Matthias Puech^{1,2} Yann Régis-Gianas²

 $^1{\rm Dept.}$ of Computer Science, University of Bologna $^2{\rm University}$ Paris 7, CNRS, and INRIA, PPS, team πr^2

 \star January 2011 \star

PPS - Groupe de travail théorie des types et réalisabilité

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

... And yet,

Workflow of programming and formal mathematics is still largely inspired by legacy software development (emacs, make, svn, diffs...)

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

... And yet,

Workflow of programming and formal mathematics is still largely inspired by legacy software development (emacs, make, svn, diffs...)

Isn't it time to make these tools metatheory-aware?

Q: Do you spend more time writing code or editing code?

Today, we use:

- ► separate compilation
- dependency management
- version control on the scripts
- ▶ interactive toplevel with rollback (Coq)

In an ideal world...

- ▶ Edition should be possible anywhere
- ► The impact of changes visible "in real time"
- ▶ No need for separate compilation, dependency management

In an ideal world...

- ▶ Edition should be possible anywhere
- ► The impact of changes visible "in real time"
- ▶ No need for separate compilation, dependency management

Types are good witnesses of this impact

In an ideal world...

- ▶ Edition should be possible anywhere
- ► The impact of changes visible "in real time"
- ▶ No need for separate compilation, dependency management

Types are good witnesses of this impact

Applications

- non-linear user interaction
- ► tactic languages
- ▶ type-directed programming
- typed version control systems

Menu

The big picture

Our approach

Why not memoization? A popular storage model for repositories Logical framework Positionality

The language

From LF to NLF

NLF: Syntax, typing, reduction

Architecture

Menu

The big picture

Our approach

Why not memoization?
A popular storage model for repositories
Logical framework
Positionality

The language

From LF to NLF

NLF: Syntax, typing, reduction

Architecture

Yes, we're speaking about (any) typed language.

A type-checker

```
val check : env \rightarrow term \rightarrow types \rightarrow bool
```

- builds and checks the derivation (on the stack)
- conscientiously discards it

Yes, we're speaking about (any) typed language.

A type-checker

val check : env
$$\rightarrow$$
 term \rightarrow types \rightarrow bool

- builds and checks the derivation (on the stack)
- conscientiously discards it

Yes, we're speaking about (any) typed language.

A type-checker

```
val check : env \rightarrow term \rightarrow types \rightarrow bool
```

- builds and checks the derivation (on the stack)
- ▶ conscientiously discards it

true

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions

Idea Remember all derivations!

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions

Idea Remember all derivations!

Q Do we really need faster type-checkers?A Yes, since we implemented these ad-hoc fixes.

version management	
script files	
parsing	
type-checking	

► AST representation

► AST representation

► AST representation

- ► AST representation
- \blacktriangleright Typing annotations

- ► AST representation
- \blacktriangleright Typing annotations

Menu

The big picture

Our approach

Why not memoization? A popular storage model for repositories Logical framework Positionality

The language

From LF to NLF NLF: Syntax, typing, rec

TILIT. Symbax, typing, reduction

Architecture

```
\begin{array}{lll} \textbf{let rec} & \textbf{check env t a} = \\ & \textbf{match t with} \\ | & \dots & \rightarrow \dots \textbf{ false} \\ | & \dots & \rightarrow \dots \textbf{ true} \\ \\ \textbf{and infer env t} = \\ & \textbf{match t with} \\ | & \dots & \rightarrow \dots \textbf{ None} \\ | & \dots & \rightarrow \dots \textbf{ Some a} \\ \end{array}
```

```
let table = ref ([] : environ \times term \times types) in
let rec check env t a =
  if List . mem (env,t,a) ! table then true else
    match t with
    | \dots \rightarrow \dots false
      \dots \rightarrow \dots table := (env,t,a)::! table; true
and infer env t =
  try List .assoc (env,t) !table with Not_found \rightarrow
    match t with
    | \dots \rightarrow \dots None
    \cdots \rightarrow \cdots table := (env,t,a )::! table; Some a
```

+ lightweight

- + lightweight
- + efficient implementation

- + lightweight
- + efficient implementation
- imperative

- + lightweight
- + efficient implementation
- imperativeWhat does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma}$$

$$\frac{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J]}$$

- + lightweight
- + efficient implementation
- imperativeWhat does it mean logically?

$$\begin{array}{ccc} & \overline{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma} \\ \\ \underline{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2} & \dots & \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n \\ \hline & \Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J] \end{array}$$

 $J \in \Gamma$

- external to the logic (meta-cut)

- + lightweight
- + efficient implementation
- imperativeWhat does it mean logically?

$$\begin{array}{ccc} & \overline{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma} \\ \\ \underline{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2} & \dots & \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n \\ \hline & \Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J] \end{array}$$

 $J \in \Gamma$

- external to the logic (meta-cut)
- introduces a dissymmetry

- + lightweight
- + efficient implementation
- imperativeWhat does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma}$$

$$\frac{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J]}$$

- external to the logic (meta-cut)
- introduces a dissymmetry
 What if I want e.g. the weakening property to be taken into account?

