Antgale 1

$$A = (-4 - 4)$$
 $A = (-4 - 4)$
 $A = (-4$

Aufgabl 2 6r-28 +2f +4w = 16 12 r-85 +6f + 10w = 26 3r-135 +6f +3 u = -19 -86r +445 +36 -18 u = -34 -229 16 -21 -8610 26 -21 -1393 -19 -11 91-18 34 4 6) ~ = \begin{aligned}
6 - 2 2 4 | 16 \\
0 - 4 2 2 | - 6 \\
0 0 2 - 5 - 9 \\
0 0 4 - 13 - 21 | - 2 \tag{T} C) Davaus: Da es 4 Spallen ungleich og bl.
3 L Raiz (A) = 4; (Lösangneum = n-Rain + ma - 2 2 4 16 - A cuch Planger Reng(A,6) = 0 2 - 9 - 9 - 9 - 9, weil as a Sphillentzeilen uncheich o gibt

Autgabe3

a) h:
$$R^3 - R^3$$
, $\binom{x_1}{x_2}$ $+ \binom{2x_4 + x_2}{x_2 + 4x_3}$ $+ \binom{2}{x_1}$ $+ \binom{2}{x_2}$ $+ \binom{2}{x_2}$

Autgabe 9 Poly nom 6 at 2: $f(x) = ax^2 + 6x + C$ (2,3) $f(x) = ax^2 + 6x + C$ (2,3) $f(x) = ax^2 + 6x + C = 6$ (3,2) $f(x) = ax^2 + 6x + C = 3$ (3,2) $f(x) = ax^2 + 6x + C = 2$ 1 1 1 6 0 -2 -3 -21 => C=11; 96=-6, a=1 Antwert: (2)= 23-66+11

Aufgabe 5-5

$$A = \begin{pmatrix} 1 & 10 \\ 1 & 10 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 & 16 \\ -1 & \frac{1}{2} & -4 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 3 \\ 2 & -4 & 9 \\ -1 & g & -12 \end{pmatrix}$$

0) $R^3 = R^3 \begin{pmatrix} 21 \\ 12 \\ 22 \end{pmatrix} \mapsto \begin{pmatrix} 21 & 43 & 23 \\ 27 & -42 & +82 & 3 \\ -42 & 482 & -1223 \end{pmatrix}$

6) $A : x_1 + x_2 = \ell_1$; $B : 4x_1 - 2x_2 + 16x_3 = k_1$; $4x_1 + 4x_2 = \ell_2$; $2x_1 + 4x_2 - \ell_3$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_1 + 4x_2 - \ell_3 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_1 + 4x_2 - \ell_3 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; $4 = \begin{pmatrix} 1 & 1 & 1 \\ 2x_2 & -4x_3 - \ell_2 \end{pmatrix}$; 4

Aufgabe (036 | 108 | 246 | 018 | 2 246 | 016 | 20 | 036 | 100 | 2 -4-4-3 | 001 | -4-3 | 001 | 123 0 20 (123 0 20) 20 0 36 100 0 20 0 36 100 36 1 1 2 3 0 2 0 1 2 3 0 2 0 -2 II 0 3 6 1 2 0 0 3 3 0 0 1 2 3 0 0 0 2 1 - 9 II ~ (16.1]-\frac{2}{3}\frac{1}{2}0\+\frac{11}{12}\quad \(\begin{array}{c} 100\-22,51\\ 000\-21\-\21\\ \end{array}\) \(\begin{array}{c} 010\\3-4-2\\ 000\\-\21\\ \end{array}\) \(\begin{array}{c} 010\\3-4-2\\ 000\\1-\\3-2\\1\\ \end{array}\) $A^{-1} = \begin{pmatrix} -2 & 2 & 5 & 1 \\ 3 & -4 & -2 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -\frac{7}{3} & 2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -\frac{7}$ Falls det (A)=0, Jann det (A-1)=10, long eine lan Indeterminations.