NIMBLE User Manual

NIMBLE Development Team

Version 0.6-3

R-nimble.org

Contents

Part I Introduction and Building Models in NIMBLE

Chapter 1

Welcome to NIMBLE

NIMBLE is a system for building and sharing analysis methods for statistical models from R, especially for hierarchical models and computationally-intensive methods. While NIMBLE is embedded in R, it goes beyond R by supporting separate programming of models and algorithms along with compilation for fast execution.

As of 0.6-3, NIMBLE has been around for a while and is reasonably stable, but we have a lot of plans to expand and improve it. The algorithm library provides MCMC with a lot of user control and ability to write new samplers easily. Other algorithms include particle filtering (sequential Monte Carlo) and Monte Carlo Expectation Maximization (MCEM).

But NIMBLE is about much more than providing an algorithm library. It provides a language for writing model-generic algorithms. We hope you will program in NIMBLE and make an R package providing your method. Of course, NIMBLE is open-source, so we also hope you'll contribute to its development.

Please join the mailing lists (R-nimble.org) and help improve NIMBLE by telling us what you want to do with it, what you like, and what could be better. We have a lot of ideas for how to improve it, but we want your help and ideas too. You can also follow and contribute to developer discussions on the wiki of our GitHub repository.

1.1 What does NIMBLE do?

NIMBLE makes it easier to program statistical algorithms that will run efficiently and work on many different models from R.

You can think of NIMBLE as comprising four pieces:

- 1. A system for writing statistical models flexibly, which is an extension of the BUGS language¹.
- 2. A library of algorithms such as MCMC.
- 3. A language, called NIMBLE, embedded within and similar in style to R, for writing algorithms that operate on models written in BUGS.
- 4. A compiler that generates C++ for your models and algorithms, compiles that C++, and lets you use it seamlessly from R without knowing anything about C++.

¹See Section ?? for information about NIMBLE's version of BUGS.

NIMBLE stands for Numerical Inference for statistical Models for Bayesian and Likelihood Estimation.

Although NIMBLE was motivated by algorithms for hierarchical statistical models, it's useful for other goals too. You could use it for simpler models. And since NIMBLE can automatically compile R-like functions into C++ that use the Eigen library for fast linear algebra, you can use it to program fast numerical functions without any model involved²

One of the beauties of R is that many of the high-level analysis functions are themselves written in R, so it is easy to see their code and modify them. The same is true for NIMBLE: the algorithms are themselves written in the NIMBLE language.

1.2 How to use this manual

We suggest everyone start with the Lightning Introduction.

Then, if you want to jump into using NIMBLE's algorithms without learning about NIMBLE's programming system, go to Part ?? to learn how to build your model and Part ?? to learn how to apply NIMBLE's built-in algorithms to your model.

If you want to learn about NIMBLE programming (nimbleFunctions), go to Part ??. This teaches how to program user-defined function or distributions to use in BUGS code, compile your R code for faster operations, and write algorithms with NIMBLE. These algorithms could be specific algorithms for your particular model (such as a user-defined MCMC sampler for a parameter in your model) or general algorithms you can distribute to others. In fact the algorithms provided as part of NIMBLE and described in Part ?? are written as nimbleFunctions.

²The packages Rcpp and RcppEigen provide different ways of connecting C++, the Eigen library and R. In those packages you program directly in C++, while in NIMBLE you program in R in a nimbleFunction and the NIMBLE compiler turns it into C++.

Chapter 2

Lightning introduction

2.1 A brief example

Here we'll give a simple example of building a model and running some algorithms on the model, as well as creating our own user-specified algorithm. The goal is to give you a sense for what one can do in the system. Later sections will provide more detail.

We'll use the *pump* model example from BUGS¹. We could load the model from the standard BUGS example file formats (Section ??), but instead we'll show how to enter it directly in R.

In this "lightning introduction" we will:

- 1. Create the model for the pump example.
- 2. Compile the model.
- 3. Create a basic MCMC configuration for the pump model.
- 4. Compile and run the MCMC
- 5. Customize the MCMC configuration and compile and run that.
- 6. Create, compile and run a Monte Carlo Expectation Maximization (MCEM) algorithm, which illustrates some of the flexibility NIMBLE provides to combine R and NIMBLE.
- 7. Write a short nimbleFunction to generate simulations from designated nodes of any model.

2.2 Creating a model

First we define the model code, its constants, data, and initial values for MCMC.

Here x[i] is the number of failures recorded during a time duration of length t[i] for the ith pump. theta[i] is a failure rate, and the goal is estimate parameters alpha and beta. Now let's create the model and look at some of its nodes.

Notice that in the list of nodes, NIMBLE has introduced a new node, lifted_d1_over_beta. We call this a "lifted" node. Like R, NIMBLE allows alternative parameterizations, such as the scale or rate parameterization of the gamma distribution. Choice of parameterization can generate a lifted node, as can using a link function or a distribution argument that is

¹The data set describes failure rates of some pumps.

an expression. It's helpful to know why they exist, but you shouldn't need to worry about them.

Thanks to the plotting capabilities of the igraph package that NIMBLE uses to represent the directed acyclic graph, we can plot the model (figure 2.1).

You are in control of the model. By default, nimbleModel does its best to initialize a model, but let's say you want to re-initialize theta. To simulate from the prior for theta (overwriting the initial values previously in the model) we first need to be sure the parent nodes of all theta[i] nodes are fully initialized, including any non-stochastic nodes such as lifted nodes. We then use the simulate function to simulate from the distribution for theta. Finally we use the calculate function to calculate the dependencies of theta, namely lambda and the log probabilities of x to ensure all parts of the model are up to date. First we show how to use the model's getDependencies method to query information about its graph.

Notice that the first getDependencies call returned dependencies from alpha and beta down to the next stochastic nodes in the model. The second call requested only deterministic dependencies. The call to pump\$simulate('theta') expands 'theta' to include all nodes in theta. After simulating into theta, we can see that lambda and the log probabilities of x still reflect the old values of theta, so we calculate them and then see that they have been updated.

2.3 Compiling the model

Next we compile the model, which means generating C++ code, compiling that code, and loading it back into R with an object that can be used just like the uncompiled model. The values in the compiled model will be initialized from those of the original model in R, but the original and compiled models are distinct objects so any subsequent changes in one will not be reflected in the other.

Note that the compiled model is used when running any NIMBLE algorithms via C++, so the model needs to be compiled before (or at the same time as) any compilation of algorithms, such as the compilation of the MCMC done in the next section.

2.4 Creating, compiling and running a basic MCMC configuration

At this point we have initial values for all of the nodes in the model and we have both the original and compiled versions of the model. As a first algorithm to try on our model, let's use NIMBLE's default MCMC. Note that conjugate relationships are detected for all nodes except for alpha, on which the default sampler is a random walk Metropolis sampler.

Notice the posterior correlation between alpha and beta. A measure of the mixing for each is the autocorrelation for each parameter, shown by the acf plots.

2.5 Customizing the MCMC

Let's add an adaptive block sampler on alpha and beta jointly and see if that improves the mixing.

We can see that the block sampler has decreased the autocorrelation for both alpha and beta. Of course these are just short runs, and what we are really interested in is the effective sample size of the MCMC per computation time, but that's not the point of this example.

Once you learn the MCMC system, you can write your own samplers and include them. The entire system is written in nimbleFunctions.

2.6 Running MCEM

NIMBLE is a system for working with algorithms, not just an MCMC engine. So let's try maximizing the marginal likelihood for alpha and beta using Monte Carlo Expectation Maximization².

Both estimates are within 0.01 of the values reported by ?]³. Some discrepancy is to be expected since it is a Monte Carlo algorithm.

2.7 Creating your own functions

Now let's see an example of writing our own algorithm and using it on the model. We'll do something simple: simulating multiple values for a designated set of nodes and calculating every part of the model that depends on them. More details on programming in NIMBLE are in Part ??.

Here is our nimbleFunction:

Here are a few things to notice about the nimbleFunction

- 1. The setup function is written in R. It creates relevant information specific to our model for use in the run-time code.
- 2. The setup code creates a modelValues object to hold multiple sets of values for variables in the model provided.
- 3. The run function is written in NIMBLE. It carries out the calculations using the information determined once for each set of model and nodes arguments by the setup code. The run-time code is what will be compiled.
- 4. The run code requires type information about the argument n. In this case it is a scalar integer.
- 5. The for-loop looks just like R, but only sequential integer iteration is allowed.
- 6. The functions calculate and simulate, which were introduced above in R, can be used in NIMBLE.
- 7. The special function copy is used here to record values from the model into the modelValues object.

²Note that for this model, one could analytically integrate over theta and then numerically maximize the resulting marginal likelihood.

³Table 2 of the paper accidentally swapped the two estimates.

8. Multiple instances, or "specializations", can be made by calling simNodesMany with different arguments. Above, simNodesTheta1to5 has been made by calling simNodesMany with the pump model and nodes 'theta[1:5]' as inputs to the setup function, while simNodesTheta6to10 differs by providing 'theta[6:10]' as an argument. The returned objects are objects of a uniquely generated R reference class with fields (member data) for the results of the setup code and a run method (member function).

By the way, simNodesMany is very similar to a standard nimbleFunction provided with nimble, simNodesMV.

Now let's execute this nimbleFunction in R, before compiling it.

In this code we have initialized the values of alpha and beta to their MLE and then recorded the theta values to use below. Then we have requested 10 simulations from simNodesTheta1to5. Shown are the first two simulation results for theta and the log probabilities of x. Notice that theta[6:10] and the corresponding log probabilities for x[6:10] are unchanged because the nodes being simulated are only theta[1:5]. In R, this function runs slowly.

Finally, let's compile the function and run that version.

Given the same initial values and the same random number generator seed, we got identical results for theta[1:5] and their dependencies, but it happened much faster.

Chapter 3

More introduction

Now that we have shown a brief example, we will introduce more about the concepts and design of NIMBLE.

One of the most important concepts behind NIMBLE is to allow a combination of high-level processing in R and low-level processing in C++. For example, when we write a Metropolis-Hastings MCMC sampler in the NIMBLE language, the inspection of the model structure related to one node is done in R, and the actual sampler calculations are done in C++. This separation between *setup* and *run* steps will become clearer as we go.

3.1 NIMBLE adopts and extends the BUGS language for specifying models

We adopted the BUGS language, and we have extended it to make it more flexible. The BUGS language became widely used in WinBUGS, then in OpenBUGS and JAGS. These systems all provide automatically-generated MCMC algorithms, but we have adopted only the language for describing models, not their systems for generating MCMCs.

NIMBLE extends BUGS by:

- 1. allowing you to write new functions and distributions and use them in BUGS models;
- 2. allowing you to define multiple models in the same code using conditionals evaluated when the BUGS code is processed;
- 3. supporting a variety of more flexible syntax such as R-like named parameters and more general algebraic expressions.

By supporting new functions and distributions, NIMBLE makes BUGS an extensible language, which is a major departure from previous packages that implement BUGS.

We adopted BUGS because it has been so successful, with over 30,000 users by the time they stopped counting [?]. Many papers and books provide BUGS code as a way to document their statistical models. We describe NIMBLE's version of BUGS later. The web sites for WinBUGS, OpenBUGS and JAGS provide other useful documntation on writing models in BUGS. For the most part, if you have BUGS code, you can try NIMBLE.

NIMBLE does several things with BUGS code:

- 1. NIMBLE creates a model definition object that knows everything about the variables and their relationships written in the BUGS code. Usually you'll ignore the model definition and let NIMBLE's default options take you directly to the next step.
- 2. NIMBLE creates a model object¹. This can be used to manipulate variables and operate the model from R. Operating the model includes calculating, simulating, or querying the log probability value of model nodes. These basic capabilities, along with the tools to query model structure, allow one to write programs that use the model and adapt to its structure.
- 3. When you're ready, NIMBLE can generate customized C++ code representing the model, compile the C++, load it back into R, and provide a new model object that uses the compiled model internally. We use the word "compile" to refer to all of these steps together.

As an example of how radical a departure NIMBLE is from previous BUGS implementations, consider a situation where you want to simulate new data from a model written in BUGS code. Since NIMBLE creates model objects that you can control from R, simulating new data is trivial. With previous BUGS-based packages, this isn't possible.

More information about specifying and manipulating models is in Chapters ?? and ??.

3.2 nimbleFunctions for writing algorithms

NIMBLE provides *nimbleFunctions* for writing functions that can (but don't have to) use BUGS models. The main ways they can use BUGS models are:

- 1. inspecting the structure of a model, such as determining the dependencies between variables, in order to do the right calculations with each model;
- 2. accessing values of the model's variables;
- 3. controlling execution of the model's probability calculations or corresponding simulations;
- 4. managing *modelValues* data structures for multiple sets of model values and probabilities.

In fact, the calculations of the model are themselves constructed as nimbleFunctions, as are the algorithms provided in NIMBLE's algorithm library².

Programming with nimbleFunctions involves a fundamental distinction between two stages of processing:

1. A setup function within a nimbleFunction gives the steps that need to happen only once for each new situation (e.g., for each new model). Typically such steps include inspecting the model's variables and their relationships, such as determining which parts of a model will need to be calculated for a MCMC sampler. setup functions are executed in R and never compiled.

¹or multiple model objects

²That's why it's easy to use new functions and distributions written as nimbleFunctions in BUGS code.

2. One or more *run* functions within a nimbleFunction give steps that need to happen multiple times using the results of the *setup* function, such as the iterations of a MCMC sampler. Formally, *run* code is written in the NIMBLE language, which you can think of as a small subset of R along with features for operating models and related data structures. The NIMBLE language is what the NIMBLE compiler can automatically turn into C++ as part of a compiled nimbleFunction.

What NIMBLE does with a nimbleFunction is similar to what it does with a BUGS model:

- 1. NIMBLE creates a working R version of the nimbleFunction. This is most useful for debugging.
- 2. When you are ready, NIMBLE can generate C++ code, compile it, load it back into R and give you new objects that use the compiled C++ internally. Again, we refer to these steps all together as "compilation." The behavior of compiled nimbleFunctions is usually very similar, but not identical, to their uncompiled counterparts.

More about writing algorithms is in Chapter ??.

If you are familiar with object-oriented programming, you can think of a nimbleFunction as a class definition. The *setup* function initializes a new object and *run* functions are class methods. Member data are determined automatically as the objects from a *setup* function needed in *run* functions. If no **setup** function is provided, the nimbleFunction corresponds to a simple (compilable) function rather than a class.

3.3 The NIMBLE algorithm library

In Version 0.6-3, the NIMBLE algorithm library includes:

- 1. MCMC with samplers including conjugate (Gibbs), slice, adaptive random walk (with options for reflection or sampling on a log scale), adaptive block random walk, and elliptical slice. You can modify sampler choices and configurations from R before compiling the MCMC. You can also write new samplers as nimbleFunctions.
- 2. A set of particle filter (sequential Monte Carlo) methods including a basic bootstrap filter, auxiliary particle filter, and Liu-West filter.
- 3. An ascent-based Monte Carlo Expectation Maximization (MCEM) algorithm.
- 4. A variety of basic algorithms that can be used as programming tools for larger algorithms. These include:
 - (a) A likelihood function for arbitrary parts of any model.
 - (b) Functions to simulate one or many sets of values for arbitrary parts of any model.
 - (c) Functions to calculate the summed log probability (density) for one or many sets of values for arbitrary parts of any model along with stochastic dependencies in the model structure.
 - (d) Other functions described in Chapter ??.

Add references where appropriate...

CJP - so is the only difference between calculate and calcNodes (and similarly for simNodes, getLogProbNodes) that calcNodes etc. include operations on dependencies? If so, I propose we extend calculate, simulate, getLogProb to have an argument includeDependencies with default FALSE. PdV - There were a couple of things conflated here, but the question is still valid. The suggestion seems like a slippery slope towards trying to make calculate (etc.) smarter, which could get away from the core design ideas.

More about the NIMBLE algorithm library is in Chapter ??.

Chapter 4

Installing NIMBLE

4.1 Requirements to run NIMBLE

You can run NIMBLE on any of the three common operating systems: Linux, Mac OS X, or Windows.

The following are required to run NIMBLE.

- 1. R, of course.
- 2. The igraph and coda R packages.
- 3. A working C++ compiler that NIMBLE can use from R on your system. There are standard open-source C++ compilers that the R community has already made easy to install. See Section ?? for instructions. You don't need to know anything about C++ to use NIMBLE. This must be done before installing NIMBLE.

NIMBLE also uses a couple of C++ libraries that you don't need to install, as they will already be on your system or are provided by NIMBLE.

- 1. The Eigen C++ library for linear algebra. This comes with NIMBLE, or you can use your own copy.
- 2. The BLAS and LAPACK numerical libraries. These come with R.

Most fairly recent versions of these requirements should work.

4.2 Installing a C++ compiler for NIMBLE to use

NIMBLE needs a C++ compiler and the standard utility make in order to generate and compile C++ for models and algorithms. ¹

¹This differs from most packages, which might need a C++ compiler only when the package is built. If you normally install R packages using install.packages on Windows or OS X, the package arrives already built to your system.

4.2.1 OS X

On OS X, you should install *Xcode*. The command-line tools, which are available as a smaller installation, should be sufficient. This is freely available from the Apple developer site and the App Store.

PdV – Is this link to App Store really stable?

For the compiler to work correctly for OS X, the installed R must be for the correct version of OS X. For example, R for Snow Leopard (OS X version 10.8) will attempt to use an incorrect C++ compiler if the installed OS X is actually version 10.9 or higher.

PdV – rewrote this – need to check example.

In the somewhat unlikely event you want to install from the source package rather than the CRAN binary package, the easiest approach is to use the source package provided at R-nimble.org. If you do want to install from the source package provided by CRAN, you'll need to install this gfortran package.

4.2.2 Linux

On Linux, you can install the GNU compiler suite (gcc/g++). You can use the package manager to install pre-built binaries. On Ubuntu, the following command will install or update make, gcc and libc.

sudo apt-get install build-essential

4.2.3 Windows

On Windows, you should download and install Rtools.exe available from http://cran.r-project.org/bin/windows/Rtools/. Select the appropriate executable corresponding to your version of R (and follow the urge to update your version of R if you notice it is not the most recent). This installer leads you through several "pages". We think you can accept the defaults with one exception: check the PATH checkbox (page 5) so that the installer will add the location of the C++ compiler and related tools to your system's PATH, ensuring that R can find them. After you click "Next", you will get a page with a window for customizing the new PATH variable. You shouldn't need to do anything there, so you can simply click "Next" again.

The checkbox for the "R 2.15+ toolchain" (page 4) must be checked (in order to have gcc/g++, make, etc. installed). This should be checked by default.

4.3 Installing the NIMBLE package

Since NIMBLE is an R package, you can install it in the usual way, via install.packages('nimble') in R or using the R CMD INSTALL method if you download the package source directly.

NIMBLE can also be obtained from the NIMBLE website. To install from our website, please see our Download page for the specific invocation of install.packages.

4.3.1 Problems with installation

We have tested the installation on the three commonly used platforms – OS X, Linux, Windows². We don't anticipate problems with installation, but we want to hear about any and help resolve them. Please post about installation problems to the nimble-users Google group or email nimble.stats@gmail.com.

Add links to nimble-users and nimble.stats@gmail.com

4.4 Customizing your installation

For most installations, you can ignore low-level details. However, there are some options that some users may want to utilize.

4.4.1 Using your own copy of Eigen

NIMBLE uses the Eigen C++ template library for linear algebra. Version 3.2.1 of Eigen is included in the NIMBLE package and that version will be used unless the package's configuration script finds another version on the machine. This works well, and the following is only relevant if you want to use a different (e.g., newer) version.

The configuration script looks in the standard include directories, e.g. /usr/include and /usr/local/include for the header file Eigen/Dense. You can specify a particular location in either of two ways:

- 1. Set the environment variable EIGEN_DIR before installing the R package, e.g., export EIGEN_DIR=/usr/include/eigen3 in the bash shell.
- 2. Use R CMD INSTALL --configure-args='--with-eigen=/path/to/eigen' nimble_VERSION.tar.gz

install.packages("nimble", configure.args = "--with-eigen=/path/to/eigen").

In these cases, the directory should be the full path to the directory that contains the Eigen directory, e.g. /usr/include/eigen3. It is not the full path to the Eigen directory itself, i.e., NOT /usr/include/eigen3/Eigen.

4.4.2 Using libnimble

NIMBLE generates specialized C++ code for user-specified models and nimbleFunctions. This code uses some NIMBLE C++ library classes and functions. By default, on Linux the library code is compiled once as a linkable library - libnimble.so. This single instance of the library is then linked with the code for each generated model. In contrast, the default for Windows and Mac OS X is to compile the library code as a static library - libnimble.a - that is compiled into each model's and each algorithm's own dynamically loadable library (DLL). This does repeat the same code across models and so occupies more memory. There may be a marginal speed advantage. If one would like to enable the linkable library in place of the

²We've tested NIMBLE on Windows 7, 8 and 10

static library (do this only on Mac OS X and other UNIX variants and not on Windows), one can install the source package with the configuration argument --enable-dylib set to true. First obtain the NIMBLE source package (which will have the extension .tar.gz from our website and then install as follows, replacing VERSION with the appropriate version number:

R CMD INSTALL --configure-args='--enable-dylib=true' nimble_VERSION.tar.gz

4.4.3 LAPACK and BLAS

NIMBLE also uses BLAS and LAPACK for some of its linear algebra (in particular calculating density values and generating random samples from multivariate distributions). NIMBLE will use the same BLAS and LAPACK installed on your system that R uses. Note that a fast (and where appropriate, threaded) BLAS can greatly increase the speed of linear algebra calculations. See Section A.3.1 of the R Installation and Administration manual available on CRAN for more details on providing a fast BLAS for your R installation.

4.4.4 Customizing compilation of the NIMBLE-generated C++

For each model or nimbleFunction, NIMBLE can generate and compile C++. To compile generated C++, NIMBLE makes system calls starting with R CMD SHLIB and therefore uses the regular R configuration in \${R_HOME}/etc\${R_ARCH}/Makeconf. NIMBLE places a *Makevars* file in the directory in which the code is generated, and R CMD SHLIB uses this file as usual.

In all but specialized cases, the general compilation mechanism will suffice. However, one can customize this. One can specify the location of an alternative *Makevars* (or *Makevars.win*) file to use. Such an alternative file should define the variables PKG_CPPFLAGS and PKG_LIBS. These should contain, respectively, the pre-processor flag to locate the NIMBLE include directory, and the necessary libraries to link against (and their location as necessary), e.g., *Rlapack* and *Rblas* on Windows, and *libnimble*.

Advanced users can also change their default compilers by editing the *Makevars* file, see Section 1.2.1 of the Writing R Extensions manual available on CRAN.

PdV – Can we combine the final Makevars point, which I moved here, with the previous paragraph.

Use of this file allows users to specify additional compilation and linking flags. See the Writing R Extensions manual for more details of how this can be used and what it can contain.

Part II Models in NIMBLE

Chapter 5

Writing models in NIMBLE's dialect of BUGS

Models in NIMBLE are written using a variation on the BUGS language. From BUGS code, NIMBLE creates a model object. This chapter describes NIMBLE's version of BUGS. The next chapter explains how to build and manipulate model objects.

5.1 Comparison to BUGS dialects supported by Win-BUGS, OpenBUGS and JAGS

Many users will come to NIMBLE with some familiarity with WinBUGS, OpenBUGS and/or JAGS, so we start by summarizing how NIMBLE is similar and different to those before documenting NIMBLE's version of BUGS more completely. In general, NIMBLE aims to be compatible with the original BUGS language and also JAGS' version. However, at this point, there are some features not supported by NIMBLE, and there are some extensions that are planned but not implemented.

5.1.1 Supported features of BUGS and JAGS

- 1. Stochastic and deterministic node declarations.
- 2. Most univariate and multivariate distributions.
- 3. Link functions.
- 4. Most mathematical functions.
- 5. "for" loops for iterative declarations.
- 6. Arrays of nodes up to 4 dimensions.
- 7. Truncation and censoring as in JAGS using the T() notation and dinterval.

