## ANÁLISIS Y DISEÑO DE ALGORITMOS

## COMPLEJIDAD TEMPORAL: ANÁLISIS EMPÍRICO (II)

## Práctica 2 de laboratorio

Entrega: Hasta el domingo 26 de febrero, 23:55h. A través de Moodle

Siguiendo las pautas de la práctica anterior, realiza un estudio empírico de la complejidad temporal<sup>1</sup> de los algoritmos de ordenación *Quicksort* y *Heapsort*. Para ello, descarga el código fuente disponible a través de *Moodle*, el cual contiene una implementación de dichos algoritmos y cumplimenta una función *main* para que muestre el número de **pasos de programa**<sup>2</sup> que realizan los algoritmos en tres supuestos distintos: vectores con contenido aleatorio, vectores ordenados de manera creciente y vectores ordenados de manera decreciente (en orden inverso),<sup>3</sup> representando los resultados, expresados en millones de pasos de programa, en una tabla similar a la que se muestra. Los tamaños de vector analizados son las potencias de 2, desde 15 hasta 20. El programa ejecutable debe llamarse qs-vs-hs.

#QUICKSORT VERSUS HEAPSORT.
#Average processing Msteps (millions of program steps)

#Number of samples (arrays of integer): 30

| #  |           | RANDOM ARRAYS |          | SORTED ARRAYS |        | REVERSE SORTED ARRAYS |          |
|----|-----------|---------------|----------|---------------|--------|-----------------------|----------|
| #  | Size      | QuickSort     | HeapSort | QuickSort     | -      | QuickSort             | HeapSort |
| #- | <br>32768 | 0.559         | 0.528    | 0.459         | 0.549  | 0.442                 | 0.505    |
|    | 65536     | 1.211         | 1.121    | 0.983         | 1.166  | 0.950                 | 1.072    |
|    | 131072    | 2.569         | 2.374    | 2.097         | 2.469  | 2.032                 | 2.276    |
|    | 262144    | 5.373         | 5.009    | 4.457         | 5.189  | 4.325                 | 4.811    |
|    | 524288    | 11.547        | 10.542   | 9.437         | 10.888 | 9.175                 | 10.168   |
|    | 1048576   | 24.063        | 22.133   | 19.924        | 22.896 | 19.399                | 21.389   |

A continuación representa los datos obtenidos mediante gráficas utilizando la herramienta gnuplot. El archivo de órdenes asociado debe llamarse qs-vs-hs.gpi y el fichero que contiene la tabla de resultados obtenidos qs-vs-hs.Msteps. Realiza las siguientes gráficas comparativas, en formato png y extrae tus propias conclusiones.

Gráfica 1: Análisis del algoritmo Quicksort comparando su comportamiento cuando se suministran: (1) vectores con contenido y orden aleatorio; (2) vectores ordenados y (3) vectores en orden inverso. La gráfica obtenida debe llamarse quickSort.png.



Gráfica 2: Análisis del algoritmo Heapsort comparando su comportamiento cuando se suministran: (1) vectores con contenido y orden aleatorio; (2) vectores ordenados y (3) vectores en orden inverso. La gráfica obtenida debe llamarse heapSort.png.



<sup>&</sup>lt;sup>1</sup>A diferencia de la anterior, en esta práctica hay que hacer el estudio contando pasos de programa, es decir, no se debe utilizar ninguna función que obtenga tiempos de ejecución.

<sup>&</sup>lt;sup>2</sup>Un paso de programa es un conjunto de instrucciones (no tienen por qué estar consecutivas) cuya ejecución está acotada por una constante, es decir, no depende del tamaño del problema.

<sup>&</sup>lt;sup>3</sup>Para que el análisis sea válido es importante tener en cuenta que ambos algoritmos deben recibir vectores con el mismo contenido.

Gráfica 3: Análisis comparativo de Quicksort y Heapsort cuando reciben vectores con contenido y orden aleatorio. Se representa también la mejor función de ajuste encontrada para cada uno de ellos. La gráfica obtenida debe llamarse qs-vs-hs-RA.png.

Quicksort versus Heapsort (random arrays)

Quicksort + Heapsort +

Gráfica 4: Análisis comparativo de Quicksort y Heapsort cuando reciben vectores ordenados. Se representa también la mejor función de ajuste encontrada para cada uno de ellos. La gráfica obtenida debe llamarse qs-vs-hs-SA.png.

Quicksort versus Heapsort (sorted arrays)

Quicksort \*\*

Quicksort \*\*

Quicksort \*\*

Peapsort \*\*

Heapsort \*\*

Inting Quicksort time values to ... \*\*

Inting Heapsort time values time values to ... \*\*

Inting Heapsort time values time values time value

Gráfica 5: Análisis comparativo de Quicksort y Heapsort cuando reciben vectores en orden inverso. Se representa también la mejor función de ajuste encontrada para cada uno de ellos. La gráfica obtenida debe llamarse qs-vs-hs-RSA.png.



Normas para la entrega.

## ATENCIÓN: Estas normas son de obligado cumplimiento para que esta práctica sea evaluada.

- 1. Se debe entregar únicamente los ficheros qs-vs-hs.cc, qs-vs-hs.gpi y makefile. Sigue escrupulosamente los nombres de ficheros, objetivos, etc. que se citan en este enunciado. No hay que entregar nada más.
- 2. El archivo makefile debe contener los mismos objetivos que la práctica anterior pero con los siguientes nombres: qs-vs-hs, qs-vs-hs.Msteps, graphs y all.
- 3. Es imprescindible que no presente errores ni de compilación ni de interpretación (según corresponda), en los ordenadores del laboratorio asignado y en el sistema operativo GNU/Linux.<sup>4</sup> Se tratará de evitar también cualquier tipo de aviso (warning).
- 4. Todos los ficheros que se entregan deben contener el nombre del autor y su DNI (o NIE) en su primera línea (entre comentarios apropiados según el tipo de archivo).
- 5. Se comprimirán en un archivo .tar.gz cuyo nombre será el DNI del alumno, compuesto de 8 dígitos y una letra (o NIE, compuesto de una letra seguida de 7 dígitos y otra letra). Por ejemplo: 12345678A.tar.gz o X1234567A.tar.gz. Solo se admite este formato de compresión y solo es válida esta forma de nombrar el archivo.
- 6. En el archivo comprimido **no debe existir subcarpetas**, es decir, al extraer sus archivos estos deben quedar guardados en la misma carpeta donde está el archivo que los contiene.
- 7. La práctica se debe subir a *Moodle* respetando las fechas expuestas en el encabezado de este enunciado.

 $<sup>^4</sup>$ Si trabajas con tu propio ordenador o con otro sistema operativo asegúrate de que este requisito se cumple.