ESTRUCTURA DE DATOS

GRADO INGENIERIA INFORMATICA (2015 – 2016)

UNIVERSIDAD DE GRANADA

Reto 1

1. Usando la notación O, determinar la eficiencia de los siguientes segmentos de código:

```
int n, j, i=1, x=0;
                          } O(1)
do{
                          - O(1)
       j=1;
       while (j \le n)
                         )
0(1)
              j=j*2;
                                                                         O(n*log(n))
                                        O(log_2(n))
                                                         O(n*log_2(n))
                         } O(1)
       }
                          } O(1)
       i++:
}while (i<=n)</pre>
```

```
int n,j, i=2, x=0;
                                 O(1)
do{
                                O(1)
        j=1;
        while (j \le i){
                             } O(1)
                j=j*2;
                                                              O(n*\sum(log_2(i))
                                                                                     O(n*log(n!))
                                              O(log<sub>2</sub>(i))
                             - O(1)
                x++;
        }
                             \rightarrow O(1)
        i++;
}while (i<=n)</pre>
```

*Nota codigo 2: la i en la sumatoria vale 2, luego 3, 4, 5. Por lo que la suma sería log(2) + log(3) + log(4) ... que usando logaritmos sería: log(2*3*4*...)

2. Para cada función f(n) y cada tiempo t de la tabla siguiente, determinar el mayor tamañoo de un problema que puede ser resuelto en un tiempo t (suponiendo que el algoritmo para resolver el problema tarda f(n) microsegundos, es decir, $f(n) \times 10^6$ sg.)

f(n)	t				
	1 seg	1 h	1 semana	1 año	1000 años
log ₂ n	~10 ³⁰⁰⁰⁰	~2,4x10 ¹⁰⁸³⁷⁰⁷⁹⁸⁴	~5,9x10 ¹⁸²⁰⁶²⁹⁴¹³	•••	•••
n	106	3,6x10 ⁹	6,048x10 ¹¹	$3,1536x10^{13}$	3,1536x10 ¹⁶
nlog ₂ n	~6,27x10 ⁴	~1,33x10 ⁸	~1,77x10 ¹⁰	~7,96x10 ¹¹	~6,40x10 ¹⁴
n ³	100	1532	8456	31581 *	315000
2 ⁿ	19	31	39	44	54
n!	9	12	14	16	18

Todos los datos han sido calculados analíticamente, sin redondeo pero pensando:

$$\exists n / f(n) = t : \{ t > 0 ; n > 0 \}$$

$$1n \rightarrow 1\mu s \rightarrow 10^{-6} s$$

- A partir de aquí he resuelto todo despejando para aislar la n, por ejemplo:
 - 1. $\log_2(n) \mu s = 1s$
 - 2. $\log_2(n) \mu s = 10^6 \mu s$
 - 3. $\log_2(n) = 10^6$
 - 4. $n = 2^{10^6} = 10^{300000}$