Листок 12. Закон больших чисел.

DM-ML 82. Случайные величины $X_1, X_2, ..., X_n$ независимы

- (a) Покажите, что для любых $A_1, A_2, \ldots, A_n \subseteq \mathbb{R}$ события $[X_i \in A_i]$ являются независимыми.
- (б) Покажите, что для любых функций $f_1, f_2, \dots f_n : \mathbb{R} \to \mathbb{R}$ случайные величины $f_i(X_i)$ являются независимыми.
- (в) Пусть $I \subseteq [n]$, докажите, что случайные величины $\{X_i\}_{i \in I}$ являются независимыми. Пусть $I \subseteq [n]$, докажите, что для любых функций $f: \mathbb{R}^I \to \mathbb{R}, g: \mathbb{R}^{[n] \setminus I} \to \mathbb{R}$ случайные величины $f((X_i)_{i \in I})$ и $g((X_i)_{i \in [n] \setminus I})$ независимы.

DM-ML 83. Вася побывал в опасном месте, где он мог с вероятностью 0.8 заболеть. Вася прошел обследование в двух клиниках, известно, что первая клиника выявляет заболевание (если оно есть) с вероятностью 0.5 (и не выявляет, если заболевания нет), а вторая клиника выявляет заболевание с вероятностью 0.75. Клиники работают независимо друг от друга. С какой вероятностью Вася заболел, если ни одна из клиник заболевание не обнаружила?

DM-ML 84. Покажите, что для любой случайной величины X выполняется неравенство: $\Pr[X=0] \leq \frac{\mathbb{D}[x]}{\mathbb{E}[X]^2}$.

DM-ML 85.

- (а) Каждому $a \in \{0,1\}^n$ соответствует линейная функция $f_a : \{0,1\}^n \to \{0,1\}$, определяемая так: $f_a(x_1x_2\dots x_n) = \sum_{i=1}^n a_ix_i \bmod 2$. Кодом Уолша-Адамара строки $a \in \{0,1\}^n$ называется таблица значений функции f_a и обозначается $\mathrm{WH}(a)$, нетрудно понять, что длина строки $\mathrm{WH}(a)$ равняется 2^n . Проверьте, что для двух различных строк $a,b \in \{0,1\}^n$ их коды $\mathrm{WH}(a)$ и $\mathrm{WH}(b)$ отличаются ровно в половине позиций.
- (б) Предположим, что у нас есть оракульный доступ к строке Z (это значит, что можно делать запросы к строке Z, за один запрос можно узнать один бит строки Z), которая отличается от WH(a) не более, чем в доле $\frac{1}{4}-\epsilon$ позиций, где ϵ это некоторая константа, причем строка $a\in\{0,1\}^n$ нам неизвестна. Придумайте вероятностный алгоритм, который для всех $x\in\{0,1\}^n$ вычислит $f_a(x)$ с вероятностью как минимимум $\frac{9}{10}$, причем этот алгоритм может должен делать лишь константное число запросов к строке Z и работать полиномиальное от n время.

DM-ML 86. Назовем вероятностной булевой схемой такую схему, часть входов которой называются случайными битами. Пусть схема C имеет n+m входов, первые n входов мы будем понимать как непосредственно

входы, оставшиеся m входов как случайные биты. Будем говорить, что схема C вычисляет функцию $f:\{0,1\}^n \to \{0,1\}$ с ограниченной ошибкой, если для каждого $x \in \{0,1\}^n$ выполняется $\mathsf{P}[f(x) = C(x,r)] \geq \frac{2}{3}$, где вероятность берется по случайной строке r, которая принимает все значения из множества $\{0,1\}^m$ с равными вероятностями. Пусть функция $f:\{0,1\}^n \to \{0,1\}$ вычисляется вероятностной схемой C размера s с ограниченной ошибкой.

- (а) Покажите, что для каждого многочлена p(n) найдется такая вероятностная схема C' с n+m' входами, размер которой полиномиален относительно sn, что при всех $x\in\{0,1\}^n$ выполняется $\mathsf{P}[f(x)=C(x,r)]\geq 1-2^{-p(n)}$, где вероятность берется по случайной строке r, которая принимает все значения из множества $\{0,1\}^{m'}$ с равными вероятностями.
- (б) Покажите, что найдется обычная схема с n входами, размер которой полиномиален относительно sn, что для всех $x \in \{0,1\}^n$ выполняется f(x) = C(x).

DM-ML 27. Правило ослабления позволяет вывести из дизъюнкта A дизъюнкт $A \lor B$ для любого дизъюнкта B. Покажите, что если из дизъюнктов D_1, D_2, \ldots, D_n семантически следует дизъюнкт C (это значит, что любой набор значений переменных, который выполняет все дизъюнкты D_i , выполняет также и C), то C можно вывести из D_i с помощью применений правил резолюции и ослабления.

DM-ML 28.

- (в) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_ia_{i-1}\dots a_1}$ и $\overline{b_i'b_{i-1}'\dots b_1'}$ для всех i от 1 до n.
- (г) Покажите, что существует схема для сложения двух n-битных чисел размера O(n) и глубины $O(\log n)$.

DM-ML 70. Покажите, что для формулы в КНФ, состоящей из m дизъюнктов, в которой любые три дизъюнкта можно одновременно выполнить, существует набор значений переменных, который выполняет как минимум $\frac{2}{3}m$ дизъюнктов.

DM-ML 73. Доминирующее множество в графе — это такое множество, что для каждой вершины либо она сама лежит в этом множестве, либо она соединена ребром с вершиной из этого множества. В графе G минимальная степень вершины равняется d>1. Докажите, что в G есть доминирующее множество размера не больше $n\frac{1+\ln(d+1)}{d+1}$. Подсказка: рассмотрите случайное подмножество вершин, в которое каждая вершина

включается с вероятностью $p = \frac{\ln(d+1)}{d+1}$.