V_{RRM} VF I_F(≤100°C) = nC Qc

SiC SBD P3D0602012 650V SiC Schottky Diode

Features

- Qualified to AEC-Q101
- Ultra-Fast Switching
- Zero Reverse Recovery Current
- High-Frequency Operation
- Positive Temperature Coefficient on V_F
- Full Isolated Package for Direct Heat Sinking
- High Surge Current
- 100% UIS Tested

TO-220I-2

Cathode	1
Anode	2

Standards Benefits

- Improve System Efficiency
- Reduction of Heat Sink Requirement
- Essentially No Switching Losses
- Parallel Devices Without Thermal Runaway

Application

- Consumer SMPS
- Boost Diodes in PFC or DC/DC Stages
- AC/DC Converters

Order Information

Part Number	Package	Marking	
P3D0602012	TO-220I-2	P3D0602012	

Contents

Features	1
Standards Benefits	1
Application	1
Order Information	1
Contents	2
1. Maximum Ratings	3
2. Electrical Characteristics	4
3. Thermal Characteristics	4
4. Typical Performance 5. Package Outlines	5
5. Package Outlines	6

1. Maximum Ratings

At T_J= 25°C, unless specified otherwise

Parameter	Symbol	Value	Unit	Test condition
Repetitive Peak Reverse Voltage	V_{RRM}	650	V	T _C = 25℃
Surge Peak Reverse Voltage	V_{RSM}	650	V	T _C = 25℃
DC Blocking Voltage	V_R	650	V	T _C = 25°C
Forward Current	I _F	35 20	А	T _C = 25°C T _C = 100°C
Non-Repetitive Forward Surge Current	I _{FSM}	140 123	A	T_C = 25°C, t_p = 10ms T_C = 125°C, t_p = 10ms
Repetitive Peak Forward Surge Current	I _{FRM}	69 30	А	T_C = 25°C, t_p = 10ms T_C = 125°C, t_p = 10ms
Power Dissipation P _{tot}		56	W	T _C = 25℃
Operating Junction and Storage Temperature		-55 to +175	°C	
TO-220 Mounting Torque M3 Screw	T_{orq}	1 8.8	N*m Ibf-in	

2. Electrical Characteristics

At T_J= 25°C, unless specified otherwise

			Values			Test condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit		
5 IV II	W	,	1.39	1.6		I _F = 20A, T _J = 25°C	
Forward Voltage	V _F	/	1.65	/	V	I _F = 20A, T _J = 175℃	
Doverse Current	1	,	26.9	50	μΑ		V _R = 650V, T _J = 25°C
Reverse Current	l _R	/	644	1		V _R = 650V, T _J = 175°C	
Total Capacitance	С		924		pF	V _R = 0V, T _J = 25°C f= 1MHz	
			90	/		V _R = 200V, T _J = 25°C f= 1MHz	
			66			V _R = 400V, T _J = 25°C f= 1MHz	
Total Capacitive Charge	Q _c	/	47	/	nC	V_R = 400V, I_F = 20A di/dt= 500A/ μ s T_J = 25°C	

3. Thermal Characteristics

Parameter	Symbol	Values	Unit
Thermal Resistance from Junction to Case	$R_{ heta_{JC}}$	2.69	°C/W

4. Typical Performance

At T_J= 25°C, unless specified otherwise

Fig. 1 Typical Forward Characteristics $I_F = f(V_F)$; $T_J = -55^{\circ}C$, 25°C, 125°C,175°C

Fig. 2 Reverse Characteristics $I_R=f(V_R); T_J=-55^{\circ}C, 25^{\circ}C, 125^{\circ}C, 175^{\circ}C$

Fig. 3 Typical Power Derating $P_{tot} = f(T_C)$

Fig. 4 Typical Total Capacitance $C=f(V_R)$

Fig. 5 Typical Total Capacitive Charge $Q_C = f(V_R)$

5. Package Outlines

	Dimensions						
Ref.		Millimete	rs	Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	0.173		0.181	
В	0.61		0.88	0.024		0.035	
С	0.46		0.70	0.018		0.028	
C2	1.21		1.32	0.048		0.052	
C3	2.40		2.72	0.094		0.107	
D	8.60		9.70	0.339		0.382	
Е	9.80		10.4	0.386		0.409	
F	6.55		6.95	0.258		0.274	
G		5.08			0.1		
Н	28.0		29.8	1.102		1.173	
L1		3.75			0.148		
L2	1.14		1.70	0.045		0.067	
L3	2.65		2.95	0.104		0.116	
V1		45°			45°		

Drawing and dimensions