5.1.2 NIMBLE's Extensions to BUGS and JAGS

NIMBLE extends the BUGS language in the following ways:

¹NIMBLE calls non-stochastic nodes "deterministic", whereas BUGS calls them "logical". NIMBLE uses "logical" in the way R does, to refer to boolean (TRUE/FALSE) variables.

- 1. User-defined functions and distributions written as nimbleFunctions can be used in model code. See Chapter ??.
- 2. Multiple parameterizations for distributions, similar to those in R, can be used.
- 3. Named parameters for distributions and functions, similar to R function calls, can be used.
- 4. Linear algebra, including for vectorized calculations of simple algebra, can be used in deterministic declarations.
- 5. Distribution parameters can be expressions, as in JAGS but not in WinBUGS. Caveat: parameters to *multivariate* distributions (e.g., dmnorm) cannot be expressions.
- 6. Alternative models can be defined from the same model code by using if-then-else statements that are evaluated when the model is defined.
- 7. More flexible indexing of vector nodes within larger variables is allowed. For example one can place a multivariate normal vector arbitrarily within a higher-dimensional object, not just in the last index.
- 8. More general constraints can be declared using dconstraint, which extends the concept of JAGS' dinterval.
- 9. Link functions can be used in stochastic, as well as deterministic, declarations.²
- 10. Data values can be reset, and which parts of a model are flagged as data can be changed, allowing one model to be used for different data sets without rebuilding the model each time.

5.1.3 Not-yet-supported features of BUGS and JAGS

In this release, the following are not supported.

- 1. Stochastic indices (but see Chapter ?? for a description of how you could handle some cases with user-defined functions or distributions).
- 2. The appearance of the same node on the left-hand side of both a \leftarrow and a \sim declaration (used in WinBUGS for data assignment for the value of a stochastic node).
- 3. Multivariate nodes must appear with brackets, even if they are empty. E.g., x cannot be multivariate but x[] or x[2:5] can be.
- 4. NIMBLE generally determines the dimensionality and sizes of variables from the BUGS code. However, when a variable appears with blank indices, such as in x.sum <-sum(x[]), and if the dimensions of the variable are not clearly defined in other declarations, NIMBLE currently requires that the dimensions of x be provided when the model object is created (via nimbleModel).

5.2 Writing models

Here we introduce NIMBLE's version of BUGS. The WinBUGS, OpenBUGS and JAGS manuals are also useful resources for writing BUGS models, including many examples.

²But beware of the possibility of needing to set values for "lifted" nodes created by NIMBLE.

5.2.1 Declaring stochastic and deterministic nodes

BUGS is a declarative language for graphical (or hierarchical) models. Most programming languages are imperative, which means a series of commands will be executed in the order they are written. A declarative language like BUGS is more like building a machine before using it. Each line declares that a component should be plugged into the machine, but it doesn't matter in what order they are declared as long as all the right components are plugged in by the end of the code.

The machine in this case is a graphical model³. A node (sometimes called a vertex) holds one value, which may be a scalar or a vector. Edges define the relationships between nodes. A huge variety of statistical models can be thought of as graphs.

For example, a simple linear regression with four observations is shown in figure ??. Each observation, y[i], is a node whose edges say that it follows a normal distribution depending on a predicted value, predicted.y[i], and standard deviation, sigma, which are each nodes. Each predicted value is a node whose edges say how it is calculated from slope, intercept, and one value of an explanatory variable, x[i], which are each nodes.

This graph is created from the following BUGS code:

In this code, stochastic relationships are declared with "~" and deterministic relationships are declared with "<-". For example, each y[i] follows a normal distribution with mean predicted.y[i] and standard deviation sigma. Each predicted.y[i] is the result of intercept + slope * x[i]. The for-loop yields the equivalent of writing four lines of code, each with a different value of i. It does not matter in what order the nodes are declared. Imagine that each line of code draws part of figure ??, and all that matters is that the everything gets drawn in the end. Available distributions, default and alternative parameterizations, and functions are listed in section ??

An equivalent graph can be created by this BUGS code:

In this case, the predicted.y[i] nodes in figure ?? will be created automatically by NIMBLE and will have a different name, generated by NIMBLE.

5.2.2 More kinds of BUGS declarations

Here are some examples of valid lines of BUGS code. This code does not describe a sensible or complete model, and it includes some arbitrary indices (e.g. mvx[8:10, i]) to illustrate flexibility. Instead the purpose of each line is to illustrate a feature of NIMBLE's version of BUGS.

```
{
    ## 1. normal distribution with BUGS parameter order
    x ~ dnorm(a + b * c, tau)
    ## 2. normal distribution with a named parameter
    y ~ dnorm(a + b * c, sd = sigma)
    ## 3. For-loop and nested indexing
    for(i in 1:N) {
```

³Technically, a directed acyclic graph

```
for(j in 1:M[i]) {
        z[i,j] ~ dexp(r[ blockID[i] ])
    }

## 4. multivariate distribution with arbitrary indexing
for(i in 1:3)
        mvx[8:10, i] ~ dmnorm(mvMean[3:5], cov = mvCov[1:3, 1:3, i])

## 5. User-provided distribution

w ~ dMyDistribution(hello = x, world = y)

## 6. Simple deterministic node
d1 <- a + b

## 7. Vector deterministic node with matrix multiplication
d2[] <- A[ , ] %*% mvMean[1:5]

## 8. Deterministic node with user-provided function
d3 <- foo(x, hooray = y)
}</pre>
```

When a variable appears only on the right-hand side, it must be provided in the data or constants argument to nimbleModel, covered in chapter ??.

Notes on the comment-numbered lines are:

- 1. x follows a normal distribution with mean a + b*c and precision tau (default BUGS second parameter for dnorm).
- 2. y follows a normal distribution with the same mean as x but a named standard deviation parameter instead of a precision parameter (sd = 1/sqrt(precision)).
- 3. z[i, j] follows an exponential distribution with parameter r[blockID[i]]. This shows how for-loops can be used for indexing of variables containing multiple nodes. Nested indexing can be used if the nested indices (blockID) are provided as constants when the model is defined (via nimbleModel or readBUGSmodel). Variables that define for-loop indices (N and M) must be provided as constants.
- 4. The arbitrary block mvx[8:10, i] follows a multivariate normal distribution, with a named covariance matrix instead of BUGS' default of a precision matrix. As in R, curly braces for for-loop contents are only needed if there is more than one line.
- 5. w follows a user-defined distribution. See Chapter ??.
- 6. d1 is a scalar deterministic node that, when calculated, will be set to a + b.
- 7. d2 is a vector deterministic node using matrix multiplication in R's syntax.
- 8. d3 is a deterministic node using a user-provided function. See Chapter ??.

More about indexing

Examples of allowed indexing include:

- x[i] # a single index
- x[i:j] # a range of indices
- x[i:j,k:1] # multiple single indices or ranges for higher dimensional arrays

- x[i:j,] # blank indices indicating the full range
- x[3*i+7] # computed indices
- x[(3*i):(5*i+1)] # computed lower and upper ends of an index range

NIMBLE does not allow multivariate nodes to be used without square brackets, which is an incompatibility with JAGS. Therefore a statement like xbar <- mean(x) in JAGS must be converted to xbar <- mean(x[]) (if x is a vector) or xbar <- mean(x[,]) (if x is a matrix) for NIMBLE. ⁴. Ways to provide NIMBLE with dimensions of x in such cases, if necessary, is covered in section ??.

Generally NIMBLE supports R-like linear algebra expressions and attempts to follow the same rules as R about dimensions (although in some cases this is not possible). For example, x[1:3] %*% y[1:3] converts x[1:3] into a row vector and thus computes the inner product, which is returned as a 1 × 1 matrix (use inprod to get it as a scalar, which it typically easier). Like in R, a scalar index will result in dropping a dimension unless the argument drop=FALSE is provided. For example, mymatrix[i, 1:3] will be a vector of length 3, but mymatrix[i, 1:3, drop=FALSE] will be a 1 × 3 matrix. More about indexing and dimensions is discussed in section (??).

5.2.3 Vectorized versus scalar declarations

Suppose you need nodes logY[i] that should be the log of the corresponding Y[i], say for i from 1 to 10. Conventionally this would be created with a for loop:

```
{
    for(i in 1:10) {
        logY[i] <- log(Y[i])
    }
}</pre>
```

Since NIMBLE supports R-like algebraic expressions, an alternative in NIMBLE's dialect of BUGS is to use a vectorized declaration like this:

```
{
    logY[1:10] <- log(Y[1:10])
}</pre>
```

Supported functions from BUGS and JAGS are listed in Section ??. Support for more general R expressions is covered in Chapter ?? about programming with nimbleFunctions.

There is an important difference between the models that are created by the above two methods. The first creates 10 scalar nodes, logY[1] ... logY[10]. The second creates one vector node, logY[1:10]. If each logY[i] is used separately by an algorithm, it may be beneficial to declare them as scalars. If they are all used together, it will often make sense to declare them as a vector.

⁴In nimbleFunctions explained in later chapters, square brackets with blank indices are not necessary for multivariate objects.

5.2.4 Available distributions

Distributions

NIMBLE supports most of the distributions allowed in BUGS and JAGS. Table ?? lists the distributions that are currently supported, with their default parameterizations, which match those of BUGS⁵. NIMBLE also allows one to use alternative parameterizations for a variety of distributions as described next. See section ?? to learn how to write new distributions using nimbleFunctions.

Table 5.1: Distributions with their default order of parameters. The value of the random variable is denoted by x.

	Name Usage Density	Lower Upper			
Bernoulli	dbern(prob = p)	$p^x (1-p)^{1-x}$	0	1	
D 4	0	a 1/a) b 1	0	1	
Beta	dbeta(shape1 = a, shape2 = b) $a > 0, b > 0$	$\frac{x^{a-1}(1-x)^{b-1}}{\beta(a,b)}$	0	1	
Binomial	a > 0, a > 0 dbin(prob = p, size = n)	/ ² (²² , ²)	0	n	
Dinomai	0	$\binom{n}{x}p^x(1-p)^{n-x}$	U	16	
Categorical	<pre>dcat(prob = p)</pre>	p_x	1	N	Ţ
	$p \in (\mathbb{R}^+)^N$	$rac{p_x}{\sum_i p_i}$			
Chi-square	dchisq(df = k)	$\frac{x^{\frac{k}{2}-1}\exp(-x/2)}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})_{\alpha^{\alpha_j}-1}}$	0		
	k > 0	$\frac{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}{1}$			
Dirichlet	$ddirch(alpha = \alpha)$	$\Gamma(\sum_{\alpha}) \prod_{j} x_{j}^{\alpha_{j}-1}$	0		
	$\alpha_j \ge 0$	$\Gamma(\sum_i \alpha_i) \prod_j \frac{x_j}{\Gamma(\alpha_j)}$			
Exponential	$dexp(rate = \lambda)$	Y (Y)	0		
•	$\lambda > 0$	$\lambda \exp(-\lambda x)$			
Gamma	$dgamma(shape = r, rate = \lambda)$	$\frac{\lambda^r x^{r-1} \exp(-\lambda x)}{\Gamma(r)}$	0		
	$\lambda > 0, r > 0$	- (·)			
Logistic	dlogis(location = μ , rate = τ)	$\frac{\tau \exp\{(x-\mu)\tau\}}{\left[1+\exp\{(x-\mu)\tau\}\right]^2}$			
	$\tau > 0$	$[1 + \exp\{(x - \mu)\tau\}]^2$			
Log-normal	dlnorm(meanlog = μ , taulog = τ) $\tau > 0$	$\left(\frac{\tau}{2\pi}\right)^{\frac{1}{2}} x^{-1} \exp\left\{-\tau (\log(x) - \mu)^2/2\right\}$	0		
Multinomial	<pre>dmulti(prob = p, size = n)</pre>	$p_i^{x_j}$			
	$\sum_{i} x_{i} = n$	$n!\prod_j rac{p_j^{x_j}}{x_j!}$			
Multivariate	$\frac{-1}{\text{dmnorm}}$ (mean = μ , prec = Λ)	$(2\pi)^{-\frac{d}{2}} \Lambda ^{\frac{1}{2}}\exp\{-\frac{(x-\mu)^T\Lambda(x-\mu)}{2}\}$			
normal	Λ positive definite	$(2\pi)^{-2} \Lambda ^2\exp\{-\frac{\sqrt{2\pi}}{2}\}$			
Multivariate	$\mathtt{dmvt}(\mathtt{mu} = \mu, \mathtt{prec} = \Lambda, \mathtt{df} = \nu)$	$\frac{\Gamma(\frac{\nu+d}{2})}{\Gamma(\frac{\nu}{2})(\nu\pi)^{d/2}} \Lambda ^{1/2}\left(1+\frac{(x-\mu)^T\Lambda(x-\mu)}{\nu}\right)^{-\frac{1}{2}}$	$\frac{\nu+d}{2}$		
Student t	Λ positive definite	$\Gamma(\frac{\nu}{2})(\nu\pi)^{d/2} \Lambda $ (1 + $\frac{\nu}{\nu}$)	2		
Negative	<pre>dnegbin(prob = p, size = r)</pre>	$\binom{x+r-1}{x} p^r (1-p)^x$		0	
binomial	0	$\begin{pmatrix} x \end{pmatrix} P \begin{pmatrix} 1 \end{pmatrix} P$			
Normal	$dnorm(mean = \mu, tau = \tau)$	$\left(\frac{\tau}{2\pi}\right)^{\frac{1}{2}}\exp\{-\tau(x-\mu)^2/2\}$			

⁵Note that the same distributions are available for writing nimbleFunctions, but in that case the default parameterizations and function names match R's when possible. Please see Section ?? for how to use distributions in nimbleFunctions.

Table 5.1: Distributions with their default order of parameters. The value of the random variable is denoted by x.

Alternative parameterizations for distributions

NIMBLE allows one to specify distributions in model code using a variety of parameterizations, including the BUGS parameterizations. Available parameterizations is listed in Table ??. To understand how NIMBLE handles alternative parameterizations, it is useful to distinguish three cases, using the gamma distribution as an example:

- 1. A canonical parameterization is used directly for computations⁶. For gamma, this is (shape, scale).
- 2. The BUGS parameterization is the one defined in the original BUGS language. For gamma, this is (shape, rate).
- 3. An alternative parameterization is one that must be converted into the canonical parameterization. For gamma, NIMBLE provides both (shape, rate) and (mean, sd) parameterization and creates nodes to calculate (shape, scale) from either (shape, rate) or (mean, sd). In the case of gamma, the BUGS parameterization is also an alternative parameterization.

Since NIMBLE provides compatibility with existing BUGS and JAGS code, the order of parameters places the BUGS parameterization first. For example, the order of parameters for dgamma is dgamma(shape, rate, scale, mean, sd). Like R, if parameter names are not given, they are taken in order, so that (shape, rate) is the default. This happens to match R's order of parameters, but it need not. If names are given, they can be given in any order. NIMBLE knows that rate is an alternative to scale and that (mean, sd) are an alternative to (shape, scale or rate).

⁶Usually this is the parameterization in the Rmath header of R's C implementation of distributions.

Table 5.2: Distribution parameterizations allowed in NIMBLE. The first column indicates the supported parameterizations for distributions given in Table ??. The second column indicates the relationship to the *canonical* parameterization used in NIMBLE.

```
Parameterization
                                  NIMBLE re-parameterization
                                       dbin(size = 1, prob)
dbern(prob)
dbeta(shape1, shape2)
                                       canonical
dbeta(mean, sd)
                                       dbeta(shape1 = mean^2 * (1-mean) / sd^2 - mean,
                                       shape2 = mean * (1 - mean)^2 / sd^2 + mean - 1)
dbin(prob, size)
                                       canonical
dcat(prob)
                                       canonical
dchisq(df)
                                       canonical
ddirch(alpha)
                                       canonical
dexp(rate)
                                       canonical
dexp(scale)
                                       dexp(rate = 1/scale)
dgamma(shape, scale)
                                       canonical
dgamma(shape, rate)
                                       dgamma(shape, scale = 1 / rate)
dgamma(mean, sd)
                                       dgamma(shape = mean^2/sd^2, scale = sd^2/mean)
dlogis(location, scale)
                                       canonical
dlogis(location, rate)
                                       dlogis(location, scale = 1 / rate
dlnorm(meanlog, sdlog)
                                       canonical
dlnorm(meanlog, taulog)
                                       dlnorm(meanlog, sdlog = 1 / sqrt(taulog)
dlnorm(meanlog, varlog)
                                       dlnorm(meanlog, sdlog = sqrt(varlog)
dmulti(prob, size)
                                       canonical
dmnorm(mean, cholesky, prec_param=1)
                                       canonical (precision)
                                       canonical (covariance)
dmnorm(mean, cholesky, prec_param=0)
                                       dmnorm(mean, cholesky = chol(prec), prec_param=1)
dmnorm(mean, prec)
dmnorm(mean, cov)
                                       dmnorm(mean, cholesky = chol(cov), prec_param=0)
dmvt(mu, cholesky, df, prec_param=1)
                                       canonical (precision/inverse scale)
dmvt(mu, cholesky, df, prec_param=0)
                                       canonical (scale)
dmvt(mu, prec, df)
                                       dmvt(mu, cholesky = chol(prec), df, prec_param=1)
dmvt(mu, scale, df)
                                       dmvt(mu, cholesky = chol(scale), df, prec_param=0)
dnegbin(prob, size)
                                       canonical
dnorm(mean, sd)
                                       canonical
dnorm(mean, tau)
                                       dnorm(mean, sd = 1 / sqrt(var))
dnorm(mean, var)
                                       dnorm(mean, sd = sqrt(var))
dpois(lambda)
                                       canonical
dt(mu, sigma, df)
                                       canonical
dt(mu, tau, df)
                                       dt(mu, sigma = 1 / sqrt(tau), df)
dt(mu, sigma2, df)
                                       dt(mu, sigma = sqrt(sigma2), df)
                                       canonical
dunif(min, max)
dweib(shape, scale)
                                       canonical
dweib(shape, rate)
                                       dweib(shape, scale = 1 / rate)
dweib(shape, lambda)
                                       dweib(shape, scale = lambda^(- 1 / shape)
dwish(R, df)
                                       dwish(cholesky = chol(R), df, scale_param = 0)
```

Table 5.2: Distribution parameterizations allowed in NIMBLE. The first column indicates the supported parameterizations for distributions given in Table ??. The second column indicates the relationship to the *canonical* parameterization used in NIMBLE.

Note that for multivariate normal, multivariate t, and Wishart, the canonical parameterization uses the Cholesky decomposition of one of the precision/inverse scale or covariance/scale matrix. For example, for the multivariate normal, if prec_param=TRUE, the cholesky argument is treated as the Cholesky decomposition of a precision matrix. Otherwise it is treated as the Cholesky decomposition of a covariance matrix.

In addition, NIMBLE supports alternative distribution names, known as aliases, as in JAGS, as specified in Table ??.

Distribution	Canonical name	Alias
Binomial	dbin	dbinom
Chi-square	dchisq	dchisqr
Dirichlet	ddirch	ddirich
Multinomial	dmulti	dmultinom
Negative binomial	dnegbin	dnbinom
Weibull	dweib	dweibull
Wishart	dwish	dwishart

Table 5.3: Distributions with alternative names (aliases).

We plan to, but do not currently, include the following distributions as part of core NIMBLE: double exponential (Laplace), beta-binomial, Dirichlet-multinomial, F, inverse gamma, Pareto, inverse Wishart, or forms of the multivariate t other than the standard one provided.

5.2.5 Available BUGS language functions

Tables ??-?? show the available operators and functions. This table needs updating.

For the most part NIMBLE supports the functions used in BUGS and JAGS, with exceptions indicated in the table. Additional functions provided by NIMBLE are also listed. Note that we provide distribution functions for use in calculations, namely the "p", "q", and "d" functions. See Section ?? for details on the syntax for using distribution functions as functions in deterministic calculations, as only some parameterizations are allowed and the names of some distributions differ from those used to define stochastic nodes in a model.

Table 5.4: Functions operating on scalars, many of which can operate on each element (component-wise) of vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

Us	sage Description	Comments	Status Acce vector	_
x y, x & y	logical OF	R() and $AND(a)$	&)	v
!x	logical not		,	v
x > y, x >= y	greater th	an (and or equa	l to)	v
x < y, x <= y	less than	(and or equal to)	v
x != y, x == y	(not) equa	als		v
x + y, x - y, x * y	componen	t-wise operators	s mix of s	scalar and vector ok v
x / y,	componen	t-wise division	vector a	c and scalar y ok
x^y, pow(x, y)	power		x^y ; vect	or x and scalar y ok \bullet
x %% y	modulo (r	emainder)		v
min(x1, x2), max(x1, x2	2) min. (max	c.) of two scalar	S	v
exp(x)	exponenti	al		v
log(x)	natural lo	garithm		v
sqrt(x)	square roo	ot		v
abs(x)	absolute v	ralue		v
step(x)	step funct	ion at 0	0 if $x <$	0, 1 if x > 0
equals(x, y)	equality o	f two scalars	1 if $x =$	= y, 0 if x! = y
cube(x)	third power	er	x^3	v
sin(x), cos(x), tan(x)	trigonome	tric functions		v
asin(x), acos(x), atan(x) inverse tri	gonometric func	etions	•
asinh(x), acosh(x), ata	nh(x) inv. hyper	bolic trig. func	tions	v
logit(x)	logit		$\log(x/(1$	(1-x)
<pre>ilogit(x), expit(x)</pre>	inverse log	git	$\exp(x)/$	$(1 + \exp(x)) \qquad \qquad \bullet$
<pre>probit(x)</pre>	probit (Ga	aussian quantile	$\Phi^{-1}(x)$	v
<pre>iprobit(x), phi(x)</pre>	inverse pre	obit (Gaussian	CDF) $\Phi(x)$	v
cloglog(x)	compleme	ntary log log	$\log(-\log$	g(1-x)
icloglog(x)	inverse co	mplementary lo	$g \log 1 - \exp i$	$(-\exp(x))$
<pre>ceiling(x)</pre>	ceiling fur	action	$\lceil (x) \rceil$	v

Table 5.4: Functions operating on scalars, many of which can operate on each element (component-wise) of vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

_	Usage	Description	Comments	Status	Accepts			
=					vector input			
floor(x)		floor functi	ion		$\lfloor (x) \rfloor$		✓	✓
round(x)		round to in	nteger		2, 7,2		\checkmark	✓
trunc(x)		truncation	to integer				\checkmark	\checkmark
<pre>lgamma(x), loggam(x)</pre>		log gamma	function		$\log \Gamma(x)$		\checkmark	✓
log1p(x)		$\log \text{ of } 1 +$	x		$\log(1+x)$		\checkmark	\checkmark
lfactorial(x), logfac	ct(x)	log factoria	al		$\log x!$		\checkmark	\checkmark
log1p(x)		log one-plu	IS		log(x+1)		\checkmark	\checkmark
qDIST(x, PARAMS)		"q" distrib	ution function	ns	canonical parameter	erization	✓	
pDIST(x, PARAMS)		"p" distrib	ution function	ns	canonical parameter	erization	✓	
rDIST(1, PARAMS)		"r" distrib	ution function	ns	canonical parameter	erization	✓	
dDIST(x, PARAMS)		"d" distrib	ution function	ns	canonical paramete	erization	\checkmark	
sort(x)								
rank(x, s)								
ranked(x, s)								
order(x)								

Table 5.5: Functions operating on vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

	Usage Description Comments Status	
		-
inverse(x)	matrix inverse	x symmetric, positive definite
chol(x)	matrix Cholesky factorization	x symmetric, positive definite
eigen(x)	matrix eigendecomposition	x symmetric, returns a nimbleList
svd(x)	matrix singular value decomposition	returns a nimbleList
t(x)	matrix transpose	x^{\top}
x%*%y	matrix multiply	xy; x, y conformant
<pre>inprod(x, y)</pre>	dot product	$x^{\top}y$; x and y vectors
solve(x, y)	solve system of equations	$x^{-1}y$; y matrix or vector
<pre>forwardsolve(x, y)</pre>	solve lower-triangular system of equations	$x^{-1}y; x $ lower-triangular
<pre>backsolve(x, y)</pre>	solve upper-triangular system of equations	$x^{-1}y$; x upper-triangular
logdet(x)	log matrix determinant	$\log x $
asRow(x)	convert vector \mathbf{x} to 1-row matrix	sometimes automatic
asCol(x)	convert vector \mathbf{x} to 1-column matrix	sometimes automatic
sum(x)	sum of elements of x	•
mean(x)	mean of elements of x	•
sd(x)	standard deviation of elements of \mathbf{x}	•
<pre>prod(x)</pre>	product of elements of x	•
min(x), max(x)	min. (max.) of elements of x	•
<pre>pmin(x, y), pmax(x, y) interp.lin(x, v1, v2)</pre>	vector of mins (maxs) of elements of \boldsymbol{x} and \boldsymbol{y} linear interpolation	•

5.2.6 Available link functions

NIMBLE allows the link functions listed in Table ??.

