СОДЕРЖАНИЕ

1. Цель работы	4
2. Теоретическая часть	
2.1. Дифракция света	
2.2. Дифракция света на щели	
2.3. Дифракция на круглом отверстии и круглом экране	
2.4. Дифракционная решетка	12
3. Экспериментальная часть	
3.1. Приборы и принадлежности	
3.2. Описание установки	
3.3. Требование по технике безопасности	
3.4. Выполнение работы	
4. Контрольные вопросы	
Список литературы	

ЛАБОРАТОРНАЯ РАБОТА № 73

ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ПРОСТЕЙШИХ ПРЕГРАДАХ И ДИФРАКЦИОННОЙ РЕШЕТКЕ

1. Цель работы

- 1. Ознакомление с дифракцией света на простейших преградах и дифракционной решетке и теорией расчета дифракционной картины в этих случаях.
- 2. Экспериментальное определение длины волны излучения лазера с помощью дифракционной решетки.
- 3. Экспериментальное определение с помощью дифракции света ширины щели и размеров мельчайших круглых частиц.

2. Теоретическая часть

2.1. Дифракция света

Под дифракцией света понимают всякое отклонение от прямолинейного распространения света, если оно не может быть объяснено отражением, преломлением или изгибанием световых лучей в средах с непрерывно меняющимся показателем преломления. В частности, дифракция приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени.

Явление дифракции света объясняется принципом Гюйгенса-Френеля, согласно которому каждая точка фронта распространяющейся световой волны является источником сферических вторичных когерентных волн. Результирующее определяется колебание точке наблюдения интерференцией вторичных элементарных волн. Принцип Гюйгенса-Френеля является основным принципом волновой оптики. Выведем на его основе выражение для определения интенсивности в произвольной точке.

Пусть L — источник света (рис. 2.1), произвольная точка A фронта S распространяющей световой волны является источником вторичных сферических волн, P — точка наблюдения. Амплитуда сферической волны пропорциональна площади элемента dS волнового фронта и убывает с расстоянием r от источника

пропорционально $\frac{1}{r}$ каждого элемента dS волновой поверхности. В точку P (рис. 2.1) приходит колебание

$$dE = M(\varphi) \frac{a_0 dS}{r} \cos(\omega t - k r + \alpha_0), \qquad (2.1)$$

где $(\omega t + \alpha_0)$ — фаза колебаний в месте расположения волновой поверхности $S,\ k$ — волновое число $(k = \frac{2\pi}{\lambda},\ \lambda$ — длина волны), r — расстояние от dS до точки P. Множитель a_0 определяется амплитудой светового колебания в том месте, где находится dS. Коэффициент $M(\phi)$ зависит от угла ϕ между ϕ и нормалью ϕ к площадке ϕ (при ϕ = 0 он максимален, при ϕ = $\frac{\pi}{2}$ он равен нулю).

Рис. 2.1

Результирующее колебание в точке P представляет собой суперпозицию колебаний (2.1), взятых для всей волновой поверхности S:

$$E = \int_{S} M(\varphi) \frac{a_0}{r} \cos(\omega t - k r + \alpha_0) dS. \qquad (2.2)$$

Формула (2.2) является аналитическим выражением Гюйгенса-Френеля. Вычисление непосредственно по этой формуле в общем случае представляет достаточно сложную математическую задачу.

Применение метода зон Френеля, использующего свойства фронта световой волны, позволяет в ряде случаев симметрии вычисление амплитуды результирующего колебания, сводя его к простому алгебраическому суммированию. Этот метод определить пространственное возможность расположение максимумов и минимумов дифракционной картины и их величину, позволяет получить аналитическое однако описывающее интенсивность света в любой точке дифракционной картины.

2.2. Дифракция света на щели

Рассмотрим дифракцию в параллельных лучах (дифракцию Фраунгофера) на одной щели. Пусть плоская световая волна падает перпендикулярно на экран с бесконечно длинной узкой щелью шириной b (рис. 2.2) и пусть $b >> \lambda$ (это условие позволяет не учитывать так называемые краевые эффекты, обусловленные взаимодействием электромагнитного поля падающей световой волны с веществом щели).

