277263

MODEL 162
30 MHz

FUNCTION GENERATOR

WAVETEK

9045 Balboa Ave., San Diego, Calif. 92123 P. O. Box 651, San Diego, California 92112 Tel 714/279-2200 TWX 910-335-2007

WARRANTY

All Wavetek instruments are warranteed against defects in material and workmanship for a period of one year after date of manufacture. Wavetek agrees to repair or replace any assembly or component (except batteries) found to be defective, under normal use, during this period. Wavetek's obligation under this warranty is limited solely to repairing any such instrument which in Wavetek's sole opinion proves to be defective within the scope of the warranty when returned to the factory or to an authorized service center. Transportation to the factory or service center is to be prepaid by purchaser. Shipment should not be made without prior authorization by Wavetek.

This warranty does not apply to any products repaired or altered by persons not authorized by Wavetek, or not in accordance with instructions furnished by Wavetek. If the instrument is defective as a result of misuse, improper repair, or abnormal conditions or operations, repairs will be billed at cost.

Wavetek assumes no responsibility for its product being used in a hazardous or dangerous manner either alone or in conjunction with other equipment. High voltage used in some instruments may be dangerous if misused. Special disclaimers apply to these instruments. Wavetek assumes no liability for secondary charges or consequential damages and, in any event, Wavetek's liability for breach of warranty under any contract or otherwise, shall not exceed the purchase price of the specific instrument shipped and against which a claim is made.

Any recommendations made by Wavetek for use of its products are based upon tests believed to be reliable, but Wavetek makes no warranty of the results to be obtained. This warranty is in lieu of all other warranties, expressed or implied, and no representative or person is authorized to represent or assume for Wavetek any liability in connection with the sale of our products other than set forth herein.

CONTENTS

SECTION 1	INT	RODUCTION								
	1.1	PURPOSE OF THE EQUIPMENT								1-1
	1.2	SPECIFICATIONS			٠				٠	1-1
SECTION 2	INST	TALLATION AND OPERATION								
	2.1	MECHANICAL INSTALLATION								2-1
	2.2	ELECTRICAL INSTALLATION								2-1
	2.3	OPERATING CONTROLS								2-1
	2.4	INSTALLATION CHECKS								2-4
	2.5	OPERATING PROCEDURE								2-5
SECTION 3	CIRC	CUIT DESCRIPTION								
	3.1	INTRODUCTION				٠.				3-1
	3.2	BASIC WAVEFORM AND FREQUENCY DEVELOPMEN	VT							3-1
	3.3	WAVEFORM DEVELOPMENT AND SELECTION								3-1
	3.4	FREQUENCY AND PERIOD CONTROL								3-2
	3.5	AMPLITUDE OFFSET AND ATTENUATION								3-2
	3.6	TRIGGER AND GATED CONTROL								3-2
SECTION 4	PER	FORMANCE VERIFICATION AND CALIBRATION								
	4.1	INTRODUCTION						7		4-1
	4.2	FACTORY REPAIR								4-1
	4.3	RECOMMENDED TEST EQUIPMENT								4-1
	4.4	ACCESS INSTRUCTIONS								4-1
	4.5	CALIBRATION INSTRUCTIONS								4-1
SECTION 5	TRO	UBLESHOOTING								
	5.1	CORRECTIVE MAINTENANCE								5-1
	5.2	TROUBLESHOOTING TECHNIQUE FOR INDIVIDUAL								5-1
	5.3	TROUBLESHOOTING GUIDE FOR MAIN CIRCUITS .								5-2
	5.4	TROUBLESHOOTING PROCEDURE FOR INDIVIDUAL								5-6
	5.4.1	Troubleshooting of Trigger Circuit								5-7
	5.4.2									5-9
	5.4.3	3 Triangle Generator Troubleshooting								5-10
	5.4.4									5-1
	5.4.5	Amplifier Troubleshooting Hints								5-12
	5.4.6									5-12
	5.4.7	Preamplifier Troubleshooting Hints								5-13
	5.4.8									5-13
	5.4.9									5-13
	5.4.1									5-13
	5.4.1									5-14
SECTION 6	DAD.	TO LICTO AND COLIEMATIC DIACRAMO								

Figure i — Model 162 30 MHz Function Generator

SECTION INTRODUCTION

1.1 PURPOSE OF THE EQUIPMENT

The Model 162 Function Generator offers an extended waveform versatility plus a frequency range that spans twelve decades, from 30 µHz (9.2 hours per cycle) to 30 MHz.

The waveforms available are sine, square, triangle, trapezoidal and positive and negative rectangular and trapezoidal pulse, each with variable amplitude, dc offset and symmetry.

The trapezoidal waveform rise and fall times may be varied by means of independent slope, width and symmetry controls. Different rise times and fall times, both controllable, may be selected to suit your testing or triggering requirements.

The Model 162 can be triggered, gated, or swept by an external signal.

1.2 SPECIFICATIONS

1.2.1 Waveforms

Eight selectable waveforms, sine $\,^{\wedge}$, triangle $\,^{\wedge}$, square $\,^{\square}$, positive pulse $\,^{\square}$, negative pulse $\,^{\square}$, trapezoid $\,^{\wedge}$, positive trapezoid $\,^{\wedge}$, and negative trapezoid $\,^{\vee}$, plus variable DC output. Symmetry of all waveform outputs is continuously adjustable from 1:19 to 19:1. Varying symmetry provides variable duty-cycle pulses, sawtooth or unsymmetrical trapezoidal waveforms. Separate sync output included.

1.2.2 Operating Frequency Range

Frequency selectable from 0.00003 Hz to 30 MHz in the following ranges.

X 0.001						0.	00	003 Hz to 0.003 Hz
X 0.01				٠.			0.	0003 Hz to 0.03 Hz
X 0.1								$0.003\ Hz$ to $0.3\ Hz$
X1 .					."			. 0.03 Hz to 3 Hz
X 10 .								. 0.3 Hz to 30 Hz
X 100								0.3 Hz to 300 Hz
X 1K.								. 3 Hz to 3 kHz
X 10K		4						30 Hz to 30 kHz

X 100K .						300 Hz to 300 kHz
X 1 MHz						. 3 kHz to 3 MHz
X 10 MHz						30 kHz to 30 MHz

NOTE

When SYMMETRY control is used, indicated frequency is divided by a factor of approximately 10.

1.2.3 Outputs

Main Output

Maximum output of sine, triangle, square and trapezoidal waveforms is 20 V p-p into open circuit and 10 V p-p into 50Ω load. Positive and negative trapezoids and pulses are 10 V peak into open circuit and 5 V peak into 50Ω . DC voltage is adjustable between ± 10 volts, 50Ω source impedance. Output peak current is 130 mA minimum for all waveforms and DC. Precision output allows from 0 dB to -60 dB attenuation in 10 dB steps with a 20 dB vernier; maximum overall attenuation is -80 dB. High level 0 to -50 dB and low level -40 to -80 dB outputs give optimum performance.

Sync Output

Approximately 0 to +4 V into open circuit, 50Ω source impedance. Rise and fall times are typically 10 ns into 50Ω load. Sync is a square waveform during symmetrical outputs, rectangular waveform when SYMMETRY control is ON.

1.2.4 DC Offset

Front panel controlled between ± 10 Vdc into open circuit, ± 5 Vdc into 50Ω load. Peak voltage output (signal peak plus dc offset) is limited to ± 10 V into open circuit, ± 5 V into 50Ω load. DC offset and output waveform are attenuated proportionately by the attenuator.

1.2.5 Main Generator Operational Modes

Continuous

Operating as a standard VCG (voltage controlled generator), frequency output is determined by front panel control

settings in conjunction with external control voltage at VCG IN.

Triggered

Only one complete cycle of output appears at 50Ω OUT connector for each pulse applied to TRIG IN connector (or press of MAN TRIG switch).

Gated

Same as triggered mode except that output oscillations continue for duration of gating signal applied to TRIG IN connector.

1.2.6 Voltage Controlled Generator

VCG Control Range

Up to 1000:1 frequency change with external voltage input. Upper frequency is limited to maximum of selected range. Required external signal for full voltage control is 0 to 5 V with input impedance of 5 k Ω .

VCG Slew Rate

2% of range per μ s.

VCG Linearity

0.0003 Hz to 3 MHz ±0.5% of range

1.2.7 Triggered Generator

Trigger Input

Trigger pulse is 1 V p-p to ± 50 V; input impedance is 10 k Ω , 33 pF; minimum pulse width is 25 ns; maximum repetition rate is 20 MHz.

Start/Stop Point Adjustment

Triggered-signal start/stop point is adjustable:

To 3 MHz $\,\cdot\,$ Approximately -90° to $+90^{\circ}$ 3 MHz to 30 MHz $\,\cdot\,$. . . Approximately -90° to 0°

1.2.8 Horizontal Precision

Dial Accuracy for Symmetrical Waveforms*

0.0003 Hz to 300 kHz . $\pm (1\%$ of setting +1% of full scale) 300 kHz to 30 MHz . . $\pm (3\%$ of setting +2% of full scale)

Frequency Vernier

Electronic frequency vernier precision frequency adjustment is approximately 1% of range.

Time Symmetry*

0.0003 Hz to 30 Hz						±1.0%
30 Hz to 300 kHz						±0.5%

1.2.9 Vertical Precision

Amplitude Change with Frequency (Sine)

Less than:

0.1 dB to 300 kHz

0.2 dB to 3 MHz

2.5 dB to 30 MHz

Step Attenuator Accuracy

±0.25 dB per 10 dB step.

Stability*

Amplitude Symmetry

All symmetrical waveforms are symmetrical about ground within $\pm 1\%$ of amplitude range up to 3 MHz (e.g. within ± 100 mV with output attenuator at 0 dB).

1.2.10 Purity*

Sine Wave Distortion

10 Hz to 100 kHz . . . Less than 0.5% (typically 0.25%) 0.0003 Hz to 3 MHz Less than 1.0% 3 MHz to 30 MHz . . All harmonics at least 26 dB down

Triangle Linearity

0.0003~Hz to 300~kHz Greater than 99%

Square Wave Rise and Fall Time

Less than 12 ns (typically 8 ns) when terminated into 50Ω load.

Square Wave Total Aberrations

Less than 5%.

Trapezoidal Rise and Fall Time

Ratio of period to rise or fall time is continuously variable from 2:1 (triangle) to greater than 100:1 and limited to 12 ns (maximum) rise and fall time.

1.2.11 Environmental

Temperature

All specifications listed are for $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$. For operation from 0°C to 55°C , specifications including horizontal precision, amplitude symmetry, and sine wave distortion are derated by a factor of 2.

1.2.12 Mechanical

Dimensions

14% in./36.8 cm wide; 5% in./13.3 cm high; 13% in./34.3 cm deep.

Weight

12 lb/5.5 kg net; 19 lb/8.6 kg shipping.

Power

90 to 110 V, 105 to 125 V, 180 to 220 V or 210 to 250 V; 50 to 400 Hz; less than 50 watts.

NOTE

Specifications apply from 10 to 100% of a selected frequency range.

*SYMMETRY control OFF.

SECTION AND OPERATION

2.1 MECHANICAL INSTALLATION

After unpacking the instrument, visually inspect all external parts for possible damage to knobs, connectors, surface areas, etc. If damage is discovered, file a claim with the carrier who transported the unit. The shipping container and packing material should be saved in case reshipment is required.

2.2 ELECTRICAL INSTALLATION

2.2.1 Power Connection

Connect the ac line cord to the mating connector at the rear of the unit.

NOTE

Unless otherwise specified at the time of purchase, this instrument was shipped from the factory with the power transformer connected for operation on a 105 - 125 Vac line supply and with a 1/2 amp line fuse.

Conversion for 90 to 110 V, 180 to 220 V or 210 to 250 V operation requires resetting two switches on the inside of the rear panel. To reset the switches, unscrew the four captive screws securing the rear panel, and remove the rear panel. Set the two switches and select the fuse for the ac line voltage according to the following table.

AC Line Voltage	Switch A	Switch B	Fuse (SB)
90 - 110	115	LO	½ amp
105 - 125	115	HI	½ amp
180 - 220	230	LO	¼ amp
210 - 250	230	HI	¼ amp

2.2.2 Signal Connections

Use 50Ω shielded cables equipped with female BNC connectors to distribute all signals when connecting this instrument to associated equipment.

The two main outputs, 50Ω OUT (LO) and 50Ω OUT (HI),

should be terminated with 50Ω load when used for optimum performance.

2.3 OPERATING CONTROLS

The operating controls and electrical connections for the Model 162 are shown in Figure 2-1. The listing below discusses each control and its function.

- POWER Switch Power is on when this pushbutton switch is in, and off when extended.
- 2. Frequency Index The scribe line indicates the frequency dial setting. The index is illuminated when the unit is on.
- Frequency Dial The main frequency control. The setting on this dial multiplied by the frequency range setting is the basic output frequency of the generator. (The FREQ (Hz) VERNIER, the SYMMETRY control and VCG IN also affect the generator frequency.)
- 4. FREQ (Hz) Range This 11 position switch selects the generator frequency range, which, when multiplied by the frequency dial setting, determines the basic output frequency of the generator.
- 5. FREQ (Hz) VERNIER Control This control allows precision control over the output frequency. A complete turn of this vernier is equivalent to approximately one half of the smallest division on the main frequency dial. When in the full clockwise position (CAL), the settings on the main dial will be accurate.
- SYMMETRY Control The large knob selects a right-hand or left-hand waveform time-symmetry. The small VARIABLE knob varies the waveform timesymmetry up to 19:1 or 1:19. When these controls are used, the frequency range is divided by approximately 10.

The duty cycle of the square wave can be varied from
, to ; the slope of the triangle from
, to ; and the rise to fall time ratio
of the trapezoid from , to . See

Figure 2-1. Operating Controls and Electrical Connections, Front Panel

Figure 2-2 for the sync signal relationship.

- SLOPE/WIDTH Control The small knob controls
 the slope of the trapezoidal waveforms. The large
 knob controls the time symmetry of the waveform.
 The setting of these controls does not affect the other
 waveforms. See Figure 2-2 for the sync signal relationship.
- 9. OUTPUT ATTEN (dB) Control The large knob attenuates the 50Ω output from 0 dB (10 V p-p max into 50Ω load) to -60 dB (10 mV p-p into 50Ω) in 10 dB steps. LO and HI indicate the correct output connector to use. The small VARIABLE knob may be used to continuously change the amplitude by approximately 20 dB. Maximum attenuation is -80 dB (1.0 mV p-p into 50Ω). The OUTPUT ATTEN (dB) VARIABLE control is inoperative when DC is selected on the WAVEFORM selector.
- 10. 50 Ω OUT (HI) This is the selected waveform

Figure 2-2. Selectable Waveforms and Sync Signal Phase and Polarity Relationships

output for the main generator or a dc voltage when the OUTPUT ATTEN (dB) switch is set 0 to -30 dB. The Model 162 operating into an open circuit provides 20 V p-p maximum, or into a 50Ω load provides a 10 V p-p output for the sine, triangle, square and trapezoidal waveforms; maximum trapezoidal and rectangular pulses are 10 V into an open circuit and 5 V into a 50Ω load.

- 11. 50Ω OUT (LO) This is the selected waveform output for the main generator or a dc voltage when the OUTPUT ATTEN (dB) control is set -40 dB to -60 dB.
- 12. DC OFFSET Control Adjusts dc base line offset above (+) or below (—) signal ground; or, when DC is selected on the WAVEFORM selector, adjusts dc voltage at the 50Ω output. The large knob selects polarity, and the small VARIABLE knob adjusts voltage up to ± 10 Vdc into an open circuit (± 5 Vdc into 50Ω load).

Peak signal output (waveform plus dc offset) is limited to ± 10 Vdc into an open circuit (± 5 Vdc into a 50Ω load). (The OUTPUT ATTEN (dB) control affects dc offset as well as waveform amplitude.)

- 13. SYNC OUT This is a square wave (or rectangular if SYMMETRY control is in use) with the same frequency and same polarity of the selectable square wave at a 50Ω output. Amplitude into an open circuit is greater than 4 V p-p (2 V p-p into 50Ω). See Figure 2-2.
- 14. TRIG START/STOP Control The large knob switched to VAR allows the triggered output signal start and stop point to be varied by turning the small knob. For sine and triangle waveforms, the start/stop point may be varied from negative peak voltage to almost positive peak voltage. (At the higher frequencies, the limits are negative peak to waveform zero level.) The square wave always starts/stops at negative peak voltage. The rectangle pulses always start/stop at waveform zero level. The trapezoidal waveform start/stop points are continuously variable. When the large knob is set to 0° CAL, sine and triangle waveforms start/stop at waveform zero level; square and positive rectangular pulse waveforms start/stop at negative peak level; trapezoidal and trapezoidal pulse waveform start/stop points vary with the SLOPE/WIDTH control settings.
- 15. **GEN MODE Switch** Selects the operating mode of the main generator (50Ω OUT) as follows:

- a. CONT Mode The generator operates continuously as a standard Voltage Controlled Generator (VCG). Frequency output is determined by front panel control settings in conjunction with external control voltage at VCG IN.
- b. TRIG Mode The generator will give one complete cycle of output when the MAN TRIG is pressed or for each cycle of signal applied to TRIG IN. The generator output cycle begins and ends as determined by the TRIG START/STOP control.
- c. GATED Mode Operates the same as TRIG mode except that the generator will continue to have output for the full time that the MAN TRIG switch is held down or the gate signal at TRIG IN exceeds the gating level set by the TRIG LEVEL control.
- 16. TRIG LEVEL Control A continuously variable adjustment of the TRIG IN circuitry. When full ccw, approximately a positive going pulse of +7.5 V (A, Figure 2-3) or greater voltage is required for triggering. In the full cw position, a positive going pulse of approximately —7.5 V (B, Figure 2-3) or more positive voltage is required for triggering. In the GATED mode, the generator will begin to run continuously at some position of the control cw past 12 o'clock. When using the MAN TRIG, this control must be ccw of the midpoint.
- 17. MAN TRIG Switch When in TRIG mode, pressing this switch furnishes the trigger. When in GATE mode, this switch furnishes the gate signal for the duration that it is pressed and held down. The TRIG LEVEL control must be ccw from midpoint for proper MAN TRIG operation.
- 18. TRIG IN A dc coupled input with 10 k Ω , 33 pF input impedance. The TRIG LEVEL control adjusts the sensitivity of the generator to this input signal. Trigger signals must be 1 V p-p or greater but within the range of ± 50 V. Trigger signal width must be 25 ns or greater. Trigger frequency must be less than 20 MHz.

Figure 2-3. Range of Triggering Voltage

19. VCG IN — This connector allows external control of frequency. With 0 volt in, the basic generator frequency (50Ω OUT) is determined by the frequency range selected and the frequency dial setting. A positive VCG voltage will increase this frequency, and a negative voltage will decrease the frequency. Input impedance is $5 \text{ k}\Omega$. Restrictions for linear operation are (1) the upper frequency limit is the value selected with the FREQ (Hz) switch, (2) the lower frequency limit is one-thousandth the value selected with the FREQ (Hz) switch. A 5-volt excursion covers the 1000: 1 frequency range.

2.4 INSTALLATION CHECKS

The following procedures are used to determine that the instrument is operating properly. Field calibration and check-out instructions (to be supplied) are to be used to ensure that the instrument complies with the specifications. If the instrument is not operating properly or within specifications, refer to the warranty on the back of the title page.

Use a Tektronix Model 454 oscilloscope (or equivalent) and a Counter-Timer when performing these installation checks.

 After connecting the line cord to the ac line, set the front panel controls and switches as follows:

POWER													In
Frequency	Dia	ıl											1.0
FREQ (Hz)	Ra	ang	е)	K 1K
FREQ (Hz)) VI	ER	NIE	R					Ful	ly	Clo	ck	wise
SYMMETR	ΥY											(OFF
WAVEFOR	RM												
OUTPUT A	ΥŤΤ	EN	1 (d	B)									0
OUTPUT A	TT	EN	l (d	B)	VA	ARI	AB	BLE	Ful	ly	Clo	ck	wise
DC OFFSE	Т											(OFF
TRIG STA	RT	/ST	OP								0)° (CAL
GEN MOD	Ε								٠.			C	TNC

- Connect the 50Ω OUT (HI) connector with a shielded cable terminated in a 50 ohm load to the oscilloscope and set FREQ (Hz) VERNIER to obtain 1 kHz display on the oscilloscope. Approximately 10 V p-p should be displayed.
- Rotate OUTPUT ATTEN (dB) VARIABLE control full ccw. Increasing signal attenuation should be observed. Return to full cw.
- Set SLOPE control (small knob) full cw and WIDTH control (large knob) at approximately midpoint.
- 5. Check amplitudes of sine \wedge , triangle \wedge , and

- trapezoidal \(\sum_{\text{waveforms}}\) waveforms. They should be approximately 10 V p-p.
- 6. Use SLOPE/WIDTH control to vary the slope and time symmetry of the trapezoidal waveform.
- Check minimum and maximum amplitudes of positive and negative pulse waveforms, both rectangular and trapezoidal. Amplitudes should be approximately 5 volts above or below the 0 volt level.
- Switch the FREQ (Hz) range control to check rangeto-range tracking accuracy. The oscilloscope should show approximately the FREQ (Hz) range value.
- 9. Select the square waveform and rotate the SYM-METRY switch to ______ and the VARIABLE control full cw. Waveform asymmetry should be approximately 19:1. Rotate the VARIABLE control full ccw; the waveform should be symmetrical. Verify that the other switch position and VARIABLE control give approximately 1:19 waveform asymmetry.
- Turn the SYMMETRY switch to OFF and select DC on the WAVEFORM selector. Use a shielded cable with BNC connectors to connect SYNC OUT to the oscilloscope trigger input.
- 11. Set the DC OFFSET switch to + and rotate the VARIABLE control full cw. The amplitude should be approximately +5 V into a 50Ω load.
- 12. Set the DC OFFSET switch to —. Amplitude should be approximately —5 V.
- Rotate the OUTPUT ATTEN (dB) switch thru each position. Verify the attenuation on the oscilloscope. (The VARIABLE control is inoperative for DC.) Repeat using 50Ω OUT (LO) connector.
- 14. Reset the OUTPUT ATTEN (dB) switch to 0 and VARIABLE control to full cw. Select \(\sqrt{} \) with the WAVEFORM selector.
- 15. Set the GEN MODE switch to GATED and rotate the TRIG LEVEL control while observing the oscilloscope. The multiple cycles of the selected output waveform should appear when the TRIG LEVEL control is rotated cw. Reset to full ccw.
- Use MAN TRIG switch to gate waveforms. Waveforms should be continuous when MAN TRIG switch is held down.

- Set the GEN MODE switch to TRIG. Use MAN TRIG switch to trigger waveforms. One cycle should appear each time the trigger is pressed.
- Set TRIG START/STOP switch to VAR. Trigger the generator while rotating the TRIG START/STOP VARIABLE control to various positions. The waveform start/stop points should change.

2.5 OPERATING PROCEDURE

No preparation for operation is required beyond completion of the initial installation checks given in Paragraph 2.4 of this manual. It is recommended that a one-half hour warm-up period be allowed for the associated equipment to reach a stabilized operating temperature, and for the Model 162 to attain stated accuracies.

There are almost unlimited ways to set up the generator and waveforms that may be obtained. The following sections describe basic configurations and how to set them up.

2.5.1 Operation as a Function Generator

- 1. Depress the POWER switch. Properly terminate the 50Ω OUT (HI) connector.
- 2. Set the GEN MODE switch to CONT.
- 3. Set the FREQ (Hz) range switch to the desired multiplier.
- Set the frequency dial to the desired setting. Use the frequency VERNIER for precision frequency setting if necessary.
- Select desired basic output waveform using the WAVE-FORM selector.
- 6. Set OUTPUT ATTEN (dB) switch for desired output level and amplitude. If a LO amplitude signal is selected, use the 50Ω OUT (LO) connector.

For reference, the following table gives the approximate output amplitude levels at attenuator settings. The output levels of the positive and negative pulse waveforms are one-half of these levels.

TABLE 2-1

Attenuator Position Peak-to-Peak Output into 50Ω Load

	Maxim		Minim		
	(variable f	ull cw) (variable f	ull ccw)	
0 dB	10	V	1	V	
-10 dB	3.2	V	320	mV	
-20 dB	1	V	100	mV	
$-30\mathrm{dB}$	320	mV	32	mV	
$-40\mathrm{dB}$	100	mV	10	m V	
-50 dB	32	mV	3.2	mV	
-60 dB	10	mV	1	mV	

- 7. Set the SYMMETRY control for desired asymmetry. The SYMMETRY control is used to develop ramp waveforms from the triangle, to vary the duty cycle of the square wave, to vary the ratio of rise/fall time of the trapezoidal waveform. Figure 2-4 shows the effect of this control on output waveforms. The output frequency is divided by approximately a factor of 10 when an asymmetrical waveform is selected.
- 8. When the trapezoidal waveform is selected, the WIDTH control is used to vary the duty cycle of the waveform and the SLOPE control is used to vary both rise and fall times. See Figure 2-5. Use the SYMMETRY control if asymmetrical rise and fall times are desired. See Figure 2-4.
- 9. Select the desired polarity of dc offset and the amount of offset using the DC OFFSET control. Offset voltage plus peak voltage cannot exceed the voltage range limit, ±5 volts in the 0 dB range. If an excessive amount of dc offset is used, waveform clipping may be observed (see Figure 2-6). Both signal and offset are attenuated by the attenuator.

2.5.2 Operation as a Voltage Controlled Generator

The VCG input connector can be used to externally control the frequency of the generator. If a positive voltage is applied to the VCG input terminal, the frequency will increase from the setting of the frequency controls. A negative voltage will cause the frequency to decrease from the setting of the frequency controls.

A 5 V excursion in VCG voltage can vary the frequency up to 1000:1 in each range as follows:

Figure 2-5. Effect of SLOPE/WIDTH Control on the Trapezoid Waveform

Figure 2-6. DC OFFSET Control

Range	Limits	for Lin	ear Opera	ation	
	Lo	wer	Upp	er	
X 0.001	0.003	3 mHz	0.003	3 Hz	
X 0.01	0.03	mHz	0.03	Hz	
X 0.1	0.3	mHz	0.3	Hz	
X 1	3	mHz	3	Hz	
X 10	30	mHz	30	Hz	
X 100	300	mHz	300	Hz	
X1K	3	Hz	3	kHz	
X10K	30	Hz	30	kHz	
X100K	300	Hz	300	kHz	
X1M	3	kHz	3	MHz	
X 10M	30	kHz	30	MHz	

The upper limit may be exceeded as there is an overranging capability; however, overranging will be nonlinear and the operation is unspecified. Operation below the lower limit of any range setting is not recommended.

The nomograph of Figure 2-7 shows the characteristics of the VCG circuit. Column A gives the frequency dial setting, column B, the VCG voltage and column C, a factor representing the resultant frequency of the generator.

In example 1, the dial is set at 1.5 and no VCG input is applied. Extend a straight line from 1.5 (dial setting) thru 0 volt (VCG voltage). The result is an output frequency factor of 1.5. Multiply 1.5 by the range multiplier for actual 50Ω OUT frequency.

In order to set the generator at 0.003 X the range multiplier (1/1000 of the range), the following procedure is to be followed (Example 2):

- Using the frequency dial and a counter or oscilloscope, set the generator frequency to 0.03 X the range multiplier.
- 2. By rotating the VERNIER ccw, decrease the frequency to 0.003 X the range multiplier.

As can be seen from the nomograph a +5 volt VCG input will then cause the frequency to increase to the maximum of 3 X the range (an increase from 0.003 X to 3 X is 1:1000).

2.5.3 Operation as a Triggered Generator

- Adjust the generator as for continuous operation (Paragraph 2.5.1); then set the GEN MODE switch to TRIG.
- 2. For external triggering, apply a repetitive signal, any

Figure 2-7. VCG Voltage-to-Frequency Nomograph

waveform from 1 V p-p to less than ±50 V peak voltage (see TRIG IN specification, Paragraph 2.3, Item 18), to TRIG IN connector. Set the TRIG LEVEL control for proper triggering. See Figure 2-8 for the timing relationship of the trigger input, sync output and selected waveform output.

 If manual triggering is desired, set the TRIG LEVEL control full ccw and operate the MAN TRIG switch for each cycle of selected output waveform.

Figure 2-8. Trigger and Gated Operations

2.5.4 Gated or Tone Burst Operation

With the generator adjusted as in trigger operation, change the GEN MODE control to GATED position. The generator output will then be a burst of cycles. If the trigger is a waveform such as a sawtooth, the duration of the burst is adjustable by the TRIG LEVEL control (see Figure 2-8). Notice that the last cycle gated is completed at time t5,

if the gate signal is removed between time t3 and t4. In manual gating, set TRIG LEVEL control full ccw. The tone burst continues as long as the manual switch is pressed.

The generator can be made to free run in this mode at certain settings of the trigger level control. By resetting the trigger level control, normal gated operation can be reestablished.

SECTION CIRCUIT DESCRIPTION

3.1 INTRODUCTION

This section provides a circuit description of the Model 162 generator for the understanding of its principles of operation. The paragraphs are grouped under six major categories. These categories are arranged in the sequence of first understanding the heart of the generator, and then examining the circuits that influence it and the circuits that it in turn influences.

The major circuit blocks that make up the generator are introduced in all capital letters. These blocks relate to the functional block diagrams of the main circuit board shown in Figure 3-3 at the back of this section. The circuit blocks are also identified on the appropriate schematic diagrams in Section 6.

