US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250267971 A1 August 21, 2025 NITTA; Yosuke et al.

IMAGING DEVICE, ELECTRONIC DEVICE, AND MANUFACTURING METHOD

Abstract

The present disclosure relates to an imaging device, an electronic device, and manufacturing methods enabling to reduce a manufacturing cost. There are provided: a first semiconductor element including an imaging element configured to generate a pixel signal; and a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member. The first signal processing circuit has a structure including at least one more layer than the second signal processing circuit. There are further provided: a first wiring line that connects the first semiconductor element and the first signal processing circuit; and a second wiring line that connects the first signal processing circuit and the second signal processing circuit. The present disclosure can be applied to an imaging device.

Inventors: NITTA; Yosuke (Kanagawa, JP), HAGIMOTO; Yoshiya (Kanagawa, JP), FUJII;

Nobutoshi (Kanagawa, JP), YAMAMOTO; Yuichi (Kanagawa, JP)

Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION (Kanagawa, JP)

Family ID: 1000008578286

Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION (Kanagawa, JP)

Appl. No.: 19/200338

Filed: May 06, 2025

Foreign Application Priority Data

JP 2019-164444 Sep. 10, 2019

Related U.S. Application Data

parent US continuation 17640086 20220303 parent-grant-document US 12324267 WO continuation PCT/JP2020/032282 20200827 child US 19200338

Publication Classification

Int. Cl.: H10F39/00 (20250101); H04N25/79 (20230101)

U.S. Cl.:

CPC **H10F39/809** (20250101); **H04N25/79** (20230101); **H10F39/811** (20250101);

H10F39/8053 (20250101); H10F39/8063 (20250101)

Background/Summary

CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation application of U.S. patent application Ser. No. 17/640,086, filed 3 Mar. 2022, which is a national stage application under 35 U.S.C. 371 and claims the benefit of PCT Application No. PCT/JP2020/032282, having an international filing date of 27 Aug. 2020, which designated the United States, which PCT application claimed the benefit of Japanese Patent Application No. 2019-164444, filed 10 Sep. 2019, the entire disclosures of each of which are incorporated herein by reference.

TECHNICAL FIELD

[0002] The present disclosure relates to an imaging device, an electronic device, and a manufacturing method, and relates to, for example, an imaging device, an electronic device, and a manufacturing method suitable for application to an imaging device including a plurality of chips. BACKGROUND ART

[0003] An imaging device has high image quality in a form of high vision, 4k×2k spar high vision, and further a spar slow motion function, resulting in increase of the number of pixels, a high frame rate, and a high gradation.

[0004] Since a transmission rate is the number of pixels×frame rate×gradation, for example, in a case of 4k×2k=8M pixels, the frame rate of 240 f/s, and 14 bit gradation, 8M×240 f/s×14 bits=26 Gbps is obtained. After signal processing in a subsequent stage of an imaging element, higher speed transmission of 26G×3=78 Gbps is required due to RGB output in color coordination. [0005] When high-speed transmission is performed with a small number of connection terminals, a signal rate per connection terminal increases, difficulty in achieving impedance matching of a high-speed transmission path increases, a clock frequency increases, and a loss also increases, resulting in increase of power consumption.

[0006] In order to avoid this, it is preferable to increase the number of connection terminals and divide the transmission to reduce the signal rate. However, when the number of connection terminals is increased, a package of each circuit becomes large due to arrangement of terminals necessary for connection of the imaging element with a signal processing circuit, a memory circuit, and the like in a subsequent stage.

[0007] Furthermore, a substrate of electric wiring necessary for the signal processing circuit and the memory circuit in a subsequent stage also requires a finer wiring density in laminated wiring, a wiring path length becomes longer, and accordingly, power consumption increases.

[0008] When the package of each circuit becomes large, the substrate itself to be mounted also becomes large, and a configuration itself of the imaging device on which the imaging element is mounted at the end becomes large.

[0009] Therefore, as a technique for reducing a size of the configuration of the imaging device, a technique has been proposed in which an imaging element is laminated with circuits such as a signal processing circuit and a memory circuit by wafer on wafer (WoW) that performs bonding of the circuits in a wafer state (see Patent Document 1).

[0010] By using the lamination technique using WoW, a semiconductor can be connected by many fine wiring lines, so that a transmission speed per one semiconductor becomes low and power consumption can be suppressed.

CITATION LIST

Patent Document

[0011] Patent Document 1: Japanese Patent Application Laid-Open No. 2014-099582

SUMMARY OF THE INVENTION

Problems to be Solved by the Invention

[0012] However, in the case of WoW, there is no problem as long as chips of wafers to be laminated have the same size, but the size has to be adjusted to the largest chip size when the sizes of individual chips made to be the wafer are different, and there has been a possibility that manufacturing efficiency of each circuit is deteriorated and a cost is increased.

[0013] Furthermore, for a yield of each wafer, a chip defect of each wafer to be laminated also causes chips of other laminated wafers to be treated as defects. Since a yield of wafers of the entire lamination is a product (multiplication) of yields of the individual wafers, there has been a possibility that the yield is deteriorated and a cost is increased.

[0014] Furthermore, a technique of connecting chips having different chip sizes by forming small bumps has also been proposed. In this case, since chips of different sizes selected as non-defective products are connected via the bumps, an influence of manufacturing efficiency of each wafer and a yield of each chip is small.

[0015] However, since it is difficult to form small bumps and a connection pitch is limited, there has been a possibility that the number of connection terminals cannot be larger than that of WoW. Furthermore, since the connection is performed in a mounting process, there has been a possibility of cost increase caused by a decrease in yield due to the connection, when the number of connection terminals increases. Furthermore, since the connection in the mounting process has also been individual bonding, time required for the connection becomes long, and there has been a possibility that a process cost increases.

[0016] The present disclosure has been made in view of such a situation, and an object thereof is to reduce a manufacturing cost of an imaging device.

Solutions to Problems

[0017] A first imaging device according to one aspect of the present technology includes: a first semiconductor element including an imaging element configured to generate a pixel signal; and a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member, in which the first signal processing circuit has a structure including at least one more layer than the second signal processing circuit.

[0018] A first electronic device according to one aspect of the present technology includes the first imaging device.

[0019] A second imaging device according to one aspect of the present technology includes: a first semiconductor element including an imaging element configured to generate a pixel signal; a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member; and a wiring line that connects the first signal processing circuit and the second signal processing circuit, in which the wiring line connects a terminal provided in a wiring layer of a lowermost layer of the first signal processing circuit and a terminal provided in a wiring layer of a lowermost layer of the second signal processing circuit.

[0020] A second electronic device according to one aspect of the present technology includes the second imaging device.

[0021] A manufacturing method according to one aspect of the present technology is a manufacturing method for manufacturing an imaging device including: a first semiconductor element including an imaging element configured to generate a pixel signal on a pixel basis; a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member; and a wiring line that connects the first signal processing circuit and the second signal processing circuit. The manufacturing method includes: a step of transferring the first signal processing circuit and the second signal processing circuit to the first semiconductor element; a step of forming a first film on the first signal processing circuit and the second signal processing circuit; a step of exposing a part of a first terminal provided in a wiring layer of a lowermost layer of the first signal processing circuit; and a part of a second terminal provided in a wiring layer of a lowermost layer of the second signal processing circuit; and a step of forming the wiring line that connects the first terminal and the second terminal.

[0022] In the first imaging device and the first electronic device according to one aspect of the present technology, there are provided: the first semiconductor element including the imaging element configured to generate a pixel signal; and the second semiconductor element in which the first signal processing circuit and the second signal processing circuit that are configured to process the pixel signal are embedded by the embedded member. The first signal processing circuit has a structure including at least one more layer than the second signal processing circuit.

[0023] In the second imaging device and the second electronic device according to one aspect of the present technology, there are provided: the first semiconductor element including the imaging element configured to generate a pixel signal; the second semiconductor element in which the first signal processing circuit and the second signal processing circuit that are configured to process the pixel signal are embedded by the embedded member; and the wiring line that connects the first signal processing circuit and the second signal processing circuit. The wiring line connects the terminal provided in the wiring layer of the lowermost layer of the first signal processing circuit and the terminal provided in the wiring layer of the lowermost layer of the second signal processing circuit.

[0024] In the manufacturing method according to one aspect of the present technology, the imaging device is manufactured including: the first semiconductor element including the imaging element configured to generate a pixel signal on a pixel basis; the second semiconductor element in which the first signal processing circuit and the second signal processing circuit that are configured to process the pixel signal are embedded by the embedded member; and the wiring line that connects the first signal processing circuit and the second signal processing circuit. The manufacturing method includes: the step of transferring the first signal processing circuit and the second signal processing circuit to the first semiconductor element; the step of forming the first film on the first signal processing circuit and the second signal processing circuit; the step of exposing a part of the first terminal provided in the wiring layer of the lowermost layer of the lowermost layer of the second signal processing circuit; and the second terminal provided in the wiring line that connects the first terminal and the second terminal.

[0025] Note that the imaging device and the electronic device may be independent devices, or may be internal blocks that form one device.

