

OBRADA SLIKE U BOJI

POGLAVLJE 6

OBRADA SLIKE U BOJI

- Ljudsko oko razlikuje hiljade nijansi boja, a svega 20-30 nijansi sivog
- Obrada slike u boji deli se na dve oblasti
 - Pseudo-color
 - Obrada slike koja je dobijena kolor senzorom
 - Full-color
 - Obrada slike koja je dobijena od monohromatske slike dodeljivanjem boja određenim nijansama ili opsezima nijansi
- Algoritmi za obradu slike u boji
 - Veliki broj algoritama koji su razvijeni za obradu monohromatske slike može se direktno primeniti na sliku u boji
 - Neki algoritmi zahtevaju adaptaciju kako bi se mogli primeniti na sliku u boji

SPEKTAR BOJA

- Newton je otkrio da se bela svetlost preko prizme razlaže na spektar boja – od ljubičaste do crvene
- Spektar boja može se podeliti na 6 oblasti:
 ljubičasta, plava, zelena, žuta, narandžasta i crvena
 - Oblasti spektra postepeno prelaze jedna u drugu

SPEKTAR BOJA

- Doživljaj boje nekog objekta zavisi od svetlosti koju taj objekat reflektuje
 - Svetlost koja sadrži sve talasne dužine vidljivog dela spektra opaža se kao bela
 - Svetlost koja ima samo uzak opseg vidljivog spektra imaće određenu boju (npr. zelena 500-570 nm)

SPEKTAR BOJA

- Apsorpciona karakteristika ljudskog oka
 - Oko 6-7 miliona ćelija u oku registruje svetlost u vidljivom delu spektra: 65% sa X, 33% sa Y i 2% sa Z spektralnom karakteristikom (ne odgovaraju primarnim bojama)
 - Kako ljudi doživljavaju neku boju određuje se na osnovu Tristimulus vrednosti: X,Y,Z
 - Mešanjem tri primarne boje: crvene, zelene i plave u određenom odnosu, ljudskom oku se mogu interpretirati sve boje iz vidljivog dela spektra

PRIMARNE I SEKUNDARNE BOJE

- Primarne boje svetlosti
 - Crvena (Red), zelena (Green) i plava (Blue)
- Primarne boje pigmenta
 - Cijan (*Cyan*), magenta (*Magenta*) i žuta (*yellow*)
 - Primarne boje pigmenta su sekundarne boje svetlosti i obrnuto
 - Sabiranjem svih primara svetlosti dobija se bela boja
 - Sabiranjem svih primara pigmenta dobija se crna boja
 - Zbir dva primara daje sekundar

HROMATSKI DIJAGRAM

- Služi za predstavljanje boja sa različitih uređaja u istom sistemu
- X,Y,Z odražavaju pobude senzora izvorom, definisane apsorpcionim krivama
- Dijagram se daje u sistemu (x,y), a z se može odrediti iz poslednje relacije

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$

$$x + y + z = 1$$

HROMATSKI DIJAGRAM

- Mogućnost uređaja da prikaže boje definisana je na dijagramu
 - Kod monitora to je trougao definisan tačkama R,G,B
 - Kod štampača to je nepravilna oblast

- Omogućavaju standardizaciju u definisanju boja
- Definišu koordinatni sistem u kojem je boja tačka
- Postoji više modela koji se koriste u zavisnosti od namene (hardverska platforma ili aplikacija)
- RGB (Red, Green, Blue)
 - Monitori i široka klasa video kamera generisanje svetlosti
- CMY (Cyan, Magenta, Yellow)
 - Štamparska delatnost nanošenje boja na objekat
 - Kada je dodata i crna boja tada je to CMYK kolor model
- HSI (Hue, Saturation, Intensity)
 - Model blizak ljudskoj interpretaciji boje
- Razdvaja kolor i monohromatsku komponentu, pa omogućava primenu algoritama razvijenih za sivu sliku © 2002 R. C. Gonzalez & R. E. Woods

