#### Poisson Generalized Linear Model

#### Filippo Gambarota

University of Padova

2022/2023

Updated on 2023-05-09

#### Outline

- 1. Poisson distribution
- 2. Parameters intepretation
- 3. Overdispersion
- 4. Dealing with overdispersion

#### Poisson GLM

Everything that we discussed for the binomial GLM is also relevant for the Poisson GLM. We are gonna focus on specificity of the Poisson model in particular:

- Poisson distribution and link function
- Parameters interpretation
- Overdispersion causes, consequences and remedies

The Poisson distribution is defined as:

$$p(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$

Where the mean is  $\lambda$  and the variance is  $\lambda$ 



As the mean increases also the variance increase and the distributions is approximately normal:





#### Link function

The common (and default in R) link function  $(g(\lambda))$  for the Poisson distribution is the  $\log$  link function and the inverse of link function is the exponential.

$$\begin{split} log(\lambda) &= \beta_0 + \beta_1 X_1 + ... \beta_p X_p \\ \lambda &= e^{\beta_0 + \beta_1 X_1 + ... \beta_p X_p} \end{split}$$

#### An example...

Let's start by a simple example trying to explain the number of errors of math exercises by students (N = 100) as a function of the number of hours of study.

| id  | studyh | solved |
|-----|--------|--------|
| 1   | 14     | 11     |
| 2   | 46     | 27     |
| 3   | 10     | 9      |
| 4   | 57     | 20     |
|     |        |        |
| 97  | 93     | 58     |
| 98  | 65     | 37     |
| 99  | 93     | 63     |
| 100 | 71     | 42     |
|     |        |        |

# An example...

- There is a clear non-linear pattern
- There seems to be a positive relationship
- The variance seems to increase as a function of the predictor (remember that mean and variance are the same value for the Poisson)



# Model fitting

We can fit the model using the glm function in R setting the appropriate random component (family) and the link function (link):

```
fit <- glm(solved ~ studyh, family = poisson(link = "log"), data = dat)
summary(fit)
##
## Call:
## glm(formula = solved ~ studyh, family = poisson(link = "log"),
      data = dat)
## Deviance Residuals:
       Min
                       Median
                                              Max
                  10
                                      30
## -2.28293 -0.62214 -0.01422 0.61038 1.80256
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.333338 0.047569 49.05 <2e-16 ***
           0.019351 0.000699 27.68 <2e-16 ***
## studvh
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 929.593 on 99 degrees of freedom
## Residual deviance: 78.151 on 98 degrees of freedom
## ATC: 590.36
##
## Number of Fisher Scoring iterations: 4
```

- The (Intercept) 2.333 is the log of the expected number of solved exercises for a student with 0 hours of studying. Taking the exponential we obtain the estimation on the response scale 10.312
- ullet the studyh 0.019 is the increase in the expected increase of (log) solved exercises for a unit increase in hours of studying. Taking the exponential we obtain the ratio of increase of the number of solved exercises 1.020

Again, as in the binomial model, the effects are linear on the log scale but non-linear on the response scale.



## studyh ## 1.019539

The non-linearity can be easily seen using the predict() function:

```
linear <- predict(fit, newdata = data.frame(studyh = c(10, 11)))
diff(linear) # same as the beta0
## 0.01935099
nonlinear <- exp(linear) # or predict(..., type = "response")
diff(nonlinear)
## 0.2445164
# ratio of increase when using the response scale
nonlinear[2]/nonlinear[1]
## 1 019539
# equivalent to exp(beta1)
exp(coef(fit)[2])
```

Let's make a similar example with the number of solved exercises comparing students who attended online classes and students attending in person.

