머신러닝 기반 AI 헬스 트레이너

2022.08.17

경영학부

김영웅 반승환 윤찬식 이세영 이주영

01 연구 배경 및 목적

연구 배경 및 목적

1.1 연구 배경

디지털 헬스케어 국민 인식 조사

(출처: 한국개발연구원 경제정보센터) 조사대상: 만 20세 이상 만 60세 이하 성인 남녀 1000명

모바일 앱 디지털 헬스케어 이용 경험 이용 만족도

61.3%

66.7%

70.6%

AI 헬스케어

3.4%

- 헬스케어에 대해 데이터 기반 접근 증가 하는 추세
 - 데이터에 기반한 운동 수행 확인
- 더 발전된 데이터 기반 접근
 - 부상 방지
 - 운동 자세 교정
 - 운동 수행 일관성 분석

연구 배경 및 목적

1.1 연구 배경

연구 배경 및 목적

> 1.2 연구 목적

자세가 바른 경우

운동 횟수 COUNT 운동 자세 패턴 분석

자세가 바르지 않을 경우

자세교정 제안

데이터를 통한 더 신뢰성 있는 트레이닝 지원

02 연구방법및현황

연구 방법 및 현황

전체 프로세스 및 파이프라인

연구 방법 및 현황

Pro

Novice

데이터 수집

- 스쿼트
 - 좋은 자세 1024장
 - 나쁜 자세 1034장
 - 총 2058장 촬영

연구 방법 및 현황

Pro

Novice

자세 추정

- Mediapipe Pose 활용
 - 스켈레톤 구조로 자세를 추정하는 머신러닝 솔루션
 - 전신에 대한 33개의 3D 랜드마크 와 배경 분할 마스크를 추론

연구 방법 및 현황

변수 생성

• 스쿼트 분석 사용 각도

- 목 각: 귀 – 어깨 – 지면

- 엉덩이 각: 어깨 - 엉덩이 - 무릎

- 허리 각: 어깨 – 엉덩이 – 지면

- 무릎 각: 엉덩이 - 무릎 - 발목

- 발목 각: 무릎 - 발목 - 앞꿈치

- 발뒤꿈치 각: 발목 - 뒤꿈치 - 지면

연구 방법 및 현황

Dataset								
1	right_knee	right_hip	right_ankle	right_hip2	right_neck	right_ankle2	Υ	
2	81.568708	31.35524	72.8768131	84.774606	18.359763	99.6010799	0	
3	75.336808	36.21208	70.6528869	101.53159	33.160876	93.4157359	0	
4	72.050586	35.13879	81.7017537	101.68686	41.676429	99.4122332	0	
5	63.413128	35.08814	75.1511825	103.98599	43.793942	94.0772072	0	
6	63.798483	34.89962	90.0733143	106.80471	47.722235	101.461485	0	
7	61.716014	34.79726	86.5357388	108.10576	50.524914	98.7325418	0	
8	64.430419	35.38242	81.515743	108.55147	51.923766	96.3556535	0	
9	50.242646	30.47355	101.31023	104.05823	52.906007	115.503882	0	
10	66.016683	35.29885	77.2529526	105.44021	52.910566	93.136748	0	
11	65.102959	36.19415	85.5084908	108.42112	53.987662	99.9653102	0	
12	43.959235	32.68526	92.2960204	115.54944	61.393176	111.081658	0	
13	82.991173	36.94255	76.0665499	102.92625	65.234602	91.5115069	0	
14	44.840916	35.61972	73.017752	117.82199	67.348457	105.599729	0	
15	133.27001	90.05022	99.5939301	129.38545	67.391886	91.0961909	0	
16	130.67614	87.68266	97.5733939	127.82616	67.812799	90.677239	0	
17	66.847245	20.15139	91.01374	100.90058	68.179185	102.04691	0	
18	127.8536	89.89314	95.3889535	131.08922	69.051289	90.4652931	0	
19	36.612451	38.24134	65.8917497	123.35899	69.483505	108.428824	0	
20	75.291716	22.70207	83.6109101	95.659471	70.291917	99.4950868	0	
21	122 01100	דסדמכ חמ	06 030463	107 5016/	70 645727	01 6040200	^	

변수 생성

- 6개 변수에 대한 Dataset
- 분류모델 학습을 위한 라벨링

0 = 나쁜 자세

1 = 좋은 자세

연구 방법 및 현황

2.1 분류모델 학습

Good

Bad

분류모델 학습

- 분류모델 학습
 - 1) 스쿼트 자세 촬영을 통한 데이터셋 구축
 - 2) Mediapipe Pose를 활용하여 사용자의 자세 추정
 - 3) 추정한 자세의 관절 값을 조합하여 변수 생성
 - 4) Random Forest를 사용하여 분류모델 학습

연구 방법 및 현황

분류모델 구현						
	Logistic Regression	Decision Tree	Random Forest	Gradient Boosting		
Accuracy	0.9248	0.9636	0.9951	0.9951		
Precision Score	0.9223	0.9398	0.9951	0.9902		
Recall Score	0.9268	0.9902	0.9902	0.9902		
F1 Score	0.9246	0.9644	0.9951	0.9951		
Balanced Score	0.9248	0.9637	0.9951	0.9902		

연구 방법 및 현황

2.2 자세교정 제안

자세교정 제안

- 교정 제안 문구 화면에 표시
 - 사용자의 자세 피드백
- 교정 제안 메시지
 - 1) Sit Down More
 - 2) Stand Your Back
 - 3) Put Your Head Up
 - 4) Pull Your knee Back
 - 5) Fix Your Feet

연구 방법 및 현황

2.2 자세교정 제안

	right_knee	right_hip	right_ankle	right_hip2	right_neck	right_ankle2	class
count	1024.000000	1024.000000	1024.000000	1024.000000	1024.000000	1024.000000	1024.0
mean	61.382951	51.170707	76.976154	139.651937	159.220304	91.662056	1.0
std	6.085294	10.456601	3.740842	5.979434	11.396881	3.298096	0.0
min	41.475271	26.212484	60.656013	124.943008	131.227772	81.653131	1.0
25%	57.560919	44.203051	74.621449	135.173439	151.665778	89.447653	1.0
50%	60.833247	48.760155	77.164451	139.663509	161.637329	91.807650	1.0
75%	64.719028	58.652606	79.666116	144.003383	168.067906	93.830649	1.0
max	79.881788	80.718339	86.416914	152.595749	179.990893	100.538455	1.0

자세교정 제안

- 자세교정 제안
 - Logistic Regression 모델을 통해 최적의 Good 자세 데이터 도출
 - 분산이 큰 변수에 대해서 최적값을 따르도록 자세교정 제안

연구 방법 및 현황

2.3 운동 자세 패턴 분석

상급자의 GOOD set

초급자의 GOOD set

운동 자세 패턴 분석

- 운동 자세 일관성 분석
 - 마할라노비스 거리 활용
 - 좋은 자세로 일관성있게 운동을 수행했는지 분석

연구 방법 및 현황

2.3 운동 자세 패턴 분석

상급자의 GOOD set

초급자의 GOOD set

운동 자세 패턴 분석

- Scoring
 - 좋은 자세 데이터로 bootstrap 하여 control limit 설정 (alpha = 0.1, 0.3, 0.5)
 - 각 limit마다 가중치 다르게 부여 하여 스코어 계산
- Scoring Formulation

$$1 - \frac{w1 * n1 + w2 * n2 + w3 * n3}{w1 * n}$$

- n1~n4: 각 구간의 데이터 개수

- w1~w3: 가중치

-n = n1 + n2 + n3 + n4

연구 방법 및 현황

2.3 운동 자세 패턴 분석

Neck 제외

mahalanobis

11,3847

9.8073

5.8772

운동 자세 패턴 분석

- 이상치 값을 분해하여 이상원인 분석
 - Hotelling's Decomposition 활용
 - 각 변수를 제외하고 마할라노비스 측정
 - 마할라노비스 값이 가장 작을 때 제외한 변수가 이상원인

감사합니다