

Linear Feedback Particle Filter

Amirhossein Taghvaei, Prashant Mehta

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

Nonlinear Filtering Problem

 $\mathrm{d}X_t = a(X_t)\,\mathrm{d}t + \mathrm{d}B_t, \qquad X_0 \sim p_0(\cdot)$ Signal model:

 $\mathrm{d}Z_t = h(X_t)\,\mathrm{d}t + \mathrm{d}W_t$ Observation model:

What is X_t given $\mathcal{Z}_t := \sigma(Z_s : 0 \le s \le t)$

Answer in terms of posterior: $P(X_t|\mathcal{Z}_t)$

Posterior is solution to Kushner-Stratonovich PDE (hard to solve!)

Feedback Particle Filter

A system of N particles,

$$\mathrm{d}\tilde{X}_t^i = a(\tilde{X}_t^i)\,\mathrm{d}t + \mathrm{d}\tilde{B}_t^i + K(\tilde{X}_t^i,t)\big[\,\mathrm{d}Z_t - \frac{h(\tilde{X}_t^i) + \hat{h}_t}{2}\,\mathrm{d}t\big], \quad \text{for } i=1,\ldots,N$$
 Posterior is approximated with particles,

$$P(X_t \in A|\mathcal{Z}_t) pprox \frac{1}{N} \sum_{i=1}^N \delta[X_t^i \in A], \quad \forall A \in \mathcal{B}(\mathbb{R}^d)$$

T. Yang, et al. TAC, (2013)

Objective of This Work

- Reduce simulation variance
- 2. Connect to optimal transport
- 3. Examine optimality of FPF

Optimal Transportation

Let μ and ν be measures on \mathbb{R}^d , and T a map from \mathbb{R}^d to \mathbb{R}^d ,

 $ightharpoonup T_{\#}\mu = \nu$ denotes the push-forward of μ to ν , i.e,

$$\nu(\mathbf{A}) = \mu(\mathbf{T}^{-1}(\mathbf{A})), \quad \forall \mathbf{A} \in \mathcal{B}(\mathbb{R}^d)$$

▶ Wasserstein distance between μ and ν is,

$$W_2^2(\mu, \nu) = \min_{T} \int_{\mathbb{D}^d} |T(x) - x|^2 d\mu(x), \quad \text{s.t.} \quad T_{\#}\mu = \nu$$

ightharpoonup The optimal transport map is the minimizer T^* .

Approach

. Design an optimal control law U_t ,

$$\mathrm{d} ilde{X}_t = \mathrm{d} U_t(ilde{X}_t)$$

such that

$$\mathsf{P}(\tilde{\mathsf{X}}_\mathsf{t}|\mathcal{Z}_\mathsf{t}) = \mathsf{P}(\mathsf{X}_\mathsf{t}|\mathcal{Z}_\mathsf{t})$$

2. Simulate N samples of X_t ,

$$\mathrm{d} \tilde{X}_t^i = \mathrm{d} U_t(X_t^i), \quad \text{for } i=1,\ldots,N$$

Design am Optimal Control Law

1. Consider sampling instances $\{t_0, t_1, \ldots, t_n\}$ with $t_{k+1} - t_k = \Delta t$, and denote $\mathsf{P}_{\mathsf{k}} = \mathsf{P}_{\mathsf{X}_{\mathsf{t}_{\mathsf{k}}}\mid\mathcal{Z}_{\mathsf{t}_{\mathsf{k}}}}$,

2. Initialize \tilde{X}_t according to true initial distribution,

$$ilde{X}_0 \sim \mathsf{P}_0$$

3. Find optimal transport map for each time step, $t_k \rightarrow t_{k+1}$,

$$T_k = \operatorname*{arg\,min}_T \int_{\mathbb{R}^n} |T(x) - x|^2 \, \mathrm{d}P_k(x), \quad \text{s.t.} \quad T_\# \mathsf{P_k} = \mathsf{P_{k+1}}$$

4. Evolve \tilde{X}_t according to the optimal map,

$$ilde{X}_{t_{k+1}} = T_k(ilde{X}_{t_k})$$

5. Take the limit $\Delta t \rightarrow 0$

$$\mathrm{d} ilde{X}_t = \mathrm{d} ilde{U}_t (ilde{X}_t)$$

Example: Linear Gaussian Filtering

Consider the linear filtering problem,

$$\mathrm{d}X_t = AX_t\,\mathrm{d}t + \mathrm{d}B_t, \quad X_0 \sim N(\mu_0, \Sigma_0)$$
 $\mathrm{d}Z_t = CX_t\,\mathrm{d}t + \mathrm{d}W_t$

where $X_t \in \mathbb{R}^d$, $Z_t \in \mathbb{R}^m$, $\{B_t\}$ and $\{W_t\}$ are independent Brownian motions, with Identity covariance matrix, then the optimal control law for this system is

$$\mathrm{d} ilde{X}_t = A ilde{\mu}_t \, \mathrm{d} t + ilde{K}_t (\, \mathrm{d} Z_t - C ilde{\mu}_t \, \mathrm{d} t) + G_t (ilde{X}_t - ilde{\mu}_t) \, \mathrm{d} t, \quad ilde{X}_0 \sim \mathcal{N}(\mu_0, \Sigma_0)$$

where

$$ilde{\mathcal{K}}_t = ilde{\Sigma}_t oldsymbol{C}^T, \quad ilde{\mu}_t = \mathsf{E}[ilde{X}_t], \quad ilde{\Sigma}_t = \mathsf{Cov}[ilde{X}_t]$$

and G_t is the unique solution to the following equation,

$$G_t \tilde{\Sigma}_t + \tilde{\Sigma}_t G_t = A \tilde{\Sigma}_t + \tilde{\Sigma}_t A^T + I - \tilde{\Sigma}_t C^T C \tilde{\Sigma}_t$$

Scalar case: In the case $X_t, Z_t \in \mathbb{R}$, we have

$$\mathrm{d}\tilde{X}_t = A\tilde{X}_t\,\mathrm{d}t + + \frac{1}{2\tilde{\Sigma}_t}(\tilde{X}_t - \tilde{\mu}_t)\,\mathrm{d}t + \tilde{K}_t(\,\mathrm{d}Z_t - \frac{C\tilde{X}_t + C\tilde{\mu}_t}{2}\,\mathrm{d}t), \quad \tilde{X}_0 \sim N(\mu_0, \Sigma_0)$$

Numerical Example

Consider the diffusion,

$$\mathrm{d}X_t=\mathrm{d}B_t,\quad X_0\sim N(0,1)$$

where $\{B_t\}$ is the standard Brownian motion. In this example we compare Monte-Carlo with optimal transportation to approximate P_{X_i} .

Monte-Carlo

Optimal transport

$$dX_t^i = dW_t^i, \quad X_0^i \stackrel{i.i.d}{\sim} N(0,1) \qquad dX_t^i = \frac{1}{2\Sigma_t^{(N)}} (X_t^i - \hat{\mu}_t^{(N)}), \quad X_0^i \stackrel{i.i.d}{\sim} N(0,1)$$

for
$$i = 1, \ldots, N$$
 where

for
$$i = 1, \ldots, N$$
 where

$$\{W_t^1\}, \dots, \{W_t^n\}$$
 are ind. W.P

$$\{W_t^1\},\ldots,\{W_t^n\}$$
 are ind. W.P $\mu_t^{(N)}=\frac{1}{N}\sum_{i=1}^N X_t^i, \quad \Sigma_t^{(N)}=\frac{1}{N}\sum_{i=1}^N (X_t^i-\mu_t^{(N)})^2$

Approximation:

$$\mathsf{E}[f(X_t)] pprox rac{1}{N} \sum_{i=1}^N f(X_t^i)$$

Figure: Trajectory of particles

Figure: Trajectory of particles

Figure : Simulation variance for $E[X_t]$

Figure : Simulation variance for $E[X_t^2]$

Future Work

- Extend to nonlinear case
- Find an optimization formulation

Aknowledgement

Research supported by NSF Award 1334987.