- ODAMA:
- -> Seasonal DM observed (?) in Nal crystal.
- 1 Reactor anomaly:
- Deficit of Ve close to reactor cores
- -> Could be explain by a 4th sterile neutrino

## CH3 THEORETICAL LANDSCAPE

- -> Standard Mobil = Effective field theory (EFT)
- Scalar sector : least constraint, now for BIM physica
- O Scalar sector:
  - → Higgs sector determined by only 1 free parameter: MA
    - very predictive
    - coupling to vector boson exactly defined

$$\frac{2 m^2}{8^2}$$

- -> After discovery (mores, spin), 1) coupling to bosons and fermions 2) self coupling
- -> All the measurent ar test for BSM physics

ex of BSM: non-minimal Higgs scenarios alternative to EWSB (ex: Higgs imposter)

## @ Experimental constraints on my: -> Radiative corrections on the propagators of bosons in the thory: Sice the higgs contributes to loops -> constraits on 1 Th E-W fit : free parameter: -> SM unifier e-m and make interaction -> only 2 couple remain independent: Only the top quark has mer me, all the other Jennions have mz is pricisly measured, but not mu. Instead, we use FF - The Higgs mass Mh 15 The free parameters are fors (m2), x (m2), m2, m2, m4, Gr} → Global lit: 30 100 172

## 3.1 Theoretical constraints on MA

- @ Perturbativity and unitarity:
- -> Scattering of VB at high evergies is diregent due to their longitudinal polarization. Consider kv8 = (Ek; 0,0, tk) with Ek= h2-m2 Th 3 polarizations actors ar 1) right handed: Et (th) = 1 (0)1, i,0)
  - 2) lest handled: E- (th)= 1 (0,1,-i,0)
  - 3) Longitudinal: En (te)= 1 (k; 0, 0, Ek)
  - which satisfy for a, b E (+,-, L): kn Ea (t) = 0 En(t) Elu(t) = - Sab
- -> When Eh>> mr, (EL) = : diagram with external VB han divingent cross sections. Consider WL+W\_- > WL+ W\_-: W+Zun W-

  - W- washing wh
  - 2) gaze excharge of 8/2 in the 1-chand and t-chand who who who War you was war was
  - 2) Higgs exchange in the s- and t- chamel when he with w w h w w + wwwww
- -> The amplitude can be united as  $C = C (a) s^2 + C (b) s + C (c)$ When s,t >> mis, mis , we have  $\mathcal{A}^{(2)} \longrightarrow \mathcal{O}$ any deviation is scalar sector may CA(1) > 0

  Spoil this > WLWL scattering strong

  that of EWSB.
  - Lo If My too large -> change WW-> LW interaction → no loozed rituation at cen.

→ At loop level: A~ 21 If 22 32 F2, th E-W theory should break down when My >6 TeV (not perturbation anymon) Who non careful computation: upper bound my < 710 GeV 1 The triviality bound: -> Durother bound of the theory is the triviality bound. - to ensure the theory remains consistent at all scale Q, couplings like g:= (0,41; 0,64; 1,2), y= 12m, 19, \ = m2/2 are must stay divite at all Q. -> Renormalization -> running constants  $CX: \frac{dg_1}{dt} = \frac{41}{10} \frac{1}{16\pi^2} (g_1)^3 \frac{dg_2}{dt} = \frac{-19}{6} \frac{1}{16\pi^2} (g_2)^3$ with E=In (Q/Q.) - For large Niggs boson haves, dh ~ 24 la integration, on obtain a Landar pote, the limit scale of which the theory stop being valid. Here, QLP = Mr exp{4 to 2 y 2 } PROP To han the theory valid at all scales requires vanishing couplings. We call this the triviality condition. O Vacoum stability bound: - For low Nigge boson mass, dh = -6 yt so that for high Q, 100 > V(0. Now, we know that 1>0 => vaccoun stability bound m 2 > σ2 (...) In (Q/Q0) ->il M= 60 GeV => unstable vacuum - it 130 QV & mn & 180 QV, metastable situation 10 18 1 [ Gev ]



| <u> </u> | Higgs decay into fermions:                                                                        |
|----------|---------------------------------------------------------------------------------------------------|
| <b>→</b> | Born approximation:  There (h > fJ) = GFNc Mh mf Bp BJ = (1-4mg/mh) Mills with Ne a color Jactor. |
| <u></u>  | Miggs decays into W/Z bosons:                                                                     |
| →        | Decay ito real and virtual garge bosons;                                                          |
| 7        | When mh > mr, on how  \( \tau \tau \tau \tau \tau \tau \tau \tau                                  |
| <u></u>  | Higgs decays to massler particles:                                                                |
| →        | Only at loop level                                                                                |
| ->       |                                                                                                   |
| <u> </u> | Sumary:                                                                                           |
| <b>→</b> | Low mass: bt mostly                                                                               |
| ->       | Discovery: 22 - chamel                                                                            |
| <b>→</b> | Nigh mass: heavy boson dominates, + LE.                                                           |
|          |                                                                                                   |
|          |                                                                                                   |
|          |                                                                                                   |

| $\odot$  | Higgs production:                                              |
|----------|----------------------------------------------------------------|
|          |                                                                |
| ->       | At lepton colliders: et et, ve                                 |
|          | et x                                                           |
|          | e > c, x                                                       |
|          |                                                                |
|          | Higgestrahlung VBF                                             |
|          |                                                                |
| <b>→</b> | Nadron colliders:                                              |
|          | au C                                                           |
|          | ever E h                                                       |
|          | W <sub>1</sub> Z                                               |
|          | WBF (E-W vertex)                                               |
|          | h q                                                            |
| $\sim$   | C 1: 1 11 1. 1.                                                |
| •        | Searching for the Niggs of LIVC:                               |
|          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        |
|          | h-> hw/22; h-> bb/22: need precix masorul of changed           |
|          | lepton, good calorineter, determie of secondary vertex.        |
| ->       | Son golden motes une mass dependents:                          |
|          | h → 2 € → 4 h → W h → 1 NW → 91.9 V                            |
|          | but have low branching ratio.                                  |
|          | J. J                       |
| 7        | Number of signal cut 5 = N - Bruith statistical significance   |
|          | S (Poisson)                                                    |
|          | VS+B'                                                          |
|          | Lo goal in search: maximize 5/137                              |
|          |                                                                |
| <b>→</b> | Knowing the decay chamels help accelerate the detection of the |
|          | Niggs i 2012.                                                  |
|          |                                                                |
|          |                                                                |
|          |                                                                |