Baze podataka

Predavanja

7. Oblikovanje sheme relacijske baze podataka (2. dio)

funkcijske n-torké. značenje Y-vrijednosti ključni

Travanj, 2021.

Normalizacija

Postupci normalizacije

- Uočena znanja o međusobnim funkcijskim zavisnostima atributa relacije koriste se u postupcima normalizacije.
- Cilj:
 - ukloniti redundanciju
 - anomalije unosa, izmjene i brisanja
 - spriječiti pojavu lažnih n-torki
- Postupci normalizacije omogućavaju da se postupno, točno definiranom metodom, odredi dobra zamjena za loše koncipiranu relacijsku shemu

E. F. Codd:

"Normalized data base structure: A brief tutorial"

Proc. ACM SIGFIDET Workshop on Data Description, Access and Control, 1971

"I called it normalization because then-President Nixon was talking a lot about normalizing relations with China. I figured that if he could normalize relations, so could I." ('A "FIRESIDE" CHAT', DBMS, Dec. 1993)

Normalne forme

- Prva normalna forma 1 NF
- Druga normalna forma 2 NF
- Treća normalna forma 3 NF
- Boyce-Coddova normalna forma BCNF
 Temelje se na FUNKCIJSKIM ZAVISNOSTIMA

- Četvrta normalna forma 4NF
 Temelji se na VIŠEZNAČNIM ZAVISNOSTIMA
- Projekcijsko-spojna normalna forma PJNF
 Temelji se na SPOJNIM ZAVISNOSTIMA

Postupci normalizacije

Dekompozicija

 početne relacije (relacijske sheme) se dekomponiraju na temelju uočenih funkcijskih zavisnosti

Sinteza

 zadan je skup atributa i nad njima skup funkcijskih zavisnosti iz kojih se sintetiziraju relacijske sheme koje zadovoljavaju 3NF

Dekompozicija relacijske sheme (relacije)

- Dekompozicijom (razlaganjem) relacijska shema R zamjenjuje se shemama $R_1, R_2, ..., R_n, R_i \subseteq R$, pri čemu vrijedi $R = R_1 R_2 ... R_n$
- Dekompozicijom se relacija r(R) zamjenjuje relacijama r₁(R₁),

$$r_2(R_2), ..., r_n(R_n)$$
, pri čemu je $r_i(R_i) = \pi_{R_i}(r)$, za i = 1, ..., n

Relacija r(R) se dekomponira na relacije r₁(R₁), r₂(R₂), ..., r_n(R_n) bez gubitaka informacija (lossless decomposition) ako vrijedi:

$$r_1(R_1) \triangleright \triangleleft r_2(R_2) \triangleright \triangleleft ... \triangleright \triangleleft r_n(R_n) = r(R)$$
odnosno

$$\pi_{R_1}(r) \triangleright \triangleleft \pi_{R_2}(r) \triangleright \triangleleft \dots \pi_{R_n}(r) = r(R)$$

Dekompozicija relacije - primjer

Zadana je relacija:

r(R)

Α	В	С	D
a1	b1	c1	d1
a2	b2	c1	d1

- Relaciju r(R) dekomponirati na relacije
 - $r_1(R_1)$, $R_1 = \{A, C\}$
 - $r_2(R_2)$, $R_2 = \{ B, C \}$
 - $r_3(R_3)$, $R_3 = \{ C, D \}$

 r₁(R₁)

 A
 C

 a1
 c1

 a2
 c1

 R
 C

 b1
 c1

 b2
 c1

$r_3(R_3)$	
С	D
c1	d1

Je li dekompozicija obavljena bez gubitaka informacija?

$$r_1(R_1) \rhd \lhd r_2(R_2) \rhd \lhd r_3(R_3)$$

Α	В	С	D
a1	b1	c1	d1
a1	b2	c1	d1
a2	b1	c1	d1
a2	b2	c1	d1

 \Rightarrow NE

Razlaganje relacije bez gubitaka na dvije projekcije

- Relacija se bez gubitaka razlaže na svoje dvije projekcije ako:
 - projekcije imaju zajedničke atribute

osoba

zajednički atributi su ključ u barem jednoj od projekcija

D	I N /	П		R:
	IIV	U	_	I \ .

