ANEJO 1. CATEGORIZACIÓN DE VARIABLES AMBIENTALES Y EDAFOLÓGICAS

Salvo especificación contraria, la tipificación de las propiedades que se presenta a continuación se ha realizado de acuerdo con la norma FAO (Almorox et al., 1994)

1. Relieve

1.1 <u>Clases de pendiente (*TipoPte*)</u>

CÓDIGO Cod_Tipo Pend	Pendiente %	Denominación	Criterio
6	0 - 3	llana	Terrenos de vocación agrícola, sin problemas de erosión.
5	3 - 10	suave	Terrenos de vocación agrícola, que precisan prácticas de conservación.
4	10 - 20	media o moderada	Terrenos agrícolas marginales o forestales. El 20% es límite a la agricultura (Porta Casanellas et al., 2003).
3	20 - 35	fuerte	Terrenos de vocación forestal productora-protectora. El 35% marca el límite al uso de maquinaria forestal convencional de preparación del terreno sin alteración de la pendiente (Serrada, 1993).
2	35 - 50	muy fuerte	Terrenos de vocación forestal protectora-productora. Los suelos se encuentran condicionados por la pendiente en sus posibilidades de evolución.
1	> 50	escarpada	Terrenos de vocación forestal protectora. Los fenómenos erosivos hacen que la creación de una capa continua de suelo sea difícil, acumulándose los materiales finos en los resaltos y rellanos del terreno.

1.2 <u>Altura del relieve (Topog gral)</u>

Altumo del relicus en un contente de	Montañoso: desniveles >1000 m
Altura del relieve en un contexto de relieve general (características del terreno	Colinado: desniveles entre 200 y 1000 m
en una dimensión de unos 1.000 m):	Ondulado: desniveles <200 m
en una uniterision de unos 1.000 mj.	Plano: desniveles poco apreciables

Dado que en la zona de estudio los relieves montañosos están prácticamente ausentes y que los relieves planos son también muy escasos, se hace una simplificación de la altura de relieve para la generación de unidades de paisaje:

CÓDIGO Alt_Rel	CÓDIGO Alt_reliev	Altura Relieve	
2	С	Colinado	
1	0	Ondulado	

1.3 <u>Tipo de relieve</u>

Se codifican los relieves que presentan mayor contraste desde el punto de vista edafológico, en el ámbito del trabajo realizado:

CÓDIGO TipoRel	CÓDIGO Tipo_reliev	Tipo Relieve	Descripción
20	AR	Agudamente recortado	Pendientes dominantes moderadas a muy fuertes.
10	SR	Suavemente recortado	Pendientes dominantes suaves a moderadas

1.4 Relieve general (unidades de paisaje)

Combinaciones y recodificaciones de altura y tipo de relieve en un contexto de relieve general:

CÓDIGO Relieve	Rel_Mod	Relieve (combinado)	RelieveMod_simpl	Definición
22	1,4	Agudamente recortado - Colinado	3	Accidentado
12	1,3	Suavemente recortado - Colinado	3	Accidentado
21	1,3	Agudamente recortado - Ondulado	3	Accidentado
11	1,2	Suavemente recortado - Ondulado	2	Suave

El parámetro *Rel_Mod* trata de reflejar en un número real y ordenable la dificultad que presenta el relieve a la formación del suelo (a mayor valor, mayor dificultad).

El parámetro *RelieveMod_simpl* establece la máxima simplificación en dos tipos de relieve, suave/accidentado. El valor 0 de *RelieveMod_simpl* corresponde a zonas mineras.

1.5 <u>Posición en ladera (topografía local)</u>

CÓDIGO Cat_topo_local	Topog_local
1	Alta ladera
1	Cresta o loma
1	Colina
2	Media ladera
2	Meseta
3	Baja ladera
3	Llanura
3	Rellano
4	Fondo de valle
4	Hondonada

1.6 <u>Microtopografía</u>

Curvatura vertical o microtopografía (Microtopog)	TipoMicrotop	Curv_vertic
Convexo	1	-0,006
Plano-convexo	2	-0,002
Plano	3	0
Plano-cóncavo	4	0,003
Irregular	4	0,003
Cóncavo	5	0,01

1.7 Concentración de flujo

Curvatura horizontal (Concentracion)I	Cod_Concentrac	Curvat_horiz
Convergente	5	0,11
Ligeramente convergente	4	0,02
Neutro o paralelo	3	0
Divergencia débil	2	-0,02
Divergencia fuerte	1	-0,12

NOTA: los valores numéricos de curvatura horizontal y vertical asignados son aproximaciones medias utilizadas para los puntos de muestreo, puesto que una medición precisa de estos valores necesitaría un levantamiento topográfico.