Link function Description Inverse Range Complementary log log y <- icloglog(x) cloglog(y) < - x0 < y < 1 $v \leftarrow exp(x)$ $log(y) \leftarrow x$ Log 0 < y $logit(y) \leftarrow x$ 0 < y < 1 y <- expit(x) Logit probit(y) <- x</pre> Probit 0 < y < 1y <- iprobit(x)</pre>

Table 5.6: Link functions

Link functions are specified as functions applied to a node on the left hand side of a BUGS expression. To handle link functions in deterministic declarations, NIMBLE converts the declaration into an equivalent inverse declaration. For example, log(y) <- x is converted into y <- exp(x). In other words, the link function is just a simple variant for conceptual clarity.

To handle link functions in a stochastic declaration, NIMBLE does some processing that inserts an additional node into the model. For example, the declaration logit(p[i]) ~ dnorm(mu[i],1), is equivalent to the follow two declarations:

- logit_p[i] \sim dnorm(mu[i], 1),
- p[i] <- expit(logit_p[i])

where expit is the inverse of logit.

Note that NIMBLE does not provide an automatic way of initializing the additional node (logit_p in this case), which is a parent node of the explicit node (p[i]), without explicitly referring to the additional node by the name that NIMBLE generates.

5.2.7 Truncation, censoring, and constraints

NIMBLE provides three ways to declare boundaries on the value of a variable, each for different situations. We introduce these and comment on their relationships to related features of JAGS and BUGS. The three methods are:

Truncation

Either of the following forms,

- $x \sim dnorm(0, sd = 10) T(0, a), or$
- $x \sim T(dnorm(0, sd = 10), 0, a),$

declares that \mathbf{x} follows a normal distribution between 0 and \mathbf{a} (inclusive of 0 and \mathbf{a}). Either boundary may be omitted or may be another node, such as \mathbf{a} in this example. The first form

is compatible with JAGS, but in NIMBLE it can only be used when reading code from a text file. When writing model code in R, the second version must be used.

Truncation means the possible values of x are limited a priori, hence the probability density of x must be normalized. In this example it would be the normal probability density divided by its integral from 0 to a. Like JAGS, NIMBLE also provides I as a synonym for T to accommodate older BUGS code, but T is preferred because it disambiguates multiple usages of I in BUGS.

Censoring

Censoring refers to the situation where one datum gives the lower or upper bound on an unobserved random variable. This is common in survival analysis, when for individuals still surviving at the end of a study, their age of death is not known and hence is "censored" (right-censoring). NIMBLE adopts JAGS syntax for censoring, as follows (using right-censoring as an example):

```
censored[i] ~ dinterval(t[i], c[i])
t[i] ~ dweib(r, mu[i])
```

where censored[i] should be given as data with a value of 1 if t[i] is right-censored (t[i] > c[i]) and 0 if it is observed. The data vector for t should have NA (indicating missing data) for any censored t[i] entries. (As a result, these nodes will be sampled in an MCMC.) The data vector for c should give the censoring times corresponding to censored entries and a value below the observed times for uncensored entries (e.g., 0, assuming t[i] > 0). Left-censoring would be specified by setting censored[i] to 0 and t[i] to NA.

The dinterval is not really a distribution but rather a trick: in the above example when censored[i] = 1 it gives a "probability" of 1 if t[i] > c[i] and 0 otherwise. This means that $t[i] \le c[i]$ is treated as impossible. More generally than simple right- or left-censoring, $censored[i] \sim dinterval(t[i], c[i,])$ is defined such that for a vector of increasing cutpoints, c[i,], t[i] is enforced to fall within the censored[i]-th cutpoint interval. This is done by setting data censored[i] as follows:

```
censored[i] = 0 if t[i] \leq c[i, 1] censored[i] = m if c[i, m] < t[i] \leq c[i, m+1] for 1 <= m <= M censored[i] = M if c[i, M] < t[i].
```

(The i index is provided only for consistency with the previous example.) The most common uses of dinterval will be for left- and right-censored data, in which case c[i,] will be a single value (and typically given as simply c[i]), and for interval-censored data, in which case c[i,] will be a vector of two values.

Nodes following a dinterval distribution should normally be set as data with known values. Otherwise, the node may be simulated during initialization in some algorithms (e.g., MCMC) and thereby establish a permanent, perhaps unintended, constraint.

Censoring differs from truncation because censoring an observation involves bounds on a random variable that could have taken any value, while in truncation we know a priori that a datum could not have occurred outside the truncation range.

Constraints and ordering

NIMBLE provides a more general way to enforce constraints using dconstraint(cond). For example, we could specify that the sum of mu1 and mu2 must be positive like this:

```
mu1 ~ dnorm(0, 1)
mu2 ~ dnorm(0, 1)
constraint_data ~ dconstraint( mu1 + mu2 > 0 )
```

with constraint_data set (as data) to 1. This is equivalent to a half-normal distribution on the half-plane $\mu_1 + \mu_2 > 0$. Nodes following dconstraint should be provided as data for the same reason of avoiding unintended initialization described above for dinterval.

Formally, dconstraint(cond) is a probability distribution on $\{0,1\}$ such that P(1)=1 if cond is TRUE and P(0)=1 if cond is FALSE.

Of course, in many cases, parameterizing the model so that the constraints are automatically respected may be a better strategy than using dconstraint. One should be cautious about constraints that would make it hard for an MCMC or optimization to move through the parameter space (such as equality constraints that involve two or more parameters). For such restrictive constraints, general purpose algorithms that are not tailored to the constraints may fail or be inefficient. If constraints are used, it will generally be wise to ensure the model is initialized with values that satisfy them.

Ordering To specify an ordering of parameters, such as $\alpha_1 <= \alpha_2 <= \alpha_3$ one can use dconstraint as follows:

```
constraint_data ~ dconstraint( alpha1 <= alpha2 & alpha2 <= alpha3 )</pre>
```

Note that unlike in BUGS, one cannot specify prior ordering using syntax such as

```
alpha[1] ~ dnorm(0, 1) I(, alpha[2])
alpha[2] ~ dnorm(0, 1) I(alpha[1], alpha[3])
alpha[3] ~ dnorm(0, 1) I(alpha[2], )
```

as this does not represent a directed acyclic graph.

Also note that specifying prior ordering using T(,) can result in possibly unexpected results. For example:

```
alpha1 ~ dnorm(0, 1)
alpha2 ~ dnorm(0, 1) T(alpha1, )
alpha3 ~ dnorm(0, 1) T(alpha2, )
```

will enforce alpha1 \leq alpha2 \leq alpha3, but it does not treat the three parameters symmetrically. Instead it puts a marginal prior on alpha1 that is standard normal and then constrains alpha2 and alpha3 to follow truncated normal distributions. This is not equivalent to a symmetric prior on the three alphas that assigns 0 probability density when values are not in order.

NIMBLE does not support the JAGS sort syntax.

5.2.8 Understanding the variables and nodes of a model

This section discusses some basic concepts and terminology to be able to speak about NIM-BLE models clearly.

Say we have the following BUGS code In NIMBLE terminology:

- The variables of this model are a, y, z, and y.squared.
- The *nodes* of this model are a, y[1] ... y[5], z[1,1] ... z[5, 3], and y.squared[1:5]. In graph terminology, nodes are vertices in the model graph.
- the node functions of this model are a ~ dnorm(0, 0.001), y[i] ~ dnorm(a, 0.1), z[i,j] ~ dnorm(y[i], sd = 0.1), and y.squared[1:5] <- y[1:5]^2. Each node's calculations are handled by a node function. Sometimes the distinction between nodes and node functions is important, but when it is not important we may refer to both simply as nodes.
- The scalar elements of this model include all the scalar nodes as well as the scalar elements y.squared[1] ... y.squared[5] of the multivariate node y.squared[1:5].

Chapter 6

Building and using models

This chapter explains how to build and manipulate model objects starting from BUGS code.

6.1 Creating model objects

NIMBLE provides two functions for creating model objects: nimbleModel and readBUGSmodel. The first, nimbleModel, is more general and was illustrated in Chapter ??. The second, readBUGSmodel provides compatibility with BUGS file formats for models, variables, data, and initial values for MCMC. In addition one can create new model objects from existing model objects.

6.1.1 Using nimbleModel to create a model

nimbleModel processes BUGS code to determine all the nodes, variables, and their relationships in a model. Any constants must be provided at this step. Data and initial values can optionally be provided. BUGS code passed to nimbleModel must go through nimbleCode.

We look again at the pump example from the introduction:

Data and constants

NIMBLE makes a distinction between data and constants:

- Constants can never be changed and must be provided when a model is defined. For example, a vector of known index values, such as for block indices, helps define the model graph itself and must be provided as constants. Variables used in the index ranges of for-loops must also be provided as constants.
- Data is a label for the role a node plays in the model. Nodes marked as data will by default be protected from any functions that would simulate over their values (see simulate in Chapter ??), but it is possible to over-ride that default or to change their values by direct assignment. This allows an algorithm to be applied to many data sets in the same model without re-creating the model each time. It also allows simulation of data in a model.

WinBUGS, OpenBUGS and JAGS do not allow data values to be changed or different nodes to be labeled as data without starting from the beginning again. Hence they do not distinguish between constants and data.

For compatibility with BUGS and JAGS, NIMBLE allows both to be provided in the the constants argument to nimbleModel, in which case NIMBLE handles values for stochastic nodes as data and everything else as constants.

Values for nodes that appear only on the right-hand side of BUGS declarations (e.g., covariates/predictors) can be provided as data or constants.

Providing data and initial values to an existing model

Wherease constants must be provided during the call the nimbleModel, data and initial values can be provided later via the model member functions setData and setInits. For example, if pumpData is a named list of data values (as above), then pump\$setData(pumpData) sets the named variables to the values in the list.

setData does two things: it sets the values of the data nodes, and it flags those nodes as containing data. nimbleFunction programmers can then use that information to control whether an algorithm should over-write data or not. For example, NIMBLE's simulate functions by default do not overwrite data values but can be told to do so. Values of data variables can be replaced, and the indication of which nodes should be treated as data can be reset by using the resetData method, e.g. pump\$resetData().

Missing data values

Sometimes one needs a model variable to have a mix of data and non-data, often due to missing data values. In NIMBLE, when data values are provided, any nodes with NA values will *not* be labeled as data. A node following a multivariate distribution must be either entirely observed or entirely missing.

Here's an example of running an MCMC on the *pump* model, with two of the observations taken to be missing. Some of the steps in this example are documented more below. NIMBLE's default MCMC configuration will treat the missing values as unknowns to be sampled, as can be seen in the MCMC output here.

```
pumpMiss <- pump$newModel()
pumpDataNew <- pumpData
pumpDataNew$x[c(1, 3)] <- NA
pumpMiss$setData(pumpDataNew)

pumpMissConf <- configureMCMC(pumpMiss)
pumpMissConf$addMonitors('x', 'alpha', 'beta', 'theta')

pumpMissMCMC <- buildMCMC(pumpMissConf)
Cobj <- compileNimble(pumpMiss, pumpMissMCMC)</pre>
```

```
niter <- 1000
set.seed(0)
Cobj$pumpMissMCMC$run(niter)
samples <- as.matrix(Cobj$pumpMissMCMC$mvSamples)
samples[1:5, 13:17]</pre>
```

Missing values may also occur in explanatory variables. Values for such variables should be passed in via the data argument to nimbleModel, with NA for the missing values. In some contexts, one would want to specify distributions for such explanatory variables so that values are imputed by an MCMC for missing values.

Defining alternative models with the same code

Avoiding code duplication is a basic principle of good programming. In NIMBLE, one can use definition-time if-then-else statements to create different models from the same code. As a simple example, say we have a linear regression model and want to consider including or omitting x[2] as an explanatory variable:

```
regressionCode <- nimbleCode({</pre>
    intercept \sim dnorm(0, sd = 1000)
    slope1 \sim dnorm(0, sd = 1000)
    if(includeX2) {
        slope2 \sim dnorm(0, sd = 1000)
        for(i in 1:N)
             predictedY[i] <- intercept + slope1 * x1[i] + slope2 * x2[i]</pre>
    } else {
        for(i in 1:N) predictedY[i] <- intercept + slope1 * x1[i]</pre>
    sigmaY ~ dunif(0, 100)
    for(i in 1:N) Y[i] ~ dnorm(predictedY[i], sigmaY)
})
includeX2 <- FALSE
modelWithoutX2 <- nimbleModel(regressionCode, constants = list(N = 30),</pre>
                                check=FALSE)
modelWithoutX2$getVarNames()
includeX2 <- TRUE
modelWithX2 <- nimbleModel(regressionCode, constants = list(N = 30),</pre>
                             check = FALSE)
modelWithX2$getVarNames()
```

Whereas the *constants* are a property of the model definition – since they may help determine the model structure itself – data nodes can be different in different copies of the model generated from the same model definition. The setData and setInits described above can be used for each copy of the model.

Providing dimensions via nimbleModel

nimbleModel can usually determine the dimensions of every variable from the declarations in the BUGS code. However, it is possible to use a multivariate object only with empty indices (e.g. x[,]), in which case the dimensions must be provided as an argument to nimbleModel.

Here's an example with multivariate nodes. The first provides indices, so no dimensions argument is needed, while the second omits the indices and provides a dimensions argument instead.

```
code <- nimbleCode({</pre>
  y[1:K] ~ dmulti(p[1:K], n)
  p[1:K] ~ ddirch(alpha[1:K])
  log(alpha[1:K]) ~ dmnorm(alpha0[1:K], R[1:K, 1:K])
})
K <- 5
model <- nimbleModel(code, constants = list(n = 3, K = K,</pre>
                            alpha0 = rep(0, K), R = diag(K)),
                      check = FALSE)
codeAlt <- nimbleCode({</pre>
  y[] ~ dmulti(p[], n)
  p[] ~ ddirch(alpha[])
  log(alpha[]) ~ dmnorm(alpha0[], R[ , ])
})
model <- nimbleModel(codeAlt, constants = list(n = 3, K = K,</pre>
                            alpha0 = rep(0, K), R = diag(K)),
                   dimensions = list(y = K, p = K, alpha = K),
                       check = FALSE)
```

6.1.2 Creating a model from standard BUGS and JAGS input files

Users with BUGS and JAGS experience may have files set up in standard formats for use in BUGS and JAGS. readBUGSmodel can read in the model, data/constant values and initial values in those formats. It can also take information directly from R objects somewhat more flexibly than nimbleModel, specifically allowing inputs set up similarly to those for BUGS and JAGS. In either case, after processing the inputs, it calls nimbleModel. Note that unlike BUGS and JAGS, only a single set of initial values can be specified in creating a model. Please see help(readBUGSmodel) for argument details.

As an example of using readBUGSmodel, let's create a model for the *pump* example from BUGS.

Note that readBUGSmodel allows one to include var and data blocks in the model file as in some of the BUGS examples (such as inhaler). The data block pre-computes constant and data values. Also note that if data and inits are provided as files, the files should contain R code that creates objects analogous to what would populate the list if a list were provided instead. Please see the JAGS manual examples or the classic_bugs directory in the NIMBLE package for example syntax. NIMBLE by and large does not need the information given in a var block but occasionally this is used to determine dimensionality, such as in the case of syntax like xbar <- mean(x[]) where x is a variable that appears only on the right-hand side of BUGS expressions.

Note that NIMBLE does not handle formatting such as in some of the original BUGS examples in which data was indicated with syntax such as data x in 'x.txt'.

6.1.3 Making multiple instances from the same model definition

Sometimes it is useful to have more than one copy of the same model. For example, an algorithm (i.e., nimbleFunction) such as an MCMC will be bound to a particular model before it is run. A user could build multiple algorithms to use the same model instance, or they may want each algorithm to have its own instance of the model.

There are two ways to create new instances of a model, shown in this example:

LET'S CHECK THE STATUS OF THE BUG DESCRIBED IN THE COMMENTS.

Each copy of the model can have different nodes flagged as data and different values in any nodes. They cannot have different values of N because that is a constant; it must be a constant because it helps define the model.

6.2 NIMBLE models are objects you can query and manipulate

NIMBLE models are objects that can be modified and manipulated from R. In this section we introduce some basic ways to use a model object. Chapter ?? covers more topics for writing algorithms that use models.

6.2.1 Determining the nodes and variables in a model

One can determine the nodes and variables in a model using getNodeNames:

Note that some of the nodes may be "lifted" nodes introduced by NIMBLE (Section ??). We can determine the set of nodes contained in one or more nodes or variables using expandNodeNames. The returnScalarComponents argument also allows us to return all of the scalar components of multivariate nodes.

Accessing nodes

While nodes that are part of a variable can be accessed as above, each node also has its own name that can be used to access it directly. For example, y[2] has the name "y[2]" and can be accessed by that name as follows:

Notice that node names can include index blocks, such as model[['z[2:4, 1:2]']], and these are not strictly required to correspond to actual nodes. Such blocks can be subsequently sub-indexed in the regular R manner, such as model[['z[2:4, 1:2]']][1, 2].

How nodes are named Every node has a name that is a character string including its indices, with a space after every comma. For example, X[1, 2, 3] has the name "X[1, 2, 3]". Nodes following multivariate distributions have names that include their index blocks. For example, a multivariate node for X[6:10, 3] has the name "X[6:10, 3]".

The definitive source for node names in a model is **getNodeNames**, described below. For example

You can see one lifted node for the Cholesky decomposition of cov, and the two multi-variate normal nodes.

In the event you need to ensure that a name is formatted correctly, you can use the expandNodeNames method. For example, to get the spaces correctly inserted into "X[1,1:5]":

Alternatively, for those inclined to R's less commonly used features, a nice trick is to use its parse and deparse functions.

```
deparse(parse(text = "X[1,1:5]", keep.source = FALSE)[[1]])
```

The keep.source = FALSE makes parse more efficient.

Why use node names? Syntax like pump[["x[2, 3]"]] may seem strange at first, because the natural habit of an R user would be pump[["x"]][2,3]. To see its utility, consider the example of writing the nimbleFunction given in Section??. By giving every scalar node

a name, even if it is part of a multivariate variable, one can write functions in R or NIMBLE that access any single node by a name, regardless of the dimensionality of the variable in which it is embedded. This is particularly useful for NIMBLE, which resolves how to access a particular node during the compilation process.

6.2.2 Determining model structure

Determining dependencies in a model

One can determine the node dependencies (or "descendants") in a model using getDependencies. There are a variety of arguments to getDependencies that allow one to specify whether to include the node itself, whether to include deterministic or stochastic or data dependents, etc. By default getDependencies returns descendants up through the next stochastic node on all edges emanating from the node(s) specified as input. This is what would be needed to calculate a Metropolis-Hastings acceptance probability in MCMC, for example.

Checking if a node holds data

Finally, you can query whether a node is flagged as data using the isData method applied to one or more nodes or nodes within variables:

```
pump$isData('x[1]')
pump$isData(c('x[1]', 'x[2]', 'alpha'))
pump$isData('x')
pump$isData('x[1:3]')
```

Part III Algorithms in NIMBLE

Chapter 7

MCMC

Configuring, building and running an MCMC algorithm for a NIMBLE model involves the following steps:

- 1. Optionally create and customize an MCMC configuration for a particular model:
 - (a) Use configureMCMC to create an MCMC configuration (see Chapters ??-??). The configuration contains a list of samplers with the node(s) they will sample.
 - (b) Customize the MCMC configuration:
 - i. add, remove, or re-order the list of samplers (section ?? and help(samplers) in R for details), including adding your own samplers (section ??);
 - ii. change the tuning parameters or adaptive properties of individual samplers;
 - iii. change the variables to monitor (record for output) and thinning intervals for MCMC samples.
- 2. Use buildMCMC to build the MCMC object and its samplers either from the model (using default MCMC configuration) or from a customized MCMC configuration.
- 3. Compile the MCMC object (and the model), unless one is debugging and wishes to run the uncompiled MCMC.
- 4. Run the MCMC and extract the samples (sections ?? and ??).

NIMBLE provides several functions to simplify running one or multiple MCMCs:

- runMCMC simplifies the steps of modifying initial values, removing burn-in samples, returning samples in the form of a coda mcmc object, and running multiple chains for the same MCMC (section ??).
- MCMCsuite can run multiple, different MCMCs for the same model. These can include multiple NIMBLE MCMCs from different configurations as well as external MCMCs such as from WinBUGS, OpenBUGS, JAGS or Stan (section ??).
- compareMCMCs manages multiple calls to MCMCsuite and generates html pages comparing performance of different MCMCs.

End-to-end examples of MCMC in NIMBLE have been shown in sections ??, ?? and ??.

7.1 The MCMC configuration

The MCMC configuration contains information needed for building an MCMC. When no customization is needed, one can jump directly to the buildMCMC step below. An MCMC configuration is an object of class MCMCconf, which includes:

- the model on which the MCMC will operate;
- the model nodes which will be sampled (updated) by the MCMC;
- the samplers and their internal configurations, called control parameters;
- two sets of variables that will be monitored (recorded) during execution of the MCMC and thinning intervals for how often each set will be recorded. Two sets are allowed because it can be useful to monitor different variables at different intervals.

7.1.1 Default MCMC configuration

Assuming we have a model named Rmodel, the following will generate a default MCMC configuration:

```
mcmcConf <- configureMCMC(Rmodel)</pre>
```

The default configuration will contain a single sampler for each node in the model, and the default ordering follows the topological ordering of the model.

Default assignment of sampler algorithms

The default sampler assigned to a stochastic node is determined by the following, in order of precedence:

- 1. If the node has no stochastic dependents, a posterior_predictive sampler is assigned. This sampler sets the new value for the node simply by simulating from its distribution.
- 2. If the node has a conjugate relationship between its prior distribution and the distributions of its stochastic dependents, a conjugate (Gibbs) sampler is assigned.
- 3. If the node is binary-valued (strictly taking values 0 or 1), then a binary sampler is assigned. This sampler calculates the conditional probability for both possible node values and draws the new node value from the conditional distribution, in effect making a Gibbs sampler.
- 4. If the node follows a multinomial distribution, then a RW_multinomial sampler is assigned. This is a discrete random-walk sampler in the space of multinomial outcomes.
- 5. If the node is otherwise discrete-valued, then a slice sampler is assigned [?].
- 6. If a node follows a Dirichlet distribution, then a RW_dirichlet sampler is assigned. This is a random walk sampler in the space of the simplex defined by the Dirichlet.
- 7. If the node follows a multivariate distribution, then a RW_block sampler is assigned for all elements. This is a Metropolis-Hastings adaptive random-walk sampler with a multivariate normal proposal [?].

8. If none of the above criteria are satisfied, then a RW sampler is assigned. This is a Metropolis-Hastings adaptive random-walk sampler with a univariate normal proposal distribution.

The default control parameters governing each of these samplers can be inspected and modified with nimbleOptions('MCMCcontrolDefaultList').

Details of each sampler and its control parameters can be found by help(samplers) in R with nimble loaded.

