Amir Arsalan Soltani

Website: amir-arsalan.github.io

(716) 535-7729 | arsalans@mit.edu

SKILLS

AI and ML: Deep Learning, Graphical Models, Bayesian Optimization, Reinforcement Learning*

Technical: PyTorch, Blender, NVIDIA's FleX, TensorFlow*, Pybullet*, MuJoCo*

*some exposure

EDUCATION

State University of New York at Buffalo, Buffalo, New York

December 2015

Master of Science, Computer Science | Concentration: Machine Learning

Islamic Azad University, Najafabab, Iran

May 2012

Bachelor of Science, Computer Software Engineering

Awards: Ranked 19th in the nationwide entrance exam for B.Sc, Distinguished Student Award

WORK EXPERIENCE

Research Assistant, Massachusetts Institute of Technology, Cambridge, MA

April 2016 - March 2019

PI: Dr. Joshua Tenenbaum, Computational Cognitive Science Lab

- Physics-aware systems for perception and reasoning to endow AI agents with more human-like visual intelligence
 - o Built a generative model for 3D shapes (github.com/Amir-Arsalan/Synthesize3DviaDepthOrSil)
 - First-author paper accepted to CVPR 2017
 - o Composing 3D shape priors with physics priors to recover 3D shapes draped under cloth
 - o Giving the ability to imagine new physical scenes for physical commonsense reasoning given a text description
- Endowing robots with the ability to build accurate models of the environment and perform delicate interactions

Research Assistant, State University of New York at Buffalo, Buffalo, NY

September - December 2015

PI: Dr. Venu Govindaraju, Center for Unified Biometrics and Sensors

- Built an LDA-based model to do author name disambiguation for many departments at SUNY at Buffalo
- Modeled battery charging patterns for hundreds of mobile phone users with HMMs to predict optimal recharge time

Webpage Designer and Programmer, Saee Co, Esfahan, Iran

July - October 2011

Worked on Esfahan WebGIS using JavaScript, C#, AJAX, HTML and OpenLayers

MANUSCRIPTS IN PREPARATION

Yildirim, I.*, Siegel, M.*, **Soltani**, **A**.*, Chaudhuri, S. & Tenenbaum, J. "Perceiving Fully Occluded Objects via Physical Simulation"

* indicate equal contribution

PUBLICATIONS

Ullman T., Kosoy E., Yildirim I., **Soltani AA**., Siegel M., Tenenbaum J. & Spelke E. "Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects", CogSci 2019.

Soltani, AA., Huang, H., Wu, J., Kulkarni, T. & Tenenbaum, J. "Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes with Deep Generative Networks", CVPR 2017.

INVITED TALKS

Vision Meets Cognition Workshop, CVPR, Honolulu, HI MIT Vision Seminar, Massachusetts Institute of Technology, Cambridge, MA	July 2017 October 2017
REVIEWER EXPERIENCE	
Reviewer, Asian Conference on Computer Vision (ACCV) Reviewer, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops Reviewer, Neural Information Processing Systems (NeurIPS)	2018 2019 2019
PROJECTS	
 Ongoing - Commonsense Reasoning via Imagining New Physical Scenes (Python, PyTorch, Ble Generate sequences of actions that give rise to a physical scene that explains the text description of a 	•
 Ongoing - Building Touch Sensor in Simulation for Shape Perception (Python, PyTorch, Blend Build a touch sensor in simulation to obtain physical properties of soft and rigid objects for delicate in 	,
 Compositional Perception System to Recover 3D Shapes (Python, Torch, PyTorch, Blender, Fle Built a model-based, compositional perception system for recovering 3D shapes covered by cloth complexity 	,
 Modeling Multi-view Images to Build a Generative Model for 3D Shapes (Torch) Built a generative model for generic 3D shapes to obtain abstract description of objects to be used for 	2016-2017 r model-building
 Author Name Disambiguation using Latent Dirichlet Allocation (Python) Downloaded Wikipedia corpus, processed it and used it to trained an LDA with online inference documents to their authors automatically 	2015 to assign scientific
 Simulation of Discharge/Recharge Patterns for Mobile Device Users using HMMs (MATLAB) Built HMMs with a Gaussian mixture model state transition to model recharge/discharge patterns for mobile phone users and predict the optimal time for recharge 	
 Improving Accuracy of Indoor Localization with Kalman Filter (R) Implemented Kalman filters for localization Improved results described in the paper "Mapping organizational dynamics with body sensor network." 	2014 orks" by 5-10%
Learning Bayesian Networks Structure using Decomposable Scoring Functions (MATLAB) • Developed a greedy method to learn Bayesian network structures using decomposable scoring functions.	2014 tions(AIC, BIC)
 Modeling and Inference Children Handwritings with Bayesian Networks (MATLAB) Modeled a data set containing cursive and hand-printed hand writings of children attending element collected over two consecutive years with Bayesian networks Implemented exact and approximate (MCMC) methods for inference 	2014 ntary school,
 DNA Nucleobase Sequence Modeling/Prediction using HMMs (MATLAB) Implemented forward-backward, Viterbi and Baum-Welch algorithms to train a Hidden Markov Mo Modeled DNA nucleobase sequences to capture DNA regularities 	2014 odel (HMM)
 Hand-Written Digit Recognition with Neural Networks (MATLAB) Experimented with neural network on MNIST digits data set. Obtained accuracy of ~98.5% 	2013
Regression on Page Relevancy (MATLAB) • Experimented with regression models on LETOR 4.0 dataset using Gaussian basis functions	2013

Amir Arsalan Soltani

Website: amir-arsalan.github.io

(716) 535-7729 | <u>arsalans@mit.edu</u>

COMMUNITY SERVICE

Co-Founder, I Am Better, Esfahan, Iran

July 2008 - July 2011

• Founded an association in Iran to propagate good manners in driving among Iranian people

Science Teacher, Science is Elementary, *Buffalo*, *NY*

July - December 2015

• Taught science lessons and visualized abstract concepts to students at a local elementary school