

PERFORMANCE COMPARISON OF DEEP BELIEF NETS AND NEURAL NETWORKS

EECS 700 – COMPUTATIONAL NEUROSCIENCE

Sai Nivedita Chandrasekaran May 3, 2012

OVERVIEW

- Biological Neural Network
- Artificial Neural Network
- History of NNs
- Restricted Boltzmann Machines
- Deep Belief Nets
- Dataset
- Problem Statement and Hypothesis
- Experimental Setup for DBN & NN
- Results
- Conclusion
- Acknowledgement

BIOLOGICAL NEURAL NETWORK

- Human brain has about 10¹¹ neurons and 10¹⁴ synapses.
- Neuron consists of a soma, axons and dendrites.
- Synapse links an axon to a dendrite.
- For a given stimulus:
 - Synapse might increase excite
 - Synapse might decrease inhibit
- Learning happens by changes to synapses.

ARTIFICIAL NEURAL NETWORKS

 An artificial neural network is inspired by the biological neural network.

Biological	Artificial	
Soma	Unit	
Axon, Dendrite	Connection	
Synapse	Weight	
Potential	Weighted sum	
Threshold	Bias weight	
Signal	Activation	

HISTORY OF NNs

- First generation
 - Perceptrons used one layer of hand coded features and recognized targets by learning to weigh the features.
 - Perceptrons are limited to what they can learn.

HISTORY Contd...

- Output is compared with the expected target and the error is calculated.
- The error is back propagated to determine the derivatives.
- The network might have multiple hidden layers.
- Disadvantage
 - Requires labeled training data.
 - Time consuming for multiple hidden layers.
 - Possibility of converging in local optima.

Restricted Boltzmann Machines

- RBMs is a stochastic neural network.
- Each neuron have random behavior when activated.
- It has one layer of visible units and one layer of hidden units.
- The connections are bidirectional.
- The learning is unsupervised until the last layer.

DEEP BELIEF NETS

- RBMs are stacked and trained in a greedy way to form deep belief nets.
- Model the joint distribution between observed output and the hidden layers.

DATASET

- Wisconsin Breast Cancer dataset. (UCI repository)
- Number of instances = 699 (250-B , 449-M)
- Number of features = 10
- Example of attributes: Clump thickness, marginal adhesion, uniformity of cell shape, etc.
- Class:
 - 2 for benign
 - 4 for malignant
- Ignored the sample ID.

PROBLEM STATEMENT

- Binary classification problem.
- To predict if the sample is benign or malignant.

HYPOTHESIS

 Deep belief nets will outperform traditional neural networks.

EXPERIMENTAL SETUP FOR DBN

- Considered 600 samples.
- Training data: 20 batches containing 20 samples each.
- Testing data: 20 batches containing 10 samples each.
- Relabeled benign to be 0 and malignant to be 1.
- Used 3 layers.
- For DBNs, modified the code given for the MNIST data.

EXPERIMENTAL SETUP FOR NN

- Considered 600 samples
- Training data: 400 samples
- Test data: 200 samples
- Learning rate: Varied it between 0.5 and 1.0
- Performed model selection to pick the best learning rate
- Used 2 layers
- Implemented NN in matlab

RESULTS

Test Result

Measure	Definition	DBN	NN
Precision	TP/TP+FP	90%	95%
Recall	TP/TP+FN	45%	88%
Accuracy	TP+TN/ (TP+TN+FP+FN)	87%	90%

- DBN had zero error in training and had an accuracy of 100%
- NN had a training accuracy of 95.48%

HYPOTHESIS FAILED!!

- Low sample size ~ 600.
- DBN is effective for large sample sizes.
- Low sample size doesn't help in capturing the effects of features.
- DBN is capable of over fitting! (My training error was zero)
- Bad generalization performance. (Ineffective classification of new samples)

FUTURE WORK

Experiment with large datasets.

 The most exciting work according to me would be to exploit multi-task learning using DBNs.

ACKNOWLEDGEMENT

 I would like to thank Dr.Brian for suggesting deep belief nets for my project as it opened a whole new direction for me in machine learning.

REFERENCES

- http://www.cs.utsa.edu/~bylander/cs6243/neural-networks
- http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3
- Deeplearning.net
- http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
- Wolberg, W.H., & Mangasarian, O.L. (1990). *Multisurface method of pattern separation for medical diagnosis applied to breast cytology*. In Proceedings of the National Academy of Sciences, 87, 9193--9196.
- Zhang, J. (1992). Selecting typical instances in instance-based learning. In Proceedings of the Ninth International Machine Learning Conference (pp. 470--479). Aberdeen, Scotland: Morgan Kaufmann.

Thanks!!!

Questions ?!?!