(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-125694 (P2000-125694A)

(43)公開日 平成12年5月9日(2000.5.9)

(51) Int.Cl.7	識別記号	FΙ		テーマコード(参考)
A01K 61/00	3 1 7	A01K 61/00	317	2 B 0 0 3
A 0 1 G 33/00		A 0 1 G 33/00		2B026

審査請求 未請求 請求項の数4 書面 (全 5 頁)

(21)出願番号 特願平10-346510

(22)出願日 平成10年10月28日(1998, 10, 28) (71)出願人 594148069

田中 守正

京都府舞鶴市字森308番地3号

(72)発明者 田中 守正

京都府舞鶴市字森308番地3号

Fターム(参考) 2B003 AA03 CC04 DD01 DD03 DD04

EE04

2B026 AA05 AB06 AC01

(54) 【発明の名称】 流し網式藻類植栽網

(57)【要約】

【目的】藻類を海洋(湖沼)に於て大規模、且つ自動化 省力化に対応出来る流し網式植栽網を敷設し、植栽、収 穫、製品化することによって安価、多量の製品を提供す ることが出来る。

【構成】採算可能な深海(平均深度約2000m)から 1個のアンカー、1本のロープ、1ケの自在環を経て、 1ブロック植栽網巾に無理なく連結する傾斜ロープで結 れた流し網式植栽網(長さ3000m)が、複数のブロ ックを横に連結した構造となっており、藻を植栽して最 適刈り取り期に来年度用胞子種親株を残して(トラ刈 り) 収穫するものである。

【特許請求の範囲】

【請求項1】深海から、1ケのアンカー(1)、メイン ロープ(2)、自在環(3)を経て整列補助用傾斜ロー プ(5)とこれに連結する流し網式藻類殖栽網(6)

1

【請求項2】発泡樹脂充填型ブイ(図7)

【請求項3】植栽綱整列用専用翼(図8)

【請求項4】廃棄物を積み込み、コンクリート等遮蔽物 質の多用性によって低レベル有害物質まで利用可能な産 業廃棄物等活用アンカー

【発明の詳細な説明】

[0001]

【発明の属する分野】藻類は食料、飼育、工業用品、医 薬品、藻類エネルギー等、その利用は多岐にわたりその 量も多い、これを海洋に植栽することによって更に量の 拡大と価格の低下が可能となり、リサイクル資源の有効 利用が促進される。

[0002]

【従来の技術】現状の藻類植栽はその規模も小さく、且 つ内海および沿岸が主流であって、そのほとんどは固定 式である。(図3,4,5) そのため海藻エネルギー等 に供用可能な日本海周辺、大陸棚水域の藻類植栽海域は 1%以下と報告されている。昭和55年バイオマス生産 利用に関するフイジビリテイ調査240-255頁。

【0003】

【発明が解決しようとする課題】本発明は従来の固定式 植栽法による大陸棚水域のみの植栽から海洋を含めた。 緩やかな海流域で藻類の大規模植栽を行うものである。

[0004]

【課題を解決するための手段】主として深海を含む海底 から大型アンカー、メインロープに連結し最適深さに調 節された流し網式植栽網に藻類を植栽する。藻類の生殖 は藻類から放出する胞子によるため、緩やかな海流によ って再生産が可能となり、且つ海流に順応する流し網式 植栽網は海流の変化や波浪等にも最小限の抵抗ですむと 共に、現在の網や網の素材はその重さが水の重さに近似 するものを自由に選べるためその構築がスリム化され る。

[0005]

【作用】藻類の多くは1年生であり、こんぶ,あらめ等 は2~3年生。唯一ジャイアントケルプ系は10年程度 40 の寿命があるが、いずれも植栽網敷設時、植栽網に胞子 を植え付け、最大成長時を選んで刈り取り、再生用に何*

*%かを残して翌年以降はこれを繰り返す。

[0006]

(2)

【発明の実施の形態】発明の実施の形態を図によって説 明する。図1は植栽網1ピースの鳥瞰図であり、主とし て深海海底に固定されたアンカー1からメインロープ2 を経て自在環3が水面下約20~30mにある、その上 の海面にはメインロープ2に釣りあうブイ4が取り付け られる。自在環3から植栽網6の間に植栽網が海流に整

列し易いように傾斜ロープ5が、緩衝として取付られ 10 る。植栽網6の底部には浮力調整具7が必要数取付てあ り、海面上にあるブイ9の浮力と釣合っている、また植 裁網の両側及び必要箇所には整列フィン8が取付られ て、海流によつて常に両側へ拡張しようとする力が働 き、植栽網6は設定幅を保ちながら海流と平行を保つ。 整列フィン8は飛行機の尾翼の役目をすると思えばよ い。尚、ブイは波浪等などによって小破や亀裂が生じて も浮力を失わないよう発泡スチロールが充填してあり、 2ケの試料によって4年間のテストを行った。1ケは重 りを付けて水中に。1ケはそのまま浮上させて3ケ月毎 に重りを取って浮上高さを測定したが、40mm厚さの 試料で全期間浮上のテストピースは36mm浮上。重り で沈下のテストピースは34mm浮上であった。図2は 植栽網の平面配列模式図である。刈り取るさい、来年度 増殖用として胞子用刈り残しを行う。

[0007]

【発明の効果】例示として海藻エネルギー用藻を日本海 に多産するホンダワラとし、これを刈り取り、洋上にて そのまま処理船(基幹船約40~50万t)でメタン発 酵を行い現状では液化メタンガスとして発電所その他へ 30 輸送しエネルギーとする。この場合日本海に多産するホ ンダワラの収量統計がないが、飯田湾と小湊の統計があ るのでこれを使用して計算すると

(A) 小湊、飯田湾の平均のホンダワラ収量(乾量)

4. $92 \text{ kg/m}^2 \cdots 1$

(B) 乾量1kg当たりのエネルギー

(c)発電1kw/hのエネルギー

2,450kca1 ········· 仕事常数

(D) 100万kwの1年間のフル発電力

 $100 \times 24 \times 365 \times 0.73 = 6,394,80$ O, OOOkw/年(実発電率)

(a) 100万kw発電に要する植栽面積

$$a = \frac{D}{A \times B} = \frac{6,394,800,000}{4.921 \times 4,500} = 707,501,188 \text{ m}^{2}$$

$$\frac{A \times B}{C} = \frac{4.921 \times 4,500}{2,450}$$

であるが実稼働の御坊、大阪南港の実績によれば約70 Okm²となり、高知県の面積で100万kw/年の電 力が賄い得、全世界で利用すればエネルギー問題が解決※50 できる。※1,※2…バイオマス生産利用に関するフィ

※すると共に公害除去装置を施すことなく、炭酸ガス30 %減、硫黄ガス100%減、重金属等100%減が達成

ジビリティ調査

【図面の簡単な説明】

- 【図1】流し網式藻類植栽網の1ピースの鳥瞰図
- 【図2】流し網式藻類植栽網の平面配列模式図
- 【図3】ワカメ延縄式養成施設とその配置例 岩手県

3

- 【図4】マコンブの促成養殖の本養成施設 函館市周
- 【図5】マコンブの養殖施設平面図
- 【図6】日本海約200海里,夏の海流図(舞鶴海洋気象台)
- 【図7】発泡スチロール充填型ブイの各種
- 【図8】海流によって植栽網を整列する専用翼の分類
- 【図9】産業廃棄物等活用アンカー

【符号の説明】

- 1 アンカー
- 2 メインロープ
- 3 自在環
- 4 ブイ
- 5 傾斜ロープ
- 6 植栽網
- 7 浮力調整具
- 8 整列フィン
- 9 ブイ
- 10胞子用刈り残し部
- 11ハイゼックスロープ

1 2 浮玉

- 13ブロックロープ
- 142tブロック
- 15横張りロープ
- 16中間ブイ
- 175tブロック
- 18コンクリートブロック(10t, 15t)
- 19魚釣ウキ様発泡樹脂充填ブイ
- 20発泡樹脂
- 10 21 外殻(金属、プラスチック、その他)
 - 22ロープ
 - 23球型樹脂充填ブイ
 - 24筒型樹脂充填ブイ
 - 25変形樹脂充填ブイ
 - 26いかだ型樹脂充填ブイ
 - 27ドラム缶型樹脂充填ブイ
 - 28普通の翼型
 - 29突起形状翼
 - 30過流を利用した翼
- 20 31コンクリート
 - 3 2型枠
 - 33産業廃棄物
 - V 海流の速さ
 - L 翼の浮力(押される力)
 - R 抵抗力

【図4】

【図2】

