Concepts and Main Aspects of RNA-Seq

Wellcome Trust Centre for Human Genetics 25th, 28th and 29th April 2016

Organised by Helen Lockstone and Irina Pulyakhina

Expression Quantification

Helen Lockstone 28th April 2016

Main Steps in RNA-Seq

- Various tools developed for each step
- Also suites of tools, such as tuxedo, for each step of the process (Bowtie/TopHat, Cufflinks, CuffDiff etc)
- Distinction between isoform reconstruction and gene/transcript abundance

Figure from Yang and Kim. Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics Inform. 2015 Dec; 13(4):119-125

Selecting tools to use

- Many tools available, all claiming to be the best performer – which to choose?
- Review articles can be helpful
- Sensible pipelines should give reasonable results – make sure suitable for your data/purpose, key parameters are set correctly
- Tools can have differing input requirements and output formats – make sure using the expected format for a given tool

Review articles

Kanitz et al. Genome Biology (2015) 16:150 DOI 10.1186/s13059-015-0702-5

Teng et al. Genome Biology (2016) 17:74 DOI 10.1186/s13059-016-0940-1

Genome Biology

Open Access

(CrossMark

RESEARCH

Open Access

isoform abundance from RNA-seq data

Alexander Kanitz[†], Foivos Gy

A benchmark for RNA-seq quantification pipelines

Mingxiang Teng^{1,2,8}, Michael I. Love^{1,2}, Carrie A. Davis³, Sarah Djebali⁴, Alexander Dobin³, Brenton R. Graveley⁵, Sheng Li⁶, Christopher E. Mason⁶, Sara Olson⁵, Dmitri Pervouchine⁴, Cricket A. Sloan⁷, Xintao Wei⁵, Lijun Zhan⁵ and Rafael A. Irizarry^{1,2*}

REVIEW

and Ali Mortazavi 16,17*

Open Access

METHOD

A survey of best practices for RNA-seq data analysis

Ana Conesa^{1,2*}, Pedro Madrigal^{3,4*}, Sonia Tarazona^{2,5}, David Gomez-Cabrero^{6,7,8,9}, Alejandra Cervera¹⁰, Andrew McPherson¹¹, Michał W

Kanitz et al. Genome Biology (2015) 16:150 DOI 10.1186/s13059-015-0702-5

CrossMark

RESEARCH

CrossMark

Open Access

Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data

Alexander Kanitz[†], Foivos Gypas[†], Andreas J. Gruber, Andreas R. Gruber, Georges Martin and Mihaela Zavolan^{*}

An important point

"During the course of this study we discovered a number of assumptions that the programs tacitly made and that affected the interpretation of the results. Therefore, a specific recommendation that we can make to developers is to ensure that sufficiently detailed information on input requirements, potential pitfalls and the implication of specific options (ideally including usage examples) is provided."

Kanitz et al. Genome Biology (2015) 16:150

Overview of RNA-Seq tools

General mapping issues

- Multi-mapped reads (map to more than one location)
 - Gene families, pseudogenes, repeat regions, MHC region
- Potential PCR duplicates (multiple reads mapping to identical position)
 - May exclude some genuine duplicate fragments, especially for high expressed genes

Expression quantification

- Process of using aligned reads to quantify gene/transcript abundance
 - Count-based (HTSeq, featureCounts)
 - Find overlap of aligned reads and known annotated features
 - output is raw counts
 - Model-based (e.g. Cufflinks, RSEM)
 - Try to find the optimal set of isoforms and their relative abundances from the observed data (aligned reads)
 - Short reads tend to map to multiple isoforms, hence the need for probabilistic models
 - Output usually RPKM/FPKM or TPM

HTSeq

- Python based suite of scripts/tools including 'htseq-count'
 - Annotations from Ensembl/RefSeq etc
 - Reads overlapping gene features counted
 - Careful setting of parameters e.g. strandedness option in particular
 - Usage: htseq-count [options]<alignment_file (SAM)><gff_file>

Raw count table

> head(counts)			_	_			
H	<mark>Уурохіа1 Нур</mark> о	xia2 Hypo	xia3 Nor	moxia1	Normoxia2	Normoxia3	
ENSG00000000003	1451	1770	1711	1036	1294	1411	
ENSG00000000005	0	1	0	0	0	0	
ENSG00000000419	2213	2433	2728	4074	4249	4278	
ENSG00000000457	866	863	756	775	936	861	
ENSG00000000460	841	952	977	1235	1309	1296	
ENSG00000000938	0	3	0	1	3	3	
> tail(counts)							
	Hypoxia1	Hypoxia2	Hypoxia	3 Normo	xial Normo	oxia2 Norm	oxia3
ENSG00000259772	1	6	,	5	0	0	0
ENSG00000259773	1	0)	0	0	0	0
ENSG00000259774	8	14	1	.1	5	11	11
alignment_not_uni	.que 3509317	4004009	340580)4 366	8337 456	68935 44	99171
ambiguous	2776001	3375340	283298	338	88991 382	21237 38	28028
no_feature	6939028	7857177	620257	4 450	5149 651	17785 57	38978
> [

RPKM (FPKM) – read(pairs) per kilobase of gene model per million reads. An early metric to generate 'comparable' values

TPM – transcripts per kilobase million. Normalises for gene length first, then depth. Same TPM value in 2 different samples means the same proportion of reads map to that gene in both samples. Not the case with RPKM/FPKM

Normalisation

- Sequencing depth
- RNA composition effect – e.g. high expressed genes in one group, library complexity – affects way genes are sampled
- Counts obtained are influenced by what is sequenced

QC plots

Log2 normalised count distributions

Exploratory plots of data

Input raw counts were transformed in DESeq package to make more suitable for input to clustering algorithms and PCA

Concluding Remarks

- Each step has a variety of issues/complications, sometimes subtle
- Many choices made in processing data choice of tools, parameters etc - an alternative pipeline may give different results
- If resulting genelist or findings are followed up with further work and validated, the limitations/biases various steps in the process to get that point become less of a concern
- The end of the RNA-Seq analysis is only the beginning....