Shining a Light Inside the Black Box Part 1 of 4

Speakers

- Fred Ducca, FHWA
- Bill Woodford, AECOM Consult
- Bill Davidson, PB Americas

Motivations

- National Academy of Sciences recently completed a study to gather information needed to determine the national state of travel forecasting practice
- Three main elements
 - Description of state of practice
 - Evaluation of state of practice
 - Recommendation for improvement

5

NAS Special Report 288 Description of state of the practice

- No single approach is correct for all applications or all MPOs
- Four-step process remains the basic approach, although there are considerable variations

NAS Special Report 288 Evaluation of state of the practice

- Current models have inherent structural weaknesses
- But, shortcomings are also related to poor technical practice in the development and use of existing models
 - Inadequate data
 - Optimism bias
 - Insufficient emphasis & lack of effort in validation of models
 - Insufficient quality control of forecasts
- Deficiencies in current practice will not be resolved solely by switching to more advanced models

7

NAS Special Report 288 Summary

- Policy makers must have ability to make informed investment and policy decisions about the transportation system
- Study concluded that "current models and modeling practice are not adequate for many tasks to which they are being applied"

NAS Special Report 288 Recommendations for Improvement

- Implement new modeling approaches that are better suited to providing reliable information to decision makers
- Improve current and future practice since migrating to more advanced models will not solve deficiencies

9

FHWA Observations on Current Practice

- NAS Special Report 288 is correct:
 - The fundamental methods need work
 - More importantly, the basic practice of travel forecasting needs work regardless of the methods used
- Therefore, this webinar series focuses on improving the basic practice of travel forecasting

This Webinar Series

- Focuses on four areas to improve:
 - Data
 - Model testing
 - Transportation supply and travel distribution
 - Translating results into insights for decision-makers
- Speakers
 - Bill Woodford, AECOM Consult
 - Bill Davidson, PB Americas
 - Dave Schmitt (AECOM Consult) will be reviewing questions throughout each session and summarizing them for the speakers at the end of the session

11

Series Schedule

- Four sessions of two hours each
 - "Motivations & Data": February 12th, 2008 at 2:30 PM EST
 - "Model Testing": March 11th, 2008 at 2:30 PM EST
 - "Transportation Supply & Travel Distribution": April 8th, 2008 at 2:30 PM EDT
 - "Translating Results Into Insights for Decision Makers": May 13th, 2008 at 2:30 PM EDT
- Please submit questions to chat pod to Dave Schmitt
- Questions will be answered at the end of each session

Travel Forecasts and Decision Making

• Bill Woodford, AECOM Consult

"It's tough to make predictions, especially about the future"

- Yogi Berra

Forecasting Track Record

- To be useful in decision-making, the forecasts need to be reliable
- However, studies examining forecasting accuracy show that the results to date are bleak...

Forecasting Track Record Highlight #1

- Flyvbjerg's 2005 study of 210 large transportation infrastructure projects completed 1969-1998
- Findings
 - Half of all road traffic forecasts are wrong by more than 20%
 - Rail passenger forecasts are overestimated in 9 out of 10 cases, with an average overestimation of 100%
 - Both road and rail forecasts have not improved over time
- Concluded that the results "show that it is highly risky to rely on travel demand forecasts to plan and implement large transportation infrastructure investments"

17

Forecasting Track Record Highlight #2

- NCHRP Synthesis 364 (2006) analyzed predicted and actual toll road revenue for 26 US toll road projects completed 1986-2004
- Found that most projects overestimated revenue
 - Actual revenues for 20 of 26 projects were less than projected revenues by more than 20% in their first year
 - Three projects had actual revenue greater than project revenue
- Predictive techniques have not improved with time

Forecasting Track Record Highlight #3

- In 2002, FTA required detailed reporting of travel forecasts for proposed major transit projects and lower-cost alternatives
- Reviews found significant problems for most projects in either the models or the comparability of the alternatives
- Strong indication that cursory reporting of travel forecasts hides major errors that lurk in many models and in many coded networks

19

Forecasting Track Record Highlight #4

- Rodier's 2003 study of the 1991 Sacramento travel forecasting model
- Backcasting findings (using actual 2000 land use)
 - VMT overestimated by 5.7%
 - VHT overestimated by 4.2%
 - VHD overestimated by 17.1%
- Historical forecasting findings (using the projected 2000 land use as developed in 1991)
 - VMT overestimated by 11.8%
 - VHT overestimated by 12.8%
 - VHD overestimated by 38.4%

What Went Wrong?

- Models themselves did not fully or correctly understand travel behavior
- Future setting reflected in the model did not correctly reflect the future
- Project characteristics did not occur as planned

21

"We're lost but we're making good time"
- Yogi Berra

What Can Modelers Do?

