运筹学基础: 课后练习1

Due Date: 2025-03-31

1. 尝试给出以下点列的 Q-收敛速度:

(a)
$$x^k = \frac{1}{k!}, \ k = 1, 2, \cdots$$

(b)
$$x^k = \begin{cases} (\frac{1}{4})^{2^k}, & \text{k is even} \\ \frac{x^{k-1}}{k}, & \text{k is odd} \end{cases}$$
 $k = 1, 2, \cdots$

- 2. 考虑函数 $f(x) = x_1^2 + x_2^2$,其中 $x = (x_1, x_2) \in \mathbb{R}^2$,以及迭代点列 $x^k = (1 + \frac{1}{2^k})(\cos k, \sin k)^T$, $k = 1, 2, \cdots$ 。请说明:
 - (a) $\{f(x^{k+1})\}$ 是否收敛?若收敛,给出 Q 收敛速度。
 - (b) $\{x^{k+1}\}$ 是否收敛? 若收敛,给出 Q 收敛速度。
- 3. 证明矩阵 A 的 ℓ_2 范数等于其最大奇异值,即

$$\sigma_1(A) = \max_{\|x\|_2 = 1} \|Ax\|_2$$

4. 证明以下与矩阵范数相关的不等式:

- (a) $||AB||_F \le ||A||_2 ||B||_F$
- (b) $\langle A, B \rangle \le ||A||_2 ||B||_*$
- 5. 设矩阵 A 为

$$A = \begin{bmatrix} I & B \\ B^T & I \end{bmatrix}$$

其中 $\|B\|_2 < 1$,I 是单位矩阵。证明:A 可逆且

$$||A||_2 ||A^{-1}||_2 = \frac{1 + ||B||_2}{1 - ||B||_2}$$

1

- 6. 假设 A 和 B 均为半正定矩阵。证明: $\langle A, B \rangle \geq 0$ 。提示: 利用对称矩阵的特征值分解。
- 7. 计算以下矩阵变量函数的导数:
 - (a) $f(X) = a^T X b$, 其中 $X \in \mathbb{R}^{m \times n}$, $a \in \mathbb{R}^m$, $b \in \mathbb{R}^n$ 是给定的向量。
 - (b) $f(X) = \operatorname{tr}(X^T A X)$, 其中 $X \in \mathbb{R}^{m \times n}$ 是长方阵,A 是方阵(但不一定对称)。
 - (c) $f(X) = \ln(\det(X))$, 其中 $X \in \mathbb{R}^{n \times n}$, 定义域为 $\{X | \det(X) > 0\}$ 。
- 8. 证明以下集合是凸集:
 - (a) 超平面: $\{x \in \mathbb{R}^n \mid a^T x = b\}$
 - (b) 半空间: $\{x \in \mathbb{R}^n \mid a^T x \leq b\}$
 - (c) 对称矩阵集合: $\{X \in \mathbb{S}^n \mid X = X^T\}$
 - (d) 半正定矩阵集合: $\{X \in \mathbb{S}^n \mid x^T X x > 0, \forall x \in \mathbb{R}^n\}$
 - (e) 二阶锥: $= \{(x,t) \in \mathbb{R}^{n+1} \mid t \ge x^T x, t \ge 0\}$
- 9. 考虑二次不等式

$$x^T A x + b^T x + c \le 0$$

其中 $A \in \mathbb{R}$ 阶对称矩阵。设 C 是上述不等式的解集。

- (a) 证明: 当 A 正定时,C 是凸集。
- (b) 设 C' 是 C 与超平面 $g^T x + h = 0$ ($g \neq 0$) 的交集。若存在 $\lambda \in \mathbb{R}$ 使 得 $A + \lambda g g^T$ 是半正定的,证明: C' 是凸集。
- 10. 判断以下函数是否为凸函数,并求它们的共轭函数:
 - (a) 负熵: $\sum_{i=1}^n x_i \ln x_i$
 - (b) 矩阵对数: $f(x) = -\ln \det(X)$
 - (c) 最大值函数: $f(x) = \max_i x_i$
 - (d) 二次锥上的对数函数: $f(x,t) = -\ln(t^2 x^T x)$, 注意 f 的自变量是 (x,t)