Weights for Oplax Colimits

Jason Brown

Presenting work from my thesis, supervised by Richard Garner

Weights for oplax colimits are...

Informally: ... presheaves $W : \mathcal{A}^{op} \to \mathsf{Cat}$ such that weighted colimits W * F are *oplax* colimits.

Example:

The presheaf on the arrow category:

whose weighted colimits are oplax colimits (cographs) of arrows.

Non-example:

whose weighted colimits are cokernel pairs.

Objectives

Establish convenient characterisations of oplax weights

Relate these weights to the *oplax morphism* classifier for presheaves

Discuss the saturation properties of this class of weights

Observe connections to PIE weights and *multirepresentable* presheaves

Defn. (Cat-weighted colimit): For a Cat-presheaf $W: \mathcal{A}^{op} \to Cat$ and 2-functor $F: \mathcal{A} \to \mathcal{B}$, the W-weighted colimit of F is a representation:

$$\mathcal{B}(W * F, -) \cong [\mathcal{A}^{op}, Cat](W, \mathcal{B}(F, -))$$

Defn. (Oplax colimit): The **W**-weighted oplax colimit of **F** is a representation:

$$\mathcal{B}(W \otimes F, -) \cong \left[\mathcal{A}^{op}, \mathsf{Cat}\right]_{oplax}(W, \mathcal{B}(F, -))$$

When $W = \Delta 1 : \mathcal{A}^{op} \to Cat$ we say the the (oplax or otherwise) colimit is *conical*.

Examples

Indexing cat.	Weight	F	W * F	$W \circledast F$
Discrete X	Δ1	-	$\coprod_{x\in X} Fx$	$\coprod_{x\in X} Fx$
1	$\langle C \rangle$	$\langle a \rangle$	$C \odot a$	$C \odot a$
Loc. disc. C	$\Delta \mathbb{1}$	Δα	$\coprod_{\pi_{o}(C)} a$	$C \odot a$
Loc. disc. C	$\Delta\mathbb{1}$	presheaf	colim(F)	∫F
ullet $ o$ $ullet$	$\Delta\mathbb{1}$	$a \xrightarrow{u} b$	b	coGraph(u)
$\Sigma(\Delta_{+}{}^{op})$	$\Delta\mathbb{1}$	-	"Fix(<i>F</i>)"	coKl(F)

There is an adjunction:

$$[\mathcal{A}^{op}, Cat] \xrightarrow{\sharp} [\mathcal{A}^{op}, Cat]_{oplax}$$

$$[\mathcal{A}^{op}, Cat](W^{\sharp}, X) \cong [\mathcal{A}^{op}, Cat]_{oplax}(W, X)$$

Assuming W^{\sharp} exists for a given $W: \mathcal{A}^{op} \to Cat$:

$$\mathcal{B}(W \circledast F, -) \cong \left[\mathcal{A}^{op}, \mathsf{Cat} \right]_{\mathsf{oplax}} (W, \mathcal{B}(F, -))$$
$$\cong \left[\mathcal{A}^{op}, \mathsf{Cat} \right] \left(W^{\sharp}, \mathcal{B}(F, -) \right) \cong \mathcal{B} \left(W^{\sharp} * F, - \right)$$

Conclusion: oplax colimits are just **Cat**-weighted colimits for a special class of weights.

The lax coend construction:

$$\begin{split} \left[\mathcal{A}^{\text{op}},\mathsf{Cat}\right]_{\mathsf{oplax}}(W,X) &\cong \oint_{a \in \mathcal{A}^{\text{op}}} \left[W_a,X_a\right] \\ &\cong \oint_{a \in \mathcal{A}^{\text{op}}} \left[W_a,\int_{x \in \mathcal{A}} \left[\mathcal{A}(x,a),X_x\right]\right] \\ &\cong \int_{x \in \mathcal{A}} \oint_{a \in \mathcal{A}^{\text{op}}} \left[W_a \times \mathcal{A}(x,a),X_x\right] \\ &\cong \int_{x \in \mathcal{A}} \left[\oint^{a \in \mathcal{A}} W_a \times \mathcal{A}(x,a),X_x\right] \\ &\cong \left[\mathcal{A}^{\text{op}},\mathsf{Cat}\right] \left(\oint^{a \in \mathcal{A}} W_a \times \mathcal{A}(-,a),X\right) \end{split}$$

Explicitly: for $a \in \mathcal{A}$, W_a^{\sharp} is the category with:

o-cells pairs $(u: a \rightarrow b, x \in W_b)$

1-cells from $(u: a \rightarrow b, x)$ to $(v: a \rightarrow b', y)$ given by pairs:

$$a \xrightarrow{\psi \alpha} b \\ f \\ h' \\ x \xrightarrow{\beta} X_f y \in X_b$$

modulo the equivalence relation generated by:

$$a \xrightarrow[v]{b}_{W'} X \xrightarrow{\beta} X_{W'} Y \sim a \xrightarrow[v]{b}_{W} X \xrightarrow{\beta} X_{W'} Y \xrightarrow{X_{\theta} Y} X_{W} Y$$

Two questions:

So, weights of the form W^{\sharp} are "oplax weights", since $W^{\sharp} * F \cong W \circledast F$. Let's call this class of presheaves θ .

Defn. Oplax weights are the saturation of the class θ .

Q. What does this saturation look like?

Weights in θ are also (free) \sharp -coalgebras.

Q. What are the *general* #-coalgebras?

$$[\mathcal{A}^{op}, Cat] \xrightarrow{\frac{\natural}{\bot}} [\mathcal{A}^{op}, Cat]_{pseudo}$$

$$[\mathcal{A}^{op}, Cat](W^{\natural}, X) \cong [\mathcal{A}^{op}, Cat]_{pseudo}(W, X)$$

μ-coalgebras are precisely the PIE weights, i.e.:

- (a) the saturation of {products, inserters, equifiers}
- (b) weights W such that $el(W_0)$ has terminal objects in each connected component.

Coalgebra characterisation: (Lack and Shulman 2012)

 $(a) \Leftrightarrow (b)$: (Power and Robinson 1991)

Weights as fibrations

Other classes of weights are characterised by their categories of elements:

Weights [A^{op}, Set] in the saturation of coproducts (aka *multi-representables*) are those whose categories of elements have component-terminal objects.

We will use an equivalence $W \mapsto el(W)$ for Cat-presheaves to understand and characterise \sharp -coalgebras.

Defn. (2-category of elements, el W): for W: $\mathcal{A}^{op} \to Cat$, the 2-category el W has:

o-cells: pairs $(a \in \mathcal{A}, x \in Wa)$

1-cells: $(a,x) \rightarrow (b,y)$ are pairs $(u: a \rightarrow b, f: x \rightarrow W_u y)$

2-cells: $(u,f) \Rightarrow (v,g) \colon (a,x) \to (b,y)$ are 2-cells $\sigma \colon u \Rightarrow v$ in $\mathcal A$ such that $W_{\sigma}y f = g$:

A 2-functor |W|: el $W \to \mathcal{A}$ is then given by projection onto the first component, e.g. |W|(a,x) = a.

Discrete 2-fibrations

A discrete 2-fibration is a split 2-fibration which is a discrete opfibration on hom-categories.

Claim: every discrete 2-fibration $F: \mathcal{A} \to \mathcal{B}$ in Cat is isomorphic to $|W|: el W \to \mathcal{B}$ for some $W: \mathcal{B}^{op} \to Cat$.

Moreover, $el: [\mathcal{B}^{op}, Cat] \to D2Fib(\mathcal{B})$ underlies an equivalence of 2-categories, where $D2Fib(\mathcal{B}) \subseteq 2Cat/\mathcal{B}$ is the locally-full subcategory of discrete 2-fibrations and split-cartesian functors (Lambert 2020).

The equivalence $el: [\mathcal{A}^{op}, Cat] \to D2Fib(\mathcal{A})$ extends to an equivalence from $[\mathcal{A}^{op}, Cat]_{oplax}$ to the **full** subcategory of discrete 2-fibrations in $\mathbf{2Cat}/\mathcal{A}$, denoted $\mathbf{2Cat}/_{d2f}(\mathcal{A})$.

Conclusion: The map $el: [\mathcal{A}^{op}, Cat] \to 2Cat/_{d2f}(\mathcal{A})$ is (up to equivalence) the coKleisli map for \sharp .

A "larger" adjunction generates the same comonad:

Compare with the 1-categorical situation:

 $\operatorname{im}_{\operatorname{oplax}} F$ is the oplax image presheaf of $F : \mathcal{B} \to \mathcal{A}$, defined as the **oplax** colimit of $\mathcal{B} \xrightarrow{F} \mathcal{A} \xrightarrow{\sharp} [\mathcal{A}^{\operatorname{op}}, \operatorname{Cat}]$

$$C(\mathsf{im}_{\mathsf{oplax}}F * G, c) \cong [\mathcal{A}^{\mathsf{op}}, \mathsf{Cat}](\mathsf{im}_{\mathsf{oplax}}F, C(G-, c))$$

$$\cong \int_{x \in \mathcal{A}} \left[\oint^{b \in \mathcal{B}} \mathcal{A}(x, Fb), C(Gx, c) \right]$$

$$\cong \oint_{b \in \mathcal{B}^{\mathsf{op}}} \int_{x \in \mathcal{A}} \left[\mathcal{A}(x, Fb), C(Gx, c) \right]$$

$$\cong \oint_{b \in \mathcal{B}^{\mathsf{op}}} C(GFb, c)$$

$$\cong C(\Delta 1 \circledast GF, c)$$

In particular, $W \circledast G \cong W^{\sharp} * G \cong \operatorname{im}_{\operatorname{oplax}} |W| * G \cong \Delta \mathbb{1} \circledast G |W|$.

For a 2-functor $p: \mathcal{B} \to \mathcal{A}$, the free *split* 2-fibration is given by a lax comma 2-category (λ is lax):

$$\mathcal{A} \Downarrow p \xrightarrow{\xrightarrow{\lambda}} \mathcal{B}$$

The free discrete 2-fibration $p^* : \widehat{p} \to \mathcal{A}$ is constructed by quotienting out the π -vertical 2-cells of $\mathcal{A} \parallel p$.

Explicitly, for $p:\mathcal{B}\to\mathcal{A}$ the 2-category \widehat{p} has:

o-cells given by pairs $(x \in \mathcal{B}, u: a \rightarrow px)$

1-cells equivalence classes of lax squares:

$$\begin{array}{cccc}
a \xrightarrow{u} px & a \xrightarrow{u} px \\
s \downarrow \stackrel{\sigma}{\Longleftrightarrow} \downarrow pf & \sim & s \downarrow \stackrel{\sigma}{\Longleftrightarrow} pf \stackrel{p\alpha}{\Longleftrightarrow} pg \\
b \xrightarrow{v} py & b \xrightarrow{v} py
\end{array}$$

2-cells $(s, f, \sigma) \Rightarrow (t, g, \tau)$ are 2-cells κ : $s \Rightarrow t$ such that:

★-coalgebras and #-coalgebras

The weights W which admit \sharp -coalgebra structures are those such that el(W) admits a \star -coalgebra structure.

Admitting a ★-coalgebra structure is an easier property to describe.

