$\ensuremath{\mathsf{ADS}}$ - Engenharia de Software 2025 - Anotações de aula

Professor Miguel Suez Xve Penteado

2025-02-18

Contents

So	$_{ m bre}$	estas anotações	5
	0.1	ACESSO AO GITBOOK CELULAR	6
	0.2	https://miguel7penteado.github.io/ADS-EngenhariaSoftware 2025	6
	0.3	APP EPUB ANDROID	7
	0.4	Moon+ Reader	7
1	Liv	ros Texto da Disciplina	9
IN		ODUÇÃO A DISCIPLINA DE ENGENHARIA DE SOFT- RE	13
	1.1	O que é ENGENHARIA DE SOFTWARE	13
2	PR	OCESSO DE SOFTWARE	15
	2.1	CONCEITO DE PROCESSO, ATIVIDADES E TAREFAS $\ . \ . \ .$	15
	2.2	O PROCESSO DE SOFTWARE	16
	2.3	ATIVIDADES FUNDAMENTAIS DE UM PROCESSO DE SOFTWARE	16
	2.4	MODELOS DE PROCESSO DE SOFTWARE CLÁSSICOS	16
	2.5	MODELOS DE PROCESSO DE SOFTWARE ÁGEIS	23
3	MC	DELAGEM DE SOFTWARE	25
4	GE	STÃO DE QUALIDADE DE SOFTWARE	27
5	GE	RÊNCIA DE PROJETOS	29

4	CONTENTS

6	Sharing your book 3	1
	6.1 Publishing	1
	6.2 404 pages	1
	6.3 Metadata for sharing	1

Sobre estas anotações

Estas anotações são apenas lembretes das aulas expostas em sala, durante a disciplina de ENGENHARIA DE SOFTWARE.

6 CONTENTS

0.1 ACESSO AO GITBOOK CELULAR

 $\begin{array}{ccc} 0.2 & \text{https://miguel7penteado.github.io/ADS-} \\ & & \text{EngenhariaSoftware2025} \end{array}$

0.3 APP EPUB ANDROID

0.4 Moon+ Reader

8 CONTENTS

Livros Texto da Disciplina

1.0.0.1 "Engenharia de Software" do autor "Roger S Pressman"

Autor(es) Editora Idioma Roger S. Pressman Pearson Português **ISBN** $8534602379\ 9788534602372$

Formato Capa comum

Páginas 1056

Código Biblioteca

1.0.0.2 "Engenharia de Software" do autor "Ian Sommerville"

Ian SommerVille Autor(es)

Editora Pearson Idioma Português **ISBN** 9788588639072**Formato** Capa comum

Páginas 768

Código Biblioteca

Calendário das aulas

1.0.0.2.1 FEVEREIRO 2025

Data	Dia da semana	Aulas
4 de fevereiro	Terça-feira	
11 de fevereiro	Terça-feira	
18 de fevereiro	Terça-feira	
25 de fevereiro	Terça-feira	

1.0.0.2.2 MARÇO 2025

Data	Dia da semana	Aulas
4 de março	Terça-feira	
$11 \ \mathrm{de} \ \mathrm{março}$	Terça-feira	
18 de março	Terça-feira	
25 de março	Terça-feira	

1.0.0.2.3 ABRIL DE 2025

Aulas

1.0.0.2.4 MAIO DE 2025

Data	Dia da semana	Aulas
6 de maio	Terça-feira	
13 de maio	Terça-feira	
20 de maio	Terça-feira	
27 de maio	Terça-feira	

1.0.0.2.5 JUNHO DE 2025

Data	Dia da semana	Aulas
3 de junho	Terça-feira	
10 de junho	Terça-feira	
17 de junho	Terça-feira	
24 de junho	Terça-feira	

bookdown::render_book()

INTRODUÇÃO A DISCIPLINA DE ENGENHARIA DE SOFTWARE

Do que trata esta disciplina e o que quer dizer o termo que dá nome a ela ?

1.1 O que é ENGENHARIA DE SOFTWARE

Engenharia de Software é o processo de desenvolvimento de programas de computador, estruturas de dados e documentos. (Roger S. Pressman)

Engenharia de Software é uma disciplina de engenharia que se preocupa com todo o processo de produção de software. Isso inclui desde a especificação do sistema até a sua manutenção. (Ian Sommerville)

 $\acute{\rm E}$ atribuído a Margaret Hamilton, desenvolvedora do programa de navegação da APOLLO 11 a criação do termo ENGENHARIA DE SOFTWARE.

PROCESSO DE SOFTWARE

2.1 CONCEITO DE PROCESSO, ATIVI-DADES E TAREFAS

No mundo dos negócios como é conceituado um processo mapeado?