Modifying the default sampler assignments

configureMCMC can take control arguments useConjugacy, onlyRW, onlySlice, and multivariateNodesAsScalars to modify default sampler assignments. These tell configureMCMC whether to assign conjugate sampler when possible, whether to use only random walk or only slice samplers, and whether to sample scalar elements of multivariate nodes individually, respectively. See help(configureMCMC) for usage details.

Default monitors

The default MCMC configuration includes monitors on all top-level stochastic nodes of the model. MCMC configurations include two sets of monitors, each with different thinning intervals. By default, the second set of monitors (monitors2) is empty.

Automated parameter blocking

The default configuration may be replaced by one generated from an automated parameter blocking algorithm. This algorithm determines groupings of model nodes that, when jointly sampled with a RW_block sampler, increase overall MCMC efficiency. Overall efficiency is defined as the effective sample size of the slowest-mixing node divided by computation time. This is done by:

```
autoBlockConf <- configureMCMC(Rmodel, autoBlock = TRUE)</pre>
```

Note that this using autoBlock = TRUE compiles and runs MCMCs, progressively exploring different sampler assignments, so it takes some time and generates some output. It is most useful for determining effective blocking strategies that can be re-used for later runs. The additional control argument autoIt may also be provided to indicate the number of MCMC samples to be used in each trial of the automated blocking procedure (default 20,000).

7.1.2 Customizing the MCMC configuration

The MCMC configuration may be customized in a variety of ways, either through additional named arguments to configureMCMC or by calling methods of an existing MCMCconf object.

Controlling which nodes to sample

One can create an MCMC configuration with default samplers on just a particular set of nodes using the nodes argument to configureMCMC. The value for the nodes argument may be a character vector containing node and/or variable names. In the case of a variable name, a default sampler will be added for all stochastic nodes in the variable. The order of samplers will match the order of nodes. Any deterministic nodes will be ignored.

If a data node is included in **nodes**, it will be assigned a sampler. This is the only way in which a default sampler may be placed on a data node and will result in overwriting data values in the node.

Creating an empty configuration

If you plan to customize the choice of all samplers, it can be useful to obtain a configuration with no sampler assignments at all. This can be done by nodes = NULL, nodes = character(), or nodes = list().

Overriding the default sampler control list values

The default values of control list elements for all sampling algorithms may be overridden through use of the control argument to configureMCMC, which should be a named list. Named elements in the control argument will be used for all default samplers and any subsequent sampler added via addSampler (see below). For example, the following will create the default MCMC configuration, except all RW samplers will have their initial scale set to 3, and none of the samplers (RW, or otherwise) will be adaptive.

```
mcmcConf <- configureMCMC(Rmodel, control = list(scale = 3, adaptive = FALSE))</pre>
```

When adding samplers to a configuration, the default control list can be over-ridden.

Adding samplers to the configuration: addSampler

Samplers may be added to a configuration using the addSampler method of the MCMCconf object. The first argument gives the node(s) to be sampled, called the target, as a character vector. The second argument gives the type of sampler, which may be provided as a character string or a nimbleFunction object. Valid character strings include 'posterior_predictive', 'RW', 'RW_block', 'slice', 'RW_multinomial', 'RW_dirichlet', 'binary', 'ess', 'crossLevel', and 'RW_llFunction'. Added samplers can be labeled with a name argument, which is used in output of printSamplers.

Question from PdV: Isn't 'conjugate' now a valid sampler type?

Writing a new sampler as a nimbleFunction is covered in section ??.

The hierarchy of precedence for control list elements for samplers is:

- 1. those supplied in the control list argument to addSampler;
- 2. those supplied in the control list argument to configureMCMC;
- 3. the defaults, which are in nimbleOptions('MCMCcontrolDefaultList').

Samplers added by addSampler will be appended to the end of current sampler list. Adding a sampler for a node will *not* automatically remove any existing samplers on that node.

Printing, re-ordering, modifying and removing samplers: printSamplers, cdget-SamplerDefinition, and removeSamplers

The current, ordered, list of all samplers in the MCMC configuration may be printed by calling the printSamplers method. When you want to see only samplers acting on specific model nodes or variables, provide those names as an argument to printSamplers.

The nimbleFunction definition underlying a particular sampler may be viewed using the getSamplerDefinition method, using the sampler index as an argument. A node name argument may also be supplied, in which case the definition of the first sampler acting on that node is returned. In all cases, getSamplerDefinition only returns the definition of the first sampler specified either by index or node name.

```
## Return the definition of the third sampler in the mcmcConf object
mcmcConf$getSamplerDefinition(3)

## Return the definition of the first sampler acting on node 'x',
## or the first of any indexed nodes comprising the variable 'x'
mcmcConf$getSamplerDefinition('x')
```

The existing samplers may be re-ordered using the setSamplers method. The ind argument is a vector of sampler indices, or a character vector of model node or variable names. Here are a few examples. Each example assumes the MCMCconf object initially contains 10 samplers, and each example is independent of the others.

```
## Truncate the current list of samplers to the first 5
mcmcConf$setSamplers(ind = 1:5)

## Retain only the third sampler, which will subsequently
## become the first sampler
mcmcConf$setSamplers(ind = 3)

## Reverse the ordering of the samplers
mcmcConf$setSamplers(ind = 10:1)

## The new set of samplers becomes the
## {first, first, first, second, third} from the current list.
## Upon each iteration of the MCMC, the 'first' sampler will
## be executed 3 times, however each instance of the sampler
## will be independent in terms of scale, adaptation, etc.
mcmcConf$setSamplers(ind = c(1, 1, 1, 2, 3))
```

```
## Set the list of samplers to only those acting on model node 'alpha'
mcmcConf$setSamplers('alpha')

## Set the list of samplers to those acting on any components of the
## model variables 'x', 'y', or 'z'.
mcmcConf$setSamplers(c('x', 'y', 'z'))
```

Samplers may be removed from the current sampler ordering with the removeSamplers method. The following examples again assume that mcmcConf initially contains 10 samplers, and each example is independent of the others. removeSamplers accepts a vector of numeric indices of samplers to be removed or a character vector. In the latter case, all samplers acting on the named target model nodes will be removed.

```
## Remove the first sampler
mcmcConf$removeSamplers(ind = 1)

## Remove the last five samplers
mcmcConf$removeSamplers(ind = 6:10)

## Remove all samplers,
## resulting in an empty MCMC configuration, containing no samplers
mcmcConf$removeSamplers(ind = 1:10)

## Remove all samplers acting on 'x' or any component of it
mcmcConf$removeSamplers('x')

## Default: providing no argument removes all samplers
mcmcConf$removeSamplers()
```

Customizing individual sampler configurations: getSamplers, setSamplers, setName, setSamplerFunction, setTarget, and setControl

PdV suggests this new subsubsection. Should getSamplerDefinition be moved here?

Each sampler in an MCMCconf object is represented by a sampler configuration as a samplerConf object. Each samplerConf is a reference class object containing the following (required) fields: name (a character string), samplerFunction (a valid nimbleFunction sampler), target (the model node to be sampled), and control (list of control arguments). The MCMCconf method getSamplers allows access to the samplerConf objects. These can be modified and then passed as an argument to setSamplers to over-write the current list of samplers in the MCMC configuration object. However, no checking of the validity of this modified list is performed; if the list of samplerConf objects is corrupted to be invalid, incorrect behavior will result at the time of calling buildMCMC. The fields of a samplerConf object can be modified using the access functions setName(name), setSamplerFunction(fun), setTarget(target, model), and setControl(control).

CHAPTER 7. MCMC

Here are some examples:

```
## retrieve samplerConf list
samplerConfList <- mcmcConf$getSamplers()</pre>
## change the name of the first sampler
samplerConfList[[1]]$setName('newNameForThisSampler')
## change the sampler function of the second sampler,
## assuming existance of a nimbleFunction 'anotherSamplerNF',
## which represents a valid nimbleFunction sampler.
samplerConfList[[2]]$setSamplerFunction(anotherSamplerNF)
## change the 'adaptive' element of the control list of the third sampler
control <- samplerConfList[[3]]$control</pre>
control$adaptive <- FALSE
samplerConfList[[3]]$setControl(control)
## change the target node of the fourth sampler
samplerConfList[[4]]$setTarget('y', model) ## model argument required
## use this modified list of samplerConf objects in the MCMC configuration
mcmcConf$setSamplers(samplerConfList)
```

Monitors and thinning intervals: printMonitors, getMonitors, addMonitors, setThin, and resetMonitors

An MCMC configuration object contains two independent lists of variables to monitor, each with their own thinning interval: thin corresponding to monitors, and thin corresponding to monitors. Monitors operate at the variable level. Only entire model variables may be monitored. Specifying a monitor on a node, e.g., x[1], will result in the entire variable x being monitored.

The variables specified in monitors and monitors2 will be recorded (with thinning interval thin) into objects called mvSamples and mvSamples2, contained within the MCMC object. These are both model Values objects; model Values are NIMBLE data structures used to store multiple sets of values of model variables. These can be accessed as the member data mvSamples and mvSamples2 of the MCMC object, and they can be converted to matrices using as.matrix (see ??).

Monitors may be added to the MCMC configuration either in the original call to configureMCMC or using the addMonitors method:

```
## Using an argument to configureMCMC
mcmcConf <- configureMCMC(Rmodel, monitors = c('alpha', 'beta'), monitors2 = 'x')</pre>
```

```
## Calling a member method of the mcmcconf object
## This results in the same monitors as above
mcmcConf$addMonitors('alpha', 'beta')
mcmcConf$addMonitors2('x')
```

Similarly, either thinning interval may be set at either step:

```
## Using an argument to configureMCMC
mcmcConf <- configureMCMC(Rmodel, thin = 1, thin2 = 100)

## Calling a member method of the mcmcConf object
## This results in the same thinning intervals as above
mcmcConf$setThin(1)
mcmcConf$setThin2(100)</pre>
```

The current lists of monitors and thinning intervals may be displayed using the printMonitors method. Both sets of monitors (monitors and monitors2) may be reset to empty character vectors by calling the resetMonitors method. The methods getMonitors and getMonitors2 return the currently specified monitors and monitors2 as character vectors.

Monitoring model log-probabilities

To record model log-probabilities from an MCMC, one can add monitors for *logProb variables* (which begin with the prefix logProb_) that correspond to variables with (any) stochastic nodes. For example, to record and extract log-probabilities for the variables alpha, sigma_mu, and Y:

```
mcmcConf <- configureMCMC(Rmodel)
mcmcConf$addMonitors('logProb_alpha', 'logProb_sigma_mu', 'logProb_Y')
Rmcmc <- buildMCMC(mcmcConf)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
Cmcmc$run(10000)
samples <- as.matrix(Cmcmc$mvSamples)</pre>
```

The samples matrix will contain both MCMC samples and model log-probabilities.

Measuring sampler computation times: getTimes

If you want to obtain the computation time spent in each sampler, you can set time=TRUE as a run-time argument and then use the method getTimes() obtain the times. For example,

```
Cmcmc$run(niter, time=TRUE)
Cmcmc$getTimes()
```

will return a vector of the total time spent in each sampler, measured in seconds.

7.2 Building and compiling the MCMC

Once the MCMC configuration object has been created, and customized to one's liking, it may be used to build an MCMC function:

```
Rmcmc <- buildMCMC(mcmcConf)</pre>
```

buildMCMC is a nimbleFunction. The returned object Rmcmc is an instance of the NIM-BLE function specific to configuration mcmcConf.

When no customization is needed, one can skip configureMCMC and simply provide a model object to buildMCMC. The following two MCMC functions will be identical:

```
mcmcConf <- configureMCMC(Rmodel) ## default MCMC configuration
Rmcmc1 <- buildMCMC(mcmcConf)

Rmcmc2 <- buildMCMC(Rmodel) ## uses the default configuration for Rmodel</pre>
```

For speed of execution, we usually desire to compile the MCMC function to C++ (as is the case for other NIMBLE functions). To do so, we use compileNimble. If the model has already been compiled, it should be provided as the project argument so the MCMC will be part of the same compiled project. A typical compilation call looks like:

```
Cmcmc <- compileNimble(Rmcmc, project = Rmodel)</pre>
```

Alternatively, if the model has not already been compiled, they can be compiled together in one line:

```
Cmcmc <- compileNimble(Rmodel, Rmcmc)
```

7.3 Running the MCMC

The MCMC algorithm (either the compiled or uncompiled version) can be executed using the member method mcmc\$run() (see help(buildMCMC) in R). The run method has one required argument, niter, the number of iterations to be run.

The run method has an optional reset argument. When reset = TRUE (the default value), the following occurs prior to running the MCMC:

- All model nodes are checked and filled or updated as needed, in valid (topological) order. If a stochastic node is missing a value, it is populated using a call to simulate and its log probability value is calculated. The values of deterministic nodes are calculated from their parent nodes. If any right-hand-side-only nodes (e.g. explanatory variables) are missing a value, an error results.
- All MCMC sampler functions are reset to their initial state: the initial values of any sampler control parameters (e.g., scale, sliceWidth, or propCov) are reset to their initial values, as were specified by the original MCMC configuration.

• The internal *modelValues* objects mvSamples and mvSamples2 are each resized to the appropriate length for holding the requested number of samples (niter/thin, and niter/thin2, respectively).

When mcmc\$run(niter, reset = FALSE) is called, the MCMC picks up from where it left off, continuing the previous chain and expanding the output as needed. No values in the model are checked or altered, and sampler functions are not reset to their initial states.

The run method takes an optional simulateAll argument. When simulateAll = TRUE, the simulate method of all stochastic nodes is called before running the MCMC. This generates a new set of initial values. It should be used with caution since values drawn from priors may be extreme or invalid in some models.

The run method has an optional time argument. When time = TRUE, the net computation time spent in each sampler will be recorded. See Section ??.

7.4 Extracting MCMC samples

After executing the MCMC, the output samples can be extracted as follows:

```
mvSamples <- mcmc$mvSamples
mvSamples2 <- mcmc$mvSamples2</pre>
```

These model Values objects can be converted into matrices using as.matrix:

```
samplesMatrix <- as.matrix(mvSamples)
samplesMatrix2 <- as.matrix(mvSamples2)</pre>
```

The column names of the matrices will be the node names of nodes in the monitored variables. Then, for example, the mean of the samples for node x[2] could be calculated as:

```
mean(samplesMatrix[, `x[2]'])
```

Obtaining samples as matrices is most common, but see section ?? for more about programming with modelValues objects, especially if you want to write nimbleFunctions to use the samples.

7.5 Running multiple MCMC chains

Once an MCMC algorithm has been created using buildMCMC, the function runMCMC can be used to run multiple chains and extract samples (see help(runMCMC) in R). runMCMC can be used to execute compiled or uncompiled algorithms, although uncompiled algorithms will be much slower. Specifically, runMCMC takes arguments to control:

- Number of iterations in each chain
- Number of chains

- Number of burnin samples to discard from each chain
- Inital values, or a function for generating initial values for each chain
- Setting the random number seed
- Supressing messages and output
- Returning the samples as a coda mcmc object

The following examples demonstrate some uses of runMCMC, and assume the existence of Cmcmc, a compiled MCMC algorithm.

```
## run a single chain, return a matrix of samples
samplesMatrix <- runMCMC(Cmcmc)</pre>
## run three chains of 10,000 samples, discard a burnin of 1,000,
## and return of list of sample matrices
samplesList <- runMCMC(Cmcmc, niter=10000, nburnin=1000, nchains=3)</pre>
## run two chains, and provide inital values for each
initsList <- list(list(mu=1, sigma=1),</pre>
                   list(mu=2, sigma=10))
samplesList <- runMCMC(Cmcmc, nchains=3, inits=initsList)</pre>
## run ten chains of 100,000 iterations,
## using a function to generate inital valies
initsFunction <- function()</pre>
    list(mu=rnorm(1,0,1), sigma=runif(1,0,100))
samplesList <- runMCMC(Cmcmc, niter=100000, nchains=10, inits=initsFunction)</pre>
## run three chains, using a fixed random number seed for each chain
samplesList <- runMCMC(Cmcmc, nchains=3, setSeed=TRUE)</pre>
## run three chains, return a coda mcmc.list object
codaMCMClist <- runMCMC(Cmcmc, nchains=3, returnCodaMCMC=TRUE)</pre>
```

7.6 Samplers provided with NIMBLE

Most documentation of MCMC samplers provided with NIMBLE can be found by help(samplers) in R. Here we provide additional explanation of conjugate samplers and how complete customization can be achieved by making a sampler use an arbitrary log likelihood function, such as to build a particle MCMC algorithm.

PdV suggests cutting most of this since it is a copy of what is in the Rd pages. The example lines could be moved to the roxygen entries.

7.6.1 Conjugate (Gibbs) samplers

By default, configureMCMC() and buildMCMC() will assign conjugate samplers to all nodes satisfying a conjugate relationship, unless the option useConjugacy = FALSE is specified.

The current release of NIMBLE supports conjugate sampling of the relationships listed in Table ??¹.

Prior Distribution	Sampling (Dependent Node) Distribution	Parameter
Beta	Bernoulli	prob
	Binomial	prob
	Negative Binomial	prob
Dirichlet	Multinomial	prob
Gamma	Poisson	lambda
	Normal	tau
	Lognormal	taulog
	Gamma	rate
	Exponential	rate
Normal	Normal	mean
	Lognormal	meanlog
Multivariate Normal	Multivariate Normal	mean
Wishart	Multivariate Normal	prec

Table 7.1: Conjugate relationships supported by NIMBLE's MCMC engine.

Conjugate sampler functions may (optionally) dynamically check that their own posterior likelihood calculations are correct. If incorrect, a warning is issued. However, this functionality will roughly double the run-time required for conjugate sampling. By default, this option is disabled in NIMBLE. This option may be enabled by nimbleOptions(verifyConjugatePosteriors = TRUE).

If one wants information about conjugate node relationships for other purposes, they can be obtained using model\$checkConjugacy(). This returns a named list describing all conjugate nodes. The checkConjugacy() method can also accept a character vector argument specifying a subset of node names to check for conjugacy.

7.6.2 Customized log likelihood evaluations: RW_llFunction sampler

Sometimes it is useful to control the log likelihood calculations used for an MCMC updater instead of simply using the model. For example, one could use a sampler with a log likelihood that analytically (or numerically) integrates over latent model nodes. Or one could use a sampler with a log likelihood that comes from a stochastic approximation such as a particle filter (see below), allowing composition of a particle MCMC (PMCMC) algorithm [?]. The RW_llFunction sampler handles this by using a Metropolis-Hastings algorithm

¹NIMBLE's internal definitions of these relationships can be viewed by nimble:::conjugacyRelationshipsInputList.

CHAPTER 7. MCMC

with a normal proposal distribution and a user-provided log-likelihood function. To allow compiled execution, the log-likelihood function must be provided as a specialized instance of a nimbleFunction. The log-likelihood function may use the same model as the MCMC as a setup argument (as does the example below), but if so the state of the model should be unchanged during execution of the function (or you must understand the implications otherwise).

The RW_llFunction sampler can be customized using the control list argument to set the initial proposal distribution scale and the adaptive properties for the Metropolis-Hastings sampling. In addition, the control list argument must contain a named llFunction element, which is specialized nimbleFunction that accepts no arguments and returns a scalar double number. The return value must be the total log-likelihood of all stochastic dependents of the target nodes – and, if includesTarget = TRUE, of the target node(s) themselves – or whatever surrogate is being used for the total log-likelihood. This is a required control list element with no default. See help(samplers) for details.

Complete example of correct usage:

```
code <- nimbleCode({</pre>
    p ~ dunif(0, 1)
    y ~ dbin(p, n)
})
Rmodel <- nimbleModel(code, data = list(y=3), inits = list(p=0.5, n=10))
11Fun <- nimbleFunction(</pre>
    setup = function(model) { },
    run = function() {
        y <- model$y
        p <- model$p
        n <- model$n
        11 <- lfactorial(n) - lfactorial(y) - lfactorial(n-y) +</pre>
               y * log(p) + (n-y) * log(1-p)
        returnType(double())
        return(11)
)
RllFun <- llFun(Rmodel)
mcmcConf <- configureMCMC(Rmodel, nodes = NULL)</pre>
mcmcConf$addSampler(target = 'p', type = 'RW_llFunction',
    control = list(llFunction = RllFun, includesTarget = FALSE))
Rmcmc <- buildMCMC(mcmcConf)</pre>
```

7.6.3 Particle MCMC PMCMC sampler

For state space models, a particle MCMC (PMCMC) sampler can be specified for top-level parameters. This sampler is described in Section ??.

7.7 Detailed MCMC example: litters

Here is a detailed example of specifying, building, compiling, and running two MCMC algorithms. We use the litters example from the BUGS examples.

```
###################################
##### model configuration #####
####################################
## define our model using BUGS syntax
litters_code <- nimbleCode({</pre>
    for (i in 1:G) {
        a[i] ~ dgamma(1, .001)
        b[i] ~ dgamma(1, .001)
        for (j in 1:N) {
            r[i,j] ~ dbin(p[i,j], n[i,j])
            p[i,j] ~ dbeta(a[i], b[i])
        mu[i] \leftarrow a[i] / (a[i] + b[i])
        theta[i] <-1 / (a[i] + b[i])
})
## list of fixed constants
constants \leftarrow list(G = 2,
                  N = 16.
                  n = matrix(c(13, 12, 12, 11, 9, 10, 9, 9, 8, 11, 8, 10, 13,
                       10, 12, 9, 10, 9, 10, 5, 9, 9, 13, 7, 5, 10, 7, 6,
                       10, 10, 10, 7), nrow = 2))
## list specifying model data
data \leftarrow list(r = matrix(c(13, 12, 12, 11, 9, 10, 9, 9, 8, 10, 8, 9, 12, 9,
                 11, 8, 9, 8, 9, 4, 8, 7, 11, 4, 4, 5, 5, 3, 7, 3,
                 7, 0), nrow = 2))
## list specifying initial values
inits \leftarrow list(a = c(1, 1),
              b = c(1, 1),
              p = matrix(0.5, nrow = 2, ncol = 16),
```

```
mu = c(.5, .5),
             theta = c(.5, .5))
## build the R model object
Rmodel <- nimbleModel(litters_code,</pre>
                    constants = constants,
                    data = data,
inits = inits)
##### MCMC configuration and building #####
## generate the default MCMC configuration;
## only wish to monitor the derived quantity 'mu'
mcmcConf <- configureMCMC(Rmodel, monitors = 'mu')</pre>
## check the samplers assigned by default MCMC configuration
mcmcConf$printSamplers()
## double-check our monitors, and thinning interval
mcmcConf$printMonitors()
## build the executable R MCMC function
mcmc <- buildMCMC(mcmcConf)</pre>
## let's try another MCMC, as well,
## this time using the crossLevel sampler for top-level nodes
## generate an empty MCMC configuration
## we need a new copy of the model to avoid compilation errors
Rmodel2 <- Rmodel$newModel()</pre>
mcmcConf_CL <- configureMCMC(Rmodel2, nodes = NULL, monitors = 'mu')</pre>
## add two crossLevel samplers
mcmcConf_CL$addSampler(target = c('a[1]', 'b[1]'), type = 'crossLevel')
mcmcConf_CL$addSampler(target = c('a[2]', 'b[2]'), type = 'crossLevel')
## let's check the samplers
mcmcConf_CL$printSamplers()
## build this second executable R MCMC function
```

```
mcmc_CL <- buildMCMC(mcmcConf_CL)</pre>
##### compile to C++, and run #####
## compile the two copies of the model
Cmodel <- compileNimble(Rmodel)</pre>
Cmodel2 <- compileNimble(Rmodel2)</pre>
## compile both MCMC algorithms, in the same
## project as the R model object
## NOTE: at this time, we recommend compiling ALL
## executable MCMC functions together
Cmcmc <- compileNimble(mcmc, project = Rmodel)</pre>
Cmcmc_CL <- compileNimble(mcmc_CL, project = Rmodel2)</pre>
## run the default MCMC function,
## and example the mean of mu[1]
Cmcmc$run(1000)
cSamplesMatrix <- as.matrix(Cmcmc$mvSamples)</pre>
mean(cSamplesMatrix[, 'mu[1]'])
## run the crossLevel MCMC function,
## and examine the mean of mu[1]
Cmcmc_CL$run(1000)
cSamplesMatrix_CL <- as.matrix(Cmcmc_CL$mvSamples)</pre>
mean(cSamplesMatrix_CL[, 'mu[1]'])
#### run multiple MCMC chains #####
## run 3 chains of the crossLevel MCMC
samplesList <- runMCMC(Cmcmc_CL, niter=1000, nchains=3)</pre>
lapply(samplesList, dim)
```

7.8 Comparing different MCMCs with MCMCsuite and compareMCMCs

NIMBLE's MCMCsuite function automatically runs WinBUGS, OpenBUGS, JAGS, Stan, and/or multiple NIMBLE configurations on the same model. Note that the BUGS code must be compatible with whichever BUGS packages are included, and separate Stan code must be provided. NIMBLE's compareMCMCs manages calls to MCMCsuite for multiple sets of comparisons and organizes the output(s) for generating html pages summarizing results. It also allows multiple results to be combined and allows some different options for how results are processed, such as how effective sample size is estimated.

