2 Modules

2.3 Projective modules and injective modules

1. Let ${}_DM$ be a vector space over a division ring D, according to Theorem 2.2.4, ${}_DM$ has a basis, then ${}_DM$ is free, therefore ${}_DM$ is projective. Considering the diagram $0 \longrightarrow S \xrightarrow{\lambda} T$ where λ is injective, then

 $T = Im\lambda \oplus T'$ by Lemma 2.2.1. Define $\psi : T \to M$, $\psi(\lambda(a) + b) = f(a)$, thus $\psi \circ \lambda = f$, hence DM is injective.

- 2. (\(\Rightarrow\)):Suppose P is projective, then there is an index set I such that $f: R^{(I)} \cong P \oplus P'$. Define $f_i = \pi_i \circ f^{-1} \circ \lambda_1 : P \to R$ for each $i \in I$ where $\lambda_1 : P \to P \oplus P'$, $\lambda_1(a) = (a,0)$, $\pi_i : R^{(I)} \to R$ the i_{th} projection. Define $x_i = \pi_p f(e_i) \in P$ where $e_i = (\delta_{ij})_{j \in I}$, $\pi_p : P \oplus P' \to P$, $\pi_P((a,b)) = a$. Suppose $f^{-1}\lambda_1(m) = \sum r_i e_i = \pi_j (f^{-1}\lambda_1(m)) = \sum_i r_i \pi_j (e_i) = r_j$ for any $m \in P$, $\pi_P(f^{-1}\lambda_1(m)) = \pi_P\lambda_1(m) = m = \sum_i r_i \pi_P f(e_i) = \sum_i r_i x_i$, thus $f^{-1}\lambda_1(m) = \sum r_i e_i = \sum f_i(m)e_i$, hence $m = \pi_P f(f^{-1}\lambda_1(m)) = \sum f_i(m)\pi_P f(e_i) = \sum f_i(m)x_i$.

 (\(\xi\)):Define $\pi: R^{(I)} \to P$, $\pi(e_i) = x_i (i \in I)$. Since for any $\sum_{i \in I} a_i x_i \in P$, there exist $(a_i)_{i \in I} \in R^{(I)}$ such that $\pi((a_i)_{i \in I}) = \sum_{i \in I} a_i x_i$, π is epimorphic. Define $h: P \to R^{(I)}$, $h(m) = (f_i(m))_{i \in I}$, then $\pi \circ h = id_P$, thus $R^{(I)} = Imh \oplus Ker\pi$. In fact, for any $a \in R^{(I)}$, then $h(\pi(a)) \in R^{(I)}$ and $a h\pi(a)$ satisfies $\pi(h\pi(a)) = 0$, thus $a = h\pi(a) + (a h\pi(a)$, hence $R^{(I)} = Imh + Ker\pi$. For any $h(a) \in Imh \cap Ker\pi$, then $\pi h(a) = a = 0$, thus h(a) = 0. Hence $R^{(I)} = Imh \oplus Ker\pi$ and $h(P) = h\pi(R^{(I)}) = Imh$. For any $a \in P$, $\pi h(a) = a$, then $\pi: Imh \to P$ is surjective. For any $\pi(x) = 0$, there is $y \in P$ such that x = h(y), then $y = \pi h(y) = \pi(x) = 0$, thus x = 0, therefore π is injective. Hence $\pi: Imh \to P$ is isomorphism. Therefore $R^{(I)} \cong P \oplus P'$ where $P' = Ker\pi$, then P is projective.
- 3. Since P is a finitely generated projective left R-module, there is P' such that $P \oplus P' = R^n$, then $(P \oplus P')^* \cong P^* \oplus P'^* = Hom_R(R^n, R) \cong R_R^n$. Hence P^* is a projective right R-module.
- 4. Suppose every submodule of a projective left R-module is projective, N is a submodule of injective module E. For any left ideal I of R, embedding homomorphism $\lambda:I\to R$ and any $f:I\to E/N$, canonical homomorphism $\pi:E\to E/N$. Since I is projective, there is $\varphi:I\to E$ such that $f=\varphi\circ\pi$. Since E is injective, there is $\psi:R\to E$ such that $\psi\circ\lambda=\varphi$, then $(\pi\circ\psi)\circ\lambda=\pi\circ\varphi=f$, i.e. $\pi\circ\psi$ is an extension of f. According to Theorem 2.3.2, E/N is injective.

Conversely, for any submodule L of projective module P, any epimorphism $\pi_1:M\to N$ and any homomorphism $\varphi:L\to N$. Let $\lambda:M\to E$ is injective and E is an injective module, $K=Ker\pi_1$, then $\lambda(K)$ is a submodule of E, thus $\pi_2:E\to E/\lambda(K)$ is a canonical homomorphism. Define $\eta:N\to E/\lambda(K)$, $\eta(\pi_1(m))=\pi_2\lambda(m)$. If $\pi_1(m_1)=\pi_2(m_2)$, then $m_1-m_2\in K$, thus $\lambda(m_1-m_2)\in\lambda(K)$, hence $\pi_2(\lambda(m_1)-\lambda(m_2))=0$, therefore η is well-defied. Since $E/\lambda(K)$ is injective, there is $\psi:P\to E/\lambda(K)$ such that $\psi\tau=\eta\varphi$ where $\tau:L\to P$ is an embedding homomorphism. Since P is projective, there is $\xi:P\to E$ such that $\pi_2\circ\xi=\psi$. Suppose canonical homomorphism $\pi_3:E\to E/\lambda(M)$, $\lambda(K)\subset\lambda(M)$, then $\pi_4:(a+\lambda(K))=a+\lambda(M)$ is a R-module homomorphism and $\pi_4\circ\pi_2=\pi_3$, then $\pi_3\circ\xi\circ\tau=\pi_4\pi_2\xi\tau=\pi_4\psi\tau=\pi_4\eta\varphi$, while $\pi_4\eta\pi_1=\pi_4\pi_2\lambda=\pi_3\lambda=0$, while π_1 is surjective, $\pi_4\eta=0$, then $\pi_3\xi=\pi_4\pi_2\xi=\pi_4\eta\varphi=0$, thus $Im\xi\subset Ker\pi_3=\lambda(M)$. Let $\zeta=\lambda^{-1}\xi$, then $\zeta:P\to M$ satisfies $\pi_1\zeta\tau=\varphi$, this means that L is projective.

- 5. Example: $I = \mathbb{R}[x]x \leq \mathbb{R}[x]$ is free, but there is not idempotent element e such that $\mathbb{R}[x]x = \mathbb{R}[x]e$.
- 6. Since $\varphi : Re \to Rf$ is a left R-module isomorphism, $\varphi(e) = rf$, $\varphi^{-1}(f) = se$, then $e = \varphi^{-1}(\varphi(e)) = rse$, $f = \varphi\varphi^{-1}(f) = srf$, and $\begin{cases} erf = rf \\ fse = se \\ erse = e \end{cases}$

Define right R-module homomorphism $\psi: eR \to fR$, $\psi(ea) = fsea$ and right R-module homomorphism $\psi^{-1}: fR \to eR$, $\psi^{-1}(fa) = erfa$, then $\psi^{-1}\psi(ea) = erfsea = er(fse)a = (erse)a = ea$ and $\psi\psi^{-1}(fa) = fserfa = fs(erf)a = (fsrf)a = fa$, thus ψ is a right R-module isomorphism. Similarly, if $\psi: eR \to fR$ is right R-module isomorphism, then $\varphi: Re \to Rf$ is a left R-module isomorphism.

7. Suppose $_RR^n=_RP\oplus_RP'$ where $_RP$ is a finitely generated projective module. Suppose $P'\neq 0$ (otherwise $P=R^n$ is free), assume that $e\in End_RR^n$ satisfies $e^2=e, P=R^ne, P'=R^n(1-e)$, let $e_i\in End_RR^n$ satisfy $\{(0,\cdots,0,1_{i_t},0,\cdots,0)|r\in R\}=R^ne_i$ (i.e. $e_i=\lambda_i\pi_i$ where $\pi_i:R^n\to R$ and $\lambda_i:R\to R^n$), then $e_1End_RR^ne_1\cong R$, $e_1=e_1ee_1+e_1(1-e)e_1\in R$ where R is a local ring and e_1 is identity of $e_1End_RR^ne_1$. If e_1ee_1 and $e_1(1-e)e_1$ are not invertible and M is the unique ideal of R, then $e_1ee_1\to R$ and $e_1(1-e)e_1\to R$, thus $e_1ee_1\to R$ and $e_1(1-e)e_1\to R$, thus $e_1e_1\in R$, it is contradiction. Let e_1fe_1 represent invertible element of $e_1ee_1, e_1(1-e)e_1$ and $e_1: R\to R$ are isomorphism $e_1RR \to R$, then $e_1RR \to R$ and $e_1: R\to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ and $e_1RR \to R$ and $e_1RR \to R$ and $e_1RR \to R$ are isomorphism, thus $e_1RR \to R$ and $e_1RR \to R$ and

thus P is free.

- 8. Suppose $_RP$ is projective and $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact. If $f_*(\alpha) = f \circ \alpha = 0$, since f is injective, $\alpha = 0$. Since $g_* \circ f_* = (g \circ f)_* = 0$, $Imf_* \subset Kerg_*$, if $\beta \in Kerg_*$, i.e. $g \circ \beta = 0, \beta \in Hom_R(P,B)$, then $Im\beta \subset Kerg = Imf$, let $f^{-1}: Imf \to A, \ \alpha = f^{-1}\beta \in Hom_R(P,A)$ and $f_*(\alpha) = f(f^{-1} \circ \beta) = \beta \in Imf_*$, then $Imf_* = Kerg_*$. For any $\xi \in Hom_R(P,C)$, since P is projective and $g: B \to C$ is epimorphism, there is $\zeta: P \to B$ such that $g \circ \zeta = \xi = g_*(\zeta)$, thus g_* is epimorphic. Hence $0 \longrightarrow Hom_R(P,A) \xrightarrow{f_*} Hom_R(P,B) \xrightarrow{g_*} Hom_R(P,C) \longrightarrow 0$ is exact. Conversely, let $0 \longrightarrow L \xrightarrow{f} F \xrightarrow{g} P \longrightarrow 0$ is exact where F is free, then $0 \longrightarrow Hom_R(P,L) \xrightarrow{f_*} Hom_R(P,F) \xrightarrow{g_*} Hom_R(P,P) \longrightarrow 0$ is exact, thus there is $h \in Hom_R(P,F)$ such that $g_*(h) = gh = id_P$, hence $0 \longrightarrow L \xrightarrow{f} F \xrightarrow{g} P \longrightarrow 0$ is splitting, therefore P is projective.
- 9. Suppose $_RP$ is injective and $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact. If $g^*(\alpha) = \alpha \circ g = 0$, since f is surjective, $\alpha = 0$. Since $f^* \circ g^* = (g \circ f)^* = 0$, $Img^* \subset Kerf^*$, if $\beta \in Kerf^*$, i.e. $\beta \circ f = 0, \beta \in Hom_R(B, E)$, then $Kerg = Imf \subset Ker\beta$, let $g^{-1}: C \to C/Kerg$, $\alpha = \beta g^{-1} \in Hom_R(C, E)$ and $g^*(\alpha) = \beta \circ g \circ g^{-1} = \beta \in Img^*$, then $Img^* = Kerf^*$. For any $\xi \in Hom_R(A, E)$, since E is injective and $f: A \to B$ is monomorphism, there is $\zeta: B \to E$ such that $\zeta \circ f = \xi = f^*(\zeta)$, thus f^* is epimorphic. Hence $0 \longrightarrow Hom_R(C, E) \xrightarrow{g^*} Hom_R(B, E) \xrightarrow{f^*} Hom_R(A, E) \longrightarrow 0$ is exact. Conversely, let $0 \longrightarrow E \xrightarrow{f} J \xrightarrow{g} K \longrightarrow 0$ is exact where F is injective, then $0 \longrightarrow Hom_R(K, E) \xrightarrow{g^*} Hom_R(J, E) \xrightarrow{f^*} Hom_R(E, E) \longrightarrow 0$ is exact, thus there is $h \in Hom_R(J, E)$ such that $f^*(h) = hf = id_E$, hence $0 \longrightarrow E \xrightarrow{f} J \xrightarrow{g} K \longrightarrow 0$ is splitting, therefore E is injective.
- 10. If $_RA$ is injective, $0\longrightarrow L\xrightarrow{\lambda} R$, then $g(r)=\overline{g}\lambda(r)=\overline{g}(r\cdot 1)=r\overline{g}(1)$, let $g\bigvee_{\lambda}\overline{g}\bigvee_{\lambda}$

 $a=\overline{g}(1),$ then g(r)=ra for every $r\in R.$ Conversely, $0\longrightarrow L\stackrel{\lambda}{\longrightarrow} R$, let $\forall g \bigg|_{A}$

 $\overline{g}: R \to A, \overline{g}(r) = ra$ for any $r \in R$, then \overline{g} is a R-module homomorphism, and $\overline{g} \circ \lambda = g$, according to Theorem 2.3.2, A is injective.

11. Let $e_i \in R$ satisfy $e_i(\sum_{i=0}^n a_k x^k) = a_i x^i$ and $S = \sum_{i=0}^\infty e_i R$, for any right ideal

I of R_R , then there is I' such that $I \oplus I'$ is an essential submodule of R_R , while e_iR is simple and $e_iR \cap (I \oplus I') \neq 0$, then $e_iR \subseteq I \oplus I'$, thus $S \subseteq I \oplus I'$, consider the commutative diagram $0 \longrightarrow S \xrightarrow{\lambda_1} I \oplus I' \xrightarrow{\lambda_2} R$,

for any right R-module homomorphism $\varphi: I \oplus I' \to R$, $\varphi \lambda_1: S \to R$ is right R-module homomorphism. Define $\overline{\varphi}: R \to R$, $\overline{\varphi}(f)(\sum a_k x^k) = \sum_{i=0}^{\infty} [\varphi \lambda_1(e_i)](e_i(f(\sum a_k x^k)))$ for any $\sum a_k x^k \in \mathbb{P}[x]$ and any $f \in R$. In particular, $\overline{\varphi}(e_l) = \sum_{i=0}^{\infty} \varphi \lambda_1(e_i)(e_i e_l) = \varphi \lambda_1(e_l)$, thus $\overline{\varphi} \lambda_2 \lambda_1 = \varphi \lambda_1$, hence $(\overline{\varphi} \lambda_2 - \varphi) \lambda_1 = 0$, then $Ker(\overline{\varphi} \lambda_2 - \varphi) \supseteq S$. Since for any $a \in I \oplus I'$ there is $r \in R$ such that $ar \neq 0$, $ar \in S$, therefore $(\overline{\varphi} \lambda_2 - \varphi)(ar) = (\overline{\varphi} \lambda_2 - \varphi)(a)r = 0$. Hence R is injective.

- 12. Let $S = \left\{ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ 0 & \cdots & 0 \end{pmatrix} \middle| a_{1i} \in D \right\}$, then S is an ideal of $\mathsf{t}(n,D) = R$, $S \cdot M_n(D) \leq R$, $s(a_{ij}) = 0$, thus $e_{1k}(a_{ij}) = 0$ for $1 \leq k \leq n$, hence $(a_{ij}) = 0$. For any submodule $N \neq 0$ of ${}_RM_n(D)$, there is $0 \neq (a_{ij}) \notin N$, then $S(a_{ij}) \neq 0$, $RS(a_{ij}) \cap R = RS(a_{ij}) \neq 0$, thus $N \cap R \neq 0$, hence ${}_RR$ is an essential submodule of ${}_RQ$. Suppose $\varphi: I \to Q$ is left R-module homomorphism where I is an ideal of Q. For any $\sum_{i=1}^n q_i a_i \in QI$ where $q_i \in Q$ and $a_i \in I$, define $\psi(\sum_{i=1}^n q_i a_i) = \sum_{i=1}^n q_i \varphi(a_i)$, if $\sum_{i=1}^n q_i a_i = 0$, then for any $s \in S$, $sq_i \in R$, thus $\sum_{i=1}^n sq_i a_i = 0$, hence $s\sum_{i=1}^n q_i \varphi(a_i) = 0$, therefore $\sum_{i=1}^n q_i \varphi(a_i) = 0$. Hence ψ is well-defined Q-module homomorphism. Since Q is injective, there is Q-module homomorphism $\phi: Q \to Q$, $\phi|_{QI} = \psi$, $\phi|_R: R \to Q$. Since $\phi|_{QI} = \psi$, $\phi_I = (\phi|_{QI})|_{RI} = \psi|_{RI} = \psi_I = \varphi$, $(\phi|_R)|_{I} = \phi_I$, hence ${}_RQ$ is injective.
- 13. Suppose $0 \longrightarrow K \xrightarrow{f_1} P \xrightarrow{g_1} M \longrightarrow 0$ and $0 \longrightarrow K' \xrightarrow{f_2} P' \xrightarrow{g_2} M \longrightarrow 0$ are exact, let $Q = \{(x,y) \in P \oplus P' | g_1(x) = g_2(y)\}$, consider commutative diagram in Figure 1, $Ker\pi_2 = \{(x,0) | (x,0) \in Q\} = \{(x,0) | g_1(x) = g_2(0) = 0\} = \{(x,0) | x \in Kerg_1 = K\}$, then $\lambda_1(x) = (x,0)$, thus there is exact sequence $0 \longrightarrow K \xrightarrow{\lambda_1} Q \xrightarrow{\pi_2} P' \longrightarrow 0$. Similarly, $Ker\pi_1 = \{(0,y) | y \in P'\}$ and there is exact sequence $0 \longrightarrow K' \xrightarrow{\lambda_2} Q \xrightarrow{\pi_1} P \longrightarrow 0$. Since P and P' are projective, $K \oplus P' \cong K' \oplus P$.
- 14. Consider commutative diagram in Figure 2, let $Q = E \oplus E'/N$ where $N = \{(f_1(m), f_2(m)) | m \in M\}$, $\pi_1((x, y) + N) = g_1(x)$, $\pi_2((x, y) + N) = g_2(y)$,

 $\lambda_1(x)=(x,0)+N$ and $\lambda_2(y)=(0,y)+N$. For any $x\in Ker\lambda_1$, there is $m\in M$ such that $(x,0)=(f_1(m),f_2(m))$, since f_2 is injective, m=0, then x=0. If $(x,y)+N\in Ker\pi_2$, then $(x,y)+N=(x,f_2(m))+N=(x+f_1(m),0)+(-f_1(m),f_2(m))+N=(x+f_1(m),0)+N\in\lambda_1$ for some $m\in M$, while $\pi_2\lambda_1(x)=\pi_2((x,0)+N)=0$, then $Ker\pi_2=Im\lambda_1$. Similarly, $Ker\pi_1=Im\lambda_2$, since E and E' are injective, $E\oplus L'\cong Q\cong E'\oplus L$.

Figure 1: Exercise 2.3.13

Figure 2: Exercise 2.3.14

- 15. Let $\varphi: P \oplus P \to R \oplus R$, $\varphi((f_1, f_2)) = (f_1, f_2) \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$. Let $F_1 = f_1 \cos x + f_2 \sin x$ and $F_2 = -f_1 \sin x + f_2 \cos x$. When $f_1, f_2 \in P$, then $F_1, F_2 \in R$, it is obvious that φ is a R-module homomorphism. $\varphi^{-1}(F_1, F_2) = (F_1, F_2) \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}$ is invertible homomorphism of φ . Hence $P \oplus P \cong R \oplus R$.
- 16. If $x \in Ker\psi$, then $g'\psi(x) = \phi g(x) = 0$, thus $g(x) \in Ker\phi = 0$, then there is $y \in A$ such that x = f(y), thus $\psi(x) = \psi f(y) = f'\eta(y) = 0$, since f' is injective, $\eta(y) = 0$. While η is injective, y = 0, then x = f(y) = 0. Hence ψ is injective. For any $x \in B'$, there is $y \in C$ such that $\phi(y) = g'(x)$, thus there is $z \in B$ such that g(z) = y, then $\phi(y) = \phi g(z) = g'(x)$, thus $x \psi(z) \in Kerg' = Imf'$. Hence there is $u \in A'$ such that $x \psi(z) = f'(u)$, while η is surjective, there is $v \in A$ such that $\eta(v) = u$, then $f'(u) = f'\eta(v) = \psi f(v) = x \psi(z)$, thus $x = \psi(f(v) + z)$. Hence ψ is surjective.
- 17. Let $\Omega = \{L \leq E | N \text{ is an essential submodule of } L\}$, it is obvious that $\Omega \neq \emptyset$. Let $L_1 \leq L_2$ if $L_1 \subseteq L_2$, if $\cdots \subseteq L_n \subseteq L_{n+1} \subseteq \cdots$ is an ascending chain of element in Ω , then $L = \cup L_i \leq E$, for any $0 \neq x \in L$, there is i such that $x \in L_i$ and $N \cap Rx \neq 0$, thus N is an essential submodule of

L. By Zorn's Lemma, there is a maximal element $E(N) \in \Omega$. Suppose $N' \leq E$ is maximal such that $N' \cap E(N) = 0$, then $E(N) \oplus N'$ is an essential submodule of E. For any $N' \subsetneq L \leq E$, if $(E(N) + N') \cap L = N' + (E(N) \cap L) \subseteq N'$, then $E(N) \cap L' = 0$, it is contradiction for N' is maximal. Hence (E(N) + N')/N' is an essential submodule of E/N'. Since $(E(N) \oplus N')/N' \cong E(N) \hookrightarrow E$, there is monomorphism $g: (E(N) \oplus N')/N' \mapsto E$. Since E is injective, there is E such that E so E since E is injective. While E is an essential submodule of E is maximal E is an essential submodule of E is maximal, E is an essential submodule of E is maximal, E is an essential submodule of E is maximal, E is an essential submodule of E is maximal, E is an essential submodule of E is maximal, E is an essential submodule of E is maximal, E is an essential submodule of E is maximal, E is maximal, E is an essential submodule of E is maximal, E is maximal, E is injective.

- 18. Suppose $\mathbb{Z}a + K = \mathbb{Q}$. If $a \in K$, then $\mathbb{Z}a \subseteq K$, $\mathbb{Z}a + K = K = \mathbb{Q}$. If $a = \frac{m}{n}, (m, n) = 1, m, n > 0$, then $\frac{1}{n^k} \notin K$ for any $k \in \mathbb{Z}_+$. $\frac{1}{n^k} = \frac{x_k m}{n} + y_k$ where $x_k \in \mathbb{Z}, y_k \in K$, then $\frac{1}{n^{k-1}} = x_k m + ny_k$, thus $y_k = \frac{1}{n^k} \frac{x_k n^{k-1} m}{n^k} = \frac{1 x_k n^{k-1} m}{n^k}$, hence $1 = u \frac{m}{n} + v = \frac{u m + nv}{n}$ where $u \in \mathbb{Z}$ and $n = u m + nv, nv \in K \cap \mathbb{Z}$. If $1 \in K$, then $\frac{1}{n^{k-1}} \in K$ for $\frac{1}{n^{k-1}} = x_k m + ny_k$, it is contradiction. If $1 \notin K$, then for any $p \in \mathbb{Z}$, $\frac{1}{p} \notin K$, thus $\frac{1}{p} \in \mathbb{Z}\frac{1}{n}$, it is impossible. Hence submodule $\mathbb{Z}a \leq \mathbb{Q}$ is superfluous for any $a \in \mathbb{Q}$.
- 19. $Ker\pi=N=Re_{13}$. If $Re_{13}+M=R$, then $e_{22}=ke_{13}+a$ where $k\in R, a\in M$, thus $e_{22}=e_{22}^2=e_{22}a\in M$. Similarly, $e_{33}\in M$, then $e_{12}=e_{12}e_{22}\in M$, $e_{13}=e_{13}e_{33}\in M$ and $e_{23}=e_{23}e_{33}\in M$, thus $Re_{13}\subseteq M$, hence Re_{13} is a superfluous submodule of RR. Therefore $\pi:R\to R/N$ is a projective cover of R/N.