CISC455/851 - Evolutionary Optimization and Learning

10: Evolution Strategies 1

- ES overview
- ES mutation and recombination
- Self-adaptation
- Textbook Chapter 6.2, 4.4.2

ES quick overview

- Developed: in Germany in the 1960's
- Typically applied to:
 - numerical optimization
- Attributed features:
 - fast
 - good optimizer for real-valued optimization problems
 - relatively good theoretical support
- Special:
 - self-adaption of strategy parameters

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

We've <u>discovered</u> that *evolution strategies* (*ES*), an optimization technique that's been known for decades, rivals the performance of standard *reinforcement learning* (*RL*) techniques on modern RL benchmarks (e.g. Atari/MuJoCo), while overcoming many of RL's inconveniences.

ES technical sketch

• Example task: to optimize the shape of a jet nozzle

Representation	Real-valued vectors
Recombination	Discrete or intermediary
Mutation	Gaussian perturbation
Parent selection	Uniform random
Survivor selection	Deterministic elitist replacement by (μ, λ) or $(\mu + \lambda)$
Speciality	Self-adaptation of mutation step sizes

Introductory example

- Task: $\underline{\text{minimize}} f : \mathbb{R}^n \rightarrow \mathbb{R}$
- Algorithm: the earliest "two-membered ES" or (I+I) ES
 - vectors from R^n directly as chromosomes
 - population size I
 - only mutation creating one child
 - greedy selection (remove deleterious mutants)

Introductory example: pseudocode

- Set t = 0
- Create initial point $x^t = \langle x_1^t, ..., x_n^t \rangle$
- Assume minimization
- REPEAT until (termination condition satisfied) DO
 - Draw z_i from a normal distribution for all i = 1,2,...,n
 - $-y_i^t = \chi_i^t + z_i$
 - IF $f(y^t) \le f(x^t)$ THEN $x^{t+1} = y^t$
 - ELSE $x^{t+1} = x^t$
 - Set t = t+1

Introductory example: mutation mechanism

- Z values drawn from normal distribution $N(\xi, \sigma)$
 - mean ξ is set to 0
 - variance σ is called **mutation step size**
- σ is varied on the fly by the "1/5 success rule" (Rechenberg 1973)
- This rule resets σ after k iterations by

-
$$\sigma = \sigma$$
 if $p_s = 1/5$

-
$$\sigma = \sigma/c$$
 if $p_s > 1/5$

-
$$\sigma = \sigma \times c$$
 if $p_s < 1/5$

- where p_s is the % of successful mutations,
- $0.8 \le c \le 1$

Self adaptation

- Include the mutation step-size in the chromosome to undergo variation and selection
- Assume that under different circumstances different step sizes will behave differently: different stages or spaces
 - to adjust the mutation strategy as the search is proceeding
 - to learn and use a mutation strategy suited for the local topology

Mutation

- Net mutation effect: $< x, \sigma >$ -> $< x', \sigma' >$
- Order is important:
 - first $\sigma \rightarrow \sigma'$ (see later how)
 - then $x \rightarrow x' = x + N(0, \sigma')$
- Rational: new $\langle x', \sigma' \rangle$ is evaluated on two aspects
 - primary: x' is good if f(x') is good
 - secondary: σ' is good if the x' it created is good
- Reversing mutation order this would not work

Uncorrelated mutation with one step size

• The same distribution is used to mutate each x_i with one σ

$$\sigma' = \sigma \cdot e^{\tau \cdot N(0,1)},$$

$$x'_i = x_i + \sigma' \cdot N_i(0,1).$$

A boundary rule is used since SD very close to zero are unwanted

$$\sigma' < \varepsilon_0 \Rightarrow \sigma' = \varepsilon_0.$$

- Separate draws from the normal distribution for each variable i
- Learning rate $\tau \propto 1/\sqrt{n}$.

Mutants with equal likelihood and size

circle: mutants having the same chance to be created

Pros and cons with one step size

Advantage

- simple mechanism
- usually fast and precise adaptation

Disadvantage

- poor performance on complicated contours
- poor adaptation on widely differing objective values

Uncorrelated mutation with n step size

- Use different step sizes for different dimensions
- Chromosome $\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n \rangle$
- Mutation mechanism

$$\sigma'_{i} = \sigma_{i} \cdot e^{\tau' \cdot N(0,1) + \tau \cdot N_{i}(0,1)}, \quad \text{or} \quad \sigma'_{i} = \sigma_{i} \cdot e^{\tau \cdot N_{i}(0,1)},$$

$$x'_{i} = x_{i} + \sigma'_{i} \cdot N_{i}(0,1),$$

where $\tau' \propto 1/\sqrt{2n}$, and $\tau \propto 1/\sqrt{2\sqrt{n}}$.

Mutants with varying likelihood

Pros and cons with n step size

Advantage

- individual scaling
- better global convergence

Disadvantage

- slower
- cannot rotate to the coordinate system

Correlated mutations

- Allow the eclipses to have any orientation by rotating them with a rotation (covariant matrix) C
- Chromosome $\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n, \alpha_1, \ldots, \alpha_{n \cdot (n-1)/2} \rangle$
- Mutation mechanism

$$\sigma_{i}' = \sigma_{i} \cdot e^{\tau' \cdot N(0,1) + \tau \cdot N_{i}(0,1)}$$

$$\alpha_{j}' = \alpha_{j} + \beta \cdot N_{j}(0,1),$$

$$\overline{x}' = \overline{x} + \overline{N}(\overline{0}, C'),$$

where $n_{\alpha} = \frac{n \cdot (n-1)}{2}$, $j \in 1, \ldots, n_{\alpha}$, and $\tau \propto 1/\sqrt{2\sqrt{n}}$, $\tau' \propto 1/\sqrt{2n}$, and $\beta \approx 5^{\circ}$.

Correlated mutations

• The covariance matrix C is defined as

$$c_{ii} = \sigma_i^2,$$

$$c_{ij,i\neq j} = \begin{cases} 0 & \text{no correlations,} \\ \frac{1}{2}(\sigma_i^2 - \sigma_j^2) \tan(2\alpha_{ij}) & \text{correlations.} \end{cases}$$

Mutants with varying likelihood and direction

Pros and cons with correlated mutations

Advantage

- individual scaling
- rotation
- better global convergence

Disadvantage

- much slower
- mutation effort scales quadratically
- because of speed, self-adaptation slow

Structures of individuals for different mutations

n_{σ}	n_{α}	Structure of individuals	Remark
1	0	$\langle x_1, \ldots, x_n, \sigma \rangle$	Standard mutation
n	0	$\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n \rangle$	Standard mutations
n	$n \cdot (n-1)/2$	$\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n, \alpha_1, \ldots, \alpha_{n \cdot (n-1)/2} \rangle$	Correlated mutations

Self-adaptation

- Theoretically and empirically, σ must decrease over time, exploration -> exploitation
- Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)
- Self-adaptive ES is able to
 - follow the optimum and
 - adjust the mutation step size after every shift!

Self-adaptation

Changes in the fitness values (left) and the mutation step sizes (right)