ÚLOHY Z PREDIKÁTOVÉ LOGIKY

Instance, varianty.

UF.1.1. Substituovatelnost.

1. Buď φ formule

$$(\exists z)(x = z) \& y < x$$

a dále x,y,zrůzné proměnné, ${\cal F}$ unární funkční symbol, ckonstantní symbol.

Uveďte, zda je term t substituovatelný do φ za proměnnou v v následujících případech:

- a) t je F(z), v je x. Řešení: Ne.
- b) t je F(z), v je y. Řešení: Ano.
- c) $t \text{ je } F(x), \quad v \text{ je } x.$ Řešení: Ano.
- d) t je F(c), v je y. Řešení: Ano.
- 2. Buď φ formule

$$(\forall x)((\exists z)(z < x \& y = z) \lor z \neq x)$$

a dále x, y, z různé proměnné, G binární funkční symbol, c konstantní symbol.

Uveďte, zda je term t substituovatelný do φ za proměnnou v v následujících případech:

- a) $t \text{ je } G(c, x), \quad v \text{ je } y$ Řešení: Ne.
- b) $t \text{ je } G(c, y), \quad v \text{ je } y$ Řešení: Ano.
- c) $t \text{ je } G(c,c), \quad v \text{ je } z$ Řešení: Ano.
- d) $t \text{ je } G(z, x), \quad v \text{ je } z$ Řešení: Ne.

UF.1.2. Instance. Varianty.

1. Nechť y není volná ve φ a je substituovatelná za x do φ , φ' je $\varphi(x/y)$. Zjistěte, zda $\varphi'(y/x)$ je φ . Zdůvodněte odpověď.

Řešení: Oba předpoklady dohromady zaručují, že volný výskyt y ve φ' je právě tam, kde je volný výskyt x v φ . Tedy x je substituovatelné za y do φ' a také rovnost obou uvažovaných formulí platí.

2. Buďte x,y,z,u různé proměnné, Q kvantifikátor. Odpovězte a zdůvodněte, zda v následujících případech platí:

$$\psi$$
 je varianta φ .

a)
$$\varphi$$
 je $(Qx)(x < y \lor (\exists z)(z = y \& z \neq x))$

$$\psi$$
 je $(Qz)(z < y \lor (\exists z)(z = y \& z \neq z))$

Řešení: Ne. z není substituovatelné za x do $x < y \lor (\exists z)(z = y \& z \neq x)$.

b)
$$\varphi$$
 je $(Qx)(x < y \lor (\forall z)(z = y \& z \neq x))$

 ψ je $(Qy)(y < y \lor (\forall z)(z = y \& z \neq y))$

Řešení: Ne.
$$y$$
 je volná ve φ .
c) φ je $(Qx)(x < y \lor (\exists z)(z = y \& z \neq x))$

$$\psi$$
 je $(Qu)(u < y \lor (\exists z)(z = y \& z \neq u))$

Řešení: Ano. u není volná ve φ a je substituovatelná za x do $x < y \lor (\exists z)(z = y \& z \neq x)$.

3. Buď ${\cal P}$ unární predikátový symbol,

$$\varphi$$
 formule $(\exists y)(y=x) \& P(x)$, φ' formule $(\exists y)(y=y) \& P(y)$.

a) Je $(\forall x)\varphi'$ varianta $(\forall x)\varphi$?

Řešení: Ne.

b) Je x substituovatelné do φ' za y?

Řešení: Ano.

- c) Je φ rovno $\varphi'(y/x)$? Řešení: Ne. $\varphi'(y/x)$ je $(\exists y)(y=y) \& P(x)$.
- d) Je $\vdash \varphi \leftrightarrow \varphi'(y/x)$?

Řešení: Ano. Je $\vdash (\exists y)(y=x) \leftrightarrow (\exists y)(y=y)$, protože obě formule z ekvivalence jsou dokazatelné. Odtud $\vdash (\exists y)(y=x) \& P(x) \leftrightarrow (\exists y)(y=y) \& P(x)$.

