טופולוגיה: תהא X קבוצה אזי $\mathcal{T}\subseteq\mathcal{P}\left(X
ight)$ המקיימת

- $X, \emptyset \in \mathcal{T} \bullet$
- $\bigcup_{lpha\in\Lambda}\mathcal{U}_lpha\in\mathcal{T}$ אזי $\{\mathcal{U}\}_{lpha\in\Lambda}\subseteq\mathcal{T}$ תהיינה ullet
 - $igcap_{i=1}^n \mathcal{U}_i \in \mathcal{T}$ אזי $\{\mathcal{U}_i\}_{i=1}^n \subseteq \mathcal{T}$ תהיינה ullet

 (X,\mathcal{T}) אזי אזי טופולוגיה על טופולוגי טופולוגי (מ"ט): תהא א קבוצה ותהא מרחב $\mathcal{T}\subseteq\mathcal{P}\left(X\right)$

 $\mathcal{U} \in \mathcal{T}$ המקיימת $\mathcal{U} \subseteq X$ אזי אזי טופולוגיה מרחב (X,\mathcal{T}) המקיימת קבוצה פתוחה:

 $X \backslash E \in \mathcal{T}$ המקיימת $E \subseteq X$ אזי טופולוגיה מרחב מרחב (X,\mathcal{T}) המיימת

 $\mathcal{U},\mathcal{V}\in\mathcal{T}$ אזי (\mathcal{T} טופולוגיה) איי (\mathcal{T} טופולוגיה) איי ($\mathcal{U}\}_{\alpha\in\Lambda}\subseteq\mathcal{T}$. ($\bigcup_{\alpha\in\Lambda}\mathcal{U}_{\alpha}\in\mathcal{T}$) וכן $X,\varnothing\in\mathcal{T}$ וכן $X,\varnothing\in\mathcal{T}$ אזי ($X,\varnothing\in\mathcal{T}$) איי ($X,\varnothing\in\mathcal{T}$) מתקיים $X,\varnothing\in\mathcal{T}$ ($X,\varnothing\in\mathcal{T}$).

 $\{X,\varnothing\}$ הטופולוגיה הטריוואלית: תהא X קבוצה אזי

 $\mathcal{P}\left(X
ight)$ אזי קבוצה אזי תהא תהא X קבוצה אזי הטופולוגיה הבדידה/הדיסקרטית:

 $\{\mathcal{O}\subseteq X\mid \forall x\in\mathcal{O}.\exists r>0.B_r\left(x
ight)\subseteq\mathcal{O}\}$ אזי ממרחב מטרי: יהי יהי ממרחב מטרי: יהי

 $.\{A\subseteq X\mid |X\backslash A|<\aleph_0\}\cup\{\varnothing\}$ אזי קבוצה אה תהא תהא הקו־סופית: תהא הטופולוגיה הקו

אזי $\mathcal{C}=\{E\subseteq X\mid Xackslash E\in\mathcal{T}\}$ משפט: יהי (X,\mathcal{T}) משפט: יהי

- $X, \emptyset \in \mathcal{C} \bullet$
- $igcap_{lpha\in\Lambda}E_lpha\in\mathcal{T}$ אזי $\{E\}_{lpha\in\Lambda}\subseteq\mathcal{C}$ תהיינה ullet
 - $\bigcup_{i=1}^n E_i \in \mathcal{T}$ אזי $\{E_i\}_{i=1}^n \subseteq \mathcal{C}$ תהיינה •

בסיס לטופולוגיה: תהא קבוצה אזי אזי תהא תהא המקיימת בסיס לטופולוגיה: בסיס לטופולוגיה

- $\bigcup \mathcal{B} = X$
- $B_3\subseteq B_1\cap B_2$ וכן $x\in B_3$ עבורה $B_3\in \mathcal{B}$ אזי קיימת איינה $x\in B_1\cap B_2$ ותהא ותהא $B_1\cap B_2\neq \varnothing$ וכן $B_1,B_2\in \mathcal{B}$