Unit-1 Introduction to Operating System

Lecture - 3

Functions of Operating System

- The main functions of an operating system include:
 - Process management: The operating system is responsible for the following activities in connection with process management:
 - Creating and deleting both user and system processes
 - Scheduling processes and threads on the CPUs
 - Suspending and resuming processes
 - Providing mechanisms for process synchronization
 - Providing mechanisms for process communication, i.e. IPC.
 - Memory management: The operating system is responsible for the following activities in connection with memory management:
 - Keeping track of which parts of memory are currently being used and which process is using them.
 - Deciding which processes (or parts or processes) and data to move into and out of memory.
 - Allocating and deallocating memory space as needed
 - **File management:** The operating system is responsible for the following activities in connection with File management:
 - Creating and deleting files
 - Creating and deleting directories to organize files
 - Supporting primitives for manipulating files and directories
 - Mapping files onto mass storage
 - Backing up files on stable (nonvolatile) storage media
 - Mass Storage Management: The operating system is responsible for the following activities in connection with secondary storage management:
 - Mounting and unmounting
 - Free-space management
 - Storage allocation
 - Disk scheduling
 - Partitioning
 - Protection
 - Device management: The operating system is responsible for the following activities in connection with device management:
 - Managing and controlling I/O devices such as printers, scanners, and network cards
 - Communicating with devices using device drivers

- Providing a uniform interface between hardware devices and user-level software.
- Buffering and caching of data during device operations
- Handling device scheduling and access control
- The OS manages communication between the computer and its peripheral devices, such as printers, scanners, and network cards.
- I/O Management: The operating system is responsible for the following activities in connection with I/O management:
 - Providing standard input/output interfaces to applications
 - Handling I/O interrupts and errors effectively
 - Supporting spooling for slow I/O devices like printers
 - Ensuring efficient and secure data transfer between memory and devices
- Protection and security: The operating system is responsible for the following activities in connection with protection and security:
 - Controlling access to system resources by users and processes
 - Providing user authentication mechanisms
 - Ensuring isolation between processes and data
 - Detecting and responding to unauthorized access or malware
 - Maintaining system integrity and data confidentiality through security policies.

Services of Operating System

Services from the user's point of view.

User Interface

- All operating systems have either command-line interface, Graphical User Interface, touch screen interface, or a combination of these.
- The command-line interface (CLI), which uses text commands that are entered by the user.
- The graphical user interface (GUI) uses windows, menus, a mouse as a pointing device, and a keyboard to enter text.
- Touch-screen interfaces, used in mobile systems like phones and tablets, allow users to slide their fingers or tap on-screen buttons to make selections.

Program execution

- o The system must be able to load a program into memory and run it.
- The program must be able to end its execution, either normally or abnormally (if an error occurs).

I/O operations

- For efficiency and protection, users usually cannot control I/O devices directly. The Operating system provides I/O services.
- A running program may need to perform input/output operations, such as reading from a file or writing to a display or network. Some devices require special functions, like reading from a network interface or writing to the file system.

File-System manipulation

- Operating systems provide file system services such as reading, writing, creating, deleting, updating, searching, and listing files and directories.
- Some systems also support permissions management to allow or restrict access based on file ownership.
- o Many operating systems support multiple file systems.

• Communications

- An operating system allows for inter-process communication, which can occur between processes on the same computer or across different computers.
- This is typically done through shared memory or message passing.

• Error detection

- o The operating system provides error detection and correction features.
- o These errors may be related to the CPU, memory, or I/O devices.

Services from the system point of view

• Resource Allocation

- When multiple processes run simultaneously, the operating system must allocate resources to them efficiently.
- o Resources may include CPU time, memory, file storage, or I/O devices.
- Special routines (like CPU scheduling) help determine how to best assign
 CPU time based on factors like CPU speed and number of cores.
- Peripheral devices like printers or USB drives are also managed.

Logging

 The operating system maintains resource usage logs. These logs are useful to system administrators when reconfiguring the system or analyzing system performance.

Protection and security

- The operating system provides both protection and security services.
- Protection ensures that authorized users and processes can only access resources they are permitted to
- Security prevents unauthorized users from accessing the system by requiring authentication before granting access.

Reference:

Operating System Concepts: Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Ninth Edition, Wiley India.