Entregable 2 propuesta proyecto final GRUPO 8

Integrantes:			

Diana Urbano

Edinson Fernandez

Daren Rodríguez

1. Problemas a responder:

1.a Motivación:

La geoquímica es una disciplina que trabaja en forma conjunta el conocimiento y la comprensión de los principios y procesos de la química con la geología y encuentra relaciones para resolver problemas teóricos y aplicados. (Sieguel, 1992)

La base de datos a analizar corresponde a muestreos de suelos efectuados en Perú, sobre diferentes zonas con información de las concentraciones de diferentes elementos para cada muestra. Esta información es útil en la prospección minera y permite tener una mejor comprensión del territorio al reducir las áreas de interés a sectores más puntuales, además históricamente han demostrado ser herramientas rápidas y económicas.

El análisis de los muestreos geoquímicos permite tener una idea de la abundancia, la posible distribución o migración de elementos asociados a minerales que facilitan la detección de yacimientos metálicos.

Muchos de estos elementos se conocen como "pathfinders" debido a que son elementos que comúnmente tienden a indicarnos la presencia de algún yacimiento como se observa en la Tabla 1.

Deposits of Interest	Type of Deposit	Main Pathfinder Minerals	Main Pathfinder Elements
Gold		Pyrite, chalco-pyrite, arsenopyrite, bismuthinite magnetite, tellurides, tetrahedrite, pyrite, sphalerite, muscovite, monazite, bastnäsite, quartz, scheelite, wolframite, cassiterite.	Fe, Mn, Cu, Co, Ni, Sb, Zn, As, Bi, Te, Sn, Se, Tl, Ag, Hg, Pb, Mo and W.
REE	Carbonatite rocks	Bastnäsite group, ancylite, monazite, (fluor)apatite, pyrochlore, xenotime, florencite.	Na, Mg, Fe, P, Ba, F, S, Sr, Ca, Nb, Th, U, Zr, Cu, Ta, Ti, V, Mn, Pb.
	Igneous rocks (including hydrothermal upgrade)	Bastnäsite group, aegirine, eudialyte, loparite, allanite, monazite, fergusonite, zircon, xenotime, fluorapatite, ancylite, gadolinite, euxenite, mosandrite.	Na, K, Fe, Al, Zr, Ti, Nb, Ta, Li, F, Cl, Si, Th, U, P, Cs, Rb, Sn, W, Mo, Be, Ga, Hf, Mn, B.
	Placers and palaeoplacers	Monazite, xenotime, allanite, euxenite.	Ti, Nb, Zr, Au, Sn, Th, U, Pb, F.
	Laterites	Monazite, apatite, pyrochlore, crandallite group, bastnäsite group, churchite, rhabdophane, plumbogummite, zircon, florencite, xenotime, cerianite.	Fe, Al, Nb, Zr, Ti, Sn, Mn, P, low Si, negative Ce anomaly.
	Ion-adsorption	Clay minerals (mainly kaolinite and halloysite).	High Si (>75%), low P.
	Iron oxide-associated (including IOCG) deposits	Bastnäsite, synchysite, monazite, xenotime, florencite, britholite.	Fe, Cu, U, Au, Ag, Ba, F, P, S.
	Seafloor deposits, such as manganese nodules, ferromanganese crust, phosphorite.	Vernadite, todorokite, Fe-oxyhydroxide, carbonate fluorapatite, francolite.	Mn, Fe, P, Cu, Ni, Co.
Cu-Ni-PGE		pentlandite, chalcopyrite, pyrite, millerite, PGM, chromite, Cr-diopside, enstatite, olivine, Cr-andradite.	Ni, Cu, Pd, As, Cr, Co, S, PGE

Volcanogenic massive sulphide (VMS) deposits (Cu, Pb, Zn, Ag, Au)	Galena, sphalerite, chalcopyrite, pyrrhotite, gold, pyrite, gahnite, staurolite, cassiterite, spessartine, sillimanite, andalusite, beudantite, jarosite, barite, tourmaline, hogcomite, nigerite.	Cu, Zn, Pb, Ag, Mo, Sn, Ba As, Sb, In, Te, Bi, and Tl
W-Mo-Bi, and Sn-Zn-In deposits	Cassiterite, wolframite, molybdenite, topaz, chalcopyrite, galena, sphalerite, arsenopyrite, pyrite, loellingite, beudantite, anglesite, plumboferrite, plumbogummite.	Ag, As, Cd, Cu, Pb, Re, Te, Tl
Li	Spodumene, petalite, amblygonite, quartz, K-feldspar, albite, or montebrasite, lepidolite, zinnwaldite, eucryptite, cassiterite, lithiophilite, holmquisite, triphylite, quartz, muscovite, apatite, tourmaline tantalite-columbite, beryl.	K, Ca, Rb, Sr, Y, Nb, Sn, Cs, Ta, Sb, W, Bi, As, Ga, Tl, and the REE
Kimberlite- hosted diamonds	Cr-pyrope, Cr-diopside, eclogitic garnet, Mg-ilmenite, chromite, olivine, diamond.	С
U	Uraninite (pitchblende), thorianite, tourmaline, sulphides, monazite, allanite, zircon, baddelyite, niccolite, U-Th anatase, U-Th rutile, brannerite, magnetite.	Cu, Ag, As, Cr, Pb, Zn, Ni, Co, Re, Be, P, Mo, Mn, REE and radiogenic Pb isotopes

Tabla 1. Elementos indicadores de la presencia de yacimientos metálicos según los tipos de depósitos. (Balaram y Sawant, 2021)

Algunos estudios han demostrado que puede haber relaciones significativas entre el contenido de ciertos elementos y metales de interés, como lo relaciona, P.M, J.M, Yidana, E. Arhin, & J. M, (2012) encontrando asociaciones de oro con otros elementos, usando metodos como el analisis de factores y agrupamiento jerarquico, llegando a muy buenos resultados de agrupamiento.

Levitan, y otros, (2015) realizan un estudio similar al anterior pero con el uranio como elemento de interes y usando analisis de componentes principales y clustering jerarquico.

La motivación en este tipo de análisis nace de buscar las posibles relaciones entre elementos o conjuntos de elementos que nos puedan indicar anomalías, o tendencias en un área o zona de estudio, lo que nos permite tener un área mucho más focalizada siendo este un primer insumo para delimitar las primeras zonas con mayores probabilidades de estar cerca o en un yacimiento metálico y donde se puedan realizar estudios adicionales, como: sondajes, métodos geofísicos o campañas

de cartografía geológica entre otras. Posteriormente estas metodologías, se pueden replicar con información de otras zonas en el territorio colombiano u otros países.

2. Métodos no supervisados:

Las relaciones entre los yacimientos metálicos y los elementos presentes en el suelo se podrían entender o podrían darnos una información adicional al ser analizadas usando métodos no supervisados, como análisis de componentes principales o clustering, esto debido a que cada muestra de suelo puede tener información de muchos elementos que serían más fáciles de manejar y entender si hacemos una reducción de variables y posteriormente alguna técnica de clustering como el clústering jerárquico como lo sugieren los estudios citados anteriormente, siendo métodos históricamente utilizados en este tipo de análisis.

3. Propuesta Métodos:

- -Análisis de componentes principales (PCA)
- -Cluster Aglomerativo

Estos dos métodos se usarán inicialmente debido a que históricamente, según los artículos revisados son métodos adecuados para análisis de muestras de suelo asociadas a yacimientos minerales.

4 descripción de la información disponible:

- -Tablas de datos en archivo Excel
- -Numero de registros= 540 muestras de suelo de diferentes zonas
- Numero de variables=118
- -Variables numéricas=35
- Las variables que no tienen ningún valor valido se deben eliminar totalmente
- -Los valores que son nulos o no presentan registro se deben reemplazar por cero
- -Algunos valores que presentan signos de (menor que) se deben reemplazar por cero
- -Al final se deben dejar las variables que contengan los elementos de interés con valores validos

5 roles del grupo:

- Descarga de los archivos, tablas en Excel, limpieza de datos. Responsable: Daren Rodríguez
- Carga de datos y análisis exploratorio. Responsables: Daren Rodríguez, Diana Urbano
- Elección y aplicación de método no supervisado para reducción de variables. Responsables: Edinson Fernandez, Diana Urbano
- Elección y aplicación de método (o métodos) no supervisado para clustering. Responsables Edinson Fernandez, Daren Rodríguez
- Análisis de resultados y conclusiones. Responsables: Diana Urbano, Daren Rodríguez,
 Edinson Fernandez

Referencias:

Balaram, V.; Sawant, S.S. (2021). Indicator Minerals, Pathfinder Elements, and Portable Analytical Instruments in Mineral Exploration Studies. Minerals 2022, 12, 394.

Instituto Geológico, Minero y Metalúrgico de Perú. (2021). GEOCATMIN - Prospección Geoquímica del Perú, Serie B. Obtenido de

http://metadatos.ingemmet.gob.pe:8080/geonetwork/srv/spa/catalog.search#/metadata/b1cc5e47-88c8-4c5e-832f-f6dcbd20211b

Levitan, D., Zipper, C., Donovan, P., Schreiber, M., Seal, R., Engle, M., . . . Aylor, J. (2015). Statistical analysis of soil geochemical data to identify pathfinders associated with mineral deposits: An example from the Coles Hill uranium deposit, Virginia, USA. *Journal of Geochemical Exploration*.

Siegel, F. (1992). Geoquímica aplicada, Departamento de geología, The George Washington University, D. C., Estados Unidos.

P.M, N., J.M, A., Yidana, S., E. Arhin, G. F., & J. M, K. (2012). Identifying Pathfinder Elements for Gold in Multi-Element Soil Geochemical Data from the Wa-Lawra Belt, Northwest Ghana: A Multivariate Statistical Approach. *International Journal of Geosciences*, 3, 62-70.