| id  | class    | class.c | solved |
|-----|----------|---------|--------|
| 1   | online   | 0       | 7      |
| 2   | inperson | 1       | 11     |
| 3   | online   | 0       | 4      |
| 4   | inperson | 1       | 18     |
|     | •••      | •••     |        |
| 97  | online   | 0       | 8      |
| 98  | inperson | 1       | 11     |
| 99  | online   | 0       | 18     |
| 100 | inperson | 1       | 17     |
|     |          |         |        |



R by default set the categorical variables using **dummy-coding**. In this case we set the reference category to online.

```
fit <- glm(solved ~ class, family = poisson(link = "log"), data = dat)
summary(fit)
##
## Call:
## glm(formula = solved ~ class, family = poisson(link = "log").
      data = dat)
## Deviance Residuals:
                10 Median
                                         Max
      Min
## -2.5598 -0.6940 -0.1633 0.6440 2.6369
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.19722 0.04714 46.610 < 2e-16 ***
## classinperson 0.48517 0.05992 8.097 5.63e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 168.39 on 99 degrees of freedom
## Residual deviance: 100.89 on 98 degrees of freedom
## ATC: 529.59
##
## Number of Fisher Scoring iterations: 4
```

- Similarly to the previous example, the intercept is the expected number of solved exercises when the class is 0. Thus the expected number of solved exercises for online students.
- the classinperson is the difference in log solved exercises between online and in person classes. In the response scale is the expected increase in the ratio of solved exercises. People doing in person classes solve 162.4444444 of the exercises of people doing online classes

```
c(coef(fit)["(Intercept)"], exp(coef(fit)["(Intercept)"]))

## (Intercept) (Intercept)
## 2.197225 9.000000

c(coef(fit)["classinperson"], exp(coef(fit)["classinperson"]))
```

```
## classinperson classinperson
## 0.4851659 1.6244444
```

## Overdispersion

#### Overdispersion

**Overdispersion** concerns observing a greater variance compared to what would have been expected by the model.

The **overdispersion**  $\phi$  can be estimated using Pearson Residuals:

$$\hat{\phi} = \frac{\sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{\hat{y}_i}}{n - p - 1}$$

Where the numerator is the sum of squared Pearson residuals, n is the number of observations and k the number of predictors. For standard Binomial and Poisson models  $\phi=1$ .

Applied Regression Analysis and Generalized Linear Models, Fox (2016), Ch. 15, pp. 432

## Overdispersion

If the model is correctly specified for binomial and poisson models the ratio is equal to 1, of the ratio is >1 there is evidence for overdispersion. In practical terms, if the residual deviance is higher than the residuals degrees of freedom, there is evidence for overdispersion.

```
P <- sum(residuals(fit, type = "pearson")^2)
P / df.residual(fit) # nrow(fit$dat) - length(fit_p$coefficients)</pre>
```

## [1] 1.029663

## Testing overdispersion

To formally test for overdispersion i.e. testing if the ratio is significantly different from 1 we can use the performance::check\_overdispersion() function.

```
## # Overdispersion test
##
## dispersion ratio = 1.030
## Pearson's Chi-Squared = 100.907
p-value = 0.4
```

performance::check\_overdispersion(fit)

# Overdispersion plot

Pearson residuals are defined as:

$$r_p = \frac{y_i - \hat{y}_i}{\sqrt{V(\hat{y}_i)}}$$
 
$$V(\hat{y}_i) = \sqrt{\hat{y}_i}$$

Remember that the mean and the variance are the same in Poisson models. If the model is correct, the standardized residuals should be normally distributed with mean 0 and variance 1.

# Overdispersion plot



Regression and Multilevel Models, (Gelman & Hill, 2007), Ch. 6, pp. 114

## Variance-mean relationship

The overdispersion can be expressed also in terms of variance-mean ratio. In fact, when the ratio is 1, there is no evidence of overdispersion.



### Causes of overdispersion

There could be multiple causes for overdispersion:

- the phenomenon itself cannot be modelled with a Poisson distribution
- outliers or anomalous obervations that increases the observed variance
- missing important variables in the model

#### Outliers or anomalous data

This (simulated) dataset contains n=30 observations coming from a poisson model in the form y=1+2x and n=7 observations coming from a model y=1+10x.



#### Outliers or anomalous data

Clearly the sum of squared pearson residuals is inflated by these values producing more variance compared to what should be expected.

```
c(mean = mean(datout$y), var = var(datout$y)) # mean and variance should be similar

## mean var
## 2.756757 6.689189

performance::check_overdispersion(fit)

## # Overdispersion test
##
## dispersion ratio = 1.515
## Pearson's Chi-Squared = 53.019
## p-value = 0.026
```

Let's imagine to analyze again the dataset with the number of solved exercises. We have the effect of the studyh variable. In addition we have the effect of the class variable, without interaction.

| id | class    | studyh | class.c | lp               | solved |
|----|----------|--------|---------|------------------|--------|
| 1  | online   | 82     | 0       | 22.6127119305986 | 24     |
| 2  | inperson | 65     | 1       | 47.7341622043588 | 50     |
| 3  | online   | 12     | 0       | 11.2682503013197 | 15     |
| 4  | inperson | 54     | 1       | 42.7852617196088 | 50     |
|    |          |        |         | •••              |        |
| 37 | online   | 85     | 0       | 23.2978997148077 | 35     |
| 38 | inperson | 55     | 1       | 43.2131143368049 | 43     |
| 39 | online   | 80     | 0       | 22.1671521719426 | 26     |
| 40 | inperson | 77     | 1       | 53.7880487642509 | 54     |

We can also have a look at the data:



Now let's fit the model considering only studyh and ignoring the group:

```
fit <- glm(solved ~ studyh, data = dat, family = poisson(link = "log"))
summary(fit)</pre>
```

```
##
## Call:
## glm(formula = solved ~ studyh, family = poisson(link = "log"),
      data = dat)
##
## Deviance Residuals:
     Min 10 Median
                                    Max
## -5.047 -2.247 -0.107 2.214
                                  3.246
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.692791 0.068831 39.12 <2e-16 ***
             0.013624 0.001063 12.82 <2e-16 ***
## studyh
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 417.99 on 39 degrees of freedom
## Residual deviance: 243.99 on 38 degrees of freedom
## ATC: 451.39
## Number of Fisher Scoring iterations: 4
```

Essentially, we are fitting an average relationship across groups but the model ignore that the two groups differs, thus the observed variance is definitely higher beacuse we need two separate means to explain the class effect.



By fitting the appropriate model, the overdispersion is no longer a problem:

```
fit2 <- glm(solved ~ studyh + class, data = dat, family = poisson(link = "log"))
summary(fit2)</pre>
```

```
## Call:
## glm(formula = solved ~ studyh + class, family = poisson(link = "log"),
      data = dat)
## Deviance Residuals:
       Min
                      Median
                                              Max
## -1.93006 -0.48422 0.00417 0.43834 1.97814
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.275159 0.078239
                                     29.08 <2e-16 ***
## studyh
             0.010895 0.001068 10.21 <2e-16 ***
## classinperson 0.907365 0.065373 13.88 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 417.993 on 39 degrees of freedom
## Residual deviance: 29.022 on 37 degrees of freedom
## ATC: 238.41
##
## Number of Fisher Scoring iterations: 4
```

dispersion ratio = 0.777
Pearson's Chi-Squared = 28.738

p-value = 0.832

```
performance::check_overdispersion(fit)

## # Overdispersion test
## dispersion ratio = 6.115
## Pearson's Chi-Squared = 232.369
## p-value = < 0.001

performance::check_overdispersion(fit2)</pre>
## # Overdispersion test
```

#### Missing important variables in the model

Also the residuals plot clearly improved after including all relevant predictors:





#### Why worring about overdispersion?

Before analyzing the two main strategies to deal with overdispersion, it is important to understand why it is very problematic.

Despite the estimated parameters are not affected by overdispersion, the standard error are very underestimated as a function of the degree of overdispersion.

Underestimated standard errors produce unrealistic precise parameters estimations inflating the type-1 error (i.e., parameters tends to be more significant than when overdispersion is considered)

#### Why worring about overdispersion?

Estimate Std. Error

## studyh

## (Intercept) 2.69279058 0.174413070 15.439156 8.926080e-54

0.01362422 0.002692888 5.059333 4.207258e-07

The estimated overdispersion of fit is  $\sim 6.4208936$ . The summary() function in R has a dispersion argument to check how model parameters are affected.

```
phi <- fit$deviance / fit$df.residual
summary(fit, dispersion = 1)$coefficients # the default
                Estimate Std. Error z value
                                                 Pr(>|z|)
## (Intercept) 2.69279058 0.068830558 39.12202 0.000000e+00
## studyh
              0.01362422 0.001062724 12.82009 1.265575e-37
summary(fit, dispersion = 2)$coefficients # the default
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.69279058 0.097341109 27.663447 1.923115e-168
## studyh
              0.01362422 0.001502919 9.065171 1.244091e-19
summary(fit, dispersion = phi)$coefficients # the appropriate
```

Pr(>|z|)

z value

#### Why worring about overdispersion?

By using multiple values for  $\phi$  we can see the impact on the standard error:



### Dealing with overdispersion

#### Dealing with overdispersion

If all the variables are included and there are no outliers, the phenomenon itself contains more variability compared to what predicted by the Poisson. There are two main approaches to deal with the situation:

- quasi-poisson model
- poisson-gamma model AKA negative-binomial model

#### Quasi-poisson model

The **quasi-poisson** model is essentially a poisson model that estimate the  $\phi$  parameter and adjust the standard errors accordingly. Again, assuming to fit the studyh only model (with overdispersion):

```
fit <- glm(solved ~ studyh, data = dat, family = quasipoisson(link = "log"))
summary(fit)
##
## Call:
## glm(formula = solved ~ studyh, family = quasipoisson(link = "log"),
      data = dat)
##
## Deviance Residuals:
     Min 1Q Median 3Q
                                    Max
## -5.047 -2.247 -0.107 2.214
                                  3.246
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.692791 0.170209 15.821 < 2e-16 ***
## studyh 0.013624 0.002628 5.184 7.46e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 6.115055)
##
      Null deviance: 417.99 on 39 degrees of freedom
## Residual deviance: 243.99 on 38 degrees of freedom
## ATC: NA
##
## Number of Fisher Scoring iterations: 4
```

#### Quasi-poisson model

The quasi-poisson model estimates the same parameter and adjust standard errors as we did on slide 39. All other parameters are the same.

The quasi-poisson model is useful because it is a very simple way to deal with overdispersion.

The variance  $\big(V(\mu)\big)$  of the Poisson model is no longer  $\mu$  but  $V(\mu)=\mu\phi$ . When  $\phi$  is close to 1, the quasi-poisson model is the same as a standard poisson model.

#### Problems of Quasi-\* model

The main problem of quasi-\* models is that they are not a specific distribution family and there is not a likelihood function. For this reason, we cannot perform model comparison the standard AIC/BIC. See [1] for an overview.

A negative binomial model is a separated random component with two parameters: the mean as in standard poisson model and the dispersion parameter. Similarly to the quasi-poisson model it estimates a dispersion parameter.

Practically the negative-binomial model is constructed from a hierarchical model:

$$y_i \sim Poisson(\lambda_i)$$
 
$$\lambda_i \sim Gamma(\mu_i, \phi)$$

In this way, the Gamma distribution regulate the dispersion around the expected value under the poisson model.

The mean of the negative binomial distribution is  $\lambda$  and the variance is  $\lambda + \frac{\lambda^2}{\theta}$ 

$$p(y_i; \mu_i, k) = \frac{\Gamma(y_i + k)}{\Gamma(y_i + 1)\Gamma(k)} \left(\frac{\mu_i}{\mu_i + k}\right)^{y_i} \left(1 - \frac{\mu_i}{\mu_i + k}\right)^k$$

Where  $k=1/\phi$ ,  $\Gamma()$  is the gamma function. The mean is  $\mu_i$  and the variance is  $\mu_i+\frac{\mu_i^2}{k}$ 

Compared to the Poisson model, the negative binomial allows for overdispersion estimating the parameter  $\phi$  and compared to the quasi-poisson model the variance is not a linear increase of the mean  $(V(\mu)=\phi\mu)$  but have a quadratic relationship  $V(\mu)=\mu+\mu^2/\phi$ 



We can use the MASS package to implement the negative binomial distribution using the MASS::rnegbin():



The  $\theta$  parameter is the estimated dispersion. To note, is not the same as  $\phi$  in the quasi-poisson model. As  $\theta$  increase, the overdispersion is reduced and the model is similar to a standard Poisson model.



For fitting a negative-binomial model we cannot use the glm function but we need to use the MASS::glm.nb() function. The syntax is almost the same but we do not need to specify the family because this function only fit negative-binomial models. Let's simulate some data coming from a negative binomial distribution with  $\theta=10$ 

```
theta <- 10
n <- 100
b0 <- 10
b1 <- 5
dat <- sim_design(n, nx = list(x = runif(n)))
dat$lp <- with(dat, exp(log(b0) + log(b1)*x))
dat$y <- with(dat, MASS::rnegbin(n, lp, theta))</pre>
```

| id | class    | studyh | class.c | lp               | solved |
|----|----------|--------|---------|------------------|--------|
| 1  | online   | 82     | 0       | 22.6127119305986 | 24     |
| 2  | inperson | 65     | 1       | 47.7341622043588 | 50     |
|    |          |        |         |                  |        |
| 39 | online   | 80     | 0       | 22.1671521719426 | 26     |
| 40 | inperson | 77     | 1       | 53.7880487642509 | 54     |





## Then we can fit the model: fit nb <- MASS::glm.nb(v ~ x. data = dat)

```
summary(fit nb)
##
## Call:
## MASS::glm.nb(formula = y ~ x, data = dat, init.theta = 13.53203549,
      link = log)
## Deviance Residuals:
                                              Max
       Min
                  10 Median
                                     30
## -2.17744 -0.80095 -0.03554 0.68634 2.57041
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.27141
                         0.07058 32.18 <2e-16 ***
## x
             1.56534 0.12719 12.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(13.532) family taken to be 1)
##
      Null deviance: 259.79 on 99 degrees of freedom
## Residual deviance: 101.04 on 98 degrees of freedom
## ATC: 667.97
##
## Number of Fisher Scoring iterations: 1
##
                Theta: 13.53
            Std. Err : 3.28
```

We can fit also the standard Poisson model and compare the impact of the overdispersion:



We can compare the coefficients fitting the Poisson, the Quasi-Poisson and the Negative-binomial model:

```
fit_p <- glm(y ~ x, data = dat, family = poisson(link = "log"))
fit_qp <- glm(y ~ x, data = dat, family = quasipoisson(link = "log"))
car::compareCoefs(fit_nb, fit_p, fit_qp)</pre>
```

```
## Calls:
## 1: MASS::glm.nb(formula = y ~ x, data = dat, init.theta = 13.53203549, link
    = log)
## 2: glm(formula = y ~ x, family = poisson(link = "log"), data = dat)
## 3: glm(formula = y ~ x, family = quasipoisson(link = "log"), data = dat)
##
              Model 1 Model 2 Model 3
## (Intercept) 2.2714 2.2711 2.2711
              0.0706 0.0484 0.0777
## SE
##
               1.565 1.567 1.567
## x
                0.127 0.078 0.125
## SE
##
```