KOLOR MODELI

RGB model

- Zasnovan na Dekartovom koordinatnom sistemu gde ose predstavljaju normalizovane primarne komponente spektra: Crvena (Red), Zelena (Green), Plava (Blue)
- Prostor boje je jedinična kocka čije ćoškove pored osnovnih boja čine: Cyan, Magenta, Žuta, Crna i Bela
- Skalu sivog predstavlja
 dijagonala kocke od crnog do belog: (0,0,0)→(1,1,1)

KOLOR MODELI

RGB kocka

- Uobičajeno je da se svaka boja koduje sa 8 bita
- Ukupno 16,777,216 boja (24 bita)
- Dubina piksela (*pixel depth*) –
 broj bita kojim se predstavlja piksel u RGB prostoru
- Termin full-color obično označava 24-bitnu reprezentaciju
 - Fiksiranjem jedne RGB komponente dobijaju se ravni boje (kvadrati koji odgovaraju presecima kocke)
 - Primer: skrivene strane kocke

KOLOR MODELI

RGB model

- Svaka slika
 predstavljena u RGB
 sistemu može se
 razložiti na tri
 monohromatske slike
- Obrnuto, RGB slika se može generisati na osnovu tri RGB monohromatske slike
 - Kolor monitor pomoću tri različite boje fosfora na ekranu generiše kolor sliku od tri monohromatske

KOLOR MODELI

- Sigurne RGB boje (safe RGB colors)
 - Obezbeđuju identičan prikaz minimalnog skupa boja na različitim uređajima ili Internetu
 - Svaka komponenta
 koduje se sa 6 vrednosti
 (6)³=216 boja
 - Svaku boju predstavljaju3 heksadecimalna broja
 - Većina sistema korektno prikazuje nijanse sivog (sigurne nijanse podvučene)

Number Syste	m	Color Equivalents				
Hex	00	33	66	99	CC	FF
Decimal		51	102	153	204	255

216 sigurnih boja – svaka grupa odgovara jednoj od šest vrednosti crvene

- Sigurna RGB kocka
 - Diskretna kocka sa 216 čvorova
- Skup sigurnih boja
 - 216 boja predstavljenih tripletima heksadecimalnih parova {0,3,6,9,C,F}

	F00
CCFFFF CCFFCC CCFF99 CCFF66 CCFF33 CC	FF00
	F00
	F00
33FFFF 33FFCC 33FF99 33FF66 33FF33 3FF33	F00
	F00
	CC00
CCCCFF CCCCCC CCCC99 CCCC66 CCCC33 CCC	CC00
99CCFF 99CCCC 99CC99 99CC66 99CC33 99C	CC00
66CCFF 66CCCC 66CC99 66CC66 66CC33 66C	CC00
33CCFF 33CCCC 33CC99 33CC66 33CC33 33C	CC00
	CC00
FF99FF FF99CC FF9999 FF9966 FF9933 FF	9900
CC99FF CC99CC CC9999 CC9966 CC9933 CC	9900
9999FF 9999CC 999999 999966 999933 999	9900
6699FF 6699CC 669999 669966 669933 669	9900
3399FF 3399CC 339999 339966 339933 339	9900
0099FF 0099CC 009999 009966 009933 009	9900
	6000
CC66FF CC66CC CC6699 CC6666 CC6633 CC	6600
9966FF 9966CC 996699 996666 996633 996	600
6666FF 6666CC 666699 666666 666633 666	600
3366FF 3366CC 336699 336666 336633 336	600
0066FF 0066CC 006699 006666 006633 006	3600
FF33FF FF33CC FF3399 FF3366 FF3333 FF3	3300
CC33FF CC33CC CC3399 CC3366 CC3333 CC	3300
9933FF 9933CC 993399 993366 993333 993	3300
6633FF 6633CC 663399 663366 663333 663	3300
3333FF 3333CC 3333399 333366 3333333 333	3300
0033FF 0033CC 003399 003366 003333 003	3300
FF00FF FF00CC FF0099 FF0066 FF0033 FF	0000
CC00FF CC00CC CC0099 CC0066 CC0033 CC	0000
9900FF 9900CC 990099 990066 990033 990	0000
6600FF 6600CC 660099 660066 660033 660	0000
3300FF 3300CC 330099 330066 330033 330	0000
0000FF 0000CC 000099 000066 000033 000	0000