matBr	prez	ime	postBr	nazMj
11234	Novak	Josip	21000	Split
12345	Horvat	Ivan	10000	Zagreb
23456	Kolar	Ana	31000	Osijek
34567	Novak	Josip	10000	Zagreb

$$osoba_1 = \pi_{matBr. prez. ime. postBr}$$
 (osoba)

mjesto =
$$\pi_{postBr, nazMj}$$
 (osoba)

Hoće li se relacija osoba dekomponirati bez gubitaka informacija na relacije osoba₁ i mjesto? Odnosno, vrijedi li:

osoba
$$\equiv$$
 osoba₁ ⊳⊲ mjesto

Primjer razlaganja relacije na dvije projekcije

osoba₁

matBr	prez	ime	postBr
11234	Novak	Josip	21000
12345	Horvat	Ivan	10000
23456	Kolar	Ana	31000
34567	Novak	Josip	10000

OSOBA₁ = { matBr, prez, ime, postBr } $K_{OSOBA_1} = \{ \text{ matBr } \}$

mjesto

postBr	nazMj
21000	Split
10000	Zagreb
31000	Osijek

osoba

 $OSOBA_1 \cap MJESTO = \{ postBr \}$

 \Rightarrow osoba \equiv osoba₁ $\triangleright \triangleleft$ mjesto

matBr	prez	ime	postBr	nazMj
11234	Novak	Josip	21000	Split
12345	Horvat	Ivan	10000	Zagreb
23456	Kolar	Ana	31000	Osijek
34567	Novak	Josip	10000	Zagreb

Prva normalna forma (1NF)

Definicija:

Relacijska shema je u 1NF ako:

- domene atributa sadrže samo jednostavne (nedjeljive) vrijednosti
- vrijednost svakog atributa je samo jedna vrijednost iz domene tog atributa
- neključni atributi relacije funkcijski ovise o ključu relacije
- Shema baze podataka R = { R₁, R₂, ..., R_n} je u 1NF ako je svaka relacijska shema R₁, R₂, ..., R_n u 1NF

Prva normalna forma - primjer

- Poduzeće evidentira podatke o radnicima
 - RADNIK = { matBr, prezime, ime, datRod, sifOdjel }

radnik (RADNIK)	matBr	prezime	ime	datRod	sifOdjel
	1111	Novak	Ivan	28.12.1970	50
	1121	Kolar	Iva	16.10.1965	30
	1133	Horvat	Krešo	19.03.1978	50

K_{RADNIK} = { matBr }

- domene svih atributa sadrže jednostavne (nedjeljive) vrijednosti
- vrijednost svakog atributa je samo jedna vrijednost iz domene tog atributa
- neključni atributi relacije funkcijski ovise o ključu relacije
- ⇒ Relacijska shema RADNIK je u 1NF

Prva normalna forma - primjer

- Poduzeće evidentira podatke o radnicima i njihovoj djeci korisnicima zdravstvenog osiguranja.
 - RADNIK₁={ matBr, prezime, ime, imenaDjece }

	radnik ₁ (RADNIK ₁)	matBr	prezime	ime	imenaDjece
		1111	Novak	Ivan	Jasna, Vedran
K _{RADNIK1} ={ matBr }	1121	Kolar	lva	Ivan	
	·	1133	Horvat	Krešo	Petar, Ana, Ivan

domena atributa imenaDjece ne sadrži jednostavne (nedjeljive vrijednosti)

⇒ Relacijska shema RADNIK₁ nije u 1NF

Prva normalna forma - primjer

- Poduzeće evidentira podatke o radnicima i njihovoj djeci korisnicima zdravstvenog osiguranja.
 - RADNIK₂={ matBr, prezime, ime, imeDj, datRodDj }

	radnik ₂ (RADNIK ₂)	matBr	prezime	ime	imeDj	datRodDj
	4	1111	Novak	Ivan	Jasna	21.01.1995
K _{RADNIK2} ={ matBr }		1111	NOVAK	IVali	Vedran	13.12.1997
_		1121	Kolar	lva	Ivan	23.03.2000
					Petar	22.02.1998
		1133	Horvat	Krešo	Ana	19.09.2000
					Ivan	05.11.2002

- domene sadrže jednostavne vrijednosti, ali vrijednost atributa imeDj nije uvijek samo jedna vrijednost iz domene tog atributa (isto vrijedi i za atribut datRodDj)
- ⇒ Relacijska shema RADNIK₂ nije u 1NF

