Paprastų tiesinių nelygybių sprendimo eiga mažai skiriasi nuo tiesinių lygčių sprendimo:

$$(x+2)(x+1) < x(x+5)$$

$$x^2 + 3x + 2 < x^2 + 5x$$

$$x^2 + 3x + 2 < x^2 + 5x$$

$$3x + 2 < 5x$$

$$3x - 5x + 2 < 0$$

$$3x - 5x < -2$$

$$-2x < -2$$

x > 1 Nepražiopsokite, kada pasikeičia nelygybės ženklas!

Šios nelygybės sprendime specifiniai metodai nebuvo reikalingi. Sudėtingesnių nelygybių atveju rekomenduoju naudoti intervalų metoda.

Reiškinių (x+2)(x-3)(x-5) ir (x+6)(x+1)(x-4) įgyjami ženklai

Čia yra pateikiama pora įžanginių intervalų metodo prasmę iliustruojančių pavyzdžių, paimtų iš 1990 m. išleisto rusiško vadovėlio ALGEBRA (1999m. išverstas į lietuvių kalbą). Siūlau atkreipti dėmesį į teiginį:

Kai x pereina taškus, kuriuose reiškinys įgyja nulinę reikšmę, tai keičiasi reiškinio ženklas.

Pirmo pavyzdžio sprendime atsispindi paaiškinimas, kodėl šis teiginys galioja, o antro pavyzdžio sprendime parodyta, kaip šį teiginį pritaikyti.

Išnagrinėkime funkciją f(x) = (x + 2)(x - 3)(x - 5).

Šios funkcijos apibrėžimo sritis — visa skaičių aibė. Funkcijos nuliai yra skaičiai -2, 3, 5. Funkcijos apibrėžimo sritį jie suskaido į intervalus $(-\infty; -2), (-2; 3), (3; 5)$ ir $(5; +\infty)$:

Reiškinys (x + 2)(x - 3)(x - 5) yra triju dauginamuju sandauga. Lentelė rodo kiekvieno jų ženklą nagrinėjamame intervale:

	(-∞; -2)	(-2; 3)	(3; 5)	(5; +∞)
x + 2	-	+	+	+
x - 3	-	-	+	+
x - 5	-	-	-	+

Matome, kad:

jei
$$x \in (-\infty; -2)$$
, tai $f(x) < 0$;

jei
$$x \in (-2; 3)$$
, tai $f(x) > 0$;

jei
$$x \in (3; 5)$$
, tai $f(x) < 0$;

jei
$$x \in (5; +\infty)$$
, tai $f(x) > 0$.

Kiekviename iš intervalų $(-\infty; -2), (-2; 3), (3; 5), (5; +\infty)$ funkcijos ženklas yra pastovus, o pereinant per taškus -2, 3 ir 5 jis keičiasi:

Išspręskime nelygybę (x + 6)(x + 1)(x - 4) < 0.

Sprendžiant ją, patogu taikyti pakaitomis besikeičiančių funkcijos ženklų savybę. Koordinačių tiesėje pažymėkime funkcijos

$$f(x) = (x + 6)(x + 1)(x - 4)$$
 nulius:

Raskime funkcijos ženklą kiekviename šių intervalų:

$$(-\infty; -6), (-6; -1), (-1; 4) \text{ ir } (4; +\infty).$$

Pakanka nustatyti funkcijos ženklą viename iš tų intervalų, o kituose juos keisime pakaitomis. Patogu pradėti nuo kraštinio dešiniojo intervalo (4; $+\infty$), nes funkcija f(x) = (x + 6)(x + 1)(x - 4)jame tikrai yra teigiama. Iš tikrųjų: su visomis x reikšmėmis, esančiomis į dešinę nuo visų funkcijos nulių, kiekvienas iš dauginamųjų x + 6, x + 1 ir x - 4 yra teigiamas. Po to koordinačių tiese eidami iš dešinės į kairę, pakaitomis keičiame ženklus kituose intervaluose:

Iš paveikslo matome, kad nelygybės sprendinių aibė yra intervalų (-∞; -6) ir (-1; 4) sąjunga.

A t s a k y m a s:
$$(-\infty; -6) \cup (-1; 4)$$
.

Abudu pavydžius galime apibendrinti:

Sakykime, kad funkcija išreikšta formule
$$f(x) = (x - x_1)(x - x_2) \dots (x - x_n)$$
,

kurios x — kintamasis, x_1 , x_2 , ..., x_n — vienas kitam nelygūs skaičiai, kurie yra funkcijos nuliai. Jie funkcijos apibrėžimo sritį suskaido i intervalus. Kiekviename jų funkcijos ženklas pastovus, jis keičiasi pereinant per nuli.

Ši savybė taikoma sprendžiant nelygybes

$$(x-x_1)(x-x_2)...(x-x_n) > 0$$
 ir $(x-x_1)(x-x_2)...(x-x_n) < 0$

Funkcijos $f(x) = (x - x_1)(x - x_2) \dots (x - x_n)$ reikšmės išsidėsto vienu iš šių būdų:

Nelygybių suvedimas į vieną iš formų $(x-x_1)(x-x_2)\dots(x-x_n)>0$ $(x-x_1)(x-x_2)\dots(x-x_n)<0$

$$(x-x_1)(x-x_2)\dots(x-x_n) > 0$$

 $(x-x_1)(x-x_2)\dots(x-x_n) < 0$

Šiame skyrelyje nelygybėms intervalo metodo netaikysime, tik nagrinėsime, kaip jas suvesti į forma, tinkama taikyti intervalu metoda.

Paprasti pertvarkymai

- 1. Suvesime nelygybę x(0,5-x)(x+4) < 0. Pirmiausia iškelsime už skliaustų daugianario 0,5-x dauginamąjį -1. Gausime nelygybę -x(x-0,5)(x+4) < 0. Iš čia x(x-0,5)(x+4) > 0. (Čia į daugiklį x galime žiūrėti kaip į daugiklį x-0)
- 2. Suvesime nelygybę (5x+1)(5-x)>0. Iškėlę už skliaustų pirmojo dvinario dauginamąjį 5, o antrojo -1 gauname nelygybę $-5\left(x+\frac{1}{5}\right)(x-5)>0$. Dabar abi nelygybės formas padaliję iš -5 gauname tai, ką reikėjo: $\left(x+\frac{1}{5}\right)(x-5)<0$.
- 3. Suvesime nelygybę $\left\lceil \frac{7-x}{x+2} < 0 \right\rceil$. Galima pastebėti, kad trupmenos $\frac{7-x}{x+2}$ ženklas sutampa su sandaugos (7-x)(x+2) ženklu. Vadinasi nelygybė gali būti pakeista į (7-x)(x+2) < 0, o šią nelygybę daugindami iš -1 pertvarkome į $\left\lceil (x-7)(x+2) > 0 \right\rceil$.

Skaidymas dauginamaisiais (kvadratinėms nelygybėms)

Dažnai egzamine intervalų metodu prireikia spręsti kvadratines nelygybes. Šiuo atveju nelygybės gali būti pertvarkomos, kad dešinėje pusėje gautume 0, o kairėje pusėje gautume kvadratinį reiškinį. Dalis tokių reiškinių negali įgyti nulinės reikšmės, vadinasi negali būti išskaidyti dauginamaisiais ir sprendžiami intervalų metodu. Pavyzdžiui:

- $3x^2 + 5$ yra teigiamas su visais x, nes pirmas dėmuo neneigiamas, o antras dėmuo teigiamas su visais x.
- Kvadratiniai trinariai, kurių diskriminantas neigiamas, įgyja tik vienodo ženklo reikšmes.

Visais šiais atvejais nelygybė arba sprendinių neturės, arba galios su visais x. Apibendrinę pastebėjimus gauname:

Kvadratiniai trinariai $ax^2 + bx + c$ su neigiamu diskriminantu yra neišskaidomi ir turi vienodą ženklą su visais x

Likusi kvadratinių reiškinių dalis gali įgyti nulines reikšmes, vadinasi gali būti suvesti į formą $a(x - x_1)(x - x_2)$ ir sprendžiami intervalų metodu. Kvadratinius trinarius skaidyti sudėtinga. Tokiu atveju pasinaudojame faktu:

Kvadratinio trinario $ax^2 + bx + c$ skaidinys yra $a(x - x_1)(x - x_2)$, kur x_1 ir x_2 yra šio reiškinio šaknys.

