

planetmath.org

Math for the people, by the people.

the kernel of a group homomorphism is a normal subgroup

 ${\bf Canonical\ name} \quad {\bf The Kernel Of A Group Homomorphism Is A Normal Subgroup}$

Date of creation 2013-03-22 17:20:34

Last modified on 2013-03-22 17:20:34

Owner alozano (2414)

Last modified by alozano (2414)

Numerical id 8

Author alozano (2414)

Entry type Theorem Classification msc 20A05

Related topic KernelOfAGroupHomomorphism

Related topic Natural Projection

In this entry we show the following simple lemma:

Lemma 1. Let G and H be groups (with group operations $*_G$, $*_H$ and identity elements e_G and e_H , respectively) and let $\Phi: G \to H$ be a group homomorphism. Then, the kernel of Φ , i.e.

$$Ker(\Phi) = \{ g \in G : \Phi(g) = e_H \},\$$

is a normal subgroup of G.

Proof. Let G, H and Φ be as in the statement of the lemma and let $g \in G$ and $k \in \text{Ker}(\Phi)$. Then, $\Phi(k) = e_H$ by definition and:

$$\Phi(g *_{G} k *_{G} g^{-1}) = \Phi(g) *_{H} \Phi(k) *_{H} \Phi(g^{-1})
= \Phi(g) *_{H} (e_{H}) *_{H} \Phi(g^{-1})
= \Phi(g) *_{H} \Phi(g^{-1})
= \Phi(g) *_{H} \Phi(g)^{-1}
= e_{H},$$

where we have used several times the properties of group homomorphisms and the properties of the identity element e_H . Thus, $\Phi(gkg^{-1}) = e_H$ and $gkg^{-1} \in G$ is also an element of the kernel of Φ . Since $g \in G$ and $k \in \text{Ker}(\Phi)$ were arbitrary, it follows that $\text{Ker}(\Phi)$ is normal in G.

Conversely:

Lemma 2. Let G be a group and let K be a normal subgroup of G. Then there exists a group homomorphism $\Phi: G \to H$, for some group H, such that the kernel of Φ is precisely K.

Proof. Simply set H equal to the quotient group G/K and define $\Phi: G \to G/K$ to be the natural projection from G to G/K (i.e. Φ sends $g \in G$ to the coset gK). Then it is clear that the kernel of Φ is precisely formed by those elements of K.

Although the first lemma is very simple, it is very useful when one tries to prove that a subgroup is normal.

Example. Let F be a field. Let us prove that the special linear group SL(n, F) is normal inside the general linear group GL(n, F), for all $n \ge 1$.

By the lemmas, it suffices to construct a homomorphism of $\mathrm{GL}(n,F)$ with $\mathrm{SL}(n,F)$ as kernel. The determinant of matrices is the homomorphism we are looking for. Indeed:

$$\det: \operatorname{GL}(n,F) \to F^{\times}$$

is a group homomorphism from $\mathrm{GL}(n,F)$ to the multiplicative group F^{\times} and, by definition, the kernel is precisely $\mathrm{SL}(n,F)$, i.e. the matrices with determinant = 1. Hence, $\mathrm{SL}(n,F)$ is normal in $\mathrm{GL}(n,F)$.