Contents

Mo	del descriptions	2
		3
2.1		
2.2	Category Specific Covariate Effects	4
Mo	del 1a	6
3.1	Global Covariate Effects	6
3.2		
Mo	del 1b	8
4.1	Global Covariate Effects	8
4.2		
Mo	del 1c	10
5.1	Global Covariate Effects	10
5.2		11
Mo	del 2a	13
6.1	Global Covariate Effects	13
6.2		14
Mo	del 2b	15
7.1	Global Covariate Effects	15
7.2		
	Mo 2.1 2.2 Mo 3.1 3.2 Mo 4.1 4.2 Mo 5.1 5.2 Mo 6.1 6.2 Mo 7.1	2.2 Category Specific Covariate Effects Model 1a 3.1 Global Covariate Effects 3.2 Category Specific Covariate Effects Model 1b 4.1 Global Covariate Effects 4.2 Category Specific Covariate Effects Model 1c 5.1 Global Covariate Effects 5.2 Category Specific Covariate Effects Model 2a 6.1 Global Covariate Effects 6.2 Category Specific Covariate Effects Model 2b 7.1 Global Covariate Effects

1 Model descriptions

Explanation of model labels where we use all of the data:

- model 0: icclevel
 - sequential dv with categories in original six icclevel categories
- model 1a: icclevel opp 3, icclevel state 3
 - sequential model with a recoded DV with the following categories: $0=0,\ 1=1,\ 2=$ everything else (2-6)
- model 1b: icclevel opp 4a, icclevel state 4a
 - sequential model with DV recoded into the following categories: 0=0, 1=1, 2=all 2s and 3s, 3=all 4s, 5s, and 6s
- model 1c: icclevel opp 4b, icclevel state 4b
 - sequential model with DV recoded into the following categories: 0=0, 1=1, 2=2, 3=everything else (3=6)

Explanation of model labels where we drop all observations where ICC level=0 from the case universe (so only include ongoing PEs/Formals):

- model 2a: icclevel2 opp 3a, icclevel2 state 3a
 - sequential model with DV recoded into the following categories: 0=all 1s, 1=all 2-3s, 3=all 4-6s
- model 2b: icclevel2 opp 3b, icclevel2 state 3b
 - sequential model with DV recoded into the following categories: 0=all
 1s, 1=all
 2s, 3=everything else (3-6)

For each of the models presented we present results using global and category specific covariate effects. Category specific covariate effects are calculated for: Africa, OSV, and affinity scores.

2 Model 0

Variable	state	rebel
icc rat	1.5**	1.6**
	(0.28)	(0.25)
lag1 civilwar	0.8**	1.73**
	(0.26)	(0.21)
lag1 polity2	0.2**	0.03
	(0.03)	(0.02)
lag1 gdpCapLog	0.44**	-0.2**
	(0.11)	(0.1)
lag1 v2juncind	-0.56**	-0.51**
	(0.12)	(0.11)
lag1 pts	1.28**	
	(0.13)	
lag1 p5 defAllyMax	0.18	0.59**
	(0.26)	(0.23)
lag1 p5 gov clean	-1.36**	0.26
	(0.6)	(0.33)
lag1 p5 reb clean	1.61**	1.11**
	(0.58)	(0.41)
africa	1.6**	1.96**
	(0.3)	(0.27)
lag1 osv state cumul	0.08**	
	(0.03)	
lag1 osv rebel cumul		0.06*
		(0.03)
lag1 p5 absidealdiffMin	1.89**	0.66
	(0.43)	(0.42)

