ЛАБОРАТОРНАЯ РАБОТА № Ү

ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ СТАБИЛИЗАТОРОВ постоянного напряжения

Цель работы:

Закрепить знания принципов работы и рабочих свойств стабилизаторов постоянного напряжения с непрерывным режимом работы регулирующего элемента.

экспериментального определения значений Освоить стабилизаторов постоянного показателей качества компенсационных напряжения с непрерывным регулированием и оценить достоинства и недостатки каждого из стабилизаторов путем сравнения численных значений показателей качества.

Описание лабораторного макета стабилизатора и указания по проведению экспериментальных исследований

исследования проводится на макетах, Экспериментальные смонтированных и установленных в рабочем отсеке лабораторной установки

Для проведения исследований на вход исследуемой схемы стабилизатора встроенного OT источника напряжение нестабилизированного напряжения. Это напряжение регулируется в пределах от 5 до 20 вольт. Источник имеет защиту от кратковременной перегрузки по току нагрузки. При перегрузке начинает мигать светодиод «Перегрузка». Входное напряжение и потребляемый ток контролируются с помощью PV1 и PA1 лабораторной установки. Значение тока нагрузки устанавливается путём изменения сопротивления блока нагрузок (правая панель лабораторной установки, ручка переключателя «R_н грубо» и ручка переменного резистора «R_н точно»). Примерные пределы изменения R_н: от 1300 Ом в положении «1» до 17 ОМ в положении «11» переключателя «Rн грубо». положении «Х.Х.» R_н -> ∞. Напряжение на нагрузке (выходное напряжение) конгролируются вольтметром PV2 и миллиамперметром PA2.

Введение:

напряжения При оценке качества функционирования стабилизаторов показателей необходимо определить численные значения его основных качества:

• коэффициент стабилизации Кет;

относительной нестабильности выходного напряжения 80,%;

• выходного сопротивления R_{вых};

• коэффициента полезного действия η.

<u>Коэффициент</u> стабилизации выходного напряжения стабилизатора определяется при постоянном значении сопротивления нагрузки $R_{\rm H}$ ($R_{\rm H}$ = const) в соответствии с соотношением :

В соответствии с соотношением:
$$K_{ct} = \frac{\Delta U_{sx}}{U_{sx \, HOM}} : \frac{\Delta U_{sbix}}{U_{sbix \, HOM}}$$
 (5.1)
или
$$K_{ct} = \frac{\Delta U_{sx}}{\Delta U_{sbix}} : \frac{U_{sbix \, HOM}}{U_{sbix \, HOM}}$$
 (5.2)

Номинальное значение входного напряжения $U_{\text{вх ном}}$, выходного напряжения $U_{\text{вых ном}}$, измеряются вольтметрами PV1 и PV2, установленным на приборной панели установки УСП-70.

Значение динамического <u>выходного сопротивления</u> стабилизатора $R_{\text{вых дин}}$ определяется при постоянной величине входного напряжения $U_{\text{вх}}$ - const (т.е. $\Delta U_{\text{вх}}$ =0)

$$R_{\text{вых}} = \begin{bmatrix} \Delta U_{\text{вых}} \\ \Delta I_{\text{H}} \end{bmatrix}, \qquad (5.3)$$

где $\Delta U_{\text{вых}}$ - отклонение выходного напряжения стабилизатора от его номинального значения, соответствующее изменению тока нагрузки на величину $\Delta I_{\text{н}}$ ($\Delta I_{\text{н}} = I_{\text{н ном}} - I_{\text{н min}}$). Потери мощности в элементах стабилизатора оцениваются его коэффициентом нолезного действия η :

$$\eta = \frac{P_{\text{Bbix}}}{P_{\text{Bx}}} \tag{5.4}$$

Для стабилизатора постоянного напряжения с непрерывным регулированием (НСН) величина КПД может быть оценена приближенным соотношением

$$\eta = \frac{P_{\text{BMX}}}{P_{\text{BX}}} = \frac{U_{\text{BMX} \text{ HOM}} \cdot I_{\text{H}}}{U_{\text{BX} \text{ HOM}}} \approx \frac{U_{\text{BMX} \text{ HOM}}}{U_{\text{BX} \text{ HOM}}}. (5.5)$$

Соотношение справедливо при допущении, что $I_{\rm H}\approx I_{\rm DX}$, что в стабилизаторах постоянного напряжения с последовательным включением регулирующего транзистора и нагрузки практически всегда выполняется. Следует отметить, что чем больше величина тока нагрузки стабилизатора (т.е., чем больше его выходная мощность), тем более точно выполняется соотношение (5.6).

[. Экспериментальное исследование стабилизатора постоянного напряжения на интегральной микросхеме КР142EH8Б

Схема соединений коммутационными шнурами элементов установки для исследования стабилизатора на интегральной микросхеме КР142EH8Б

Установить переключатель «R_H грубо» в положение «2», а ручку переменного резистора «R_H точно» - в среднее положение.

