

ANÁLISIS MATEMÁTICO II Examen Final

	00,00,202.

APELLIDO DEL ALUMNO:	NOMBRE:
-----------------------------	---------

CORRIGIÓ:REVISÓ:

T1	,	Γ2	P1	P2	P3	P4	CALIFICACIÓN

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta.

No resolver el examen en lápiz. Duración del examen: 2 horas

un valor extremo local en (x_0, y_0) .

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

T1) Indique si cada una de las siguientes proposiciones es verdadera o falsa. Si es verdadera proporcione una demostración, caso contrario exhiba un contraejemplo.

- **a.** La circulación del campo $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\vec{f}(x,y) = (y^2 g(y-x), y^2 + g(y-x))$ con $g \in \mathbb{R}$ $C^1(R)$ a lo largo de la curva frontera de la región plana D definida por D: $\begin{cases} x \ge y^2 \\ y < 2 - y^2 \end{cases}$, recorrida en sentido negativo, es igual a $3\sqrt{2}$.
- define de forma implícita a una función z = f(x, y) de clase $C^{\infty}(R^2)$ en un cierto entorno V de se sabe que $(x_0, y_0) = (-12, 12\sqrt{3})$. Si la matriz Hessiana de f es $Hf(x_0, y_0) = \begin{pmatrix} \frac{\sqrt{3}}{20} & 0 \\ 0 & \frac{\sqrt{3}}{2} \end{pmatrix}$, entonces f alcanza un volon estare de f es f alcanza

b. La ecuación $2z^2 + xyz - xy^2 - x^3 = 0$ en un entorno del punto $(x_0, y_0, z_0) = (-12, 12\sqrt{3}, 24\sqrt{3})$

- **T2**) a. Demuestre que si \emptyset : $S \subseteq R^3 \to R$ es un campo escalar de clase $C^1(S)$, entonces a. Definestic que si φ . S = X $C \in S$ una curva regular a trozos que une los puntos $P, Q \in S$.

 b. Analice si la función definida por. $g(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}} & si\ (x,y) \neq (0,0) \\ 0 & si\ (x,y) = (0,0) \end{cases}$ admite plano tangente en el origen. Fundamente claramente la respuesta.
- **P1**) Calcule el área del trozo de superficie de ecuación $z = \sqrt{x^2 + y^2} \ con \ x^2 + y^2 \le 4y$.
- **P2**) Determine las líneas del campo definido por $\vec{F}(x,y) = (x-y,x+y)$ y luego obtenga aquella que pasa por el punto (1,-1).
- **P3**) Calcule el flujo del gradiente del campo escalar $\varphi(x,y,z) = 2x^2 4yz^2$ a través de la superficie frontera del cuerpo W definido por W: $\begin{cases} 2x + y \le 4 \\ x + z \le 2 \end{cases}$. Indique la orientación escogida para la $x \ge 0$, $y \ge 0$, $z \ge 0$ superficie. planteo
- **P4**) Calcule la circulación del campo vectorial $\vec{F}(x,y,z) = (yz + g(x), xz + g(y), y^2 + g(z))$ con $\vec{F} \in C^1(\mathbb{R}^3)$ a lo largo de la curva dada como intersección de las superficies $y + x^2 + z^2 = 0$ e
- indicar en un gráfico la orientación de la