 $Um\ PROCESSO$ é um conjunto de atividades que são executadas para atingir um objetivo (Business Process Model and Notation - BPMN)

ATIVIDADESsão os trabalhos que devem ser realizados para que um processo seja executado (Business Process Model and Notation - BPMN)

TAREFAS são decomposições de atividades e representam um conjunto de passos ou ações executadas para realizar um trabalho. Essas tarefas logicamente relacionadas quando encadeadas completam a atividade. (Business Process Model and Notation - BPMN)

2.2 O PROCESSO DE SOFTWARE

PROCESSO DE SOFTWARE é uma metodologia que define as atividades necessárias para desenvolver um software de qualidade (Roger S Pressman)

PROCESSO DE SOFTWARE é um conjunto de atividades que visam a produção de um software (Ian Sommerville)

2.3 ATIVIDADES FUNDAMENTAIS DE UM PROCESSO DE SOFTWARE

POR QUAIS ATIVIDADES VOCÊ (NECESSÁRIAMENTE) PASSA ?

Table 2.1: PROCESSO DE SOFTWARE - ATIVIDADES - PRESSMAN

ATIVIDADE	ATIVIDADE	ATIVIDADE	ATIVIDADE	ATIVIDADE
#1	#2	#3	#4	#5
comunicação	planejamento	modelagem	construção	entrega

Table 2.2: PROCESSO DE SOFTWARE - ATIVIDADES - SOM-MERVILLE

ATIVIDADE	ATIVIDADE	ATIVIDADE	ATIVIDADE	ATIVIDADE
#1	#2	#3	#4	#5
especificação	projeto	implementação	validação	evolução

2.4 MODELOS DE PROCESSO DE SOFT-WARE CLÁSSICOS

COMO VOCÊ PASSA POR ESSAS ATIVIDADES ?

2.4.1 ABORDAGEM CASCATA

2.4.1.1 VANTAGENS DESSE MODELO

Vantagem	Descrição E		
Simplicidade	• fácil de entender e implementar;		
	 pois possui fases sequenciais bem definidas, com entregas e revisões em cada etapa; 		
Documentação	 facilita o gerenciamento do projeto, especialmente para equipes menores; Natureza estruturada do 		
	• Exige a produção de documentação completa em cada fase;		
Controle	 Útil para rastrear o progresso, facilitar a comunicação entre as partes; maior controle sobre o projeto, escopo, os prazos e os custos são definidos no início e seguidos rigorosamente; 		
Adequado para projetos estáveis	 Cliente tenha previsão precisa do resultado final e investimento necessário.; Adequado para projetos com requisitos bem definidos e estáveis e que não devem sofrer muitas alterações ao longo do desenvolvimento. 		

2.4.1.2 DESVANTAGENS DESSE MODELO

Desva**Dtesgri**ção

Exemplos

Inflexibilida Rigidez. Uma vez que uma fase é concluída, é difícil voltar atrás e fazer alterações.

Se o projeto é feito em um produto comercial (biblioteca) e ela deixa de ser suportada pelo fabricante, o projeto vai ter que nascer com uma tecnologia morta; Seu projeto nasceu no skype, não vai poder migrar para o teams no meio da construção;

• problemático se os requisitos mudarem ou se surgirem problemas inesperados

Feedback•

tar-

dio

O cliente só tem contato com o produto final nas últimas fases do projeto;

- O cliente iniciou um projeto de aplicativo na plataforma ANDROID. Durante o desenvolvimento o cliente que o aplicativo rode em plataforma IOS (iPHONE). Não é possível, mesmo que o cliente tenha um pequeno montante de dinheiro para investir;
- Difícil identificação de erros ou inadequações;
- Atrasos, custos adicionais e insatisfação do cliente;

Longos prazos

- prazos de entrega mais longos,
- cada fase precisa ser concluída antes da próxima ser iniciada.
- problemático em projetos com restrições de tempo ou em mercados dinâmicos.

Você definiu o prazo de entrega em 6 meses, mas devido a rotatividade de funcionários, seu projeto atrasou 3 meses; Os funcionários de equipes de etapas dependentes ficam ociosos naquele projeto;

Risco Falta de flexibilidade
de e feedback tardio
in- podem aumentar o
sucessrisco de o projeto não
atender às
expectativas do
cliente ou às
necessidades do
mercado.