La codificación numérica (*Cod_Concentrac* y *TipoMicrotop*) se relacionan de forma aproximada con la capacidad de desarrollo edáfico.

1.8 <u>Longitud de ladera</u>

CÓDIGO Tipo_Long_lad	Intervalo de longitud (m)	Evaluación cualitativa de la longitud
1	0-50	Ladera corta
2	50-100	Ladera intermedia
3	>100	Ladera larga

Índice combinado de longitud de ladera

Este índice se ha elaborado para tratar de corregir la falta de significación de las laderas largas cuando la pendiente es escasa o cuando es muy fuerte.

- Cuando la pendiente es escasa las laderas tienden a ser muy largas, se asimilan más bien a un llano.
- Cuando la pendiente es muy fuerte se reduce también el efecto de ladera, pues de forma general el flujo tiende a converger hacia barrancos y cauces, por lo que es raro que la longitud se corresponda con lo apreciado sobre el terreno o por el SIG.

Denominación del código: Topo_J

Pendiente	Tipo_Long_lad	CÓDIGO Topo_J
<10%	cualquiera	3
10 – 35%	cualquiera	Tipo_Long_lad
>35%	1	1
>35%	>1	(Tipo_Long_lad) - 1

Longitud de ladera modificada (L lad mdf)

Esta modificación de la variable cuantitativa longitud de ladera minora el efecto sobre el desarrollo del suelo de las laderas muy largas, cuando éstas superan los 150 m.

Longitud_ladera	L_lad_mdf
<=150 m	Longitud_ladera (no cambia)
> 150 m	150+(Longitud_ladera-150)/10

1.9 Valores utilizados para la estimación del área específica de drenaje

El área específica de drenaje (As) se calcula a partir del valor de la longitud de ladera (I) y de la curvatura horizontal ($tg \alpha$), deduciéndose mediante trigonometría sencilla la siguiente expresión:

$$As = [I \cdot tg \alpha + 1] \cdot I$$

Los valores de $tg \alpha$ se pueden ver en la siguiente tabla:

Curvatura horizontal (Tipo de flujo)	Intervalo de tg α	Valor medio asignado a la tg α	As
Convergente	0,03 a 0,2	0,1	0,1· <i>l</i> ²+/
Ligeramente convergente	0,01 a 0,03	0,02	0,02· <i>l</i> ²+ <i>l</i>
Neutro o paralelo	0	0	1
Divergencia débil	0 a −1/(2·/)	-1/(4·/)	3/4 · /
Divergencia fuerte	> -1/(2·/)	-1/(2·/)	1/2 · <i>I</i>

Área de drenaje específico correspondiente a la longitud de ladera modificada. Para su obtención basta sustituir en la tabla anterior el valor de *I* por *L_lad_mdf*.

1.10 Categorías del Índice de Humedad Modificado (WI mdf)

Denominación del código: CAT_WI

CÓDIGO CAT_WI	WI
4	<5
5	5 – 6,5
7	> 6,5

El índice de humedad se obtiene a partir de la expresión:

$$WI = \ln\left(\frac{As}{\tan\beta}\right)$$

Donde: WI: índice de humedad.

As: área de drenaje específica β: ángulo de la pendiente local

En este trabajo se ha utilizado para el cálculo de WI la variable ADrj_mdf, por lo cual se ha expresado la variable como WI_mdf.

2. Variables climáticas

Se ha trabajado con dos distribuciones de datos climáticos. La primera realizada por Domingo (2002) a partir de las estaciones de la Red Nacional y Autonómica en el periodo 1965 – 1995. La segunda procede del subsistema CLIMA de la REDIAM(*Red de Información Ambiental de Andalucía*, n.d.). En este último caso las variables climáticas llevan el sufijo REDIAM.

2.1 <u>Precipitación (*Precip*)</u>

Categorías de precipitación en la zona de estudio:

CÓDIGO CAT_Precip	Precipitación (mm)
1	Menos de 650
2	de 650 a 800
3	más de 800

2.2 <u>Temperatura (Temp media)</u>

Categorías de temperatura en la zona de estudio:

CÓDIGO CAT_Temp	Temperatura (ºC)
10	de 15,5 a 16,5
20	de 16,5 a 17,5
30	> 17,5

2.3 <u>Combinación de la precipitación y la temperatura</u>

Se han combinado estas dos variables en "CAT_temp_prec", categoría que viene de sumar los posibles casos de temperatura y precipitación.

Categorías combinadas de precipitación y temperatura en la zona de estudio (no se indican las combinaciones que no aparecen de forma significativa sobre el terreno):

CÓDIGO CAT_temp_prec	Precipitación (mm)	Temperatura (ºC)
11	< 650	
12	de 650 a 800	< 16,5
13	> 800	
21	< 650	
22	de 650 a 800	de 16,5 a 17,5
23	> 800	
31	< 650	
32	de 650 a 800	> 17,5

3. <u>Variable combinada Clima_relieve</u>

Definición de categorías según la combinación de los dos tipos simplificados de relieve (accidentado y suave) y la combinación de las variables CAT_temp_prec.

CÓDIGO Clima_relieve	CAT_temp_p rec	RelieveMod_simpl	Descripción
112	11	suave	Zona fresca, pluviometría baja, relieve suave
113	11	Accidentado	Zona fresca, pluviometría baja, relieve accidentado
122		Suave	Zona fresca, pluviometría intermedia, relieve suave
123	12	Accidentado	Zona fresca, pluviometría intermedia, relieve accidentado
132	13	suave	Zona fresca, pluviometría alta, relieve suave
133	15	accidentado	Zona fresca, pluviometría alta, relieve accidentado
212	21	suave	Zona de temperatura intermedia, pluviometría baja, relieve suave
213	21	accidentado	Zona de temperatura intermedia, pluviometría baja, relieve accidentado
222	22	suave	Zona de temperatura intermedia, pluviometría intermedia, relieve suave
223	22	accidentado	Zona de temperatura intermedia, pluviometría intermedia, relieve accidentado
232	23	suave	Zona de temperatura intermedia, pluviometría alta, relieve suave
233	25	accidentado	Zona de temperatura intermedia, pluviometría alta, relieve accidentado
312	31	suave	Zona cálida, pluviometría baja, relieve suave
313	31	accidentado	Zona cálida, pluviometría baja, relieve accidentado
322		suave	Zona cálida, pluviometría intermedia, relieve suave
323	32	accidentado	Zona cálida, pluviometría intermedia, relieve accidentado

4. <u>Descripción de los suelos. Variables edafológicas</u>

Salvo especificación contraria, la tipificación de las propiedades que se presenta a continuación se ha realizado de acuerdo con la norma FAO (Almorox et al., 1994).

4.1 <u>Profundidad del suelo (*Prof_Util*)</u>

CÓDIGO CATEPROF	Intervalo de profundidad (cm)	Evaluación cualitativa de la profundidad
1	0-40	Somero
2	40-70	Profundidad intermedia (medianamente profundos)
3	70-100	Profundos
4	>100	Muy profundos

4.2 <u>Atributos de la estructura del suelo</u>

Grado (Grado_estruc):	Tipo (<i>Tipo_estruc</i>):
Sin estructura: maciza (si coherent	e), grano • Laminar.
suelto (si incoherente).	Prismática.
Débil: agregados escasamente for	mados. • Columnar.
Moderada: agregados bien formada	os y • Bloques angulares.
diferenciados.	Bloques subangulares.
Fuerte: agregados bien formados	Granular: agregados relativamente no
diferenciados y duraderos.	porosos.
	 Migajosa: agregados porosos.

