Signals and Systems

Chapter 10

The Z-Transform

Previous Knowledge:

Chap.3
$$x(t) = est$$
 $h(t)$ $y(t) = H(s)e^{st}$ $y[n] = H(z)e^{j\omega n}$

$$H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt$$

$$H(z) = \sum_{k=-\infty}^{+\infty} h[k] z^{-k}$$
 (system function)

Previous Knowledge:

$$z = e^{j\omega}$$

$$H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} h[n] e^{-j\omega n}$$

(Frequency response)

Chap.5: DT Fourier Transform

Previous Knowledge:

 $z = re^{j\omega}$: General complex variable

$$H(z) = \sum_{n=-\infty}^{+\infty} h[n] z^{-n} \longrightarrow X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

Chap.10: Z-Transform

10. The Z-Transform

10.1 The Z-Transform

An LTI system of D-T

$$x[n] = z^n \longrightarrow y[n] = H(z)z^n$$

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$$

(1) Definition
$$X(z) = \sum x[n]z^{-n}$$

$$n=-\infty$$

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n} \quad \text{ROC}$$

$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
 ROC

(2) Region of Convergence (ROC)

ROC: Range of |z| for X(z) to converge

Representation:

- A. Inequality
- B. Region in **Z**-plane

10 The Z-Transform

$$\frac{Let}{z = re^{j\omega}} X(z) = X(re^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n](re^{j\omega})^{-n}$$

Then
$$=\sum_{n=-\infty}^{\infty} \{x[n]r^{-n}\}e^{-j\omega n} = F\{x[n]r^{-n}\}$$

FT converges, and Z-transform converges.

* ROC of X(z): |z|??

Example 10.1

$$x[n] = a^n u[n]$$

$$X(z) = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n$$

How to determine the ROC of X(z)?

$$\therefore X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, |z| > |a|$$

$$a^{n}u[n] \longleftrightarrow \frac{z}{1 - az^{-1}}, |z| > |a|$$

The ROC of signals for 0<a<1 (right-sided signal)

Specially, some commonly used ZT pairs are in next slide.

$$u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1-z^{-1}} , |z| > 1$$

$$\cos(\omega_0 n) u[n] \longleftrightarrow \frac{1 - (\cos \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}, |z| > 1$$

$$\sin(\omega_0 n)u[n] \longleftrightarrow \frac{(\sin \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}, |z| > 1$$

$$x[n] = -a^n u[-n-1]$$

$$X(z) = -\sum_{n=-\infty}^{\infty} a^n u[-n-1] z^{-n} = -\sum_{n=-\infty}^{-1} (az^{-1})^n$$

$$= -\sum_{n=1}^{\infty} (a^{-1}z)^n = -\frac{a^{-1}z}{1 - a^{-1}z}, |z| < |a|$$

$$\therefore X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, |z| < |a|$$

$$-a^{n}u[-n-1] \stackrel{Z}{\longleftrightarrow} \frac{1}{1-az^{-1}}, |z| < |a|$$

The ROC of X(z) when 0<a<1 (a left-sided signal)

Example

$$\delta[n] \stackrel{Z}{\longleftrightarrow} 1, \quad 0 \le |z| \le \infty$$

$$\sum_{n=-\infty}^{\infty} \delta[n] z^{-n} = 1$$

The ROC is the entire z-plane.

Read example 10.3~4 by yourself!

Normally, X(z) is rational in z (or z^{-1}) form.

10.2 The Region of Convergence for Z Transform

Property1: The ROC of X(z) consists of a ring in the z-plane centered about the origin.

Property2: the ROC does not contain any poles.

Property3: If x[n] is of finite duration and is absolutely summable, then the ROC is the entire z-plane, except possibly z=0 and/or $z=\infty$.

Example:

$$\delta[n-1] \stackrel{Z}{\longleftrightarrow} z^{-1}, 0 < |z| \le \infty$$

$$: \sum_{n=-\infty}^{\infty} \delta[n-1]z^{-n} = z^{-1}$$

$$\delta[n+1] \stackrel{Z}{\longleftrightarrow} z, 0 \le |z| < \infty$$

Example 10.6
$$x[n] = \begin{cases} a^n, 0 \le n \le N-1 \\ 0, otherwise \end{cases}$$

finite duration

Length: N

$$X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \frac{1 - a^N z^{-N}}{1 - a z^{-1}}$$

or
$$=\frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}$$
 $0 < |z| \le \infty$

zeros:

$$z_k = ae^{j(\frac{2\pi}{N})k}$$

$$k = 1, 2, ..., N - 1$$

poles: z=0, (N-1)th order, and z=a

Zero-pole plot is shown in the figure of next slide.

