REPORT STEREO MATCHING

The first method I implemented was **compute_path_cost**. This method aims to compute **path_cost_** $E(p_i, d)$, the cost relative to a given pixel p_i , given a disparity d, following a direction depending on the path we are considering.

Firstly, I implemented the computation of path_cost_ for the first pixel of the path. This was easy since the path cost, in this case, is equal to the matching cost $E_{data}(p_i, d)$:

$$E(p_i,d) = E_{data}(p_i,d)$$

For all the other pixels, I had to compute the whole formula to find the path cost:

$$E(p_i,d) = E_{data}(p_i,d) + E_{smooth}(p_i,p_{i-1}) - min_{0 \le \Delta \le d_{max}} E(p_{i-1},\Delta)$$

where p_{i-1} is the pixel immediately previous the current pixel in the considered path.

To do so, initially I found the **best_prev_cost**, $min_{0 \le \Delta \le d_{max}} E(p_{i-1}, \Delta)$, which is the minimal cost related to the previous pixel among all the possible disparities.

Then I just had to find the **smooth term** $E_{smooth}(p_i, p_{i-1})$. I know that the smooth term is the following:

$$E_{smooth}(p_i, p_{i-1}) = min \begin{cases} E(p_{i-1}, f_{p_{i-1}}) & \text{if } f_p = f_{p_{i-1}} \\ E(p_{i-1}, f_{p_{i-1}}) + c_1 & \text{if } \left| f_{p_i} - f_{p_{i-1}} \right| = 1 \\ min_{0 \leq \Delta \leq d_{max}} E(p_{i-1}, \Delta) + c_2 & \text{if } \left| f_p - f_{p_{i-1}} \right| > 1 \end{cases}$$

So in the first case, I found the **no_penalty_cost** which is equal to the path cost of the previous pixel $E(p_{i-1}, f_{p_{i-1}})$, in the case where the disparities of the two pixels were the same $(f_p = f_q)$.

In the second case I had to find the **small_penalty_cost** $E(p_{i-1}, f_{p_{i-1}}) + c_1$, when $|f_p - f_q| = 1$. This was a little bit more complex. Since the difference between the two disparities is only 1, then three different cases can occur:

1. If the disparity f_p is zero, then $f_{p_{i-1}}$ can only be equal to $f_p + 1$, so the **small_penalty_cost** is equal to the path cost of p_{i-1} given the disparity $f_p + 1$:

$$E(p_{i-1}, f_p + 1) + c_1$$

2. If the disparity f_p is the maximum disparity value, then $f_{p_{i-1}}$ can only be equal to $f_p - 1$, so the **small_penalty_cost** is equal to the path cost of p_{i-1} given the disparity $f_p - 1$:

$$E\big(p_{i-1},f_p-1\big)+c_1$$

3. If the disparity f_p is not zero and not the maximum disparity value, then $f_{p_{i-1}}$ can be equal to both f_p-1 and f_p+1 , so there are two **small_penalty_cost** values:

$$E(p_{i-1}, f_p - 1) + c_1$$

 $E(p_{i-1}, f_p + 1) + c_1$

Finally I computed the third case, the **big_penalty_cost**, adding c_2 to the **best_prev_cost** I found above:

$$min_{0 \le \Delta \le d_{max}} E(p_{i-1}, \Delta) + c_2$$

The second method I implemented was **aggregation** to aggregate the costs for all the directions. Firstly I initialized the start_x, end_x, step_x variables depending on the path and the directions I am considering.

- If the dir_x is equal to +1, then the scanning goes from left ($start_x = west$) to right ($end_x = east+1$), so I set the $step_x = +1$.
- If the dir_x is equal to 0, then I decided to develope the scanning along the x dimension from right ($start_x = east$) to left ($end_x = west-1$), so I set the $step_x = -1$.
- If the dir_x is equal to -1, then the scanning goes from right ($start_x = east$) to left ($end_x = west_1$), so I set the $step_x = -1$.

Secondly I initialized the start_y, end_y, step_y variables depending on the path and the directions I am considering:

- If the dir_y is equal to +1, then the scanning goes from up ($start_y = north$) to down ($end_y = south+1$), so I set the $step_y = +1$.
- If the dir_y is equal to 0, then I decided to develope the scanning along the y dimension from down ($start_y = south$) to up ($end_y = north_1$), so I set the $step_y = -1$.
- If the dir_y is equal to -1, then the scanning goes from down ($start_x = south$) to up ($end_x = north_1$), so I set the $step_y = -1$.

At the end I aggregated the costs into the **aggr_cost_** tensor by adding, for every pixel and for every disparity, all the path costs of every path. Since the data term $E_{data}(p_i,d)$ is repeatedly added eight times, I removed seven repeated data terms.

Results: (with maximum disparity value = 85)

Rocks -> MSE = **346.657**

Cones -> MSE = **470.417**

