TABLE ONE

```
library(tidyverse)
library(finalfit)
library(gtsummary)
rakai = read_csv("rakai.csv")
dim(rakai)
[1] 2839
           78
#glimpse(rakai)
#missing_glimpse(rakai)
df1 <- rakai %>%
  select(ageyrs,sex,locate,occup1,currmarr,evermarr,mobility,
          artdays,artwks,artmos,artyrs,comm_num,educyrs,religion)
df2 <- rakai %>%
  select(ageyrs,sex,locate,occup1,currmarr,evermarr,mobility,
  artdays,artwks,artmos,artyrs,comm_num,artrunbc,artstrbc,hivac,copies,new_copies)
df3 <- df1 %>%
  mutate(ageyrs = ageyrs %>% ff_label("Age (years)"),
         sex = if_else(sex == "F", "Female", "Male") %>%
           as_factor() %>%
           fct_relevel("Female") %>%
           ff_label("Sex"),
         mobility = case_when(
           mobility %in% c(3,8,10) ~ "In-migrant",
           .default = "Long-term resident") %>%
           fct_relevel("In-migrant") %>%
```

```
ff_label("Migration"),
community_type = case_when(
  comm_num %in% c(38,770,771,774) ~ "Fishing community",
                            .default = "Inland Community") %>%
 fct relevel("Inland Community") %>%
  ff_label("Community type"),
fishing_comm = if_else(community_type == "Fishing Community",1,0) %>%
  ff label("Lake Victoria Fishing Community"),
primary_occupation = case_when(
  occup1 %in% c(1,2,5) ~ "Agriculture/Homebrewing",
  occup1 %in% c(10,11) ~ "Trading or shopkeeping",
  occup1 %in% c(12,18) ~ "Bar work or waitressing",
  occup1 %in% c(2,3,4) \sim "House work",
  occup1 == 7 ~ "Fishing-related occupation",
  .default = "Other") %>%
 fct_relevel("Agriculture/Homebrewing", "Trading or shopkeeping") %>%
 ff_label("Primary Occupation"),
age_cat = case_when(
                    ageyrs < 30 ~ "<30",
                    ageyrs >= 30 \& ageyrs <= 39 ~ "30-39",
                    ageyrs >=40 & ageyrs <= 49 ~ "40-49") %>%
  fct relevel("<30") %>%
 ff_label("Age group"),
current_marital_status = case_when(
  currmarr == 1 ~ "Currently married",
  currmarr == 2 ~ "Previously married",
  currmarr == 8 ~ "Never married"
  ) %>%
  fct_relevel("Never married", "Currently married") %>%
  ff_label("Current marital status"),
art_duration = case_when(
  artyrs >= 1 & artyrs < 2 ~ "1-2 years",
  artyrs > 2 & artyrs <= 5 ~ "2-5 years",
  artyrs > 5 \sim ">5 years",
  .default = "<1 year"</pre>
) %>%
 fct_relevel("<1 year","1-2 years","2-5 years") %>%
 ff_label("Time on ART"),
```

```
education_level = case_when(
   educyrs == 8 ~ "No formal education",
   educyrs %in% c(1,2) ~ "Primary",
   educyrs %in% c(3,4) ~ "Secondary",
   educyrs %in% c(5,6,7,10,11) ~ "Technical/University"

) %>%
   fct_relevel("No formal education") %>%
   ff_label("Educational attainment"),

religion = case_when(
   religion %in% c(1,6) ~ "Other or none",
   religion == 5 ~ "Muslim"
) %>%
   ff_label("Religion")
```

```
df4 <- df3 %>%
  select(
    ageyrs,age_cat,sex,current_marital_status,education_level,primary_occupation,
    mobility,community_type,art_duration
)
```

Table One

```
df4 %>%
  tbl_summary(
  by = sex,
  statistic = list(
    all_categorical() ~ "{n} ({p}%)",
    all_continuous() ~ "{median} ({IQR})"
  ),
  digits = list(
    all_categorical() ~ 0,
    all_continuous() ~ 0
  )
  ) %>%
```

```
add_overall() %>%
add_p(
 test = list(
   all_categorical() ~ "chisq.test",
   all_continuous() ~ "wilcox.test"
  )
) %>%
bold_labels() %>%
italicize_levels() %>%
modify_spanning_header(
 update = all_stat_cols() ~ "**Sex**"
) %>%
modify_footnote(
 update = c("p.value") ~
    "a p-values calculated using Pearson's chi-square tests of association,
   unless otherwise specified. <br>
     b p-values calculated using Wilcoxon rank-sum tests
  comparing median values and interquartile ranges (IQR)."
```

