UT Austin CSE 386D

Some Notes and Theorems, Part 2

Jonathan Zhang

- 1 Preliminaries
- 2 Normed Linear Spaces and Banach Spaces
- 3 Hilbert Spaces
- 4 Spectral Theory and Compact Operators
- 5 Distributions

Theorem 5.1. Here, we use the following notation: $(M^{\alpha}f)(x) = x^{\alpha}f(x)$. If $T \in \mathcal{S}'$ and $f \in \mathcal{S}$, then T * f is smooth and polynomially bounded.

CSE 386D UT Austin

6 The Fourier Transform

We motivate our discission on the Fourier Transform by observing that it converts the task of solving a PDE into the task of solving an ODE, and that we can represent functions in terms of harmonic functions.

The Fourier Transform can be defined naturally for functions in $L^1(\mathbb{R}^d)$, where we will start. Then, we can extend it to functions in $L^2(\mathbb{R}^d)$, and we shall see that it maps L^2 onto itself. Then, we will discuss the Fourier transform in context of distributions.

6.1 $L^1(\mathbb{R}^d)$ Theory

For (a point) $\xi \in \mathbb{R}^d$, the function

$$\varphi_{\xi}(x) = e^{-ix\cdot\xi} = \cos(x\cdot\xi) - i\sin(x\cdot\xi)$$

for $x \in \mathbb{R}^d$ defines a wave in the direction ξ . Moreover, the period of φ_{ξ} in the j-th direction is $2\pi/\xi_j$. Consider the simplest nontrivial example, say when we are in \mathbb{R}^2 and we let $\xi=(1,1)$. Then, the function $\varphi_{\xi}(x)=e^{-i(x+y)}=\cos{(x+y)}-i\sin{(x+y)}$ defines a wave that propagates in the direction (1,1). Look at the real part by itself, for example. It is clear that the period in the x direction is 2π , indeed as it should be. The same can be easily seen with the imaginary part. These harmonic functions have certain nice properties:

Proposition 6.1. 1. $|\varphi_{\xi}| = 1$, and $\overline{\varphi_{\xi}} = \varphi_{-\xi}$ for every $\xi \in \mathbb{R}^d$,

- 2. $\varphi_{\xi}(x+y) = \varphi_{\xi}(x) \varphi_{\xi}(y)$ for every $x, y, \xi \in \mathbb{R}^d$,
- 3. $-\nabla^2 \varphi_{\xi} = |\xi|^2 \varphi_{\xi}$ for every $\xi \in \mathbb{R}^d$.

Proof. 1. We clearly have

$$|\varphi_{\xi}|^2 = \cos^2(x \cdot \xi) + \sin^2(x \cdot \xi) = 1,$$

and

6.2 $\mathcal{S}\left(\mathbb{R}^d\right)$ Theory

- 6.3 $L^2(\mathbb{R}^d)$ Theory
- 6.4 S' Theory
- 6.5 Applications

UT Austin CSE 386D

7 Sobolev Spaces

- 7.1 Definitions, Basic Properties
- 7.2 Extensions from Ω to \mathbb{R}^d
- 7.3 Sobolev Imbedding Theorem
- 7.4 Compactness
- 7.5 The Spaces H^s
- 7.6 Trace Theorem
- 7.7 The Spaces $W^{s,p}\left(\Omega\right)$

CSE 386D UT Austin

8 Boundary Value Problems

- 8.1 Second Order Elliptic PDEs
- 8.2 A Variational Problem and Minimization of Energy
- 8.3 Closed Range Theorem, Operators Bounded Below
- 8.4 The Lax-Milgram Theorem
- 8.5 Applications to Second Order Elliptic Equations
- 8.6 Galerkin Approximations
- 8.7 Green's Functions

UT Austin CSE 386D

9 Differential Calculus in Banach Spaces

CSE 386D UT Austin

10 Calculus of Variations