Normalizacija na 1NF - izdvajanjem atributa u posebnu relaciju

 u posebnu relaciju izdvaja se skup atributa koji se ponavlja s jednakom kratnošću, zajedno s ključem originalne relacije

RADNIK₂={ matBr, prezime, ime, imeDj, datRodDj } K_{RADNIK₂}={ matBr }

rac	lni	k_3	(RA	DN	IIK_3
		J	`		0,

matBr	prezime	ime
1111	Novak	Ivan
1121	Kolar	Iva
1133	Horvat	Krešo

dijete (DIJETE)

matBr	imeDj	datRodDj
1111	Jasna	21.01.1995
1111	Vedran	13.12.1997
1121	Ivan.	23.03.2000
1133	Petar	22.02.1998
1133	Ana	19.09.2000
1133	Ivan	05.11.2002

 operacija je izvedena bez gubitaka informacija - relacijske sheme imaju zajedničke atribute (matBr), zajednički atributi su ključ u RADNIK₃

Normalizacija na 1NF - promjenom ključa

RADNIK₂={ matBr, prezime, ime, imeDj, datRodDj } K_{RADNIK₂}={ matBr }

RADNIK₄={ matBr, prezime, ime, imeDj, datRodDj } K_{RADNIK₄}={ matBr, imeDj }

radnik₄ (RADNIK₄)

matBr	prezime	ime	imeDj	datRodDj
1111	Novak	Ivan	Jasna	21.01.1995
1111	Novak	Ivan	Vedran	13.12.1997
1121	Kolar	Iva	Ivan	23.03.2000
1133	Horvat	Krešo	Petar	22.02.1998
1133	Horvat	Krešo	Ana	19.09.2000
1133	Horvat	Krešo	Ivan	05.11.2002

Druga normalna forma (2NF)

Definicija:

Relacijska shema R je u 2NF ako je u 1NF i ako je

 svaki atribut iz zavisnog dijela <u>potpuno funkcijski ovisan</u> <u>o svakom ključu relacije</u>

Shema baze podataka R = { R₁, R₂, ..., R_n} je u 2NF ako je svaka relacijska shema R₁, R₂, ..., R_n u 2NF

Potpuna funkcijska zavisnost

- Skup atributa Y potpuno je funkcijski ovisan o skupu atributa X relacijske sheme R ako:
 - Y funkcijski ovisi o Xi
 - ne postoji pravi podskup od X koji funkcijski određuje Y

PRIMJER:

```
Zadan je skup FZ F = { ABC \rightarrow DE, E \rightarrow F }.
```

Je li { D, E } potpuno funkcijski ovisan o { A, B, C } ?

Da, jer ne postoji skup $Z \subset \{A, B, C\}$ takav da $Z \rightarrow \{D, E\}$

Nepotpuna funkcijska zavisnost

```
Zadana je relacijska shema R i skupovi atributa X i Y iz R, tj. X \subseteq R, Y \subseteq R. Neka u R vrijedi FZ X \to Y.
```

 $FZ X \rightarrow Y$ je **nepotpuna** ako postoji skup atributa Z koji je pravi podskup od X, za koji vrijedi $Z \rightarrow Y$

odnosno

 $FZ X \rightarrow Y$ je nepotpuna ako ($\exists Z$) ($Z \subset X$) : $Z \rightarrow Y$

PRIMJER:

Zadan je skup FZ F = { ABC \rightarrow D, BC \rightarrow E, E \rightarrow D }.

Je li { D } potpuno funkcijski ovisan o { A, B, C } ?

