Lecture 4

Systems and Convolutions

Administrative

A0 is out.

- It is upgraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.

A1 will be out this weekend

- It is graded
- Due Tue, Apr 16

Administrative

Recitation sections on fridays

- (optional)
- Fridays 12:30pm-1:20pm
- JHU 102
- It will be recorded

This week:

We will go over Python & Numpy basics

So far: 2D discrete system (filters)

S is the **system operator**, defined as a mapping or assignment of possible inputs f[n,m] to some possible outputs g[n,m].

$$f[n,m] \rightarrow \Big| \text{ System } \mathcal{S} \Big| \rightarrow g[n,m]$$

So far: Moving Average

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

So far: Image Segmentation

• Use a simple pixel threshold: $g[n,m] = \begin{cases} 255, & f[n,m] > 100 \\ 0, & \text{otherwise.} \end{cases}$

So far: Properties of systems

• Amplitude properties:

Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Homogeneity

$$\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$$

Superposition

$$\mathcal{S}[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha \mathcal{S}[f_i[n,m]] + \beta \mathcal{S}[f_j[n,m]]$$

Stability

If
$$\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$$
 for some constant c and k

Invertibility

$$\mathcal{S}^{-1}\mathcal{S}[f[n,m]] = f[n,m]$$

So far: Properties of systems

Spatial properties

Causality

for
$$n < n_0, m < m_0$$
, if $f[n, m] = 0 \implies g[n, m] = 0$

Shift invariance:

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

$$f[n,m] \rightarrow \boxed{ \text{System } \mathcal{S} } \rightarrow g[n,m]$$

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point
- **S** is a linear system (function) iff it *S* satisfies

$$S[\alpha f_i[n,m] + \beta f_j[k,l]] = \alpha S[f_i[n,m]] + \beta S[f_j[k,l]]$$

superposition property

$$f[n,m] \rightarrow \boxed{ \text{System } \mathcal{S} } \rightarrow g[n,m]$$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

$$f[n,m] \rightarrow \boxed{ \text{System } \mathcal{S} } \rightarrow g[n,m]$$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

• Q. Is thresholding a linear system?

$$g[n, m] = \begin{cases} 1, & f[n, m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

$$f[n,m] \to \boxed{ \text{System } \mathcal{S} } \to g[n,m]$$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

- Q. Is thresholding a linear system?
 - Let f1[0,0] = f2[n,m] = 0.4
 - Let T = 0.5
 - o So, S[f1[0,0]] = S[f2[0,0]] = 0
 - \circ But S[f1[0,0] + f2[0,0]] = 1

$$g[n, m] = \begin{cases} 1, & f[n, m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

Linear shift invariant (LSI) systems

- Satisfies two properties:
- Superposition property

$$S[\alpha f_i[n,m] + \beta f_j[k,l]] = \alpha S[f_i[n,m]] + \beta S[f_j[k,l]]$$

Shift invariance:

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Moving average system is linear shift invariant (LSI)

- We are going to use this as an example to dive into interesting properties about linear shift-invariant systems.
- Why are linear shift invariant systems important?

Our visual system is a linear shift invariant system

Human vision are scale and translation invariant

 Target
 아 드 피 뤄 춘 선 머 르 타 예 간 방 우 시 켜

 Distractor
 마 므 티 뢔 훈 건 다 브 뎌 메 산 랑 은 지 려

 (A)

Participants were shown some target Korean character once and were tested on whether they can identify the targets from other distractors

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

Human vision are scale and translation invariant

Very high recognition accuracies

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

2D impulse function

- Let's look at a special function
- 1 at the origin [0,0].
- 0 everywhere else

2D impulse function as an image

- Let's look at a special function
- 1 at the origin [0,0].
- 0 everywhere else

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

What happens when we pass an impulse function through a LSI systems

• The moving average filter equation again: $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

$$\boxed{\delta_2[n,m] \xrightarrow{S} h[n,m]}$$
 Pass in an impulse function Record its response

- By passing an impulse function into an LSI system, we get it's impulse response.
 - We will use h[n, m] to refer to the impulse response

What happens when we pass an impulse function through a LSI systems

Before we do this, let's remember how we used the moving average filter last lecture

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

Courtesy of S. Seitz

g[n,m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

f[n, m]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n, m]

f[n, m]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n, m]

f[n, m]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

Impulse response of the 3 by 3 moving average filter

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$

	K	$u[\cdot,\cdot]$]	
1	1	1	1	
<u> </u>	1	1	1	
9	1	1	1	
				Г

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$

$$h[0,1] = \frac{1}{9}\delta_2[0,0]$$

$h[\cdot,\cdot]$								
1	1	1	1					
	1	1	1					
9	1	1	1					

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$

$$h[0,1] = \frac{1}{9}\delta_2[0,0]$$

$h[\cdot,\cdot]$							
1	1	1	1				
<u> </u>	1	1	1	_			
9	1	1	1	_			
				_			

Q. For what values of **n** and **m** is h[,] **not** zero?

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k, m-l]$$

The general form for a moving average h[n,m]

$h[\cdot,\cdot]$								
1	1	1	1					
	1	1	1					
9	1	1	1					

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k, m-l]$$

Q. Why is this the general form?

$h[\cdot,\cdot]$								
1	1	1	1					
<u> Т</u>	1	1	1					
9	1	1	1					

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k, m-l]$$

Q. Why is this the general form?

As long as n-1, n, or n+1 is 0, the value is 1/9 Same for m

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k, m-l]$$

$$h[\cdot,\cdot]$$

1
1
1
1
1
1
1
1
1

Q. What if we swap n-k for k-n. Does that also work?

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[k-n, l-m]$$

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k, m-l]$$

$$h[\cdot,\cdot]$$

1
1
1
1
1
1
1
1
1
1

Q. What if we swap n-k for k-n. Does that also work?

$$=\frac{1}{9}\sum_{k=-1}^1\sum_{l=-1}^1\delta_2[k-n,l-m] \ \ {\rm Yes\ because\ h\ is\ symmetric\ across\ the\ origin}$$

Q. What if h was the filter on the right:

$$h[-1, :] = 0$$

(A) =
$$\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k, m-l]$$

(B) =
$$\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[k-n, l-m]$$

$h[\cdot,\cdot]$								
1	0	1	1					
$\frac{1}{2}$	0	1	1					
9	0	1	1					

Is A correct?
Is B correct?
Are both correct?
Are both wrong?

Q. What if h was the filter on the right:

$$h[-1, :] = 0$$

$$h[n,m] = \frac{1}{9} \sum_{k=-1}^{0} \sum_{l=-1}^{1} \delta_2[n-k, m-l]$$

Q. What if h was the filter on the right:

$$h[-1, :] = 0$$

$$h[n,m] = \frac{1}{9} \sum_{k=-1}^{0} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$
$$= \frac{1}{9} \sum_{k=0}^{1} \sum_{l=-1}^{1} \delta_2[k-n,l-m]$$

Because h is not symmetric, we need to invert the range if we invert n-k to k-n

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Property of (LSI) systems

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute g using only the impulse response h.

$$f[n,m] \xrightarrow{S} g[n,m]$$

Property of (LSI) systems

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute g using only the impulse response h.

$$f[n,m] \xrightarrow{S} g[n,m]$$

 \circ Let's derive an expression for g in terms of h.

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI

system:

 $\delta_2[n,m] \rightarrow \left| \text{System } \mathcal{S} \right| \rightarrow h[n,m]$

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system: $\delta_2[n,m] \to \boxed{\text{System } \mathcal{S}} \to h[n,m]$

2. We also know that LSI systems shift the output if the input is shifted:

$$\delta_2[n-k,m-l] \rightarrow \boxed{ \text{System } \mathcal{S} } \rightarrow h[n-k,m-l]$$

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system: $\delta_2[n,m] \to \boxed{\text{System } \mathcal{S}} \to h[n,m]$

2. We also know that LSI systems shift the output if the input is shifted:

$$\delta_2[n-k,m-l] \rightarrow \boxed{\text{System } \mathcal{S}} \rightarrow h[n-k,m-l]$$

3. Finally, the superposition principle:

$$S\{\alpha f_1[n,m] + \beta f_2[n,m]\} = \alpha S\{f_1[n,m]\} + \beta S\{f_2[n,m]\}$$

Let's say our input f is a 3x3 image:

f[0,0]	f[0,1]	f[1,1]	
f[1,0]	f[1,1]	f[1,2]	:
f[2,0]	f[2,1]	f[2,2]	

	f[0,0]	0	0		0	f[0,1]	0	
=	0	0	0	+	0	0	0	+ +
	0	0	0		0	0	0	

1			-	_
	0	f[0,1]	0	
	0	0	0	
	0	0	0	

0 0 0 0 f[2,2]	0	0	0
0 0 f[2,2]	0	0	0
	0	0	f[2,2]

Let's say our input f is a 3x3 image:

f[0,0]	f[0,1]	f[1,1]		f[0,0]	0)	0		0	f[0,:	1]	0		0	0		0
f[1,0]	f[1,1]	f[1,2]	_ =	0	0)	0	+	0	0		0	+ +	0	0		0
			_	0	0)	0		0	0		0		0	0	f	[2,2]
f[2,0]	f[2,1]	f[2,2]		 	 			├	-	 			- -	-			
			F		1	0	0			0	1	0	_		0	0	0
			= f ×	[0,0]	0	0	0	+ ×	f[0,1]	0	0	0	+ + [·]	f[2,2]×	0	0	0
					0	0	0			0	0	0	_		0	0	1

Let's say our input f is a 3x3 image:

f[0,0]	f[0,1]	f[1,1]		f[0,0]	0		0		0	f[0,:	1]	0	- -	0	0		0
f[1,0]	f[1,1]	f[1,2]	=	0	0		0	+	0	0		0	+ +	0	0		0
			_	0	0		0		0	0		0		0	0	f	f[2,2]
f[2,0]	f[2,1]	f[2,2]						 -	<u> </u>	 	+		- -	 	+	+	
			Ε.		1	0	0	_		0	1	0	_		0	0	0
			= f ×	[0,0]	0	0	0	+ ×	f[0,1]	0	0	0	+ + [.]	f[2,2]×	0	0	0
						0	0	_		0	0	0	_		0	0	1

 $= f[0,0] \cdot \delta_2[n,m] + f[0,1] \cdot \delta_2[n,m-1] + \ldots + f[2,2] \cdot \delta_2[n-2,m-2]$

More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

For given k, l, this is a constant

More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

For given k, I,

This is a function
this is a constant

of n, m

Superposition

$$S\{lpha f_1[n,m] + eta f_2[n,m]\} = lpha S\{f_1[n,m]\} + eta S\{f_2[n,m]\}$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_{2}[n-k,m-l]$$

For given k, I,

This is a function
this is a constant

of n, m

Superposition

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$
 $S[\sum_i lpha_i f_i[n,m]]=\sum_i lpha_i \mathcal{S}[f_i[n,m]]$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_{2}[n-k,m-l]$$

For given k, I,

This is a function
this is a constant

of n, m

Key idea: write down f as a sum of impulses

Superposition:

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$
 $S[\sum_i lpha_i f_i[n,m]]=\sum_i lpha_i \mathcal{S}[f_i[n,m]]$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\}$$

Key idea: write down f as a sum of impulses

Superposition:

$$S\{lpha f_1[n,m] + eta f_2[n,m]\} = lpha S\{f_1[n,m]\} + eta S\{f_2[n,m]\}$$
 $S[\sum_i lpha_i f_i[n,m]] = \sum_i lpha_i \mathcal{S}[f_i[n,m]]$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\}$$

Key idea: write down f as a sum of impulses

• From previous slide:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\}$$

• Using shift invariance, we get a shifted impulse response:

$$S\{\delta_2[n-k, m-l]\} = h[n-k, m-l]$$

We can write g as a function of h

• We have:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\}$$

• Which means:

$$f[n,m] \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Linear Shift Invariant (LSI) systems

- An LSI system is completely specified by its impulse response.
 - For any input f, we can compute the output g in terms of the impulse response
 h.