KOLOR MODELI

CMY i CMYK modeli

- Cijan, magenta i žuta su sekundarne boje svetlosti ili primarne boje pigmenta
- Uređaji koji nanose pigmente boje na papir (štampači) zasnovani su na CMY sistemu boja
- Kombinacijom sve tri komponente CMY sistema dobija se crna boja, koja u praktičnim primenama nije dovoljno crna
- Stoga se u štamparskoj industriji dodatno uvodi četvrta komponenta – crna boja (tada CMY postaje CMYK sistem)
- Konverzija između RGB i CMY sistema (normlizovani RGB)

$$\left[\begin{array}{c} C \\ M \\ Y \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] - \left[\begin{array}{c} R \\ G \\ B \end{array}\right]$$

- HSI model
- Boja (Hue) određuje nijansu boje onako kako bi je ljudi definisali: teget, narandžasta, ljubičasta
- Zasićenost (Saturation) određuje čistoću date boje,
 tj. koliko ima sive (ahromatske) komponente u sebi
 - Roza je mešavina bele i crvene (definisane sa Hue)
 - Što je manje prisustvo ahromatske komponente,
 zasićenost je veća čistija boja
- Intenzitet (*Intensity*) predstavlja osvetljaj tačke sa datom bojom (definisanom sa *Hue*)
 - Odgovara monohromatskoj predstavi (skali sivog)
- Postoji konverzija između RGB i HSI modela
- HSI se još označava i kao HSV (Hue-Saturation-Value)

- RGB i HSI modeli
 - HSI razdvaja luminentne i hrominentne komponente
 - Postavljanjem RGB kocke na teme (0,0,0) horizontalne ravni imaju konstantan osvetljaj koji raste po vertikali
 - Udaljavanjem od dijagonale kocke zasićenost raste
 - Boju definiše ugao u ravni u odnosu na dijagonalu (centar)

KOLOR MODELI

RGB i HSI modeli

- Heksagon sa primarima i sekundarima kao temenima
 - RGB kocka postavljena na teme (0,0,0) i gledana odozgo (centar odgovara beloj boji)
- Bilo koja tačka u datoj ravni konstantnog osvetljaja može se predstaviti preko ugla H i rastojanja od centra S
- Umesto heksagona može se isti problem posmatrati i preko kruga Gyand ili trougla

Yellow

Green

KOLOR MODELI

RGB i HSI modeli

- U ravni konstantnog intenziteta I (Intensity) lokacija tačke određena je na osnovu ugla boje H (Hue) i zasićenosti S (Saturation) koja odgovara rastojanju od ose
- Uobičajeno je da se ugao boje H računa od crvene boje kojoj odgovaraju vrednosti 0° i 360°

KOLOR MODELI

Konverzija RGB u HSI

$$H = \begin{cases} \theta, & B \le G \\ 360^{\circ} - \theta, & B > G \end{cases}$$

$$\theta = \arccos \left\{ \frac{\frac{1}{2} [(R - G) + (R - B)]}{\sqrt{[(R - G)^{2} + (R - B)(G - B)]}} \right\}$$

$$S = 1 - \frac{3}{(R + G + B)} [\min(R, G, B)]$$

$$I = \frac{1}{3} (R + G + B)$$

- Konverzija HSI u RGB
 - Različite transformacije za tri različita sektora boje (Hue):
 RG, GB, BR

RG sektor
$$(0^{\circ} \leq \theta \leq 120^{\circ})$$

$$B = I(1-S)$$

$$R = I\left[1 + \frac{S\cos H}{\cos(60^{\circ} - H)}\right]$$

$$G = 3I - (R+B)$$

GB sektor
$$(120^{\circ} \le \theta \le 240^{\circ})$$
 BR sektor $(240^{\circ} \le \theta \le 360^{\circ})$
 $H = H - 120^{\circ}$ $H = H - 240^{\circ}$
 $R = I(1 - S)$ $G = I(1 - S)$
 $G = I\left[1 + \frac{S\cos H}{\cos(60^{\circ} - H)}\right]$ $B = 3I - (R + G)$ $B = 3I - (G + B)$

