CLASSIFICADORES BASEADOS EM DISTÂNCIA

Prof. André Backes | @progdescomplicada

- A função densidade de probabilidade é um conceito fundamental em estatística
 - Permite associar probabilidades a uma variável aleatória x
- Especificar a função densidade de uma população nos fornece uma descrição natural da sua distribuição

- Histogramas
 - Método mais antigo e simples para estimar a densidade
 - Depende da origem e da largura (h) usada para os intervalos
 - h controla a granularidade

Histograma dos dados

- Se h é largo
 - Maior confiança na probabilidade no intervalo
 - baseada em um número maior de amostras
 - Detalhes da distribuição podem ser perdidos
- Se h é estreito
 - Preserva-se a estrutura fina (detalhes) da distribuição
 - Menor confiabilidade (menos amostras por intervalo)

- Histogramas
 - Raramente usados em espaços com mais de uma dimensão
 - 1 dimensão: N intervalos
 - 2 dimensões: N² intervalos
 - p dimensões: N^p intervalos
 - Histogramas d\u00e3o uma ideia de estimativa da densidade
 - Necessidade de definir uma abordagem mais formal

- Formalizando a estimativa da densidade
 - A probabilidade de uma amostra x estar dentro de uma região R, utilizando uma função densidade p(x) é

$$P(x) = \int_{R} p(x) dx$$

- Formalizando a estimativa da densidade
 - Considere a região R continua e pequena a tal ponto onde p(x) não varia.
 Então podemos reescrever a formula

$$P(x) = \int_{R} p(x)dx = p(x) * V$$

sendo V o volume de R

- Formalizando a estimativa da densidade
 - Podemos ainda definir essa probabilidade como sendo

$$P(x) = k/n$$

- k: número de pontos na região R
- n: número de pontos visando toda a região R
- Como P(x) = p(x) * V então

$$p(x) \approx \frac{k/n}{V}$$

- Técnica de interpolação de dados usada para a estimativa da densidade
 - Nela, fixamos o tamanho da região R e o volume V para estimar a densidade
 - O valor de k é determinado a partir dos dados de aprendizagem.

- Assume-se que a região R é um hiperplano de tamanho h e d dimensões
 - R é um cubo de d dimensões
 - Volume de R é h^d

- Para estimar a densidade no ponto x
 - Centrar R em x
 - Contar o número de observações em R e substituir na equação

$$p(x) \approx \frac{k/n}{V}$$

$$p(x) \approx \frac{3/6}{10}$$

- Função de Kernel ($\varphi(u)$)
 - Expressão utilizada para encontrar a quantidade de pontos que caem em R

$$\varphi(u) = \begin{cases} 1 & |u_j| \le \frac{1}{2} & j = 1, \dots, d \\ 0 & \text{Caso contrário} \end{cases}$$

- Existem vários tipos de Kernel
 - I(|u| < 1) retorna 1 se verdade ou 0 se falso

Kernel	φ (u)
Uniforme	½ * I(u < 1)
Triangular	(1- u) * I(u < 1)
Epanechnikov	³ / ₄ *(1 - u ²) ² * I(u < 1)
Quadrático	15/16 * (1 – u²)² * l(u < 1)
Triweight	35/32 * (1 – u ²) ³ * l(u < 1)
Cosseno	π/4 * cos(π/2 * u) * l(u < 1)

- Exemplo com Função de Kernel Uniforme
 - Considere $u = (x x_i)/h$, onde x é o centro da região R e x_i é um ponto qualquer
 - Se x_i estiver dentro do hiperplano
 - φ retorna 1
 - Caso contrário, φ retorna 0

- Também conhecido como aprendizado baseado em memória
 - Algoritmos que comparam novas instâncias do problema com instâncias vistas no treinamento
 - Evitam generalização explícita
- Raciocínio baseado em Casos
- É um tipo de lazy learning
 - aprendizado preguiçoso

- Lazy learning ou aprendizado preguiçoso
 - Método de aprendizagem em que a generalização além dos dados de treinamento é adiada até que uma consulta seja feita ao sistema
 - Diferente da aprendizagem ansiosa (eager learning)
 - Sistema tenta generalizar os dados de treinamento antes de receber uma consulta

- Vantagens
 - Capacidade de adaptar seu modelo a dados nunca vistos
 - São úteis para grandes conjuntos de dados que possuem poucos atributos cada

- Desvantagens
 - O custo de classificação de uma nova instância é alto
 - Necessita de grande espaço para armazenar todo o conjunto de dados de treinamento
 - São geralmente mais lentos para avaliar

- Algoritmo K-Nearest Neighbor
 - Também conhecido com K-Vizinhos-Mais-Próximos
 - É um dos algoritmos mais básicos, simples e bem difundidos do paradigma baseado em instâncias
 - Aprendizagem "lazy"
 - Sem etapa de pré-processamento

- Algoritmo K-Nearest Neighbor
 - Baseado unicamente na combinação de exemplos de treino armazenados.
 - Em geral, é definido em termos da distância Euclidiana
 - Pode ser utilizada também a distância de Mahalanobis
 - Aprendizagem supervisionada, algoritmo não-paramétrico

- Idéia básica
 - Usa as k instâncias mais similares (vizinhos mais próximos) para classificar
 - Contagem de votos
 - Se anda como um pato, "quacks" como um pato, então provavelmente é um pato

- Sua utilização requer 3 coisas
 - A base de dados de treinamento
 - Uma medida de (dis)similaridade
 - Usada entre os objetos desconhecidos e a base (objetos conhecidos)
 - O valor de k
 - Qual a quantidade de vizinhos mais próximos a recuperar

- O algoritmo armazena os dados de treinamento em uma tabela
 - Cada instância correspondem a um ponto no espaço n-dimensional, Rⁿ
 - Estes dados são usados para predizer a qual classe pertence uma instâncias desconhecida
 - Cálculo da distância

Dados armazenados

- Como classificar um objeto desconhecido?
 - Calcule a distância dele para todos os objetos do treinamento
 - Obtenha os k objetos do treinamento mais similares (mais próximos)
 - Classifique o objeto desconhecido como pertencente a classe da maioria dos k vizinhos

- Qual a classe do círculo verde?
 - k = 3: triângulo vermelho
 - k = 5: quadrado azul

- O que fazer em caso de empate entre duas ou mais classes?
 - Considerar apenas os k-1 vizinhos mais próximos.
 - Em caso de novo empate, repetir esse processo
 - Esse processo para quando ama classe for unânime

- Qual a classe do círculo verde?
 - k = 4: empate
 - k = 3: triângulo vermelho

- Como escolher o valor de k
 - k muito pequeno
 - O algoritmo se torna mais flexível
 - Sensível a ruído, a classificação das amostras pode ser instável
 - Menor gasto computacional

- Como escolher o valor de k
 - k muito grande
 - Mais robusto a ruído
 - Aumenta a informação sobre a probabilidade de pertencer à classe
 - Vizinhança tende a incluir objetos de outras classes, privilegiando a majoritária
 - Menor flexibilidade
 - Maior gasto computacional

- Necessita de normalização dos dados
 - Condicionar os dados de forma apropriada
 - Isso evita que certos atributos dominem completamente a medida de distância
 - Exemplo:
 - Altura de um adulto: 1.4m a 2.1m
 - Peso de um adulto: 50Kg a 130Kg
 - Faixa salarial: R\$400 a R\$30.000

- Vantagens
 - Simples de implementar
 - Não requer uma etapa de treinamento
 - Ideal para conjuntos de dados pequenos ou médios
 - Usa informação local, podendo ser implementado comportamentos adaptativos
 - Pode ser paralelizado

- Desvantagens
 - Custo computacional e de armazenamento alto para conjuntos de dados grandes ou com muitos atributos
 - A constante k usada para definir o número de vizinhos é obtida por tentativa e erro
 - Sua precisão pode ser severamente degradada pela presença de ruído ou atributos irrelevantes

Algoritmo K-NN | Exemplo

 Qual a classe da amostra, dado o conjunto de treinamento ao lado?

Altura	Peso	Sexo
1,75	52,0	?

Altura	Peso	Sexo
1,87	76,1	0
1,65	75,2	1
1,80	60,0	1
1,81	55,9	0
1,90	93,3	1
1,74	65,2	1
1,49	45,1	0
1,56	53,2	0
1,73	55,1	0
1,76	63,1	1

Algoritmo K-NN | Exemplo

Com ajuste de escala

Sem ajuste de escala

- Primeiro passo
 - Normalizar os valores
 - z-score

Média	Média
Altura	Peso
1,73	64,22

Desvio	Desvio
Altura	Peso
0,13	14,01

Altura	Peso	Sexo
1,87	76,1	0
1,65	75,2	1
1,80	60,0	1
1,81	55,9	0
1,90	93,3	1
1,74	65,2	1
1,49	45,1	0
1,56	53,2	0
1,73	55,1	0
1,76	63,1	1

- Primeiro passo
 - Normalizar os valores
 - z-score

Altura	Peso	Sexo
0,14	-0,87	?

Altura	Peso	Sexo
1,04	0,84	0
-0,63	0,78	1
0,51	-0,30	1
0,58	-0,59	0
1,27	2,07	1
0,20	0,06	1
-1,85	-1,36	0
-1,32	-0,78	0
-0,02	-0,65	0
0,20	-0,07	1

Z-score

- Segundo passo
 - Calcular as distâncias da amostra desconhecida para as conhecidas

Altura	Peso	Sexo
0,14	-0,87	?

Altura	Peso	Sexo	D
1,06	0,84	0	1,95
-0,62	0,78	1	1,82
0,53	-0,30	1	0,69
0,60	-0,59	0	0,54
1,29	2,07	1	3,16
0,07	0,07	1	0,94
-1,84	-1,36	0	2,05
-1,31	-0,79	0	1,46
-0,01	-0,65	0	0,27
0,22	-0,08	1	0,79

- Terceiro passo
 - Classificação: k = 3

Altura	Peso	Sexo
0,12	-0,87	? = 0

Altura	Peso	Sexo	D
1,06	0,84	0	1,95
-0,62	0,78	1	1,82
0,53	-0,30	1	0,69
0,60	-0,59	0	0,54
1,29	2,07	1	3,16
0,07	0,07	1	0,94
-1,84	-1,36	0	2,05
-1,31	-0,79	0	1,46
-0,01	-0,65	0	0,27
0,22	-0,08	1	0,79

- Terceiro passo
 - Classificação: k = 5

Altura	Peso	Sexo
0,12	-0,87	? = 1

Altura	Peso	Sexo	D
1,06	0,84	0	1,95
-0,62	0,78	1	1,82
0,53	-0,30	1	0,69
0,60	-0,59	0	0,54
1,29	2,07	1	3,16
0,07	0,07	1	0,94
-1,84	-1,36	0	2,05
-1,31	-0,79	0	1,46
-0,01	-0,65	0	0,27
0,22	-0,08	1	0,79

Algoritmo 1-NN

- Uma amostra desconhecida é considerada como pertencente a mesma classe da amostra conhecida que apresentar a menor distância até ela
 - É um caso particular do algoritmo K-NN
 - Nesse caso, k = 1
 - Qual a classe do círculo verde?

Nearest Prototype Classifier

- Também conhecido como algoritmo do centroide mais próximos
 - Similar ao algoritmo 1-NN
 - Atribui uma observação à classe de amostras de treinamento cujo centroide (média) se encontra mais próximo

Nearest Prototype Classifier

Z-score

Centroides

- Se um classificador baseado em distância mínima tem um elevado número de classificações corretas, não há razão para procurar classificadores mais complexos
 - No entanto, é frequente ocorrer um baixo desempenho

- Por que isso ocorre?
 - Atributos inadequados
 - Atributos correlacionados
 - As superfícies de decisão podem ser não-lineares
 - Existência de subclasses distintas
 - Espaço de padrões muito complexo

Atributos correlacionados

 As superfícies de decisão podem ser não-lineares

 Existência de subclasses distintas

 Espaço de padrões muito complexo

- Suponha o seguinte problema
 - Um conjunto de dados é descrito por 20 atributos
 - Destes, apenas 2 são relevantes
 - Os demais são atributos ruins ou correlacionados
 - O resultado será um mau desempenho na classificação
- O algoritmo K-NN é normalmente enganado quando o número de atributos é grande

- Maldição da dimensionalidade (ou Curse of dimensionality)
 - Termo que se refere a vários fenômenos que surgem na análise de dados em espaços com muitas dimensões (atributos)
 - Muitas vezes com centenas ou milhares de dimensões
 - Basicamente, adicionar características não significa sempre melhora no desempenho de um classificador

- Teorema do patinho feio (de Watanabe)
 - Caso haja um conjunto suficientemente grande de características em comum, sem uma outra referência previamente estabelecida, é possível fazer com que dois padrões arbitrários sejam considerados similares.
 - Um cisne e um pato e um par de cisnes podem ficar igualmente similares

- Um grande número de atributos tende a gerar informação redundante
 - Isso prejudica o desempenho do sistema
- Classificar dados significa encontrar grupos com propriedades similares
 - Em espaços com muitas dimensões as amostras se tornan esparsas e pouco similares
 - Isso impossibilita estratégias comuns de organização dos dados de serem eficiente.

- É possível evitar isso?
 - O número de amostras de treinamento deve aumentar exponencialmente com o aumento do número de atributos
 - Isso nem sempre é possível na prática
 - De onde tirar novos dados?

- É possível evitar isso?
 - Podemos reduzir o número de dimensões do espaço de características
 - Etapa importante no projeto de um sistema de classificação
 - Pode ser feita selecionando e/ou compondo as características mais adequadas
 - Uso de técnicas de seleção e combinação de características

- Fenômeno que ocorre quando o modelo estatístico se ajusta em demasiado ao conjunto de dados/amostra
 - Também conhecido com sobrejuste ou over-training
 - Ao invés de aprender o padrão, o modelo estatístico aprende suas "esquisitices"

- É comum haver desvios causados por erros de medição ou fatores aleatórios nas amostras
 - No overfitting, o modelo se ajusta a estes desvios e se esquece do comportamento geral dos dados

- Modelo com overfitting
 - Se degenera e se especializa no conjunto de treinamento
 - Alta precisão quando testado com seu conjunto de treinamento
 - Esse modelo n\u00e3o representa a realidade e deve ser evitado
 - Não tem capacidade de generalização.

- Simplicidade é a resposta
 - Ajuda a proteger contra overfitting
 - É preferível um classificador que erre os dados estranhos no pressuposto de que eles são, de fato, estranhos e sem valor preditivo.

- Simplicidade é a resposta
 - Navalha de Occam
 - "Se em tudo o mais forem idênticas as várias explicações de um fenômeno, a mais simples é a melhor" - William de Ockham (século XIV)

- Como contornar esse problema?
 - Regularização
 - Manter todos os atributos, mas reduzir a magnitude/valor dos deles
 - Penalizar atributos pela imposição de restrições de suavidade ao modelo de aproximação

- Como contornar esse problema?
 - Métodos de poda (pruning)
 - Voltados para árvores de decisão
 - Muitas das arestas ou sub-árvores podem refletir ruídos ou erros.
 - Necessidade de detectar e excluir essas arestas e sub-árvores
 - Smplifica a árvore e facilita sua interpretabilidade por parte do usuário

- Árvore de Decisão
 - Sem poda

Exemplo	Aparência	Temperatura	Umidade	Ventando	Viajar
E ₁	sol	25	72	sim	bom
E_2	sol	28	91	sim	ruim
E ₃	sol	22	70	não	bom
E ₄	sol	23	95	não	ruim
E ₅	sol	30	85	não	ruim
E ₆	nublado	23	90	sim	bom
F ₇	nublado	29	78	não	bom
E ₈	nublado	19	65	sim	ruim
E ₉	nublado	26	75	näo	bom
E ₁₀	nublado	20	87	sim	bom
E ₁₁	chuva	22	95	não	bom
E ₁₂	chuva	19	70	sim	ruim
E ₁₃	chuva	23	80	sim	ruim
E ₁₄	chuva	25	81	não	bom
E ₁₅	chuva	21	80	não	bom

- Árvore de Decisão
 - Depois da poda

Exemplo	Aparência	Temperatura	Umidade	Ventando	Viajar
E ₁	sol	25	72	sim	bom
E_2	sol	28	91	sim	ruim
E_3	sol	22	70	não	bom
E4	sol	23	95	não	ruim
E_5	sol	30	85	não	ruim
E ₆	nublado	23	90	sim	bom
E_7	nublado	29	78	não	bom
E ₈	nublado	19	65	sim	ruim
E ₉	nublado	26	75	não	bom
E ₁₀	nublado	20	87	sim	bom
E ₁₁	chuva	22	95	não	bom
E ₁₂	chuva	19	70	sim	ruim
E ₁₃	chuva	23	80	sim	ruim
E ₁₄	chuva	25	81	não	bom
E ₁₅	chuva	21	80	não	bom

- Como contornar esse problema?
 - Cross-validation
 - Consiste em separar os dados em Treinamento e Teste
 - Essa divisão dos dados em subconjuntos ajuda a evitar que o modelo aprenda as particularidades dos dados

Underfitting

- Underfitting ou sub-ajuste
 - O modelo n\u00e3o consegue aprender o suficiente
 - O modelo pode ser muito simples

Agradecimentos

- Agradeço aos professores
 - Guilherme de Alencar Barreto Universidade Federal do Ceará (UFC)
 - Prof. Ricardo J. G. B. Campello ICMC/USP
- pelo material disponibilizado