Рис. 2.2.

Фронт волны, плоскость щели и экран, на котором ведется наблюдение, параллельны друг другу, а щель бесконечна, поэтому картина, наблюдаемая в любой плоскости, перпендикулярной щели, одинакова и достаточно рассмотреть одну из них (рис. дифрагированные Рассмотрим лучи, ПОД углом К ИХ первоначальному направлению. Каждая точка сечения АВ фронта световой волны является источником вторичных когерентных волн, причем фазы колебаний всех этих источников одинаковы, так как плоскость щели совпадает с плоскостью фронта волны, который для всех них одинаково наклонен к направлению наблюдения. Введем координатную ось x с началом в точке A (рис. 2.2) и направленную от А к В. Выберем элемент фронта световой волны в виде полоски dx, параллельной краям щели. Амплитуда волны dE, обусловленной элементом, пропорциональна таким его площади ширине dxт.е. dE = c dx. Коэффициент следовательно пропорциональности с определиться из условия, что по направлению $\phi = 0$ амплитуда волны, посылаемой всей щелью, равна E_0 , откуда $c = \frac{E_0}{h}$ и, следовательно

$$dE = \frac{E_0}{b} dx. \tag{2.3}$$

Для нахождения действия всей щели в направлении ф необходимо учесть фазы, характеризующие волны, доходящие от различных элементов волнового фронта до точки наблюдения P (рис. 2.2). Заметим, что линза не вносит дополнительной разности фаз в Поэтому проходящие через нее лучи. разность фаз рассматриваемыми колебания образуется на пути $\Delta x = \sin \varphi$. Если фазу колебания, возбуждаемого элементом, примыкающим к левому краю щели (x = 0) принять равной ωt , TO фаза колебания, возбуждаемого элементом, с координатой x будет равна

$$\omega t - 2\pi \frac{\Delta}{\lambda} = \omega t - \frac{2\pi}{\lambda} x \cdot \sin \varphi, \qquad (2.4)$$

где λ — длина волны света в данной среде. Следовательно, колебание, возбуждаемое элементом с координатой x в точке P, положение которой на экране определяется углом ϕ , может быть представлено в виде

$$dE = \frac{E_0}{h} \cos(\omega t - \frac{2\pi}{\lambda} x \sin \varphi). \tag{2.5}$$

Проинтегрировав это выражение по всей ширине щели, найдем результирующее колебание, возбуждаемое в точке P открытым участком волновой поверхности:

$$E = \left[E_0 \frac{\sin\left(\frac{\pi b}{\lambda}\sin\varphi\right)}{\frac{\pi b}{\lambda}\sin\varphi} \right] \cos\left(\omega t - \frac{\pi b}{\lambda}\sin\varphi\right). \tag{2.6}$$

Модуль выражения в квадратных скобках дает амплитуду E_{ϕ} результирующего колебания в точке P, положение которой определяется углом ϕ :

$$E_{\varphi} = E_{0} \frac{\sin\left(\frac{\pi b}{\lambda}\sin\varphi\right)}{\frac{\pi b}{\lambda}\sin\varphi}.$$
 (2.7)

При значениях ϕ , удовлетворяющих условию $\frac{2\pi}{\lambda}x \cdot \sin \phi = \pm k \pi$, числитель в (2.7) обращается в нуль. Следовательно, положение минимумов определиться из условия

$$b\sin\varphi = \pm k\lambda. \tag{2.8}$$

Положение максимумов определить труднее. Находя экстремумы функции E_{ϕ} , легко прийти к трансцендентному уравнению вида

$$y = \operatorname{tg} y, \tag{2.9}$$

где
$$y = \frac{\pi b}{\lambda} x \cdot \sin \varphi$$
.

Графическое решение этого уравнения дает корни:

$$y_1 = 1,43 \,\pi$$
, $y_2 = 2,46 \,\pi$, $y_3 = 3,47 \,\pi$, $y_4 = 4,47 \,\pi$ и т.д.

Отсюда можно получить значения синусов углов, соответствующих максимумам дифракционной картины.

