

Image. xkcd comics - # 2582

# Data Mining: Data Similarity, Dissimilarity, and Distance CS 4821 - CS 5831 - s24

Some slides adapted from P. Smyth; A. Moore, D. Klein Han, Kamber, Pei; Tan, Steinbach, Kumar; L. Kaebling; R. Tibshirani; T. Taylor; and L. Hannah

# Data Similarity, Dissimilarity and Distance

# Similarity, Dissimilarity, and Distance

 For many data mining tasks, we want to be able to measure how alike or unalike two data points are in comparison to one another

#### Similarity

- numerical measure of how alike are two data objects
- higher when objects are more alike
- ullet often falls in range  $[0,1]^1$

#### Dissimilarity / Distances

- numerical measure of how different are two data objects
- lower when objects are more alike
- minimum dissimilarity is often 0, upper limit may vary
- upper limit varies

# **Defining Distance Measures**

What properties should a distance measure have?

A distance (or a metric) on a set S is a function D:

$$S \times S \rightarrow [0, +\inf)$$
 should satisfy

$$D(A,B) = D(B,A)$$

Symmetry

$$D(A,A) = 0$$

Constancy, Self-Similarity

$$D(A,B) = 0$$
, iff  $A = B$ 

Positivity (Separation)

$$D(A,B) \le D(A,C) + D(B,C)$$

Triangle Inequality

# Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects

| Attribute         | Dissimilarity                                                                                      | Similarity                                                                                   |  |
|-------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Type              |                                                                                                    |                                                                                              |  |
| Nominal           |                                                                                                    | $s = \left\{ egin{array}{ll} 1 & 	ext{if } p = q \ 0 & 	ext{if } p  eq q \end{array}  ight.$ |  |
| Ordinal           | $d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$ , where $n$ is the number of values) |                                                                                              |  |
| Interval or Ratio | d =  p - q                                                                                         | $s = -d$ , $s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_{-}d}{max \ d-min_{-}d}$              |  |
|                   |                                                                                                    | $s = 1 - \frac{d - min\_d}{max\_d - min\_d}$                                                 |  |

## Distance Measure for Numeric Data

Most common measure for quantitative data is Euclidean distance

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

$$= \left(\sum_{k=1}^p (x_{ik} - x_{jk})^2\right)^{\frac{1}{2}}$$

$$= \|\mathbf{x}_i - \mathbf{x}_j\|_2$$

measurements should be commensurate; standardize measurements

## Distance Measure for Numeric Data

Minkowski distance - generalization of Euclidean distance calculates the  $\ell_{\lambda}$  norm for  $\lambda \geq q$ :

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_{\lambda} = \left(\sum_{k=1}^p |x_{ik} - x_{jk}|^{\lambda}\right)^{\frac{1}{\lambda}}$$

#### Common values of $\lambda$

- $\lambda = 2$ , Euclidean distance  $\ell_2$
- $\lambda = 1$ , Manhattan distance,  $\ell_1$
- $\lambda=\infty$ ,  $d(\mathbf{x}_i,\mathbf{x}_j)=\max_{1\leq k\leq p}|x_{ik}-x_{jk}|$ , the sup, or supremum, norm,  $\ell_\infty$

# Example of Minkowski Distances $Manhattan (L_1)$

|    | ٧              | 1              |    | v2             | - |
|----|----------------|----------------|----|----------------|---|
| ×1 |                | 1              | 2  |                | - |
| ×2 |                | 3              |    | 5              |   |
| x3 |                | 2              |    | 0              |   |
| x4 |                | 4              | 5  |                | _ |
| †  |                | 1              | J  |                | Ī |
|    |                |                | X, | x <sub>4</sub> |   |
| 4  |                |                |    |                |   |
|    |                |                |    |                |   |
| 2  | x <sub>1</sub> |                |    |                |   |
|    |                | x <sub>3</sub> |    |                | _ |

| Maimattan (E1) |    |    |    |    |  |
|----------------|----|----|----|----|--|
|                | x1 | x2 | x3 | x4 |  |
| x1             | 0  | 5  | 3  | 6  |  |
| x2             | 5  | 0  | 6  | 1  |  |
| x3             | 3  | 6  | 0  | 7  |  |
| -              | _  | -  | _  | _  |  |

### Euclidean $(L_2)$

|     | ×1   | x2   | x3   | x4   |  |
|-----|------|------|------|------|--|
| ×1  | 0.00 | 3.61 | 2.24 | 4.24 |  |
| ×2  | 3.61 | 0.00 | 5.10 | 1.00 |  |
| x3  | 2.24 | 5.10 | 0.00 | 5.39 |  |
| -x4 | 4.24 | 1.00 | 5.39 | 0.00 |  |

#### Supremum $(L_{\infty})$

|    | ×1 | x2 | x3 | x4 |
|----|----|----|----|----|
| x1 | 0  | 3  | 2  | 3  |
| x2 | 3  | 0  | 5  | 1  |
| x3 | 2  | 5  | 0  | 5  |
| x4 | 3  | 1  | 5  | 0  |

## Distance Measure for Numeric Data

- Linear dependence between variables can be measured by covariance and correlation
- Covariance,  $\Sigma$ , between two variables A, B is

$$Cov(A, B) = \frac{1}{n} \sum_{i=1}^{n} (x_{iA} - \bar{x_A})(x_{iB} - \bar{x_B})$$

Correlation coefficient.

$$\rho(A,B) = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{iA} - \bar{x_A})(x_{iB} - \bar{x_B})}{(\sum_{i=1}^{n} (x_{iA} - \bar{x_A})^2 \sum_{i=1}^{n} (x_{iB} - \bar{x_B})^2)^{\frac{1}{2}}}$$

## Other Distance Measures

## Cosine Similarity

- Cosine similarity is a commonly used distance measure when dealing with text data
- A document can be represented by thousands of attributes each detailing the frequency of a particular word
- Cosine similarity finds the similarity between documents (vectors), if  $d_1$  and  $d_2$  are vectors then

$$cos(d_1, d_2) = \frac{d_1 \cdot d_2}{\|d_1\| \|d_2\|}$$

• Example: find the similarity between two documents:  $d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$   $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$   $cos(d_1, d_2) = 0.94$ 

## Other Distance Measures

- Distance for numeric data
  - Mahalanobis distance
- Distance between binary data
  - Jaccard coefficient
- Distance between strings
  - edit distance
- Distance between images and waveforms
  - shift-invariant, scale-invariant
- Distance between time-series data
  - Euclidean distance, dynamic time-warping
- Other methods
  - Kernel methods