Reproduced paper: Tighter Variational Bounds are Not Necessarily Better

Amine M'Charrak, Vít Růžička, Sangyun Shin, Madhu Vankadari

Department of Computer Science, University of Oxford

{amine.mcharrak, vit.ruzicka, sangyun.shin, madhu.vankadari}@cs.ox.ac.uk

Introduction

- 1. Performing efficient approximate inference and learning for directed probabilistic models continuous latent variables and intractable posterior distributions is a challenging problem.
- 2. Recently, this problem is solved using a generative model which pairs a top-down generative network with a bottom-up recognition network trained to maximize a variational lower bound (ELBO) on the intractable model evidence.
- 3. It is often assumed that using tighter ELBOs is universally beneficial, at least whenever this does not in turn lead to higher variance gradient estimates
- 4. In [1] this implicit assumption is questioned by demonstrating that, although using a tighter ELBO is typically beneficial to gradient updates of the generative network, it can be detrimental to updates of the reconstruction network. Illustrated below:

Figure 1:Illustration from [1] which shows the histograms of gradient estimates for the encoder (left) and decoder (right) networks.

Our contributions

- 1. Reproduction of the original paper and proposal of CIWAE with β as a learnable parameter.
- 2. Analysis of increasing the number of parameters in the models.
- 3. Extended evaluation on the Omniglot dataset and exploring the generalization ability across the two datasets.
- 4. Released an open-source Github repository: https://github.com/madhubabuv/TightIWAE/.

Theory foundation and variational autoencoder (VAE) methods

The VAE is a probabilistic model for density estimation and representation learning in continuous latent variable models $p_{\theta}(x|z)$ with posterior distribution $p_{\theta}(z|x)$. The distribution of interest arises by marginalization over the latent variables z:

$$p(x) = \int p_{\theta}(x|z)p_{\theta}(z)dz \tag{1}$$

Theory foundation and variational autoencoder (VAE) methods

To avoid the marginalization costs in Equation (1) we optimize an evidence lower-bound by introducing an inference network $q_{\phi}(z|x)$ instead, with learnable parameters ϕ . This allows us to cast the intractable inference problem into an optimization by learning $q_{\phi}(z|x)$ instead of the intractable posterior distribution $p_{\theta}(z|x)$. The ELBO

$$\log p(x) \ge \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x|z)p_{\theta}(z)}{q_{\phi}(z|x)} \right] =: \mathcal{L}_{VAE}(=ELBO)$$
 (2)

is maximized by minimizing the gap between the constant log likelihood of the data and the ELBO, quantified by $D_{KL}(q_{\phi}(z|x) || p_{\theta}(z|x))$. **Variational autoencoder methods: MIWAE, CIWAE, and PIWAE** The three proposed algorithms are variations of the importance weighted autoencoder (IWAE), which performs a Monte Carlo estimation based on K samples for the argument inside the logarithm of Equation (2).

- \blacktriangleright MIWAE estimates the IWAE objective using M samples, instead of only 1 as in IWAE, to estimate the gradients of the objective.
- ► CIWAE is a binary convex combination of the VAE and IWAE objectives weighted by the parameter β . This bound is looser than the IWAE but tighter than VAE bound.
- ▶ PIWAE considers the SNR issues arising in the inference network of the IWAE due to increased K. Thus, $q_{\phi}(z|x)$ is optimized using the MIWAE bound, while $p_{\theta}(x|z)$ is optimized with the tighter IWAE bound to ensure improved density estimation.

Reproduced results

Figure 2:The metrics of IWAE₆₄ and log $\hat{p}(x)$ of re-implemented models from [2, 1].

Table 1:Reproduction of models proposed by [1] trained on MNIST for 3280 epochs.

	Metric	IWAE	$PIWAE_{(8,8)}$	$MIWAE_{(8,8)}$	$CIWAE_{\beta=0.5}$	VAE					
	IWAE-64	-84.64	-84.72	-84.98	-87.05	-87.26					
	logp̂(x)	-84.64	-84.90	-85.04	-87.00	-87.66					
	-KL(Q P)	0.00	0.19	0.06	-0.05	0.40					

Extended results

Table 2:Extension of the experiments over a larger tested model. Trained on MNIST for 3280 epochs.

Bigger model	IWAE	$PIWAE_{(8,8)}$	$MIWAE_{(8,8)}$	$CIWAE_{\beta=0.5}$	VAE
IWAE-64	-83.85	-83.86	-83.47	-84.92	-85.33
logp̂(x))	-83.92	-83.84	-83.66	-84.98	-85.31
-KL(Q P)	0.06	-0.02	0.19	0.06	-0.02

Figure 3:Extended evaluation of newly explored model variants: Left: Training process of the larger model (aproximately twice the number of parameters). Right: Training process on the Omniglot dataset (with the regular sized model).

Figure 4:Generalization ability measured by reconstruction quality. Left to right: original MNIST input, reconstruction with $MIWAE_{(8,8)}$ trained on Omniglot, original Omniglot input, reconstruction with $MIWAE_{(8,8)}$ trained on MNIST.

Figure 5:Evaluation of the proposed Cl-WAE model with a learnable parameter β . The average score when learning β is -80.34±0.49, whereas the average score is -81.99±2.98 without learning β . Our method is more independent to the initial setting of the β parameter.

References

- [1] Tom Rainforth, Adam Kosiorek, Tuan Anh Le, Chris Maddison, Maximilian Igl, Frank Wood, and Yee Whye Teh. Tighter variational bounds are not necessarily better. In *International Conference on Machine Learning*, pages 4277–4285. PMLR, 2018.
- [2] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. *arXiv* preprint arXiv:1509.00519, 2015.