Expander Graphs

Jan Pantner (jan.pantner@gmail.com)

October 7, 2024

1 Definitions

1.1 Expansion

Definition 1.1.1. Let P = (V, E) be a finite graph.

- (1) For any disjoint subsets of vertives $V_1, V_2 \subseteq V$, we denote by $\mathcal{E}(V_1, V_2)$ the set of edges of Γ with one extremity in V_1 and the other in V_2 . We denote $\mathcal{E}(V_1) := \mathcal{E}(V_1, V \setminus V_1)$.
- (2) The *Cheeger constant* or *expansion constant* of Γ is

$$h(\Gamma) := \min \left\{ \frac{|\mathcal{E}(W)|}{|W|} \mid \emptyset \neq W \subseteq V \land |W| \le \frac{1}{2} |V| \right\}$$

with the convention that $h(\Gamma) = +\infty$ if Γ has at most one vertex.

The larger h(P) is, the more difficult it is to disconnect a large subset of V from the rest of the graph. This will be our way of measuring "high connectivity".

Lemma 1.1.2. Let Γ be a finite graph with at least two vertices (so that $h(\Gamma) < \infty$). We have $h(\Gamma) > 0$ if and only if Γ is connected.

Proof. The condition $h(\Gamma) = 0$ means that there exists some nonempty $W \subseteq V$, $|W| \le \frac{1}{2}|V|$, such that $|\mathcal{E}|(W) = 0$. Since $W \ne V$, there is no path between W and $V \setminus W$, so Γ is disconnected.

Conversely, if Γ is disjoint, there is some component, say W, of size at most $\frac{1}{2}|V|$. Hence, $\mathcal{E}(W) = \emptyset$ and $h(\Gamma) = 0$.

Example 1.1.3. Let K_m be the complete graph on m vertices. We have

$$h(K_m) = \min_{1 \le j \le \frac{m}{2}} \frac{|\mathcal{E}(\{1, 2, \dots, j\})|}{j} = \min_{1 \le j \le \frac{m}{2}} \frac{j(m-j)}{j} = m - \left\lfloor \frac{m}{2} \right\rfloor.$$

This goes do infinity, as m goes to infinity. This unsurprisingly tells us that complete graphs are very well connected.

Example 1.1.4. Let C_m be the *m*-cycle. We have

$$h(\Gamma) = \frac{2}{\left|\frac{m}{2}\right|}.$$

This goes to zero.

Example 1.1.5. Let $T_{d,k}$ be the d-regular tree of depth k, where $d \geq 2$. Let W be one of the subtrees hanging from the root. We have

$$h(T_{d,k}) \le \frac{|\mathcal{E}(W)|}{|W|} = \frac{1}{\frac{|T|-1}{d}} = \frac{d}{|T|-1}.$$

This is a small upper bound.

Bounding

Remark 1.1.6. It is much easier to give upper bounds for h than lower bounds.

Let's calculate some trivial bounds. Let Γ be connected. Then

$$\frac{2}{|\Gamma|} \le h(\Gamma) \le \min_{x \in V} \operatorname{var}(x)$$

For the first inequality we use $\frac{|\mathcal{E}(W)|}{|W|} \ge \frac{1}{|V|/2}$, and for the second, we take $W = \{x\}$.

Our goal will be to find graphs with large $h(\Gamma)$ and few edges (unlike K_m).

Conncetivity with diameter

Proposition 1.1.7. Let Γ be connected. Let $v = \max_{x \in V} \operatorname{var}(x)$. Then

$$\dim \Gamma \le 2 \cdot \frac{\log \frac{|\Gamma|}{2}}{\log(1 + \frac{h(\Gamma)}{V})} + 3.$$

Proof. Let $x \in V$. For $n \in \mathbb{N}$, consider the ball

$$B_x(v) = \{ y \in V \mid d(x, y) \le n \}.$$

Claim:

$$|B_x(n)| \ge \min\left\{\frac{|\Gamma|}{2}, \left(1 + \frac{h(\Gamma)}{v}\right)^n\right\}$$

Proof. We use induction on n. Suppose $|B_x(n)| < \frac{|\Gamma|}{2}$ and take $W = B_x(n)$. Note

$$|B_x(n+1) \setminus B_x(n)| \ge \frac{|\mathcal{E}(B_x(n))|}{v}$$
$$\ge \frac{h(\Gamma)|B_x(n)|}{v}.$$

Hence,

$$|B_x(n+1)| \ge \left(1 + \frac{h(\Gamma)}{v}\right) |B_x(n)|.$$

Let's use the claim to prove the proposition. Let $x, y \in V$. Let n be smallest such that

$$\left(1 + \frac{h(\Gamma)}{v}\right)^n \ge \frac{|\Gamma|}{2}.$$

This means

$$|B_x(n)| \ge \frac{|\Gamma|}{2}, \qquad |B_y(n)| \ge \frac{|\Gamma|}{2}.$$

Hence,

$$|B_r(n+1) \cap B_n(n)| > 0.$$

Hence, $d(x, y) \leq 2n + 1$.

Expander graphs

Definition 1.1.8. A family $(\Gamma_i)_{i\in\mathbb{N}}$ of graphs is an **expander family** if there are constants $v \geq 1$, h > 0 such that

- 1. $|V_i| \to \infty$
- 2. $\forall i. \max_{x \in V} var(x) \leq v$
- 3. $\forall i. \ h(\Gamma_i) \geq h.$

Remark 1.1.9. The second condition implies $|E_i| \leq v |V_i|$, so there are only linearly many edges in Γ_i . This gives us a low cost of construction (in applications).

Diameters of expanders

Let $(\Gamma_i)_{i\in\mathbb{N}}$ be an expander family. Then

diam
$$\Gamma_i \ll \log |V_i|$$
,

where the implicit constant depends only on (v, h), so it is absolute in the family.

This fact follows immediatly from the previous proposition.

Remark 1.1.10. Having log-diameter is not the same as being an expander family.

Example 1.1.11. The tree $T_{d,k}$ has log-diameter and it does have bounded valency (for fixed d), but the Cheeger constant goes to 0 as k goes to infinity.

Index

Cheeger constant, $\frac{2}{}$

expander family, 4 expansion constant, 2