- 1. (8 marks) Let G be a 4-regular connected planar graph with a planar embedding where each face has degree either 3 or 4.
 - (a) {5 marks} Determine the exact number of faces of degree 3.

Theorem:
$$\frac{1}{2} \log f(i) = 2|E(G)|$$
 Handshalving lemma for faces.
 $|E(G)| = \frac{1}{2} \log g(i)$
 $|U(G)| - |E(G)| + f = 2$ Euler's Formula.
Let $x = 6e$ the number of faces of degree 3.
 $|Q| + |V(G)| = 2|E(G)|$
 $|Q| = 2|E(G)|$
 $|Q| = 2|E(G)| + f = 2$.
From $|Q| = 0$ $|X| = 8$.

(b) {3 marks} Suppose in addition, every edge has a face of degree 3 on one side, and a face of degree 4 on the other side. Determine the number of vertices, edges, and faces of degree 4 in *G*.

The exact number of faces of diegree 3 is 8.

From a), we have 8 faces of degree 3, only, by question
$$1E(G)I = 8\times3$$
 Since each eggle has a face of degree 3 on one side and face of degree on other side.

$$1E(G)I = 24 \text{ is the sum of the degree of a face of degree 4.}$$

$$f_{\mu} = \frac{24}{4} = 6 \text{ . } e_{\mu} = 14 \text{ . } f_{\mu} = 14 \text{ . } f$$

- 2. $\{7 \text{ marks}\}$ Let G be a graph. The complement of G, denoted \overline{G} , is the graph where $V(\overline{G}) = V(G)$, and $uv \in E(G)$ wand only if $uv \notin E(G)$. (In other words, non-adjacent pairs of vertices in G become edges in \overline{G} , and vice versa.)
 - (a) $\{2 \text{ marks}\}\$ Find a graph G on 7 vertices such that both G and \overline{G} are planar. Draw planar embeddings of both your G and \overline{G} .

(b) $\{5 \text{ marks}\}\$ Prove that if G has at least 11 vertices, then at least one of G and \overline{G} must be nonplanar.

Case 1: |V(G)| > 11, There must exist a vertex whose degree is greater than or equal to b. By theorem, A planar graph has a vertex of degree at most five. Thus, G or G must be nonplanar, when |V(G)| > 11.

(age 2: |V(G)|=11, the edges of k_1 is $\binom{11}{2}=\frac{15}{15}$. In a planar graph. $q \leq 3p-6$. (q: edges: p: vertices) $q \leq 27$.

but the edges of kin is 55, so the edges of G or G is greater than 27.

Thus, if G has at least 11 vertices, then at least one of G or G must be nonplanar.

3. {5 marks} Prove that any planar embedding of a simple connected planar graph contains a vertex of degree at most 3 or a face of degree at most 3.

Suppose simple corrected planar groph contains every verses aldegree at least 4.

2e = dv > 4v by Handshake lemma.

2e = d*f > 4f by Faceshake lemma.

Thus, 4e > 4v+4f

e>v+f

o>v-e+f

Rut by Fuler's harmala.

v-e+f>2.

Contradiction.

Thus, a simple connected planar graph contains a vertex of degree at most 3.

4. {9 marks} For each of the following graphs, determine whether it is planar or not. Prove your assertions.

we find kz,z as a subgraph of a by theorem, it's not planar

It's planar