Lecture 3C – Key Messages

- Mean load method for load rating discussed.
- The concept of capacity verification of a bridge by load testing is discussed.
- AASHTO Manual for Bridge Evaluation is introduced and parallels between Canadian and American approaches highlighted.

Clause 14.15.2.3 – Mean Load Method

The mean load method is an another approach for calculating the live load capacity factor, which uses bias factors instead of load and resistance factors.

It is more complicated, but can lead to higher live load capacity factors, according to [Au et al. 2005].

$$F = \frac{\overline{R} \exp \left[-\beta \left(V_R^2 + V_S^2 \right)^{0.5} \right] - \Sigma \overline{D}}{\overline{L}}$$

where

$$\overline{R} = \delta_R R$$

$$V_{S} = \frac{\left(S_{D}^{2} + S_{L}^{2}\right)^{0.5}}{\left(\Sigma \overline{D} + \overline{L}\right)}$$

 $= \delta_I \delta_{AI} L (1 + \delta_I I)$

where

$$S_{D} = \left[\sum \left[\left(V_{D}^{2} + V_{AD}^{2} \right) \left(\delta_{D} \delta_{AD} D \right)^{2} \right] \right]^{0.5}$$

$$S_{L} = \left[V_{AL}^{2} + V_{L}^{2} + \left(V_{I} \delta_{I} I \right)^{2} / \left(1 + \delta_{I} I \right)^{2} \right]^{0.5} \left[\delta_{L} \delta_{AL} L \left(1 + \delta_{I} I \right) \right]$$

$$\Sigma \overline{D} = \Sigma \delta_{D} \delta_{AD} D$$

Table C14.1 Statistical parameters for various dead loads

(See Clause C14.8.2.1.)

Dead load type	$\delta_{\!D}$	V_D
D1	1.03	0.08
D2	1.05	0.10
D3	1.03	0.30

Table C14.2 Statistical parameters for traffic loads

(See Clause C14.9.)

Load type	Span	$\delta_{\!L}$	V_L	Source
Normal traffic	short spans	1.35	0.035	2
(CL-W)	other spans	1.35	0.035	
Normal traffic	short spans	1.76	0.035	
(Alternative Loading)	other spans	1.35	0.035	
Permit annual	short spans	1.35	0.01 <i>7</i>	
(PA)	other spans	1.25	0.01 <i>7</i>	
Permit bulk	short spans	1.09	0.0088	Kennedy (1992)
(PB)	other spans	1.06	0.0094	Kennedy (1992)
Permit controlled	short spans	1.077	0.04	—
(PC)	other spans	1.002	0.039	Kennedy (1992)
Permit single trip	short spans	1.26	0.041	Kennedy (1992)
(PS)	other spans	1.17	0.030	Kennedy (1992)

Table C14.3
Statistical parameters for dynamic load allowance
(See Clause C14.9.3.)

Span	δ_{I}	V_I
Short	0.67	0.60
Other — 1 lane loaded — 2 or more lanes loaded	0.60 0.40	0.80 0.80

Table C14.6 δ_R and V_R values

(See Clause C14.14.2.)

Resistance category	$\delta_{\!R}$	V_R	Source
Structural steel			
Plastic moment	1.13	0.10	Kennedy & Baker (1984)
Yield moment	1.22	0.10	Kennedy & Baker (1984)
Inelastic buckling moment*	1.16	0.08	Kennedy & Baker (1984)
Elastic buckling moment*	1.09	0.09	Kennedy & Baker (1984)
Compression	1.05	0.08	Kennedy & Baker (1984)
Shear (stocky web)	1.10	0.07	Kennedy (1996)
Shear (tension field)	1.18	0.10	Kennedy (1996)
Bolts (tension)	1.12	0.09	Fisher <i>et al.</i> (1978)
Bolts (shear)	1.16	0.10	Fisher <i>et al.</i> (1978)
Welds (not base metal)	1.32	0.17	Fisher <i>et al.</i> (1978)
Rivets	1.50	0.11	CAN/CSA-S6-88 Supplement
			No. 1
Composite — Slab-on-steel girder			
Bending moment*	1.10	0.10	Kennedy & Baker (1984)
Reinforced concrete			
Bending moment			
$\rho \leq 0.4 \ \rho_b$	1.04	0.08	Mirza & MacGregor (1982)
$0.4 \ \rho_b \le \rho \le 0.7 \ \rho_b$	1.03	0.12	Mirza & MacGregor (1982)
Axial compression plus bending	1.02	0.11	Mirza & MacGregor (1982)
(no slenderness)			STATE AND RESIDENCE SECTION AND ASSESSED ASSESSE
Shear (> minimum stirrups)	1.15	0.14	Mirza & MacGregor (1982)
Prestressed concrete			
Prestressed beams in bending			
$\omega_p \le 0.15$	1.06	0.05	Mirza & MacGregor (1982)
$0.15 \le \omega_p \le 0.30$	1.06	0.09	Mirza & MacGregor (1982)

^{*}Includes stiffened plate girder

Clause 14.16 – Load Testing

Load testing of structures and elements:

Load tests are used to check proposed maximum loading and to ensure elements in structure are able to take the design working load safely. Examples of loading mediums:

- Certified steel weights (for small tests)
- Water (suitable for providing uniform load up to 1 t/m²)
- Bagged sand
- Kentledge: steel, iron, or concrete used where large test loads are demanded.
- Hydraulic jack (offer the possibility of gradual application of the load in "displacement control")

Clause 14.16 – Load Testing

Load testing of structures and elements:

Safety precautions:

1) Safety supports should be placed underneath the structure if the load is to be applied vertically.

- 2) Load should applied and removed in increments (minimum 6 increments each).
- 3) If creep of the structure under maximum load is an important consideration, the test load should be maintained for an agreed period of time in which the deflection is monitored at regular intervals.

Clause 14.16 – Load Testing

Load testing of structures and elements:

- The structure or member can be deemed to have passed the test by checking one of the following:
- 1) Comparison of the actual behaviour of the structure under load with the theoretically predicted performance (in case you have sufficient information regarding the construction material).
- 2) Comparison of recovery of the structure on completion of the load test with deflection under full load test (the acceptable percentage of recovery should be specified beforehand).

Load Testing

Load Testing

FIG. 1. Random Load Q versus Random Strength R before and after Proof Test at Load q^*

How do Canadian and American approaches compare?

AASHTO MBE – Material Strengths

Table 6A.5.2.1-1—Minimum Compressive Strength of Concrete by Year of Construction

Year of Construction	Compressive Strength, f'_c , ksi
Prior to 1959	2.5
1959 and Later	3.0

17.2 MPa20.7 MPa

Table 6A.5.2.2-1—Yield Strength of Reinforcing Steel

Type of Reinforcing Steel	Yield Strength, f _y , ksi
Unknown steel constructed prior to 1954	33.0
Structural grade	36.0
Billet or intermediate grade, Grade 40, and unknown steel constructed during or after 1954	40.0
Rail or hard grade, Grade 50	50.0
Grade 60	60.0

228 MPa

248 MPa

276 MPa

345 MPa

414 MPa

AASHTO MBE – Material Strengths

Table 6A.6.2.1-1—Minimum Mechanical Properties of Structural Steel by Year of Construction

Year of Construction	Minimum Yield Point or Minimum Yield Strength, F_y , ksi	Minimum Tensile Strength, F_u , ksi
Prior to 1905	26 179 MPa	52 359 MPa
1905 to 1936	30 207 MPa	60 414 MPa
1936 to 1963	33 228 MPa	66 455 MPa
After 1963	36 248 MPa	66 455 MPa

For wrought iron: $F_y = 26 \text{ ksi}$, $F_u = 48 \text{ ksi}$

179 MPa

331 MPa

$$RF = \frac{C - (\gamma_{DC})(DC) - (\gamma_{DW})(DW) \pm (\gamma_{P})(P)}{(\gamma_{LL})(LL + IM)}$$

For the Strength Limit States:

$$C = \varphi_c \varphi_s \varphi_n$$

Where the following lower limit shall apply:

$$\varphi_c \varphi_s \ge 0.85$$

For the Service Limit States:

$$C = f_R$$

RF = Rating factor

C = Capacity

 f_R = Allowable stress specified in the LRFD code

 R_n = Nominal member resistance (as inspected)

DC = Dead load effect due to structural components and attachments

DW = Dead load effect due to wearing surface and utilities

P = Permanent loads other than dead loads

LL = Live load effect

IM = Dynamic load allowance

γ_{DC} = LRFD load factor for structural components and attachments

γ_{DW} = LRFD load factor for wearing surfaces and utilities

γ_p = LRFD load factor for permanent loads other than dead loads = 1.0

 γ_{LL} = Evaluation live load factor

 φ_c = Condition factor

 $\varphi_s = System factor$

φ = LRFD resistance factor

Table 6A.4.2.2-1—Limit States and Load Factors for Load Rating

		Dead Load De	3.00	Design Load			
	Dead Load		Inventory	Operating	Legal Load	Permit Load	
Bridge Type	Limit State*	YDC	YDW	YLL	YLL	YLL	γμ
	Strength I	1.25	1.50	1.75	1.35	Tables 6A.4.4.2.3a-1 and 6A.4.4.2.3b-1	
Steel	Strength II	1.25	1.50	_			Table 6A.4.5.4.2a-1
	Service II	1.00	1.00	1.30	1.00	1.30	1.00
	Fatigue	0.00	0.00	0.75	_	_	
Reinforced	Strength I	1.25	1.50	1.75	1.35	Tables 6A.4.4.2.3a-1 and 6A.4.4.2.3b-1	
Concrete	Strength II	1.25	1.50	_		19 13	Table 6A.4.5.4.2a-1
	Service I	1.00	1.00				1.00
Prestressed	Strength I	1.25	1.50	1.75	1.35	Tables 6A.4.4.2.3a-1 and 6A.4.4.2.3b-1	=
Concrete	Strength II	1.25	1.50				Table 6A.4.5,4.2a-1
Concrete	Service III	1.00	1.00	0.80		1.00	_
	Service I	1.00	1.00	-	-		1.00
Wood	Strength I	1.25	1.50	1.75	1.35	Tables 6A.4.4.2.3a-1 and 6A.4.4.2.3b-1	-
	Strength II	1.25	1.50	_			Table 6A.4.5.4.2a-1

^{*} Defined in the AASHTO LRFD Bridge Design Specifications.

Notes:

- Shaded cells of the table indicate optional checks.
- Service I is used to check the 0.9 F_v stress limit in reinforcing steel.
- Load factor for DW at the strength limit state may be taken as 1.25 where thickness has been field measured.
- Fatigue limit state is checked using the LRFD fatigue truck (see Article 6A.6.4.1).

Table 6A.4.2.3-1—Condition Factor: φ_c

Structural Condition of Member	ϕ_c
Good or Satisfactory	1.00
Fair	0.95
Poor	0.85

[AASHTO MBE 2008]

Table 6A.4.2.4-1—System Factor: ϕ_s for Flexural and Axial Effects

Superstructure Type	ϕ_s
Welded Members in Two-Girder/Truss/Arch Bridges	0.85
Riveted Members in Two-Girder/Truss/Arch Bridges	0.90
Multiple Eyebar Members in Truss Bridges	0.90
Three-Girder Bridges with Girder Spacing 6 ft	0.85
Four-Girder Bridges with Girder Spacing ≤4 ft	0.95
All Other Girder Bridges and Slab Bridges	1.00
Floorbeams with Spacing >12 ft and Noncontinuous Stringers	0.85
Redundant Stringer Subsystems between Floorbeams	1.00

Table 6A.4.4.2.3a-1—Generalized Live Load Factors, γ_L for Routine Commercial Traffic

	Load Factor for Type 3,
Traffic Volume	Type 3S2, Type 3-3 and
(One direction)	Lane Loads
Unknown	1.80
$ADTT \ge 5000$	1.80
ADTT = 1000	1.65
$ADTT \le 100$	1.40

Linear interpolation is permitted for other ADTT.

Table 6A.4.4.2.3b-1—Generalized Live Load Factors, γ_L for Specialized Hauling Vehicles

Traffic Volume (One direction)	Load Factor for NRL, SU4, SU5, SU6, and SU7
Unknown	1.60
ADTT ≥ 5000	1.60
ADTT = 1000	1.40
ADTT ≤ 100	1.15

Linear interpolation is permitted for other ADTT.

Table C6A.4.4.3-1—Dynamic Load Allowance: IM

Riding Surface Conditions	IM
Smooth riding surface at approaches, bridge deck,	10%
and expansion joints	
Minor surface deviations or depressions	20%

[AASHTO MBE 2008]

Table 6A.4.5.4.2a-1—Permit Load Factors: γ_L

					Load Factor by Permit Weight ^b	
Permit Type	Frequency	Loading Condition	$DF^{\mathbf{a}}$	ADTT (one direction)	Up to 100 kips	≥150 kips
Routine or Annual	Unlimited Crossings	Mix with traffic (other vehicles may be on the bridge)	Two or more lanes	>5000	1.80	1.30
				=1000	1.60	1.20
				<100	1.40	1.10
					All Weights	
Special or Limited	Single-Trip	Escorted with no other vehicles on the bridge	One lane	N/A	1.15	
Crossing	Single-Trip	Mix with traffic (other vehicles may be on the bridge)	One lane	>5000	1.50	
				=1000	1.40	
				<100	1	.35
	Multiple-Trips	Mix with traffic (other	One lane	>5000	1.85	
	(less than 100	vehicles may be on the		=1000	1.75	
	crossings	bridge)		<100	1	.55

 $^{^{}a}$ DF = LRFD distribution factor. When one-lane distribution factor is used, the built-in multiple presence factor should be divided out.

For routine permits between 100 kips and 150 kips, interpolate the load factor by weight and ADTT value. Use only axle weights on the bridge.

Safe Posting Load = $\frac{W}{0.7}[(RF) - 0.3]$

where.

RF = Legal load rating factor

W = Weight of rating vehicle

[AASHTO MBE 2008]

AASHTO MBE – Load Testing

The following conditions could render a bridge an unsuitable candidate for load testing:

- The cost of testing reaches or exceeds the cost of bridge strengthening.
- Pretest evaluation shows that the load test is unlikely to show the prospect of improvement in load-carrying capacity.
- According to calculations, the bridge cannot sustain even the lowest level of load.
- There is a possibility of sudden failure (shear or fracture).
- Load tests may be impractical because of access difficulties or site traffic conditions.