

CI 2 – SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

Devoir Maison 2 – Système de freinage d'un TGV DUPLEX Éléments de corrigé

D'après ressources de David Violeau.

Présentation

Dispositif d'anti-enrayage

L'objectif est de valider les critères du cahier des charges ci-contre.

Exigence	Critère	Niveau	Flexibilité
6.1.2.1	Ecart en régime permanent	Nul	Aucune
	Temps du premier maximum	3,5 secondes	Maxi
	Dépassement	18%	Maxi
6.1.2.2	Ecart en régime permanent	Nul	Aucune
		9 secondes	Maxi

Objectif

Modèle de connaissance du dispositif d'anti-enrayage

Vérification du cahier des charges vis-à-vis de la consigne de glissement

Question 1

Mettre la relation (3) dans le domaine de Laplace et exprimer $H_2(p)$.

$$v_1(t) + \frac{I \cdot V_{T_0}}{r^2 M g f'(v_0)} \dot{v_1}(t) = \frac{1}{M g f'(v_0)} f_R(t)$$

$$\iff V_1(p) + p \frac{I \cdot V_{T_0}}{r^2 M g f'(v_0)} V_1(p) = \frac{1}{M g f'(v_0)} F_R(p)$$

On note:

$$\alpha = \frac{I \cdot V_{T_0}}{r^2 M g f'(v_0)} \quad \beta = \frac{1}{M g f'(v_0)}$$

On a donc:

$$V_1(p) + \alpha p V_1(p) = \beta F_R(p)$$

En conséquence:

$$H_2(p) = \frac{V_1(p)}{F_R(p)} = \frac{\beta}{1 + \alpha p}$$

٦

Question 2

Calculer la fonction de transfert en boucle fermé du système. On la notera F(p):

$$F(p) = \frac{v_1(p)}{v_c(p)}$$

Par définition, on a:

$$F(p) = \frac{V_1(p)}{V_c(p)} = \frac{C(p)H_1(p)H_2(p)}{1 + C(p)H_1(p)H_2(p)M(p)}$$

En remplaçant les fonctions de transfert par leur expression, on obtient :

$$F(p) = \frac{\frac{K_r T_i p + K_r}{T_i p} \frac{2000}{1 + 0, 1p + 0, 01p^2} \frac{\beta}{1 + \alpha p}}{1 + \frac{K_r T_i p + K_r}{T_i p} \frac{2000}{1 + 0, 1p + 0, 01p^2} \frac{\beta}{1 + \alpha p} \frac{1}{1 + 0, 05p}}$$

$$F(p) = \frac{2000 \cdot \beta \left(K_r T_i p + K_r \right)}{\left(1 + \alpha p \right) \left(1 + 0, 1p + 0, 01p^2 \right) T_i p + 2000 \cdot \beta \frac{K_r T_i p + K_r}{1 + 0, 05p}}$$

Question 3

Calculer l'écart statique du système.

L'écart statique d'un système est calculée à l'aide d'une entrée échelon.

Commençons par calculer la valeur finale atteinte par le système.

$$V_c(p) = \frac{1}{n}$$

$$\lim_{t \to +\infty} v_1(t) = \lim_{p \to 0} p V_1(p) = \lim_{p \to +0} p V_c(p) F(p)$$

$$F(p) = \frac{2000 \cdot \beta \left(K_r T_i p + K_r\right) \left(1 + 0.05 p\right)}{\left(1 + \alpha p\right) \left(K_r T_i p + K_r\right) \left(1 + 0.1 p + 0.01 p^2\right) T_i p + 2000 \cdot \beta \left(K_r T_i p + K_r\right)}$$

et

$$pV_c(p)=1$$

On a donc

$$\lim_{t \to +\infty} v_1(t) = \lim_{p \to 0} F(p) = \frac{2000 \cdot \beta K_r}{2000 \cdot \beta K_r} = 1$$

L'entrée étant un échelon d'amplitude, l'écart statique est donc nul (1-1). Le système est donc précis.

Pour la suite, on adoptera la relation suivante :

$$F(p) = \frac{v_1(p)}{v_c(p)} = \frac{K_f(1 + \tau_1 p)}{(1 + \tau_2 p)^2}$$

Question 4

Donner la fonction de transfert associée à une entrée échelon.

2

Orrection

La fonction de transfert d'une fonction échelon dans le domaine de Laplace est la suivante :

$$V_c(p) = \frac{1}{p}$$

Question 5

Calculer l'évolution temporelle de la réponse du système à une entrée indicielle (réponse à un échelon). Vous détaillerez les étapes permettant de calculer la décomposition en éléments simples. On donne pour cela :

$$\mathscr{L}\left[t^n e^{-at}\right] = \frac{n!}{(p+a)^{n+1}}$$

À partir de la fonction F(p) donnée on a donc :

$$V_1(p) = \frac{1}{p} \cdot \frac{v_1(p)}{v_c(p)} = \frac{K_f(1 + \tau_1 p)}{p(1 + \tau_2 p)^2}$$

Il est donc possible de mettre $V_1(p)$ sous la forme :

$$V_1(p) = \frac{\alpha}{p} + \frac{\beta}{1 + \tau_2 p} + \frac{\gamma}{(1 + \tau_2 p)^2}$$

En multipliant les deux expressions de $V_1(p)$ par p, on a :

$$p\frac{K_f(1+\tau_1p)}{p(1+\tau_2p)^2} = p\frac{\alpha}{p} + p\frac{\beta}{1+\tau_2p} + p\frac{\gamma}{(1+\tau_2p)^2} \iff \frac{K_f(1+\tau_1p)}{(1+\tau_2p)^2} = \alpha + p\frac{\beta}{1+\tau_2p} + p\frac{\gamma}{(1+\tau_2p)^2}$$

