Subunit 6.4: Sum to infinity of a geometric progression

Topical Question No: 1

8

A geometric progression is such that its second term is -120 and its sum to infinity is 160.			
(a)	Find the common ratio.	[4]	
(b)	The first nine terms of the progression are now removed.		
	Find the sum to infinity of the remaining terms of the progression.	[3]	
	This the sum to mining of the remaining terms of the progression.	[2]	

DO NOT WRITE IN THIS I

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

WRITE IN THIS MARGIN

Topical Question No: 2

5

Given that k is negative, find the sum to infinity of the progression.	[4]
	•••••
	•••••
	••••••

Topical Question No: 3

2

The second and third terms of a geometric progression are 10 and 8 respectively.			
Find the sum to infinity.	[4]		