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Discrete Convolution

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Linear Shift Invariant (LSI) systems

An LSI system is completely specified by its impulse response.

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$g[n,m] = f[n,m] * h[n,m]$$

$$f[n,m] * h[n,m] = \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

 $k=-\infty l=-\infty$

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \boxed{h[n-k,m-l]}$$

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$
 Output $f*h$ Image $f[k,l]$

f[0,0]	f[0,1]				
f[1,0]					

Element-wise multiplication Image $f[k, l] \bullet \text{Kernel } h[n-k, m-l]$

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Image *f[k, l]* f[0,0] f[0,1] f[1,0]

Element-wise multiplication Image f[k, l] • Kernel h[n-k, m-l]

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

	intage j[k, t]					, <i>ι</i> j		
f[0,0]	f[0,1]							
f[1,0]								

Element-wise multiplication Image f[k, l] • Kernel h[n-k, m-l]

Image flk 11

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Image *f[k, l]* f[0,0] f[0,1] f[1,0]

Element-wise multiplication Image f[k, l] • Kernel h[n-k, m-l]

•
$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Algorithm:

- Fold h[k, l] about origin to form h[-k, -l]
- Shift the folded results by n, m to form h/n k, m l/l
- Multiply h[n-k, m-l] by f[k, l]
- Sum over all k, l, store result in output position [n, m]
- Repeat for every n, m

$$= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$$

$$+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$$

$$+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$$

$$= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$$

$$+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$$

$$+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$$

$$= x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$$

$$+ x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$$

$$+ x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$$

$$= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$$

$$+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$$

$$+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$$

$$= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$$

$$+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$$

$$+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$$

$$= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$$

$$= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1]$$

$$+ x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0]$$

$$+ x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1]$$

$$= 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18$$

What happens if a system contains multiple filters?

(Note that filter sums to 1)

What happens if a system contains multiple filters?

Original

	1	1	1	
1 9	1	1	1	
)	1	1	1	

What does blurring take away?

0 1 0		0	0	0	
0 0 0	=	0	1	0	
		0	0	0	

0 1 0	
0 0 0	

	1	1	1	
$\frac{1}{9}$	1	1	1	
)	1	1	1	

What does blurring take away?

Let's add it back to get a sharpening system:

Convolution in 2D – Sharpening filter

Sharpening system

Original

Sharpening system: Accentuates differences with local average

Implementation detail: Image support and edge effect

- •A computer will only convolve finite support signals.
 - That is: images that are zero for n,m outside some rectangular region
- numpy's convolution performs 2D convolution of finite-support signals.

Image support and edge effect

- •A computer will only convolve finite support signals.
- What happens at the edge?

- zero "padding"
- edge value replication
- mirror extension
- **more** (beyond the scope of this class)

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

(Cross) correlation – symbol: **

Cross correlation of two 2D signals f[n,m] and h[n,m]

$$f[n,m] ** h[n,m] = \sum_{k} \sum_{l} f[k,l]h[n+k,m+l]$$

- Equivalent to a convolution without the flip
- Use it to measure 'similarity' between f and h.

Cross Correlation Application: Vision system for TV remote control

- uses template matching

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Properties of cross correlation

Associative property:

$$(f ** h_1) ** h_2 = f ** (h_1 ** h_2)$$

• Distributive property:

$$f ** (h_1 + h_2) = (f ** h_1) + (f ** h_2)$$

The order doesn't matter! $h_1 ** h_2 = h_2 ** h_1$

Convolution vs. (Cross) Correlation

- When is correlation equivalent to convolution?
- In other words, Q. when is f**g = f*g?

Convolution vs. (Cross) Correlation

- A <u>convolution</u> is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - o convolution is a **filtering** operation
- <u>Correlation</u> compares the *similarity* of *two* sets of *data*. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - o correlation is a measure of relatedness of two signals

What we will learn today?

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Next time:

Edges and lines