Лекция по эконометрике № 4, 2 модуль

Ошибки спецификации модели

Демидова
Ольга Анатольевна
https://www.hse.ru/staff/demidova_olga
E-mail:demidova@hse.ru
16.11.2020

План лекции № 4 2 модуль

- •Смещение в оценках коэффициентов, вызванное невключением существенных переменных
- •Уменьшение эффективности оценок коэффициентов при включении в модель излишних переменных
- •Метод пошагового включения переменных и метод пошагового исключения переменных
- •RESET- тест Рамсея для проверки гипотезы о существовании упущенных переменных

	Ошибки спецификации І: невключение существенной переменной							
		Исп	Истинная модель					
		$Y = \beta_0 + \beta_1 X_1 + \varepsilon$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$					
ель	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$							
)цененная модель	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$							

	Ошибки спецификации І: невключение существенной переменной					
		Исп	пинная модель			
		$Y = \beta_0 + \beta_1 X_1 + \varepsilon$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$			
denb	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$	Правильная спецификация, все в порядке				
Эцененная модель	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$		Правильная спе- цификация, все в порядке			

	Ошибки спецификации І: невключение существенной переменной							
		Истинная модель						
		$Y = \beta_0 + \beta_1 X_1 + \varepsilon$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$					
ель	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$		Оценки коэффициентов будут смещенными					
) иененная модель	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$							

Ошибки спецификации I: невключение существенной переменной

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$
 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$

$$E(\hat{\beta}_1) = \beta_1 + \beta_2 \frac{\sum (X_{1i} - \bar{X}_1)(X_{2i} - \bar{X}_2)}{\sum (X_{1i} - \bar{X}_1)^2}$$

Формула для смещения выделена желтым цветом.

Ошибки спецификации I: невключение существенной переменной

$$Y = eta_0 + eta_1 X_1 + eta_2 X_2 + \mathcal{E}$$
 $\hat{Y} = \hat{eta}_0 + \hat{eta}_1 X_1$ $E(\hat{eta}_1) = eta_1 + eta_2 \frac{\sum (X_{1i} - X_1)(X_{2i} - X_2)}{\sum (X_{1i} - X_1)^2}$ Y эффект X_2 Непосредственный эффект переменной A_1 , действующей в качестве заменителя A_2 A_2 A_3

Вывод формулы для смещения

$$E(b_2) = \beta_2 + \beta_3 \frac{\sum (X_{2i} - \overline{X}_2)(X_{3i} - \overline{X}_3)}{\sum (X_{2i} - \overline{X}_2)^2} + E\left(\frac{\sum (X_{2i} - \overline{X}_2)(u_i - \overline{u})}{\sum (X_{2i} - \overline{X}_2)^2}\right)$$

$$E\left(\frac{\sum (X_{1i} - \overline{X}_1)(\varepsilon_i - \overline{\varepsilon})}{\sum (X_{1i} - \overline{X}_1)^2}\right) = \frac{1}{\sum (X_{1i} - \overline{X}_1)^2} E\left(\sum (X_{1i} - \overline{X}_1)(\varepsilon_i - \overline{\varepsilon})\right)$$

$$= \frac{1}{\sum (X_{1i} - \overline{X}_1)^2} \sum E\left\{(X_{1i} - \overline{X}_1)(\varepsilon_i - \overline{\varepsilon})\right\}$$

$$= \frac{1}{\sum (X_{1i} - \overline{X}_1)^2} \sum (X_{1i} - \overline{X}_1)E(\varepsilon_i - \overline{\varepsilon})$$

$$= 0$$

$$S = \beta_1 + \beta_2 ASVABC + \beta_3 SM + u$$

. reg S ASVABC SM

Source	ss +	df	MS		Number of obs F(2, 537)	
Model Residual	1135.67473 2069.30861 +	2 567. 537 3.85	837363 3 4 6109		Prob > F R-squared Adj R-squared	= 0.0000 = 0.3543 = 0.3519
s	•	Std. Err.		• •	 [95% Conf.	-
ASVABC SM _cons	.1328069 .1235071	.0097389	13.64 3.73 10.99	0.000	.1136758 .0585178 4.452244	.151938

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 SM + \varepsilon$$

$$E(\hat{\beta}_1) = \beta_1 + \beta_2 \frac{\sum (ASVABC_i - \overline{ASVABC})(SM_i - \overline{SM})}{\sum (ASVABC_i - \overline{ASVABC})^2}$$

. reg S ASVABC SM

Source	SS	df	MS		Number of obs	= 540
+-					F(2, 537)	= 147.36
Model	1135.67473	2 567.	837363		Prob > F	= 0.0000
Residual	2069.30861	537 3.85	346109		R-squared	= 0.3543
+-					Adj R-squared	= 0.3519
Total	3204.98333	539 5.94	616574		Root MSE	= 1.963
S	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ASVABC	.1328069	.0097389	13.64	0.000	.1136758	.151938
SM	.1235071	.0330837	3.73	0.000	.0585178	.1884963
_cons	5.420733	.4930224	10.99	0.000	4.452244	6.389222

Знак произведения зависит от двух множителей.