Заметим, что метод зон Френеля для максимумов дает несколько отличные значения:

$$\sin \varphi_{\text{max}} = (2k+1)\frac{\lambda}{2},$$
 (2.10)

где k = 1, 2, 3, 4, ...

Различие обусловлено тем, что метод зон Френеля является приближенным и не учитывает ряд факторов, таких как, например, зависимость амплитуды элементарных волн от угла ϕ (рис. 2.1) и некоторых других. В табл. 2.1 приведены значения синусов углов ϕ_{max} , полученных путем точного решения уравнения (2.9) и даваемых методом зон Френеля.

Таблица 2.1

№ п/п	sin φ _{max}	Точное решение	Метод зон Френеля
1	$\sin \phi_1$	1,43 \(\lambda / b \)	1,5 λ/b
2	$\sin \phi_2$	2,46 λ/b	2,5 λ/b
3	$\sin \phi_3$	$3,47 \lambda/b$	3,5 <i>λ/b</i>
4	$\sin \phi_4$	$4,47 \lambda/b$	4,5 <i>λ/b</i>

Интенсивность света I пропорциональна квадрату амплитуды, поэтому из (2.7) получаем

$$I_{\varphi} = I_0 \frac{\sin^2\left(\frac{\pi b}{\lambda}\sin\varphi\right)}{\left(\frac{\pi b}{\lambda}\sin\varphi\right)^2},\tag{2.11}$$

где I_0 – интенсивность в центре дифракционной картины ($\varphi = 0$). Вид этой функции показан на рис. 2.3.

Рис. 2.3

Величина вторичных максимумов быстро убывает (рис. 2.3). Подставив значения $\sin \phi_{max}$ в (2.11), можно получить отношения интенсивностей максимумов:

$$1:0,0472:0,0165:0,0083:0,0050.$$
 (2.12)

При изучении дифракции света удобнее бывает измерять не углы дифракции, а расстояния между максимумами или минимумами на экране и расстояние от экрана до щели.

Из рис. 2.4 видно, что

$$\sin \varphi = \frac{x}{\sqrt{x^2 + l^2}},\tag{2.13}$$

где x — расстояние от центра экрана до точки наблюдения, l — расстояние от экрана до щели. В соответствии с (2.8) и табл. 2.1 положение минимумов будет определяться из условия

$$\frac{bx_k}{\sqrt{x_k^2 + l^2}} = \pm k\lambda.$$
 (2.14)

Рис. 2.4

Положение максимумов

$$\frac{x_1}{\sqrt{{x_1}^2 + l^2}} = \pm 1{,}43\lambda/b;$$

$$\frac{x_2}{\sqrt{x_2^2 + l^2}} = \pm 2,46 \, \lambda / b;$$

$$\frac{x_3}{\sqrt{x_3^2 + l^2}} = \pm 3,47\lambda/b;$$

$$\frac{x_4}{\sqrt{x_4^2 + l^2}} = \pm 4,47\lambda/b.$$
(2.15)

2.3. Дифракция на круглом отверстии и круглом экране

Дифракция на бесконечно длинной узкой света рассмотренная в предыдущем разделе, является по сути, одномерной задачей, решение которой зависит одной переменной – угла дифракции ф. Дифракция на круглом отверстии или экране двумерная задача, ее решение зависит как угла ф (рис. 2.2), так и некоторого угла Θ , определяющего положение в направлении, перпендикулярном плоскости чертежа (рис. 2.2). Получение решения в общем виде представляет достаточно сложную математическую задачу и в данном пособии не рассматривается, будут приведены только окончательные результаты. Заметим, что метод зон Френеля, используемый обычно при рассмотрении дифракции света на круглом отверстии или на экране, позволяет определить интенсивность света в центре дифракционной картины, но не описывает распределения интенсивности по всей поверхности экрана, на котором ведется наблюдение. Задача расчета амплитуды приводится к функциям Бесселя, общий вид которых подобен рис. 2.3, но несколько круче спадающий по мере роста ф. Дифракционная картины представляет из себя ряд темных и светлых колец, в центре которых в зависимости от размеров отверстия может быть максимумом (укладывается нечетное число зон Френеля) или минимумов (укладывается четное число зон Френеля). Угловой радиус темных колец определяется приближенно соотношением

$$\sin \varphi_{\rm m} = \frac{0.61 + (m-1)/R}{R} \lambda,$$
 (2.16)

где R — радиус отверстия и $m=1, 2, \ldots$ В табл. 2.2. приведены значения радиусов темных и светлых колец и относительная интенсивность в максимумах (рассмотрен случай, когда в центре — максимум).

