 10$	₀ –5	4902
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 1.0 × 10	0^{-4} 90%	4901
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	$(5.3\pm2.4)\times10$	0^{-4}	4873
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10$	₀ -4	4931
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	$(1.1\pm0.4)\times10$	0^{-4}	4888
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	$(2.1\pm0.9)\times10$	0^{-4}	4872
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(3.9\pm1.8)\times10$	0^{-4}	4855
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 5 × 10	0^{-4} 90%	4854
$3\pi^{+}3\pi^{-}$	$(7.0\pm3.1)\times10$	₀ –5	4931
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.0\pm0.4)\times10$	₀ –3	4908
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 8 × 10	0^{-5} 90%	4854
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.6 \pm 1.5) \times 10$	₀ -4	4835
$4\pi^{+}4\pi^{-}$	$(8 \pm 4) \times 10$		4907
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.8\pm0.7)\times10$	₀ –3	4877
$J/\psiJ/\psi$	< 4 × 10	0^{-5} 90%	3869
$J/\psi\psi(2S)$	< 5 × 10	0^{-5} 90%	3608
$\psi(2S)\psi(2S)$	< 1.6 × 10	o ⁻⁵ 90%	3313

T(25)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10023.26\pm0.31$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=31.98\pm2.63$ keV $\Gamma_{ee}=0.612\pm0.011$ keV

T(2S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
$\overline{ \gamma(1S)\pi^+\pi^-}$	(17.85 ± 0.26) %		475
$\Upsilon(1S)\pi^0\pi^0$	(8.6 ± 0.4) %		480
$ au^+ au^-$	$(2.00\pm~0.21)~\%$		4686
$\mu^+\mu^-$	($1.93\pm~0.17$) %	S=2.2	5011
e^+e^-	($1.91\pm~0.16$) %		5012
$\Upsilon(1S)\pi^0$	< 4 × 3	10^{-5} CL=90%	531
$\Upsilon(1S)\eta$	(2.9 ± 0.4) \times 3	10^{-4} S=2.0	126
$J/\psi(1S)$ anything	< 6 × 3	10^{-3} CL=90%	4533

HTTP://PDG.LBL.GOV

Page 158

$J/\psi(1S)\eta_{m c}$	< 5.4	$\times10^{-6}$	CL=90%	3984
$J/\psi(1S)\chi_{c0}$	< 3.4	$\times 10^{-6}$	CL=90%	3808
$J/\psi(1S)\chi_{c1}$	< 1.2	$\times 10^{-6}$	CL=90%	3765
$J/\psi(1S)\chi_{c2}$	< 2.0	$\times 10^{-6}$	CL=90%	3744
$J/\psi(1S)\eta_{m c}(2S)$	< 2.5	$\times 10^{-6}$	CL=90%	3706
$J/\psi(1S)X(3940)$	< 2.0	\times 10 ⁻⁶	CL=90%	3555
$J/\psi(1S)X(4160)$	< 2.0	\times 10 ⁻⁶	CL=90%	3440
χ_{c1} anything	(2.2 ± 0.5			_
χ_{c2} anything	(2.3 ± 0.8	, <u> </u>		_
$\psi(2S)\eta_c$	< 5.1	$\times 10^{-6}$	CL=90%	3732
$\psi(2S)\chi_{c0}$	< 4.7	\times 10 ⁻⁶	CL=90%	3536
$\psi(2S)\chi_{c1}$	< 2.5	\times 10 ⁻⁶	CL=90%	3488
$\psi(2S)\chi_{c2}$	< 1.9	\times 10 ⁻⁶	CL=90%	3464
$\psi(2S)\eta_c(2S)$	< 3.3	\times 10 ⁻⁶	CL=90%	3421
$\psi(2S)X(3940)$	< 3.9	_	CL=90%	3250
$\psi(2S)X(4160)$	< 3.9	\times 10 ⁻⁶	CL=90%	3118
$\overline{^2H}$ anything	$(2.78^{+}_{-0.2})$	$(26) \times 10^{-5}$	S=1.2	_
hadrons	(94 ± 11)) %		_
ggg	(58.8 ± 1.2)	*		_
$\gamma g g$	$(1.87\pm\ 0.2)$	· _		_
$\phi K^+ K^-$	(1.6 ± 0.4	· _		4910
$\omega \pi^+ \pi^-$	< 2.58	$\times 10^{-6}$	CL=90%	4977
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.3 ± 0.7)			4952
$\phi f_2'(1525)$	< 1.33	\times 10 ⁻⁶	CL=90%	4841
$\omega f_2(1270)$	< 5.7	\times 10 ⁻⁷	CL=90%	4899
$\rho(770) a_2(1320)$	< 8.8	\times 10 ⁻⁷	CL=90%	4894
$K^*(892)^0 \overline{K_2^*(1430)^0} + \text{c.c.}$	(1.5 ± 0.6	_		4869
$K_1(1270)^{\pm} \bar{K}^{\mp}$	< 3.22	$\times 10^{-6}$	CL=90%	4918
$K_1(1400)^{\pm} K^{\mp}$	< 8.3	_	CL=90%	4901
$b_1(1235)^{\pm}\pi^{\mp}$	< 4.0	$\times 10^{-7}$	CL=90%	4935
$\rho\pi$	< 1.16		CL=90%	4981
$\pi^{+}\pi^{-}\pi^{0}$	< 8.0		CL=90%	5007
$\omega \pi^0$	< 1.63	\times 10 ⁻⁶	CL=90%	4980
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.30 ± 0.2)	,		5002
$K_S^0 K^+ \pi^- + \text{c.c.}$	$(1.14\pm~0.3$,		4979
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 4.22		CL=90%	4959
$K^*(892)^-K^+ + \text{c.c.}$	< 1.45		CL=90%	4960
Sum of 100 exclusive modes	(2.90± 0.3	$(30) \times 10^{-3}$		_
	Radiative decays	0/		
$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4)	•		130
$\gamma \chi_{b2}(1P)$	(7.15 ± 0.3)	,		110
$\gamma \chi_{h0}(1P)$	(3.8 ± 0.4)	1 %		5012

