ELMÉLETI INFORMATIKA

I. rész

Formális nyelvek és automaták

Reguláris kifejezések, pumpáló lemma reguláris nyelvekre

Reguláris kifejezések

Az aritmetikában számok és műveletek segítségével kifejezéseket írhatunk fel, mint pl. 3.2 + 4.(1 + 6). Könnyen meghatározhatjuk, hogy ennek a kifejezésnek az értéke 34.

Hasonló módon a Σ ábécé elemei és a reguláris műveletek alkalmazásával ún. **reguláris kifejezés**eket tudunk felírni, amelyek Σ ábécé feletti nyelveket fognak leírni.

Ahogy az aritmetikában, úgy a reguláris kifejezéseknél is be kell tartani az ún. **precedencia-szabály**t. A reguláris műveleteknél a precedencia csökkenő sorrend szerint a következő: *iteráció*, *konkatenáció*, *egyesítés*. A zárójelek természetesen befolyásolják a precedenciát: először mindig a zárójelben található reguláris kifejezés által reprezentált nyelvet kell meghatározni.

4.1 definíció: (reguláris kifejezés)

Legyen Σ egy ábécé.

- 1) Az \emptyset , a λ és α (ahol $\alpha \in \Sigma$) elemi reguláris kifejezések.
- 2) Ha R_1 és R_2 reguláris kifejezések, akkor $R_1 + R_2$, R_1R_2 , R_1^* , és (R_1) szintén reguláris kifejezések.
- 3) Egy $R \in \{\Sigma \cup \{\emptyset, \lambda, (,), +, *\}\}^*$ szimbólumlánc akkor és csakis akkor **reguláris kifejezés**, ha előállítható az elemi reguláris kifejezésekből a 2) pontban megadott szabályok véges számú alkalmazásával.

4.1 példa: Legyen $\Sigma = \{a, b, c\}$.

Az $(a + (a + bc))^*(c + \emptyset)$ szimbólumlánc reguláris kifejezés.

Az $(a + b+)^*$ szimbólumlánc nem reguláris kifejezés.

4.2 definíció: (a reguláris kifejezés által reprezentált nyelv)

Legyen R egy Σ egy ábécé feletti reguláris kifejezés. Az R reguláris kifejezés által reprezentált L(R) nyelv az alábbi módon határozható meg:

- Az Ø reguláris kifejezés az üres nyelvet reprezentálja, vagyis $L(\emptyset) = \emptyset$.
- A λ reguláris kifejezés a $\{\lambda\}$ nyelvet reprezentálja, vagyis $L(\lambda) = \{\lambda\}$.
- Ha $a \in \Sigma$, akkor az a reguláris kifejezés az $\{a\}$ nyelvet reprezentálja, vagyis $L(a) = \{a\}$.
- Ha R_1 és R_2 reguláris kifejezések, akkor $L(R_1+R_2)=L(R_1)\cup L(R_2),$ $L(R_1R_2)=L(R_1)L(R_2),$ $L(R_1^*)=(L(R_1))^*,$ $L((R_1))=L(R_1).$

4.2 példa: Legyen
$$\Sigma = \{0, 1\}$$
.

$$L(0) = \{0\}, L(1) = \{1\}$$

$$L(0+1) = L(0) \cup L(1) = \{0\} \cup \{1\} = \{0,1\}$$

$$L(01) = L(0)L(1) = \{0\}\{1\} = \{01\}$$

$$L(0^*) = (L(0))^* = \{0\}^* = \{\lambda,0,00,000,\ldots\}$$

$$L((0+1)^*) = \{0,1\}^* = \{\lambda,0,1,00,01,10,11,000,\ldots\}$$

$$L((0+1)^*00) = \{0,1\}^*\{00\} = \{w \mid w = v00, v \in \{0,1\}^*\}$$

$$L((01)^*) = \{01\}^* = \{\lambda,01,0101,010101,\ldots\}$$

$$L((0+1)^*1(0+1)^*) = \{w \mid w = u1v, u,v \in \{0,1\}^*\}$$

$$L((01)^*111(01)^*) = \{w \mid w = u11v, u,v \in \{0,1\}^*\}$$

4.3 definíció: (reguláris kifejezések ekvivalenciája)

Az R_1 és R_2 reguláris kifejezések, akkor és csakis akkor ekvivalensek, ha $L(R_1) = L(R_2)$.

4.3 példa: Legyen $\Sigma = \{a, b\}$.

Az $R_1 = a + ab$ és az $R_2 = a\emptyset^* + ab$ reguláris kifejezések ekvivalensek, mivel mindkettő az $\{a, ab\}$ nyelvet reprezentálja.

A reguláris kifejezések tulajdonságai

$$R_{1} + R_{2} \equiv R_{2} + R_{1}$$

$$(R_{1} + R_{2}) + R_{3} \equiv R_{1} + (R_{2} + R_{3})$$

$$(R_{1}R_{2})R_{3} \equiv R_{1}(R_{2}R_{3})$$

$$(R_{1} + R_{2})R_{3} \equiv R_{1}R_{3} + R_{2}R_{3}$$

$$R_{1}(R_{2} + R_{3}) \equiv R_{1}R_{2} + R_{1}R_{3}$$

$$(R_{1} + R_{2})^{*} \equiv (R_{1}^{*} + R_{2})^{*} \equiv (R_{1} + R_{2}^{*})^{*} \equiv (R_{1}^{*} + R_{2}^{*})^{*}$$

$$(R_{1} + R_{2})^{*} \equiv (R_{1}^{*}R_{2}^{*})^{*}$$

$$(R_{1}^{*})^{*} \equiv R_{1}^{*}$$

$$(R_{1}^{*})^{*} \equiv R_{1}^{*}$$

$$R_{1}^{*}R_{1} \equiv R_{1}R_{1}^{*}$$

$$R_{1}R_{1}^{*} + \lambda \equiv R_{1}^{*}$$

4.1 tétel: A reguláris kifejezéssel reprezentálható nyelvek osztálya zárt az unió halmazműveletre és a reguláris műveletekre nézve.

Bizonyítás:

Legyenek L_1 , $L_2 \subseteq \Sigma^*$ reguláris kifejezéssel reprezentálható nyelvek. Megmutatjuk, hogy az $L_1 \cup L_2$, L_1L_2 és L_1^* nyelvek is reprezentálhatók reguláris kifejezéssel.

Mivel L_1 és L_2 reguláris kifejezéssel reprezentálható nyelvek, ezért léteznek olyan R_1 és R_2 reguláris kifejezések, melyekre teljesül, hogy $L(R_1) = L_1$ és $L(R_2) = L_2$.

A 4.2 definíció értelmében elmondhatjuk, hogy

$$L_1 \cup L_2 = L(R_1) \cup L(R_2) = L(R_1 + R_2),$$

 $L_1 L_2 = L(R_1) L(R_2) = L(R_1 R_2),$
 $L_1^* = (L(R_1))^* = L(R_1^*),$

vagyis mindhárom nyelv reprezentálható reguláris kifejezéssel.

4.2 tétel: Minden véges nyelv reprezentálható reguláris kifejezéssel.

Bizonyítás:

Legyen Σ egy ábécé és $L \subseteq \Sigma^*$ egy véges nyelv. Megmutatjuk, hogy az $L_1 \cup L_2$, L_1L_2 és L_1^* nyelvek is reprezentálhatók reguláris kifejezéssel.

- Ha $L = \emptyset$, akkor az L nyelv reprezentálható az $R = \emptyset$ reguláris kifejezéssel.
- Ha $L \neq \emptyset$, akkor az $L = \{x_1, x_2, ..., x_n\}$ ahol $n \geq 1$ és $x_1, x_2, ..., x_n \in \Sigma^*$. Ekkor $L = \{x_1\} \cup \{x_2\} \cup \cdots \cup \{x_n\}$ és mivel a reguláris kifejezéssel reprezentálható nyelvek osztálya zárt az egyesítés műveletére nézve, elegendő igazolni, hogy egy $\{x\}$ alakú nyelv, ahol $x \in \Sigma^*$, reprezentálható reguláris kifejezéssel.
 - ha $x = \lambda$, akkor ez a nyelv reprezentálható pl. az $R = \emptyset^*$ reguláris kifejezéssel,

- ha $x \neq \lambda$, akkor $x = a_1 a_2 ... a_k$, ahol $k \geq 1$ és $a_1, a_2, ..., a_n \in \Sigma$. Ekkor $\{x\} = \{a_1\}\{a_2\} ... \{a_k\}$. A **4.2 definíció** értelmében az $\{a_1\}, \{a_2\}, ..., \{a_k\}$ nyelvek reprezentálhatók rendre az $a_1, a_2, ..., a_k$ reguláris kifejezésekkel. Mivel a reguláris kifejezéssel reprezentálható nyelvek osztálya zárt a konkatenáció műveletére nézve, ezért az $\{x\}$ nyelv is reprezentálható lesz reguláris kifejezéssel. ■

4.3 tétel: Tetszőleges Σ ábécé feletti reguláris kifejezéssel reprezentálható nyelv reguláris (*felismerhető véges automatával*).

Bizonyítás:

Legyen Σ egy ábécé és $L \subseteq \Sigma^*$ egy reguláris kifejezéssel reprezentálható nyelv. A bizonyítást az L nyelvet reprezentáló R reguláris kifejezés struktúrája szerinti indukcióval végezzük.

i. Legyen $R = \emptyset$. Ekkor $L(R) = \emptyset$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

ii. Legyen $R = \lambda$. Ekkor $L(R) = {\lambda}$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

iii. Legyen R = a. Ekkor $L(R) = \{a\}$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

iv. a) Legyen $R = R_1 + R_2$ és tételezzük fel, hogy az R_1 és R_2 reguláris kifejezések által reprezentált $L(R_1)$ és $L(R_2)$ nyelvek felismerhetők az M_1 és M_2 véges automatákkal.

Ekkor $L(R) = L(R_1) \cup L(R_2)$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

iii. Legyen R = a. Ekkor $L(R) = \{a\}$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

iv. a) Legyen $R = R_1 + R_2$ és tételezzük fel, hogy az R_1 és R_2 reguláris kifejezések által reprezentált $L(R_1)$ és $L(R_2)$ nyelvek felismerhetők az M_1 és M_2 véges automatákkal.

Ekkor $L(R) = L(R_1) \cup L(R_2)$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

iv. b) Legyen $R = R_1 R_2$ és tételezzük fel, hogy az R_1 és R_2 reguláris kifejezések által reprezentált $L(R_1)$ és $L(R_2)$ nyelvek felismerhetők az M_1 és M_2 véges automatákkal.

Ekkor $L(R) = L(R_1)L(R_2)$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

iv. b) Legyen $R = R_1 R_2$ és tételezzük fel, hogy az R_1 és R_2 reguláris kifejezések által reprezentált $L(R_1)$ és $L(R_2)$ nyelvek felismerhetők az M_1 és M_2 véges automatákkal.

Ekkor $L(R) = L(R_1)L(R_2)$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

iv. c) Legyen $R=R_1^*$ és tételezzük fel, hogy az R_1 reguláris kifejezés által reprezentált $L(R_1)$ nyelv felismerhető az M_1 véges automatával.

Ekkor $L(R) = L(R_1^*)$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

iv. c) Legyen $R=R_1^*$ és tételezzük fel, hogy az R_1 reguláris kifejezés által reprezentált $L(R_1)$ nyelv felismerhető az M_1 véges automatával.

Ekkor $L(R) = L(R_1^*)$, és ez a nyelv felismerhető az alábbi átmenetdiagrammal megadott véges automatával:

4.4 példa: Legyen adott az $R = ((\mathbf{0} + \mathbf{1})\mathbf{1})^*$ reguláris kifejezés. Szerkesztünk olyan M véges automatát, amelyre L(M) = L(R).