CLASE (Clase_estruc)	Muy fina	Fina	Mediana	Gruesa	Muy gruesa
Laminar	<1	1-2	2-5	5-10	>10
Prismática	<10	10-20	20-50	50-100	>100
Columnar	<10	10-20	20-50	50-100	>100
Bloques	<5	5-10	10-20	20-50	>50
Granular	<1	1-2	2-5	5-10	>10
Migajosa	<1	1-2	2-5		

4.3 <u>Propiedades de los elementos gruesos según FAO (Almorox et al., 1998)</u>

GRADO	TAMAÑO	FORMA	ALTERACIÓN
(Tipo_gruesos)	(Tamaño_frag_roc)	(Angulosidad)	(Alteracion_frag_roc)
Sin gruesos <1%	Grava (2- 75 mm)	Angular	No alterados
Muy pocos (1-5 %)	• fina 2 – 5 mm	Redondeada	Meteorizados
Pocos (6-15 %)	 media 5 – 20 mm 	Plana	Fuertemente
Frecuentes (16-40 %)	 gruesa 20 – 75 mm 		meteorizados
Abundantes (40-80 %)	Piedra (75 – 250 mm)		
Muy abundantes (> 80 %)	Bloque (>250 mm).		

4.4 <u>Codificación del contenido en gruesos</u>

Contenido medio de gruesos en el perfil. Denominación del código: Tipo_Gruesos

CÓDIGO Tipo_Gruesos	Gruesos %	Contenido en gruesos
1	≤ 5	Muy pocos gruesos
2	5 – 15	Pocos gruesos
3	15 – 40	Frecuentes gruesos
4	40 – 80	Abundantes gruesos
5	> 80	Muy abundantes gruesos

4.5 <u>Caracterización de los límites entre horizontes edáficos</u>

Α	ncho de transición (<i>Diferenciacion</i>)		Topografía del límite (Top_diferen)
•	Brusco o abrupto (< 2,5 cm)	•	Plano
•	Neto (2,5 - 5 cm)	•	Ondulado
•	Gradual (5 - 12 cm)	•	Irregular: anguloso; dendrítico;
•	Difuso (> 12 cm)		denticulado; digitado; lobulado
		•	Interrumpido

4.6 <u>Identificación de niveles de compactación del suelo con el uso de una navaja</u>

CÓDIGO Cod_compac_25	Nivel de compactación (Compactacion)	Descripción
1	Blando	Material incoherente, el cuchillo penetra completamente sin esfuerzo
2	Poco compacto	Se precisa un ligero esfuerzo, pero el cuchillo penetra por completo en el suelo
2	Commonto	El cuchillo no penetra completamente, incluso realizando un
3	Compacto	cierto esfuerzo
4	Muy compacto	No es posible clavar el cuchillo más de algunos mm
-1	No observable	

4.7 <u>Humedad</u>

Humedad	Descripción	
Seco	no se advierte cambio de temperatura, puede desprender polvo	
Húmedo o fresco	tacto fresco, no desprende polvo	
Mojado	deja huella húmeda	
Saturado	escurre agua	

4.8 <u>Presencia de raíces</u>

CÓDIGO Cod_CantRaice	Cantidad (<i>Raices_cantidad</i>)	Tamaño (Raices_tamaño)
1	Ausentes	Finas (<2 mm)
2	Escasas (1-15 raíces/dm²)	Medianas (2-5 mm)
3	Abundantes (16-50 raíces/ dm²)	Gruesas. (5-20 mm)
4	Muy abundantes (> 50 raíces/ dm²)	Muy gruesas (>20 mm)

4.9 <u>Afloramientos rocosos</u>

Afloramientos rocosos (Aflor_rocos)	Intervalo (%)
Sin afloramientos	0 a 2
Moderadamente rocoso	2 a 10
Rocoso	10 a 25
Muy rocoso	25 a 50
Excesivamente rocoso	50 a 90
Terreno rocoso	>90

4.10 <u>Pedregosidad superficial (Ped_Sup)</u>

CÓDIGO Tipo_Ped_sup	Pedregosidad superficial %	Evaluación cualitativa
20	<20	Escasa
30	20 - 40	Moderada
40	≥40	Abundante

4.11 <u>Clasificación de la profundidad de la capa freática (</u>Soil Survey Division Staff, 1993)

Clasificación	Profundidad de la capa freática (cm)
Muy somera	<25
Somera	25 a 50
Moderadamente profunda	50 a 100
Profunda	100 a 150
Muy profunda	>150