Štai keletas kvadratinių nelygybių suvedimo į tinkamą formą pavyzdžių:

- 1. Suvesime nelygybę $x^2 + 3x \le 0$. Dešinėje pusėje turime 0, todėl kairę pusę galime išskaidyti. Skaidymas paprastas: $x(x+3) \le 0$.
- 2. Suvesime nelygybę $x^2 \le 9$. Pertvarkome, kad dešinėje pusėje būtų 0 ir gauname nelygybę $x^2 9 \le 0$. Dešinę pusę išskaidome pagal kvadratų skirtumo formulę: $(x+3)(x-3) \le 0$.
- 3. Suvesime nelygybę $x^2 3x > -2$. Pertvarkome, kad dešinėje pusėje būtų 0 ir gauname nelygybę $x^2 3x + 2 > 0$. Dabar kairę pusę galime išskaidyti. Kvadratinės lygties $x^2 3x + 2 = 0$ sprendiniai yra $x_1 = 1$ ir $x_2 = 2$. Pagal formulę $ax^2 + bx + c = a(x x_1)(x x_2)$ nelygybę galime pertvarkyti į (x 1)(x 2) > 0.
- 4. Suvesime nelygybę $x^2 + 4 < 3x$. Pertvarkome, kad dešinėje pusėje būtų 0 ir gauname nelygybę $x^2 3x + 4 < 0$. Trinario $x^2 3x + 4$ diskriminantas yra neigiamas, todėl jis neturi skaidinio ir nelygybė negali būti suvesta į reikiamą formą. Šis trinaris įgyja tik teigiamas reikšmes, vadinasi $x \in \emptyset$.

Suvestų į tinkamą formą nelygybių sprendimas

Ankstesniame skyriuje aptarėme techninę dalį: kaip atlikti nelygybės pertvarkymus norint ją suvesti į tinkamą formą intervalų metodui taikyti. Pats intervalų metodų taikymas yra lengvoji sprendimo dalis. Šiame skyriuje sudarysime lentelę, parodančią visus pagrindinius kiekvienos nelygybės sprendimo etapus. Prieš pateikiant sprendimus - dar viena svarbi pastaba:

- Perėjimo taškai skaičių ašyje žymimi kaip pilnaviduriai, jei jie tenkina nelygybę (atveju ≤ arba ≥). Jie į sprendinį įtraukiami.
- Perėjimo taškai skaičių ašyje žymimi kaip tuščiaviduriai, jei jie nelygybės netenkina (atveju < arba >). Jie į sprendinį neįtraukiami.

Nelygybė	Suvedimas	Perėjimo taškai	Brėžinys	Atsakymas
x(0, 5 - x)(x + 4) < 0	x(x-0,5)(x+4) > 0	0, 0,5 ir -4	+ 0 0,5	$x \in (-4;0) \bigcup (0,5;+\infty)$
(5x+1)(5-x) > 0	$\left(x + \frac{1}{5}\right)(x - 5) < 0$	$-\frac{1}{5}$ ir 5	+ + + +	$x \in \left(-\frac{1}{5}; 5\right)$
$\frac{7-x}{x+2} < 0$	(x-7)(x+2) > 0	7 ir -2	+ -2: 7	$x \in (-\infty; -2) \cup (7; +\infty)$
$x^2 \ge 9$	$(x+3)(x-3) \ge 0$	-3 ir 3	-3 3	$x \in (-\infty; -3] \bigcup [3; +\infty)$
$x^2 + 3x \le 0$	$x(x+3) \le 0$	0 ir −3	-3 0	$x \in [-3; 0]$
$x^2 - 3x > -2$	(x-1)(x-2) > 0	1 ir 2	1 2	$x \in (-\infty; 1) \bigcup (2; +\infty)$
$x^2 + 4 < 3x$	nesuvedama	nėra	trinaris $x^2 - 3x + 4$ su visais x bus teigiamas	$x \in \emptyset$
$x^2 + 9 < 0$	nesuvedama	nėra	reiškinys $x^2 + 9$ su visais x neįgyja neigiamų reikšmių	$x \in \emptyset$

Pagal brėžinius galima pastebėti, jog kiekvieno kvadratinio trinario reikšmės didinant kintamąjį visuomet išsidėsto tvarka +, -, +. Kodėl taip yra? Atsakymo ieškokite tarp pirmo skyriaus gale pateiktų brėžinių.