- RGB kocka razložena na HSI komponente
 - Diskontinuitet po dijagonali prednje stranice kocke u slici boje (*Hue*) nastaje zbog definicije boje preko ugla, a kao nulta vrednost boje uzima se crvena (0°= 360°)
 - Na slici zasićenosti uočava se da udaljavanjem od dijagonale kocke zasićenost raste
 - Na slici intenziteta vidi se da spuštanjem niz dijagonalu kocke intenzitet opada (od belog ka crnom)

- RGB i HSI modeli
 - Slika primarnih boja (RGB) razložena na HSI komponente
 - Boja (*Hue*)
 - Zasićenost (Saturation)
 - Intenzitet (Intensity)

- Manipulacije u HSI sistemu
 - Boja (Hue) svih primara postavljena na 0, zasićenost cijana prepolovljena, intenzitet belog polja prepolovljen

OBRADA SLIKE U BOJI

- Reprezentacija slike u boji
 - Ista reprezentacija kao i u slučaju sive slike, s tim što se svakom pikselu u slici asociraju 3 vrednosti (4 CMYK)
 - Piksel je vektor u prostoru boja
 - Svaki piksel c sa
 prostornim
 koordinatama (x,y)
 okarakterisan je sa
 najmanje 3 kooridnate
 boje (4 CMYK)
 - Obrada se može
 izvoditi vektorski i
 skalarano
 (po komponentama)

$$\mathbf{c}(x,y) = \begin{bmatrix} c_R(x,y) \\ c_G(x,y) \\ c_B(x,y) \end{bmatrix} = \begin{bmatrix} R(x,y) \\ G(x,y) \\ B(x,y) \end{bmatrix}$$

KOLOR TRANSFORMACIJE

• Originalna kolor slika i njene komponente u različitim sistemima boja

Black

Full color

Saturation

- T je skup transformacija koje definišu način preslikavanja piksela slike u boji f(x,y) u sliku g(x,y)
 - Pri transformaciji slike različite komponente boje mogu imati međusobni uticaj (n – broj komponenti boje)

$$g(x,y) = T[f(x,y)]$$

 $s_i = T_i(r_1, r_2, ..., r_n), i = 1, 2, ..., n$

- Transformacije se mogu definisati u različitim sistemima boja – na različitim komponentama
- Primer: modifikacija intenziteta slike faktorom k

$$g(x,y) = kf(x,y)$$

RGB $s_i = kr_i, i = 1, 2, 3$
CMY $s_i = kr_i + (1-k), i = 1, 2, 3$
HSI $s_1 = r_1, s_2 = r_2, s_3 = kr_3$

KOLOR TRANSFORMACIJE

Primer:
 Modifikacija
 intenziteta
 slike sa
 faktorom k=0.7

- Komplementi
 - Naspramne boje
 (Hue) u krugu boja
 - Transformacija zamenjuje boju komplementom
 - Odgovara negativu u sivoj slici

KOLOR TRANSFORMACIJE

Izdvajanje boja

- Naglašavanje određenog opsega boja u cilju definisanja regiona od interesa i njegovog razdvajanja od okoline
- Ako boja datog piksela pripada definisanom opsegu u prostoru boja, tada piksel zadržava originalnu boju – u suprotnom dodeljuje mu se neka neutralna boja (siva)
- Definicija opsega boja kao hiperkocke stranice W

$$s_{i} = \begin{cases} 0.5, & \left[|r_{j} - a_{j}| > \frac{W}{2} \right]_{1 \leq j \leq n} \\ r_{i}, & ina\check{c}e \end{cases}, i = 1, 2, ..., n$$

– Definicija opsega boja kao sfere poluprečnika R_o

$$s_i = \begin{cases} 0.5, & \sum_{j=1}^{n} (r_j - a_j)^2 > R_0^2 \\ r_i, & ina\check{c}e \end{cases}, i = 1, 2, ..., n$$

- Izdvajanje boja
 - Definisanjem opsega oko prototipa crvene boje, izdvojiće se regioni slike koji imaju boju blisku datoj crvenoj

