Mind in Motion

Machine Learning for Depression Classification using Motor Actigraphy Data

Final Presentation

Gary Kong, Julia Kauffman, Leo Le, Vishnu Paty, Melia Soque

Motivation

Depression

- World's leading cause of disability
- Associated with disrupted biological rhythms and changes in motor activity
- Subjective diagnosis (DSM-5 criteria)

Motor actigraphy data

- Non-invasive
- Available through wearables (e.g., Fitbit)
- Potentially objective method of diagnosing depression

Research question

Can machine learning algorithms be used to accurately classify patients into depression status (normal, mild and moderate) using motor actigraphy data?

Past Studies

- 54 studies used AI with wearables for depression
- Non-parametric methods were predominant
- Al accuracy: 70–89%
- AdaBoost excelled in performance, whereas logistic regression and decision trees were less effective

Data Overview

Data Source

Depresjon: A Motor Activity Database of Depression Episodes in Unipolar and Bipolar Patients

Summary Statistics

Variable	Values	Count	%	
Gender	Female	30	55%	
Gender	Male	25	45%	
	Normal	32	58%	
Affective Type	Unipolar	15	27%	
	Bipolar	8	15%	
Days of Observation	Mean	13 days 40 years		
Age	Mean			
Education Mean		11 years		

Approach

Baseline Accuracy: 33.33%

Feature Engineering

Feature Extraction

Feature Selection

Top 30 Features

57 Features

Activity distribution metrics

Activity proportions by time of day / week

Active / inactive bout metrics

Cosine parameters

Greedy feature selection (correlation-based) score

Decision-tree feature importance score

Composite feature importance score

Rank of feature importance

Feature Correlation					
Activity Entropy (by Hour)	0.42	-0.25	-0.26		
Activity Entropy (by Minute)	0.54	-0.33	-0.33		
Activity Intraday Variability	0.28	-0.26	-0.09		
Activity Kurtosis (by Day)	-0.31	0.12	0.26		
Activity Kurtosis (by Hour)	-0.48	0.33	0.26		
Activity Kurtosis (by Minute)	-0.24	0.05	0.23		
Activity Mean (Overall)	0.46	-0.32	-0.25		
Activity Mean (Weekdays, 00:00 - 06:00)	0.33	-0.07	-0.32		
Activity Mean (Weekdays, 06:00 - 12:00)	0.44	-0.16	-0.36		
Activity Mean (Weekends, 12:00 – 18:00)	0.18	-0.12	-0.10		
Activity Mean (Weekends, 12:00 – 18:00)	0.38	-0.39	-0.09		
Activity Mean (Weekends, 06:00 – 12:00)	0.45	-0.20	-0.34		
% Activity (00:00 – 06:00)	-0.07	0.30	-0.20		
% Activity (12:00 – 18:00)	-0.14	-0.18	0.34		
% Activity (18:00 – 00:00)	0.03	-0.39	0.33		
% Activity (06:00 – 12:00)	0.15	0.17	-0.33		
% Activity (Weekdays)	0.17	0.00	-0.21		
Activity Skewness (by Day)	-0.45	0.28	0.26		
Activity Skewness (by Hour)	-0.48	0.33	0.27		
Activity Skewness (by Minute)	-0.33	0.21	0.19		
Activity Standard Deviation (by Hour)	0.28	-0.17	-0.18		
Active Bout Duration Standard Kurtosis	0.30	-0.14	-0.22		
Active Bout Duration Standard Deviation	0.32	-0.20	-0.19		
Number of Active Bouts	0.45	-0.34	-0.22		
Inactive Bout Duration Coef. of Variation	0.33	-0.14	-0.26		
Inactive Bout Duration Entropy	-0.21	0.10	0.16		
Inactive Bout Duration Mean	-0.41	0.30	0.21		
Inactive Bout Duration Standard Deviation	-0.05	0.09	-0.03		
Cosine Amplitude (by Day of Week)	-0.19	0.25	-0.02		
Cosine Phase (by Minute of Day)	-0.14	0.23	-0.05		
	Normal	Mild	Moderate		

- 0.2

- 0.0

-0.2

Data Augmentation via Cross-Subject Data Fusion

Process Overview

- Randomly select sample
- Time-segment slicing
- Repeat incorporating slices from different random subjects
- Assess the quality
- Add noise

	Control	Mild	Moderate
Before	23	11	12
After	40	40	40

Logistic Regression

Best hyperparameter(s)

Ablation analysis suggests optimal hyperparameters are: n_features=25, c=0.1, penalty=L2, solver=sag/saga

Grid search confirms this

Grid Search Results (Sorted / Ranked by Mean Test Score)

		n_features	param_C	param_penalty	param_solver	mean_train_score	mean_test_score	mean_variance
r	ank							
ī	1	25	0.1	12	sag	0.893750	0.858333	0.035417
Ų.	2	25	0.1	12	saga	0.893750	0.858333	0.035417
	3	25	0.1	12	newton-cg	0.895833	0.858333	0.037500
	4	25	0.1	12	lbfgs	0.895833	0.858333	0.037500
	5	25	1	12	newton-cg	0.933333	0.850000	0.083333

LSTM Recurrent Neural Network

Using only time-series readings

bi-directional

LSTM

bi-directional

LSTM

bi-directional

LSTM

Dense Neural Network

Using selected extracted features

Model performs on par with our best models:

• Accuracy 82.5%

• Precision 85.1%

• Recall 80.0%

• F1-Score 82.4%

input

Dense

output

Evaluation

- Statistical tests:
 - ANOVA
 - Post-hoc pairwise
 comparisons with Bonferroni
 correction
- Logistic regression significantly outperforms other models
 - 85.83% accuracy
 - 85.74% F1 score
 - 87.8% recall
 - Lowest variance
- Sometimes the simplest model is best!

Limitations

- Small Sample Size
- Unrepresentative Control Group
- Unbalanced Age Group
- Time Period Sampling
- MADRS Score Variability

Biases

- Demographic Balance
- Urban vs. Rural Disparity
- Accessibility Generalization
- Time Period Sampling
- Observer Effect and Compliance

Conclusions

Lower Activity Level

Depression

Next Steps:

- Expand the Dataset
- Decide on model: DNN?
- Further fine-tune parameters
- Collaborate with mental health professionals
- Address ethical considerations
- Develop user-friendly tools

Contributions

	Gary Kong	Julia Kauffman	Leo Le	Vishnu Paty	Melia Soque
Literature Search	X	X	X	X	X
Data Wrangling and Cleaning	X				
Feature Extraction and Feature Selection	X				
Data Augmentation		X			
Data Splitting and Cross-validation		X	X	X	X
Model Development and Hyperparameter Tuning	Logistic regression	LTSM Deep neural network	AdaBoost (Lead) XGBoost (Lead)	AdaBoost (Support) XGBoost (Support)	Logistic regression
Model Evaluation				X	

