Turing machines

ATM has...

- States: Q
- Input alphabet: Σ
- Tape alphabet: Γ
- Transition function: $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- Start state: q_0
- Accept state: q_{ACCEPT}
- Reject state: q_{REJECT}

Initial Setup

- The input is written on the tape starting on the leftmost position
- The rest of the tape is blank symbols □
- Start in q_0 , the start state
- The head points to the leftmost position on the tape

Initial Configuration: $q_0\langle \text{input} \rangle \sqcup$

Computation

Each transition:

- 1. Read the tape
- 2. Write a symbol
- 3. Move the head left or right

Read and accept...

$$\delta(q, \gamma) = (q, \gamma, R)$$
 for all $\gamma \neq \Box$
$$\delta(q, \Box) = (q_{ACCEPT}, \Box, L)$$

Simulate the TM on input '010000101':

 q_0 010000101 \Box

 $0q_010000101$ \square

 $010000101q_0$ \Box

01000010 q_{ACCEPT} 1 \sqcup

Cross out the input and accept...

$$\delta(q, \gamma) =$$

Accept even length strings

$$\delta(q, \gamma) =$$

Turing Recognizable

- A language such that some TM recognizes it.
- Also called recursively enumerable

A is a Turing recognizable language.

Then there exists TM M such that M accepts a string a iff $a \in A$.

Not guaranteed to halt!

$$\delta(q, \gamma) = \begin{cases} (q, 0, R) & \text{if } \gamma = 1\\ (q, 1, R) & \text{if } \gamma = 0\\ (q, \sqcup, L) & \text{if } \gamma = \sqcup \end{cases}$$

Deciders

- A TM halts on a given input if it enters q_{ACCEPT} or q_{REJECT} .
- A TM that halts on every input is called a decider.
- Languages recognized by some decider are decidable.

B is a **decidable** language.

Then there exists TM M such that M accepts a string b iff $b \in B$

and rejects a string b iff $b \in B$.