Relationship of Lung Cancer and Emphysema

Lung Cancer Workshop X

May 2, 2013

John Reilly, MD

Are they related? If so, why/how?

- Common things are common.
- Shared risk factors.
- Shared genetic predisposition.
- Shared mechanisms.

According to a recent Nationwide survey:

More Doctors smoke Camels THAN ANY OTHER CIGARETTE

DOCTORS in every branch of medicine—113,597 in all—were queried in this nationwide study of cigarette preference. Three leading research organizations made the survey. The gist of the query was—What cigarette do you smoke, Doctor?

The brand named most was Camel!

The rich, full flavor and cool mildness of Camel's superb blend of costlier tobaccos seem to have the same appeal to the smoking tastes of doctors as to millions of other smokers. If you are a Camel smoker, this preference among doctors will hardly surprise you. If you're not-well, try Camels now,

9 mg "tar," 0.7 mg nicotine av. per cigarette by FTC method.

Found in Mom's Basement

Significance of the Problem:

- COPD and lung cancer are highly prevalent and conditions with associated morbidity and mortality.
- The most significant risk factor for both COPD and lung cancer in the developed world is cigarette smoking.¹
- An estimated 100 million Americans are current or former smokers. ²

U.S. Deaths From COPD

Data from American Lung Association 2011 Report: Trends in Chronic Bronchitis and Emphysema Morbidity and Mortality

"Blue Bloater"

"Pink Puffer"

Alveolar Destruction With Emphysema

Normal

Emphysema

Nagai A, Thurlbeck WM. Scanning electron microscopic observations of emphysema in humans. A descriptive study. Am Rev Respir Dis. 1991;144:901-908. Official Journal Of The American Thoracic Society American Lung Association. 4/6/04. Reprinted with permission.

FEV₁ 105% DICO 50%

> FEV₁ 95% DICO 70%

FEV₁ 40% DICO 70%

COPD 5:177-186, 2008

Measuring Emphysema on CT scan: Man vs. Machine

• Man:

- Predictive of response to surgery
- Somewhat reproducible
- Not always a scalable solution: slow

Machine:

- Highly reproducible
- Very fast
- Does not recognize 'patterns' as well as trained human

Relationship of Lung Cancer and COPD:

- Lung cancer risk has been associated with airflow obstruction.¹⁻⁴
- Lung cancer risk has been associated with presence of emphysema on CT scan.^{5,6}

Skillrud et al. Ann Int Med 1986.

Mannino et al. Arch Int Med 2003.

Tockman Ann Intern Med 1987.

Study	Number of participants	Outcome	FEV ₁ (% predicted) [‡]	Emphysema
Skilrud et al.4	226	Incidence	Cancers in 8.8% of cases (FEV $_1$ <70%) versus 2.0% of controls (FEV $_1$ >85%); P = 0.024	NA
Tockman et al. ⁵	4,395	Mortality	 Cohort 1: RR 4.85 for FEV₁ <60% versus >60%; P=0.002 Cohort 2: RR 2.72 for FEV₁ 60-85% versus >85%; P=0.043 	NA
Speizer et al. ⁷	8,427	Mortality	Quartile-based FEV ₁ analysis confers cancer risk (RR 2.0–8.27)	NA
Lange et al. ⁶	13,946	Mortality	 RR 2.1 (95% CI 1.3–3.4) for FEV₁ 40–79% versus >80% RR 3.9 (95% CI 2.2–7.2) for FEV₁ <40% versus >80% 	NA
de Torres et al. ¹⁹	1,166	Incidence	RR 2.89 (95% CI 1.14–7.27) for FEV ₁ /FVC ratio <70% versus >70%	Semi-quantitative radiographic emphysema, RR 3.13 (95% Cl 1.32–7.44)
Wilson et al. ¹⁷	3,638	Incidence	OR 2.09 (95% CI 1.33–3.27) for any GOLD stage (FEV ₁ /FVC <70%)	Semi-quantitative radiographic emphysema, OR 3.56 (95% CI 2.21–5.73). After controlling for airflow obstruction, OR 3.14 (95% CI 1.91–5.15) for radiographic emphysema
Li et al. ²⁰	1,015	Incidence	NA	Semi-quantitative radiographic emphysema. Any = OR 2.79 (95% CI 2.05–3.81), >5% = 3.80 (95% CI 2.78–5.19), >10% = OR 3.33 (95% CI 2.30–4.82)
Zulueta et al. ²¹	9,047	Mortality	NA	Semi-quantitative radiographic emphysema, HR 1.7 (95% Cl 1.1–2.5); P=0.013
Maldanado et al. ²³	1,520	Incidence	Cancer risk conferred by decreasing FEV ₁ , OR 1.15 (95% CI 1.00–1.32; P=0.046); and FEV ₁ /FVC <70%, OR 1.29 (95% CI 1.02–1.62; P=0.0310)	Automated volumetric determination of radiographic emphysema was not associated with lung cancer risk, OR 1.042 (95% CI, 0.816–1.329; P =0.743)

CI, confidence interval; FEV $_1$, forced expiratory volume in 1 second; FVC, forced vital capacity; GOLD, Global Initiative for Chronic Obstructive Lung Disease; HR, hazard ratio; NA, not applicable; OR, odds ratio; RR, relative risk. *All studies controlled for age and cigarette consumption. ‡ The FEV $_1$ is reported as the percentage that would be predicted for that individual based on parameters that are known to influence the FEV $_1$, such as gender, age, height and race.

