

AMENDMENTS TO THE SPECIFICATION

Please replace the paragraph on page 9, lines 8-11, with the following paragraph:

Figure 3. The aligned amino acid sequence of the LjNFR5 and PsSYM10 proteins. ~~Amino acid residues sharing identity are highlighted.~~ The *Medicago truncatula* (Ac126779) showing 76 % amino acid ~~identity~~ to *Lotus* NFR5 is included to exemplify a substantial identical protein sequence.

Please replace the third paragraph on page 17, lines 20-24:

Pfam consensus: a consensus sequence derived from a large collection of protein multiple sequence alignments and profile hidden Markov models used to identify conserved protein domains (Bateman *et al.*, 2002, Nucleic Acids Res. 30: 276-80; and searchable on the internet at <http://www.sanger.ac.uk/Software/Pfam>[[/]]) and on NCBI at <http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi>.

with the following paragraph:

Pfam consensus: a consensus sequence derived from a large collection of protein multiple sequence alignments and profile hidden Markov models used to identify conserved protein domains (Bateman *et al.*, 2002, Nucleic Acids Res. 30: 276-80; and searchable on the internet at [sanger.ac.uk/Software/Pfam](http://www.sanger.ac.uk/Software/Pfam) and on NCBI at [ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi](http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

Please replace the fourth paragraph on page 17, lines 26-30:

Protein domain prediction: sequences are analyzed by BLAST (www.ncbi.nlm.nih.gov/BLAST[[/]]) and PredictProtein (www.embl-heidelberg.de/predictprotein/predictprotein). Signal peptides are predicted by

SignalP v. 1.1 (www.cbs.dtu.dk/services/signalP) and transmembrane regions are predicted by TMHMM v. 2.0 (www.cbs.dtu.dk/services/TMHMM).

with the following paragraph:

Protein domain prediction: sequences are analyzed by BLAST (ncbi.nlm.nih.gov/BLAST) and PredictProtein (emblheidelberg.de/predictprotein/predictprotein). Signal peptides are predicted by SignalP v. 1.1 (cbs.dtu.dk/services/signalP) and transmembrane regions are predicted by TMHMM v. 2.0 (cbs.dtu.dk/services/TMHMM).

Please replace the paragraph on page 19, lines 19-31 through page 20, lines 1-4:

Substantially identical: refers to two nucleic acid or polypeptide sequences that have at least about 60%, preferably about 65%, more preferably about 70%, further more preferably about 80%, most preferably about 90 or about 95% nucleotide or amino acid residue identity when aligned for maximum correspondence over a comparison window as measured using one of the sequence comparison algorithms given herein, or by manual alignment and visual inspection. This definition also refers to the complement of the test sequence with respect to its substantial identity to a reference sequence. A comparison window refers to any one of the number of contiguous positions in a sequence (being anything from between about 20 to about 600, most commonly about 100 to about 150) which may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Optimal alignment can be achieved using computerized implementations of alignment algorithms (e.g., GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis. USA) or BLAST analyses available on the site: (www.ncbi.nlm.nih.gov).

with the following paragraph:

Substantially identical: refers to two nucleic acid or polypeptide sequences that have at least about 60%, preferably about 65%, more preferably about 70%, further more preferably about 80%, most preferably about 90 or about 95% nucleotide or amino acid residue identity when aligned for maximum correspondence over a comparison window as measured using one of the sequence comparison algorithms given herein, or by manual alignment and visual inspection. This definition also refers to the complement of the test sequence with respect to its substantial identity to a reference sequence. A comparison window refers to any one of the number of contiguous positions in a sequence (being anything from between about 20 to about 600, most commonly about 100 to about 150) which may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Optimal alignment can be achieved using computerized implementations of alignment algorithms (e.g., GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis. USA) or BLAST analyses available on the site: ncbi.nlm.nih.gov.

