Ljetni ispitni rok iz predmeta "Elektronika 2" 05.07.2018.

Zadatak 1 – 10 bodova

Za diferencijsko pojačalo sa slike zadano je $U_{DD}=U_{SS}=9~{\rm V}~,~R_{g1}=R_{g2}=1~{\rm k}\Omega~,~R_D=2~{\rm k}\Omega~{\rm i}~R_S=5~{\rm k}\Omega~.$ Tranzistori T_1 i T_2 imaju jednake parametre $I_{DSS}=2,25~{\rm m}\Lambda~{\rm i}~U_P=-3~{\rm V}~.$ Zanemariti porast struje odvoda u području zasićenja.

- a) Izračunati struje I_{DQ} i napone U_{DSQ} za oba tranzistora u statičkoj radnoj točki (3 boda).
- b) Odrediti naponska pojačanja zajedničkog i diferencijskog signala $A_{Vz} = u_{iz}/u_z$ i $A_{Vd} = u_{iz}/u_d$, te faktor potiskivanja ρ (5 bodova).

c) Izračunati izlazni napon ako je napon $u_{\sigma} = 200 \sin \omega t$ mV (2 boda).

Zadatak 2 – 10 bodova

Za pojačalo na slici zadano je $U_{CC}=12 \text{ V}$, $R_G=50 \text{ k}\Omega$, $R_D=2 \text{ k}\Omega$, $R_E=3 \text{ k}\Omega$, $R_T=1 \text{ k}\Omega$, $C_G=100 \text{ nF}$ i $C_E=1 \text{ \mu}F$. Parametri tranzistora su $I_{DSS}=16 \text{ mA}$, $U_P=-2 \text{ V}$, $\beta \approx h_{fe}=100 \text{ i } U_\gamma=0.7 \text{ V}$. Zanemariti serijski otpor baze $r_{bb'}$, te poraste struje odvoda s naponom u_{DS} u području zasićenja i struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25 \text{ mV}$.

- a) Odrediti otpor R_S s kojim će se postići struja $I_{DQ} = 4$ mA, te izračunati struju I_{CQ} i napone U_{DSQ} i U_{CEQ} u statičkoj radnoj točki (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_V = U_{ir}/U_{yy}$ na srednjim frekvencijama (2 boda).
- d) Izračunati donju graničnu frekvenciju pojačanja A_V (4 boda).

Zadatak 3 – 10 bodova

Za pojačalo na slici zadano je:

$$U_{CC} = 12 \text{ V}, R_g = 500 \Omega,$$

 $C_B = 1 \mu\text{F}, R_1 = 300 \text{ k}\Omega,$

$$R_2 = 100 \text{ k}\Omega$$
, $R_E = 1.5 \text{ k}\Omega$,

$$C_E = 80 \ \mu F \ R_T = 4 \ k\Omega \ i \ C_T = 5 \ pF.$$

Parametri tranzistora su

$$\beta \approx h_{fe} = 100$$
, $U_{\gamma} = 0.7 \text{ V}$,

$$r_{bb'} = 100 \ \Omega, \ C_{b'e} = 40 \ \mathrm{pF} \ \mathrm{i}$$

 $C_{b'c} = 2 \text{ pF}$. Zanemariti porast

 R_1

struje kolektora s naponom u_{CE} normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \,\mathrm{mV}$.

- a) Izračunati struju I_{CO} i napon U_{CEO} u statičkoj radnoj točki (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{V\sigma}=U_{iz}/U_{\sigma}$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Vg} (4 boda).

Zadatak 4 – 12 bodova

Za pojačalo na slici zadano je $U_{CC} = 12 \text{ V}$, $R_C = 2.5 \text{ k}\Omega$, $R_B = 100 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$ i $R_T = 100 \Omega$. Parametri tranzistora su $\beta_1 \approx h_{fe_1} = 100 \; , \; \beta_2 \approx h_{fe_2} = 100 \; i$ $U_{\nu} = 0.7 \text{ V}$. Zanemariti serijski otpor baze $r_{bb'}$ i porast struja kolektora s naponima u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \,\mathrm{mV}$.

 \circ U_{CC}

 $\stackrel{\perp}{+} C_T$

 R_T

 T_1

- a) Izračunati struje I_{CQ} i napone U_{CEQ} za oba tranzistora u statičkoj radnoj točki (2 boda).
- b) Odrediti tip povratne veze i nacrtati A-granu pojačala za mali signal uzevši u obzir opterećenje β -grane (2 boda).
- c) Odrediti pojačanje A-grane (4 boda).
- d) Odrediti koeficijent povratne veze β (2 boda).
- e) Odrediti pojačanja $A_{Vf} = u_{iz}/u_{nl}$ i $A_{If} = i_{iz}/i_{nl}$ (2 boda).

Zadatak 5 – 8 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{-10^4 (1 + j\omega/10^5)}{(1 + j\omega/10^4)(1 + j\omega/10^6)^2} , \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^6} .$$

Grafičkim postupkom crtanjem Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O. = 45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, određivanje β – 2 boda, A.O. – 2 boda)

Popis složenijih formula:

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right)$$

$$i_C = \beta I_B \left(1 + \frac{u_{CE}}{U_A} \right)$$