COM2004/3004

Data Driven Computing

Non-parametric classifiers Part 2

Dr. Po Yang

The University of Sheffield po.yang@sheffield.ac.uk

Outline

Recap

Condensed Nearest Neighbour Classifier (The Hart Algorithm)

Confusion Matrices

Recap

Parametric: Non-Parametric:

Parametric:

• **Assumptions:** Specific assumptions about data distribution.

Non-Parametric:

• **Assumptions:** Few to no assumptions about data distribution.

Parametric:

- Assumptions: Specific assumptions about data distribution.
- Model Complexity: Fixed model complexity based on assumptions.

- **Assumptions:** Few to no assumptions about data distribution.
- Model Complexity: Flexible, complexity can grow with data.

Parametric:

- Assumptions: Specific assumptions about data distribution.
- Model Complexity: Fixed model complexity based on assumptions.
- **Training Data:** Parameters estimated from the data.

- **Assumptions:** Few to no assumptions about data distribution.
- **Model Complexity:** Flexible, complexity can grow with data.
- **Training Data:** Stores or summarizes training data.

Parametric:

- Assumptions: Specific assumptions about data distribution.
- Model Complexity: Fixed model complexity based on assumptions.
- **Training Data:** Parameters estimated from the data.
- Generalization: May not generalize well if assumptions are violated.

- Assumptions: Few to no assumptions about data distribution.
- Model Complexity: Flexible, complexity can grow with data.
- **Training Data:** Stores or summarizes training data.
- **Generalization:** Adapts to various data distributions.

Parametric:

- Assumptions: Specific assumptions about data distribution.
- Model Complexity: Fixed model complexity based on assumptions.
- **Training Data:** Parameters estimated from the data.
- Generalization: May not generalize well if assumptions are violated.
- **Overfitting:** Prone to overfitting when assumptions fail.

- Assumptions: Few to no assumptions about data distribution.
- Model Complexity: Flexible, complexity can grow with data.
- **Training Data:** Stores or summarizes training data.
- Generalization: Adapts to various data distributions.
- Overfitting: Less prone to overfitting due to flexibility.

Parametric:

- Assumptions: Specific assumptions about data distribution.
- Model Complexity: Fixed model complexity based on assumptions.
- **Training Data:** Parameters estimated from the data.
- Generalization: May not generalize well if assumptions are violated.
- **Overfitting:** Prone to overfitting when assumptions fail.
- Efficiency: Computationally efficient due to fixed model structure.

- Assumptions: Few to no assumptions about data distribution.
- **Model Complexity:** Flexible, complexity can grow with data.
- **Training Data:** Stores or summarizes training data.
- Generalization: Adapts to various data distributions.
- Overfitting: Less prone to overfitting due to flexibility.
- Efficiency: Can be computationally intensive, especially with large datasets.

Strengths:

• **Simplicity:** KNN is easy to understand and implement.

Strengths:

- **Simplicity:** KNN is easy to understand and implement.
- Non-Parametric: It works well with a variety of data distributions.

Strengths:

- **Simplicity:** KNN is easy to understand and implement.
- Non-Parametric: It works well with a variety of data distributions.
- Adaptability: Can capture complex decision boundaries.

Strengths:

- **Simplicity:** KNN is easy to understand and implement.
- Non-Parametric: It works well with a variety of data distributions.
- Adaptability: Can capture complex decision boundaries.
- No Training Period: Doesn't require a separate training phase.

Strengths:

- **Simplicity:** KNN is easy to understand and implement.
- Non-Parametric: It works well with a variety of data distributions.
- Adaptability: Can capture complex decision boundaries.
- No Training Period: Doesn't require a separate training phase.

Strengths:

- **Simplicity:** KNN is easy to understand and implement.
- Non-Parametric: It works well with a variety of data distributions.
- Adaptability: Can capture complex decision boundaries.
- No Training Period: Doesn't require a separate training phase.

Weaknesses:

• Computational Complexity: KNN can be computationally expensive.

Strengths:

- **Simplicity:** KNN is easy to understand and implement.
- Non-Parametric: It works well with a variety of data distributions.
- Adaptability: Can capture complex decision boundaries.
- No Training Period: Doesn't require a separate training phase.

- Computational Complexity: KNN can be computationally expensive.
- Memory Usage: High memory usage due to storing the entire dataset.

Strengths:

- **Simplicity:** KNN is easy to understand and implement.
- Non-Parametric: It works well with a variety of data distributions.
- Adaptability: Can capture complex decision boundaries.
- No Training Period: Doesn't require a separate training phase.

- Computational Complexity: KNN can be computationally expensive.
- Memory Usage: High memory usage due to storing the entire dataset.
- Sensitive to Outliers: Prone to influence from outliers.

Strengths:

- **Simplicity:** KNN is easy to understand and implement.
- Non-Parametric: It works well with a variety of data distributions.
- Adaptability: Can capture complex decision boundaries.
- No Training Period: Doesn't require a separate training phase.

- Computational Complexity: KNN can be computationally expensive.
- Memory Usage: High memory usage due to storing the entire dataset.
- Sensitive to Outliers: Prone to influence from outliers.
- **Determining Optimal 'K':** Choosing the right 'K' can be challenging.

Condensed Nearest Neighbour

Classifier (The Hart Algorithm)

Condensed nearest neighbour - Idea

The idea

• The *k*-nearest neighbour m can be very slow if the training database is large.

Condensed nearest neighbour - Idea

The idea

- The k-nearest neighbour m can be very slow if the training database is large.
- Many points will be 'redundant' i.e., having no influence on the decision boundary.

Condensed nearest neighbour - Idea

The idea

- The *k*-nearest neighbour m can be very slow if the training database is large.
- Many points will be 'redundant' i.e., having no influence on the decision boundary.
- If we can remove these points we can speed up classification (and reduce the classifier's memory footprint).

The Hart Algorithm for Data Reduction

Given an original training set X, remove a point $\mathbf{x_i}$ from X and add it to a CondensedSet U, then proceed iteratively,

- 1. For each element x_i in X
 - classify x_i using U as the training data.
 - ullet If $\mathbf{x_i}$ is misclassified, remove it from X and add it to U
- 2. If any $\mathbf{x_i}$ has been added to U then go back to step 1
- 3. Replace X with U.

Example: Hart Algorithm with Euclidean Distance

Let's consider a simple example to illustrate the Hart algorithm using Euclidean distance.

Original Dataset X:

$$\mathbf{x_1}: [1,2] - \mathsf{Class} \; \mathsf{A}$$

$$\mathbf{x_2}: \quad [3,4] - \mathsf{Class} \; \mathsf{B}$$

$$\mathbf{x_3}: \quad [2,1] - \mathsf{Class}\;\mathsf{A}$$

Using the Hart algorithm with Euclidean distance and K=1:

- 1. Start with $X = \{\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}\}$ and an empty CondensedSet $U = \{\}.$
- 2. Randomly select $\mathbf{x_1}$ and add it to $U = \{\mathbf{x_1}\}$.

Example: Hart Algorithm with Euclidean Distance (Cont.)

$$\mathsf{Data}\;\mathsf{Points}\;X = \{\mathbf{x_1},\mathbf{x_2},\mathbf{x_3}\}; \quad \text{[1, 2] - Class A;} \quad \text{[3, 4] - Class B;} \quad \text{[2, 1] - Class A}$$

Now
$$X = \{ \mathbf{x_2}, \mathbf{x_3} \}, U = \{ \mathbf{x_1} \}.$$

- 3. Iterate through the remaining data points $X = \{\mathbf{x_2}, \mathbf{x_3}\}$ and compute the Euclidean distance from each point in the original dataset to the nearest point in $U = \{\mathbf{x_1}\}$.
 - Euclidean distance between $\mathbf{x_2}$ and $\mathbf{x_1}$:

$$d(\mathbf{x_1}, \mathbf{x_2}) = \sqrt{(3-1)^2 + (4-2)^2} = \sqrt{8}.$$

Since $\mathbf{x_2}$ (Class B) is not correctly classified by U, it is added to $U = \{\mathbf{x_1}, \mathbf{x_2}\}$ and hence $X = \{\mathbf{x_3}\}.$

Example: Hart Algorithm with Euclidean Distance (Cont.)

Now
$$X = \{x_3\}, U = \{x_1, x_2\}.$$

- 4. Repeat step 3 for the remaining data points X:
 - Euclidean distance between $\mathbf{x_3}$ and $\mathbf{x_1},\mathbf{x_2}$:

$$d(\mathbf{x_1}, \mathbf{x_3}) = \sqrt{(2-1)^2 + (1-2)^2} = \sqrt{2}$$

$$d(\mathbf{x_2}, \mathbf{x_3}) = \sqrt{(3-2)^2 + (4-1)^2} = \sqrt{10}$$

Since $\mathbf{x_3}$ (Class A) is correctly classified by U, it is not added to $U = {\mathbf{x_1, x_2}}$ and hence $X = {}$.

Example: Hart Algorithm with Euclidean Distance (Cont.)

Data Points:
$$[1, 2]$$
 - Class A; $[3, 4]$ - Class B; $[2, 1]$ - Class A

Now
$$X = \{\}, U = \{x_1, x_2\}.$$

5. The U now contains the reduced dataset:

CondensedSet U:

$$\mathbf{x_1}: [1,2] - \mathsf{Class} \; \mathsf{A}$$

$$\mathbf{x_2}: \quad [3,4] - \mathsf{Class}\;\mathsf{B}$$

This condensed dataset retains the necessary information for classification while being smaller than the original dataset.

Definition

The Condensed Nearest Neighbour (CNN) classifier is a data reduction technique commonly used in combination with k-Nearest Neighbour (k-NN) classification. It aims to create a smaller, more efficient dataset while preserving essential information for classification.

Definition

The Condensed Nearest Neighbour (CNN) classifier is a data reduction technique commonly used in combination with k-Nearest Neighbour (k-NN) classification. It aims to create a smaller, more efficient dataset while preserving essential information for classification.

Key Features

 Data Reduction: CNN reduces the size of a dataset by selecting a subset of informative instances.

Definition

The Condensed Nearest Neighbour (CNN) classifier is a data reduction technique commonly used in combination with k-Nearest Neighbour (k-NN) classification. It aims to create a smaller, more efficient dataset while preserving essential information for classification.

Key Features

- Data Reduction: CNN reduces the size of a dataset by selecting a subset of informative instances.
- Classification Focus: Although it works with various classifiers, it's often used with k-NN for efficient classification.

Definition

The Condensed Nearest Neighbour (CNN) classifier is a data reduction technique commonly used in combination with k-Nearest Neighbour (k-NN) classification. It aims to create a smaller, more efficient dataset while preserving essential information for classification.

Key Features

- Data Reduction: CNN reduces the size of a dataset by selecting a subset of informative instances.
- Classification Focus: Although it works with various classifiers, it's often used with k-NN for efficient classification.
- Retaining Information: CNN retains instances that can be confidently classified using their own features.

Definition

The Condensed Nearest Neighbour (CNN) classifier is a data reduction technique commonly used in combination with k-Nearest Neighbour (k-NN) classification. It aims to create a smaller, more efficient dataset while preserving essential information for classification.

Key Features

- Data Reduction: CNN reduces the size of a dataset by selecting a subset of informative instances.
- Classification Focus: Although it works with various classifiers, it's often used with k-NN for efficient classification.
- Retaining Information: CNN retains instances that can be confidently classified using their own features.
- Iterative Process: It iterates through the dataset, selecting instances, and continues until no more instances can be confidently classified.

Condensed Nearest Neighbour Classifier (The Hart Algorithm)

Notes

Condensed Nearest Neighbour

Notes

- The Hart algorithm might be very slow, i.e. requiring a lot of passes through the data. $\mathcal{O}(N^3)$ But it is only run once, i.e., it is like a training stage cost.
- The Hart algorithm is not decision boundary consistent ...
- ... nor is it guaranteed to find a minimal set.
- Different results depending on order points are considered in.
- ullet Condensation removes redundancy so outlier data can become a problem; e.g., if using k-NN may no longer be able to use large k
- Many variants have been developed, e.g., Reduced NN, Edited NN, Modified CNN, Fast CNN, etc, etc, (eg., see: Angiulli, "Fast CNN", ICML 2005)

Condensed Nearest Neighbour Classifier (The Hart Algorithm)

Summary

Summary

- The standard nearest neighbour algorithm can be impractical for very large training datasets
- Large datasets can be condensed using the Hart algorithm
- The smaller dataset will have similar (but not identical) decision boundaries to the original.

Confusion Matrices

What is a Confusion Matrix?

A confusion matrix is a fundamental tool in classification tasks.

• It helps assess the performance of a classification model.

What is a Confusion Matrix?

A confusion matrix is a fundamental tool in classification tasks.

- It helps assess the performance of a classification model.
- It provides a clear picture of correct and incorrect predictions.

Why is it Called a "Confusion" Matrix?

The name "confusion matrix" arises because it helps us understand the confusion between actual and predicted classes.

 $\textbf{Figure}: \ \mathsf{Example} \ \mathsf{Confusion} \ \mathsf{Matrix}$

Basic Elements of a Confusion Matrix

A confusion matrix is typically a 2x2 table with four elements:

- True Positives (TP): Correctly predicted positive instances.
- True Negatives (TN): Correctly predicted negative instances.
- False Positives (FP): Incorrectly predicted positive instances (Type I error).
- False Negatives (FN): Incorrectly predicted negative instances (Type II error).

Toy Example: Disease Diagnosis

Let's consider a toy example.

	Actual Disease Status	
Predicted Disease Status	Disease (+)	Healthy (-)
Disease (+)	42 (TP)	8 (FP)
Healthy (-)	3 (FN)	47 (TN)

To interpret the confusion matrix in disease diagnosis:

- True Positives (TP): We correctly diagnosed 42 individuals with the disease.
- False Positives (FP): We incorrectly diagnosed 8 healthy individuals as having the disease.
- False Negatives (FN): We missed 3 cases of the disease and diagnosed them as healthy.
- True Negatives (TN): We correctly identified 47 healthy individuals.

Comparison of Confusion matrix

What is a good confusion matrix?

• The elements are mainly concentrated on the diagonal.

Figure : Good result

Figure: Terrible result

Confusion Matrices

Summary

Summary

Summary

- The confusion matrix is a convenient way to look at the classifiers performance.
- Correct responses appear along the diagonal
- Incorrect responses are off the diagonal.
- Note, it is often approximately symmetric because if a pair of classes are similar confusions happen in both directions.