Objectif. Calculer des images et des antécédents.

Exercice 1. Soit la fonction f définie sur \mathbb{R} par $f(x) = 3x^2 + 7x$.

Calculer les images des nombres suivants.

- a) 2
- b) -3
- c) 0
- d) $\sqrt{5}$

Exercice 2. Soit la fonction h définie sur \mathbb{R} par h(x) = 3x - 8. Déterminer les éventuels antécédents des nombres suivants.

- a) 3
- b) -5
- c) $\frac{1}{2}$
- d) 0,1

Exercice 3. Soit la fonction f définie sur \mathbb{R} par f(x) = (3-x)(x-1).

Déterminer les antécédents de 0 par f.

Exercice 4. On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{4x+2}{1+x^2}$

- 1. A-t-on f(3) = 1?
- 2. Les images de 2 et de 0 par f sont-elles égales ?
- 3. Déterminer l'image de $\frac{1}{2}$ par f
- 4. Déterminer les antécédents de 0 par f

Exercice 5. Voici la courbe représentative d'une fonction f définie sur \mathbb{R} .

Par lecture graphique, déterminer :

- 1. L'image de -1 par f
- 2. L'image de 0 par f
- 3. Le(s) antécédent(s) de 1 par f
- 4. Le(s) antécédent(s) de 3 par f

Exercice 6. Voici la courbe représentative d'une fonction g définie sur [-2; 3].

Par lecture graphique, déterminer :

- 1. g(0)
- 2. Les images de 1 et de -2 par g
- 3. Les antécédents éventuels de -1; 1; et 5.

Exercice 7. Soit la fonction u définie par u(n) = 4 + 3n pour tout <u>entier naturel</u> n.

- 1. Déterminer, si possible, l'image par u de 2 ; -4 ; et $\frac{1}{2}$
- 2. Déterminer les antécédents éventuels par u de 40 et de 147

Objectif. Utiliser l'équation de la courbe d'une fonction

Exercice 8. Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 5$ de courbe représentative C_f .

- 1. Calculer l'image de 10 par f
- 2. Le point A = (10; 1005) appartient-il à C_f ?
- 3. Calculer l'ordonnée du point B d'abscisse -2 qui appartient à C_f .

Exercice 9. On considère la fonction g définie sur \mathbb{R} par $g(x) = 2x^3 - 3x + 1$

- 1. Donner l'image de 2
- 2. En déduire les coordonnées d'un point appartenant à la courbe représentative de g

Exercice 10. Soit g la fonction définie sur \mathbb{R} par g(x) = 5x + 2

- 1. Le point $M\left(\frac{2}{3};5\right)$ appartient-il à C_g ?
- 2. Calculer l'abscisse du point T appartenant à \mathcal{C}_g d'ordonnée nulle.

Exercice 11. Soit f la fonction définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{2x+4}{x+1}$

- 1. Le point A(0; 5) appartient-il à C_f ?
- 2. Calculer l'abscisse du point B appartenant à C_f d'ordonnée nulle.

Exercice 12. Soit la fonction f définie sur \mathbb{R} par f(x) = -2x + 15

Déterminer les coordonnées des points d'intersection de la courbe représentative de *f* avec les axes du repère.

Objectif. Résoudre graphiquement une équation ou une inéquation.

Exercice 13. A partir de la courbe représentative de f, estimer les solutions des équations :

(A) :
$$f(x) = 2$$

(B) :
$$f(x) = 0$$

(C):
$$f(x) = -1$$

(D):
$$f(x) = 1$$

Exercice 14. A partir de la courbe de g, estimer

les solutions des équations suivantes

(A) :
$$g(x) = 2$$

(B):
$$g(x) = -3$$

(C):
$$g(x) = 4$$

(D):
$$g(x) = 4$$

Exercice 15.

A partir de la courbe de k définie sur [-3; 4], estimer les solutions des équations et inéquations suivantes :

(A):
$$k(x) = 1$$

(B) :
$$k(x) = 0$$

(C):
$$k(x) > -1$$

(D):
$$k(x) < 0$$

(E):
$$k(x) \ge -2$$

(F) :
$$k(x) \ge 2$$

Exercice 16. A partir des courbes de f et g, estimer les solutions des inéquations suivantes sur [-2; 3]:

(B):
$$g(x) \le f(x)$$

(C):
$$f(x) < -3$$

(D):
$$g(x) < 2$$

$$(E): f(x) \ge -2$$

Objectif. Déterminer un ensemble de définition

Exercice 17. Donner l'ensemble de définition de chaque fonction ci-dessous

a)
$$f(x) = 4x + \frac{1}{x}$$

b)
$$g(x) = 2\sqrt{x} + 3$$

c)
$$h(x) = \frac{5+x}{10-x}$$

d)
$$i(x) = \sqrt{x-1}$$

Objectif. Modéliser un problème par une fonction

Exercice 18. Le prix de l'essence sans plomb est de 1,40 euro le litre. Marius veut faire le plein de sa voiture. Il compte mettre x litres dans son réservoir vide qui peut contenir 40 litres. La station dans laquelle il se sert ne délivre pas moins de 5 litres. On considère la fonction P qui à chaque valeur de x associe le prix payé par Marius.

- 1. A quel intervalle *x* peut-il appartenir ?
- 2. Quel est l'ensemble de définition de P
- 3. Déterminer l'expression algébrique de P

Exercice 19. On considère un rectangle de longueur 7 et de largeur 5. On trace à l'intérieur de celui-ci une

croix de largeur x variable comme indiqué cidessous. On s'intéresse à l'aire de la croix bleue.

- 1. A quel intervalle *x* appartient-il?
- 2. Donner l'aire A(x) de la croix en fonction de x

Exercice 20. Une entreprise fabrique des pièces détachées pour automobiles. On note x le nombre de pièces fabriquées au cours d'une journée. Le coût de production, en centaines d'euros, de x pièces est noté $\mathcal{C}(x)$. On a représenté en bleu la courbe de la fonction \mathcal{C} sur l'intervalle [40; 80].

Quel est le coût de production de 50 pièces ?
 Pour un

50 pièces ?
2. Pour un coût de 1400 euros, combien de pièces l'entreprise va-t-elle fabriquer ?

On suppose que $C(x) = 0.01x^2 - 0.79x + 17.40$

- 3. Chaque pièce est vendue 20 euros. Déterminer la recette R(x) en centaines d'euros de l'entreprise pour x pièces fabriquées.
- 4. La droite tracée en violet est la courbe de *R*. Le bénéfice est la différence entre la recette et le cout. Combien de pièces faut il fabriquer pour avoir un bénéfice positif?