

REDES NEURAIS COM TENSORFLOW

DIEGO RODRIGUES DSC

INFNET

Agenda

Parte 1: Meta Heurística de Treinamento Robusta II

- Novo ciclo do CRISP
- Regressão / Aproximação
- Tensorflow Time Series Tutorial
- Validação & Figuras de mérito para Regressão

Parte 2 : Prática

Notebook: Regressão Iris

Parte 3: Trabalhos

Escopo & Evolução

Cross
Industry
Process for
Data Mining
(CRISP-DM)

Novo Ciclo CRISP

Algoritmo	Representação	Preparação	Modelagem	 Validação
 Reta 2 Pontos NN 10% VAL NN 10 Folds PS10 PS10 SOM 	 2D 2D 2D 4D / 3 Classes 7D / 1D Regressão 4D 	 Nenhuma Nenhuma Scale Scale Scale PCA 	 Reta 2 Pontos 1 Neurônio 1 Hidden 1 Hidden 1 Hidden SOM 10x10 	 Nenhuma Precisão/Recall Precisão/Recall Acurácia MSE MSE

- Mapa Auto Organizável para Encontrar Grupos
- Análise da saída do mapa por atributo
- Análise da matriz U

Paradigmas de Modelagem Estatística

SUPERVISIONADO – CLASSIFICAÇÃO

SUPERVISIONADO – REGRESSÃO

NÃO SUPERVISIONADO

APRENDIZADO POR REFORÇO

Agrupamento

Um bebê consegue **agrupar objetos por cor, tamanho, formato** e muitos outros atributos que ele pode observar nos objetos.

Diferentes maneiras de organizar os objetos são diferentes **estruturas** de agrupamentos existentes em uma amostra de dados.

De quantas maneiras estes blocos podem ser organizados em grupos?

Um modelo de agrupamento é usado para identificar grupos, ou estruturas de agrupamentos, nos dados.

Agrupamento

- 1) K-Means
- 2) Mapa Auto-Organizável
- 3) Hieráquico
- 4) DBSCAN

Além da escolha do algoritmo, os resultados do agrupamento dependem diretamente dos atributos e da **métrica escolhida para definir similaridade** entre os objetos.

Agrupamento

O Clusterizador Universal

Rede AutoEncoder

Rede Auto Encoder

Encontra uma representação de menor dimensionalidade do dado

Encontra um
hiperespaço
reduzido
contendo toda a
informação

Rede AutoEncoder

Mapa Auto Organizável

Transforma uma
entrada
multidimensional
em um mapa
bidimensional

Cada neurônio serve como "centróide" de uma pequena região do espaço

Mapa de Kohonen

Demo > Montando uma Rede SOM

SOMething About Iris

Modelagem

Mapa Auto Organizável

- Representação: 4 atributos > 2 dimensões no mapa
- Hiperparâmetros: número de neurônios do mapa 10x10.
- Treinamento: base de treino completa.
 - MSE