Megoldások

2012/13/1 Formális nyelvek és automaták évfolyamzárthelyi

1. feladat: Készítsen véges, determinisztikus automatát, mely az

 $L = \{u \in \{a, b, c\}^* \mid u \text{ bármely két } b \text{ betűje között van legalább egy } a \text{ és legalább egy } c \text{ betű}\}$

nyelvet ismeri fel. Példák L-beli szavakra: ε , aa, cacac, b, aacbaa, baccacbcac, aaabcacbacbcccabc.

Megoldás:

		a	o	c
$\stackrel{\longleftarrow}{\longrightarrow}$	$q_arepsilon$	$q_arepsilon$	q_{00}	$q_{arepsilon}$
\leftarrow	q_{00}	q_{10}	$q_{ m Hiba}$	q_{01}
\leftarrow	q_{10}	q_{10}	$q_{ m Hiba}$	q_{11}
\leftarrow	q_{01}	q_{11}	$q_{ m Hiba}$	q_{01}
\leftarrow	q_{11}	q_{11}	q_{00}	q_{11}
	$q_{ m Hiba}$	$q_{ m Hiba}$	$q_{ m Hiba}$	$q_{ m Hiba}$

 q_{ε} : még nem volt b, q_{ij} : az i ill. j bit azt jelzi, hogy az utolsó b óta volt-e a ill. c.

2. feladat: Hozza 3-as normálformára az alábbi G nyelvtant (grammatikát), majd készítsen a tanult algoritmussal olyan *véges determinisztikus automatát* a nyelvtanhoz, mely a G által generált nyelvet ismeri fel! $G = \langle \{a,b\}, \{S,A,B,C\}, \mathcal{P}, S \rangle$, ahol a \mathcal{P} szabályrendszer a következő:

$$S \rightarrow aS \mid \varepsilon \mid aA \mid bB$$

$$A \rightarrow b \mid bC$$

$$B \rightarrow a \mid aC$$

$$C \rightarrow aA \mid bB$$

Megoldás:

Láncmentesítés: NINCS LÁNCSZABÁLY Hosszredukció (+ univerzális ε szabály):

$$S \rightarrow aS \mid \varepsilon \mid aA \mid bB$$

$$A \rightarrow bD \mid bC$$

$$C \to aA \mid bB$$

$$B \to aD \mid aC$$

$$D\to\varepsilon$$

NDA:

VDA:

<u>3. feladat:</u> Készítse el az alábbi \mathcal{A} véges determinisztikus automata *minimális automatáját* a tanult algoritmus alapján (összefüggővé alakítás, redukció)!

 $\mathcal{A}=\langle\{1,2,3,4,5,6,7,8\},\{a,b,c\},\delta,1,\{1,4\}\rangle,$ a δ állapotátmenet függvény táblázattal:

<u>Megoldás:</u> $H_0 = \{1\}, H_1 = \{1, 2, 6\}, H_2 = \{1, 2, 6, 7, 5\}, H_3 = \{1, 2, 6, 7, 5, 4\}, H_4 = H_3.$ Elhagyható 3, 8. $\stackrel{\circ}{\sim}: \{1, 4\} (=: F), \{2, 5, 6, 7\} (=: N);$

					a	b	c
	a	b	c	2	N	F	F
1	N	N	F	5	N	F	F
4	N	N	F	6	F	N	F
				7	F	N	F

$$\stackrel{1}{\sim}: \{1,4\}(=:A), \{2,5\}(=:B), \{6,7\}(=:C);$$

, .		^		, ,		_				
	a	b	c		a	b	c		a	
1	B	C	A	2	C	A	A	6	A	
4	B	C	A	5	C	A	A	7	A	

 $\stackrel{2}{\sim} = \stackrel{1}{\sim} = \sim$, tehát a minimális automata:

4. feladat: A CYK-algoritmus segítségével döntse el, hogy az accbca szó levezethető-e a $G = \langle \{a, b, c\}, \{S, A, B, C, D, E, X, Y\}, \mathcal{P}, S \rangle$ nyelvtanban, ahol a \mathcal{P} szabályrendszer a következő:

В

$$\begin{split} S &\rightarrow CD \mid BC \mid AE \\ A &\rightarrow a \\ B &\rightarrow b \\ C &\rightarrow SA \mid c \\ D &\rightarrow EY \mid CB \mid AE \\ E &\rightarrow YY \mid YX \mid a \\ X &\rightarrow AA \mid BE \\ Y &\rightarrow CC \mid c \end{split}$$

Megoldás:

$$\{S, D\}$$
 $\{S, D\}$ $\{E\}$ $\{S, D\}$ $\{S, D\}$ $\{S\}$ $\{S, D\}$ $\{S\}$ $\{C\}$ $\{D\}$ $\{E, Y\}$ $\{D\}$ $\{S\}$ $\{S\}$ $\{S\}$ $\{C\}$ $\{A, E\}$ $\{C, Y\}$ $\{C, Y\}$ $\{B\}$ $\{C, Y\}$ $\{A, E\}$ $\{C, Y\}$ $\{C, Y$

 $\underline{\mathbf{5.}}$ feladat: Írjuk le az alábbi L nyelvet veremautomatával (egy-vermes automatával)!

 $L = \{u \in \{a,b\}^* \,|\, u$ tetszőleges prefixében legalább kétszer annyiavan, mint $b\}$

Segítségül: $\{u \in L \,|\, l(u) \leq 6\} = \{\, \varepsilon, a, aa, aaa, aab, aaaa, aaab, aaba, aaaaa, aaaba, aabaa, aabaa, aabaa, aabaa, aabaaba, aabaab, aaba$

Megoldás:

 $\mathcal{V} = \langle \{S, K\}, \{a, b\}, \{a, \#\}, \delta, S, \#, \{\} \rangle$ üres veremmel elfogadó (1-vermes) veremautomata, ahol δ :

$$(S, a, \#) \to (S, a\#), \quad (S, a, a) \to (S, aa),$$

 $(S, b, a) \to (K, \varepsilon), \quad (K, \varepsilon, a) \to (S, \varepsilon),$

 $(S, \varepsilon, a) \to (S, \varepsilon), \quad (S, \varepsilon, \#) \to (S, \varepsilon).$

Ötlet: Ha jön egy a berakjuk a verembe. Ha jön egy b kiveszünk 2 a-t a veremből, ezt csak 2 lépésben tehetjük, ezért kell a K állapot. A végén az is jó, ha a-t, az is ha #-t látunk a verem tetején.