LIMIT FORMÜLLERI

Tanım:

- \checkmark x değişkeni a sayısına, a dan küçük değerlerle yaklaşıyorsa bu tür yaklaşmaya soldan yaklaşma deriz ve $x \to a^-$ şeklinde gösteririz.
- \checkmark x değişkeni a sayısına, a dan büyük değerlerle yaklaşıyorsa bu tür yaklaşmaya sağdan yaklaşma deriz ve $x \to a^+$ şeklinde gösteririz.
- \checkmark x değişkeni bir a noktasına sağdan yaklaştığında bir limiti varsa buna fonksiyonun sağdan limiti denir ve $\lim_{x\to a^+} f(x) = L$ biçiminde gösterilir.
- \checkmark x değişkeni bir a noktasına soldan yaklaştığında bir limiti varsa buna fonksiyonun soldan limiti denir ve $\lim_{x\to a^-} f(x) = K$ biçiminde gösterilir.
- \checkmark $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$ ise $\lim_{x\to a} f(x) = L$
- $\checkmark \lim_{x\to a^+} f(x) \neq \lim_{x\to a^-} f(x)$ is e limit yoktur.

Limitin Özellikleri

 $\lim_{x\to a}f(x)=L_1$, $\lim_{x\to a}g(x)=L_2$ ve L_1,L_2,c ϵR olmak üzere.

- \triangleright $\lim_{x\to a} c = c$
- $\lim_{x \to a} (f(x) \mp g(x)) = L_1 \mp L_2$
- $\lim_{x\to a} (c.f(x)) = c.\lim_{x\to a} f(x) = c.L_1$
- $\triangleright \lim_{x\to a} [f(x)]^n = [\lim_{x\to a} f(x)]^n = (L_1)^n$
- $\lim_{x \to a} (f(x). g(x)) = L_1. L_2$
- $|lim_{x\to a}|f(x)| = |lim_{x\to a}f(x)| = |L_1|$

Not:

$$lim_{x \to a} \frac{1}{(x-a)^n} = \left\{ \begin{matrix} +\infty & , & n \ \text{\it cift say} \\ yoktur & , & n \ \text{\it tek say} \end{matrix} \right.$$

$$\lim_{x \to \mp \infty} \frac{1}{(x-a)^n} = 0$$
 , $(n \in Z^+)$

Sıkıştırma Teoremi

f,g,h fonksiyonları bir A kümesinde tanımlı ve $\forall x \in A$ için $f(x) \le h(x) \le g(x)$ ve

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = l$$
 ise

$$\lim_{x\to a} h(x) = l \, dir.$$

Trigonometrik Fonksiyonların Limiti

a ∈ R olmak üzere;

- \triangleright $\lim_{x\to a} \sin x = \sin a$
- $\lim_{x\to a} \tan x = \tan a \ (\cos a \neq 0)$
- \triangleright $\lim_{x\to a} \cot x = \cot a \quad (\sin a \neq 0)$
- $lim_{x\to 0} \frac{\sin ax}{hx} = \frac{a}{h}$
- $\lim_{x\to 0} \frac{\tan ax}{hx} = \frac{a}{h} \, dir.$
- $\rightarrow \lim_{x\to\infty} \frac{\sin x}{x} = \lim_{x\to\infty} \frac{\cos x}{x} = 0$

Genişletilmiş Reel Sayılar Kümesinde Limit

Tanım:

Reel sayılar kümesine $-\infty$ $ve+\infty$ un katılmasıyla elde edilen kümeye genişletilmiş reel sayılar kümesi denir ve \bar{R} ile gösterilir.

Yani $\bar{R}=R\cup\{-\infty,+\infty\}$ dur. Genişletilmiş reel sayılar kümesinde $x\to\pm\infty$ için limitleri inceleriz.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
polinom fonksiyonunda,

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} a_n x^n \text{ dir.}$$

$$\checkmark$$
 $a > 1$ ise $\lim_{x \to \infty} a^x = \infty$, $\lim_{x \to -\infty} a^x = 0$

$$\checkmark \quad 0 < a < 1 \text{ ise}$$

$$\lim_{x \to \infty} a^x = 0 \quad , \quad \lim_{x \to -\infty} a^x = \infty$$

Belirsizlikler:

 $\Rightarrow \frac{0}{0}$ Belirsizliği $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ oluyorsa kesrin pay ve paydası (x-a) parantezine alınarak sadeleştirme yapılarak sonuç bulunur. Sadeleştirme yapılamıyorsa L'HOSPİTAL yöntemi kullanılır.

L'HOSPİTAL YÖNTEMİ

 $f: [a,b] \to R \ ve \ g: [a,b] \to R \ olmak \ \ddot{u}$ zere (a,b) aralığında sürekli ve türevlenebilen iki fonksiyon olsun.

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{0}{0}\ ise\ \lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}=\frac{f'(a)}{g'(a)}$$

$$\lim_{\chi o \infty} rac{f(x)}{g(x)} = rac{0}{0} \ ise \ \lim_{\chi o \infty} rac{f(x)}{g(x)} = \lim_{\chi o \infty} rac{f'(x)}{g'(x)}$$

$$\triangleright \quad \frac{\infty}{\infty}$$
 Belirsizliği

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} \text{ olsun}$$

$$\lim_{x \to \infty} f(x) = \begin{cases} 0 & , & n < m \\ \frac{a_n}{b_m} & , & n = m \\ \pm \infty & , & n > m \end{cases}$$

> 0.∞ Belirsizliği

Bu tür belirsizliklerde çarpanlardan birinin çarpmaya göre tersi alınarak $\frac{0}{0}$ veya $\frac{\infty}{\infty}$ belirsizliklerinden birine dönüştürülerek çözüm yapılır.

$$\checkmark \quad \lim_{x \to \infty} \sqrt{ax^2 + bx + c} = \lim_{x \to \infty} \left(\sqrt{a} \cdot \left| x + \frac{b}{2a} \right| \right)$$

✓
$$f(x) = \sqrt{a_1 x^2 + b_1 x + c_1} - \sqrt{a_2 x^2 + b_2 x + c_2}$$
olsun.

$$\lim_{x \to \infty} f(x) = \begin{cases} +\infty & , & a_1 > a_2 \\ \frac{b_1 - b_2}{2\sqrt{a}} & , & a_1 = a_2 \\ -\infty & , & a_1 < a_2 \end{cases}$$