

BCSE00133 & 731

Multi Variable Linear Regression

Machine Learning Lab

DR GAURAV KUMAR ASST. PROF, CEA, GLA UNIVERSITY

Multivariable Linear Regression

Regressions

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Startups profit prediction using Multiple Linear Regression

Startups profit prediction using Multiple Linear Regression

- We will use dataset that includes sample data of
 1000 startup companies operating cost and their
 profit. (download it form Kaggle)
- We will use the concept of Multiple linear
 Regression to predict the profit of startups
 companies.

Startups profit prediction using Multiple Linear Regression

R&D Spend Administration Marketing Spend	State	Profit
--	-------	--------

Dataset holds data from 1000 startups of New York, California, and Florida states. The features in this dataset are R&D spending, Administration Spending, Marketing Spending, location, and Profit.

- **1. R&D spending:** The amount which startups are spending on Research and development.
- **2. Administration spending:** The amount which startups are spending on the Admin panel
- **3. Marketing spending:** The amount which startups are spending on marketing strategies
- **4. State:** To which state that particular startup belongs.
- 5. Profit: How much profit that particular startup is making.

Multivariable Linear Regression

import numpy **as** np

import pandas as pd

import matplotlib.pyplot as pt

import seaborn **as** sn

companies = pd.read_csv("1000_companies.csv")
companies.head()

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

Numerical/Statistical analysis of the dataset

companies.describe()

	R&D Spend	Administration	Marketing Spend	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

• **Note-** Percentiles are used in statistics to give you a number that describes the value that a given percent of the values are lower than.

Or

- Percentiles indicate the percentage of scores that fall below a particular value. It tells you where a score stands relative to other scores.
- For example, a person with an IQ of 120 is at the 91 percentile, which indicates that their IQ is higher than 91 percent of other scores.

Exploring Dataset

Numerical/Statistical analysis of the dataset

companies[['R&D Spend', 'Administration', 'Marketing Spend']].corr()

	R&D Spend	Administration	Marketing Spend
R&D Spend	1.000000	0.582434	0.978407
Administration	0.582434	1.000000	0.520465
Marketing Spend	0.978407	0.520465	1.000000

sns.heatmap(companies[['R&D Spend','Administration','Marketing Spend']].corr())

Categorizing Independent and Dependent Variable

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

X=companies.iloc[:,:-1].values

y=companies.iloc[:,4].values

removing column which is highly correlated

[7] companies.drop(['Marketing Spend'],axis=1,inplace=True)

0	companies
---	-----------

i	Profit	State	Administration	R&D Spend	
	192261.83000	New York	136897.800	165349.20	0
	191792.06000	California	151377.590	162597.70	1
	191050.39000	Florida	101145.550	153441.51	2
	182901.99000	New York	118671.850	144372.41	3
	166187.94000	Florida	91391.770	142107.34	4
	95279.96251	California	118451.999	54135.00	995
	164336.60550	California	130390.080	134970.00	996

Encoding Data

dummies=pd.get_dummies(companies.State)

companies=pd.concat([companies,dummies],axis=1)

companies

	R&D Spend	Administration	State	Profit	California	Florida	New York
0	165349.20	136897.800	New York	192261.83000	0	0	1
1	162597.70	151377.590	California	191792.06000	1	0	0
2	153441.51	101145.550	Florida	191050.39000	0	1	0
3	144372.41	118671.850	New York	182901.99000	0	0	1
4	142107.34	91391.770	Florida	166187.94000	0	1	0
995	54135.00	118451.999	California	95279.96251	1	0	0
996	134970.00	130390.080	California	164336.60550	1	0	0
997	100275.47	241926.310	California	413956.48000	1	0	0
998	128456.23	321652.140	California	333962.19000	1	0	0

0

companies.drop(['State'],axis=1,inplace=True)
companies

	R&D Spend	Administration	Profit	California	Florida	New York
0	165349.20	136897.800	192261.83000	0	0	1
1	162597.70	151377.590	191792.06000	1	0	0
2	153441.51	101145.550	191050.39000	0	1	0
3	144372.41	118671.850	182901.99000	0	0	1
4	142107.34	91391.770	166187.94000	0	1	0
•••						
995	54135.00	118451.999	95279.96251	1	0	0
996	134970.00	130390.080	164336.60550	1	0	0
997	100275.47	241926.310	413956.48000	1	0	0
998	128456.23	321652.140	333962.19000	1	0	0
999	161181.72	270939.860	476485.43000	0	0	1

1000 rows × 6 columns

Feature Scaling

sklearn.preprocessing.MinMaxScaler

- Transform features by scaling each feature to a given range.
- This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.

The transformation is given by:

```
X_{std} = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_{scaled} = X_{std} * (max - min) + min
```

where min, max = feature_range.

