- 1. Rudin, page 138. Problems 1 6, 8.
 - 1. Suppose α increases on [a,b], $a \leq x_0 \leq b$, α continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.

Solution

Clearly, if a = b, $\int f d\alpha = 0$, so suppose a < b. Further suppose that $x_0 < b$ (a similar argument works for $x_0 = b$).

Given $\epsilon > 0$, let $\delta > 0$ be such that $|\alpha(x) - \alpha(x_0)| < \epsilon$ whenever $|x - x_0| < \delta$ (possible since α is continuous at x_0) and such that $x_0 + \delta/2 \le b$. Let P be the partition $\{a, x_0, x_0 + \delta/2, b\}$. Then, evidently, $0 \le U(P, f, \alpha) = \alpha(x_0 + \delta/2) - \alpha(x_0) < \epsilon$, and since ϵ was arbitrary, we conclude that

$$\overline{\int} f d\alpha = \inf U(P, f, \alpha) = 0.$$

Further, by the nonnegativity of f,

$$0 \le \int \! f d\alpha \le \overline{\int} f d\alpha$$

and we conclude the upper and lower integrals are equal to each other and to 0, hence $\int f d\alpha = 0$.

2. Suppose $f \ge 0$, f is continuous on [a,b], and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a,b]$. (Compare this with Exercise 1.)

Solution

Suppose $f(x_0) > 0$ for some $x_0 \in [a, b]$. Then given some $\epsilon > 0$, there exists some neighborhood $[c, d] \subset [a, b]$, c < d, containing x_0 and such that $f(x) > \epsilon$ for $x \in [c, d]$, by continuity of f. By the nonnegativity of f, then,

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx \ge \epsilon(d-c) > 0,$$

a contradiction. It follows that $f \equiv 0$ on [a, b].

- 3. Define three functions $\beta_1, \beta_2, \beta_3$ as follows: $\beta_j(x) = 0$ if x < 0, $\beta_j(x) = 1$ if x > 0 for j = 1, 2, 3; and $\beta_1(0) = 0$, $\beta_2(0) = 1$, $\beta_3(0) = \frac{1}{2}$. Let f be a bounded function on [-1, 1].
 - (a) Prove that $f \in \mathcal{R}(\beta_1)$ if and only if f(0+) = f(0) and that then

$$\int f\beta_1 = f(0).$$

- (b) State and prove a similar result for β_2 .
- (c) Prove that $f \in \mathcal{R}(\beta_3)$ if and only if f is continuous at 0.
- (d) If f is continuous at 0 prove that

$$\int f d\beta_1 = \int f d\beta_2 = \int f d\beta_3 = f(0).$$

Solution

(a) Suppose that $f \in \mathcal{R}(\beta_1)$, and let $\epsilon > 0$. Then, by Theorem 6.6, there exists a partition P such that

$$U(P, f, \beta_1) - L(P, f, \beta_1) < \epsilon.$$

Let $P^* = P \cup \{0\}$ and δ the minimum positive element of P. Then

$$U(P, f, \beta_1) = (\beta_1(\delta) - \beta_1(0)) \sup_{x \in [0, \delta]} f(x) = \sup_{x \in [0, \delta]} f(x),$$

$$L(P, f, \beta_1) = (\beta_1(\delta) - \beta_1(0)) \inf_{x \in [0, \delta]} f(x) = \inf_{x \in [0, \delta]} f(x).$$

In particular, then, for any $x \in [0, \delta]$,

$$|f(x) - f(0)| < \epsilon,$$

from which it follows that f(0+) = f(0).

Now suppose that f(0+) = f(0), and let $2\epsilon > 0$. Then there exists a $\delta > 0$ such that

$$|f(x) - f(0)| < \epsilon$$

whenever $x \in [0, \delta]$. We then take $P = \{a, 0, \delta, b\}$ $(a \le 0 \text{ and } b \ge \delta \text{ defining the relevant interval})$ and see that, as before,

$$U(P, f, \beta_1) = \sup_{x \in [0, \delta]} f(x),$$

$$L(P, f, \beta_1) = \inf_{x \in [0, \delta]} f(x),$$

and since f(x) is within ϵ of f(0) for all $x \in [0, \delta]$,

$$U(P, f, \beta_1) - L(P, f, \beta_1) < 2\epsilon,$$

implying that $f \in \mathcal{R}(\beta_1)$, by Theorem 6.6.

Further, $U(P, f, \beta_1)$ and $L(P, f, \beta_1)$ can be made within ϵ of f(0), for ϵ arbitrary, hence $\int f\beta_1 = f(0)$.

(b) The proof of the following claim is almost precisely the same as above: $f \in \mathcal{R}(\beta_2)$ if and only if f(0-) = f(0), and in that case $\int f d\beta_2 = f(0)$.

(c)

$$\int_0^b f d\beta_3 = \frac{1}{2} \int_0^b f d\beta_1$$

exists if and only if f(0+) = f(0), and

$$\int_{a}^{0} f d\beta_3 = \frac{1}{2} \int_{a}^{0} f d\beta_2$$

exists if and only if f(0-) = f(0), hence

$$\int_a^b f d\beta_3$$

exists if and only if f is continuous at 0.

(d) We know that

$$\int_a^0 f d\beta_1 = \int_0^b f d\beta_2 = 0,$$

hence, from the above equalities,

$$\int_a^b f d\beta_1 = \int_a^b f d\beta_2 = \int_a^b f d\beta_3 = f(0).$$

4. If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that $f \notin \mathcal{R}$ on [a,b] for any a < b.

Solution

For any partition $P = \{x_i\},\$

$$U(P, f) = \sum M_i \Delta x_i = \sum (b - a) \Delta x_i = b - a,$$

while

$$L(P, f) = \sum m_i \Delta x_i = \sum (0) \Delta x_i = 0,$$

hence $f \notin \mathcal{R}$.

5. Suppose f is a bounded real function on [a,b], and $f^2 \in \mathcal{R}$ on [a,b]. Does it follow that $f \in \mathcal{R}$? Does the answer change if we assume that $f^3 \in \mathcal{R}$?

Solution

No; take f such that f(x) = 1 for x rational and f(x) = -1 for x irrational. $f^2 \equiv 1$, hence $f^2 \in \mathcal{R}$, but $f \notin \mathcal{R}$.

Yes; apply Theorem 6.11 to $\phi(y) = y^{1/3}$, which is continuous everywhere.

6. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function on [0,1] which is continuous at every point outside P. Prove that f ∈ R on [0,1]. Hint: P can be covered by finitely many segmenets whose total length can be made as small as desired. Proceed as in Theorem 6.10.

Solution

8. Suppose $f \in \mathcal{R}$ on [a, b] for every b > a where a is fixed. Define

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

if this limit exists (and is finite). In that case, we say that the integral on the left converges. If it also converges after f has been replaced by |f|, it is said to converge absolutely.

Assume that $f(x) \geq 0$ and that f decreases monotonically on $[1, \infty)$. Prove that

$$\int_{1}^{\infty} f(x)dx$$

converges if and only if

$$\sum_{n=1}^{\infty} f(n)$$

converges. (This is the so-called "integral test" for convergence of series.)

Solution

The inequalities

$$\int_{1}^{N} f(x)dx \le \sum_{n=1}^{N-1} f(n)$$

and

$$\sum_{n=1}^{N} f(n) \le f(1) + \int_{1}^{N} f(x) dx,$$

for integral $N \ge 1$, establish the convergence result (these follow from the fact that f is monotonically decreasing).