decision

Zhang Songxin Xie Zejian

Contents

L	Introduction to Decision Theory	l
	1.1 Ordinal Utility	l
	1.2 Linear Utility	

1 Introduction to Decision Theory

Definition 1.1. A weak preference over A is a complete and transitive binary relation

Definition 1.2 (Decision Problem). A decision problem is a pair (A, \succeq) where A is a set and \succeq is a weak preference over A.

Let (X, \succeq) be a decision problem, for each pair $a, b \in A$:

- Strict preference \succ is defined as $a \succ b$ iff $b \not\gtrsim a$.
- Indifference \sim is defined as $a \sim b$ iff $a \succeq b$ and $b \succeq a$.

Lemma 1.1. Let (X, \succeq) be a decision problem, then

- 1. The strict preference is asymmetric and transitive.
- 2. The indifference is an equivalence relation which is reflexive, symmetric and transitive.

That implies for each $a, b \in A$, either $a \succ b$, $b \succ a$ or $a \sim b$.

For each decision problem (A, \succeq) it's equivalent to another one with antisymmetric weak preference by taking $(A/\sim, \succeq_a)$.

1.1 Ordinal Utility

Definition 1.3 (Utility Function). Let (X, \succeq) be a decision problem, a utility function function representing \succeq is a function: $u: A \to \mathbb{R}$ s.t. for each $a, b \in A$, $a \succeq b \iff u(a) \geq u(b)$.

Theorem 1.1. Let A be a countable set and (A, \succeq) is a decision problem. Then, there is a utility function u representing \succeq .

Proof. Let $A = \{a_1, a_2, \ldots\}$, then for each $i, j \in \mathbb{N}$:

$$h_{ij} = \begin{cases} 1 & a_i, a_j \in A \text{ and } a_i \succ a_j \\ 0 & otherwise \end{cases}$$

then $u(a_i) = \sum_{i=1}^{\infty} \frac{1}{2^j} h_{ij}$ and u represents \succeq .

Definition 1.4 (Order dense and gap). Let (X, \succeq) be a decision problem. A set $B \subset A$ is order **dense** in A if for each $a_1, a_2 \in A$ with $a_2 \succ a_1$, there is $b \in B$ s.t. $a_2 \succeq b \succeq a_1$.

And (a_1, a_2) is a **gap** if for each $b \in A$, either $b \succsim a_2$ or $a_1 \succsim b$, such a_1, a_2 are **gap extremes**. Let A^* be the set of gap extremes.

Theorem 1.2. Let (A, \succeq) be a decision problem where \succeq is antisymmetric. Then, \succeq can be represented by a utility function iff there is a countable set $B \subset A$ is order dense in A.

Proof. Let $B \subset A$ is a order dense subset in A. We say a is the first element in A if there is not $\overline{a} \in A$, $\overline{a} \neq a$ s.t. $\overline{a} \succeq a$. Last element is defined similarly.

Remark. The equivalence also hold when \succeq is not antisymmetric as there exist a utility function u' for $(A/\sim,\succeq_a)$ and we may define $u=u'\circ I$.

Remark. We may replace u by $f \circ u$ where $f : \mathbb{R} \to \mathbb{R}$ is strictly increasing.

1.2 Linear Utility

Definition 1.5. A convex decision problem is a decision problem (X, \succeq) where X is convex in \mathbb{R}^n .

Let (X, \succeq) be a convex decision problem. A utility function \overline{u} representing \succeq is **linear** if

$$\forall t \in [0, 1], \overline{u}(tx + (1 - t)y) = t\overline{u}(x) + (1 - t)\overline{u}(y)$$

Remark. Ordinal utility only reveals the relative order of each pair, but linear utility also reveals how different they are.

Definition 1.6. Let (X, \succeq) be a convex decision problem. We say that \succeq is

- independent if for each triple $x, y, z \in X$ and $t \in (0, 1], x \succeq y$ iff $tx + (1 t)z \succeq ty + (1 t)z$.
- continuous if for each triple $x \succ y \succ z$, there exist $t \in (0,1)$ with $y \sim tx + (1-t)z$.

Suppose \succeq is linear, then it's continuous and independent clearly, for the converse:

Lemma 1.2. Let (X, \succeq) be a convex decision problem and \succeq is independent. For $y \succ x$ and $s, t \in [0, 1]$ where s > t, then

$$sy + (1 - s)x > ty + (1 - t)x$$

Proof. By the independence of \succeq , we have

$$\frac{s-t}{1-t}y + \frac{1-s}{1-t}x \succ \frac{s-t}{1-t}x + \frac{1-s}{1-t}x = x$$

and note

$$sy + (1-s)x = ty + (1-t)(\frac{s-t}{1-t}x + \frac{1-s}{1-t}x) > ty + (1-t)x$$

That implies if \succeq is continuous and independent, the "t" in the definition is unique. Then we are ready for the main results:

Theorem 1.3. Let (X, \succeq) be a convex decision problem then \succeq is independent and continuous iff there is a linear utility function \overline{u} representing \succeq . And it's unique up to positive affine transformations.

Proof. For $x_2 \succ x_1$, let $[x_1, x_2] := \{x \in X : x_2 \succ x \succ x_1\}$ and define $u : [x_1, x_2] \to \mathbb{R}$ by:

$$u(x) := \begin{cases} 0 & x \sim x_1 \\ 1 & x \sim x_2 \end{cases}$$