Ne, jer postoji skup $\{B, C\} \subset \{A, B, C\}$ takav da $\{B, C\} \rightarrow \{D\}$

Druga normalna forma - primjer

 $RADNIK_4 = \{ \ matBr, \ prezime, \ imeDj, \ datRodDj \ \} \qquad K_{RADNIK_4} = \{ \ matBr, \ imeDj \ \}$

radnik₄ (RADNIK₄)

matBr	prezime	ime	imeDj	datRodDj
1111	Novak	Ivan	Jasna	21.01.1995
1111	Novak	Ivan	Vedran	13.12.1997
1121	Kolar	lva	Ivan.	23.03.2000
1133	Horvat	Krešo	Petar	22.02.1998
1133	Horvat	Krešo	Ana	19.09.2000
1133	Horvat	Krešo	Ivan	05.11.2002

- relacijska shema RADNIK₄ zadovoljava 1NF
- postoji FZ: matBr → prezime ime
- matBr imeDj → prezime ime je nepotpuna FZ!
- ⇒ Relacijska shema RADNIK₄ nije u 2NF

Normalizacija na 2NF

- Normalizacijom na 2NF nastaju:
 - relacijska shema koja sadrži skup atributa koji su bili nepotpuno funkcijski ovisni o ključu i dio ključa o kojem su potpuno funkcijski ovisni
 - relacijska shema koja sadrži ključ originalne relacije i skup atributa koji su potpuno funkcijski ovisni o ključu

RADNIK₅={ matBr, prezime, ime } K_{RADNIK5}={ matBr }

radnik₅ (RADNIK₅)

matBr	prezime	ime
1111	Novak	Ivan
1121	Kolar	Iva
1133	Horvat	Krešo

DIJETE={ matBr, imeDj, datRodDj }
KDIJETE={ matBr, imeDj }

dijete (DIJETE)

matBr	imeDj	datRodDj
1111	Jasna	21.01.1995
1111	Vedran	13.12.1997
1121	Ivan.	23.03.2000
1133	Petar	22.02.1998
1133	Ana	19.09.2000
1133	Ivan	05.11.2002

Normalizacija na 2NF

Neka su X, Y, Z, V atributi ili skupovi atributa. Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti F = $\{XY \rightarrow ZV, X \rightarrow Z\}$. Ključ relacije K_R = XY. R je u 1NF. Zadovoljava li R 2NF?

funkcijska zavisnost XY → Z je nepotpuna
 R ne zadovoljava 2NF

Normalizacijom na 2NF shema R se zamjenjuje shemama:

$$R_1 = XZ$$
 $R_2 = XYV$
 $K_{R_1} = X$ $K_{R_2} = XY$

Relacija r(R) se normalizacijom na 2NF zamjenjuje projekcijama:

$$r_1 = \pi_{XZ}(r)$$
 $r_2 = \pi_{XYV}(r)$

 operacija je izvedena bez gubitaka informacija - relacijske sheme imaju zajedničke atribute (X), zajednički atributi su ključ u R₁.

Treća normalna forma (3NF)

Definicija:

Relacijska shema je u 3NF ako je u 1NF i ako:

- niti jedan atribut iz zavisnog dijela <u>nije tranzitivno</u> <u>funkcijski ovisan o bilo kojem ključu relacije</u>
- Shema baze podataka R = { R₁, R₂, ..., R_n} je u 3NF ako je svaka relacijska shema R₁, R₂, ..., R_n u 3NF

Tranzitivna funkcijska zavisnost

Zadano je:

- relacijska shema R,
- skupovi atributa $X \subseteq R$, $Y \subseteq R$, $Z \subseteq R$

Skup atributa Z je tranzitivno ovisan o X ako vrijedi:

• $X \rightarrow Y$, $Y \not\rightarrow X$ i $Y \rightarrow Z$

Tranzitivna funkcijska zavisnost - primjer

Zadana je relacijska shema R = { A, B, C, D, E, F, G } i skup FZ $F = \{AB \rightarrow CD, D \rightarrow EF, CD \rightarrow ABG \}$

Jesu li EFG tranzitivno funkcijski ovisni o AB?

EF je tranzitivno funkcijski ovisan o AB, jer

• $AB \rightarrow D, D \rightarrow AB, D \rightarrow EF$

G nije tranzitivno funkcijski ovisan o AB, jer iako

- AB \rightarrow CD, CD \rightarrow G
- nije zadovoljen uvjet CD → AB

Treća normalna forma - primjer

OSOBA={ matBr, prez, ime, postBr, nazMjesto } K_{OSOBA}={ matBr }

osoba (OSOBA)	matBr	prez	ime	postBr	nazMjesto
	1111	Novak	Ivan	10000	Zagreb
	1121	Kolar	lva	31000	Osijek
	1133	Horvat	Krešo	10000	Zagreb

- Relacijska shema OSOBA zadovoljava 1NF.
- vrijedi FZ: matBr → postBr
- vrijedi FZ: postBr → nazMjesto
- ne vrijedi FZ: postBr → matBr
 - → matBr → nazMjesto je tranzitivna zavisnost!
- Relacijska shema OSOBA ne zadovoljava 3NF.