Hiperkocka W=0.2549

Sfera $R_0 = 0.1765$

- Korekcije tonova i boja
 - Popravka karakteristika slike u cilju boljeg prikaza nekih detalja slike
 - Korekcija tonova odnosi se na popravku osvetljaja i kontrasta slike – ista transformacija primenjuje se na sve komponente u RGB i CMYK sistemima, a u HSI sistemu samo na komponenetu intenziteta
 - Primer: Korekcija tonova u RGB sistemu

- Korekcije boja u CMYK sistemu
 - Transformacije ukazuju šta treba uraditi da bi se otklonio defekt

Original/Corrected

OBRADA NA OSNOVU HISTOGRAMA

- Obrada histograma HSI komponente intenziteta
 - Dovodi do promene raspodele osvetljaja u slici, dok boje u slici ostaju nepromenjene
 - Algoritam ekvalizacije histograma razvijen za sivu sliku, može se primeniti na HSI komponentu intenziteta
- Obrada histograma RGB komponenata nema smisla
 - Nezavisna promena histograma komponenata boje (RGB) rezultovala bi pogrešnim bojama u slici
- Obrada histograma HSI komponente zasićenja
 - Može se ostvariti dodatna korekcija rezultata dobijenog obradom histograma HSI komponente intenziteta

OBRADA NA OSNOVU HISTOGRAMA

Primer

- Slika pre obrade
 - Preovlađuju tamni tonovi, a detalji drveta se ne vide
- Slika nakon obrade histograma HSI komponente intenziteta
- Slika nakon korekcije preko histograma HSI komponente zasićenosti

UBLAŽAVANJE I IZOŠTRAVANJE

- Linearni prostorni filtri na RGB komponentama
 - Isti rezultat filtriranjem po RGB komponentama i vektorski
- Ublažavanje slike filtrom usrednjivačem

$$\mathbf{\bar{c}}(x,y) = \frac{1}{K} \sum_{(x,y) \in S_{xy}} \mathbf{c}(x,y) \qquad \mathbf{\bar{c}}(x,y) = \begin{bmatrix} \frac{1}{K} \sum_{(x,y) \in S_{xy}} R(x,y) \\ \frac{1}{K} \sum_{(x,y) \in S_{xy}} G(x,y) \\ \frac{1}{K} \sum_{(x,y) \in S_{xy}} B(x,y) \end{bmatrix}$$

- Izoštravanje slike realizuje se preko Laplasijana
 - Takođe se može realizovati vektorski i po komponentama

$$\nabla^2 \left[\mathbf{c}(x,y) \right] = \begin{bmatrix} \nabla^2 R(x,y) \\ \nabla^2 G(x,y) \\ \nabla^2 B(x,y) \end{bmatrix}$$

- Operacije na komponenti intenziteta HSI sistema
 - Nema promene boje već samo osvetljaja slike

UBLAŽAVANJE I IZOŠTRAVANJE

 Operacije se mogu izvoditi na RGB komponentama ili na komponenti intenziteta HSI sistema

-HSI komponente

UBLAŽAVANJE I IZOŠTRAVANJE

- Ublažavanje slike u boji
 - Rezultat ublažavanja svake od RGB komponenti
 - Rezultat ublažavanja komponente intenziteta HSI sistema
 - Razlika prethodna dva rezultata
 - Zbir dva vektora daje novi vektor nova boja u RGB prostoru
 - Filtriranje intenziteta HSI sistema menja osvetljaj, a ne boju

UBLAŽAVANJE I IZOŠTRAVANJE

- Izoštravanje slike u boji
 - Rezultat izoštravanja svake od RGB komponenti
 - Rezultat izoštravanja komponente intenziteta HSI sistema
 - Razlika prethodna dva rezultata

