Listing of Claims

1	1. (previously presented) An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	a spacer layer disposed between the free layer and the pinned
6	layer;
7	a digit line including a bit line segment disposed proximate to the
8	magnetic tunneling junction;
9	a bit line including a bit line segment in electrical contact with the
10	magnetic tunneling junction; and
11	a magnetic liner layer disposed around the bit line segment and
12	contacting the free layer.
1	2. (previously presented) The MRAM cell of claim 1 wherein the digit line
2	segment is disposed proximate to the pinned layer and the bit line
3	segment is in electrical contact with the free layer.
1	3. (previously presented) The MRAM cell of claim 1 wherein the bit line
2	segment is disposed proximate to the pinned layer and the digit line
3	segment is in electrical contact with the free layer.

A'

- 1 4. (previously presented) The MRAM cell of claim 1 wherein the magnetic liner
- 2 layer is electrically conductive.
- 5. (previously presented) The MRAM cell of claim 1 wherein the bit and digit
- 2 lines are formed of a metal selected from the group consisting of Cu, W,
- and Al.
- 1 6. (previously presented) The MRAM cell of claim 1 further including an
- 2 antiferromagnetic layer disposed adjacent to the pinned layer.
- 7. (previously presented) The MRAM cell of claim 1 wherein the magnetic liner
- 2 layer is formed of Permalloy.
- 1 8. (previously presented) The MRAM cell of claim 7 wherein the Permalloy is
- 2 between 16 and 22 atomic percent iron.
- 9. (previously presented) The MRAM cell of claim 7 wherein the Permalloy is
- $2 Ni_{81}Fe_{19}.$
- 1 10. (previously presented) The MRAM cell of claim 1 wherein the magnetic liner
- 2 layer has a thickness of about 20Å to about 500Å.

A'

White

- 1 11. (previously presented) The MRAM cell of claim 1 wherein the magnetic liner
- 2 layer has a thickness of about 30Å to about 100Å.
- 1 12. (previously presented) The MRAM cell of claim 1 wherein the magnetic liner
- 2 layer is formed of a material selected from the group consisting of CoZrCr,
- 3 CoZrNb, CoZrRe, FeSiAl, FeN, FeAlN, FeRhN, and FeTaN.
- 1 13. (previously presented) The MRAM cell of claim 1 wherein the pinned layer
- 2 is two ferromagnetic layers separated by a spacer layer.
- 1 14. (previously presented) The MRAM cell of claim 1 wherein the free layer is
- 2 two ferromagnetic layers.

1	15. (previously presented) An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer having a magnetization orientation,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the
6	pinned layer;
7	a digit line including a segment disposed proximate to the pinned layer;
8	a bit line including a segment in electrical contact with the free layer;
9	a magnetic liner layer disposed around the bit line segment and
10	contacting the free layer such that a magnetic field encircles the bit
11	line segment.
1	16. (previously presented) The MRAM cell of claim 15 wherein the magnetic
2	liner layer is electrically conductive.
1	17. (previously presented) The MRAM cell of claim 15 wherein the bit and digit
2	lines are formed of a metal selected from the group consisting of Cu, W,
3	and Al.
1	18. (previously presented) The MRAM cell of claim 15 further including an

2

antiferromagnetic layer disposed adjacent to the pinned layer.

- 1 19. (previously presented) The MRAM cell of claim 15 wherein the magnetic
- 2 liner layer is formed of Permalloy.
- 1 20. (previously presented) The MRAM cell of claim 19 wherein the Permalloy is
- 2 between 16 and 22 atomic percent iron.
- 1 21. (previously presented) The MRAM cell of claim 19 wherein the Permalloy is
- $2 Ni_{81}Fe_{19}.$
- 1 22. (previously presented) The MRAM cell of claim 15 wherein the magnetic
- liner layer has a thickness of about 20Å to about 500Å.
- 1 23. (previously presented) The MRAM cell of claim 15 wherein the magnetic
- liner layer has a thickness of about 30Å to about 100Å.
- 1 24. (previously presented) The MRAM cell of claim 15 wherein the pinned layer
- 2 is two ferromagnetic layers separated by a spacer layer.
- 1 25. (previously presented) The MRAM cell of claim 15 wherein the free layer is
- 2 two ferromagnetic layers.

1	26. (previously presented) An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the
. 6	pinned layer;
7	a digit line including a segment disposed proximate to the pinned layer,
8	the digit line segment having a long axis defining a first direction;
9	an electrically insulating spacer layer disposed between the digit line
10	segment and the pinned layer;
11	a bit line including a segment in electrical contact with the free layer, the
12	bit line segment having a long axis defining a second direction
13	substantially perpendicular to the first direction;
14	a magnetic liner layer disposed around the bit line segment and
15	contacting the free layer.
1	27. (previously presented) The MRAM cell of claim 26 wherein the magnetic

liner layer is electrically conductive.

{00100172v1}

2

- 1 28. (previously presented) The MRAM cell of claim 26 wherein the bit and digit
- 2 lines are formed of a metal selected from the group consisting of Cu, W,
- 3 and Al.

1

- 1 29. (previously presented) The MRAM cell of claim 26 further including an
- 2 antiferromagnetic layer disposed adjacent to the pinned layer.
 - 30. (previously presented) The MRAM cell of claim 26 wherein the magnetic liner layer is formed of Permalloy.
- 1 31. (previously presented) The MRAM cell of claim 30 wherein the Permalloy is
- 2 between 16 and 22 atomic percent iron.
- 1 32. (previously presented) The MRAM cell of claim 30 wherein the Permalloy is
- $2 \qquad \qquad Ni_{81}Fe_{19}.$
- 1 33. (previously presented) The MRAM cell of claim 26 wherein the magnetic
- liner layer has a thickness of about 20Å to about 500Å.
- 1 34. (previously presented) The MRAM cell of claim 26 wherein the magnetic
- liner layer has a thickness of about 30Å to about 100Å.

- 1 35. (previously presented) The MRAM cell of claim 26 wherein the pinned layer
- 2 is two ferromagnetic layers separated by a spacer layer.

r, ry

- 36. (previously presented) The MRAM cell of claim 26 wherein the free layer is
- 2 two ferromagnetic layers.

N'	
T	1
کرا	Λ.

1	37. (previously presented) An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the
6	pinned layer;
7	a digit line including a segment disposed proximate to the pinned layer,
8	the segment having a long axis defining a first direction;
9	a bit line including
10	a segment in electrical contact with the free layer and having
11	a long axis defining a second direction substantially
12	perpendicular to the first direction,
13	a bottom surface abutting the free layer,
14	a top surface opposite the bottom surface, and
15	first and second vertical surfaces opposite one another and
16	connecting the top and bottom surfaces; and
17	a magnetic liner layer disposed around the bit line segment and
18	contacting the first and second vertical surfaces and the top surface
1	38. (previously presented) The MRAM cell of claim 37 wherein the magnetic
2	liner layer also contacts the free layer

{00100172v1}

- 1 39. (previously presented) The MRAM cell of claim 37 wherein the magnetic
- 2 liner layer is electrically conductive.
- 1 40. (previously presented) The MRAM cell of claim 37 wherein the bit and digit
- lines are formed of a metal selected from the group consisting of Cu, W,
- 3 and Al.

A LA

- 41. (previously presented) The MRAM cell of claim 37 further including an
 antiferromagnetic layer disposed adjacent to the pinned layer.
- 1 42. (previously presented) The MRAM cell of claim 37 wherein the magnetic
- 2 liner layer is formed of Permalloy.
- 1 43. (previously presented) The MRAM cell of claim 42 wherein the Permalloy is
- 2 between 16 and 22 atomic percent iron.
- 1 44. (previously presented) The MRAM cell of claim 42 wherein the Permalloy is
- $2 Ni_{81}Fe_{19}.$
- 1 45. (previously presented) The MRAM cell of claim 37 wherein the magnetic
- liner layer has a thickness of about 20Å to about 500Å.

- 1 46. (previously presented) The MRAM cell of claim 37 wherein the magnetic
- 2 liner layer has a thickness of about 30Å to about 100Å.

Dort 1

1

2

- 47. (previously presented) The MRAM cell of claim 37 wherein the pinned layer is two ferromagnetic layers separated by a spacer layer.
- 1 48. (previously presented) The MRAM cell of claim 37 wherein the free layer is
- 2 two ferromagnetic layers.

1	49. (previously presented) An MRAM cell comprising:
2	a magnetic tunneling junction including
3	a free layer,
4	a pinned layer, and
5	an insulating spacer layer disposed between the free layer and the
6	pinned layer;
7	a digit line including a segment disposed proximate to the pinned layer,
8	the digit line segment having a long axis defining a first direction;
9	a bit line including a bit line segment in electrical contact with the free
10	layer and having a long axis defining a second direction
11	substantially perpendicular to the first direction; and
12	a magnetic sheath disposed around the bit line segment and formed from
13	the free layer and a magnetic liner layer.
1	50. (previously presented) The MRAM cell of claim 49 wherein the magnetic
2	liner layer is electrically conductive.
1	51. (previously presented) The MRAM cell of claim 49 wherein the bit and digit
2	lines are formed of a metal selected from the group consisting of Cu, W,
3	and Al.

- 1 52. (previously presented) The MRAM cell of claim 49 further including an
- 2 antiferromagnetic layer disposed adjacent to the pinned layer.
- 1 53. (previously presented) The MRAM cell of claim 49 wherein the magnetic
- 2 liner layer is formed of Permalloy.
- 1 54. (previously presented) The MRAM cell of claim 53 wherein the Permalloy is
- 2 between 16 and 22 atomic percent iron.
- 1 55. (previously presented) The MRAM cell of claim 53 wherein the Permalloy is
- $Ni_{81}Fe_{19}.$
- 1 56. (previously presented) The MRAM cell of claim 49 wherein the magnetic
- 2 liner layer has a thickness of about 20Å to about 500Å.
- 1 57. (previously presented) The MRAM cell of claim 49 wherein the magnetic
- liner layer has a thickness of about 30Å to about 100Å.
- 1 58. (previously presented) The MRAM cell of claim 49 wherein the pinned layer
- 2 is two ferromagnetic layers separated by a spacer layer.

Link

59. (previously presented) The MRAM cell of claim 49 wherein the free layer is
 two ferromagnetic layers.

A 2

60 - 88. (cancelled)