Chuong 3

ÁP DỤNG MS-EXCEL TRONG QUY HOẠCH THỰC NGHIỆM VÀ PHÂN TÍCH PHƯƠNG SAI

□ Phân tích phương sai một yếu tố
□ Phân tích phương sai hai yếu tố
• Không lặp
• Có lặp
□ Phân tích phương sai ba yếu tố

A- PHÂN TÍCH PHƯƠNG SAI

MỘT YẾU TỐ

5.1 Khái niệm thống kê

Phép phân tích phương sai được dùng trong các trắc nghiệm để so sánh các giá trị trung bình của *hai* hay *nhiều* mẫu được lấy từ các phân số. Đây có thể được xem như phần mở rộng của trắc nghiệm t hay z (so sánh hai giá trị trung bình).

Mục đích của sự phân tích phương sai một yếu tố là đánh giá sự ảnh hưởng của một yếu tố (nhân tạo hay tự nhiên) nào đó trên các giá trị quan sát, Y_i , (i = 1, 2, ..., k).

Mô hình

		Yếu tố thí nghiệm				
	1	2	•••	k		
	Y ₁₁	Y ₂₁	•••	Y_{k1}		
	Y ₁₂	\mathbf{Y}_{22}		Y_{k2}		
			•••			
	Y_{1N}	Y_{2N}	•••	Y_{kN}		
Tổng cộng	T_1	T_2		T_k	T	
Trung bình	$\overline{\mathrm{Y}}_{1}$	$\overline{\mathrm{Y}}_{2}$		\overline{Y}_k	$\overline{\overline{Y}}$	

Bång ANOVA

Nguồn sai số	Bậc tự do	Tổng số bình phương	Bình phương trung bình	Giá trị thống kê
Yếu tố	k-1	$SSF = \sum_{i=1}^k \frac{T_i^2}{N} - \frac{T^2}{N}$	$MSF = \frac{SSF}{k-1}$	$F = \frac{MSF}{MSE}$
Sai số	N-k	SSE = SST - SSF	$MSE = \frac{SSE}{N - k}$	
Tổng cộng	N-1	$SST = \sum_{i=1}^k \ \sum_{j=1}^N \ Y_n^2 - \frac{T^2}{N}$		

Trắc nghiệm

* Giả thuyết:

 H_0 : $\mu_1 = \mu_2 = ... \mu_k$ \Leftrightarrow "Các giá trị trung bình bằng nhau"

 H_1 : $\mu_i \neq \mu_j$ \Leftrightarrow "Ít nhất có hai giá trị trung bình khác nhau"

* Giá trị thống kê:
$$F = \frac{MSF}{MSE}$$

Nếu $F < F_{\alpha}(k-1; N-k) \implies Chấp nhận giả thuyết <math>H_0$.

5.2 Áp dụng MS-EXCEL

Thí dụ 12: Hàm lượng alcaloid (mg) trong một loại được liệu được thu hái từ ba vùng khác nhau được trình bày trong bảng sau:

Vùng I	Vùng II	Vùng III
7,5	5,8	6,1
6,8	5,6	6,3
7,1	6,1	6,3 6,5 6,4 6,5 6,3
7,5	6,0	6,4
6,8	5,7	6,5
6,8 6,6		6,3
7,8		

Hàm lượng alcaloid có khác nhau theo vùng?

Nhập dữ liệu vào bảng tính

	A	В	С
1	Vùng I	Vùng II	Vùng III
2	7.5	5.8	6.1
3	6.8	5.6	6.3
4	7.1	6.1	6.5
5	7.5	6.0	6.4
6	6.8	5.7	6.5
7	6.6		6.3
8	7.8		

Áp dụng "Anova: Single Factor"

- a. Nhấp lần lượt đơn lệnh Tools và lệnh Data Analysis.
- b. Chọn chương trình Anova: Single Factor trong hộp thoại Data Analysis rồi nhấp nút OK.
- c. Trong hộp thoại Anova: Single Factor. lần lượt ấn định:
- Phạm vi đầu vào (Input Range)
- Cách sắp xếp theo hàng hay cột (Group By)
- Nhãn dữ liệu (Labels in Fisrt Row/Column)

