

00/10/00
JC714 U.S. PTO

03 - 02 - 00

A

Please type a plus sign (+) inside this box →

PTO/SB/05 (12/97)

Approved for use through 09/30/00 OMB 0651-0032

Patent and Trademark Office U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No.	MICS:0043/99-0634	Total Pages	43
---------------------	-------------------	-------------	----

First Named Inventor or Application Identifier

Todd O. Bolken

Express Mail Label No. EL 432 942 094 US

jc678 U.S. PTO
09/51608d

03/01/00

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

ADDRESS TO:
Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

- | | |
|--|--|
| 1. <input checked="" type="checkbox"/> Fee Transmittal Form
<i>(Submit an original, and a duplicate for fee processing)</i> | 6. <input type="checkbox"/> Microfiche Computer Program (Appendix) |
| 2. <input checked="" type="checkbox"/> Specification Total Pages 25
<i>(preferred arrangement set forth below)</i> | 7. <input type="checkbox"/> Nucleotide and/or Amino Acid Sequence Submission
<i>(if applicable, all necessary)</i> |
| -Descriptive | a. <input type="checkbox"/> Computer Readable Copy |
| -Cross References to Related Application | b. <input type="checkbox"/> Paper Copy (identical to computer copy) |
| -Statement Regarding Fed sponsored R & D | c. <input type="checkbox"/> Statement verifying identity of above copies |
| -Reference to Microfiche Appendix | |
| -Background of the Invention | |
| -Brief Summary of the Invention | |
| -Brief Description of the Drawings (if filed) | |
| -Detailed Description | |
| -Claim(s) | |
| -Abstract of the Disclosure | |
| 3. <input checked="" type="checkbox"/> Drawing(s) (35 USC 113) Total Sheets 4
Total Pages 12 | 8. <input checked="" type="checkbox"/> Assignment Papers (cover sheet & document(s)) |
| 4. Oath or Declaration | 9. <input checked="" type="checkbox"/> 37 CFR 3.73(b) Statement <input type="checkbox"/> Power of Attorney
<i>(where there is an assignee)</i> |
| a. <input checked="" type="checkbox"/> Newly executed (original or copy) | 10. <input type="checkbox"/> English Translation Document (if applicable) |
| b. <input type="checkbox"/> Copy from a prior application (37CFR 1.63(d))
<i>(for continuation/divisional with Box 17 completed)
[Note Box 5 below]</i> | 11. <input type="checkbox"/> Information Disclosure Statement (IDS)/PTO-1449 <input type="checkbox"/> Copies of IDS Citations |
| i. <input type="checkbox"/> <u>DELETION OF INVENTOR(S)</u>
Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). | 12. <input type="checkbox"/> Preliminary Amendment |
| 5. <input type="checkbox"/> Incorporation By Reference (useable if Box 4b is checked)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. | 13. <input checked="" type="checkbox"/> Return Receipt Postcard (MPEP 503)
Small Entity <input type="checkbox"/> Statement filed in prior application
Statement(s) Status still proper and desired |
| 17. <input type="checkbox"/> Continuation <input type="checkbox"/> Divisional <input type="checkbox"/> Continuation-in part (CIP) of prior application No: _____ / | 14. <input type="checkbox"/> Other |
| 18. CORRESPONDENCE ADDRESS | <input checked="" type="checkbox"/> Correspondence address below |

 Customer Number or Bar Code Label

(Insert Customer No. or Attach bar code label here)

NAME	Michael G. Fletcher Fletcher, Yoder & Van Someren			
ADDRESS	P.O. Box 692289			
CITY	Houston	STATE	Texas	ZIP CODE
COUNTRY	USA	TELEPHONE	(281) 970-4545	Fax (281) 970-4503

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231

EXPOSED DIE MOLDING APPARATUS

By:

Todd O. Bolken
Meridian, Idaho

"EXPRESS MAIL" MAILING LABEL	
Number:	<u>EL 432 942 094 US</u>
Date of Deposit:	<u>March 1, 2000</u>
<i>Pursuant to 37 C.F.R. § 1.10, I hereby certify that I am personally depositing this paper or fee with the U.S. Postal Service, "Express Mail Post Office to Addressee" service on the date indicated above in a sealed envelope (a) having the above-numbered Express Mail label and sufficient postage affixed, and (b) addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.</i>	
Signature:	
Printed Name:	<u>Janice Munoz</u>

EXPOSED DIE MOLDING APPARATUS

BACKGROUND OF THE INVENTION

5

1. Field Of The Invention

The present invention relates generally to microelectronic packaging and, more particularly, to a method and apparatus for applying a protective ring about the perimeter of an exposed die face.

