CS663 Assignment-4

Saksham Rathi, Kavya Gupta, Shravan Srinivasa Raghavan

Department of Computer Science,
Indian Institute of Technology Bombay

Question 3

Solution

Let A be a real $m \times n$ matrix. A can always be expressed as $A = U\Sigma V^T$ where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$, U, V being orthogonal matrices and Σ being a diagonal matrix with non negative values (called singular values) on the diagonal. Let $\Sigma = diag(\sigma_1, \sigma_2, \ldots, \sigma_{\min(m,n)})$. We will show that the squares of the non-zero singular values of A are the eigenvalues of either AA^T or A^TA . This is equivalent to showing that the non-zero singular values of A are the squareroots of either AA^T or A^TA because, the singular values are non-negative by definition.

Part a

We will show that the non zero singular values of A are equal to the square roots of the eigen values of either AA^T or A^TA . We define $\Sigma_m^2 = \Sigma \Sigma^T$ and $\Sigma_n^2 = \Sigma^T \Sigma$.

$$AA^{T} = (U\Sigma V^{T}) \cdot (U\Sigma V^{T})^{T}$$

$$= U\Sigma V^{T} \cdot (V\Sigma^{T}U^{T})$$

$$= U\Sigma V^{T}V\Sigma^{T}U^{T}$$

$$= U\Sigma (V^{T}V)\Sigma^{T}U^{T}$$

$$= U\Sigma I_{n}\Sigma^{T}U^{T}$$

$$= U\Sigma \Sigma^{T}U^{T}$$

$$= U\Sigma^{2}_{m}U^{T}$$

Similarly, $A^T A = V \Sigma^T \Sigma V^T = V \Sigma_n^2 V^T$.

Clearly, $\Sigma_m^2 \in R^{m \times m}$ and equals $diag(\sigma_1^2, \sigma_2^2, \dots, \sigma_m^2) = D$. Now $m = \min(m, n)$ or $n = \min(m, n)$.

Let $m = \min(m, n)$. In this case, Σ_m^2 is a diagonal matrix (D) whose entries are squares of the singular values of A. Since AA^T is a real symmetric matrix, by **spectral theorem** it has an orthogonal decomposition given by $AA^T = \mathcal{U}\mathcal{D}\mathcal{U}^T$ where \mathcal{D} is a diagonal matrix whose entries are the eigenvalues of AA^T and \mathcal{U} is an orthogonal matrix. Therefore the non zero entries of D are the eigenvalues of AA^T . Since $D = \Sigma_m^2$, the non zero entries of D are the squares of the non zero singular values of A and the squares of the any non-zero singular value of A is an eigenvalue of AA^T , we are done.

Let $n = \min(m, n)$. In this case, we deal with the diagonal matrix $D = \Sigma_n^2$ whose entries are the squares of all the singular values of A (this is because $n = \min(m, n)$). The proof is very similar to the case above. Since A^TA is a real symmetric matrix, it has an orthogonal decomposition \mathcal{VDV}^T and therefore we have the non-zero entries of D to be the eigenvalues of A^TA and following a similar argument we arrive at the conclusion that the square of any non-zero singular value of A is an eigen value of A^TA and that any eigenvalue of A^TA is the square of some non-zero singular value of A. This completes the proof.

Part b

The Frobenius norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$||A||_F = \sqrt{\left(\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2\right)}$$

For any matrix $A \in \mathbb{R}^{m \times n}$ we have

$$\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2} = \text{Tr}(AA^{T}) = \text{Tr}(A^{T}A)$$

where $\text{Tr}(M) = \sum_{i=1}^{n} M_{ii}$ for any $n \times n$ square matrix M. The trace of a matrix also has the following property,

$$Tr(AB) = Tr(BA)$$

whenever AB and BA are both square matrices for two matrices A and B. WLOG we take $m = \min(n, m)$ (in the other case we simply deal with A^TA and Σ_n^2)

$$||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n A_{ij}^2$$

$$= \operatorname{Tr}(AA^T)$$

$$= \operatorname{Tr}((U\Sigma V^T V \Sigma^T U^T))$$

$$= \operatorname{Tr}(U\Sigma_m^2 U^T)$$

$$= \operatorname{Tr}((U\Sigma_m^2)(U^T))$$

$$= \operatorname{Tr}((U^T)(U\Sigma_m^2))$$

$$= (Tr)(U^T U\Sigma_m^2)$$

$$= (Tr)(I_m \Sigma_m^2)$$

$$= (Tr)(\Sigma_m^2)$$

$$= \sum_{i=1}^k \sigma_i^2 \text{ (where k is the number of non-zero singular values of A)}$$

$$\Rightarrow ||A||_F^2 = \sum_{i=1}^k \sigma_i^2$$