Normalizacija na 3NF

OSOBA={ matBr, prez, ime, postBr, nazMjesto } K_{OSOBA}={ matBr } Normalizacijom na 3NF nastaju:

- relacijska shema koja sadrži skup atributa relacijske sheme OSOBA koji su tranzitivno ovisni o ključu (nazMjesto) te srednji skup atributa uočene tranzitivne zavisnosti (postBr)
- relacijska shema koja sadrži ključ relacijske sheme OSOBA (matBr) i neključne atribute relacijske sheme OSOBA koji nisu tranzitivno ovisni o ključu

MJESTO={ postBr, nazMjesto }
K_{MJESTO}={ postBr }

mjesto (MJESTO)

postBr	nazMjesto
10000	Zagreb
31000	Osijek

OSOBA₁={ matBr, prezime, ime, postBr } K_{OSOBA1}={ matBr }

osoba₁ (OSOBA₁)

matBr	prezime	orezime ime	
1111	Novak	Ivan	10000
1121	Kolar	Iva	31000
1133	Horvat	Krešo	10000

Normalizacija na 3NF

Neka su X, Y, Z, V atributi ili skupovi atributa. Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti F = { $X \rightarrow YZV, Z \rightarrow V$ }. Ključ relacije K_R = X. R je u 1NF. Zadovoljava li R 3NF?

funkcijska zavisnost X → V je tranzitivna
 R ne zadovoljava 3NF

Normalizacijom na 3NF shema R se zamjenjuje shemama:

$$R_1 = XYZ$$
 $R_2 = ZV$
 $K_{R_1} = X$ $K_{R_2} = Z$

Relacija r(R) se normalizacijom na 3NF zamjenjuje projekcijama:

$$r_1 = \pi_{XYZ}(r)$$
 $r_2 = \pi_{ZV}(r)$

 operacija je izvedena bez gubitaka informacija - relacijske sheme imaju zajedničke atribute (Z), zajednički atributi su ključ u R₂.

Treća normalna forma - komentar

Normalizacija na 2NF nije nužni preduvjet za provođenje normalizacije na 3NF jer se nepotpune FZ mogu promatrati kao tranzitivne FZ.

Primjer: zadana je shema R = XYZV i na njoj skup funkcijskih zavisnosti F = { XY \rightarrow ZV, X \rightarrow Z }. Ključ relacije K_R= XY. R je u 1NF, ali nije u 2NF jer postoji nepotpuna FZ XY \rightarrow Z. Međutim, postoji i tranzitivna funkcijska zavisnost XY \rightarrow Z (XY \rightarrow X \wedge X \rightarrow Z).

Normalizacijom na 3NF shema R se zamjenjuje shemama:

$$R_1 = XZ$$
 $R_2 = XYV$
 $K_{R_1} = X$ $K_{R_2} = XY$

R₁ i R₂ su u 2NF i 3NF

Preporuka: normalizaciju ipak obavljati postupno 1NF ⇒ 2NF ⇒ 3NF

Normalizacija na 3NF - primjer

OSOBA₂={ matBr, prez, ime, OIB }

osoba2	(OSOBA2)

matBr	prez	ime	OIB
1111	Novak	Ivan	69435151530
1121	Kolar	lva	59351332978
1133	Horvat	Krešo	42794313596

- postoji FZ: matBr → prez ime OIB
- postoje FZ: OIB → prez ime i OIB → matBr
- matBr i OIB su mogući ključevi
- Relacijska shema OSOBA₂ zadovoljava 3NF.

$$K1_{OSOBA2} = \{ matBr \}$$

 $K2_{OSOBA2} = \{ OIB \}$

Normalizacija na 3NF - dodatna razmatranja

Neka su X, Y, Z, V atributi ili skupovi atributa. Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti F = { $X \rightarrow YZV, Z \rightarrow V, Z \rightarrow X$ }. R je u 1NF. Neka je ključ $K_R = X$.