Please replace the paragraph on page 53, lines 17-22, with the following:

Molecular markers based on DNA polymorphism are used to detect the alleles in breeding populations. Similar use can be taken of the *NFR1* sequences. Molecular DNA markers, based on the *NFR5* allele sequence differences of *Lotus* and pea, are bolded in Table 12 and highlighted in Tables 12 and Table 13 as examples of how DNA polymorphism can be used directly to detect the presence of an advantageous allele in a breeding population.

Please replace Table 1 on page 55 with the following:

Table 1

Alignment of *Lotus*, *Glycine* and *Phaseolus* NFR5 protein sequences

	1	2	3	4	50
<i>Lotus</i>	MAVFF--	GSLSLFLALT	LLFTNIAARS	EKISGPDFSC	PVDSPPS CET
<i>Glycine</i>	MAVFFPFLPL	HSQILCLVIM	LFSTNIVAQS	QQDNRTNFSC	PSDSPS CET
<i>Phaseolus</i>	MAVFFVSLTL	GAQILYVVLM	FFT C-	QQTNGTNFSC	PSNSPPS CET
	6	7	8	9	100
<i>Lotus</i>	YVTYTAQSPN	LLSLTNISD	FDISPLSIA	ASNIDAGKDK	LVPGQVLLVP
<i>Glycine</i>	YVTYIAQSPN	FSLSLTNISN	FDTSPLSIAR	ASNLEPMDDK	LVKDQVLLVP
<i>Phaseolus</i>	YVTYISQSPN	FSLSLTSVSN	FDTSPLSIAR	ASNLQHEEDK	LIPGQVLLI
	11	12	13	14	150
<i>Lotus</i>	VTCGCAGNHS	SANTS YQIQL	GDSYDFVATT	LYENLTNWNI	VQASNPVGVP
<i>Glycine</i>	VTCGCTGNRS	FANISYEINQ	GDSFYFVATT	SYENLTNWRA	VMDLNPVLSP
<i>Phaseolus</i>	VTCGCTGNRS	FANISYEINQ	GDSFYFVATT	LYQNLTNWHA	VMDLNPGLSQ
	16	17	18	19	200
<i>Lotus</i>	YLLPERVKVV	FPLFCRCPSK	NQLNKGIQYL	ITYVWKPNNDN	VSLVSAKFGA
<i>Glycine</i>	NKLPIGIQVV	FPLFCKCPSK	N QLDKEIKYL	ITYVWKPGDN	VSLVSDKFGA
<i>Phaseolus</i>	FTLPIGIQV	IPLFCKCPSK	N QLDRGIKYL	ITHVWQPNDN	VSFVSNKLGA
	21	22	23	24	250
<i>Lotus</i>	SPADILTENR	YGQDFTAATN	LPILIPVTQ	PELTQPSSNG	RKSSIHLLV
<i>Glycine</i>	SPEDIMSENN	YGQNFTAANN	LPVLIPVTR	PVLARSPSDG	RKG GIRLPVI
<i>Phaseolus</i>	SPQDILSENN	YGQNFTAASN	LPVLIPVTL	PDLIQSPSDG	RKH RIGLPVI
	26	27	28	29	300
<i>Lotus</i>	LGITLGCTL	TAVLTGTLLVY	VYCRKKALN	RTASSAETAD	KLLSGVSGYV
<i>Glycine</i>	IGISLGCTL	VLVLAVLLVY	VYCLKMKTLN	RSASSAETAD	KLLSGVSGYV
<i>Phaseolus</i>	IGISLGCTL	VVVAAILLVC	VCCLKMKS LN	RSASSAETAD	KLLSGVSGYV
	31	32	33	34	350
<i>Lotus</i>	SKPNVYEIDE	IMEATKDFSD	ECKVGESVYK	ANIEGRVVAV	KKIKEGGANE
<i>Glycine</i>	SKPTMYETDA	IMEATMNLSE	QCKIGESVYK	ANIEGKVLA V	KRFKED-VTE
<i>Phaseolus</i>	SKPTMYETGA	IILEATMNLSE	QCKIGESVYK	ANIEGKVLA V	KRFKED-VTE
	36	37	38	39	400
<i>Lotus</i>	ELKILQKVNH	GNLVKLMGV S	SGYDGNCFLV	YEYAENGSLA	EWLFSKS--
<i>Glycine</i>	ELKILQKVNH	GNLVKLMGV S	SDNDGNCFVV	YEYAENGSLD	EWLFSKSCSD
<i>Phaseolus</i>	ELKILQKVNH	GNLVKLMGV S	SDNDGNCFVV	YEYAENGSL E	EWLFAKSCSE
	41	42	43	44	450
<i>Lotus</i>	-SGTPNSLTW	SQRISIAVDV	AVGLQYMHEH	TYPRIIH RD	TTSNILLDSN
<i>Glycine</i>	TSNSRASLTW	CQRISMAVDV	AMGLQYMHEH	AYPRIVHRDI	TSSNILLDSN
<i>Phaseolus</i>	TSNSRTSLTW	CQRISIAVDV	SMGLQYMHEH	AYPRIVHRDI	TSSNILLDSN
	46	47	48	49	500
<i>Lotus</i>	FKAKIANFAM	ARTSTNPMMP	KIDVFAFGVL	LIELLTGRKA	MTTKENGEVV
<i>Glycine</i>	FKAKIANFSM	ARTFTNPMMP	KIDVFAFGVV	LIELLTGRKA	MTTKENGEVV
<i>Phaseolus</i>	FKAKIANFSM	ARTFTNPMMS	KIDVFAFGVV	LIELLTGRKA	MTTKENGEVV