Houghton Nature Reviews Cancer 2013 13:233

Gene	COPD	Lung cancer
SERPINA1	MZ heterozygotes associated with COPD ($P = 0.04$) ¹⁵¹	A1AT carrier rate (12.3%) exceeded expected control rate $(P = 0.002)^{152}$
MMP1	Combined MMP1 and MMP12 SNPs associated with rapid decline in lung function ¹¹⁵	MMP1 promoter SNP associated with lung cancer risk (OR 1.8; 95% Cl 1.3–2.4) ¹⁵³
CYP1A1	Homozygous *2A allele significantly higher in severe COPD ($P < 0.01$) ¹⁵⁴	M1 homozygous genotype found in 4.10% cancers versus 1.69% controls ¹⁵⁵
EPHX1	Increased COPD risk for exon 3 variant both as heterozygote (OR 3.0; 95% Cl 1.2–7.1) and homozygote (OR 2.4; 95% Cl 1.1–5.1) ^{156,157}	Lung cancer risk associated with high EPHX activity $(P < 0.02)^{158}$
CHRNA3 and CHRNA5	CHRNA3 and CHRNA5 locus significantly associated with both radiographic emphysema ($P < 0.0002$) and airflow obstruction ($P = 0.004$) ³⁸	CHRNA3 and CHRNA5 locus strongly associated with lung cancer in three independent studies ⁴⁰
MPO	NA	Reduced risk (OR 0.5; 95% CI, 0.29–0.88) of lung cancer with A/G allele (reduced expression) ⁹³

CHRNA3, cholinergic receptor, neuronal nicotinic, α -polypeptide 3; CI, confidence interval; COPD, chronic obstructive pulmonary disease; CYP1A1, cytochrome P450 subfamily 1, polypeptide 1; EPHX1, epoxide hydrolase 1; MMP, matrix metalloproteinase; MPO, myeloperoxidase; MZ, individuals that have one normal allele of SERPINA1 and a commonly encountered abnormal allele designated Z; NA, not applicable; OR, odds ratio; SNP, single nucelotide polymorphism.

Potential Common Mechanisms:

Proteinase	Source	Matrix substrates	Promotes emphysema?	Promotes cancer?	Refs
Neutrophil elastase	PMNs	Elastin, CI, CIII, CIV, laminin, fibronectin and TIMPs	Yes	Yes	122,123
Proteinase 3	PMNs	Elastin, CIV, laminin and fibronectin	Yes	?	159
Cathepsin S	Macrophages and other cell types	Elastin, CI, CIII, laminin and fibronectin	Yes	Yes	160,161
Cathepsin L	Macrophages and other cell types	Elastin, CI, CIII, laminin and fibronectin	?	Yes	162
Cathepsin K	Macrophages and other cell types	Elastin, CI, CIII, laminin and fibronectin	?	?	163
MMP1	Stromal cells	CI, CIII and A1AT	Yes	Yes	112,114
MMP2	Stromal cells	Elastin, CI, CIV, laminin, fibronectin and A1AT	?	Yes	164
MMP3	Stromal cells	Elastin, CIII, CIV, laminin, fibronectin and A1AT	No	Yes	165
MMP8	PMNs	CI, CIII and A1AT	No	No	166
MMP9	Macrophages, PMN and other cell types	Elastin, CI, CIV, laminin and A1AT	Yes	Yes	106,107, 109
MMP12	Macrophages	Elastin, CI, CIV, fibronectin, laminin and A1AT	Yes	No	116,119
MMP13	Stromal cells	CI, CIII and CIV	No	Yes	167
MMP14	Stromal cells and macrophages	CI, CIII, CIV, fibronectin and laminin	?	Yes	168,169

CI, collagen type I; CIII, collagen type III; CIV, collagen type IV; MMP, matrix metalloproteinase; PMNs, polymorphonuclear leukocytes; TIMP, tissue inhibitors of metalloproteinase.

Genetics:

- Process oxidant or noxious stress
- EPHX, CYPs, MPO and NRF2

Cell cycle regulation:

- Avoid apoptosis
- Uncontrolled proliferation

Cytokines:

- NF-κB activation
- Regulate tumour microenvironment

Inflammation:

- Field propagation
- Cytotoxic versus growth promoting

Proteinases:

- Matrix degradation
- Release growth factors

Nature Reviews | Cancer

Nature Reviews | Cancer

Conclusions:

- Weight of evidence supports a greater than chance association of emphysema and lung cancer.
- There are plausible mechanistic hypotheses for this association.
- Changes in lung structure imaged on CT scanning are a marker for increased risk.