2 RG&TC-Code

```
In[54]:= xCoord = \{t, \chi, \theta, \varphi\};
               g = {
                      \{-xy, 0, 0, 0\},\
                      \{0, xyt, 0, 0\},\
                      \{0, 0, z, 0\},\
                      {0, 0, 0, xt}
               RGtensors[g, xCoord]
              gdd \; = \; \begin{pmatrix} -x \, y & 0 & 0 & 0 \\ 0 & t \, x \, y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & t \, x \end{pmatrix}
               LineElement = -x y d[t]^2 + z d[\theta]^2 + t x d[\varphi]^2 + t x y d[\chi]^2
             gUU = \begin{pmatrix} -\frac{1}{xy} & 0 & 0 & 0 \\ 0 & \frac{1}{txy} & 0 & 0 \\ 0 & 0 & \frac{1}{z} & 0 \\ 0 & 0 & 0 & \frac{1}{tx} \end{pmatrix}
               gUU computed in 0. sec
               Gamma computed in 0. sec
               Riemann(dddd) computed in 0. sec
               Riemann(Uddd) computed in 0. sec
               Ricci computed in 0. sec
              Weyl computed in 0. sec
               Einstein computed in 0. sec
Out[56]=
              All tasks completed in 0.
  In[57]:= (* Ricci Scalar *)
  In[58]:= R
Out[58]=
  In[59]:= (* Einstein Tensor *)
  In[60]:= EUd
Out[60]=
               \left\{ \left\{ -\frac{1}{4\,\mathsf{t}^2\,\mathsf{x}\,\mathsf{v}}\,,\,\emptyset,\,\emptyset,\,\emptyset\right\},\, \left\{ \emptyset,\,\frac{1}{4\,\mathsf{t}^2\,\mathsf{x}\,\mathsf{v}}\,,\,\emptyset,\,\emptyset\right\},\, \left\{ \emptyset,\,\emptyset,\,\frac{1}{4\,\mathsf{t}^2\,\mathsf{x}\,\mathsf{v}}\,,\,\theta\right\},\, \left\{ \emptyset,\,\emptyset,\,\emptyset,\,\frac{1}{4\,\mathsf{t}^2\,\mathsf{x}\,\mathsf{v}}\right\} \right\}
  In[61]:= (* Christoffel Symbol *)
```

In[62]:= GUdd // MatrixForm

Out[62]//MatrixForm=

$$\begin{pmatrix}
\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
\begin{pmatrix} 0 \\ \frac{1}{2^{t}} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix}$$

In[63]:= Part[GUdd, 1, 2, 2]
 Part[GUdd, 2, 2, 1]

Out[64]= **1**

In[65]:= (* Riemann tensor *)

In[66]:= RUddd

Out[66]=

$$\left\{ \left\{ \{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}\}, \{0,0,0,0\} \right\}, \\ \left\{ \left\{0,-\frac{1}{4t},0,0\right\}, \left\{\frac{1}{4t},0,0,0\right\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{ \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{ \left\{0,0,0,-\frac{1}{4ty}\right\}, \{0,0,0,0\}, \{0,0,0,0\}, \left\{\frac{1}{4ty},0,0,0\right\} \right\} \right\}, \\ \left\{ \left\{0,-\frac{1}{4t^2},0,0\right\}, \left\{\frac{1}{4t^2},0,0,0\right\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \left\{0,-\frac{1}{4ty},0,0\right\} \right\} \right\}, \\ \left\{ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0,0\} \right\}, \\ \left\{ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0,0\}, \{0,0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \right\}, \\ \left\{0,0,0,0,0\}, \{0,0,0,0,0\}, \{0,0,0,0,0\}, \{$$

In[67]:= (* Ricci Tensor *)

In[68]:= **Rdd**

Out[68]=

$$\left\{ \left\{ \frac{1}{2t^2}, 0, 0, 0 \right\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\} \right\}$$

In[69]:= Part[Rdd, 1, 1]

Out[69]=

 $In[70]:= xCoord = \{t, r, \varphi\};$

$$g = \left\{ \left\{ -\left(1 + 2\frac{G * M}{r}\right), 0, 0 \right\}, \\ \left\{ 0, \left(1 + 2\frac{G * M}{r}\right), 0 \right\}, \\ \left\{ 0, 0, r^2 \right\} \right\}$$

Out[71]=

$$\left\{ \left\{ -1 - \frac{2 \, G \, M}{r}, \, 0, \, 0 \right\}, \, \left\{ 0, \, 1 + \frac{2 \, G \, M}{r}, \, 0 \right\}, \, \left\{ 0, \, 0, \, r^2 \right\} \right\}$$

In[72]:= RGtensors[g, xCoord]

$$gdd \ = \ \begin{pmatrix} -1 - \frac{2\,G\,M}{r} & 0 & 0 \\ 0 & 1 + \frac{2\,G\,M}{r} & 0 \\ 0 & 0 & r^2 \end{pmatrix}$$

$$\begin{aligned} & \text{LineElement} \; = \; \frac{ (\, 2 \, G \, M + r) \; d \, [\, r \,]^{\, 2} }{r} \; - \; \frac{ (\, 2 \, G \, M + r) \; d \, [\, t \,]^{\, 2} }{r} \; + \; r^{2} \, d \, [\, \varphi \,]^{\, 2} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

$$gUU \ = \ \begin{pmatrix} -\frac{r}{2\,G\,M+r} & 0 & 0 \\ 0 & \frac{r}{2\,G\,M+r} & 0 \\ 0 & 0 & \frac{1}{r^2} \end{pmatrix}$$

gUU computed in 0. sec

Gamma computed in 0. sec

Riemann(dddd) computed in 0. sec

Riemann (Uddd) computed in 0. sec

Ricci computed in 0. sec

Weyl computed in 0. sec

Testing for 3-dim conformal flatness...

Outer: Heads Times and List at positions 3 and 2 are expected to be the same.

Einstein computed in 0. sec

Out[72]=

All tasks completed in 0.

In[73]:= **GUdd**

Out[73]=

$$\begin{split} & \left\{ \left\{ \left\{ 0, -\frac{G\,M}{r\,\left(2\,G\,M + r \right)}, \, 0 \right\}, \, \left\{ -\frac{G\,M}{r\,\left(2\,G\,M + r \right)}, \, 0, \, 0 \right\}, \, \left\{ 0, \, 0, \, 0 \right\} \right\}, \\ & \left\{ \left\{ -\frac{G\,M}{r\,\left(2\,G\,M + r \right)}, \, 0, \, 0 \right\}, \, \left\{ 0, \, -\frac{G\,M}{r\,\left(2\,G\,M + r \right)}, \, 0 \right\}, \, \left\{ 0, \, 0, \, -\frac{r^2}{2\,G\,M + r} \right\} \right\}, \\ & \left\{ \left\{ 0, \, 0, \, 0 \right\}, \, \left\{ 0, \, 0, \, \frac{1}{r} \right\}, \, \left\{ 0, \, \frac{1}{r}, \, 0 \right\} \right\} \right\} \end{split}$$

In[74]:=
$$xCoord = \{\psi, \theta, \varphi\};$$

$$g = \{\{1, 0, 0\},\$$

$$\{0, \sin[\psi]^2, 0\},$$

$$\{0, 0, \sin[\psi]^2 * \sin[\varphi]^2\}$$

Out[75]=

$$\{\{1, 0, 0\}, \{0, \sin[\psi]^2, 0\}, \{0, 0, \sin[\phi]^2 \sin[\psi]^2\}\}$$

In[76]:= RGtensors[g, xCoord]

LineElement = $x y d[x]^2 + x^2 d[y]^2$

$$gUU = \begin{pmatrix} \frac{1}{xy} & 0 \\ 0 & \frac{1}{x^2} \end{pmatrix}$$

gUU computed in 0. sec

Gamma computed in 0.015 sec

Riemann(dddd) computed in 0. sec

Riemann(Uddd) computed in 0. sec

Ricci computed in 0. sec

Weyl computed in 0. sec

Conformally Flat

Einstein computed in 0. sec

Einstein Space

Out[99]=

All tasks completed in 0.015625

In[85]:= **GUdd**

Out[85]=

$$\left\{ \left\{ \left\{ \frac{1}{2\,x},\,\frac{1}{2\,y} \right\},\, \left\{ \frac{1}{2\,y},\,-\frac{1}{y} \right\} \right\},\, \left\{ \left\{ -\frac{1}{2\,x},\,\frac{1}{x} \right\},\, \left\{ \frac{1}{x},\,0 \right\} \right\} \right\}$$

In[86]:= **RUdd**

Out[86]=

RUdd

In[100]:=

RUddd // MatrixForm

Out[100]//MatrixForm=

$$\begin{pmatrix}
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix} & \begin{pmatrix}
0 & \frac{x+2y}{4xy^2} \\
-\frac{x+2y}{4xy^2} & 0
\end{pmatrix} \\
\begin{pmatrix}
0 & -\frac{x+2y}{4x^2y} \\
\frac{x+2y}{4x^2y} & 0
\end{pmatrix} & \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}$$

In[88]:= **Rdd**

Out[88]=

$$\left\{ \left\{ \frac{x+2y}{4x^2y}, 0 \right\}, \left\{ 0, \frac{x+2y}{4xy^2} \right\} \right\}$$

In[89]:= **R**

Out[89]=

$$\frac{x+2y}{2x^3y^2}$$

In[90]:= **xCoord** = {t, r,
$$\theta$$
, φ }
Out[90]=

 $\{t, r, \theta, \varphi\}$

$$In[91]:= g = \{ \{ -(1-2*G*M/r), 0, 0, 0 \}, \\ \{ 0, (1-2*G*M/r)^{(-1)}, 0, 0 \}, \\ \{ 0, 0, r^2, 0 \}, \\ \{ 0, 0, 0, r^2*Sin[\theta]^2 \} \}$$

Out[91]=

$$\left\{ \left\{ -1 + \frac{2\,\mathrm{G\,M}}{\mathrm{r}} \,,\, 0\,,\, 0\,,\, 0 \right\},\, \left\{ 0\,,\, \frac{1}{1 - \frac{2\,\mathrm{G\,M}}{\mathrm{r}}} \,,\, 0\,,\, 0 \right\},\, \left\{ 0\,,\, 0\,,\, \mathrm{r}^2\,,\, 0 \right\},\, \left\{ 0\,,\, 0\,,\, 0\,,\, \mathrm{r}^2\,\mathrm{Sin}\left[\theta\right]^2 \right\} \right\}$$

In[92]:= RGtensors[g, xCoord]

$$gdd = \begin{pmatrix} -1 + \frac{2GM}{r} & 0 & 0 & 0 \\ 0 & \frac{1}{1 - \frac{2GM}{r}} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 Sin[\theta]^2 \end{pmatrix}$$

LineElement =
$$-\frac{r d[r]^2}{2 G M - r} + \frac{(2 G M - r) d[t]^2}{r} + r^2 d[\theta]^2 + r^2 d[\phi]^2 Sin[\theta]^2$$

$$gUU \ = \left(\begin{array}{cccc} \frac{r}{2\,G\,M-r} & \emptyset & \emptyset & \emptyset \\ 0 & -\frac{2\,G\,M-r}{r} & \emptyset & \emptyset \\ 0 & \emptyset & \frac{1}{r^2} & \emptyset \\ 0 & \emptyset & \emptyset & \frac{Csc\,[\varnothing]^2}{r^2} \end{array} \right)$$

gUU computed in 0. sec

Gamma computed in 0. sec

Riemann(dddd) computed in 0. sec

Riemann(Uddd) computed in 0. sec

Ricci computed in 0. sec

Weyl computed in 0. sec

Ricci Flat

Out[92]=

All tasks completed in 0.

In[93]:= **GUdd**

$$\left\{ \left\{ \left\{ 0, -\frac{GM}{(2GM-r) r}, 0, 0 \right\}, \left\{ -\frac{GM}{(2GM-r) r}, 0, 0, 0 \right\}, \left\{ 0, 0, 0, 0 \right\}, \left\{ 0, 0, 0, 0, 0 \right\} \right\}, \\ \left\{ \left\{ -\frac{GM (2GM-r)}{r^3}, 0, 0, 0 \right\}, \left\{ 0, \frac{GM}{(2GM-r) r}, 0, 0 \right\}, \\ \left\{ 0, 0, 2GM-r, 0 \right\}, \left\{ 0, 0, 0, (2GM-r) Sin[\theta]^2 \right\} \right\}, \\ \left\{ \left\{ 0, 0, 0, 0 \right\}, \left\{ 0, 0, \frac{1}{r}, 0 \right\}, \left\{ 0, \frac{1}{r}, 0, 0 \right\}, \left\{ 0, 0, 0, -Cos[\theta] Sin[\theta] \right\} \right\}, \\ \left\{ \left\{ 0, 0, 0, 0 \right\}, \left\{ 0, 0, 0, \frac{1}{r} \right\}, \left\{ 0, 0, 0, Cot[\theta] \right\}, \left\{ 0, \frac{1}{r}, Cot[\theta], 0 \right\} \right\} \right\}$$