

Queries and information needs

A query can represent very different information needs

• May require different search techniques and ranking algorithms to produce the best rankings

A query is often a poor representation of a need

- \circ Users may find it difficult to express what they want
- Users may assume the search engine will guess

Long queries

Yahoo! (2006) claimed 17% queries with 5+ words

Current trend toward longer queries

Task-oriented search

Question answering, literature search, cut-and-paste

Voice-activated search

o Cortana, Siri, Google Now

Complex queries

Long queries are also complex

- Rarity of verbose queries
- High degree of query specificity
- Term redundancy or extraneous terms (lot of noise)
- Lack of sufficient natural language parsing
- Hard to distinguish key and complementary concepts

Context matters

"It's raining"

- $\circ \dots$ says the weatherman, conveying the weather
- o... writes the poet, conveying sadness in their work
- o... says your mom, indicating you should put on a coat
- o... says one bored person to another

Query understanding

About what happens before ranking

- \circ How users express their queries
- How we can interpret their needs

Queries as first-class citizens

- -• How to improve ranking regardless of query
- How to improve query regardless of ranking

A host of techniques

Query preprocessing

Query rewriting

- Language detection
- Query relaxation
- Character filtering
- Query expansion
- Query tokenization
- Query segmentation
- Spelling correction
- Query scoping
- o Inflection handling

How to (mis)spell "Britney Spears"

- britney spears briney spears
 - britaney spears
- ∘ brittany spears ∘ brittny spears
- o britnay spears
- ∘ brittney spears ∘ brintey spears
- ∘ britany spears ∘ britanny spears ∘ brtiney spears
- o brithney spears
- britiny spears
- britny spears
- o britnet spears
- birtney spears
- briteny spears
- ∘ britteny spears ∘ britiney spears

Identify misspelled query words

o Those not found in a spelling dictionary

Identify candidate corrections

Spelling correction

Spelling correction

10-15% of all web queries have spelling errors

spelling correction simply doesn't work

• For today's searchers, a search engine without robust

o Dictionary words similar to the misspelled word

Display candidate corrections

o Ideally, the single best one

Identifying candidate corrections

Compute edit distance

o Minimum number of insertions, deletions, substitutions, or transpositions of single characters

extenssions → extensions (insertion error)

poiner → pointer (deletion error)

marshmellow → marshmallow (substitution error)

brimingham → birmingham (transposition error)

Identifying candidate corrections

Edit distance calculation can be sped up

- Restrict to words starting with same character
- o Restrict to words of same or similar length
- o Restrict to words that sound the same

Phonetic encoding (Soundex)

1. Keep the 1st letter (in uppercase)		extenssions	extensions	
2. Replace with hyphens: $a, e, i, o, u, y, h, w \rightarrow -$		1. Extenssions	1. Extensions	
		2. Ext-nss-ns	2. Ext-ns-ns	
 Replace with numbers: b, f, p, v → 1 	$l \rightarrow 4$	3. E23-52252	3. E23-52-52	
$m, n \rightarrow 5$	$d, t \rightarrow 3$	4. E23-52-52	4. E23-52-52	
	$r \rightarrow 6$	5. E235252	5. E235252	
4. Delete adjacent repeats of a number		6. E235	6. E235	
5. Delete hyphens				
6. Keen first 3 numbers and pad with zeros				

Phonetic encoding (Soundex)

1. Keep the 1st letter (in uppercase)		poiner	pointer	
2. Replace with hyphens:		1. Poiner	1. Pointer	
$a, e, i, o, u, y, h, w \rightarrow -$	$l \rightarrow 4$ $d, t \rightarrow 3$	2. Pn-r	2. P—nt-r	
3. Replace with numbers: $b, f, p, v \rightarrow 1$ $c, g, j, k, q, s, x, z \rightarrow 2$ $m, n \rightarrow 5$		3. P5-6	3. P—53–6	
		4. P5-6	4. P536	
	$r \rightarrow 6$	5. P56	5. P536	
Delete adjacent repeats of a number Delete hyphens		6. P560	6. P536	
6. Keep first 3 numbers and pad with zeros				

Displaying the best correction

There might be several candidate corrections

 \circ We can display only one ("Did you mean ...")

Best correction depends on context

- ∘ lawers → lowers, lawyers, layers, lasers, lagers
- ∘ trial lawers → trial lawyers

Could mine query logs or other corpora for stats

Handling word inflections

Option #1

 • Stem both documents and query [rock climbing] → [rock climb]

Option #2

• Expand query with inflection variants
 [rock climbing] → [rock {climbing climb}]

Query-based stemming

Delay stemming until we see a query

o Improved flexibility, effectiveness

Leverage context from surrounding words

- $\circ [logistic \ manager] \rightarrow [\{logistic \ logistics\} \ manager]$
- $\circ [logistic \ regression] \rightarrow [logistic \ regression]$

Stem classes

Stem classes identified by stemming large corpora

bank: { bank banked banking bankings banks }

ocean: { ocean oceaneering oceanic oceanics oceanization oceans } polic: { polic polical polically police policeable policed policement policer policers polices policial policially policier policiers ... }

Often too big and inaccurate

Modify using analysis of word co-occurrence

Query rewriting

Rewriting for recall

- Query relaxation
- Query expansion

Rewriting for precision

- Query segmentation
- Query scoping

Query rewriting for recall

Some queries may return very limited sets of results

• Some may return nothing (aka null queries)

Vocabulary mismatch problem

o Searcher and publisher's vocabularies may differ

Solution: bridge the gap by tuning query specificity

o Either remove or add terms as required

Query relaxation

Rather than a verbose query, fire a shorter version!

