代数拓扑

孙天阳

2024年4月19日

	目录	·	1			
	1	概论	2			
		1.1 哥尼斯堡七桥问题	2			
		1.2 多面体的 Euler 公式	6			
1	单纯	這同调	10			
	1	单纯复形和单纯同调群	10			
	2	Euler-Poincaré 定理与强 Morse 不等式	12			
	3	例子	13			
	4	锥的同调群	20			
	5	相对单纯同调群与 Mayer-Vietoris 序列	22			
	6	单纯映射	23			
	7	单纯同伦	24			
	8	单纯同调的 Eilenberg-Steenrod 公理	25			
	9	代数范畴的同调论	26			
2						
2	奇异	:同调	27			
2	奇异 1	· 同调 奇异同调群	27 27			
2		奇异同调群	27			
2	1	奇异同调群	27 28			
2	1 2	奇异同调群 同伦不变性 相对奇异同调群	27 28 29			
2	1 2 3	奇异同调群 同伦不变性 相对奇异同调群 奇异同调的 Eilenberg-Steenrod 公理	27 28 29 30			
2	1 2 3	奇异同调群 同伦不变性 相对奇异同调群 奇异同调的 Eilenberg-Steenrod 公理 4.1 同伦公理	27 28 29 30 30			
2	1 2 3	奇异同调群 同伦不变性 相对奇异同调群 奇异同调的 Eilenberg-Steenrod 公理 4.1 同伦公理 4.2 维数公理	27 28 29 30 30 31			
2	1 2 3 4	奇异同调群 同伦不变性 相对奇异同调群 奇异同调的 Eilenberg-Steenrod 公理 4.1 同伦公理 4.2 维数公理 收缩	27 28 29 30 30 31 32			
2	1 2 3 4 5 6	奇异同调群 (同伦不变性) 相对奇异同调群 (日本) 奇异同调的 Eilenberg-Steenrod 公理 (日本) 4.1 同伦公理 (日本) 4.2 维数公理 (中本) 收缩 (日本) 重心重分 (日本)	277 288 299 300 311 322 333			
2	1 2 3 4 5 6 7	奇异同调群 () 相对奇异同调群 () 奇异同调的 Eilenberg-Steenrod 公理 () 4.1 同伦公理 () 4.2 维数公理 () 收缩 () 重心重分 () 单纯同调与奇异同调同构 ()	277 288 299 300 311 322 333 366			
2	1 2 3 4 5 6 7 8	奇异同调群 (同伦不变性) 相对奇异同调群 (日本) 奇异同调的 Eilenberg-Steenrod 公理 (日本) 4.1 同伦公理 (日本) 4.2 维数公理 (中缩) 車心重分 (日本) 单纯同调与奇异同调同构 (日本) 切除定理 (日本)	277 288 299 300 311 322 333 366 377			
2	1 2 3 4 5 6 7 8 9	奇异同调群 () 相对奇异同调群 () 奇异同调的 Eilenberg-Steenrod 公理 () 4.1 同伦公理 () 4.2 维数公理 () 收缩 () 重心重分 () 单纯同调与奇异同调同构 () 切除定理 () 局部同调 ()	277 288 299 300 311 322 333 366 377 388			
2	1 2 3 4 5 6 7 8	奇异同调群 (同伦不变性) 相对奇异同调群 (日本) 奇异同调的 Eilenberg-Steenrod 公理 (日本) 4.1 同伦公理 (日本) 4.2 维数公理 (中缩) 車心重分 (日本) 单纯同调与奇异同调同构 (日本) 切除定理 (日本)	277 288 299 300 311 322 333 366 377			

3	胞腔同调					
	1	胞腔复形	44			
	2	胞腔分解的例子	45			
	3	胞腔同调群计算的例子	46			
	4	球面的映射度	47			
	5	透镜空间	48			
	6	万有系数定理	49			
	7	奇异上同调中的卡积与上积	50			
	8	乘积空间的奇异同调	51			
	9	Kunneth 公式	52			
4	Hatcher 习题 53					
	1	Chapter0	53			
	2	Section2.1	54			
\mathbf{A}	拓扑	补遗	55			
	1	空间偶	55			
В	正合列 56					
	1	链复形与链映射	56			
	2	可裂的短正合列	57			
	3	长正合列引理	58			
\mathbf{C}	范畴	论	60			

1 概论

代数拓扑 (同调论) 广泛分布于数学的各个分支,

- 数论/代数,如:离散群
- 几何/拓扑,如:示性类,K-理论
- 分析/方程,如: Hodge 理论 代数拓扑起点: Euler 的两个结果
- 1. 哥尼斯堡七桥问题和一笔画问题
- 2. 多面体的 Euler 公式

1.1 哥尼斯堡七桥问题

问:有没有一种散步方法,从某处出发,经过所有的桥恰好一次后回到原点? 数学研究步骤:具体问题 — 抽象(合适的数学语言表达)— 解决(找到合适的数学工具) — 推广(公理化)— ···

连通图: 任何两个顶点之间有一条由若干条棱构成的路径连结

假定每个棱有两个不同的顶点(即没有 self loops)

记图为
$$\Gamma$$
,
$$\begin{cases} 顶点集V(\Gamma) & v(\Gamma) = |V(\Gamma)| \\ 棱集E(\Gamma) & e(\Gamma) = |E(\Gamma)| \end{cases}$$

定义 1.1. Γ 的一个 Euler 回路是指从某个点出发,沿着 Γ 的棱的一个路径,经过每条棱恰好一次,并且最终回到出发点.

哥尼斯堡七桥问题 \iff 图 Γ 有没有 Euler 回路. 观察:

• 若 Γ 有 Euler 回路,则在任意顶点 $v \in V(\Gamma)$ 处,

进入v的棱数 = 离开v的棱数.

• Euler 回路跑遍所有的棱,特别地,跑遍 v 处的所有棱

定义 1.2. val(v) = v 的所有棱个数.

定理 1.3. 若 Γ 有 Euler 回路 \iff 任意 $v \in V(\Gamma), val(V)$ 是偶数.

证明.

 \Longrightarrow

$$val(v) = v$$
的所有棱个数
= 进入 v 的棱个数 + 离开 v 的棱个数
= $2 \times$ 进入 v 的棱个数

← 见图论书.

Euler 一笔画问题

定义 1.4. Γ 的 Euler 道路是指沿 Γ 的一个路径, 走过所有的棱(此时未必回到出发点).

- Case 1 起点 = 终点,此时回到 Euler 回路问题
- Case 2 起点 ≠ 终点
 - Case2.1 终点为偶顶点: 仅有一个奇顶点
 - Case2.2 终点为奇顶点: 恰有两个奇顶点

定理 1.5. Γ 有 Euler 道路 \iff Γ 至多有两个奇顶点.

证明.见图论书.

重新回顾

如下图给棱 e 一个定向

在此定向下, 我们定义 $\partial e = v_1 - v_0$.

如果 Γ 有 Euler 回路,接 Euler 回路诱导 $E(\Gamma)$ 中的棱的定向,则有

$$\partial \left(\sum_{e \in E(\Gamma)} e \right) = 0.$$

定义 1.6.

•
$$C_1(\Gamma) = \left\{ \sum_{e \in E(\Gamma)} a_e e \mid a_e \in \mathbb{R}, \text{ for } e \in E(\Gamma) \right\}$$
, 即由 $E(\Gamma)$ 张成的 \mathbb{R} -线性空间.

•
$$C_0(\Gamma) = \left\{ \sum_{v \in V(\Gamma)} b_v v \mid b_v \in \mathbb{R}, \text{ for } v \in V(\Gamma) \right\}$$
, 即由 $V(\Gamma)$ 张成的 \mathbb{R} -线性空间.

• $i \mathbb{Z} \dim C_1(\Gamma) = e(\Gamma), \dim C_0(\Gamma) = v(\Gamma).$

事实上, 若

- (1) Γ 没有 self loop
- (2) Γ 是定向图 (即每条棱都指定了定向)

即可定义

$$\partial: C_1(\Gamma) \longrightarrow C_0(\Gamma).$$

定义 1.7.

•
$$H_1(\Gamma) = \ker \partial = \{c \in C_1(\Gamma) \mid \partial c = 0\}$$

•
$$H_0(\Gamma) = \operatorname{coker} \partial = C_0(\Gamma) / \operatorname{im} \partial$$

• $i \in h_1 := \dim H_1(\Gamma), h_0 := \dim H_0(\Gamma)$

命题 1.8. $h_1(\Gamma)$ 和 $h_0(\Gamma)$ 不依赖于 Γ 的定向.

推论 1.9. 若 $h_1(\Gamma) = 0$, 则 Γ 一定无 Euler 回路.

问题: 如何计算 $h_1(\Gamma)$ 与 $h_0(\Gamma)$?

