

Derive utility:
o consider in outcomes A. An where An is most
preterred and H, is least
and preferences ranked by numbers
preferred and A, is least o going to show that outcomes can be assigned numbers and preferences ranked by numbers — utility: a measure of preference
X(p) = lottery that gives An (best) with probability p
create "extreme" lottery for the best vs. worst: X(p) = lottery that gives An (best) with probability p otherwise gives A, (worst). → X(0) same as A, and X(1) same as An
\rightarrow $X(0)$ same as H_1 and $X(1)$ same as H_1
X(p): P An (best)
$\chi(p)$.
1-p A, (worst)
e for avery atoms A. Hara is a literal V(1)
· for every outcome A; there is a lottery X(u;) with probability u; that makes player indifferent: A; ~ X(u;)
ui An
$A_i \sim \frac{u_i}{1-u_i} A_i$
$\Rightarrow special cases: A_1 \sim X(0) \longrightarrow u_1 = 0$ $A_n \sim X(1) \longrightarrow u_n = 1$
 X(ui) preferred to X(uj) if and only if ui>uj then outcome Ai preferred to Aj if and only if ui>uj
· then outcome A; preterred to A; it and only if u; > U;
-> utility: every outcome A; can be assigned value
-> utility: every outcome A; can be assigned value u; which is probability of lottery with same preference

· every	larger utility means stronger preference ybody can assign different utilities— result just shows there are numeric utilities
this	result just shows there are numeric utilities
Examp	le: If you préfer an Apple (A) over a Banana (B) over a Carrot (C) over Dirt (D) then
	Banana ~ Jus Apple
	carrot ~ uc Apple
	· $U_A = 1$, $U_D = 0$ · $0 < U_B < 1$, $0 < U_C < 1$ · $U_B > U_C$ because Banana preferred to Carrot
Derive • how	expected utility theory: to choose between uncertain outcomes
· lets	(p ₁ , p ₂ ,, p _n) = lottery that gives A; with probability p must have $p_1 + \cdots + p_n = 1$
	$p_n A_n$
· how	L(p,,pn): Pi A, to choose between two lotteries: L(p,,pn) vs. L(q,,qn)
	1 (P. Dn) VS. 1 (a an)

Implications: · derivation is informal proof. If assumptions and steps accepted then conclusion is inescapable -> this is how rational individuals must behave · only shows how to choose once utilities of outcomes (u;) assigned - doesn't say how to choose ui (come from personal preferences) Rescaling utility: expected utility tells us to maximize $EU = p_1 u_1 + \cdots + p_n u_n$ o in derivation we assigned $u_i = 0$ and $u_n = 1$ · but can rescale: choose rescaling factor m>0 and shift by b EU'=m(EU)+b= m(p,u,+...+pnun)+b = m(\(\Sigma\) + b $= m(\sum p_i u_i) + b \sum p_i$ $= \sum (m p_i u_i + b p_i)$ = \(p_i \(mu_i + b \) where ui=mui+b = p, u, + ... + pn un -> can multiply utilities by any positive factor m and add any b without changing preferences -> just have to rescale all of a player's utilities in the same way

Summary: · lotteries · derive utility for certain outcomes · derive expected utility theory for uncertain outcomes · implications · rescaling utility