Ejemplo. Jacobi

1)
$$3 \quad a - 0.1b - 0.2c = 7.85$$

2)
$$0.1 a + 7 b - 0.3c = -19.3$$

3)
$$0.3 \text{ a} - 0.2\text{b} + 10 \text{ c} = 71.4$$

 $\epsilon = 0.001$

Analizar la Diagonal Dominante

Despejando "a" de la ec.1, "b" de la ec.2 y "c" de la ec.3.

4)
$$a = 7.85 + 0.1b + 0.2c$$

Utilizar las ecuaciones 4, 5 y 6 para las

iteraciones.

5)
$$b = -19.3 - 0.1a + 0.3c$$

Se les asigna un valor de uno a todas

6)
$$c = \frac{71.4 - 0.3a + 0.2b}{10}$$
 las variables al inicia $a_0 = 1$, $b_0 = 1$ y $c_0 = 1$

1er. Iteración.

Con
$$b_0 = 1$$
 y $c_0 = 1$, obtener "a₁"

$$a_1 = \frac{7.85 + 0.1(1) + 0.2(1)}{1}$$

 $a_1 = 2.716666667$

Considerando $a_0 = 1$ y $c_0 = 1$, obtener "b₁"

$$b_1 = -19.3 - 0.1(1) + 0.3(1)$$

 $b_1 = -2.728571429$

Siendo
$$a_0 = 1$$
 y $b_0 = 1$, obtener " c_1 " $c_1 = 71.4 - 0.3(1) + 0.2(1)$

 $c_1 = 7.13$

2da. Iteración.

Con $b_1 = -2.728571429$ y $c_1 = 7.13$, obtener "a₂"

$$a_2 = 7.85 + 0.1(-2.728571429) + 0.2(7.13)$$

 $a_2 = 3.001047619$

Considerando $a_1 = 2.716666667$ y $c_1 = 7.13$, obtener "b₂"

$$b_2 = -19.3 - 0.1(2.716666667) + 0.3(7.13)$$

 $b_2 = -2.490380952$

Siendo $a_1 = 2.716666667$ y $b_1 = -2.728571429$, obtener "c₂"

$$c_2 = 71.4 - 0.3(2.716666667) + 0.2(-2.728571429)$$

 $c_2 = 7.003928571$

10

3era. Iteración.

Con $b_2 = -2.490380952$ y $c_2 = 7.003928571$, obtener "a₃"

$$a_3 = 7.85 + 0.1(-2.490380952) + 0.2(7.003928571)$$

 $a_3 = 3.00058254$

Considerando $a_2 = 3.001047619$ y $c_2 = 7.003928571$, obtener "b₃"

$$b_3 = \underline{-19.3 - 0.1(3.001047619) + 0.3(7.003928571)}_{-}$$

 $b_3 = -2.499846599$

Siendo $a_2 = 3.001047619$ y $b_2 = -2.490380952$, obtener "c₃"

$$c_3 = 71.4 - 0.3(3.001047619) + 0.2(-2.490380952)$$

 $c_3 = 7.000160952$

4a. Iteración.

Con $b_3 = -2.499846599$ y $c_3 = 7.000160952$, obtener "a₄"

$$a_4 = \underline{7.85 + 0.1(-2.499846599) + 0.2(7.000160952)}$$

3

 $a_4 = 3.000015844$

Considerando $a_3 = 3.00058254$ y $c_3 = 7.000160952$, obtener "b₄"

$$b_4 = -19.3 - 0.1(3.00058254) + 0.3(7.000160952)$$

 $b_4 = -2.500001424$

Siendo $a_3 = 3.00058254$ y $b_3 = -2.499846599$, obtener " c_4 "

$$c_4 = 71.4 - 0.3(3.00058254) + 0.2(-2.499846599)$$

10

 $C_4 = 6.999985592$

i	а	b	С
0	1	1	1
1	2.716666667	-2.728571429	7.130000000
2	3.001047619	-2.490380952	7.003928571
3	3.000582540	-2.499846599	7.000160952
<mark>4</mark>	3.000015844	-2.500001424	6.999985592
	$\varepsilon_a = a_4 - a_3 $	$\varepsilon_b = b_4 - b_3 $	$\varepsilon_{\rm c} = c_4 - c_3 $

$$\varepsilon_a = 0.000566696$$

 $\varepsilon_b = 0.000154825$

 $\varepsilon_c = 0.00017536$