включить питание установки.

Включить источник постоянного напряжения.

Определение коэффициента стабилизации КСТ

Установить переключатель «R_H грубо» в положение «2», а ручку можение положение «2», а ручку можение «2», а ручку

Установить значения входного напряжения U_{вх} согласно таблице X.

В процессе измерений ручкой «R_н точно» поддерживать неизменной величину тока нагрузки I_н.

Результаты измерений и вычислений свести в таблицу X

Вычисления произвести, пользуясь данными таблицы XX при $U_{BX} = 15$ В. по формуле (5.4)

T	Пиче	Таблица Х			
Измеряемый параметр	Прибор	Результаты измерений			Kcr
U _{BX} , B	PV1	15,0	16,0	17,0	
U _H , B	PV2			27,0	
I _H , A	PA2				

<u>Примечание</u>: В качестве U_{BX} и U_{H} берутся значения 4-го столбца таблицы X.

2. Определение выходного сопротивления R_{вых}

Установить $U_{BX} = 15 B$.

Измерить U_H и I_H при среднем значении сопротивления нагрузки R_H (переключатель « R_H грубо» в положение «2 », ручка « R_H точно» - в среднее положение) , поддерживая постоянство напряжения на входе (U_{BX} = 15 B).

Перевести переключатель «R_H грубо» в положение «5 »и измерить U_H и I_H

в этом положении переключателя.

Результаты измерений свести в таблицу XX

Вычисления произвести, пользуясь данными таблицы XX при $U_{BX} = 15$ В. по формуле (5.4)

			T	аблица ХХ
Измеряемы й параметр	Прибор	Результаты измерений		R _{BЫX} ,
		П «2»	П « 5»	Ом
U _H , B	PV2			
ΔU _H , B				
I _H , MA	PA2		AND THE PERSON NAMED IN	
ΔI _H , MA				

3. Определение КПД

• Вычисления произвести, пользуясь данными таблицы XX при $U_{BX} = 15$ В. по формуле (5.4)

Экспериментальное исследование транзисторного компенсационного стабилизатора с непрерывным регулированием

Рис. Схема соединений коммутационными шнурами элементов установки для исследования компенсационного стабилизатора с непрерывным регулированием

- Установить переключатель «R_H грубо» в положение «2», а ручку переменного резистора «R_H точно» в среднее положение.
- Включить питание установки.
- Включить источник постоянного напряжения.

1. Определение коэффициента стабилизации Кст

- Установить переключатель «R_H грубо» в положение «2», а ручку переменного резистора «R_H точно» в среднее положение.
- Установить значения входного напряжения U_{вх} согласно таблице X.
- В процессе измерений ручкой «R_н точно» поддерживать неизменной величину тока нагрузки I_н.
- Результаты измерений и вычислений свести в таблицу Х
- Вычисления произвести, пользуясь данными таблицы XX при U_{BX} = 13 В. по формуле (5.3)

 Измеряемый параметр
 Прибор
 Результаты измерений
 Кст

 U_{BX}, B
 PV1
 12,0
 13,0
 14,0

 U_B, B
 PV2
 14,0
 14,0

 I_H, A
 PA2
 14,0
 14,0

Примечание:

В качестве U_{BX} и U_{H} берутся значения 4-го столбца таблицы X.

6

:. Определение выходного сопротивления R_{вых}

Установить $U_{BX} = 13 B$.

Измерить U_H и I_H при среднем значении сопротивления нагрузки R_H (переключатель « R_H грубо» в положение «2 », ручка « R_H точно» - в среднее положение), поддерживая постоянство напряжения на входе ($U_{\rm BX}$ = 13 B).

Перевести переключатель « $R_{\rm H}$ грубо» в положение «5 »и измерить $U_{\rm H}$ и $I_{\rm H}$ в этом положении переключателя.

Результаты измерений свести в таблицу XX

Вычисления произвести, пользуясь данными таблицы XX при $U_{BX} = 13$ В. по формуле (5.3)

 Измеряемы й параметр
 Прибор
 Результаты измерений параметр
 R_{ВЫХ, ОМ}

 U_H, B
 PVZ
 ОМ

 ΔU_H, B
 I_H, мА
 PAZ

 ΔI_H, мА
 PAZ

Определение КПД

Вычисления произвести, пользуясь данными таблицы XX при $U_{\rm BX} = 13$ В. по формуле (5.4)

III. Сводная таблица показателей качества исследуемых схем стабилизаторов

Тип стабилизатора	Коэффициент	T.	Таблица ХХХ	
	стабилизации К _{СТ}	Выходное сопротивление	кпд	
На ИМС		R _{BЫХ} , O _M		
КР142ЕН8Б				
Гранзисторный, с				
пепрерывным				
егулированием				

V. Выводы.