FACULTY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section				Sheet no./rev.	
Learning Tool for					1	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design						

FLEXURAL REINFORCEMENT CALCULATION (BS8110:PART1:1997)

(RECTANGULAR BEAM)

$$K = \frac{M}{bd^2f_{cu}}$$

$$K'=0.156$$

• If $K \le K'$, compression reinforcement is not required;

$$Z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right\}$$

But not greater than 0.95d

$$x = \frac{(d-z)}{0.45}$$

$$A_S = {}^M/_{0.95f_yZ}$$

• If K > K', compression reinforcement is required;

$$Z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K'}{0.9}} \right\}$$

$$x = \frac{(d-z)}{0.45}$$

$$A'_{S} = \frac{(K - K')f_{cu}bd^{2}}{0.95f_{y}(d - d')}$$

$$A_{S} = {\binom{K'f_{cu}bd^{2}}{0.95f_{y}Z}} + A'_{S}$$

$$K \le K'$$

$$f_{cu} = Mpa$$

$$f_{v} = Mpa$$

$$L = m$$

$$M = kN/m$$

$$h = mm$$

$$Z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right\} =$$

$$Z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K'}{0.9}} \right\} =$$

$$X = \frac{(d-z)}{0.45} =$$

$$A_S = \frac{M}{0.95 f_y Z} =$$

$$Z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K'}{0.9}} \right\} =$$

$$X = \frac{(d-z)}{0.45} =$$

$$A'_S = \frac{(K-K') f_{cu} b d^2}{0.95 f_y (d-d')} =$$

$$A_S = \frac{(K' f_{cu} b d^2)}{0.95 f_y Z} + A'_S =$$