Quick Review

Perceptron

- A linear sum
- Non-linear activation function

Neural Network

- Stacking of perceptrons
- Optimisation through back propagation

Training

- Regularisation optimization
- Learning rate

Until now we looked at fully connected multi-layer perceptrons.

However these aren't particularly good with images on their own!

Millions of images

Low level features

Lines & Edges

Mid level features

Eyes & Nose & Ears

High level features

Facial Structure

How can we help a computer 'see'?

Black: 0 White: 1

How can we help a computer 'see'?

Black: 0 White: 1

How can we help a computer 'see'?

Grey scale

_	_	_	_	_	_		_		_	_	_
157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	191	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

156 182 163 74 75 62 33 17 110 210 180 154 180 180 50 14 34 6 10 33 48 106 159 181 206 109 5 124 131 111 120 204 166 15 56 180 194 68 137 251 237 239 239 228 227 87 71 201 172 106 207 233 233 214 220 239 228 98 74 206 188 88 179 209 185 215 211 158 139 75 20 169 189 97 165 84 10 168 134 11 31 62 22 148 199 168 191 193 158 227 178 143												
180 180 50 14 34 6 10 33 48 106 159 181 206 109 5 124 131 111 120 204 166 15 56 180 194 68 137 251 237 239 239 228 227 87 71 201 172 106 207 233 233 214 220 239 228 98 74 206 188 88 179 209 185 215 211 158 139 75 20 169 189 97 165 84 10 168 134 11 31 62 22 148 199 168 191 193 158 227 178 143 182 106 36 190 205 174 155 252 236 231 149 178 <td>157</td> <td>153</td> <td>174</td> <td>168</td> <td>150</td> <td>152</td> <td>129</td> <td>151</td> <td>172</td> <td>161</td> <td>155</td> <td>156</td>	157	153	174	168	150	152	129	151	172	161	155	156
206 109 5 124 131 111 120 204 166 15 56 180 194 68 137 251 237 239 239 228 227 87 71 201 172 105 207 233 233 214 220 239 228 98 74 206 188 88 179 209 185 215 211 158 139 75 20 169 189 97 165 84 10 168 134 11 31 62 22 148 199 168 191 193 158 227 178 143 182 106 36 190 205 174 155 252 236 231 149 178 228 43 95 234 190 216 116 149 236 187 86 15	156	182	163	74	75	62	33	17	110	210	180	154
194 68 137 251 237 239 239 228 227 87 71 201 172 105 207 233 233 214 220 239 228 98 74 206 188 88 179 209 185 215 211 158 139 75 20 169 189 97 165 84 10 168 134 111 31 62 22 148 199 168 191 193 158 227 178 143 182 106 36 190 205 174 155 252 236 231 149 178 228 43 95 234 190 216 116 149 236 187 86 150 79 38 218 241 190 224 147 108 227 210 127 102 36 101 255 224 190 214 173 66 103 143 96 50 2 109 249 215 187 196 235 75 11 81 47 0 6 217 256 211 183 202 237 145 0 0 0 12 108 200 138 243 236	180	180	50	14	34	6	10	33	48	106	159	181
172 106 207 233 233 214 220 239 228 98 74 206 188 88 179 209 185 215 211 158 139 75 20 169 189 97 165 84 10 168 134 111 31 62 22 148 199 168 191 193 158 227 178 143 182 106 36 190 206 174 155 252 236 231 149 178 228 43 95 234 190 216 116 149 236 187 86 150 79 38 218 241 190 224 147 108 227 210 127 102 36 101 255 224 190 214 173 66 103 143 96 50 22 109 249 215 187 196 235 75 11 81 47 0 6 217 255 211 183 202 237 145 0 0 0 12 108 200 138 243 236	206	109	5	124	131	111	120	204	166	15	56	180
188 88 179 209 185 215 211 158 139 75 20 169 189 97 165 84 10 168 134 111 31 62 22 148 199 168 191 193 158 227 178 143 182 106 36 190 205 174 155 252 236 231 149 178 228 43 95 234 190 216 116 149 236 187 86 150 79 38 218 241 190 224 147 108 227 210 127 102 36 101 255 224 190 214 173 66 103 143 96 50 2 109 249 215 187 196 236 75 1 81 47 0 6 217 255 211 183 202 237 145 0 0 0 12 108 200 138 243 236	194	68	137	251	237	239	239	228	227	87	n	201
189 97 165 84 10 168 134 11 31 62 22 148 199 168 191 193 158 227 178 143 182 106 36 190 205 174 155 252 236 231 149 178 228 43 95 234 190 216 116 149 236 187 86 150 79 38 218 241 190 224 147 108 227 210 127 102 36 101 255 224 190 214 173 66 103 143 96 50 2 109 249 215 187 196 236 75 1 81 47 0 6 217 255 211 183 202 237 145 0 0 12 108 200 138 243 236	172	106	207	233	233	214	220	239	228	98	74	206
199 168 191 193 158 227 178 143 182 106 36 190 206 174 155 252 236 231 149 178 228 43 95 234 190 216 116 149 236 187 86 150 79 38 218 241 190 224 147 108 227 210 127 102 36 101 255 224 190 214 173 66 103 143 96 50 2 109 249 215 187 196 235 75 1 81 47 0 6 217 255 211 183 202 237 145 0 0 0 12 108 200 138 243 236	188	88	179	209	185	215	211	158	139	75	20	169
206 174 155 252 236 231 149 178 228 43 96 234 190 216 116 149 236 187 86 150 79 38 218 241 190 224 147 108 227 210 127 102 36 101 255 224 190 214 173 66 103 143 96 50 2 109 249 215 187 196 236 75 1 81 47 0 6 217 255 211 183 202 237 145 0 0 12 108 200 138 243 236	189	97	166	84	10	168	134	11	31	62	22	148
190 216 116 149 236 187 86 150 79 38 218 241 190 224 147 108 227 210 127 102 36 101 255 224 190 214 173 66 103 143 96 50 2 109 249 215 187 196 236 75 1 81 47 0 6 217 255 211 183 202 237 145 0 0 0 12 108 200 138 243 236	199	168	191	193	158	227	178	143	182	106	36	190
190 224 147 108 227 210 127 102 36 101 255 224 190 214 173 66 103 143 96 50 2 109 249 215 187 196 235 75 1 81 47 0 6 217 256 211 183 202 237 145 0 0 12 108 200 138 243 236	206	174	155	252	236	231	149	178	228	43	96	234
190 214 173 66 103 143 96 50 2 109 249 215 187 196 236 75 1 81 47 0 6 217 255 211 183 202 237 145 0 0 12 108 200 138 243 236	190	216	116	149	236	187	86	150	79	38	218	241
187 196 235 75 1 81 47 0 6 217 255 211 183 202 237 145 0 0 12 108 200 138 243 236	190	224	147	108	227	210	127	102	36	101	255	224
183 202 237 145 0 0 12 108 200 138 243 236	190	214	173	66	103	143	96	50	2	109	249	215
	187	196	235	75	1	81	47	0	6	217	255	211
196 206 123 207 177 121 123 200 175 13 96 218	183	202	237	145	0	0	12	108	200	138	243	236
	196	206	123	207	177	121	123	200	175	13	96	218

How can we help a computer 'see'?

For colour images: break into RGB channels

We get a 3d matrix that describes our image.

We could vectorise the image? Stick it straight into an ANN

We could vectorise the image? Stick it straight into an ANN

- We lose the spatial relationships between pixels!
- We introduce a very large number of parameters

We could define features manually...

Domain knowledge

Define features

to classify

We could define features manually...

Learning feature representations

A hierarchy of features that help us describe the image

Millions of images

Low level features

Mid level features

High level features

Lines & Edges

Eyes & Nose & Ears

Facial Structure

Identifying similar objects

Both images show an X.

Directly comparing the elements of each image would suggest they are different images

We want to identify common features across the two images!

Identifying similar objects

Both images show an X.

Directly comparing the elements of each image would suggest they are different images

We want to identify common features across the two images!

Identifying similar objects

There are common features in both that we can learn.

Learning feature representations

Apply a filter Shift filter across Construct a new image 'convolved' matrix

Example:

- 4x4 filter
- Apply filter to the input image
- Element-wise multiplication of pixels with filter matrix
- Shift by 1 pixel to the right and repeat

Convolution operation

Convolution operation

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

$$kernel = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Convolution operation

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

$$kernel = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

1 _{×1}	1,0	1,	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Kernels

Kernels

(a) Original image.

0	0	0
0	1	0
0	0	0

(b) Blurred.

1	1	1
1	1	1
1	1	1

(c) Detect vertical edges.

0	0	0
-1	1	0
0	0	0

(d) Detect all edges.

0	1	0
1	-4	1
0	1	0

c) we subtract two adjacent pixels. When side by side pixels are similar, this gives us approximately zero. On edges, however, adjacent pixels are very different in the direction perpendicular to the edge. Knowing that results differs from zero will result in brighter pixels, you can already guess the result of this type of kernel.

4 main steps for CNN classification

- 1. Convolution Apply filters (we learn the filters!)
- 2. Non-linear function Often ReLU
- 3. Pooling operation reduce matrix size, often using max pooling
- 4. Fully connected MLP

Learning weights of filter

In lecture 1 we saw a neuron in a hidden layer.

Each neuron, weighted combination of inputs plus a bias put through a non-linear function

Learning weights of filter

In lecture 1 we saw a neuron in a hidden layer.

Each neuron, weighted combination of inputs plus a bias put through a non-linear function

Here each neuron only 'sees' a patch before it. Not fully connected. Defines local connectivity.

- 1. Apply a window of weights
- 2. Computer linear combinations
- 3. Activating with non-linear function

$$\sum_{i=1}^{4} \sum_{j=1}^{4} w_{ij} x_{i+p,j+q} + b$$

for neuron (p,q) in hidden layer

We can learn many filters

Using multiple features gives us an output **volume** instead of matrix.

Layer Dimensions:

 $H \times W \times D$

H and D are spatial dimensions of our images

D = number of filters

Stride:

Filter step size

Receptive field:

Locations in input image that a node is connected to.

Introducing non-linearity

ReLU function is most common for CNN's

It sets all negative values in our feature map to zero!

Pooling operations

- 1. Learn features in input image through **convolution**
- 2. Introduce **non-linearity** (real world data isn't linear!)
- 3. Reduce dimensionality and preseve
- 4. Preserve spatial invariance using pooling

- 1. Outputs from feature learning are input into fully connected ANN
- 2. Fully connected layers users the generated features for classifying the input image
- 3. Express output as a probability of image belonging to a class

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

How do we train? – Exactly the same as the ANN. Use back propagation!!

Use some loss function – cross entropy loss. $J(\theta) = \sum_{i} y^{(i)} \log(\hat{y}^{(i)})$

This full architecture is purposed for **image classification**!

Semantic Segmentation

Assign each pixel in the image a class!

This has the flavour of an autoencoder

Creating your labelled datasets can be time consuming....

Annotate images manually...

Semantic Segmentation

Assign each pixel in the image a class!

This has the flavour of an autoencoder

We used **down sampling** (convolutions and max pooling) to capture semantic/contextual information

We then implement **up sampling** to recover spatial information! Take our learned features and map them back into the original spatial image.

Object Detection and Instance Segmentation

Identify objects and the pixels that relate to that object!

Object Detection and Instance Segmentation

Identify objects and the pixels that relate to that object!

Application of CNN

Identifying facial phenotypes of genetic disorders using deep learning

Quick Review

Foundations

- Representing images for computer vision
- Convolution feature learning and pooling operations

CNNs

- The complete architecture
- Stacking multiple kernels into 3-dimensions

Applications

- Segmentation
- Object detection
- Image captioning

We have considered images... what about time-series data?

I took my dog for a

I took my dog for a walk

Idea 1

Define a window of words to make a prediction of the next word.

One-hot encode the words 'for' and 'a'

```
[1000001000]

for a

prediction
```

I took my dog for a walk

Idea 1

'for' and 'a' aren't particularly predictive of the next word 'walk'. We would need to define a larger window

I took my dog for a walk

Idea 1

Can't model long term dependencies

"China is where I grew up, but I now live in London. I speak fluent Chinese."

We need to retain information from the distant past to predict the next correct word.

I took my dog for a walk

Idea 1

Define a window of words On е for

Idea 2

Use entire sequence as set of counts

'bag of words'

I took my dog for a walk

Idea 1

Idea 2

It lost the sequential information!

e.g.

The food was good, not bad at all.

Vs

The food was bad, not good at all.

I took my dog for a walk

Features we learn about the sequence won't transfer if they appear elsewhere in the sequence.

Traditional feed-forward neural network isn't satisfactory for this problem.

We saw that standard ANN architecture wasn't suitable for images

Similar problem for time-series!

Design Criteria

We want a model that can:

- 1. Take variable length sequences
- 2. Track ('remember') long term dependencies
- 3. Maintain information about order
- **4. Share parameters** across the sequence

Use a Recurrent Neural Network (RNN).

Sequence modelling

Sequence modelling

Our basic Neural Network

Sequence modelling

Our basic Neural Network Many to one e.g. Sentiment Analysis

Many to many e.g. predict stock prices

Our basic Neural Network

Passing information internally from one step in the network to the next.

This loop creates a recurrent relation.

Recurrent neural network

Our basic Neural Network

Recurrent neural network

Some weighted function (learnt weights) that updates the state using the current state and the next step in the sequence.

Recurrent neural network

Standard Neural network

$$\hat{y} = g(w_0 + \boldsymbol{X}^T \boldsymbol{W})$$

Recurrent neural network

Standard Neural network

$$\hat{y} = g(w_0 + \boldsymbol{X}^T \boldsymbol{W})$$

Recurrent Neural Network

Update Hidden State

$$h_t = \tanh(\boldsymbol{W_{hh}} h_{t-1} + \boldsymbol{W_{xh}} x_t)$$

Recurrent neural network

Recurrent Neural Network

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh} h_{t-1} + \boldsymbol{W}_{xh} x_t)$$

Two weight matrices:

- 1) Applied to hidden state
- 2) Applied to input

Unravelling RNN

Recurrent neural network

Unravelling RNN

Recurrent neural network

The Loop can be seen as a chain like structure

Unravelling RNN

Recurrent neural network

The Loop can be seen as a chain like structure

Using the same weight matrices through our network!

Recurrent neural network

The Loop can be seen as a chain like structure

Using the same weight matrices through our network!

Individual contributions to the loss across all steps in time!

Back propagation through time

Recall the backpropagation in feed forward neural networks

Backpropagation algorithm:

- I. Take the derivative (gradient) of the loss with respect to each parameter
- 2. Shift parameters in order to minimize loss

$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

Individual contributions to the loss across all steps in time!

Individual contributions to the loss across all steps in time!

We have a weight matrix W_{hh} that is repeated many times.

Calculating gradient wrt to ho involves many factors of Whh

