

INSTITUT SUPERIEUR DES SCIENCES DE TECHNOLOGIE DE COMMERCE ET D'AGRICULTURE

MATHEMATIQUES	Février 2021	1	Industrielles	03 h	03
Composition de	Session de	Niveau	Filières	Durée	Crédit

Exercice 1: Etude de fonctions (2+1,5+2)pts = 5,5pts

- **1.** Etudier les variations de la fonctions f, définie par : $f(x) = xe^{\frac{1}{x}}$.
- **2.** Construire soigneusement $(C_f)_f$ ainsi que ses différentes asymptotes.
- **3.** Déduire sur le même graphe la construction de la fonction h(x) = |f(-x)|, après avoir expliqué brièvement comment obtenir (C_h) à partir de (C_f) .

Exercice 2: Intégrales et équations différentielles (1*6)pts = 6pts

- **1.** On se propose de calculer l'intégrale I suivante : $I = \int_0^1 \frac{x^3}{1+x^2} dx$
 - **a.** Déterminer les réels a, b et c tels que $\frac{x^3}{1+x^2} = ax + b + \frac{c}{1+x^2}$.
 - **b.** Déduire la valeur de *I*.
- 2. On se propose de résoudre l'équation différentielle :

$$(E): y'' + 2y' - 3y = 2e^{2x} - 2x^2 + 1$$

- **a.** Déterminer y_h , solution de l'équation $(E_h): y'' + 2y' 3y = 0$.
- **b.** Déterminer y_{p1} , solution particulière de l'équation (E_1) : $y'' + 2y' 3y = 2e^{2x}$
- **c.** Déterminer y_{p2} , solution particulière de l'équation (E_2) : $y'' + 2y' 3y = -2x^2 + 1$
- **d.** Déduire en utilisant le théorème de superposition la solution générale de l'équation (E).

Exercice 3: Développement limité (2+2+2+2+1,5)pts = 9,5pts

1. Calculer les limites suivantes :

$$A = \lim_{x \to +\infty} x \left[e^{\frac{1}{1-x}} - e^{\frac{1}{x}} \right]; A = \lim_{x \to 0} \frac{e^{2x} - 1}{x}$$

2. Calculer le DL des fonctions suivantes en 0: $f(x) = \frac{x^3}{1+x^2}$, $g(x) = \frac{2}{(1-x)^2}$, $h(x) = \frac{x}{(1-x)^3}$