CS738: Advanced Compiler Optimizations **Constant Propagation** Amey Karkare karkare@cse.iitk.ac.in http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

- Using data flow analysis to identify "constant expressions"
- ▶ Identify similarity/differences with bit-vector data flow analyses discussed earlier
- Other properties of constant propagation

▶ CP: Replace expressions that evaluate to same constant "c" every time they are executed, by the value "c"

DF Framework for CP

Domain

Agenda

- For a single variable v of type τ , all possible constants of
- Semilattice
 - ▶ What is \\?

 - What is T? What is ⊥?

2	pecial	Val	IIAC	for	CP
,	boolai	v a	ucs	101	\circ

- NAC: not a constant
 - If variable is inferred not to be a constant
 - ► Multiple (different valued) defs, non-const defs, assigned an "un-interpreted" value. . . .
- ► Undef: No definition of the variable is seen yet nothing known!

NAC vs Undef

- ▶ $NAC \Rightarrow too\ many\ definitions\ seen\ for\ a\ variable\ v\ to$ declare v is NOT a constant
- ▶ Undef ⇒ too few definitions seen to declare anything about the variable
- ► ⊤ is Undef: ⊥ is NAC

CP Meet ∧

► Recall the requirement

$$\top \bigwedge x = x$$
$$\bot \bigwedge x = \bot$$

 $NAC \land c = NAC$ $c_1 \bigwedge c_2 = \textit{NAC}$ when $c_1 \neq c_2$

 $c \wedge c = c$

Undef $\land c = c$

▶ Infinite domain, but finite height

CP Semilattice

Constant Propagation

- ▶ Previous figure was semilattice for one variable of one type
- ► CP Semilattice = Product of such lattices for all variables (of all types)
- ► Each semilattice has a finite height

Computing GEN

► Informal representation

Statement	GEN			
x = c // const	$\{x \to c\}$			
x = y + z	if $\{y \to c_1, z \to c_2\}$ in IN then $\{x \to c_1 + c_2\}$ else if $\{y \to NAC\}$ in IN then $\{x \to NAC\}$ else if $\{z \to NAC\}$ in IN then $\{x \to NAC\}$ else $\{x \to Undef\}$			
x = complicated	$\{x \to NAC\}$			
expr				

Nondistributivity of CP

- All paths: $ightharpoonup B_0
 ightarrow B_1
 ightarrow B_3$ $ightharpoonup B_0
 ightarrow B_2
 ightarrow B_3$
- ► Value of z is 5 along both the paths.
- ► MOP value for z is 5.
- ► MFP value for z is NAC. (Exercise)
- ► MFP value ≠ MOP value (MFP < MOP)

Monotonicity of CP

- ► Case analysis on transfer function f
- NAC ≤ c ≤ Undef
- ightharpoonup x = c has constant transfer function.
- x = complicated expr also has constant transfer function
- ▶ See the next slide for x = y + z (and similar statements)

Monotonicity of CP: x = y + z

- ► Fix z to be one of Undef, c₂, NAC
- ► Vary y over Undef, c₁, NAC
- Confirm that x does not "increase"
- Do this for all z choices.
- ► Similarly, fix y and vary z.