- **15.1**. (*) Soient a < b et $f : [a, b] \rightarrow [a, b]$ une fonction croissante.
 - 1) Montrer que f admet un point fixe.
 - 2) Que devient ce résultat si f est supposée décroissante?
- **15.2**. Pour chaque entier $n \geq 0$, on considère la fonction polynomiale $P_n: [0,1] \to \mathbf{R}$ définie par $P_0(x) = 0$ et

$$P_{n+1}(x) = P_n(x) + \frac{1}{2} (x - P_n^2(x)).$$

1.) Montrer que pour tout $x \in [0,1]$ et tout entier $n \ge 0$:

$$0 \le P_n(x) \le P_{n+1}(x) \le \sqrt{x}.$$

- 2.) En déduire que la suite $(P_n)_{n=0}^{\infty}$ converge uniformément vers la fonction $f:[0,1]\to \mathbf{R}$ définie par $f(x)=\sqrt{x}$.
- 3.) Montrer qu'il existe une suite de fonctions polynomiales $Q_n : [-1,1] \to \mathbf{R}$ qui converge uniformément vers la fonction $g : [-1,1] \to \mathbf{R}$ définie par g(x) = |x|.

<u>Indication</u>: Commencer par montrer par récurrence que $0 \le P_n(x) \le \sqrt{x}, \forall x \in [0,1]$.

- 15.3. (Une variante de la "permutation des limites"). Soit (f_n) une suite de fonctions sur [a,b] qui converge uniformément et soit $a < x_0 < b$. Cette fois, on ne suppose pas que les f_n soient continues, mais on suppose:
 - pour tout n, la limite $\lim_{x\to x_0} f_n(x)$ existe;
 - la limite $\lim_{n\to\infty} \lim_{x\to x_0} f_n(x)$ existe.

Démontrer $\lim_{n\to\infty} \lim_{x\to x_0} f_n(x) = \lim_{x\to x_0} \lim_{n\to\infty} f_n(x)$.