Devoir surveillé n°08

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Mines-Ponts PSI II 2017

Dans tout le problème, les espaces vectoriels considérés ont \mathbb{C} , le corps des complexes, pour corps de base. Etant donnés deux entiers naturels n et p non nuls, on note $\mathcal{M}_{n,p}(\mathbb{C})$ l'espace vectoriel des matrices à n lignes et p colonnes et à coefficients dans \mathbb{C} (et $0_{n,p}$ sa matrice nulle) et $\mathcal{M}_n(\mathbb{C})$ celui des matrices carrées à n lignes et à coefficients dans \mathbb{C} (et 0_n sa matrice nulle).

Soit E un \mathbb{C} -espace vectoriel. On note $\mathcal{L}(E)$ l'espace vectoriel des endomorphismes de E.

Un endomorphisme u de E est dit échangeur lorsqu'il existe des sous-espaces vectoriels F et G de E tels que

$$E = F \oplus G$$
, $u(F) \subset G$ et $u(G) \subset F$

Etant donnés deux endomorphismes u et v de E, on dit que v est **semblable** à u lorsqu'il existe un automorphisme φ de E tel que $v = \varphi \circ u \circ \varphi^{-1}$. On notera que dans ce cas $u = \varphi^{-1} \circ v \circ (\varphi^{-1})^{-1}$, si bien que u est semblable à v.

On dit que u est **de carré nul** lorsque u^2 est l'endomorphisme nul de E. On dit que u est **nilpotent** lorsqu'il existe un entier naturel $n \ge 1$ tel que $u^n = 0$.

Une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est dite **de carré nul** lorsque $A^2 = 0$.

L'objectif du problème est d'établir, pour un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension finie, l'équivalence entre les conditions suivantes :

- (C1) l'endomorphisme u est échangeur;
- (C2) il existe $a, b \in \mathcal{L}(E)$, tous deux de carré nul, tels que u = a + b;
- (C3) les endomorphismes u et -u sont semblables.

Chacune des parties I et II est indépendante des autres. Les résultats de la partie IV sont essentiels au traitement des parties V et VI.

I Quelques considérations en dimension 2

On se donne ici un \mathbb{C} -espace vectoriel de dimension 2 et un endomorphisme u de \mathbb{E} .

1 Montrer que si u vérifie la condition (C3) alors u est de trace nulle.

Jusqu'à la fin de cette partie, on suppose u de trace nulle et de déterminant non nul. On choisit un nombre complexe δ tel que $\delta^2 = -\det(u)$.

- 2 Montrer que $u^2 = \delta^2 \operatorname{Id}_E$, déterminer le spectre de u et préciser la dimension des sous-espaces propres.
- **3** Expliciter, à l'aide de vecteurs propres de u, une droite vectorielle D telle que $u(D) \not\subset D$ et en déduire que u est échangeur.

II La condition (C1) implique (C2) et (C3)

Soient n et p deux entiers naturels non nuls. Soient $A \in \mathcal{M}_{p,n}(\mathbb{C})$ et $B \in \mathcal{M}_{n,p}(\mathbb{C})$. On considère dans $\mathcal{M}_{n+p}(\mathbb{C})$ la matrice

$$\mathbf{M} = \begin{bmatrix} \mathbf{0}_n & \mathbf{B} \\ \mathbf{A} & \mathbf{0}_p \end{bmatrix}$$

- 4 Calculer le carré de la matrice $\begin{bmatrix} 0_n & \mathrm{B} \\ 0_{p,n} & 0_p \end{bmatrix}$ de $\mathcal{M}_{n+p}(\mathbb{C})$. Montrer ensuite que M est la somme de deux matrices de carré nul.
- **5** On considère dans $\mathcal{M}_{n+p}(\mathbb{C})$ la matrice diagonale par blocs

$$D = \begin{bmatrix} I_n & 0_{n,p} \\ 0_{p,n} & -I_p \end{bmatrix}$$

Montrer que D est inversible, calculer D^{-1} puis DMD^{-1} , et en déduire que M est semblable à -M.

Jusqu'à la fin de cette partie, on se donne un endomorphisme u d'un \mathbb{C} -espace vectoriel E de dimension finie. On suppose que u est échangeur et on se donne donc une décomposition $E = F \oplus G$ dans laquelle F et G sont des sous-espaces vectoriels vérifiant $u(F) \subset G$ et $u(G) \subset F$.

6 On suppose ici F et G tous deux non nuls.

On se donne une base $(f_1, ..., f_n)$ de F et une base $(g_1, ..., g_p)$ de G.

La famille $\mathcal{B} = (f_1, \dots, f_n, g_1, \dots, g_p)$ est donc une base de \tilde{E} .

Compte-tenu des hypothèses, décrire la forme de la matrice u dans B.

7 Déduire des questions précédentes que u vérifie (C2) et (C3). On n'oubliera pas de considérer le cas où l'un des sous-espaces F ou G est nul.

III La condition (C2) implique (C1) : cas d'un automorphisme

Dans cette partie, u désigne un automorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie. On suppose qu'il existe deux endomorphismes a et b de E tels que

$$u = a + b$$
 et $a^2 = b^2 = 0$

8 Soit f un endomorphisme de E tel que $f^2 = 0$. Comparer Ker(f) à Im(f) et en déduire

$$\dim(\mathrm{Ker}(f)) \ge \frac{1}{2}\dim(\mathrm{E})$$

- 9 Démontrer que $E = Ker(a) \oplus Ker(b)$, et que Ker(a) = Im(a) et Ker(b) = Im(b).
- **10** En déduire que *u* est échangeur.

IV Intermède : un principe de décomposition

On se donne dans cette partie un \mathbb{C} -espace vectoriel E de dimension finie, ainsi qu'un endomorphisme f de E. On se donne un nombre complexe arbitraire λ . On pose $v = f - \lambda \operatorname{Id}_{E}$.

- 11 Montrer que la suite $(\text{Ker}(v^k))_{k \in \mathbb{N}}$ est croissante pour l'inclusion.
- **12** Montrer qu'il existe un entier naturel p tel que

$$\forall k \ge p, \ \operatorname{Ker}(v^k) = \operatorname{Ker}(v^p)$$

On pourra introduire la plus grande dimension possible pour un sous-espace vectoriel de la forme $Ker(v^k)$ pour $k \in \mathbb{N}$.

Montrer qu'alors

$$\operatorname{Ker}(v^p) = \bigcup_{k \in \mathbb{N}} \operatorname{Ker}(v^k)$$

et que p peut être choisi parmi les entiers pairs.

Dans la suite de cette partie, on fixe un entier naturel pair p donné par la question 12 et l'on pose

$$E_{\lambda}^{c}(f) = \bigcup_{k \in \mathbb{N}} Ker(v^{k}) = Ker(v^{p})$$

On notera que $E_{\lambda}^{c}(f)$ est un sous-espace vectoriel de E.

13 Montrer que $E_{\lambda}^{c}(f) = \text{Ker}(v^{2p})$ et en déduire

$$E = E_{\lambda}^{c}(f) \oplus Im(v^{p})$$

Montrer en outre que les sous-espaces vectoriels $E_{\lambda}^{c}(f)$ et $Im(v^{p})$ sont tous deux stables par f.

- 14 Montrer que λ n'est pas valeur propre de l'endomorphisme induit par f sur $\text{Im}(v^p)$. Montrer que si $E_{\lambda}^c(f)$ n'est pas nul alors λ est l'unique valeur propre de l'endomorphisme induit par f sur $E_{\lambda}^c(f)$.
- 15 On se donne ici un nombre complexe $\mu \neq \lambda$. On suppose que toute valeur propre de f différente de λ est égale à μ .

Montrer que $\operatorname{Im}(v^p) \subset \operatorname{E}^c_{\mu}(f)$, puis que $\operatorname{E} = \operatorname{E}^c_{\lambda}(f) \oplus \operatorname{E}^c_{\mu}(f)$.

On pourra s'intéresser au polynôme caractéristique de l'endomorphisme induit par f sur $\text{Im}(v^p)$.

V La condition (C2) implique (C1): cas non bijectif

Dans cette partie, on admet la validité de l'énoncé suivant.

Théorème : tout endomorphisme nilpotent d'un espace vectoriel de dimension finie est échangeur.

On se donne ici un endomorphisme non bijectif u d'un \mathbb{C} -espace vectoriel E de dimension finie. On suppose qu'il existe deux endomorphismes a et b de E tels que

$$u = a + b$$
 et $a^2 = b^2 = 0$

16 Montrer que a et b commutent avec u^2 .

On fixe maintenant un entier pair p tel que $E_0^c(u) = \text{Ker}(u^p)$, donné par la question 12.

- 17 Montrer que le sous-espace vectoriel $G = Im(u^p)$ est stable par a et b et que les endomorphismes induits a_G et b_G sont de carré nul.
- 18 En déduire que u est échangeur. On pourra utiliser, entre autres, le résultat final de la partie III.

VI La condition (C3) implique (C1)

Soit E un \mathbb{C} -espace vectoriel de dimension finie non nulle. Un endomorphisme u de E est dit **indécomposable** lorsque

- (i) la condition (C3) est vérifiée par u
- (ii) il n'existe aucune décomposition $E = F \oplus G$ dans laquelle F et G sont des sous-espaces non nuls, stables par u et tels que les endomorphismes induits u_F et u_G vérifient tous deux la condition (C3).

Jusqu'à la question **21** incluse, on se donne un endomorphisme indécomposable u de E. On dispose en particulier d'un automorphisme ϕ de E tel que

$$-u = \varphi \circ u \circ \varphi^{-1}$$

- **19** Montrer que φ^2 commute avec u.
- 20 Montrer que φ^2 possède une unique valeur propre λ . En déduire que les valeurs propres de φ sont parmi α et $-\alpha$, pour un certain nombre complexe non nul α .
 - On utilisera l'indécomposabilité de u ainsi que les résultats des questions 13 et 14.
- **21** En déduire que *u* est échangeur. *On pourra appliquer le résultat final de la question 15.*
- 22 En déduire plus généralement que, pour tout endomorphisme d'un \mathbb{C} -espace vectoriel de dimension finie, la condition (C3) implique la condition (C1).