_	as recién fabricadas y se reg ener imperfecciones) resulta	-		-	ciones por	pieza (se	supone que	+			
las piezas no deben te	aner imperiecciones) resulta	indo ios sigu	ientes da	atos:							
	No de imperf. por pieza	0 1	2 3	4 5	6 7						
	Frecuencia observada	18 37 4	12 30	13 7	2 1						
Sea X el número de i Poisson de parámetro	imperfecciones en una piez λ .	a selecciona	da al aza	ar y sup	onga que	X tiene o	distribución				
a) Encuentre un estin	mador insesgado de λ y calc	cule la estim	ación pa	ra los d	atos anter	riores.					
7.0	ión estándar de este estimadientes estimadores de λ , bas						estimador.				
$\lambda_1 = \lambda_2$	$\bar{X}, \hat{\lambda_2} = (X_1 + X_n)/2$	$y \lambda_3 = (\lambda_3)$	$X_1 + 2X_2$	$(+X_n)/$	'3, con	$n \geq 3$		+			
-	ores insesgados para λ ?		1 4								
, ,	ores insesgados para λ del í	, -				1 1 1	1 1 1				
a) Dadom al 10	Al Wear las	~,,d2-	m	use of	rel		220	E 1	June	do	:/
insescado de	1 600	un e	Pur	ne	d 1/8/	w/b	e son	P	0/250	0-	
7 7 6 7 7 ,											
X = S(Xv	·. fi) = 1										
	7									+	
										++	
N=150											
- > 0 /2 / / 7	7+2:42+	7 7 -	(- <	13	, -	7 /-/		7 / .	_ 3	12	
=) 0.18 + 12 >		, , , , , , , , , , , , , , , , , , , ,	7 0	. د ٠	- > -	F T 6	, 7	• /			
317 as 2, 11											
150											
b) la dé del	estimater	9 V.	7								
	-										
1. V.Z = VZ.11	1,45									-	
c) Considere los siguiente	es estimadores de λ , t	asados er	una r	nuestr	a aleato	oria X_1 ,	$, X_n$:				
$\lambda_1 = X,$	$\hat{\lambda}_2 = (X_1 + X_n)/2$	y λ_3	$=(X_1$	$+2X_{2}$	$(2+X_n)$	/3, c	on $n \ge 3$				
¿Cuáles son estimadores i	insesgados para λ?										
Para el inciso c del ejercicio 1, tenemos t determinar cuáles son insesgados. Los es		a λ y debemos									
1. $\hat{\lambda}_1 = ar{X}$											
2. $\hat{\lambda}_2 = \frac{X_1 + X_n}{2}$											
3. $\hat{\lambda}_3 = \frac{X_1 + 2X_2 + X_n}{3}$										+	
										++	
Donde: X_1, X_2, \ldots, X_n son observaciones	s de la variable aleateria V eus	sigue una distri	hución de								
• A_1, A_2, \dots, A_n son observaciones Poisson con parámetro λ .	o de la variable aleatoria A, que s	ngue una distri	oucion de								
										+++	
Para determinar si un es	timador es insesaado	, verificam	os si s	u valo	r espera	do es ia	ual a λ . Eq				
decir, si $E(\hat{\lambda})=\lambda$, ento	_					9					
$D(\Lambda) = \Lambda, elico$	inces et estilliador es	msesgado									
E(1) = E(X))=2										
										++	
E(]z) = E((x	, + Xu) (z)		50	81	+ 12)/ 2		<u> </u>		= /	1
						6		1 4	, .		

