Çökelme tepkimelerinde anyonlar ve katyonlar yer değiştirdiği için bu tepkimeler aynı zamanda çift yönlü (ikili) yer değiştirme tepkimesidir. Bu tepkimelerin genel gösterimi aşağıdaki gibidir:

Çökelme tepkimelerinde çözeltideki anyon ve katyonlar birleşerek suda daha az çözünür ya da çözünmez bir katı oluşturur.

AgNO₃ ve NaCl tuzlarının suda iyi çözündüğü söylenebilir. Bu tuzlar suda çözündüklerinde ortamda Ag⁺, NO₃⁻, Na⁺ ve Cl⁻ iyonları bulunur. Na⁺ ve NO₃⁻ iyonları suda iyi çözündüğü için bunlar çözeltide kalır. Ag⁺ ve Cl⁻ iyonları ise birleşerek suda az çözünen AgCl katısını oluşturur (Görsel 1.3).

Tepkimenin sembolik gösterimi aşağıdaki gibidir:

 $AgNO_3(suda) + NaCl(suda) \rightarrow AgCl(k) + NaNO_3(suda)$

Görsel 1.3 ►
Ag+ iyonları ile Cliyonlarının suda az
çözünen bir katıyı (AgCl)
oluşturması

İyonik bileşikler suda iyonlarına ayrıştığı için bu tepkime aşağıdaki gibi yazılır:

$$\mathsf{Ag^+}(\mathit{suda}) + \mathsf{NO_3^-}(\mathit{suda}) + \mathsf{Na^+}(\mathit{suda}) + \mathsf{Cl^-}(\mathit{suda}) \rightarrow \mathsf{AgCl}(\mathit{k}) + \mathsf{Na^+}(\mathit{suda}) + \mathsf{NO_3^-}(\mathit{suda})$$

Burada Na + ve NO₃ - iyonları tepkimenin her iki tarafında da çözeltide kaldığı için bu iyonlara **seyirci iyonlar** (net tepkimede bulunmayan) denir. Her iki taraftaki seyirci iyonlar sadeleştirildiğinde net iyon denklemi elde edilir.

$$\mathsf{Ag^+}(\mathsf{suda}) + \mathsf{N} \bullet_3^-(\mathsf{suda}) + \mathsf{N} \bullet_3^+(\mathsf{suda}) + \mathsf{Cl}^-(\mathsf{suda}) \to \mathsf{AgCl}(\mathit{k}) + \mathsf{N} \bullet_3^+(\mathsf{suda}) + \mathsf{N} \bullet_3^-(\mathsf{suda})$$

 $Ag^+(suda) + Cl^-(suda) \rightarrow AgCl(k)$ (net iyon denklemi)