Descrição dos dados utilizados para a modelagem da classificação de carcaça dos animais do programa Precoce - MS

1- Dados oriundos da Semagro relativos ao programa Precoce MS

- Dados do processo produtivo
- Dados de classificação dos animais

2- Dados climáticos

Os dados de clima foram obtidos no site do CEMTEC – Centro de monitoramento do Clima e Tempo do Mato Grosso do Sul (https://www.cemtec.ms.gov.br/boletins-meteorologicos/). Os dados sao diários relativos ao período de 01/01/2017 a 31/12/2018.

O cemtec disponibiliza até o quinto dia útil de cada mês, em planilhas de excel o banco de dados meteorológico do mês anterior, constando dados de precipitação, umidade relativa, vento (intensidade e direção) e temperaturas provenientes dos sensores das 45 Estações Meteorológicas (detalhe das Estações Meteorológicas em anexo) que existem em Mato Grosso do Sul. Os dados obtidos foram referentes do periodo de abate dos animais no programa precoce, de 01/01/2017 a 31/12/2018.

				•										•	Ch	uva	ì					
Municípios	JANEIRO/2020																					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2
Água Clara	0,00	6,20	3,20	0,40	0,00	8,40	1,40	3,60	16,00	0,40	0,00	22,60	2,80	0,00	0,00	0,00	33,20	28,20	0,00	0,00	0,00	0,
Amambai	7,20	0,20	3,00	15,40	0,20	0,00	54,80	0,00	0,00	0,00	0,00	0,00	10,20	11,60	0,00	0,00	0,00	25,60	0,00	0,00	0,00	3,
Angélica	0,00	0,00	2,80	0,00	0,00	0,00	21,60	0,40	0,00	0,00	1,80	17,80	8,60	1,20	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
Aquidauana	0,00	6,40	0,00	*	*	*	*	*	*	0,00	0,00	0,00	0,60	0,00	0,00	0,00	1,40	1,60	*	*	*	
Aral Moreira	0,00	0,00	6,60	8,80	0,00	0,00	64,40	0,00	0,00	0,00	0,00	22,80	3,60	20,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	14
Bandeirantes	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Bataguassu	0,00	2,00	0,00	3,40	34,20	0,40	8,40	5,60	1,00	1,00	23,40	2,20	78,80	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
Bela Vista	0,00	0,00	0,00	0,00	0,00	0,00	36,40	0,00	0,00	0,00	2,80	0,00	12,60	5,00	0,00	4,20	0,00	0,00	0,00	0,00	0,00	53
Bonito	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Brasilândia	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Caarapó	0,20	0,00	0,00	5,60	0,20	0,60	43,20	0,20	0,00	0,00	0,40	12,80	18,00	2,20	0,00	19,60	0,20	0,00	0,00	0,00	0,00	65
Camapuã	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Campo Grande	0,20	7,40	0,00	0,00	0,00	1,80	22,40	1,80	0,00	0,40	0,00	12,40	1,20	7,80	0,60	0,00	5,40	2,20	0,60	0,00	0,00	40
Cassilândia	0,00	9,80	0,00	19,80	0,00	55,20	30,60	4,00	0,40	0,00	0,00	0,00	6,40	0,00	0,00	0,00	14,20	3,00	0,00	13,00	1,20	42
Chapadão do Sul	0,00	15,20	0,20	0,00	0,00	7,00	1,60	6,00	0,00	0,40	5,40	0,40	30,20	4,40	2,40	0,20	0,00	0,20	0,80	0,60	0,00	0,
Corumbá	0,00	1,20	0,00	0,00	0,00	0,00	34,20	27,40	0,00	0,00	0,00	1,20	2,80	0,00	0,60	0,00	14,40	1,60	0,20	0,00	0,00	10
Costa Rica	8,00	1,00	0,00	0,00	0,00	1,00	5,40	5,60	12,00	0,20	27,00	8,20	62,80	0,00	1,60	0,00	21,40	0,80	0,20	0,20	0,00	0,
Coxim	0,00	0,00	0,00	0,00	0,00	7,40	12,20	0,00	0,60	0,00	0,00	5,00	34,40	0,00	0,00	0,00	6,00	0,00	0,00	0,60	10,00	27

