

ریاضی عمومی ۲

تهیه و تدوین:

دکتر داریوش کیانی، دکتر سارا سعیدی مدنی، دکتر امیر ساکی

نیمسال دوم سال تحصیلی ۱۴۰۰ - ۱۳۹۹ دانشکددی ریاضی و علوم کامپیوتر دانشگاه صنعتی امیرکبیر

طول قوس

فرض کنید $r:[a,b] o \mathbb{R}^n$ یک منحنی است و

$$P: a = t_0 < t_1 < \dots < t_{n-1} < t_n = b, \quad r_i = r(t_i), \ i = 0, 1, \dots, n$$

در این صورت، مجموع طولهای پارهخطهای شکل بالا، به صورت زیر بهدست میآید:

$$S_P = \sum_{i=1}^{n} |r_i - r_{i-1}|$$

اگر فاصله ی هر دو نقطه ی متوالی در P به صفر میل کند، انتظار داریم که S_P به طول قوس r میل کند.

فضيه

فرض کنید $r:[a,b] o \mathbb{R}^n$ یک تابع مشتق پذیر باشد که مشتق آن پیوسته است. آنگاه داریم

$$r$$
 طول قوس $S=\int_a^b |r'(t)|\,dt$

نتيجه 1

فرض کنید $f:[a,b]
ightarrow \mathbb{R}$ تابعی مشتقپذیر با مشتق پیوسته باشد. در این صورت، داریم

$$b$$
 از a تا f از a تا a طول قوس نمودار a از a تا a

اثبات:

پارامتری سازی زیر از نمودار f را در نظر می گیریم:

$$\gamma: [a, b] \to \mathbb{R}^2, \quad \gamma(t) = (t, f(t))$$

در این صورت، بنابر قضیهی قبل داریم

$$f$$
 طول قوس $\int_a^b |\gamma'(t)| \, dt = \int_a^b |(1, f'(t))| \, dt = \int_a^b \sqrt{1 + f'(t)^2} \, dt$

نتيجه 2

 $g: [lpha, eta] o \mathbb{R}$ نمایش قطبی یک خم در صفحه باشد، طوری که r = g(heta) مشتق پذیر با مشتق پیوسته است. در این صورت، داریم

$$eta$$
 از $lpha$ تا $lpha$ از $lpha$ تا $lpha$ طول قوس از $lpha$ تا $lpha$

اثبات: نمایش پارامتری زیر را برای منحنی قطبی $r=g(\theta)$ در نظر میگیریم:

$$\gamma : [\alpha, \beta] \to \mathbb{R}^2, \quad \gamma(\theta) = (g(\theta)\cos(\theta), g(\theta)\sin(\theta))$$

در این صورت، γ مشتق پذیر با مشتق پیوسته است. بنابر قضیه قبل، داریم:

$$S = \int_{\alpha}^{\beta} |\gamma'(\theta)| \, d\theta$$

ادامهی اثبات نتیجه 2

داري

$$\gamma'(\theta) = (g'(\theta)\cos(\theta) - g(\theta)\sin(\theta), g'(\theta)\sin(\theta) + g(\theta)\cos(\theta)).$$

پس، مىتوان نوشت:

$$|\gamma'(\theta)|^2 = (g'(\theta)\cos(\theta) - g(\theta)\sin(\theta))^2 + (g'(\theta)\sin(\theta) + g(\theta)\cos(\theta))^2$$
$$= (\cos^2(\theta) + \sin^2(\theta))(g'(\theta))^2 + (\cos^2(\theta) + \sin^2(\theta))(g(\theta))^2$$
$$= (g'(\theta))^2 + (g(\theta))^2$$

بنابراین، داریم:

$$S = \int_{\alpha}^{\beta} \sqrt{(g'(\theta))^2 + (g(\theta))^2} d\theta$$

پارامتریسازی بر حسب طول قوس

قرارداد: از اینجا به بعد، فرض میکنیم که همه ی منحنیهای مورد بحث، هموار هستند. منحنی $\gamma:[a,b] \to \mathbb{R}^n$ منحنی

$$b$$
 از a تا a طول قوس γ از a تا a

در این صورت، میتوان تابع زیر را در نظر گرفت:

$$s:[a,b]
ightarrow [0,L], \quad s(t)=t$$
 ت اون قوس γ از a تا a اون قوس γ اون قوس a از a تا a اون قوس a اون a اون

بنابراین، داریم
$$\frac{1}{\gamma'(t)} = \underbrace{|\gamma'(t)| > 0}_{\text{Raple lum}}$$
، که نتیجه می دهد s تابعی اکیداً صعودی است.

s از این وه، s تابعی یک به یک است. همچنین، از آنجا که s(a)=0 و s(b)=a و s(b)=a تابعی پیوسته است، نتیجه می شود که s پوشا نیز هست.

