Math 214 – Foundations of Mathematics Homework 3/4 Sam Harrington

(Due Tuesday, March 25)

Proposition 6.15: The integer m is odd if and only if there exists $q \in \mathbb{Z}$ such that m = 2q + 1.

Proof. (starting with an odd integer) Let $o, q \in \mathbb{Z}$ and o is odd Then, The set of odd integers \mathcal{O} is defined $\mathbb{Z} - \mathcal{E}$ where:

 \mathcal{E} is the set defined as $\{x: x \in \mathbb{Z}, 2|x\}$

 $\mathcal{E}^c = \mathcal{O}$

 \mathcal{O} contains all elements where $o \notin \mathcal{E}$

Either $o \notin \mathbb{Z}$ or o is not divisible by 2 Since $o \in \mathbb{Z}$ by definition, o must not be divisible by 2 By THM 6.13:

$$o = 2q + r$$

Since n = 2, r is either 0 or 1 When r = 0, o is divisible by 2 so $r \neq 0$ So:

$$o = 2q + 1$$

(starting with o = 2q + 1), Let $x, o, q \in \mathbb{Z}$ and o = 2q + 1. Then, If o is even, o = 2q = 2q + 0

By THM 6.13, since r=0 when even and for $o, r \neq 0$, o is not even.

Because $o \in \mathbb{Z}$ and not even, it must be odd. So, when o = 2q + 1, o is odd

Proving The integer m is odd if and only if there exists $q \in \mathbb{Z}$ such that m = 2q + 1.

COMPLETTED Proposition 6.25: Let $a, a', b, b' \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then $a + b \equiv a' + b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

Proof. Let $a, a', b, b' \in \mathbb{Z}$ and $n \in \mathbb{N}$. Also let $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$. Then,

$$n|(a-a') \qquad \text{def of } \equiv$$

$$n|(b-b') \qquad \text{def of } \equiv$$

$$a-a'=nx$$

$$b-b'=ny$$

$$(a-a')+(b-b')=nx+ny$$

$$(a+b)-(a'+b')=n(x+y)$$

$$n|((a+b)-(a'+b'))$$

$$a+b\equiv a'+b'\pmod{n}$$
def of \equiv

For the second part of the Prop:

$$n|(a-a')$$
 def of \equiv
 $n|(b-b')$ def of \equiv
 $a-a'=nx$
 $b-b'=ny$
 $b(a-a')=bnx$
 $ab-a'b=bnx$
 $b=ny+b'$
 $ab-a'(ny+b')=bnx$
 $ab-a'b'-a'ny=bnx$
 $ab-a'b'=n(bx+a'ny)$
 $n|(ab-a'b')$
 $ab\equiv a'b'\pmod{n}$ def of \equiv