浮游动物特征总结

王如晨 朱亚菲 2015 年 8 月

目录

1	13 🕏	类浮游动物的特征	3
2	PkI	D 中用到的特征	6
	2.1	位置特征	6
	2.2	尺寸特征	7
	2.3	灰度值特征	7
	2.4	形状特征	8
	2.5	自定义特征	8
	2.6	实验	9
3	计算	· -机视觉领域形态学常用特征	11
	3.1	形状表示	11
		3.1.1 多边形近似	11
		3.1.2 傅里叶描述子	11
		3.1.3 统计矩	11
		3.1.4 骨架	11
		3.1.5 形状数	11
		3.1.6 拓扑描述	11
		3.1.7 关系描述	11
		3.1.8 主分量描述	11
		3.1.9 不变矩	11
	3.2	简单描述子	11
		3.2.1 边界的周长	11
		3.2.2 面积	11

Zooplankton Attributes

	3.2.3	边界的曲率	11
3.3	纹理表	示	11
	3.3.1	统计方法	11
	3.3.2	结构性方法	11
	3.3.3	频谱方法	11
3.4	形态学	特征参数	11
	3.4.1	矩形度	11
	3.4.2	体态比	12
	3.4.3	圆形性	12
	3.4.4	偏心率	12
	3.4.5	凸率	12
	3.4.6	密集度	13
	3.4.7	球状性	13
	3.4.8	伸长度	13
	3/10	叶	12

1. 13 类浮游动物的特征

Appendicularia (**尾海鞘纲**) 属于脊索动物门,体型像蝌蚪,身体分为躯干和尾两部分。躯干为椭圆形;尾部扁平,比躯干要长。1 大小:小于 5mm。

观察采集的图像发现:

- 形状像蝌蚪, 分为躯干和尾部。
- 躯干较大且灰度较深,并不是呈现规则的椭圆(还有部分突出了的东西还不知道是什么)。
- 尾部大致呈现两种形状:一种细长弯曲;另一种较粗(粗细甚至于头部差不多),呈现柳叶状。尾部的灰度相比于躯干较浅,轮廓不太清晰。

Bubble(气泡) 非生物。

观察采集的图像发现:

- 圆形。
- 气泡四周灰度深, 中间灰度很浅, 呈亮白色。

观察采集的图像发现:

- 身体修长, 可以明显看出身体分为头、躯干和尾三部分。
- 头部小且圆滑, 在头与躯干连接的地方略窄。
- 躯干较粗, 轮廓清晰。
- 尾部慢慢变窄, 末尾尖。

Cladocera Penilia (Penilia avirostris, **鸟喙尖头溞**) 属于节肢动物门, 鳃足纲, 枝角目, 俗称水 跳蚤。大小: 大约为 1mm 左右。

观察采集的图像发现:长圆形,大部分图像可以看到一对较长的触角,并且中轴灰度较深。

¹https://zh.wikipedia.org/wiki/%e5%b0%be%e6%b5%b7%e9%9e%98%e7%ba%b2

 $^{^2}$ https://zh.wikipedia.org/wiki/%e6%af%9b%e9%a2%9a%e5%8a%a8%e7%89%a9%e9%97%a8

Copepoda(桡脚类)属于节肢动物门,颚足纲。体形像泪珠,有大的触角。分为前体部和后体部,前体部较为宽大,后体部较为短小。3前体部前体部由头和胸部组成,头部有两对触角,胸部有鄂足、五对胸足。后体部无附肢,由 3—5 节组成。最末的腹节称尾节,末端具 1 对尾叉,尾叉的末端有 5 根不等长的刚毛,常呈羽状。4

观察采集的图像发现:身体类似椭圆形,身体前部的触角不是特别清晰,身体后部的触角较短,并成簇存在。

Decapoda(十足目) 属于节肢动物门, 软甲纲。分为两类: Lucifer hanseni 和 Crab larvae。体躯延长星虾形(腹部发达)或缩短扁圆呈蟹形(腹部化)。5

观察采集的图像发现:形状大致分为虾形和蟹形。

Doliolida (海樽目) 属于脊索动物门, 樽海鞘纲⁶。体型一般呈桶状, 体壁最外是被囊层, 其内层是外套膜。被囊层下有 8 ~ 9 条肌带环绕着体躯。

观察采集的图像发现:

• 由于该类浮游动物比较透明,因此在图像中灰度较浅,并且其桶状轮廓也不完整了,但最明显的是能看到大概7、8条环状的肌肉带,有的图像中还能看到内部器官。

Egg 鱼卵以及其他浮游动物的卵。

观察采集的图像发现:

- 形状大致都呈圆形。
- 有的卵整体灰度都很深; 有的卵中间有一块灰度较深的区域, 四周灰度较浅 (结构像细胞)。

Fiber (纤维) 非生物。

- 弯曲的线状, 有的纤维有分叉和交叉。
- 该类图像中噪声较多, 纤维的边缘也不是很规则。

Gelatinous (明胶) 胶质的浮游动物,包括 Aglaura (属于刺胞动物门,这一个没有搜的中文名字,但也属于水母类)、Medusa (水母,属于刺胞动物门,水螅纲)、Siphonophora (管水母,属于刺

³https://zh.wikipedia.org/wiki/%e6%a9%88%e8%85%b3%e9%a1%9e

⁴http://baike.baidu.com/view/665478.htm

⁵http://baike.baidu.com/link?url=LWmrgD_DVUcw0upg_zi0LTIJWj6quxa_juRrS3zUt91A-FjPM6VQwYfZ5fFZckzIyEGCaXypikXUGg2JsYMXUX-uFEkmkLqC5lfkxvXvApK3WRBcWQkfbDhMlfTdgrWvh-728gSoUylWZG2UstFK

⁶https://zh.wikipedia.org/wiki/%e6%a8%bd%e6%b5%b7%e9%9e%98%e7%ba%b2

胞动物门,水螅纲,管水母目)、Radiolaria (放射虫,属于原声动物门,辐足纲)和 Salps (樽海鞘,属于脊索动物门 Chordata,樽海鞘纲 Thaliacea,组鳃樽目 Salpida)。该类是多种呈胶质浮游动物的集合。大部分水母都有三个主要部位:圆伞状或是钟状 (寺院里面敲得那种钟)的身体,触器和口腕。

观察采集的图像发现:

- 由于该类呈胶状,因此该类物体灰度整体较浅,边缘也不是十分清晰。大部分是水母,有小部分的樽海鞘(与海樽目形态很相似),小部分的放射虫。
- 其中水母也包括很多类, 形态大致呈现以下几种:
 - 一些水母身体呈现类似钟状(这里呈现钟状有长有短,有粗有细,还有的会发生一点弯曲),灰度较浅,内部有一块颜色较深的椭圆形区域。
 - 一些水母也呈钟状, 但内部没有颜色较深的椭圆形区域, 整个身体灰度均匀。
 - 还有的个头稍微偏小,形状有的类似圆形、像半个胶囊(应该是由于拍摄原因,有的拍到顶部,有的拍到侧面),体内有颜色较深的一个大点和几个小点。(可能是灯塔水母)
 - 还有四张看不出形状的,不知道是什么。
- 放射虫:形状近似圆形(但由于整体灰度较浅,形状保存是完整),中间有一块灰度较深的区域,四周灰度较浅,可以看到淡淡的细纹从中心连接到边界。

Multiple (多个生物) 由于浮游动物的重叠,导致分割过程中多个浮游动物被分割到一张图像上。 Nonbio 非生物的集合。

Pteropoda (翼足目) 属于软体动物门, 腹足纲。

观察采集的图像发现:

- 该类浮游动物灰度较深, 形状总体都呈现一头宽一头窄。
- 形状总体呈现三类: 有的呈现象牙状, 有点弯曲; 有的较粗短, 像一顶尖的小帽子; 有的呈现细长的三角形状。

参考网站: http://www.imas.utas.edu.au/zooplankton/home。

2. PkID 中用到的特征

PkID 中用到的特征一共有 67 个: Area, Mean, StdDev, Mode, Min, Max, X, Y, XM, YM, Perim., BX, BY, Width, Height, Major, Minor, Angle, Circ., Feret, IntDen, Median, Skew, Kurt, %Area, XStart, YStart, Area_exc, Fractal, Skelarea, Slope, Histcum1, Histcum2, Histcum3, XMg5, YMg5, Compentropy, Compmean, Compslope, CompM1, CompM2, CompM3, Symetrieh, Symetriev, Symetriehc, Symetrievc, Tag, ESD, Elongation, Range, MeanPos, CentroidsD, CV, SR, PerimAreaexc, FeretAreaexc, PerimFeret, PerimMaj, Circexc, CDexc, Nb1, Nb2, Nb3, Convperim, Convarea, Fcons, ThickR

从训练集的 PID 文件文件中看到, Compentropy, Compmean, Compslope, CompM1, CompM2, CompM3 这 6 个特征在所有图像上的值都为 0, Tag 这个特征在所有图像上的值都为 1, 在训练分类器时是不起作用的。这 7 个特征的具体含义也没有找到。

2.1 位置特征

BX 能够包围物体, 且平行于图像两条边的最小外界矩形的左上角顶点的 X 坐标

BY 能够包围物体, 且平行于图像两条边的最小外界矩形的左上角顶点的 Y 坐标

Height 能够包围物体, 且平行于图像两条边的最小外界矩形的高

Width 能够包围物体, 且平行于图像两条边的最小外界矩形的宽

XStart 图像最左上角像素点的 X 坐标

YStart 图像最左上角像素点的 Y 坐标

XM 物体灰度重心的 X 坐标

YM 物体灰度重心的 Y 坐标

XMg5 gamma 值为 51 时的物体灰度重心的 X 坐标(gamma 值表示图像输出值与输入值关系的斜率)

YMg5 gamma 值为 51 时的物体灰度重心的 Y 坐标

X 物体重心点的 X 坐标

Y 物体重心点的 Y 坐标

Angle 浮游动物主轴与图片 x 轴形成的夹角, 在图片切割后旋转图片测量相关参数使用

2.2 尺寸特征

Area 物体的表面积, 方形像素的个数

Perim 周长, 物体最外层边缘的长度

Major 物体的最佳拟合椭圆的长轴

Minor 物体的最佳拟合椭圆的短轴

Feret Maximum feret diameter (最大费雷特径),沿物体边缘任意两个点的最长距离

Area exc 去掉物体空洞后的表面积,空洞是指灰度值与背景相同的部分

%area 物体表面积中空洞所占的百分比, 即背景所占的比例

2.3 灰度值特征

Min 物体内部所有像素点的最小灰度值 (0 = black)

Max 物体内部所有像素点的最大灰度值 (255 = white)

Mean 物体内的平均灰度值; 物体中所有像素点的灰度值的总和除以总的像素个数

IntDen Integrated density 总密度, 物体内像素点的灰度值的总和 (IntDen = Area * Mean)

StdDev 物体内像素的灰度值的标准差

Mode Modal grey value within the object (可能表示灰度的众数)

Skew 灰度直方图的偏度,衡量灰度分布的不对称性。偏度为负就意味着在概率密度函数左侧的尾部 比右侧的长,绝大多数的值位于平均值的右侧。偏度为正就意味着在概率密度函数右侧的尾部 比左侧的长,绝大多数的值位于平均值的左侧。偏度为零就表示数值相对均匀地分布在平均值 的两侧,但不一定意味着其为对称分布。

Kurt 峰度, 描述灰度直方图的陡缓程度。

 $Mean_exc$ 物体内部去掉空洞后的平均灰度值 ($Mean_exc = IntDen/Area_exc$)

Median 物体内像素的灰度值的中值

Slope 归一化的灰度累计直方图的斜率

Histcum1 灰度累计直方图的值为 25% 时所对应的灰度值

Histcum2 灰度累计直方图的值为 50% 时所对应的灰度值

Histcum3 灰度累计直方图的值为 75% 时所对应的灰度值

2.4 形状特征

Fractal 物体边界的分形维数 (Berube and Jebrak, 1999), 表明物体边界的不规则程度

Skelarea 骨架像素的表面积 (在二值图像中,不断地从物体边缘处减去像素点直到仅剩一个像素的宽度,最后所得图形的像素点数)

Circ $Circularity = (4*Pi*Area)/Perim^2$ 圆形度,表征物体接近圆的程度,值等于1时,说明物体为正圆形,值越接近0,物体体形越长。

Symetrieh 水平对称

Symetriev 垂直对称

Symetriehc

Symetrievc

2.5 自定义特征

ESD $2 \times \sqrt{\frac{Area}{\pi}}$ 相应球形直径 (也称为等效球直径),是指一不规则外形物体,其体积相同球体的直径。

Elongation $\frac{Major}{Minor}$ 延伸率,最佳拟合椭圆的长轴和短轴之比。

Range Max-Min 极差, 灰度的范围。

 ${f Centroids D}\ \sqrt{(XM-X)^2+(YM-Y)^2}\$ 目标物体重心和灰度重心之间的距离。

 $\frac{StdDev}{CV}$ 200 × $\frac{StdDev}{Mean}$ 变异系数 (也称离散系数或相对偏差),是标准偏差与平均值之比,用百分数表示。

SR
$$100 \times \frac{StdDev}{Max - Min}$$
 标准差比上极差。

PerimAreaexc
$$\frac{Perim}{\sqrt{Area_exc}}$$

FeretAreaexc
$$\frac{Feret}{\sqrt{Area_exc}}$$

PerimMaj
$$\frac{Perim}{Major}$$

$${f Circexc} \ rac{4 imes \pi Area_exc}{Perim^2}$$
 去掉目标内部空洞的圆形度。

CDexc
$$\frac{\sqrt{(XM-X)^2+(YM-Y)^2}}{\sqrt{Area_exc}}$$
 (与 PPT 中的不同)

2.6 实验

采用以上67个特征,并用随机森林分类器进行训练和分类得到的混淆矩阵如图1

		Appendicularia	Bubble	Chaetognatha	CladoceraPenilia	Copepoda	Decapoda	Doliolida	Egg	Fiber	Gelatinous	Multiple	Nonbio	Pteropoda	Total	Recall	1-Precision
Appendicular	ia	2220	0	110	13	1	21	0	0	61	2	137	160	0	2725	0.8147	0. 195069
Bubble		0	629	0	0	3	0	0	28	0	0	4	61	0	725	0.8676	0. 096264
Chaetognatha		147	0	1550	0	2	6	0	0	4	1	23	12	0	1745	0. 8883	0. 093567
CladoceraPen	ilia	0	0	0	4156	18	0	7	0	0	1	11	432	0	4625	0.8986	0. 079717
Copepoda		4	0	0	7	6309	161	0	0	0	0	193	679	17	7370	0. 856	0. 190323
Decapoda		1	0	0	0	316	2270	0	0	0	0	76	121	1	2785	0.8151	0. 221269
Doliolida		0	0	0	1	0	0	1104	0	0	160	7	153	0	1425	0. 7747	0. 110395
Egg		0	57	0	15	3	1	0	1361	0	30	1	246	6	1720	0. 7913	0. 098675
Fiber		46	0	19	0	0	0	5	0	1129	0	67	254	0	1520	0. 7428	0. 204369
Gelatinous		6	0	0	49	12	6	67	19	0	2127	88	635	1	3010	0. 7066	0. 196145
Multiple		266	2	16	38	452	219	13	17	43	93	1054	955	7	3175	0. 332	0. 481299
Nonbio		68	8	13	237	626	187	45	85	182	227	366	13240	106	15390	0.8603	0. 230635
Pteropoda		0	0	2	0	50	44	0	0	0	5	5	261	718	1085	0. 6618	0. 161215
Total		2758	696	1710	4516	7792	2915	1241	1510	1419	2646	2032	17209	856	47300	0. 77	0. 181457

图 1: PkID-RF 交叉验证, folds 取 2, repetitions 取 5

3. 计算机视觉领域形态学常用特征

- 3.1 形状表示
- 3.1.1 多边形近似
- 3.1.2 傅里叶描述子
- 3.1.3 统计矩
- 3.1.4 骨架
- 3.1.5 形状数
- 3.1.6 拓扑描述
- 3.1.7 关系描述
- 3.1.8 主分量描述
- 3.1.9 不变矩
- 3.2 简单描述子
- 3.2.1 边界的周长
- 3.2.2 面积
- 3.2.3 边界的曲率
- 3.3 纹理表示
- 3.3.1 统计方法
- 3.3.2 结构性方法
- 3.3.3 频谱方法
- 3.4 形态学特征参数
- 3.4.1 矩形度

反映被检测目标的最小外接矩形的充满程度, 当目标的形状越接近矩形时, 矩形度的值越接近 1。

$$R = \frac{A}{WH}$$

A 为目标的面积、W、H 分别为最小外接矩形的宽度和高度。

3.4.2 体态比

为目标最小外接矩形的长与宽的比值。

$$C = \frac{W}{H}$$

3.4.3 圆形性

用目标区域的所有边界点定义的特征向量。

$$C_I = \frac{\mu_R}{\sigma_R}$$

 μ_R 为区域重心到边界点的平均距离, σ_R 为从区域重心到边界点的距离的平均方差。

3.4.4 偏心率

定义为目标区域长短主轴的平方根的比值。

$$E = \frac{p}{q}$$

设目标区域在 XY 平面上,区域像素点绕 X 轴的转动惯量为 A,绕 Y 轴的转动惯量为 B,惯性积为 C。目标区域的长度分别是 P 和 Q。

$$p = \sqrt{\frac{2}{(A+B) + \sqrt{(A-B)^2 + 4C^2}}}$$

$$q = \sqrt{\frac{2}{(A+B) - \sqrt{(A-B)^2 + 4C^2}}}$$

3.4.5 凸率

为目标区域面积与目标区域凸包面积之比, 该特征包含着描述边界不规则特性的信息。

$$C_R = \frac{A}{\sum_{x=1}^{M} \sum_{y=1}^{N} k(x, y)}$$

分母为凸包区域的面积。

3.4.6 密集度

描述目标密集度的量化特征,提供了目标性状的重要信息。在周长确定后,密集度越高,所围成的面积越大。

$$C_2 = \frac{L^2}{4\pi A}$$

L 为周长。

3.4.7 球状性

内切圆的直径与外接圆的直径之比。

$$S = \frac{r_i}{r_c}$$

3.4.8 伸长度

周长与目标区域最小外接矩形面积之比。

$$P = \frac{L}{WH}$$

3.4.9 叶状性

叶状反映了边界的幅度特征,为区域重心到边界的最短距离与目标区域的最大宽度之比。

$$B = \frac{R_1}{W_{max}}$$

- 周长:轮廓边界的周长。对轮廓边缘上的像素点的统计。
- 面积: 描述区域大小的特征。对区域内总像素点的统计。
- 宽度和高度: 最小外接矩形的宽度和高度。、宽度和高度。
- 基于灰度共生矩阵的方法
- 灰度-梯度共生矩阵分析法
- 灰度行程长度统计法
- 小波分析法
- 基于 Gabor 小波变换的纹理分析法