Занятие 2

Рекурренты

- 1 Найдите формулу n-го члена для последовательностей, заданных условиями $(n\geqslant 0)$:
 - (a) $a_0 = 0, a_1 = 1, a_{n+2} = a_{n+1} + a_n;$
 - (b) $a_0 = 0, a_1 = 1, a_{n+2} = 5a_{n+1} 6a_n;$
 - (c) $a_0 = 0, a_1 = 1, a_{n+2} = 2a_{n+1} + a_n;$
 - (d) $a_0 = 0, a_1 = 1, a_{n+2} = 2a_{n+1} a_n$.
- [2] Сколько существует способов разрезать доску 2×10 на доминошки?
- $\boxed{3}$ Пусть x_1 и x_2 корни квадратного уравнения $x^2-6x+1=0$. Докажите, что при любом натуральном n число $x_1^n+x_2^n$ является целым и не делится на 5.
- [4] Последовательность задана рекуррентно: $a_1 = \frac{1}{2}, a_1 + a_2 + ... + a_n = n^2 a_n$. Найдите формулу общего члена.
- [5] Последовательность $\{a_i\}_{i=0}^{\infty}$ задана рекурентно: $a_0 = a, a_{n+1} = 2^n 3a_n$. При каких значениях a последовательность является монотонно возрастающей?
- 6 Последовательность a_0, a_1, a_2, \ldots такова, что для всех неотрицательных $m \ge n$ выполняется условие $a_{m+n} + a_{m-n} = \frac{a_{2m} + a_{2n}}{2}$. Найдите a_{2022} , если $a_1 = 1$.
- [7] Рассмотрим все возможные наборы чисел из множества $\{1,2,3,...,n\}$, не содержащие двух соседних чисел. Докажите, что сумма квадратов произведений чисел в этих наборах равна (n+1)!-1.