Name	Adwait S Purao
UID no.	2021300101
Experiment No.	6

AIM:	Demonstrate the use of two-dimensional arrays to solve a given problem.	
Program 1		
PROBLEM STATEMENT:	Write a program to perform Matrix Addition, Subtraction, Multiplication, Transpose of Matrix and Norm of Matrix. Dimensions of matrices will be decided by user.	
ALGORITHM:	 START Define void function zero with a float 2D array mat[m][n] as parameter Initialize all elements to 0 Define void function print with a float 2D array mat[m][n] as parameter I=0 J=0 Print mat[i][j] J++ Repeat 7,8 till j<n< li=""> I++ Repeat 6,7,8,9 and 10 till i<m< li=""> Define void function add with 2 2D float array mat1[m][n] and mat2[a][b] as parameters I=0 J=0 Print mat1[i][j]+mat2[i][j] J++ Repeat 15,16 till j<n< li=""> I++ Repeat 14,15,16,17 and 18 till i<m< li=""> Define void function sub with 2 2D float array mat1[m][n] and mat2[a][b] as parameters I=0 J=0 Print mat1[i][j]-mat2[i][j] J++ Repeat 23,24 till j </m<></n<></m<></n<>	

```
26. I++
27. Repeat 22,23,24,25 and 26 till i
28. Define void function multiply with 2 2D float array mat1[m][n] and
   mat2[a][b] as parameters
29. Initialize 2D array mat3
30. Call function zero(m,b,mat3)
31. I=0
32. J=0
33. K=0
34. mat3[i][j] += mat1[i][k]*mat2[k][j]
35. k++
36. repeat 34 and 35 till k
37. j++
38. repeat 33, 34, 35, 36 and 37 till j<b
39. i++
40. repeat 32, 33, 34, 35, 36, 37, 38 and 39 till i<m
41. call function print(m,b,mat3)
42. Define void function transpose with a 2D float array mat[m][n] as parameter
43. Initialize 2D array newmat of dimension n x m
44. I=0
45. I=0
46. Newmat[i][j]=mat[j][i]
47.]++
48. Repeat 46 and 47 till j
49. I++
50. Repeat 45, 46, 47, 48 and 49 till i<n
51. Call function print(m,b,newmat)
52. Define int function matrixnorm with a 2D float array mat[m][n]
53. Initialize sum = 0.00
54. I=0
55. J=0
56. Sum += square of mat[i][j]
57. J++
58. Repeat 54 and 55 till j<n
59. I++
60. Repeat 55, 56, 57,58 and 59 till i<m
61. Sum = square root of sum
62. Return sum
63. Define integer main function
```

	64. Input dimensions of matrix 1 m and n
	65. Input matrix 1 [m][n]
	66. Input dimensions of matrix 2 a and b
	67. Input matrix 2 [a][b]
	68. If (m=a and b=n)
	call function matrixadditon(m,n,mat1,a,b,mat2)
	else
	print Addition not possible
	69. If (m=a and b=n)
	call function matrixsubtraction(m,n,mat1,a,b,mat2)
	else
	print subtraction not possible
	70. If(n=a)
	call function matrixmultiplication(m,n,mat1,a,b,mat2)
	else
	print multiplication not possible
	71. Call function transpose(m,n,mat1)
	72. Call function norm(a,b,mat2)
	73. Print value of function matrixnorm(m,n,mat1)
	74. Print value of function matrixnorm(a,b,mat2)
	75. STOP
ELOWCHART.	
FLOWCHART:	

```
PROGRAM:
                     #include<stdio.h>
                     void zero(int m,int n,float mat[m][n])
                      for(int i=0;i<m;i++)</pre>
                      for(int j=0;j<n;j++)</pre>
                      mat[i][j]=0.0;
                     void print(int m,int n,float mat[m][n])
                      for(int i=0;i<m;i++)</pre>
                      for(int j=0;j<n;j++)</pre>
                      printf("%.2f\t",mat[i][j]);
                      printf("\n");
                     void matrixaddition(int m,int n,float mat1[m][n],int a,int b,float mat2[a][b])
                      for(int i=0;i<m;i++)</pre>
                      for(int j=0;j<n;j++)</pre>
                      printf("%.2f\t",mat1[i][j]+mat2[i][j]);
                      printf("\n");
                     void matrixsubtraction(int m,int n,float mat1[m][n],int a,int b,float mat2[a][b])
                      for(int i=0;i<m;i++)</pre>
                      for(int j=0;j<n;j++)</pre>
                      printf("%.2f\t",mat1[i][j]-mat2[i][j]);
                      printf("\n");
```

void matrixmultiplication(int m,int n,float mat1[m][n],int a,int b,float mat2[a][b])

float mat3[m][b];
zero(m,b,mat3);
for(int i=0;i<m;i++)
for(int j=0;j<b;j++)
for(int k=0;k<n;k++)</pre>

print(m,b,mat3);

mat3[i][j] += mat1[i][k]*mat2[k][j];

```
void matrixtranspose(int m,int n,float mat[m][n])
float newmat[n][m];
 for(int i=0;i<n;i++)</pre>
 for(int j=0;j<m;j++)</pre>
newmat[i][j]=mat[j][i];
print(n,m,newmat);
double matrixnorm(int m,int n,float mat[m][n])
 double sum=0.0;
 for(int i=0;i<m;i++)</pre>
 for(int j=0;j<n;j++)</pre>
 sum += pow(mat[i][j],2);
 sum = sqrt(sum);
return sum;
int main()
int m,n,a,b;
printf("Enter dimensions of Matrix 1:\n");
 scanf("%d %d",&m,&n);
float mat1[m][n];
 printf("Enter elements of Matrix 1:\n");
 for(int i=0;i<m;i++)</pre>
 for(int j=0;j<n;j++)</pre>
 scanf("%f",&mat1[i][j]);
 print(m,n,mat1);
 printf("Enter dimensions of Matrix 2:\n");
 scanf("%d %d",&a,&b);
 float mat2[a][b];
 printf("Enter elements of Matrix 2:\n");
 for(int i=0;i<a;i++)</pre>
 for(int j=0;j<b;j++)</pre>
 scanf("%f",&mat2[i][j]);
print(a,b,mat2);
printf("\n Addition of Matrices:\n");
 if(m==a && n==b)
matrixaddition (m,n,mat1,a,b,mat2);
```

```
printf("Addition of matrices is not possible");
printf("\n Subtraction of Matrices:\n");
if(m==a && n==b)
matrixsubtraction(m,n,mat1,a,b,mat2);
printf("Subtraction of matrices is not possible");
printf("\n Multiplication of Matrices:\n");
if(n==a)
matrixmultiplication(m,n,mat1,a,b,mat2);
printf("Multiplication of matrices is not possible");
printf("\nTranspose of the 2 Matrices:\n");
matrixtranspose(m,n,mat1);
printf("\n");
matrixtranspose(a,b,mat2);
printf("Norm of Matrix 1 : %.2f\n",matrixnorm(m,n,mat1));
printf("Norm of Matrix 2 : %.2f",matrixnorm(a,b,mat2));
return 0;
```

```
RESULT:
                                   TERMINAL
                                                             OUTPUT
                                                                      DEBUG CONSOLE
                                                                                     TERMINAL
 Enter dimensions of Matrix 1:
                                                   54.00
                                                          34.00
                                                   Enter dimensions of Matrix 2:
 2
 Enter elements of Matrix 1:
                                                   Enter elements of Matrix 2:
 33
 54
                                                   33
 34
                                                   66
 12.00
        33.00
                                                   55
 54.00
         34.00
                                                   54.00
                                                           33.00
 Enter dimensions of Matrix 2:
                                                           55.00
                                                   66.00
 2
 2
                                                   Addition of Matrices:
 Enter elements of Matrix 2:
                                                   66.00 66.00
 54
                                                   120.00 89.00
 33
 66
                                                   Subtraction of Matrices:
 55
                                                   -42.00 0.00
 54.00 33.00
                                                   -12.00 -21.00
```

```
Multiplication of Matrices:
2826.00 2211.00
5160.00 3652.00

Transpose of the 2 Matrices:
12.00 54.00
33.00 34.00

54.00 66.00
33.00 55.00
Norm of Matrix 1 is: 72.84
Norm of Matrix 2 is: 106.71
PS C:\Users\aspur\C PROGRAMS\mydirectory>
```

Program 2

PROBLEM STATEMENT:

Write a program which reads the current year followed by N followed by a list of N employee numbers and their current ages. Produce a list showing the years in which the employees retire (become 65 years old). If more than one employee retires in a given year then include them all under the same heading. For example: Year Number 1986 896743 1988 674501 450926

ALGORITHM:

- 1. START
- 2. Define void function selection sort with an 2D integer array mat[n][2]
- 3. Define integer variables min, ind
- 4. I=0
- 5. Ind = i
- 6. I=I+1
- 7. If(mat[j][0] < mat[index][0]), index = j
- 8. J++
- 9. Repeat 7 and 8 till j
- 10. Initialize temp1 to mat[ind][0]
- 11. Mat[ind][0] = mat[i][0]
- 12. Mat[i][0] = temp1
- 13. Initialize temp2 to mat[index][1]
- 14. Mat[ind][1] = mat[i][1]
- 15. Mat[i][1] = temp1
- 16. I++
- 17. Repeat steps 5 to 16 till i
- 18. Define integer main function
- 19. Input current year year

```
20. Input the number of employees n
                              21. I=0
                             22. Input current age mat[i][0] and employee number mat[i][1]
                             23. Mat[i][0] = year + 65 - mat[i][0]
                             24. Call function selection sort(n,mat)
                             25. I=0
                             26. If(I not equal to 0 and mat[i][0]=mat[i-1][0])
                                 print Tabspace mat[i][1]
                                 else
                                 print mat[i][0] Tabspace mat[i][1]
                              27. STOP
FLOWCHART:
PROGRAM:
                  #include<stdio.h>
                  void selectionsort(int n,int mat[n][2])
                      int min,ind;
                      for(int i=0;i<n-1;i++)</pre>
                          ind=i;
                          for(int j=i+1;j<n;j++)</pre>
                             if(mat[j][0]<mat[ind][0])</pre>
```

```
ind=j;
        int temp1=mat[ind][0];
       mat[ind][0]=mat[i][0];
       mat[i][0]=temp1;
        int temp2=mat[ind][1];
       mat[ind][1]=mat[i][1];
       mat[i][1]=temp2;
int main()
   int year,n;
   printf("Enter current year: ");
   scanf("%d",&year);
   printf("Enter the number of employees: ");
   scanf("%d",&n);
   int mat[n][2];
   for(int i=0;i<n;i++)</pre>
       printf("Enter Employee Number and current age: ");
        scanf("%d %d",&mat[i][1],&mat[i][0]);
       mat[i][0] = year + 65 - mat[i][0];
   selectionsort(n,mat);
   printf("Retiring Year\tEmployee Number\n");
   for(int i=0;i<n;i++)</pre>
       if(i!=0 && mat[i][0]==mat[i-1][0])
           printf("\t\t%d\n",mat[i][1]);
           printf("%d\t\t%d\n",mat[i][0],mat[i][1]);
```

```
RESULT:
  PROBLEMS
             OUTPUT
                      DEBUG CONSOLE
                                     TERMINAL
  e } ; if ($?) { .\employee }
  Enter current year: 2022
  Enter the number of employees: 3
  Enter Employee Number and current age: 1 23
  Enter Employee Number and current age: 2 50
  Enter Employee Number and current age: 3 59
  Retiring Year Employee Number
  2028
                   3
  2037
                   2
                   1
  2064
  PS C:\Users\aspur\C PROGRAMS\mydirectory>
```

Program 3		
PROBLEM STATEMENT:	Given a nxn matrix, find whether it is an upper triangular matrix or not. Also print the upper triangle of the matrix.	
ALGORITHM:	 START Declare function as void matread with integer parameters m, n and mat[][n]) For(int i=0;i<m;i++) for(int="" j="0;j<n;j++)" li="" mat[i][j]<="" read=""> Declare function as void matprint with integer parameters m, n andint mat[][n]) For(int i=0;i<m;i++) for(int="" j="0;j<n;j++)" li="" mat[i][j]<="" print=""> Declare function void matcheck with integer parameters n, arr[][n] Declare int row,col, up=1 for (row = 0; row < n; row++) for (col = 0; col < n; col++) if (col < row && arr[row][col] != 0) up=0 if(up=1) </m;i++)></m;i++)>	

- 10) Print The entered matrix is a upper triangular matrix
- 11) Print The matrix is
- 12) Call function as Matprint(n,n,arr)
- 13) Else

Print This is Not a Upper triangular matrix

- 14) Define function main
- 15) Initialize integer variables m and n
- 16) Input number of rows and columns i.e m and n
- 17) Declare int arr[m][n]
- 18) Input elements of array
- 19) Call function matread(m,n,arr)
- 20) Call function matcheck(n,arr)
- 21) STOP

FLOWCHART:


```
void matcheck(int n, int arr[][n])
    int row, col, up;
    up = 1;
    for (row = 0; row < n; row++)
        for (col = 0; col < n; col++)
            if (col < row && arr[row][col] != 0)</pre>
                up = 0;
    if (up == 1)
        printf("\nThe entered matrix is a Upper triangular matrix.\n");
        printf("The matrix is printed below \n");
        matprint(n,n,arr);
    else
        printf("\nThis is Not a Upper triangular matrix.");
int main()
    int m, n;
    printf("Enter the number of rows and columns \n");
    scanf("%d %d", &m, &n);
    int arr[m][n];
    printf("Enter elements of matrix\n");
    matread(m, n, arr);
    matcheck(m, arr);
    return 0;
```

```
Enter the number of rows and columns

3

Enter elements of matrix

3

5

7

4

5

6

7

9

This is Not a Upper triangular matrix.
PS C:\Users\aspur\C PROGRAMS\mydirectory>
```

CONCLUSION:

We learnt about the 2-D arrays in the above experiment, we learnt about their functions and operations on matrix like matrix addition, subtraction, multiplication etc. and we learnt to use them in various problems.