My DE1 repisitory link

DE1 - Jiří Navrátil 222721

Vivado

Board connections - general

Switch	FPGA pin	FPGA pin name
SW[0]	IO_L24N_T3_RS0_15	J15
SW[1]	IO_L3N_T0_DQS_EMCCLK_14	L16
SW[2]	IO_L6N_T0_D08_VREF_14	M13
SW[3]	IO_L13N_T2_MRCC_14	R15
SW[4]	IO_L12N_T1_MRCC_14	R17
SW[5]	IO_L7N_T1_D10_14	T18
SW[6]	IO_L17N_T2_A13_D29_14	U18
SW[7]	IO_L5N_T0_D07_14	R13
SW[8]	IO_L24N_T3_34	Т8
SW[9]	IO_25_34	U8
SW[10]	IO_L15P_T2_DQS_RDWR_B_14	R16
SW[11]	IO_L23P_T3_A03_D19_14	T13
SW[12]	IO_L24P_T3_35	H6
SW[13]	IO_L20P_T3_A08_D24_14	U12
SW[14]	IO_L19N_T3_A09_D25_VREF_14	U11
SW[15]	IO_L21P_T3_DQS_14	V10

LED	FPGA pin	FPGA pin name
LED[0]	IO_L18P_T2_A24_15	H17
LED[1]	IO_L24P_T3_RS1_15	K15
LED[2]	IO_L17N_T2_A25_15	J13
LED[3]	IO_L8P_T1_D11_14	N14
LED[4]	IO_L7P_T1_D09_14	R18
LED[5]	IO_L18N_T2_A11_D27_14	V17

LED	FPGA pin	FPGA pin name
LED[6]	IO_L17P_T2_A14_D30_14	U17
LED[7]	IO_L18P_T2_A12_D28_14	U16
LED[8]	IO_L16N_T2_A15_D31_14	V16
LED[9]	IO_L14N_T2_SRCC_14	T15
LED[10]	IO_L22P_T3_A05_D21_14	U14
LED[11]	IO_L15N_T2_DQS_DOUT_CSO_B_14	T16
LED[12]	IO_L16P_T2_CSI_B_14	V15
LED[13]	IO_L22N_T3_A04_D20_14	V14
LED[14]	IO_L20N_T3_A07_D23_14	V12
LED[15]	IO_L21N_T3_DQS_A06_D22_14	V11

Board connections - our links

Port	Linked to	Pin
a_i[0]	SW[0]	J15
a_i[1]	SW[1]	L16
b_i[0]	SW[2]	M13
b_i[1]	SW[3]	R15
c_i[0]	SW[4]	R17
c_i[1]	SW[5]	T18
d_i[0]	SW[6]	U18
d_i[1]	SW[7]	R13
sel_i[0]	SW[14]	U11
sel_i[1]	SW[15]	V10
f_o[0]	LED[14]	H17
f_o[1]	LED[15]	K15

2-bit wide 4-to-1 multiplexer

Architecture syntax

Stimulus syntax

```
p_stimulus : process
    begin
        -- Report a note at the begining of stimulus process
        report "Stimulus process started" severity note;
        s_d <= "00"; s_c <= "00"; s_b <= "00"; s_a <= "00"; s_sel <= "00"; wait
for 100 ns;
        s_d <= "10"; s_c <= "01"; s_b <= "01"; s_a <= "00"; s_sel <= "00"; wait
for 100 ns;
        s_d <= "10"; s_c <= "00"; s_b <= "11"; s_a <= "11"; s_sel <= "00"; wait
for 100 ns;
        s d <= "10"; s c <= "00"; s b <= "00"; s a <= "01"; s sel <= "10"; wait
for 100 ns;
        -- Report a note at the end of stimulus process
        report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
```

Result

Creating project

1. In the programs Menu bar go to **File** -> **Project** -> **New...**

- 2. After clicking **Next** > you need to specify project name and location
- 3. Select RLT Project with no boxes checked
- 4. In *Sources* create a new file with **VHDL** file type and define it's name and with **< Local to Project >** file location

- 5. Skip *Constrains* for now (can be added later)
- 6. Select a Part or Board of your choosing

7. Click **Finish** and wait for your project to be created

Add source file

1. In the programs Menu bar go to File -> Add Sources... or use a keyboard shortcut Alt+A

- 2. Choose Add or create design sources and click **Next >**
- 3. Create a new file with **VHDL** file type and define it's name and with **< Local to Project >** file location

4. Click Finish

Add testbench file

1. In the programs Menu bar go to File -> Add Sources... or use a keyboard shortcut Alt+A

- 2. Choose Add or create simulation sources and click Next >
- 3. Create a new file with **VHDL** file type and define it's name starting with *tb_...* and with **< Local to Project >** file location

4. Click Finish

Add XDC constraints file

1. In the programs Menu bar go to **File** -> **Add Sources...** or use a keyboard shortcut *Alt+A*

- 2. Choose Add or create constraints and click Next >
- 3. Create a new file with **XDC** file type and define it's name ending with .xdc and with < **Local to Project** > file location

4. Click Finish

Run simulation

1. In the programs Menu bar go to Flow -> Run Simulation -> Run Behavioral Simulation

