Real Variables: Problem Set XII

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set XII of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 7-10.

10. Show that in Hölder's Inequality there is equality if and only if there are constants α and β , not both zero, for which

 $\alpha |f|^p = \beta |g|^q$ a.e. on E.

Solution.

Question 2. Royden 7-26.

26. (The L^p Dominated Convergence Theorem) Let $\{f_n\}$ be a sequence of measurable functions that converges pointwise a.e. on E to f. For $1 \le p < \infty$, suppose there is a function g in $L^p(E)$ such that for all n, $|f_n| \le g$ a.e. on E. Prove that $\{f_n\} \to f$ in $L^p(E)$.

Solution. First, we denote the set at which $\{f_n\}$ converges to f pointwise as E_0 . Then, notice that for any $x \in E_0$ such that $|f_n(x)| \le g(x)$, by the linearity of limit, and the continuity of absolute value, we obtain that $|f(x)| \le g(x)$. Hence, we see that $|f| \le g$ on E_0 . It follows that

$$|f - f_n| \le |f| + |f_n| < 2q,$$

on E_0 . Raising both sides by p, we obtain

$$|f - f_n|^p \le 2^p g^p,$$

on E_0 . As sum and product of measurable functions is measurable, $\{f-f_n\}$ is a sequence of measurable functions that converge to 0 pointwise, and dominated by 2^pg^p everywhere on E_0 . As $g \in L^P(E)$, we have that 2^pg^p is integrable. With the fact that $m(E \setminus E_0) = 0$, by the Lebesque dominated convergence theorem, we have

$$\lim_{n \to \infty} \int_{E} |f - f_n|^p = \lim_{n \to \infty} \int_{E_0} |f - f_n|^p$$

$$= \int_{E_0} 0$$

$$= 0.$$

Hence, $\{f_n\}$ is convergent to f in $L^P(E)$.

Question 3. Royden 19-5.

5. Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ a Cauchy sequence in $L^{\infty}(X, \mu)$. Show that there is a measurable subset X_0 of X for which $\mu(X \sim X_0) = 0$ and for each $\epsilon > 0$, there is an index N for which

$$|f_n - f_m| \le \epsilon$$
 on X_0 for all $n, m \ge N$.

Use this to show that $L^{\infty}(X, \mu)$ is complete.

Solution. Let $\{f_n\}$ be a Cauchy sequence in $L^{\infty}(X, u)$. Then, for all $k \in \mathbb{N}$, there exists N_k such that

$$|f_i - f_j| < \frac{1}{k}$$
 on $X_{n,m}$ such that $u(X \sim X_{n,m}) = 0$,

for $n, m \ge N_k$. Consider the following set:

$$X_0 = \bigcap_{k=1}^{\infty} \bigcup_{n,m>N_k} X_{n,m}.$$

By the DeMorgan's law, it follows that

$$X \sim X_0 = X \sim \bigcap_{k=1}^{\infty} \bigcup_{n,m \ge N_k} X_{n,m}$$
$$= \bigcup_{k=1}^{\infty} X \sim \bigcup_{n,m \ge N_k} X_{n,m}$$
$$= \bigcup_{k=1}^{\infty} \bigcap_{n,m \ge N_k} X \sim X_{n,m}.$$

By monotonicity of measure, we have

$$u(X \sim X_0) \le u(\bigcup_{k=1}^{\infty} X \sim X_{N_k,N_k}).$$

By countable subadditivity of measure, we further get

$$u(X \sim X_0) \leq \sum_{k=1}^{\infty} u(X \sim X_{N_k, N_k})$$

= 0.

Now, fix $\epsilon > 0$. By Archemedian property of reals, there exists $k \in \mathbb{N}$ such that $\frac{1}{k} < \epsilon$. Observe that

$$X_0 \subseteq \bigcup_{n,m > N_k} X_{n,m}$$
.

It follows that, for $x \in X_0$, $\{f_n(x)\}$ is Cauchy. By the completeness of reals, $\{f_n(x)\}$ is convergent. Define $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in X_0$. Again, fix $\epsilon > 0$. There exists N_k such that

$$|f_n - f_m| < \epsilon$$
,

for $n, m \ge N_k$. Observe that for $x \in X_0$,

$$\lim_{m \to \infty} |f_n(x) - f_m(x)| = |f_n(x) - f(x)|.$$

By linearity of limit, it follows that

$$|f_n(x) - f(x)| < \epsilon$$
,

for $n \geq N_k$. Since ϵ and x was arbitrary we have.

Question 4. Royden 17-19.

19. Show that any measure that is induced by an outer measure is complete.

Solution. Let $u^*: 2^X \to [0, \infty]$ be an outer-measure, and let (X, \mathcal{M}, u) be a measure space induced by u^* . Let $E \in \mathcal{M}$ and u(E) = 0. Let $S \subseteq E$, and $A \in \mathcal{M}$. Then, by finite monotonicity of u^* , we have $u^*(S) = 0$ and $u^*(S \cap A) = 0$. Again, using the finite monotonicity of u^* , we see that

$$u^*(A) \ge u^*(A \cap S^c) + 0$$

= $u^*(A \cap S^c) + u^*(A \cap S)$.

Hence, $S \in \mathcal{M}$. We have shown that u is complete.

Question 5. Royden 17-29.

29. Show that a set function on a σ -algebra is a measure if and only if it is a premeasure.

Solution. Let (X, \mathscr{M}) be a measurable space. Let $u : \mathscr{M} \to [0, \infty]$ be a measure. By definition of measure we have, $u(\emptyset) = 0$. u is finitely additive and countably monotone, as any measure has finite additivity and countable monotonicity properties. Conversely, assume that u is a pre-measure. As u is a pre-measure and $\emptyset \in \mathscr{M}$), we have $u(\emptyset) = 0$. Now, let $\{E_k\}_{k=1}^{\infty}$ be a countable disjoint collections chosen from \mathscr{M} . By finite additivity, and countable monotonicity of u, it follows that

$$\sum_{k=1}^{n} u(E_k) = u(\bigcup_{k=1}^{n} E_k)$$

$$\leq u(\bigcup_{k=1}^{\infty} E_k),$$

for all n. Hence, by linearity of limits, we obtain

$$\sum_{k=1}^{\infty} u(E_k) \le u(\bigcup_{k=1}^{\infty} E_k).$$

By finite additivity of u and the fact that $u(E_k) \ge 0$ for all k, we have

$$\sum_{k=1}^{\infty} u(E_k) \geq \sum_{k=1}^{n} u(E_k)$$
$$= u(\bigcup_{k=1}^{n} E_k),$$

for all n. Again, by linearity of limits, we obtain that

$$\sum_{k=1}^{\infty} u(E_k) \geq u(\bigcup_{k=1}^{\infty} E_k).$$

Therefore, we have shown that

$$\sum_{k=1}^{\infty} u(E_k) = u(\bigcup_{k=1}^{\infty} E_k),$$

which shows that u is countably additive. Hence, u is a measure. The claim is true.

Question 6. Royden 17-36.

36. Let μ be a finite premeasure on an algebra S, and μ^* the induced outer measure. Show that a subset E of X is μ^* -measurable if and only if for each $\epsilon > 0$ there is a set $A \in S_{\delta}$, $A \subseteq E$, such that $\mu^*(E \sim A) < \epsilon$.

Solution. By the definition of set measurability by Caretheodory, E being u^* measurable is equivalent to E^c being u^* measurable. From Royden, we have that E is u^* measurable iff for any $\epsilon>0$, there exists $A\in S_\sigma$ such that $A\subseteq S_\sigma$, and $u^*(A\setminus C)<\epsilon$.

We begin the main part of the proof. Assume E is u^* measurable. Fix $\epsilon>0$. Then, by the established equivalence above, it follows that E^c is u^* measurable, and there exists $A\in S_\sigma$ such that $E^c\subseteq A$, and $u^*(A\setminus E^c)<\epsilon$. We claim that A^c is the set with the desired property. As $A\in S_\sigma$ there exists $\{O_n\}_{n=1}^\infty$ such that $A=\cup_{n=1}^\infty O_n$. By DeMorgan's law, we have $A^c=\cap_{n=1}^\infty O_n^c$. As, S is an algebra, O_n^c is also in S, and it follows that $A^c\in S_\delta$. Furthermore, as $E^c\subseteq A$, it follows that $A^c\subseteq E$. Lastly, as $A\setminus E^c=E\setminus A^c$, we have $u^*(E\setminus A^c)<\epsilon$. Since ϵ was arbitrary, we have shown the forward implication.

Now, we prove the reverse implication. Assume that E from 2^X has the given property. Fix $\epsilon>0$. Then, there exists $A\in S_\delta$ such that $A\subseteq E$, and $u^*(E\setminus A)<\epsilon$. Then, by taking the argument above in reverse, we obtain that $A^c\in S_\sigma$ such that $E^c\subseteq A^c$ and $u^*(A^c\setminus E^c)<\epsilon$. Since ϵ was arbitrary, we have shown that for any $\epsilon>0$, there is a set $A\in S_\sigma$ such that $E^c\subseteq A$, such that $u^*(A\setminus E^c)<\epsilon$. By the established equivalence above, this implies that E^c is u^* measurable, and subsequently E is u^* measurable.