30-9- 2010 J.F.C. p. 1

ESPACES VECTORIELS ET APPLICATIONS LINÉAIRES

Exercice 1 Intersection d'hyperplans.

E est un espace vectoriel de dimension n sur \mathbb{K} $(n \in [2, +\infty])$.

- Q1. Montrer que si F et G sont deux sous-espaces vectoriels de E: $\dim(F \cap G) \geqslant \dim F + \dim G n$.
- Q2. Déterminer la dimension de l'intersection de deux hyperplans distincts de E.
- Q3. Soient $H_1, H_2, ..., H_r$ hyperplans de E. Montrer que $\dim(H_1 \cap H_2 \cap ... \cap H_r) \ge n r$.
- Q4. Montrer par récurrence que si p appartient à [1, n] et si F est un sous-espace vectoriel de dimension n p alors F est l'intersection de p hyperplans de E.

 $\boxed{\mathbf{Q1}} \dim(F+G) + \dim(F\cap G) = \dim F + \dim G. \text{ Comme } F+G \text{ est un sous-espace vectoriel de } E, \dim(F+G) \leqslant n.$

Alors dim F + dim G = dim(F + G) + dim $(F \cap G) \leq n$ + dim $(F \cap G)$ donc:

$$\dim(F \cap G) \geqslant \dim F + \dim G - n$$

Q2 Soient H_1 et H_2 deux hyperplans distincts de E.

D'après ce qui précède $\dim(H_1 \cap H_2) \geqslant \dim H_1 + \dim H_2 - n$. Donc $\dim(H_1 \cap H_2) \geqslant n - 1 + n - 1 - n = n - 2$.

Comme $H_1 \cap H_2$ est un sous-espace vectoriel de $H_1: n-1 = \dim H_1 \geqslant \dim(H_1 \cap H_2) \geqslant n-2$.

Alors dim $(H_1 \cap H_2)$ vaut n-1 ou n-2.

Supposons que $\dim(H_1 \cap H_2) = n - 1$. $H_1 \cap H_2$ est alors un sous espace vectoriel de H_1 et H_2 , qui a même dimension que H_1 et H_2 . Alors $H_1 \cap H_2 = H_1 = H_2$. Ceci contredit l'hypothèse. Par conséquent $H_1 \cap H_2$ est de dimension n - 2.

L'intersection de deux hyperplans distincts de E est un sous-espace vectoriel de E de dimension n-2.

Q3 Montrons par récurrence que : $\forall k \in [1, r], \dim(H_1 \cap H_2 \cap \ldots \cap H_k) \geqslant n - k$.

La propriété est vraie pour k = 1 (dim $H_1 = n - 1$). Supposons la vraie pour un élément k de [1, r - 1] et montrons la pour k + 1.

D'après Q1, $\dim(H_1 \cap H_2 \cap \ldots \cap H_{k+1}) \geqslant \dim(H_1 \cap H_2 \cap \ldots \cap H_k) + \dim H_{k+1} - n$.

$$\dim(H_1 \cap H_2 \cap \ldots \cap H_{k+1}) \geqslant \dim(H_1 \cap H_2 \cap \ldots \cap H_k) + n - 1 - n = \dim(H_1 \cap H_2 \cap \ldots \cap H_k) - 1.$$

En appliquant l'hypotèse de récurrence on obtient : $\dim(H_1 \cap H_2 \cap ... \cap H_{k+1}) \ge n-k-1 = n-(k+1)$ et ainsi s'achève la récurrence.

Q4 La propriété est vraie pour p=1 car si F est de dimension n-1, F est un hyperplan et il est donc intersection d'un hyperplan!

Supposons la propriété vraie pour p élément de [1, n-1] et montrons la pour p+1. Soit F un sous-espace vectoriel de E de dimension n-(p+1). F est distinct de E donc il existe un élément a de E n'appartenant pas à F.

Posons D = Vect(a) et G = F + D. a n'appartient pas à F donc F et D sont en somme directe. G est donc de dimension n - p.

L'hypothèse de récurrence montre alors que G est l'intersection de p hyperplans $H_1, H_2, ..., H_p$.

Soit G' un supplémentaire de G dans E. dim G' = n - (n - p) = p. Posons $H_{p+1} = F + G'$.

Cette somme est directe car G = F + D et G' sont supplémentaires.

Ainsi H_{p+1} est de dimension dim $F + \dim G' = n - (p+1) + p = n - 1$. H_{p+1} est donc un hyperplan.

Montrons pour finir que $F = G \cap H_{p+1}$ ainsi aurons nous $F = H_1 \cap H_2 \cap \cdots \cap H_p \cap H_{p+1}$ et F sera l'intersection de p+1 hyperplans.

F est contenu dans G et dans H_{p+1} par construction de ces deux sous-espaces. Ainsi $F \subset G \cap H_{p+1}$

Réciproquement soit x un élément de $G \cap H_{p+1}$. x appartient à $H_{p+1} = F + G'$ donc $x = x_1 + x_2$ avec x_1 élément de F (donc de G) et x_2 élément de G'. $x_2 = x - x_1$.

x et x_1 sont deux éléments de G donc $x-x_1$ appartient à G. Alors $x_2=x-x_1$ appartient à G et G' qui ont une intersection nulle.

Ainsi $x_2 = x - x_1 = 0_E$. $x = x_1$ et x appartient alors à F. Ceci achève de montrer que $G \cap H_{p+1} \subset F$.

Par conséquent $F = G \cap H_{p+1} = H_1 \cap H_2 \cap \cdots \cap H_p \cap H_{p+1}$ et la récurrence s'achève.

Si p élément de [1, n] et si F est un sous-espace vectoriel de E de dimension n-p alors F est l'intersection de p hyperplans de E.

Ou si p élément de [0, n-1] et si F est un sous-espace vectoriel de E de dimension p alors F est l'intersection de n-p hyperplans de E.

Exercice 2 f est une application linéaire de E dans E' et g une application linéaire de E' dans E''.

$$\operatorname{rg} f + \operatorname{rg} g - \dim E' \leq \operatorname{rg}(g \circ f) \leq \operatorname{Min}(\operatorname{rg} f, \operatorname{rg} g).$$

• Montrons que : $\operatorname{rg}(g \circ f) \leqslant \operatorname{rg} g$ et $\operatorname{rg}(g \circ f) \leqslant \operatorname{rg} f$.

 $f(E) \subset E' \text{ donc } \operatorname{Im}(g \circ f) = g(f(E)) \subset g(E') = \operatorname{Im} g \text{ et ainsi } \operatorname{rg}(g \circ f) = \dim g(f(E)) \leqslant \dim \operatorname{Im} g = \operatorname{rg} g.$

On a $rg(g \circ f) \leq rg g$.

Soit h la restriction de g à $\operatorname{Im} f$. h est une application linéaire de $\operatorname{Im} f$ dans E''.

Le théorème du rang appliqué à h donne dim $\operatorname{Im} f = \operatorname{rg} h + \operatorname{dim} \operatorname{Ker} h$. Ainsi $\operatorname{rg} h \leq \operatorname{dim} \operatorname{Im} f = \operatorname{rg} f$.

Or $\operatorname{Im} h = h(\operatorname{Im} f) = h(f(E)) = g(f(E)) = \operatorname{Im}(g \circ f)$. Par conséquent $\operatorname{rg}(g \circ f) = \operatorname{rg} h \leqslant \operatorname{rg} f$. $\operatorname{rg}(g \circ f) \leqslant \operatorname{rg} f$.

 $\operatorname{rg}(g \circ f) \leqslant \operatorname{rg} g \text{ et } \operatorname{rg}(g \circ f) \leqslant \operatorname{rg} f \text{ donc } \operatorname{rg}(g \circ f) \leqslant \operatorname{Min}(\operatorname{rg} f, \operatorname{rg} g).$

• Reprenors: $\operatorname{rg} f = \dim \operatorname{Im} f = \operatorname{rg} h + \dim \operatorname{Ker} h$.

Remarquons que Ker $h \subset \text{Ker } g$; alors: dim Ker $h \leq \dim \text{Ker } g$.

Par conséquent : $\operatorname{rg} f \leq \operatorname{rg} h + \dim \operatorname{Ker} g = \operatorname{rg}(g \circ f) + \dim \operatorname{Ker} g = \operatorname{rg}(g \circ f) + \dim E' - \operatorname{rg} g$.

Ceci donne: $\operatorname{rg} f + \operatorname{rg} g - \dim E' \leq \operatorname{rg}(g \circ f)$.

Exercice 3 | f est une application linéaire de E dans E' et g une application linéaire de E' dans E''.

$$g \circ f = 0_{\mathcal{L}(E, E'')}$$
 équivaut à $\operatorname{Im} f \subset \operatorname{Ker} g$

$$g \circ f = 0_{\mathcal{L}(E,E'')} \Leftrightarrow \forall x \in E, \ g(f(x)) = 0_{E''} \Leftrightarrow \forall y \in \operatorname{Im} f, \ g(y) = 0_{E''} \Leftrightarrow \operatorname{Im} f \subset \operatorname{Ker} g$$

Exercice 4 Si f est une application linéaire de E dans E', tout supplémentaire de Ker f est isomorphe à Im f.

Soit F un supplémentaire de Ker f dans E. $E = F \oplus \operatorname{Ker} f$.

Soit h l'application de F dans Im f qui a tout élément x de F associe f(x).

Comme f est une application linéaire, h est une application linéaire de Ker f dans Im f. Montrons que h est bijective.

• Soit x un élément de Ker h. x appartient à F et $f(x) = h(x) = 0_E$ donc x appartient à $F \cap \text{Ker } f = \{0_E\}$; donc x est nul.

Alors $\operatorname{Ker} h = \{0_E\}$ et h est injective.

• Montrons que h est surjective. Soit y un élément de Im f. Il exite un élément x de E tel que f(x) = y.

Comme F et Ker f sont supplémentaires: $\exists !(x_1, x_2) \in F \times \text{Ker } f, \ x = x_1 + x_2.$

Alors
$$y = f(x) = f(x_1) + f(x_2) = f(x_1)$$
. Comme x_1 appartient à F , $h(x_1) = f(x_1) = y$.

 $\forall y \in \text{Im } f, \ \exists x_1 \in F, \ h(x_1) = y. \ h \text{ est surjective.}$

Finalement h est un isomorphisme de F sur Im f. F et Im f sont isomorphes.

Exercice Retrouver le théorème du rang.

Exercice 5 Opérations sur les endomorphismes nilpotents.

Soient f et g deux endomorphismes nilpotents de E qui commutent. Montrer que f + g et $f \circ g$ sont nilpotents.

Il existe deux éléments r et s de \mathbb{N}^* tels que $f^r = 0_{\mathcal{L}(E)}$ et $g^s = 0_{\mathcal{L}(E)}$.

• Une première récurrence simple montre que $\forall k \in \mathbb{N}, \ f^k \circ g = g \circ f^k$. Une seconde récurrence tout aussi simple montre que pour k élément de $\mathbb{N}, \ \forall i \in \mathbb{N}, \ f^k \circ g^i = g^i \circ f^k$.

Une troisième récurrence permet alors d'obtenir : $\forall j \in \mathbb{N}, \ (f \circ g)^j = f^j \circ g^j$.

Ainsi
$$(f \circ g)^r = f^r \circ g^r = 0_{\mathcal{L}(E)} \circ g^r = 0_{\mathcal{L}(E)}.$$
 $f \circ g$ est nilpotent

• Comme f et g commutent la formule du binôme donne : $(f+g)^{r+s-1} = \sum_{k=0}^{r+s-1} C_{r+s-1}^k f^k \circ g^{r+s-1-k}$.

Notons que $f^k = 0_{\mathcal{L}(E)}$ dès que k est élément de $[r, +\infty[$. Ainsi $(f+g)^{r+s-1} = \sum_{k=0}^{r-1} C_{r+s-1}^k f^k \circ g^{r+s-1-k}$.

Si k appartient à [0, r-1], r+s-1-k appartient à [s, r+s-1] et $g^{r+s-1-k}=0$ $\mathcal{L}(E)$.

Alors
$$(f+g)^{r+s-1} = \sum_{k=0}^{r-1} C_{r+s-1}^k f^k \circ g^{r+s-1-k} = 0_{\mathcal{L}(E)}$$
. $f+g$ est nilpotent.

E est un espace vectoriel de dimension non nulle n sur \mathbb{K} .

f est un élément de S. p est le plus petit élément de \mathbb{N} tel que $f^p = 0_{\mathcal{L}(E)}$.

Q1. Montrer qu'il existe un élément a de E tel que la famille $\mathcal{B} = (a, f(a), f^2(a), \dots, f^{p-1}(a))$ soit libre.

En déduire que : $p \leq n$.

- Q2. On suppose que p = n. On se propse d'étudier l'ensemble \mathcal{G} des éléments de $\mathcal{L}(E)$ qui commutent avec f.
- a) Montrer que $\mathcal{B} = (a, f(a), f^2(a), \dots, f^{n-1}(a))$ est une base de E et écrire la matrice de f dans cette base.
- b) Montrer que \mathcal{G} est un sous-espace vectoriel de $\mathcal{L}(E)$ qui contient : Vect($\mathrm{Id}_E, f, f^2, ..., f^{n-1}$).

c) Réciproquement soit g un élément de \mathcal{G} . g(a) est un élément de E donc s'écrit comme combinaison linéaire des éléments de \mathcal{B} . $\exists (\lambda_0, \lambda_1, \cdots, \lambda_n) \in \mathbb{K}^n, \ g(a) = \sum_{k=0}^{n-1} \lambda_k f^k(a)$.

Montrer alors que $g = \sum_{k=0}^{n-1} \lambda_k f^k$. Conclure.

 $\boxed{\mathbf{Q1}}$ Comme E n'est pas réduit au vecteur nul, Id_E n'est pas l'endomorphisme nul et ainsi p n'est pas nul.

Par conséquent p-1 appartient à \mathbb{N} et f^{p-1} n'est pas l'endomorphisme nul par définition de p.

Alors il existe un élément a de E tel que $f^{p-1}(a) \neq 0_E$. Montrons alors que la famille $\mathcal{B} = (a, f(a), f^2(a), \dots, f^{p-1}(a))$

Soit
$$(\lambda_0, \lambda_1, \dots, \lambda_{p-1})$$
 un élément de \mathbb{K}^p tel que $\sum_{k=0}^{p-1} \lambda_k f^k(a) = \lambda_0 a + \lambda_1 f(a) + \dots + \lambda_{p-1} f^{p-1}(a) = 0_E$ (*).

Montrons par récurrence que $\forall i \in [0, p-1], \ \lambda_0 = \lambda_1 = \cdots \lambda_i = 0.$

• (*) donne
$$f^{p-1}\left(\sum_{k=0}^{p-1} \lambda_k f^k(a)\right) = f^{p-1}\left(\lambda_1 a + \lambda_2 f(a) + \dots + \lambda_{p-1} f^{p-1}(a)\right) = f^{p-1}(0_E) = 0_E.$$

Donc
$$\sum_{k=0}^{p-1} \lambda_k f^{p-1+k}(a) = \lambda_0 f^{p-1}(a) + \lambda_1 f^p(a) + \dots + \lambda_{p-1} f^{2p-2}(a) = 0_E.$$

Or $f^{p-1+k}(a) = 0_E$ dès que $p-1+k \ge p$, c'est à dire dès que $k \ge 1$.

Alors $\lambda_0 f^{p-1}(a) = 0_E$. Comme $f^{p-1}(a) \neq 0_E : \lambda_0 = 0$. La propriété est vraie pour i = 0.

 \bullet Supposons la propriété vraie pour i élément de $[\![0,p-2]\!]$ et montrons la pour i+1.

Nous avons donc $\lambda_0 = \lambda_1 = \cdots = \lambda_i = 0$ et il s'agit de montrer que $\lambda_{i+1} = 0$.

L'hypothèse de récurrence et (*) donnent $\sum_{k=i+1}^{p-1} \lambda_k f^k(a) = \lambda_{i+1} f^{i+1}(a) + \lambda_{i+2} f^{i+2}(a) + \cdots + \lambda_{p-1} f^{p-1}(a) = 0_E$. Notons que p-2-i appartient à \mathbb{N} .

Alors
$$f^{p-2-i}\left(\sum_{k=i+1}^{p-1} \lambda_k f^k(a)\right) = f^{p-2-i}\left(\lambda_{i+1} f^{i+1}(a) + \lambda_{i+2} f^{i+2}(a) + \dots + \lambda_{p-1} f^{p-1}(a)\right) = f^{p-2-i}(0_E) = 0_E.$$

Donc
$$\sum_{k=i+1}^{p-1} \lambda_k f^{p-2-i+k}(a) = \lambda_{i+1} f^{p-1}(a) + \lambda_{i+2} f^p(a) + \dots + \lambda_{p-1} f^{2p-3-i}(a) = 0_E.$$

Alors $\lambda_{i+1} f^{p-1}(a) = 0_E$ et comme $f^{p-1}(a)$ n'est pas nul : $\lambda_{i+1=0}$ ce qui achève la récurrence.

$$\mathcal{B} = (a, f(a), f^2(a), \dots, f^{p-1}(a))$$
 est une famille libre de E

 $\mathcal{B} = \left(a, f(a), f^2(a), \dots, f^{p-1}(a)\right) \text{ est une famille libre de } E \text{ de cardinal } p \text{ et } E \text{ est de dimension } n \text{ donc } \boxed{p \leqslant n}.$

 $\underline{\text{Remarque}} \quad \text{Si b est dans E, la famille } \left(b, f(b), f^2(b), \dots, f^{p-1}(b)\right) \text{ est libre si et seulement si } f^{p-1}(b) \neq 0_E.$

Q2 a) D'après ce qui précède $\mathcal{B} = (a, f(a), f^2(a), \dots, f^{n-1}(a))$ est une famille libre de E. Comme le cardinal de cette famille est n qui est la dimension de E:

$$\mathcal{B} = (a, f(a), f^2(a), \dots, f^{n-1}(a))$$
 est une base de E

 $\forall i \in [0, n-2], \ f(f^i(a)) = f^{i+1}(a) \ \text{et} \ f(f^{n-1}(a)) = f^n(a) = 0_E. \ \text{Alors}$

$$M_{\mathcal{B}}(f) = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

b) $\forall k \in \mathbb{N}, \ f \circ f^k = f^{k+1} = f^k \circ f$. Donc $\forall k \in \mathbb{N}, \ f^k \in \mathcal{G}$. Donc \mathcal{G} est non vide.

Soient g et g' deux éléments de \mathcal{G} et λ un élément de \mathbb{K} .

$$g \circ f = f \circ g$$
 et $g' \circ f = f \circ g'$ donc $(\lambda g + g') \circ f = \lambda g \circ f + g' \circ f = \lambda f \circ g + f \circ g' = f \circ (\lambda g + g')$; $\lambda g + g' \in \mathcal{G}$.

Ceci achève de montrer que \mathcal{G} est un sous-espace vectoriel de $\mathcal{L}(E)$. Comme $\mathrm{Id}_E, f, ..., f^{n-1}$ sont des éléments de \mathcal{G} :

$$\mathcal G$$
 est un sous-espace vectoriel qui contient $\operatorname{Vect}(\operatorname{Id}_E,f,\ldots,f^{n-1})$

c) Soit g un élément de \mathcal{G} .

Considérons les coordonnées $(\lambda_0, \lambda_1, \dots, \lambda_{n-1})$ du vecteur g(a) dans la base $\mathcal{B} = (a, f(a), f^2(a), \dots, f^{n-1}(a))$.

Montrons que $g = \sum_{k=0}^{n-1} \lambda_k f^k$. g et $\sum_{k=0}^{n-1} \lambda_k f^k$ sont deux endomorphismes de E; pour montrer qu'ils sont égaux, montrons qu'ils coïncident sur les éléments de la base $\mathcal{B} = (a, f(a), f^2(a), \dots, f^{n-1}(a))$.

Il s'agit donc de montrer que
$$\forall i \in \llbracket 0, n-1 \rrbracket, \ g(f^i(a)) = \left(\sum_{k=0}^{n-1} \lambda_k \, f^k\right) (f^i(a)).$$

Notons que g commute avec f donc avec toute puissance de f.

Alors
$$\forall i \in [0, n-1]$$
, $g(f^i(a)) = (g \circ f^i)(a) = (f^i \circ g)(a) = f^i(g(a)) = f^i\left(\sum_{k=0}^{n-1} \lambda_k f^k(a)\right) = \sum_{k=0}^{n-1} \lambda_k f^i(f^k(a))$.

$$\forall i \in [0, n-1], \ g(f^i(a)) = \sum_{k=0}^{n-1} \lambda_k f^{i+k}(a) = \sum_{k=0}^{n-1} \lambda_k f^k(f^i(a)) = \left(\sum_{k=0}^{n-1} \lambda_k f^k\right) (f^i(a)).$$

Ceci achève de montrer que : $g = \sum_{k=0}^{n-1} \lambda_k f^k$. Alors g est élément de $\text{Vect}(\text{Id}_E, f, \dots, f^{n-1})$.

Donc $\mathcal{G} \subset \text{Vect}(\text{Id}_E, f, \dots, f^{n-1})$ et finalement :

$$\mathcal{G} = \operatorname{Vect}(\operatorname{Id}_E, f, \dots, f^{n-1})$$

Exercice 7 | Encore un peu de nilpotence.

Soit f un endomorphisme de E tel qu'il existe un élément r de \mathbb{N}^* vérifiant $f^r = 0_{\mathcal{L}(E)}$.

Montrer que $g = \mathrm{Id}_E - f$ est un automorphisme de E et déterminer g^{-1} . Illustrer.

Notons que f et Id_E commutent, $(\mathrm{Id}_E)^r = \mathrm{Id}_E$ et $f^r = 0_{\mathcal{L}(E)}$ donc:

$$\mathrm{Id}_E = (\mathrm{Id}_E)^r - f^r = (\mathrm{Id}_E - f) \circ (\mathrm{Id}_E + f + f^2 + \dots + f^{r-1}) = (\mathrm{Id}_E + f + f^2 + \dots + f^{r-1}) \circ (\mathrm{Id}_E - f).$$

Alors
$$Id_E = g \circ (Id_E + f + f^2 + \dots + f^{r-1}) = (Id_E + f + f^2 + \dots + f^{r-1}) \circ g$$
.

g est donc inversible et $g^{-1} = \mathrm{Id}_E + f + f^2 + \cdots + f^{r-1}$.

Si $f^r = 0_{\mathcal{L}(E)}$ alors $\mathrm{Id}_E - f$ est un automorphisme de E et $(\mathrm{Id}_E - f)^{-1} = \mathrm{Id}_E + f + f^2 + \cdots + f^{r-1}$.

<u>illustration</u> $E = \mathbb{K}_n[X]$ et $\forall P \in E, f(P) = P'$. f est endomorphisme de E tel que $f^{n+1} = 0_{\mathcal{L}(E)}$.

Alors $g = \mathrm{Id}_E - f$ est un automorphisme de E et $g^{-1} = \mathrm{Id}_E + f + f^2 + \cdots + f^n$.

$$\forall P \in E, \ g(P) = P - P' \text{ et } g^{-1}(P) = P + P' + P'' + \dots + P^{(n)}.$$

p et q sont deux projections de E. f = p - q.

- Q1. On suppose que f est une projection. Montrer que : $p \circ q + q \circ p = 2q$ et que : $p \circ q = q \circ p = q$.
- Q2. Réciproquement on suppose que $p \circ q = q \circ p = q$. Montrer que f est une projection parallèlement à $\operatorname{Ker} p + \operatorname{Im} q$. Déterminer $\operatorname{Im} f$.

$$\boxed{\mathbf{Q1} \ p - q = f = f^2 = (p - q) \circ (p - q) = p^2 - p \circ q - q \circ p + q^2 = p - p \circ q - q \circ p + q}.$$

$$p-q=p-p\circ q-q\circ p+q.$$
 Alors $p\circ q+q\circ p=q+q=2q.$ $p\circ q+q\circ p=2q$

En composant cette égalité à gauche (resp. à droite) par q on obtient :

$$q \circ p \circ q + q \circ q \circ p = 2 q \circ q \text{ (resp. } p \circ q \circ q + q \circ p \circ q = 2 q \circ q).$$

Alors $q \circ p \circ q + q \circ p = 2$ q et $p \circ q + q \circ p \circ q = 2$ q. En soustrayant il vient : $q \circ p - p \circ q = 0$ _{$\mathcal{L}(E)$}. C'est à dire $q \circ p = p \circ q$.

En reprenant l'égalité $p \circ q + q \circ p = 2q$ on obtient $2p \circ q = 2q$ ou $p \circ q = q$.

Finalement $p \circ q = q \circ p = q$

 $\boxed{\mathbf{Q2}}$ Ici $p \circ q = q \circ p = q$. f = p - q est un endomorphisme de E comme différence de deux endomorphismes de E.

De plus $f^2=(p-q)\circ(p-q)=p^2-p\circ q-q\circ p+q^2=p-q-q+q=p-q=f.$ Ainsi :

$$f$$
 est une projection .

Soit x un élément de Ker f. $p(x) - q(x) = f(x) = 0_E$. p(x) = q(x).

Alors p(x) = q(x) = p(q(x)) car $q = p \circ q$. $p(x) - p(q(x)) = 0_E$. $p(x - q(x)) = 0_E$ donc x - q(x) appartient à Ker p.

Posons t = x - q(x). x = t + q(x) donc x est un élément de Ker p + Im q.

Récipoquement soit x un élément de $\operatorname{Ker} p + \operatorname{Im} q$. $x = x_1 + x_2$ avec x_1 dans $\operatorname{Ker} p$ et x_2 dans $\operatorname{Im} q$.

$$f(x) = p(x) - q(x) = p(x_1) + p(x_2) - q(x_1) - q(x_2)$$
. Or $p(x_1) = 0_E$ et $q(x_2) = x_2$. Alors $f(x) = p(x_2) - q(x_1) - x_2$.

$$q(x_2) = x_2$$
 donne $p(x_2) = p(q(x_2))$. Comme $p \circ q = q : p(x_2) = q(x_2) = x_2$.

$$q = q \circ p \text{ et } p(x_1) = 0_E \text{ donnent } : q(x_1) = q(p(x_1)) = q(0_E) = 0_E.$$

Alors $f(x) = p(x_2) - q(x_1) - x_2 = x_2 - 0_E - x_2 = 0_E$. x est un élément de Ker f. Finalement :

$$\boxed{\operatorname{Ker} f = \operatorname{Ker} p + \operatorname{Im} q}$$

Soit x un élément de Im f. Il existe z dans E tel que x = f(z) = p(z) - q(z).

$$q(x) = q(p(z)) - q^2(z) = q(z) - q(z) = 0_E$$
. Alors x appartient à Ker q.

De plus x = p(z) - q(z) = p(z) - p(q(z)) = p(z - q(z)) donc x apartient à $\operatorname{Im} p$. Par conséquent x appartient $\operatorname{Ker} q \cap \operatorname{Im} p$.

Réciproquement soit x un élément de Ker $q \cap \text{Im } p$. $q(x) = 0_E$ et p(x) = x. Donc f(x) = p(x) - q(x) = x. x appartient à Ker $(f - \text{Id}_E) = \text{Im } f$. Finalement:

$$\operatorname{Im} f = \operatorname{Ker} q \cap \operatorname{Im} p$$

Exercice 9 \bigstar Endomorphisme dont le carré est -Id.

E est un espace vectoriel sur \mathbb{R} de dimension n non nulle.

- Q1. f est un endomorphisme de E tel que $f^2 = -Id_E$.
- a) Montrer que si (e_1, e_2, \dots, e_p) est une famille d'éléments de E telle que $(e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p))$ soit libre et non génératrice alors il existe un élément e_{p+1} de E tel que $(e_1, f(e_1), e_2, f(e_2), \dots, e_{p+1}, f(e_{p+1}))$ soit libre.
- b) En déduire que n est pair. Représenter f par une matrice simple.
- Q2. On suppose que n est pair. Montrer qu'il existe un endomorphisme f de E tel que $f^2 = -Id_E$.

Q1 a) Soit (e_1, e_2, \ldots, e_p) une famille d'éléments de E telle que $(e_1, f(e_1), e_2, f(e_2), \ldots, e_p, f(e_p))$ soit libre et non génératrice. Vect $(e_1, f(e_1), e_2, f(e_2), \ldots, e_p, f(e_p))$ n'est pas E donc il existe un élément e_{p+1} appartenant à E et n'appartenant pas à Vect $(e_1, f(e_1), e_2, f(e_2), \ldots, e_p, f(e_p))$.

 $(e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p))$ est libre et e_{p+1} n'appartient pas à $\text{Vect}(e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p))$ donc la famille $(e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p), e_{p+1})$ est encore libre.

Dès lors montrons que $(e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p), e_{p+1}, f(e_{p+1}))$ est libre.

Soit $(\alpha_1, \alpha_2, \dots, \alpha_{p+1})$ et $(\beta_1, \beta_2, \dots, \beta_{p+1})$ deux éléments de \mathbb{R}^{p+1} tels que $\sum_{k=1}^{p+1} \alpha_k e_k + \sum_{k=1}^{p+1} \beta_k f(e_k) = 0_E \quad (1).$

Alors
$$f\left(\sum_{k=1}^{p+1} \alpha_k e_k + \sum_{k=1}^{p+1} \beta_k f(e_k)\right) = f(0_E) = 0_E$$
. Donc $\sum_{k=1}^{p+1} \alpha_k f(e_k) + \sum_{k=1}^{p+1} \beta_k f^2(e_k) = 0_E$.

Ainsi $\sum_{k=1}^{p+1} \alpha_k f(e_k) - \sum_{k=1}^{p+1} \beta_k e_k = 0_E$ (2). Multiplions (1) par α_{p+1} et (2) par $-\beta_{p+1}$ et ajoutons.

Il vient
$$\sum_{k=1}^{p+1} (\alpha_{p+1} \alpha_k + \beta_{p+1} \beta_k) e_k + \sum_{k=1}^{p+1} (\alpha_{p+1} \beta_k - \beta_{p+1} \alpha_k) f(e_k) = 0_E$$
.

Si
$$k = p + 1$$
: $\alpha_{p+1} \beta_k - \beta_{p+1} \alpha_k = 0$ donc: $\sum_{k=1}^{p+1} (\alpha_{p+1} \alpha_k + \beta_{p+1} \beta_k) e_k + \sum_{k=1}^{p} (\alpha_{p+1} \beta_k - \beta_{p+1} \alpha_k) f(e_k) = 0_E$.

La liberté de $(e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p), e_{p+1})$ donne $\forall k \in [1, p+1], \ \alpha_{p+1} \alpha_k + \beta_{p+1} \beta_k = 0$ et

$$\forall k \in [1, p], \ \alpha_{p+1} \beta_k - \beta_{p+1} \alpha_k = 0.$$

En particulier α_{p+1} α_{p+1} + β_{p+1} β_{p+1} = 0 ou α_{p+1}^2 + β_{p+1}^2 = 0. Comme α_{p+1} et β_{p+1} sont des réels : α_{p+1} = β_{p+1} = 0.

Alors (1) donne
$$\sum_{k=1}^{p} \alpha_k e_k + \sum_{k=1}^{p} \beta_k f(e_k) = 0_E$$
. La liberté de $(e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p))$ fournit :

$$\alpha_1 = \cdots = \alpha_p = \beta_1 = \cdots = \beta_p = 0$$
. Ainsi $\alpha_1 = \cdots = \alpha_p = \alpha_{p+1} = \beta_1 = \cdots = \beta_p = \beta_{p+1} = 0$.

Ceci achève de montrer que $(e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p), e_{p+1}, f(e_{p+1}))$ est libre.

b) Soit \mathcal{S} l'ensemble des éléments q de \mathbb{N}^* tels qu'il existe une famille (e_1, e_2, \dots, e_q) d'éléments de E qui donne une famille $(e_1, f(e_1), e_2, f(e_2), \dots, e_q, f(e_q))$ libre.

Montrons que S est une partie non vide et majorée de \mathbb{N}^* .

• Soit e_1 un élément non nul de E. Montrons que $(e_1, f(e_1))$ est libre.

Soit α et β deux réels tels que $\alpha e_1 + \beta f(e_1) = 0_E$ (3). Ainsi $0_E = f(0_E) = f(\alpha e_1 + \beta f(e_1)) = \alpha f(e_1) - \beta e_1$ (4).

En multipliant (3) par α , (4) par $-\beta$ et en ajoutant on obtient: $(\alpha^2 + \beta^2) e_1 = 0_E$.

Commme e_1 n'est pas nul : $\alpha^2 + \beta^2 = 0$. α et β étant réel : $\alpha = \beta = 0$.

Ceci achève de prouver que $(e_1, f(e_1))$ est libre. Ainsi 1 est un élément de S et S n'est pas vide.

• Soit q un élément de S. Il existe une famille (e_1, e_2, \dots, e_q) d'éléments de E telle $(e_1, f(e_1), e_2, f(e_2), \dots, e_q, f(e_q))$ soit une famille libre de E.

Comme cette famille est de cardinal 2q et que E est de dimension $n:2q\leqslant n$. Donc $q\leqslant \left\lceil\frac{n}{2}\right\rceil+1$.

Ainsi S est majorée.

 \mathcal{S} est une partie non vide et majorée de \mathbb{N}^* donc \mathcal{S} possède un plus grand élément p.

Alors il existe une famille (e_1, e_2, \dots, e_p) d'éléments de E telle $\mathcal{B}' = (e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p))$ soit une famille libre de E.

Si \mathcal{B}' n'est pas une famille génératice de E, d'après a) on peut trouver un élément e_{p+1} de E tel que $(e_1, f(e_1), e_2, f(e_2), \dots, e_{p+1}, f(e_{p+1}))$ soit libre; alors p+1 appartient à \mathcal{S} et est strictement plus grand que le plus grand élément de \mathcal{S} !

Ainsi \mathcal{B}' est une famille génératrice de E. Cette famille qui est libre est alors une base de E ayant 2p éléments.

Par conséquent n = 2p et la dimension de E est paire.

S'il existe un endomorphisme f de E tel que $f^2 = -\mathrm{Id}_E$, la dimension de E est paire

Cherchons la matrice de f dans la base $\mathcal{B}' = (e_1, f(e_1), e_2, f(e_2), \dots, e_p, f(e_p)).$

Notons que $\forall k \in [1, p], \ f(e_k) = f(e_k)!! \ \text{et} \ \forall k \in [1, p], \ f(f(e_k)) = -e_k.$

Alors $M_{B'}(f)$ est la matrice diagonale par blocs $\begin{pmatrix} A_1 & O_2 & \cdots & O_2 \\ O_2 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & O_2 \\ O_2 & \cdots & O_2 & A_p \end{pmatrix}$ où $A_1 = A_2 = \cdots = A_p = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et

$$O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

 $\overline{\mathbf{Q2}}$ On suppose que la dimension n de E est paire. Il existe un élément p de \mathbb{N}^* tel que n=2p.

Soit $\mathcal{B}=(u_1,u_2,\ldots,u_{2p})$ une base de E et f l'endomorphisme de E définit par $\forall k\in [\![1,p]\!],\ f(u_k)=-u_{k+p}$ et $\forall k\in [\![p+1,2p]\!],\ f(u_k)=u_{k-p}.$

$$\forall k \in [1, p], \ f^2(u_k) = -f(u_{k+p}) = -u_{k+p-p} = -u_k \text{ et } \forall k \in [p+1, 2p], \ f^2(u_k) = f(u_{k-p}) = -u_{k-p+p} = -u_k.$$

Les deux endomorphismes f^2 et $-\mathrm{Id}_E$ coïncident sur la base \mathcal{B} donc sont égaux. $f^2 = -\mathrm{Id}_E$.

Si la dimension de E est paire, il existe un endomorphisme f de E tel que $f^2 = -\operatorname{Id}_E$

Exercice 10 \bigstar Noyaux et images itérés.

E est de dimension finie et non nulle n et f un endomorphisme de E. Pour tout k dans \mathbb{N} on pose :

$$N_k = \operatorname{Ker} f^k$$
 et $I_k = \operatorname{Im} f^k$.

Q1. Montrer que la suite $(N_k)_{k\geqslant 0}$ est croissante au sens de l'inclusion et que la suite $(I_k)_{k\geqslant 0}$ est décroissante (toujours au sens de l'inclusion).

Q2. Montrer que $S = \{k \in \mathbb{N} | N_{k+1} = N_k\}$ est une partie non vide de \mathbb{N} . On note p son plus petit élément.

Montrer que la suite $(N_k)_{0 \le k \le p}$ est strictement croissante et la suite $(N_k)_{k \ge p}$ constante. Qu'en est-il pour la suite des images?

Montrer que $p \leqslant n$.

Q3. Montrer que $E = N_p \oplus I_p$.

Q1 Soit k un élément de \mathbb{N} . Soit x un élément de $N_k = \operatorname{Ker} f^k$. $f^k(x) = 0_E$ donc $f^{k+1}(x) = f(f^k(x)) = f(0_E) = 0_E$ et x appartient à $\operatorname{Ker} f^{k+1} = N_{k+1}$. Alors $N_k \subset N_{k+1}$.

 $f(E)\subset E \text{ donc } f^k(f(E))\subset f^k(E). \text{ Ainsi } I_{k+1}=f^{k+1}(E)=f^k(f(E))\subset f^k(E)=I_k.$

$$\forall k \in \mathbb{N}, \ N_k \subset N_{k+1} \text{ et } \forall k \in \mathbb{N}, \ I_{k+1} \subset I_k$$

Q2 Supposons que $S = \{k \in \mathbb{N} | N_{k+1} = N_k\}$ soit vide. Alors pour tout élément k de \mathbb{N} , N_k est strictement contenu dans N_{k+1} . En particulier $\forall k \in \mathbb{N}$, dim $N_k < \dim N_{k+1}$.

Rappelons que E est de dimension n et qu'ainsi la dimension d'un sous-espace vectoriel de E est inférieure ou égale à n.

Alors $(\dim N_0, \dim N_1, \dots, \dim N_{n+1})$ est une suite strictement croissante de n+2 entiers de l'intervalle [0, n] qui contient n+1 éléments d'où une légère contradiction!

Finalement S est non vide de \mathbb{N} . Nous noterons p son plus petit élément.

p étant le plus petit élément de S, pour tout k dans [0, p-1], N_{k+1} et N_k sont distincts donc N_k est strictement contenu dans N_{k+1} .

La suite
$$(N_k)_{0 \leqslant k \leqslant p}$$
 est strictement croissante

Pour tout k dans [0, p-1], dim $N_k < \dim N_{k+1}$.

Donc pour tout k dans [0, p-1], dim $I_k = n - \dim N_k > n - \dim N_{k+1} = \dim I_{k+1}$.

Ainsi pour tout k dans [0, p-1], I_{k+1} est strictement contenu dans I_k .

La suite
$$(I_k)_{0\leqslant k\leqslant p}$$
 est strictement décroissante

Montrons par récurrence que $\forall k \in [p, +\infty[, N_{k+1} = N_k.$

L'égalité est vraie pour k = p car p appartient à S.

Supposons l'égalité vraie pour un élément k de $[p, +\infty]$ et montrons la pour k+1.

Il s'agit donc de prouver $N_{k+2} = N_{k+1}$ sachant que $N_{k+1} = N_k$.

Nous savons déjà que $N_{k+1}\subset N_{k+2}.$ Montrons l'inclusion inverse.

Soit x un élément de N_{k+2} . $f^{k+1}(f(x)) = f^{k+2}(x) = 0_E$ donc f(x) appartient à N_{k+1} . Comme $N_{k+1} = N_k$, f(x) appartient à N_k . Ainsi $f^{k+1}(x) = f^k(f(x)) = 0_E$ et x appartient à N_{k+1} . $N_{k+2} \subset N_{k+1}$ et la récurrence s'achève.

Par conséquent la suite $(N_k)_{k\geqslant p}$ constante

 $\forall k \in \llbracket p, +\infty \llbracket, \ I_{k+1} \subset I_k \text{et } \dim I_{k+1} = n - \dim N_{k+1} = n - \dim N_k = \dim I_k.$

Donc $\forall k \in [p, +\infty[, I_{k+1} = I_k \text{ et }] \text{ la suite } (I_k)_{k \geq p} \text{ constante }]$

La suite $(N_k)_{0 \leqslant k \leqslant p}$ est strictement croissante donc $(\dim N_0, \dim N_1, \dots, \dim N_p)$ est une suite strictement croissante de p+1 entiers de l'intervalle [0, n] qui contient n+1 éléments donc $p+1 \leqslant n+1$. $p \leqslant n$.

Q3 Soit x un élément commun à N_p et I_p . $f_p(x) = 0_E$ et il existe un élément z de E tel que $x = f^p(z)$.

Alors $f^{2p}(z) = f^p(x) = 0_E$. Ainsi z appartient à N_{2p} . Comme $N_p = N_{2p}$, z appartient à N_p et $x = f^p(z) = 0_E$.

Alors $N_p \cap I_p = \{0_E\}.$

De plus $\dim N_p + \dim I_p = \dim \operatorname{Ker} f^p + \dim \operatorname{Im} f^p = \dim E$ (théorème du rang).

E étant de dimension finie ce qui précède permet de dire que $\boxed{E=N_p\oplus I_p}$

f est une application de I dans \mathbb{R} . $x_0, x_1, ..., x_n$ sont n+1 points distincts de I.

On se propose de montrer qu'il existe un unique polynôme P, de degré au plus n, qui coïncide avec f en $x_0, x_1, ..., x_n$.

Q1. Version 1. On pose $\forall P \in \mathbb{R}_n[X], \ \varphi(P) = (P(x_0), P(x_1), \dots, P(x_n)).$

Montrer que φ est un isomorphisme de $\mathbb{R}_n[X]$ sur \mathbb{R}^{n+1} . Conclure.

- Q2. Version 2. Pour tout élément k de [0, n], U_k est le quotient de $U = \prod_{i=0}^{n} (X x_i)$ par $X x_k$ et $L_k = \frac{1}{U_k(x_k)} U_k$.
- a) Montrer que (L_0, L_1, \dots, L_n) est une base de $\mathbb{R}_n[X]$. Trouver les coordonnées d'un élément P de $\mathbb{R}_n[X]$ dans cette base.
- b) Retouver le résultat.

$\mathbf{Q1}$ φ est une application de $\mathbb{R}_n[X]$ sur \mathbb{R}^{n+1} .

Soit P et Q deux éléments de $\mathbb{R}_n[X]$ et λ un réel.

$$\varphi(\lambda P + Q) = \Big((\lambda P + Q)(x_0), (\lambda P + Q)(x_1), \dots, (\lambda P + Q)(x_n) \Big).$$

$$\varphi(\lambda P + Q) = \left(\lambda P(x_0) + Q(x_0), \lambda P(x_1) + Q(x_1), \dots, \lambda P(x_n) + Q(x_n)\right).$$

$$\varphi(\lambda P + Q) = \lambda \left(P(x_0), P(x_1), \dots, P(x_n) \right) + \left(Q(x_0), Q(x_1), \dots, Q(x_n) \right) = \lambda \varphi(P) + \varphi(Q).$$

Soit P un élément de Ker φ . $\varphi(P) = (P(x_0), P(x_1), \dots, P(x_n)) = 0_{\mathbb{R}^{n+1}}$.

Ainsi $\forall k \in [0, n], \ P(x_k) = 0.$

P est alors un polynôme de degré au plus n admettant au moins n+1 zéros $x_0, x_1, ..., x_n$. P est le polynôme nul.

Ker $\varphi = \{0_{\mathbb{R}_n[X]}\}$. φ est injective.

 φ est une application linéaire injective de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} et dim $\mathbb{R}_n[X] = \dim \mathbb{R}^{n+1} = n+1$, par conséquent :

$$\varphi$$
 est un isomorphisme de $\mathbb{R}_n[X]$ sur \mathbb{R}^{n+1}

Soit P un élément de $\mathbb{R}_n[X]$. P coïncide avec f en $x_0, x_1, ..., x_n$ si et seulement si $(P(x_0), P(x_1), ..., P(x_n)) = (f(x_0), f(x_1), ..., f(x_n))$; autrement dit si et seulement si P est un antécédent par φ dans $\mathbb{R}_n[X]$ de l'élément $(f(x_0), f(x_1), ..., f(x_n))$ de \mathbb{R}^{n+1} .

 φ étant une bijection de $\mathbb{R}_n[X]$ sur \mathbb{R}^{n+1} , $(f(x_0), f(x_1), \dots, f(x_n))$ possède un antécédent et un seul par φ dans $\mathbb{R}_n[X]$.

Il existe un unique polynôme P, de degré au plus n, qui coïncide avec f en $x_0, x_1, ..., x_n$.

 $\mathbf{Q2}$ a) Notons que U est un polynôme de degré n+1 admettant pour zéros $x_0, x_1, ..., x_n$.

Soit k un élément de [0, n]. $U_k = \prod_{\substack{i=0\\i\neq k}}^n (X - x_i)$. U_k est un polynôme de degré n dont les zéros sont : $x_0, x_1, ..., x_{k-1}$, $x_{k+1}, ..., x_n$.

Alors L_k est également un polynôme de degré n dont les zéros sont : $x_0, x_1, ..., x_{k-1}, x_{k+1}, ..., x_n$.

Notons encore que $L_k(x_k) = \frac{1}{U_k(x_k)} U_k(x_k) = 1$. $\forall k \in \llbracket 0, n \rrbracket, \ i \in \llbracket 0, n \rrbracket, \ U_k(x_i) = \begin{cases} 0 & \text{si } i \neq k \\ 1 & \text{si } i = k \end{cases}$.

 (L_0, L_1, \ldots, L_n) est une famille d'éléments de $\mathbb{R}_n[X]$. Montons qu'elle libre.

Soit $(\lambda_0, \lambda_1, \dots, \lambda_n)$ un élément de \mathbb{R}^{n+1} tel que $\lambda_0 L_0 + \lambda_1 L_1 + \dots + \lambda_n L_n = 0_{\mathbb{R}_n[X]}$.

Alors
$$\forall i \in [0, n], \ 0 = \lambda_0(x_i) L_0 + \lambda_1(x_i) L_1(x_i) + \dots + \lambda_n L_n(x_i) = \lambda_i L_i(x_i) = \lambda_i. \ \forall i \in [0, n], \ \lambda_i = 0.$$

Ceci achève de montrer que (L_0, L_1, \ldots, L_n) est une famille libre de $\mathbb{R}_n[X]$. Le cardinal n+1 de cette famille coïncide avec la dimension de $\mathbb{R}_n[X]$, c'est donc une base de $\mathbb{R}_n[X]$.

Soit P un élément de $\mathbb{R}_n[X]$ et $(\lambda_0, \lambda_1, \dots, \lambda_n)$ les coordonnées de P dans la base (L_0, L_1, \dots, L_n) .

 $P = \lambda_0 L_0 + \lambda_1 L_1 + \dots + \lambda_n L_n. \text{ Donc } \forall i \in \llbracket 0, n \rrbracket, P(x_i) = \lambda_0(x_i) L_0 + \lambda_1(x_i) L_1(x_i) + \dots + \lambda_n L_n(x_i) = \lambda_i L_i(x_i) = \lambda_i.$ $\forall i \in \llbracket 0, n \rrbracket, \lambda_i = P(x_i).$

 (L_0, L_1, \ldots, L_n) est une base de $\mathbb{R}_n[X]$. Les coordonnées d'un éléments P de $\mathbb{R}_n[X]$ dans cette base sont $(P(x_0), P(x_1), \ldots, P(x_n))$.

• Existence Soit P le polynôme de $\mathbb{R}_n[X]$ de coordonnées $(f(x_0), f(x_1), \dots, f(x_n))$ dans la base (L_0, L_1, \dots, L_n) .

Ses coordonnées sont également $(P(x_0), P(x_1), \dots, P(x_n))$. Ainsi $\forall i \in [0, n], P(x_i) = f(x_i)$ et P est solution.

• <u>Unicité</u> Soit Q uen seconde solution. $\forall i \in [0, n] (P - Q)(x_i) = P(x_i) - Q(x_i) = f(x_i) - f(x_i) = 0$. P - Q est donc un polynôme de degré au plus n qui admet au moins n + 1 racines. C'est le polynôme nul. Q = P d'où l'unicité.

Exercice 12 Endomorphisme d'une espace vectoriel de polynômes.

$$E = \mathbb{R}_3[X], A = X^4 - 1 \text{ et } B = X^4 - X.$$

A tout P élément de E on associe le reste f(P) dans la division de AP par B.

- Q1. Montrer que f est un endomorphisme de E.
- Q2. Montrer que $\operatorname{Ker} f$ est une droite vectorielle.
- Q3. F est l'ensemble des éléments de E divisibles par X-1. Montrer que F est un sous espace vectoriel de E de dimension 3. Montrer que $\operatorname{Im} f = F$.

Q1 • Soit P un élément de E. f(P) est le reste dans la division de AP par B et deg B=4; ainsi f(P) est un polynôme de degré au plus 3. f(P) appartient à E.

f est une application de E dans E.

• Soient P_1 et P_2 deux éléments de E et λ un élément de \mathbb{R} . Il existe deux éléments Q_1 et Q_2 de $\mathbb{R}[X]$ tels que $AP_1 = Q_1 B + f(P_1)$ et $AP_2 = Q_2 B + f(P_2)$.

Alors $A(\lambda P_1 + P_1) = (\lambda Q_1 + Q_2) B + \lambda f(P_1) + f(P_2)$. De plus $\lambda f(P_1) + f(P_2)$ est un polynôme de degré strictement inférieur au degré de B comme combinaison linéaire de deux polynomes de degrés strictement inférieurs à celui de B.

Alors
$$A(\lambda P_1 + P_1) = (\lambda Q_1 + Q_2) B + \lambda f(P_1) + f(P_2)$$
 et $\deg(\lambda f(P_1) + f(P_2)) < \deg B$.

 $\lambda f(P_1) + f(P_2)$ est alors le reste dans la division de $(\lambda P_1 + P_2) A$ par B et ainsi $f(\lambda P_1 + P_2) = \lambda f(P_1) + f(P_2)$.

f est un endomorphisme de E

 $\overline{\mathbf{Q2}}$ Soit P un élément de Ker f. Il existe un élément un élément Q de $\mathbb{R}[X]$ (et même de E) tel que AP = QB.

$$A = X^4 - 1 = (X - 1)(X + 1)(X^2 + 1)$$
 et $B = X^4 - X = X(X^3 - 1)$.

Les zéros de A dans \mathbb{C} sont -1, 1, i et -i. Les zéros de B dans \mathbb{C} sont 0, 1, j et j^2 .

AP = QB donc les zéros de B sont des zéros de AP. Comme 0, j et j^2 sont des zéros de B qui ne sont pas des zéros de A, 0, j et j^2 sont des zéros de P.

Ainsi
$$X(X-j)(X-j^2)$$
 divise P . Notons que $X(X-j)(X-j^2)=X(X^2+X+1)$.

P est de degré au plus 3 et $X(X^2+X+1)$ est un polynôme de degré 3 qui divise P; par conséquent il existe un réel λ tel que $P=\lambda\,X(X^2+X+1)$. $P\in \mathrm{Vect}(X(X^2+X+1))$.

Ceci montre donc que $\operatorname{Ker} f \subset \operatorname{Vect}(X(X^2+X+1))$. Pour montrer l'inclusion inverse il suffit de montrer que $X(X^2+X+1)$ appartient à $\operatorname{Ker} f$.

$$AX(X^{2} + X + 1) = (X - 1)(X + 1)(X^{2} + 1)X(X^{2} + X + 1) = (X + 1)(X^{2} + 1)X(X - 1)(X^{2} + X + 1).$$

$$AX(X^2 + X + 1) = (X + 1)(X^2 + 1)X(X^3 - 1) = (X + 1)(X^2 + 1)B.$$

B divise ainsi $AX(X^2 + X + 1)$ donc $f(AX(X^2 + X + 1)) = 0_E$ et $X(X^2 + X + 1)$ appartient à Ker f.

Alors $Vect(X(X^2 + X + 1)) \subset Ker f$. Finalement:

Ker
$$f$$
 est la droite vectorielle engendrée par $X(X^2 + X + 1)$

Soit P un élément de $E = \mathbb{R}_3[X]$.

$$P \in F \iff P(1) = 0 \iff X - 1 \text{ divise } P \iff \exists Q \in \mathbb{R}_2[X], \ P = (X - 1)Q.$$

$$P \in F \iff \exists (a,b,c) \in \mathbb{R}^3, \ P = (X-1)(a+bX+cX^2) \iff \exists (a,b,c) \in \mathbb{R}^3, \ P = a(X-1)+bX(X-1)+cX^2(X-1).$$

$$P \in F \iff P \in \text{Vect}(X-1, X(X-1), X^2(X-1)).$$

F est donc un sous-espace vectoriel de E et $(X-1,X(X-1),X^2(X-1))$ en est une famille génératrice. Comme cette famille est constituée de polynômes de degrés échelonnés, elle est libre et c'est donc une base de F.

$$F$$
 est un sous-espace vectoriel de dimension 3

Soit R un élément de Im f. Il existe deux éléments P et Q de E tel que AP = QB + R. 1 est un zéro commun à A et B donc 1 est un zéro de R. Ainsi R appartient à F.

Alors Im $f \subset F$. De plus dim Im $f = \dim E - \dim \operatorname{Ker} f = 4 - 1 = 3 = \dim F$. Par conséquent

$$Im f = F = \{ P \in E \mid P(1) = 0 \}$$

Montrons directement que $F \subset \operatorname{Im} f$.

Observons que $A - B = X^4 - 1 - X^4 + X = X - 1$. Ceci n'est pas de l'ordre du divin mais résulte du fait que A et B ont X - 1 comme PGCD et que par conséquent (merci Bezout) on peut trouver deux polynômes U et V tels que AU + BV = X - 1 (exemple U = 1 et V = -1).

Dès lors soit P un élément de F. Il existe un élément T de $\mathbb{R}_2[X]$ tel que P = (X - 1)T.

Ainsi AT - BT = (X - 1)T = P. T est un élément de E, AT = TB + P et deg $P \le 3 <$ deg B donc T est un élément de E dont le reste dans la division par B est P. f(T) = P et P appartient à l'image de f.

Exercice 13 Comparaison des spectres de $g \circ f$ et de $f \circ g$.

Q1. f et g sont deux endomorphismes de E tel que $\varphi = \mathrm{Id}_E - f \circ g$ soit un automorphisme de E.

On se propose de montrer que $\psi = \mathrm{Id}_E - g \circ f$ est également un automorphisme de E.

Soit y un élément de E. On suppose que x est un antécédent de y par ψ dans E.

Montrer que $f(x) = \varphi^{-1}(f(y))$ puis que $x = y + g(\varphi^{-1}(f(y)))$. Indiquer ce que cela prouve.

Conclure et exprimer ψ^{-1} à l'aide de φ^{-1} .

- Q2. f et g sont deux endomorphismes d'un K-espace vectoriel E de dimension finie.
- a) λ est un élément non nul de K. Montrer en utilisant Q1 que $f \circ g \lambda$ Id_E est bijectif si et seulement si $g \circ f \lambda$ Id_E est bijectif.
- b) On suppose que $g \circ f$ est bijectif. Montrer que f est injectif et que g est surjectif. En déduire que $f \circ g$ est bijectif.
- c) Comparer le spectre de $g \circ f$ et le spectre de $f \circ g$.

Q1. Soit y un élément de E.

• Supposons que y possède un antécédent x par ψ dans E. Alors $y = \psi(x) = x - g(f(x))$.

Ceci donne
$$f(y) = f(x) - f(g(f(x))) = (\operatorname{Id}_E - f \circ g)(f(x)) = \varphi(f(x))$$
. Alors $f(x) = \varphi^{-1}(f(y))$.

En injectant ce résultat dans y = x - g(f(x)) on obtient $y = x - g(\varphi^{-1}(f(y)))$ ou $x = y + g(\varphi^{-1}(f(y)))$.

Ainsi si y possède un antécédent par ψ dans E c'est nécessairement $x = y + g\left(\varphi^{-1}(f(y))\right)$. Donc y possède au plus un antécédent par ψ dans E.

• Posons $x = y + g\left(\varphi^{-1}(f(y))\right)$ et montrons que x est un antécédent de y par ψ . Il suffit de montrer que $\psi(x) = y$.

$$\psi(x) = x - g(f(x)) = y + g(\varphi^{-1}(f(y))) - g(f(y)) - g(f(\varphi^{-1}(f(y)))).$$

$$\psi(x) = y - g(f(y)) + g(\varphi^{-1}(f(y)) - (f \circ g)(\varphi^{-1}(f(y))) = y - g(f(y)) + g(\operatorname{Id}_E - f \circ g)(\varphi^{-1}(f(y))).$$

$$\psi(x) = y - g(f(y)) + g(\varphi(\varphi^{-1}(f(y)))) = y - g(f(y)) + g(f(y)) = y.$$

Ainsi x est un antécédent de y par ψ dans E.

Finalement y possède un unique antécédent par ψ dans $E: x = y + g\left(\varphi^{-1}(f(y))\right) = (\mathrm{Id}_E + g \circ \varphi^{-1} \circ f)(y)$.

Ceci étant vrai pour tout élément y de E, on peut alors dire que :

$$\psi$$
 est bijectif et $\psi^{-1} = \operatorname{Id}_E + g \circ \varphi^{-1} \circ f$

En échangeant les rôles de f et g on peut dire que si ψ est bijectif, φ l'est également et $\varphi^{-1} = \operatorname{Id}_E + f \circ \psi^{-1} \circ g$. Finalement:

$$\operatorname{Id}_E - f \circ g$$
 est un automorphisme de E si et seulement si $\operatorname{Id}_E - g \circ f$ est un automorphisme de E .

Q2. a) Soit λ un élément non nul de K.

$$f \circ g - \lambda \operatorname{Id}_E = -\lambda \left(\operatorname{Id}_E - \left(\frac{1}{\lambda} f \right) \circ g \right)$$
 est bijectif si et seulement si $\operatorname{Id}_E - \left(\frac{1}{\lambda} f \right) \circ g$ est bijectif car λ n'est pas nul.

En appliquant Q1 à $\frac{1}{\lambda} f$ et g on peut dire que $f \circ g - \lambda$ Id $_E$ est bijectif si et seulement si Id $_E - g \circ \left(\frac{1}{\lambda} f\right)$ est bijectif.

Comme λ n'est pas nul, $f \circ g - \lambda$ Id_E est bijectif si et seulement si $-\lambda \left(\text{Id}_E - g \circ \left(\frac{1}{\lambda} f \right) \right)$ est bijectif.

Or
$$-\lambda \left(\mathrm{Id}_E - g \circ \left(\frac{1}{\lambda} f \right) \right) = g \circ f - \lambda \ \mathrm{Id}_E$$
. Ainsi :

pour tout élément non nul λ de K, $f \circ g - \overline{\lambda}$ Id_E est bijectif si et seulement si $g \circ f - \lambda$ Id_E est bijectif.

<u>Remarque</u> Ceci ne vaut pas pour $\lambda = 0$ en dimension quelconque.

Considérons $E = \mathbb{R}[X]$. Soit f l'application de E dans E qui à tout élément P de E associe P' et soit g l'application de E dans E qui à tout élément P de E associe la primitive de P qui prend la valeur 0 en 0. f et g sont deux endomorphismes de E.

 $f \circ g = \mathrm{Id}_E$ est bijectif mais $g \circ f$ n'est pas bijectif car $\mathrm{Im}(g \circ f) \subset \{P \in E \mid P(0) = 0\}$.

b) Soit x un élément de Ker f. $f(x) = 0_E$ donc $g(f(x)) = 0_E$. Par conséquent x appartient à Ker $(g \circ f)$ qui est réduit à $\{0_E\}$ car $g \circ f$ est bijectif. Ainsi $x = 0_E$.

Ceci achève de montrer que f est injectif.

 $f(E) \subset E$ donc $g(f(E)) \subset g(E) \subset E$. Comme $g \circ f$ est bijectif: g(f(E)) = E. Alors $E \subset g(E) \subset E$ donc g(E) = E. g est surjectif.

f est un endomorphisme injectif de E, g est endomorphisme surjectif de E et E est de dimension finie, ainsi f et g sont bijectifs. Par conséquent $f \circ g$ est bijectif.

f et g jouant un role symétrique on peut dire que :

$$f \circ g$$
 est bijectif si et seulement si $g \circ f$ est bijectif.

Alors

pour tout élément
$$\lambda$$
 de K , $f \circ g - \lambda$ Id_E est bijectif si et seulement si $g \circ f - \lambda$ Id_E est bijectif.

c) Soit λ un élément de \mathbb{K} .

 $\lambda \in \operatorname{Sp}(f \circ g) \iff f \circ g - \lambda \operatorname{Id}_E \text{ non bijectif } \iff g \circ f - \lambda \operatorname{Id}_E \text{ non bijectif } \iff \lambda \in \operatorname{Sp}(g \circ f).$

$$\boxed{\operatorname{Sp}(f \circ g) = \operatorname{Sp}(g \circ f)}$$

Exercice Redémontrer Q2 a) sans utiliser Q1 (on pourra montrer que $Ker(f \circ g - \lambda \operatorname{Id}_E) = \{0_E\}$ si et seulement si $Ker(g \circ f - \lambda \operatorname{Id}_E) = \{0_E\}$)

Exercice 14 E est un espace vectoriel de dimension n sur \mathbb{K} . f est un endomorphisme de E de rang r.

Q1. $\forall u \in \mathcal{L}(E), \ \varphi(u) = f \circ u$. Montrer que φ est un endomorphisme de $\mathcal{L}(E)$ et donner son rang en fonction de r (considérer le noyau).

Q2. Même chose en posant : $\forall u \in \mathcal{L}(E), \ \varphi(u) = u \circ f$.

Q1 Ici
$$\forall u \in \mathcal{L}(E), \ \varphi(u) = f \circ u$$

- Soit u un endomorphisme de E. Comme f est un endomorphisme de E, par composition $f \circ u$ est un endomorphisme de E. Ainsi φ est une application de $\mathcal{L}(E)$ dans $\mathcal{L}(E)$.
- $\bullet \ \forall (u,v) \in \mathcal{L}(E) \times \mathcal{L}(E), \ \forall \lambda \in \mathbb{K}, \ \varphi(\lambda \, u + v) = f \circ (\lambda \, u + v) = \lambda \, f \circ u + f \circ v = \lambda \, \varphi(u) + \varphi(v).$

Ainsi φ est linéaire.

$$\varphi$$
 est un endomorphisme de $\mathcal{L}(E)$ donc $\varphi\in\mathcal{L}(\mathcal{L}(E)).$

• Soit u un élément de $\mathcal{L}(E)$.

$$u \in \operatorname{Ker} \varphi \iff f \circ u = 0_{\mathcal{L}(E)} \iff \forall x \in E, \ f(u(x)) = 0_E \iff \operatorname{Im} u \subset \operatorname{Ker} f.$$

En clair u appartient au novau de φ si et seulement si u prend ses valeurs dans Ker f.

A un petit abus près (*), Ker φ est donc l'ensemble des applications linéaires de E dans Ker f.

Alors dim Ker $\varphi = \dim \mathcal{L}(E, \text{Ker } f) = \dim E \times \dim \text{Ker } f = n(n-r) = n^2 - n r$.

 φ est un endomorphisme de $\mathcal{L}(E)$. Le théorème du rang donne alors rg $\varphi = \dim \mathcal{L}(E) - \dim \operatorname{Ker} \varphi = n^2 - (n^2 - nr) = nr$.

$$g\varphi = nr = \dim E \times \operatorname{rg} f.$$

Remarque Pour ne pas faire d'abus il convient de montrer que $\operatorname{Ker} \varphi$ est isomorphe à $\mathcal{L}(E,\operatorname{Ker} f)$.

Pour cela on considère l'application θ de Ker φ dans $\mathcal{L}(E, \operatorname{Ker} f)$, qui à un élément u de Ker φ associe l'application linéaire \hat{u} de E dans Ker f définie par $\forall x \in E$, $\hat{u}(x) = u(x)$ et on montre que θ est un isomorphisme.

On retrouve alors dim Ker $\varphi = \dim \mathcal{L}(E, \operatorname{Ker} f)$.

On est prié de remarquer que \hat{u} n'est pas égal à u!!

Q2
$$\text{Ici } \forall u \in \mathcal{L}(E), \ \varphi(u) = u \circ f$$

- Soit u un endomorphisme de E. Comme f est un endomorphisme de E, par composition $u \circ f$ est un endomorphisme de E. Ainsi φ est une application de $\mathcal{L}(E)$ dans $\mathcal{L}(E)$.
- $\forall (u,v) \in \mathcal{L}(E) \times \mathcal{L}(E), \ \forall \lambda \in \mathbb{K}, \ \varphi(\lambda u + v) = (\lambda u + v) \circ f = \lambda u \circ f + v \circ f = \lambda \varphi(u) + \varphi(v).$

Ainsi φ est linéaire.

$$\varphi$$
 est un endomorphisme de $\mathcal{L}(E)$ donc $\varphi \in \mathcal{L}(\mathcal{L}(E))$.

• Soit u un élément de $\mathcal{L}(E)$.

$$u \in \operatorname{Ker} \varphi \iff u \circ f = 0_{\mathcal{L}(E)} \iff \forall x \in E, \ u(f(x)) = 0_E \iff \operatorname{Im} f \subset \operatorname{Ker} u.$$

En clair u appartient au noyau de φ si et seulement si le noyau de u contient l'image de f, autrement dit si et seulement si u est nulle sur Im f.

Rappelons qu'une application linéaire est entièrement déterminée par sa donnée sur deux supplémentaires de l'espace vectoriel de départ.

Soit G un supplémentaire de $\operatorname{Im} f$ dans E.

Considérons l'application θ de Ker φ dans $\mathcal{L}(G, E)$, qui à un élément u de Ker φ associe l'application linéaire \hat{u} de G dans E définie par $\forall x \in G$, $\hat{u}(x) = u(x)$.

Montrons que θ est un isomorphisme de Ker φ sur $\mathcal{L}(G, E)$.

 θ est clairement une application linéaire de Ker φ sur $\mathcal{L}(G, E)$.

Montrons que θ est injective. Soit u un élément de Ker θ .

$$\theta(u) = \hat{u} = 0_{\mathcal{L}(G,E)}$$
. Ainsi $\forall x \in G, \ u(x) = \hat{u}(x) = 0_E$. Alors u est nulle sur G .

Or u appartient à Ker φ donc u est également nulle sur Im f. Montrons alors que $u = 0_{\mathcal{L}(E)}$.

Soit x un élément de E. $\exists ! (x_1, x_2) \in \text{Im } f \times G, \ x = x_1 + x_2. \ u(x) = u(x_1) + u(x_2) = 0_E + 0_E = 0_E.$

Ainsi $u = 0_{\mathcal{L}(E)}$ et le noyau de θ est réduit à $0_{\mathcal{L}(E)}$; θ est injective.

Montrons que θ est surjective. Soit v un élément de $\mathcal{L}(G, E)$. Montrons qu'il existe un élément u de Ker φ tel que $\theta(u) = v$

Notons p la projection sur G parallèlement à $\operatorname{Im} f$.

Soit p' l'application linéaire de E dans G définie par $\forall x \in E, p'(x) = p(x)$. Posons $u = v \circ p'$.

Notons que
$$\forall x \in \text{Im } f, \ p'(x) = p(x) = 0_E \text{ et } \forall x \in G, \ p'(x) = p(x) = x$$

Par composition u est une application linéaire de E dans E donc est un endomorphisme de E.

$$\forall x \in \text{Im } f, \ u(x) = v(p'(x)) = v(p(x)) = v(0_E) = 0_E.$$
 Ainsi u appartient à Ker φ .

 $\forall x \in G, \ \theta(u)(x) = \hat{u}(x) = u(x) = v(p'(x)) = v(p(x)) = v(x). \ \theta(u) = v.$ Ceci achève de montrer que θ est surjective.

 θ est un isomorphisme de Ker φ sur $\mathcal{L}(G, E)$. Donc dim Ker $\varphi = \dim \mathcal{L}(G, E) = \dim G \times \dim E$.

Or G est un supplémentaire de Im f dans E donc dim $G = \dim E - \dim \operatorname{Im} f = n - r$.

Alors dim Ker $\varphi = (n-r)$ dim E = (n-r) $n = n^2 - r$ n. Ainsi $\operatorname{rg} \varphi = \dim \mathcal{L}(E) - \dim \operatorname{Ker} \varphi = n^2 - (n^2 - r) = r$ n.

$$\operatorname{rg}\varphi=\operatorname{rg}f\times\dim E.$$

Exercice 15 ESCP 2002 Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels. Pour tout endomorphisme u de E et pour tout $m \in \mathbb{N}$, l'endomorphisme u^m est défini par :

$$u^{0} = Id_{E} \text{ et } \forall m \in [1, +\infty[, u^{m} = u \circ u^{m-1}].$$

On note D l'application dérivation qui à tout P de E associe le polynôme dérivée P'.

Soit f un endomorphisme de E tel qu'il existe deux éléments k et m vérifiant : $f^k = D^m$.

- Q1. Montrer que D est un endomorphisme surjectif de E. En déduire que f est un endomorphisme surjectif de E.
- Q2. Déterminer $\operatorname{Ker} D^m$.
- Q3. Montrer que pour tout élément p de $\in [0, k]$, Ker f^p est de dimension finie.
- Q4. Soit $p \in [1, k]$ et φ l'application définie sur Ker f^p par $\varphi(P) = f(P)$.
- a) Montrer que φ est une application linéaire de Ker f^p dans Ker f^{p-1} .
- b) Déterminer son noyau et montrer que φ est surjective.
- c) Déterminer une relation entre la dimension de Ker f^p et celles de Ker f^{p-1} et de Ker f.
- Q5. En déduire la dimension de Ker f^k en fonction de k et de la dimension de Ker f.
- Q6. Soit k et m deux éléments de \mathbb{N}^* . Déterminer une condition nécessaire et suffisante portant sur (k, m) pour qu'il existe un endomorphisme f de E tel que $f^k = D^m$.
- **Q1** \bullet *D* est une application de *E* dans *E*.
- $\forall (P,Q) \in E^2, \ \forall \lambda \in \mathbb{R}, \ D(\lambda P + Q) = (\lambda P + Q)' = \lambda P' + Q' = \lambda D(P) + D(Q).$ D est linéaire.

D est un endomorphisme de E.

ullet Montrons que D est surjectif. Soit P un élément de E. Montrons que P possède un antécédent par D dans E.

$$\exists r \in \mathbb{N}, \ \exists (a_0, a_1, \dots, a_r) \in \mathbb{R}^{r+1}, \ P = \sum_{k=0}^r a_k X^k.$$

Posons $Q = \sum_{k=0}^{r} \frac{a_k}{k+1} X^{k+1}$. Q appartient à E et D(Q) = Q' = P. Finalement :

D est un endomorphisme surjectif de E.

• Comme D est un endomorphisme surjectif de E il en est de même de D^m (composée de m endomorphismes surjectifs de E) donc de f^k .

Alors $f^k(E) = E$. Or $f^{k-1}(E) \subset E$ donc $f^k(E) \subset f(E)$. Ainsi $E = f^k(E) \subset f(E) \subset E$. Par conséquent f(E) = E.

f est une endomorphisme surjectif de E.

Q2 Notons que $\forall P \in E, \ D^m(P) = P^{(m)}$.

Soit P un élément de Ker D^m . $P^{(m)} = 0_E$.

La formule de Taylor avec reste intégrale appliquée à l'ordre m-1 donne :

$$\forall x \in \mathbb{R}, \ P(x) = \sum_{k=0}^{m-1} \frac{P^{(k)}(0)}{k!} x^k + \int_0^x \frac{(x-t)^{m-1}}{(m-1)!} P^{(m)}(t) \, \mathrm{d}t = \sum_{k=0}^{m-1} \frac{P^{(k)}(0)}{k!} X^k.$$

Ainsi
$$P = \sum_{k=0}^{m-1} \frac{P^{(k)}(0)}{k!} x^k$$
 donc P appartient à $\mathbb{R}_{m-1}[X]$.

Réciproquement il est clair que si P appartient à $\mathbb{R}_{m-1}[X]$, $P^{(m)}$ est le polynôme nul donc P appartient à $\operatorname{Ker} D^m$.

$$Ker D^m = \mathbb{R}_{n-1}[X].$$

Q3 Soit p un élément de [0,k]. Si x appartient à $\operatorname{Ker} f^p$, $f^k(x) = f^{k-p}(f^p(x)) = f^{k-p}(0_E) = 0_E$.

Ainsi Ker $f^p \subset \text{Ker } f^k = \text{Ker } D^m = \mathbb{R}_{m-1}[X]$. Comme $\mathbb{R}_{m-1}[X]$ est de dimension finie m, Ker f^p est de dimension finie inférieure ou égale à m.

Pour tout élément p de [0, k], Ker f^p est de dimension finie et inférieure ou égale à m.

 $\boxed{\mathbf{Q4}}$ a) Ici p est dans [1, k].

f étant linéaire, φ est linéaire. Soit P un élément de $\operatorname{Ker} f^p$. $f^p(P) = 0_E$ donc $f^{p-1}(f(P)) = 0_E$.

Ainsi $\varphi(P) = f(P)$ est un élément de Ker f^{p-1} .

 φ est une application linéaire de Ker f^p dans Ker f^{p-1} .

b) Soit P un élément de Ker f^p . $\varphi(P) = 0_E \iff f(P) = 0_E \iff P \in \text{Ker } f$.

Ainsi Ker $\varphi = \text{Ker } f \cap \text{Ker } f^p = \text{Ker } f \text{ car Ker } f \subset \text{Ker } f^p.$

$$\operatorname{Ker} \varphi = \operatorname{Ker} f.$$

Montrons que φ est surjective. Soit P un élément de Ker f^{p-1} . Montrons que P possède un antécédent dans Ker f^p par φ .

Comme f est surjective, il existe un élément Q de E tel que f(Q) = P.

$$f^p(Q) = f^{p-1}(P) = 0_E$$
 donc Q appartient à Ker φ et $\varphi(Q) = f(Q) = P$.

Ceci achève de montrer que φ est surjective.

 φ est application linéaire surjective de Ker f^p dans Ker f^{p-1} .

c) Appliquons le théorème du rang à φ . dim Ker $f^p = \operatorname{rg} \varphi + \dim \operatorname{Ker} \varphi = \operatorname{rg} \varphi + \dim \operatorname{Ker} f$.

Or $\operatorname{Im} \varphi = \operatorname{Ker} f^{p-1}$ donc $\operatorname{rg} \varphi = \dim \operatorname{Ker} f^{p-1}$. Alors $\dim \operatorname{Ker} f^p = \dim \operatorname{Ker} f^{p-1} + \dim \operatorname{Ker} f$.

$$\forall p \in [1, k], \dim \operatorname{Ker} f^p = \dim \operatorname{Ker} f^{p-1} + \dim \operatorname{Ker} f.$$

 $\overline{\mathbf{Q5}}$ D'après ce qui précède la suite $(\dim \operatorname{Ker} f^p)_{p \in \llbracket 0, k \rrbracket}$ (oui $p \in \llbracket 0, k \rrbracket$) est arithmétique de raison $\dim \operatorname{Ker} f$.

Ainsi dim Ker $f^k = \dim \operatorname{Ker} f^0 + k \dim \operatorname{Ker} f$. Or Ker $f^0 = \operatorname{Ker} \operatorname{Id}_E = \{0_E\}$ donc dim Ker $f^0 = 0$. Ainsi

$$\dim \operatorname{Ker} f^k = k \dim \operatorname{Ker} f.$$

Notons que k dim Ker $f = \dim \operatorname{Ker} f^k = \dim \operatorname{Ker} D^m = m \operatorname{donc} k \operatorname{divise} m$.

Q6 D'après ce qui précède, k divise m est une condition nécessaire pour qu'il existe un endomorphisme f de E tel que $f^k = D^m$.

Montrons qu'elle est suffisante. Supposons que k divise m. Il existe un élément r de \mathbb{N}^* tel que m = r k.

Posons $f = D^r$. f est un endomorphisme de E et $f^k = (D^r)^k = D^{r\,k} = D^m$. La condition est suffisante.

Soit k et m deux éléments de \mathbb{N}^* . Une condition nécessaire et suffisante pour qu'il existe un endomorphisme f de E tel que $f^k = D^m$ est k divise m.

Exercice 16 Q1. E est un espace vectoriel sur \mathbb{K} , φ et ψ sont deux formes linéaires non nulles sur E.

Q1 | Montrer que Ker $\varphi = \text{Ker } \psi$ si et seulement si, il existe un élément non nulle λ de \mathbb{K} tel que $\psi = \lambda \varphi$.

Q2 Application $\mathcal{B} = (e_1, e_2, \dots, e_n)$ est une base d'un espace vectoriel E sur \mathbb{K} . H est un hyperplan de E.

 $a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = 0$ et $b_1 x_1 + b_2 x_2 + \cdots + b_n x_n = 0$ sont deux équations de H dans \mathcal{B} .

Montrer qu'il existe un élément non nul λ de \mathbb{K} tel que : $\forall i \in [1, n], b_i = \lambda a_i$.

Q1 • Supposons que $\operatorname{Ker} \varphi = \operatorname{Ker} \psi$ et posons $H = \operatorname{Ker} \varphi = \operatorname{Ker} \psi$. φ n'étant pas la forme linéaire null, H est un hyperplan.

Ainsi il existe une droite vectorielle D de E qui est un supplémentaire de H dans E.

Soit (a) une base de D. $E = H \oplus \text{Vect}(a)$.

Si $\varphi(a)$ est nul, alors φ est nulle sur H et $\mathrm{Vect}(a)$ donc φ est nulle sur E car tout élément de E est somme d'un élément de H et d'un élément d'un élément de H et d'un élément d'un élément de H et d'un élément de H et d'un élément de H et d'un élément d'un élé

Posons alors $\lambda = \frac{\psi(a)}{\varphi(a)}$. Remarquons que λ n'est pas nul, que $\psi(a) = \lambda \varphi(a)$ et montrons que $\psi = \lambda \varphi$.

Soit x un élément de E. Il existe un élément h de H et un élément γ de \mathbb{K} tels que $x=h+\gamma a$. Notons que $\psi(h)=\varphi(h)=0_{\mathbb{K}}$ et rappelons que $\psi(a)=\lambda\,\varphi(a)$.

Alors
$$\psi(x) = \psi(h) + \gamma \psi(a) = 0_{\mathbb{K}} + \gamma \lambda \varphi(a) = \lambda 0_{\mathbb{K}} + \lambda \gamma \varphi(a) = \lambda (\varphi(h) + \gamma \varphi(a)) = \lambda \varphi(x).$$

Par conséquent $\forall x \in E, \ \psi(x) = \lambda \varphi(x) \ \text{donc} \ \psi = \lambda \varphi \ \text{avec} \ \lambda \ \text{élément non nul de } \mathbb{K}.$

• Réciproquement supposons qu'il existe un élément non nul λ de \mathbb{K} tel que $\psi = \lambda \varphi$. Montrons que Ker $\varphi = \operatorname{Ker} \psi$.

Soit x un élément de E. $x \in \text{Ker } \psi \Leftrightarrow \psi(x) = 0_{\mathbb{K}} \Leftrightarrow \lambda \varphi(x) = 0_{\mathbb{K}}$.

Or λ n'est pas nul donc $\lambda \varphi(x) = 0_{\mathbb{K}} \Leftrightarrow \varphi(x) = 0_{\mathbb{K}}$. Ainsi $x \in \operatorname{Ker} \psi \Leftrightarrow x \in \operatorname{Ker} \varphi$.

Finalement $\operatorname{Ker} \psi = \operatorname{Ker} \varphi$.

Q2 Posons pour tout élément
$$x = \sum_{i=1}^{n} x_i e_i$$
 de $E, \varphi(x) = \sum_{i=1}^{n} a_i x_i$ et $\psi(x) = \sum_{i=1}^{n} b_i x_i$.

 φ et ψ sont clairement deux formes linéaires sur E. Tout aussi clairement $\operatorname{Ker} \varphi = \operatorname{Ker} \psi = H$. Comme H n'est pas égal à E, φ et ψ sont non nulles et ont même noyau.

D'après Q1, il existe un élément non nul λ de \mathbb{K} tel que $\psi = \lambda \varphi$. Alors $\forall i \in [1, n], \ b_i = \psi(e_i) = \lambda \varphi(e_i) = \lambda a_i$.

Exercice 17 E est un espace vectoriel de dimension n sur \mathbb{K} . u et v sont deux endomorphismes de E tels que :

$$u^2 = v^2 = \operatorname{Id}_E$$
 et $\operatorname{Ker}(u - \operatorname{Id}_E) = \operatorname{Ker}(v - \operatorname{Id}_E)$.

 $\boxed{\mathbf{Q0}}$ f et g sont deux endomorphismes de E. Montrer que $g \circ f = 0_{\mathcal{L}(E)}$ si et seulement si $\mathrm{Im}\, f \subset \mathrm{Ker}\, g$.

 $\overline{\mathbf{Q1}}$ Montrer que $\mathrm{Ker}(u-\mathrm{Id}_E)$ et $\mathrm{Ker}(u+\mathrm{Id}_E)$ sont supplémentaires (c'est du cours mais je veux qu'on le redémontre).

Q2 a) Montrer que
$$\operatorname{Im}(u + \operatorname{Id}_E) \subset \operatorname{Ker}(u - \operatorname{Id}_E) = \operatorname{Ker}(v - \operatorname{Id}_E)$$
.

- b) Montrer en fait que : $\operatorname{Im}(u + \operatorname{Id}_E) = \operatorname{Ker}(u \operatorname{Id}_E) = \operatorname{Ker}(v \operatorname{Id}_E)$.
- c) Que dire de $(v \operatorname{Id}_E) \circ (u + \operatorname{Id}_E)$?

Q3 On pose $f = v \circ u - \text{Id}_E$. Montrer que f = u - v. Prouver que $f^2 = 0_{\mathcal{L}(E)}$ (on pourra sans doute remarquer que le problème est symétrique en u et v).

Q4 Montrer que $u \circ v = v \circ u$ si et seulement si u = v.

$$\boxed{\mathbf{Q0}} g \circ f = 0_{\mathcal{L}(E)} \iff \forall x \in E, \ g(f(x)) = 0_E \iff \forall x \in E, \ f(x) \in \operatorname{Ker} g. \text{ Or } \operatorname{Im} f = \{f(x), \ x \in E\}.$$

Donc $g \circ f = 0_{\mathcal{L}(E)} \iff \forall y \in \operatorname{Im} f, \ g(y) = 0_E \iff \operatorname{Im} f \subset \operatorname{Ker} g.$

$$g \circ f = 0_{\mathcal{L}(E)} \iff \operatorname{Im} f \subset \operatorname{Ker} g.$$

Q1 Version 1 u est un endomorphisme de E tel que $u^2 = \mathrm{Id}_E$ donc u est une symétrie vectorielle.

Mieux u est la symétrie vectorielle par rapport à $Ker(u - Id_E)$ parallèlement à $Ker(u + Id_E)$.

Donc $Ker(u - Id_E)$ et $Ker(u + Id_E)$ sont supplémentaires.

Version 2 Retrouvons ce résultat à la main. Soit x un élément de E.

Montrons, par analyse-synthèse qu'il existe un unique couple (y, z) de $Ker(u - Id_E) \times Ker(u + Id_E)$ tel que x = y + z.

Analyse/Unicité. Supposons que x = y + z avec $(y, z) \in \text{Ker}(u - \text{Id}_E) \times \text{Ker}(u + \text{Id}_E)$.

$$u(x) = u(y) + u(z) = y - z$$
. Ainsi $x = y + z$ et $u(x) = y - z$. En ajoutant et en multipliant par $\frac{1}{2}$ il vient $y = \frac{1}{2}(x + u(x))$.

En soustrayant et en multipliant par $\frac{1}{2}$ il vient $z = \frac{1}{2} (x - u(x))$.

Ce qui prouve l'unicité de la décomposition.

Synthèse/Existence. Posons $y = \frac{1}{2}(x + u(x))$ et $z = \frac{1}{2}(x - u(x))$.

•
$$y + z = \frac{1}{2}(x + u(x)) + \frac{1}{2}(x - u(x)) = x.$$

•
$$u(y) = \frac{1}{2} (u(x) + u^2(x)) = \frac{1}{2} (u(x) + x) = y \text{ donc } y \in \text{Ker}(u - \text{Id}_E).$$

•
$$u(z) = \frac{1}{2} \left(u(x) - u^2(x) \right) = \frac{1}{2} \left(u(x) - x \right) = -z \operatorname{donc} z \in \operatorname{Ker}(u + \operatorname{Id}_E).$$

Ainsi x = y + z avec $y \in \text{Ker}(u - \text{Id}_E)$ et $z \in \text{Ker}(u + \text{Id}_E)$. D'où l'existence de la décompoition.

$$\begin{tabular}{l} {
m Ker}(u-{
m Id}_E) \ {
m et} \ {
m Ker}(u+{
m Id}_E) \ {
m sont \ supplémentaires.} \ \end{tabular}$$

Q2 a) u et Id_E commutent donc $(u-\mathrm{Id}_E)\circ(u+\mathrm{Id}_E)=u^2-\mathrm{Id}_E^2=u^2-\mathrm{Id}_E=0$

D'après Q0, $\operatorname{Im}(u + \operatorname{Id}_E) \subset \operatorname{Ker}(u - \operatorname{Id}_E)$.

$$\operatorname{Im}(u + \operatorname{Id}_E) \subset \operatorname{Ker}(u - \operatorname{Id}_E) = \operatorname{Ker}(v - \operatorname{Id}_E).$$

b) Version 1 $\operatorname{Im}(u+\operatorname{Id}_E)\subset \operatorname{Ker}(u-\operatorname{Id}_E)$. E étant de dimension finie, pour montrer que $\operatorname{Im}(u+\operatorname{Id}_E)=\operatorname{Ker}(u-\operatorname{Id}_E)$ il ne reste plus qu'à montrer que $\operatorname{dim}\operatorname{Im}(u+\operatorname{Id}_E)=\operatorname{dim}\operatorname{Ker}(u-\operatorname{Id}_E)$.

 $\operatorname{Ker}(u - \operatorname{Id}_E)$ et $\operatorname{Ker}(u + \operatorname{Id}_E)$ sont supplémentaires dans E donc $\operatorname{dim} \operatorname{Ker}(u - \operatorname{Id}_E) + \operatorname{dim} \operatorname{Ker}(u + \operatorname{Id}_E) = \operatorname{dim} E = n$.

Alors dim $Ker(u - Id_E) = n - \dim Ker(u + Id_E)$.

Le théorème du rang donne $\dim \operatorname{Ker}(u + \operatorname{Id}_E) + \dim \operatorname{Im}(u + \operatorname{Id}_E) = \dim E = n$

Ceci fournit $\dim \operatorname{Im}(u + \operatorname{Id}_E) = n - \dim \operatorname{Ker}(u + \operatorname{Id}_E).$

Alors dim $Ker(u - Id_E) = n - \dim Ker(u + Id_E) = \dim Im(u + Id_E)$.

Ceci achève de montrer que $Im(u + Id_E) = Ker(u - Id_E)$.

Version 2 $\operatorname{Im}(u+\operatorname{Id}_E)\subset \operatorname{Ker}(u-\operatorname{Id}_E)$. Pour montrer que $\operatorname{Im}(u+\operatorname{Id}_E)=\operatorname{Ker}(u-\operatorname{Id}_E)$ il ne reste plus qu'à montrer que $\operatorname{Ker}(u-\operatorname{Id}_E)\subset \operatorname{Im}(u+\operatorname{Id}_E)$.

Soit x un élément de $\operatorname{Ker}(u - \operatorname{Id}_E)$. u(x) = x donc $x = \frac{1}{2}(x + x) = \frac{1}{2}(u(x) + x) = (u + \operatorname{Id}_E)(\frac{1}{2}x)$.

Ainsi x appartient à $\text{Im}(u + \text{Id}_E)$. Ceci achève de montrer que $\text{Ker}(u - \text{Id}_E) \subset \text{Im}(u + \text{Id}_E)$. On retrouve alors:

$$\operatorname{Im}(u + \operatorname{Id}_E) = \operatorname{Ker}(u - \operatorname{Id}_E) = \operatorname{Ker}(v - \operatorname{Id}_E).$$

c) $\operatorname{Im}(u + \operatorname{Id}_E) \subset \operatorname{Ker}(v - \operatorname{Id}_E)$ d'après a). Q0 donne alors : $(v - \operatorname{Id}_E) \circ (u + \operatorname{Id}_E) = 0_{\mathcal{L}(E)}$.

$$\boxed{\mathbf{Q3}} (v - \mathrm{Id}_E) \circ (u + \mathrm{Id}_E) = 0_{\mathcal{L}(E)} \text{ donc } v \circ u + v - u - \mathrm{Id}_E = 0_{\mathcal{L}(E)}. \text{ Alors } \boxed{f = v \circ u - \mathrm{Id}_E = u - v.}$$

Nous venons de voir que $v \circ u - \mathrm{Id}_E = u - v$. Comme u et v jouent un rôle symétrique, $u \circ v - \mathrm{Id}_E = v - u$.

Alors
$$f^2 = (v - u)^2 = (v - u) \circ (v - u) = v^2 - v \circ u - u \circ v + u^2 = \operatorname{Id}_E - v \circ u - u \circ v + \operatorname{Id}_E = -(v \circ u - \operatorname{Id}_E) - (u \circ v - \operatorname{Id}_E).$$

Ainsi
$$f^2 = -(u - v) - (v - u) = 0_{\mathcal{L}(E)}$$
. $f^2 = 0_{\mathcal{L}(E)}$.

 $\boxed{\mathbf{Q4}}$ Nous avons vu que $v \circ u - \mathrm{Id}_E = u - v$ et $u \circ v - \mathrm{Id}_E = v - u$.

Alors $u \circ v = v \circ u \iff u \circ v - \mathrm{Id}_E = v \circ u - \mathrm{Id}_E \iff v - u = u - v \iff 2v = 2u \iff v = u$.

$$u \circ v = v \circ u$$
 si et seulement si $u = v$.

Exercice 18 a est un réel et E est l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^{∞} sur \mathbb{R} .

F est l'ensemble des applications f de \mathbb{R} dans \mathbb{R} , deux fois dérivable sur \mathbb{R} et telles que $f'' + a f = 0_{\mathcal{A}(\mathbb{R},\mathbb{R})}$.

 $\boxed{\mathbf{Q1}}$ a) Soit f un élément de F. Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et exprimer ses dérivées successives en fonction de f ou de f' (... et de a).

b) Montrer que F est un sous-espace vectoriel de E.

Dans la suite on se propose de montrer que F est de dimension 2 et d'en trouver une base.

Q2 Examiner le cas où a est nul. Dans la suite a est non nul.

Q3 On considère l'application φ de F dans \mathbb{R}^2 définie par : $\forall f \in F, \ \varphi(f) = (f(0), f'(0))$.

a) Montrer que φ est linéaire.

b) Soit f un élément de $\operatorname{Ker} \varphi$.

Montrer que $\forall p \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ |f(x)| \leq \frac{|x|^{2p}}{(2p)!} |a|^p \max_{t \in [0,x]} |f(t)|$. En déduire que f est la fonction nulle.

En déduire que la dimension de F est inférieure ou égale à deux.

 $oxed{Q4}$ a) On suppose que a est strictement négatif. Trouver l'ensemble des réels λ tels que $x \to e^{\lambda x}$ appartienne à F. Achever alors de résoudre le problème posé.

b) On suppose que a est strictement positif. Soit c un réel.

Trouver l'ensemble des réels non nuls λ tels que $x \to \cos(\lambda x + c)$ appartienne à F. Achever alors de résoudre le problème posé.

Q1 a) Soit f un élément de F. Montrons par récurrence que pour tout élément p de \mathbb{N} , f est 2p fois dérivable sur \mathbb{R} et que $f^{(2p)} = (-a)^p f$.

- La propriété est de toute évidence vraie pour p=0.
- \bullet Supposons la propriété vraie pour un élément p de $\mathbb N$ et montrons la pour p+1.

f est dans F donc f est deux fois dérivable sur \mathbb{R} et f'' = -a f. L'hypothèse de récurrence permet alors de dire que f'' est 2p fois dérivable sur \mathbb{R} .

Ainsi f est 2p+2 fois dérivable sur \mathbb{R} , donc f est 2(p+1) fois dérivable sur \mathbb{R} !

De plus
$$f^{(2(p+1))} = (f^{(2p)})'' = ((-a)^p f)'' = (-a)^p f'' = (-a)^p (-a f) = (-a)^{p+1} f$$
. Ceci achève la récurrence.

f étant 2p fois dérivable sur \mathbb{R} pour tout p dans \mathbb{N} , f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

De plus
$$\forall p \in \mathbb{N}, \ f^{(2p+1)} = (f^{(2p)})' = ((-a)^p f)' = (-a)^p f'.$$

Soit f est un élément de F. f est de classe \mathcal{C}^{∞} sur \mathbb{R} . De plus $\forall p \in \mathbb{N}, \ f^{(2p)} = (-a)^p f$ et $f^{(2p+1)} = (-a)^p f'$

- **b)** D'après a) F est contenu dans E.
- 0_E est deux fois dérivable sur \mathbb{R} et $0_E'' + a 0_E = 0_E + a 0_E = 0_E = 0_{\mathcal{A}(\mathbb{R},\mathbb{R})}$. Ainsi 0_E appartient à F et F est donc non vide.
- Soient f et g deux éléments de F. Soit λ un réel. $\lambda f + g$ est deux fois dérivable sur \mathbb{R}

De plus:
$$(\lambda f + g)'' + a(\lambda f + g) = \lambda f'' + g'' + a\lambda f + ag = \lambda(f'' + af) + (g'' + ag) = \lambda 0_{\mathcal{A}(\mathbb{R},\mathbb{R})} + 0_{\mathcal{A}(\mathbb{R},\mathbb{R})} = 0_{\mathcal{A}(\mathbb{R},\mathbb{R})}$$

Donc $\lambda f + g$ est un élément de F. Ceci achève de montrer que :

$${\cal F}$$
 est un sous-espace vectoriel de ${\cal E}.$

 \mathbb{Q}^2 | Ici a=0. F est l'ensemble des applications de \mathbb{R} dans \mathbb{R} deux fois dérivable sur \mathbb{R} et de dérivée seconde nulle.

- Notons que toute application affine de $\mathbb R$ dans $\mathbb R$ appartient F
- Réciproquement soit f un élément de F. f'' est nulle sur l'intervalle \mathbb{R} ! Ainsi f' est constante sur \mathbb{R} .

Alors il existe un réel b tel que $\forall x \in \mathbb{R}$, f'(x) = b. Ainsi il existe un réel c tel que $\forall x \in \mathbb{R}$, f(x) = bx + c. f est affine.

On suppose que a est nul. F est l'ensemble des applications affines de \mathbb{R} dans \mathbb{R} . F est donc de dimension 2.

Posons $\forall x \in \mathbb{R}, f_0(x) = 1$ et $f_1(x) = x$; (f_0, f_1) est une base de F.

Q3 a) Soient f et g deux éléments de F et soit λ un réel.

$$\varphi(\lambda f + g) = \left((\lambda f + g)(0), (\lambda f + g)'(0) \right) = \left(\lambda f(0) + g(0), (\lambda f' + g')(0) \right) = \left(\lambda f(0) + g(0), \lambda f'(0) + g'(0) \right).$$

$$\varphi(\lambda f + g) = \lambda \left(f(0), f'(0) \right) + \left(g(0), g'(0) \right) = \lambda \varphi(f) + \varphi(g). \text{ Ceci achève de montrer que :}$$

$$\varphi$$
 est linéaire.

b) f un élément de Ker φ donc f est un élément de F qui vérifie f(0) = f'(0) = 0.

Alors f est de classe C^{∞} sur \mathbb{R} . De plus $\forall p \in \mathbb{N}$, $f^{(2p)}(0) = (-a)^p f(0) = 0$ et $f^{(2p+1)}(0) = (-a)^p f'(0) = 0$.

Soit p un élément de \mathbb{N}^* . L'inégalité de Taylor-Lagrange appliquée à f à l'ordre 2p-1 donne :

$$\forall x \in \mathbb{R}, \ \left| f(x) - \sum_{k=0}^{2p-1} \frac{f^{(k)}(0)}{k!} (x-0)^k \right| \leqslant \frac{|x-0|^{2p}}{(2p)!} \max_{t \in [0,x]} |f^{(2p)}(t)|.$$

Or
$$\forall k \in \mathbb{N}, \ f^{(k)}(0) = 0 \text{ et } \forall x \in \mathbb{R}, \ \max_{t \in [0,x]} |f^{(2p)}(t)| = \max_{t \in [0,x]} |(-a)^p f(t)| = \max_{t \in [0,x]} \left(|a|^p |f(t)|\right) = |a|^p \max_{t \in [0,x]} |f(t)|.$$

Donc $\forall x \in \mathbb{R}, |f(x)| \leq \frac{|x|^{2p}}{(2p)!} |a|^p \max_{t \in [0,x]} |f(t)|$. Finalement :

$$\forall p \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ |f(x)| \leqslant \frac{|x|^{2p}}{(2p)!} |a|^p \max_{t \in [0,x]} |f(t)|.$$

 $\text{Soit } x \text{ un r\'eel. } \forall p \in \mathbb{N}^*, \ |f(x)| \leqslant \frac{|x|^{2\,p}}{(2\,p)!} \, |a|^p \, \max_{t \in [0,x]} |f(t)| = \frac{(|x|\,\sqrt{|a|})^{2\,p}}{(2\,p)!} \, \max_{t \in [0,x]} |f(t)| \quad \textbf{(1)}.$

Or la série de terme général $\frac{(|x|\sqrt{|a|})^n}{n!}$ converge donc $\lim_{n\to+\infty}\frac{(|x|\sqrt{|a|})^n}{n!}=0$.

Ainsi $\lim_{p\to +\infty} \frac{(|x|\sqrt{|a|})^{2p}}{(2p)!} = 0$. En passant à la limite dans (1) il vient $|f(x)| \le 0$ donc f(x) = 0! Ceci pour tout réel x.

Ceci achève de montrer que f est la fonction nulle. Ainsi :

$$\ker \varphi = \{0_F\}.$$

 $\operatorname{Im} \varphi$ est un sous-espace vectoriel de \mathbb{R}^2 qui est un espace vectoriel de dimension 2 donc dim $\operatorname{Im} \varphi \leqslant 2$.

De plus dim Ker $\varphi = 0$. Le théorème du rang donne alors dim $F = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi = \dim \operatorname{Im} \varphi \leqslant 2$

F est de dimension inférieure ou égale à deux.

Q4 a) Ici a est réel strictement négatif.

Soit λ un réel. Posons : $\forall x \in \mathbb{R}, \ g_{\lambda}(x) = e^{\lambda x}$. g_{λ} est deux fois dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, \ g_{\lambda}''(x) + a \ g_{\lambda}(x) = (\lambda^2 + a) \ e^{\lambda x}$.

Ainsi g_{λ} appartient à F si et seulement si $\lambda^2 + a = 0$ donc si et seulement si $\lambda = \sqrt{-a}$ ou $\lambda = -\sqrt{-a}$.

$$\lambda$$
 est un réel. $x \to e^{\lambda x}$ appartient à F si et seulement si $\lambda = \sqrt{-a}$ ou $\lambda = -\sqrt{-a}$.

Posons $\forall x \in \mathbb{R}$, $f_2(x) = e^{\sqrt{-a}x}$ et $f_3(x) = e^{-\sqrt{-a}x}$. Montrons que (f_2, f_3) est une famille libre de F. Notons que f_2 et f_3 sont deux éléments de F

Soient α et β deux réels tels que $\alpha f_2 + \beta f_3 = 0_F$. $\forall x \in \mathbb{R}, \ \alpha e^{\sqrt{-a}x} + \beta e^{-\sqrt{-a}x} = 0$.

Pour
$$x = 0$$
 il vient $\alpha + \beta = 0$ donc $\beta = -\alpha$. Alors $\forall x \in \mathbb{R}, \ \alpha \left(e^{\sqrt{-a}x} - e^{-\sqrt{-a}x} \right) = 0$.

En divisant par $e^{\sqrt{-a}x}$ on obtient $\forall x \in \mathbb{R}, \ \alpha\left(1 - e^{-2\sqrt{-a}x}\right) = 0$. En faisant tendre x vers $+\infty$ on obtient $\alpha = 0$.

Ainsi $\beta = -\alpha = 0$. Ce qui achève de montrer que (f_2, f_3) est une famille libre de F.

Cela permet en particulier de dire que F est de dimension supérieure ou égale à deux. Or nous avons vu plus haut que F est de dimension au plus 2.

Par conséquent F est de dimension 2. (f_2, f_3) est alors une famille libre de F, de cardinal 2 et F est de dimension 2. (f_2, f_3) est donc une base de F.

a est un réel strictement négatif. On pose $\forall x \in \mathbb{R}, \ f_2(x) = e^{\sqrt{-a}x}$ et $f_3(x) = e^{-\sqrt{-a}x}$. F est de dimension 2 et (f_2, f_3) est une base de F.

b) Ici a est réel strictement positif.

c est un réel. Soit λ un réel non nul. Posons : $\forall x \in \mathbb{R}, \ h_{\lambda}(x) = \cos(\lambda x + c)$.

 h_{λ} est deux fois dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $h_{\lambda}''(x) + a h_{\lambda}(x) = (-\lambda^2 + a) \cos(\lambda x + c)$.

Ainsi h_{λ} appartient à F si et seulement si $(a - \lambda^2) h_{\lambda} = 0_F$.

Comme λ n'est pas nul on a: $h_{\lambda}\left(-\frac{c}{\lambda}\right) = 1$ donc h_{λ} n'est pas égal à 0_F .

Alors h_{λ} appartient à F si et seulement si $(a - \lambda^2) = 0$, c'est à dire si et seulement si $\lambda = \sqrt{a}$ ou $\lambda = -\sqrt{a}$.

c est un réel et λ est un réel non nul. $x \to \cos(\lambda x + c)$ appartient à F si et seulement si $\lambda = \sqrt{a}$ ou $\lambda = -\sqrt{a}$.

Posons $\forall x \in \mathbb{R}, \ f_4(x) = \cos(\sqrt{a}x) \text{ et } f_5(x) = \cos\left(-\sqrt{a}x + \frac{\pi}{2}\right).$

Alors f_4 et f_5 sont deux éléments de F. Notons que $\forall x \in \mathbb{R}, f_5(x) = \sin(\sqrt{a}x)$ et montrons que (f_3, f_5) est une famille libre de F.

Soient α et β deux réels tels que $\alpha f_4 + \beta f_5 = 0_F$. $\forall x \in \mathbb{R}, \ \alpha \cos(\sqrt{a} x) + \beta \sin(\sqrt{a} x) = 0$.

Pour x=0 il vient $\alpha=0$ et pour $x=\frac{\pi}{2\sqrt{a}}$ il vient $\beta=0$; ce qui achève de montrer que (f_4,f_5) est une famille libre de F.

Cela permet en particulier de dire que F est de dimension supérieure ou égale à deux. Or nous avons vu plus haut que F est de dimension au plus 2.

Par conséquent F est de dimension 2. (f_4, f_5) est alors une famille libre de F, de cardinal 2 et F est de dimension 2. (f_4, f_5) est donc une base de F.

a est un réel strictement négatif. On pose $\forall x \in \mathbb{R}, f_4(x) = \cos(\sqrt{a}x)$ et $f_5(x) = \sin(\sqrt{a}x)$. F est de dimension 2 et (f_4, f_5) est une base de F.

Exercice de contrôle a, b et c sont trois réels. Etudier l'ensemble F des applications f de \mathbb{R} dans \mathbb{R} , deux fois dérivable sur \mathbb{R} et telles que $a f'' + b f' + c f = 0_{\mathcal{A}(\mathbb{R},\mathbb{R})}$.