2023 年 833 真题解析

一、选择题

CABBA DBCCD BDDAB AB

1. C

解析:

在一个长度为 n 的顺序表中,删除一个元素时,有 n 个位置可供选择。当删除第 k 个元素时,需要改变从第 k+1 个元素起到第 n 个元素的存储位置,即进行"从第 k+1 到第 n 个元素往前移动一个位置",共需移动 n 个元素。 公众号/B 站/知乎:【研梦考研】

2. A

解析:

基本思想是:采用运算符栈是为了比较运算符的优先级,所有运算符必须进栈。只将大于栈顶元素优先级的运算符直接进栈,否则需要退栈栈顶运算符(先出栈的运算符先计算,同优先级的运算符在栈中的先计算)。表达式 a+b-a*((c+d)/e-f)+g 产生后缀表达式的过程如下表所列:

(以下操作数均直接输出,不作说明)

从左往右扫描表达	运算符栈	后缀表达	说明。
a	空	a «	
+	+	a	""+"入栈
b	+	ab 🛒 🚧	
***		ab+	"+"和""优先级相同,根据出现顺序,
a	_	ab+a	公众号/B站/知乎: 【研梦考研】
*	- *	ab+a	"**优先级高于"_",直接入栈
(-*(ab+a	"("直接入栈即可
(-*((ab÷a	"("直接入栈即可
С	-*((<u>.</u>	ab+ac 🔠 🧎	
+	-*((+	ab#ac	"+"优先级高于"(",直接入栈
d	-*((+	ab+acd	
)	* (ab+acd+ 🗽	运算符栈依次出栈,直至"("
/	- * (/	ab+acd+	"/"优先级高于"(",直接入栈
e "	-*(/	ab#acd+e	
-	*(-	ab+acd+e/	"-"优先级低于"/","/出栈输出,"-"
f	-*(-	ab+acd+e/f	
)	-*	ab+acd+e/f-	运算符栈依次出栈,直至"("
+	+**	ab+acd+e/f-*-	"+"优先级低于"*"和" [″]
g	+	ab+acd+e/f-*-g	
		ab+acd+e/f-*-g+	扫描结束,栈中元素依次出栈输出,直至栈

上表可知运算符栈中最大个数为5

3. B

解析: 公众号/B站/知乎: 【研梦考研】

n 阶对称矩阵中的元素满足下述条件: aij=aji, ($1 \le i, j \le n$)。对称矩阵中的每一对数据元素可以共用一个存储空间,因此可以将 n^2 个元素压缩存储到 n(n+1)/2 个元的空间中,即可以一维数组保存。

假设用一维数组 B[n(n+1)/2]作为对称矩阵 A 的存储结构,则 B[k]和矩阵元素 aij 的下标 i、j的对应关系为:

当 i>j 时, k=i(i-1)/2+i;

当 i<j 时, k=j(j-1)/2+i;

因为存储下三角元素, 所以当 i < j 时, k=j(j-1)/2+i。

4. B

解析:

A. 属于大顶堆

B. 符合小顶堆定义, 故选 B

公众号/B站/知乎: 【研梦考研】

C. 结点 56 以及结点 40 均不满足小顶堆定义

D. 结点 18 不满足小顶堆定义 公

公众号/B站/知乎: 【研梦考研】

5. A解析:

折半查找对应判定树满足结点的值大于左子树的值,小于右子树的值: A. 180 不该出现在 200 的右子树上

B、C、D 三个选项均满足。

6. D

解析:

A. v2 后的序列应为 v5 或 v6 公众号/B 站/知乎: 【研梦考研】

B. v5 后的序列应为 v6 或 v7

C. v2 后的序列应为 v5 或 v6

D. 符合深度优先序列

7、解析:

D7	D6	D5	D4	Н3	D3	D2	D1	H2	D0	H1	HO
1	0	1	0	0	1	0	1	0	0	1	0

 $P0=D6 \oplus D4 \oplus D3 \oplus D1 \oplus D0 \oplus H0=0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0=0$

 $P1=D6 \oplus D5 \oplus D3 \oplus D2 \oplus D0 \oplus H1=0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$

 $P2=D7 \oplus D3 \oplus D2 \oplus D1 \oplus H2=1 \oplus 1 \oplus 0 \oplus 1 \oplus 0=1$

P3=D7 \(\phi\)D6 \(\phi\)D5 \(\phi\)D4 \(\phi\)H3=1 \(\phi\)0 \(\phi\)1 \(\phi\)0 \(\phi\)0=0 \(\phi\)

公众号/B站/知乎:【研梦考研】

P3P2P1P0=0110, D2 出错

发送端信息数据为 D7D6D5D4D3D2D1D0=10101110, 选 B

8、解析:

补码右移高位补符号位

[-128] 补=1000 0000

右移 2 位后得 1110 0000

无符号数值=128+64+32=224

9、解析:

尾数=-1.011B, 指数=10000001-01111111B=2

真值=-101.1B=-5.5 公众号/B站/知乎: 【研梦考研】

10、解析:

地址 512M=2^29, 地址 29 位, DRAM 二维译码, 地址线 15 位

11、解析:

鼠标键盘输入输出均采用中断方式

12、解析:

8086 总线 **D0~D15**, 芯片总线 **D0~D7**, 故采用的是位扩展

A0=0 时, 偶地址有效, A0 连接 A 芯片有效

13、解析:

第九章内容, 各节点之间不共享内存

14、参考第四章

15、解析:

变址后得到地址(X) +A

再间址得到有效地址为 ((X) +A)

16、解析:

改变时钟频率只会对每个时钟周期的时长有影响,与每个指令需要的时钟周期数 CPI、无关

公众号/B站/知乎: 【研梦考研】 17、解析:

化为二进制 1000 1111 1010 0000

补码扩展高位添加 16 位符号位,即 1111 1111 1111 1111 1000 1111 1010 0000

化为十六进制得 FFFF 8FA0

二、分析设计题

1, (1) 112, 2^(-9)

(2) EX=-2, fX=0.5+0.125=0.625

X=0. 625*1/4=0. 15625

EY=5, fY=-(0.5+0.25)=-0.75

Y=-0.75*2⁵=-24 公众号/B站/知乎: 【研梦考研】

(3) $\begin{bmatrix} EX + EY \end{bmatrix} \stackrel{?}{\Rightarrow} b = \begin{bmatrix} EX \end{bmatrix} \stackrel{?}{\Rightarrow} b + \begin{bmatrix} EY \end{bmatrix} \stackrel{?}{\Rightarrow} b$

11 110 + 00 101 00 011

阶码 0011

尾数相乘, [fx]补=0.101, [-fx]补=1.011, [fY]补=1.010

符号	D	А	A-1	操作说明
00	000	1010	0	
00	000			/ [*]
00	000			
00	000	0101	0	右移
11	011			+[-fx]补
11	011	<i>y</i> :	4 #	
11	101	1010	~ 1	右移
00	101	# T	4.7	
00	010	v,		· · · · · · ·
00	001	0101	0	右移
11	011		v	+[-fx]补
11	100		::::\X(
11	110	0010	1	右移

「fX*fY] ネト=1. 100010

尾数左规 1 位得 1.000100,阶码减一得 0010

截尾法得尾数 1.1000, 规格化表示为

[X*Y]浮=0010; 1.000 公众号/B站/知乎: 【研梦考研】

2、(1) 虚拟地址 4GB 得虚拟地址 32 位

主存地址 256MB 得主存地址 26 位 28

页面大小 4KB 得页内地址 12 位

Cache 块大小 64B 得块内地址 6位

cache 直接相联共 4 块得块号 2 位

虚拟地址与主存地址映射时

虚拟地址划分

	虚页号 20 位	页内地址 12 位
主存地址划分	16	
	立	页内册址 12 位

主存地址与 Cache 地址映射时

主存地址划分

区号 18 位 块号 2 位 块内地址 6位 Cache 地址划分 块内地址6位 块号2位 虑页号位数=32-12=20 公众号/B站/知乎: 【研梦考研】 实页号位数=26 12=14 2 12=(6 物理地址访问 cache 时,物理地址划分为3个字段,如下所示 区号 🅦 位 块内地址 6位 (2)虚页号 20 位 页内地址 12 位 大級化的 00002H 908H 大主体 在主存中,对应物理地址为 236A908H 区号 18 位 块号 2 位 块内地址 6位 0010 0011 0110 1010 1001 00 00 1000 块号为 0,区号为 236A9H,(未命中 Cache) (3) 虚拟地址划分 ×3 3A46H (查 (oche*) 页内地址 12 位 标记 😵 位 索引2位 0000 00000000 0010 00 0110 1010 1000 11 命中 TLB, 实页号为 286DH

12 2

对应物理地址 286D6A4H

3、(1)相容, 互斥, 相容, 互斥 公众号/B站/知乎: 【研梦考研】

(2)

		•
节拍	微操作	有效控制信号
T1	AR<-R1, All All All All All All All All All Al	Rlout, ARin
T2	DR<-MM[AR]	ARout, Mread, DRSin
T3	S<-DR	DRlout, Sin
T4	/√ T <=S+R0/ /\`	√ ROout, ADD
T5	∴ ∴ÖR<≒T	ToutDR1in
Т6	MM [AR]<- DR	DRSout, ARout, Mwrite
(3)		

(3)

		共品		A. #	独居/6	右放捻制信具
		14 212		1 % yr	/XI来TF	有双江州百万
SP6 SP-1.	DKERO	T1	A.		DR<#RO =	ROout, DRlin
40 / ST	•	T2		' *X'	AR<-SP	SRout, ARin
1000 1000	<u> </u>	Т3		MM[AK]	-DR, SP<-SP+1	ARout, DRSout, Mwrite, SP+1
MINIME =	71,		/*	, , , , , , , , , , , , , , , , , , ,		

4、解答

- (1) 页大小为8KB, 页内偏移地址为13位, 因此A=B=32-13=19: D=13; C=24-13=11 主存块大小为 64B, 因此 G=6。2 路组相联, 每组数据区容量有 64B×2=128B, 共有 64KB/128B=512 组, 因此 F=9; E=24-G-F=24-6-9=9。因而 A=19, B=19, C=11, D=13, E=9, F=9, G=6。TLB 中标记字段 B 的内容是虚页 号,表示该 TLB 项对应哪个虚页的页表项
- (2) 块号 4099=00000100000000011B, 因此所映射的 Cache 组号为 000000011B=3 对应的 H 字段内容为 000001000B。
- (3) Cache 缺失带来的开销小,而处理缺页的开销大。因为缺页处理需要访问 盘, 而 Cache 缺失只要访问主存。
- (4) 因为采用直写策略时需要同时写快速存储器和慢速存储器,而写磁盘比写 主存慢很多,所以在 Cache-主存层次,Cache 可以采用直写策略,而在主存-外存(磁盘)层次,修改页面内容时总是采用回写策略。

三、综合设计题

1.

(1)

该二叉树的先序序列: EDBCAF,对应的先序线索二叉树如下: 公众号/B站/知乎: 【研梦考研】

(2) 二叉树顺序存储表示,其中-1表示空结点

						27 27 70	J* 'V. W.				
1	2	3	4	5	6	7 / 8 / 3	9 10	11	12	13	14
Е	D	С	-1	В	-1	В ——1	A -1	-1	-1	-1	F

(3)

2. (1)

初始: 31, 70, 42, 12, 28, 20, 76, 40

第一趟: 31, 70, 12, 42, 20, 28, 40, 76

第二趟: 12, 31, 42, 70, 20, 28, 40, 76

第三趟: 12, 20, 28, 31, 40, 42, 70, 76

(2)

① 20, 28, 12, 31, 42, 70, , 76, 40

② 满足,因为每次划分都可以使左右区间的长度之差小于等于1,使得快速排序的效率最高

3.

$$H(31) = 31\%11 = 9$$

H(70)=70%11=4 公众号/B站/知乎:【研梦考研】

$$H(43) = 43\%11 = 10$$

H(12) = 12%11 = 1

$$H(28) = 28\%11 = 6$$

H(20) = 20%11 = 9

$$H(76) = 76\%11 = 10$$

H(40) = 40%11 = 7

H(64) = 64%11 = 9

(1)

对于关键字 20,76,64 会发生冲突,,冲突后的哈希表如下所示

0	1	2	3	4	5	6	7	8	9	10	11	12
64	12			70		28	40		31	43	20	76

公众号/B站/知乎: 【研梦考研】

查找成功的平均查找长度 ASL 成功= Σ pi*ci=(1+1+1+1+1+3+3+1+5)/9=17/9 查找失败的平均查找长度 ASL 失败= Σ pi*ci=(3+2+1+1+2+1+3+2+1+7+6)/11=29/11

(2)

查找成功的平均查找长度 ASL 成功 = Σ pi*ci= (1+1+1+1+1+1+2+2+3) /9=13/9 查找失败的平均查找长度 ASL 失败 = Σ pi*ci=(1+1+1+1+2+3) /11=9/11

4.

- (1) p->next!=NULL
- (2) p = start;
- (3) (--1en) >= k
- (4) p->next 公众号/B站/知乎: 【研梦考研】

5.

算法思路:

主要考查图的广度优先遍历。通过从项点 u 开始对图进行广度优先遍历,如果访问到项点 v,则说明从项点 u 到项点 v 存在一条路径。因为在图的遍历过程中,要求每个项点只能访问一次,所以该路径一定是简单路径。在遍历过程中,将当前访问到的项点都记录下来,就得到了从项点 u 到项点 v 的简单路径。可以利用一个一维数组 parent 记录访问过的项点,如 parent[uj=w,表示项点 w 是 u 的前驱项点。如果 u 到 v 是一条简单路径,则输出该路径。

```
存储结构:
#define MAX VERTEX NUM 20
typedef struct ArcNode{
   int adjvex;
   struct ArcNode *nextarc;
}ArcNode:
                   公众号/B站/知乎: 【研梦考研】
typedef struct VNode{
   VertexType data;
   ArcNode *firstarc:
} VNode, *AdiList[MAX_VERTEX_NUM];
typedef struct{
   AdjList vertices;
   int vexnum, arcnum;
                           公众号/B 站/知乎:
                                           【研梦考研】
}ALGraph;
算法代码:
void FindPath(ALGraph G, int u, int v) //求图 中从顶点 u 到顶点 v 的一条简单路径
   int k, i;
   SeqStack S, T;
   ArcNode*p:
                                       //判断当前顶点是否访问过
   int visited[MAX VERTEX NUM];
                                    /存储已经访问顶点的前驱顶点
   int parent[MAX VERTEX NUM];
   InitStack(&S);
   InitStack(&T);
   for (k = 0; k < G, vexnum; k+1)
                                       //访问标志初始化
       visited[k] = 0
                                       //开始顶点入栈
   PushStack(&S, u);
   visited[u] = 1;
   while (!StackEmpty (S))
                                       //BFS 过程
       PopStack (&S, &k);
       p = G. vertex[k]. firstarc;
                                     公众号/B站/知乎: 【研梦考研】
       while (p != NULL)
            if (p-)adivex == v)
                                   //如果找到顶点 v, 从顶点 v 将路径上顶点逆序入栈, 再顺序
出栈并输出,即可得到从 u 到 v 的路径序列。
                                      公众号/B站/知乎: 【研梦考研】
                                      //顶点 v 的前驱顶点序号是 k
               parent[p->adjvex] = k;
               printf("顶点%s 到顶点%s 的路径是: ", G. vertex[u]. data, G. vertex[v]. data);
                i = V:
                                       //从顶点 v 开始将路径中的顶点依次入栈
                do
                   PushStack(&T, i);
                   i = parent[i];
                                      //parent[i]是i的前驱顶点
                }while (i != u);
                PushStack(&T, u);
                                      //从顶点 u 开始输出 u 到 v 中路径的顶点
                while (!StackEmpty(T))
                   PopStack(&T &i);
```


}