

Freshman Session 2 Chassis and System Integration

RACE CAR

Elec.

```
→ LV
System

HV System (
→ battery Box +
Tractive
System)
```

Mech.

Chassis Chassis

Drivetrain

Suspensi on & Braking

Chassis Design

- Bodyworks
- Tubular structure
- Integration
- Ergonomics

Consideration Factors in designing a Chassis

- Rigidity Analysis
- Vibrational Analysis
- System Integration
- Load paths

Vehicle loading

The main deformation modes for an automotive chassis and their causes:

1. Longitudinal Torsion

applied loads acting on one or two oppositely opposed corners of the car.

2. Vertical Bending

The weight of the driver and components mounted to the frame.

3. Lateral Bending

Side wind loads and centrifugal forces caused by cornering.

4. Horizontal Lozenging

vertical variations in the pavement or the reaction from the road driving the car forward

Vehicle Stick model

We use superposition as our system is linear

- $1/K_{tot} = 1/K_1 + 1/K_2 + 1/K_3 + 1/K_4 + 1/K_5$
- 1/K_{chassis} = 1/K_{frame} + 1/K_{sus}

Vibrational Analysis

 Continuous transformation of kinetic energy K to potential energy P, back and forth is called vibration

Reason:

Combustion in engine, imbalances in rotating parts like motors, meshing of components like gears in gearbox etc.

- Benefits of vibration analysis :
 - a) Allows the design to avoid resonant vibration
 - Gives the engineer an idea how the design will respond to different types of dynamic loads
 - Reliability and driver comfort

Simple vibrating system with damper

Simple force balance for this system gives

$$ma = -cv - kx + f(x, v, t)$$

For the special case of sinusoidal excitation force

$$m\ddot{x} + c\dot{x} + kx = F\sin\omega t$$

Aerodynamic Structure on Formula Student Race Car

LIFT AND DRAG

- **BERNOULLI PRINCIPLE**
- Lift:-Lower pressure on upper side higher pressure on lower side so air travels faster on upper side as compared to that of lower side. A net resultant force in upper direction
- Drag:- In fluid dynamics, drag refers to forces which act on a solid object in the direction of the relative fluid flow velocity

- The magical word in aerodynamics-SUFFICIENT DOWNFORCE AND MINIMUM DRAG
- Different studies : Spoilers
 Front wing
 Nose Cone shape

Materials

Different Materials Used

- Aluminium and Mild steel
- Electrically and Thermally insulating materials, Firewall
- Plastics, poly carbonates
- Seat , Foot Rest, Body works
- Impact Atteunator

Carbon Fibers (Composites)

- Monocoque
- A -arms, drive shafts, Battery container
- Clamps
- Wheel rims

Why Carbon Fiber-

- Directional Properties.
- 2. High Strength to weight ratio

MANUFACTURING

Fixturing

Future Plans

- Design of Composites Monocoque
- Development of Impact attenuator for EVO 3.0
- Implementation of Aerodynamic Structure
- Full Car model with finite chassis Stiffness. Study of effect of chassis stiffness on roll stiffness and steering angle.
- Inclusion of Battery and gearbox as a stressed member in line body analysis of chassis.