. reg S ASVABC SM

Source	SS	df	MS		Number of obs	= 540
+-					F(2, 537)	= 147.36
Model	1135.67473	2 567.8	337363		Prob > F	= 0.0000
Residual	2069.30861	537 3.853	346109		R-squared	= 0.3543
+-					Adj R-squared	= 0.3519
Total	3204.98333	539 5.94	616574		Root MSE	= 1.963
S	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ASVABC	.1328069	.0097389	13.64	0.000	.1136758	.151938
SM	.1235071	.0330837	3.73	0.000	.0585178	.1884963
_cons	5.420733	.4930224	10.99	0.000	4.452244	6.389222
<u> </u>						

$$E(\hat{\beta}_1) = \beta_1 + \beta_2 \frac{\sum (ASVABC_i - \overline{ASVABC})(SM_i - \overline{SM})}{\sum (ASVABC_i - \overline{ASVABC})^2}$$

Оценка коэффициента β₂ положительна.

. reg S ASVABC	SM			. cor SM A	ASVABC	
Source	ss	df 	MS	(obs=540)		
Model		2 567.		!		ASVABC
Residual	2069.30861 			SM	1.0000	
Total	3204.98333	539 5.94	616574	ASVABC	0.4202	1.0000
	 Coef.	 Std. Err.	 t	P> t	 [95% Conf.	Interval]
+						
ASVABC	.1328069	.0097389	13.64	0.000	.1136758	.151938
SM	.1235071	.0330837	3.73	0.000	.0585178	.1884963
_cons	5.420733	.4930224	10.99	0.000	4.452244	6.389222

$$E(\hat{\beta}_1) = \beta_1 + \beta_2 \frac{\sum (ASVABC_i - \overline{ASVABC})(SM_i - \overline{SM})}{\sum (ASVABC_i - \overline{ASVABC})^2}$$

Знак второго множителя в формуле для смещения совпадает со знаком коэффициента корреляции включенного и пропущенного фактора.

12

. reg S ASVABC	S=eta	$B_1 + \beta_2 ASV$	<i>'ABC</i> +	$-\beta_3 SM$	T + u	
S	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ASVABC SM _cons . reg S ASVABC	.1328069 .1235071 5.420733	.0097389 .0330837 .4930224	13.64 3.73 10.99	0.000 0.000 0.000	.1136758 .0585178 4.452244	.151938 .1884963 6.389222
s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ASVABC _cons	.148084 6.066225	.0089431 .4672261	16.56 12.98	0.000	.1305165 5.148413	.1656516 6.984036

Таким образом, знак смещения – положительный, что и наблюдается в реальности.

. reg S	SM
---------	----

•	ss 	df	MS		Number of obs F(1, 538)	
Model Residual	419.086251 2785.89708	1 538 	419.086251 5.17824736		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1308
S				• •	[95% Conf.	=
SM _cons	.3130793	.03480 .41471	9.00		.2447165 9.232226	.3814422

Предположим, что в уравнение регрессии не будет включена переменная *ASVABC*. Тогда коэффициент при переменной *SM* будет смещен. Как и в предыдущем случае, можно показать, что это смещение будет положительным, что и наблюдается.

$$LGEARN = \beta_0 + \beta_1 S + \beta_2 EXP + \varepsilon$$

.reg LGEARN S EXP

Source	l ss	df	MS		Number of obs	= 540
	+				F(2, 537)	= 100.86
Model	50.9842581	2 25	5.492129		Prob > F	= 0.0000
Residual	135.723385	537 .25	2743734		R-squared	= 0.2731
	+				Adj R-squared	= 0.2704
Total	186.707643	539 .3	34639637		Root MSE	= .50274
LGEARN	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
S	.1235911	.0090989	13.58	0.000	.1057173	.141465
EXP	.0350826	.0050046	7.01	0.000	.0252515	.0449137
_cons	.5093196	.1663823	3.06	0.002	.1824796	.8361596

. reg LGEARN	s	EXP				. cor S EX	(P	
Source	 -	ss 	df		MS	(obs=540)		
Model Residual	•	50.9842581 135.723385				 +-	s	EXP
Total	-+- 	186.707643	539	. 34	1639637	S EXP		1.0000
LGEARN	 	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
S EXP _cons	•		.0090 .0050 .1663	046	13.58 7.01 3.06	0.000	.1057173 .0252515 .1824796	.141465 .0449137 .8361596

$$E(\hat{\beta}_1) = \beta_1 + \beta_2 \frac{\sum (S_i - \overline{S})(EXP_i - \overline{EXP})}{\sum (S_i - \overline{S})^2}$$

Если опущена переменная *EXP*, то смещение коэффициента перед переменной S будет отрицательным, т.к. оценка коэффициента β₂ положительная, а коэффициент корреляции S и EXP отрицательный.

Аналогично, если опущена переменная S, то оценка коэффициента перед переменной *EXP* будет смещена вниз.

. reg LGEARN S	EXP				
LGEARN	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
+-					
S	.1235911	.0090989	13.58	0.000	.1057173 .141465
EXP	.0350826	.0050046	7.01	0.000	.0252515 .0449137
_cons	.5093196	.1663823	3.06	0.002	.1824796 .8361596
. reg LGEARN S					
LGEARN	Coef.	Std. Err.	t 	P> t	[95% Conf. Interval]
S 1	.1096934	.0092691	11 83	0.000	.0914853 .1279014
•			10.04		1.039376 1.545107
_cons	1.292241	.120/252	10.04	0.000	1.039376 1.343107
. reg LGEARN EX	(P				
LGEARN	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
EVD	0202700	0056564	3 FC	0 000	0001505 021302
EXP	.0202708	.0056564		0.000	.0091595 .031382
_cons	2.44941	.0988233	24.79	0.000	2.255284 2.643537

Смещение в случае невключения одной из переменных S или EXP действительно является отрицательным.