Рага	el inc	iso b	del e	jercicio	2, nec	esitam:	os:																					
1.	Encon	ntrar	un es	timado	r inse:	gado (de μ_1	$-~\mu_2$, es	decir,	la dii	eren	cia enti	e las m	nedias (de las													
				igas y ci																								_
2.	Calcul	ılar uı	na es	imació	n de e	sta dife	erencia	usando	los da	tos d	e las i	muestr	as.															_
																												_
Pas	o a P	Paso	par	a Resc	lver	el Ind	iso b																					_
1. Es	timad	dor In	sesa	ado de	u1 – 1	12																						
							muec	ras inde	nendi	antas	con	madisc	11. VI 11	lo V														
								or insesç																				_
V 0110		0130	2,10	рессии									μ2	-5.														_
						$\hat{\mu}_1$	$_1-\hat{\mu}_2$	$= \bar{X}$ –	$\cdot Y$																			
dono	le:																											
	$ar{X}$ es l	la me	dia m	uestral	de la r	esister	ncia de	las vigas	(X).																			
								los cilino		Δ																		
•	1 651	la IIIC	uia iii	uestiat	ue la i	esiscei	icia de	ios citirio	1105 (1	,.																		
Esto	se de	be a	que la	media	de la d	iferen	cia $ar{X}$:	– $ar{Y}$ es I	$\Xi(ar{X}$ -	$-ar{Y})$	$= \mu$	$\mu_1 - \mu_2$, por lo	o tanto	este													
es ur	n estin	mado	r inse	sgado.																								
2. Cá	lculo	de la	Esti	nación	de μ_1	— μ ₂															П							
				lculado			e.																					_
																												_
				de vigas																								_
•	Media	a mue	stral	de cilino	Iros, $\hat{\mu}$	$_{2}=8.$	58																					
La es	timac	ción d	e μ ₁	$-~\mu_2$ es	:																							
			, -	, -			- A			1 10																		
					μ_1	$-\mu_2$	= 7.40	6 - 8.58	5 = -	1.12																		
Pag	D	250.5		locoly o	ما اه	sico c																						
ras	ou a r			esolve											Resul	ados c	lel in	ciso c										
				lor de la i	Diferen	cia $\hat{\mu}_1$ $-$	$\hat{\mu}_2$								1 Va	ianza de	l estin	ador de l	diferer	cia V	ar(û.	_ û.`						
	arianza										:				i. va	IGIIZG GC	t estil	iadoi de t		icia v	α (μ1	μ_2						
Dad	o que <i>j</i>	$\hat{\mu}_1$ y $\hat{\mu}_2$	son e	timadore	s inses	ados de		, y que las anzas indiv			indepe	endiente	s,		i. v a	101120 00	e escii	iadoi de i			$-\hat{\mu}_2)$							
Dad	o que <i>j</i>	$\hat{\mu}_1$ y $\hat{\mu}_2$	son e	timadore	s inses \hat{u}_2 es la	jados de suma de	las vari	anzas indiv			indepe	endiente	s,					estimado	V. de la di	$r(\hat{\mu}_1$ ferenc	$-\hat{\mu}_2)$ iia (des	= 0. viació	27 n está	indar):				_
Dad	o que <i>j</i>	$\hat{\mu}_1$ y $\hat{\mu}_2$	son e	timadore	s inses \hat{u}_2 es la	ados de	las vari	anzas indiv			indepe	endiente	s,						V. de la di	$r(\hat{\mu}_1$ ferenc	$-\hat{\mu}_2)$	= 0. viació	27 n está	ındar):				
Dad	o que <i>j</i> . arianza	$\hat{\mu}_1$ y $\hat{\mu}_2$	son e	timadore	s inses \hat{u}_2 es la	jados de suma de	las vari	anzas indiv			indepe	endiente	s,		2. E rr	or están	dar de		V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
Dad la va don	o que <i>j</i> arianza de:	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la α	son e	stimador ϵ cia $\hat{\mu}_1 - \hat{\mu}_2$	is inses \hat{u}_2 es la $ ext{Var}(\hat{\mu}_2)$	gados de $\hat{u}_1 - \hat{\mu}_2$	$(\log \log n) = rac{\sigma_1^2}{m}$	anzas indiv	riduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ $-$	$\hat{\mu}_2$.		
Dad la va don	o que $ ilde{\mu}$ arianza $ ext{de:}$	$\hat{\mu}_1$ y $\hat{\mu}_2$ ode la α	son e: diferen	stimador ϵ cia $\hat{\mu}_1 - \hat{\mu}_2$	is inses \hat{u}_2 es la $Var(eta)$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r	$(\log \log n) = \frac{\sigma_1^2}{m}$	anzas indiv $+rac{\sigma_2^2}{n}$	riduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
Dad la va don	do que $ ho$ arianza $de:$ σ_1 y σ_2	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c $ au_2$ son l 20 es ϵ	g son e diferen as desv	itimadore cia $\hat{\mu}_1 - \hat{\mu}_2$ riaciones $\hat{\mu}_1$	es inses \hat{u}_2 es la $ ext{Var}(\hat{\mu}_2)$	gados de suma de $\hat{\mu}_1 - \hat{\mu}_2$ r de las ride las vide	$(\log \log n) = \frac{\sigma_1^2}{m}$ esisteno	anzas indiv $+rac{\sigma_2^2}{n}$	riduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
Dad la va don	de: σ_1 y σ_2 $n=2$	$\hat{\mu}_1$ y $\hat{\mu}_2$ o de la c r_2 son l r_2 0 es e r_2 0 es el	son e diferen as desv el tama	stimadore cia $\hat{\mu}_1 - \hat{\mu}_1$ riaciones $\hat{\mu}_1$	is inses \hat{u}_2 es la $ ext{Var}(p)$ estánda nuestra $ ext{var}(p)$	gados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r d e las vide los cili	$(\log \log $	enzas indiv $+rac{\sigma_2^2}{n}$ ias de viga	riduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
don Usa	de: σ_1 y σ_2 $n=2$	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c r_2 son l r_2 0 es e r_2 0 es ellas est	son e diferen as desv el tama	stimadore $\hat{\mu}_1 = \hat{\mu}_1$ iaciones $\hat{\mu}_0$ ño de la m	is inses \hat{u}_2 es la $ ext{Var}(p)$ estánda nuestra $ ext{var}$	gados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r d e las vide los cili	$(\log \log $	enzas indiv $+rac{\sigma_2^2}{n}$ ias de viga	riduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
Dad la va don	de: $m=2$ $n=2$ remos l	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 0 es ellas est 0.97	son e diferen as desv el tama	stimadore $\hat{\mu}_1 = \hat{\mu}_1$ iaciones $\hat{\mu}_0$ ño de la m	is inses \hat{u}_2 es la $ ext{Var}(p)$ estánda nuestra $ ext{var}$	gados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r d e las vide los cili	$(\log \log $	enzas indiv $+rac{\sigma_2^2}{n}$ ias de viga	riduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ –	· μ̂2.		
don Usa	de: σ_1 y σ_2 $m=2$ remos l $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$	$\hat{\mu}_1$ y $\hat{\mu}_2$ ode la α 20 es el las est 0.97	g son e diferen as desv el tama l tamañ imacio	stimadore $\hat{\mu}_1 = \hat{\mu}_1$ iaciones $\hat{\mu}_0$ ño de la m	is inses \hat{u}_2 es la $ ext{Var}(\hat{\mu}_2)$ estánda nuestra $\hat{\mu}_2$ ob	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r d e las v d e los cili d e los cili d e tenidas d	$(\log \log $	enzas indiv $+rac{\sigma_2^2}{n}$ ias de viga	riduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
don Usa	de: σ_1 y σ_2 $m=2$ remos l $\hat{\sigma}_1=0$	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 las est 2 0.97 2 2.10 del Er	o son e: diferen aas desv el tama il tama iimacio	stimadore $\hat{\mu}_1 = \hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la m $\hat{\sigma}$ o de la m	is inses \hat{u}_2 es la $ extstyle e$	r de las r d e las v d e los cili d e los cili d e tenidas d	$ ext{las vari}$ $ ext{las vari}$ $ ext{of } ext{c} = rac{\sigma_1^2}{m}$ esistence gas. $ ext{ndros}.$ en el inc	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig $oxed{a}$ so $oxed{a}$:	riduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
don Usa	de: σ_1 y σ_2 $m=2$ remos l $\hat{\sigma}_1=0$	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 las est 2 0.97 2 2.10 del Er	o son e: diferen aas desv el tama il tama iimacio	itimadore cia $\hat{\mu}_1$ — $\hat{\mu}_1$ diaciones $\hat{\mu}_1$ o de la mos de $\hat{\sigma}_1$ ándar de aíz cuadr	is insess \hat{u}_2 es la ${ m Var}(\hat{\mu}_2)$ es	pados de suma de $\hat{\mu}_1 - \hat{\mu}_2$ n de las r $\hat{\mu}_2$ de las cili $\hat{\mu}_1$ de las cili $\hat{\mu}_2$ de las cili $\hat{\mu}_3$ de las cili $\hat{\mu}_4$ de las cili $\hat{\mu}_4$ de las cili $\hat{\mu}_5$ de las cili $\hat{\mu}_6$ de las cili $\hat{\mu}_$	$(1) = rac{\sigma_1^2}{m}$ esistenc (1) esistenc (2) esistenc (3) esistenc (4) esistence (4)	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig $oxed{a}$ so $oxed{a}$:	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	, μ̂2.		
don Usa	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=1$ álculo estáculo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	o son e: diferen aas desv el tama il tama iimacio	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesç \hat{u}_2 es la ${ m Var}(_i$ estánda insestánda insestra ${ m var}(_i)$ y ${ m var}(_i)$ estánda la Dife la Dife estada de l	pados de suma de $\hat{\mu}_1 - \hat{\mu}_2$ n de las r $\hat{\mu}_2$ de las cili $\hat{\mu}_1$ de las cili $\hat{\mu}_2$ de las cili $\hat{\mu}_3$ de las cili $\hat{\mu}_4$ de las cili $\hat{\mu}_4$ de las cili $\hat{\mu}_5$ de las cili $\hat{\mu}_6$ de las cili $\hat{\mu}_$	$(1) = rac{\sigma_1^2}{m}$ esistenc (1) esistenc (2) esistenc (3) esistenc (4) esistence (4)	$+rac{\sigma_2^2}{n}$ ias de vig $ar{z}$ so a:	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=1$ álculo estáculo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesç \hat{u}_2 es la ${ m Var}(_i$ estánda insestánda insestra ${ m var}(_i)$ y ${ m var}(_i)$ estánda la Dife la Dife estada de l	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
don Usa	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=1$ álculo estáculo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	o son e: diferen aas desv el tama il tama iimacio	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesç \hat{u}_2 es la ${ m Var}(_i$ estánda insestánda insestra ${ m var}(_i)$ y ${ m var}(_i)$ estánda la Dife la Dife estada de l	pados de suma de $\hat{\mu}_1 - \hat{\mu}_2$ n de las r $\hat{\mu}_2$ de las cili $\hat{\mu}_1$ de las cili $\hat{\mu}_2$ de las cili $\hat{\mu}_3$ de las cili $\hat{\mu}_4$ de las cili $\hat{\mu}_4$ de las cili $\hat{\mu}_5$ de las cili $\hat{\mu}_6$ de las cili $\hat{\mu}_$	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	$+rac{\sigma_2^2}{n}$ ias de vig $ar{z}$ so a:	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	$\hat{\mu}_2$.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 las est 2 0.97 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	istimadore cia $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\mu}_1$ o de la mode la mes de σ_1 ándar de aíz cuadr.	is insesç \hat{u}_2 es la ${ m Var}(_i$ estánda insestánda insestra ${ m var}(_i)$ y ${ m var}(_i)$ estánda la Dife la Dife estada de l	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· µ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesç \hat{u}_2 es la ${ m Var}(_i$ estánda insestánda insestra ${ m var}(_i)$ y ${ m var}(_i)$ estánda la Dife la Dife estada de l	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· µ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesç \hat{u}_2 es la ${ m Var}(_i$ estánda insestánda insestra ${ m var}(_i)$ y ${ m var}(_i)$ estánda la Dife la Dife estada de l	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ –	μ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesç \hat{u}_2 es la ${ m Var}(_i$ estánda insestánda insestra ${ m var}(_i)$ y ${ m var}(_i)$ estánda la Dife la Dife estada de l	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· μ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesç \hat{u}_2 es la ${ m Var}(_i$ estánda insestánda insestra ${ m var}(_i)$ y ${ m var}(_i)$ estánda la Dife la Dife estada de l	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· µ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ –	$\hat{\mu}_2$.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· μ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ –	· µ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 60 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· μ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 20 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varing$ las varing $= \frac{\sigma_1^2}{m}$ esistence gas. Indres. The ellipse in a delles $= \sqrt{Var}$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· µ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 20 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varion = \log vario$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ –	$\hat{\mu}_2$.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 20 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varion = \log vario$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· μ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 20 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varion = \log vario$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ —	· µ̂2.		
Dad la va don	o que $\hat{\mu}$ de: σ_1 y σ_2 $m=2$ $n=2$ $\hat{\sigma}_1=0$ $\hat{\sigma}_2=2$ dálculo está culo es	$\hat{\mu}_1$ y $\hat{\mu}_2$ de la c 2 son l 2 2 son l 2 20 es e 2 20 es el las est 2 2.10 del Er	e son e diferen as desv el tama i tama i macio r es la I	etimadore $\hat{\mu}_1$ — $\hat{\mu}_1$ iaciones $\hat{\sigma}$ ño de la mode la mes de σ_1 ándar de aíz cuadr.	is insesy \hat{u}_2 es la ${ m Var}(_i$ estánda inuestra ${ m var}(_i)$ estánda ${ m var}(_$	pados de suma de $\hat{u}_1 - \hat{\mu}_2$ r de las r de las vide los cili \hat{u}_1 tenidas \hat{u}_2 rencia a varianz \hat{u}_2 \hat{u}_3 \hat{u}_4 \hat{u}_4 \hat{u}_5 \hat{u}_6 \hat{u}_6 \hat{u}_7 \hat{u}_8	$= \log varion = \log vario$	anzas indiv $+rac{\sigma_2^2}{n}$ ias de vig z so a: $-(\hat{\mu}_1-\hat{\mu}_2)$	iduales						2. E rr	or están	dar de	estimado	V. de la di Er	$r(\hat{\mu}_1$ ferenc	– μ̂2) ia (des tánda	$=0.$ viació ${ m r}=0$	27 n está .52		$\hat{\mu}_1$ –	$\hat{\mu}_2$.		

▶ 6.	Se denota con X la proporción de tiempo que un estudiante, seleccionado al azar, emplea trabajando en cierta prueba de aptitud. Se supone que X tiene función de densidad dada por:
	$f(x) = \begin{cases} (\theta + 1)x^{\theta} & 0 \le x \le 1\\ 0 & \text{en cualquier otro caso} \end{cases}$
	 donde -1 < θ. a) Obtenga por el método de los momentos un estimador de θ. b) Se toma una muestra aleatoria de 10 estudiantes obteniéndose las siguientes observaciones:
	0.91 0.79 0.90 0.65 0.86 0.47 0.73 0.97 0.94 0.77 Calcule con esta información una estimación de θ , usando el estimador obtenido en el inciso a).
	a): Obtener un estimador de $ heta$ mediante el método de los momentos.
	ara aplicar el método de los momentos, calculamos el primer momento de X , $E(X)$.
• Us	samos la fórmula $E(X) = \int_0^1 x \cdot f(x) dx$, reemplazando $f(x)$ y resolviendo la

a # -)

ullet Luego, igualamos el momento teórico E(X) con el momento muestral (la media

E(x) = 5 2 (0+1) 20 d2 = (0+1) 5 20+1 d2 =

= (0+1) [x 0+2] (0+1) (1 -0) \$ (0+1) (0+2)

0 = 1 - ZX

reemplazaremos $ar{X}$ con la media de los datos observados para obtener una estimación puntual de

Este es el estimador de heta por el método de los momentos. En el inciso b), simplemente

integral en función de θ .

muestral \bar{X}) para despejar θ .

 $= (G+1) \int_0^1 \chi^a dx = (G+1) \frac{\chi^{a+1}}{a+1}$

I gualamos momento unuestral: $\overline{X} = \frac{\Theta + I}{\Theta + Z}$

Ahora despejames Q

 $\overline{\chi} = \underline{\Theta + 1}$

X0+2X = 0+1

XO-0=1-2X

 $\Theta(\overline{x}-1) = 1 - 2\overline{x}$ $\Theta(\overline{x}-1) = \overline{x}$

X(0+2)= 0+1

$$\overline{\chi}$$
 = 0.91 + 0.79 + 0.90 + 0.65 + 0.86 + 0.47 + 0.73 + 0.97 + 0.94 + 0.77

7,99 = 0,799

7. Se supone que el espesor de pintura de baja viscosidad (X) tiene distribución normal. Se observaron las siguientes observaciones de espesores de pintura de baja viscosidad:

 $0,83 \quad 0,88 \quad 0,88 \quad 1,04 \quad 1,09 \quad 1,12 \quad 1,29 \quad 1,31 \quad 1,48 \quad 1,49 \quad 1,59 \quad 1,62 \quad 1,65 \quad 1,71 \quad 1,76 \quad 1,83 \quad 1,99 \quad 1,19 \quad$

- a) Calcule una estimación puntual de la media de la distribución del espesor de pintura por el método de los momentos
- b) Calcule una estimación puntual de la mediana de la distribución del espesor de pintura por el método de máxima verosimilitud (MV).
- c) Calcule una estimación del percentil 90 de la distribución del espesor de pintura por el método de MV.
- d) Estime P(X < 1.5) por el método de MV.
- e) ¿Cuál es el error estándar del estimador usado en el inciso a)?

a) E(x,) = u

Estimador: X = 5 x s

(0.83+0.88+0.88+1.04+1.09+1.12+1.29+1.31+1.48+1.49+1.59+1.62+1.65+1.71+1.76+1.83)/16 = 1.3481

b)

Estamador:

$$\hat{\mu} = \frac{\sum_{j=1}^{n} X_j}{n}$$

Estimación para los datos: 1.3481

Inciso b: Estimación de la mediana por el método de máxima verosimilitud (MV)

Para una distribución normal, la media y la mediana son iguales, ya que es simétrica. Por lo tanto, la mediana es igual a la media muestral calculada en el inciso a.

Para una distribución normal $N(\mu,\sigma^2)$, el percentil p se calcula como:

$$P_p = \mu + z_p \cdot \sigma$$

donde z_p es el valor z correspondiente al percentil 90, que es aproximadamente $z_{0.9} pprox 1.28$.

d)

Inciso d: Estimación de P(X < 1.5) usando MV

Para calcular esta probabilidad, usamos la función de distribución acumulativa (CDF) de una normal. En términos de la CDF de la normal estándar Φ :

$$P(X < 1.5) = \Phi\left(rac{1.5 - \mu}{\sigma}
ight)$$

 $\frac{1}{5} \operatorname{Rinado'} \operatorname{Para} \circ$ $\frac{1}{5} \left(\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \right)^{2} \times \left[\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \right]$ Per ser MV,

8) Funda dersidad Fy(y): · La densitad Fy(y) se orthers desivando FDA con respecto a y $\mathcal{L}_{y}(y) = \frac{d}{dy} \mathcal{L}_{y}(y) = \frac{d}{dy} \left(\frac{1}{\theta}\right)^{n} = \frac{n y^{n-1}}{\theta^{n}}$ $F_{y}(y) = \frac{ny^{n-1}}{\Theta^{2}}, \quad O \subseteq y \subseteq O$ b) i) Calcular & Percurza de y: e (a E(Y) nos agudará a ves si o o y es insegado ela E(Y) para ma var con densidad F, Cy se colonia: E(7) = Soy F7(y)dy = Soy ny ny ny Esto dai $E(Y) = \frac{n}{6n} \int_{0}^{6} \frac{y^{n}}{y^{n}} dy = \frac{n}{6n} \frac{6n}{6n} \frac{1}{6n} = \frac{1}{6n}$ Entonces $E(\gamma) = n\Theta$ in) corregir el ses yor Dade 5(y)= no, el estimador Y sabestima el volos de o Para Obtener un estimator insesgado, sodemes escalar y sor es Oinsagado = nt/y = ut/max (xi) i. Este es un estimador insesgado de O c) $i) \in (x)$ · Dado que Xi ~ U(O,O), saberros que E(ti) = e como X= 1 & Xi tenemos que; $E(X) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot \mathbf{n} \cdot \frac{9}{2} = \frac{9}{2}$

	l	lar	` (ð	7)	5		E	ر ک																								
					٠, ٦		V	r (nt ?																	1			1	1			
	V	rar	(á,	λ	2	•) Э	2																								
			ď		')		3	n																									
Q.																			ı			/	١		C -	1				_			0 11
FU	m	cio	j	d	as e	a,	/	<i>,</i> ,,	Se	v.	aı	~ @	J	e		ه می	rupe	951	Cer	u,	en	76	a	e	va	O) C	`	ν,	≥ √	ja	vz	α,	eu
	1//2	A	n	re	di a	de	ن ور	9/0	ue 13	n	a	rev	na i-	st r (なり	a	u De	Se e	کت م ا	V	N Se	lar ex	2	as as		9 iz	m	:41	e z	6 m	P 7 3	er Ž	G
																										1							
	Q _C	edo	ج ز	? ~	e		-	10	<u>-</u> 1+2	<		3 v	1	Pa	200	_	n	2,	1											_			
. 1.		€,	e	ક	e	′ ′	8	د،'ر	na vas	dov -	-	Pre	Fe	vì.	do	Pe	ora	zu	æ	tie	? n e	e c	we	i u	m e	ai	9 r	l	a	r;a	n;	zα	-1
9	1.0	e ((O	1	re	ec	e [0,	N 6	reix 7	- 6	Ŧì	cie	:	e	P	ce o	raí	е8	ナン	na	1	(). _	2~2	(u	a	d	7 ≶ 1	ζ ν .''	ρu	el0	10
		1 6								~	•																						
																													_	+	-		
																													_				
																														_			
																														-			
											+														+	+				-			
										-	-													+	+	+			+	+	_		
																													_	_	_		
											+													+	+	+			+	+	-		
											-															-							
																										+			+	-			
																														1			