Таблица 2.2

Минимумы	Максимумы	Интенсивность
$\sin \varphi_1 = 0.61 \lambda / R$	$\sin \varphi_1^{\ /} = 0$	1
$\sin \varphi_2 = 1,12 \lambda / R$	$\sin \varphi_2^{\ /} = 0.81 \lambda / R$	0,0175
$\sin \varphi_3 = 1,62 \lambda / R$	$\sin \varphi_3^{\ \ } = 1,33 \lambda / R$	0,0042
$\sin \varphi_4 = 2,12 \lambda / R$	$\sin \varphi_4^{\ /} = 1,85 \lambda / R$	0,0016

Распределение интенсивности в случае дифракции на круглом непрозрачном экране аналогично случаю дифракции на круглом отверстии, но в этом случае в центре дифракционной картины всегда будет максимум.

2.4. Дифракционная решетка

Простейшая одномерная дифракционная решетка представляет собой систему из большого числа N одинаковых по ширине и параллельных друг другу щелей, лежащих в одной плоскости и разделенных непрозрачными промежутками одинаковой ширины. Рассмотрим пропускающую дифракционную решетку (рис. 2.5).

Рис. 2.5

Величина d = a + b называется периодом, или постоянной дифракционной решетки (a — ширина непрозрачных, а b — прозрачных промежутков). Плоская монохроматическая волна с длиной λ падает нормально на дифракционную решетку, в фокальной плоскости собирающей линзы LL помещен экран MN, на котором ведется наблюдение.

Если волна падает нормально к плоскости решетки, то ее фронт совпадает с плоскостью решетки. Поэтому все щели решетки излучают вторичные волны в одной фазе. Кроме дифракции от отдельных щелей, происходит сложение колебаний от каждой из них, т.е. происходит интерференция многих пучков. Если число щелей N, то интерферируют между собой N пучков.

Из рис. 2.5 видно, что оптическая разность хода Δ от двух соседних щелей есть

$$\Delta = d \sin \varphi, \tag{2.17}$$

чему соответствует разность фаз

$$\gamma = 2\pi \frac{\Delta}{\lambda} = \frac{2\pi d}{\lambda} \sin \varphi = 2\beta, \qquad (2.18)$$

где
$$\beta = \frac{\pi d}{\lambda} \sin \varphi$$
.

Амплитуда колебаний, даваемых одной щелью, определяется выражением (2.7) вида

$$E_{\varphi} = E_0 \, \frac{\sin \alpha}{\alpha},\tag{2.19}$$

где $\alpha = \frac{\pi b}{\lambda} \sin \varphi$.

Суммируя действие отдельных щелей и учитывая разность фаз (2.18), можно получить результирующую амплитуду:

$$E_{\varphi} = E_0 \frac{\sin \alpha}{\alpha} \cdot \frac{\sin N\beta}{\sin \beta}, \qquad (2.20)$$

где N — число щелей, E_0 — амплитуда. Задаваемая одной щелью в направлении $\phi=0$.

Множитель $E_0 \, \frac{\sin \alpha}{\alpha}$ выражает действие одной щели, а

множитель $\frac{\sin N\beta}{\sin\beta}$ — интерференцию волн от всех N щелей.

Распределение интенсивности в дифракционной картине будет иметь вид

$$I_{\varphi} = I_0 \frac{\sin^2 \alpha}{\alpha^2} \cdot \frac{\sin^2 N\beta}{\sin^2 \beta}.$$
 (2.21)

Находя экстремумы функции (2.20), можно определить положение главных максимумов, однако это достаточно длинный путь, поэтому воспользуемся результатом, даваемым графическим методом (в данной работе не рассматривается). Условие главных максимумов имеет вид

$$d\sin\varphi = \pm k\lambda. \tag{2.22}$$

Распределение интенсивности (2.21) в дифракционной картине, даваемой решеткой, показано на рис. 2.6.

На рис. 2.6, a показан график функции $\frac{\sin^2 N \beta}{\sin^2 \beta}$, описывающей интерференцию света от N щелей, на рис. 2.6, δ – график функции $\frac{\sin^2 \alpha}{\alpha^2}$, описывающей распределение интенсивности при дифракции от одной щели, на рис. 2.6, δ – произведение графиков (a) и (δ) , описывающее реальное распределение интенсивности при дифракции на решетке.

Помимо главных максимумов, в дифракционной картине есть вторичные максимумы, интенсивность которых значительно меньше, в результате чего они практически не наблюдаются. Между двумя главными максимумами располагается (N-1) добавочных максимумов, определяемых условием

$$d\sin\varphi = \pm \frac{k\,\lambda}{N}.\tag{2.23}$$

3. Экспериментальная часть

3.1. Приборы и принадлежности

- оптический квантовый генератор с блоком питания,
- оптическая скамья с экраном для наблюдения,
- дифракционная решетка в держателе,
- образец с ликоподием и мелкой сеткой в держателях и раздвижной щелью.

3.2. Описание установки

Основой установки является оптическая скамья со шкалой, на конце которой установлен специальном В держателе оптический квантовый генератор (лазер), служащий источником монохроматического излучения. На противоположном конце скамьи изготовлен экран делениями, котором наблюдается cна дифракционная картина. Между экраном и оптическим квантовым генератором на скамью устанавливаются в держателях образцы или дифракционная решетка.

3.3. Требования по технике безопасности

При выполнении работы необходимо:

- 1) внимательно ознакомиться с заданием и оборудованием;
- 2) проверить заземление лабораторной установки и изоляцию токоведущих проводов, о замеченных неисправностях немедленно сообщить преподавателю;
 - 3) не направлять луч лазера в глаза;
 - 4) не загромождать рабочее место посторонними предметами;

5) по окончании работы выключить установку, отсоединив токоведущие провода от электрощитка, и привести в порядок рабочее место.

3.4. Выполнение работы

- 3.4.1. Определение длины волны излучения лазера
- 1) установить на оптическую скамью дифракционную решетку перпендикулярно к оси светового луча, выходящего из лазера. Для этого, поворачивая дифракционную решетку вокруг вертикальной оси, добиться, чтобы световой блик, отраженный от решетки назад к лазеру, попал на середину выходного луча лазера, т.е. чтобы падающий и отраженный луч совпали;
- 2) измерить расстояние 2x между первыми дифракционными максимумами на экране при различных расстояниях l между решеткой и экраном (рис. 2.4) (расстояние определять по шкалам, нанесенным на экран и оптическую скамью). Провести, если возможно, те же измерения для максимумов второго и третьего порядка. Данные занести в табл. 3.1.

Таблица 3.1

k	l	x	λ	$\lambda_{ m cp}$

Учитывая (2.14) и (2.22), вычислить длину волны λ по формуле

$$\lambda = \frac{d}{k} \cdot \frac{x}{\sqrt{x^2 + l^2}},\tag{2.24}$$

где d = 0.01 мм.

Определяют среднее значение $\lambda_{\rm cp}$ для каждого порядка k и для всех измеренных порядков.

3.4.2. Излучение дифракции от одной щели

1) установить на оптическую скамью перпендикулярно лазерному лучу держатель с раздвижной щелью;

- 2) провести качественные наблюдения дифракционной картин, измеряя ширину раздвижной щели. Наблюдения начинать с широкой щели, когда видно геометрическое изображение щели, уменьшая затем вращением винта ширину щели, добиться появления на экране многолинейчатой дифракционной картины. Объяснить наблюдаемое;
- ширину щели, 3) установить при которой видны дифракционных полос. Измерить расстояние 2x (рис. 2.4) между симметричными минимумами 1, 2, 3 и т.д. порядков. Проделать то же самое для максимумов. Данные занести в табл. 3.2.

Табл. 3.2

	k	l	λ	в	$\theta_{ m cp}$
	1				
min	2				
	3				
	1				
max	2				
	3				

Используя определенное в п. 3.4.1 значения λ, вычислить ширину щели в. Для минимумов, учитывая (2.14), вычисления проводить по формуле

$$e = \frac{x\lambda\sqrt{x^2 + l^2}}{x}. (3.1)$$

Для максимумов, учитывая (2.15) – по формулам:

Вычислить среднее по всем измерениям значение ширины щели в и погрешность ее определения. Результат записать в виде $e = e_{\rm cp} \pm \Delta e$.

3.4.3. Изучение дифракции Фраунгофера на сферических частицах

дифракционной картины при дифракции Вид сферической частице аналогичен случаю дифракции на круглом непрозрачном экране, рассмотренному в п. 2.3. Для того, чтобы углы дифракции были значительными, размер частицы должен быть достаточно малым. Однако, если поместить в световой пучок одну частицу, то даваемую ею на удаленном экране дифракционную картину наблюдать трудно, поскольку дифракционные максимумы имеют малую интенсивность. Если же в плоскости поперечного сечения узкого светового пучка расположить совершенно хаотично одинаковые сферические частицы, то в силу равной вероятности всех значений фаз волн, дифрагировавших под одним и тем же углом от разных частиц, интенсивности этих волн будут складываться (они не будут когерентными и интерференции наблюдаться не будут). Дифракционная картина от N частиц усилиться по интенсивности в Nраз по сравнению с дифракционной картиной от отдельной частицы, но не изменит своей структуры. При этом на экране наблюдается система концентрических колец (темных и светлых), окружающих центральный светлый круг. Угловые размеры колец даны в табл. 3.3. Учитывая соотношение (2.13), которое в данном случае запишется в виде

$$\sin \varphi = \frac{r}{\sqrt{r^2 + l^2}},\tag{3.3}$$

где r — радиус кольца, l — расстояние от образца до экрана, можно получить выражение, позволяющее вычислить радиусы R малых сферических частиц

$$e = a \lambda \frac{\sqrt{r^2 + l^2}}{r}, \tag{3.4}$$

где λ — длина световой волны, определенная в п. 4.3.1, a — коэффициент, значение которого приведено в табл. 3.3.

Табл. 3.3

Порядок	Минимумы	Максимумы
1	0,61	0
2	1,12	0,81
3	1,62	1,33
4	2,12	1,85

Для определения размеров мелких частиц необходимо:

- 1) установить на оптической скамье перпендикулярно лазерному лучу пластинку, покрытую частицами ликоподия, представляющими собой шарики одинакового малого размера. Получить на экране дифракционную картину в виде концентрических колец;
- 2) измерить радиусы темных и светлых колец с учетом их номера (нумерация темных колец начинается с первого темного кольца);
- 3) вычислить радиусы R сферических малых частиц по формуле (3.4). Данные записать в табл. 3.4

Табл. 3.4

k	l	λ	r		r		I	?	$R_{ m cp}$
			max	min	max	min			
1									
2									
3									

Вычислить среднее значение $R_{\rm cp}$ и погрешность определения ΔR . Результат записать в виде $R=R_{\rm cp}\pm\Delta R$.

4. Контрольные вопросы

- 1. В чем заключается явление дифракции света?
- 2. Сформулируйте принцип Гюйгенса Френеля.
- 3. Объясните метод зон Френеля.
- 4. Пользуясь методом зон Френеля, получите условие максимумов и минимумов при дифракции на щели.
 - 5. Объясните суть графического метода сложений амплитуд.
- 6. Пользуясь графическим методом, получите условие главных максимумов при дифракции на решетке.

Список литературы

- 1. *Савельев И.В.* Курс общей физики. Т. 2. М.: Наука, 1978.
- 2. *Детлаф А.А., Яворский Б.М.* Курс физики. М.: Высшая школа, 1989.
 - 3. *Ландсберг Г.С.* Оптика. М.: Наука, 1076.
 - 4. Трофимова Т.И. Курс физики. М.: Высшая школа, 1997.
 - 5. Сивухин Д.В. Общий курс физики. Оптика. М.: Наука, 1980.