

Fundamental Research on Infrared Photodetectors University of Illinois

December

2001

MURI, year started:

Research Tasks

HgCdTe
Photodetec
torsDefects and
Interface
Issues

Type-II Sbbased Quantum-Cascade Photodetec tors Quantum-Dot
Infrared
Photodetec
tors
(QDIPs)

Objectives

- Investigate defects in HgCdTe photodetectors
- Design and fabricate novel antimony-based type-II quantum-cascade photodetectors
- Fabricate strain-balanced quantum-dot infrared photodetectors (QDIP) using III-V material systems

<u>Approaches</u>

- Identify structure and point defects (TEM, XPS) and optical characterization of defects (PL, FTIR) in HqCdTe systems
- InAs/InGaSb type-II superlattice photodetector design and fabrication by MBE
- Strain-balanced multiple QDIP structure:
 - Eliminate defects through strain-balanced QDIP structures using tensile

Research Partners

- University of Illinois at Urbana-Champaign
- University of Texas at Austin
- Collaborations with Columbia University and University of Illinois at Chicago

Transition Partners

- DRS IR Technologies, HRL Labs, Appl. Optoelectronics
- ARL, Army Center for Night Vision & Electro-Optics, JPL, Sandia National Lab

Budget: \$2M for 5 years

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Quantum Dot Infrared Photodetectors (QDIPs)

8 nm

Objectives

- Investigate the growth process and its effects on QD size and density
- Study the effects of barrier thickness and material on QD properties (bar material: GaAs, InGaP)
- Ultimately use these results to gro high-performance QDIP AFM image (1x1 μ m) of InAs QDs on GaAs

<u>Approach</u>

- Use solid-source molecular beam epitaxyAchieved successful formation of (SSMBE) for crystal growth
- Material analysis techniques: AFM, T#MTEM and PL) X-ray diffraction, FTIR analysis, and photoluminescence (PL) measurements heterostructures with
- Use tensile strained barrier materials to compensate the compressively straineday) QDs to allow for many QD layers in photodetector

<u>Accomplishments</u>

InAs QDs on GaAs substrates (AFM,

- Demonstrated QD
- different barrier materials (PL and
- Characterized str of

