POLITECHNIKA CZĘSTOCHOWSKA Katedra Inteligentnych Systemów Informatycznych

ĆWICZENIE nr 6 UKŁADY ARYTMETYCZNE cz. I

Dokument służy wyłącznie do celów indywidualnego kształcenia. Zabrania się utrwalania, przekazywania osobom trzecim oraz rozpowszechniania.

1.1 Cel ćwiczenia.

Celem ćwiczenia jest zapoznanie się z budową i działaniem sumatorów, subtraktorów i komparatorów cyfrowych.

1.2 Wprowadzenie.

Układy cyfrowe mogą przetwarzać tylko informację binarną, tj. dwuwartościową. Wynika stąd konieczność przejścia z ogólnie przyjętego systemu dziesiętnego na system binarny. Liczby dziesiętne zazwyczaj przedstawia się w naturalnym kodzie dwójkowym, w kodzie ósemkowym (oktalnym), szesnastkowym (heksadecymalnym) lub w kodzie BCD.

Jeżeli przy zapisie liczby binarnej uwzględnia się znak to zapisujemy go w postaci bitu przed najstarszym bitem liczby. Liczbie dodatniej odpowiada bit znaku równy 0, dla liczby ujemnej równy 1. Liczby binarne przedstawia się w zapisach: znakmoduł, uzupełnień do 1 (p.-1), uzupełnień do 2 (p.).

Liczba w postaci znak-moduł. Liczba ujemna daje się łatwo przedstawić, jeżeli na najstarszej pozycji zostanie umieszczony bit znaku s. Zero oznacza liczbę dodatnią, a jedynka ujemną. Poprawna interpretacja znaku liczby może nastąpić tylko przy stałej długości słowa. Przykład dla słowa 8-bitowego:

$$+118_{10} = \mathbf{0} \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0_2$$

 $-118_{10} = \mathbf{1} \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0_2$

Liczba w postaci uzupełnienia do dwóch (two's complement). Przedstawienie liczby w postaci znak-moduł ma tę wadę, że nie ułatwia dodawania liczb o przeciwnych znakach. W przypadku wystąpienia znaku minus sumator musi być przestawiony na odejmowanie. Przy zapisie w postaci uzupełnienia do dwóch nie jest to potrzebne. W zapisie w postaci uzupełnienia do dwóch najstarszy bit ma wagę ujemną. Pozostała część liczby jest normalnym kodem dwójkowym. Również w tym zapisie długość słowa musi być stała, aby można było jednoznacznie zdefiniować najstarszy bit. W przypadku liczby dodatniej wartość najstarszego bitu wynosi 0. Dla liczby ujemnej bit ten ma wartość 1, bo tylko ta pozycja ma ujemną wagę. Przykład dla słowa 8-bitowego:

$$+118_{10} = \mathbf{0} \ 11 \ 10 \ 11 \ 0 = B_N$$

- $118_{10} = \mathbf{1} \ 00 \ 0 \ 10 \ 10 = X$

Przejście z liczby dodatniej na równą co do modułu liczbę ujemną jest oczywiście nieco trudniejsze niż przy zapisie znak-moduł. Załóżmy, że liczba dwójkowa B_N ma bez bitu znaku długość N. Stąd waga pozycji znaku wynosi -2^N . Liczbę $-B_N$ przedstawia wzór:

$$-B_N = -2^N + X$$
 Stąd wartość dodatniej reszty X
$$X = 2^N - B_N$$

To wyrażenie nosi nazwę uzupełnienia do dwóch $B_N^{(2)}$ liczby B_N . Można je łatwo wyliczyć na podstawie B_N . Rozważmy największą liczbę, jaką można przedstawić za pomocą N pozycji. Ma ona wartość 11111......= 2^N - 1. Odejmując od niej dowolną liczbę dwójkową B_N otrzymujemy również liczbę dwójkową, w której wszystkie bity są negacjami odpowiednich bitów B_N . Liczba taka nazywa się uzupełnieniem do jedności $B_N^{(1)}$ liczby B_N . Stąd mamy:

$$B_N^{(1)} = 2^N - 1 - B_N$$
 i $B_N^{(2)} = B_N^{(1)} + 1$

POLITECHNIKA CZESTOCHOWSKA Katedra Inteligentnych Systemów Informatycznych

Zapis liczby dwójkowej w postaci uzupełnienia do dwóch otrzymujemy więc przez negację wszystkich jej pozycji oraz dodanie 1. Przykład 8-bitowej liczby dwójkowej w uzupełnieniu do dwóch:

	$118_{10} =$	01110110
uzupełnienie do jedności		10001001
		+ 1
uzupełnienie do dwóch		$10001010 = -118_{10}$
Przejście odwrotne:		
uzupełnienie do jedności		01110101
		+ 1
uzupełnienie do dwóch		$01110110 = +118_{10}$

Sumatory są układami dodającymi dwie liczby binarne. Najprostszy przypadek występuje wówczas, gdy trzeba dodać dwie liczby jednobitowe. Aby móc zaprojektować odpowiedni układ logiczny, należy rozpatrzyć wszystkie możliwe przypadki i utworzyć tablice funkcji logicznych. Przy dodawaniu dwóch liczb jednobitowych mogą wystąpić następujące przypadki: 0+0=0, 0+1=1, 1+0=1, 1+1=10.

Jeżeli zarówno A, jak i B są jedynkami, przy dodawaniu występuje przeniesienie do starszej pozycji. Wobec tego sumator musi mieć dwa wyjścia: jedno wyjście dla sumy na odpowiadającej sumatorowi pozycji i jedno wyjście przeniesienia do następnej pozycji. Dochodząc do tablicy prawdy przedstawionej na Rys. 1. przydzielamy liczbom A i B zmienne logiczne a_i i b_i. Przeniesienie oznaczmy przez c_i, a sumę jako s_i. Otrzymujemy stąd funkcje Boole'owskie w postaci normalnej sumy $c_i = a_i b_i$ oraz $s_i = \overline{a}_i b_i + a_i \overline{b}_i = a_i \oplus b_i$.

a_{i}	b_{i}	s_i	c_{i}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Rys. 1. Tablica prawdy półsumatora.

Przeniesienie jest iloczynem zmiennych wejściowych (funkcja AND), suma zaś funkcją nierównoważności (EXOR). Układ, który realizuje te dwie zależności, nazywamy półsumatorem (Rys. 2).

Rys. 2. Układ półsumatora.

W przypadku dodawania liczb dwójkowych wielopozycyjnych półsumator można zastosować tylko na najmłodszej pozycji. Na wszystkich pozostałych trzeba

dodawać nie dwa, ale trzy bity z powodu przeniesienia z młodszej pozycji. W ogólnym przypadku dla każdego bitu jest potrzebny układ logiczny o trzech wejściach a_i , b_i , c_{i-1} oraz dwóch wyjściach s_i i c_i . Układ taki nosi nazwę pełnego sumatora. Można go zrealizować w sposób pokazany na Rys. 3. za pomocą dwóch półsumatorów. Tablica prawdy pełnego sumatora jest przedstawiona na Rys. 4. Funkcje Boole`owskie są następujące $c_i = a_i b_i + a_i c_{i-1} + b_i c_{i-1}$ oraz $s_i = a_i \oplus b_i \oplus c_{i-1}$.

Rys. 3. Układ pełnego sumatora.

	Wejście	Wyjście				
a_{i}	b_i	c_{i-1}	s_i	c_{i}		
0	0	0	0	0		
0	1	0	1	0		
1	0	0	1	0		
1	1	0	0	1		
0	0	1	1	0		
0	1	1	0	1		
1	0	1	0	1		
1	1	1	1	1		

Rys. 4. Tablica prawdy pełnego sumatora.

Aby móc dodawać dwie wielopozycyjne liczby dwójkowe potrzeba na każdą pozycję jeden pełny sumator. Sumatory wielobitowe można podzielić na dwójkowe (sumowanie liczb binarnych) i dziesiętne (sumowanie liczb dziesiętnych kodowanych dwójkowo). Działanie sumatora może odbywać się szeregowo (sumowane są kolejne bity dodajnej i dodajnika) lub równolegle (wszystkie bity sumowane są jednocześnie).

Subtraktor jest układem realizującym odejmowanie dwu liczb binarnych. Subtraktor można nazwać pewnym przypadkiem sumatora ze zmianą a_i na \overline{a}_i w funkcji pożyczki. Układy wielobitowe subtraktorów budowane są analogicznie jak odpowiednie sumatory. Praktycznie do budowy wielobitowych układów odejmujących wykorzystuje się scalone sumatory uzupełnione dodatkowymi układami wejściowymi, wyjściowymi i generującymi znak wyniku. Tablica prawdy pełnego substraktora jest przedstawiona na Rys. 5.

	Wejście	e	V	Vyjście
a_{i}	b_i	v_{i-1}	d_{i}	v_i
0	0	0	0	0
0	1	0	1	1
1	0	0	1	0
1	1	0	0	0
0	0	1	1	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	1

Rys. 5. Tablica prawdy pełnego subtraktora.

Komparatory to układy logiczne, które porównują ze sobą liczby. Najważniejsze kryteria porównania to A=B, A>B i A<B. Kryterium równości dwóch liczb dwójkowych to identyczność wszystkich bitów. Komparator powinien dawać na wyjściu 1 wówczas, gdy dwie porównywane liczby są sobie równe. W przypadku dwóch liczb 1bitowych wystarczy użyć bramki EXOR. Bardziej uniwersalne komparatory prócz wykrywania równości wskazują, która z porównywanych liczb jest większa. Określa się je mianem komparatora wartości.

Dla utworzenia funkcji logicznych należy skorzystać z przedstawionej na Rys. 6. tablicy stanu.

A	В	A>B	A=B	A <b< th=""></b<>
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Rys. 6. Tablica stanu komparatora 1-bitowego.

Na jej podstawie otrzymamy bezpośrednio układ realizujący tę funkcję, przedstawiony na Rys. 7.

Rys. 7. Schemat komparatora 1-bitowego.

POLITECHNIKA CZĘSTOCHOWSKA Katedra Inteligentnych Systemów Informatycznych

1.3 Pytania sprawdzające.

- 1. Omówić uzupełnienie do dwóch liczb ujemnych.
- 2. Przedstawić liczby 5, 9, 15, 28, 42 oraz ich uzupełnienie do dwóch.
- 3. Omówić działanie i narysować sumator i subtraktor 1-bitowy.
- 4. Dokonać klasyfikacji sumatorów.
- 5. Omówić budowę zasadę działania komparatora 1-bitowego.

1.4 Opis układu pomiarowego.

Część pierwsza ćwiczenia składa się z układu sumatora-subtraktora 1-bitowego, komparatora szeregowego oraz układów pomocniczych takich jak rejestry przesuwne, przerzutnik D oraz rejestr sumy. Na Rys. 8. przedstawiony jest schemat sumatorasubtraktora 1-bitowego wykorzystywanego w ćwiczeniu, a na Rys. 9 schemat komparatora szeregowego. Przy pomocy przełącznika SUB można wykorzystywać układ jako sumator lub subtraktor. Taktowania dokonuje przy pomocy przełącznika TAKT.

Rys. 8. Schemat układu sumatora-subtraktora 1-bitowego.

Rys. 9. Schemat układu komparatora szeregowego.

1.5 Program ćwiczenia.

Przedstawiony na rysunku 10 zadajnik ma za zadanie podawać dwie liczby czterobitowe bit po bicie do badanego układu. Zadajnik zbudowany jest z dwóch rejestrów przesuwnych (U3- dla liczby A i U2 – dla liczby B) pracujących synchronicznie. Układ zadajnika będzie wykorzystany przy badaniu poszczególnych układów arytmetycznych.

Rys.10. Schemat zadajnika.

Znaczenie poszczególnych przełączników układu jest następujące:

Przełącznik V12, V11 (S1, S0):

S0:S1 = 0:0 Blokada zegara – nic nie jest wykonywane.

S0:S1 = 1:0 Przesuw w prawo: w kierunku od Q0 do Q3.

S0:S1 = 0:1 Przesuw w lewo: w kierunku od Q3 do Q0.

S0:S1 = 1:1 Wpis równoległy

Zmiana trybu pracy powinna się odbywać przy stanie wysokim na wejściu zegarowym.

Przełącznik V10, (CP – TAKT)

Przełącznik V9, (MR – Zerowanie) Aktywny stan niski

Przełącznik V13, V15 (DSR – wejście danych szeregowych przy przesuwaniu danych w prawo.)

Przełącznik V14, V16 (DSL – wejście danych szeregowych przy przesuwaniu danych w lewo)

Przełącznik V1- V4, (D0-D3 liczba A)

Przełącznik V5- V8, (D0-D3 liczba B)

a_i, b_i – wyjścia zadajnika

L1...L4 – wyjścia równoległe (liczba A).

L5...L8 – wyjścia równoległe (liczba B).

1.5.1 Sumator-subtraktor 1-bitowy.

Zmontować układ według rysunku 11 korzystając z zadajnika przedstawionego na rysunku 10. Wyzerować układ przy pomocy zadajnika V9 (Zerowanie). Połączyć punkty SUB i C_{i-1} ze stanem L a do S_i ., C_i , C_{i-1} podłączyć wskaźniki (*logic display*). Ustawić na zadajnikach A=1100 i B 1010. Ustawić przełącznik V11=1, V12=1 i podać jeden impuls zegarowy (TAKT). Następnie ustawić V11=1, V12=0 i podawać impulsy zegarowe przy pomocy przełącznika V10 TAKT. Wyniki należy wpisać do Tabela 1 (A_i – L11 12, B_i – L12, S_i , C_i , C_{i-1}). Następnie powtórzyć badanie dla C_{i-1} =H.

Rys. 11. Układ do badania sumatora-subtraktora 1-bitowego.

Tabela 1.

Wej	ście	Wyjście				
a_{i}	b_{i}	s_i	c_{i}			
0	0					
0	1					
1	0					
1	1					

Po wykonaniu badania sumatora 1-bitowego należy połączyć punkt SUB ze stanem H (załączenie substraktora) i dla różnych wartości C_{i-1} powtórzyć badanie jak dla sumatora.

1.5.2 Sumator-subtraktor szeregowy.

Zmontować układ według rysunku 12 korzystając z zadajnika przedstawionego na rysunku 10. Wyzerować układ przy pomocy zadajnika V9 (Zerowanie). Połączyć punkty SUB ze stanem L a do S_i, C_i, C_{i-1} podłączyć wskaźniki (*logic display*). Ustawić na zadajnikach A=1100 i B 1010. Ustawić przełącznik V11=1, V12=1 i podać jeden impuls zegarowy (TAKT). Następnie ustawić V11=1, V12=0 i podawać impulsy zegarowe przy pomocy przełącznika V10 TAKT. Podczas taktowania należy zwrócić uwagę na stan wskaźników LED (A_i – L11 12, B_i – L12, S_i, C_i, C_{i-1}). Wynik odczytać w rejestrze sumy po odpowiedniej liczbie impulsów taktujących. Z kolei łącząc punkt SUB ze stanem L (sumowanie) lub H (odejmowanie) przeprowadzić następujące działania arytmetyczne dla dwóch różnych liczb A i dwóch różnych liczb B: A+0=A, A+B=7, A+B=S, A-0=A, A-B=S (S>0), A-B=S (S<0), 0-B= -B. Przed wykonaniem każdego działania układ należy wyzerować. Wyniki przedstawić w Tabela 2.

Rys. 12. Układ sumatora-subtraktora szeregowego.

Tabela 2.

Bina	Binarnie A Binarnie B					Działanie	Bin	arnie	S						Hex S	Ilość		
A3	A2	A1	A0	В3	B2	B1	В0		S 7	S 6	S5	S 4	S 3	S 2	S 1	S 0		Taktów
								A+0=A										
								0-B = -B										

1.5.3 Akumulacyjny sumator szeregowy.

Zmontować układ według rysunku 13, wyzerować układ. Połączyć punkt SUB ze stanem L. Ustawić na zadajniku A=0001. Ustawić przełącznik V11=1, V12=1 i podać jeden impuls zegarowy (TAKT). Następnie ustawić V11=1, V12=0 i podawać impulsy zegarowe przy pomocy przełącznika V10 TAKT Podczas taktowania należy zwrócić uwagę na stan wskaźników LED (A_i – L11 12, B_i – L12, S_i , C_i , C_{i-1}) Wynik należy

odczytać w rejestrze sumy po ośmiu impulsach taktujących. Przed 8 impulsem należy ustawić przełącznik V11=1, V12=1, na zadajniku A zadać następny składnik sumowania i podać jeden impuls zegarowy (TAKT). Następnie ustawić V11=1, V12=0 i podawać impulsy zegarowe przy pomocy przełącznika V10 TAKT

Z kolei łącząc punkt SUB ze stanem L (sumowanie) lub H (odejmowanie) przeprowadzić następujące działania arytmetyczne dla dwóch różnych liczb A: A+A=2A, $A_1+A_2+A_3=S$, $A_1-A_2+A_3=S$, $A_1+A_2+...+A_n=S$ oraz własne trzy działania. Przed wykonaniem każdego działania układ należy wyzerować. Wyniki przedstawić w Tabela 3.

Rys. 13. Układ sumatora akumulującego.

Tabela 3.

Binarnie A Działanie					Binarnie S								Hex S	Ilość
A3	A2	A1	A0		S7	S6	S5	S4	S 3	S2	S1	S0		Taktów
				A+0=S										
				A+S=2A										
				$A_1+0=S$										
				$A_n + S = S_n$										

1.5.4 Komparator szeregowy.

Zmontować układ według rysunku 14. Do wyjść komparatora podłączyć wskaźniki (logic dispaly), wyzerować układ. Ustawić na zadajnikach A=0011 i B=0010. Ustawić przełącznik V11=1, V12=1 i podać jeden impuls zegarowy (TAKT). Następnie ustawić V11=1, V12=0 i podawać impulsy zegarowe przy pomocy przełącznika V10 TAKT. Podczas taktowania należy zwrócić uwagę na stan wskaźników LED (A_i, B_i, A>B, A=B, A<B). Wyniki przedstawić w Tabela 4.

Tabela 4.

A		В	A_{i}	\mathbf{B}_{i}	A>B	A=B	A <b< th=""><th>TAKT</th></b<>	TAKT
001	1	0010	0	0				1
			0	0				2
			1	1				3
			1	0				4

Rys. 14. Układ komparatora szeregowego MSB.