ELEKTROMOSSÁG

- 1. Az eletromos térerősség zárt felületre vett fluxusa arányos a felület által bezárt össztöltéssel.
- 2. Elektrosztatikában az elektromos térerővonalak pozitív töltésből (vagy a végtelenből) indulnak, és negatív töltésen (vagy a végtelenben) végződnek.
- 3. Az elektromos potenciál nem lehet negatív.
- 4. Az elektromos feszültség a térerősség és a távolság szorzata.
- 5. Az elektromos dipólus össztöltése zérus, ezért a dipólust körülvevő zárt felületre a térerősség teljes fluxusa zérus.
- 6. Az eletromos térerősség zárt felületre vett fluxusa nem lehet negatív.
- 7. Az eletromos térerősség fluxusa skalármennyiség.
- 8. Egy gömb belsejében az elektromos potenciál konstans.
- 9. Elektrosztatikában egy fém felületén a potenciál mindenhol ugyanakkora.
- 10. Elektrosztatikában egy fém felülete ekvipotenciális felület.
- 11. A Gauss-törvény szerint ha egy ponttöltést körülvevő gömbfelület sugarát megkétszerezzük, a gömbfelületre számított elektromos fluxus megnégyszereződik.
- 12. Dielektrikumokban a polarizációt atomi vagy molekuláris dipólusok összessége adja.
- 13. Az elektromos térerősség tangenciális komponense folytonosan megy át két dielektrikum határfelületén.
- 14. Az elektromos eltolás vektor normális komponense folytonosan megy át két dielektrikum határfelületén.
- 15. Sorosan kapcsolt kondenzátorok eredő kapacitása az egyes kapacitások összegével egyenlő.
- 16. Egy kondenzátor kapacitása fordítottan arányos a kondenzátorra kapcsolt feszültséggel.
- 17. Egy kondenzátor kapacitása nő, ha az elektródák közé dielektrikumot helyezünk.
- 18. A kapacitás mérhető J/V² egységekben.
- 19. Egy kondenzátor energiája egyenesen arányos az elektródákra kapcsolt feszültséggel.
- 20. Az elektromos dipólmomentum vektora a negatív töltés felől a pozitív töltés felé mutat.

MÁGNESSÉG

- 1. Mágneses térben nem hat erő elektromos töltésekre.
- 2. Mágneses térben nem hat erő álló elektromos töltésekre.
- 3. A Biot-Savart törvény szerint a **B** mágneses indukció vektora párhuzamos az őt létrehozó áram irányával.
- 4. A Biot-Savart törvény szerint a **B** mágneses indukció fordítottan arányos az áramelemtől mért távolság köbével.
- 5. Ha egy zárt görbe által határolt felületet összességében nem döf át áram, akkor a zárt görbe mentén a mágneses térerő mindenhol zérus.
- 6. A H mágneses térerő vonalmenti integrálja lehet negatív.
- 7. A **B** mágneses indukció zárt felületre vett fluxusa mindig zérus.
- 8. Az eltolási áram képes időben állandó mágneses teret kelteni.
- 9. Paramágneses anyagok relatív mágneses permeabilitása 0 és 1 közé esik.
- 10. Diamágneses anyagok relatív mágneses permeabilitása 1-nél nagyobb.

- 11. Diamágneses anyagok mágneses szuszceptibilitása negatív.
- 12. A ferromágneses anyagok doménekből épülnek fel.
- 13. A paramágneses anyagok atomi (vagy molekuláris) mágneses dipólusokból állnak.
- 14. Gázok vagy folyadékok nem lehetnek paramágnesesek.
- 15. Gázok nem lehetnek ferromágnesesek.
- 16. A Curie-hőmérsékleten a paramágneses anyagok elveszítik paramágneses tulajdonságukat.
- 17. A kölcsönös induktivitás az áramerősséggel arányos.
- 18. Egy tekercs induktivitása egyenesen arányos a tekercsben folyó áram erősségével.
- 19. Fémekben az örvényáramok irányát a Lenz-törvény szabja meg.
- 20. Transzformátorok vasmagját lágyvasból készítik, hogy az örvényáram-veszteséget csökkentsék.
- 21. Transzformátorok vasmagját vékony rétegekből készítik, hogy a hiszterézisveszteséget csökkentsék.
- 22. Vákuumban a mágneses tér energiasűrűsége arányos a mágneses indukció négyzetével.
- 23. A mágneses tér energája mindig egyenlő az elektromos tér energiájával.
- 24. Elektromágneses hullámban a mágneses tér energiasűrűsége és az elektromos tér energiasűrűsége azonos nagyságú.

