T.D. 2 – Corrigé Les circuits combinatoires

Exercice 1

Simplifiez les expressions ci-dessous par la méthode algébrique.

•
$$S1 = A.B + A.(B + C) + B.(B + C)$$

$$S1 = A.B + A.B + A.C + B.B + B.C$$

$$S1 = A.B + A.C + B + B.C$$

$$S1 = A.B + A.C + B$$

$$S1 = B + A.C$$

• S2 = A.B +
$$\overline{A}$$
. \overline{B} + \overline{A} .B

$$S2 = A.B + \overline{A}.(\overline{B} + B)$$

$$S2 = A.B + \overline{A}.1$$

$$S2 = A.B + \overline{A}$$

$$S2 = \overline{A} + B$$

→ Théorème 1

→ Théorème 2

→ Théorème 1

 $\rightarrow B + B.C = B$

 $\rightarrow B + A.B = B$

(Théorème 1)

(Théorème 1)

• S3 =
$$(A + \overline{B}).(A + B) + C.(\overline{A} + B)$$

$$S3 = A.A + A.B + \overline{B}.A + \overline{B}.B + C.\overline{A} + C.B$$

$$S3 = A + A.B + \overline{B}.A + C.\overline{A} + C.B$$

$$S3 = A + C.\overline{A} + C.B$$

$$S3 = A + C + C.B$$

$$S3 = A + C$$

•
$$S4 = (A + C + D).(B + C + D)$$

$$S4 = A.B + A.C + A.D + C.B + C.C + C.D + D.B + D.C + D.D$$

$$S4 = A.B + A.C + A.D + C.B + C + C.D + D.B + D.C + D$$

$$S4 = A.B + A.D + C + D.B + D$$

$$S4 = A.B + C + D$$

• S5 =
$$(A.\overline{B} + A.B + A.C).(\overline{A}.\overline{B} + A.B + A.\overline{C})$$

$$S5 = A.(\overline{B} + B + C).(\overline{A}.\overline{B} + A.B + A.\overline{C})$$

$$S5 = A.1.(\overline{A}.\overline{B} + A.B + A.\overline{C})$$

$$S5 = A.(\overline{A}.\overline{B} + A.B + A.\overline{C})$$

$$S5 = A.\overline{A}.\overline{B} + A.A.B + A.A.\overline{C}$$

$$S5 = 0.\overline{B} + A.B + A.\overline{C}$$

$$S5 = A.B + A.\overline{C}$$

T.D. 2 – Corrigé 1/8

David Bouchet – Architecture des ordinateurs – MLL3UAC – Paris 5 – 2020/2021

• S6 =
$$(A + \overline{B} + C).(A + \overline{C}).(\overline{A} + \overline{B})$$

$$S6 = (A.A + A.\overline{C} + \overline{B}.A + \overline{B}.\overline{C} + C.A + C.\overline{C}).(\overline{A} + \overline{B})$$

$$S6 = (A + A.\overline{C} + \overline{B}.A + \overline{B}.\overline{C} + C.A + 0).(\overline{A} + \overline{B})$$

$$S6 = (\mathbf{A} + \mathbf{A}.\overline{\mathbf{C}} + \overline{\mathbf{B}}.\mathbf{A} + \overline{\mathbf{B}}.\overline{\mathbf{C}} + \mathbf{C}.\mathbf{A}).(\overline{\mathbf{A}} + \overline{\mathbf{B}}) \rightarrow Th\acute{e}or\grave{e}me \ 1$$

$$S6 = (A + \overline{B}.\overline{C}).(\overline{A} + \overline{B})$$

$$S6 = A.\overline{A} + A.\overline{B} + \overline{B}.\overline{C}.\overline{A} + \overline{B}.\overline{C}.\overline{B}$$

$$S6 = 0 + A.\overline{B} + \overline{B}.\overline{C}.\overline{A} + \overline{B}.\overline{C}$$

$$S6 = A.\overline{B} + \overline{B.C}.\overline{A} + \overline{B.C}$$
 \rightarrow Théorème 1

$$S6 = A.\overline{B} + \overline{B}.\overline{C}$$

• S7 = A.B.C + A.
$$\overline{B}$$
. \overline{C} + \overline{A} .B. \overline{C} + \overline{A} .B.C

$$S7 = B.C.(A + \overline{A}) + A.\overline{B}.\overline{C} + \overline{A}.B.\overline{C}$$