We show how to use MCMCsuite for the same litters example used in Section ??. Subsequently, additional details of the MCMCsuite are given. Since use of compareMCMCs is similar, we refer readers to help(compareMCMCs) and the functions listed under "See also" on that R help page.

7.8.1 MCMC Suite example: litters

The following code executes the following MCMC algorithms on the litters example:

- 1. WinBUGS
- 2. JAGS
- 3. NIMBLE default configuration
- 4. NIMBLE configuration with argument onlySlice = TRUE
- 5. NIMBLE custom configuration using two crossLevel samplers

```
output <- MCMCsuite(</pre>
    code = litters_code,
    constants = constants,
    data = data,
    inits = inits,
    monitors = 'mu',
    MCMCs = c('winbugs', 'jags', 'nimble', 'nimble_slice', 'nimble_CL'),
    MCMCdefs = list(
        nimble_CL = quote({
            mcmcConf <- configureMCMC(Rmodel, nodes = NULL)</pre>
            mcmcConf$addSampler(target = c('a[1]', 'b[1]'), type = 'crossLevel')
            mcmcConf$addSampler(target = c('a[2]', 'b[2]'), type = 'crossLevel')
            mcmcConf
        })),
    plotName = 'littersSuite'
)
```

7.8.2 MCMC Suite outputs

Executing the MCMC Suite returns a named list containing various outputs, as well as generates and saves traceplots and posterior density plots. The default elements of this return list object are:

Samples

samples is a three-dimensional array, containing all MCMC samples from each algorithm. The first dimension of the samples array corresponds to each MCMC algorithm, and may be indexed by the name of the algorithm. The second dimension of the samples array corresponds to each node which was monitored, and may be indexed by the node name. The third dimension of samples contains the MCMC samples, and has length niter/thin – burnin.

Summary

The MCMC suite output contains a variety of pre-computed summary statistics, which are stored in the summary matrix. For each monitored node and each MCMC algorithm, the following default summary statistics are calculated: mean, median, sd, the 2.5% quantile, and the 97.5% quantile. These summary statistics are easily viewable, as:

```
output$summary
```

```
# , , mu[1]
                                            sd quant025
                            median
                                                          quant975
                    mean
# winbugs
               0.8795868 0.8889000 0.04349589 0.7886775 0.9205025
# jags
               0.8872778 0.8911989 0.02911325 0.8287991 0.9335317
# nimble
               0.8562232 0.8983763 0.12501395 0.4071524 0.9299781
# nimble_slice 0.8975283 0.9000483 0.02350363 0.8451926 0.9367147
# nimble_CL
               0.8871314 \ 0.8961146 \ 0.05243039 \ 0.7640730 \ 0.9620532
 , , mu[2]
                            median
                                            sd quant025
                                                          quant975
                    mean
# winbugs
               0.7626974 0.7678000 0.04569705 0.6745975 0.8296025
# jags
               0.7635539 0.7646913 0.03803033 0.6824946 0.8313314
# nimble
               0.7179094 0.7246935 0.06061116 0.6058669 0.7970130
# nimble slice 0.7665562 0.7683093 0.04051432 0.6641368 0.8350716
# nimble_CL
               0.7605938 0.7655945 0.09138471 0.5822785 0.9568195
```

Timing

timing contains a named vector of the runtime for each MCMC algorithm, the total compile time for the NIMBLE model and MCMC algorithms, and the compile time for Stan (if specified). All run- and compile- times are given in seconds.

Efficiency

Using the MCMC Suite option calculateEfficiency = TRUE will also provide several measures of MCMC sampling efficiency. Additional summary statistics are provided for each node: the total number of samples collected (n), the effective sample size resulting from these samples (ess), and the effective sample size per second of algorithm runtime (efficiency).

In addition to these node-by-node measures of efficiency, an additional return list element is also provided. This element, *efficiency*, is itself a named list containing two elements: *min* and *mean*, which contain the minimal and mean efficiencies (effective sample size per second of algorithm runtime) across all monitored nodes, separately for each algorithm.

Plots

Executing the MCMC Suite provides and saves several plots. These include trace plots and posterior density plots for each monitored node, under each algorithm.

Note that the generation of MCMC Suite plots in Rstudio may result in several warning messages from R (regarding graphics devices), but will function without any problems.

7.8.3 Customizing MCMC Suite

An MCMC Suite is customizable in terms of all of the following:

- MCMC algorithms to execute, optionally including WinBUGS, OpenBUGS, JAGS, Stan, and various flavours of NIMBLE's MCMC
- Custom-configured NIMBLE MCMC algorithms
- Automated parameter blocking for efficienct MCMC sampling
- Nodes to monitor
- Number of MCMC iterations
- Thinning interval
- Burn-in
- Summary statistics to report
- Calculating sampling efficiency (effective sample size per second of algorithm runtime)
- Generating and saving plots

NIMBLE MCMC algorithms may be specified using the MCMCs argument to MCMCsuite, which is character vector defining the MCMC algorithms to run. The MCMCs argument may include any of the following algorithms:

^{&#}x27;winbugs' WinBUGS MCMC algorithm

^{&#}x27;openbugs' OpenBUGS MCMC algorithm

^{&#}x27;jags' JAGS MCMC algorithm

```
'Stan' Stan MCMC algorithm
```

'nimble_RW' NIMBLE MCMC using the default configuration with onlyRW = TRUE
'nimble_slice' NIMBLE MCMC using the default configuration with onlySlice= TRUE
'autoBlock' NIMBLE MCMC algorithm with block sampling of dynamically determined
parameter groups attempting to maximize sampling efficiency

The default value for the MCMCs argument is 'nimble', which specifies only the default NIMBLE MCMC algorithm.

The names of additional, custom, MCMC algorithms may also be provided in the MCMCs argument, so long as these custom algorithms are defined in the MCMCdefs argument. An example of this usage is given with the crossLevel algorithm in the litters MCMC Suite example.

The MCMCdefs may be provided as named list of definitions, for any custom MCMC algorithms specified in the MCMCs argument. If MCMCs specified an algorithm called 'myMCMC', then MCMCdefs must contain an element named 'myMCMC'. The contents of this element must be a block of code that, when executed, returns the desired MCMC configuration object. This block of code may assume the existence of the R model object, Rmodel. Further, this block of code need not worry about adding monitors to the MCMC configuration; it need only specify the samplers.

As a final important point, execution of this block of code must *return* the MCMC configuration object. Therefore, elements supplied in the MCMCdefs argument should usually take the form:

```
MCMCdefs = list(
    myMCMC = quote({
        mcmcConf <- configureMCMC(Rmodel, ....)
        mcmcConf$addSampler(....)
        mcmcConf ## returns the MCMC configuration object
})
)</pre>
```

Full details of the arguments and customization of the MCMC Suite is available through the R help using help(MCMCsuite).

^{&#}x27;nimble' NIMBLE MCMC using the default configuration

^{&#}x27;nimble_noConj' NIMBLE MCMC using the default configuration with useConjugacy = FALSE

Chapter 8

Sequential Monte Carlo and MCEM

The NIMBLE algorithm library is growing and as of version 0.5-1 includes a suite of Sequential Monte Carlo algorithms as well as a more robust MCEM.

8.1 Particle Filters / Sequential Monte Carlo

8.1.1 Filtering Algorithms

NIMBLE includes algorithms for four different types of sequential Monte Carlo (also known as particle filters), which can be used to sample from the latent states and approximate the log likelihood of a state space model. The particle filters currently implemented in NIMBLE are the bootstrap filter, the auxiliary particle filter, the Liu-West filter, and the ensemble Kalman filter, which can be built, respectively, with calls to buildBootstrapFilter, buildAuxiliaryFilter, buildLiuWestFilter, and buildEnsembleKF. Each particle filter requires setup arguments model and nodes, which is a character vector specifying latent model nodes. In addition, each particle filter can be customized using a control list argument. Details on the control options and specifics of the filtering algorithms can be found in the help pages for the functions.

Once built, each filter can be run by specifying the number of particles. Each filter has a model values object named mvEWSamples that is populated with equally-weighted samples from the posterior distribution of the latent states (and in the case of the Liu-West filter, the posterior distribution of the top level parameters as well) as the filter is run. The bootstrap, auxiliary, and Liu-West filters also have another model values object, mvWSamples, which has unequally-weighted samples from the posterior distribution of the latent states, along with weights for each particle. In addition, the bootstrap and auxiliary particle filters return estimates of the log likelihood of the given state space model.

We first create a linear state-space model to use as an example for our particle filter algorithms.

```
# Building a simple linear state-space model.
# x is latent space, y is observed data
timeModelCode <- nimbleCode({</pre>
```

```
x[1] ~ dnorm(mu_0, 1)
y[1] ~ dnorm(x[1], 1)
for(i in 2:t){
  x[i] \sim dnorm(x[i-1] * a + b, 1)
  y[i] \sim dnorm(x[i] * c, 1)
a ~ dunif(0, 1)
b ~ dnorm(0, 1)
c ~ dnorm(1,1)
mu_0 ~ dnorm(0, 1)
})
#simulate some data
t <- 25; mu_0 <- 1
x <- rnorm(1 ,mu_0, 1)
y \leftarrow rnorm(1, x, 1)
a <- 0.5; b <- 1; c <- 1
for(i in 2:t){
x[i] \leftarrow rnorm(1, x[i-1] * a + b, 1)
y[i] \leftarrow rnorm(1, x[i] * c, 1)
#build the model
rTimeModel <- nimbleModel(timeModelCode, constants = list(t = t),
                          data <- list(y = y), check = FALSE )</pre>
#Set parameter values and compile the model
rTimeModel$a <- 0.5
rTimeModel$b <- 1
rTimeModel$c <- 1
rTimeModel$mu_0 <- 1
cTimeModel <- compileNimble(rTimeModel)</pre>
```

Here is an example of building and running the bootstrap filter. Additional information about the bootstrap filter can be found with help(buildBootstrapFilter).

```
#Set number of particles
parNum <- 5000
#Run bootstrap filter, which returns estimate of model log-likelihood
bootLLEst <- cBootF$run(parNum)</pre>
```

Next, we provide an example of building and running the auxiliary particle filter. Additional information about the auxiliary particle filter can be found with help(buildAuxiliaryFilter). Note that a filter cannot be built on a model that already has a filter specialized to it, so we create a new copy of our state space model first

Now we give an example of building and running the Liu and West filter, which can sample from the posterior distribution of top-level parameters as well as latent states. The Liu and West filter accepts an additional params argument, specifying the top-level parameters to be sampled. Additional information can be found with help(buildLiuWestFilter).

Below we give an example of building and running the ensemble Kalman filter, which can sample from the posterior distribution of latent states. Additional information can be found with help(buildEnsembleKF).

```
#Copy model
ENKFTimeModel <- rTimeModel$newModel(replicate = TRUE)</pre>
```

Once each filter has been run, we can extract samples from the posterior distribution of our latent states as follows:

```
#Equally-weighted samples (available from all filters)
bootEWSamp <- as.matrix(cBootF$mvEWSamples)
auxEWSamp <- as.matrix(cLWF$mvEWSamples)
ENKFEWSamp <- as.matrix(cENKF$mvEWSamples)

ENKFEWSamp <- as.matrix(cENKF$mvEWSamples)

#Unequally-weighted samples, along with weights (available
#from bootstrap, auxiliary, and Liu and West filters)
bootWSamp <- as.matrix(cBootF$mvWSamples, 'x')
bootWts <- as.matrix(cBootF$mvWSamples, 'wts')
auxWSamp <- as.matrix(xAuxF$mvWSamples, 'x')
auxWts <- as.matrix(cAuxF$mvWSamples, 'wts')

#Liu and West filter also returns samples
#from posterior distribution of top-level parameters:
aEWSamp <- as.matrix(cLWF$mvEWSamples, 'a')</pre>
```

8.1.2 Particle MCMC (PMCMC)

In addition to our four particle filters, NIMBLE also has particle MCMC samplers implemented. These sample top-level parameters by using either a bootstrap filter or auxiliary particle filter to obtain estimates of the likelihood of a model for use in a Metropolis-Hastings MCMC step. The RW_PF sampler uses a univariate normal proposal distribution, and should be used to sample scalar top-level parameters. The RW_PF_block sampler uses a multivariate normal proposal distribution for vectors of top-level parameters. Each PMCMC sampler also includes an optional algorithm to estimate the optimal number of particles to use in the particle filter at each iteration, based on a trade off between computational time and efficiency. The PMCMC samplers can be specified with a call to addSampler with type = 'RW_PF_block', a syntax similar to the other MCMC samplers listed in ??.

The RW_PF sampler and RW_PF_block sampler can be customized using the control list argument to set the adaptive properties of the sampler and options for the particle filter

algorithm to be run. In addition, setting the pfOptimizeNparticles control list option to TRUE will allow the sampler to estimate the optimal number of particles for the bootstrap filter. See help(samplers) for details. The MCMC configuration for the timeModel in the previous section will serve as an example for the use of our PMCMC sampler. Here we use the identity matrix as our proposal covariance matrix.

8.2 Monte Carlo Expectation Maximization (MCEM)

Suppose we have a model with missing data (or a layer of latent variables that can be treated as missing data) and we would like to maximize the marginal likelihood of the model, integrating over the missing data. A brute-force method for doing this is MCEM. This is an EM algorithm in which the missing data are simulated via Monte Carlo (often MCMC, when the full conditional distributions cannot be directly sampled from) at each iteration. MCEM can be slow, and there are other methods for maximizing marginal likelihoods that can be implemented in NIMBLE. The reason we started with MCEM is to explore the flexibility of NIMBLE and illustrate the combination of R and NIMBLE involved, with R managing the highest-level processing of the algorithm and calling nimbleFunctions for computations. NIMBLE provides an ascent-based MCEM algorithm that automatically determines when the algorithm has converged by examining the size of the changes in the likelihood between each iteration (buildMCEM).

We will revisit the pump example to illustrate the use of NIMBLE's MCEM algorithm.

The first argument to the MCEM, model, is a NIMBLE model, which can be either the uncompiled or compiled version. At the moment, the model provided cannot be part of another MCMC sampler. The ascent-based MCEM algorithm has a number of control options:

The latentNodes argument should indicate the nodes that will be integrated over (sampled via MCMC), rather than maximized. These nodes must be stochastic, not deterministic! latentNodes will be expanded as described in Section ??: e.g., either latentNodes = 'x' or latentNodes = c('x[1]', 'x[2]') will treat x[1] and x[2] as latent nodes if x is a vector of two values. All other non-data nodes will be maximized over. Note that latentNodes can include discrete nodes, but the nodes to be maximized cannot.

The burnIn argument indicates the number of samples from the MCMC for the E-step that should be discarded when computing the expected likelihood in the M-step. Note that burnIn can be set to values lower than in standard MCMC computations, as each iteration will start off where the last left off.

The mcmcControl argument will be passed to configureMCMC to define the MCMC to be used.

The MCEM algorithm automatically detects box constraints for the nodes that will be optimized, using NIMBLE's getBounds() function. It is also possible for a user to manually specify constraints via the boxConstraints argument. Each constraint given should be a list in which the first element is the names of the nodes or variables that the constraint will be applied to and the second element is a vector of length two, in which the first value is the lower limit and the second is the upper limit. Values of Inf and -Inf are allowed. If a node is not listed, its constraints will be automatically determined by NIMBLE. These constraint arguments are passed as the lower and upper arguments to R's optim function, using method = 'L-BFGS-B'. Note that NIMBLE will give a warning if a user-provided constraint is more extreme than the constraint determined by NIMBLE.

The value of the **buffer** argument shrinks the **boxConstraints** by this amount. This can help protect against non-finite values occurring when a parameter is on its boundary value.

In addition, the MCEM has some extra control options that can be used to further tune the convergence criterion. See help(buildMCEM) for more information.

Once an MCEM has been built for the model of interest, it can be run as follows. There is only one run-time argument, <code>initM</code>, which is the number of MCMC iterations to use when the algorithm is initialized.

```
pumpMLE <- pumpMCEM(initM = 1000)
pumpMLE</pre>
```

Direct maximization after analytically integrating over the latent nodes (possible for this model but often not feasible) gives estimates of $\hat{\alpha} = 0.823$ and $\hat{\beta} = 1.261$, so the MCEM seems to do pretty well.

Part IV Programming with NIMBLE

Part ?? is the programmer's guide to NIMBLE. At the heart of programming in NIMBLE are nimbleFunctions, which are written using the NIMBLE language (also called the NIMBLE DSL).

In Chapter ??, we describe how to write simple nimbleFunctions (nimbleFunctions that don't interact with models) to compile parts of R for fast calculations. We then show how to use these simple nimbleFunctions to write user-defined distributions and user-defined functions that you can use within the BUGS code of a model to extend the distributions and functions build into NIMBLE (Chapter ??).

We then move into the functionality in NIMBLE that allows one to program with models, namely writing nimbleFunctions that interact with models. We first describe how one interacts with models by querying model structure and carrying out model calculations (Chapter ??). We then discuss the modelValues and nimbleList data structures in Chapter ??. The functionality for interacting with models and modelValues is central to writing nimbleFunctions that operate on models, described in Chapter ??. In particular one will often query model structure within nimbleFunction setup code and then carry out model calculations based on that structural information within nimbleFunction run code. Together Sections ?? and ?? describe what is allowed within the NIMBLE language, the language used for run code.

Chapter 9

Writing simple nimbleFunctions using the NIMBLE language

9.1 Introduction to simple nimbleFunctions

nimbleFunctions are the heart of programming in NIMBLE. In this part of the manual, you'll learn about the various ways to use nimbleFunctions. Here we'll start with simple nimbleFunctions that only contain the code to be compiled and executed, which we call the run code. nimbleFunctions are created with the nimbleFunction function.

Basic nimbleFunctions behave like R functions: nimbleFunction simply returns a function that can be executed and compiled. This is useful for doing math or the other kinds of processing available in NIMBLE when no model or modelValues is needed. The real benefits come from compiling the nimbleFunction; in other words, nimbleFunctions allow you to compile parts of R.

run code is written in the NIMBLE language. This is similar to a narrow subset of R, but it is important to remember that it is different – defined by what can be compiled – and much more limited. In addition, some information on variable types must be provided for input arguments, the return object, and in some circumstances for local variables.

Here's a basic example.

9.2 Using and compiling simple nimbleFunctions

Here's a slightly more involved nimbleFunction that illustrates the use of linear algebra.

To a large extent, NIMBLE functions can be executed in R (uncompiled) as seen in the previous section or can be compiled as discussed next. Using them in R will be slow and is intended for testing and debugging algorithm logic (see Section ??).

After we create the nimbleFunction, we can compile a fast version of the nimbleFunction using compileNimble.

This example shows the textbook calculation of a least squares solution for regression of 100 data points on four explanatory variables, all generated randomly¹. Such functions can

¹Of course in general, explicitly calculating the inverse is not the recommended numerical recipe for least squares.

be called from other nimbleFunctions or used in BUGS code.²

9.3 The NIMBLE language

9.3.1 Basics

There are several general points that will be useful before describing the NIMBLE language in more detail.

- NIMBLE language functions are not R functions. In many cases we have used syntax identical or nearly so to R, and in most cases we have provided a matching R function, but it is important not to confuse the NIMBLE language definition with the behavior of the corresponding R function.
- Like R, NIMBLE uses 1-based indexing. For example, the first element of a vector \mathbf{x} is $\mathbf{x}[1]$, not $\mathbf{x}[0]$.
- As in R, function calls in NIMBLE can provide arguments by name or in a default order.
- NIMBLE is the opposite of R for argument passing. R nearly always uses pass-by-value (formally call-by-value). NIMBLE nearly always uses pass-by-reference (or pointer). That means that in compiled execution only, changing the value of a variable that was a function input will change the value in the calling function. Thus it is possible to write a nimbleFunction that returns information by modifying an argument. Yes, that's a big difference in behavior!
 - Although compiled nimbleFunctions can modify arguments, the R interface to a compiled nimbleFunction performs a copy to protect the original R argument from modification. (If you want to see arguments potentially modified as well as any return value from R, you can modify the control argument to compileNimble to include "returnAsList = TRUE". Then the returned object will be a list with the nimble-Function's return value as the last element.) perhaps this should be its own subsection with a single sentence as a bullet here?
- Variables in the NIMBLE language are typed, and types must be declared for arguments and return values.
- BUGS model nodes are implemented as nimbleFunctions with member functions for calculate, calculateDiff, simulate, getLogProb, getParam, and getBound.
- nimbleFunctions cannot generally be copied safely. Instead rerun nimbleFunction and record the result in a new object. useful to say here? Is there a case in which one would want to copy an RC function?

9.3.2 How numeric types work in NIMBLE

Variables in the NIMBLE language are typed – a given variable can only represent a specific kinds of value, such as a real number, integer, or character string, and the dimension (scalar, vector, matrix, etc.) cannot change once it is set.

²On the machine this is being written on, the compiled version runs a few times faster than the uncompiled version. However we refrain from formal speed tests.

Numeric types in NIMBLE are much less flexible than in R, a reflection of the fact that NIMBLE code can be compiled into $C++^3$. In NIMBLE, the *type* of a numeric object refers to the number of dimensions and the numeric type of the elements. In Version 0.6-3, objects from 0 (scalar) to 4 dimensions are supported, and the numeric types *integer* and *double* are supported, as is a *logical* type. While the number of dimensions cannot change during run-time, numeric objects can be resized using **setSize** or by full (non-indexed) assignment.

Arguments and return values for functions must have their types and dimensions declared by the programmer.

Types and dimensions for variables declared within run code are handled differently. When possible, NIMBLE will determine the type of a local variable that is defined in run code for you. In particular, when a numeric variable is created by assignment, its type is determined by that assignment. Subsequent uses of that variable must be consistent with that type. In contrast, if the first uses of a variable involves indexing, the type must be declared explicitly and the size set as discussed in Section ??. In addition, its size must be set before assigning into it.

Treatment of vectors of length 1 presents special challenges because they could be treated as scalars or vectors. Currently they are treated as scalars. I think we should say more here - we do allow length-one vectors and passing in a scalar from R into a double(1) (e.g.) will work. Perry, can you frame this more comprehensively here or somewhere else appropriate - I'm wondering if this should be its own subsection and also have a bullet on it in the previous subsection

nimbleLists provide containers for numeric and character type variables in NIMBLE. More information on using nimbleLists in nimbleFunctions can be found in Section ??.

9.3.3 Declaring argument types and the return type

NIMBLE requires that types of arguments and the type of the return value be explicitly declared.

As illustrated in the example in Section ??, the syntax for a type declaration is: type(nDim, sizes).

type can be any of double, integer, logical or character (for scalars or vectors only). In a returnType statement, a type of void() is valid, and is the default if no returnType statement is included. nDim is the number of dimensions, with 0 indicating scalar. sizes is an optional vector of fixed, known sizes. These should use R's c function if nDim > 1 (e.g. double(2, c(4, 5)) declares a 4- \times -5 matrix). If sizes are omitted, they will either be set when the entire object is assigned to, or an explicit call to setSize is needed.

In the case of scalar arguments only, a default value can be provided. For example, to provide 1.2 as a default:

```
myfun <- nimbleFunction(
    run = function(x = double(0, default = 1.2)) {
})</pre>
```

³C++ is a statically typed language, which means the type of a variable cannot change.

9.3.4 Creating non-scalar variables: numeric, integer, logical, matrix, and array

When local variables in run code are created by assignment, their types will be automatically inferred. For example, $x \leftarrow A \%\%$ B will create x as a matrix. However, if a variable is to be filled by indexed assignment, then it must be explicitly created or re-sized first. For example, in the following code x must be created before being filled by indexed assignment:

```
## NOTE: must create x as a matrix here, first

for(i in 1:10)
    for(j in 1:5)
        x[i, j] <- foo(y[i, j])</pre>
```

Scalar variables never need to be created in advance.

NIMBLE provides several functions for creating non-scalar variables. These functions are similar to those of R, but they take additional arguments to set an initialization value, indicate floating-point or integer elements, and/or indicate no initialization is needed⁴. numeric, integer, and logical create floating-point, integer, and logical vectors (1-dimensional objects), respectively. matrix creates 2-dimensional objects, and array creates objects of 1, 2 or more dimensions. The latter two functions can be used for floating-point, integer, or logical objects.

After a variable has been created, its size may be changed either by non-indexed assignment or by setSize, as illustrated below. Note that setSize cannot change the number of dimensions of a variable, and it does *not* necessarily preserve the contents of the variable.

numeric, integer, and logical

numeric, integer, or logical will create a 1-dimensional vector of floating-point, integer, or logical values, respectively. The length argument specifies the vector length (default 0), and the value argument specifies the initial scalar value for all vector elements (default 0). The init argument specifies whether or not to initialize the elements (default TRUE). If first use of the variable does not rely on initial values, you can use init = FALSE.

```
## Example of creating and resizing a floating-point vector
## myNumericVector will be of length 10, with all elements initialized to 2
myNumericVector <- numeric(10, value = 2)

## resize this numeric vector to be length 20
## both calls are equivalent
setSize(myNumericVector, 20)
setSize(myNumericVector, c(20))</pre>
```

⁴Skipping initialization is more efficient, but this will typically be noticeable only for functions called many, many times.

```
## Example of creating a length-100 integer vector and filling it with the
values 1, 2

n <- 100

myIntegerVector <- integer(n)

for(i in 1:n)
    myIntegerVector[i] <- i</pre>
```

```
## Example of creating a length-100 locical vector and filling it with TRUE x \leftarrow 100 myIntegerVector \leftarrow logical(n, value = TRUE)
```

matrix and identityMatrix

matrix creates a 2-dimensional matrix object of either floating-point (if type = 'double', the default), integer (if type = 'integer'), or logical (if type = 'logical') values. The nrow and ncol arguments specify the number of rows and columns, respectively. The value and init argument are used in the same way as for numeric() and integer().

```
## Example of creating a 10-by-1 column matrix of 1's and resizing it
onesMatrix <- matrix(1, nrow = 10, ncol = 1)

## resize this matrix to be a 10-by-10 matrix
## note that contents are not necessarily preserved
## both calls are equivalent
setSize(onesMatrix, 10, 10)
setSize(onesMatrix, c(10, 10))</pre>
```

NIMBLE provides the identityMatrix function for quickly creating instances of an identity matrix (all 0's with 1's on the main diagnol). This function takes a single argument, specifying the number of rows and columns in the resulting matrix.

```
I5 <- identityMatrix(5)</pre>
```

The resulting matrix may have its elements modified, or be used in arbitrary matematical expressions, as any variable in the DSL.

array

array creates a vector or higher-dimensional object, depending on the dim argument, which takes a vector of sizes for each dimension. The type, value and init argument behave the same as for matrix.

```
## the following three lines are equivalent
## each creates a length-10 vector, with elements equal to y
a <- numeric(10, value = y)</pre>
a \leftarrow array(y, dim = 10)
a \leftarrow array(y, dim = c(10))
## the following three lines are equivalent
## each creates an integer vector of length z[5], with elements equal to x+y
b \leftarrow integer(z[5], value = x + y)
b \leftarrow array(x+y, dim = z[5], type = 'integer')
b \leftarrow array(x+y, dim = c(z[5]), type = 'integer')
## the following two lines are equivalent
## each one creates a matrix of 0's of the same size as matrix x
c \leftarrow matrix(0, nrow = dim(x)[1], ncol = dim(x)[2])
c \leftarrow array(0, dim = c(dim(x)[1], dim(x)[2]))
## the following creates a 3-dimensional array of 0's
d \leftarrow array(0, dim = c(x, y, z))
## now resize this 3-dimensional array to be (x+1) by (y+1) by (z+1)
## both calls are equivalent
setSize(d, x+1, y+1, z+1)
setSize(d, c(x+1, y+1, z+1))
```

Deprecated method of creating non-scalar objects using declare

Previous versions of NIMBLE provided a function declare for declaring variables. The more R-like functions numeric, integer, matrix and array are intended to replace declare, but declare is still supported for backward compatibility. In a future version of NIMBLE, declare may be removed.

9.3.5 Querying sizes

Sizes can be queried as follows:

- length behaves like R's length function. It returns the *entire* length of X. That means if X is multivariate, length returns the product of the sizes in each dimension.
- dim, which has synonym nimDim, behaves like R's dim function for matrices or arrays, and like R's length function for vectors. In other words, regardless of whether the number of dimensions is 1 or more, it returns a vector of the sizes. Using dim vs. nimDim is a personal choice, but if you use dim, you should keep in mind that it behaves differently from R's dim.

 A quirky limitation in Version 0.6-3: It not currently possible to assign the results from nimDim to another object using vector assignment. So the only practical way to use nimDim is to extract elements immediately, such as nimDim(X)[1], nimDim(X)[2], etc.

9.3.6 Basic flow control: if-then-else, for, and while

These basic control flow structures use the same syntax as in R. However, for-loops are limited to sequential integer indexing. For example, for(i in 2:5) {...} works as it does in R. Decreasing index sequences are not allowed.

We plan to include more flexible for-loops in the future, but for now we've included just one additional useful feature: for(i in seq_along(NFL)) will work as in R, where NFL is a nimbleFunctionList. This is described below.

9.3.7 Using functions

You can call another nimbleFunction from within your nimbleFunction. Simply define the two functions and call one within the other. Similarly, you can define and use a nimbleFunction within another nimbleFunction.

please confirm these statements are true for RC functions

9.3.8 Basic math and linear algebra

Available mathematical operations

Numeric scalar and matrix mathematical operations are listed in tables ?? and ??. More information on the nimbleLists returned by the eigen() and svd() functions in NIMBLE can be found in Section ??.

Perry please scan through these tables for accuracy. In particular, do we now allow vector inputs to distribution functions?

Table 9.1: Functions operating on scalars, many of which can operate on each element (component-wise) of vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

Usaş	ge Description Comments Statu	s Accepts vector input
x y, x & y	logical OR () and AND(&)	
! x	logical not	
x > y, x >= y	greater than (and or equal to)	
x < y, x <= y	less than (and or equal to)	
x != y, x == y	(not) equals	
x + y, x - y, x * y	component-wise operators	mix of scalar and vector ok
х / у,	component-wise division	vector x and scalar y ok
x^y, pow(x, y)	power	x^y ; vector x and scalar y ok
x %% y	modulo (remainder)	
min(x1, x2), max(x1, x2)	min. (max.) of two scalars	

Table 9.1: Functions operating on scalars, many of which can operate on each element (component-wise) of vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

Usage	Description Comments Status	Accepts vector input
		T
exp(x)	exponential	
log(x)	natural logarithm	
sqrt(x)	square root	
abs(x)	absolute value	
step(x)	step function at 0	0 if $x < 0, 1$ if $x > 0$
equals(x, y)	equality of two scalars	1 if $x == y$, 0 if $x! = y$
cube(x)	third power	x^3
sin(x), cos(x), tan(x)	trigonometric functions	
asin(x), acos(x), atan(x)	inverse trigonometric functions	
asinh(x), acosh(x), atanh(x) inv. hyperbolic trig. functions	
logit(x)	logit	$\log(x/(1-x))$
<pre>ilogit(x), expit(x)</pre>	inverse logit	$\exp(x)/(1+\exp(x))$
<pre>probit(x)</pre>	probit (Gaussian quantile)	$\Phi^{-1}(x)$
<pre>iprobit(x), phi(x)</pre>	inverse probit (Gaussian CDF)	$\Phi(x)$
cloglog(x)	complementary log log	$\log(-\log(1-x))$
icloglog(x)	inverse complementary log log	$1 - \exp(-\exp(x))$
<pre>ceiling(x)</pre>	ceiling function	$\lceil (x) \rceil$
floor(x)	floor function	$\lfloor (x) \rfloor$
round(x)	round to integer	
trunc(x)	truncation to integer	
<pre>lgamma(x), loggam(x)</pre>	log gamma function	$\log \Gamma(x)$
log1p(x)	$\log \text{ of } 1 + x$	$\log(1+x)$
<pre>lfactorial(x), logfact(x)</pre>	log factorial	$\log x!$
log1p(x)	log one-plus	log(x+1)
qDIST(x, PARAMS)	"q" distribution functions	canonical parameterization
pDIST(x, PARAMS)	"p" distribution functions	canonical parameterization
rDIST(1, PARAMS)	"r" distribution functions	canonical parameterization
dDIST(x, PARAMS)	"d" distribution functions	canonical parameterization
sort(x)		
rank(x, s)		
ranked(x, s)		
order(x)		

Table 9.2: Functions operating on vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

	Usage Description Comments Status	<u>S</u>	
inverse(x)	matrix inverse	x symmetric, positive definite	✓
chol(x)	matrix Cholesky factorization	x symmetric, positive definite	\checkmark
eigen(x)	matrix eigendecomposition	x symmetric, returns a nimbleList	\checkmark
svd(x)	matrix singular value decomposition	returns a nimbleList	\checkmark
t(x)	matrix transpose	x^{\top}	\checkmark

Table 9.2: Functions operating on vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

	Usage Description Comments Status	_
		_
x %*% y	matrix multiply	xy; x, y conformant
<pre>inprod(x, y)</pre>	dot product	$x^{\top}y$; x and y vectors
solve(x, y)	solve system of equations	$x^{-1}y$; y matrix or vector
<pre>forwardsolve(x, y)</pre>	solve lower-triangular system of equations	$x^{-1}y$; x lower-triangular
backsolve(x, y)	solve upper-triangular system of equations	$x^{-1}y$; x upper-triangular
logdet(x)	log matrix determinant	$\log x $
asRow(x)	convert vector x to 1-row matrix	sometimes automatic
asCol(x)	convert vector \mathbf{x} to 1-column matrix	sometimes automatic
sum(x)	sum of elements of x	
mean(x)	mean of elements of x	
sd(x)	standard deviation of elements of x	
prod(x)	product of elements of x	
min(x), max(x)	min. (max.) of elements of x	
<pre>pmin(x, y), pmax(x, y)</pre>	vector of mins (maxs) of elements of x and y	
interp.lin(x, v1, v2)	linear interpolation	

NIMBLE uses the *Eigen* library in C++ to accomplish linear algebra. In Version 0.6-3, we use a lot of Eigen's capabilities, but not all of them.

No vectorized operations other than assignment are supported for more than two dimensions in v0.6-3. That means A = B + C will work only if B and C have dimensions \leq 2.

Managing dimensions, sizes and indices

do we want to say anything else here about indexing?

It can be tricky to determine the dimensions returned by a linear algebra expression. As much as possible, NIMBLE behaves like R, but in some cases this is not possible because R uses run-time information while NIMBLE must determine dimensions at compile-time.

Suppose v1 and v2 are vectors, and M1 is a matrix. Then

- v1 + M1 generates a compilation error unless one dimension of M1 is known at compiletime to be 1. If so, then v1 is promoted to a 1-row or 1-column matrix to conform with M1, and the result is a matrix of the same sizes. This behavior occurs for all component-wise binary functions.
- v1 %*% M1 defaults to promoting v1 to a 1-row matrix, unless it is known at compile-time that M1 has 1 row, in which case v1 is promoted to a 1-column matrix.
- M1 %*% v1 defaults to promoting v1 to a 1-column matrix, unless it is known at compile time that M1 has 1 column, in which case v1 is promoted to a 1-row matrix.
- v1 %*% v2 promotes v1 to a 1-row matrix and v2 to a 1-column matrix, so the returned values is a 1x1 matrix with the inner product of v1 and v2. If you want the inner product as a scalar, use inprod(v1, v2).
- asRow(v1) explicitly promotes v1 to a 1-row matrix. Therefore v1 %*% asRow(v2) gives the outer product of v1 and v2.

- asCol(v1) explicitly promotes v1 to a 1-column matrix.
- The default promotion for a vector is to a 1-column matrix. Therefore, v1 %*% t(v2) is equivalent to v1 %*% asRow(v2).
- When indexing, dimensions with scalar indices will be dropped. For example, M1[1,] and M1[,1] are both vectors. If you do not want this behavior, use drop=FALSE just as in R. For example, M1[1,,drop=FALSE] is a matrix.
- The left-hand side of an assignment can use indexing, but if so it must already be correctly sized for the result. For example, Y[5:10, 20:30] <- model\$x will not work and could crash your R session with a segmentation fault if Y is not already at least 10x30 in size. This can be done by setSize(Y, c(10, 30)). See Section?? for more details. Note that non-indexed assignment to Y, such as Y <- model\$x, will automatically set Y to the necessary size.

Here are some examples to illustrate the above points, assuming M2 is a square matrix.

- Y <- v1 + M2 %*% v2 will return a 1-column matrix. If Y is created by this statement, it will be a 2-dimensional variable. If Y already exists, it must already be 2-dimensional, and it will be automatically re-sized for the result.
- Y <- v1 + (M2 %*% v2)[,1] will return a vector. Y will either be created as a vector or must already exist as a vector and will be re-sized for the result.

Size warnings and the potential for crashes

For matrix algebra, NIMBLE cannot ensure perfect behavior because sizes are not known until run time. Therefore, it is possible for you to write code that will crash your R session. In Version 0.6-3, NIMBLE attempts to issue warning if sizes are not compatible, but it does not halt execution. Therefore, if you execute A <- M1 % * % M2, and M1 and M2 are not compatible for matrix multiplication, NIMBLE will output a warning that the number of rows of M1 does not match the number of columns of M2. After that warning the statement will be executed and may result in a crash. Another easy way to write code that will crash is to do things like Y[5:10, 20:30] <- model\$x without ensuring Y is at least 10x30. In the future we hope to prevent crashes, but in Version 0.6-3 we limit ourselves to trying to provide useful information.

9.3.9 Distribution functions

Distribution "d", "r", "p", and "q" functions can all be used from nimbleFunctions (and in BUGS model code), but the care is needed in the syntax.

- We support only the canonical NIMBLE parameterization, as listed below (with a small number of exceptions, also listed).
- The names of the distributions are the names used under the hood in NIMBLE and differ from the standard BUGS distribution names.
- Currently "r" functions only return one random draw at a time, and the first argument must always be 1.

• For the multivariate normal and Wishart distributions the prec_param or scale_param argument must be provided, indicating when a covariance or precision matrix has been given.

Arguments are matched by order or by name (if given). If omitted, default argument values based on the standard R distribution functions will be used. Standard arguments to distribution functions in R (log, log.p, lower.tail) can be used and take the usual default values as in R. User-defined distributions can also be used from nimbleFunctions and are handled analogously with regard to matching by position and use of defaults (when provided via the nimbleFunction run function arguments) (Chapter ??).

Supported distributions include:

- dbinom(size, prob)
- dcat(prob)
- dmulti(size, prob)
- dnbinom(size, prob)
- dpois(lambda)
- dbeta(shape1, shape2)
- dchisq(df)
- dexp(rate)
- dexp_nimble(rate)
- dexp_nimble(scale)
- dgamma(shape, rate)
- dgamma(shape, scale)
- dlnorm(meanlog, sdlog)
- dlogis(location, scale)
- dnorm(mean, sd)
- dt_nonstandard(df, mu, sigma)
- dt(df)
- dunif(min, max)
- dweibull(shape, scale)
- ddirch(alpha)
- dmnorm_chol(mean, cholesky, prec_param)
- dwish_chol(cholesky, df, scale_param)

In the last two, cholesky stands for Cholesky decomposition of the relevant matrix; prec_param indicates whether the Cholesky is of a precision matrix or covariance matrix; and scale_param indicates whether the Cholesky is of a scale matrix or an inverse scale matrix.

In a future release, we will also extend the alternative parameterizations given in Section ?? to nimbleFunctions.

9.3.10 print and stop

As demonstrated above, the NIMBLE function print, or equivalently nimPrint, prints an arbitrary set of outputs in order and adds a newline character at the end. cat or nimCat is

identical, except without a newline at the end. The NIMBLE function stop, or equivalently nimStop, throws control to R's error-handling system and can take one string (character) argument.

9.3.11 Checking for user interrupts

When you write algorithms that will run for a long time in C++, you may want to explicitly check whether a user has tried to interrupt the execution (e.g. by pressing Control-C). Simply include checkInterrupt() in run code to do so. If there has been an interrupt, the process will stop and return control to R.

9.3.12 Alternative keywords for some functions

NIMBLE uses some keywords, such as dim and print, in ways similar but not identical to R. In addition, there are some keywords in NIMBLE that have the same names as really different R functions. For example, step is part of the BUGS language, but it is also an R function for stepwise model selection. And equals is part of the BUGS language but is also used in the testthat package, which we use in testing NIMBLE.

The way NIMBLE handles this to try to avoid conflicts is to replace some keywords immediately upon creating a nimbleFunction. These replacements include

- $\bullet \ \mathtt{c} \to \mathtt{nim}\mathtt{C}$
- ullet copy o nimCopy
- ullet dim o nimDim
- print \rightarrow nimPrint
- ullet cat ightarrow nimCat
- ullet step o nimStep
- ullet equals o nimEquals
- ullet rep o nimRep
- ullet round o nimRound
- ullet seq o nimSeq
- ullet stop o nimStop
- ullet switch ightarrow nimSwitch
- ullet numeric, integer, logical o nimNumeric, nimInteger, nimLogical
- matrix, array → nimMatrix, nimArray

This system gives programmers the choice between using the keywords like nimPrint directly, to avoid confusion in their own code about which "print" is being used, or to use the more intuitive keywords like print but remember that they are not the same as R's functions.

Chapter 10

Creating user-defined BUGS distributions and functions

NIMBLE allows you to define your own functions and distributions as *nimbleFunctions* for use in BUGS code. As a result, NIMBLE frees you from being constrained to the functions and distributions just discussed. For example, instead of setting up a Dirichlet prior with multinomial data and needing to use MCMC, one could recognize that this results in a Dirichlet-multinomial distribution for the data and provide that as a user-defined distribution instead.

Further, while NIMBLE at the moment does not allow the use of random indices, such as is common in clustering contexts, you may be able to analytically integrate over the random indices, resulting in a mixture distribution that you could implement as a user-defined distribution. For example, one could implement the *dnormmix* distribution provided in JAGS as a user-defined distribution in NIMBLE.

10.1 User-defined functions

To provide a new function for use in BUGS code, simply create a nimbleFunction that has no *setup* code as discussed in Chapter ??. Then use it in your BUGS code. That's it.

Writing nimbleFunctions requires that you declare the dimensionality of arguments and the returned object (Section ??). Make sure that the dimensionality specified in your nimble-Function matches how you use it in BUGS code. For example, if you define scalar parameters in your BUGS code you will want to define nimbleFunctions that take scalar arguments. Here is an example that returns twice its input argument:

```
timesTwo <- nimbleFunction(
    run = function(x = double(0)) {
        returnType(double(0))
        return(2*x)
    })

code <- nimbleCode({</pre>
```

```
for(i in 1:3) {
     mu[i] ~ dnorm(0, 1)
     mu_times_two[i] <- timesTwo(mu[i])
}
</pre>
```

The x = double(0) argument and returnType(double(0)) establish that the input and output will both be 0-dimensional (scalar) numbers.

You can define nimbleFunctions that take inputs and outputs with more dimensions. Here is an example that takes a vector (1-dimensional) as input and returns a vector with twice the input values:

```
vectorTimesTwo <- nimbleFunction(
    run = function(x = double(1)) {
        returnType(double(1))
        return(2*x)
    }
    )
code <- nimbleCode({
    for(i in 1:3) {
        mu[i] ~ dnorm(0, 1)
    }
    mu_times_two[1:3] <- vectorTimesTwo(mu[1:3])
})</pre>
```

There is a subtle difference between the mu_times_two variables in the two examples. In the first example, there are individual nodes for each mu_times_two[i]. In the second example, there is a single multivariate node, mu_times_two[1:3]. Each implementation could be more efficient for different needs. For example, suppose an algorithm modifies the value of mu[2] and then updates nodes that depend on it. In the first example, mu_times_two[2] would be updated. In the second example mu_times_two[1:3] would be updated because it is a single, vector node.

At present you cannot provide a scalar argument where a nimbleFunction expects a vector; unlike in R, scalars are not simply vectors of length 1. this comment could be confusing - one can pass an R 'scalar' into a double(1). And the example here relates to passing scalars vs vector nodes which involves notions of node dimensionality. Thoughts on how to reword?

10.2 User-defined distributions

To provide a user-defined distribution, you need to define density ("d") and simulation ("r") nimbleFunctions, without setup code, for your distribution. In some cases you can then simply use your distribution in BUGS code as you would any distribution already provided

by NIMBLE, while in others you need to explicitly register your distribution as described in Section ??.

You can optionally provide distribution ("p") and quantile ("q") functions, which will allow truncation to be applied to a user-defined distribution. You can also provide a list of alternative parameterizations, but only if you explicitly register the distribution.

Here is an extended example of providing a univariate exponential distribution (although this is already provided by NIMBLE) and a multivariate Dirichlet-multinomial distribution.

```
dmyexp <- nimbleFunction(</pre>
    run = function(x = double(0), rate = double(0, default = 1),
        log = integer(0, default = 0)) {
        returnType(double(0))
        logProb <- log(rate) - x*rate</pre>
        if(log) return(logProb)
        else return(exp(logProb))
    })
## Error in eval(expr, envir, enclos): could not find function "nimbleFunction"
rmyexp <- nimbleFunction(</pre>
    run = function(n = integer(0), rate = double(0, default = 1)) {
        returnType(double(0))
        if(n != 1) print("rmyexp only allows n = 1; using n = 1.")
        dev \leftarrow runif(1, 0, 1)
        return(-log(1-dev) / rate)
    })
## Error in eval(expr, envir, enclos): could not find function "nimbleFunction"
pmyexp <- nimbleFunction(</pre>
    run = function(q = double(0), rate = double(0, default = 1),
        lower.tail = integer(0, default = 1),
        log.p = integer(0, default = 0)) {
        returnType(double(0))
        if(!lower.tail) {
            logp <- -rate * q
            if(log.p) return(logp)
            else return(exp(logp))
        } else {
            p \leftarrow 1 - exp(-rate * q)
            if(!log.p) return(p)
            else return(log(p))
    })
## Error in eval(expr, envir, enclos): could not find function "nimbleFunction"
```

```
qmyexp <- nimbleFunction(</pre>
    run = function(p = double(0), rate = double(0, default = 1),
        lower.tail = integer(0, default = 1),
        log.p = integer(0, default = 0)) {
        returnType(double(0))
        if(log.p) p \leftarrow exp(p)
        if(!lower.tail) p <- 1 - p</pre>
        return(-log(1 - p) / rate)
    })
## Error in eval(expr, envir, enclos): could not find function "nimbleFunction"
ddirchmulti <- nimbleFunction(</pre>
    run = function(x = double(1), alpha = double(1), size = double(0),
        log = integer(0, default = 0)) {
        returnType(double(0))
        logProb <- lgamma(size) - sum(lgamma(x)) + lgamma(sum(alpha)) -</pre>
            sum(lgamma(alpha)) + sum(lgamma(alpha + x)) - lgamma(sum(alpha) +
                                                                    size)
        if(log) return(logProb)
        else return(exp(logProb))
    })
## Error in eval(expr, envir, enclos): could not find function "nimbleFunction"
rdirchmulti <- nimbleFunction(</pre>
    run = function(n = integer(0), alpha = double(1), size = double(0)) {
        returnType(double(1))
        if(n != 1) print("rdirchmulti only allows n = 1; using n = 1.")
        p <- rdirch(1, alpha)</pre>
        return(rmulti(1, size = size, prob = p))
    })
## Error in eval(expr, envir, enclos): could not find function "nimbleFunction"
code <- nimbleCode({</pre>
     y[1:K] ~ ddirchmulti(alpha[1:K], n)
     for(i in 1:K) {
         alpha[i] ~ dmyexp(1/3)
     })
## Error in eval(expr, envir, enclos): could not find function "nimbleCode"
model <- nimbleModel(code, constants = list(K = 5, n = 10))</pre>
## Error in eval(expr, envir, enclos): could not find function "nimbleModel"
```

The distribution-related functions should take as input the parameters for a single parameterization, which will be the canonical parameterization that NIMBLE will use.

