L9T4实验记录

	epoch_num=3			epoch_num=1		
	lr=0.1	lr=0.25	lr=0.005	lr=0.1	lr=0.25	lr=0.005
test_acc_PL A	0.7	0.7	0.7	0.7	0.7	0.7
test_acc_Po cket	0.775	0.775	0.775	0.7625	0.7625	0.7625
runtime_PL A	0.00252	0.00299	0.00300	0.00099	0.00199	0.00199
runtime_Po cket	0.01604	0.01501	0.01300	0.00300	0.00410	0.00799
plot						

数据配置说明

以上数据集配置与第三题同,即均值向量为[0,1]与[1,0],协方差为单位矩阵,两类样本各200个,且设置随机种子以保证数据的随机性不变。

超参数说明

- epoch轮数
- lr学习率

结果分析

1. 在epoch轮次一定时,如图三种学习率下,结果的准确度总是保持不变

可能的原因:由于两类别数据分布过于接近,已属于线性不可分数据,感知机的效果有上限,而经过3*200*2=1200次迭代(或1*200*2=400),即使是0.005的学习率,也能达到模型学习的上限。

- 2. 在相同条件下,pocket算法总比一般pla算法在测试集上总有更高的准确性与更长的运行时间可能的原因:对于线性不可分数据,pocket算法能得到pla算法的最优化结果,而由于pocket算法流程更复杂,涉及到更多的指令,运行时间会略长。
- 3. 在学习率一定时,epoch数为3时,pocket算法模型的效果优于epoch数为1时的模型效果,而pla 算法效果一致

可能的原因:对于一轮迭代,pocket算法接近但仍未收敛到其模型上限,因此加强训练轮数,在一定程度上有助于模型效果的提升;而pla算法更simple,相较于pocket算法更易收敛,因此一轮迭代已收敛,增加训练轮数对模型效果无影响。