Description

BRIEF DESCRIPTION OF DRAWINGS

- [0026] FIG. **1** is a view for explaining a yield.
- [0027] FIG. **2** is a view for explaining a decrease in manufacturing efficiency.
- [0028] FIG. **3** is a view for explaining connection using bumps.
- [0029] FIG. **4** is a view for explaining an outline of a manufacturing method of an imaging device.
- [0030] FIG. **5** is a view for explaining a configuration example of the imaging device.
- [0031] FIG. **6** is a view for explaining a manufacturing method of the imaging device.
- [0032] FIG. 7 is a view for explaining the manufacturing method of the imaging device.
- [0033] FIG. **8** is a view for explaining the manufacturing method of the imaging device.
- [0034] FIG. **9** is a view for explaining the manufacturing method of the imaging device.
- [0035] FIG. **10** is a view for explaining the manufacturing method of the imaging device.
- [0036] FIG. **11** is a view for explaining the manufacturing method of the imaging device.
- [0037] FIG. **12** is a view for explaining easiness of rewiring.
- [0038] FIG. **13** is a view for explaining another configuration example of the imaging device.
- [0039] FIG. **14** is a view for explaining another configuration example of the imaging device.
- [0040] FIG. **15** is a view for explaining an outline of a manufacturing method of the imaging device.
- [0041] FIG. **16** is a view for explaining the manufacturing method of the imaging device.
- [0042] FIG. **17** is a view for explaining the manufacturing method of the imaging device.
- [0043] FIG. **18** is a view for explaining the manufacturing method of the imaging device.
- [0044] FIG. **19** is a view for explaining manufacturing of a wiring line.
- [0045] FIG. **20** is a diagram illustrating an example of an electronic device.
- [0046] FIG. **21** is a view illustrating an example of a schematic configuration of an endoscopic surgery system.
- [0047] FIG. **22** is a block diagram illustrating an example of a functional configuration of a camera head and a CCU.
- [0048] FIG. **23** is a block diagram illustrating an example of a schematic configuration of a vehicle control system.
- [0049] FIG. **24** is an explanatory view illustrating an example of an installation position of a vehicle external information detection unit and an imaging unit.

MODE FOR CARRYING OUT THE INVENTION

- [0050] Hereinafter, an embodiment for implementing the present technology (hereinafter, referred to as an embodiment) will be described.
- [0051] Here, in describing the present disclosure, wafer on wafer (WoW) disclosed in Patent Document 1 will be described.
- [0052] For example, as illustrated in FIG. **1**, WoW is a technology of bonding and laminating an imaging device with a circuit including an IC, such as a signal processing circuit and a memory circuit, in a wafer state.
- [0053] FIG. **1** schematically represents WoW in which a wafer W**1** formed with a plurality of imaging elements **11**, a wafer W**2** formed with a plurality of memory circuits **12**, and a wafer W**3** formed with a plurality of logic circuits **13** are bonded and laminated in a finely aligned state.
- [0054] By dicing a configuration laminated in this manner into individual pieces, for example, an imaging device as illustrated in FIG. 2 is formed.
- [0055] An imaging device **1** of FIG. **2** is configured by laminating an on-chip lens, an on-chip color filter **10**, the imaging element **11**, the memory circuit **12**, the logic circuit **13**, and a supporting substrate **14** in this order from the top.
- [0056] Here, by applying the WoW technology, a wiring line **21-1** electrically connecting the imaging element **11** and the memory circuit **12** and a wiring line **21-2** electrically connecting the memory circuit **12** and the logic circuit **13** can be connected at a fine pitch.

[0057] As a result, since the number of wiring lines can be increased, a transmission speed in each signal line can be reduced, and power saving can be achieved.

[0058] However, since areas required for each of the imaging element **11**, the memory circuit **12**, and the logic circuit **13** to be laminated are different, a space Z**1** in which neither a circuit nor a wiring line is formed is generated on the left and right in the figure of the memory circuit **12** having an area smaller than that of the largest imaging element **11**. Furthermore, a space Z**2** in which neither a circuit nor a wiring line is formed is generated on the left and right in the figure of the logic circuit having an area smaller than that of the memory circuit **12**.

[0059] That is, the spaces Z1 and Z2 are generated due to the fact that the areas required for the imaging element 11, the memory circuit 12, and the logic circuit 13 are different from each other, and are caused as a result of laminating with, as a reference, the imaging element 11 that requires the largest area, in FIG. 2.

[0060] This configuration reduces manufacturing efficiency of the imaging device **1**, and as a result, a manufacturing cost is increased.

[0061] Furthermore, in FIG. 1, among the imaging elements 11, the memory circuits 12, and the logic circuits 13 formed in the respective wafers W1 to W3, a defective configuration is represented by filling squares. That is, FIG. 1 illustrates that two defects occur in each of the wafers W1 to W3.

[0062] As illustrated in FIG. 1, defects occurring in the imaging elements 11, the memory circuits 12, and the logic circuits 13 formed in the respective wafers W1 to W3 do not necessarily occur at the same position. Therefore, as illustrated in FIG. 1, in the imaging devices 1 formed by lamination, six defects with cross marks on the wafer W1 of the imaging element 11 occur. [0063] As a result, in the six defective imaging devices 1, the imaging elements 11, the memory circuits 12, and the logic circuits 13 are treated as having six defects each although at least two components among three components of the imaging element 11, the memory circuit 12, and the logic circuit 13 are not defective. Therefore, the number of yields is to be six each, which is obtained by integrating the number of wafers, while the number of yields may be originally two for each component.

[0064] As a result, the yield of the imaging device **1** is reduced, and the manufacturing cost is increased.

[0065] Furthermore, as illustrated in FIG. 3, it is conceivable to dice into individual pieces the imaging element 11, the memory circuit 12, and the logic circuit 13 having different chip sizes, selectively arrange only non-defective products, and connect by forming a small bump.

[0066] In the imaging device 1 of FIG. 3, an on-chip lens, the on-chip color filter 10, and the imaging element 11 are laminated from the top, the memory circuit 12 and the logic circuit 13 are laminated on the same layer therebelow, and the supporting substrate 14 is provided therebelow and laminated. Furthermore, the imaging element 11, and the memory circuit 12 and the logic circuit 13 arranged in the same layer are electrically connected via small bumps 31.

[0067] In the imaging device 1 of FIG. 3, chips of different sizes selected as non-defective products are connected via the bumps 31, and an influence of a manufacturing efficiency difference of individual wafers and a yield of each chip is reduced.

[0068] However, it is difficult to form the small bumps **31**, and there is a limit to decrease a connection pitch d**2** as illustrated in FIG. **3**, so that the connection pitch d**2** cannot be made smaller than a connection pitch d**1** in FIG. **2** in a case where WoW is used.

[0069] For this reason, the imaging device **1** of FIG. **3** laminated using the bumps cannot have a larger number of connection terminals than that of the imaging device **1** of FIG. **2** laminated by WoW. Furthermore, in a case of connection using bumps as in the imaging device **1** of FIG. **3**, when the number of connection terminals increases, reduction in a yield related to bonding occurs since bonding is performed in a mounting process, and a cost increases. Moreover, since the connection of the bumps in the mounting process is also an individual operation, time of each

process is long, and a process cost also increases.

[0070] As described above, the imaging element of the present disclosure is to reduce the cost related to manufacturing from the viewpoint of the manufacturing efficiency, the mounting cost, and the process cost.

About Lamination of Wafers

[0071] FIG. **4** is a view for explaining a structure in which a plurality of wafers is laminated by the WoW technology that is applied when an imaging device of the present disclosure is manufactured. [0072] In manufacturing the imaging device of the present disclosure, two wafers are laminated in a state where wiring lines are precisely aligned, while the two wafers include: a wafer **101** on which a plurality of imaging elements (complementary metal oxide semiconductor (CMOS) image sensors or charge coupled devices (CCDs)) **120** is formed; and the supporting substrate **102** on which the memory circuit **122** and the logic circuit **121** are rearranged.

[0073] In the wafer **101**, the plurality of imaging elements **120** is formed by a semiconductor process.

[0074] On the supporting substrate **102**, a plurality of memory circuits **122** is rearranged, which is formed on a wafer **103** by a semiconductor process, diced into individual pieces, then electrically inspected individually, and confirmed to be non-defective chips.

[0075] On the supporting substrate **102**, a plurality of logic circuits **121** is rearranged, which is formed on a wafer **104** by a semiconductor process, diced into individual pieces, then electrically inspected individually, and confirmed to be non-defective chips.

Configuration Example of Imaging Device

[0076] FIG. **4** is a view for explaining a structure in which a plurality of wafers is laminated by a combination of a chip on wafer (CoW) technology and the WoW technology that are applied when the imaging device of the present disclosure is manufactured. By laminating the plurality of wafers by the CoW technology and the WoW technology as illustrated in FIG. **4**, and then dicing into individual pieces, an imaging device **111** (FIG. **5**) of the present disclosure is formed.

[0077] The imaging device of the present disclosure has, for example, a configuration as illustrated in FIG. 5. Note that, in FIG. 5, an upper part is a side cross-sectional view, and a lower part is a view illustrating a horizontal arrangement relationship of the imaging element **120**, and the logic circuit **121** and the memory circuit **122** when viewed from an upper surface.

[0078] In the imaging device **111** in the upper part of FIG. **5**, from the top in the figure, an on-chip lens, the on-chip color filter **131**, and the imaging element **120** are laminated, and the logic circuit **121** and the memory circuit **122** are arranged and laminated on the left and right sides in the same layer therebelow, and a supporting substrate **132** is formed therebelow. That is, as illustrated in the upper part of FIG. **5**, the imaging device **111** of FIG. **5** includes: a semiconductor element layer E**1** including the imaging element **120** formed by the wafer **101**; and a semiconductor element layer E**2** including the logic circuit **121** and the memory circuit **122** that are formed on the supporting substrate **102**.

[0079] Among terminals **120***a* of the imaging element **120**, a terminal **120***a* on the memory circuit **122** is electrically connected to a terminal **121***a* of the memory circuit **122** by a wiring line **134** connected by CuCu connection.

[0080] Although not illustrated in FIG. **5**, a configuration may be adopted in which a terminal **120***a* on the logic circuit **121** among the terminals **120***a* of the imaging element **120** may be configured to be connected to a terminal **122***a* of the logic circuit **121** by CuCu connection.

[0081] In the example illustrated in the upper part of FIG. **5**, an example has been shown in which the imaging element **120** and the logic circuit **121** are not directly connected, but the logic circuit **121** and the imaging element **120** are indirectly connected by configuring such that the logic circuit **121** and the memory circuit **122** are connected by a wiring line **136**, and the memory circuit **122** and the imaging element **120** are connected.

