Оптимизации поиска приближенных решений в эволюционирующих клеточных автоматах

Отчет по преддипломной практике студента 451 группы А. А. Григорьева

Саратовский государственный университет им. Н. Г. Чернышевского

Кафедра математической кибернетики и компьютерных наук

Научный руководитель: доцент Семенов М. С.

2020г.

Рис.: Элементы двумерного клеточного автомата первого порядка с возможными состояниями ячеек 0 и 1.

Рис.: Элементы двумерного клеточного автомата первого порядка с возможными состояниями ячеек 0 и 1.

Рис.: Элементы двумерного клеточного автомата первого порядка с возможными состояниями ячеек 0 и 1.

- Создание приложения для моделирования клеточных автоматов.
- Написание эффективного генетического алгоритма для поиска автоматов, воспроизводящих целевое изображение.
- Проведение экспериментов и сбор статистики для последующего определения лучших параметров модели.

Цель эксперимента — стабильное воспроизведение клеточными автоматами целевого изображения (паттерна).

Рис.: Примеры паттернов.

Рис.: Снимок экрана внутри среды разработки Unity.

Создана программа для обновления множества клеточных автоматов с визуализацией на шейдерах.

Рис.: Визуализация клеточного автомата.

Для «обучения» клеточных автоматов воспроизводить паттерн, использовался генетический алгоритм.

Рис.: Генофонд популяции клеточных автоматов в начале эксперимента. По оси X — биты генов от 0 до 512, по оси Y — клеточные автоматы в популяции (256)

Для «обучения» клеточных автоматов воспроизводить паттерн, использовался генетический алгоритм.

Рис.: Генофонд популяции клеточных автоматов в конце эксперимента. По оси X — биты генов от 0 до 512, по оси Y — клеточные автоматы в популяции (256)

Начиная каждую итерацию в случайном состоянии, клеточный автомат способен воспроизводить заданные паттерны.

Рис.: Клеточный автомат на первой, десятой и сотой итерации.

Особое внимание уделялось оптимизации алгоритмов.

Total	Self	Calls	GC Alloc	Time ms	Self ms	Self	Calls	GC Alloc	Time ms	Self ms
99.1%	0.0%	2	16.2 MB	4543.61	0.06	0.0%	2	22.0 KB	164.77	0.05
99.0%	0.0%	1	16.2 MB	4536.29	0.00	0.0%	1	22.0 KB	162.96	0.00
99.0%	0.0%	1	16.2 MB	4536.29	0.01	0.0%	1	22,0 KB	162.96	0.01
99.0%	0.0%	1	16.2 MB	4536.23	0.00	0.0%	-	22.0 KB	162.82	0.00
99.0%	0.0%	1	16.2 MB	4536.23	0.06	0.000000	-			
99.0%	0.0%	1	16.2 MB	4535.46	0.86	0.0%	1	22.0 KB	162.82	0.05
90.9%	0.0%	1	110.0 KB	4163.74	0.17	0.0%	1	22.0 KB	140.82	0.04
90.8%	0.0%	256	110.0 KB	4162.75	0.30	81.3%				
90.8%	0.0%	256	110.0 KB	4159.79	0.55	0.0%	256	0 B	0.01	0.01
90.7%	16.1%	256	110.0 KB	4158.49	737.58	0.0%	256	0 B	0.01	0.01
37.4%	11.6%	4194304	0 B	1716.87	535.87	12.0%	256	0 B	20.76	20.76
14.1%	8.5%	4227072	0 B	648.66	391.01	0.3%	1	0 B	1.13	0.58
						500100000				
4.0%	4.0%	4194304	0 B	187.52	187.52	0.0%	512	0 B	0.02	0.02
0.8%	0.0%	256	100.0 KB	40.60	0.05	0.0%	32	0 B	0.01	0.00
0.2%	0.0%	256	0 B	12.95	0.06	0.0%	33	0 B	0.00	0.00
0.1%	0.0%	33024	0 B	8.91	4.17	0.0%	32	0 B	0.00	0.00
0.0%	0.0%	256	10.0 KB	0.13	0.13	0.0%	2	0 B	0.00	0.00
0.0%	0.0%	256	0 B	0.27	0.27	0.0%	-	0 B	0.00	0.00

Рис.: Снимки из профилировщика для подсчета приспособленности 256 клеточных автоматов на каждом кадре: до и после.

Особое внимание уделялось оптимизации алгоритмов.

```
    3
    4
    5
    6
    20
    21
    22
    ...
    3
    5
    6
    20
    21
    22
    ...
    3
    5
    6
    20
    21
    22
    ...
    21
    22
    21
    22
    ...

    6
    6
    8
    9
    30
    31
    32
    ...
    31
    32
    ...
```

Рис.: Использование побитовых операций для достижения максимальной производительности.

Создана гибкая программа для конфигурации параметров эксперимента.

Simulation settings Update Period 0.001	
Screen Size In Pixels 64 Virtual Screens In Simulation 256 Screens In Simulation 32 Update Check Screen ✓	
Virtual Screens In Simulation 256 Screens In Simulation 32 Update Check Screen ₩	
Screens In Simulation 32 Update Check Screen ✓	
Update Check Screen ☑	
Datapath C:\Users\Public\Documents\Unitv Projects\CellularA	
	utomati
Evolution	
Time To Evolution 1.5	
Mutation Percent 25	
Mutate Bits Up To 4	
Pattern File PtnElkaSS1	0
Pivot Bit Fitness Threshold 15	
Write To Global Pivot Bits	
Genofond Screen (Mesh Renderer)	0
Patterns	
Fitness Screen A Fitness Figure (Transform)	0
Performance-based fields	
Fitness Calculations Needed 25	
Fitness Calc Screens Per Frame 128	
Multisimulation settings	
Ms Fitness Threshold 25	
Ms Calculations After Threshold 100	
Evolution Step Limit 1000	
Cross Separation	

Рис.: Возможность настраивать количество автоматов, процент и количество мутаций, желаемое значение приспособленности особей, количество итераций, на которых происходит подсчет приспособленности, время до этапа эволюции и другое.

Для каждого эксперимента создается график приспособленности, и сохраняется полная история прироста приспособленности.

Рис.: График приспособленности.

Программа сохраняет наиболее важные биты правил для поиска закономерностей в правилах для конкретного паттерна.

Рис.: «Опорные» биты правил клеточных автоматов выделены оранжевым.

Программа выделяет наиболее важные биты, сохраняющиеся между последовательными запусками эксперимента с одинаковыми параметрами.

Рис.: Глобальные «Опорные» биты правил клеточных автоматов выделены бирюзовым.

Было проведено 436 экспериментов над 6 видами паттернов используя различные конфигурации генетического алгоритма. Общее время работы экспериментов: 10 дней, 5 часов.

В результате преддипломной практики:

- создано приложение для моделирования двумерных клеточных автоматов первого порядка и их «обучения» воспроизводить паттерн;
- проведены эксперименты по воспроизведению разных паттернов, используя несколько конфигураций генетического алгоритма.

Mordvintsev, Alexander and Randazzo, Ettore and Niklasson, Eyvind and Levin, Michael

Growing Neural Cellular Automata Distill, 2020.

Chavoya, Arturo and Duthen, Yves Using a genetic algorithm to evolve cellular automata for 2D/3D computational development

Genetic and Evolutionary Computation Conference, 2012.

- https://graphics.stanford.edu/seander/bithacks.html
 Bit Twiddling Hacks
- https://mathworld.wolfram.com/GameofLife.html
 Game of Life

СПАСИБО ЗА ВНИМАНИЕ!