# Negative-binomial model (NB) vs Quasi-poisson (QP)

- The NB has the likelihood function thus AIC, LRT and other likelihood-based metrics works compared to the QP
- The NB assume a different mean-variance relationship thus estimated coefficients could be different to the P where QP produce the same estimates.
- Both NB and QP estimate higher standard errors in the presence of overdispersion
- If there is evidence of overdispersion, the important is to fit a model that take into account it

#### Simulate NB data #extra<sup>1</sup>

If you want to try to simulate NB data you can use the MASS::rnegbin(n, mu, theta) function or the rnb(n, mu, vmr) custom function that could be more intuitive because requires  $\mu$  (i.e., the mean) and vmr that is the desired variance-mean ratio. Using message = TRUE it will tells the  $\theta$  value:

```
y <- rnb(1e5, mu = 10, vmr = 7, message = TRUE)

## y - NegBin(mu = 10, theta = 1.67), var = 70.00, vmr = 7.00

nprint(mu = mean(y), v = var(y), vmr = var(y) / mean(y))</pre>
```

9 975 69 287 6 946

 $<sup>^{1}</sup>$ Using vmr = 1 it will use the rpois() function

## Deviance based pseudo- $R^2$

The Deviance based pseudo- $R^2$  is computed from the ratio between the residual deviance and the null deviance<sup>2</sup>:

$$R^2 = 1 - \frac{D_{current}}{D_{null}}$$

1 - fit\_p\$deviance/fit\_p\$null.deviance

## [1] 0.6205812

<sup>&</sup>lt;sup>2</sup>https://en.wikipedia.org/wiki/Pseudo-R-squared
Applied Regression Analysis and Generalized Linear Models, Fox (2016), Ch. 14.1, pp. 383

## McFadden's pseudo- $R^2$

The McFadden's pseudo- $R^2$  compute the ratio between the log-likelihood of the intercept-only (i.e., null) model and the current model [2]:

$$R^2 = 1 - \frac{\log(\mathcal{L}_{current})}{\log(\mathcal{L}_{null})}$$

There is also the adjusted version that take into account the number of parameters of the model. In R can be computed manually or using the performance::r2\_mcfadden():

```
## # R2 for Generalized Linear Regression
## R2: 0.362
## adi, R2: 0.360
```

performance::r2 mcfadden(fit p)

## Nagelkerke's pseudo- $R^2$

The Cox and Snell's [3]  $\mathbb{R}^2$  is defined as:

$$R^2 = 1 - \left(\frac{\mathcal{L}_{null}}{\mathcal{L}_{current}}\right)^{\frac{2}{n}}$$

Where Nagelkerke [4] provide a correction to set the range of values between 0 and 1.

```
performance::r2_nagelkerke(fit_p)
```

```
## Nagelkerke's R2
## 0.9848361
```

#### References

- J. M. Ver Hoef and P. L. Boveng, "Quasi-Poisson vs. Negative binomial regression: How should we model overdispersed count data?" *Ecology*, vol. 88, no. 11, pp. 2766–2772, Nov. 2007, doi: 10.1890/07-0043.1.
- [2] D. McFadden, "Regression-based specification tests for the multinomial logit model," J. Econom., vol. 34, no. 1, pp. 63–82, Jan. 1987, doi: 10.1016/0304-4076(87)90067-4.
- [3] D. R. Cox and E. J. Snell, Analysis of binary data, second edition. CRC Press, 1989.
- [4] N. J. D. Nagelkerke, "A note on a general definition of the coefficient of determination," Biometrika, vol. 78, no. 3, pp. 691–692, 1991, doi: 10.1093/biomet/78.3.691.

filippo.gambarota@unipd.it

 $\begin{tabular}{ll} O & github.com/filippogambarota \\ \end{tabular}$