Note: **z**=**a** is cancelled.

Property4: If x[n] is right sided, and if the circle $|z|=r_0$ is in the ROC, then all finite values of z for which $|z| > r_0$ will also in the ROC.

The ROC of a right-sided signal

Property5: If x[n] is left sided, and if the circle $|z|=r_0$ is in the ROC, then all values of z for which $0<|z|< r_0$ will also in the ROC.

Property6: If x[n] is two sided, and if the circle $|z|=r_0$ is in the ROC, then the ROC will consist of a ring in the z-plane that includes the circle

 $|z| = r_0$. Normally, $r_1 < |z| < r_2$. $(r_1 < r_2)$

$$x[n] = b^{|n|}, for 0 < b < 1$$

$$x[n] = b^n u[n] + b^{-n} u[-n-1]$$

$$b^n u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - bz^{-1}}, |z| > b$$

$$b^{-n}u[-n-1] \longleftrightarrow \frac{z}{1-b^{-1}z^{-1}}, |z| < \frac{1}{b}$$

$$X(z) = \frac{1}{1 - bz^{-1}} - \frac{1}{1 - b^{-1}z^{-1}},$$

$$b < |z| < \frac{1}{b}$$

Z-plane

When b > 1, X(z)is not existed. **Property7:** If the Z transform X(z) of x[n] is

rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(z) are contained in the ROC.

Property8: If the Z transform X(z) of x[n] is rational, and if x[n] is right sided, then the ROC is the region in the z-plane outside the outmost pole---I.e., outside the circle of radius equal to the largest magnitude of the poles of X(z).

Furthermore, if it is causal, then the ROC also includes $\mathbf{z} = \infty$.

Property9: If the z- transform X(z) of x[n] is rational, and if x[n] is left sided, then the ROC is

the region in the z-plane inside the innermost nonzero pole---I.e., inside the circle of radius equal to the smallest magnitude of the poles of X(z) other than any at z=0 and extending inward to and possibly including z=0.

In particular, if x[n] is anticausal, then the ROC also includes z=0.

Example 10.8

$$X(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - 2z^{-1})},$$

There are 3 possible ROCs

ROC1

ROC2

ROC3

$$|z| > 2 \qquad |z| < \frac{1}{3}$$

$$\frac{1}{3} < |z| < 2$$

right sided x[n]

left sided

two sided

$$X(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - 2z^{-1})} = \frac{-2}{1 - \frac{1}{3}z^{-1}} + \frac{3}{1 - 2z^{-1}},$$

ROC1:
$$|z| > 2$$
, $x[n] = -2\left(\frac{1}{3}\right)^n u[n] + 3(2)^n u[n]$

ROC2:
$$|z| < \frac{1}{3}, \quad x[n] = 2\left(\frac{1}{3}\right)^n u[-n-1] - 3\left(2\right)^n u[-n-1]$$

ROC3:
$$\frac{1}{3} < |z| < 2$$
, $x[n] = -2\left(\frac{1}{3}\right)^n u[n] - 3\left(2\right)^n u[-n-1]$

10.3 The **Inverse Z-Transform**

From
$$X(z) = X(re^{j\omega}) = DTFT\{r^{-n}x[n]\}$$

$$\therefore r^{-n} x[n] = F^{-1} \{ X(re^{j\omega}) \}$$

$$= \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega}) e^{jn\omega} d\omega$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega}) (re^{j\omega})^n d\omega$$

Let
$$z = re^{j\omega}$$
 $d\omega = \frac{1}{jz}dz$

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

Integration around a counterclockwise closed circular contour centered at the origin and with radius r.