4.4 tétel: Tetszőleges Σ ábécé feletti reguláris nyelv reprezentálható reguláris kifejezéssel.

Bizonyítás:

Legyen Σ egy ábécé és $L \subseteq \Sigma^*$ egy reguláris nyelv. Ekkor létezik olyan M véges automata, melyre L(M) = L. Feltételezhetjük, hogy ennek az M automatának csak egyetlen végállapota van és $q_0 \notin F$.

Az *M* véges automatát módosítani fogjuk úgy, hogy végül csak egy kezdő- és egy végállapotot tartalmazzon. Az állapotokat fokozatosan fogjuk eltávolítani, és az eltávolítás utáni átmeneteket reguláris kifejezésekkel fogjuk jelölni.

A módosított automatán a köv. ekvivalens átalakítások végezhetők:

4.4 tétel: Tetszőleges Σ ábécé feletti reguláris nyelv reprezentálható reguláris kifejezéssel.

Bizonyítás:

Legyen Σ egy ábécé és $L \subseteq \Sigma^*$ egy reguláris nyelv. Ekkor létezik olyan M véges automata, melyre L(M) = L. Feltételezhetjük, hogy ennek az M automatának csak egyetlen végállapota van és $q_0 \notin F$.

Az *M* véges automatát módosítani fogjuk úgy, hogy végül csak egy kezdő- és egy végállapotot tartalmazzon. Az állapotokat fokozatosan fogjuk eltávolítani, és az eltávolítás utáni átmeneteket reguláris kifejezésekkel fogjuk jelölni.

A módosított automatán a köv. ekvivalens átalakítások végezhetők:

Az állapotok eltávolítása után az alábbi véges automatát kapjuk:

Ez a véges automata egy L nyelvet ismer fel, amely a következő reguláris kifejezéssel reprezentálható:

$$R = R_1^* R_2 (R_4 + R_3 R_1^* R_2)^*$$

Mivel az így kapott véges automata ekvivalens az M véges automatával, ezért érvényes, hogy L(R) = L(M).

A q_1 állapot eltávolítása után a következő átmenetdiagramot kapjuk:

Az így kapott átmenetdiagramhoz reguláris kifejezés tartozik:

$$R = (1 + 01^*0)^*01^*1(0 + 1)^*$$

$$a(b + aa)^* + (b + a(b + aa)^*ab)$$

$$(bb + (a + ba)(b + aa)^*ab)^*$$

$$(\lambda + (a + ba)(b + aa)^*)$$

4.5 tétel: Tetszőleges Σ ábécé feletti reguláris kifejezéssel reprezentálható nyelv generálható 3-típusú nyelvtannal.

A továbbiakban azt a nyelvosztályt, amelynek a három fontos jellemzését (a Chomsky-féle besorolásban 3-típusú, véges automatával felismerhető és reguláris kifejezéssel reprezentálható) is megadtuk, a reguláris nyelvek osztályának fogjuk nevezni, elemeit pedig reguláris nyelveknek.

Tehát ha egy L nyelv reguláris, akkor elmondható róla, hogy felismerhető véges automatával, generálható 3-típusú nyelvtannal és reprezentálható reguláris kifejezéssel.

4.6 tétel: (pumpáló lemma reguláris nyelvekre, kis Bar-Hillel lemma) Legyen L tetszőleges reguláris nyelv. Ekkor megadható olyan, csak az L nyelvtől függő $k \geq 1$ természetes szám, hogy az L nyelv bármely legalább k hosszúságú w szava felírható w = xyz alakban úgy, hogy teljesül az alábbi három feltétel:

- 1) $|xy| \leq k$,
- 2) $y \neq \lambda$,
- 3) minden i = 0,1,2,... számra teljesül, hogy $xy^iz \in L$.

A pumpáló lemma segítségével egy nyelvről bebizonyítható, hogy nem reguláris.

4.7 példa: Az $L = \{a^n b^n \mid n \ge 1\}$ nyelv nem reguláris.

Bizonyítás: (ellentmondással)

Tételezzük fel, hogy az L nyelv reguláris. Ekkor a pumpáló lemma szerint létezik olyan $k \ge 1$ természetes szám, hogy minden $w \in L$ szóra melynek hossza legalább k, teljesülnek a lemmában szereplő 1) - 3 feltételek.

Tekintsük a $w = a^k b^k \in L$ szót, melynek hossza nyilván nagyobb, mint k. Ekkor a pumpáló lemma alapján a w szó részszavakra bontható, azaz $w = a^k b^k = xyz$.

Mivel a lemmában szereplő 1) feltétel alapján $|xy| \le k$, ezért az y részszó csak a szimbólumot tartalmazhat. Mivel a lemmában szereplő 2) feltétel alapján $y \ne \lambda$, ezért az y legalább egy a szimbólumot biztosan tartalmaz.

Legyen $y=a^r$, ahol $1 \le r \le k$. A pumpáló lemma 3) feltétele alapján $xy^0z=xz=a^{k-r}b^k \in L$.

Legyen $y=a^r$, ahol $1 \le r \le k$. A pumpáló lemma 3) feltétele alapján $xy^0z=xz=a^{k-r}b^k \in L$.

Azonban ez nem lehetséges, mivel ez a szó r-rel kevesebb a szimbólumot tartalmaz, mint b szimbólumot. Ellentmondást kaptunk tehát azzal, hogy $xy^0z \in L$. Ezért a kezdeti feltételezésünk, mely szerint az L nyelv reguláris, nem helyes.

4.8 példa: Az $L = \{a^p \mid p \text{ prímszám}\}$ nyelv nem reguláris.

Bizonyítás: (ellentmondással)

Tételezzük fel, hogy az L nyelv reguláris. Ekkor a pumpáló lemma szerint létezik olyan $k \ge 1$ természetes szám, hogy minden $w \in L$ szóra melynek hossza legalább k, teljesülnek a lemmában szereplő 1) - 3 feltételek.

Legyen q egy k-nál nagyobb prímszám (ilyen prímszám biztosan létezik, mert végtelen sok prímszám van).

Tekintsük a $w = a^q \in L$ szót, melynek hossza nyilván nagyobb, mint k. Ekkor a pumpáló lemma alapján a w szó részszavakra bontható, azaz $w = a^q = xyz$.

Mivel a lemmában szereplő 1) feltétel alapján $|xy| \le k$, valamint a 2) feltétel alapján $y \ne \lambda$, ezért az y részszó legalább egy a szimbólumot biztosan tartalmaz.

Legyen $y=a^r$, ahol $1 \le r \le k$. A pumpáló lemma 3) feltétele alapján $xy^{q+1}z=xyy^qz=a^qa^{rq}=a^{q(1+r)}\in L$.

Azonban ez nem lehetséges, mivel a q(1+r) szorzat nem prímszám, ugyanis mindkét tényezője nagyobb, mint 1. Ellentmondást kaptunk tehát azzal, hogy $xy^{q+1}z \in L$. Ezért a kezdeti feltételezésünk, mely szerint az L nyelv reguláris, nem helyes.

4.1 következmény: Érvényes, hogy $\mathcal{L}_3 \subset \mathcal{L}_2$.

Bizonyítás:

A **4.7 példá**ban a pumpáló lemma segítségével bebizonyítottuk, hogy az $L = \{a^nb^n \mid n \ge 1\}$ nyelv nem reguláris, azaz nincs benne az \mathcal{L}_3 nyelvosztályban.

Az $\mathcal{L}_3 \subset \mathcal{L}_2$ valódi tartalmazás igazolásához elegendő megadni egy olyan környezetfüggetlen nyelvtant, amely az L nyelvet generálja. Legyen $G = (N, \Sigma, P, S)$, ahol $N = \{S\}$, $\Sigma = \{a, b\}$ és $P = \{S \to aSb, S \to ab\}$. Könnyen ellenőrizhető, hogy a $G = (N, \Sigma, P, S)$ nyelvtan környezetfüggetlen és éppen az L nyelvet generálja.