DESIGN & SYNTHESIS OF COMBINATIONAL GROWN

LOGIC DESIGN:

- → The main application of ewiltering theory is in the design of digital design. It is called logic design.
- → These elecules are designed using baske elements called gates.
- Tiso trings to consider for designing describt:
 - a) How fall It It?
 - 6) How watly Is It?
- digital eignal Two value (0, 1)

Analog ågnal - Any value

No of gates	Name		
410	small écale	Integration	(.122)
10 - 100	medium -	. ~	(4(1)
100 - 1000	Large "		(LSI)
> 1000	VLSI		

Scanned by TapScanner

Scanned by TapScanner

MINIMUH NO. OF NOR CATE to represent required Q. Find the number of NOR gates F(P,Q,R) = P+9R -> F(P, &, R) = P(P+R) (P+R) P+QR of How many NOR gates are require Q. e f = mt ny + zyz -> 1= 2+ my + my 3 ce THINOR -0 = 2 (14 \(\frac{1}{3} \) = \(\frac{1}{3} \) Only 'n' dont need any NOR gates for Enor = 4 DUAN # (1 2) # mor for Ex NOR = 4 3) # NAND for Ea NOR = 5 4) # NOR for EZOR = 5

Scanned by TapScanner

HALF SUBTRACTOR

