Fundamental Algorithms - Spring 2018 Homework 10

Daniel Rivera Ruiz

Department of Computer Science New York University drr342@nyu.edu

1. Let's say that the edge whose weight is bigger than w is $e_{ab} = \{a,b\}$. The current path to go from x to y is given by $P = S_{xa} \cup e_{ab} \cup S_{by}$, where S_{xa} is the set of edges connecting x and a and S_{by} is the set of edges connecting b and b. Now, if we remove b from the MST and replace it with the new edge b we can still go from b to b by following the new path b from the b from the MST and replace it with the new tree b generated by doing this has a smaller weight than the original tree and therefore is the new MST of the graph b:

$$w(T') = w(T) - w(e_{ab}) + w(e_{xy})$$
 & $w(e_{ab}) > w(e_{xy}) \Rightarrow w(T') < w(T)$

- 2. (a) Let's consider the execution of Kruskal's algorithm on the graph G, when we get to the point of comparing x_f to y_f after sliding-down-the-banister for the original vertices x_i and y_i . At this point, the only conditions under which $x_f = y_f = p$ are 1) if $x_i = y_i$, or 2) if there is an edge $e = \{x_i, y_i\}$ connecting the original vertices. The first condition will never occur because we are dealing with a graph with no loops. The second condition will not occur in the first n-1 iterations of the algorithm because it would mean that there is a cycle in G connecting p, x_i and y_i , but according to the assumptions of the problem, the n-1 edges of minimal cost form a tree (which by definition can have no cycles). Finally, after n-1 iterations of the algorithm we must have added all the edges we encountered, since every time we had $x \neq y$. At this point the algorithm can terminate because by definition the MST (and any tree for that matter) can only have n-1 edges when there are n vertices.
 - (b) The original time for Kruskal's algorithm is $O(E \log_2 V)$, where E is the number of edges and V the number of vertices. In this case, however, we can run the algorithm only for the first n-1 edges regardless of the total amount m (see the previous answer). Therefore the time complexity will be:

$$T = O(E \log_2 V) = O((n-1) \log_2 n) = O(n \log_2 n)$$

- (c) If we consider the dumb version of Kruskal's algorithm where there is no size function, sliding-down-the-banister can take as long as O(V) = O(n), and therefore the overall complexity of the algorithm can be as bad as $O(n^2)$. This can be explained as follows:
 - sliding-down-the-banister executes as long as $v \neq \pi(v)$.
 - In the original algorithm we have the property (thanks to the size function) that $\pi(x) = y \Rightarrow size(y) \geq 2size(x)$. This means that sliding-down-the-banister can take (at most) $\log_2(V)$ steps.
 - The dumb algorithm, without the size function, has no upper bound to the steps sliding-down-the-banister can take other than the trivial n-1, which is the number of vertices in the MST. This means that in the worst case scenario sliding-down-the-banister can take time O(n).

To exemplify the statement above, let us consider a graph Γ with vertices $\alpha_1,\alpha_2,\ldots,\alpha_n$ where the n-1 minimal weight edges are of the form $e_i=\{\alpha_1,\alpha_i\}$ for $1\leq i\leq n$ and $w(e_i)< w(e_j)$ if $1\leq i\leq n$. Under this conditions, dumb Kruskal's algorithm will traverse the edges in ascending order $1\leq i\leq n$. Additionally, to consider the worst case scenario we assume that the parent function at the $1\leq i\leq n$ the algorithm reaches the $1\leq i\leq n$. With all of the above, when the algorithm reaches the $1\leq i\leq n$ the edge $1\leq i\leq n$.

sliding-down-the-banister will take one step for α_{i+1} but i steps for α_1 . Summing over all values of i, the complexity of the algorithm is given by $\sum_{1}^{n-1} i$, which is in the order of $O(n^2)$ as expected.

3. (a) As the edges are processed, at the i^{th} iteration we will set $\pi(i+1)=1$ and size(1)=i+1. This follows from the fact that each edge in the graph is of the form $\{i, i+1\}$: since the vertex i+1 is appearing for the first time, it will get 1 as its parent, which is the final node after sliding-down-the-banister from i. As a result of this, the value of size(1) will increase from i to i + 1.

In the particular case where n=100 and we stop the execution after processing the edge $\{72,73\}$, the values of π and size are defined as follows:

$$\pi(i) = \begin{cases} 1 & : & 1 \le i \le 73 \\ i & : & 74 \le i \le 100 \end{cases}$$

$$size(i) = \begin{cases} 73 & : & i = 1\\ 1 & : & i \neq 1 \end{cases}$$

- (b) For a large value of n and if the edges are already ordered by increasing weight, the execution of the program will take time O(n). The original value for the algorithm's time complexity is $O(n \log_2 n)$, which considers the worst case scenario where sliding-down-the-banister takes time $O(\log_2 n)$. In this particular case, however, we know that sliding-down-the-banister will always take constant time, since all nodes have 1 as their parent. Executing sliding-down-the-banister n-1 times results in the overall complexity O(n).
- 4. Since the graph is complete, all the vertices are in the adjacency list of the root r=1 and therefore will be added to the priority queue Q during the initialization with $\pi(j) = 1$ and $k(j) = (j-1)^2$ for 2 < j < n.

At the first iteration of the algorithm, the minimal element in Q is 2 because k(j) is a strictly increasing function. After removing 2 from Q and adding it to S, we have to update π and k for all the values in Q because they are all in adj(2) and they are all closer to 2 than they are to 1. Therefore, we have to make $\pi(j)=2$ and $k(j)=(j-2)^2$ for $3\leq j\leq n$. Following this intuition, at the i^{th} iteration of the algorithm the minimal element in Q will be i and

after extracting it Q must be updated as follows: $\pi(j) = i$ and $k(j) = (j-i)^2$ for $i+1 \le j \le n$.

- (a) Under these conditions for a graph with n vertices where n=100, the first 73 elements inserted in the MST have to be $\{1, 2, 3, \dots, 73\}$.
- (b) After inserting the 73^{rd} element and updating π and k for the remaining elements in Q we will have $\pi(84)=73$ and $k(84)=(84-73)^2=11^2=121$.