Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 3. DATES COVERED (From - To) 2. REPORT TYPE 1. REPORT DATE (DD-MM-YYYY) Technical Paper (View Graph) 03-12-2004 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE F04611-99-C-0025 **5b. GRANT NUMBER** Preparation of Benzophenone Modified Poly (dimethylsiloxane) Thermosets 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 6. AUTHOR(S) 2303 5e. TASK NUMBER Joseph M. Mabry, William P. Weber M1A3 5f. WORK UNIT NUMBER 8. PERFORMING ORGANIZATION REPORT 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NUMBER ERC Incorporated 555 Sparkman Drive Huntsville, AL 35816-0000 10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRL/PRSB NUMBER(S) 4 Draco Drive AFRL-PR-ED-VG-2004-069 Edwards AFB CA 93524-7160 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES

American Chemical Society

Anaheim, CA, 1 April 2004 14. ABSTRACT

20040503 186

15. SUBJECT TERMS

16. SECURITY C	LASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Linda Talon
a. REPORT	b. ABSTRACT	c. THIS PAGE	A	22	19b. TELEPHONE NUMBER (include area code)
Unclassified	Unclassified	Unclassified			(661) 275-5865

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Modified Poly(dimethylsiloxane) Preparation of Benzophenone **Thermosets**

Joseph M. Mabry¹ and William P. Weber²

¹ERC, Inc., Air Force Research Laboratory Edwards AFB, CA 93524

² Loker Hydrocarbon Research Inst., Dept. of Chemistry University of Southern California 90089-1661

Best Available Copy DISTRIBUTION A. Approved for public release; distribution unlimited.

Objective

While the **Ru** catalyzed incorporation of aromatic ketones into siloxane) (PDMS), such as low glass transition temperature siloxane polymer backbones adds various properties to the polymers, the characteristic properties of poly(dimethyl- (T_q) , are lost. The **Ru** catalyzed chemical modification of a PDMS copolymer may allow the addition of the properties of the ketones, while retaining the properties of PDMS.

Poly(dimethylsiloxane) (PDMS)

Water repellant/Hydrolysis resistant

Thermal and electrical insulator

Oxidative resistant

Biocompatible

•Low T_g of approximately -125 °C

Thermally degrades at approximately 300 °C

Murai Reaction

catalyzes the addition of vinylsilanes to aromatic Murai has shown that $RuH_2(CO)(PPh_3)_3$ (**Ru**) ketones in high yield.

Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, M.; Murai, S. Bull. Chem. Soc. Jpn., 195, 68, 62.

Catalyst Activation

The catalyst, dihydridocarbonyltris(triphenylphosphine)ruthenium amount of styrene. Hydrogen is lost from the ruthenium center and ethyl benzene is produced. This activates the catalyst by (Ru), prepared from RuCl3,4 is activated with a stoichiometric creating a site of coordinate unsaturation.5

Catalytic Cycle

(R = phenyl or mesityl)

Chemical Modification

TMS-O-
$$\{s_{i}-o\}_{n}$$
 TMS-O- $\{s_{i}-o\}_{n}$ TMS-O- $\{s_{i}-o\}_{n}$

This poster reports the Ru-catalyzed addition of benzophenone to 1% vinylmethyl PDMS.

Addition of

2,4,6-Trimethylbenzophenone

Glass Transition Temperature

			·
ymer Benzophenone 2,4,6-Trimethylbenzophogogo		39,300/22,500	-123 °C
Benzophenone	0.700 34 200/19 800	000,01,001,0	-123 °C
0	33,300/20,700		-125 °C
Compound Starting F	$M_{\rm w}/M_{\rm n}$		L _g

While thermal stability is increased, low $T_{\rm g}s$ are retained.

Thermal Stability

Both copolymers are stable in nitrogen to 350 °C.

Thermal Stability

Both copolymers are stable in air to 350 °C.

TGA Experiment

Polymer sample is heated in TGA analyzer at 300 °C for one hour,

Molecular Weight Increase

2,4,6-Trimethylbenzonhenone	39,300/22,500	119,100/57,700
Benzophenone	34,200/19,800	157,900/75,500
	Starting M _w /M _n	M _w /M _n after heating

•M_w triples or better upon heating at 300 °C for one hour

Polymer remains soluble

Structural changes not visible in NMR spectra.