Feature Scaling

from sklearn.preprocessing import MinMaxScaler

scale=MinMaxScaler()

companies[['R&DSpend','Administration']]=scale.fit_transform(companies[['R&D Spend','Administration']]

D	сотра	inies					
₽		R&D Spend	Administration	Profit	California	Florida	New York
	0	1.000000	0.316659	192261.83000	0	0	1
	1	0.983359	0.370214	191792.06000	1	0	0
	2	0.927985	0.184424	191050.39000	0	1	0
	3	0.873136	0.249247	182901.99000	0	0	1
	4	0.859438	0.148348	166187.94000	0	1	0
	•••						
	995	0.327398	0.248434	95279.96251	1	0	0
	996	0.816272	0.292589	164336.60550	1	0	0
	997	0.606447	0.705122	413956.48000	1	0	0
	998	0.776878	1.000000	333962.19000	1	0	0

Specifying X (Independent) and y (dependent Variable)

```
y=companies.iloc[:,2].values
array([192261.83
                 , 191792.06   , 191050.39   , 182981.99
      166187.94
                 , 156991.12   , 156122.51
                                          , 155752.6
                 , 149759.96 , 146121.95 , 144259.4
      152211.77
                 , 134307.35   , 132602.65   , 129917.04
      141585.52
                 , 125370.37    , 124266.9     , 122776.86
      126992.93
      118474.03
                 , 111313.02 , 110352.25
                                          , 108733.99
      108552.04
                 , 107404.34 , 105733.54
                                          , 105008.31
      103282.38
                 , 101004.64   , 99937.59   , 97483.56
       97427.84
                 , 96778.92 , 96712.8 , 96479.51
       90708.19
                 , 89949.14 , 81229.06 , 81005.76
       78239.91
                 , 77798.83 , 71498.49
                                           , 69758.98
       65200.33
                 , 64926.08 , 49490.75
                                          , 42559.73
```


D	compa	nies					
₽		R&D Spend	Administration	Profit	California	Florida	New York
	0	1.000000	0.316659	192261.83000	0	0	1
	1	0.983359	0.370214	191792.06000	1	0	0
	2	0.927985	0.184424	191050.39000	0	1	0
	3	0.873136	0.249247	182901.99000	0	0	1
	4	0.859438	0.148348	166187.94000	0	1	0

	995	0.327398	0.248434	95279.96251	1	0	0
	996	0.816272	0.292589	164336.60550	1	0	0
	997	0.606447	0.705122	413956.48000	1	0	0
	998	0.776878	1.000000	333962.19000	1	0	0

Specifying X (Independent) and y (dependent Variable)

companies.drop(['Profit'],axis=1,inplace=True) companies

 \Box R&D Spend Administration California Florida New York

0	1.000000	0.316659	0	0	1
1	0.983359	0.370214	1	0	0
2	0.927985	0.184424	0	1	0
3	0.873136	0.249247	0	0	1
4	0.859438	0.148348	0	1	0
				•••	
995	0.327398	0.248434	1	0	0
996	0.816272	0.292589	1	0	0
997	0.606447	0.705122	1	0	0
000	0.770070	4.000000	A	n	Α.

D	companies							
D		R&D Spend	Administration	Profit	California	Florida	New York	%
	0	1.000000	0.316659	192261.83000	0	0	1	
	1	0.983359	0.370214	191792.06000	1	0	0	
	2	0.927985	0.184424	191050.39000	0	1	0	
	3	0.873136	0.249247	182901.99000	0	0	1	
	4	0.859438	0.148348	166187.94000	0	1	0	
			***	***				
	995	0.327398	0.248434	95279.96251	1	0	0	
	996	0.816272	0.292589	164336.60550	1	0	0	
	997	0.606447	0.705122	413956.48000	1	0	0	
	998	0.776878	1.000000	333962.19000	1	0	0	

Specifying X (Independent) and y (dependent Variable)

```
X=companies.iloc[:,:]
\Box
          R&D Spend Administration California Florida New York
                            0.316659
           1.000000
           0.983359
                           0.370214
           0.927985
                            0.184424
           0.873136
                           0.249247
           0.859438
                            0.148348
                                                                  0
           0.327398
                            0.248434
           0.816272
                            0.292589
                            0.705122
     997
           0.606447
```


Splitting dataset into train and test


```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=0)
```

Fitting model to training set

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X_train,y_train)
```

Predicting the test dataset

```
y_pred = lin_reg.predict(X_test)
```


Testing Accuracy

- import sklearn.metrics as sm
 print("Mean squared error =", sm.mean_squared_error(y_test, y_pred))
 print("Explain variance score =", round(sm.explained_variance_score(y_test, y_pred), 2))
 print("R2 score =", round(sm.r2_score(y_test, y_pred), 2))
 - Mean squared error = 160388568.10952258
 Explain variance score = 0.92
 R2 score = 0.92

Assignment for Analysis

1. Change the Training and Testing Size (4 variations) and Analyze the Accuracy

2. Reduce the Data Set Size and See the Results and analyze with original data set size

3. What will happen if we do not use Feature Scaling, Analyze the result with feature scaling methods

4. Use all features without dropping any column and analyze the result with the case if we drop the least significant column.

THANKYOU

gaurav.kumar@gla.ac.in

