# Signals and Systems Systems and their classifications-I

**Static and Dynamic Systems** 

(Memory less & Memory Systems)

### **Systems**

- Broadly speaking, a system is anything that responds when stimulated or excited
- The systems most commonly analyzed by engineers are artificial systems designed and built by humans
- Engineering system analysis is the application of mathematical methods to the design and analysis of systems

# **Feedback Systems**

In a **feedback** system the response of the system is "fed back" and combined with the excitation is such a way as to optimize the response in some desired sense. Examples of feedback systems are

- 1. Temperature control in a house using a thermostat
- 2. Water level control in the tank of a flush toilet.
- 3. Pouring a glass of lemonade to the top of the glass without overflowing.
- 4. A refrigerator ice maker which keeps the bin full of ice but does not make extra ice.
- 5. Driving a car.

#### **Systems**

- Systems have inputs and outputs
- Systems accept excitations or input signals at their inputs and produce responses or output signals at their outputs
- Systems are often usefully represented by block diagrams

A single-input, single-output system block diagram

$$\mathbf{x}(t) \longrightarrow \boxed{\mathcal{H}} \longrightarrow \mathbf{y}(t)$$

# A Multiple-Input, Multiple-Output System Block Diagram



## **Block Diagram Symbols**

Three common block diagram symbols for an **amplifier** (we will use the last one).



Three common block diagram symbols for a **summing junction** (we will use the first one).



#### **Block Diagram Symbols**

Block diagram symbol for an integrator

$$x(t)$$
  $\longrightarrow \int_{-\infty}^{t} x(\tau) d\tau$ 

#### **CLASSIFICATION OF SYSTEMS**

- Linear & Nonlinear Systems
- Time invariant & Time varying Systems
- Causal & Non- causal Systems
- Static and Dynamic Systems
- Memory & Memory less Systems
- Stable & unstable system

LTI Systems (continuous-time and discrete time)

## **Systems**

$$ip \rightarrow z(t) \longrightarrow SYS \longrightarrow Y(t) \longrightarrow O/P$$

$$y(1) \quad y(t) \longrightarrow z(t-1) = z(0) \longrightarrow PqSt$$

$$y(1) \quad y(t) \longrightarrow z(t) \longrightarrow present$$

$$z(t+1) = z(2) \longrightarrow Future$$

# Static and Dynamic Systems

(Memory less & Memory Systems)

```
(1) Static & dynamic sys. >

Static > IF o/p of sys depands only on present values of i/p at each &

every instant of time then sys. will be static.

* These sys. are also known as memoryless system.
```

Dynamic - \* If o/p of sys depands on past (or) Future values of ip at any instant of time then sys will be dynamic.

\* This sys are also known as sys with memory.

#### Cont..

2. 
$$\Rightarrow$$
 Check static dynamic sys.  
(1)  $\forall (+) = z(+) + z(+-1)$  (5.)  $\forall (+) = \text{Even}[z(+)]$ .  
(2)  $\forall (+) = z(-t)$  (6.)  $\forall (+) = \text{Real}[z(+)]$ .  
(3.)  $\forall (+) = z(\sin t)$  (7.)  $\forall (+) = \int_{-\infty}^{\infty} z(z) dz$ .  
(4.)  $\forall (+) = z(+-1)$  (8.)  $\forall (+) = e^{-(+1)}z(+)$ 

#### Cont..

Ans -> (1) Dynamic.

- (2) Dynamic.
- (3.)  $V(+) = x(\sin t)$   $Y(-\pi) = x(0)$  $-3.14 \sec = x(0)$  Future system is dynamic.
- (4) Dynamic
- (5) g(t) = x(t) + x(-t)

$$y(1) = x(1) + x(-1)$$

system is static

system is dynamic.

(6.) y(+) = x(+) + x(+)

#### Cont...

#### Note-

- (1) Integral & derivative systaire dynamic syst
- (2) In case of time scaling (or) time shifting system will be dynamic.

# Thank You