1. Niech $\Phi: \mathbf{R}^n \to \mathbf{R}^n$ będzie funkcją iteracyjną, tzn. $x_{i+1} = \Phi(x_i)$ i niech będzie dane otoczenie punktu początkowego x_0 o promieniu r, tzn. $S_r(x_0) = \{x: ||x-x_0|| < r\}$. Pokazać, że jeśli zachodzi:

$$\forall_{x,y \in \bar{S}_r(x_0)} ||\Phi(x) - \Phi(y)|| \le K||x - y|| \tag{1}$$

$$||x_1 - x_0|| \le (1 - K)r < r \tag{2}$$

gdzie $0 \le K < 1$ jest stałą, a $\bar{S}_r(x_0)$ oznacza otoczenie z brzegiem, to:

- (a) (2p) wszystkie punkty x_i należą do otoczenia $S_r(x_0)$
- (b) (3p) Φ ma dokładnie jeden punkt stały w $\bar{S}_r(x_0)$, tzn. $\lim_{i \to +\infty} x_i = \xi$
- (c) (1p) ciag $\{x_i\}$ jest co najmniej liniowo zbieżny do ξ

Uwagi: Dowód można znaleźć w J. Stoer 'Wstęp do metod numerycznych'. Podpunkty można zgłaszać osobno.

- 2. (2p) Φ jest metodą iteracyjną tzn. $x_{i+1} = \Phi(x_i)$ i Φ posiada punkt stały $\Phi(\xi) = \xi$. Jaką nierówność musi spełniać metoda aby można ją było nazwać metodą rzędu p? Pokaż, że jeśli zniakają pochodne rzędu k, $\Phi^{(k)}(\xi) = 0$ dla k < p to metoda jest rzędu p. Jakiego rzędu jest metoda, jeśli $|\Phi'(\xi)| < 1$?
- 3. (1p) Znaleźć liczbę rozwiązań równania $\cos(0.9x)=x$. Następnie znaleźć zbiór punktów, dla którego metoda iteracyjna $x_{i+1}=\cos(0.9x_i)$ jest zbieżna do jednego z rozwiązań.

Uwagi: Przydatne będą wnioski z powyższych twierdzeń.

4. (1p) Znajdź krotności wszystkich miejsc zerowych funkcji

$$f(x) = (x^2 - 1)\sinh^3 x. (3)$$

- 5. (3p) Niech z^* będzie k-krotnym miejscem zerowym funkcji f(z). Udowodnij, że metoda Newtona jest zbieżna do z^* liniowo. Pomocne będzie zauważenie, że w pobliżu z^* możemy przyjąć $f(z)=(z-z^*)^kg(z)$, gdzie $g(z^*)\neq 0$. Skorzystaj z wniosków z zadania 2.
- 6. (1p) Niech $a \in \mathbb{R}$: a > 0. Bez posługiwania się pojęciem pochodnej udowodnij, że iteracja

$$z_{n+1} = \frac{1}{2} \left(z_n + \frac{a}{z_n} \right) \tag{4}$$

jest zbieżna do \sqrt{a} dla wszystkich zespolonych punktów początkowych o dodatniej części rzeczywistej oraz do $-\sqrt{a}$ dla wszystkich zespolonych punktów początkowych o ujemnej części rzeczywistej.

- 7. (1p) Jak za pomocą metody Newtona wyznaczyć $\sqrt[3]{3}$?
- 8. (2p) Opracuj algorytm poszukiwania rozwiązań nieliniowych równań algebraicznych analogiczny do metody siecznych, ale oparty o interpolację odwrotną na trzech ostatnich punktach monotonicznych.

- 9. (2p) Skonstruuj wielomian, dla którego metoda Newtona ma dwucykl. Wskazówki:
 - (a) Metoda Newtona ma postać odwzorowania $z_{n+1} = g(z_n)$, gdzie

$$g(z) = z - \frac{f(z)}{f'(z)} \tag{5}$$

Dwucykl składa się z dwóch punktów, $\{z_1^\star, z_2^\star\}$, o tej własności, że $g(z_1^\star) = z_2^\star$, $g(z_2^\star) = z_1^\star$. Każdy z punktów dwucyklu jest punktem stałym dwukrotnego złożenia odwzorowania Newtona, $z_1^\star = g(g(z_1^\star))$, który nie jest jednocześnie punktem stałym samego odwzorowania Newtona, $z_1^\star \neq g(z_1^\star)$ (dlaczego?) i analogicznie dla z_2^\star .

- (b) Skorzystaj z interpolacji Hermite'a.
- 10. (4p) Znajdź równanie charakterystyczne macierzy

$$\begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} & -a_n \end{bmatrix}$$

$$(6)$$

i wyjaśnij jak można użyć powyższej macierzy do poszukiwania zer wielomianów.

Zadania oznaczone jako N są zadaniami numerycznymi. Ich <u>opracowane wyniki</u> plus kod programu (całość w formacie pdf) należy przysyłać na mój adres e-mail w ciągu <u>dwóch tygodni</u> od daty widniejącej w nagłówku. Rozwiązanie może wykorzystywać dowolne legalnie dostępne biblioteki, języki programowania lub programy narzędziowe. Pozostałe zadania są zadaniami nienumerycznymi, do rozwiązywania przy tablicy.

MM i PFG