Claims:

1. A method for manufacturing an avalanche photodiode suitable for single photon detection applications, comprising forming upon a substrate the layers comprising at

5 least:

10

15

20

30

an absorption layer defining a tunneling onset field; at least one intermediate-bandgap transition layer; a field control layer;

a multiplication layer defining a breakdown electric field; wherein said field control layer is configured so as to generate one of:

- i. an electric field reduction therein comparable to said breakdown electric field; and,
- ii. an electric field reduction therein that, together with an electric field reduction in said multiplication layer, provides a total field reduction comparable to said breakdown electric field.
- 2. The method according to claim 1, wherein said field control layer is made with a dopant concentration designed to provide said electric field reduction similar to said breakdown electric field plus or minus half of the tunneling onset field of the absorption layer.
- 3. The method according to claim 2, wherein said absorption layer is made to provide tunneling onset field of up to $20V/\mu m$.
- 4. The method according to claim 2, wherein said absorption layer is made to provide tunneling onset field of about 5-10V/μm.
 - 5. The method according to claim 1, wherein said field control layer comprises a doped InP.

6. The method according to claim 1, wherein said multiplication layer is made to define a ratio of hole to electron ionization constants of about one.

- 7. The method according to claim 6, wherein said multiplication layer is made to comprise InP.
- 8. The method according to claim 1, wherein said multiplication layer is made to define a ratio of hole to electron ionization constants of between about 0.7 and 1.3.
 - 9. The method according to claim 8, wherein said multiplication layer is made to comprise $Ga_xIn_{1-x}As_yP_{1-y}$.
- 10. The method according to claim 8, wherein said multiplication layer comprises $Ga_{0.18}In_{0.82}As_{0.39}P_{0.61}$.
 - 11. The method according to claim 1, wherein:
- said absorption layer is made to comprise one of InGaAs and InGaAsP;

 said intermediate-bandgap transition layer is made to comprise Ga_xIn_{1-x}As_yP_{1-y}

 said field control layer is made to comprise *n*-InP; and

 said multiplication layer is made to comprise *i*-InP.
- 12. The method according to claim 11, wherein said intermediate bandgap layer is
 20 made to comprise three grading layers of the formula Ga_xIn_{1-x}As_yP_{1-y} and having λ_c =
 1.1, 1.3, and 1.5 μm, respectively.
 - 13. The method according to claim 11, wherein said absorption layer is made to comprise a first absorber comprising one of *i*-InGaAs and *i*-InGaAsP, and a second absorber comprising one of *n*-InGaAs and *n*-InGaAsP.
 - 14. The method according to claim 1, wherein said field control layer is made by selecting a thickness, t, and a doping level, ρ , satisfying the relationship:
- 30 $\rho t = (\epsilon/e^{-}) (E_{bd} \pm (1/2)E_{TC} \Delta E_{ML});$

25

where ε is the dielectric constant of the material said field control layer is made of; E_{bd} is said breakdown field; E_{TC} is a tunneling current limit field in said absorption

layer; ΔE_{ML} is field drop over said multiplication layer and has a value between zero and E_{bd} .

- 15. The method of claim 1, wherein said avalanche photodiode is made in an etched-5 mesa form.
 - 16. The method of claim 1, wherein said avalanche photodiode is made in a bulkplaner form.
- 10 17. The method according to claim 1, wherein said multiplication layer is made to provide jitter of less than 65ps.

15

20

- 18. The method according to claim 5, wherein doping of said control layer is selected in the range of $2.5*10^{16}$ to $3.5*10^{18}$ cm⁻³.
- 19. A method for manufacturing an avalanche photodiode designed for single photon detection applications, comprising forming upon a substrate the layers comprising at least:
 - an absorption layer defining a tunneling current limit field, E_{TC} ; at least one intermediate-bandgap transition layer;
- a field control layer and having a defined thickness, t, and a defined doping level, ρ ;
- a multiplication layer defining a breakdown electric field, E_{bd};
 wherein said defined thickness and defined doping of said field control layer
 are selected so as to generate an electric field reduction therein, and wherein said
 multiplication layer defines a ratio of hole to electron ionization constants of between
 about 0.7 and 1.3.
- 20. The method according to claim 19, wherein said defined thickness and defineddoping of said field control layer are selected so as to generate one of:
 - i. an electric field reduction therein sufficient to maintain said tunneling current limit field below the tunneling offset limit; and,

ii. an electric field reduction therein that, together with an electric field reduction in said multiplication layer, provides a total field reduction sufficient to maintain said tunneling current limit field below the tunneling offset limit.

5

21. The method according to claim 19, wherein said absorption layer comprises one of InGaAs and InGaAsP; said intermediate-bandgap transition layer comprises Ga_xIn_{1-x}As_yP_{1-y} said field control layer comprises InP; and said multiplication layer comprises InP.

10

22. The method according to claim 19, wherein said intermediate bandgap layer is made to comprise three grading layers of the formula $Ga_xIn_{1-x}As_vP_{1-y}$ and having λ_c = 1.1, 1.3, and 1.5 μ m, respectively.

15

23. The method according to claim 19, wherein said absorption layer is made to comprise a first absorber comprising one of i-InGaAs and i-InGaAsP, and a second absorber comprising one of *n*-InGaAs and *n*-InGaAsP.

20

24. The method according to claim 19, wherein said multiplication layer is made to comprise $Ga_xIn_{1-x}As_yP_{1-y}$.

25. The method according to claim 19, wherein said multiplication layer comprises $Ga_{0.18}In_{0.82}As_{0.39}P_{0.61}$

25

26. The method according to claim 21, wherein said multiplication layer comprises $Ga_{0.18}In_{0.82}As_{0.39}P_{0.61}$

- 27. The method of claim 19, wherein said avalanche photodiode is made in an 30 etched-mesa form.
 - 28. The method of claim 19, wherein said avalanche photodiode is made in a bulkplaner form.

- 29. The method according to claim 19, wherein said multiplication layer is made to provide jitter of less than 65ps.
- 5 30. The method according to claim 19, wherein doping of said control layer is selected in the range of 2.5*10¹⁶ to 3.5*10¹⁸ cm⁻³.