Here are more details on the requirements for distribution-related nimbleFunctions, which follow R's conventions:

- Your distribution-related functions must have names that begin with "d", "r", "p" and "q". The name of the distribution must not be identical to any of the NIMBLE-provided distributions.
- All simulation ("r") functions must take n as their first argument. Note that you may simply have your function only handle n=1 and return an warning for other values of n.
- NIMBLE uses doubles for numerical calculations, so we suggest simply using doubles in general, even for integer-valued parameters or values of random variables.
- All density functions must have as their last argument log and implement return of the log probability density. NIMBLE algorithms typically use only log = 1, but we recommend you implement the log = 0 case for completeness.
- All distribution and quantile functions must have their last two arguments be (in order) lower.tail and log.p. These functions must work for lower.tail = 1 (i.e., TRUE) and log.p = 0 (i.e., FALSE), as these are the inputs we use when working with truncated distributions. It is your choice whether you implement the necessary calculations for other combinations of these inputs, but again we recommend doing so for completeness.
- Define the nimbleFunctions in R's global environment. Don't expect R's standard scoping to work¹.

10.2.1 Using registerDistributions for alternative parameterizations and providing other information

Behind the scenes, NIMBLE uses a function called registerDistributions to set up new distributions for use in BUGS code. In some circumstances, you will need to call registerDistributions directly to provide information that NIMBLE can't obtain automatically from the nimbleFunctions you write.

The cases in which you'll need to explicitly call registerDistributions are when you want to do any of the following:

- provide alternative parameterizations,
- indicate a distribution is discrete, and
- provide the range of possible values for a distribution.

If you would like to allow for multiple parameterizations, you can do this via the Rdist element of the list provided to registerDistributions as illustrated. If you provide CDF ("p") and inverse CDF (quantile, i.e. "q") functions, be sure to specify pqAvail = TRUE when you call registerDistributions. Here's an example of using registerDistributions

¹NIMBLE can't use R's standard scoping because it doesn't work for R reference classes, and nimble-Functions are implemented as custom-generated reference classes.

to provide an alternative parameterization and to provide the range for the user-defined exponential distribution. We can then use the alternative parameterization in our BUGS code.

```
registerDistributions(list(
    dmyexp = list(
        BUGSdist = "dmyexp(rate, scale)",
        Rdist = "dmyexp(rate = 1/scale)",
        altParams = c("scale = 1/rate", "mean = 1/rate"),
        pqAvail = TRUE,
        range = c(0, Inf)
    ))
## Error in eval(expr, envir, enclos): could not find function "registerDistributions"
code <- nimbleCode({</pre>
     y[1:K] ~ ddirchmulti(alpha[1:K], n)
     for(i in 1:K) {
         alpha[i] \sim T(dmyexp(scale = 3), 0, 100)
     })
## Error in eval(expr, envir, enclos): could not find function "nimbleCode"
model <- nimbleModel(code, constants = list(K = 5, n = 10),</pre>
                     inits = list(alpha = rep(1, 5)))
## Error in eval(expr, envir, enclos): could not find function "nimbleModel"
```

There are a few rules for how you specify the information about a distribution that you provide to registerDistributions:

- The function name in the BUGSdist entry in the list provided to registerDistributions will be the name you can use in BUGS code.
- The names of your nimbleFunctions must match the function name in the Rdist entry. If missing, the Rdist entry defaults to be the same as the BUGSdist entry.
- Your distribution-related functions must take as arguments the parameters in default order, starting as the second argument and in the order used in the parameterizations in the Rdist argument to registerDistributions or the BUGSdist argument if there are no alternative parameterizations.
- You must specify a types entry in the list provided to registerDistributions if the distribution is multivariate or if any parameter is non-scalar.

Further details on using registerDistributions can be found via help(registerDistributions). NIMBLE uses the same list format as registerDistributions to define its distributions. This list can be found in the R/distributions_inputList.R file in the package source code directory.

Chapter 11

Working with NIMBLE models

Here we describe how one can get information about NIMBLE models and carry out operations on a model. While all of this functionality can be used from R, the primary use of getting information and operating a model occurs when writing nimbleFunctions (see Chapter ??). Information about node types, distributions, and dimensions can be used to determine algorithm behavior in setup code of nimbleFunctions. Information about parameter and bound values would generally be used for algorithm calculations in run code of nimbleFunctions. Similarly, carrying out numerical operations on a model would generally be done in run code.

11.1 Variables and nodes in NIMBLE models

Section ?? describes what variables and nodes are in a NIMBLE model and how to nodes and their dependency relationships. Here we review some of NIMBLE's functionality for determining and accessing variables and nodes in a model.

11.1.1 Determining the variables and nodes in a model

Model variables can be accessed and set just as in R using \$ and [[]]. For example

While nodes that are part of a variable can be accessed as above, each node also has its own name that can be used to access it directly. For example, y[2] has the name "y[2]" and can be accessed by that name as follows:

Notice that node names can include index blocks, such as model[['z[2:4, 1:2]']], and these are not strictly required to correspond to actual nodes. Such blocks can be subsequently sub-indexed in the regular R manner.

The definitive source for node names in a model is **getNodeNames**, described below. For example

You can see one lifted node for the Cholesky decomposition of cov, and the two multi-variate normal nodes.

In the event you need to ensure that a name is formatted correctly, you can use the expandNodeNames method. For example, to get the spaces correctly inserted into "X[1,1:5]":

Alternatively, for those inclined to R's less commonly used features, a nice trick is to use its parse and deparse functions.

```
deparse(parse(text = "X[1,1:5]", keep.source = FALSE)[[1]])
```

The keep.source = FALSE makes parse more efficient.

As discussed in Section ??, you can determine whether a node is flagged as data using isData.

11.1.2 Understanding lifted nodes

In some cases, NIMBLE introduces new nodes into the model that were not specified in the BUGS code for the model, such as the lifted_dl_over_beta node in the introductory example. For this reason, it is important that programs written to adapt to different model structures use NIMBLE's systems for querying the model graph. For example, a call to pump\$getDependencies("beta") will correctly include lifted_dl_over_beta in the results. If one skips this step and assumes the nodes are only those that appear in the BUGS code, one may not get correct results.

It can be helpful to know the situations in which lifted nodes are generated. These include:

- When distribution parameters are expressions, NIMBLE creates a new deterministic node that contains the expression for a given parameter. The node is then a direct descendant of the new deterministic node. This is an optional feature, but it is currently enabled in all cases.
- As discussed in Section ?? the use of link functions causes new nodes to be introduced. This requires care if you need to initialize values in stochastic declarations with link functions.
- Use of alternative parameterizations of distributions, described in Section ??. For example when a user provides the precision of a normal distribution as tau, NIMBLE creates a new node sd <- 1/sqrt(tau) and uses sd as a parameter in the normal distribution. If many nodes use the same tau, only one new sd node will be created, so the computation 1/sqrt(tau) will not be repeated redundantly.

11.2 Accessing information about nodes and variables

11.2.1 Determining dependencies in a model

Next we'll see how to determine the node dependencies (or "descendants") in a model. There are a variety of arguments to getDependencies that allow one to specify whether to include the node itself, whether to include deterministic or stochastic or data dependents, etc. By default getDependencies returns descendants up to the next stochastic node on all edges emanating from the node(s) specified as input. This is what would be needed to calculate a Metropolis-Hastings acceptance probability in MCMC, for example.

11.2.2 Getting distributional information about a node

We briefly demonstrate some of the functionality for information about a node here, but refer readers to the R help on modelBaseClass for full details.

Here is an example model, with use of various functions to determine information about nodes or variables.

Note that any variables provided to these functions are expanded into their constituent node names, so the length of results may not be the same length as the input vector of node and variable names. However the order of the results should be preserved relative to the order of the inputs, once the expansion is accounted for.

11.2.3 Getting information about a distribution

One can also get generic information about a distribution based on the name of the distribution. In particular, one can determine whether a distribution was provided by the user (isUserDefined), whether a distribution provides CDF and quantile functions (pqDefined), whether a distribution is a discrete distribution (isDiscrete), the parameter names (include alternative parameterizations) for a distribution (getParamNames), and the dimension of the distribution and its parameters (getDimension). For more extensive information, please see the R help for getDistributionInfo.

11.2.4 Getting distribution parameter values for a node

The function getParam provides access to values of the parameters of a node's distribution. Like the above functions, getParam can be used as global function taking a model as the first argument, or it can be used as a model member function. The next two arguments must be the name of one (stochastic) node and the name of a parameter for the distribution followed by that node. The parameter does not have to be one of the parameters used when the node was declared. Alternative parameterization values can also be obtained. See section(??) for available parameterizations. (These can also be seen via distributionsInputList.)

Here is an example:

```
gammaModel <- nimbleModel(
    nimbleCode({
        a ~ dlnorm(0, 1)
        x ~ dgamma(shape = 2, scale = a)
    }), data = list(x = 2.4), inits = list(a = 1.2))
getParam(gammaModel, 'x', 'scale')
getParam(gammaModel, 'x', 'rate')
gammaModel$getParam('x', 'rate')</pre>
```

getParam also works in compiled nimbleFunctions.

11.2.5 Getting distribution bounds for a node

The function getBound provides access to the lower and upper bounds of the distribution for a node. In most cases these bounds will be fixed based on the distribution, but for the uniform distribution the bounds are the parameters of the distribution, and when truncation (see Section ??) is used, the bounds will be determined by the truncation. Like the functions described in the previous section, getBound can be used as global function taking a model as the first argument, or it can be used as a model member function. The next two arguments must be the name of one (stochastic) node and either 'lower' or 'upper' indicating whether the lower or upper bound is desired. For multivariate nodes the bound is a scalar that is the bound for all elements of the node, as we do not handle truncation for multivariate nodes.

Here is an example:

```
exampleModel <- nimbleModel(
    nimbleCode({
        y ~ T(dnorm(mu, sd = sig), a, Inf)
        a ~ dunif(-1, b)
        b ~ dgamma(1, 1)
    }), inits = list(a = -0.5, mu = 1, sig = 1, b = 4),
        data = list(y = 4))
getBound(exampleModel, 'y', 'lower')
getBound(exampleModel, 'y', 'upper')
exampleModel$b <- 3
exampleModel$calculate(exampleModel$getDependencies('b'))
getBound(exampleModel, 'a', 'upper')
exampleModel$getBound('b','lower')</pre>
```

getBound also works in compiled nimbleFunctions. In fact, we anticipate that most use of getBound will be for algorithms, such as for the reflection version of the random walk MCMC sampler.

11.3 Carrying out model calculations

11.3.1 Core model operations: calculation and simulation

The four basic ways to operate a model are to calculate nodes, simulate into nodes, get the log probabilities (or probability densities) that have already been calculated, and compare the log probability of a new value to that of an old value. In more detail:

calculate For a stochastic node, calculate determines the log probability value, stores it in the appropriate logProb variable, and returns it. For a deterministic node, calculate executes the deterministic calculation and returns 0.

simulate For a stochastic node, simulate generates a random draw. For deterministic nodes, simulate is equivalent to calculate without returning 0. simulate always returns NULL (or void in C++).

getLogProb getLogProb simply returns the most recently calculated log probability value, or 0 for a deterministic node.

calculateDiff calculateDiff is identical to calculate, but it returns the new log probability value minus the one that was previously stored. This is useful when one wants to change the value or values of node(s) in the model (e.g., by setting a value or simulate) and then determine the change in the log probability, such as needed for a Metropolis-Hastings acceptance probability.

Each of these functions is accessed as a member function of a model object, taking a vector of node names as an argument. If there is more than one node name, calculate and getLogProb return the sum of the log probabilities from each node, while calculateDiff returns the sum of the new values minus the old values. Next we show an example using simulate

11.3.2 simNodes, calcNodes, and getLogProbs

CJP commented elsewhere that not clear if these nf's could be replaced with an extra argument to calculate/simulate/getLogProb that allows on to specify that dependencies should be included

simNodes, calcNodes and getLogProb are basic nimbleFunctions that simulate, calculate, or get the log probabilities (densities), respectively, of the same set of nodes each time they are called. Each of these takes a model and a character string of node names as inputs. If nodes is left blank, then all the nodes of the model are used.

For simNodes, the nodes provided will be topologically sorted to simulate in the correct order. For calcNodes and getLogProb, the nodes will be sorted and dependent nodes will be included. Recall that the calculations must be up to date (from a calculate call) for getLogProb to return the values you are probably looking for.

```
simpleModelCode <- nimbleCode({
  for(i in 1:4){
    x[i] ~ dnorm(0,1)</pre>
```

```
y[i] \sim dnorm(x[i], 1) \# y \ depends \ on \ x
    z[i] ~ dnorm(y[i], 1) #z depends on y
    #z conditionally independent of x
})
simpleModel <- nimbleModel(simpleModelCode, check = FALSE)</pre>
cSimpleModel <- compileNimble(simpleModel)</pre>
\#simulates all the x's and y's
rSimXY <- simNodes(simpleModel, nodes = c('x', 'y') )
#calls calculate on x and its dependents (y, but not z)
rCalcXDep <- calcNodes(simpleModel, nodes = 'x')</pre>
\#calls\ getLogProb\ on\ x's\ and\ y's
rGetLogProbXDep <- getLogProbNodes(simpleModel,
                  nodes = 'x')
#compiling the functions
cSimXY <- compileNimble(rSimXY, project = simpleModel)</pre>
cCalcXDep <- compileNimble(rCalcXDep, project = simpleModel)</pre>
cGetLogProbXDep <- compileNimble(rGetLogProbXDep,</pre>
                            project = simpleModel)
cSimpleModel$x
cSimpleModel$y
\#simulating x and y
cSimXY$run()
cSimpleModel$x
cSimpleModel$y
cCalcXDep$run()
#Gives correct answer because logProbs
#updated by 'calculate' after simulation
cGetLogProbXDep$run()
cSimXY$run()
#Gives old answer because logProbs
#not updated after 'simulate'
cGetLogProbXDep$run()
cCalcXDep$run()
```

11.3.3 Example: simulating arbitrary collections of nodes

Note the following.

- 1. simulate(model, nodes) is equivalent to model\$simulate(nodes). You can use either, but the latter is encouraged and the former may be deprecated in the future.
- 2. Inputs like 'y[1:3]' are automatically expanded into c('y[1]', 'y[2]', 'y[3]'). In fact, simply 'y' will be expanded into all nodes within y.
- 3. An arbitrary number of nodes can be provided as a character vector.
- 4. Simulations will be done in the order provided, so in practice the nodes should often be obtained by functions like getDependencies described below. These return nodes in topologically sorted order, which means no node comes before something it depends on.
- 5. The data nodes z were not simulated into until includeData = TRUE was used.

Use of calculate, calculateDiff and getLogProb are similar to simulate, except that they return a value (described above) and they have no includeData argument.

11.3.4 Accessing log probabilities via logProb variables

For each variable that contains at least one stochastic node, NIMBLE generates a model variable with the prefix "logProb_". When the stochastic node is scalar, the logProb variable will have the same size. For example:

Creation of logProb variables for stochastic multivariate nodes is trickier, because they can represent an arbitrary block of a larger variable. In general NIMBLE records the logProb values using the lowest possible indices. For example, if x[5:10, 15:20] follows a Wishart distribution, its log probability (density) value will be stored in logProb_x[5, 15]. When possible, NIMBLE will reduce the dimensions of the corresponding logProb variable. For example, in

```
for(i in 1:10) x[i,] ~ dmnorm(mu[], prec[,])
```

x may be 10×20 (dimensions must be provided), but logProb_x will be 10×1. For the most part you do not need to worry about how NIMBLE is storing the log probability values, because you can always get them using getLogProb.

Chapter 12

Data structures in NIMBLE

NIMBLE provides several data structures useful for programming.

We'll first describe modelValues, which are containers designed for storing values for models. Then in Section ?? we'll describe nimbleLists, which have a similar purpose to lists in R, allowing you to store heterogeneous information in a single object.

modelValues can be created in either R or in nimbleFunction setup code. nimbleLists can be created in R code, in nimbleFunction setup code, and in nimbleFunction run code. Once created, modelValues and nimbleLists can then be used either in R or in nimbleFunction setup or run code. If used in run code, they will be compiled along with the nimbleFunction.

12.1 The model Values data structure

modelValues are containers designed for storing values for models. They may be used for model outputs or model inputs. A modelValues object will contain *rows* of variables. Each row contains one object of each variable, which may be multivariate. The simplest way to build a modelValues object is from a model object. This will create a modelValues object with the same variables as the model. Although they were motivated by models, one is free to set up a modelValues with any variables one wants.

As with the material in the rest of this chapter, modelValues objects will generally be used in nimbleFunctions that interact with models (see Chapter ??, so one may want to read this section after an inital reading of that chapter. modelValues objects can be defined either in setup code or separately in R (and then passed as an argument to setup code). The modelValues object can then used in run code of nimbleFunctions.

12.1.1 Creating modelValues objects

Here is a simple example of creating a modelValues object:

```
pumpModelValues = modelValues(pumpModel, m = 2)
pumpModel$x
pumpModelValues$x
```

In this example, pumpModelValues has the same variables as pumpModel, and we set pumpModelValues to have m = 2 rows. As you can see, the rows are stored as elements of a list.

Alternatively, one can define a modelValues object manually via the modelValuesConf function, like this:

The arguments to modelValuesConf are matching lists of variable names, types, and sizes. See help(modelValuesConf) for more details. Note that in R execution, the types are not enforced. But they will be the types created in C++ code during compilation, so they should be specified carefully.

The object returned by modelValues is an uncompiled modelValues. When a nimble-Function is compiled, any modelValues objects it uses are also compiled. A NIMBLE model always contains a modelValues that it uses as a default location to store its variables.

Here is an example where the **customMV** created above is used as the setup argument for a nimbleFunction, which is then compiled. Its compiled mv is then accessed with \$.

```
# Simple nimbleFunction that uses a modelValues object
resizeFunction_Gen <- nimbleFunction(
   setup = function(mv){},
   run = function(k = integer()){
      resize(mv,k)})

rResize <- resizeFunction_Gen(customMV)
cResize <- compileNimble(rResize)
cCustomMV <- cResize$mv
# cCustomMV is a C++ modelValues object</pre>
```

Compiled modelValues objects can be accessed and altered in all the same ways as uncompiled ones. However, only uncompiled modelValues can be used as arguments to setup code in nimbleFunctions.

12.1.2 Accessing contents of modelValues

The values in a modelValues object can be accessed in several ways from R, and in fewer ways from NIMBLE.

```
# Sets the first row of a to (0, 1). R only.
customMV[['a']][[1]] \leftarrow c(0,1)
# Sets the second row of a to (2, 3)
customMV['a', 2] \leftarrow c(2,3)
#Can access subsets of each row in standard R manner
customMV['a', 2][2] <- 4
# Accesses all values of 'a'. Output is a list. R only.
customMV[['a']]
# Sets the first row of b to a matrix with values 1. R only.
customMV[['b']][[1]] <- matrix(1, nrow = 2, ncol = 2)</pre>
# Sets the second row of b. R only.
customMV[['b']][[2]] <- matrix(2, nrow = 2, ncol = 2)</pre>
# Make sure the size of inputs is correct
# customMV['a', 1] <- 1:10
# Problem: dimension of 'a' is 2, not 10!
# Will cause problems when compiling nimbleFunction using customMV
```

Currently, only the syntax customMV['a', 2] works in the NIMBLE language, not customMV[['a']][[2]]. Also note that c() does not work in NIMBLE, but one can do customMV['a', 2] <- X[1:2].

We can query and change the number of rows using getsize and resize, respectively. These work in both R and NIMBLE. Note that we don't specify the variables in this case: all variables in a modelValues object will have the same number of rows.

```
getsize(customMV)
resize(customMV, 3)
getsize(customMV)
customMV$a
```

Often it is useful to convert a modelValues object to a matrix for use in R. For example, we may want to convert MCMC output into a matrix for use with the coda package for processing MCMC samples. This can be done with the as.matrix method for modelValues objects. This will generate column names from every scalar element of variables (e.g. "x[1, 1]", "x[2, 1]", etc.). The rows of the modelValues will be the rows of the matrix, with any matrices or arrays converted to a vector based on column-major ordering.

```
as.matrix(customMV, 'a')  # convert 'a'
as.matrix(customMV)  # convert all variables
```

If a variable is a scalar, using unlist in R to extract all rows as a vector can be useful.

```
customMV['c', 1] <- 1
customMV['c', 2] <- 2
customMV['c', 3] <- 3
unlist(customMV['c', ])</pre>
```

Once we have a modelValues object, we can see the structure of its contents via the varNames and sizes components of the object.

```
customMV$varNames
customMV$sizes
```

As with most NIMBLE objects, modelValues are passed by reference, not by value. That means any modifications of modelValues objects in either R functions or nimbleFunctions will persist outside of the function. This allows for more efficient computation, as stored values are immediately shared among nimbleFunctions.

```
alter_a <- function(mv){
   mv['a',1][1] <- 1
}
customMV['a', 1]

alter_a(customMV)
customMV['a',1]

#Note that the first row was changed</pre>
```

However, when you retrieve a variable from a modelValues object, the result is a standard R list, which is subsequently passed by value, as usual in R.

Automating calculation and simulation using modelValues

The nimbleFunctions simNodesMV, calcNodesMV, and getLogProbsMV can be used to operate on a model based on rows in a modelValues object. For example, simNodesMV will simulate in the model multiple times and record each simulation in a row of its modelValues. calcNodesMV and getLogProbsMV iterate over the rows of a modelValues, copy the nodes into the model, and then do their job of calculating or collecting log probabilities (densities), respectively. Each of these returns a numeric vector with the summed log probabilities of the chosen nodes from each each row. calcNodesMV will save the log probabilities back into the modelValues object if saveLP == TRUE, a run-time argument.

Here are some examples:

12.2 The *nimbleList* data structure

nimbleLists provide a container for storing different types of objects in nimble, similar to the list data structure in R. Before a nimbleList can be created and used, a definition for that nimbleList must be created that provides the names, types, and dimensions of the elements in the nimbleList. Unlike lists in R, nimbleLists must have the names and types of all list elements provided by a definition before the list can be used. A nimbleList definition can be made by using the nimbleList function in one of two manners. The first manner is to provide the nimbleList function with a series of expressions of the type

```
• name = type(nDim)
```

similar to the specification of runtime arguments to nimbleFunctions. The types allowed for a nimbleList are the same as those allowed as runtime arguments to a nimbleFunction, described in Section ??. For example, the following line of code creates a nimbleList definition with two elements: nimListInteger, which is a scalar integer, and nimListMatrix, which is a matrix of doubles.