Table 1: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

Variable	state	rebel
icc rat	1.61**	1.73**
lag1 civilwar	(0.3) 1.29** (0.28)	(0.26) $1.78**$ (0.23)
lag1 polity2	0.2**	0.03
lagt gdpCapLog	$(0.03) \\ 0.57^{**}$	(0.03) $-0.24**$
lag1 gdpCapLog	(0.12)	(0.1)
lag1 v2juncind	-0.66^{**} (0.13)	-0.5^{**} (0.12)
lag1 pts	1.26** (0.14)	
${\rm lag1~p5~defAllyMax}$	0.41 (0.28)	0.7^{**} (0.25)
lag1 p5 gov clean	-1.31**	0.56
lag1 p5 reb clean	(0.63) 1.77**	(0.35) 1.1**
africa[1]	(0.62) 1.06** (0.34)	(0.44) $1.34**$ (0.29)
africa[2]	10.83**	7.21**
africa[2]	(2.06)	(1.38) 12.37
africa[3]	11.79 (10.42)	(12.1)
africa[4]	5.4	-0.98
africa[5]	$(16.98) \\ 9.87$	(16.44) -0.47
	(19.14)	(19.02)
africa[6]	-3.33 (18.57)	-0.84 (19.99)
lag1 osv rebel cumul[1]	,	0.17** (0.04)
lag1 osv rebel $cumul[2]$		-0.17**
lag1 osv rebel cumul[3]		(0.09) $-0.23**$ (0.11)
lag1 osv rebel cumul $[4]$		-0.05 (0.1)
lag1 osv rebel cumul[5]		-0.14 (0.15)
lag1 osv rebel cumul[6]		-0.02 (0.15)
lag1 osv state $cumul[1]$	$0.14** \\ (0.04)$	(0.20)
lag1 osv state $cumul[2]$	-0.44^{**} (0.15)	
lag1 osv state cumul[3]	-0.06 (0.18)	
lag1 osv state cumul[4]	-0.29 (0.31)	
lag1 osv state cumul[5]	1756725267.77 (1881537218.61)	
lag1 osv state $cumul[6]$	0.32 (0.41)	
lag1 p5 absidealdiffMin[1]	1.9** (0.45)	0.46 (0.49)
lag1 p5 absidealdiff Min[2]	4.49** (1.6)	5.09**
lag1 p5 absidealdiffMin[3]	5.06 5 (3.09)	0.66 (1.55)
lag1 p5 absidealdiff $Min[4]$	-19.22**	1.06
lag1 p5 absidealdiffMin[5]	(8.29) -34.67 (35.27)	(1.33) 0.41 (1.85)
lag1 p5 absidealdiffMin[6]	20.22 (15.13)	-3.29 (2.63)
	(-/	` -/

Table 2: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

3 Model 1a

Variable	state	rebel
icc rat	1.54**	1.82**
	(0.28)	(0.26)
lag1 civilwar	0.92**	2.18**
	(0.27)	(0.24)
lag1 polity2	0.19**	-0.01
	(0.03)	(0.03)
lag1 gdpCapLog	0.48**	-0.19^*
	(0.11)	(0.11)
lag1 v2juncind	-0.63**	-0.43**
	(0.12)	(0.12)
lag1 pts	1.34**	
	(0.14)	
lag1 p5 defAllyMax	0.29	0.59**
	(0.26)	(0.27)
lag1 p5 gov clean	-1.51**	-0.38
	(0.61)	(0.42)
lag1 p5 reb clean	1.7**	1.52**
	(0.6)	(0.49)
africa	1.6**	1.95**
	(0.31)	(0.29)
lag1 osv state cumul	0.09**	
	(0.04)	
lag1 osv rebel cumul		0.07**
		(0.03)
lag1 p5 absidealdiffMin	2.05**	0.89**
	(0.41)	(0.45)

