CISS 2021 - 55th Annual Conference on Information Science and Systems

Foveal-pit inspired filtering of DVS spike response

Shriya T.P. Gupta ¹, Pablo Linares-Serrano ², Basabdatta S. Bhattacharya ³
Teresa Serrano-Gotarredona ²

¹ Microsoft R&D, India, ² IMSE-CNM (CISC and Universidad de Sevilla), Spain ³ BITS Pilani Goa Campus, India

Outline

- Introduction
- Related Work
- Proposed Approach
- Results and Discussion
- Conclusion

Introduction

- Spiking Neural Networks (SNN) energy-efficient alternative to Artificial Neural Networks
- Efficiency gain of SNNs through use of event-based sensors neuromorphic Dynamic Vision Sensor (DVS)
- Foveal-pit informed Difference of Gaussian (DoG) filters - to capture the most perceptually important information

Fig: DVS spike response due to a sinusoidal illumination

Related Work

- Camunas-Mesa et al. [1] shows efficiency gain in SNNs through the use of inputs from event-based sensors
- The use of DoG functions to model retinal filters originally proposed by Rullen et al. [2] and receptive fields of the foveal-pit modelling presented in Bhattacharya et al. [3]
- Gupta et al. [4] demonstrates the effect of foveal-pit inspired filtering for synthetically generated datasets like MNIST and Caltech.
- [1] Camunas-Mesa et al. "An event-driven multi-kernel convolution processor module for event-driven vision sensors," IEEE Journal of Solid-State Circuits.
- [2] R. V. Rullen and S. J. Thorpe, "Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex," Neural computation.
- [3] B. S. Bhattacharya and S. B. Furber, "Biologically inspired means for rank-order encoding images: A quantitative analysis," IEEE transactions on neural networks, vol. 21, no. 7, pp. 1087–1099, 2010.
- [4] S. T. Gupta et al. "Implementing a foveal-pit inspired filter in a spiking convolutional neural network: a preliminary study," in IJCNN.

Proposed Approach

Architecture of the proposed DVS based spiking CNN

DVS setup to record spike responses

Foveal-pit inspired neural filters

Fig. 2. The ganglion cells modelled using DoG functions representing the (a) off-center midget cell (b) on-center midget cell (c) off-center parasol cell and (d) on-center parasol cell.

		Receptive Field Simulation Parameters					
Ganglion Cell Types		Matrix	Std. Dev.	Center Width	Std. Dev.	Sampling	
		Size	Center	in Pixels	Surround	Resolution	
		(n)	(σ_c)	(w_c)	(σ_s)		
	OFF-center	5 × 5	0.8	3			
Midget	On-center	11 × 11	1.04	.5	$6.7 \times \sigma_c$	$\frac{1}{\sqrt{2}}$	
			$\simeq (1.3 \times 0.8)$			V-	
	Off-center	61 × 61	8	33			
			$\simeq (10 \times 0.8)$			1900	
Parasol	On-center	243×243	10.4	53	$4.8 \times \sigma_c$	$\frac{5}{\sqrt{2}}$	
			$\simeq (10 \times 1.04)$			V 2	

Source: Bhattacharya et al.. "Biologically inspired means for rank-order encoding images: A quantitative analysis." IEEE transactions on neural networks.

Spiking Convolutional Neural Network

TABLE I
DIMENSIONS OF THE SCNN LAYERS.

Layer	No. of filters	Input size	Kernel size
Conv1	8	(128, 128)	3
Pool1		(128, 128)	2
Conv2	16	(64, 64)	3
Pool2	112	(64, 64)	2
Conv3	32	(32, 32)	3
Pool3		(32, 32)	2
Flatten	-	(16, 16)	-
Dense	-	(1, 8192)	=
Outputs		(1, 7)	=

Results and Discussion

Quantitative Results

TABLE II
ACCURACIES (%) FOR THE FRAME-BASED DVS INPUT

Scenario	Cell - Type	CircShift	Accuracy
Unfiltered	-	91	65.0 %
Filtered	off-center midget on-center midget off-center parasol on-center parasol	0	77.5 % 85.0 % 92.5 % 87.5 %
Filtered	off-center midget on-center midget off-center parasol on-center parasol	1	77.5 % 85.0 % 100.0 % 85.0 %

Qualitative Results

(a) Unfiltered scenario

(b) Filtered: Unshifted midget

(c) Filtered: Unshifted parasol

(d) Filtered: Circular-shifted midget

(e) Filtered: Circular-shifted parasol

Conclusion

Conclusions

- Proposed model demonstrates the effect of applying neural filtering to data generated from a neuromorphic vision sensor.
- Achieves an improvement of around 35% over the classification using unfiltered DVS responses.
- Depicts importance of foveal-pit inspired neural filtering in redundancy reduction of the DVS inputs + discarding irrelevant background information.

Future Directions

- Adapting the proposed SCNN to process event-based data and evaluate the effects of the bio-inspired neural filtering on continuous outputs of a neuromorphic DVS.
- Verify effect of DoG filters on DVS spike responses of larger and more complex datasets.

Thank you