

Questão 2 (Exame final): resolução

Calcula as primitivas das seguintes funções:

(a) $\arctan(\sinh x) \cdot \sinh x$

Repare-se que $I = \int \arctan(\sinh x) \sinh x dx = \int \arctan(\sinh x) (\cosh x)' dx$: por partes, com $C \in \mathbb{R}$, $I = \arctan(\sinh x) \cosh x - \int \left(\arctan(\sinh x)\right)' \cosh x dx = \arctan(\sinh x) \cosh x - \int \frac{(\sinh x)'}{1+\sinh^2 x} \cosh x dx$ = $\arctan(\sinh x) \cosh x - \int \frac{\cosh^2 x}{\cosh^2 x} dx = \arctan(\sinh x) \cosh x - \int 1 dx = \arctan(\sinh x) \cosh x - x + C$, em qualquer intervalo real.

(b)
$$\frac{10}{x^4 + 2x^3 + 5x^2}$$

Dado que $x^2 + 2x + 5$ não tem raízes reais, $x^4 + 2x^3 + 5x^2 = x^2(x^2 + 2x + 5)$ é uma fatorização em (potências de) polinómios irredutíveis. Portanto, existem constantes $A, B, C, D \in \mathbb{R}$ tais que

$$\frac{10}{x^4 + 2x^3 + 5x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 2x + 5} = \frac{x^3(A + C) + x^2(2A + B + D) + x(5A + 2B) + 5B}{x^2(x^2 + 2x + 5)}, \ \forall x \neq 0,$$
e, equivalentemente,
$$\begin{cases} A + C = 0 \\ 2A + B + D = 0 \\ 5A + 2B = 0 \\ 5B = 10 \end{cases} \iff \begin{cases} C = -A \\ D = -2 - 2A \\ 5A = -4 \\ B = 2 \end{cases} \iff \begin{cases} A = -\frac{4}{5} \\ B = 2 \\ C = \frac{4}{5} \\ D = -\frac{2}{5} \end{cases}$$

Dado que $x^2+2x+5=x^2+2x+1+4=(x+1)^2+4=4\left(\left(\frac{x+1}{2}\right)^2+1\right)$ e que $\left(x^2+2x+5\right)^1=2x+2$ e usando a linearidade, as primitivas pedidas, em intervalos onde $x\neq 0$, são

$$\begin{split} \int \frac{10}{x^4 + 2x^3 + 5x^2} dx &= \int -\frac{\frac{4}{5}}{x} + \frac{2}{x^2} + \frac{\frac{4}{5}x - \frac{2}{5}}{x^2 + 2x + 5} dx \\ &= -\frac{4}{5} \int \frac{1}{x} dx + 2 \int \frac{1}{x^2} dx + \int \frac{\frac{2}{5}(2x + 2)}{x^2 + 2x + 5} dx + \int \frac{-\frac{4}{5} - \frac{2}{5}}{4\left(\left(\frac{x + 1}{2}\right)^2 + 1\right)} dx \\ &= -\frac{4}{5} \ln|x| - \frac{2}{x} + \frac{2}{5} \ln(x^2 + 2x + 5) - \frac{3}{5} \int \frac{\frac{1}{2}}{\left(\frac{x + 1}{2}\right)^2 + 1} dx \\ &= -\frac{4}{5} \ln|x| - \frac{2}{x} + \frac{2}{5} \ln(x^2 + 2x + 5) - \frac{3}{5} \arctan \frac{x + 1}{2} + C, \ C \in \mathbb{R}. \end{split}$$

$$(c) \frac{e^{x/2}}{\sqrt{1-e^x}}$$

• Sendo $1 - e^x > 0 \iff e^x < 1 \iff x < 0$, então $t = \phi^{-1}(x) = e^{x/2} \in]0, 1[ex = \phi(t) = 2\ln t$, com $dx = \phi'(t)dt = \frac{2}{t}dt$. Para além disso, $e^x = e^{2\ln t} = (e^{\ln t})^2 = t^2$. Assim, por substituição, obtém-se

$$\int \frac{e^{x/2}}{\sqrt{1-e^x}} dx = \int \frac{t}{\sqrt{1-t^2}} \cdot \frac{2}{t} dt = 2 \int \frac{1}{\sqrt{1-t^2}} dt = 2 \arcsin(t) + C = 2 \arcsin(e^{x/2}) + C, \ C \in \mathbb{R}.$$

• De modo equivalente, por primitivação quase imediata, tem-se

$$\int \frac{e^{x/2}}{\sqrt{1-e^x}} dx = 2 \int \frac{\frac{1}{2}e^{x/2}}{\sqrt{1-(e^{x/2})^2}} dx = 2 \int \frac{u'}{\sqrt{1-u^2}} dx = 2 \arcsin(u) + C = 2 \arcsin(e^{x/2}) + C, \ C \in \mathbb{R}.$$

As primitivas encontradas podem estar definidas em qualquer intervalo de \mathbb{R}^- (mas não para x=0).