Imperial College London

Module: MATH97123 Setter: Young

Checker: Ray

Editor: Papatsouma/Whitney

External: Woods
Date: April 7, 2021

MSc EXAMINATIONS (STATISTICS)

January 2021

MATH97123 Fundamentals of Statistical Inference Time: 2 hours

Setter's signature	Checker's signature	Editor's signature

1. (i) Define what is meant by a *minimax* decision rule. Define what is meant by a *Bayes* decision rule. What is a *least favourable prior*?

ANSWER: (Seen) Given a loss function $L(\theta, a)$, the risk function of a decision rule d = d(Y) is defined for $\theta \in \Omega_{\theta}$, the parameter space, by

$$R(\theta, d) = E_{\theta}L(\theta, d(Y)),$$

where E_{θ} denotes expectation with respect to distribution of Y, assuming Y has distribution defined by parameter value θ .

The maximum risk of a decision rule d is $MR(d) = \sup_{\theta \in \Omega_{\theta}} R(\theta, d)$. A decision rule is **minimax** if it minimises maximum risk: $MR(d) \leq MR(d')$ for all decision rules d'. [2 marks]

ANSWER: (Seen) Given a prior $\pi(\theta)$, the Bayes risk of a decision rule d is $r(\pi, d) = \int_{\Omega_{\theta}} R(\theta, d) \pi(\theta) d\theta$. A decision rule d is a **Bayes rule** with respect to the given prior $\pi(\theta)$ if it minimises the Bayes risk:

$$r(\pi, d) = \inf_{d'} r(\pi, d').$$

[2 marks]

ANSWER: (Seen) Let d_{π} be the Bayes rule with respect to a prior $\pi(\theta)$ and let $r_{\pi} = r(\pi, d_{\pi})$ be the associated Bayes risk. Suppose that for an arbitrary prior $\pi^*(\theta)$ the associated Bayes rule is d_{π^*} and let $r_{\pi^*} = r(\pi^*, d_{\pi^*})$. Then the prior π is least favourable if $r_{\pi} \geq r_{\pi^*}$ for all priors π^* . [2 marks]

Suppose d_{π} is a decision rule that is Bayes with respect to a prior $\pi(\theta)$. Suppose that the risk function of d_{π} satisfies

$$R(\theta, d_{\pi}) \leq r(\pi, d_{\pi}),$$

for all θ , where $r(\pi, d_{\pi})$ is the Bayes risk of d_{π} with respect to the prior $\pi(\theta)$. Show that $\pi(\theta)$ is a least favourable prior.

ANSWER: (Seen a version) Let π^* be an arbitrary prior, with associated Bayes rule d_{π^*} . Then,

$$r_{\pi^*} = \int_{\Omega_{\theta}} R(\theta, d_{\pi^*}) \pi^*(\theta) d\theta \leq \int_{\Omega_{\theta}} R(\theta, d_{\pi}) \pi^*(\theta) d\theta \leq r(\pi, d_{\pi}) \int_{\Omega_{\theta}} \pi^*(\theta) d\theta \equiv r(\pi, d_{\pi}),$$

the first inequality holding since d_{π^*} is Bayes with respect to π^* , and the second by assumption So, π is least favourable. [3 marks]

When is a Bayes decision rule minimax?

ANSWER: (Unseen) A Bayes rule is minimax if it is Bayes with respect to a least favourable prior. [Various specific results could be quoted here: if a Bayes rule has constant risk, it is minimax etc.] [2 marks]

2

(ii) Let $Y_1, ..., Y_n$ be independent, identically distributed random variables, with common density

$$f(y;\theta) = \frac{y}{\theta^2} e^{-y/\theta}, y > 0.$$

What is the maximum likelihood estimator of θ ?

Find the form of the Jeffreys prior for θ , and the posterior distribution for θ under this prior.

What is the Bayes estimator of θ under squared error loss function, $L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2$?