- vrijedi $X \to Z$ i $Z \to V$, ali $X \to V$ nije tranzitivna FZ jer vrijedi i $Z \to X$
- Zbog X → Z i Z → X funkcijsku zavisnost X → V nije potrebno ukloniti jer u tom slučaju nema redundancije.
- Z je također mogući ključ u R

$$K1_R = X$$
 $K2_R = Z$

X i Z su mogući ključevi.

Relacijska shema R zadovoljava 3NF.

1. primjer normalizacije

Zadana je relacijska shema:

ISPIT = { matBr, prez, ime, sifPred, nazPred, datIsp, ocj, sifNas, prezNas }
i trenutna vrijednost relacije ispit(ISPIT):

ispit (ISPIT)

matBr	prez	ime	sifPred	nazPred	datlsp	ocj	sifNas	prezNas
1111	Novak	Ivan	1001	Mat-1	29.01.19	1	1111	Pašić
1111	Novak	Ivan	1001	Mat-1	05.02.19	3	1111	Pašić
1111	Novak	Ivan	1003	Fiz-1	28.06.18	2	3333	Horvat
1111	Novak	Ivan	1002	Mat-2	27.06.18	4	2222	Brnetić
1234	Kolar	Petar	1001	Mat-1	29.01.19	3	2222	Brnetić

- funkcijske zavisnosti odrediti na temelju značenja podataka
- odrediti primarni ključ relacije (tako da bude zadovoljen uvjet 1NF prema kojem neključni atributi funkcijski ovise o ključu)
- postupno normalizirati relacijsku shemu ISPIT na 2NF i 3NF

1. primjer normalizacije - 1NF

ispit (ISPIT)

matBr	prez	ime	sifPred	nazPred	datlsp	ocj	sifNas	prezNas
1111	Novak	Ivan	1001	Mat-1	29.01.19	1	1111	Pašić
1111	Novak	Ivan	1001	Mat-1	05.02.19	3	1111	Pašić
1111	Novak	Ivan	1003	Fiz-1	28.06.18	2	3333	Horvat
1111	Novak	Ivan	1002	Mat-2	27.06.18	4	2222	Brnetić
1234	Kolar	Petar	1001	Mat-1	29.01.19	3	2222	Brnetić

- Određivanje ključa: ako se (pogrešno) pretpostavi da je K = { matBr } Bi li tada postojali neključni atributi koje ključ funkcijski ne određuje?
- matBr → prez ime međutim:
- matBr → sifPred matBr → nazPred
 - matBr → datIsp matBr → ocj
 - matBr → sifNas matBr → prezNas

1. primjer normalizacije - 1NF

ispit (ISPIT)

matBr	prez	ime	sifPred	nazPred	datlsp	ocj	sifNas	prezNas
1111	Novak	Ivan	1001	Mat-1	29.01.19	1	1111	Pašić
1111	Novak	Ivan	1001	Mat-1	05.02.19	3	1111	Pašić
1111	Novak	Ivan	1003	Fiz-1	28.06.18	2	3333	Horvat
1111	Novak	Ivan	1002	Mat-2	27.06.18	4	2222	Brnetić
1234	Kolar	Petar	1001	Mat-1	29.01.19	3	2222	Brnetić

- Ako se pretpostavi K = { matBr, sifPred, datIsp }
 Bi li tada postojali neključni atributi koje ključ funkcijski ne određuje?
- matBr sifPred datIsp → prez ime nazPred ocj sifNas prezNas
 postoji li skup X ⊂ { matBr, sifPred, datIsp } za kojeg vrijedi X → R ?
 ⇒ NE ⇒ { matBr, sifPred, datIsp } je mogući ključ
 K_{ISPIT} = { matBr, sifPred, datIsp }
- zadovoljen je uvjet 1NF prema kojem neključni atributi funkcijski ovise o ključu

1. primjer normalizacije - 2NF

ispit (ISPIT)

matBr	prez	ime	sifPred	nazPred	datlsp	ocj	sifNas	prezNas
1111	Novak	Ivan	1001	Mat-1	29.01.19	1	1111	Pašić
1111	Novak	Ivan	1001	Mat-1	05.02.19	3	1111	Pašić
1111	Novak	Ivan	1003	Fiz-1	28.06.18	2	3333	Horvat
1111	Novak	Ivan	1002	Mat-2	27.06.18	4	2222	Brnetić
1234	Kolar	Petar	1001	Mat-1	29.01.19	3	2222	Brnetić

