Lieb-Schultz-Mattis theorem and its variations for quantum spin chains Hal Tasaki

subject: mathematical physics of quantum spin systems prerequisite: basics of quantum spins contents: original Lieb-Schultz-Mattis (LSM) theorem

time-reversal of a spin and the index for edges states proof of LSM type theorems based on the index

211-rotations of a spin

single spin $\hat{\Xi} = (\hat{S}^x, \hat{S}^y, \hat{S}^z), \quad [\hat{S}^x, \hat{S}^y] = i \hat{S}^z \text{ etc.}$

$$\frac{2}{5^2} = S(S+1), S=\frac{1}{2}, \frac{3}{2}, \frac{3}{2}$$
exp[-i0 Sa] 0-votation about the α -axis
$$\alpha = x_1 x_2 x_3 x_4 x_5$$

$$\theta = 2\pi$$

$$\int \int \int S = 1,2,\dots$$

 $0 = 2\pi$ $exp[-i2\pi S^{2}] = \begin{cases} 1 & S = 1,2,...\\ -1 & S = \frac{1}{2},\frac{3}{2},... \end{cases}$

Lieb-Schultz-Mattis Type theorem a no-go theorem which states that certain quantum many-body systems cannot have a unique ground state with a nonzero energy gap symmetry -> low energy properties quantum spin chains

Part I the original Lieb-Schultz-Mattis theorem

Affleck, Lieb 1986

antiferromagnetic Heisenberg chain

$$\hat{J}_{j} = \sum_{j=1}^{n} \hat{S}_{j} \cdot \hat{S}_{j+1}$$

$$\hat{S}_{j} = (\hat{S}_{j}^{*}, \hat{S}_{j}^{*}, \hat{S}_{j}^{*})$$

$$\hat{S}_{j}^{2} = S(S+1), S=\frac{1}{2}, 1, \frac{3}{2}, \dots$$
Eqs. 9.9. energy

there exists an energy eigenvalue E such that

for any 1<1

$$E_{GS} \leq E \leq E_{GS} + C$$

 $C = 8\pi^2 S^2$

(Marshall 1955, Lieb, Mattis 1962) (1) variational estimate , u(1) invariance uniqueness + rotation invariance of H

$$\Rightarrow \exp[-i\sum_{j=1}^{L} O \hat{S}_{j}^{2}] [GS] = [GS]$$

$$|u_{0}| = |u_{0}| = |u_{0}$$

gradual non-uniform rotation (twist) by

$$\widehat{U}_{\ell} = \exp\left[-i\sum_{j=1}^{\ell} \theta_{j} \widehat{S}_{j}^{2}\right] 2\pi$$

$$\widehat{U}_{j} = 2\pi \hat{J} = 10 \hat{J}$$

twist operator
$$\hat{U}_{e} = \exp[-i\sum_{j=1}^{n}\Delta\theta_{j}\hat{S}_{j}^{2}]$$

variational state $|\hat{\Psi}_{e}\rangle = \hat{V}_{e}|\hat{G}_{S}\rangle$
 $|\hat{G}_{e}\rangle = |\hat{G}_{e}\rangle + |\hat{G}_{e}\rangle = |\hat{G}_{e}\rangle + |\hat{G}_{e}\rangle = |\hat{G}_{e}\rangle + |\hat{$

(2) orthogonality l: even unitary
$$\hat{R}$$
 s.t. $\hat{R}^{\dagger} \hat{S}_{0}^{\alpha} \hat{R} = \begin{cases} \hat{S}_{0-j}^{\alpha} & \alpha = x \\ -\hat{S}_{0-j}^{\alpha} & \alpha = x \end{cases}$ unitary \hat{R} s.t. $\hat{R}^{\dagger} \hat{S}_{0}^{\alpha} \hat{R} = \begin{cases} -\hat{S}_{0-j}^{\alpha} & \alpha = x \\ -\hat{S}_{0-j}^{\alpha} & \alpha = x \end{cases}$ $\hat{R}^{\dagger} \hat{R} = \hat{H}$, $\hat{R} = \hat{H}$,

 $= -(GSI V_0(GS) = 0$

7

Then there is an energy eigenstate $(\tilde{\mathcal{F}}_e)$ with energy eigenvalue E_e st. $E_0 - E_{qs} < 1/8$

remarks

THEOREM if $S = \frac{1}{2}, \frac{3}{2}, \dots$ an energy eigenvalue E st. $0 < E - E_{GS} < \frac{C}{L}$ for any l < L

in the LT on limit there are two possibilities:

(i) unique g.s. with gapless excitations the case.

(ii) there are mulitiple g.s.

De no information if S=1,2,-... in fact the model has a unique g.s. with a gap (

9

Part II new LSM-type theorem

LSM theorem and early extensions

Lieb, Schultz, Mattis 1961, Affleck, Lieb 1986 Oshikawa, Yamanaka, Affleck 1997

Oshikawa 2000, Hasting 2000, Nachtergaele, Sims 2007

U(1) invariance is essential, recent extensions

Chen, Gu, Wen 2011, Watanabe, Po, Vishwanath, Zaletel 2013
similar no-go theorems for model with
only discrete symmetry
closely related to "topological"
condensed matter physics

THEOREM take a quantum spin chain with $S=\frac{3}{2}$, and a short-ranged translation invariant Hamiltonian that is invariant under time-reversal $\hat{S}^{\alpha}_{j} \rightarrow -\hat{S}^{\alpha}_{j} \rightarrow \hat{S}^{\alpha}_{j} \rightarrow \hat{S}^{\alpha}_{$

example $f = \sum_{i} \{J_{x} \hat{S}_{i}^{x} \hat{S}_{j+1}^{x} + J_{y} \hat{S}_{i}^{y} \hat{S}_{j+1}^{y} + J_{z} \hat{S}_{j}^{z} \hat{S}_{j+1}^{z} \}$ Chen, Gu, Wen 2011 Watanabe, Po, Vishwanath, Zaletel 2013 proof for MPS Ogata, Tasaki 2019 full theorem Ogata, Tachikawa, Tasaki 2020 new general Matsui 2001 essential argument proof 12

strategy of our proof

Y. Ogata, Y. Tachikawa, H. lasaki General Lieb-Schultz-Mattis type theorems for quantum spin chains arXiv: 2004:06458

arXiv: 2004:06458

arXiv: 2004:06458

Dexamine a necessary condition for the existence of a unique gapped g.s. make full use of the index for "edge state" developed in the study of symmetry protected topological phase

Time-reveral for a single spin $\hat{S}=(\hat{S}^x,\hat{S}^y,\hat{S}^z)$ To time-reveral map Γ (antilnear *-automorphism) $\Gamma(\hat{S}^a)=\hat{S}^a$ (d=x,y,z)

$$\Gamma(\hat{S}^{\alpha}) = -\hat{S}^{\alpha} \quad (d = x, y, z)$$

$$\Gamma(\hat{A}\hat{B}) = \Gamma(\hat{A}) \Gamma(\hat{B}), \quad \Gamma(\hat{A}^{\dagger}) = \Gamma(\hat{A})^{\dagger}$$

$$\Gamma(a\hat{A} + \beta\hat{B}) = a^{*} \Gamma(\hat{A}) + \beta^{*} \Gamma(\hat{B})$$
why antilinear?
$$\hat{S}^{*} \hat{S}^{*} - \hat{S}^{*} \hat{S}^{*} = i \hat{S}^{2}$$

 $Sx\hat{S}Y - \hat{S}Y\hat{S}X = iS^{2}$ $\int \int \hat{S}X\hat{S}Y - \hat{S}Y\hat{S}X = -i \cdot (-S^{2})$

Time-reveral antiuritary operator
$$\widehat{\Theta} \rightarrow \Gamma(\widehat{A}) = \widehat{\widehat{\Theta}}^{\dagger} \widehat{A}\widehat{\widehat{\Theta}}$$

$$\widehat{\Theta} = e^{-i\pi \widehat{S}^{\gamma}} \widehat{K} = \widehat{K} e^{-i\pi \widehat{S}^{\gamma}} \widehat{S}^{\gamma} = \widehat{S}^{\gamma} =$$

standard basis st

 $\hat{\Theta}^{2} = \hat{\mathcal{C}}^{2} \left(e^{-i\pi \hat{S}^{2}} \right)^{2} = e^{-i2\pi \hat{S}^{2}} = \hat{\mathcal{I}}^{2} \hat{\mathcal{I}}^{2} = \hat{\mathcal{S}}^{2} \hat{\mathcal{I}}^{2} = \hat{\mathcal{I}}^{2} \hat{\mathcal{I}}^{2} \hat{\mathcal{I}}^{2} = \hat{\mathcal{I}}^{2} \hat{\mathcal{I}}^{2$

 $H^{2} = K Q = -\frac{1}{1} S = \frac{1}{2} \frac{3}{2} ...$ $Index I = \{0, 1\} = H^{2}(\mathbb{Z}_{2}, V(I)_{p}) \xrightarrow{\text{represent the projection of } I_{1} = \begin{cases} 0 & S = 1, 2, ... \\ 1 & S = \frac{1}{2}, \frac{3}{2} ... \end{cases} I_{1} = \begin{cases} 1 & \text{If } I_{2} \text{ if } I_{3} \text{ if } I_{4} \text{ if } I_{4} \text{ if } I_{5} \text{ if }$

remark: Kramers degeneracy

if $S = \frac{1}{2}, \frac{3}{2}$,

 $\widehat{H}(\Psi) = E(\Psi)$ implies $\widehat{H}(\Psi) = \widehat{\Theta}\widehat{H}(\Psi) = \widehat{\Theta}\widehat{H}(\Psi) = \widehat{\Theta}\widehat{H}(\Psi)$

any eigenvalue must be degenerate

no unique g.s.
LSM-like statement for a single spin

indices for edge states: an example winfinite S= \(\) chain dimenstate \otimes $\frac{1}{52}\{11\}-11\}_{1+1}-11\}_{1}$ 5) time-reversally invariant (j: even invariant $|\mathcal{A}| = 0$ j: odd transforms as (=1) a 5=42

indices for edge states: examples

In infinite S=1 chain zero-state (\$10);

IA infinte S=1 chain AKLT state reffective S= 1/2
effective S= 1/2
edge spin

indices for edge states: general results a general short-ranged time-reversally invariant Hamiltonian Dunique ground state accompanied by a nonzero gap - well-defined index index for the spin at j · essential identity 1+1 $\mathcal{J}_{i} = \mathcal{I}_{i} + \mathcal{I}_{i+1}$

remarks about the index

indices for MPS (matrix product states)

Pérez-Garcia, Wolf, Sanz, Verstraëte, Cirac 2008 Pollmann, Turner, Berg, Oshikawa 2010

is indices for general unique gapped g.s. with symmetry

based on a series of highly nentrivial mathematical works

Matsui 2001, 2013, Hastings 2007 Ogata 2018 and more

remarks about the index

indices for MLPS (matrix product states)

Pérez-Garcia, Wolf, Sanz, Verstraete, Cirac 2008 Pollmann, Turner, Berg, Oshikawa 2010

indices for general unique gapped g.s. with symmetry

based on a series of highly nentrivial mathematical works

Matsui 2001, 2013, Hastings 2007 Ogata 2018 and more

split state GNS construction type-I factor projective repri

C*-algebra

proof of the LSM-type theorem assume that there is a time-reversally invariant unique gapped g.s. 0 0 0 Ij - (1)+1 Shi = Ij + With Dassume translation invariance $J_j = J_{j+1} \Rightarrow J_j = 0 \Rightarrow S = 1, 2, 3, \dots$ □ S==1,3,...=> time rev. & transl. invariant unique gapped g.s. is impossible of

2

THEOREM take a quantum spin chain with $S=\frac{1}{2}$, and a short-ranged translation invariant Hamiltonian that is invariant under time-reversal $\hat{S}_{j}^{\alpha} \rightarrow -\hat{S}_{j}^{\alpha}$ it can never be the case that the infinite volume g.s. is unique and accompanied by a nonzero gap.

reflection invariant chain
invariant under 1 time-reversal
-lo lo l'reflection j -- j

$$-\frac{1}{2} - \frac{1}{2}$$

 $Clo = I_0 + cl_1 \Rightarrow I_0 = clo - cl_1 = 2clo \Rightarrow I_0 = 0$ spin at the origin is So=1,2,...

THEOREM take a quantum spin chain with site-dependent spin and a short-range Hamiltonian that is invariant under reflection $\dot{y} \rightarrow -\dot{y}$ and time-reversal if the spin at the origin satisfies $S_0 = \frac{1}{2}, \frac{3}{2}, \cdots$ then it can never be the case that the infinite volume g.s. is unique and accompanied by a nonzero gap.

$$5=\frac{3}{2}$$
 $5=1$ $5=\frac{1}{2}$ $5=1$ Fuji 2014

Po, Watanabe, Jian, Zaletel 2017

Summary + discussion on the original LSM theorem makes use of the gradual twist based on the U(1) symmetry new LSM-type theorems follow from the properties of indices for edge states" 10 the results extend to general symmetry group G. then 20,19 is replaced by the

degree-2 group cohomology H2(G, UII)p)

25

advertisement

for background, related topic, and more, see Hal Tasaki

Hal Tasaki

"Physics and Mathematics
of Quantum Many-Body

Systems"

Springer June 2020

with four imginative illustrations by Mari Okazaki

