Mathematics 327 Orthonormal bases

1. Consider the orthogonal basis of \mathbb{R}^2 consisting of vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad \mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Find unit vectors \mathbf{u}_1 and \mathbf{u}_2 that are parallel to \mathbf{v}_1 and \mathbf{v}_2 .

We saw last time that a vector b can be written in terms of an orthogonal basis as

$$\mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{b} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2.$$

Use this fact to write $\mathbf{b} = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$ as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Since \mathbf{u}_1 and \mathbf{u}_2 still form an orthogonal basis of \mathbb{R}^2 , we can write

$$\mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{b} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2. \tag{1}$$

Write $\mathbf{b} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$ as a linear combination of \mathbf{u}_1 and \mathbf{u}_2 .

How does equation 1 simplify when we have an orthonormal basis?

Let Q be the matrix $Q = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$. Write Q and compute QQ^T .

Also, compute Q^TQ .

What is Q^{-1} ?

2. Suppose that \mathbf{u}_1 and \mathbf{u}_2 form an orthonormal basis of \mathbb{R}^2 ; that is, the vectors are orthogonal and have unit length. For any vector \mathbf{x} , we have

$$\mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_1) \ \mathbf{u}_1 + (\mathbf{x} \cdot \mathbf{u}_2) \ \mathbf{u}_2. \tag{2}$$

If $Q = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$, explain why $Q^T \mathbf{x} = \begin{bmatrix} \mathbf{x} \cdot \mathbf{u}_1 \\ \mathbf{x} \cdot \mathbf{u}_2 \end{bmatrix}$.

Explain why equation 2 implies that $QQ^T\mathbf{x} = \mathbf{x}$.

Explain why $QQ^T = I$.

3. Suppose that

$$\mathbf{u}_1 = \left[egin{array}{c} rac{2}{3} \ rac{1}{3} \ -rac{2}{3} \end{array}
ight], \qquad \mathbf{u}_2 = \left[egin{array}{c} -rac{1}{\sqrt{5}} \ -rac{2}{\sqrt{5}} \ 0 \end{array}
ight]$$

defines a plane P in \mathbb{R}^3 . Explain why \mathbf{u}_1 and \mathbf{u}_2 form an orthonormal basis for P.

Remember that the orthogonal projection of a vector b onto this plane is

$$\frac{\mathbf{b}\cdot\mathbf{u}_1}{\mathbf{u}_1\cdot\mathbf{u}_1}\;\mathbf{u}_1+\frac{\mathbf{b}\cdot\mathbf{u}_2}{\mathbf{u}_2\cdot\mathbf{u}_2}\;\mathbf{u}_2.$$

How does this expression simplify when u_1 and u_2 is an orthonormal basis?

Find the orthogonal projection of $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$ onto P.

Suppose that $Q = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$. Explain why $Q^T \mathbf{x} = \begin{bmatrix} \mathbf{x} \cdot \mathbf{u}_1 \\ \mathbf{x} \cdot \mathbf{u}_2 \end{bmatrix}$.

Explain why the orthogonal projection of x onto P is QQ^T x.

Find the matrix QQ^T and then find the orthogonal projection of $\mathbf{x}=\begin{bmatrix}2\\-1\\4\end{bmatrix}$ onto P.

Find the matrix Q^TQ and explain the result that you find.