Név (Nyomtatott betűkkel):	
Aláírás:	NEPTUN kód:

A vizsga első részében tesztkérdéseket kap, ezekből maximum 30 pont érhető el. Minden eldöntendő kérdés helyes megválaszolása 1 pontot ér. Ha nem éri el összesen a 19 pontot, akkor vizsgája elégtelen (1). A beugró teszt sikeres teljesítése esetén újabb feladatlapot kap, melybe a teszt eredménye beszámít. A tesztkérdések megválaszolására 30 perc áll rendelkezésére.

A fejlécet ne felejtse el kitölteni!

Formális nyelvek vizsga – I. rész – Teszt

Karikázza be a megfelelő betűjelét az alábbi állításoknak!

- (i) igaz állítás, (h) hamis állítás
- 1. Legyen V tetszőleges ábécé és legyen $L \subseteq V^*$.
- (i) (h) Akkor $L^3 = \{uuu \mid u \in L\}.$
- (i) (h) Akkor $L^3 = \{uvw \mid u, v, w \in L\}.$
- (i) (h) Akkor $L^0 = \{ \varepsilon \}$ akkor és csak akkor, ha $L = \{ \varepsilon \}$.
 - **2.** Legyen V tetszőleges ábécé és legyenek $L, L_1, L_2 \subseteq V^*$ tetszőleges nyelvek.
- (i) (h) Akkor $L^* \neq \emptyset$.
- (i) (h) $L_1^*L_2^* = (L_1L_2)^*$.
- (i) (h) $(L \cup \bar{L})V^* = V^*$.
 - 3. Tekintsük az \mathcal{L}_1 , \mathcal{L}_2 nyelvosztályokat (a Chomsky-féle osztályozás szerint).
- (i) (h) \mathcal{L}_2 zárt az unió és a konkatenáció műveletekre nézve.
- (i) (h) Ha $L \in \mathcal{L}_2$, akkor $L^* \in \mathcal{L}_2$.
- (i) (h) \mathcal{L}_1 nem minden reguláris műveletre nézve zárt.
 - 4. Legyenek R és Q tetszőleges reguláris kifejezések a V ábécé felett.
- (i) (h) Akkor $R + R \cdot Q^*$ ugyanazt a nyelvet jelöli, mint $(R) + ((R) \cdot (Q))^*$.
- (i) (h) Minden véges nyelv jelölhető reguláris kifejezéssel.
- (i) (h) Van olyan végtelen nyelv, amely nem jelölhető reguláris kifejezéssel.

- 5. Legyen G = (N, T, P, S) tetszőleges reguláris grammatika.
- (i) (h) Akkor G minden szabálya vagy $A \to aB$ alakú, vagy $A \to \varepsilon$ alakú, ahol $A, B \in N$ és $a \in T$.
- (i) (h) Ha G ε -mentes, akkor megadható hozzá vele azonos nyelvet generáló G' Chomsky normálformájú grammatika.
- (i) (h) Akkor G-hez megadható olyan vele azonos nyelvet generáló G' = (N', T, P', S') grammatika, amelynek nincs $A \to B$ alakú szabálya, ahol $A, B \in N'$.
 - 6. Legyen G = (N, T, P, S) tetszőleges környezetfüggetlen grammatika.
- (i) (h) Akkor G-hez megadható egy olyan, vele azonos nyelvet generáló G' környezetfüggetlen grammatika, amelynek nincs $A \to \varepsilon$ alakú szabálya, ahol $A \in N$ és $A \neq S$.
- (i) (h) G minden nemterminálisa aktív.
- (i) (h) G minden A nemterminálisára fennáll, hogy G-ben létezik $S \Longrightarrow_G^* uAv$ levezetés, ahol $u, v \in (N \cup T)^*$.
 - 7. Legyen G = (N, T, P, S) tetszőleges környezetfüggő grammatika.
- (i) (h) Akkor minden $u \to v \in P$ szabályra teljesül az, hogy v hossza nagyobb, vagy egyenlő mint u hossza.
- (i) (h) Ha $G \varepsilon$ -mentes, akkor hossz-nemcsökkentő.
- (i) (h) Minden környezetfüggetlen nyelv környezetfüggő nyelv.
 - 8. Legyen $A = (Q, T, \delta, q_0, F)$ tetszőleges determinisztikus véges automata.
- (i) (h) Akkor Q minden eleme elérhető q_0 -ból.
- (i) (h) Akkor A-hoz megadható olyan G reguláris grammatika, amely azt a nyelvet generálja, amelyet A elfogad.
- (i) (h) Akkor Q legalább két elemet tartalmaz.
 - 9. Legyen $A = (Q, T, \delta, Q_0, F)$ tetszőleges nemdeterminisztikus véges automata.
- (i) (h) Akkor A-hoz megadható olyan A' determinisztikus véges automata, amely ugyanazt a nyelvet fogadja el, mint A.
- (i) (h) Ha $q=\delta(p,a)$, ahol $p,q\in Q, a\in T$ akkor A a paau szót, ahol $u\in T^*$, közvetlenül, azaz, egy lépésben le tudja redukálni a qu szóra.
- (i) (h) Ha $q = \delta(p, a)$, ahol $p, q \in Q, a \in T$ akkor A a paau szót, ahol $u \in T^*$, közvetlenül, azaz egy lépésben le tudja redukálni a qau szóra.
 - 10. Legyen $A = (Z, Q, T, \delta, z_0, q_0, F)$ tetszőleges veremautomata.
- (i) (h) Akkor $\delta: (Z^* \cup \{\varepsilon\}) \times Q \times T \to 2^{Z^* \times Q}$.
- (i) (h) Akkor $\delta: Z \times Q \times T^* \to Z^* \times Q$.
- (i) (h) Akkor A-hoz megadható olyan G környezetfüggetlen grammatika, amely ugyanazt a nyelvet generálja, amelyet A elfogad.

Eredmény:

Név (Nyomtatott betűkkel):	
Aláírás:	NEPTUN kód:

Formális nyelvek vizsgafeladatok – II. Rész 2015.06.03.

Értékelés: Az érdemjegyeket a feladatokra kapott pontszámok összege határozza meg, az egyes feladatoknál részpontszámot is adunk. A teszt eredménye beszámít az összpontszámba. Az elérhető maximális pontszám 90. A II. rész feladatainak megválaszolására 70 perc áll rendelkezésére.

5-ös (jeles) érdemjegy: összpontszám ≥ 75 4-es (jó) érdemjegy: összpontszám ≥ 63 3-as (közepes) érdemjegy: összpontszám ≥ 50 2-es (elégséges) érdemjegy: összpontszám ≥ 36 1-es (elégtelen) érdemjegy: összpontszám < 36

Kérjük vizsgadolgozatuk fejlécét kitölteni! Minden belső oldal fejlécén szerepeljen NEPTUN kódjuk!

Eredményes munkát kívánunk!

DONTEZ Á M

	PONISZAWI
I. Rész – Teszt:	
II. Rész – 1. feladat:	
II. Rész – 2. feladat:	
II. Rész – 3. feladat:	
II. Rész – 4. feladat:	
Összpontszám:	

Jegy:

2015.06.03.

A cooport

NEPTUN:

1. Feladat

(a) Milyen alakúak egy Chomsky normálformájú környezetfüggetlen grammatika szabályai?

Maximális pontszám: 5

(b) Legyen G=(N,T,P,S) egy tetszőleges környezetfüggetlen grammatika. A tanultak alapján ismertesse, hogyan határozza meg G azon nemterminálisainak halmazát, amelyekből az üres szó levezethető!

Maximális pontszám: 7

(c) Legyen $G=(N,\,T,\,P,\,S)$, ahol $N=\{S,\,A,\,B,\,C\},\,T=\{a,\,b,\,c\}$ és $P=\{S\to BAC,S\to c,A\to BC,A\to \varepsilon,A\to bB,A\to a,B\to C,C\to \varepsilon\}.$

Az előbbiek alapján határozza megGazon nemterminálisainak halmazát, amelyekből ε levezethető!

2015.06.03.

A cooport

NEPTUN:

2. Feladat

(a) Legyen $A = (Q, T, \delta, q_0, F)$ determinisztikus véges automata. Mikor mondjuk, hogy A összefüggő?

Maximális pontszám: 5

(b) Legyen $A = (Q, T, \delta, Q_0, F)$ nemdeterminisztikus véges automata. A tanultak alapján ismertesse, hogyan konstruál meg A-ból kiindulva egy olyan $A' = (Q', T, \delta', q'_0, F')$ determinisztikus véges automatatát, amely ugyanazt a nyelvet fogadja el, mint A.

Maximális pontszám: 7

(c) A fentiek alapján adjon meg egy A' determinisztikus véges automatát, amely ugyanazt a nyelvet fogadja el, mint az alábbi $A=(Q,T,\delta,Q_0,F)$ nemdeterminisztikus véges automata, ahol $Q=\{q_0,\,q_1,\,q_2\},\,T=\{a,\,b\},\,F=\{q_1\},\,Q_0=\{q_0\}$ és δ az alábbi táblázattal adott.

δ	a	b
q_0	q_0, q_2	q_1, q_2
q_1	q_0, q_1	q_1, q_2
q_2	q_1, q_0	q_2

2015.06.03. A csoport NEPTUN:

3. Feladat

(a) Adja meg a veremautomata által üres veremmel elfogadott nyelv fogalmát fogalmát!

Maximális pontszám: 5

(b) Adjon meg egy olyan veremautomatát, amely felismeri az $L=\{wcw^{-1}c\mid w\in\{a,b\}^+\} \text{ nyelvet \'es ismertesse a veremautomata mű-ködését!}$

2015.06.03.	A cooport	NEPTUN:	

4. Feladat Bizonyítsa be, hogy minden G hossz-nemcsökkentő grammatikához megadható vele azonos nyelvet generáló G' környezetfüggő grammatika!