3.2 BASIC WAVEFORM AND FREQUENCY DEVEL-OPMENT

The heart of the generator is a triangle and square wave generator. The triangle waves are developed by capacitor-charging ramps that are alternately reversed in polarity. The polarity reversal is caused by a flip-flop circuit that in turn produces the square waves. The flip-flop, or HYS-TERESIS SWITCH changes states upon detecting amplitude limits of the charging ramps thru TRIANGLE AMPLIFIER NO. 1.

3.3 WAVEFORM DEVELOPMENT AND SELECTION

The WAVEFORM SELECTOR switch determines which of eight waveforms is to be output from the generator. A dc level can also be selected for output.

The triangle wave from triangle amplifier No. 1 is coupled thru unity gain TRIANGLE AMPLIFIER NO. 2 and made available to the waveform selector switch. Triangle amplifier No. 2 compensates for the output of amplifier No. 1 not having a low enough impedance to drive several other circuits. Triangle amplifier No. 2 provides the inputs for developing the sine and trapezoid waves. The SINE CONVERTER converts the triangle wave into a sine wave and makes it available to the waveform selector switch.

The square wave from the hysteresis switch and the triangle wave from triangle amplifier No. 2 are selected for input to the SQUARE & TRAPEZOID AMPLIFIER. With the square wave as input, the amplifier develops the square wave for output, as well as positive rectangular pulse and a negative rectangular pulse. The rectangular pulses result from rectifying either polarity of the square wave. With the triangle wave as input, the amplifier develops the trapezoid wave, a positive trapezoid pulse, and a negative trapezoid pulse. Similar to the rectangular pulses, the trapezoid pulses result from rectifying the trapezoid wave. The trapezoid wave is developed by a controlled overdriving of the triangle wave amplitude, the positive and negative peaks of the triangle being clipped. The SLOPE control determines the gain of triangle amplitude overdriving (see Figure 3-1). The WIDTH control determines the offset of the "amplitude window" between the clipped peaks (see Figure 3-2). The waveforms from the square & trapezoid amplifier are made available to the waveform selector switch.

Figure 3-1. Trapezoid Slope Control

WIDTH OF TRAPEZOID VARIES WITH OFFSET OF TRIANGLE INPUT

Figure 3-2. Trapezoid Width Control

The square wave from the hysteresis switch thru the SYNC AMPLIFIER is externally available at the SYNC OUT connector. The sync pulse, then, is a constant amplitude, square wave output of the generator's frequency and time symmetry.

3.4 FREQUENCY AND PERIOD CONTROL

The frequency of the waveforms is determined by selecting particular TIMING CAPACITORS to develop the triangle wave charging ramps. For slower charging times, and thus lower frequencies, a CAPACITANCE MULTIPLIER is used. The capacitance multiplier absorbs precise amounts of charging current, thereby slowing down the charging times.

The DIODE GATE supplies the appropriate polarity of charging current to the timing capacitors. Current is alternately switched from the POSITIVE CURRENT GENERATOR and then the NEGATIVE CURRENT GENERATOR with each alternation of the hysteresis switch square wave.

Waveform time symmetry is controlled by increasing or decreasing the two current sources relative to each other. Unequal charging currents thereby generate triangle wave ramps with unequal slopes. The current sources are normally equal in the amount of current supplied. The SYMMETRY CONTROL AMPLIFIER, however, can be switched into the circuit to allow setting an unbalance of the current sources' reference voltages. When this asymmetry is selected, frequency is divided by ten due to the supply limits of the current generators.

The input control voltage to the symmetry control amplifier and both current generators is provided by the VCG AMPLIFIER. Voltages from the FREQUENCY DIAL, the FREQUENCY VERNIER, and the VCG IN connector are summed together to determine the frequency control voltage from the VCG amplifier. The control voltage thru the GCV AMPLIFIER is externally available at the GCV OUT connector.

3.5 AMPLITUDE OFFSET AND ATTENUATION

The selected waveform is inverted and approximately doubled thru the PREAMPLIFIER. The VARIABLE output attenuator control provides up to 20 dB of attenuation of the waveform at the generator's output. Positive or negative reference level offset can be selected by the DC OFFSET control. The VARIABLE dc offset control provides the actual amount of offset to the selected waveforms center reference.

The preamplifier waveform is again amplified by the OUT-PUT AMPLIFIER. The output amplifier is also an inverting amplifier, only with a current limiting output stage for short circuit protection. The output amplifier establishes the generator's 0 dB attenuation reference. Two output attenuator stages decrease this reference amplitude in operator selected 10 dB steps down to -60 dB, attenuation between the steps provided from the variable output attenuator control of the preamplifier. OUTPUT ATTENUATOR NO. 1 provides the -10 dB, -20 dB, and -30 dB attenuation ranges. OUTPUT ATTENUATOR NO. 2 is switched in to provide an additional 30 dB attenuation for the -40 dB, -50 dB, and -60 dB ranges. The ATTENUATION SELEC-TOR switch determines if the attenuators are to be bypassed for the 0 dB range, if just output attenuator No. 1 is to be used, or if both output attenuators are to be employed for the generator's output.

3.6 TRIGGER AND GATED CONTROL

The enabling of generator operation is controlled by allowing or preventing the selected timing capacitor to charge. For continuous operation, the TRIGGER AMPLIFIER maintains a positive level above the positive peak developed by the charging capacitors. This reverse biases (turns off) the START/STOP DIODE SWITCH, preventing the trigger amplifier from affecting continuous operation.

When the trigger amplifier outputs some level below the positive peak charging level, the diode switch is forward biased (turned on) to hold the charging level constant. Preventing the capacitors to charge to the positive peak stops operation and holds the output at some dc level called the trigger baseline. The trigger baseline is thus the level from which a waveform cycle starts and at where it will stop.

SECTION PERFORMANCE VERIFICATION AND CALIBRATION

4.1 INTRODUCTION

This section provides instructions for verifying the performance of, and calibrating the Model 162 generator. The instructions are concise and written for the experienced electronics technician or field engineer. Performance is verified when the desired result of an adjustment is already present.

4.2 FACTORY REPAIR

Wavetek maintains a factory repair department for those customers not possessing the necessary personnel or test equipment to maintain the instrument. If an instrument is returned to the factory for calibration or repair, a detailed description of the specific problem should be attached to minimize turnaround time.

4.3 RECOMMENDED TEST EQUIPMENT

The following test equipment is recommended.

- 1. Oscilloscope: Tektronix Model 7704 or equivalent with
 - a. High frequency amplifier (7A13)
 - b. Differential amplifier (7A11) (250 MHz BW)
- 2. Distortion Analyzer: HP334A or equivalent
- 3. Spectrum Analyzer: > 600 kHz
- 4. Five-digit Frequency Counter: > 30 MHz

4.4 ACCESS INSTRUCTIONS

The Model 162 is packaged so that it can be quickly disassembled to afford access to the majority of components within the unit, while allowing the instrument to be operated.

To remove the dust cover (case) from the Model 162, the following procedure should be followed:

1. Unplug the ac line cord and unscrew the four captive screws on the rear panel.

- 2. Remove the rear panel and power supply.
- 3. Unplug power supply connector from power supply board. Slide dust cover off slowly.
- 4. At this time, the power supply can be remounted and the Model 162 may be operated normally.

4.5 CALIBRATION INSTRUCTIONS

The following paragraphs provide complete sequential calibration procedures for the Model 162 instrument. Calibration of the generator is organized in a sequence of six major groups. Each major group is a sequence of certain of the 26 individual selections and adjustments as listed below. The various calibration adjustments are located on the Main Board PC Assembly as identified in foldout Figure 4-3 at the end of this section. Each calibration adjustment is independent of subsequent adjustment settings; the subsequent adjustments, however, are dependent on previous adjustment settings.

CALIBRATION ADJUSTMENT SEQUENCE

Paragraph	Calibration Sequence	Adjustment Sequence							
Power Sup	ply								
4.5.2	Power Supply Regulation	R10							
Main Board	d								
4.5.3	Triangle Offset and Amplitude	R282, R370, R51, R142, R231, R106, R111, R124							
4.5.4	Time Symmetry	R29, R39							
4.5.5	Sine Distortion	R352, R368, R142, R369							
4.5.6	Frequency	R15, C64, C65, R19, R12, R9, R20, C62, R18, R17, R16, R10, R74, R68, R66							
4.5.7	Square Wave Purity	R279, C110							

4.5.1 Preliminary Procedures

Keep the generator covered and allow the unit to warm up for at least 30 minutes before calibration. Start the calibration by setting the front panel controls as follows:

FREQ (H	z).													X 11	K
Frequence	y Dia	1												. 1.	0
FREQ (H	z) VE	ERN	11E	R					M	axi	mu	m	cw	(CAL	_)
WAVEFO	RM											1	\setminus	(Sine	9)
OUTPUT	ATT	EN	(dl	B)										-1	0
OUTPUT	ATT	EN	(dl	B)	VA	RI	AB	LE						3/4 cv	V
SYMMET	RY													OF	F
DC OFFS	ET													OF	F
GEN MOI	DE													CON	Т
TRIG ST	ART	ST	OP										(o° CA	L

4.5.2 Power Supply Regulation

- Before connecting the unit to an ac source, check the ac line voltage. To make sure the 115/230 and HI/LO switches are set at the correct position, refer to Paragraph 2.2.1.
- Connect ac power and turn on the generator. Connect a voltmeter ground lead to TP1 (common) and the other lead to TP2 (+15 V) on the main circuit board (see foldout Figure 4-5).
- Adjust potentiometer R10 in the power supply assembly to obtain +15 Vdc ±20 mV at TP2. The power supply assembly is at the rear of the unit; the potentiometer, although located on the inner side of the printed circuit board, can be seen. Adjust by finger pressure.
- 4. Check voltage at TP3 for -15 Vdc ± 50 mV, at TP4 for +24 Vdc ± 400 mV, and at TP5 for -24 Vdc ± 400 mV.
- 5. Check voltage at TP6 for +5 Vdc ±250 mV.

4.5.3 Triangle Offset and Amplitude Adjustment

- Set the WAVEFORM selector to DC, the OUTPUT ATTEN switch to 0 dB, the OUTPUT ATTEN VARI-ABLE control to maximum ccw, and the GEN MODE switch to TRIG.
- 2. Connect the 50 Ω OUT (HI) to the oscilloscope and load with a 50 Ω terminator.
- 3. Adjust R282 to obtain output dc voltage of less than $\pm 5 \text{ mV}$.

4. Set the OUTPUT ATTEN VARIABLE control to maximum cw.

NOTE

DC level may change between full cw and full ccw.

- 5. Adjust R370 to obtain output dc voltage of less than $\pm 5 \text{ mV}$.
- 6. Repeat Steps 3 thru 5 once.
- 7. Set the frequency dial to 1.0, the WAVEFORM selector to \searrow , and the GEN MODE switch to TRIG
- Use voltage at TP7 as reference; adjust R142 until voltage at TP8 equals the voltage at TP7 to within 10 mV.
- 9. Adjust R231 to obtain 0 Vdc ± 10 mV at 50Ω OUT (HI)
- Set GEN MODE switch to CONT, and set frequency at 1 kHz (1.0 X 1K). Connect the differential oscilloscope to TP8 and ground at TP1.
- 11. Adjust R106 to make the negative peak of the waveform $-1.250 \text{ V} \pm 10 \text{ mV}$.

NOTE

As the frequency is increased, the signal will become flatter; as the frequency is decreased, the signal will look more like a \wedge .

- 12. Connect the oscilloscope probe to TP9, and adjust R111 to make the \(\sqrt{waveform (approximately a 5 mV p-p signal) average voltage 0 V.} \)
- Adjust R124 for the square waveform at TP10 symmetrical above ground ±200 mV.

4.5.4 Time Symmetry Adjustment

1. Set the frequency dial to maximum cw, the FREQ (Hz) switch to X 100K and the WAVEFORM selector to \square . Connect 50 Ω OUT (HI) to the oscilloscope.

Set the oscilloscope time base to 0.2 ms/division. Adjust the FREQ VERNIER control until the oscilloscope screen is filled by approximately one cycle (see setup and display in Figure 4-1).

MODEL 162

50Ω OUT O OCHANNEL A
OCHANNEL B

Frequency:

500 Hz

Waveform: Symmetry: = 100 a/b%

Time Base:

0.2 ms/division

Sweep Magnified:

X 10

Trigger:

Internal and Alternate

Channel B:

Normal Inverted

Figure 4-1. Alternate Time Symmetry Test Setup

- 3. Switch the oscilloscope trigger from + to -, and adjust R29 to obtain \square waveform time symmetry to within 0.5% (= 2 μ s for 500 Hz).
- 4. Set the frequency dial to 2.0 and FREQ (Hz) to X 1K.
- 5. Set the oscilloscope time base to 50 μ s. Use a similar procedure as above, and adjust R39 to obtain waveform time symmetry to within 0.1% (= 0.5 μ s for 2 kHz.
- 6. Repeat Steps 1 thru 3 once.

4.5.5 Sine Distortion Adjustment

- 1. Set the FREQ (Hz) switch to X1K, the frequency dial to 1.0 and the WAVEFORM selector to \bigcirc . Connect the 50Ω OUT (HI) to a distortion analyzer loaded with a 50Ω terminator. (See Figure 4-2 for test setup.)

of Paragraph 4.5.3 (Triangle Offset and Amplitude Adjustment).

NOTE

Trim resistor R351 may be changed for minimum sine distortion. Typical values are 825Ω and 909Ω .

Figure 4-2. Distortion Test Setup

4.5.6 Frequency Calibration

- 1. Set the FREQ (Hz) switch to X 100K, the frequency dial to 0.03, the FREQ VERNIER maximum cw (CAL), and the WAVEFORM selector to \square . Connect 50 Ω OUT (HI) to the oscilloscope.
- Alternately short and open the VCG IN connector between its input and ground and adjust R15 at the same time until no observable frequency shift is seen on the oscilloscope.
- Set the FREQ (Hz) switch to X 10M and the frequency dial to 2.0 Adjust C64 to obtain an output frequency of 20 MHz ±100 kHz. Select a different value of C65 if calibration cannot be achieved; each addition of 1 pF will reduce frequency by 200 kHz.
- 4. Set the FREQ (Hz) switch to 100K and the frequency dial to 3.0. Adjust R19 to obtain an output frequency of 300 kHz ± 600 Hz.

NOTE

Select different value of R12 if frequency calibration in Steps 4, 9, and 10 cannot be achieved. Also, start from Step 3 again.

- Set the frequency dial to 0.03 and the FREQ VER-NIER control to maximum ccw. Adjust R9 to obtain an output frequency of 200 Hz ±20 Hz.
- 6. Repeat Steps 4 and 5 once.

- Set the FREQ (Hz) switch to X 1M, the frequency dial to 3.0 and the FREQ VERNIER control to maximum cw (CAL). Adjust R20 to obtain an output frequency of 3 MHz ±10 kHz. Select a different value of C62 if calibration cannot be achieved; each addition of 10 pF will reduce frequency by 30 kHz.
- 8. Repeat Steps 3 and 7 once.
- Set the FREQ (Hz) switch to X 10K. Adjust R18 to obtain an output frequency of 30 kHz ±60 Hz. (Refer to Note in Step 4.)
- Set the FREQ (Hz) switch to X 1K. Adjust R17 to obtain an output frequency of 3 kHz ±6 Hz. (Refer to Note in Step 4.)
- 11. Set the FREQ (Hz) switch to X 100. Adjust R16 to obtain an output frequency of 300 Hz \pm 0.6 Hz (3.33 ms \pm 6 μ s). Select a different value of R10 if calibration cannot be achieved.

- 12. Set the FREQ (Hz) switch to X 10 and the frequency dial to 0.1. Adjust R74 to obtain time symmetry of the waveform output better than 0.1%. Refer to Paragraph 4.5.4 (Time Symmetry Adjustment) for setup and measurement.
- 13. Set the frequency dial to 3.0. Adjust R68 to obtain an output frequency of 30 Hz ± 0.06 Hz (33.3 ms $\pm 6.0~\mu$ s). Check frequency accuracy at X 1 and X 0.1 ranges for better than 1%, or readjust R68. Select a different value of R66 if calibration cannot be achieved.

4.5.7 Square Wave Adjustment

- Set the frequency dial to 1.0, the FREQ (Hz) switch to X 10K, the WAVEFORM selector to _____, and the OUTPUT ATTEN VERNIER to maximum cw. Adjust R279 to make the absolute negative peak voltage equal to the positive peak voltage within ±20 mV.
- 2. Set the FREQ (Hz) switch to X 1M. Adjust C110 to make a square waveform with the best square corner, but without overshoot.

POINT	FUNCTION
TPI	COM
TP2	+15V
TP3	-15V
TP4	+24V
TP5	-24V
TP6	+5V
TP7	\\\^1
TPB	N2
TP9	Ndc
TPIO	7
	1

MAIN BOARD ASSY DIG2-015

SECTION TROUBLESHOOTING

5.1 CORRECTIVE MAINTENANCE

This section presents a systematic approach to troubleshooting. The section is organized in three parts as follows:

Part 1 (5.2). Troubleshooting Technique for Individual Components. Frequently you can quickly locate a defective component by this technique without understanding the function of the circuit. It is also a necessary technique when extensive troubleshooting to component level is required.

Part 2 (5.3). Troubleshooting Guide. Start by observing the symptom of malfunctioning; then use the guide to find the defective component or malfunctioning circuit.

Part 3 (5.4). Troubleshooting Procedure for Individual Circuits. This is a supplemental procedure to Part 2 and used when Part 2 has failed to locate the defective components. However, procedure in Part 2 should always be checked first; usually, it will refer to a specific procedure in Part 3.

5.2 TROUBLESHOOTING TECHNIQUE FOR INDIVID-UAL COMPONENTS

5.2.1 Transistor

- A transistor is defective if more than one volt is measured across its base emitter junction in the forward direction.
- A transistor when used as a switch may have a few volts reverse bias voltage.
- 3. If the collector and emitter voltages are the same, but the base emitter voltage is less than 500 mV forward voltage (or reversed bias), the transistor is defective.
- A transistor is defective if its base current is larger than 10% of its emitter current (calculate currents from voltage across the base and emitter series resistors).
- In a transistor differential pair (common emitter stages), either their base voltages are the same in normal operating condition, or the one with less

forward voltage across its base emitter junction should be OFF (no collector current); otherwise, one of the transistors is defective. Example, Q56A and Q56B.

5.2.2 Diode

 A diode is defective if across it there is greater than one volt (typically 0.7 volt) forward voltage.

5.2.3 Operational Amplifier; e.g., UA741C, LM318

- The "+" and "-" inputs of an OP AMP will have less than 15 mV voltage difference when operating under normal conditions.
- If the output voltage stays at maximum positive, its
 "+" input voltage should be more positive than its
 "-" input voltage, or vice versa; otherwise, the OP
 AMP is defective.
- The input of an OP AMP should not draw more than 500 mA of current (calculate current from voltage across its input series resistor) or it is defective.

5.2.4 FET Transistor

- No gate current should be drawn by the gate of an FET transistor. If so, the transistor is defective.
- The gate-to-source voltage is always reverse biased under a normal operating condition; e.g., the source voltage is more positive than the gate voltage for 2N5485 and TP308, and the source voltage is more negative than gate voltage for a 2N5462. Otherwise, the FET is defective.

5.2.5 Capacitor

- Shorted capacitors have zero volts across their terminals.
- Opened capacitor can be located (but not always) by using a good capacitor connected in parallel with the capacitor under test and observing the resulting effect.

5.3 TROUBLESHOOTING GUIDE FOR MAIN CIRCUITS

The following troubleshooting guide is a list of possible malfunction symptoms, their probable causes, and prescribed remedies. To use the guide, locate the symptom listed and follow the corresponding procedures to locate the fault. If more intensive test is required to locate the fault, the guide will refer to a more specific procedure.

SYMPTOM

CORRECTIVE PROCEDURES

Output Waveform Problem

- Generator dead, blown fuse.
- a. Replace fuse F1; if fuse blows again, refer to Paragraph 5.4.9.
- All output waveforms are distorted or are not output, but SYNC OUT is normal.
- a. Set OUTPUT ATTEN to 0 dB and DC OFFSET VARIABLE to MIN (ccw).
- b. If output voltage can be adjusted to ±10 V into open circuit with the DC OFFSET control, problem is in the preamplifier; refer to Paragraph 5.4.5.
- c. Otherwise, problem is in the output amplifier; also refer to Paragraph 5.4.5.
- Power is on, but no output waveform at 50Ω OUT and SYNC OUT (GEN MODE at CONT).
- a. Check for normal power supply voltage.
- b. Check the triangle generator circuits; refer to Paragraph 5.4.3.
- Waveform amplitude and frequency jittering.
- a. Power supply out of regulation due to ac line voltage being too low. Check line voltage and make sure the HI/LO switch setting in the power supply module is correct.
- b. Malfunctioning power supply; refer to Paragraphs 5.4.10 and 5.4.11.

B. Problems in General (Distortion, Oscillation, High Frequency Roll Off, etc.)

- but SYNC OUT is normal.
- Problem appears in all waveforms, a. Problem is in the output amplifier if problem is not seen at junction of
 - b. Otherwise, problem is in the preamplifier; refer to Paragraphs 5.4.5 and 5.4.7. (Note: Most oscillation and high frequency roll off problems are caused by defective capacitors.)
- Sine waveform problem only.
- a. Problem is in the sine converter. C125 and C126 are shorted if no sine output; also refer to Step C.
- 3 Square waveform problem only.
- a. Defective Q45, Q49, CR37, CR40 or the associated components, and switch wafer.
- Trapezoidal waveform problem 4. only.
- a. Defective Q46, Q47, Q48, CR38, CR39 or the associated components, switch wafer, and controls.
- Both square and trapezoidal waveform problems.
- a. Defective Q50 Q53, CR41 CR48, and the associated components.
- Trapezoidal WIDTH control prob-6. lem.
- a. Defective C95, R260 R262 or the control potentiometer.
- 7.
- Trapezoidal SLOPE control prob- a. Defective control potentiometer, R253 R256.
- - Problem with triangle and sine wave- a. Malfunctioning triangle No. 2; refer to Paragraphs 5.4.5 and 5.4.6. (Note: forms only (or also trapezoidal). High frequency roll off may be due to defective C44 - C49.)

SYMPTOM

CORRECTIVE PROCEDURES

- - Problem in SYNC OUT. a. Q25 Q27 or the associated circuitry.
- Problem in SYNC OUT and square a. Defective Q16. waveform OUT.
- not running when X .001 Hz to X 10 Hz is selected.
- 11. Distorted waveform, or generator a. Problem in capacitance multiplier; refer to Paragraph 5.4.4.

Sine Distortion Problem

- of specification at 10 kHz and/or 100 kHz.
 - Distortion OK at 1 kHz, but out a. Due to the triangle, amplitude into the sine converter is varied. Check for defective C33 - C36, C41 and the associated resistors.
- Distortion out of specification in one or more frequency ranges.
- a. Defective timing capacitor C53 C62. In this case, triangle waveform will show nonlinear slope and distorted peak.
- Distortion out of specification due 3. to distorted or unsymmetrical triangle.
- a. If the leakage current of Q9, C22, C65, and C64 is large, it will cause nonlinear triangle and sine distortion in all frequencies.
- b. Distortion is caused by out-of-calibration or malfunctioning current generator if square wave time symmetry is off by more than 0.5%.
- Half of the sine waveform is missing.
- a. Defective R368 or R369.
- 5. Triangle waveform normal, but sine waveform distorted.
- a. Check for normal triangle at sine converter input. It should be ±1.25 V p-p, and have better than 0.5% time symmetry and linear slope.
- b. If no defective resistor is found, replace the diode set CR54 CR65.
- 6. Distortion out of specification at frequencies greater than 1 MHz.
- a. Problem is in the triangle amplifier No. 1 and hysteresis switch if frequency accuracy at X 10 MHz range is also out of specification.
- b. Check for defective capacitors, CR9 and CR10.
- c. Problem is in the preamplifier and output amplifier if square wave rise/fall time also does not meet the specification. Check for defective capacitor in
- d. Defective CR14 CR17, C22, C65 and C64.
- e. Defective C10 C13, which may also cause frequency jumping when dial is rotated slowly (at X 10 MHz).

D. **Time Symmetry Problem**

- constant when frequency dial is
- Positive slope of triangle remains a. Defective IC3, IC6, Q1, Q3, Q5, C7 and the associated circuitry.
- constant when frequency dial is
- Negative slope of triangle remains a. Defective IC5, IC7, Q2, Q4, Q6, and the associated circuitry.
- Symmetry off a few percent at 3.0 a. R39 is out of calibration or defective. of dial.

 - of dial, but not much worse at .03 b. Defective R38, R40, R41, R46, R50, R53, or R59.

SYMPTOM

CORRECTIVE PROCEDURES

- close to, or above 3.0.
 - Symmetry off only if dial is set a. IC5 is saturated due to frequency being out of calibration.
 - b. IDSS (drain current, source shorted) of Q2 is too small; select a 2N5462 with IDSS of 3 mA.
- if frequency dial and vernier is set to minimum.
 - Symmetry off, several times worse a. Defective Q9, Q3, Q5, C10, CR15 or CR16 if the triangle at 50Ω OUT rises faster than it falls.
 - b. Defective Q4, Q6, C11, CR14 or CR17 if the triangle at 50Ω OUT falls faster than it rises.
- Symmetry is out of specification at a. Defective Q8. X 10 frequency range, and gets pro- b. R74 is out of calibration. portionally worse as frequency is decreased.

Waveform Problem

- 1. one particular frequency range.
- Nonlinear or distorted triangle at a. Check for defective frequency range capacitor C53 C62 or C18.
- all frequencies.
 - Nonlinear or distorted triangle at a. Check for defective C22, C26, C64, Q9, CR14 CR17.
- Nonlinear triangle only at its peak.
- a. R124 is out of calibration.
- b. Square wave at E of Q23, E of Q24 is not symmetrical about ground due to defective O23, Q24, CR14 - CR17 or the associated circuitry.
- also, sine wave rolling off at high frequency. High frequency oscillation on all waveforms.
 - rise/fall time abnormally slow; a. Check for defective capacitor in output amplifier if waveform at E of Q72 is normal. (Rise/fall time less than 10 ns.)
 - b. Otherwise, check for defective capacitor in the preamplifier.
- Nonlinear triangle at low frequency (X 10 to X 0.001 range).
- a. Defective C18.
- b. Defective Q8, IC9, IC10, and the associated circuitry.

Frequency Accuracy Problem

- at X 1 kHz range.
- Frequency out of specification even $\,$ a. Check for normal triangle waveform at E of Q11 ($\pm 1.25~V~\pm 5~mV$ and time symmetry within 0.5%), at 3 kHz.
 - b. Defective dial potentiometer or mismatched dial and potentiometer (numbers marked on the dial and potentiometer should be the same), if frequency is out of specification at the same portion of the dial in every range.
 - c. Defective current generator, especially IC1, IC5 and Q2, if triangle is unsymmetrical.
- Frequency out of specification at X 10 kHz, X 100 kHz, or X 1 MHz ranges.
- a. Check for defective C33 C36, C41.
 - b. Check for defective Q13.
- Frequency out of specification at a. Defective Q13. X 10 MHz range.

 - b. Defective C31, C32, C37, C38, C26, or C41.
 - c. Check for defective CR9 and CR10 (to check, set frequency to 3 kHz and compare waveform at the diode as shown in Figure 5-1).

Figure 5-1. Key Waveforms of Amplifier No. 1, Amplifier No. 2, Comparator and Hysteresis Switch

SYMPTOM

CORRECTIVE PROCEDURES

- Frequency out of specification at a. Defective R77 R81 or C18. 4 X .001 to X 10 Hz range.

 - b. Defective IC9, Q8, IC10 in the capacitance multiplier.

Generator Mode Problem G.

- 1. Generator not running in CONT mode.
- a. Problem is in trigger circuit if voltage at E of Q44 is +1.2 volts; refer to Paragraph 5.4.1.
- b. Otherwise, check for defective CR36.
- Generator runs continuously in all GEN modes.
- a. TRIG START/STOP control is at VAR and its variable is set too far cw.
- b. Defective CR36 if voltage at E of Q44 is +1.2 volts when TRIG mode is
- c. Otherwise, troubleshooting the trigger circuit is covered in Paragraph 5.4.1.
- Both TRIG and GATED modes work as if in GATED mode.
- a. Defective Q33 or CR24.
- b. Check for defective GEN MODE switch wafer and circuit connection.
- c. Otherwise, troubleshooting the squaring circuit is covered in Paragraph 5.4.1B.
- Both TRIG and GATED modes a. Defective Q33 or C73. work as if in TRIG mode.

 - b. Otherwise, troubleshooting the squaring circuit is covered in Paragraph 5.4.1B.
- TRIG mode not working, but a. Defective C76 or CR24. GATED mode OK.
- MAN TRIG not working.
- a. Defective Q31, C77, CR23, C75 or the associated circuitry.
- b. Check MAN TRIG switch setting.
- TRIG LEVEL control has no affect, or loads the ±15 volt power supply down when set to its extremes.
- a. Defective C72, R182, or wiring.
- b. Defective control potentiometer.
- TRIGGER START/STOP level (baseline) varies more than 100 mV, at maximum output voltage.
- a. R51 is not properly calibrated.
- b. Defective IC8, Q7, and associated circuitry.
- c. Mismatched CR36 and CR4.
- High frequency oscillation on TRIG- a. Defective capacitor C82 C87 in trigger amplifier. GER START/STOP level, or baseline.
- Generator does not trigger with high frequency trigger as specified.
- a. Defective CR24, C71, or C75.
- 11. Other trigger problems.
- a. Refer to Paragraph 5.4.

