Hierarchical Clustering

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Does not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

The dendrogram may correspond to meaningful taxonomies

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

MST: Divisive Hierarchical Clustering

- Build MST (Minimum Spanning Tree)
 - Start with a tree that consists of any point
 - In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not

MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - Merge the two closest clusters 4.
 - Update the proximity matrix 5.
 - **Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p5	<u> </u>
p1						
p2						
p2 p3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p5	<u>L</u>
p1						
p2						
p2 p3						
<u>p4</u> p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses changes in SSE

MIN

- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points
- Example:

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Can handle non-elliptical shapes

Limitations of MIN

Sensitive to noise

MAX

- Similarity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two clusters

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MAX

Strength of MAX

Less susceptible to noise

Limitations of MAX

Tends to break large clusters

Group Average
Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| \times |Cluster_{i}|}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: Group Average

Hierarchical Clustering: Group Average

Compromise between MIN and MAX

- Strengths
 - Less susceptible to noise
- Limitations
 - Biased towards globular clusters

Centroid Methods

 Similarity of two clusters is based on proximity between centroids of clusters

• Less susceptible to noise

Biased towards globular clusters

Hierarchical Clustering: Centroid

Nested Clusters

Dendrogram

Inversion

 Two clusters that are merged may be more similar than the pair of clusters that were merged in a previous step

Centroid vs Group Average

Χ	Υ
0.9	0.4
0.7	0.9
0.15	0.05
0.4	0.35
0.9	0.8
0.9	0

Cluster Similarity: Ward's Method

- Proximity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise
- Biased towards globular clusters

Hierarchical Clustering: Ward's Method

Nested Clusters

Dendrogram

Hierarchical Clustering: Comparison

Lance-Williams Formula

 Proximity between clusters Q and R, where R is formed by merging clusters A and B

$$p(R,Q) = \alpha_A p(A,Q) + \alpha_B p(B,Q) + \beta p(A,B) + \gamma |p(A,Q) - p(B,Q)|$$

Clustering Method	$\alpha_{\mathbf{A}}$	$\alpha_{\mathbf{B}}$	β	γ
MIN	1/2	1/2	0	-1/2
MAX	1/2	1/2	0	1/2
Group Average	$\frac{m_A}{m_A+m_B}$	$\frac{m_B}{m_A+m_B}$	0	0
Centroid	$\frac{m_A}{m_A+m_B}$	$\frac{m_B}{m_A+m_B}$	$\frac{-m_A m_B}{(m_A + m_B)^2}$	0
Ward's	$\frac{m_A + m_Q}{m_A + m_B + m_Q}$	$\frac{m_B + m_Q}{m_A + m_B + m_Q}$	$\frac{-m_Q}{m_A + m_B + m_Q}$	0

• m_i is size of cluster i, p(i,j) is proximity of clusters i & j

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No global objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters