Double Layer Capacitors

Maxcap® double layer capacitors are a new electric energy storage device with extremely high volumetric efficiency (over five farads/in3), virtually unlimited service life, fast charge/discharge capability and very low leakage current.

A Maxcap DLC the size of a thimble will support microamp data retention currents of CMOS RAMs for up to several weeks, Microprocessors, small motors and activators having current requirements from one to several hundred milliamps can be supported from several seconds to minutes.

Conventional energy storage devices such as batteries and aluminum electrolytic capacitors often must be replaced during the life of a product. Maxcap DLCs never need replacing because, unlike batteries, they do not undergo life-limiting, irreversible, chemical reactions, and, unlike aluminum electrolytic capacitors, they do not experience dry-up problems.

The high capacitance of Maxcap DLCs results from an electric double layer formed at the interface of high surface area activated carbon and a stable electrolyte. Unit cells are formed by separating two carbon/electrolyte wafers with an ionically conductive porous separator and sandwiching them between two electrically conductive, ionically impermeable membranes. The unit cells are stacked in series to achieve the desired capacitor voltage.

CAUTION: Due to their relatively high internal resistance, Maxcap DLCs should not be subjected to large ripple currents.

FEATURES

- High Energy Density Capacitors for Memory Backup and Data Transmission Power
- New LM Surface Mount Product Series
- Very high capacity in small size: Up to 100 times that of conventional capacitors.
- Useful voltage ratings: 3.5 and 5.5 volt Ideal for CMOS operating voltage range. 11 volt – LV Series, backup for relays, actuators, small motors.
- Full range of sizes: From 0.01 to 5.6 farads @ 5.5 volts; 0.47, 1.0 and 5.0 farads @ 11 volts.
- Low profile with LP, LJ and LK Series
- Ultra long life: Unlike batteries, Maxcap DLCs have no parasitic chemical reactions. They can be fully charged and discharged indefinitely. There is no "memory" effect.
- One Farad in a 0.65"x 0.75" Package
- Up to 5.6 Farads in a 5.5 Volt Package
- Up to 5.0 Farads in an 11.0 Volt Package

APPLICATIONS

- CMOS; RAMS and microprocessors, Timers for Integrated Cicuits: Home appliances such as TVs, microwave ovens, dishwashers, and refrigerators; utility meters, personal computers, energy management controls, thermostats, point of sale terminals, process controllers, routers.
- Relays, Solenoids: Starters, igniters, actuators
- Small Motors, Alarms: Disc drives, coin metering devices, security systems, toys.
- Data Transmission: Vehicle tracking systems, utility meters.

Double Layer Capacitors

			9	SPECIFI	CATI	ONS
(Part	Capacitance (farads)	Max. ESR (Ω @1kHz)	Typical ESR (Ω @1kHz)	Max. Charge Current after 30 min. (mA)	Weight, typ. (g)	
LP055223		60	10–20	0.033	1.6	Very low ESR: As low as 0.3, typical
LP055473	A 0.047	40	7–14	0.071	2.6	• As low as 0.3, typical For short time, high current
LP055104		25	4–10	0.15	4.1	(up to amps)
LP055224		25	5–10	0.33	5.3	High energy density: One farad in 1.44" x 0.73" package
LP055474. LP055105.		13 7	2–5 1–3	0.71 1.50	10 18	 package Up to 1.5 farads in single package Typ.** Long Charge Leakage Current: 1–25μα Operating temp.: -25°C to +70°C Storage temp: -40°C to +85°C
LC055223		220	40–80	0.033	1.6	Reduced diameter, high energy density, low
LC055473		220	40–80	0.071	1.7	leakage current
LC055104 LC055224		100 120	20–40 20–50	0.15 0.33	2.4 4.3	Several weeks (microamps)Small diameter
LC055224		65	20–30 10–25	0.33	6.0	 Very high energy density One farad in 0.85" x
LC055105		35	5–15	1.5	11.0	0.63" Up to 2.2 farads in single package
LC055145		45	5–20	2.1	12.1	Low self discharge rate
LC055225	A 2.2	35	5–15	3.3	23.1	 Typ.** Long Charge Leakage Current: 0.1–6μα Operating temp.: -25°C to +70°C Storage temp.: -40°C to +85°C
LK055223		200	80-120	0.033	1.5	Reduced height, high energy density, low
LK055473		100	20-40	0.071	2.1	leakage current
LK055104		50	10-25	0.15	3.3	Several weeks (microamps)
LK055224 LK055474		60 35	10-25 5-15	0.33 0.71	3.7 7.1	• Low profile
LK055474		20	2-7	1.50	13.7	Very high energy density One farad in 1.12" x 0.44" package
						 Low self discharge rate Typ.** Long Charge Leakage Current: 0.1–4µa
						• Operating temp.: -25°C to +70°C
						• Storage temp.: -40°C to +85°C
LT055223/	A 0.022	220	80–120	0.033	2.3	• Expanded temperature range, low leakage
LT055473/	A 0.047	110	20-50	0.071	3.9	current
LT055104/		150	20–50	0.15	4.3	Several weeks (microamps)
LT055224/		180	25–60	0.33	5.3	• Expanded temperature range (Oper.: -40°C to
LT055474/		100	10–25	0.71	7.5	+85°C; Storage: -40°C to +85°C) • High energy density One farad in 0.85" x 0.87"
LT055105/	A 1.0	60	5–15	1.50	13.3	package • Typ.** Long Charge Leakage Current: 0.1–4µa
LF055473	A 0.047	14	4-7	0.071	3.8	• Very low ESR
LF055104		6.50	2-4	0.071	4.8	• For short time, high current (up to amps)
LF055224		3.5	1-3	0.33	9.7	• Very low ESR As low as 0.3, typical
LF055474		1.8	0.5-1.0	0.71	16	• High energy density One farad in 1.44" x 0.73"
LF055105		1.0	0.3-0.6	1.50	38	package Up to 1.5 farads in single package
LF055155 <i>i</i>	A 1.5	0.6	0.2-0.4	2.3	72	 Typical** Long Charge Leakage Current: 1–25µa Operating temp.: -25°C to +70°C Storage temp.: -40°C to +85°C

(continued)

Double Layer Capacitors

				SPECIFI	CATL	ONS
				Max. Charge		
	0	M- FOD	T' I FOD	Current after	W-1-1-1	
Part	Capacitance (farads)	Max. ESH (Ω @1kHz)	Typical ESR (Ω @1kHz)	30 min. (mA)	Weight, typ. (g)	
LV110474		7	2–5	1.41	23	Increased voltage capability, low ESR
LV110105 LV110505		7 4.0	1–3 0.8–2	3.0 18.0	33 160	 For short time, high current, high voltage (up to milliamps)
						11 volts rating Up to 5 farads in single packageLow ESR
						 Typ.** Long Charge Leakage Current: 1–4μα Operating temp.: -25°C to +70°C
						• Storage temp.: -40°C to -85°C
LX055103		300 200	20-60 10-50	0.015 0.033	0.9 1.0	Our highest energy density product, low self discharge rate
LX055473		200	10-50	0.071	1.0	Several weeks (microamps)
LX055104	4A 0.1	100	5-40	0.15	1.3	 Our Highest Energy Density Product One farad
LX055224	4A 0.22	100	4-30	0.33	2.5	in 0.65" x 0.75" package Up to 4.7 farads in a
LX055474	4A 0.47	120	10-50	0.71	5.1	single package
LX05510	5A 1	65	3-20	1.5	7.0	Small Diameter
LX055225		35	1-10	3.3	12.1	Low self discharge rate
LX05547	5A 4.7	35	0.5-8	7.1	27.3	Typical** Long Charge Leakage Current:
						• Operating temp.: -25°C to +70°C
						• Storage temp.: -40°C to +85°C
LJ055104		16	5-10	0.15	1.6	Expanded temperature range
LJ055224		10	4-8	0.33	4.1	• Low ESR
LJ055474		6.5	2-5	0.71	5.3	Several weeks (microamps); For short time
LJ055105		3.5	1-3	1.5	10.0	(milliamps)
LJ055225		1.8	0.5-1	3.3 5.0	18.0 38.0	 Expanded temperature range (Oper.: -40°C to +85°C; Storage: -40°C to +85°C)
LJ055335 LJ055565		1.0 0.6	0.3-0.7 0.2-0.4	5.0 8.4	36.0 72.0	• Very high energy density with low ESR One
LJ055565	OA 5.0	0.6	0.2-0.4	0.4	72.0	farad in 0.85" D x 0.51" H package Up to 5.6 farads in a single package
						Low profile
						 Low self discharge rate
						• Typ.** Long Charge Leakage Current: 0.7–15μa
LM05547	3A 0.047	50	10-18	0.071	1.0	Surface mount design, low self discharge
LM05510		25	8-16	0.15	1.0	Several weeks (microamps)
LM05522		25	6-14	0.33	1.0	Surface Mount Design
LM05547		13	3-8	0.71	3.9	• One Farad in 0.85" x 0.85" x 0.41" package
LM05510	5A 1.0	7	3-6	1.50	6.8	• Low self discharge rate
LM03510		50	10-25	0.090	1.0	• 5.5V (LM055) or 3.5V (LM035)
LM03522		25	6-14	0.20	1.0	 Typ.** Long Charge Leakage Current: 0.5–10μa
LM03547		25	6-14	0.42	1.0	• Operating temp.: -25°C to +70°C

^{*} For indication of long term charging current (typical leakage current), see pages XXX.

^{**}Charging current after 72 hours with 1000Ω resistor in series with capacitor at 25°C, see pages XXX.

Double Layer Capacitors

CHARACTERISTICS

Radial Lead Products

Item	Test	Specification (see also product tables)					
1. Capacitance	See test method, page xxx.						
2. Capacitance Tolerance	-	+80%, -20%					
3. DC Maximum Working Voltage	-	5.5 VDC & 11.0 VDC					
4. Surge Voltage	Capacitors cycled from 0 to rated surge voltage to 0 volts 1000 times at max. operating temperature	6.3 VDC & 12.6 VDC Capacitance: ≥90%** ESR: ≤120%**					
5. Equivalent Series Resistance (ESR)	See test method, page xxx.						
6. Maximum Charging Current	See test method, page xxx.						
7. Operating Temperature	See items 11, 12, and 13 below.	LC, LF, LK, LP, LV, LX Series: -25°C to +70°C LJ & LT Series: -40°C to +85°C					
8. Storage Temperature	See item 14 below	-40°C to +85°C					
9. Lead Strength	Pull test, 1 kg for 60 seconds	No breaks					
10. Solderability	Soldering temperature 230°C ± 5 °C for 5 ± 0.5 seconds	Shall cover more than 75% of lead surface					
11. Thermal Stability	Temperature cycling:	Cycle Capacitance ESR					
	LC, LF, LK, LP, LV, LX Series: LJ & LT Series:	Step 1 (+25°C) * * Step 2 (-25°C) ≥50%*** ≤+300%*** Step 3 (+25°C) +20%*** * Step 4 (+70°C) ≤+150%*** * Step 5 (+25°C) +20%*** * Step 1 (+25°C) * * Step 2 (-40°C) ≥50%*** ≤+800%*** Step 3 (+25°C) +20*** * Step 4 (+85°C) ≤+150%*** * Step 5 (+25°C) +20%*** *					
12. Thermal Shock	Capacitors cycled 5 times with 30 minute expose LC, LF, LK, LP, LV, LX Series: +25°C to -40°C to LJ & LT Series: +25°C to 40°C to +25°C to +85°C	+25°C to +70°C to +25°C					
13. Life	Capacitors at rated temperature and voltage for 1000 hours: LC, LF, LK, LP, LV, LX Series: Test temperature 70°C; LJ & LT Series: Test temperature 85°C	Capacitance: ≥70%*** ESR: ≥+200%**					
14. Storage Life	Capacitors at -40°C and +85°C for 500 hours each with no voltage applied	Capacitance: ≥70%*** ESR: ≥+200%**					
15. Humidity	Capacitors at 90 to 95% relative humidity at 40°C for 500 hours with no voltage applied						
16. Resistance to Soldering Heat	Soldering temperature at 260°C ±10°C for 10 ±1	seconds					
17. Vibration	n Frequency 10-55 cycles/sec., 1.5 mm amplitude, 3 directions 2 hours each (total 6 l						

^{**%} of values in product tables ***% of initial measured value

Double Layer Capacitors

CHARACTERISTICS

LM Surface Mount Products

Item	Test	Specification (see also product tables)
1. Capacitance	Discharge Test Method	(ess and production)
2. Capacitance Tolerance	-	+80%, -20%
3. DC Maximum Working Voltage	-	5.5 VDC & 3.5 VDC
4. Surge Voltage	Capacitors cycled from 0 to rated surge voltage through charge resistor to 0 volts 1000 times at max. operat- ing temperature	6.3 VDC & 4.0 VDC (3.5 V products) Capacitance: ≥90%** ESR: ≤120%**
5. Equivalent Series Resistance (ESR)	See test method, page XXX	
6. Maximum Charging Current	See test method, page XXX.	
7. Operating Temperature	See items 8, 9, and 10 below.	-25°C to +70°C
8. Thermal Stability	Temperature cycling: +25°C to -25°C to	o +25°C to +70°C to +25°C
9. Thermal Shock	Capacitors cycled 5 times with 30 minu with no voltage applied: +25°C to -40°	
10. Life	Capacitors at rated temperature and voltage for 1000 hours: Test temperature 70°C	Capacitance : ≥70%*** ESR: ≥+200%**
11. Humidity	Capacitors at 90 to 95% relative humic voltage applied	lity at 40°C for 500 hours with no
12. Resistance to Soldering Heat	Temperature at 260°C ±10°C for 10 ±1	seconds*
13. Vibration	Frequency 10–55 cycles/sec., 1.5 mm (total 6 hours)	amplitude, 3 directions 2 hours each

^{**%} of values in product tables ***% of initial measured value

LM Surface Mount Solder Reflow Recommendations

The LM Series capacitor is designed for use in Infrared or Vapor Phase Convection solder reflow processes. The chart at right indicates typical time-temperature conditions for these processes.

Recognizing that a wide range of time and temperature conditions is possible depending on each manufacturer's circumstances, it is recommended that manufacturers adhere to the following general process guideline:

MaxCap DLC peak temperature at the top surface of the capacitor should be limited to 235°C for less than 10 seconds.

Adherence to this guideline should enable successful processing and allow for normal variation in time and temperature for most customer processes. Please consult the factory with questions regarding your specific process conditions.

Typical Solder Reflow Time – Temperature Profile

Double Layer Capacitors

DIMENSIONS								
inches (mm)	Part No.	Capacitance (farads)	Diameter D	Max. Height H	Pin Spacing S	Pin Outline d1 x d2	Pin Length L min.	
S-0.02 0.01 min.	LP055223A LP055473A LP055104A LP055224A LP055474A LP055105A	0.022 0.047 0.1 0.22 0.47 1.0	0.45 (11.5) 0.50 (12.5) 0.63 (16.0) 0.63 (16.0) 0.83 (21.0) 1.12 (28.5)	0.34 (8.5) 0.34 (8.5) 0.34 (8.5) 0.51 (13.0) 0.51 (13.0) 0.55 (14.0)	0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.3 (7.6) 0.4 (10.2)	0.016 x 0.048 (0.4 x 1.2) 0.016 x 0.048 (0.4 x 1.2) 0.024 x 0.048 (0.6 x 1.2) 0.024 x 0.055 (0.6 x 1.2)	0.106 (2.7) 0.087 (2.2) 0.106 (2.7) 0.106 (2.7) 0.118 (3.0) 0.240 (6.1)	
H Max. Pin Outline → ← d₁−0.004	LC055223A LC055473A LC055104A LC055224A LC055474A LC055105A LC055145A LC055225A	0.022 0.047 0.1 0.22 0.47 1.0 1.4 2.2	0.45 (11.5) 0.45 (11.5) 0.51 (13.0) 0.57 (14.5) 0.65 (16.5) 0.85 (21.5) 0.85 (21.5) 1.12 (28.5)	0.34 (8.5) 0.34 (8.5) 0.34 (8.5) 0. 59 (15.0) 0.59 (15.0) 0.63 (16.0) 0.75 (19.0) 0.87 (22.1)	0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.3 (7.6) 0.3 (7.6) 0.4 (10.2)	0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4 x 1.2) 0.024 x 0.047 (0.6 x 1.2) 0.024 x 0.047 (0.6 x 1.2) 0.024 x 0.055 (0.6 x 1.4)	0.106 (2.7) 0.106 (2.7) 0.087 (2.2) 0.095 (2.4) 0.106 (2.7) 0.118 (3.0) 0.118 (3.0) 0.240 (6.1)	
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	LK055223A LK055473A LK055104A LK055224A LK055474A LK055105A	0.022 0.047 0.1 0.22 0.47 1.0	0.45 (11.5) 0.51 (13.0) 0.65 (16.5) 0.65 (16.5) 0.85 (21.5) 1.12 (28.5)	0.28 (7.0) 0.28 (7.0) 0.30 (7.5) 0.38 (9.5) 0.40 (10.0) 0.44 (11.0)	0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.3 (7.6) 0.4 (10.2)	0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4 x 1.2) 0.024 x 0.047 (0.6 x 1.2) 0.024 x 0.055 (0.6 x 1.4)	0.106 (2.7) 0.087 (2.2) 0.106 (2.7) 0.106 (2.7) 0.118 (3.0) 0.240 (6.1)	
Capacitance (farads) Series Bar indicates terminal connected to case - recommended for ground	LT055223A LT055473A LT055104A LT055224A LT055474A LT055105A	0.022 0.047 0.1 0.22 0.47 1.0	0.45 (11.5) 0.57 (14.5) 0.57 (14.5) 0.57 (14.5) 0.65 (16.5) 0.85 (21.5)	0.55 (14.0) 0.55 (14.0) 0.61 (15.5) 0.83 (21.0) 0.85 (21.5) 0.87 (22.0)	0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.3 (7.6)	0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4 x 1.2)	0.106 (2.7) 0.095 (2.4) 0.095 (2.4) 0.095 (2.4) 0.106 (2.7) 0.118 (3.0)	
Maximum working voltage	LF055473A LF055104A LF055224A LF055474A LF055105A LF055155A	0.047 0.1 0.22 0.47 1.0 1.5	0.57 (14.5) 0.65 (16.5) 0.85 (21.5) 1.12 (28.5) 1.44 (36.5) 1.75 (44.5)	0.55 (14.0) 0.55 (14.0) 0.61 (15.5) 0.65 (16.5) 0.73 (18.5) 0.73 (18.5)	0.2 (5.1) 0.2 (5.1) 0.3 (7.6) 0.4 (10.2) 0.59 (15.0) 0.79 (20.0)	0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4 x 1.2) 0.024 x 0.047 (0.6 x 1.2) 0.024 x 0.055 (0.6 x 1.4) 0.024 x 0.067 (0.6 x 1.4) 0.039 x 0.055 (1.0 x 1.4)	0.087 (2.2) 0.106 (2.7) 0.118 (3.0) 0.240 (6.1) 0.240 (6.1) 0.240 (6.1)	
