

GFO-Europe by

Magnesiumstraat 14 6031 RV Nederweert The Netherlands Tel. +31 495 622004

Fax.+31 495 622580 www.gfo-europe.com

pressure loss calculation for GFO-RM gasmeters

Qmax = maximum Flowrate of meter m3/h
Qb = Flowrate in operating conditions m3/h

Δp Qmax = Pressureloss at maximum Flowrate of meter mbar (see table 1)

at 1 bar absolute with natural gas

 $\Delta p_ng =$ Pressureloss in operating conditions with naturalgas mbar Pb = aboslute operating pressure bar Patm = absolate atmosperic pressure bar

pn = Density in standard conditions kg/m3 (see table 2)

Calculation of pressureloss under operating conditions in Natural gas :

 $\Delta p_ng = Pb / Patm * (Qb / Qmax)^2 * \Delta p_Qmax$

Calculation of pressureloss under operating conditions for any gas

 $\Delta p = \rho n / \rho n_n g * \Delta p_n g$

Table 1: Pressureloss table. Pressureloss at maximum Flowrate of meter at 1 bar absolute with natural gas

Gvalue	Diameter	Qmax	Δp_Qmax
	(mm)	(m3/h)	(mbar)
G16	40	25	0,14
G25	40	40	0,37
G40	40	65	0,97
G40	50	65	0,77
G65	50	100	1,38
G100	80	160	2,15
G160	80	250	2,00
G160 Twin	N.A.	N.A.	N.A.
G250	100	400	4,10
G400 Twin	100	650	3,55
G400 Twin	150	650	3,30
G650 Twin	150	1000	3,30

Table 2: Densities in standard conditions for common Gases

Medium	ρn
	(kg/m3)
Natural gas	0,83
Town gas	0,64
Carbon dioxide	1,98
Air	1,29
Nitrogen	1,25
Hydrogen	0,09
Methane	0,72
Propane	2,01

Example: Determination of the pressure loss under operating conditions

Given: IMRM G100; DN80; load = 100 m3/h; operating pressure 4 bar natural gas / air

for natural gas :

 $\Delta p_ng = \rho_ng * Pb / Patm * (Qb / Qmax)^2 * \Delta p_Qmax$

= 5 / 1 * $(100/160)^2$ * 2.11 = 4,12 mbar

For air

 $\Delta p = \rho n / \rho n_n g * \Delta p_n g$

= 1.29 / 0.83 * 3.42 = 6,40 mbar

PS - 28/10/2015 TN30.100rev00