Logic, First Course, Winter 2020. Week 2, Lecture 2, Handout.

Definitions and law of excluded middle

A *tautology* is a well-formed formula that is always true. That is, when you look at its truth-table, you see all true's in the column under the main connective.

Law of excluded middle: $p \lor \neg p$ is a tautology.

Law of non-contradiction: $\neg(p \land \neg p)$ is a tautology.

An equivalence is just two formulas ϕ and ψ such that their biconditional $\phi \leftrightarrow \psi$ is a tautology.

The law of double-negation: p is equivalent to $\neg \neg p$.

 p
 p
 ¬
 ¬
 p

 T
 T
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

Commutativity and associativity and distributivity

Law of commutativity for conjunction: $p \land q$ is equivalent to $q \land p$.

Law of commutativity for disjunction: $p \lor q$ is equivalent to $q \lor p$

Law of associativity for conjunction: $(p \land q) \land r$ is equivalent to $p \land (q \land r)$.

Law of associativity for disjunction: $(p \lor q) \lor r$ is equivalent to $p \lor (q \lor r)$.

Law of distribution, part 1: $p \land (q \lor r)$ is equivalent to $(p \land q) \lor (p \land r)$

Law of distribution, part 2: $p \lor (q \land r)$ is equivalent to $(p \lor q) \land (p \lor r)$

DeMorgan Law, part 1: $\neg(p \land q)$ is equivalent to $\neg p \lor \neg q$.

DeMorgan Law, part 2: $\neg(p \lor q)$ is equivalent to $\neg p \land \neg q$.

Recognizing tautologies and equivalences quickly

Substitution. Given any tautology, if we uniformly substitute other formulas for the basic propositional letters, we still get a tautology.

Replacement of equivalents with equivalents. If two formulas are equivalent, then you can replace the one with the other in any formula and not change the truth-value.

Chaining. If a first formula ϕ is the same as a second formula ψ in terms of truth-values and the second formula ψ is the same as a third formula ξ in terms of truth-values, then the first formula ϕ is the same as the third formula ξ in terms of truth-values.

Boole and the laws of thought

 p (p ∨ p), p

 T T ↑ ↑ ↑ ↑ ↑

 F F ↑ ↑ F ↑

 $(p \land (p \lor q)), p$ pq(p ∧ (p ∨ q)), p Τ ≎ 0 ⊤ ≎ ≎ T ≎ Τ ≎ ΤF T 🗘 ≎ F ≎ T 🗘 FΤ ≎ F ≎ F 🗘 ≎ T ≎ [F 🗘 FF ≎ F ≎ Check

Spotting non-tautologies and spotting non-equivalences

These is a handout written for Logic, First Course, Winter 2020. It is run on the Carnap software, which is an:

An **Open Tower** project. Copyright 2015-2019 G. Leach-Krouse <gleachkr@ksu.edu> and J. Ehrlich