# PHY1111: Mathematical Methods in Physics I Lecture Notes

Taddeo SSENYONGA (TJS) email: taddeo.ssenyonga@mak.ac.ug

October 19, 2023

## **Detailed Course Description**

| Course Name: | : | Mathematical Methods in Physics I |
|--------------|---|-----------------------------------|
| Course Code  | : | PHY1111                           |
| Credit Units | : | 3(3-0)                            |

#### Course Description:

- This is an introductory course intended to give the student necessary mathematical tools for understanding the courses in Classical Mechanics, Electricity and Magnetism, Properties of Matter, and Heat and Thermodynamics.
- After a brief review of complex numbers, the student will be introduced to methods of solving linear equations, partial derivatives and their applications.
- Vector analysis will be introduced with special emphasis on applications. Line integrals, Green's theorem in a plane, the divergence theorem, Gauss' law and Stokes' theorem will be studied.

# Detailed Course Description ctned and Objectives

 Vector analysis will be introduced with special emphasis on applications. Line integrals, Green's theorem in a plane, the divergence theorem, Gauss' law and Stokes' theorem will be studied.

#### **Objectives**

By the end of this course, students should be able to:-

- Use complex numbers to solve problems.
- Solve simple linear equations.
- Find partial derivatives.
- Apply vector algebra in physics problems.
- Solve line integrals



#### Course Outline

- **Complex Numbers:** the complex plane, polar form of a complex number, principal angle, complex conjugate; addition, subtraction, multiplication and division of complex numbers; powers and roots of complex numbers  $(z^n, z^{1/n})$  and applications: complex amplitudes in theory of electric circuits, combination of light waves in optics, etc.
- Linear Equations: Writing of linear equations in matrix form; solving of linear equations using Crammer's rule; Example: circuit analysis.
- **Derivatives:** partial derivatives; definition, notation and examples; total differential of functions of several variables. Examples: Heat and wave equations in one dimension.
- Vectors: Vector components in a Cartesian coordinate system; the zero and unit vectors; addition and subtraction of vectors; multiplication of vectors; scalar product; vector product. Applications of vector multiplication work, torque, angular velocity, triple scalar product, triple vector product. Differentiation of vectors displacement, velocity, acceleration. Directional derivative, Gradient of a function, the divergence, the curl. Vector Identities.

#### Course Outline ctned

- **Differential Equations**: Linear; second order; homogeneous; and partial differential equations.
- **Line Integrals**: Work-done; conservative fields; potentials; exact differential; and integration by parts.
- Theorems: Green's theorem in a plane; divergence theorem; Gauss' law; and Stokes' theorem.
- Curve Fitting: Least squares lines; least squares polynomials; and nonlinear curve fitting.
- **Numerical Integration:** Trapezoidal rule for numerical integration; and Simpson's rule for numerical Integration.
- Tutorials: Several tutorials will be carried out

# Mode of Delivery and Reference Materials

#### Mode of delivery The course will be conducted through lectures and tutorials. References:

- Boas, M.L.: Mathematical Methods in the Physical Sciences. John Wiley and Sons (2006), Third edition. (Textbook)
- Spiegel, M.R.: Schaum's Outline of Complex Variables. McGraw-Hill, (1972).
- Spiegel, M.R.: Schaum's Vector Analysis. McGraw-Hill, (1967)
- Internet

# Differential Equations

**Introduction**: A great many applied problems involve rates, that is, derivatives. An equation containing derivatives is called a **differential equation**.

If it contains partial derivatives, it is called a partial differential equation; otherwise it is called an ordinary differential equation.

Differential equations are important in Physics e.g,

$$ec{F}=mec{a}$$
 Newton's second law in vector form

$$ec{F}=mrac{dec{v}}{dt}=mrac{d^2ec{r}}{dt^2}$$
 are differential equations

The rate of heat escape

$$\frac{dQ}{dt} = kA\left(\frac{dT}{dx}\right),\,$$

where  $\frac{dT}{dx}$  is temperature gradient and k is thermal conductivity and it depends on the material.

## Differential Equations

#### **Electronics**

If I(t) is the current flowing through the circuit at time t and g(t)is the charge on the capacitor plates, then

$$I(t) = \frac{dq}{dt}$$
, and

$$L\frac{dI}{dt} + IR + \frac{q}{C} = V$$

Further differentiation with respect to t and putting  $\frac{dq}{dt} = I$ ,

$$\begin{split} L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}\frac{dq}{dt} &= \frac{dV}{dt} \\ L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I &= \frac{dV}{dt} \end{split} \quad \text{is a differential equation in } I \end{split}$$



Figure 1:

#### Differential Equations

The order of the differential equation is the order of the highest derivative, e.g.

$$\frac{dy}{dx} + xy^2 = 1 \quad \text{or} \quad y' + xy^2 = 1$$

$$x\frac{dy}{dx} + y = e^x \quad \text{or} \quad xy' + y = e^x$$

$$\frac{dv}{dt} = -g \quad \text{or} \quad v' = -g$$

e.t.c are first order differential equations, and

$$m \frac{d^2r}{dt^2} = -kr$$
 is second order differential equation 
$$a_0 u + a_1 u' + a_2 u'' + a_3 u''' + ... = b.$$

is a linear differential equation, where  $a_i$  are constants or functions of x,

## Non linear differential equation

Equations below are non linear differential equations.

$$y' = \cot y$$
$$yy' = 1$$
$$y'^2 = xy,$$

A solution of a differential equation (in variables x and y) is a relation between x and y which, if substituted into the differential equation, gives an identity'

• **Example:** The relation  $y = \sin x + C$  is a solution of the differential equation  $y' = \cos x$ , because a substitution gives

$$y = \sin x, \Rightarrow y' = \cos x$$

**Example:** The differential equation y'' = y has solutions  $y = e^x$  and  $y = e^{-x}$  or  $y = Ae^x + Be^{-x}$  as can be verified by substitution.

## Non linear differential equation

• Example: Find the distance which an object falls under gravity in t seconds if it starts from rest.

$$\vec{a}=\frac{d^2\vec{r}}{dt^2}=g$$
 on integrating 
$$\frac{dr}{dt}=gt+{\rm constant}=gt+v_0$$
 
$$r(t)=\frac{1}{2}gt^2+v_0t+r_0$$

From rest t=0, and free fall  $v_0=0 \text{ ms}^{-1} \Rightarrow r(t=0)=r_0=0$ 

 $\Rightarrow r(t) = \frac{1}{2}gt^2$ 

# Separable Equations

- Example: The rate at which a radioactive substance decays is proportional to the remaining number of atoms. If there are  $N_0$  atoms at time t=0, find the number of atoms at any time t.
- Solution:

$$\frac{dN}{dt} = -\lambda N, \qquad \text{where $\lambda$ is a decay constant}$$
 
$$\int \frac{dN}{N} = \int -\lambda dt$$
 
$$\ln N = -\lambda t + \text{constant}$$
 
$$N = N_0 e^{-\lambda t},$$

where  $N=N_0$  at t=0



# Separable Equations

• **Example:** Solve the differential equation

$$xy' = y + 1$$

Solution:

$$\frac{y'}{y+1} = \frac{1}{x}$$
 Or 
$$\frac{dy}{(y+1)} = \frac{dx}{x}$$
 
$$\ln(y+1) = \ln x + \text{constant}$$
 
$$= \ln x + \ln a$$
 
$$= \ln(ax)$$
 Or 
$$y+1 = ax$$

Written in the form

$$y' + Py = Q, (1)$$

where P and Q are functions of x.

**Example:** Decay equation

$$\frac{dN}{dt} = -\lambda N \qquad \Rightarrow \quad N' + \lambda N = 0$$

To solve Eqn. (1), we set Q=0

$$y' + Py = 0$$
 Or  $\frac{dy}{dx} = -Py$ 

Separating the variables, 
$$\frac{dy}{y} = -Pdx$$

$$\ln y = -\int Pdx + \text{constant}$$



•

$$y = Ae^{-\int Pdx},$$

ullet where  $A=e^{{
m constant}}.$  To simplify the notation for future use, put

$$I = \int P dx$$

Then

$$\frac{dI}{dx} = P$$

We can write,

$$e = Ae^{-I} (2)$$

$$y = Ae^{-I}$$
 Or  $ye^I = A$ 

(3)

We can start from Eqn. (3) and try to get Eqn. (1)

$$\frac{d}{dx}(ye^{I}) = y'e^{I} + ye^{I}\frac{dI}{dx}$$
$$= y'e^{I} + ye^{I}P$$
$$= e^{I}(y' + Py),$$

which is the L.H.S of Eqn. (1)  $\times e^I$ . Thus we can write Eqn. (1)  $\times e^I$ 

$$\frac{d}{dx}(ye^I) = e^I(y' + Py) = Qe^I$$

Since Q and  $e^I$  are functions of x only, we can now integrate both sides with respect to x;

$$ye^{I} = \int Qe^{I}dx + \text{constant}$$
  
 $y = e^{-I} \int Qe^{I}dx + Ce^{-I}$ 



where 
$$I = \int P dx$$

**Example:** Solve

$$x^2y' - 2xy = \frac{1}{x}$$

**Solution:** Writing it in the form y' + Py = Q

$$y' - \frac{2}{x}y = \frac{1}{x^3}$$

$$\Rightarrow \quad P = \frac{-2}{x} \quad \text{and} \quad Q = \frac{1}{x^3}$$

$$I = \int Pdx = \int \frac{-2}{x} dx = -2\ln x$$

Then 
$$e^I = e^{-2\ln x} = e^{\ln x^{-2}} = \frac{1}{x^2}$$



$$ye^{I} = y\left(\frac{1}{x^{2}}\right) = \int Qe^{I}dx = \int \frac{1}{x^{3}} \cdot \frac{1}{x^{2}}dx = \int x^{-5}dx$$

$$= \frac{x^{-4}}{-4} + \text{constant}$$

$$\Rightarrow y = \left(\frac{-1}{4x^{4}} + C\right)x^{2}$$

$$y = \frac{-1}{4x^{2}} + Cx^{2}$$



#### **Example:**

$$N' + \lambda N = 0$$

$$\Rightarrow P = \lambda, \quad Q = 0$$

$$\Rightarrow I = \int P dt = \int \lambda dt = \lambda t$$

$$e^{I} = e^{\lambda t}$$

$$Ne^{I} = Ne^{\lambda t} = \int Q e^{I} dt + C$$

$$= \int 0 + C(N_{0})$$

$$Ne^{\lambda t} = N_{0}$$

$$N(t) = N_{0}e^{-\lambda t}$$

## Second-Order Linear Equations with Constant Coefficients

$$a_2 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} a_0 y = 0,$$

where  $a_0$ ,  $a_1$  and  $a_2$ , are constants. The equation is homogeneous because every term contains y or a derivative of y.

**Example:** Solve the differential equation

$$y'' + 5y' + 4y = 0$$

(4)

Then we can write

$$D^2y + 5Dy + 4y = 0$$

$$\left(D^2 + 5D + 4\right)y = 0$$

$$(D+1)(D+4)y = 0$$

**Note:** To find the roots you may use

$$Dy = \frac{dy}{dx} = y', \quad D^2y = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} = y''$$

$$\frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

## Second-Order Linear Equations with Constant Coefficients

We now solve the simpler equations

$$(D+4) y = 0 (D+1) y = 0$$

$$\frac{dy}{dx} + 4y = 0 \frac{dy}{dx} + y = 0$$

$$\int \frac{dy}{y} = \int -4dx \int \frac{dy}{y} = \int -dx$$

$$y = c_1 e^{-4x} y = c_2 e^{-x}$$

Now if (D+4)y=0, then

$$(D+1)(D+4)y = (D+1) \cdot 0 = 0$$

Therefore, any solution of (D+4)y is a solution of the differential equation in Eqn. (4).