$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4) %	130
$\gamma \chi_{b2}(1P)$	$(7.15\pm~0.35)~\%$	110
$\gamma \chi_{b0}(1P)$	$(3.8 \pm 0.4)\%$	5012
$\gamma f_0(1710)$	$< 5.9 \times 10^{-4} \text{ CL}=90\%$	4864

HTTP://PDG.LBL.GOV Page 159

$\gamma f_2'(1525)$	<	5.3	$\times 10^{-4}$	CL=90%	4896
$\gamma f_2(1270)$	<	2.41	$\times 10^{-4}$	CL=90%	4930
$\gamma \eta_c(1S)$	<	2.7	$\times 10^{-5}$	CL=90%	4568
$\gamma \chi_{c0}$	<	1.0	\times 10 ⁻⁴	CL=90%	4430
$\gamma \chi_{c1}$	<	3.6	\times 10 ⁻⁶	CL=90%	4397
$\gamma \chi_{c2}$	<	1.5	$\times 10^{-5}$	CL=90%	4381
$\gamma X(3872) \rightarrow \pi^+\pi^- J/\psi$	<	8	\times 10 ⁻⁷	CL=90%	_
$\gamma X(3872) \rightarrow \pi^+ \pi^- \pi^0 J/\psi$	<	2.4	\times 10 ⁻⁶	CL=90%	_
$\gamma X(3915) \rightarrow \omega J/\psi$	<	2.8	\times 10 ⁻⁶	CL=90%	_
$\gamma X(4140) \rightarrow \phi J/\psi$	<	1.2	\times 10 ⁻⁶	CL=90%	_
$\gamma X(4350) \rightarrow \phi J/\psi$	<	1.3	\times 10 ⁻⁶	CL=90%	_
$\gamma \eta_b(1S)$	(3.9 ± 1.5)	$\times 10^{-4}$		605
$\gamma \eta_{\it b}(1S) ightarrow \gamma {\sf Sum} {\sf of} 26 {\sf exclu}$	<	3.7	\times 10 ⁻⁶	CL=90%	_
sive modes					
$\gamma X_{b\overline{b}} \rightarrow \gamma Sum \text{ of 26 exclusive}$	<	4.9	$\times 10^{-6}$	CL=90%	_
modes			4		
$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$ [iibb]	<	1.95	$\times 10^{-4}$	CL=95%	_
$\gamma A^0 ightarrow \gamma$ hadrons	<	8	$\times 10^{-5}$	CL=90%	_
$\gamma a_1^0 \rightarrow \gamma \mu^+ \mu^-$	<	8.3	\times 10 ⁻⁶	CL=90%	_
Lepton Family numb	er	(<i>LF</i>) violatir	ng modes	i	
		3.2	_		4854