$$S7 = B.C.1 + A.\overline{B}.\overline{C} + \overline{A}.B.\overline{C}$$

$$S7 = B.C + A.\overline{B}.\overline{C} + \overline{A}.B.\overline{C}$$

$$S7 = B.(C + \overline{A}.\overline{C}) + A.\overline{B}.\overline{C}$$

$$S7 = B.(C + \overline{A}) + A.\overline{B}.\overline{C}$$

$$S7 = B.\overline{\overline{C}.A} + \overline{B}.\overline{C}.A$$

$$S7 = B \oplus (\overline{C}.A)$$

• S8 = A.B.C + A.
$$\overline{B}$$
.C + A.B. \overline{C} .D

$$S8 = A.C.(B + \overline{B}) + A.B.\overline{C}.D$$

$$S8 = A.C.1 + A.B.\overline{C}.D$$

$$S8 = A.C + A.B.\overline{C}.D$$

$$S8 = A.(C + B.\overline{C}.D)$$

$$S8 = A.(C + B.D)$$

$$S8 = A.C + A.B.D$$

• S9 =
$$\mathbf{A}$$
 + B.C + $\overline{\mathbf{A}}$.($\overline{\mathbf{B}}$ + $\overline{\mathbf{C}}$).(\mathbf{A} .D + \mathbf{C})

$$S9 = A + B.C + (\overline{B} + \overline{C}).(A.D + C)$$

$$S9 = A + B.C + \overline{B.C}.(A.D + C)$$

$$S9 = A + B.C + A.D + C$$

$$S9 = A + B.C + C$$

$$S9 = A + C$$

Exercice 2

1. Donnez le schéma de câblage des portes NON, ET, OU, et OU EXCLUSIF, en utilisant uniquement des portes NON-ET.

Pour le OU EXCLUSIF, on sait que : $A \oplus B = \overline{A}.B + A.\overline{B}$ Il suffit d'appliquer le théorème de De Morgan afin de n'obtenir que des portes NON-ET.

2. À votre avis, quel peut être l'intérêt de ce type de transformation ?

Il faut savoir que les portes NON-ET et NON-OU sont des portes universelles. Cela signifie que l'on peut fabriquer toutes les autres portes uniquement à partir de portes NON-ET ou de portes NON-OU.

Ce type de transformation peut servir à réduire le nombre de circuits intégrés sur une carte électronique. Par exemple, un circuit intégré possédant quatre portes NON-ET peut être utilisé comme une porte NON-ET et une porte OU. Cela permet d'éviter d'acheter deux circuits intégrés différents, l'un contenant une porte NON-ET, l'autre une porte OU.

T.D. 2 – Corrigé 3/8

Exercice 3

Dans un premier temps, on souhaite réaliser un demi-additionneur (*cf.* <u>figure 1</u>). Il s'agit d'un circuit qui additionne deux bits : *A* et *B*. Ce circuit doit générer la somme *S* et une éventuelle retenue *C*.

1. Donnez les tables de vérité de *S* et de *C* puis en déduire leurs équations respectives.

A	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A \oplus B$$
$$C = A.B$$

2. Dessinez le schéma interne du demi-additionneur.

On souhaite maintenant réaliser un additionneur complet (*cf.* <u>figure 2</u>). Il s'agit d'un circuit qui additionne trois bits : *A*, *B* et une retenue d'entrée *Cin*. Ce circuit doit générer la somme *S* et une éventuelle retenue de sortie *Cout*.

3. Donnez le schéma interne d'un additionneur complet à partir de deux demi-additionneurs.

On note respectivement *S1* et *C1* la somme et la retenue du premier additionneur. On note respectivement *S2* et *C2* la somme et la retenue du second additionneur.

Au final, on souhaite obtenir une somme S = A + B + Cin et une retenue *Cout*.

T.D. 2 – Corrigé 4/8

Le schéma interne d'un additionneur complet est le suivant :

La première addition sera la suivante :

On additionne A et B avec le premier demi-additionneur.

On obtient une somme S1 = A + B et une retenue C1.

Voyons maintenant la seconde addition :

On additionne *S1* et *Cin* à l'aide du second demi-additionneur.

On obtient une somme S2 = S1 + Cin = A + B + Cin = S et une retenue C2.

Il nous manque la retenue *Cout* (qui est la somme de *C1* et de *C2*).

Il est certain que l'addition de C1 avec C2 ne produira aucune retenue, car la plus grande somme possible pour l'additionneur complet est de 11_2 . Cette somme est obtenue lorsque toutes ses entrées sont à 1 (A = B = Cin = 1): ce qui donne $1_2 + 1_2 + 1_2 = 11_2$ (S = 1 et Cout = 1). Une retenue C3 n'apparaîtra donc jamais.

Or, si la somme de C1 et de C2 ne génère aucune retenue, c'est que C1 et C2 ne sont jamais à 1 en même temps. Par conséquent, une simple porte OU suffira à obtenir leur somme (c'est-à-dire Cout).