Table 3: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

icc rat 1.66^{**} 2.13^{**} (0.3) (0.29) lag1 civilwar 1.36^{**} 2.38^{**} (0.3) (0.26) lag1 polity2 0.19^{**} -0.01 (0.03) (0.03) (0.03) lag1 gdpCapLog 0.57^{**} -0.21^{**} (0.12) (0.11) lag1 p5 defAllyMax 0.42 0.62^{**} (0.29) (0.28) lag1 p5 gov clean -1.42^{**} -0.16 (0.62) (0.45) lag1 p5 reb clean 1.74^{**} 1.75^{**} (0.62) (0.51) africa[1] 0.99^{**} 1.29^{**} (0.62) (0.51) africa[2] 11.93^{**} 7.27^{**} (0.34) (0.3) africa[2] 11.93^{**} 7.27^{**} (0.34) (0.3) africa[2] 11.93^{**} 7.27^{**} (0.44) lag1 osv rebel cumul[2] 0.12^{**} 0.04 lag1 osv state cumul[2] 0.12^{**} 0.09 lag1 p5 absidealdiffMin[1] 1.87^{**} 0.33 (0.47) (0.52) lag1	Variable	state	rebel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	icc rat	1.66**	2.13**
(0.3) (0.26)		(0.3)	(0.29)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 civilwar	1.36**	2.38**
$\begin{array}{c} & (0.03) & (0.03) \\ lag1 \ gdpCapLog & 0.57^{**} & -0.21^{*} \\ & (0.12) & (0.11) \\ lag1 \ p5 \ defAllyMax & 0.42 & 0.62^{**} \\ & (0.29) & (0.28) \\ lag1 \ p5 \ gov \ clean & -1.42^{**} & -0.16 \\ & (0.62) & (0.45) \\ lag1 \ p5 \ reb \ clean & 1.74^{**} & 1.75^{**} \\ & (0.62) & (0.51) \\ africa[1] & 0.99^{**} & 1.29^{**} \\ & (0.34) & (0.3) \\ africa[2] & 11.93^{**} & 7.27^{**} \\ & (2.32) & (1.41) \\ lag1 \ osv \ rebel \ cumul[1] & 0.12^{**} \\ & (0.04) \\ lag1 \ osv \ state \ cumul[2] & -0.21^{**} \\ & (0.09) \\ lag1 \ osv \ state \ cumul[2] & -0.44^{**} \\ & (0.15) \\ lag1 \ p5 \ absideal \ diffMin[1] & 1.87^{**} & 0.33 \\ & (0.47) & (0.52) \\ lag1 \ p5 \ absideal \ diffMin[2] & 4.63^{**} & 4.53^{**} \\ & (1.86) & (1.87) \\ lag1 \ pts[1] & 1.35^{**} \\ & (0.69) \\ lag1 \ v2juncind[1] & -0.69^{**} & -0.39^{**} \\ & (0.13) & (0.13) \\ lag1 \ v2juncind[2] & -1.4^{**} & -0.92^{*} \\ \end{array}$		(0.3)	(0.26)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 polity2	0.19**	-0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.03)	(0.03)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 gdpCapLog	0.57**	-0.21*
$\begin{array}{c} (0.29) & (0.28) \\ lag1 \ p5 \ gov \ clean & -1.42^{**} & -0.16 \\ (0.62) & (0.45) \\ lag1 \ p5 \ reb \ clean & 1.74^{**} & 1.75^{**} \\ (0.62) & (0.51) \\ africa[1] & 0.99^{**} & 1.29^{**} \\ (0.34) & (0.3) \\ africa[2] & 11.93^{**} & 7.27^{**} \\ (2.32) & (1.41) \\ lag1 \ osv \ rebel \ cumul[1] & 0.13^{**} \\ (0.04) \\ lag1 \ osv \ rebel \ cumul[2] & -0.21^{**} \\ (0.09) \\ lag1 \ osv \ state \ cumul[2] & -0.44^{**} \\ (0.15) \\ lag1 \ p5 \ absideal \ diff Min[1] & 1.87^{**} & 0.33 \\ (0.47) & (0.52) \\ lag1 \ p5 \ absideal \ diff Min[2] & 4.63^{**} & 4.53^{**} \\ (1.86) & (1.87) \\ lag1 \ pts[1] & 1.35^{**} \\ (0.69) \\ lag1 \ v2juncind[1] & -0.69^{**} & -0.39^{**} \\ (0.13) & (0.13) \\ lag1 \ v2juncind[2] & -1.4^{**} & -0.92^{*} \\ \end{array}$		(0.12)	(0.11)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 p5 defAllyMax	0.42	0.62**
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.29)	(0.28)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 p5 gov clean	-1.42**	-0.16
