(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 17 avril 2003 (17.04.2003)

PCT

(10) Numéro de publication internationale WO 03/030867 A2

- (51) Classification internationale des brevets7: A61K 9/14. 31/165, A61P 9/00
- (21) Numéro de la demande internationale :

PCT/FR02/03475

(22) Date de dépôt international :

11 octobre 2002 (11.10.2002)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

01/13179

12 octobre 2001 (12.10.2001) FR

(71) Déposant (pour tous les États désignés sauf US): PIERRE FABRE MEDICAMENT [FR/FR]; 45, place Abel Gance, F-92100 Boulogne-Billancourt (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement): FREISS, Bernard [FR/FR]; 178, chemin de la Fosse, F-81100 Castres (FR). MARCIACQ, Florence [FR/FR]; 18, lotissement Clos Saint Véran, F-13660 Orgon (FR). FAGES, Jacques [FR/FR]; 7, rue de Guillasse, F-81000 Albi (FR). SAUCEAU, Martial [FR/FR]; 7, rue Catalane, F-81000 Albi (FR). LOCHARD, Hubert [FR/FR]; 23,

rue Marcel Pagnol, F-81000 Albi (FR). LETOURNEAU, Jean-Jacques [FR/FR]; La Valade Souleiha, F-31380 Gragnague (FR). JOUSSOT-DUBIEN, Christophe [FR/FR]; Chemin de Beaucaire, F-30650 Rochefort du Gard (FR).

- (74) Mandataires: MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17
- (81) États désignés (national): AU, BR, CA, CN, JP, MX, US,
- (84) États désignés (régional): brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

Déclaration en vertu de la règle 4.17 :

relative à la qualité d'inventeur (règle 4.17.iv)) pour US seulement

Publiée:

sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: METHOD FOR PREPARING AN INTERACTIVE COMPOUND OF AN ANILIDE DERIVATIVE WITH A POROUS SUPPORT BY SUPERCRITICAL FLUID

(54) Titre: PROCEDE DE PREPARATION D'UN COMPOSE D'INTERACTION D'UN DERIVE ANILIDE AVEC UN SUP-PORT POREUX PAR FLUIDE SUPERCRITIQUE

(57) Abstract: The invention concerns a method for preparing interactive compounds of an anilide derivative with a porous support, characterized in that it comprises the following steps: (a) mixing the anilide derivative generated by supercritical fluid and the specific amount of porous support, (b) carrying out a step of molecular diffusion by contacting in static mode a supercritical fluid with the mixture obtained at step (a) for the time required to improve the dissolution in an aqueous medium of the mixture obtained at step (a), (c) washing the interaction compound obtained at step (b) with a flux of supercritical fluid, (d) recuperating the particles of the resulting interaction compound. The invention also concerns a compound obtainable by said method and its use as medicine.

(57) Abrégé: La présente invention a pour objet un procédé de préparation de composés d'interaction du dérivé d'anilide avec un support poreux, caractérisé en ce qu'il comprend les étapes suivantes: (a) mélanger le dérivé d'anilide généré par fluide supercritique et la quantité déterminée de support poreux, (b) mettre en oeuvre une étape de diffusion moléculaire par mise en contact en mode statique d'un fluide supercritique avec le mélange obtenu à l'étape (a) pendant le temps nécessaire pour améliorer la dissolution dans un milieu aqueux du mélange obtenu à l'étape (a), (c) laver le composé d'interaction obtenue à l'étape (b) par un flux de fluide supercritique, (d) récupérer les particules du composé d'interaction ainsi formé. Elle concerne également un composé susceptible d'être obtenu par ce procédé et son utilisation en tant que médicament

Titre : « Procédé de préparation d'un composé d'interaction d'un dérivé anilide avec un support poreux par fluide supercritique »

La présente invention concerne un procédé d'interaction d'un dérivé d'anilide nanoparticulaire avec un support poreux, par la technologie des fluides supercritiques, en particulier celle du CO₂.

Les nouvelles molécules pharmaceutiques à forte valeur ajoutée, comme les dérivés d'anilide, sont dans 40% des cas insolubles ou peu solubles dans l'eau, ce qui nuit à leur biodisponibilité. L'augmentation de la surface spécifique des poudres permet d'améliorer leur vitesse de dissolution.

Or la biodisponibilité des principes actifs peut être considérablement augmentée si leur vitesse de dissolution est améliorée.

La génération de poudres fines de surfaces spécifiques élevées par la technologie des fluides supercritiques est utilisée depuis une quinzaine d'année.

Deux types de procédés sont classiquement mis en œuvre : le procédé RESS (Rapid Expansion of Supercritical Solution), et le procédé SAS (Solvant-Anti-Solvant). Par modification des conditions opératoires, il est possible de contrôler la morphologie et la taille des particules formées de substance active.

- 20 Les avantages d'utilisation du CO₂ supercritique en tant que solvant sont multiples :
 - -Possibilité de travailler à basse température (>31°C) pour les substances actives thermosensibles,
 - -Pouvoir solvant facilement modulable en jouant sur les paramètres du procédé (pression, température, débit...),
- 25 -Séparation facile du mélange solvant-soluté par simple décompression,
 - -Inertie chimique du solvant : non-toxique, non-inflammable, non-corrosif,
 - -Coût moindre en comparaison des solvants organiques classiquement utilisés.

Dans les domaines pharmaceutique, cosmétique et nutraceutique, il existe un certain nombre de brevets et publications relatifs à la microencapsulation d'une substance active dans un agent enrobant. Néanmoins, la plupart des procédés décrits ne concernent pas l'amélioration de la biodisponibilité, mais plutôt l'adsorption d'une substance active sur un support.

20

25

Bertucco et al. (Drugs encapsulation using a compressed gas antisolvent technique – Proceedings of the 4th Italian Conference on Supercitical Fluids and their Applications 1997, 327-334 – Ed. E. Reverchon) décrivent un procédé dans lequel, on met en suspension la substance active dans une solution de bio polymère jouant le rôle du support. Cette suspension, placée dans l'autoclave, est ensuite mise en présence de CO₂ supercritique pour la désolvater (extraction du solvant par fluide supercritique) et entraîner la complexation du support par sursaturation sur la substance active. Ce procédé est un procédé batch, dans lequel la substance active n'est pas précipitée par le fluide supercritique puisqu'elle est en suspension. La structure des particules de substance active est donc inchangée, ce qui ne contribue pas à améliorer sa dissolution dans un milieu aqueux.

Un procédé identique est décrit par Benoît et al. dans leur demande de brevet WO98/13136.

Une autre technique de déposition d'un support, consiste à solubiliser ledit support dans le fluide supercritique, puis à faire précipiter ce support sur la substance active. Pour ce faire, la substance active et son support sont préalablement placés dans l'autoclave agité, et l'injection de CO₂ supercritique solubilise uniquement le support (ceci implique que le support soit soluble dans le fluide supercritique et que la substance active ne le soit pas), qui est précipité par modification de la pression et de la température au sein de l'autoclave. Dans ce cas, la structure initiale de la substance active reste inchangée, et il est difficile de maîtriser le ratio substance active/support obtenu dans le complexe précipité. Ce procédé batch est détaillé dans la demande de brevet EP 706 821 de Benoît et al.

Le procédé de microencapsulation décrit par Shine et Gelb dans leur demande de brevet WO98/15348 consiste en :

- 1. Mélanger une substance active avec un polymère d'encapsulation,
- 2. Liquéfier le polymère par passage d'un flux de fluide supercritique,
- 3. Dépressuriser rapidement de façon à solidifier le polymère autour de la substance active.

30 Ce procédé n'est applicable qu'avec une substance active et un polymère insolubles dans le fluide supercritique. De ce fait, la substance active conserve sa structure d'origine, ce qui ne contribue pas à améliorer sa biodisponibilité.

Dans la demande de brevet FR2798863 de Perrut et Majewski, la substance active (kava-kava, curcuma, mélange de poivre noir et de paprika doux), préalablement extraite par fluide supercritique, est précipitée dans un autoclave contenant un support poreux. Le milieu poreux étudié est la maltodextrine. Il s'agit donc d'une simple inclusion dans un support poreux sans étape de diffusion en mode statique de la substance active dans son support. Or la précipitation sur un support n'est pas suffisante pour améliorer de façon conséquente la solubilité de la substance active en milieu aqueux.

L'équipe de Tomasko (Chou et al., GAS crystallization of polymerpharmaceutical composite particles, Proceedings of the 4'th International Symposium on Supercritical Fluids, 1997, 55-57 and Kim J.-H. et al., Microencapsulation of Naproxen using Rapid Expansion of Supercritical Solutions, Biotechnol. Prog. 1996, 12, 650-661) mentionne deux procédés de co-précipitation par RESS et par SAS avec du CO2 supercritique. La substance active étudiée est le naproxène, tandis que le support est l'acide poly-L-lactique (L-PLA). Ces deux composés sont dissous simultanément dans l'acétone avant d'être précipités par injection de CO₂ à contre-courant, dans le cas du procédé SAS. Le complexe ainsi formé est récupéré après un temps de lavage. Un mélange de naproxène et de L-PLA est placé dans une enceinte, à partir de laquelle les deux composés sont 20 extraits par le fluide supercritique, et précipités dans un second autoclave, pour ce qui concerne le procédé RESS. Or la précipitation ou co-précipitation d'une substance active et d'un support n'est pas suffisante pour améliorer de façon conséquente la solubilité de la substance active en milieu aqueux. De plus, là encore, aucune étape de diffusion moléculaire en mode statique afin d'améliorer l'interpénétration de la substance active avec son support n'est décrite dans ces deux procédés. Enfin la solubilité de la substance active dans un milieu aqueux n'est pas étudiée.

Il en est de même pour les procédés de co-précipitation décrits par Sze Tu et al. (Applications of dense gases in pharmaceutical processing, Proceedings of the 5th Meeting on Supercritical Fluids 1998, Tome 1, 263-269), Weber et al. (Coprecipitation with compressed antisolvents for the manufacture of microcomposites, Proceedings of the 5th Meeting on Supercritical Fluids 1998, Tome 1, 243-248) et Bleich et Müller (Production of drug loaded by the use of

supercritical gases with the Aerosol Solvent Extraction System (ASES) process, J. Microencapsulation 1996, 13, 131-139).

Subramaniam et al. dans leur demande de brevet WO97/31691 ont développé un équipement et un procédé à partir d'antisolvants proches du point critique et supercritiques, qui permet de précipiter et d'enrober des particules. La phase de contact entre la solution, la suspension contenant le soluté, et l'antisolvant supercritique se fait de telle sorte qu'elle génère des ondes de hautes fréquences, qui divisent la solution en une multitude de petites gouttes. Dans ce brevet, la taille des particules revendiquée est de 0,1 à 10 µm. Par ailleurs, des procédés d'enrobage sont également décrits. Les cristallisations de l'hydrocortisone, du poly(D,L-lactide-glycolidique), de l'ibuprofène et de la camptothécine sont décrites. Or la précipitation ou co-précipitation d'une substance active et d'un support n'est pas suffisante pour améliorer de façon conséquente la solubilité de la substance active en milieu aqueux. En outre, ce procédé ne décrit pas une étape de diffusion moléculaire en mode statique permettant d'améliorer la biodisponibilité de la substance active.

Tom et al. (Applications of supercritical fluids in controlled release of drugs, Supercritical Fluids Engineering Science ACS Symp. Ser. 514, American Chemical Society, Washington DC, 1992) rapportent la première co-précipitation par procédé RESS de microparticules de substance active de lovastatine (anticholestérolémiant) complexée à un polymère, le DL-PLA. Les deux composés sont placés dans un autoclave, extraits par du CO2 supercritique et précipités dans une seconde enceinte. L'inconvénient majeur d'un tel procédé est le ratio substance active / support obtenu dans le complexe. En effet, ce ratio ne peut être choisi précisément puisqu'il est déterminé par la solubilité de chacun des deux composés dans le CO2 à l'état supercritique. Or la co-précipitation d'une substance active et d'un support n'est pas suffisante pour améliorer de façon conséquente la solubilité de la substance active en milieu aqueux. En outre ce procédé ne décrit pas une étape de diffusion moléculaire en mode statique permettant d'améliorer la biodisponibilité de la substance active, et de plus, sa solubilité dans un milieu aqueux n'est pas étudiée.

Un procédé d'imprégnation d'actifs pharmaceutiques est revendiqué dans la demande de brevet WO 99/25322 de Carli et al. Il se décompose de la manière suivante :

- 1. Solubilisation du principe actif par procédé RESS,
- Mise en contact du fluide supercritique contenant le principe actif avec le polymère réticulé,
 - 3. Imprégnation du polymère réticulé en mode statique ou dynamique,
 - 4. Elimination du fluide supercritique.

Seules des substances actives solubles dans le fluide supercritique peuvent être préparées par ce procédé, puisque la première étape consiste en l'extraction du principe actif par le fluide supercritique. Par ailleurs, le procédé n'est pas un procédé d'inclusion mais d'imprégnation sur un support, et aucun résultat n'est donné concernant l'amélioration de la dissolution dans un milieu aqueux du principe actif ainsi préparé. Enfin, le polymère imprégné ne subit pas d'étape de la lavage par fluide supercritique.

Fisher et Müller décrivent dans leur brevet US 5 043 280 un procédé de préparation de substances actives sur un support par fluide supercritique. Ce procédé consiste à mettre en contact un ou plusieurs actif(s) avec un ou plusieurs support(s) en milieu supercritique. Pour ce faire les actifs et les supports sont soit précipités, soit co-précipités par procédés SAS et/ou RESS. Les composés sont obtenus sous forme stérile. Or la précipitation ou co-précipitation d'une substance active et d'un support n'est pas suffisante pour améliorer de façon conséquente la solubilité de la substance active en milieu aqueux. En outre ce procédé ne décrit pas une étape de diffusion moléculaire en mode statique permettant d'améliorer la biodisponibilité de la substance active, et de plus, sa solubilité dans un milieu aqueux n'est pas étudiée.

Van Hees et al. (Application of supercritical carbon dioxide for the preparation of a Piroxicam-β-cyclodextrin inclusion compound, Pharmaceutical Research, Vol. 16, N°12, 1999) décrivent dans leur publication un procédé d'inclusion de Piroxicam dans les β-cyclodextrines par CO₂ supercritique. Le procédé consiste à placer un mélange de Piroxicam et de β-cyclodextrines (ratio molaire 1/2,5) dans un autoclave pressurisé, laissé en mode statique. Après dépressurisation le mélange obtenu est broyé et homogénéisé avant caractérisation.

15

20

Ces analyses permettent de conclure quant au taux de complexation du Piroxicam avec la β -cyclodextrine, mais ne donnent aucun résultat sur l'amélioration de la dissolution en milieu aqueux du complexe Piroxicam / β -cyclodextrine par rapport au Piroxicam seul. De plus, la substance active utilisée n'a pas été générée par fluide supercritique et aucune étape de lavage par fluide supercritique du complexe n'est réalisée.

Kamihira M. et al. (Formation of inclusion complexes between cyclodextrins and aromatic compounds under pressurized carbon dioxide, J. of Fermentation and Bioengineering, Vol. 69, N°6, 350-353, 1990) décrivent un procédé d'extraction de composés aromatiques volatiles, et de piégeage par inclusion dans les cyclodextrines. Le géraniol et l'huile de moutarde sont ainsi extraits par un procédé RESS, et vaporisés en mode dynamique dans un second autoclave contenant un mélange de cyclodextrine et d'eau. L'influence des paramètres température, pression et teneur en eau est étudiée par mesure du taux d'inclusion des substances actives dans les cyclodextrines. L'étape d'inclusion décrite dans cette publication est réalisée en mode dynamique et non statique, comme revendiqué dans la présente invention. Par ailleurs ce procédé ne comprend pas d'étape de lavage par fluide supercritique. Enfin, la solubilité de la substance active dans un milieu aqueux n'est pas étudiée.

Sze Tu L. et al. (Application of dense gazes in pharmaceutical processing, Proceedings of 5th meeting on supercritical fluids, Nice, France, March 1998) décrivent dans leur publication comment pratiquer une précipitation par SAS d'une substance active (acide parahydrobenzoïque) et de polymères (PLGA polylactictide co-glycolide - ou le PLA - poly L-lactic acid). Cette co-précipitation est réalisée suivant deux techniques; soit avec le polymère et la substance active dans deux solutions différentes; ou bien dans la même solution. Dans les deux cas, les deux solutions, ou la solution, contenant les deux composants sont traitées par SAS CO₂ supercritique. Or, la co-précipitation d'une substance active et d'un support poreux n'est pas suffisante pour améliorer de façon conséquente la solubilité de la substance active en milieu aqueux. En outre, cette méthode ne décrit pas une étape de diffusion moléculaire en mode statique permettant d'améliorer la biodisponibilité de la substance active, et, de plus, sa solubilité dans un milieu aqueux n'est pas étudiée.

15

25

30

Il en est de même pour les procédés de co-précipitation décrits par Jung et al. dans leur brevet FR 2 815 540. Il s'agit d'un procédé de fabrication de très fines particules contenant au moins un principe actif inséré dans une molécule hôte, ainsi qu'un dispositif permettant la mise en œuvre de ce procédé. Ce procédé consiste à mettre en solution le principe actif dans un premier solvant liquide, et un produit formé des molécules hôtes, de type cyclodextrines ou éther-couronne, dans un second solvant liquide. Les solutions sont alors mises en contact avec un fluide à pression supercritique, de façon à faire précipiter les molécules, selon un procédé SAS. Les composants, comme dans le procédé décrit par Sze Tu L. dans l'article cité précédemment, peuvent être solubilisé dans le même solvant. Les résultats présentés par Jung et al. ne revendiquent pas d'amélioration de la vitesse de dissolution. Or, la co-précipitation d'une substance active et d'un support de type cyclodextrine n'est pas suffisante pour améliorer de façon conséquente la solubilité de la substance active en milieu aqueux. En outre, cette méthode ne décrit pas une étape de diffusion moléculaire en mode statique permettant d'améliorer la biodisponibilité de la substance active, et, de plus, sa solubilité dans un milieu aqueux n'est pas étudiée.

De plus aucun des documents de l'art antérieur cité ci-dessus ne décrivent 20 un procédé d'inclusion d'un dérivé d'anilide sur un support poreux.

De façon surprenante les inventeurs de la présente demande ont découvert qu'un procédé comprenant les étapes de génération d'un dérivé d'anilide par un fluide supercritique, son mélange avec un support poreux suivi d'une étape de diffusion moléculaire par le fluide supercritique en mode statique et du lavage par le fluide supercritique permettait de préparer un composé d'interaction en augmentant très fortement la solubilité dans un milieu aqueux du dérivé anilide, et donc sa biodisponibilité.

En effet, l'étape d'inclusion en mode statique couplée à la phase de précipitation de du dérivé d'anilide à son support a permis de façon surprenante d'améliorer la dissolution du dérivé d'anilide en milieu aqueux. En outre, la troisième phase de lavage en milieu supercritique, qui consiste à éliminer les solvants résiduels par passage d'un flux de CO₂ supercritique permet également, de

façon surprenante, outre le lavage du composé d'interaction, d'augmenter la dissolution consécutive à cette étape.

De plus, ces étapes peuvent être réalisées en batch ou en continu, comme c'est notamment le cas pour la diffusion et le lavage. Cela permet donc d'alléger le procédé par rapport aux étapes conventionnelles qui seraient :

- 1. Cristallisation
- 2. Séparation solide / liquide
- 3. Séchage
- 4. Inclusion dans le support
- 10 5. Micronisation

Ainsi, la présente invention concerne un procédé de préparation d'un composé d'interaction d'un dérivé d'anilide avec un support poreux, caractérisé en ce qu'il comprend les étapes suivantes :

- (a) Mélanger avantageusement intimement le dérivé d'anilide généré par fluide supercritique et la quantité déterminée de support poreux,
 - (b) Mettre en œuvre une étape de diffusion moléculaire par mise en contact en mode statique d'un fluide supercritique avec le mélange obtenu à l'étape (a) pendant le temps nécessaire pour améliorer la dissolution dans un milieu aqueux du mélange obtenu à l'étape (a),
- 20 (c) Laver le composé d'interaction obtenue à l'étape (b) par un flux de fluide supercritique,
 - (d) Récupérer les particules du composé d'interaction ainsi formé.

Par « dérivé d'anilide», on entend au sens de la présente invention tout dérivé d'anilide. Il s'agit de façon avantageuse d'un dérivé de formule générale I suivante :

I

dans laquelle:

R₁ et R₂ identiques ou différents représentent indépendamment l'un de l'autre un atome d'hydrogène; un radical alcoyle linéaire ou ramifié en C₁-C₆; un groupement aromatique tel que phényle, naphtyle ou pyridyle éventuellement substitué par un ou plusieurs groupements alcoyle en C₁-C₄, alcoxy en C₁-C₄, hydroxyle ou halogéno,

R₃ représente une chaîne alcoyle linéaire ou ramifiée en C₆-C₁₅ ou un groupement phényle éventuellement substitué par un ou plusieurs groupements alcoyle en C₁-C₄, alcoxy en C₁-C₄, hydroxyle ou halogéno,

A représente un atome de soufre ou d'oxygène ou le groupement sulfoxy.

De façon encore plus avantageuse, il s'agit du (S)-2',3',5'-triméthyl-4'-hydroxy-α-dodécylthiophényl acétanilide (F12511). Les composés de formule I pouvant posséder des centres d'asymétrie, le dérivé d'anilide selon la présente invention peut être un des différents stéréoisomères ou énantiomères ou leur mélange. Ces dérivés et leur mode de préparation sont décrit dans la demande de brevet FR 2 741 619.

Par « dérivé d'anilide générée par un fluide supercritique », on entend au sens de la présente invention, tout dérivé d'anilide tel que défini ci-dessus qui a subit une étape de génération par fluide supercritique, c'est à dire une étape permettant grâce à l'utilisation du fluide supercritique d'augmenter sa surface spécifique. Avantageusement e telle étape consiste en un procédé RESS ou SAS.

Par « support poreux », on entend au sens de la présente invention tout support poreux approprié soluble dans un milieu aqueux. Avantageusement le support poreux est choisi dans le groupe constitué par les cyclodextrines et leur mélange. De façon avantageuse, il s'agit de la γ -cyclodextrine.

Par « fluide supercritique », on entend au sens de la présente invention tout fluide utilisé à une température et une pression supérieure à leur valeur critique. Avantageusement il s'agit du CO₂.

Par « Mode statique » on entend au sens de la présente invention une réaction ou un procédé dans lequel tous les réactifs sont mis simultanément en présence et où on laisse la réaction se dérouler. Par exemple, dans l'étape (b) de la présente invention, on met dans un autoclave une poudre co-cristallisée, de l'eau et du CO₂

supercritique et on laisse réagir pendant 16 Heures. La masse de produit n'évolue pas durant la réaction.

A l'inverse, en mode dynamique, les réactifs sont apportés au fur et à mesure de l'évolution de la réaction ou de la production. Souvent dans le cadre d'un mode dynamique, il y a circulation d'un fluide ou agitation. La masse de produit évolue durant la production. Dans le procédé de la présente invention, l'étape (a) est typiquement une phase dynamique.

Par « mélange intime », on entend au sens de la présente invention un mélange de A et B dans lequel A et B se retrouvent uniformément réparties au sein du mélange obtenu.

Dans un mode de réalisation particulier, le procédé selon la présente invention est tel que le support poreux est généré par fluide supercritique et que l'étape (a) comprend les étapes suivantes :

- 15 (a1) Mettre en solution le dérivé d'anilide et le support poreux dans un solvant organique, ledit solvant organique étant soluble dans le fluide supercritique,
 - (a2) Mettre en contact de façon continue la solution obtenue à l'étape (a1) avec ledit fluide supercritique, afin de désolvater de façon contrôlée le dérivé d'anilide et le support, et assurer leur coacervation,
- 20 (a3) Laver le complexe ainsi formé par extraction du solvant résiduel par le fluide supercritique, puis procéder à la séparation du solvant à l'état liquide et du fluide supercritique à l'état gazeux.

Avantageusement l'étape (a) consiste en une coprécipitation du dérivé d'anilide et du support poreux par le procédé SAS.

25

Dans un autre mode de réalisation, le procédé selon la présente invention est tel que le dérivé d'anilide, avant son utilisation dans l'étape (a), est générée par le procédé comprenant les étapes suivantes :

(i) Mettre en solution le dérivé d'anilide dans un solvant organique, ledit solvant organique étant soluble dans le fluide supercritique,

- (ii) Mettre en contact de façon continue la solution obtenue à l'étape (i) avec ledit fluide supercritique, afin de désolvater le dérivé d'anilide, et assurer sa coacervation,
- (iii) Laver les particules de dérivé d'anilide ainsi formées par extraction du solvant résiduel par ledit fluide supercritique, puis procéder à la séparation du solvant à l'état liquide et du fluide supercritique à l'état gazeux,

et que le support poreux utilisé à l'étape (a) est sous forme solide.

Avantageusement le dérivé d'anilide, avant son utilisation dans l'étape (a), est générée par précipitation selon le procédé SAS.

10

Dans un troisième mode de réalisation, le procédé selon la présente invention est tel que le dérivé d'anilide, avant son utilisation dans l'étape (a) est générée par le procédé comprenant les étapes suivantes :

- (i) Extraire le dérivé d'anilide par le fluide supercritique, éventuellement 5 additionné d'un co-solvant,
 - (ii) Vaporiser le mélange supercritique afin de désolvater le dérivé d'anilide, et assurer sa coacervation,
- (iii) Laver les particules de dérivé d'anilide ainsi formées par le fluide supercritique, puis éventuellement procéder à la séparation du co-solvant à l'état
 20 liquide et du fluide supercritique à l'état gazeux,
 - et que le support poreux utilisé à l'étape (a) est sous forme solide.

Avantageusement, le dérivé d'anilide, avant son utilisation dans l'étape (a), est générée par précipitation selon le procédé RESS.

