Modellierung

29.5.2019

Marvin Ludwig, Alice Ziegler, Hanna Meyer

Workflow

Grundlagen der Modellierung

Quelle: Eigene Darstellung Bilddaten: SPOT 5, Aufnahmedatum 2010 (ca) Eigene Abbildung (2012)

Grundlagen der Modellierung

Pix ID	R	G	В	NIR	Klasse
1	393	680	792	3550	Nadelwald
2	2167	1586	1476	2853	brach
3	859	940	1006	2434	Gebäude
4	705	1133	1012	4910	bewachsen
5	947	1024	1138	2253	Gebäude
105	402	668	800	3467	?
106	698	1142	1003	5012	?
107	2203	1601	1386	2976	?
108	879	962	956	2312	?

Grundlagen der Modellierung

Modellierung

Datensatz für Modellierung vorbereiten

Werte extrahieren

- Stacken Sie alle gewünschten Rasterlayer und extrahieren Sie Pixelwerte für alle Polygone und erstellen Sie daraus einen dataframe (?stack, ?extract)
- Fügen Sie anschließend die Klasseninformationen an die extrahierten Werte an (?join)
- Speichern Sie den neu erstellten dataframe als .rds Datei ab (?saveRDS)

Deskriptive Datenanalyse

Deskriptive Datenanalyse

Grundsätzliche Modelltypen:

Klassifikationen: Überwacht, Unüberwacht

Regression

Land nutzung sklassifikation

Minimum Distance to Means

Albertz (2009): Einführung in die Fernerkundung. WBG, Darmstadt Lillesand, Kiefer, Chipman (2004): Remote sensing and Image Interpretation.

Ausblick

- Eigenen Klassifikationsbaum erstellen
- Vorteile von maschinellen Lernverfahren
- Erste Klassifikation
 - Alle Daten und Prädiktoren bereit haben
- Image of the day

Erste Schritte mit Rasterdaten

Raster angleichen

- Die Kanäle von Sentinel-2 sind räumlich nicht alle gleich aufgelöst (z.B. haben die sichtbaren Kanäle eine Auflösung von 10 m und der einige der nahen Infrarotkanäle eine Auflösung von 20 m). Um verschieden aufgelöste Kanäle miteinander zu verrechnen, müssen Sie zunächst für die gleiche Geometrie der Daten sorgen.
- Fügen Sie zu Ihrem Rasterstack eines der Red Edge Bänder hinzu. (?resample, ?stack)

Erste Schritte mit Rasterdaten

Neue Rasterdaten berechnen

- Suchen Sie sich aus der Indexdatabase 2 sinnvolle Indizes aus (https://www.indexdatabase.de/)
- Dokumentieren Sie diese in ILIAS im Notizbuch "Indizes" für alle.
- Berechnen Sie Ihre Indizes und laden Sie diese als .tif-Datei in den ILIAS-Ordner "Daten/Indizes" (?writeRaster)