Algoritmo: Procesa Evento

Entrada: p

- 1 Llamemos conjunto U(p) a los segmentos de S que tienen extremo superior en p . (en caso de ser horizontal el superior es el más izquierdo).
- **2 Encuentra** todos los segmentos en \mathcal{T} que contengan p; deben estar adyacentes en \mathcal{T} . Llamemos L(p) al subconjunto de los segmentos encontrados cuyo extremos inferior es p, y C(p) al subconjunto que tenga p en su interior.
- з si $|L \cup U \cup C| > 1$ entonces
- **Reporta** p como intersección con todos los segmentos de L, U, P.
- 5 fin
- 6 Borra los segmentos de $L \cup C$ de \mathcal{T} .
- 7 Inserta los segmentos de $U \cup C$ en \mathcal{T} . El orden dentro de \mathcal{T} debe corresponder al orden en el que intersecan la linea de barrido justo abajo de p. Si hay un segmento horizontal, agregarlo hasta el final.
- s si $U \cup C = \emptyset$ entonces
- 9 Sean s_l y s_r los vecinos derecho e izquierdo de p sobre \mathcal{T} . $ENCUENTRA_EVENTOS(s_l, s_r, p)$.
- 10 fin
- 11 si no
- 12 | Sea s' el segmento más a la izquierda de $U \cup C$ en \mathcal{T} .
- 13 | Sea s_l el vecino a la izquierda de s' en \mathcal{T} .
- 14 $ENCUENTRA_EVENTOS(s_l, s', p)$
- 15 Sea s'' el elemento más a la derecha de $U \cup C$ en \mathcal{T} .
- Sea s_r el vecino a la derecha de s'' en \mathcal{T} .
- 17 $ENCUENTRA_EVENTOS(s'', s_r, p)$
- 18 fin