- Dans un quatrième mode de réalisation, le procédé selon la présente invention est tel que l'étape (a) comprend les étapes suivantes :
 - (a1) Mettre en solution le dérivé d'anilide dans un solvant organique, ledit solvant organique étant soluble dans le fluide supercritique,
 - (a2) Mettre en contact de façon continue la solution ainsi obtenue avec le fluide
 supercritique, afin de désolvater le dérivé d'anilide, et assurer sa coacervation sur le support poreux préalablement placé dans le réacteur.

(a3) Laver le complexe ainsi formé par extraction du solvant résiduel par le fluide supercritique, puis procéder à la séparation du solvant à l'état liquide et du fluide supercritique à l'état gazeux.

Avantageusement, l'étape (a) consiste en la précipitation par le procédé SAS du dérivé d'anilide sur le support poreux.

Dans un cinquième mode de réalisation, le procédé selon la présente invention est tel que l'étape (a) comprend les étapes suivantes :

- (a1) Extraire le dérivé d'anilide par un fluide supercritique, éventuellement 10 additionné d'un co-solvant,
 - (a2) Vaporiser le mélange supercritique afin de désolvater le dérivé d'anilide, et assurer sa coacervation sur le support poreux préalablement placé dans le réacteur,
 - (a3) Laver le complexe ainsi formé par le fluide supercritique, puis éventuellement procéder à la séparation du co-solvant à l'état liquide et du fluide supercritique à l'état gazeux.

Avantageusement, l'étape (a) consiste en la précipitation par le procédé RESS du dérivé d'anilide sur le support poreux.

De façon avantageuse, le solvant organique ou le co-solvant est choisit dans le groupe constitué par les alcools, en particulier le méthanol ou le butanol, les cétones, en particulier l'acétone, la méthyléthylcétone, la cyclohéxanone ou la N-méthylpyrrolidone, l'acide acétique, l'acétate d'éthyle, le dichlorométhane, l'acétonitrile, le diméthylformamide, le diméthylsulfoxyde (DMSO) et leur mélange. Avantageusement il s'agit de l'éthanol ou du diméthylsulfoxyde.

25

De façon avantageuse, l'étape (b) de diffusion moléculaire du procédé selon la présente invention est réalisée sous agitation.

De façon encore plus avantageuse, l'étape (b) de diffusion moléculaire du procédé selon la présente invention est réalisée en présence d'un agent de diffusion.

30 Par « agent de diffusion », on entend au sens de la présente invention n'importe quel solvant favorisant une interaction du dérivé d'anilide avec le support.

Avantageusement, cet agent de diffusion est choisi dans le groupe constitué par l'alcool, l'eau avec ou sans agent surfactant et leurs mélanges. De façon encore plus avantageuse, il s'agit de l'eau.

Cet agent de diffusion peut être ajouté en continu ou en discontinu.

Le temps nécessaire à la diffusion moléculaire de l'étape (b) est déterminé par toute méthode appropriée. Cette étape (b) peut être réitérée autant de fois que souhaitée pour obtenir une vitesse de dissolution satisfaisante. Avantageusement, l'étape (b) dure environ 16 heures.

Les conditions de pression et de température de l'étape (b) sont choisis de façon à favoriser la diffusion moléculaire. Avantageusement la pression du fluide supercritique est comprise entre 10 MPa et 40 MPa et la température entre 0 et 120°C.

De façon encore plus avantageuse, le fluide supercritique est utilisé à une pression comprise entre 10 MPa et 40 MPa et à une température comprise entre 0 et 120°C dans toutes les étapes du procédé selon la présente invention.

Avantageusement chacune des étapes du procédé selon la présente invention est mise en œuvre dans un réacteur fermé, en particulier un autoclave.

De façon avantageuse le procédé selon la présente invention est réalisé en continu.

La présente invention concerne également un composé d'interaction du dérivé d'anilide avec un support poreux caractérisé en ce qu'il est susceptible d'être obtenu par le procédé selon la présente invention.

De façon avantageuse, le composé d'interaction selon la présente invention est tel que le dérivé d'anilide ainsi complexé présente une solubilité dans une solution aqueuse de Laurylsulfate de sodium à 5 % supérieure à environ 600 μ g/ml.

La présente invention concerne de plus un composé d'interaction selon la présente invention en tant que médicament, avantageusement destiné à traiter des dyslipidémies telles que l'hypercholestérolémie et/ou à la prévention de l'artériosclérose.

Elle concerne également l'utilisation d'un composé d'interaction selon la présente invention pour la fabrication d'un médicament destiné au traitement des

30

dyslipidémies telles que l'hypercholestérolémie et/ou à la prévention de l'artériosclérose.

Caractéristiques physiques des poudres aux différentes étapes :

Poudre de principe actif obtenue par RESS:

- poudre extrêmement légère et pulvérulente,
- taille et type de cristaux monodispersés :bâtonnets de longueur de 1-3 μm et de diamètre 100 à 200 nm,
- densité apparente de 12 kg/m³.

Poudre de principe actif obtenue par SAS:

- 10 Poudre très légère et pulvérulente,
 - taille et type de cristaux monodispersés : bâtonnets de longueur de 10-20μm
 et de diamètre 100 nm,
 - densité apparente 97 kg/m³.

Poudre co-cristallisée (principe actif/cyclodextrine)

- 15 poudre fine légère et pulvérulente,
 - densité apparente 176 kg/m³

Poudre co-cristallisée, maturée (principe actif/cyclodextrine)

- poudre dense et non pulvérulente,
- densité apparente 639 kg/m³.
- D'autres objets et avantages de l'invention deviendront apparents pour l'homme du métier à partir de la description détaillée ci-dessous et par le biais de références aux dessins illustratifs suivants.

La figure 1 représente une photo MEB avec un agrandissement de 1000x du produit F12511 obtenu après cristallisation et séchage par voie classique.

La figure 2 représente une photo MEB avec un agrandissement de 2000x du produit F12511 obtenu après cristallisation et séchage par voie classique.

La figure 3 représente une photo MEB avec un agrandissement de 1000x du complexe obtenu après co-précipitation par le procédé SAS et lavage par CO₂ supercritique d'une solution du produit F12511 et de γ-cyclodextrine dans le DMSO.

La figure 4 représente une photo MEB avec un agrandissement de 2000x du complexe obtenu après co-précipitation par le procédé SAS et lavage par CO₂

15

25

supercritique d'une solution du produit F12511 et de γ -cyclodextrine dans le DMSO.

La figure 5 représente une photo MEB avec un agrandissement de 1000x du même complexe que les figures 3 et 4 après 16 heures de diffusion moléculaire en milieu supercritique, en présence d'eau.

La figure 6 représente une photo MEB avec un agrandissement de 2000x du même complexe que les figures 3 et 4 après 16 heures de diffusion moléculaire en milieu supercritique, en présence d'eau.

La figure 7 représente un histogramme de la biodisponibilité du produit F12511 selon la formulation utilisée (composé d'interaction avec le γ -cyclodextrine selon le procédé de la présente invention ou produit F12511 cristallisé) chez le chien.

Le procédé selon l'invention comprend notamment une étape de diffusion moléculaire en milieu supercritique permettant une forte interaction des particules du dérivé d'anilide dans le support envisagé, comme le montrent les photos réalisées au microscope à balayage électronique (figures 1 à 6). On peut voir sur ces photos que la structure du composé est totalement modifiée au cours de la diffusion. De plus, la dissolution en milieu aqueux est également modifiée.

Ainsi, le composé selon les figures 1 et 2 a une solubilité au bout de 2 heures de 20 6 µg/ml dans une solution aqueuse à 5% de lauryl sulfate de sodium.

Le complexe selon les figures 3 et 4 a une solubilité au bout de 2 heures de 86 µg/ml dans une solution aqueuse à 5% de lauryl sulfate de sodium.

Le complexe selon les figures 5 et 6 a une solubilité au bout de 2 heures de 516 µg/ml dans une solution aqueuse à 5% de lauryl sulfate de sodium.

L'objectif recherché au cours de cette étape de diffusion est d'améliorer la dissolution des micro-particules de substance active.

L'étape suivante qui est une étape de lavage par fluide supercritique, permet encore d'augmenter la vitesse de dissolution du composé d'interaction du dérivé d'anilide dans le support poreux.

La dissolution au bout de deux heures dans un milieu aqueux est multipliée par environ 100 par le procédé selon la présente invention.

Les exemples suivant de mise en œuvre du procédé sont donnés à titre indicatif non limitatif.

Protocoles d'analyse des poudres

Tests de dissolution du produit F12511

5 Conditions opératoires :

Détecteur spectrophotométrique réglé à 220 nm.

Colonne greffage C8 (Lichrospher 60RP-Select B), dimensions 25 x 0,4 cm, granulométrie: 5 µm.

