We say $(x^{(i)}, y_i)$, $(x^{(n)}, x_i)$ are linearly separable with const 8 > 0 if \exists a unit vector $w^* \in \mathbb{R}^p$, $||w^*|| = |$ such that $y_i \cdot (w^* \cdot x^{(i)}) > 8 > 0$ i = 1, ..., n.

Perception Learning Algorithm Imput: sample pts with labels $(x^{(i)}, y_1), -\cdots, (x^{(n)}, y_n)$ Outenit: weight w = (w, --, wp) Step 1: Set k=0, W=0 Step 2: While $\exists (x^{(i)}, y_i)$ such that y_{j} $(w^{(k)}, x^{(i)}) < 0$, update $w^{(k+1)} = w^{(k)} + y_i x^{(i)}$

a < atl

Remarks: Here is a heuristic argument why $w^{(k+1)}$ is better than $w^{(k)}$ for classification Suppose $(x^{(i)}, y_i)$ is misclassified by sign $(w^{(k)}, x^{(i)})$.

$$y_{i} = 1$$

$$w(h) + x(i) = w(h+1)$$

$$x(i)$$

$$y_{\hat{i}} = -1$$

$$y_{\hat{i}} = -$$

Theorem: Suppose

(1) the sample pts with latels (x^0, Y_1) , ... $(x^{(n)}, Y_n)$ are linearly separable with const 8 > 0.

while
$$w^* = (w^{(b)} + y_i \times x^{(j)}) \cdot w^*$$

$$= w^{(b)} \cdot w^* + y_i (x^{(i)} \cdot w^*)$$

$$> w^{(b)} \cdot w^* + y$$
This shows: $w^{(b+1)} \cdot w^* > w^{(b)} \cdot w^* + y$

$$y^{(b)} \cdot w^* > w^{(b)} \cdot w^* + y$$

$$y^{(i)} \cdot w^* > w^{(b)} \cdot w^* + y = y$$

$$w^{(i)} \cdot w^* > w^{(i)} \cdot w^* + y = y$$

$$w^{(i)} \cdot w^* > w^* > w^{(i)} \cdot w^* + y = y$$

$$w^{(i)} \cdot w^* > w^* > w^* > w$$
Add the inequalities to get
$$w^{(b)} \cdot w^* > hy > 0$$
Thus $||w^{(b)}|| \ge |w^{(b)} \cdot w^*| = w^{(b)} \cdot w^* > hy > 0$

$$||w^* > hy > 0$$

$$||w^* >$$