OPTIKA

- 1. Ha Young kettős-rés kísérletében fehér megvilágítást alkalmazunk, a magasabb rendű interferenciacsíkok színesek.
- 2. Ha Young kettős-rés kísérletében fehér megvilágítást alkalmazunk, a nulladrendű interferenciacsík színes.
- 3. Amikor a fény optikailag sűrűbb közegről verődik vissza, 90° fázistolást szenved.
- 4. Egy diffrakciós rács felbontóképessége függ a megvilágított rácsvonalak számától.
- 5. Egy csillagászati távcső felbontóképessége független a megfigyelt fény hullámhosszától.
- 6. A Fermat-elv szerint a fény még inhomogén anyagban is egyenes mentén terjed.
- 7. Amikor a fény optikailag sűrűbb közegbe hatol be, a hullámhossza csökken.
- 8. Ha egy polárszűrőre polarizálatlan fény esik, a polárszűrő az intenzitásnak kevesebb mint 10%-át engedi át.
- 9. A Brewster-szög mindig kisebb, mint az ugyanarra a határfelületre vonatkozó teljes visszaverődés határszöge.
- 10. Teljes visszaverődés csak akkor jöhet létre, amikor a fény sűrűbb közegből ritkább közeg felé halad.
- 11. Ha egy határfelületet Brewster-szögben világít meg egy lineárisan polarizált fénysugár, a visszavert fény elliptikusan polarizált lesz.
- 12. Amikor a fény levegőből üvegbe terjed, az üvegben a fénysugarak a beesési merőlegestől elfelé törnek meg.
- 13. Ha egy fénysugár levegőből üveg felé terjed (az üvegre n=1.5), és az üveget 80° beesési szög alatt éri, teljes visszaverődés történik.
- 14. A Newton-gyűrűk jelensége lencsefelületek tesztelésére használható.
- 15. Kalcitkristály belsejében egy pontszerű fényforrás elliptikus hullámfrontokat is ki tud bocsátani.

- 16. A "polarizálatlan fény" és az "elliptikusan polarizált fény" kifejezések ugyanazt a jelenséget írják le.
- 17. Egy közeg törésmutatója a vákuumbeli fénysebesség és a közegbeli fénysebesség hányadosa.
- 18. A napfény elliptikusan polarizált.
- 19. Ha két polárszűrőt egymásra helyezünk, az átengedett intenzitás lehet nagyobb is.

mint a bejövő intenzi 20. Magas hőmérsék tudnak működni. 21. Populáció-inverz	leten a lézerek pusztán iót csak termodinamik a referenciahullám has	a spontán emisszió je ai egyensúlyban lehet	lensége alapján is megvalósítani.
ELEKTROMOSSÁC	Ĵ		
1. Két párhuzamos függőleges fémlap között homogén elektromos teret hozunk létre. A fémlapok távolsága 15cm. Egy 3·10 ⁻² g tömegű és 1nC töltésű részecske fonálon lóg ebben az elektromos térben. Mekkora a fémlapok közötti feszültség, ha a részecskét tartó fonál 30°-os szöget zár be a függőlegessel?			
(a) 25980V	(b) 22500V	(c) 13000V	(d) egyik sem
2. Elektromosan semleges, 10cm sugarú műanyag gömb középpontjától 1m távolságra egy –1mC töltésű ponttöltést helyezünk. Mekkora az elektromos térerősség fluxusa a műanyag gömb teljes felületére?			
(a) 1Vm	(b) 0	(c) -2Vm	(d) egyik sem
3. Egy hosszú szigetelő henger sugara 10cm. Mekkora a henger felületén a felületi töltéssűrűség, ha a henger tengelyétől 1m-re az elektromos térerősség 10kV/m?			
(a) 44.3nC/m^2	(b) $886nC/m^2$	(c) $4.43 \mu C/m^2$	(d) egyik sem
látunk el. Mekkora az	ságú kockát egyenletes z elektromos térerőssé (b) 0.387Nm²/C	g fluxusa a kocka egy	
5. Köralakú fémkeretet egyenletesen elektromos töltéssel látunk el. A fémkeret sugara 3cm. Mekkora a fémkeret töltése, ha a keret szimmetriatengelyén, a keret középpontjától 4cm-re az elektromos potenciál (a végtelenben levő ponthoz képest) 900Vnagyságú?			
(a) $5nC$	(b) 10nC	(c) 1mC	(d) egyik sem
6. Egy fémgömb sugara 0.1m. A fémgömb középpontjában az elektromos potenciál (a végtelen távoli ponthoz képest) 1000V. Mekkora az elektromos térerősség a fémgömb felületén?			
(a) 0	(b) 1kV/m	(c) 10kV/m	(d) egyik sem
7. Egy fémgömb sug	ara 10cm. A fémgömb	középpontja és a közé	épponttól 1m-re levő

pont között 810V a feszültség. Mekkora a fémgömb töltése? (d) egyik sem (a) 10nC (b) 21.1nC (c) 111nC

8. Végtelen hosszú tömör henger térfogati töltéssűrűsége 2nC/m³. A henger sugara 3cm. Mekkora az elektromos térerősség a henger tengelyétől 5cm-re?			
(a) $2.03N/C$	(b) 3.56N/C	(c) 6.73N/C	(d) egyik sem
9. Egy 6cm sugarú gömböt ρ egyenletes töltéssűrűséggel látunk el. A gömb belsejében a középponttól mekkora távolságban lesz az elektromos térerősség ugyanakkora, mint a gömbön kívül, a gömbfelszíntől 3cm-re?			
(a) 2cm	(b) 2.67cm	(c) 4.5cm	(d) egyik sem
10. Hosszú fémhenger sugara 10cm. A henger tengelye és egy 1m-es koaxiális hengerfelület közötti feszültség 1000V. Mekkora a fémhenger felületén az elektromos térerősség?			
(a) $4.3kV/m$	(b) $8.4kV/m$	(c) 23kV/m	(d) egyik sem
11. Egy 2cm sugarú szigetelő gömb homogén térfogati töltéssűrűséggel rendelkezik. A középpontjától 1cm-re az elektromos térerősség 5kV/m. Mekkora a térfogati töltéssűrűség? (ε _r =2)			
O \ /	(b) $9.36\mu C/m^3$	(c) $26.55\mu\text{C/m}^3$	(d) egyik sem
12. Egy 100pF-os és egy 600pF-os kondenzátort sorba kötünk. A soros kapcsolásra 200V feszültséget kapcsolunk. Mekkora az első kondenzátorban tárolt energia és a második kondenzátorban tárolt energia aránya?			
(a) 36	(b) 6	(c) 1/36	(d) egyik sem
13. Egy síkkondenzátor elektródái közötti térrészt szigetelővel töltjük ki, aminek hatására az elektródák közötti feszültség az eredeti érték 1/4-ére csökken. Mekkora a szigetelő χ elektromos szuszceptibilitása?			
(a) 3	(b) 4	(c) 5	(d) egyik sem
MÁGNESSÉG			
1. Egy 1mC töltésű részecske egyenletes körmozgást végez 1T indukciójú homogén mágneses térben. Mekkora a részecske tömege, ha a körmozgás periódusideje 2s? (a) 1g (b) 0.32g (c) 0.1g (d) egyik sem			
2. Egy 10^{-6} C töltésű részecske $3\cdot10^{6}$ m/s sebességgel mozog $\mathbf{B} = (0.4, 0.7, 0.3)$ [T] indukciójú homogén mágneses térben. Mekkora erő hat rá abban az időpillanatban, amikor a sebességvektora éppen a $+x$ irányba mutat?			
(a) $(0, -0.9, 2.1)[N]$	(b) $(1.2, 1.4, -4)[N]$	(c) $(0, 2.2, 0.6)[N]$	(d) egyik sem
3. Egy síkkondenzátor körlap alakú elektródáinak sugara 5cm, az elektródák távolsága 1mm. Az elektródák közötti feszültség 1000V/s ütemben nő. Mekkora a mágneses indukció a kondenzátor pereménél?			
(a) $5.5 \cdot 10^{-13}$ T	-	(c) $2.77 \cdot 10^{-13}T$	(d) egyik sem
4. Egy sebességszelektorban 1.4·10 ⁶ V/m elektromos teret és rá merőlegesen 180mT			