4.12 <u>Espesor del horizonte A</u>

CÓDIGO CAT_ESP_A	Espesor A (cm)	Evaluación cualitativa
1	≤ 10	Delgado
2	10 – 18	Intermedio
3	> 18	Grueso

5. Análisis

5.1 <u>Evaluación de la reacción del suelo según su pH (Porta Casanellas et al., 2003)</u>

рН	Evaluación (Tipo_reaccion_hor)	Efectos esperables en el intervalo	CÓDIGO CAT_pHagua CAT_pHKCI
<4	Extremadamente ácido	Condiciones muy desfavorables (sólo aparece para pHKCI)	3
4-4,5	Extremadamente ácido	Condiciones muy desfavorables	4
4,5-5,0	Muy fuertemente ácido	Posible toxicidad por Al ³⁺ y exceso: Co, Cu, Fe, Mn, Zn Deficiencia: Ca, K, N, Mg, Mo, P, S Suelos sin carbonato cálcico. El hormigón ordinario resulta atacado. Actividad bacteriana escasa.	5
5,1-5,5	Fuertemente ácido	Exceso: Co, Cu, Fe, Mn, Zn Deficiencia: Ca, K, N, Mg, Mo, P, S Suelos sin carbonato cálcico. El hormigón ordinario resulta atacado. Actividad bacteriana escasa.	5,5
5,6-6,0	Medianamente ácido	Intervalo adecuado para la mayoría de los cultivos.	6
6,1-6,5	Ligeramente ácido	Máxima disponibilidad de nutrientes.	6,5
6,6-7,3	Neutro	Mínimos efectos tóxicos. Por debajo de pH = 7,0 el carbonato cálcico no es estable en el suelo.	
7,4-7,8	Medianamente básico	Suelos generalmente con CaCO₃	7
7,9-8,4	Básico	Disminuye la disponibilidad de P y B. Deficiencia creciente de Co, Cu, Fe, Mn, Zn. Suelos calizos. Clorosis férrica debida al HCO ₃ -	7

рН	Evaluación (Tipo_reaccion_hor)	Efectos esperables en el intervalo	CÓDIGO CAT_pHagua CAT_pHKCI
<4	Extremadamente ácido	Condiciones muy desfavorables (sólo aparece para pHKCl)	3
8,5-9,0	Ligeramente alcalino	En suelos con carbonatos, estos pH altos pueden deberse al MgCO ₃ , si no hay sodio intercambiable. Mayores problemas de clorosis férrica (Rusell, 1978)	7
9,1-10,0	Alcalino	Presencia de carbonato sódico.	7
<10,0	Fuertemente alcalino	Elevado porcentaje de sodio intercambiable (ESP>15%) Toxicidad: Na, B Movilidad del P como Na ₃ PO ₄ Actividad microbiana escasa Micronutrientes poco disponibles, excepto Mo	7

5.2 <u>Presencia de cationes (M RM Ca, M RM Mg, M RM Na, M RM K)</u>

CÓDIGO CAT_Ca, CAT_Mg, CAT_Na y CAT_K	Contenido en Ca (ppm)*	Contenido en Mg (ppm)*	Contenido en Na (ppm)	Contenido en K (ppm)	Evaluación cualitativa
1	<150		<10	<11	Extremadamente pobre
2	150-300	<80	10-20	11-37	Muy pobre
3	300-700	80-300	20-40	37-64	Pobre
4	700-2000	300-600	40-60	64-91	Intermedio
5	2000-4000	600-900	60-80	91-117	Rico
6	>4000	900-1800	80-160	117-160	Muy rico
7		>1800	>160	>160	Excesivamente rico

^{*}Adaptado de Urbano Terrón (1992, pp. 571, 588)

5.3 <u>Capacidad de intercambio catiónico (CIC) (M RM CIC)</u>

CÓDIGO	CIC (meq/100 g TF)	Evaluación cualitativa
1	<10	Baja
2	10-20	Intermedia
3	>20	Elevada

5.4 <u>Saturación del complejo de cambio (V) (M_RM_V)</u>

CÓDIGO	V %	Evaluación cualitativa
1	<25	Muy insaturado
2	25-50	Insaturado
3	50-80	Ligeramente saturado
4	>80	Saturado

5.5 <u>Contenido en materia orgánica (MO 10)</u>

CÓDIGO CAT_MO_10	MO %	Evaluación cualitativa
1	≤1	Muy bajo
2	1 – 2	Bajo
3	2 – 4	Moderado
4	> 4	Alto

5.6 <u>Índice textural logarítmico (*Itext In Pf*)</u>

Este índice ha sido ideado para contribuir a mejorar algunos aspectos relativos a la parametrización de la textura edáfica. Se basa en el número de partículas totales que pueden existir por unidad de peso de suelo.

En la siguiente tabla se indica la cantidad de partículas por unidad de peso de suelo según el tamaño de las partículas, tomado de Porta et al.(2003). Cuando no se dispone de todas las fracciones texturales indicadas, lo que es frecuente en el caso de la arena, se calcula la media geométrica del número de partículas del subconjunto previamente.

		Nº partículas por gramo		
Fracción	Diámetro	Todas las fracciones	Sólo arena muy	Sólo arena total
Traccion	aparente mm	de arena	fina y resto arena	3010 di Cila total
Arena muy gruesa	2-1	90		
Arena gruesa	"1-0,5	720	2.030	6.573
Arena media	^0,5-0,25	5.700	2.030	
Arena fina	0,25-0,1	46.000		
Arena muy fina	0,1-0,05	722.000	722.000	
Limo	0,05-0,02	5.776.000	5.776.000	5.776.000
Arcilla	<0,02	90.260.853.000	90.260.853.000	90.260.853.000

La expresión del índice textural es:

$$Itex_ln = \sum_{i=frac.text} p_i * ln n_i$$

Donde:

n_i: número de partículas por gramo en la fracción textural i

 p_i : tanto por uno en peso de la fracción textural i

En el presente trabajo el cálculo se ha realizado teniendo en cuenta la subfracción de arena muy fina, el resto de la fracción de arena, y las fracciones de limo y arcilla.

Para el análisis categórico se ha tomado la parte entera de *ltext_ln_Pf*, que se ha denominado *tipo_ltex_ln*.

5.7 <u>Diámetro medio cuadrático</u>

Valores estadísticos del diámetro medio cuadrático de los tamaños de partículas en tierra fina en todo el perfil (*DgPf_TF*) y su desviación típica (*SigmagPf_TF*), según la metodología planteada por Shirazi y Boersma (1984).

6. Capacidad de retención de agua del suelo

CÓDIGO CATECRAMU CATECRADU	Intervalo de CRAMU (mm)	Intervalo de CRADU (mm)	Evaluación cualitativa
1	0-60	0-35	Muy baja
2	60-120	35-70	Ваја
3	120-180	70-105	Intermedia
4	180-240	105-140	Alta
5	240-300	140-200	Muy alta
6	> 300	> 200	Extremadamente alta

7. Conductividad hidráulica

7.1 Conductividad hidráulica del suelo (M K Saxton RM)

La conductividad hidráulica se ha calculado según Saxton et al. (1986).

CÓDIGO CATE_K_Saxton	Intervalo de conductividad hidráulica (cm/h) (Rawls et al., 1982)	Intervalo de conductividad hidráulica (cm/h) (Soil Survey Division Staff, 2000)	Evaluación cualitativa de la conductividad hidráulica
1	<0,1016	<0,0036	Muy lenta
1	0,1016-0,2032	0,0036-0,036	Lenta
2	0,2032-0,508	0,036-0,36	Moderadamente lenta
3	0,508-2,032	0,36-3,6	Moderadamente rápida
4	2,032-6,096	3,6–36	Rápida (alta)
4	>6,096	≥36	Muy rápida (muy alta)

NOTA: se ha homogeneizado la denominación de la evaluación cualitativa de la conductividad hidráulica; en algunos textos el término "rápida" se traduce como "alta" y "lenta" aparece como "baja".

Intervalos según Almorox et al. (1994)

CÓDIGO CATE_K_Saxton_Alm	Intervalo de permeabilidad (cm/h)	Evaluación cualitativa de la permeabilidad
1	<0,12	Muy lenta
1	0,12-0,5	Lenta
2	0,5-2	Moderadamente lenta
3	2-6,2	Moderada
3	6,2-12,5	Moderadamente rápida
3	12,5-25	Rápida a muy rápida

7.2 <u>Definición de los grupos hidrológicos de suelos (</u>Soil Survey Division Staff, 2000)

Grupo A: Suelos con conductividad hidráulica saturada muy alta o por encima de la media de las altas, y en los que la capa freática está muy profunda.