Phase mobile:

* Acétonitrile

820 ml

* Eau purifiée

180 ml

Acide acétique glacial

1 ml

10 Débit : 1 ml/min

Préparation des solutions :

Solution à examiner

Introduire une quantité de complexe correspondant à environ 100 mg du produit F12511 dans 100 ml de lauryl sulfate de sodium à 5% (m/V) dans H_2O . Placer sous agitation magnétique dans un bain-marie à 37°C \pm 0,5°C. Prélever 2 ml de cette suspension après 2 heures d'agitation et filtrer sur filtre GELMAN GHP

Diluer les prélèvements au 1/5 dans la phase mobile.

Effectuer 2 essais.

ACRODISC GF (R).

20 Solution témoin

Introduire 8 mg du produit F12511 de référence (matière première ayant servi à la fabrication du complexe) dans une fiole de 100 ml, dissoudre dans 1 ml de tétrahydrofurane (THF).

Compléter au volume avec la phase mobile.

25 Gamme

	T1	T2	T3	T4	T5
Solution témoin (ml)	0,5	1,5	2,0	3,0	4,0
Phase mobile	qsp 20	ml			
Concentration (µg/ml)	2,0	6,0	8,0	12,0	16,0

Réalisation de l'essai:

Injecter 20 µl de chaque solution témoin. Mesurer l'aire du pic du produit F12511 et représenter graphiquement sa variation en fonction de la concentration. Le coefficient de corrélation est >0,995. Injecter 20 µl de la solution essai. Mesurer l'aire du pic du produit F12511 présent dans la solution essai, et s'assurer qu'elle est comprise entre celle du T1 et du T5 de la gamme.

Dans le cas contraire, effectuer une dilution dans le solvant de solubilisation et/ou ajuster le volume d'injection de la solution essai.

En déduire la concentration X (µg/ml) de la solution essai.

10 Calculer la quantité du produit F12511 solubilisé en mg/ml par la formule :

Y: volume d'injection de la solution essai

F: facteur de dilution

Mesures de surfaces spécifiques

15 Les mesures de surface spécifique ont été effectuées sur un appareil à adsorption BET ASAP 2010, Micrometrics.

Préparation de l'échantillon

Avant la phase de mesure, l'échantillon nécessite une étape de dégazage. Cette étape consiste à faire le vide dans la cellule contenant l'échantillon jusqu'à ce que l'on ait atteint au moins un vide de 0,003 mm Hg, soit 0,004 mbar environ, et ceci de manière stable. Ce dégazage est réalisé à une température de 50°C (durée : environ 16 heures).

En fin de dégazage, la cellule contenant l'échantillon est remplie d'hélium, et transférée au poste de mesure où l'on refait le vide avant analyse.

Exploitation des isothermes d'adsorption

La détermination de la surface spécifique a été faite selon la théorie BET, soit selon la relation :

$$\frac{1}{W.[(P_0/P)-1]} = \frac{1}{CWm} + \frac{C-1}{Wm.C} \cdot (P/P_0)$$

W: volume de gaz adsorbé (dans les conditions standard de température et de pression (STP)) par unité de masse d'échantillon.

Wm : volume de gaz adsorbé (dans les conditions STP) dans une monocouche par unité de masse d'échantillon.

P₀: pression de saturation.

C: constante.

On retrace alors l'isotherme selon:

 $\frac{1}{W.[(P_0/P) - 1]}$

En fonction de P/P_0 : nous avons alors une droite dont la pente et l'ordonnée à l'origine nous donnent C et Wm.

La surface spécifique est alors donnée par la formule :

$$a (m^2.g^{-1})=N_mN_AE$$

E : encombrement de la molécule d'azote. On prend généralement pour l'azote à 77 K, température opératoire, $E=0,162~\mathrm{nm}^2$.

15 N_A: nombre d'Avogadro.

 N_m : nombre de moles d'azote adsorbées sur une monocouche par unité de masse d'échantillon, calculé à partir de Wm.

Les mesures sont réalisées dans un domaine classique de pression relative où la théorie BET est valable, soit $0.05 < P/P_0 < 0.2$. Pour vérifier la validité de cette théorie, un moyen pratique est de regarder dans quel sens évolue la quantité $N_{adsorbé}$. (1-P/P₀) en fonction de P/P₀: elle doit continuellement augmenter avec P/P₀. Vérifier de cette manière le domaine d'applicabilité de la théorie BET, et réajuster si besoin est, le domaine des pressions relatives.

25 Exemple comparatif 1 : précipitation par SAS / DMSO du produit F12511

Une solution de 150 ml de concentration : 115 g/l du produit F12511 dans le DMSO, est précipitée en continu par le procédé Solvant-Anti-Solvant (SAS) en présence de CO₂, dans un autoclave de 21 muni d'un panier de 1,371. Le débit de la pompe solvant est de 0,6 ml/min. La température et la pression au sein de l'autoclave sont choisies pour obtenir une densité de CO₂ égale à 0, 8. Après avoir

précipité environ 130 ml de solution, les injections du soluté puis de CO₂ sont arrêtées, et l'on procède au lavage par passage d'un flux de CO₂ (300 bars, 50°c) pendant 3 heures. L'autoclave est ensuite dépressurisé. Le rendement de cette étape est de 87 %.

Nature de la poudre	Dissolution (µg/ml)	BET (m ² /g)
F 12511	6-12	14
F 12511 précipité par SAS	62	54

5

Exemple comparatif 2 : précipitation par RESS du produit F12511

On place 10 g de produit F12511 dans un autoclave, que l'on extrait par du CO₂ supercritique à 100°C, 265 bars. Le fluide est alors précipité dans une deuxième enceinte, et l'on récupère 0,6 g de produit F12511. On mesure la dissolution au bout de deux heures ainsi que la surface spécifique:

Nature de la poudre	Dissolution (µg/ml)	BET (m²/g)
F 12511	12	14
F 12511 précipité par RESS	76	67

Exemple comparatif 3: co-précipitation du produit F12511 et de la γ15 cyclodextrine par SAS / DMSO

Une solution de 150 ml de produit F12511 (concentration : 57,5 g/l) et de γ-cyclodextrine (concentration de 172,5 g/l) dans le DMSO, est précipitée en continu par le procédé Solvant-Anti-Solvant (SAS) en présence de CO₂, dans un autoclave de 2l muni d'un panier de 1,37l. Le débit de la pompe solvant est de 0,4 ml/min. La température et la pression au sein de l'autoclave sont choisies pour obtenir une densité de CO₂ égale à 0,9. Après avoir précipité environ 100 ml de solution, les injections du soluté puis de CO₂ sont arrêtées, et l'on procède au lavage de la poudre obtenue par passage d'un flux de CO₂ (300 bars, 50°C) pendant 2 heures.

25 L'autoclave est ensuite dépressurisé.

Le rendement de cette étape est de 81%.

Les résultats des mesures de dissolution sont rassemblés dans le tableau ci-dessous :

Nature de la poudre	Dissolution (µg/ml)
F 12511	12
F 12511 co-précipité par SAS/DMSO	100

Exemple 4: co-précipitation, inclusion et lavage à partir d'une solution du produit F12511 et de γ-cyclodextrine dans le DMSO

Une solution de 450 ml du produit F12511 (concentration : 40 g/l) et de γ-cyclodextrine (concentration de 240 g/l) dans le DMSO, est précipitée en continu par le procédé Solvant-Anti-Solvant (SAS) en présence de CO₂, dans un autoclave de 6l muni d'un panier de 4l. Le débit de la pompe solvant est de 1,1 ml/min. La température et la pression au sein de l'autoclave sont choisies pour obtenir une densité de CO₂ égale à 0,9 ± 0,05. Après avoir précipité environ 450 ml de solution, les injections du soluté puis de CO₂ sont arrêtées, et l'on procède à la détente douce de l'installation, de façon à ne pas liquéfier le fluide supercritique.

Le rendement moyen de cette étape est de 94%.

On mélange la poudre co-précipitée à l'étape précédente avec de l'eau osmosée (ratio massique de 25% d'eau), et le mélange est placé dans le panier poral de 4L, lui-même déposé dans l'autoclave de précipitation de 6 l.

L'autoclave est fermé, et l'on gonfle l'installation en CO₂ supercritique de façon à avoir une pression statique de 300 bars, et une température de 65°C au sein de l'autoclave.

On procède à la détente douce après une nuit de diffusion moléculaire, et l'on réitère cette étape, sans ajout d'agent de diffusion (eau) pendant une nuit.

Puis l'on procède au lavage du complexe ainsi obtenu par flux de CO₂ supercritique (270 bars, 40°C) pendant 8 heures. On effectue après détente une mesure de dissolution sur la poudre obtenue.

15

Nature de la poudre				Dissolution (μg/ml)	
F12511 av	ant co-pré	~15			
Composé F12511 / γ-cyclodextrine après					440
diffusion n	noléculaire	;		:	
Composé	F12511	/	γ-cyclodextrine	après	662
diffusion n	noléculaire				

Ces résultats démontrent l'intérêt d'un procédé associant la co-précipitation, l'interaction et le lavage en milieu supercritique pour améliorer la dissolution en milieu aqueux du dérivé d'anilide.

