Chapter 1 Functions and Limits

1.6 Calculating Limits Using the Limit Laws

Limit Laws Suppose that *c* is a constant and the limits

$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$

exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 if $\lim_{x \to a} g(x) \neq 0$

EXAMPLE 1 Use the Limit Laws and the graphs of f and g in Figure 1 to evaluate the following limits, if they exist.

(a)
$$\lim_{x \to -2} [f(x) + 5g(x)]$$
 (b) $\lim_{x \to 1} [f(x)g(x)]$ (c) $\lim_{x \to 2} \frac{f(x)}{g(x)}$

(b)
$$\lim_{x \to 1} [f(x)g(x)]$$

(c)
$$\lim_{x\to 2} \frac{f(x)}{g(x)}$$

FIGURE 1

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

where n is a positive integer

Three particular cases:

a)

b)

c)

EXAMPLE 2 Evaluate the following limits and justify each step.

(a)
$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

(b)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Remark:

Direct Substitution Property If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

11. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where *n* is a positive integer

[If *n* is even, we assume that $\lim_{x \to a} f(x) > 0$.]

Example. Compute $\lim_{u\to -2} \sqrt{u^4 + 3u + 6}$.

Exception to the Substitution Law

EXAMPLE 3 Find
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$
.

We have to use the following new substitution rule:

If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, provided the limits exist.

EXAMPLE 5 Evaluate $\lim_{h\to 0} \frac{(3+h)^2-9}{h}$.

EXAMPLE 7 Show that $\lim_{x\to 0} |x| = 0$.

EXAMPLE 8 Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

EXAMPLE 9 If

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4\\ 8-2x & \text{if } x < 4 \end{cases}$$

determine whether $\lim_{x\to 4} f(x)$ exists.

The Squeeze Theorem.

EXAMPLE 11 Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

3 The Squeeze Theorem If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

 $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$

then

 $\lim_{x \to a} g(x) = L$

