M. Schulte: Aussagenlogik, Mengen und Abbildungen, vollständige Induktion

Inhalt Aussagenlogik, Mengen, Abbildungen, Summen und Produkte reeller Zahlen, vollständige Induktion

1 Aussagenlogik

Eine Aussage ist ein vollständiger Satz, der prinzipiell wahr oder falsch ist (ohne dass das praktisch feststellbar sein muss). Jede Aussage hat also einen Wahrheitswert, W (wahr) oder F (falsch).

Negation, Konjunktion, Disjunktion

Aus gegebenen Aussagen P, Q, \ldots kann man neue bilden.

Die Negation von P, nicht P (geschrieben $\neg P$), ist genau dann wahr, wenn P falsch ist. Die Konjunktion von $P,Q,\ P$ und Q ($P \wedge Q$), ist genau dann wahr, wenn P und Q wahr sind.

Die Disjunktion von P,Q,P oder Q ($P\vee Q$), ist genau dann wahr, wenn P wahr oder Q wahr ist. Dabei wird "oder" im nichtausschließenden Sinn verwendet: $P\vee Q$ ist also auch dann wahr, wenn P,Q beide wahr sind.

Implikation, Äquivalenz

Die *Implikation* "Wenn P, dann Q" ($P \Rightarrow Q$) ist falsch, wenn P wahr und Q falsch ist, sonst immer wahr. Bei falschem P ist also $P \Rightarrow Q$ stets wahr.

Die \ddot{A} quivalenz $P \Leftrightarrow Q$ ist genau dann wahr, wenn P,Q denselben Wahrheitswert haben. Diese Vereinbarungen lassen sich in Wahrheitstafeln festhalten:

P	$\neg P$	P	Q	$P \wedge Q$	P	Q	$P \lor Q$	P	Q	$P \Rightarrow Q$	P	Q	$P \Leftrightarrow Q$
W	F	\overline{W}	W	W	\overline{W}	W	W	\overline{W}	W	W	\overline{W}	W	W
F	W	W	F	F	W	F	W	W	F	F	W	F	F
		F	W	F	F	W	W	F	W	W	F	W	F
		F	F	$\mid F \mid$	F	F	F	F	F	W	F	F	W

Äquivalente Aussageformen

Entsteht R aus P_1, \ldots, P_n durch Anwendungen von $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$, so heißt R eine Aussageform. Zwei Aussageformen R, S (die beide aus P_1, \ldots, P_n entstanden sind) heißen äquivalent $(R \sim S)$, falls jede Kombination von Wahrheitswerten für P_1, \ldots, P_n zum selben Wahrheitswert für R und S führt.

Beispiele
$$\neg (P \land Q) \sim (\neg P) \lor (\neg Q), \ \neg (P \lor Q) \sim (\neg P) \land (\neg Q), \ (P \Rightarrow Q) \sim (\neg P) \lor Q.$$

Eine Aussageform, die immer wahr ist, heißt Tautologie, eine, die immer falsch ist, Antinomie. Zum Beispiel ist $P \vee (\neg P)$ eine Tautologie, $P \wedge (\neg P)$ eine Antinomie.

All- und Existenzaussagen

Für jedes x aus einem Universum (oder Grundbereich) U sei P(x) eine Aussage.

Die Allaussage "Für alle x gilt P(x)" ($\forall x \ P(x)$) ist genau dann wahr, wenn für jedes a aus U die Aussage P(a) wahr ist.

Die Existenzaussage "Es gibt ein x mit P(x)" ($\exists x \ P(x)$) ist genau dann wahr, wenn für mindestens ein a aus U die Aussage P(a) wahr ist.

Entstehen R, S aus $P_1(x), \ldots, P_n(x)$ durch Anwendungen von $\neg, \land, \lor, \Rightarrow, \Leftrightarrow, \forall, \exists$, so heißen R, S äquivalent, falls für jede Wahl von $P_1(x), \ldots, P_n(x)$ die Aussagen R, S denselben Wahrheitswert haben.

Beispiele
$$\neg (\forall x \ P(x)) \sim \exists x \ (\neg P(x)), \ \neg (\exists x \ P(x)) \sim \forall x \ (\neg P(x)).$$

2 Mengen

Eine Menge ist eine Zusammenfassung von Objekten zu einem Ganzen.