^{*} Biện luận:

	Anova: Single Factor							
SUMMARY								
Groups	Count	Sum	Average	Variance				
Vùng I	7	50.1	7.157143	0.202857				
Vùng II	5	29.2	5.84	0.043				
Vùng III	6	38.1	6.35	0.023				
ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit		
					1.18E-			
Between Groups	5.326968	2	2.663484	26.56148	05	3.68232		
Within Groups	1.504143	15	0.100276					
Total	6.831111	17						

Hình 5.1 Hộp thoại Anova: Single Factor

Kết quả và biện luận

 $F = 26.561 > F_{0.05} = 3.682 \,$

 \Rightarrow Bác bỏ giả thuyết H_0 .

Vậy hàm lượng alcaloid khác nhau theo vùng.

27 Chương 5

B- PHÂN TÍCH PHƯƠNG SAI HAI YẾU TỐ *(KHÔNG LẶP)*

5.3 Khái niệm thống kê

Sự phân tích này nhằm đánh giá sự ảnh hưởng của hai yếu tố trên các giá trị quan sát Y_{ij} ($i=1,2,\ldots,r$: yếu tố $A;j=1,2,\ldots,c$: yếu tố B).

Mô hình

Yếu tố A		Yế	Tổng	Trung		
reu to A	1	2	•••	c	cộng	bình
1	Y_{11}	Y ₁₂		Y _{1c}	$\mathbf{Y}_{1.}$	$\overline{\mathrm{Y}}_{1}$
2	\mathbf{Y}_{21}	Y ₂₂	•••	Y_{2c}	$\mathbf{Y}_{2.}$	$\overline{\mathrm{Y}}_{2}$
		•••	•••	•••	•••	
r	Y_{r1}	Y_{r2}		Y_{rc}	Y_r	$\overline{\mathrm{Y}}_{\mathrm{r}}$
Tổng cộng	T _{.1}	T.2		T _c	Т	
Trung bình	$\overline{\mathbf{Y}}_{.1}$	$\overline{\mathrm{Y}}_{.2}$		$\overline{\mathrm{Y}}_{.\mathrm{c}}$	\overline{Y}	

Bång ANOVA

Nguồn	Bậc tự	Tổng số bình	Bình phương	Giá trị
sai số	do	phương	trung bình	thống kê
Yếu tố A (Hàng)	(r-1)	$SSB = \sum_{i=1}^{r} \frac{T_i^2}{c} - \frac{T_{\cdot \cdot}^2}{}$	$MSB = \frac{SSB}{(r-1)}$	$F_R = \frac{MSB}{MSE}$
Yếu tố B (Cột)	(c-1)	$SSB = \sum_{j=1}^c \frac{T_j^2}{r} - \frac{T_{}^2}{rc}$	$MSF = \frac{SSF}{(c-1)}$	$F_{C} = \frac{MSF}{MSE}$
Sai số	(r-1)(c-1)	SSE = SST - (SSF + SSB)	$MSB = \frac{SSB}{(r-1)}$	
Tổng cộng	(rc-1)	$SST = \sum_{i=1}^{r} \sum_{j=1}^{c} Y_{ij}^2 - \frac{T_{}^2}{r}$		

Trắc nghiệm

* Giả thuyết:

 $H_0\text{: }\mu_1=\mu_2=...\mu_k \qquad \Leftrightarrow \text{ ``Các giá trị trung bình bằng nhau''}$

 H_1 : $\mu_i \neq \mu_j$ \Leftrightarrow "Ít nhất có hai giá trị trung bình khác nhau"

* Giá trị thống kê: $F_R = \frac{MSB}{MSE}$ và $F_C = \frac{MSF}{MSE}$

* Biên luân:

Nếu
$$F_R < F_a[b-1,(k-1)(b-1)\} \implies Chấp nhận H_0 (yếu tố A)$$

Nếu
$$F_C < F_a[k-1,(k-1)(b-1)] \Rightarrow Chấp nhận H_0 (yếu tố B).$$

5.4 Áp dụng MS-EXCEL

Thí dụ 13: Hàm lượng flavonoid (mg) trong cùng một mẫu dược liệu được chiết xuất bởi 5 phương pháp với 5 loại dung môi khác nhau:

Phương					
pháp	I	II	III	IV	${f V}$
A	12.9	17.1	11.6	23.4	17.6
В	13.4	18.1	19.6	22.1	16.8
C	15.6	16.9	16.8	21.5	18.1
D	12.7	17.8	21.3	20.9	17.9
Е	13.5	19.3	18.7	23.2	17.3

Phương pháp hay dung môi có ảnh hưởng đến kết quả của sự chiết xuất dược liệu nêu trên?

Nhập dữ liệu vào bảng tính

	A	В	C	D	E	F
1		I	II	III	IV	V
2	A	12.9	17.1	11.6	23.4	17.6
3	В	13.4	18.1	19.6	22.1	16.8
4	C	15.6	16.9	16.8	21.5	18.1
5	D	12.7	17.8	21.3	20.9	17.9
6	Е	13.5	19.3	18.7	23.2	17.3

Áp dụng "Anova: Two-Factor Without Replication"

- a. Nhấp lần lượt đơn lệnh Tools và lệnh Data Analysis.
- b. Chọn chương trình Anova: Two- trong hộp thoại Data Analysis rồi nhấp nút OK.
- c. Trong hộp thoại Anova: Two-Factor Without Replication. lần lượt ấn định các chi tiết:
- Phạm vi đầu vào (Input Range).
- Nhãn dữ liệu (Labels in Fisrt Row/Column)
- Ngưỡng tin cậy (Alpha).
- Phạm vi đầu ra (Output Range).

29 Chương 5

Hình 5.2: Hộp thoại Anova: Two-Factor Without Replicatio

Anova: Two-Factor Without Replication						
SUMMARY	Count	Sum	Average	Variance		
Α	5	82.6	16.52	21.537		
В	5	90	18	10.495		
С	5	88.9	17.78	5.107		
D	5	90.6	18.12	11.842		
Е	5	92	18.4	12.29		
I	5	68.1	13.62	1.337		
II	5	89.2	17.84	0.908		
III	5	88	17.6	13.885		
IV	5	111.1	22.22	1.157		
V	5	87.7	17.54	0.263		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	10.6736	4	2.6684	0.717234706	0.59240848	3.00691728
Columns	185.5576	4	46.3894	12.46892807	8.5462E-05	3.00691728
Error	59.5264	16	3.7204			
Total	255.7576	24				

Kết quả và biện luận

 $F_R = 0.717 < F_{0.05} = 3.007 \Rightarrow \text{Chấp nhận giả thuyết } H_0 \text{ (Phương pháp)}$

 $F_C = 12.469 > F_{0.05} = 3.007 \Rightarrow$ Bác bỏ giả thuyết H_0 (Dung môi)

Vậy chỉ có dung môi ảnh hưởng đến kết quả chiết xuất.

C- PHÂN TÍCH PHƯƠNG SAI HAI YẾU TỐ (CÓ LẶP)

5.5 Khái niệm thống kê

Tương tự như mô hình phân tích phương sai hai yếu tố ($xem\ tr.67$). chỉ là mỗi mức mức (A_I . B_I) có sự lặp lại k lần thí nghiệm mỗi hàng sẽ biểu thị một bản sao của dữ liệu và trong đầu ra sẽ thêm một đại lượng tương tác ($interaction\ term$) F_I giữa hai yếu tố A và B.

