Compressed Sensing for Energy–Efficient Wireless Telemonitoring

Challenges and Opportunities

Zhilin Zhang¹, Bhaskar D. Rao², Tzyy-Ping Jung³

 1 Samsung R&D Institute America, 2 ECE Dept, UCSD, 3 Swartz Center for Computational Neuroscience, UCSD

Asilomar, April 25, 2015

Introduction: Low Energy Compression via CS

- 1 Consumes much less energy
- 2 Recover in the transformed domain where $\mathbf{y}=(\mathbf{\Phi}\mathbf{D})\mathbf{z}$ and $\mathbf{x}=\mathbf{D}\mathbf{z}$
- 3 Multi-channel Biosignals: MMV Model

The Challenge: Non-Sparsity

insert Fig 3 a, b, c, d here

fig

fig

- 1 Biosignals are non-sparse in time or some transformed domains,
- 2 Non-sparsity comes from artefacts or low sampling rate,
- 3 Artefact removal raises cost in hardware and energy consumptions,
- 4 Non-sparse poses challenges for fidelity recovery,

State-of-the-art: BSBL-BO

$$\mathbf{x} = [\underbrace{x_1, \cdots, x_{d_1}}_{\mathbf{x}_1^T}, \cdots, \underbrace{x_1, \cdots, x_{d_g}}_{\mathbf{x}_g^T}]^T$$

Block Partition

Temporal Correlation

- 1 Block Sparse Bayesian Learning (BSBL) exploits the **temporal correlation** structures,
- 2 Abandoned block-sparsity and assumed all blocks are non-zero!
- 3 Successful and High-Fidelity.

Spatio-Temporal: ST-SBL

1 $\mathbf{X}_{[i]}$ obeys parameterized Gaussian,

$$p(\text{vec}(\mathbf{X}_{[i]}); \gamma_i, \mathbf{B}, \mathbf{A}_i) = \mathcal{N}(\mathbf{0}, (\gamma_i \mathbf{A}_i) \otimes \mathbf{B})$$

Blocks are mutually independent.

- 2 γ_i determines whether the ith block is a zero block or not; $\mathbf{B} \in \mathbb{R}^{L \times L}$ is a p.s.d captures spatio correlation; $\mathbf{A}_i \in \mathbb{R}^{d_i \times d_i}$ is an unknown p.s.d captures temporal correlation.
- 3 The sensor noise **V** can be ignored: artifacts and noises are incorporate into **X**.

ST-SBL : Alternating Optimize of γ_i , \mathbf{A}_i and \mathbf{B}

1 Estimating B

$$\mathbf{B} = \sum_{i=1}^{g} \gamma_i \mathbf{X}_{[i]}^T \mathbf{A}_i^{-1} \mathbf{X}_{[i]}.$$

2 Estimating γ_i , \mathbf{A}_i

$$\gamma_i = \frac{1}{Ld_i} \sum_{l=1}^{L} \operatorname{Tr} \left[\mathbf{A}_i^{-1} (\mathbf{\Sigma}_{[i]} + \boldsymbol{\mu}_{[i]l}^T \boldsymbol{\mu}_{[i]l}) \right]$$

$$\mathbf{A}_{i} = \frac{1}{L} \sum_{l=1}^{L} \frac{\boldsymbol{\Sigma}_{[i]} + \boldsymbol{\mu}_{[i]l}^{T} \boldsymbol{\mu}_{[i]l}}{\gamma_{i}}$$

3 Updating X

$$\mathbf{X} = \mu \mathbf{B}^{\frac{1}{2}}$$

Applications: Drowsiness Monitoring Based on EEG

illustrate the background of driving drowsy and EEG collecting

fig fig

fig

fig

Compression Ratio

$$CR = \frac{M - N}{M}$$

• Task Driven Analysis (not MSE!)

$$X \longrightarrow \Phi \longrightarrow Y \longrightarrow ST\text{-SBL} \longrightarrow \hat{X} \longrightarrow Drowsiness Estimation \longrightarrow$$