SEGMENTACIJA SLIKE NA OSNOVU BOJE

- Izdvajanje regiona koji sadrže odgovarajuće boje
- Najlakše se izvodi u HSI prostoru
 - Pomoću komponente boje (Hue) može se napraviti binarna maska koja označava lokacije datih boja u originalnoj slici
 - Komponenta zasićenosti koristi se za formiranje maske iz koje će biti eliminisani pikseli koji imaju malu zasićenost
 veliko prisustvo sivih tonova
 - HSI komponenta intenziteta ne koristi se u segmentaciji na osnovu boje, jer ne sadrži nikakve informacije o boji
- Segmentacija u RGB prostoru je složenija
 - Postoji više pristupa
 - Daje bolje rezultate od segmentacije u HSI prostoru

SEGMENTACIJA SLIKE NA OSNOVU BOJE

- Segmentacija u HSI prostoru
 - Kolor slika, H, S i I komponente
 - Cilj je izdvajanje crvenog regiona u donjem levom uglu
 - Binarizacija slike saturacije (0 odgovara pikselima koji imaju vrednost saturacije manju od 10% maksimalne vrednosti saturacije)
 - Množenje slike boje (Hue) sa binarnom maskom saturacije (eliminacija piksela koji su po "boji" crveni ali sadrže dosta sive u sebi)
 - Histogram ukazuje da su sve vrednosti u slici u okolini 0 i 1
 - Rezultat segmentacije maska (binarizacija sa pragom 0.9)

SEGMENTACIJA SLIKE NA OSNOVU BOJE

- Segmentacija u RGB prostoru
 - Na osnovu rastojanja od prototipa a u prostoru boje
 - Svi pikseli sa vektorima boje z na rastojanju D(z,a) manjem od D_0 pripadaju istom skupu
 - Definicija zavisi od tipa rastojanja
 - Euklidsko sfera u prostoru boje sa poluprečnikom D_0 i centrom u vektoru a

$$D(\mathbf{z}, \mathbf{a}) = \|\mathbf{z} - \mathbf{a}\| = \sqrt{(\mathbf{z} - \mathbf{a})^T (\mathbf{z} - \mathbf{a})}$$

= $\sqrt{(z_R - a_R)^2 + (z_G - a_G)^2 + (z_B - a_B)^2}$

• Apsolutno rastojanje po osama – kvadar sa stranicama D_R , D_G , D_B i centrom u a (bounding box)

$$|z_R - a_R| \le D_R/2, |z_G - a_G| \le D_G/2, |z_B - a_B| \le D_B/2$$

SEGMENTACIJA SLIKE NA OSNOVU BOJE

Segmentacija u RGB prostoru

© 2002 R. C. Gonzalez & R. E. Woods

- Modifikovano Euklidsko rastojanje na osnovu uzorka
 - Preskaliranje rastojanja po osama na osnovu kovarijansne matrice C uzorka na slici – grupa piksela koji imaju boju sličnu onoj na osnovu koje se vrši segmentacija
 - Elipsoid sa centrom u a i osama orijentisanim u pravcima najveće varijanse u uzorku

$$D(\mathbf{z}, \mathbf{a}) = \sqrt{(\mathbf{z} - \mathbf{a})^T \mathbf{C}^{-1} (\mathbf{z} - \mathbf{a})}$$

SEGMENTACIJA SLIKE NA OSNOVU BOJE

- HSI i RGB segmentacije
 - Beli pravougaonik je uzorak
 - Rezultat HSI segmentacije
 - Rezultat RGB segmentacije
 - Kvadar sa centrom u srednjoj vrednosti uzorka i stranicama od 2.5 varijanse po R, G i B osama

RGB segmentacija (desno) daje bolji rezultat od HSI

DETEKCIJA IVICA

Gradijentni operatori

- Gradijent je vektor definisan u skalarnom polju
- Nelinearnost implicira da se ne može dobiti isti rezultat kada se ivice detektuju po komponentama i vektorski
- Postoji veliki broj različitih algoritama za vektorsku detekciju ivica čija je kompleksnost značajno veća nego kod skalarne detekcije (zbir ivica u RGB komponentama)
- Primer: gradijentni
 operator (npr. Sobelov)
 daće po komponentama
 isti rezultat u prvom i
 drugom slučaju, iako u
 prostoru boja ivice nisu
 podjednako značajne u
 oba slučaja

