

Tipo de Prova: Prova Modelo Curso: Engenharia Informática Unidade Curricular: Matemática I

Ano Letivo 2015/2016 Data: 20-10-2015 Hora: 00:00 Duração: X horas

Observações: Justifique todos os cálculos que efetuar.

- 1. Dadas as funções $f(x) = \sqrt{x}$ e $g(x) = x^2 + 1$. Calcule o valor da expressão.
 - (a) f(g(x))
 - (b) g(f(1))
- 2. Calcule a função inversa da função $t(x) = \frac{x+2}{2x-1}$.
- 3. Determine a equação da reta tangente ao gráfico da função $f(x) = e^{1-x^2}$, para x > 0 no ponto de interseção com a reta y = 1.
- 4. Considere a função $f(x) = \begin{cases} x \ln(x) & , x > 0 \\ xe^x & , x \le 0 \end{cases}$
 - (a) Determine a função derivada f', explicitando o seu domínio.
 - (b) Mostre que existe um ponto $c \in]-1,0[$ tal que $f'(c)=\frac{1}{e}$.
- 5. Considere $x^3y^3 y = x$. Calcule $\frac{dy}{dx}$ por meio de derivação implícita.
- 6. Calcule os seguintes limites.

(a)
$$\lim_{x\to 2} \left(\frac{1}{2x-4} - \frac{1}{x-2} \right)$$

(b)
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$

- 7. Considere a função $f : \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x 2 \arctan(x)$.
 - (a) Determine os intervalos de monotonia e extremos de f.
 - (b) Determine as concavidades e os pontos de inflexão de f.
 - (c) Determine as assintotas ao gráfico de f.
- 8. Determine o polinómio de Taylor de grau 4 na função $f(x) = \ln(x+1)$ em torno de $\alpha = 0$, e utilize-o para calcular o valor aproximado de $\ln(2)$.

ESTGF-PR05-Mod013V1 Página 1 de 1