The counit of \star acts as on objects in the domain of a discrete fibration $p: \mathcal{B} \to \mathcal{A}$ as:

$$\left(a \xrightarrow{u} px\right) \in \widehat{p} \quad \stackrel{\epsilon}{\longmapsto} \quad u^*x \in \mathcal{B}$$

A \star -coalgebra structure $G: p \to p^{\star}$ on a discrete 2-fibration involves a section of the counit:

$$x \in \mathcal{B} \quad \stackrel{G}{\longmapsto} \quad \left(px \xrightarrow{g_x} pG_x\right) \in \widehat{p} \quad \stackrel{\epsilon}{\longmapsto} g_x^*(G_x) = x$$

which corresponds to a choice for each $x \in \mathcal{B}$ of some chosen cartesian arrow out of x

$$x = g_X^*(G_X) \xrightarrow{\gamma_X = \bar{g_X}(G_X)} G_X$$

Because **G** preserves chosen cartesian morphisms:

so $G_{u^*x} = G_x$ and $\gamma_{u^*x} = \gamma_x \bar{u}_x$.

Conclusion: a \star -coalgebra structure on $p:\mathcal{B}\to\mathcal{A}$ involves choosing a terminal object in each connected component of the wide sub-1-category $p_{\text{cart}}\subseteq\mathcal{B}$ of chosen cartesian 1-cells.

When p = |W| for some $W : \mathcal{A}^{op} \to \mathsf{Cat}, \, p_{\mathsf{cart}} \cong \mathsf{el} \, W_\mathsf{o}$, so \sharp -coalgebras are PIE weights.

We call objects of the form G_X generic, and the restriction of p to the full subcategory of \mathcal{B} containing these objects is the generic core, $p_{\Gamma}:\mathcal{B}_{\Gamma}\to\mathcal{A}$. The map $p\mapsto p_{\Gamma}$ extends to a right adjoint to the comparison functor:

This follows from the general theory of adjunctions: a right adjoint to K must send $G: p \to p^*$ to the (\star -split) equaliser:

$$E \subseteq \stackrel{e}{-} \rightarrow p \subseteq \stackrel{G}{\uparrow} \nearrow p^*$$

So $p_{\Gamma} \stackrel{\text{incl}}{\longleftrightarrow} p \stackrel{G}{\hookrightarrow} p^*$ is an equaliser, and $(-)_{\Gamma}$ is right-adjoint to $K : 2\text{Cat}/\mathcal{A} \to \star\text{-coalg}$.

The counit of $K: 2Cat/\mathcal{A} \rightleftharpoons \star\text{-coalg}: (-)_{\Gamma}$ has component at $G: p \to p^{\star}$ given by $p_{\Gamma}^{\star} \xrightarrow{\text{incl}^{\star}} p^{\star} \xrightarrow{\epsilon_{p}} p$

Proposition: $p_{\Gamma}^{\star} \xrightarrow{\text{incl}^{\star}} p^{\star} \xrightarrow{\epsilon_{p}} p$ is an isomorphism.

Idea of Proof. The coalgebra structure map $G: p \to p^*$ forms an adjunction $\epsilon_p \dashv G$ with identity counit (from the general theory of coalgebras for oplax-idempotent monads). So G is fully-faithful and thus restricts to an isomorphism to its image, which is p_{Γ}^* . The restriction of ϵ_p to p_{Γ}^* is a left-inverse, and thus an inverse to this map.

Corollary: $(-)_{\Gamma}: \star\text{-coalg} \to 2\text{Cat}/\mathcal{A}$ is equivalent to the reflective sub-category of 2-functors which are discrete opfibrations on hom-categories (aka *local discrete opfibrations*).

In fact, this adjunction underlies a *comprehensive* factorisation system (Berger and Kaufmann 2017) on **2Cat** whose *covering* morphisms (i.e. right class) are "local discrete opfibrations" and whose *connected* morphisms are b.o.o locally initial 2-functors — i.e. a "local" lift of the comprehensive factorisation system of (Street and Walters 1973) on **Cat** to **2Cat**.