The second method of creating a nimbleList definition is by providing an R list of nimbleType objects to the nimbleList() function. A nimbleType object can be created using the nimbleType() function, which must be provided with three arguments: the name of the object being created, the type of the object being created, and the dim of the object being created. For example, the following code creates a list with two nimbleType objects, and uses these objects to create a nimbleList definition.

Creating definitions using a list of nimbleTypes can be useful, as it allows for programmatic generation of nimbleList elements.

Once a nimbleList definition has been created, new instances of nimbleLists can be made from that definition using the new() member function. The new() function can optionally take initial values for the list elements as arguments. Below, we create a new nimbleList from our exampleNimListDef and specify values for the two elements of our list:

Once created, nimbleList elements can be accessed using the \$ operator, just as with lists in R. For example, the value of the nimListInteger element of our exampleNimbleList can be set to 11 using

```
exampleNimList$nimListInteger <- 11
```

nimbleList definitions can be created either in R's global environment, or in setup code of a nimbleFunction. Once a nimbleList definition has been made, new instances of nimbleLists can be created using the new() function in R's global environment, in setup code, or in run code of a nimbleFunction.

nimbleLists can also be passed as arguments to run code of nimbleFunctions, and returned from nimbleFunctions. To use a nimbleList as a run code argument, the name of the nimbleList definition should be provided as the argument type, with a set of parentheses following. To return a nimbleList from the run code of a nimbleFunction, the returnType of that function should be the name of the nimbleList definition, again using a following set of parentheses.

Below, we demonstrate a function that takes the exampleNimList as an argument, modifies its nimListMatrix element, and returns the nimbleList. We note that nimbleFunctions that take nimbleLists as run arguments must have setup code. For functions that need no setup code, setting setup = TRUE will allow these functions to work correctly.

```
nimListFunctionGenerator <- nimbleFunction(
   setup = TRUE,
   run = function(argumentList = exampleNimListDef()){
    onesMatrix <- matrix(value = 1, nrow = 2, ncol = 2)
        argumentList$nimListMatrix <- onesMatrix</pre>
```

```
returnType(exampleNimListDef())
    return(argumentList)
})
nimListFunction <- nimListFunctionGenerator()

## pass exampleNimList as argument to run function
nimListFunction$run(exampleNimList)</pre>
```

nimbleList arguments to run functions are passed by reference – this means that if an element of a nimbleList argument is modified within a function, that element will remain modified when the function has finished running. To see this, we can inspect the value of the nimListMatrix element of the exampleNimList object:

```
exampleNimList$nimListMatrix
```

Note that the nimListMatrix was assigned a new value (a matrix of all 1's) within the function, and this new value persists outside of the function.

In addition to storing basic data types, nimbleLists can also store other nimbleLists. To acheive this, we must create a nimbleList definition that declares the types of nested nimbleLists a nimbleList will store. Below, we create two types of nimbleLists: the first, named innerNimList, will be stored inside the second, named outerNimList:

Note that definitions for inner, or nested, nimbleLists must be created before the definition for an outer nimbleList.

12.2.1 Using eigen() and svd() in nimbleFunctions

nimble has two linear algebra functions that return nimbleLists. The eigen() function takes a symmetric matrix X as an argument, and returns a list with two elements: values, a vector with the eigenvalues of X, and vectors, a square matrix with the same dimension as X whose columns are the eigenvectors of X. The eigen() function has an optional argument named only.values, which defaults to FALSE. If only.values = TRUE, the eigen() function will not calculate the eigenvectors of X, leaving the vectors nimbleList element empty. This can reduce calculation time if only the eigenvalues of X are needed.

The svd() function takes an n-by-p matrix Y as an argument, and returns a list with three elements: d, a vector with the singular values of Y, u a matrix with the left singular vectors of Y, and v, a matrix with the right singular vectors of Y. The svd() function has an optional argument vectors which defaults to a value of "full". The vectors argument can be used to specify the number of singular vectors that are returned. If vectors = "full", v will be an n-by-n matrix and u will be an p-by-p matrix. If vectors = "thin", v will be an n-by-m matrix, where m = min(n,p), and u will be an m-by-p matrix. If vectors = "none", the u and v elements of the returned nimbleList will not be populated. nimbleLists created by either eigen() or svd() can be returned from a nimbleFunction, using returnType(eigen()) or returnType(svd()) respectively. nimbleLists created by eigen() and svd() can also be used as nested lists within other nimbleLists by specifyng the nimbleList element types as eigen() and svd(). The below example demonstrates the use of eigen() and svd() within a nimbleFunction.

```
eigenListFunctionGenerator <- nimbleFunction(</pre>
  setup = function(){
    demoMatrix \leftarrow diag(4) + 2
    eigenAndSvdListDef <- nimbleList(eigenList = eigen(), svdList = svd())</pre>
    eigenAndSvdList <- eigenAndSvdListDef$new()</pre>
  },
  run = function(){
    ## we will take the eigendecomposition and sud of a symmetric matrix
    eigenAndSvdList$eigenList <<- eigen(demoMatrix, only.values = TRUE)</pre>
    eigenAndSvdList$svdList <<- svd(demoMatrix, vectors = 'none')</pre>
    returnType(eigenAndSvdListDef())
    return(eigenAndSvdList)
eigenListFunction <- eigenListFunctionGenerator()</pre>
outputList <- eigenListFunction$run()</pre>
outputList$eigenList$values
outputList$svdList$d
```

The eigenvalues and singular values returned from the above function are the same since the matrix being decomposed was symmetric. However, note that both eigendecompositions and singular value decompositions are numerical procedures, and computed solutions may have slight differences even for a symmetric input matrix.

Chapter 13

Writing nimbleFunctions that interact with models

13.1 Overview

When you write an R function, you say what the input arguments are, you provide the code for execution, and in that code you give the returned value¹. Using the function keyword in R triggers the operation of creating an object that is the function.

Creating nimbleFunctions is similar, but there are two kinds of code and two steps of execution:

- 1. Setup code is provided as a regular R function, but the programmer does not control what it returns. Typically the inputs to setup code are objects like a model, a vector of nodes, a modelValues object or modelValuesConf, or another nimbleFunction. The setup code, as its name implies, sets up information for run-time code. It is executed in R, so it can use any aspect of R.
- 2. Run code is provided in the NIMBLE language. This is similar to a narrow subset of R, but it is important to remember that it is different defined by what can be compiled and much more limited. Run code can use the objects created by the setup code. In addition, some information on variable types must be provided for input arguments, the return object, and in some circumstances for local variables. There are two kinds of run code:
 - (a) There is always a primary function, given as an argument called run².
 - (b) There can optionally be other functions, or "methods" in the language of objectoriented programming, that share the same objects created by the **setup** function.

Here is a small example to fix ideas:

The call to the R function called nimbleFunction returns a function, similarly to defining a function in R. That function, logProbCalcPlus, takes arguments for its setup function, executes it, and returns an object, logProbCalcPlusA, that has a *run* member function

¹normally the value of the last evaluated code, or the argument to return().

²This can be omitted if you don't need it.

(method) accessed by \$run. In this case, the setup function obtains the stochastic dependencies of the node using the getDependencies member function of the model (see Section ??) and stores them in dependentNodes. In this way, logProbCalcPlus can adapt to any model. It also creates a variable, valueToAdd, that can be used by the nimbleFunction.

The object logProbCalcPlusA, returned by logProbCalcPlus, is permanently bound to the results of the processed setup function. In this case, logProbCalcPlusA\$run takes a scalar input value, P, assigns P + valueToAdd to the given node in the model, and returns the sum of the log probabilities of that node and its stochastic dependencies³. We say logProbCalcPlusA is an "instance" of logProbCalcPlus that is "specialized" or "bound" to a and testModel. Usually, the setup code will be where information about the model structure is determined, and then the run code can use that information without repeatedly, redundantly recomputing it. A nimbleFunction can be called repeatedly (one can think of it as a generator), each time returning a specialized nimbleFunction.

Readers familiar with object-oriented programming may find it useful to think in terms of class definitions and objects. nimbleFunction creates a class definition. Each specialized nimbleFunction is one object in the class. The setup arguments are used to define member data in the object.

13.2 Using and compiling nimbleFunctions

To compile the nimbleFunction, together with its model, we use compileNimble:

These have been initialized with the values from their uncompiled versions and can be used in the same way:

13.3 Writing setup code

13.3.1 Useful tools for setup functions

The setup function is typically used to determine information on nodes in a model, set up modelValues objects, set up (nested) nimbleFunctions or nimbleFunctionLists, and set up any persistent numeric objects. For example, the setup code of an MCMC nimbleFunction creates the nimbleFunctionList of sampler nimbleFunctions. The values of numeric objects created in setup can be modified by run code and will persist across calls.

Some of the useful tools and objects to create in setup functions include

vectors of node names Often these are obtained from the getNodeNames and getDependencies methods of a model, described in Section ??.

modelValues objects These are discussed more below.

specializations of other nimbleFunctions A useful NIMBLE programming technique is to have one nimbleFunction contain other nimbleFunctions, which it can use in its runtime code.

³Note the use of the global assignment operator to assign into the model. This is necessary for assigning into variables from the setup function, at least if you want to void warnings from R. These warnings come from R's reference class system.

lists of other nimbleFunctions In addition to containing single other nimbleFunctions, a nimbleFunction can contain a list of other nimbleFunctions. These are discussed more below.

nimbleList definitions It can be useful to create nimbleList definitions in setup code. New instances of nimbleLists can then be created from this definition in either setup or run code. See Section ?? for more information.

If one wants a nimbleFunction that does get specialized but has empty setup code, use setup = function() {} or setup = TRUE.

13.3.2 Accessing and modifying numeric values from setup

While models and nodes created during setup cannot be modified⁴, numeric values and modelValues (see below) can be. For example:

13.3.3 Determining numeric types in nimbleFunctions

For numeric variables from the setup function that appear in the run function or other member functions (or are declared in setupOutputs): the type is determined from the values created by the setup code. The types created by setup code must be consistent across all specializations of the nimbleFunction. For example if X is created as a matrix (2-dimensional double) in one specialization but as a vector (1-dimensional double) in another, there will be a problem during compilation. The sizes may differ in each specialization.

Treatment of vectors of length 1 presents special challenges because they could be treated as scalars or vectors. Currently they are treated as scalars. If you want a vector, ensure that the length is greater than 1 in the setup code and then use **setSize** in the run-time code.

13.3.4 Control of setup outputs

Sometimes setup code may create variables that are not used in run-time code. By default, NIMBLE inspects run-time code and omits variables from setup that do not appear in run-time code from compilation. However, sometimes a programmer may want to force a numeric or character variable to be created in compilation, even if it is not used directly in run-time code. As shown below, such variables can be directly accessed in one nimbleFunction from another, which provides a way of using nimbleFunctions as general data structures. To force NIMBLE to include variables around during compilation, for example X and Y, simply include

setupOutputs(X, Y)

anywhere in the setup code.

⁴Actually, they can be, but only for uncompiled nimbleFunctions

13.4 Writing run code

In Section ?? we described the functionality of the NIMBLE language that could be used in run code in which models were not used. When writing nimbleFunction run code that interacts with models, one can use that functionality already described as well as the functionality discussed in this section.

13.4.1 Driving models: calculate, calculateDiff, simulate, getLogProb

These four functions are the primary ways to operate a model. Their syntax was explained in Section ??. Except for getLogProb, it is usually important for the nodes object to be created in setup code such that they are sorted in topological order, and functions such as getDependencies and expandNodeNames will always do so.

It is possible to use an entire vector of node names, single elements indexed by a variable, or fixed ranges (indexed by constants) , but not ranges indexed by a variable. For example

```
myModel$calculate(nodes)
and
myModel$calculate(nodes[i])
and
myModel$calculate(nodes[1:3])
will all compile correctly, but
myModel$calculate(nodes[1:i])
```

is not allowed.

13.4.2 Getting and setting more than one model node or variable at a time using values

Sometimes it is useful to set a collection of nodes or variables at one time. For example, one might want a nimbleFunction that will serve as the objective function for an optimizer. The input to the nimbleFunction would be a vector, which should be used to fill a collection of nodes in the model before calculating their log probabilities. This can be done using values():

```
## get values from a set of model nodes into a vector
P <- values(model, nodes)
## or put values from a vector into a set of model nodes
values(model, nodes) <- P</pre>
```

where the first line would assign the collection of values from nodes into P, and the second would to the inverse. In both cases, values from nodes with 2 or more dimensions are flattened into a vector in column-wise order.

values(model, nodes) may be used as a vector in other expressions, e.g. $Y \leftarrow A \% \%$ values(model, nodes) + b.

One can also use indexing, but one can only have a single index, and not a range of indices:

```
## get values from a set of model nodes into a vector
i <- 2
P <- values(model, nodes[i])
## or put values from a vector into a set of model nodes
values(model, nodes[i]) <- P
# P <- values(model, nodes[1:2] # won't compile</pre>
```

Note that values() returns a 1-d vector and expects a 1-d vector when used on the left-hand side of an assignment. This means that one needs to do some extra work to use scalars with values(). For example:

```
tmp <- numeric(1)
tmp[1] <- rnorm(1)
values(model, nodes[1]) <- tmp
# values(model, nodes[1]) <- rnorm(1) # won't compile

out <- values(model, nodes[1])
returnType(double(0))
return(out[1])
# return(out) # won't compile unless one has returnType(double(1))</pre>
```

13.4.3 Using modelValues objects

The modelValues structure was introduced in Section ??. Inside nimbleFunctions, modelValues are designed to easily save values from a model object during the running of a nimbleFunction. A modelValues object used in run code must always exist in the setup code, either by passing it in as a setup argument or creating it in the setup code.

To illustrate this, we will create a nimbleFunction for computing importance weights for importance sampling. This function will use two modelValues objects. propModelValues will contain a set of values simulated from the importance sampling distribution and a field propLL for their log probabilities (densities). savedWeights will contain the difference in log probability (density) between the model and the propLL value provided for each set of values.

The simplest way to pass values back and forth between models and modelValues inside of a nimbleFunction is with copy, which has the synonym nimCopy. See help(nimCopy) for argument details.

Alternatively, the values may be accessed via indexing of individual rows, using the notation mv[var, i], where mv is a modelValues object, var is a variable name (not a node name), and i is a row number. Likewise, the getsize and resize functions can be used as discussed previously. However the function as.matrix does not work in run code.

Here is a run function to use these modelValues:

Once the nimbleFunction is built, the modelValues object can be accessed using \$, which is shown in more detail below. In fact, since modelValues, like most NIMBLE objects, are reference class objects, one can get a reference to them before the function is executed and then use that reference afterwards.

Importance sampling could also be written using simple vectors for the weights, but we illustrated putting them in a modelValues object along with model variables.

13.4.4 Using model variables and model Values in expressions

Each way of accessing a variable, node, or modelValues can be used amid mathematical expressions, including with indexing, or passed to another nimbleFunction as an argument. For example, the following two statements would be valid:

```
model[['x[2:8, ]']][2:4, 1:3] %*% Z
```

if Z is a vector or matrix, and

```
C[6:10] \leftarrow mv[v, i][1:5, k] + B
```

if B is a vector or matrix.

The NIMBLE language allows scalars, but models defined from BUGS code are never created as purely scalar nodes. Instead, a single node such as defined by $z \sim dnorm(0, 1)$ is implemented as a vector of length 1, similar to R. When using z via model\$z or model[['z']], NIMBLE will try to do the right thing by treating this as a scalar. In the event of problems⁵, a more explicit way to access z is model\$z[1] or model[['z']][1].

13.4.5 Including other methods in a nimbleFunction

Other methods can be included with the methods argument to nimbleFunction. These methods can use the objects created in setup code in just the same ways as the run function. In fact, the run function is just a default main method name. Any method can then call another method.

13.4.6 Using other nimbleFunctions

One nimbleFunction can use another nimbleFunction that was passed to it as a setup argument or was created in the setup function. This can be an effective way to program. When a nimbleFunction needs to access a setup variable or method of another nimbleFunction, use \$.

⁵please tell us!

Note that the output from the print calls in the compiled function match those from the uncompiled function when run in an R session. It may not be shown here because this document is created with knitr and for some reason output printed from C++ does not make it into knitr output.

13.4.7 Virtual nimbleFunctions and nimbleFunctionLists

Often it is useful for one nimbleFunction to have a list of other nimbleFunctions that have methods with the same arguments and return types. For example, NIMBLE's MCMC contains a list of samplers that are each nimbleFunctions.

To make such a list, NIMBLE provides a way to declare the arguments and return types of methods: virtual nimbleFunctions created by nimbleFunctionVirtual. Other nimbleFunctions can inherit from virtual nimbleFunctions, which in R is called "containing" them. Readers familiar with object oriented programming will recognize this as a simple class inheritance system. In Version 0.6-3 it is limited to simple, single-level inheritance.

Here is how it works:

As in R, the seq_along function is equivalent to 1:length(nimFunList) if length(nimFunList)

> 0, and it is an empty sequence if length(nimFunList) == 0.

Currently seq_along works only for nimbleFunctionLists.

Virtual nimbleFunctions cannot define setup values to be inherited.

13.4.8 Character objects

NIMBLE provides limited uses of character objects in run code. Character vectors created in setup code will be available in run code, but the only thing you can really do with them is include them in a print or stop statement.

Note that character vectors of model node and variable names are processed during compilation. For example, in model[[node]], node may be a character object, and the NIMBLE compiler processes this differently than print(''The node name was'', node). In the former, the NIMBLE compiler sets up a C++ pointer directly to the node in the model, so that the character content of node is never needed in C++. In the latter, node is used as a C++ string and therefore is needed in C++.

13.4.9 User-defined data structures

NIMBLE does not explicitly have user-defined data structures, but one can use nimbleFunctions to achieve a similar effect. To do so, one can define setup code with whatever variables are wanted and ensure they are compiled using setupOutputs. Here is an example:

You'll notice that:

• After execution of the compiled function, access to the X, Y, and Z is the same as for the uncompiled case. This occurs because CmyUseDataNF is an interface to the compiled version of myUseDataNF, and it provides access to member objects and functions. In this case, one member object is myDataNF, which is an interface to the compiled version of myUseDataNF\$myDataNF, which in turn provides access to X, Y, and Z. To

reduce memory use, NIMBLE defaults to *not* providing full interfaces to nested nimbleFunctions like myUseDataNF\$myDataNF. In this example we made it provide full interfaces by setting the buildInterfacesForCompiledNestedNimbleFunctions option via nimbleOptions to TRUE. If we had left that option FALSE (its default value), we could still get to the values of interest using

```
valueInCompiledNimbleFunction(CmyDataNF, 'X')
```

- We need to take care that at the time of compilation, the X, Y and Z values contain doubles via as.numeric so that they are not compiled as integer objects.
- The myDataNF could be created in the setup code. We just provided it as a setup argument to illustrate that option.

13.5 Example: writing user-defined samplers to extend NIMBLE's MCMC engine

One important use of nimbleFunctions is to write additional samplers that can be used in NIMBLE's MCMC engine. This allows a user to write a custom sampler for one or more nodes in a model, as well as for programmers to provide general samplers for use in addition to the library of samplers provided with NIMBLE.

The following code illustrates how a NIMBLE developer would implement and use a Metropolis-Hastings random walk sampler with fixed proposal standard deviation.

```
my_RW <- nimbleFunction(</pre>
    contains = sampler_BASE,
    setup = function(model, mvSaved, target, control) {
        scale <- control$scale ## proposal standard deviation</pre>
        calcNodes <- model$getDependencies(target)</pre>
    },
    run = function() {
        model_lp_initial <- getLogProb(model, calcNodes) ## initial model logProb</pre>
        proposal <- rnorm(1, model[[target]], scale) ## generate proposal</pre>
        model[[target]] <<- proposal</pre>
                                                            ## store proposal into model
        model_lp_proposed <- calculate(model, calcNodes) ## proposal model logProb
        ## log-Metropolis-Hastings ratio
        log_MH_ratio <- model_lp_proposed - model_lp_initial</pre>
        ## Metropolis-Hastings step: determine whether or
        ## not to accept the newly proposed value
```

The name of this sampler function, for the purposes of using it in an MCMC algorithm, is my_RW. Thus, this sampler can be added to an exisiting MCMC configuration object confusing:

To be used within the MCMC engine, sampler functions definitions must adhere exactly to the following:

- Include the contains statement contains = sampler_BASE.
- The setup function must have the exact four arguments model, mvSaved, target, control, in that order.
- The run function must accept no arguments, and have no return value. Further, after execution it must leave the mvSaved modelValues object as an up-to-date copy of the values and logProb values in the model object.
- Have a member method called **reset**, which takes no arguments and has no return value.

The purpose of the setup function is generally two-fold. First, to extract control parameters from the control list; in the example, the proposal standard deviation scale. Second, to generate any sets of nodes needed in the run function. In many sampling algorithms, as here, calcNodes is used to represent the target node(s) and dependencies up to the first layer of stochastic nodes, as this is precisely what is required for calculating the Metropolis-Hastings acceptance probability. These probability calculations are done using model\$calculate(calcNodes).

In the run function, the mvSaved modelValues object is kept up-to-date with the current state of the model, depending on whether the proposed changed was accepted. This is done using the copy function, to copy values between the model and mvSaved objects.

13.6 Copying nimbleFunctions (and NIMBLE models)

NIMBLE relies heavily on R's reference class system. When models, modelValues, and nimbleFunctions with setup code are created, NIMBLE generates a new, customized reference class definition for each. As a result, objects of these types are passed by reference and hence modified in place by most NIMBLE operations. This is necessary to avoid a great deal of copying and returning and having to reassign large objects, both in processing model and nimbleFunctions and in running algorithms.

One cannot generally copy NIMBLE models or nimbleFunctions (specializations or generators) in a safe fashion, because of the references to other objects embedded within NIMBLE objects. However, the model member function <code>newModel</code> will create a new copy of the model from the same model definition (Section ??). This new model can then be used with newly instantiated nimbleFunctions.

The reliable way to create new copies of nimbleFunctions is to re-run the R function called nimbleFunction and record the result in a new object. For example, say you have a nimbleFunction called foo and 1000 instances of foo are compiled as part of an algorithm related to a model called model1. If you then need to use foo in an algorithm for another model, model2, doing so may work without any problems. However, there are cases where the NIMBLE compiler will tell you during compilation that the second set of foo instances cannot be built from the previous compiled version. A solution is to re-define foo from the beginning – i.e. call nimbleFunction again – and then proceed with building and compiling the algorithm for model2.

13.7 Debugging nimbleFunctions

One of the main reasons that NIMBLE provides an R (uncompiled) version of each nimble-Function is for debugging. One can call debug on nimble-Function methods (in particular the main *run* method) and then step through the code in R using R's debugger. One can also insert browser calls into run code and then run the nimble-Function from R.

In contrast, directly debugging a compiled nimbleFunction is difficult, although those familiar with running R through a debugger and accessing the underlying C code may be able to operate similarly with NIMBLE code.

TODO: basic info on inserting browser in nf run code and running in R as well as using debug(nf\$run)

13.8 Some options for reducing memory usage

TODO: needs to be revised so only memory use is covered here and other material is moved as appropriate

NIMBLE can make a lot of objects in its processing, and some of them use R features like reference classes that are not light in memory usage. We have noticed that building large models can use lots of memory. To help alleviate this, we provide two options, which can be controlled via nimbleOptions.

As noted above, the option buildInterfacesForCompiledNestedNimbleFunctions defaults to FALSE, which means NIMBLE will not build full interfaces to compiled nimble-Functions that ony appear within other nimbleFunctions. If you want access to all such nimbleFunctions, use the option buildInterfacesForCompiledNestedNimbleFunctions = TRUE.

The option clearNimbleFunctionsAfterCompiling is more drastic, and it is experimental, so "buyer beware". This will clear much of the contents of an uncompiled nimbleFunction object after it has been compiled in an effort to free some memory. We expect to be able to keep making NIMBLE more efficient – faster execution and lower memory use – in the future.

Bibliography