Matrix Operations

Section 2.1

Learning Objectives:

- 1. Compute sums, scalar multiples, products, and transposes of matrices.
- 2. Recognize and apply properties of the above matrix operations.

1 Matrix operations

Definition: Given the matrix $A = (a_{ij})$, we call the entries $a_{11}, a_{22}, a_{33}, \ldots$ the **diagonal entries** of A. A **diagonal matrix** is an $n \times n$ matrix whose only non-zero entries are on the diagonal.

E.g. The identity matrix $I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$ is a diagonal matrix.

If A and B are matrices of the same size (same number of rows and columns), then their sum A + B is the matrix obtained by summing the entries of A and B component-wise.

Given a matrix A and a scalar r, their scalar multiplication is the matrix rA obtained by multiplying each entry in A by r.

Theorem: Let A, B, C be matrices of the same size, and r, s be scalars. Then

1.
$$A + B = B + A$$

2.
$$(A+B)+C=A+(B+C)$$

3.
$$A + 0 = A$$

4.
$$r(A+B) = rA + rB$$

$$5. (r+s) = rA + sA$$

6.
$$r(sA) = (rs)A$$

Here, 0 represents the zero matrix: the matrix whose entries are all zero.

Example 1. Let
$$A = \begin{pmatrix} 1 & -2 \\ 4 & 4 \end{pmatrix}$$
. Compute $2A - 2I_2$.

2 Matrix Multiplication

Given A and B, two matrices, what should AB mean? We hope that the resultant matrix AB would have the property that

$$(AB)\mathbf{x} = A(B\mathbf{x})$$

for any vector \mathbf{x} . As a picture:

Example 2. Suppose A is an $m \times q$ matrix and B is a $p \times n$ matrix.

- 1. What size must the vector \mathbf{x} be in order for $B\mathbf{x}$ to be computed?
- 2. What size vector will Bx be?
- 3. Are there any restrictions on the size of A so that $A(B\mathbf{x})$ makes sense?
- 4. What size vector will $A(B\mathbf{x})$ be?
- 5. What size matrix do you think AB will be?

Definition: If A is size $m \times p$ and $B = (\mathbf{b}_1 \dots \mathbf{b}_n)$ is size $p \times n$, then the **matrix product** AB is the $m \times p$ matrix defined by

$$AB = (A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_n).$$

Practically: to find the i, jth entry of AB, compute the dot product of the ith row of A with the jth column of B.

Example 3. If A is a 3×5 matrix and B is a 5×2 matrix, what are the sizes of AB and BA, if they are defined?

Example 4. Let
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & 3 \\ 3 & 1 \\ 7 & -2 \end{pmatrix}$. Compute AB and BA.

Remark: In a better world, we would call AB the matrix *composition*! Thinking about A and B as transformations, AB is the transformation which first applies B and then applies A. An important observation here is that, in general, compositions are not commutative (perhaps you recall that $f \circ g \neq g \circ f$ in general). Thus, in general:

$$AB \neq BA$$
.

However, other very nice properties of matrix multiplication still hold:

Theorem: Let A be $m \times n$, and B and C be appropriate sizes so that products/sums are defined:

- 1. A(BC) =
- 2. A(B+C) =
- 3. (B+C)A =
- 4. r(AB) =
- $5. I_m A = A = A I_n$

where I_m, I_n are identity matrices.

If A is a square matrix, then we can multiply A by itself as many times as we would like:

$$A^k = A \cdots A$$
.

If k = 0 then we interpret $A^0 = I_n$.

Example 5. Suppose that AB = 0. T/F: It must be the case that either A = 0 or B = 0.

3 Transposes

Definition: Given a matrix A of size $m \times n$, the matrix A^T is called the **transpose** and is the $n \times m$ matrix whose columns are formed from the rows of A.

Example 6. Suppose A is $m \times p$ and B is $p \times n$. Why can't $(AB)^T = A^TB^T$? Can you determine the correct formula?

Theorem: Let A and B have appropriate sizes. Then:

1.
$$(A^T)^T =$$

2.
$$(A+B)^T =$$

3. For any scalar
$$r$$
, $(rA)^T =$

4.
$$(AB)^T =$$

Example 7. Suppose $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}$. Check that AB = AC. What is surprising about the "algebra" of matrices that is different from algebra of numbers?