

Utilizing Millimeter-Wave Sensors for Human Activity Recognition

Soo Min Kwon*, Christine Mathews*, Shreya Patel*, Song Yang**, Xin Yang**

Advisors: Prof. Yingying Chen & Jian Liu

Motivations & Objectives

- ☐ Human Activity Recognition (HAR) has a wide range of real-world applications, such as health care and fitness tracking
- ☐ Device-based approaches for HAR (e.g. smart watches) have limitations due to cost and discomfort
- ☐ Many significant efforts have recently been made to explore devicefree HAR that utilizes the information collected from wireless infrastructures (e.g. WiFi signals)
- ☐ Other existing wireless devices, such as cameras, can potentially leak and lead to privacy issues
- ☐ We propose a network, utilizing mmWave data that can accurately classify amongst different human activities, that is cheaper and user-friendly
- ☐ mmWave radar systems transmit short wavelength waves that are in the millimeter range, and thus have high frequencies

Figure 1 shows camera and mmWave sensor setup

References

[1] Cao, Zhe & Hidalgo, Gines & Simon, Tomas & Wei, Shih-En & Sheikh, Yaser. (2018). "OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields".

[2] Wang, Fei & Panev, Stanislav & Dai, Ziyi & Han, Jinsong & Huang, Dong. (2019). "Can WiFi Estimate Person Pose?".

Methodology

Convolution Lave

Activation: 'ReLU'

Dropout

Flatten + Dense

POSE ESTIMATION

ACTIVITY RECOGNITION

FIGURE 2

- 1. mmWave sensor triggers 150 frames and captures data
- 2. Camera takes picture synchronous to mmWave sensor
- 3. Process mmWave data to perform 2-D Fast Fourier Transform (FFT)
- Images are further processed using open-source project OpenPose [1] to be used as labels
- Classification model is a teacher-student network similar to [2] that is composed of a Convolutional Neural Network (see Figure 2), using built-in Python packages
- 6. Model is further tested using dynamic data
- Provides a human pose estimated figure performing activity and classification of activity

Results

We trained our classification model for 200 epochs with an Adam optimizer and a total of 1200 data samples. Our current model can classify amongst three different activities: stretching, kicking right leg, and sitting down. The experiments for these activities have 450, 450, and 300 samples respectively.

EXAMPLE RESULTS FOR SITTING

Figure 3 and Figure 4 lead up to a person sitting down respectively

Conclusion & Future Direction

- ☐ We explored a method of hands-free HAR with mmWave sensors by using signal processing and deep-learning techniques
- ☐ Future work consists of gathering more data and optimizing our model for better clarity and accuracy

Acknowledgements

We would like to thank Professor Yingying Chen, Professor Ivan Seskar and PhD students Song Yang and Xin Yang for their endless support and guidance.