O cliente do estacionamento comprou um sistema ERP para uma loja de calçados; O sistema foi desenhado para cadastrar calçados; Contudo a loja é uma magazine e o cliente durante o projeto começou a vender roupas; O cadastro de mercadorias não suporta roupas; O cliente só descobriu a falta de suporte no momento da entrega do software;

2.4.2 ABORDAGEM INCREMENTAL

2.4.2.1 VANTAGENS DESSE MODELO

Vantagem Entrega antecipada de software funcional

Descrição

- permite que o cliente tenha acesso a funcionalidades do software em estágios iniciais do projeto.
- possibilita feedback do cliente;

Melhor	Divide a prejeta em incrementas meneras
	• Divide o projeto em incrementos menores;
gerenciamento de riscos	• Riscos menores possível identificar e corrigir
	problemas em etapas iniciais;
Flexibilidade para	 Mais adaptável a mudanças nos requisitos
mudanças	do cliente, sem comprometer o andamento do projeto.
Feedback contínuo	• incentiva o envolvimento do cliente durante
do cliente	todo o processo de desenvolvimento;
	 Cliente testa e avalia as funcionalidades em cada incremento;
	 Produto final torna-se mais alinhado com as expectativas do cliente.
Melhor	• Equipe de desenvolvimento trabalhe mais
aproveitamento de	eficiente, concentrando-se em um incremento
recursos	de cada vez;
	• "Pode" reduzir os custos do projeto;

2.4.2.2 DESVANTAGENS DESSE MODELO

vai estourar;

Desvant Agsm ição			
Requisitos \bullet	Se os	Um software foi projetado para ter frontend em	
bem	requisi-	janelas e computadores; No primeiro incremento o	
definidos	tos não	cliente resolve que é melhor acrescentar suporte a	
	$est\~ao$	WEB (frontend no navegador); No segundo	
	bem	incremento o cliente resolve que o software deve ter	
	definidos,	suporte a frontend de dispositivos móveis (app);	
	o orça-		
	mento		

Planejamen	toSe o in-	O time de Planejamento definou que o software seria
cuida-	cremento	no code e seria feito em plataforma Buble (onde o
doso	não for	Banco de dados é interno da solução). Surgiu a
	bem	necessidade de integração com outros bancos de
	plane-	dados pré-existentes de terceiros. Precisa mudar a
	jado,	solução para WeWEB. Surgiu a necessidade de
	gera	inserir gateway de pagamento. Melhor migrar o
	mais	projeto para python e FLASK;
	incre-	
	mentos;	
	Bola de	
	Neve	
Integração •		Seu sistema gera um relatório de uso de veículos da
dos	Incremento	osempresa por funcionários; Você vai construir banco
in-	não são	de dados próprio, mas precisa acessar a base de
cre-	necessári-	dados do RH e a base de dados da Gerencia de
men-	amente	Materiais da empresa; O acesso da tabela depende
tos	lineares	de aprovação das áreas; Seu sistema não anda
	se	enquanto dos outrso bancos não sair;
	existirem	
	fun-	
	cionali-	
	dades	
	forem	
	depen-	
	dentes;	
Necessidade	0	Tanto na atividade de planejamento quanto na de
de	um alin-	execução, Equipe de frontend precisa de informações
equipe	hamento	de APIs da equipe de backend; Equipe de backend
ex-	e comu-	precisa de acessos a fontes de dados externas, caso
peri-	nicação	seja necessário;
ente	muito	
	grande	
	entre a	
	equipe	
	de desen-	
	volvi-	
	mento;	
	Time en-	
	trosado;	

2.4.3 ABORDAGEM Espiral

Modelo Espiral

2.4.4 ABORDAGEM RUP (Rational Unified Process)

2.5 MODELOS DE PROCESSO DE SOFT-WARE ÁGEIS

2.5.1 ABORDAGEM(ENS) ÁGIL(EIS)

Coming soon

MODELAGEM DE SOFTWARE

 ${\rm Coming\ soon}$

GESTÃO DE QUALIDADE DE SOFTWARE

Coming soon

GERÊNCIA DE PROJETOS

Coming soon

Sharing your book

6.1 Publishing

HTML books can be published online, see: https://bookdown.org/yihui/bookdown/publishing.html

6.2 404 pages

By default, users will be directed to a 404 page if they try to access a webpage that cannot be found. If you'd like to customize your 404 page instead of using the default, you may add either a _404.Rmd or _404.md file to your project root and use code and/or Markdown syntax.

6.3 Metadata for sharing

Bookdown HTML books will provide HTML metadata for social sharing on platforms like Twitter, Facebook, and LinkedIn, using information you provide in the index.Rmd YAML. To setup, set the url for your book and the path to your cover-image file. Your book's title and description are also used.

This gitbook uses the same social sharing data across all chapters in your bookall links shared will look the same.

Specify your book's source repository on GitHub using the edit key under the configuration options in the _output.yml file, which allows users to suggest an edit by linking to a chapter's source file.

Read more about the features of this output format here:

https://pkgs.rstudio.com/bookdown/reference/gitbook.html

Or use:

?bookdown::gitbook