Sudėtingesni atvejai

Čia pateiksime keleta sudėtingesnių atvejų, kurių sprendimo intervalų metodu eiga yra kiek kitokia, nei įprasta.

Atvejai, kuomet reikia atsižvelgti į apibrėžimo sritį

Čia pateiksiu pavyzdį iš vadovėlio Matematika. Bendrasis kursas XI klasei (2005m.):

Priminsime, kad:

reiškinio apibrėžimo sritis - tai visos x reikšmės, su kuriomis jis turi prasmę.

Daugumos mokyklinių reiškinių apibrėžimo sritis yra visi realieji skaičiai. Likusiais atvejais patartina įsiminti sąlygas, su kuriomis reiškiniai yra apibrėžti:

	Reiškinys	vs Apibrėžimo sritis Apribojimas		Apribojimas reiškiniui bendresniu atveju	
	$f(x) = \frac{1}{x}$	$(-\infty;0)\bigcup(0;+\infty)$	$x \neq 0$	Vardiklis įgyja tik nenulines reikšmės	
ĺ	$f(x) = \sqrt{x}$	$[0;+\infty)$	$x \ge 0$	Lyginio laipsnio šaknies pošaknis įgyja tik neneigiamas reikšmes	
	$\log_a x$	$(0;+\infty)$	x > 0	Pologaritminis reiškinys įgyja tik teigiamas reikšmes	

Kitas pavydys iš 2015 metų VBE, kuriame pilnas nelygybės $\log_{0,2}(4x-5) + \log_{0,2}(2x+3) \ge \log_{0,2} 13$ sprendimas buvo įvertintas net 7 taškais (iš 60 egzamine galimų). Šis egzamino uždavinys susidėjo iš 2 dalių:

- Nustatyti reiškinio $\log_{0,2}(4x-5) + \log_{0,2}(2x+3)$ apibrėžimo sritį (2 taškai).
- Išspręsti pateiktą nelygybę (5 taškai).

(4x-5>0,	 Už užrašytą teisingą nelygybių sistemą. 	
2x+3>0,		
(x > 1,25,		
x > -1,5,		
x > 1,25.	1	Už teisingai išspręstą nelygybių sistemą.

$\log_{0,2}((4x-5)\cdot(2x+3)) \ge \log_{0,2}13$,	1	Už teisingai pritaikytą logaritmų savybę.	
$\log_{0,2}(8x^2 + 2x - 15) \ge \log_{0,2}13,$			
$8x^2 + 2x - 15 \le 13$,	1	Už teisingai palygintus logaritmų	
$4x^2 + x - 14 = 0,$		argumentus.	
$x_1 = -2$,	1	Už gautus teisingus kvadratinės lygties	
$x_2 = 1,75$.		sprendinius.	
-++	1	Už gautus teisingus nelygybės	
-2 1,75 x		sprendinius.	
-2 1,25 1,75 x	1	Už gautą teisingą atsakymą.	
Ats.: $x \in (1,25;1,75]$.		2 1 31 3 1	

Šiame VBE vertinimo instrukcijose pateiktame sprendime ne visur išlaikomas aiškumas. Nelygybės $8x^2+2x-15 \le 13$ pertvarkymas į lygtį $4x^2+x-14=0$ įprastai nėra leistinas, kas kelia abejonių dėl šio sprendimo aiškumo. Apibrėžimo srities nustatymo nenagrinėsime, tik prisiminsime, jog nelygybė apibrėžta, kai x>1,25. Panašiai, kaip ir ankstesnių pratimų atveju galima užpildyti nelygybės $\log_{0,2}(4x-5)+\log_{0,2}(2x+3) \le \log_{0,2}13$ sprendimo etapus parodančią lentelę:

Suvedimas	Perėjimo taškai	Brėžinys (pagal VBE)	Atsakymas
$4(x-1,75)(x+2) \le 0$	1,75 ir -2	1,75 x -2 1,75 x -2 1,25 1,75 x pagal sąlygą x>1,25	$x \in (1, 25; 1, 75]$