	LV110474A LV110105A LV110505A	0.47 1.0 5.0	1.12 (28.5) 1.12 (28.5) 1.77 (44.8)	1.00 (25.5) 1.24 (31.5) 2.36 (60)	0.4 (10.2) 0.4 (10.2) 0.8 (20.0)	0.024 x 0.055 (0.6 x 1.4) 0.024 x 0.055 (0.5 x 1.4) 0.040 x 0.055 (1.0 x 1.4)	0.240 (6.1) 0.240 (6.1) 0.37 (9.5)	
	LX055103A LX055223A LX055473A LX055104A LX055224A LX055474A LX055105A LX055225A LX055475A	0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7	0.43 (11.0) 0.43 (11.0) 0.43 (11.0) 0.43 (11.0) 0.51 (13.0) 0.57 (14.5) 0.65 (16.5) 0.85 (21.5) 1.12 (28.5)	0.215 (5.5) 0.215 (5.5) 0.215 (5.5) 0.26 (6.5) 0.36 (9.0) 0.71 (18.0) 0.75 (19.0) 0.75 (19.0) 0.87 (22.0)	0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.3 (7.6) 0.4 (10.2)	0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4x1.2) 0.016 x 0.047 (0.4x1.2) 0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.6 x 1.2) 0.024 x 0.047 (0.6 x 1.2)	0.106 (2.7) 0.106 (2.7) 0.106 (2.7) 0.106 (2.7) 0.087 (2.2) 0.095 (2.4) 0.106 (2.7) 0.118 (3.0) 0.240 (6.1)	
	LJ055104A LJ055224A LJ055474A LJ055105A LJ055225A LJ055335A LJ055565A	0.1 0.22 0.47 1.0 2.2 3.3 5.6	0.453 (11.5) 0.57 (14.5) 0.65 (16.5) 0.85 (21.5) 1.12 (28.5) 1.44 (36.5) 1.75 (44.5)	0.335 (8.5) 0.47 (12.0) 0.512 (13.0) 0.512 (13.0) 0.55 (14.0) 0.59 (15.0) 0.67 (17.0)	0.2 (5.1) 0.2 (5.1) 0.2 (5.1) 0.3 (7.6) 0.4 (10.2) 0.6 (15.0) 0.8 (20.0)	0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.4 x 1.2) 0.016 x 0.047 (0.6 x 1.2) 0.024 x 0.047 (0.6 x 1.2) 0.024 x 0.055 (0.6 x 1.4) 0.024 x 0.057 (0.6 x 1.7) 0.039 x 0.055 (1.0 x 1.4)	0.106 (2.7) 0.087 (2.2) 0.106 (2.7) 0.118 (3.0) 0.240 (6.1) 0.240 (6.1)	
		0.01	_ •	← D – -0.02 —	→	Land Pattern		
H Max. $\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$		P → *	↓ w		F	-G+-H+-G+		
Capacitance Diam. Max. Part No. (farads) D Height H A B E W P K L Min. F G H								
LM055104A 0.1 0.41 (10.5) 0.22 (5.5) 0.43 (1 LM055224A 0.22 0.41 (10.5) 0.34 (8.5) 0.43 (1 LM055474A 0.47 0.63 (16.0) 0.37 (9.5) 0.64 (1 LM055105A 1.0 0.83 (21.0) 0.41 (10.5) 0.85 (2	0.8) 0.43 (10. 0.8) 0.43 (10. 0.8) 0.43 (10. 6.3) 0.64 (16. 21.6) 0.85 (21.	8) 0.14 (3.6 8) 0.14 (3.6 3) 0.27 (6.8 6) 0.28 (7.0	6) 0.047 (1.2) 6) 0.047 (1.2) 8) 0.047 (1.2) 9) 0.055 (1.4)	0.2 (5.0) 0.0 0.2 (5.0) 0.0 0.2 (5.0) 0.0 0.39 (10.0) 0.0	28 (0.7) 0.00 28 (0.7) 0.00 47 (1.2) 0.01 47 (1.2) 0.01	8 (0.2) 0.10 (2.5) 0.18 (4. 8 (0.2) 0.10 (2.5) 0.18 (4. 8 (0.2) 0.10 (2.5) 0.18 (4. 5 (0.38) 0.10 (2.5) 0.39 (10 5 (0.38) 0.14 (3.5) 0.41 (10	6) 0.2 (5.0) 6) 0.2 (5.0) .0) 0.2 (5.0) .5) 0.4 (10.0)	
LM035224A 0.22 0.41 (10.5) 0.22 (5.5) 0.43 (1	0.8) 0.43 (10. 0.8) 0.43 (10. 0.8) 0.43 (10.	8) 0.14 (3.6	S) 0.047 (1.2)	0.2 (5.0) 0.0	28 (0.7) 0.00	8 (0.2) 0.10 (2.5) 0.18 (4.8 (0.2) 0.10 (2.5) 0.	6) 0.2 (5.0)	

Double Layer Capacitors

ELECTRICAL CHARACTERISTIC MEASUREMENT METHODS

1. Capacitance Charge Method

Capacitance in farads can be calculated by using the formula and charging test circuit in the figure:

- a. Test temperature Capacitors to be at +25° ±5°C.
- b. Initial capacitor voltage to be less than 0.05V.
- c. Vc = Volt meter (DC).
- d. E_0 = 5.0 + 0.1V for LC, LF, LK, LP, LT, LX, LJ Series; LV Series: 10.0 + 0.1V for 11 V Rating. 12.0 + 0.1V for 12 V Rating.
- e. T = Charging time constant, that is, the time period in seconds from 0 to reach 0.632 x E0 volts.
- f. Rc = Charging resistor selected from the table.

	LP	LC	LK	LT	LF	LV	LX	LJ	
0.01F	_	_	_	_	_	_	5kΩ	_	
0.022F	1kΩ	2kΩ	2kΩ	2kΩ	1kΩ	_	2kΩ	_	
0.047F	1kΩ	2kΩ	1kΩ	1kΩ	1kΩ		2kΩ		
0.1F	510Ω	510Ω	1kΩ	1kΩ	510Ω	_	1kΩ	510Ω	
0.22F	200Ω	510Ω	510Ω	510Ω	200Ω	_	1kΩ	200Ω	
0.47F	100Ω	200Ω	200Ω	200Ω	100Ω	100Ω	1kΩ	100Ω	
1.0F	100Ω	100Ω	100Ω	100Ω	100Ω	100Ω	510Ω	100Ω	
1.4F	_	200Ω	_	_	_	_	_	_	
1.5F	_	_	_	_	51Ω	_	_	_	
2.2F	_	100Ω	_	_	_	_	200Ω	51Ω	
3.3F	_	_	_	_	_	_	_	51Ω	
4.7F	_	_	_	_	_	_	100Ω	_	
5.0F	_	_	_	_	_	100Ω	_	_	
5.6F	_	_	_	_	_	_	_	20Ω	

2. Discharge Method LM Series – 5.5V & 3.5V Products

Capacitance in farads is calculated by using the formula and discharging test circuit in the Figure:

- a. Test temperature Capacitors to be at +25° ±5°C.
- b. V_c = Volt meter (DC).
- c. $E_0 = 5.5V$ or 3.5V; I = Current (amps);
- T = Time (seconds)
- d. AL = Constant Current Load Device
- e. Initial capacitor voltage to be less than 0.05V.
- f. Begin charging capacitor to rated voltage (5.5V OR 3.5V). When the capacitor terminal voltage reaches the rated voltage, continue charging for another 30 minutes. 1.0F capacitors should be charged for 60 minutes.
- g. Discharge the capacitor with AL (Constant Current Load Device) at a load of 1.0ma per 1.0 Farad. For example, a 0.47F capacitor will be discharged at a current of 0.47ma.
- h. Measure the time for the terminal voltage to fall from 3.0V to 2.5V for the 5.5V rated products

and from 1.8V to 1.5V for the 3.5V rated products.

i. Calculate capacitance in farads using the equation in Figure 3.

Double Layer Capacitors

ELECTRICAL CHARACTERISTIC MEASUREMENT METHODS

3. Equivalent Series Resistance (ESR)

ESR in ohms can be measured using the test circuit the figure:

- a. Test temperature and tolerance Capacitor to be at +25°C ± 5 °C.
- b. Test frequency 1,000 ±100 Hz.
- c. The magnitude of the AC voltage to be limited to 0.5 volt rms maximum.
- d. A = Ampere meter (AC).
- e. Vc = Volt meter (AC)

Note: Volt meter impedance to be significantly higher than that of the capacitor.

4. DC Leakage Current (Charging Current – 30 Minute)

DC leakage current or charging current is measured using the test circuit and procedure in the figure:

- a. Test temperature and tolerance Capacitors to be at +25°C ± 5 °C.
- b. Initial capacitor voltage to be less than 0.05V.
- c. Vc Volt meter (DC).
- d. E_0 = Same voltage as used in capacitance measurement method.
- e. VR = Voltage drop by resistance Rc after 30 minutes on charge.
- f. Rc = Charging resistors selected from the table below:

0.01 - 0.047F	100022
0.1 - 0.47F	100Ω
1.0 - 5.6F	10Ω
LV Series:	
0.47 & 1.0F	100Ω
5.0F	10Ω

Double Layer Capacitors

MINIMUM BACKUP TIME CAPABILITY

These curves indicate the discharge times for Maxcap DLCs through constant resistance loads after charging for 24 hours at 5.0 volts. They show minimum backup time for a voltage range of from 5 to 2 volts, the typical data retention range for CMOS RAMs.

The actual backup time will be longer than indicated because the current draw of CMOS RAMs over the data retention voltage is somewhat less than that of constant resistance loads even though the initial current is the same.

BACKUP TIMES

Backup times at 25°C for constant resistance loads. Voltage versus backup time for a number of constant resistance loads for LC, LK, LT and LV Series capacitors after charging for 24 hours at 5.0 or 10 volts.

Double Layer Capacitors

Double Layer Capacitors

CHARGING CHARACTERISTICS

Maxcap DLCs can be charged to their working voltage in a matter of seconds. Typical charge time versus voltage and current curves are given in the graph for Maxcap DLC LP055104A

SELF DISCHARGE CURVES

Graph shows self discharge curves (open circuit) for LC, LK and LT Series capacitors after charging for 24 hours at 5.0 volts.

Double Layer Capacitors

LONG TERM CHARGING CURVES

These graphs show typical long term charging curves for each of the Maxcap DLC Capacitor Series using the circuit shown at right.

Double Layer Capacitors

(continued)

ELECTRICAL CHARACTERISTICS VERSUS TEMPERATURE

Graphs show typical changes in capacitance and ESR over the temperature range from -55 to +85°C. Note that the rated operating temperature for LP, LV, LC, LK, LX and LF Series capacitors is -25 to +70°C; LT & LJ- Series, -40 to +85°C.

Double Layer Capacitors

HOW TO ORDER

Capacitance tolerance +80% -20% [non-standard]

L P 0 5 5 1 0 4 A E

Maxcap DLC Max. Working voltage 055 = 5.5VDC (µF) First two digits are significant, third digit is number of zeros to follow, e.g., 104 = 100,000