14. 데이터 기반 분류 모델

Logistic Regression (로지스틱 회귀) 모델

- O 입력에 대한 이진 분류 (binary classification) 학습 모델
- 독립 변수의 선형 결합으로 종속 변수를 설명한다는 관점에서는 선형 회귀 모델과 유사
- 종속 변수가 ○과 1 사이의 확률로 예측된 후 두개의 범주 중 어디서 속하는지 분류하는 모델
 - 예시: 수신한 이메일이 스팸인지 아닌지
 경기에서 승리할 수 있을지 없을지
 오늘 비가 오는데 더울지 추울지

예시: 공부시간 기반 시험 통과 여부

○ 연속형 수치 결과 예측 : 90점, 85점

(선형 회귀 분석이 적합함)

○ 이분 범주형 결과 예측 : 합격, 불합격

(선형 회귀 분석을 적용하면?)

에시: 공부시간 기반 시험 통과 여부

○ 이분 범주형 모델은 결과가 0~1 로 한정 지을 필요가 있음

$$Y = aX + b$$
 $H(X) = G(Y) = \frac{1}{1 + e^{-Y}}$

예시: 공부시간 기반 시험 통과 여부

○ 사이킷런 라이브러리 LinearRegression 로 학습을 시킨다면?

```
from sklearn.linear_model import LinearRegression

study_hour = [ [2], [5], [1], [7], [3], [4], [17], [6], [8], [5] ]

class_pass = [ 0, 1, 0, 1, 0, 0, 1, 1, 1, 0 ]

lr = LinearRegression()

train_X = study_hour

train_Y = class_pass

lr.fit(train_X, train_Y)
```

에시: 공부시간 기반 시험 통과 여부

○ 학습된 모델이 데이터를 얼마나 잘 설명할 수 있는지 score() 함수로 확인

```
lr.score(train_X, train_Y)
pred_Y = lr.predict(train_X)
plt.scatter(train_X, train_Y, marker='s')
plt.scatter(train_X, pred_Y, color='red')
plt.show()
```

○ 학습된 모델로 새로운 데이터 입력에 대해 예측 값을 확인

```
test_X = [ [4.5], [5.5] ]
pred_Y = lr.predict( test_X )
print( pred_Y )
```

0.43171806167400884

[0.39977974 0.47687225]

예시: 공부시간 기반 시험 통과 여부

○ 사이킷런 라이브러리에서 LogisticRegression (로지스틱 회귀) 로 학습

```
from sklearn.linear_model import LogisticRegression

study_hour = [ [2], [5], [1], [7], [3], [4], [17], [6], [8], [5] ]

class_pass = [ 0, 1, 0, 1, 0, 0, 1, 1, 1, 0 ]

lr = LogisticRegression()

train_X = study_hour
 train_Y = class_pass

lr.fit(train_X, train_Y)
```

예시: 공부시간 기반 시험 통과 여부

○ 학습된 모델이 데이터를 얼마나 잘 설명할 수 있는지 score() 함수로 확인

```
lr.score(train_X, train_Y)
pred_Y = lr.predict(train_X)
print( list( pred_Y ) )
print( train_Y )
```

```
      0.9

      [0, 0, 0, 1, 0, 0, 1, 1, 1, 0]

      [0, 1, 0, 1, 0, 0, 1, 1, 1, 0]
```

○ 학습된 모델로 새로운 데이터 입력에 대해 예측 값을 확인

```
test_X = [ [4.5], [5.5] ]
pred_Y = lr.predict( test_X )
print( pred_Y )
```

[0 1]

생존 가능 여부 분류 예측 : 타이타닉 데이터셋

- 타이타닉호 사건에서 생존 여부를 예측할 수 있을까?
- O 타이타닉 데이터셋 전처리 후 데이터 탐색을 통해 학습에 사용할 변수 선정
- O 데이터셋을 학습용과 평가용으로 나눠 학습용 데이터로 LogisticRegression 모델 학습
- 학습 된 모델을 평가용 데이터로 생존 여부 예측 성능을 평가

생존 가능 여부 분류 예측 : 타이타닉 데이터셋

```
import seaborn as sns
titanic = sns.load_dataset('titanic')
print(titanic)
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town a	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	C	First	woman	False	C	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	C	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
886	6 0	2	male	27.0	0	0	13.0000	S	Second	man	True	NaN	Southampton	no	True
887	7 1	1	female	19.0	0	0	30.0000	S	First	woman	False	В	Southampton	yes	True
888	8 0	3	female	NaN	1	2	23.4500	S	Third	woman	False	NaN	Southampton	no	False
889	9 1	1	male	26.0	0	0	30.0000	C	First	man	True	C	Cherbourg	yes	True
890	0 0	3	male	32.0	0	0	7.7500	Q	Third	man	True	NaN	Queenstown	no	True
1															

[891 rows x 15 columns]

타이타닉 데이터셋 설명

컬럼 명		의미	데이터 과
survive	d	생존여부	0 (사망) / 1 (생존)
pclass		객실 등급 (숫자)	1/2/3
sex		성별	male/female
age		LHOI	0 ~ 80
sibsp		형제자매 / 배우자 인원수	0 ~ 8
parch:		부모 / 자식 인원수	0 ~ 6
fare:		요금	0 ~ 512,3292
			S (Southampton)
embarke	d	탑승 항구	C (Cherbourg)
			Q (Queenstown)
class		좌석등급 (영문)	First, Second, Third
who		성별	man / woman
deck		객실 고유 번호 가장 앞자리 알파벳	A.B.C.D.E.F.G
embark_to	own	탑승 항구 (영문)	Southampton / Cherbourg / Queenstown
alive		생존여부 (영문)	no (사망) / yes (생존)
alone		혼자인지 여부	True (가족 X) / False (가족 0)

데이터 전처리

```
dataset = titanic.copy()
dataset.drop(['class', 'who', 'deck', 'embark_town', 'alive'], axis=1, inplace=True )
print( dataset.count() )
```

○ 필요한 컬럼만 남김

print(dataset.info())

- 데이터 개수 확인
- 데이터 타입 확인

survived	891
pclass	891
sex	891
age	714
sibsp	891
parch	891
fare	891
embarked	889
adult_male	891
alone	891
dtype: int64	

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	adult_male	891 non-null	bool
9	alone	891 non-null	bool

데이터 변환

○ 선형 상관계수를 계산하거나,

LogisticRegression 학습을 하기 위해

선택된 데이터를 수치형 데이터로 변환

```
dataset['sex'] = dataset['sex'].apply(encoding_sex)

dataset['embarked'] = dataset['embarked'].apply(encoding_embarked)

dataset['alone'] = dataset['alone'].apply(encoding_alone)

dataset['adult_male'] = dataset['adult_male'].apply(encoding_adult_male)
```

```
def encoding sex(x):
 if x == 'male':
    return 0
 else:
    return 1
def encoding embarked(x):
 if x == 'S':
    return 0
 elif x == 'C':
   return 1
 else:
    return 2
def encoding adult male(x):
 if x == True:
   return 1
 else:
    return 0
def encoding alone(x):
 if x == True:
   return 1
  else:
    return 0
```

데이터셋 분리 (학습용 & 평가용)

- 데이터 약 20% 를 평가용으로 분리
- 두 데이터셋의 평균 값을 확인

```
trainset = dataset.iloc[ 150 : ]

testset = dataset.iloc[ : 150 ]

print( trainset.mean() )

print( testset.mean() )
```

/			1
	survived	0.426984	
	pclass	2.207937	
	sex	0.376190	
	age	30.219654	
	sibsp	0.500000	
	parch	0.419048	
	fare	36.265979	
	embarked	0.341270	
	adult_male	0.571429	
	alone	0.574603	
,			/

/			1
	survived	0.353333	•
	pclass	2.406667	
	sex	0.366667	
	age	28.053780	
	sibsp	0.633333	
	parch	0.413333	
	fare	28.794249	
	embarked	0.400000	
	adult_male	0.586667	
	alone	0.53333	
•			

결측 데이터 제거

두 데이터셋의 결측치 여부를 확인 후결측 데이터는 제거

```
#print( trainset.isna().sum() )
#print( testset.isna().sum() )

trainset.dropna(inplace=True)

testset.dropna(inplace=True)

print( trainset.count() )

print( testset.count() )
```

		1
survived	549	,
pclass	549	
sex	549	
age	549	
sibsp	549	
parch	549	
fare	549	
embarked	549	
adult_male	549	
alone	549	
		/

•		
	survived	127
	pclass	127
	sex	127
	age	127
	sibsp	127
	parch	127
	fare	127
	embarked	127
	adult_male	127
	alone	127
\		

데이터 탐색 (상관계수)

- 선형 상관계수 값 확인
 - ⊙ 생존 여부와 선형 관계성이 높은 수치들을 확인
 - 선형 관계성이 낮아 보이는 항목에 대해서는시각화를 통해 (비선형성) 관련성 여부를 확인

```
res = trainset.corr()
print( res['survived'] )
```

/		`	1
,	survived	1.000000	
	pclass	-0.401491	
	sex	0.509082	
	age	-0.082350	
	sibsp	-0.015502	
	parch	0.086772	
	fare	0.297462	
	embarked	0.103253	
	adult_male	-0.530561	
(alone	-0.217397	/
`			,

데이터 탐색 (시각화)

목표 변수 (종속 변수) 가 연속형 수치 데이터라면 산점도 그래프가 유용하지만,
 범주형이라면 히스토그램 그래프이 더 효과적일 수 있음

```
for c in trainset.columns:
   if c != 'survived':
     sns.histplot( x=c, hue='survived', data=trainset)
     plt.show()
```

histplot() 은 겹쳐지는 부분이 가독성이 낮음 # displot() 은 범주별로 그래프를 생성

```
for c in trainset.columns:
   if c != 'survived':
      sns.displot( x=c, col='survived', hue='survived', data=trainset)
      plt.show()
```


로지스틱 회귀 모델 학습

○ 독립변수와 종속변수를 분리하여 LogisticRegression 모델 학습

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()

train_X = trainset.drop(['survived'], axis=1)

train_Y = trainset['survived']

test_X = testset.drop(['survived'], axis=1)

test_Y = testset['survived']

lr.fit( train_X, train_Y )
```

- # ConvergenceWarning 발생!
- # 아직 모델이 충분히 학습이 되지 못함

```
/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818:

ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS

REACHED LIMIT.
```

로지스틱 회귀 모델 학습

O LogisticRegression 모델 학습이 최적으로 수렴될 수 있게 max_iter 값을 높임

```
# 모델 학습 최대 횟수를 기본값 100 에서 300 으로 변경

lr = LogisticRegression(max_iter=300)

lr.fit(train_X, train_Y)

# 학습 된 모델로 학습용 & 평가용 데이터에 대해 score 학인

lr.score(train_X, train_Y)

lr.score(test_X, test_Y)
```

```
LogisticRegression(max_iter=300)
0.8105646630236795
0.8031496062992126
```

학습된 모델 계수 (기울기 확인)

○ 학습된 모델 계수 (기울기) 값을 확인

⊙ .coef_ 를 출력해보면 2차원 배열임

```
print( lr.coef_ )
coeff = pd.Series(data=lr.coef_[0], index=train_X.columns)
print( coeff.sort_values(ascending=False) )
```

0.419963
0.007039
0.003626
-0.030246
-0.432425
-0.620606
-0.772193
-1.153883
-2.213475

○ 선형 회귀 모델처럼 계수를 해석하기 위해서는 추가 작업이 요구됨. 본 강의에서는 참고만.

독립 변수 선택에 따른 모델 성능

- 모델 학습 시 사용할 독립 변수를 선정
 - 데이터 탐색, 시각화 과정에서 얻은 통찰력을 토대로 선정

```
columns = ['pclass','sex', 'age', 'sibsp', 'parch', 'fare', 'adult_male']

train_X = trainset[columns]

train_Y = trainset['survived']

test_X = testset[columns]

test_Y = testset['survived']
```

```
lr.fit( train_X, train_Y )
print( lr.score(train_X, train_Y) )
print( lr.score(test_X, test_Y) )
```

0.8214936247723132 0.8267716535433071

결측 데이터 활용에 따른 모델 성능

- 학습용 데이터셋에서 age 결측 된 행을 모두 제거하는 대신 age 값을 평균 값으로 대체
 - 평가용 데이터는 동일하게 사용
 - 학습 데이터가 증가되는 효과 등으로 모델의 일반화 성능이 향상될 수 있음

```
trainset = dataset.iloc[ 150 : ].copy()

trainset.fillna( trainset['age'].mean(), inplace=True )

columns = ['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare', 'adult_male']

train_X = trainset[columns]

train_Y = trainset['survived']

# testset 은 결축 데이터가

# 제거된 버전을 동일하게 사용

print( lr.score(train_X, train_Y) )

print( lr.score(test_X, test_Y) )

0.8

0.8346456692913385
```

맺음말

- 이진 분류를 학습할 수 있는 로지스틱 회귀 모델을 배움
- O 데이터 탐색을 통해 이진 분류에 관련성이 높을 입력 데이터를 선정
- 결측 데이터를 적절히 활용한다면 모델의 성능 (일반화) 향상을 기대할 수 있음
- 본 과목에서는 간단한 이진 분류 (로지스틱 회귀) 모델만 소개하였으며 다중 분류 모델 및 고급 학습 모델 기법이 궁금한 학생은 "기계학습 (Machine Learning)" 과목 수강을 추천!

