1) Let M be any antomata; then $\equiv_{\mathsf{M}} \subseteq \equiv_{\mathsf{L}}$ Thus The automat M = com. to = is a minimal (in terms of # states) automoba Qn: Can there be multiple minimal automata? Isomorphism: Let M=(Q, E, S, s, F) and M= (Q, Σ, δ, 8, F) be two DFAs M is said to be isomorphic to M' (M = M') if I a bijection f: Q -> Q' s.t -he following hold. (i) s=f(s) (ii) g∈ F (=> f(q) ∈ F (iii) f(8(9,6)) = 5'(f(2),6) \qeQ Thm: If M and M are two minimal antomata accepting the same language, Then M \(\times M\).

Minimization algorithm
\mathcal{O}
Defn: Let M be a DFA accepting L
·
Two states 9,9' e M are equivalent
if $\forall \alpha \in \mathbb{Z}^*$ $\delta(2, \alpha) \in F \implies \delta(2', \alpha) \in F$
//
$q \approx q'$ if $\forall n \in \Sigma'^* \delta(q, n) \in F \implies \delta(q', n) \in F$
$\mathcal{D}_{a}N_{a}$ is a \mathcal{D}_{a}
- Reflexive \Rightarrow is an equivalence
- Symmetric
- Symmetric relation
- Transitive
. 1
$M/\approx : Q = \frac{5}{2} [9] q \in Q$
% = E90J
F = { [q] q & F}
$\delta\left([q],\sigma\right) = [\delta(2,\sigma)]$
$\delta(\lfloor q \rfloor, \sigma) = \lfloor \delta(2, \sigma) \rfloor$
Mari (2) - 2 H) - 0 -
Verify. Show that = C = m/2
& hence conclude that M/2 is
- The minimal automata.