The calculation for inverse Z-Transform:

- (1) Integration of complex function by equation.
- (2) Compute by Partial Fraction Expansion.
- (3) power-series expansion

Example 10.9 The inverse ZT is wanted, if

$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{(1 - \frac{1}{4}z^{-1})(1 - \frac{1}{3}z^{-1})}, |z| > \frac{1}{3}$$

Partial Fraction Expansion in z -1 form

$$X(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})} + \frac{2}{(1 - \frac{1}{3}z^{-1})}, |z| > \frac{1}{3}$$

we get

$$x_1[n] = (\frac{1}{4})^n u[n] \longleftrightarrow \frac{2}{(1 - \frac{1}{4}z^{-1})}, |z| > \frac{1}{4}$$

$$x_2[n] = 2(\frac{1}{3})^n u[n] \longleftrightarrow \frac{2}{(1 - \frac{1}{3}z^{-1})}, |z| > \frac{1}{3}$$

$$x[n] = x_1[n] + x_2[n] = (\frac{1}{4})^n u[n] + 2(\frac{1}{3})^n u[n]$$

Example 10.10

Same form of X(z), but with different ROC.

$$X(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})} + \frac{2}{(1 - \frac{1}{3}z^{-1})}, \frac{1}{4} < |z| > \frac{1}{3}$$

$$x_{1}[n] = (\frac{1}{4})^{n} u[n] \longleftrightarrow \frac{z}{(1 - \frac{1}{4}z^{-1})}, |z| > \frac{1}{4}$$

$$x_{2}[n] = -2(\frac{1}{3})^{n} u[-n-1]$$

$$x_2[n] \stackrel{Z}{\longleftrightarrow} \frac{2}{(1 - \frac{1}{3}z^{-1})}, |z| < \frac{1}{3}$$

So, we get
$$x[n] = x_1[n] + x_2[n]$$

= $(\frac{1}{4})^n u[n] - 2(\frac{1}{3})^n u[-n-1]$

Normally, Partial Fraction Expansion of rational X(z)

$$X(z) = \sum_{i=1}^{m} \frac{A_i}{1 - a_i z^{-1}}$$

Example 10.12

$$X(z) = 4z^2 + 2 + 3z^{-1}, 0 < |z| < \infty$$

From the powerseries definition of ZT, we get:

$$x[n] = \begin{cases} 4, & n = -2 \\ 2, & n = 0 \\ 3, & n = 1 \\ 0, otherwise \end{cases}$$

So,
$$x[n] = 4\delta [n+2] + 2\delta [n] + 3\delta [n-1]$$

 $\delta[n+n_0] \stackrel{Z}{\longleftrightarrow} z^{n_0}, \quad 0 \le |z| < \infty$

Example 10.13 Consider
$$X(z) = \frac{1}{1 - az^{-1}}$$

ROC₁: $|z| > |a|$: $|az^{-1}| < 1$

ROC₁:
$$|z| > |a|$$
 : $|az^{-1}| < 1$

$$x[n] = \{1, a, a^2, ...\} = a^n u[n]$$

$$\because \frac{1}{1 - az^{-1}} = 1 + az^{-1} + a^2z^{-2} + \dots$$

$$\therefore x[n] = \delta[n] + a\delta[n-1] + a^2\delta[n-2] + \dots$$

$$=a^nu[n]$$

ROC2:
$$|z| < |a|$$
 : $|az^{-1}| > 1$

$$x[n] = \{..., -a^{-2}, -a^{-1}, 0\} = -a^{-n}u[-n-1]$$

$$\because \frac{1}{1 - az^{-1}} = -a^{-1}z - a^{-2}z^2 - \dots$$

$$\therefore x[n] = -a^{-1}\delta[n+1] - a^{-2}\delta[n+2] + \dots$$

$$=-a^{-n}u[-n-1]$$

Example 10.14
$$X(z) = \log(1 + az^{-1}), |z| > |a|$$

 $x[n] = ?$

$$\log(1+v) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}v^n}{n}, |v| < 1$$

$$X(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^n z^{-n}}{n}$$

$$X(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^n z^{-n}}{n}$$

$$x[n] = \begin{cases} \frac{(-1)^{n+1} a^n}{n}, n \ge 1 \\ 0, n \le 0 \end{cases}$$

10.4 The Properties of Z-Transform (10.5) 10.4.1 Linearity

If
$$x_1[n] \stackrel{Z}{\longleftrightarrow} X_1(z)$$
, R_1

$$x_2[n] \stackrel{Z}{\longleftrightarrow} X_2(z)$$
, R_2

Then

$$ax_1[n] + bx_2[n] \stackrel{Z}{\longleftrightarrow} aX_1(z) + bX_2(z),$$

ROC containing $R_1 \cap R_2$

Note: (1) normally, common ROC (overlap).