		51	52	53	54	550
<i>Lotus</i>	MLWKDMWEIF	DIEENREERI	RKWMMDPNLES	FYHIDNALSL	ASLAVNCTAD	
<i>Glycine</i>	MLWKDIWKIF	DQEENREERL	KKWMDPKLES	YYPIDYALSL	ASLAVNCTAD	
<i>Phaseolus</i>	MLWKDIWKIF	DQEENREERL	RKWMMDPKLDN	YYPIDYALSL	ASLAVNCTAD	
		56	57	58	59	600
<i>Lotus</i>	KSLSRPSMAE	IVLSLSFLT	QSSNPTLERS	LTSSGLDVED	DAHIVTSIT	
<i>Glycine</i>	KSLSRPTIAE	IVLSLSLLT	PSP-ATLERS	LTSSGLDVEA	-	
<i>Phaseolus</i>	KSLSRPTIAE	IVLSLSLLT	PSP-ATLERS	LTSSGLDVEA	-	
		61	62	63	65	650
<i>Lotus</i>	R....	SEQ ID NO: 8
<i>Glycine</i>	R....	SEQ ID NO: 48
<i>Phaseolus</i>	R....	SEQ ID NO: 40

Please replace Table 3 on page 57 with the following:

Table 3

Alignment of *Lotus* and *Pisum* NFR1 protein sequences

	1	2	3	4	50
<i>Pisum</i>	MKLKNGLLF	F-	KVESKCVIGC	DIALASYYVM	P-
<i>Pisum</i>	MKLKNGLLF	F-	KVDSKCVKGC	DIALASYYVM	P-
<i>Lotus</i>	MKLKTGLLL	FILLLGHVC	HVESNCLKG	DLALASYYI	PGVFILQNI
	6	7	8	9	100
<i>Pisum</i>	TFMQSKLVTN	SFEVIVRYNR	DIVFSNDNLF	SYFRVNIPFP	CECIGGEFLG
<i>Pisum</i>	NYMQSKIVTN	SSDVVLNSYNK	VLVTNHGNIF	SYFRINIPF	CECIGGEFLG
<i>Lotus</i>	TFMQSEIVSS	N-	DKILNDINI	SFQRNLNIPFP	CDCIGGEFLG
	11	12	13	14	150
<i>Pisum</i>	HVFETYTTANEG	DTYDLIANTY	YASLTTVEVL	KKYNSYDPNH	I PVAKVNVT
<i>Pisum</i>	HVFETYTTKKG	DTYDLIANNY	YVSLTSVELL	KKFNSYDPNH	I PAKAKVNVT
<i>Lotus</i>	HVFYEYSASKG	DTYETIANL	YANLTVDLL	KRFNSYDPKN	I PVNAKVNVT
	16	17	18	19	200
<i>Pisum</i>	VNCSCGNSQI	SKDYGLFITY	PLRPRDTLEK	IARHSNLDEG	VIQSYNLGVN
<i>Pisum</i>	VNCSCGNSQI	SKDYGLFVTY	PLRSTDSELEK	IANESKLDEG	LIQNFNPDVN
<i>Lotus</i>	VNCSCGNSQV	SKDYGLFITY	PIRGDTLQD	IANQSSL DAG	LIQSFNPSVN
	21	22	23	24	250
<i>Pisum</i>	FSKGSGVVFF	PGRDKNGEYV	PLYPRT-GLG	KGAAAGISI	GIFALLLF
<i>Pisum</i>	FSRGSGGIVF	PGRDKNGEYV	PLYPKT-GVG	KGVAIGISI	GVFAVLLFV
<i>Lotus</i>	FSKDSGIAF	PGRYKNGVYV	PLYHRTAGLA	SGAAVGISI	GTFVLLLLA
