Computer Architecture

Tutorial 3 – Number Representation and Binary Arithmetic

- 1) Convert the following binary numbers to decimal: (a) 0110, (b) 1011, (c) 10101010
- 2) Convert the following binary numbers to hexadecimal: (a) 1110, (b) 11011, (c) 1010111101110010
- 3) Convert the following decimal numbers to binary and hexadecimal: (a) 12, (b) 27, (c) 96
- 4) For an 8-bit group, work out the representation for -37_{10} in
 - a) Sign & Magnitude
 - b) One's Complement
 - c) Two's Complement Project Exam₂nHelp where m is the number of bits in the bit-group)
 - e) Excess-12
- 5) Express 9876 https://eduassistpro.github.io/
- 6) Form the negative equivalent of the following edu_assist_pro
 (a) 00011001, (b) 00011110, (c) 01101000, (d

by comparing the resulting bit-patterns to the originals, can you spot a "short cut" method for the conversion?

Computer Architecture

Tutorial 3 – Number Representation and Binary Arithmetic - Answers

1) Convert the following binary numbers to decimal:

(a) 0110 = 6, (b) 1011 = 11, (c) 10101010 = 170

- 2) Convert the following binary numbers to hexadecimal: (a) 1110 = E, (b) 11011 = 1B, (c) 1010111101110010 = AF72
- 3) Convert the following decimal numbers to binary and hexadecimal: (a) 12 = 1100 & C, (b) 27 = 11011 & 1B, (c) 96 = 1100000 & 60
- 4) For Assirgnmente Projectr Exam Help

 37,0 = 100101
 - a) Sign & Mhttps://eduassistpro.github.io/
 - b) One's Complement 1101101
 - c) Two's Complement WeChat edu_assist_pro
 - d) Excess-255

$$-37 = -37 + 255 = 218 = 11011010$$

e) Excess-128

$$-37 = -37 + 128 = 91 = 01011011$$

5) Express 9876510 in Binary Coded Decimal

- 6) Form the negative equivalent of the following 8-bit Two's Complement numbers.
 - (a) 00011001, (b) 00011110, (c) 01101000, (d) 01110100
- (a) $00011001 = 16 + 8 + 1 = 25_{10}$

"invert the bits and add 1" 11100110 + 1 = 11100111

check: $11100111 = -128 + (64 + 32 + 4 + 2 + 1) = -25_{10}$

(b)
$$00011110 = 16 + 8 + 4 + 2 = 30_{10}$$

"invert the bits and add 1" 11100001 + 1 = 11100010

check:
$$11100010 = -128 + (64 + 32 + 2) = -30_{10}$$

(c)
$$01101000 = 64 + 32 + 8 = 104_{10}$$

"invert the bits and add 1" 10010111 + 1 = 10011000

check:
$$10011000 = -128 + (16 + 8) = -104_{10}$$

(d) 01110100 = 64 + 32 + 16 + 4 = 11610

Assignment Project Exam Help

"invert the bits and add 1" 10001011 + 1 10001100

check: 100011

https://eduassistpro.github.io/

by comparing the

method for the conversion?

Take another look at the bit patterns: Chat edu_assist_pro

positive: 00011001 00011110 01101000 01110100 negative: 11100111 11100010 10011000 10001100

"starting from the rightmost bit (lsb), copy each bit unchanged up to and including the first 1 then invert all the remaining bits"