

## Hexagon Application Kit

For XMC4000 Family

HMI OLED-V1

Standard Human Machine Interface Card

## **Board User's Manual**

Revision 1.0, 2012-02-28

## Microcontroller

Edition 2012-02-28

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.

#### **Legal Disclaimer**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.



| Revision History |                                                  |  |
|------------------|--------------------------------------------------|--|
| Page or Item     | Subjects (major changes since previous revision) |  |
| Revision 1.0,    | Initial release                                  |  |
| 2012-02-28       |                                                  |  |
|                  |                                                  |  |
|                  |                                                  |  |
|                  |                                                  |  |
|                  |                                                  |  |
|                  |                                                  |  |

#### **Trademarks of Infineon Technologies AG**

AURIX $^{\text{TM}}$ , C166 $^{\text{TM}}$ , Canpak $^{\text{TM}}$ , CIPOS $^{\text{TM}}$ , CIPURSE $^{\text{TM}}$ , EconoPack $^{\text{TM}}$ , CoolMos $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , Crossave $^{\text{TM}}$ , Dave $^{\text{TM}}$ , EasyPIM $^{\text{TM}}$ , EconoBridge $^{\text{TM}}$ , EconoDual $^{\text{TM}}$ , EconoPiM $^{\text{TM}}$ , EiceDriver $^{\text{TM}}$ , eupec $^{\text{TM}}$ , FCOs $^{\text{TM}}$ , Hitfet $^{\text{TM}}$ , HybridPack $^{\text{TM}}$ , IsoFace $^{\text{TM}}$ , IsoPack $^{\text{TM}}$ , Mipaq $^{\text{TM}}$ , ModStack $^{\text{TM}}$ , my-d $^{\text{TM}}$ , NovalithIC $^{\text{TM}}$ , OptiMos $^{\text{TM}}$ , Origa $^{\text{TM}}$ , PrimePack $^{\text{TM}}$ , PrimeStack $^{\text{TM}}$ , Pro-Sil $^{\text{TM}}$ , Profet $^{\text{TM}}$ , Rasic $^{\text{TM}}$ , Reversave $^{\text{TM}}$ , Satric $^{\text{TM}}$ , Sieget $^{\text{TM}}$ , Sindrion $^{\text{TM}}$ , SipMos $^{\text{TM}}$ , SmartLewIs $^{\text{TM}}$ , Solid Flash $^{\text{TM}}$ , Tempfet $^{\text{TM}}$ , thinQ! $^{\text{TM}}$ , Trenchstop $^{\text{TM}}$ , TriCore $^{\text{TM}}$ .

#### Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-02-24



### **Table of Contents**

## **Table of Contents**

| 1   | Overview             |    |
|-----|----------------------|----|
| 1.1 | Key Features         |    |
| 1.2 | Block Diagram        | 8  |
| 2   | Hardware Description | g  |
| 2.1 | MicroSD Memory Slot  | 10 |
| 2.2 | OLED Display         | 11 |
| 2.3 | Audio                |    |
| 2.4 | IO Expander          | 13 |
| 2.5 | Touch Buttons        | 14 |
| 2.6 | Power                | 14 |
| 2.7 | Satellite Connector  | 15 |
| 3   | Production Data      | 17 |
| 3.1 | Schematics           | 17 |
| 3.2 | Layout and Geometry  | 20 |
| 3.3 | Bill of Material     | 21 |



## **List of Figures**

## **List of Figures**

| Figure 1              | Block Diagram of Standard Human Machine Interface Card                         | 8  |
|-----------------------|--------------------------------------------------------------------------------|----|
| Figure 2              | Standard HMI Card Interfaces                                                   |    |
| Figure 3              | MicroSD card Connector Intertface                                              |    |
| Figure 4              | Touch Buttons                                                                  |    |
| Figure 5              | Power Circuit                                                                  | 15 |
| Figure 6              | HMI Satellite Connector                                                        | 15 |
| Figure 7              | Satellite Connector HMI                                                        | 16 |
| Figure 8              | Satellite Connector, Power, Touch button                                       | 18 |
| Figure 9              | Micro-SD, Audio, IO Expander, OLED                                             | 19 |
| Figure 10             | Standard Human Machine Interface Card Layout                                   | 20 |
| Figure 9<br>Figure 10 | Micro-SD, Audio, IO Expander, OLEDStandard Human Machine Interface Card Layout |    |