	Overall, N =	$\mathbf{Female},\mathrm{N} =$	Male, N =	
Characteristic	2,839	1,824	1,015	p-value
Age (years)	38 (11)	37 (11)	39 (9)	< 0.001
Age group				< 0.001
<30	437~(15%)	347 (19%)	90 (9%)	
30-39	1,229 (43%)	809 (44%)	420~(41%)	
40-49	$1,173 \ (41\%)$	668 (37%)	505 (50%)	
Current marital				< 0.001
status				
Never married	142 (5%)	96~(5%)	46~(5%)	
Currently married	1,720 (61%)	1,036 (57%)	684~(67%)	
Previously married	977 (34%)	692 (38%)	285~(28%)	
Educational				< 0.001
attainment				
No formal education	266 (9%)	174 (10%)	92 (9%)	
Primary	1,931~(68%)	1,193~(65%)	$738 \ (73\%)$	
Secondary	406 (14%)	287 (16%)	$119 \ (12\%)$	
Technical/University	236 (8%)	170 (9%)	66 (7%)	
Primary	. ,	, ,	, ,	< 0.001
Occupation				
$\overline{Agriculture/Homebrewing}$	709~(25%)	529~(29%)	180 (18%)	

Characteristic	Overall , N = 2,839	Female, N = 1,824	Male , N = 1,015	p-value
shopkeeping				
Bar work or	$282\ (10\%)$	$278 \ (15\%)$	4~(0%)	
wait ressing				
Fishing-related	504~(18%)	3~(0%)	501 (49%)	
occupation				
House work	287 (10%)	283~(16%)	4(0%)	
Other	514 (18%)	301~(17%)	213~(21%)	
Migration				< 0.001
$In ext{-}migrant$	637~(22%)	464~(25%)	173~(17%)	
Long-term resident	2,202 (78%)	$1,360 \ (75\%)$	842~(83%)	
Community type				< 0.001
Inland Community	1,284~(45%)	943~(52%)	341 (34%)	
Fishing community	$1,555 \ (55\%)$	881 (48%)	674~(66%)	
Time on ART				0.012
<1 year	222 (8%)	152 (8%)	70~(7%)	
1-2 years	79 (3%)	50 (3%)	$29 \ (3\%)$	
2-5 years	750~(26%)	446~(24%)	304 (30%)	
>5 years	1,788 (63%)	1,176 (64%)	612 (60%)	

```
df6 <- df5 %>%
  mutate(
    sex = if_else(sex == "F","Female","Male") %>%
        as_factor() %>%
        fct_relevel("Female") %>%
        as_factor() %>%
        ff_label("Sex"),

    hivac = if_else(hivac ==1, "Yes","No") %>%
        ff_label("Missed scheduled visit for HIV care"),
    artrunac = if_else(artrunac ==1,"Yes","No") %>%
        as_factor() %>%
        ff_label("Run out of ART before next refill"),

artstrac = if_else(artstrac ==1,"Yes","No") %>%
```

```
as_factor() %>%
  ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply"),

artstrbc = if_else(artrunbc ==1,"Yes","No") %>%
  as_factor() %>%
  ff_label("Run out of ART before next refill"),

artstrbc = if_else(artstrbc ==1,"Yes","No") %>%
  as_factor() %>%
  ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply")
)
```

Viral Load Suppression

```
df7 <- df6 %>% filter(copies != "INV.IC ",!is.na(copies),!is.na(new_copies)) %>%
  mutate(
    copies = str_remove_all(copies, "<\\s*"),
    copies = if_else(copies == "BD", "0", copies),
    copies = as.numeric(copies),

    new_copies = str_remove_all(new_copies, "<\\s*"),
    new_copies = if_else(new_copies == "BD", "0", new_copies),
    new_copies = as.numeric(new_copies)
) %>%
    mutate(viral_load_b4 = if_else(copies < 200, "Viral Load Sppression","Viraemia") %>%
        ff_label("HIV RNA viral load, in copies/ml"),
        viral_load_after = if_else(new_copies < 200, "Viral Load Sppression","Viraemia") %>%
        ff_label("HIV RNA viral load, in copies/ml"))
```

```
df_summary <- df7 %>%
  mutate(
    b4_supp = if_else(viral_load_b4 == "Viral Load Sppression", 1, 0),
    after_supp = if_else(viral_load_after == "Viral Load Sppression", 1, 0)
) %>%
  group_by(sex) %>%
  summarise(
    n_b4_supp = sum(b4_supp, na.rm = TRUE),
    n_b4 = sum(!is.na(b4_supp)),
```

```
n_after_supp = sum(after_supp, na.rm = TRUE),
 n_after = sum(!is.na(after_supp))
) %>%
ungroup() %>%
mutate(
 prop_b4 = n_b4_supp / n_b4,
 prop_after = n_after_supp / n_after,
 prop_both = (n_b4_supp + n_after_supp) / (n_b4 + n_after),
 se_b4 = sqrt(prop_b4 * (1 - prop_b4) / n_b4),
 lower_b4 = prop_b4 - 1.96 * se_b4,
 upper_b4 = prop_b4 + 1.96 * se_b4,
 se_after = sqrt(prop_after * (1 - prop_after) / n_after),
 lower_after = prop_after - 1.96 * se_after,
 upper_after = prop_after + 1.96 * se_after,
 se_both = sqrt(prop_both * (1 - prop_both) / (n_b4 + n_after)),
 lower_both = prop_both - 1.96 * se_both,
 upper_both = prop_both + 1.96 * se_both
) %>%
select(
  sex, prop_b4, prop_after, prop_both,
 lower_b4, upper_b4, lower_after, upper_after, lower_both, upper_both
) %>%
pivot_longer(
 cols = c(prop_b4, prop_after, prop_both),
 names_to = "time_point",
 values_to = "proportion"
) %>%
mutate(
 lower = case when(
   time_point == "prop_b4" ~ lower_b4,
   time_point == "prop_after" ~ lower_after,
   TRUE
                              ~ lower_both
  ),
 upper = case_when(
   time point == "prop b4"
                             ~ upper_b4,
   time_point == "prop_after" ~ upper_after,
   TRUE
                               ~ upper_both
  ),
 time_point = case_when(
```

```
ggplot(df_summary, aes(x = sex, y = proportion, fill = time_point)) +
 geom_bar(
   stat = "identity",
   position = position_dodge(width = 0.7),
   width = 0.5
 ) +
 geom_errorbar(
   aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 0.5
 ) +
 scale_y_continuous(labels = scales::percent_format()) +
 labs(x = "Sex", y = "Proportion with Suppressed VL", fill = "Time") +
 scale_fill_viridis_d(option = "viridis")+
 theme minimal()+
 theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
   axis.title.x = element_text(face = "bold", size = 12),
   axis.title.y = element_text(face = "bold", size = 12),
   legend.title = element_text(face = "bold", size = 12),
   legend.text = element_text(size = 10),
   legend.position = "top"
```


Proportion taking ART pills less frequently / in smaller amounts

```
df_artstr <- df6 %>%
  pivot_longer(
   cols = c(artstrbc, artstrac),
    names_to = "variable",
   values_to = "response"
  ) %>%
  mutate(
    time = if_else(grep1("bc$", variable), "Before Covid-19", "After Covid-19")
  )
df_artstr_summary <- df_artstr %>%
  group_by(sex, time) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
  )
df_artstr_totals <- df_artstr %>%
```

```
group_by(sex) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 ) %>%
 mutate(time = "Total")
df_artstr_summary <- bind_rows(df_artstr_summary, df_artstr_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
 )
reduced_art_plot <- ggplot(df_artstr_summary, aes(x = sex, y = proportion, fill = time)) +
 geom_col(position = position_dodge(width = 0.7), width = 0.5) +
 geom_errorbar(
   aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 1
 ) +
 scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
 labs(
   title = "Proportion with reduced ART pill intake",
   x = "Sex",
   y = "Proportion of individuals (%)",
   fill = "Time"
 ) +
  scale_fill_viridis_d(option = "viridis") +
 theme minimal() +
 theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
   axis.title.x = element_text(face = "bold", size = 12),
   axis.title.y = element_text(face = "bold", size = 12),
   legend.title = element_text(face = "bold", size = 12),
   legend.text = element_text(size = 10),
   legend.position = "top"
```

Proportion with reduced ART pill intake

Run out of ART before next refill

```
df_artrun <- df6 %>%
  mutate(
    artrunbc = as.character(artrunbc),
    artrunac = as.character(artrunac)
) %>%
  pivot_longer(
    cols = c(artrunbc, artrunac),
    names_to = "variable",
    values_to = "response"
) %>%
```

```
time = if_else(grep1("bc$", variable), "Before Covid-19", "After Covid-19")
df_artrun_summary <- df_artrun %>%
 group_by(sex, time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
df_artrun_totals <- df_artrun %>%
  group_by(sex) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
 ) %>%
 mutate(time = "Total")
df_artrun_summary <- bind_rows(df_artrun_summary, df_artrun_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
 )
run_out_of_art_plot <- ggplot(df_artrun_summary, aes(x = sex, y = proportion, fill = time))
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
 geom_errorbar(
   aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 1
  ) +
 scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
   title = "Proportion running out of ART before next refill",
   x = "Sex",
   y = "Proportion of individuals",
```

```
fill = "Time"
) +
theme_minimal() +
theme(
  plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
  axis.title.x = element_text(face = "bold", size = 12),
  axis.title.y = element_text(face = "bold", size = 12),
  legend.title = element_text(face = "bold", size = 12),
  legend.text = element_text(size = 10),
  legend.position = "top"
)
```

Proportion running out of ART before next refill

