Yakınsaklık Mertebesi

İterasyon kullanılan yöntemler sonucunda sonsuz dizilerle karşılaşırız. Bu dizilerin yakınsaklığı ile ilgili aşağıdaki tanımlardan faydalanacağız.

Tanım: Farz edelim ki $\{\beta_n\}_{n=1}^{\infty}$ sıfıra yakınsadığı bilinen ve $\{\alpha_n\}_{n=1}^{\infty}$ ise bir α sayısına yakınsayan diziler olsunlar. Eğer yeteri kadar büyük n sayıları için,

$$|\alpha_n - \alpha| \le K|\beta_n|$$

olacak şekilde bir pozitif K sayısı mevcut ise, $\{\alpha_n\}_{n=1}^{\infty}$ dizisi α sayısına $O(\beta_n)$ yakınsaklık mertebesiyle yakınsıyor denir ve bu,

$$\alpha_n = \alpha + O(\beta_n)$$

şeklinde gösterilir.

Tanım içerisinde $\{\beta_n\}_{n=1}^{\infty}$ herhangi bir dizi gibi alınsa da bu dizi genellikle,

$$\beta_n = \frac{1}{n^p} \ , \quad p > 0$$

şeklindedir.

Örnek: $n \ge 1$ için aşağıdaki dizileri ele alalım.

$$\alpha_n = \frac{n+1}{n^2}$$
 , $\gamma_n = \frac{n+3}{n^3}$

her iki dizi de sıfıra yakınsıyor. Şimdi yakınsama hızlarını bulmaya çalışalım.

$$|\alpha_n - 0| = \left| \frac{n+1}{n^2} \right| = \left(1 + \frac{1}{n} \right) \left| \frac{1}{n} \right| \le 2 \left| \frac{1}{n} \right| = 2|\beta_n|$$

ve

$$|\gamma_n - 0| = \left| \frac{n+3}{n^3} \right| = \left(1 + \frac{3}{n} \right) \left| \frac{1}{n^2} \right| \le 4 \left| \frac{1}{n^2} \right| = 4|\beta_n|$$

olduğundan

$$\alpha_n = 0 + O\left(\frac{1}{n}\right), \qquad \gamma_n = 0 + O\left(\frac{1}{n^2}\right)$$

yazılır. Yani, $\{\alpha_n\}$ dizisi $O\left(\frac{1}{n}\right)$ mertebesiyle $\{\gamma_n\}$ dizisi ise $O\left(\frac{1}{n^2}\right)$ mertebesiyle yakınsıyor.

Şimdi diziler için yaptığımız yakınsaklık mertebesi tanımını bu kez fonksiyonlar için yapalım.

Tanım: Farz edelim ki,

$$\lim_{h\to 0} G(h) = 0 \quad , \quad \lim_{h\to 0} F(h) = L$$

olsun. Eğer yeteri kadar küçük h değerleri için,

$$|F(h) - L| \le K|G(h)|$$

Olacak şekilde pozitif bir K sayısı mevcut ise,

$$F(h) = L + O(G(h))$$

yazılır.

Burada G(h) genellikle,

$$G(h) = h^p$$
 , $p > 0$

şeklinde bir fonksiyondur.

Örnek: $\cos{(h)}$ fonksiyonu için h=0 civarındaki 3. mertebeden Taylor polinomunu kullanarak

$$\cos(h) + \frac{1}{2}h^2 = 1 + O(h^4)$$

olduğunu gösterin.

3. Mertebe Taylor polinomu,

$$\cos(h) = 1 - \frac{1}{2}h^2 + \frac{1}{24}h^4\cos(\xi)$$
, (ξ sifir ile h arasındadır)

olduğundan

$$\left|\cos(h) + \frac{1}{2}h^2 - 1\right| = \frac{1}{24}h^4|\cos(\xi)| \le \frac{1}{24}h^4$$

yani tanım kullanılarak,

$$\cos(h) + \frac{1}{2}h^2 = 1 + O(h^4)$$

gösterilmiş olur.

Nonlineer Denklemler

Bu bölümde f(x) = 0 şeklindeki denklemlerin sıfırlarını çeşitli yöntemler (bisection, sabit-nokta yaklaşımı, newton, kiriş yöntemi,...gibi) kullanarak bulmaya çalışacağız.

Bisection(Aralık Yarılama Yöntemi): Bu yöntem Matematik Analizden bildiğimiz Ara Değer Teoremine dayanmaktadır. Yani, f(x) fonksiyonu [a,b] aralığında sürekli ve f(a)*f(b)<0 ise, öyle bir a< p< b sayısı vardır ki f(p)=0 dır.