$\begin{array}{c} (0.62) & (0.51) \\ \text{africa[1]} & 0.99^{**} & 1.29^{**} \\ (0.34) & (0.3) \\ \text{africa[2]} & 11.93^{**} & 7.27^{**} \\ (2.32) & (1.41) \\ \text{lag1 osv rebel cumul[1]} & 0.13^{**} \\ (0.04) \\ \text{lag1 osv state cumul[2]} & -0.21^{**} \\ (0.09) \\ \text{lag1 osv state cumul[2]} & -0.44^{**} \\ (0.15) \\ \text{lag1 p5 absidealdiffMin[1]} & 1.87^{**} & 0.33 \\ (0.47) & (0.52) \\ \text{lag1 p5 absidealdiffMin[2]} & 4.63^{**} & 4.53^{**} \\ (1.86) & (1.87) \\ \text{lag1 pts[1]} & 1.35^{**} \\ (0.16) \\ \text{lag1 pts[2]} & -0.13 \\ (0.69) \\ \text{lag1 v2juncind[1]} & -0.69^{**} & -0.39^{**} \\ (0.13) & (0.13) \\ \text{lag1 v2juncind[2]} & -1.4^{**} & -0.92^{*} \\ \end{array}$		(0.62)	(0.45)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lag1 p5 reb clean	1.74**	1.75**
africa[2] $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		(0.62)	(0.51)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	africa[1]	0.99**	1.29**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.34)	(0.3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	africa[2]	11.93**	7.27**
$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$		(2.32)	(1.41)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 osv rebel cumul[1]		0.13**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(0.04)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 osv rebel cumul[2]		-0.21**
$\begin{array}{c} & (0.04) \\ \text{lag1 osv state cumul}[2] & -0.44^{**} \\ & (0.15) \\ \text{lag1 p5 absidealdiffMin}[1] & 1.87^{**} & 0.33 \\ & (0.47) & (0.52) \\ \text{lag1 p5 absidealdiffMin}[2] & 4.63^{**} & 4.53^{**} \\ & (1.86) & (1.87) \\ \text{lag1 pts}[1] & 1.35^{**} \\ & (0.16) \\ \text{lag1 pts}[2] & -0.13 \\ & (0.69) \\ \text{lag1 v2juncind}[1] & -0.69^{**} & -0.39^{**} \\ & (0.13) & (0.13) \\ \text{lag1 v2juncind}[2] & -1.4^{**} & -0.92^{*} \\ \end{array}$	•		(0.09)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 osv state cumul[1]	0.12**	, ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	(0.04)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lag1 osv state cumul[2]	-0.44**	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	(0.15)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lag1 p5 absidealdiffMin[1]	1.87**	0.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.47)	(0.52)
$\begin{array}{c} (1.86) & (1.87) \\ lag1 \ pts[1] & 1.35^{**} \\ (0.16) \\ lag1 \ pts[2] & -0.13 \\ (0.69) \\ lag1 \ v2juncind[1] & -0.69^{**} & -0.39^{**} \\ (0.13) & (0.13) \\ lag1 \ v2juncind[2] & -1.4^{**} & -0.92^{*} \\ \end{array}$	lag1 p5 absidealdiffMin[2]	4.63**	4.53**
$ \begin{array}{c} (0.16) \\ lag1 \ pts[2] \\ -0.13 \\ (0.69) \\ lag1 \ v2juncind[1] \\ -0.69^{**} \\ (0.13) \\ lag1 \ v2juncind[2] \\ -1.4^{**} \\ -0.92^{*} \end{array} $	• •	(1.86)	(1.87)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lag1 pts[1]	1.35**	, ,
$ \begin{array}{c} (0.69) \\ \text{lag1 v2juncind[1]} \\ -0.69^{**} \\ (0.13) \\ \text{lag1 v2juncind[2]} \\ \end{array} \begin{array}{c} (0.69)^{**} \\ -0.39^{**} \\ (0.13) \\ -1.4^{**} \\ \end{array} \begin{array}{c} -0.92^{**} \\ \end{array} $		(0.16)	
$\begin{array}{c} (0.69) \\ \text{lag1 v2juncind[1]} \\ -0.69^{**} \\ (0.13) \\ \text{lag1 v2juncind[2]} \\ -1.4^{**} \\ -0.92^{*} \end{array}$	lag1 pts[2]	-0.13	
$\begin{array}{cccc} lag1 \ v2juncind[1] & & -0.69^{**} & -0.39^{**} \\ & & (0.13) & (0.13) \\ lag1 \ v2juncind[2] & & -1.4^{**} & -0.92^{*} \end{array}$		(0.69)	
$ \begin{array}{ccc} & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & $	lag1 v2juncind[1]		-0.39**
lag1 v2juncind[2] -1.4^{**} -0.92^{*}	- •	(0.13)	(0.13)
	lag1 v2juncind[2]		
(0.0)	- •	(0.5)	(0.51)

Table 4: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

4 Model 1b

Variable	state	rebel
icc rat	1.55**	1.63**
	(0.28)	(0.25)
lag1 civilwar	0.83**	1.92**
	(0.26)	(0.22)
lag1 polity2	0.2**	0.03
	(0.03)	(0.02)
lag1 gdpCapLog	0.43**	-0.21**
	(0.11)	(0.1)
lag1 v2juncind	-0.59**	-0.52**
	(0.12)	(0.11)
lag1 pts	1.33**	
	(0.14)	
lag1 p5 defAllyMax	0.17	0.59**
	(0.26)	(0.25)
lag1 p5 gov clean	-1.45**	0.18
	(0.6)	(0.36)
lag1 p5 reb clean	1.63**	0.98**
	(0.6)	(0.45)
africa	1.55**	1.93**
	(0.31)	(0.28)
lag1 osv state cumul	0.07**	
	(0.03)	
lag1 osv rebel cumul		0.07**
		(0.03)
lag1 p5 absidealdiffMin	1.9**	0.84**
	(0.42)	(0.42)

Table 5: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

Variable	state	rebel
icc rat	1.62**	1.81**
	(0.3)	(0.26)
lag1 civilwar	1.36**	1.97**
	(0.29)	(0.23)
lag1 polity2	0.19**	0.03
	(0.03)	(0.03)
lag1 gdpCapLog	0.56**	-0.25**
	(0.12)	(0.11)
lag1 v2juncind	-0.66**	-0.5**
	(0.13)	(0.12)
lag1 pts	1.25**	
	(0.15)	
lag1 p5 defAllyMax	0.41	0.67**
	(0.29)	(0.26)
lag1 p5 gov clean	-1.33**	0.46
	(0.64)	(0.39)
lag1 p5 reb clean	1.75**	1.08**
	(0.63)	(0.47)
africa[1]	1.03**	1.28**
	(0.34)	(0.29)
africa[2]	10.87**	7.19**
	(2.01)	(1.37)
lag1 osv rebel cumul[1]		0.15**
		(0.03)
lag1 osv rebel cumul[2]		-0.19**
		(0.09)
lag1 osv state cumul[1]	0.13**	
	(0.04)	
lag1 osv state cumul[2]	-0.45**	
	(0.15)	
lag1 p5 absidealdiffMin[1]	1.87**	0.41
	(0.46)	(0.51)
lag1 p5 absidealdiffMin[2]	4.51**	5.1**
	(1.58)	(1.68)