	26	27	28	29	300
<i>Pisum</i>	CIYIKYFQK	EEEKTKLP-Q	VSTALSAQD-	-ASGSGEYET	SGSSGHGTGS
<i>Pisum</i>	CIYVKYFQKK	EEEKTI LP-	VSKALSTQDG	NASSSGEYET	SGSSGHGTGS
<i>Lotus</i>	CMYVRY-QKK	EEEKAKLPTD	ISMALSTQD	-ASSSAEYET	SGSSGP GTAS
	31	32	33	34	350
<i>Pisum</i>	TAGLTGIMVA	KSTEF SYQEL	AKATNNFSLD	NKIGQGGFGA	VYYAVLRGEK

<i>Pisum</i>	AAGLTGIMVA	KSTEFQYQEL	AKATDNFSLD	NKIGQGGFGA	VYYAELRGEK
<i>Lotus</i>	ATGLTSIMVA	KSMEFQYQEL	AKATNNFSLD	NKIGQGGFGA	VYYAELRGKK
	36	37	38	39	400
<i>Pisum</i>	TAIKKMDVQA	STEFLCELQV	LTHVHHLNLV	RLIGYCVEGS	LFLVYEHID
<i>Pisum</i>	TAIKKMNVQA	SSEFLCELKV	LTHVHHLNLV	RLIGYCVEGS	LFLVYEHID
<i>Lotus</i>	TAIKKMDVQA	STEFLCELKV	LTHVHHLNLV	RLIGYCVEGS	LFLVYEHID
	41	42	43	44	450
<i>Pisum</i>	GNLGQYLHGI	DKAPLPWSSR	VQIALDSARG	LEYIHEHTVP	VYIHRDVKSA
<i>Pisum</i>	GNLGQYLHGK	DKEPLPWSSR	VQIALDSARG	LEYIHEHTVP	VYIHRDVKSA
<i>Lotus</i>	GNLGQYLHGS	GKEPLPWSSR	VQIALDAARG	LEYIHEHTVP	VYIHRDVKSA
	46	47	48	49	500
<i>Pisum</i>	NILIDKNLH	KVADFGLTKL	IEVGNSTLHT	RLVGTFGYMP	PEYAQYGDVS
<i>Pisum</i>	NILIDKNLR	KVADFGLTKL	IEVGNSTLHT	RLVGTFGYMP	PEYAQYGDVS
<i>Lotus</i>	NILIDKNLR	KVADFGLTKL	IEVGNSTLQT	RLVGTFGYMP	PEYAQYGDIS
	51	52	53	54	550
<i>Pisum</i>	PKIDVYAFGV	VLYELISAK	AILKTGESAV	-	EEALNQIDPL
<i>Pisum</i>	PKIDVYAFGV	VLYELISAK	AVLKTGEESV	AESKGLVALF	EKALNQIDPS
<i>Lotus</i>	PKIDVYAFGV	VLFELISAK	AVLKTGE-	AESKGLVALF	EEALNKSDPC
	56	57	58	59	600
<i>Pisum</i>	EALRKLVDP	LKENYPIDSV	LKMAQLGRAC	TRDNPLLRLPS	MRSILVVALMT
<i>Pisum</i>	EALRKLVDP	LKENYPIDSV	LKMAQLGRAC	TRDNPLLRLPS	MRSILVVDLMT
<i>Lotus</i>	DALRKLVDP	LGENYPIDSV	LKIAQLGRAC	TRDNPLLRLPS	MRSILVVALMT
	61	62	63	65	650
<i>Pisum</i>	LLSHTDD--	DTFYENQSLT	NLLSVR...	<u>SEQ ID NO: 52</u>
<i>Pisum</i>	LSSPFEDCDD	DTSYENQTLI	NLLSVR...	<u>SEQ ID NO: 54</u>
<i>Lotus</i>	LSSLTEDCDD	ESSYESQTLI	NLLSVR...	<u>SEQ ID NO: 24</u>

