

# Twój Eco Kącik

Zespół: Untitled.ipynb



#### Jak często zwracamy uwagę na zużycie prądu?

Przeciętny dom rodzinny w Polsce zużywa 3500 kWh prądu rocznie. Wiemy, że przy produkcji jednej kWh energii w Polsce wytwarzamy 0.78 kg dwutlenku węgla. W przeliczeniu wychodzi 2.7 tony CO2 na dom.



#### A jak często myślimy o tym, aby zredukować emisję CO2?

Redukując zużycie prądu, zmniejszamy również cenę mediów. Ostatni wzrost cen na polskim rynku tylko pokazuje jak potrzebne w obecnych czasach są oszczędności.

Używając mądrze energii możemy nie tylko zredukować emisję CO2, ale również zminimalizować wydatki na media.

Dzięki naszej aplikacji mamy cały nasz dom w jednej ręce!



## Jak zmniejszyć użycie energii? – Najlepiej je zobaczyć!

Od dawna wiadomo, że "lepiej jeden raz zobaczyć, niż sto razy usłyszeć". Dlatego przygotowaliśmy rozwiązanie, które potrafi wizualnie pokazać zużycie prądu przez poszczególne podzespoły elektroniczne.



# Co jest pod spodem? Tylko jeden czujnik!

Użytkownik instaluje tylko jeden amperomierz na głównym wejściu prądu do budynku: niema nawet potrzeby przecinać przewodów, ponieważ amperomierz ten jest "bezdotykowy".

Amperomierz przesyła dane do naszej aplikacji za pomocą sieci Wi-Fi. Sztuczna inteligencja w aplikacji sama wyznacza jakie urządzenia, kiedy oraz ile prądu pobierają.

Konkurenci potrzebują 100 czujników, gdy my – tylko jednego!



# Nasza propozycja rozwiązania problemu

Zauważyliśmy, że większość urządzeń elektrycznych w domu zwykle działają przez pewien czas oraz, że dość łatwo można nauczyć się rozpoznawać różne urządzenia według ich średniego poboru mocy.



#### **Dane rzeczywiste**

Nasze spostrzeżenia potwierdziły dane rzeczywiste z następnego zbioru danych:

https://data.open-power-system-data.org/household\_data/



### Jak sztuczna inteligencja wyznacza urządzenie?

Najpierw dane wejściowe z amperomierza są dzielone na odcinki o podobnym poborze mocy za pomocą algorytmu wykrywania punktu zmiany (change point detection).

Zatem za pomocą algorytmu lasu losowego i danych o średnim zużyciu prądu różnego rodzaju urządzeń wyznaczamy jakie urządzenia i jak długo były włączone.

Jeżeli się gdzieś pomylimy, to użytkownik będzie mógł nas poprawić przez pierwsze kilka tygodni. Z czasem algorytm nauczy się działać bezbłędnie.



### Cały dom jak na dłoni w naszej aplikacji komórkowej!









# Dziękujemy za uwagę!

W razie niego grzania z maksymalną mocą natychmiast wezwij instalatora

ustkopunjast naswij untoprawom

n ustkop

Krawiec Piotr| Makarska Julia | Morskyi Vitalii | Stasiowski Hubert

Koło Naukowe Machine Learning Politechnika Rzeszowska

Kod źródłowy naszego projektu jest dostępny na repozytorium naszego koła: <a href="https://github.com/knmlprz/BITEhack-Untitled.ipynb">https://github.com/knmlprz/BITEhack-Untitled.ipynb</a>