Bu yöntemde birinci iterasyon sonunda, $a=a_{1}$, $\ b=b_{1}$ alarak

$$p_1 = \frac{a_1 + b_1}{2}$$

eğer $f(p_1)=0$ ise kök p_1 'dir. Değilse, $f(a_1)*f(p_1)<0$ ya da $f(b_1)*f(p_1)<0$ dır.

$$f(a_1) * f(p_1) < 0$$
 ise $p_2 = \frac{a_1 + p_1}{2}$ ve $a_2 = a_1$, $b_2 = p_1$

ya da

$$f(b_1) * f(p_1) < 0$$
 ise $p_2 = \frac{b_1 + p_1}{2}$ ve $a_2 = p_1$, $b_2 = b_1$

alınır. Eğer $f(p_2)=0$ ise kök p_2 'dir. Değilse, $f(a_2)*f(p_2)<0$ ya da $f(b_2)*f(p_2)<0$ dır. Bu durumda,

$$f(a_2) * f(p_2) < 0$$
 ise $p_3 = \frac{a_2 + p_2}{2}$ ve $a_3 = a_2$, $b_3 = p_2$

ya da

$$f(b_2)*f(p_2) < 0$$
 ise $p_3 = \frac{b_2 + p_2}{2}$ ve $a_3 = p_2$, $b_3 = b_2$

alınır. İterasyon bu şekilde devam ederek bir $\{p_n\}$ dizisi oluşur. Oluşan bu dizi f(p)=0 olan p sayısına yakınsar. Şekil olarak gösterecek olursak:

olarak yöntem devam ettirilir. Bu yöntemi bilgisayarda döngüsel olarak şu şekilde yazabiliriz:

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
;
 $FA = f(a)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = a + (b - a)/2$$
; (Compute p_i .)
 $FP = f(p)$.
Step 4 If $FP = 0$ or $(b - a)/2 < TOL$ then
OUTPUT (p) ; (Procedure completed successfully.)
STOP.

Step 5 Set i = i + 1.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .)
 $FA = FP$
else set $b = p$. (FA is unchanged.)

Step 7 OUTPUT ('Method failed after N₀ iterations, N₀ =', N₀); (The procedure was unsuccessful.) STOP.

Bu döngüde durdurma kriteri olarak $|b_N-a_N| < TOL$, $N \le N_0$ seçilmiştir. Burada N döngü sayısını ve Tolerans değeri de bizim seçeceğimiz sıfıra yakın bir $\varepsilon>0$ sayısını ifade eder. Bu kriterden farklı olarak aşağıdaki kriterler de döngüyü durdurmak için seçilebilir. Oluşan $\{p_n\}$ dizisi için,

$$\begin{aligned} |p_N - p_{N-1}| &< \varepsilon \\ \frac{|p_N - p_{N-1}|}{|p_N|} &< \varepsilon , \ p_N \neq 0 \\ |f(p_N)| &< \varepsilon \end{aligned}$$

birisi tercih edilebilir.

Teorem: Farz edelim ki, $f \in C[a,b]$ ve f(a)*f(b) < 0 olsun. Bu durumda Bisection yöntemi f 'in sıfırı olan p sayısına yakınsayan bir $\{p_n\}_{n=1}^{\infty}$ dizisi oluşturur, öyle ki $n \ge 1$ için,

$$|p_n - p| \le \frac{b - a}{2^n}$$

dir.

ispat: Herbir $n \ge 1$ için, $p \in (a_n, b_n)$ ve

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a)$$
 ve $p_n = \frac{1}{2}(a_n + b_n)$

olduğundan

$$|p_n - p| \le \frac{1}{2}(b_n - a_n) = (b - a)\frac{1}{2^n}$$

yani $\{p_n\}$ dizisi p sayısına $O(1/2^n)$ mertebesiyle yakınsar ve

$$p_n = p + O\left(\frac{1}{2^n}\right)$$

olarak gösterilir.

Örnek : $f(x) = x^3 + 4x^2 - 10$ fonksiyonunun [1 , 2] aralığındaki köküne Bisection yöntemiyle yaklaşınız.

n	a_n	b_n	p_n	$f(p_s)$
1	1.0	2.0	1.5	2.375
2	1.0	1.5	1.25	-1.79687
3	1.25	1.5	1.375	0.16211
4	1.25	1.375	1.3125	-0.84839
5	1.3125	1.375	1.34375	-0.35098
6	1.34375	1.375	1.359375	-0.09641
7	1.359375	1.375	1.3671875	0.03236
8	1.359375	1.3671875	1.36328125	-0.03215
9	1.36328125	1.3671875	1.365234375	0.000072
10	1.36328125	1.365234375	1.364257813	-0.01605
11	1.364257813	1.365234375	1.364746094	-0.00799
12	1.364746094	1.365234375	1.364990235	-0.00396
13	1.364990235	1.365234375	1.365112305	-0.00194

Tablodan görüldüğü gibi $f(p_9) < f(p_{13})$ tür. Yani 9 iterasyon sonra elde edilen değer p_9 , 13 iterasyon sonunda elde edilen değerden p_{13} daha doğrudur. Yani, bu yöntemde iterasyon sayısı arttıkça daha doğru doğru sonuçlar alacağımız garanti değildir. Bu yöntemde önemli olan durdurma kriteri ve seçilen tolerans değeridir.

Örnek: $f(x)=x^3+4x^2-10$ fonksiyonunun [1 , 2] aralığındaki köküne Bisection yöntemiyle 10^{-2} tolerans ve bağıl hata $\left(\frac{|p_N-p_{N-1}|}{|p_N|}<\varepsilon=TOL$, $p_N\neq 0\right)$ kriteriyle yaklaşınız.

7. iterasyon sonunda $\frac{|p_7-p_6|}{|p_7|} < 0.01$ sağlanmıştır ve kök $p_7 = 1.3671875$ bulunmuştur.