Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B. Tech (Make Up)

Branch : ECE Semester : III

Title of the Course : Solid State Devices Course Code : ECB 201

Time: 3 Hours Maximum Marks: 50

Note:

- · Questions are printed on BOTH sides. Answers should be CLEAR ANDTO THE POINT.
- All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE EVALUATED.

Use following data if not given in a problem: $\epsilon_o = 8.85 \times 10^{-14} F/cm$, ϵ_r (SiO₂) = 3.9, ϵ_r (Si) = 11.8, At room temperature for Si [$\mu_n = 1350 cm^2/V \cdot S$, $\mu_p = 480 \ cm^2/V \cdot S$, $n_i = 1.5 \times 10^{10}/cm^3$, $E_g = 1.12 \ eV$], $k = 8.62 \times 10^{-5} eV/K$, $\tau_n = \tau_p = 1 \mu s$, $E_g(Ge) = 0.7 \ eV$, n_i (Ge) = $2.5 \times 10^{13}/cm^3$.

- 1. Comment on the following with brief and to the point logical explanation:
- [1+1+1+2]

- (a) Variation of band gap with doping.
- (b) Variation of band gap with temperature.
- (c) Variation of lattice controlled mobility with temp.
- (d) Variation of intrinsic carrier concentrations (n_i) with temp and band gap (E_g).
- 2. Write brief note on followings:

[2 * 5 = 10]

- (a) Thermal Runway
- (b) Base narrowing effect and early effect
- (c) Enhancement mode MOSFET
- (d) p-i-n diode
- (e) Hall effect
- 3. A metal-semiconductor (MS) junction is made between a metal of work function $q\phi_m = 4.6 \text{ eV}$ and a p-type Si doped with $1.5 \times 10^{14} \text{ /cm}^3$ at room temp. Sketch and label the energy band diagrams across the MS junction before contact and after contact. $|q\chi_{Si}| = 4.05 \text{ eV}|$.
 - [2.5 + 2.5]
- 4. Consider a Ge crystal at room temperature doped with $5x10^{17}$ /cm³ As atoms. Find [5] equilibrium electron, hole concentrations and position of the Fermi level w.r.t intrinsic energy level (E_i) and conduction energy band (E_c). Draw the energy band diagram also.
- 5. For a Si bar having length 4 μ m. doped n-type at 10^{17} /cm³. Calculate the current for an [5] applied voltage of 2 V having a cross sectional area of 0.01 cm². If the voltage is now raised at 100 V what will be the change in current? Electron and hole mobility are 1350 cm²/V-sec and 400 cm²/ V-sec for low electric field. For higher field, saturation velocity for electron is $V_s = 10^7$ cm/sec.
- 6. Consider a Si sample kept at room temperature having band gap $E_g = 1.12 \text{ eV}$.

- (a) If the Fermi level E_F , is located exactly at the middle of the band gap for this sample, then what will be the probability of finding an electron at $E=E_C+2KT$.
- (b) If the Fermi level E_F , is located such that $E_F = E_V$, then what will be the probability of finding an electron at $E = E_V + KT$.

Note: Put "Tick ($\sqrt{\ }$)" Marks on the write option wherever applicable (Bold) / Fill in the blanks.

- 7. (a) In an *npn* Si/Si_{1-x}Ge_x heterojunction bipolar transistor (HBT), base is **heavily/lightly** [2] doped and increases the **hole/electron** injection efficiency.
 - (b) Body or substrate bias effect increases/ decreases the current in MOSFETs and [2] Boron ion implantation increases/ decreases the threshold voltage (V_T) in n-channel MOSFETs.
 - (c) Usually in MOS scaling, the oxide layer thickness **increases/ decreases** and gate [2] capacitance of the device **increases/ decreases**.
 - (d) Substrate leakage current in n-MOS devices are due to secondary **electrons/ holes** [2] and this current **increases/ reduces** at higher gate voltage.
 - (e) Avalanche breakdown voltage increases/ decreases as band gap of the [2] semiconductor increases and this voltage increases/ decreases as doping of the lighter region decreases.
 - (f) The probability of finding an electron at an energy level 4kT above the Fermi level would be $_0.0183$ and number of electrons would be 0.0183×10^{19} /cm³ if the density of states is 10^{19} /cm³.
 - (g) For a Si at a given temperature it is found that $1x10^{10}$ electrons/ cm³ have moved from valance band (VB) to conduction band (CB) when density of atoms is 10^{22} /cm³. Then number of holes in the VB would be ____10^{10}____ and this will be a factor of value ____10^{-11}____ of the total available electrons in the VB.
