ЛАБОРАТОРНАЯ РАБОТА № 3 Моделирование процесса чистого рождения

Цель: исследование характеристик процесса чистого рождения.

1. Порядок выполнения

- 1) Разработать программу для моделирования процесса чистого рождения. На экран выводить диаграмму состояний процесса и графики значений вероятностей первых одиннадцати состояний, математического ожидания и дисперсии процесса.
- 2) Исследовать поведение процесса при заданных последовательностях параметров $\{\lambda_k\}$.
- 3) Описать поведение процесса при заданных последовательностях параметров $\{\lambda_k\}$.

2. Содержание отчета

- 1) Диаграмма состояний процесса и графики значений вероятностей первых одиннадцати состояний, математического ожидания и дисперсии процесса для заданных последовательностей параметров $\{\lambda_k\}$.
- 2) Выводы по результатам наблюдения поведения процесса для заданных последовательностей параметров $\{\lambda_k\}$.
- 3) Программа экспериментов.

3. Варианты заданий

Вариант	Последовательности параметров $\{\lambda_k\}$		
1	$\lambda_k = 0.5$	$\lambda_k = k^2 + 1$	$\lambda_k = 2/(k+1)$
2	$\lambda_k = 1.5$	$\lambda_k = 2k^2 + 1$	$\lambda_k = 0.2/(k+4)$
3	$\lambda_k = 0.2$	$\lambda_k = 0.5k^2 + 1$	$\lambda_k = 1.2/(k+2)$
4	$\lambda_k = 1.2$	$\lambda_k = 1.5k^2 + 1$	$\lambda_k = 1.1/(k+6)$
5	$\lambda_k = 2.5$	$\lambda_k = 0.2k^2 + 1$	$\lambda_k = 2.1/(k+9)$
6	$\lambda_k = 1.1$	$\lambda_k = 0.3k^2 + 5$	$\lambda_k = 5.1/(k+5)$
7	$\lambda_k = 0.9$	$\lambda_k = 0.1k^2 + 7$	$\lambda_k = 6.6/(k+6)$
8	$\lambda_k = 0.7$	$\lambda_k = 1.1k^2 + 1$	$\lambda_k = 1.6/(k+1)$
9	$\lambda_k = 1.3$	$\lambda_k = 1.8k^2 + 8$	$\lambda_k = 7.6/(k+9)$
10	$\lambda_k = 1.6$	$\lambda_k = 2.8k^2 + 10$	$\lambda_k = 0.6/(k+4)$
11	$\lambda_k = 1.7$	$\lambda_k = 0.8k^2 + 9$	$\lambda_k = 5.6/(k+12)$
12	$\lambda_k = 0.1$	$\lambda_k = 0.01k^2 + 2$	$\lambda_k = 0.1/(k+15)$
13	$\lambda_k = 0.9$	$\lambda_k = 0.25k^2 + 1$	$\lambda_k = 1.25/(k+2)$
14	$\lambda_k = 1.25$	$\lambda_k = 1.75k^2 + 1$	$\lambda_k = 1.2/(k+3)$
15	$\lambda_k = 1.5$	$\lambda_k = 0.2k^2 + 2$	$\lambda_k = 2.15/(k+6)$
16	$\lambda_k = 1.15$	$\lambda_k = 0.35k^2 + 4$	$\lambda_k = 5.5/(k+4)$
17	$\lambda_k = 0.95$	$\lambda_k = 0.15k^2 + 4$	$\lambda_k = 6.25/(k+5)$

18	$\lambda_k = 0.75$	$\lambda_k = 1.15k^2 + 2$	$\lambda_k = 1.65 / (k+1)$
19	$\lambda_k = 1.35$	$\lambda_k = 1.75k^2 + 4$	$\lambda_k = 7.5/(k+3)$
20	$\lambda_k = 1.5$	$\lambda_k = 1.75k^2 + 0.5$	$\lambda_k = 0.75 / (k+4)$
21	$\lambda_k = 1.7$	$\lambda_k = 0.75k^2 + 2$	$\lambda_k = 4.25 / (k+3)$
22	$\lambda_k = 0.25$	$\lambda_k = 0.05k^2 + 3$	$\lambda_k = 0.15/(k+12)$
23	$\lambda_k = 0.45$	$\lambda_k = 0.65k^2 + 2$	$\lambda_k = 1.5 / (k+5)$
24	$\lambda_k = 2.2$	$\lambda_k = 3.5k^2 + 1$	$\lambda_k = 1.75/(k+7)$
25	$\lambda_k = 3.75$	$\lambda_k = 0.25k^2 + 2$	$\lambda_k = 2.5/(k+5)$
26	$\lambda_k = 1.75$	$\lambda_k = 0.35k^2 + 9$	$\lambda_k = 3.1/(k+7)$
27	$\lambda_k = 0.85$	$\lambda_k = 0.17k^2 + 6$	$\lambda_k = 3.6/(k+4)$
28	$\lambda_k = 1.7$	$\lambda_k = 1.6k^2 + 4$	$\lambda_k = 1.85 / (k + 0.5)$
29	$\lambda_k = 1.25$	$\lambda_k = 1.25k^2 + 2$	$\lambda_k = 6/(k+3)$
30	$\lambda_k = 1.25$	$\lambda_k = 3k^2 + 5$	$\lambda_k = 1.25/(k+3)$