- 1. Basic Knowledge
 - 1.1 Linear Algebra
 - 1.2 Probability
- 2. Machine Learning
- 3. Algorithmic Machine Learning and Data Science
 - 3.1 The Power of Randomness
 - 3.2 First Order Optimization
 - 3.3 Spectral Algorithms
 - 3.5 Fourier Methods
- 4. Deep Learning
 - 4.1 NLP
 - 4.2 CV
 - 4.3 Generative Model
 - 4.4 Reinforcement Learning
- 5. Computer Vision
- 6. AI

(Updating...)

This files summarizes some learning resources about ML/ DL/AI/ALML. Some sections here may have intersection, I mainly organize it according to the course I have taken.

Some recourses are from my course at NYU Tandon. Some are wonderful recourses on the internet.

1. Basic Knowledge

1.1 Linear Algebra

A short review: http://web.stanford.edu/class/cs246/handouts/CS246_LinAlg_review.pdf Sandford summary of basic linear algebra: http://cs229.stanford.edu/section/cs229-linalg.pdf Space understanding for Linear Algebra (from 3 blue 1 brown):

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&app=desktop My note can be found here:

1.2 Probability

Stanford "Review of Probability Theory - Arian Maleki and Tome Do"http://cs229.stanford.edu/section/cs229-prob.pdf

2. Machine Learning

3. Algorithmic Machine Learning and Data Science

Wonderful courses:

CS168: The Modern Algorithmic Toolbox https://web.stanford.edu/class/cs168/index.html

CS246: Mining Massive Data Sets http://web.stanford.edu/class/cs246/

3.1 The Power of Randomness

https://www.cs.princeton.edu/courses/archive/fall18/cos521/Lectures/lec1.pdf	Typed notes for hashing - Christopher Musco
https://www.cs.princeton.edu/courses/archive/fall18/cos521/Lectures/lec10.pdf	Typed notes - Christopher Musco: Dimensionality reduction and the Johnson- Lindenstrauss Lemma
https://www.cs.princeton.edu/courses/archive/fall18/cos521/Lectures/lec12.pdf	Typed notes - Christopher Musco: Nearest Neighbor Search and Locality Sensitive Hashing

3.2 First Order Optimization

Reading:

Website	Description	
https://www.offconvex.org/	diverse, theory-learning blog which discusses lots of problems and approaches in understanding the optimization of Non-convex problems	
https://ee227c.github.io/note s/ee227c-notes.pdf	Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation - Moritz Hardt's proofs of gradient descent convergence in all the regimes discussed in class.	
https://arxiv.org/pdf/1909.05 207.pdf	Introduction to Online Convex Optimization Elad Hazan's book,	
https://arxiv.org/pdf/1405.49 80.pdf	Convex Optimization: Algorithms and Complexity Sébastien Bubeck	

Analyzing gradient descent and project gradient descent for convex problems
Online and stochastic gradient descent
Smoothness, strong convexity, conditioning
Preconditioning, acceleration, coordinate descent, non-convex optimization

3.3 Spectral Algorithms

https://www.cs.princeton.edu/courses/archive/fall18/cos521/Lectures/lec14.pdf	Typed notes - Christopher Musco: The Power Method and Spectral Methods for Graph Partitioning
http://web.stanford.edu/class/cs168/l/l11.pdf	Standford CS168: The Modern Algorithmic Toolbox Lectures #11: Spectral Graph Theory, I

3.5 Fourier Methods

4. Deep Learning

Open Course:

MIT Introduction to DeepLearning - Alexander Amini: http://introtodeeplearning.com/
Precise and short, covered all the topics, wonderful speaker

4.1 NLP

4.2 CV

4.3 Generative Model

4.4 Reinforcement Learning

good open course:

UC Berkeley CS 285 http://rail.eecs.berkeley.edu/deeprlcourse/ Many other good courses/books can be found under recourses tab.

https://www.youtube.com/playlist?list=PL iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc

 $RL\ Course\ by\ David\ Silver\ -\ https://www.youtube.com/watch?v=2pWv7GOvuf0\&list=PLqYmG7hTraZBiG_XpjnPrSNw-1XQaM\ gB$

Blogs: description

A (Long) Peek into Reinforcement Learning

https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html # key-concepts

Policy Gradient Algorithms

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Papers and discussions:

writer	paper	resource/review/explanation	description
Alex	Deep Reinforcement Learning Doesn't Work Yet https://www.alexirpan.com/2018/02/14/rl-hard.ht ml	https://zhuanlan.zhihu.com/p/ 33936457	some thing need to examine, for RL
David Pfau	Connecting Generative Adversarial Networks and Actor-Critic Methods https://arxiv.org/abs/1610.01945	https://www.zhihu.com/questi on/60167306	

5. Computer Vision

6. AI

UCB - CS88 Introduction to AI https://inst.eecs.berkeley.edu/~cs188/fa20/