Operacijski sistemi

Razvrščanje

Jurij Mihelič, FRI, Uni LJ

- Razvrščanje
 - odločanje o tem, kateri proces se razvrsti na viru
 - npr. pridobi procesor, pomnilnik, napravo ipd.
 - ključno za zagotavljanje večopravilnosti

Pogledi na razvrščanje

obodobje	pomen	angleško
dolgoročno	razvrščanje poslov	job scheduling
srednjeročno	menjavanje procesov	swapping
kratkoročno	razvrščanje procesov na procesorju	CPU scheduling

- Razvrščanje poslov (dolgoročno)
 - paketna obdelava
 - enota obdelave je posel (opravilo za obdelavo)
 - posli čakajo (na disku), da bodo izbrani za obdelavo
 - ob izbiri se naložijo in začnejo izvajati
 - razvrščevalnik poslov (job scheduller)
 - del OS, ki skrbi za razvrščanje poslov
 - navadno ni podprto na modernih OS
 - analogija z ročnim zagonom programa

- Menjavanje procesov (srednjeročno)
 - uporaba diska za umikanje procesov
 - če pomnilnika primanjkuje, proces lahko umaknemo na disk in s tem sprosimo njegove vire
 - procese lahko tudi naložimo nazaj z diska v pomnilnik
 - menjalnik (swapper)
 - izbira procese za umik in za vračanje
 - skrb za enakomerno obremenitev virov

- Razvrščanje na procesorju (kratkoročno)
 - odločanje o tem, kateri proces dobi možnost izvajanja na procesorju
 - ključno za zagotavljanje večopravilnosti
 - razvrščevalnik (širše)
 - del upravitelja procesov
 - razvrščevalnik (ožje, scheduler)
 - izbira enega izmed pripravljenih procesov
 - dodeljevalnik (dispatcher)
 - preklop procesa iz trenutnega na izbranega

- Kdaj se aktivira razvrščevalnik?
 - končanje procesa
 - proces je onemogočen (postane čakajoč)
 - potek časovne rezine
 - konec čakanja
 - proženje čakajočega dogodka
 - vstop v vrsto pripravljenih procesov
 - stvaritev novega procesa
 - vstop v vrsto pripravljenih procesov

- Časovna rezina
 - računsko intenzivna opravila (CPU bound tasks)
 - preferirajo daljše časovne rezine
 - s tem omejijo stroške preklopa procesa
 - izkoriščenost procesorja je višja
 - interaktivna opravila (I/O bound tasks)
 - preferirajo krajše časovne rezine
 - procesi prej pridejo na vrsto
 - boljša uporabniška izkušnja

Mere zmogljivosti

Paketni sistemi

Čakalni čas (waiting time)

$$T_{\check{\mathsf{c}}akalni} = T_{za\check{\mathsf{c}}etni} - T_{prihodni}$$

Odzivni čas (response time)

$$T_{odzivni} = T_{v/i} - T_{prihodni}$$

Čas obdelave (turnaround time)

$$T_{obdelave} = T_{končni} - T_{prihodni}$$

Mere zmogljivosti

Interaktivni sistemi – časovno dodeljevanje

Čakalni čas celoten čas prebit v stanju pripravljen

Odzivni čas

predpostavimo: $T_{za\check{c}etni} \simeq T_{v/i}$ $T_{odzivni} = T_{za\check{c}etni} - T_{prihodni}$ Čas obdelave (turnaround time) $T_{obdelave} = T_{kon\check{c}ni} - T_{prihodni}$

Mere zmogljivosti

- Ostale mere
 - izkoriščenosti procesorja (processor utilization)
 - delež zaposlenosti procesorja
 - prepustnost sistema (system throughput)
 - število obdelanih procesov v danem časovnem obdobju
 - poštenost (fairness)
 - enakomernost delitve procesorja procesom glede na prioriteto procesa

Razvrščevalni algoritmi

- Osnovni algoritmi
 - FCFS prvi pride prvi melje
 - SJF najkrajši posel najprej
 - PSJF prekinjevalni najkrajši posel najprej
 - RR krožno razvrščanje
- Prednostni algoritmi
 - HPF najvišja prioriteta najprej
 - razvrščanje s prepustnicami
 - koračno razvrščanje
- Praktični algoritmi
 - MLFQ večnivojska odzivna vrsta
 - razvrščevalnik Linux O(1)
 - CFS popolnoma pošteno razvrščanje

