Homework 7 (60 pts)

Problem 1 (16 pts)

(This is a conceptual question, no need to compute) Consider a model to predict the average length of a physician's stay based on the four regions. The one-way ANOVA model $\log_{10} Y \sim \text{Region}$ can be represented with different factor effects model, depending on the baseline. Hence, the mean responses, μ_1, μ_2, μ_3 and μ_4 are the means computed on $\log_{10} Y$.

Build a model summary using the first region (1) as the baseline, the R output shows table as the following. The values in the corresponding cells are denoted by A_i , i = 1 to 16.

Table 1

Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	A_1	A_5	A_9	A_{13}
Region 2	A_2	A_6	A_{10}	A_{14}
Region 3	A_3	A_7	A ₁₁	A_{15}
Region 4	\overline{A}_4	A_8	A_{12}	\overline{A}_{16}

Next, build a model summary using the second region (2) as the baseline, the R output shows table as the following. The values in the corresponding cells are denoted by B_i , i = 1 to 16. Hint: use the relevel() function.

Table 2

Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	B_1	B_5	B_9	B_{13}
Region 1	B_2	B_6	B_{10}	B_{14}
Region 3	B_3	B_7	B_{11}	B_{15}
Region 4	B_4	B_8	B_{12}	B_{16}

Fill in the blanks with A_i , B_i , or both.

(a) [4 pts] Based on Table 1, The mean, $\mu_1, \mu_2, \mu_3, \mu_4$ can be represented as _____,

(b) [4 pts] Based on Table 2, The mean, $\mu_1, \mu_2, \mu_3, \mu_4$ can be represented as _____, ____,

(c) [2 pts] To perform the hypothesis: H_0 : $\mu_2 = \mu_1$, the point estimate $\hat{Y}_2 - \hat{Y}_1 =$ _____, the p.value is

(d) [2 pts] To perform the hypothesis: H_0 : $\mu_3=\mu_1$, the point estimate $\hat{Y}_3-\hat{Y}_1=$ _____, the p.value is

Problem 2 (10 pts)

According to the following data summary, compute the following confidence intervals.

Group	Group Mean		N
1		25	108
2		46	103
3		18	152
4		62	77
MSE	1	00	

(a) [5 pts] The difference between the average Y in Groups 1 and 2 and in Groups 3 and 4, i.e.,

$$\frac{(\mu_1 + \mu_2)}{2} - \frac{(\mu_3 + \mu_4)}{2}$$

(b) [5 pts] The simultaneous confidence intervals for the differences of the following:

$$\mu_1 - \mu_2$$
, $\mu_1 - \mu_3$, $\mu_2 - \mu_3$

Problems 3 and 4 are both based on the following scenario:

You are part of a team that is investigating the effectiveness of two different ingredients in a drug. For the first ingredient (factor A), you test three different amounts, 10mL, 20mL, and 30mL. For the second ingredient (factor B), you test 2 different amounts, 10mL and 20 mL. With three levels of the first ingredient and two levels of the second ingredient, you can create six different formulations for the drug. You obtain a random sample of 60 individuals. For each of the six formulations, you randomly select 10 individuals to receive that formulation of the drug and then collect a response from each individual.

Problem 3 (14 pts)

- (a) [4 pts] Write down the two-way ANOVA model that would be used for this experiment. Use the factor-effects notation for the model, not the cell-means notation. Define each component of the model in context of the problem. For example, don't just refer to factor A or factor B, but refer to drugs themselves. Also be sure to include information about the number of levels for each factor and the number of replicates.
- (b) [5 pts] Pretend the table below contains information about the sample means for each of the six formulations of the drug. Draw an interaction plot for these data. For these data, does there appear to be an interaction? Why or why not?

		Drug B		
		10 mL	20 mL	
Drug A	10 mL	$\bar{y}_{11} = 10$	$\bar{y}_{12} = 40$	
	20 mL	$\bar{y}_{21} = 25$	$\bar{y}_{22} = 50$	
	30 mL	$\bar{y}_{31} = 30$	$\bar{y}_{32} = 55$	

(c) [5 pts] Regardless of your answer to part (b), assume that the interaction between drugs A and B is not important and can be ignored. You are interested in comparing the average of levels 2 (20 mL) and 3 (30 mL) of Drug A with level 1 of drug A (10 mL) to see if there is a significant difference between them. That is, you are interested in the following contrast:

$$L = \frac{\mu_2 + \mu_3}{2} - \mu_1.$$

- (i) What is the point estimate for this contrast, \hat{L} ?
- (ii) What is the confidence interval for this contrast? Is there a significant difference? (Assume that the MSE is 60)

Problem 4 (20 pts)

Below is an example of what the ANOVA table could look like for this experiment:

Source	df	SS	MS	F	p – value
A		4290.30			
В		12367.30			
A * B		23.20			
Error		3833.70			
Corrected Total		20514.5			

- (a) [15 pts] Fill in the spots in the ANOVA table that are missing with the correct values.
- (b) [5 pts] Based on the information in the ANOVA table, does the interaction appear to be significant?