En posant p = 0, on a donc directement :

$$\alpha = K_f$$

En multipliant les deux expressions de $V_1(p)$ par $(1+\tau_2p)^2$, on a :

$$(1+\tau_2 p)^2 \frac{K_f (1+\tau_1 p)}{p (1+\tau_2 p)^2} = (1+\tau_2 p)^2 \frac{\alpha}{p} + (1+\tau_2 p)^2 \frac{\beta}{1+\tau_2 p} + (1+\tau_2 p)^2 \frac{\gamma}{(1+\tau_2 p)^2}$$

$$\iff \frac{K_f(1+\tau_1p)}{p} = (1+\tau_2p)^2 \frac{\alpha}{p} + \beta(1+\tau_2p) + \gamma$$

En posant $p = \frac{-1}{\tau_2}$, on a donc directement :

$$\gamma = K_f(\tau_1 - \tau_2)$$

Pour déterminer β , utilisons une valeur particulière. Calculons donc $V_1(1)$ avec les deux expressions de V_1 :

$$V_1(1) = \frac{K_f(1+\tau_1)}{(1+\tau_2)^2} = K_f + \frac{\beta}{1+\tau_2} + \frac{K_f(\tau_1-\tau_2)}{(1+\tau_2)^2}$$

$$\beta = -K_f \tau_2$$

D'où

$$V_1(p) = \frac{K_f}{p} - \frac{K_f \tau_2}{1 + \tau_2 p} + \frac{K_f (\tau_1 - \tau_2)}{(1 + \tau_2 p)^2}$$

En utilisant la transformée de Laplace inverse, on obtient :

$$v_1(t) = \left(K_f - K_f e^{-\frac{t}{\tau_2}} + \frac{K_f(\tau_1 - \tau_2)}{\tau_2^2} t e^{-\frac{t}{\tau_2}}\right) u(t)$$

Question 6

A partir de la réponse temporelle, donner une **méthode** permettant de calculer le premier dépassement.

D'après la courbe on observe un seul dépassement t_m . Il est donc nécessaire de résoudre :

$$\frac{v_1(t)}{dt} = 0$$

La valeur de t_m donnera donc le temps auquel a lieu le maximum du dépassement.

En calculant alors $v_1(t_m)$, on obtient la valeur du dépassement.

Par le calcul, on obtient $t_m = 3,3s$. et $v(t_m) = 1,13$ soit un dépassement de 13%.

Question 7

A partir de la courbe, donner :

- le temps du premier dépassement;
- le dépassement en pourcentage.

Vous indiquerez les relevés effectués sur la courbe donnée en fin de sujet.

Le lecture de la courbe confirme les valeurs données ci-dessus :

- le temps du premier dépassement : 3,3 s.
- le dépassement en pourcentage : 13%

Question 8

Á partir de ces mesures, peut-on dire que le cahier des charges est vérifié?

Correction

Le temps du premier maximum est inférieur à 3,5 s. Le dépassement est de 13% ce qui est inférieur à 18%. Le cahier des charges est donc vérifié.

Analyse des performances temporelles en réponse à des variations d'adhérence

Question 9

En utilisant le théorème de superposition et donc en tenant compte de la perturbation, calculer $v_1(p)$ en fonction de $F_{ext}(p)$ et $v_c(p)$.

En considérant que F_{ext} est nul, on a :

$$\frac{V_1}{V_c} = \frac{C(p)H_1(p)H_2(p)}{1 + C(p)H_1(p)H_2(p)M(p)}$$

En considérant que V_C est nul, on a :

$$\frac{V_1}{F_{ext}(p)} = \frac{H_2(p)}{1 + C(p)H_1(p)H_2(p)M(p)}$$

Au final, (attention au signe moins du comparateur de la perturbation) :

$$V_1(p) = V_c(p) \cdot \frac{C(p)H_1(p)H_2(p)}{1 + C(p)H_1(p)H_2(p)M(p)} - F_{ext}(p) \frac{H_2(p)}{1 + C(p)H_1(p)H_2(p)M(p)}$$

Question 10

Quel sera l'écart statique si le système est sollicité par une entrée $v_c(p)$ indicielle et une perturbation $f_{ext}(p)$ indicielle.

Correction

Question 11

A partir de la lecture de la courbe, donner la constante de temps τ_G du système par la méthode de votre choix. Indiquer vos relevés sur les courbes en fin de sujet.

orrection

3 méthodes permettent de mesurer τ_G pour un système du premier ordre :

- la tangente à l'origine coupe la valeur finale en $t = \tau_G$;
- à 63% de la valeur finale, on a $t = \tau_G$;

– à 95% de la valeur finale, on a $t = 3\tau_G$.

La lecture de la question suivante nous indique qu'il vaut peut être mieux utiliser la troisième méthode. On a donc $\tau_G = 2,66 \, s$.

Question 12

A partir de la lecture de la courbe, donner le temps de réponse à 5%.

Correction

Le temps de réponse à 5% de la valeur finale est de 8 secondes.

Question 13

Conclure sur les performances obtenues vis-à-vis des exigences du cahier des charges à des variations de l'adhérence.

Correction

D'après le cahier des charges, le temps de réponse doit être inférieur à 9s. Le temps de réponse est de 8 secondes. Le cahier des charges est vérifié.