Binding Vision to Physics Based Simulation: The Case Study of a Bouncing Ball

Nikolaos Kyriazis, Iason Oikonomidis, Antonis A. Argyros

Institute of Computer Science, FORTH, Greece

AND

Department of Computer Science, University of Crete, Greece

PROBLEM STATEMENT

Given partial 2D or 3D trajectories of the motion of a uniformly colored bouncing ball, that is viewed by a single or multiple cameras, estimate its full 3D state, over time, i.e. location, orientation, angular and linear velocities.

MOTIVATION

Scene understanding can benefit from exploiting the fact that a dynamic scene and its visual observations are invariably determined by the laws of physics.

MAIN IDEA

- Model the physics of the scene using physics-based simulation
- Acquire visual observations
- Define an objective function that connects the model to the observations
- Produce physically plausible interpretations of the scene by performing black-box optimization

PHYSICS BASED SIMULATION

(A) Dynamics of a bouncing ball

The bouncing ball is affected by gravity and air resistance while in flight and friction while in bounce with a surface.

(B) Equations of motion

We assume standard equations of motion for the flight phase and add air resistance. We derive equations for the bounce phase by extending [1].

$$S_{y}\vec{u}_{t+1} = -\beta S_{y}\vec{u}_{t}$$

$$S_{y}\vec{\omega}_{t+1} = S_{y}\vec{\omega}_{t}$$

$$S_{xz}\vec{v}_{t+1} = \alpha S_{xz}\vec{v}_{t}$$

$$m \cdot \vec{p} \times S_{xz}\Delta\vec{v} = -I \cdot S_{xz}\Delta\vec{\omega}$$

(C) Simulation of a bouncing ball

We define a parameterized ball throwing simulation process S that:

- receives a 21-D vector of scene properties and initial conditions
- at each point in time, produces a 12-D vector of location, orientation, linear and angular velocities
- is implemented by augmenting the Newton Game Dynamics simulator with our physics modeling
- performs at 500fps, but is sub-sampled to real acquisition rate (30fps), in order to account for aliasing effects

PHYSICALLY PLAUSIBLE SCENE INTERPRETATION

We estimate the physically plausible explanation e of the observed scene by formulating an optimization problem, where:

$$e = \underset{x}{\operatorname{arg\,min}} \operatorname{BackProjectionError}(o, S(x))$$

- the hypothesis space of x is defined over the domain of simulation process S
- the observation data o are trajectories of a bouncing ball (potentially partial, 3D or 2D, from single or multiple cameras)
- the objective function quantifies the discrepancy between the result of an invocation to *S* and the observations
- the objective function is optimized by means of Differential Evolution [5]

CONTRIBUTIONS

- First method to consider attributes of state that can only be estimated through physics-based simulation
- Extension to existing work [2-4] in exploiting physics based simulation in vision
- Proposal of an effective method that is clear, generic, top-down, simulation based
- Incorporation of realistic physics
- Selected generic and modular components allow for extension to other broader or different contexts

EXPERIMENTAL RESULTS

(A) Multiview estimation of 3D trajectories (synthetic/real)

Finding ball throwing simulations that optimally reproduce 3D observations.

Correspondence

(B) Single view estimation of 3D trajectories

Finding ball throwing simulations that optimally reproduce 2D observations.

(C) Seeing the "invisible"

Implicit information, like the state of the ball while occluded (left) and the angular components of its 3D state (right), are computer based on a single camera.

KEY REFERENCES

- [1] P.J. Aston and R. Shail. The Dynamics of a Bouncing Superball with Spin. *Dynamical Systems*, 22(3):291–322, 2007.
- [2] K. Bhat, S. Seitz, J. Popović, and P. Khosla. Computing the Physical Parameters of Rigid-body Motion from Video. In *ECCV 2002*, pages 551–565. Springer, 2002.
- [3] D.J. Duff, J. Wyatt, and R. Stolkin. Motion Estimation using Physical Simulation. In *IEEE International Conference on Robotics and Automation (ICRA)*, pages 1511–1517. IEEE, 2010.
- [4] D. Metaxas and D. Terzopoulos. Shape and Nonrigid Motion Estimation through Physics-based Synthesis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 15(6):580–591, 1993.
- [5] R. Storn and K. Price. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. *Journal of Global Optimization*, 11(4):341–359, 1997.

MORE INFORMATION