Kondensator

Mit der Kapazität C

$$C = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot A}{d} [C] = \frac{As}{V} = F(Farad)$$

Kondensator im Netzwerk mit sprungförmiger Spannungsänderung (z.B. durch Schalter)

$$U_C(t) = \left(U_{anfang} - U_{ende}\right) \cdot e^{-\frac{t}{T}} + U_{ende}$$

- Zeitkonstante $T = R \cdot C$
- . Anfangs- und Endwert $U_{anfang}=U_C(t=0)$ $U_{ende}=U_C(t\to\infty)=U_0$

U und I am Kondensator

Zeitkonstante

"Kochrezept" Ausgleichsvorgang

Schritt	Kondensator C
1. Ersatzquelle für $t \le 0$ auswerten: Anfangswert U_{anfang}	U_{anfang} aus Ersatzspannungsquelle entnehmen oder C entfernen, U_{anfang} = Spannung an den Klemmen von C oder U_{anfang} = aktuelle Spannung des vorherigen Ausgleichsvorganges
2. Ersatzquelle für $t > 0$ auswerten: Endwert U_{ende}	U_{ende} aus Ersatzspannungsquelle entnehmen $oder$ C entfernen, U_{ende} = Spannung an den Klemmen von C
Innenwiderstand $R_{i,ende}$	Innenwiderstand $R_{i,ende}$ aus Ersatzspannungs- bzw. Ersatzstromquelle entnehmen oder Spannungsquellen entfernen, Stromquellen kurzschliessen. Dann: $R_{i,ende}$ = Gesamtwiderstand des verbleibenden Netzwerkes an den Klemmen von C
3. Ggf. Fehlende Anfangs- und Endwerte bestimmen	$I_{anfang} = \frac{U_{ende} - U_{anfang}}{R_{i,ende}}$
	$I_{ende} = 0$
4. Zeitkonstante <i>T</i> bestimmen	$T = R_{i,ende} \bullet C$

Diode

- Diode = pn-Übergang
- Anschlüsse

- Anode (p-Schicht)
- Kathode (n-Schicht)
- Schaltzeichen

https://www.leifiphysik.de/elektronik/halbleiterdiode/grundwissen/p-n-uebergang-halbleiterdiode

Diode - Kennlinie

Kennlinie

- Ohm'sches Gesetz gilt hier nicht mehr!
- Durchlassrichtung:
 - Oberhalb der Schleusenspannung \mathbf{U}_{S} annähernd lineare Zunahme des Stroms, Diode ist niederohmig
- Sperrrichtung:
 - Diode ist hochohmig, es fließt nur ein sehr kleiner Sperrstrom ${\rm I_S}$
- Durchbruchspannung
 - . Starke Zunahme der Stromstärke
 - Führt bei normalen Dioden zur Zerstörung
 - Wird bei der Zener-Diode genutzt, U_{BR} in weiten Bereichen einstellbar

Diode - Kennlinie

• Idealisierung der Dioden-Kennlinie durch lineare Bauteile

offener Schalter = Leerlauf

geschlossener Schalter = Kurzschluss

