IEOR 4500

Arbitrage through Linear Programming

We are given:

• Two securities: 1 and 2, and three scenarios: 1, 2, 3. Prices:

	today	Scen. 1	Scen. 2	Scen. 3
1	10	-7	19	-9
2	8	6	-8	8

Is arbitrage possible?

- We take a position today, we close it tomorrow
- What is today's value?

 The sum of the position values, using today's data!
- What is tomorrow's value?

 The sum of the position values, using tomorrow's data!
- Arbitrage: < 0 today, and ≥ 0 tomorrow in *every* scenario
- (But we need a riskless security to make this notion more complete)

	today	Scen. 1	Scen. 2	Scen. 3
1	10	-7	19	-9
2	8	6	-8	8

Example: Short 1 security 1, and **Short 1** security 2

Today: value -18

Tomorrow's values:

	today	Scen. 1	Scen. 2	Scen. 3
1	10	-7	19	-9
2	8	6	-8	8

Example: Short 1 security 1, and **Short 1** security 2

Today: value -18

Tomorrow's values:

Scen.	1	Scen. 2	Scen. 3
	1	-11	1

	today	Scen. 1	Scen. 2	Scen. 3
1	10	-7	19	-9
2	8	6	-8	8

Example: Long 1 security 1, and Short 2 security 2

So we will have:

Today	Scen. 1	Scen. 2	Scen. 3
-6	-19	35	-25

	today	Scen. 1	Scen. 2	Scen. 3
1	10	-7	19	-9
2	8	6	-8	8

We also have **cash:** interest rate = 8% in every scenario

	today	Scen. 1	Scen. 2	Scen. 3
1	10	-7	19	-9
2	8	6	-8	8

We also have **cash:** interest rate = 8% in every scenario

How about +5.5 cash, -2 security 1, 1 security 2?

	today	Scen. 1	Scen. 2	Scen. 3
1	10	-7	19	-9
2	8	6	-8	8

We also have **cash:** interest rate = 8% in every scenario

How about +5.5 cash, -2 security 1, 1 security 2?

today	Scen. 1	Scen. 2	Scen. 3
-6.5	25.94	-40.06	31.94

E.g. (Scen. 1):
$$5.5 * 1.08 + (-7) * (-2) + 6 * 1 = 25.94$$

General case

We are given:

- n securities: S_1, \ldots, S_n , plus cash: this is security S_0
- A collection of K scenarios for what the price of each security will be tomorrow (or next month, etc.):

In scenario \boldsymbol{i} , the price of security \boldsymbol{j} will be $\pi_{i\boldsymbol{j}}$. $(1 \le i \le K, 1 \le j \le n)$

Security 0: be $\pi_{i0} = 1 + r$, where r = risk-free interest rate $(1 \le i \le K)$

Scenario 0: today's prices (for cash, price = 1)

• How do we investigate the existence of arbitrage?

Use Linear Programming

• Use variables x_j = position we take in security j (incl. cash)

So today's value of our positions is:

$$x_0 + \sum_{j=1}^n \pi_{0j} x_j$$

And in scenario i, tomorrow's value of our positions will be:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} x_j$$

Two kinds of arbitrage:

Type A. Today's position < 0, and in tomorrow's ≥ 0 in *every* scenario

Type B. Zero cash flow today, tomorrow's position ≤ 0 in every scenario and < 0 in at least one scenario

Use Linear Programming

• Use variables x_j = position we take in security j (incl. cash)

So today's value of our positions is:

$$x_0 + \sum_{j=1}^n \pi_{0j} x_j$$

And in scenario i, tomorrow's value of our positions will be:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} x_j$$

Two kinds of arbitrage:

Type A. Today's position < 0, and in tomorrow's ≥ 0 in *every* scenario

Type B. Zero cash flow today, tomorrow's position ≤ 0 in every scenario and < 0 in at least one scenario

Exercise. Convince yourself that (because of the riskless security, cash) this is equivalent to the standard notion of arbitrage

 $x_j = \text{position in security } j$

Today's value: $x_0 + \sum_{j=1}^n \pi_{0j} x_j$

Tomorrow's in scenario i: $(1+r)x_0 + \sum_{j=1}^n \pi_{ij} x_j$

Consider the linear program

$$V^* = ext{Minimize} \;\; x_0 \; + \; \Sigma_{j=1}^n \pi_{0j} \; x_j$$

Subject to:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} \; x_j \; \geq \; 0$$
 for every scenario $i \geq 1$

 $oldsymbol{x_j}$ unrestricted in sign, for every $oldsymbol{j}$

 $x_i = \text{position in security } j$

Today's value: $x_0 + \sum_{j=1}^n \pi_{0j} x_j$

Tomorrow's in scenario i: $(1+r)x_0 + \sum_{j=1}^n \pi_{ij} x_j$

Consider the linear program

$$V^* = ext{Minimize} \;\; x_0 \; + \; \Sigma_{j=1}^n \pi_{0j} \; x_j$$

Subject to:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} \; x_j \; \geq \; 0$$
 for every scenario $i \geq 1$

 $\boldsymbol{x_j}$ unrestricted in sign, for every \boldsymbol{j}

Type A: Today's cash flow > 0, and in tomorrow's ≤ 0 in *every* scenario

This happens if, and only if, $V^* < 0$

Why?

 $oldsymbol{x_j} = ext{position in security} \ oldsymbol{j}$

Today's value: $x_0 + \sum_{j=1}^n \pi_{0j} x_j$

Tomorrow's in scenario i: $(1+r)x_0 + \sum_{j=1}^n \pi_{ij} x_j$

$$V^* = ext{Minimize} \;\; x_0 \; + \; \Sigma_{j=1}^n \pi_{0j} \; x_j$$

Subject to:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} \ x_j \ \geq \ 0$$
 for every scenario $i \geq 1$

 $oldsymbol{x_j}$ unrestricted in sign, for every $oldsymbol{j}$

What if $V^* = 0$?

 $x_j = \text{position in security } j$

Today's value: $x_0 + \sum_{j=1}^n \pi_{0j} x_j$

Tomorrow's in scenario i: $(1+r)x_0 + \sum_{j=1}^n \pi_{ij} x_j$

$$V^* = \text{Minimize} \ x_0 + \sum_{j=1}^n \pi_{0j} \ x_j$$

Subject to:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} \; x_j \; \geq \; 0$$
 for every scenario $i \geq 1$

 x_j unrestricted in sign, for every j

What if
$$V^* = 0$$
?

Type B: can we find a vector \boldsymbol{x} , such that

$$(1+r)x_0 + \sum_{i=1}^n \pi_{ij} \; x_j \; \geq \; 0$$
 for every scenario $i \geq 1$

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} x_j > 0$$
 for at least one scenario $i \geq 1$

$$x_0 + \sum_{j=1}^n \pi_{0j} x_j = 0$$
?

$$V^* = ext{Minimize} \ x_0 \ + \ \Sigma_{j=1}^n \pi_{0j} \ x_j$$

Subject to:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} \; x_j \; \geq \; 0$$
 for every scenario $i \geq 1$

 $oldsymbol{x_j}$ unrestricted in sign, for every $oldsymbol{j}$

If no Type A or Type B arbitrage exist, then ... $V^* = 0$ and every optimal solution to the LP satisfies:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} \ x_j = 0$$
 for every scenario $i \geq 1$

$$V^* = \text{Minimize} \ x_0 \ + \ \Sigma_{j=1}^n \pi_{0j} \ x_j$$

Subject to:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} \; x_j \; \geq \; 0$$
 for every scenario $i \geq 1$

 x_j unrestricted in sign, for every j

If no Type A or Type B arbitrage exist, then ... $V^* = 0$ and every optimal solution to the LP satisfies:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} \ x_j = 0$$
 for every scenario $i \geq 1$

Dual LP:

$$V^* = ext{Maximize } \Sigma_{i=1}^K P_i$$

Subject to:

$$(1+r)\Sigma_{i=1}^K P_i = 1$$

$$\Sigma_{i=1}^K \pi_{ij} P_i = \pi_{0j}$$
 for every security $j \geq 1$

$$P_i \geq 0$$
 for every scenario $i \geq 1$

$$V^* = \text{Minimize} \ x_0 + \sum_{j=1}^n \pi_{0j} \ x_j$$

Subject to:

$$(1+r)x_0 \ + \ \Sigma_{j=1}^n \pi_{ij} \ x_j \ \geq \ 0$$
 for every scenario $\ i \geq 1$

 x_j unrestricted in sign, for every j

If no Type A or Type B arbitrage exist, then ... $V^* = 0$ and every optimal solution to the LP satisfies:

$$(1+r)x_0 + \sum_{j=1}^n \pi_{ij} x_j = 0$$
 for every scenario $i \geq 1$

dual: $V^* = \text{Maximize } \Sigma_{i=1}^K P_i$ Subject to:

$$(1+r)\Sigma_{i=1}^K P_i = 1$$

$$\Sigma_{i=1}^K \pi_{ij} P_i = \pi_{0j}$$
 for every security $j \geq 1$

$$P_i \geq 0$$
 for every scenario $i \geq 1$

...And an appropriate optimal dual solution gives us risk-neutral probabilities