Gehört x zu einer Menge M, sagt man "x ist Element von M" (geschrieben $x \in M$). Gehört x nicht zu M, schreibt man $x \notin M$.

Zwei Mengen M, N heißen gleich (M = N), wenn sie dieselben Elemente enthalten, d. h. für alle x gilt: $x \in M \iff x \in N$.

Bezeichnungen

Ist P(x) für alle x eines Universums U eine Aussage, so bezeichnet $M = \{x \in U \mid P(x)\}$ die Menge aller $x \in U$, für die P(x) wahr ist.

Besteht M genau aus den Elementen a_1, \ldots, a_n , schreibt man $M = \{a_1, \ldots, a_n\}$. Die Menge, die kein Element enthält, heißt leere Menge, bezeichnet mit \emptyset .

Definition Seien M, N Mengen. M heißt Teilmenge von N (geschrieben $M \subset N$), falls jedes Element von M auch Element von N ist, d. h. $\forall x \ (x \in M \Rightarrow x \in N)$. Es gilt: $M = N \iff M \subset N$ und $N \subset M$.

Durchschnitt und Vereinigung von Mengen

 $M \cap N := \{x \mid x \in M \text{ und } x \in N\}$ heißt Durchschnitt der Mengen M, N. $M \cup N := \{x \mid x \in M \text{ oder } x \in N\}$ heißt Vereinigung von M, N.

3 Abbildungen

Eine Abbildung $f: M \to N$ ist gegeben durch eine Menge M (den Definitionsbereich von f), eine Menge N (den Wertebereich von f) und eine Zuordnungsvorschrift, die jedem $x \in M$ genau ein $y \in N$ zuordnet; man schreibt f(x) = y oder $x \mapsto f(x) = y$. Zwei Abbildungen $f: M \to N, g: P \to Q$ heißen gleich, wenn M = P, N = Q und f(x) = g(x) für alle $x \in M$ gilt.

Beispiele

- a) Sei $\mathbb{R}_+ := \{x \mid x \in \mathbb{R}, x \geq 0\}$. Durch $f : \mathbb{R}_+ \to \mathbb{R}, f(x) := \text{ein } y \in \mathbb{R} \text{ mit } y^2 = x,$ wird keine Abbildung definiert, weil die Zuordnungsvorschrift nicht eindeutig ist, da etwa für x = 1 sowohl $1^2 = 1$ als auch $(-1)^2 = 1$ gilt.
- b) Durch $f: \mathbb{R}_+ \to \mathbb{R}$, f(x) := dasjenige $y \in \mathbb{R}$ mit $y \ge 0$ und $y^2 = x$ für $x \in \mathbb{R}_+$, wird eine Abbildung definiert, denn zu jedem $x \in \mathbb{R}_+$ gibt es genau ein $y \in \mathbb{R}$ mit $y \ge 0$ und $y^2 = x$.

Komposition von Abbildungen

Für Abbildungen $f: M \to N, \ g: N \to P \text{ sei } g \circ f: M \to P, \ x \mapsto (g \circ f)(x) := g\big(f(x)\big).$

Injektive, surjektive, bijektive Abbildungen

Eine Abbildung $f: M \to N$ heißt *injektiv*, falls für alle $x, x' \in M$ aus $x \neq x'$ notwendig $f(x) \neq f(x')$ folgt. Äquivalent dazu ist: Für alle $x, x' \in M$ folgt aus f(x) = f(x') notwendig x = x'.

Eine Abbildung $f: M \to N$ heißt *surjektiv*, falls zu jedem $y \in N$ ein $x \in M$ mit f(x) = y existiert.

Eine Abbildung $f: M \to N$ heißt bijektiv, falls f injektiv und surjektiv ist.

Âquivalent dazu ist: Zu jedem $y \in N$ gibt es genau ein $x \in M$ mit f(x) = y.

Ist $f: M \to N$ bijektiv, so heißt die Abbildung

$$f^{-1}: N \to M, \ f^{-1}(y) := \text{dasjenige } x \in M \text{ mit } f(x) = y$$

die Umkehrabbildung von f.