بنابراین، s تابعی وارونپذیر است و اگر lpha وارون s باشد، آنگاه داریم

$$\alpha: [0, L] \to [a, b], \quad \alpha(s) = t, \quad \alpha'(s) = \frac{dt}{ds}$$

 \sim حال، منحنی زیر را پارامتریسازی γ بر حسب طول قوس مینامیم

$$\tilde{\gamma}: [0, L] \to \mathbb{R}^n, \quad \tilde{\gamma}(s) = \gamma(\alpha(s))$$

توجه كنيد كه

$$|\widetilde{\gamma}'(s)| = \left| (\gamma(\alpha(s)))' \right| = \left| \alpha'(s)\gamma'(\alpha(s)) \right| = |\alpha'(s)||\gamma'(\alpha(s))|$$
$$= \left| \frac{dt}{ds} \right| |\gamma'(t)| = \left| \frac{dt}{ds} \right| \left| \frac{ds}{dt} \right| = \left| \frac{dt}{ds} \frac{ds}{dt} \right| = 1$$

بنابراین، نکتهی زیر را ثابت کردیم:

 $|\gamma'|=1$ اگر خم γ بر حسب طول قوس پارامتری شده باشد، آنگاه داریم $\gamma=1$

همچنین اگر $\gamma:[0,L] o\mathbb{R}^n$ آنگاه داریم $\gamma:[0,L] o\mathbb{R}^n$ آنگاه داریم

$$s(t) = \int_0^t |\gamma'(u)| du = \int_0^t du = t$$

بنابراین، γ خودبهخود بر حسب طول قوس پارامتری شده است.

پس، نکتهی زیر را داریم:

خم $\gamma:[0,L] o \mathbb{R}^n$ خم $\gamma:[0,L] o \gamma:[0,L]$ خم $\gamma:[0,L] o \mathbb{R}^n$ خم $\gamma:[0,L] o \gamma:[0,L]$

توجه: در بعضی از منابع، بعد از اینکه یک منحنی مثل $\gamma(t)$ بر حسب طول قوس پارامتری شد، منحنی حاصل به جای $\widetilde{\gamma}(s)$ با $\widetilde{\gamma}(s)$ نمایش داده می شود.

مثال

فرض کنید a,b>0. مارپیچ مستدیر a,b>0. مارپیچ مستدیر a,b>0 را بر حسب طول قوس از نقطه ی a,b>0 و در جهت افزایش a,b>0 کنید. a,b>0 و در جهت افزایش a,b>0 و در باسخ:

ادامهی مثال

بردار مماس یکه

فرض کنید $\gamma:[a,b] \to \mathbb{R}^3$ یک منحنی است. در این صورت، بهازای هر $\gamma:[a,b] \to \mathbb{R}^3$ بردار نشان بردار یکهی زیر جهت حرکت را نشان $\gamma'(t)$ میدهد:

$$T(t) = rac{\gamma'(t)}{|\gamma'(t)|}$$

قرارداد: از اینجا به بعد، همهی منحنیهایی که در نظر گرفته میشوند، سهبار مشتق پذیر با مشتق سوم پیوسته هستند. همچنین، وقتی مینویسیم $\gamma(s)$ ، منظور این است که γ بر حسب طول قوس پارامتری شده است.

- ا. توجه میکنیم که اگر γ بر حسب طول قوس پارامتری شده باشد، آنگاه $1=|\gamma'|$ و از اینرو بهازای هر s داریم $T(s)=\gamma'(s)=\mathrm{v}(s)$.
 - ۲. توجه کنید که T یک بردار یکه است، لذا |T|=1، که نتیجه می<

$$1 = |T(s)|^2 = T(s).T(s) \implies 0 = 2T'(s).T(s)$$

بنابراین، T(s) و T'(s) بهازای هر S بر هم عمودند.

انحنا

فرض کنید $\gamma:[0,L] \to \mathbb{R}^3$ یک منحنی است. انحنای $\gamma:[0,L] \to \mathbb{R}^3$ به صورت زیر تعریف میشود:

$$\kappa(s) = \left| \frac{d}{ds} T(s) \right|$$

همچنین، شعاع انحنای γ به صورت زیر تعریف می شود:

$$\rho(s) = \frac{1}{\kappa(s)}, \quad \kappa(s) \neq 0$$

$$ho(s)=\infty$$
و اگر $\kappa(s)=0$ ، آنگاه تعریف میکنیم

قضيه

فرض کنید $\mathbb{R}^3 \to \gamma: [0,L] \to \mathbb{R}^3$ یک منحنی است. در این صورت، انحنا نمایانگر میزان چرخش مماس یکه است؛ یعنی

$$\kappa(s) = \lim_{\Delta s \to 0} \left| \frac{\Delta \theta}{\Delta s} \right| = \left| \frac{d}{ds} \theta(s) \right|$$