DETEKCIJA IVICA

- Vektorski ili skalarno
 - RGB slika
 - Vektorska detekcija
 - Skalarna detekcija
 (zbir Sobelovih ivica u R, G i B komponentama)
 - Razlika rezultata
 skalarne i vektorske
 detekcije ivica
 (vektorska daje bolji rezultat, ali
 je kompleksnost mnogo veća)

R G B

© 2002 R. C. Gonzalez & R. E. Woods

FILTRIRANJE ŠUMA

- Obično šum u svim kanalima boje ima istu raspodelu, ali postoje i situacije gde nije tako
 - Kvar uređaja na nekom od kanala
 - Optički kolor filtar na pojedinim ćelijama CCD senzora
- U slučaju linearnih filtara svejedno je da li se filtriraju posebno komponente pa se sabiraju rezultati, ili se vrši vektorsko filtriranje
 - Obično se radi u RGB sistemu, ali može i u CMY ili HSI
- Kod nelinearnih filtara ne dobija se isti rezultat
 - Filtri statistike poretka: sortiranje komponenti (skalara)
 nije isto što i sortiranje vektora (npr. po modulu)

FILTRIRANJE ŠUMA

Gausov šum

- Crvena, zelena i plava komponenta slike sa šumom iste raspodele (srednja vrednost 0 i varijansa 800)
- RGB slika dobijena od zašumljenih komponenti

FILTRIRANJE ŠUMA

- Gausov šum
- RGB slika iz prethodnog primera u HSI sistemu
 - HSI bez oštećenja
 - HSI sa RGB oštećenjem (Gausov šum)

- Slike boje (Hue) i zasićenosti više su oštećene od R, G i B slika zbog nelinearnosti relacija RGB<->HSI (arccos i min)
- Slika intenziteta manje oštećena zbog usrednjavanja R, G i B

FILTRIRANJE ŠUMA

- Impulsni šum
 - RGB slika kod koje je samo zelena komponenta oštećena sa 5% impulsnog šuma
 - HSI komponente iste slike na kojima se uočava da je svaka oštećena impulsnim šumom
 - Boja (*Hue*)
 - Zasićenost
 - Intenzitet

KOMPRESIJA SLIKE U BOJI

- Prenos i memorisanje slike u boji zahteva velike resurse
- Kompresija slike je veoma važan zadatak
 - Smanjenje broja bita potrebnih za predstavljanje slike
 - Kompresija bez oštećenja (lossless compression)
 - Kompresija sa oštećenjem (lossy compression)
- JPEG i JPEG 2000 su aktuelni standardi za kompresiju slike
 - Primer: kompresija 230 puta

- False color processing (lažne boje)
- Čovek mnogo bolje razlikuje boje od nijansi sivog, pa se veštačkim bojenjem slike omogućava lakše uočavanje i interpretacija detalja slike
- Dve osnovne metode:
 - Presek po intenzitetu (Intensity slicing)
 - Nije rekonstrukcija boje iz sivog, već samo označavanje bojom u cilju razlikovanja različitih opsega intenziteta
 - Transformacija nijanse sivog u boju
 - Formiranje slike u boji transformacijom intenziteta jedne ili više monohromatskih slika
 - Presek po intenzitetu može se posmatrati kao specijalan slučaj

- Presek po intenzitetu (Intensity slicing)
 - Pikselu se dodeljuje boja u zavisnosti od toga sa koje strane ravni se nalazi njegov intenzitet
 - Rezultat je dvobojna slika čiji se izgled menja pomeranjem ravni gore-dole po osi intenziteta sive slike

- Presek po intenzitetu (Intensity slicing)
 - Presekom sa P ravni dobija se P+1 oblasti intenziteta sive slike V_k , gde se svakoj od oblasti dodeljuje boja c_k

$$f(x,y) \in V_k \Rightarrow f(x,y) = c_k$$

- Primer:
- Slika tiroide sa 8 boja (oblasti intenziteta)
- Varijacije u levoj polovini mnogo se lakše uočavaju nakon dodeljivanja boja

