

LEARN DATASCIENCE IN 2023 COMPLETE ROADMAP

5 MONTHS

ZERO MONEY NEEDED

Who is the target audience and who can benefit the most from this roadmap?

- This roadmap is designed to benefit the following individuals:
 - o Recent college graduates interested in learning Data Science and Machine Learning.
 - Individuals who have previously worked in a different field and want to transition to Data Science or Machine Learning.
 - Individuals from a Data Engineering or Data Analytics background who are interested in pursuing Data
 Science and Machine Learning

Are there any prerequisites?

- No hard prerequisites for this roadmap. However, a basic understanding of high school level mathematics is preferred. If you do not have this background, you can learn it along the way.
- O It is also preferable to have some prior experience with any programming language. If you have no previous programming experience, we suggest looking for beginner-level knowledge on YouTube. Understanding basic concepts such as data types, loops, conditions, functions, compilation, and execution would be sufficient.

What you need to bring to the table?

- O You should be able to dedicate 2-3 hours every day.
- o Dedication, hard work, and perseverance.
- Will to learn and succeed.

Python 4 Weeks

- Introduction to Python for Data Science
 - Python Introduction
 - o Python, Jupyter and Anaconda Installation
 - Wlkthrough of Jupyter and Anaconda
 - Python Syntax and Semantics
 - Python Data Structures
 - Python Functions and Lambdas
 - Python List comprehension and generators
 - Python regular expressions
 - o Python File IO and Resource Operations
- Advanced Python for Data Science
 - Numpy deepdive
 - o Pandas deepdive
 - Matplotlib & Seaborn Visualization
 - Common Modules and Packages

Corey Shafer	https://www.youtube.com/watch?v=YYXdXT2I-Gg&list=PL-
	osiE80TeTt2d9bfVyTiXJA-UTHn6WwU
	*Pay attention to topics which are listed above. Corey has lot of
	videos which are more intended to full stack developers.
MI WithAP	https://www.youtube.com/@MLWithAP/playlists
IVIE V VIGITAL	* My channel. Basics of Python, Pandas,Numpy and
	Matplotlib are covered here.

Maths for Data Science

- Mathematics for Machine Learning (2 weeks)
 - Statistics Descriptive and Inferential
 - Central Tendency Mean, Median, Mode
 - Dispersion Std Dev , Variance
 - Hypothesis Test
 - Types of Distributions
 - Central Limit Theorem
 - Correlation
 - Linear Algebra Vectors and Matrices
 - Scalers, Vectors and n-dimensional matrices (Tensors)
 - Dot product, Transpose and Inverse of Matrices
 - Determinants, Eigen Value and Eigen Vectors
 - Calculus & Probability
 - Differential and Integral Calculus
 - Limit, Continuity and Partial derivatives
 - Step, Sigmoid, Logit, and ReLU Function
 - Maxima and Minima of a Function
 - Product and Chain Rule
 - Bayes Theorem
 - Conditional Probability

Statistics	Organic Chemistr y Tutor	https://www.youtube.com/playlist?list=PL0o_zxa4K1BVszilRdfv4Hl4UlqDZhXWV
Calculus	Khan Academy	https://www.khanacademy.org/math/calculus-1
All Maths	Imperial College London	https://www.youtube.com/playlist?list=PLiiljHvN6z193BBzS0Ln8NnqQmzimT W23
Probabilit y	Khan Academy	https://www.khanacademy.org/math/statistics-probability

Both Khan Academy and Organic Chemistry Tutor are very good resources. If you get sometime, you can check out my playlist on Descriptive Statistics as well.

Machine Learning – 1

- Exploratory Data Analysis
 - Data Gathering and Extraction
 - SQL (MySQL). NoSQL (Mongo)
 - CSV and JSON files
 - Web Crawling /Scraping / APIs / Beautiful Soup
 - Cloud S3
 - Unstructured data (Video, Speech , Text)

- Data Preprocessing & Analysis
 - Univariate, Bivariate and Multivariate Analysis
 - Outliers and Anomalies detection
 - Data Cleansing Null value, Imputations, Duplicate treatment
 - Dispersion and Distribution
- Data Split
 - Train, Test, Validation set
 - Sampling technique and Stratification Strategy
 - Bias and Variance trade off
 - Handling Bias and Imbalanc

- Introduction to Machine Learning
 - Machine learning Landscape
 - o Machine learning end to end project lifecycle
 - Regression Vs Classification
 - Supervised Vs Unsupervised
 - o Batch Vs Online
 - Linear Regression
 - Multi Variable Linear Regression
 - Logistic Regression
 - Scikit learn and Statsmodel
- Feature Engineering and Feature Selection
 - Feature Engineering
 - New feature creation
 - Variable transformation
 - Feature Encoding
 - Handling Categorical and Numerical features
 - Binning

- Feature Selection
 - PCA
 - Dimensionality Reduction techniques
 - Multicollinearity
 - Forward/Backwar/Stepwise selection
 - Lasso
 - Filter/Wrapper/Embedded
- Feature Scaling
 - Standardization
 - Normalization

EDA	Edx	https://www.edx.org/course/analyzing-data-with-python			
EDA	Coursera	https://www.coursera.org/learn/ibm-exploratory-data-analysis-for-			
		machine-learning			
ML	Josh	https://www.youtube.com/@statquest			
	Starmer				
ML	Andrew Ng	https://www.coursera.org/specializations/machine-learning-introduction			

Side notes:

- Andrew Ng's courses are highly rated courses. Spend most of your time over here.
- Josh Starmer Youtube playlist is a quick and fun way to learn algorithms. It doesn't go very deep but gives you a good understanding of what algorithm is all about.
- EDA is super important. I have listed 2 resources. But skim through the internet (Medium, Towards Data Science and Youtube) if you are stuck or want to know more about a given topic.

Machine Learning - 2

- Advanced Supervised Learning
 - Naïve Bayes Classifier
 - o k-NN Classifier
 - Support Vector Machines (Regressor and Classifier)
 - o Ensemble Techniques
 - Decision Tress
 - Bagging
 - Random Forest
 - Boosting
- Model Selection and Tuning
 - Hyper Parameter Tuning
 - Model Performance measures
 - Bias and Variance
 - Overfitting vs Underfitting
 - Cross validation
 - GridSearchCV Vs RandomizedSearchCV
 - Regularization L1 and L2
 - Pipelining
- Unsupervised Learning
 - K-means clustering
 - o KNN
 - Hierarchical Clustering

- Anomaly detection
- o Dimensionality Reduction Techniques / PCA
- o SVD
- o DBSCAN
- Production Deployment.
 - Deployment scenario and strategies
 - o ML Pipeline
 - Flask and Heroku
 - Introduction to FastAPI
 - Deployment to AWS ECS
 - o Monitoring and Continuous performance measure
 - o MLOps

ML	Standford CS229	https://www.youtube.com/watch?v=jGwO_UgTS7I&list=PLoROMvodv4rMi GQp3WXShtMGgzqpfVfbU
ML	Kaggle	https://www.kaggle.com/learn
ML	Google	https://developers.google.com/machine-learning/crash-course

Data Engineering (Overview)

- Data warehousing Concepts
- ETL (Extract, Transform, Load)

- Big data processing Hadoop, Spark
- Data modelling
- Fundamentals of Cloud computing: Amazon Web Services (AWS), Google Cloud
 Platform (GCP), and Microsoft Azure
- Data quality
- Database management : One SQL and One NoSQL databases (MySQL and Mongo)
- Data streaming
- Data visualization Tableau of PowerBIModel Selection and Tuning

There are various resources spread on internet. I have put some, but I would request you to take a look at Medium blog posts for individual topics.

You would only need foundational knowledge of this section.

Data Engineerin	Courser a	https://www.coursera.org/learn/big-data-integration- processing?action=enroll&specialization=big-data				
g						
SQL	Khan Academ v	https://www.youtube.com/watch?v=90NJg_XLY0Y&list=PLSQl0a2vh4HCtgJXRDRah 4llKPfeflhii				
Data Engineerin g	Marc	https://www.youtube.com/@MarcLamberti/videos				

Deep Learning 5 Weeks

- Neural Network and Deep Learning Fundamentals
 - o Perceptron
 - Activation and loss function
 - Gradient Descent
 - Batch Normalization
 - Introduction to TensorFlow and Keras
 - o Transfer learning and regularization
- Computer Vision (2 Weeks)
 - o CNN
 - o Convolution, Pooling and Padding
 - o CNN architectures and ImageNet Challenge
 - Object Detection
 - o Semantic Segmentation

- Natural Language Processing
 - o RNNs
 - o Tokenization, Stemming and Lemmatization
 - LSTMs and GRUs
 - o Time Series analysis
 - o Advance Language Models BERT, GPT3
 - o Attention is all you need
- Autoencoders and GANs
 - Generative Network and Adversarial Network
 - Variational Autoencoders
 - Convolution and DCGAN
 - Application of GANs
- Reinforcement Learning
 - RL framework
 - Markov Chain
 - Policy Gradient Methods
 - Type of RL systems
 - Q Learning

DL	Stanford	https://www.youtube.com/watch?v=PySo_6S4ZAg&list=PLoROMvodv4rOA
	CS230	BXSygHTsbvUz4G YQhOb

DL	Coursera	https://www.coursera.org/specializations/deep-learning
DL	MIT 6S.191	https://www.youtube.com/watch?v=7sB052Pz0sQ&list=PLtBw6njQRU-rwp5 7C0olVt26ZgjG9NI
DL	Stanford CS231n	https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PLC1qU- LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=2

Side Note

- Deep learning can be exhausting and challenging. Whole ML/DL field is evolving and it can become daunting to cover everything. DO NOT let FOMO come in. Remember, you are in this for the long haul.
- Andrew's course on Coursera is very good. Devote most of the time the to that.

Books:

There are quite a few books in the market which you can refer. I am mentioning which I have personally used and gained from.

If you cans spend some money, these books are completely worth it.

Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, Third Edition (Full Colour Print) Paperback – 10 October
2022
by Aurélien Géron (Author)

***** 4 ratings

See all formats and editions

Paperback
₹3,000.00 > prime
2 New from ₹3,000.00

EMI starts at ₹143. No Cost EMI available EMI options >

Deep Learning series) Hardco	over – 18 Nove	mber 2016	on and Machine Learning	A
Part of: Adaptive Compu	tation and Machine Lear	ning series (13 books)		
See all formats and edition	s			
Kindle Edition ₹4,346.25	Hardcover ₹5,500.00	Paperback from ₹3,000.00		
Read with Our Free App	8 New from ₹5,490.00	2 Used from ₹3,000.00 1 New from ₹4,000.00		
EMI starts at ₹263. No C	ost EMI available EMI opt	tions ×		
Save Extra with 4	offers			
		wards on Amazon Pay IC iness Transactions Deta	ICI Credit Card . 5% cashback every time on shoppi iils	ing.
No Cost EMI: Avail No	Cost EMI on select cards	for orders above ₹3000	Details	

Podcasts:

Lex Friedman

https://www.youtube.com/c/lexfridman

Adrej Karpathy – Not a Podcast – but a Youtube Channel

https://www.youtube.com/@AndrejKarpathy

Other things which one should do in parallel:

- 1. Build few (3+) end to end project portfolio and showcase it on LinkedIn
 - a. Don't build Titanic / Iris data set. Do something new and novel to stand out
 - b. Do it end to end with deployment on cloud, if possible.

- 2. Build an Online presence on LinkedIn by posting and engaging with other ML community members.
 - a. LinkedIn is new resume. Spend time and polish it.
- 3. Practice, Practice and Practice.
- 4. Learn from Others Especially Kaggle notebooks and how they approach any problem.

Thank you! If you want to connect with me:

Connect me on LinkedIn: https://www.linkedin.com/in/anas-p-296b38258/

Connect me on Youtube: https://www.youtube.com/@MLWithAP

