ÁLGEBRAS DE LIE

EXERCÍCIOS :: AULA 20

Sejam $(E, (\cdot, \cdot))$ um espaço Euclidiano, $\Phi \subseteq E$ um sistema de raízes, $\Delta \subseteq \Phi$ um sistema simples, e $\mathcal{W} \subseteq GL(E)$ o grupo de Weyl de Φ .

- 20.1. (San Martin 9.5.2) Seja $\Delta' \subseteq \Delta$ um subconjunto, e denote $\Phi' := \Phi \cap \mathbb{Z} \Delta'$, o menor subconjunto de Φ que contém Δ' e é fechado pela soma. Mostre que Φ' é um sistema de raízes com sistema simples Δ' .
- 20.2. (Humphreys 10.5 e 6) Seja $w \in \mathcal{W}$. Se $w = \sigma_{\alpha_1} \cdots \sigma_{\alpha_t}, \ \alpha_1, \dots, \alpha_t \in \Delta$, mostre que $t \equiv \ell(w) \pmod{2}$. Use isso para mostrar que existe um homomorfismo de grupos bem-definido $sn \colon \mathcal{W} \to \mathbb{Z}_2$ dado por $sn(w) = (-1)^{\ell(w)}$.
- 20.3. (Humphreys 10.7) Prove que as câmaras de Weyl são não-vazias, ou seja,

$$\mathfrak{C}(\Delta) := \{ e \in E \mid (e, \alpha) > 0 \text{ for all } \alpha \in \Delta \} \neq \emptyset.$$

- 20.4. (Humphreys 10.9) Mostre que existe um único elemento $w_o \in \mathcal{W}$ tal que $w_o(\Phi^+) = \Phi^-$. Conclua que $\ell(w_o) = \frac{1}{2}|\Phi| = \frac{1}{2}(\dim \mathfrak{g} \dim \mathfrak{h})$, quando Φ é um sistema de raízes de uma álgebra de Lie simples \mathfrak{g} com subálgebra toral maximal \mathfrak{h} .
- 20.5. (Humphreys 10.14) Mostre que, para cada $e \in E$, existe $w \in \mathcal{W}$ tal que $w(e) \in \overline{\mathfrak{C}(\Delta)}$.
- 20.6. Mostre que, se Φ não for irredutível, $\Phi = \Phi_1 \sqcup \cdots \sqcup \Phi_n$, então o seu grupo de Weyl é $\mathcal{W} = \mathcal{W}_1 \times \cdots \times \mathcal{W}_n$, o produto direto dos grupos de Weyl \mathcal{W}_i dos sistemas de raízes Φ_i , $i \in \{1, \ldots, n\}$.

Entregar dia: 17 de junho de 2019.