Des essais pharmacocinétiques sur le chien ont été réalisés avec un composé d'interaction F12511/γ-cyclodextrine obtenu par ce procédé. Des doses normalisées de 3 mg/kg ont été administrées à 5 chiens, et la concentration plasmatique (exprimée en ng/ml.h) en F12511 a été mesurée. Les résultats concernant le F12511 obtenu après cristallisation et séchage par voie classique et ceux concernant le composé d'interaction F12511/γ-cyclodextrine obtenu par le procédé décrit cidessus selon la présente invention sont représentés dans l'histogramme de la figure 7.

On constate que l'administration de doses préparées à partir du composé d'interaction F12511/ γ -cyclodextrine obtenu par le procédé selon la présente invention permet d'améliorer la biodisponibilité chez le chien d'un facteur 10.

Exemple comparatif 5: précipitation et inclusion dans la γ-cyclodextrine du produit F12511 générée par procédé SAS / Ethanol

Une solution de 8 l du produit F12511 (concentration : 5 g/l) dans l'éthanol, est précipitée en continu par le procédé Solvant-Anti-Solvant (SAS) en présence de CO₂, dans un autoclave de 6l muni d'un panier de 4l. Le débit de la pompe solvant est de 41,7 ml/min. La température et la pression au sein de l'autoclave sont choisies pour obtenir une densité de CO₂ égale à 0,8. Après avoir précipité environ 8l de solution, les injections du soluté puis de CO₂ sont arrêtées, et l'on procède à la détente douce de l'installation, de façon à ne pas liquéfier le fluide supercritique.

10

20

On mélange 4,3 g du dérivé d'anilide précipitée à l'étape précédente avec 25,8 g de γ -cyclodextrine et 10 g d'eau osmosée, et le mélange est placé dans le panier poral de 4l, lui-même déposé dans l'autoclave de précipitation de 6l.

L'autoclave est fermé, et l'on gonfle l'installation en CO₂ supercritique de façon à avoir une pression statique de 300 bars, et une température de 65°C au sein de l'autoclave.

On procède à la détente douce après 16 heures de diffusion moléculaire.

Nature de la poudre	Dissolution (en µg/ml)
F12511 avant précipitation	~15
F12511 précipité par CO ₂ supercritique	80
Composé F12511 / γ-cyclodextrine après	155
diffusion moléculaire	

Exemple comparatif 6: précipitation et inclusion dans la γ-cyclodextrine du produit F12511 générée par procédé SAS / DMSO

Une solution de 150 ml du produit F12511 (concentration : 200 g/l) dans le DMSO, est précipitée en continu par le procédé Solvant-Anti-Solvant (SAS) en présence de CO₂, dans un autoclave de 21 muni d'un panier de 1,371. Le débit de la pompe solvant est de 0,5 ml/min. La température et la pression au sein de l'autoclave sont choisies pour obtenir une densité de CO₂ égale à 0,9. Après avoir précipité environ 135 ml de solution, les injections du soluté puis de CO₂ sont arrêtées, et l'on procède à la détente douce de l'installation, de façon à ne pas liquéfier le fluide supercritique.

On mélange 1 g du dérivé d'anilide précipitée à l'étape précédente avec 6 g de γ-cyclodextrine et 2,33 g d'eau osmosée, et le mélange est placé dans le panier poral de 1,371, lui-même déposé dans l'autoclave de précipitation de 21.

L'autoclave est fermé, et l'on gonfle l'installation en CO₂ supercritique de façon à avoir une pression statique de 300 bars, et une température de 100°C au sein de l'autoclave.

On procède à la détente douce après 16 heures de diffusion moléculaire.

Nature de la poudre	Dissolution (en µg/ml)		
F12511 avant -précipitation	5		
F12511 précipité par CO ₂ supercritique	57		
Composé F12511 / γ-cyclodextrine après	165		
diffusion moléculaire			

Exemple comparatif 7: Inclusion dans la γ-cyclodextrine du produît F12511 générée par procédé RESS

- On place 40 g du produit F12511 dans un panier de 4l, lui-même déposé dans un autoclave de 6l. La substance active est extraite par un mélange supercritique de CO₂ et d'éthanol (5% massique) et la substance est précipitée à 120 bar et 55°C. Après 3 heures, les injections de CO₂ et d'éthanol sont arrêtées.
- On mélange 8,96 g du dérivé d'anilide précipitée à l'étape précédente avec 53,76 g de γ-cyclodextrine et 20,87 g d'eau osmosée, et le mélange est placé dans le panier poral de 41, lui-même déposé dans l'autoclave de précipitation de 61.
 - L'autoclave est fermé, et l'on gonfle l'installation en CO₂ supercritique de façon à avoir une pression statique de 300 bars, et une température de 65°C au sein de l'autoclave.
- 15 On procède à la détente douce après 16 heures de diffusion moléculaire.

Nature de la poudre	Dissolution (en µg/ml)
F12511 avant précipitation	~10
F12511 précipité par CO ₂ supercritique	8
Composé F12511 / γ-cyclodextrine après diffusion moléculaire	292

Résumé des résultats

Le tableau ci-dessous résume les différents procédés mis en œuvre, ainsi que les résultats de dissolution correspondants, et permet d'en déduire le procédé le plus adapté à la fabrication du produit F12511 de dissolution élevée en milieu aqueux :

Procédé	Comp.	Comp.	Comp.	Ex.4	Ex.4	Comp.	Comp.
	Ex.1	Ex.2	Ex.3			Ex.5	Ex.5
Précipitation* par RESS		X					
Précipitation* par SAS / DMSO	Х						
Co-précipitation** par SAS/DMSO			X	X	X		
Précipitation* par SAS / EtOH						Х	X
Cristallisation classique							
Diffusion moléculaire agitée							
Diffusion moléculaire non-agitée				X	x		X
Lavage	X		X		X	,	
Dissolution (µg/ml)	62	76	100	440	, 662	80	155

Comp.	Comp.	Comp.	Comp.	EX. 8	EX. 8
Ex.6	Ex.6	Ex.7	Ex.7	Ī	1
		X	X		
X	X				
	1				
	1				
	1	1	e.		
				X	X
					X
	Х		X	X	
1		}			
x					
57	165	8	292	124	334
	Ex.6	Ex.6 X X X	Ex.6 Ex.6 Ex.7 X X X X X X	Ex.6 Ex.6 Ex.7 Ex.7 X X X X X X X X X X X X X	Ex.6 Ex.7 Ex.7

^{*} Précipitation du produit F12511 seul

^{**} Co-précipitation d'une solution du produit F12511 et de γ-cyclodextrine

Au vu de ces résultats, il est clair que le procédé qui permet d'obtenir la plus importante dissolution du produit F12511 dans un milieu aqueux est le procédé combinant les étapes de génération du produit F12511 par fluide supercritique, avantageusement par co-précipitation du produit F12511 et de la γ -cyclodextrine, diffusion moléculaire en mode statique, avantageusement sous agitation, lavage.

Essais comparatifs 9:

Afin de valider le fait que c'est bien le procédé au complet qui nous permet d'obtenir les résultats finaux et non une des étapes intermédiaires, nous avons réalisés des tests de dissolution comme décrit précédemment sur différents mélanges et nous avons obtenu des résultats suivants :

	Avant diffusion	Après diffusion
F12511/γCyclodextrines	19 μg/ml	142 μg/ml
Poudres brutes	•	
Mélange physique		
F12511/γCyclodextrines	69 µg/ml	150 μg/ml
Poudres cristallisées par	•	
SAS séparément		
Mélange physique		
F12511/γCyclodextrines	100 μg/ml	671 μg/ml
Poudres co-cristallisées		

REVENDICATIONS

- 1. Procédé de préparation de composés d'interaction du dérivé d'anilide avec un support poreux, caractérisé en ce qu'il comprend les étapes suivantes :
- 5 (a) Mélanger le dérivé d'anilide généré par fluide supercritique et la quantité déterminée de support poreux,
 - (b) Mettre en œuvre une étape de diffusion moléculaire par mise en contact en mode statique d'un fluide supercritique avec le mélange obtenu à l'étape (a) pendant le temps nécessaire pour améliorer la dissolution dans un milieu aqueux du mélange obtenu à l'étape (a),
 - (c) Laver le composé d'interaction obtenue à l'étape (b) par un flux de fluide supercritique,
 - (c) Récupérer les particules du composé d'interaction ainsi formé.
- 2. Procédé selon la revendication 1, caractérisé en ce que le support poreux est généré par fluide supercritique et en ce que l'étape (a) comprend les étapes suivantes:
 - (a1) Mettre en solution le dérivé d'anilide et le support poreux dans un solvant organique, ledit solvant organique étant soluble dans le fluide supercritique,
- 20 (a2) Mettre en contact de façon continue la solution obtenue à l'étape (a1) avec ledit fluide supercritique, afin de désolvater de façon contrôlée le dérivé d'anilide et le support, et assurer leur coacervation,
 - (a3) Laver le complexe ainsi formé par extraction du solvant résiduel par le fluide supercritique, puis procéder à la séparation du solvant à l'état liquide et du fluide supercritique à l'état gazeux.
 - 3. Procédé selon la revendication 1, caractérisé en ce que le dérivé d'anilide, avant son utilisation dans l'étape (a) est générée par le procédé comprenant les étapes suivantes :
- 30 (i) Mettre en solution le dérivé d'anilide dans un solvant organique, ledit solvant organique étant soluble dans le fluide supercritique,

