Ariane LEFEBVRE Pablo COVES

Master 2 MIA Image et CAO 2012-2013

Tuteurs: Christophe PICARD Frédéric PONTAROLLO

- Introduction
 - Missler Software
 - Outillage progressif
 - Opérations de base
- Contenu du projet
- O Description des méthodes
- 4 Résultats
- 5 Conclusion

- Première solution CFAO dans les années 80.
- Les services TopSolid :
 - Générale : modélisation, assemblage...
 - Outillage : moules, matrices...
 - Tôlerie : Design, découpe et mise-en-forme.

Outillage progressif

Introduction

000

- Poinçon.
- Dévêtisseur.
- Tôle.
- Matrice.

Figure: Outillage progressif

- Découpe :
 Ôte des morceaux des matériaux.
- Pliage :
 Modification de la forme de la tôle par formation d'angles.
- Poinçonnage :
 Forte pression provoquant une déformation.

- Contenu du projet
 - Projet du client
 - Tâches à réaliser
 - Liste des livrables

Spécifications

- Application pour simuler en 2D une déformation réaliste.
- Retour élastique au retour du poinçon.
- Aire couverte par la tôle.
- Suivit d'un point en temps réel.

Représentation 2D

- La matrice : Un polygone, fixe au cours du temps.
- Le dévêtisseur : Un polygone venant fixer la tôle à la matrice.
- Le poinçon : Un polygone en mouvement. Il vient frapper la tôle.
- La tôle : D'épaisseur fixe, elle est décrite par sa fibre neutre.

Figure: Représentation 2D

Tâches à réaliser

Introduction

Interface utilisateur

Une fenêtre contenant :

- Des menus déroulant : choix des intéractions souris.
- Pas de temps entre chaque étapes.
- Temps totale de la simulation.
- Un lecteur pour la visualisation.
- Une zone de rendu OpenGL.

Tâches à réaliser

Introduction

Chargement d'une scène

Une scène est décrite par un fichier XML :

- Fourni par le client.
- Contient les caractéristiques du matériau.
- Contient les positions des éléments fixes.
- Contient les positions hautes et basses du poinçon.

Le moteur de déformation

Figure : Dialogue avec le moteur de déformation

Concernant la partie Image et CAO :

- Visualisation grâce au lecteur sous forme d'une vidéo ou étape par étape.
- Deux intéractions à la souris.
- Affichage de l'aire couverte par la tôle.

Plan

- Introduction
- 2 Contenu du projet
- 3 Description des méthodes
 - Méthodologie générale
 - Méthodes envisagées ou utilisées
- 4 Résultats
- Conclusion

Méthodologie générale

Introduction

Architecture

- Modèle MVC.
- Librairie graphique Qt.
- Multi-plateforme.

Méthodes envisagées ou utilisées

Introduction

Méthodes envisagées

- Affichage de formes complexes.
 - Polygones concaves.
 - Polygones avec auto-intersections.
- Nécesite :
 - Concavité → triangulation.
 - Intersection → nouveau polygone.

Figure: Formes complexes

Méthodes utilisées

$$P(t) = \frac{-D_{max}}{2} * \cos(\frac{2}{T_{max}} * \pi * t) + \frac{D_{max}}{2}$$

Figure: Système bielle-manivelle

- Résultats
 - Expérimentations réalisées
 - Évaluation des résultats
 - Critiques et commentaires

Procédés de validation

Figure: Tests unitaires

Conclusion

Suivi de point

Figure : Trajectoire d'un point de la tôle

Conclusion

Figure: Distance entre deux points

Figure : Aire couverte par la tôle

Expérimentations réalisées

Introduction

Démonstration

Qualité des résultats

- l e rendu :
 - Lecteur opérationel et robuste.
 - Durée et pas de temps fixes.
- Suivi d'un point :
 - Modifiable en cours de simulation.
 - Affichage en temps réel.
 - Coordonées réelles.

Qualité des résultats

- Distance entre deux points :
 - Affichage dans la barre de status.
 - Coordonées réelles.
 - Limite : translation.
- Aire de couverture :
 - Temps réel.
 - Transparence.

Critiques et commentaires

Introduction

Critiques et commentaires

- Les plus :
 - Spécification Image et CAO remplies.
 - Mouvement du poinçon réaliste.
 - Peut fonctionner sur des simulations réalistes.
- Les moins :
 - Formes complexes.
 - Moteur de déformation \rightarrow Cas particulier.

- Conclusion
 - Diagrammes de Gantt
 - Perspectives
 - Questions

Conclusion

- Absence du membre MCS.
- Séparation nette dans l'application.
- Relation avec le client.

Plan initial

Figure: Répartition initiale

Conclusion

Fin de projet

Figure : Répartition en fin de projet

Introduction Perspectives

Perspectives

- Faire varier l'épaisseur de la tôle.
- Triangulation pour les formes complexes.
- Intégrer le moteur de déformations.

Introduction Questions

Questions

Merci pour votre attention

Des questions?