$e^{\pm} au^{\mp}$	LF	< 3.2	\times 10 ⁻⁶	CL=90%	4854
$\mu^{\pm} au^{\mp}$	LF	< 3.3	\times 10 ⁻⁶	CL=90%	4854

T(1*D*)

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

Created: 5/30/2017 17:13

Mass $m = 10163.7 \pm 1.4 \; \text{MeV} \quad (S = 1.7)$

r(1D) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma \Upsilon(1S)$	seen	679
$\gamma \chi_{bJ}(1P)$	seen	5082
$\eta \ \Upsilon(1S)$	not seen	426
$\pi^+\pi^- \Upsilon(1S)$	$(6.6\pm1.6)\times10^{-3}$	623

 $\chi_{b0}(2P)$ [hhbb]

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m=10232.5\pm0.4\pm0.5$ MeV Mass $m=23.8\pm1.7$ MeV

$\chi_{b0}(2P)$ DECAY MODES	Fraction (Γ	Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (2S)$	(1.38±0	.30) %		†
$\gamma \Upsilon(1S)$	(3.8 ± 1)	.7) × 10 ⁻	-3	†
$D^0 X$	< 8.2	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	< 3.4	\times 10 ⁻	-5 90%	†
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 ⁻	-5 90%	†
$2\pi^{+}\pi^{-}K^{-}K^{0}_{5}2\pi^{0}$	< 2.2	× 10 ⁻	-4 90%	†
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.4	\times 10 $^{-}$	-4 90%	†
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	< 1.5	\times 10 ⁻	-4 90%	†
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.2	\times 10 ⁻	-4 90%	†
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 1.1	\times 10 $^{-}$	-3 90%	†
$3\pi^{+}2\pi^{-}K^{-}K_{S}^{0}\pi^{0}$	< 7	× 10 ⁻	-4 90%	†
$3\pi^{+}3\pi^{-}$	< 7	\times 10 $^{-}$	-5 90%	†
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 1.2	\times 10 ⁻	-3 90%	†
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 ⁻	-4 90%	†
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 7	\times 10 $^{-}$	-4 90%	†
$4\pi^+4\pi^-$	< 1.7	\times 10 $^{-}$	-4 90%	†
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 6	× 10 ⁻	-4 90%	†

 $\chi_{b1}(2P)$ [hhbb]

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Created: 5/30/2017 17:13

Mass $m=10255.46\pm0.22\pm0.50$ MeV $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0$ MeV

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega \ \varUpsilon(1S)$	$(1.63^{+0.40}_{-0.34})\%$	135
$\gamma \ \varUpsilon(2S)$	(18.1 ± 1.9) %	230
$\gamma \ \varUpsilon(1S)$	($9.9\ \pm1.0$) %	764
$\pi \pi \chi_{b1}(1P)$	(9.1 ± 1.3) $ imes 10^{-3}$	238
$D^0 X$	(8.8 ± 1.7) %	_
$\pi^+\pi^ K^+$ $K^ \pi^0$	$(3.1 \pm 1.0) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.1 \pm 0.5) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	$(7.7 \pm 3.2) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(5.9 \pm 2.0) \times 10^{-4}$	5104

$2\pi^{+} 2\pi^{-} K^{+} K^{-}$ $2\pi^{+} 2\pi^{-} K^{+} K^{-} \pi^{0}$ $2\pi^{+} 2\pi^{-} K^{+} K^{-} 2\pi^{0}$ $3\pi^{+} 2\pi^{-} K^{-} K_{S}^{0} \pi^{0}$ $3\pi^{+} 3\pi^{-}$ $3\pi^{+} 3\pi^{-} 2\pi^{0}$ $3\pi^{+} 3\pi^{-} K^{+} K^{-}$ $3\pi^{+} 3\pi^{-} K^{+} K^{-} \pi^{0}$	$(10 \pm 4) \times 10^{-5}$ $(5.5 \pm 1.8) \times 10^{-4}$ $(10 \pm 4) \times 10^{-4}$ $(6.7 \pm 2.6) \times 10^{-4}$ $(1.2 \pm 0.4) \times 10^{-4}$ $(1.2 \pm 0.4) \times 10^{-3}$ $(2.0 \pm 0.8) \times 10^{-4}$ $(6.1 \pm 2.2) \times 10^{-4}$	5062 5047 5030 5029 5103 5081 5029 5011
- ** **		

$\chi_{b2}(2P)^{[hhbb]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass
$$m=10268.65\pm0.22\pm0.50$$
 MeV $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.10\pm0.24$ MeV

$\chi_{b2}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\omega \Upsilon(1S)$	$(1.10^{+0.34}_{-0.30})\%$,)	194
$\gamma \ \varUpsilon(2S)$	$(8.9 \pm 1.2)\%$)	242
$\gamma \ \varUpsilon(1S)$	$(6.6 \pm 0.8)\%$)	777
$\pi\pi\chi_{b2}(1P)$	(5.1 ± 0.9) $ imes$	10^{-3}	229
$D^0 X$	< 2.4 %	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 1.1 ×	10^{-4} 90%	5082
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 9 ×	10^{-5} 90%	5082
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 7 ×	10 ⁻⁴ 90%	5054
$2\pi^{+}2\pi^{-}2\pi^{0}$	(3.9 ± 1.6) \times	10^{-4}	5110
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	(9 ±4)×	10^{-5}	5068
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	(2.4 ± 1.1) $ imes$	10^{-4}	5054
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(4.7~\pm 2.3~) imes$	10^{-4}	5037
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 4 ×	10^{-4} 90%	5036
$3\pi^+3\pi^-$	(9 ±4)×	10^{-5}	5110
$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.2 \pm 0.4) $ imes$	10^{-3}	5088
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(1.4 ± 0.7) $ imes$	10^{-4}	5036
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(4.2 ± 1.7) $ imes$	10^{-4}	5017
4 π^+ 4 π^-	(9 ±5)×	_	5087
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.3 \pm 0.5) \times	10 ⁻³	5058

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10355.2\pm0.5~{\rm MeV}$ $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13~{\rm MeV}$ Full width $\Gamma=20.32\pm1.85~{\rm keV}$ $\Gamma_{ee}=0.443\pm0.008~{\rm keV}$

T(3S) DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ dence level	
$\Upsilon(2S)$ anything	$(10.6 \pm 0.8)\%$			296
$\Upsilon(2S)\pi^+\pi^-$	(2.82 ± 0.18) %		S=1.6	177
$\Upsilon(2S)\pi^0\pi^0$	$(1.85\pm\ 0.14)\ \%$			190
$\Upsilon(2S)\gamma\gamma$	(5.0 ± 0.7) %			327
$\Upsilon(2S)\pi^0$	< 5.1 ×	10^{-4}	CL=90%	298
$\Upsilon(1S)\pi^+\pi^-$	$(4.37\pm~0.08)~\%$			813
$\Upsilon(1S)\pi^0\pi^0$	$(2.20\pm~0.13)~\%$			816
$\Upsilon(1S)\eta$			CL=90%	677
$\Upsilon(1S)\pi^0$	< 7 ×	_		846
$h_b(1P)\pi^0$	< 1.2 ×		CL=90%	426
$h_b(1P)\pi^0 \rightarrow \gamma \eta_b(1S)\pi^0$	(4.3 \pm 1.4) \times			_
$h_b(1P)\pi^+\pi^-$	< 1.2 ×	10^{-4}	CL=90%	353
$\tau^+\tau^-$	$(2.29\pm\ 0.30)\ \%$			4863
$\mu^+\mu^-$	$(2.18\pm\ 0.21)\%$		S=2.1	5177
e^+e^-	$(2.18\pm\ 0.20)\%$			5178
hadrons	$(93 \pm 12)\%$			_
ggg	$(35.7 \pm 2.6)\%$			_
$\frac{\gamma g}{2\pi}g$	(9.7 \pm 1.8) \times	_		_
$\overline{^2H}$ anything	($2.33\pm~0.33$) $ imes$	10-5		_
R	adiative decays			
$\gamma \chi_{b2}(2P)$	(13.1 \pm 1.6) %		S=3.4	86
$\gamma \chi_{b1}(2P)$	(12.6 \pm 1.2) %		S=2.4	99
$\gamma \chi_{b0}(2P)$	(5.9 ± 0.6) %		S=1.4	5178
$\gamma \chi_{b2}(1P)$	(9.9 \pm 1.2) \times	10^{-3}	S=1.4 S=1.9	434
$\gamma \chi_{b1}(1P)$	$(9 \pm 5) \times$	10^{-4}	S=1.8	452
$\gamma \chi_{b0}(1P)$	(2.7 ± 0.4) \times	10^{-3}		5178
$\gamma \eta_b(2S)$	< 6.2 ×		CL=90%	350
$\gamma \eta_{b}(1S)$	(5.1 \pm 0.7) $ imes$			912
$\gamma A^0 ightarrow \gamma$ hadrons	< 8 ×	10^{-5}	CL=90%	_

