笔记模板2

1. 文章解决的问题

利用Genetic imporvement来选择以及应用插入、删除、替换等操作实验使用的是PyGGI这个GI遗传改进工具。

2. 解决的思路

1. 工具大致思路:如果一个ast上有n条语句,则有n种删除的可能, n^2 的插入和替换的可能,以及5m个比较运算符的编辑。选择这三种的操作(变异算子)概率有偏差,见截图。

2. 实验结果:

2.0采用统一策略:

	Patches			Iterations			
Program	all	unique	avg	min	max	stdev	
DFS	19	5	83	10	222	51	
KHEAP-SORT	0	0	-	-	-	-	
KNAP-SACK	9	2	159	1	397	157.3	
LIS	17	6	171	10	451	154.3	
MERGE-SORT	3	3	393	330	474	73.7	
PASCAL	1	1	430	430	430	-	
QUICK-SORT	13	2	251	17	499	173	
SIEVE	6	6	312	161	467	113.1	
Avg	8.50	3.13	257.0	-	-	_	
Stdev	7.25	2.3	128.3	-	-	-	

27个bug程序中8个程序找到了68个补丁。其中25个补丁在语法上是唯一的。在后面用这个25补丁做研究

1.0采用的初始策略: 有85个补丁,33个语法唯一的补丁

	Patches			Iterations			
Program	all	unique	avg	min	max	stdev	
DFS	14	6	192	22	393	126.8	
KHEAP-SORT	1	1	63	63	63	-	
KNAP-SACK	17	5	102	4	495	128.6	
LIS	13	9	179	18	442	128.3	
MERGE-SORT	1	1	95	95	95	-	
PASCAL	15	4	153	2	490	148.4	
QUICK-SORT	20	4	25	1	64	18.7	
SIEVE	3	3	256	65	389	169.8	
Avg	10.50	4.13	133.13	-	-	_	
Stdev	7.63	2.64	75.68	-	-	-	

下表为多少个独特的补丁(只有这个策略出现的补丁):

Program	Standard strategy	Uniform strategy	# other APR tools [8]
DFS	√ (6)	√ (5)	6
KHEAPSORT	√ (1)	(0)	0
KNAPSACK	√ (5)	✓ (2)	1
LIS	√ (9)	√ (6)	5
MERGESORT	√ (1)	√ (3)	1
PASCAL	√ (4)	√ (1)	0
QUICKSORT	√ (4)	√ (2)	6
SIEVE	√ (3)	√ (6)	0

下表为各种编辑操作在补丁中的占比: patch下的百分比指的是操作出现在补丁中的占比, edits指的是操作在所有操作的占比。

	Initial s	itial strategy Uniform stra		
Operator	patches	edits	patches	edits
All	33	73	25	49
Deletion	18.2%	12.3%	0%	0%
Insertion	45.4%	21.9%	40%	24.5%
Replacement	45.4%	24.7%	68%	57.1%
Comparison op mod	63.6%	41.1%	32%	18.4%

反正就是偏向插入与替换, 而不是删除

下表为各操作有效性的表。<表示为生成的补丁或变体比原来的适应度更好。>表示比原来的差,=表示与原来的一致。

TABLE V
MUTATION OPERATORS EFFICACY

			Fitness			
Operator	Patches	Success	<%	>%	=%	==%
Deletion	7189	47.8%	3.9	20.2	23.7	9.5
Insertion	81110	28.7%	0.7	5.0	23.0	10.5
Replacement	74303	22.8%	1.5	8.4	12.9	6.3
Comp op mod	5329	89.2%	13.6	36.2	39.4	17.9

3. 核心知识点或名词定义

• 插入操作: 只能在语句前插入

• 如何表示ast: 用SrcML来表示基于XML的ast, 然后PYGGI用这样子的ast表示形式来修改程序

- tion of the program's AST. The types of tags we consider are break, continue, decl_stmt, do, expr_stmt, for, goto, if, return, and switch, for statements; and operator_comp for operators.
- 插入、删除、替换(语句级别)以及6个比较操作符(变异)的修改操作

- 什么是统一策略:每一种编辑方法都有相等的概率被选中,包括操作符的空间
- PyGGI2.0采用局部爬山搜索算法 (寻找当前最好的相邻状态)
- 文中说的两步选择策略就是先选择用哪个操作,然后操作的语句或比较符。

设一个程序有n条语句, m个比较操作符。有n种删除操作, n^2种插入操作, n^2种替换操作。5m种比较符修改操作

$$T=n+n^2+n^2+5m$$

每种操作被选择的概率:n/T, n^2/T, n^2/T, 5m/T

- 4.程序功能说明
- 5. 存在的问题
- 6. 改进的思路
- 7. 想法来源