Deep Learning scaling is predictable (empirically)

Greg Diamos

December 9, 2017

Al

Al is like electricity

Deep Learning scales

Why?

Why do deep neural networks scale so well?

How much data do we need?

How fast do computers need to be?

This talk: looking deeper

SVAIL's ASIMOV supercomputer

 We used a 11 PFLOP/s GPU supercomputer to study deep learning scaling

• 1500 GPUs

• 2 months training time

• **This experiment would cost over \$2 million USD if performed on AWS**

Application domains

Speech Recognition

Computer Vision

Speech Synthesis

Natural Language Understanding

State of the art neural nets

CONV + RNN

SPRECTRA NET

Methodology

Generalization error scaling

Generalization error scaling

Deep Speech

Neural Language Model

Model size scaling data

Model size scaling data

Resnet50 Object Detection

Neural Language Model

What do you think?

We find: generalization error scaling consistently follows a power-law

We find: model size scales sublinearly

Acknowledgements

The Deep Learning Recipe

Data-limited problems

Compute-limited problems

Solved problems

log(Error)

Impossible problems

log(Error)

Implications

#1: Data is extremely valuable

If all you need is scale, then we should invest in data

How can we reduce the cost to collect and label data?

#2: Achievable error follows Moore's Law

Random Guessing Power-Law Scaling Acceptable Error Irreducible Error (model bias, Bayes Error, etc)

log(Error)

#2: Achievable error follows Moore's Law

Time

#2: Achievable error follows Moore's Law

Error) og(Achievable

#3: Requirements are predictable

We can now predict

How much data we need

How fast computers need to be

#4: Model architecture search

- Search may be feasible in the small data regime
 - if architecture affects the intercept, not the slope

- Caveats:
 - variance
 - models with different irreducible error

We need you!

Reproduce our work

Build AI Data Centers

Join Us!

http://bit.ly/join-svail

Deep Learning scaling is predictable (empirically)

http://research.baidu.com/deep-learning-scaling-predictable-empirically/https://arxiv.org/abs/1712.00409

Greg Diamos
December 9, 2017