Pojem modelu a splňování. Axiomatizovatelnost.

UF.1.3. Platnost formule v modelu.

1. Buď φ formule $P(x) \to (\forall x) P(x)$, kde P je unární relační symbol. V právě kterých strukturách $\langle A, P^A \rangle$ neplatí φ ani $\neg \varphi$?

Řešení: Právě když $\emptyset \neq P^A \neq A$.

2. Buď φ formule x=c,kde c je konstantní symbol. V právě kterých strukturách $\langle A,c^A\rangle$ neplatí φ ani $\neg\varphi?$

Řešení: Právě když $|A| \geq 2$.

3. Buď φ formule $P(x) \to (\forall x)R(x)$, kde P,R jsou různé unární predikátové symboly. V právě kterých strukturách $\mathcal{A} = \langle A, P^A, R^A \rangle$ neplatí φ ani $\neg \varphi$?

Řešení: Právě když $\emptyset \neq P^A \neq A \neq R^A$.

Zřejmě totiž:

$$\mathcal{A} \not\models \varphi \Leftrightarrow P^A \neq \emptyset$$
 a $R^A \neq A$, $\mathcal{A} \not\models \neg \varphi \Leftrightarrow P^A \neq A$ nebo $R^A = A$.

UF.1.4. Korektnost substituce.

Buď φ formule $(\exists y)(x \neq y)$ s různými proměnnými x, y. Buď φ' výsledek "nekorektní substituce" y do φ za volný výskyt x. Buď \mathcal{A} struktura. Uvažujme tvrzení:

Pro každé
$$e: \operatorname{Var} \to A$$
 je $\mathcal{A} \models \varphi'[e] \Leftrightarrow \mathcal{A} \models \varphi[e(x/y[e])].$ (*)

- a) Uveďte, zda (*) platí pro $\mathcal{A}=\langle\mathbb{N},+\rangle$, kde + je sčítání přirozených čísel. Řešení: Ne.
- b) Uveďte, zda (*) platí pro $\mathcal{A}=\langle\{0\},R\rangle,$ kde $R=\{\langle 0,0\rangle\}.$ Řešení: Ano.
- c) Právě pro které modely $\mathcal{A} = \langle A \rangle$ (teorie čisté rovnosti) platí (*)? Řešení: Právě pro \mathcal{A} s A jednoprvkovým.

UF.1.5. Axiomatizovatelnost.

1. Buď K = $\{\langle A \rangle$; velikost A je sudá nebo nekonečná $\}$ třída modelů jazyka L čisté rovnosti. Zjistěte, zda je K axiomatizovatelná, případně najděte její axiomatiku.

Řešení: $T = \{\neg,\text{existuje právě } 2k + 1 \text{ prvků"}; k \in \mathbb{N}\}$ axiomatizuje K.

- 2. Nechť T je teorie v jazyce L s rovností taková, že T má model a každý její model je nekonečný. Buď $0 < n \in \mathbb{N}$. Najděte L-teorii T' tak, aby $\mathsf{M}^\infty(T') = \mathsf{M}^\infty(T)$ a T' měla nějaké konečné modely, a to všechny:
 - a) právě *n*-prvkové,
 - b) právě n-prvkové nebo 2n-prvkové.

Řešení: Buď $T' = \{ \varphi \lor \psi; \varphi \in T \}$ s vhodným ψ .

3. Buď 0 < $n \in \mathbb{N}$. Najděte teorii T v nějakém jazyce s rovností, která má nekonečné modely, nemá spočetný model, má konečné modely, všechny kardinality nejvýše n.

Řešení: Buď $L = \langle c_i; i \in \mathbb{R} \rangle$ s konstantními symboly c_i a T_0 buď L-teorie $\{c_i \neq c_j; i, j \in \mathbb{R}, i \neq j\}$; hledaná T je L-teorie $\{\varphi \vee \text{"existuje nejvýše } n \text{ prvků"; } \varphi \in T_0\}.$

4. Buď $L=\langle U\rangle$ s rovností, přičemž U je unární relační symbol, $0< n\in \mathbb{N}$ a $\mathsf{K}=\{\langle A,U^A\rangle;\, U^A$ je nekonečná nebo nejvýše n-prvková $\}$

je třída L-struktur. Zjistěte, zda je K axiomatizovatelná, případně najděte její axiomatiku.

Řešení: Nechť T_0 je teorie L-teorie

$$\{(\exists x_0, \dots, x_{m-1})(\bigwedge_{i < j < m} x_i \neq x_j \& \bigwedge_{i < m} U(x_i)); 0 < m \in \mathbb{N}\}.$$

Pro L-strukturu \mathcal{A} platí: $\mathcal{A} \models T_0 \Leftrightarrow |U^A| \geq \omega$. Buď χ sentence "existuje nejvýše n prvků x s U(x)". Pak $T = \{ \varphi \lor \chi; \varphi \in T_0 \}$, axiomatizuje K.

Izomorfní spektra.

UF.1.6. Izomorfní spektra v jazyce $\langle U, c \rangle$.

Buď $L = \langle U, c \rangle$, kde U je unární relační a c konstantní symbol.

1. Popište izomorfní spektrum L-teorie $T = \{U(c)\}.$

Řešení: $I(\kappa,T) = |\mathbf{Cn} \cap \kappa|$. Modely $\langle \kappa, U', c' \rangle$, $\langle \kappa, U'', c'' \rangle$ teorie T jsou izomorfní, právě když $\langle |U'|, |\kappa - U'| \rangle = \langle |U''|, |\kappa - U''| \rangle$, přičemž $|U'| \geq 1$. Všech různých dvojic $\langle |U'|, |\kappa - U'| \rangle$ s $|U'| \geq 1$, $U' \subseteq \kappa$ je právě $|\mathbf{Cn} \cap \kappa|$. Pro $\kappa < \omega$ je totiž $|\mathbf{Cn} \cap \kappa| = \kappa$. Pro $\kappa \geq \omega$ je buď |U'| jakékoli kardinality

Pro $\kappa < \omega$ je totiž $|\mathbf{Cn} \cap \kappa| = \kappa$. Pro $\kappa \ge \omega$ je buď |U'| jakékoli kardinality $< \kappa$, nebo $|U'| = \kappa$ a pak může být $|\kappa - U'|$ jakékoli kardinality $\le \kappa$; takových možností je $|\mathbf{Cn} \cap \kappa| + |\mathbf{Cn} \cap \kappa| = |\mathbf{Cn} \cap \kappa|$.

2. Popište izomorfní spektrum L-teorie $T = \{(\exists! x) U(x)\}.$

Řešení: $I(\kappa, T) = 1$ pro $\kappa = 1$ a 2 pro $\kappa > 1$.

UF.1.7. Izomorfní spektrum jazyka spočetně konstant.

Buď $L = \langle c_i \rangle_{i < \omega}$, kde c_i jsou konstantní symboly.

1. Pro L-strukturu $\mathcal A$ definujeme ekvivalenci E^A na ω :

$$i E^A j \Leftrightarrow c_i^A = c_j^A.$$

Buďte \mathcal{A}, \mathcal{B} dvě L-struktury téže velikosti.

a) Platí:

$$\mathcal{A} \cong \mathcal{B} \quad \Leftrightarrow \quad E^A = E^B \text{ a } |A - \{c_i^A; i < \omega\}| = |B - \{c_i^B; i < \omega\}|. \tag{1}$$

Speciálně je nejvýše kontinuum neizomorfních L-struktur dané kardinality.

b) Jsou-li $\mathcal{A},\,\mathcal{B}$ konečné nebo nespočetné, platí:

$$\mathcal{A} \cong \mathcal{B} \iff E^A = E^B. \tag{2}$$

- c) Najděte spočetné $\mathcal{A},\,\mathcal{B},$ pro které (2) neplatí.
- 2. Pro $\kappa \geq 2$ je $I(\kappa, L) = 2^{\omega}$.

Návod: Užijte toho, že na ω je kontinuum různých ekvivalencí s λ třídami, když $2 \le \lambda \le \omega.$

Řešení: Buď E ekvivalence na ω , $\lambda(E)$ počet tříd E. Pro $\kappa \geq \lambda(E)$ definujme L-strukturu $\kappa^E = \langle \kappa, c_i^E \rangle_{i < \omega}$ tak, aby platilo: $c_i^E = c_j^E \Leftrightarrow i \, E \, j$. Pak:

Jsou-li
$$E,E'$$
ekvivalence na ω tak $\kappa^E\cong\kappa^{E'}\Leftrightarrow E=E'.$

Tedy: jelikož je na ω kontinuum různých ekvivalencí s λ třídami, jakmile $2 \leq \lambda \leq \omega$, existuje alespoň kontinuum neizomorfních L-struktur kardinality $\kappa (\geq 2)$ a dle (1) jich není více.

UF.1.8.

Teorie DiLO diskrétního lineárního uspořádání má pro každé $\kappa \geq \omega$ právě 2^{κ} neizomorfních modelů kardinality κ .

Návod: Užijte toho, že pro každé $\kappa \geq \omega$ je právě 2^{κ} neizomorfních lineárních uspořádání s univerzem kardinality κ .

Řešení: Pro ostré lineární uspořádání $\mathcal{A} = \langle A, <^A \rangle$ buď $\mathcal{A}(\mathbb{Z}) = \langle A \times \mathbb{Z}, <_{Le} \rangle$ lexikografické uspořádání. Je diskrétní a kardinality $\max(|A|, \omega)$. Nechť $\mathcal{B} = \langle B, <^B \rangle$ je lineární uspořádání. Pak platí $\mathcal{A}(\mathbb{Z}) \cong \mathcal{B}(\mathbb{Z}) \Rightarrow \mathcal{A} \cong$

 \mathcal{B} . Buď totiž h isomorfizmus $\mathcal{A}(\mathbb{Z})$ a $\mathcal{B}(\mathbb{Z})$; definujme $H:A\to B$ takto:

$$H(a) = b_a \Leftrightarrow \text{existuje } j_a \in \mathbb{Z} \text{ s } h(\langle a, 0 \rangle) = \langle b_a, j_a \rangle.$$

Pak to je jasně zobrazení na ${\cal B}$ a

 $a<^Aa'$ \Leftrightarrow $h(\langle a,0\rangle)<^{\mathcal{B}(\mathbb{Z})}h(\langle a',0\rangle)$ a mezi $h(\langle a,0\rangle),$ $h(\langle a',0\rangle)$ je nekonečně prvků

$$\Leftrightarrow b_a <^B b_{a'} \Leftrightarrow H(a) <^B H(b).$$

Jelikož na $\kappa \geq \omega$ je 2^{κ} neizomorfních lineárních uspořádání \mathcal{A} , máme 2^{κ} neizomorfních lineárních uspořádání $\mathcal{A}(\mathbb{Z})$ na $\kappa \times \mathbb{Z}$, tedy 2^{κ} neizomorfních diskrétních lineárních uspořádání, majících každé velikost univerza κ .

Základy dedukce.

UF.1.9. Syntaktický důkaz bezespornosti teorie rovnosti v L.

Nechť T je teorie rovnosti v L, tj. L-teorie s rovností bez mimologických axiomů. Buď d nový konstantní symbol. Pro L-formuli φ buď φ^* formule, která se získá z φ odstraněním všech kvantifikací a nahrazením každého termu konstantním symbolem d. Pak φ^* je výrok nad prvovýroky d = d, $R(d, \ldots, d)$, kde R je relační symbol z L.

a) Je-li φ logický axiom nebo axiom rovnosti, kromě axiom
ux=x, je φ^* tautologie.

Řešení: Pro logický axiom φ , který není axiomem rovnosti, to je jasné.

Axiomy rovnosti φ kromě x=xpřejdou na φ^* tvaru

$$d = d \rightarrow d = d \rightarrow \cdots \rightarrow (R(d, \ldots, d) \rightarrow R(d, \ldots, d))$$

nebo

$$d = d \rightarrow d = d \rightarrow \cdots \rightarrow d = d$$

a pak ovšem $\overline{v}(\varphi^*) = 1$.

b) $T \vdash \varphi \Rightarrow \overline{v}(\varphi^*) = 1$, jakmile v je ohodnocení uvedených prvovýroků takové, že platí v(d=d)=1. Speciálně je T bezesporná.

Návod: Užijte indukci na teorémech T.

Řešení: Indukcí na teorémech T. Pro axiom φ to platí, neboť $(x=x)^*$ je d=d. Buď v(d=d)=1. Nechť pro $\psi,\,\psi\to\varphi$ to platí. Pak $1=\overline{v}((\psi\to\varphi)^*)=\overline{v}(\psi^*\to\varphi^*)$ a $\overline{v}(\psi^*)=1$, tedy $\overline{v}(\varphi^*)=1$. Platí-li to pro φ , tak $\overline{v}(((\forall x)\varphi)^*)=\overline{v}(\varphi^*)=1$.

UF.1.10. Dokazatelné, vyvratitelné, nezávislé a bezesporné formule.

1. Buďte P,R různé unární predikátové symboly. Zdůvodněte, zda formule φ je dokazatelná, vyvratitelná či nezávislá v logice, kde φ je

a)
$$P(x)$$
 b) $P(x) \rightarrow R(x)$ c) $(\forall x, y)(P(x) \rightarrow (R(x) \rightarrow P(x)))$ d) $(\exists x)P(x)$

Řešení: a) Nezávislá. $\langle 1,\emptyset \rangle \models \neg \varphi, \langle 1,1 \rangle \models \varphi$. b) Nezávislá. $\langle 2,\emptyset,2 \rangle \models \varphi, \langle 2,2,\emptyset \rangle \models \neg \varphi$. c) Dokazatelná, neboť $P(x) \to (R(x) \to P(x))$ je tautologie. d) Nezávislá. $\langle 1,\emptyset \rangle \models \neg \varphi, \langle 1,1 \rangle \models \varphi$.

- 2. Najděte nějaké nezávislé sentence teorie čisté rovnosti, teorie lineárního uspořádání, teorie grup, teorie těles.
- 3. Nechť $T \vdash (\exists x) \varphi(x)$. Co lze říci o dokazatelnosti, vyvratitelnosti, nezávislosti, konzistenci φ , $\neg \varphi$ vzhledem k T?

UF.1.11. Vlastnosti kvantifikátorů.

 $1. \vdash (\forall x)(\varphi \to \psi) \to ((Qx)\varphi \to (Qx)\psi)$, kde Q značí kvantifikátor.

Návod: Užijte větu o konstantách.

Řešení: Buďte T logické axiomy v jazyce rozšířeném o nové konstantní symboly c_i ; $\varphi(x, x_1/c_1, \cdots)$ resp. $\psi(x, x_1/c_1, \cdots)$ označme $\varphi'(x)$ resp. $\psi'(x)$ (konstanty substituujeme za všechny volné proměnné, kromě x). Pak $T, (\forall x)(\varphi' \to \psi') \vdash \varphi' \to \psi'$, dle pravidla distribuce kvantifikátoru i $T, (\forall x)(\varphi' \to \psi') \vdash (Qx)\varphi' \to (Qx)\psi'$ a zbytek dá věta o dedukci a konstantách.

2.

 $a) \vdash (\forall x)\varphi \to (\exists x)\varphi.$

Řešení: Je $\vdash (\forall x)\varphi \to \varphi, \vdash \varphi(x) \to (\exists x)\varphi$; odtud pomocí pravidla tranzitivity implikace plyne dokazované.

b) $\vdash \varphi \to (\forall x)\varphi \iff \vdash (\exists x)\varphi \to (\forall x)\varphi \iff \vdash (\forall x)\neg\varphi \lor (\forall x)\varphi.$ Řešení: Prvá ekvivalence. Implikace \Rightarrow : $\vdash \varphi \to (\forall x)\varphi \Leftrightarrow \vdash (\forall x)(\varphi \to (\forall x)\varphi) \Rightarrow \vdash (\exists x)\varphi \to (\forall x)\varphi.$ Implikace \Leftarrow : $\vdash (\exists x)\varphi \to (\forall x)\varphi \Rightarrow \vdash (\forall x)(\varphi \to (\forall x)\varphi) \Rightarrow \vdash \varphi \to (\forall x)\varphi.$ Užitím de Morganových vztahů plyne druhá ekvivalence. 3.

 $a) \vdash (\forall x)(\forall x)\varphi \leftrightarrow (\forall x)\varphi.$

Řešení: i) $\vdash (\forall x)(\forall x)\varphi \rightarrow (\forall x)\varphi$ dává axiom substituce.

ii) $\vdash (\forall x)\varphi \rightarrow (\forall x)(\forall x)\varphi$ plyne z $\vdash (\forall x)\varphi \rightarrow (\forall x)\varphi$ pravidlem \forall -zavedení. Z i), ii) plyne ihned dokazované.

b) $\vdash (\exists x)(\forall x)\varphi \leftrightarrow (\forall x)\varphi$.

Řešení: i) $(\exists x)(\forall x)\varphi \rightarrow (\forall x)\varphi$ dává pravidlo \exists -zavedení.

ii) $(\forall x)\varphi \to (\exists x)(\forall x)\varphi$ plyne z platného vztahu $\vdash \psi \to (\exists x)\psi$. Z i), ii) plyne ihned dokazované.

UF.1.12. Vytýkání kvantifikátorů - protipříklady.

1. $\forall (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$.

Řešení: Buď $\mathcal{A}=\langle A,P^A,R^A\rangle$, kde P,R jsou unární predikátové symboly, $a\in P^A\subset R^A\subset A$. Pak

 $\mathcal{A} \models (\forall x)(P(x) \to R(x)), \qquad \mathcal{A} \not\models (P(x) \to (\forall x)R(x))[a].$

Tedy $\mathcal{A} \not\models (\forall x)(P(x) \to R(x)) \to (P(x) \to (\forall x)R(x)).$

2. $\forall (\varphi \to (\forall x)\psi) \to (\forall x)(\varphi \to \psi)$.

 $(\nabla^{\mu})^{\mu} (\nabla^{\mu})^{\mu} (\nabla^{\mu})^{\mu} (\nabla^{\mu})^{\mu}$ Řešení: Buď $\mathcal{A} = \langle A, P^A, R^A \rangle$, kde P, R jsou unární predikátové symboly,

 $a \in A - P^A, \emptyset \neq P^A \not\subseteq R^A$. Pak

 $\mathcal{A} \models (P(x) \to (\forall x)R(x))[a], \qquad \mathcal{A} \not\models (\forall x)(P(x) \to R(x)).$

Tedy $\mathcal{A} \not\models (P(x) \to (\forall x)R(x)) \to (\forall x)(P(x) \to R(x)).$

3. $\forall (\exists x)(\varphi \to \psi) \to (\varphi \to (\exists x)\psi)$.

Řešení: Buď $\mathcal{A}=\langle A,P^A,R^A\rangle$, kde P,R jsou unární predikátové symboly, $a\in P^A\subsetneq A,\,R^A=\emptyset$. Pak

 $A \models (\exists x)(P(x) \to R(x)) \qquad \text{(protože existuje } b \in A - P^A), \\ A \not\models (P(x) \to (\exists x)R(x))[a] \qquad \text{(protože je } a \in P^A).$

Tedy $\mathcal{A} \not\models (\exists x)(P(x) \to R(x)) \to (P(x) \to (\exists x)R(x)).$