Group 7

Chan Jason Jin An	2012610156
Chan Justin Jin Le	2012610168
Lee Doohyun	2012574704
Wong Shing Wai	3035050638
HanYuHe	3035075482

USD/MYR Vanilla Lookback PGN

Economic Motivations

Short Term: Fall of USD/MYR

Rebound of Crude Oil

Brent Crude Price

• Rebound from \$28 (Jan 2015) to \$40 levels (Apr 2016)

OPEC April Report

- Steep oil production downfall in 1Q16
- Predicts decline to **Continue** in 2Q16

Instability in the Middle East

- Workers **Strike** over pay reforms in Kuwait
- Escalating political conflicts (Iran vs. Saudi Arabia)

Rebound of Crude Oil

Low interest rates in U.S.

Janet Yellen

• Persistent on declaring a **Status** quo on low interest rates

Depreciation

• of USD against all other currencies

Additional Pressure

• on currencies **Correlated** with oil production

Chinese Economic Recovery

GDP

- Growth: 6.7% (2016Q1) $\rightarrow 6.8\%$ (2016Q2, predicted)
- Aggressive monetary Stimulus

Exports

- Rose 11.5% in March y-o-y (USD)
- Increase in Services and Manufacturing PIVII in March

Trading

- China is Malaysia's largest trading partner
- Accounts for 11% (RM20.56bil) of Malaysia's total exports
- Stabilization lends support to appreciation of MYR

Long-Term: ???

Crude Oil Prices

• Uncertain outcome of meeting in June

Possible interest rate hikes

• Earlier than expected interest rate hike by the FED

Reclining Chinese Economy

- Instability of trade and supply chain links
- Uneven Global Economy

Investment Objective

Short Term

Minimum payoff of principal at maturity

Fall of USD/MYR

- Downtrend to continue for next 6 months
- Capture payoff with vanilla put option

Choice to Exit

- Choice to exit contract in 6 months
- Avoid risk of USD/MYR stabilizing

Investment Objective

Long Term

Principal Guaranteed

 Minimum payoff of principal at maturity

Continue Fall of USD/MYR

- Higher payoffs if USD/MYR continues to fall
- Payoffs captured by lookback option

Reduced Risk

- Lookback option captures minimum price of underlying
- Reduced risk in case USD/MYR rallies

Product Design ES 109 66 109 T3

Product Features

- **Principal Guaranteed**
 - Initial investment: I
- Tracks Performance of USD/MYR (Underlying)
- Maturity: T

- Decision Point at T/2 (Bermudan)
 - Continue: Payoff at $T = I + \pi_{LB} \times max(K \min_{\frac{T}{2} \le t \le T} S_t, 0)$
 - Discontinue: Payoff at $T = I + \pi_p \times max(K S_{\frac{T}{2}}, 0)$

Product Structure

Components:

- Principle = I
- Starts at t = 0
- Matures at T

European Put Options

- Starts at t = 0
- Matures at T/2

•
$$K = S_0$$

Lookback Put Options

- Starts at T/2
- Matures at T

•
$$K = S_{T/2}$$

Product Structure

Scenario: Continue after
$$\frac{T}{2}$$

- Investor pays: I
- Buy Bond: Ie^{-rT}
- Buy Put: $I Ie^{-rT} = \pi_p P_0$

- Put Matures
- Use Payoff from Put to buy Lookback:

$$\pi_p max(S_0 - S_{\frac{T}{2}}, 0) = \pi_{LB} LB_0$$

- Bond Matures
- Lookback Matures
- Final Payoff:

$$I + \pi_{LB} \times \max(S_{\frac{T}{2}} - \min_{\frac{T}{2} \le t \le T} S_t, 0)$$

0

 $\frac{\mathbf{T}}{2}$

T

Decision Point

Product Structure

Scenario: Discontinue after $\frac{T}{2}$

- Investor pays: I
- Buy Bond: Ie^{-rT}
- Buy Put: $I Ie^{-rT} = \pi_p P_0$

- Put Matures
- Capture Put Payoff at $\frac{T}{2}$

- Bond Matures
- Final Payoff:

$$I + \pi_p \times max(S_0 - S_{\frac{T}{2}}, 0)e^{\frac{rT}{2}}$$

Decision Point

Participation Rate

Scenario: \bigcirc Continue after $\frac{T}{2}$

Recall: Use Payoff from Put to buy Lookback:

$$\pi_p max(S_0 - S_{\frac{T}{2}}, 0) = \pi_{LB} LB_0$$

Since
$$\pi_p = \frac{I - Ie^{-rT}}{p_0}$$
 and $\pi_{LB} = P imes I$

Participation Rate:
$$P_{LB} = \frac{(I - Ie^{-rT})max(S_0 - S_T, 0)}{I \times p_0 \times LB_0}$$

Participation Rate

Scenario: Discontinue after
$$\frac{T}{2}$$

- Should investors choose to discontinue, product reverts to a Normal Bear PGN
- Hence Participation Rate, P:

$$P_p = \frac{I - Ie^{-rT}}{I \times p_0}$$

Modelling Underlying (USD/MYR)

Normal Q-Q Plot

- Underlying returns show fat tails
- Use **Heston Model** to model underlying
- Parameters used:
 - r = 2%
 - $\sigma = 30\%$
 - $\kappa = 9.7$
 - $\xi = 4.8$
- Simulated Annealing used to estimate κ and ξ

Options Pricing

• We used Monte Carlo Simulation to price our embedded options

Determining Participation Rate

• We used the following formulas and values:

$$P_0 = 0.38$$
 $S_0 = 4.31$ $I = 10,000$ $T = 1$ $LB_0 = 0.62$ $S_{\frac{T}{2}} = 3.90$ $r = 0.02$

Put Participation Rate: $P_p = \frac{I - Ie^{-rT}}{I \times p_0} = \frac{10,000 \times (1 - e^{-(0.02 \times 1)})}{10,000 \times (0.38)} = 0.052$

Lookback Participation Rate:
$$P_{LB} = \frac{(I - Ie^{-rT}) max(S_0 - S_{\frac{T}{2}}, 0)}{I \times p_0 \times LB_0}$$

$$=0.052 \times \frac{(4.31-3.90)}{0.38\times0.62} = 0.091$$

Potential Payoffs

Investment Advice

Our product fits investors who have:

A bearish view on USD/MYR

A bullish view on the oil price

A mild risk appetite

Hedging strategy

T = 0

- Invest Ie^{-rT} in risk-free bond with maturity T = 1
- Long Π_P units of European put options with maturity $T = \frac{1}{2}$

T = 1/2

• Long π_{LB} units of lookback put options with maturity T=1 if the contract continues

T = 1

Perfect hedge !!

Risk

Currency risk

- Underlying put
 option in the first 6
 months
- Underlying
 lookback option
 in the later 6
 months;

Interest rate risk

US Fed decisions;

Low interest rate environment globally;

Oil price risk

The trading volume of oil import and export in Malaysia;

Global production and utilization of crude oil;

Credit risk

The principal
guaranteed are
subject to the credit
risk of the guarantor;

Risks

Currency Risk

- Underlying put option in the first 6 months
- Underlying lookback option in the later 6 months

Interest Rate Risk

- US Fed decisions
- Low interest rate environment globally

Risks

Oil Price Risk

- The trading Volume of oil import and export in Malaysia
- Global production and utilization of crude oil

Credit Risk

- US Fed decisions
- The principal guaranteed are subject to the credit risk of the guarantor