Fig. 1 Exemplo formato da planilha com os dados metereologicos

2.1 Transformação da base de dados de clima:

Os boletins metereologicos são disponibilizados na internet em formato excel mensalmente, onde cada aba da planilha corresponde a uma variável climática, e cada linha da planilha a uma estação metereológica (Municipio), foi necessário fazer uma transposição dos dados e integração de todas as planilhas em excel (21 planilhas, com 11 abas cada) para um arquivo único com todas as variáveis, datas e estações metereológicas.

A integração das planilhas excel em um só arquivo em formato .txt foi feita por meio de código criado no Software Python.

Um primeiro passo foi fazer um comando melt para que cada planilha ficasse com apenas uma aba contendo todas as informações necessárias, posteriormente foi feito a junção com os demais arquivos de cada mês e finalmente foi feita uma transposição dos dados de forma que o banco de dados final contivesse a lista de municípios (estacoes metereológicas, data, e variaveis) conforme tabela abaixo:

Tipo_Variavel	Municipio	Data	Chuva	DirVento	RajadaVento	TempInst	TempMax	TempMin	UmidInst	UmidMax	UmidMin	VelVentoMax
0	Amambai	1/Fevereiro/2017	2.8	so	28.80	22.4292	27.7	18.4	86.1667	98.0	57.0	12.24
1	Amambai	10/Fevereiro/2017	21.4	so	54.36	23.3917	31.2	20.1	83.6250	98.0	55.0	20.88
2	Amambai	11/Fevereiro/2017	6.4	so	32.04	24.7125	31.6	21.2	83.6667	97.0	40.0	14.40
3	Amambai	12/Fevereiro/2017	20.8	so	29.52	24.8792	30.9	21.1	82.5833	97.0	51.0	7.92
4	Amambai	13/Fevereiro/2017	4.8	so	24.48	25.0917	32.6	20.2	75.0417	95.0	44.0	8.64

Fig2. Amostra do banco de dados de clima apos a transformação

Tipo_Variavel	Chuva	RajadaVento	TempInst	TempMax	TempMin	UmidInst	UmidMax	UmidMin	VelVentoMax
count	662.000000	760.000000	760.000000	760.000000	760.000000	707.000000	723.000000	704.000000	760.000000
mean	4.326888	35.677421	26.111619	32.787895	21.604211	74.052667	91.038728	46.213068	14.650105
std	10.987347	10.913825	1.948864	2.313804	1.641365	8.717246	13.267800	10.062680	5.521389
min	0.000000	15.840000	20.408300	24.000000	17.300000	11.000000	0.000000	26.000000	0.360000
25%	0.000000	28.080000	24.694775	31.300000	20.500000	68.625000	90.000000	39.000000	11.160000
50%	0.000000	33.480000	26.239550	33.150000	21.600000	74.791700	94.000000	45.000000	13.680000
75%	2.400000	41.040000	27.554200	34.500000	22.700000	80.083350	96.000000	53.000000	17.280000
max	102.200000	82.800000	31.008300	38.400000	26.900000	94.600000	100.000000	76.000000	39.240000

Fig.3 Descritivo das variaveis climaticas, média, desvio padrão, min, max

Após a transformação dos dados, e com base neles, foi calculado o indice de temperatura e umidade (ITU) que é baseado na relação entre a temperatura

ambiente e a umidade relativa do ar e é utilizado como uma medida de conforto animal.