Grupo B: Suelos con conductividad hidráulica saturada por debajo de la media de las altas o por encima de la media de las moderadamente altas, y en los que la capa freática está profunda o muy profunda.

Grupo C: Suelos con conductividad hidráulica saturada por debajo de la media de las moderadamente altas o por encima de la media de las moderadamente bajas, y en los que la capa freática está más profunda que somera.

Grupo D: Suelos con conductividad hidráulica saturada por debajo de la media de las moderadamente bajas, y/o en los que la capa freática está poco profunda o muy somera de forma transitoria a permanentemente.

CÓDIGO ghs_perfil ghs_perfil_brak	Grupo Hidrológico	K _{sat} (cm/h)	Profundidad capa freática (cm)
1	Grupo A	> 19,8	>150
2	Grupo B	1,98 – 19,8	>100
3	Grupo C	0,198 - 1,98	>50
4	Grupo D	< 0,198	<50

En esta definición de los grupos hidrológicos de suelo se presupone que la mínima conductividad hidráulica se produce en los 50 cm superiores del suelo; de no ser así hay que corregir la

asignación del suelo al grupo, de tal forma que, si la mínima conductividad hidráulica saturada se produce en los horizontes de profundidad 50 cm a 100 cm, la asignación de grupo se desplaza hacia un grupo hidrológico de menor infiltración. Si la profundidad a la que se produce la mínima conductividad es mayor de los 100 cm, la asignación de grupo se realiza con los valores del suelo por encima de los 100 cm, aplicando las reglas anteriormente comentadas.

La conductividad hidráulica se ha calculado según Saxton et al. (1986) y según Brakensiek et al. (1984) (Citado por (Fernández de Villarán San Juan, 2006)]

8. Factor K (USLE) (FactorK)

CÓDIGO	Porcentaje respecto de la	
Tipo_FactorK	media	
1	> 30	
2	15 – 30	
3	-15 – 15	
4	≤ -15	

Esta codificación trata de diferenciar los suelos comparativamente más o menos erosionables con respecto a la media general.

9. <u>Abundancia relativa de especies vegetales según los criterios fitosociológicos de Braun-Blanquet</u>

Código (Frecuencia)	Descripción	Código (Frecuencia)	Descripción
+	presencia puntual	3	25 al 50% de cobertura
1	<5% de cobertura	4	50 al 75% de cobertura
2	5 al 25% de cobertura	5	>75% de cobertura

10. Vegetación dominante

Cod_vegDom	Vegetación dominante
1	Pinar
2	Eucaliptal
3	Quercíneas*
4	Mezcla de especies arbóreas
5	Matorral
6	Matorral degradado
7	Olivar
8	Herbáceas
9	Naranjos
10	Raso menos de 10% cobertura
11	Olivar adehesado

^{*}Especies de *Quercus* mediterráneas. El término Quercíneas se utiliza en las bases de datos oficiales de uso del suelo, a pesar de ser una denominación incorrecta.

11. Descripción de la fracción gruesa y de las rocas tipo

Grano	Tamaño
No apreciable	-
Muy fino	<0,5 mm
Fino	0,5 - 1 mm
Medio	1 -2 mm

Grano	Tamaño
Grueso	2 - 5 mm
Muy grueso	> 5 mm

Dureza	Friabilidad	Forma	Exfoliación	Esquistosidad	Tacto
Uña	No friable	Subangular	Perfecta (tipo mica)	Apreciable	Suave, sericítico (mancha)
Uña +	Escasa	Angular	Irregular (tipo pizarra) fácil	Poco apreciable	Áspero (no granular)
Uña -	Media	Redondeada	Irregular (tipo pizarra) difícil	No apreciable	Granular grueso
Navaja	Muy friable	Plana	No exfoliable		Granular fino
Vidrio					Punzante-anguloso

12. Conjuntos litológicos

A cada litofacies simplificada se le ha asignado un conjunto y un subconjunto litológico en función del origen y tipología de cada roca.

