به نام خدا

پروژه اول درس شبکه پیچیده پویا

استاد: دکتر فاطمی علی سلیمی

فهرست مطالب

3	.يتاست
4	سکه استاتیک
	سُّلِکه پیچیده پویا
	سبکه پیچیده پویا تجمیع شده
	- پیچیدگی(Complexity)
	جنبهی پویایی(Dynamics)
	ج. فی پریدیی(Dyriaimus) خروجی :
	تحلیل نهایی

دیتاست

جزئیات اصلی این دیتاست GTFS : قالب استاندارد برای اشتراکگذاری اطلاعات زمانی و مکانی سیستمهای حملونقل عمومی.

محتوا: مسیرهای اتوبوس و خطوط حملونقل. زمانبندی حرکت وسایل نقلیه. موقعیت ایستگاهها و توقفها .اطلاعات جغرافیایی (مختصات ایستگاهها). احتمالی: اطلاعات تعرفهها، تغییرات موقت مسیرها و غیره.

در پوشه gtfs فایل دیتاست دانلود شده موجود است.

فایل	شرح	ستونهای کلیدی
stops.txt	فهرست همهی ایستگاهها (ترمینالها) با مشخصات مکانی و توضیحات	stop_id, stop_name, stop_lat, stop_lon, location_type
trips.txt	معرفی هر سفر (trip) به همراه دورهی سرویسدهی و نوع سرویس (weekday) saturday, sunday)	trip_id, route_id, service_id, direction_id
stop_times.txt	زمانهای ورود و خروج هر سفر به ایستگاهها (برای مدلسازی بعد زمانی)	trip_id, stop_id, arrival_time, departure_time
calendar.txt	تقویم سرویسهای هفتگی: مشخص می کند هر service_idدر کدام روزهای هفته فعال است و بازهی تاریخی	service_id, mondaysunday, start_date, end_date

شبكه استاتبك

نودها:(Nodes)

هر نود نشاندهنده یک ایستگاه حملونقل عمومی (مثلاً ایستگاه اتوبوس) است.

بالها:(Edges)

هر يال نشاندهنده اتصال مستقيم بين دو ايستگاه در يک مسير (Trip) است. اگر دو ايستگاه در يک سفر (trip_id) و بهصورت متوالى (stop_sequence) قرار داشته باشند، بين آنها يال ايجاد ميشود. يالها جهتدار نيستند (گراف غيرجهتي است).

ادغام دادهها: دادههای stop_times(زمانبندی توقفها) و trips(اطلاعات سفرها) برای شناسایی توالی ایستگاهها در هر سفر ادغام میشوند. برای هر سفر (trip_id)، ایستگاهها بر اساس stop_sequenceمرتب شده و یالها بین ایستگاههای متوالی ایجاد میشوند. توقفهای تکراری در یک سفر حذف میشوند (مثلاً اگر یک اتوبوس در یک ایستگاه دوباره توقف کند).

بهینهسازی: یالهای تکراری حذف میشوند (مثلاً اگر دو سفر مختلف بین دو ایستگاه مشترک باشند، فقط یک یال ایجاد میشود). گراف نهایی با استفاده از کتابخانه networkxساخته میشود.

محدودیتهای شبکه جهت حرکت :گراف غیرجهتی است، بنابراین جهت حرکت وسایل نقلیه (مثلاً رفت و برگشت) در نظر گرفته نشده است.

وزن یالها: یالها وزن ندارند (مثلاً فاصله بین ایستگاهها یا زمان سفر در نظر گرفته نشده است). در واقعیت، برخی اتصالات ممکنه مهمتر باشند (مثلاً یالهای با تردد بیشتر).

دادههای زمانبندی :این شبکه تنها اتصالات فیزیکی را نشان میدهد، نه فرکانس یا زمان سفر.

شبکه پیچیده یوپا

دادهها از فایلهای trips.txt ،stop_times.txt ،stops.txt بارگذاری میشن.

هر سفر (trip) در stop_times.txt به ترتیب ایستگاهها بررسی میشه.

با توجه به زمان خروج از هر ایستگاه، ساعت (۰ تا ۲۳) و نوع روز Sunday ،saturday ،weekday مشخص میشه.

به ازای هر (روز، ساعت) یک گراف مجزا (snapshot) ساخته میشه که فقط شامل یالهایی هست که در اون ساعت فعال بودن.

یالها دارای اطلاعات وزن هستند:

trip_count :تعداد دفعاتی که سفر در اون مسیر در اون ساعت اتفاق افتاده.

time_sum :مجموع زمان سفر بین اون دو ایستگاه در اون ساعت.

avg_travel_time :متوسط زمان سفر در یال) محاسبه شده بعد از ساخت کامل snapshot ها.

در نهایت، برای هر snapshot یک فایل graphml.ذخیره میشه که قابل باز کردن در ابزارهایی مثل Gephi یا Gytoscape یه در نهایت.

خروجيها

فایل های graphml.

به ازای هر ترکیب از روز و ساعت، یک فایل گراف تولید میشه:

gtfs_snapshot_weekday_hour_07.graphml gtfs_snapshot_saturday_hour_10.graphml gtfs_snapshot_sunday_hour_15.graphml

...

درون هر فایل:

نودها (ایستگاهها):

lon .lat .stop_name .stop_id

یال ها (سفر بین ایستگاهها):

trip_count : وزن یال بر اساس تعداد تکرار سفر

time_sum: مجموع زمان سفرها

avg_travel_time: میانگین زمان سفر در آن ساعت

نمونه ای از گراف های تولید شده:

Saturday, Hour 13

شبکه پیچیده یویا تجمیع شده

این قسمت تجمیع همهیsnapshot ها در یک گراف واحد (agg_graph) است:

نودها از قالب اولیه کپی می شوند. یال ها بر اساس trip_countو جمع می شوند avg_travel_time برای گراف کلی محاسبه می شود. در نهایت گراف تجمیعی رسم شده و در gtfs_aggregated.graphml ذخیره می گردد.

با این کار تمام ارتباطات زمانی مختلف در یک ساختار واحد قابل تحلیل هستند.

جنبهی پیچیدگی(Complexity)

ساختار نامنظم و بزرگ

صدها تا هزاران ایستگاه (نود) و دهها هزار یال داریم؛ توزیع درجهی نودها یکنواخت نیست (عدهای ایستگاه «هاب» شدهاند که تعداد یال زیادی دارند).

• ویژگیهای شبکههای پیچیده

- : : Small-world : ميانگين كوتاهترين مسير بين هر دو ايستگاه معمولاً كوچک است (چند منقل).
- Scale-free: توزیع درجه غالباً پیروی از قانون توان است (چند نود خیلی پُرُمرتبط، و اکثریت درجه ی کم).
- خوشهبندی : ایستگاه هایی که در یک منطقه جغر افیایی یا مسیر مشترک قرار دارند، تمایل به ایجاد مثلث و خوشهسازی دارند.

• وزندار و جهتدار

 یال ها جهت حرکت (A→B) دارند و وزنشان (تعداد سفر ها و متوسط زمان سفر) مخزن اطلاعات رفتاری مسافران است.

این خصوصیات باعث می شود گراف، یک شبکهی پیچیدهی «واقعی» باشد؛ شبکهای که نه کاملاً تصادفی است و نه کاملاً منظم.

جنبهی پویایی(Dynamics)

• منشأ پويايي

- در ابتدا ما گرافهای اسلایسی (snapshot)برای هر «نوع روز « $^\circ$ (weekday/saturday/sunday) هر «ساعت» $^\circ$ (weekday/saturday/sunday).
- در هر اسلایس، فقط یالهایی که در آن بازهی زمانی فعال بودند (سفرهایی که در آن ساعت شروع میشوند) وجود داشتند.

- تجميع نهايي
- o وقتی همهی این snapshot ها را در agg_graph با هم ادغام کردیم،
- تنها مقادير تجمعي trip_count و trip_countروي يالها باقي ماند؟
- بُعد «زمان» به شکل یک ویژگی عددی (تعداد سفر ها در کل دوره) خلاصه شد.
 - آیا پویایی حفظ شده؟
 - خير و بله
- خیر، چون تفکیک زمانی را از بین برده شده و حالا گراف «ثابت» است. دیگر نمیتوانیم
 بگوییم «در ساعت ۸ صبح چه اتصالاتی فعال بودند.«
- بله، به این معنا که هنوز می توانیم با بررسی مقدار trip_count، نواحی و مسیر هایی که در طول روز های مختلف پر تردد بودند را بشناسیم. اما بُعد «چه روزی؟ چه ساعتی؟» را از دست داده ایم.

خروجی :

Aggregated Graph: Nodes=2892, Edges=3501

--- Network Metrics (Barabasi Chap.2) ---

num_nodes: 2892

num_edges: 3475

density: 0.0008312629503591295

num_components: 2

size_largest_cc: 2671

avg_shortest_path: 24.526543524076747

diameter: 94

avg_clustering: 0.03741405359662618

transitivity: 0.06448461162677088

degree_distribution: dictionary with 12 items

degree_assortativity: 0.29580110664891185

degree_centrality: dictionary with 2892 items

betweenness_centrality: dictionary with 2892 items

closeness_centrality: dictionary with 2892 items

eigenvector_centrality: dictionary with 2892 items Network metrics saved.