TROUBLESHOOTING PROCEDURE FOR INDIVIDUAL CIRCUITS

The following is a step-by-step procedure for troubleshooting a circuit which is believed to be malfunctioning. Checking should always start from the first step of each section of the procedure. Depending on the test result of each step, continue the test in sequence as indicated under the TRUE/FALSE column until problem is corrected.

Example: In Step A3, from the test result, if voltage at emitter of Q34 is less than -0.1 volt, continue the test in Step A4; otherwise, go to Step B and continue the test at Step B1.

5.4.1 Troubleshooting of Trigger Circuit

STEP	PROCEDURE	IF TRUE, GO TO	IF FALSE, GO TO
A	Quick Check of Trigger Circuit		
A1	Set GEN MODE to GATED.	A2	
A2	Set TRIG LEVEL control fully ccw.	A3	
A3	Voltage at E of Q34 is less than -0.1 volt, greater than $+3.5$ volts		
	with TRIG LEVEL fully cw. (Squaring circuit is OK if true.)	A4	В
A4	Voltage at E of Q40 is about +1.5 volts, -1.5 volts if TRIG LEVEL is fully cw.	A5	С
A5	Junction of R223 and R237 is zero volt. Also, E of Q44 is more	AS	C
7.0	positive than -2 volts but less positive than +0.6 volt.	A6	D
A6	Trigger circuit is working normally. Refer to Paragraph 5.3G for	, , ,	
	other trigger or gated mode problems.		
В	Squaring Circuit Problem		
			4
B1	With TRIG LEVEL control fully ccw, CR24 is OFF (zero volt		
	across it); fully cw, CR24 is ON (at least 0.5 volt across it).	B4	B2.1
B2	E of Q30 is about +5 volts.	В3	В3
B2.1	Defective Q30, R188, R189. May be due to extra loading, such as C74 being shorted.		
В3	E of Q31 is zero volt, but drops to -14 volts when MAN TRIG		
БО	switch is depressed.	B4	B3.1
B3.1	Defective Q31, MAN TRIG switch, or the associated circuitry.	5.	B3.2
B3.2	Check for defective Q28, Q29, CR24, and TRIG LEVEL control.		
B4	Voltage at junction of R201 and R199 is -15 V when CONT mode		
	is selected; +15 V for TRIG mode, and +4.5 V for GATED mode.		
B4.1	Defective GEN MODE switch.		
B5	Select GATED mode. C of Q32 is +4 V if TRIG LEVEL is fully cw,		
	but zero volt if fully ccw.	B6	B5.1
B5.1	Check for defective Q32 and Q33.		В6
В6	Defective Q34. (Note: Q34 is a voltage follower.)		A4
С	Trigger Logic Circuit Problem		
C1	Set GEN MODE to GATED, and TRIG LEVEL control fully ccw.	C2	
C2	Voltage across R204 is zero volt, more than 3 volts if CONT mode		20.4
	is selected.	C3	C2.1
C2.1	Defective Q35, R201, R202, switch wafer SW5-B, or connections.		
C3	Voltage at E of Q36 is about +2 volts, \(\square\) waveform if TRIG LEVEL control is cw or CONT mode is selected.	C4	C3.1
C3.1	waveform is at E of Q36 in GATED mode with TRIG LEVEL	04	00.1
03.1	fully ccw.	C4	C3.2
C3.2	Check for defective Q36, CR26 or C78. (Note: Voltage at E of Q36		
	follows SYNC IN.)		
C4	Voltage at E of Q40 is about +1.5 volts.	D	C4.1
C4.1	Check for defective CR27 and CR28.		C4.2
C4.2	Check for defective Q37 - Q40. (Note: This circuit works like a flip-		
	flop; Q37 and Q38 are alternately ON.) Set TRIG LEVEL to cw or		
	ccw, and check for correct voltage levels at E of Q37, Q39 and Q40		
	as shown in Figure 5-2 under GATED mode operation.		

Figure 5-2. Typical Voltage and Waveforms for Trigger Circuit

STEP	PROCEDURE	IF TRUE, GO TO	IF FALSE, GO TO
D	Trigger Amplifier Problem		
D	Trigger Ampinier Problem		
D1 D2	Set GEN MODE to GATED and TRIG LEVEL control fully ccw. Voltage at E of Q44 is about -0.7 volt (TRIG START/STOP at 0° CAL), +1.5 volts and generator is oscillating, if TRIG LEVEL is	D2	•
	fully cw.	D2.1	D3
D2.1	Voltage at E of Q44 can be varied from -2 volts to $+0.6$ volt if TRIG START/STOP is set to VAR and its VARIABLE control is rotated.	D2.2	D3
D2.2	Trigger amplifier is operating normally.		504
D3 D3.1	Voltage across R229 is less than 1.5 volts. Baseline compensation circuit is malfunctioning; check for defective IC8 and its circuitry.	D4	D3.1
D4	Zero voltage at junction of R223 and R237 (amplifier summing node).	D5	D4.1
D4.1	Check for defective Q41 - Q44. Note: Voltage at E of Q42 is +8 volts, and E of Q43 is -8 volts. Q44 is a voltage follower.) High frequency oscillation at E of Q44 indicates defective capacitors C82 - C87.		
D5	Check for defective CR31 - CR35.		
5.4.2	VCG Amplifier and Current Generator Troubleshooting Procedure		
E	Current Generator Problem		
E1	Set FREQ (Hz) to X 1K or more, SYMMETRY OFF, and FREQ VERNIER at CAL.	E2	
E2	Rotate the frequency dial from full cw to full ccw and observe voltage variation as described in Steps E3 thru E7.		
E3	Voltage at junction of R22 and R24 varies from 0 volt to about -5.7 volts.	E4	F
E4	Voltage at E of Q5 varies from about $+14.5$ volts to $+6.7$ volts.	E5	G
E5	There is no observable voltage (less than 1 μ V) seen across R55.	E6	G4.1
E6 E7	Voltage at E of Q6 varies from -15 volts to -9.3 volts.	E7	Н
E8	There is no observable voltage seen across R56. Both current generators are operating properly.	E8	H2.3
F	VCG Amplifier Problem		
F1	Troubleshooting hints		
гі	Troubleshooting hints: a. Pin 2 and pin 3 of IC1 is always zero volt.		
	b. Under normal operating conditions, voltage at pin 6 is between		
	0 and -10 volts when dial is rotated from full cw to full ccw.		
	c. Voltage at pin 6 will cut to half if X .001 Hz FREQ range is		
	selected.	F2	
F2	If VCG amplifier works normally.	E4	
G	Positive Current Generator Problem		
G1	Voltage at pin 2 and pin 3 of IC3 is zero volt.	G2	G1.1
G1.1	Check for defective IC3 and Q1; voltage across R35 should be zero volt.		
G2	Voltage at pin 2 of IC5 varies from 0 to -5.7 volts when dial is		
	rotated cw to ccw.	G3	H1.1

STEP	PROCEDURE	IF TRUE, GO TO	IF FALSE, GO TO
G3	Voltage at D of Q1 varies from about +14.5 volts to +6.7 volts when dial is rotated cw to ccw.		
G3.1	Check for defective R41, R40, C7, and SYMMETRY switch.		G.4
G4	Repeat Step E2, E4, and E5.	E2	G4.1
G4.1	Check for defective IC6, Q3, Q5, and the associated circuitry. (Note: Check for correct power supply voltage and defective capacitor C8, C10, or C12.)		
Н	Negative Current Generator Problem		
H1	Voltage at S of Q2 varies from 0 volt to about -5.7 volts when dial		
	is rotated cw to ccw.	H2	H1.1
H1.1	Check for defective IC5 and Q2.		
H2	Voltage at D of Q2 varies from -15 volts to -9.3 volts, and zero volt		
	is across R37 when dial is rotated cw to ccw.	H3	H2.1
H2.1	Zero voltage at pin 2 of IC3.	H2.2	G
H2.2	Check for defective R40, R41, C7, and SYMMETRY switch.	H2.3	. "
H2.3	Check for defective IC7, Q4, Q6, and the associated circuitry. (Note: Check for correct power supply voltage and defective capacitor C9, C11, or C13.)		
НЗ	Repeat Steps E2, E6, and E7.	E2	H2.3
5.4.3	Triangle Generator Troubleshooting		
1	Start/stop Switch and Diode Gate Problems		
11	A ±1.25 V triangle is seen at E of Q11 in CONT mode.	11.1	11.2
11.1	Triangle generator is running; refer to Paragraph 5.3 for other problems.	5.3	11.2
11.2	Voltage at E of Q44 (trigger amplifier) is greater than +1.2 volts.	11.4	11.3
11.3	Troubleshoot the trigger circuit.	5.4.1	
11.4	CR36 is shorted.		12
12	Set dial to 3.0, FREQ (Hz) to X 1K, and SYMMETRY OFF.	13	
13	Both voltages across R163 and R164 are about 500 mV; voltages		
	will decrease if dial is rotated cw.		13.1
13.1	Troubleshoot the current generator.	5.4.2	14
14	Voltage difference between G of Q9 and E of Q11 is less than 300 mV.	15	J
15	Voltage at E of Q11 is within ±1.25 volts.	17	K
16	Check for shorted C22, C64, or C65.		17
17	Check for defective Q23, Q24, C68, and the associated circuitry. (Note: Q23 and Q24 are voltage followers, the voltages of which should be the same as C of Q14.)		10
18	Voltage at C of Q14 is either $\pm 2.4 \pm 0.5$ volt or $\pm 2.4 \pm 0.5$ volt.		18
18.1	R124 is out of calibration.		K
19	Check for defective CR14 - CR17. (Note: None should have more		
	than 900 mV forward voltage.)		
J	Triangle Amplifier No. 1 Problem		
J1	6.4 volts ±0.6 volt across both CR6 and CR8.	J2	
J1.1	Defective CR6, CR8, C24 or C25.		

5-10

no.mel el	Tellerine and management	IF TRUE,	IF FALSE,
STEP	PROCEDURE	GO TO	GO TO
J2	Check for defective Q11 and Q12. (Note: Q11 and Q12 are voltage followers.)		
J3	Check for defective Q9 and Q10. (Note: G to S voltage should be		
	reversed bias. Voltage across R86 and R87 are the same.)		J4
J4	Check for shorted C27.		
K	Hysteresis Switch Problem		
K1	Voltage at pins 2 and 8 of IC11 are about -2 volts.	K2	K1.1
K1.1	Voltage across R118 and R121 is less than 30 mV.	K1.2	K4.1
K1.2	Defective R119, R123, or R124.		
K2	Voltage at pins 3 and 9 of IC11 are about 0.7 volt below that at		
14.0	pins 2 and 8.	K3	K4.1
K3	Voltage at B of Q14 is no more than one volt less than that at		
K3.1	B of Q15.	K3.1	K3.3
N3.1	Q14 is QN and Q15 is QFF (zero volt across R128 and 5 volts across R114).	14.4	140.0
K3.2	Check for defective Q14 and Q15.	K4	K3.2
K3.3	Q14 is OFF and Q15 is ON (5 volts across R128 and zero volt		
	across R114).	K4	K3.2
K4	Voltage at B of Q14 is 7.5 volts ±1 volt.	K5	K4.1
K5	Voltage at pin 7 of IC11 is within 0 and 200 mV.	K6	K4.1
K6	Voltage at E of Q11 is greater than +1.25 volts.	K8	K7.1
K7	Voltage at E of Q11 is less than -1.25 volts.	K9	15
K8	Voltage at pin 4 of IC11 is greater than zero volt.	K3.3	K8.1
K8.1	Check for defective R101, R109, R110, R111, CR10, and C35 - C38.		
K9	Voltage at pin 1 of IC11 is less than zero volt.	K3.1	K9.1
K9.1	Check for defective R100, R108, R107, R106, CR9, and C31 - C34.		
5.4.4	Troubleshooting the Capacitance Multiplier Circuit		
L	Capacitance Multiplier Problem		
L1	Set FREQ (Hz) to X 10 and check for correct waveform as shown in		
L1.1	Figure 5-3.	L1.1	L2
L1.1	Capacitance multiplier is running. Refer to Paragraph 5.3 for other capacitance multiplier related problems.	F 2	
L2	Check the multiplier statically by setting FREQ (Hz) to X 100.	5.3	
	(Note: The multiplier is disconnected from the main generator and		
	therefore the circuit is under a dc bias condition.)	L3	
L3	Voltage at wiper of SW1-C is zero volt.	L4	L3.1
L3.1	Check for defective switch wafer SW1-C and related circuitry.		20.1
L4	Voltage at pin 6 of IC9 is 0 ±200 mV.	L5	L4.1
L4.1	Check for defective IC9, C17, and R64 - R68.		
L5	Voltage at pin 6 of IC10 is zero volt (or adjustable to zero with R74).	L6	L5.1
L5.1	Check for defective IC10, Q8, and C21. (Note: Voltages at S of Q8A		
	and Q8B are equal and more positive than voltages at G's under		
	normal operating condition.)		
L6	Short wiper of SW1-C to ground with a jumper wire. Switch		
	FREQ (Hz) control between X 10 Hz and X .001 Hz and observe		
	that voltage at wiper of SW1-B changes no more than 10 mV.	L1	L6.1

L6.1 Defective Q8, or Q8 has IDSS less than 1 mA and should be replaced. (Note: Defective Q8 will cause frequency accuracy and time symmetry problem at low frequency, especially at X.001 Hz range.)

Figure 5-3. Key Waveforms of Capacitance Multiplier

5.4.5 Amplifier Troubleshooting Hints

- If the output of an amplifier is saturated at a portion of the input waveform or all the time, the simplest method is to follow Paragraph 5.2 to locate a defective semiconductor or capacitor.
- If high frequency oscillation is seen at the output of an amplifier, usually it is due to a defective capacitor. Sometimes, a defective capacitor can be located by touching the PC circuit traces to find the most signal sensitive area.
- 3. Look for burnt or overheated components.
- 4. Slow frequency response and rise/fall times are usually due to a defective capacitor. Use a good capacitor to

jumper across each of the capacitors in the amplifier to locate the open-circuit capacitor.

5.4.6 Triangle Amplifier No. 2 Troubleshooting Hints

- 1. The triangle amplifier no. 2 circuit is a unity gain amplifier. Voltage at B of Q17 is the same as at the B of 19. A ± 1.25 V p-p triangle signal is seen at these points when the generator is running.
- 2. Voltage at E of Q18 is about +11 volts.
- 3. Voltage at E of Q20 is about -7.5 volts.
- A 2.5 V p-p triangle, with +5.5 volt offset should be seen at E of Q21 when the generator is running.
- 5. R142 adjusts the dc offset of the amplifier.

5.4.7 Preamplifier Troubleshooting Hints

- The preamplifier circuit is an inverting amplifier thru
 which the selected waveform passes before going to
 the output amplifier.
- 2. The output waveform at junction of R393 and R394 is about 5.3 V p-p.
- 3. Voltage at junction of C129 and C130 is zero volt (summing junction).
- 4. Voltages across R385 and R390 are equal, about 8 volts.
- Q67, Q68, and Q69 are dc-bias elements for the amplifier.
- 6. C133 is switched in or out of the circuit, depending on the waveform selected, to optimize the frequency response.
- Defective C128 causes overshoot and dipping of square wave corners.

5.4.8 Output Amplifier Troubleshooting Hints

- 1. Like the preamplifier, the output amplifier is also an inverting amplifier.
- 2. Junction of C109 and C111 is zero volt (summing junction).
- 3. Voltages across R305 and R313 are equal, about 8 volts.
- 4. Q54, Q55 and Q56 are dc-bias elements.
- Q61 and Q62 compose the output current limiting stage. Normally the two transistors do not conduct unless the output loading current exceeds 140 mA.
- 6. If C105 is opened, the square wave corners will show excessive rounding.
- 7. Defective C107 causes overshoot and dipping of square wave corners.
- Defective C109 C115 will cause high frequency waveform roll-off or oscillation on the waveform.

5.4.9 To Locate Short Circuit Components

 Check for normal impedance and/or loading current to determine if the source of short is in power supply or other circuit. Refer to Paragraph 5.4.10.

- Short circuit component can be located by troubleshooting the malfunctioning circuit if the short circuit does not cause low power supply voltage or blowing fuse.
- If power supply voltage is low but fuse is not blown immediately, look for overheated components, burnt parts, or discolored circuit board.
- 4. Inspect the circuit board carefully for any solder bridges.
- 5. Localize the short circuit to one or a pair of power supply circuits by impedance measurement; refer to Paragraph 5.4.10. Then disconnect power supply voltages to each part of the circuit by removing jumper or series resistor (usually 10Ω to 100Ω) along the power supply path until the short circuit area is isolated. Then locate the short in that area. Power supply transistors and bypass capacitors are the most frequently shorted components.

5.4.10 Loading Current and Impedance of Power Supply

Typical current and impedance of each power supply loading are provided as a reference in case symptoms of a short circuit are observed. Before making any measurement, set the generator controls as follows:

FREQ															X 1K
DIAL									÷						3.0
SYMME	TR	Υ												٠.	OFF
WAVEF	OF	M													\wedge
OUTPU ⁻	ΤА	TT	ΕN	(d	B)		-1	0 d	В	(no	loa	d	at §	Ω 0	OUT)
OUTPU'	TV	ΆF	RIA	BL	Ε					٠.			Ma	anua	ally cw
GEN MO	DD	Ξ												G	ATED
DC OFF	SE	Т													OFF
TRIG S	ΓΑΙ	RT/	/ST	OP										0	°CAL

- Loading current is measured by first unsoldering the power supply wire to the circuit board from the power supply connector so as to connect an ammeter in between.
- Impedance is measured at the same point as above relative to the ground on the PC board, unless otherwise specified.

Typical impedance across and loading current into the main circuit board power supply are shown in the following table:

Main Circuit Board

IMPEDANCE	LOADING CURRENT
400	400 mA
600	380 mA
20K	50 mA
20K	45 mA
	0
1K	_
25K	_
	400 600 20K 20K

Note: Impedance and current are accurate to within $\pm 20\%$ and will vary if panel controls are set differently.

5.4.11 Power Supply Troubleshooting Hints

 Unplug the power supply connector from the main board if power supply voltage is out of regulation.

- 60 cycle ripple on supply voltage may be due to wrong HI/LO switch selection. Check ac line voltage and select the proper switch setting accordingly.
- 3. Power supply voltages are interrelated. Malfunctioning +15 volt supply will cause the -15, ± 24 volt supplies to be out of regulation. Malfunctioning ± 24 , volt supplies, however, will not affect the others.
- Q3, Q7, Q12, and Q16 are current limiting transistors which do not conduct under normal operating conditions. Supply voltage will be zero if these transistors have a short circuit.
- 5. The power supply voltages being normal without a load and the voltage being low under a normal load indicate Q2, Q6, Q10 or Q14 as being an open circuit.
- Fuse blown with the power supply being plugged in may be due to wire insulation being broken, shorted transformer, power transistor shorted to heat sink, defective CR1 to CR8, or shorted power supply bypass capacitor. Isolate the short by disconnecting each part of the circuit.

SECTION SECTION PARTS LISTS AND SCHEMATIC DIAGRAMS

6.1 DRAWINGS

Assembly drawings are positioned adjacent to the schematics. Additional voltage or waveform information, beyond that given in the circuit description, may be shown on the schematic diagrams, at test points and key locations throughout the instrument.

6.2 ADDENDA

Under Wavetek's product improvement program, the latest electronic designs and circuits are incorporated into each Wavetek instrument as quickly as development and testing permit. Because of the time needed to compose and print instruction manuals, it is not always possible to include the

most recent changes in the initial printing. Whenever this occurs, addendum pages are prepared to summarize the changes made and are inserted immediately inside the rear cover. If no such pages exist, the manual is correct as printed.

6.3 ORDERING PARTS

When ordering spare parts, please specify part number, circuit reference, board, serial number of unit, and if applicable, the function performed.

6.4 DRAWINGS

The following assembly drawings (with parts lists) and schematics are in the arrangement shown below:

Chassis	Assembly Drawing and Parts List 162-000 Schematic 162-200	Sheets 1-3
Main Board	Assembly Drawing and Parts List 162-015 Schematic 162-215 Sheets 1-4	Sheets 1-5
Rear Panel	Assembly Drawing and Parts List 162-001	
Power Supply Board	Assembly Drawing and Parts List 162-030 Schematic 162-230	Sheets 1, 2
Switch Bracket	Assembly Drawing and Parts List 162-004	

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION AND DESIGN RIGHTS BELONGING TO WAVETER AND MAY NOT BE REPRODUCED FOR AN REASON EXCEPT CALIBRATION, OPERATION, AND MAINTENANCE WITHOUT WHITTEN AUTHORIZATION

NOTE: BEFORE CLAMPING HANDLE CASTING IN PLACE, TRIM (TOP & BOTTOM) MUST BE IN PLACE

HANDLE DETAILS

2. * INDICATES ITEMS NOT SHOWN.

1. FOR CHASSIS WIRING SEE CHASSIS SCHEMATIC DIG2-200.

MOTE UNLESS OTHERWISE SPECIFIED

LINE	PARTS	_	ST	_		·	_
NO.	DESCRIPTION	MF	SAT WATER	100	THE REAL PROPERTY.	MFGR P/N	9
1	SUB PANEL	WAY	ETEK	23	338	C162-301	L
2	FRONT PANEL	_		_	_	C162-300	
3	PANEL TRIM					B147-018	1
4	HANDLE					C147-364	1
5	HANDLE TRIM	-		L		B147-345	1
6	SIDE PLATE					B147-378	1
7	SUPPORT BAR					B147-347	
8	CLAMP					A147-3/6	1
.9	REAR PANEL ASSY					D162-001	
10	MAIN BOARD					D162-015	1
11	SWITCH BRACKET					DI 62-004	1
12	COVER, ASSY.					C147-024	1
13				Г			T
14	KNOB					B130-314	1
15	KNOB, COAX			\vdash		B130-309	-
16	KNOB, SMALL			\vdash		B130-354	1
17	LENS					A141-317	1
18	POWER SWITCH ROD					B147-382	
19	POTENTIOMETER					AIBI-RIA	1
20	DIAL					B130-333	1
21	DIAL KNOB					B130-308	1
22							\vdash
23							
24	POWER CORD	BELDEN		164	28	17250-B	1
25	SWITCH (MOMENTARY)	CÉ	K	093	353	7108PDCN	1
26	BNC CONNECTOR	KIN	GS	91836		KC 7946	E
27	RESISTOR, M.F. 18W 1856.21	_		_	99	RNSSD	2
28	RESISTOR, M.F. 18 8250					RN55D	1
29							
30	U-NUT	TINNERMAN				C8681-832-24	4
31	CHASSIS BLOCK			88245		159IB-II	2
32	SCREW, P.HD., BLK.OX., 8/32 X 5/8			002.3		8/32 × 5/8"	4
	TERMINAL	USECO		887	45	140IA-9	1
34	BUSHING	THOMPSON		_	-	4L2FF	8
35	WASHER (SHOULDER)	H-H-9	H.H.SMITH		30	2668	5
36	WASHER (SHOULDER)					2661	2
37	WASHER (NYLON)				\neg	2264-N-385	5
38	SOLDER LUG			-	\dashv	1497	5
-	RETAINER	WAL	DS	791	36	5305-31	-
-	SPRING		ETEK		-	BI47-383	i
	BRACKET, ROD		76.4		\rightarrow	B162-310	1
7 '	DICTIONE IT NOU			_	\rightarrow	B162-311	<u> </u>

J-NUT	TINNERM	AN		C8681-832-24	4 4	
CHASSIS BLOCK	USECO		88245	15918-11	2	
CREW, P.HO., BLK.OX., 8/32 X 5/8	COMMERC	IAL		8/32 × 5/8"	4	
ERMINAL	USECO		88245	140IA-9	1 -	
BUSHING	THOMPSO	N	96881	4L2FF	8	
ASHER (SHOULDER)	H.H.SMIT	н	83330	2668	5	
ASHER (SHOULDER)		\neg		2661	2	
ASHER (NYLON)				2264-N-385	5.	
OLDER LUG		\neg		1497	5	
ETAINER	WALDS		79136	5305-31	1	
PRING	WAVETE	K		BI47-383	T	
RACKET, ROD		7		B162-310	1	
RACKET, CONN.		\neg		B162-311	1	
			AND BE	EAK SHARP EDGES B	awn Redman	0ATE SAN DIESO - CALFOR
			FINISH	K PROCESS X	TOLERANCE UNI	ASSEMBLY,
					DO NOT SCALE	DWG MOORL NO. DWG NO. D162-000 FEV

F ECN 1088

D ECN 904 W 74 K)

E ECN 105D W 74 K)

F ECN 1129 W 16 1/15 C)

G E(N 1199 W 16 1/15 C)

H BCN 1320 R0 7778

J ECN 1324 R. 793

REMOVE ALL BURRS AND BREAK SHARP EDGES	B. REDMAN	3-19-74	WAV	ETEK SAN DISGO - CALMORNIA
MATERIAL	KUTOK TO RELEASE APPROV	4/12/14	TITLE	SEMBLY,
FINISH WAVETEK PROCESS	TOLERANCE UNLI OTHERWISE SPECI .XXX : .010 ANG .XX : .030		MAIN	BOARD
	DO NOT SCALE	DWG	MODEL NO.	D162-015 J
			CODE 233	38 SHEET OF 5

NOTE: UNLESS OTHERWISE SPECIFIE

REV ECH BY DATE APP

Secretarion	WOME ANYLE	٦		PARTS LIST				П		PARTS LIST			
Commain Since 1980 ptp CRL 71350 De-2010 d	ERATION, AND	ī		L	FECH	MFQR P/N	OTY	LINE NO	-	1	1900	mir 400 7700	1
Coreade Size 1869 by Pr. Cit. Coreade Size 1860 by Pr. Cit. Coread		-	Capacitors						Transistor 2N2219A		04713	ZWZZZWZ	, ,
Cornels Dies 1000 2274 Cit.			Ceramic Disc 1000V 5 pt		71590	DD-050	on de	61	Transistor 2N3563		33888	283563	
Corantic Diac 15007 3pt Ct. Corantic Diac 15007 10pt Ct. Coranti		- ,	Ceramic Disc 1000V 22pf		71590	DD-220	(III	62	Transistor 2N3640		33888	2N3640	11
Carante Dine 1807 1897 Carante Dine 1807 Carante Di		u	Ceramic Disc 1000V 33pf	_	71590	DD-330	N	63	Transistor 2N3646	120	33888	2N3646	й
Cormaic Dies 18097 1895 Cormaic Dies 18097 1805 Cormai		•	Ceramic Disc 1000V 82pf		71590	DD-820	1	64	Translator 2N3866		04713	2N3866	N
Coranic Dias 1009 1356		7	Ceramic Disc 1000V 100pf		71590	DD-101	2	65	Transistor 2N3903		33888	2N3903	u
Cornelic Dies 10007 23396 Cornelic Dies 10007 23396 Cornelic Dies 10007 23397 Cornelic Dies 1000		•	Ceramic Disc 1000V 150pf		71590	00-151	1	66	Transistor 2N5139		33888	2N5139	16
Commanic Dilate 10000 103195 CHL. 17350 CO-311 2 CHL C		•	Ceramic Disc 1000V 220pf		71590	DD-221	•	67	Translator 2NS160		33888	2N5160	N
Commain Diale 2007 - 0.01-0.01 Commain Diale 2007 - 0.01-0.01-0.01-0.01-0.01-0.01-0.01-0.		10	Ceramic Disc 1000V 330pf		71590	00-331	2	6.8	Translator 2N5462		27014	2N5462	tel
GRANUS DIACS ON ASSET CHA. 71980 CO-100 Cormain Diacs Ser. July CHA. CHA. 71980 COLON CORMAN DIACS CHA.		E	Ceramic Disc 1000v .001vf		71590	DD-102	00	69	Transistor 2N5485		04713	2N5485	2
Cormada Sides Nov . Stind CRG. 7150 CRG. 715		12	D146 1000v		71590	00-150	-	70	TP308	Technical		TP308	-
Coremic Dies Sow 13st CRE. 7150 CLOM 2 77 Translater National disc(-32) Coremic Dies Sow 13st CRE. 7150 07-3-164 23 77 Translater National disc(-32) Ellver Bides Sow 91 19gf Ellmenoo 72136 003-5030 1 77 TRANS/S/S/D/R Ellver Bides Sow 91 19gf Ellmenoo 72136 003-5030 2 100-3040 2 100-3040 2 100-3040 2 100-3040 2 100-3040 2 100-3040 2 100-3040 2 100-3040 2 100-3041 <td></td> <td>13</td> <td>Ceramic Disc 50V .01uf</td> <td></td> <td>71590</td> <td>CK103</td> <td>45</td> <th>71</th> <td>AD812</td> <td>- TOURDOLD</td> <td></td> <td>AD812</td> <td>ш</td>		13	Ceramic Disc 50V .01uf		71590	CK103	45	71	AD812	- TOURDOLD		AD812	ш
Cremic Dies 20v .lst Crt. 71350 UC-30-164 23 72 Principles School def-(-8) 72 72 72 72 72 73 74 74 74 74 74 74 74		14	Carasic Disc 50V .luf		71590	CK104	2	72	Transistor Matched Set (-52)		33888	2N3563	lset
Eliver Nice 5007 \$1 lbgt Elimono 72116 D015-1503 1		15	Ceramic Disc 20V .luf		71590	UX-20-104	25	7.3	Transistor Matched Set(-88)		33888	2N5139	lset
Silver Piles 5007 \$1 15pf Elamono 72136 0015-2307 1 77 Radicus 1 1 1 1 1 1 1 1 1		16						74	Transistor Matched set (-53)		04713	2N5485	lset
## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2505 1 77 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2505 2 78 Real Fills //W 11 100 ## Rica 5007 \$1 Mage Ellamono 7215 D015-2505 2 79 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2505 2 79 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2505 2 79 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2505 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2505 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2505 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Ellwer Rica 5007 \$1 Mage Ellamono 7215 D015-2515 2 70 Real Fills //W 11 100 ## Real Folgono D11 D12 D12		17				,		75	TRANSISTOR		2888	7067N7, 88855	-
### ### ##############################		10						76					
### Rich 1907 \$1 Dept Elamono 72115 DRIS-2007 2 79 Heal Film June 11 100 ### Rich 1907 \$1 Dept Elamono 72115 DRIS-2007 2 79 Heal Film June 11 100 ### Rich 1907 \$1 Dept Elamono 72115 DRIS-2007 2 70 Heal Film June 11 100 ### Rich 1907 \$1 Style Elamono 72115 DRIS-2007 2 70 Heal Film June 11 150 ### Rich 1907 \$1 Style Elamono 72115 DRIS-2017 2 70 Heal Film June 11 150 #### Rich 1907 \$1 Style Elamono 72115 DRIS-2117 2 70 Heal Film June 11 150 ####################################		19	Silver Mica 500V 59 15pf	_	72136	DM15-150J	1	77					
## Rich 1907 \$1 90pf Elamono 72136 2015-2603 2 10 10 10 10 10 10 10		20	Silver Mica 500V 50 20pf		72136	DM15-200J	2	78	Resistors				
Silver Rica 5007 \$1 9pt Elamono 72115 OH5-240A 2 00 OH5-240A 2 0 OH5-240A 2 OH5-240A		21	Silver Mica 500V 50 30pf		72136	DM15-300J	2	79.	Metal Film 1/8W 1% 100		16299	RN55D	23
Silver Rica 5007 \$1 87gt Eliamoco 72136 OH5-2233 1 1 1 1 1 1 1 1 1		22	Silver Mica 500V 58 36pf	_	72136	DM15-360J	2	80	Metal Film 1/8W 19 150		16299	70455D	•
### Rica 5007 \$1 150pt Elamonco 72156 0415-1213 2 12 0644 711n 178 12 12 12 12 12 12 12 1		23	Mica	_	72136	DM15-820J	1	18	Metal Film 1/8W 1% 21.50		16299	RNS SD	7
### Rich 9007 58 Frim Elamonco 72156 0035-2337 1 14 March 171m 1/WF 10 47.00 1 1 1 1 1 1 1 1 1		24	Mica	_	72136	DM15-121J	2	9 65	Metal Film 1/8W 18 27.4W		16200	PARS D	3 0
### ### ##############################		25	Silver Mica 500V 50 150pf		72136	DM15-151J	H	. 83	Metal Film 1/8W 1% 33.ZU		16299	OSCADI	, ,
		26	Silver Mica 500V 16 820pf		72136		, ,-	, ,	Matal Pilm 1/8W 18 81 10		16299	8N55D	,
Inectrolytic 5.4sf 3yv		27	SITABL MICW DOOR DO LETS	_	95777			23 d a	Matal Film 1/8W 16 590		16299	RNSSD	
Ricetrolytic 3.6sf 359 Sprayus S5239 150555593532 6 59 Meckl Film L/W 1 95.50								87	Metal Film 1/8W 1% 61.90		16299	RMS SD	ונו
Richtrolytic 3.6st 397 Sprayon Sc229 15005635903922 6 80 90 Mech 711 JAW 13 95.01		30						88	Film		16299	##55D	u
Recal Polycuston Sef 14		31	Electrolytic 5.6uf 35V		56289	150D565X9035B2	00	89	Metal Film 1/8W 18 90.90		16299	20155D	2
Recal Polycarbon Sef 14 Hipse 12466 CLMSOSP 2 92 Mecal Pilm JVM 14 1250		32	Electrolytic 22uf 15v	-,	56289	96D226X9015KA1	-	90	Metal Film 1/8W 1% 1000		16299	NNS SD	27
Retal Polycarbon Sef 14 Elpac 12406 C150597 2 92 Metal Pilm J/FW 14 1550 Metal Polycarbon Sef 14 Amer.Andionice 97994 D10-3EC-10599 1 94 Metal Pilm J/FW 14 1550 Metal Polycarbon .lsf 14 Amer.Andionice 97994 N281047 1 95 Metal Pilm J/FW 14 1550 Metal Polycarbon .dlsf 14 Amer.Andionice 97994 N281047 1 95 Metal Pilm J/FW 14 1250 Metal Polycarbon .dlsf 14 Amer.Andionice 97994 N281047 1 95 Metal Pilm J/FW 14 1250 Metal Pilm J/FW 14 1250 Metal Polycarbon .dlsf 14 Amer.Andionice 97994 N281047 1 96 Metal Pilm J/FW 14 1250 Metal Pilm J/FW 14		33						91	Metal Film 1/8W 19 1240		16299	20055D	2
Recal Polymenthon Set 1 Higher 1246 C150599 1 94 Weel Film JAW 1250		34						92	Metal Film 1/8W 1% 1500		16299	RNS SD	, 7
Recal Polycarbon .Alf 11		35	Metal Polycarbon 5uf 18		12406	CLASOSP	2	99	Metal Film 1/8W 10 165D		16299	200 S D D	
Recal Polymerbon. LPF 18		36	Metal Polycarbon luf 19		m 07994	210-BIC-105P	1	94	MILIA		16299	DOS SPO	
		37	Matal Polycarbon .lwf 18		m 07994	PAZB104F	- 1	9 9			16200	BNSSD	
Variable 7-35gf Status: Stricko-2,5-13 1 98 Metal Film L/W 10 1860 Variable 7-35gf Status: Stricko-7-35 1 99 Metal Film L/W 10 1950 Diode F0777 Fairchild 3388 F0777 11 100 Metal Film L/W 10 1950 Diode F06464 Fairchild 3388 F0777 11 100 Metal Film L/W 10 14950 Diode F06465 Fairchild 3388 F0777 11 100 Metal Film L/W 11 14950 Diode F0771 Recordia 2015 H75811 2 105 Metal Film L/W 11 1950 Diode F0777 Pairchild 3388 F0777 11 10 Metal Film L/W 11 1950 Diode F0778 Pairchild 3388 F0777 11 2 105 Metal Film L/W 11 1950 Diode F0778 Pairchild 3388 F0777 12 105 Metal Film L/W 11 1950 Diode F0778 Pairchild 3388 F0777 1aet 10 Metal Film L/W 11 1950 Diode F0779		38	Metal Polycarbon .0luf 19		8 07994	PA2B103F	,	97	EKM!	_	16299	2×850	10
Variable 3-3-1pt Sections Sections - 2-3pt 499 Meth Film 1/8w 10 3200 Variable 3-25pt Flatest Brickers 100 Meth Film 1/8w 10 3200 100de 7077 Fairchild 3388 F0777 11 100 Meth Film 1/8w 10 450 101de F06466 Fairchild 3388 F0777 11 100 Meth Film 1/8w 10 450 102de F0777 Pairchild 3388 F0777 11 100 Meth Film 1/8w 10 450 102de F0777 Pairchild 3388 F0777 11 100 Meth Film 1/8w 10 450 102de F0777 Pairchild 3388 F0777 11 100 Meth Film 1/8w 10 450 102de F0778 Pairchild 3388 F0777 1 100 Meth Film 1/8w 10 450 102de F0779 Pairchild 3388 F0777 1ee 100 Meth Film 1/8w 10 10 102de F0779 Pairchild 3388 F0777 1ee 100 Meth Film 1/8w 10 10 102de F0779 Pairchild 3388 F0777 1ee 100 Meth Film 1/8w 10 10 102de F0779 Pairchild								98	Film		16299	RNSSD	7
100 Metal Film 1/8W 10 3920 100 Metal Film 1/8W 10 460 100 100 Metal Film 1/8W 10 460 100		. 40	Variable 3.3-13pr	Scacher		Stricko-7-35	- +	99			16299	RMS5D	22
Dicde P0777		: :	sdcc=, arderies	acacher.			,	100			16299	RMSSD	w
Dicole P07777		3 6						101			16299	RN55D	'n
Diode PD777 Pairchild J388 P0777 11 10 Metal Film J/WF 18 6810								102			16299	RNS SD	9
Dicde B704646 Pairchild J188 P705466 J5 L00 Metal Film 1/8W 19 7500		45	Diode FD777		33888	70777	11	103			16299	RNSSD	۳
Diode Erreit Diode Finnes 18551 R/P Diode Finnes 18551 R/P Diode Finnes 18551 Records Reco		4 :	Diode PD6666		33888	PD6666	3	104			16299	7815 S.D	10
Dicide Panear 184541 Peterola 04713 184591 5 106 Metal Film /184 19 990		47	Diode MP2811			HP2811	Ν.	105			16299	30155D	us
Dicde Tunnal 18718		•	Diode Isser 184581	rola	04713	184581	u	106			16299	RN55D	1
Diode Natched Set (-93) Fairchild 3388 70777 lest 100 Motal Film 1/08 10 1/18		\$	Diode Tunnel 183716		04713	1N3716	-	107	Metal Film 1/8W 1% 1K		16299	RM55D	23
Diode Matched Set (-56) Frirchild 3388 \$95982-2811 leet 100 Metal Film 1/NF 11.21X		50	Diode Matched Set (-93)		33888	70777	lset	108			16299	RNSSD	•
Integrated Circuit CAD049 PCA 86684 CAD049 I 112 Mecal Film 1/8W 10 1/		51	Diode Matched Set (-56)		33888	MP5082-2811	lset	109			16299	RM55D	*
Integrated Circuit CAJ049 MCA 86684 CAJ049 1 112 Metal Film A/MW 14 1.78K Integrated Circuit LDG41C Mational 27014 LDG41C 9 113 Metal Film A/WW 14 2.69K 114 Metal Film A/WW 14 2.69K 115 Metal Film A/WW 15 2.09K		52						110			16299	RNSSD	17
Integrated Circuit CA3049 PCA 8664 CA3049 1 112 Metal Film 1/8W 11.96K 1 1.96K		53			-			111	Motal Film 1/8W 18 1.78K		16299	RM55D	w
Interpreted Circuit LPG41C Mattons1 27014 LPG41C 9 113 Motal Film 1/8F 11 2/8F 114 Motal Film 1/8F 11 3/8F 1		54	Integrated Circuit CAJ049		86684	CA3049	1	112	Metal Film 1/8W 18 1.96K		16299	RN55D	, ,
11.5 Meetal Film L/WW 1.4 J.DEK		55	Integrated Circuit 19741C		27014	14741C	w	113	Motal Film 1/8W 1% 2K		16299	RNSSD	00
116 Metal Pilm L/WW 12 3.72K		56				_			Metal Film 1/8m 10 2.09k		16300 16300	O CCNN	5
116 Metal Film 1/8W 10 3.32K		57						115	Metal Film 1/8W 18 3.01K		16299	MN22D	ω (
		4						116	Metal Film 1/8W 10 3.32K	Corning	16299	RN55D	4

			WAVETER PROCESS				MATERIAL	REMOVE ALL BURRS AND BREAK SHARP EDGES
ZOZ	BCALE	DO NOT SCALE DWG	XX . 030 ANGLES :1"	TOLERANCE UNLESS	ACTUAL MORAN	Fritz to Wist	U WONE FORM	B. REDMAN 3.4.74
1DINT 23338	162	MODEL NO.		N N N	ASSE	THE		
MEET 3 OF 5	B162-015	1 1 1		MAIN BOAND	ASSEMBLY,			TITA IM DIREC CALFORNIA

		TAN IS LIST		
INE NO.	DESCRIPTION	MFGR	FSCM	MFGR F/N
117	Motal Pilm 1/8W 1% 3.65K	Corning	16299	RNS SD
118	Metal Film 1/8W 1% 4.02K	Corning	16299	RN55D
119	Metal Film 1/8W 1% 4.99K	Corning	16299	7045 S.D
120	Metal Film 1/8W 1% 6.98K	Corning	16299	RN55D
121	Metal Film 1/8W 1% 7.5K	Corning	16299	NN55D
122	Metal Film 1/8W 18 9.09K	Corning	16299	XWS SD
123	Metal Film 1/8W 10 10K	Corning	16299	MASSD
124	Metal Film 1/8W 19 15K	Corning	16299	XXX55D
125	Metal Film 1/8W 19 24.9K	Corning	16299	NN55D
126	Metal Film 1/8W 10 30.1K	Corning	16299	70155D
127				
128	Metal Film 1/8W 10 49.9K	Corning	16299	POSSD
129	Metal Film 1/8W 18 21.5K	Corning	16299	JUSSD .
130	Metal Film 1/8W 10 15K	Corning	16299	30455D
131	Metal Film 1/8W 1% 301K	Corning	16299	70/55D
132	Metal Film 1/8W 10 47.5K	Corning	16299	RNS5D
133	Metal Film 1/8W 10 Trim	Corning	16299	7015 5D
134	Metal Film 1/8w 19 69.8K	Corning	16299	RNS SD
135	× 11 11 7.79K	-	=	;
136				*
137	Metal Film 1/4W 1% 49.90	Corning	16299	8060D
138	Metal Pilm 1/4W 1% 750	Corning	16299	RU6 OD
139	Metal Film 1/4W 1% 1960	Corning	16299	R060D
140	Metal Film 1/4W 18 1M			
141				
142			-	
143	Carbon 1/2W 5% 100	Stackpole	29604	RC20GF
144	Carbon 1/2W 5% 2.2M	Stackpole	29604	RC20GF

THIS DOCUMENT CONTAINS PROPRIETARY RIPOR BRATIONS AND DESIGN RIGHTS SELONGING TO WANTER AND BRAY NOT SE REPRODUCED FOR AN REAGON ENCEPT CALSERATION, OPERATION, AND REAGON ENCEPT CALSERATION, AND REAGON ENCEPT CALSERATION, AND REAGON ENCEPT CALSERATION AND RESERVED.

		PARTS LIST			
LIME NO.	DESCRIPTION	MFGR	FSCM	MFGR P/N	QTY
145	Carbon 1/2W 5% 6.8M	Stackpole	29604	RC20GP	3
146	Carbon 1/2W 5% 10W	Stackpole	29604	RC20GP	1
147					
148					
149	Carbon 1W 5% 10K	Stackpole	29604	RC32GP	1
150					Î.
151	10 10M	Caddock	19647	ML-181	1
152					
153	Matched Set (-89)				lset
154	Matched Set 1K	Corning	16299	RN55D	Ref
155	Matched Set 10K	Corning	16299	RN55D	Ref
156	Matched Set 100K	Corning	16299	RN55D	Ref
157	Matched Set 1H	Corning	16299	RN55D	Ref
158					
159					
160	Potentiometer 200	Beckman .	80740	91AR20	1
161	Potentiometer 1000	Beckman	80740	91AR100	1
162	Potentiometer 2000	Beckman	80740	91AR200	1
163	Potentiometer 5000	Beckman	80740	91AR500	13
164	Potentiometer 5K	Beckman	80740	91AR5K	1
165	Potentiometer 10%	Beckman	80740	91AR10K	2
166	Potentiometer 100K	Beckman	80740	91AR100K	4
167	Potentiometer 10K (Dual)	Wavetek	23338	B162-402	1
168					
169	Ferrite Boad	Ferrorcube	02114	56-590-65/3B	1
170	LAMP	MURA		128/40	1
171		7.7.4.1			1
172	Heat Sink	Wakefield	05820	NF-207	2
173	Heat Sink	Thermolly	1303	1103A	,
174	Heat Sink	Thermolly	1303	1103A 1103B	2
175	meat bink	Thermolly	1303	11038	1
176	72				
177	Switch Assy	Wavetek	23338	D162-020	1
178	Switch Assy	Wavetek	23338	D162-021	1
179	Switch Assy	Wavetek	23338	D162-021	1
180	Switch Assy	Wavetak	23338	D162-023	1
181	STATE ALL Y	-avecax	23330	D101-013	1
182	Connector, Plug	Molex	27264	03-06-2091	1
103	Connector, Receptacle	Molex	27264	03-06-1091	1
184	Pins, Male	Molex	27264	02-06-2103	1:
185	Pins, Pemale	Molex	27264	02-06-1103	
186		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-/		
187	Standoff	Lyntron	07591	6310-4-2C	١,
188	Amp Pins	AMP	07591	6310-4-2C 61182-2	17
189	Transipads	Milton Ross	07047	10123N	1
190	Transipads (Tall)	Milton Ross	07047	10123N 10160	2
191	Transipeds (Tall)	Milton Ross	88245	10160 20058-1	6
191	Terminal Bracket	USECO Wavetek	23338	2005B-1 B133-305	3
192	Bracket	Wavetek	23338	B133-305	1
193	proceet	MAYOTOR	23338	B162-303	1
194					
	Circuit Board	Wavetek	23338	162-1158	1
196	Schematic	Wavetek	23338	D162-215	Ref
			- 1	ing"	

13 C55 8 C59 15 C59 15 C69 16 C69 11 C66 11 C70	25 27 22 38 23 25 42 22 15 15 13 13 13		C111 C112 C113 C114 C115 C116 C117 C118 C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130 C131	13 2 13 15 15 15 13 4 15 15 13 15 11 15 11 15 11 15 11 15 11 11 11 11
8 C38 15 C58 111 C67 14 C66 111 C66 110 C67 111 C66 110 C67 111 C66 110 C67 111 C66 110 C67 111 C71	37 22 38 23 26 41 22 15 13 13 13 5 13 7 15 13 13 13 13 5 13 13 13 13 13 13 13 13 13 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18		C113 C114 C115 C116 C117 C118 C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	13 15 15 13 4 15 15 13 15 31 15 13 4 17 18 18 18 18 18 18 18 18 18 18 18 18 18
8 C99 111 C69 111 C64 111 C64 111 C64 111 C66 111 C66 115 C73 11 C73	3 22 38 23 25 55 42 22 15 13 13 13 13 13 13 13 13 13 13 13 13 13		C114 C115 C116 C117 C118 C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	15 15 13 4 15 15 15 31 15 31 15 31 15 13 4 4 17 18 18 18 18 18 18 18 18 18 18 18 18 18
15 C60 11	38 23 26 5 6 12 15 15 13 13 13 7 15 13 13 13 7 15 13 13 13 13 13 13 13 13 13 13 13 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18		C115 C116 C117 C118 C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	15 13 4 15 15 31 15 31 15 13 4 13 3 13
15 C61 11 C62 14 C66 14 C66 11 C68 11 C68 11 C68 11 C68 11 C71 11 C71 11 C72 13 C71 11 C72 13 C71 11 C72 13 C71	23 26 26 41 22 15 13 13 13 13 13 7 15 13 13 13 13 13 13 13 13 13 13 13 13 13		C116 C117 C118 C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	13 4 15 15 31 15 31 15 31 13 4 4 13 3 13
14 C66 14 C56 11 C56 11 C56 11 C56 11 C56 11 C57 11 C71 11 C71 11 C72 11 C72 11 C73	3		C118 C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	15 15 31 15 31 15 13 4 13 13
14 C64 11 C65 11 C65 12 C65 13 C66 13 C66 13 C66 15 C70 C7	22 15 15 13 13 13 13 5 13 7 15 32 6		C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	15 31 15 31 15 13 4 4 13 13
11 C55 11 C66 11 C66 11 C68 11 C68 11 C68 11 C71 11 C72 11 C72	22 15 15 13 13 13 13 5 13 7 15 32 6		C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	31 15 31 15 13 4 4 13 13
11 C66 2 10 C67 10 C68 3 1 C69 5 15 C70 5 31 C71 11 C72 35 C73	15 15 13 13 13 13 5 13 7 15 32 6		C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	15 31 15 13 4 4 13 3 13
10 C68 31 C69 15 C70 31 C71 11 C72 35 C73	13 13 13 5 13 7 15 32 6		C123 C124 C125 C126 C127 C128 C129 C130	15 13 4 4 13 3 13
31 C69 31 C70 31 C71 31 C72 35 C73	13 13 5 13 7 15 32 6		C124 C125 C126 C127 C128 C129 C130	13 4 4 13 3 13
15 C70 31 C71 11 C72 35 C73	13 13 7 15 32 6		C125 C126 C127 C128 C129 C130	4 4 13 3 13 13
31 C71 7 11 C72 7 35 C73	5 13 7 15 32 6		C126 C127 C128 C129 C130	13 13
35 073	7 15 32 6		C128 C129 C130	13 13
	15 32 6		C129 C130	13
	32 6 13		C130	13
15 17	13			
13 C76				15
19 · C77			C132	2
7 C78	13	1	C133 C134	12
13 C79			C135	15
9 081	3	1	C136	15
9 082	13	1	C137	15
13 C83	13	1	C138	13
13 085	1 2	1	CR1	46
27 C86		1	CR2	46
21 287	15	1	CR3 CR4	46 50
20 C88	15	1	CR5	46
24 090			CR6	48
20 C91	13	1	CR7	48
21 C92	13	1	CR8 CR9	48
15 693	13	1	CR10	47
13 C95	9	1	CR11	46
13 096	13	1	CR12	46
2 13 C97	9		CR13 CR14	48
2 C98	15		CR15	45
C10	0 13		CR16	45
13 C10		I	CR17 CR18	45
11 11		1	CR18	46
113		1	CR20	46
13 C10	5 3		CR21	46
31 C10		1	CR22	46.
15 15 C10		1	CR23 CR24	46
		1	CR25	46
35 C10			CR26	46

REF DES	P/L LINE	REF DES	P/L LINE	REF DES	P/ LIN
TR27	46	Q1 Q2	69	Q55 Q56	66
R29	46	03	68	057	61
CR30	46	04	69	058	62
CR31	46	Q5	66	Q59	67
CR32	45	06	63	660	64
CR33 CR34	46	08	68 70	Q61 Q62	63
CR34	46	09	74	063	59
CR36 .	50	010	74	064	60
CR37	46	011	73	Q65	64
CR38	46	Q12 Q13	73	Q66 ·	67
CR39 CR40	46	014	61	Q67 Q68	71
CR41	45	015	62	069	66
CR42	45	016	66	070	62
CR43	46	017	72	071	61
CR44 CR45	46	Q18 Q19	62 72	Q72	62
CR45	45	020	63	R1	84
CR47	45	021	61	R2	13
CR48	45	022	66	R3	17
CR49	46	Q23 Q24	63	1	1
CR50 CR51	46	025	66	R5 R6	11
CR52	1 46 1	026	1 63 1	1 R7	1 140
CR53	46	Q27 .	66	. R8 .	144
CR54	51	Q28 Q29	65	R9 R10	166
CR55 CR56	51.	030	59	RIO	112
CR57	51	Q31	66	R12	133
CR58	51	Q32	62	R13	12
CR59	51	Q33 Q34	62'	R14	11
CR60 CR61	51	035	63	R15	16
CR62	51	036	66	R17	16
CR63	51	Q37	63	R18	16:
CR64	51	Q38 Q39	63	R19	16
CR65 CR66	46	040	66	R20 R21	16:
		041	71	R22	110
CR67	40 .	Q42	62	1 1 1	1
IC1	55	Q43 Q44	63		1
103	55	045	63	R26	111
IC4	55	046	63	R27	1115
IC5 ·	55	047	63	X	
IC6.	55	048	65	R29	166
IC7 . IC8	55	Q49 Q50	63	R30	145
IC9	55	051	75	R31	111
ICLO	55	Q52	63	-	1
IC11	54	Q53	62	1	1
	1 1	Q54	1 66 1	R35	110

REV ECN BY DATE APP

REDOVE ALL BOARD
AND SELLA SHAPE (COLD S)

WATERIAL

VALUE AND SELLA SHAPE (COLD S)

WATERIAL

VALUE AND SELLA SHAPE (COLD S)

SELLA

NOTE UNLESS OTHERWISE SPECIFIED

			FINISH WAVETER PROCESS			MATERIAL	AND BREAK SHARP EDGES
ZOZ	SCALE	DO NOT SCALE DWG	OTHERWISE SPECIFIED XXX 1.010 ANGLES 11	201294100	MELEASE APPROV	Kurk to What	B. REDMAN 3.5-74
COOF 23338	7.91	MODEL NO.	ZIZIZ		ASS	TITLE	- WAVE
S 13348	B162-015	DWG NO.	NAIZ DOAKE	0000	ASSEMBLY,		WAVETEX

*	REF
	LINE P/L
	REF
**************************************	FINE P/L
	DES
111901111111111111111111111111111111111	LINE P/L
	1-1
	DES
***************************************	LINE P/L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DES
######################################	LINE .
	DES
######################################	LINE
****	1
#22 - A	DES
8 4 4 4 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6	LINE P/L
	DES
	LINE P/L
	DES
	F P/L
	NE C

MEN TAYOU AND THE WORLD

TWIS DOCUMENT CONTAINS PROPRIETARY REPOR-MANTON AND DISMON RENOTTS SELONGING TO MAYETEK AND MAY NOT SE REPRODUCED FOR ARY REASON DECEPT CALMINATION, OPERATION, AND MANTENMENCE WITTONLY WRITTEN AUTHORIZATION. LINE NO. DESCRIPTION FSCM MFGR P/N Ceramic Disc 1000V 33pF 71590 Ceramic Disc 50V .01uP CRL CK103 71590 UK20-104 Ceramic Disc 20V .1up CRL Electrolytic 50V 50µF Sprague 56289 500D506G050DD7 Electrolytic 16V 250uF 56289 22-437-250-15T Sprague Electrolytic 50V 500pF Sprague 56289 39D507G050GL4 Electrolytic 35V 1000µF 36-750-1000-351 2 Sprague 56289 12 Diode Rectifier 23338 A130-506 1 14 Diode Tener Wavetek 15 μ**A741TC** 17 Integrated Circuit Fairchild 33888 18 20 21 Fairchild 33888 Transistor 2N3642 22 Transistor 2N4248 Pairchild 33888 284248 Transistor TIP-29 TIP-29 23 Texas Inst. 01295 Transistor TIP-30 Texas Inst. 01295 2 25 27 Metal Film 1/8W 19 3920 16299 RN55D Corning Metal Film 1/8W 10 4640 16299 Metal Film 1/8W 1% 6810 Corning 16299 RN55D 16299 Metal Film 1/8W 1% 2.21K Corning Metal Film 1/8W 1% 2.74K 16299 RN55D 2 Metal Film 1/8W 1% 2.87K Corning 16299 RN55D Metal Film 1/8W 1% 3.92K 16299 7 Metal Film 1/8W 19 4.75K Corning 16299 RN55D 16299 RN55D 2 Metal Film 1/8W 16 5.76K Corning Metal Film 1/8W 1% 6.19K 16299 RN55D 16299 Metal Film 1/8W 10 9.25K Corning RN55D Metal Film 1/8W 1% 9.09K 16299 2 16299 RN55D 2 Metal Film 1/8W 19 9.53K Corning Metal Film 1/8W 10 18.2E 16299 Corning Metal Film 1/8W 19 38.3K Corning 16299 RMSSD 2 6 Carbon 1/2W 5% 3.90 RC20GF 45 Stackpole 29604 lset 47 Matched Set 10K (-64) 16299 RN55D 1 80740 91AR1K 50 52 Button (BLACK 8-315) CRL 71590 J52315 (BLACK) 53 Connector Molex 27264 03-06-1091 Pin (Female) 27264 02-06-1103 Switch (115-230) Switchcraft 82389 46256LF Switch (Hi-Lo) Switchcraft 82389 SW422-PT-HK Transipad Milton Press07047 10123N

Switchcraft 82389

46256LF-8G

Solder Guard

	1.0		PARTS LIST			
LINE NO.	DESCRIPTION	1	MFGR	FSCM	MFGR P/N	an
59	Silicone Rubber	9	Dow Corning	71894	3140	AR
60						
61	Standoff		Wavetek	23338	013-003-1	2
62	Power Switch		Wavetek	23338	157-422	1
63	Circuit Board		Wavetek	23338	147-130C	1
64 .						
65						1
66	Schematic		Mavetek	23338	D162-230	RE
67						
68						
69						
70						1
71						1
72	2.					
73						
74						1
75						
76						
77						1
78						
79						
81					1	1
82					1	
83						
84						1
85						1
86						1
87						

LINE ITEM REFERENCE LIST

ECN BY DATE APP

- REF DES	P/L LINE	REF	P/L LINE	REF	P/L LINE
C1 C2 C3 C5 C6	4 4 4 4 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R1 R2 R3 R45 R6 R6 R7 R8 R8 R9 R1 R1 R11 R11 R11 R11 R12 R12 R22 R22 R	25 45 28 45 29 29 31 31 31 31 31 31 31 31 31 31 31 31 31		

BEDOVE ALL BIRRIES

AND STACE BIRRIES

FROSTERS

AND STACE BIRRIES

FROSTERS

ALLEASE SPRING

TOLE SPACE UNICES

ALLEASE SPRING

TOLE SPACE UNICES

AND STACE DWG

STATE FROCESS

AND STACE DWG

STATE FROCESS

AND STACE DWG

STATE FROCESS

AND STACE DWG

STATE STATE STATE DWG

STATE STATE STATE DWG

STATE STATE STATE DWG

STATE ST

WIRING DIAGRAM

AS VIÈWED FROM POTENTIOMETER
END OF SWITCH ASSYS

NOTE: UNLESS OTHERWISE SPECIFIED

AND BREAS BRAND FOOLE ST. CREATURE, S. 1947 AND THE MAN BREAS CALADONNA MATERIAL

MATERIAL

FINANCIA CONTROL OF THE SERVICE AND SERVICE AN

-