Project Design Phase Data Flow Diagram and User Stories

Date: -	23th October, 2023
Team ID: -	Team-593068
Project Name: -	Genetic Classification of Individuals using Machine Learning
Maximum Marks: -	4 marks

Report:

Introduction:

The genetic variant classification project aims to enhance the understanding and categorization of genetic variants, thereby enabling more accurate disease prognosis and personalized treatment strategies. The data flow diagram illustrates the movement of data through various stages of processing and analysis in the project.

Data Collection:

The process begins with the collection of diverse datasets containing genetic variant information and corresponding clinical annotations. These datasets are sourced from various repositories and clinical databases, providing a comprehensive foundation for the subsequent stages of analysis.

Preprocessing and Feature Engineering:

The collected data undergoes preprocessing, involving the cleansing of datasets, handling missing values, and standardizing data formats. Then, relevant features are extracted from genetic data and clinical annotations, forming a well-organized and structured feature set for further analysis.

Model training and evaluation:

The pre processed data is then used to train a machine learning model that leverages features to accurately classify genetic variants. The model is rigorously evaluated using performance metrics to ensure its robustness and reliability in variant classification tasks.

Scoring system integration:

A custom scoring system is integrated into the classification process, incorporating relevant clinical annotations and genetic variant information. This scoring system improves the accuracy

and reliability of the overall classification process, allowing for more precise and nuanced classification of genetic variants.

Disease prediction and real-time analysis:

The trained model is used to predict diseases based on genetic variant classification. Real-time analytics capabilities are implemented to enable dynamic adjustments and updates to the classification system, ensuring it can adapt to changing genetic data and clinical information.

Conclusion:

The data flow diagram provides a comprehensive overview of the complex processes involved in the genetic variation classification project. It emphasizes the continuous flow of data across different stages, ultimately contributing to improved disease prognosis and appropriate treatment recommendations based on accurate classification of genetic variants.

Data Flow Diagram: -

User Stories: -

User Type	Functional	User	User Story/Task	Acceptance	Priority	Release
	Requirement	Story		Criteria		
	(Epic)	Number				
Clinical	Setup &	USN-1	Configure the	Development	High	Sprint 1
Laboratories	Infrastructure		development	environment is		
			environment	successfully set		
			with necessary	up with all		
			libraries and	required tools		
			frameworks for	and		
			genetic variant	frameworks.		
			classification.			
Genetic	Data Collection	USN-2	Gather a diverse	Α	High	Sprint 1
Researchers			dataset of	· •		
			genetic variants,			
			including	comprising a		
			associated	range of		
			clinical data, for	-		
			training and			
			testing the			
			machine	obtained.		
			learning models.			
General Public	User Interface	USN-3	Design an		Medium	Sprint 2
	Development		intuitive and			
			user-friendly	visually		
			interface that			
			allows the	,		
			general public to access basic	⁻		
			access basic information	information		
			about genetic			
			variants and	_		
			their potential			
			health			
			implications.			
Industry	Product	USN-4	Integrate the	The tool is	Medium	Sprint 3
Stakeholders	Integration		genetic variant			
			classification	integrated, and		
			tool into existing	_		
		l	1	1		L

industry	interacts with	
systems,	the industry's	
ensuring	existing	
compatibility	infrastructure.	
and seamless		
operation.		