Please replace Table 12 on page 65 with the following:

Table 12

**Nucleotide sequence variation between
the pea *SYM10* alleles of pea cultivars Frisson and Finale***

Frisson	CTTGCATTT CTCACAATT CACAACAATG GCTATCTTCT TTCTTCCTTC
Finale	<u>CTTGCATTT CTCACAATT CACAACAATG GCTATCTTCT TTCTTCCTTC</u>
Frisson	TAGTTCTCAT GCCCTTTTC TTGCACTCAT GTTTTTGTC ACTAATATT
Finale	<u>TAGTTCTCAT GCCCTTTTC TTGCACTCAT GTTTTTGTC ACTAATATT</u>
Frisson	CAGCTCAACC ATTACAACTC AGTGGAACAA ACTTTCATG CCCGGTGGAT
Finale	<u>CAGCTCAACC ATTACAACTC AGTGGAACAA ACTTTCATG CCCGGTGGAT</u>
Frisson	TCACCTCCTT CATGTGAAAC CTATGTGACA TACTTGCTC GGTCTCCAAA
Finale	<u>TCACCTCCTT CATGTGAAAC CTATGTGACA TACTTGCTC GGTCTCCAAA</u>
Frisson	CTTTTGAGC CTAACTAAC A TATCAGATAT ATTGATATG AGTCCTTTAT
Finale	<u>CTTTTGAGC CTAACTAAC A TATCAGATAT ATTGATATG AGTCCTTTAT</u>
Frisson	CCATTGCAAA AGCCAGTAAC ATAGAAGATG AGGACAAGAA GCTGGTTGAA
Finale	<u>CCATTGCAAA AGCCAGTAAC ATAGAAGATG AGGACAAGAA GCTGGTTGAA</u>
Frisson	GGCCAAGTCT TACTCATACC TGTAACTTGT GGTTGCACTA GAAATCGCTA
Finale	<u>GGCCAAGTCT TACTCATACC TGTAACTTGT GGTTGCACTA GAAATCGCTA</u>
Frisson	TTTCGCGAAT TTCACGTACA CAATCAAGCT AGGTGACAAC TATTCATAG
Finale	<u>TTTCGCGAAT TTCACGTACA CAATCAAGCT AGGTGACAAC TATTCATAG</u>
Frisson	TTTCAACCAC TTCATACCA G AATCTTACAA ATTATGTGGA AATGGAAAAT
Finale	<u>TTTCAACCAC TTCATACCA G AATCTTACAA ATTATGTGGA AATGGAAAAT</u>
Frisson	TTCAACCCTA ATCTAAGTCC AAATCTATTG CCACCAAGAAA TCAAAGTTGT
Finale	<u>TTCAACCCTA ATCTAAGTCC AAATCTATTG CCACCAAGAAA TCAAAGTTGT</u>
Frisson	TGTCCTTTA TTCTGCAAAT GCCCCTCGAA GAATCAGTTG AGCAAAGGAA
Finale	<u>TGTCCTTTA TTCTGCAAAT GCCCCTCGAA GAATCAGTTG AGCAAAGGAA</u>
Frisson	TAAAGCATCT GATTACTTAT GTGTGGCAGG CTAATGACAA TGTTACCCGT
Finale	<u>TAAAGCATCT GATTACTTAT GTGTGGCAGG CTAATGACAA TGTTACCCGT</u>
Frisson	GTAAGTTCCA AGTTGGTGC ATCACAAGTG GATATGTTA CTGAAAACAA
Finale	<u>GTAAGTTCCA AGTTGGTGC ATCACAAGTG GATATGTTA CTGAAAACAA</u>
Frisson	TCAAAACTTC ACTGCTTCAA CCAACGTTC GATTTGATC CCTGTGACAA
Finale	<u>TCAAAACTTC ACTGCTTCAA CCAACGTTC GATTTGATC CCTGTGACAA</u>

Frisson	AGTTACCGGT AATTGATCAA CCATCTTCAA ATGGAAGAAA AAACAGCACT
Finale	<u>AGTTACCGGT AATTGATCAA CCATCTTCAA ATGGAAGAAA AAACAGCACT</u>
Frisson	CAAAAACCTG CTTTTATAAT TGGTATTAGC CTAGGATGTG CTTTTTCGT
Finale	<u>CAAAAACCTG CTTTTATAAT TGGTATTAGC CTAGGATGTG CTTTTTCGT</u>
Frisson	TGTAGTTTA AACTATCAC TTGTTATGT ATATTGTCTG AAAATGAAGA
Finale	<u>TGTAGTTTA AACTATCAC TTGTTATGT ATATTGTCTG AAAATGAAGA</u>
Frisson	GATTGAATAG GAGTACTTCA TTGGCGGAGA CTGCGGATAA GTTACTTTCA
Finale	<u>GATTGAATAG GAGTACTTCA TTGGCGGAGA CTGCGGATAA GTTACTTTCA</u>
Frisson	GGTGTTCGG GTTATGTAAG CAAGCCAACA ATGTATGAAA TGGATGCGAT
Finale	<u>GGTGTTCGG GTTATGTAAG CAAGCCAACA ATGTATGAAA TGGATGCGAT</u>
Frisson	CATGGAAGCT ACAATGAACC TGAGTGAGAA TTGTAAGATT GGTGAAT CG
Finale	<u>CATGGAAGCT ACAATGAACC TGAGTGAGAA TTGTAAGATT GGTGAATCG</u>
Frisson	TTTACAAGGC TAATATAGAT GGTAGAGTT TAGCAGTGAA AAAATCAAG
Finale	<u>TTTACAAGGC TAATATAGAT GGTAGAGTT TAGCAGTGAA AAAATCAAG</u>
Frisson	AAAGATGCTT CTGAGGAGCT GAAAATT T TG CAGAAGGTAA ATCATGGAAA
Finale	<u>AAAGATGCTT CTGAGGAGCT GAAAATTTTG CAGAAGGTAA ATCATGGAAA</u>
Frisson	TCTTGTGAAA CTTATGGGTG TGTCTTCCGA CAACGA CG GA AACTGTTCC
Finale	<u>TCTTGTGAAA CTTATGGGTG TGTCTTCCGA CAACGACGGA AACTGTTCC</u>
Frisson	TTGTTTACGA GTATGCTGAA AATGGATCAC TTGATGAGTG GTTGTCTCA
Finale	<u>TTGTTTACGA GTATGCTGAA AATGGATCAC TTGATGAGTG GTTGTCTCA</u>
Frisson	GAGT CG TCGA AAACCTCGAA CTCGGTGGTC TCGCTTACAT GGTCTCAGAG
Finale	<u>GAGTCGTCGA AAACCTCGAA CTCGGTGGTC TCGCTTACAT GGTCTCAGAG</u>
Frisson	AATAACAGTA GCAGTGGATG TTGCAGTTGG TTTGCAATAC ATGCATGAAC
Finale	<u>AATAACAGTA GCAGTGGATG TTGCAGTTGG TTTGCAATAC ATGCATGAAC</u>
Frisson	ATACTTACCC AAGAATAATC CACAGAGACA TCACAACAAG TAATATCCTT
Finale	<u>ATACTTACCC AAGAATAATC CACAGAGACA TCACAACAAG TAATATCCTT</u>
Frisson	CTGGATTCAA ACTTTAAGGC CAAGATAGCG AATTTTCAA TGGCCAGAAC
Finale	<u>CTGGATTCAA ACTTTAAGGC CAAGATAGCG AATTTTCAA TGGCCAGAAC</u>
Frisson	TTCAACAAAT TCCATGATGC CGAAAATCGA TGTTTCGCT TTTGGGGTGG
Finale	<u>TTCAACAAAT TCCATGATGC CGAAAATCGA TGTTTCGCT TTTGGGGTGG</u>
Frisson	TTCTGATTGA GTTGCTTACC GGCAAGAAAG CGATAACAAC GATGGAAAAT
Finale	<u>TTCTGATTGA GTTGCTTACC GGCAAGAAAG CGATAACAAC GATGGAAAAT</u>
Frisson	GGCGAGGTGG TTATTCTGTG GAAGGATTC TGGAAGATT TTGATCTAGA
Finale	<u>GGCGAGGTGG TTATTCTGTG GAAGGATTC TGGAAGATT TTGATCTAGA</u>