(2) $\mathbb{R}_1 \cap \mathbb{R}_2$ may be larger than \mathbb{R}_1 or \mathbb{R}_2

For example:

$$x_{1}[n] = a^{n}u[n] \longleftrightarrow \frac{z}{1 - az^{-1}}, |z| > |a|$$

$$x_{2}[n] = a^{n}u[n-1] \longleftrightarrow \frac{z}{1 - az^{-1}}, |z| > |a|$$

$$1 - az^{-1}, |z| > |a|$$

$$x_1[n] - x_2[n] = \delta[n] \stackrel{Z}{\longleftrightarrow} 1, -\infty < |z| < \infty$$

10.4.2 Time Shifting

If

$$x[n] \stackrel{Z}{\longleftrightarrow} X(z),$$

Then

$$x[n-n_0] \stackrel{Z}{\longleftrightarrow} z^{-n_0} X(z),$$

Example From:

$$a^n u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, |z| > |a|$$

We can get

$$a^{n-1}u[n-1] \longleftrightarrow \frac{z}{1-az^{-1}} = \frac{1}{z-a}, |z| > |a|$$

10.4.3 Scaling in z-Domain

If
$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
,

Then
$$z_0^n x[n] \stackrel{Z}{\longleftrightarrow} X(z/z_0)$$
, $|z_0| R$

Why?

Specially,
$$e^{j\omega_0 n}x[n] \stackrel{Z}{\longleftrightarrow} X(e^{-j\omega_0}z)$$
, R

Example
$$\omega_0 = \pi$$

$$(-1)^n x[n] \longleftrightarrow^Z X(-z), \mathbb{R}$$

10.4.4 Time Reversal

$$x[n] \stackrel{Z}{\longleftrightarrow} X(z),$$

$$x[-n] \stackrel{Z}{\longleftrightarrow} X(\frac{1}{z}), \quad 1/\mathbb{R}$$

Example

From:

$$a^n u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - az^{-1}}, |z| > |a|$$

We can get

$$a^{-n}u[-n] \longleftrightarrow \frac{z}{1-az} = \frac{-a^{-1}z^{-1}}{1-a^{-1}z^{-1}}, |z| < |a|^{-1}$$
Furthermore, $a^{-1} \to a$

$$a^n u[-n] \stackrel{Z}{\longleftrightarrow} \frac{-(a/z)}{1-az^{-1}}, |z| < |a|$$

Delay the sequence, we can get

$$-a^{n}u[-n-1] \xrightarrow{Z} \frac{1}{1-az^{-1}}, |z| < |a|$$

10.4.5 Time Expansion

If
$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
, R

Then,
$$x_{(k)}[n] \stackrel{Z}{\longleftrightarrow} X(z^k)$$
, $\mathbb{R}^{1/k}$ why?

$$x_{(k)}[n] = \begin{cases} x[n/k] & \text{if } n \text{ is a multiple of } k \\ 0 & \text{if } n \text{ is not a multiple of } k \end{cases}$$

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n} \longrightarrow X(z^k) = \sum_{n=-\infty}^{+\infty} x[n](z^k)^{-n}$$

10.4.6 Conjugation

If
$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
, R

Then,
$$x^*[n] \stackrel{Z}{\longleftrightarrow} X^*(z^*)$$
, R

If
$$\chi[n]$$
 is real, $X(z) = X^*(z^*)$

If X(z) has a pole (or zero) at $z = z_0$,

It must also have a pole (or zero) at $z=z_0$

10.4.7 The Convolution Property

If
$$x_1[n] \stackrel{Z}{\longleftrightarrow} X_1(z)$$
, \mathbb{R}_1

Then
$$x_2[n] \stackrel{Z}{\longleftrightarrow} X_2(z)$$
, \mathbb{R}_2

$$x_1[n] * x_2[n] \stackrel{Z}{\longleftrightarrow} X_1(z) X_2(z),$$
Containing $\mathbb{R}_1 \cap \mathbb{R}_2$

Note: if $R_1 \cap R_2 = \emptyset$, $X_1(z)X_2(z)$ does not exist.

Example 10.15

If
$$y[n] = x[n] * h[n]$$

where
$$h[n] = \delta[n] - \delta[n-1]$$

$$h[n] = \delta[n] - \delta[n-1] \xleftarrow{Z} 1 - z^{-1}$$
ROC: entire z-plane except the origin

$$x[n] \stackrel{Z}{\longleftrightarrow} X(z), R$$

$$y[n] \stackrel{Z}{\longleftrightarrow} (1-z^{-1})X(z), \quad \mathbb{R}$$

Example

If
$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
, R

Then

$$g[n] = \sum_{k=-\infty}^{n} x[k] = x[n] * u[n] \longleftrightarrow^{Z} G(z)$$

$$G(z) = X(z) \frac{1}{1 - z^{-1}}, \quad \mathbb{R} \cap |\mathbf{z}| > 1$$

10.4.8 Differentiation in the z-Domain

If
$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
, R

Then,
$$nx[n] \longleftrightarrow -z \frac{dX(z)}{dz}$$
, R

Example From:

$$a^n u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - az^{-1}}, |z| > |a|$$

We can get

$$na^{n}u[n] \stackrel{Z}{\longleftrightarrow} -z \frac{d}{dz} \left[\frac{1}{1-az^{-1}} \right] = \frac{az^{-1}}{(1-az^{-1})^{2}},$$

Example: The inverse ZT is wanted.

$$x[n] \stackrel{Z}{\longleftrightarrow} X(z) = \ln(1 - \frac{1}{2}z^{-1}) \quad |z| > \frac{1}{2}$$

$$nx[n] \stackrel{Z}{\longleftrightarrow} -z \frac{dX(z)}{dz} = -\frac{1}{2} \frac{z^{-1}}{1 - \frac{1}{2} z^{-1}} \quad |z| > \frac{1}{2}$$

$$\left(\frac{1}{2}\right)^{n-1}u[n-1] \longleftrightarrow \frac{z}{1-\frac{1}{2}z^{-1}}, \quad |z| > \frac{1}{2}$$

$$nx[n] = -\frac{1}{2} \left(\frac{1}{2}\right)^{n-1} u[n-1] \quad x[n] = -\frac{1}{n} \left(\frac{1}{2}\right)^{n} u[n-1]$$

10.4.9 The Initial-/Final-Value Theorem If x[n] = 0, for n < 0. Its ZT X(z),

 $ROC: |z| > r_1$

Then
$$x[0] = \lim_{z \to \infty} X(z)$$
,

Furthermore, If ROC of (z-1)X(z) include the unit circle of z-plane, then

$$\lim_{n\to\infty} x[n] = x[\infty] = \lim_{z\to 1} (z-1)X(z),$$

Example 10.19

$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$

Then
$$\chi[0] = ?$$

ROC: $|z| > r_1$

Also, by using the initial-value theorem

$$x[0] = \lim_{z \to \infty} X(z) = \lim_{z \to \infty} \frac{1 - \frac{3}{2}z^{-1}}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 - \frac{1}{2}z^{-1}\right)} = 1$$

10.5 Table 10.1-Properties of z-transform

TABLE 10.1 PROPERTIES OF THE z-TRANSFORM

Section	Property	Signal	z-Transform	ROC
		x[n]	X(z)	R
		$x_1[n]$	$X_1(z)$	R_1
		$x_2[n]$	$X_2(z)$	R_2
10.5.1	Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2
10.5.2	Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R, except for the possible addition or deletion of the origin
10.5.3	Scaling in the z-domain	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R
		$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	z_0R
		$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R (i.e., $ a R$ = the set of points $\{ a z\}$ for z in R)
10.5.4	Time reversal	x[-n]	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} , where z is in R)
10.5.5	Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some integer r	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, where z is in R)
10.5.6	Conjugation	$x^*[n]$	$X^{*}(z^{*})$	R
10.5.7	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2
10.5.7	First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
10.5.7	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
10.5.8	Differentiation in the z-domain	nx[n]	$-z\frac{dX(z)}{dz}$	R
10.5.9		Initial Value The	orem	

10.5.9

Initial Value Theorem If x[n] = 0 for n < 0, then $x[0] = \lim X(z)$

TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

10.5 Table 10.2 -Some ZT Pairs

Signal	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	Z ^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$6a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$8na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin\omega_0]z^{-1}}{1-[2\cos\omega_0]z^{-1}+z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r

10.6 Analysis and Characterization of LTI systems Using ZT (including 10.4 10.7)

Consider an LTI system:

$$\begin{array}{c|c}
x[n] \\
\hline
X(z) \\
\end{array}
\begin{array}{c}
h[n] \\
H(z)
\end{array}
\begin{array}{c}
y[n] = x[n] * h[n] \\
Y(z) = X(z) H(z)
\end{array}$$

$$(H(z)z^n)$$

10.6.1 Causality

(1) A causal system
$$\longrightarrow H(z)$$
, ROC: $(|z| > r_1)$

$$(h[n] = 0, n < 0)$$

exterior of a circle

(including infinity)

(2) For rational
$$H(z) = \frac{N(z)}{D(z)}$$
,

A causal system \iff (a) ROC: $(|z| > r_1)$

exterior of a circle outside the outmost pole(r₁)

(b) The order of the numerator N(z) cannot be greater than the order of the denominator D(z).