O cálculo do ITU foi feito por meio da fórmula desenvolvida por Thorn (1959):

$$ITU = 0.8 Ta + UR (Ta - 14.3) / 100 + 46.3$$

Onde:

ITU - valor médio diário do índice de temperatura e umidade;

Ta - temperatura do ar (°C), e UR - umidade relativa do ar (%).

O cálculo foi feito dando origem a duas variáveis:

formITUmax - foi calculada utilizando-se a temperatura e a umidade máximas do dia:

formITUinst – foi calculada utilizando-se a temperatura e umidade instantânea do dia;

Após o cálculo do ITU, duas novas variáveis foram criadas, onde o ITU foi dividido em classes segundo o mesmo autor, relacionado ao conforto térmico dos animais, conforme a tabela abaixo:

Tabela 1: Classificação do ITU segundo Thom (1959).

Classe	ITU	Conforto térmico dos animais
1	>74	Ambiente confortavel
2	Entre 74 e 78	Estresse moderado
3	Entre 78 e 84	Estresse forte
4	Acima de 84	Estresse severo

A base final de dados climáticos após processamento, ficou da seguinte forma:

Tabela 2: Descrição das variáveis contidas no banco de dados climáticos utilizados

Variaveis	Descricao
Municipio	Municipio onde a estacao metereologica esta situada, sendo um total de 45
Data	Dados diarios do dia 01/01/2017 a 31/01/2018
Chuva	Total de precipitacao em milimitros durante o dia
DirVento	Direcao do vento (norte, sul, leste, oeste)

RajadaVento	Um vento de curta duração, em geral com menos de 20 segundos, que tem velocidade pelo menos 18,5 km/h maior do que a média de velocidade que vinha sendo sendo observada antes dela acontecer
TempInst	Temperatura instantanea do dia medida em graus Celsius
ТетрМах	Temperatura maxima do dia em graus Celsius
TempMin	Temperatura minima do dia em graus Celsius
UmidInst	Umidade instantanea do ar em porcentagem
UmidMax	Umidade maxima do ar no dia em porcentagem
UmidMin	Umidade minima do ar no dia em porcentagem
VelVentoMax	Velocidade do vento maxima em km/h
formITUinst	Indice de temperatura e umidade instantanea calculado segundo a formula
	Indice de temperatura e umidade maxima calculado
formITUmax	segundo a formula
classif ITUmax	Classe na qual o ITU maximo se encontra
classif ITUinst	Classe na qual o ITU maximo se encontra

3- Dados de imagens de satélite

3.1 Indices de Vegetação

Os índices NDVI e EVI apresentam correlação com variáveis biofísicas da vegetação, como área foliar e biomassa verde, capazes de indicar a presença e o vigor vegetal em uma determinada área de interesse. As séries temporais desses índices vegetativos permitem que se acompanhe, ao longo do tempo, o comportamento da vegetação nesses locais. Assim, é possível identificar determinados tipos de uso e cobertura da terra, como áreas florestais, culturas agrícolas anuais, culturas agrícolas perenes e semiperenes, pastagens, entre outros, bem como seus processos de transição ao longo do tempo, como desmatamentos, conversão de sistemas agropecuários, intensificações agrícolas, etc. Os dados disponibilizados podem ser utilizados para atividades relacionadas ao monitoramento da produção agrícola e do meio ambiente, podendo, inclusive, apoiar a verificação de perdas agrícolas no âmbito do seguro rural.

3.1.1 NDVI - Definição

NDVI é a abreviação da expressão em inglês para Normalized Difference Vegetation Index, o que equivale em português a Índice de Vegetação da Diferença Normalizada. Serve para analisar a condição da vegetação natural ou agrícola nas imagens geradas por sensores remotos. É frequentemente usado para medir a intensidade de atividade clorofiliana, inclusive comparando vários períodos distintos.