[0082] In the semiconductor element layer E2 in which the logic circuit 121 and the memory circuit

122 are formed, a space around the logic circuit **121** and the memory circuit **122** is in a state of being filled with an oxide film **133**. As a result, in the semiconductor element layer E2, the logic circuit **121** and the memory circuit **122** are in a state of being embedded in the oxide film **133**. [0083] Furthermore, at a boundary between the semiconductor element layer E1 on which the imaging element **120** is formed and the semiconductor element layer E2 on which the logic circuit **121** and the memory circuit **122** are formed, an oxide film bonding layer **135** is formed and bonded by oxide film bonding. Moreover, the semiconductor element layer E2 of the logic circuit **121** and the memory circuit **122** is bonded with the supporting substrate **132** by forming the oxide film bonding layer **135** by oxide film bonding.

[0084] The terminal **121***a* of the logic circuit **121** is in a state of being embedded in the oxide film **133**. The terminal **122***a* of the memory circuit **122** is embedded in a bulking layer **137**. While this bulking layer **137** will be described later, since the bulking layer **137** is provided, the terminal **122***a* of the memory circuit **122** is configured to be located at a position close to the terminal **120***a* of the imaging element **120** as a connection destination.

[0085] In a case where the logic circuit **121** and the memory circuit **122** are compared with each other, the memory circuit **122** has at least one more layer than that of the logic circuit **121**. Here, a case is illustrated in which the bulking layer **137** is provided as the at least one more layer. The layer corresponding to the bulking layer **137** may be a multilayer.

[0086] The bulking layer **137** can also be provided as an oxide film. In a case where the bulking layer **137** is provided as an oxide film, it can include the same material as the oxide film **133** laminated on the bulking layer **137**. In this case, the bulking layer **137** and the oxide film **133** can be regarded as one layer. In a case of such an embodiment, this one layer is configured to be thick. The "being configured to be thick" means that a thickness is larger than that of the oxide film **133** of the circuit without the bulking layer **137**, for example, the logic circuit **121**.

[0087] In other words, when a predetermined layer A of the logic circuit **121** is compared with a layer B of the memory circuit **122** corresponding to the predetermined layer A of the logic circuit **121**, the layer B is configured to be thicker than the layer A. The layer B includes the bulking layer **137**, and the layer B is configured to be thicker than the layer A, by including the bulking layer **137**.

[0088] Furthermore, as illustrated in the lower part of FIG. **5**, when viewed from the upper surface, the logic circuit **121** and the memory circuit **122** are arranged so as to be included in a range where the imaging element **120** of an uppermost layer exists. With such an arrangement, in the layers of the logic circuit **121** and the memory circuit **122**, a free space other than the logic circuit **121** and the memory circuit **122** is reduced, which makes it possible to improve manufacturing efficiency. [0089] On the supporting substrate **102** in FIG. **4**, the logic circuit **121** and the memory circuit **122** are precisely adjusted and rearranged so as to be arranged within the range of the imaging element **120** as viewed from the individual upper surfaces, when individual imaging devices **111** are diced into individual pieces.

Manufacturing Method of Imaging Device in FIG. 5

[0090] Next, a manufacturing method of the imaging device **111** in FIG. **5** will be described with reference to FIGS. **6** to **11**.

[0091] In steps **S11** to **S14** in FIG. **6**, the logic circuit **121** is manufactured. In step **S11**, the wafer **103** on which the logic circuits **121** are formed is prepared. In each logic circuit **121** of the wafer **103**, the terminal **121***a* is formed on the logic circuit **121**, the oxide film **133** is formed so as to cover the terminal **121***a*, and the oxide film bonding layer **135** is further formed.

[0092] In step S12, a dicing tape 151 is attached to the wafer 103. Furthermore, the wafer 103 to which the dicing tape 151 is attached is fixed to a ring frame 152 (also referred to as a dicing frame or the like).

[0093] In step S13, the wafer 103 is diced to cut out the logic circuit 121. In step S14, a gap is formed between the cut logic circuits 121 by stretching the wafer 103. From such a state, the

- individual logic circuits **121** are peeled off from the dicing tape **151** and transferred to the supporting substrate **102** (step S**15**).
- [0094] Note that, as illustrated in FIG. **6**, the logic circuits **121** having different sizes can be formed on one wafer **103** and diced into individual pieces.
- [0095] In steps S21 to S24 in FIG. 7, the memory circuit 122 is manufactured. In step S21, the wafer 104 on which the memory circuits 122 are formed is prepared. In each memory circuit 122 of the wafer 104, the terminal 122*a* is formed on the memory circuit 122, and the bulking layer 137 is formed so as to cover the terminal 122*a*. Moreover, the oxide film 133 is formed on the bulking layer 137, and the oxide film bonding layer 135 is further formed.
- [0096] As compared to the logic circuit **121**, the memory circuit **122** has a configuration in which one layer of the bulking layer **137** is added. The bulking layer **137** is provided to facilitate rewiring of a circuit to be rewired. The bulking layer **137** can include an oxide film.
- [0097] In a case where (the wafer **103** of) the logic circuit **121** shown in step **S11** of FIG. **6** is compared with (the wafer **104** of) the memory circuit **122** shown in step **S21** of FIG. **7**, there is a difference in that the memory circuit **122** is formed with the bulking layer **137** and the logic circuit **121** is not formed with the bulking layer **137**.
- [0098] In step S22 of FIG. 7, a dicing tape **153** is attached to the wafer **104**. Furthermore, the wafer **104** to which the dicing tape **153** is attached is fixed to a ring frame **154**.
- [0099] In step S23, the wafer 104 is diced to cut out the memory circuit 122. In step S24, a gap is formed between the cut memory circuits 122 by stretching the wafer 104. From such a state, the individual memory circuits 122 are peeled off from the dicing tape 153 and transferred to the supporting substrate 102 (step S15).
- [0100] As described above, in step S15, the separately manufactured logic circuit 121 and memory circuit 122 are transferred to the supporting substrate 102.
- [0101] Note that, as illustrated in FIG. **7**, the memory circuits **122** having different sizes can be formed on one wafer **103** and diced into individual pieces.
- [0102] When the manufacturing is advanced to a state where the logic circuit **121** and the memory circuit **122** are placed on the supporting substrate **102** in step S**15** (FIG. **6** or **7**), thinning is performed in step S**31** (FIG. **8**).
- [0103] The logic circuit **121** and the memory circuit **122** before thinning have different heights as shown at step **S15**. In other words, the memory circuit **122** is formed higher than the logic circuit **121** by an amount corresponding to the formation of the bulking layer **137**.
- [0104] In step S31, silicon layers (the wafer 103 and 104, hereinafter referred to as silicon layers 103 and 104 as appropriate) of an upper surface portion of the logic circuit 121 and the memory circuit 122 in the figure is thinned to a height that does not affect characteristics of the device. [0105] In step S32, rewiring on a back surface side is performed. Here, a case where rewiring is performed on the memory circuit 122 and is not performed on the logic circuit 121 will be described as an example. The rewiring is formed by opening a portion where the wiring line 134 is desired to be formed on the silicon layer 104 of the memory circuit 122 and filling the portion with a conductive material such as copper.
- [0106] In step S33 (FIG. 9), alignment is performed so that the wiring line 134 from the terminal 122*a* of the memory circuit 122 in the supporting substrate 102 and the wiring line 134 from the terminal 120*a* of the imaging element 120 in the wafer 101 at are positions appropriately facing each other.
- [0107] Then, the wafer **101** and the supporting substrate **102** are bonded by WoW such that the wiring line **134** from the terminal **122***a* of the memory circuit **122** in the supporting substrate **102** is connected to the wiring line **134** from the terminal **120***a* of the imaging element **120** in the wafer **101** by CuCu bonding. This processing brings a state where each memory circuit **122** of the supporting substrate **102** is electrically connected to each imaging element **120** of the wafer **101**. [0108] In step S**34**, the supporting substrate **102** is peeled off. For example, the supporting

- substrate **102** is removed by being de-bonded or etched.
- [0109] In step S35, embedding is performed. As shown at step S35, the oxide film 133 functioning as an insulating film is formed. At this time, a surface of the oxide film 133 is flattened at a height corresponding to the logic circuit 121 and the memory circuit 122.
- [0110] In step S36 (FIG. 10), a through silicon via (TSV) 161 is formed. The TSV 161 is formed in a portion for forming the wiring line 136 connecting the logic circuit 121 and the memory circuit 122.
- [0111] In step S37, the wiring line 136 is formed by filling, for example, copper (Cu), tungsten (W), polysilicon, or the like in the TSV 161 and in a rewiring portion connecting the TSV 161 in a horizontal direction.
- [0112] In step S38, the oxide film 133 functioning as an insulating film is formed so as to also cover the wiring line 136, and a chip including the arranged memory circuit 122 and logic circuit 121 is embedded. At this time, a surface of the oxide film 133 is flattened at a height corresponding to the logic circuit 121 and the memory circuit 122.
- [0113] In step S**39** (FIG. **11**), a supporting substrate **162** is attached onto the oxide film **133** formed in step S**38**. In step S**40**, thinning is performed on the silicon layer (the layer corresponding to the wafer **101**), which is an upper layer of the imaging element **120** in the figure.
- [0114] In step S41, the on-chip lens and the on-chip color filter 131 are provided on the imaging element 120, and dicing into individual pieces is performed to complete the imaging device 111. [0115] With such a configuration, the number of connection terminals can be increased because the connection between circuits of the imaging element 120 and the memory circuit 122 can be connection by forming the terminals at a wiring density of fine wiring by the semiconductor lithography technique similarly to WoW, and a signal processing speed in each wiring line can be reduced, enabling reduction of power consumption.
- [0116] Furthermore, also in a case where circuits of the imaging element **120** and the logic circuit **121** are formed to be connected to each other, the number of connection terminals can be increased because the connection can be made by forming the terminals at a wiring density of fine wiring, and a signal processing speed in each wiring line can be reduced, enabling reduction of power consumption.
- [0117] Furthermore, since only non-defective chips are connected in the logic circuit **121** and the memory circuit **122**, a defect of each wafer, which is a disadvantage of WoW, is reduced, and thus an occurrence of the yield loss can be reduced.
- [0118] Moreover, as illustrated in the lower part of FIG. **5**, unlike WoW, since each of the memory circuit **122** and the logic circuit to be connected can be arranged in an independent island shape by making a size as small as possible regardless of a chip size of the imaging element **120**, it is possible to improve manufacturing efficiency of the logic circuit **121** and the memory circuit **122** to be connected.
- [0119] As a result, since the imaging element **120** requires a minimum necessary pixel size for reacting to optical light, a process of fine wiring is not necessarily required for the manufacturing process of the imaging element **120**, so that the process cost can be reduced. Furthermore, in the manufacturing process of the logic circuit **121**, power consumption can be reduced by using the most advanced fine wiring process. Moreover, it is possible to improve manufacturing efficiency of the logic circuit **121** and the memory circuit **122**. As a result, the cost related to the manufacturing of the imaging device **111** can be reduced.
- [0120] Furthermore, due to a structure in which chips can be realigned in a wafer and bonded, lamination can be made in one chip even in a case of different types of processes in which it is difficult to produce, in the same wafer, an analog circuit such as a power supply IC and a clock, the logic circuit **121**, and a configuration made by a completely different process, or even when there is a difference in wafer size.
- [0121] Furthermore, an example in which the logic circuit 121 and the memory circuit 122 are used

as circuits connected to the imaging element **120** has been described above. However, a circuit other than the logic circuit **121** and the memory circuit **122** may be used as long as it is a signal processing circuit required for an operation of the imaging element **120**, such as a circuit related to control of the imaging element **120** or a circuit related to processing of a captured pixel signal. The signal processing circuit required for the operation of the imaging element **120** may be, for example, a power supply circuit, an image signal compression circuit, a clock circuit, an optical communication conversion circuit, or the like.

About Bulking Layer

[0122] In the example described above, an example has been shown in which the memory circuit **122** is provided with the bulking layer **137**, and the logic circuit **121** is not provided with the bulking layer **137**. The configuration of the imaging device **111** illustrated in the upper part of FIG. **5** will be referred to again. The terminal **122***a* of the memory circuit **122** and the terminal **120***a* of the imaging element **120** are connected by the wiring line **134**. The terminal **121***a* of the logic circuit **121** and the terminal **120***a* of the imaging element **120** are not connected.

[0123] The terminal **122***a* of the memory circuit **122** is provided on a side closer to the terminal **120***a* than the terminal **121***a* of the logic circuit **121**. That is, the terminal **122***a* connected to the terminal **120***a* is provided on a side closer to the terminal **120***a* than the terminal **122***a* not connected. By providing the memory circuit **122** with the bulking layer **137**, the terminal **122***a* of the memory circuit **122** can be provided at a position close to the terminal **120***a* of the imaging element **120**.

[0124] In other words, by providing the memory circuit **122** with the bulking layer **137**, a thickness of the silicon layer **104** of the memory circuit **122** can be formed thin, and the terminal **122***a* of the memory circuit **122** can be provided at a position close to the terminal **120***a* of the imaging element **120**.

[0125] This will be described with reference to FIG. **12**. A of FIG. **12** is a view for explaining a case where the bulking layer **137** is not provided, in other words, a case where the imaging device **111** is manufactured in a conventional manufacturing step. B of FIG. **12** is a view for explaining a case where the bulking layer **137** is provided, in other words, a case where the imaging device **111** is manufactured in the above-described manufacturing step.

[0126] As illustrated in a left figure in A of FIG. 12, the logic circuit 121 and a memory circuit 122' have a configuration in which the oxide film bonding layer 135, the oxide film 133, and the silicon layer 103 (silicon layer 104') are laminated on the supporting substrate 102. Note that, in order to distinguish from the memory circuit 122 to which the present technology is applied, the memory circuit 122 not provided with the bulking layer 137 is described as the memory circuit 122' by adding a dash.

[0127] As illustrated in a right figure in A of FIG. **12**, the imaging element **120** is further laminated from a state illustrated in the left figure in A of FIG. **12**. Furthermore, the terminal **120***a* of the imaging element **120** and a terminal **122***a'* of the memory circuit **122**' are connected by a wiring line **134**'. A length of the wiring line **134**' is defined as a length L**1**.

[0128] In a case where the bulking layer **137** is provided, as illustrated in a left figure of B of FIG. **12**, the logic circuit **121** has a configuration in which the oxide film bonding layer **135**, the oxide film **133**, and the silicon layer **103** are laminated on the supporting substrate **102**. Furthermore, the memory circuit **122** has a configuration in which the oxide film bonding layer **135**, the oxide film **133**, the bulking layer **137**, and the silicon layer **103** are laminated on the supporting substrate **102**. [0129] As illustrated in a right figure in B of FIG. **12**, the imaging element **120** is further laminated from a state illustrated in the left figure in B of FIG. **12**. Furthermore, the terminal **120***a* of the imaging element **120** and the terminal **122***a* of the memory circuit **122** are connected by the wiring line **134**. A length of the wiring line **134** is defined as a length L2.

[0130] As illustrated in the left figure in B of FIG. **12**, thicknesses of the silicon layer **103** and the silicon layer **104** are different, and the silicon layer **104** is formed thinner than the silicon layer **103**

by a thickness of the bulking layer **137**.

[0131] The length L1 and the length L2 are a length of the wiring line 134 (134′), but this length depends on the thickness of the silicon layer 104. Therefore, when the thickness of the silicon layer 104 is thin, the length of the wiring line 134 becomes short. That is, in the case of the example illustrated in FIG. 12, it is clear that the length L1>the length L2 is satisfied.

[0132] In general, it is easier to form a short wiring line than to form a long wiring line. For example, in a case of forming a via in order to form the wiring line **134**, forming the via shallower can be performed easier in a shorter time than in a case of forming the via deeper.

[0133] According to the present technology, since the thickness of the silicon layer **104** of the memory circuit **122** can be formed thin, it is easy to form the wiring line **134** on the terminal **122***a* of the memory circuit **122** in step **S32** (FIG. **8**).

[0134] As described above, a configuration can be adopted in which a circuit (chip) requiring rewiring is provided with the bulking layer **137** to facilitate rewiring.

[0135] In the above-described example, an example in which the logic circuit **121** and the memory circuit **122** are used as circuits connected to the imaging element **120** has been described. However, a circuit other than the logic circuit **121** and the memory circuit **122** may be used as long as it is a signal processing circuit required for an operation of the imaging element **120**, such as a circuit related to control of the imaging element **120** or a circuit related to processing of a captured pixel signal.

[0136] Furthermore, in the above-described example, a case where the memory circuit **122** is provided with the bulking layer **137** has been described as an example, but a configuration is also possible in which the logic circuit **121** is provided with the bulking layer **137**. Furthermore, it is also possible to have a configuration in which the bulking layer **137** is provided in both the logic circuit **121** and the memory circuit **122**. Moreover, in a case of a configuration in which both the logic circuit **121** and the memory circuit **122** are provided with the bulking layer **137**, a thickness of the bulking layer **137** can be made the same or different.

[0137] The present technology can also be applied to a device having a configuration in which a plurality of circuits (chips) is mounted on one chip. That is, the plurality of chips can be formed as a chip provided with a bulking layer or a chip not provided with a bulking layer, and can be mounted on one chip. Furthermore, in a case where a plurality of chips provided with the bulking layer is mounted on one chip, a thickness of the bulking layer can be made different for each chip. About Wiring Line to Connect Circuits to Each Other

[0138] For example, in the imaging device **111** illustrated in the upper part of FIG. **5**, the logic circuit **121** and the memory circuit **122** are connected by the wiring line **136**. As illustrated in the upper part of FIG. **5**, the wiring line **136** is provided to connect the terminal **121***a* in the logic circuit **121** and the terminal **122***a* of the memory circuit **122**. This wiring line **136** may have a shape as illustrated in FIG. **13**.

[0139] In the imaging device **111** illustrated in FIG. **13**, a terminal **121***b* of the logic circuit **121** and a terminal **122***b* of the memory circuit **122** are connected by a wiring line **201**. The terminal **121***b* is a terminal on a side closer to the memory circuit **122** among the terminals **121***a* of the logic circuit **121**. The terminal **122***b* is a terminal on a side closer to the logic circuit **121** among the terminals **122***a* of the memory circuit **122**.

[0140] The terminal **121***b* and the terminal **122***b* are provided as terminals to which the wiring line **201** is connected. Note that, here, a case has been exemplified where the terminal **121***b* close to the memory circuit **122** side among the terminals **121***a* provided in the logic circuit **121** is the terminal connected to the wiring line **201**, but a terminal **121***b* to connect to the wiring line **201** may be newly provided. Similarly, here, a case has been exemplified where the terminal **122***b* close to the logic circuit **121** side among the terminals **122***a* provided in the memory circuit **122** is the terminal connected to the wiring line **201**, but a terminal **122***b* to connect to the wiring line **201** may be newly provided.

- [0141] The wiring line **201** is formed along a side surface of the silicon layer **103** of the logic circuit **121**, the oxide film bonding layer **135** provided on the imaging element **120** side, and a side surface of the silicon layer **104** of the memory circuit **122**, and formed to connect the terminal **121***b* and the terminal **122***b*.
- [0142] Such a wiring line can also be applied to an imaging device **211** having a configuration as illustrated in FIG. **14**. Comparing the imaging device **211** illustrated in FIG. **14** with the imaging device **111** illustrated in the upper part of FIG. **5**, there is a difference in that a memory circuit **222** of the imaging device **211** is not provided with the bulking layer **137**, in the configuration. Furthermore, a logic circuit **221** and the memory circuit **222** of the imaging device **211** are provided with a terminal **221***b* and a terminal **222***b*, respectively, and the logic circuit **221** and the memory circuit **222** are connected by the terminal **221***b* and the terminal **222***b* being connected by a wiring line **242**, in the configuration.
- [0143] Note that, in the imaging device **211** illustrated in FIG. **14**, an example in which the logic circuit **221** and an imaging element **220** are connected by a wiring line **234** has been illustrated. However, similarly to the imaging device **111** illustrated in FIG. **5**, a configuration may be adopted in which the logic circuit **221** and the imaging element **220** are not connected by the wiring line **234**. That is, the present technology can be applied regardless of whether or not the logic circuit **221** and the imaging element **220** are directly connected.
- [0144] The configuration of the imaging device **211** illustrated in FIG. **14** will be further described. In the imaging device **211** in FIG. **14**, from the top in the figure, an on-chip lens, an on-chip color filter **231**, and the imaging element **220** are laminated, the memory circuit **222** and the logic circuit **221** are arranged and laminated on the left and right in the same layer therebelow, and a supporting substrate **232** is formed therebelow. That is, as illustrated in FIG. **14**, the imaging device **211** in FIG. **14** includes: a semiconductor element layer E1 including the imaging element **220** formed by the wafer **101**; and a semiconductor element layer E2 including the memory circuit **222** and the logic circuit **221** that are formed on the supporting substrate **102**.
- [0145] Among terminals **220***a* of the imaging element **220**, a terminal **220***a* on the logic circuit **221** is electrically connected to a terminal **211***a* of the logic circuit **221** by the wiring line **234** connected by CuCu connection.
- [0146] Furthermore, among the terminals **220***a* of the imaging element **220**, a terminal **220***a* on the memory circuit **222** is electrically connected to a terminal **222***a* of the memory circuit **222** by the wiring line **234** connected by CuCu connection.
- [0147] In the semiconductor element layer E2 in which the logic circuit 221 and the memory circuit 222 are formed, a space around the memory circuit 222 and the logic circuit 221 is in a state of being filled with an oxide film 233. As a result, in the semiconductor element layer E2, the memory circuit 222 and the logic circuit 221 are in a state of being embedded in the oxide film 233. [0148] Furthermore, at a boundary between the semiconductor element layer E1 on which the imaging element 220 is formed and the semiconductor element layer E2 on which the memory circuit 222 and the logic circuit 221 are formed, an oxide film bonding layer 235 is formed and bonded by oxide film bonding. Moreover, the semiconductor element layer E2 of the memory circuit 222 and the logic circuit 221 is bonded with the supporting substrate 232 by forming the oxide film bonding layer 235 by oxide film bonding.
- [0149] Furthermore, the logic circuit **221** and the memory circuit **222** are connected by the wiring line **242**. The wiring line **242** is provided to connect the terminal **221***b* of the logic circuit **221** and the terminal **222***b* of the memory circuit **222**. To manufacture as described later, a protective film **241** is provided on a part of the wiring line **242**.
- [0150] The terminal **221***b* and the terminal **222***b* are provided separately from the terminal **221***a* and the terminal **222***a*, respectively, and are provided as terminals to connect the logic circuit **221** and the memory circuit **222**.
- [0151] The wiring line **242** is provided from the terminal **221***b* along a side surface of the logic

circuit **221**, the oxide film bonding layer **235**, and a side surface of the memory circuit **222**, and is connected to the terminal **222***b*. Furthermore, the protective film **241** is provided between the wiring line **242**, and the side surface of the logic circuit **221**, the oxide film bonding layer **235**, and the side surface of the memory circuit **222**.

About Manufacture of Imaging Device **211**

[0152] FIG. **15** is a view for explaining a manufacturing method of an imaging device in which the logic circuit **221** and the memory circuit **222** that have been diced into individual pieces and confirmed to be non-defective chips are directly formed in the imaging element **220** on the wafer **101**.

[0153] In the wafer **101**, a plurality of imaging elements **220** is formed by a semiconductor process. Furthermore, on the imaging element **220** formed on the wafer **101**, there are selected and rearranged a plurality of logic circuits **221**, which is formed on the wafer **103** by a semiconductor process, diced into individual pieces, then electrically inspected individually, and confirmed to be non-defective chips; and a plurality of memory circuits **222**, which is formed on the wafer **104** by a semiconductor process, diced into individual pieces, then electrically inspected individually, and confirmed to be non-defective chips.

[0154] That is, since the logic circuit **221** and the memory circuit **222** that are confirmed to be non-defective chips are rearranged on the imaging element **220**, here, both the logic circuit **221** and the memory circuit **222** are configured to be smaller than the imaging element **220**.

Manufacturing Method of Imaging Device **211**

[0155] Next, a case of directly transferring the logic circuit **221** and the memory circuit **222** onto the imaging element **220** as illustrated in FIG. **15**, which is a manufacturing method of the imaging device **211** of FIG. **14**, will be described with reference to FIGS. **16** to **18**.

[0156] In step S51, the logic circuit 221 and the memory circuit 222 subjected to the electrical inspection and then confirmed to be non-defective products are transferred to the imaging element 220 on the wafer 101, and the wiring line 234 is formed to the terminals 220a, 221a, and 222a. [0157] Furthermore, alignment is performed for positions at which the wiring line 234 from the terminal 221a of the logic circuit 221 and the terminal 222a of the memory circuit 222 is to appropriately face the wiring line 234 from the terminal 220a of the imaging element 220 in the wafer 101, connection is performed by CuCu bonding, and facing layers are bonded by forming the oxide film bonding layer 235 by oxide film bonding.

[0158] When the logic circuit **221** and the memory circuit **222** are transferred to the imaging element **220**, the terminal **221***b* of the logic circuit **221** and the terminal **222***b* of the memory circuit **222** are placed so as to face each other.

[0159] When the logic circuit **221** is manufactured, the terminal **221***b* is formed together with the terminal **221***a*. Furthermore, when the memory circuit **222** is manufactured, the terminal **222***b* is formed together with the terminal **222***a*. For example, the terminals **221***b* and **222***b* are formed simultaneously when lower layer wiring of the logic circuit **221** and the memory circuit **222** is formed. Therefore, it is possible to manufacture without adding a plurality of steps for forming the terminals **221***b* and **222***b*.

[0160] In step S52, the protective film 241 for protection of the logic circuit 221 and the memory circuit 222 is formed. The protective film 241 is formed on three sides of the logic circuit 221 not in contact with the imaging element 220. Furthermore, the protective film 241 is formed on three sides of the memory circuit 222 not in contact with the imaging element 220. The protective film 241 can include, for example, SiN or SiO2. Furthermore, the protective film 241 may have a multilayer (laminated film) structure instead of a single layer.

[0161] In step S53, the silicon layer 103 of the logic circuit 221 and the silicon layer 104 of the memory circuit 222 are thinned. The protective film 241 is formed on the silicon layer 103 of the logic circuit 221 and the silicon layer 104 of the memory circuit 222, and is polished together at the time of thinning. At a time of removal of contamination or dust after thinning of the silicon, a part

of the protective film **241** is lifted off, and a surface can be cleaned.

[0162] In step S**54** (FIG. **17**), there is performed processing for exposing dedicated terminals for connection of the logic circuit **221** and the memory circuit **222**, that is, in this case, the terminals **221***b* and **222***b*, by using a patterning process. In step S**54**, in order to facilitate patterning, a predetermined material may be embedded in a gap portion between the logic circuit **221** and the memory circuit **222**, and the processing for exposing may be performed after surface flatness is secured.

[0163] In step S55, the wiring line **242** connecting the terminal **221***b* and the terminal **222***b* is formed. The wiring line **242** includes metal such as copper (Cu), tungsten (W), or aluminum (Al). The wiring line **242** is formed using resist patterning and a processing process. Alternatively, as illustrated in FIG. **19**, the wiring line **252** may be formed by using a method of forming a resist **301** opened only at a portion connecting the terminal **221***b* and the terminal **222***b*, exposing to form a metal sputtered film, and lifting off the resist **301**.

[0164] In step S56, the silicon layer of an upper surface portion of the logic circuit **221** and the memory circuit **222** in the figure is thinned to a height that does not affect characteristics of the device, the oxide film **233** functioning as an insulating film is formed, and a chip including the rearranged logic circuit **221** and memory circuit **222** is embedded.

[0165] In step S57 (FIG. 18), the supporting substrate 232 is bonded onto the logic circuit 221 and the memory circuit 222. At this time, a layer in which the supporting substrate 232 faces the logic circuit 221 and the memory circuit 222 is bonded by forming the oxide film bonding layer 235 by oxide film bonding.

[0166] In step S58, vertical inversion is performed such that the imaging element 220 is on the upper side, and the silicon layer, which is an upper layer of the imaging element 220 in the figure, is thinned.

[0167] In step S59, the on-chip lens and the on-chip color filter 231 are provided on the imaging element 220, and dicing into individual pieces is performed to complete the imaging device 211. [0168] As described above, a structure can be obtained in which the logic circuit 221 and the memory circuit 222 are connected by the wiring line 242. The wiring line 242 is connected to the terminal 221b and the terminal 222b that are dedicated for connection with the wiring line 242. The terminal 221b and the terminal 222b can be formed simultaneously with the wiring layer of the lowermost layer when the logic circuit 221 and the memory circuit 222 are manufactured. That is, the terminal 221b and the terminal 222b can be formed without increasing the number of steps for forming the terminal 221b and the terminal 222b.

[0169] Furthermore, the step of forming the wiring line **242** connecting the terminals **221***b* and **222***b* does not include a step of penetrating the substrate or carving the substrate to a deep position, so that the wiring line **242** can be easily formed.

[0170] The step of forming the wiring line **242** is steps S**52** to S**55** in the above description. In these steps, there is no process of forming a deep trench in a silicon layer, no process of making a hole in an anti-reflection (AR) coating and embedding a metal in a case of an imaging device having an anti-reflection structure by the AR coating, no chemical mechanical polish (CMP) process of metal, or the like. Since the wiring line **242** can be formed by a manufacturing step that does not require these processes, the wiring line **242** can be easily formed.

[0171] Furthermore, by forming the protective film **241**, insulation between chips can be maintained in the configuration.

[0172] The present technology is not applied only to the imaging device having the above-described configuration, but is also applicable to an imaging device having another configuration. [0173] Furthermore, the present technology can also be applied to a device having a configuration in which a plurality of circuits (chips) is mounted on one chip. That is, the plurality of chips can be formed as a chip provided with a bulking layer or a chip not provided with a bulking layer, and can be mounted on one chip. Furthermore, in a case where a plurality of chips provided with the

- bulking layer is mounted on a predetermined chip, a thickness of the bulking layer can be made different for each chip.
- [0174] Furthermore, by configuring a wiring line that connects the chips as the wiring line **242** described above, it is possible to obtain an advantage such as facilitation of manufacturing. Application Example to Electronic Device
- [0175] The imaging element described above can be applied to various electronic devices such as, for example, an imaging device such as a digital still camera and a digital video camera, a mobile phone with an imaging function, or other devices having an imaging function.
- [0176] FIG. **20** is a block diagram showing a configuration example of an imaging device as an electronic device to which the present technology is applied.
- [0177] An imaging device **501** illustrated in FIG. **20** includes an optical system **502**, a shutter device **503**, an imaging element **504**, a drive circuit **505**, a signal processing circuit **506**, a monitor **507**, and a memory **508**, and can capture still images and moving images.
- [0178] The optical system **502** has one or more lenses, and guides light (incident light) from a subject to the imaging element **504** and forms as an image on a light receiving surface of the imaging element **504**.
- [0179] The shutter device **503** is arranged between the optical system **502** and the imaging element **504**, and controls a light irradiation period and a shading period with respect to the imaging element **504** in accordance with the control of the drive circuit **505**.
- [0180] The imaging element **504** includes a package including the above-described imaging element. The imaging element **504** accumulates signal charges for a certain period of time in accordance with light formed as an image on the light receiving surface via the optical system **502** and the shutter device **503**. The signal charges accumulated in the imaging element **504** are transferred in accordance with a drive signal (a timing signal) supplied from the drive circuit **505**. [0181] The drive circuit **505** outputs a drive signal for controlling a transfer operation of the imaging element **504** and a shutter operation of the shutter device **503**, to drive the imaging element **504** and the shutter device **503**.
- [0182] The signal processing circuit **506** performs various kinds of signal processing on the signal charges outputted from the imaging element **504**. An image (image data) obtained by performing signal processing by the signal processing circuit **506** is supplied to the monitor **507** to be displayed, or supplied to the memory **508** to be stored (recorded).
- [0183] Also in the imaging device **501** configured as described above, by applying the imaging device **111** (imaging device **211**) described above to the optical system **502** and the imaging element **204**, it is possible to improve a yield and reduce a manufacturing cost. Usage Example of Imaging Element

[0184] The imaging element described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray, as described below, for example. [0185] Devices to capture an image to be used for viewing, such as a digital camera or a portable device with a camera function [0186] Devices used for transportation, such as vehicle-mounted sensors that capture an image in front, rear, surroundings, interior, and the like of an automobile, monitoring cameras that monitor traveling vehicles and roads, and distance measurement sensors that measure a distance between vehicles, for safe driving such as automatic stop, recognition of a state of a driver, and the like [0187] Devices used for household electric appliances such as a TV, a refrigerator, and an air conditioner, in order to capture an image of a gesture of a user and perform an apparatus operation according to the gesture [0188] Devices used for medical care or health care, such as endoscopes or devices that perform angiography by receiving infrared light [0189] Devices used for security such as monitoring cameras for crime prevention and cameras for personal authentication [0190] Devices used for beauty care such as a skin measuring instrument for image capturing of the skin and a microscope for image capturing of a scalp [0191] Devices used for sports such as action cameras and wearable cameras for sports applications and the like

- [0192] Devices used for agriculture such as cameras for monitoring a condition of fields and crops Application Example to Endoscopic Surgery System
- [0193] The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
- [0194] FIG. **21** is a view illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (the present technology) according to the present disclosure can be applied.
- [0195] FIG. **21** illustrates a state where an operator (a doctor) **11131** performs surgery on a patient **11132** on a patient bed **11133**, by using an endoscopic surgery system **11000**. As illustrated, the endoscopic surgery system **11000** includes: an endoscope **11100**; other surgical instruments **11110** such as an insufflation tube **11111** and an energy treatment instrument **11112**; a support arm device **11120** supporting the endoscope **11100**; and a cart **11200** mounted with various devices for endoscopic surgery.
- [0196] The endoscope **11100** includes a lens barrel **11101** whose region of a predetermined length from a distal end is inserted into a body cavity of the patient **11132**, and a camera head **11102** connected to a proximal end of the lens barrel **11101**. In the illustrated example, the endoscope **11100** configured as a so-called rigid endoscope having a rigid lens barrel **11101** is illustrated, but the endoscope **11100** may be configured as a so-called flexible endoscope having a flexible lens barrel.
- [0197] At the distal end of the lens barrel **11101**, an opening fitted with an objective lens is provided. The endoscope **11100** is connected with a light source device **11203**, and light generated by the light source device **11203** is guided to the distal end of the lens barrel by a light guide extended inside the lens barrel **11101**, and emitted toward an observation target in the body cavity of the patient **11132** through the objective lens. Note that the endoscope **11100** may be a forward-viewing endoscope, or may be an oblique-viewing endoscope or a side-viewing endoscope. [0198] Inside the camera head **11102**, an optical system and an imaging element are provided, and reflected light (observation light) from the observation target is condensed on the imaging element by the optical system. The observation light is photoelectrically converted by the imaging element, and an electric signal corresponding to the observation light, in other words, an image signal corresponding to an observation image is generated. The image signal is transmitted to a camera control unit (CCU) **11201** as RAW data.
- [0199] The CCU **11201** is configured by a central processing unit (CPU), a graphics processing unit (GPU), and the like, and integrally controls action of the endoscope **11100** and a display device **11202**. Moreover, the CCU **11201** receives an image signal from the camera head **11102**, and applies, on the image signal, various types of image processing for displaying an image on the basis of the image signal, for example, development processing (demosaicing processing) and the like.
- [0200] The display device **11202** displays an image on the basis of the image signal subjected to the image processing by the CCU **11201**, under the control of the CCU **11201**.
- [0201] The light source device **11203** is configured by a light source such as a light emitting diode (LED), for example, and supplies irradiation light at a time of capturing an image of the operative site or the like to the endoscope **11100**.
- [0202] An input device **11204** is an input interface to the endoscopic surgery system **11000**. A user can input various types of information and input instructions to the endoscopic surgery system **11000** via the input device **11204**. For example, the user inputs an instruction or the like for changing imaging conditions (a type of irradiation light, a magnification, a focal length, and the like) by the endoscope **11100**.
- [0203] A treatment instrument control device **11205** controls driving of the energy treatment instrument **11112** for ablation of a tissue, incision, sealing of a blood vessel, or the like. An

insufflator **11206** sends gas into a body cavity through the insufflation tube **11111** in order to inflate the body cavity of the patient **11132** for the purpose of securing a visual field by the endoscope **11100** and securing a working space of the operator. A recorder **11207** is a device capable of recording various types of information regarding the surgery. A printer **11208** is a device capable of printing various types of information regarding the surgery in various forms such as text, images, and graphs.

[0204] Note that the light source device **11203** that supplies the endoscope **11100** with irradiation light for capturing an image of the operative site may include, for example, a white light source configured by an LED, a laser light source, or a combination thereof. In a case where the white light source is configured by a combination of RGB laser light sources, since output intensity and output timing of each color (each wavelength) can be controlled with high precision, the light source device **11203** can adjust white balance of a captured image. Furthermore, in this case, it is also possible to capture an image corresponding to each of RGB in a time division manner by irradiating the observation target with laser light from each of the RGB laser light sources in a time-division manner, and controlling driving of the imaging element of the camera head **11102** in synchronization with the irradiation timing. According to this method, it is possible to obtain a color image without providing a color filter in the imaging element.

[0205] Furthermore, driving of the light source device **11203** may be controlled to change intensity of the light to be outputted at every predetermined time interval. By acquiring images in a time-division manner by controlling the driving of the imaging element of the camera head **11102** in synchronization with the timing of the change of the light intensity, and combining the images, it is possible to generate an image of a high dynamic range without so-called black defects and whiteout.

[0206] Furthermore, the light source device 11203 may be configured to be able to supply light having a predetermined wavelength band corresponding to special light observation. In the special light observation, for example, so-called narrow band imaging is performed in which predetermined tissues such as blood vessels in a mucous membrane surface layer are imaged with high contrast by utilizing wavelength dependency of light absorption in body tissues and irradiating the predetermined tissues with narrow band light as compared to the irradiation light (in other words, white light) at the time of normal observation. Alternatively, in the special light observation, fluorescence observation for obtaining an image by fluorescence generated by irradiation of excitation light may be performed. In the fluorescence observation, it is possible to perform irradiating a body tissue with excitation light and observing fluorescence from the body tissue (autofluorescence observation), locally injecting a reagent such as indocyanine green (ICG) into a body tissue and irradiating the body tissue with excitation light corresponding to the fluorescence wavelength of the reagent to obtain a fluorescent image, or the like. The light source device 11203 may be configured to be able to supply narrow band light and/or excitation light corresponding to such special light observation.

[0207] FIG. **22** is a block diagram illustrating an example of a functional configuration of the camera head **11102** and the CCU **11201** illustrated in FIG. **21**.

[0208] The camera head **11102** has a lens unit **11401**, an imaging unit **11402**, a driving unit **11403**, a communication unit **11404**, and a camera-head control unit **11405**. The CCU **11201** has a communication unit **11411**, an image processing unit **11412**, and a control unit **11413**. The camera head **11102** and the CCU **11201** are communicably connected in both directions by a transmission cable **11400**.

[0209] The lens unit **11401** is an optical system provided at a connection part with the lens barrel **11101**. Observation light taken in from the distal end of the lens barrel **11101** is guided to the camera head **11102** and is incident on the lens unit **11401**. The lens unit **11401** is configured by combining a plurality of lenses including a zoom lens and a focus lens.

[0210] The number of the imaging elements included in the imaging unit 11402 may be one (a so-

- called single plate type) or plural (a so-called multi-plate type). In a case where the imaging unit **11402** is configured with the multi-plate type, for example, individual imaging elements may generate image signals corresponding to RGB each, and a color image may be obtained by synthesizing them. Alternatively, the imaging unit **11402** may have a pair of imaging elements for respectively acquiring image signals for the right eye and the left eye corresponding to three-dimensional (3D) display. Performing 3D display enables the operator **11131** to more accurately grasp a depth of living tissues in the operative site. Note that, in a case where the imaging unit **11402** is configured as the multi-plate type, a plurality of systems of the lens unit **11401** may also be provided corresponding to individual imaging elements.
- [0211] Furthermore, the imaging unit **11402** may not necessarily be provided in the camera head **11102**. For example, the imaging unit **11402** may be provided inside the lens barrel **11101** immediately after the objective lens.
- [0212] The driving unit **11403** is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit **11401** along an optical axis by a predetermined distance under control from the camera-head control unit **11405**. With this configuration, a magnification and focus of a captured image by the imaging unit **11402** may be appropriately adjusted.
- [0213] The communication unit **11404** is configured by a communication device for exchange of various types of information between with the CCU **11201**. The communication unit **11404** transmits an image signal obtained from the imaging unit **11402** to the CCU **11201** via the transmission cable **11400** as RAW data.
- [0214] Furthermore, the communication unit **11404** receives a control signal for controlling driving of the camera head **11102** from the CCU **11201**, and supplies to the camera-head control unit **11405**. The control signal includes information regarding imaging conditions such as, for example, information of specifying a frame rate of a captured image, information of specifying an exposure value at the time of imaging, information of specifying a magnification and focus of a captured image, and/or the like.
- [0215] Note that the imaging conditions described above such as a frame rate, an exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit **11413** of the CCU **11201** on the basis of the acquired image signal. In the latter case, a so-called auto exposure (AE) function, auto focus (AF) function, and auto white balance (AWB) function are to be installed in the endoscope **11100**.
- [0216] The camera-head control unit **11405** controls driving of the camera head **11102** on the basis of the control signal from the CCU **11201** received via the communication unit **11404**.
- [0217] The communication unit **11411** is configured by a communication device for exchange of various types of information with the camera head **11102**. The communication unit **11411** receives an image signal transmitted via the transmission cable **11400** from the camera head **11102**.
- [0218] Furthermore, the communication unit **11411** transmits, to the camera head **11102**, a control signal for controlling driving of the camera head **11102**. Image signals and control signals can be transmitted by telecommunication, optical communication, or the like.
- [0219] The image processing unit **11412** performs various types of image processing on an image signal that is RAW data transmitted from the camera head **11102**.
- [0220] The control unit **11413** performs various types of control related to imaging of an operative site and the like by the endoscope **11100** and related to display of a captured image obtained by the imaging of the operative site and the like. For example, the control unit **11413** generates a control signal for controlling driving of the camera head **11102**.
- [0221] Furthermore, the control unit **11413** causes the display device **11202** to display a captured image in which the operative site or the like is shown, on the basis of the image signal subjected to the image processing by the image processing unit **11412**. At this time, the control unit **11413** recognizes various objects in the captured image by using various image recognition techniques. For example, by detecting a shape, a color, and the like of an edge of the object included in the

captured image, the control unit **11413** can recognize a surgical instrument such as forceps, a specific living site, bleeding, mist in using the energy treatment instrument **11112**, and the like. When causing the display device **11202** to display the captured image, the control unit **11413** may use the recognition result to superimpose and display various types of surgery support information on the image of the operative site. By superimposing and displaying the surgical support information and presenting to the operator **11131**, it becomes possible to reduce a burden on the operator **11131** and to allow the operator **11131** to reliably proceed with the surgery. [0222] The transmission cable **11400** connecting the camera head **11102** and the CCU **11201** is an electric signal cable corresponding to communication of an electric signal, an optical fiber corresponding to optical communication, or a composite cable of these.

[0223] Here, in the illustrated example, communication is performed by wire communication using the transmission cable **11400**, but communication between the camera head **11102** and the CCU **11201** may be performed wirelessly.

Application Example to Mobile Object

[0224] The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be realized as a device equipped on any type of mobile objects, such as an automobile, an electric car, a hybrid electric car, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, a robot, and the like.

[0225] FIG. **23** is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology according to the present disclosure may be applied.

[0226] A vehicle control system **12000** includes a plurality of electronic control units connected via a communication network **12001**. In the example illustrated in FIG. **23**, the vehicle control system **12000** includes a drive system control unit **12010**, a body system control unit **12020**, a vehicle external information detection unit **12030**, a vehicle internal information detection unit **12040**, and an integrated control unit **12050**. Furthermore, as a functional configuration of the integrated control unit **12050**, a microcomputer **12051**, a sound/image output unit **12052**, and a vehicle-mounted network interface (I/F) **12053** are illustrated.

[0227] The drive system control unit **12010** controls an operation of devices related to a drive system of a vehicle in accordance with various programs. For example, the drive system control unit **12010** functions as: a driving force generation device for generation of a driving force of the vehicle such as an internal combustion engine or a drive motor; a driving force transmission mechanism for transmission of a driving force to wheels; a steering mechanism to adjust a steering angle of the vehicle; and a control device such as a braking device that generates a braking force of the vehicle.

[0228] The body system control unit **12020** controls an operation of various devices mounted on a vehicle body in accordance with various programs. For example, the body system control unit **12020** functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as a headlamp, a back lamp, a brake lamp, a turn indicator, or a fog lamp. In this case, the body system control unit **12020** may be inputted with radio waves or signals of various switches transmitted from a portable device that substitutes for a key. The body system control unit **12020** receives an input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.

[0229] The vehicle external information detection unit **12030** detects information about an outside of the vehicle equipped with the vehicle control system **12000**. For example, to the vehicle external information detection unit **12030**, an imaging unit **12031** is connected. The vehicle external information detection unit **12030** causes the imaging unit **12031** to capture an image of an outside of the vehicle, and receives the captured image. The vehicle external information detection unit **12030** may perform an object detection process or a distance detection process for a person, a

vehicle, an obstacle, a sign, a character on a road surface, or the like on the basis of the received image.

[0230] The imaging unit **12031** is an optical sensor that receives light and outputs an electric signal according to an amount of received light. The imaging unit **12031** can output the electric signal as an image, or can output as distance measurement information. Furthermore, the light received by the imaging unit **12031** may be visible light or non-visible light such as infrared light.

[0231] The vehicle internal information detection unit **12040** detects information inside the vehicle. The vehicle internal information detection unit **12040** is connected with, for example, a driver state detection unit **12041** may include, for example, a camera that images the driver, and, on the basis of detection information inputted from the driver state detection unit **12041**, the vehicle internal information detection unit **12040** may calculate a degree of tiredness or a degree of concentration of the driver, or may determine whether or not the driver is asleep.

[0232] On the basis of information inside and outside the vehicle acquired by the vehicle external information detection unit **12030** or the vehicle internal information detection unit **12040**, the microcomputer **12051** can operate a control target value of the driving force generation device, the steering mechanism, or the braking device, and output a control command to the drive system control unit **12010**. For example, the microcomputer **12051** can perform cooperative control for the purpose of realizing functions of advanced driver assistance system (ADAS) including avoidance of collisions or mitigation of impacts of the vehicle, follow-up traveling on the basis of an intervehicle distance, vehicle speed maintenance traveling, vehicle collision warning, vehicle lane departure warning, and the like.

[0233] Furthermore, by controlling the driving force generation device, the steering mechanism, the braking device, or the like on the basis of the information about surroundings of the vehicle acquired by the vehicle external information detection unit **12030** or the vehicle internal information detection unit **12040**, the microcomputer **12051** may perform cooperative control for the purpose of, for example, automatic driving for autonomously traveling without depending on an operation of the driver.

[0234] Furthermore, the microcomputer **12051** can output a control command to the body system control unit **12030** on the basis of information about the outside of the vehicle acquired by the vehicle external information detection unit **12030**. For example, the microcomputer **12051** can control a headlamp in accordance with a position of a preceding vehicle or an oncoming vehicle detected by the vehicle external information detection unit **12030**, and perform cooperative control for the purpose of antiglare, such as switching a high beam to a low beam.

[0235] The sound/image output unit **12052** transmits an output signal of at least one of sound or an image, to an output device capable of visually or audibly notifying, of information, a passenger of the vehicle or outside the vehicle. In the example of FIG. **23**, an audio speaker **12061**, a display unit **12062**, and an instrument panel **12063** are exemplified as the output devices. The display unit **12062** may include, for example, at least one of an on-board display or a head-up display. [0236] FIG. **24** is a view illustrating an example of an installation position of the imaging unit **12031**.

[0237] In FIG. **24**, as the imaging unit **12031**, imaging units **12101**, **12102**, **12103**, **12104**, and **12105** are provided.

[0238] The imaging units **12101**, **12102**, **12103**, **12104**, and **12105** are provided at, for example, a front nose, side mirrors, a rear bumper, a back door, an upper part of a windshield in a vehicle cabin, or the like of a vehicle **12100**. The imaging unit **12101** provided at the front nose and the imaging unit **12105** provided at the upper part of the windshield in the vehicle cabin mainly acquire an image in front of the vehicle **12100**. The imaging units **12102** and **12103** provided at the side mirrors mainly acquire an image of a side of the vehicle **12100**. The imaging unit **12104** provided at the rear bumper or the back door mainly acquires an image behind the vehicle **12100**. The

imaging unit **12105** provided at the upper part of the windshield in the vehicle cabin is mainly used for detection of a preceding vehicle, or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.

[0239] Note that FIG. **24** shows an example of an image capturing range of the imaging units **12101** to **12104**. An imaging range **12111** indicates an imaging range of the imaging unit **12101** provided at the front nose, imaging ranges **12112** and **12113** indicate imaging ranges of the imaging units **12102** and **12103** each provided at the side mirrors, and an imaging range **12114** indicates an imaging range of the imaging unit **12104** provided at the rear bumper or the back door. For example, by superimposing image data captured by the imaging units **12101** to **12104**, an overhead view image of the vehicle **12100** viewed from above can be obtained.

