

ECEN 404 Final Presentation Team 1: Radiation Resilient Logic Circuit Study with WBG Devices

Nia Baireddy, Kaylee Choate, Nomar Lebron Sponsor: Sandia National Laboratories TA: Eric Robles

Problem Overview

- Radiation effects on circuits are detrimental and must be mitigated for robust applications in space, military, and nuclear industries.
- Use radiation hardening by design techniques to modify various logic circuits for reliable operation in radiation environments.

Integrated Project Diagram

Engineering Design Choices

- Radiation resilient wide bandgap material GaN
 - Higher intrinsic radiation resilience
- Hardened components
 - Low resistance wirewound resistors
 - Multi-layer ceramic capacitors
- Alternative circuit layout
 - NMOS only
 - Trace width
 - Trace spacing

Kaylee Choate

- Objective: Design a rad-hard ring oscillator to produce a clock signal with a frequency of 100kHz in the presence of radiation
 - Design Choices:
 - 7 stages
 - Chose capacitor values to fine-tune frequency
 - Chose resistor values to allow signal inversion
 - Added buffer to stabilize output waveform
- Challenge: 3.8V spike on output signal
- Solution: Added a RCD snubber to reduce inductance and lessen the spike

Kaylee Choate

Engineering Design AccomplishmentsKaylee Choate

r	Normal	Delta - Clea
Ī	Channel	Position
	C1 ~	4.0229 V V
)	C1 ~	4.7393 V ×

Nia Baireddy

- Objective: Design a rad-hard SRAM cell that holds latched value during radiation event
 - Design Choices:
 - 4 cells in 1 row
 - Calculated resistor values for inverters
 - Calculated capacitor values for sense amplifiers
 - Modified write circuits (added resistors and capacitors)
- Challenge: Floating FET drain gave logic low value of 1.6V
- Solution: Remove write circuits and sense amplifiers, only use one access transistor for noninverting bitline

Nia Baireddy

Nomar Lebron

- Objective: Design a rad-hard 4:1 Multiplexer to select between the four cells of the 1x4 SRAM cell array in the presence of radiation
 - Design Choices:
 - Calculated resistor values
 - LEDs for User Interface
 - 5V to turn on transistors
 - Decoupling capacitor
- Challenge: Voltage spike when low cell value selected
- Solution: Added decoupling capacitor for better data stability

Nomar Lebron

Nomar Lebron

MUX Input	Input Voltage	Selection Bit 0	Selection Bit 1	Output Voltage
I1	5 V	0	0	3.505 V
12	0 V	1	0	2.968 V
13	0 V	0	1	1.731 V
14	0 V	1	1	1.304 V

Table 2: Output Voltages when 5VDC Applied to Input 1

	MUX Input	Input Voltage	Selection Bit 0	Selection Bit 1	Output Voltage
	I1	0 V	0	0	2.011 V
	12	5 V	1	0	3.528 V
	13	0 V	0	1	1.723 V
Ī	14	0 V	1	1	1.305 V

Table 3: Output Voltages when 5VDC Applied to Input 2

MUX Input	Input Voltage	Selection Bit 0	Selection Bit 1	Output Voltage
I1	I1 0 V		0	2.004 V
12	0 V	1	0	2.971 V
13	5 V	0	1	3.602 V
14	0 V	1	1	2.352 V

Table 4: Output Voltages when 5VDC Applied to Input 3

MUX Input	Input Voltage	Selection Bit 0	Selection Bit 1	Output Voltage
I1	0 V	0	0	2.012 V
12	0 V	1	0	2.966 V
13	0 V	0	1	1.726 V
14	5 V	1	1	3.581 V

Table 5: Output Voltages when 5VDC Applied to Input 4

Integrated System Results

Connected individual 7-stage ring oscillator to integrated 1x4 SRAM with positive results

Fully integrated three subsystems onto one PCB

Nominal Operation Validation

	Ring Oscillator Frequency	SRAM High Output	4:1 MUX Output	SRAM Low Output	4:1 MUX Output
Cell 1	52.6 kHz	1.626	1.633	1.016	1.022
Cell 2		2.017	2.018	1.047	1.052
Cell 3		1.580	1.585	0.999	1.009
Cell 4		1.642	1.691	1.098	1.068

Conclusions

- Excessive circuit elements and large PCBs created a lot of noise
- Removed redundant circuit elements
 - Significant reduction of transistor counts
- Current Status
 - Completed nominal operation validation
 - Need to troubleshoot potential floating between oscillator and SRAM array
 - Began radiation operation validation