اثبات:

ادامهی اثبات قضیه بنابراین، داریم:

$$\kappa(s) = \lim_{\Delta s \to 0} \frac{|\Delta T|}{|\Delta s|} = \lim_{\Delta s \to 0} \frac{\left| 2 \sin\left(\frac{\Delta \theta}{2}\right)\right|}{|\Delta s|} = \lim_{\Delta s \to 0} \frac{2\left| \frac{\sin\left(\frac{\Delta \theta}{2}\right)}{\frac{\Delta \theta}{2}}\right| \frac{|\Delta \theta|}{2}}{|\Delta s|}$$
$$= \lim_{\Delta s \to 0} \left| \frac{\sin\left(\frac{\Delta \theta}{2}\right)}{\frac{\Delta \theta}{2}} \right| \lim_{\Delta s \to 0} \left| \frac{\Delta \theta}{\Delta s} \right| = \lim_{\Delta s \to 0} \left| \frac{\Delta \theta}{\Delta s} \right| = \left| \frac{d}{ds} \theta(s) \right|$$

بردار قائم یکهی اصلی

فرض کنید \mathbb{R}^3 فرض کنید $\gamma:[0,L] \to \mathbb{R}^3$ یک منحنی است. در این صورت، بردار قائم یکهی اصلی γ را با نماد N، به صورت زیر تعریف میکنیم:

$$N(s) = \frac{T'(s)}{|T'(s)|} = \frac{1}{\kappa(s)}T'(s) = \rho(s)T'(s)$$

T(s) توجه کنید که N(s) جهت تقعر تصویر منحنی را در $\gamma(s)$ نشان میدهد و N(s) و و بر هم عمودند؛ زیرا قبلاً نشان دادیم که T(s) بر T(s) عمود است.

بنابر شکل، ΔT بهازای ΔS کوچک همان جهت T'(s) را نشان میدهد که همجهت با N(s) است.

بردار قائم یکهی دوم

فرض کنید که \mathbb{R}^3 فرض کنید که $\gamma:[0,L] \to \mathbb{R}^3$ یک منحنی است. در این صورت، بردار قائم یکهی دوم با نماد B را به صورت زیر تعریف میکنیم:

كنج فرنه

(T,N,B) فرض کنید که $\gamma:[0,L] \to \mathbb{R}^3$ یک منحنی است. در این صورت، سهتایی را کنج فرنه برای γ مینامیم.

ست. \mathbb{R}^3 بهازای هر (T(s),N(s),B(s)) بهتایی $s\in[0,L]$ بهازای هر

اگر $\mathbb{R}^2 \to \mathbb{R}^2$ یک منحنی باشد، آنگاه میتوانیم با برابر 0 قرار دادن مؤلفهی سوم γ ، یک منحنی در \mathbb{R}^3 داشته باشیم. پس، بردارهای مماس یکه، قائم یکهی اصلی، انحنا و شعاع انحنا برای γ قابل تعریف خواهند بود.

فرض کنید $\gamma:[0,L] o\mathbb{R}^2$ یک خم است. در این صورت:

- دوتایی (T,N) را کنج فرنه برای γ مینامیم.
- ست. \mathbb{R}^2 بهازای هر T(s), N(s)، دوتایی $s \in [0, L]$ بک پایه برای \blacksquare

مثال

رویه: داریم $r'(t) = -a\sin(t)i + a\cos(t)j$ و از اینرو:

$$|r'(t)| = \sqrt{(-a\sin(t))^2 + (a\cos(t))^2} = a, \quad s(t) = \int_0^t a \, du = at.$$

پس، $\frac{s}{a}=t$ ، و بنابراین r به صورت زیر بر حسب طول قوس پارامتری می شود:

$$\tilde{r}(s) = r\left(\frac{s}{a}\right) = a\cos\left(\frac{s}{a}\right)i + a\sin\left(\frac{s}{a}\right)j$$

ادامهي مثال

حال، بردارهای یکهی مماس و قائم اصلی را بهدست می آوریم:

$$T(s) = \tilde{r}'(s) = -\sin\left(\frac{s}{a}\right)i + \cos\left(\frac{s}{a}\right)j$$

$$T'(s) = -\frac{\cos\left(\frac{s}{a}\right)}{a}i - \frac{\sin\left(\frac{s}{a}\right)}{a}j, \quad \kappa(s) = |T'(s)| = \frac{1}{a}, \quad \rho(s) = a$$

$$N(s) = \frac{1}{\kappa(s)}T'(s) = -\cos\left(\frac{s}{a}\right)i - \sin\left(\frac{s}{a}\right)j = -\frac{1}{a}\tilde{r}(s)$$

