

Math 6201 - Topology AY 2024-2025 Term 1

James Israel B. Montillano Romelyn M. Dumanhog

University of San Carlos

MS Mathematics

Department of Computer, Information Sciences, and Mathematics

(May 2025)

Contents

1	Preliminaries	3
1.1	Sets	3
1.2	Functions, or Maps	3
1.3	Topology	3
1.4	G_{δ}	4
1.5	Relativization	4
1.6	Continuous maps and Homeomorphisms	5
2	Separation Axioms	6
2.1	T_0 and T_1 space	6
2.2	Hausdorff spaces	
2.3	Regular Spaces	9
2.4	Normal Spaces	10
2.5	Urysohn's Characterization of Normality	12
2.6	Tietze's Characterization of Normality	12
2.7	Completely Regular Spaces	12

1 Preliminaries 3

1 Preliminaries

This section reviews some fundamental concepts needed to understand the basic parts on separation axioms on topology.

1.1 Sets

Definition 1.1 — Subset. (Lipschutz, 1965) A set A is a subset of a set B or, equivalently, B is a superset of A, written $A \subset B$ or $B \supset A$ iff each element in A also belongs to B; that is, if $x \in A$ implies $x \in B$.

Definition 1.2 — Union. (Lipschutz, 1965) The union of two sets A and B, denoted by $A \cup B$, is the set of all elements which belong to A or B, i.e., $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Definition 1.3 — Intersection. (Lipschutz, 1965) The intersection of two sets A and B, denoted by $A \cap B$, is the set of elements which belong to both A and B, i.e., $A \cap B = \{x : x \in A \text{ and } x \in B\}$

Definition 1.4 — Power Sets. (Dugundji, 1966) Let A be any set. Its power set $\mathcal{P}(A)$ is the set of all subsets of A.

Definition 1.5 — Countable. (Dugundji, 1966) A set *A* is countable if it is finite or equivalent to the set \mathbb{N} of counting numbers. If $A \equiv N$, then *A* is called countably infinite or denumerable.

1.2 Functions, or Maps

Definition 1.6 — Map. (Dugundji, 1966) Let X and Y be two sets. A map $f: X \to Y$ (or function with domain X and range Y) is a subset $f \subset X \times Y$ with the property: for each $x \in X$, there is one, and only one, $y \in Y$ satisfying $(x,y) \in f$. To denote $(x,y) \in f$, we write y = f(x) and say that y is the image of x under f.

Definition 1.7 — Surjective function. (Holmes, 2008) Let $f: X \to Y$ be a function. We say that f is surjective if for each $y \in Y$, there exists $x \in X$ such that f(x) = y

Definition 1.8 — Injective function. (Holmes, 2008) Let $f: X \to Y$ be a function. We say that f is injective if $f(x_1) = f(x_2)$ implies $x_1 = x_2(x_i \in X)$

Definition 1.9 — Bijective function. (Holmes, 2008) Let $f: X \to Y$ be a function. We say that f is bijective if it is both injective and surjective.

1.3 Topology

Definition 1.10 — Topology. (Dugundji, 1966) Let X be a set. A *topology* (or topological structure) in X is a family τ of subsets of X that satisfies:

- (1). Each union of members of τ is also a member of τ .
- (2). Each *finite* intersection of members of τ is also a member of τ .

1.4 G_{δ}

- (3). \emptyset and X are members of τ .
- Example 1.1 Discrete topology. Let X be any set and $\tau = \mathscr{P}(X)$. Then τ is a topology on X.

Proof.

- 1. Clearly, $X, \emptyset \in \tau$
- 2. Since every possible subset of X is included in τ , the union of any combination of these subsets will always result in another subset of X, which is already in τ .
- 3. Since all subsets are open, the intersection of any finite number of them will still be a subset of X, hence in τ .

Thus, τ is a topology on X.

■ Example 1.2 — Indiscrete topology. Let X be any set and $\tau = \{X, \emptyset\}$. Then τ is a topology on X

Proof.

- 1. $X \in \tau$ and $\emptyset \in \tau$
- 2. $X \cup X = X \cup \emptyset = X \in \tau$ $\emptyset \cup \emptyset = \emptyset \in \tau$
- 3. $X \cap X = X \in \tau$ $X \cap \emptyset = \emptyset \cap \emptyset = \emptyset \in \tau$

Thus, τ is a topology on X.

Definition 1.11 — Open sets. (Morris, 2020) Let (X, τ) be a topological space. Then the members of τ are said to be *open sets*.

Definition 1.12 — Closed sets. (Morris, 2020) Let (X, τ) be a topological space. A subset S of X is said to be *closed set* in (X, τ) if its complement in X, namely $X \setminus S$, is open in (X, τ) .

Definition 1.13 — Neighborhood. (Holmes, 2008) Let $x \in X$. Any open set containing x is called a neighborhood of x.

1.4 G_{δ}

Definition 1.14 (Dugundji, 1966) A set G is called G_{δ} if it is the intersection of at most countably many open sets.

1.5 Relativization

Definition 1.15 — Subspace topology. (Dugundji, 1966) Let (X, τ) be a topological space and $Y \subset X$. The induced topology τ_Y on Y is $\{Y \cap U : U \in \tau\}$. The pair (Y, τ_Y) is called a subspace of (X, τ) .

1.6 Continuous maps and Homeomorphisms

Definition 1.16 — Continuous maps. (Belleza, 2025) Let (X, τ_X) and (Y, τ_Y) be topological spaces. A map $f: X \to Y$ is called *continuous* if the inverse image of each open set in Y is open in X. That is, f^{-1} maps $\tau_Y \to \tau_X$.

■ **Example 1.3** Let (X, τ) be any topological space and $f: (X, \tau) \to (X, \tau)$ is defined by f(x) = x for all $x \in X$. Then f is continuous.

Proof. To show that f is continuous, we need to verify that the inverse image of every open set in $Y = (X, \tau)$ is open in $X = (X, \tau)$.

Let O be an arbitrary open set in Y. By definition, $f^{-1}(O) = \{x \in X \mid f(x) \in O\}$. Since f(x) = x, this simplifies to $f^{-1}(O) = \{x \in X \mid x \in O\} = O$. Since O is open in O, and O has the same topology as O, O is also open in O. Thus, $f^{-1}(O) = O$ is open in O. Since the inverse image of every open set in O is open in O, the identity map O is continuous.

Not every identity function is continuous. To see this, let $X = \{1, 2, 3, 4\}$, and define two topologies on X, $\tau_1 = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, X\}$, $\tau_2 = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, \{2\}, \{1, 2, 3\}, X\}$. Clearly, τ_1 and τ_2 are topologies on X. Then $i: (X, \tau_1) \to (X, \tau_2)$ defined by i(x) = x for all $x \in X$ is not continuous, since there exists $\{2\} \in \tau_2$ such that $i^{-1}(\{2\}) = \{2 \notin \tau_1$.

Definition 1.17 — Homeomorphism. (Dugundji, 1966) A continuous bijective map $f: X \to Y$, such that $f^{-1}: Y \to X$ is also continuous, is called a homeomorphism (or a bicontinuous bijection) and denoted by $f: X \cong Y$. Two spaces X, Y are homeomorphic, written $X \cong Y$, if there is a homeomorphism $f: X \cong Y$.

- **Example 1.4** The identity map $1: X \to X$ is a homeomorphism.
- **Example 1.5** Two discrete spaces X and Y (similarly, for indiscrete spaces), are homeomorphic if and only if there is a one-to-one function on X onto Y.

Proof. In a discrete space, every subset is open. Let $f: X \to Y$ be a bijection (one-to-one and onto). We will show that f is a homeomorphism. To show f is continuous, the preimage of any open set in Y must be open in X. Since Y is discrete, every subset of Y is open. Thus, for any open $V \subseteq Y$, $f^{-1}(V) \subseteq X$. Because X is discrete, $f^{-1}(V)$ is open in X. Hence, f is continuous. Similarly, $f^{-1}: Y \to X$ is a bijection. For any open $U \subseteq X$, $(f^{-1})^{-1}(U) = f(U) \subseteq Y$. Since X is discrete, U is open, and since U is discrete, U is open in U. Thus, U is continuous. Hence, U is a bijection, continuous, and its inverse U is also continuous. Therefore, U is a homeomorphism, and U is U is a homeomorphism, and U is a homeomorphism.

Definition 1.18 — Topological Invariant. We call any property of spaces a topological invariant if whenever it is true for one space X, it is also true for every space homemorphic to X

2 Separation Axioms

Separation axioms are a family of topological invariants that give us new ways of distinguishing between various spaces. The idea is to look how open sets in a space can be used to create "buffer zones" separating pairs of points and closed sets. Separations axioms are denoted by T_0 T_1 , T_2 , etc., where T comes from the German word Trennungsaxiom, which just means "separation axiom" (Schechter, 1996).

2.1 T_0 and T_1 space

Definition 2.1 — T_0 space or Kolmogorov Space. (Milewski, 1994) The space (X, \mathcal{T}) is said to be a T_0 -space, if for any two distinct $a, b \in X$, there is a neighborhood of at least one, which does not contain the other

■ Example 2.1 Let $X = \{a, b, c\}$ with topology $\tau = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\}$ defined on X, then (X, τ) is a T_0 space

Proof.

- 1. for a and b, there exists an open set $\{a\}$ such that $a \in \{a\}$ and $b \notin \{a\}$
- 2. for a and c, there exists an open set $\{a\}$ such that $a \in \{a\}$ and $c \notin \{a\}$
- 3. for b and c, there exists an open set $\{b\}$ such that $b \in \{b\}$ and $c \notin \{b\}$

Example 2.2 The space $X = \{a, b\}$ with the indiscrete topology is not a T_0 space

Proof. The two distinct points a and b in X is contained only in the open set X. Thus, it is not a T_0 space.

Definition 2.2 — T_1 -space or Fréchet Space . (Milewski, 1994) A topological space (X, \mathcal{T}) is called a T_1 -space, if every single element set is closed, that is, $\forall a \in X, \{a\} = \overline{\{a\}}$.

Theorem 2.1 A topological space (X, τ) is a T_1 space if and only if for any pair of distinct points $a, b \in X$, the open sets $G, H \in \tau$ exist, such that $a \in G$, $b \notin G$ and $b \in H$, $a \notin H$

Proof. Suppose *X* is a T_1 -space. Then, for any $x \in X$, $\{x\}$ is a closed set. Let $a, b \in X$ and $a \neq b$. The sets $X - \{a\}$ and $X - \{b\}$ are open, and

$$a \in X - \{b\}$$
 and $b \notin X - \{b\}$

$$b \in X - \{a\}$$
 and $a \notin X - \{a\}$.

Conversely, suppose $x \in X$. We shall show that $\{x\}$ is closed, i.e., $X - \{x\}$ is open. Let $y \in X - \{x\}$, then $y \neq x$ and an open set H_y exists, such that

$$y \in H_y$$
 and $x \notin H_y$.

Thus,

$$y \in H_y \subseteq X - \{x\}$$
 and $X - \{x\} = \bigcup_{y \neq x} H_y$.

Since all H_{y} are open sets, $X - \{x\}$ is open and $\{x\}$ is closed, $\{x\} = \overline{\{x\}}$.

Example 2.3 Consider the set $X = \{a, b, c\}$ with the cofinite topology,

$$\tau = \{X, \emptyset, a, b, c, \{a, b\}, \{a, c\}, \{b, c\}\}.$$

Verify that (X, τ) is a T_1 space.

Proof. The complement of $\{a\}$ is $\{b,c\}$, which is open (its complement $\{a\}$ is finite). Similarly, $\{b\}^c = \{a,c\}$ and $\{c\}^c = \{a,b\}$ are open. By Definition 2.2, since every singleton is closed, X is T_1 . For a and b, there exist open sets $\{a\}$ and $\{b\}$ such that $a \in \{a\}$, $b \notin \{a\}$ and $b \in \{b\}$, $a \notin \{b\}$. This satisfies the condition in Theorem 2.1, confirming X is T_1 .

Thus,
$$(X, \tau)$$
 is a T_1 space.

Example 2.4 The Sierpinski Space is T_0 but not T_1

Proof. Recall that a *Sierpiński space* is the topological space $X = \{x, y\}$ with the topology given by $\{X, \{x\}, \emptyset\}$. It is T_0 because for x and y the open set $\{x\}$ contains x but not y. It is not T_1 because every open set U containing y (which is only X) contains x.

Theorem 2.2 (Milewski, 1994) A T_1 space is also a T_0 space.

Proof. Let X be a T_1 space then clearly from its definition it follows that it is also a T_0 space. Since with any pair $a, b \in X$ there exist an open set G with $a \in G$ and $b \notin G$.

Theorem 2.3 (Milewski, 1994) If (X, τ) and (Y, τ') are homeomorphic and (X, τ) is a T_1 -space (or T_0) then so is (Y, τ')

Proof. Let f denote a homeomorphism

$$f: X \to Y$$

and X be a T_1 -space. A space (X, τ) is T_1 , if and only if every one-point subset of X is closed. Let y represent any point of Y, $y \in Y$. The set $f^{-1}(y)$ is a one-point subset of X and since X is T_1 , the set $\{f^{-1}(y)\}$ is closed.

Since $f: X \to Y$ is a homeomorphism, it maps closed sets into closed sets. Therefore, for any $y \in Y$

$$\{y\} = \overline{\{y\}}.$$

Thus, (Y, τ) is a T_1 -space. Similarl proof can be done to when if X is T_0 , then so is Y.

2.2 Hausdorff spaces

Definition 2.3 — T_2 -space or Hausdorff space. (Dugundji, 1966) A space X is Hausdorff (or separated) if each two distinct points have nonintersecting nbds, that is, whenever, $p \neq q$ there are nbds U(p), V(q) such that $U \cap V = \emptyset$.

Example 2.5 The real line R with the standard topology is a Hausdorff space.

Proof. For any two distinct points $x, y \in \mathbb{R}$, let d = |x - y| > 0. Then the open intervals

$$U = \left(x - \frac{d}{2}, x + \frac{d}{2}\right)$$
 and $V = \left(y - \frac{d}{2}, y + \frac{d}{2}\right)$

are disjoint neighborhoods of x and y, respectively. Thus, \mathbb{R} is Hausdorff.

Theorem 2.4 (Milewski, 1994) Each Hausdorff space is a T_1 space.

Proof. Suppose X is a Hausdorff space. Then from the definition, for two distinct points x and y, there exist two open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Thus, $x \notin V$ and $y \notin U$, by Theorem 2.1, X is also a T_1 space.

Theorem 2.5 (Milewski, 1994) Each Hausdorff space is a T_0 space

Proof. Suppose X is a Hausdorff space. Then from Theorem 2.4 and Theorem 2.2, it is also a T_0 space.

Theorem 2.6 (Dugundji, 1966) The following three properties are equivalent

- 1. X is Hausdorff.
- 2. Let $p \in X$. For each $q \neq p$, there is a nbd U(p) such that $q \notin U(p)$.
- 3. For each $p \in X$, $\bigcap \{\overline{U} \mid U \text{ is a nbd of } p\} = \{p\}$.

Theorem 2.7 Every subspace of a Hausdorff space is Hausdorff

Theorem 2.8 If (X, τ) and (Y, τ') are homeomorphic and (X, τ) is a T_2 -space then so is (Y, τ')

Proof. Let f denote a homeomorphism, $f: X \to Y$ and X be a T_2 -space. Now f is a continuous bijective map hence two distinct points x_1, x_2 of X exist such that $f^{-1}(y_1) = x_1, f^{-1}(y_2) = x_2$. (X, τ) is a Hausdorff space, therefore, there are two open sets $U_1, U_2 \subset X$, such that

$$x_1 \in U_1, \quad x_2 \in U_2, \quad U_1 \cap U_2 = \emptyset.$$

Since f is bijective,

$$f(U_1) \subset Y$$
, $f(U_2) \subset Y$
 $f(U_1) \cap f(U_2) = \emptyset$

Now, since f^{-1} is continuous, the function $(f^{-1})^{-1} = f$ maps open sets into open sets. Hence, $f(U_1), f(U_2) \in T'$ are open sets.

$$y_1 \in f(U_1), \quad y_2 \in f(U_2)$$

We conclude that (Y, τ') is a T_2 -space. If two spaces are homeomorphic and one of them is a T_2 -space, then so is the other.

2.3 Regular Spaces

Definition 2.4 — **Regular space.** (Milewski, 1994) A topological space (X, \mathcal{T}) , is said to be regular if, given any closed subset $F \subset X$ and any point $x \in X$, such that $x \notin F$, there are open sets U and V, such that

$$F \subset U$$
, $x \in V$, and $U \cap V = \emptyset$

Definition 2.5 — T_3 -space or Regular Hausdorff space. A space is a T_3 -space or Regular Hausdorff space if it is both a Hausdorff space and a regular space.

Note that some authors switch the definition of "Regular" and " T_3 ". Some also defines them equivalently, such as Dugundji (1966). Some also defined T_3 by the theorems below. For this lecture notes, we use the definitions that was stated above.

- ightharpoonup A regular space need not be a T_1 -space.
- **Example 2.6** Consider the topology $\tau = \{X, \emptyset, \{a\}, \{b,c\}\}$ on the set $X = \{a,b,c\}$. Observe that the closed subsets of X are also X, \emptyset , $\{a\}$ and $\{b,c\}$ and that (X,τ) does satisfy Definition 2.4. On the other hand, (X,τ) is not a T_1 -space since there are single element sets, e.g. $\{b\}$, which are not closed.

Theorem 2.9 A space is T_3 if and only if it is both regular and T_0

Proof. Suppose a space is T_3 then by the definition, it is both regular and T_2 . By Theorem 2.5, it is also T_0 . For the converse, suppose a space is both a regular and T_0 . Now let $a, b \in X$ represents distinct points. Since the space is T_0 , there is a neighborhood of at least one, which does not contain the other. Thus, let $a \notin U(b)$ then $a \notin \overline{U(b)}$. By regularity, there

exist open sets G and V s.t $\overline{U(b)} \subset G$ and $a \in V$ where $G \cap V = \emptyset$. This implies that the space is also Hausdorff and hence also a T_3 space.

Theorem 2.10 A space is T_3 if and only if it is both regular and T_1

Theorem 2.11 (Dugundji, 1966) The following three properties are equivalent

- 1. X is a T_3 space
- 2. For each $x \in X$ and nbd U of x, there exists a nbd V of x with $X \in V \subset \overline{V} \subset U$.
- 3. For each $x \in X$ and closed A not containing x, there is a nbd V of x with $\bar{V} \cap A = \emptyset$.

Theorem 2.12 Every subspace of a regular space is regular

Proof. Let Y be a regular space and $X \subset Y$ a subspace. Let $B \subset X$ be closed in X, and let $x_0 \in X \setminus B$. Since B is closed in X, there exists a closed set $A \subset Y$ such that $B = X \cap A$. Note that $x_0 \notin A$ because $x_0 \in X \setminus B$. By the regularity of Y, there exist disjoint open sets U and V in Y such that $x_0 \in U$ and $A \subset V$. The sets $U \cap X$ and $V \cap X$ are open in X (by the definition of the subspace topology), $x_0 \in U \cap X$, and $B = X \cap A \subset V \cap X$. Since U and V are disjoint in Y, their intersections with X are also disjoint in X.

Thus, X is regular.

Theorem 2.13 Any subspace of a T_3 -space is a T_3 -space

Proof. A T_3 -space is a regular Hausdorff space. By Theorem 2.12 and theorem 2.7, its subspace is also a regular Hausdorff space or a T_3 -space.

2.4 Normal Spaces

Definition 2.6 — **Normal Space.** (Milewski, 1994) A topological space (X, T) is said to be normal if, given any two disjoint closed sets F_1 and F_2 in X, there are disjoint open sets U and V, such that

$$F_1 \subset U$$
 and $F_2 \subset V$

Definition 2.7 — T_4 -space of Normal Hausdorff space. A space is a T_4 -space or Normal Hausdorff space if it is both a Hausdorff space and a normal space

Similarly with regular spaces, some authors switch the definition of "Normal" and " T_4 ". Some also defines them equivalently, such as Dugundji (1966). For this lecture notes, we use the definitions that are stated above.

Example 2.7 Discrete spaces are T_4 spaces

Proof. For any two distinct points $x, y \in X$, the singleton sets $\{x\}$ and $\{y\}$ are open and disjoint. Thus, X is Hausdorff. Now, Let F_1 and F_2 be disjoint closed sets in X. In the discrete topology, every set is open, so F_1 and F_2 themselves are open. Thus, we can take

 $U = F_1$ and $V = F_2$ as disjoint open sets containing F_1 and F_2 respectively. This shows that X is normal. Since X is both Hausdorff and normal, it is a T_4 -space.

■ **Example 2.8** Any space (X, τ) , containing more than one point with the indiscrete topology is Normal.

Proof. The indiscrete topology consists of two sets X and ϕ .

$$T = \{X, \phi\}.$$

Hence, the only closed sets are X and ϕ because $X - \phi = X$ and $X - X = \phi$. Thus, there are no non-empty disjoint closed subsets of X. The space is normal.

Theorem 2.14 Every T_4 -spaces are T_3 -spaces

Proof. Let (X,T) denote a T_4 -space. Hence, (X,T) is normal and T_1 . Suppose F is a closed subset of X and $a \in F$. Since (X,T) is T_1 , the singleton set $\{a\}$ is closed. Sets F and $\{a\}$ are closed and disjoint. Since (X,T) is normal, the open sets U_1 and U_2 exist, such that

$$\{a\} \subset U_1, \quad F \subset U_2, \quad U_1 \cap U_2$$

. Therefore (X, T) is regular and T_3

Theorem 2.15 The following four properties are equivalent

- 1. X is T_4 .
- 2. For each closed A and open $U \supset A$ there is an open V with $A \subset V \subset \overline{V} \subset U$.
- 3. For each pair of disjoint closed sets A, B, there is an open U with $A \subset U$ and $\bar{U} \cap B = \emptyset$.
- 4. Each pair of disjoint closed sets have nbds whose closures do not intersect.

Theorem 2.16 A closed subspace of a T_4 space is T_4 .

Proof. Let X be a T_4 space and Y be a closed subspace of X. Since every subspace of a T_1 -space is T_1 and X is T_1 also, Y is a T_1 -space. Since Y is closed, a subset F of Y is closed in Y, if and only if F is closed in X. Hence, if F_1 and F_2 are disjoint closed subsets of Y, they are also disjoint closed subsets of X.

Thus, the open sets U_1 and U_2 exist, such that

$$F_1 \subset U_1$$
, $F_2 \subset U_2$ and $U_1 \cap U_2 = \emptyset$.

Then

$$F_1 \subset U_1 \cap Y$$
, $F_2 \subset U_2 \cap Y$,

and $U_1 \cap Y$ and $U_2 \cap Y$ are disjoint subsets of Y, open in Y. Since (Y, T_Y) is T_1 and normal, it is T_4 .

A subspace of a normal space need not be normal.

Definition 2.8 — Completely normal space. A space X is completely normal if every pair of sets A, B satisfying $\bar{A} \cap B = A \cap \bar{B} = \emptyset$ can be separated. That is there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 2.9 — T_5 -spaces or completely normal Hausdorff spaces. A space that is both Hausdorff and completely normal is a T_5 space.

2.5 Urysohn's Characterization of Normality

Theorem 2.17 — Urysohn Lemma. (Dugundji, 1966) The following two properties are equivalent:

- 1. X is T_4 .
- 2. For each pair of disjoint closed sets, A, B in X, there exists a continuous $f: X \to \mathbb{R}$, called a Urysohn function for A, B, such that:
 - (a) 0 < f(x) < 1 for all $x \in X$
 - (b) f(a) = 0 for all $a \in A$.
 - (c) f(b) = 0 for all $b \in B$.

Corollary 2.18 (Dugundji, 1966) A necessary and sufficient condition for the existence of a Urysohn function satisfying $A = f^{-1}(0)$ is that A be a G_{δ} .

Corollary 2.19 (Dugundji, 1966) A necessary and sufficient condition that there be a Urysohn function f with $A = f^{-1}(0)$, $B = f^{-1}(1)$ is that both A and B be G_{δ} .

Definition 2.10 — T_6 -spaces or perfectly normal Hausdorff spaces. A T_4 space in which each closed set is a G_δ is a T_6 space.

Theorem 2.20 Every T_6 space is a T_5 space.

2.6 Tietze's Characterization of Normality

Theorem 2.21 — H. Tietze Theorem. (Dugundji, 1966) The following two properties are equivalent:

- 1. X is a T_4 -space
- 2. For every closed $A \subset X$, each continuous $f : A \to \mathbb{R}$ has a continuous $f : X \to \mathbb{R}$. Furthermore, if |f(a)| < c on A, then F can be chosen so that |F(x)| < c on X.

2.7 Completely Regular Spaces

Definition 2.11 — Completely regular space. (Dugundji, 1966) A space is completely regular if for each point $p \in X$ and closed A not containing p, there is a continuous $\varphi: X \to [0,1]$ such that $\varphi(p) = 1$ and $\varphi(a) = 0$ for each $a \in A$

Theorem 2.22 Every completely regular space is regular

Proof. Let F represent a closed subset of X and $a \in X$ a point which does not belong to F. By hypothesis, a continuous function

$$f: X \rightarrow [0,1]$$

exists, such that $f(F) = \{1\}$ and f(a) = 0. An interval [0,1] is a Hausdorff space. Hence, two open disjoint subsets U_1 and U_2 of [0,1] exists, such that

$$0 \in U_1$$
 and $1 \in U_2$.

Since f is continuous, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are open. These subsets are disjoint such that

$$a \in f^{-1}(U_1), \quad F \subset f^{-1}(U_2).$$

Hence, (X,T) is regular.

Definition 2.12 — Tychonoff space. A completely regular Hausdorff space is a Tychonoff space.

Theorem 2.23 (Dugundji, 1966) Every subspace of a Tychonoff space is Tychonoff.

REFERENCES 14

References

Belleza, K. (2025). Continuous maps (general topology). [Last accessed 19 May 2025]. https://drive.google.com/file/d/1C4QofGsse0Id7WWCgmd424qTMKC51sfJ/view Dugundji, J. (1966). *Topology*. Allyn; Bacon, Inc.

Holmes, R. R. (2008). *Introduction to topology*. https://api.semanticscholar.org/CorpusID: 13883851

Lipschutz, S. (1965). Schaum's outline of general topology. McGraw-Hill.

Milewski, E. G. (1994). *Topology problem solver*. Research & Education Assoc.

Morris, S. A. (2020). *Topology without tears* [Version of June 28, 2020]. Self-published. http://www.topologywithouttears.net

Schechter, E. (1996). Handbook of analysis and its foundations. Academic Press.