34.11. PROBLEMS 1237

Then Proposition 34.34 yields the following result.

Proposition 34.36. If (e_1, \ldots, e_p) is any basis of E, then every element $\omega \in \operatorname{Alt}^n(E; F)$ can be written in a unique way as

$$\omega = \sum_{I} e_{I}^{*} \cdot f_{I}, \qquad f_{I} \in F,$$

where the e_I^* are defined as in Section 34.2.

34.11 Problems

Problem 34.1. Complete the induction argument used in the proof of Proposition 34.1 (2).

Problem 34.2. Prove Proposition 34.2.

Problem 34.3. Prove Proposition 34.9.

Problem 34.4. Show that the pairing given by (*) in Section 34.4 is nondegenerate.

Problem 34.5. Let \mathfrak{I}_a be the two-sided ideal generated by all tensors of the form $u \otimes u \in V^{\otimes 2}$. Prove that

$$\bigwedge^{m}(V) \cong V^{\otimes m}/(\mathfrak{I}_a \cap V^{\otimes m}).$$

Problem 34.6. Complete the induction proof of Proposition 34.12.

Problem 34.7. Prove the following lemma: If V is a vector space with $\dim(V) \leq 3$, then $\alpha \wedge \alpha = 0$ whenever $\alpha \in \bigwedge(V)$.

Problem 34.8. Prove Proposition 34.13.

Problem 34.9. Given two graded algebras E and F, define $E \otimes F$ to be the vector space $E \otimes F$, but with a skew-commutative multiplication given by

$$(a \otimes b) \wedge (c \otimes d) = (-1)^{\deg(b)\deg(c)}(ac) \otimes (bd),$$

where $a \in E^m, b \in F^p, c \in E^n, d \in F^q$. Show that

$$\bigwedge (E \oplus F) \cong \bigwedge (E) \widehat{\otimes} \bigwedge (F).$$

Problem 34.10. If $\langle -, - \rangle$ denotes the inner product on V, recall that we defined an inner product on $\bigwedge^k V$, also denoted $\langle -, - \rangle$, by setting

$$\langle u_1 \wedge \cdots \wedge u_k, v_1 \wedge \cdots \wedge v_k \rangle = \det(\langle u_i, v_j \rangle),$$

for all $u_i, v_i \in V$, and extending $\langle -, - \rangle$ by bilinearity.

Show that if (e_1, \ldots, e_n) is an orthonormal basis of V, then the basis of $\bigwedge^k V$ consisting of the e_I (where $I = \{i_1, \ldots, i_k\}$, with $1 \leq i_1 < \cdots < i_k \leq n$) is also an orthonormal basis of $\bigwedge^k V$.