Basics of plant population modelling and its application

Pieter Zuidema, Pieter.zuidema@wur.nl

Programme

Monday: Matrix models

Tuesday: Integral Projection Models: construction
Plus first paper discussion

Wednesday: Integral Projection Models: output

Plus: second paper discussion

Thursday: Integral Projection Models: more applications

Plus: preparing presentations

Friday: **Presentations**

Programme

Tuesday February 11th: Integral Projection Models: construction

9-10.30 Lecti	ires: introduction	IPMs & their	construction
---------------	--------------------	--------------	--------------

10.30-12 Exercises: IPM construction

12 Lunch

2-3 Discuss results of exercises

3-3.30 Read/refresh paper

3.30-4.30 Discuss paper in subgroups

4.30-5 Share with all what you discussed

Lecture: Background & construction IPMs

- What are IPMs?
- Why IPMs?
- Differences with matrix models
- Model construction
- Intro ipmr

Demographic models that simulate the **continuous** distribution of a population over **discrete** timesteps.

Model continuous population structure in discrete time

Projection:
$$n(y, t + 1) = \int_{L}^{c} K(y, x) n(x, t) dx$$

- t = time
- x = size at t
- y = size at t+1
- n(x,t) = size distribution at t
- n(y,t+1) = size distribution at t+1

K(x,y) = full kernel

Probability densities

Projection:

$$n(y, t+1) = \int_{L}^{\infty} K(y, x) n(x, t) dx$$

Kernel: K(y,x) = P(y,x) + F(y,x)

- t = time
- x = size at t
- y = size at t+1
- n(x,t) = size distribution at t
- n(y,t+1) = size distribution at t+1

- K(x,y) = full kernel
- P(x,y) = growth/survival kernel
- F(x,y) = fecundity kernel

Probability densities

- Kernel is discretized
- Large number of categories (=mesh), such that category number does not affect output
- Then:
 - n(t+1) = Kmatrix * n(t)
- Use matrix model tools

Lecture: Background & construction IPMs

- What are IPMs?
- Why IPMs?
- Differences with matrix models
- Model construction
- Intro ipmr

Why IPMs?

- 1. Eliminate effect of category width
- 2. Incorporate growth variation among individuals
- 3. Flexible model with few parameters

Vietnamese tree species

- Threatened species
- Last known populations
- 200-400 individuals sampled

How many categories?

Solution? More categories

Solution? More categories

Solution? More categories

DBH growth for a 45-cm tree [cm/y]

DBH growth for a 45-cm tree [cm/y]

Zuidema et al. 2010 *J Ecol*

No restrictions on #categories in IPMs

Category width, Diameter at Breast Height (DBH, cm)

Why IPMs?

- 1. Eliminate effect of category width
- 2. <u>Incorporate growth variation among individuals</u>
- 3. Flexible model with few parameters

Strong and relevant growth variation

Li et al. 2011 *J Ecology*

Growth variation in matrix models

- Variation can be incorporated:
- Observed transitions

Growth variation in matrix models

- Variation can be incorporated:
- Observed transitions
- Only with sufficient observations

Growth variation in matrix models

- Variation can be incorporated:
- Observed transitions
- Only with sufficient observations
- More categories would be better

Growth variation in IPMs

- Variation explicitly included
- No consequences for accuracy

Growth variation in IPMs

Li et al. 2011 *J Ecology*

Impact of growth variation

Merow et al. 2014 *Meth Ecology Evolution*

Why IPMs?

- 1. Eliminate effect of category width
- 2. Incorporate growth variation among individuals
- 3. Flexible model with few parameters

Flexible model & few params

- Limited # of regressions => few parameters
- 2. Borrow strength across life classes, treatments or environments
- 3. Direct and clear link between statistics & model parameterization & output

Lecture: Background & construction IPMs

- What are IPMs?
- Why IPMs?
- Differences with matrix models
- Model construction
- Intro ipmr

Matrix models vs IPMs

IPMs:

- 1. Explicitly incorporate growth variation among individuals
- 2. Have (many) more classes
- Are based on statistical analyses of vital rates
- 4. Are more flexible in terms of categories and statistical models applied
- 5. Use fewer parameters (generally)

