Convexity

Alec Zabel-Mena

<u>Text</u>

A Course in Convexity

Alexander Barvinok

November 1, 2020

Chapter 1

Convex Sets.

1.1 Definitions and Examples

Definition. We call the *d*-dimensional vector space \mathbb{R}^d the **Euclidean space**, and it is the set of all vectors (also called points) (x_1, \ldots, x_d) , where $x_i \in \mathbb{R}$ for $1 \leq i \leq d$. We define the **Euclidean norm** to be the function $||\cdot|| : \mathbb{R}^d \to \mathbb{R}$ such that for $x = (x_1, \ldots, x_m) \in \mathbb{R}^d$, $||x|| = \sqrt{x_1^2 + \cdots + x_m^2}$; and we define the distance of two points $x, y \in \mathbb{R}^d$ to be the function $\Delta : \mathbb{R}^d \mathbb{R}^d \to \mathbb{R}$ such that $\Delta(x, y) = ||x - y||$.

Definition. Let x_1, x_2, \ldots, x_m be points in \mathbb{R}^d . We call a point $x \in \mathbb{R}^d$, of the form $x = \sum_{i=1}^m \alpha_i x_i$, with $\sum \alpha_i = 1$, a **convex combination** of x. We call the set of all convex combinations of a subset $A \subseteq \mathbb{R}^d$ the **convex hull** of A, and denote it conv A.

Definition. Let $x, y \in \mathbb{R}^d$. We call the set $[x, y] = \{\alpha x + (1 - \alpha)y : 0 \le \alpha \le 1\}$ of all convex combinations of x and y an **interval** with **endpoints** x, y.

We call a set $A \subseteq \mathbb{R}^d$ convex if whenever $x, y \in A$, $[x, y] \in A$.

Example 1.1. The empty set, regular polyhedra, and open balls in \mathbb{R}^d are all convex.

Lemma 1.1.1. The convex hull of a convex set is convex.

Figure 1.1: Two convex set, and a non-convex set

Figure 1.2: Regular polyhedra in \mathbb{R}^2 and \mathbb{R}^3 fig1.2

Proof. Let $A \subseteq \mathbb{R}^d$, and let $x, y \in \text{conv } A$. Then by definition the set of all convex combinations of x and y is in conv A, thus $[x, y] \in \text{conv } A$

Definition. Let $c_1, \ldots, c_m \in \mathbb{R}^d$ and let $\beta_1, \ldots, \beta_m \in \mathbb{R}$; we call the set $A = \{x \in \mathbb{R}^d : \langle c_i, x \rangle \leq \beta_i$, for $1 \leq i \leq m\}$ a **regular polyhedron**.

Lemma 1.1.2. Regular polyhedra in \mathbb{R}^d are convex.

Proof. Let $A \subseteq \mathbb{R}^d$ be a regular polyhedron and let $x, y \in A$. Then $\langle c_i, x \rangle, \langle c_i, y \rangle \leq \beta_i$ for $c_i \in \mathbb{R}^d$, $\beta_i \in \mathbb{R}$ for $1 \leq i \leq m$. Then by the scalar linearity of the innerproduct, $\langle c_i, \alpha x + (1 - \alpha)y \rangle \leq \beta_i$. Thus $[x, y] \in A$.

Example 1.2. Let $V = \{v_1, \dots, v_m\} \subseteq \mathbb{R}^d$, $\rho_1, \dots, \rho_m \in \mathbb{R}^d$, define $f : \mathbb{R}^d \to \mathbb{R}$ by $f(x) = \sum \rho_i e^{\langle x, v_i \rangle}$, and define $H : \mathbb{R}^d \to \mathbb{R}^d$ by

$$H(x) = \frac{\sum \rho_i v_i e^{\langle x, v_i \rangle}}{f(x)}$$

Letting $x, y \in \mathbb{R}^d$, and choosing $0 \le \alpha \le 1$, using the scalar linearity of the inner product, we see that:

$$H(\alpha x_{1} - \alpha)y) = \frac{\sum \rho_{i} v_{i} e^{\langle \alpha x + (1 - \alpha)y, v_{i} \rangle}}{f(\alpha x + (1 - \alpha)y)}$$

so $H(\mathbb{R}^d) \in \text{conv } V$, which also implies that $H(\mathbb{R}^d)$ inherits convexity.

Example 1.3. Consider the function H in the example above. Let $y \in V$, and choose $x = (1 - \alpha_m)y' \in \mathbb{R}^d$ such that $||H(x)|| < \frac{\epsilon}{2}$; for $\epsilon > 0$. Then since y < x, $||H(y)|| < ||H(x)|| < \frac{\epsilon}{2}$. Thus we have that $||H(x) - y|| \le ||H(x)|| + ||y|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

Moreover, we see that H is 1-1, for suppose there is no nonzero vector $c \in \mathbb{R}^d$ such that $\langle c, v_i \rangle = \alpha$ for some α . If H(x) = H(y), then $\langle x, v_i \rangle = \langle y, v_i \rangle = \alpha$, and so by our supposition, x = y = 0.

Example 1.4. Let $q_1, q_2 : \mathbb{R}^n \to \mathbb{R}$ be quadratic forms, and let S^{n-1} be the unit ball in \mathbb{R}^n . Define $T : \mathbb{R}^n \to \mathbb{R}^2$ by $T(x) = (q_1(x), q_2(x))$. Then $T(S^{n-1})$ is convex in R^2 , provided that n > 2.

Theorem 1.1.3 (The Shur-Horn Theorem). Let $A = (\alpha_{ij})$ be an nn matrix, with diagonal diag $A = (\alpha_{11}, \ldots, \alpha_{nn})$ and let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Let $X \subseteq \mathbb{R}$ be the set of all diagonals of $n \times n$ matrices with eigenvalues $\lambda_1, \ldots, \lambda_n$, Then X is a convex set. Morever, if $l = (\lambda_1, \ldots, \lambda_n)$ is the vecotr of eigenvalues, and σ is a permutation on $\{1, \ldots, n\}$, then $X = \text{conv}\{l^{\sigma}: 1 \leq i \leq n\}$.