El programa se ejecuta un total de 875*10¹² instrucciones.

Nombre	CPI	Frecuencia
pixie	1,4	2,5 GHz
dixie	2,1	3,8 GHz

- 1. Si atendemos exclusivamente al CPI, ¿cuál procesador es el más rápido?
- 2. Compare el rendimiento de cada procesador utilizando el tiempo de ejecución y el CPI medio. ¿Se obtienen los mismos resultados?
- 1. El procesador pixie, con una CPI de 1.4, es más rápido al procesador dixie, con una CPI de 2.1
- 2. Calculamos el tiempo de ejecución:

$$Tiempo \ ejecuci\'on \ pixie = \frac{\frac{Numero \ de \ instrucciones}{Programas \ a \ ejecutar} * CPI}{Frecuencia} = \frac{\frac{875 * 10^{12}}{2} * 1.4}{2} = 1.372 * 10^{5} \ segundos$$

$$Tiempo \ ejecuci\'on \ dixie = \frac{\frac{Numero \ instrucciones}{Programas \ a \ ejecutar} * CPI}{frecuencia} = \frac{\frac{875 * 10^{12}}{2} * 2.1}{2} = 2.42 * 10^{5} \ segundos$$

$$Tiempo \ ejecuci\'on \ dixie = \frac{\frac{Numero \ instrucciones}{Programas \ a \ ejecutar} * CPI}{frecuencia} = \frac{375 * 10^{12}}{2} * 2.1$$

$$3.8 * 10^{9} \ Hz$$

En este caso, el procesador pixie tarda más tiempo en ejecutar el programa.

Problema 2

Programa	MA	MB
lucho	45	48
lupita	32	35
lulila	51	56
lurdo	43	49
lutecio	48	51

Calcule si las diferencias observadas son significativas y, en caso afirmativo, determina la mejora conseguida en el rendimiento debido al uso del tipo de memoria más rápida.

Programa	Tiempo (s)	Instrucciones (×10 ⁶)
asterix	68	125
obelix	132	340
panoramix	113	227
idefix	79	154
abraracurcix	120	328

1. Número de MIPS del computador

2. CPI, considerando que los 3 primeros programas duran 3 ciclos y el resto 5 ciclos.

1. Calculamos el número de MIPS del computador:

$$MIPS = \frac{Instrucciones}{Tiempo\ de\ ejecuci\'on} = \frac{\left(125 + 340 + 227 + 154 + 329\right)}{68 + 132 + 113 + 79 + 120} = \frac{1174}{512} = 2.29$$

El computador obtiene 2.29 MIPS

2. Calculamos el CPI del computador
$$CPI = \frac{Numero\ medio\ de\ ciclos}{Numero\ de\ instrucciones} = \frac{3*3+2*5}{5} = \frac{19}{5} = 3.8$$

El número medio de CPI es 3.8

Problema 8 14 programas de prueba.

Programa	Referencia	A (Base)	A (Peak)
168.wupwise	1600	419	300
171.swim	3100	562	562
172.mgrid	1800	607	607
173.applu	2100	658	605
177.mesa	1400	273	242
178.galgel	2900	571	571
179.art	2600	1040	1038
183.equake	1300	501	387
187.facerec	1900	434	434
188.ammp	2200	705	697
189.lucas	2000	784	758
191.fma3d	2100	534	534
200.sixtrack	1100	395	336
301.apsi	2600	866	866

- 1. Índices SPECfp_base y SPECfp de la máquina A según el criterio SPEC.
- 2. Considerando el tiempo total de ejecución, ¿número de veces que la máquina A es más rápida que la máquina de referencia?
- 3. Mejora del rendimiento.

Programa	R	Α	В
tinky-winky	2600	503	539
dipsy	2100	654	762
laa-laa	9800	798	607
ро	2300	748	760
noo-noo	1800	363	255

- 1. Rendimiento de A y B utilizando el tiempo total de ejecución.
- 2. Calcule mediante SPEC el índice de rendimiento de A y B y compare dichos índices. ¿Obtiene los mismos resultados?

Precio del computador en la propuesta A es de 1300 €. En la propuesta B es de 1450 €.

Se estima que se deben sustituir 75 computadores.

Los responsables informáticos de la empresa han ejecutado los ocho programas que utilizan habitualmente en un computador de cada propuesta, y han obtenido los tiempos de ejecución, expresados en segundos, que se muestran a continuación:

Programa	Modelo A	Modelo B
1	23,6	24,0
2	33,7	41,6
3	10,1	8,7
4	12,9	13,5
5	67,8	66,4
6	9,3	15,2
7	47,4	50,5
8	54,9	52,3

Determínese si existen diferencias significativas en el rendimiento de los computadores personales de las dos propuestas y qué opción sería mejor.

Problema 5.15

Programa	Α	В	R
1	96,2	95,3	103,9
2	13,1	10,2	53,8
3	79,6	67,4	156,3
4	45,2	51,8	98,1
5	88,3	89,3	238,5

Calcúlese el índice de prestaciones de las máquinas A y B según lo hace SPEC (media geométrica), tomando como referencia la máquina R. Compárese el rendimiento de estas máquinas atendiendo tanto a este índice como al tiempo total de ejecución. ¿Hay diferencias Significativas?

[d- frts.n.e, d+ frxts.n.e] = [-1.24, 4.53]

(ulcularos la media asitmética:

$$\vec{d} = \frac{\sum_{i=1}^{n} A_i \cdot B_i}{n} = \frac{0.9 + 2.9 + 12.2 - 6.6 - 1}{5} = \frac{9.4}{5} = 1.68$$

Culculamos la desviación típica:

lomo el intervalo de confianza incluye el valor o, no hay diferencias significations.