Value Function Iteration in Matlab

Michael Kotrous

University of Georgia

October 19, 2023

 Introduction
 Overview
 Calibration
 State Space
 Flow Utility
 VFI
 Results
 Conclusion

 ●O
 ○O
 ○O
 ○O
 ○OO
 ○OOO
 ○OOOO
 ○OOO
 ○OOOO
 ○OOO
 ○OOO

Matlab

- * Popular programming language among economists
- * Advantages:
 - >>> Efficient matrix math
 - → Built-in functionality
 - → Simple syntax
 - >>> Documentation
- ⋆ Disadvantages:
 - → Proprietary
 - → Limited add-ons
 - → Non-numeric data

Getting Started

- * UGA installation guide
- ★ Useful add-ons
 - \rightarrow Optimization
 - → Parallel Computing
- * Useful Links
 - → Matlab documentation
 - → eLC: Download Matlab > Tutorials > matlab_tutorial_files.zip

Neoclassical Growth Model

$$V(k) = \max_{k'} \{ \log(zk^{\alpha} + (1-\delta)k - k') + \beta V(k') \}$$

subject to

$$0 \le k' \le zk^{\alpha} + (1 - \delta)k$$

- * When $\delta = 1$, $g(k) = \alpha \beta z k^{\alpha}$
- \star When $\delta < 1$, solve numerically

Value Function Iteration

- ⋆ Solve models numerically
- \star Solution: approximation of V(k)
- * Method: Iterate on V(k), reach fixed point
- ★ Works b/c Bellman = contraction mapping
- * Implement grid search in Matlab

VFI Algorithm

- Calibrate parameters $(\alpha, \beta, \delta, z)$
- **2** Set tolerance $\varepsilon > 0$
- Oiscretize state space

$$\mathcal{K} = \{k_1, k_2, \dots, k_n\}$$

• Calculate flow utility u(k, k') for $(k, k') \in \mathcal{K} \times \mathcal{K}$

VFI Algorithm (cntd.)

Oefine initial guess

$$V_0(k) = \{V_0(k_1), V_0(k_2), \dots, V_0(k_n)\}$$

6 For each $k \in \mathcal{K}$, solve

$$V_1(k) = \max_{k'} \{ \log(zk^{\alpha} + (1 - \delta)k - k') + \beta V_0(k') \}$$

subject to

$$0 \le k' \le zk^{\alpha} + (1 - \delta)k$$
$$k' \in \mathcal{K}$$

ECON 8040

- Calculate $||V_1(k) V_0(k)||$
- Stopping criteria $||V_{n+1}(k) V_n(k)|| < \varepsilon$

Calibration

Table 1: Calibrated Parameters, Tolerance

Value(s)
0.39
0.95
1
274
Value
10^{-8}

Calibration (in code)

```
1 a = 0.39;
2 b = 0.95;
3 d = 1;
4 z = 274;
5
6 tol = 1e-8;
```

 Introduction
 Overview
 Calibration
 State Space
 Flow Utility
 VFI
 Results
 Conclusion

 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0</t

Discretize State Space

Increasing nodes

⋆ Pro: ↑ precision

★ Con: ↑ compute time

Discretize State Space (in code)

vfi_lecture.m

```
1 n = 5;
2 kss = ((z*a)./(1/b - 1 + d))^(1/(1-a));
3 kgrid = zeros(1,n);
4 kgrid(:) = griddle(0.1*kss, 2*kss, n, 1.5);
```

griddle.m

```
function g = griddle(a,b,n,p)

gr = zeros(1,n);

gr(1) = a;

gr(n) = b;

for k = 2:n-1

    gr(k) = a + (b-a)*((k-1)/(n-1))^p;

end

g = gr;

end
```

Flow Utility

$$u(k, k') = egin{cases} \log(zk^{lpha} + (1-\delta)k - k') & ext{if } zk^{lpha} + (1-\delta)k - k' > 0 \\ -10^{20} & ext{otherwise} \end{cases}$$

Table 2: Flow Utility for all $(k, k') \in \mathcal{K} \times \mathcal{K}$

		k'				
		k_1	k_2	<i>k</i> ₃	k_4	k_5
		7.5737				
	k_2	8.0852	7.9315	7.5694	6.7369	-1e20
k	k_3	8.4241	8.3171	8.0857	7.6745	6.7524
	k_4	8.6458				
	k ₅	8.8087	8.7371	8.5912	8.3638	8.0039

Flow Utility (in code)

```
ucgrid = zeros(n,n);
_2 for i = 1:n
     for j = 1:n
          c = z*kgrid(i)^a + (1-d)*kgrid(i) - kgrid(j);
          if c > 0
              ucgrid(i,j) = log(c);
          else
              % exclude infeasible choices
              ucgrid(i,j) = -1e20;
          end
      end
12 end
```

Define Initial Guess

- ★ Solution: fixed point
- ⋆ Blackwell's sufficient conditions
 - → Discounting
 - > Monotonicity
- ★ Bellman operator = contraction mapping
- * Any initial guess works!

```
1 V = linspace(0,1,n);
2 Tv = zeros(1,n);
3 g = zeros(1,n);
```

Update Guess

```
for i = 1:n
     [vmax, kmax] = max(ucgrid(i,:) + b*V);
     Tv(i) = vmax;
     g(i) = kgrid(kmax);
end
```

ntroduction Overview Calibration State Space Flow Utility VFI Results Conclusion

Update Guess (cntd.)

Table 3: Updating Value, Policy Functions

				k'				
		k_1	k_2	k ₃	k_4	k_5	Tv	g(k)
	k_1	7.5737	7.5399	6.9338	0.7125	0.9500	7.5737	k_1
	k_2	8.0852	8.1690	8.0444	7.4494	0.9500	8.1690	k_2
k	<i>k</i> ₃	8.4241	8.5546	8.5607	8.3870	7.7024	8.5607	<i>k</i> ₃
	k_4	8.6458	8.7985	8.8594	8.8091	8.5441	8.8594	<i>k</i> ₃
	<i>k</i> ₅	8.8087	8.9746	9.0662	9.0763	8.9539	9.0763	k_4

ntroduction Overview Calibration State Space Flow Utility VFI Results Conclusion

Check Convergence

Table 4: Distance between Initial, Updated Guess

V	Tv	V - Tv
0	7.5737	-7.5737
0.25	8.1690	-7.9190
0.50	8.5607	-8.0607
0.75	8.8594	-8.1094
1	9.0763	-8.0763

Value Function Iteration

```
1 V = Tv; % update V
2 err = err1; % use Euclidean norm for stopping criteria
3 it = 0; % count iterations
4 while err > tol && it < 500
      for i = 1:n
           [vmax, kmax] = \max(\operatorname{ucgrid}(i,:) + b*V);
          Tv(i) = vmax;
7
          g(i) = kgrid(kmax);
8
      end
9
      % check for convergence and update guess
11
      err = norm(Tv-V);
12
      V = Tv;
13
      it = it+1;
14
15 end
```

troduction Overview Calibration State Space Flow Utility VFI Results Conclusion

Results

Figure 1: Policy Function, $\delta=1,\ n=5$ Solved in 0.000481 seconds

Results (cntd.)

Figure 2: Policy Function, $\delta = 1$, n = 100Solved in 0.003190 seconds

Michael Kotrous (UGA) ECON 8040 October 19, 2023

20 / 23

troduction Overview Calibration State Space Flow Utility VFI Results Conclusion

Results (cntd.)

Figure 3: Policy Function, $\delta = 1$, n = 1,000Solved in 0.003492 seconds

Michael Kotrous (UGA) ECON 8040 October 19, 2023

21/23

Results (cntd.)

Figure 4: Policy Function, $\delta = 0.04$, n = 1,000Solved in 0.003404 seconds

Michael Kotrous (UGA) ECON 8040 October 19, 2023

22 / 23

ntroduction Overview Calibration State Space Flow Utility VFI Results **Conclusion**

Conclusion

- * Many models can't be solved analytically
- ⋆ VFI solves models numerically
- ★ We implemented VFI in Matlab
- * We restricted policy function to grid
 - >>> Pros: simpler code, flow utility before iteration
 - \rightarrow Cons: inaccurate when *n* small, high *n* inefficient
- * Alternative: interpolate between grid points
 - \rightarrow Accurate policy functions with small n
 - >>> Useful for multi-dimensional state spaces
 - → See Karen Kopecky and Eric Sim's VFI notes