- [ideas for breakfast menu for a staff meeting]
 - ↓ [breakfast meeting menu ideas]
- [Provide information on international support provided to either side in the Spanish Civil War]
 - ↓ [spanish civil war]

Query relaxation approaches

How to discard useless (or keep useful) terms?

 Several feature-based machine learning approaches (classification, regression, clustering)

Key considerations

- \circ How to identify sub-query candidates?
- What features best describe a sub-query?

Identifying sub-query candidates

Individual words

Sequences of 2+ words

Combinations of 2+ words

Salient phrases (noun phrases, named entities)

Right part of the query

Sub-query features

Frequency statistics (TF, MI) in multiple corpora

 \circ Google n-grams, Wiki titles, query logs

Linguistic features

 \circ POS tags, entities, acronyms, stopwords

Sub-query features

Length, category, similarity/position wrt query

Query expansion

Bridge vocabulary mismatch with added words

o Adding alternative words

[vp marketing] → [(vp OR vice president) marketing] [laptop repair] → [(laptop OR computer) repair]

Adding related words

[tropical fish] → [tropical fish aquarium exotic]

Alternative words expansion

Acronyms matched in dictionaries

VP: Vice President

VP: Vice Principal

Acronyms mined from text

Business intelligence (BI) combines a broad set of data analysis applications, including online analytical processing (OLAP), and data warehousing (DW).

Alternative words expansion

Synonyms matched in dictionaries

laptop: computer laptop: notebook

Synonyms mined via similar contexts

 Cosine of word embeddings (e.g., word2vec) (see Latent Semantic Models class)

Related words expansion

Relatedness via word co-occurrence

• Either in the entire document collection, a large collection of queries, or the top-ranked documents

Several co-occurrence measures

o Mutual information, Pearson's Chi-squared, Dice

Interactive query expansion

Require user's (explicit, implicit) feedback

 Rated, clicked, viewed documents (see *Feedback Models* class)

Query rewriting for precision

Query relaxation and expansion improve recall

Avoid small or empty result sets

We also want to improve precision

Avoid large and noisy result sets

Solution: improve the focus of the query

 \circ Identify key segments and scopes

Query segmentation

Queries often contain multiple semantic units

- [new battery charger for hp pavilion notebook]
- ▶ [new battery charger hp pavilion notebook]

Leverage query structure via segmentation

- o Identify multiple segments
- Process segments separately (see Structural Models class)

Query segmentation

A query with n tokens has n-1 split points \circ We can have a total of 2^{n-1} possible segmentations How to find the best segmentation?

[machine learning toolkit]
[machine learning toolkit]
[machine learning toolkit]

[machine learning toolkit]

Query segmentation approaches

Several approaches

- o Dictionary-based approaches
- Statistical approaches
- o Machine-learned approaches

Dictionary-based segmentation

Simplest approach

o A segment is a phrase in a dictionary

Drawback #1: dictionary coverage • e.g., machine learning not found Drawback #2: segment overlap

 $\circ\,\text{e.g.},$ both machine learning and learning toolkit found

Statistical segmentation

Exploits word collocations

 A word is in a segment if it co-occurs with the other words already in the segment above a threshold

Drawback: threshold sensitivity

- o Threshold determines a trade-off (precision vs. recall)
- o Threshold is corpus and language specific

Machine-learned segmentation

A binary classification approach

• Each token either continues a segment or not

Tokens represented as feature vectors

 \circ e.g., token frequency, mutual information, POS tags

Drawback: data labeling for training

 \circ Must manually segment lots of queries

Query scoping

Add a tag to each query segment

- Attributes in structured domains [black michael kors dress]
 - ↓ [black:color michael kors:brand dress:category]
- Semantic annotations in open domains [microsoft ceo]
 - ▶ [microsoft:company-3467 ceo:occupation-7234]

Tagging query segments

Segment tagging as non-binary, sequential prediction

• Classes known in advance (e.g., document fields, product attributes, knowledge base entries)

Several approaches

- o Dictionary-based approaches
- $\circ \ Graphical \ modeling \ approaches$

Exploiting tagged scopes

Attribute scoping

- Match each segment against its tagged attribute Semantic scoping
- Promote semantically related matches (e.g., documents with entities close to the query entity)

Summary

Users provide limited evidence of their needs

o And yet expect fantastic search results

Query understanding helps bridge the gap

- o Better recall through relaxation and expansion
- o Better precision through segmentation and scoping

Open up possibilities for effective ranking!

References

Information Retrieval with Verbose Queries
Gupta and Bendersky, FnTIR 2015

Search Engines: Information Retrieval in Practice, Ch. 6 Croft et al., 2009

Introduction to Information Retrieval, Ch. 3 Manning et al., 2008

References

Query Understanding Tunkelang, 2017

Coming next...

Vector Space Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br