SI252 Reinforcement Learning

2022/03/22

Homework 2

Professor: Ziyu Shao Due: 2022/04/03 11:59am

• Performance Evaluation of Classical Bandit Algorithms

You are required to use the Jupyter Notebook (Formerly known as the IPython Notebook) to submit your work.

• Basic Setting

We consider a time-slotted bandit system (t = 0, 1, 2, ...) with three arms. We denote the arm set as $\{1, 2, 3\}$. Pulling each arm j $(j \in \{1, 2, 3\})$ will obtain a reward r_j , which satisfies a Bernoulli distribution with mean θ_j (Bern (θ_j)), *i.e.*,

$$r_{j} = \begin{cases} 1, & w.p. \ \theta_{j}, \\ 0, & w.p. \ 1 - \theta_{j}, \end{cases}$$

where θ_j are parameters within (0,1) for $j \in \{1,2,3\}$.

Now we run this bandit system for N ($N \gg 3$) time slots. At each time slot t, we choose one and only one arm from these three arms, which we denote as $I(t) \in \{1, 2, 3\}$. Then we pull the arm I(t) and obtain a reward $r_{I(t)}$. Our objective is to find an optimal policy to choose an arm I(t) at each time slot t such that the expectation of the aggregated reward is maximized, i.e.,

$$\max_{I(t),t=1,\dots,N} \mathbb{E}\left[\sum_{t=1}^{N} r_{I(t)}\right].$$

If we know the values of $\theta_j, j \in \{1, 2, 3\}$, this problem is trivial. Since $r_{I(t)} \sim \text{Bern}(\theta_{I(t)})$,

$$\mathbb{E}\left[\sum_{t=1}^{N} r_{I(t)}\right] = \sum_{t=1}^{N} \mathbb{E}[r_{I(t)}] = \sum_{t=1}^{N} \theta_{I(t)}.$$

Let $I(t) = I^* = \underset{j \in \{1,2,3\}}{\operatorname{arg max}} \ \theta_j \text{ for } t = 1, 2, \dots, N, \text{ then}$

$$\max_{I(t),t=1,\dots,N} \mathbb{E}\left[\sum_{t=1}^{N} r_{I(t)}\right] = N \cdot \theta_{I^*}.$$

However, in reality, we do not know the values of θ_j , $j \in \{1, 2, 3\}$. We need to estimate the values θ_j via empirical samples, and then make the decisions at each time slot.

Next we introduce three classical bandit algorithms: ϵ -greedy, UCB and Thompson sampling.

• Bandit Algorithms

1. ϵ -greedy Algorithm $(0 \le \epsilon \le 1)$

Algorithm 1 ϵ -greedy Algorithm

Initialize
$$\hat{\theta}(j) = 0$$
, count $(j) = 0, j \in \{1, 2, 3\}$

1: **for**
$$t = 1, 2 \dots, N$$
 do

2:

$$I(t) \leftarrow \begin{cases} \underset{j \in \{1,2,3\}}{\arg\max} \ \hat{\theta}(j) & w.p. \ 1 - \epsilon \\ \\ \text{randomly chosen from} \{1,2,3\} & w.p. \ \epsilon \end{cases}$$

3:
$$\operatorname{count}(I(t)) \leftarrow \operatorname{count}(I(t)) + 1$$

4:
$$\hat{\theta}(I(t)) \leftarrow \hat{\theta}(I(t)) + \frac{1}{\operatorname{count}(I(t))} \left[r_{I(t)} - \hat{\theta}(I(t)) \right]$$

5: end for

2. UCB (Upper Confidence Bound) Algorithm

Algorithm 2 UCB Algorithm

1: **for**
$$t = 1, 2, 3$$
 do

2:
$$I(t) \leftarrow t$$

3:
$$\operatorname{count}(I(t)) \leftarrow 1$$

4:
$$\theta(I(t)) \leftarrow r_{I(t)}$$

5: end for

6: **for**
$$t = 4, ..., N$$
 do

7:

$$I(t) \leftarrow \underset{j \in \{1,2,3\}}{\operatorname{arg\,max}} \left(\hat{\theta}(j) + c \cdot \sqrt{\frac{2 \log t}{\operatorname{count}(j)}} \right)$$

8:
$$\operatorname{count}(I(t)) \leftarrow \operatorname{count}(I(t)) + 1$$

9:
$$\hat{\theta}(I(t)) \leftarrow \hat{\theta}(I(t)) + \frac{1}{\operatorname{count}(I(t))} \left[r_{I(t)} - \hat{\theta}(I(t)) \right]$$

10: end for

Note: c is a positive constant with a default value of 1.

