Package 'ExtrPatt'

November 7, 2023

Type Package

2 compute.EPI

Index																					11
	wrapper.EPI																		•	•	9
	trans																				
	to.alpha.2 .																				
	svd.tpdm																				

compute.EPI

Estimation of EPI

Description

Estimates the extremal pattern index (EPI) from either the 'm' principle components after a PCA or left- and right expansion coefficients after an SVD. In case of a SVD, the threshold-based EPI (TEPI) can optionally be calculated.

Usage

```
compute.EPI(coeff, m = 1:10, q = 0.98)
```

Arguments

coeff	A list, containing the t x n dimensional principle components/expansion coefficients of TPDM. Can also be output of function 'est.tpdm'.
m	numeric vector: Containing the Principle Components from which EPI shall be computed (e.g. with modes = $c(1:10)$), the EPI is calculated on first ten principle components)
q	Optional: A threshold for computation of TEPI

Details

Given the first 'm' modes of principle components u and eigenvalues after a PCA, the EPI is given as:

$$EPI_t^u = \sqrt{\sum_{k=1}^m (u_{t,k}^2) / \sum_{j=1}^m e_j}.$$

Given the first 'm' modes of expansion coefficients u and v and singular values e after a SVD, the EPI and TEPI are given as:

$$EPI_t^{u,v} = \sqrt{\sum_{k=1}^m (u_{t,k}^2 + v_{t,k}^2) / \sum_{j=1}^m e_j}.$$

$$TEPI_t^{u,v} = \sqrt{(\sum_{k=1}^m (u_{t,k}^2 + v_{t,k}^2) / \sum_{j=1}^m e_j)|_{(|u_{t,k}| > q_u, |v_{t,k}| > q_v)}}.$$

decls 3

Value

An array of length t, containing EPI. TEPI is computed if if q > 0.

References

```
Szemkus & Friederichs (2023)
```

Examples

```
data <- precipGER

data.alpha2 <- to.alpha.2(data$pr)
Sigma <- est.tpdm(data.alpha2,anz_cores =1)
res.pca <- pca.tpdm(Sigma, data.alpha2)
EPI <- compute.EPI(res.pca, m = 1:10)

plot(data$date, EPI, type='l')</pre>
```

decls

Declustering

Description

Declustering routine, which will can be applied on radial component r in estimation of the TPDM. Subroutine of est.tpdm.

Usage

```
decls(x, th, k)
```

Arguments

x Real vectorth Thresholdk Cluster length

Value

numeric vector of declustered threshold exceedances

Author(s)

Yuing Jiang, Dan Cooley

References

Jiang & Cooley (2020) <doi:10.1175/JCLI-D-19-0413.1>

est.tpdm

See Also

est.tpdm

est.tpdm

Estimation of TPDM

Description

Estimation of tail pairwise dependence matrix (TPDM)

Sub-Routine of est.row.tpdm. Calculates one element of the TPDM

Usage

```
est.tpdm(X, Y = NULL, anz_cores = 1, clust = NULL, q = 0.98)
est.row.tpdm(x, Y, clust = NULL, q = 0.98)
est.element.tpdm(x, y, clust = NULL, q = 0.98)
```

Arguments

X	A t x n dimensional, numeric data-matrix with t: Number of time steps and n: Number of grid points/stations
Υ	A t x n dimensional, numeric Data-matrix with t: Number of time steps and n: Number of grid points/stations
anz_cores	Number of cores for parallel computing (default:1); Be careful not to overload your computer!
clust	Optional: If clust = NULL, no declustering is performed. Else, declustering according to cluster-length 'clust'.
q	Threshold for computation of TPDM. Only data above the 'q'-quantile will be used for estimation. Choose such that $0 < q < 1$.
x	Array of length t, where t is the number of time steps
у	Same as x

