

Module Code & Module Title CC4057NI Introduction to Information Systems

Assessment Weightage & Type 30% Individual Coursework

Year and Semester 2021 Spring

Student Name: Aashna Shrestha

Group: C13

London Met ID:

College ID: NP01CP4S210103

Assignment Due Date: 30th April, 2021

Assignment Submission Date: 30th April, 2021

I confirm that I understand my coursework needs to be submitted online via Google Classroom under the relevant module page before the deadline in order for my assignment to be accepted and marked. I am fully aware that late submissions will be treated as non-submission and a marks of zero will be awarded.

Table of Contents

1	Introd	duction	1
2	Datal	pase Model	1
	2.1	Business Model	1
	2.2	Business Rules	1
	2.3	Goals and objectives	2
	2.4	Entity Relationship Diagram	2
	2.5	Relational Diagram	3
	2.6	Table 1 Passenger	3
	2.7	Table 2 VehicleType	5
	2.8	Table 3 OperatingArea	6
	2.9	Table 4 Vehicle	8
	2.10 T	able 5 RideRequest	. 10
3	Data	Dictionary	. 13
4	Queri	ies	. 18
5	Conc	lusion	. 24
6	Biblio	graphy	. 25

List of Figures

Figure 1 Entity Relation Diagram of Swish Company	2
Figure 2 Relational Diagram of Swish Company	3
Figure 3 Creating Passenger table	3
Figure 4 Format of Passenger Table	4
Figure 5 Inserting values into Passenger table	4
Figure 6 Displaying the data of Passengers	5
Figure 7 Creating VehicleType Table	5
Figure 8 Format of VehicleType table	5
Figure 9 Inserting values into VehicleType table	6
Figure 10 Displaying data of VehicleType table	6
Figure 11 Creating OperatingArea table	6
Figure 12 Format of OperatingArea table	7
Figure 13 Inserting values into OpeartingArea table	8
Figure 14 Displaying data from OperatingArea table	8
Figure 15 Creating Vehicle table	9
Figure 16 Format of Vehicle table	9
Figure 17 Inserting values into Vehicle table	10
Figure 18 Displaying data from Vehicle table	10
Figure 19 Creating RideRequest table	11
Figure 20 Format of RideRequest	11
Figure 21 Inserting values into RideRequest table	12
Figure 22 Displaying data from RideRequest table	12
Figure 23 Arranging the name of Area alphabetically	18
Figure 24 Total price earned by the vehicle 7593	18
Figure 25 Pickup Locations starting from the letter 'S'	19
Figure 26 Vehicle which earned the least	19
Figure 27 Displaying some details from the tables Passenger, Ride	Request and
VehicleType	20
Figure 28 Using Left Join to display all the details of passengers and their	ride requests
	21

Figure 29 Using Right Join to display some details of Vehicle and RideRequest	22
Figure 30 Total number of different types of vehicles	22
Figure 31 The vehicles which earned 200 - 400	23
Figure 32 Displaying types of vehicles	23
List of Tables	
Table 1 Data Dictionary of Passenger table	13
Table 2 Data Dictionary of VehicleType table	14
Table 3 Data Dictionary of OperatingArea table	14
Table 4 Data Dictionary of Vehicle table	15
Table 5 Data Dictionary of RideRequest table	17

1 Introduction

"A database is any logically coherent collection of data organized for storage and retrieval by computers, as a single, possibly large, repository of data that can be used simultaneously by multi-users" (Eze, et al., 2014). A database contains all sorts of data required in any organization in a structured manner. The data might be as simple as a person's name or complicated such as an image (Silberschatz, et al., 2019). Users can search for data in any pattern with the help of syntax (Britannica, 2020).

Database is managed by a software called Database Management System (DBMS). DBMS interacts with the user to create a database, and to retrieve, edit or delete data from the database. DBMS may vary according to the systems requirement. Relational DBMS shows the database relationship in tabular form where the data are organized in rows and columns. Network DBMS are presented in a graphical form, and the database has many to many relationships. Object oriented DBMS has more advanced features such as data types for graphics, audio and video. (Eze, et al., 2014)

2 Database Model

2.1 Business Model

Suppose that there is a Ridesharing Service named Swish, which allows passengers to book a vehicle such as cars (four-wheelers), bikes or scooters(two-wheelers) to travel a short distance. Passengers can send a request through their phones mentioning their pickup point and destination. A rider accepts the request and picks up the passenger from the mentioned location. The rider then drops the passenger to the desired location.

2.2 Business Rules

- A person can register to become a rider only if they own a vehicle and a driving license.
- The amount to be paid will be auto generated by the ride sharing app according to the distance. Discounts will not be given on the cost.
- A passenger may cancel the request only with a genuine reason.

2.3 Goals and objectives

Ride Sharing services work as public vehicles since they carry passengers and take them to any location that they desire. The service saves time and drops people to the exact destination that they desire. In fact, they even pick the passengers from any place. They are convenient than the public vehicles in terms of traffic congestion and cost.

2.4 Entity Relationship Diagram

Figure 1 Entity Relation Diagram of Swish Company

2.5 Relational Diagram

Figure 2 Relational Diagram of Swish Company

2.6 Table 1 Passenger

Create Statement - CREATE TABLE Passenger(PassengerID INT PRIMARY KEY AUTO_INCREMENT, Name VARCHAR(255), Contact VARCHAR(255));

Figure 3 Creating Passenger table

Describe Statement - DESCRIBE Passenger;

Figure 4 Format of Passenger Table

```
Insert Statement - INSERT INTO Passenger(name, contact) VALUES
```

```
("Liam Hemsworth", "122-458-249"),
("Shawn Harrington", "289-622-155"),
("Veronica Nielsen", "102-759-514"),
("Aaron Watson", "203-559-678"),
("Arial Lodge", "847-234-470"),
("Taylor Merch", "453-704-219"),
("Bob Brown", "389-555-104"),
("Ross Gilbert", "670-573-284"),
("Amy Merrell", "499-290-374"),
("Vanessa Crews", "385-883-058");
```

```
MariaDB [Swish]> INSERT INTO Passenger(name, contact) VALUES
-> ("Liam Hemsworth", "122-458-249"),
-> ("Shawn Harrington", "289-622-155"),
-> ("Veronica Nielsen", "102-759-514"),
-> ("Aaron Watson", "203-559-678"),
-> ("Arial Lodge", "847-234-470"),
-> ("Taylor Merch", "453-704-219"),
-> ("Bob Brown", "389-555-104"),
-> ("Ross Gilbert", "670-573-284"),
-> ("Amy Merrell", "499-290-374"),
-> ("Vanessa Crews", "385-883-058");

Query OK, 10 rows affected (0.039 sec)

Records: 10 Duplicates: 0 Warnings: 0
```

Figure 5 Inserting values into Passenger table

Select Statement - SELECT * FROM Passenger;

Figure 6 Displaying the data of Passengers

2.7 Table 2 VehicleType

Create Statement - CREATE TABLE VehicleType(VehicleID INT PRIMARY KEY, VehicleType VARCHAR(255));

Figure 7 Creating VehicleType Table

Describe Statement - DESCRIBE VehicleType;

Figure 8 Format of VehicleType table

Insert Statement - INSERT INTO VehicleType VALUES

- (1, "Two-Wheeler"),
- (2, "Four-Wheeler");

```
MariaDB [Swish]> INSERT INTO VehicleType VALUES

-> (1, "Two-Wheeler");
-> (2, "Four-Wheeler");
Query OK, 2 rows affected (0.006 sec)
Records: 2 Duplicates: 0 Warnings: 0
```

Figure 9 Inserting values into VehicleType table

Select Statement - SELECT * FROM VehicleType;

```
MariaDB [Swish]> SELECT * FROM VehicleType;

| VehicleID | VehicleType |

| 1 | Two-Wheeler |

| 2 | Four-Wheeler |

2 rows in set (0.001 sec)
```

Figure 10 Displaying data of VehicleType table

2.8 Table 3 OperatingArea

Create Statement - CREATE TABLE OperatingArea(AreaCode INT PRIMARY KEY AUTO_INCREMENT, AreaName VARCHAR(255) UNIQUE, Country VARCHAR(255) DEFAULT "Nepal");

```
MariaDB [Swish]> CREATE TABLE OperatingArea(AreaCode INT PRIMARY KEY AUTO_INCREMENT, AreaName VARCHAR(255) UNIQUE, Country VARCHAR(255) DEFAULT "Nepal");
Query OK, 0 rows affected (0.029 sec)
```

Figure 11 Creating OperatingArea table

Describe Statement - DESCRIBE OperatingArea;

Figure 12 Format of OperatingArea table

Insert Statement - INSERT INTO OperatingArea(AreaName) VALUES

```
("Kathmandu"),
("Chitwan"),
("Pokhara"),
("Hetauda"),
("Biratnagar"),
("Birgunj"),
("Banepa"),
("Dharan"),
("Dhulikhel"),
("Janakpur");
```

```
XAMPP for Windows - mysql -u root -h localhost
                                                                                Х
MariaDB [Swish]> INSERT INTO OperatingArea(AreaName) VALUES
    -> ("Kathmandu"),
    -> ("Chitwan"),
    -> ("Pokhara"),
    -> ("Hetauda"),
    -> ("Biratnagar"),
    -> ("Birgunj"),
    -> ("Banepa"),
    -> ("Dharan"),
    -> ("Dhulikhel"),
    -> ("Janakpur");
Query OK, 10 rows affected (0.005 sec)
Records: 10 Duplicates: 0 Warnings: 0
```

Figure 13 Inserting values into OpeartingArea table

Select Statement - SELECT * FROM OperatingArea;

XAMPP for	Windows - mysql -	u root -h localh	nost			_	×
riaDB [Sw	ish]> SELECT	* FROM Ope	ratin	gArea;			
	+	+	+				
AreaCode	AreaName	Country	ļ.				
1	+ Kathmandu	Nepal	† 				
2	Chitwan	Nepal	i				
3	Pokhara	Nepal	i				
4	Hetauda	Nepal	i				
5	Biratnagar	Nepal	i				
6	Birgunj	Nepal	İ				
7	Banepa	Nepal	İ				
8	Dharan	Nepal	İ				
9	Dhulikhel	Nepal	İ				
10	Janakpur	Nepal	İ				
	+	+	+				

Figure 14 Displaying data from OperatingArea table

2.9 Table 4 Vehicle

Create Statement - CREATE TABLE Vehicle(VehicleNo INT PRIMARY KEY, RiderName VARCHAR(255), Type INT, Area INT, FOREIGN KEY(Type) REFERENCES VehicleType(VehicleID), FOREIGN KEY(Area) REFERENCES OperatingArea(AreaCode));

Describe Statement - DESCRIBE Vehicle;

Figure 16 Format of Vehicle table

Insert Statement - INSERT INTO Vehicle VALUES

```
(1008, "Erin Smith", 2, 4),
```

(1458, "Bella Thomas", 1, 6),

(2495, "Michael Stark", 1, 8),

(4932, "Raen West", 1, 7),

(5659, "Derek Burris", 2, 3),

(5660, "Mindy Holmes", 1, 3),

(1048, "Rylie Green", 2, 2),

(7584, "John Reeves", 2, 5),

(7592, "Eva White", 2, 9),

(3849, "Allen Bieber", 1, 9),

(9208, "Levi Gomez", 1, 10),

(7593, "Zera Horan", 2, 1);

```
MariaDB [Swish]> INSERT INTO Vehicle VALUES
-> (1008, "Erin Smith", 2, 4),
-> (1048, "Rylie Green", 2, 2),
-> (1458, "Bella Thomas", 1, 6),
-> (2495, "Michael Stark", 1, 8),
-> (3849, "Allen Bieber", 1, 9),
-> (4932, "Raen West", 1, 7),
-> (5659, "Derek Burris", 2, 3),
-> (5660, "Mindy Holmes", 1, 3),
-> (7584, "John Reeves", 2, 5),
-> (7592, "Eva White", 2, 9),
-> (7593, "Zera Horan", 2, 1),
-> (9208, "Levi Gomez", 1, 10);
Query OK, 12 rows affected (0.010 sec)
Records: 12 Duplicates: 0 Warnings: 0
```

Figure 17 Inserting values into Vehicle table

Select Statement - SELECT * FROM Vehicle:

Figure 18 Displaying data from Vehicle table

2.10 Table 5 RideRequest

Create Statement - CREATE TABLE RideRequest(RequestID INT PRIMARY KEY AUTO_INCREMENT, Pickup VARCHAR(255) NOT NULL, Destination VARCHAR(255) NOT NULL, Passenger INT, Vehicle INT, Price FLOAT(2), FOREIGN KEY(Passenger) REFERENCES Passenger(PassengerID), FOREIGN KEY(Vehicle) REFERENCES Vehicle(VehicleNo));

Figure 19 Creating RideRequest table

Describe Statement - DESCRIBE RideRequest;

	lows - mysql -u root -					_	×
ariaDB [Swish]	> DESCRIBE Rid						
	Туре	Null	Key	Default			
	int(11) varchar(255) varchar(255) int(11) int(11) float	NO NO NO YES YES YES	PRI MUL MUL	NULL NULL NULL NULL NULL NULL	auto_increment		

Figure 20 Format of RideReguest

Insert Statement - INSERT INTO RideRequest (Pickup, Destination, Passenger, Vehicle, Price) VALUES

("Lagankhel", "Basantapur Durbar Sqaure", 2, 7593, 121.50),

("Shahid Smarak Park", "Pathibhara Temple", 8, 1008, 236.00),

("Sauraha", "Chitwan National Park", 4, 1048, 360.00),

("Zero Mile", "Janaki Temple", 7, 9208, 51.00),

("Tin Dhara Chowk", "Chandeshwori Temple", 3, 4932, 48.00),

("Swayambhunath Stupa", "Lazimpat", 1, 7593, 264.00),

("Mahendra Cave", "Devi's Falls", 1, 5659, 536.00),

("Mirabel Resort Hotel", "Kathmandu University", 5, 3849, 79.50),

("Biratnagar Airport", "Biratnagar Eye Hospital", 7, 7584, 444.00),

("Bindhyabasini Temple", "Fewa Lake", 1, 5660, 205.50),

("Ghantaghar", "Raxaul", 4, 1458, 121.50),

("Bijayapur", "Rai Tole", 10, 4932, 61.5);

```
MariaDB [Swish]> INSERT INTO RideRequest (Pickup, Destination, Passenger, Vehicle, Price) VALUES

-> ("Lagankhel", "Basantapur Durbar Sqaure", 2, 7593, 121.50),

-> ("Shahid Smarak Park", "Pathibhara Temple", 8, 1008, 236.00),

-> ("Sauraha", "Chitwan National Park", 4, 1048, 360.00),

-> ("Zero Mile", "Janaki Temple", 7, 9208, 51.00),

-> ("Tin Dhara Chowk", "Chandeshwori Temple", 3, 4932, 48.00),

-> ("Swayambhunath Stupa", "Lazimpat", 1, 7593, 264.00),

-> ("Mahendra Cave", "Devi's Falls", 1, 5659, 536.00),

-> ("Mirabel Resort Hotel", "Kathmandu University", 5, 3849, 79.50),

-> ("Biratnagar Airport", "Biratnagar Eye Hospital", 7, 7584, 444.00),

-> ("Ghantaghar", "Raxaul", 4, 1458, 121.50),

-> ("Bijayapur", "Rai Tole", 10, 4932, 61.5);

Query OK, 12 rows affected (0.018 sec)

Records: 12 Duplicates: 0 Warnings: 0
```

Figure 21 Inserting values into RideRequest table

Select Statement - SELECT * FROM RideRequest

riaDB [Swi	sh]> SELECT * FROM Ride					
RequestID	Pickup	+ Destination	Passenger			
1	Lagankhel	Basantapur Durbar Sqaure	2	7593	121.5	
2	Shahid Smarak Park	Pathibhara Temple	8	1008	236	
3	Sauraha	Chitwan National Park	4	1048	360	
4	Zero Mile	Janaki Temple	7	9208	51	
5	Tin Dhara Chowk	Chandeshwori Temple	3	4932	48	
6	Swayambhunath Stupa	Lazimpat	1	7593	264	
7	Mahendra Cave	Devi's Falls	1	5659	536	
8	Mirabel Resort Hotel	Kathmandu University	5	3849	79.5	
9	Biratnagar Airport	Biratnagar Eye Hospital	7	7584	444	
10	Bindhyabasini Temple	Fewa Lake	1	5660	205.5	
11	Ghantaghar	Raxaul	4	1458	121.5	
12	Bijayapur	Rai Tole	10	4932	61.5	

Figure 22 Displaying data from RideRequest table

3 Data Dictionary

Entity name	Entity description	Column name	Column description	Data Type	Length	Primary key	Foreign key	Nullable	Unique	Notes
Passenger	Passengers are the people who use the ride sharing	PassengerID	An ID given to each passenger to identify them	INT		True	False	False	True	Auto Incremented
	service to travel to a particular	Name	Name of the passenger	VARCHAR	255	False	False	True	False	
	destination	Contact	The passenger's phone number	VARHCHAR	255	False	False	True	False	

Table 1 Data Dictionary of Passenger table

Entity name	Entity description	Column name	Column description	Data Type	Length	Primary key	Foreign key	Nullable	Unique	Notes
VehicleType	type of vehicle owned by	VehicleID	An ID given to each type of vehicle	INT		True	False	True	True	
	the ride sharing company	VehicleType	The type of vehicle	VARCHAR	255	False	False	True	False	

Table 2 Data Dictionary of VehicleType table

Entity name	Entity description	Column name	Column description	Data Type	Length	Primary key	Foreign key	Nullable	Unique	Notes	
OperatingArea	It is the area that a vehicle has been	AreaCode	A code given to a certain area	INT		True	False	False	True	Auto Incremented	
	assigned. A vehicle can run	assigned. A vehicle can run only inside	AreaName	The area's name	VARCHAR	255	False	False	True	False	
	its assigned area.	Country	The country in which the area is located	VARCHAR	255	False	False	True	False	Default value is set as "Nepal"	

Table 3 Data Dictionary of OperatingArea table

Entity name	Entity description	Column name	Column description	Data Type	Length	Primary key	Foreign key	Nullable	Unique	Notes
Vehicle	The transport medium registered to the ride sharing company	VehicleNo	The number written on the number plate of the vehicle	INT		True	False	False	True	
	which lets the passenger travel to	RiderName	The name of the rider who owns the vehicle	VARCHAR	255	False	False	True	False	
	their destination	Туре	ID of the type of vehicle	INT		False	True	True	False	References to VehicleID Column of VehicleType table
Till 10		Area	The code of the area where the vehicle can operate	INT		False	True	True	False	References to AreaCode column of OperatingArea table

Table 4 Data Dictionary of Vehicle table

Entity name	Entity description	Column name	Column description	Data Type	Length	Primary key	Foreign key	Nullable	Unique	Notes
RideRequest	sent by the passenger to pick them up and drop them to a certain	RequestID	An ID given to each request sent by the passenger	INT		True	False	False	True	
	destination	Pickup	The location from where the passenger is picked up	VARCHAR	255	False	False	True	True	
		Destination	The location where the passenger is to be dropped	VARCHAR	255	False	False	True	True	
		Price	The cost that a passenger needs to pay	FLOAT	2	False	False	True	False	

Passenger	The ID of the passenger who sent the request	INT	False	True	True	False	References PassengerID column from Passenger table
Vehicle	The ID of the vehicle that has been assigned	INT	False	True	True	False	References VehicleNo column from Vehicle table

Table 5 Data Dictionary of RideRequest table

4 Queries

Query 1

Query - SELECT * FROM OperatingArea ORDER BY AreaName;

Keyword - ORDER BY

Figure 23 Arranging the name of Area alphabetically

Query 2

Query - SELECT SUM(Price) AS Total FROM RideRequest WHERE Vehicle = 7593; Keyword - WHERE, SUM(Price)

```
MariaDB [Swish]> SELECT SUM(Price) AS Total FROM RideRequest WHERE Vehicle = 7593;
+----+
| Total |
+----+
| 385.5 |
+----+
1 row in set (0.013 sec)
```

Figure 24 Total price earned by the vehicle 7593

Query 3 SELECT Pickup, Destination, Vehicle FROM RideRequest WHERE Pickup LIKE "S%"; Keyword LIKE, WHERE

Figure 25 Pickup Locations starting from the letter 'S'

Query 4 LIMIT

Query - SELECT Vehicle, Price FROM RideRequest ORDER BY Price LIMIT 1; Keyword LIMIT

```
MariaDB [Swish]> SELECT Vehicle, Price FROM RideRequest ORDER BY Price LIMIT 1;

+----+

| Vehicle | Price |

+----+

| 4932 | 48 |

+----+

1 row in set (0.001 sec)
```

Figure 26 Vehicle which earned the least

Query 5

Query - SELECT Passenger.PassengerID, Passenger.Name AS PassengerName, Vehicle.VehicleNo, VehicleType.VehicleType, RideRequest.Price

FROM Passenger JOIN RideRequest ON Passenger.PassengerID = RideRequest.Passenger

JOIN Vehicle ON RideRequest.Vehicle = Vehicle.VehicleNo

JOIN VehicleType ON Vehicle.Type = VehicleType.VehicleID;

Keyword JOIN

Figure 27 Displaying some details from the tables Passenger, RideRequest and VehicleType

Query 6 LEFT JOIN

Query SELECT * FROM Passenger LEFT JOIN RideRequest ON Passenger.PassengerID = RideRequest.Passenger;

Keyword LEFT JOIN

		<u>+</u>	+	•	+			
sengerID	Name	Contact	RequestID	Pickup	Destination	Passenger	Vehicle	Price
1	Liam Hemsworth	122-458-249	6	Swayambhunath Stupa	Lazimpat	1	7593	264
1	Liam Hemsworth	122-458-249	7	Mahendra Cave	Devi's Falls	1	5659	536
1	Liam Hemsworth	122-458-249	10	Bindhyabasini Temple	Fewa Lake	1	5660	205.5
2	Shawn Harrington	289-622-155	1	Lagankhel	Basantapur Durbar Sqaure	2	7593	121.5
3	Veronica Nielsen	102-759-514	5	Tin Dhara Chowk	Chandeshwori Temple	3	4932	48
4	Aaron Watson	203-559-678	3	Sauraha	Chitwan National Park	4	1048	360
4	Aaron Watson	203-559-678	11	Ghantaghar	Raxaul	4	1458	121.5
5	Arial Lodge	847-234-470	8	Mirabel Resort Hotel	Kathmandu University	5	3849	79.5
6	Taylor Merch	453-704-219	NULL	NULL	NULL	NULL	NULL	NULL
7	Bob Brown	389-555-104	4	Zero Mile	Janaki Temple	7	9208	51
7	Bob Brown	389-555-104	9	Biratnagar Airport	Biratnagar Eye Hospital	7	7584	444
8	Ross Gilbert	670-573-284	2	Shahid Smarak Park	Pathibhara Temple	8	1008	236
9	Amy Merrell	499-290-374	NULL	NULL	NULL	NULL	NULL	NULL
10	Vanessa Crews	385-883-058	12	Bijayapur	Rai Tole	10	4932	61.5

Figure 28 Using Left Join to display all the details of passengers and their ride requests

Query 7 RIGHT JOIN

Query - SELECT Vehicle.VehicleNo, Vehicle.Ridername, RideRequest.RequestID, RideRequest.Price FROM Vehicle RIGHT JOIN RideRequest ON Vehicle.VehicleNo = RideRequest.Vehicle;

Keyword RIGHT JOIN

Figure 29 Using Right Join to display some details of Vehicle and RideRequest

Query 8

Query - SELECT Type, COUNT(*) AS Total_Vehicles FROM Vehicle GROUP BY Type; Keyword - COUNT(*), GROUP BY

Figure 30 Total number of different types of vehicles

Query 9

Query - SELECT Vehicle, Price FROM RideRequest WHERE Price BETWEEN 200 and 400:

Keyword - BETWEEN

Figure 31 The vehicles which earned 200 - 400

Query 10

SELECT DISTINCT(VehicleType) FROM VehicleType;

Keyword DISTINCT

Figure 32 Displaying types of vehicles

5 Conclusion

A database model reflects the entire system of a company. In this project, various components helped to create the database model. The entity relationship diagram helped to plan what entities will be used by the ride sharing service, Swish, and the way they will be connected with other entities. The relational diagram further clarified the attributes that will be used to link the entities i.e., the primary key and the foreign key. The two diagrams helped to set a draft about the way the company will operate.

After preparing a plan about the company's system, it was the turn to create a database through MYSQL. Once the database was created, the tables were created along with the attributes. Then, data were inserted into the tables. A data dictionary, which defined all the attributes inside a table, was created for each entity. It provides reference to the user whenever they need to work with the database.

Since the database has been created and records have been added to it, a user can search for any pattern of data. They will only be required to use syntaxes for the purpose. In this project, select queries were used to search for data such as the names of passengers in alphabetical order, the number of two-wheeler and four-wheeler vehicles, the details of ride booked by the passengers and so on.

6 Bibliography

Britannica, E., 2020. Database. [Online]

Available at: https://www.britannica.com/technology/database

[Accessed 2 April 2021].

Eze, U. F., Etus, C. & Uzukwu, J. E., 2014. Database System Concepts,

Implementations and Organizations-A Detailed Survey. [Online]

Available at: https://www.researchgate.net/profile/Chukwuemeka-

Etus/publication/326468693_Database_System_Concepts_Implementations_and_Orga

nizations-A_Detailed_Survey/links/5b4fca66a6fdcc8dae2b4139/Database-System-

Concepts-Implementations-and-Organizations-A-Detailed-S

[Accessed 2 April 2021].

Silberschatz, A., Korth, H. & Sudarshan, S., 2019. Database System Concepts. [Online]

Available at:

http://libgen.li/item/index.php?md5=3B9A3801ED66581C28C040B370511818

[Accessed 3 April 2021].