TALLER 1:

Simulación del modelo de Lapicque "integrate-and-fire linear neuron", mediante Brian2-Python.

David Chaupis Meza, FLR.

objetivos

- La hipótesis de Bernstein (1902).
- Las fuerzas iónicas.
- Spike, threshold, rheobase.
- El modelo de Lapicque: integrate-and-fire.
- Práctica con Brain2 (.py).

La hipótesis de Bernstein

- Julius Bernstein, postuló en 1902 que el impulso nervioso debe estar representado por una irrupción a la resistencia del potencial de membrana neuronal.
- En sus palabras, dijo:
 - "the peak of the action potential represented the point of minimum resistance (or maximum conductance) and thus would simply approach zero millivolts.".

Las fuerzas iónicas

Spike, threshold, rheobase.

Spike, threshold, rheobase

Spike, threshold, rheobase.

Figure 1.4: Where is the firing threshold? Shown are in vitro recordings of two layer 5 rat pyramidal neurons. Notice the differences of voltage and time scales.

Spike, threshold, rheobase.

Figure 1.7: Resonant response of the mesencephalic V neuron of a rat's brainstem to pulses of injected current having a 10 ms period (in vitro).

El modelo de Lapicque: integrateand-fire.

Brian2: lo simularemos?