mágneses teret hozunk létre. Milyen sebességű elektronok tudnak a

sebességszelektoron áthaladni?

(a) $2.4 \cdot 10^6 \text{m/s}$	(b) $4.8 \cdot 10^6 \text{m/s}$	(c) $7.78 \cdot 10^6 \text{m/s}$	(d) egyik sem
sűrűsége pedig n=1 szolenoid belsejébe amelynek a keresztr	500 menet/méter, I(t) n koaxiálisan elhelye metszeti felülete 0.15	eresztmetszeti felülete =(4+3t²) [A] időfüggő zkedik egy másik, kise m², a menetszáma ped dban a t=2s időpillana	áram folyik. A ebb szolenoid, ig N=300. Mekkora
(a) 1V	(b) 2.7V	(c) 6.8V	(d) egyik sem
	•	oen 10A áram folyik, h rerősség a vezető teng	•
(a) $398A/m$	(b) 516A/m	(c) 722A/m	(d) egyik sem
		ram folyik. A vezetőn ora a mágneses térerős	
(a) 1.5mm	(b) 2mm	(c) 4mm	(d) egyik sem
8. Egy 20cm hosszú szolenoidban a mágneses indukció fluxusa egyetlen keresztmetszeti felületre Φ_1 . Ezután egy μ_r =50 permeabilitású vasmagot helyezünk a szolenoidba. A vasmag hossza csak 10cm, de a szolenoid teljes keresztmetszetét kitölti. Ebben az esetben a mágneses indukció egy keresztmetszeti felületre vett fluxusa Φ_2 értékűre változik. Mekkora a Φ_2/Φ_1 arány?			
$\Delta(a)$ 1.96	(b) 7.81	(c) 25	(d) egyik sem
0.1s alatt egyenletes		növekszik Mekkora ele	ű szolenoidban az áram ektromos tér
(a) $40\mu V/m$	(b) $200\mu V/m$	(c) $320\mu\text{V/m}$	(d) egyik sem
mágneses térbe 10c	m sugarú kör alakú d	gyenletesen, 40T/s üte rótkeretet helyezünk ú ra elektromos tér indul (c) 2V/m	
szolenoid belsejébe 1cm, menetszáma p	n egy másik, kisebb s		
(a) 5.9μH	(b) 8.5µH	(c) 12.7μH	(d) egyik sem
mellé helyezünk úg vezetőtől, és párhuz	y, hogy a drótkeret le zamos azzal. A drótke	rú drótkeretet egy hoss egközelebbi oldala 2cn eret és a hosszú vezető ora a mágneses fluxus	n-re van a hosszú egy síkban van, és a

(a) $4.2 \cdot 10^{-3} \text{ Tm}^2$ (b) $7.2 \cdot 10^{-8} \text{ Tm}^2$ (c) $6.7 \cdot 10^{-9} \text{ Tm}^2$ (d) egyik sem

13. Egy vákuumbeli elektromágneses síkhullámban a Poynting-vektor maximális értéke 1W/m². Mekkora a mágneses térerősség maximális értéke?			
(a) 13.3mA/m	(b) 51mA/m	(c) 133.3mA/m	(d) egyik sem
OPTIKA			
1. Egy Young-féle kettősrés kísérletben az ernyőn 5 vonal/cm térfrekvenciájú interferenciakép jelenik meg. Mekkora a két rés távolsága, ha a megvilágítás HeNe lézer fényével történik (λ=632nm) és az ernyő a résektől 2m távolságra van? (a) 0.63mm (b) 1.26mm (c) 1.78mm (d) egyik sem			
2. Egy hajó 2m átmérőjű, köralakú radarantennája 15GHz frekvencián sugároz. A hajótól 2km-re két csónak úszik a tengeren. Milyen közel lehet a két csónak egymáshoz, hogy a hajó radarja még éppen két külön objektumként lássa őket? (a) 10.5m (b) 24.4m (c) 45.6m (d) egyik sem			
3. Egy tó nyugodt vizében tükröződik a holdfény. Milyen emelkedési szögben van a Hold a horizont fölött, ha a tükröződése lineárisan poláros? (A víz törésmutatója 1.33).			
(a) 25°	(b) 37°	(c) 63°	(d) egyik sem
 4. Egymásra helyezünk két polárszűrőt úgy, hogy transzmissziós irányaik α szöget zárnak be egymással. Mekkora az α szög, ha a bejövő polarizálatlan fény intenzitásának 40%-a jut át a rendszeren? (a) 26.6° (b) 31° (c) 38.4° (d) egyik sem 			
5. Egy fénysugár levegőből üvegbe halad. A megtört sugár 65°-os szöget zár be <i>az üveg felületével</i> . Mekkora szöget zár be a bejövő fénysugár az üveg felületével? (Az üvegben a fénysebesség 200000km/s.)			
(a) 23.43°	(b) 32.17°	(c) 50.66°	(d) egyik sem
6. Egy emberi szem 4mm² felületű pupillájára 1m távolságból (1) egy 25W-os izzólámpa fénye, (2) egy 1mW-os, 1mm átmérőjű lézersugár esik. Mekkora az (1) és (2) esetben az emberi szemet érő fényteljesítmények aránya?			
(a) 1/8	(b) 1/53	(c) 1/126	(d) egyik sem
7. Mekkora a Brewster-szög a víz-üveg határfelületen, ha a víz törésmutatója 1.3, az üvegé pedig 1.55?			
(a) 20°	(b) 50°	(c) 80°	(d) egyik sem
8. Egy plán-konvex üveglencse 5m görbületi sugarú gömbfelületét sík üveglemezhez nyomjuk. A lencse törésmutatója n=1.5. Az elrendezést λ=633nm-es merőleges síkhullámmal megvilágítva Newton-gyűrűket figyelhetünk meg. Mekkora a 6. fényes gyűrű sugara?			
(a) 2.1mm	(b) 4.2mm	(c) 6.7mm	(d) egyik sem

 9. Egy 1mm széles rést λ=514nm-es merőleges beesésű síkhullámmal világítunk meg. Milyen messze van a réstől az ernyő, ha az ernyőn megfigyelt fő intenzitás-maximum szélessége 1.2mm? (a) 340cm (b) 263cm (c) 117cm (d) egyik sem 			
10. Hány rácsvonalat világítottunk meg egy diffrakciós rácson, ha a 3. elhajási rendben éppen megkülönböztethető egymástól egy 600nm-es és egy 601nm-es megvilágítás?			
(a) 100	(b) 150	(c) 200	(d) egyik sem
11. Egy 600nm hullámhosszúságú fénynyaláb merőlegesen diffrakciós rácsra esik. A rácstól 1m-re levő ernyőn az 1. diffrakciós maximum és a (–1). diffrakciós maximum távolsága 20cm. Mekkora a rácsállandó?			
(a) 6μm	(b) 1.5μm	(c) 1.2μm	(d) egyik sem