FCFS – first come, first served FIFO – first in, first out

- FCFS prvi pride, prvi melje
 - proces, ki je prej pripravljen, prej dobi procesor
 - pripravljeni procesi vstopajo na konec vrste
 - za izvajanje se vzame proces iz čela vrste
 - lastnosti
 - razvrščanje brez odvzemanja
 - odzivni čas: slab
 - čas obdelave: dober
 - efekt "konvoja"

SJF – shortest job first

- SJF najkrajši posel najprej
 - najkrajši pripravljeni posel prej dobi procesor
 - intuicija: procesi se hitreje obračajo, naprave prej dobijo zaposlitev
 - potrebno je vnaprejšnje poznavanje dolžine poslov
 - lastnosti
 - razvrščanje brez odvzemanja
 - algoritem je celo optimalen v tem primeru
 - odzivni čas: slab
 - čas obdelave: odličen

PSJF – preemptive shortest job first SRTF – shortest remaining-time first STCF – shortest time-to-completition first

- PSJF prekinjevalni najkrajši posel najprej
 - ali "kdor se prej konča, najprej"
 - pripravljeni posel z najkrajšim preostankom časa prej dobi procesor
 - potrebno vnaprejšnje poznavanje dolžine poslov
 - lastnosti
 - razvrščanje z odvzemanjem
 - odzivni čas: slab
 - obračalni čas: odličen

RR – round robin

- RR krožno razvrščanje
 - pripravljene posle krožno razvrščamo zaporedoma, vsakega za nekaj časa
 - pripravljeni procesi vstopajo na konec vrste
 - za izvajanje se vzame proces iz čela vrste
 - proces se izvaja le za določen čas, nato se prekine
 - časovna rezina
 - dovolj kratka, da zadosti odzivnosti
 - dovolj dolga, da opraviči čas preklopa
 - lastnosti
 - razvrščanje z odvzemanjem
 - odzivni čas: odličen
 - čas obdelave: slab

- Ocena časa izvajanja
 - ideja
 - naslednje trajanje je podobno predhodnemu
 - izvedba
 - t ... trajanje zadnjega teka procesa
 - t' ... ocena trajanja teka (eksponentno povprečje)
 - α ... faktor pozabljanja
 - α = 1: preteklost se ne upošteva
 - α = 0: trajanje zadnjega teka nima vpliva
 - $t' \coloneqq \alpha \cdot t + (1 \alpha) \cdot t'$

Primerjava algoritmov

Algoritem	Odzivni čas	Čas obdelave
FIFO	slab	dober
SJF	slab	odličen
PSJF	slab	odličen
RR	odličen	slab

- Vključevanje V/I operacij
 - tekom V/I operacij je proces blokiran
 - procesor je neizkoriščen
 - prekrivanje izvajanja

- Prednostno razvrščanje
 - razvrščevalni algoritmi, ki dajejo prednost izbranim procesom glede na neko lastnost
- Upoštevanje prioritete procesov
 - notranja prioriteta
 - odvisna od lastnosti procesa
 - npr. trajanje procesa (SJF), preostanek teka (PSJF), velikost procesa, št. odprtih datotek ipd.
 - zunanja prioriteta
 - določena s strani uporabnika
 - npr. ukaza nice in renice za nastavljanje prioritete v Unix sistemih

- HPF najvišja prioriteta najprej
 - pripravljeni posel z najvišjo prioriteto dobi procesor najprej
 - razvrščevalnik brez ali z odvzemanjem
 - vstop procesa v vrsto pripravljenih
 - vstopni proces z višjo prioriteto kot izvajajoči se

razvrščanje	aktivacija razvrščevalnika	komentar
sodelovalno / brez odvzemanja	ne	počakamo, da trenutni proces prepusti procesor
prekinjevalno / z odvzemanjem	da	če ima prispeli proces višjo prioriteto, potem zamenja trenutnega

- Upoštevanje prioritete procesov
 - težava: stradanje
 - procesi z višjo prioriteto nenehno prehitevajo procese z nižjo prioriteto
 - nek proces ne pride nikoli na vrsto
 - rešitev: staranje
 - procesom, ki ne dobijo procesorja, vsake toliko časa povečamo prioriteto

