Python On Resonance (PyOR)

Author: Vineeth Thalakottoor \ Email: vineethfrancis.physics@gmail.com

Tutorial 10: Correlation Spectroscopy (COSY) Part 2 J Coupling

In this tutorial we consider Two H1 spins (Homonuclear)

Reference book - "NMR: The Toolkit, How Pulse Sequences Work" by P.J Hore, J.A. Jones and S. Wimperis

Load Python packages and define path to the source file "PythonOnResonance.py"

```
In [128...
          pathSource = '/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_G/Source'
In [129...
          from IPython.display import display, HTML
          display(HTML("<style>.container { width:100% !important; }</style>"))
          import sys
          sys.path.append(pathSource)
          import PythonOnResonance as PyOR
          import time
          import numpy as np
          import matplotlib.pyplot as plt
          from matplotlib import rc
          %matplotlib notebook
          import sympy as sp
          from sympy import *
          from IPython.display import display, Math, Latex
```

Generating Spin System

```
In [130...
Define Spin quantum numbers of your spins in "Slist1".
Slist1[0] is spin of first particle and Slist1[1] is spin of second particle.
""";
Slist1 = [1/2,1/2]

In [131...
Define Planck constant equals 1.
Because NMR spectroscopists are more interested to write Energy in frequency units.
if False then hbarEQ1 = hbar
""";
hbarEQ1 = True
In [132...
Generate Spin Operators
""".
```

```
System = PyOR.Numerical_MR(Slist1, hbarEQ1)

"""
Sx, Sy and Sz Operators
""";
Sx,Sy,Sz = System.SpinOperator()

"""
S+ and S- Operators
""";
Sp,Sm = System.PMoperators(Sx,Sy)
```

Zeeman Hamiltonian in Lab Frame

Larmor Frequency in MHz: [-400.22816765 -400.22821765]

Initialize Density Matrix

```
In [134...
We will generate Initial Density Matrix in two ways:
First we will generate a density matrix as we prefer say, Sz.
Second we will create density matrix at thermal equlibrium

First Case
""";

Thermal_DensMatrix:
    Hz_EnUnit = System.Convert_FreqUnitsTOEnergy(Hz)
    HT_approx = False # High Temperature Approximation is False
    T = 300 # Temperature in Kelvin
    rho_in = System.EqulibriumDensityMatrix(Hz_EnUnit,T,HT_approx)
    rhoeq = rho_in.copy()
else:
    rho_in = Sz[0] # np.sum(Sz,axis=0) # Initial Density Matrix
```

```
Trace of density metrix = 0j
In [135...
            1.1.1
           Operator Basis
           Option: 'Cartesian spin half' and 'PMZ spin half'
           All the 16 operator basis are loaded in the matrix, 'B_car'
           Basis = 'Cartesian spin half'
           B_car = System.TwoSpinOP(Sx,Sy,Sz,Sp,Sm,Basis)
          Basis: \frac{1}{2}E, I_x, I_y, I_z, S_x, S_y, S_z, 2I_xS_z, 2I_yS_z, 2I_zS_x, 2I_zS_y, 2I_zS_z, 2I_xS_x, 2I_xS_y, 2I_yS_x, 2I_yS_y
In [136...
           B_{car}[0] = B0 = 1/2 E,
           B_{car}[1] = B1 = Ix,
           so on...
           Hope you understand.
           System.OperatorBasis('Cartesian')
          Basis: B0 = \frac{1}{2}E, B1 = I_x, B2 = I_y, B3 = I_z, B4 = S_x, B5 = S_y, B6 = S_z, B7 = 2I_xS_z, B8 = 2I_yS_z, B9 = 2I_zS_x,
          B10 = 2I_zS_y, B11 = 2I_zS_z, B12 = 2I_xS_x, B13 = 2I_xS_y, B14 = 2I_yS_x, B15 = 2I_yS_y
In [137...
           A density matrix (rho) can be written as:
           rho = a B0 + b B1 + c B2 + ...
           where B0, B1,... are operator basis.
           Components of initial density matrix in cartesian basis
            111;
           Matrix(System.DensityMatrix_Components(B_car,rho_in))
Out[137...
              0
              0
             1.0
              0
              0
              0
              0
              0
              0
              0
              0
              0
```

rhoeq = np.sum(Sz,axis=0) # Equlibrium Density Matrix
print("Trace of density metrix = ", np.trace(rho_in))

Zeeman Halitonian in Rotating Frame

```
OmegaRF = [-System.gammaH1*B0,-System.gammaH1*B0,-System.gammaH1*B0]
Hz = System.Zeeman_RotFrame(LarmorF, Sz, OmegaRF)
```

J Coupling Hamiltonian

Total Hamiltonian

```
In [140... Htotal = Hz + Hj
```

Relaxation Constant

```
In [141... # Define longitudinal and transverse Relaxation
R1 = 0
R2 = 5
System.Relaxation_Constants(R1,R2)
Rprocess = "Phenomenological"
```

90 deg on spin 1

```
In [142... rho = System.Rotate_H(rho_in,90,Sx[0])
In [143... # Components of density matrix in cartesian basis
Matrix(System.DensityMatrix_Components(B_car,rho))
```

Out[143...

```
0
 0
-1.0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
```

Delay Evolution

Out[145...

```
In [144...
          dt = 0.0005 #50e-6
          delay = 1/(4.0 * Jlist[0][1]) # 1/2J
          Dpoints = int(delay/dt)
          print("Npoints = ", Dpoints)
          method = "ODE Solver"
          start_time = time.time()
          t, rho_t = System.Evolution_H(rhoeq,rho,Sx,Sy,Sz,Sp,Sm,Htotal,dt,Dpoints,method,Rprocess)
          end_time = time.time()
          timetaken = end_time - start_time
          print("Total time = %s seconds " % (timetaken))
         Npoints = 47
         Total time = 0.18808865547180176 seconds
In [145...
          # Components of density matrix in cartesian basis
          Matrix(System.DensityMatrix_Components(B_car,rho_t[-1]))
```

90 deg Pulse on all spins

```
In [146...
          rho1 = System.Rotate_H(rho_t[-1],90,np.sum(Sx,axis=0))
In [147...
          # Components of density matrix in cartesian basis
          Matrix(System.DensityMatrix_Components(B_car,rho1))
Out[147...
                     0
            0.105363913865696
            0.665241572157318
                     0
                     0
            -0.103234018970891
                     0
            0.651793940267898
                     0
                     0
```

Detection

```
In [148... AQ = 3.0 Npoints = int(AQ/dt) print("Npoints = ", Npoints)
```

```
method = "ODE Solver"
          start_time = time.time()
          t1, rho_t1 = System.Evolution_H(rhoeq,rho1,Sx,Sy,Sz,Sp,Sm,Htotal,dt,Npoints,method,Rproces
          end_time = time.time()
          timetaken = end_time - start_time
          print("Total time = %s seconds " % (timetaken))
         Npoints = 6000
         Total time = 23.311939001083374 seconds
In [149...
          # Components of density matrix in cartesian basis
          Matrix(System.DensityMatrix_Components(B_car, rho_t1[-1]))
                       0
Out[149...
                       0
                       0
               0.665241572157318
            -5.70965686864341 \cdot 10^{-5}
                       0
                       0
                       0
            -5.8275031779214 \cdot 10^{-5}
                       0
                       0
                       0
             0.000360449150631883
                       0
                       0
```

Expectation Value

Fourier Transform

```
fs = 1.0/dt
freq, spectrum1 = System.FourierTransform(Ex_det1,fs,5)
freq, spectrum2 = System.FourierTransform(Ex_det2,fs,5)
freq, spectrum3 = System.FourierTransform(Ex_det3,fs,5)
```

Ploting

In [153...

/opt/anaconda3/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Cas ting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) No handles with labels found to put in legend.

In [154...

```
System.Plotting(2,t1,Ex_det2,"time (s)",r"$2I_{x}S_{z} + j \leq 2I_{y}S_{z}^{y},"red")
```


/opt/anaconda3/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Cas ting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) No handles with labels found to put in legend.

In [155...

System.Plotting(3, t1, Ex_det3 , "time (s)", r"\$2 $I_{x}S_{y}$ ", "red")

/opt/anaconda3/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Cas ting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)
No handles with labels found to put in legend.

```
In [156...
PH0 = -45.0
spectrum_PH0 = System.PhaseAdjust_PH0(spectrum1, PH0)
System.Plotting(4, freq, spectrum_PH0.real, "Frequency (Hz)", r"Spectrum (I+ and S+)", "red")
```


No handles with labels found to put in legend.

```
PH0 =0.0 spectrum_PH0 = System.PhaseAdjust_PH0(spectrum2,PH0) System.Plotting(5,freq,spectrum_PH0.real,"Frequency (Hz)",r"Spectrum ($2I_{x}S_{z} + j \ 2
```


No handles with labels found to put in legend.

```
In [158...
PH0 = 0.0
spectrum_PH0 = System.PhaseAdjust_PH0(spectrum3,PH0)
System.Plotting(64,freq,spectrum_PH0.real,"Frequency (Hz)",r"Spectrum ($2I_{x}S_{y}$)","re
```


No handles with labels found to put in legend.

Any suggestion? write to me

If you see something is wrong please write to me, so that the PyOR can be error free.

vineethfrancis.physics@gmail.com