Three Speaker Recognition Tasks

Two kinds of speaker verification

- Text-dependent
 - Users have to say something specific
 - easier for system
- Text-independent
 - —Users can say whatever they want
 - -more flexible but harder

Two phases to speaker detection

Detection: Likelihood Ratio

Two-class hypothesis test:

HO: X is **not** from the hypothesized speaker

H1: X is from the hypothesized speaker

Choose the most likely hypothesis

Likelihood ratio test:

$$LR = \frac{p(X \mid H1)}{p(X \mid H0)}$$
 $LR > \theta$ Accept H1
 $LR < \theta$ Accept H0

Speaker ID Log-Likelihood Ratio Score

LLR= $\Lambda = \log p(X|H1) - \log p(X|H0)$

- Need two models
 - Hypothesized speaker model for H1
 - Alternative (background) model for H0

How do we get H1?

- Pool speech from several speakers and train a single model:
 - a universal background model (UBM)
 - can train one UBM and use as H1 for all speakers
 - Should be trained using speech representing the expected impostor speech
 - Same type speech as speaker enrollment (modality, language, channel)

How to compute P(H|X)?

- Gaussian Mixture Models (GMM)
 - The traditional best model for textindependent speaker recognition
- Support Vector Machines (SVM)
 - More recent use of discriminative model

Form of GMM/HMM depends on application

Fixed Phrase Word/phrase models Open sesame' **Prompted phrases/passwords** Phoneme models

Text-independent single state HMM (GMM)

GMMs for speaker recognition

 A Gaussian mixture model (GMM) represents features as the weighted sum of multiple Gaussian distributions

- Each Gaussian state i has a
 - Mean μ_i
 - Covariance Σ_i
 - Weight $\,^{\mathcal{W}_{i}}$

Recognition Systems Gaussian Mixture Models

Recognition Systems Gaussian Mixture Models

GMM training

- During training, the system learns about the data it uses to make decisions
 - A set of features are collected from a speaker (or language or dialect)

Recognition Systems for Language, Dialect, Speaker ID

In LID, DID, and SID, we train a set of *target models* λ_c for each dialect, language, or speaker

Recognition Systems Universal Background Model

We also train a *universal background* model $\lambda_{\bar{c}}$ representing all speech

Recognition Systems Hypothesis Test

 Given a set of test observations, we perform a hypothesis test to determine whether a certain class produced it H_0 : X_{test} is from the hypothesized class

 H_1 : X_{test} is not from the hypothesized class

$$X_{test} = \{x_1, x_2, \dots, x_K\}$$

Recognition Systems Hypothesis Test

 X_{test} is from the hypothesized class Given a set of test H_1 : X_{test} is not from the hypothesized class observations, we perform a $p(\mathbf{x} \mid \lambda_1)$ hypothesis test to determine whether a $X_{test} = \{x_1, x_2, \dots, x_K\}$ cer H_0 ? Dim 2 Dim 1 pro $p(\mathbf{x} \mid \lambda_{\bar{c}})$ H_1 ? Dim 2 Dim 1

Dim 2

Dim 1

Recognition Systems Hypothesis Test

 Given a set of test observations, we perform a $p(\mathbf{x} \mid \lambda_1)$ hypothesis test to determine whether a $X_{test} = \{x_1, x_2, \dots, x_K\}$ cer Dan? Dim 2 Dim 1 pro $p(\mathbf{x} | \lambda_{\bar{c}})$ UBM (not Dan)?∞ Dim 2 Dim 1 Dim 2 Dim 1

More details on GMMs

- Instead of training speaker model on only speaker data
- Adapt the UBM to that speaker
 - takes advantage of all the data
 - MAP adaptation: new mean of each Gaussian is a weighted mix of the UBM and the speaker

Gaussian mixture models

- Features are normal MFCC
 - can use more dimensions (20 + deltas)
- UBM background model: 512–2048 mixtures
- Speaker's GMM: 64–256 mixtures
- Often combined with other classifiers in mixture-of-experts

Deep Learning is Representation Learning

(aka Feature Learning)

MIT Deep Learning Basics: Introduction and Overview

https://www.youtube.com/watch?v=O5xeyoRL95U

