КИЇВСЬКИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Р.М.ТРОХИМЧУК *ЗБІРНИК ЗАДАЧ З ТЕОРІЇ МНОЖИН І ВІДНОШЕНЬ.*- 2-е видання, перероб. і доповн.- К.: РВЦ "КИЇВСЬКИЙ УНІВЕРСИТЕТ", 2000. - 80 с.

Р.М.ТРОХИМЧУК

ЗБІРНИК ЗАДАЧ З ТЕОРІЇ МНОЖИН І ВІДНОШЕНЬ

Рецензенти

Сущанський В.І., д-р фіз.-мат.наук, проф. Шевченко В.П., канд.фіз.-мат.наук, доцент

КИЇВ Редакційно-видавничий центр "Київський університет" 2000

© ТРОХИМЧУК Р.М., 2000

1. Задання множин. Відношення належності та включення

Множини позначаються, як правило, великими літерами. Для деяких множин у математиці вживаються сталі позначення: Z - множина цілих чисел, N - множина натуральних чисел, Q - множина раціональних чисел, R - множина дійсних чисел, C - множина комплексних чисел, N_k - множина чисел $\{1,2,...,k\}$.

Об'єкти, з яких складається задана множина, називаються її елементами. Елементи множин позначатимемо малими літерами латинського алфавіту. Той факт, що об'єкт а є елементом множини M записується так: $a \in M$ (читається: "а належить M" або "а є елемент M"). Знак \in називають знаком належності. Знак належності елемента множині \in є стилізацією першої літери грецького слова $\varepsilon \sigma \tau \iota$ (бути). Для того щоб підкреслити, що деякий елемент а не належить множині M, вживають позначення $a \notin M$ або aM. Запис $a,b,c,...\in M$ використовують для скорочення запису $a \in M$, $b \in M$, $c \in M$,....

Множину називають **скінченною**, якщо кількість її елементів скінченна, тобто існує натуральне число k, що є числом елементів цієї множини. **Кількість елементів** скінченної множини A будемо позначати через |A|.

Для задання множин будемо використовувати два такі способи.

- 1. Якщо $a_1,a_2,...,a_n$ деякі об'єкти, то множина цих об'єктів позначається через $\{a_1,a_2,...,a_n\}$, де в фігурних дужках міститься перелік всіх елементів відповідної множини. З останнього зауваження випливає, що в такий спосіб можуть бути задані тільки скінченні множини. Порядок запису елементів множини при цьому позначенні є неістотним.
- 2. Другий спосіб задання множин грунтується на зазначенні загальної властивості або породжувальної процедури для всіх об'єктів, що утворюють описувану множину. У загальному випадку задання множини M має вигляд: $M = \{ a \mid P(a) \}$. Цей вираз читається так: "множина M це множина всіх таких елементів a, для яких виконується властивість P", де через P(a) позначено властивість, яку мають елементи множини M і тільки вони. Замість вертикальної риски іноді записують двокрапку.

3 метою зручності та одностайності при проведенні математичних викладок уводиться поняття множини, яка не містить жодного елемента. Така множина називається порожньою множиною і позначається \varnothing . Разом із тим, твердження "множина M - непорожня" або $M \neq \varnothing$ можна замінювати рівносильним йому твердженням "існує елемент, який належить множині M".

Дві множини A і B називаються **рівними** (записується A=B), якщо вони складаються з тих самих елементів.

Множина A називається **підмножиною** множини B (записується $A \subseteq B$ або $B \supseteq A$) тоді і тільки тоді, коли кожний елемент множини A належить множині B. Кажуть також, що множина A міститься у множині B, або множина B включає (містить) множину A. Знаки \subseteq $i \supseteq$ називають знаками включення.

Неважко переконатись, що A=B тоді і тільки тоді, коли одночасно виконуються два включення: $A\subseteq B$ і $B\subseteq A$.

Якщо $A \subseteq B$, однак $A \ne B$, то пишуть $A \subset B$ і називають множину A власною (строгою або істинною) підмножиною множини B. Знак \subset (або \supset), на відміну від знака \subseteq (або \supseteq), називається знаком строгого включення.

Очевидно, що для будь-якої множини A виконується $A \subseteq A$. Крім того, прийнято вважати, що порожня множина ϵ підмножиною будь-якої множини A, тобто $\emptyset \subseteq A$ (зокрема, $\emptyset \subseteq \emptyset$).

Множину всіх підмножин деякої множини A (скінченної або нескінченної) часто позначають через $\beta(A)$ і називають булеаном множини A.

- 1. Які з наведених співвідношень є правильними?
- (a) $\{1,2,3\} = \{1,2,2,3\};$ (B) $\{1,2,3\} = \{1,3,2\};$
- (6) $\{1,2,3\} = \{1,\{2\},3\};$ (r) $\{1,2,3\} = \{\{1,2\},\{2,3\}\}.$
- **2**. З яких елементів складається множина B
- (a) $B = \{ y \mid y = x + z, x, z \in A \};$
- (6) $B = \{ y \mid x = y + z, x, z \in A \};$
- (в) $B = \{ y \mid y = x \cdot z, x, z \in A \}$, якщо $A = \{1,2,3\}$?
- **3**. З яких елементів складається множина X?
- (a) $X = \{ x \mid x \in N \text{ i } (x = 1 \text{ afo } x 2 \in X) \};$
- (6) $X = \{ x \mid x \in N \text{ i } (x = 2 \text{ afo } x 2 \in X) \};$
- (B) $X = \{ x_n \mid x_n = x_{n-1} + x_{n-2}, n \ge 2 \text{ i } x_0 = x_1 = 1 \}.$
- **4.** Визначити всі можливі співвідношення (рівності, нерівності, включення, строгого включення) між такими множинами геометричних фігур:
 - A множина всіх ромбів;
 - B множина всіх ромбів, усі кути яких прямі;
 - С множина всіх квадратів;
 - D множина прямокутників, усі сторони яких рівні;
 - Е множина всіх прямокутників;
 - F множина чотирикутників, усі кути яких прямі.
 - **5**. Які з наведених співвідношень ε правильними?
 - (a) $\emptyset = \{0\};$ (r) $\{1, \emptyset\} = \{1\};$ (e) $|\{\emptyset\}| = 1;$

```
(\mathfrak{G}) \varnothing = \{ \};
                                  (\mathbf{\pi}) |\emptyset| = 0;
                                                                   (\mathbf{x}) |\{\{\emptyset\}\}| = 2;
     (B) \emptyset = \{\{\}\};
                                 (e) |\{\emptyset\}| = 0;
                                                                   (3) |\{\emptyset, \{\emptyset\}\}| = 2.
     6. Розглянемо такі множини, що складаються з цілих чисел:
     A = \{2k+1 | k \in \mathbb{Z}\}.
                                        B = \{2n+3 | n \in \mathbb{Z}\},\
                                                                                 C = \{2p-1 | p \in Z\},\
     D = \{3m+2 | m \in \mathbb{Z}\}, \quad E = \{3l-1 | l \in \mathbb{Z}\},\
                                                                                 F = \{3t+1 | t \in Z\}.
     Які з наведених тверджень \epsilon правильними?
     (a) A \subset B;
                                        (\Gamma) A \subset D;
                                                                                 (\epsilon) D \subset F;
     (б) A = B:
                                        (\pi) D \subset A:
                                                                                 (ж) E = F:
     (B) B = C;
                                        (e) D = F;
                                                                                 (3) D = E.
     7. Які з наведених співвідношень є правильними?
     (a) 1 \in \{1,2,3\};
                                                  (\epsilon) {1,2} \in {1,2};
     (6) 1 \in \{\{1,2,3\}\};
                                                  (\mathfrak{R}) \{1,2\}\in\{\{1,2\}\};
     (B) 1 \in \{\{1\}, \{2\}, \{3\}\}\};
                                                  (3) \{1,2\}\in\{\{1\},\{2\},\{3\}\};
                                                  (u) \{1,2\} \in \{\{1\},\{1,2\},\{1,2,3\}\};
     (\Gamma) {1} \in {1,2,3};
     (\pi) {1} \in {{1},{2},{3}};
                                                  (i) a \in \{a\};
     (e) \{1,2\} \in \{1,2,3\};
                                                  (i) a \in \{\{a\}\}\.
     8. Які з наведених співвідношень є правильними?
     (a) 0 \in \emptyset;
                                                  (e) \{\emptyset\} \in \{\emptyset, \{1\}\};
     (6) \{\emptyset\} \in \{\emptyset\};
                                                  (\epsilon) \varnothing \in \{\varnothing\};
     (B) \{\{\emptyset\}\}\in\{\{\{\emptyset\}\}\}\};
                                                  (\mathbf{x}) \varnothing \in \{\{\varnothing\}\};
     (\Gamma) \varnothing \in \varnothing;
                                                  (3) \emptyset \in \{\emptyset, \{\emptyset\}\};
     (\pi) \emptyset \in \{1\};
                                                  (\mathsf{H}) \{\emptyset\} \in \{\emptyset, \{\emptyset\}\}.
     9. Які з наведених співвідношень є правильними?
     (a) 1 \subset \{1,2,3\};
                                                  (e) \{1,2\}\subset\{\{1\},1,2,3\};
     (6) 1 \subseteq \{\{1,2,3\}\};
                                                  (\epsilon) {1,2}\subseteq{{1},{2},{3}};
     (B) \{1\}\subset\{1,2,3\};
                                                  (x) Ø⊂\{1,2,3\};
     (\Gamma) {1,2,3}\subseteq{1,2,3};
                                                  (3) \{a\} \subseteq \{a,b\};
                                                  (и) \{a\}\subset \{\{a\},\{b\}\}.
     (\pi) {1}\subset{{1},{2,3}};
     10. Нехай A = \{1, 2, \{1\}\}. Які з наведених співвідношень є правильними?
     (a) 1 \in A;
                                        (e) \{2\} \in A;
                                                                                 (i) \emptyset \in A;
                                                                                 (i) \emptyset \subset A;
     (б) \{1\} ∈ A;
                                        (\epsilon) \{2\}\subset A;
     (B) \{\{1\}\}\in A;
                                        (\mathbf{x}) \{\{2\}\} \subseteq A;
                                                                                 (й) \{\emptyset\} \in A;
     (\Gamma) \{1\}\subseteq A;
                                        (3) \{1,2\} \in A;
                                                                                 (\kappa) \{\emptyset\} \subset A;
     (\pi) \{\{1\}\}\subset A;
                                        (и) \{1,2\} ⊂ A;
                                                                                 (\pi) {\emptyset,1}\subset A.
     11. Нехай A = \{\emptyset, 1, \{1\}, \{2\}\}. Які з тверджень попередньої задачі є
правильними?
```

```
(B) \{c,d\} ∈ A;
                            (e) \{f\} \in A;
                                                     (3) \{e, \{f\}, g\} \in A.
    13. Які з наведених тверджень є правильними:
    (a) якщо A \in B і B \in C, то A \in C;
                                                        (д) якщо A \subset B і B \in C, то A \subset C;
    (б) якщо A \in B і B \subseteq C, то A \in C;
                                                        (e) якщо A \in B і B \subseteq C, то A \subseteq C;
    (в) якщо A \subseteq B і B \subseteq C, то A \subseteq C;
                                                        (\epsilon) якщо A \in B і B \in C, то A \subset C;
    (г) якщо A \subseteq B і B \in C, то A \in C;
                                                        (ж) якщо A \subseteq B і B \subseteq C, то A \in C?
    У тих випадках, коли твердження неправильне, разом із
контрприкладами побудуйте окремі приклади, для яких воно виконується.
    14. Які з наведених співвідношень є правильними?
    (a) Ø⊂Ø;
                               (\Gamma) \{\emptyset\} \subseteq \{\{\emptyset\}\}; \quad (\varepsilon) \{\{\emptyset\}\} \subseteq \{\emptyset,\{\emptyset\}\};
    (\mathfrak{G}) \varnothing \subseteq \{\varnothing\};
                              (д) \varnothing \subseteq \{1\};
                                                        (\mathbf{x}) \{ \{\emptyset\} \} \subseteq \{\emptyset\};
    (B) \{\emptyset\}\subset\emptyset;
                               (e) \{\emptyset\}\subset\{\emptyset\};
                                                        (3) \{ \{\emptyset\} \} \subset \{ \{\{\emptyset\}\} \} \}.
    15. Довести, що існує лише одна множина, яка не містить елементів
(порожня множина).
    16. Які з наведених співвідношень є правильними?
    (a) |\{1\}| = 1;
                                         (\Gamma) |\{1,\{1\}\}| = 1;
    (6) |\{\{2\}\}| = 2;
                                         (\pi) |\{1,\{2\},\{1,2\}\}| = 3;
    (B) |\{\{1\},\{1\}\}\}| = 1;
                                         (e) |\{\emptyset, \{1\}, \{\{2\}\}\}| = 2.
    17. Які з наведених тверджень є правильними:
    (a) якщо A \notin B і B \notin C, то A \notin C;
    (б) якщо A \neq B і B \neq C, то A \neq C;
    (в) якщо A \in B і не виконується, що B \subset C, то A \notin C;
    (г) якщо A \subset B і B \subset C, то не вірно, що C \subset A;
    (д) якщо A \subseteq B і B \notin C, то A \notin C;
    (e) якшо не виконуються включення A \subset B і B \subset C, то не виконується і
включення A \subset C;
    (\epsilon) якщо A \subset B і не виконується включення B \subset C, то не виконується й
включення A \subset C?
    У тих випадках, коли твердження неправильне,
контрприкладами побудуйте окремі приклади, для яких воно виконується.
    18. Навести приклад таких множин A і B, що A \in B і A \subset B.
    19. Довести, що a \in M тоді і тільки тоді, коли \{a\} \subset M.
    20. Чи існує така одноелементна множина B, що для деякої множини A
одночасно виконується A \in B і A \subset B?
```

(ж) $\{e, \{f\}, g\} \subset A$;

(б) *c*∉*A*:

 $(д) \{a,b,c\} \subset A;$

 (Γ) {c,d} $\subset A$;

правильними?

(a) $a,b \in A$;

12. Нехай $A = \{a,b,\{c,d\},\{e,\{f\},g\}\}$. Які з наведених тверджень є

 (ϵ) {{f}} $\subseteq A$;

21. Для заданої множини А побудувати множину всіх підмножин

 $(\Gamma) A = \{\emptyset, \{\emptyset\}\}.$

(B) $A = \{1,\{2\},\{1,2\}\};$

множини A, тобто її булеан $\beta(A)$

(a) $A = \{1,2,3\}$;

(6) $A = \{\emptyset\}$;

- **22.** Для множини $M = \{1,2,3,4\}$ визначити
- (a) всі підмножини M;
- (б) всі власні підмножини M;
- (в) всі двоелементні підмножини M;
- (Γ) всі трьохелементні підмножини M;
- (д) всі підмножини M, які містять 1 і 2;
- (e) всі підмножини M, які не містять 3;
- (ϵ) всі підмножини M з парною кількістю елементів.
- 23. Визначити множину
- (a) $\beta(\beta(\{1,2\}));$ (b) $\beta(\beta(\beta(\emptyset)))$.
- **24.** Зі скількох елементів складається множина A, якщо $|\beta(A)|=32$?
- **25.** Множина A має 127 власних підмножин. Чому дорівнює |A|?
- **26.** Множина A має 64 підмножини з непарною кількістю елементів. Чому дорівнює величина |A|?
- **27.** Множина A складається з n елементів. Яких підмножин множини A більше, тих, що мають парну кількість елементів, чи тих, що мають непарну кількість елементів?
 - **28.** Довести, що $A \in \beta(M)$ тоді і тільки тоді, коли $A \subseteq M$.
- **29.** Нехай A скінченна множина, $a \in A$ і $B \subseteq A$. Яких підмножин множини A більше,
 - (a) тих, що містять елемент a, або тих, що не містять елемент a;
- (б) тих, що включають у себе підмножину B, або тих, що не перетинаються з підмножиною B;
- (в) тих, що включають підмножину B, або тих, що не включають підмножину B?
 - **30.** Довести, що $A \subseteq B$ тоді і тільки тоді, коли $\beta(A) \subseteq \beta(B)$.
 - **31**. Довести, що A=B тоді і тільки тоді, коли $A\subseteq B$ і $B\subseteq A$.
- **32.** Довести, що $A \subseteq B$ тоді і тільки тоді, коли для будь-якої множини C із включення $C \subseteq A$ випливає $C \subseteq B$.
- **33**. Довести, що співвідношення $A_1 \subseteq A_2 \subseteq ... \subseteq A_n \subseteq A_1$ виконується тоді і тільки тоді, коли $A_1 = A_2 = ... = A_n$.
- **34**. Довести, що $\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$ тоді і тільки тоді, коли a=c і b=d.
- **35**. Довести, що множина A всіх додатних парних цілих чисел дорівнює множині B додатних цілих чисел, які можна подати у вигляді суми двох додатних непарних цілих чисел.
 - **36**. Навести приклад множин A,B,C,D і F, які задовольняють умови:
 - (a) $A \subset B$, $B \in C$, $C \subset D$ i $D \subseteq F$;
 - (6) $A \in B$, $B \subseteq C$, $C \subseteq D$ i $D \subseteq F$;
 - (B) $A \subseteq B$, $B \in C$, $C \subseteq D$ i $D \in F$;

- $(\Gamma) A \in B, B \notin C, C \subset D i D \in F;$
- (д) $A \subseteq B$, $B \in C$, $C \subseteq D$ i $D \notin F$.
- **37**. Для кожного натурального числа n визначити множину A_n з n елементів таку, що коли $x, y \in A_n$, то або $x \in y$, або $y \in x$, або x = y.

2. Операції над множинами

Для множин можна ввести ряд операцій (**теоретико-множинних операцій**), результатом виконання яких будуть також множини

Нехай А і В деякі множини.

а). **Об'єднанням** множин A і B (позначається $A \cup B$) називається множина тих елементів, які належать хоча б одній з множин A чи B. Символічно операція об'єднання множин записується так:

$$A \cup B = \{ x \mid x \in A \text{ a fo } x \in B \}.$$

б). **Перетином** множин A і B (позначається $A \cap B$) називається множина, що складається з тих і тільки тих елементів, які належать множинам A і B одночасно. Тобто

$$A \cap B = \{ x \mid x \in A \mid x \in B \}.$$

Кажуть, що множини A і B не перетинаються, якщо $A \cap B = \emptyset$.

Операції об'єднання та перетину множин можуть бути поширені на випадок довільної сукупності множин $\{A_i|i\in I\}$. Так, об'єднання множин A_i (записується $\bigcup_{i\in I}A_i$) складається з тих елементів, які належать хоча б одній з множин A_i даної сукупності. А перетин множин A_i (записується $\bigcap_{i\in I}A_i$) містить ті й тільки ті елементи, які одночасно належать кожній з множин A_i .

- в). **Різницею** множин A і B (записується $A \backslash B$) називається множина тих елементів, які належать множині A і не належать множині B. Отже, $A \backslash B = \{ x \mid x \in A \text{ i } x \notin B \}.$
- e). Симетричною різницею множин A і B (записується $A\Delta B$, $A\oplus B$, або $A\div B$) називається множина, яка складається з усіх елементів множини A, які не містяться в B, а також усіх елементів множини B, які не містяться в A. Тобто

 $A \Delta B = \{ x \mid x \in A \ i \ x \notin B \ a \textit{foo} \ x \in B \ i \ x \notin A \}.$

Уведені теоретико-множинні операції можна проілюструвати діаграмою Венна (рис.1.1).

Puc. 1.1

Тут множини А і В - це множини точок двох кругів. Тоді

 $A \cup B$ - складається з точок областей **I, II, III,**

 $A \cap B$ - ие область **II.**

 $A \setminus B$ - область **I**.

В\ *A* - область **III.**

 $A \Delta B$ - області **I** і **III**.

д). У конкретній математичній теорії буває зручно вважати, що всі розглядувані множини є підмножинами деякої фіксованої множини, яку називають універсальною множиною, або універсумом, і позначають через E (або U). Наприклад, в елементарній алгебрі такою універсальною множиною можна вважати множину дійсних чисел R, у вищій алгебрі множину комплексних чисел С, в арифметиці - множину цілих чисел Z, у традииійній планіметрії - множину всіх точок плошини або множину всіх геометричних об'єктів, тобто множину множин точок на площині тощо.

Якщо зафіксована універсальна множина Е, то доповненням множини A (яка ϵ підмножиною універсальної множини E) - записується \overline{A} називається множина всіх елементів універсальної множини, які не належать множині A. Тобто $\overline{A} = \{ x \mid x \in E \mid x \notin A \}$. Неважко помітити, $uo \overline{A} = E \setminus A$.

1. Нехай $A = \{1,3,5,6\}$, $B = \{1,2,3,5,7\}$ і $C = \{2,4,7\}$. Обчислити

(a) $A \cup B$; $(\pi) A \backslash B$; (б) A∩B; (e) $A\Delta B$;

(B) $(A \cup C) \cap B$: $(\epsilon) (A \setminus C) \cup (B \setminus A);$ $(\Gamma) A \cap B \cap C$; $(ж) (B \setminus C) \cap (A \setminus B).$

2. Нехай $N_k = \{1, 2, ..., k\}, k \in \mathbb{N}$. Визначити такі множини:

(a)
$$\bigcup_{k=1}^{9} N_k$$
; (B) $\bigcup_{k=1}^{m} N_k, m \in \mathbb{N}$; (A) $\bigcup_{k=1}^{m} (N_{k+1} \backslash N_k), m \in \mathbb{N}$; (B) $\bigcap_{k=1}^{m} N_k, m \in \mathbb{N}$; (C) $\bigcap_{k=1}^{m} N_k, m \in \mathbb{N}$; (D) $\bigcap_{k=1}^{m} (N_{k+1} \backslash N_k), m \in \mathbb{N}$.

3. Нехай M_k ={k+1,k+2,...}, k∈N. Визначити такі множини:

(a)
$$\bigcup_{k=1}^{10} M_k$$
; (B) $\bigcup_{k=1}^{m} M_k$, $m \in \mathbb{N}$; (\mathbb{I}) $\bigcup_{k=1}^{m} (M_k \setminus M_{k+1})$, $m \in \mathbb{N}$; (6) $\bigcap_{k=1}^{7} M_k$; (7) $\bigcap_{k=1}^{m} M_k$, $m \in \mathbb{N}$; (e) $\bigcap_{k=1}^{m} (M_k \setminus M_{k+1})$, $m \in \mathbb{N}$.

4. Нехай P - множина всіх прямокутників, R - множина всіх ромбів на

площині. З яких елементів складається множина (a) $P \cap R$: (б) $R \backslash P$: (B) $P \backslash R$?

5. Нехай $A = \{2,4,5,7\}$, $B = \{1,2,4,7\}$ і $C = \{2,4,6,7\}$. Перевірити, що

(a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;

(б) $A\Delta B = (A \cup B) \setminus (A \cap B)$;

(B) $(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$;

 $(\Gamma) A \setminus (A \setminus B) = A \cap B;$

 $(\pi) A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$

6. Зобразити у вигляді діаграм Венна такі множини:

(a) $(A \cup B) \cap C$;

 $(\Gamma)(A \setminus B) \cup (B \setminus C);$

(б) $(A \cap B) \cup (A \cap C)$;

 $(д) (A \Delta B) \cap C;$

(B) $(A \cup B) \setminus (B \cap C)$;

(e) $A \setminus (B\Delta C)$.

7. За допомогою діаграм Венна перевірити такі теоретико-множинні рівності:

(a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;

(6) $(A \cap B) \cup A = (A \cup B) \cap A = A$;

(B) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$;

 $(\Gamma) (A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C);$

 $(\Pi) A \setminus (B \cup C) = (A \setminus B) \setminus C;$

(e) $A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$;

 $(\epsilon) A\Delta B = (A \cup B) \setminus (A \cap B).$

8. Навести приклад множин A і B, які спростовують рівності

(a) $(A \setminus B) \cup B = A$:

(6) $(A \cup B) \setminus A = B$.

Сформулювати і довести необхідні і достатні умови для виконання цих рівностей.

9. Hexaŭ $E=\{1,2,3,4,5,6,7\}$, $A=\{2,3,6\}$, $B=\{1,4,6,7\}$ i $C=\{1,2,3,6\}$. Обчислити

(a)
$$\overline{A}$$
; (Γ) $(\overline{A \cup C}) \cup (\overline{A \cup B})$;

- (б) $\overline{B \cup C}$; (д) $\overline{(A \cap \overline{B})} \cup B$;
- (B) $A \cap \overline{C}$; (e) $(C \setminus B) \cap (A \setminus \overline{C})$.
- **10**. Нехай універсальна множина E = Z і
- $A = \{ n \in \mathbb{Z} \mid m \in \mathbb{Z}, m > 0 \text{ i } n = 2m \},$
- $B = \{ n \in \mathbb{Z} \mid m \in \mathbb{Z}, m > 0 \text{ i } n = 2m-1 \},$
- $C = \{ n \in \mathbb{Z} \mid n \le 7 \}.$

Визначити множини

- (a) \overline{A} ; (B) \overline{C} ; ($A \cup B$);
- (6) $\overline{A \cup B}$; (c) $\overline{A} \setminus \overline{C}$; (e) $(A \setminus C)\Delta(B \setminus \overline{C})$.
- **11.** Нехай універсальна множина E = N і
- $A = \{ n \in N \mid n = 2m \text{ i } m \in N \},$
- $B = \{ n \in N \mid n = 2m-1 \text{ i } m \in N \},$
- $C = \{ n \in N \mid n = 3m \text{ i } m \in N \}.$

Визначити множини

- (a) $A \cap C$; (b) C; (c) $C \cap A \cap B \cup C$.
- **12.** Нехай *A* довільна множина. Чому дорівнюють множини
- (a) $A \cap \emptyset$; (π) $(\pi) A \setminus \emptyset$;
- (6) $A \cup \emptyset$; (e) $\emptyset \setminus A$;
- (B) $A \setminus A$; (c) $A \triangle A$;
- $(Γ) E \setminus A;$ $(𝒮) A Δ <math>\oslash$?
- 13. Визначити множини
- (a) $\emptyset \cap \{\emptyset\}$; (r) $\{\emptyset, \{\emptyset\}\} \setminus \emptyset$;
- (6) $\{\emptyset\} \cap \{\emptyset\}$; (π) $\{\emptyset, \{\emptyset\}\} \setminus \{\emptyset\}$;
- (B) $\{\emptyset\} \cup \emptyset$; (e) $\{\emptyset, \{\emptyset\}\} \setminus \{\{\emptyset\}\}$.
- **14**. Нехай A і B довільні множини. Довести, що співвідношення, які розташовані в одному рядку є рівносильними (еквівалентними) між собою, тобто зі справедливості одного з них випливає справедливість всіх інших співвідношень у рядку
 - (a) $A \subset B$, $\overline{B} \subset \overline{A}$, $A \cup B = B$, $A \cap B = A$, $A \setminus B = \emptyset$;
 - (6) $A \cap B = \emptyset$, $A \subseteq \overline{B}$, $B \subseteq \overline{A}$;
 - (B) $A \subseteq B$, $\overline{A} \cup B = E$, $A \cap \overline{B} = \emptyset$;
 - $(\Gamma) A \cup B = E, \ \overline{A} \subseteq B, \ \overline{B} \subseteq A.$
- 15. За допомогою діаграм Венна перевірити такі теоретико-множинні рівності:
 - (a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$;
 - (6) $\overline{A \cap B} = \overline{A} \cup \overline{B}$;

- (B) $(\overline{A} \cup B) \cap A = A \cap B$;
- $(\Gamma) (A \cap B) \cup (A \cap \overline{B}) = A;$
- $(\pi) (A \cup B) \cap (A \cup \overline{B}) = A;$
- (e) $A \setminus B = A \cap \overline{B}$;
- $(\epsilon) A \Delta B = (A \cap \overline{B}) \cup (\overline{A} \cap B).$
- **16.** Довести, що для довільних множин A, B і C виконується
- (a) якщо $B \subseteq A$, то $(A \setminus B) \cup B = A$;
- (б) якщо $A \cap B = \emptyset$, то $(A \cup B) \setminus B = A$;
- (в) якщо $B\subseteq A$ і $C=A\setminus B$, то $A=B\cup C$;
- (г) якщо $C=A\setminus B$, то $C\cap B=\emptyset$;
- (д) якщо $A\subseteq B$ і $B\cap C=\emptyset$, то $A\cap C=\emptyset$.
- **17**. Довести, що для довільних множин A і B виконується
- (a) $A \cap B \subseteq A \subseteq A \cup B$;
- (в) якщо $A \subseteq \emptyset$, то $A = \emptyset$;
- (б) $A \setminus B \subset A$;
- (г) якщо $E \subset A$, то A = E.
- **18.** Що можна сказати про множини A і B, якщо
- (a) $A \cup B = A \cap B$; (π) $A \setminus B = A$;
- (6) $A \backslash B = B \backslash A$; (e) $A \backslash B = \emptyset$;
- (B) $A \subseteq \overline{B}$ i $\overline{A} \subseteq B$; (c) $A \setminus B = B$;
- $(\Gamma) A \cup B = \emptyset;$ $(\mathfrak{R}) (A \setminus B) \cup (B \setminus A) = A \cup B.$
- **19.** Якою ϵ множина A, якщо для будь-якої множини B виконується:
- (a) $A \cup B = B$;
- (B) $A \cap B = B$:
- $(\mathbf{\pi}) A \cup B = E;$

- (б) $A \cap B = A$;
- $(\Gamma) A \cap B = \emptyset;$
- (e) $A \setminus B = \emptyset$.
- **20.** Чи існують такі множини A і B, що $(A \setminus B) \cap (B \setminus A) \neq \emptyset$?
- **21.** Нехай M скінченна множина і $A,B\subseteq M$. Розташуйте у порядку неспадання такі величини:
 - (a) |B|, $|A \cup B|$, $|\emptyset|$, $|A \cap B|$, |M|;
 - (6) $|A \backslash B|$, |A| + |B|, |M|, $|A \Delta B|$, $|\emptyset|$, $|A \cup B|$;
 - (B) |A|, $|\emptyset|$, $|A \setminus B|$, |A| + |B|, $|A \cup B|$, |M|.
- **22**. Чи існують множини A, B і C, для яких одночасно виконуються такі співвідношення
 - (a) $C \neq \emptyset$, $A \cap B \neq \emptyset$, $A \cap C = \emptyset$, $(A \cap B) \setminus C = \emptyset$;
 - (6) $C \neq \emptyset$, $A \subseteq B$, $B \cap C \subseteq A$, $A \cap C = \emptyset$;
 - (B) $A \neq \emptyset$, $A \cap B = \emptyset$, $A \cap C = \emptyset$, $A \setminus (B \cup C) = \emptyset$;
 - $(\Gamma) A \subseteq B, A \cap C = \emptyset, (B \setminus C) \cap A = \emptyset ?$
- **23**. Перевірити (довести або спростувати) справедливість таких тверджень:
 - (a) якщо $A \setminus B = C$, то $A = B \cup C$;

- (б) якщо $A = B \cup C$, то $A \setminus B = C$;
- (в) якщо $A \cap B = A$ і $B \cup C = C$, то $A \cup B \cup C = C$;
- (г) якщо $C \subseteq B$ і $B \subseteq C$, то $(A \cap \overline{B}) \cup (B \cap \overline{C}) = A \cap \overline{C}$;
- (д) якщо $A \cap B \subseteq \overline{C}$ і $A \cup C \subseteq B$, то $A \cap C = \emptyset$;
- (e) якщо $A \subseteq \overline{B \cup C}$ і $B \subseteq \overline{A \cup C}$, то $B = \emptyset$;
- (є) якщо $A \subset B$, $A \cap C = \emptyset$ і $B \cap C = \emptyset$, то $A = \emptyset$;
- (ж) якщо $C \subset A \cap B$ і $(B \setminus C) \cap A = \emptyset$, то $C = A \cap B$;
- (3) якщо $A \cap B = \emptyset$ і $B \cap C = \emptyset$, то $A \cap C = \emptyset$;
- (и) якщо $A \cap \overline{B} = \emptyset$ і $B \cap \overline{C} = \emptyset$, то $A \cap \overline{C} = \emptyset$.
- 24. Довести основні теоретико-множинні тотожності:
- (a) $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$;
- (6) $A \cup B = B \cup A$, $A \cap B = B \cap A$;
- (B) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
- $(\Gamma) A \cup A = A, A \cap A = A;$
- $(\underline{A}) \ \overline{A \cup B} = \overline{A} \cap \overline{B} ; \ \overline{A \cap B} = \overline{A} \cup \overline{B} ;$
- (e) $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$;
- (ϵ) $A \cup E = E$, $A \cap E = A$;
- $(\mathfrak{R}) A \cup \overline{A} = E, A \cap \overline{A} = \emptyset;$
- (3) $\overline{E} = \emptyset$, $\overline{\emptyset} = E$, $\overline{A} = A$.
- 25. Довести тотожності:
- (a) $(A \cap B) \cup A = (A \cup B) \cap A = A$;
- (6) $A \cup B = A \cup (B \setminus A)$;
- (B) $A \cap (B \setminus A) = \emptyset$;
- $(\Gamma) A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C);$
- $(д) A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C);$
- (e) $A \setminus (A \setminus B) = A \cap B$;
- $(\epsilon) A \setminus (A \cap B) = A \setminus B = \overline{B} \setminus \overline{A} ;$
- (ж) $(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C);$
- $(3) A \cap (B \setminus C) = (A \cap B) \setminus C;$
- $(\mathsf{u})\ (A \cap B) \setminus C = (A \cap B) \setminus (A \cap C);$
- (i) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$;
- $(i) A \setminus (B \cup C) = (A \setminus B) \setminus C;$
- (\Breve{n}) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C);$
- $(\kappa) (A \cap B) \cup (A \cap \overline{B}) = A;$
- $(\pi)(A \cup B) \cap (A \cup \overline{B}) = A;$
- (M) $A \cap (\overline{A} \cup B) = A \cap B$;

- (H) $\overline{A \cap B} = (A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (\overline{A} \cap \overline{B});$
- (o) $A \backslash B = (A \cup B) \backslash B$;
- $(\Pi) (A \cup B) \setminus (B \setminus A) = A;$
- (p) $A \setminus (B \setminus C) = A \setminus ((A \cap B) \setminus C)$;
- (c) $(A \setminus B) \cup (B \setminus C) \cup (C \setminus A) \cup (A \cap B \cap C) = A \cup B \cup C$;
- (T) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$;
- (y) $A \setminus B = A \cap B$.
- **26**. Використовуючи основні теоретико-множинні тотожності задачі **24**, довести наведені рівності шляхом рівносильних перетворень
 - (a) $(A \cap B \cap C) \cup (\overline{A} \cap B \cap C) \cup \overline{B} \cup \overline{C} = E$;
 - (6) $(A \cap B \cap C \cap \overline{D}) \cup (\overline{A} \cap C) \cup (\overline{B} \cap C) \cup (C \cap D) = C$;
 - (B) $(A \cup B) \cap (A \cup C) \cap (B \cup D) \cap (C \cup D) = (A \cap D) \cup (B \cap C);$
 - $(\Gamma) A \cap ((A \cup \overline{B}) \cup (\overline{A} \cup B)) \cup (\overline{A} \cup \overline{B}) = A;$
 - $(\pi) (A \cap B) \cup (A \cap B \cap C) \cup (A \cap B \cap C \cap D) = A \cap B;$
 - (e) $(A \cap C) \cup (B \cap \overline{C}) \cup (\overline{A} \cap C) \cup (\overline{B} \cap \overline{C}) = E$;
 - $(\varepsilon) (A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B) = A \cup B;$
 - $(\mathfrak{R})(A\cap B)\cup (A\cap \overline{B})\cup (\overline{A}\cap B)\cup (\overline{A}\cap \overline{B})=E.$
- **27.** Довести, що відносно заданої універсальної множини E доповнення
- \overline{A} будь-якої множини A ($A\subseteq E$) ε єдиним.
 - **28.** Нехай $A \cup B = E$ і $A \cap B = \emptyset$. Довести, що $A = \overline{B}$ і $B = \overline{A}$.
 - **29.** Нехай $A = \{1,3,4\}$ і $B = \{3,4,5\}$. Визначити
 - (a) $\beta(A)$ i $\beta(B)$; (r) β
 - (Γ) $\beta(A \backslash B);$
- $(\epsilon) \beta(A) \backslash \beta(B);$

- (б) $\beta(A \cup B)$; (в) $\beta(A \cap B)$;
- (д) $\beta(A) \cup \beta(B)$; (е) $\beta(A) \cap \beta(B)$;
- (ж) $\beta(A\Delta B)$; (3) $\beta(A)\Delta\beta(B)$.
- **30.** Довести, що для довільних множин A і B
- (a) $\beta(A \cap B) = \beta(A) \cap \beta(B)$;
- (6) $\beta(A) \cup \beta(B) \subseteq \beta(A \cup B)$;
- (B) $\beta(\bigcap_{i\in I}A_i)=\bigcap_{i\in I}\beta(A_i);$
- (Γ) $\beta(A \cup B) = \{M \cup L / M \subseteq A \text{ i } L \subseteq B\};$
- (д) у пункті (б) знак включення ⊆ не можна замінити на знак рівності.
- **31.** Сформулювати і довести необхідні й достатні умови для множин A і B, щоб виконувалась рівність $\beta(A) \cup \beta(B) = \beta(A \cup B)$.
 - **32.** Довести, що $\emptyset \notin \beta(A) \backslash \beta(B)$ для довільних множин A і B.
 - **33.** Довести, що $\beta(A \backslash B) \subseteq (\beta(A) \backslash \beta(B)) \cup \{\emptyset\}$.

- 34. Сформулювати та довести необхідні й достатні умови виконання рівності $\beta(A \backslash B) = \beta(A)$.
 - **35.** Для елемента *x* виконується $x \notin A$. Описати множину $\beta(A \cup \{x\})$.
 - 36. Довести включення
 - (a) $(A \cup B) \setminus (C \cup D) \subseteq (A \setminus C) \cup (B \setminus D)$;
 - (6) $(\overline{A} \cup \overline{B}) \Delta (\overline{C} \cup \overline{D}) \subset (\overline{A} \Delta \overline{C}) \cap (\overline{B} \Delta \overline{D})$:
 - (B) $(A \cup B)\Delta(C \cup D) \subset (A\Delta C) \cup (B\Delta D)$;
 - $(\Gamma) (A \cap B) \Delta (C \cap D) \subseteq (A \Delta C) \cap (B \Delta D);$
 - $(\pi) (A \backslash B) \Delta (C \backslash D) \subset (A \Delta C) \backslash (B \Delta D);$
 - (e) $A \setminus B \subseteq (A \setminus C) \cap (C \setminus B)$;
 - $(\epsilon) A\Delta B \subset (A\Delta C) \cup (B\Delta C).$
 - 37. Довести тотожності:
 - (a) $(A \Delta B) \Delta C = A \Delta (B \Delta C)$;
 - (б) $A \Delta B = B \Delta A$;
 - (B) $A \Delta B = (A \setminus B) \cup (B \setminus A)$;
 - $(\Gamma) A\Delta B = (A \backslash B) \cup (B \backslash A);$
 - $(\mathbf{A}) A \Delta B = (A \cup B) \setminus (A \cap B);$
 - (e) $A\Delta B = (A \cup B) \cap (A \cap B)$;
 - (ϵ) $A \Delta B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$;
 - $(ж) (A \cup B) \Delta B = A \setminus B;$
 - (3) $(A \Delta B) \Delta (A \cup B) = A \cap B$;
 - (μ) $A \Delta (A \Delta B) = B$;
 - (i) $A \triangle (A \cap B) = A \setminus B$;
 - (i) $(A \triangle B) \cup (A \cap B) = A \cup B$;
 - (й) $A \Delta B \Delta (A \cap B) = A \cup B$;
 - (κ) $A \Delta \varnothing = A, A \Delta E = \overline{A}$;
 - (π) $A \Delta A = \emptyset$, $A \Delta \overline{A} = E$;
 - $(M) A \Delta B = A \Delta B$.
 - **38.** Що можна сказати про множини *A* і *B*, якщо
 - (a) $A\Delta B = A$;
- (B) $A\Delta B = \emptyset$;
- $(\underline{\Lambda})(A\backslash B)\Delta(B\backslash A)=\emptyset;$

- (б) $A\Delta B = A$;
- $(\Gamma) A\Delta B = E$;
- (e) $(A \cup B)\Delta A = B$.
- 39. Перевірити (довести або спростувати) справедливість таких рівностей, що описують дистрибутивні закони за участю операції симетричної різниці
 - (a) $A \cup (B\Delta C) = (A \cup B)\Delta(A \cup C)$;
- $(\Gamma) A\Delta(B \cup C) = (A\Delta B) \cup (A\Delta C);$
- (6) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$;
- $(\pi) A\Delta(B \cap C) = (A\Delta B) \cap (A\Delta C);$
- (B) $A \setminus (B \Delta C) = (A \setminus B) \Delta (A \setminus C)$;
- (e) $A\Delta(B\backslash C) = (A\Delta B)\backslash (A\Delta C)$.

- 40. Довести тотожності
- (a) $A \cup (B \Delta C) = ((A \cup B) \Delta (A \cup C)) \cup A$;
- (6) $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$;
- (B) $A \setminus (B \Delta C) = (A \setminus \overline{B}) \Delta (A \setminus C)$;
- $(\Gamma) A \setminus (B \Delta C) = (A \Delta (B \setminus C)) \setminus ((A \Delta B) \setminus (A \Delta C));$
- $(\pi) A\Delta(B \cup C) = ((A\Delta B) \cup (A\Delta C)) \setminus ((A \cap B) \cup (A \cap C));$
- (e) $A\Delta(B\cap C) = ((A\Delta B)\cap (A\Delta C))\cup ((A\cap B)\Delta(A\cap C));$
- $(\epsilon) A\Delta(B \setminus C) = ((A\Delta B) \setminus (A\Delta C)) \cup (A \setminus (B\Delta C)).$
- 41. Довести, що

(a)
$$(\bigcup_{i=1}^{n} A_i) \Delta (\bigcup_{i=1}^{n} B_i) \subseteq \bigcup_{i=1}^{n} (A_i \Delta B_i);$$
 (6) $(\bigcap_{i=1}^{n} A_i) \Delta (\bigcap_{i=1}^{n} B_i) \subseteq \bigcup_{i=1}^{n} (A_i \Delta B_i);$

- (в) у пунктах (а) і (б) знак включення с не можна замінити на знак рівності.
- **42.** Довести, що множина $A_1 \Delta A_2 \Delta ... \Delta A_n$ містить ті і тільки ті елементи, які належать непарній кількості множин A_i , i=1,2,...,n.
 - 43. Довести рівносильність таких пар тверджень:
 - (a) $A \Delta B = \emptyset \Leftrightarrow A = B$;
- $(\Gamma) A \Delta B = A \cup B \iff A \cap B = \emptyset;$
 - (б) $A \Delta B = C \Leftrightarrow B \Delta C = A$; (д) $A\Delta B = A \Leftrightarrow B = \emptyset$;
 - (B) $A\Delta B = C \Leftrightarrow A\Delta C = B$;
- (e) $A\Delta B = A \backslash B \iff B \subseteq A$.

(B) Δ i \.

- **44.** Для яких множин A і B виконується рівність $A \triangle B = A \cap B$?
- **45**. Виразити операції \cup , \cap і \ через операції
- (a) Δ i \cap :
- (б) Δ i \cup :
- 46. Довести, що не можна виразити операцію
- (a) \setminus через \cap i \cup ;
- (б) \cup через \cap і \.
- **47.** Для довільних множин A і B з універсальної множини E означимо нову операцію A*B за допомогою діаграми Венна. Результатом операції A*B вважатимемо заштриховану область на рис.1.2.
 - (а) Дати формальне означення для введеної операції.
 - (б) Виразити операцію A*B через основні теоретико-множинні операції.
- (в) Дослідити властивості операції *. З'ясувати, чи є операція * асоціативною, комутативною, дистрибутивною відносно інших операцій (об'єднання, перетину, різниці, симетричної різниці)?

Рис.1.2

- (г) Для множин $E=\{1,2,3,4,5,6,7\}$, $A=\{2,3,6\}$, $B=\{1,4,6,7\}$ і $C=\{1,2,3,6\}$ обчислити A*B. $A*(B \cup C)$ і $(A*B) \cap (A*C)$.
 - (д) Чому дорівнюють множини A*E, $A*\emptyset$ і A*A?
 - (e) Знайти множини X такі, що A*X = E, $A*X = \emptyset$ і A*X = A.
 - 48. Довести, що
 - (a) $A \cup B \subset C \Leftrightarrow A \subset C \text{ i } B \subset C$;
 - (6) $A \subset B \cap C \Leftrightarrow A \subset B i A \subset C$;
 - (B) $A \cap B \subset C \Leftrightarrow A \subset \overline{B} \cup C$;
 - $(\Gamma) A \subset B \cup C \Leftrightarrow A \cap \overline{B} \subset C$:
 - $(\pi)(A \setminus B) \cup B = A \iff B \subset A;$
 - (e) $A \setminus B = A \Leftrightarrow A \cap B = \emptyset$;
 - $(\epsilon) (A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subset A$:
 - $(\mathfrak{R}) A \subset B \Rightarrow A \cup C \subset B \cup C$;
 - (3) $A \subset B \Rightarrow A \cap C \subset B \cap C$;
 - (и) $A \subset B$ і $C \subset D \Rightarrow A \cap C \subset B \cap D$ і $A \cup C \subset B \cup D$;
 - (i) $A \subset C$ i $B \subset C \Rightarrow A \cap B \subset C$;
 - (i) $A \subset B \Rightarrow A \setminus C \subset B \setminus C$;
 - $(\breve{\mathbf{n}}) A \subseteq B \implies C \setminus B \subseteq C \setminus A;$
 - $(\kappa) A \subset B \Leftrightarrow \overline{B} \subset \overline{A}$;
 - $(\pi) A \cup B = A \cap B \iff A = B$:
 - (M) $A = \overline{B} \iff A \cap B = \emptyset \text{ i } A \cup B = E.$
- 49. Перевірити (довести або спростувати) справедливість таких тверджень:
 - (a) якщо $A \cup C = B \cup C$, то A = B;
 - (б) якшо $A \cap C = B \cap C$, то A = B:
 - (в) якщо $A\Delta B = A\Delta C$, то B = C;
 - (г) якщо $A \cap B \subset C$, то $A \subset B$ і $B \subset C$;

- (д) якшо $A \cup C = B \cup C$ і $A \cap C = B \cap C$, то A = B.
- 50. Використовуючи рівносильності з попередньої задачі як еквівалентні перетворення, розв'язати відносно Х наведені системи теоретико-множинних рівнянь для заданих множин A, B і C

(a)
$$\begin{cases} A \cap X = B, \\ A \cup X = C \end{cases}$$
, $\text{de } B \subseteq A \subseteq C;$

(a)
$$\begin{cases} A \cap X = B, \\ A \cup X = C \end{cases}$$
, $A \cap B = A \subseteq C$;
$$A \cap A = B$$
, $A \cap C = \emptyset$;
$$A \cap A \cap C = \emptyset$$
;

(в)
$$\begin{cases} A \setminus X = B, \\ A \cup X = C \end{cases}$$
, де $B \subseteq A \subseteq C$.

- **51**. Нехай задано системи множин $\{A_i\}$ і $\{B_i\}$, $i \in I$, де I деяка множина. Розв'язати системи рівнянь
 - (a) $A_i \cap X = B_i$, $i \in I$;
 - (6) $A_i \cup X = B_i$, $i \in I$;
 - (B) $(A_i \cap X) \cup (B_i \cap X) = \emptyset$, $i \in I$.

Знайти необхідні й достатні умови існування розв'язків цих систем.

52. Довести тотожності:

(a)
$$\bigcup_{k \in K} \bigcup_{i \in I} A_{ki} = \bigcup_{i \in I} \bigcup_{k \in K} A_{ki};$$
 $(\Gamma) B \cup (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (B \cup A_i);$

(6)
$$\bigcap_{k \in K} \bigcap_{i \in I} A_{ki} = \bigcap_{i \in I} \bigcap_{k \in K} A_{ki};$$
(1)
$$\bigcup_{i \in I} A_{i} = \bigcap_{i \in I} \overline{A_{i}};$$
(1)
$$\bigcup_{i \in I} A_{i} = \bigcap_{i \in I} \overline{A_{i}};$$
(2)
$$\bigcap_{i \in I} A_{i} = \bigcup_{i \in I} \overline{A_{i}};$$
(3)
$$\bigcap_{i \in I} A_{i} = \bigcup_{i \in I} \overline{A_{i}};$$
(4)
$$\bigcap_{i \in I} A_{i} = \bigcup_{i \in I} \overline{A_{i}};$$

(B)
$$B \cap (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (B \cap A_i);$$
 (e) $\bigcap_{i \in I} A_i = \bigcup_{i \in I} \overline{A_i}.$

53. Для множин $A_i, B_i, i \in I$ довести, що

$$(\bigcup_{i\in I} A_i) \setminus (\bigcup_{i\in I} B_i) \subseteq \bigcup_{i\in I} (A_i \setminus B_i)$$

і знак включення ⊂ не можна замінити на знак рівності.

54. Довести, що

$$\bigcup_{k\in K} (\bigcap_{i\in I} A_{ki}) \subseteq \bigcap_{i\in I} (\bigcup_{k\in K} A_{ki})$$

і знак включення ⊂ не можна замінити на знак рівності.

- 55. Довести справедливість таких тверджень:
- (a) якщо $A_i \subseteq B$ для всіх $i \in I$, то $\bigcup_{i \in I} A_i \subseteq B$;
- (б) якщо $B\subseteq A_i$ для всіх $i\in I$, то $B\subseteq\bigcap A_i$;
- (в) якщо $A_i \subseteq B_i$ для всіх $i \in I$, то $\bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} B_i$ і $\bigcap_{i \in I} A_i \subseteq \bigcap_{i \in I} B_i$.
- **56**. Довести, шо

- (a) $\bigcup_{i\in I}A_i$ є найменшою множиною, яка містить усі множини A_i i є I;
- (б) $\bigcap_{i\in I}A_i$ є найбільшою множиною, яка міститься у всіх множинах A_i $i{\in}I.$
- **57**. Нехай A_n послідовність множин, $n \in \mathbb{N}$. Довести, що $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$, де $B_1 = A_1$, $B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$) для k > 1 і множини B_k попарно не перетинаються.
- **59.** Довести, що для довільних множин A_i , i=1,2,...,k виконується $\bigcup_{i=1}^k A_i = \bigcup_{i=1}^{k-1} (A_i \setminus A_{i+1}) \cup (A_k \setminus A_1) \cup (\bigcap_{i=1}^k A_i).$

3. Декартів добуток множин

Декартовим (**прямим**) **добутком** множин A і B (записується $A \times B$) називається множина всіх пар (a,b), в яких перший компонент належить множині A ($a \in A$), а другий - множині B ($b \in B$).

Тобто
$$A \times B = \{ (a,b) \mid a \in A \ i \ b \in B \}.$$

Декартів добуток природно узагальнюється на випадок довільної скінченної сукупності множин. Якщо $A_1,A_2,...,A_n$ - множини, то їхнім декартовим добутком називається множина $D=\{\ (a_1,a_2,...,a_n)\mid a_1\in A_1,a_2\in A_2,...,a_n\in A_n\}$, яка складається з усіх наборів $(a_1,a_2,...,a_n)$, у кожному з яких і-й член a_i , що називається **і-ю координатою** або **і-м компонентом** набору, належить множині A_i . Декартів добуток позначається через $A_1\times A_2\times...\times A_n$.

Набір $(a_1,a_2,...,a_n)$, щоб відрізнити його від множини, яка складається з елементів $a_1,a_2,...,a_n$, записують не у фігурних, а в круглих дужках і називають **кортежем**, **вектором** або **впорядкованим набором**. **Довжиною** кортежу називають кількість його координат. Два кортежі $(a_1,a_2,...,a_n)$ і $(b_1,b_2,...,b_n)$ однакової довжини вважаються **рівними** тоді і тільки тоді, коли рівні їхні відповідні координати, тобто $a_i=b_i$, i=1,2,...,n. Отже, кортежі (a,b,c) і (a,c,b) вважаються різними, у той час як множини $\{a,b,c\}$ і $\{a,c,b\}$ - рівні між собою.

Декартів добуток множини A на себе n разів, тобто множину $A \times A \times ... \times A$ називають n-м декартовим (або nрямим) степенем множини A i позначають A^n . Прийнято вважати, що $A^0 = \emptyset$ (n=0) i $A^1 = A$ (n=1).

Проекцією на і-у вісь (або і-ою проекцією) кортежу $w=(a_1,a_2,...,a_n)$ називається i-а координата a_i кортежу w, позначається $\Pr_i(w)=a_i$. Проекцією кортежу $w=(a_1,a_2,...,a_n)$ на осі з номерами $i_1,i_2,...,i_k$ називається кортеж $(a_{i1},a_{i2},...,a_{ik})$, позначається $\Pr_{i1,i2,...,ik}(w)$. Нехай V - множина кортежів однакової довжини. Проекцією множини V на i-у вісь (позначається $\Pr_i(V)$) називається множина проекцій на i-у вісь усіх кортежів множини V: $\Pr_i(V) = \{\Pr_i(v) \mid v \in V\}$. Аналогічно означається проекція множини V на декілька осей: $\Pr_{i1,i2,...,ik}(V)= \{\Pr_{i1,i2,...,ik}(v) \mid v \in V\}$.

- **1**. Для заданих множин $A = \{1,2\}$ і $B = \{2,3,4\}$ визначити
- (a) $A \times B$;

 (Γ) $(B \setminus A) \times A$;

(б) $B \times A$;

 $(д) A \times B \times A;$

(B) B^{2} ;

- (e) $A \times (A \cup B)$.
- **2**. Довести, що існують множини A, B і C такі, що
- (a) $A \times B \neq B \times A$:
- (б) $(A \times B) \times C \neq A \times (B \times C)$.

Для яких множин виконуються рівності?

- 3. Для відрізків [a;b] і [c;d] дійсної прямої R дати геометричну інтерпретацію таких множин:
 - (a) $[a;b]\times[c;d]$;
- $(\Gamma) R^2$;

(б) $[a;b]^2$;

(д) R³;

(B) $[a;b]^3$;

- (e) R^n .
- **4**. Довести, що для довільних непорожніх множин A,B,C і D виконується
- (a) $A \subset B$ i $C \subset D$
- $\Leftrightarrow A \times C \subset B \times D;$
- (б) *A=B* і *C=D*
- $\Leftrightarrow A \times C = B \times D.$
- **5**. Довести, що $A \times B = B \times A$ тоді і тільки тоді, коли A = B.
- 6. Довести, що
- (a) $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D) = (A \times D) \cap (B \times C)$;
- (6) $(\bigcap_{i \in I} A_i) \times (\bigcap_{i \in I} B_i) = \bigcap_{i \in I} (A_i \times B_i).$
- 7. Довести, що
- (a) $(A \times B) \cap (B \times A) = (A \cap B) \times (A \cap B)$; (b) $(A \times B) \cup (B \times A) \subseteq (A \cup B) \times (A \cup B)$.
- **8.** Навести приклад множин A і B, для яких виконується строге включення $(A \times B) \cup (B \times A) \subset (A \cup B) \times (A \cup B)$.
- **9.** Сформулювати і довести необхідні й достатні умови виконання рівності $(A \cup B) \times (A \cup B) = (A \times B) \cup (B \times A)$.
- **10.** Позначимо через $D=\beta(M)\times\beta(M)\times\beta(M)$, де $M=\{1,2\}$. Виписати всі кортежі $(A,B,C)\in D$ такі, що

(a) $A \cap B \subseteq C$;

- (б) A∩B=C;
- (B) $(A \cap B) \cup C = M$;
- (Γ) $A \cup B \cup C = M$;
- $(д) (A \cup B) \backslash C = \emptyset;$
- (e) $A \cap B \neq B \cap C$.

11. Довести, що $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$. Навести приклад множин *A*, *B*, *C* і *D*, для яких виконується строге включення. Для яких множин *A*, *B*, *C* і *D* має місце рівність?

12. Довести, що $(A \times D) \cup (B \times C) \subseteq (A \cup B) \times (C \cup D)$.

13. Довести, що $(A \cup B) \times (C \cup D) = (A \times C) \cup (A \times D) \cup (B \times C) \cup (B \times D)$.

14. Довести, що для довільних непорожніх множин A і B виконується $(A \times B) \cup (B \times A) = C \times D$ \iff A = B = C = D.

15. Довести тотожності:

(a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$;

(6) $(A \cup B) \times C = (A \times C) \cup (B \times C)$;

(B) $A \times (B \cap C) = (A \times B) \cap (A \times C)$;

 $(\Gamma) (A \cap B) \times C = (A \times C) \cap (B \times C);$

 $(\pi) A \times (B \setminus C) = (A \times B) \setminus (A \times C);$

(e) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$;

 $(\epsilon) E^2 \setminus (A \times B) = (\overline{A} \times E) \cup (E \times \overline{B})$:

 $(\mathbb{X}) (A \cup B) \times (C \cup D) = (A \times C) \cup (A \times D) \cup (B \times C) \cup (B \times D);$

(3) $(\bigcup_{k \in K} A_k) \times (\bigcup_{i \in I} B_i) = \bigcup_{(k,i) \in K \times I} (A_k \times B_i);$

 $(\mathtt{H}) \ (\bigcap_{k \in K} A_k) \times (\bigcap_{i \in I} B_i) = \bigcap_{(k,i) \in K \times I} (A_k \times B_i).$

16. Визначити першу і другу проєкції Pr_1 і Pr_2 для множин із прикладу **1** цього розділу.

17. Довести, що

- (a) $Pr_1(A \times B) = A$;
- (б) $Pr_2(A \times B) = B$;
- (B) $Pr_i(A_1 \times A_2 \times ... \times A_n) = A_i, i=1,2,...n;$
- (г) якщо $C \subseteq A \times B$, то $\Pr_1 C \subseteq A$;
- (д) якщо $C \subseteq A \times B$, то $\Pr_2 C \subseteq B$.

18. Нехай $D = A_1 \times A_2 \times ... \times A_n$ і $B \subseteq D$, $C \subseteq D$. Довести або спростувати, що

- (a) $\Pr_{i1.i2...ik}(B \cup C) = \Pr_{i1.i2...ik}(B) \cup \Pr_{i1.i2...ik}(C)$;
- (б) $\Pr_{i_1,i_2,...,i_k}(B \cap C) = \Pr_{i_1,i_2,...,i_k}(B) \cap \Pr_{i_1,i_2,...,i_k}(C);$
- (B) $\Pr_{i_1,i_2,...,i_k}(B \setminus C) = \Pr_{i_1,i_2,...,i_k}(B) \setminus \Pr_{i_1,i_2,...,i_k}(C);$
- (r) $Pr_{i1,i2,\dots,ik}(B \Delta C) = Pr_{i1,i2,\dots,ik}(B) \Delta Pr_{i1,i2,\dots,ik}(C)$,

 $1 \le i_1 < i_2 < ... < i_k \le n$.

4. Відповідності, функції, відображення

Відповідністю між множинами A і B називається будь-яка підмножина $C \subseteq A \times B$. Якщо $(a,b) \in C$, то кажуть, що елемент b відповідності C.

Оскільки відповідності ϵ множинами, то для їхнього задання використовують ті самі методи, що й для довільних множин.

Крім того, відповідність можна задавати (або ілюструвати) за допомогою так званого графіка відповідності. Нехай $A = \{1,2,3,4,5\}$ і $B = \{a,b,c,d\}$, а $C = \{(1,a),(1,d),(2,c),(2,d),(3,b),(5,a),(5,b)\}$ - відповідність між A і B. Позначимо через 1,2,3,4,5 вертикальні прямі, а через a,b,c,d горизонтальні прямі на координатній площині (рис.1.3a). Тоді виділені вузли на перетині цих прямих позначають елементи відповідності C і утворюють графік відповідності

Зручним методом задання невеликих скінченних відповідностей є діаграма або граф відповідності. В одній колонці розташовують точки, позначені елементами множини А, у колонці праворуч - точки, позначені елементами множини В. З точки а першої колонки проводимо стрілку в точку в другої колонки тоді і тільки тоді, коли пара (a,b) належить заданій відповідності. На рис.1.3б зображено діаграму відповідності С із попереднього абзацу.

Hехай C деяка відповідність. Множина Pr_1C називається **областю** визначення, а множина Pr_2C - **областю** значень відповідності C.

Образом елемента $a \in \Pr_1C$ при відповідності C називається множина всіх елементів $b \in \Pr_2C$, які відповідають елементу a; позначається C(a). Прообразом елемента $b \in \Pr_2C$ при відповідності C називається множина всіх тих елементів $a \in \Pr_1C$, яким відповідає елемент b; позначається $C^{-1}(b)$. Якщо $D \subseteq \Pr_1C$, то образом множини D при відповідності C називається об'єднання образів усіх елементів із D; позначається C(D). Аналогічно означається прообраз деякої множини $G \subseteq \Pr_2C$; позначається $C^{-1}(G)$.

Оскільки відповідності ϵ множинами, то до довільних відповідностей можуть бути застосовані всі відомі теоретико-множинні операції: об'єднання, перетин, різниця тощо.

Додатково для відповідностей введемо дві специфічні операції. Відповідністю, оберненою до заданої відповідності C між множинами A і B, називається відповідність D між множинами B і A така, що $D=\{\ (b,a)\ |\ (a,b)\in C\ \}$. Відповідність, обернену до відповідності C, позначають C^{-1} .

Якщо задано відповідності $C \subseteq A \times B$ і $D \subseteq B \times F$, то композицією (суперпозицією, добутком) відповідностей C і D (позначається $C^{\circ}D$) називається відповідність H між множинами A і F така, що

 $H=\{(a,b)\mid i$ снує елемент $c\in B$, для якого $(a,c)\in C$ i $(c,b)\in D$ $\}.$

Pозглянемо окремі важливі випадки відповідностей C між множинами A і B.

Якщо $Pr_1C=A$, то відповідність C називається всюди або скрізь визначеною. У противному разі відповідність називається частковою.

Відповідність $f \subseteq A \times B$ називається функціональною відповідністю, або функцією з A в B, якщо кожному елементові $a \in \Pr_1 f$ відповідає тільки один елемент з $\Pr_2 f$, тобто образом кожного елемента $a \in \Pr_1 f$ є єдиний елемент b з $\Pr_2 f$. Якщо f - функція з A в B, то кажуть, що функція має тип f $A \rightarrow B$ і позначають $f: A \rightarrow B$ або $A \rightarrow B$.

Всюди визначена функціональна відповідність $f \subseteq A \times B$ називається відображенням з A в B і записується як і функція $f:A \to B$ або $A \xrightarrow{f} B$. Відображення називають також усюди або скрізь визначеними функціями. Відображення типу $A \to A$ називають перетвореннями множини A.

Через B^A позначається множина всіх відображень з A в B.

Оскільки функція і відображення ε окремими випадками відповідності, то для них мають місце всі наведені вище означення: поняття областей визначення та значень, поняття образу та прообразу елементів і множин тощо. Зокрема, для функції f елементи множини $\Pr_{V} f$ називають аргументами функції, образ f(a) елемента $a \in \Pr_{V} f$ називають значенням функції f на a.

Відповідність C називається **сюр'єктивною** (**сюр'єкцією**), або відповідністю **на** множину B, якщо $\Pr_2 C = B$.

Відповідність C називається **ін'єктивною** (**ін'єкцією**), або **різнозначною** відповідністю, якщо для кожного елемента $b \in \Pr_2 C$ його прообраз $C^{-1}(b)$ складається тільки з одного елемента. Іншими словами, різним елементам множини A відповідають різні елементи множини B. Іноді ін'єкцію називають l-1 відповідністю.

Відображення, яке є одночасно сюр'єктивним та ін'єктивним, називається бієктивним, або бієкцією. Бієктивні відображення називають часто також взаємно однозначними відображеннями або взаємно однозначними відображеннями або

Таким чином, відповідність ϵ взаємно однозначною тоді і лише тоді, коли вона функціональна, всюди визначена, сюр'єктивна та ін'єктивна.

Відповідність $i_A = \{ (a,a) \mid a \in A \}$ називається **тотожним** перетворенням, діагональною відповідністю або діагоналлю в A.

Взаємно однозначне відображення з A в A називають **підстановкою** множини A.

Для довільної відповідності C між A і A позначимо через $C^{(n)}$ відповідність $C \, {}^{\circ}C \, {}^{\circ}... \, {}^{\circ}C$ (п входжень літери C). Вважатимемо $C^{(0)}$ = i_A і $C^{(1)}$ =C.

1. Нехай задано множини $A = \{a,b,c,d\}$ і $B = \{1,2,3,4,5\}$ та відповідності між A і B

 $C_1 = \{ (a,1),(a,3),(a,5),(b,1),(b,3),(d,3),(d,4),(d,5) \},$

 $C_2 = \{ (a,4),(a,5),(b,2),(b,3),(c,1),(d,2),(d,3) \},$

 $C_3 = \{ (b,1),(b,2),(b,3),(c,1),(c,2),(d,1),(d,5) \}.$

Визначити

- (a) Pr_iC_i , j=1,2, i=1,2,3;
- (6) $C_1 \cup C_2$, $C_1 \cup C_3$, $C_2 \cup C_3$;
- (B) $C_1 \cap C_2$, $C_2 \cap C_3$, $C_2 \cap (C_1 \cup C_3)$;
- (r) $C_1 \setminus C_2$, $C_2 \setminus C_1$, $C_3 \setminus (C_1 \cap C_3)$;
- (д) $\overline{C_1}$, $\overline{C_3}$, $C_1 \Delta C_3$, $C_2 \Delta C_3$;
- (e) C_i^{-1} , i=1,2,3.

Побудувати графіки і діаграми відповідностей C_1 , C_2 , C_3 та відповідностей з пунктів (б)-(е).

2. Нехай задано множини $A = \{a,b,c,d\}, B = \{1,2,3,4,5\}$ і

 $G = \{\alpha, \beta, \gamma\}$ та відповідності між A і B

$$C_1 = \{ (a,2),(a,3),(b,1),(c,4),(c,5),(d,2),(d,3) \},$$

$$C_2 = \{ (b,3),(b,5),(c,1),(c,4),(d,1),(d,4),(d,5) \}$$

і відповідності між B і G

$$D_1 = \{ (1,\beta),(1,\gamma),(2,\alpha),(2,\gamma),(3,\gamma),(5,\alpha),(5,\beta) \},$$

$$D_2 = \{ (1,\alpha), (2,\alpha), (2,\beta), (3,\alpha), (4,\alpha), (4,\gamma) \}.$$

Визначити:

- (a) $C_i \circ D_i$, i,j=1,2;
- (6) $C_i^{\circ}C_i^{-1}$, i,j=1,2;
- (B) $D_i^{-1} {}^{\circ} C_j^{-1}$, i,j=1,2; (Γ) $C_2 {}^{\circ} (D_1 {}^{\circ} D_2^{-1})$.

3. Нехай задано такі відповідності між *R* і *R*:

- $C_1 = \{(x,y) \mid x^2 + y^2 \ge 1\};$
- $C_2 = \{(x,y) \mid |x| + |y| \le 3\};$
- $C_3 = \{(x,y) \mid y^2 |x| \ge 0\};$
- $C_4 = \{(x,y) \mid (|x|+0.5)^{|x|+|y|} \le x^2 + |x|+0.25\};$
- $C_5 = \{(x,y) \mid \log_{xy}|x| > 1\};$
- $C_6 = \{(x,y) \mid \log_{(|x|+|y|)}(x^2+y^2) \ge \log_{(|x|+|y|)}4\}.$

Побудувати графік відповідності:

- (a) $\overline{C_1 \cap C_2} \cap C_3$;
- (B) C_5 :

 $(д) C_6;$

- (б) $C_3 \cup C_4$;
- (Γ) $\overline{C_1 \cap C_2} \cup C_6$;
- (e) $C_1 \cap C_2 \cap C_5$.

4. Нехай задано такі відповідності між R і R:

- $C_1 = \{(x,y) \mid ||x|-|y|| \le 1\};$
- $C_2 = \{(x,y) \mid \max(x^2,4-y^2) \le 1\};$
- $C_3 = \{(x,y) \mid \max(|x|,|y|) \le 2\};$
- $C_4 = \{(x,y) \mid |x| + |y| \ge 1\};$
- $C_5 = \{(x,y) \mid x^2 + y^2 \le 2(|x| + |y|)\}.$

Побудувати графік відповідності:

- (a) C_1 ;
- $(\Gamma) (C_2 \cap C_5) \backslash C_1;$
- $(\epsilon) C_3 \cap C_4;$

- (б) C_2 ∪ C_4 ;
- $(д) C_1 \Delta C_5;$
- $(\mathfrak{X}) (C_4 \cap C_5) \cup \overline{C}_1;$

- (B) $C_3 \backslash C_4$;
- (e) $(C_1 \cap C_4) \cup \overline{C}_3$;
- (3) $(C_2 \cup C_3) \setminus C_1$.

5. Нехай *C* відповідність з *R* в *R* така, що $C = \{(x,y) \mid x^2 + y^2 = 1\}$. Визначити $C^{\circ}C$.

6. Довести, що для довільної відповідності C між A і A і будь-яких $m,n \in N$ виконується рівність

- (a) $C^{(m)} \circ C^{(n)} = C^{(n)} \circ C^{(m)}$; (b) $C^{(m)} \circ C^{(n)} = C^{(m+n)}$; (c) $C^{(m)} \circ C^{(m)} = C^{(mn)}$.
- **7.** Нехай задано такі відповідності між R і R:

$$C_1 = \{(x,y) \mid x^2 + y^2 = 1\};$$
 $C_4 = \{(x,y) \mid y = x+1\};$

$$C_2 = \{(x,y) \mid y = x^3\};$$
 $C_5 = \{(x,y) \mid y = ax+b\};$ $C_6 = \{(x,y) \mid y = |x|\}.$

Для $n \in N$ визначити відповідність

- (a) $C_1^{(n)}$; $(\Gamma) C_4^{(n)};$
- (ϵ) $C_1^{(n)\circ}C_4^{(n)}$; (κ) $C_3^{(n)\circ}C_4^{(n)}$; (α) α 0 (α 0) $(д) C_5^{(n)};$ (б) $C_2^{(n)}$;
- (e) $C_6^{(n)}$; (B) $C_3^{(n)}$;

8. Нехай задано відповідності з R в R: $C_1 = \{(x,y) | x = y^2\}$ і $C_2 = \{(x,y) | x^2 = y\}$. Визначити відповідність C_1 ° C_2 .

9. Нехай задано відповідності між R і R: $L_1 = \{ (x,y) | y = ax + b \}$ і $L_2 = \{ (x,y) \mid y = cx+d \}$. Для яких значень параметрів $a,b,c,d \in R$ виконується рівність L_1 ° $L_2 = L_2$ ° L_1 ?

10. Нехай задано відповідності з R в R: $K = \{(x,y) | y = a \cdot x^2 + b \cdot x + c\}$ і $L=\{(x,y) \mid y=p \cdot x+q\}$. Для яких значень параметрів $a,b,c,p,q \in R$ виконується рівність $K^{\circ}L = L^{\circ}K$?

11. Знайти $C_1 \circ C_2$, якщо $C_1 = \{(x,y) \mid y=x+1\}$ і $C_2 = \{(x,y) \mid y=|x|\}$ відповідності з R в R.

12. Що можна сказати про множини А і В, якщо

- (a) $i_A \subseteq A \times B$;
- (б) $i_A \cap (A \times B) = \emptyset$;
- (в) з $(a,b) \in A \times B$ випливає $(b,a) \in A \times B$;
- (Γ) 3 $(a,b) \in A \times B$ випливає $(b,a) \notin A \times B$;
- (π) 3 (a,b) ∈ $A \times B$ випливає $a \neq b$;
- (e) $A \times B \subset B \times A$;
- $(\epsilon) \mid A \times B \mid = 1;$
- $(\mathfrak{R}) \mid A \times B \mid = 7$?

13. Довести, що для довільних відповідностей C, C_1 , C_2 і C_i , $i \in I$ між множинами A і B виконується

- (a) $(C^{-1})^{-1}=C$;
- (e) $(C_1 \backslash C_2)^{-1} = C_1^{-1} \backslash C_2^{-1}$;
- (6) $(C_1 \cup C_2)^{-1} = C_1^{-1} \cup C_2^{-1}$;
- (ϵ) Pr₁ $C \subset A$:

- (B) $(C_1 \cap C_2)^{-1} = C_1^{-1} \cap C_2^{-1};$ (x) $Pr_2 C \subseteq B;$ ($C_1 \cap C_2 \cap C_2$
- (π) ($\bigcap C_i$)⁻¹= $\bigcap C_i^{-1}$; (и) $\Pr_2(C^{-1}) = \Pr_1 C$.

14. Нехай C_1 - відповідність між A і B, C_2 - відповідність між B і G, C_3 відповідність між G і H. Довести, що

- (a) $(C_1 {}^{\circ}C_2) {}^{\circ}C_3 = C_1 {}^{\circ}(C_2 {}^{\circ}C_3);$
- (6) $(C_1 \circ C_2)^{-1} = C_2^{-1} \circ C_1^{-1}$;

- (B) $Pr_1(C_1 {}^{\circ}C_2) \subset Pr_1C_1$;
- (Γ) $Pr_2(C_1 {}^{\circ}C_2) \subseteq Pr_2C_2$;
- (д) $C_1 \circ C_2 \subset \operatorname{Pr}_1 C_1 \times \operatorname{Pr}_2 C_2$;
- (e) $C_1 \circ C_2 = D \implies \Pr_1 D \subseteq \Pr_1 C_1 \text{ i } \Pr_2 D \subseteq \Pr_2 C_2;$
- (e) $C_1 \circ C_2 = \emptyset \Leftrightarrow \Pr_2 C_1 \cap \Pr_1 C_2 = \emptyset$.
- **15.** Нехай C_1 відповідність між A і B, C_2 відповідність між B і G. Довести, що
 - (a) $(C_1 {}^{\circ}C_2)(x) = C_2(C_1(x))$ для довільного елемента $x \in \Pr_1 C_1$;
 - (б) $(C_1 {}^{\circ}C_2)(D) = C_2(C_1(D))$ для довільної підмножини $D \subset \Pr_1 C_1$.
- **16.** Нехай C_1 відповідність між A і B, C_2 відповідність між B і G. Довести або спростувати рівність $\overline{C_1 \circ C_2} = \overline{C_1} \circ \overline{C_2}$.
- **17.** Нехай C_i , $i \in I$ сукупність відповідностей між A і B, D довільна відповідність між B і G та F - довільна відповідність між H і A.

Довести, шо

(a)
$$(\bigcup_{i \in I} C_i)^{\circ}D = \bigcup_{i \in I} (C_i^{\circ}D);$$
 (B) $(\bigcap_{i \in I} C_i)^{\circ}D \subseteq \bigcap_{i \in I} (C_i^{\circ}D)$

(a)
$$(\bigcup_{i \in I} C_i)^{\circ}D = \bigcup_{i \in I} (C_i^{\circ}D);$$
 (B) $(\bigcap_{i \in I} C_i)^{\circ}D \subseteq \bigcap_{i \in I} (C_i^{\circ}D);$ (6) $F^{\circ}(\bigcup_{i \in I} C_i) = \bigcup_{i \in I} (F^{\circ}C_i);$ (r) $F^{\circ}(\bigcap_{i \in I} C_i) \subseteq \bigcap_{i \in I} (F^{\circ}C_i);$

- (д) у пунктах (в) і (г) знаки включення не можна замінити знаком рівності.
- **18.** Нехай C_1 і C_2 відповідності між множинами A і B, D відповідність між B і G, F - відповідність між H і A.

Довести, що

- (a) $(C_1 \setminus C_2)^{\circ}D \subset (C_1^{\circ}D) \setminus (C_2^{\circ}D)$;
- (6) $F \circ (C_1 \setminus C_2) \subseteq (F \circ C_1) \setminus (F \circ C_2)$;
- (в) у пунктах (а) і (б) знаки включення не можна замінити знаком рівності.
- **19.** Нехай C_1 і C_2 відповідності між A і B, D довільна відповідність між B і G, F - довільна відповідність між H і A і виконується $C_1 \subset C_2$. Довести. ЩО
 - (a) $C_1 \circ D \subset C_2 \circ D$; (6) $F \circ C_1 \subset F \circ C_2$; (B) $C_1^{-1} \subset C_2^{-1}$.
- **20.** Нехай C довільна відповідність між A і B. Чому дорівнює відповідність $C \circ i_B$, $i_A \circ C^{-1}$, $C^{-1} \circ i_A$, $i_B \circ C^{-1}$?
 - **21.** Що можна сказати про відповідність C між множинами A і B, якщо
 - (a) для будь-якого $x \in A$ існує $y \in B$ такий, що $(x,y) \in C$;
 - (б) з $(x,y),(x,z) \in C$ випливає y=z;
 - (в) з $(x,y),(z,y) \in C$ випливає x=z;
 - (г) для будь-якого $y \in B$ існує $x \in A$ такий, що $(x,y) \in C$;

- (д) для будь-якого $x \in A$ існує єдиний $y \in B$ такий, що $(x,y) \in C$, і навпаки, для будь-якого $t \in B$ існує єдиний $z \in A$ такий, що $(z,t) \in C$?
- **22.** Нехай задано множини $A = \{a, b, c, d, e\}$ і $B = \{1, 2, 3, 4, 5\}$ та відповідності між ними

 $C_1 = \{(a,2),(a,5),(b,1),(b,5),(c,2),(d,3),(d,5)\},\$

 $C_2 = \{(a,3),(b,2),(c,3),(e,3)\},\$

 $C_3 = \{(a,2),(b,3),(c,4),(d,1),(e,5)\},\$

 $C_4 = \{(a,2),(a,3),(b,1),(c,4),(c,5),(d,1),(e,2),(e,4)\},\$

 $C_5 = \{(a,4),(b,3),(c,5),(d,2),(e,1)\}.$

Визначити, які з цих відповідностей

- (а) всюди визначені;
- (б) функціональні;
- (в) ін'єктивні;
- (г) сюр'єктивні;
- (д) бієктивні (взаємно однозначні)?

Побудувати графіки і діаграми даних відповідностей.

- **23.** Нехай задано відповідності з *R* в *R*: $C_1 = \{(x,y) | x=y\}$, $C_2 = \{(x,y) | x^2=y^2\}$ і $C_3 = \{(x,y) \mid x^3 = y^3\}$. Які з наведених співвідношень є правильними?
 - (a) $C_1 = C_2$; (б) $C_1 \subseteq C_2$;
- (B) $C_3 \subseteq C_2$;
- **24.** Нехай задано множини $A = \{-2, -1, 0, 1, 2, 3\}$ і $B = \{0, 1, 2, 4\}$ та відповідність між ними $C = \{ (x,y) \mid y = x^2, x \in A, y \in B \}$. Побудувати графік і діаграму відповідності C. Чи є відповідність C
 - (а) всюди визначеною;
 - (б) функціональною;
 - (в) ін'єктивною;
 - (г) сюр'єктивною;
 - (д) бієктивною (взаємно однозначною)?
- 25. Задано відповідність між множинами дійсних чисел з інтервалів [0,9] i [0,12] $f = \{ (x,y) \mid y = x + \sqrt{x}, x \in [0,9] \}.$
- (a) дослідити властивості відповідності f. Чи ϵ f бієктивною відповідністю для заданих множин?
 - (б) побудувати графік відповідності f;
 - (в) побудувати графік відповідності f^{-1} ;
- (г) обчислити $f^{-1}(f(x))$ для $x \in [0;9]$ і $f(f^{-1}(y))$ для $y \in [0;12]$. Чому дорівнюють відповідності $f^{-1} \circ f$ і $f \circ f^{-1}$?
 - **26.** Нехай задано такі відповідності між R і R:

 $C_1 = \{(x,y) \mid ||x|-|y||=1\};$ $C_4 = \{(x,y) \mid y^2 - x^2 = 1\};$ $C_2 = \{(x,y) \mid y^2 = x\};$ $C_5 = \{(x,y) \mid y = 2x - 1\};$ $C_6 = \{(x,y) \mid y = x^n, \text{ для } x = 1\};$

 $C_6 = \{(x,y) \mid y = x^n, \text{ для деякого } n \in \mathbb{Z}\}.$

Визначити, які з цих відповідностей ϵ

- (а) всюди визначеними;
- (б) функціональними;
- (в) ін'єктивними;
- (г) сюр'єктивними;
- (д) взаємно однозначними (бієктивними).

Побудувати графіки даних відповідностей.

- **27.** Навести приклад відповідності між N і N, яка ϵ
- (а) всюди визначеною;
- (б) функціональною;
- (в) ін'єктивною;
- (г) сюр'єктивною;
- (д) всюди визначеною і функціональною;
- (е) всюди визначеною і нефункціональною;
- (є) всюди визначеною та ін'єктивною;
- (ж) всюди визначеною і неін'єктивною:
- (3) всюди визначеною і сюр'єктивною;
- (и) всюди визначеною і несюр'єктивною;
- (і) функціональною та ін'єктивною;
- (і) функціональною і неін'єктивною;
- (й) функціональною і сюр'єктивною;
- (к) функціональною і несюр'єктивною;
- (л) ін'єктивною і сюр'єктивною;
- (м) ін'єктивною і несюр'єктивною;
- (н) нефункціональною та ін'єктивною;
- (о) нефункціональною і неін'єктивною;
- (п) нефункціональною і сюр'єктивною;
- (р) нефункціональною і несюр'єктивною;
- (с) неін'єктивною і сюр'єктивною;
- (т) неін'єктивною і несюр'єктивною;
- (у) функціональною, ін'єктивною, але несюр'єктивною;
- (ф) всюди визначеною, нефункціональною, неін'єктивною і сюр'єктивною;
- (х) всюди визначеною, функціональною, неін'єктивною несюр'єктивною;
- (ц) всюди визначеною, функціональною, ін'єктивною несюр'єктивною;
 - (ч) всюди визначеною, нефункціональною, ін'єктивною і сюр'єктивною;
 - (ш) всюди визначеною, функціональною, ін'єктивною і сюр'єктивною.
- **28.** Нехай C деяка відповідність між A і B. За яких умов відповідність C між B і A ϵ

- (а) всюди визначеною;
- (б) функціональною;
- (в) ін'єктивною;
- (г) сюр'єктивною;
- (д) бієктивною (взаємно однозначною)?
- **29.** Нехай C_1 і C_2 відповідності між A і B. Які з наведених тверджень ϵ правильними?
 - (a) Якщо C_1 і C_2 всюди визначені відповідності, то відповідність
 - (1) $C_1 \cup C_2$ є всюди визначеною;
 - (2) C_1 ∩ C_2 є всюди визначеною;
 - (3) $C_1 {}^{\circ}C_2^{-1}$ є всюди визначеною;
 - (4) $C_1 \setminus C_2$ є всюди визначеною;
 - (5) C_1^{-1} є сюр'єктивною.
 - (б) Якщо C_1 і C_2 функціональні відповідності, то відповідність
 - (1) $C_1 \cup C_2 \varepsilon$ функціональною;
 - (2) $C_1 \cap C_2 \epsilon$ функціональною;
 - (3) $C_1 {}^{\circ}C_2^{-1}$ є функціональною;
 - (4) $C_1 \setminus C_2$ є функціональною;
 - (5) C_1^{-1} є ін'єктивною.
 - (в) Якщо C_1 і C_2 ін'єктивні відповідності, то відповідність
 - (1) $C_1 \cup C_2$ є ін'єктивною;
 - (2) C_1 ∩ C_2 є ін'єктивною;
 - (3) $C_1 {}^{\circ}C_2^{-1}$ є ін'єктивною;
 - (4) $C_1 \backslash C_2$ є ін'єктивною;
 - (5) C_1^{-1} є функціональною.
 - (г) Якщо C_1 і C_2 сюр'єктивні відповідності, то відповідність
 - (1) $C_1 \cup C_2$ є сюр'єктивною;
 - (2) $C_1 \cap C_2$ є сюр'єктивною;
 - (3) $C_1^{\circ}C_2^{-1}$ є сюр'єктивною;
 - (4) $C_1 \backslash C_2$ є сюр'єктивною;
 - (5) C_1^{-1} є всюди визначеною.
 - **30.** Визначити всі елементи множини B^A , де
 - (a) $A = \{a,b\}, B = \{1,2,3\};$
- (B) $A=\{a\}, B=\{1,2,3\};$
- (6) $A = \{a,b\}, B = \{1\};$
- $(\Gamma) A = \{a,b\}, B = \{1,2\}.$
- **31.** Довести, що
- (a) якщо $B \neq \emptyset$, то $B^A \neq \emptyset$;
- (б) $B^A \subseteq \beta(A \times B)$.
- **32.** Довести, що для довільної функції f з A в B композиція f^{-1} $^{\circ}f$ $^{\varepsilon}$ функцією.

- **33.** Довести, що відповідність f між A і B є функціональною тоді і тільки тоді, коли $f^{-1} \circ f \subset i_B$.
- **34.** Довести, що відповідність f між A і B є всюди визначеною тоді і тільки тоді, коли $i_A \subset f \circ f^{-1}$.
- **35.** Нехай f функція з A в B і g функція з B в G. Довести, що композиція $f \circ g \in \Phi$ ункцією з $A \bowtie G$.
- **36.** Нехай f відображення з A в B і g відображення з B в G. Чи правильним є твердження, що відповідність $f \circ g$ є відображенням з A в G?
- **37.** Знайти і довести необхідні і достатні умови для функції f з A в B, при виконанні яких композиція $f \circ f^{-1}$ буде функцією.
- **38**. Нехай f відображення з A в B і g відображення з B в G. За яких умов є відображенням
- (а) f^{-1} ; (б) $f \circ g$; (в) $f \circ f^{-1}$; (г) $g^{-1} \circ f^{-1}$? **39.** Довести, що відповідність f між A і B ϵ відображенням тоді і тільки тоді, коли $i_A \subseteq f \circ f^{-1}$ і $f^{-1} \circ f \subseteq i_B$.
- **40.** Нехай C відповідність між A і B, а D відповідність між B і A. Довести, що коли $C \circ D = i_A$, тоді відповідність $C \in$ всюди визначеною, а відповідність D - сюр'єктивною.
- **41.** Нехай C функціональна відповідність між A і B, а D ін'єктивна відповідність між B і A. Довести, що коли $C \circ D = i_A$, тоді C - ін'єктивне відображення з A в B, а D - сюр'єктивна функція з B в A.
- **42.** Довести, що об'єднання $f_1 \cup f_2$ двох відображень f_1 і f_2 з A в B буде відображенням з A в B тоді і тільки тоді, коли $f_1 = f_2$.
- **43.** Довести, що перетин $f_1 \cap f_2$ двох відображень f_1 і f_2 з A в B буде відображенням з A в B тоді і тільки тоді, коли $f_1 = f_2$.
- **44.** Довести, що різниця $f_1 \ f_2$ двох відображень f_1 і f_2 з A в B буде відображенням з A в B тоді і тільки тоді, коли $f_1 \cap f_2 = \emptyset$.
- **45.** За яких умов для відображення f з A в B відповідність \overline{f} (тобто $(A \times B) \setminus f$) буде відображенням з A в B?
 - **46.** За яких умов для відображень f_i , i=1,2,...,n з A в B відповідність

(a)
$$\overline{f_1} \cap \overline{f_2}$$
, (b) $\bigcap_{i=1}^k \overline{f_i}$, $k=1,2,...,n$

буде відображенням з A в B?

- **47.** За яких умов для функцій (відображень) f_1 і f_2 з A в B відповідність $f_1\Delta f_2$ буде функцією (відображенням)?
- **48.** Нехай C відповідність між A і B, а D відповідність між B і G. Довести такі твердження
- (a) якщо C і D всюди визначені, то відповідність $C \circ D$ є всюди визначеною;

- (б) якщо C і D функціональні, то відповідність $C \circ D \in \phi$ ункціональною;
- (в) якщо C і D ін'єктивні, то відповідність $C \circ D$ є ін'єктивною;
- (г) якщо C і D сюр'єктивні, то відповідність $C \circ D$ є сюр'єктивною.

Навести приклади відповідностей, для яких обернені твердження не виконуються.

- **49.** Довести, що відповідність f між A і B є сюр'єктивною тоді і тільки тоді, коли $i_R \subset f^{-1} \circ f$.
- **50.** Довести, що відповідність f між A і B ϵ ін'єктивною тоді і тільки тоді, коли $f \circ f^{-1} \subset i_A$.
- **51.** Довести, що функція f з A в B є сюр'єктивною тоді і тільки тоді, коли для будь-яких відповідностей g і h між B і D з рівності $f \circ g = f \circ h$ випливає g = h.
- **52.** Довести, що ін'єктивна відповідність f між A і B є всюди визначеною тоді і тільки тоді, коли для будь-яких відповідностей g і h між D і A з рівності $g \circ f = h \circ f$ випливає g = h.
- **53.** Нехай *A* довільна скінченна множина. Довести, що відображення *f* з A в $A \in \mathbf{nidcmahoskoo}$ (взаємно однозначним відображенням з A в A) тоді і тільки тоді, коли
 - (a) f сюр'єктивне (принцип Дирихле);
 - (б) f ін'єктивне.
- **54.** Нехай A і B скінченні множини і |A| = |B|. Довести, що будь-яке відображення f з A в B ϵ ін'єктивним тоді і тільки тоді, коли воно сюр'єктивне.
- **55.** Нехай f неперервне дійсне відображення з [a;b] в [c;d]. Довести, що $f \in \text{вза} \in \text{мно}$ однозначним відображенням з [a;b] в [c;d] тоді і тільки тоді, коли
 - (a) f строго монотонне і сюр'єктивне;
- (б) f строго монотонне і виконується одна з умов: або f(a)=c і f(b)=d, або f(a)=d i f(b)=c.
- **56.** Відомо, що існують взаємно однозначні відповідності між A і C та між B і D. Довести, що можна встановити взаємно однозначну відповідність між
 - (a) $A \times B$ і $C \times D$; (б) A^B і C^D ; (в) $A \cup B$ і $C \cup D$, якщо $A \cap B = \emptyset$ і $C \cap D = \emptyset$.
- 57. Довести, що існує взаємно однозначна відповідність між множинами
 - (a) $A \times B$ i $B \times A$;
 - (б) $A \times (B \times C)$ i $(A \times B) \times C$;
 - (B) $(A \times B)^C$ i $A^C \times B^C$:
 - $(\Gamma) (A^B)^C i A^{B \times C};$
 - $(\pi) A^{B \cup C} i A^{B} \times A^{C}$, якщо $B \cap C = \emptyset$;

- (e) $\prod_{i \in I} A_i$ і $\prod_{i \in I} A_{\varphi(i)}$, де φ підстановка множини I;
- $(\epsilon) A^B$ і $\prod_{i \in I} A^{Ci}$, де $\{C_i\}_{i \in I}$ розбиття множини B.
- 58. Встановити взаємно однозначну відповідність між множинами
- (a) A^k i A^{Nk} ; (6) $\beta(A)$ i $\{0,1\}^A$.
- **59.** Довести, що відповідність f між A і B ϵ взаємно однозначною відповідністю тоді і тільки тоді, коли f ϵ відображенням з A в B і f -1 ϵ відображенням з B в A.
 - **60.** Нехай f взаємно однозначна відповідність між A і B. Довести, що
 - (a) f^{-1} взаємно однозначна відповідність між B і A;
 - (6) $f^{-1} \circ f = i_B$; (B) $f \circ f^{-1} = i_A$.
- **61.** Нехай C відповідність між A і B, а D відповідність між B і A. Довести або спростувати таке твердження: якщо $C \circ D = i_A$, то $D = C^{-1}$.
- **62.** Нехай C відповідність між A і B, а D відповідність між B і A. Довести, що з рівностей $C \circ D = i_A$ і $D \circ C = i_B$ випливає $D = C^{-1}$.
- **63.** Нехай C відображення з A в B, а D відображення з B в A. Довести, що рівності $C \circ D = i_A$ і $D \circ C = i_B$ виконуються тоді і тільки тоді, коли $D = C^{-1}$.
- **64.** Довести, що відповідність f між A і B ϵ взаємно однозначною тоді і тільки тоді, коли f $^{\circ}f$ $^{-1} = i_A$ і f $^{-1}$ $^{\circ}f = i_B$.
- **65.** Довести, що відображення f з A в B є взаємно однозначним тоді і тільки тоді, коли існує таке відображення g з B в A, що $f \circ g = i_A$ і $g \circ f = i_B$.
- **66.** Нехай $f: A \rightarrow B$ і $g: B \rightarrow G$ взаємно однозначні відображення. Довести, що $f \circ g$ є взаємно однозначним відображенням з A в G.
- **67.** Нехай f відображення з A в A (перетворення). Довести, що коли $f^{(n)} = i_A$ для деякого $n \in N$, тоді f ϵ взаємно однозначним відображенням (підстановкою) з A в A.
- **68.** Відображення f з R в R називатимемо неспадним, якщо для всіх дійсних $x,y \in R$ з $x \le y$ випливає $f(x) \le f(y)$. Довести, що коли f і g неспадні відображення з R в R, тоді неспадними відображеннями з R в R будуть
 - (a) $f \circ g$; (б) $f^{(n)}$, $n \in N$; (в) $f^{(m)} \circ g^{(n)}$ для всіх $m, n \in N$.
- **69.** Довести, що для будь-якої відповідності C між множинами H і G та для довільних $A, B, A_i \subseteq \Pr_1 C, i \in I$ виконується
 - (a) $C(A \cup B) = C(A) \cup C(B);$ (b) $C(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} C(A_i).$
- **70.** Довести, що для будь-якої відповідності C між множинами H і G та для довільних $A, B, A_i \subseteq \Pr_1 C, i \in I$ виконується
 - (a) $C(A \cap B) \subseteq C(A) \cap C(B)$; (b) $C(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} C(A_i)$

і ці включення не можна замінити рівностями.

- **71.** Довести, що для відповідності C рівність $C(A \cap B) = C(A) \cap C(B)$ виконується для будь-яких $A,B \subset \Pr_1 C$ тоді і тільки тоді, коли C ін'єктивна.
- **72.** Довести, що $C(A)\setminus C(B)\subseteq C(A\setminus B)$ для будь-якої відповідності C та для довільних $A,B\subset \Pr_1C$.
- **73.** Навести приклад такої відповідності C, що для деяких $A,B \subseteq \Pr_1 C$ виконується строге включення $C(A) \setminus C(B) \subset C(A \setminus B)$.
- **74.** Довести, що рівність $C(A)\setminus C(B) = C(A\setminus B)$ виконується для відповідності C та для довільних $A,B\subseteq \Pr_1C$ тоді і тільки тоді, коли C ін'єктивна.
- **75.** Довести, що $C(A)\Delta C(B) \subseteq C(A\Delta B)$ для будь-якої відповідності C та для довільних $A,B \subseteq \Pr_1 C$.
- **76.** Навести приклад такої відповідності C, що для деяких A, $B \subseteq \Pr_1 C$ виконується строге включення $C(A)\Delta C(B) \subset C(A\Delta B)$.
- 77. Довести, що для відповідності C рівність $C(A)\Delta C(B) = C(A\Delta B)$ виконується для всіх $A,B \subset Pr_1C$ тоді і тільки тоді, коли C ін'єктивна.
- **78.** Довести, що з $A \subseteq B$ випливає $C(A) \subseteq C(B)$ для будь-якої відповідності C та для довільних $A,B \subseteq \Pr_1 C$.
- **79.** Побудувати приклад такої відповідності C, що для деяких $A,B \subseteq \Pr_1 C$ виконується C(A) = C(B), однак $A \subset B$.
- **80.** Навести приклад такої відповідності C, що для деяких $A,B \subseteq \Pr_1 C$ з включення $C(A) \subset C(B)$ не випливає $A \subset B$.
- **81.** Довести, що для відповідності C і для довільних $A,B \subseteq \Pr_1 C$ включення $C(A) \subseteq C(B)$ і $A \subseteq B$ є рівносильними тоді і тільки тоді, коли C ін'єктивна.
- **82.** Довести, що для відповідності C і для довільних $A,B \subseteq Pr_1C$ рівності C(A) = C(B) і A = B є рівносильними тоді і тільки тоді, коли C ін'єктивна.
- **83.** Довести, що для будь-якої відповідності C $C(A) = \emptyset$ для $A \subseteq \Pr_1 C$ тоді і тільки тоді, коли $A \cap \Pr_1 C = \emptyset$.
- **84.** Довести, що для будь-якої відповідності C між множинами H і G та для довільних A, B, $A_i \subset \Pr_2 C$, $i \in I$ виконується рівність:
 - (a) $C^{-1}(A \cup B) = C^{-1}(A) \cup C^{-1}(B);$ (6) $C^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} C^{-1}(A_i).$
- **85.** Довести, що для будь-якої відповідності C між множинами H і G та для довільних A, B, $A_i \subseteq \Pr_2 C$, $i \in I$ виконується включення
 - (a) $C^{-1}(A \cap B) \subseteq C^{-1}(A) \cap C^{-1}(B);$ (6) $C^{-1}(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} C^{-1}(A_i)$

і знак включення не можна замінити на знак рівності.

- **86.** Довести, що для відповідності C рівність $C^{-1}(A \cap B) = C^{-1}(A) \cap C^{-1}(B)$ виконується для будь-яких $A,B \subseteq \Pr_2 C$ тоді і тільки тоді, коли $C \in \Phi$ ункцією.
- **87.** Довести, що для будь-якої відповідності C між множинами H і G та для довільних $A,B \subseteq \Pr_2 C$ виконується включення $C^{-1}(A) \setminus C^{-1}(B) \subseteq C^{-1}(A \setminus B)$.
- **88.** Навести приклад відповідності C, для якої виконується строге включення $C^{-1}(A) \setminus C^{-1}(B) \subset C^{-1}(A \setminus B)$ для деяких множин $A,B \subset \operatorname{Pr}_2 C$.
- **89.** Довести, що для відповідності C рівність $C^{-1}(A) \setminus C^{-1}(B) = C^{-1}(A \setminus B)$ виконується для будь-яких $A,B \subseteq \Pr_2 C$ тоді і тільки тоді, коли C функціональна.
- **90.** Довести, що $C^{-1}(A)\Delta C^{-1}(B)\subseteq C^{-1}(A\Delta B)$ для будь-якої відповідності C та для довільних $A.B \subset \Pr_2 C$.
- **91.** Навести приклад такої відповідності C, що для деяких A, $B \subseteq \Pr_2 C$ виконується строге включення $C^{-1}(A)\Delta C^{-1}(B) \subset C^{-1}(A\Delta B)$.
- **92.** Довести, що для відповідності C рівність $C^{-1}(A)\Delta C^{-1}(B) = C^{-1}(A\Delta B)$ виконується для всіх $A,B\subset \Pr_2 C$ тоді і тільки тоді, коли C функціональна.
- **93.** Довести, що з включення $A \subseteq B$ випливає $C^{-1}(A) \subseteq C^{-1}(B)$ для будьякої відповідності C та для довільних $A,B \subseteq \Pr_2 C$.
- **94.** Побудувати приклад такої відповідності C, що для деяких $A,B \subseteq \Pr_2 C$ виконується $C^{-1}(A) = C^{-1}(B)$, однак $A \subset B$.
- **95.** Навести приклад такої відповідності C, що для деяких $A,B \subseteq \Pr_2 C$ з включення $C^{-1}(A) \subseteq C^{-1}(B)$ не випливає $A \subseteq B$.
- **96.** Довести, що для відповідності C і для довільних $A,B \subseteq \Pr_2 C$ включення $C^{-1}(A) \subseteq C^{-1}(B)$ і $A \subseteq B$ є рівносильними тоді і тільки тоді, коли C функціональна.
- **97.** Довести, що для відповідності C і для довільних $A,B \subseteq \Pr_1 C$ рівності $C^{-1}(A) = C^{-1}(B)$ і A = B є рівносильними тоді і тільки тоді, коли C функціональна.
- **98.** Довести, що для будь-якої відповідності C $C^{-1}(A) = \emptyset$ для $A \subseteq \Pr_2 C$ тоді і тільки тоді, коли $A \cap \Pr_2 C = \emptyset$.
- **99.** Довести, що з включень $A \subseteq \Pr_1 C$ і $B \subseteq \Pr_2 C$ для будь-якої відповідності C випливають такі твердження:
 - (a) $A \subseteq C^{-1}(C(A))$;
- (B) $A \cap C^{-1}(B) \subseteq C^{-1}(C(A) \cap B)$;
- (6) $B \subseteq C(C^{-1}(B);$
- $(\Gamma) C(A) \cap B \subseteq C(A \cap C^{-1}(B)).$
- **100.** Навести приклад відповідності C, для якої виконується строге включення $A \subset C^{-1}(C(A))$ для деякої множини $A \subseteq Pr_1C$.
- **101.** Довести, що для відповідності C рівність $A = C^{-1}(C(A))$ виконується для будь-якого $A \subseteq Pr_1C$ тоді і тільки тоді, коли C ін'єктивна.

- **102.** Навести приклад відповідності C, для якої виконується строге включення $B \subset C(C^{-1}(B)$ для деякої множини $B \subset Pr_2C$.
- **103.** Довести, що для відповідності C рівність $B = C(C^{-1}(B))$ виконується для будь-якого $B \subseteq \Pr_2 C$ тоді і тільки тоді, коли C функціональна.
- **104.** Навести приклад відповідності C, для якої виконується строге включення $A \cap C^{-1}(B) \subset C^{-1}(C(A) \cap B)$ для деяких множин $A \subseteq \Pr_1 C$ і $B \subseteq \Pr_2 C$.
- **105.** Довести, що рівність $A \cap C^{-1}(B) = C^{-1}(C(A) \cap B)$ виконується для відповідності C і для довільних множин $A \subseteq \Pr_1 C$ і $B \subseteq \Pr_2 C$ тоді і тільки тоді, коли C ін'єктивна.
- **106.** Навести приклад відповідності C, для якої виконується строге включення $C(A) \cap B \subset C(A \cap C^{-1}(B))$ для деяких множин $A \subseteq Pr_1C$ і $B \subseteq Pr_2C$.
- **107.** Довести, що для відповідності C рівність $C(A) \cap B = C(A \cap C^{-1}(B))$ виконується для довільних множин $A \subseteq Pr_1C$ і $B \subseteq Pr_2C$ тоді і тільки тоді, коли C функціональна.
- **108.** Довести, що для будь-якої відповідності C і довільних $A \subseteq Pr_1C$ та $B \subseteq Pr_2C$ рівність $C(A) \cap B = \emptyset$ має місце тоді і тільки тоді, коли $A \cap C^{-1}(B) = \emptyset$.
- **109.** Довести, що для будь-якої відповідності C з включення $C(A) \subseteq B$ для $A \subseteq Pr_1C$ і $B \subseteq Pr_2C$ випливає $A \subseteq C^{-1}(B)$.
- **110.** Навести приклад такої відповідності C, що для деяких $A \subseteq \Pr_1 C$ і $B \subseteq \Pr_2 C$ виконується C(A) = B, але $A \subset C^{-1}(B)$.
- **111.** Навести приклад відповідності C, для якої виконується включення $A \subseteq C^{-1}(B)$ для деяких множин $A \subseteq \Pr_1 C$ і $B \subseteq \Pr_2 C$, однак не виконується $C(A) \subseteq B$.
- **112.** Довести, що для будь-якої функціональної відповідності C включення $A \subseteq C^{-1}(B)$ виконується для довільних $A \subseteq \Pr_1 C$ та $B \subseteq \Pr_2 C$ тоді і тільки тоді, коли $C(A) \subseteq B$.
- **113.** Довести, що для будь-якої відповідності C з включення $C^{-1}(B) \subseteq A$ для $A \subseteq \Pr_1 C$ і $B \subseteq \Pr_2 C$ випливає $B \subseteq C(A)$.
- **114.** Навести приклад такої відповідності C, що для деяких $A \subseteq \Pr_1 C$ і $B \subseteq \Pr_2 C$ виконується $C^{-1}(B) = A$, але $B \subset C(A)$.
- **115.** Навести приклад відповідності C, для якої виконується включення $B \subseteq C(A)$ для деяких множин $A \subseteq \Pr_1 C$ і $B \subseteq \Pr_2 C$, однак не виконується $C^{-1}(B) \subseteq A$.
- **116.** Довести, що для будь-якої ін'єктивної відповідності C включення $C^{-1}(B) \subseteq A$ виконується для довільних $A \subseteq \Pr_1 C$ та $B \subseteq \Pr_2 C$ тоді і тільки тоді, коли $B \subseteq C(A)$.

117. Нехай M - непорожня множина. Для будь-якої підмножини Aмножини M означимо характеристичну функцію $\chi_A^{\ M}$ множини A

$$\chi_A^M(x) = \begin{cases} 1, \text{ якщо } x \in A, \\ \\ 0, \text{ якщо } x \in M \setminus A. \end{cases}$$

Довести, що ця функція задовольняє такі умови:

- (a) $\chi_M^M(x) \equiv 1$;
- (6) $\chi_{\varnothing}^{M}(x) \equiv 0;$

- (6) $\chi_{\varnothing}(x) \equiv 0$; (8) $\chi_{MA}{}^{M}(x) = 1 \chi_{A}{}^{M}(x)$; (1) $\chi_{A \cap B}{}^{M}(x) = \chi_{A}{}^{M}(x) \cdot \chi_{B}{}^{M}(x)$; (2) $\chi_{A \cup B}{}^{M}(x) = \chi_{A}{}^{M}(x) + \chi_{B}{}^{M}(x) \chi_{A}{}^{M}(x) \cdot \chi_{B}{}^{M}(x)$; (2) $\chi_{A \cup B}{}^{M}(x) = \chi_{A}{}^{M}(x) \chi_{A \cap B}{}^{M}(x)$; (3) $\chi_{A \Delta B}{}^{M}(x) = \chi_{A}{}^{M}(x) + \chi_{B}{}^{M}(x) 2\chi_{A}{}^{M}(x) \cdot \chi_{B}{}^{M}(x)$; (4) $\chi_{A \Delta B}{}^{M}(x) = |\chi_{A}{}^{M}(x) \chi_{B}{}^{M}(x)|$; (5) $\chi_{A \Delta B}{}^{M}(x) = |\chi_{A}{}^{M}(x) \chi_{B}{}^{M}(x)|$;
- (3) якщо $A = \bigcup_{i \in I} A_i$, то $\chi_A^M(x) = \max_{i \in I} \chi_{A_i}^M(x)$;

(и) якщо
$$A=\bigcap_{i\in I}A_i$$
, то $\chi_A^{\ M}(x)=\min_{i\in I}\ \chi_{Ai}^{\ M}(x).$

118. Означимо відображення $f: \beta(M) \to \{0,1\}^M$ умовою $f(A) = \chi_A^M$ для будь-якої множини $A \in \beta(M)$. Довести, що $f \in \text{взаємно}$ однозначною відповідністю між $\beta(M)$ і $\{0,1\}^M$.

5. Рівнопотужність множин. Зліченні множини

Множини A і В назвемо **рівнопотужними** або множинами, які мають рівні (однакові) потужності, якщо існує взаємно однозначна відповідність між множинами А і В. Рівнопотужність множин А і В позначають через $A \sim B$.

Множина A називається **скінченною**, якщо $A \sim N_k$ для деякого k.

Mножина A, рівнопотужна множині N натуральних чисел, називається зліченною множиною. Іншими словами, зліченна множина Аце така множина, всі елементи якої можна занумерувати числами 1,2,3,..., тобто можна вказати спосіб, за яким першому елементу множини А ставиться у відповідність число 1, другому - число 2, третьому - число 3 і т.д. Отже, будь-яку зліченну множину А можна подати у вигляді $A = \{a_1, a_2, a_3, ..., a_n, ...\}.$

Нехай A - деяка множина і $S = \{ B \mid B \sim A \}$ - сукупність всіх множин, рівнопотужних множині А. Кардинальним числом (позначається |А|, А або Card A) будемо називати деякий об'єкт для позначення потужності будь-якої множини із сукупності S. Отже, якщо $A \sim B$, то |A| = |B|.

Зокрема, для скінченної множини A кардинальним числом |A| ϵ натуральне число, яким позначається кількість елементів будь-якої з множин відповідної сукупності S, а саме: якщо $A \sim N_k$, то |A| = k.

Кардинальним числом зліченної множини ϵ символ \mathcal{S}_0 (читається «алеф-нуль»).

Нехай А і В множини та існує взаємно однозначна відповідність між множиною А і деякою підмножиною В' множини В, тоді кажуть, що потужність множини А не більша від потужності множини В і записують це у вигляді $|A| \le |B|$. Якщо $|A| \le |B|$, однак множина Aнерівнопотужна множині B, то писатимемо |A| < |B|.

- 1. Довести такі властивості рівнопотужності множин:
- (a) $A \sim A$ (рефлексивність);
- (б) якщо $A \sim B$, то $B \sim A$ (симетричність);
- (в) якщо $A \sim B$ і $B \sim C$, то $A \sim C$ (транзитивність).
- 2. Довести, що
- (а) будь-яка підмножина скінченної множини є скінченною;
- (б) об'єднання скінченної кількості скінченних множин є скінченною множиною;
- (в) декартів добуток скінченної кількості скінченних множин є скінченною множиною:
 - (г) булеан скінченної множини ϵ скінченною множиною.
- 3. Довести, що дві скінченні множини рівнопотужні тоді і тільки тоді, коли вони містять однакову кількість елементів.
 - **4.** Чи існують скінченні множини A і B, для яких виконується
 - (a) $|A \cup B| > |A| + |B|$;
- (B) $|A| \ge |A \cup B|$ i $|B| \ge |A \cup B|$;
- (6) $|A| > |A \cup B|$ and $|B| > |A \cup B|$; (7) $|A \cup B| \le |A \cap B|$.
- 5. Встановити взаємно однозначну відповідність між
- (а) множиною непарних натуральних чисел і множиною всіх натуральних чисел N;
 - (б) множиною натуральних чисел N і множиною цілих чисел Z;
- (в) множиною натуральних чисел N і множиною цілих чисел, кратних числу $k, k \in \mathbb{N}$.
 - 6. Чи справедливі такі твердження:
 - (a) якщо A = B, то $A \sim B$; б) якщо $A \sim B$, то A = B?
- 7. Довести, що з будь-якої нескінченної множини можна виділити зліченну підмножину.

- **8.** Довести, що будь-яка підмножина зліченної множини ϵ зліченною або скінченною.
- **9.** Довести, що після вилучення зі зліченної множини скінченної підмножини множина, яка залишиться, буде зліченною.
- **10.** Довести, що зі співвідношень $|A| \le |B|$ і $|B| \le |A|$ випливає |A| = |B| (теорема Кантора-Бернитейна).
 - 11. Довести такі твердження:
 - (a) якщо $A \subseteq B$, то $|A| \le |B|$;
 - (б) якщо $|A| \le |B|$ і $|B| \le |C|$, то $|A| \le |C|$;
 - (в) якщо $A_1 \sim A_2$, $B_1 \sim B_2$ і $|A_1| \leq |B_1|$, то $|A_2| \leq |B_2|$;
 - (г) якщо існує відображення з A на B, то $|B| \le |A|$.
 - **12.** Нехай $A_2 \subseteq A_1 \subseteq A$ і $A \sim A_2$. Довести, що $A \sim A_1$.
- **13.** Довести, що для довільних множин A_1 і A_2 існують множини B_1 і B_2 такі, що $A_1 \sim B_1$, $A_2 \sim B_2$ і $B_1 \cap B_2 = \emptyset$.
 - **14.** Довести, що коли $A \sim B$ і $C \sim D$, тоді $A \times C \sim B \times D$.
 - **15.** Довести, що для довільної множини A виконується $|A| \le |A \times A|$.
 - **16.** Нехай $|A_1| \le |B_1|$ і $|A_2| \le |B_2|$. Довести такі твердження:
 - (a) якщо $B_1 \cap B_2 = \emptyset$, то $|A_1 \cup A_2| \le |B_1 \cup B_2|$; (б) $|A_1 \times A_2| \le |B_1 \times B_2|$.
 - **17.** Довести, що $A \sim B$ тоді і тільки тоді, коли $\beta(A) \sim \beta(B)$.
 - **18.** Довести, що
- (а) скінченна множина не рівнопотужна жодній своїй власній підмножині;
- (б) скінченна множина не рівнопотужна жодній множині, яка містить її як власну підмножину.
- **19.** Довести, що множина ϵ нескінченною тоді і тільки тоді, коли вона рівнопотужна деякій своїй власній підмножині.
- **20.** Нехай область визначення відображення ϵ зліченною. Довести, що область значень цього відображення ϵ скінченною або зліченною.
- **21.** Довести, що непорожня множина $A \in 3$ ліченною або скінченною тоді і тільки тоді, коли вона ϵ множиною значень деякого відображення з N в A.
 - 22. Довести такі твердження:
 - (a) якщо A і B зліченні, то $A \cup B$ зліченна множина;
- (б) якщо всі A_i скінченні, непорожні і попарно не перетинаються, $i \in N$, то $\bigcup_{i \in N} A_i$ зліченна множина;
 - (в) якщо всі A_i , $i \in N$ зліченні, то $\bigcup_{i \in N} A_i$ зліченна множина.
- **23.** Нехай $A_1,A_2,...,A_n$ зліченні множини (n≥1). Довести, що A_1 × A_2 ×...× A_n зліченна множина.
 - **24.** Довести, що

- (a) множина Z цілих чисел є зліченною;
- (б) множина Q раціональних чисел є зліченною;
- (в) множина раціональних чисел сегмента [a,b], $a < b \in 3$ ліченною;
- (г) множина пар (x,y), де x і y раціональні числа, є зліченною;
- (д) множина всіх простих чисел ϵ зліченною.
- **25.** Довести, що множина многочленів від однієї змінної з цілими (раціональними) коефіцієнтами ϵ зліченною.
- **26.** Довести зліченність множини алгебраїчних чисел, тобто чисел, які ϵ коренями многочленів від однієї змінної з раціональними коефіцієнтами.
- **27.** Довести, що множина всіх скінченних послідовностей, які складаються з елементів деякої зліченної множини, є зліченною множиною.
- **28.** Довести, що множина всіх скінченних підмножин зліченної множини є зліченною.
- **29.** Якою ϵ потужність множини усіх многочленів від одні ϵ ї змінної, коефіцієнти яких ϵ алгебраїчними числами?
- **30.** Довести, що будь-яка множина відкритих інтервалів на дійсній прямій, які попарно не перетинаються, є скінченною або зліченною.
- **31.** Нехай для деякої множини A дійсних чисел ($A \subseteq R$) існує таке $\delta > 0$, що для всіх відмінних один від одного елементів x і y з A виконується $|x-y| \ge \delta$, Довести, що множина A є скінченною або зліченною.
- **32.** Довести, що множина точок розриву монотонної функції на дійсній прямій ϵ скінченною або зліченною.

6. Незліченні множини

Нескінченна множина, яка не ϵ зліченною, називається **незліченною**.

Будь-яка множина, рівнопотужна множині всіх дійсних чисел з інтервалу (0;1), називається континуальною, або множиною потужності континуум. Кардинальне число континуальних множин позначають через \mathbf{c} або \mathcal{S}_1 ("алеф-один").

- **1.** Довести, що множина точок інтервалу (0;1) є незліченною.
- 2. Довести, що
- (a) $[a;b] \sim [c;d]$, де a < b, c < d;
- (б) $(a;b)\sim R$.
- 3. Довести, що множини точок двох кіл (кругів) рівнопотужні.
- 4. Встановити взаємно однозначну відповідність між точками
- (а) двох квадратів;
- (б) квадрата $(a;b) \times (a;b)$ і площини;
- (в) прямої і півпрямої (променя);
- (г) кола без однієї точки і прямої;
- (д) сфери, з якої вилучено одну точку, і площиною.

5. Встановимо таку відповідність C між множиною A точок квадрата $[0;1)\times[0;1)$ і множиною B точок відрізка [0;1): точці квадрата з координатами $(0,x_1x_2x_3...;0,y_1y_2y_3...)$ відповідатиме точка відрізка з координатою $0,x_1y_1x_2y_2x_3y_3...$

Визначити, чи буде відповідність C

- (а) всюди визначеною;
- (б) функціональною;
- (в) ін'єктивною;
- (г) сюр'єктивною;
- (д) бієктивною (взаємно однозначною)?
- **6.** Довести, що множини точок квадрата $[a;b) \times [a;b)$ і відрізка [c;d) рівнопотужні.
- **7.** Встановити взаємно однозначну відповідність між множиною точок квадрата $[0;1)\times[0;1)$ і множиною точок відрізка [0;1).
 - **8.** Довести, що $R^n \sim R^m (n, m \ge 1)$.
- **9.** Нехай A нескінченна множина, а B скінченна або зліченна множина. Довести, що $A \cup B \sim A$.
- **10.** Нехай A незліченна множина, а B зліченна або скінченна множина. Довести, що $A \backslash B \sim A$.
- **11.** Довести, що для довільної нескінченної множини A існує її підмножина $B \subset A$ така, що $A \sim B$ і $A \sim A \setminus B$.
- **12.** Нехай A і B множини такі, що $X\subseteq A,\ Y\subseteq B$ і $X\sim Y,\ A\backslash X\sim B\backslash Y.$ Довести, що $A\sim B$.
- **13.** Нехай A,B,C і D множини такі, що $C\subseteq A,\ B\subseteq D$ і $C\cup D\sim C$. Довести, що $A\cup B\sim A$.
- **14.** Перевірити (довести або спростувати) справедливість такого твердження:
 - (a) якщо $C \subseteq A$, $C \subseteq B$ і $A \sim B$, то $A \setminus C \sim B \setminus C$;
 - (б) якщо $A \subseteq C$, $B \subseteq C$ і $A \sim B$, то $C \setminus A \sim C \setminus B$;
 - (в) якщо $X \subseteq A$, $Y \subseteq B$ і $A \sim B$, $X \sim Y$, то $A \setminus X \sim B \setminus Y$.
 - **15.** Довести, що коли $A \setminus B \sim B \setminus A$, тоді $A \sim B$.
 - **16.** Довести, що коли $A \subseteq B$ і $A \sim A \cup C$, тоді $B \sim B \cup C$.
 - **17.** Довести, що (0;1)~[0;1]~(0;1]~[0;1).
 - **18.** Якою ϵ потужність множини ірраціональних чисел ?
- **19.** Якою ϵ потужність множини трансцендентних (неалгебраїчних) чисел?
- 20. Побудувати взаємно однозначну відповідність між множиною всіх ірраціональних чисел і множиною всіх дійсних чисел.
- **21.** Довести, що множина ірраціональних чисел з інтервалу (0;1) є континуальною.

- **22.** Довести, що об'єднання скінченного або зліченного числа континуальних множин є континуальною множиною.
- **23.** Нехай усі множини A_i , i=1,2,...,n континуальні. Довести, що множина $A_1 \times A_2 \times ... \times A_n$ є континуальною.
 - **24.** Нехай $|A_i| = \mathbf{c}$ для всіх $i \in I$ і $|I| = \aleph_0$. Довести, що $|A| = |\prod_{i \in I} A_i| = \mathbf{c}$.
- **25.** Якою ϵ потужність множини всіх многочленів від одні ϵ ї змінної з дійсними коефіці ϵ нтами?
- **26.** Довести, що множина всіх зліченних послідовностей натуральних чисел має потужність \mathbf{c} .
- **27.** Якою ϵ потужність множини всіх скінченних послідовностей натуральних чисел?
- **28.** Якою ϵ потужність множини всіх зліченних зростаючих послідовностей натуральних чисел?
- **29.** Довести, що множина всіх зліченних послідовностей, елементами яких ϵ 0 і 1, ма ϵ потужність \mathbf{c} .
- **30.** Довести, що множина всіх підмножин $\beta(A)$ непорожньої множини A має потужність більшу, ніж потужність множини A, тобто для довільної непорожньої множини A виконується $|A| < |\beta(A)|$.
 - 31. Довести, що не існує найбільшого кардинального числа.
- **32.** Нехай A довільна непорожня множина і f довільне відображення множини A в $\beta(A)$. Довести, що
 - (a) $f(A) \neq \beta(A)$; (6) $|f(A)| < |\beta(A)|$.
 - 33. Довести або спростувати такі твердження
 - (a) якщо $A \sim B$, $C \sim D$ і $A \cap C = \emptyset$, $B \cap D = \emptyset$, то $A \cup C \sim B \cup D$;
 - (б) якщо $A \sim B$, $C \sim D$ і $A \cap C = \emptyset$, $B \cap D = \emptyset$, то $A \triangle C \sim B \triangle D$;
 - (в) якщо $A\subseteq B,\ C\subseteq D,\ A{\sim}C$ і $B{\sim}D,\ {\rm To}\ B{\setminus}A{\sim}D{\setminus}C.$
- **34.** Знайти помилку у наведених міркуваннях. Позначимо через A_k множину всіх k-елементних підмножин множини натуральних чисел N. Ця множина ϵ зліченною. Отже, зліченним ϵ і булеан $\boldsymbol{\beta}(N)$, оскільки $\boldsymbol{\beta}(N) = \bigcup_{k \in N} A_k$.
 - **35.** Довести, що $|\beta(N)| = c$.
 - **36.** Якою ϵ потужність множини
 - (а) всіх нескінченних послідовностей дійсних чисел;
 - (б) всіх функцій типу $N \rightarrow \{0,1\}$;
 - (в) всіх відображень типу $N \to \{0,1\}$;
 - (г) всіх монотонних функцій типу $N \rightarrow N$;
 - (д) всіх функцій типу $N \rightarrow N$;
 - (е) всіх неперервних функцій типу $R \rightarrow R$;

- (є) всіх монотонних функцій типу $R \rightarrow R$;
- (ж) всіх монотонних функцій типу $N \rightarrow R$;
- (3) всіх монотонних функцій типу $R \rightarrow N$;
- (и) всіх функцій типу $N \rightarrow R$;
- (i) всіх функцій типу $R \rightarrow N$?
- **37.** Довести, що множина всіх дійсних функцій, заданих на інтервалі (0;1), має потужність більшу, ніж **c**.
- **38.** Нехай A зліченна множина точок на дійсній прямій. Чи можна обрати елемент a так, щоб $\{x+a \mid x \in A\} \cap A = \emptyset$?
- **39.** Чи можна накреслити на площині континуальну множину кіл, жодні два з яких не перетинаються?
- **40.** Чи можна накреслити на площині континуальну множину кругів, жодні два з яких не перетинаються?
- **41.** Чи можна накреслити на площині континуальну множину літер A, жодні дві з яких не перетинаються?
- **42.** Чи можна накреслити на площині континуальну множину літер Γ , жодні дві з яких не перетинаються?

7. Відношення. Властивості відношень

Підмножина R декартового степеня M^n деякої множини M називається **п-місним** або **п-арним відношенням на множині M**. Кажуть, що елементи $a_1,a_2,...,a_n \in M$ знаходяться у відношенні R, якщо $(a_1,a_2,...,a_n) \in R$.

При n=1 відношення $R \subseteq M$ називають **одномісним** або **унарним**.

Найбільш популярними у математиці ϵ **двомісні** або **бінарні** відношення. Далі скрізь під словом "відношення" розумітимемо бінарне відношення. Якщо елементи $a,b \in M$ знаходяться у відношенні R, тобто $(a,b) \in R$, то це часто записують також у вигляді aRb.

Відношення можна задавати тими ж способами, що й звичайні множини. Крім того, зручним способом задання бінарного відношення R на скінченній множині $M=\{a_1,a_2,...,a_n\}$ ϵ задання за допомогою так званої матриці бінарного відношення. Це квадратна матриця C порядку n, в якій елемент c_{ij} , що стоїть на перетині i-го рядка i j-го стовпчика, визначається так: $c_{ij}=1$, якщо a_iRa_j , $c_{ij}=0$ y противному разі.

Відношення можна задавати також за допомогою графіків і діаграм. Графік відношення означається й будується так само, як і графік відповідності. Поняття діаграми (або графа) відношення також можна означити аналогічно до відповідності. Однак частіше діаграма (або граф)

відношення R на скінченній множині $M=\{a_1,a_2,...,a_n\}$ означається таким чином. Поставимо у взаємно однозначну відповідність елементам множини M деякі точки площини. З точки a_i до точки a_j проводимо напрямлену лінію (стрілку) у вигляді відрізка або кривої тоді і тільки тоді, коли a_iRa_j . Зокрема, якщо a_iRa_j , то відповідна стрілка, що веде з a_i в a_j називається петлею.

Оскільки відношення на M ϵ підмножинами множини M^2 , то для них означені всі відомі теоретико-множинні операції. Наприклад, перетином відношень "більше або дорівнює" і "менше або дорівнює" ϵ відношення "дорівнює", об'єднанням відношень "менше" і "більше" ϵ відношення "не дорівнює", доповненням відношення "ділиться на" ϵ відношення "не ділиться на" тощо. Аналогічно відповідностям для відношень можна означити поняття оберненого відношення і композиції відношень.

Відношення R^{-1} називається **оберненим** до відношення R, якщо $bR^{-1}a$ тоді і тільки тоді, коли aRb. Очевидно, що $(R^{-1})^{-1}=R$. Наприклад, для відношення "більше або дорівнює" оберненим є відношення "менше або дорівнює", для відношення "ділиться на" - відношення "є дільником".

Композицією відношень R_1 і R_2 на множині M (позначається $R_1^{\circ}R_2$) називається відношення R на M таке, що aRb тоді і тільки тоді, коли існує елемент $c \in M$, для якого виконується aR_1c і cR_2b .

Для відношення R на множині M через $R^{(k)}$ позначено відношення $R^{\circ}R^{\circ}...^{\circ}R$ (k разів). Вважаємо, що $R^{(0)}=i_{M}$ і $R^{(1)}=R$.

Наведемо список властивостей, за якими класифікують відношення.

Hехай R - деяке віdношення на множині M .

- 1. Відношення R називається **рефлексивним**, якщо для всіх $a \in M$ має місце aRa.
- 2. Відношення R називається **антирефлексивним** (**іррефлексивним**), якщо для жодного $a \in M$ не виконується aRa.
- 3. Відношення R називається **симетричним**, якщо для всіх $a,b \in M$ таких, що aRb маємо bRa.
- 4. Відношення R називається **антисиметричним**, якщо для всіх $a,b \in M$ таких, що aRb і bRa маємо a = b.
- 5. Відношення R називається **транзитивним**, якщо зі співвідношень aRb і bRc випливає aRc.

Відношення R^* називається **транзитивним замиканням** відношення R на M, якщо для $a,b \in M$ aR^*b тоді і тільки тоді, коли у множині M існує послідовність елементів $c_1,c_2,...,c_n$ така, що $c_1=a$, $c_n=b$ і $c_1Rc_2,c_2Rc_3,...$, $c_{n-1}Rc_n$. Вважаємо, що $i_M \subseteq R^*$.

Відношення R на множині М називається толерантним (відношенням толерантності або просто толерантністю), якшо воно рефлексивне і симетричне.

1. Нехай $M = \{1,2,3,4,5\}$. Для заданого відношення R на множині Mвизначити Pr_1R , Pr_2R , R^{-1} , $R \circ R$, $R \circ R^{-1}$, $R^{-1} \circ R$ і $R^{(3)}$:

- (a) $R = \{(1,2),(1,4),(2,3),(2,4),(4,1),(4,3),(4,4)\};$
- (6) $R = \{(1,2),(2,3),(3,5),(4,1),(5,4)\};$
- (B) $R = \{(2,4),(2,5),(3,1),(3,2),(3,3),(5,2)\};$
- (Γ) $R = \{(1,1),(2,2),(3,3),(4,2),(4,3),(5,1),(5,5)\}.$

2. Для заданого відношення R на множині N

- (a) $R = \{ (m,n) \mid m \text{ ділиться на } n \};$
- (б) $R = \{ (m,n) | n \text{ ділиться на } m \};$
- (в) $R = \{ (m,n) \mid m n \text{ ділиться на } k, k \in N \};$
- $(\Gamma) R = \{ (m,n) \mid m < n \}$

визначити $\Pr_{1}R$, $\Pr_{2}R$, R^{-1} , $R \circ R$, $R \circ R^{-1}$, $R^{-1} \circ R$, \overline{R} .

3. Відношення R на множині N натуральних чисел задано рекурентно

1) $(1,1) \in R$; 2) якщо $(m,n) \in R$, то $(m+1,n) \in R$ і $(m,n+1) \in R$.

Довести, що $R = N \times N$.

4. Відношення R на множині N натуральних чисел задано рекурентно

- 1) $(1,1) \in R$;
- 2) якщо $(m,n) \in R$, то $(m+1,n) \in R$, $(m+1,n+1) \in R$ і $(m+1,n+2) \in R$.

Описати вілношення R.

5. Нехай на множині всіх людей *P* означені відношення:

 $F = \{(x,y) \mid x,y \in P \text{ i } x \in \text{батьком } y \};$

 $D = \{(x,y) \mid x,y \in P \text{ i } x \in \text{донькою } y \}.$

Описати такі відношення:

- (a) $F \circ F$;
- (r) $D \circ F$;
- $(\epsilon) F^{-1} \circ D^{-1}$:

- (б) *D* °*D*:
- (д) $D \, {}^{\circ}F^{-1}$:
- $(ж) D^{-1} \circ F$:

- (B) $F \circ D$;
- (e) $F^{-1} \circ D$:
- (3) $D^{-1} \circ D^{-1}$

6. На множині $M = \{1, 2, 3, 4\}$ задано відношення

 $R_1 = \{(1,1),(1,3),(2,3),(2,4),(3,1),(3,3),(4,1)\},\$

 $R_2 = \{(1,2),(1,3),(1,4),(2,2),(3,1),(3,4),(4,2)\}.$

Знайти відношення X на множині M (або довести, що таке відношення Xне існує), для якого виконується

(a) $R_1^{\circ} X = R_2$;

- (B) $R_2^{\circ} X = R_1$;
- (д)

- $(R_1 {}^{\circ} R_2) {}^{\circ} X = R_1;$
 - (б) $X^{\circ}R_1 = R_2$:
- $(\Gamma) X^{\circ} R_{2} = R_{1}$:
- (e) $(R_2 {}^{\circ} R_1) {}^{\circ} X = R_1$.

Ha $M = \{1,2,3,4\}$ множині задано відношення $R = \{(1,1),(1,2),(2,3),(3,3),(3,4),(4,4)\}$. Знайти такі два відношення T і S на M, що $T \neq S$ і $R^{\circ}T = R^{\circ}S = \{(1,1),(1,2),(1,4)\}.$

8. Довести, що для довільного відношення R на множині M виконується

- (a) $Pr_1R = \emptyset \iff R = \emptyset \iff Pr_2R = \emptyset$;
- (6) $Pr_2R = Pr_1R^{-1}$;
- (B) $Pr_1R = Pr_2R^{-1}$;
- (Γ) $\Pr_1 R = M \iff i_M \subseteq R^{\circ} R^{-1}$;
- (д) $\Pr_2 R = M \iff i_M \subset R^{-1} \circ R$.

9. Довести, що для будь-яких відношень виконується

- (a) $R \cup R = R \cap R = R$;
- $(\pi) (R_1 \setminus R_2)^{-1} = R_1^{-1} \setminus R_2^{-1};$

(6) $(R^{-1})^{-1} = R$;

- (e) $\overline{R^{-1}} = \overline{R}^{-1}$:
- (B) $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$;

 $(\Gamma) (R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1};$

(c)
$$(\bigcup_{i \in I} R_i)^{-1} = \bigcup_{i \in I} R_i^{-1};$$

(ж) $(\bigcap_{i \in I} R_i)^{-1} = \bigcap_{i \in I} R_i^{-1}.$

10. Довести, що для довільних відношень виконується

- (a) $R_1^{\circ} (R_2^{\circ} R_3) = (R_1^{\circ} R_2)^{\circ} R_3$;
- (6) $(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$;
- (B) $(\bigcup R_i)^{\circ}Q = \bigcup (R_i {\circ} Q)$;
- $(\Gamma) \ Q \circ (\bigcup_{i \in I} R_i) = \bigcup_{i \in I} (Q \circ R_i);$
- $(\pi) R_1 \circ R_2 = \emptyset \Leftrightarrow \Pr_2 R_1 \cap \Pr_1 R_2 = \emptyset.$

11. Довести, що для довільних відношень R_i , $i \in I$ та Q на множині M

- (a) $(\bigcap_{i\in I} R_i)^{\circ}Q \subseteq \bigcap_{i\in I} (R_i^{\circ}Q)$;
- (6) $Q \circ (\bigcap_{i \in I} R_i) \subseteq \bigcap_{i \in I} (Q \circ R_i)$

і знак включення не можна замінити на знак рівності.

12. Навести приклад відношень R_1 і R_2 на множині $M = \{1,2,3\}$ таких, що відношення R_1 ° R_2 і R_2 ° R_1 не збігаються.

13. Нехай R_1 і R_2 - відношення на множині M. Довести або спростувати таку рівність: $\overline{R_1 \circ R_2} = \overline{R}_1 \circ \overline{R}_2$.

14. Знайти всі відношення X на множині M такі, що для довільного відношення R на M виконується рівність $R^{\circ}X = X^{\circ}R$.

15. Нехай R - відношення на множині M. Довести, що $R^{\circ}R_1 = R_1^{\circ}R = R_1$ для довільного відношення R_1 на множині M тоді і тільки тоді, коли $R=i_M$.

16. Довести, що співвідношення $R^{\circ}H=H^{\circ}R=H$ виконується для довільного відношення R тоді і тільки тоді, коли $H = \emptyset$.

17. Для яких відношень виконується $R^{-1} = \overline{R}$?

- **18.** Довести, що коли $R_1 \subseteq R_2$, тоді для довільного відношення Qвиконується
 - (B) $R_1^{-1} \subset R_2^{-1}$. (a) $Q \circ R_1 \subseteq Q \circ R_2$; (6) $R_1 \circ Q \subseteq R_2 \circ Q$;
 - **19.** На множині $M = \{1,2,3,4\}$ задано відношення
 - $R_1 = \{(1,1),(1,3),(2,2),(2,4),(3,1),(3,3),(4,2),(4,4)\};$
 - $R_2 = \{(1,1),(2,2),(2,3),(2,4),(3,1),(3,3),(4,1),(4,4)\};$
 - $R_3 = \{(1,3),(1,4),(2,1),(1,2),(3,1),(3,3),(4,1)\};$
 - $R_4 = \{(1,1),(1,2),(1,4),(2,2),(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)\};$
 - $R_5 = \{(1,2),(1,3),(2,3),(2,4),(4,1),(4,3)\}.$

Визначити, які з цих відношень є

- (а) рефлексивними;
- (б) антирефлексивними;
- (в) симетричними;
- (г) антисиметричними;
- (д) транзитивними.

Побудувати графіки, графи та матриці заданих відношень.

- 20. Дайте інтерпретацію властивостей відношень за допомогою їхніх матриць, графіків і діаграм.
 - **21.** На множині Z задано відношення:
 - $(m,n) \in R_1 \Leftrightarrow m-n$ парне число;
 - $(m,n) \in R_2 \Leftrightarrow m+n$ парне число;
 - $(m,n)\in R_3 \Leftrightarrow m-n \leq 100;$
 - $(m,n) \in R_4 \Leftrightarrow m-n$ непарне число;
 - $(m,n) \in R_5 \Leftrightarrow m+n$ непарне число;
 - $(m,n) \in R_6 \Leftrightarrow m/n$ парне число;
 - $(m,n) \in R_7 \Leftrightarrow m/n$ непарне число;
 - $(m,n) \in R_8 \Leftrightarrow m^* n$ парне число;
 - $(m,n) \in R_9 \Leftrightarrow m*n$ непарне число;
 - $(m,n) \in R_{10} \Leftrightarrow m-n \in$ степенем числа 2;
 - $(m,n) \in R_{11} \Leftrightarrow m i n \in$ взаємно простими;
 - $(m,n)\in R_{12} \Leftrightarrow m\leq n;$
 - $(m,n) \in R_{13} \Leftrightarrow m$ ділить n;
 - $(m,n) \in R_{14} \Leftrightarrow m/n \in$ степенем числа 2.

Визначити, які з цих відношень ϵ

- (а) рефлексивними;
- (б) антирефлексивними;
- (в) симетричними;
- (г) антисиметричними;
- (д) транзитивними;
- (е) толерантними.

- **22.** Нехай R_1 і R_2 деякі відношення на скінченній множині M, а C_1 і C_2 матриці цих відношень. Визначити матрицю C для відношення
 - (a) $R_1 \cup R_2$;
- $(\Gamma) R_1 \Delta R_2;$

- (б) $R_1 \cap R_2$;

- $(д) R_1 {}^{\circ}R_2;$ $(ж) i_M \cup R_1;$ $(e) R_1^{-1};$ $(3) R_1 \setminus i_M.$ (B) $R_1 \backslash R_2$; **23.** Довести, що для довільних рефлексивних відношень R_1 і R_2
- відношення $R_1 \cup R_2$, $R_1 \cap R_2$, R_1^{-1} і $R_1 \circ R_2$ будуть також рефлексивними. **24.** Довести, що для довільного рефлексивного відношення R і для будьякого k=0,1,2,... відношення $R^{(k)}$ є рефлексивним.
- **25.** Довести, що для довільних рефлексивних відношень R_1 і R_2 виконується $R_1 \cup R_2 \subseteq R_1 \circ R_2$.
- **26.** Нехай R відношення на множині M. Довести або спростувати таке твердження: якщо $R^{\circ}R$ - рефлексивне, то і R рефлексивне.
- **27.** Довести, що відношення R на множині M є рефлексивним тоді і лише тоді, коли
 - (a) $i_M \subset R$;
- (6) $i_M \cap R = i_M$;
- (B) $i_M \cup R = R$.
- **28.** Нехай R_i , $i \in I$ відношення на множині M. Довести або спростувати таке твердження:
- (a) $\bigcup R_i$ рефлексивне тоді і тільки тоді, коли кожне R_i рефлексивне, $i \in I$:
- (б) $\bigcap R_i$ рефлексивне тоді і тільки тоді, коли кожне R_i рефлексивне, $i \in I$;
 - (в) $R_i \circ R_i$ рефлексивне тоді і тільки тоді, коли R_i і R_i рефлексивні, $i,j \in I$;
 - $(\Gamma) R_i^{-1}$ рефлексивне тоді і тільки тоді, коли R_i рефлексивне.
- **29.** Нехай R відношення на скінченній множині M (|M| = n). Довести або спростувати таке твердження:
 - (a) якщо R рефлексивне, то |R|≥n;
 - (б) якщо |R|≥n, то R рефлексивне.
- **30.** Рефлексивним замиканням відношення R на множині M назвемо найменше рефлексивне відношення на M, яке містить R; позначимо його r(R).

Довести, що для довільного відношення R на множині M виконується

- (a) $r(R)=R\cup i_M$;
- (б) якщо $R \subset R'$ і R' рефлексивне, то $r(R) \subset R'$.
- **31.** Довести, що коли відношення R_1 і R_2 антирефлексивні, тоді антирефлексивними ϵ і відношення $R_1 \cup R_2$, $R_1 \cap R_2$, R_1^{-1} .
- **32.** Довести, що композиція R_1 ° R_2 двох антирефлексивних відношень R_1 $i R_2$ може не бути антирефлексивним відношенням.

- **33.** Нехай R_i , $i \in I$ відношення на множині M. Довести або спростувати таке твердження:
- (a) $\bigcup_{i \in I} R_i$ антирефлексивне тоді і тільки тоді, коли кожне R_i антирефлексивне, $i \in I$;
- (б) $\bigcap_{i \in I} R_i$ антирефлексивне тоді і тільки тоді, коли кожне R_i антирефлексивне, $i \in I$;
- (в) $R_i \circ R_i$ антирефлексивне тоді і тільки тоді, коли R_i і R_i антирефлексивні, $i, i \in I$:
 - $(\Gamma) R_i^{-1}$ антирефлексивне тоді і тільки тоді, коли R_i антирефлексивне.
- **34.** Навести приклад двох антирефлексивних відношень R_1 і R_2 на множині $M = \{1,2,3\}$, композиція $R_1 {}^{\circ}R_2$ яких буде рефлексивним відношенням.
- **35.** Довести, що для симетричних відношень R_1 і R_2 будуть симетричними і відношення $R_1 \cup R_2$, $R_1 \cap R_2$, R_1^{-1} , $R_1 \circ R_1^{-1}$.
- **36.** Довести, що для довільного симетричного відношення R і для будьякого k=0,1,2,... відношення $R^{(k)}$ є симетричним.
 - **37.** Довести, що відношення $R \in \text{симетричним тоді і тільки тоді, коли$
 - (a) $R = R^{-1}$;
- (б) R^{-1} ⊂ R;
- (B) $R \subset R^{-1}$.
- **38.** Симетричним замиканням відношення R на множині M назвемо найменше симетричне відношення на M, яке містить R; позначимо його s(R).

Довести, що для довільного відношення R на множині M виконується

- (a) $s(R) = R \cup R^{-1}$;
- (б) якщо $R \subset R'$ і R' симетричне, то $s(R) \subset R'$.
- **39.** Довести, що відношення R на множині M не ϵ симетричним тоді і тільки тоді, коди $R \cap R^{-1} = \emptyset$.
- **40.** Довести, що для симетричного відношення R виконується $Pr_1R=Pr_2R$.
- **41.** Спростувати таке твердження: якщо для деякого відношення Rвиконується $Pr_1R = Pr_2R$, то відношення $R \in \text{симетричним}$.
- **42.** Довести, що відношення R симетричне, тоді і тільки тоді, коли симетричним є відношення
 - (б) \overline{R} . (a) R^{-1} ;
- **43.** Побудувати два симетричних відношення R_1 і R_2 на множині $M = \{1, 2, 3, 4\}$, композиція яких $R_1 {}^{\circ}R_2$ не буде симетричним відношенням.
- **44.** Нехай R_1 і R_2 симетричні відношення на множині M. Довести, що коли $R_1 {}^{\circ}R_2 \subset R_2 {}^{\circ}R_1$, то $R_1 {}^{\circ}R_2 = R_2 {}^{\circ}R_1$.

- **45.** Довести, що композиція R_1 ° R_2 симетричних відношень R_1 і R_2 є симетричним відношенням тоді і тільки тоді, коли $R_1 {}^{\circ}R_2 = R_2 {}^{\circ}R_1$.
- **46.** Довести, що композиція R_1 ° R_2 симетричних відношень R_1 і R_2 є симетричним відношенням тоді і тільки тоді, коли $R_2 {}^{\circ} R_1 \subseteq R_1 {}^{\circ} R_2$.
- **47.** Нехай R_i , $i \in I$ відношення на множині M. Довести або спростувати таке твердження:
 - (a) $\bigcup R_i$ симетричне тоді і тільки тоді, коли кожне R_i симетричне, $i \in I$;
 - (б) $\bigcap R_i$ симетричне тоді і тільки тоді, коли кожне R_i симетричне, $i \in I$;
 - (в) $R_i \circ R_j$ симетричне тоді і тільки тоді, коли R_i і R_j симетричні, $i,j \in I$;
 - $(\Gamma) R_i^{-1}$ симетричне тоді і тільки тоді, коли R_i симетричне.
- **28.** Довести, що для антисиметричних відношень R_1 і R_2 відношення $R_1 \cap R_2$ і R_1^{-1} будуть також антисиметричними.
- **48.** Довести, що відношення R на множині M є антисиметричним тоді і тільки тоді, коли $R \cap R^{-1} \subset i_M$.
- **49.** Довести, що об'єднання $R_1 \cup R_2$ антисиметричних відношень R_1 і R_2 на множині М буде антисиметричним відношенням тоді і тільки тоді, коди $R_1 \cap R_2^{-1} \subseteq i_M$.
- **50.** Нехай R_i , $i \in I$ відношення на множині M. Довести або спростувати таке твердження:
- (a) $\bigcup_{i \in I} R_i$ антисиметричне тоді і тільки тоді, коли кожне R_i антисиметричне, $i \in I$:
- (б) $\bigcap_{i \in I} R_i$ антисиметричне тоді і тільки тоді, коли кожне R_i антисиметричне, $i \in I$:
- (в) $R_i \circ R_i$ антисиметричне тоді і тільки тоді, коли R_i і R_i антисиметричні, *i.i*∈*I*:
 - (г) R_i^{-1} антисиметричне тоді і тільки тоді, коли R_i антисиметричне.
- **51.** Нехай R антисиметричне відношення на скінченній множині M(|M| = n). Яким є найбільше значення для величини |R|? Для скількох антисиметричних відношень R на M це найбільше значення досягається?
- **52.** Довести, що відношення R на множині $M \in$ транзитивним тоді і тільки тоді, коли $R \, {}^{\circ}R \subset R$.
- **53.** Довести, що рефлексивне відношення $R \in \text{транзитивним тоді і тільки}$ тоді, коли $R^{\circ}R = R$.
- **54.** Довести, що транзитивне і антирефлексивне відношення R ϵ антисиметричним.
- **55.** Довести, що відношення R транзитивне тоді і тільки тоді, коли відношення R^{-1} транзитивне.

- 56. Довести, що перетин транзитивних відношень є транзитивним відношенням.
- **57.** Довести, що для довільного транзитивного відношення R і для будьякого k=0,1,2,... відношення $R^{(k)}$ є транзитивним.
- **58.** Навести приклад транзитивних відношень R_1 і R_2 на множині $M=\{1,2,3,4\}$ таких, що
 - (a) R_1 ° R_2 нетранзитивне;
- $(\Gamma) R_1 {}^{\circ} R_1 = R_1;$
- (б) $R_1 {}^{\circ}R_2$ транзитивне;
- (д) $R_1 \cup R_2$ нетранзитивне;

(B) $R_1 {}^{\circ} R_1 \neq R_1$;

- (e) R_1 ∪ R_2 транзитивне.
- **59.** Довести, що композиція R_1 ° R_2 транзитивних відношень R_1 і R_2 є транзитивним відношенням, якщо $R_1 {}^{\circ}R_2 = R_2 {}^{\circ}R_1$.
- **60.** Довести, що об'єднання $R_1 \cup R_2$ транзитивних відношень R_1 і R_2 буде транзитивним відношенням тоді і тільки тоді, коли $R_1 {}^{\circ}R_2 \cup R_2 {}^{\circ}R_1 \subset R_1 \cup R_2$.
- **61.** Нехай R_i , $i \in I$ відношення на множині M. Довести або спростувати таке твердження:
 - (a) $\bigcup R_i$ транзитивне тоді і тільки тоді, коли кожне R_i транзитивне, $i \in I$;
 - (б) $\bigcap R_i$ транзитивне тоді і тільки тоді, коли кожне R_i транзитивне, $i \in I$;
 - (в) $R_i \circ R_i$ транзитивне тоді і тільки тоді, коли R_i і R_i транзитивні, $i,j \in I$;
 - $(\Gamma) R_i^{-1}$ транзитивне тоді і тільки тоді, коли R_i транзитивне.
- **62.** Довести, що для рефлексивного й транзитивного відношення Rвиконується $R^{\circ}R=R$. Чи справедливе обернене твердження?
- **63.** Знайти помилку в наведених міркуваннях. Якщо *R* симетричне і транзитивне відношення на множині M, то R - рефлексивне, оскільки з того, що $(a,b) \in R$ послідовно випливає $(b,a) \in R$ і $(a,a) \in R$.
 - **64.** Навести приклад відношення R на множині $M = \{1,2,3,4\}$, яке
 - (a) не ϵ рефлексивним, але й не ϵ антирефлексивним;
 - (б) не ϵ симетричним, але й не ϵ антисиметричним.
- **65.** Побудувати відношення R на множині $M = \{1, 2, 3\}$, яке ϵ симетричним і антисиметричним одночасно.
 - 66. Побудувати відношення
 - (а) симетричне, транзитивне, нерефлексивне;
 - (б) рефлексивне, симетричне, нетранзитивне;
 - (в) рефлексивне, антисиметричне, нетранзитивне;
 - (г) рефлексивне, симетричне, транзитивне;
 - (д) рефлексивне, несиметричне, транзитивне;
 - (е) антисиметричне, транзитивне, нерефлексивне;
 - (ϵ) несиметричне, неантисиметричне;
 - (ж) нерефлексивне, неантирефлексивне, несиметричне, транзитивне.

- **67.** Нехай R_1 і R_2 відношення на множині M. Довести або спростувати таке твердження:
- (a) якщо $R_1 \subseteq R_2$ і R_1 рефлексивне (антирефлексивне, симетричне, антисиметричне, транзитивне) відношення, то відношення R_2 також рефлексивне (відповідно, антирефлексивне, симетричне, антисиметричне, транзитивне);
- (б) якщо $R_1 \subset R_2$ і R_2 рефлексивне (антирефлексивне, симетричне, антисиметричне, транзитивне) відношення, то відношення R_1 також рефлексивне (відповідно, антирефлексивне, симетричне, антисиметричне, транзитивне).
- **68.** Що можна сказати про множину M, якщо кожне непорожне відношення на цій множині
 - (а) рефлексивне; (б) симетричне;
- (в) транзитивне?
- **69.** Що можна сказати про відношення R, якщо відношення R на множині M:
 - (а) рефлексивне:
- (г) антирефлексивне:
- (б) симетричне;
- (д) антисиметричне;
- (в) транзитивне:
- (е) толерантне.
- **70.** Що можна сказати про множину M, якщо кожне несиметричне відношення на цій множині є антисиметричним?
- **71.** Довести, що будь-яке відношення R, симетричне й антисиметричне одночасно, є транзитивним.
- **72.** Нехай R непорожне відношення на множині M. Довести, що коли для відношення R виконується будь-які дві з таких трьох властивостей антирефлексивність, симетричність і транзитивність, тоді для R не виконується третя властивість.
- **73.** Довести, що відношення $T = \{(x,y) | |x-y| < 1, x,y \in R\}$ є толерантним відношенням на множині дійсних чисел R.
- **74.** Означимо на множині A^n усіх слів довжини n в алфавіті A таке відношення R: aRb тоді і тільки тоді, коли слова a і b відрізняються лише одним символом. Довести, що $R \in \text{толерантністю}$.
- **75.** Нехай A довільна множина. Означимо на множині $\beta(A)$ відношення таким чином: $(B,C) \in R$ тоді і тільки тоді, коли $B \cap C \neq \emptyset$. Довести, що $R \in \mathbb{R}$ толерантним відношенням.
- **76.** Для $f, g \in B^A$ вважатимемо, що $(f,g) \in R$ тоді і тільки тоді, коли існує $x \in A$, для якого f(x) = g(x). Довести, що означене відношення $R \in A$ толерантністю.
- 77. Позначимо через M множину всіх усюди визначених відповідностей між деякими множинами A і B. Означимо таке відношення R на M: $(C,D) \in R$

тоді і тільки тоді, коди існує $x \in A$ такий, що $C(x) \cap D(x) \neq \emptyset$. Довести, що $R \in A$ толерантним відношенням на множині M.

- **78.** Нехай C деяка всюди визначена відповідність між A і B. Означимо відношення R на множині A таким чином: вважаємо $(x_1,x_2) \in R$ тоді і тільки тоді, коли $C(x_1) \cap C(x_2) \neq \emptyset$. Довести, що $R \in \text{толерантним відношенням на } A$.
- **79.** Довести, що для довільних толерантних відношень R_1 і R_2 відношення $R_1 \cup R_2$, $R_1 \cap R_2$, R_1^{-1} , $R_1 \circ R_2 \cup R_2 \circ R_1$ і $R_1 \circ R_2 \cap R_2 \circ R_1$ будуть також толерантними.
- **80.** Побудувати толерантні відношення R_1 і R_2 на множині $M = \{1, 2, 3, 4\}$, композиція R_1 ° R_2 яких не буде толерантним відношенням.
- **81.** Довести, що композиція R_1 ° R_2 толерантних відношень R_1 і R_2 є толерантним відношенням тоді і тільки тоді, коли $R_1 {}^{\circ}R_2 = R_2 {}^{\circ}R_1$.
- **82.** Нехай R_1 і R_2 толерантні відношення на множині M. Довести, що наведені твердження є рівносильними
 - (a) R_1 ° R_2 толерантне відношення;
 - (6) $R_1 {}^{\circ} R_2 = R_2 {}^{\circ} R_1$;
 - (B) $R_1 {}^{\circ}R_2 = R_1 {}^{\circ}R_2 \cup R_2 {}^{\circ}R_1$;
 - (r) $R_2 {}^{\circ}R_1 \subset R_1 {}^{\circ}R_2$.
- **83.** Довести, що для довільного рефлексивного відношення Rвідношення $R \cup R^{-1}$, $R \cap R^{-1}$, $R \circ R^{-1}$ будуть толерантними.
- **84.** Довести, що коли відношення R на множині M симетричне, тоді відношення $R \cup R^{(2)} \cup ... \cup R^{(n)}$ також симетричне для будь-якого $n \in \mathbb{N}$.
- **85.** Побудувати транзитивні замикання R^* відношень із прикладу **1** цього розділу.
- **86.** Нехай відношення R на множині раціональних чисел Q таке, що $xRy \Leftrightarrow x \cdot y=1$. Побудувати відношення R^* .
- **87.** Означимо відношення R на множині натуральних чисел N: $xRy \Leftrightarrow y=x+1$. Побудувати відношення R^* .
- **88.** Довести, що для довільного відношення R на множині M і будь-яких $m,n \in N$ виконується
- (a) $R^{(m)} \circ R^{(n)} = R^{(n)} \circ R^{(m)}$: (6) $R^{(m)} \circ R^{(n)} = R^{(m+n)}$: (B) $(R^{(m)})^{(n)} = R^{(mn)}$:
- **89.** Нехай R відношення на скінченній множині M і для деяких $i,i \in N$ $(0 \le i < i)$ виконується $R^{(i)} = R^{(j)}$. Довести, що
 - (a) $R^{(i+k)} = R^{(j+k)}$ для всіх $k \ge 0$; (б) $R^{(i)} = R^{(i+p(j-i))}$ для всіх $p \ge 0$.
- **90.** Довести, що для довільного відношення R на скінченній множині M(|M| = n) існують цілі числа s і $t (0 \le s < t \le 2^k, k = n^2)$ такі, що $R^{(s)} = R^{(t)}$.
 - **91.** Нехай на множині N натуральних чисел задано відношення $R_1 = \{ (k,k+1) \mid k \in N \};$ $R_2 = \{ (k+1,k) \mid k \in \mathbb{N} \};$

 $R_3 = \{ (k,2k-1) \mid k \in \mathbb{N} \};$ $R_4 = \{ (k,2k) \mid k \in \mathbb{N} \}.$ Визначити відношення

- (a) $R_1^{(n)}$; (б) $R_2^{(n)}$; (B) $R_3^{(n)}$: $(\Gamma) R_{4}^{(n)}$ для $n \in \mathbb{N}$. 92. Нехай множині $M = N_7$ вілношення задано
- $R=\{(1,2),(2,3),(3,4),(4,1),(5,6),(6,7),(7,5)\}$. Визначити найменше значення n(n>1), для якого
 - (a) $R^{(n)} \cap i_M \neq \emptyset$; (б) $R^{(n)}$ є рефлексивним: B) $R^{(n)} = R$.
- **93.** На множині N_k задано відношення $R = \{(i,j) \mid 1 \le i < j \le k\}$. Визначити величину |R|. Описати відношення $R^{(n)}$, для $n \in N$. Чому дорівнює транзитивне замикання R^* ?
- **94.** Довести, що коли для відношень R_1 і R_2 на множині M виконується $R_1 \subset R_2$, тоді $R_1^* \subset R_2^*$. Чи є справедливим обернене твердження?
 - **95.** Довести, що для довільного відношення *R* виконується $(R^*)^* = R^*$.
- **96.** Довести, що для транзитивного відношення R виконується $R^{(k)} \subset R$ лля всіх $k \ge 1$.
- **97.** Довести, що коли R рефлексивне і транзитивне відношення, тоді $R^{(k)} = R$ для всіх $k \in \mathbb{N}$.
- **98.** Довести, що відношення $R \in \text{транзитивним тоді і тільки тоді, коли$ R*=R.
- **99.** Довести, що транзитивне замикання рефлексивного відношення ϵ рефлексивним відношенням.
- **100.** Довести, що транзитивне замикання симетричного відношення ϵ симетричним відношенням.
- **101.** Довести, що транзитивне замикання транзитивного відношення ϵ транзитивним відношенням.
- **102.** Навести приклад антирефлексивного відношення R на множині $M = \{1, 2, 3, 4\}$, транзитивне замикання R^* якого не ϵ антирефлексивним.
- **103.** Навести приклад антисиметричного відношення R на множині $M = \{1, 2, 3, 4\}$, транзитивне замикання R^* якого не ϵ антисиметричним.
- **104.** Довести, що для довільного відношення R на скінченній множині M(|M|=n) має місце рівність $R^*=i_M \cup R^{(1)} \cup R^{(2)} \cup ... \cup R^{(n-1)}$.
- **105.** Навести приклад відношення R на множині $M=\{1,2,3,4\}$ такого, що $R^* \neq i_M \cup R^{(1)} \cup R^{(2)}$.
- **106.** Довести, що для довільного відношення R транзитивне замикання R^* дорівнює перетину всіх транзитивних відношень T, які містять R.
- 107. Довести, що найменшим транзитивним відношенням, яке містить залане відношення R на множині M. $\in R^*$.
- **108.** Нехай C матриця відношення R, заданого на скінченній множині M(|M|=n). Побудувати матрицю $C^{(k)}$ відношення $R^{(k)}$, k=0,1,2,...

109. Сформулювати алгоритм побудови матриці C^* транзитивного замикання R^* відношення R, яке задане на скінченній множині M (|M| = n) і має матрицю C.

8. Відношення еквівалентності

Відношення R на множині M називається відношенням еквівалентності (або просто еквівалентністю), якщо воно рефлексивне, симетричне і транзитивне, тобто:

- а) aRa для всіх $a \in M$ (рефлексивність);
- б) якщо aRb, то bRa для $a,b \in M$ (симетричність);
- в) якщо aRb i bRc, то aRc для $a,b,c \in M$ (транзитивність).

Сукупність множин { $B_i \mid i \in I$ } називається **розбиттям множини** A, якщо $\bigcup_{i \in I} B_i = A$ i $B_i \cap B_j = \varnothing$ для $i \neq j$. Множини B_i , $i \in I$ ϵ підмножинами

множини A і називаються класами, суміжними класами, блоками або елементами розбиття. Очевидно, що кожний елемент $a \in A$ належить одній і тільки одній множині B_i , $i \in I$.

Припустимо, що на множині M задано відношення еквівалентності R. Виконаємо таку побудову. Виберемо деякий елемент $a\in M$ і утворимо підмножину $S_a^{\ R}=\{\ x\mid x\in M\ i\ aRx\ \}$, яка складається з усіх елементів множини M еквівалентних елементу a. Відтак, візьмемо другий елемент $b\in M$ такий, що $b\notin S_a^{\ R}$ і утворимо множину $S_b^{\ R}=\{\ x\mid x\in M\ i\ bRx\ \}$ з елементів еквівалентних b і т.д. Таким чином одержимо сукупність множин (можливо, нескінченну) $\{\ S_a^{\ R},\ S_b^{\ R},\dots\ \}$.

Побудована сукупність множин $\{S_i^R \mid i \in I\}$ називається фактормножиною множини M за еквівалентністю R і позначається M/R. Очевидно, що будь-які два елементи з одного класу еквівалентні між собою, у той час, як будь-які два елементи з різних класів фактормножини M/R нееквівалентні. Класи S_i^R називають класами еквівалентності за відношенням R. Клас еквівалентності, який містить елемент X, часто позначають $[X]_R$.

Потужність фактор-множини |M/R| називається **індексом розбиття**, або **індексом** відношення еквівалентності R.

Нехай R відношення еквівалентності на множині M. Відображення множини M на фактор-множину M/R, яке кожному елементу $x \in M$ ставить у відповідність клас еквівалентності $[x]_R$, якому належить елемент x, називається **канонічним** або **природним відображенням** множини M на фактор-множину M/R.

1. Для фіксованого натурального числа k на множині N визначимо відношення R: $(m,n) \in R$ тоді і тільки тоді, коли

m-n ділиться на k. Довести, що відношення R ϵ відношенням еквівалентності на N.

- **2.** На множині $N \times N$ визначимо відношення R і Q:
- (a) $((a,b),(c,d)) \in R$ \Leftrightarrow a+d=b+c;
- $(6)((a,b),(c,d)) \in Q \Leftrightarrow a \cdot d = b \cdot c.$

Довести, що відношення R і Q ϵ відношеннями еквівалентності на множині $N \times N$.

- **3.** Нехай $M=N\times N$. Означимо на множині M відношення R таким чином: (a,b)R(c,d) тоді і тільки тоді, коли

Довести, що R є еквівалентністю на M. Виписати всі елементи класів еквівалентності [(1,1)], [(2,2)], [(4,3)], [(1,23)] і [(6,8)] за відношенням R.

- **4.** На множині дійсних чисел означимо відношення H: xHy тоді і тільки тоді, коли (x-y) раціональне число. Довести, що відношення H ϵ відношенням еквівалентності.
- **5.** На множині N натуральних чисел означимо відношення R: mRn тоді і тільки тоді, коли $m/n = 2^k$ для деякого цілого k.
 - (a) Довести, що $R \in$ відношенням еквівалентності на N.
 - (б) Скільки різних класів еквівалентності ϵ серед $[1]_R$, $[2]_R$, $[3]_R$ і $[4]_R$?
- (в) Скільки різних класів еквівалентності є серед $[6]_R$, $[7]_R$, $[12]_R$, $[24]_R$, $[28]_R$, $[42]_R$ і $[48]_R$?
- **6.** Нехай у множині M зафіксовано деяку підмножину $K \subseteq M$. Означимо відношення R на $\beta(M)$: ARB тоді і тільки тоді, коли $A \cap K = B \cap K$, $A, B \in \beta(M)$.
 - (a) Довести, що $R \in$ відношенням еквівалентності на $\beta(M)$.
- (б) Для $M = \{1,2,3\}$ і $K = \{1,2\}$ знайти класи еквівалентності за відношенням R.
 - (в) Для $M = \{1,2,3,4,5\}$ і $K = \{1,2,3\}$ визначити $[A]_R$, де $A = \{2,3,4\}$.
- (г) Для $M = \{1,2,3,4,5\}$ і $K = \{1,2,3\}$ визначити кількість класів еквівалентності та кількість підмножин множини M у кожному класі еквівалентності за відношенням R.
- (д) Визначити кількість класів еквівалентності та кількість підмножин множини M у кожному класі еквівалентності за відношенням R, якщо |M|=n і |K|=m.
- **7.** Нехай M множина всіх прямих на площині. Чи будуть еквівалентностями на M такі відношення:
 - (а) паралельність прямих; (б) перпендикулярність прямих?
- **8.** Довести, що відношення рівності i_M на будь-якій множині M є відношенням еквівалентності.

- **9.** Довести, що для довільного відношення еквівалентності R на множині M виконується $i_M \subseteq R$. Таким чином, i_M є найменшим відношенням еквівалентності на множині M.
- **10.** Довести, що відношення рівнопотужності множин ϵ еквівалентністю.
- **11.** Довести, що еквівалентністю ϵ відношення подібності на множині всіх трикутників.
- **12.** Довести, що жодне з відношень, означених у прикладах **72-77** попереднього розділу, не ϵ , взагалі кажучи, транзитивним, а отже, не ϵ еквівалентністю.
- **13.** Довести, що $R \in \text{відношенням}$ еквівалентності тоді і тільки тоді, коли $R^{-1} \in \text{відношенням}$ еквівалентності.
- **14.** Довести, що перетин будь-якої сукупності відношень еквівалентності на множині $M \epsilon$ еквівалентністю на M.
- **15.** Навести приклад двох еквівалентностей R_1 і R_2 на множині $M=\{1,2,3,4\}$ таких, що $R_1 \cup R_2$ не є еквівалентністю на множині M.
- **16.** Довести, що об'єднання $R_1 \cup R_2$ двох еквівалентностей R_1 і R_2 є еквівалентністю тоді і тільки тоді, коли $R_1 \cup R_2 = R_1 \circ R_2$.
- **17.** Довести, що для довільного відношення еквівалентності R виконується $R^{\circ}R=R$.
- **18.** Навести приклад двох еквівалентностей R_1 і R_2 на множині $M=\{1,2,3,4\}$ таких, що $R_1 \circ R_2$ не є еквівалентністю на M.
- **19**. Довести, що композиція $R_1 {}^{\circ}R_2$ двох еквівалентностей R_1 і R_2 є еквівалентністю, якщо $R_1 {}^{\circ}R_2 = R_1 {}_{\cup}R_2$.
- **20.** Довести, що композиція $R_1 {}^{\circ}R_2$ двох еквівалентностей R_1 і R_2 є еквівалентністю тоді і тільки тоді, коли
 - (a) $R_1 {}^{\circ}R_2 = R_2 {}^{\circ}R_1$; (b) $R_2 {}^{\circ}R_1 \subseteq R_1 {}^{\circ}R_2$;
 - (б) $R_1 {}^{\circ}R_2$ симетричне відношення; (г) $R_1 {}^{\circ}R_2 = R_1 {}^{\circ}R_2 \cup R_2 {}^{\circ}R_1$.
- **21.** Довести, що коли R_1 і R_2 еквівалентності, то відношення $(R_1 \cup R_2)^*$ також буде еквівалентністю.
- **22.** Довести, що коли R_1 і R_2 еквівалентності, то відношення $(R_1^{\circ}R_2 \cup R_2^{\circ}R_1)^*$ також буде еквівалентністю.
- **23.** Довести, що коли R_1 і R_2 еквівалентності, то $(R_1 \cup R_2)^* = (R_1 \circ R_2 \cup R_2 \circ R_1)^*$.
- **24.** Довести, що коли R_1 і R_2 еквівалентності і $R_1 {}^{\circ}R_2 = R_2 {}^{\circ}R_1$, то $R_1 {}^{\circ}R_2 = (R_1 \cup R_2)^*$.
- **25.** Нехай R_1 і R_2 еквівалентності і $R_1 {}^{\circ}R_2 = R_2 {}^{\circ}R_1$. Довести, що $R_1 {}^{\circ}R_2$ є найменшим відношенням еквівалентності, яке містить $R_1 {}^{\cup}R_2$.

- **26.** Нехай R_1 і R_2 еквівалентності. Довести, що найменшим відношенням еквівалентності, яке містить $R_1 \cup R_2$, $\epsilon (R_1 \cup R_2)^*$.
- **27.** Нехай R_1 і R_2 еквівалентності. Довести, що найменшим відношенням еквівалентності, яке містить $R_1 \cup R_2$, є $(R_1 \circ R_2 \cup R_2 \circ R_1)^*$.
- **28.** Довести, що для довільної сукупності відношень еквівалентності $\{R_i\}$, $i{\in}I$ існує еквівалентність Q така, що $\bigcup_{i{\in}I} R_i{\subseteq}Q$ і для будь-якого відношення еквівалентності R з включення $\bigcup_{i{\in}I} R_i{\subseteq}R$ випливає $Q{\subseteq}R$ (тобто
- Q ϵ найменшим відношенням еквівалентності, яке містить $\bigcup_{i \in I} R_i$)
- **29.** Побудувати найменше відношення еквівалентності Q на множині $M = \{1, 2, 3, 4\}$, яке включає задане відношення R.
 - (a) $R = \{(2,4),(3,1)\};$
 - (6) $R = \{(1,1),(1,2),(2,3),(3,3)\};$
 - (B) $R = \{(1,2),(2,2),(1,3),(2,3),(4,2)\}.$
- **30.** Довести, що для довільної сукупності еквівалентностей $\{R_i\}$, $i \in I$ найменшою еквівалентністю Q, яка містить $\bigcup_{i \in I} R_i$, є відношення $(\bigcup_{i \in I} R_i)^*$.
- **31.** Нехай задано довільне відношення R на множині M. Сформулювати алгоритм, який за допомогою основних операцій над відношеннями дозволяє побудувати найменше відношення еквівалентності Q на множині M таке, що $R \subset O$.

Застосувавши цей алгоритм до заданого відношення R на множині M={1,2,3,4,5}, знайти відповідне відношення еквівалентності Q.

- (a) $R = \{(1,1),(1,2),(4,2),(5,4)\};$
- (6) $R = \{(2,4),(3,3),(3,2),(4,1),(4,2),(5,1),(5,5)\};$
- (B) $R = \{(2,2),(3,3)\}.$

Для кожного з відношень Q побудувати фактор-множину M/Q.

- **32.** Довести, що для довільного відношення R на множині M найменше відношення еквівалентності Q, яке містить R, дорівнює $(R \cup i_M \cup R^{-1})^*$.
- **33.** Знайти відношення R на множині $M = \{1,2,3,4\}$, яке містить мінімально можливу кількість елементів і таке, що найменшим відношенням еквівалентності Q, що включає R, є повне відношення на M, тобто $Q = M \times M$.
- **34.** Побудувати на множині $M = \{a_1, a_2, ..., a_n\}$ відношення R з мінімально можливою кількістю елементів таке, що найменше відношення еквівалентності Q, що містить R, збігається з повним відношенням на M, тобто $Q = M \times M$.

- **35.** Визначити мінімально можливу кількість елементів у відношенні Rна множині $M = \{a_1, a_2, ..., a_n\}$, для якого найменшим відношенням еквівалентності M, що містить R, ϵ повне відношення на M, тобто $O = M \times M$. Дати геометричну (графову) інтерпретацію відповіді.
- **36.** Довести, що транзитивне замикання R^* толерантного відношення $R \in$ відношенням еквівалентності.
- **37.** Довести, що транзитивне замикання R^* відношення еквівалентності R збігається з R, тобто $R^* = R$.
- **38.** Навести приклад відношення R на множині $M = \{1, 2, 3, 4\}$, для якого виконується $R^* = R$ і яке не є еквівалентністю.
- **39.** Нехай R_1 толерантне відношення, R_2 еквівалентність і $R_1 \subseteq R_2$. Довести, що $R_1^* \subset R_2$.
- **40.** Довести, що найменшим відношенням еквівалентності Q, яке містить толерантне відношення R, $\in R^*$.
- **41.** Нехай R_1 і R_2 відношення еквівалентності на множині M. Довести, що відношення $R_1 {}^{\circ}R_2 {}^{\circ}R_1$ буде еквівалентністю тоді і тільки тоді, коли
 - (a) $R_2 {^{\circ}}R_1 {^{\circ}}R_2 \subset R_1 {^{\circ}}R_2 {^{\circ}}R_1$;
- (6) $R_1 {}^{\circ}R_2 {}^{\circ}R_1 = R_1 {}^{\circ}R_2 {}^{\circ}R_1$.
- **41.** Нехай R транзитивне й симетричне відношення на множині M і $\Pr_1 R \cup \Pr_2 R = M$. Довести, що $R \in \text{еквівалентністю на множині } M$.
- **43.** Довести, що коли R рефлексивне й транзитивне відношення на множині M, тоді $R \cap R^{-1}$ є відношенням еквівалентності на множині M.
- **44.** Нехай $R \in$ відношенням на M. Довести, що $R \in$ еквівалентністю тоді і тільки тоді, коли $(R^{\circ}R^{-1}) \cup i_{M} = R$.
- **45.** Довести, що рефлексивне відношення R на множині M ϵ еквівалентністю тоді і тільки тоді, коли з того, що xRy і xRz завжди випливає yRz, $x,y,z \in M$.
- **46.** Довести, що для довільного відношення еквівалентності Rвиконується:
 - (a) $x \in [x]_R$;
 - (б) $(x,y) \in R \iff [x]_R = [y]_R$;
 - (B) a fo $[x]_R = [y]_R$, a fo $[x]_R \cap [y]_R = \emptyset$.
- 47. Довести, що для довільного відношення еквівалентності *R* наведені твердження є рівносильними
 - (a) $(x,y) \in R$;
- (6) $[x]_R \cap [y]_R \neq \emptyset$;

- (B) $[x]_R = [y]_R$.
- **48.** Нехай $f: A \to B$ довільне відображення. Покладемо $R=\{(x,y)\mid f(x)=f(y)\}$. Довести, що $R\in \text{екв}$ ввалентністю на множині A і для відображення f існує розклад $f = \varepsilon \circ f_1$, де ε - природне відображення множини A на A/R, а f_1 - взаємно однозначна відповідність між A/R і f(A)(правило розкладу або факторизації відображення).

49. Нехай C - деяка відповідність між A і B. Означимо відношення R_C на множині A таким чином: для $x,y \in Pr_1C$ вважаємо $(x,y) \in R_C$ тоді і тільки тоді, коли $C(x) \cap C(y) \neq \emptyset$.

Довести, що

- (a) відношення R_C симетричне;
- (б) відношення R_C рефлексивне тоді і тільки тоді, коли відповідність Cвсюди визначена:
- (в) коли для деякого $x \in A$ виконується $(x,x) \notin R_C$, то $(x,y) \notin R_C$ для всіх $y \in A$;
- (Γ) коли відповідність C ϵ відображенням, то відношення R_C транзитивне;
 - (д) коли відповідність $C \in$ відображенням, то R_C еквівалентність на A.
- **50.** Для відповідності C між A і B через Q_C позначимо відношення на множині A, яке означається таким чином: для $x,y \in Pr_1C$ вважаємо $(x,y) \in O_C$ тоді і тільки тоді, коли $|C(x) \cap C(y)| = 1$.

Довести, що для довільного антирефлексивного й симетричного відношення R на множині A існує така відповідність C між A і деякою множиною B, що $R = Q_C$.

- **51.** Нехай R_1 і R_2 еквівалентності на множині A. Довести, що
- (a) $R_1 \circ R_1 = A^2$ \Leftrightarrow $R_1 = A^2$; (6) $R_1 \circ R_2 = A^2$ \Leftrightarrow $R_2 \circ R_1 = A^2$.
- 52. Довести, що множини
- (a) $\{A, \overline{A}\}$; (b) $\{A \cap B, A \setminus B, B \setminus A, \overline{A} \cap \overline{B}\}$; (b) $\{A \triangle B, A \cap B, \overline{A \cup B}\}$ ϵ розбиттями універсальної множини E для довільних множин A,B \subset E.
 - 53. Побудувати всі можливі розбиття множини
 - (a) $A = \{a,b,c\}$: (6) $A = \{\emptyset, \{\emptyset\}\}.$
- 54. Довести, що існує взаємно однозначна відповідність між усіма можливими еквівалентностями на множині M і всіма розбиттями множини M. Тобто, кожному відношенню еквівалентності на множині M відповідає єдине розбиття даної множини на класи і, навпаки, кожне розбиття множини M однозначно задає деяке відношення еквівалентності на M.
- **55.** Нехай для множини M задано сукупність множин A_i i=1,2,...,n таких, що $A_1 \cup A_2 \cup ... \cup A_n = M$, однак існують такі A_i і A_i , що $A_i \cap A_i \neq \emptyset$.

Побудувати розбиття множини M з найменшою можливою кількістю класів так, щоб кожний клас цього розбиття був підмножиною деякої із заданих множин A_i , i=1,2,...,n

- (a) n=2; (б) n=3;
- (B) n=4;
- (Γ) для довільного n.
- **56.** Побудувати фактор-множину M/i_M за відношенням рівності i_M для довільної множини M.

- **57.** Побудувати фактор-множини за відношеннями еквівалентності з прикладів **1-4** цього розділу. Визначити їхні індекси.
 - **58.** Довести, що фактор-множина M/R є розбиттям множини M.
- **59.** Нехай $\{A_1,A_2,...,A_n\}$ розбиття скінченної множини M. Довести, що $|M| = |A_1| + |A_2| + ... + |A_n|$.
- **60.** Нехай M скінченна множина. Яке відношення еквівалентності на M має
 - (а) найбільший індекс; (б) найменший індекс?
- **61.** Нехай R відношення еквівалентності на скінченній множині M і |M|=n. Довести, що $n \le |R| \le n^2$ і обидві оцінки (верхня й нижня) досягаються.
- **62.** Нехай M скінченна множина і |M|=n. Довести, що на множині M існує відношення еквівалентності R таке, що |R|=k $(n \le k \le n^2)$ тоді і тільки тоді, коли існують числа $m_1, m_2, ..., m_t \in N$, для яких виконуються рівності $m_1+m_2+...+m_t=n$ і $m_1^2+m_2^2+...+m_t^2=k$.
- **63.** Нехай скінченна множина M містить 30 елементів і на ній задано відношення еквівалентності R, яке розбиває множину M на 3 класи еквівалентності A_1 , A_2 , A_3 такі, що $|A_1| = |A_2| = |A_3|$. Чому дорівнює |R|?
- **64.** Нехай $M = \{1,2,3,4,5,6,7\}$. Для заданого значення k визначити відношення еквівалентності R на множині M таке, що |R| = k або пояснити, чому таке відношення не існує.
 - (a) k = 6; (c) k = 9; (c) k = 27;
 - (б) k = 7; (д) k = 11; (ж) k = 30;
 - (B) k = 8; (e) k = 23; (3) k = 31.
- **65.** Нехай R відношення еквівалентності на скінченній множині M (|M| = n) і |R| = k. Довести, що k-n завжди парне число.

9. Відношення порядку

Відношення R на множині M називається відношенням **часткового** (**нестрогого**) **порядку**, якщо воно рефлексивне, антисиметричне і транзитивне, тобто

- а) aRa для всіх $a \in M$ (рефлексивність),
- δ) якщо aRb i bRa, то a=b (антисиметричність),
- в) якщо aRb i bRc, то aRc (транзитивність).

Множина M, на якій задано деякий частковий порядок, називається **частково впорядкованою** множиною. Елементи $a,b \in M$ назвемо **порівнюваними** за відношенням R, якщо виконується aRb або bRa.

Частково впорядкована множина M, в якій будь-які два елементи ϵ порівнюваними між собою, називається л**інійно впорядкованою** множиною або л**аниюгом**. Відповідне відношення R. задане на лінійно

впорядкованій множині, називається л**інійним (досконалим) порядком.** Таким чином, відношення R на множині M називається відношенням лінійного порядку, якщо воно рефлексивне, антисиметричне, транзитивне і для будь-якої пари елементів $a,b \in M$ виконується aRb або bRa.

Для позначення відношень порядку будемо використовувати знаки $\leq i \geq$. Тобто для відношення порядку R замість aRb будемо записувати $a \leq b$ або $b \geq a$ і читати "а менше або дорівнює b" або "b більше або дорівнює a" відповідно. Очевидно, що $\leq \epsilon$ оберненим відношенням до відношення \geq . Порядок \geq іноді називають **двоїстим** порядком до \leq .

За кожним відношенням часткового порядку \leq на довільній множині M можна побудувати інше відношення < на M, поклавши a < b тоді і лише тоді, коли $a \leq b$ і $a \neq b$. Це відношення називається відношенням **строгого** порядку на множині M.

Зрозуміло, що відношення строгого порядку антирефлексивне, транзитивне, а також задовольняє умову так званої сильної антисиметричності або асиметричності, тобто для жодної пари $a,b \in M$ не може одночасно виконуватись a < b і b < a.

3 іншого боку, за довільним відношенням строгого порядку < на множині M однозначно можна побудувати відповідне відношення часткового (нестрогого) порядку \leq , поклавши $a \leq b$ тоді і тільки тоді, коли a < b або a = b, $a,b \in M$. З огляду на такий простий зв'язок між відношеннями часткового (нестрогого) і строгого порядку можна обмежитись вивченням лише одного з цих порядків, наприклад, \leq .

Зафіксуємо строгий порядок розташування символів у довільному скінченному алфавіті $A = \{a_1, a_2, ..., a_n\}$, наприклад, покладемо, що $a_1 < a_2 < ... < a_n$. Тоді природним чином означається так званий лексикографічний порядок на множині A^m всіх слів довжини т в алфавіті A, а саме: вважаємо $a_{j1}a_{j2}...a_{jm} \le a_{l1}a_{l2}...a_{lm}$ тоді і тільки тоді, коли $a_{js} = a_{ls}$ при s = 1, 2, ..., k-1 і $a_{jk} < a_{lk}$ для певного k = 1, 2, ..., m.

Лексикографічний порядок можна поширити на множину A^* всіх слів в алфавіті A, якщо доповнити алфавіт A додатковим ("порожнім") символом p і вважати, що $p < a_i$, i = 1, 2, ..., n. При порівнюванні двох слів різної довжини спочатку слово меншої довжини доповнюється справа такою кількістю "порожніх" символів p, щоб зрівнятися за довжиною з другим словом, після чого обидва слова порівнюються за правилом порівнювання слів однакової довжини.

Hехай A= $\{a,b,c\}$ i a<b<c, mo ∂i aac<aba, abbc<abcb, ab<abab, b<cba mouo.

Лексикографічний порядок лежить в основі впорядкування всіх словників, енциклопедій, індексів (предметних або іменних покажчиків), довідників, списків, таблиць тощо.

Нехай M частково впорядкована множина і A деяка непорожня підмножина множини M. Верхньою гранню підмножини $A \subseteq M$ у множині M називається елемент $b \in M$ такий, що $a \le b$ для всіх $a \in A$. Елемент b називається найбільшим елементом множини M, якщо b - верхня грань множини M. Відповідно, елемент c частково впорядкованої множини M називається нижньою гранню підмножини $A \subseteq M$, якщо c < a для будьякого $a \in A$. Елемент c називається найменшим у множині M, якщо c - нижня грань самої множини M. Таким чином, вважається, що найбільший і найменший елементи, a також верхня та нижня грані (якщо вони існують), ϵ порівнюваними з усіма елементами даної множини M або підмножини A відповідно.

Елемент $x \in M$ називається **максимальним** у множині M, якщо не існує елемента $a \in M$ такого, що x < a. Відповідно, елемент $n \in M$ називається **мінімальним** у множині M, якщо не існує елемента $a \in M$ такого, що a < n. Очевидно, якщо в частково впорядкованій множині M існує найбільший елемент, то він же ϵ єдиним максимальним елементом множини M. Аналогічно, найменший елемент множини M - єдиний мінімальний елемент даної множини.

Лінійно впорядкована множина (ланцюг) M називається **цілком упорядкованою множиною**, якщо кожна непорожня підмножина $A \subseteq M$ має найменший елемент. Відповідний порядок називається **повним**.

Якщо M - частково впорядкована множина, то множина L усіх її ланцюгів (тобто лінійно впорядкованих підмножин множини M) ϵ також частково впорядкованою за відношенням теоретико-множинного включення. Максимальні елементи множини L називають **максимальними** ланцюгами множини M.

Нехай A і B - частково впорядковані множини і f - відображення з A в B. f називається **монотонним** відображенням, якщо з $x_1 \le x_2$ випливає $f(x_1) \le f(x_2)$ для будь-яких порівнюваних елементів $x_1, x_2 \in A$. Якщо f є взаємно однозначною відповідністю між A і B, f і f^{-1} - монотонні відображення, то f називається **ізоморфізмом** частково впорядкованих множин A і B, а множини A і B називаються **ізоморфними**.

При побудові діаграми (структурного графа, або просто графа) скінченної частково впорядкованої множини M для «економії» стрілок не рисують петлі, а з точки а (тобто точки площини, що відповідає елементу $a \in M$) проводять стрілку у точку b, якщо a < b і не існує такого елемента $c \in M$, що a < c і c < b.

- **1.** Довести, що множина всіх підмножин (булеан) даної множини ϵ частково впорядкованою за відношенням включення \subseteq .
 - **2.** Довести, що i_A є частковий порядок на A.
- **3.** Нехай $a \le b \Leftrightarrow a,b \in N$ і a ділить b. Довести, що \le частковий порядок на N.
- **4.** Означимо відношення R на множині цілих чисел Z таким чином: mRn тоді і тільки тоді, коли m-n ϵ невід'ємним парним числом. Довести, що R частковий порядок на Z. Чи ϵ R лінійним порядком?
- **5.** Означимо на множині R дійсних чисел відношення T: aTb тоді і тільки тоді, коли $a/(a^2+1) \le b/(b^2+1)$, $a,b \in R$. Довести, що
 - (a) T не ϵ відношенням часткового порядку на всій множині R;
- (б) $T \in \text{відношенням}$ часткового порядку на множині дійсних чисел з інтервалу $\lceil 1; \infty \rangle$;
- (в) $T \in \text{відношенням}$ часткового порядку на множині дійсних чисел з інтервалу (- ∞ ;-1].
 - 6. Побудувати всі відношення часткового порядку на множині
 - (a) $M = \{a,b\};$ (b) $M = \{a,b,c\};$ (b) $M = \{a,b,c,d\}.$
- **7.** Нехай M скінченна множина і частковим порядком R на множині $\beta(M)$ є відношення включення \subseteq . Визначити величину |R| для заданої множини M.
 - (a) $M=\{1,2\}$; (b) $M=\{1,2,3\}$; (e) $M=\{1,2,3,4\}$; (f) $M=\{1,2,...,n\}$.
- **8.** Нехай $M=\{1,2,3,4\}$. На множині $\beta(M)$ задамо відношення R таким чином: $(A,B)\in R$ тоді і тільки тоді, коли жодна з множин A і B не ϵ підмножиною іншої. З'ясувати, чи ϵ відношення R частковим порядком. Визначити величину |R|.
- **9.** Довести, що якщо для елементів частково впорядкованої множини M виконується $x_1 \le x_2 \le ... \le x_n \le x_1$, то $x_1 = x_2 = ... = x_n$.
- **10.** Нехай M довільна множина. Означимо відношення R на множині $\beta(M) \times \beta(M)$: (A,B)R(C,D) тоді і тільки тоді, коли $A \Delta B \subseteq C \Delta D$, $A,B,C,D \in \beta(M)$. Чи ϵ відношення R відношенням часткового порядку?
- **11.** Нехай \leq_A частковий порядок на множині A, \leq_B частковий порядок на множині B. Назвемо *прямим добутком* частково впорядкованих множин A і B множину $A \times B$ із заданим на ній відношенням \leq : $(a_1,b_1) \leq (a_2,b_2) \Leftrightarrow a_1 \leq_A a_2$ і $b_1 \leq_B b_2$. Довести, що $\leq \epsilon$ частковим порядком на $A \times B$;
- **12.** Довести або спростувати таке твердження: якщо \leq_A лінійний порядок на множині A, а \leq_B лінійний порядок на множині B, то відношення \leq , означене в попередній задачі, ϵ лінійним порядком на множині $A \times B$.

- **13.** Довести, що для ланцюгів A і B прямий добуток $A \times B$ є ланцюгом лише тоді, коли або |A| = 1, або |B| = 1.
- **14.** Задамо відношення Q на множині R^n кортежів дійсних чисел довжини n таким чином: $(a_1,a_2,...,a_n)Q(b_1,b_2,...,b_n)$ тоді і тільки тоді, коли $a_1 \le b_1, a_2 \le b_2,..., a_n \le b_n$. Довести, що Q ϵ частковим порядком на R^n .
- **15.** Нехай M довільна множина. Означимо відношення R на множині $\beta(M) \times \beta(M)$: (A,B)R(C,D) тоді і тільки тоді, коли $A \subseteq C$ і $B \subseteq D$, $A,B,C,D \in \beta(M)$. Визначити, чи ϵ відношення R
 - (а) відношенням часткового порядку?
 - (б) відношенням лінійного порядку?
- **16.** Нехай M непорожня множина і P множина всіх часткових порядків на M. Для $R_1,R_2\in P$ покладемо $R_1\leq R_2$ тоді і тільки тоді, коли з $(a,b)\in R_1$ випливає $(a,b)\in R_2$ для $a,b\in M$.

Довести, що означене відношення $\leq \epsilon$ частковим порядком на P.

- **17.** Означимо відношення R на множині N^2 : (a,b)R(c,d) тоді і тільки тоді, коли $a \le c$ і $b \ge d$. Чи ϵ відношення R відношенням часткового порядку?
- **18.** На множині всіх підмножин (булеані) $\beta(M)$ деякої множини M означимо відношення R: $(A,B) \in R$ тоді і тільки тоді, коли існує бієкція між множинами A і B, $A,B \in \beta(M)$. Чи буде відношення R відношенням часткового порядку на $\beta(M)$?
- **19.** Означимо відношення R на множині N^2 : (a,b)R(c,d) тоді і тільки тоді, коли числа a і b та c і d ϵ попарно взаємно простими і виконується $a \, d \leq b \, c$. Довести, що відношення $R \, \epsilon$ відношенням лінійного порядку на N^2 .
 - 20. Розташувати у лексикографічному порядку елементи множини:
 - (a) B^3 , де $B = \{0,1\}$;
- (б) A^3 , де $A = \{a,b,c\}$.
- **21.** Довести, що лексикографічний порядок ϵ лінійним порядком на множині A^* всіх слів в алфавіті A.
- **22.** Підмножина B лінійно впорядкованої множини A з відношенням порядку \leq називається *щільною* b a, якщо для будь-яких $a,b \in A$ існує елемент $c \in B$ такий, що $a \leq c \leq b$ або $b \leq c \leq a$.

Чи ε щільними у множині дійсних чисел R

- (a) множина натуральних чисел N;
- (б) множина цілих чисел Z;
- (в) множина раціональних чисел Q;
- (г) множина алгебраїчних чисел?
- **23.** Довести, що R частковий порядок тоді і тільки тоді, коли R^{-1} частковий порядок.
- **24.** Нехай $\{R_i\}_{i\in I}$ система часткових порядків на множині A. Довести, що $\bigcap_{i\in I}R_i$ частковий порядок на множині A.

- **25.** Нехай R транзитивне відношення на множині M. Довести, що R ϵ частковим порядком на M тоді і тільки тоді, коли $R \cap R^{-1} = i_M$.
- **26.** Нехай R_1 і R_2 часткові порядки на множині A. Чи буде частковим порядком $R_1 \cup R_2$?
- **27.** Нехай R_1 і R_2 часткові порядки на множині A. Чи буде частковим порядком R_1 ° R_2 ?
- **28.** Нехай R_1 і R_2 лінійні порядки на множині A. Коли R_1 ° R_2 буде лінійним порядком на множині A?
- **29.** Довести, що композиція $R_1 {}^{\circ}R_2$ відношень строгого порядку R_1 і R_2 буде строгим порядком, коли $R_1 {}^{\circ}R_2 = R_2 {}^{\circ}R_1$ і $R_1 {}^{\cap}R_2 {}^{-1} = \emptyset$.
- **30.** Нехай R частковий (лінійний, повний) порядок на множині A, B довільна підмножина множини A і R_1 довільна підмножина R. Чи буде відношенням часткового (лінійного, повного) порядку
 - (a) R на множині B; (б) R_1 на множині A; (в) R_1 на множині B?
- **31.** Нехай R частковий (лінійний, повний) порядок на множині A і $B \subseteq A$ ($B \neq \emptyset$). Довести, що $R \cap B^2$ ϵ частковий (лінійний, повний) порядок на множині B.
- **32.** Нехай R частковий порядок на множині A, який не ϵ лінійним порядком, і B непорожня підмножина множини A. Чи правильним ϵ твердження, що відношення $R \cap B^2$ ϵ частковим порядком на множині B, який не ϵ лінійним?
- **33.** Довести, що відношення часткового порядку R на множині M буде лінійним порядком тоді і тільки тоді, коли $R \cup R^{-1} = M^2$.
- **34.** Довести, що об'єднання $R_1 \cup R_2$ відношень часткового порядку R_1 і R_2 на множині M буде частковим порядком на множині M тоді і тільки тоді, коли $R_1 \circ R_2 \cup R_2 \circ R_1 \subseteq R_1 \cup R_2$ і $R_1 \cap R_2^{-1} = i_M$.
- **35.** Нехай R_1 відношення еквівалентність, R_2 відношення строгого порядку. Довести, що відношення $R_1 {}^{\circ} R_2 {}^{\circ} R_1$ буде строгим порядком тоді і тільки тоді, коли $R_2 {}^{\circ} R_1 {}^{\circ} R_2 {}^{\circ} R_1$ і $R_1 {}^{\cap} R_2 = \varnothing$.
- **36.** Довести, що об'єднання $R_1 \cup R_2$ відношень строгого порядку R_1 і R_2 буде строгим порядком тоді і тільки тоді, коли $R_1 \circ R_2 \cup R_2 \circ R_1 \subseteq R_1 \cup R_2$.
- **37.** Довести, що відношення R на множині A є одночасно відношенням еквівалентності та частковим порядком тоді і тільки тоді, коли R= i_A .
- **38.** Нехай \leq частковий порядок на множині A. Означимо відношення < на частково впорядкованій множині A: a < b тоді і тільки тоді, коли $a \leq b$ і $a \neq b$. Довести, що відношення < іррефлексивне та транзитивне.
- **39.** Довести, що коли деяке відношення < на A іррефлексивне та транзитивне, тоді відношення $x \le y \Leftrightarrow (x < y \text{ або } x = y)$ ϵ частковим порядком на A.

- **40.** Довести, що для довільної частково впорядкованої множини M з k елементів існує таке відображення $f: M \rightarrow N_k$, що для елементів $a_i, a_j \in M$ зі співвідношення $a_i < a_i$ випливає нерівність $f(a_i) < f(a_i)$.
- **41.** Довести, що транзитивне замикання R^* відношення часткового порядку R збігається з R, тобто $R^* = R$.
- **42.** Довести, що транзитивне замикання R^* рефлексивного відношення R на множині M буде відношенням часткового порядку на M тоді і тільки тоді, коли R^* антисиметричне. Сформулюйте цю умову в термінах вілношення R.
- **43.** Нехай \leq і < це традиційні відношення порядку на множині натуральних чисел N. Довести, що
 - (a) $< \circ < \neq <$; (b) $\le \circ < = <$; (b) $\le \circ \ge = N^2$.
- **44.** На множині N_{2000} означено частковий порядок R за допомогою відношення «ділить», тобто mRn тоді і тільки тоді, коли m ділить n. Чи існують у множині N_{2000} найменший і найбільший елементи? Чи ε в множині N_{2000} мінімальні й максимальні елементи, і якщо ε , то визначити їхню кількість. Узагальнити відповідь на випадок множини N_k для довільного $k \in N$.
- **45.** Визначити для скількох відношень часткового порядку на множині M елемент a буде мінімальним.
 - (a) $M = \{a,b\}$; (b) $M = \{a,b,c,d\}$.
- **46.** Довести, що будь-яка частково впорядкована множина містить не більше одного найбільшого (найменшого) елемента.
- **47.** Довести, що найбільший (найменший) елемент частково впорядкованої множини ε єдиним максимальним (мінімальним) елементом у цій множині.
 - 48. Побудувати приклад частково впорядкованої множини, яка має
 - (а) точно один мінімальний елемент, але не має найменшого елемента;
- (б) точно один максимальний елемент, але не має найбільшого елемента;
- (в) один мінімальний і один максимальний елементи, але не має найменшого й найбільшого елементів;
- (г) не має жодного мінімального і максимального елементів та не має найменшого й найбільшого елементів.
- **49.** Довести, що будь-яка непорожня скінченна частково впорядкована множина A містить мінімальний і максимальний елементи.
- **50.** Довести, що скінченна частково впорядкована множина має найменший (найбільший) елемент тоді і тільки тоді, коли вона містить рівно один мінімальний (максимальний) елемент. Чи справедливо це для нескінченних частково впорядкованих множин?

- **51.** Нехай частково впорядкована множина $A \in \text{скінченною}$. Довести, що для будь-якого елемента $a \in A$ існують елементи b і c з A такі, що
 - (a) $a \le b$ і $b \in$ максимальним елементом у множині A;
 - (б) $c \le a$ і $c \in$ мінімальним елементом у множині A.
- **52.** Скільки одиничок містить матриця C відношення лінійного порядку R на скінченній множині M з n елементів?
- **53.** Нехай C матриця відношення часткового порядку R на скінченній множині M з n елементів. Як за допомогою матриці C можна визначити існування в множині M
 - (а) мінімальних елементів;
- (в) найменшого елемента;
- (б) максимальних елементів:
- (г) найбільшого елемента.
- **54.** Нехай *A* і *B* частково впорядковані множини і
- $f:A \to B$ монотонне відображення, яке здійснює взаємно однозначну відповідність між A і B. Довести, що f^{-1} може бути немонотонним відображенням. Розглянути випадок, коли A лінійно впорядкована множина.
 - 55. Побудувати лінійний порядок на множині:
 - (a) N^2 ; (6) $N \cup N^2 \cup N^3 \cup ... \cup N^n \cup ...$;
- (B) C комплексних чисел.
- **56.** Довести, що множина N натуральних чисел з традиційним відношенням порядку ϵ цілком упорядкованою.
 - 57. Довести, що
 - (a) множина N, де 0<2<4<...<1<3<5... є цілком упорядкованою;
 - (б) множина N, де ...4<3<2<1 не ϵ цілком упорядкованою.
 - (в) множина Z, де 1<2<3<...<0<-1<-2<-3<... ϵ цілком упорядкованою.
- **58.** Довести, що множина Z цілих чисел з традиційним відношенням порядку не ε цілком упорядкованою.
- **59.** Довести, що будь-яка скінченна лінійно впорядкована множина ϵ цілком упорядкованою.
 - 60. Чи будуть цілком упорядкованими такі множини:
- (a) множина Q раціональних чисел з традиційним відношенням порядку;
 - (б) множина R дійсних чисел з традиційним відношенням порядку;
- (в) множина чисел виду 1-1/n, де n \in N 3 традиційним відношенням порядку.
- **61.** Довести, що будь-яка підмножина цілком упорядкованої множини є цілком упорядкованою.
- **62.** Знайти всі множини M, для яких існує повний порядок R на M такий, що R^{-1} також є повним порядком на M.
- **63.** Довести, що будь-яка непорожня цілком упорядкована множина має найменший елемент.

- **64.** Чи можна у цілком упорядкованій множині виділити нескінченний спадний ланцюг елементів $x_1 > x_2 > x_3 > \dots$?
- **65.** Нехай A цілком упорядкована множина. Довести, що не існує такого монотонного взаємно однозначного відображення $f: A \rightarrow A$, що для деякого елемента $a \in A$ виконується f(a) < a.
- **66.** Нехай M цілком упорядкована множина, а T деяке твердження відносно елементів множини M. Припустимо, що твердження T справедливе для найменшого елемента множини M (база індукції). Відомо, що з припущення, що твердження T виконується для будь-якого елемента a такого, що $a \le b$ випливає справедливість твердження T для елемента b (індукційний крок).

Довести, що коли виконуються умови бази й індукційного кроку, тоді твердження T справедливе для довільного елемента $a \in M$ (принцип трансфінітної індукції).

- **67.** Назвемо частково впорядковану множину A з порядком \leq camo∂воїстою, якщо вона ізоморфна множині, двоїстій до неї (тобто множині A з порядком \geq). Довести, що
- (а) існує рівно дві неізоморфні частково впорядковані множини з двома елементами, кожна з яких самодвоїста;
- (б) існує п'ять попарно неізоморфних частково впорядкованих множин з трьох елементів таких, що три з них самодвоїсті.
- **68.** Довести, що існує не більше одного ізоморфізму двох цілком упорядкованих множин.
- **69.** Довести, що будь-яка частково впорядкована множина A ізоморфна деякій підмножині булеана $\beta(A)$, впорядкованій відношенням включення.
- **70.** Довести, що лінійно впорядкована множина ϵ скінченною тоді і тільки тоді, коли вона ϵ цілком упорядкованою відносно заданого та відносно двоїстого порядків.
- **71.** *Аксіома вибору.* Нехай A_i непорожня множина для будь-якого $i \in I$. Тоді існує функція вибору $f: I \to \bigcup_{i \in I} A_i$ така, що $f(i) \in A_i$ для будь-якого $i \in I$.

Довести, що кожне з наведених тверджень ϵ рівносильним аксіомі вибору.

- (1) *Теорема Куратовського-Цорна* або *лема Цорна*. Якщо в частково впорядкованій множині M будь-який ланцюг має верхню (нижню) грань, то множина M має максимальний (мінімальний) елемент.
- (2) $Teopema\ Xayc дop фa$. Будь-який ланцюг частково впорядкованої множини M міститься в деякому максимальному ланцюзі множини M.

- (3) *Аксіома Цермело*. Для будь-якої множини M непорожніх множин, які попарно не перетинаються, існує така множина A, що множина $A \cap B$ для будь-якої $B \in M$ містить рівно один елемент.
 - (4) Теорема Цермело. Будь-яку множину М можна цілком упорядкувати.
- (5) *Лема Тейхмюллера-Тьюкі*. Будь-яка сукупність множин, що має скінченний характер, містить максимальний елемент. (Сукупність M множин *має скінченний характер*, якщо вона задовольняє умову: $A \in M$ тоді і тільки тоді, коли кожна скінченна підмножина множини A належить M).
- **72.** Нехай A частково впорядкована множина, в якій кожний ланцюг має верхню грань, і $a \in A$. Довести, що існує максимальний елемент $m \in A$ такий, що $a \le m$.
- **73.** Нехай A множина підмножин множини B з відношенням включення така, що для кожного ланцюга C об'єднання множин із C належить A. Довести, що множина A має максимальний елемент.
- **74.** Довести, що для будь-якого часткового порядку R на множині A існує лінійний порядок L на множині A такий, що $R \subseteq L$.

10. Решітки

Точною верхньою гранню підмножини A частково впорядкованої множини M (позначається $\sup A$) називають найменший елемент серед усіх верхніх граней підмножини A. Відповідно, **точною нижньою гранню** підмножини A частково впорядкованої множини M (позначається $\inf A$) називають найбільший елемент серед усіх нижніх граней підмножини A.

Частково впорядкована множина M називається **решіткою** або г**раткою**, якщо для будь-якої пари елементів $a,b \in M$ (тобто для будь-якої двоелементної підмножини множини M) існують $\sup\{a,b\}$ і $\inf\{a,b\}$, які іноді позначають $a \cup b$ і $a \cap b$ відповідно. Замість фігурних дужок часто використовують круглі дужки.

Частково впорядкована множина M називається повною решіткою, якщо для будь-якої непорожньої підмножини $A \subseteq M$ у множині M існують найменша верхня грань $\sup A$ і найбільша нижня грань $\inf A$. Очевидно, що довільна повна решітка ε решіткою, але не будь-яка решітка ε повною решіткою. Якщо M - повна решітка, то найменша верхня грань всієї множини M ($\sup M$) називається одиницею даної решітки і позначається $\mathbf{1}$, а найбільша нижня грань множини M ($\inf M$) називається нулем решітки і позначається $\mathbf{0}$. Вибір цих назв для $\sup M$ і $\inf M$ пояснюється наступними властивостями елементів $\mathbf{1}$ і $\mathbf{0}$. Для довільного елемента $a \in M$ виконується

$$\sup \{1,a\} = 1,$$
 $\sup \{0,a\} = a,$ $a \le 1,$ $\inf \{1,a\} = a,$ $\inf \{0,a\} = 0,$ $a \ge 0.$

Решітка L називається **модулярною** або **дедекіндовою** решіткою, якщо для будь-яких елементів $a,b,c \in L$ таких, що $a \le b$ виконується $\inf(\sup(a,c),b)=\sup(a,\inf(b,c)).$

Решітка L називається **дистрибутивною**, якщо для довільних $a,b,c \in L$ виконується тотожність $\inf(\sup(a,b),c)=\sup(\inf(a,c),\inf(b,c)).$

Бульовою алгеброю (бульовою решіткою) називається дистрибутивна повна решітка L, в якій для кожного елемента $a \in L$ існує елемент $b \in L$ такий, що $\sup(a,b)=1$ і $\inf(a,b)=0$. Елемент b називають **доповненням** елемента а у бульовій алгебрі L і позначають \overline{a} .

- **1.** Довести, що частково впорядкована за відношенням включення \subseteq множина $\beta(M)$ усіх підмножин множини M ϵ решіткою.
 - **2.** Довести, що будь-яка лінійно впорядкована множина ϵ решіткою.
- **3.** Довести, що множина N натуральних чисел з відношенням часткового порядку "ділить" ϵ решіткою.
- **4.** Розглянемо множину R^n кортежів дійсних чисел довжини n з відношенням часткового порядку означеним так: $(a_1,a_2,...,a_n) \le (b_1,b_2,...,b_n)$ тоді і тільки тоді, коли $a_i \le b_i$, для всіх i=1,2,...n. Довести, що частково впорядкована у такий спосіб множина R^n є решіткою.
- **5.** Довести, що прямий добуток $L_1 \times L_2$ решіток L_1 і L_2 (див.задачу **9.11**) є решіткою.
 - 6. Зобразити у вигляді діаграм такі частково впорядковані множини:
 - а) множину двійкових кортежів B^3 ;
 - б) булеан $\beta(M)$ множини $M = \{a,b,c\}$ з відношенням включення \subseteq ;
- в) множину натуральних чисел C={2,5,7,10,28,70} з відношенням "ділить";
- г) множину $D=\{a,b,c,d\}$ з відношенням часткового порядку $R=\{(a,a),(b,b),(c,c),(d,d),(a,c),(b,c),(a,d),(b,d)\}.$
 - 3'ясувати, які з цих частково впорядкованих множин є решітками.
- **7.** Позначимо через M множину всіх додатних дільників натурального числа n. Відношення R на множині M задамо таким чином: aRb тоді і тільки тоді, коли b ділиться на a. Довести, що R ϵ частковим порядком і множина M з відношенням R ϵ решіткою. Побудувати відповідні діаграми для таких значень n:
 - (a) n=2; (b) n=6; (e) n=12; (f) n=36.
- **8.** Сформулювати умови для діаграми частково впорядкованої множини, при виконанні або порушенні яких ця множина буде або не буде решіткою.

- **9.** Довести, що будь-яка підмножина частково впорядкованої множини має не більше однієї точної верхньої грані і не більше однієї точної нижньої грані.
- **10.** Який вигляд має діаграма скінченної лінійно впорядкованої множини?
- **11.** Скільки дуг містить діаграма для скінченної лінійно впорядкованої множини M з n елементів?
- **12.** На множині P всіх можливих розбиттів деякої множини M означимо відношення часткового порядку: вважаємо, що розбиття $R_i \le R_j$ тоді і тільки тоді, коли кожен клас розбиття R_i міститься в деякому класі розбиття R_j . Довести, що множина P є решіткою.
- **13.** Нехай W це множина всіх еквівалентностей на деякій множині M. Відношенням часткового порядку на множині W вважатимемо відношення включення. Довести, що множина W є решіткою.
- **14.** Нехай задано відображення $f:A \times A \to A$ і для всіх $x,y,z \in A$ виконуються такі умови:
 - 1) f(x,y)=f(y,x); 2) f(x,f(y,z))=f(f(x,y),z); 3) f(x,x)=x. Означимо $x \le y$ тоді і тільки тоді, коли f(x,y)=x. Довести, що
 - (a) ≤ ϵ частковий порядок на A;
 - (б) f(x,y) є точною нижньою гранню елементів x і y відносно порядку \leq .
- **15.** Довести, що в решітці будь-який максимальний елемент ϵ найбільшим, а будь-який мінімальний елемент ϵ найменшим елементом.
- **14.** Побудувати діаграми всіх решіток, що складаються не більше ніж із шести елементів.
- **17.** Розглянемо множину $L=N\times B$, де N множина натуральних чисел, а $B=\{0,1\}$. Покладемо $(n,i)\le (m,j)$ тоді і тільки тоді, коли $n\le m$ і $i\le j$.

Довести, що L ϵ решіткою. Побудувати діаграму для L.

- **18.** Довести, що в будь-якій скінченній решітці існує найбільший та найменший елементи.
 - 19. Навести приклади решіток:
 - (а) без найбільшого, але з найменшим елементом;
 - (б) без найменшого, але з найбільшим елементом;
 - (в) без найбільшого і без найменшого елементів.
- **20.** Довести, що в будь-якій решітці L для довільних елементів $a,b,c,d\!\in\!L$ виконується:
 - (a) $\sup(a,a)=a$, $\inf(a,a)=a$;
 - (6) $a \le \sup(a,b)$, $\inf(a,b) \le a$;
 - (в) якщо $a \le c$ і $b \le c$, то $\sup(a,b) \le c$;
 - (г) якщо $c \le a$ і $c \le b$, то $c \le \inf(a,b)$;

- (д) $a \le b$ тоді і тільки тоді, коли $\sup(a,b)=b$;
- (e) $a \le b$ тоді і тільки тоді, коли $\inf(a,b)=a$;
- (ε) якщо $a \le c$ і $b \le d$, то $\sup(a,b) \le \sup(c,d)$;
- (ж) якщо $a \le c$ і $b \le d$, то $\inf(a,b) \le \inf(c,d)$;
- (3) якщо $a \le c$, то $\sup(a, \inf(b, c)) \le \inf(\sup(a, b), c)$;
- (и) якщо $\sup(a,b)=\inf(a,b)$, то a=b.
- **21.** Довести, що в будь-якій решітці L для довільних елементів $a,b,c \in L$ виконуються:
 - (a) $\sup(a,b)=\sup(b,a)$, $\inf(a,b)=\inf(b,a)$ (закони комутативності);
 - (6) $\sup(a, \sup(b, c)) = \sup(\sup(a, b), c),$

 $\inf(a,\inf(b,c))=\inf(\inf(a,b),c)$ (закони асоціативності);

- (в) $\sup(\inf(a,b),a)=a, \inf(\sup(a,b),a)=a$ (закони поглинання).
- **22.** Нехай на множині M задані двомісні функції (операції) \cup та \cap , які задовольняють тотожностям:
 - (1) $x \cup y = y \cup x$;
- $(4) (x \cap y) \cap z = x \cap (y \cap z);$
- (2) $x \cap y = y \cap x$;
- (5) $(x \cap y) \cup y = y$;
- (3) $(x \cup y) \cup z = x \cup (y \cup z)$;
- (6) $x \cap (x \cup y) = x$.
- (a) Довести, що для всіх $x \in M$ $x \cup x = x$ і $x \cap x = x$;
- (б) Довести, що для будь-яких $x,y \in M$ $x \cup y = y$ тоді і тільки тоді, коли $x \cap y = x$.
- (в) Означимо відношення порядку на M: $x \le y$ тоді і тільки тоді, коли $x \cap y = x$. Довести, що M є решіткою відносно \le , причому точна верхня й точна нижня грані елементів x та y збігаються з $x \cup y$ та $x \cap y$ відповідно, тобто $\sup(x,y) = x \cup y$ і $\inf(x,y) = x \cap y$.
- **23.** Довести, що частково впорядкована множина L ϵ решіткою тоді і тільки тоді, коли для довільної скінченної непорожньої підмножини $A \subseteq L$ існують $\sup A$ і $\inf A$.
- **24.** Нехай $D = \{ x \mid x \in Q \text{ i } x^2 > 2, x > 0 \}$. Довести, що множина D не має точної нижньої грані в множині раціональних чисел Q з традиційним відношенням порядку.
- **25.** Довести, що частково впорядкована за відношенням включення \subseteq множина $\beta(M)$ усіх підмножин множини M є повною решіткою. Визначити елементи 0 і 1 цієї решітки.
- **26.** Чи утворюватиме повну решітку впорядкована за відношенням включення множина
 - (а) всіх рефлексивних;
 - (б) всіх антирефлексивних;
 - (в) всіх симетричних;
 - (г) всіх антисиметричних;

- (д) всіх транзитивних
- відношень на даній множині M?
- **27.** Довести, що решітка B^3 є повною решіткою. Визначити елементи **0** і **1** цієї решітки.
- **28.** Які умови повинна задовольняти діаграма скінченної повної решітки?
- **29.** Чи існує частково впорядкована множина M, в якій точна нижня й точна верхня грані будь-якої непорожньої підмножини $A \subseteq M$ збігаються?
- **30.** Чи буде повною решіткою множина N натуральних чисел з традиційним відношенням порядку?
- **31.** Довести, що множина раціональних чисел Q з традиційним відношенням порядку не ϵ повною решіткою.
 - 32. Чи буде повною решіткою множина чисел:
 - (a) $1-1/n, n \in \mathbb{N}$;
 - (б) 1/n, n∈N;
 - (в) всіх раціональних чисел з сегменту [0,1]?
- **33.** Чи буде повною решіткою множина A^* всіх слів в алфавіті A з лексикографічним порядком ?
- **34.** Довести, що множина всіх дільників натурального числа n, частково впорядкована за відношенням "ділить", ϵ повною решіткою. Визначити елементи 0 і 1 ці ϵ ї решітки.
 - **35.** Довести, що будь-яка скінченна решітка ϵ повною решіткою.
- **36.** Довести, що елементи **0** і **1** є відповідно найменшим і найбільшим елементами повної решітки M.
- **37.** Довести, що частково впорядкована множина $A \in \text{повною решіткою}$ тоді і тільки тоді, коли вона має найбільший елемент **1**=sup A і для будь-якої непорожньої підмножини $B \subseteq A$ існує inf B.
- **38.** Довести, що частково впорядкована множина $A \in \text{повною решіткою тоді і тільки тоді, коли вона має найменший елемент <math>\mathbf{0}$ =inf A і для будь-якої непорожньої підмножини $B \subseteq A$ існує sup B.
- **39.** Довести, що решітка L є модулярною тоді і тільки тоді, коли для будь-яких елементів $a,b,c\in L$ таких, що $a\le b$ виконується $\inf(\sup(a,c),b)\le \sup(a,\inf(b,c)).$
- **40.** Довести, що решітка L є модулярною тоді і тільки тоді, коли для будь-яких $a,b,c\!\in\!L$ виконується:
 - (a) $\sup(a,\inf(b,\sup(a,c)))=\inf(\sup(a,b),\sup(a,c));$
 - (6) $\inf(a,\sup(b,\inf(a,c))) = \sup(\inf(a,b),\inf(a,c));$
 - (B) $\sup(\inf(a,c),\inf(b,\sup(a,c)))=\inf(\sup(\inf(a,c),b),\sup(a,c)).$
 - **41.** Нехай L модулярна решітка. Для елементів $a,b,c \in L$ позначимо $d=\inf(a,\sup(b,c)), \quad h=\inf(\sup(b,\inf(a,c)),\sup(a,c)),$

 $g=\inf(\sup(c,\inf(a,b)),\sup(a,b)).$

Довести, шо

- (a) $\inf(d,h)=\inf(d,g)=\sup(\inf(a,b),\inf(a,c));$
- (6) $\sup(d,h) = \sup(d,g) = \inf(\sup(a,b),\sup(a,c),\sup(b,c));$
- (B) $h=\sup(\inf(b,\sup(a,c)),\inf(a,c))$.
- **42.** Нехай L модулярна решітка, яка має найменший елемент a. Для деяких елементів $b,c,d\in L$ виконується $\inf(b,c)=a$ і $\inf(b,\sup(c,d))\neq a$. Довести, що $\inf(\sup(b,c),d)\neq a$.
- **43.** Довести, що решітка L є модулярною тоді і тільки тоді, коли з того, що для елементів $a,b,c\in L$ виконується $a\leq b$, $\inf(a,c)=\inf(b,c)$ і $\sup(a,c)=\sup(b,c)$, випливає a=b.
- **44.** Нехай на множині $L=\{a,b,c,d,e\}$ задано відношення $R=\{(a,a),(b,b),(c,c),(d,d),(e,e),(a,b),(a,c),(a,d),(b,e),(c,e),(d,e)\}.$ Чи буде множина L
 - (а) частково впорядкованою множиною;
 - (б) решіткою;
 - (в) повною решіткою;
 - (г) модулярною решіткою;
 - (д) дистрибутивною решіткою?
- **45.** Довести, що в будь-якій решітці L для довільних елементів $a,b,c \in L$ виконується:
 - (a) $\inf(a, \sup(b,c)) \ge \sup(\inf(a,b), \inf(a,c));$
 - (б) $\sup(a,\inf(b,c)) \le \inf(\sup(a,b),\sup(a,c))$

(закони напівдистрибутивності).

- **46.** Довести, що решітка L є дистрибутивною тоді і тільки тоді, коли з того, що для елементів $a,b,c \in L$ виконується $\inf(a,b) \le c$ і $a \le \sup(b,c)$, випливає $a \le c$.
- **47.** Довести, що решітка $L \in$ дистрибутивною тоді і тільки тоді, коли для довільних елементів $a,b,c \in L$ виконується $\sup(\inf(a,b),c)=\inf(\sup(a,c),\sup(b,c)).$
- **48.** Довести, що решітка L є дистрибутивною тоді і тільки тоді, коли в ній з того, що для довільних елементів $a,b,c\in L$ виконується $\inf(a,c)=\inf(b,c)$ і $\sup(a,c)=\sup(b,c)$, випливає a=b.
- **49.** Довести, що будь-яка дистрибутивна решітка ϵ модулярною решіткою.
- **50.** Довести, що будь-яка лінійно впорядкована множина ϵ дистрибутивною решіткою.
- **51.** Довести, що модулярна решітка L є дистрибутивною тоді і тільки тоді, коли для будь-яких $a,b,c \in L$ з рівностей $\inf(a,b)=\inf(a,c)=d$ випливає, що $\inf(a,\sup(b,c))=d$.

52. Довести, що модулярна решітка L ϵ дистрибутивною тоді і тільки тоді, коли для довільних елементів $a,b,c\in L$ виконується

 $\sup(\inf(b,\sup(a,c)),\inf(a,c))=\inf(\sup(c,\inf(a,b)),\sup(a,b)).$

- **53.** Довести, що модулярна решітка L є дистрибутивною тоді і тільки тоді, коли для будь-яких елементів $a,b,c\in L$ виконується
 - $\sup(\inf(a,b),\inf(c,\sup(a,b)))=\sup(\inf(a,c),\inf(b,\sup(a,c))).$
- **54.** Довести, що решітка L буде повною решіткою тоді і тільки тоді, коли будь-яке монотонне відображення f решітки L у себе має нерухому точку, тобто елемент $a \in L$ такий, що f(a) = a.
- **55.** Нехай L повна решітка і f монотонне відображення решітки L у себе. Довести, що частково впорядкована множина всіх нерухомих точок відображення f ε повною решіткою.
- **56.** Довести, що решітки L_1 і L_2 будуть ізоморфними тоді і тільки тоді, коли існує взаємно однозначна відповідність f між L_1 і L_2 така, що для довільних елементів $a,b \in L_1$ виконується $f(\sup(a,b))=\sup(f(a),f(b))$ і $f(\inf(a,b))=\inf(f(a),f(b))$.
- **57.** Довести, що в бульовій алгебрі A для кожного елемента $a \in A$ існує тільки одне доповнення a.
- **58.** Довести, що довільна нетривіальна скінченна бульова алгебра A (|A|>1) ізоморфна булеану $\beta(M)$ деякої скінченної множини M, частково впорядкованому за відношенням включення.
- **59.** Довести, що довільні скінченні бульові алгебри з однаковою кількістю елементів ізоморфні між собою.
- **60.** Довести, що кількість елементів у будь-якій скінченній бульовій алгебрі ϵ степенем 2.
- **61.** Побудувати бульові алгебри з двома, чотирма й вісьмома елементами.
- **62.** Довести, що в бульовій алгебрі A для довільних елементів $a,b \in A$ виконується:
 - (a) $\bar{a} = a$;
 - (6) $\bar{0} = 1$, $\bar{1} = 0$;
 - (B) $\inf(a,a)=a$, $\sup(a,a)=a$;
 - (r) $\inf(a,0)=0$, $\inf(a,1)=a$;
 - (д) $\sup(a,0)=a, \sup(a,1)=1;$
 - (e) $\inf(a, \sup(a,b)) = a, \sup(a, \inf(a,b)) = a;$
 - (c) $\overline{\inf(a,b)} = \sup(\overline{a},\overline{b}), \overline{\sup(a,b)} = \inf(\overline{a},\overline{b}).$
- **63.** Довести, що в бульовій алгебрі A для довільних елементів $a,b \in A$ виконується $c = \overline{a}$ тоді і тільки тоді, коли $\inf(\sup(a,c),b) = b$ і $\sup(\inf(a,c),b) = b$.

- **64.** Довести, що в бульовій алгебрі A такі чотири співвідношення ϵ рівносильними:
 - (a) $\inf(a,b)=a$;
- (B) $\inf(a, \overline{b}) = 0$;
- (б) $\sup(a,b)=b$;
- $(\Gamma) \sup_{a} (\bar{a}, b) = 1.$
- **65.** Довести, що в бульовій алгебрі A для довільних елементів $a,b \in A$ виконується:
 - (a) $a \le b \Leftrightarrow \inf(a, \overline{b}) = \mathbf{0}$;
- (B) $a \le b \Leftrightarrow \bar{b} \le \bar{a}$;
- (6) $a \le b \Leftrightarrow \sup(a, \bar{b}) = 1;$ (r) $a = b \Leftrightarrow \sup(\inf(a, \bar{b}), \inf(\bar{a}, b)) = 0.$
- **66.** Довести, що в бульовій алгебрі A для довільних елементів $a,b,c \in A$ таких, що $a \le b$ виконується:
 - (a) $\inf(a,c) \leq \inf(b,c)$;
 - (б) $\sup(a,c)$ ≤ $\sup(b,c)$.
- **67.** Довести, що в бульовій алгебрі A для довільних елементів $a,b,c \in A$ виконується:
 - (a) $\sup(\inf(a,b),\inf(a,c),\inf(b,c))=\inf(\sup(a,b),\sup(b,c),\sup(a,c));$
 - (б) якщо $a \le c$, то $\sup(a,\inf(b,c)) = \inf(\sup(a,b),c)$.
- **68.** Довести, що булеан будь-якої множини з відношенням включення ϵ бульовою алгеброю.

СПИСОК ЛІТЕРАТУРИ

Глушков В.М., Цейтлин Г.Е., Ющенко Е.Л. Алгебра, языки, программирование.- Киев, 1974.

Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера.- 2-е изд., перераб. и доп.- М., 1988.

Кук Д., Бейз Г. Компьютерная математика.- М., 1990.

Калужнин Л.А. Введение в общую алгебру.- М.,1973.

Столл Р.Р. Множества. Логика. Аксиоматические теории.- М.,1968.

Шрейдер Ю.А. Равенство, сходство, порядок.- М.,1971.

Шиханович Ю.А. Введение в современную математику.- М., 1965.

Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов.- М.,1975.

Трохимчук Р.М. Множини і відношення: Навч.посібник.- Київ,1993.

3MICT

1. Задання множин. Відношення належності та включення	3
2. Операції над множинами	8
3. Декартів добуток множин	19
4. Відповідності, функції, відображення	22
5. Рівнопотужність множин. Зліченні множини	37
6. Незліченні множини	40
7. Відношення. Властивості відношень	43
8. Відношення еквівалентності	55
9. Відношення порядку	61
10. Решітки	70
Список літератури	79