Nelygybės suvedimas į tinkamą formą buvo sudėtingiausia šio uždavinio dalis. Remdamiesi logaritmų savybėmis nelygybę galime pertvarkyti į $8x^2 + 2x - 15 \le 13$, o vėliau į $4x^2 + x - 14 \le 0$. Kairės pusės kvadratinio trinario skaidinys yra $4(x-x_1)(x-x_2)$, kur x_1 , x_2 yra šio trinario šaknys. Jas gauname spręsdami lygtį $4x^2 + x - 14 = 0$. Jos lygios 1,75 ir -2, todėl nelygybė suvedama į $\boxed{4(x-1,75)(x+2) \le 0}$.

Atvejai, kuomet reiškinyje yra pakartotinių daugiklių

Reiškinį $x^2(x+1)$ galima užrašyti kaip sandaugą $x \cdot x \cdot (x+1)$. Matome, kad sandaugoje yra pakartotinis daugiklis x. Jo laipsnis yra 2. Nors daugiklių yra trys, tačiau reiškinio ženklo perėjimo taškai gali būti tik 0 ir -1.

Jei daugiklis pakartotinis ir lyginio laipsnio, tuomet jį atitinkantis perėjimo taškas nekeičia ženklo.

Pailiustruosime šią taisyklę 2018metų VBE 8 uždavinio (1 tšk) sprendimu.

Nelygybė	Perėjimo taškai	Brėžinys	Atsakymas
$x^2(x+1) > 0$	0 ir -1	-1 0	$x \in (-1;0) \bigcup (0;+\infty)$

Visi uždaviniai iš 2010 - 2018 VBE, kuriuos sprendžiant galima remtis intervalų metodu

Žvaigždute pažymėti uždaviniai reikalauja žinių iš kitų sričių arba gilesnio supratimo.

- 1. (VBE~2018,~19.2) Raskite didžiausią natūralųjį skaičių n, tenkinantį nelygybę $\frac{n(n+1)}{2} < 1009$ [1 tšk.]
- 2. ($\it VBE~2018,~8$) Išspręskite nelygybę $\it x^2(x+1)$ [1 tšk.]
- 3. ($VBE\ 2018,\ 15.2$) Išspręskite nelygybę $x(x-1) < 20\ [0.5\ tšk.]$
- 4. (*VBE 2016*, 9) Išspręskite nelygybę $x(x-1) \le 20$ [1 tšk.]
- 5. (VBE~2016,~19.3) Išspręskite nelygybę $\frac{x}{(x+2)(x-1)} \ge 0$ [2 tšk.]
- 6. (*VBE 2015*, 20.2) Išspręskite nelygybę $(2x+3)(4x-5) \le 13$ [2,5 tšk.]
- 7. (**VBE 2014band.**, 4) Išspręskite nelygybę $x^2 < x$
- 8. (VBE 2014band., 28*) Nustatykite didžiausią reiškinio $\frac{1}{2} t^2 + t$ reikšmę, kai $t \in [0; 1]$
- 9. (*VBE 2014*, *19*) Išspręskite nelygybę $5 x^2 \le 4$ [1tšk.]
- 10. (*VBE 2014, 25.1**) Nustatykite reiškinio $\log_{\frac{1}{2}}(x^2 7x + 10)$ apibrežimo sritį [2tšk.]

- 11. (VBE 2014, 25.2*) Raskite visas x reikšmes, su kuriomis funkcijos $f(x) = \log_{\frac{1}{2}}(x^2 7x + 10)$ reikšmės yra ne mažesnės už -2. [3tšk.]
- 12. (\pmb{VBE} 2013 ir 2011, 5) Išspręskite nelygybę $x^2 > (x-1)^2$ [1tšk.]
- 13. (*VBE 2010, 18**) Nustatykite funkcijos $f(x) = \frac{1}{4}(x-2)^2(x+1)$ didėjimo ir mažėjimo intervalus , kai duota, jog $f'(x) = \frac{3}{4}x^2 \frac{3}{2}$ [2tšk.]

Pastabos

Nelygybes spręsti galima ir remiantis kitokiais metodais: grafiniu ir algebriniu, tačiau intervalų metodą laikome paprasčiausiu.