Terceiro Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

12 de agosto de 2022

Sumário

1 Introdução

2	Funcionamento	basico	de	\mathbf{um}	oscilos
	copio				

- 2.1 Comparando as ondas geradas com a visualizacao no osciloscopio . . .2.2 Graficos das ondas observadas . . .
- 2.2.1 Grafico da tensao V_{ad} pelo tempo em milisegundos no acoplamento AC
 - 2.2.2 Grafico da tensao V_{ad} pelo tempo em milisegundos no acoplamento DC
 - 2.2.3 Grafico da tensao V_{bd} pelo tempo em milisegundos no acoplamento AC
 - 2.2.4 Grafico da tensao V_{bd} pelo tempo em milisegundos no acoplamento DC
 - 2.2.5 Grafico da tensao V_{cd} pelo tempo em milisegundos no acoplamento AC
 - 2.2.6 Grafico da tensao V_{cd} pelo tempo em milisegundos no acoplamento DC
- 2.4 Papel do capacitor
- 2.5 Equacoes das tensoes2.6 Medicoes no multimetro
- 2.7 Diferenca entre valores medios e RMS
- 3 Carga e descarga de um capacitor

1 Introdução

Neste relatório, vamos discutir o capacitor. E como ele se se comporta sobre acao de correntes diretas e alternadas.

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

- 2 Funcionamento basico de um osciloscopio
- 2.1 Comparando as ondas geradas com a visualização no osciloscopio

Fizemos isto e observamos o comportamento senoidal e quadratico respectivamente das ondas na tela do osciloscopio.

2.2 Graficos das ondas observadas

2.2.1 Grafico da tensao V_{ad} pelo tempo em milisegundos no acoplamento AC

2.2.2 Grafico da tensao V_{ad} pelo tempo em milisegundos no acoplamento DC

2.2.3 Grafico da tensa
o V_{bd} pelo tempo em milisegundos no acoplamento AC

2.2.4 Grafico da tensao V_{bd} pelo tempo em milisegundos no acoplamento DC

2.2.5 Grafico da tensao V_{cd} pelo tempo em milisegundos no acoplamento AC

2.2.6 Grafico da tensao V_{cd} pelo tempo em milisegundos no acoplamento DC

2.3 Medindo V_{ab} , V_{bd} , e V_{cd}

Nao podemos fazer estas medicoes diretamente pois estariamos alterando o circuito se encaixassemos o osciloscopio nos pontos AB, BD, e CD respectivamente.

2.4 Papel do capacitor

Este esta "bloqueando" a passagem da corrente direta. Isto acontece porque a medida que a corrente direta carrega o capacitor, a tensao nos terminais do capacitor se iguala.

Quando o capacitor esta completamente carregando, as tensoes nos seus terminais fica iguai, e nao ha passagem de corrente.

2.5 Equações das tensões

2.6 Medicoes no multimetro

$$DC = 0.855V \text{ e } AC = 2.069V$$

Indicando que estamos lidando com medicoes rms

2.7 Diferenca entre valores medios e RMS

Valores RMS nos levamos em consideracao a raiz dos quadrados de todos valores. O que faz com que correntes alternadas somem ao valor.

Ja valor medio, o caso da corrente alternada somaria como 0. Ja que ha o mesmo numero de valores positivos que negativos

O caso no qual rms = valor medio sera o caso no qual nao ha componente de corrente alternada no sistema.

3 Carga e descarga de um capacitor

