

SEQUENCE LISTING

<110> Bolhuis, Reinier LH
Woehl, Thorsten
Boettger, Volker

<120> Method of Producing Recombinant Antibodies

<130> 2923-552

<140> 10/635,908
<141> 2003-08-07

<150> PCT/EP02/01283
<151> 2002-02-07

<150> 60/327,008
<151> 2001-10-05

<150> 60/266,853
<151> 2001-02-07

<160> 23

<170> PatentIn version 3.2

<210> 1
<211> 23
<212> DNA
<213> Artificial

<220>

<223> oligonucleotide primer that amplifies mouse anti-human monoclonal antibody cDNA

<400> 1

gcatgcgcgc ggccgcggag gcc

23

<210> 2
<211> 35
<212> DNA
<213> Artificial

<220>

<223> oligonucleotide primer that amplifies mouse anti-human monoclonal antibody cDNA

<400> 2

gcatgcgcgc ggccgcggag gcccccccccc ccccc

35

<210> 3
<211> 48
<212> DNA

<213> Artificial

<220>

<223> oligonucleotide primer that amplifies mouse anti-human monoclonal antibody cDNA

<400> 3
ctctaagctt ggctcaaaca cagcgacctc ggatacagtt ggtgcagc 48

<210> 4

<211> 45

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide primer that amplifies mouse anti-human monoclonal antibody cDNA

<400> 4
ctcttctaga gagtctctca gctggtagga tacagtttgt gcagc 45

<210> 5

<211> 357

<212> DNA

<213> Artificial

<220>

<223> mouse anti-human monoclonal antibody cDNA

<400> 5
gacgtgaagc tcgtggagtc tgggggaggc ttagtgaagc ttggagggtc cctgaaactc 60
tcctgtgcag cctctggatt cactttcagt aactattaca tgtcttggt tcgcccagact 120
ccagagaaga ggctggagtt ggtcgcagcc attaatagtg atggtgtat cacctactat 180
ctagacactg tgaagggccg attcaccatt tcaagagaca atgccaagaa caccctgtac 240
ctgcaaatga gcagtctgaa gtctgaggac acagccttgt tttactgtgc aagacaccgc 300
tcgggctact tttctatgga ctactgggtt caaggaacct cagtcaccgt ctcctca 357

<210> 6

<211> 119

<212> PRT

<213> Artificial

<220>

<223> mouse anti-human monoclonal antibody

<400> 6

Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Leu Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr
20 25 30

Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Leu Val
35 40 45

Ala Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Phe Tyr Cys
85 90 95

Ala Arg His Arg Ser Gly Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Ser Val Thr Val Ser Ser
115

<210> 7
<211> 321
<212> DNA
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody cDNA

<400> 7
gacattgtga tgacccagtc tcaaagattc atgtccacaa cagtaggaga cagggtcagc 60
atcacctgca aggccagtca gaatgtggtt tctgctgttgc cctggtatca acagaaacca 120
ggacaatctc ctaaactact gatttactca gcatccaatc ggtacactgg agtccctgat 180
cgcttcacag gcagtggttc tgggacagat ttcactctca ccattagcaa tatgcagtct 240
gaagacctgg ctgattttt ctgtcaacaa tatagcaact atccgtggac gttcgggtgga 300
ggcaccaagc tggaaatcaa a 321

<210> 8

<211> 107
<212> PRT
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody

<400> 8

Asp Ile Val Met Thr Gln Ser Gln Arg Phe Met Ser Thr Thr Val Gly
1 5 10 15

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Val Ser Ala
20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
35 40 45

Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Met Gln Ser
65 70 75 80

Glu Asp Leu Ala Asp Phe Phe Cys Gln Gln Tyr Ser Asn Tyr Pro Trp
85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 9
<211> 2431
<212> DNA
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody cDNA

<400> 9
tcatgacatt aacctataaa aataggcgta tcacgaggcc ctttcgtctt caagaattct 60
tcagatacaa agaatctcta aaccctgagg acattctatc acaaataagt aaaattcaga 120
aaattctgaa tgctccatc acagagatga atctgctatg aacagctcat aggtgtgaag 180
ctctacaaaa gccatattat tgaaaagcca cattgtgccc agactttgga aagactgagc 240
tcatatcctg aaatacagtt atgtgtggtt ctatctaatt acacattac actaaggaaa 300

catggcagta tggaaatgaa gcttgttctg tacacattaa cagagggaaa ctaaacaaag	360
tatggtaat ccctaaccaa aagaaaaaaaaaaaaaaa aagaaaagaa aagaaaaaaaa	420
aagtgaaact acaatatgtt tcaaatgctg taactgaaat ctggttttt gatgccttat	480
atctgttatac atcagtgact tcagatttag tccaaactcca gagcatggta tagcaggaag	540
acatgcaa at aggtcttctc tgtgcccattg aaaaacacct cggccctgac cctgcagctc	600
tgacagagga ggcctgtcct ggattcgatt cccagttcct cacattcagt gatcagcact	660
gaacacagac ccctcaccat gaacttcggg ctcagattga tttccttgc cctggttta	720
aaaggatatct tatttagtat agaggacatc tgctgtatgc acagaggtgc agaaaaaaatg	780
ttgtttgttt ttttagtga caatgctcca aacagtattc tttcttgca ggtgtcctgt	840
gtgacgtgaa gctcgtggag tctggggag gcttagtga gcttggaggg tccctgaaac	900
tctcctgtgc agcctctgga ttcactttca gtaactatta catgtcttgg gttcgccaga	960
ctccagagaa gaggctggag ttggtcgcag ccattaatag ttaggtggt atcacctact	1020
atctagacac tgtgaaggc cgattcacca tttcaagaga caatgccaag aacaccctgt	1080
acctgcaa at gagcagtctg aagtctgagg acacagcctt gtttactgt gcaagacacc	1140
gctcgggcta ctttctatg gactactggg gtcaaggaac ctcagtcacc gtctcctcag	1200
gtaagaatgg cctctccagg tctttttttt aatctttgtatggagttt ctgaacatttgc	1260
cagactaatc ttggatattt gtccctgagg tagccggctg agagaaattt ggaattaaac	1320
tgtctcggga tctcagagcc ttttaggacag attatctcca catcttgaa aaactgagat	1380
tctgtgtat ggtgttggtg gagtcctgg atgatggat agggacttg gaggttcatt	1440
tgagggagat gctaaaacaa tcctatggct ggagggagag ttggggctgt agttggagat	1500
tttcagtttt tagaataaaa gcttagctg cggaaatcc ttcaggacca cctctgtgac	1560
agcatttata cagtatccga tgcataaggaa caaagagtgg agtggggcac tttcttgcgaa	1620
tttgtgggaa atgttccaca ctagttctg taaaacctca tttgttggag ggagagctgt	1680
cttagtgcct gagtcaaggg agaaggcat ctagcctcgg tctcaaaagg gtagttgctg	1740
tccagagagg tctgggtggag cctgcaaaag tccagcttc aaaggaacac agaagtatgt	1800
gtatgaaata atagaagatg ttgctttac tcttaagttt gttcatagga aaaatagttaa	1860
aaactgtgag tttaaaatgt gagagggttt tcaagtactc atttttttac atgtccaaaa	1920

```
<210> 10
<211> 5557
<212> DNA
<213> Artificial
```

<220>
<223> mouse anti-human monoclonal antibody cDNA

<400> 10
aattccaagc tttgttatctt cagatccagg aaagccacca ccaatatcaa acagatacat 60
gctgaaacca acttctgttc ttatgtcaaa tgcacagcgg gcatctgaca ctgcctgcat 120
gaagggtctca ggtcaatact tccactacac acatggaagc tgacaccaat gacgtcaata 180
tttagctctt ttgcccattt caggaggaga ctgctggtt tgagtgtggc accagactta 240
acaccaagtc gacaaactgc tttggaatca tctgtgacaa tccacaaaaa caactttgtc 300
ttacaatgtg ctctgacgac attcatcaat tcatttcaact gtcaaaagtc atcatctgga 360
ctccattact ggcagcatac ttgatttgag acacttggtt acaaaaatgt gcataggtaa 420
tcctctctgg aggaaccaga agcccccggtt ccaactgtat ttcagtcgg cttgcacagt 480
caaattcctgt accaatacgca gctagggtgt taactatggc tctgttgtcc ttacacttga 540
ctgcacaaaaa aggaataaca ttccggaaagag cttttagcca cctcagatgc ttcttttagaa 600
tgtctctgag gtccggaaacc tagaaagaag agacttcatt tattattttg tgttcagaat 660
gtccttagca ctaaagccac catctatgat acagcagtca aactcttcct tagtatacgct 720
gctcatcggtt ctccatgtgc ctacagaaaaa cctagacatg gaattaaatt attgccagcc 780
ccttacaagg tcaacttatac caagaactgt gaatgcagac tccttggaaat gttggaaaca 840

ctcacagcac	agggtcaaga	ctggctggac	acatggagac	actgaatcct	gaagagcact	900
tagctgtctg	ttgcttcatc	atgtctactg	acctgaggtg	gcaccaagct	gcctactgag	960
ggaggactgt	ggcggtgtct	gcaggaactg	acaattctcc	acaattctct	tactgcccc	1020
ctcataactc	ttctcttctc	catcttcttc	tttctttcct	ctccctcct	ttttccctt	1080
cactacttt	ttcctttctt	ctttccact	tccctttct	ttcttcttt	gctgttgctg	1140
ttgtaaagga	tttattgttt	cctcgtgatt	gaaccaaagg	tagttgtact	attatttctg	1200
taaaaactcat	ctgttgattt	tctattaatt	aattaatttt	gtttacactc	catattttat	1260
tcaaccctc	catcctccta	ctggcttaca	taccataacct	cctcccaaca	ccccgtctc	1320
cacatggatg	ctgccacctc	ccatgccacc	tgacctctca	tctccctagg	gcatctagtc	1380
tcttgaggct	tagatgcac	atttctgagt	gaacacagat	ccaacaatcc	tctgctata	1440
gtgtgttggt	ggcctcatag	cagctggtgt	atgctgcctg	tttggatc	cagtgttg	1500
gaggtctcgc	gggttcagat	taattgagat	tgttggacct	cctcagcg	tttcagtctt	1560
tccctgattc	aacaacaggg	ttcattgttt	ctgttcat	gttgggtgca	aatatctgca	1620
tctgactcag	ctgcttattt	ggtcttctgg	agtgcagtca	tgctaggtcc	gtttctatga	1680
gtgctccata	gcctcagtga	tagtgcagg	cgttggact	gccccttgac	ctggattcta	1740
ttttggacct	gtcgctggac	cttctttcc	tcaggctccc	ctccatctgt	atccctgtaa	1800
ttctttcaga	caggaacaaa	tatgggtcag	agttgtgagt	gtggatggc	accccttcc	1860
ctcatttaat	gccctgtctt	cctggggaa	gtggctcta	taagttccca	ctccctactg	1920
ttgggcattt	catcccttgc	agtcctgaga	gtctctcacc	tcccaggtct	ctgggtcatt	1980
ctggagggtc	ctcccaacct	cctacccccc	caggtgcct	gttgacagac	ttctgctggc	2040
ccccagtgct	tcagtccttt	tccctcaccc	aatatctgat	ttggatggaa	gcctgtcatg	2100
agaacatcta	tatacttgc	gtttcagagc	tttaaatgg	tccttgagct	tctat	2160
gttccttcc	agtgattact	tgctgtctt	ggttagtactt	ttgactgttt	atttacac	2220
gataactctca	tacagctgtg	taatttactt	ccttatttga	tgactgcttt	gcatagatcc	2280
ctagaggcca	gcccgctgc	ccatgattta	taaaccaggt	cttgcagtg	agatctgaaa	2340
tacatcagaa	cagcatgggc	ttcaagatgg	agtttcat	tcaggtctt	gtattcgtgt	2400
ttctctgggt	gtctggtag	aattttaaaa	gtattataac	atctcaaaag	taatttattt	2460

aaatagctt tcctatagga agccaatatt aggagacaa tgccattaga taagacattt	2520
tggattctaa catttgcgtc aaaaatctt gtatataaa gtgttactc attatctatt	2580
tctgattgca ggtgttgcgt gagaacattgt gatgaccagg tctcaaagat tcgttccac	2640
aacagtagga gacagggtca gcatcacctg caaggccagt cagaatgtgg tttctgctgt	2700
tgctggtat caacagaaac caggacaatc tcctaaacta ctgatttact cagcatccaa	2760
tcggtacact ggagtccctg atcgcttcac aggagtgga tctggacag atttcactct	2820
caccattagc aatatgcagt ctgaagacct ggctgatttt ttctgtcaac aatatagcaa	2880
ctatccgtgg acgttcggtg gaggcaccaa gctggaaatc aaacgtaaat agaatccaaa	2940
ctctctttct tccgttgcgt atgtctgtgg cttctatgtc taaaaatgtat gtagatattt	3000
tttctctgag accagattct gtcactctcc aaggcaaaga tacatagtca ctccgtaaagc	3060
agagctggga ataggctaga catgttctct ggagaatgaa tgccagtgtataaataaca	3120
caagtgatag tttcagaaat gctcaaagaa gcaggtagc ctgccctaga caaaccttta	3180
cttggtgctc agaccatgct cagttttgt atgggggttg agtgaaggga caccagtgt	3240
tgtatacggtt cggagggggg accaagctgg aaataaaacg taagttgtct tctcaactct	3300
tgttcactga gtctaacctt gttactttgt tctttgtgt gtgttttct taaggagatt	3360
tcagggatgt atcaaattcc attctcagat caggtgttaa ggagggaaaa cttgtcccac	3420
aagaggttgg aatgattttc aggctaaatt ttaggcttct aaaccaaagt cattaaacta	3480
gggaaagagg gataattgtc tgcctaggaa gggtttgtg gaagtacagt taaagtagat	3540
cactgtaaac cacattcaga gatggacca gactggaaat aaaacctaag aacatttttgc	3600
ctcaactgct tgtgaagttt tggcccatt gtgtccttgc tggtagtttgc tgggtttcat	3660
tagataaatttgc aactattcct tgtaacccaa aacttaaata gacgagaacc aaaaatctag	3720
ctactgtata agttgagcaa acagactgac ctcgttcag atttgtggg gaaatgagaa	3780
aggaacagtt tttctctgaa ctggcctat ctaactggat cagcctcagg caggttttgc	3840
taaagggggg cacagtgata tgaatcactg tgattcacgt tcggctcggg gacaaagttg	3900
gaaataaaac gtaagtagat ttttgcctat ttacttgcgt cgttttgggt ctgtttgggt	3960
aactcgtgtg aatttgcgt aatttggcta aatgagccat tcctggcaac ctgtgcata	4020
atagaagatc ccccagaaaa gagtcagtgt gaaagctgag cgaaaaactc gtcttaggct	4080
tctgagacca gttttgtaaag ggaaatgttag aagaaagagc tggcctttc ctctgaattt	4140

ggcccatcta	gttggactgg	cttcacaggc	aggaaaaatgt	agagaggggc	atgtcatagt	4200	
cctca	ctgtg	gctcacgttc	ggtgctggga	ccaagctgga	gctgaaacgt	aagtacactt	4260
ttctcatctt	ttttatgtg	taagacacag	gttttcatgt	taggagttaa	agtca	gttca	4320
gaaaatctt	gaaaaatgga	gagggctcat	tatcagtta	cgtggcatac	agtgtcagat	4380	
tttctgttta	tcaagctagt	gagattaggg	gcaaaaagag	gcttttagtt	agaggaaagt	4440	
aattaatact	atggtcacca	tccaagagat	tggaccggag	aataagcatg	agttagttt	4500	
gagatctggg	tctgactgca	ggtagcgtgg	tcttctagac	gtttaagtgg	gagatttggg	4560	
ggggatgagg	aatgaaggaa	cttcaggata	gaaaaggct	gaagtcaagt	tcagctccta	4620	
aaatggatgt	gggagcaa	tttgaagata	aactgaatga	cccagaggat	gaaacagtgc	4680	
agatcaaaga	ggggcctgga	gctctgagaa	cagaaggaga	gtcattcgt	tttagttcc	4740	
acaaatactg	tctttagttt	tgcaataaaa	gtggatagc	agagttgagt	gagccatagg	4800	
ctgagttctc	tctttgtct	cctaagttt	tatgactaca	aaaatcagta	gtatgtcctg	4860	
aaataatcat	taaactgtt	gaaagtatga	ctgcttgcca	tgtagatacc	atggcttgct	4920	
gaataatcag	aagagggtgt	actcttattc	taaaattgt	cacaaaatgt	caaaaatgaga	4980	
gactctgtag	gaacgagtcc	ttgacagaca	gctcaagggg	ttttttcct	ttgtctcatt	5040	
tctacatgaa	agtaaattt	aatgatctt	ttttattata	atagtagaaa	tacagttggg	5100	
tttgaactat	atgttttaat	ggccacggtt	ttgtaagaca	tttggccctt	tgtttccca	5160	
gttattactc	gcttgtaatt	ttatatcgcc	agcaatggac	tgaaacggc	cgcaacctct	5220	
tcttacaac	tgggtgacct	cgcggctgt	ccagccattt	ggcggtcacc	ttgccgctaa	5280	
ggccgtgt	aaccccgag	gtagcatccc	ttgctcccg	tggaccactt	tcctgaggca	5340	
cagtgatagg	aacagagcca	ctaattgtaa	gagaacagag	atgtgacaga	ctacactaat	5400	
gttagaaaaaa	caaggaaagg	gtgacttatt	ggagattca	gaaataaaat	gcatttatta	5460	
ttatattccc	ttatTTtaat	tttctattag	ggaattagaa	agggcataaa	ctgctttatc	5520	
cagtgttata	ttaaaagctt	ttttttt	agtgc	ta		5557	