Table 6: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

5 Model 1c

Variable	state	rebel
icc rat	1.52**	1.71**
	(0.28)	(0.26)
lag1 civilwar	0.94**	2.05**
	(0.26)	(0.23)
lag1 polity2	0.19**	-0.01
	(0.03)	(0.03)
lag1 gdpCapLog	0.49**	-0.17
	(0.11)	(0.1)
lag1 v2juncind	-0.61**	-0.4**
	(0.12)	(0.12)
lag1 pts	1.29**	
	(0.14)	
lag1 p5 defAllyMax	0.27	0.59**
	(0.26)	(0.26)
lag1 p5 gov clean	-1.44**	-0.23
	(0.62)	(0.39)
lag1 p5 reb clean	1.71**	1.6**
	(0.6)	(0.44)
africa	1.66**	2**
	(0.32)	(0.28)
lag1 osv state cumul	0.09**	
	(0.04)	
lag1 osv rebel cumul		0.05*
		(0.03)
lag1 p5 absidealdiffMin	2.08**	0.76*
	(0.42)	(0.44)

Table 7: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

Variable	state	rebel
icc rat	1.63**	1.93**
	(0.3)	(0.27)
lag1 civilwar	1.42**	2.18**
	(0.29)	(0.25)
lag1 polity2	0.19**	-0.01
	(0.03)	(0.03)
lag1 gdpCapLog	0.58**	-0.2^*
	(0.12)	(0.11)
lag1 v2juncind	-0.68**	-0.38**
	(0.13)	(0.13)
lag1 pts	1.23**	
	(0.15)	
lag1 p5 defAllyMax	0.42	0.67**
	(0.28)	(0.27)
lag1 p5 gov clean	-1.34**	0.04
0 1 0	(0.63)	(0.41)
lag1 p5 reb clean	ì.74**	1.69**
0 1	(0.61)	(0.48)
africa[1]	1.04**	1.35**
	(0.34)	(0.29)
africa[2]	10.82**	7.3**
	(1.94)	(1.37)
africa[3]	13.23	12.13
	(18.74)	(11.61)
lag1 osv rebel cumul[1]	,	0.13**
		(0.04)
lag1 osv rebel cumul[2]		-0.2**
		(0.09)
lag1 osv rebel cumul[3]		-0.25^{**}
		(0.12)
lag1 osv state cumul[1]	0.13**	, ,
	(0.04)	
lag1 osv state cumul[2]	-0.45^{**}	
	(0.14)	
lag1 osv state cumul[3]	-0.06	
	(0.17)	
lag1 p5 absidealdiffMin[1]	1.83**	0.31
	(0.46)	(0.5)
lag1 p5 absidealdiffMin[2]	4.37**	5.2**
	(1.57)	(1.67)
lag1 p5 absidealdiffMin[3]	4.68	0.6
O 1.1 mm m m m m m m m m m m m m m m m m	(2.95)	(1.56)
	(=:==)	(=:00)

Table 8: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

6 Model 2a

Variable	state	rebel
icc rat	-11.42**	-5.65**
	(3.07)	(1.5)
lag1 civilwar	-1.78	-1.15*
	(1.1)	(0.64)
lag1 polity2	0.76**	0.24**
	(0.28)	(0.11)
lag1 gdpCapLog	-4.4**	-1.74**
	(1.26)	(0.51)
lag1 v2juncind	-0.09	0.3
	(1.18)	(0.5)
lag1 poi pts	-3.74**	
	(1.86)	
lag1 p5 defAllyMax	-13.88	2.42**
	(14)	(0.94)
lag1 p5 gov clean	223.68	4.16**
	(282.7)	(1.68)
lag1 p5 reb clean	-277.56	-3.59**
	(278.92)	(1.49)
africa	5.32	6.84**
	(3.41)	(1.86)
lag1 poi osv state	0.23	
	(0.16)	
lag1 poi osv rebel		0.35**
		(0.08)
lag1 p5 absidealdiffMin	0.5	-0.36
	(2.16)	(1.58)

