Semaine 18 du 10 mars 2025 (S11)

XV - Espaces vectoriels préhilbertiens et euclidiens

Le chapitre XV reste au programme :

- 1 Produit scalaire et norme associée
- 1.1 Produit scalaire
- 1.2 Norme associée à un produit scalaire
- 2 Orthogonalité
- 2.1 Premières définitions.
- 2.2 Familles orthogonales.
- 3 Algorithme d'orthonormalisation de Gram-Schmidt
- 4 Sous-espaces vectoriels orthogonaux
- 5 Formes linéaires et hyperplans d'un espace euclidien.
- 5.1 Rappels de première année : hyperplans en dimension finie
- 5.2 Théorème de représentation et hyperplans dans un espace euclidien

- 6 Symétries et projecteurs orthogonaux
- **6.1** Rappels de première année sur les projecteurs et les symétries
- 6.2 Symétries et projecteurs orthogonaux
- 7 Distance à un sous ev
- 7.1 Distance et projection sur un hyperplan

8 Exercices à connaître

8.1 Inégalité de Cauchy-Schwarz et application (banque CCINP MP)

Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté (|). On pose $\forall x \in E, ||x|| = \sqrt{(x|x)}$.

- 1) a) Énoncer et démontrer l'inégalité de Cauchy-Schwarz.
 - b) Dans quel cas a-t-on égalité? Le démontrer.
- 2) Soit $E = \{ f \in \mathcal{C}([a,b], \mathbb{R}), \forall x \in [a,b] \ f(x) > 0 \}.$ Prouver que l'ensemble $\left\{ \int_a^b f(t) dt \times \int_a^b \frac{1}{f(t)} dt, f \in E \right\}$ admet une borne inférieure m et déterminer la valeur de m.

8.2 Polynômes de Legendre

On note $E = \mathbb{R}_n[X]$, où $n \ge 1$.

1) Vérifier que :

$$\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x)dx$$

définit un produit scalaire sur E. On note (e_0, e_1, \ldots, e_n) la base XVI - Équations différentielles obtenue par orthonormalisation de la base $(1, X, \dots, X^n)$

2) Pour tout entier $k \in \{1, ..., n\}$, on définit :

$$f_k(X) = \frac{\mathrm{d}^k}{\mathrm{d}X^k} \left(\left(X^2 - 1 \right)^k \right)$$

- a) Déterminer le degré de f_k .
- **b)** Calculer $\langle X^i, f_k \rangle$ pour $k \in \{1, ..., n\}$ et $i \in \{0, ..., k-1\}$.
- c) En déduire que pour tout $k \in \{1, ..., n\}$, il existe un λ_k tel que $f_k = \lambda_k e_k$.

8.3 Une projection orthogonale (banque CCINP MP)

On définit dans $\mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R})$ l'application φ par : $\varphi(A, A') =$ $\operatorname{tr}(A^T A')$, où $\operatorname{tr}(A^T A')$ désigne la trace du produit de la matrice A^T par la matrice A'.

On admet que φ est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.

On note
$$\mathscr{F} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, (a,b) \in \mathbb{R}^2 \right\}.$$

- 1) Démontrer que \mathscr{F} est un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$.
- 2) Déterminer une base de \mathcal{F}^{\perp} .
- 3) Déterminer le projeté orthogonal de $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur \mathscr{F}^{\perp} .
- 4) Calculer la distance de $J \ \hat{\mathcal{F}}$.

8.4 Une autre distance

Pour $k \in \mathbb{N} \setminus \{0, 1\}$, calculer:

$$m_k = \inf_{a,b \in \mathbb{R}} \int_0^{+\infty} (t^k - at - b)^2 e^{-t} dt.$$

S'y ajoute:

- 9 Généralités sur les équations différentielles linéaires.
- 9.1 Cadre
- 9.2 Structure de l'ensemble des solutions
- 10 Rappels sur les équations différentielles linéaires du premier ordre
- 10.1 Résolution de l'équation homogène
- 10.2 Résolution d'une équation avec second membre.
- 11 Rappels sur les équations différentielles linéaires du second ordre à coefficients constants
- 11.1 Cadre du programme de première année
- 11.2 Résolution d'une équation avec second membre
- 11.3 Seconds membres particuliers

12 Équations différentielles linéaires du second ordre à coefficients continus

12.1 Théorème de Cauchy linéaire et structure de l'ensemble des solutions

Il n'y aucune méthode au programme pour trouver une solution particulière, l'énoncé doit vous guider.

12.2 Si l'on connaît une solution de l'équation homogène

On utilise la méthode variation de la constante.

12.3 Trouver une solution grâce à un développement en série entière

13 Systèmes différentiels

13.1 Définition

Il n'y a rien au programme concernant l'étude générale des systèmes différentiels linéaires.

Nous nous cantonnons à donner des exemples dans le cas où les a_{ij} sont des constantes et où A est diagonalisable ou trigonalisable.

13.2 Exemples

14 Autres méthodes à connaître

Nous présentons ces techniques au travers d'exemples uniquement.

14.1 Raccordements de solutions

14.2 Changements de fonction ou de variable

15 Exercices à connaître

15.1 Méthode de variation de la constante

- 1) Calculer la dérivée de la fonction $t \mapsto \frac{1}{2} \arctan t + \frac{1}{2} \frac{t}{1+t^2}$.
- 2) Résoudre sur \mathbb{R} l'équation différentielle $(t^2+1)y''-2y=0$ en commençant par rechercher une solution polynomiale de degré 2.
- 3) Résoudre sur \mathbb{R} l'équation différentielle $(t^2+1)y''-2y=t$.

15.2 Un raccordement de solutions (banque CCINP MP)

On considère les deux équations différentielles suivantes :

$$2xy' - 3y = 0 (H)$$
$$2xy' - 3y = \sqrt{x} (E)$$

- 1) Résoudre l'équation (H) sur l'intervalle $]0, +\infty[$.
- 2) Résoudre l'équation (E) sur l'intervalle $]0, +\infty[$.
- 3) L'équation (E) admet-elle des solutions sur l'intervalle $[0, +\infty[$?

15.3 Un système différentiel linéaire

Résoudre le système $\begin{cases} x' &= y+z \\ y' &= x \\ z' &= x+y+z \end{cases}.$

15.4 Un changement de fonction

Résoudre $(x^2 + 1) y'' - (3x^2 - 4x + 3) y' + (2x^2 - 6x + 4) y = 0$ en utilisant le changement de fonction inconnue $z = (x^2 + 1) y$.