Chapter 6 Analog Filter Design

山东大学 软件学院 蔡珣

motivation

- To prevent aliasing, an anti-aliasing analog filter is often placed before S/H
- To smooth the D/A converter output, a reconstruction(smoothing) analog filter is often placed after D/A
- Ideal filters cannot not be realized since impulse response is not absolutely summable, sometimes digital filter(especially for the design of IIR digital filter) has to be converted from analog filter
- In order to develop stable and realizable system, the ideal frequency response specifications are relaxed by a transition band between the passband and the stopband o permit the magnitude response to decay gradually

Contents

- Anolog filter
 - Butterworth approximation
 - LP analog Filter design
 - Other analog filters design
- Sampling theorem
- Anti-aliasing analog filter
 - determine the sampling frequency T for practical filters
- Reconstruction analog filter
 - to contain all the information of original signal as much as possible
- From analog filter to digital filter
 - for IIR digital filter and FIR digital filter

6.1 Analog filter design

- what the difference between analog filter and digital filter design?
 - analog filter is implemented by analog circuit
 - analog filter is designed by using approximation technique
- How an analog filter comes from
 - analog filter circuit
 - the gain of output

•
$$\dot{A}_{VH} = \frac{\dot{V}_o}{\dot{V}_i} = \frac{1}{1 + j(f/f_H)}, f_H = \frac{1}{2\pi R_1 C_1}$$

•
$$A_{VH} = \frac{1}{\sqrt{1 + (f/f_H)^2}},$$

•
$$\varphi_{VH} = -arctg(f/f_H)$$

Butterworth approximation

The magnitude-squared response

$$|H_a(j\Omega)|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}},$$

- N—orders
 - as the filter order N increase, the transition band decrease.
 - 2N-1 derivatives at Ω =0 are equal to zero
 - maximally flat magnitude at Ω =0
- Ω_c --cutoff frequency

$$|H_a(j\Omega_c)|^2 = \frac{1}{2}$$

The gain

$$g(\Omega) = 10 \log_{10} |H_a(j\Omega)|^2 dB$$

- Ω =0, the gain is zero
- $g(\Omega_c) = 10 \log_{10}(\frac{1}{2}) \cong -3dB$
- $\Omega = \Omega c$, $\Omega >> \Omega c$, $|H_a(j\Omega)|^2 \approx \frac{1}{\left(\frac{\Omega}{\Omega_c}\right)^{2N}}$

- How to determine a Butterworth analog filter?
 - Based on the specifications of Gibbs phenomenon
- passband error δ_n
- stopband error δ_s
- Passband edge frequency Ω_n $1 - \delta_p \le |H_a(j\Omega)| \le 1 + \delta_p$, for $|\Omega| \le \Omega_p$
- Stopband edge frequency Ω_s $|H_a(j\Omega)| \leq \delta_s$, for $\Omega_s \leq |\Omega| < \infty$
- Transition band $|\Omega_p \Omega_s|$
- Peak passband ripple $\alpha_p = -20\log_{10}(1 - \delta_p)dB$
- Minimum stopband attenuation $\alpha_s = -20 \log_{10} \delta_s dB$
- Transition band • Ex. If a desired peak passband ripple of a lowpass filter α_p is o.o.dB, and the minimum attenuation in the stopband α_s is 70dB. Determine δ_n and δ_s . • Solution:
 - $\delta_p = 1 10^{-\alpha_p/20} = 0.00115$ $\delta_s = 10^{-\alpha_s/20} = 0.0003162$

- Normalized form
 - maximum value of the magnitude in the passband is 1
 - minimum passband ripple

$$|H_a(j\Omega)|_{\min_passband} = \frac{1}{\sqrt{1+\varepsilon^2}}$$

• Maximum stopband ripple $\frac{1}{A}$

$$\alpha_s = -20\log_{10}\frac{1}{A}dB$$

• Given passband Ω_p and the minimum passband magnitude $|H_a(\Omega_p)|^2$, the stopband edge Ω_s and the maximum stopband ripple $|H_a(\Omega_s)|^2$, based on the following formulations, we can determine Ω_c and N

$$\left|H_{a}(\Omega_{p})\right|^{2} = \frac{1}{1 + (\frac{\Omega_{p}}{\Omega_{c}})^{2N}} = \frac{1}{1 + \varepsilon^{2}}, \quad (1)$$

$$\left|H_{a}(\Omega_{s})\right|^{2} = \frac{1}{1 + (\frac{\Omega_{s}}{\Omega_{c}})^{2N}} = \frac{1}{A^{2}}, \quad (2)$$

$$N = \frac{1}{2} \frac{\log_{10}\left[\frac{(A^{2} - 1)}{\varepsilon^{2}}\right]}{\log_{10}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)} = \frac{\log_{10}\left(\frac{1}{k_{1}}\right)}{\log_{10}\left(\frac{1}{k}\right)}$$

$$\Omega_{c}$$

- Ex. A analog lowpass filter $H_a(j\Omega)$ having a maximally flat lowpass characteristic with a 1-dB at passband frequency Ω_p which is $1kH_z$ and a minimum attenuation of 40 dB at stopband frequency Ω_s which is $5kH_z$. Determine N of Butterworth filter
- Solution:

$$|H_a(j\Omega_p)|^2 = \frac{1}{1 + \left(\frac{\Omega_p}{\Omega_c}\right)^{2N}} = \frac{1}{1 + \varepsilon^2}$$

$$\Rightarrow \log_{10}\left(\frac{1}{1 + \varepsilon^2}\right) = -1 \Rightarrow \varepsilon^2 = 0.25895$$

$$|H_a(j\Omega_s)|^2 = \frac{1}{1 + \left(\frac{\Omega_s}{\Omega_c}\right)^{2N}} = \frac{1}{A^2}$$

$$\Rightarrow \log_{10}\left(\frac{1}{A^2}\right) = -40 \Rightarrow A^2 = 10,000$$

$$\frac{1}{k_1} = \frac{\sqrt{A^2 - 1}}{\varepsilon} = 196.51334, \qquad \frac{1}{k} = \frac{\Omega_p}{\Omega_s} = \frac{5000}{1000} = 5$$

$$N = \left[\frac{1}{2} \frac{\log_{10} \left[\frac{(A^2 - 1)}{\varepsilon^2} \right]}{\log_{10} \left(\frac{\Omega_S}{\Omega_n} \right)} \right] = \left[\frac{\log_{10} \left(\frac{1}{k_1} \right)}{\log_{10} \left(\frac{1}{k} \right)} \right] = \left[\frac{\log_{10} (196.51334)}{\log_{10} (5)} \right] \approx \left[3.2811022 \right] = 4$$

The other analog filters

- Transform analog lowpass filter into the desired analog filter
 - Determine the specifications of lowpass filter from the desired specifications of highpass filter
 - Transform lowpass filter to the other kinds of filter
- Analog highpass filter design

$$\Omega = -\frac{\Omega_p \widehat{\Omega}_p}{\widehat{\Omega}}$$

- $\widehat{\Omega}$ --highpass filter frequency,
- $\widehat{\Omega}_p$ --highpass passband frequency
- $|H_a(j\Omega_p)|^2$: $|\Omega| < \Omega_p \leftrightarrow |\widehat{\Omega}| \ge \widehat{\Omega}_p$
- $|H_a(j\Omega_s)|^2$: $|\Omega| \ge \Omega_s \leftrightarrow 0 \le |\widehat{\Omega}| \le \widehat{\Omega}_s$

- Ex. Design an analog Butterworth highpass filter with the following specifications: passband edge at $4kH_z$, stopband edge at $1kH_z$, passband ripple of 0.1dB, and minimum stopband attenuation of 40dB.
 - Solution:
 - (1) chose the normalized passband edge Ω_p of lowpass filter to be 1 r/s, then normalized stopband edge of the lowpass filter is given by

$$\Omega_{S} = \frac{\Omega_{p} \widehat{\Omega}_{p}}{\widehat{\Omega}_{S}} = \frac{1 \times 4000}{1000} = 4$$

$$\log_{10} \left(\frac{1}{1 + \varepsilon^{2}} \right) = -0.1 dB, \quad \log_{10} \left(\frac{1}{A^{2}} \right) = -40 dB$$

$$N = \left[\frac{1}{2} \frac{\log_{10}\left[\frac{(A^2 - 1)}{\varepsilon^2}\right]}{\log_{10}\left(\frac{\Omega_S}{\Omega_p}\right)}\right], \text{ and } \Omega_c \text{ is -3dB cutoff frequency of analog lowpass filter}$$

(2) Transform the lowpass filter into highpass filter by replace $\Omega = \frac{\Omega_p \Omega_p}{\widehat{\Omega}}$

Analog bandpass filter

$$\Omega = -\Omega_p \frac{\widehat{\Omega}_o^2 - \widehat{\Omega}^2}{\widehat{\Omega} B_W}, B_w = (\widehat{\Omega}_{p2} - \widehat{\Omega}_{p1})$$

- $\widehat{\Omega}_o^2$ --Passband center frequency
- $\Omega = 0 \leftrightarrow \widehat{\Omega} = \widehat{\Omega}_0$
- $\Omega_p \leftrightarrow \widehat{\Omega}_{p2}$ and $(-\widehat{\Omega}_{p1})$,
- $\Omega_s \leftrightarrow \widehat{\Omega}_{s2}$ and $(-\widehat{\Omega}_{s1})$,
- $|\Omega| \le \Omega_p \leftrightarrow \widehat{\Omega}_{p1} \le |\widehat{\Omega}| \le \widehat{\Omega}_{p2}$
- $\widehat{\Omega}_{p1}\widehat{\Omega}_{p2} = \widehat{\Omega}_{s2}\widehat{\Omega}_{s1} = \widehat{\Omega}_{o}^{2}$

Analog bandstop filter

$$\Omega = \Omega_S \frac{\widehat{\Omega} B_W}{\widehat{\Omega}_O^2 - \widehat{\Omega}^2}$$
, $B_W = (\widehat{\Omega}_{S2} - \widehat{\Omega}_{S1})$

- $\widehat{\Omega}_o^2$ stopband center frequency
- $\Omega = \pm \infty \leftrightarrow \pm \widehat{\Omega}_0$,
- $\Omega_s \leftrightarrow \widehat{\Omega}_{s1}$ and $(-\widehat{\Omega}_{s2})$,
- $-\Omega_s \rightarrow -\widehat{\Omega}_{s1}$ and $\widehat{\Omega}_{s2}$,
- $\bullet \ |\Omega| \leq \Omega_p \leftrightarrow -\widehat{\Omega}_{p1} \leq \widehat{\Omega} \leq \widehat{\Omega}_{p1}, -\infty \leq \widehat{\Omega} \leq -\widehat{\Omega}_{p2}, and -\widehat{\Omega}_{p2} \leq \widehat{\Omega} \leq \infty$
- $\widehat{\Omega}_{p1}\widehat{\Omega}_{p2} = \widehat{\Omega}_{s2}\widehat{\Omega}_{s1} = \widehat{\Omega}_{o}^{2}$

6.2 Sample theorem

FT of the Impulse signal

$$p_t(t) = \sum_n \delta(t - nT)$$

$$F(p_t(t)) = F\left(\sum_n \delta(t - nT)\right) = \frac{2\pi}{T} \sum_n \delta(\Omega - n\Omega_T)$$

- Proof
 - Since $p_t(t)$ is periodic, so

$$p_t(t) = \sum_n P(n\Omega_T)e^{jn\Omega_T t}$$
, where $P(n\Omega_T)$ is Fourier series

$$P(n\Omega_T) = \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jn\Omega_T t} dt = \frac{1}{T}$$
, where $\Omega_T = \frac{2\pi}{T}$

$$p_t(t) = \sum_n P(n\Omega_T)e^{jn\Omega_T t} = \frac{1}{T}\sum_n e^{jn\Omega_T t}$$
, where $\Omega_T = \frac{2\pi}{T}$

$$P(j\Omega) = F(p_t(t)) = \int_{-\infty}^{\infty} p_t(t)e^{-j\Omega t}dt = \int_{-\infty}^{\infty} \frac{1}{T} \sum_{n} e^{jn\Omega_T t} e^{-j\Omega t}dt$$

$$= \frac{1}{T} \sum_{n} \int_{-\infty}^{\infty} e^{j(n\Omega_{T} - \Omega)t} dt = \frac{2\pi}{T} \sum_{n} \delta(\Omega - n\Omega_{T})$$

From continuous time FT to DTFT

$$X_S(j\Omega) = \frac{1}{T} \sum_n X_a \left(j \left(\Omega - \frac{2\pi}{T} n \right) \right) = \sum_n X_a \left(j \left(\Omega - \Omega_T n \right) \right)$$

- Proof
 - $X_a(j\Omega) = F(x_a(t))$
 - $x[n] = x_a(nT) = x_a(t)|_{t=T} = x_a(t)p_t(t)$ = $x_a(t) \sum \delta(t - nT)$

•
$$X_{S}(j\Omega) = F(x_{a}(nT)) - \dots \Omega = \frac{\omega}{T}$$

$$= F\left(x_{a}(t)\sum_{n}\delta(t-nT)\right)$$

$$= F(x_{a}(t)) * F\left(\sum_{n}\delta(t-nT)\right)$$

$$= X_{a}(j\Omega) * \frac{2\pi}{T}\sum_{n}\delta(\Omega-n\Omega_{T})$$

$$= \frac{2\pi}{T}\frac{1}{2\pi}\int_{-\infty}^{\infty}X_{a}(j\lambda)\sum_{n}\delta(\Omega-n\Omega_{T}-\lambda)d\lambda$$

$$= \frac{1}{T}\sum_{n}X_{a}(j\Omega-jn\Omega_{T})$$

Nyquist sampling theorem

$$\Omega_T = \frac{2\pi}{T} \ge 2\Omega_{\max},$$

- Ω_T ——angular sampling frequency(rad/s)
- $\Omega_T/2$ ---Nyquist frequency (rad/s)
- $-\Omega_T/2 \le \Omega \le \Omega_T/2$ —-base band or Nyquist band, also band of $X_a(j\Omega)$
- Ω_{max} --the highest frequency of the signal
- *T* sampling period (s) $\frac{1}{T} = f_x$ ---sampling frequency (Hz)

The relation between DTFT and FT

•
$$X_S(j\Omega) = F\{x_S(t)\} = \sum_n x[nT]F\{\delta(t-nT)\}$$

= $\sum_n x[n]e^{-jnT\Omega}$

$$\omega = T\Omega \Longrightarrow$$

$$X(e^{j\omega n}) = \sum_{n} x[n]e^{-j\omega n}$$

•
$$X_s(j\Omega) = \sum_n X_a(j(\Omega - \Omega_T n))$$

$$\omega = T\Omega \Longrightarrow$$

$$X(e^{j\omega n}) = \frac{1}{T} \sum_{n} X_{a}(j\omega/T - jn2\pi/T)$$

Examples of Sampling theorem

- Ex1: $x_a(t) = \cos(\Omega_0 t)$ is sampled and get $x[n] = \cos(\frac{\pi}{4}n)$, $T = \frac{1}{1000}$ seconds, find possible value of Ω_0 if no aliasing.
 - Solution:

$$x[n] = x_a(nT) = \cos(\Omega_0 nT) = \cos(\frac{\pi}{4}n)$$

$$\Omega_0 nT = \Omega_0 n \frac{1}{1000} = \frac{\pi}{4}n + 2k\pi n$$

$$\Omega_0 = 1000 \times \left(\frac{\pi}{4} + 2k\pi\right)$$

based on the sample theorem $\Omega_s \geq 2\Omega_0$,

$$\Omega_T = \frac{2\pi}{T} = 2000\pi$$
, $\Omega_0 \le \frac{\Omega_T}{2} = 1000\pi$
So $k=0$, and $\Omega_0 = \frac{1000\pi}{4}$

Ex: $X_a(j\Omega)$ is known, with $\Omega_1 \leq \Omega \leq \Omega_2$, $x_a(t)$ is sampled by $T = \frac{\pi}{\Omega_2}$, which is $\Omega_T = 2\Omega_2$; (a)if $\Omega_2 = 2\Omega_1$, sketch $X_s(j\Omega)$ and $X(e^{j\omega})$ (b) if we want to filter out $Y(j\Omega)$ with $0 \leq \Omega_1$, sketch the ideal digital filter and $Y(e^{j\omega})$

- Ex4: If $X_c(j\Omega)$, has $|\Omega_c| = 2000\pi$, find T so that $y_c(t) = x_c^2(t)$ without aliasing.
- Solution:
 - based on properties of DTFT

$$y_c(t) = x_c^2(t) \rightarrow Y_c(j\Omega) = \frac{1}{2\pi} X_c(j\Omega) * X_c(j\Omega)$$

$$X_c(j\Omega) \text{ has } |\Omega_c| = 4000\pi (r/s),$$

$$Y_c(j\Omega) \text{ has } |\Omega_c| = 8000\pi (r/s),$$

So for aliasing,

$$\Omega_T = \frac{2\pi}{T} \ge 2 * 8000\pi(r/s),$$

$$T \le \frac{1}{8} \times 10^{-3}(s)$$

6.2 Anti-aliasing filter design

- Why use anti-aliasing filter
 - To enforce the continuous signal to satisfy the condition of sampling prior to sampling
 - limited sampling frequency which circuit can get
- The ideal anti-aliasing filter

- Ex. For a continuous time signal x(t) with frequency spectrum X(j Ω) with $-2\pi \times 10^4 r/s \le \Omega_x \le 2\pi \times 10^4 r/s$, If sampling period T=2 × 10⁻⁴s, to prevent aliasing, write out the anti-aliasing filter with largest cut-off frequency before sampling X(j Ω).
 - Solution:

$$\Omega_T = \pi \times 10^4$$

$$H_a(j\Omega) = \begin{cases} 1, & |\Omega| < \frac{\Omega_T}{2} = 0.5\pi \times 10^4, \\ 0, & |\Omega| \ge \frac{\Omega_T}{2} = 0.5\pi \times 10^4 \end{cases}$$

The practical anti-aliasing filter design

$$\Omega_p < \Omega_{stop} \le \frac{\Omega_T}{2}$$

- The maximum distortion will be in the replicas of input spectrum adjacent the baseband
- the maximum aliasing frequency is at

$$\Omega_o = \Omega_T - \Omega_p$$

 Minimum attenuation for anti-aliasing filter at Ω_o should less than 1/A

Attenuation difference(level)

$$= 10 \log_{10} \left[\frac{1 + (\frac{\Omega_o}{\Omega_c})^{2N}}{1 + (\frac{\Omega_p}{\Omega_c})^{2N}} \right] \approx 10 \log_{10} \left(\frac{\Omega_o}{\Omega_p} \right)^{2N}$$

<u>attenuation in the table</u> corresponding factor in the table

Transition band

Ω_0	2 Ω_p	$_3\Omega_p$	$4\Omega_p$
Attenuation in dB	6.02N	9.54N	12.04N
Ω_T	$3\Omega_p$	$4\Omega_p$	$5\Omega_p$

- Ex. Consider an anti-aliasing filter with a Butterworth lowpass filter, if the minimum stopband attenuation $at~\Omega_0$ is 60dB and $~\Omega_T=3\Omega_p$ then from table, determination of the order N of the anti-aliasing filter
 - solution:

if $\Omega_T = 3\Omega_p$, from table we can get an attenuation level which is 6.02N, since attenuation $at \Omega_0$ is 60dB, from table,

$$N = [60/6.02] = 10$$

6.3 Analog reconstruction filter design

- Why use analog reconstruction filter?
 - To recover the original continuous time signal from discrete time signal
 - To eliminate all the replicas of the spectrum outside the baseband.
 - To sample the required signal
- The ideal reconstruction filter

$$H_{r}(j\Omega) = \begin{cases} T, |\Omega| \leq \Omega_{c} \\ 0, |\Omega| > \Omega_{c} \end{cases},$$

 Ω_c --the highest frequency of the signal to be preserved

$$h_r(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H_r(j\Omega) e^{j\Omega t} d\Omega = \frac{\sin(\Omega_c t)}{\Omega_T t/2}, \quad -\infty < t < \infty$$

The reconstruction filter is also called smoothing filter

the recovered continous time signal in time-domain

$$\hat{Y}_{a}(j\Omega) = H_{r}(j\Omega)Y_{s}(j\Omega) = T \cdot u(\Omega - |\Omega_{c}|) \cdot Y_{s}(j\Omega)$$

$$Y_{s}(j\Omega) = \sum_{n=1}^{\infty} y[n] e^{-j\Omega nT}$$

$$\hat{g}_{a}(t) = \frac{T}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \sum_{n=1}^{\infty} y[n] e^{-j\Omega nT} e^{j\Omega t} d\Omega$$

$$= \sum_{n=1}^{\infty} y[n] \int_{-\alpha_{c}}^{\alpha_{c}} e^{j\Omega(t-nT)} \frac{T}{2\pi} d\Omega$$

$$= \sum_{n=1}^{\infty} y[n] \sin c \left(\frac{\pi}{T}(t-nT)\right)$$

$$\lim_{n=1}^{\infty} \frac{e^{j\Omega(t-nT)}}{\pi(2j)(t-nT)} = \frac{e^{j\frac{\pi}{T}(t-nT)}}{\pi(2j)(t-nT)}$$

$$\lim_{n=1}^{\infty} \frac{e^{j\Omega(t-nT)}}{\pi(2j)(t-nT)} = \frac{e^{j\frac{\pi}{T}(t-nT)}}{\pi(2j)(t-nT)}$$

$$\lim_{n=1}^{\infty} \frac{e^{j\Omega(t-nT)}}{\pi(2j)(t-nT)} = \frac{e^{j\frac{\pi}{T}(t-nT)}}{\pi(2j)(t-nT)}$$

 the process of recovering in frequency domain

Aliasing of reconstruction

Spectrum of $\cos(6\pi t)$

Spectrum of $cos(14\pi t)$

Spectrum of $\cos(26\pi t)$

Spectrum of sampled $\cos(6\pi t)$ with $\Omega_T = 20\pi > 2 \times 6\pi$

Spectrum of sampled $\cos(14\pi t)$ with $\Omega_T = 20\pi < 2 \times 14\pi$

Spectrum of sampled $\cos(26\pi t)$ with $\Omega_T = 20\pi < 2 \times 26\pi$

Anti-aliasing reconstruction filter design

- Ω_c --cut-off angular frequency of reconstruction filter
- Ω_{cc} ---cut-off angular frequency of the filtered analog signal which is required to be reconstructed

$$\begin{cases} \Omega_{\rm cc} \le \Omega_T - \Omega_c \\ \Omega_{\rm cc} \le \Omega_c \end{cases}$$

Ideal reconstruction filter

- Ex: If $X_a(j\Omega)$ is known with $\Omega_c = 2\pi \times 10^4$, if reconstruction filter has no aliasing, Determine range of T
 - solution:

$$\Omega_c = 2\pi \times 10^4$$
based on
$$\begin{cases} \Omega_{\rm cc} \leq \Omega_T - \Omega_c \\ \Omega_{\rm cc} \leq \Omega_c \end{cases} \rightarrow \begin{cases} \frac{\omega_{\rm cc}}{T} \leq \frac{2\pi}{T} - 2\pi \times 10^4 \\ \frac{\omega_{\rm cc}}{T} \leq 2\pi \times 10^4 \end{cases}$$

$$\begin{cases} 2\pi \times 10^4 \leq \frac{2\pi - \omega_{\rm cc}}{T} \\ \frac{\omega_{\rm cc}}{T} \leq 2\pi \times 10^4 \end{cases} \rightarrow \begin{cases} T \leq \frac{2\pi - \omega_{\rm cc}}{2\pi \times 10^4} \\ \frac{\omega_{\rm cc}}{2\pi \times 10^4} \leq T \end{cases}$$

$$\frac{\omega_{\rm cc}}{2\pi \times 10^4} \leq T \leq \frac{2\pi - \omega_{\rm cc}}{2\pi \times 10^4}$$

Ideal reconstruction filter

reconstruct the bandpass signals

• if Ω_{max} is very large, but signal band is $\Delta\Omega$ is small, then $\Omega_T \ge 2\Omega_{max}$ will be very large spectral gap, which is not be practical.

Assume

$$\Omega_{max} = M(\Delta\Omega)$$

Choose

$$\Omega_T \ge 2(\Delta\Omega) = \frac{2\Omega \max}{M} < \Omega_{\max}$$

- Ex2: $X_a(j\Omega)$ is known, with $\Omega_1 \le \Omega \le \Omega_2$ which is $\Omega_2 = 2\Omega_1$; find the lowest sampling rate Ω_T , if $x_a(t)$ can be exactly reconstructed.
 - Solution:

From analog filter to digital filter

- FIR digital from analog filter
 - Directly based on $\Omega = \frac{\omega}{T}$, determine the cut-off frequency of FIR filter
 - Determine the order *N*(the length) of FIR digital filter based on Gibbs specifications
 - Choose Windows function
- IIR digital filter design from analog filter
 - Bilinear transformation method
 - Impulse Invariance method

FIR digital design from analog filter

• Determine ω_c of ideal filter based on $\omega_c = \Omega T$

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases} \qquad \longrightarrow \qquad h_{LP}[n] = \frac{\sin \omega_c n}{\pi n} , -\infty < n \le \infty$$

• Windowing the ideal filter (from IIR filter to FIR filter)

$$\hat{h}_{LP}[n] = \begin{cases} \frac{\sin \omega_c n}{\pi n}, & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases} \qquad \qquad \hat{h}_{LP}[n] = h_{LP}[n] \cdot w[n]$$

- Determine the order of FIR filter
 - Kaiser's Formula

$$N \cong \frac{-20\log_{10}(\sqrt{\delta_p \delta_s}) - 13}{14.6(\omega_s - \omega_p)/2\pi}$$

IIR filter design from analog filter

- Impulse Invariance Method
 - Given the analog filters impulse response, sample it to get the digital filter unit impulse response

$$h_{s}(t) = T \sum_{k=-\infty}^{\infty} h_{a}(kt)\delta(t - kT)$$

• Frequency response relation is found as

$$H_{S}(j\Omega) = T \cdot \left(\frac{1}{T}\right) \sum_{k=-\infty}^{\infty} H_{a} \left(j\left(\Omega - \left(\frac{2\pi}{T}\right)k\right)\right)$$

$$H_{S}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_{a} \left(j\left(\frac{\omega}{T} - 2\pi k\right)\right)$$

- It will be effected by aliasing.
 - For LP and BP it can sometimes work or can't work due to aliasing;
 - For HP and BR filter, it can't work due to aliasing

Bilinear transformation

$$j\Omega = \frac{1 - z^{-1}}{1 + z^{-1}}$$

$$when z = e^{j\omega},$$

$$j\Omega = \frac{\left(\frac{2j}{T}\right)\left(e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}\right)/2j}{\left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}\right)/2}$$

$$= \frac{2j\sin(\frac{\omega}{2})}{T\cos(\frac{\omega}{2})}$$

when $\Omega = \frac{2}{T} \tan(\frac{\omega}{2})$, will not cause aliasing

• Ex. An analog lowpass filters has the following characteristics:

$$|H_c(j\Omega)| - 1| \le \delta_p$$
, for $|\Omega| \le \Omega_p$
 $|H_c(j\Omega)| \le \delta_s$, for $|\Omega| \ge \Omega_s$

(a)For constant Ω_p , find T_p such that $\omega_p = \pi/2$

Solution:
$$\Omega_p = \frac{2}{T_p} \tan(\omega_p/2) = (2/T_p) \tan(\pi/4)$$

$$T_p = (2/\Omega_p) \tan(\pi/4)$$

(b) With Ω_p fixed, sketch ω_p , as a function of T_p Solution : $\omega_p = 2 \tan^{-1}(\Omega_p \cdot T_p/2)$

(c)With Ω_p and Ω_s fixed, sketch $\Delta\omega=\omega_s-$ as a function of T_p

Solution :
$$\Delta \omega = \omega_S - \omega_p = 2 \tan^{-1} \left(\Omega_S \cdot \frac{T_p}{2} \right) - 2 \tan^{-1} \left(\Omega_p \cdot \frac{T_p}{2} \right)$$

 $\approx T_p \left(\Omega_S - \Omega_p \right) \quad \because \tan^{-1}(x) \approx x, \text{ for } x \to 0$

Procedure of practical digital filter design

- Step1: Design analog filters for analog signal $H(j\Omega)$ based on specifications of analog filters $H(j\Omega)$
- Step 2 : Mapping analog filter to transfer function H(z)
- Step 3: based on stability and causality requirements of LTI system to design H(z)
- Step 4: From H(z) to get H($e^{j\omega}$)
- Step 5: DFT frequency response to get H[*k*]
- Step 6: IDFT to get h[*n*]

Procedure of practical digital signal processing

- Step1: Based on the sampling theorem to determine the T of $X_a(j\Omega)$, after antialiasing filtering $x_a(t)$, sampling $x_a(t)$ to x[n]
- Step2 : Design practical digital filter h[n] based on the previous procedure
- Step3 : Do convolution of x[n] with h[n] to get y[n]
- Step4: Design anti-aliasing reconstruction filter
- Step 5: reconstruct $y_a(t)$ from y[n]

课程结束!