Mean Field Games: Numerical Methods and Applications in Machine Learning

Part 7: Mean Field Reinforcement Learning

Mathieu Laurière

https://mlauriere.github.io/teaching/MFG-PKU-7.pdf

Peking University Summer School on Applied Mathematics July 26 – August 6, 2021

RECAP

Outline

- 1. Introduction
- 2. Mean Field Reinforcement Learning
- Model-Free Policy Gradient
- 4. Q-Learning

From Optimal Control to MFRL

Reinforcement Learning - Setup

- Markov Decision Process (MDP): (S, A, p, r, γ) , where:
 - ullet $\mathcal S$: state space, $\mathcal A$: action space,
 - $p: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$: transition kernel, $p(\cdot|s,a)$ gives next state's distribution
 - ullet $r:\mathcal{S} imes\mathcal{A} o\mathbb{R}:$ reward function, $\gamma\in(0,1):$ discount factor
- Goal: Find (stationary, mixed) policy π*: S → P(A) maximizing:

$$R(\pi) = \mathbb{E}\left[\sum_{n>0} \gamma^n r(s_n, a_n)\right], \quad \text{with } a_n \sim \pi(\cdot|s_n), s_{n+1} \sim p(\cdot|s_n, a_n)$$

Reinforcement Learning - Setup

- Markov Decision Process (MDP): (S, A, p, r, γ) , where:
 - ullet ${\cal S}$: state space, ${\cal A}$: action space,
 - $p: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$: transition kernel, $p(\cdot|s,a)$ gives next state's distribution
 - $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$: reward function, $\gamma \in (0,1)$: discount factor
- Goal: Find (stationary, mixed) policy π*: S → P(A) maximizing:

$$R(\pi) = \mathbb{E}\left[\sum_{n>0} \gamma^n r(s_n, a_n)\right], \quad \text{with } a_n \sim \pi(\cdot|s_n), s_{n+1} \sim p(\cdot|s_n, a_n)$$

ullet Model: p, r

Reinforcement Learning - Setup

- Markov Decision Process (MDP): (S, A, p, r, γ) , where:
 - ullet ${\cal S}$: state space, ${\cal A}$: action space,
 - $p: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$: transition kernel, $p(\cdot|s,a)$ gives next state's distribution
 - $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$: reward function, $\gamma \in (0,1)$: discount factor
- Goal: Find (stationary, mixed) policy π*: S → P(A) maximizing:

$$R(\pi) = \mathbb{E}\left[\sum_{n \geq 0} \gamma^n r(s_n, \frac{a_n}{a_n})\right], \quad \text{with } \frac{a_n}{a_n} \sim \pi(\cdot | s_n), s_{n+1} \sim p(\cdot | s_n, \frac{a_n}{a_n})$$

- Model: p, r
- Two settings:
 - (1) Known model: Optimal control theory & methods
 - (2) Sample transitions & rewards: Reinforcement Learning (RL) framework

Reinforcement Learning – Paradigm

We want to **learn** the best control by performing **experiments** of the form:

Given the current state S_t ,

- (1) Take an action A_t
- (2) Observe reward R_{t+1} & new state S_{t+1}

¹ Sutton, R. S., & Barto, A. G. (2018). *Reinforcement learning: An introduction.* MIT press.

Reinforcement Learning - Paradigm

We want to **learn** the best control by performing **experiments** of the form:

Given the current state S_t ,

- (1) Take an action A_t
- (2) Observe reward R_{t+1} & new state S_{t+1}

¹ Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

- Learning the policy:
 - Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a,\theta^{(\mathtt{k})})$$

Learning the policy:

Policy Gradient

$$\theta^{(k+1)} = \theta^{(k)} - \eta^{(k)} \nabla J(\theta^{(k)}), \qquad \pi^{(k)}(a|s) = \pi(s|a, \theta^{(k)})$$

- ▶ PPO, TRPO

- Learning the policy:
 - Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a,\theta^{(\mathtt{k})})$$

- ▶ PPO, TRPO
- **>**
- Learning the value function:
 - Q-learning

$$Q^*(s, \mathbf{a}) = r(s, \mathbf{a}) + \gamma \max_{\pi} \mathbb{E}_{s' \sim p(\cdot|s, \mathbf{a}), \mathbf{a}' \sim \pi(\cdot|s')} \left[Q^*(s', \mathbf{a}') \right]$$

Note:
$$V^*(s) = \max_{a \in A} Q^*(s, a), v^*(s) = \operatorname{argmax}_{a \in A} Q^*(s, a)$$

- Learning the policy:
 - Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a,\theta^{(\mathtt{k})})$$

- ▶ PPO, TRPO
- **>** ...
- Learning the value function:
 - Q-learning

$$Q^*(s, \mathbf{a}) = r(s, \mathbf{a}) + \gamma \max_{\pi} \mathbb{E}_{s' \sim p(\cdot | s, \mathbf{a}), \mathbf{a}' \sim \pi(\cdot | \mathbf{s}')} \left[Q^*(s', \mathbf{a}') \right]$$

Note:
$$V^*(s) = \max_{a \in A} Q^*(s, a), v^*(s) = \operatorname{argmax}_{a \in A} Q^*(s, a)$$

- Deep Q-neural network (DQN)
- **>** ...

Learning the policy:

Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a,\theta^{(\mathtt{k})})$$

- ▶ PPO, TRPO

Learning the value function:

Q-learning

$$Q^*(s, \mathbf{a}) = r(s, \mathbf{a}) + \gamma \max_{\pi} \mathbb{E}_{s' \sim p(\cdot|s, \mathbf{a}), \mathbf{a}' \sim \pi(\cdot|s')} \left[Q^*(s', \mathbf{a}') \right]$$

Note:
$$V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a), v^*(s) = \operatorname{argmax}_{a \in \mathcal{A}} Q^*(s, a)$$

- Deep Q-neural network (DQN)
- **.**..

Hybrid:

- Deep Deterministic Policy Gradient (DDPG)
- Soft Actor Critic (SAC)
- · ...

Outline

Introduction

2. Mean Field Reinforcement Learning

3. Model-Free Policy Gradient

4. Q-Learning

Problem Formulation

Dynamics: discrete time

$$X_{n+1}^{\alpha,\mu} = F(X_n^{\alpha,\mu}, \alpha_n, \mu_n, \epsilon_{n+1}, \epsilon_{n+1}^0), \quad n \ge 0, \qquad X_0^{\alpha,\mu} \sim \mu_0$$

- $X_n^{\alpha,\mu} \in \mathcal{X} \subseteq \mathbb{R}^d$: state, $\alpha_n \in \mathcal{U} \subseteq \mathbb{R}^k$: action
- $\epsilon_n \sim \nu$: idiosyncratic noise, $\epsilon_n^0 \sim \nu^0$: common noise (random env.)
- $p(x'|x, \mathbf{a}, \mu)$: corresponding transition probability distribution
- \blacktriangleright $\mu_n \in \mathcal{P}(\mathcal{X} \times \mathcal{A})$: a state-action distribution
- \blacktriangleright π_n : a policy; randomized actions: $\alpha_n \sim \pi_n(\cdot|s_n,\mu_n)$

Dynamics: discrete time

$$X_{n+1}^{\alpha,\mu} = F(X_n^{\alpha,\mu}, \alpha_n, \mu_n, \epsilon_{n+1}, \epsilon_{n+1}^0), \quad n \ge 0, \qquad X_0^{\alpha,\mu} \sim \mu_0$$

- $X_n^{\alpha,\mu} \in \mathcal{X} \subseteq \mathbb{R}^d$: state, $\alpha_n \in \mathcal{U} \subseteq \mathbb{R}^k$: action
- $\epsilon_n \sim \nu$: idiosyncratic noise, $\epsilon_n^0 \sim \nu^0$: common noise (random env.)
- $p(x'|x,a,\mu)$: corresponding transition probability distribution
- $\blacktriangleright \mu_n \in \mathcal{P}(\mathcal{X} \times \mathcal{A})$: a state-action distribution
- $ightharpoonup \pi_n$: a policy; randomized actions: $\alpha_n \sim \pi_n(\cdot|s_n,\mu_n)$
- $\bullet \ \, \mathbf{Cost:} \ \, \mathbb{J}(\pi;\mu) = \mathbb{E}_{\epsilon,\epsilon^0} \bigg[\textstyle \sum_{n=0}^{\infty} \gamma^n f \big(X_n^{\alpha,\mu}, \alpha_n, \mu_n \big) \bigg]$
- Two scenarios:
 - **Cooperative (MFC):** Find π^* s.t.

$$\pi^*$$
 minimizes $\pi\mapsto J^{MFC}(\pi)=\mathbb{J}(\pi;\mu^\pi)$ where $\mu^\pi_n=\mathbb{P}^0_{X_n^{lpha,\mu^\pi}}$

▶ Non-Cooperative (MFG): Find $(\hat{\pi}, \hat{\mu})$ s.t.

$$\begin{cases} \hat{\pi} \text{ minimizes } \pi \mapsto J^{MFG}(\pi; \hat{\mu}) = \mathbb{J}(\pi; \hat{\mu}) \\ \hat{\mu}_n = \mathbb{P}^0_{X_n^{\hat{\alpha}, \hat{\mu}}} \end{cases}$$

$$\alpha^* \in \operatorname*{argmin}_{\alpha} J^{MFC}(\alpha) = \mathbb{E}_{\epsilon,\epsilon^0} \left[\sum_{n=0}^{\infty} \gamma^n f(X_n^{\alpha}, \alpha_n, \mu_n^{\pi}) \right], \qquad \mu_n^{\pi} = \mathbb{P}_{X_n^{\alpha}}^0$$

$$\begin{split} \alpha^* \in \operatorname*{argmin}_{\alpha} J^{MFC}(\alpha) &= \mathbb{E}_{\epsilon,\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \big(X_n^{\alpha}, \alpha_n, \mu_n^{\pi} \big) \Big], \qquad \mu_n^{\pi} = \mathbb{P}_{X_n^{\alpha}}^0 \\ &= \mathbb{E}_{\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \big(x, a, \mu_n^{\pi} \big) \, \nu_n^{\pi} (dx, \mathbf{d}a)}_{\text{function of } \nu_n^{\pi}} \Big] \end{split}$$

$$\begin{split} & \overset{\bullet}{\alpha^*} \in \operatorname*{argmin}_{\alpha} J^{MFC}(\alpha) = \mathbb{E}_{\epsilon,\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \Big(X_n^{\alpha}, \alpha_n, \mu_n^{\pi} \Big) \Big], \qquad \mu_n^{\pi} = \mathbb{P}_{X_n^{\alpha}}^0 \\ & = \mathbb{E}_{\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \Big(x, a, \mu_n^{\pi} \Big) \, \nu_n^{\pi} (dx, \textcolor{red}{da})}_{\text{function of } \nu_n^{\pi}} \Big] \end{split}$$

- Lifted problem: population / social planner's optimization problem:
 - \rightarrow state = population distribution μ_n^{π}
 - \rightarrow value function = function of the distribution μ

Key Remark:

$$\begin{split} \alpha^* \in \operatorname*{argmin}_{\alpha} J^{MFC}(\alpha) &= \mathbb{E}_{\epsilon,\epsilon^0} \bigg[\sum_{n=0}^{\infty} \gamma^n f \Big(X_n^{\alpha}, \alpha_n, \mu_n^{\pi} \Big) \bigg], \qquad \mu_n^{\pi} = \mathbb{P}_{X_n^{\alpha}}^0 \\ &= \mathbb{E}_{\epsilon^0} \bigg[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \Big(x, a, \mu_n^{\pi} \Big) \, \nu_n^{\pi} (dx, da)}_{\text{function of } \nu_n^{\pi}} \bigg] \end{split}$$

- Lifted problem: population / social planner's optimization problem:
 - \rightarrow state = population distribution μ_n^{π}
 - \rightarrow value function = function of the distribution μ
- Mean Field Markov Decision Process (MFMDP): $(\bar{S}, \bar{A}, \bar{p}, \bar{r}, \gamma)$, where:

• State space: $\bar{S} = \mathcal{P}(\mathcal{X})$

• Action space: $\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$ with constraint: $pr_1(\bar{\mathbf{a}}) = \mu$

• Transition function: $\mu' = \bar{F}(\mu, \bar{a}, \epsilon^0) \sim \bar{p}(\mu, \bar{a})$

• Reward function: $\bar{r}(\mu, \bar{\mathbf{a}}) = -\int_{\mathcal{X} \times \mathcal{U}} f(x, \mathbf{a}, \mu) \bar{\mathbf{a}}(dx, d\mathbf{a})$

$$\begin{split} \alpha^* \in \operatorname*{argmin}_{\alpha} J^{MFC}(\alpha) &= \mathbb{E}_{\epsilon,\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \big(X_n^{\alpha}, \alpha_n, \mu_n^{\pi} \big) \Big], \qquad \mu_n^{\pi} = \mathbb{P}_{X_n^{\alpha}}^0 \\ &= \mathbb{E}_{\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \big(x, a, \mu_n^{\pi} \big) \, \nu_n^{\pi} (dx, \mathbf{d}a)}_{\text{function of } \nu_n^{\pi}} \Big] \end{split}$$

- Lifted problem: population / social planner's optimization problem:
 - \rightarrow state = population distribution μ_n^{π}
 - \rightarrow value function = function of the distribution μ
- Mean Field Markov Decision Process (MFMDP): $(\bar{S}, \bar{A}, \bar{p}, \bar{r}, \gamma)$, where:
 - State space: $\bar{S} = \mathcal{P}(\mathcal{X})$
 - Action space: $\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$ with constraint: $pr_1(\bar{a}) = \mu$
 - Transition function: $\mu' = \bar{F}(\mu, \bar{a}, \epsilon^0) \sim \bar{p}(\mu, \bar{a})$
 - Reward function: $\bar{r}(\mu, \bar{\mathbf{a}}) = -\int_{\mathcal{X} \times \mathcal{U}} f(x, \mathbf{a}, \mu) \bar{\mathbf{a}}(dx, da)$
- $\bullet \quad \text{Goal: max. } \bar{J}^{\bar{\pi}}(\mu) = \mathbb{E}\Big[\sum_{n=0}^{\infty} \gamma^n \bar{r} \Big(\mu_n^{\bar{\pi}}, \bar{a}_n\Big)\Big], \ \bar{a}_n \sim \bar{\pi}(\cdot | \mu_n^{\bar{\pi}}), \ \mu_{n+1}^{\bar{\pi}} \sim \bar{p}(\cdot | \mu_n^{\bar{\pi}}, \bar{a}_n),$
- Mean field policy: $\bar{\pi}$ kernel $\bar{S} \to \mathcal{P}(\bar{A})$, randomized population-strategies \bar{a}

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP

[Carmona, L., Tan'21]²]

Under suitable conditions,

$$\bar{J}^*(\mu) := \sup_{\bar{\pi}} \bar{J}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{J}^* \left(\bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$

Likewise for mean field state-action value function \bar{Q}^*

² Carmona, R., Laurière, M., & Tan, Z. (2019). Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning. arXiv preprint arXiv:1910.12802. (Preliminary version. Update coming soon!)

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP

[Carmona, L., Tan'21]²]

Under suitable conditions,

$$\bar{J}^*(\mu) := \sup_{\bar{\pi}} \bar{J}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{J}^* \left(\bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$

Likewise for mean field state-action value function \bar{Q}^*

Proof: based on "double lifting" [Bertsekas, Shreve'78]

² Carmona, R., Laurière, M., & Tan, Z. (2019). Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning. arXiv preprint arXiv:1910.12802. (Preliminary version. Update coming soon!)

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP

[Carmona, L., Tan'21]²]

Under suitable conditions,

$$\bar{J}^*(\mu) := \sup_{\bar{\pi}} \bar{J}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{J}^* \left(\bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$

Likewise for mean field state-action value function \bar{Q}^*

Proof: based on "double lifting" [Bertsekas, Shreve'78]

DPPs for MFC:

[L., Pironneau; Pham, et al.; Gast et al.; Guo et al.; Possamai et al.;...]

²Carmona, R., Laurière, M., & Tan, Z. (2019). Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning. arXiv preprint arXiv:1910.12802. (Preliminary version. Update coming soonl)

Theorem: DPP for MFMDP

[Carmona, L., Tan'21]²]

Under suitable conditions,

$$\bar{J}^*(\mu) := \sup_{\bar{\pi}} \bar{J}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{J}^* \left(\bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$

Likewise for mean field state-action value function \bar{Q}^*

Proof: based on "double lifting" [Bertsekas, Shreve'78]

DPPs for MFC:

[L., Pironneau; Pham, et al.; Gast et al.; Guo et al.; Possamai et al.;...]

Here: discrete time, infinite horizon, common noise, feedback controls, ...

- \rightarrow well-suited for **RL**
- → Mean-field Q-learning algorithm

²Carmona, R., Laurière, M., & Tan, Z. (2019). Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning. arXiv preprint arXiv:1910.12802. (Preliminary version. Update coming soon!)

Mean Field Learning Settings

Hierarchy of settings:

- Setting 1: known model: computational method based on knowledge of MFMDP
 - (a) Gradient based methods
 - $(b) \ {\rm Dynamic\ programming\ based\ methods}$

Mean Field Learning Settings

Hierarchy of settings:

- Setting 1: known model: computational method based on knowledge of MFMDP
 - (a) Gradient based methods
 - $(b) \ {\rm Dynamic\ programming\ based\ methods}$
- Setting 2: unknown model but samples from MFMDP: MF learning

Mean Field Learning Settings

Hierarchy of settings:

- Setting 1: known model: computational method based on knowledge of MFMDP
 - (a) Gradient based methods
 - (b) Dynamic programming based methods
- Setting 2: unknown model but samples from MFMDP: MF learning

• Setting 3: unknown model but samples from N-agent MDP: approx. MF learning

Mean Field Control: Finite Population Approximation

Outline

- Introduction
- 2. Mean Field Reinforcement Learning
- 3. Model-Free Policy Gradient
- 4. Q-Learning

Idea 1: Make the "policy gradient" approach (see Part 5 of lecture slides) model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

3

Idea 1: Make the "policy gradient" approach (see Part 5 of lecture slides) model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model:

$$\theta^{(\mathtt{k}+\mathtt{1})} = \theta^{(\mathtt{k})} - \eta \nabla J(\theta^{(\mathtt{k})})$$

Idea 1: Make the "policy gradient" approach (see Part 5 of lecture slides) model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model:
$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla J(\theta^{(k)})$$

(2) access to a mean field simulator:

$$\rightarrow$$
 idem + gradient estimation (0th-order opt.):

$$\theta^{(\mathtt{k}+\mathtt{1})} = \theta^{(\mathtt{k})} - \eta \widetilde{\nabla} J(\theta^{(\mathtt{k})})$$

