Lecture - 10

Energy Resources, Economics and Environment

Preferences and Utility

Rangan Banerjee

Department of Energy Science and Engineering

IIT Bombay

Preference Relations

- Ranking of preferences between bundles of goods (and services)
- Consumer choices/ preferences
- For simplicity choose two goods x, y
 - Wine, Cheese
 - Pizza, Movies
 - Resource, Environment

Preference Relations - Properties

- Completeness
- Transitivity (Rational preferences)
- Non –Satiation (or Monotonicity)
 - more is better)

Preference relations

- X > Y strict preference
- X ≽ Y weak preference relationship
- X ~ Y indifference relation

Transitivity

- Apple> Orange
- Orange > Banana

Implies

Apple > Banana

Preference

Indifference curves

Set of consumption bundles that consumer think are equally good she/he are indifferent to the consumption bundles

 $X \sim Y$

Indifference Curves

Indifference curve

Indifference curves

Is this possible?

Convexity

Source: Serrano and Feldman, 2011

Utility

- Utility An economic term referring to the total satisfaction received from consuming a good or service
- Ui = Ui(Ci)
- Utility function mathematical representation of preference relations

Utility functions

- U $(x,y) = \sqrt{xy}$
- U $(x) = 1 e^{-ax} a > 0$
- $U(x) = \log x$
- U(x,y) = x^a y^b (Cobb- Douglas utility function)
- $U(x,y) = min\{x,y\}$
- U(x,y) = ax + by

Properties of Utility Functions

- Independence
- Completeness
- Transitivity
- Continuity
- Increasing function u'(x) > 0
- Ordinal not cardinal

Utility Function

Marginal Utility

Change in Utility per unit of additional good

- Should this increase, decrease or remain constant? Why?
- Law of Diminishing Marginal utility

Marginal Rate of Substitution

Marginal rate of substitution

Marginal Rate of Substitution

- MRS = $-\Delta x_2/\Delta x_1$
- MRS = MU1/ MU2

$$= (\partial U/\partial x_1)/(\partial U/\partial x_2)$$

Budget constraint

- Prices P_x and P_y, total budget B
- $P_x x + P_y y \le B$
- Maximise U(x,y) subject to budget constraint

Solution

Maximise

$$L = U(x,y) + \lambda (B-P_x x - P_y y)$$

$$\partial L/\partial x = \partial U/\partial x - \lambda P_x = 0$$

$$\partial L/\partial y = \partial U/\partial y - \lambda P_y = 0$$

$$\lambda = \frac{\partial U / \partial x}{P_x} = \frac{\partial U / \partial y}{P_y}$$

Utility: Indifference Curves

Source: Kolstad, 1999

References

- Serrano and Feldman, Lesson 2, Preferences and Utility
 - http://www.econ.brown.edu/faculty/serrano/textbook/Lesson2.pdf
- http://ocw.mit.edu
- Charles Kolstad, Environmental Economics, Vol. 1, Oxford University Press (1999).