	Ошибки спецификации II: включение излишней переменной								
		Истинная модель							
		$Y = \beta_0 + \beta_1 X_1 + \varepsilon$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$						
тодель	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$	Правильная спецификация	Оценки коэффициентов являются смещенными						
Оцененная модель	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$	Оценки коэффициентов являются несмещенными, но не эффективными	Правильная спецификация						

Ошибки спецификации II: включение излишней переменной

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

$$Y = \beta_0 + \beta_1 X_1 + 0 X_2 + \varepsilon$$

Ошибки спецификации II: включение излишней переменной

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

$$Y = \beta_0 + \beta_1 X_1 + 0 X_2 + \varepsilon$$

$$\sigma_{\beta_1}^2 = \frac{\sigma_{\varepsilon}^2}{\sum (X_{1i} - \overline{X}_1)^2} \times \frac{1}{1 - r_{X_1, X_2}^2}$$

При включении излишней переменной X_2 увеличивается оценка дисперсии коэффициента перед переменной X_1 . Добавляется множитель 1 / (1 – r^2), где r – коэффициент корреляции между X_1 и X_2 .

. reg LGF	DHO	LGEXP LGS	[ZE							
Source	1	SS	df	•	MS			Number of obs		
	•							F(2, 865)		
Model	1	.38.776549	2	69.	3882747	,		Prob > F	=	0.0000
Residual	1	.30.219231	865	.15	0542464			R-squared	=	0.5159
	-+					•		Adj R-squared	=	0.5148
Total	2	68.995781	867	.31	0260416	;		Root MSE	=	.388
LGFDHO	•						• •	[95% Conf.		_
LGEXP	-	.2866813				639		.2421622		3312003
LGSIZE	1	.4854698	.025	5476	19.	003	0.000	. 4353272		5356124
_cons	 	4.720269	.220	9996	21.	359	0.000	4.286511	5	.154027

LGFDHO – логарифм ежегодных расходов домохозяйств на продукты домашнего потребления, LGEXP – логарифм общих годовых расходов домохозяйств, LGSIZE – логарифм числа потребителей в домохозяйстве.

. reg LGFDHO LGEXP LGSIZE Number of obs = 868Source | SS df MS F(2, 865) = 460.92Model | 138.776549 2 69.3882747 Prob > F = 0.0000Residual | 130.219231 865 .150542464 R-squared = 0.5159Adj R-squared = 0.5148Root MSE = .388 Total | 268.995781 867 .310260416 LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval] LGEXP | .2866813 .0226824 12.639 0.000 .2421622 .3312003 LGSIZE | .4854698 .0255476 19.003 0.000 .4353272 .5356124 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027

Данные 1995 г. US Consumer Expenditure Survey для 868 домохозяйств.

. reg LGFD	OHO LGEXP LGSI	ZE LGHOUS				
Source	SS	df	MS		Number of obs F(3, 864)	
Model Residual	138.841976 130.153805				Prob > F R-squared	= 0.0000
Total					Adj R-squared Root MSE	= 0.5145
LGFDHO	Coef.				[95% Conf.	Interval]
LGEXP	.2673552	.0370782	7.211	0.000	.1945813	.340129
LGSIZE	. 4868228	.0256383	18.988	0.000	.4365021	.5371434
LGHOUS	.0229611	.0348408	0.659	0.510	0454214	.0913436
_cons	4.708772	.2217592	21.234	0.000	4.273522	5.144022

LGHOUS – логарифм годовых расходов на жилье.

rog ICE	חח	O LGEXP LGSI	7F T.C	SIIOE						
. reg ngr	ווע	O LGEAP LGSI	ZE IGI	.1003						
_							cor LGHOU	S LGEXP I	LGSIZE	
Source	ı	SS	df		MS	(0	bs=869)			
	+-									
Model	1	138.841976	3	46.	2806586		1	LGHOUS	LGEXP	LGSIZE
Residual	1	130.153805	864	.15	0640978		+			
	+-						1GHOUS	1.0000		
Total	ı	268.995781	867	. 31	.0260416		•	0.8137	1.0000	
	•						•			1.0000
							TGSTZE	0.3230	0.4491	1.0000
T CERUS						_	D> 1±1		Q -	T 11
	•	Coef.					• •	[95	& Coni.	Interval]
	-									
LGEXP	ı	.2673552	.0370	0782	7.	211	0.000	.194	45813	.340129
LGSIZE	1	.4868228	.025	6383	18.	988	0.000	.43	65021	.5371434
LGHOUS	1	.0229611	.0348	3408	0.	659	0.510	04	54214	.0913436
cons	١	4.708772	.221	7592	21.	234	0.000	4.2	73522	5.144022
-										

. reg LGFDHO LGEXP LGSIZE

LGFDHO	 +	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
LGEXP	l	.2866813	.0226824	12.639	0.000	.2421622 .3312003
LGSIZE	1	.4854698	.0255476	19.003	0.000	.4353272 .5356124
_cons	I	4.720269	.2209996	21.359	0.000	4.286511 5.154027

