Prof. Dr. J. W. Kolar

Aufgabe Nr.	Thema	Punkte max.	Punkte	Visum 1	Visum 2
NuS I-2	Äquiv. Quellen und Leistungsanp.	20			
Name:		ETH-Nr.:		-	

Aufgabe NuS I-2: Gleichstrom-Brückenschaltung

Fig. 2.1: Gleichstrom-Brückenschaltung (a) und Belastungsnetzwerk (b)

Gegeben ist eine Gleichstrom-Brückenschaltung gemäss **Fig. 2.1(a)** bestehend aus der Spannungsquelle U = 25 V, der Stromquelle I = 2 A und sechs Widerständen R = 5 Ω . An den Klemmen A und B der Brückenschaltung kann ein Belastungsnetzwerk gemäss **Fig. 2.1(b)**, das aus dem einstellbaren Widerstand R_1 und den beiden Widerständen $R_2 = 2$ k Ω und $R_3 = 480$ Ω besteht, angeschlossen werden.

Betrachten Sie für Teilaufgabe a) die Gleichstrom-Brückenschaltung ohne Belastungsnetzwerk.

a) Berechnen Sie zunächst die Leerlaufspannung U_{qE} (mit Hilfe des Superpositionsverfahrens) und den Innenwiderstand R_{qE} einer Ersatzspannungsquelle bezüglich der Klemmen A und B als Funktion von U, I und R. Geben Sie anschliessend Zahlenwerte für U_{qE} , R_{qE} und den Kurzschlussstrom I_{qE} dieser Ersatzspannungsquelle an. (12 Pkt.)

Berücksichtigen Sie bei den folgenden Teilaufgaben das Belastungsnetzwerk. Falls Sie Teilaufgabe **a)** nicht lösen konnten, rechnen Sie mit $U_{\text{qE}} = 6 \text{ V}$ und $R_{\text{qE}} = 4 \Omega$.

- b) Berechnen Sie den Wert des einstellbaren Widerstands R_1 so, dass die in R_1 umgesetzte Leistung maximal wird. (3 Pkt.)
- c) Wie gross ist mit dem Ergebnis aus Teilaufgabe b) der Spannungsabfall über dem Widerstand R₁ und welche Leistung wird von R₁ aufgenommen?
 (5 Pkt.)