Details

Given a random vector X with components $x_{t,i}, x_{t,j}$ with $i,j=1,\ldots,n$ and it's radial component $r_{t,ij}=\sqrt{x_{t,i}^2+x_{t,j}^2}$ and angular components $w_{t,i}=x_{t,i}/r_{t,ij}$ and $w_{t,j}=x_{t,j}/r_{t,ij}$, the i'th,j'th element of the TPDM is estimated as:

$$\hat{\sigma}_{ij} = 2n_{ij,exc}^{-1} \sum_{t=1}^{n} w_{t,i} w_{t,j}|_{(r_{t,ij} > r_{0,ij})}$$

invTrans 5

. Given two random vectors X and Y with components $x_{t,i},y_{t,j}$ with $i,j=1,\ldots,n$, and it's radial component $r_{t,ij}=\sqrt{x_{t,i}^2+y_{t,j}^2}$ and angular components $w_{t,i}^x=\frac{x_{t,i}}{r_{t,ij}};w_{t,j}^y=\frac{y_{t,j}}{r_{t,ij}}$, the i'th,j'th element of the cross-TPDM is estimated as:

$$\hat{\sigma}_{ij} = 2n_{exc}^{-1} \sum_{t=1}^{n} w_{t,i}^{x} w_{t,j}^{y} |_{(r_{t,ij} > r_{0,ij})}$$

.

Value

An n x n matrix, containing the estimate of the TPDM

Array containing the estimate of one row of the TPDM.

Value containing the estimate of one element of the TPDM.

References

Jiang & Cooley (2020) <doi:10.1175/JCLI-D-19-0413.1>; Szemkus & Friederichs (2023)

Examples

```
data <- precipGER

data.alpha2 <- to.alpha.2(data$pr)
Sigma <- est.tpdm(data.alpha2,anz_cores =1)</pre>
```

invTrans

Transformation function

Description

Applies the inverse transformation $t^{-1}(v) = \log(\exp(v) - 1)$

Usage

```
invTrans(v)
```

Arguments

V

Real, positive vector

Details

Transformation from real, positive vector in real vector under preservation of frechet-distribution.

Value

Real vector, containing the result of inverse transformation function.

6 pca.tpdm

Author(s)

Yuing Jiang, Dan Cooley

References

Cooley & Thibaud (2019) <doi:10.1093/biomet/asz028>

See Also

svd.tpdm, pca.tpdm

pca.tpdm

Principal Component Analysis for TPDM

Description

Calculates principal component analysis (PCA) of given TPDM

Usage

```
pca.tpdm(Sigma, data)
```

Arguments

Sigma A n x n data array, containing the TPDM, can be output of est.tpdm.

data A t x n dimensional, numeric Data-matrix with t: Number of time steps and n:

Number of grid points/stations.

Value

list containing

- pc: The Principal Components of TPDM
- basis: The Eigenvectors of TPDM
- extremal.basis: The Eigenvectors of TPDM but transformed in positive reals with trans

Author(s)

Yuing Jiang, Dan Cooley

References

```
Jiang & Cooley (2020) <doi:10.1175/JCLI-D-19-0413.1>
```

precipGER 7

precipGER

daily Precipitation over Southern Germany

Description

Daily Precipitation at several stations in Germany

Usage

```
data(precipGER)
```

Format

A list containing containing

- pr: data-array
- date: time-information
- lon,lat: longitude & latitude information

Details

Daily Precipitation Data

Daily precipitation data from several wather station in southern Germany (longitude <50) over the years 2000-2019. The data has been downloaded from opendata server of german weather service (https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/).

Source

Quelle: Deutscher Wetterdienst

svd.tpdm

Singular Value decomposition for cross-TPDM

Description

Calculates singular value decomposition (SVD) of given cross-TPDM

Usage

```
svd.tpdm(Sigma, X, Y)
```

Arguments

Sigma	A n x n data array, containing the cross-TPDM, can be output of est.tpdm.
Χ	A t x n dimensional, numeric Data-matrix with t: Number of time steps and n:
	Number of grid points/stations.
Υ	Same as X but for second variable.

8 trans

Value

List containing

- pcU, pcV: The left- and right expansion coefficients of cross-TPDM
- U, V: The left- and right singular Vectors of cross-TPDM
- extr.U, extr.V: The left- and right singular vectors of cross-TPDM, but transformed in positive reals with trans

to.alpha.2

Probability integral transformation

Description

Performs transformation to make all of the margins follow a Frechet distribution with tail-index alpha = 2.