SIRO – service in random order

- Naključno razvrščanje
 - razvrščanje po neki shemi naključnosti
 - možno odvzemanje ali pa tudi ne
 - pravičnost razvrščanja
 - dolgoročno pravično glede prioriteto

lottery scheduling

- Razvrščanje s prepustnicami
 - določanje procesa z loterijo
 - stvaritev procesa
 - proces i ima (dobi ob stvaritvi) p_i prepustnic
 - procesi z višjo prioriteto dobijo več prepustnic
 - razvrščanje
 - razvrščevalnik naključno izbere eno prepustnico in procesu lastniku prepustnice dodeli procesor
 - procesi lahko prepuščajo prepustnice drugim
 - npr. odjemalec prepusti prepustnice strežniku
 - verjetnost izbire k-tega procesa $\frac{p_k}{\sum_{i=1}^n p_i}$

stride scheduling

- Koračno razvrščanje
 - proces, ki je najmanj prehodil, najprej
 - stvaritev procesa
 - procesom dodelimo dolžino koraka
 - procesi z višjo prioriteto imajo krajši korak
 - razvrščanje
 - procesu, ki prehodil najmanj, se dodeli procesor
 - koraki se seštevajo v skupno pot
 - izziv
 - kaj narediti, ko pride nov proces

MLQ – multilevel queue

- MLQ večnivojska vrsta
 - skupine opravil: interaktivna in paketna opravila
 - različni razvrščevalniki so različno primerni
 - večnivojska vrsta oz. več vrst
 - vrste padajoče urejene po prioriteti
 - naraščajoče urejene po časovni rezini
 - znotraj posamezne vrste se uporablja RR

- MLFQ večnivojska odzivna vrsta
 - MLF + prehajanje poslov med vrstami
 - prehajanje med vrstami
 - poslu ob prihodu dodelimo najvišjo prioriteto
 - poslu, ki porabi celotno časovno rezino, dekrementiramo prioriteto
 - posel, ki ne porabi celotne časovne rezine, ostane na isti prioriteti
 - po določenem času, vse posle prestavimo na najvišjo prioriteto
 - preprečevanje stradanja
 - reset naučenega stanja
 - optimizira odzivni čas in čas obdelave

Praktični algoritmi

- MLFQ večnivojska odzivna vrsta
 - pretentanje razvrščevalnika
 - če posel vrača procesor tik preden se izteče rezina, se mu prioriteta ne zmanjša
 - rešitev: natančno vodimo evidenco o preostanku časovne rezine
 - uglaševanje razvrščevalnika
 - Koliko nivojev oz. prioritet imeti?
 - Kako velika je časovna rezina za posamezno vrsto?
 - Kako pogosto povišamo prioriteto?

Praktični algoritmi

- Razvrščevalnik Linux O(1)
 - izbira in dodajanje opravila v konstantnem času
 - z odvzemanjem in prioriteto (140 prioritetnih vrst)

Odziv

- daljše spanje
 - interaktivno opravilo
 - dvig prioritete za -5
- krajše spanje
 - CPE intenzivno
 - spust prioritete za 5

Praktični algoritmi

Razvrščevalnik Linux O(1)

aktivna tabela (active array)

- uporaba za izbiro naslednjega opravila
- konstanten čas izbire in dodajanja opravila
- opravilo ostane v vrsti dokler se mu ne izteče časovna rezina

Ko se aktivna tabela izprazni, zamenjaj aktivno in pretečeno tabelo.

- velika časovna rezina za interaktivna opravila: dobijo več časa, vendar hitro blokirajo, zato se jim rezina ne izteče (ostajajo v aktivni tabeli)
- ko se rezine interaktivnih opravil porabijo, pridejo na vrsto CPU intenzivna opravila
- majhna časovna rezina za CPU intenzivna: se hitro izteče in opravilo gre med pretečene

CFS – completely fair scheduler

- CFS popolnoma pošteno razvrščanje
 - poštenost
 - v danem časovnem intervalu naj posli dobijo delež, ki je enakovreden njihovi prioriteti
 - Linux CFS razvrščevalnik
 - izbira posla z najmanjšim porabljenim časom izvajanja (ns resolucija)
 - skrajno levo vozlišče rdeče-črnega drevesa 😊
 - izvedba za kvečjemu toliko časa, da ujamemo naslednji posel z najmanjšim porabljenim časom
 - po izvedbi se posel ponovno vstavi v drevo z novim skupno porabljenim časom izvajanja
 - za posle nižje prioritete čas teče hitreje