Example 10.20

ROC:
$$|z| > \frac{1}{2}$$

$$H(z) = \frac{z^3 - 2z^2 + z}{z^2 + \frac{1}{4}z + \frac{1}{8}}$$

not causal system

Example 10.21

$$H(z) = \frac{2 - 2.5z^{-1}}{(1 - 0.5z^{-1})(1 - 2z^{-1})}$$

$$= \frac{2z^2 + 2.5z}{z^2 - 2.5z + 1} , |z| > 2$$

10.6.2 Stability

(1) A stable system
$$(z)$$
, ROC: Includes $|z|=1$

(the unit circle)

(2) A causal stable system with rational

$$H(z) = \frac{N(z)}{D(z)},$$
 \iff All poles lies to unit circle of z-plane

All poles lies inside the z-plane

Why?

Example 10.22~24 Read by yourself!

10.6.3 Pole-Zero Plot of H(z) and Evaluation of Frequency Response $H(e^{j\omega})$ (10.4)

$$H(z) = \frac{N(z)}{D(z)} \qquad H(z) = \frac{b_0 \prod_{i=1}^{M} (z - \gamma_i)}{\prod_{i=1}^{N} (z - \lambda_i)}$$

$$I(e^{j\omega}) = \frac{\sum_{i=1}^{M} (e^{j\omega} - \gamma_i)}{\prod_{i=1}^{N} (e^{j\omega} - \lambda_i)}$$

Example (10.4.1 first order systems)

$$h[n] = \lambda_1^n u[n] \quad H(z) = \frac{1}{1 - \lambda_1 z^{-1}} = \frac{z}{z - \lambda_1}$$
unit circle $\uparrow \Im m$

Example (10.4.2 second order systems)

10 The Z-Transform

Example: A causal and stable system

10.6.4 LTI Systems Characterized by Linear

Constant-Coefficient Difference Equations

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Z-transform:

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{Y(z)}{X(z)}$$
 (rational)

Usually, a practical system is causal and stab

Usually, a practical system is causal and stable.

Example 10.25

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]$$

$$H(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} \quad \text{ROC1:} \quad |z| > \frac{1}{2}$$

$$h[n] = \left(\frac{1}{2}\right)^n u[n] + \frac{1}{3} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

ROC2:
$$|z| < \frac{1}{2}$$

 $H(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}}$

$$h[n] = -\left(\frac{1}{2}\right)^{n} u[-n-1] - \frac{1}{3} \left(\frac{1}{2}\right)^{n-1} u[-n]$$

10.6.5 Examples Relating System Behavior to the System Function

Example 10.26

information 1: $x_1[n] = (1/6)^n u[n]$

$$\implies y_1[n] = \left[a(\frac{1}{2})^n + 10(\frac{1}{3})^n \right] u[n]$$

information 2: if $x_2[n] = (-1)^n$

From information 1, we get:

$$X_{1}(z) = \frac{1}{1 - \frac{1}{6}z^{-1}}, |z| > \frac{1}{6}$$

$$Y_{1}(z) = \frac{a}{1 - \frac{1}{2}z^{-1}} + \frac{10}{1 - \frac{1}{3}z^{-1}}, |z| > \frac{1}{2}$$

$$H(z) = \frac{Y_1(z)}{X_1(z)} = \frac{[(a+10)-(5+\frac{a}{3})z^{-1}][1-\frac{1}{6}z^{-1}]}{(1-\frac{1}{2}z^{-1})(1-\frac{1}{3}z^{-1})}$$

From information 2, we know: $H(-1) = \frac{7}{4}$

$$\therefore a = -9$$

$$H(z) = \frac{(1 - 2z^{-1})(1 - \frac{1}{6}z^{-1})}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{3}z^{-1})}$$

$$H(z) = \frac{\frac{1 - - z}{6}z^{-1} + \frac{1}{3}z^{-2}}{1 - \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}} \quad \text{ROC:} \quad |z| > 1/2$$

 $y[n] - \frac{5}{6}y[n-1] + \frac{1}{6}y[n-2] = x[n] - \frac{13}{6}x[n-1] + \frac{1}{3}x[n-2]$

Example 10.27 a stable, causal system

$$H(z)$$
 (rational) contains a pole, $z = 1/2$

a zero somewhere on the unit circle

Other zeros and poles are unknown.

