プッシュダウンオートマトン

離散数学・オートマトン 2020年後期 佐賀大学理工学部 只木進一

動作イメージ

- ■テープとともに、スタックの文字を読み、 状態遷移する
 - ▶特殊なメモリを持つ機械

スタック(stack)

- ■リストのような1次元のデータ列
- → 先頭に書く(push)ことと、先頭から読む (pop)ことだけが許される
 - ► FILO (First-In Last-Out)
 - ●pop:先頭を取り出して読む、つまり、先頭の 要素はスタックから無くなることに注意

決定性プッシュダウンオートマトン

- $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z, F \rangle$
 - ■Q:内部状態の集合
 - ►Σ: テープのアルファベット
 - ■Γ: スタックのアルファベット、pd記号と呼ぶ
 - $\delta: Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma^* : 遷移関数$
 - $ightharpoonup q_0 ∈ Q$:初期状態
 - Z ∈ Γ: スタックの底の記号
 - **P** *F* ⊆ *Q*: 受理状態

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{A, Z\}$$

$$F = \{q_2\}$$

$$\delta(q_0, \mathbf{a}, \mathbf{Z}) = (q_0, \mathbf{AZ})$$
 $\delta(q_0, \mathbf{a}, \mathbf{A}) = (q_0, \mathbf{AA})$
 $\delta(q_0, \mathbf{b}, \mathbf{A}) = (q_1, \epsilon)$
 $\delta(q_1, \mathbf{b}, \mathbf{A}) = (q_1, \epsilon)$
 $\delta(q_1, \epsilon, \mathbf{Z}) = (q_2, \epsilon)$

©Shin-ichi TADAKI

動作

(Q, Σ^*, Γ^*)

$$(q_0, aaabbb, Z) \vdash (q_0, aabbb, AZ)$$
 $\vdash (q_0, abbb, AAZ)$
 $\vdash (q_0, bbb, AAAZ)$
 $\vdash (q_1, bb, AAZ)$
 $\vdash (q_1, b, AZ)$
 $\vdash (q_1, \epsilon, Z)$
 $\vdash (q_2, \epsilon, \epsilon)$

動作失敗

$$(Q, \Sigma^*, \Gamma^*)$$

$$(q_0, \text{aaabb}, Z) \vdash (q_0, \text{aabb}, AZ)$$
 $\vdash (q_0, \text{abb}, AAZ)$
 $\vdash (q_0, \text{bb}, AAAZ)$
 $\vdash (q_1, \text{b}, AAZ)$
 $\vdash (q_1, \epsilon, AZ)$

三個のaに対応して、Aを3個スタックに入れた。しかし、bが2個しかないので、Aがスタックに残り、受理できず。

受理言語

- 入力とスタックが空になった時に、終状 態に居るか?
- \blacksquare $\{a^ib^i|i\in N\}$ を受理
 - ■aの数をスタック文字Aで記録
 - ■FAでは受理できない

0

例

©Shin-ichi TADAKI

$$\begin{array}{c} b, A/BA \\ a, Z/AZ & b, B/BB \\ b, Z/BZ & b, B/BB \\ \hline & a, A/AA \\ a, B/AB \\ \hline & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\ \hline & & Q_2 \\ \hline & & Q_1 \\ \hline & & Q_2 \\$$

動作

$$(q_0, ext{abaacaaba}, Z)$$
 $\vdash (q_0, ext{baacaaba}, AZ)$ $\vdash (q_0, ext{aacaaba}, AZ)$ $\vdash (q_0, ext{aacaaba}, BAZ)$ $\vdash (q_0, ext{acaaba}, ABAZ)$ $\vdash (q_0, ext{caaba}, AABAZ)$ $\vdash (q_1, ext{aaba}, AABAZ)$ $\vdash (q_1, ext{aaba}, AABAZ)$ $\vdash (q_1, ext{aba}, ABAZ)$ $\vdash (q_1, ext{ba}, BAZ)$ $\vdash (q_1, ext{ba}, BAZ)$ $\vdash (q_1, ext{ba}, AZ)$ $\vdash (q_1, ext{capa}, AZ)$

動作失敗

$$(q_0, ext{abaaaaba}, Z)$$
 $\vdash (q_0, ext{baaaaba}, AZ)$ $\vdash (q_0, ext{aaaaba}, BAZ)$ $\vdash (q_0, ext{aaaba}, ABAZ)$ $\vdash (q_0, ext{aaba}, AABAZ)$ $\vdash (q_0, ext{aba}, AABAZ)$ $\vdash (q_0, ext{aba}, AAABAZ)$ $\vdash (q_0, ext{ba}, AAAABAZ)$ $\vdash (q_0, ext{a}, BAAAABAZ)$ $\vdash (q_0, \epsilon, ABAAAABAZ)$ $\vdash (q_0, \epsilon, ABAAAABAZ)$

非決定性プッシュダウンオートマ トン

- $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z, F \rangle$
 - ■Q:内部状態の集合
 - ►Σ: テープのアルファベット
 - ■Γ: スタックのアルファベット、pd記号と呼ぶ

 - $ightharpoonup q_0 ∈ Q$:初期状態
 - Z ∈ Γ: スタックの底の記号
 - ightharpoonup F ⊆ Q: 受理状態

例

a,Z/AZ b,Z/BZ a,A/AA a,B/AB b,A/BA b,B/BB

a,A/ ϵ b,B/ ϵ ϵ ,Z/ ϵ

$$Q = \{q_0, q_1\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{A, B, Z\}$$

$$F = \{q_1\}$$

$$\delta(q_{0}, a, Z) = \{(q_{0}, AZ)\}, \delta(q_{0}, b, Z) = \{(q_{0}, BZ)\},\$$

$$\delta(q_{0}, \epsilon, Z) = \{(q_{1}, \epsilon)\},\$$

$$\delta(q_{0}, a, A) = \{(q_{0}, AA), (q_{1}, \epsilon)\}, \delta(q_{0}, b, A) = \{(q_{0}, BA)\},\$$

$$\delta(q_{0}, a, B) = \{(q_{0}, AB)\}, \delta(q_{0}, b, B) = \{(q_{0}, BB), (q_{1}, \epsilon)\},\$$

$$\delta(q_{1}, a, A) = (q_{1}, \epsilon), \delta(q_{1}, b, B) = (q_{1}, \epsilon),\$$

$$\delta(q_{1}, \epsilon, Z) = (q_{1}, \epsilon)$$

動作(受理した例)

 $\{ww^R|w\in(a+b)^*\}$ を受理 w^R は、wの逆順の文字列

16

例

a,Z/AZ

b,Z/BZ

a,A/AA

a,B/AB

b,A/BA

b,B/BB

a,B/ ϵ b,A/ ϵ ϵ ,Z/ ϵ

a,B/ ϵ b,A/ ϵ ϵ ,Z/ ϵ

 q_2

$$Q = \left\{q_0, q_1\right\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{A, B, Z\}$$

$$F = \{q_1\}$$

©Shin-ichi TADAKI

$$\delta(q_{0}, a, Z) = \{(q_{0}, AZ)\}, \ \delta(q_{0}, b, Z) = \{(q_{0}, BZ)\},$$

$$\delta(q_{0}, \epsilon, Z) = \{(q_{1}, \epsilon)\},$$

$$\delta(q_{0}, a, A) = \{(q_{0}, AA)\}, \ \delta(q_{0}, b, A) = \{(q_{0}, BA), (q_{1}, \epsilon)\},$$

$$\delta(q_{0}, a, B) = \{(q_{0}, AB), (q_{1}, \epsilon)\}, \ \delta(q_{0}, b, B) = \{(q_{0}, BB)\},$$

$$\delta(q_{1}, a, B) = \{(q_{1}, \epsilon)\}, \ \delta(q_{1}, b, A) = \{(q_{1}, \epsilon)\},$$

$$\delta(q_{1}, \epsilon, Z) = \{(q_{1}, \epsilon)\},$$

動作(受理した例)

```
(q_0, abaabbab, Z) \vdash (q_0, baabbab, AZ)
                          \vdash (q_0, aabbab, BAZ)
                          \vdash (q_0, abbab, AABAZ)
                          \vdash (q_0, bbab, AABAZ)
                          \vdash (q_1, \text{bab}, ABAZ)
                         \vdash (q_1, ab, BAZ)
                          \vdash (q_1, b, AZ)
                          \vdash (q_1, \epsilon, Z)
                          \vdash (q_1, \epsilon, \epsilon)
```

PDAの受理言語

- ■PDAの受理言語は、正規表現では表せないもの
 - ■前半と後半の文字数が同じ、前後を反転な どは正規表現では表せない
- スタックを使うことで、前半の文字列を覚えることができる
 - ▶長さに制限なし