Evaluation of risk factors for infant hospitalized pneumonia incidence

Lina Gao, Yu-Fen Huang, Feng Li

Summary

Using the data 11.3 in the textbook, we identified four important risk factors associated with the incidence of infant hospitalized pneumonia. They include mom's age, cigarette, number of sibling and breastfeeding. Infants with older mom (age >=23) have lower incidence of hospitalized pneumonia than the ones with young mom (age <23) with the hazard ratio 0.081. Similar results were obtained for breastfeeding and non-breastfeeding babies. It's hazard ratio is 0.4. Smokers have almost two times of probability giving birth to a infant with hospitalized pneumonia than non-smokers. Infants with more siblings (n >1) have \sim 1.9 times of pneumonia incidence than the ones with one or no sibling (n<=1). Although region is not a significant factor if all four regions were considered, the significant difference between north central compared with the others (northeast, south, and west) were observed. The rest factors were not identified as the significant ones in this study. Therefore, an infant with breastfeeding, one or no sibling, older and non-smoking mom has lower risk of hospitalized pneumonia.

Abbreviation

Age_child: age of child had pneumonia

Indic_hos: hospitalized =1, not hospitalized =0

Age_mom: age of mother Urban: urban environment

Alcohol: alcohol use by mother during pregnancy Age_in_hos: months indicator for hospitalization

Cigarette: cigarette use by mother Region: region of the country Poverty: mother at poverty level Bweight: normal birthweight

Race_mom: race of mother, white, black or other

Edu_mom: education of mother N_sibling: number of siblings

M_solidfood: month the child on solid food

M_weaned: month of weaning

Introduction

Pneumonia is an infection in the lungs most often caused by bacteria or viruses. The air sacs in the lungs (called alveoli) fill up with pus and other fluid, which makes it hard for oxygen to reach the bloodstream.

Common bacteria and viruses that may cause pneumonia are:

- Streptococcus pneumoniae
- Mycoplasma pneumonia.
- Group B streptococcus
- Staphylococcus aureus
- Respiratory syncytial virus (RSV).
- Parainfluenza virus
- Influenza virus
- Adenovirus

Pneumonia remains the leading infectious cause of death among children under five, killing approximately 2,400 children a day (1-2). Pneumonia accounted for approximately 16 percent of the 5.6 million under-five deaths, killing around 880,000 children in 2016. Most of its victims were less than 2 years old. Hospitalization due to childhood pneumonia is strongly linked to poverty-related factors such as undernutrition, lack of safe water and sanitation, indoor air pollution, inadequate access to health care and the health conditions of the pregnant mom. An integrative approach is urgently needed to tackle this important public health issue and develop a practical guidelines for pregnant women.

Studies suggest that optimal breastfeeding practices, including exclusive breastfeeding during the first six months of life and continued breastfeeding until 24 months of age, are critical for reducing the burden of pneumonia among infants and young children. The protective effect of human milk against respiratory infection is attributed to its numerous immunobiological components (3-4). Using the data 1.13 from the textbook (5), we will explore the association of breast-feeding with hospitalized infant pneumonia incidence, as well as other potential risks. This data was gathered from 3470 personal interviews conducted by the National Longitudinal Survey of Youth (NLSY, 1995) from 1979 to 1986. Totally 15 variables are collected, which can be divided into three categories: mom-related, infant-related and social environment-related. Among them, the age of the child suffered from pneumonia and hospitalized or not as the variables for

time to event survival analysis in this study. The other variables are used as covariates, which include birth weight, mom's race, number of siblings (0-6), age of the mom (14-29 years old), mom's education, region of the country (northeast, north central, south and west), poverty, urban (whether the mother live in an urban environment), alcohol (alcohol consumption by mother during pregnancy), cigarette (mother's cigarette consumption), month of weaned and month of solid food (month the baby begin to eat solid food).

Using all the relevant statistical techniques we learned in life data analysis class, we will try to answer two questions:

- •Primary question: Does breastfeeding protest the infant against hospitalized pneumonia in the first year of infants?
- •Secondary questions: Do any other factors have close association with infant hospitalized pneumonia incidence? Based on our results, can we provide a preventive guideline for pregnant women to decrease the risk of infant pneumonia incidence?