A energia captada e absorvida pelas plantas possui diversos espectros. O índice nada mais é que um cálculo realizado em cima dessas bandas espectrais. Esses espectros são captados por sensores, que na maioria dos casos estão instalados em drones ou satélites, e posteriormente são tratados pela seguinte equação do índice:

NDVI = (Infra Vermelho – Vermelho) / (Infra Vermelho + Vermelho)

A fórmula da equação acima é realizada em cada pixel, respectivamente nas bandas dos canais vermelho e infravermelho próximo, resultando num valor final entre -1 e 1 . Quanto mais próximo de 1, maior é a atividade vegetativa no local representado pelo pixel. Valores negativos ou próximos de 0 indicam áreas de água, edificações, solo nú, enfim, onde há pouca ou nehuma atividade clorofiliana.

Desta forma, as aplicações dos cálculos de NDVI na agricultura são várias, como por exemplo:

- Monitoramento de lavouras
- Detecção de efeitos de secas
- Detecção de danos provocados por pragas
- Estimativas de produtividade agrícola
- Modelização hidrológica
- Mapeamento de áreas agrícolas

3.1.2 EVI - Definição

EVI (Enhanced Vegetation Index) que significa Índice de Vegetação Melhorado. É um cálculo que leva em consideração o vermelho e infravermelho como o NDVI mas utiliza a banda do azul para descontar influências atmosféricas no índice.

EVI Com este índice buscou-se aperfeiçoar o sinal da vegetação, reduzindo a influência do sinal do solo e da atmosfera sobre a resposta do dossel através da detecção em regiões com maiores densidades de biomassa (PONZONI, SHIMABUKURO, 2010).

A fórmula do EVI, segundo Justice et al. (1998) segue abaixo:

EVI = 2,5 (Infra Vermelho - Vermelho) / (L + Infra Vermelho +C1*Vermelho - C2*Azul)

Onde:

L = Fator de correção para o solo , C1 e C2 = Coeficientes de ajuste para o efeito de aerossóis da atmosfera. Segundo Heute et al. (1997) e Justice et al. (1998) os coeficientes adotados pelo algoritmo de cálculo do EVI são: L = 1; C1 = 6; C2 = 7,5

Os dados dos indices de vegetação (NDVI e EVI) estao disponiveis em diferentes plataformas tanto nacionais quanto internacionais. A Embrapa Informatica, localizada em Campinas possui uma API denominado API SATVeg. A API é derivada do Sistema de Análise Temporal da Vegetação (SATVeg), uma ferramenta web desenvolvida pela Embrapa Informática Agropecuária, destinada à geração e visualização de perfis temporais dos índices vegetativos NDVI e EVI para o Brasil e toda a América do Sul, com o objetivo de apoiar atividades de gestão territorial e monitoramento agrícola e ambiental. Os índices vegetativos são gerados a partir de imagens multiespectrais fornecidas pelo sensor MODIS, a bordo dos satélites Terra e Aqua, da Nasa, contemplando dados produzidos a partir de 2000 até a última data então

disponibilizada por seu repositório oficial, com resolução temporal de 16 dias e resolução espacial de 250 metros.

Por meio desta API, foi solicitada a Embrapa Informática os indices NDVI e EVI de todas as áreas de pastagens do Estado de Mato Grosso do Sul para os anos 2017 e 2018, período correspondente aos dados de abate dos animais precoces do Estado. Maiores informações estão disponíveis em https://www.satveg.cnptia.embrapa.br/satveg/login.html

As áreas de pastagem do Mato Grosso do Sul foram obtidas por meio do site https://pastagem.org/index.php/pt-br/ que contem a série histórica das áreas de pastagens do Brasil, produzida para toda a extensão territorial brasileira, para os últimos últimos 33 anos (1985 a 2017), no âmbito do projeto do Mapbiomas. O shapefile da área de pastagem do estado do Mato Grosso do Sul para o ano de 2017 foi utilizado para extrair as séries temporiais dos índices de vegetação (NDVI e EVI) no API SatVeg da Embrapa Informática para o período de 2017 e 2018.