Table 9: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

Variable	state	rebel
icc rat	-19.22**	-6.44**
	(5.51)	(1.63)
lag1 civilwar	-4.81**	-1.12
	(1.96)	(0.7)
lag1 polity2	ì.18**	0.27**
	(0.47)	(0.11)
lag1 gdpCapLog	-6.15^{**}	-1.93**
0 0 1 1 0	(1.82)	(0.54)
lag1 v2juncind	-0.07	0.3
83	(1.66)	(0.53)
lag1 poi pts	-7.9**	(0.00)
	(3.19)	
lag1 p5 defAllyMax	-24.46	2.36**
logi po dell'illy literi	(17.35)	(1.03)
lag1 p5 gov clean	326.46	4.33**
ingl po gov croun	(400.53)	(1.65)
lag1 p5 reb clean	-387.27	-4.07**
lagi po los cican	(400.91)	(1.61)
africa[1]	15.75**	7.12**
[-]	(6.17)	(1.97)
africa[2]	-39.22*	4.64
[=]	(21.8)	(10.9)
lag1 p5 absidealdiffMin[1]	11.93**	4.9*
()	(5.64)	(2.67)
lag1 p5 absidealdiffMin[2]	-37.18**	-2.57
6- k.a[-]	(13.27)	(1.74)
lag1 poi osv rebel[1]	(/	0.38**
. G . F []		(0.1)
lag1 poi osv rebel[2]		0.4**
. G . F []		(0.14)
lag1 poi osv state[1]	0.23	(- /
3 1	(0.23)	
lag1 poi osv state[2]	4.73**	
O 1	(1.64)	
	()	

Table 10: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

7 Model 2b

Variable	state	rebel
icc rat	-7.78**	-4.36**
	(2.56)	(1.57)
lag1 civilwar	-2.13**	-1.02
	(1.03)	(0.66)
lag1 polity2	0.61**	-0.02
	(0.29)	(0.11)
lag1 gdpCapLog	-1.93**	-0.93**
	(0.75)	(0.44)
lag1 v2juncind	-1.17	0.55
	(1.14)	(0.52)
lag1 poi pts	-2.13	
	(1.63)	
lag1 p5 defAllyMax	-13.37	1.25
	(14.29)	(0.9)
lag1 p5 gov clean	280.2	2.95^{*}
	(349.38)	(1.56)
lag1 p5 reb clean	-326.51	-0.38
	(349.47)	(1.86)
africa	9.15**	7.47**
	(3.75)	(2.16)
lag1 poi osv state	0.24*	
	(0.14)	
lag1 poi osv rebel		0.35**
		(0.08)
lag1 p5 absidealdiffMin	4.97^{*}	-0.64
	(2.93)	(1.82)

Table 11: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.

state	rebel
-8.12**	-4.89**
(2.55)	(1.61)
-2.06**	-0.97
(1.03)	(0.69)
0.58**	-0.03
(0.28)	(0.11)
-1.99**	-1.02**
(0.77)	(0.49)
-1.02	$0.53^{'}$
(1.05)	(0.56)
-2.03	,
(1.57)	
-16.46	1.1
(20.03)	(0.98)
287.58	2.99*
(379.96)	(1.54)
-344.31	-0.87
(384.57)	(1.84)
8.64**	7.27**
(3.56)	(2.04)
16.58	7.6
(21.43)	(12)
3.61	$3.3\acute{2}$
(3.08)	(2.49)
6.13	-4.5**
(4.83)	(2.28)
, ,	0.37**
	(0.09)
	0.38**
	(0.13)
0.21	` /
0.37	
	-8.12** (2.55) -2.06** (1.03) 0.58** (0.28) -1.99** (0.77) -1.02 (1.05) -2.03 (1.57) -16.46 (20.03) 287.58 (379.96) -344.31 (384.57) 8.64** (3.56) 16.58 (21.43) 3.61 (3.08) 6.13 (4.83)

Table 12: ** and * indicate significance at p < 0.05 and p < 0.10, respectively.