- Postoje li neključni atributi koji ovise o dijelu ključa?
 - matBr → prez ime

student = $\pi_{\text{matBr, prez, ime}}$ (ispit)

 $ispit_1 = \pi_{matBr, sifPred, nazPred, datIsp, ocj, sifNas, prezNas}(ispit)$

K_{STUDENT} = { matBr }

student (STUDENT)

matBr	prez	ime
1111	Novak	Ivan
1234	Kolar	Petar

2NF, 3NF: O.K.

ispit₁ (ISPIT₁)

K_{ISPIT1} = { matBr, sifPred, datIsp }

matBr	sifPred	nazPred	datlsp	ocj	sifNas	prezNas
1111	1001	Mat-1	29.01.19	1	1111	Pašić
1111	1001	Mat-1	05.02.19	3	1111	Pašić
1111	1003	Fiz-1	28.06.18	2	3333	Horvat
1111	1002	Mat-2	27.06.18	4	2222	Brnetić
1234	1001	Mat-1	29.01.19	3	2222	Brnetić

1. primjer normalizacije - 2NF (nastavak)

ispit₁ (ISPIT₁)

Postoje li neključni atributi koji ovise o dijelu ključa?

matBr	sifPred	nazPred	datlsp	ocj	sifNas	prezNas
1111	1001	Mat-1	29.01.19	1	1111	Pašić
1111	1001	Mat-1	05.02.19	3	1111	Pašić
1111	1003	Fiz-1	28.06.18	2	3333	Horvat
1111	1002	Mat-2	27.06.18	4	2222	Brnetić
1234	1001	Mat-1	29.01.19	3	2222	Brnetić

sifPred → nazPred

predmet =
$$\pi_{sifPred, nazPred}(ispit_1)$$

 $ispit_2 = \pi_{matBr, sifPred, datIsp, ocj, sifNas, prezNas}(ispit_1)$

K_{PREDMET} = { sifPred }

ispit₂ (ISPIT₂)

K_{ISPIT2} = { matBr, sifPred, datIsp }

predmet (PREDMET)

sifPred	nazPred
1001	Mat-1
1003	Fiz-1
1002	Mat-2

2NF, 3NF: O.K.

matBr	sifPred	datlsp	ocj	sifNas	prezNas
1111	1001	29.01.19	1	1111	Pašić
1111	1001	05.02.19	3	1111	Pašić
1111	1003	28.06.18	2	3333	Horvat
1111	1002	27.06.18	4	2222	Brnetić
1234	1001	29.01.19	3	2222	Brnetić

2NF: O.K.

1. primjer normalizacije - 3NF

ispit₂ (ISPIT₂)

Postoje li neključni atributi koji tranzitivno ovise o ključu?

matBr	sifPred	datIsp	ocj	sifNas	prezNas
1111	1001	29.01.19	1	1111	Pašić
1111	1001	05.02.19	3	1111	Pašić
1111	1003	28.06.18	2	3333	Horvat
1111	1002	27.06.18	4	2222	Brnetić
1234	1001	29.01.19	3	2222	Brnetić

■ matBr sifPred datIsp \rightarrow sifNas sifNas \rightarrow prezNas nastavnik = $\pi_{sifNas, prezNas}(ispit_2)$ ispit₃ = $\pi_{matBr, sifPred, datIsp, ocj, sifNas}(ispit_2)$

nastavnik (NASTAVNIK)

sifNas	prezNas
1111	Pašić
3333	Horvat
2222	Brnetić

3NF: O.K.

ispit ₃ (ISPIT ₃)	$K_{ISPIT_3} = 4$	{ matBr, sifPred, datIsp }
--	-------------------	----------------------------

matBr	sifPred	datlsp	ocj	sifNas
1111	1001	29.01.19	1	1111
1111	1001	05.02.19	3	1111
1111	1003	28.06.18	2	3333
1111	1002	27.06.18	4	2222
1234	1001	29.01.19	3	2222

3NF: O.K.