Frisson	AGGGAAATAGA GAAGAGAGCT TAAGAAAATG GATGGATCCT AAGCTAGAGA
Finale	<u>AGGGAAATAGA GAAGAGAGCT TAAGAAAATG GATGGATCCT AAGCTAGAGA</u>
Frisson	ATTTTATCC TATTGATAAT GCTCTTAGTT TGGCTTCCTT GGCAGTGAAT
Finale	<u>ATTTTATCC TATTGATAAT GCTCTTAGTT TGGCTTCCTT GGCAGTGAAT</u>
Frisson	TGTACTGCAG ATAAATCATT GTCAAGACCA AGCATTGCAG AAATTGTTCT
Finale	<u>TGTACTGCAG ATAAATCATT GTCAAGACCA AGCATTGCAG AAATTGTTCT</u>
Frisson	TTGTCTTTCT CTTCTCAATC AATCATCATC TGAACCAATG TTAGAAAGAT
Finale	<u>TTGTCTTTCT CTTCTCAATC AATCATCATC TGAACCAATG TTAGAAAGAT</u>
Frisson	CCTTGACATC TGGTTTAGAT GTTGAAGCTA CTCATGTTGT TACTTCTATA
Finale	<u>CCTTGACATC TGGTTTAGAT GTTGAAGCTA CTCATGTTGT TACTTCTATA</u>
Frisson	GTAGCTCGTT GATATTCAATT CAAGTGAAGG TAACACT GAA TCAATGCTTC
Finale	<u>GTAGCTCGTT GATATTCAATT CAAGTGAAGG TAACACTAAA TCAATGCTTC</u>
Frisson	AGTTTCTTAT ATTCAAGATG GTTACTTTGT TTAG AT GATT ATTGATTACA
Finale	AGTTTCTTAT ATTCAAGATG GTTACTTTGT TTAG GT GATT ATTGATTACA
Frisson	TCTTTATGTG TGGAACATAA TGTTTATTT AATTAAGGGA ATT GT CTAA
Finale	TCTTTATGTG TGGAACATAA TGTTTATTT AATTAAGGGA ATT AG CTAA
Frisson	A TTTCATTT TCCATGTT <u>SEQ ID NO: 13</u>
Finale	A TTTCATTT TCCATGTT <u>SEQ ID NO: 12</u>

* Nucleotide differences are bolded and the coding region is underlined