

¹University of Washington Department of Astronomy, Seattle WA ²University of Washington Department of Astrobiology, Seattle WA ³Virtual Planet Laboratory, Seattle WA

⁴University of California, Santa Cruz CA

⁵Carnegie Department of Terrestrial Magnetism, Washington DC *Contact: rodluger@uw.edu

UNIVERSITY of WASHINGTON

		_
Parameter	Range	Default
$\rm M_{\star}(M_{\odot})$	0.08 - 0.4	_
$M_{p}(\mathrm{M}_{\oplus})$	1 - 10	_
$R_{\mathrm{XUV}}(R_p)$	1.0 - 1.2	1.2
a	IHZ - OHZ	_
e	0.0 - 0.9	_
$P_{0,\star}$ (days)	1.0 - 100	30.0
f_H	$10^{-6} - 0.5$	_
$\epsilon_{ m XUV}$	0.1 - 0.4	0.3
$\xi_{ m min}$	$1 + 10^{-5} - 3$	3
Atmos. esc.	R/R-Lim / E-Lim	_
Tidal model	CPL/CTL	CTL
Q_{\star}	$10^5 - 10^6$	10^{5}
$\overset{\circ}{Q_p}$	$10^1 - 10^5$	10^{4}
$ au_{\star}^{(\mathrm{s})}$	$10^{-2} - 10^{-1}$	10^{-1}
$ au_p$ (s)	$10^{-3} - 10^3$	10^{-1}
β	0.7 - 1.23	1.23
$t_{\rm sat}$ (Gyr)	0.1 - 1.0	0.1
$t_0 (\mathrm{Myr})$	10.0 - 100.0	10.0
$t_{ m stop}$ (Gyr)	0.01 - 5.0	5.0

Table 1: A list of free parameters and their ranges, as well as default values used in the plots.

Figure 5: Final H fraction as a function of XUV absorption efficiency and tidal time lag for a sample run of our code. Mass loss and tidal evolution are strongly coupled in these systems.

References

¹Kopparapu, R. K., et al. 2013, ApJ, 765, 131

²Raymond, S. N., Scalo, J., & Meadows, V. S. 2007, ApJ, 669, 606 ³Lissauer, J. J. 2007, ApJ, 660, L149

⁴Lopez, E. D., Fortney, J. J., & Miller, N. 2012, ApJ, 761, 59 ⁵Erkaev, N. V., et al. 2007, A&A, 472, 329

⁶Baraffe, I., et al. 1998, A&A, 337, 403

⁷Barnes, R., et al. 2013, Astrobiology, 13, 225

⁸Ribas, I., Guinan, E. F., Gudel, M., & Audard, M. 2005, ApJ, 622, 680 ⁹Owen, J. E. & Jackson, A. P. 2012, MNRAS, 425, 2931

Habitable Evaporated Cores

Converting Mini-Neptunes into Super-Earths in the Habitable Zone of M Dwarfs

Rodrigo Luger^{1,2,3,*}, Rory Barnes^{1,2,3}, Eric Lopez^{3,4}, Jonathan Fortney^{3,4}, Brian Jackson⁵, and Victoria Meadows^{1,2,3}

The low masses and luminosities of M dwarfs make them ideal targets for the detection of terrestrial planets in the habitable zone (HZ¹). However, studies suggest that planets formed only from material in the HZs of these stars are likely to be small and dry^{2,3}. Moreover, the long contraction phase of M dwarfs results in these stars being superluminous for as long as 1 Gyr (Figure 3), exposing planets that will eventually be in the HZ to extreme levels of radiation. Earth-like planets in this regime will enter a runaway greenhouse and may be completely desiccated by H loss to space, particularly around late M dwarfs (Figure 4).

As a result, habitable planets around M dwarfs may preferentially form from bodies that migrate into the HZ from beyond the snow line. These planets are enhanced in volatiles and may have accreted large H/He envelopes, which could help shield the surface from the extreme radiation environment early on. In this study, we show that photoevaporation and Roche lobe overflow of migrating "mini-Neptunes" can lead to the complete loss of their gaseous envelopes, transforming them into potentially habitable worlds, which we call habitable evaporated cores (HECs). We couple planet structure evolution models⁴ with a simple Roche lobe overflow scheme and an extreme ultraviolet (XUV)-induced mass loss model^{5,6}. We also couple the orbital effects of anisotropic mass loss with tidal evolution⁷ and show that this coupling can lead to orbital changes that significantly enhance the mass loss rate.

HECs are most likely to form from small mini-Neptunes ($\lesssim 4~M_{\oplus}$) with large ($\lesssim 50\%$) initial hydrogen fractions orbiting M4 stars and later. Given the steep decrease in stellar XUV flux with time⁸, mass loss is negligible after ~ 1 Gyr, at which point a habitable evaporated core is capable of degassing and maintaining a secondary atmosphere. This process may be one of the dominant formation mechanism for habitable planets around M dwarfs, and may be discovered by missions such as TESS and PLATO.

Figure 2: Three sample integrations of our code, showing envelope mass (M_H) , planet radius (R_p) , semi-major axis (a), eccentricity (e), stellar XUV luminosity (L_{XUV}) and radius (R_*) as a function of the time t since formation. The planet is initially a 1 M_{\oplus} core with a 1 M_{\oplus} envelope orbiting a 0.08 M_{\odot} M-dwarf with e = 0.5at a semi-major axis of 0.04 AU, just outside the OHZ (outer HZ; light blue shading). As it loses mass and tidally evolves, it migrates into the CHZ (center HZ; light green shading). (a): Energy-limited escape. The planet loses its entire envelope at $t \approx 100$ Myr. (b): Late migration, with $t_0 = 100$ Myr. While the envelope still completely evaporates, this occurs at a much later time, $t \approx 2$ Gyr. (c): Radiation/recombination-limited escape. Here, the envelope does not fully evaporate and tidal migration is noticeably weaker.

Figure 3: Evolution of the bolometric (blue) and XUV (red) luminosity for three different stellar masses (solid: $0.08 \mathrm{M}_{\odot}$; dashed: $0.16 \mathrm{M}_{\odot}$; dash-dotted: $0.24 M_{\odot}$) as a function of time. Two XUV saturation times are shown: 1 Gyr (red) and 0.1 Gyr (grey). Note the several order-of-magnitude drop in the first ~ 1 Gyr for the latest M dwarfs.

Figure 4: Mirage Earths? Because of the long contraction phase of late M dwarfs, Earths formed in situ in the HZ may lose several Earth Ocean Equivalents (EOE) of water in the first ~ 100 Myr, rendering them dry and uninhabitable. The latest M dwarfs may not have a HZ for Earths formed in situ.

Figure 1: Regions of parameter space that may be populated by HECs. Terrestrial planets detected today occupying the space to the *left* of each contour line could be the evaporated cores of gaseous planets. Planets detected to the right of the contour lines have always been terrestrial/gaseous. Dark red lines correspond to mass loss dominated by radiation/recombination-limited escape, while dark blue lines correspond to the more vigorous energy-limited mechanism. Which mechanism operates will depend on the ratio of stellar EUV to X-ray luminosity⁹. Different line styles correspond to different eccentricities today. Terrestrial planets detected at higher eccentricity (dashed and dash-dotted lines) could be evaporated cores at slightly larger orbital separations than planets detected on circular orbits (solid lines). In the energy-limited regime, all $1M_{\oplus}$ terrestrial planets in the HZ of low-mass M dwarfs could be habitable evaporated cores. (a): The default run, for $M_{core} = 1 M_{\oplus}$ and $M_H \le 1 M_{\oplus}$. (b): Weak XUV run, for $t_{sat} = 0.1$ Gyr and $\varepsilon_{XUV} = 0.15$. (c): Super-Earth, with $M_{core} = 2 M_{\oplus}$ and $M_H \le 2 M_{\oplus}$.