Practice Set 3

- 1. Consider a one-dimensional two-category classification problem with equal priors. Three i.i.d training observations were collected: $D_1 = \{1, 2, 6\}$ and $D_2 = \{4, 5, 7\}$ for ω_1 and ω_2 , respectively. It is desired to classify a test pattern using the Parzen Window technique. Recall that in this approach, the estimate for \mathbf{x} over the set of training samples $\{\mathbf{x}_i\}_{i=1}^n$ is given by $p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \phi(\mathbf{x} \mathbf{x}_i)$.
 - (i) Using the window function $\phi(x) = \frac{1}{2} \exp^{-|x|}$, classify the pattern x = 4.5. You may assume the scenario of zero-loss loss function.
 - (ii) Verify whether the function $\phi(x)$ is a probability density function.
- 2. You are given 2 training examples (comprising 2 dimensions) for classes ω_1 and ω_2 .

$$\omega_1: \left[egin{array}{c} 1 \\ 1 \end{array}
ight], \left[egin{array}{c} 3 \\ 2 \end{array}
ight] \qquad \qquad \omega_2: \left[egin{array}{c} 1 \\ 2 \end{array}
ight], \left[egin{array}{c} 0 \\ 3 \end{array}
ight]$$

Compute the optimal weight vector \mathbf{w} (projection line in a reduced dimension) using the Fisher's criterion.

The inverse of
$$2 \times 2$$
 matrix:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

3. You are given a data set $\{\mathbf{x}_i, y_i\}_{i=1}^N$ of size N. Each input \mathbf{x}_i is d-dimensional and its corresponding target y_i takes one of the 2 values (+1 or -1). A modified version of the SVM classifier is obtained by reformulating the minimization problem of the traditional problem as:

$$\min_{\mathbf{w},b,\xi,\rho} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{1}{N}\sum_{i=1}^N \xi_i - \rho$$

subject to the constraints:

$$y_i(\mathbf{w}^T \mathbf{x}_i + b] \ge \rho - \xi_i \qquad i = 1, 2, 3, \dots, N$$

$$\xi_i \ge 0 \qquad i = 1, 2, 3, \dots, N$$

$$\rho > 0$$

- (a) Write down the Lagrangian Function $L(\mathbf{w}, b, \boldsymbol{\xi}, \rho)$ corresponding to this optimization problem. Here $\boldsymbol{\xi} = \{\xi_1, \xi_2, \xi_N\}$.
- (b) State the KKT conditions to the primal problem, that are to be satisfied at optimality.

1

4. Consider a data set $\{\mathbf{x}_i, y_i\}_{i=1}^N$, where each input \mathbf{x}_i is d-dimensional and its corresponding target y_i is an integer valued scalar, taking values +1 or -1. Additionally, assume that each data pair (\mathbf{x}_i, y_i) is associated with a **known** weight r_i , (where $r_i > 0$). Accordingly, the sum of squares error function can be written as $E(\mathbf{w}) = \sum_{i=1}^N r_i (y_i - \mathbf{w}^T \mathbf{x}_i)^2$. An iterative approach to this minimization/learning problem is the method of gradient descent. Using this technique, write an equation that updates the weight vector $\mathbf{w}(j-1)$ in the j^{th} iteration. You may assume the 'batch-mode' learning paradigm for updating the weights.