Verify that the Bayes estimator of θ under the loss function

$$L(\theta, \hat{\theta}) = \exp\left\{a\left(\frac{\hat{\theta}}{\theta} - 1\right)\right\} - a\left(\frac{\hat{\theta}}{\theta} - 1\right) - 1,$$

with $a \neq 0$, is given by

$$\hat{\theta}_B = \frac{\sum_{i=1}^n Y_i}{a} \left(1 - e^{-\frac{a}{2n+1}} \right).$$

ANSWER: (Seen similar) The likelihood function is

$$L(\theta) = \{ \prod_{i=1}^{n} y_i \} \exp\{-\sum_{i=1}^{n} y_i/\theta\}/\theta^{2n},$$

so taking logarithm to obtain the log-likelihood $I(\theta)$ and setting the derivative to zero, the MLE $\hat{\theta}$ satisfies

$$-2n/\theta + \{\sum_{i=1}^{n} y_i\}/\theta^2 = 0,$$

giving $\hat{\theta} = \sum_{i=1}^{n} Y_i/2n$.

[2 marks]

ANSWER: (Seen similar) The Jeffreys prior $\pi(\theta) \propto I(\theta)$, where $I(\theta)$ is the Fisher information

$$I(\theta) = E\{-\frac{\partial^2 I(\theta)}{\partial \theta^2}\}.$$

Here,

$$-\frac{\partial^2 I(\theta)}{\partial \theta^2} = 2n/\theta^2 - 2\{\sum_{i=1}^n y_i\}/\theta^3,$$

so, using $E(Y_i) = 2\theta$, following the hint, we have $I(\theta) = 2n/\theta^2$, and the Jeffreys prior has $\pi(\theta) \propto 1/\theta$. [2 marks]

ANSWER: (Seen similar) Then,

$$\pi(\theta|y) \propto L(\theta)\pi(\theta) \propto \theta^{-(2n+1)}e^{-\sum_{i=1}^{n} y_i/\theta}$$

identifying, in the notation of the hint, the posterior distribution as inverse-Gamma($2n, \sum_{i=1}^{n} y_i$). [2 marks]

ANSWER: (Seen similar) The Bayes estimator under squared error loss function is the mean of the posterior distribution, which is $\sum_{i=1}^{n} Y_i/(2n-1)$, from the given information. [1 mark]

ANSWER: (Seen similar) Denote by E_p expectation with respect to θ , under the posterior distribution. The Bayes estimator $\hat{\theta}$ minimises the expected posterior loss, $E_p\{L(\theta, \hat{\theta})\}$.

For the given loss,

$$E_{p}\{L(\theta,d)\}=e^{-a}\int_{0}^{\infty}e^{\frac{ad}{\theta}}\pi(\theta|y)d\theta-adE_{p}(\frac{1}{\theta})-1.$$

Differentiate with respect to d, then solve

$$e^{-a}E_{p}\left(\frac{a}{\theta}e^{\frac{ad}{\theta}}\right) - aE_{p}\left(\frac{1}{\theta}\right) = 0. \tag{1}$$

We have

$$E_{\rho}\left(\frac{1}{\theta}\right) = \frac{2n}{\sum_{i=1}^{n} Y_{i}},$$

and

$$E_{p}\left(\frac{1}{\theta}e^{\frac{ad}{\theta}}\right) = \frac{\left(\sum_{i=1}^{n}Y_{i}\right)^{2n}}{\Gamma(2n)} \int_{0}^{\infty} \frac{1}{\theta} \cdot \frac{1}{\theta^{2n+1}} \exp\left\{-\frac{\left(\sum_{i=1}^{n}Y_{i}-ad\right)}{\theta}\right\} d\theta$$

$$= \frac{\left(\sum_{i=1}^{n}Y_{i}\right)^{2n}}{\Gamma(2n)} \int_{0}^{\infty} \theta^{-(2n+2)} \exp\left\{-\frac{\left(\sum_{i=1}^{n}Y_{i}-ad\right)}{\theta}\right\} d\theta$$

$$= \frac{\left(\sum_{i=1}^{n}Y_{i}\right)^{2n}}{\Gamma(2n)} \frac{\Gamma(2n+1)}{\left(\sum_{i=1}^{n}Y_{i}-ad\right)^{(2n+1)}},$$

so solving(1) gives the Bayes estimator as

$$\hat{\theta}_B = \frac{\sum_{i=1}^n Y_i}{a} \left(1 - e^{-\frac{a}{2n+1}} \right).$$

[7 marks]

[Total 25 marks]

[If Y has the inverse-Gamma(α, β) distribution with density

$$f(y;\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-(\alpha+1)} \exp(-\beta/y), \ y > 0,$$

then
$$E(Y) = \beta/(\alpha - 1)$$
, $E(1/Y) = \alpha/\beta$.

If Y has the $Gamma(k, \theta)$ distribution with density

$$f(y;k,\theta)=\frac{y^{k-1}e^{-y/\theta}}{\theta^k\Gamma(k)},\ y>0,$$

then $E(Y) = k\theta$.

2. Let Y_1, \ldots, Y_p be independent random variables such that $Y_i \sim N(\theta_i, 1)$. Write $Y = (Y_1, \ldots, Y_p)^T$ and $\theta = (\theta_1, \ldots, \theta_p)^T$. Let $\hat{\theta} \equiv \hat{\theta}(Y) = (\hat{\theta}_1(Y), \ldots, \hat{\theta}_p(Y))^T$ be an estimator of θ , and let $g(Y) \equiv (g_1(Y), \ldots, g_p(Y))^T = \hat{\theta} - Y$. Denote by $\|\cdot\|$ the Euclidean norm, $\|Y\|^2 = Y_1^2 + \ldots + Y_p^2$.

Suppose that $D_i(Y) = \partial g_i(Y)/\partial Y_i$ exists. Then it is known that

$$\hat{R}\{\hat{\theta}(Y)\} = p + 2\sum_{i=1}^{p} D_i(Y) + \sum_{i=1}^{p} \{g_i(Y)\}^2$$

is an unbiased estimator of the risk of $\hat{\theta}$, under squared error loss $L(\theta, \hat{\theta}) = ||\hat{\theta} - \theta||^2$. [You are not required to show this].

(i) The James-Stein estimator is

$$\delta_{JS}(Y) = \left(1 - \frac{p-2}{\|Y\|^2}\right)Y.$$

Show that an unbiased risk estimator for $\delta_{JS}(Y)$ is

$$\hat{R}\{\delta_{JS}(Y)\} = p - (p-2)^2/||Y||^2.$$

Deduce that Y is inadmissible as an estimator of θ . Is $\delta_{JS}(Y)$ admissible?

ANSWER: (Seen similar) For the James-Stein estimator we have

$$g_i(Y) = -\frac{(p-2)}{||Y||^2}Y_i,$$

SO,

$$D_i(Y) = -(p-2) \cdot \frac{||Y||^2 - 2Y_i^2}{||Y||^4},$$

by the quotient rule. Then

$$\sum_{i=1}^{p} D_i(Y) = -(p-2) \left\{ \frac{p}{\|Y\|^2} - 2 \frac{1}{\|Y\|^2} \right\} = -(p-2)^2 / \|Y\|^2,$$

and

$$\sum_{i=1}^{p} \{g_i(Y)\}^2 = (p-2)^2 \frac{\sum_{i=1}^{p} Y_i^2}{\|Y\|^4} = (p-2)^2/\|Y\|^2,$$

so that

$$\hat{R}\{\delta_{JS}(Y)\} = p - 2(p-2)^2/||Y|^2 + (p-2)^2/||Y||^2 = p - (p-2)^2/||Y||^2.$$

[6 marks]

ANSWER: (Seen similar) Take expectation: since $E_{\theta}\left[\hat{R}\{\delta_{JS}(Y)\}\right] = R(\theta, \delta_{JS}(Y))$ it follows that the risk of $\delta_{JS}(Y)$ is

$$R(\theta, \delta_{JS}(Y)) = p - (p - 2)^2 E_{\theta}(1/||Y||^2)$$

since $R(\theta, Y) = \sum_{i=1}^{p} E_{\theta}(Y_i - \theta_i)^2 = \sum_{i=1}^{p} var(Y_i) = p$. The expectation $E_{\theta}(1/||Y||^2)$ is certainly > 0. So, $\delta_{JS}(Y)$ strictly dominates Y as an estimator of θ , and Y is inadmissible. [4 marks]

ANSWER: (Seen) The James-Stein estimator $\delta_{JS}(Y)$ is **not** admissible. It is strictly dominated by the 'positive part James-Stein estimator'

$$\delta_{JS}^{+}(Y) = \left(1 - \frac{p-2}{\|Y\|^2}\right)^{+} Y,$$

where $(1 - \frac{p-2}{\|Y\|^2})^+ = \max\{0, 1 - \frac{p-2}{\|Y\|^2}\}.$

[3 marks]

(ii) Describe a Bayesian model for which the shrinkage estimator

$$\hat{\theta}_S(Y) = \frac{\lambda}{1 + \lambda} Y$$

is a Bayes estimator of θ .

ANSWER: (Seen, but requires insight) Suppose we specify a $N(0, \lambda)$ prior on θ_i , independently, i = 1, ..., p. Then the posterior distribution of θ_i is $N(\frac{\lambda}{1+\lambda}Y_i, \frac{\lambda}{1+\lambda})$. Under the assumed loss function, the Bayes estimator of θ is the posterior mean, which is precisely $\hat{\theta}_S(Y)$. [4 marks]

Suppose λ is *unspecified* in the Bayesian model. Find the form of the estimator obtained by choosing the value of λ which minimises the unbiased risk estimator $\hat{R}\{\hat{\theta}_S(Y)\}$.

ANSWER: (Unseen) Then, in the notation of the question, $g_i(Y) = -\frac{Y_i}{1+\lambda}$, $D_i(Y) = -\frac{1}{1+\lambda}$. Then

$$\begin{split} \hat{R}\{\hat{\theta}_{S}(Y)\} &= p - \frac{2p}{1+\lambda} + \frac{\sum_{i=1}^{p} Y_{i}^{2}}{(1+\lambda)^{2}} \\ &= p \frac{\lambda - 1}{1+\lambda} + \frac{\sum_{i=1}^{p} Y_{i}^{2}}{(1+\lambda)^{2}}. \end{split}$$

Set the derivative of $\hat{R}\{\hat{\theta}_S(Y)\}$ to zero to find the value of λ , $\hat{\lambda}_S$ say, that minimises the unbiased risk estimator, noting that we need $\lambda \geq 0$. Then $\hat{\lambda}_S$ solves

$$\frac{\sum_{i=1}^{p} Y_i^2}{(1+\lambda)^3} - \frac{p}{(1+\lambda)^2} = 0.$$

7

If there is no solution , $\hat{\lambda}_S$ = 0 Then, the resulting estimator is

$$\hat{\theta}_{S}(Y) = \frac{\hat{\lambda}_{S}}{1 + \hat{\lambda}_{S}} Y = (1 - \frac{p}{\|Y\|^{2}})^{+} Y.$$

[This is almost the positive part James-Stein estimator, but with p instead of p-2]. [8 marks]

[Total 25 marks]

[You may assume Stein's Lemma: if $Y \sim N(\mu, \sigma^2)$ then, for differentiable function g with $E\{g'(Y)\} < \infty$,

$$E\{g(Y)(Y - \mu)\} = \sigma^2 E\{g'(Y)\}.$$

3. (i) Define what is meant by a uniformly most powerful (UMP) test of a statistical hypothesis. What is a uniformly most powerful unbiased (UMPU) test of a statistical hypothesis? Explain the construction of UMP and UMPU tests in the context of a one parameter exponential family distribution.

ANSWER: (Seen) Given the parameter space Ω_{θ} for a parameter θ , consider testing the null hypothesis $H_0: \theta \in \Theta_0$ against alternative $H_1: \theta \in \Theta_1$, where Θ_0 and Θ_1 are *disjoint* subsets of Ω_{θ} .

Define a test in terms of its test function $\phi(Y)$, so that $\phi(y)$ is the probability that H_0 is rejected when Y = y, and define the power function of the test ϕ to be $w(\theta) = E_{\theta}\{\phi(Y)\}.$

A **uniformly most powerful** (UMP) test of size α is a test $\phi_0(\cdot)$ for which: (a) $E_{\theta}\{\phi_0(Y)\} \leq \alpha$ for all $\theta \in \Theta_0$; (b) given any other test $\phi(\cdot)$ for which $E_{\theta}\{\phi(Y)\} \leq \alpha$ for all $\theta \in \Theta_0$, we have $E_{\theta}\{\phi_0(Y)\} \geq E_{\theta}\{\phi(Y)\}$ for all $\theta \in \Theta_1$. [4 marks]

ANSWER: (Seen) A test ϕ of H_0 : $\theta \in \Theta_0$ against H_1 : $\theta \in \Theta_1$ is unbiased of size α if $\sup_{\theta \in \Theta_0} E_{\theta}\{\phi(Y)\} = \alpha$ and $E_{\theta}\{\phi(Y)\} \geq \alpha$ for all $\theta \in \Theta_1$. A test which is uniformly most powerful amongst the class of all unbiased tests is **uniformly most powerful unbiased** (UMPU): a test $\phi_0(\cdot)$ is UMPU if $E_{\theta}\{\phi_0(Y)\} \geq E_{\theta}\{\phi(Y)\}$ for all $\theta \in \Theta_1$, and any test $\phi(\cdot)$ which is unbiased of size α . [4 marks]

ANSWER: (Seen) Consider a random vector *Y* with density belonging to a one parameter exponential family of the form

$$f(y; \theta) = h(y) \exp \{\theta t(y) - k(\theta)\}.$$

Then UMP one-sided tests on the natural parameter θ can be constructed using T=t(Y) as test statistic. For instance, to test $H_0:\theta=\theta^*$ against $H_1:\theta>\theta^*$, for specified θ^* , a UMP test is of the form: reject H_0 if T>c, where c is fixed so that $P_{\theta=\theta^*}(T>c)=\alpha$, for a test of size α . UMPU two-sided tests are similarly based on the statistic T. For instance, to test $H_0:\theta=\theta^*$ against $H_1:\theta\neq\theta^*$, a UMPU test is of the form: reject H_0 if $T>c_1$ or $T<c_2$, where c_1,c_2 are fixed so that the probability of rejection is α under H_0 and the test is unbiased (so that the derivative of the power function is 0 at θ^*). [4 marks]

(ii) Let $Y_1, ..., Y_n$ be independent, identically distributed, with common inverse Gaussian $IG(\mu, \lambda)$ probability density function

$$f(y;\mu,\lambda) = \frac{\sqrt{\lambda}}{\sqrt{2\pi}} y^{-3/2} \exp\left\{-\frac{\lambda(y-\mu)^2}{2\mu^2 y}\right\}, \ y > 0, \ \lambda > 0, \ \mu > 0.$$

Show that this assumed distribution constitutes a full exponential family model and identify the natural statistics.

ANSWER: (Seen similar) We can re-write the density of $IG(\mu, \lambda)$ in the form

$$f(y; \mu, \lambda) = h(y) \exp \left\{ -\frac{\lambda y}{2\mu^2} - \frac{\lambda}{2y} + \frac{\lambda}{\mu} + \frac{1}{2} \log(\lambda) \right\},$$

to see that the assumed distribution constitutes a full (2, 2) exponential family, with natural parameters $\phi^1 = -\frac{\lambda}{2u^2}$, $\phi^2 = -\frac{\lambda}{2}$.

Based on the sample $Y_1, ..., Y_n$ the natural statistics are $S_1 = \sum_{i=1}^n Y_i$ and $S_2 = \sum_{i=1}^n 1/Y_i$. [5 marks]

Verify that the distribution of $\frac{\lambda}{\mu^2}(Y-\mu)^2/Y$ is χ_1^2 , chi-squared on 1 degree of freedom.

ANSWER: (Unseen) Let $Z = \frac{\lambda}{\mu^2} (Y - \mu)^2 / Y$. Then the moment generating function of Z is

$$M_{Z}(t) = E(e^{tZ})$$

$$= \int_{0}^{\infty} \sqrt{\frac{\lambda}{2\pi y^{3}}} \exp\left\{\frac{t\lambda(y-\mu)^{2}}{\mu^{2}y} - \frac{1}{2}\frac{\lambda(y-\mu)^{2}}{\mu^{2}y}\right\} dy$$

$$= \int_{0}^{\infty} \sqrt{\frac{\lambda}{2\pi y^{3}}} \exp\left\{-\frac{1}{2}\lambda(1-2t)\frac{(y-\mu)^{2}}{\mu^{2}y}\right\} dy$$

$$= \frac{\sqrt{\lambda}}{\sqrt{\lambda(1-2t)}} = (1-2t)^{-1/2},$$

relating the integrand to $IG(\mu, \lambda(1-2t))$. We recognise this as the moment generating function of χ_1^2 . [3 marks]

Explain in detail how to test the null hypothesis $H_0: \lambda \leq \lambda_0$ against the alternative hypothesis $H_1: \lambda > \lambda_0$, assuming that μ is *known*, justifying the construction carefully and explaining any UMP or UMPU properties of the test.

ANSWER: (Unseen) The joint pdf of an IID sample $Y = \{Y_1, \dots, Y_n\}$ is

$$f(y;\mu,\lambda) = \prod_{i=1}^{n} \left(\frac{\lambda}{2\pi y_i^3}\right)^{1/2} \exp\left\{-\frac{\lambda}{2} \frac{(y_i - \mu)^2}{\mu^2 y_i}\right\}.$$

If μ is known, this defines a one parameter exponential family, with natural parameter $-\lambda/2$. The general theory above implies the existence of a uniformly most powerful size α test of H_0 against H_1 of the form: reject H_0 if T(Y) < c, where the natural statistic is

$$T(Y) = \sum_{i=1}^{n} \frac{(Y_i - \mu)^2}{\mu^2 Y_i}.$$

We have that $\lambda T(Y)$ is distributed as χ_n^2 , being a sum of n IID χ_1^2 variables. So, set $\lambda_0 c$ to be the α quantile of χ_n^2 for a UMP test of size α . [5 marks]

[Total 25 marks]

[Note that if Z is distributed as χ_k^2 , its moment generating function $M_Z(t) = E(e^{tZ}) = (1-2t)^{-k/2}, t < 1/2.$]

- 4. Write a brief account, with appropriate definitions and examples, of TWO of the following:
 - (i) The importance of sufficiency and completeness in parameter estimation.
 - (ii) The Conditionality and Likelihood Principles of statistical inference
 - (iii) Bayesian approaches to hypothesis testing
 - (iv) Large sample tests based on maximum likelihood estimators.

ANSWER: Entirely descriptive question. Notes can been seen at

http://www2.imperial.ac.uk/~ayoung/math97123coursenotes2020-21.pdf.

Marked as 13+13, capped at 25. For each of the two chosen parts, marking according to: basic definitions etc. 5; appropriate examples, illustration 5; bonus/style 3

[25 marks]

[Total 25 marks]

12