Exame de Qualificação ao Mestrado Álgebra Linear 10/12/2010

Observação: Escolher itens de forma que o total seja no máximo 100 pontos.

 $M_{m,n}(F)$ e $M_n(F)$ representam respectivamente os conjuntos de matrizes $m \times n$ e $n \times n$. Dada $A \in M_n(\mathbb{C})$ denotamos por $A^* = (b_{ij})$ tal que $b_{ij} = \overline{a_{ij}} = \text{conjugado complexo de } a_{ij}$, para todo par $1 \leq i, j \leq n$.

- 1. Responda verdadeiro ou falso para cada uma das afirmações abaixo. Justifique cada resposta.
 - (a) (3pts) A imagem de uma uma transformação multilinear é um subespaço do contradomínio.
 - (b) (3pts) Seja A uma matriz $m \times n$ e B uma matriz $n \times m$. Podemos ter $AB = I_m$ e $BA = I_n$ com $m \neq n$ (I_k representa a matrize identidade $k \times k$).
 - (c) (3pts) Para uma matriz $n \times n$ não invertível $A \neq 0$ existe uma matriz $B \neq 0$, $n \times n$, tal que AB = 0.
 - (d) (3pts) Se $A, B \in M_n(\mathbb{C})$ são tais que tr $(AA^* + BB^*) = 0$, então A = 0 = B (tr(M) representa o traço da matriz M).
 - (e) (3pts) Os autovetores de um operador invertível T coincidem com os autovetores de T^{-1} .
 - (f) (3pts) Seja $T: \mathbb{C}^n \to \mathbb{C}^n$ um operador linear tal que $T^k = I$ para algum $k \geq 1$, então a forma canônica de Jordan de T tem um bloco $s \times s$, com s > 1.
 - (g) (3pts) Se T é um operador linear definidos sobre \mathbb{C}^n tal que < T(v), v>=0 para todo $v \in \mathbb{C}^n$, então T=0 (< u, v> é produto interno usual de \mathbb{C}^n).
 - (h) (3pts) Seja K um corpo e F um subcorpo de K. Uma matriz $A \in M_n(F)$ que tem inversa em $M_n(K)$ também tem inversa em $M_n(F)$.
 - (i) (3pts) Existem matrizes invertíveis B e C tais que

$$BAC = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{onde} \quad A = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 2 \end{pmatrix}.$$

- **2.** Seja $A \in M_n(\mathbb{R})$ uma matriz e adjA a matriz adjunta de A. Representamos por p(M) o posto de uma matriz $M \in M_n(\mathbb{R})$. Mostre que:
 - (a) (2pts) se p(A) = n, então p(adjA) = n.
 - (b) (5pts) Se p(A) = n 1, então p(adjA) = 1.
 - (c) (2pts) Se $0 \le p(A) \le n-2$, então p(adjA) = 0.

- **3.**(20pts) Seja $T: \mathbb{C}^4 \to \mathbb{C}^4$ um operador linear para o qual f(T)=0, onde $f(X)=(X-1)^2(X-2)^3$. Ache todos os possíveis polinômios característicos de T e descreva, em cada caso, as possíveis formas de Jordan de T. Descreva também todos os possíveis polinômios mínimos de T.
- **4.**(20pts) Dado um espaço vetorial V sobre um corpo F que admite uma decomposição $V = V_1 \oplus V_2$, seja $T: V \to V$ um operador que deixa $V_1 \in V_2$ invariantes. Denotemos por $T_1 \in T_2$, respectivamente, as restrições de T a $V_1 \in V_2$. Supondo-se que T_1 tem polinômio minimal f(x) sobre F e analogamente T_2 tem polinômio minimal g(x). Mostre que o polinômio minimal de T sobre F é o mínimo múltiplo comum de f(x) e g(x).
- **5.** Dada a forma quadrática sobre os reais $\varphi(x,y,z) := 2x^2 4xy + 2xz + z^2$, seja $B: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ a bilinear tal que $\varphi(x,y,z) = B((x,y,z),(x,y,z))$, para todo $(x,y,z) \in \mathbb{R}^3$.
 - (a) (5pts) Sendo W é o subespaço gerado por (0,0,1), encontre uma base para $W^{\perp} = \{v \in \mathbb{R}^3 \mid B(v,w) = 0 \text{ para todo } w \in W \}.$
 - (b) (10pts) Sendo U um subespaço de V tal que a restrição de B a U é negativa definida e U tem dimensão máxima com essa propriedade, determine dim U.
- **6.**(20pts) Dada $A \in M_n(\mathbb{C})$ temos que A é diagonalizável se e somente se valer a seguinte condição: $(A \lambda I_n)^m B = 0$ com $m \ge 1$, $B \in M_{n,1}(\mathbb{C})$, e $\lambda \in \mathbb{C}$, implica $(A \lambda I_n)B = 0$.
- 7. Sejam $V = \mathbb{R}^3$, $v_1 = (1, 1, 0)$, $v_2 = (0, 1, 1)$, $v_3 = (1, 0, 1)$, e $v_4 = (1, 3, 0)$, vetores de V. Para $u = v_1 \otimes v_2 + v_2 \otimes v_3 + (v_1 + v_4) \otimes v_4 + v_4 \otimes v_2 \in V \otimes V$,
 - (a) (6pts) encontre o menor $m \ge 1$ de forma que $u = \sum_{j=1}^m u_j \otimes w_j$ com $u_j, w_j \in V$, para todo j.
 - (b) (3pts) Seja e_1 , e_2 , e_3 a base canônica de V. Escreva u na base $\{v_i \otimes e_j \mid i, j = 1, 2, 3\}$.

Boa Prova!

Departamento de Matemática - IMECC - Unicamp Exame de Análise no \mathbb{R}^n 15 de Dezembro de 2010

1. Questão.

- (a) Seja $f:U\to\mathbb{R}^m$, onde $U\subset\mathbb{R}^n$ é um aberto. Escreva as definições de uma aplicação diferenciável f e de diferencial de uma aplicação f.
- (b) Sejam $0 < \theta_1 < \theta_2 < \infty$ e $f: U \to \mathbb{R}^m$, onde $U \subset \mathbb{R}^n$ é um aberto conexo. Assuma que $|f(x) f(y)|^{\theta_1} \le K |x y|^{\theta_2} \text{ para todo } x, y \in U,$

onde K > 0 é uma constante. Mostre que f é constante em U.

2. Questão.

- (a) Seja $U \subset \mathbb{R}^n$ aberto e $f: U \to \mathbb{R}$ uma função de classe C^2 . Dizemos que um ponto crítico $a \in U$ é não-degenerado quando a matriz Hessiana de f em a é inversível. Mostre que se $a \in U$ é um ponto crítico não-degenerado, então a é um ponto crítico isolado.
- (b) Mostre que a recíproca do resultado contido no item (a) é falsa, mesmo no caso em que f não é constante.

3. Questão.

- (a) Demonstre o teorema da aplicação implícita usando o teorema do posto.
- (b) Mostre que se $f: \mathbb{R}^3 \to \mathbb{R}^2$ é de classe C^1 , então f não é injetora.

4. Questão.

(a) Seja $\Omega \subset \mathbb{R}^n$ um aberto conexo e limitado tal que $\partial\Omega$ é de classe C^{∞} . Assuma que $F:\mathbb{R}^n \to \mathbb{R}^n$ e $F \in C^1$. Usando o Teorema de Stokes (em sua forma mais geral), mostre que

$$\int_{\Omega} div(F)dx = \int_{\partial\Omega} (F \cdot n)dS \quad \text{(Teorema da Divergência)}.$$

(b) Seja $u: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 . Mostre que

$$\int_{\Omega} v\Delta u + (\nabla v \cdot \nabla u) \ dx = \int_{\partial \Omega} v \frac{\partial u}{\partial n} dS,$$

onde $\Delta u = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}$ e $\frac{\partial u}{\partial n}$ denota a derivada de u na direção do vetor normal a $\partial \Omega$. Sugestão: Considere o campo $F = v(\nabla u)$.

- **5. Questão.** Sejam ω_1 e ω_2 formas diferenciais de classe C^1 em uma variedade diferenciável M de classe C^2 .
- (a) Mostre que $\omega_1 \wedge \omega_2$ é fechada, se ω_1 e ω_2 são fechadas.
- (b) Mostre que $\omega_1 \wedge \omega_2$ é exata, se ω_1 é fechada e ω_2 é exata.