命题 **1.10.** 若 Γ 连通, 则 $h_0(\Gamma) = 1$, 并且

$$h_0(\Gamma) - h_1(\Gamma) = v(\Gamma) - e(\Gamma).$$

证明. 定义

$$C_1(\Gamma) \xrightarrow{\partial} C_0(\Gamma) \xrightarrow{\varphi} \mathbb{R}$$
$$\sum_{v \in V(\Gamma)} b_v v \longmapsto \sum_{v \in V(\Gamma)} b_v$$

- φ 线性.
- φ 满射. 任取 $w \in V(\Gamma)$, 有 $\varphi(\lambda w) = \lambda$.
- $\operatorname{im} \partial \subset \ker \varphi$. 只需对 $e \in E(\Gamma)$ 验证,显然有 $\varphi \partial(e) = 0$.
- $\ker \varphi \subset \operatorname{im} \partial$. 设 $\sum_v b_v v \in \ker \varphi$,即 $\sum_v b_v = 0$. 任意取定 $w \in V(\Gamma)$,则有

$$b_w = -\sum_{v \neq w} b_v$$
$$\sum_v b_v v = b_w w + \sum_{v \neq w} b_v v = \sum_{v \neq w} b_v (v - w)$$

因为 Γ 连通,所以 $v-w=\partial c_v$,其中 $c_v\in C_1(\Gamma)$. $(c_v$ 不一定简单到是一条边.)

• 结合上述两条有 $\ker \varphi = \operatorname{im} \partial$,从而

$$H_0(\Gamma) = C_0(\Gamma) / \operatorname{im} \partial = C_0(\Gamma) / \ker \varphi \simeq \operatorname{im} \varphi = \mathbb{R} \Longrightarrow h_0(\Gamma) = 1.$$

下证命题中的另一等式

$$\dim \ker \partial - \dim \operatorname{coker} \partial = \operatorname{index} \partial$$

$$= (\dim C_1(\Gamma) - \dim \operatorname{im} \partial) - (\dim C_0(\Gamma) - \dim \operatorname{im} \partial)$$

$$= \dim C_1(\Gamma) - \dim C_0(\Gamma).$$

注记.

$$\underbrace{\mathrm{index}\,\partial}_{\text{AFM}} = \underbrace{h_1(\Gamma) - h_0(\Gamma)}_{\text{AGA}} = \underbrace{e(\Gamma) - v(\Gamma)}_{\text{p.fo}}.$$

1.2 多面体的 Euler 公式

设 p 是一个凸多面体(此处不给出严格定义). 记

$$\begin{cases} v(p) & 顶点数 \\ e(p) & 棱数 \\ f(p) & 面数 \end{cases}$$

则

$$v(p) - e(p) + f(p) = 2.$$

Cauchy 的证明.

(1) 任取 P 的一个底面,将底面拉得足够大,得到一平面图 Γ

将 p 和 Γ 进行比较,

$$\begin{cases} v(p) = v(\Gamma) \\ e(p) = e(\Gamma) \\ f(p) = \# \left\{ \mathbb{R}^2 \backslash \Gamma$$
的连通分支 \right\}

接习惯,定义 Γ 的面 = "有界"的面,则 $f(p) = f(\Gamma) + 1$.等价于要证明

$$v(\Gamma) - e(\Gamma) + f(\Gamma) = 1.$$

(2) 在 Γ 的同属于一个面的两个未直接相连的顶点间增加一条连线,得到 $\widetilde{\Gamma}$

将 Γ 和 Γ 进行比较

$$\begin{cases} v(\widetilde{\Gamma}) = v(\Gamma) \\ e(\widetilde{\Gamma}) = e(\Gamma) + 1 \\ f(\widetilde{\Gamma}) = f(\Gamma) + 1 \end{cases}$$

因此

$$v(\widetilde{\Gamma}) - e(\widetilde{\Gamma}) + f(\widetilde{\Gamma}) = v(\Gamma) - e(\Gamma) + f(\Gamma).$$

现设 Γ 的每个面都已经通过连线剖分成三角形,得到的新图仍记作 Γ .

(3) 从最外边去掉一条边,新图记作 $\widetilde{\Gamma}$.

将 $\widetilde{\Gamma}$ 和 Γ 进行比较

$$\begin{cases} v(\widetilde{\Gamma}) = v(\Gamma) \\ e(\widetilde{\Gamma}) = e(\Gamma) - 1 \\ f(\widetilde{\Gamma}) = f(\Gamma) - 1 \end{cases}$$

仍有

$$v(\widetilde{\Gamma}) - e(\widetilde{\Gamma}) + f(\widetilde{\Gamma}) = v(\Gamma) - e(\Gamma) + f(\Gamma).$$

(4) 在消边的时候还可能遇到如下情况

将 $\widetilde{\Gamma}$ 和 Γ 进行比较

$$\begin{cases} v(\widetilde{\Gamma}) = v(\Gamma) - 1 \\ e(\widetilde{\Gamma}) = e(\Gamma) - 1 \\ f(\widetilde{\Gamma}) = f(\Gamma) \end{cases}$$

仍有

$$v(\widetilde{\Gamma}) - e(\widetilde{\Gamma}) + f(\widetilde{\Gamma}) = v(\Gamma) - e(\Gamma) + f(\Gamma).$$

(5) 有限步之后,只剩一条线段,

$$v - e + f = 2 - 1 + 0 = 1.$$

重新叙述

设 \mathbb{R}^2 中的闭凸集 A 由有限个三角形沿边粘贴得到.

记 $\Gamma(A)$ 为对应的平面图, $V(\Gamma), E(\Gamma), F(\Gamma)$ 分别为顶点集、棱集和有界面集.

对每个面逆时针定向,对每条棱任意定向.

分别记 $C_2(\Gamma)$, $C_1(\Gamma)$, $C_0(\Gamma)$ 为由 $F(\Gamma)$, $E(\Gamma)$, $V(\Gamma)$ 张成的 ℝ-线性空间. 定义算子

$$C_2(\Gamma) \xrightarrow{\partial_2} C_1(\Gamma) \xrightarrow{\partial_1} C_0(\Gamma),$$

其中 ∂_1 如前. $\partial_2 f = f$ 的棱的 ± 1 系数组合. 当 f 诱导的定向与棱给定的定向一致时取 1,相反取 -1. 说白了, $\partial_2 f$ 就是把 f 的棱按 f 诱导的定向加起来.

引理 1.11. $\partial_1 \partial_2 = 0$

证明. 不妨设棱 f 诱导的定向与给定定向一致,若不然,也不影响 $\partial_2 f$ 的实际结果.

$$\partial_1 \partial_2 f = \partial_1 (e_1 + e_2 + e_3) = v_1 - v_0 + v_2 - v_1 + v_0 - v_2 = 0.$$

定义 1.12.

- $H_2(\Gamma) = \ker \partial_2$
- $H_1(\Gamma) = \ker \partial_1 / \operatorname{im} \partial_2$
- $H_0(\Gamma) = \operatorname{coker} \partial_1 = C_0(\Gamma) / \operatorname{im} \partial_1$

命题 **1.13.** $H_0(\Gamma) \simeq \mathbb{R}$.

定理 1.14. $\dim H_0(\Gamma) - \dim H_1(\Gamma) + \dim H_2(\Gamma) = \dim C_0(\Gamma) - \dim C_1(\Gamma) + \dim C_2(\Gamma)$. 证明.

$$\dim C_2(\Gamma) - \dim C_1(\Gamma) + \dim C_0(\Gamma)$$

$$= \dim \ker \partial_2 - \dim \ker \partial_2 + \dim C_2(\Gamma) - \dim C_1(\Gamma) + \dim C_0(\Gamma)$$

$$= \dim H_2(\Gamma) + \dim \operatorname{im} \partial_2 - \dim C_1(\Gamma) + \dim C_0(\Gamma)$$

$$= \dim H_2(\Gamma) + \dim \operatorname{im} \partial_2 - \dim \ker \partial_1 + \dim \ker \partial_1 - \dim C_1(\Gamma) + \dim C_0(\Gamma)$$

$$= \dim H_2(\Gamma) - \dim H_1(\Gamma) - \dim \operatorname{im} \partial_1 + \dim C_0(\Gamma)$$

$$= \dim H_2(\Gamma) - \dim H_1(\Gamma) + \dim H_0(\Gamma).$$

定理 **1.15.** $H_2(\Gamma) = \{0\}.$

证明. 设 $\sum_f a_f f \in \ker \partial_2$. 考虑相邻的两个面 f_1, f_2 ,他们中间夹着一条棱 e. 经由 ∂_2 作用能提供 e的只有 f_1 和 f_2 . 注意 f_1 和 f_2 诱导 e 的定向是相反的,因此为了保证经由 ∂_2 作用后 e 前系数为零,必须有 $a_{f_1} = a_{f_2}$. 由连通性知 $a_f \equiv a$. 但注意

$$\sum_{f} \partial f = \sum$$
 边界棱 $\neq 0$.

因此
$$a\sum_{f}\partial f=0\Longrightarrow a=0\Longrightarrow \ker \partial_{2}=\left\{ 0\right\} .$$

push to boundary 技巧

假设 v 为内点,记 f_1,\cdots,f_k 为以 v 为顶点的所有面,记 e_1,\cdots,e_k 为以 v 为端点的所有面. 对每个面逆时针定向,取 e_i 定向为 f_i 诱导定向,如下图所示

注意到有

$$e_2 = e_3 + \partial f_2 +$$
边界棱

因此,对于 $\sum b_i e_i$,其中的 e_2 项总可以被 e_3 项在相差边界棱和 $\operatorname{im} \partial_2$ 中元素的意义下替换. 同理 e_3 可以被 e_1 替换. 因此

$$b_1e_1 + b_2e_2 + b_3e_3 = \tilde{b}_1e_1 + \partial(\sinh) + \partial \mathcal{P}_{\delta}$$

即

特别地,假设我们还有 $\partial_1(\sum b_i e_i) = 0$,那么

$$\partial_1(\tilde{b}_1e_1) + \underbrace{\partial_1\partial_2(\mathrm{sth})}_{\mathrm{flath}} + \underbrace{\partial_1(\mathrm{边界棱})}_{\mathrm{Flath}} = 0 \Longrightarrow \tilde{b}_1 = 0.$$

即

$$b_1e_1 + b_2e_2 + b_3e_3 = \partial(sth) + \dot{\partial}\mathcal{P}_{\delta}$$

Chapter 1

单纯同调

1 单纯复形和单纯同调群

定义 1.1 (单形). 设 $x_0,\cdots,x_n\in\mathbb{R}^N$. 若 x_1-x_0,\cdots,x_n-x_0 线性无关,则称

$$\left\{ x_0 + \sum_{i=1}^n t_i (x_i - x_0) \mid 0 \leqslant t_i \leqslant 1, \sum_{i=1}^n t_i = 1 \right\}$$

为以 x_0, \dots, x_n 为顶点的 n-单形.

注记. $x_1 - x_0, \dots, x_n - x_0$ 线性无关 $\iff x_0 - x_i, \dots, x_{i-1} - x_i, x_{i+1} - x_i, \dots, x_n - x_i$ 线性无关.

证明.
$$\sum_{j=0}^n \lambda) j(x_j-x_0) + \sum_{j=0}^n \lambda_j(x_0-x_i) = 0$$

$$\sum_{j=0}^n \lambda_j$$

注记 (重心坐标).

$$x_{0} + \sum_{i=1}^{n} t_{i}(x_{i} - x_{0}) = \left(1 - \sum_{i=1}^{n} t_{i}\right) x_{0} + \sum_{i=1}^{n} t_{i}x_{i}$$

$$\sum_{i=0}^{n} s_{i}x_{i}$$

$$(s_{0}, \dots, s_{n})$$
 称为重心坐标.

定义 1.2. 称由 $\{x_0, \cdots, x_n\}$ 的非空子集决定的单形为由 $\{x_0, \cdots, x_n\}$ 决定的单形的面.

定向 n-单形与 ∂ 算子

指定了顶点的排列顺序 $[x_0, \cdots, x_n]$ 的单形称为定向 n-单形. 认为相差偶置换的两个排列决定相同的定向. n-单形有且只有两种定向.

$$\partial_n[x_0,\cdots,x_n]:=\sum_{i=0}(-1)^i[x_0,\cdots,\hat{x}_i,\cdots,x_n]$$

验证良定性

引理 1.3. $\partial_{n-1}\partial_n=0$

证明.

$$\partial_{n-1}\partial_n[x_0, \cdots, x_n]$$

$$=\partial_{n-1}\sum_{i=0}^n (-1)^i[x_0, \cdots, \hat{x}_i, \cdots, x_n]$$

$$=\sum_{i=0}^n (-1)^i \sum_{0 \le j < i} (-1)^j[x_0, \cdots, \hat{x}_j, \cdots, \hat{x}_i, \cdots, x_n]$$

有限单纯复形

定义 1.4. 设 $K = \{\mathbb{R}^N \text{中的一些单形}\}$, 若 K 满足

- (0) $\#K < \infty$.
- (1) $\sigma \in K \Longrightarrow \sigma$ 的每个面 $\tau \in K$.
- (2) $\sigma_1, \sigma_2 \in K$, 若 $\sigma_1 \cap \sigma_2 \neq \emptyset$, 则它是 σ_1 及 σ_2 的面.

则称 K 为 \mathbb{R}^N 中的有限单纯复形. 设

$$|K| = \bigcup_{\sigma \in K} \sigma \subset \mathbb{R}^N,$$

赋予 |K| 子空间拓扑. 称 |K| 为 K 的底空间,称 K 为 |K| 的一个三角剖分.

单纯同调

设 K 是一个有限单纯复形.

定义 1.5.
$$C_p(K) := \left\{ \sum_{\substack{\sigma \in K \\ \dim \sigma = p}} a_{\sigma}[\sigma] \mid a_{\sigma} \in \mathbb{R} \right\}$$

称
$$C_p(K)$$
 中的元素为 p 链 $C_p(K) \xrightarrow{\partial_p} C_{p-1}(K)$ $0 \xrightarrow{\partial_{n+1}} C_n(K)$ under $H_p(K) = \ker \partial_p / \operatorname{im} \partial_{p+1}$ $b_p(K) = \dim H_p(K)$

2 Euler-Poincaré 定理与强 Morse 不等式

定理 2.1 (Euler-Poincaré). 设 K 为 n 维有限单纯复形,则

$$\sum_{p=0}^{n} (-1)^p \dim C_p(K) = \sum_{p=0}^{n} (-1)^p b_p(K).$$

证明一. 有如下短正合列

$$0 \longrightarrow \operatorname{im} \partial_{p+1} \longrightarrow \ker \partial_p \longrightarrow H_p \longrightarrow 0 \Longrightarrow b_p(K) = \dim \ker \partial_p - \dim \operatorname{im} \partial_{p+1}$$
$$0 \longrightarrow \operatorname{im} \partial_p \longrightarrow C_{p-1} \longrightarrow \operatorname{coker} \partial_p \longrightarrow 0 \Longrightarrow \dim \operatorname{im} \partial_p = \dim C_{p-1} - \dim \operatorname{coker} \partial_p$$

证明二. 有如下短正合列

$$0 \longrightarrow \operatorname{im} \partial_{p+1} \longrightarrow \ker \partial_p \longrightarrow H_p \longrightarrow 0 \Longrightarrow b_p(K) = \dim \ker \partial_p - \dim \operatorname{im} \partial_{p+1}$$
$$0 \longrightarrow \ker \partial_p \longrightarrow C_p \longrightarrow \operatorname{im} \partial_p \longrightarrow 0 \Longrightarrow \dim C_p = \dim \ker \partial_p + \dim \operatorname{im} \partial_p$$

容易看出定理正确,因为

- 对于每个 p, $b_p(K)$ 和 $\dim C_p$ 中有相同符号的 $\dim \ker \partial_p$, 而求和中二者前面的符号也相同.
- 考虑 0 ≤ p ≤ n − 1.
 - $-b_p(K)$ 中,出现了负的 $\dim \operatorname{im} \partial_{p+1}$
 - $-\dim C_{p+1}$ 中,出现了正的 $\dim \operatorname{im} \partial_{p+1}$
 - 而在求和中, $b_p(K)$ 与 dim C_{p+1} 的符号刚好不同,正好抵消.
- 最后剩下一个 dim im ∂₀ 无人抵消, 但它本身是零.

定理 2.2.

证明.
$$R(t) = (1+t)^{-1}(c(t)-p(t)) = \sum_{s=0}^{\infty} (-t)^s$$

以后会证明, 三角剖分算出来的欧拉示形数不依赖于三角剖分.

陈: 欧拉示性数

强 Morse 不等式

3 例子

球面

取正四面体 K

这是一个二维单纯复形. 我们来计算它的各阶实系数单纯同调群.

- $H_0(K)$. 由连通性, $H_0(K) \simeq \mathbb{R}$.
- H₁(K) = ker ∂₁/ im ∂₂. 设
 ∂(a_ie_i) = 0 ⇒ (-a₁ + a₃ a₆)v₁ + (a₁ a₂ a₄)v₂ + (a₂ a₃ a₅)v₃ + (a₄ + a₅ + a₆)v₄ = 0
 其中有 6 个未知数, 6 是棱的条数; 有 4 个方程, 4 是顶点的个数. 但其中只有 3 个独立方程.
 解得

$$\begin{cases} a_4 = a_1 - a_2 \\ a_5 = a_2 - a_3 \\ a_6 = a_3 - a_1 \end{cases}$$

所以

$$\begin{aligned} &a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4 + a_5e_5 + a_6e_6\\ = &a_1(e_1 + e_4 - e_6) + a_2(e_2 - e_4 + e_5) + a_3(e_3 - e_5 + e_6)\\ = &a_1\partial f_1 + a_2\partial f_2 + a_3\partial f_3 \in \operatorname{im} \partial_2 \Longrightarrow H_1(K) = 0. \end{aligned}$$

其中

注意到面的定向都使得右手大拇指指向外.

• $H_2(K) = \ker \partial_2$.

对任意一条棱,它属于两个面,容易验证这两个面在棱的诱导定向相反. 因此 $\partial(a_i f_i) = 0 \Longrightarrow a_i \equiv 1 \Longrightarrow \dim \ker \partial_2 = 1 \Longrightarrow H_2(K) \simeq \mathbb{R}.$

环面

环面的三角剖分不容易直接给出,我们先考虑环面的多边形表示

再在此基础上给出三角剖分

- 由连通性, $H_0(K) \simeq \mathbb{R}$.
- $H_1(K) = \ker \partial_1 / \operatorname{im} \partial_2$. 先利用 push to boundary 技巧对上图进行简化,

任取 $\sum c_e e$, 则可知存在 $f \in C_2(K)$ 和 $a_i \in \mathbb{R}$, 使得

$$\sum c_e e = \partial_2 f + \sum a_i e_i.$$

若 $\sum c_e e \in \ker \partial_1$,则

$$0 = \partial_1 \sum c_e e = \partial_1 \partial_2 f + \partial_1 \sum a_i e_i \Longrightarrow \sum a_i \partial_1 e_i = 0.$$

即

$$(a_1 - a_2)v_1 + (a_2 - a_3)v_2 + (a_4 - a_5)v_3 + (a_5 - a_6)v_4 + (-a_1 + a_3 - a_4 + a_6)v_0 = 0.$$

解得

$$a_1 = a_2 = a_3, \quad a_4 = a_5 = a_6.$$

整理一下我们上面得到的结果便是,对于任意的 $E \in \ker \partial_1$,存在 $F \in C_2(K)$ 及 $\alpha, \beta \in \mathbb{R}$,使得

$$E = \partial_2 F + \alpha(e_1 + e_2 + e_3) + \beta(e_4 + e_5 + e_6).$$

 \mathbb{RP}^2

考虑 \mathbb{RP}^2 的多边形表示

及其三角剖分

- 由连通性, $H_0(K) \simeq \mathbb{R}$.
- $H_1(K)=\ker\partial_1/\operatorname{im}\partial_2$. 由 push to boundary 技巧,对任意的 $E\in\ker\partial_1$,存在 $F\in C_2(K)$ 使

$$E = \partial_2 F + \sum a_i e_i.$$

两边用 ∂_1 作用得 $a_i \equiv a$. 所以 $E = \partial_2 F + a \sum e_i$.

注意到 $\partial_2 \sum f = -2 \sum e_i$. 所以 $E = \partial_2 \left(F - \frac{a}{2} \sum f \right)$. 即 $H_1(K) = \{0\}$.

• $H_2(K) = \ker \partial_2$. 设 $\sum a_f f \in \ker \partial_2$,则 $a_f \equiv a$. 但 $\partial_2 \sum f = -2 \sum e_i \neq 0$. 所以 a = 0,即 $H_2(K) = \{0\}$.

Klein 瓶

总结

- 计算 H²(K, ℝ)
 - 设 $\sum a_f f \in \ker \partial_2$,由连通性的论证知 $a_f \equiv a$.
 - 转化到 $\partial_2 \sum f$ 的计算. 若为零,则 $H^2(K,\mathbb{R}) \simeq \mathbb{R}$; 若不为零,则 $H^2(K,\mathbb{R}) = \{0\}$.
 - 为零的例子: 球面, 环面.
 - 不为零的例子: \mathbb{RP}^2 .
- 计算 H¹(K,ℝ)
 - 由 push to boundary 技巧,对任意的 $E \in C_1(K)$,存在 $F \in C_2(K)$ 使得

$$E = \partial_2 F + \sum a_i e_i.$$

- 当 $E \in \ker \partial_1$ 时,也有 $\sum a_i e_i \in \ker \partial_1$,从而我们得到一些系数 a_i 的关系式.
 - * 球面时, $a_4 = a_1 a_2, a_5 = a_2 a_3, a_6 = a_3 a_1.$
 - * 环面时, $a_1 = a_2 = a_3$, $a_4 = a_5 = a_6$.
 - * \mathbb{RP}^2 时, $a_i \equiv a$.
- 剩下多少个自由的系数,我们就有多少个闭链的生成元.
 - * 球面时, $a_i e_i = a_1(e_1 + e_4 e_6) + a_2(e_2 e_4 + e_5) + a_3(e_3 e_5 + e_6)$
 - * 环面时, $a_i e_i = \alpha(e_1 + e_2 + e_3) + \beta(e_4 + e_5 + e_6)$
 - * \mathbb{RP}^2 时, $a_i e_i = a \sum e_i$
- 在这些生成元中,有些其实也是边缘链
 - * 球面时, $\partial f_1 = e_1 + e_4 e_6, \partial f_2 = e_2 e_4 + e_5, \partial f_3 = e_3 e_5 + e_6$
 - * \mathbb{RP}^2 时, $-\frac{1}{2}\partial \sum f = \sum e_i$.

在这些情形中, $H^1(K,\mathbb{R}) = \{0\}.$

- 刨除掉边缘链,剩下的便是同调群中的元素. 我们要做的便是看清同调群的代数结构,构造从 1 维闭链群到代数结构的同态,最后证明 ker 是边缘链.
 - 环面时, $e_1+e_2+e_3$ 和 $e_4+e_5+e_6$ 都不是边缘. 因此猜出 $H^1(K,\mathbb{R})\simeq\mathbb{R}\oplus\mathbb{R}.$

下面我们想定义 φ : ker $\partial_1 \to \mathbb{R} \oplus \mathbb{R}, E \mapsto (\alpha, \beta)$.

为此我们需验证对于每个 E 只有一组 (α, β) .

只需验证 E=0 时 $\alpha=\beta=0$.

设
$$\partial F + \alpha(e_1 + e_2 + e_3) + \beta(e_4 + e_5 + e_6) = 0.$$

设 $F = \sum a_f f$. 由连通性知 $a_f \equiv f$,则 $\partial F = a \partial \sum f = 0$.

因此 $\alpha(e_1 + e_2 + e_3) + \beta(e_4 + e_5 + e_6) = 0 \Longrightarrow \alpha = \beta = 0.$

从而 φ 良定,易见 φ 为满射. 易见 $\ker \varphi = \operatorname{im} \partial_2$.

所以 $\mathbb{R} \oplus \mathbb{R} \simeq \ker \partial_1 / \ker \varphi = \ker \partial_1 / \operatorname{im} \partial_2 = H^1(K, \mathbb{R}).$

ℤ-系数同调

考虑

4 锥的同调群

9月21日讲义
$$K=\mathbb{R}^{N}\ \text{中单纯复形}$$

$$\mathbb{R}^{N}\subset\mathbb{R}^{N+1}, (x_{1},\cdots,x_{N})\mapsto(x_{1},\cdots,x_{N},0)$$
 $v_{0}=(0,\cdots,0,1)\in\mathbb{R}^{N+1}$ 将 v_{0} 与 K 中的点连线
上述集合构成 \mathbb{R}^{N+1} 中的单纯复形

称为 K 上锥复形,记作 \hat{K}

命题 **4.1.**
$$H_n(\hat{K}; \mathbb{Z}) = \begin{cases} \mathbb{Z}, & i = 0 \\ 0, & n > 0 \end{cases}$$

注记. 有限生成阿贝尔群,实系数相当于 tensor 上 ℝ 后把挠部分杀掉.

证明.
$$C_n(\hat{K}, \mathbb{Z}) \xrightarrow{T} C_{n+1}(\hat{K}, \mathbb{Z})$$

$$[x_0, \cdots, x_n] \longmapsto \begin{cases} [v_0, x_0, \cdots, x_n] & v_0 \neq x_i \\ 0 \end{cases}$$
 验证 $\partial T + T \partial = \mathrm{Id}$ 如果 $v_0 \neq x_i \forall i$
$$(\partial T + T \partial)[x_0, \cdots, x_n] = \partial[v_0, x_0, \cdots, x_n] + T \sum_{i=0}^n (-1)^i [x_0, \cdots, \hat{x}_i, \cdots, x_n]$$

$$= [x_0, \cdots, x_n] + \sum_{i=1}^n (-1)^{i+1} [v_0, x_0, \cdots, \hat{x}_i, \cdots, x_n]$$

$$+ \sum_{i=0}^n (-1)^i [v_0, x_0, \cdots, \hat{x}_i, \cdots, x_n]$$

$$+ \sum_{i=0}^n (-1)^i [v_0, x_0, \cdots, \hat{x}_i, \cdots, x_n]$$
 如果 $x_0 = v_0$
$$\partial T[x_0, \cdots, x_n] = 0$$

$$T \partial[v_0, x_1, \cdots, x_n] = [v_0, x_1, \cdots, x_n]$$
 上述计算需要 $n > 0$

$$\begin{split} S_n &= \partial \Delta_{n+1} \\ \Delta_{n+1} \ \text{ 看成 } \Delta_n \ \text{ 上的锥} \\ C_p(\partial \Delta_{n+1}) &= \begin{cases} C_p(\Delta_{n+1}) & 0 \leqslant p \leqslant n \\ 0 & p > n \end{cases} \\ 0 &\leqslant p \leqslant n-1, H_p(S^n; \mathbb{Z}) = H^p(\Delta^{n+1}, \mathbb{Z}) = H_p(\hat{\Delta}_n, \mathbb{Z}) = \begin{cases} \mathbb{Z}, & p = 0 \\ 0, 0$$

手术

$$n = a + b + 1$$
$$M^n$$

挖掉 $D^{a+1} \times \partial D^{b+1} \hookrightarrow M^n$ 沿着边界 $\partial D^{a+1} \times \partial D^{b+1} = S^a \times S^b$ 站上 $\partial D^{a+1} \times D^{b+1}$ 给定单纯复形 K_1, K_2 子单纯复形 L_1, L_2 设 L_1, L_2 分别同构于 L $K_1 \cup_L K_2$ $C_n(K_1 \cup_L K_2) \xrightarrow{\partial_n} C_{n-1}(K_1 \cup_L K_2)$ $\{C_k\}_{0 \leqslant k \leqslant n}$ 有限维向量空间(群,环,模) ∂

5 相对单纯同调群与 Mayer-Vietoris 序列

9月21日讲义第12页

定义 5.1. 设 K 是单纯复形, $L \subset K$ 是子单纯复形, 称

$$C_n(K,L) := C_n(K)/C_n(L)$$

为单纯复形偶 (K,L) 的相对 n-链群.

引理 5.2. 设 $f: V_1 \to V_2$ 满足 $f(W_1) \subset W_2$, 则如下图表交换

$$\begin{array}{ccc} V_1 & \stackrel{f}{-\!\!\!-\!\!\!-\!\!\!-} & V_2 \\ \downarrow^\pi & & \downarrow^\pi & \cdot \\ V_1/W_1 & \stackrel{\tilde{f}}{-\!\!\!-\!\!\!-} & V_2/W_2 & \end{array}$$

定义 5.3. 将链复形

$$\cdots \longrightarrow C_{n+1}(K,L) \xrightarrow{\partial} C_n(K,L) \xrightarrow{\partial'} C_{n-1}(K,L) \longrightarrow \cdots$$

的同调群记作 $H_n(K,L)$, 称为单纯复形偶 (K,L) 的第 n-阶相对同调群.

回到原始问题,设 L 为一单纯复形,可以嵌入到两个单纯复形 K_1, K_2 中作为子单纯复形,研究 $H_*(K_1 \cup_L K_2)$ 的计算问题.

本质上我们使用的是如下命题

命题 **5.4.** 设 W_1, W_2 是向量空间, $V = W_1 \cap W_2$, 则有短正合列

$$0 \longrightarrow V \longrightarrow W_1 \oplus W_2 \longrightarrow W_1 + W_2 \longrightarrow 0$$
$$(w_1, w_2) \longmapsto w_1 + w_2$$
$$w \longmapsto (w, -w)$$

命题 5.5.

$$C_n(K_1 \cup_L K_2) = C_n(K_1) + C_n(K_2), \quad C_n(K_1) \cap C_n(K_2) = C_n(L).$$

向量空间粘接

设 W_1, W_2 为两个向量空间, $V = W_1 \cap W_2$,则 $W_1 + W_2$ 满足如下的万有性质

$$V$$
 W_1

$$W_2 W_1 + W_2$$

E

拓扑空间粘接

6 单纯映射

在本节中,我们希望定义单纯映射的概念,进而得到单纯复形范畴,我们应该期待,由单纯复形之间的单纯映射可以诱导链复形之间的链映射,得到单纯复形范畴到链复形范畴的函子.

- 单纯映射的定义
- 确实构成单纯复形范畴(复合还是单纯映射)
- 单纯同构. 范畴论中的老生常谈
- 单纯映射诱导的链映射(定义 + 验证它确实为链映射)
- 函子性
- 单纯复形偶范畴

设 K, L 是单纯复形, $K^{(0)}, L^{(0)}$ 分别是 K, L 的 0-维骨架.

引理 **6.1.** 称 $f: K \to L$ 为单纯映射,如果 $f^{(0)}: K^{(0)} \to L^{(0)}$ 满足对任意 $\{v_0, \cdots, v_p\}$ 为 K 中某个 p-单形的全部顶点,有 $\{f^{(0)}(v_0), \cdots, f^{(0)}(v_p)\}$ 为 L 中某单形的顶点. 此时 $f^{(0)}$ 决定了 K 中任一单形到 L 中某个单形的映射

$$f(s_0v_0 + \dots + s_pv_p) = s_0f(v_0) + \dots + s_pf(v_p)$$

称 f 为单纯映射.

引理 6.2. 设 $f: K \to L$ 及 $g: L \to M$ 为单纯映射,则 $g \circ f: K \to M$ 也为单纯映射.

定义 6.3. 若 $f: K \to L$ 及 $g: L \to K$ 为单纯映射满足

$$g \circ f = \mathrm{Id}_K, \quad f \circ g = \mathrm{Id}_L$$

则称 f 为从 K 到 L 的单纯同构.

定义 6.4. $f_{\#}: C_{*}(K) \to C_{*}(L), [v_{0}, \cdots, v_{p}] \mapsto [f(v_{0}), \cdots, f(v_{p})].$

引理 6.5. $f_{\#}$ 为链映射, 即 $f_{\#} \circ \partial^K = \partial^L \circ f_{\#}$.

7 单纯同伦

9月28日改版讲义第22页

一般来说,一个给定的同调群间的同态能由不同的单纯映射诱导. 这个事实引导我们开始思考如下问题: 在什么条件下两个单纯映射诱导相同的同调群间的同态?

给定单纯映射 $f,g:K\to L$,我们希望找到条件使得对任意 $z\in Z_p(K)$ 有 $f_\#(z)$ 与 $g_\#$ 是同调的. 换句话说,我们希望找到在什么条件下存在一个映射 D 对每个 K 中的 p-维闭链 z 指定 L 中的一个 g+1-维链 Dz 使得

$$\partial Dz = g_{\#}(z) - f_{\#}(z).$$

 $\Delta_n imes I$ 上的单纯复形结构

同伦不变性

定义 7.1. 设 $f_0, f_1: K \to L$ 为两个单纯映射, 若有一单纯映射 $F: K \times I \to L$ 使得

$$F \circ i_0 = f_0, \quad F \circ i_1 = f_1$$

其中 $i_0: K \to K \times I, i_1: K \to K \times I$ 是自然的包含映射,将每个 K 中单形 Δ 分别映到 $\Delta \times \{0\}$ 和 $\Delta \times \{1\}$. 称 f_0 与 f_1 单纯同伦,记作 $f_0 \overset{F}{\sim} f_1$. 类似地,可以定义单纯同伦等价的概念.

我们已经证明,存在 $P: C_n(K) \to C_{n+1}(K \times I)$ 使得对于 K 中的任一单形 σ 有

$$i_{1\#}(\sigma) - i_{0\#}(\sigma) = (\partial P + P\partial)\sigma.$$

将 $F_{\#}$ 作用到上式两侧,得到

$$F_{\#} \circ i_{1\#}(\sigma) - F_{\#} \circ i_{0\#}(\sigma) = (F_{\#}\partial^{K}P + F_{\#}P\partial^{K})\sigma = \partial^{L}F_{\#}P\sigma + F_{\#}P\partial^{K}\sigma$$

定理 7.2. 设 $f_0, f_1: K \to L$ 是单纯同伦的单纯映射,则 $(f_0)_{\#}, (f_1)_{\#}$ 是链同伦的.

8 单纯同调的 Eilenberg-Steenrod 公理

- (a) $\forall n \geq 0, (K, L) \rightarrow H_n(K, L)$
- (b) $f: (K_1, L_1) \to (K_2, L_2)$ 单纯映射
- (c) 任意 (K,L), 存在 $\partial_*: H_n(K,L) \to H_{n-1}(L)$

满足公理

- (1) $i: (K, L) \to (K, L)$ 恒同,
- $(2) (K_1, L_1) \xrightarrow{f} (K_2, L_2) \xrightarrow{f_2} (K_3, L_3)$
- (3) $f: (K_1, L_1) \to (K_2, L_2)$

$$H_n(K_1, L_1) H_{n-1}(L_1)$$

$$H_n(K_2, L_2) H_{n-1}(L_2)$$

- $(4) \longrightarrow H_n(L) H_n^{i_*}(K)$
- (5) 同伦. $f_i: (K_1, L_1) \to (K_2, L_2)$ 单纯同伦, 那么 $(f_0)_* = (f_1)_*$
- (6) 切除.(K, L) 是单纯复形偶, $U \subset |K|$, $\overline{U} \subset |L|$,假定 $|K| U = |K_1|, |L| U = |L_1|$ 证明.
- (7) 维数公理.

$$H_n(\Delta_0) = \begin{cases} G, & n = 0 \\ 0, & \text{其他} \end{cases}$$

证明.

(8) 紧支集公理. 任意 $c \in H_n(K, L)$, 存在有限复形对

9 代数范畴的同调论

10 月 12 日讲义第 5 页

Chapter 2

奇异同调

1 奇异同调群

10月12日第10页

- 奇异 n-单形的定义
- 奇异 n-链群
- ∂ 算子
- 奇异同调群
- 连续映射诱导奇异链复形之间的链映射, 函子性质

2 同伦不变性

考虑标准单形 $\Delta_n = [e_0, \dots, e_n]$ 上的柱形 $\Delta_n \times I$. 记 $a_i = (e_i, 0), b_i = (e_i, 1)$. 我们定义 $P(\Delta_n) \in S_{n+1}(\Delta_n \times I)$ 如下

$$P(\Delta_n) = \sum_{i=0}^{n} (-1)^i [a_0, \dots, a_i, b_i, \dots, b_n].$$

其中 $[a_0, \cdots, a_i, b_i, \cdots, b_n]$ 表示将 Δ_{n+1} 的顶点逐一对应再线性延拓得到的连续映射. 我们使用 $P(\Delta_n)$ 这个记号是因为我们将定义一个一般的映射

$$P \colon S_n(X) \to S_{n+1}(X \times I).$$

 $P(\Delta_n)$ 中的 Δ_n 可理解为到自身的恒等映射. 因此我们是率先定义了特殊情况

$$P: S_n(\Delta_n) \to S_{n+1}(\Delta_n \times I)$$

中 Δ_n 的像. 我们的一般定义正是建立在这个特殊情况上的. 对于 $\sigma: X \to \Delta_n$, 定义

$$P(\sigma) = (\sigma \times \mathrm{Id})_{\#} P(\Delta_n).$$

关于映射 P 的一个重要的命题是

命题 2.1.

$$\partial(P([e_0,\dots,e_n])) = [b_0,\dots,b_n] - [a_0,\dots,a_n] - \sum_{i=0}^q (-1)^i P([e_0,\dots,\hat{e}_i,\dots,e_n]).$$

定理 2.2. 设 $f \simeq g: X \to Y$ 是同伦的连续映射, 则 $f_{\#}$ 与 $g_{\#}$ 链同伦.

证明. 设 $F: X \times I \to Y$ 是 f = g 之间的同伦. 记映射 $\iota_0, \iota_1: X \to X \times I$

$$\iota_0(x) = (x,0), \quad \iota_1(x) = (x,1), \quad x \in X.$$

接定义有 $f = F \circ \iota_0, g = F \circ \iota_1$.

П

3 相对奇异同调群

定义 3.1. 称空间偶映射 $f,g:(X,A)\to (Y,B)$ 同伦, 如果 $f,g:X\to Y$ 有同伦 F 且 $F(A\times I)\subset B$.

命题 3.2. 同伦不变性

例 3.3. 存在 $X \simeq Y$, $A \simeq B$, 但 $H_*(X, A) \ncong H_*(Y, B)$.

证明. 取 $X = Y = S^1 \times D^2$, $A = S^1 \times \{0\}$, $B = \{1\} \times S^1$.

因为嵌入映射 $\iota: A \to X$ 是 $A \to X$ 之间的同伦等价, 所以 $H_*(X,A) = 0$.

而嵌入映射 $\iota: B \to Y$ 可以分解为

$$B \hookrightarrow \{1\} \times D^2 \hookrightarrow Y$$

其中 $\{1\} \times D^2$ 是可缩的, 所以 $\iota_*: H_n(B) \to H_n(Y)$ 是零映射, 其中 n > 1. 考虑长正合列

$$H_1(B) \xrightarrow{0} H_1(Y) \longrightarrow H_1(Y,B) \longrightarrow H_0(B) \longrightarrow H_0(Y)$$

因为 $H_0(B) \xrightarrow{\iota_*} H_0(Y)$ 是同构, 所以 $H_1(Y,B) \cong H_1(Y) = \mathbb{Z}$.

命题 **3.4.** 设 $f: X \to Y$ 和 $f|A: A \to B$ 都是同伦等价. 则 $f_*: H_*(X, A) \to H_*(Y, B)$ 是同构.

证明. 由同调序列的自然性, 下列图表交换

$$\cdots \xrightarrow{\partial_*} H_q(A) \xrightarrow{i_*} H_q(X) \xrightarrow{j_*} H_q(X, A) \xrightarrow{\partial_*} H_{q-1}(A) \xrightarrow{i_*} H_{q-1}(X) \xrightarrow{j_*} \cdots$$

$$\downarrow^{f_*} \qquad \downarrow^{f_*} \qquad \cdots$$

$$\cdots \xrightarrow{\partial_*} H_q(B) \xrightarrow{i_*} H_q(Y) \xrightarrow{j_*} H_q(Y, B) \xrightarrow{\partial_*} H_{q-1}(B) \xrightarrow{i_*} H_{q-1}(Y) \xrightarrow{j_*} \cdots$$

由五引理, $f_*: H_*(X,A) \to H_*(Y,B)$ 是同构.

例 3.5. 存在 $f: X \to Y$ 和 $f|A: A \to B$ 都是同伦等价, 但 $f: (X,A) \to (Y,B)$ 不是同伦等价.

证明. 取 $f = \iota$: $(D^n, S^{n-1}) \to (D^n, D^n - 0)$. 假设有同伦逆 g: $(D^n, D^n - 0) \to (D^n, S^{n-1})$. 由映射的连续性知 $g(0) \in S^{n-1}$, 因此 $g(D^n) \subset S^{n-1}$. 因为 f 和 g 是空间偶的同伦逆, 所以

$$(g|D^{n}-0)_{*}: H_{*}(D^{n}-0) \longrightarrow H_{*}(S^{n-1})$$

是同构. 但 $g|D^n-0:D^n-0\to S^{n-1}$ 可以分解为

$$D^n - 0 \xrightarrow{\iota} D^n \xrightarrow{g} S^{n-1}$$
.

其中 D^n 是可缩的, 这样就得到了矛盾, 因为 $H_{n-1}(D^n-0)=H_{n-1}(S^{n-1})=\mathbb{Z}$.

4 奇异同调的 Eilenberg-Steenrod 公理

4.1 同伦公理

10 月 12 日讲义第 15 页

定理 4.1. 设 $f_0, f_1: X \to Y$ 是同伦的连续映射, 则 $(f_0)_\#, (f_1)_\#$ 是链同伦的.

4.2 维数公理

10 月 12 日讲义第 17 页

5 收缩

10 月 12 日讲义第 19 页 设 X 是拓扑空间, $T\colon \Delta_n \to X$ 连续映射

$$S_n(X) = \left\{ \sum a_T T \mid \right\}$$

奇异 n-链群

定义 5.1. $A \subset X$ 称为 X 的收缩,

嵌入映射有左逆,

6 重心重分

设 K 是单纯复形 重心重分 $\Delta^1=[b_0,\cdots,b_s]$ 其中 b_i 为 σ_i 的重心,其中 $\sigma_0<\sigma_1<\cdots<\sigma_s$ 一串面

$$sd(\sigma) = Sd(\partial \sigma) * b$$

其中 b_{σ} 是 σ 的重心

* 的意思是把该点加进去

$$[v_0, v_1] * b := [v_0, v_1, b]$$

如上归纳定义

$$Sd: C(k) \longrightarrow C(K')$$

希望定义出来的 Sd 是链映射, 即 ∂ Sd = Sd ∂

还希望满足承载条件,即如果 $L \subset K$ 是子单纯复形

如果 $c \in C(L)$, 那么 $(Sd)(c) \subset C(L')$

我们从 $C_0(K)$ 开始考虑, 规定

$$\operatorname{Sd}: C_0(K) \longrightarrow C_0(K') = \operatorname{Id}$$

若 $i < k(k \ge 1)$ 时 Sd: $C_i(K) \longrightarrow C_i(K')$ 已经定义好,且是链映射,且满足承载条件 那么 $\sigma = [v_0, \cdots, v_k]$

 $\partial \sigma \in C_{k-1}(\sigma)$

 $\operatorname{Sd}(\partial \sigma) \in C_{k-1}((\partial \sigma)')$

 $\operatorname{Sd}(\sigma) = (-1)^k \operatorname{Sd} * b_{\sigma}$

$$\partial \operatorname{Sd}(\sigma) = \operatorname{Sd}(\partial \sigma) + (-1)^k (\partial \operatorname{Sd}(\partial \sigma))$$

 $Sd(\sigma) \in C_k(\sigma')$

希望定义 π 是单纯映射

 $\pi\colon K'\to K, b\mapsto$

b 必是 K 中某个单形 σ 的重心

 $\pi(b)$ 为 σ 的某个顶点

 $\pi_{\#} \operatorname{Sd} : C(K) \to C(K)$

证明它链同伦于 Id

还有 $\operatorname{Sd} \pi_{\#}$ 链同伦于 Id

 $\pi_{\#} \operatorname{Sd} - \operatorname{Id} = \partial H + H \partial$

 $H: C_k(K) \longrightarrow C_{k+1}(K)$

其中 $H: C_k(K) \longrightarrow C_{k+1}(K)$ 满足承载条件, $L \subset K, c \in C(K), H(c) \in C(L)$

睡觉

定义 Sd: $L_i(Y) \longrightarrow L_i(Y)$

 $H: L_i(Y) \longrightarrow L_i(Y)$ 走神 10 月 15 日讲义第 10 页

定理 ${\bf 6.1.}$ 若 $\{X_i\subset X\}$ 满足 $\{{\rm Int}\,X_i\}_i$ 构成 X 的开覆盖,那么 $\sum_i S_p(X_i)\subset S_p(X)$ 诱导出同调同构

7 单纯同调与奇异同调同构

10 月 19 日讲义第 5 页

8 切除定理

10月19日讲义第6页

定理 8.1. 设 $A \subset X$. 如果 $U \subset X$ 满足 $\overline{U} \subset \operatorname{Int} A$, 那么包含映射

$$j \colon (X - U, A - U) \longrightarrow (X, A)$$

诱导奇异同调群的同构.

证明. 记 $\mathscr{A} = \{X - U, A\}$. 由 $\overline{U} \subset \operatorname{Int} A \times \mathbb{A}$ 的元素的内部覆盖 X.

定理 8.2. $X_1, X_2 \subset X$, $\{X_1, X_2\}$ 为 Mayer-Vietoris 偶, 当且仅当

$$i: (X_1, X_1 \cap X_2) \longrightarrow (X_1 \cup X_2, X_2)$$

诱导相对同调群的同构

$$i_*: H_*(X_1, X_1 \cap X_2) \longrightarrow H_*(X_1 \cup X_2, X_2)$$

9 局部同调

10 月 19 日讲义第 8 页

10 一般系数的同调群

定义 10.1. 设 R 是一个交换幺环,X 是一个拓扑空间,令 $S_n(X,R)$ 为所有 n 维奇异单形生成的自由 R 模,称为 X 的 n 维 R 系数奇异链群.

11 Tor 与 Ext

定义 11.1. 设 R 是一个交换幺环, A 是 R-模, A 的一个 R-模分解是一个 R-模长正合序列

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots \longrightarrow C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\varepsilon} A \longrightarrow 0.$$

如果每个 C_n 都是自由 R-模,则称之为 A 的一个自由 R-模分解.

例 11.2. ℤ 作为 ℤ-模的自由分解

$$\cdots \longrightarrow 0 \xrightarrow{\partial_1} \mathbb{Z} \xrightarrow{\mathrm{Id}} \mathbb{Z} \longrightarrow 0.$$

例 11.3. $\mathbb{Z}/m\mathbb{Z}$ 作为 \mathbb{Z} -模的自由分解

$$\cdots \longrightarrow 0 \xrightarrow{\partial_2} \mathbb{Z} \xrightarrow{\times m} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/m\mathbb{Z} \longrightarrow 0.$$

命题 11.4. A 的一个 R-模分解对应一个链复形

$$C: \cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots \longrightarrow C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0.$$

它的同调群是

$$H_n(C) = \begin{cases} 0, & n \geqslant 1\\ A, & n = 0. \end{cases}$$

定理 11.5. 任何 R-模 A 的自由 R-模分解一定存在.

证明. 取 C_0 为集合 A 自由生成的 R-模 F(A), 取 ε 为集合间的映射 $\mathrm{Id}: A \to A$ 扩充而成的 R-模 同态 $\varepsilon: C_0 \to A$. 取 C_1 为集合 $\ker \varepsilon$ 自由生成的 R-模, 以此类推.

例 11.6. 设 R 是 PID, 则 R-模 A 有自由分解

$$\cdots \longrightarrow 0 \longrightarrow \ker \varepsilon \stackrel{\iota}{\longrightarrow} C_0 = F(A) \stackrel{\varepsilon}{\longrightarrow} A \longrightarrow 0.$$

这是因为 PID 上的自由模的子模也是自由的.

例 11.7. $\mathbb{Z}/2\mathbb{Z}$ 作为 $\mathbb{Z}/4\mathbb{Z}$ -模的自由分解

$$\cdots \longrightarrow \mathbb{Z}/4\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\varepsilon} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

例 11.8. R 上有自然的 $R[x_1, \dots, x_n]$ 模结构

$$f(x_1, \dots, x_n) \cdot r = (a_0 + \sum_{i_1 \dots i_n} a_{i_1 \dots i_n} x^{i_1} \dots x_n^{i_n}) \cdot r := a_0 r.$$

当 R 是 PID 时, 给出 R 一个的自由 $R[x_1, \cdots, x_n]$ -模分解.

定理 11.9 (自由零调模型). 设 $C = \{C_n, \partial_n\}_{n \geq 0}$ 是一个自由的链复形, $A \in C$ 的增广. 设 $C' \in A'$ 的一个 R-模分解. 对于任何线性映射 $\varphi_{-1} \colon A \to A'$, 存在链映射 $\varphi = \{\varphi_n \colon C_n \to C'_n\}_{n \geq 0}$ 使得 $\varepsilon \circ \varphi_0 = \varphi_{-1} \circ \varepsilon$. 且任何两个这样的链映射 φ, φ' 是链同伦的.

证明.

$$\cdots \longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0 \stackrel{\varepsilon}{\longrightarrow} A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{\varphi_{-1}}$$

$$\cdots \longrightarrow C'_2 \longrightarrow C'_1 \longrightarrow C'_0 \stackrel{\varepsilon}{\longrightarrow} A' \longrightarrow 0$$

取 C_0 的一组基 $\{c_{0i}\}$, 因为 $\varepsilon\colon C_0'\to A'$ 是满射,所以存在 c_{0i}' 使得 $\varepsilon(c_{0i}')=\varphi_{-1}\circ\varepsilon(c_{0i})$.

$$c_{0i} \longrightarrow \varepsilon(c_{0i})$$

$$\downarrow \qquad \qquad \downarrow$$

$$c'_{0i} \longrightarrow \varphi_{-1} \circ \varepsilon(c_{0i})$$

因为线性映射由它在自由模的基上的取值决定,这样我们就定义出了 φ_0 . 以此类推可定义 φ . 下面我们设有两个链映射 φ 和 ψ ,我们来找它们之间的链同伦.

$$C_0$$

$$\psi \downarrow \varphi$$

$$C_1' \longrightarrow C_0' \longrightarrow A$$

因为 $\varepsilon \circ (\varphi - \psi) = \psi_{-1} \circ \varepsilon - \psi_{-1} \circ \varepsilon = 0$,所以可在 C_1' 中找到 $\varphi - \psi(c_{0i})$ 的一个原像,将之定义为 $H_0(c_{0i})$. 以此类推定义 H.

命题 **11.10.** R-模 A 的任何两个自由分解 C,C' 都是链同伦等价的. 证明.

$$\begin{array}{cccc}
C_0 & \longrightarrow & A & & C_0 & \longrightarrow & A \\
\downarrow^{\varphi} & & \downarrow_{\operatorname{Id}} & & & \downarrow_{\operatorname{Id}} & & \downarrow_{\operatorname{Id}} \\
C'_0 & \longrightarrow & A & & \downarrow_{\operatorname{Id}} & & \downarrow_{\operatorname{Id}} \\
\downarrow^{\psi} & & \downarrow_{\operatorname{Id}} & & \downarrow_{\operatorname{C}_0} & \longrightarrow & A
\end{array}$$

设 $A, B \in \mathbb{R}$ -模. 取 A 的一个自由 \mathbb{R} -模分解 \mathbb{C} , 构造链复形 $\mathbb{C} \otimes \mathbb{B}$.

命题 11.11. $H_n(C \otimes B)$ 只与 A, B 有关, 而与 A 的自由分解无关.

定义 11.12. 称 $H_n(C \otimes B)$ 为 A 与 B 的第 n 个挠群,记作 $\operatorname{Tor}_n^R(A,B)$.

例 11.13. 计算 $\operatorname{Tor}_n^{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$.

解. 找 Z/2Z 的一个自由 Z-模分解

$$\cdots \longrightarrow 0 \xrightarrow{\partial_2} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

则 $C \otimes \mathbb{Z}/2\mathbb{Z}$ 为

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \stackrel{2 \otimes 1}{\longrightarrow} \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

所以

$$\operatorname{Tor}_n^{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) = \begin{cases} 0, & n \geqslant 2\\ \mathbb{Z}/2\mathbb{Z}, & n = 0, 1. \end{cases}$$

例 11.14. 计算 $\operatorname{Tor}_n^{\mathbb{Z}/2\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$.

解. 找 $\mathbb{Z}/2\mathbb{Z}$ 的一个自由 $\mathbb{Z}/2\mathbb{Z}$ -模分解

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\mathrm{Id}} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

则 $C \otimes_{\mathbb{Z}/2\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ 为

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}/2\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

所以

$$\operatorname{Tor}_n^{\mathbb{Z}/2\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) = \begin{cases} 0, & n \geqslant 1\\ \mathbb{Z}/2\mathbb{Z} & n = 0. \end{cases}$$

例 11.15. 计算 $\operatorname{Tor}_n^{\mathbb{Z}/4\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$.

解. 找 $\mathbb{Z}/2\mathbb{Z}$ 的一个自由 $\mathbb{Z}/4\mathbb{Z}$ -模分解

$$\cdots \longrightarrow \mathbb{Z}/4\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\varepsilon} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

则 $C \otimes_{\mathbb{Z}/4\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ 为

$$\cdots \longrightarrow \mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}/4\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \xrightarrow{2\otimes 1} \mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}/4\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \xrightarrow{2\otimes 1} \mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}/4\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

所以

$$\operatorname{Tor}_n^{\mathbb{Z}/4\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}.$$

12 映射度

Chapter 3

胞腔同调

1 胞腔复形

10 月 19 日讲义第 12 页

例 1.1.

2 胞腔分解的例子

10 月 22 日讲义第 4 页

3 胞腔同调群计算的例子

10 月 22 日讲义第 8 页

4 球面的映射度

网课讲义合集第8页

5 透镜空间

网课讲义合集第 13 页

6 万有系数定理

网课讲义合集第 26 页

7 奇异上同调中的卡积与上积

网课讲义合集第 37 页

8 乘积空间的奇异同调

网课讲义合集第 43 页

9 Kunneth 公式

网课讲义合集第 45 页

Chapter 4

Hatcher 习题

1 Chapter0

2 Section2.1

11. Show that if A is a retract of X then the map $H_n(A) \to H_n(X)$ induced by the inclusion $A \subset X$ is injective.

14.Determine whether there exists a short exact sequence

$$0 \longrightarrow \mathbb{Z}_4 \longrightarrow \mathbb{Z}_8 \oplus \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \longrightarrow 0.$$

More generally, determine which abelian groups A fit into a short exact sequence

$$0 \longrightarrow \mathbb{Z}_{p^m} \longrightarrow A \longrightarrow \mathbb{Z}_{p^n} \longrightarrow 0$$

with p prime. What about the case of short exact sequences

$$0 \longrightarrow \mathbb{Z} \longrightarrow A \longrightarrow \mathbb{Z}_n \longrightarrow 0.$$

证明.

附录 A

拓扑补遗

1 空间偶

定义 1.1. 称空间偶映射 $f,g:(X,A)\to (Y,B)$ 是同伦的, 如果存在映射

$$F: (X \times I, A \times I) \longrightarrow (Y, B)$$

满足 F(x,0) = f 且 F(x,1) = g.

附录 B

正合列

1 链复形与链映射

- 链复形的定义
- 链映射的定义
- 链映射的例子,包含映射,商映射
- 链复形范畴到分次 Abel 群范畴的函子
- 链同伦
- 链同伦的链映射诱导同调群的同构

附录 B. 正合列 58

2 可裂的短正合列

定义 2.1. 设 $0 \longrightarrow A \stackrel{i}{\longrightarrow} B \stackrel{\pi}{\longrightarrow} C \longrightarrow 0$ 为一短正合列. 如果存在子对象 $D \subset B$, 使得

$$i(A) \oplus D = B$$

则称此序列分裂.

命题 2.2. 给定短正合列 $0 \longrightarrow A \xrightarrow{i} B \xrightarrow{\pi} C \longrightarrow 0$, 则下列陈述等价

- (1) 短正合列可裂
- (2) 存在同态 $j: B \longrightarrow A$ 使得 $j \circ i = \operatorname{Id}_A$
- (3) 存在同态 $p: C \longrightarrow B$ 使得 $\pi \circ p = \mathrm{Id}_C$

更进一步地,在上述条件下, $B \simeq A \oplus C$, $D \simeq C$.

附录 B. 正合列 59

3 长正合列引理

定理 3.1. 设

$$0 \longrightarrow (C^1, \partial^1) \stackrel{f}{\longrightarrow} (C^2, \partial^2) \stackrel{g}{\longrightarrow} (C^3, \partial^3) \longrightarrow 0$$

为链复形的短正合列,则有同调群的长正合列

$$\cdots \longrightarrow H_{n+1}(C^1) \xrightarrow{f_*} H_{n+1}(C^2) \xrightarrow{g_*} H_{n+1}(C^3) \xrightarrow{\partial_*} H_n(C^1) \xrightarrow{f_*} H_n(C^2) \longrightarrow \cdots$$

证明.

(1) 定义 ∂*

- 对于 $[\alpha] \in H_{n+1}(C^3)$,选取代表元 $\alpha \in C_{n+1}^3$
- 因为 g 是满射,所以存在 $\beta \in C^2_{n+1}$ 使得 $g_{n+1}\beta = \alpha$
- 因为 $\partial_{n+1}^3 \alpha = 0$,所以 $g_n \partial_{n+1}^2 \beta = 0$,即 $\partial_{n+1}^2 \beta \in \ker g_n$
- 因为 im $f_n = \ker g_n$,所以存在 $\gamma \in C_n^1$ 使得 $f_n \gamma = \partial_{n+1}^2 g$. 因为 f_n 是单射,所以 γ 唯一.
- γ 是闭的,因为 $f_{n-1}\partial_n^1\gamma=\partial_n^2f_n\gamma=\partial_n^2\partial_{n+1}^2g=0$,所以 $\partial_n^1\gamma\in\ker f_{n-1}$,但 f_{n-1} 是单射
- 将 ∂_{*}[α] 定义为 [γ].
- 下验证良定性

 $\begin{array}{cccc} \delta & \longrightarrow & \beta & \longrightarrow & 0 \\ \downarrow & & \downarrow & & \\ \partial \delta & \longleftarrow & \partial \beta & & \end{array}$

假设有 β' 使得 $g_{n+1}\beta = g_{n+1}\beta' = \alpha$,那么 $\beta - \beta' \in \ker g_{n+1} = \operatorname{im} f_{n+1}$ 设 $\beta - \beta' = f_{n+1}\delta$,其中 $\delta \in C^1_{n+1}$. 存在 $\tilde{\gamma}$ 使得 $f_n\tilde{\gamma} = \partial^2_{n+1}f_{n+1}\delta$. 由 $\tilde{\gamma}$ 的唯一性知 $\tilde{\gamma} = \partial^1_{n+1}\delta$. 所以 β 的选取并不影响最终的 $[\gamma]$.

取 $\bar{\alpha}$ 使得 $\alpha - \bar{\alpha} = \partial_{n+1}^3 \eta$,其中 $\eta \in C_{n+2}^3$. 因为 g_{n+2} 是满射,所以存在 $\xi \in C_{n+2}^2$ 使得 $g_{n+2}\xi = \eta$. $g_{n+1}\partial_{n+2}^2 \xi = \alpha - \bar{\alpha}$,但 $\partial_{n+1}^2 \partial_{n+2}^2 \xi = 0$,所以并不影响最终的 $[\gamma]$. 附录 B. 正合列 60

(2) $H_{n+1}(C^3)$ 处的正合性. 即要证明 im $g_{*,n+1} = \ker \partial_{*,n+1}$.

• $\operatorname{im} g_{*,n+1} \subset \ker \partial_{*,n+1}$. $\operatorname{P}[\beta] \in H_{n+1}(C^2)$, $\operatorname{P}[G(\beta)] = 0$.

$$\begin{array}{ccc} \beta & \longrightarrow & \alpha = g(\beta) \\ \downarrow & & \\ 0 & \longleftarrow & 0 \end{array}$$

• $\ker \partial_* \subset \operatorname{im} g_*$. 即要证 β 是闭链.

$$\beta \longrightarrow \alpha$$

$$\downarrow$$

$$0 \longrightarrow \partial\beta = 0$$

- (3) $H_n(C^1)$ 处的正合性,既要证明 im $\partial_* = \ker f_*$
 - im $\partial_* \subset \ker f_*$. 这是因为 $f_*[\gamma] = [\partial \beta] = 0$.

$$\beta \xrightarrow{g} \alpha$$

$$\downarrow$$

$$\gamma \longleftrightarrow \partial \beta$$

• $\ker f_* \subset \operatorname{im} \partial_*$.

$$\beta \xrightarrow{g} \alpha$$

$$\downarrow$$

$$\gamma \longleftrightarrow f_*(\gamma) = \partial \beta$$

- (4) $H_{n+1}(C)$ 处的正合性,即 im $f_* = \ker g_*$.
 - im $f_* \subset \ker g_*$ 是显然的.
 - $\ker g_* \subset \operatorname{im} f_*$. 设 $g_*[\beta] = 0$,也就是 $g(\beta)$ 是边缘

附录 C

范畴论