### List of Tables

## **List of Tables**

| Table 1  | MicroSD Connector                                            | 10 |
|----------|--------------------------------------------------------------|----|
| Table 2  | MicroSD signal connection to the Satellite Connector         | 1  |
| Table 3  | OLED display Connector Pinout                                | 1  |
| Table 4  | OLED signal connection to the Satellite Connector            | 12 |
| Table 5  | 2.5 mm Audio Jack Pinout                                     | 13 |
| Table 6  | Audio signal connection to the Satellite Connector           | 13 |
| Table 7  | GPIO channel LED/SMD pad mapping                             | 13 |
| Table 8  | IO Expander I2C signal connection to the Satellite Connector | 13 |
| Table 9  | Touch signal connection to the Satellite Connector           | 14 |
| Table 10 | Power LED                                                    | 14 |
| Table 11 | Power rail connection to the Satellite Connector             | 15 |
| Table 12 | Standard Human Machine Interface Card BOM                    | 2  |
|          |                                                              |    |

Overview

### Introduction

This document describes the features and hardware details of the Standard Human Machine Interface Card (HMI\_OLED-V1) designed to work with Infineon's XMC4500 CPU board. This board is part of Infineon's Hexagon Application Kits.

### 1 Overview

The HMI\_OLED-V1 board is an application expansion satellite card of Hexagon Application Kits. The satellite card along with a CPU board (e.g. CPU\_45A-V2 board) demonstrates the Human Machine Interface (HMI) capabilities of XMC4500. The main use case for this satellite card is to demonstrate the HMI features of XMC4500 device including the toolchain. The focus is safe operation under evaluation conditions. The board is not cost optimized and cannot be seen as reference design.

## 1.1 Key Features

The HMI OLED-V1 satellite card is equipped with following features

- Connection to CPU board (e.g. CPU\_45A-V2) via HMI satellite connector
- Micro SD card connector 4 bit mode
- Passive matrix OLED display (PMOLED), 1.54" screen size, 160x128 pixels
- Stereo audio codec TLV320AIC3204
- 2.5 mm stereo receptacle for audio headsets with microphone
- 2 touch buttons with LED's
- I2C based IO expander with 8 channels
- · Power supply via satellite connector



Overview

## 1.2 Block Diagram

Figure 1 shows the block diagram of the HMI\_OLED-V1 satetllite card. There are following building blocks:



Figure 1 Block Diagram of Standard Human Machine Interface Card



**Hardware Description** 

## 2 Hardware Description

The following sections give a detailed description of the hardware and how it can be used.



Figure 2 Standard HMI Card Interfaces



**Hardware Description** 

## 2.1 MicroSD Memory Slot

The HMI\_OLED-V1 satetllite card supports a MicroSD card connector on board. The SD/MMC interface of XMC4500 can be used in different modes (SPI mode, 1-bit SD, 4-bit SD, 8-bit MMC). HMI\_OLED-V1 satetllite card supports 4-bit SD mode implementation of SD card interface.

Note: Signals MMC\_BUSPWR and MMC\_LED from SD card are connected to ground in CPU board CPU\_45A-V2, hence power a SD-Card will be always enabled and LED (V300) will be ON when satellite card is powered and interfaced to CPU\_45A-V2 board.



Figure 3 MicroSD card Connector Intertface

Table 1 below gives the signal details of SD card connector interface.

Table 1 MicroSD Connector

| Pin No. | Signal Name | Description    |
|---------|-------------|----------------|
| 1       | DAT2        | Data Bit 2     |
| 2       | DAT3/CS_N   | Data Bit 3     |
| 3       | CMD/MOSI    | Command        |
| 4       | VDD         | Power (+3.3 V) |
| 5       | CLK/SCK     | Clock          |
| 6       | GND         | Ground         |
| 7       | DAT0        | Data Bit 0     |
| 8       | DAT1        | Data Bit 1     |

**Hardware Description** 

Table 2 shows the connection of the MicroSD card signals to the HMI satellite connector.

Table 2 MicroSD signal connection to the Satellite Connector

| Pin No. | Signal Name | Description |
|---------|-------------|-------------|
| 3       | MMC_CLK     | Clock       |
| 6       | MMC_DATA0   | Data Bit 0  |
| 5       | MMC_DATA1   | Data Bit 1  |
| 8       | MMC_DATA2   | Data Bit 2  |
| 7       | MMC_DATA3   | Data Bit 3  |
| 13      | MMC_BUSPWR  | Power       |
| 14      | MMC_CMD     | Command     |
| 16      | MMC_LED     | LED         |

## 2.2 OLED Display

The HMI\_OLED-V1 satellite card supports a passive matrix OLED display (PMOLED) from Densitron on board. The display DD-160128FC-1A has a resolution of 160x128 pixels on a 1.54" screen.

The card implements PMOLED display interface through SPI-Bus of XMC4500. This display module uses a Syncoam SEPS525F 160 RGB x 128 Dots, 262K Colors PMOLED Display Driver and Controller. Refer to the SEPS525F datasheet for details.

The card implements a backlight power supply STOD2540 to generate 13 Volt (VDD13). LED V241 indicates the presence of VDD13 (OLED Backlight Supply)

Table 3 gives the details of OLED display connector pin mapping.

Table 3 OLED display Connector Pinout

| Pin No. | Signal Name | Description                               |  |
|---------|-------------|-------------------------------------------|--|
| 1       | NC          | No Connect                                |  |
| 2       | VSDH        | Data Driver Ground                        |  |
| 3       | VDDH        | Data, Scan Driver Power Supply (8 ~ 18 V) |  |
| 4       | VSSH        | Scan Driver Ground                        |  |
| 5       | IREF        | Tie 70 kΩto VSS                           |  |
| 6       | OSCA2       | Tie 10 kΩto OSCA1 between OSCA2           |  |
| 7       | OSCA1       | Tie 10 kΩto OSCA1 between OSCA2           |  |
| 8       | VDDIO       | MPU I/F PAD Power Supply (1.6 ~ 3.3 V)    |  |
| 9       | VSYNCO      | No Connect (used only in RGB mode)        |  |
| 10      | VSYNC       | No Connect (used only in RGB mode)        |  |
| 11      | HSYNC       | No Connect (used only in RGB mode)        |  |
| 12      | DOTCLK      | No Connect (used only in RGB mode)        |  |
| 13      | ENABLE      | No Connect (used only in RGB mode)        |  |
| 14      |             | Selects the CPU type                      |  |
|         | CPU         | Low: 80 Series CPU, High: 68 Series CPU   |  |
| 15      |             | Selects Parallel/Serial Interface         |  |
|         | PS          | For SPI, connect Low                      |  |
| 16      | D17/SCL     | SPI Clock                                 |  |
| 17      | D16/SDI     | SPI Data Input                            |  |