. reg LGFDHO LGEXP LGSIZE LGHOUS

LGFDHO	 +	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LGEXP		.2673552	.0370782	7.211	0.000	.1945813	.340129
LGSIZE	I	.4868228	.0256383	18.988	0.000	.4365021	.5371434
LGHOUS	1	.0229611	.0348408	0.659	0.510	0454214	.0913436
_cons	l 	4.708772	.2217592	21.234	0.000	4.273522	5.144022

. reg LGFDHO LGEXP LGSIZE

LGFDHO	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LGEXP	.2866813	.0226824	12.639	0.000	.2421622	.3312003
LGSIZE	.4854698	.0255476	19.003	0.000	.4353272	.5356124
_cons	4.720269	.2209996	21.359	0.000	4.286511	5.154027

. reg LGFDHO LGEXP LGSIZE LGHOUS

LGFDHO	 +	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LGEXP	Ì	.2673552	.0370782	7.211	0.000	.1945813	.340129
LGSIZE	1	.4868228	.0256383	18.988	0.000	.4365021	.5371434
LGHOUS	1	.0229611	.0348408	0.659	0.510	0454214	.0913436
_cons	l	4.708772	.2217592	21.234	0.000	4.273522	5.144022

Пошаговый метод предусматривает построение модели последовательно по шагам. Для пошагового метода включения (Forwardstepwisemethod) на каждом шаге оценивается вклад в регрессионную функцию не включённых в модель переменных. Переменная, обеспечивающая наибольший вклад, включается в модель, после чего производится переход к следующему шагу. Для пошагового метода исключения (Backwardstepwisemethod) характерно включение в модель на первом этапе всех переменных, после чего производится их последовательное исключение.

Файл CLOTHING содержит данные о годовых продажах и другие характеристики 400 голландских магазинов модной одежды в 1990 г.

Список переменных:

tsales : Annual sales in Dutch guilders

sales : sales per square meter

margin : Gross-profit-margin

nown : Number of owners (managers)

nfull : Number of full-timers

npart : Number of part-timers

naux : Number of helpers (temporary workers)

hoursw: Total number of hours worked

hourspw: Number of hours worked per worker

inv1 : Investment in shop-premises

inv2 : Investment in automation.

ssize : Sales floorspace of the store (in m2).

start : year start of business

```
stepwise, pr(0.1): reg sales margin nown nfull npart
                                                 naux hoursw hourspw inv1
        inv2
                ssize
                        start
begin with full model
p = 0.9731 >= 0.1000 removing inv1
p = 0.7996 >= 0.1000 removing hoursw
p = 0.6921 >= 0.1000 removing inv2
p = 0.5229 >= 0.1000 removing start
Source
                df
                     MS Number of obs =
          SS
                                         400
        F(7, 392) = 41.65
Model 2.3795e+09 7 339924634 Prob > F
                                           = 0.0000
Residual 3.1996e+09 392 8162299.11
                                         R-squared
                                                    = 0.4265
        Adj R-squared = 0.4163
Total 5.5791e+09 399 13982691
                                Root MSE
                                            = 2857
        Coef.
                  Std. Err.
                                         [95% Conf. Interval]
sales
                            t
                                 P>t
margin 59.90574 29.54534 2.03 0.043
                                         1.818588
                                                  117.9929
       672.7859 226.1869 2.97 0.003
                                         228.0947
                                                  1117.477
nown
nfull
       1309.047 153.066 8.55 0.000
                                         1008.114 1609.98
        1061.772 230.9229 4.60
                                0.000
                                         607.7695
                                                  1515.774
npart
       935.7677 376.4691 2.49
                                 0.013
                                         195.6167
                                                  1675.919
naux
       -24.31604 1.641706 -14.81 0.000
ssize
                                         -27.54369 -21.08839
hourspw 223.7379 23.18619 9.65 0.000
                                         178.1531
                                                  269.3228
        -3091.438 1294.97
                           -2.39 0.017
                                         -5637.394 -545.4823
cons
```

reg sales margin nown nfull npart naux hoursw hourspw inv1 inv2 ssize start

```
Source | SS df MS Number of obs = 400
                      F(11, 388) = 26.33
  Residual | 3.1945e+09 388 8233125.52 R-squared = 0.4274
Total | 5.5791e+09 399 13982691 Root MSE = 2869.3
  sales | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 margin | 69.08252 32.96368 2.10 0.037 4.272738 133.8923
  nown | 740.8716 371.5816 1.99 0.047 10.30624 1471.437
   nfull | 1378.757 293.2506 4.70 0.000 802.1977 1955.316
  npart | 1111.709 267.8409 4.15 0.000 585.1077 1638.31
  naux | 996.577 449.8185 2.22 0.027 112.1902 1880.964
hoursw | -2.737927 10.73368 -0.26 0.799 -23.84139 18.36553
hourspw | 243.4413 70.43075 3.46 0.001 104.9676 381.915
   inv1 | -.0000524 .0015552 -0.03 (0.973) -.0031101 .0030053
   inv2 | -.0014312 .0039795 -0.36 0.719 -.0092553 .0063928
```

