

### Ph.D · ROBOTICS/NONLINEAR SYSTEMS/OPTIMAL CONTROL

California Institute of Technology (Caltech), CA, US

□ (+1) 540-230-0666 | **S** jeeseop@caltech.edu | **%** jeeseop.com

# **Education**

# Virginia Polytechnic Institute and State University (Virginia Tech)

Blacksburg, VA, US

Ph.D. IN MECHANICAL ENGINEERING

Aug. 2022

- Advisor: Prof. Kaveh Akbari Hamed
- Dissertation: Collaborative Locomotion of Quadrupedal Robots: From Centralized Predictive Control to Distributed Control

## Seoul National University (SNU)

Seoul, South Korea

M.S. IN INTELLIGENCE AND INFORMATION

Mar. 2017

- Advisor: Prof. Jaeheung Park
- Thesis: Improvement of Humanoid Gait Control using Actuator Deformation Model

### Seoul National University (SNU)

Seoul, South Korea

B.S. IN MECHANICAL AND AEROSPACE ENGINEERING

Mar. 2014

# **Appointments**\_

#### **Postdoctoral Research Fellow**

Pasadena, CA, US

CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH)

Oct. 2022 - now

- PI: Prof. Aaron Ames
- Department of Mechanical and Civil Engineering

#### **Graduate Research Assistant**

Blacksburg, VA, US

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY (VIRGINIA TECH)

Aug. 2017 - Aug. 2022

- · Advisor: Prof. Kaveh Akbari Hamed
- Department of Mechanical Engineering

#### **Graduate Research Assistant**

Seoul, South Korea

SEOUL NATIONAL UNIVERSITY (SNU)

Jan. 2014 - July. 2017

- Advisor: Prof. Jaeheung Park
- Department of Intelligence and Information

## **Research Interest**

My primary academic interests span robotics, control theory, optimization, dynamical systems, and machine learning. My research goal is to establish a firm foundation that extends the state-of-the-art methods for designing resilient and intelligent control algorithms for a wide range of collaborative work. This overview includes but is not limited to 1) collaborative multi-agent systems with decentralized and distributed control policies, 2) autonomous robot control and planning for various applications, 3) agile robots without compromising safety features.

My research has a clear blueprint from theoretical developments to experimental validations to achieve two specific objectives:

1) Creating algorithms to systematically design robust and intelligent controllers for high-dimensional and complex hybrid dynamical systems; and 2) Transferring the control framework into practice with a highly dynamic robot platform. These algorithms advance knowledge in the design of feedback controllers for dynamical models arising from various collaborative works that I target. The theoretical innovations also offer a unique opportunity to advance human-robot interaction, robotic legged locomotion, autonomous robot with safety features.

# **Research Experience**

### Virginia Polytechnic Institute and State University (Virginia Tech)

Blacksburg, VA, US

GRADUATE RESEARCH ASSISTANT, HYBRID DYNAMIC SYSTEMS AND ROBOT LOCOMOTION LAB (HDSRL)

Aug. 2017 - Aug. 2022

- Development of layered controller for the agile locomotion of collaborative legged robots
- Development of control architecture for the locomotion of collaborative legged robots with manipulators
- Development of hierarchical controller including whole-body controller and trajectory planner for legged robots
- Design of torque-controlled humanoid

### Seoul National University (SNU)

Seoul, South Korea

GRADUATE RESEARCH ASSISTANT, DYNAMIC ROBOTIC SYSTEMS LABORATORY (DYROS)

Jan. 2014 - Jul. 2017

- Development of control algorithms for compensating the hysteresis online for improving the locomotion stability of humanoid
- Development of control architecture for improving the cardiopulmonary resuscitation (CPR) performance with robot manipulator

# **Publications & Patents**

### **JOURNALS**

- **J1. J. Kim**, R. T. Fawcett, V. R. Kamidi, A. D. Ames and K. Akbari Hamed, "Layered Control for Cooperative Locomotion of Two Quadrupedal Robots: Centralized and Distributed Approaches," *IEEE Transactions on Robotics*, Under review.
- V. R. Kamidi, J. Kim, R. T. Fawcett, A. Ames, and K. Akbari Hamed, "Distributed Quadratic Programming-Based Nonlinear Controllers for Periodic Gaits on Legged Robots," *IEEE Control Systems Letters*, Vol. 6, pp. 2509-2514, Apr, 2022.
- **J3. J. Kim**, and K. Akbari Hamed, "Cooperative locomotion via supervisory predictive control and distributed nonlinear controllers," *ASME Journal of Dynamic Systems, Measurement, and Control*, Vol. 144, Issue. 3, p. 031005, Mar, 2022.
- Part of the second of the s
- J5. K. Akbari Hamed, J. Kim, A. Pandala, "Quadrupedal locomotion via event-based predictive control and QP-based virtual constraints," IEEE Robotics and Automation Letters, Vol. 5, Issue. 3, pp. 4463-4470, Jul, 2020.
- **J. Kim**, Y. Omori, A. Sifat, and T. Furukawa, "Adjustably designed torque controlled humanoid platform," *International Journal of Mechanical and Production Engineering*, Vol. 7, Issue. 2, pp. 52-57, May, 2019.

#### **CONFERENCE PAPERS**

- C1. R. T. Fawcett, L. Amanzadeh, J. Kim, A. D. Ames and K. Akbari Hamed, "Distributed Data-Driven Predictive Control for Multi-Agent Collaborative Legged Locomotion," *IEEE International Conference on Robotics and Automation (ICRA*), Under review.
- V. R. Kamidi, J. Kim, R. T. Fawcett, A. Ames and K. Akbari Hamed, "Distributed Quadratic Programming-Based Nonlinear Controllers for Periodic Gaits on Legged Robots," 2022 IEEE Conference on Decision and Control (CDC), Accepted, Cancun, Mexico, 6-9 Dec, 2022.

- **C3. J. Kim**, Y. Omori, A. Sifat, and T. Furukawa,
  - "Adjustably designed torque controlled humanoid platform,"

International Conference on Control, Automation, Robotics and Vision Engineering, Washington DC, USA, 21-22 Nov, 2018.

- **C4. J. Kim**, M. Kim, and J. Park,
  - "Improvement of humanoid walking control by compensating actuator elasticity," *International Conference on Humanoid Robots (ICHR)*, Cancun, Mexico, 15-17 Nov, 2016.
- **C5.** J. Jung, **J. Kim**, S. Kim, W. Kwon, S. Na, K. Kim, J. Lee, G. Suh, and J. Park, "Application of robot manipulator for cardiopulmonary resuscitation," *International Symposium on Experimental Robotics (ISER)*, Tokyo, Japan, 3-6 Oct, 2016.
- **C6. J. Kim**, M. Kim, and J. Park, "Improvement of humanoid gait stability using reduction gear deformation model," *The 31st Institute of Control, Robotics and Systems (ICROS)*, Seoul, Korea, 10-11 Mar, 2016.

#### PAPERS UNDER REVIEW & PREPRINTS

- **U1. J. Kim**, R. T. Fawcett, V. R. Kamidi, A. D. Ames and K. Akbari Hamed, "Layered Control for Cooperative Locomotion of Two Quadrupedal Robots: Centralized and Distributed Approaches," preprint arXiv 2022.
- W2. R. T. Fawcett, L. Amanzadeh, J. Kim, A. D. Ames and K. Akbari Hamed, "Distributed Data-Driven Predictive Control for Multi-Agent Collaborative Legged Locomotion," preprint arXiv 2022.

#### PATENTS

- **1.** Apparatus for automatic cardiovascular pulmonary resuscitation, 2016. (Korea Patent No.10-2016-0172286).
- **2-1.** Automatic cardiopulmonary resuscitation device and control method therefor, 2020. No. 108697572B (CN Patent), No. 3409258B1 (EU Patent)
- **2-2.** Automatic cardiopulmonary resuscitation device and control method therefor, 2021. No. US11071686B2 (US Patent)

### Honors

#### **AWARDS**

| 2022 | <b>ASME Dynamic Systems &amp; Control Division Rudolf Kalman Best Paper Award</b> , ASME |             |
|------|------------------------------------------------------------------------------------------|-------------|
| 2016 | The Best Presentation Award, Institute of Control, Robotics and Systems                  | South Korea |
| 2016 | Darpa Robotics Challenge DRC Finalist, DRC final                                         |             |
| 2012 | The Best Presentation Award from Bachelor Thesis, Seoul National University              | South Korea |

### FELLOWSHIP

| 2017-2022 | Research Assistant Scholarships, Virginia Tech     | Blacksburg, VA |
|-----------|----------------------------------------------------|----------------|
| 2014-2015 | Gwan-ak Scholarship, Seoul National University     | South Korea    |
| 2009-2010 | National Scholarship, Korea Student Aid Foundation | South Korea    |

# Academic Services \_\_\_\_\_

#### CONFERENCE REVIEWER

| 2022      | American Control Conference (ACC),                                      |
|-----------|-------------------------------------------------------------------------|
| 2020-2023 | International Conference on Robotics and Automation (ICRA), IEEE        |
| 2020-2022 | Conference on Decision and Control (CDC), IEEE                          |
| 2021-2022 | International Conference on Intelligent Robots and Systems (IROS), IEEE |

## Invited Presentations

P1. Collaborative Locomotion of Quadrupedal Robots: From Centralized Predictive Control to Distributed Control,
Department of Mechanical and Civil Engineering, Control and Dynamical Systems,
AMBER Lab seminar, California Institute of Technology, Pasadena CA (virtually), May. 2022

# Teaching Experience \_\_\_\_\_

**TEACHING ASSISTANT** 

### **Virginia Polytechnic Institute and State University**

Mechanical Engineering

• ME5524: Bayesian Robotics

• ME5984: Advanced Experimental Robotics

### **Seoul National University**

Transdisciplinary Studies

• 493.601: Convergent Robotics Technology

• 493.611: Dynamics and Control of Robot-Environment Interaction

## Skills

**Trained Area** (cooperative) Robotics, Robot Locomotion, Autonomous robots, Optimization

**Dynamic Systems Modeling** Nonlinear Systems, Hybrid Dynamical Systems, Multiagent Systems

**Theory** Control Theory, Nonlinear Control, Optimal Control, Distributed Control

**Optimization Tools** MATLAB Optimization Tool box, ECOSQP, OSQP, qpSWIFT

**Programming** MATLAB, Python, C/C++

**Design and Simulation** Unigraphics (NX), Solidworks