

# Python. Модуль 2. Урок 1. Методические указания

**Тема:** Введение в модуль tkinter. Особенности использования. Класс. Создание геометрических объектов. Заполнение цветом.

#### Цели урока:

- Обеспечить закрепление учащимися понятий: координаты, объект, метод.
- Обеспечить усвоение учениками понятий: класс, окно, канва, закрепление объекта.
- Отработать навыки:
  - набора текста и его форматирования;
  - работы с консольным приложением в среде разработки;
  - подключения модуля tkinter;
  - решения задач с координатной плоскостью;
  - решение задач с использованием Canvas;
  - решения задач с использованием методов create\_rectangle(), create\_oval(), create\_polygon(), pack().
- Создать условия для развития:
  - о логического и алгоритмического мышления;
  - о элементов творческой деятельности;
  - о памяти;
  - о критического мышления, культуры групповой самоорганизации;
  - о коммуникативной культуры.
- Организовать самостоятельную работу учащихся, направленную на развитие алгоритмического мышления, познавательных интересов и навыков работы на компьютере.

### Задачи урока:

- повторить и закрепить понятия, пройденные на предыдущих уроках;
- изучить подключение модуля tkinter;
- изучить работу метода mainloop();
- изучить Canvas и создание графического окна;
- написать программу с использованием Canvas;
- изучить методы create\_rectangle(), create\_oval(), create\_polygon(), pack();
- отработать навык составления алгоритма с использованием create\_rectangle(), create\_oval(), create\_polygon(), pack();
- написать программу с использованием create\_rectangle(), create\_oval(), create\_polygon(), pack().



#### Перед началом урока:

- 1. Открыть страницу с логинами и паролями учеников.
- 2. Открыть и запустить на проекторе презентацию (на слайдах присутствует gif анимация. Для её отображения запустить презентацию).
- 3. Запустить тестовую программу.
- 4. Проверить наличие раздатки.

#### План урока:

- 1. Анонс занятия (2 мин.).
- 2. Повторение (5 мин.).
- 3. Знакомство с модулем tkinter (5 мин.).
- 4. Объекты. Класс. Первая программа (10 мин.).
- 5. Элементы интерфейса (15 мин.).
- 6. Координаты на холсте (15 мин.).
- 7. Графические примитивы в tkinter (10 мин.).
- 8. Выполнение самостоятельного задания на компьютере (15 мин.).
- 9. Заливка фигур (10 мин.).
- 10. Рефлексия (3 мин.).
- 11. Задание на дом (5 мин.)



# 1. Анонс занятия (2 мин.).

**Слайд 2.** Соберите детей в свободной от компьютеров зоне и обсудите, с какими понятиями им сегодня предстоит работать. С какими понятиями они уже знакомы, а что станет для них новым.

# 2. Повторение (5 мин.).

**Слайд 3**. Вспомните с учениками, что они изучали на прошлых занятиях, с какими понятиями познакомились.

# 3. Знакомство с модулем tkinter (5 мин.).

**Слайд 4.** Познакомьте детей с новым модулем. Обратите внимание на его аббревиатуру. Модуль tkinter позволит нам создавать графический интерфейс приложений. Подключение модуля точно такое же, как и y turtle.

Слайды 5-6. Предложите ученикам вспомнить любое приложение, которое они используют в телефоне или компьютере, какие элементы в них всегда присутствуют: кнопки, поля для ввода, картинки и т.п.

Слайды 7-8. Где же все это отображается? Когда мы запускаем приложение, что появляется? Появляется окно приложения. Это важный элемент любого интерфейса, его основа.

#### 4. Объекты. Класс. Первая программа (10 мин.).

Слайды 9-10. Вспомните с детьми, как создаются объекты в Python. Задаётся имя объекта и через знак равно его принадлежность. Так как мы перешли к новому модулю, то окно приложения (root - корень) будет объектом Tk().

Слайд 11. Добавляем понятие класса. Когда мы говорим о принадлежности объекта, мы относим объект к какому-то классу. Класс определяет тип объекта и набор его методов. Класс Тk() является базовым и создает окно приложения, соответственно, через объект этого класса мы можем управлять нашим окном.

Слайд 12. Разберите с детьми первую программу. Что, по их мнению, должно появиться? Отправьте детей за компьютеры и попросите написать первую программу с использованием модуля tkinter. Соотнесите предположения и реальность. Что напоминает эта ситуация? Точно так же не появлялось окно с черепашкой на первом занятии. Как мы решили эту проблему?



Слайд 13. В отличие от turtle мы будем использовать метод mainloop(). Фактически метод не даёт разрушиться созданному объекту. То есть окно создаётся и остаётся, не пропадая. При этом написанная программа не останавливается, а продолжает работать и реагировать на действия пользователя. Например, на нажатие клавиш, мыши и т.п.

# 5. Элементы интерфейса (15 мин.).

Слайды 14-15. Разберите с детьми состав окна приложения. Само окно - это база, на которую можно что-то закреплять. Так как это графический интерфейс, то нам нужен холст, как настоящим только рисовать будем кнопками художникам, МЫ другими И элементами. Обратите внимание детей на то, что холст прикреплен кнопками к доске и зачем это сделано? Чтобы холст не упал. Это важный момент в обсуждении. В модуле tkinter холст - это класс Canvas. На нём можно располагать элементы приложения. При создании объекта класса Canvas мы должны указать: к какому окну относится этот холст, так как может быть многооконное приложение и программе надо понимать, чей это холст; размеры холста - его ширина и длина. Они указываются через знак = для соответствующих слов.

**Слайд 16.** Попросите детей добавить в свою программу создание холста и запустить программу.

**Слайд 17-18.** Почему мы не увидели холст? Ещё раз обратите внимание на кнопки. Мы создали холст, но не закрепили его, фактически он упал с нашей доски.

**Слайд 19.** Для закрепления объекта используется метод pack() - сборщик объекта. Для понятийности используйте закрепление элемента на холсте.

Слайд 20-21. Измените программу и проверьте, что появилось окно с холстом размером 640\*480. Поинтересуйтесь у детей, могли ли они встречаться ранее с таким размером окна.

#### 6. Координаты на холсте (15 мин.).

**Слайды 22-23.** Вспомните с детьми, откуда начинался отсчёт координат в окне черепашки.

Слайд 24. В отличие от модуля turtle, в модуле tkinter объекты создаются сразу. Достаточно указать место создания для объекта через координаты. Первое, что мы научимся делать - это рисовать линию. В команде указываем 4 числа: первые два - координаты начала линии, вторые два - координаты конца линии. То есть рисуем отрезок. Линия появляется сразу, рисование линий теперь мы видеть не будем.



**Слайд 25.** Предложите детям нарисовать на листе линию по указанным координатам. Точка начала для них сейчас находится в центре листа, 100-100 - верхний правый угол.

**Слайды 26-27.** После выполнения задания на листе, добавьте вызов этого же метода в программу и сравните результаты. Почему направление линий не совпали?

**Слайды 28-29.** Откуда берёт начало линия? В окне tkinter начало координат располагается в верхнем левом углу.

**Слайд 30.** Разберите направление осей в окне tkinter. Ось X направлена только вправо, ось Y только вниз. То есть в этом окне нет отрицательных координат.

# 7. Графические примитивы в tkinter (10 мин.).

Слайды 31-33. Для того, чтобы нарисовать прямоугольник достаточно указать координаты его расположения. Верхний левый угол и нижний правый, по этим координатах программа сама построит линии и отобразит такой прямоугольник на экране. Добавьте в программу метод для создания прямоугольника в указанных координатах и проверьте её работу.

Слайды 34-36. Круг - единственная фигура, которую мы не могли нарисовать черепашкой, потому что всегда ходили линиями. Подробно разберите, как программа рисует круг. Метод create\_oval рисует в указанном прямоугольнике круг или овал. Если через координаты строится квадрат - значит программа нарисует круг, если был прямоугольник, то будет овал. Выполните задание и проверьте результат.

#### 8. Выполнение самостоятельного задания на компьютере (15 мин.).

Слайд 37. Раздайте детям лист М2У1 раздатка 1. На листе указаны координаты и линии до объектов. Некоторые координаты дети должны рассчитать самостоятельно, обсудите расстояние между делениями.

**Слайд 38.** Проверьте программу вместе с детьми. Порядок создания объектов может отличаться.

**Слайд 39-40.** После выполнения задания с домом, предложите детям нарисовать машину в указанных координатах.

# Дети должны загрузить файл с программой к заданию через платформу



# 9. Заливка фигур (10 мин.).

Слайд 41. Разберите с детьми настройку fill. С её помощью мы можем заполнить фигуру цветом. Но крыша у нас сделана линиями - это не конечная фигура. Поэтому её заполнить цветом будет невозможно.

**Слайд 42.** Разберите с детьми метод create\_polygon - создаёт многоугольник, достаточно указать координаты всех углов. Крыша имеет форму треугольника - 3 пары координат.

Слайд 43. Раздайте детям таблицу цветов. Выдайте задание с раскраской фигур. Обратите внимание на порядок создания фигур. Если сначала создан круг, а потом крыша, то заливка крыши перекроет заливку круга и он просто пропадёт для нас. Для того, чтобы это не происходило, достаточно поменять местами строки кода.

**Слайд 44.** Цвета, которые будут использовать дети могут отличаться от слайда, так как имеется большое множество оттенков, главное соблюсти цветовую гамму.

# 10. Рефлексия (3 мин.).

**Слайд 45.** Повторите материал занятия. Не забудьте загрузить проекты детей на склад.

«Отлично! Вы все большие молодцы! Но не забывайте, что только при регулярной практике и работе дома вы сможете добиться поставленных целей. Всем спасибо, жду вас на следующем занятии!»

#### 11. Выдача задания на дом (5 мин.)

Слайды 46-47. Задание с двумя уровнями сложности:

- 1. Базовое, определяет степень усвоения нового материала.
- 2. Расширенное, связанное с материалами прошлых занятий.