Applied Computational Intelligence

Lecture 8 – Cont. Unsupervised Learning

Welcome back

☐ Pop quiz

This Session

- Unsupervised learning
 - o Clustering
 - ✓ K-means
 - o Recap Dimensionality Reduction
 - ✓ Feature Extraction
 - ✓ Feature Selection
 - o SVD
- Next up: supervised learning
 - o Linear Regression

Recap - Dimensionality Reduction

• Example:

- OInput attributes: a, b, c, d
- Target attribute: t
 - ✓ Model: $m({a,b,c,d},{t})$

Attribute construction

- ✓ New attribute: z = f(a, b)
- ✓ Model: $m(\{z, c, d\}, \{t\})$

OAttribute subset selection

- ✓ If we find c has insignificant discriminability between clusters/classes or $c \approx 0$. So, it can be removed the model
- $\checkmark M(\{a,b,d\},\{t\})$

Dimensionality Reduction Cont.

• Can we find a low dimensional subspace where all the high dimensional data points be embedded?

Dimensionality Reduction Cont.

Original Attribute Space

Low Dimensional Feature Space

• L_1 and L_2 are the new axis (or attributes) of the constructed low dimensional attribute space.

Dimensionality Reduction Using SVD

- It is a mathematical procedure that performs a matrix decomposition (factorization)
- It represents a big matrix X into product of 3 small matrices: U, Σ , and V^T

SVD → Example

Dimensionality Reduction Using SVD - Example

- New representation of the data
 - O Drop the vectors in U and V associated with the smallest singular value

SVD – Example

Dimensionality Reduction – Summary

- Discover hidden topics or correlations
 - o E.g., words that occur commonly together
- Remove redundant attributes and noisy (outlier) attributes
 - o Not all words have inherent information
- Interpretation and visualization
- Reduced complexity
 - Easier storage and data processing

Slide adopted from Jure Leskovec, CS246: Mining Massive Datasets, Stanford University

Next → Applications

Applications of Unsupervised Learning

- News and article organization: E.g., Google News uses unsupervised learning to categorize articles on the same story from various online news outlets.
- Computer vision: E.g., visual perception tasks, such as object recognition.
- Healthcare: E.g., diagnosing patients quickly
- Anomaly detection: E.g., raising awareness around faulty equipment, human error, or security breaches
- Customer behavior analysis and recommendation systems: E.g., understanding common traits and purchasing habits.

Applications 10

Pop Quiz

• Time for pop quiz

Now...

• Discussion on Assignment

References

- 1. Eberhart, Russell C., and Yuhui Shi. Computational Intelligence: Concepts to Implementations, Elsevier Science & Technology, 2011.
- 2. Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th Edition, 2020.
- 3. Teknomo Kardi, "K-Means Clustering: Numerical Example". In: (2017). url: http://people.revoledu.com.