<210> 11
 <211> 19
 <212> DNA
 <213> Artificial

<220>
<223> oligonucleotide primer that amplifies mouse anti-human monoclonal antibody cDNA

<400> 11
gaggttcctt gacccagt 19

<210> 12
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer that amplifies mouse anti-human monoclonal antibody cDNA

<400> 12
cgattcccaag ttcctcaca 19

<210> 13
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer that amplifies mouse anti-human monoclonal antibody cDNA

<400> 13
aacgtccacg gatagttgct 20

<210> 14
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer that amplifies mouse anti-human monoclonal antibody cDNA

<400> 14
cagaacagca tgggcttca 19

<210> 15
<211> 214
<212> PRT
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody

<400> 15

Asp Ile Val Met Thr Gln Ser Gln Arg Phe Met Ser Thr Thr Val Gly
1 5 10 15

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Val Ser Ala
20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
35 40 45

Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Met Gln Ser
65 70 75 80

Glu Asp Leu Ala Asp Phe Phe Cys Gln Gln Tyr Ser Asn Tyr Pro Trp
85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala
100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205

Phe Asn Arg Gly Glu Cys

210

<210> 16
<211> 449
<212> PRT
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody

<400> 16

Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Leu Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr
20 25 30

Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Leu Val
35 40 45

Ala Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Phe Tyr Cys
85 90 95

Ala Arg His Arg Ser Gly Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Ser Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
195 200 205

Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys
210 215 220

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
225 230 235 240

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
245 250 255

Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
260 265 270

Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
275 280 285

Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
290 295 300

Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
305 310 315 320

Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
325 330 335

Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
340 345 350

Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr
355 360 365

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
370 375 380

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu

385

390

395

400

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
405 410 415

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
435 440 445

Lys

<210> 17
<211> 214
<212> PRT
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody

<400> 17

Asp Ile Val Met Thr Gln Ser Gln Arg Phe Met Ser Thr Thr Val Gly
1 5 10 15

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Val Ser Ala
20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
35 40 45

Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Met Gln Ser
65 70 75 80

Glu Asp Leu Ala Asp Phe Phe Cys Gln Gln Tyr Ser Asn Tyr Pro Trp
85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala
100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205

Phe Asn Arg Gly Glu Cys
210

<210> 18

<211> 449

<212> PRT

<213> Artificial

<220>

<223> mouse anti-human monoclonal antibody

<400> 18

Asp Val Lys Leu Val Glu Ser Gly Gly Leu Val Lys Leu Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr
20 25 30

Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Leu Val
35 40 45

Ala Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Phe Tyr Cys
85 90 95

Ala Arg His Arg Ser Gly Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Ser Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
195 200 205

Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys
210 215 220

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
225 230 235 240

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
245 250 255

Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
260 265 270

Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
275 280 285

Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
290 295 300

Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
305 310 315 320

Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
325 330 335

Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
340 345 350

Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr
355 360 365

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
370 375 380

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
385 390 395 400

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
405 410 415

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
435 440 445

Lys

<210> 19
<211> 5
<212> PRT
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody

<220>
<221> MOD_RES
<222> (5)..(5)
<223> glycosylated

<400> 19

Glu Glu Gln Tyr Asn
1 5

<210> 20
<211> 5
<212> PRT
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody

<220>
<221> MOD_RES
<222> (5)..(5)
<223> modified by iodacetamide

<400> 20

Val Ser Ile Thr Cys
1 5

<210> 21
<211> 5
<212> PRT
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody

<400> 21

Leu Ile Val Ser Leu
1 5

<210> 22
<211> 10
<212> PRT
<213> Artificial

<220>
<223> mouse anti-human monoclonal antibody

<400> 22

Ser Gly Thr Ala Ser Val Val Cys Leu Leu
1 5 10

<210> 23

<211> 5

<212> PRT

<213> Artificial

<220>

<223> mouse anti-human monoclonal antibody

<400> 23

Thr Lys Pro Arg Glu
1 5