

RESTING-STATE BRAIN CONNECTIVITY IN INDIVIDUALS WITH DYSLEXIA

Kulpreet Cheema, MSc

University of Alberta, Canada

Supervisors: Dr. Jacqueline Cummine & Dr. Bill Hodgetts

Twitter: @kulcheema

RESTING-STATE CONNECTIVITY

Temporal correlations in spontaneous low frequency (<0.1 Hz) fluctuations in brain signal in the absence of task

Domain-general Resting-state networks

Significance

- ✓Intrinsic organization of brain
- ✓ Removes task-related confounds
- ✓ Sensitive to intervention

Yeo et al., 2011

READING AT RESTING-STATE

No discernible reading network at rest identified

Limited evidence on brainbehaviour relationship

Reading network (RdN)

READING AND RESTING-STATE NETWORKS

Buchweitz et al., 2019

RESEARCH QUESTIONS

Reading Network (RdN)

Q1: Intrinsic connectivity of RdN at rest in people with and without dyslexia

Q2: Relationship between intrinsic connectivity of RdN and reading behaviour in people with and without dyslexia

Reading and Resting-state Networks (RSNs)

Q3: Relationship between reading-related regions and RSNs in people with and without dyslexia

Q4: Relationship between intrinsic connectivity of RSNs and reading behavior in people with and without dyslexia

METHODS

- N=19 skilled adults (CTRL; 10 males; mean age = 23.9 years) and N=15 adults with dyslexia (DYS; (8 males; mean age = 22.0 years)
- <u>Behavioural</u>: Tests of Word Reading Efficiency (TOWRE)- Real word and Non-word (fluency tasks)
- <u>fMRI</u>: Resting-state sequence

Connectivity analysis

CONN toolbox for preprocessing, first-level (individual-level analyses) and second-level (group-level analyses) (Whitfield-Gabrieli & Nieto-Castanon, 2012)

READING NETWORK

Orthographic processing

Phonological processing

Semantic processing

Articulatory processing

Seed regions

RESTING STATE NETWORKS

Default Mode Network (DMN)

MPFC: Medial prefrontal cortex

LP: Lateral Parietal

PCC: Posterior cingulate cortex

Dorsal Attention Networks (DAN)

FEF: Frontal eye field

IPS: Inferior Parietal Sulcus

Salience Networks

RPFC: Rostral Prefrontal cortex

ACC: Anterior Cingulate cortex

SMG: Supramarginal gyrus

RESULTS

Q1(a): RdN connectivity-Inferior Frontal gyrus (IFG) as seed region

CTRL

L.SMG
L.AG

L.STG

L.MTG

Q1(b): Supramarginal gyrus (SMG) as seed region

Less integration between regions involved in phonological, orthographic, articulatory and semantic processing in people with dyslexia

Q2: Relationship between intrinsic connectivity of RdN and reading behavior

Between-group difference

TOWRE RW fluency

Blue: CTRL * - significant

Red: DYS

TOWRE RW Accuracy

Within-group relationship in CTRLs

TOWRE RW Fluency

TOWRE RW Accuracy

IFG —— SMA

○•••

Blue: CTRL Red: DYS

Within-group relationship in DYS

TOWRE NW Accuracy

Blue: CTRL

Red: DYS

Inferior Frontal gyrus Connectivity

	TOWRE Real-Word	TOWRE Non-Word
CTRL	Reaction time for real words Accuracy of real words SLOWER AND MORE ACCURATE	
DYS		IFG-FFG & ITG = Reaction time Accuracy of non-words FASTER AND LESS ACCURATE

Q3: RdN and resting-state networks (RSNs)

Fusiform gyrus as seed region

CTRL DYS

Blue: Positive connections

Red: Negative connections

Inferior frontal gyrus as seed

Blue: Positive connections

Red: Negative connections

Q4: No correlation between behavior and RSN connectivity was found

CONCLUSION

- Reading network and resting-state networks are distinctively connected at rest in adults with dyslexia
- Differential relationship between the intrinsic connectivity of reading network and reading behavior in adults with dyslexia
 - Connectivity of Inferior Frontal gyrus distinctively related to reading fluency behavior
- Less interaction between reading-related regions and Default Mode and Salience networks in adults with dyslexia

- Future studies
 - Replicate these findings in children and adult populations
 - Study other RSNs in relation to reading performance
 - Influence of intervention on the intrinsic and task-based connectivity

REFERENCES

- Bailey, S. K., Aboud, K. S., Nguyen, T. Q., & Cutting, L. E. (2018). Applying a network framework to the neurobiology of reading and dyslexia. *Journal of neurodevelopmental disorders*, 10(1), 37.
- Buchweitz, A., Costa, A. C., Toazza, R., de Moraes, A. B., Cara, V. M., Esper, N. B., ... & da Costa, J. C. (2019). Decoupling of the Occipitotemporal Cortex and the Brain's Default-Mode Network in Dyslexia and a Role for the Cingulate Cortex in Good Readers: A Brain Imaging Study of Brazilian Children. Developmental neuropsychology, 44(1), 146-157.
- Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., ... & Fischl, B. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. *Journal of neurophysiology*, 106(3), 1125-1165.
- Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. *Brain connectivity*, 2(3), 125-141.

ACKNOWLEDGMENTS

Dr. Jacqueline Cummine & Dr. Bill Hodgetts

Amberley Ostevik
Dr. Lindsey Westover
Truc Huynh
Julia Craig
Alesha Reed

Inferior Frontal gyrus Connectivity

	TOWRE Real-Word	TOWRE Non-Word
CTRL	IFG -SMA = ACC for reading connectivity real words	X
DYS	X	IFG- FFG, SMG = ACC for reading non-words

Inferior Frontal gyrus Connectivity

	TOWRE Real-Word	TOWRE Non-Word
SKILLED	IFG-SMA ACC for reading real words	X
IMPAIRED	X	IFG - ACC for FFG,SMG & Treading non- Words connectivit y =