- Improve models and modeling practice where we can
- Inform decision makers about the insights gained from the forecasts
- Recognize and communicate the dimensions of uncertainty

23

What Should Modelers Focus On? Models

- What the model is saying about how people use the transportation system in the real world, namely:
 - Where people live and work and the relationship between them
 - Characteristics of the transportation system
 - Fraction of people taking modes for specific travel markets
 - How people go through the transportation system

What Should Modelers Focus On? *Insights*

- Understand the real world transportation system and how people use it...and we need detailed data to do this
- 2. Develop and apply meaningful testing approaches
- Understand where the models work and where they don't work
- 4. Propose and test solutions where problems are found

25

What Should Modelers Focus On? *Uncertainties*

- Understand key drivers of uncertainty
 - Underlying human behavior
 - Key socio-economic factors (e.g., population and employment)
 - Assumed project or policy characteristics
- Estimate range and likelihood of different scenarios
- Produce alternative forecasts
- Communicate range of possible outcomes

Data: The Foundation of Effective Models

• Bill Davidson, PB Americas

"You can observe a lot by watching"
- Yogi Berra

Understanding the Real World...

- What needs to be in the model is driven by what we need to know about the real world
- Model information that needs to be "real":
 - Demand/travel patterns
 - Commercial vehicle/freight movement/external trips
 - Performance of the transportation system
 - Volumes on facilities/services

Demand/Travel Patterns

- To be useful in supporting transportation planning and policy making, person trips must accurately represent trips stratified by:
 - Trip purpose
 - Socio-economic characteristics
 - Time of day
 - Mode
 - Sub-mode/occupancy/toll road use/etc.
 - Geography (district-to-district level & trip lengths)

31

Demand/Travel Patterns *Example*

Estimated Demand/Travel Patterns

	CBD	Urban	Suburbs	Te	ch Center	Rural	Total
CBD	1,000	1,000	-		-	-	2,000
Urban	40,000	1,000	-		1,000	-	42,000
Suburbs	7,000	1,000	10,000		35,000	2,000	55,000
Tech Center	1,000	3,000	3,000		1,000	-	8,000
Rural	1,000	19,000	7,000		3,000	-	30,000
Total	50,000	25,000	20,000		40,000	2,000	137,000

Observed Demand/Travel Patterns

	CBD	Urban	Suburbs	Te	ch Center	Rural	Total
CBD	1,000	-	-		1,000	-	2,000
Urban	7,000	10,000	21,000		3,000	1,000	42,000
Suburbs	35,000	1,000	5,000		12,000	2,000	55,000
Tech Center	2,000	-	1,000		4,000	1,000	8,000
Rural	5,000	_	-		20,000	5,000	30,000
Total	50,000	11,000	27,000		40,000	9,000	137,000

Possible Data Sources: Travel Patterns

- CTPP 2000 and its successors are a must for work travel
- Choice-based surveys (e.g., transit, HOV, HOT, toll)
- Passive data collection (e.g., smart cards, cell phones, toll tags)
- Large sample household surveys

33

Large Sample Travel Surveys Experience

Survey	Date Range	Household Sample Size
FHWA Origin/Destination Surveys	1950s-1970s	5%
Chicago Household Survey	1956	3.3%
Transportation Tomorrow Survey (Toronto)	1980s-today	5%
Greater Montreal Area Surveys	1970s-today	5%

Purposes of Demand-Side Data Collection

- Parameter estimation
 - Disaggregate models \rightarrow efficient use of data \rightarrow small sample sizes
 - Supplemented with choice-based samples
- Understanding markets
 - Larger sample sizes are needed to capture the key markets to be represented by the model

35

Large Sample Travel Surveys

- What sample size is sufficient to gather detailed travel pattern information?
 - No definitive answer at this time, other than today's typical sample size is not sufficient for adequately reviewing person trip table
- Alternative data collection strategies may be required to collect larger samples
 - GPS receivers
 - Cell phone records

Commercial Vehicle, Freight Movement and External Trips

- A good understanding of the following elements is needed to be useful
 - Key generators and attractors
 - Common paths/movements
 - Volumes by vehicle type
- High variability of freight activity among areas suggests that freight models should be designed initially with aggregated data and supplemented with locally-collected data

37

Locally Collected Data: Possible Sources

- Automated weigh-in-motion studies
- Passive data collection (e.g., toll tags)
- Vehicle classification counts
- Facility-specific survey
- Cordon surveys

Supply-Side Data

- Input data must be correct and quality-checked
 - Highway
 - Determinants of capacity, time of day restrictions/movements, signalization, turning movement restrictions, free-flow speeds, number of lanes
 - Trancit
 - Schedules, speeds, fares, park-ride locations, connectivity between lines
- More importantly, collect data to test the outputs!
 - Time of day congested speeds and times for both highway and transit
 - Point-to-point travel times by mode
 - Time of day volumes

39

Possible Data Sources: Travel Times

- A good understanding of travel times on all freeways, key arterials and bus routes is required
- Possible data sources
 - Freeway speed/travel time monitoring systems
 - Large sample speed/travel time survey (focused on both point-to-point and link-specific times)
 - Public time tables/AVLs
 - Cell phone location data

Possible Data Sources: Volumes

- Reconciled and quality controlled traffic counts by time of day
 - Reconciled for different years and consistency between different sources
- Farebox, smart card records
- Automated passenger counters
- Manual station counts

41

Data: What Should We Be Doing Differently?

How Should We Gather Data?

- Collect data to test model outputs
- Design model structure before beginning data collection efforts
- Maximize passively-collected data
- Take advantage of innovative techniques

43

The Need for Different Data for Different Reasons

- Input data → model estimation, QA/QC
 - Household survey
 - FAF Commodity Origin-Destination Database
 - Posted speed
 - Regional transit boardings
- $\bullet \quad \text{Output data} \to \text{comparisons} \\$
 - Detailed person demand/travel flow data
 - Detailed freight demand/travel flow data
 - Actual peak and off-peak speeds
 - Transit boardings by stop
- Traffic counts alone are not sufficient for meaningful comparisons

Design Model Structure Before Collecting Data

- Include plan to collect data needed for inputs and model testing
 - Example: time of day highway assignments
 - Input data: Trip departure/arrival times, Freight departure/arrival times
 - Testing data: Speeds and volumes by time of day
 - Example: treating a major university as a special generator
 - Input data: student enrollment, students on vs. off-campus, student parking data, number of employees by income group, percentage of students that work on-campus, ZIP codes of employees and students
 - Testing data: ZIP codes of employees and students disaggregated to TAZ, campus circulator ridership, parking occupancy by lot

45

Design Model Structure Before Collecting Data

Example: Ohio DOT Timeline

Year(s)	Activities
1997- 1999	Model specification developed and finalized
2001- 2003	Household surveys conducted
2003- 2005	Model development, calibration & validation

- Model specifications included data needs and household interview scope of services
- Duration between <u>initial</u> thoughts on model specifications to validated model is about 8 years

Maximize Passively-Collected Data *Examples*

- New York City Transit develops O/D trip tables from fare media
- Portland Metro
 - Derives freeway capacity estimates (from volumes), speeds and volume-delay curves from ITS data
 - Gathers transit speed data from vehicle AVLs

47

Maximize Passively-Collected Data Examples (cont'd)

 Mid-Willamette Valley Council of Governments (Salem OR) is capturing intersection-level traffic count and classification data using controller card that sends video data directly to the MPO for processing

Take Advantage of Innovative Techniques Example

- Chicago Metropolitan Agency for Planning conducting regional household survey
 - Emphasized outreach to improve response rates from populations
 - Extensive use of GPS data to identify underreporting problems

49

What Should You Be Doing?

- Set up a separate task in your UPWP to identify a data collection plan that relates to the model development and testing
- Be creative in using the wealth of data that is routinely being collected by other organizations
- Don't underestimate the resources needed to collect and process data

Questions 51

Special Thanks

- To those that contributed examples, insights and experiences:
 - Alan Fijal, Chicago Metropolitan Agency for Planning
 - Greg Giaimo, Ohio DOT
 - Elaine Murakami, FHWA
 - Jim Ryan, FTA
 - Dick Walker, Portland Metro
 - Kermit Weis, Chicago Metropolitan Agency for Planning
 - Jim Barry, NYCT
 - Ray Jackson, Salem-Keizer Area Transportation Study

References

- Data Management Group. Transportation Tomorrow Survey 2001: Data and Conduct of the Survey. January 2003.

 Flyvbjerg, Holm, and Buhl. 2005. "How (In)accurate Are Demand Forecasts in Public Works Projects?: The Case of Transportation". Journal of the American Planning Association, Vol.71, No.2.

- Vol.71, No.2.

 Rodier. 2003. "Verifying the Accuracy of Regional Models Used in Transportation and Air Quality Planning". Mineta Transportation Institute: San Jose, CA.

 Transportation Research Board. 2007. National Cooperative Highway Research Program Synthesis 364: Estimating Toll Road Demand and Revenue. National Research Council, Washington D.C.

 Transportation Research Board. 2007. Special Report 288, Metropolitan Travel Forecasting: Current Practice and Future Direction (prepublication copy). National Research Council, Washington D.C.

 Trengier, Chapleau, et al. Information Technologies for Household Survey Management. 2007.
- Trepanier, Chapleau, et al. Information Technologies for Household Survey Management. 2004 Annual Conference of the Transportation Association of Canada: Quebec City, Quebec. Web article on Transportation Tomorrow Survey. http://www.jpint.utoronto.ca/dmg/tts.html.

Web site on Yogi Berra quotations. http://en.wikiquote.org/wiki/Yogi_Berra.