3

Idea 1: Make the "policy gradient" approach (see Part 5 of lecture slides) model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model:
$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla J(\theta^{(k)})$$

(2) access to a mean field simulator:

$$\rightarrow \text{idem + gradient estimation } (0^{th} \text{-order opt.}) : \qquad \qquad \theta^{(\mathtt{k}+\mathtt{1})} = \theta^{(\mathtt{k})} - \eta \widetilde{\nabla} J(\theta^{(\mathtt{k})})$$

(3) access to a N-agent **population simulator**:

```
\rightarrow \mathsf{idem} + \mathsf{error} \; \mathsf{on} \; \mathsf{mean} \approx \mathsf{empirical} \; \mathsf{mean} \; (\mathsf{LLN}) \colon \; \boldsymbol{\theta^{(\mathtt{k}+1)}} = \boldsymbol{\theta^{(\mathtt{k})}} - \eta \widetilde{\nabla}^N J(\boldsymbol{\theta^{(\mathtt{k})}})
```

3

Idea 1: Make the "policy gradient" approach (see Part 5 of lecture slides) model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model:
$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla J(\theta^{(k)})$$

(2) access to a mean field simulator:

$$\rightarrow \text{idem + gradient estimation } (0^{th} \text{-order opt.}) : \qquad \qquad \theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta \widetilde{\nabla} J(\theta^{(\mathtt{k})})$$

(3) access to a N-agent **population simulator**:

$$\rightarrow \mathsf{idem} + \mathsf{error} \; \mathsf{on} \; \mathsf{mean} \approx \mathsf{empirical} \; \mathsf{mean} \; (\mathsf{LLN}) \colon \; \boldsymbol{\theta^{(\mathtt{k}+1)}} = \boldsymbol{\theta^{(\mathtt{k})}} - \eta \widetilde{\nabla}^N J(\boldsymbol{\theta^{(\mathtt{k})}})$$

Theorem: For Linear-Quadratic MFC

[Carmona, L., Tan'19]3]

In each case, convergence holds at a linear rate:

Taking
$$\mathbf{k} \approx \mathcal{O} \Big(\log(1/\epsilon) \Big)$$
 is sufficient to ensure $J(\theta^{(\mathbf{k})}) - J(\theta^*) < \epsilon$.

Proof: builds on [Fazel et al.'18], analysis of perturbation of Riccati equations

³ Carmona, R., Laurière, M., & Tan, Z. (2019). Linear-quadratic mean-field reinforcement learning: convergence of policy gradient methods. arXiv preprint arXiv:1910.04295.

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,v) = \underbrace{(\bar{\mu}-x)^2}_{\mbox{distance to mean position}} + \underbrace{v^2}_{\mbox{cost of moving}}, \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}}$$

Value of the MF cost

Rel. err. on MF cost

MF cost = cost in the mean field problem

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,\pmb{v}) = \underbrace{(\bar{\mu}-x)^2}_{\mbox{distance to mean position}} + \underbrace{\pmb{v}^2}_{\mbox{cost of moving}} \,, \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}} \,,$$

Value of the social cost

Rel. err. on social cost

Social cost = average over the N-agents

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,\mathbf{v}) = \underbrace{(\bar{\mu} - x)^2}_{\mbox{distance to mean position}} + \underbrace{\mathbf{v}^2}_{\mbox{cost of moving}}, \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}}$$

Value of the social cost

Rel. err. on social cost

Social cost = average over the N-agents

Main take-away:

Trying to learn the mean-field regime solution can be efficient even for N small

Outline

- Introduction
- 2. Mean Field Reinforcement Learning
- Model-Free Policy Gradient
- 4. Q-Learning

Mean Field Q-Function

Idea 2: Generalize Q-learning to Mean-Field Control

Reminder:

• Mean Field Markov Decision Process (MFMDP): $(\bar{\mathcal{S}}, \bar{\mathcal{A}}, \bar{p}, \bar{r}, \gamma)$, where:

• State space: $\bar{\mathcal{S}} = \mathcal{P}(\mathcal{X})$

• Action space: $\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$ with constraint: $pr_1(\bar{a}) = \mu$

• Transition function: $\mu' = \bar{F}(\mu, \bar{a}, \epsilon^0) \sim \bar{p}(\mu, \bar{a})$

• Reward function: $\bar{r}(\mu, \bar{a}) = -\int_{\mathcal{X}\times\mathcal{U}} f(x, a, \mu) \bar{a}(dx, da)$

Mean Field Q-Function

Idea 2: Generalize Q-learning to Mean-Field Control

Reminder:

• Mean Field Markov Decision Process (MFMDP): $(\bar{\mathcal{S}}, \bar{\mathcal{A}}, \bar{p}, \bar{r}, \gamma)$, where:

ullet State space: $ar{\mathcal{S}} = \mathcal{P}(\mathcal{X})$

• Action space: $\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$ with constraint: $pr_1(\bar{\mathbf{a}}) = \mu$

• Transition function: $\mu' = \bar{F}(\mu, \bar{a}, \epsilon^0) \sim \bar{p}(\mu, \bar{a})$

• Reward function: $\bar{r}(\mu, \bar{a}) = -\int_{\mathcal{X} \times \mathcal{U}} f(x, a, \mu) \bar{a}(dx, da)$

Q-function associated to a policy π :

$$Q^{\pi}(s, \mathbf{a}) = r(s, \mathbf{a}) + \gamma \mathbb{E}_{s' \sim p(\cdot|s, \mathbf{a}), \mathbf{a}' \sim \pi(\cdot|s')} \left[Q^{\pi}(s', \mathbf{a}') \right]$$

Mean Field Q-function associated to a mean field policy $\bar{\pi}$:

$$\bar{Q}^{\bar{\pi}}(\bar{s}, \bar{\underline{a}}) = \bar{r}(\bar{s}, \bar{\underline{a}}) + \gamma \mathbb{E}_{\bar{s}' \sim \bar{p}(\cdot | \bar{s}, \bar{\underline{a}}), \bar{\underline{a}}' \sim \bar{\pi}(\cdot | \bar{s}')} \left[\bar{Q}^{\bar{\pi}}(\bar{s}', \bar{\underline{a}}') \right]$$

Optimal MF Q-function:

$$\bar{Q}^*(\bar{s}, \overline{\mathbf{a}}) = \bar{r}(\bar{s}, \overline{\mathbf{a}}) + \gamma \sup_{\bar{\pi}} \mathbb{E}_{\bar{\mathbf{a}}' \sim \bar{\pi}(\cdot | \bar{s}), \bar{s}' \sim \bar{p}(\cdot | \bar{s}, \bar{a}')} \left[\bar{Q}^*(\bar{s}', \overline{\mathbf{a}}') \right]$$

Algorithm:

Idealized version (synchronous):

$$\bar{Q}^{(k+1)}(\bar{s}, \bar{\boldsymbol{a}}) = \bar{r}(\bar{s}, \bar{\boldsymbol{a}}) + \gamma \sup_{\bar{\boldsymbol{\pi}}} \mathbb{E}_{\bar{s}' \sim \bar{p}(\cdot | \bar{s}, \bar{\boldsymbol{a}}), \bar{\boldsymbol{a}}' \sim \bar{\boldsymbol{\pi}}(\cdot | \bar{s}')} \left[\bar{Q}^{(k)}(\bar{s}', \bar{\boldsymbol{a}}') \right], \qquad (\bar{s}, \bar{\boldsymbol{a}}) \in \bar{\mathcal{S}} \times \bar{\mathcal{A}}$$