- (ii) Mettre en contact de façon continue la solution obtenue à l'étape (i) avec ledit fluide supercritique, afin de désolvater le dérivé d'anilide, et assurer sa coacervation,
- (iii) Laver les particules de dérivé d'anilide ainsi formées par extraction du solvant résiduel par ledit fluide supercritique, puis procéder à la séparation du solvant à l'état liquide et du fluide supercritique à l'état gazeux, et que le support poreux utilisé à l'étape (a) est sous forme solide.
- 4. Procédé selon la revendication 1, caractérisé en ce que le dérivé d'anilide, avant son utilisation dans l'étape (a) est générée par le procédé comprenant les étapes suivantes :
 - (i) Extraire le dérivé d'anilide par le fluide supercritique, éventuellement additionné d'un co-solvant,
- (ii) Vaporiser le mélange supercritique afin de désolvater le dérivé d'anilide, et assurer sa coacervation,
 - (iii) Laver les particules de dérivé d'anilide ainsi formées par le fluide supercritique, puis éventuellement procéder à la séparation du co-solvant à l'état liquide et du fluide supercritique à l'état gazeux,

et en ce que le support poreux utilisé à l'étape (a) est sous forme solide.

20

- 5. Procédé selon la revendication 1, caractérisé en ce que l'étape (a) comprend les étapes suivantes :
- (a1) Mettre en solution le dérivé d'anilide dans un solvant organique, ledit solvant organique étant soluble dans le fluide supercritique,
- 25 (a2) Mettre en contact de façon continue la solution ainsi obtenue avec le fluide supercritique, afin de désolvater le dérivé d'anilide, et assurer sa coacervation sur le support poreux préalablement placé dans le réacteur,
 - (a3) Laver le complexe ainsi formé par extraction du solvant résiduel par le fluide supercritique, puis procéder à la séparation du solvant à l'état liquide et du fluide supercritique à l'état gazeux.
 - 6. Procédé selon la revendication 1, caractérisé en ce que l'étape (a) comprend les étapes suivantes :

- (a1) Extraire le dérivé d'anilide par un fluide supercritique, éventuellement additionné d'un co-solvant,
- (a2) Vaporiser le mélange supercritique afin de désolvater le dérivé d'anilide, et assurer sa coacervation sur le support poreux préalablement placé dans le réacteur,
- 5 (a3) Laver le complexe ainsi formé par le fluide supercritique, puis éventuellement procéder à la séparation du co-solvant à l'état liquide et du fluide supercritique à l'état gazeux.
- 7. Procédé selon l'une quelconque des revendications 2 à 6, caractérisé en ce que 0 le solvant organique ou le co-solvant est choisit dans le groupe constitué par les alcools, les cétones, l'acide acétique, l'acétate d'éthyle, le dichlorométhane, l'acétonitrile, le diméthylformamide, le diméthylsulfoxide et leur mélange.
- 8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le fluide supercritique est du CO2.
 - 9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le dérivé d'anilide est le (S)-2',3',5'-triméthyl-4'-hydroxy-α-dodécylthiophényl acétanilide.
 - 10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le support poreux est choisi dans le groupe constitué par les cyclodextrines et leur mélange.
- 25 11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape (b) de diffusion moléculaire est réalisée sous agitation.
- 12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape (b) de diffusion moléculaire est réalisée en présence d'un agent de diffusion.

- 13. Procédé selon la revendication 12, caractérisé en ce que l'agent de diffusion est choisi dans le groupe constitué par l'alcool, l'eau avec ou sans agent surfactant et leur mélanges.
- 5 14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la pression du fluide supercritique est comprise entre 10 Mpa et 40 Mpa et la température entre 0 et 120°C.
- 15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en
 10 ce que chacune des étapes du procédé est mise en œuvre dans un réacteur fermé, en particulier un autoclave.
 - 16. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est réalisé en continu.
 - 17. Composé d'interaction d'un dérivé d'anilide dans un support poreux caractérisé en ce qu'il est susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 1 à 16.
- 20 18. Composé selon la revendication 17 caractérisé en ce que le dérivé d'anilide ainsi complexée présente une solubilité dans une solution aqueuse de Laurylsulfate de sodium à 5 % supérieure à environ 600 μg/ml.
- 19. Composé selon l'une quelconque des revendications 17 ou 18 en tant que 25 médicament.
 - 20. Composé selon la revendication 19 en tant que médicament destiné à traiter des dyslipidémies telles que l'hypercholestérolémie et/ou la prévention de l'artériosclérose.
 - 21. Utilisation d'un composé selon l'une quelconque des revendications 17 ou 18 pour la fabrication d'un médicament destiné au traitement des dyslipidémies telles que l'hypercholestérolémie et/ou la prévention de l'artériosclérose.

WO 03/030867 PCT/FR02/03475

FIG.1

FIG.2

FIG.3

FIG.4

WO 03/030867 PCT/FR02/03475

FIG.5

FIG.6

FIG.7

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

. | CORRECTION OF BUILDING BRAND CONTRACTOR AND BUILDING BRAND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CO

(43) Date de la publication internationale 17 avril 2003 (17.04.2003)

PCT

(10) Numéro de publication internationale WO 03/030867 A3

- (51) Classification internationale des brevets⁷: A61K 9/14, 31/167, 47/48, A61P 3/06
- (21) Numéro de la demande internationale :

PCT/FR02/03475

(22) Date de dépôt international :

11 octobre 2002 (11.10.2002)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

FR

(30) Données relatives à la priorité :

01/13179 12 octobre 2001 (12.10.2001)

- (71) Déposant (pour tous les États désignés sauf US): PIERRE FABRE MEDICAMENT [FR/FR]; 45, place Abel Gance, F-92100 Boulogne-Billancourt (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): FREISS, Bernard [FR/FR]; 178, chemin de la Fosse, F-81100 Castres (FR). MARCIACQ, Florence [FR/FR]; 18, lotissement Clos Saint Véran, F-13660 Orgon (FR). FAGES, Jacques [FR/FR]; 7, rue de Guillasse, F-81000 Albi (FR). SAUCEAU, Martial [FR/FR]; 7, rue Catalane, F-81000 Albi (FR). LOCHARD, Hubert [FR/FR]; 23, rue Marcel Pagnol, F-81000 Albi (FR). LETOURNEAU, Jean-Jacques [FR/FR]; La Valade Souleiha, F-31380

Gragnague (FR). JOUSSOT-DUBIEN, Christophe [FR/FR]; Chemin de Beaucaire, F-30650 Rochefort du Gard (FR).

- (74) Mandataires: MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).
- (81) États désignés (national): AU, BR, CA, CN, JP, MX, US, ZA.
- (84) États désignés (régional): brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

Déclaration en vertu de la règle 4.17 :

 relative à la qualité d'inventeur (règle 4.17.iv)) pour US seulement

Publiée:

- avec rapport de recherche internationale
- (88) Date de publication du rapport de recherche internationale: 4 décembre 2003

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: METHOD FOR PREPARING AN INTERACTIVE COMPOUND OF AN ANILIDE DERIVATIVE WITH A POROUS SUPPORT BY SUPERCRITICAL FLUID

(54) Titre: PROCEDE DE PREPARATION D'UN COMPOSE D'INTERACTION D'UN DERIVE ANILIDE AVEC UN SUPPORT POREUX PAR FLUIDE SUPERCRITIQUE

(57) Abstract: The invention concerns a method for preparing interactive compounds of an anilide derivative with a porous support, characterized in that it comprises the following steps: (a) mixing the anilide derivative generated by supercritical fluid and the specific amount of porous support, (b) carrying out a step of molecular diffusion by contacting in static mode a supercritical fluid with the mixture obtained at step (a) for the time required to improve the dissolution in an aqueous medium of the mixture obtained at step (a), (c) washing the interaction compound obtained at step (b) with a flux of supercritical fluid, (d) recuperating the particles of the resulting interaction compound. The invention also concerns a compound obtainable by said method and its use as medicine.