T.D. 2 – Corrigé 5/8

Pour finir, on souhaite réaliser un additionneur binaire parallèle sur quatre bits (*cf.* <u>figure 3</u>). Il s'agit d'un circuit qui additionne deux nombres binaires de quatre bits, *A* et *B*, ainsi qu'une retenue d'entrée *Cin*. Il génère une somme *S* sur quatre bits et une retenue de sortie *Cout*.

4. Donnez le schéma interne de cet additionneur binaire à partir de plusieurs additionneurs complets.

L'addition sera la suivante :

Il faut additionner successivement les différents bits en propageant la retenue. Cela s'obtient assez facilement à l'aide de quatre étages d'additionneurs complets.

Exercice 4

On souhaite réaliser le comparateur suivant :

Les entrées A et B représentent deux nombres binaires sur deux bits (A0 et B0 sont les bits de poids faible):

- Si A > B alors la sortie 'A > B' est au niveau logique 1 et les autres sorties sont au niveau logique 0 ;
- Si A = B alors la sortie A = B' est au niveau logique 1 et les autres sorties sont au niveau logique 0;
- Si A < B alors la sortie 'A < B' est au niveau logique 1 et les autres sorties sont au niveau logique 0.

T.D. 2 – Corrigé 6/8

1. Donnez la table de vérité du circuit.

A	В	A1	A0	B1	В0	A > B	A = B	A < B
0	0	0	0	0	0	0	1	0
0	1	0	0	0	1	0	0	1
0	2	0	0	1	0	0	0	1
0	3	0	0	1	1	0	0	1
1	0	0	1	0	0	1	0	0
1	1	0	1	0	1	0	1	0
1	2	0	1	1	0	0	0	1
1	3	0	1	1	1	0	0	1
2	0	1	0	0	0	1	0	0
2	1	1	0	0	1	1	0	0
2	2	1	0	1	0	0	1	0
2	3	1	0	1	1	0	0	1
3	0	1	1	0	0	1	0	0
3	1	1	1	0	1	1	0	0
3	2	1	1	1	0	1	0	0
3	3	1	1	1	1	0	1	0

2. Sans l'aide des tableaux de Karnaugh, exprimez l'équation simplifiée de la sortie A = B' et dessinez son schéma de câblage.

Les nombres A et B sont égaux si A0 = B0 et si A1 = B1. Or, si l'on observe la table de vérité du NON-OU EXCLUSIF, on constate que sa sortie est à 1 si ses deux entrées sont égales.

On peut donc en déduire que : ' $A = B' = \overline{A0 \oplus B0}$. $\overline{A1 \oplus B1}$

X = A ⊕ B					
A	В	X			
0	0	1			
0	1	0			
1	0	0			
1	1	1			

T.D. 2 – Corrigé 7/8

3. Avec l'aide des tableaux de Karnaugh, exprimez les équations simplifiées des sorties A > B' et A < B'.

		B1 B0				
	'A > B'	00	01	11	10	
	00	0	0	0	0	
A1 A0	01	1	0	0	0	
A1 A0	11	1	1	0	1	
	10	1	1	0	0	

 $A > B' = A1.\overline{B1} + A0.\overline{B0}.\overline{B1} + A0.A1.\overline{B0}$

		B1 B0				
	'A < B'	00	01	11	10	
	00	0	1		1	
A1 A0	01	0	0	1	1	
A1 A0	11	0	0	0	0	
	10	0	0		0	

 $A < B' = \overline{A1}.B1 + \overline{A0}.B0.B1 + \overline{A0}.\overline{A1}.B0$

Exercice 5

Donnez les équations logiques simplifiées pour tous les diagrammes de Karnaugh ci-dessous :

		bc				
	W	00	01	11	10	
	0	1	0	1	0	
a	1	0	0		1	

 $W = a.b + b.c + \overline{a.b.c}$

		С		
	X	0	1	
	00	1	1	
ah	01	1	0	
ab	11	0		
	10	1	1	
	$X = \overline{b} +$	a.c + a.c	-	

cd \mathbf{Y} 00 01 11 **10** 00 1 1 0 0 01 1 ab 11 0 0 0 0 10 0

 $Y = \overline{a.b} + \overline{a.c} + a.\overline{b.d}$

		cd					
	Z	00	01	11	10		
	00	1	0	0	1		
ıb	01	1	1	0	1		
ιυ	11	1	1	0	1		
	10	1	0	1	1		

 $Z = \overline{d} + b.\overline{c} + a.\overline{b}.c$

T.D. 2 – Corrigé 8/8