Methods

Cox model is well-recognized as a powerful statistical technique for assessing simultaneously the effect of several risk factors on the survival analysis. It can provided an estimate of the effect of a variable on the survival curves after adjustment for the other variables. Hence, cox model will be our main technique to explore the association of infant hospitalized pneumonia incidence and 12 potential risk factors.

After identifying the key risk factors, we will further confirm them using nonparametric test (Wilcoxon and logrank test) and Kaplan-Meier curves. They can describe the survival according to one factor under investigation, but ignore the impact of any others. Additionally, because these techniques are useful only when the predictor is categorical, we need define proper dummy variables before analysis.

Although the golden age of parametric model in life data analysis is gone. It is still worthwhile to explore its application in this study. Hence, we will choose two dominant techniques, Weilbull and log logistic regression to fit the data.

Results

1. Distribution of covariates in this study

•Age of the mother (avg 21.6 years, range 14-19 years)
•Education of the mother (avg 11.4 years, range 0-19 years)

Poverty status mother

•Urban environment for mother

Alcohol use mother

•Cigarette use mother

•Normal birthweight (>5.5 lbs.)

Siblings presence

•Month the child was weaned

•Month the child on solid food

•Race of the mother

(Yes: 48%, No: 52%, range 0-6)

(avg 1.9 months, range 0-28 months)

(avg 1.1 months, range 0-18 months)

(1=white: 56%, 2=black: 28%, 3=other:16%)

(Yes: 36%, No: 64%, range 0-4 drinks per month) (Yes: 34%, No: 66%, range 0-2 pack per day)

•Region of the country (1=northeast: 15%, 2=north central: 25%, 3=south: 40%, 4=west: 20%)

(Yes: 92%, No: 8%)

(Yes: 76%, No: 24%)

(Yes: 36%, No: 64%)

Figure 1. Overall Histogram of distribution of covariates in this study

2. Cox model development

 Primary question: Does breastfeeding protest the infant against hospitalized pneumonia in the first year of infants?

Define the dummy variable Z5=1 if infants were breastfed at birth, 0 otherwise. By testing the hypothesis of beta=0, the results consistently suggested rejection of hypothesis using the likelihood ratio, test score, and Wald tests. The hazard ratio , 0.33, means breastfeeding infant has decrease 67% hospitalized pneumonia incidence of the ones without breastfeeding.

Table 1. Global test results for z5 in the survival function

Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	16.5279	1	<.0001	
Score	14.9840	1	0.0001	
Wald	13.5717	1	0.0002	

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	
z5	1	-1.09519	0.29728	13.5717	0.0002	0.334	

Table 1. Result of maximum likelihood estimation of breastfeeding variable

Secondary question: Compared with breastfeeding choice, can any other factors have effect on the hospitalization of pneumonia for infants?.

• Cox full model development

Table 2. ANOVA results of Cox full model in this study

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	43.0207	12	<.0001				
Score	39.4088	12	<.0001				
Wald	36.1038	12	0.0003				

Analysis of Maximum Likelihood Estimates									
Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazaro Ratio			
Age_mom	1	-0.09617	0.05533	3.0215	0.0822	0.908			
Ubran	1	-0.32801	0.26186	1.5691	0.2103	0.720			
Alcohol	1	-0.08162	0.11157	0.5352	0.4644	0.922			
Cigarette	1	0.34653	0.16807	4.2513	0.0392	1.414			
Region	1	-0.23421	0.13018	3.2371	0.0720	0.79			
Poverty	1	-0.03216	0.40031	0.0065	0.9360	0.968			
Bweight	1	0.11056	0.25797	0.1837	0.6682	1.117			
Race_mom	1	-0.00359	0.18406	0.0004	0.9844	0.996			
Edu_mom	1	-0.05738	0.07117	0.6500	0.4201	0.944			
N_sibling	1	0.31962	0.13587	5.5342	0.0186	1.377			
M_weaned	1	-0.15880	0.14071	1.2737	0.2591	0.85			
M solidfood	1	-0.05592	0.22006	0.0646	0.7994	0.946			

