LectureNote2: CS229 (SPRING2022, Stanford)

Supervised Learning

Set Up

• Prediction:

$$egin{array}{cccc} x &
ightarrow & y \ \circ & h: & images & cat \ text & hate speech? \ & housedata & price \ \end{array}$$

- · Given: training set
 - $\circ \ \{ \, (x^{(1)},y^{(1)}),...,(x^{(n)},y^{(n)}) \, \}$
 - \circ y = supervision
- ullet Do: find $oldsymbol{good}\ h(hypothesis): x
 ightarrow y$
 - \circ we care about $\mathbf{new}\ x$'s that are not in our training set
 - $\circ \hspace{0.1in}$ if y is $\emph{discrete} o ext{Classification}$
 - $\circ \hspace{0.1in}$ if y is $continuous
 ightarrow \mathsf{Regression}$
- How do we represent h?
 - $h(x) = \theta_0 + \theta_1 x_1$

Generalization

$$size(x_1) \quad bedroom(x_2) \quad lot \ siz(x_3) \quad ... \quad price(y) \ x^{(1)} \quad 2104 \qquad 4 \qquad 45k \quad ... \quad 400 \ x^{(2)} \quad 2500 \qquad 3 \qquad 30k \quad ... \quad 900 \ \circ \ h(x) = heta_0 x_0 + heta_1 x_1 + ... + heta_d x_d \ = \ \sum_{j=0}^d heta_j x_j \ (x_0 = 1)$$

$$\circ \ \theta_{parameters} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \quad x_{features}^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_d^{(i)} \end{bmatrix}$$

 $\circ \ (x^{(i)}, y^{(i)}) \leftarrow \text{i-th training example}$

$$\circ \hspace{0.1cm} X_{train\hspace{0.1cm} data} = egin{bmatrix} -x^{(1)} - \ -x^{(2)} - \ dots \ -x^{(n)} - \end{bmatrix} \in \mathbb{R}^{n(d+1)}$$

• +1 is the extra dimension x_0 , whose value is set to be 1 above

$$\circ \ h_{ heta}(x) = \sum_{j=0}^d heta_j x_j \ (x_0=1),$$
 I want $h_{ heta}(x) \simeq y$

$$\circ \ J(heta)_{cost\ function} = rac{1}{2} \sum_{i=1}^n \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2_{\ least\ squares}$$

- $\frac{1}{2}$ is for convenience purpose (It cancels out with 2 when we take the derivative)
- we only care about the minimizer, which is the θ that minimizes $J(\theta)$. This process is called "Optimization"

Gradient Descent

$$\theta^{(0)} = 0$$

•
$$heta_j^{(t+1)} = heta_j^{(t)} - lpha \; rac{\partial}{\partial heta_j} J(heta^{(t)})$$
 ($lpha$ = learning rate, $j=0\cdots d$)

$$lacksquare rac{\partial}{\partial heta_j} J(heta^{(t)}) = \sum_{i=1}^n \left(h_ heta(x^{(i)}) - y^{(i)}
ight) rac{\partial}{\partial heta_j} h_ heta(x^{(i)})$$

$$ullet h_ heta(x) = heta_0 x_0 + heta_1 x_1 + ... + heta_d x_d, \;\; rac{\partial}{\partial heta_j} h_ heta(x^{(i)}) = x_j^{(i)}$$

$$lacksquare :: heta_j^{(t+1)} = heta_j^{(t)} - lpha \sum_{i=1}^n (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

• i-th data point, j-th component

$$lacksquare$$
 for all j 's, $heta^{(t+1)} = heta^{(t)} - lpha \sum_{i=1}^n (h_ heta(x^{(i)}) - y^{(i)}) x^{(i)}$

• α can be changed throughout the iteration

Batch vs Stochastic Minibatch

- Minibatch: randomly select a B (B << n)
- ullet calculate a noisy estimation $heta^{(t+1)} = heta^{(t)} lpha_B \sum_{i \in B}{(h_{ heta}(x^{(i)}) y^{(i)})} x^{(i)}$