# Propagation d'une onde lumineuse

## Exercice 1 : Choisir les bonnes réponses parmi celles qui sont proposées (QCM) :

- 1. le spectre de la lumière visible est formé de radiations dont les longueurs d'onde dans le vide sont comprises entre :
  - (a)400mm et 800 mm
- (b)  $400\mu$  et  $800 \mu m$
- (c) 400nm et 800 nm
- 2. la longueur d'onde  $\lambda$  dans le vide d'une radiation de fréquence  $\nu$  est donnée par la relation :
  - (a)  $\lambda = c.\nu$

- (b)  $\lambda = \frac{c}{\nu}$
- (c)  $\lambda = \frac{\nu}{c}$
- 3. le phénomène de diffraction permet de mettre en évidence :
  - (a)le caractère ondulatoire de la lumière
- (b) l'influence du milieu sur la vitesse de propagation
- 4. lors d'une expérience de diffraction d'un faisceau lumineux de longueur d'onde  $\lambda$  par une fente de largeur a située à la distance D de l'écran, la largeur de la tache centrale observée sur l'écran est :
  - (a) proportionnelle à a
- (b) inversement proportionnelle à a
- (c) indépendante de a

- (d) proportionnelle à  $\lambda$
- (e) inversement proportionnelle à  $\lambda$
- (f) indépendante de  $\lambda$

- (g) proportionnelle à D
- (h) inversement proportionnelle à D
- (i) indépendante de D

### Exercice 2 :lampe à iode

Une lampe à iode émet de nombreuses radiations, les longueurs d'onde dans le vide de trois de ces radiations sont : 512 nm, 534 nm et 563 nm.

- 1. Cette lampe émet-elle une lumière monochromatique ou polychromatique ?
- 2. Calculer la fréquence de ces radiations. Donnée : célérité de la lumière dans le vide  $c=3.10^8 m/s$

# Exercice 3: laser Y.A.G (Yttrium Alumimium Garnet)

Un laser Y.A.G (Yttrium Alumimium Garnet) utilisé en médecine possède, dans le vide, une longueur d'onde  $\lambda_0=1060nm$ 

- 1. Cette onde lumineuse est-elle visible? dans quel domaine du spectre se situe-t-elle?
- 2. Calculer sa fréquence.
- 3. Calculer la longueur d'onde  $\lambda_1$  de ce laser dans un verre flint d'indice n = 1,58
- 4. Dans un verre crown, la longueur d'onde de ce laser est  $\lambda_2=716nm$ . Calculer l'indice de ce verre.

### Exercice 4 :onde monochromatique

Un laser émet une onde monochromatique de longueur d'onde  $\lambda$ , par une ouverture de largeur  $a=120\mu m$ , il produit une tache lumineuse de longueur L sur un écran situé à la distance D=1,5m de l'ouverture.

- 1. Donner le nom de ce phénomène.
- 2. démontrer la relation entre a, L, D et  $\theta$
- **3.** Calculer la longueur d'onde pour L=1,6cm On attaque un prisme par le même faisceau lumineux. Donnée :  $A=60^{\circ}$ ,  $i=45^{\circ}$ , n=1,66 indice de réfraction du prisme
- 4. Définir une onde monochromatique.
- 5. Donner les lois de Descartes au point I et I' on donne  $n_{air} = 1$
- 6. Rappeler les relations du prisme.
- 7. Donner les valeurs de r, r', i, D
- 8. En remplace le laser par une source de lumière blanche .Quel phénomène sera-t-il mis en évidence ?





# Exercices Supplémentaires

## Exercice 5 :longueur d'onde d'une lumière monochromatique

Un rayon lumineux  $(R_1)$  monochromatique de fréquence  $\nu_1 = 3,80.10^{14}$  Hz arrive sur la face plane d'un demi-cylindre en verre transparent au point d'incidence I sous un angle d'incidence  $i=60^{\circ}$ .

Le rayon  $(R_1)$  se réfracte au point I et arrive à l'écran vertical au point A (figure2). On fait maintenant arriver un rayon lumineux monochromatique  $(R_2)$  de fréquence  $\nu_2$ =7,  $50.10^{14}Hz$  sur la face plane du demi-cylindre sous le même angle d'incidence i =  $60^{\circ}$ .



On constate que le rayon  $(R_2)$  se réfracte aussi au point I mais il arrive à l'écran vertical en un autre point B de tel sorte que l'angle entre les deux rayons réfractés est  $\alpha$ =0,563°.

#### Données:

- L'indice de réfraction du verre pour le rayon lumineux de fréquence  $\nu_1$  est  $n_1 = 1,626$ .
- L'indice de réfraction de l'air est 1,00.
- $c=3,00.10^8 m/s$ .
- 1. Montrer que la valeur de l'indice de réfraction du verre pour le rayon lumineux de fréquence  $\nu_2$  est  $n_2=1,652$ .
- 2. Trouver l'expression de la longueur d'onde  $\lambda_2$  du rayon lumineux de fréquence  $\nu_2$  dans le verre, en fonction de c,  $n_2$  et  $\nu_2$ . Calculer  $\lambda_2$ .