En las siguientes matrices sombreadas se puede ver que la componente (a_{31}) es 7 y la componente (a_{22}) es -3:

1a. columna
$$\downarrow \qquad \qquad \downarrow \qquad$$

Definición 2.1.6

Igualdad de matrices

Sean las matrices $A = (a_{ij})$ de $m_1 \times n_1$ y $B = (b_{ij})$ y $m_2 \times n_2$ son iguales si

- 1) Son del mismo tamaño, es decir, $m_1 = m_2 = m$ y $n_1 = n_2 = n$.
- 2) Las componentes correspondientes son iguales, es decir, $a_{ij} = b_{ij}$ para todo $i \in \{1, 2, ..., m\}$ y $j \in \{1, 2, ..., n\}$.

EJEMPLO 2.1.4 Matrices iguales y matrices distintas

¿Son iguales las siguientes matrices?

i)
$$\begin{pmatrix} 4 & 1 & 5 \\ 2 & -3 & 0 \end{pmatrix}$$
 y $\begin{pmatrix} 1+3 & 1 & 2+3 \\ 1+1 & 1-4 & 6-6 \end{pmatrix}$
ii) $\begin{pmatrix} -2 & 0 \\ 1 & 3 \end{pmatrix}$ y $\begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$
iii) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ y $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Nota

Los vectores son matrices de un renglón o de una columna.

Cada vector es un tipo especial de matriz. Así, por ejemplo, el vector renglón de n componentes $(a_1, a_2, \dots a_n)$ es una matriz de $1 \times n$, mientras que el vector columna de n compo-

nentes
$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 es una matriz de $n \times 1$.

SOLUCIÓN ►

- i) Sí; ambas matrices son de 2×3 y 1 + 3 = 4, 2 + 3 = 5, 1 + 1 = 2, 1 4 = -3 y 6 6 = 0.
- ii) No; hay algunas componentes que son distintas, por ejemplo, las componentes (1, 1) son diferentes. Esto es cierto aun cuando las dos matrices contienen los mismos números. Las componentes *correspondientes* deben ser iguales. Esto significa que la componente (a_{ij}) en A debe ser igual a la componente (b_{ij}) en B, etcétera.
- iii) No; la primera matriz es de 2×2 y la segunda es de 2×3 , de manera que no tienen el mismo tamaño.