**Hardware Description** 

Table 3 OLED display Connector Pinout

| Pin No. | Signal Name | Description                                |
|---------|-------------|--------------------------------------------|
| 18      | D15/SDO     | SPI Data Output (use 0 ohm)                |
| 19      | D14         | No Connect (used only in parallel mode)    |
| 20      | D13         | No Connect (used only in parallel mode)    |
| 21      | D12         | No Connect (used only in parallel mode)    |
| 22      | D11         | No Connect (used only in parallel mode)    |
| 23      | D10         | No Connect (used only in parallel mode)    |
| 24      | D9          | No Connect (used only in parallel mode)    |
| 25      | RS          | Data/Command Select                        |
| 26      | CSB         | SPI Select                                 |
| 27      | RDB         | When using SPI, fix it to VDD or VSS level |
| 28      | WRB         | When using SPI, fix it to VDD or VSS level |
| 29      | RESETB      | Reset SEPS525(active low)                  |
| 30      | VSS         | Logic Ground                               |
| 31      | VDD         | Logic Power Supply(2.4 ~ 3.3 V)            |
| 32      | VSSH        | Scan Driver Ground                         |
| 33      | VDDH        | Data, Scan Driver Power Supply(8 ~ 18 V)   |
| 34      | VSDH        | Data Driver Ground                         |
| 35      | NC          | No connect                                 |

The PMOLED display module is interfaced to the connector through a 30-wire flatcable and glued to the satellite card.

Table 4 shows the connection of the OLED signals to the HMI satellite connector.

Table 4 OLED signal connection to the Satellite Connector

| Pin No. | Signal Name | Description         |
|---------|-------------|---------------------|
| 31      | SPI_CSH0    | Chipselect          |
| 32      | SPI_MTSR    | Data In             |
| 34      | SPI_MRST    | Data Out            |
| 36      | SPI_CLK     | Clock               |
| 24      | OLED_RS     | Data/Command Select |
| 42      | RESET_N     | Reset               |

#### 2.3 Audio

The HMI\_OLED-V1 satetllite card supports audio interface on board with stereo audio codec TLV320AlC3204 (U320). The control interface of audio codec is through I2C Bus and audio data is interfaced to I2S Bus of XMC4500 CPU extended though satellite connector.

A GPIO pin (P2.10) is used to reset the the audio codec (signal AUDIO\_RST\_N). The codec has a built-in headphone driver as well as a microphone input (analog and digital). The satellite card uses a 4-pin, 2.5 mm stereo receptacle (Nokia 6300 style) for audio headsets.

The board supports an external clock through an oscillator (Q320). Currently this oscillator is not mounted.

**Hardware Description** 

Table 5 2.5 mm Audio Jack Pinout

| Pin No. | Signal Name | Description      |
|---------|-------------|------------------|
| 1       | GND         | Ground           |
| 2       | HPL         | Head Phone Left  |
| 3       | HPR         | Head Phone Right |
| 4       | MICBIAS     | Mic Input        |

Table 6 shows the connection of the audio signals to the HMI satellite connector.

Table 6 Audio signal connection to the Satellite Connector

| Pin No. | Signal Name | Description  |
|---------|-------------|--------------|
| 23      | AUDIO_RST_N | Reset        |
| 25      | I2S_WA      | Address      |
| 27      | I2S_MCLK    | Master Clock |
| 26      | I2S_MTSR    | Data In      |
| 28      | I2S_MRST    | Data Out     |
| 30      | I2S_SCLK    | Slave Clock  |

### 2.4 IO Expander

The HMI\_OLED-V1 satellite card supports GPIO expansion though I2C IO-Expander on board (U360). The I2C address for the IO expander device is 0x1001101X. The satellite card supports 8 such GPIO's. All the GPIO's are connected to LEDs (V360-V367) and SMD-Pads (TP360 – TP367). The Table 7 shows the GPIO channel and corresponding LED/PAD mapping.

Table 7 GPIO channel LED/SMD pad mapping

| GPIO  | LED Reference | SMD pad Reference |
|-------|---------------|-------------------|
| GPIO0 | V360          | TP360             |
| GPIO1 | V361          | TP361             |
| GPIO2 | V362          | TP362             |
| GPIO3 | V363          | TP363             |
| GPIO4 | V364          | TP364             |
| GPIO5 | V365          | TP365             |
| GPIO6 | V366          | TP366             |
| GPIO7 | V367          | TP367             |

Table 8 shows the connection of the IO Expander device to the HMI satellite connector.