α,ω-Substituted PDMS

		•		
Starting Material	100 cSt	200 cSt	1000 00+	.00000
Starting M /M			1000 031	20,000 cSt
מואואואו פוווים	9,200/5,400	13,000/6,800	29 900/18 200 87 600/14 255	07 600 111 000
Ctorting +	00 107	- 1	007,01	01,000/44,800
Statting 1g	2, cz	-124 °C	-125°C	1050
Dr)	O 621-
Floadet Mw/Mn	10,300/7,000	10,300/7,000 18 200/13 200 24 200/23 122	007 70/000 70	
		000,01/002,01	04,2007,71,400	96,300/59.700
Product T.	1050	0000		
6	0	-123 C	-124 °C	-125°C

Low T $_{g}$ s are also retained in $lpha, \omega ext{-substituted polymers.}$

TGA Experiment

1000 201	1000 CS1 20,000 CSt	000//,000 18,200/13.300 34 300/21 100 06 060/16 = 2	00/,65/005,06 00+,17/00,	00//,800 19,600/13 900 AA 900/50 E00 407 000 in the second	
200 CS+		0 18,200/13,300 34	WESTERNIC TO THE PROPERTY OF T	0 19,600/13,900 44	+
100 cSt	1 000	00,7/005,01	TO THE STATE OF TH	12,500//80	
Starting Material	Starting M. /M	UINI/MINI E	Product M. /M	UIA: /MIA: 3	

•M_w increases by up to 32% after heating at 300 °C

Polymer remains soluble

Structural changes not visible in NMR spectra.

The Elbs Reaction

Pyrolysis of 2-methylbenzophenone results in the formation of anthracene and fluorene.

Gu, T. Y.; Weber, W. P. J. Org. Chem. 1980, 45, 2541. DISTRIBUTION A. Approved for public release; distribution unlimited.

Pyrocondensation of Anthracene

Pyrolysis of anthracene results in the formation of bianthracenyls.

Model Compound

Higher Molecular Weight Products

Model compound was prepared and pyrolyzed

Conversion to anthracene was confirmed by UV

Higher molecular weight products were observed

Polymer Crosslinking

Crosslinks may interfere with reversion reaction

Summary

- Low T_gs are retained with the addition of benzophenones
 - Thermal stability is increased in both nitrogen and air
 - •Molecular weight increases upon heating to 300 °C
 - Conversion to anthracene was confirmed by UV
- Pyrocondensation of anthracene may form cross links
 - Cross links may interfere with reversion reaction

Notes

- Typical characteristics of PDMS (low T_g and thermal stability) were successfully retained.
- Characteristics of aromatic diketones (electochemical and photochemical) were successfully added.
- Poly(dimethylsiloxane) containing 0.8% vinylmethyl units was purchased from Gelest.
 - Virtually all vinyl groups were substituted with aromatic units when analyzed by NMR.

Acknowledgement

Science Foundation for their support We would like to thank the National

References

- (1) Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, M.; Murai, S. *Bull. Chem. Soc. Jpn.*, **195**, *68*, 62.

 - (2) Sargent, J. R.; Weber, W. P. Polymer 1999, 40, 3795.
- (3) Guo, H.; Tapsak, M. A.; Weber, W. P. *Polym. Bull.* **1994**, *33*, 417.
- (5) Guo, H.; Wang, G.; Tapsak, M. A.; Weber, W. P. Macromolecules (4) Levison, J. J.; Robinson, S. D., *J. Chem. Soc., A.* **1970**, 2947.
 - (6) Thornberry, M. P.; Slebodnick, C.; Deck, P. A. Organometallics
 - (7) Toma, S.; Solcaniova, E.; Nagy, A. G. J. Organomet. Chem.
- (8) Asahara, M.; Natsume, S.; Kurihara, H.; Yamaguchi, T.; Erabi, F.; Wada, M. J. Organomet. Chem. **2000**, 601, 246.