COMP 3311 DATABASE MANAGEMENT SYSTEMS

LECTURE 22 EXERCISES
RECOVERY SYSTEM

The log on the right corresponds to a schedule of three <u>serially executing</u> transactions T_1 , T_2 and T_3 where a system failure occurs at the point indicated. Assume that the <u>immediate</u> <u>update protocol</u> is used.

- (a) Which transactions are undone?
 - Undo T_3
- (b) Which transactions are redone?

Redo: T_1 T_2

Log File

<T₁ start>

<*T*₁, B, 15, 12>

<T₁ commit>

<*T*₂ start>

 $< T_2$, B, 12, 18>

 $< T_2$, D, 25, 26>

 $< T_2$ commit>

<*T*₃ start>

<7₃, D, 20, 25>

← system failure

Scan the log and

undo **if** $< T_i$ start> **but no** $< T_i$ commit> redo **if** $< T_i$ start> **and** $< T_i$ commit>

The log on the right corresponds to a schedule of three <u>concurrently</u> <u>executing</u> transactions T_1 , T_2 and T_3 where a system failure occurs at the point indicated. Assume that the <u>immediate update protocol</u> with checkpointing is used.

(a) Which transactions are undone?

Undo: T₂

(b) Which transactions are redone?

Redo: T_3 T_1

Scan the log backward and

if find $<T_i$ commit> add to redo-list if find $<T_i$ start> add to undo-list if not in redo-list for every T_i in <checkpoint, $\{T_i, ...\}>$ if T_i not in redo-list add to undo-list

Log File

<*T*₁ start> $< T_1, A, 2, 5 >$ <T₁, B, 1, 2> $< T_2$ start> $< T_1, C, 2, 8 >$ $< T_2$, B, 2, 5> <checkpoint, $\{T_1, T_2\}>$ <T₁ commit> $< T_2$, B, 5, 6> $< T_3$ start> $< T_3$, A, 5, 3> <T₃ commit> $< T_2$, C, 8, 2> $< T_2$, A, 3, 5>

 \leftarrow add T_2 to undo-list

← add to redo-list

√ on redo-list

← add to redo-list

← system failure

The log on the right corresponds to a schedule of four <u>serially executing</u> transactions T_1 , T_2 , T_3 and T_4 where a system failure occurs at the point indicated. Assume that the <u>immediate</u> <u>update protocol</u> with checkpointing is used.

(a) Which transactions are undone?

Undo T_4

(b) Which transactions are redone?

Redo: T_1 T_2 T_3

Log File

- <*T*₁ start>
- $< T_1, A, 1, 2 >$
- <**7**₁, B, 5, 12>
- <checkpoint>
- <T₁ commit>
- $< T_2$ start>
- $< T_2$, B, 12, 18>
- <T₂ commit>
- <*T*₃ start>
- $< T_3$, D, 25, 26>
- $< T_3$ commit>
- $< T_4 \text{ start}>$
- $< T_4$, A, 20, 25>

← system failure

Scan log backward to first $<T_i$ start> <u>before</u> the checkpoint. Scan log forward and

undo **if** $< T_i$ start> **but no** $< T_i$ commit> redo **if** $< T_i$ start> **and** $< T_i$ commit>

The log on the right corresponds to a schedule of three <u>concurrently</u> <u>executing</u> transactions T_1 , T_2 and T_3 where a system failure occurs at the point indicated. Assume that the <u>immediate update protocol</u> with checkpointing is used.

(a) Which transactions are undone?

Undo: T_1 T_3

(b) Which transactions are redone?

Redo: T_2

Log File

<*T*₃ start>

 $< T_3$, B, 15, 12>

<*T*₂ start>

 $< T_2$, B, 12, 18>

<checkpoint $\{T_2, T_3\}>$

 $< T_2$ commit>

<*T*₁ start>

< T₁, D, 20, 25>

<\(\bullet{T}_1\), D, 25, 26>

 \leftarrow add T_3 to undo-list

← add to redo-list

← add to redo-list

← system failure

Scan the log backward and

if find <T_i commit> add to redo-list
if find <T_i start> add to undo-list if not in redo-list
for every T_i in <checkpoint, {T_i, ...}>
 if T_i not in redo-list add to undo-list