[0240] At least one of the imaging units **12101** to **12104** may have a function of acquiring distance information. For example, at least one of the imaging units **12101** to **12104** may be a stereo camera including a plurality of imaging elements, or an imaging element having pixels for detecting a phase difference.

[0241] For example, on the basis of the distance information obtained from the imaging units **12101** to **12104**, by obtaining a distance to each solid object within the imaging ranges **12111** to **12114** and a time change of this distance (a relative speed with respect to the vehicle **12100**), the microcomputer **12051** can extract, as a preceding vehicle, especially a solid object that is the closest on a travel route of the vehicle **12100**, and that is traveling at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle **12100**. Moreover, the microcomputer **12051** can set an inter-vehicle distance to be secured from a preceding vehicle in advance, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of, for example, automatic driving for autonomously traveling without depending on an operation of the driver.

[0242] For example, on the basis of the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 can classify solid object data regarding solid objects into a two-wheeled vehicle, an ordinary vehicle, a large vehicle, a pedestrian, a utility pole, and the like, to extract and use for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 can determine a collision risk indicating a risk of collision with each obstacle, and provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by performing forced deceleration and avoidance steering via the drive system control unit 12010, when the collision risk is equal to or larger than a set value and there is a possibility of collision.

[0243] At least one of the imaging units **12101** to **12104** may be an infrared camera that detects infrared light. For example, the microcomputer **12051** can recognize a pedestrian by determining whether or not a pedestrian exists in a captured image of the imaging units **12101** to **12104**. Such recognition of a pedestrian is performed by, for example, a procedure of extracting a feature point in a captured image of the imaging unit **12101** to **12104** as an infrared camera, and a procedure of performing pattern matching processing on a series of feature points indicating a contour of an object and determining whether or not the object is a pedestrian. When the microcomputer **12051** determines that a pedestrian is present in the image captured by the imaging units **12101** to **12104** and recognizes the pedestrian, the sound/image output unit **12052** controls the display unit **12062** so as to superimpose and display a rectangular contour line for emphasis on the recognized pedestrian. Furthermore, the sound/image output unit **12052** may control the display unit **12062** to display an icon or the like indicating a pedestrian at a desired position.

[0244] Furthermore, in the present specification, the system represents the entire device including a plurality of devices.

- [0245] Note that the effects described in this specification are merely examples and are not limited, and other effects may also be present.
- [0246] Note that the embodiment of the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present technology.
- [0247] Note that the present technology can also have the following configurations.

(1)

- [0248] An imaging device including: [0249] a first semiconductor element including an imaging element configured to generate a pixel signal; and [0250] a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member, in which [0251] the first signal processing circuit has a structure including at least one more layer than the second signal processing circuit. (2)
- [0252] The imaging device according to (1) described above, further including: [0253] a first wiring line that connects the first semiconductor element and the first signal processing circuit. (3)
- [0254] The imaging device according to (2) described above, further including: [0255] a second wiring line that connects the first signal processing circuit and the second signal processing circuit. (4)
- [0256] The imaging device according to (3) described above, in which [0257] the first wiring line connects a terminal of the first semiconductor element and a first terminal of the first signal processing circuit, and [0258] the second wiring line connects a second terminal of the first signal processing circuit and a third terminal of the second signal processing circuit, the second terminal being different from the first terminal.

(5)

[0259] The imaging device according to any one of (1) to (4) described above, in which [0260] the layer is an oxide film.

(6)

[0261] The imaging device according to any one of (1) to (5) described above, in which [0262] a distance between a terminal of the first semiconductor element and a terminal of the first signal processing circuit is shorter than a distance between a terminal of the first semiconductor element and a terminal of the second signal processing circuit.

(7)

[0263] The imaging device according to any one of (1) to (6) described above, in which [0264] the first signal processing circuit is a memory circuit, and the second signal processing circuit is a logic circuit.

(8)

[0265] An electronic device including an imaging device including: [0266] a first semiconductor element including an imaging element configured to generate a pixel signal; and [0267] a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member, in which [0268] the first signal processing circuit has a structure including at least one more layer than the second signal processing circuit.

(9)

[0269] An imaging device including: [0270] a first semiconductor element including an imaging element configured to generate a pixel signal; [0271] a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member; and [0272] a wiring line that connects the first signal processing circuit and the second signal processing circuit, in which [0273] the wiring line connects a terminal provided in a wiring layer of a lowermost layer of the first signal

processing circuit and a terminal provided in a wiring layer of a lowermost layer of the second signal processing circuit.

(10)

[0274] The imaging device according to (9) described above, in which [0275] the wiring line is provided along a side surface of the first signal processing circuit and a side surface of the second signal processing circuit.

(11)

[0276] The imaging device according to (10) described above, in which [0277] a part of the wiring line is provided along a layer formed on a bonding surface between the first semiconductor element and the second semiconductor element.

(12)

[0278] The imaging device according to (9) or (11) described above, in which [0279] at least one or more layers are provided between the wiring line and the first signal processing circuit and between the wiring line and the second signal processing circuit.

(13)

[0280] The imaging device according to (12) described above, in which [0281] the one or more layers are insulating films.

(14)

[0282] An electronic device including an imaging device including: [0283] a first semiconductor element including an imaging element configured to generate a pixel signal; [0284] a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member; and [0285] a wiring line that connects the first signal processing circuit and the second signal processing circuit, in which [0286] the wiring line connects a terminal provided in a wiring layer of a lowermost layer of the first signal processing circuit and a terminal provided in a wiring layer of a lowermost layer of the second signal processing circuit.

(15)

[0287] A manufacturing method for manufacturing an imaging device including: [0288] a first semiconductor element including an imaging element configured to generate a pixel signal on a pixel basis; [0289] a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member; and [0290] a wiring line that connects the first signal processing circuit and the second signal processing circuit, [0291] the manufacturing method including: [0292] a step of transferring the first signal processing circuit and the second signal processing circuit to the first semiconductor element; [0293] a step of forming a first film on the first signal processing circuit and the second signal processing circuit; [0294] a step of exposing a part of a first terminal provided in a wiring layer of a lowermost layer of the first signal processing circuit and a part of a second terminal provided in a wiring layer of a lowermost layer of the second signal processing circuit; and [0295] a step of forming the wiring line that connects the first terminal and the second terminal.

(16)

[0296] The manufacturing method according to (15) described above, further including: [0297] a step of, after forming the first film, thinning the first signal processing circuit and the second signal processing circuit.

REFERENCE SIGNS LIST

[0298] **101** Wafer [0299] **102** Supporting substrate [0300] **103** Wafer [0301] **104** Wafer [0302] **111** Imaging device [0303] **120** Imaging element [0304] **121** Logic circuit [0305] **122** Memory circuit [0306] **131** On-chip color filter [0307] **132** Supporting substrate [0308] **133** Oxide film [0309] **134** Wiring line [0310] **135** Oxide film bonding layer [0311] **136** Wiring line [0312] **137** Bulking layer [0313] **151** Dicing tape [0314] **152** Ring frame [0315] **153** Dicing tape [0316] **154** Ring frame

[0317] **162** Supporting substrate [0318] **201** Wiring line [0319] **204** Imaging element [0320] **211** Imaging device [0321] **220** Imaging element [0322] **221** Logic circuit [0323] **222** Memory circuit [0324] **231** On-chip color filter [0325] **232** Supporting substrate [0326] **233** Oxide film [0327] **234** Wiring line [0328] **235** Oxide film bonding layer [0329] **241** Protective film [0330] **242** Wiring line [0331] **252** Wiring line [0332] **301** Resist

Claims

- **1**. An imaging device comprising: a first semiconductor element including an imaging element configured to generate a pixel signal; and a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member, wherein the first signal processing circuit has a structure including at least one more layer than the second signal processing circuit.
- **2.** The imaging device according to claim 1, further comprising: a first wiring line that connects the first semiconductor element and the first signal processing circuit.
- **3.** The imaging device according to claim 2, further comprising: a second wiring line that connects the first signal processing circuit and the second signal processing circuit.
- **4.** The imaging device according to claim 3, wherein the first wiring line connects a terminal of the first semiconductor element and a first terminal of the first signal processing circuit, and the second wiring line connects a second terminal of the first signal processing circuit and a third terminal of the second signal processing circuit, the second terminal being different from the first terminal.
- **5.** The imaging device according to claim 1, wherein the layer is an oxide film.
- **6.** The imaging device according to claim 1, wherein a distance between a terminal of the first semiconductor element and a terminal of the first signal processing circuit is shorter than a distance between a terminal of the first semiconductor element and a terminal of the second signal processing circuit.
- 7. The imaging device according to claim 1, wherein the first signal processing circuit is a memory circuit, and the second signal processing circuit is a logic circuit.
- **8.** An electronic device including an imaging device comprising: a first semiconductor element including an imaging element configured to generate a pixel signal; and a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member, wherein the first signal processing circuit has a structure including at least one more layer than the second signal processing circuit.
- **9.** An imaging device comprising: a first semiconductor element including an imaging element configured to generate a pixel signal; a second semiconductor element in which a first signal processing circuit and a second signal processing circuit that are configured to process the pixel signal are embedded by an embedded member; and a wiring line that connects the first signal processing circuit and the second signal processing circuit, wherein the wiring line connects a terminal provided in a wiring layer of a lowermost layer of the first signal processing circuit and a terminal provided in a wiring layer of a lowermost layer of the second signal processing circuit.
- **10**. The imaging device according to claim 9, wherein the wiring line is provided along a side surface of the first signal processing circuit and a side surface of the second signal processing circuit.
- **11**. The imaging device according to claim 10, wherein a part of the wiring line is provided along a layer formed on a bonding surface between the first semiconductor element and the second semiconductor element.
- **12**. The imaging device according to claim 9, wherein at least one or more layers are provided between the wiring line and the first signal processing circuit and between the wiring line and the

second signal processing circuit. 13. The imaging device according to claim 12, wherein the one or more layers are insulating films.