Bachelor Degree Programme in Applied Computer Science and Artificial Intelligence

12. Introduction to Business Intelligence and Data Warehousing

Prof. Ing. Claudio CILLI cilli@di.uniroma1.it
http://wwwusers.di.uniroma1.it/~cilli

Architecture for Business Intelligence

What is Data Warehousing

 Collection of methods, technologies and tools to assist the "knowledge worker" (manager, analyst) to conduct data analysis aimed at supporting decision-making and/or improving the management of information assets

What is a Data Warehouse

A data warehouse is a collection of data

- integrated (far beyond the organization)
- consistent (despite the heterogeneous origin)
- focused (an interest area is defined)
- historical (over a consistent timeframe)
- permanent (never delete your data!)

Purpose of a Data Warehouse

A Data Warehouse helps (allows) you:

- to take decisions
- to identify and interpret phenomena
- to make predictions about the future
- to control a complex system

Value and quantity of information

OLTP & OLAP

OLTP - On-Line Transaction Processing

- realm of (write and / or read) transactions, recovery,
- consistency
- many, fast and frequent operations
- high level of concurrency
- access to a small amount of data
- on-the-fly data update

OLAP - On-Line Analytical Processing

- read only
- few operations
- low level of concurrency
- access to huge amounts of data
- historical but essentially static data

Separation between:

Operational Database & Data Warehouse

- different computational load
- different needs:
 - DB: dynamic data, asynchronous updates
 - DW: static data, periodic updates
- integration with business activity:
 - DB: supporting operations (focused, timely)
 - DW: supporting decisions (descriptive, historical)
- data collection:
 - DB: minimal
 - DW: maximal

Two issues with different perspectives

- Data redundancy
 - OLTP (DB): to avoid, bringing to inconsistency and/or inefficiency on updates
 - OLAP (DW): redundancy avoids recomputation and shorten response time
- Indexing
 - OLTP (DB): good when you search bad when you update... you need some trade-off
 - OLAP (DW): the more, the best

Some Data Warehouse Systems

- Oracle
- IBM InfoSphere
- Microsoft SQL-Server 2014 Analysis Services
- Sybase IQ
- Hyperion (bought by Oracle)
- Teradata (division of NCR)
- Netezza Cognos (bought by IBM)
- Business Objects (bought by SAP)
- •

A comparison by Gartner (2013)

A comparison by Gartner (2019)

Magic Quadrant for Analytics and Business Intelligence Platforms

2019

Architectures for Datawarehousing: issues

- separating OLTP & OLAP
- scalability
- extensibility
- security
- administrability

Architecture for Datawarehousing

- determined by design choices
- determined by / determines the choice of a software system
- determines the cost and makes possible future integration (quantitative and / or qualitative)
- affects the cost of data processing

Data Mart

Collection of data focused on particular user profile or on particular target analysis

Alternatives:

- 1. dependent Data Mart: it is a subset and/or an aggregation of data in the primary DW
 - → DM extracted from a DW
- 2. independent Data Mart: it is a subset and/or an aggregation of data in the operational DB
 - → DW=Ui(DMi), that is, DW is a set of DM
- 3. hybrid solution, combining 1, 2

DW architecture: 1 Level

- there is only an operational DW
- virtual DB (no OLTP-OLAP separation)
- data coincident with DB operational
- difficult integration with other sources

DW architecture: 2 Levels – dependent DMs

- data sources complemented with external sources
- running on dedicated software platform
- ETL: Extraction, Transformation, Loading
- materialization of the DW
- materialization of Data Marts

DW architecture: 2 Levels – independent DMs

- Data Mart are materialized by feeding
- DW = union of DMs

DW architecture: 3 Levels

- a level of "reconciled" data (operational data store) is introduced
- separation into two phases of ETL activities:
 - 1. extraction / transformation
 - 2. loading

Data Source

Apache Hadoop

- The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models
- It is designed to scale up from single servers to thousands of machines, each offering local computation and storage
- Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures

Apache Hadoop Ecosystem

ETL: Extraction, Transformation, Loading

Operational Data, External Data

- extraction
- cleaning validation filtering
- transformation

Reconciled Data

loading

Data Warehouse

Extraction

- initial extraction:
 - targeted at the creation of the DW

- furter extractions:
 - static (replaces the whole DW)
 - incremental
 - log (journal)
 - timestamp

Cleaning

- changing VALUES
- duplicates
- inconsistencies
 - domain violation
 - functional dependency violation
- null values
- misuse of fields
- spelling
- abbreviations (not homogeneous)

Transformation

- changing FORMATS:
 - misalignment of formats
 - field overloading
 - inhomogeneous coding

Loading

- Refresh:
 - ex-novo loading of the whole DW

- Update:
 - differential updates

Metadata

- internal metadata
 - concerning the administration of the DW (i.e., sources, transformations, schemas, users, etc..)
- external metadata
 - interesting for users (e.g., measurement units, possible combinations)
- STANDARDs
- CWM Common Warehouse Model (OMG), defined by:
 - UML (Unified Modeling Language)
 - XML (eXtensible Markup Language)
 - XMI (XML Metadata Interchange)

OMG = Object Management Group: **CORBA** (Common Object Request Broker Architecture), **UML** (Unified Modeling Language), **MDA** (Model-Driven Architecture)

