Preparation problems for the discussion sections on October 27th and 29th

- 1. Let $W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \right\}$ be a subspace of \mathbb{R}^4 .
 - (i) Find the closest point to $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ on the subspace W.
 - (ii) Find the projection matrix \vec{P} corresponding to the projection onto W.
 - (iii) Use the projection matrix P to find the projection of $\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$ onto the subspace W.
- **2.** Let $W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}$ and $V = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \right\}$ be subspaces of \mathbb{R}^3 .
 - (i) Find the projection matrices, P and Q, corresponding to the projections onto W and V, respectively.
 - (ii) Check that $\overrightarrow{PQ} = QP$. Can you interpret PQ as a projection matrix?
- **3.** Let $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$.
 - **a.** Does **b** belong to the column space of A? Can you solve $A\mathbf{x} = \mathbf{b}$?
 - **b.** What do you expect the projection of **b** onto $W = \operatorname{Col}(A)$ to be?
 - **c.** Find the projection $\hat{\mathbf{b}}$ of \mathbf{b} onto $\operatorname{Col}(A)$, and then solve $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. (The vector $\hat{\mathbf{x}}$ is called the least square solution of $A\mathbf{x} = \mathbf{b}$.)
 - **d.** Solve the equation $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Compare with your result of the previous part! (This equation is called the normal equation of $A\mathbf{x} = \mathbf{b}$.)
 - **e.** Answer these questions for A as above but with $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ (and then $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}$).
- **4.** Let $A = \begin{bmatrix} 0 & 1 \\ -2 & 2 \\ 2 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. Find the least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$.
- **5.** A scientist tries to find the relation between the mysterious quantities x and y. She measures the following values:

- (i) Suppose that y is a linear function of x of the form a+bx. Set up the system of equations to find the coefficients a and b.
- (ii) Find the best estimate for the coefficients a and b.
- (iii) Same question if we suppose that y is a quadratic function of the $a + bx + cx^2$.
- **6.** The system of the equations $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \quad and \quad \mathbf{b} = \begin{bmatrix} 5 \\ 0 \\ 5 \\ 10 \end{bmatrix},$$

is not consistent.

- (i) Find the least squares solution $\hat{\mathbf{x}}$ for the equation $A\mathbf{x} = \mathbf{b}$.
- (ii) Determine the least squares line for the data points (-1,5), (0,0), (1,5), (2,10).