In particular, the reflector $K: 2Cat/\mathcal{A} \to \star\text{-coalg}$ is essentially surjective, so those discrete 2-fibrations which admit $\star\text{-coalgebra}$ structures are precisely those which are freely generated by a 2-functor (or equivalently, freely generated by a local discrete opfibration).

Returning to presheaves... the "free discrete 2-fibration" functor correspond to $im_{oplax}: 2Cat/\mathcal{A} \to [\mathcal{A}^{op}, Cat]$ under the $D2Fib(\mathcal{A}) \simeq [\mathcal{A}^{op}, Cat]$ equivalence:

$$[\mathcal{A}^{op}, Cat] \xrightarrow{im_{oplax}} 2Cat/\mathcal{A} \simeq D2Fib(\mathcal{A}) \xrightarrow{free d2fib} 2Cat/\mathcal{A}$$

so a presheaf in $[\mathcal{A}^{op}, Cat]$ admits a \sharp -coalgebra structure precisely if:

- (a) it is the oplax image presheaf of a 2-functor $F:\mathcal{B}\to\mathcal{A}$
- (b) it is the oplax image presheaf of a local discrete opfibration $p: \mathcal{B} \to \mathcal{A}$

I.e. #-coalgebras are the oplax colimits of representables.

Recognising #-coalgebras

Recall: The category of elements for a \$\pm\$-coalgebra, \$W\$, must have component-terminal objects in every component of its chosen-cartesian sub-1-category (i.e. must be a PIE weight).

A PIE weight is an #-coalgebra precisely if the component-terminal objects **x** additionally satisfy:

for any $f: y \to x$ and chosen-cartesian $g: y \to z$, $(y \Downarrow el(W))(g,f)$ has a single connected component.

Examples

Inserters

$$\begin{array}{ccc}
 & A & & [O \xrightarrow{u} 1] \\
 & \downarrow^b & \mapsto & O \swarrow & \uparrow_1 \\
 & B & & [O]
\end{array}$$

"Span Inserters"

$$\begin{array}{ccc}
A & & [O \stackrel{u}{\leftarrow} 2 \stackrel{v}{\rightarrow} 1] \\
\stackrel{a}{\swarrow} \downarrow \stackrel{b}{\searrow} & \mapsto & [O \stackrel{v}{\leftarrow} 2 \stackrel{v}{\rightarrow} 1]
\end{array}$$

$$\begin{array}{cccc}
B & [O]$$

$$(A, O) \xleftarrow{(1_A, U)} (A, 2) \xrightarrow{(1_A, V)} (A, 1)$$

$$(a, 1_0) \xrightarrow{\cup} \downarrow \downarrow \xrightarrow{\cup} (b, 1_1)$$

$$(B, O)$$

The saturation of oplax weights

```
For a class \Phi of weights, the saturation \Phi^* contains all (small) weights W: \mathcal{A}^{op} \to \mathsf{Cat} such that \Phi\text{-complete/continuous} \implies W\text{-complete/continuous}. If \Phi = \Phi^*, the class is said to be saturated.
```

Examples:

Saturation

Consider the following classes of weights:

- δ , the $\Delta 1^{\sharp}$'s (conical oplax colimits)
- θ , the **W**[#]'s (oplax colimits)
- Θ , the class of \sharp -coalgebras

Note: $\delta \subset \theta \subset \Theta$.

Thm: (Kelly and Schmitt 2005) for a class of small weights Φ , the weights in the saturation Φ^* with domain $\mathcal A$ are those in the closure of the representables in $[\mathcal A^{op}, \mathsf{Cat}]$ under Φ -colimits (henceforth denoted $\Phi_{\mathcal A}$).

Corollary: $\Theta \subseteq \delta^*$, and so $\Theta^* \subseteq \delta^*$, and so $\Theta^* = \delta^* = \theta^*$.

Proposition: Θ is saturated.

Proof. It suffices to show that $\Theta_{\mathcal{A}} = \delta_{\mathcal{A}}^*$; i.e. that $\Theta_{\mathcal{A}} \subseteq [\mathcal{A}^{op}, \mathsf{Cat}]$ contains the representables and is closed in $[\mathcal{A}^{op}, \mathsf{Cat}]$ under conical oplax colimits.

Now \sharp is an oplax-idempotent comonad, so $U \colon \sharp\text{-coalg}_{\text{oplax}} \to [\mathcal{A}^{\text{op}}, \text{Cat}]$ is fully-faithful. The repletion of U's image is $\Theta_{\mathcal{A}}$. Because U creates oplax colimits (Thm. 4.8, Lack 2005) $\Theta_{\mathcal{A}}$ is indeed closed under oplax colimits in $[\mathcal{A}^{\text{op}}, \text{Cat}]$.

Corollary: $\delta^* = \theta^* = \Theta$.

Corollary: $\Theta_{\mathcal{A}} \simeq \sharp\text{-coalg}_{\text{oplax}}$ is the free cocompletion of \mathcal{A} under oplax colimits.

Corollary: δ and θ are pre-saturated.

Some further results:

The class of conical oplax colimits of *oplax* (or *normal oplax*) functors from 1-categories is presaturated. It's saturation is given by weights $W: \mathcal{A}^{\mathrm{op}} \to \mathrm{Cat}$ such that the component-terminal objects in $\mathrm{el}(W)$ have the property that for any $f: y \to x$ and chosen-cartesian $g: y \to z$, $(y \Downarrow \mathrm{el}(W))(g,f)$ has an initial object. This class includes weights for coKleisli objects of comonads.

The class of conical oplax colimits of pseudo or strict functors from 1-categories is *not* presaturated.

Some further questions:

What are the oplax versions of (semi)-flexible weights?

Is there a finite class of weights which generates all oplax weights, as for PIE weights?

Is there a similar characterisation of weights for *pseudo*-colimits?

Thanks

References

- Berger, Clemens and Ralph M. Kaufmann (2017). "Comprehensive factorisation systems". In: Tbilisi Math. J. 10.3, pp. 255-277. ISSN: 1875-158X. DOI: 10.1515/tmj-2017-0112. URL: https://doi.org/10.1515/tmj-2017-0112.
- kelly, G. M. and V. Schmitt (2005). "Notes on enriched categories with colimits of some class". In: Theory Appl. Categ. 14, no. 17, 399–423.
- Lack, Stephen (2005). "Limits for lax morphisms". In: Appl. Categ. Structures 13.3, pp. 189–203. ISSN: 0927-2852. DOI: 10.1007/s10485-005-2958-5. URL: https://doi.org/10.1007/s10485-005-2958-5.
- Lack, Stephen and Michael Shulman (2012). "Enhanced 2-categories and limits for lax morphisms". In: Adv. Math. 229.1, pp. 294—356. ISSN: 0001-8708. DOI: 10.1016/j.aim.2011.08.014. URL: https://doi.org/10.1016/j.aim.2011.08.014.
- Lambert, Michael (2020). Discrete 2-Fibrations. arXiv: 2001.11477 [math.CT].
- Power, John and Edmund Robinson (1991). "A characterization of pie limits". In: Math. Proc. Cambridge Philos. Soc. 110.1, pp. 33–47. ISSN: 0305-0041. DOI: 10.1017/S0305004100070092. URL: https://doi.org/10.1017/S0305004100070092.
- Street, Ross and R. F. C. Walters (1973). "The comprehensive factorization of a functor". In: Bull. Amer. Math. Soc. 79, pp. 936–941. ISSN: 0002-9904. DOI: 10.1090/S0002-9904-1973-13268-9. URL: https://doi.org/10.1090/S0002-9904-1973-13268-9.