CS172 INFORMATION RETRIEVAL

Evaluation Topics Overview (Chapter 8)

- Will cover this topic in more depth later

Evaluating Ranking

•We examined various methods for ranking document, but how do we evaluate the ranking methods?

• Evaluation:

- **Precision:** Fraction of returned documents that are relevant
- Recall: Fraction of relevant documents that are returned
- Efficiency

TREC

- The Text REtrieval Conference (TREC) is an ongoing series of workshops focusing on a list of different information retrieval (IR) research areas, or tracks.
- Publish datasets (documents and queries) with labeled ranking for each document-query pair
- Host competitions in Information Retrieval
 - Thats how we got BM25 algorithm

Measuring Performance

Precision

- Proportion of retrieved set that are in fact relevant
- Institution: How much junk are you giving to the user?

• Computed as
$$\frac{TP}{TP+FP}$$

Recall

- Proportion of target items that are selected
- Institution: How much of the good stuff did we miss?

• Computed as
$$\frac{TP}{TP+FN}$$

- TN / True Negative: case was negative and predicted negative
- TP / True Positive: case was positive and predicted positive
- FN / False Negative: case was positive but predicted negative
- FP /False Positive: case was negative but predicted positive

Actual relevant docs

Retrieved?

Relevant

	YES	NO
YES	TP	FN
NO	FP	TN

Contingency table

Why not accuracy?

- * We can think of retrieval as 'classification' task
 - Hence consider accuracy as a measure

- Accuracy
 - Computed as $\frac{TP+TN}{N}$

- But in this case, Accuracy is meaningless
 - In IR, accuracy is 99.99% for any search algorithm
 - For any query, almost all documents are non-relevant
 - Often the best strategy is to retrieve nothing

Measuring Performance

- Trade-off
 - If you recall everything, then you are generate result that are not accurate, hence lowering precision.
 - If precision is high, obviously recall will be low.

What if we maximize Recall?

- unlikely user will keep browsing through each and every product ... they will jump to a different search engine

What if Precision is high?

- Too few results

Example Exercise

	Predicted Negative	Predicted Positive
Negative Cases	TN: 976	FP: 14
Positive Cases	FN: 4	TP: 6

- What is the accuracy?
 - (976+6)/1000 = 98.2%
- What is precision?
 - 6/20 = 30%
- What is recall?
 - 6/10 = 60%

Evaluation: TREC

- How do you evaluate information retrieval algorithms?
- Need prior relevance judgements
- TREC: Text Retrieval Competition
 - Given:
 - Documents
 - A set of queries: For each query, prior relevance judgements
 - Judgement:
 - For each query:
 - Documents are judged in isolation from other possibly relevant documents that have been shown
 - Mostly because the potential subsets of documents already shown can be exponential; too many relevance judgements
 - Rank the systems based on their precision recall on the corpus of queries
 - In practice, search engine maintains logs to record click-through-rate
 - Will discuss in chapter 8

Precision-Recall Curves

- Assuming there the 3 methods and we are evaluating their retrieval effectiveness
- A large number of queries are used and their average precision-recall curve is plotted below

- Methods 1 and 2 are better than method 3
- Method 1 is better than method 2 for higher recalls

Combining Precision and Recall

- We consider a weighted summation of precision and recall into a single quantity
 - F-measure summarizes effectiveness in a single number
- What is the best way to combine?
 - Arithmetic mean
 - Will be affected more by values that are unusually large (outliers).
 - Ex. If recall is 1.0 and precision is 0, the arithmetic mean is 0.5
 - Harmonic mean
 - harmonic mean emphasizes the importance of small values
 - EX. If recall is 1.0 and precision is 0, the harmonic mean is close to 0

$$f_{\beta} = \frac{(\beta^2 + 1)pr}{\beta^2 p + r}$$

 β – relative importance of recall and precision

$$\beta$$
 = 1, gives $f = \frac{2pr}{p+r}$

Heavily penalizes small values of P and R

Comparing Recall/Precision

- Which of the following is a better system?
 - System A: Recall = 50%, Prevision 57%, F1=53%
 - System B: Recall = 100%, Precision=40%, F1=57%
- Could be the same exact system!!!
 - Using different threshold settings
 - R/P, F1 comparisons can be meaningless
 - More informative to compare ranking against ranking

Recall / Precision and ranking

- Search engine produces a ranking, not a set
 - Can compute recall, precision at every rank

Recall / Precision and ranking (Cont.)

Mean Average Precision

- Sometimes need a single number metric
 - Comparing many systems, tuning parameters
- Mean Average Precision (MAP)
 - Most frequently used measure in research papers
 - Average precision values at ranks of relevant docs
 - Assumes user wants to find many relevant docs
 - Biased toward top of the ranking (rank1=2*rank2)
 - Take the mean of AVE. P values across queries
 - GMAP: geometric average go combine Ave. P.
 - Heavily penalized if any query has low performance

Takeaways

- Looks at the entire ranking (not just a fraction)
- Assigns higher weight for documents ranked higher (or first)

Mean Average Precision: Example

average precision query
$$1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62$$

average precision query $2 = (0.5 + 0.4 + 0.43)/3 = 0.44$
mean average precision = $(0.62 + 0.44)/2 = 0.53$

Relevance: The most overloaded word in IR

- We want to rank and return documents that are relevant to the user's query
 - Easy if each document has a relevance number R
- What does relevance depend on?
 - The document d
 - The query q
 - The user **u**
 - The other documents already shown {d₁,d₂, ..., d_k}

R (d | Q, U,
$$\{d_1d_2...d_k\}$$
)

How to compute relevance?

- Specify up front
 - Too hard—one for each query, user and shown results combination
- Learn
 - Active (utility elicitation)
 - Passive (learn from what the user does)
- Make up the users' mind
 - What you are "really" looking for is.. (used car sales people)
- Combination of the above
- Assume (impose) a relevance model
 - Based on "default" models of d and U.