$$= [\bar{T}^* \bar{Q}^{(k)}](\bar{s}, \bar{\boldsymbol{a}})$$

 $\bullet \text{ Following a trajectory (async.): } \bar{s}^{(\mathtt{k}+\mathtt{1})} \sim p(\cdot|\bar{s}^{(\mathtt{k})},\bar{a}^{(\mathtt{k})}), \\ \bar{a}^{(\mathtt{k}+\mathtt{1})} \sim \bar{\pi}^{(\mathtt{k}+\mathtt{1})}(\cdot|\bar{s}^{(\mathtt{k})}), \\$

$$\begin{cases} \bar{Q}^{(\mathtt{k}+1)}(\bar{s}, \overline{\mathbf{a}}) = \bar{Q}^{(\mathtt{k})}(\bar{s}, \overline{\mathbf{a}}), & (\bar{s}, \overline{\mathbf{a}}) \in \bar{\mathcal{S}} \times \bar{\mathcal{A}} \\ \bar{Q}^{(\mathtt{k}+1)}(\bar{s}^{(\mathtt{k}+1)}, \overline{\mathbf{a}}^{(\mathtt{k}+1)}) \leftarrow \bar{r}(\bar{s}^{(\mathtt{k}+1)}, \overline{\mathbf{a}}^{(\mathtt{k}+1)}) + \gamma \max_{\overline{\mathbf{a}}'} \bar{Q}^{(\mathtt{k})}(\bar{s}^{(\mathtt{k}+1)}, \overline{\mathbf{a}}') \end{cases}$$

- Implementation: several possibilities (can be combined):
 - pure (population and individual) strategies
 - discretization of $\bar{S} = \mathcal{P}(\mathcal{X}), \bar{A} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$
 - deep Reinforcement Learning

Cyber-security example of [Bensoussan, Kolokoltsov] (see Part 6 of slides)

- MFC viewpoint, MF Q-learning
- pure (population and individual) strategies
- $\bullet \ \ \text{discretization of} \ \bar{\mathcal{S}} = \mathcal{P}(\mathcal{X}), \bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$

Cyber-security example of [Bensoussan, Kolokoltsov] (see Part 6 of slides)

- MFC viewpoint, MF Q-learning
- pure (population and individual) strategies
- discretization of $\bar{\mathcal{S}} = \mathcal{P}(\mathcal{X}), \bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$

Test 1: $m_0 = (1/4, 1/4, 1/4, 1/4)$

Evolution of m^{m_0} optimally controlled (m_{ODE}) or controlled using the approximate $Q\text{-function}\,(m_Q)$

V function (V_{Opt}) and approximate $Q\text{-function}\;(V_Q)$ along the optimal flow.

(More details in [L.'21 - AMS notes])

Cyber-security example of [Bensoussan, Kolokoltsov] (see Part 6 of slides)

- MFC viewpoint, MF Q-learning
- pure (population and individual) strategies
- discretization of $\bar{S} = \mathcal{P}(\mathcal{X}), \bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$

Test 2: $m_0 = (1, 0, 0, 0)$

Evolution of m^{m_0} optimally controlled (m_{ODE}) or controlled using the approximate $Q\text{-function}\,(m_Q)$

V function (V_{Opt}) and approximate $Q\text{-function}\;(V_Q)$ along the optimal flow.

(More details in [L.'21 - AMS notes])

Cyber-security example of [Bensoussan, Kolokoltsov] (see Part 6 of slides)

- MFC viewpoint, MF Q-learning
- pure (population and individual) strategies
- discretization of $\bar{S} = \mathcal{P}(\mathcal{X}), \bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$

Test 3: $m_0 = (0, 0, 0, 1)$

Evolution of m^{m_0} optimally controlled (m_{ODE}) or controlled using the approximate $Q\text{-function}\,(m_Q)$

V function (V_{Opt}) and approximate $Q\text{-function}\;(V_Q)$ along the optimal flow.

(More details in [L.'21 - AMS notes])

Summary