(57) Abrégé: La présente invention a pour objet un procédé de préparation de composés d'interaction du dérivé d'anilide avec un support poreux, caractérisé en ce qu'il comprend les étapes suivantes: (a) mélanger le dérivé d'anilide généré par fluide supercritique et la quantité déterminée de support poreux, (b) mettre en oeuvre une étape de diffusion moléculaire par mise en contact en mode statique d'un fluide supercritique avec le mélange obtenu à l'étape (a) pendant le temps nécessaire pour améliorer la dissolution dans un milieu aqueux du mélange obtenu à l'étape (a), (c) laver le composé d'interaction obtenue à l'étape (b) par un flux de fluide supercritique, (d) récupérer les particules du composé d'interaction ainsi formé. Elle concerne également un composé susceptible d'être obtenu par ce procédé et son utilisation en tant que médicament

INTERNATIONAL SEARCH REPORT

Inte 181 Application No PCT/FR 02/03475

A. CLASS	FICATION OF SUBJECT MATTER A61K9/14 A61K31/167 A61K47/4	18 A61P3/06					
According to International Patent Classification (IPC) or to both national classification and IPC							
	SEARCHED	ation and IPO					
Minimum de	ocumentation searched (classification system followed by classification	on symbols)					
IPC 7	A61K						
Documenta	tion searched other than minimum documentation to the extent that s	uch documents are included in the fields sea	arched				
Electronic d	ata base consulted during the international search (name of data bar	se and, where practical, search terms used)	·				
WPI Da	ta, PAJ, EPO-Internal, CHEM ABS Data	, BIOSIS					
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where appropriate, of the rela	evant passages	Relevant to claim No.				
Α	WO 97 19918 A (PIERRE FABRE MEDIC 5 June 1997 (1997-06-05) cited in the application	AMENT)	1-21				
	the whole document						
Α	FABIEN MILLIAT; ET AL.: "Overexpression 1-21 of SR-BI in hamsters treated with a novel ACAT inhibitor (F12511)" COMPTES RENDUS DES SEANCES DE L'ACADEMIE DES SCIENCES. SERIE III: SCIENCES DE LA						
	VIE, vol. 324, no. 3, March 2001 (2001 pages 229-234, XP004270528 Amsterdam (NL) the whole document	. -03),					
		./					
	_	,,					
X Furti	her documents are listed in the continuation of box C.	Patent family members are listed in	n annex.				
° Special ca	ategories of cited documents:	"T" later document published after the inter					
"A" docume	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict with t clied to understand the principle or the invention					
	document but published on or after the International	"X" document of particular relevance; the cli	aimed invention				
'L' docume	ent which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the doc	ument is taken alone				
citatio	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cla cannot be considered to involve an involve document is combined with one or more	entive step when the				
"O" document referring to an oral disclosure, use, exhibition or other means document is combined with one or more other such document is combination being obvious to a person skilled in the art.							
	han the priority date claimed actual completion of the international search	*&" document member of the same patent for Date of mailing of the International sear					
8	May 2003	23/05/2003					
Name and	mailing address of the ISA . European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer					
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl,	Renz K					
1	Fax: (+31-70) 340-3016	Fax: (+31-70) 340-3016 Benz, K					

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inten ial Application No PCT/FR 02/03475

2		PC1/FR U2/U34/5
C.(Continu	Chation of document, with indication, where appropriate, of the relevant passages	I Boloviosi to pici- No
oalegory 3	Granon or document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	T. VAN HEES ET AL.: "Application of supercritical carbon dioxide for the preparation of a piroxicam-beta-cyclodextrin inclusion compound" PHARMACEUTICAL RESEARCH, vol. 16, no. 12, 1999, pages 1864-1870, XP002240406 New York (US) cited in the application page 1865, column 1, paragraph 1	1-21
A	WO 01 43853 A (SEPAREX SA) 21 June 2001 (2001-06-21) page 15 -page 17; example 2	1-21

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inten il Application No PCT/FR 02/03475

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9719918	A	05-06-1997	FR	2741619	A1	30-05-1997
			AT		T	15-04-2000
		•	AU		B2	21-01-1999
			AU	7700096	Α	19-06-1997
			BR	9611790	Α	13-07-1999
			CA	2238845	A1	05-06-1997
			CN	1205689	A,B	20-01-1999
			DE	69607650	D1	11-05-2000
			DĘ	69607650	T2	30-11-2000
			DK	874812	T3	11-09-2000
			EP	0874812	A1	04-11-1998
			ES	2147399	T3	01-09-2000
			WO		A1	05-06-1997
			GR	3033786	T3	31-10-2000
			JP	2000500771	T	25-01-2000
			NZ	322959	Α	25-05-2001
			PT	874812		29-09-2000
			US	5990173	Α	23-11-1999
WO 0143853	Α	21-06-2001	FR	2803538	A1	13-07-2001
-			ΕP		A1	18-09-2002
			WO		A1	21-06-2001
			U\$	2002189454		19-12-2002

Form PCT/ISA/210 (patent family annex) (July 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Internationale No

PC1/FR 02/03475 A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 A61K9/14 A61K31 CIB 7 A61K47/48 A61P3/06 A61K31/167 Selon la classification internationale des brevets (CIB) ou à la tots selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 **A61K** Documentation consultée autre que la documentation minimale dans la mesure où ces documents retévent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) WPI Data, PAJ, EPO-Internal, CHEM ABS Data, BIOSIS C. DOCUMENTS CONSIDERES COMME PERTINENTS no. des revendications visées Catégorie 1 Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents WO 97 19918 A (PIERRE FABRE MEDICAMENT) 1-21 5 juin 1997 (1997-06-05) cité dans la demande le document en entier Α FABIEN MILLIAT; ET AL.: "Overexpression 1-21 of SR-BI in hamsters treated with a novel ACAT inhibitor (F12511)" COMPTES RENDUS DES SEANCES DE L'ACADEMIE DES SCIENCES. SERIE III: SCIENCES DE LA vol. 324, no. 3, mars 2001 (2001-03), pages 229-234, XP004270528 Amsterdam (NL) le document en entier Voir la suite du cadre C pour la fin de la liste des documents Les documents de familles de brevets sont indiqués en annexe X Catégories spéciales de documents cités: "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'étal de la technique perfinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international *X* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité ou après cette date "L" document pouvant jeter un doute sur une revendication de Inventive par rapport au document considéré isotément priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres 'O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens documents de même nature, cette combinaison étant évidente 'P' document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée pour une personne du métier '&' document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale

Date à laquelle la recherche internationale a été effectivement achevée

8 mai 2003

23/05/2003 Fonctionnaire autorisé

Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fax: (+31-70) 340-3016

Benz, K

Formulaire PCT/ISA/210 (deuxième fauille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Demi Internationale No
PCT/FR 02/03475

		PCI/FR U	
	OCUMENTS CONSIDERES COMME PERTINENTS		
Catégorie *	identification des documents cités, avec, le cas échéant, l'indicationdes passage	s pertinents	no. des revendications visées
A	T. VAN HEES ET AL.: "Application of supercritical carbon dioxide for the preparation of a piroxicam-beta-cyclodextrin inclusion compound" PHARMACEUTICAL RESEARCH, vol. 16, no. 12, 1999, pages 1864-1870, XP002240406 New York (US) cité dans la demande page 1865, colonne 1, alinéa 1		1-21
A	WO 01 43853 A (SEPAREX SA) 21 juin 2001 (2001-06-21) page 15 -page 17; exemple 2		1-21
·			

Formulaire PCT/ISA/210 (suite de la deuxième fauille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Dem iternationale No PCI/FK 02/03475

Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
WO 9719918	Α	05-06-1997	FR	2741619 A1	30-05-1997
			ΑT	191473 T	15-04-2000
			ΑU	701186 B2	21-01-1999
		•	AU	7700096 A	19-06-1997
			BR	9611790 A	13-07-1999
			CA	2238845 A1	05-06-1997
			CN	1205689 A ,B	20-01-1999
			DE	69607650 D1	11-05-2000
			DE	69607650 T2	30-11-2000
			DK	874812 T3	11-09-2000
			EP	0874812 A1	04-11-1998
			ES	2147399 T3	01-09-2000
			WO	9719918 A1	05-06-1997
			GR	3033786 T3	31-10-2000
			JP	2000500771 T	25-01-2000
			NZ	322959 A	25-05-2001
			PT	874812 T	29-09-2000
			US	5990173 A	23-11-1999
WO 0143853	A	21-06-2001	FR	2803538 A1	13-07-2001
			EP	1239938 A1	18-09-2002
			WO	0143853 A1	21-06-2001
			US	2002189454 A1	19-12-2002

Formulaire PCT/ISA/210 (annexe familles de brevets) (juitlet 1992)

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

A	BLACK BORDERS
×	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
×	FADED TEXT OR DRAWING
Ģ	BLURED OR ILLEGIBLE TEXT OR DRAWING
٦	SKEWED/SLANTED IMAGES
X	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox