Text Generation from Knowledge Graphs with Graph Transformers

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, Hannaneh Hajishirzi

Explanation and presentation by
Pratik Karmakar

Objective:

The abstract of the paper:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco....

HYPONYM-OF

The Dataset:

Abstract GENeration DAtaset or AGENDA

Title

Abstract

Train 38,720

> Test 1,000

Validation 1.000

Performs Named Entity Recognition and annotation

PART-OF

COMPARE EVALUATE-FOR

Relation

annotation

METRIC

Entity annotation

TASK

MATERIAL

METHOD

ScilE by Luan et al.

Vocabulary Avg. length 29k 9.9 words Titles Tokens 413k Knowledge Graph **AGENDA** Avg. vertices Avg. edges 12.42 4.43 Avg. length Vocabulary **141.2 words** 77k **Abstracts** Tokens 5.8M

Data structure Title Abstract (Target) **Entities Entity types** Graph Semi-colon delimited Space delimited list of list of entities Semi-colon delimited list of entity types for each (their position indices graph triples: entity in "Entities" used in graph: head & <entity relation entity> column tail in triplets) prior-free and <otherscientificterm> 203;721 prior-dependent regret <task> hounds: stochastic <otherscientificterm> multi-armed bandit <material> <method> distribution free and problem; distribution-free <otherscientificterm> distribution-dependent and distribution-dependent <otherscientificterm> bounds USED-FOR bounds: non-bayesian <otherscientificterm> non-bayesian stochastic stochastic bandit : bandit: reward distribution thompson sampling; **FEATURE-OF stochastic** bayesian regret; prior multi-armed bandit problem distribution: reward distributions

AGENDA collected by Rik et al.

Encoding:

Graph Transformer

Self Attention Mechanism

Transformer layer 2

Transformer layer 1

Contextualisation of the Knowledge Graph

Ground truth:

we present a LEARNING ARCHITECTURE for LEXICAL SEMANTIC CLASSIFICATION PROBLEMS that <unk>
TASK-SPECIFIC TRAINING DATA with BACKGROUND DATA encoding general "world knowledge". the LEARNING ARCHITECTURE compiles knowledge contained in a <unk>
into additional training data, and integrates TASK-SPECIFIC AND BACKGROUND DATA through a novel HIERARCHICAL LEARNING ARCHITECTURE. experiments on a WORD SENSE DISAMBIGUATION TASK provide empirical evidence that this "HIERARCHICAL LEARNING ARCHITECTURE" outperforms a state-of-the-art standard "flat" one.

Input:

Title: Hierarchical Semantic Classification : Word Sense Disambiguation with World Knowledge.

Knowledge Graph: <learning architecture> <USED-FOR> <lexical semantic classification problems>

Model output:

in this paper, we propose a LEARNING ARCHITECTURE for LEXICAL SEMANTIC CLASSIFICATION PROBLEMS . in particular, we focus on the task of LEXICAL SEMANTIC CLASSIFICATION PROBLEMS in the context of LEXICAL SEMANTIC CLASSIFICATION PROBLEMS . we propose a novel LEARNING ARCHITECTURE to tackle this problem . in particular, we propose a novel HIERARCHICAL LEARNING ARCHITECTURE to solve the LEXICAL SEMANTIC CLASSIFICATION PROBLEMS . we present a novel LEARNING ARCHITECTURE for LEXICAL SEMANTIC CLASSIFICATION PROBLEMS . we demonstrate the effectiveness of our LEARNING ARCHITECTURE on a **WORD SENSE DISAMBIGUATION TASK.**

* Output after training the model for 17 epochs

Experimental setup:

- Loss to minimize: Negative joint log likelihood of the target text and the generated entity
- Algorithm: SGD optimization with warm restarts (with early stopping based on validation loss)
- Dropout in self attention layers: 0.1
- Embedding dimension: 500
- Transformer layers: 6
- Number of attention heads: 4
- Word frequency threshold: 5 (a word below 5 is represented as <unk>)
- Decoding done with Beam Search (Beam size=4)
- Epochs: 17

Losses

Metric scores:

We have used 3 standard metrics for NLP:

- 1. **BLEU** (BiLingual Evaluation Understudy)
- 2. **METEOR** (Metric for Evaluation Of Translation with Explicit ORdering)
- 3. **ROUGE_L** (Recall Oriented Understudy for Gisting Evaluation (longest matching sequence of words))

All these metrics check for similarity between the reference text and generated text.

^{*}The scores shown here are on the model trained for 17 epochs.

THANK YOU