Whether can we definitely say that it is true or false each of following statements?

(a)
$$F\{(\frac{1}{2})^n h[n]\}$$
 converges.

(b)
$$H(e^{j\omega}) = 0$$
, for some ω .

(c) h[n] has finite duration.

- F
- (d) h[n] is real. Insufficient information
- (e) $g[n] = n\{h[n] * h[n]\}$ is the impulse response
 - of a stable system.

$$G(z) = -z \frac{d}{dz} H(z)^2$$

$$= -2zH(z)\left[\frac{d}{dz}H(z)\right]$$

10.7 System Function Algebra and Block Diagram Representations (10.8)

10.7.1 System Functions for Interconnections of LTI Systems

Series(cascade)

Parallel

Feed-back

10.7.2 Block Diagram Representation for causal LTI Systems Described by Difference Equations and Rational System Functions

Basic elements:

adder

multiplication

$$Z^{-1} Z^{-1} X(z)$$

unit delay

$$H(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} = \frac{Y(z)}{X(z)}$$

$$y[n] - \frac{1}{4}y[n-1] = x[n]$$

Let
$$W(z) = z^{-1}Y(z)$$
, $w[n] = y[n-1]$

Then,
$$Y(z) = X(z) + \frac{1}{4}W(z)$$

Equivalent representation

Example 10.29
$$H(z) = \frac{1 - 2z^{-1}}{1 - \frac{1}{4}z^{-1}} = \frac{Y(z)}{X(z)}$$

$$H(z) = \left(\frac{1}{1 - \frac{1}{4}z^{-1}}\right)(1 - 2z^{-1}) = \frac{Y(z)}{X(z)}$$

Let
$$V(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} X(z)$$

$$(1-2z^{-1})V(z) = Y(z)$$
 $y[n] = v[n] - 2v[n-1]$

Canonic form:

the **number** of delayer = the **order** of the difference equation

Example 10.30

$$H(z) = \frac{1}{(1 + \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})} = \frac{1}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}$$

$$y[n] + \frac{1}{4}y[n-1] - \frac{1}{8}y[n-2] = x[n]$$

(1) direct-form

Let
$$F(z) = z^{-1}Y(z)$$

$$E(z) = z^{-1}F(z) = z^{-2}Y(z)$$

Then,
$$Y(z) = X(z) - \frac{1}{4}F(z) + \frac{1}{8}E(z)$$

(2) cascade-form

$$H(z) = \frac{1}{(1 + \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})} = \frac{1}{(1 + \frac{1}{2}z^{-1})} \times \frac{1}{(1 - \frac{1}{4}z^{-1})}$$

(3) parallel-form

Partial Fraction Expansion in z -1 form

$$H(z) = \frac{1}{(1 + \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})}$$

$$= \frac{2/3}{(1 + \frac{1}{2}z^{-1})} + \frac{1/3}{(1 - \frac{1}{4}z^{-1})}$$

Cascade-form:

$$H(z) = \left(\frac{1 + \frac{1}{4}z^{-1}}{1 + \frac{1}{2}z^{-1}}\right) \left(\frac{1 - 2z^{-1}}{1 - \frac{1}{4}z^{-1}}\right)$$

parallel-form:

$$H(z) = 4 + \frac{5/3}{1 + \frac{1}{2}z^{-1}} - \frac{14/3}{1 - \frac{1}{4}z^{-1}}$$

10.8 The Unilateral ZT(10.9)

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

or

$$x[n]u[n] \stackrel{Z}{\longleftrightarrow} X(z), \quad |z| > r_1$$

$$x[n] \stackrel{UZ}{\longleftrightarrow} X(z) = UZ\{x[n]\}$$

The most properties of Unilateral ZT are same as ZT, except delay and advance in the time Domain.

