Game Theory: Algorithms and Applications CS 539

Spring 2018 HomeWork 2 Solutions Total: 100 points

1. Generalized Matching Pennies: Two players choose a number between 1 and N. If the players choose the same number and it is even then player 2 pays \$1 to player 1, if odd then player 1 pays \$1 to player 2, otherwise no payment is made. Does this game have a pure NE? Find a mixed Nash Equilibrium.

Solution: The payoff matrix of size $(n \times n)$ has (-1,1) and (1,-1) alternating for all diagonal entries, and (0,0) for all non-diagonal entries.

Pure NE: When P_1 chooses an even number and P_2 chooses an odd number, the utilities for both = 0 and neither can improve her utility by changing her strategy.

Mixed NE: (Using the support set theorem) Strategies are dominated as even for P_1 and odd for P_2 . P_1 will therefore have a uniform probability distribution over all the even choices, and similarly P_2 will have a uniform probability distribution over all the odd choices.

- 2. Consider a network where there are two players sending one unit of traffic using a single path. P_i^j represents the path j of player i and each path costs C. If the path chosen by player 1 and the one by player 2 each share an edge, then both the players share the cost of the path, but introduce a congestion cost of B, also shared evenly. The objective of each player is to minimize the objective function defined by: cost of the path + congestion.
 - i Find pure and mixed NE when B = C.
 - ii What happens when B < C, and B > C.

Solution:

i B = C A player's utility = C for any path that she chooses. Let there be n and m paths for P_1 and P_2 . Applying the support set theorem: (w.r.t P_1 , P_2 is omitted)

$$\Pi_1(1) = C\Pi_2(1) + \cdots + C\Pi_2(m)$$

$$\Pi_1(2) = C\Pi_2(1) + \dots + C\Pi_2(m)$$

:

Also,

$$\Pi_1(1) = \cdots = \Pi_1(n)$$

and

$$\Pi_1(1) + \cdots + \Pi_1(n) = 1$$

One instance of a mixed NE is given by an equal distribution over all available paths, for either player. (Note that any probability distribution is a mixed NE.)

ii i. A player has less cost when her chosen path is congested, and therefore prefers it. Applying the support set theorem: (w.r.t P_1 , P_2 is omitted)

$$\Pi_1(1) = \frac{B+C}{2}\Pi_2(1) + C\Pi_2(2) + \dots + C\Pi_2(m)$$

$$\Pi_1(2) = C\Pi_2(1) + \frac{B+C}{2}\Pi_2(2) + \dots + C\Pi_2(m)$$

٠.

Also,

$$\Pi_1(1) = \cdots = \Pi_1(n)$$

and

$$\Pi_1(1) + \cdots + \Pi_1(n) = 1$$

 \implies there is a uniform distribution of Π_1 and similarly, Π_2

A pure NE is obtained when both players select paths which share an edge.

- ii. We obtain uniform distributions of Π_1 and P_2 . Since, both players prefer selecting paths which do not share any edges, a pure NE is one where non-sharing paths are selected by the players.
- 3. Consider the hot-potato routing/coordination routing game discussed in class. Find a mixed equilibrium of that game.

Solution: We obtain the following payoff matrix:

ISP1 \ ISP2	HPR	CR
HPR	-4, -4	-1, -5
CR	-5,-1	-2,-2

Using the support set theorem,

$$u_1(HPR) = -4\Pi_2(HPR) - 1\Pi_2(CR)$$

$$u_1(CR) = -5\Pi_2(HPR) - 2\Pi_2(CR)$$

$$u_1(HPR) = u_1(CR)$$

$$\implies (-4 - 5)\Pi_2(HPR + (-1 + 2)\Pi_2(CR) = 0$$

$$\implies \Pi_2(HPR) = -1\Pi_2(CR)$$

$$\implies \Pi_2(HPR) + \Pi_2(CR) = 0$$

i.e., there is no interior solution for the problem of MNE \implies each player has a probability of 0 on one of her strategies \implies pure NE is the only MNE. This is because of domination (P_1 sees the 1st row dominate the 2nd).

4. Games against Nature: In a network there are k paths, $P_1, P_2, P_3 \dots P_k$ available to send data. One each path there is a compromised edge, on which the player might lose information, the probability of loss of information on each path P_i being l_i . Sending information along path P_i gives a pay-off of v_i . The strategy set of the player sending data is $\{P_1, P_2, \dots, P_k\}$. Mother Nature is the other player with strategies in the set $\{\text{Lettinginformationflow}, \text{Probabilisticallylettinginformationflow}\}$. So path P_i can either have payoff v_i or payoff $v_i(1-l_i)$ to the first player. Find mixed Nash Equilibrium of this game.

Solution: Mother Nature's utility is the opposite of the player's utility. Given a strategy $i \in I$ (say) of player 1 (I is the strategy set of I), mother nature stands to gain (or lose) either $-v_i$ or $-v_i(1-l_1)$ (either v_i or $v_i(1-l_1)$),

The player's utility is given by

$$u_1(\Pi) = \sum_{i=1}^{k} p_i^1 \cdot (v_i \cdot p_f^N + v_i(1 - l_i) \cdot p_p^N)$$

where p_f^N is Nature's probability of {Lettinginformationflow} and $p_p^N = (1 - p^N f)$

Using the support set theorem:

$$u_1(i) = v_i p_f^N + v_i (1 - l_i) p_p^N$$

Let j be another strategy, then

$$u_1(j) = v_j p_f^N + v_j (1 - l_j) p_p^N$$

$$\implies p_p^N = \frac{v_j - v_i}{v_i l_i - v_i l_i} \text{ and } p_f^N = 1 - \frac{v_j - v_i}{v_i l_i - v_i l_i}$$

Similarly, the player's distribution may be found by applying the support set theorem.

$$u_2(f) = -\sum_i v_i \cdot p_i^1$$

$$u_2(p) = -\sum_{i} v_i(1 - l_i) \cdot p_i^1$$

Note, $u_2(p)$ dominates $u_2(f)$, ie., nature's strategy is dominated by {Probabilisticallylettinginformationflow} $\implies p_f^N = 0$ and $p_p^N = 1$

$$\implies v_i = v_i$$

i.e., for the set of strategies where $v_j = v_i$ and $v_i > v_{i'}, \forall i' \neq i, j$, the player will have a uniform probability distribution (this is one mixed NE, any distribution over the set can be an MNE).

5. Consider the two-player Rock/Paper/Scissors (strategic) game. Remember that the game has the following rule: Rock beats Scissors, Paper beats Rock and Scissors beats paper. The winning player receives \$ 10 from the loser. A tie results in zero gain for both players. Find a mixed Nash equilibrium in this game.

Solution:

$$\pi_2(R) + \pi_2(P) + \pi_2(S) = 1 \tag{1}$$

$$u_1\pi(R) = u_1\pi(P) \implies -\pi_2(P) + \pi_2(S) = \pi_2(R) - \pi_2(S)$$
 (2)

$$u_1\pi(P) = u_1\pi(S) \implies \pi_2(R) - \pi_2(S) = -\pi_2(R) - \pi_2(P)$$
 (3)

$$\implies \pi_2(R) = \pi_2(P) = \pi_2(S) = \frac{1}{3}$$

and similarly, we have

$$\pi_1(R) = \pi_1(P) = \pi_1(S) = \frac{1}{3}$$