- What is Data Science
 - Exploration
 - Prediction
 - Inference
- Example: Facebook Lexicon
- Data Makes Everything Clearer?
- Data Makes Everything Clearer (part 1)?
 - · Is there any relation between fat consumption and heart disease
 - Association equivalent to "any relation"
 - Yes the graph points to an association
 - · Does fat consumption increase heart disease?
 - Causality
 - This question is often harder to answer
- Spot Map
 - · map with marking
- Comparison
 - scientists use comparison to identify association between a treatment and an outcome
 - compare outcomes of group A who go treatment to outcomes of group B who did not receive treatment
 - · different results mean evidence of association
 - determining causation requires even more care
- Confounding factors
 - if treatment and control groups are similar apart from the treatment, then difference in outcomes can be ascribed to the treatment
 - if treatment and control groups have systematic differences other than the treatment, then might be difficult to identify causality
 - Such differences are often present in observational studies
 - · They are called confounding factors and can lead researchers astray
- Randomize
 - If you assign individuals to treatment and control at random, then the two groups will be similar apart from the treatment
 - can account mathematically for variability in assignment
 - · Randomized Controlled Experiment
 - may run blind experiment (placebo drug)
 - be careful with observational studies
- Comparison
 - group by some treatment and measure some outcome
 - a treatment group and a control group
 - If the outcome differs between these two groups, that's evidence of an association (or relation)
 - if the two groups are similar in all ways but the treatment itself, a difference in the outcome is evidence of causality
 - when a group is divided randomly, it's unlikely that there are systematic differences between sub-groups
- correlation equals causation
- What is Data Science
- What is Data Science
 - data science aims to derive knowledge from big data, efficiently and intelligently

- data science encompasses the set of activities, tools, and methods that enable data-driven activities in science, business, medicine, and government
- Contrast: Databases
 - · Databases/Data science
 - data value = "precious"/"cheap"
 - data volume = modest/massive
 - examples = bank records/online clicks
 - priorities = Consistency, Error recovery, Auditability / Speed, Availability, Query richness
 - structured = Strongly (schema) / Weakly or none (Text)
 - Properties = Transactions
 - Realizations Structured Query Language (SQL) /
 - · Databases/Data Science
 - querying the past / querying the future
- Contrast: Traditional Machine Learning
 - Traditional Machine Learning / Data Science
 - Develop new (individual) models / Explore many models, build and tune hybrids
 - Prove mathematical properties of models / understand empirical properties of models
 - Improve/validate on a few, relatively clean, small datasets / develop/use tools that can handle massive datasets
 - publish a paper / take action

- Data Science Topics

- Data Science Topics
 - Data Acquisition
 - acquiring the data
 - Data Preparation
 - cleaning the data
 - Analysis
 - build a model and refine that model
 - Data Presentation
 - take model and present the data to people
 - · Data Products
 - take complex models and turn into something that a none expert can understand
 - Observation and Experimentation

_

- What's Hard about Data Science
 - · Overcoming assumptions
 - Making ad-hob explanations of data patterns
 - Not checking enough (validate models, data pipeline integrity, etc.)
 - Overgeneralizing
 - Communication
 - · Using statistical test correctly
 - Prototype Production transitions
 - · Data pipeline complexity
- ETL (Extract Transform Load)
 - · all data to a Data Warehouse
 - · result of data warehouse
 - Data Products
 - Business Intelligence
 - Analytics

- Data Acquisition (Sources in Web Companies)
 - Examples from Facebook
 - Application databases
 - Web server logs
 - Event logs
 - Application Programming Interface (API) server logs
 - Ad and search server logs
 - Advertisement landing page content
 - Wikipedia
 - Images and video
- Data Acquisition and Preparation Overview
 - Extract, Transform, Load (ETL)
 - we need to extract data from the sources(s)
 - we need to load data into the sink
 - we need to transform data at the source, sink, or in a staging area
- Data Acquisition and Preparation Process Model
 - The construction of a new data preparation process is done in many phases
 - Data characterization
 - Data cleaning
 - Data integration
 - We must efficiently move data around in space and time
 - Data transfer
 - Data serialization and deserialization (for files or network)
- Data Acquisition and Preparation Workflow
 - · The transformation pipeline or workflow often consists of many steps
 - If a workflow is to be used more than once, it can be scheduled
 - Scheduling can be time-based or event-based
 - Use publish-subscribe to register interest (e.g., Twitter feeds)
 - · Recording the execution of a workflow is known as capturing the lineage or provenance
 - Spark's DataFrames do this for you automatically
- Impediments to Collaboration
 - The diversity of tools and programming/scripting languages makes it hard to share
 - Finding a script or computed result is often harder than just writing the program from scratch
 - view that most analysis work is "throw away"
- Business Questions, Statistics, and Exploratory Data Analysis
- Descriptive vs. Inferential Statistics
 - · Descriptive:
 - E.g. Median describes data but can't be generalized beyond that
 - We will talk about Exploratory Data Analysis in this lecture
 - · Inferential:
 - E.g., t-test enables inferences about population beyond our data
 - Techniques leveraged for Machine Learning and Prediction
 - Making conclusions based on data in random samples
- Applying Techniques
 - Supervised Learning: Classification and Regression
 - · Unsupervised Learning: Clustering and Dimension reduction
 - Note: UL often used inside of a larger SL problem
 - e.g. auto-encoders for image recognition neural nets

- Learning Techniques
 - Supervised Learning
 - KNN (K nearest neighbors)
 - Naive Bayes
 - Logistic Regression
 - Support Vector Machines
 - Random Forests
 - Unsupervised learning
 - Clustering
 - Factor Analysis
 - Latent Dirichlet Allocation
- 5-Number Summary Statistic
 - Summary statistic provides:
 - minimum and maximum (smallest and largest observations)
 - lower quartile (Q1) and upper quartile (Q3)
 - median (middle value)
 - · more robust to skewed and long-tailed distributions