

Machine Learning and Big Data - DATA622

CUNY School of Professional Studies

Activation Functions

What do we do about non-linear decision boundaries?

Activation Functions

- Activation functions provide non-linear transformation ("reshape" data)
- Sigmoid is typically used for classification
 e.g. to predict the probability, as an output.
- Rectified Linear Unit (ReLU) is the 'go-to' choice for most purposes.
- There are a lot of choices of activation functions – these are only two of many – but they must always be non-linear.

Do I really need activation functions?

Let's consider a simple neural network:

Let's expand the mathematics:

0.5(4x + 2) + 1

3(2x+2)+3

But isn't that the same as the following?

Takeaway: Without a non-linear activation the neural network will collapse

Sigmoid Activation Function

- Useful for output layer for classification problems
- A small change in input causes large change in output, at decision boundary
- Separates classes away from decision boundary
- Softmax performs a similar function for multi-class classification (3 or more classes)

More Activation Functions to choose from

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

Why do you need so many layers?

Feature Representation

Feature Representation

Feature Representation

Successive model layers learn deeper intermediate representations

School of Professional Studies

Feature Representation

Manifold Hypothesis

Solution space of data

Manifold Hypothesis

- Manifold Hypothesis states that natural data forms lower dimensional manifolds in its embedding space.
- There are both theoretical and experimental reasons to suspect that the Manifold Hypothesis is true

Another view of manifolds

How neural networks make predictions

Source: https://ekababisong.org/gcp-ml-seminar/deep-learning/

• A simple network, toy example

Source: Hung-yi Lee – Deep Learning Tutorial

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix}$$

Backpropagation

How neural networks are trained

Backpropagation

Source: https://ekababisong.org/gcp-ml-seminar/deep-learning/

Backpropagation

- Backpropagation is a type of gradient descent (terms used interchangeably)
- Gradient descent refers to the calculation of a gradient on each weight in the neural network for each training element.
 - Because the neural network will not output the expected value for a training element, the
 gradient of each weight will give you an indication about how to modify each weight to
 achieve the expected output.
 - If the neural network did output exactly what was expected, the gradient for each weight would be 0, indicating that no change to the weight is necessary.
- How it works:
 - Output of NN is evaluated against desired output
 - If results are not satisfactory, connection (weights) between layers are modified and process is repeated again and again until error is small enough.

Cost function

Tracking how your training is performing

Cost Function (J)

Cost Function

- Cost functions determine how well a model performs for a given dataset
- Cost Functions measure just how wrong the model is in finding a relation between the input and output.
- Comparing other functions:
 - Accuracy functions tell you how well your model does, not how to improve it
 - Error functions measure the difference between the target and the actual values e.g. $(\hat{y}-y)$ Loss functions quantify the cost for a single training example e.g. $(\hat{y}-y)^2$

 - Cost functions quantify the average across the entire dataset

e.g.
$$J=rac{1}{2m}\sum_{i=1}^m(\hat{y}-y)^2$$

• Loss functions quantify the impact of the error i.e. error is objective while loss is subjective e.g. we might adopt a non-symmetric loss function if we may be more negatively affected by an error in a particular direction (e.g., false positive vs. false negative)

Cost Function

- MSE Cost function will always be parabolic (by definition)
 - So it has only one global minimum

$$J=rac{1}{2m}\sum_{i=1}^m(\hat{y}-y)^2$$

SSE – Similar to MSE but not an average

$$J = rac{1}{2} \sum_{i=1}^m (\hat{y} - y)^2$$

Gradient Descent Rule

Gradient descent rule:

$$W_i \leftarrow W_i + \Delta W_i$$

Where:

$$\Delta w_i = -\eta \frac{\partial J}{\partial w_i}$$

 η is a positive constant called the *learning rate*, and determines step size of gradient descent search

Cost Function

SSE =
$$\frac{1}{2} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

$$SSE = \frac{1}{2} \sum_{j=1}^{n} \left(y_j - \left(\sum_{i=0}^{m} \phi(w_i^T \times x_{j,i}) \right) \right)^2$$

$$\frac{\partial SSE}{\partial w_{i}} = \sum_{j=1}^{n} \underbrace{\begin{pmatrix} y_{j} - \hat{y}_{j} \end{pmatrix}}_{error\ of\ the} \times \underbrace{-x_{j,i}}_{rate\ of\ change\ of\ output\ of\ the}}_{weighted\ sum\ with\ respect\ to\ change\ in\ w_{i}}$$

Derivative of the Sigmoid Function

$$y = \frac{1}{1 + e^{-x}}$$

$$\frac{dy}{dx} = -\frac{1}{(1+e^{-x})^2}(-e^{-x}) = \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{1}{1+e^{-x}} \left(1 - \frac{1}{1+e^{-x}} \right) = y(1-y)$$

Derivatives of other Activation Functions

Name	Plot	Equation	Derivative
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Cost Function

SSE =
$$\frac{1}{2} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

$$SSE = \frac{1}{2} \sum_{j=1}^{n} \left(y_j - \left(\sum_{i=0}^{m} \phi(w_i^T \times x_{j,i}) \right) \right)^2$$

$$\frac{\partial \, SSE}{\partial \, w_i} = \sum_{j=1}^n \underbrace{ \left(\underbrace{y_j - \hat{y}_j} \right) \times \underbrace{-x_{j,i}}_{\textit{error of the rate of change of output of the weighted sum with respect to change in w_i}}_{\textit{weighted sum with respect to change in w_i}}$$

Gradient Descent Rule or Sigmoid

$$w_i^{t+1} = w_i^t + \left(\eta \times \sum_{j=1}^n \left((y_j^t - \hat{y}_j^t) \times (\hat{y}_j^t \times (1 - \hat{y}_j^t)) \times x_{j,i}^t \right) \right)$$
Error gradient for w_i

Cost Function

$$w_i^{t+1} = w_i^t + \left(\eta \times \sum_{j=1}^n \left(\left(y_j^t - \hat{y}_j^t \right) \times x_{j,i}^t \right) \right)$$
error gradient for w_i