reg sales margin nown nfull npart naux hoursw hourspw inv2 ssize start

```
Source | SS df MS Number of obs = 400
F(10, 389) = 29.04
  Residual | 3.1945e+09 389 8211984.72 R-squared = 0.4274
Total | 5.5791e+09 399 13982691 Root MSE = 2865.7
  sales | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 margin | 69.07279 32.92006 2.10 0.037 4.349271 133.7963
  nown | 740.4297 370.8731 2.00 0.047 11.26306 1469.596
   nfull | 1378.033 292.088 4.72 0.000 803.7644 1952.302
  npart | 1110.099 263.2089 4.22 0.000 592.609 1627.589
   naux | 997.3463 448.6619 2.22 0.027 115.2406 1879.452
 hoursw | -2.720658 10.70767 -0.25 0.800 -23.77281 18.3315
hourspw | 243.301 70.21732 3.46 0.001 105.2481 381.354
   inv2 | -.0014861 .0036262 -0.41 0.682 -.0086155 .0056433
  start | -8.178698 12.64501 -0.65 0.518 -33.03982 16.68242
```

sales margin nown nfull npart naux hourspw inv2 ssize start reg Source SS df MS Number of obs 400 F(9, 390) = 32.34 9 264900164 Prob > F = 0.0000Model 2.3841e+09 Residual 3.1950e+09 390 8192287.73 R-squared = 0.4273Adj R-squared = 0.4141Total 5.5791e+09 399 13982691 **Root MSE** = 2862.2Coef. Std. Err. [95% Conf.Interval] sales P>t t 2.09 0.038 3.889102 132.1775 68.03328 32.62566 margin 2.91 0.004 216.6611 1115.94 666.3008 228.7003 nown nfull 154.2658 8.52 0.000 1011.746 1618.339 1315.042 npart 1079.118 232.9839 4.63 0.000 621.0568 1537.18 936.1306 378.0323 2.48 0.014 192.8944 1679.367 naux 226.493 23.51939 9.63 0.000 180.2523 272.7337 hourspw inv2 -.0014329 .0036158 -0.40 0.692 -.0085418 .005676 ssize -24.24519 1.661976 -14.59 0.000 -27.51275 -20.97764 start -7.799186 12.54142 -0.62 0.534 -32.45643 16.85806 -2.40 0.017 -5684.322 -570.6728 -3127.498 1300.478 cons И т.д.

```
stepwise, pe(0.1): reg sales margin nown nfull npart
                                                naux hoursw hourspw inv1
                ssize
        inv2
                        start
begin with empty model
p = 0.0000 < 0.1000 adding ssize
p = 0.0000 < 0.1000 adding hoursw
p = 0.0002 < 0.1000 adding nfull
p = 0.0025 < 0.1000 adding npart
p = 0.0063 < 0.1000 adding hourspw
p = 0.0898 < 0.1000 adding margin
          SS
                df
                     MS Number of obs =
                                         400
Source
        F(6, 393) = 46.98
Model 2.3303e+09 6 388376865 Prob > F
                                           = 0.0000
Residual 3.2488e+09 393 8266749.37
                                        R-squared
                                                    = 0.4177
                                        Adj R-squared = 0.4088
                                Root MSE
Total 5.5791e+09 399 13982691
                                            = 2875.2
sales
       Coef.
               Std. Err. t
                                   P>t [95% Conf. Interval]
ssize
       -24.24045 1.6359
                            -14.82 0.000 -27.45666 -21.02424
hoursw 18.15945 6.112656 2.97 0.003 6.141849 30.17704
nfull 897.7947 211.7212 4.24 0.000
                                        481.5469
                                                  1314.042
npart 855.3101 242.858
                           3.52 0.000 377.8467 1332.773
hourspw 113.2123 45.44868 2.49 0.013 23.8594 202.5653
margin 50.11734 29.46866 1.70 0.090 -7.818595 108.0533
                             0.43 0.671
         510.3715 1198.688
                                        -1846.271
                                                  2867.014
cons
```

stepwise, pe(0.1): reg start ssize inv2 inv1 hourspw hoursw naux npart nfull nown margin

```
begin with empty model
p = 0.0000 < 0.1000 adding margin
p = 0.0111 < 0.1000 adding hourspw
p = 0.0211 < 0.1000 adding npart
p = 0.0437 < 0.1000 adding nown
  Source | SS df MS Number of obs = 400
F(4, 395) = 34.54
  Residual | 52259.5368 395 132.302625 R-squared = 0.2591
Total | 70537.4106 399 176.78549 Root MSE = 11.502
  start | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 margin | 1.076729 .1178685 9.13 0.000 .8450005 1.308457
hourspw | .2493196 .0830748 3.00 0.003 .0859955 .4126437
  npart | 2.035627 .8341378 2.44 0.015 .395722 3.675532
  nown | -1.842024 .9102377 -2.02 0.044 -3.63154 -.0525076
```

Теорема о "корне из r"

Пусть оценены коэффициенты регрессии

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon$$

T.e.
$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + ... + \hat{\beta}_k X_k$$

Если для r оценок коэффициентов при непостоянных факторах выполняется условие $|t| < \sqrt{r}$, то при удалении соответствующих факторов X качество подгонки регрессии может увеличиться, т.е. при удалении этой группы факторов R^2_{adj} может увеличиться.

Замечание 1. Условие является необходимым, но не достаточным, т.е. при удалении соответствующей группы факторов R^2_{adi} может не увеличиться.

Теорема о "корне из r"

Замечание 2. Если r=1, то условие является не только необходимым, но и достаточным, т.е. при удалении одного фактора с t – статистикой, меньше 1 (по модулю) R^2_{adj} увеличится.

$$Y = \beta_{1} + \beta_{2}X_{2} + \dots + \beta_{k}X_{k} + \varepsilon,$$

$$H_{0}: \beta_{i1} = \dots = \beta_{ir} = 0,$$

$$F = \frac{(RSS_{R} - RSS_{UR})/r}{RSS_{UR}/(n-k)};$$

$$\hat{\sigma}_{UR}^{2} = \frac{RSS_{UR}}{n-k}, \quad \hat{\sigma}_{R}^{2} = \frac{RSS_{R}}{n-(k-r)},$$

$$F = \frac{(\hat{\sigma}_{R}^{2}(n-(k-r)) - \hat{\sigma}_{UR}^{2}(n-k))/r}{\hat{\sigma}_{UR}^{2}} = \frac{\hat{\sigma}_{R}^{2}}{\hat{\sigma}_{UR}^{2}}(a+1) - a,$$

$$a = \frac{n-k}{r}, \quad \frac{\hat{\sigma}_{R}^{2}}{\hat{\sigma}_{UR}^{2}} = \frac{a+F}{a+1}$$

$$\frac{\sigma^{\hat{}}_{R}^{2}}{\sigma^{\hat{}}_{UR}^{2}} = \frac{a + F}{a + 1},$$

$$\sigma^{\hat{}}_{R}^{2} > \sigma^{\hat{}}_{UR}^{2} \Leftrightarrow F > 1,$$

$$\sigma^{\hat{}}_{R}^{2} > \sigma^{\hat{}}_{UR}^{2} \Leftrightarrow F = 1,$$

$$\sigma^{\hat{}}_{R}^{2} < \sigma^{\hat{}}_{UR}^{2} \Leftrightarrow F < 1,$$

$$R_{adj}^2 = 1 - \frac{RSS/(n-k)}{TSS/(n-1)} = 1 - \frac{\hat{\sigma}^2}{TSS/(n-1)},$$

$$\hat{\sigma}^2 = (1 - R_{adj}^2) \frac{TSS}{n-1};$$

 $\hat{\sigma}^2$ and R_{adi}^2 move in the opposite direction.

$$F > 1 \Leftrightarrow \hat{\sigma}_R^2 > \hat{\sigma}_{UR}^2 \Rightarrow R_{adj}^2 \square$$
,

$$F < 1 \Leftrightarrow \hat{\sigma}_R^2 < \hat{\sigma}_{UR}^2 \Rightarrow R_{adj}^2 \square$$
.

$$r = 1; F = t^2,$$

 \Rightarrow if t-ratio for any explanatory variable is less than 1,

dropping this variable will increase R_{adj}^2 ;

The relation between t and F ratio:

Rule: If
$$F(r) \le c \Rightarrow |t| < \sqrt{rc}$$
 (Maddala, p.164–166).

$$c = 1 \Rightarrow f(r) \le 1 \Rightarrow |t| < \sqrt{r}$$
.

Necessary condition for F < 1 ($R_{adj}^2 \square$): $|t| < \sqrt{r}$.

This condition is not sufficient:

$$|t| < \sqrt{r} \ not \Rightarrow F(r) < 1.$$

Example.
$$Y = \beta_1 + \beta_2 X_2 + ... + \beta_6 X_6 + \varepsilon$$
, $t = 1.2, 1.5, 1.6, 2.3, 2.7$, $r = 1, -$, $r = 2, \sqrt{2} \approx 1.41, -$, $r = 3, \sqrt{3} \approx 1.71, t = 1.2, 1.5, 1.6 < 1.71,$ $r = 4, \sqrt{4} = 2, -$, $r = 5, \sqrt{5} \approx 2.236, -$,

В файле data 6.6 содержатся данные об аренде жилья из базы НОБУС о месячной арендной плате за жилье.

Переменные:

a003pt – тип населенного пункта (1 – город с численностью более 1 млн.чел, ..., 8 – село),

r203 – месячная арендная плата за жилье, если снимать,

r204 - год постройки жилья,

r205 – материал, из которого построены внешние стены жилья (1- кирпич, 2 – бетонные панели, 3- камень, 4 – дерево, 5 – другой материал),

r206 - этажность здания,

r207 - наличие лифта в доме,

r208m01 - общая площадь жилища в м2,

r208m02 – жилая площадь жилища в м2,

r209 - наличие электричества в д/х,

r210 – тип отопления в доме (1 – коллективное центральное отопление, 2 - индивидуальное отопление газом, 3 - индивидуальное отопление дровами, 4 – другое),

r211- откуда берется вода (1 – водопровод в квартире, 2 – колодец во дворе, 3 – общественная колонка, 4 – общественный колодец, 5 – из водоема, 6 – вода привозная, 7 – другое),

```
r212m1- наличие канализации (1 – да, 2 – нет),
r212m2 - наличие горячего водоснабжения (1 – да, 2 – нет),
r212m3 - наличие санузла внутри помещения (1 – да, 2 – нет),
r212m4 - наличие ванны, душевой (1 – да, 2 – нет),
r212m5 - наличие газа (1 – да, 2 – нет),
r212m6 - наличие электроплиты (1 – да, 2 – нет),
r212m7 - наличие телефона (1 – да, 2 – нет).
```

reg r203 r204 r205 r206 r207 r208m01 r208m02 r209 r210 r211 r212m1 r212m2 r212m3 r212m4 r212m5 r212m6 r212m7

Adj R-squared = 0.2860

r203	Coef.	Std. Err.	 t	P> t	 [95% Con [·]	f. Intervall
+						•
r204	.4397018	.1328318	3.31	0.001	.1793253	.7000784
r205	-30.98764	11.19581	-2.77	0.006	-52.93364	-9.041638
r206	202.0962	6.181453	32.69	0.000	189.9794	214.2131
r207	3.509889	2.505189	1.40	0.161	-1.400775	8.420554
r208m01	1.490023	.6665292	2.24	0.025	.1834942	2.796551
r208m02	7.332909	1.073681	6.83	0.000	5.228282	9.437536
r209	5.080075	13.77277	0.37	0.712	-21.91728	32.07743
r210	21.17051	13.04943	1.62	0.105	-4.408944	46.74996
r211	-30.15348	12.42321	-2.43	0.015	-54.50542	-5.801542
r212m1	-123.8872	31.91985	-3.88	0.000	-186.4564	-61.31798
r212m2	-242.4452	36.87398	-6.57	0.000	-314.7255	-170.165
r212m3	254.495	49.92503	5.10	0.000	156.6321	352.3579
r212m4	-371.7929	56.52312	-6.58	0.000	-482.5894	-260.9965
r212m5	104.5059	32.15591	3.25	0.001	41.47394	167.5378
r212m6	-380.7715	39.61693	-9.61	0.000	-458.4284	-303.1145
r212m7	-2.487258	1.450154	-1.72	≥0.086	-5.329846	.355329
_cons	827.4628	252.4822	3.28	0.001	332.548	1322.378

r = 4 reg r203 r204 r205 r206 r208m01 r208m02 r211 r212m1 r212m2 r212m3 r212m4 r212m5 r212m6

Adj R-squared = 0.2833

r203	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
r204	.466184	.1128818	4.13	0.000	.2449134	.6874545
r205	-25.08236	10.94542	-2.29	0.022	-46.53754	-3.62718
r206	196.7912	5.54161	35.51	0.000	185.9286	207.6539
r208m01	1.667629	.6405464	2.60	0.009	.4120321	2.923226
r208m02	7.087622	1.054299	6.72	0.000	5.020988	9.154256
r211	-8.784775	4.749058	-1.85	0.064	-18.09386	.5243118
r212m1	-96.20204	28.61918	-3.36	0.001	-152.3013	-40.10282
r212m2	-267.7058	30.72414	-8.71	0.000	-327.9311	-207.4804
r212m3	277.6937	48.62443	5.71	0.000	182.3802	373.0071
r212m4	-408.502	53.80688	-7.59	0.000	-513.9741	-303.03
r212m5	105.3527	31.96179	3.30	0.001	42.70127	168.0041
r212m6	-376.0485	39.35726	-9.55	0.000	-453.1964	-298.9005
_cons	799.5115	215.8768	3.70	0.000	376.3505	1222.672

47

r = 1 reg r203 r204 r205 r206 r207 r208m01 r208m02 r210 r211 r212m1 r212m2 r212m3 r212m4 r212m5 r212m6 r212m7 Adj R-squared = 0.2861

r203	Coef.	Std. Err.	t	P> t	 [95% Conf 	. Interval]
r204	.4392003	.1316196	3.34	0.001	.1811999	.6972007
r205	-30.34527	11.10232	-2.73	0.006	-52.10801	-8.582533
r206	202.8326	5.845733	34.70	0.000	191.3738	214.2914
r207	3.676723	2.440634	1.51	0.132	-1.107401	8.460847
r208m01	1.472691	.6652407	2.21	0.027	.1686886	2.776694
r208m02	7.358593	1.072067	6.86	0.000	5.25713	9.460056
r210	22.04013	12.8414	1.72	0.086	-3.131529	47.2118
r211	-30.87586	12.26581	-2.52	0.012	-54.91926	-6.832462
r212m1	-126.31	31.2354	-4.04	0.000	-187.5375	-65.08247
r212m2	-237.8919	33.00972	-7.21	0.000	-302.5975	-173.1864
r212m3	258.233	49.00863	5.27	0.000	162.1664	354.2995
r212m4	-375.8064	55.07122	-6.82	0.000	-483.7569	-267.856
r212m5	104.3208	32.14783	3.25	0.001	41.30472	167.3369
r212m6	-379.0669	39.40656	-9.62	0.000	-456.3115	-301.8223
r212m7	-2.522396	1.437339	-1.75	0.079	-5.339864	.2950725
_cons	823.0116	250.8121	3.28	0.001	331.3705	1314.653

stepwise, pr(0.05): reg r203 r204 r205 r206 r207 r208m01 r208m02 r209 r210 r211 r212m1 r212m2 r212m3 r212m4 r212m5 r212m6 r212m7

begin with full model

p = 0.7122 >= 0.0500 removing r209

p = 0.1288 >= 0.0500 removing r207

p = 0.2593 >= 0.0500 removing r212m7

0.2859

Adj R-squared =

r203	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
r204	.410805	.1286401	3.19	0.001	.1586451	.6629649
r204	-28.0391	10.99239	-2.55	0.001	-49.58634	-6.491858
•						
r206	204.1189	5.790608	35.25		192.7682	215.4696
r212m6	-382.0085	39.37463	-9.70	0.000	-459.1905	-304.8265
r208m01	1.529256	.6433419	2.38	0.017	.2681792	2.790333
r208m02	7.338344	1.05609	6.95	0.000	5.268199	9.408489
r212m5	99.87517	31.98271	3.12	0.002	37.18276	162.5676
r210	24.66382	12.52983	1.97	0.049	.1028884	49.22476
r211	-31.32608	12.2433	-2.56	0.011	-55.32534	-7.326805
r212m1	-124.602	31.17879	-4.00	0.000	-185.7185	-63.48541
r212m2	-232.177	33.21961	-6.99	0.000	-297.294	-167.06
r212m3	259.1024	49.00936	5.29	0.000	163.0344	355.1704
r212m4	-381.0481	54.99462	-6.93	0.000	-488.8484	-273.2478
_cons	872.6439	245.0481	3.56	0.000	392.3015	1352.986

stepwise, pe(0.05): reg r203 r206 r212m2 r208m02 r212m6 r212m4 r205 r212m5 r212m3 r212m1 r204 r208m01

```
begin with empty model

p = 0.0000 < 0.0500 adding r206

p = 0.0000 < 0.0500 adding r212m2

p = 0.0000 < 0.0500 adding r208m02
```

p = 0.0000 < 0.0500 adding r212m6

p = 0.0000 < 0.0500 adding r204

p = 0.0000 < 0.0500 adding r205

p = 0.0000 < 0.0500 adding r212m4

p = 0.0000 < 0.0500 adding r212m3

p = 0.0020 < 0.0500 adding r212m1

p = 0.0010 < 0.0500 adding r212m5

p = 0.0185 < 0.0500 adding r208m01

0.2831

Adj R-squared =

r203	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
r206	197.3864	5.532918	35.67	0.000	186.5408	208.232
r212m2	-268.8213	30.72187	-8.75	0.000	-329.0422	-208.6004
r208m02	7.303287	1.047957	6.97	0.000	5.249085	9.35749
r212m6	-376.2769	39.36173	-9.56	0.000	-453.4336	-299.1202
r204	.542568	.1050704	5.16	0.000	.3366094	.7485266
r205	-25.92254	10.93729	-2.37	0.018	-47.36178	-4.483294
r212m4	-408.7439	53.81311	-7.60	0.000	-514.2282	-303.2596
r212m3	267.5707	48.32123	5.54	0.000	172.8516	362.2898
r212m1	-90.83817	28.47528	-3.19	0.001	-146.6553	-35.02102
r212m5	104.7584	31.96397	3.28	0.001	42.10273	167.4141
r208m01	1.492547	.6335902	2.36	0.019	.2505861	2.734509
cons	646.5848	199.4431	3.24	0.001	255.6373	1037.532

RESET – regression specification error test.

RESET – тест Рамсея отвечает на вопрос, надо ли включать в регрессию степени независимых переменных.

RESET – тест Рамсея

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + u \quad (*)$$

Н₀: спецификация модели (*) является правильной

H₁: спецификация модели (*) является неправильной,

Проведение RESET – теста Рамсея

1) Оцениваем коэффициенты функции регрессии (*)

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + ... + \hat{\beta}_k X_k,$$

- 2) Сохраняем столбец оцененных значений \hat{Y}
- 3) Оцениваем коэффициенты вспомогательной регрессии

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \alpha_2 \hat{Y}^2 + ... + \alpha_m \hat{Y}^m + \varepsilon$$

Метод последовательного исключения переменных

4) Тогда проверка гипотезы о правильной спецификации равносильна проверке гипотезы

H₀:
$$\alpha_2 = ... = \alpha_m = 0$$

$$H_1$$
: $\exists \alpha_i \neq 0, i = 2,..., m$

5) Вычисляем значение тестовой статистики

$$F = \frac{(RSS_R - RSS_{UR})/(m-1)}{RSS_{UR}/(n-(k+1+m-1))}$$

6) Если
$$F > F_{\alpha}^{cr}(m-1, n-(k+m))$$
 то гипотеза H₀ отвергается.

reg earnings age educ sex

ovtest

Ramsey RESET test using powers of the fitted

values of earnings

Ho: model has no omitted variables

F(3, 4886) = 4.90

Prob > F = 0.0021

reg earnings age agesq educ sex

Source	SS	df MS		Number F(4, 48		4893 138.61
Model	2.0195e+1	0 4 5.04	87e+09	1 (4, 40	Prob > F =	
Residua	al 1.7804e	+11 4888	36423634	.2	R-squared	= 0.1019
					Adj R-squar	= 0.1011
Total 1	.9823e+11	4892 405	22005.4		Root MSE	= 6035.2
earning	s Coef.	Std. E	irr. t	P>t	[95% Conf.	Interval]
age	272.14	51 43.627	63 6.24	0.000	186.6153	357.6748
agesq	-3.5012	15 .52504	84 -6.67	0.000	-4.530546	-2.471884
educ	376.81 ²	15 25.711	2 14.66	0.000	326.406	427.217
sex	-3343.7	'31 175.7 <mark>2</mark>	231 -19.0	0.000	-3688.228	-2999.235
_cons	542.6265	941.6523	0.58	0.564	-1303.435	2388.688