LtS	SUBCONJUNTO	CONJUNTO	DENOM SUBCONJT
100	IG-A	IG	Ígneas ácidas
300	IG-B	IG	Ígneas básicas
400	VS-A	VS	Vulcano-sedimentarias ácidas
700	VS-B	VS	Vulcano-sedimentarias básicas
800	MF-S	MF	Metamórficas sedimentarias
1100	PZ-C	PZ	Pizarras culm
1200	PZ-C	PZ	Pizarras culm
1300	PZ-Q	PZ	Pizarras PQ
1500	VS-A	VS	Vulcano-sedimentarias ácidas
1800	VS-B	VS	Vulcano-sedimentarias básicas
2000	PZ-V	PZ	Pizarras vulcanosedimentarias
2100	MF-S	MF	Metamórficas sedimentarias
2200	IG-B	IG	Ígneas básicas
2300	IG-B	IG	Ígneas básicas
2400	MF-I	MF	Metamórficas ígneas
2500	IG-B	IG	Ígneas básicas
3100	PC-A	PC	Pliocuaternarias arenosas
3200	PC-C	PC	Pliocuaternarias carbonatadas
3300	PC-C	PC	Pliocuaternarias carbonatadas
3400	PC-C	PC	Pliocuaternarias carbonatadas
3600	PC-C	PC	Pliocuaternarias carbonatadas
3800	PC-A	PC	Pliocuaternarias arenosas
4100	MF-C	MF	Metamórficas carbonatadas
8400	IG-A	IG	Ígneas ácidas

13. Triángulo textural (Clase_text)

14. Referencias

- Almorox, J., Antonio, R. de, & Hontoria, C. (1998). *Guía de campo para la descripción de perfiles*. Depto. Edafología. E.T.S. Ingenieros Agrónomos. Universidad Politécnica de Madrid.
- Almorox, J., Antonio, R. d., Saa, A., Díaz, M., & Gascó, J. M. (1994). *Métodos de estimación de la erosión hídrica*. Ed. Agrícola Española. Madrid.
- Brakensiek, D. L., Rawls, W. J., & Stephenson, G. R. (1984). *Modifying scs hydrologic soil groups and curve numbers for rangeland soils. PNR 84-203*.
- Domingo-Santos, J. M. (2002). *Caracterización de suelos forestales de la provincia de Huelva* [Universidad Politécnica de Madrid]. https://doi.org/10.20868/UPM.thesis.811
- Fernández de Villarán San Juan, R. (2006). *Mejora de los parámetros de cálculo del modelo del número de curva y su validación mediante un modelo hidrológico distribuido* [Universidad de Huelva]. https://core.ac.uk/download/pdf/60638805.pdf
- Porta Casanellas, J., López-Acevedo Reguerin, M., & Roquero de Laburu, C. (2003). *Edafología para la agricultura y el medio ambiente* (3a. ed.) [Book]. Mundi-Prensa.
- Rawls, W. J., Saxton, K. E., & Brakensiek, D. L. (1982). Estimation of soil water properties. *Transactions of the ASAE*, 25(5), 1316–1320. https://doi.org/10.13031/2013.33720
- Red de Información Ambiental de Andalucía. (n.d.). REDIAM. Consejería de Medio Ambiente, Sostenibilidad y Economía Azul. Junta de Andalucía. https://www.juntadeandalucia.es/medioambiente/portal/acceso-rediam/descargas
- Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986). Estimating Generalized Soil-water Characteristics from Texture. *Soil Science Society of America Journal*, *50*(4), 1031–1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
- Serrada, R. (1993). Apuntes de repoblaciones forestales. FUCOVASA- E.U.I.T.Forestal. Madrid.

- Shirazi, M. A., & Boersma, L. (1984). A Unifying Quantitative Analysis of Soil Texture. *Soil Science Society of America Journal*, 48(1), 142–147. https://doi.org/10.2136/sssaj1984.03615995004800010026x
- Soil Survey Division Staff. (1993). *Soil Survey Manual. Handbook n°18*. Soil Survey Division Staff. United States Department of Agriculture.
- Soil Survey Division Staff. (2000). *Soil Survey Manual*. Soil Survey Division Staff. United States Department of Agriculture. Scientific Publishers, Jodhpur (India).
- Urbano Terrón, P. (1992). Tratado de fitotecnia general (2nd ed.). Mundi-Prensa.