O arquivo recebido da Embrapa Agroinformatica continha dois arquivos em Excel sendo um deles a média do NDVI da área de pastagem de cada município do Estado de MS, com internvalo de 8 dias para o periodo de 2017 e 2018, e o segundo com as médias do EVI, da mesma forma, conforme o exemplo abaixo:

MUNICIPIO	COD_IBGE	NUM_PIXELS	01/01/2017	09/01/2017	17/01/2017	25/01/2017	02/02/2017	10/02/2017	18/02/2017	26/02/2017	06/03/2017
AGUA CLARA	500020	71154	0,367679	0,408382	0,440632	0,418384	0,396556	0,397287	0,399564	0,400745	0,39755
ALCINOPOLIS	500025	13526	0,403706	0,438564	0,472092	0,462904	0,447779	0,446752	0,443448	0,426952	0,426965
AMAMBAI	500060	18908	0,412318	0,416978	0,409468	0,386548	0,393458	0,424462	0,402323	0,40699	0,411835
ANASTACIO	500070	8672	0,392357	0,41787	0,438387	0,424579	0,408529	0,43994	0,421853	0,422251	0,423621
ANAURILANDIA	500080	18166	0,418902	0,475237	0,472317	0,460124	0,448704	0,42806	0,426681	0,435593	0,430231
ANGELICA	500085	2260	0,465337	0,446758	0,454075	0,453606	0,434079	0,447874	0,422016	0,409238	0,406479
ANTONIO JOAO	500090	1788	0,427806	0,446056	0,47757	0,441388	0,454221	0,456366	0,428629	0,431046	0,42826
APARECIDA DO TABOADO	500100	9136	0,393042	0,433758	0,48818	0,444427	0,43365	0,405259	0,392372	0,411896	0,406999

4. Precos das commodities

Os precos das principais comoddities associadas ao estudo (Soja, milho e arroba do boi) foram obtidas por meio do site do CEPEA (Centro de pesquisas econômicas da Escola Superior de Agricultura Luiz de Queiroz (ESALQ), campus da Universidade de São Paulo, https://www.cepea.esalq.usp.br/br

Os dados de cotação são medias diárias dos anos de 2017 e 2018. No caso do boi gordo utilizou-se a cotação diária do indicador do boi gordo CEPEA/BR, do milho foi o indicador do milho ESALQ/BM&FBOVESPA e da soja indicador da soja ESALQ/BM&FBOVESPA - Paranaguá.

5. Integração dos dados

Por meio do Software SAS todas as bases de dados foram integradas de forma que cada animal abatido contivesse os dados de todas as variáveis relativas `a data de abate correspondente para o municipio em questão.

A base de dados final contou com 1,107 milhoes de linhas e 91 colunas contendo todas as variáveis, em formato temporal, sendo que todos os parametros foram calculados por meio da media de dos ultimos 7 dias, 15 dias, 30 dias, 90 dias, e 180 dias antes da data de abate.

Primeiro passo:

1 – Integração da base de dados classificação animal (base com os animais abatidos com os respectivos dados sobre a qualidade das carcaças com a base

..... a terminar

6. Referências Bibliográficas

Huete, A. R.; Liu, H. Q.; Batchily, K.; Van Leeuwen, W. "A comparison of vegetation indices over a global set of TM images for EOS-MODIS." Remote Sensing of Environment 59 (1997): 440-451.

Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., Salomonson, V. V., Privette, J. L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Running, S. W., Nemani, R. R., Wan, Z., Huete, A. R., Van Leeuwen, W., Wolfe, R. E., ... Barnsley, M. J. (1998). The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. *IEEE Transactions on Geoscience and Remote Sensing*, 36(4), 1228-1249. https://doi.org/10.1109/36.701075

Thom EC. The discomfort index. Weatherwise, 1959; n. 12: p. 57-59.