3. Thompson sampling (TS) Algorithm

Recall that $\theta_j, j \in \{1, 2, 3\}$, are unknown parameters over (0, 1). From the Bayesian perspective, we assume their priors are Beta distributions with given parameters (α_j, β_j) .

Algorithm 3 Thompson sampling Algorithm

Initialize Beta parameter $(\alpha_i, \beta_i), j \in \{1, 2, 3\}$

1: **for**
$$t = 1, 2 \dots, N$$
 do

2: # Sample model

3: **for**
$$j \in \{1, 2, 3\}$$
 do

4: Sample
$$\hat{\theta}(j) \sim \text{Beta}(\alpha_i, \beta_i)$$

5: end for

6: # Select and pull the arm

$$I(t) \leftarrow \underset{j \in \{1,2,3\}}{\operatorname{arg\,max}} \hat{\theta}(j)$$

7: # Update the distribution

$$\alpha_{I(t)} \leftarrow \alpha_{I(t)} + r_{I(t)}$$

$$\beta_{I(t)} \leftarrow \beta_{I(t)} + 1 - r_{I(t)}$$

8: end for

• Simulation

- 1. Please reproduce the proof of regret decomposition lemma.
- 2. With the same format as bandit algorithms 1,2 and 3, write the pseudo-code of gradient bandit algorithm for this three-armed Bernoulli bandit problem.
- 3. Now suppose we obtain the Bernoulli distribution parameters from an oracle, which are shown in the following table below. Choose N=10000 and compute the theoretically maximized expectation of aggregate rewards over N time slots. We call it the oracle value. Note that these parameters θ_j , j=1,2,3 and oracle values are unknown to all bandit algorithms.

- 4. Implement classical bandit algorithms with following settings:
 - -N = 5000
 - ϵ -greedy with $\epsilon = 0.1, 0.5, 0.9$.
 - UCB with c = 1, 5, 10.
 - Thompson Sampling with

$$\{(\alpha_1, \beta_1) = (1, 1), (\alpha_2, \beta_2) = (1, 1), (\alpha_3, \beta_3) = (1, 1)\}$$
 and $\{(\alpha_1, \beta_1) = (601, 401), (\alpha_2, \beta_2) = (401, 601), (\alpha_3, \beta_3) = (2, 3)\}$

- Gradient bandit with baseline b = 0, 0.8, 5, 20.

- Parameterized gradient bandit with constant parameter $\beta = 0.2, 1, 2, 5$
- Parameterized gradient bandit with time-varying parameters (you need to design a time-varying rule)
- 5. Each experiment lasts for N=5000 turns, and we run each experiment 1000 times. Results are averaged over these 1000 independent runs.
- 6. Please report three performance metrics
 - The total regret accumulated over the experiment.
 - The regret as a function of time.
 - The percentage of plays in which the optimal arm is pulled.
- 7. Compute the gaps between the algorithm outputs and the oracle value. Compare the numerical results of ϵ -greedy, UCB, Thompson Sampling and gradient bandit. Which one is the best? Then discuss the impacts of ϵ , C, and α_j , β_j , b, and β respectively.
- 8. Give your understanding of the exploration-exploitation trade-off in bandit algorithms.
- 9. We implicitly assume the reward distribution of three arms are independent. How about the dependent case? Can you design an algorithm to exploit such information to obtain a better result?
- 10. Give your understanding of the adoption of sublinear regret as the performance threshold between good bandit algorithms and bad bandit algorithms.