

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD-A144 985

HOCKANUM RIVER BASIN MANCHESTER, CONNECTICUT

CASE POND UPPER DAM
CT 00560

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Æ.

FILE COP

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

MAY 1980

This document has been approved for possible a leave and lader its second and the second second and the second sec

84 08 20 027

LINCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS
1. REPORT NUMBER	2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
T. REPORT HOMBEN		
CT 00560	AD-A144985	S. TYPE OF REPORT & PERIOD COVERED
4. TITLE (and Subtitle)		
Case Pond Upper Dam		INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF	NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER
DAMS 7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(+)
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGINEE	RS	May 1980
NEW ENGLAND DIVISION, NEDED	4	13. NUMBER OF PAGES 65
424 TRAPELO ROAD, WALTHAM, MA. 0225		15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		184. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>
APPROVAL FOR PUBLIC RELEASE: DISTRI	BUTION UNLIMITED	
17. DISTRIBUTION STATEMENT (of the abetract entered	IN BIOCK 20, It dillorent fre	ш корып)
18. SUPPLEMENTARY NOTES		
Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.		
13. KEY WORDS (Continue on reverse elde if necessary as	d identify by block number)	
DAMS, INSPECTION, DAM SAFETY,		
Hockanum River Basin		
Manchester, Connecticut		

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Case Pond Upper Dam is a 110-year old earth embankment, with an approximate length of 300 feet and a maximum height of 16 feet. The spillway is 87 feet long with a crest elevation about 2 feet below the top of the dam. The dam appears to be in poor condition. The maximum storage capacity of 52 acre-feet along with the maximum height of 16 feet place the dam in the "Small" size category. The dam is classified as "Significant" hazard potential. The recommended test flood ranges from the 100-year flood to one-half of the PMF.

HOCKANUM RIVER BASIN
MANCHESTER, CONNECTICUT

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

A-1

NATIONAL DAM INSPECTION PROGRAM

PHASE I INSPECTION REPORT

Identification No.:
Name of Dam:
City:
County and State:
Stream:
Date of Inspection:

CT 00560
Case Pond Upper Dam
Manchester
Hartford County, Connecticut
Birch Mountain Brook
November 14, 1979

Dist Dist

BRIEF ASSESSMENT

Case Pond Upper Dam is a 110-year old earth embankment, used to impound water of the Birch Mountain Brook for recreational purposes. The dam is irregularly shaped in plan and section with an approximate length of 300 feet and a maximum height of 16 feet. The spillway is 87 feet long with a crest elevation about 2 feet below the top of the dam.

The drainage area for Case Pond Upper Dam is approximately 1.6 square miles. The maximum storage capacity of 52 acre-feet along with the maximum height of 16 feet place the dam in the "Small" size category. A breach of the dam could cause appreciable damage to a highway bridge located approximately 600 feet downstream of the dam, but it is unlikely that any lives would be lost. Therefore, the dam is classified in the "Significant" hazard potential category. The recommended test flood for a "Small" size, "Significant" hazard dam ranges from the 100-year flood to one-half of the Probable Maximum Flood (PMF). The selected test flood for this structure is one-half of the PMF.

The peak test flood inflow for Case Pond Upper Dam is 1,470 cfs. The routed test flood outflow of 1,460 cfs overtops the dam by 0.5 feet. The spillway is capable of discharging 810 cfs, or about 56 percent of the routed test flood outflow, prior to overtopping of the dam. A breach of the dam would result in a 3.1-foot depth (contained within the channel banks) of flow at the first residential area (an apartment complex), located about 4,400 feet downstream of the dam.

The dam appears to be in poor condition. Many trees, with trunks up to 3 feet in diameter, are growing on both the upstream and downstream faces of the dam as well as on the crest. No erosion protection is provided on the upstream face. Seepage (about 2 gpm) was observed during the inspection about 10 feet downstream of the dam. No emergency low level outlet exists for drawing down the impoundment.

4; AUG 2 9 1984

1

Within one year after receipt of this Phase I Inspection Report, the Owners should retain the services of a qualified, registered professional engineer, experienced in the design and construction of dams to: 1) investigate the cause of the seepage located in the vicinity of the downstream toe of the embankment and assess the need for remedial action; 2) direct the removal of trees and root systems from the dam and within a 20-foot wide area surrounding the dam; 3) design a low level outlet for emergency drawdown of the pond; and 4) investigate the abandoned 12-inch diameter pipe to insure that the pipe is not under pressure through the embankment.

In addition, the Owners should perform the following operation and maintenance work: 1) install riprap or other means of protecting the upstream face of the dam; 2) repair all deteriorated concrete and masonry surfaces; 3) repair the cracks between the spillway wall and the rock foundation; 4) develop and implement an ongoing operation and maintenance program; 5) initiate a program of annual technical inspection; and 6) develop a flood warning plan so that downstream residents will be notified in the event of possible overtopping and/or failure of the dam.

O'BRIEN & GERE ENGINEERS, INC.

OF NEW

John J. Williams

New York Registration

2. 05079^A (185

Date 16 May 1980

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of theses guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation: however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

SEC	TION		PAGE
Briet Revi	Asse ew Bo	Transmittal ssment pard Page	
Pref:		N	i
	e of C	Contents	ii-iv
	tion N	• • •	v vi
_00	CIOIII	мар	VI
		REPORT	
l.	PRO	JECT INFORMATION	1-1
	1.1	General	1-1
		a. Authority	1-1
		b. Purpose of Inespection	1-1
	1.2	Description of Project	1-1
		a. Location	1-1
		b. Description of Dam and Appurtenances	1-2
		c. Size Classification	1-2
		d. Hazard Classification	1-3
		e. Ownership	1-3
		f. Operator	1-3
		g. Purpose of Dam	1-3
		h. Design and Construction History	1-3
		i. Normal Operating Procedures	1-3
	1.3	Pertinent Data	1-4
		a. Drainage Area	1-4
		b. Discharge at Damsite	1-4
		c. Elevation	1-5
		d. Reservoir Length	1-5
		e. Storage	1-5
		f. Reservoir Surface Area	1-6
		g. Dam Data	1-6
		h. Diversion and Regulating Tunnel	1-6
		i. Spillways	1-6
		j. Regulating Outlets	1-6

TABLE OF CONTENTS (Con't)

SEC	TION		PAGE
2.	ENC	SINEERING DATA	
	2.1	Design	2-1
	2.2	Construction	2-1
	2.3	Operation	2-1
	2.4	Evaluation a. Availability b. Adequacy c. Validity	2-1 2-1 2-1 2-1
3.	VISU	JAL INSPECTION	
	3.1	Findings a. General b. Dam c. Appurtenant Structures d. Reservoir Area e. Downstream Channel	3-1 3-1 3-1 3-1 3-2 3-2
	3.2	Evaluation	3-2
4.	OPE	RATIONAL AND MAINTENANCE PROCEDURES	
	4.1	Operational Procedures a. General b. Description of Any Warning System in Effect	4-1 4-1 4-1
	4.2	Maintenance Procedures a. General b. Operating Facilities	4-1 4-1 4-1
	4.3	Evaluation	4-2
5.	EVA	LUATION OF HYDRAULIC/HYDROLOGIC FEATURES	
	5.1	General	5-1
	5.2	Design Data	5-1
	5.3	Experience Data	5-1
	5.4	Test Flood Analysis	5-1
	5.5	Dam Failure Analysis	5-2

TABLE OF CONTENTS (Con't)

SEC	TION		PAGE
6.	EVA	LUATION OF STRUCTURAL STABILITY	
	6.1	Visual Observation	6-1
	6.2	Design and Construction Data	6-1
	6.3	Post-Construction Data	6-1
	6.4	Seismic Stability	6-1
7.	7.1 7.2 7.3	ESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES Dam Assessment a. Condition b. Adequacy of Information c. Urgency Recommendations Remedial Measures a. Operation and Maintenance Procedures	7-1 7-1 7-1 7-1 7-1 7-1
	7.4	Alternatives	7-2
		APPENDICES	
APP	ENDI	X A - INSPECTION CHECKLIST	A-1 to A-5
APP	ENDI	X B - ENGINEERING DATA	B-1 to B-2
APP	ENDI	X C - PHOTOGRAPHS	C-1 to C-7
APP	ENDI	X D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1 to D-16
APP	ENDI	X E - INFORMATION AS CONTAINED IN THE NATIONAL	