Matrix models vs IPMs

Lecture: Background & construction IPMs

- What are IPMs?
- Why IPMs?
- Differences with matrix models

Merow et al. 2014 Meth Ecology Evolution

Repeated measurements on individuals

- Within a population
- For 1-many years
- Info on survival, growth and recruitment

- Only sexual reproduction?
 - Also vegetative (clonal) reproduction?
- How to describe size?
- What co-variates to include?
 - Habitat
 - Climate, etc

<u>Integral Proj models</u>

Establish relations

<u>Integral Proj models</u>

- Establish relations
- Residuals distr

DBH growth for a 45-cm tree [cm/y]

<u>Integral Proj models</u>

- Establish relations
- Residuals distr

Integral Proj models

- Establish relations
- Residuals distr
- Calculate chance from x to y

Vital rate regression: survival

<u>Integral Proj models</u>

Establish relations

Li et al. 2013 J Applied Ecology

1.0 Flowering probability (e) 0.8 0.6 0.4 0.2 0.0 150 No. of inflorescences g) 100 50 0 80 Height in 2007 (cm)

Li et al. 2011 J Ecology

Vital rate regression: reproduction

<u>Integral Proj models</u>

- Establish relations
- For reproductive probability
- For reproductive output

Establish P part of Kernel

Projection:
$$n(y, t + 1) = \int_{L}^{U} K(y, x) n(x, t) dx$$

Kernel: $K(y,x) = P(y,x) + F(y,x)$

For each x (t) & for chosen category width

- 1. Multiply survival of x-sized individual
- 2. With probability for a surviving x-sized individual to grow to each possible y (y can be > or < than x)

Establish F part of Kernel

Projection:
$$n(y, t + 1) = \int_{L}^{U} K(y, x) n(x, t) dx$$

Kernel: K(y,x) = P(y,x) + F(y,x)

For each x (t) & for chosen category width

- 1. Multiply probability of reproduction for size x
- 2. With number of seeds produced per year for size x (if available)
- 3. With recruits per seed produced (or with recruits per reproductive individual, if 2 is not available)

Calculate K

Projection: $n(y, t + 1) = \int_{L}^{U} K(y, x) n(x, t) dx$

Kernel: K(y,x) = P(y,x) + F(y,x)

Lecture: Background & construction IPMs

- What are IPMs?
- Why IPMs?
- Differences with matrix models

- Performs:
 - Kernel building
 - Discretization
 - Some model simulations
- Can include treatments, variation, stochasticity
- Quite flexible
- In this course, we will keep it quite simple in exercises, but if you want.... (!)

Levin et al. 2021 Meth Ecology Evolution

Mathematical/graphical notation

ipmr/R representation

Fit vital rate models (1) Other packages (e.g. Ime4, brms, mgcv, stats, nlme)

Im(size_2 ~ size_1)

Deterministic:

$$n(z',t+1) = \int_{L}^{U} K(z',z)n(z,t)dz$$

Parameter re-sampled stochastic:

$$n(z',t+1) = \int_{L}^{U} K(z',z,\theta) n(z,t) dz$$

Decide if IPM is (2) simple/general, density-(in)dependent, deterministic/stochastic, parameter/kernel stochastic

init_ipm("simple", "di", "det")

init_ipm("simple", "di",

"stoch", "param")

Sub-kernel formula:

$$P(z',z) = s(z) * G(z',z)$$

Vital rate expressions:

Logit(s)) =
$$\beta_0 + \beta_1 * z$$

 $G(z', z) = f_G(z', \mu(z), \sigma)$
 $\mu(z) = \beta_0 + \beta_1 * z$

$$L = 1.2, U = 7.8, N_{\text{mesh}} = 100$$

 $\theta \sim \text{Norm} (0, \sigma_{\text{Temp}})$

Downside of ipmr

Requires growth part of kernel to be in the form:
 size next ~ a*size + ...

For many organisms a form like:
 growth ~ a*size + b*size^2 + ...
 would be more logical

 In our exercises, we therefore use curve fitting (function nls) to model

size_next ~ size + some_growth_equation

Terms IPM

- Vital rates = rates of growth, survival, reproduction, germination
- Kernel = the function that describes the transitions among sizes, based on vital rate regressions
- P Kernel = the function describing transitions among sizes based on survival and growth
- F Kernel = the function describing transitions among sizes based on fecundity and size distribution of recruits
- Discretization = the change in P and F kernels from continuous functions to large matrices containing transition probabilities