WireBot: The Autonomous High-Voltage Line Inspector

Problem Statement

Manual inspection of high-voltage power lines is risky and inefficient, especially at junctions.

Solution

Inspiration

Source-https://www.youtube.com/watch?v=pwglOID7e0M

Design

Mechanism-1 ARM Movement

Sliding channel

Main arm with lead nut attached

lead screw driving motor,
mouned on chassic with
swing motion

Speed-8x

Mechanism-2 Weight balance

MECHATRONIC ARCHITECTURE

Demonstration

Future Development

- File a patent for the robot.
- Put counter weights for the tilt
- Automate operations and fine-tune for smoother traversal.
- Develop Y-axis balancing during arm movements.
- Enable individual arm height adjustments for uneven wire alignment.

Conclusion

- Innovative Solution
- Versatility
- Future Ready
- Impact

"A step forward in minimizing human effort and maximizing safety!"

~team WireBot

Pseudo code

Main Algorithm:

1. Start the robot

Initialize motors, sensors, and control variables.

2. Wire Detection:

- Read IR sensors to ensure the robot is on the wire.
- If no wire is detected, stop the robot and re-adjust.

3. **Junction Detection:**

• Use ultrasonic sensors to detect an upcoming junction.

4. Crossing the Junction:

- Stop the main driving motor.
- Shift weight to maintain balance across arms.
- Disengage the arm crossing the junction.
- Move forward using other arms.
- Re-engage the arm once it passes the junction.

5. Uneven Wire Handling (Future Development):

- Adjust individual arm heights using motors.
- Use IR sensor feedback to achieve horizontal alignment.

6. End the process

Challenges & Solution