Table 8 IO Expander I2C signal connection to the Satellite Connector

| Pin No. | Signal Name | Description |
|---------|-------------|-------------|
| 38      | I2C_SCL     | Clock       |
| 37      | I2C_SDA     | Data        |



**Hardware Description** 

### 2.5 Touch Buttons

The HMI\_OLED-V1 satellite card supports two touch buttons (TOUCH250 and TOUCH251) that are connected to the CPU board via the satellite connector. These two signals are connected to LED's V250 & V251.



Figure 4 Touch Buttons

Table 9 shows the connection of the touch signals to the HMI satellite connector.

Table 9 Touch signal connection to the Satellite Connector

| Pin No. | Signal Name | Description |
|---------|-------------|-------------|
| 75      | LEDTS_COL0  | Column 0    |
| 77      | LEDTS_COLA  | Column A    |
| 74      | TP2         | Touch 2     |
| 64      | TP7         | Touch 7     |

#### 2.6 Power

Power input (5 V) to the satellite card is supported through satellite connector. 3.3 V is generated on board using on board regulator (U220).

LED V240 indicates the presence of 3.3 V power. The card implements a backlight power supply STOD2540 to generate 13 Volt (VDD13). LED V241 indicates the presence of VDD13 (OLED Backlight Supply)

Table 10 Power LED

| LED  | Power Rail | Voltage | Note                |  |  |  |  |  |  |  |  |
|------|------------|---------|---------------------|--|--|--|--|--|--|--|--|
| V240 | VDD3.3     | 3.3 V   | Must always be "ON" |  |  |  |  |  |  |  |  |
| V241 | VDD13      | 13 V    | Must always be "ON" |  |  |  |  |  |  |  |  |



**Hardware Description** 



Figure 5 Power Circuit

Table 11 shows the connection of the power rails to the HMI satellite connector.

Table 11 Power rail connection to the Satellite Connector

| Pin No.     | Power rail | Description |
|-------------|------------|-------------|
| 43,44,45,46 | VDD5       | 5 V         |
| 1,2,79,80   | GND        | Ground      |

### 2.7 Satellite Connector

The satellite connector of the HMI\_OLED-V1 satellite card interfaces it's the signals to a CPU board e.g. CPU\_45A-V2. Take care to connect the HMI satellite card always to the corresponding HMI satellite connector of the CPU board only.



Figure 6 HMI Satellite Connector

### **Hardware Description**

The Signals mapping details of HMI satellite connector and correponding CPU function are provided in Figure 7.