Similarly, any solution of (D+1)y=0 is a solution of Eqn. (4). Since the two solutions above are linearly independent , a linear combination of them contains two arbitrary constants and so is the general solution. Then

$$y = c_1 e^{-4x} + c_2 e^{-x},$$

is the general solution of Eqn. (4). **Note:** For a differential equation  $(D-a)(D-b)y=0, a \neq b$ , the general solution is  $y=c_1e^{ax}+c_2e^{bx}$ .

그 > 4 레 > 4 분 > 4 분 > - 분 - 4 약 ()

#### Second-Order Linear Equations with Constant Coefficients

**Example:** Find the general solution of

$$(D^2 + 1)(D^2 - 1)y = 0$$

#### Solution:

$$(D^{2} + 1)(D^{2} - 1)y = 0$$
$$(D+i)(D-i)(D+1)(D-1)y = 0$$

$$y = A_1 e^{-ix} + A_2 e^{ix} + A_3 e^{-x} + A_4 e^x$$

# Equal Roots of the Auxiliary Equation

If the two roots of the auxiliary equation are equal, the differential equation can be written as

$$(D-a)(D-a)y = 0 (5)$$

From the previous discussion,

$$y_1 = c_1 e^{ax} \quad \text{and} \quad y_2 = c_2 e^{ax}$$

here a = b

$$\Rightarrow$$
  $y_1 = y_2 = y = ce^{ax}$ 

To find the second solution for this case, we let

$$u = (D - a)y \tag{6}$$

The Eqn. (5) becomes

$$(D-a)u=0$$

From which

$$\left(\frac{d}{dx} - a\right)u = 0$$

$$\frac{du}{dx} - au = 0$$

or



# Equal Roots of the Auxiliary Equation

or

$$\frac{du}{u} = adx$$

$$\ln u = ax + d$$

$$u = Ae^{ax} (7)$$

$$(D-a)y = Ae^{ax}$$

or

$$\frac{dy}{dx} - ay = Ae^{ax}$$

Here

$$I = \int -adx = -ax$$
$$e^{I} = e^{-ax}$$

then

$$ye^{I} = ye^{-ax} = \int e^{-ax} \cdot Ae^{ax} dx = \int Adx = Ax + B$$
  
 $\Rightarrow y = (Ax + B)e^{ax}$ 

This is a first order linear equation

**Example:** Solve the differential equation

$$y'' - 6y' + 9y = 0$$

**Solution:** We can write the Eqn as

$$(D^2 - 6D + 9)y = 0$$
$$(D - 3)(D - 3)y = 0$$

Since the roots are equal, then the solution is

$$y = (Ax + B)e^{3x}$$



## Second-Order Linear Equations with Constant coefficients and Right-hand side not Zero

$$a_2 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = f(x), \tag{8}$$

or

$$\frac{d^2y}{dx^2} + \frac{a_1}{a_2}\frac{dy}{dx} + \frac{a_0}{a_2}y = F(x),$$

**Example:** Consider a differential equation

$$(D^2 + 5D + 4)y = \cos 2x \tag{9}$$

**Solution:** The solution with R.H.S equal to zero

$$(D^2 + 5D + 4)y = 0$$
$$(D+1)(D+4)y = 0$$

Solution of a complementary eqn is



26 / 52

# Second-Order Linear Equations with Constant coefficients and Right-hand side not Zero

Solution of a complementary eqn is

$$y_c = Ae^{-x} + Be^{-4x} (11)$$

Suppose we know any solution of Eqn. (9), we call that solution a particular solution and denote it by  $y_p$ .

It can be shown that

$$y_p = \frac{1}{10}\sin 2x$$

is a particular solution to Eqn. (9). Then

$$(D^2 + 5D + 4)y_p = \cos 2x \tag{12}$$

And

$$(D^2 + 5D + 4)y_c = 0 (13)$$

## Second-Order Linear Equations....

Adding Eqn. (12) and (13)

$$(D^2 + 5D + 4)(y_p + y_c) = \cos 2x$$

Thus

$$y = y_p + y_c = Ae^{-x} + Be^{-4x} + \frac{1}{10}\sin 2x$$

The general solution of an equation of the form Eqn. (8) is

$$y = y_c + y_p \tag{14}$$

where the complementary function  $y_c$  is the general solution of the homogeneous equation and  $y_p$  is a particular solution of Eqn. (8).

# Successive Integration of two first-order Equations

Example: Solve

$$y'' + y' - 2y = e^x$$

**Solution:** 

$$(D^2 + D - 2)y = e^x$$
  
 $(D+2)(D-1)y = e^x$ 

Now let

$$u = (D+2)y \tag{15}$$

Then we have

$$(D-1)u = e^{x}$$

$$Du - u = e^{x}$$

$$u' - u = e^{x},$$



which is a first-order linear differential equation. From which

$$I = \int Pdx = -\int dx = -x$$
$$ue^{-x} = \int e^{-x} \cdot e^x dx = x + c_1$$
$$u = xe^x + c_1e^x$$

Then Eqn. (15) becomes

$$(D+2)y = xe^{x} + c_{1}e^{x}$$
  

$$Dy + 2y = xe^{x} + c_{1}e^{x}$$
  

$$y' + 2y = xe^{x} + c_{1}e^{x},$$

which is a first-order differential equation



$$I = \int 2dx = 2x$$

$$ye^{2x} = \int e^{2x} (xe^x + c_1e^x) dx$$

$$= \int (xe^{3x} + c_1e^{3x}) dx$$

$$= \frac{1}{3}xe^{3x} - \frac{1}{9}e^{3x} + \frac{1}{3}c_1e^{3x} + c_2$$

$$= \frac{1}{3}xe^{3x} + d_1e^{3x} + c_2$$

$$\Rightarrow y = \frac{1}{2}xe^x + d_1e^x + c_2e^{-2x}$$

**Note:** We have obtained the general solution all in one process rather than getting the complementary and particular solutions in 2 separate processes.

4 D > 4 D > 4 E > 4 E > E 900

# **Exponential Right-Hand Side**

$$(D-a)(D-b)y = f(x) = ke^{cx},$$
 (16)

where c may also be complex. Suppose  $c \neq a$  and  $c \neq b$ 

Solving Eqn. (16) by successive integration of 2 first-order equations gives the particular solution as a multiple of  $e^{cx}$ .

**Example:** Solve the differential equation

$$(D-1)(D+5)y = 7e^{2x} (17)$$

**Solution:** Here  $c \neq -5$  and  $c \neq 1$ , i.e, is not equal to either roots of the auxiliary equation.

$$\Rightarrow y_p = Ae^{2x}$$

substitute  $y_p$  into Eqn. (17)



# **Exponential Right-Hand Side**

$$(D^{2} + 4D - 5)y = 7e^{2x}$$

$$y'' + 4y' - 5y = 7e^{2x}$$
substituting  $y = y_{p} = Ae^{2x}$ 

$$y''_{p} + 4y'_{p} - 5y_{p} = A(4e^{2x} + 8e^{2x} - 5e^{2x}) = 7e^{2x}$$

$$= A(7e^{2x}) = 7e^{2x}$$

$$\Rightarrow A = 1,$$

and the general solution is

$$y = a_1 e^x + a_2 e^{-5x} + e^{2x}$$



# Summary for a particular solution

#### Summary for a particular solution

$$y_p = Ae^{cx},$$
 if  $c \neq a$  and  $c \neq b$  
$$y_p = Axe^{cx},$$
 if  $c = a$  or  $c = b$  but  $a \neq b$  
$$y_p = Ax^2e^{cx},$$
 if  $c = a = b$ 

**Example:** Find a solution for the differential equation

$$(D-1)(D+2)y = e^x$$

**Solution:** Here c = a

$$y_n = Axe^x$$



# Summary for a particular solution

$$y'' + y' - 2y = e^{x}$$

$$y''_{p} + y'_{p} - 2y_{p} = \frac{d}{dx} (Axe^{x} + Ae^{x}) + (Axe^{x} + Ae^{x}) - 2 (Axe^{x}) = e^{x}$$

$$\Rightarrow e^{x} = (Axe^{x} + Ae^{x} + Ae^{x}) + Axe^{x} + Ae^{x} - 2Axe^{x}$$

$$3A = 1 \Rightarrow A = \frac{1}{3}$$

Therefore, the general solution is

$$y = a_1 e^x + a_2 e^x + \frac{1}{3} x e^x$$



# Use of Complex Exponentials

**Example:** Solve

$$y'' + y' - 2y = 4\sin 2x \tag{18}$$

We start by solving the equation

$$Y'' + Y' - 2Y = 4e^{2ix} (19)$$

Since

$$e^{2ix} = \cos 2x + i\sin 2x$$

$$\begin{array}{ll} Y = Y_R + i Y_I & \text{complex solution} \\ Y_R'' + Y_R' - 3 Y_R = \ Re4 e^{2ix} = 4\cos 2x \\ Y_I'' + Y_I' - 3 Y_I = \ Im4 e^{2ix} = 4\sin 2x \\ (D+2)(D-1)y = \ 4e^{2ix} \end{array}$$

# Use of Complex Exponentials

From the previous subsection,

$$Y_p = Ae^{2ix}$$

Substitution into Eqn. (19)

$$Y_R'' + Y_R' - 3Y_R = 4e^{2ix}$$

$$-4Ae^{2ix} + 4Aie^{2ix} - 2Ae^{2ix} = 4e^{2ix}$$

$$(-4+2i-2)Ae^{2ix} = 4e^{2ix}$$

$$\Rightarrow A = \frac{4}{(-6+2i)} = \frac{-1}{5}(i+3)$$

$$Y_p = \frac{-1}{5}(i+3)e^{2ix}$$

Taking the imaginary part of  $Y_p$  we find  $y_p$  for Eqn. (19)

$$y_p = -\frac{1}{5}\cos 2x - \frac{3}{5}\sin 2x$$



# Summary for the method of complex exponentials

To find the particular solution of

$$(D-a)(D-b) = \begin{cases} k\cos\alpha x \\ k\cos\alpha x \end{cases}$$

First solve

$$(D-a)(D-b) = ke^{\alpha ix}$$

and then take the real or imaginary part



#### Method of Undetermined Coefficients

- The previous method is an example of the method of undetermined coefficients.
- If the right-hand side is an exponential times a polynomial:
- A particular solution  $y_p$  of  $(D-a)(D-b)y=e^{cx}P_n(x)$ , where  $P_n(x)$  is a polynomial of degree n is

$$y_p = \left\{ \begin{array}{ll} e^{cx}Q_n(x) & \text{if c is not equal to either a or b,} \\ xe^{cx}Q_n(x) & \text{if } c \text{ equals } a \text{ or } b, a \neq b, \\ \\ x^2e^{cx}Q_n(x) & \text{if } c = a = b, \end{array} \right.$$

• where  $Q_n(x)$  is a polynomial of the same degree as  $P_n(x)$  with undetermined coefficients to be found to satisfy the given differential equation.



**Example:** Solve  $y'' + y' - 2y = x^2 - x$ 

**Solution:**  $(D-2)(D+1)y=x^2-x$ . We assume a particular solution

$$y_p = a_2 x^2 + a_1 x + a_0$$

$$y'_p = 2a_2 x + a_1$$

$$y''_p = 2a_2$$

$$y''_p + y'_p - 2y_p = 2a_2 + 2a_2 x + a_1 - 2(a_2 x^2 + a_1 x + a_0) = x^2 - x$$

Equating the coefficients of  $x^2$ ,

$$\Rightarrow -2a_2 = 1 \Rightarrow a_2 = -\frac{1}{2}$$

Using the coefficients of x,

$$\Rightarrow 2a_2 - 2a_1 = -1 \Rightarrow a_1 = 0$$
  
 $\Rightarrow 2a_2 + a_1 - 2a_0 = 0 \Rightarrow a_0 = -\frac{1}{2}$ 

$$y_p = -\frac{1}{2}(x^2 + 1)$$



For  $y_c$ 

$$y'' + y' - 2y = 0$$

$$(D^{2} + D - 2)y = 0$$

$$(D - 2)(D + 1)y = 0$$

$$y_{c} = a_{1}e^{2x} + a_{2}e^{-x}$$

$$y = y_{c} + y_{p} = a_{1}e^{2x} + a_{2}e^{-x} - \frac{1}{2}(x^{2} + 1)$$

**Exr:** Solve  $(D-3)(D+1)y = 16x^2e^{-x}$ 



# Partial Differential Equation

Laplace's equation

$$\nabla^2 u = 0, (20)$$

where u may be the gravitational potential in a region containing no matter, or electrostatic potential in a charge free region, or the steady state temperature  $\left(\frac{dT}{dt}\right)$  in the region containing no heat, or the velocity potential for an in-compressible fluid.

Poisson's equation

$$\nabla^2 u = f(x, y, z) \tag{21}$$

The diffusion or heat flow equation

$$\nabla^2 u = \frac{1}{\alpha^2} \frac{\partial^2 u}{\partial t^2},\tag{22}$$

where u is temperature.



### Partial Differential Equation

The wave equation

$$\nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2},\tag{23}$$

where u is displacement from equilibrium of a vibrating string, etc

4 Helmholtz equation

$$\nabla^2 F + k^2 F = 0, (24)$$

where F is space part (time independent part)



# Partial Differential Equation

• Laplace's equation; steady-state temperature in a rectangular plate.



$$\nabla^2 T = 0 \quad \text{ or } \quad \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0,$$

Since the boundary of the plate is rectangular.

Trial solution

$$T(x,y) = X(x)Y(y)$$
 
$$\Rightarrow Y \frac{d^2X}{dx^2} + X \frac{d^2Y}{dy^2} = 0$$
 divide throught by  $XY$  
$$\frac{1}{X} \frac{d^2X}{dx^2} + \frac{1}{Y} \frac{d^2Y}{dy^2} = 0$$
 
$$\frac{1}{X} \frac{d^2X}{dx^2} = -\frac{1}{Y} \frac{d^2Y}{dy^2} = -k^2$$
 where  $k > 0$ 

 $k^2$  is called the separation constant.

$$X'' = -k^{2}X Y'' = k^{2}Y$$

$$X'' + k^{2}X = 0 Y'' - k^{2}Y = 0$$

$$(D^{2} + k^{2})X = 0 (D^{2} - k^{2})Y = 0$$

$$(D + ik)(D - ik)X = 0 (D + k)(D - k)Y = 0$$

Solution

$$X = \begin{cases} \sin kx \\ \cos kxx \end{cases}$$
$$Y = \begin{cases} e^{ky} \\ e^{-ky}x \end{cases}$$



Thus

$$T = XY = \begin{cases} e^{ky} \sin kx \\ e^{-ky} \sin kx, \\ e^{ky} \cos kx, \\ e^{-ky} \cos kx \end{cases}$$

We put in the boundary conditions to find the solution

$$T=0$$
 at  $y=\infty$ 

It eliminates  $e^{ky}$  for k > 0

$$T=0$$
 when  $x=0$ 

It eliminates  $\cos kx$ 

We are left with  $e^{-ky}\sin kx$ 

Now 
$$T=0$$
 at  $x=10$ , this is true if  $\sin(10k)=0$ 

$$\Rightarrow k = \frac{n\pi}{10}, n = 1, 2, 3, ...$$

Hence the solution is

$$T = e^{-n\pi y/10} \sin\left(\frac{n\pi x}{10}\right)$$

**Example:** The diffusion or heat flow equation;

$$\nabla^2 u = \frac{1}{\alpha^2} \frac{\partial u}{\partial t} \tag{25}$$

Here we assume a solution of the form

$$u = F(x, y, z)T(t), \tag{26}$$

where u is temperature and T is the time dependent factor in u.



PHY1111: Mathematical Methods in Physics | Lecture | October 19, 2023 48 / 52

Put Eqn. (26) into (25)

$$T\nabla^2 F = \frac{1}{\alpha^2} F \frac{\partial T}{\partial t} \tag{27}$$

Divide through by FT

$$\frac{1}{F}\nabla^2 F = \frac{1}{\alpha^2} \frac{1}{T} \frac{\partial T}{\partial t} \tag{28}$$

The left-hand side of Eqn. (28) is a function of only space variables (x,y,z)Now we can write

$$\frac{1}{F}\nabla^2 F = -k^2$$
$$\nabla^2 F + k^2 F = 0$$

is Helmholtz equation, and

$$\frac{1}{\alpha^2} \frac{1}{T} \frac{\partial T}{\partial t} = -k^2$$
$$\frac{dT}{dt} = -k^2 \alpha^2 T$$



The time equation gives

$$\int \frac{dT}{T} = \int -k^2 \alpha^2 dt$$
$$\ln T = -k^2 \alpha^2 t$$
$$T = e^{-k^2 \alpha^2 t}$$

 $-k^2$  is negative because as t increases, T goes to zero. And  $+k^2$  means T may increase to infinity Solution for F

$$F(x) = \begin{cases} \sin kx \\ \cos kxx \end{cases}$$
$$T = XY = \begin{cases} e^{-k^2 \alpha^2 t} \sin kx \\ e^{-k^2 \alpha^2 t} \cos kx \end{cases}$$

50 / 52

# The wave equation: The vibrating string

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \tag{29}$$

to separate the variables we substitute

$$y = X(x)T(t) (30)$$

Then

$$T\frac{d^2X}{dx^2} = \frac{1}{v^2} X \frac{d^2T}{dt^2}$$
 (31)

divide through by by XT

(32)

(34)

$$\frac{1}{X}\frac{d^2X}{dx^2} = \frac{1}{v^2}\frac{1}{T}\frac{d^2T}{dt^2} = -k^2$$

$$X'' + k^2X = 0. \quad T'' + k^2v^2T = 0$$

# The wave equation: The vibrating string

Recall 
$$\nu$$
 is frequency (sec $^{-1}$ )  $\lambda$  is wavelength (m)  $v=\lambda\nu$  is velocity  $\omega=2\pi\nu$  angular frequency (in radians)  $k=\frac{2\pi}{\lambda}=\frac{2\pi\nu}{v}=\frac{\omega}{v}$  is the wave number

Solutions of Eqns. (34)

$$X = \begin{cases} \sin kx \\ \cos kxx \end{cases}$$
$$T = \begin{cases} \sin kvt = \sin \omega t, \\ \cos kvt = \cos \omega t \end{cases}$$

General solution is

$$y = XT = \begin{cases} \sin kx \sin \omega t, \\ \sin kx \cos \omega t, \\ \cos kx \sin \omega t, \\ \cos kx \cos \omega t \end{cases}$$