[jjbb] < 2.2

< 5.5

[kkbb] < 1.6

 $\times\,10^{-4}$ CL=95%

 $\times\,10^{-6}$ CL=90%

 $\times 10^{-4}$ CL=90%

Lepton Family number (LF) violating modes

$$\chi_{b1}(3P)$$
 $I^{G}(J^{PC}) = 0^{+}(1^{+})$

Mass $m=10512.1\pm2.3~\mathrm{MeV}$

$\chi_{b1}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma(1S)\gamma$	seen	999
$\Upsilon(2S)\gamma$	seen	477
$\Upsilon(3S)\gamma$	seen	156

 $\Upsilon(4S)$ or $\Upsilon(10580)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10579.4\pm1.2$ MeV Full width $\Gamma=20.5\pm2.5$ MeV $\Gamma_{ee}=0.272\pm0.029$ keV ~(S=1.5)

T(4S) DECAY MODES	Fraction (Γ_{i}	/Γ) C	onfidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}$	> 96	%	95%	326
B^+B^-	$(51.4 \pm 0.$.6)%		331
$rac{D_{s}^{+}}{B^{0}}$ anything $+$ c.c.	$(17.8 \pm 2.$.6)%		_
$B^0\overline{\overline{B}}{}^0$	$(48.6 \pm 0.$.6)%		326
$J/\psi K_{S}^{0} + (J/\psi, \eta_{c}) K_{S}^{0}$	< 4	× 10 ⁻	90%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	(1.57±0.	$.08) \times 10^{-}$	-5	5290
$ ho^+ ho^-$	< 5.7	\times 10 $^{-}$	6 90%	5233
$K^*(892)^0 \overline{K}{}^0$	< 2.0	\times 10 $^{-}$	90%	5240
$J/\psi(1S)$ anything	< 1.9	\times 10 $^{-}$	95%	_
D^{st+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	$(7.1 \pm 0.$.6)%		5240
$\phi\eta$	< 1.8	\times 10 ⁻	-6 90%	5226
$\phi \eta'$	< 4.3	\times 10 ⁻	90%	5196
$ ho\eta$	< 1.3	\times 10 ⁻	90%	5247
$ ho \eta'$	< 2.5	\times 10 ⁻	90%	5217
$\varUpsilon(1S)$ anything	< 4	\times 10 ⁻	-3 90%	1053
$\varUpsilon(1S)\pi^+\pi^-$	($8.1 \pm 0.$.6) × 10 ⁻	-5	1026
$\varUpsilon(1S)\eta$	$(1.96\pm0.$.28) × 10 ⁻	-4	924

$\gamma(2S)\pi^+\pi^-$	$(8.6 \pm 1.3) \times 10^{-5}$	468
$h_b(1P)\pi^+\pi^-$	not seen	600
$h_b(1P)\eta$	$(2.18\pm0.21)\times10^{-3}$	390
2H anything	$< 1.3 \times 10^{-5}$	90% –

X(10610)[±]

$$I^{G}(J^{P}) = 1^{+}(1^{+})$$

Mass $m=10607.2\pm 2.0~{\rm MeV}$ Full width $\Gamma=18.4\pm 2.4~{\rm MeV}$

 $X(10610)^{-}$ decay modes are charge conjugates of the modes below.

X(10610) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
\varUpsilon (1S) π^+	$(5.4^{+1.9}_{-1.5}) \times 10^{-3}$	1077
\varUpsilon (2S) π^+	$(3.6^{+1.1}_{-0.8})\%$	551
$\Upsilon(3S)\pi^+$	$(2.1^{+0.8}_{-0.6})\%$	207
$h_b(1P)\pi^+$	$(3.5^{+1.2}_{-0.9})\%$	671
$h_b(2P)\pi^+$	$(4.7^{+1.7}_{-1.3})\%$	313
$B^+\overline{B}{}^0$	not seen	505
$B^+ \overline{B}^{*0} + B^{*+} \overline{B}^{0}$	$(85.6^{+2.1}_{-2.9})\%$	_
$B^{*+}\overline{B}^{*0}$	not seen	†

$X(10610)^0$

$$I^{G}(J^{P}) = 1^{+}(1^{+})$$

Mass $m=10609\pm 6~{
m MeV}$

X(10610) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Upsilon(1S)\pi^0$	not seen	1079
$\Upsilon(2S)\pi^0$	seen	554
$\Upsilon(3S)\pi^0$	seen	212

γ(10860)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 10889.9^{+3.2}_{-2.6}$ MeV Full width $\Gamma = 51^{+6}_{-7}$ MeV $\Gamma_{ee} = 0.31 \pm 0.07$ keV (S = 1.3)

HTTP://PDG.LBL.GOV

Page 165

7(10860) DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}X$	$(76.2 \begin{array}{c} +2.7 \\ -4.0 \end{array})\%$, 0	_
В <u>Т</u>	$(5.5 \pm 1.0)\%$		1332
$B\overline{B}^* + \text{c.c.}$	$(13.7 \pm 1.6)\%$		_
$B^*\overline{B}^*$	(38.1 ± 3.4) %)	1138
$B\overline{B^{(*)}}_{\pi}$	< 19.7 %	90%	1027
$B\overline{B}\pi$	(0.0 ± 1.2) %		1027
$B^*\overline{B}\pi + B\overline{B}^*\pi$	$(7.3 \pm 2.3)\%$		_
$B^* \overline{B}^* \pi$	$(1.0 \pm 1.4)\%$		756
$B\overline{B}\pi\pi$	< 8.9 %		574
$B_{s}^{(*)} \overline{B}_{s}^{(*)}$	$(20.1 \pm 3.1)\%$		919
$B_s \overline{B}_s$	$(5 \pm 5) \times$		919
$B_s B_s^* + \text{c.c.}$	$(1.35\pm0.32)\%$		_
$B_s^*B_s^*$	$(17.6 \pm 2.7)\%$		566
no open-bottom	$(3.8 \begin{array}{c} +5.0 \\ -0.5 \end{array})\%$, D	_
e^+e^-	($6.1~\pm1.6$) $ imes$	10^{-6}	5445
$K^*(892)^0\overline{K}^0$	< 1.0 ×	10 ⁻⁵ 90%	5397
$\Upsilon(1S)\pi^+\pi^-$	(5.3 \pm 0.6) $ imes$		1310
$\Upsilon(2S)\pi^+\pi^-$	(7.8 ± 1.3) $ imes$	10^{-3}	788
\varUpsilon (3 S) $\pi^+\pi^-$	(4.8 $^{+1.9}_{-1.7}$) $ imes$	10-3	445
$\Upsilon(1S) K^+ K^-$	(6.1 ± 1.8) $ imes$	10^{-4}	965
$h_b(1P)\pi^+\pi^-$	($3.5 \ ^{+1.0}_{-1.3}$) $ imes$	10^{-3}	907
$h_b(2P)\pi^+\pi^-$	$(5.7 \ ^{+1.7}_{-2.1}) \times$	10 ⁻³	548
$\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0}$	< 6.3 ×	10 ⁻³ 90%	5440
$\chi_{b0}(1P)\omega$	< 3.9 ×	10 ⁻³ 90%	5417
$\chi_{b0}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	< 4.8 ×	10^{-3} 90%	_
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.85 ± 0.33) $ imes$		865
$\chi_{b1}(1P)\omega$	$(1.57\pm0.30) \times$		589
$\chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{\text{non}-\omega}$	(5.2 ± 1.9) $ imes$		_
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	$(1.17\pm0.30) \times$		846
$\chi_{b2}(1P)\omega$	(6.0 ±2.7)×		559
$\chi_{b2}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	(6 ±4)×		_
$\gamma X_b \rightarrow \gamma \Upsilon(1S) \omega$	< 3.8 ×	10^{-5} 90%	_

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

HTTP://PDG.LBL.GOV Page 166

age 166 Created: 5/30/2017 17:13

D_s anything $+$ c.c.	(46 ± 6) %	_
J/ψ anything	$(2.06\pm0.21)\%$	_
B^0 anything $+$ c.c.	$(77 \pm 8)\%$	_
B^+ anything $+$ c.c.	$(72 \pm 6)\%$	_

T(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10992.9^{+10.0}_{-3.1}~{\rm MeV}$ Full width $\Gamma=49^{+9}_{-15}~{\rm MeV}$ $\Gamma_{ee}=0.130\pm0.030~{\rm keV}$

au(11020) DECAY MODES	Fraction (Γ_i/Γ)	<i>р</i> (MeV/ <i>c</i>)
e^+e^-	$(2.7^{+1.0}_{-0.8}) \times 10^{-6}$	5496

NOTES

- [a] See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm Particle Listings for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include lowenergy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\text{total}} = 100\%$.
- [c] See the π^\pm Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Astrophysical and cosmological arguments give limits of order 10^{-13} ; see the π^0 Particle Listings.
- [f] C parity forbids this to occur as a single-photon process.
- [g] See the "Note on scalar mesons" in the $f_0(500)$ Particle Listings . The interpretation of this entry as a particle is controversial.
- [h] See the "Note on $\rho(770)$ " in the $\rho(770)$ Particle Listings .
- [i] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-) \times 0.99785$.
- [j] See the "Note on scalar mesons" in the $f_0(500)$ Particle Listings .
- [k] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).

- [/] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.
- [n] See the "Note on non- $q\overline{q}$ mesons" in the Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).
- [o] See the "Note on the $\eta(1405)$ " in the $\eta(1405)$ Particle Listings.
- [p] See the "Note on the $f_1(1420)$ " in the $\eta(1405)$ Particle Listings.
- [q] See also the $\omega(1650)$ Particle Listings.
- [r] See the "Note on the $\rho(1450)$ and the $\rho(1700)$ " in the $\rho(1700)$ Particle Listings.
- [s] See also the $\omega(1420)$ Particle Listings.
- [t] See the "Note on $f_0(1710)$ " in the $f_0(1710)$ Particle Listings in 2004 edition of *Review of Particle Physics*.
- [u] See the note in the K^{\pm} Particle Listings.
- [v] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [x] The definition of the slope parameters of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [y] For more details and definitions of parameters see the Particle Listings.
- [z] See the K^{\pm} Particle Listings for the energy limits used in this measurement.
- [aa] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [bb] Structure-dependent part.
- [cc] Direct-emission branching fraction.
- [dd] Violates angular-momentum conservation.
- [ee] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [ff] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\eta_{+-} = |\eta_{+-}| e^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon'$$

$$\eta_{00} = \left| \eta_{00}
ight| \mathrm{e}^{i\phi_{00}} = rac{A(\mathcal{K}_L^0
ightarrow \pi^0 \pi^0)}{A(\mathcal{K}_S^0
ightarrow \pi^0 \pi^0)} = \epsilon - 2\epsilon'$$

$$\delta = \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} ,$$

$$Im(\eta_{+-0})^2 = \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \text{ viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} ,$$

$$Im(\eta_{000})^2 = \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} .$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.

- [gg] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [hh] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [ii] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [jj] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [kk] See the K_L^0 Particle Listings for the energy limits used in this measurement.
 - [//] Allowed by higher-order electroweak interactions.
- [nn] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [oo] See the "Note on $f_0(1370)$ " in the $f_0(1370)$ Particle Listings and in the 1994 edition.
- [pp] See the note in the L(1770) Particle Listings in Reviews of Modern Physics **56** S1 (1984), p. S200. See also the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [qq] See the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [rr] This result applies to $Z^0 \to c\overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [ss] See the Particle Listings for the (complicated) definition of this quantity.
- [tt] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [uu] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.

- [vv] Submodes of the $D^+ \to K^- 2\pi^+ \pi^0$ and $K^0_S 2\pi^+ \pi^-$ modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [xx] The unseen decay modes of the resonances are included.
- [yy] This is *not* a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [zz] This mode is not a useful test for a ΔC =1 weak neutral current because both quarks must change flavor in this decay.
- [aaa] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition
- [bbb] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [ccc] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-$, and $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.
- [ddd] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [eee] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.19 \pm 0.17 %.
- [fff] This is a doubly Cabibbo-suppressed mode.
- [ggg] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings.
- [hhh] Submodes of the $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
 - [iii] This branching fraction includes all the decay modes of the resonance in the final state.
 - [iii] This limit is for either D^0 or \overline{D}^0 to pe^- .
- [kkk] This limit is for either D^0 or \overline{D}^0 to $\overline{p}e^+$.
 - [///] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an η , η' , ϕ , K^0 , K^{*0} , or $f_0(980)$ is 7.0 \pm 0.4 %
- [nnn] This fraction includes η from η' decays.
- [ooo] Two times (to include μ decays) the $\eta'\,e^+\,\nu_e$ branching fraction, plus the $\eta'\,\pi^+$, $\eta'\,\rho^+$, and $\eta'\,K^+$ fractions, is (18.6 \pm 2.3)%, which considerably exceeds the inclusive η' fraction of (11.7 \pm 1.8)%. Our best guess is that the $\eta'\,\rho^+$ fraction, (12.5 \pm 2.2)%, is too large.

- [ppp] This branching fraction includes all the decay modes of the final-state resonance.
- [qqq] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [rrr] We decouple the $D_s^+ \to \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ \to \phi \pi^+$, $\phi \to K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ \to K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi \to K^+ K^-$ branching fraction 0.491.
- [sss] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.
- [ttt] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [uuu] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the D^0 $\overline{D}{}^0$ system.
- [vvv] D denotes D^0 or \overline{D}^0 .
- [xxx] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [yyy] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [zzz] $X(3872)^+$ is a hypothetical charged partner of the X(3872).
- [aaaa] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [bbaa] $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [ccaa] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- $[ddaa] B^0$ and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [eeaa] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [ffaa] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- $[ggaa] \Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [hhaa] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 ${\rm GeV/c^2}$ and 214.3 ${\rm MeV/c^2}$, respectively.
 - [iiaa] These values are model dependent.
- [jjaa] Here "anything" means at least one particle observed.
- [kkaa] This is a B($B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$) value.

- [*IIaa*] D^{**} stands for the sum of the $D(1\,^1\!P_1)$, $D(1\,^3\!P_0)$, $D(1\,^3\!P_1)$, $D(1\,^3\!P_2)$, $D(2\,^1\!S_0)$, and $D(2\,^1\!S_1)$ resonances.
- [nnaa] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [ooaa] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [ppaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [qqaa] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [rraa] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [ssaa] For $E_{\gamma} > 100$ MeV.
- [ttaa] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [uuaa] For a narrow state A with mass less than 960 MeV.
- [vvaa] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [xxaa] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.
- [yyaa] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.

[zzaa]
$$2m_{\tau} < M(\tau^{+}\tau^{-}) < 9.2 \text{ GeV}$$

[aabb] 2 GeV
$$< m_{K^+K^-} < 3$$
 GeV

[bbbb]
$$X = \text{scalar with } m < 8.0 \text{ GeV}$$

[ccbb]
$$X\overline{X}$$
 = vectors with $m < 3.1$ GeV

[ddbb] X and
$$\overline{X} = \text{zero spin with } m < 4.5 \text{ GeV}$$

[eebb] 1.5 GeV
$$< m_X < 5.0$$
 GeV

[ffbb] 201 MeV
$$<$$
 M $(\mu^+\mu^-)$ $<$ 3565 MeV

- [ggbb] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.
- [hhbb] Spectroscopic labeling for these states is theoretical, pending experimental information.

[
$$iibb$$
] 1.5 GeV $< m_X <$ 5.0 GeV

$$[jjbb]$$
 1.5 GeV $< m_X <$ 5.0 GeV

[kkbb] For $m_{\tau^+\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.