

Description

The VST04N025 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =40V, I_D =110A $R_{DS(ON)}$ =2.5m Ω (typical) @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST04N025-T2	VST04N025	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	40	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous (Silicon Limited)	I _D	110	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	85	А	
Pulsed Drain Current (Package Limited)	I _{DM}	340	А	
Maximum Power Dissipation	P _D	150	W	
Derating factor		1	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	480	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	Rejc	1	°C/W	
---	------	---	------	--

Electrical Characteristics (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	<u> </u>					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	40		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	<u> </u>					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	2.8	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =55A	-	2.5	2.9	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =55A		60	-	S
Dynamic Characteristics (Note4)			•	•		
Input Capacitance	C _{lss}	V _{DS} =20V,V _{GS} =0V,	-	2290	-	PF
Output Capacitance	C _{oss}		-	760	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	41	-	PF
Switching Characteristics (Note 4)	<u> </u>					
Turn-on Delay Time	t _{d(on)}	V_{DD} =20V, I_{D} =55A V_{GS} =10V, R_{G} =1.6 Ω	-	9	-	nS
Turn-on Rise Time	t _r		-	3.5	-	nS
Turn-Off Delay Time	t _{d(off)}		-	31	-	nS
Turn-Off Fall Time	t _f		-	4	-	nS
Total Gate Charge	Qg	V _{DS} =20V,I _D =55A,	-	30.4		nC
Gate-Source Charge	Q _{gs}		-	9.2		nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	7		nC
Drain-Source Diode Characteristics	<u> </u>					
Diode Forward Voltage	V _{SD}	V _{GS} =0V,I _S =55A	-		1.2	V
Diode Forward Current	Is		-	-	110	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-		22	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-		62	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=20V,VG=10V,L=0.5mH,Rg=25 Ω

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance