LaPIS Diagnostic Test Workbook - Mathematics

Name : Aashika S

Class: 7

Section : A

School : AKV Public School

Login ID : AKV120

Aashika S's Performance Report

Score: 14/40 Percentage: 35.0%

Aashika S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Mensuration

Topics to be Improved		
Perimeter Perimeter of triangle		
Area of rectangle		

......

Hi, here in this video you will learn **Perimeter**

Question: 1

Highlight the perimeter in the given image.

A	ne	211	01	n.
\mathbf{H}	เมอ	TU)	e:	

Perimeter is the _____ (outer / inner) boundary of the shape

 $\underline{Question: \ 2}$

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____ Question: 3 Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft. Answer: Perimeter = ____ | Breadth = ____ Shape of the floor is _____ and its perimeter formula is _____. Given: floor perimeter = ______, and breadth = ______. Therefore, length of the rectangular floor is ______. Hi, here in this video you will learn **Area** Question: 4 Find which of the shaded portion in the given shape represent it's area. Answer: Given figure is ______ in shape. Area is the _____ (inside/ outside/ boundary) of a shape. Question: 5 Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in shape. Length of garden is and breadth of garder. Formula for area of the shape = The area of garden = x =	
Question: 6 Shade the possible dimension of the door whose a	area is $500 \ m^2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\boxed{25 \ m \ \times \ 20 \ m}$

$\underline{Answer:}$

Door is _____ in shape. Area of the _____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25 \text{m} \times 20 \text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Chance of probability Basis of probability		
Arithmetic mean, mode and median Mean, Median and Mode		
Range Finding the range		

Hi, here in this video you will learn Basics of probability
Question: 7
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 8
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $___(0/1/\text{ any number})$. Probability of impossible event = $___(0/1/\text{ any number})$. Therefore, Probability of sure event $___$ Probability of impossible event.
Question: 9
Rain has pencil an eraser a scale sharpener colour pencil and protractor in his hoy. What is the

probability of getting a pen from his box.

Answer:						
Does Raju have	pen in his box, r of getting pen from hi	(Yes/No)		.)		D41"-1D
Hi, here in th	nis video you will le	earn Me a	an, Med	ian, Mo	de	
$\underline{Question \colon 10}$						
Find the mode o	f the following data: 5,	15, 23, 5,	32, 44, 72,	55, 6, 3, 5	, 65, 45, 67	7, 24, 19 and 98.
Answer:						
Arranging the da	ber that occursata in ascending order: occurs most number of					
Question: 11						
Which shape con	ntains median of the given	ven data 3	, 5, 6, 2, 7,	9, 6, 4 and	d 1	
ascending or desc Arrange the give	(first/cencending order. n data in ascending order, the given data is	der :	and it is t	he	of	a data.
]
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
Mean =	, Median = an	nd Mode =	:			
$\underline{Answer:}$						
$Mean = \frac{1}{100}$	of all observation umber of observation .					
	observation = =	· · · · · · · · · · · · · · · · · · ·	number of	observatio	n =	

Arrange the data in ascending order:	
Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.	
Hi, here in this video you will learn Range	
Question: 13	
Range of the data =	
Answer:	
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =	
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, $\frac{-38-51}{2}$ 51 + 38 $\frac{51+20}{2}$	
Answer:	
Range = Arranging the data in ascending order, In the given data, Highest value = , Lowest value = , Range = =	
Question: 15	
Find the range of first 10 multiple of 5.	
Answer:	
First 10 multiple of $5 =$ Therefore, Highest value = , Lowest value = , Range =	=

Geometry

Topics to be Improved		
Lines of symmetry for regular polygons	Identification of lines of symmetry	
Types of triangle	Basics of types of triangle (sides)	
Transversal angle made by transversal Basics of Transversal angle		
Related angles	Complementary angles	
Angle sum property of triangle	Angle sum property of triangle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	

Hi, here in this video you will learn **Symmerty** Question: 16 Line of symmetry is divides any shape into _____ (one / two) _____ (identical / non identical) halves. Answer: Lines of symmetry is a line that divides any shape into _____ (equal / unequal) halves. Symmetrical image have _____ (identical / non identical) parts. Therefore, line of symmetry is dividing the shape into _____ halves. Question: 17 How many lines of symmetry does square have? Answer: Square have ______ sides. All sides of square are _____ and all angles are _____. Mark the lines of symmetry.

Therefore, square has lines of symmetry.	
Question: 18	
Classify the following based on the symmetry. Letter S, scalene triangle, Letter K, Rhombus, Number 8, and circle	e.
Answer:	
Lines of symmetry is a line that divides the shape into (equal The letter S is (symmetrical / asymmetrical) and have	
symmetry. Scalene triangle is(symmetrical / asymmetrical) and have symmetry.	lines of
The letter K is (symmetrical / asymmetrical) and have symmetry.	lines of
Rhombus is(symmetrical / asymmetrical) and havesymmetry.	
Cat is (symmetrical / asymmetrical) and have Stars is (symmetrical / asymmetrical) and have	v
Hi, here in this video you will learn Types of triangle	
Question: 19 Polygon with three sides is called as	
Answer:	
A polygon is a simple (open / closed) curve made up of only line segred Polygon with three sides is called Draw a diagram of polygon with three sides:	ments.

 $\underline{Question:~20}$

Identify the types of triangles.

Triangle has _____ sides.

- Triangle with all sides are equal is called ______ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 21

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft, then the possible length of third side of park can be ______.

.....

.....

Answer:

The shape of the park is _____

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is ______.

The possible length of third side is ______.

Hi, here in this video you will learn Basics of Transversal angle

Question: 22

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 23

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

.....

Question: 24

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Corresponding angle of \angle	∠a is and ∠a is and		
Hi, here in this vide	eo you will learn Rel	ated Angles	
$\underline{\textit{Question: 25}} \qquad \dots .$			
1. Two angles are con	nplementary if their sum	is equal to	
2. Two angles are sup	plementary if their sum	is equal to	
$\underline{Answer:}$			
	wo angles is equal to 90° 45°,, an	d	angle.
	wo angles is equal to 180 90°,, an	0°, they are called as	angle.
Question: 26 Shade the complementar			
Shade the complementar		73°, 107° 36°, 64	
Shade the complementary $85^{\circ}, 95^{\circ}$	y angles.		
Shade the complementary 85°, 95° 4 Answer:	y angles. 5°, 45° 6°, 84°		90°, 90°
Shade the complementary	y angles. $5^{\circ}, 45^{\circ}$ $6^{\circ}, 84^{\circ}$ complementary if the sum	73°, 107° 36°, 64	90°, 90° to
Shade the complementary 85° , 95° 4 Answer: We angles are said be considered as $85^{\circ} + 95^{\circ} = $	y angles. $5^{\circ}, 45^{\circ}$ $6^{\circ}, 84^{\circ}$ complementary if the sum	73°, 107° 36°, 64 n of their angles are equal (a / not a) comp	90°, 90° to
hade the complementary $ \begin{array}{ c c c c }\hline & & & & & & & \\\hline & & & & & & \\\hline & & &$	y angles. 5°, 45° 6°, 84° complementary if the sum and this is	73°, 107° 36°, 64 a of their angles are equal (a / not a) comp angles.	90°, 90° to
Shade the complementary $ \begin{array}{ c c c c }\hline 85^{\circ}, 95^{\circ} \\\hline & 4\\\hline & 4\\\hline & 4\\\hline & 45^{\circ} + 45^{\circ} = \\\hline & 6^{\circ} + 84^{\circ} = \\\hline & 4\\\hline & 6^{\circ} + 84^{\circ} = \\\hline & 6^{\circ} + 84^{\circ} = \\\hline $	y angles. 5°, 45° 6°, 84° complementary if the sum and this is and this is	73°, 107° 36°, 64 1 of their angles are equal (a / not a) comp angles. angles.	90°, 90° to
Shade the complementary $85^{\circ}, 95^{\circ}$ 4 4 4 4 4 4 5 6 6 7 7 7 7 8 7 8 8 8 8 8 8 8	y angles. 5°, 45° 6°, 84° complementary if the sum and this is and this is and this is	73°, 107° and of their angles are equal angles. angles. angles. angles.	90°, 90° to

 $\underline{Answer:}$

Find the complement and supplement of 15° and 90°

One angle is ______ (complements / supplements) to other angle, when sum of the two angles is equal to 90° . One angle is ______ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

......

Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Supplement of $15^{\circ} = \underline{\hspace{1cm}}$. Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $90^{\circ} = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Angle sum property

Question: 28

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 29

Which of the following triangle satisfy the angle sum property.

Answer:

In $\triangle PQR$, Sum of the angles = = =
In $\triangle KLM$, Sum of the angles = = =
In $\triangle XYZ$, Sum of the angles = = =
Therefore, the triangles that satisfy the angle sum property are =
<u>Question: 30</u>
Find the angles of triangle, if their angles are in the ratio 8:6:4.
Answer:
Ratio of angles in the triangle is Let's consider the angles of triangle be $8x$, and We know sum of the angles of a triangle is Therefore, $8x + _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$
Hi, here in this video you will learn Pythagoras property
<u>Question: 31</u>
In a right angled triangle, square of the = sum of the squares of the legs.
Answer:
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that
Pythagoras theorem states that
Question: 32
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.
Answer:
$\begin{array}{c c} A \\ \hline \\ B \\ \hline \\ \hline \\ \end{array} \begin{array}{c} m \\ \hline \\ \end{array} $
Pythagoras theorem states that square of the = sum of the squares of its
$Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$
Base and altitude are (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

 $= ___ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 33

Find the length of the rectangle, if breadth is $3~\mathrm{cm}$ and diagonal is $5~\mathrm{cm}$.

Answer:

Pythagoras theorem states that square on the $___$ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ $= __ + ___$

Therefore, diagonal of the rectangle is _____

Number system

Topics to be Improved				
Operations on rational numbers Subtraction of rational numbers, Division of rational numbers				
Fractions Division of fraction				
Decimals	Multiplication and division of decimals			
Integers	Basics of integers			
Exponents	Solving exponents			
Positive and negative rational numbers	Identification of positive rational numbers			

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

......

Question: 35

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $__$

Question: 36

Find the missing values in the given figure.

......

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} + \underline{}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{}$

Therefore, result is ____

Hi, here in this video you will learn Division on fractions

Question: 37

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction.

Here, 5 is ______, 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times __)}{\text{(Whole} \times __)}$

5	2	=	(×) +	=	
J	7		7	-	

Question: 38

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 39

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\qquad} = \frac{12}{40} \times \underline{\qquad} = \underline{\qquad}$$

Then the answer is _____

Hi, here in this video you will learn Basics of decimals

Question: 40

Shade 0.4 part of the given shape.

1	l	1		l	
1	l	I		l	
1	l	1		l	
1	l	1		l	
1	l	I		l	
1	l	I		l	
1	l	1		l	
1	l	1		l	
1	l	I		l	
1	l	I		l	
1	l	I		l	

Answer:

There are _____ boxes.

0.4 can be expressed as _____ in fraction

This fraction represents _____ parts out of ____equal parts.

So, we need to shade ______boxes out of _____boxes.

Question: 41

Solve the following.

- (i) 0.4×1.2
- (ii) 0.48×1.2

(:)	0.4		1.2	
(1)	-0.4	- X	1.2	

Multiplication of 0.4×1.2 assuming there is no decimal point is _____. The number of digits after decimal point in 0.4 is _____ and 1.2 is _____. Total digits after decimal point in the product of two numbers is _____. Count that digits from the right towards left and place the decimal point, the result is

(ii) 0.48×1.2 :

Multiplication of 0.48×1.2 assuming there is no decimal point is _____. The number of digits after decimal point in 0.48 is _____ and 1.2 is _____. Total digits after decimal point in the product of two numbers is _____. Count that digits from the right towards left and place the decimal point, the result is

Question: 42

One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?

Answer:

One box contains _____ chocolates. The cost of one box is _____ Then cost of one chocolate = ____ ÷ ___ = ___

- (i) Total digits after decimal point in decimal number = _____
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} = \underline{\hspace{1cm}}$$

......

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is ______.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = ___

Hi, here in this video you will learn Basics of integers

Question: 43

Highlight the ring that contains whole numbers.

.....

A	~	-		_	n	
\boldsymbol{A}	n.	S1	"	е:1	r	۰

Answer.
The numbers inside the inner ring $(1, 2, 3, \ldots)$ are numbers. The numbers inside the middle ring are numbers.
The numbers inside the outer ring are negative numbers, positive numbers and zero and they are
called as
Question: 44
Colour the frame of the box which contains the number 1, 4 and -10
Whole numbers
Answer:
Whole number consists of 0,1,2,3,4, Negative number consists of
Natural numbers consists of Integers consists of
Now, 1, 4, -10 are in
Question: 45
State whether the statement is true or false.
Every positive number is an integer.
Every positive number is an integer.
$\underline{Answer:}$
Positive numbers are Integers consists of
Therefore, positive numbers are (in/not in) integers.
(m/ not m) modern
Hi, here in this video you will learn Exponents and power
Question: 46
Find the exponential form of 1000.
I ma one outponduou form of 1000.

 $\underline{Answer:}$

to get the desired result. Exponents is also called as (Base / Power).	untiplied by itself
1000 can be written as = $10 \times $ $\times $ 10 is raised to the power of = (10)	
Question: 47 Find the value of $(-2)^3$.	
Answer: (Exponents/Base) tells us how many times a number should be my to get the desired result.	ultiplied by itself
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = $ $\times $ $= $	
Question: 48	
(i) Tenth power of 100 is $((10)^{100} \text{ or } (100)^{10})$.	
(ii) k is raised to the power of 5 is ($(k)^5$ or $(5)^k$).	
Answer:	
Exponential form = $(Base)$ —	
(i) Tenth power of 100 : Base = $__$, Power/Exponents = $__$, exponential form	n =
(ii) k is raised to the power of 5 : Base =, Power/Exponent =, exponential form =	
Hi, here in this video you will learn Positive and Negative rational numbers	
Question: 49	
Segregate positive and negative rational number.	

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

•	If either the numerator and the denominator of a rational number are negative,	then	it	is
	(positive/negative) rational number.			

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 50

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a ____ number.

Division of $\frac{-3}{-4} = \square$ and this _____ rational number.

 $(Positive\ /\ Negative\ /\ Neither\ positive\ nor\ negative\ rational\ number)$

Question: 51

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: _____

Examples for negative rational numbers:

Positive rational number \times Negative rational number = ____ \times ___ = ___ and this is ____ rational number

Hi, here in this video you will learn **Operation on rational numbers**

Question: 52

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\boxed{}} \times \boxed{\boxed{}} = \boxed{\boxed{}}$$

Question: 53

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =______,

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 54

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \square$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is	

Comparing Quantities

Topics to be Improved		
Simple interest	Calculation of simple interest	
Conversion of fraction into percentage	Conversion of fraction into percentage	
Percentage	Basic of percentage	

.....

Hi, here in this video you will learn **Simple Interest**

Question: 55

Match the following.

	Column A
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

	Column B
a	Interest calculated based on this
b	Total sum you borrow
С	Number of years
d	Total sum with interest

Answer:
Formula for calculating simple interest =
Interest calculated based on

Total sum you borrow is known as _____

Number of years is ______. Total sum with interest is _____.

Question: 56

Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.

......

Answer:

Given:

 $\label{eq:Amount} Amount = \underline{\hspace{1cm}} \ , \ Principle = \underline{\hspace{1cm}} \ , \ Time \ period = \underline{\hspace{1cm}} \ .$

If Amount and principle is given, then formula for calculating interest is ______.

Interest = _____ = ____

Question: 57

The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.

Answer:

Interest =	$_{}$, Time period = $_{}$, Principal =	
Rate of interest	= x 100 Principal x		
Substituting values	•		
Rate of interest :	= \frac{\top x \ 100}{\text{Principal x \top}}		
${\rm Rate\ of\ interest} =$			
Hi, here in the percentage	is video you will learn Co		
Question: 58			
Complete the box	in the given equation.		
$5\% = \frac{5}{\square}$			
Answer:			
Percentage are the	fraction with the denominator $_$		
	Therefore, 5% can be expr	essed as	
Question: 59			
Mark the correct of	conversion form of fraction $\frac{1}{2}$ to p	ercentage.	
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100}$	= 50%		
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200}$	= 200%		
(iii) $\frac{1}{2} \times 100 = \frac{100}{2}$	$\frac{100}{100} = 50\%$		
Answer:			
100 or	in into percentage, the value of (multiply / divide) the fracconversion form is	etion with 100% .	numerator)should be
Question: 60			
Find the percentag	ge of shaded part of square.		

A	nsı	1101	r

The square shape is divided into ______ parts.

Number of shaded part of square is _____.

Shaded part of square in fraction is _____

To Convert	into percentage,	x 100

Hi, here in this video you will learn Basics of percentage

Question: 61

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

Question: 62

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for ______ marks. He got _____ marks.

75 % can be written in fraction form _____

Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 63
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.
Answer:
There are apples in a basket. Number of rotten apples are Fraction form of rotten apples in a basket =
Convert it into a percent= x% =

Algebra

Topics to be Improved		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	
subtraction of algebraic expressions	subtraction of algebraic expressions	
Basics of simple equation	Solving of simple equation	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
Terms of an expression	Identification of terms in an expression	

Hi, here in this video you will learn Addition on expression

Question: 64

Shade the like terms.

Answer:

Given terms are ______.

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 65

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$7r^2 + r \Box - 2 \Box = (7 + \underline{ } - 2)r^2 = \underline{ }$$

Ques	stion: 66						
Sam 1	have 3a chocolates as	nd 9y icecream.	Ram have 7	'a chocolates a	nd 5y icecre	eam.	
(i)	Total chocolates Ran	m and Sam hav	e:				
(ii)	How many icecream	s Sam have mor	e than Ram	:	·		
Ansi	wer:						
				-			
			Chocolates	Icecream			
		Sam Ram					
		100022					
(i)	Total chocolates Ram's ch	m and Sam hav locolate + Sam'			_		
(**)							
(ii)	How many icecream	s Sam have moi icecream			=		
			100010011				
Hi,	here in this video	you will lea	rn Subtra	ction on e	xpression	ı DV:	
Ques	stion: 67						
Find	the sum of two expre	essions a + b +	c and $b + c$	+ d			
Ansi	wer:						
The t	given two expressions two terms will get ad sum of two expression answer is	ded only if they	are	_(Like/ Unlike	e) terms.		
Que	stion: 68						. .
			School A	A Schoo	l B		
	N	umber of boys	100b	250b			
	N.	umber of girls	150g	200g			

(i) Total number of boys in school A and B is _____

Number of teachers

25t

45t

THE TOTAL HUMBEL OF STRUCKING IN SCHOOL D. IS	(ii)) Total	l number	of students	in school	B is
---	------	---------	----------	-------------	-----------	------

(iii) How many more teachers are there in school B than school A?

Answer:

- (i) Number of boys in school $A = \underline{\hspace{1cm}}$, Number of boys in school $B = \underline{\hspace{1cm}}$. Total number of boys in school A and school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.
- (ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$. Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.
- (iii) Number of teachers more in school B than school A = Teachers in school B Teachers in school A = $___$.

Question: 69

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

 Hi , here in this video you will learn $\operatorname{\mathbf{Solving}}$ an $\operatorname{\mathbf{equation}}$

Question: 70

If
$$©=5$$
, then $5 © +5 =$

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 71

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

.....

$$7 \boxed{ } + 3 = -4$$

4	ns	211	er	
71	เบอ	\boldsymbol{w}	C1	•

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times __+3 = __$$

$$7 \times __+3 = __$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, ______ is the number that can be placed in a box to make the equation correct.

......

.....

.....

Question: 72

Arrange the terms in the descending order when the value of x is 2.

$$2x \quad 5x \times 1$$

$$5x \times 1$$

$$x+3$$

$$2x - 4$$

$$\frac{1}{2}x$$

Answer:

The given expression are ______.

The value of x is _ substituting value of **x**

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\qquad} \times 1 = \underline{\qquad}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$$

Arranging in descending order: ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____.

Hi, here in this video you will learn **Types of expression**

Question: 73

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 74

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____
- 2. The terms in expression 7xy + 4m are $_$ Here, expression has ______ term and it is a _____
- 3. The terms in expression 7m + n + 2 are ______. Here, expression has _____ term and it is a _____.

Question:	75
Question.	10

 $5m^2+m+0$ is a _____ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____.

Here, the expression has ______ terms and it is called a _____ expression.

.....

Hi, here in this video you will learn Terms of an expression

Question: 76

Separate the variables and constants for all the terms given in the box

.....

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

......

Question: 77

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are _____.

The terms in the expression 12a + b + 1 is/are _____.

The terms in the expression 7m + 0 is/are _____.

Question: 78

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

Here, _____, are the terms of the given expression.