- Presek po intenzitetu
 - U prethodnom primeru preseci intenziteta izvršeni su u cilju lakšeg razlikovanja detalja, bez vođenja računa o značenju nivoa sivog
 - Ako se vodi računa o fizičkim karakteristikama slike ovom metodom mogu se dobiti veoma važne informacije
 - Primer: Rentgenski snimak vara
 - Na mestu postojanja poroznosti ili pukotine X-zraci potpuno prolaze i izazivaju zasićenje senzora (najveća vrednost intenziteta slike javiće se na takvim mestima)
 - U kolor slici lakše se uočava defekt

PSEUDO-KOLOR OBRADA SLIKE

Presek po intenzitetu

Primer:

<u>Merenje nivoa</u>

<u>padavina u</u>

<u>tropskim</u>

<u>oblastima Zemlje</u>

Satelitska slika dobijena pomoću različitih senzora ne govori mnogo

Nakon preseka po intenzitetu mnogo se lakše uočava količina padavina

- Transformacija nijanse sivog u boju
 - Tri nezavisne transformacije skale sivog za tri kanala boje-R,G,B
 - Sadržaj slike u boji direktno zavisi od primenjenih transformacija
 - Presek po intenzitetu može se predstaviti kao specijalni slučaj (pomoću deo-po-deo linearnih transformacija)
 - Primenom glatkih nelinearih transformacija moguće je ostvariti različite efekte u dobijenoj kolor slici

- Transformacija nijanse sivog u boju
 - Rentgenski snimci dobijeni uređajem za inspekciju prtljaga na aerodromu (sive slike)
 - Prva slika predstavlja uobičajeni sadržaj, dok je kod druge dodat blok plastičnog eksploziva
 - Dva rezultata transformacije nijanse sivog u boju dobijena primenom različitih transformacija

- Transformacija nijanse sivog u boju
 - Neophodno je da transformacije po kanalima budu različite
 - Upotreba istih transformacija dala bi ponovo sivu sliku
 - Transformacije korišćene pri rentgenskom snimku prtljaga
 - Različite frekvencije i faze sinusoida određuju mapiranje boje
 - Vrh sinusoide manje je osetljiv na fazni pomeraj od strmog dela

- Transformacija nijanse sivog u boju
 - Formiranje slike u boji od više monohromatskih slika dobijenih na različite načine (multispektralna obrada)
 - Omogućava vizuelizaciju događaja van domena ljudskih čula
 - Na svaku monohromatsku sliku potrebno je primeniti odgovarajuću transformaciju i nakon toga generisati tri monohromatske slike (R,G,B) koje će dati sliku u boji

PSEUDO-KOLOR OBRADA SLIKE

- Multispektralna obrada slike
 - Primer gde se monohromatske slike dobijene različitim senzorima, u zavisnosti od opsega EM zračenja, kombinuju u jednu sliku u boji
 - Prve četiri slike:
 R, G, B i infra-crvena slika
 - Peta slika RGB kombinacija
 - Šesta slika dobijena je zamenom R komponente infracrvenom slikom, koja dobro detektuje prisustvo bio-mase
 - Jasno razlikovanje vegetacije (crveno) i ljudskih tvorevina od betona i asfalta (plavičasto).

(Washington D.C.)

- Multispektralna obrada slike
 - Pseudo-kolor slika Jupiterovog meseca Io dobijena iz nekoliko monohromatskih slika nastalih u različitim spektralnim opsezima
 - Monohromatske slike koje je načinila sonda Galileo svojim senzorima detektuju prisustvo različitih stvari, npr. hemijskih supstanci – sumpora
 - Crvena oblast na uvećanom delu slike ukazuje na skoru erupciju vulkana u toj oblasti, dok žuta okolina predstavlja starije naslage sumpora iz prethodnih erupcija

ZAKLJUČAK

- Spektar boja, primarne i sekundarne boje
- Hromatski dijagram
- Kolor modeli: RGB, CMY, CMYK, HSI
- Transformacije boja
- Obrada na osnovu histograma
- Ublažavanje i izoštravanje slike u boji
- Segmentacija slike na osnovu boje
- Detekcija ivica
- Filtriranje šuma
- Pseudo-kolor obrada