Лабораторная работа 3.6.1: Спектральный анализ электрических сигналов

Дроздов Т. А. Кириллов М. А. Б03-202

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки.

Ход работы

Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённостей

Следуя техническому описанию генератора мы настроили генерацию прямоугольных импульсов с параметрами $\nu_{\text{повт}}=1$ к Γ ц и длительностью импульса $\tau=50$ мкс.

Получили на экране спектр сигнала и, изменяя либо au, либо $u_{\text{повт}}$, наблюдали, как изменяется спектр.

Затем зафиксировали $\nu_{\text{повт}}=1$ к Γ ц и $\tau=60$ мкс. Для этих параметров измерили величину a_n и ν_n для 13 гармоник и сравнили с рассчитанными значениями по формулам. Результаты занесли в таблицу.

$$\nu_n = \frac{n}{T}$$

$$|a_n| = \frac{|\sin \frac{\pi n \tau}{T}|}{\pi n}$$

После этогопровели измерения зависимости ширины спектра от $\Delta \nu$ и установили зависимость между $\Delta \nu$ и τ , полученную из формулы (6).

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$ u_n^{exp} $	1.00	2.00	3.00	4.01	4.99	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.01
$ u_n^{theor} $	1	2	3	4	5	6	7	8	9	10	11	12	13
a_n^{exp}	0.74	0.72	0.67	0.62	0.58	0.57	0.54	0.49	0.44	0.38	0.31	0.24	0.18
$ a_n/a_1 ^{exp}$	1	0.96	0.91	0.83	0.79	0.76	0.72	0.66	0.59	0.51	0.42	0.33	0.24
$ a_n/a_1 ^{theor}$	1	0.98	0.95	0.91	0.86	0.80	0.74	0.67	0.59	0.51	0.43	0.34	0.26

(c) $\nu_{\text{повт}}=1$ к Γ ц, au=60 мкс.

(e) $\nu_{\text{повт}}=1$ к Γ ц, au=100 мкс.

(b) $\nu_{\text{повт}}=1$ к Γ ц, au=20 мкс.

(d) $\nu_{\text{повт}} = 1$ к Γ ц, $\tau = 80$ мкс.

(f) $\nu_{\text{повт}}=1$ к Γ ц, au=140 мкс.

(g) $\nu_{\text{повт}}=1$ к Γ ц, au=180 мкс.

τ , MKC	50	75	100	125	150	175	200
$\Delta \nu$, к Γ ц	19.6	13.4	9.8	8.0	6.5	5.5	4.5
$1/\tau \cdot 10^3$, c ⁻¹	20	13	10	8	7	6	5

$$\Delta\nu\tau\approx1.000\pm0.018$$

В итоге получаем, что формула (6) довольно точно выполняется.

Исследование спектра периодической последовательности цугов

Получаем на экране последовательность цугов с характерными параметрами: $\nu_0=50$ к Γ ц, T=1 мс, число периодов в одном импульсе N=5 (длительность импульса $\tau=T/\nu_0=100$ мкс).