- + lightweight
- + efficient implementation
- imperativeWhat does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma}$$

$$\frac{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J]}$$

- external to the logic (meta-cut)
- introduces a dissymmetry What if I want *e.g.* the weakening property to be taken into account?
- syntactic comparison

- + lightweight
- + efficient implementation
- imperativeWhat does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma}$$

$$\frac{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J]}$$

- external to the logic (meta-cut)
- introduces a dissymmetry What if I want *e.g.* the weakening property to be taken into account?
- syntactic comparison
- still no trace of the derivation

- + lightweight
- + efficient implementation
- imperativeWhat does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma}$$

$$\frac{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J]}$$

- external to the logic (meta-cut)
- introduces a dissymmetry
 What if I want e.g. the weakening property to be taken into account?
- syntactic comparison
- still no trace of the derivation
- + gives good reasons to go on

The repository R is a pair (Δ, x) :

$$\Delta: x \mapsto (\mathsf{Commit}\ (x \times y) \mid \mathsf{Tree}\ \vec{x} \mid \mathsf{Blob}\ string)$$

with the invariants:

- if $(x, \mathsf{Commit}\ (y, z)) \in \Delta$ then
 - $(y, \mathsf{Tree}\ t) \in \Delta$
 - $(z, \mathsf{Commit}\ (t, v)) \in \Delta$
- ▶ if $(x, \mathsf{Tree}(\vec{y})) \in \Delta$ then for all y_i , either $(y_i, \mathsf{Tree}(\vec{z}))$ or $(y_i, \mathsf{Blob}(s)) \in \Delta$

The repository R is a pair (Δ, x) :

$$\Delta: x \mapsto (\mathsf{Commit}\ (x \times y) \mid \mathsf{Tree}\ \vec{x} \mid \mathsf{Blob}\ string)$$

with the invariants:

- if $(x, \mathsf{Commit}\ (y, z)) \in \Delta$ then
 - $(y, \mathsf{Tree}\ t) \in \Delta$
 - $(z, \mathsf{Commit}\ (t, v)) \in \Delta$
- ▶ if $(x, \mathsf{Tree}(\vec{y})) \in \Delta$ then for all y_i , either $(y_i, \mathsf{Tree}(\vec{z}))$ or $(y_i, \mathsf{Blob}(s)) \in \Delta$

Let's do the same with *proofs*


```
\begin{split} x &= \dots : A \land B \vdash C \\ y &= \dots : \vdash A \\ z &= \dots : \vdash B \\ t &= \lambda a^{A \land B} \cdot x : \vdash A \land B \to C \\ u &= (y,z) : \vdash A \land B \\ v &= t \ u : \vdash C \\ w &= \mathsf{Commit}(v,w1) : \mathsf{Version} \end{split}
```

```
\begin{split} x &= \dots : A \wedge B \vdash C \\ y &= \dots : \vdash A \\ z &= \dots : \vdash B \\ t &= \lambda a^{A \wedge B} \cdot x : \vdash A \wedge B \to C \\ u &= (y,z) : \vdash A \wedge B \\ v &= t \ u : \vdash C \\ w &= \mathsf{Commit}(v,w1) : \mathsf{Version} \quad , \quad {\color{red} w} \end{split}
```

```
x = \dots : A \wedge B \vdash C
y = \dots : \vdash A
z = \dots : \vdash B
 t = \lambda a^{A \wedge B} \cdot x : \vdash A \wedge B \to C
u = (y, z) : \vdash A \land B
v = t \ u : \vdash C
w = \mathsf{Commit}(v, w1) : \mathsf{Version}
p = \dots : \vdash B
q = (y, p) : \vdash A \land B
r = t \ q : \vdash C
s = \mathsf{Commit}(r, w) : \mathsf{Version}
```

```
x = \dots : A \wedge B \vdash C
y = \dots : \vdash A
z = \dots : \vdash B
 t = \lambda a^{A \wedge B} \cdot x : \vdash A \wedge B \to C
u = (y, z) : \vdash A \land B
v = t \ u : \vdash C
w = \mathsf{Commit}(v, w1) : \mathsf{Version}
p = \dots : \vdash B
q = (y, p) : \vdash A \land B
r = t \ q : \vdash C
s = \mathsf{Commit}(r, w) : \mathsf{Version}
```

```
let x = ...: is (cons (conj A B) nil) C in

let y = ...: is nil A in

let z = ...: is nil B in

let t = lam (conj A B) x: is nil (arr (conj A B) C) in

let u = pair \ y \ z: is nil (conj A B) in

let v = app \ t \ u: is nil C in

let v = app \ t \ u: version in
```

```
val is : env \rightarrow prop \rightarrow type
val conj : prop \rightarrow prop \rightarrow prop
val pair : is \alpha \beta \rightarrow \text{is } \alpha \gamma \rightarrow \text{is } \alpha \text{ (conj } \beta \gamma \text{)}
val version : type
val commit: is nil C \rightarrow version \rightarrow version
let x = ...: is (cons (conj A B) nil) C in
  let y = ...: is nil A in
     let z = ...: is nil B in
       let t = lam (conj A B) x : is nil (arr (conj A B) C) in
          let u = pair y z : is nil (conj A B) in
             let v = app t u : is nil C in
               let w = commit v w1 : version in
                 let p = \dots : is nil B
                    let q = pair y p : is nil (conj A B) in
                       let r = tq: is nil C
                         let s = commit r w : version in
                            S
```

```
let u = pair y z : is nil (conj A B) in
let v = app t u : is nil C in
...
```