Beispiele

- a) $f_1: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ ist nicht injektiv (da z.B. $(-1)^2 = 1^2$ gilt) und nicht surjektiv (da z.B. kein $x \in \mathbb{R}$ mit $x^2 = -1$ existiert).
- b) $f_2: \mathbb{R}_+ \to \mathbb{R}$, $x \mapsto x^2$ ist injektiv (denn aus $x_1^2 = x_2^2$ mit $x_1, x_2 \ge 0$ folgt $x_1 = x_2$), aber nicht surjektiv (da kein $x \in \mathbb{R}_+$ mit $x^2 = -1$ existiert).
- c) $f_3: \mathbb{R} \to \mathbb{R}_+$, $x \mapsto x^2$ ist nicht injektiv (wegen $(-1)^2 = 1^2$), aber surjektiv, denn zu jedem $y \in \mathbb{R}_+$ gibt es ein $x \in \mathbb{R}$ mit $x^2 = y$.
- d) $f_4: \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto x^2$ ist injektiv und surjektiv, also bijektiv.

4 Summen und Produkte reeller Zahlen

Man kann reelle Zahlen addieren, subtrahieren, multiplizieren und durch reelle Zahlen $\neq 0$ dividieren, so dass die üblichen Rechenregeln gelten.

Für reelle Zahlen a_1, \ldots, a_m sind $a_1 + \ldots + a_m$ und $a_1 \cdot \ldots \cdot a_m$ unabhängig von der Beklammerung und der Reihenfolge. Man setzt

$$\sum_{i=1}^{m} a_i := a_1 + \ldots + a_m \text{ und } \prod_{i=1}^{m} a_i := a_1 \cdot \ldots \cdot a_m.$$

5 Vollständige Induktion

Prinzip der vollständigen Induktion

Sei P eine für natürliche Zahlen sinnvolle Eigenschaft. P genüge folgenden Bedingungen: Induktionsanfang n = 1: 1 hat die Eigenschaft P.

Induktionsschritt $n \to n+1$: Für alle $n \in \mathbb{N}$ gilt: Hat n die Eigenschaft P, so hat auch n+1 die Eigenschaft P.

Dann hat jede natürliche Zahl die Eigenschaft P.

Variante des Induktionsprinzips: Induktionsanfang bei einem $n_0 \in \mathbb{Z}$, Induktionsschritt $n \to n+1$ für alle $n \ge n_0$, die Behauptung gilt für alle $n \ge n_0$.

Beispiele

a) Sei
$$q \in \mathbb{R}, q \neq 1$$
. Behauptung: Für alle $n \in \mathbb{N}^0 = \mathbb{N} \cup \{0\}$ gilt $\sum_{i=0}^n q^i = \frac{1-q^{n+1}}{1-q}$.

Beweis durch vollständige Induktion: Induktionsanfang n=0: $\sum_{i=0}^{0} q^i = q^0 = 1 = \frac{1-q}{1-q}$.

Induktionsschritt $n \to n+1$: Sei $n \in \mathbb{N}^0$ beliebig. Es gelte die Behauptung für n, also $\sum_{i=0}^{n} q^i = \frac{1-q^{n+1}}{1-q}$ (Induktionsvoraussetzung). Mit der Induktionsvoraussetzung folgt

$$\sum_{i=0}^{n+1} q^i = \sum_{i=0}^n q^i + q^{n+1} = \frac{1-q^{n+1}}{1-q} + q^{n+1} = \frac{1-q^{n+1}+(1-q)q^{n+1}}{1-q} = \frac{1-q^{n+2}}{1-q}.$$

Nach dem Induktionsprinzip gilt dann die Behauptung für alle $n \in \mathbb{N}^0$.

b) Behauptung: Für alle
$$n \in \mathbb{N}$$
 gilt $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$.

Beweis durch vollständige Induktion: n=1: $\sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{2} = \frac{1}{1+1}$.

 $n \to n+1$: Mit der Induktionsvoraussetzung $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$ folgt:

$$\sum_{i=1}^{n+1} \frac{1}{i(i+1)} = \sum_{i=1}^{n} \frac{1}{i(i+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}.$$