ЛАБОРАТОРНАЯ РАБОТА № 3 Моделирование различных форм резервуаров с жидкостью

Вариант 11 Машуров Владимир БПМ-19-3

8 декабря 2021 г.

Содержание

1 Простой цилиндрический резервуар с жидкостью

1

2 Вывод 2

1 Простой цилиндрический резервуар с жидкостью

Обратим внимание на рисунок 2, там приведёт пример рассматриваемого резервуара с жидкостью или пульпой.

V – объём жидкости;

S — площадь поверхности жидкости;

 $Q_1, \ Q_2$ – объёмные расходы жидкости;

F – площадь проходного отверстия сливной трубы. Расход Q_2 принимается в качестве управляющего воздействия.

Рис. 1: Простой цилиндрический резервуар с жидкостью

Запишем уравнение материального баланса жидкости для данного резервуара:

$$\Delta V + Q_1 * \Delta t = Q_2 \Delta t$$

Предположим, что $\Delta t \to 0$ и $\Delta V \to 0$, тогда разделим на Δt и получим:

$$\dot{V} + Q_1 = Q_2;$$

Объём жидкости V выражается через её уровень х: $V = S \cdot x$. Найдем изменение объема жидкости: $\dot{V} = S * \dot{x}$. Далее, зависимость между объёмным расходом Q_1 и уровнем х вытекает из уравнения Д. Бернулли (Bernoulli), получим:

$$\frac{\rho \cdot v_0^2}{2} + \rho \cdot g \cdot x + P_1 = \frac{\rho \cdot v^2}{2} + \rho \cdot g \cdot x_0 + p_2$$

где v — скорость истечения жидкости из сливного отверстия; v_0 — скорость изменения уровня жидкости в резервуаре; x_0-x — перепад высот жидкости в резервуаре; p1,p2 — статические давления над жидкостью в резервуаре и за сливным отверстием; ρ — плотность жидкости; g — ускорение свободного падения. Величина $\frac{\rho v^2}{2}$ называется динамическим или скоростным давлением. Это уравнение можно переписать в виде

$$\frac{v^2 - v_0^2}{2 \cdot g} = \frac{p_1 - p_2}{\gamma} + (x - x_o)$$

где $\gamma = \rho g$ – удельный вес.

В предположении, что $v_0 >> v$, x_0-x , $p_1=p_2$, скорость истечения жидкости будет определяться выражением $v=\sqrt{2gx}$. При умножении левой и правой частей этого выражения на площадь проходного сечения F, получается:

$$Fv = Q_1 = F\sqrt{2gx}$$

С помощью поправочного коэффициента μ , чаще всего определяемого экспериментально, может быть учтена форма и состояние поверхности сливного отверстия. Например, для отсадочной машины рекомендуется значение $\mu=0.6$.

$$Q_1 = \mu F \sqrt{2gx}$$

Найденное выражение подставляется в ДУ изменения объёма жидкости:

$$S\frac{\partial x}{\partial t} + \mu F \sqrt{2gx} = Q_2$$

При $\frac{\partial x}{\partial t}=0$ можно записать уравнение статического (стационарного) режима резервуара:

$$\mu F \sqrt{2gx} = Q_2$$

Рис. 2: Структурная схема моделирования простого цилиндрического резервуара с жид-костью

2 Вывод