FMI, Anul III

Elemente de securitate și logică aplicată

$\mathbf{E}_{\mathbf{z}}$	z 2	m	on
	ХН		en

Nume:	
Prenume:	
Grupa:	

Modulul 3: Logică pentru cunoaștere și demonstrare automată

- **(P1)** [2 puncte]
 - (i) Fie $p, q \in PROP$. Verificați dacă următoarele formule sunt valide în clasa tuturor cadrelor Kripke pentru ML_0 :
 - (a) $\Box p \to \Box \Box p$.
 - (b) $\Diamond(p \land q) \to \Diamond p \land \Diamond q$.
 - (ii) Demonstrați că pentru orice formule φ, ψ ale lui ML_0 ,

$$\vdash_{\pmb{K}} \neg \varphi \to \neg \psi \quad \text{implică} \quad \vdash_{\pmb{K}} \Box \psi \to \Box \varphi.$$

(iii) Fie \mathcal{M}_c modelul epistemic care descrie jocul de cărți, definit în curs. Verificați dacă următoarea afirmație este adevărată:

$$\mathcal{M}_c$$
, $(A, B) \Vdash K_2 \neg K_1 2B$.

Demonstrație:

(i) (a) Răspunsul este NU. Dăm următorul contraexemplu. Fie cadrul $\mathcal{F}=(W,R),$ unde

$$W = \{0, 1, 2\}, \quad R = \{(0, 1), (1, 2)\}$$

$$\operatorname{si} \mathcal{M} = (\mathcal{F}, V) \operatorname{cu} V(p) = \{1\}.$$

Atunci $\mathcal{M}, 0 \Vdash \Box p$ ddacă $\mathcal{M}, 1 \Vdash p$ (deoarece singurul punct Raccesibil din 0 este 1) ddacă $1 \in V(p)$, ceea ce este adevărat.

Pe de altă parte, $\mathcal{M}, 0 \Vdash \Box \Box p$ ddacă $\mathcal{M}, 1 \Vdash \Box p$ ddacă $\mathcal{M}, 2 \Vdash p$ (deoarece singurul punct R-accesibil din 1 este 2) ddacă $2 \in V(p)$, ceea ce este fals

Prin urmare, $\mathcal{M}, 0 \not\Vdash \Box p \to \Box \Box p$.

(b) Răspunsul este DA. Fie \mathcal{F} un cadru Kripke arbitrar, w o stare din \mathcal{F} și $\mathcal{M}=(\mathcal{F},V)$ un model Kripke bazat pe \mathcal{F} . Trebuie să arătăm că

$$\mathcal{M}, w \Vdash \Diamond (p \land q) \rightarrow \Diamond p \land \Diamond q.$$

Presupunem că $\mathcal{M}, w \Vdash \Diamond (p \land q)$. Atunci există $v \in W$ astfel încât $Rwv \text{ si } \mathcal{M}, v \Vdash p \land q, \text{ deci } \mathcal{M}, v \Vdash p \text{ si } \mathcal{M}, v \Vdash q.$

Avem că

- (1) $Rwv \text{ si } \mathcal{M}, v \Vdash p, \text{ deci } \mathcal{M}, w \Vdash \Diamond p;$
- (2) $Rwv \text{ si } \mathcal{M}, v \Vdash q, \text{ deci } \mathcal{M}, w \Vdash \Diamond q.$

Prin urmare, $\mathcal{M}, w \Vdash \Diamond p \land \Diamond q$.

- (ii) Prezentăm următoarea K-demonstrație:

 - $(2) \vdash_{\mathbf{K}} (\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi) \quad \text{(Taut)}$ $(3) \vdash_{\mathbf{K}} \psi \rightarrow \varphi \quad \text{(MP): (1), (2)}$ $(4) \vdash_{\mathbf{K}} \Box \psi \rightarrow \Box \varphi \quad \text{Exemplul 2.31}$ Exemplul 2.31: (3)
- (iii) \mathcal{M}_c , $(A, B) \Vdash K_2 \neg K_1 2B$ ddacă agentul 2 știe că agentul 1 nu știe că agentul 2 are cartea B.

Avem că
$$\mathcal{M}_c$$
, $(A, B) \Vdash K_2 \neg K_1 2B$ ddacă (pentru orice $(X, Y) \in W$, $\mathcal{K}_2(A, B)(X, Y)$ implică \mathcal{M}_c , $(X, Y) \Vdash \neg K_1 2B$) ddacă (\mathcal{M}_c , $(A, B) \Vdash \neg K_1 2B$ şi \mathcal{M}_c , $(C, B) \Vdash \neg K_1 2B$) ddacă (\mathcal{M}_c , $(A, B) \not\Vdash K_1 2B$ şi \mathcal{M}_c , $(C, B) \not\Vdash K_1 2B$) ddacă ((există $(X, Y) \in W$ astfel încât $\mathcal{K}_1(A, B)(X, Y)$ şi \mathcal{M}_c , $(X, Y) \not\Vdash 2B$)

şi (există
$$(X,Y) \in W$$
 astfel încât $\mathcal{K}_1(C,B)(X,Y)$ şi $\mathcal{M}_c,(X,Y) \not\models 2B$) ddacă
$$\left((\mathcal{M}_c,(A,B) \not\models 2B \text{ sau } \mathcal{M}_c,(A,C) \not\models 2B \right)$$
şi $(\mathcal{M}_c,(C,B) \not\models 2B \text{ sau } \mathcal{M}_c,(C,A) \not\models 2B)$,

ceea ce este adevărat, deoarece \mathcal{M}_c , $(A, C) \not\Vdash 2B$ şi \mathcal{M}_c , $(C, A) \not\Vdash 2B$.

(P2) [2 puncte]

(i) Scrieți o demonstrație în Lean pentru teorema th1 de mai jos.

```
variable \{\alpha: \text{Type}\}\ (p\ q: \alpha\to \text{Prop}) theorem th1: (\forall\ x,\ p\ x)\ \land\ (\forall\ x,\ q\ x)\ \to\ (\forall\ x,\ \neg(\neg p\ x\ \lor\ \neg q\ x))
```

(ii) Definiţi, prin recursie structurală pe numere naturale şi fără a folosi operaţia de înmulţire "*" predefinită în Lean, o funcţie mymul : Nat → Nat → Nat astfel încât, pentru orice n m : Nat, mymul n m să returneze produsul numerelor n şi m.

Rezolvare:

theorem th1 : $(\forall \ x,\ p\ x)\ \land\ (\forall \ x,\ q\ x)\ \rightarrow\ (\forall \ x,\ \neg(\neg p\ x\ \lor\ \neg q\ x))\ :=\ by intros\ h\ a\ h' cases\ h\ with \\ |\ intro\ hp\ hq\ => \\ specialize\ hp\ a \\ specialize\ hq\ a$

. contradiction

cases h'

(i) variable $\{\alpha : \text{Type}\}\ (p \ q : \alpha \rightarrow \text{Prop})$

. contradiction