Geometric models of Ginzburg algebras Merlin Christ, FD Seminar, July 22nd 2021 Based on

arxiv: 2101.01939, arxiv:2107.10091

Plan

- 1) Introduction: gentle algebras and finzbarg algebras
- 2) Gluing for gentle algebras
- 3) Elving for Einzburg algebras

Why care about these algebras?

- Categorification of cluster algebras
- Relation to Fukaya categories
- Related to each other via the Jacobian algebra.

1) Gentle algebras

UQ/I is gentle if

* Q is a quiver w/ Vertices of valency = 4

* ICHQ ideal generated by paths of length 2, s.t. for all a EQ, there exist

at most one be Q1 w/ Otabe I

- 11- w/ 07ab&I

- 1- W OthatI

KQ/I can be infinite dinensional

Examples

$$*Q = 1 - \frac{4}{3} = 2 - \frac{4}{3} = (5a)$$

* Q=1=32 Urouecker quiver

Geometric (Surface) model for Press (49/1) [H44, LP, BS, OPS]

- describe all indecomposables in terms of (homotopy classes of) curves in an orieted marked surface with McQS
- describe Hom's in terms of intersections

Relative ginzburg algebras of triangulated surfaces

Fix an oriented marked surface w/ triangulation T closed or w/ boundary (vertices of T = marked points)

Define the quiver Of with

* Vertices = edges of T use only internal edges for non-relative grazburg algebra

* arrows = clockwise 3-cycle T(f)
for each face f.

Form the graded quiver Qt with

* Vertices of Qt = vertices of Qt

and arrows

* a:i->i deare 0 for a:i-ie

*
$$\alpha: i \rightarrow j$$
 degree 0 for $\alpha: i \rightarrow j \in (0, -1)_1$

*
$$a^*:j\rightarrow i$$
 degree 1 for $a:i \neq j \in (Q_{\mathcal{T}})_{A}$

Definition

$$\forall d(a^*) = \partial_a \mathcal{E} T(f)$$

Paces

(cyclic derivative)

$$Ad(l_i) = E p_i Ea, a*Ip_i$$

$$aE(O_i)_i \qquad Tlazy Path$$

Remark

- 1) The potential ET(f) is in most cases degenerate if f S has no internal marked points.
- 2) for = Ho(gt) is a goutle algebra (generalizing [ABCP]) and finite dim. if S has no internal marked points.

Examples

$$S_{\Delta} = \sqrt{\frac{2}{a^*}} \sqrt{\frac{2}{b^*}}$$

$$d(a^*) = cb$$

$$d(b^*) = ac$$

$$d(c^*) = ba$$

$$S = \begin{cases} 2 & b_2 \\ 3 & 3 \\ 3 & 3 \end{cases}$$

$$d(a^*i)=c;b;$$
 for $i=1,2$ +cyclic permutations $d(Q_2)=a_1a_1^*+a_2a_2^*-b_1^*b_1-b_2^*b_2$

Dual ribbon graph of I:

* Vertices So= faces of I

* edges S_= edges of I

Geometric model for (non-relative) finzburg algebra
of triangulated surface (wo interior marked points)
[Qin, Zhou]

- Describe (some) modules in terms of curves in SN(MuPo) including 3-spherical simples and projectives

- Describe Hom's in terms of intersections

```
2) fluing for gentle algebras
Describe D(40/1) as colimit of
Constructible cosheaf of stable or-categories
on a nisson graph s
                             locally constant on strata
                                             = edges (vortices
with vertices on as.
Define poset Entry (5) W/
   * objects vertices and edges of 5
   * morphism e-> v if edge e incident to vertex v.
                                  J=vev
                                     Entry()) = V
Constructible cosheaf on J:
functor J: Entry () -> Lin Catu
          u-linear of-categories,

colimits modeled by delatu of horita model

structure
  * F(v) = D(Au) for v vertex of valency u w/
                 Au = 1-> 2-> 3-> ... -> u

Fall composites
                                            are zero
  * 7(e) = D(A1) = D(4)
     for each edge c.
```

Example: S = twice marked annulus

Colimit:

D(Uz) W/ Uz = · = · Kronecker quiver

12
D(Cohlp1)

Goal: Use the gluing construction to construct Objects and morphisms in D(UQ/I) from local data.

Remarkable fact from &-category theory

The colinial of a constructible cosheaf F: Entry (7) -> LinCatu is equivalent to the limit of the right adjoint diagram

Constructible

Sheafon P > Rad; (7): Entry (7) op _> LinCatu

Limits of on-categories are well behaved: * objects are sections of the diagram * morphisms are natural transformations between sections Sections of Radi(7)

Geometric interpretation

$$(0 \rightarrow 4)$$

$$> u \qquad (0 \rightarrow 4)$$

$$= 0 \in \mathcal{D}(GhlP^{1})$$
line bundle

$$(x \xrightarrow{1} 4) \longrightarrow (u \xrightarrow{\times} 4)$$

Tolue

= K, ED(Ch1P1) skyscraper sheaf

Tglue Curve segments

Local sections

(U->6) -> 4

$$(0 \rightarrow 4)$$

(U=>4) -> U

3) Gluing for finzburg algebras

Tideal triangulation of S Todal ribbon graph

Define cosheaf 7: Entry (7) -> Lin Cath w/

x I(V) = D(G1) V vertex of T $\frac{G}{d} = \frac{2}{\sqrt{a^* b^*}}$

* Z(e) = D(4[tn]) e edge of P WEta] = Pt 1 Polynomial algebra

* 2(e->v)=91: D(4stal)-> D(ga)

 $\varphi: L\Sigma t_{1}] \longrightarrow \$\Delta \qquad \text{up to cyclic} \\ * \longmapsto z \qquad \text{permutations of} \\ t_{1} \longmapsto \pm (aa^{2} - b^{2}b) \qquad 1,2,3$

Compare with d(l;) = Ep; [a,a*]p;

Theorem (C.)

Let T be an ideal triengulation and I the dual in bloom graph. There exists a constructible cosheaf 7: Entry (P) -> Lin Caty as above with colin 2~ D(gt)

1) Relative Giuzburg algebras glue to velative Giuzburg algebras

 $\mathfrak{D}(ult_1)$ $\mathfrak{D}(ult_1)$ $\mathfrak{R}Hom(P_2, -)$ $\mathfrak{D}(\mathcal{G}_{\Delta})$

RHom(Px)

D(42tn])

SA = 1 => 3

P: projective at i is ustal-ga-binodule

 $U[t_1] \qquad O$ $COUP(P_2 \rightarrow P_3)$ $U[t_1][1]$

Tensor products of the above w/ 48th]-module L, e.g.

Step 2: glue local sections

-> Produce section My & D(gt) for each

* L & D(UStol)

* y curve in S\(MuSo)

with endpoints in OSIM

Can also describe Hom(My, My') in terms of intersections

Fun application of peometric model:

Proposition (C.)

Suppose S has no interior marked points.

There exists an isomorphism of graded algebras

H*(GT) ~ JT & UStil.

Jacobian algebra Holge).