LF [Harper et al. 1992] provides a way to represent and validate syntax, rules and proofs by means of a typed λ -calculus. But we need a little bit more:

```
let u = pair y z : is nil (conj A B) in let v = app t u : is nil C in
```

1. definitions / explicit substitutions

```
let u = pair y z : is nil (conj A B) in let v = app t u : is nil C in
```

- 1. definitions / explicit substitutions
- 2. type annotations on application spines

```
let u = pair y z: is nil (conj A B) in let v = app t u: is nil C in ...
```

- 1. definitions / explicit substitutions
- 2. type annotations on application spines
- 3. fully applied constants / η -long NF

```
let u = pair y z : is nil (conj A B) in let <math>v = app t u : is nil C in
```

- 1. definitions / explicit substitutions
- 2. type annotations on application spines
- 3. fully applied constants / η -long NF
- 4. Naming of all application spines / A-normal form (= construction of syntax/proofs)

Positionality

```
\begin{array}{l} R = \\ & \textbf{let} \  \, \mathbf{x} = \dots \  \, : \  \, \text{is} \  \, (\text{cons} \, (\text{conj} \, \, \mathbf{A} \, \mathbf{B}) \, \, \text{nil} ) \, \, \mathbf{C} \, \, \textbf{in} \\ & \textbf{let} \  \, \mathbf{y} = \dots \  \, : \, \, \text{is} \, \, \text{nil} \, \, \mathbf{A} \, \textbf{in} \\ & \textbf{let} \  \, \mathbf{z} = \dots \  \, : \, \, \text{is} \, \, \text{nil} \, \, \, \mathbf{B} \, \textbf{in} \\ & \textbf{let} \  \, \mathbf{t} = \text{lam} \, (\text{conj} \, \mathbf{A} \, \mathbf{B}) \, \, \mathbf{x} : \, \, \text{is} \, \, \text{nil} \, \, (\text{arr} \, (\text{conj} \, \, \mathbf{A} \, \mathbf{B}) \, \, \mathbf{C}) \, \, \textbf{in} \\ & \textbf{let} \  \, \mathbf{u} = \text{pair} \, \, \mathbf{y} \, \, \mathbf{z} : \, \, \text{is} \, \, \text{nil} \, \, (\text{conj} \, \, \mathbf{A} \, \mathbf{B}) \, \, \textbf{in} \\ & \textbf{let} \  \, \mathbf{v} = \text{app} \, \, \mathbf{t} \, \, \mathbf{u} : \, \, \text{is} \, \, \text{nil} \, \, \, \, \mathbf{C} \, \, \textbf{in} \\ & \textbf{let} \  \, \mathbf{w} = \text{commit} \, \mathbf{v} \, \, \mathbf{w} 1 : \, \text{version} \, \, \, \textbf{in} \end{array}
```

Positionality

```
\begin{array}{l} R = \\ & \textbf{let} \  \  \mathsf{x} = \dots \  \  : \  \  \mathsf{is} \  \, (\mathsf{cons} \  \, (\mathsf{conj} \  \, \mathsf{A} \, \mathsf{B}) \  \, \mathsf{nil}) \  \, \mathsf{C} \, \, \mathsf{in} \\ & \textbf{let} \  \, \mathsf{y} = \dots \  \, : \  \, \mathsf{is} \  \, \mathsf{nil} \  \, \mathsf{A} \, \, \mathsf{in} \\ & \textbf{let} \  \, \mathsf{z} = \dots \  \, : \  \, \mathsf{is} \  \, \mathsf{nil} \  \, \mathsf{B} \, \, \mathsf{in} \\ & \textbf{let} \  \, \mathsf{z} = \mathsf{lem} \  \, (\mathsf{conj} \  \, \mathsf{A} \, \mathsf{B}) \, \mathsf{x} : \  \, \mathsf{is} \  \, \mathsf{nil} \  \, (\mathsf{arr} \  \, (\mathsf{conj} \  \, \mathsf{A} \, \mathsf{B}) \, \mathsf{C}) \, \, \mathsf{in} \\ & \textbf{let} \  \, \mathsf{u} = \mathsf{pair} \  \, \mathsf{y} \  \, \mathsf{z} : \  \, \mathsf{is} \  \, \mathsf{nil} \  \, (\mathsf{conj} \  \, \mathsf{A} \, \mathsf{B}) \, \, \mathsf{in} \\ & \textbf{let} \  \, \mathsf{v} = \mathsf{app} \, \mathsf{t} \, \mathsf{u} : \  \, \mathsf{is} \, \, \mathsf{nil} \, \, \mathsf{C} \, \, \mathsf{in} \\ & \textbf{let} \  \, \mathsf{w} = \mathsf{commit} \, \mathsf{v} \, \, \mathsf{v} 1 : \mathsf{version} \, \, \, \mathsf{in} \\ & \mathsf{w} \end{array}
```

► Expose the *head* of the term

Positionality

```
\begin{array}{l} R = \\ & \textbf{let} \ \times = \dots \ : \ \text{is} \ \left( \text{cons} \left( \text{conj} \ A \ B \right) \ \text{nil} \right) \ C \ \textbf{in} \\ & \textbf{let} \ y = \dots \ : \ \text{is} \ \text{nil} \ A \ \textbf{in} \\ & \textbf{let} \ z = \dots \ : \ \text{is} \ \text{nil} \ B \ \textbf{in} \\ & \textbf{let} \ t = \text{lam} \left( \text{conj} \ A \ B \right) \times : \ \text{is} \ \text{nil} \ \left( \text{arr} \left( \text{conj} \ A \ B \right) \ C \right) \ \textbf{in} \\ & \textbf{let} \ u = \text{pair} \ y \ z : \ \text{is} \ \text{nil} \ \left( \text{conj} \ A \ B \right) \ \textbf{in} \\ & \textbf{let} \ v = \text{app} \ t \ u : \ \text{is} \ \text{nil} \ C \ \textbf{in} \\ & \textbf{let} \ w = \text{commit} \ v \ w1 : \text{version} \ \textbf{in} \\ & w \end{array}
```

► Expose the *head* of the term

$$(\lambda x.\lambda y.T)\ U\ V$$

Positionality

```
\begin{array}{l} R = \\ & \textbf{let} \ \times = \dots \ : \ \text{is} \ \left( \text{cons} \left( \text{conj} \ A \ B \right) \ \text{nil} \right) \ C \ \textbf{in} \\ & \textbf{let} \ y = \dots \ : \ \text{is} \ \text{nil} \ A \ \textbf{in} \\ & \textbf{let} \ z = \dots \ : \ \text{is} \ \text{nil} \ B \ \textbf{in} \\ & \textbf{let} \ t = \text{lam} \left( \text{conj} \ A \ B \right) \times : \ \text{is} \ \text{nil} \ \left( \text{arr} \left( \text{conj} \ A \ B \right) \ C \right) \ \textbf{in} \\ & \textbf{let} \ u = \text{pair} \ y \ z : \ \text{is} \ \text{nil} \ \left( \text{conj} \ A \ B \right) \ \textbf{in} \\ & \textbf{let} \ v = \text{app} \ t \ u : \ \text{is} \ \text{nil} \ C \ \textbf{in} \\ & \textbf{let} \ w = \text{commit} \ v \ w1 : \text{version} \ \textbf{in} \\ & w \end{array}
```

► Expose the *head* of the term

$$(\lambda x.\lambda y.T) U V$$

► Abstract from the *positions* of the binders (from inside and from outside)

Menu

The big picture

Our approach

Why not memoization?
A popular storage model for repositories
Logical framework
Positionality

The language

From LF to NLF

NLF: Syntax, typing, reduction

Architecture

Presentation (of the ongoing formalization)

- ▶ alternative syntax for LF
- ▶ a datastructure of LF derivations
- ▶ the repository storage model

Motto: Take control of the environment

$$K ::= \Pi x^{A} \cdot K \mid *$$

$$A ::= \Pi x^{A} \cdot A \mid A t \mid a$$

$$t ::= \lambda x^{A} \cdot t \mid \text{let } x = t \text{ in } t \mid t t \mid x \mid c$$

$$\Gamma ::= \cdot \mid \Gamma[x : A] \mid \Gamma[x = t]$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

 \triangleright start from standard λ_{LF} with definitions

```
K ::= \Pi x^A \cdot K \mid *
A ::= \Pi x^A \cdot A \mid A[l] \mid a[l]
t ::= \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid t[l] \mid x[l] \mid c[l]
l ::= \cdot \mid t; l
\Gamma ::= \cdot \mid \Gamma[x : A] \mid \Gamma[x = t]
\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]
```

- ▶ start from standard λ_{LF} with definitions
- sequent calculus-like applications $(\bar{\lambda})$

- start from standard λ_{LF} with definitions
- sequent calculus-like applications $(\bar{\lambda})$
- ▶ type annotations on application spines

$$\begin{split} K \; &::= \; \Pi x^A \cdot K \mid * \\ A \; &:= \; \Pi x^A \cdot A \mid A[l] : K \mid a[l] : K \\ t \; &:= \; \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid t[l] : A \mid x[l] : A \mid c[l] : A \\ l \; &:= \; \cdot \mid t; l \\ \Gamma \; &:= \; \cdot \mid \Gamma \left[x : A \right] \mid \Gamma \left[x = t \right] \\ \Sigma \; &:= \; \cdot \mid \Sigma \left[c : A \right] \mid \Sigma \left[a : K \right] \end{split}$$

- start from standard λ_{LF} with definitions
- sequent calculus-like applications $(\bar{\lambda})$
- type annotations on application spines

$$\frac{\Gamma \vdash t : A \qquad \Gamma, B\{x/t\} \vdash l : C}{\Gamma, \Pi x^A \cdot B \vdash t; l : C}$$

$$\begin{split} K \; &::= \; \Pi x^A \cdot K \mid * \\ A \; &::= \; \Pi x^A \cdot A \mid A[l] : K \mid a[l] : K \\ t \; &::= \; \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid t[l] : A \mid x[l] : A \mid c[l] : A \\ l \; &::= \; \cdot \mid t; l \\ \Gamma \; &::= \; \cdot \mid \Gamma \left[x : A \right] \mid \Gamma \left[x = t \right] \\ \Sigma \; &::= \; \cdot \mid \Sigma \left[c : A \right] \mid \Sigma \left[a : K \right] \end{split}$$

- start from standard λ_{LF} with definitions
- sequent calculus-like applications $(\bar{\lambda})$
- type annotations on application spines

$$\frac{\Gamma \vdash t : A \qquad \Gamma [x = t], B \vdash l : C}{\Gamma, \Pi x^A \cdot B \vdash t; l : C}$$

$$\begin{split} K \; &::= \; \Pi x^A \cdot K \mid * \\ A \; &::= \; \Pi x^A \cdot A \mid A[l] : K \mid a[l] : K \\ t \; &::= \; \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid t[l] : A \mid x[l] : A \mid c[l] : A \\ l \; &::= \; \cdot \mid x = t; l \\ \Gamma \; &::= \; \cdot \mid \Gamma[x : A] \mid \Gamma[x = t] \\ \Sigma \; &::= \; \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{split}$$

- start from standard λ_{LF} with definitions
- sequent calculus-like applications $(\bar{\lambda})$
- type annotations on application spines
- named arguments

$$\frac{\Gamma \vdash t : A \qquad \Gamma [x = t], B \vdash l : C}{\Gamma, \Pi x^A \cdot B \vdash \mathbf{x} = t; l : C}$$

$$\begin{split} K \; &::= \; \Pi x^A \cdot K \mid * \\ A \; &::= \; \Pi x^A \cdot A \mid A[l] : K \mid a[l] : K \\ t \; &::= \; \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid t[l] : A \mid x[l] : A \mid c[l] : A \\ l \; &::= \; \cdot \mid x = t; l \\ \Gamma \; &::= \; \cdot \mid \Gamma[x : A] \mid \Gamma[x = t] \\ \Sigma \; &::= \; \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{split}$$

- \triangleright start from standard λ_{LF} with definitions
- \blacktriangleright sequent calculus-like applications $(\bar{\lambda})$
- type annotations on application spines
- named arguments

$$\begin{aligned} \mathsf{FV}(t[l]:A) &= \mathsf{FV}(t) \cup \mathsf{FV}(l) \cup (\mathsf{FV}(A) - \mathsf{FV}(l)) \\ \mathsf{FV}(x=t;l) &= \mathsf{FV}(t) \cup (\mathsf{FV}(l) - \{x\}) \end{aligned}$$

XLF: Properties

- ► LJ-style application
- type annotation on application spines
- ▶ named arguments (labels)

Lemma (Conservativity)

- $ightharpoonup \Gamma \vdash_{\mathrm{LF}} K \ \mathsf{kind} \quad \mathit{iff} \quad |\Gamma| \vdash_{\mathrm{XLF}} |K| \ \mathsf{kind}$
- $ightharpoonup \Gamma dash_{\mathrm{LF}} A$ type $\mathit{iff} \ |\Gamma| dash_{\mathrm{XLF}} |A|$ type

$$K ::= \Pi x^{A} \cdot K \mid *$$

$$A ::= \Pi x^{A} \cdot A \mid A[l] : K \mid a[l] : K$$

$$t ::= \lambda x^{A} \cdot t \mid \text{let } x = t \text{ in } t \mid t[l] : A \mid x[l] : A \mid c[l] : A$$

$$l ::= \cdot \mid x = t; l$$

$$\Gamma ::= \cdot \mid \Gamma[x : A] \mid \Gamma[x = t]$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

▶ start from XLF

$$\begin{array}{lll} K & ::= & \Pi x^A \cdot K \mid h_K \\ h_K & ::= & * \\ A & ::= & \Pi x^A \cdot A \mid A[l] : K \mid a[l] : K \\ t & ::= & \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid t[l] : A \mid x[l] : A \mid c[l] : A \\ l & ::= & \cdot \mid x = t; l \\ \Gamma & ::= & \cdot \mid \Gamma \left[x : A \right] \mid \Gamma \left[x = t \right] \\ \Sigma & ::= & \cdot \mid \Sigma \left[c : A \right] \mid \Sigma \left[a : K \right] \end{array}$$

- ▶ start from XLF
- ▶ isolate heads (non-binders)

$$\begin{split} K & ::= & \prod x^A \cdot K \mid h_K \\ h_K & ::= & * \\ A & ::= & \prod x^A \cdot A \mid h_A \\ h_A & ::= & A[l] : K \mid a[l] : K \\ t & ::= & \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid t[l] : A \mid x[l] : A \mid c[l] : A \\ l & ::= & \cdot \mid x = t; l \\ \Gamma & ::= & \cdot \mid \Gamma \left[x : A \right] \mid \Gamma \left[x = t \right] \\ \Sigma & ::= & \cdot \mid \Sigma \left[c : A \right] \mid \Sigma \left[a : K \right] \end{split}$$

- ▶ start from XLF
- ▶ isolate heads (non-binders)

$$K ::= \Pi x^A \cdot K \mid h_K$$

$$h_K ::= *$$

$$A ::= \Pi x^A \cdot A \mid h_A$$

$$h_A ::= A[l] : h_K \mid a[l] : h_K$$

$$t ::= \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid h_t$$

$$h_t ::= t[l] : A \mid x[l] : A \mid c[l] : A$$

$$l ::= \cdot \mid x = t; l$$

$$\Gamma ::= \cdot \mid \Gamma[x : A] \mid \Gamma[x = t]$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

- ▶ start from XLF
- ▶ isolate heads (non-binders)
- enforce η -long forms by annotating with heads

$$K ::= \Pi x^A \cdot K \mid h_K$$

$$h_K ::= *$$

$$A ::= \Pi x^A \cdot A \mid h_A$$

$$h_A ::= A[l] : h_K \mid a[l] : h_K$$

$$t ::= \lambda x^A \cdot t \mid \text{let } x = t \text{ in } t \mid h_t$$

$$h_t ::= t[l] : h_A \mid x[l] : h_A \mid c[l] : h_A$$

$$l ::= \cdot \mid x = t; l$$

$$\Gamma ::= \cdot \mid \Gamma[x : A] \mid \Gamma[x = t]$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

- ▶ start from XLF
- ▶ isolate heads (non-binders)
- enforce η -long forms by annotating with heads

$$K ::= \Pi x^{A} \cdot K \mid h_{K}$$

$$h_{K} ::= *$$

$$A ::= \Pi x^{A} \cdot A \mid h_{A}$$

$$h_{A} ::= A[l] : h_{K} \mid a[l] : h_{K}$$

$$t ::= \lambda x^{A} \cdot t \mid \text{let } x = t \text{ in } t \mid h_{t}$$

$$h_{t} ::= t[l] : h_{A} \mid x[l] : h_{A} \mid c[l] : h_{A}$$

$$l ::= \cdot \mid x = t; l$$

$$\Gamma ::= \cdot \mid \Gamma[x : A] \mid \Gamma[x = t]$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

- ▶ start from XLF
- ▶ isolate heads (non-binders)
- enforce η -long forms by annotating with heads

$$t[l]: \Pi x^A \cdot B \longrightarrow_{\eta} \lambda x^A \cdot (t[x=x;l]:B) \quad x \notin \mathsf{FV}(t)$$

$$K ::= \Pi x^{A} \cdot K \mid h_{K}$$

$$h_{K} ::= *$$

$$A ::= \Pi x^{A} \cdot A \mid h_{A}$$

$$h_{A} ::= A[l] : h_{K} \mid a[l] : h_{K}$$

$$t ::= \Gamma \vdash h_{t}$$

$$h_{t} ::= t[l] : h_{A} \mid x[l] : h_{A} \mid c[l] : h_{A}$$

$$l ::= \cdot \mid x = t; l$$

$$\Gamma ::= \cdot \mid \Gamma[x : A] \mid \Gamma[x = t]$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

- ▶ start from XLF
- ▶ isolate heads (non-binders)
- enforce η -long forms by annotating with heads
- ▶ factorize binders and environments

$$K ::= \Pi x^{A} \cdot K \mid h_{K}$$

$$h_{K} ::= *$$

$$A ::= \Gamma \vdash h_{A}$$

$$h_{A} ::= A[l] : h_{K} \mid a[l] : h_{K}$$

$$t ::= \Gamma \vdash h_{t}$$

$$h_{t} ::= t[l] : h_{A} \mid x[l] : h_{A} \mid c[l] : h_{A}$$

$$l ::= \cdot \mid x = t; l$$

$$\Gamma ::= \cdot \mid \Gamma[x : A] \mid \Gamma[x = t]$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

- ▶ start from XLF
- ▶ isolate heads (non-binders)
- enforce η -long forms by annotating with heads
- ▶ factorize binders and environments

$$\begin{array}{lll} K & ::= & \Gamma \vdash h_{k} \\ h_{K} & ::= & * \\ A & ::= & \Gamma \vdash h_{A} \\ h_{A} & ::= & A[l] : h_{K} \mid a[l] : h_{K} \\ t & ::= & \Gamma \vdash h_{t} \\ h_{t} & ::= & t[l] : h_{A} \mid x[l] : h_{A} \mid c[l] : h_{A} \\ l & ::= & \cdot \mid x = t; l \\ \Gamma & ::= & \cdot \mid \Gamma \left[x : A \right] \mid \Gamma \left[x = t \right] \\ \Sigma & ::= & \cdot \mid \Sigma \left[c : A \right] \mid \Sigma \left[a : K \right] \end{array}$$

- ▶ start from XLF
- ▶ isolate heads (non-binders)
- enforce η -long forms by annotating with heads
- ▶ factorize binders and environments

$$\begin{array}{lll} K & ::= & \Gamma \vdash h_{k} \\ h_{K} & ::= & * \\ A & ::= & \Gamma \vdash h_{A} \\ h_{A} & ::= & A[l] : h_{K} \mid a[l] : h_{K} \\ t & ::= & \Gamma \vdash h_{t} \\ h_{t} & ::= & t[l] : h_{A} \mid x[l] : h_{A} \mid c[l] : h_{A} \\ l & ::= & \Gamma \\ \Gamma & ::= & \cdot \mid \Gamma \left[x : A \right] \mid \Gamma \left[x = t \right] \\ \Sigma & ::= & \cdot \mid \Sigma \left[c : A \right] \mid \Sigma \left[a : K \right] \end{array}$$

- start from XLF
- ▶ isolate heads (non-binders)
- enforce η -long forms by annotating with heads
- ▶ factorize binders and environments

```
K ::= \Gamma \vdash h_{k}
h_K ::= *
 A ::= \Gamma \vdash h_A
h_A ::= A[l] : h_K \mid a[l] : h_K
   t ::= \Gamma \vdash h_t
 h_t ::= t[l] : h_A \mid x[l] : h_A \mid c[l] : h_A
   l ::= \Gamma
  \Gamma : x \mapsto ([x : A] \mid [x = t])
 \Sigma ::= \cdot \mid \Sigma [c:A] \mid \Sigma [a:K]
```

- ▶ start from XLF
- ▶ isolate heads (non-binders)
- enforce η -long forms by annotating with heads
- ▶ factorize binders and environments
- ▶ abstract over environment datastructure (maps)

Syntax

```
\begin{array}{lll} K & ::= & \Gamma \text{ kind} \\ A & ::= & \Gamma \vdash h_A \text{ type} \\ h_A & ::= & a \; \Gamma \\ & t \; ::= & \Gamma \vdash h_t : h_A \\ h_t & ::= & t \; \Gamma \mid x \; \Gamma \mid c \; \Gamma \\ & \Gamma & : & x \mapsto ([x:a] \mid [x=t]) \end{array}
```

Judgements

- $ightharpoonup \Gamma$ kind
- ▶ $\Gamma \vdash h_A$ type
- $ightharpoonup \Gamma dash h_t : h_A$

Syntax

```
\begin{array}{lll} K & ::= & \Gamma \text{ kind} \\ A & ::= & \Gamma \vdash h_A \text{ type} \\ h_A & ::= & a \; \Gamma \\ & t \; ::= & \Gamma \vdash h_t : h_A \\ h_t & ::= & t \; \Gamma \mid x \; \Gamma \mid c \; \Gamma \\ & \Gamma & : & x \mapsto ([x:a] \mid [x=t]) \end{array}
```

Judgements

- ▶ K
- ▶ A
- **▶** t

Syntax

```
\begin{split} K &::= \ \Gamma \ \mathsf{kind} \\ A &::= \ \Gamma \vdash h_A \ \mathsf{type} \\ h_A &::= \ a \ \Gamma \\ t &::= \ \Gamma \vdash h_t : h_A \\ h_t &::= \ t \ \Gamma \mid x \ \Gamma \mid c \ \Gamma \\ \Gamma &:= \ x \mapsto ([x:a] \mid [x=t]) \end{split}
```

Judgements

- ▶ K wf
- \triangleright A wf
- ▶ t wf

Notations

- " h_A " for " $\vdash h_A$ "
- " h_A " for " $\emptyset \vdash h_A$ type"
- **▶** "a" for "a ∅"

Example

$$\lambda f^{A \to B} \cdot \lambda x^A \cdot f \ x : (A \to B) \to A \to B \qquad \equiv \\ [f:[a:A] \vdash B \ \text{type}] \ [x:A] \vdash f \ [a=x] : B$$

Some more examples

```
A:\emptyset kind
                                                                                                                    \equiv *
     vec: [len: \mathbb{N}] kind
                                                                                                            = \mathbb{N} \to *
     nil: \vdash vec \ [len = \vdash 0: \mathbb{N}] \ \mathsf{type}
                                                                                                          \equiv vec \ 0:*
   cons: [l:\mathbb{N}][hd:A][tl:\vdash vec\ [len=\vdash l:\mathbb{N}] \text{ type}]\vdash
               vec\ [len = \vdash s\ [n = \vdash l : \mathbb{N}] : \mathbb{N}]  type
                                                                 \equiv \Pi l^{\mathbb{N}} \cdot A \to \Pi t l^{vec\ l} \cdot vec\ (s\ l:\mathbb{N}) : *
    fill: [n:\mathbb{N}] \vdash vec [len = \vdash n:\mathbb{N}] type
                                                                                              \equiv \Pi n^{\mathbb{N}} \cdot (vec \ n : *)
empty: [e:vec [len = 0]] kind
                                                                                                       = vec \ 0 \rightarrow *
       -: \vdash empty \ [e = \vdash fill \ [n = 0] : vec \ [len = n]] \ \mathsf{type}
                                                                                      \equiv empty \ (fill \ 0 : vec \ 0)
```

Environments

... double as labeled *directed acyclic graphs* of dependencies:

Definition (environment)

 $\Gamma = (V, E)$ directed acyclic where:

- $V \subseteq \mathcal{X} \times (t \uplus A)$ and
- ▶ $(x,y) \in E$ $(x \text{ depends on } y) \text{ if } y \in \mathsf{FV}(\Gamma(x))$

Definition (lookup)

$$\Gamma(x): A \quad \text{if} \quad (x, A) \in E$$

 $\Gamma(x) = t \quad \text{if} \quad (x, t) \in E$

Definition (bind)

$$\Gamma [x : A] = (V \cup (x, A), E \cup \{(x, y) \mid y \in \mathsf{FV}(A)\})$$

$$\Gamma [x = t] = (V \cup (x, A), E \cup \{(x, y) \mid y \in \mathsf{FV}(t)\})$$

Environments

... double as labeled *directed acyclic graphs* of dependencies:

Definition (decls, defs)

$$\operatorname{decls}(\Gamma) = [x_1, \dots, x_n]$$
 s.t. $\Gamma(x_i) : A_i$ topologically sorted wrt. Γ $\operatorname{defs}(\Gamma) = [x_1, \dots, x_n]$ s.t. $\Gamma(x_i) = t_i$ topologically sorted wrt. Γ

Definition (merge)

$$\Gamma \cdot \Delta = \Gamma \cup \Delta \text{ s.t.}$$

- if $\Gamma(x): A$ and $\Gamma(x)=t$ then $\Gamma \cdot \Delta(x)=t$
- undefined otherwise

Reduction

$$\begin{split} & \Delta^* = \{ \, [x = x] \mid x \in \mathsf{defs}(\Delta) \} \\ & \Gamma \vdash (\Delta \vdash h_t : h_A) \; \Xi : _ \quad \xrightarrow{``\beta"} \quad \Gamma \cdot \Delta \cdot \Xi \vdash h_t : h_A \\ & \Gamma \vdash c \; \Delta : h_A \quad \longrightarrow \quad \Gamma \cdot \Delta \vdash c \; \Delta^* : h_A \quad \text{if } \Delta \neq \Delta^* \\ & \Gamma \vdash c \; \Xi^* : a \; \Delta \quad \longrightarrow \quad \Gamma \cdot \Delta \vdash c \; \Xi^* : a \; \Delta^* \quad \text{if } \Delta \neq \Delta^* \end{split}$$

Typing

$$\frac{ \substack{ \text{FAM} \\ \underline{\Sigma(a) : (\Xi \text{ kind})} \qquad \Gamma \vdash \Delta : \Xi}}{\Gamma \vdash a \text{ Δ type}}$$

$$\frac{\text{OBJC}}{\Sigma(c): (\Xi \vdash h_A \text{ type})} \qquad \Gamma \vdash \Delta : \Xi \qquad \Gamma \cdot \Xi \cdot \Delta \vdash h_A' \equiv h_A \text{ type}}{\Gamma \vdash c \ \Delta : h_A'}$$

$$\frac{\text{OBJX}}{\Gamma(x) = (\Xi \vdash h_t : h_A)} \qquad \begin{array}{ccc} \Gamma \vdash \Delta : \Xi & \Gamma \cdot \Xi \cdot \Delta \vdash h_A' \equiv h_A \text{ type} \\ \hline & \frac{\Gamma \cdot \Xi \cdot \Delta \vdash h_t : h_A}{\Gamma \vdash x \; \Delta : h_A'} \end{array}$$

$$\begin{array}{ll} \text{Args} & \forall x \in \mathsf{decls}(\Xi) \\ \Delta(x) = (\Delta' \vdash h_t : h_A) & \Xi(x) : (\Xi' \vdash h_A' \; \mathsf{type}) \\ \underline{\Gamma \cdot \Delta \cdot \Delta' \vdash h_t : h_A} & \Gamma \cdot \Xi \cdot \Delta \cdot \Xi' \cdot \Delta' \vdash h_A' \equiv h_A \; \mathsf{type} \\ \hline \Gamma \vdash \Delta : \Xi \end{array}$$

Properties

Translation functions

- $|\cdot|_{\Gamma}: K_{\mathrm{LF}} \to \Gamma_{\mathrm{NLF}} \to K_{\mathrm{NLF}}$ option
- $lack |\cdot|_{\Gamma}:A_{\mathrm{LF}}
 ightarrow \Gamma_{\mathrm{NLF}}
 ightarrow A_{\mathrm{NLF}}$ option
- $|\cdot|_{\Gamma}: t_{\mathrm{LF}} \to \Gamma_{\mathrm{NLF}} \to t_{\mathrm{NLF}}$ option
- \blacktriangleright ... and their inverses $|\cdot|^{-1}$

Conjecture (Conservativity)

- ightharpoonup $\vdash_{\operatorname{LF}} K$ kind iff $(|K|_{\emptyset})$ wf
- ightharpoonup $\vdash_{\mathrm{LF}} A$ type $\ \ \mathrm{iff} \ \ (|A|_{\emptyset}) \ \mathrm{wf}$
- ightharpoonup $\vdash_{\mathrm{LF}} t: A \quad \mathrm{iff} \quad (|t|_{\emptyset}) \; \mathsf{wf}$

Menu

The big picture

Our approach

Why not memoization?
A popular storage model for repositories
Logical framework
Positionality

The language

From LF to NLF NLF: Syntax, typing, reduction

Architecture

Status

\$./gasp init hol.elf

Status

```
$ ./gasp init hol.elf

[holtype : kind]
[i : holtype]
[o : holtype]
[arr : [x2 : holtype][x1 : holtype] \( \to \) holtype type]

Fatal error: exception Assert_failure("src/NLF.ml", 61, 13)
```

Checkout

```
\  \  \, ./gasp checkout v42 \  \  \, if \qquad t=\Gamma\vdash v_{52}: \mbox{Version} \quad \mbox{and} \quad \Gamma(v_{42})=\mbox{Commit}(v_{41},h) then |\Gamma(h)|^{-1} is the LF term representing v42
```

Commit

\$./gasp commit term.elf
if

$$t = \Gamma \vdash v_{52} : \mathsf{Version} \quad \text{and} \quad | \mathsf{term.elf} |_{\Gamma} = \Delta \vdash h_t : h_A$$

then

$$\Delta \left[v_{53} = \mathsf{Commit} \ \left[prev = v_{52}\right] \left[this = h_t\right]\right] \vdash v_{53} : \mathsf{Version}$$
 is the new repository

Further work

- ▶ still some technical & metatheoretical unknowns
- ▶ from derivations to terms (proof search? views?)
- ▶ diff on terms or derivations
- ▶ type errors handling and recovery
- ▶ mimick other operations from VCS (Merge)