Robot Planning and Manipulation

Dr. Neil T. Dantam

CSCI-498/598 RPM, Colorado School of Mines

Spring 2018

Outline

Course Introduction

What is Planning?

Propositional Logic

Discrete Structures

Sets

Functions

Structures

Symbolic Expression

Differential Calculu

Dr. Neil T. Dantam

- ► Purdue University
 - ► B.S. Computer Science
 - ► B.S. Mechanical Engineering
- ► Georgia Tech, Ph.D. Robotics
- ► Rice, Postdoc Computer Science
- Mines, Assistant Professor, Computer Science
- ► Research: Robotics
 - ► Grammars for Robot Control
 - ► Robot Planning
 - ► Robot Manipulation

This Course

Robot Planning and Manipulation

Your Expectations

- ► Why are **you** here?
- ▶ What do you hope to gain from this course?

Prerequisites

- 1. Basic programming experience
- 2. Understanding of data structures and algorithms
- 3. Able to learn new programming languages and software frameworks (read the manual)
- 4. Familiar with differential calculus

Syllabus

Course Corrections

- ▶ What helps you? / What doesn't work?
- ► Ask about notation!
- ► Projects...

Intro

Outline

Course Introduction

What is Planning?

Propositional Logic

Discrete Structures

Sets

Functions

Structures

Symbolic Expression

Differential Calculu

9 / 47

Dantam (Mines CSCI, RPM)

State Space

Definition: State Space

The set of values which the system can take.

A state space may be discrete or continuous and finite or infinite.

Example: Grid State Space

Example: Blocksworld State Space

Example: Robot Arm Configuration Space

Universal Robots UR10

UR10 Axes

 $Q\subseteq\mathbb{R}^6$

Example: Obstacles and Free Configuration Space

Transition Function

Continuous:
$$\frac{dx}{dt} = f(\underbrace{x}_{input}, \underbrace{u}_{input})$$

Discrete:
$$\delta$$
: $Q \times U \mapsto Q$ successor state $q^{[k+1]} = \delta\left(q^{[k]}, u^{[k]}\right)$

Dantam (Mines CSCI, RPM) Intro Spring 2018 15 / 47

Example: Grid Transition Function

Graph Representation

Example: Blocksworld Transition Function

17 / 47

Example: Robot Arm Transition Function

Assumption: Can connect "neighboring" configurations

The Planning Problem

- Given: 1. System model (state space, transition function, etc.)
 - 2. Start state
 - 3. Goal state / set

Find: Path (of states or actions) from start to goal

19 / 47

Example: Grid Plan

Example: Blocksworld Plan

Example: Motion Plan

Dantam (Mines CSCI, RPM)

Is planning just "fancy" search?

- Given: 1. System model (state space, transition function, etc.)
 - 2. Start state
 - 3. Goal state / set

Find: Path (of states or actions) from start to goal

- Solution: ▶ Search the state space,
 - ▶ Beginning from the start state,
 - ► Ending at goal state/set

Many kinds of state spaces.

Many kinds of "search."

Scalability!

23 / 47

Intro

Outline

Propositional Logic

24 / 47

Dantam (Mines CSCI, RPM)

Boolean Variables

(propositions)

Values:
$$\mathbb{B} \equiv \{0,1\}$$
 true: $1,T,\top$ false: $0,F,\bot$

Variables:
$$p \in \mathbb{B}$$

$$p_1,\ldots,p_n\in\mathbb{B}^n$$

Boolean Operators

Basic

Not

And

$$ightharpoonup 0 \wedge 0 = 0$$

$$ightharpoonup 0 \wedge 1 = 0$$

▶
$$1 \land 0 = 0$$
▶ $1 \land 1 = 1$

▶
$$1 \land 1 = 1$$

Or

▶
$$0 \lor 0 = 0$$

▶
$$0 \lor 1 = 1$$

▶
$$1 \lor 0 = 1$$

▶
$$1 \lor 1 = 1$$

Boolean Operators

Extended

Xor

 $(a \oplus b) \triangleq (a \lor b) \land \neg (a \land b)$

Implies

Biconditional (iff)

$$\triangleq (a \land \neg b) \lor (\neg a \land b)$$

$$(a \implies b) \triangleq (\neg a \lor b)$$

$$(a \iff b) \triangleq (a \implies b) \land (b \implies a)$$

 $\triangleq \neg (a \oplus b)$
 $\triangleq (a \land b) \lor (\neg a \land \neg b)$

$$ightharpoonup 0 \oplus 0 = 0$$

$$(0 \implies 0) = 1$$

$$\bullet (0 \iff 0) = 1$$

$$ightharpoonup 0 \oplus 1 = 1$$

$$(0 \implies 1) = 1$$

$$(0 \iff 1) = 0$$

$$\blacktriangleright \ 1 \oplus 0 = 1$$

$$(1 \implies 0) = 0$$

$$\bullet \ (1 \iff 0) = 0$$

$$ightharpoonup 1 \oplus 1 = 0$$

$$(1 \implies 1) = 1$$

$$(1 \iff 1) = 1$$

Truth Table

а	b	$(\neg a)$	$(a \wedge b)$	$(a \lor b)$	$(a \oplus b)$	$(a \implies b)$	$(a \iff b)$
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

Outline

Course Introduction

What is Planning?

Propositional Logic

Discrete Structures

Sets

Functions

Structures

Symbolic Expressions

Differential Calculu

Sets

- ▶ set: an unordered collection of object's without repetition
- \triangleright $S = \{s_0, s_1, s_2, \dots, s_n\}$
- ▶ set membership:
 - ▶ "x in S" / "x not in S"
 - \triangleright $x \in S / x \notin S$
- set builder notation:

•
$$S = \{ \underbrace{x}_{\text{elements}} \mid \underbrace{P(x)}_{\text{property}} \}$$

•
$$S = \{ \underbrace{x \in A}_{\text{elements}} \mid \underbrace{P(x)}_{\text{property}} \}$$

Common Sets

 $\mathbb{B}=\{0,1\}$ **Booleans:**

 $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ **Integers:**

Sets

Natural Numbers: $\mathbb{N} = \{0, 1, 2, \ldots\}$

Real Numbers: \mathbb{R} **Real Vector:** \mathbb{R}^n

Set Relations

Subset

 $B \subset A$ $C \not\subset A$ $A \not\subset A$ $A \subseteq A$

Superset

$$A \supset B$$

$$A \not\supset C$$

$$A \not\supset A$$

$$A \supseteq A$$

Set Operations

Cartesian Product

- ▶ The Cartesian product, $A \times B$, is the set of all pairs of elements from A and B
- $A \times B = \{(x, y) \mid (x \in A) \land (y \in B)\}$
- \triangleright $A = \{a_0, a_1, \dots, a_m\}$
- \triangleright $B = \{b_0, b_1, \dots, b_n\}$
- $A \times B = \{(a_0, b_0), \dots, (a_0, b_n), \dots, (a_m, b_0), \dots, (a_m, b_n)\}$

34 / 47 Dantam (Mines CSCI, RPM) Intro Spring 2018

Function Notation

Function: object creating an input-output relationship (mapping)

Domain: the function's input

Range: the function's ouput

Notation: function: domain \mapsto range

Examples:

- ▶ Let \mathbb{B} be the set of booleans: $\{0,1\}$
 - ightharpoonup $\neg : \mathbb{B} \mapsto \mathbb{B}$
 - \land : $\mathbb{B} \times \mathbb{B} \mapsto \mathbb{B}$
- \blacktriangleright Let \mathbb{R} be the set of real numbers
 - $ightharpoonup + : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$
 - ightharpoonup exp: $\mathbb{R}\mapsto\mathbb{R}$

Sequences

Sequence: An ordered list of objects

ightharpoonup Example: (1, 2, 3, 5, 8, ...)

Tuple: A sequence of finite length

▶ **k-tuple:** An tuple of length *k*

▶ pair: An 2-tuple

- ightharpoonup G = (V, E)
 - ► *V*: finite set of vertices
 - ► *E*: finite set of edges
 - ► Each edge being a set of two vertices
 - $E \subseteq \{\{x,y\} \mid (x \in) V \land (y \in V)\}$

- ► Example:
 - $V = \{a, b, c, d\}$

►
$$E = \{ \{a, b\}, \{b, d\}, \{d, c\}, \{c, a\} \}$$

Directed Graphs

- ightharpoonup G = (V, E)
 - ▶ V: finite set of vertices
 - ► *E*: finite set of edges
 - Each edge being a pair (sequence) of two vertices
 - \blacktriangleright $E \subset \{(x,y) \mid (x \in) V \land (y \in V)\}$

- Example:
 - $V = \{a, b, c, d\}$

$$E = \{ (a, b), (b, d), (d, c), (c, a) \}$$

Tree

- ► A graph that:
 - ▶ Is connected (a path exists between every pair of nodes)
 - No cycles
- ► Example:
 - $V = \{+, 1, *, 2, 3\}$ $E = \{ (+, 1),$
 - (+, *), (*, 2),

Symbolic Expressions

"S-expressions"

(1, 2, 3, 5, 8)Sequence:

Data Structure:

S-expression: (12358)

40 / 47

Dantam (Mines CSCI, RPM) Intro Spring 2018

Trees as S-expressions

Example: Arithmetic as S-expressions

Example: Boolean Formulae

S-expression

$$a \wedge b$$
 $a \wedge \neg b$ $(a \vee b) \wedge (\neg a \vee b)$ (and a b) (and a (not b))

 $(\neg a) \implies (b \lor c)$

Dantam (Mines CSCI, RPM)

Outline

Differential Calculus

Dantam (Mines CSCI, RPM)

Differential Calculus

Chain Rule

$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$$

$$y = f(x)$$
 and $x = g(t)$ \longrightarrow $\underbrace{\frac{d}{dt}f(g(t))}_{dy/dt} = \underbrace{f'(g(t))}_{dy/dx} \underbrace{\frac{d}{dt}g(t)}_{dx/dt}$

$\sin t^2$

- $ightharpoonup f = \sin \operatorname{and} g(t) = t^2$
- $f' = \cos$ and $\dot{g}(t) = 2t$

In sin t

- $f = \text{In and } g(t) = \sin t$
- $f'(x) = \frac{1}{x}$ and $\dot{g}(t) = \cos t$

Summary

Course Introduction

What is Planning?

Propositional Logic

Discrete Structures

Sets

Functions

Structures

Symbolic Expressions

Differential Calculus

