Oppgaver for kapittel 0

0.1.1

Gitt $\vec{v} = [ca, cb]$. Vis at

$$|\vec{v}| = c\sqrt{a^2 + b^2}$$

0.1.2

- a) Gitt en vektor \vec{v} . Vis at lengden til vektoren $\frac{\vec{v}}{|\vec{v}|}$ er lik 1.
- b) Bestem uttrykket for vektoren som er parallell med vektoren [3, 4], og som har lengde 10.

0.1.3

Bestem lengden til hver av vektorene.

$$\vec{a} = [3, 4]\vec{b} = [-1, 7]\vec{c} = [-8, 6]\vec{d} = [4, -3]$$

0.1.4

Undersøk om noen av vektorene fra oppgave 0.1.3 står vinkelrett på hverandre.

0.1.5

Undersøk om noen av vektorene fra oppgave 0.1.3 er parallelle.

0.1.6 (R1V22D1)

For vektorene \vec{a} og \vec{b} er $|\vec{a}|=2, \ \vec{b}=3$ og $\vec{a}\cdot\vec{b}=-3.$

Vi lar $\vec{u} = \vec{a} + \vec{b}$ og $\vec{v} = \vec{a} - 6\vec{b}$.

- a) Bestem lengden til \vec{u} og \vec{v} .
- b) Bestem vinkelen mellom \vec{u} og \vec{v} .

0.1.7

Gitt $\vec{u} = [a,b]$ og $\vec{v} = [c,d]$ Vis at hvis $\angle(\vec{u},\vec{v}) = 0^{\circ}$, gir (??) at

$$ad - bc = 0$$

0.1.8

Gitt to vektorer $\vec{u} = [a, b]$ og $\vec{v} = [c, d]$. Vis at (??) gjelder når

- a) a, b, d > 0 og c < 0
- b) b, d > 0 og a, c < 0
- c) b > 0 og a, c, d < 0
- d) a, b, c, d < 0
- e) a > 0, b, c, d < 0
- f) a, c > 0 og b, d < 0
- g) d > 0 og a, b, c < 0

0.1.9

Gitt to vektorer \vec{u} og \vec{v} . Forklar hvorfor

$$\det(\vec{u}, \vec{v}) = |u||v|\sin\angle(\vec{u}, \vec{v})$$