Usage

```
to.alpha.2(data, orig = NULL)
```

Arguments

data A t x n dimensional, numeric Data-matrix with t: Number of time steps and n:

Number of grid points/stations

orig If known: original distribution of data (currently implemented: 'normal' or

'gamma'), else: NULL

Value

Data-matrix of same dimension as 'data', but in Frechet-margins with tail-index 2

trans

transformation function

Description

```
Applies the transformation t(x) = \log(1 + \exp(x))
```

Usage

trans(x)

Arguments

Х

Real vector

wrapper.EPI 9

Details

Transformation from real vector in real, positive vector under preservation of Frechet-distribution.

Value

Real, positive vector, containing the result of transformation function.

Author(s)

```
Yuing Jiang, Dan Cooley
```

References

```
Cooley & Thibaud (2019) <doi:10.1093/biomet/asz028>
```

See Also

```
svd.tpdm, pca.tpdm
```

wrapper.EPI

Wrapper function

Description

Handles all steps for estimation of EPI from raw-data: 1) Preprocessing into Frechet-Margins 2) Estimation of TPDM 3) Calculation of Principal Components 4) Estimation of EPI

Usage

```
wrapper.EPI(
   X,
   Y = NULL,
   q = 0.98,
   anz_cores = 1,
   clust = NULL,
   m = 1:10,
   thr_EPI = NULL
)
```

Arguments

X	A t x n dimensional Data-matrix with t: Number of time steps and n: Number of grid points/stations
Υ	Optional: Sames as X but for second variable: If Y!=NULL, cross-TPDM instead of TPDM and SVD instead of PCA is computed
q	Threshold for computation of TPDM. Only data above the 'q'-quantile will be used for estimation. Choose such that $0 < q < 1$.

10 wrapper.EPI

anz_cores	Number of cores for parallel computing (default: 5)
clust	Optional_ Uf clust = NULL, no declustering is performed. Else, declustering according to cluster-length 'clust'
m	Numeric vector: Containing the principal components/expansion coefficients (in case of $Y!=NULL$) from which the EPI shall be computed (default: modes = $c(1:10)$, calculates the EPI on first ten principle Components)
thr_EPI	Only if Y!=NULL: Threshold for computation of TEPI. Expansion-coefficients that exceed the 'q'-quantile will be used for estimation. Choose such that $0 < q < 1$.

Value

In case of Y = NULL: A list containing:

- basis: The Eigenvectors of TPDM
- pc: The principal components of TPDM
- extremal.basis: The Eigenvectors of TPDM but transformed in positive reals with trans
- EPI: Extremal pattern index

In case of Y !=NULL: A list containing:

- U, V: The left- and right singular Vectors of cross-TPDM
- extr.U, extr.V: The left- and right singular vectors of cross-TPDM, but transformed in positive reals with trans
- pcU, pcV: The left- and right expansion coefficients of cross-TPDM
- EPI: Extremal pattern index
- TEPI: Threshold-based extremal pattern index

References

Szemkus & Friederichs 2023

Examples

```
data <- precipGER

result <- wrapper.EPI(data$pr, m = 1:50)

rbPal <- colorRampPalette(c('blue', 'white','red'))
Col <- rbPal(10)[as.numeric(cut(result$basis[,2],breaks = 10))]
plot(data$lat, data$lon,col=Col)
plot(data$date, result$EPI, type='l')</pre>
```

Index

```
* datasets
precipGER, 7

compute.EPI, 2

decls, 3

est.element.tpdm (est.tpdm), 4
est.row.tpdm, 4
est.row.tpdm (est.tpdm), 4
est.tpdm, 3, 4, 4, 6, 7

invTrans, 5

pca.tpdm, 6, 6, 9
precipGER, 7

svd.tpdm, 6, 7, 9

to.alpha.2, 8
trans, 6, 8, 8, 10

wrapper.EPI, 9
```