

Taller de modelado: Arquitectura de soluciones

Monitor: Sebastián Figueroa Cañas Ingeniero Electrónico

Sede Medellín

Contenido

Número	Fecha	Titulo
1	2/10/2019	Introducción Arduino - Hola mundo electrónico
2	9/10/2019	Introducción Electrónica
3	16/10/2019	Uso de sensores con Arduino I
4	23/10/2019	Uso de sensores con Arduino II
5	30/10/2019	Actuadores con Arduino (Motores y Relay)
6	6/11/2019	IR+Bluetooth + Sensores + Actuadores
7	13/11/2019	Prototipo 1 del proyecto
8	20/11/2019	Introducción Raspberry Pi
9	27/11/2019	Configuración Raspberry (Network, RTC-Clock, etc)
10	4/12/2019	Raspberry + Arduino
11	11/12/2019	Web +Database + Raspberry pi
12	18/12/2019	Web +Database + Raspberry pi
13	15/01/2020	Web +Database + Raspberry pi

Contenido

Número Sesión	Fecha	Semana Semestre	Estado	Titulo
1	2/10/2019	2	ок	Introducción Arduino - Hola mundo electrónico
2	9/10/2019	3	ок	Introducción Electrónica
3	16/10/2019	4	ок	Uso de sensores con Arduino I
4	23/10/2019	5	ок	Uso de sensores con Arduino II
		6	OK	No se realizó
5	29/01/2020	7	ок	Sesión de repaso
6	5/02/2020	8		Actuadores con Arduino (Motores y Relay)
7	12/02/2020	9		Protocolos de Comunicación, I2C, SPI, Serial Bluetooth
8	19/02/2020	10		Prototipo 1 del proyecto
9	26/02/2020	11		Introducción Raspberry Pi
10	4/03/2020	12		Configuración Raspberry (Network, RTC-Clock)
12	11/03/2020	13		Raspberry + Arduino
13	18/03/2020	14		Web +Database + Raspberry pi
12	25/03/2020	15		Web +Database + Raspberry pi

Revisión de conceptos

Tarjeta Arduino UNO

www.TheEngineeringProjects.com

Sensores

Sensores binarios

Pulsador

Sensor de Mercurio

Sensores binarios

Tilt Switch / Suiche de inclinación

Sensores binarios

Sensor de flama

Sensor de golpe

Sensores análogos

Potenciómetro

Sensores análogos

Joistick

Sensor magnético

Linear Hall

Sensores análogos

Micrófono

High-sensitive Voice Sensor

Sensor magnético

Linear Hall

Sensores análogos

Sensor de Temperatura análogo

Sensor magnético

La protoboard

Figura 2.4: Interfaz de Programación Arduino

Instrucción	Descripción		
pinMode(nPin,Mod)	nPin indica el numero un pin que queramos configurar Mod indica el modo de Trabajo, si es pin de entrada en vez Mod escribimos INPUT y como pin de Salida escribimos OUTPUT.		
Ejemplo:			
pinMode(13,OUTPUT)	Así se configura el pin número 13 como pin de salida.		
digitalWrite(nPin,Valor)	Escribe un Valor HIGH (1) o LOW (0) en el pin indicado por nPin.		
Ejemplo:	· .		
digitalWrite(2,HIGH)	En este ejemplo se le da un valor de HIGH al pin 2.		
<pre>analogWrite(nPin, Valor);</pre>	Escribe un Valor entre 0 y 255 en el pin indicado por nPin.		
Ejemplo:			
<pre>analogWrite(3,150);</pre>	En este ejemplo se le da un valor de 150 al pin 3.		
<pre>digitalRead(nPin);</pre>	Lee el valor digital del pin indicado por npin. Esta instrucción nos dice si el pin se encuentra en HIGH o en LOW nPin.		
Ejemplo:			
	En este ejemplo se lee el valor del pin 8.		

<pre>analogRead(A0);</pre>	Lee el valor analogo del pin indicado por npin. Esta instrucción entrega un valor entre 0 y 1024 de acuerdo al voltaje del pin.	
Ejemplo:		
<pre>analogRead(A0);</pre>	En este ejemplo se lee el valor del pin A0.	
dalay(milisecs);	Es un retardo que detiene la ejecución del programa por el numero de milisegundos indicados por milisecs.	
Ejemplo:		
delay(1000);	En este ejemplo se hace un ratardo de 1 segundo (1000 milisegundos).	
Serial.begin(9600);	Sirve para iniciar una comunicación entre el arduino y otros dispositivos como el Computador. El valor de 9600 es la velocidad de la comunicación.	
int Var= 1;	Crea una variable llamada Var y se le da un valor (en este caso "1"). Todas las partes en las que aparezca Var tomaran el valor asignado.	
Ejemplo:		
<pre>int Val=2;</pre>	En este ejemplo se crea una variable llamada Val y se le asigna un valor de 2.	

Tabla 2.1: Table caption

Comunicación Serial

```
//Function to read serial depending on events
void serialEvent(){
  while(Serial.available()){
    char rec = Serial.read();
    if(rec == '\n'){
        //We got a line
        if(BUFF[buffCount-1]=='\r'){
            BUFF[buffCount -1]=0;
        }
        BUFF[buffCount] = 0; //En String
        OnLineReceived(String(BUFF));
        buffCount = 0;
    }else{
        if(buffCount< 100){
            BUFF[buffCount++] = rec;
        }
    }
}</pre>
```

Revisar el repositorio:

 $\frac{https://github.com/sefigueroacUNAL/TModeladoUNAL/blob/master/Sesiones/P06_REPASO/SimpleSerialRead/SimpleSerialRead.in}{0}$

Ensamble LCD

Sede Medellín

Comandos LCD

Abrir los ejemplos de Arduino

LiquidCrystal Library

This library allows an Arduino board to control LiquidCrystal displays (LCDs) based on the Hitachi HD44780 (or a compatible) chipset, which is found on most text-based LCDs. The library works with in either 4- or 8-bit mode (i.e. using 4 or 8 data lines in addition to the rs, enable, and, optionally, the rw control lines).

To use this library

#include <LiquidCrystal.h>

Examples

- · Autoscroll: Shift text right and left.
- Blink: Control of the block-style cursor.
- Cursor: Control of the underscore-style cursor.
- · Display: Quickly blank the display without losing what's on it.
- Hello World: Displays "hello world!" and the seconds since reset.
- Scroll: Scroll text left and right.
- · Serial Display: Accepts serial input, displays it.
- Set Cursor: Set the cursor position.
- Text Direction: Control which way text flows from the cursor.

Function

- LiquidCrystal()
- begin()
- clear()
- home()
- setCursor()
- write()
- print()
- cursor()
- noCursor()
- blink()
- noBlink()
- display()
- noDisplay()
- scrollDisplayLeft()
- scrollDisplayRight()
- autoscroll()
- noAutoscroll()
- leftToRight()
- rightToLeft()
- createChar()

Sede Medellín

Last revision 2019/12/24 by SM

- 1. Escribir un programa para Arduino que permita hacer lo siguiente:
 - a. Escribir un string desde la consola serial y mostrarlo en el LCD
 - b. Limpiar el LCD a través de un comando desde la consola serial.
 - c. Mostrar una cara feliz al enviar el string:)
 - d. Mostrar una cara triste al enviar el string :(

- 1. Escribir un programa para Arduino que permita hacer lo siguiente:
 - a. Ingresar y editar un texto utilizando en joystick.

Escribir un programa para Arduino que permita hacer lo siguiente:

- a. Visualizar mediante el Lcd la temperatura, la humedad el nivel de luz y el valor del sensor de gases.
- b. Notificar por consola serial con una letra cuando se presione cada uno de 5 pulsadores. La letra de cada pulsador debe ser diferente.

GRACIAS

medellin.unal.edu.co

