

LES10A020 Engineering Physics

by Assoc. Prof. Jukka Paatero

Developing the Concepts of Thermodynamics

Heat Quantity

Heat Quantity needed to heat up substance was defined in the book as

$$Q = mc\Delta T$$

- However, the heat capacity c can not always be considered constant, but a function of temperature T.
- Using a differential change in the quantities, we get

$$dQ = mc(T)dT$$

• Integrating both sides, we get for temperature range $T_1 \dots T_2$

$$Q = m \int_{T_1}^{T_2} c(T) dT$$

 When the heat capacity is assumed to be constant, this gives back the original equation.

Example 1: NaCl at Low T

 At low temperatures (<15K) we can approximate the heat capacity of NaCl with equation

$$c(T) = 3.33 \cdot 10^6 \frac{J}{\text{kg·K}} \left(\frac{T}{321 \text{K}}\right)^3$$

• Using this knowledge, how much heat is required to lift the temperature of 24g of NaCl from 5K to 15K?

•

Example 1: Solution

Using the result from before, we have

$$Q = m \int_{T_1}^{T_2} c(T) dT$$

Substituting the non-linear heat capacity, we get

$$Q = 0.024 \text{ kg} \cdot \int_{T_1}^{T_2} 3.33 \cdot 10^6 \frac{J}{\text{kg} \cdot \text{K}} \left(\frac{T}{321 \text{K}}\right)^3 dT$$
$$= \left(6.04 \cdot 10^{-4} \frac{J}{\text{K}^4}\right) T^4 \begin{vmatrix} 15 \text{K} \\ 5 \text{K} \end{vmatrix} = 0.302 \text{ J}$$

• The value would be quite different, had we used the heat capacity for room temperature 880 J/kg·K.

Conduction Revisited

 Let us look in more detail the Conduction chapter in the Dirks & Sharma: College Physics, <u>Chapter 14.5</u> and the examples there.

Differential Conduction

For the power of heat linear transfer, we can write

$$P = Q/t = \frac{kA(T_2 - T_1)}{d}$$

- Above k is the thermal conductivity of the material in question.
- Using differential equations, the power of heat transfer can be rewritten as

$$P = \frac{dQ}{dt} = -kA\frac{dT}{dx}$$

- This equation can now be solved for non-linear situations via integration.
 - Typically, k(x) can be non-linear in non-homogenous substances.
- Phase change calculations do not benefit from differentiation, as the melting and evaporation temperatures are constant values.

Laws of Thermodynamics Revisited

First Rule of Thermodynamics

 In thermodynamics the change typically happens in the internal energy of the system, resulting in

$$\Delta U = W + Q$$

 In advanced thermodynamics, this is often used in the differential form, resulting in

$$dU = dW + dQ$$

This allows solving non-linear situations via integration.

Revisiting Work

Using vector notation, we can note work as

$$W = \overline{\mathbf{F}} \cdot \overline{\mathbf{s}}$$

However, in differential form we typically write it as

$$dW = \bar{\mathbf{F}} \cdot d\bar{\mathbf{s}}$$

- Here the infinitesimal work done is considered as a function of infinitesimal change in displacement.
 - Further, this allows us to deal with non-linear force-vectors, as differentiation of the dot-product allows dealing with outcomes that are functions of displacement form
 - As we connect how displacement and time are related, by change variables we can also deal time-dependent force.

$$d\bar{\mathbf{s}}/dt = \bar{\mathbf{v}}\left(t\right)$$

Second Law of Thermodynamics Revisited

Change in Entropy for a reversible process is defined as:

$$\Delta S = \left(rac{Q}{T}
ight)_{
m rev}$$

 For the Carnot heat engine, the ratio of heat quantity and temperature on cold and hot side is constant.

• Thus, we have:
$$rac{Q_{
m c}}{T_{
m c}} = rac{Q_{
m h}}{T_{
m h}}$$

When calculating for change in entropy, we get

$$\Delta S_{
m tot} = -rac{Q_{
m h}}{T_{
m h}} + rac{Q_{
m c}}{T_{
m c}} = 0$$

 Overall, we can generalize the result: for reversible systems, change of entropy is zero.

Differential Form for Entropy

 We can also write the equation for entropy in differential form:

$$dS = \frac{dQ}{T}$$

- This form is particularly useful in detailed analysis of the internal energy and dealing with non-reversible processes.
- Also, non-linear temperature change can be dealt with more easily.

Thank you for your attention!