| CPU_45A V2<br>function >> |     | GND | MMC_nRST    | MMC_DATA0_OUT | MMC_DATA2_OUT | nc   | nc   | MMC_CMD_OUT | nc      | nc   | nc   | nc   | P5.11    | UOC1_DOUTO | UOC1_DX0B | U0C1_SCLKOUT | U1C1_DOUT0 | U1C1_DX0B | U1C1_SCLKOUT | U100_SCLKOUT    | P0.6   | PORST       | 5V | 5V | VAREF | VADC_G1CH0 | VADC_G0CH4  | VADC_G0CH3 | VADC_G2CH3 | VADC_G2CH2 | nc   | nc   | LEDTS_TSIN7A | nc   | nc   | nc   | nc   | LEDTS_TSIN2A | nc        | nc          | GND |
|---------------------------|-----|-----|-------------|---------------|---------------|------|------|-------------|---------|------|------|------|----------|------------|-----------|--------------|------------|-----------|--------------|-----------------|--------|-------------|----|----|-------|------------|-------------|------------|------------|------------|------|------|--------------|------|------|------|------|--------------|-----------|-------------|-----|
| CONpins >>                |     | GND | MMC_nRST    | MMC_DATA0     | MMC_DATA2     | RSVD | RSVD | MMC_CMD     | MMC_LED | RSVD | RSVD | RSVD | OLED_CMD | I2S_MTSR   | 12S_MRST  | 12S_SCLK     | SPI_MTSR   | SPI_MRST  | SPI_SCLK     | I2C_SCL         | GPIO   | RESET       | 20 | 20 | AREF  | DAC1/ADC0  | ADC2/DACREF | ADC14      | ADC16      | ADC18      | RSVD | RSVD | TP7          | RSVD | RSVD | RSVD | RSVD | TP2          | RSVD      | RSVD        | GND |
|                           | HMI | 2   | 4           | 6             | 8             | 10   | 12   | 14          | 16      | 18   | 20   | 22   | 24       | 26         | 28        | 30           | 32         | 34        | 36           | 38              | 40     | 42          | 44 | 46 | 48    | 50         | 52          | 54         | 56         | 58         | 60   | 62   | 64           | 66   | 68   | 70   | 72   | 74           | 76        | 78          | 80  |
|                           | Ē   | 1   | 3           | 5             | 7             | 9    | 11   | 13          | 15      | 17   | 19   | 21   | 23       | 25         | 27        | 29           | 31         | 33        | 35           | 37              | 39     | 41          | 43 | 45 | 47    | 49         | 51          | 53         | 55         | 57         | 59   | 61   | 63           | 65   | 67   | 69   | 71   | 73           | 75        | 77          | 79  |
| CONpins >>                |     | GND | MMC_CLK     | MMC_DATA1     | MMC_DATA3     | RSVD | RSVD | MMC_BUSPOW  | RSVD    | RSVD | RSVD | RSVD | AudioRST | I2S_WA     | RSVD      | RSVD         | SPI_CSH0   | SPI_CSH1  | SPI_CSH2     | I2C_SDA         | HMIERR | HMI_GPIO    | 20 | A9 | AGND  | DAC0/ADC1  | ADC3/ORC0   | ADC15      | ADC16      | ADC17      | RSVD | RSVD | RSVD         | RSVD | RSVD | RSVD | RSVD | RSVD         | COLO      | COLA        | GND |
| CPU_45A V2<br>function >> |     | GND | MMC_CLK_OUT | MMC_DATA1_OUT | MMC_DATA3_OUT | ou   | uc   | nc          | nc      | nc   | ou   | ou   | P2.10    | U0C1_SELO0 | uc        | nc           | U1C1_SEL01 | P3.1      | P3.8         | U1CO_DX0C/DOUT0 | P15.5  | CCU81_OUT03 | 20 | 20 | VAGND | VADC_G1CH1 | VADC_G0CH6  | VADC_G1CH4 | VADC_G3CH5 | VADC_G3CH4 | nc   | ou   | nc           | nc   | ou   | ou   | ou   | uc           | OLOS_COLO | PTOD_STGELA | GND |

Figure 7 Satellite Connector HMI

**Production Data** 

## 3 Production Data

## 3.1 Schematics

This chapter contains the schematics for the Standard Human Machine Interface Card:

- Satellite Connector, Power, Touch button
- Micro-SD, Audio, IO Expander, OLED





Figure 8 Satellite Connector, Power, Touch button





Figure 9 Micro-SD, Audio, IO Expander, OLED



## 3.2 Layout and Geometry



Figure 10 Standard Human Machine Interface Card Layout



## 3.3 Bill of Material

Table 12 Standard Human Machine Interface Card BOM

| SI. No. | Qty | Value                 | Device                                              | Reference<br>Designator                                                |
|---------|-----|-----------------------|-----------------------------------------------------|------------------------------------------------------------------------|
| 1       | 2   | 0R/0603               | Resistor                                            | R224, R323                                                             |
| 2       | 1   | 1k5/0603              | Resistor                                            | R360                                                                   |
| 3       | 11  | 2k2/0603              | Resistor                                            | R252, R253, R322, R361, R362, R363, R364, R365, R366, R367, R368       |
| 4       | 1   | 4*10k/S1206           | Resistor                                            | RA300                                                                  |
| 5       | 1   | 5k6/0603              | Resistor                                            | R241                                                                   |
| 6       | 8   | 10k/0603              | Resistor                                            | R235, R300, R302, R320, R341, R342, R343, R345                         |
| 7       | 8   | 10uF/10V/0805         | Capacitor                                           | C220, C222, C230, C324, C326, C328, C329, C330                         |
| 8       | 1   | 10uF/35V/1206         | Capacitor                                           | C231                                                                   |
| 9       | 1   | 22R/0603              | Resistor                                            | R321                                                                   |
| 10      | 2   | 47uF/TA/6V3           | Capacitor                                           | C322, C323                                                             |
| 11      | 1   | 56k/0603              | Resistor                                            | R233                                                                   |
| 12      | 1   | 68k/0603              | Resistor                                            | R340                                                                   |
| 13      | 1   | 100k/0603             | Resistor                                            | R234                                                                   |
| 14      | 12  | 100nF/0603            | Capacitor                                           | C200, C202, C223, C300, C320, C325, C327, C340, C341, C342, C343, C360 |
| 15      | 1   | 470nF/1206            | Capacitor                                           | C321                                                                   |
| 16      | 2   | 680R/0603             | Resistor                                            | R240, R301                                                             |
| 17      | 1   | 54132-3562            | Connector 54132-3562<br>Molex                       | X340                                                                   |
| 18      | 1   | 473340001             | Connector 3M 2908-<br>05WB-MG or Molex<br>047334001 | X300                                                                   |
| 19      | 1   | B340A-13-F            | Diode B340A-13-F<br>Diodes Inc.                     | V230                                                                   |
| 20      | 1   | BSS209PW              | IC BSS209PW Infineon technologies                   | Q300                                                                   |
| 21      | 1   | HSEC8-140-01-S-<br>RA | Connector HSEC8-140-01-<br>S-RA Samtec              | X200                                                                   |
| 22      | 1   | IFX1763SJV33          | IC IFX1763SJV33 Infineon Technologies               | U220                                                                   |
| 23      | 8   | LED-GE/D/0603         | LED                                                 | V360, V361, V362, V363, V364, V365, V366, V367                         |
| 24      | 3   | LED-GN/D/0603         | LED                                                 | V240, V241, V300                                                       |
| 25      | 2   | LED-RT/D/0603         | LED                                                 | V250, V251                                                             |
| 26      | 1   | PCA9502               | IC PCA9502BS NXP,<br>HVQFN-24                       | U360                                                                   |
| 27      | 1   | SJ1-42514-SMT         | Connector SJ1-42514-<br>SMT                         | X320                                                                   |
| 28      | 1   | STOD2540              | IC STOD2540PUR<br>STMicro                           | U230                                                                   |

**Production Data** 

Table 12 Standard Human Machine Interface Card BOM

| OL NI-  | 21  | Walter            | Basilia                            | Reference                                                                          |
|---------|-----|-------------------|------------------------------------|------------------------------------------------------------------------------------|
| SI. No. | Qty | Value             | Device                             | Designator                                                                         |
| 29      | 1   | TLV320AIC3204     | IC TLV320AIC3204 Texas Instruments | U320                                                                               |
| 30      | 1   | VLS3015ET-4R7M    | Inductor VLS3015ET-<br>4R7M TDK    | L230                                                                               |
| 31      | 1   | no ass.           | Crystal 3.3V 7x5mm<br>SMD          | Q320                                                                               |
| 32      | 3   | no ass./0R/0603   | Resistor                           | R223, R232, R344                                                                   |
| 33      | 2   | no ass./2k2/0603  | Resistor                           | R210, R211                                                                         |
| 34      | 2   | no ass./10k/0603  | Resistor                           | R250, R251                                                                         |
| 35      | 1   | no ass./10nF/0603 | Capacitor                          | C221                                                                               |
| 36      | 2   | no ass.           | Touchpad                           | TOUCH250, TOUCH251                                                                 |
| 37      | 12  | no ass.           | SMD-Pads                           | TP200, TP240, TP241, TP242, TP360, TP361, TP362, TP363, TP364, TP365, TP366, TP367 |

www.infineon.com