1. primjer normalizacije - 3NF

student (STUDENT)

matBr	prez	ime
1111	Novak	Ivan
1234	Kolar	Petar

predmet (PREDMET)

sifPred	nazPred	
1001	Mat-1	
1003	Fiz-1	
1002	Mat-2	

nastavnik (NASTAVNIK)

sifNas	prezNas	
1111	Pašić	
3333	Horvat	
2222	Brnetić	

ispit₃ (ISPIT₃)

matBr	sifPred	datlsp	ocj	sifNas
1111	1001	29.01.19	1	1111
1111	1001	05.02.19	3	1111
1111	1003	28.06.18	2	3333
1111	1002	27.06.18	4	2222
1234	1001	29.01.19	3	2222

Shema baze podataka STUSLU:

Shema baze podataka STUSLU zadovoljava 3NF

2. primjer normalizacije

Zadana je relacijska shema R = ABCDEFGH i na njoj skup funkcijskih zavisnosti

 $F = \{ ABC \rightarrow DEFGH, A \rightarrow D, BC \rightarrow FGH, FG \rightarrow H \}.$

Domene atributa sadrže samo jednostavne vrijednosti, vrijednost svakog atributa je samo jedna vrijednost iz domene tog atributa.

Odrediti primarni ključ relacije (tako da bude zadovoljen uvjet 1NF prema kojem neključni atributi funkcijski ovise o ključu), te shemu postupno normalizirati na 2NF i 3NF.

2. primjer normalizacije

R = ABCDEFGH

$$F = \{ABC \rightarrow DEFGH, A \rightarrow D, BC \rightarrow FGH, FG \rightarrow H\}$$

Odrediti primarni ključ relacije

Vrijedi li ABC → DEFGH ?

DA

postoji li skup $X \subset ABC$ za kojeg vrijedi $X \to R$?

NE

⇒ ABC je mogući ključ i može se odabrati kao primarni ključ sheme R.

R = ABCDEFGH

 $K_R = ABC$

R je u 1NF

2. primjer normalizacije - 2NF

R = ABCDEFGH
$$K_R$$
 = ABC
F = { ABC \rightarrow DEFGH, A \rightarrow D, BC \rightarrow FGH, FG \rightarrow H }

Normalizacija na 2NF

Svi atributi iz zavisnog dijela moraju biti potpuno funkcijski ovisni o ključu.

ABC → D je nepotpuna FZ, jer vrijedi A → D

R nije u 2NF

Normalizacijom na 2NF se R zamjenjuje shemama:

$$R_1=AD$$

$$K_{R1} = A$$

$$K_{R2} = ABC$$

2. primjer normalizacije - 2NF (nastavak)

$$R_1 = AD$$
 $K_{R_1} = A$

$$R_2$$
= ABCEFGH K_{R_2} = ABC

$$F = \{ABC \rightarrow DEFGH, A \rightarrow D, BC \rightarrow FGH, FG \rightarrow H\}$$

Svi atributi iz zavisnog dijela moraju biti potpuno funkcijski ovisni o ključu.

ABC \rightarrow FGH je nepotpuna FZ, jer vrijedi BC \rightarrow FGH R₂ nije u 2NF

Normalizacijom na 2NF se R₂ zamjenjuje shemama:

$$K_{R21} = BC$$

$$K_{R21}$$
= BC R_{21} je u 2NF

$$K_{R22} = ABC$$

$$K_{R22}$$
 = ABC R_{22} je u 2NF

2. primjer normalizacije - 3NF

$$K_{R_1} = A$$

$$R_1$$
 je u 3NF

$$K_{R_{21}} = BC$$

$$K_{R21}$$
 = BC R_{21} nije u 3NF

$$K_{R22} = ABC$$

$$K_{R22}$$
 = ABC R_{22} je u 3NF

$$F = \{ABC \rightarrow DEFGH, A \rightarrow D, BC \rightarrow FGH, FG \rightarrow H\}$$

Normalizacija na 3NF

Niti jedan atribut iz zavisnog dijela ne smije biti tranzitivno ovisan o ključu.

BC → H je tranzitivna FZ

Normalizacijom na 3NF se R₂₁ zamjenjuje shemama:

$$K_{R211} = BC$$

$$K_{R_{211}} = BC$$
 R_{211} je u 3NF

$$R_{212} = FGH$$

$$K_{R212} = FG$$

$$K_{R212} = FG$$
 R_{212} je u 3NF

Shema baze podataka u 3NF sastoji se od relacijskih shema: