Estimación del Caudal de un Río mediante Dilución con Sal

Ejemplo de Aplicación con Conductividad Eléctrica

1. Introducción

El método de dilución con trazador salino es una técnica común para estimar el caudal (Q) de ríos o canales. Se basa en la inyección de una masa conocida de sal (NaCl) y en la medición del incremento de la conductividad eléctrica (EC) en un punto aguas abajo.

2. Datos del experimento

• Masa de sal inyectada: $M = 400 \,\mathrm{g}$

 \bullet Conductividad de fondo: $EC_{\rm fondo}=250\,\mu{\rm S\,cm^{-1}}$

 \blacksquare Conductividad máxima observada: $EC_{\rm max}=1350\,\mu{\rm S\,cm^{-1}}$

■ Frecuencia de muestreo: cada 30 segundos

■ Duración total: 180 segundos

3. Conversión de conductividad a concentración

Se calcula la concentración C(t) en g/L para cada tiempo t:

$$C(t) = \frac{EC(t) - EC_{\text{fondo}}}{2000}$$

4. Datos de campo y concentraciones

t (s)	$EC(t) \; (\mu S/cm)$	C(t) (g/L)
0	250	0
30	900	0.325
60	1350	0.55
90	700	0.225
120	450	0.10
150	300	0.025
180	250	0

5. Cálculo del área bajo la curva C(t)

Usamos la regla del trapecio:

$$\int_0^{180} C(t)dt \approx \sum_{i=1}^{n-1} \frac{C_i + C_{i+1}}{2} \cdot \Delta t$$

$$\text{Área} \approx \left(\frac{0 + 0.325}{2} + \frac{0.325 + 0.55}{2} + \dots + \frac{0.025 + 0}{2}\right) \cdot 30$$

$$\text{Área} \approx 1.225 \cdot 30 = 36.75 \text{ g·s/L}$$

6. Cálculo del caudal Q

$$Q = \frac{M}{\int C(t) dt} = \frac{400}{36,75} = 10,88 \,\mathrm{L\,s^{-1}}$$

7. Resultado final

El caudal estimado en la sección del río analizada es:

$$Q \approx 10.9 \, \mathrm{L/s}$$

8. Gráfica de la curva de concentración