• Best model selection by stepwise and AIC

Table 3. Result of stepwise variable selection

Summary of Stepwise Selection									
Eff	ect		Number	Score	Wald				
Step	Entered	Removed	DF	In	Chi-Square	Chi-Square	Pr > ChiSq		
1	Edu_mom		1	1	11.9447		0.0005		
2	M_weaned		1	2	8.6398		0.0033		
3	Cigarette		1	3	5.6041		0.0179		
4	N_sibling		1	4	3.5744		0.0587		
5	Age_mom		1	5	3.4543		0.0631		
6		Edu_mom	1	4		0.8720	0.3504		
7	Region		1	5	2.8261		0.0927		
8		Region	1	4		2.8101	0.0937		

Table 4. Final model determination by the smallest AIC

Model Fit Statistics						
Criterion	Without Covariates	With Covariates				
-2 LOG L	1174.364	1134.976				
AIC	1174.364	1144.976				
SBC	1174.364	1156.428				

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	39.3881	5	<.0001				
Score	35.3891	5	<.0001				
Wald	32.4836	5	<.0001				

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	
Age_mom	1	-0.12588	0.04945	6.4805	0.0109	0.882	
Cigarette	1	0.35272	0.15231	5.3632	0.0206	1.423	
Region	1	-0.21195	0.12644	2.8101	0.0937	0.809	
N_sibling	1	0.38627	0.12089	10.2090	0.0014	1.471	
M_weaned	1	-0.20278	0.08022	6.3905	0.0115	0.816	

Using Cox model, we selected five predictors as the important risk factors in this study, including age_mom, cigarette, region, N_sibling and M_weaned.

Data transformation and final model development
 Dummy variable definition for testing key predictors

```
if (Age_mom >= 23) then z1=1; else z1=0;
if (Cigarette >= 1) then z2=1; else z2=0;
if (Region = 2) then z3=1; else z3=0;
if (N_sibling >= 1) then z4=1; else z4=0;
if (M weaned >= 1) then z5=1; else z5=0;
```

The definition of dummy variables uses the median value in each variable considering censored or not censored as well.

Table 5. Final best model fitting results

M	odel Fit Statis	tics
Criterion	Without Covariates	With Covariates
-2 LOG L	1174.364	1125.153
AIC	1174.364	1135.153
SBC	1174.364	1146.605

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	49.2115	5	<.0001			
Score	42.2912	5	<.0001			
Wald	36.6522	5	<.0001			

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio		
z1	1	-2.51611	1.00843	6.2254	0.0126	0.081		
z2	1	0.66089	0.23693	7.7809	0.0053	1.937		
z 3	1	0.38565	0.24845	2.4095	0.1206	1.471		
z4	1	0.63423	0.24366	6.7753	0.0092	1.886		
z5	1	-0.91672	0.29823	9.4488	0.0021	0.400		

3. nonparametric test

Mom's age

Both log-rank test (p=0.022) and Wilcoxon test (p=0.017) shows significant difference between older mom (>=23 years old, z1=1) and younger mom (< 23 years old, z1=0). The K-M survival curves also showed significant difference between young and mature moms.

Cigarette

Both log-rank test (p=0.0005) and Wilcoxon test (p=0.0006) shows significant difference between non cigarette consumer and cigarette consumer. Consistent results also implied in figure 3.

• Region 2 vs other region

Both log-rank test (p=0.061) and Wilcoxon test (p=0.068) shows marginally significant difference between live in north central and other region of country. Also, figure 4 showed the difference between them.

Sibling

Both log-rank test (p=0.0068) and Wilcoxon test (p=0.0061) shows significant difference between number of siblings of infant \leq 1 and number of siblings of infant \geq 1. It was also confirmed by the P-L plot in figure 5.

Breastfeeding

log-rank test (p=0.0001), Wilcoxon test (p<0.0001) and figure 6 consistently supported the significant difference between breastfeeding and non breastfeeding survival curves.

Figure 2. Result of PL survival estimation about mom's age in this study

Figure 3. Result of PL survival estimation about cigarette in this study

Figure 4. Result of PL survival estimation between region 2 and other regions

Figure 5. Result of PL survival estimation about number of sibling

Figure 6. Result of PL survival estimation about Breastfeeding

4. Low risk group vs high risk group comparison

To proof the four important risk factors associated with the incidence of infant hospitalized pneumonia. We separated data into two groups: low risk group and high risk group to compare the difference of survival rate.

- Low risk group: mom's age >= 23 years old, non cigarette, one or no sibling, breastfeeding.
- High risk group: mom's age <23 years old, use cigarette, more the one siblings, non breastfeeding.

The high risk group decreased survival rate very fast, starting at one month of child's age. Both log-rank test (p=0.031) and Wilcoxon test (p=0.028) shows significant difference between low risk group and high risk group, indicated in figure 7.

Figure 7. Result of PL survival estimation in low risk group vs high risk group

5. Parametric model development

Using Weibull and Ilogistic modelling to fit with our multiple model with 5 risk factor (Z1: mom's age, Z2: cigarette, Z3: region 2, Z4: sibling and Z5: breastfeeding). Both of them verified that the mom' age, cigarette, number of sibling and breastfeeding are significant risk factors in our study (p-value < 0.05). Most of these results are consistent with the cox model fitting result.

Table 6. Result of the weibull model

Parameter	DF	Estimate	Standard Error	95% Confide	nce Limits	Chi-Square	Pr > ChiSq
Intercept	1	7.9895	0.7150	6.5881	9.3909	124.85	<.0001
z1	1	0.8647	0.4112	0.0588	1.6706	4.42	0.0355
z2	1	-0.9154	0.3401	-1.5819	-0.2489	7.25	0.0071
z 3	1	-0.5075	0.3450	-1.1838	0.1687	2.16	0.1413
z4	1	-0.9090	0.3539	-1.6026	-0.2153	6.60	0.0102
z 5	1	1.2512	0.4345	0.3997	2.1027	8.29	0.0040
Scale	1	1.3697	0.1541	1.0987	1.7076		
Weibull Shape	1	0.7301	0.0821	0.5856	0.9101		

Product-Limit Survival Estimates (Weibull)

Table 7. Result of the llogistic model

Analysis of Maximum Likelihood Parameter Estimates							
Parameter Intercept	DF 1	Estimate 7.9096	Standard Error 0.7048	95% Confidence Limits		Chi-Square	Pr > ChiSq
				6.5281	9.2910	125.93	<.0001
z1	1	0.8724	0.4115	0.0659	1.6790	4.49	0.0340
z2	1	-0.9180	0.3409	-1.5863	-0.2498	7.25	0.0071
z 3	1	-0.5164	0.3480	-1.1984	0.1656	2.20	0.1378
z4	1	-0.9178	0.3550	-1.6135	-0.2221	6.69	0.0097
z 5	1	1.2547	0.4329	0.4063	2.1030	8.40	0.0037
Scale	1	1.3534	0.1514	1.0869	1.6851		

Product-Limit Survival Estimates (Ilogis)

Conclusion

After study the distribution of 12 risk factors in the pneumonia data, we use semiparametric model to build multiple variance models. We use stepwise selection to pick significant factors, and choose the best model by the one with the smallest AIC value. Hence, we selected five predictors as the important risk factors in stepwise selection and the smallest AIC, including mom's age, cigarette, region, number of sibling and breastfeeding.

Moreover, we constructed each 5 factors to dummy variables and test the hypothesis H0: Beta=0 using the likelihood ratio, and Wald tests. Using Cox

proportional hazards models, four factors were identified as the important risks associated with the hospitalized pneumonia incidence in infants. They are mom's age, cigarette, number of sibling and breastfeeding. We also use non-parametric model with log-rank and wilcoxon test to check and confirm the proportional hazards result.

Furthermore, we use two parametric model, Weibull and Ilogistic modelling to fit with our multiple model with 5 risk factor. Both of them verified that the mom' age, cigarette, number of sibling and breastfeeding are significant risk factors in our study.

Although region is not a significant factor if all four regions were considered, the significant difference between regions 2 (north central) compared with the other regions were observed. The rest factors were not identified as the significant ones in this study. Therefore, an infant with breastfeeding, one or no sibling, older and non-smoking mom has lower risk of hospitalized pneumonia. This study shows mother's behavior and children's environment are important factor associate to hospitalized for pneumonia.

References

- 1. Bulla2. A, Hitze KL. Acute respiratory infections: a review. Bull World Health Organ 1978;56:481-98. PMID:308414
- 2. Leowski3. J. Mortality from acute respiratory infections in children under 5 years of age: global estimates. World Health Stat Q 1986;39:138-44. PMID:3751104
- 3. Kramer MS, Kakuma R: The optimal duration of exclusive breastfeeding. Cochrane Database Syst Rev 2012, 8:CD003517.
- 4. Hanson LA, Korotkova M, Telemo E: Breast-feeding, infant formulas, and the immune system. Ann Allergy Asthma Immunol 2003, 90(6 Suppl 3):59-63.
- 5. Survival analysis: techniques for censored and truncated data, <u>John P Klein</u>, <u>Melvin L Moeschberger</u>, New York, 2003
- 6. Brogan, R. J. (Ed.). (2017, December). Pneumonia (for Parents). Retrieved from https://kidshealth.org/en/parents/pneumonia.html
- 7. Pneumonia in Children. (n.d.). Retrieved from https://www.cedars-sinai.org/health-library/diseases-and-conditions---pediatrics/p/pneumonia-in-children.html

Appendix

SAS code

data f113;

```
input age child indic hos Age mom Urban Alcohol Cigarette Region Poverty Bweight
Race_mom Edu_mom N_sibling M_weaned M_solidfood Age_in_hos;
cards;
. . .
run;
data mydata;
set f113;
run;
/*observe the data*/
proc univariate data=mydata;
histogram;
run;
/*Multiple model selection*/
proc phreg data = mydata;
model age_child*indic_hos(0)= Age_mom Urban Alcohol Cigarette Region Poverty Bweight
Race_mom Edu_mom N_sibling M_weaned M_solidfood
/ ties=breslow;
run;
/*stepwise selection*/
proc phreg data = mydata;
model age_child*indic_hos(0)= Age_mom Urban Alcohol Cigarette Region Poverty Bweight
Race mom Edu_mom N_sibling M_weaned M_solidfood
/selection=stepwise slentry=0.25 slstay=0.07 details ties=breslow;
run;
data mydata1;
set f113;
if (Age_mom ge 23) then z1=1; else z1=0;
if (Cigarette ge 1) then z2=1; else z2=0;
if (Region=2)
                    then z3=1; else z3=0;
if (N_sibling ge 1) then z4=1; else z4=0;
if (M_weaned ge 1) then z5=1; else z5=0;
run;
proc phreg data = mydata1;
model age_child*indic_hos(0)= z1 z2 z3 z4 z5 / ties=breslow;
run;
proc phreg data = mydata1;
```

```
model age_child*indic_hos(0)= z1/ ties=breslow;
run;
proc phreg data = mydata1;
model age_child*indic_hos(0)= z2/ ties=breslow;
run;
proc phreg data = mydata1;
model age_child*indic_hos(0)= z3/ ties=breslow;
run;
proc phreg data = mydata1;
model age child*indic hos(0)= z4/ ties=breslow;
run;
proc phreg data = mydata1;
model age_child*indic_hos(0)= z5/ ties=breslow;
run;
/*nonparametric test*/
proc lifetest data=mydata1 plots= LLS;
time age_child*indic_hos(0);
strata z1;
run;
proc lifetest data=mydata1 plots= LLS;
time age child*indic hos(0);
strata z2;
run;
proc lifetest data=mydata1 plots= LLS;
time age_child*indic_hos(0);
strata z3;
run;
proc lifetest data=mydata1 plots= LLS;
time age_child*indic_hos(0);
strata z4;
run;
proc lifetest data=mydata1 plots= LLS;
time age child*indic hos(0);
strata z5;
```

```
run;
/* K-M Plot for high risk group vs low risk group comparison*/
data mydata2;
set mydata;
if (Age_mom ge 23) then group=1;
if (Cigarette=0)
                      then group=1;
if (N_sibling le 1) then group=1;
if (M_weaned ge 1) then group=1;
if (Age_mom It 23) then group=2;
if (Cigarette ge 1) then group=2;
if (N_sibling gt 1) then group=2;
if (M_weaned le 1) then group=2;
proc lifetest data=mydata2 plots= survival(test);
time age_child*indic_hos(0);
strata group;
run;
/*parametric model exploration*/
proc lifereg data = mydata1;
model age_child*indic_hos(0)=z1 z2 z3 z4 z5
/ covb distribution = weibull;
run;
proc lifereg data = mydata1;
model age child*indic hos(0)=z1 z2 z3 z4 z5
/ covb distribution = Ilogistic;
run;
```