

### Введение в нейронные сети. Урок 2. Keras

# План вебинара



- 1. Инструменты для создания нейронных сетей.
- 2. Общие сведения o Keras
- 3. Синтаксис Keras
- 4. Практика



# GeekBrains

# Инструменты для создания нейр. сетей





# Общие сведения о Keras



Deep Learning with Keras

### Основы синтаксиса



### Deep Learning with Keras:: cheat sheet



#### Intro

Kerss is a high-level neural networks API developed with a focus on enabling fast experimentation. It supports multiple backends, including TensorFlow, CNTK and Theano.

Tensorflow is a lower level mathematical library for building deep neural network architectures. The ReTas R package makes it easy to use Keras and Tensorflow in R.



The "Hello,

#### INSTALLATION

The ker as R package uses the Python keras library. You can install all the prerequisites directly from R.

https://keras.rstudio.com/reference/install\_keras.html

library(keras) install\_keras()

See Tkeras\_install for GPU instructions

This installs the required libraries in an Anaconda environment or virtual environment 'r tensorflow'.

#### Working with keras models

#### DEFINE A MODEL

keras\_model() Keras Model

keras\_model\_sequential() Keras Model composed of a linear stack of layers

multi\_gpu\_model() Replicates a model on different GR1 k

#### COMPILE A MODEL

compile(object, optimizer, loss, metrics = NULL) Configure a Keras model for training

#### FIT A MODEL

fittjobject, x = NULL, y = NULL, batch, size = NULL, epochs = 10, verbose = 1, calibacks = NULL,....] Train a Keras model for a fixed number of epochs

fit, generator() Fits the model on data yielded batchby-batch by a generator

train\_on\_batch() test\_on\_batch() Single gradient update or model evaluation over one batch of samples.

#### **EVALUATE A MODEL**

evaluate(sbject, x = NULL, y = NULL, batch\_size = NULL) Evaluate a Keras model

evaluate\_generator() Evaluates the model on a data generator

#### PREDICT

https://keras.rstudio.com

predict() Generate predictions from a Keras model

https://www.manning.com/books/deep-learning-with-r

predict\_proba() and predict\_classes()
Generates probability or class probability predictions
for the input samples.

predict\_en\_batch() Returns predictions for a single batch of samples

predict\_generator() Generates predictions for the input samples from a data generator

#### OTHER MODEL OPERATIONS

summary() Print a summary of a Keras model

export\_savedmodel() Export a saved model

get\_layer() Retrieves a layer based on either its name (unique) or index

pop\_layer() Remove the last layer in a model

save\_model\_hdfS(); load\_model\_hdfS() Save/ Load models using HDFS files

serialize\_model(); unserialize\_model() Serialize a model to an R object

clone\_model() Clone a model instance

freeze\_weights(); unfreeze\_weights() Freeze and unfreeze weights

#### CORE LAYERS

tayer\_input() input layer

layer\_dense() Add a densely-

layer\_activation() Apply an activation function to an out

activation function to an output layer\_dropout() Applies Dropout

nected NN layer to an output

==

tayer\_reshape() Reshapes an output to a certain shape



tayer\_permute() Permute the dimensions of an input according to a given pattern

\* 11111

layer\_repeat\_vector() Repeats the input n times



tayer\_tambda(object, f) Itiraps arbitrary expression as a layer



layer\_activity\_regularization() Layer that applies an update to the cost function based input activity

COLUMN TO SERVER

sequence by using a mask value to skip timesteps

layer\_flatten() Flattens an input

layer, masking() Masks a

#### TRAINING AN IMAGE RECOGNIZER ON MNIST DATA

# input layer: use MNST images 5047

x\_train <- mnistStrainSx; y\_train <- mnistStrainSy x\_test <- mnistStestSx; y\_test <- mnistStestSy

#### E reshand and rescale

x\_train <- array\_reshape(x\_train, c(nrow(x\_train), 784() x\_test <- array\_reshape(x\_test, c(nrow(x\_test), 784() x\_train <- x\_train / 255; x\_test <- x\_test / 255

y\_train <- to\_categorical(y\_train, 10) y\_test <- to\_categorical(y\_test, 10)

#### # defining the model and layers

model <- keras\_model\_sequential() model %>%

layer\_dense(units = 256, activation = 'relu', input\_shape = c(784)| %=% layer\_dense(units = 128, activation = 'relu') %=% layer\_dense(units = 12, activation = 'relu') %=%

#### # compile (define loss and optimizer)

#### model %>% compile(

loss = 'categorical\_crossentropy', optimizer = optimizer\_rmsprop(), metrics = c('accutacy')

#### it train (fit)

model %-% fit) x\_train, y\_train, epochs = 30, batch, size = 128, validation\_split = 0.2 )

model %>% evaluate(x\_test, y\_test) model %>% predict\_classes(x\_test)



# Структура Keras

#### Models

- Sequential
- Model API

### Layers

- сверточные
- рекуррентные
- полносвязные

# - служебные Preprocessing

- utils
- обработка изображений
- обработка текстов



# Models.Model

keras.Model()

ilnputs outputs name

Model.summary()



# Models.Sequential

keras.Sequential() layers, Name модель.add( <Слой>)



# Models Model training API

```
Model.compile(
    optimizer="rmsprop",
    loss=None,
    metrics=None)

Model.fit( x=None, y=None,
    batch_size=None,
    epochs=1,
    validation_split=0.0)

Model.predict( x)
```









### Практическое задание



- 1. Попробуйте обучить нейронную сеть на Keras на Fashion-MNIST датасете. Опишите в комментарии к уроку какой результата вы добились от нейросети? Что помогло вам улучшить ее точность?
- \*2. Поработайте с документацией Keras. Найдите полезные команды не разобранные на уроке.