معيار	مقدار	تفسير
(num_nodes) تعداد نودها	2892	حدود ۳ هزار ایستگاه در شبکه (نود)
		داريم.
num_edges) تعداد یالها	3475	کمی بیشتر از ۳ هزار اتصال مستقیم
		بین ایستگاههاست.
(density)چگالی	0.00083	بسیار کم است؛ نشان میدهد شبکه
		است (sparse)فوقالعاده ناپ ر.
تعداد مؤلفهها	2	شبکه به دو بخش جدا تقسیم شده
(num_components)		است؛ بخش اصلی و یک بخش بسیار
		.کوچک (معمولاً ایستگاههای ایزوله)
اندازه بزرگترین مؤلفه	2671	حدود ٪۹۲ از نودها در بخش اصلی
(size_largest_cc)		متصل هستند.
میانگین طول کوتاهترین مسیر	24.53	در بخش اصلی، متوسط فاصله بین دو
(avg_shortest_path)		ایستگاه ۲۴ گام (یال) است.
(diameter)قطر	94	طولانی ترین کوتاه ترین مسیر در بخش
		اصلی ۹۴ یال میباشد.
ضریب خوشهبندی متوسط	0.0374	نسبتاً کم؛ یعنی «دو همسایه» (دو
(avg_clustering)		ایستگاه) از یک ایستگاه مبدا به ندرت
		.به هم وصل هستند
(transitivity)ترانزیتیو بودن	0.0645	مشابه همان خوشهبندی، اما در سطح
		.کل شبکه؛ مقدار پایین است
توزيع درجه	مقدار مختلف 12	نشان میدهد بیشترین درجهّها در
(degree_distribution)		محدودهی ۰ تا ۱۰۰ قرار دارند (در
		.صورت نیاز می توان نمودار کشید)

همبستگی درجه (degree_assortativity)	+0.296	مثبت بودنش یعنی ایستگاههای پرتراکم تمایل دارند به هم متصل شوند "assortative mixing").
مرکزیت درجه (degree_centrality)	2892	معیار پایه که سهم هر نود در کل اتصالات را میسنجد
مرکزیت بینابینی (betweenness_centrality)	2892	نودهایی که بیشترین مسیرهای کوتاه را میان دو نود دیگر در خود جای .میدهند
مرکزیت نزدیکی (closeness_centrality)	2892	نودهایی که کمترین میانگین فاصله را تا سایر نودها دارند
مرکزیت ویژهبرداری (eigenvector_centrality)	2892	نودهای پیوندخورده به سایر نودهای مهم را امتیاز میدهد.

جدول۲

چگالی بسیار پایین و تعداد اجزاء مثبت، نشان می دهد شبکه نامنظم و پراکنده است؛ اما وجود یک مؤلفه ی اصلی بزرگ (۱۹۲۰) و مؤلفه ی کوچک (۱۸۰ باقی) typisch برای شبکههای واقعی است. اگرچه میانگین مسیر ۲۴ یال کمی بالاست (به نسبت شبکههای شهری)، اما با توجه به تعداد نود، هنوز مسیرها نسبتاً کوتاهاند) درست مثل ویژگی "small-world" مثبت بودن degree_assortativity نشان می دهد که ایستگاههای پررفتوآمد (هاب) تمایل دارند به هم متصل باشند؛ این هم رفتار متفاوتی نسبت به شبکههای کاملاً تصادفی است. مقدار کم خوشه بندی، نشان می دهد ایستگاهها کمتر در مثلث قرار می گیرند—احتمالاً به دلیل هندسه ی مسیرها و عدم وجود حلقههای محلی زیاد. با استفاده از دیکشنریهای مرکزیت می توان فهرست «تاپ ۱۰ ایستگاه» از زاویههای مختلف (degree, betweenness, closeness, eigenvector) استخراج کرد و آنها را بررسی نمود.

شكل شبكه تجميعي به اين صورت است:

تحلیل نهایی هیستوگرام توزیع درجهی گراف نهایی:

استخراج ۱۰ ایستگاه hub برتر:

	stop_id	degree_centrality	stop_name	stop_lat	stop_lon
0	13450	0.004151	Ridge Street Terminal	43.310816	-73.643825
1	7175	0.003805	Crossgates Mall Station	42.687953	-73.850299
2	3940	0.003459	Broadway & Steuben St	42.651258	-73.749925
3	10868	0.003459	Empire State Plaza Concourse	42.650790	-73.761390
4	7216	0.003113	SUNY Collins Circle	42.688238	-73.822915
5	877	0.002767	Allen/Madison Station - Western Ave & S. Allen St	42.666410	-73.791680
6	889	0.002767	Allen/Madison Station - Western Ave & S. Allen St	42.666560	-73.791700
7	3239	0.002767	Lark/Library Station - Washington Ave & Lark St	42.656161	-73.762142
8	7116	0.002767	Congress Station- 3rd St & Congress St	42.729008	-73.690805
9	9037	0.002767	Defreestville Park & Ride	42.652100	-73.696240

شکل ۵

Top 10 Hubs Locations

شكل ع

Summary Stats by Day Type:

	day	num_edges		density	
		mean	max	mean	max
0	saturday	1484.041667	2144	0.000355	0.000513
1	sunday	1143.318182	1794	0.000273	0.000429
2	weekday	1835.625000	2775	0.000439	0.000664

شکل ۷

شکل ۱

