Toán rời rạc 2 – Đức Huy

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

KHOA: CƠ BẨN 1

ĐỀ THI KẾT THÚC HỌC PHẦN

(Hình thức thi viết)

Kỳ thi: Học kỳ 2

Năm học: 2022 - 2023

Học phần: **Toán rời rạc 2** Trình độ đào tạo: **Đại học**

Mã học phần: INT1359 Hình thức đào tạo: Chính quy

Thời gian thi: 90 phút

Đề số: 02

Câu 1 (2 điểm): Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng danh sách kề như sau:

- a) Tìm bán bậc ra, bán bậc vào của mỗi đỉnh và xác định số cạnh của đồ thị G.
- b) Biểu diễn đồ thị *G* dưới ma trận kề.

Câu 2 (2 điểm):

- a) Viết hàm có tên DFS(int u) bằng C/C++ sử dụng ngăn xếp thực hiện thuật toán tìm kiếm theo chiều sâu bắt đầu từ đỉnh u trên đồ thị $G = \langle V, E \rangle$ được biểu diễn dưới dạng ma trận kề a[][].
- b) Sử dụng thuật toán tìm kiếm theo chiều sâu DFS vừa trình bày, chứng minh rằng đồ thị G đã cho trong Câu 1 là đồ thị liên thông mạnh.

Câu 3 (2 điểm): Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 8 đỉnh được biểu diễn dưới dạng ma trận kề như sau:

	1	2	3	4	5	6	7	8
1	0	1	0	1	0	1	0	1
2	1	0	1	1	1	0	0	0
3	0	1	0	0	0	0	1	0
4	1	1	0	0	1	0	0	1
5	0	1	0	1	0	0	0	0
6	1	0	0	0	0	0	1	0
7	0	0	1	0	0	1	0	0
8	1	0	0	1	0	0	0	0

Toán rời rạc 2 – Đức Huy

- a) Trình bày điều kiện cần và đủ để một đồ thị vô hướng là Euler. Chứng minh đồ thị vô hướng G đã cho là Euler.
- b) Áp dụng thuật toán tìm chu trình Euler trên đồ thị, chỉ ra chu trình Euler xuất phát từ đỉnh 1 trên đồ thị G đã cho. Chỉ rõ kết quả sau mỗi bước thực hiện thuật toán.

Câu 4 (2 điểm):

- a) Cho T là một cây có 1000 đỉnh. Xóa một đỉnh và tất cả các cạnh liền kề của nó ta được 3 cây T_1 , T_2 , T_3 . Giả sử số cạnh của T_1 , T_2 , T_3 lập thành một cấp số cộng với công sai là 3 . Tìm số cạnh của T_3 .
- b) Cho đơn đồ thị vô hướng G=< V, E> gồm 10 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7	8	9	10
1	0	2	∞	∞	4	5	∞	∞	∞	∞
2	2	0	2	∞	6	3	∞	∞	∞	∞
3	∞	2	0	3	5	∞	∞	∞	∞	∞
4	∞	∞	3	0	∞	∞	∞	2	∞	∞
5	4	6	5	∞	0	∞	1	∞	3	4
6	5	3	∞	∞	∞	0	4	∞	∞	3
7	∞	∞	8	∞	1	4	0	5	∞	3
8	∞	∞	8	2	∞	∞	5	0	∞	∞
9	∞	∞	∞	∞	3	∞	∞	∞	0	∞
10	∞	∞	∞	∞	4	3	3	∞	∞	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất của đồ thị G đã cho bắt đầu từ đỉnh 1, chỉ rõ kết quả tại mỗi bước thực hiện thuật toán.

Câu 5 (2 điểm): Cho đơn đồ thị có hướng $G = \langle V, E \rangle$ gồm 8 đỉnh như sau:

- a) Trình bày thuật toán Bellman-Ford tìm đường đi ngắn nhất xuất phát từ đỉnh $u \in V$?
- b) Áp dụng thuật toán Bellman-Ford vừa trình bày, tìm đường đi ngắn nhất từ đỉnh 1 đến các đỉnh còn lại của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện thuật toán.