2. Description Of The Related Art

This section is intended to introduce the reader to various aspects of art which may be related to various aspects of the present invention which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.

20

Packaging of electrical circuits is a key element in the technological development of any device containing electrical components. Several technologies have been developed to provide a means of mounting these electrical components on a surface such as a printed circuit board (PCB). Fine pitch surface mount (FPT), pin grid array (PGA), and ball grid array (BGA) are examples of leading surface mount technologies.

BGA technology offers several advantages over FPT and PGA. Among the most often cited advantages of BGA are: reduced co-planarity problems, since there are no leads; reduced placement problems; reduced paste printing problems; reduced handling damage; smaller size; better electrical and thermal performance; better package yield; better board assembly yield; 5 higher interconnect density; multi-layer interconnect options; higher IO's for a given footprint; easier extension to multi-chip modules; and faster design-to-production cycle time.

A BGA semiconductor package generally includes a semiconductor chip mounted on the upper surface of a substrate. The semiconductor chip may be electrically coupled to the substrate by bonding wires. The substrate contains conductive routing which allows the signals to pass from the semiconductor chip on the top side of the substrate, through the substrate, and to pads on the underside of the substrate. A plurality of solder balls are deposited and electrically coupled to the pads on the underside of the substrate to be used as input/output terminals for electrically connecting the substrate to a PCB or other external device.

To protect the semiconductor chip and bonding wires from external elements such as moisture, dust, or impact, the semiconductor chip is often encapsulated in a molding compound. To encapsulate the semiconductor chip, vacuum based systems are implemented to inject a molding compound which completely encompasses the chip. Disadvantageously, by encasing 20 the entire semiconductor chip in a molding compound, the overall height of the circuit package will be increased. Further, the current system for encapsulating the semiconductor chip implements vacuum ports to seat the film which is used to separate the molding compound

from the packaging system after encapsulation is complete. These vacuum ports may become contaminated with the molding compound which is used to encase the semiconductor chip.

The present invention may address one or more of the problems set forth above.

5

SUMMARY OF THE INVENTION

Certain aspects commensurate in scope with the disclosed embodiments are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.

In accordance with one aspect of the present invention, there is provided a system for molding a circuit package. The system comprises a first support plate, a second support plate, and a cavity plate which is positioned between the first and second support plates during the encapsulation process. The cavity plate has an aperture configured to receive a protruding portion of the circuit package. The circuit package generally contains a semiconductor chip which is attached to a substrate. The semiconductor chip is generally the protruding portion of the circuit package.

20

In accordance with another aspect of the present invention, there is provided an open-faced circuit package. The circuit package generally contains a semiconductor chip which is attached to a substrate. A molding compound is disposed onto the substrate surface to form a

protective ring about the periphery of the semiconductor chip, leaving the top surface of the semiconductor chip void of any molding compound.

In accordance with still another aspect of the present invention, there is provided a method for molding a circuit package. The method comprises the steps of: disposing the circuit package on a cavity plate; disposing the cavity plate on a first support plate; disposing a second support plate on the cavity plate; injecting a molding compound into the cavity plate; separating the second support plate from the cavity plate; separating the cavity plate from the first support plate; and separating the circuit package from the cavity plate.

One advantage of the present invention is that there is no additional height added to the top of the circuit package during the encapsulation process. Further, because the face of the die is left exposed, the circuit package will advantageously dissipate heat rapidly. A second advantage of the present invention is that the apparatus used during the injection process does not require a vacuum system. Therefor, the system may be easier to implement in current fabrication facilities. Also, one problem associated with vacuum-based systems is that the vacuum system often becomes contaminated with molding compound during the injection process. A vacuumless system will not have this problem.

