# Comparison of A\*, LPA\*, D\* Lite

## $1.\ \mathit{Mazes}.$



Figure 1: Sample 8-connected maze [p=q=r=1]



Figure 2: Sample 4-connected maze  $[p=4,\,q=2]$ 

## 2. Performance of $D^*$ Lite and "dynamic" $A^*$ .

Table 1: Results for solving the 8-connected maze 1

| Algorithm | Heuristic         | Path 1 | Path 2 | Path 3 | Total Extractions |
|-----------|-------------------|--------|--------|--------|-------------------|
| A*        | None              | 110    | 136    | 79     | 325               |
| A.        | Diagonal distance | 19     | 81     | 43     | 143               |
| D* Lite   | None              | 136    | 63     | 43     | 242               |
|           | Diagonal distance | 21     | 104    | 20     | 145               |

Table 2: Results for solving the 4-connected maze 2

| Algorithm | Heuristic                 | Path 1 | Path 2 | Total Extractions |
|-----------|---------------------------|--------|--------|-------------------|
|           | None                      | 3187   | 3186   | 6373              |
| A*        | Manhattan distance        | 2783   | 1996   | 4779              |
| A         | way-point Manhattan       | 2243   | 1512   | 3755              |
|           | way-point actual distance | 1272   | 908    | 2180              |
|           | None                      | 3061   | 637    | 3698              |
| D* Lite   | Manhattan distance        | 1926   | 546    | 2472              |
|           | way-point Manhattan       | 1786   | 519    | 2305              |
|           | way-point actual distance | 563    | 886    | 1449              |

Computing actual distance between way-points took 11029 set extractions with Dijkstra's algorithm

#### 3. Performance of LPA\*.

Table 3: Results for solving the 4-connected maze 2

| Algorithm | Heuristic                 | Path 1 | Path 2 |
|-----------|---------------------------|--------|--------|
|           | None                      | 3187   | 3186   |
| A*        | Manhattan distance        | 2783   | 2848   |
| A         | way-point Manhattan       | 2243   | 2313   |
|           | way-point actual distance | 1272   | 1335   |
|           | None                      | 3186   | 1435   |
| LPA*      | Manhattan distance        | 2805   | 1336   |
|           | way-point Manhattan       | 2270   | 975    |
|           | way-point actual distance | 1304   | 954    |

Computing actual distance between way-points took 11029 set extractions with Dijkstra's algorithm

# 4. Graphical solution of mazes.



Figure 3: Solution generated by dynamically traversing maze 1



Figure 4: Solution generated by dynamically traversing maze 2



Figure 5: Solution generated by re-solving maze 2

#### 5. Dynamically solving an unknown maze.

Table 4: Results for solving the 8-connected maze 1

| Algorithm       | Heuristic         | Total Extractions | Path Length |
|-----------------|-------------------|-------------------|-------------|
| A* [Empty maga] | None              | 248               | 13          |
| A* [Empty maze] | Diagonal distance | 14                | 13          |
| D* Lite         | None              | 734               | 67          |
|                 | Diagonal distance | 723               | 67          |

<sup>1.</sup> All walls are treated as unknown obstacles

Table 5: Results for solving the 4-connected maze 2

| Algorithm       | Heuristic                 | Total Extractions | Path Length |
|-----------------|---------------------------|-------------------|-------------|
| A* [Empty maze] | None                      | 6446              | 404         |
| A* [Empty maze] | Manhattan distance        | 123               | 404         |
|                 | None                      | 12874             | 2364        |
| D* Lite         | Manhattan distance        | 12997             | 2364        |
|                 | way-point Manhattan       | 21478             | 2820        |
|                 | way-point actual distance | 18747             | 3048        |

<sup>1.</sup> All walls are treated as unknown obstacles

<sup>2.</sup> Computing actual distance between way-points took 11029 queue extractions with Dijkstra's algorithm



Figure 6: The path explored by the D\* algorithm in maze 1 for the different heuristics



Figure 7: From left to right: path explored by the D\* algorithm in maze 2 for the different heuristics

6. Exiting the market with incomplete fulfillment.

Table 6: Results for optimal stock selling

| Method          | Average extractions | Average reward |
|-----------------|---------------------|----------------|
| Random prices   | 683.38              | 8.47           |
| Expected value  | 827.22              | 9.84           |
| Value iteration | -                   | 11.6           |

10,000 trials were used for the Monte Carlo simulation



Figure 8: Sample trajectory of the incomplete fulfillment problem