T.D. V - Estimation

I - Construction d'estimateurs

Exercice 1. Soit $n \in \mathbb{N}^*$, $p \in [0,1]$ et X suivant une loi de Bernoulli de paramètre p. On note (X_1, \ldots, X_n) un n-échantillon de X et $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Déterminer la loi de la variable aléatoire $Y_n = n\overline{X}_n$.
- **2.** Exprimer $\mathbf{E}[Y_n]$, $\mathbf{V}(Y_n)$ et $\mathbf{E}[Y_n^2]$ en fonction de n et de p.
- **3.** \overline{X}_n^2 est-il un estimateur sans biais de p^2 ? Sinon, proposer un estimateur sans biais de p^2 .

Exercice 2. (Estimation de la variance) Soit X une variable aléatoire qui admet une espérance m et une variance σ^2 . Soit $n \in \mathbb{N}^*$ et (X_1, \ldots, X_n) un n-échantillon de X. On pose $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ et $s_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

- 1. Montrer que \overline{X}_n est un estimateur sans biais de m.
- **2.** Montrer que $\mathbf{V}\left(\overline{X}_n\right) = \frac{\sigma^2}{n}$.
- **3.** Montrer que $s_n = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) \overline{X}_n^2$ puis que $\mathbf{E}[s_n] = \frac{n-1}{n} \sigma^2$.
- **4.** La variable aléatoire s_n est-elle un estimateur sans biais de σ^2 ?
- 5. Montrer que $S_n = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X}_n)^2$ est un estimateur sans biais de σ^2 .

Exercice 3. Soit $N \ge 2$. Une urne contient N boules numérotées de 1 à N. On effectue n tirages indépendants avec remise. Pour tout $k \in [\![1,n]\!]$, on note X_k le numéro de la boule tirée au $k^{\rm e}$ tirage. Enfin, on pose :

$$M_n = \max\left\{X_1, \dots, X_n\right\}.$$

1. Montrer que, pour tout $i \in [1, N]$,

$$\mathbf{P}\left(\left[M_n\leqslant i\right]\right) = \left(\frac{i}{N}\right)^n.$$

- **2.** Déterminer $\mathbf{P}([M_n = N])$ puis $\lim_{n \to +\infty} \mathbf{P}([M_n = N])$.
- **3.** Montrer que si Y est une variable aléatoire à valeurs dans [1, N], alors $\mathbf{E}[Y] = \sum_{i=1}^{N} \mathbf{P}([Y \geqslant i])$.
- **4.** En déduire que $\mathbf{E}[M_n] = N \sum_{k=0}^{N-1} \left(\frac{k}{N}\right)^n$.
- **5.** Montrer que $N N \left(1 \frac{1}{N}\right)^n \leq \mathbf{E}[M_n] \leq N$ puis déterminer la limite de $\mathbf{E}[M_n]$ lorsque n tend vers l'infini. L'estimateur M_n est un estimateur asymptotiquement sans biais de N.

II - Comparaison d'estimateurs

Exercice 4. Soit $\lambda > 0$ et X une variable aléatoire suivant une loi de Poisson de paramètre λ . Pour estimer ce paramètre, on considère un n-échantillon (X_1, \ldots, X_n) de X. On considère les deux estimateurs de λ suivants :

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \text{ et } T_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

- 1. Ces estimateurs sont-ils biaisés?
- **2.** Calculer le risque quadratique de \overline{X}_n .
- **3.** On admet que le risque quadratique de T_n vaut $\frac{\lambda}{n} + \frac{2\lambda^2}{n-1}$. Lequel de ces deux estimateurs vous semble préférable?

Exercice 5. Soit $\theta \neq 0$, X une variable aléatoire discrète telle que $\mathbf{E}[X] = \theta$ et $\mathbf{V}(X) = 1$. On dispose d'un n-échantillon (X_1, \dots, X_n) de X et on pose $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Montrer que \overline{X}_n est un estimateur sans biais de θ et calculer son risque quadratique.
- **2.** Soit $(\alpha_1, \ldots, \alpha_n) \in (\mathbb{R}^*)^n$. On note $Y_n = \sum_{i=1}^n \alpha_i X_i$. Donner une condition nécessaire et suffisante pour que Y_n soit un estimateur sans biais de θ . On suppose ensuite cette condition vérifiée.
- **3.** Calculer Cov (\overline{X}_n, Y_n) . En déduire que $\mathbf{V}(\overline{X}_n) \leq \mathbf{V}(Y_n)$. Que dire en cas d'égalité?
- 4. Interpréter les résultats obtenus.