20

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages and features of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:

Fig. 1 illustrates an exemplary encapsulated circuit package;

Fig. 2 illustrates an exemplary encapsulating process;

Fig. 3 illustrates a partial cross-sectional side view of an encapsulation system and of a circuit package to be encapsulated in accordance with the present invention;

5 Fig. 4 illustrates a partial cross-sectional side view of an encapsulation system and of a circuit package after a molding compound has been injected in accordance with the present invention;

Fig. 5 illustrates a partial cross-sectional view of an encapsulation system and of a circuit package after it has been injected with a molding compound and ejected from the molding system;

Figs. 6A and 6B illustrate respectively a top view and a side elevation view of an encapsulation system in accordance with the present invention;

Fig. 7 illustrates a top plan view of a post encapsulation circuit package;

15 Fig. 8 illustrates a partial cross-sectional side view of a post encapsulation circuit package in accordance with the present invention; and

Fig. 9 illustrates a plan view of the backside of a post encapsulation circuit package in accordance with the present invention.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

20 One or more specific embodiments of the present invention will be described below.

In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project,

numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.

Turning now to the drawings, and referring initially to Fig. 1, a partial cross-sectional view depicting an exemplary encapsulated circuit package generally designated by reference numeral 10 is illustrated. The circuit package 10 typically includes a semiconductor chip 20, such as a memory die. The semiconductor chip 20 is mounted on a substrate 30 and electrically coupled to the substrate 30 by bond wires (not shown). A molding compound 40 is generally used to encapsulate the semiconductor chip 20. The purpose of the molding compound 40 is to protect the semiconductor chip 20 and the bond wires (not shown) from external elements. Solder balls 50 may be deposited on the back side of the substrate 30 so that the circuit package 10 may be electrically coupled to a printed circuit board (PCB) in order to incorporate the circuit package 10 into a system.

Fig. 2 illustrates a method and apparatus for encapsulating a circuit package 10. A bottom support plate 60 is generally made of a rigid substance such as metal. The bottom support plate 60 contains a molding cavity 70 which is used to encapsulate the circuit package 10. The bottom support plate 60 also contains vacuum holes 80 which are used to seat a film

90 in the molding cavity 70. The film 90 separates the molding compound from the molding equipment once the semiconductor chip 20 has been encapsulated.

To encapsulate the semiconductor chip 20, the circuit package 10 is placed on the support plate 60 so that the edges of the substrate 30 are in contact with the film 90, and so that the semiconductor chip 20 occupies the molding cavity 70. The semiconductor chip 20 is not in contact with the bottom support plate 60 or the film 90, but rather is suspended in the molding cavity 70 to be injected with a molding compound. A top support plate 100 is generally used to secure the circuit package 10 during the injection process. During the encapsulation process, a molding compound, such as a resin, is injected into the molding cavity 70. Once the molding compound solidifies, the circuit package 10 is removed from the molding equipment.

This method of “die side down” encapsulation described above presents several problems. First, many such molding machines do not use a vacuum to seat the film 90 during this type of molding procedure. Thus, such equipment must be modified to facilitate this type of encapsulation. Second, the vacuum assist which is used to seat the film 90 in the molding cavity 70 often creates wrinkles in the film 90, which are subsequently transferred into the molding compound and, finally, to the encapsulated circuit package 10. Third, this method of encapsulation adds additional undesirable thickness to the circuit package 10. The overall height increase of the circuit package is generally 100-300 microns.

To address these shortcomings, Figs. 3 – 9 illustrate an exposed die molding apparatus and a method for producing an exposed die molded circuit package. Figs. 3 – 5 illustrate the

manner in which the molding process generally operates. Specifically, Fig. 3 illustrates a partial cross-section of the circuit package 10 mounted in the molding apparatus 25, in accordance with the present invention. The film 95 is brought in contact with the bottom support plate 65. The cavity plate 110 is seated on top of the film 95. The cavity plate 110 contains a molding cavity 75. Here, the depth of the molding cavity 75 is approximately equal to the thickness of the semiconductor chip 20. As the circuit package 10 is mounted die side down within the cavity plate 110, the semiconductor chip 20 is brought in contact with the film 95 since the walls of the molding cavity 75 are only about as high as the semiconductor chip 20. The cavity plate 110 is constructed such that the molding cavity 75 may receive the semiconductor chip 20 while the substrate 30 is disposed upon the top surface of the cavity plate 110. As the cavity plate 110 is disposed upon the film 95 the raised portion of the bottom support plate 65 is brought in contact with the top surface of the semiconductor chip 20, with only the film 95 separating the two plates. Thus, the molding cavity 75 is formed by the molding cavity sidewall 120 which is part of the cavity plate 110, and the edge of the semiconductor chip 20, shown as reference number 130. The floor of the molding cavity 75 is formed when the cavity plate 110 is disposed on the film 95. The substrate 30 provides the final containment surface to form the molding cavity 75. The top support plate 100 is disposed upon the cavity plate 110 and the substrate 30 to secure the circuit package 10 during the molding compound injection process.

20

Fig. 3 also illustrates a substrate slot 140. The substrate slot 140 is actually a slot which has been cut in the substrate to allow the bond wires from the semiconductor chip 20 to be electrically coupled to the substrate 30. In one embodiment, the semiconductor chip 20 is

electrically coupled to the substrate 30 by bond wires 150. Exemplary bond wires 150 are illustrated. Because one of the purposes of the molding compound is to protect the electrical connections such as bond wires 150, the molding compound is advantageously injected about the connections. Thus, the cavity plate 110 is constructed such that the molding compound will flow through the substrate slot 140 to encapsulate the bond wires 150. To encapsulate the bond wires 150 completely, the top support plate 105 contains a molding pocket 160.

Fig. 4 illustrates the apparatus disclosed in Fig. 3 after the molding compound 170 has been injected into the system. The hatch lines in Fig. 4 illustrate where the molding compound 170 has been injected. It is significant to note that the molding compound is not injected onto the top surface of the semiconductor chip 20. Thus, there is no additional height added to the circuit package 10.

Significantly, the disclosed apparatus 25 does not require a vacuum system to seat the film 95 against the bottom support plate 65. Because the top surface of the semiconductor chip 20 is disposed directly upon the film 95 with no space left in the molding cavity 75 to allow the top side of the semiconductor chip 20 to be encapsulated, the film 95 will automatically be pressed flat once the cavity plate 110 is disposed upon the bottom support plate 65. Thus, the vacuum system which was used in the conventional encapsulating machines is no longer utilized to assist in seating the film 95 flush with the bottom support plate 65 to form the top surface of the molding cavity 75.

Fig. 5 illustrates the circuit package 10 after the molding compound 170 has solidified, and the circuit package 10 has been ejected. The apparatus 25 used to encapsulate the circuit package 10 will be explained in greater detail in Figs. 6A and 6B. The purpose of Fig. 5 is simply to illustrate the completed stage of the encapsulation process. Fig. 5 thus contains the same elements as Figs. 3 and 4. Once the molding compound 170 solidifies, the circuit package 10 may be ejected from the encapsulation system. The cavity plate 110 is separated from bottom support plate 65 by any suitable means, such as a cavity plate push rod 180, for example. The cavity plate push rod 180 is a rod which may be contained within the bottom support plate 65 during the encapsulation process. Once the process is complete and the molding compound 170 solidifies, the cavity plate push rod 180 is extended thereby elevating the cavity plate 110 from its prior position (as shown in Figs. 3 and 4). As the cavity plate 110 is elevated by the cavity plate push rod 180, the film 95 returns to its feed position as will be shown in Fig. 6B (since the cavity plate 110 is no longer forcing the film 95 downwardly into contact with the bottom support plate 65). The bottom support plate 65 may also contain rail ejection pins 190 which are used to eject an encapsulated circuit package 10 from the cavity plate 110 after the molding injection process is complete.

Turning now to Figs. 6A and 6B, the molding process and apparatus 25 can be better explained. Fig. 6A illustrates a top plan view, and Fig. 6B illustrates a side view of a molding apparatus 25. Referring first to the side view of Fig. 6B, the apparatus 25 is shown in its ejected position. As can be seen, the film 95 is positioned proximate to the bottom support plate 65. The film is held in place during processing by a feed roller 200 and a take up roller 210. During the injection processing, the cavity plate push rods 180 and the rail ejection pins

190 are contained within the bottom support plate 65. The cavity plate 110 is thus sitting on top of the film 95 which in turn forces the film 95 downwardly and against the bottom support plate 65. The substrate 30 which is coupled to the semiconductor chip 20 is disposed on the cavity plate 110. At this point in the processing, the substrate 30 contains a plurality of semiconductor chips 20. After injection of the molding compound 170 (not shown) and removal from the 5 injection apparatus 25, the substrate 30 will be cut to provide individual circuit packages 10.

When the apparatus 25 is in its injection position (as shown in Figs. 3 and 4), the molding compound is injected through a molding compound injection slot 220. Once the molding compound has solidified, the cavity plate 110 is elevated by the cavity plate push rod 180. The substrate 30 is then removed by pushing it out of the cavity plate 110 by means of the rail ejection pins 190. Thus, once the injection process is complete and before the substrate 30 is removed from the apparatus 25, the apparatus 25 will look like the side view shown in Fig. 6B and the partial cross-sectional view shown in Fig. 5. As should be evident from these figures, there is no need for a vacuum apparatus to be contained within the bottom support plate 65 to seat the film 95 during the injection processing since the cavity plate 110 will force the film 95 flat against bottom support plate 65. For simplicity, the top support plate 105 is not illustrated in the present figure. However, it should be understood that the top support plate 105 is also positioned on top of the cavity plate 110 during the injection processing.

20

In an alternate embodiment, the film 95 may be omitted. One of the other purposes of the film 95 may be to account for height differences in circuit packages 10. To ensure that all semiconductor chips 20 are seated flush against the bottom support plate 65, the film 95 may be

comprised of a resilient material which ensures contact despite height variations in substrate packages 10. However, if the bottom cavity plate 65 is comprised of a resilient material, such as composite material, rather than a solid material, such as metal, the film 95 may not be necessary.

5

Figs. 7, 8 and 9 illustrate the separated circuit package 10 once the injection processing is complete. Fig. 7 illustrates a top plan view of the circuit package 10. As can be seen, the molding compound 170 completely surrounds the semiconductor chip 20. In one embodiment, the molding compound 170 does not extend to the edge of the substrate 30. However, it should be appreciated that the molding compound 170 could be extended to the edge of the substrate 30 or with a different cavity plate fixture the molding compound 170 could extend beyond the edges of the substrate 30, in such a way so as to contain the substrate 30 completely within the molding compound 170.

Fig. 8 illustrates a partial cross-sectional view of the circuit package 10 after the injection process. It can be seen that the molding compound 170 does not extend above the height of the semiconductor chip 20. Because the semiconductor chip 20 is left with its face exposed, there is no additional height added to the circuit package 10 by the injection processing. Solder balls 50 may be attached to the substrate 30 to couple the circuit package 10 to another substrate or PCB for use in a system. However, it should also be appreciated that other means, such as pins, may be used to electrically couple the circuit package 10 to another substrate or PCB.

Fig. 9 illustrates a top plan view of the back side of the circuit package 10. Again, in one particular embodiment of the present invention, solder pads 230 may be disposed upon the back side of the substrate 30 to receive solder balls 50 (not shown) for electrical coupling to a substrate or PCB for use in a system. Also, in this particular embodiment, the substrate 30 contains a slot 140 through which the semiconductor chip 20 (not shown) is coupled to the substrate 30 through the use of bond wires (not shown). Thus, in this embodiment it may also be desirable to inject molding compound 170 through the slot 140 to encase the bond wires to protect them from external contacts. It should be appreciated that if the semiconductor chip 20 is electrically coupled to the substrate 30 by some other means, the slot 140 in the substrate 30 may not be present and thus no molding compound 170 will be used in the region shown in Fig. 9.

While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

CLAIMS

What is claimed is:

1. A system for molding a circuit package comprising:
 - 5 a first support plate;
 - a second support plate proximately positioned with respect to first support plate; and
 - a cavity plate positioned between the first support plate and the second support plate,

the cavity plate having an aperture configured to accept a protruding portion of the circuit package.

10

2. The system for molding a circuit package, as set forth in claim 1, wherein the first support plate is configured to support a plurality of circuit packages.

15

3. The system for molding a circuit package, as set forth in claim 1, wherein the first support plate is comprised of a rigid material.

20

4. The system for molding a circuit package, as set forth in claim 3, wherein the first support plate is comprised of metal.

5. The system for molding a circuit package, as set forth in claim 4, wherein a film is disposed between the first support plate on the cavity support plate.

5 6. The system for molding a circuit package, as set forth in claim 5, wherein the film is comprised of a resilient material.

7. The system for molding a circuit package, as set forth in claim 1, wherein the first support plate is comprised of a resilient material.

8. The system for molding a circuit package, as set forth in claim 1, wherein the first support plate comprises a plateau which resides adjacent a recess in the cavity support plate.

9. The system for molding a circuit package, as set forth in claim 1, wherein the bottom support plate contains a plurality of cavity plate push rods.

10. The system for molding a circuit package, as set forth in claim 9, wherein the cavity plate push rods are mechanically controlled to separate the cavity plate from the bottom support plate.

5

11. The system for molding a circuit package, as set forth in claim 1, wherein the bottom support plate contains rail ejection pins.

12. The system for molding a circuit package, as set forth in claim 11, wherein the rail ejection pins are mechanically controlled to separate the circuit package from the cavity plate.

13. The system for molding a circuit package, as set forth in claim 1, wherein the second support plate comprises a cavity.

20 14. The system for molding a circuit package, as set forth in claim 13, wherein the cavity is positioned to permit a molding compound to be disposed within the cavity.

15. The system for molding a circuit package, as set forth in claim 1, wherein the aperture is sized to create a peripheral void about the protruding portion of the circuit package to permit a molding compound to be disposed about the protruding portion of the circuit package.

5

16. The system for molding a circuit package, as set forth in claim 15, wherein the aperture is the same height as the protruding portion of the circuit package.

卷之三

17. The system for molding a circuit package, as set forth in claim 16, wherein the aperture is configured to yield a circuit package having its non-protruding surfaces completely covered with a molding compound.

18. The system for molding a circuit package, as set forth in claim 17, wherein the molding compound is an insulating material.

20

19. The system for molding a circuit package, as set forth in claim 1, wherein the protruding portion of the circuit package is a semiconductor chip.

20. The system for molding a circuit package, as set forth in claim 19, wherein the semiconductor chip is a memory device.

5

21. A circuit package comprising:
a substrate;
a semiconductor chip having a top surface, a bottom surface, and a periphery,
the bottom surface being coupled to the substrate; and
a peripheral ring of molding compound deposited on the substrate and about the periphery of the semiconductor chip, leaving the top surface of the semiconductor chip uncovered.

10
15

22. The circuit package, as set forth in claim 21, wherein the semiconductor chip is a memory device.

23. The circuit package, as set forth in claim 21, wherein the semiconductor chip is electrically coupled to the substrate.

20

24. The circuit package, as set forth in claim 23, wherein the molding compound is disposed to encapsulate a plurality of electrical connections between the semiconductor chip and the substrate.

5

25. The circuit package, as set forth in claim 21, wherein the molding compound is disposed upon a bottom portion of the substrate.

26. The circuit package, as set forth in claim 21, wherein the molding compound is an insulating material.

27. A method of molding a circuit package comprising the acts of:

- (a) disposing the circuit package on a cavity plate, the circuit package comprising a semiconductor device coupled to a substrate;
- (b) disposing the cavity plate on a first support plate;
- (c) disposing a second support plate on the cavity plate;
- (d) injecting a molding compound into the cavity plate;
- (e) separating the second support plate from the cavity plate;
- (f) separating the cavity plate from the first support plate; and
- (g) separating the circuit package from the cavity plate.

28. The method of molding a circuit package, as set forth in claim 27, wherein act
(a) comprises the act of disposing the circuit package on the cavity plate die-side down.

5 29. The method of molding a circuit package, as set forth in claim 27, wherein act
(b) comprises the act of disposing the cavity plate on the first support plate by mechanically
moving the cavity plate onto the first support plate.

30. The method of molding a circuit package, as set forth in claim 27, wherein the
cavity plate is configured to accept a protruding portion of the circuit package.

31. The method of molding a circuit package, as set forth in claim 30, wherein act
(b) comprises the act of disposing the protruding portion of the circuit package upon the first
support plate as the cavity plate is disposed upon the first support plate.

20 32. The method of molding a circuit package, as set forth in claim 27, wherein act
(c) comprises the act of disposing the second support plate on the cavity plate by mechanically
moving the second support plate onto the cavity plate.

33. The method of molding a circuit package, as set forth in claim 27, wherein act (d) comprises the act of injecting a molding compound into an aperture to create a peripheral ring around the semiconductor device.

5

34. The method of molding a circuit package, as set forth in claim 33, wherein the molding compound is an insulating material.

35. The method of molding a circuit package, as set forth in claim 33, wherein the molding compound is injected in liquid form.

36. The method of molding a circuit package, as set forth in claim 35, wherein the molding compound is allowed to harden after the injection process.

37. The method of molding a circuit package, as set forth in claim 27, wherein act (f) comprises the act of elevating the cavity support plate with respect to the first support plate by a plurality of cavity plate push rods, the cavity plate push rods controlled to extend from the first support plate.

38. The method of molding a circuit package, as set forth in claim 27, wherein act (g) comprises the act of elevating the circuit package with respect to the cavity support plate by a plurality of rail ejection pins, the rail ejection pins controlled to extend from the first support plate.

5

39. The method of molding a circuit package, as set forth in claim 27, wherein a film is disposed between the cavity plate and the first support plate.

40. The method of molding a circuit package, as set forth in claim 39, wherein the film is comprised of a resilient material.

41. The method of molding a circuit package, as set forth in claim 27, wherein a film is disposed between the semiconductor device and the first support plate.

20 film is comprised of a resilient material.

43. The method of molding a circuit package, as set forth in claim 27, wherein the acts are performed on a plurality of circuit packages at once.

5 44. The method of molding a circuit package, as set forth in claim 43, further comprising the act of singulating the plurality of circuit packages.

10 45. The method of molding a circuit package, as set forth in claim 27, wherein the acts are performed in the recited order.

- 15 46. A circuit package comprising:
- a substrate;
 - a semiconductor chip having a top surface, a bottom surface, and a periphery, the bottom surface being coupled to the substrate;
 - a peripheral ring of molding compound deposited on the substrate and about the periphery of the semiconductor chip, leaving the top surface of the semiconductor chip uncovered by:
 - (a) disposing the circuit package on a cavity plate, the circuit package comprising a semiconductor device coupled to a substrate;
 - (b) disposing the cavity plate on a first support plate;
 - (c) disposing a second support plate on the cavity plate;

- (d) injecting a molding compound into the cavity plate;
- (e) separating the second support plate from the cavity plate;
- (f) separating the cavity plate from the first support plate; and
- (g) separating the circuit package from the cavity plate.

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ABSTRACT OF THE DISCLOSURE

A method and apparatus for applying a protective ring about the perimeter of an exposed die face. Specifically, a semiconductor chip is coupled to the upper surface of a substrate. The edges of the semiconductor chip are protected by a molding compound which
5 is disposed about the perimeter of the chip and on all or a portion of the substrate. The molding system which is used to apply the protective ring comprises three molding plates and does not require a vacuum-based system to hold the package stationary during the encapsulation process. By not applying a molding compound on the top surface of the semiconductor chip, no height is added to the package.

100-0634-0304-000000000000

+

FIG. 1**FIG. 2**

+

FIG. 3

FIG. 4

FIG. 5

000000000000000000000000

+

FIG. 6A

FIG. 6B

+

FIG. 7

FIG. 8

FIG. 9

DECLARATION

As the below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled "**EXPOSED DIE MOLDING APPARATUS,**" the specification of which:

X is attached hereto.

was filed on _____ as Application Serial No.: _____

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims.

I acknowledge the duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability of the subject matter claimed in this application, as "materiality" is defined in Title 37, Code of Federal Regulations, § 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

PRIOR FOREIGN APPLICATION(S)

Priority Claimed

(Number)	(Country)	(Date Filed)	Yes/No
_____	_____	_____	Yes/No

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose all information known to me to be material to patentability of the subject matter claimed in this application, as "materiality" is defined in Title 37, Code of Federal Regulations, § 1.56, which become available between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)	(Filing Date)	(Status)
--------------------------	---------------	----------

I hereby direct that all correspondence and telephone calls be addressed to Michael G. Fletcher, Fletcher, Yoder & Van Someren, Post Office Box 692289, Houston, Texas 77269-2289, (281) 970-4545.

I hereby declare that all statements made of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Inventor's Full Name:	Todd	O.	Bolken
	(First)	(Initial)	(Last)
Inventor's Signature:			
Date:	02/28/00	Country of Citizenship	U.S.A.
Residence Address:	3881 Westpark Creek Drive <small>(Include number, street name, city, state, and country)</small>		
	Meridian, Idaho 83642 U.S.A.		
Post Office Address: (If different)	3881 Westpark Creek Drive Meridian, Idaho 83642 U.S.A.		

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:
Todd O. Bolken § Group Art Unit: Unassigned
Serial No.: Unassigned § §
Filed: Herewith § Examiner: Unassigned
For: EXPOSED DIE MOLDING APPARATUS § Atty Docket: MICS:0043/FLE
§ 99-0634

**ELECTION UNDER 37 C.F.R. §§ 3.71 AND 3.73
AND POWER OF ATTORNEY**

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

The undersigned, being Assignee of the entire interest in the above-identified application by virtue of an Assignment recorded in the United States Patent and Trademark Office as set forth below, hereby elects, under 37 C.F.R. § 3.71, to prosecute the application to the exclusion of the inventor(s).

The Assignee hereby revokes any previous Powers of Attorney and appoints:

Michael L. Lynch, Reg. No. 30,871; and Lia Pappas Dennison, Reg. No. 34,095

of MICRON TECHNOLOGY, INC.; and also

Michael G. Fletcher, Reg. No. 32,777, Patrick S. Yoder, Reg. No. 37,479;
Robert A. Van Someren, Reg. No. 36,038; and Diana M. Sangalli, Reg. No. 40,798

with the law firm of FLETCHER. YODER & VAN SOMEREN, as its attorneys with full power of substitution and revocation, to prosecute the application, to make alterations and amendments therein, to transact all business in the Patent and Trademark Office in connection therewith, to receive any Letters Patent, and for one year after issuance of such Letters Patent to file any request for a certificate of correction that may be deemed appropriate.

Pursuant to 37 C.F.R. § 3.73, the undersigned has reviewed the evidentiary documents, specifically the Assignment to MICRON TECHNOLOGY, INC. referenced below, and certifies that to the best of my knowledge and belief, title remains in the name of the Assignee.

Please direct all communications as follows:

Michael G. Fletcher
FLETCHER, YODER & VAN SOMEREN
P.O. Box 692289
Houston, TX 77269-2289
(281) 970-4545

ASSIGNEE: Micron Technology, Inc.

Date: 2-28-00

By:
Name: Michael L. Lynch, Chief Patent Counsel

ASSIGNMENT:

Enclosed for recording
 Previously recorded:

Date:
Reel:
Frame: