Вектори

Определение 1 Отворена отсечка с краища точките A и B е множеството от всички точки, които са между A и B. Затворена отсечка с краища A и B е множеството, състоящо се от точките A и B и точките от отворената отсечка с краища A и B. Вместо затворена отсечка ще казваме само отсечка.

В дефиницията се допуска и A = B. В тоя случай отсечката AA се състои само от точката A. Такава отсечка се нарича *нулева отсечка*.

Определение 2 Нека l е права и $P \in l$. Тогава $l \setminus \{P\}$ се разпада на две подмножества, като точките $A, B \in l \setminus \{P\}$ са от различни подмножества $\Leftrightarrow P$ е между A и B. Тия подмножества се наричат *отворени лъчи с начало P. Затворен лъч с начало P* е множество, състоящо се от точката P и точките от отворен лъч с начало P. Вместо затворен лъч ще казваме само *лъч*.

Ако r е лъч с начало P и $A \in r$, $A \neq P$, то ще означаваме r и с PA^{\rightarrow} . Двата лъча с начало P се наричат npomusonoложски.

Определение 3 Нека l е права, лежаща в равнината π . Тогава $\pi \setminus l$ се разпада на две подмножества, като точките $A, B \in \pi \setminus l$ са от различни подмножества \Leftrightarrow отворената отсечка AB пресича l. Тия подмножества се наричат *отворени полуравнини с граница l*. Затворена полуравнина c граница l е множество, състоящо се от точките на l и точките от отворена полуравнина с граница l. Вместо затворена полуравнина ще казваме само n полуравнина.

Определение 4 Нека π е равнина в пространството S. Тогава $S \setminus \pi$ се разпада на две подмножества, като точките $A, B \in S \setminus \pi$ са от различни подмножества \Leftrightarrow отворената отсечка AB пресича π . Тия подмножества се наричат *отворени полупространства* c *граница* π . Затворено полупространство c *граница* π е множество, състоящо се от точките на π и точките от отворено полупространство c граница π . Вместо затворено полупространство ще казваме само *полупространство*.

Уговорка: Ще считаме, че всяка права е успоредна на себе си. Това важи за целия курс.

Определение 5 Нека a и b са лъчи. Казваме, че a и b са $e\partial$ нопосочни и пишем $a \uparrow \uparrow b$, ако правите определени от a и b са успоредни и

- а) ако правите определени от a и b съвпадат, то $a \supset b$ или $b \supset a$.
- б) ако правите определени от a и b са различни и π е равнината определена от тях, а A и B са началата на a и b, то a и b лежат в една и съща полуравнина в π относно правата AB.

Казваме, че a и b са npomusonocoчни и пишем $a \uparrow \downarrow b$, ако правите определени от a и b са успоредни, но a и b не са еднопосочни.

Твърдение 1 Релацията еднопосочност на лъчи е релация на еквивалентност в множеството на всички лъчи.

(без доказателство на транзитивността)

Определение 6 Класовете на еквивалентност относно релацията еднопосочност на лъчи се наричат *посоки*.

Определение 7 Казваме, че две отсечки AB и CD са $e\partial$ накви и пишем $AB\cong CD$, ако имат една и съща дължина.

(Дефиницията е коректна, тоест не зависи от избора на единична отсечка за измерване на дължина.)

Твърдение 2 Еднаквостта на отсечки е релация на еквивалентност в множеството на всички отсечки.

Определение 8 Отсечка, на която единият край A е избран за първи, а другият край B – за втори, се нарича насочена отсечка или свързан вектор и се означава с \overrightarrow{AB} . A се нарича начало, а B – край на \overrightarrow{AB} .

Ако A=B, то \overrightarrow{AB} (тоест \overrightarrow{AA}) се нарича *нулева насочена отсечка* или *нулев свързан* вектор.

Забележка 1 При $A \neq B$ отсечките AB и BA са равни, тоест съвпадат, но насочените отсечки \overrightarrow{AB} и \overrightarrow{BA} са различни!

Определение 9 Казваме, че насочените отсечки \overrightarrow{AB} и \overrightarrow{CD} са еднопосочни и пишем $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$, когато е изпълнено едно от условията:

- а) поне една от двете насочени отсечки е нулева (тоест A = B или C = D).
- б) двете насочени отсечки са ненулеви (тоест $A \neq B$ и $C \neq D$) и $AB^{\rightarrow} \uparrow \uparrow CD^{\rightarrow}$.

Казваме, че \overrightarrow{AB} и \overrightarrow{CD} са *противопосочни* и пишем $\overrightarrow{AB} \uparrow \downarrow \overrightarrow{CD}$, когато е изпълнено едно от условията а) и б'), което се получава от б) като се замени $AB^{\rightarrow} \uparrow \uparrow CD^{\rightarrow}$ с $AB^{\rightarrow} \uparrow \downarrow CD^{\rightarrow}$.

Твърдение 3 Релацията еднопосочност на насочени отсечки е релация на еквивалентност в множесството на ненулевите насочени отсечки.

Забележка 2 В множеството на всички насочени отсечки релацията еднопосочност очевидно е рефлексивна и симетрична, но не е релация на еквивалентност, защото не е транзитивна.

Определение 10 Казваме, че насочените отсечки \overrightarrow{AB} и \overrightarrow{CD} са paвни и пишем $\overrightarrow{AB} = \overrightarrow{CD}$, ако отсечките AB и CD са еднакви и $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$.

 $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow u \overrightarrow{CD}$ е нулева насочена отсечка, тоест A = B. Тогава $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow u \overrightarrow{CD}$ е нулева, тоест когато C = D.

Твърдение 4 Релацията равенство на насочени отсечки е релация на еквивалентност в множеството на всички насочени отсечки.

Определение 11 Класовете на еквивалентност относно релацията равенство на насочени отсечки се наричат *свободни вектори*.

Ако v е свободен вектор и $\overrightarrow{AB} \in v$, то казваме, че \overrightarrow{AB} е npedcmaeumen на v. Вместо $\overrightarrow{AB} \in v$ ще пишем $\overrightarrow{AB} = v$ (защото това е общоприетият начин на писане). За краткост вместо свободен вектор обикновено ще казваме само eekmop.

Теорема 1 *Нулевите насочени отсечки образуват един клас на еквивалентност, тоест един свободен вектор.*

Определение 12 Векторът, съставен от нулевите насочени отсечки (тоест векторът от Теорема 1), се нарича *нулев* (свободен) вектор и се означава с 0.

Теорема 2 Ако v е вектор u O е точка, то съществува единствена точка P, такава v е $\overrightarrow{OP} = v$.

Твърдение 5 (свойство на успоредника) $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \overrightarrow{AC} = \overrightarrow{BD}$.

Определение 13 Нека е фиксирана единична отсечка за измерване. Дължина на вектора v е дължината на произволен негов представител. Означава се с |v|. (Дефиницията е коректна, тоест не зависи от избора на представителя на v.)

Определение 14 Казваме, че векторите u и v са $e\partial$ нопосочни (съответно npomusono-coчни) и пишем $u \uparrow \uparrow v$ (съответно $u \uparrow \downarrow v$), ако един представител на u е еднопосочен (съответно противопосочен) с един представител на v.

Еквивалентна дефиниция е всеки представител на u да е еднопосочен (съответно противопосочен) с всеки представител на v.