Criteriul suprafeței minime impune alegerea parametrilor regulatorului astfel încât suprafața S să fie minimă:

$$S = \int_0^\infty |\varepsilon(t)| dt$$

unde $\varepsilon(t)=r(t)-y(t)$ reprezintă eroarea de urmărire a sistemului de reglare.

Criteriul suprafeței minime

Astfel, dacă suprafața S este minimă, atunci regimul tranzitoriu datorat apariției (și rejecției) unor perturbații de tip treaptă, este scurt, cu o valoare maximă a erorii îndeajuns de mică. În practică, se consideră că suprafața S este minimă atunci când raportul amplitudinilor maxime ale primelor două pseudo-oscilații este 4:1.

$$\frac{\sigma_2}{\sigma_1} = 4$$

Metoda Ziegler-Nichols se aplică la acordarea regulatoarelor pentru procese cu timp mort. Regulatorul se acordează folosind următorii pași:

- 1. Se închide bucla cu regulator **P** (componenta integrală se setează la infinit/valoare maximă, componenta derivativă se setează la valoarea 0)
- 2. Se variază K_R până când sistemul atinge limita de stabilitate și se notează cu K_{R0} valoarea obținută
- 3. Răspunsul sistemului (adus la limita de stabilitate) va avea forma prezentată în figura următoare. Pe acest răspuns se determină perioada oscilațiilor și se notează cu T_0 valoarea obținută.

4. Valorile optime ale parametrilor regulatorului **PID** (K_{Ropt} , T_{lopt}) se calculează cu ajutorul relațiilor din tabelul următor:

Tip Regulator	P	ΡΙ	PID
Parametru]		
KRopt	0.5K _{R0}	0.45K _{R0}	0.75K _{R0}
T _{iopt}	-	$0.8T_{0}$	0.6T ₀
T_{dopt}	-	-	0.1T ₀

Observație: Valoarea lui K_{RO} (regulatorul P pentru care sistemul în buclă închisă este adus la limita de stabilitate) este egală cu marginea de amplitudine a sistemului în buclă deschisă.

Observație: În cazul în care nu este permisă atingerea limitei de stabilitate, se crește la primul pas K_R până când sistemul raspunde oscilant amortizat, cu raportul amplitudinilor maxime ale primelor două pseudo-oscilații egal cu 4. În acest caz, valoarea constantelor de integrare și derivare se obține din perioada pseudo-oscilațiilor, prin împărțire la 6 (pentru T_i) sau 15 (pentru T_d).