Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy

Raul Fervari¹, **Alessio Mansutti**²

¹ Universidad Nacional de Córdoba, Argentina

² University of Oxford, UK

	Satisfiability problem
$SAT \to QBF$	$NP \to PSPACE$

	Satisfiability problem		
$SAT \to QBF$	$\mathrm{NP} o \mathrm{PSPACE}$		
$ML \to QML$	$ ext{PSPACE} ightarrow ext{undecidable} ext{[Fine, PhD thesis '70]}$		

	Satisfiability problem	
$SAT \to QBF$	$\mathrm{NP} o \mathrm{PSPACE}$	
$ML \to QML$	$\mathrm{PS}_{\mathrm{PACE}} ightarrow undecidable$	[Fine, PhD thesis '70]
$CTL \to QCTL$	$ ext{ExpTime} o ext{undecidable}$	[Laroussinie and Markey, LMCS'14]

	Satisfiability problem	
$SAT \to QBF$	$ ext{NP} o ext{PSPACE}$	
$ML \to QML$	$\mathrm{PS}_{\mathrm{PACE}} ightarrow undecidable$	[Fine, PhD thesis '70]
$CTL \to QCTL$	$ ext{ExpTime} o ext{undecidable}$	[Laroussinie and Markey, LMCS'14]
$LTL \to HyperLTL$	$\mathrm{PSPACE} \to \Sigma^1_1$	[Fortin et al., MFCS'21]

	Satisfiability problem	
$SAT \to QBF$	$ ext{NP} o ext{PSPACE}$	
$ML \to QML$	$\mathrm{PSPACE} ightarrow undecidable$	[Fine, PhD thesis '70]
$CTL \to QCTL$	$ ext{ExpTime} o ext{undecidable}$	[Laroussinie and Markey, LMCS'14]
$LTL \to HyperLTL$	$ ext{PSPACE} ightarrow \Sigma^1_1$	[Fortin et al., MFCS'21]

Kripke structure*:

- Atomic propositions: p, q, ...
- worlds and accessibility relation:

* In this work we consider **Kripke trees**

Quantified ML:

$$\varphi,\psi \ := \ p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \exists p : \varphi$$

Kripke structure*:

- Atomic propositions: p, q, ...
- worlds and accessibility relation:

* In this work we consider **Kripke trees**

Quantified ML:

$$\varphi,\psi \ := \ p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \exists p : \varphi$$

E.g. (standard ML): $\Diamond(\neg \bigcirc \land \Diamond \bigcirc)$

Kripke structure*:

- Atomic propositions: p, q, ...
- worlds and accessibility relation:

* In this work we consider **Kripke trees**

Quantified ML:

$$\varphi,\psi \ := \ p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \exists p : \varphi$$

E.g. (standard ML): $\Diamond(\neg \bigcirc \land \Diamond \bigcirc)$

First-order semantics:

$$\mathfrak{M}, w \models \exists p : \varphi \; \Leftrightarrow \text{there is a world } w' \\ \text{such that } \mathfrak{M}[p \leftarrow \{w'\}], w \models \varphi$$

Kripke structure*:

- Atomic propositions: p, q, ...
- worlds and accessibility relation:

* In this work we consider **Kripke trees**

Quantified ML:

$$\varphi,\psi \ := \ p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \exists p : \varphi$$

E.g. (standard ML): $\Diamond(\neg \bigcirc \land \Diamond \bigcirc)$

First-order semantics:

$$\mathfrak{M}, w \models \exists p : \varphi \; \Leftrightarrow \text{there is a world } w' \\ \text{such that } \mathfrak{M}[p \leftarrow \{w'\}], w \models \varphi$$

$$\mathsf{E.g.:} \quad \exists r : \Diamond \Diamond (\bigcirc \wedge r) \wedge \Diamond \Diamond (\bigcirc \wedge \neg r)$$

Kripke structure*:

- Atomic propositions: p, q, ...
- worlds and accessibility relation:

* In this work we consider **Kripke trees**

Quantified ML:

$$\varphi,\psi \ := \ p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \exists p : \varphi$$

E.g. (standard ML): $\Diamond(\neg \bigcirc \land \Diamond \bigcirc)$

First-order semantics:

$$\mathfrak{M}, w \models \exists p : \varphi \; \Leftrightarrow \text{there is a world } w' \\ \text{such that } \mathfrak{M}[p \leftarrow \{w'\}], w \models \varphi$$

E.g.:
$$\exists r : \Diamond \Diamond (\bigcirc \land r) \land \Diamond \Diamond (\bigcirc \land \neg r)$$

Second-order semantics:

$$\mathfrak{M}, w \models \exists p : \varphi \iff \text{there is a set of worlds } W$$
 such that $\mathfrak{M}[p \leftarrow W], w \models \varphi$

QML is very concise!

 $\underbrace{2^{2\cdots^2}}_{f(n)}$

Theorem (Bednarczyk and Demri, LICS'19)

On trees, the SAT problem of second-order quantified modal logic is Tower-hard.

Proof technique: uniform translation from the k NEXPTIME version of the tiling problem, for every $k \geq 1$. The translation is exponential in k.

QML is very concise!

 $\underbrace{2^{2\cdots^2}}_{f(n)}$ $\boldsymbol{\leftarrow}$

Theorem (Bednarczyk and Demri, LICS'19)

On trees, the SAT problem of second-order quantified modal logic is Tower-hard.

Proof technique: uniform translation from the k NEXPTIME version of the tiling problem, for every $k \geq 1$. The translation is exponential in k.

Unpleasant result:

- QML on trees subsumes Dependence logic, Team logic, Modal team logic, Ambient logic, Sabotage modal logic (on trees) ... but decision procedures for QML are suboptimal for these logics
- 2. Difficult result to parametrize (e.g. because translation is exponential).

Question: what is the expressiveness of QML on trees?

QML is very concise!

$\underbrace{2^{2\cdots^2}}_{f(n)}$

Theorem (Bednarczyk and Demri, LICS'19)

On trees, the SAT problem of second-order quantified modal logic is Tower-hard.

Goals of this paper:

- ullet Give a complexity analysis of QML (for both FO and SO semantics) that is more parametric and hierarchical, instead of just Tower
- Characterise the expressive power of QML.

but decision procedures for QML are suboptimal for these logics

2. Difficult result to parametrize (e.g. because translation is exponential).

Question: what is the expressiveness of QML on trees?

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \, \exists^1 + \dots + \, \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k): \mathsf{ML}(\exists^k)$ under FO semantics $\mathsf{ML}(\exists_{SO}^k): \mathsf{ML}(\exists^k)$ under SO semantics

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \exists^1 + \dots + \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{FO}\,\,\mathsf{semantics}\qquad \quad \mathsf{ML}(\exists_{SO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{SO}\,\,\mathsf{semantics}$

Theorem (M., Fervari, available soon(ish))

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \exists^1 + \dots + \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{FO}\,\,\mathsf{semantics}\qquad \quad \mathsf{ML}(\exists_{SO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{SO}\,\,\mathsf{semantics}$

Theorem (M., Fervari, available soon(ish))

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \exists^1 + \dots + \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{FO}\,\,\mathsf{semantics}\qquad \quad \mathsf{ML}(\exists_{SO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{SO}\,\,\mathsf{semantics}$

Theorem (M., Fervari, available soon(ish))

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \exists^1 + \dots + \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k): \mathsf{ML}(\exists^k)$ under FO semantics

 $\mathsf{ML}(\exists_{SO}^k): \mathsf{ML}(\exists^k)$ under SO semantics

Theorem (M., Fervari, available soon(ish))

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \exists^1 + \dots + \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{FO}\,\,\mathsf{semantics}\qquad \quad \mathsf{ML}(\exists_{SO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{SO}\,\,\mathsf{semantics}$

Theorem (M., Fervari, available soon(ish))

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \, \exists^1 + \dots + \, \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{FO}\,\,\mathsf{semantics}\qquad \quad \mathsf{ML}(\exists_{SO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{SO}\,\,\mathsf{semantics}$

Theorem (M., Fervari, available soon(ish))

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \, \exists^1 + \dots + \, \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{FO}\,\,\mathsf{semantics}\qquad \quad \mathsf{ML}(\exists_{SO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{SO}\,\,\mathsf{semantics}$

Theorem (M., Fervari, available soon(ish))

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \, \exists^1 + \dots + \, \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{FO}\,\,\mathsf{semantics}\qquad \quad \mathsf{ML}(\exists_{SO}^k):\,\mathsf{ML}(\exists^k)\,\,\mathsf{under}\,\,\mathsf{SO}\,\,\mathsf{semantics}$

Theorem (M., Fervari, available soon(ish))

Local quantifier $\exists^k q$: binds q to worlds accessible in at most k steps.

$$\mathsf{ML}(\exists^k) = \mathsf{ML} + \exists^1 + \dots + \exists^k$$

 $\mathsf{ML}(\exists_{FO}^k): \mathsf{ML}(\exists^k) \text{ under FO semantics} \qquad \mathsf{ML}(\exists_{SO}^k): \mathsf{ML}(\exists^k) \text{ under SO semantics}$

Theorem (M., Fervari, available soon(ish))

The SAT problem of $ML(\exists_{FO}^2)$ is already Tower-hard.

Observation: it is not just the depth of quantification that makes the problem hard, but also the "depth of interaction" between quantifiers.

Syntactic fragment of $ML(\exists^k)$ (for both FO and SO) such that

$$\mathsf{ML}(\exists^{j+2}) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^{j+1}) \qquad \qquad \mathsf{ML}(\exists^1) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^k)$$

E.g.: if φ is round-bounded for $ML(\exists^3)$, then so is $\exists^3 p \Diamond \exists^2 q \Diamond \exists^1 r \Diamond \exists^3 p : \varphi$.

Syntactic fragment of $\mathsf{ML}(\exists^k)$ (for both FO and SO) such that

$$\mathsf{ML}(\exists^{j+2}) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^{j+1}) \qquad \qquad \mathsf{ML}(\exists^1) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^k)$$

E.g.: if φ is round-bounded for $ML(\exists^3)$, then so is $\exists^3 p \Diamond \exists^2 q \Diamond \exists^1 r \Diamond \exists^3 p : \varphi$.

A hierarchy for QML: $\mathsf{QML} = \bigcup_{k=1}^{\infty} \text{ (round-bounded } \mathsf{ML}(\exists^k)\text{)}$

Syntactic fragment of $ML(\exists^k)$ (for both FO and SO) such that

$$\mathsf{ML}(\exists^{j+2}) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^{j+1})$$

$$\mathsf{ML}(\exists^1) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^k)$$

Theorem

The SAT problem of round-bounded $ML(\exists_{FO}^k)$ is (k+1)NExpTime-complete. The SAT problem of $ML(\exists_{FO}^k)$ is kNExpTime-complete for formulae of modal depth $\leq k$.

Syntactic fragment of $\mathsf{ML}(\exists^k)$ (for both FO and SO) such that

$$\mathsf{ML}(\exists^{j+2}) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^{j+1})$$

$$\mathsf{ML}(\exists^1) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^k)$$

Theorem

The SAT problem of round-bounded $ML(\exists_{SO}^k)$ is $(k+1)AExP_{POLY}$ -complete. The SAT problem of $ML(\exists_{SO}^k)$ is $kAExP_{POLY}$ -complete for formulae of modal depth $\leq k$.

 $k\mathbf{AExp_{Poly}}$: class or problems decidable with an alternating Turing machine running in $k\mathbf{EXPTIME}$ and performing polynomially many alternations.

Examples:

- ullet Team logic is $AExp_{POLY}$ -complete
- Presburger arithmetic is $2AExp_{Poly}$ -complete.

Syntactic fragment of $\mathsf{ML}(\exists^k)$ (for both FO and SO) such that

$$\mathsf{ML}(\exists^{j+2}) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^{j+1})$$

$$\mathsf{ML}(\exists^1) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^k)$$

Theorem

The SAT problem of round-bounded $ML(\exists_{SO}^k)$ is $(k+1)AExP_{POLY}$ -complete. The SAT problem of $ML(\exists_{SO}^k)$ is $kAExP_{POLY}$ -complete for formulae of modal depth $\leq k$.

Corollary (1)

 $\mathit{ML}(\exists_{FO}^1)$ and $\mathit{ML}(\exists_{SO}^1)$ are $2\mathrm{NExpTime}$ -comp. and $2\mathrm{AExp}_{\mathrm{Poly}}$ -comp., respectively.

recall: $\mathsf{ML}(\exists_{FO}^2)$ and $\mathsf{ML}(\exists_{SO}^2)$ are Tower-complete.

Syntactic fragment of $\mathsf{ML}(\exists^k)$ (for both FO and SO) such that

$$\mathsf{ML}(\exists^{j+2}) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^{j+1})$$

$$\mathsf{ML}(\exists^1) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^k)$$

Theorem

The SAT problem of round-bounded $ML(\exists_{SO}^k)$ is $(k+1)AExP_{POLY}$ -complete. The SAT problem of $ML(\exists_{SO}^k)$ is $kAExP_{POLY}$ -complete for formulae of modal depth $\leq k$.

Corollary (2)

Quantified S5 $[\mathrm{Fine}, \ '70]$ is $\mathrm{AExp}_{\mathrm{Poly}}\text{-}\mathit{comp.};$ Hybrid logic on trees is $\mathrm{Tower-}\mathit{comp.}$

Syntactic fragment of $\mathsf{ML}(\exists^k)$ (for both FO and SO) such that

$$\mathsf{ML}(\exists^{j+2}) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^{j+1})$$

$$\mathsf{ML}(\exists^1) \xrightarrow{\diamondsuit} \mathsf{ML}(\exists^k)$$

Theorem

The SAT problem of round-bounded $ML(\exists_{SO}^k)$ is $(k+1)AExP_{POLY}$ -complete. The SAT problem of $ML(\exists_{SO}^k)$ is $kAExP_{POLY}$ -complete for formulae of modal depth $\leq k$.

Corollary (3)

QML is as expressive as graded modal logic (under both FO and SO semantics).

graded modal logic = ML +
$$\Diamond_{>i}$$

 $\begin{array}{ll} \textbf{Input:} & \text{A formula } \varphi \text{ from } \mathsf{ML}(\exists_{SO}^k). \\ \textbf{Output:} & \text{A graded modal logic formula } \psi \text{ equivalent to } \varphi. \\ \end{array}$

A quantifier-elimination procedure:

From $\exists p: \varphi_{\mathsf{OF}}$ we want to produce an equivalent ψ_{OF} .

A relaxed quantifier-elimination procedure:

• Given $\exists^1 p: \varphi_{\mathsf{GML}}$ we produce an equivalent ψ_{GML} .

• Given $\exists^k p : \varphi$ with φ in $\mathsf{ML}(\exists^{k-1}_{SO})$ we obtain an equivalent formula in $\mathsf{ML}(\exists^{k-1}_{SO})$.

Input: A formula φ from $\mathrm{ML}(\exists_{SO}^k)$.

Output: A graded modal logic formula ψ equivalent to φ .

A relaxed quantifier-elimination procedure:

• Given $\exists^1 p : \varphi_{\mathsf{GML}}$ we produce an equivalent ψ_{GML} .

• Given $\exists^k p : \varphi$ with φ in $\mathsf{ML}(\exists_{SO}^{k-1})$ we obtain an equivalent formula in $\mathsf{ML}(\exists_{SO}^{k-1})$.

Complexity remarks:

- at each step, the formula becomes exponentially larger...
- for round-bounded formulae these explosions do not propagate between "rounds".

Proposition (Bednarczyk and Demri, LICS'19)

Let $k \geq 1$. There is a formula $\operatorname{type}(k,n)$ of QML (second-order semantics) that is satisfied only by worlds with $\operatorname{t}(k,n) \stackrel{\text{def}}{=} \underbrace{2^{2\cdots^{2^n}}}_k$ many children. It has size exponential in k.

Proposition (Bednarczyk and Demri, LICS'19) round-bounded $\mathbf{ML}(\exists_{FO}^k)$

Let $k \geq 1$. There is a formula $\operatorname{type}(k,n)$ of QML (second-order semantics) that is satisfied only by worlds with $\operatorname{t}(k,n) \stackrel{\text{def}}{=} \underbrace{2^{2\cdots^{2^{n}}}}_{k}$ many children. It has size exponential in k.

Proposition (Bednarczyk and Demri, LICS'19) round-bounded $\mathbf{ML}(\exists_{FO}^k)$

Let $k \geq 1$. There is a formula $\operatorname{type}(k,n)$ of QML (second-order semantics) that is satisfied only by worlds with $\operatorname{t}(k,n) \stackrel{\text{def}}{=} \underbrace{2^{2\cdots^{2^n}}}_k$ many children. It has size exponential in k. polynomial

Proposition (Bednarczyk and Demri, LICS'19) round-bounded $\mathbf{ML}(\exists_{FO}^k)$

Let $k \geq 1$. There is a formula $\operatorname{type}(k,n)$ of QML (second-order semantics) that is satisfied only by worlds with $\operatorname{t}(k,n) \stackrel{\text{def}}{=} 2^{2\cdots^2}$ many children. It has size exponential in k. $\operatorname{t}(k+1,n)$

Proposition (Bednarczyk and Demri, LICS'19) round-bounded $\mathbf{ML}(\exists_{FO}^k)$

Let $k \geq 1$. There is a formula $\operatorname{type}(k,n)$ of QML (second-order semantics) that is satisfied only by worlds with $\operatorname{t}(k,n) \stackrel{\text{def}}{=} 2^{2\cdots^{2^n}}$ many children. It has size exponential in k. polynomial

Funny stuff: improvements are based on encoding ripple-carry adders as formulae and leverage a trick by Fisher and Rabin [SIAM-AMS'74] to compress the formula further.

Encoding numbers in the Kripke structure: $\mathfrak{M}, w \models \mathrm{type}(\mathtt{k}, \mathtt{n})$ implies

- ullet w has t(k,n) children, all encoding a distinct number in [0,t(k,n)-1]
- using its children as indices, w encodes a number $\mathbf{n}_k(w) \in [0, t(k+1, n) 1].$

In a nutshell, this is done thanks to formulae that express

$$\mathbf{n}_j(x) < \mathbf{n}_j(y) \quad \text{and} \quad \mathbf{n}_j(x) + 1 = \mathbf{n}_j(y), \quad j \in [1,k].$$

Encoding numbers in the Kripke structure: $\mathfrak{M}, w \models \mathrm{type}(\mathbf{k}, \mathbf{n})$ implies

- ullet w has t(k,n) children, all encoding a distinct number in [0,t(k,n)-1]
- using its children as indices, w encodes a number $\mathbf{n}_k(w) \in [0, t(k+1, n) 1].$

In a nutshell, this is done thanks to formulae that express

$$\mathbf{n}_j(x) < \mathbf{n}_j(y) \quad \text{and} \quad \mathbf{n}_j(x) + 1 = \mathbf{n}_j(y), \quad j \in [1,k].$$

Issue: $\mathbf{n}_{j+1}(x) < \mathbf{n}_{j+1}(y)$ and $\mathbf{n}_{j+1}(x) + 1 = \mathbf{n}_{j+1}(y)$ are defined using several times $\mathbf{n}_j(x) < \mathbf{n}_j(y)$ and $\mathbf{n}_j(x) + 1 = \mathbf{n}_j(y)$ and their negation (\Rightarrow exponential blowup in j)

Solution:

- to subsume both $\mathbf{n}_i(x) < \mathbf{n}_i(y)$ and $\mathbf{n}_i(x) + 1 = \mathbf{n}_i(y)$ with a single formula...
- ...whose negation can be expressed in terms of positive occurrences of itself

Solution:

- to subsume both $\mathbf{n}_i(x) < \mathbf{n}_i(y)$ and $\mathbf{n}_i(x) + 1 = \mathbf{n}_i(y)$ with a single formula...
- ...whose negation can be expressed in terms of positive occurrences of itself

Why is this enough? We can use the Fisher and Rabin trick!

$$\varphi(\mathbf{x}) \wedge \varphi(\mathbf{y}) \equiv \forall \mathbf{z} : (\mathbf{z} = \mathbf{x} \vee \mathbf{z} = \mathbf{y}) \Rightarrow \varphi(\mathbf{z})$$

(this trick can be extended to Boolean combinations of positive occurrences of φ)

Solut

Ripple-carry adders!

- ullet t $+_j(x,y,z,c)$ that holds whenever
 - . $\mathbf{n}_j(x) + \mathbf{n}_j(y) = \mathbf{n}_j(z) \text{ and }$
 - $\mathbf{n}_j(c)$ is the sequence of carries obtained when performing $\mathbf{n}_j(x)+\mathbf{n}_j(y)$ in binary, on $\mathbf{t}(j,n)$ many bits.

Why

$$\varphi(\mathbf{x}) \wedge \varphi(\mathbf{y}) \equiv \forall \mathbf{z} : (\mathbf{z} = \mathbf{x} \vee \mathbf{z} = \mathbf{y}) \Rightarrow \varphi(\mathbf{z})$$

(this trick can be extended to Boolean combinations of positive occurrences of φ)

Solut

Ripple-carry adders!

- t $+_{j}(x, y, z, c)$ that holds whenever
 - $\bullet \ \mathbf{n}_j(x) + \mathbf{n}_j(y) = \mathbf{n}_j(z) \ \text{and} \$
 - $\mathbf{n}_j(c)$ is the sequence of carries obtained when performing $\mathbf{n}_j(x) + \mathbf{n}_j(y)$ in binary, on $\mathbf{t}(j,n)$ many bits.

Why

$$\mathbf{n}_j(x) < \mathbf{n}_j(z) \ \equiv \ \exists y,c: +_j(x,y,z,c)$$

(this

Solut

Ripple-carry adders!

- t $+_j(x, y, z, c)$ that holds whenever
 - $\mathbf{n}_j(x) + \mathbf{n}_j(y) = \mathbf{n}_j(z)$ and
 - $\mathbf{n}_j(c)$ is the sequence of carries obtained when performing $\mathbf{n}_j(x) + \mathbf{n}_j(y)$ in binary, on $\mathbf{t}(j,n)$ many bits.

Why

$$\mathbf{n}_j(x)+1=\mathbf{n}_j(z)\ \equiv\ \exists y,c:+_j(x,y,z,c)\land\mathbf{n}_j(y)=1$$

(this

Ripple-carry adders!

- $+_{j}(x,y,z,c)$ that holds whenever
- $\mathbf{n}_i(x) + \mathbf{n}_i(y) = \mathbf{n}_i(z)$ and
 - $n_i(c)$ is the sequence of carries obtained when performing $\mathbf{n}_i(x) + \mathbf{n}_i(y)$ in binary, on $\mathbf{t}(j,n)$ many bits.

Why

the negation of $+_j(x,y,z,c)$ can be expressed as $\big(\exists w,d: +_j(x,y,w,d) \wedge (\mathbf{n}_j(w) \neq \mathbf{n}_j(z) \vee \mathbf{n}_j(d) \neq \mathbf{n}_j(c))\big) \vee (\textit{overflow})$

9/10.

Conclusion

In the paper:

- we introduce a hierarchy for QML formulae that depend on the "depth of interaction" of quantifiers
- we characterise the complexity of each level of the hierarchy, for both FO and SO
- we characterise the expressive power of QML.

Conclusion

In the paper:

- we introduce a hierarchy for QML formulae that depend on the "depth of interaction" of quantifiers
- we characterise the complexity of each level of the hierarchy, for both FO and SO
- we characterise the expressive power of QML.

This allows us to connect QML with other logics, w.r.t. the right level of the hierarchy.

One exception: Ambient logic is $AExP_{Poly}$ -comp., but $ML(\exists_{SO}^1)$ is $2AExP_{Poly}$ -comp.