TABLE 10.3 PROPERTIES OF THE UNILATERAL z-TRANSFORM

Property	Signal	Unilateral z-Transform
_ _ _	$x[n]$ $x_1[n]$ $x_2[n]$	$\mathfrak{X}(z)$ $\mathfrak{X}_1(z)$ $\mathfrak{X}_2(z)$
Linearity	$ax_1[n] + bx_2[n]$	$a\mathfrak{X}_1(z) + b\mathfrak{X}_2(z)$
Time delay	x[n-1]	$z^{-1}\mathfrak{X}(z)+x[-1]$
Time advance	x[n+1]	$z\mathfrak{X}(z) - zx[0]$
Scaling in the z-domain	$e^{j\omega_0 n}x[n]$ $z_0^n x[n]$ $a^n x[n]$	$\mathfrak{X}(e^{-j\omega_0}z)$ $\mathfrak{X}(z/z_0)$ $\mathfrak{X}(a^{-1}z)$
Time expansion	$x_k[n] = \begin{cases} x[m], & n = mk \\ 0, & n \neq mk \text{ for any } m \end{cases}$	$\mathfrak{X}(z^k)$
Conjugation	$x^*[n]$	$\mathfrak{X}^*(z^*)$
Convolution (assuming that $x_1[n]$ and $x_2[n]$ are identically zero for $n < 0$)	$x_1[n] * x_2[n]$	$\mathfrak{X}_1(z)\mathfrak{X}_2(z)$
First difference	x[n] - x[n-1]	$(1-z^{-1})\mathfrak{X}(z)-x[-1]$
Accumulation	$\sum_{k=0}^{n} x[k]$	$\frac{1}{1-z^{-1}}\mathfrak{X}(z)$
Differentiation in the z-domain	nx[n]	$-z\frac{d\mathfrak{X}(z)}{dz}$

Initial Value Theorem $x[0] = \lim_{z \to \infty} \mathfrak{C}(z)$

If
$$x[n]u[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
, $|z| > r_1$

Then

$$x[n-1]u[n] \longleftrightarrow^{Z} z^{-1}X(z) + x[-1],$$

$$|\mathbf{z}| > \mathbf{r}_1$$

$$x[n+1]u[n] \stackrel{Z}{\longleftrightarrow} zX(z) - zx[0],$$
 $|z| > r_1$

Solving difference equations using the Unilateral ZT

Example 10.33

$$x[n] = a^{n+1}u[n+1]$$

In this case, the unilateral and bilateral transforms are not equal, since $x[-1] = 1 \neq 0$.

By time shifting property: $X(z) = \frac{z}{1 - az^{-1}}, |z| > |a|$

In contrast, the unilateral transform:

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} a^{n+1}z^{-n}$$
$$= \frac{a}{1 - az^{-1}}, |z| > |a|$$

SO

Example: Balance in a bank account from month to month:

balance --- y[n] interest --- 0.5% net deposit ---
$$x[n]=100u[n-1]$$
 so $y[n+1]=y[n]+0.5\%\cdot y[n]+x[n]$ or $y[n+1]-1.005y[n]=x[n]$ -----(A) $y[0]=10000$, initial condition(borrowed at n=0).

Solution: Using the Unilateral ZT to Eq.(A)

$$zY(z) - zy[0] - 1.005Y(z) = X(z)$$

$$Y(z) = \frac{100}{(z-1.005)(z-1)} + \frac{zy[0]}{z-1.005}$$

$$Y_{zc}(z)$$
 $Y_{zi}(z)$

zero-state response zero-input response

$$Y(z) = \frac{2 \times 10000}{z - 1.005} - \frac{2 \times 10000}{z - 1} + \frac{10000z}{z - 1.005}$$

$$y[n] = [2 \times 10^{4} \times 1.005^{n-1} - 2 \times 10^{4}]u[n-1]$$
$$+10^{4} \times 1.005^{n}, n \ge 1$$

Resume of Chapter 10

Key points of analysis:

$$\begin{array}{c|c}
 & X[n] \\
\hline
X(z) \\
\hline
(z^n)
\end{array}
\begin{array}{c}
 & Y[n] = X[n] * h[n] \\
 & Y(z) = X(z) H(z) \\
\hline
(H(z)z^n)
\end{array}$$

Key points of caculation:

- 1. Properties and Basic ZT Pairs
- 2. Partial Fraction Expansion
- 3. Block Diagram Representation

Homework list for Chapter 10

2, 3, 6, 10(a), **24**, **31**, **47**