Thí dụ 14: hàm lượng saponin (mg) của cùng một loại dược liệu được thu hái mùa (khô và mưa: trong mỗi mùa lấy mẫu ba lần - đầu. giữa và cuối) và từ ba miền (nam. trung và bắc) được tóm tắt như sau:

Mùa		Miền				
Thời điểm		Nam	Trung	Bắc		
Mùa khô	Đầu mùa	2.4	2.1	3.2		
	Giữa mùa	2.4	2.2	3.2		
	Cuối mùa	2.5	2.2	3.4		
Mùa mưa	Đầu mùa	2.5	2.2	3.4		
	Giữa mùa	2.5	2.3	3.5		
	Cuối mùa	2.6	2.3	3.5		

Hãy cho biết hàm lượng saponin có khác nhau theo mùa hay miền? Nếu có thì hai yếu tố mùa và miền có sự tương tác với nhau hay không?

5.6 Áp dụng MS-EXCEL

Nhập dữ liệu vào bảng tính

	A	В	С	D
1		Nam	Trung	Bắc
2	Mùa khô	2.4	2.1	3.2
3		2.4	2.2	3.2
4		2.5	2.2	3.4
5	Mùa mưa	2.5	2.2	3.4
6		2.5	2.3	3.5
7		2.6	2.3	3.5

Áp dụng "Anova: Two-Factor With Replication"

Hình 5.3: Hộp thoại Anova: Two-Factor With Relication

Anova: Two-Factor With Replication										
			,							
SUMMARY	Nam	Trung	Bắc	Total						
Mùa khô										
Count	3	3	3	9						
Sum	7.3	6.5	9.8	23.6						
Average	2.433333	2.166667	3.266667	2.622222						
Variance	0.003333	0.003333	0.013333	0.251944						
Mùa mưa										
Count	3	3	3	9						
Sum	7.6	6.8	10.4	24.8						
Average	2.533333	2.266667	3.466667	2.755556						
Variance	0.003333	0.003333	0.003333	0.300278						
Total										
Count	6	6	6							
Sum	14.9	13.3	20.2							
Average	2.483333	2.216667	3.366667							
Variance	0.005667	0.005667	0.018667							
ANOVA										
Source of Variation	SS	df	MS	F	P-value	F crit				
Sample	0.08	1	0.08	16	0.001762	4.747225				
Columns	4.347778	2	2.173889	434.7778	6.36E-12	3.885294				
Interaction	0.01	2	0.005	1	0.396569	3.885294				
Within	0.06	12	0.005							
Total	4.497778	17								

Kết quả và biện luận

 $F_R = 16 > F_{0.05} = 4.747 \Longrightarrow$ Bác bỏ giả thuyết H_0 (Mùa).

 $F_C = 434.778 > F_{0.05} = 3.385 \Rightarrow \text{Bác bỏ giả thuyết H}_0 \text{ (Miền)}$

 $F_1 = 1 < F_{0.05} = 3.385 \implies \text{Chấp nhận giả thuyết H_0 (Mùa x miền)}.$

Vậy hàm lượng Saponin trong được liệu được khảo sát khác nhau không những theo mùa mà còn theo miền. Tuy nhiên. không có sự tương tác giữa hai yếu tố mùa và miền trên hàm lượng ấy.

D- PHÂN TÍCH PHƯƠNG SAI BA YẾU TỐ

5.7 Khái niệm thống kê

Sự phân tích này được dùng để đánh giá về sự ảnh hưởng của ba yếu tố trên các giá trị quan sátG ($i = 1, 2, \dots, r$: yếu tố A; $j = 1, 2, \dots, r$: yếu tố B; $k = 1, 2, \dots, r$: yếu tố C)

Mô hình

Khi nghiên cứu ảnh hưởng của hai yếu tố. mỗi yếu tố có n mức. thì người ta dùng mô hình vuông la tinh n x n. thí dụ như mô hình vuông la tinh 4 x 4:

В	C	D	A
C	D	A	В
D	A	В	С
A	В	C	D

Mô hình vuông la tinh ba yếu tố được trình bày như sau:

Yếu tố C (T..k. thí dụ: T...1 = Y111 + Y421 + Y331 + Y241)

Yếu											
tố A	E	B 1	B2		В3		B4		T _i		
A1	C 1	Y ₁₁₁	C2	Y ₁₂₂	C3	Y ₁₃₃	C4	Y ₁₄₄	T ₁		
A2	C2	Y_{212}	C3	Y ₂₂₃	C4	Y ₂₃₄	C 1	Y ₂₄₁	T ₂		
A3	C3	Y_{313}	C4	Y ₃₂₄	C 1	Y ₃₃₄	C2	Y ₃₄₂	T ₃		
A4	C4	Y_{414}	C 1	Y_{421}	C2	Y_{412}	C3	Y_{443}	T ₄		
T.i.		T _{.1} .		T _{.2.}		T _{.3.}		T _{.4} .			

Bång ANOVA

Nguồn sai số	Bậc tự do	Tổng số bình phương	Bình phương trung bình	Giá trị thống kê
Yếu tố A (Hàng)	(r-1)	$SSR = \sum_{i=1}^{r} \frac{T_{i}^2}{r} - \frac{T_{}^2}{r^2}$	$MSR = \frac{SSR}{(r-1)}$	$F_R = \frac{MSR}{MSE}$
Yếu tố B (Cột)	(r-1)	$SSC = \sum_{j=1}^{r} \frac{T_{j}^2}{r} - \frac{T_{}^2}{r^2}$	$MSC = \frac{SSC}{(r-1)}$	$F_{C} = \frac{MSC}{MSE}$
Yếu tố C	(r-1)	$SSF = \sum_{k=1}^{r} \frac{T_{k}^2}{r} - \frac{T_{}^2}{r^2}$	$MSF = \frac{SSF}{(r-1)}$	$F = \frac{MSF}{MSE}$
Sai số	(r-1)(r-2)	SSE = SST -	$MSE = \frac{SSE}{(r-1)(r-2)}$	
	(1 1)(1 2)	(SSF + SSR + SSC)	(r-1)(r-2)	
Tổng cộng	(r^2-1)	$SST = \sum_i \sum_j \sum_k Y_{ijk}^2 - \frac{T_{}^2}{r^2}$		

Trắc nghiệm

^{*} Giả thiết:

 $H_0: \mu_1 = \mu_2 = \cdots \mu_k \ \Leftrightarrow \ \mbox{```diag} \ \mbox{``diag} \ \mbox{trij} \ \mbox{trung bình bằng nhau "}$

 $H_1: \mu_i \neq \mu_i$ \Leftrightarrow «Có ít nhất hai giá trị trung bình khác nhau»

- * Giá trị thống kê: Ġ và Ġ
- * Biện luận:
- NếuG (Chấp nhận H₀ (Yếu tố A)
- NếuG (Chấp nhận H₀ (Yếu tố B)
- NếuG (Chấp nhận H₀ (Yếu tố C).

5.8 Áp dụng MS-EXCEL

Thí dụ 15: Hiệu suất phần trăm (%) của một phản ứng hóa học được nghiên cứu theo ba yếu tố: pH (A). nhiệt độ (B) và chất xúc tác (C) được trình bày trong bảng sau:

Yếu	Yếu tố B										
tố A	B1		B2		В3		B4				
A1	C1	9	C2	14	C3	16	C4	12			
A2	C2	12	C3	15	C4	12	C1	10			
A3	C3	13	C4	14	C1	11	C2	14			
A4	C4	10	C1	11	C2	13	C3	13			

Hãy đánh giá về ảnh hưởng của các yếu tố trên hiệu suất phản ứng?

Nhập dữ liệu vào bảng tính

1	A	В	C	D	E	F	G	Н	I	J	K	L	M
2		B1	B2	В3	B4								
3	A 1	9	14	16	12								
4	A2	12	15	12	10								
5	A3	13	14	11	14								
6	A4	10	11	13	13								
7													
8	Ti	51	49	52	47	SUMSQTi	9915	SSR	3.69	MSR	1.2292	FR	3.106
9	T.j.	44	54	52	49	SUMSQT.j.	9957	SSC	14.2	MSC	4.7292	FC	11.95
10	Tk	41	53	57	48	SUMSQTk	10043	SSF	35.7	MSF	11.896	F	30.06
11	T	199				SQT	39601	SSE	2.38	MSE	0.3958		
12						SUMSQ	2531	STT	55.9				
						Yijk							

Thiết lập các biểu thức và tính các giá trị thống kê

- * Tính các giá trị Ti.... T.j.. T..k và T...
- Các giá trị Ti..

Chọn ô B7 và nhập biểu thức =SUM(B2:E2)

Chọn ô C7 và nhập biểu thức =SUM(B3:E3)

Chọn ô D7 và nhập biểu thức =SUM(B4:E4)

Chọn ô E7 và nhập biểu thức =SUM(B5:E5)

Các giá trị T.j.

Chọn ô B8 và nhập biểu thức =SUM(B2:B5)

Dùng con trỏ kéo k1i hiệu tự điền từ ô B8 đến ô E8

- Các giá trị T..k

Chọn ô B9 và nhập biểu thức =SUM(B2.C5.D4.E3)

Chọn ô C9 và nhập biểu thức =SUM(B3.C2.D5.E4)

Chọn ô D9 và nhập biểu thức =SUM(B4.C3.D2.E5)

Chọn ô E9 và nhập biểu thức =SUM(B5.C4.D3.E2)

Giá trị T...

Chọn ô B10 và nhập biểu thức =SUM(B2:E5)

- * Tính các giá trịĠ vàĠ
- Các giá trị Ġ và Ġ

Chọn ô G7 và nhập biểu thức =SUMSQ(B7:B7)

Dùng con trỏ kéo kí hiệu tự điền từ ô G7 đến ô G9

- Giá trịĠ

Chọn ô G10 và nhập biểu thức =POWER(B10.2)

- Giá trịĠ

Chọn ô G11 và nhập biểu thức =SUMSQ(B2:E5)

- * Tính các giá trị SSR. SSC. SSF. SST và SSE
- Các giá trị SSR. SSC và SSF

Chọn ô I7 và nhập biểu thức =G7/4-39601/POWER(4.2)

Dùng con trỏ kéo kí hiệu tự điền từ ô I7 đến ô I9

- Giá trị SST

Chọn ô I11 và nhập biểu thức =G11-G10/POWER(4.2)

- Giá trị SSE

Chọn ô I10 và nhập biểu thức =I11-SUM(I7:I9)

- * Tính các giá trị MSR. MSC. MSF và MSE
- Các giá trị MSR. MSC và MSF

- Giá trị SST

Chọn ô K7 và nhập biểu thức =I7/(4-1)

Dùng con trỏ kéo kí hiệu tự điền từ ô K7 đến ô K9.

- Giá trị MSE

Chọn ô K10 và nhập biểu thức =110/((4-1)*(4-2)).

* Tính các giá trịĠ và F

Chọn ô M7 và nhập biểu thức = K7/0.3958

Dùng con trỏ kéo kí hiệu tự điền từ ô M7 đến ô M9.

Kết quả và biện luận

$$F_R = 3,10 < F_{0,05}(3,6) = 4,76 \Rightarrow \text{chấp nhận H}_0 \, (pH).$$

$$F_C=11{,}95>F_{0.05}(3{,}6)=4{,}76 \Rightarrow \text{Bác bỏ H}_0\,(\textit{nhiệt độ})$$

$$F=30{,}05>F_{0,05}(3{,}6)=4{,}76 \Rightarrow \text{bác bỏ } H_0 \textit{(chất xúc tác)}$$

Vậy chỉ có nhiệt độ và chất xúc tác gây ảnh hưởng đến hiệu suất.