

厦门大学《微积分 I-1》课程期末试卷

试卷类型: (理工类 A 卷) 考试日期 2019.01.16

一、求下列的定积分(每小题6分,共18分):

	\mathbf{f}^1	\mathcal{X}	$\mathrm{d}x$	
1.	J_{-3}	$1+\sqrt{1-x}$	uл ;	

得 分	
评阅人	

2.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin x}{1 + \cos x} \, \mathrm{d}x,$$

3.
$$\int_0^1 x \cdot \arccos x \, \mathrm{d}x$$
.

二、求下列的不定积分(每小题6分,共12分):

$$1. \int \frac{\mathrm{d}x}{x(1+\ln x)} \; ;$$

得 分	
评阅人	

$$2. \int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 - 1}} \, .$$

三、(8分)求反常积分
$$\int_0^{+\infty} \frac{\mathrm{d}x}{(x+\sqrt{x})(1+x)}$$
。

得 分	
评阅人	

四、 (8分) 设 $f(x) = \int_{x}^{\frac{\pi}{2}} \frac{\sin t}{t} dt$, 求定积分 $\int_{0}^{\frac{\pi}{2}} (x+1)e^{x} \cdot f(x) dx$ 。

得 分	
评阅人	

五、(10 分) 求函数 $f(x) = 5\sqrt{4 + x^2} - 3x$ 在区间 $[0, +\infty)$ 上的极值和最值,并判定其图形的凹凸性。

得 分	
评阅人	

六、(8分) 试求常数a n b, 使得当 $x \rightarrow 0$ 时, 函数 $f(x) = x - a \sin x - b \sin 2x$ 是关于x 的 5 阶无穷小。

得 分	
评阅人	

七、(8分) 求心形线 $\rho=1+\cos\theta$, $0 \le \theta \le 2\pi$ 的长度 s。

得 分	
评阅人	

八、 $(14 \, f)$ 过坐标原点作曲线 $y = e^x$ 的切线, 该切线与曲线 $y = e^x$ 及 y 轴围成平面图形 D,试求:

- (1) 平面图形 D 的面积 A;
- (2) 平面图形 D 绕 y 轴旋转一周所形成的旋转体的体积 V。

得 分	
评阅人	

九、 $(8\, \mathcal{G})$ 设非负函数 f(x) 在区间 [a,b] 上连续,且 $\int_a^b f(x) dx = 0$ 。证明:在区间 [a,b] 上 f(x) $\equiv 0$ 。

得 分	
评阅人	

十、 $(6\, \mathcal{G})$ 设函数 f(x) 在区间 [a,b] 上连续,其值域为 I。函数 $\varphi(u)$ 在 I 上二阶可导,且对于 I 上任意的一点 u 都有 $\varphi''(u) \geq 0$ 。

得 分	
评阅人	

证明 Jensen 不等式: $\varphi(\frac{1}{b-a}\int_a^b f(x) dx) \le \frac{1}{b-a}\int_a^b \varphi(f(x)) dx$ 。