Problems On Time Complexity

Assignment Solutions

Q1. Calculate the time complexity of the given function:

```
public static void fun(int n)
{
    if (n < 5)
        System.out.print("College Wallah");
    else {
        for (int i = 0; i < n; i++) {
            System.out.print(i + " ");
        }
    }
}</pre>
```

Answer: O(1) in best case and O(n) in worst case.

Explanation: This program contains if and else conditions. Hence, there are 2 possibilities of time complexity. If the value of n is less than 5, then we get only College Wallah as output and its time complexity will be O(1). But, if n>=5, then for loop will execute and time complexity becomes O(n), which is considered the worst case because it takes more time.

Q2. Calculate the time complexity of the given function:

```
public static void function(int n)
{
    int i = 1, s = 1;
    while (s < n) {
        s = s + i;
        i++;
    }
}</pre>
```

Answer: $O(\sqrt{n})$

Explanation: We can define the 'S' terms according to the relation Si = Si-1 + i. Let k is the total number of iterations taken by the program

i	s
1	1
2	2
3	2+2
4	2 + 2 + 3
k	2+2+3+4++k

When S>=n, then loop will stop at kth iterations,

$$\Rightarrow S>=n \Rightarrow S=n$$

$$\Rightarrow 2+2+3+4+.....+k=n$$

$$\Rightarrow 1+(k*(k+1))/2=n$$

$$\Rightarrow k^2=n$$

 $k = \sqrt{n}$

Hence, the time complexity is $O(\sqrt{n})$.

Q3. Calculate the time complexity of the given function:

```
public static void fun(int a, int b){
    while (a != b) {
        if (a > b)
            a = a - b;
        else
            b = b - a;
    }
}
```

Answer: Time complexity = O(1) in best case and O(max(a, b)) worst case.

Explanation: If the values of a and b are the same, then the while loop will not be executed. Hence, time complexity will be O(1).

But if a!=b, then the while loop will be executed. Let a=16 and b=5;

No. of iterations	a	b
1	16	5
2	16-5=11	5
3	11-5=6	5
4	6-5=1	5
5	1	5-1=4
6	1	4-1=3
7	1	3-1=2
8	1	2-1=1

For this case, while loop executed 8 times $(a/2 \Rightarrow 16/2 \Rightarrow 8)$. If a=5 and b=16, then also the loop will be executed 8 times. So we can say that time complexity is $O(\max(a/2,b/2)) \Rightarrow O(\max(a,b))$, which is considered the worst case because it takes more time.

Q4. Calculate the time complexity of the given function:

```
public static void fun(int n, int x){
   for (int i = 1; i < n; i = i * x)
        System.out.println("hello");
}</pre>
```

Answer: O(log_xn)

Explanation: Let k be the no. of iteration of the loop.

No. of itr	i=i*x
1	1*x=x
2	x*x=x ²
3	x ^{2*} x=x ³
k	$(x^{k}-1) *x = x^{k}$


```
⇒ The loop will stop when i > n \Rightarrow x^k = n

⇒ x^k = n (Take log both sides)

⇒ k = \log_x n

⇒ Hence, time complexity is O(\log_x n).

Q5. Calculate the time complexity of the given function:

public static void fun(int n) {

for (int i = 0; i < n / 2; i + + i)

for (int i = 1; i + i)

for (int i = 1; i + i)

System.out.println("hello");

}

Answer: O(n^2 \log_2 n).

Explanation:

Time complexity of 1st for loop = O(n/2) \Rightarrow O(n).
```

Time complexity of 2nd for loop = $O(n/2) \Rightarrow O(n)$.

Hence, the time complexity of function will become $O((n^2 \log_2 n))$.

Time complexity of 3rd for loop = $O(log_2n)$.