UPSTREAM OVERVIEW OF THE DAM WITH THE TREE COVERED EMBANKMENT TO THE LEFT. (11/14/79)

DOWNSTREAM OVERVIEW AS OBSERVED FROM THE RIGHT ABUTMENT. (11/14/79)

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT CASE POND UPPER DAM

SECTION 1

PROJECT INFORMATION

1.1 General

a. <u>Authority</u>. The National Dam Inspection Act (Public Law 92-367) was passed by Congress on August 8, 1972. Under this Act, the Secretary of the Army was authorized to initiate, through the Corps of Engineers, the National Program for Inspection of Dams throughout the United States. Responsibility for supervising inspection of dams in the New England Region has been assigned to the New England Division of the Corps of Engineers.

O'Brien & Gere Engineers, Inc. has been retained by the New England Division to inspect and report on selected non-federal dams in the State of Connecticut. Authorization and Notice to Proceed were issued to O'Brien & Gere by a letter dated November 6, 1979 and signed by Col. William E. Hodgson, Jr. Contract No. DACW33-80-C-0014 has been assigned by the Corps of Engineers for this work.

- b. Purpose. The purpose of inspecting and evaluating non-federal dams is to:
- 1. Identify conditions which threaten public safety and make the Owner aware of any deficiencies so that he may correct them in a timely manner.
- 2. Encourage and prepare the states to initiate an effective dam safety program for non-federal dams as soon as possible.
 - 3. Update, verify and complete the National Inventory of Dams.
- 1.2 <u>Description of Project</u> (information with regard to this dam was obtained from Mr. Robert C. Dennison, co-Owner of Case Pond Upper Dam)
- a. Location. Case Pond Upper Dam is located on Birch Mountain Brook in the southeastern corner of the City of Manchester, Connecticut. The dam is shown on the USGS Quadrangle entitled "Manchester, Conn." at coordinates N41⁰45.7; W72⁰29.3'. A regional location plan of Case Pond Upper Dam is enclosed as Figure 1 on page vi.

Birch Mountain Brook merges with Porter Brook to form Hop Brook about 1.5 miles west of the damsite. Hop Brook continues westward for approximately four miles where it joins the Hockanum River at Laurel Lake.

The potential damage area is the highway bridge located about 600 feet downstream of Case Pond Upper Dam. The initial residential area is an apartment complex located approximately 4,400 feet downstream of the dam.

b. Description of Dam and Appurtenances. Case Pond Upper Dam is an irregular earth embankment with an approximate length of 300 feet and a maximum height of about 16 feet with a variable crest width ranging from 15 feet to 65 feet. The unprotected upstream face of the dam is on a slope of about 1H:1V. The downstream face of the dam is partially retained by a vertical stone masonry wall about 100 feet long and 16 feet high. The remainder of the downstream face of the dam is on a slope which averages 2H:1V.

The concrete spillway located between the embankment and right abutment is 87 feet long. The downstream face of the spillway which extends a maximum of three feet above the irregular bedrock foundation, is vertical. The spillway is supported by four small concrete buttresses on the downstream side of the spillway. The spillway section has been integrated into three pre-existing stone masonry piers which supported a pedestrian bridge removed years ago.

- c. <u>Size Classification</u>. Case Pond Upper Dam has a maximum height of approximately 16 feet and a maximum storage capacity of 52 acre-feet. The criteria for the "Small" size category includes dams which have less than 1,000 acre-feet of storage capacity and are less than 40 feet high. Therefore, Case Pond Upper Dam is classified as a "Small" size structure.
- d. <u>Hazard Classification</u>. The potential damage area is considered to be a highway bridge (Spring St.) located approximately 600 feet downstream of the dam. Breach flows would travel through Case Pond Lower Dam then down a steep incline to the Spring Street Bridge. The first residential area is an apartment complex located about 4,400 feet downstream of the dam. The failure analysis indicated that breach floodwaters would be contained within the channel banks at this location. A failure of the dam could result in appreciable damage to the highway bridge, but it is unlikely that lives would be lost at any downstream location. Therefore, Case Pond Upper Dam is classified in the "Significant" hazard potential category.
 - e. Ownership. The co-Owners for Case Pond Upper Dam are:

Mr. Robert C. Dennison 700 Spring Street Manchester, Connecticut 06040 Telephone: 203-643-4986

Mr. Andrew Ansaldi 81 Battista Road Manchester, Connecticut 06040 Telephone: 203-649-5249

- f. Operator. The dam is not equipped with any operating facilities other than an inoperable valve on an abandoned 12-inch diameter pipe which was used to provide water for a nearby mill. The Owners would perform any operations associated with the dam.
- g_{\bullet} $\underline{\text{Purpose of Dam}}_{\bullet}$ The dam currently impounds water for recreational purposes.

- h. Design and Construction History. The dam was originally built about 1870. Since that time, the spillway has been revised three times; in 1880, the masonry portion of the spillway wall was built; in 1890, the present spillway was constructed; and in 1962, the spillway was repaired.
- i. Normal Operating Procedures. There are no operating procedures for this site.

1.3 Pertinent Data

a. <u>Drainage Area.</u> A 1.6 square mile watershed, ranging from Elevation 785 at Birch Mountain to Elevation 448 at normal pool, drains to Case Pond Upper Dam. The area is primarily forested with some upstream residential development.

b. Discharge at Damsite.

- 1. Outlet Works. The only known outlet is an abandoned 12-inch diameter valve and pipe which used to provide water for a nearby mill. According to Mr. Dennison, the valve has been inoperable for at least 10 years.
- 2. Maximum Known Flood. According to Mr. Dennison, the embankment was overtopped in September, 1938, but he does not recall the depth of overtopping. Details associated with this event, as it related to Case Pond Upper Dam, are not recorded.
- 3. Ungated Spillway Capacity at Top of Dam. The capacity of the spillway at the top of dam Elevation 450.0, is approximately 812 cfs.
- 4. Ungated Spillway Capacity at Test Flood Elevation. At the test flood Elevation 450.5, the spillway capacity is 1,134 cfs.
 - 5. Gated Spillway Capacity at Top of Dam. Not Applicable.
 - 6. Gated Spillway Capacity at Test Flood Elevation. Not Applicable.
 - 7. Total Spillway Capacity at Test Flood Elevation. (See 4 above)
- 8. Total Project Discharge at Top of Dam. The total project discharge, with the pool elevation at the top of dam Elevation 450.0, is estimated to be 812 cfs.
- 9. Total Project Discharge at Test Flood Elevation. The total project discharge at the test flood Elevation 450.5 is estimated to be 1,458 cfs.

c. Elevation. (NGVD)

1. Streambed at Toe of Dam	434 [±]
2. Bottom of Cutoff	Unknown
3. Maximum Tailwater	Unknown
4. Recreation Pool	448
5. Full Flood Control Pool	N/A
6. Spillway Crest (Ungated)	448
7. Design Surcharge (Original Design)	Unknown
8. Top of Dam	450
9. Test Flood Surcharge	450.5

d.	Reservoir Length. (Feet)	
	 Normal Pool Flood Control Pool Spillway Crest Pool Top of Dam Pool Test Flood Pool 	1,800 N/A 1,800 3,100 3,200
e.	Storage. (Acre-Feet)	
	 Normal Pool Flood Control Pool Spillway Crest Pool Top of Dam Pool Test Flood Pool 	30 N/A 30 52 61
f.	Reservoir Surface Area. (Acres)	
	 Normal Pool Flood Control Pool Spillway Crest Pool Top of Dam Pool Test Flood Pool 	6.0 N/A 6.0 17.5 19.0
g.	Dam Data.	
	 Type Length Height Top Width Side Slopes (Upstream)	Earth Embankment 300 feet 16 feet Variable, 15 feet to 65 feet 1H:1V 2H:1V Unknown Unknown Unknown
h.	Diversion and Regulating Tunnel.	
	Not Applicable	
i.	Spillway. 1. Type 2. Length of Weir 3. Crest Elevation 4. Gates 5. Upstream channel 6. Downstream Channel	Concrete Overflow 87 feet 448 None Case Pond Upper Case Pond Lower and steep rock gorge

j. Regulating Outlet.

- Invert Elevation
 Size

- Description
 Control Mechanism
 Other

12-inch diameter Cast Iron Pipe Gate Valve (Inoperable)
Abandoned Outlet

SECTION 2

ENGINEERING DATA

2.1 Design

According to the co-Owners, there is no design information available.

2.2 Construction

No construction information exists except for knowledge of approximate construction dates. The dam was originally constructed in about 1870 and since that time, modifications have been made to the spillway (see Section 1.2-h).

2.3 Operation

Other than the abandoned 12-inch diameter outlet, which was used to convey water to a nearby mill, there are no operating facilities at this site.

2.4 Evaluation

- a. Availability. There is no information available with respect to the design and construction of the Case Pond Upper Dam.
- b. Adequacy. Although no drawings or engineering information with respect to Case Pond Upper Dam is available, it is believed that sufficient information has been obtained during the field inspection and through conversations with the Owners, to conduct a Phase I dam evaluation.
- c. Validity. There is no reason to question the validity of the information obtained from the Owners.

SECTION 3

VISUAL INSPECTION

3.1 Findings

a. <u>General</u>. Case Pond Upper Dam was inspected on November 14, 1979. At the time of inspection, the pool elevation was approximately at the spillway crest (Elevation 488.0). Underwater areas were not inspected.

A checklist of observations and comments made during the inspection is included as Appendix A.

- b. Dam. The dam is an earth embankment partially retained on the down-stream slope by a vertical stone masonry wall in the vicinity of the left abutment. It is irregular in plan and section and is almost completely obscured by large trees and brush growing on the dam. The following conditions were observed during the field inspection:
- 1. The unprotected upstream face of the embankment is on a slope of 1H:1V and there is evidence of some erosion at several locations.
- 2. The dam crest to the left of the spillway is almost completely overgrown with large trees and brush. A few of the trees have trunk diameters of at least three feet. The larger trees range up to 50 feet in height. No evidence of settlement, cracks, or other indication of surface deficiency, was observed.
- 3. About 100 feet of the downstream face of the dam, towards the left abutment, is retained by a vertical 16-foot high stone masonry wall. The wall appears to be in fair condition with some loss of mortar, but no evidence of leakage through the wall or vertical or horizontal misalignments were observed. Rust-colored seepage, with a flow estimated to be about two gallons per minute, was observed in the old streambed about 10 feet downstream of the retaining wall (Page C-4). The soil in the area of the seepage is very soft. According to Mr. Dennison, this condition has remained unchanged for many years.
- 4. The downtream face of the dam, between the retaining wall and spillway, is on a slope which averages about 2H:1V with some portions as steep as 1H:1V. The surface is heavily overgrown with brush and large trees. The seepage described above has created minor sloughing and erosion of the slope in the vicinity of the toe.

Several photos of the conditions described above are included in Appendix C.

c. Appurtenant Structures. The spillway consists of a concrete wall, approximately three feet high and 87 feet long. The concrete generally appears to be in fair condition except for some spalling along the downstream face of the wall. In addition, some leakage was observed at the base of the wall near the right abutment.

The valve house is in fair condition. The valve on the 12-inch diameter outlet pipe has not been operable for at least 10 years. The 12-inch diameter outlet pipe also has not been used for at least 10 years.

- d. Reservoir Area. The area bordering the pond is well vegetated but indications of erosion were observed on the banks. According to the Owners, the pond has appreciable sediment accumulation. They do not believe that the water is any more then 6 feet deep at any point in the impoundment.
- e. <u>Downstream Channel</u>. The channel immediately downstream of the spillway is formed by an outcropping of bedrock. Water flowing over the spillway discharges down the bedrock and into Case Pond Lower. The dam for Case Pond Lower is a stone masonry structure with a stone masonry bridge built on its crest. The gradient of Birch Mountain Brook for about 4,000 feet downstream of Case Pond Lower Dam is relatively steep. The stream channel drops about 170 feet in this reach. The stream channel is overgrown with trees and brush but, due to the slope, the flow of water is not significantly impeded.

An estimated 1.5 miles downstream of Case Pond Upper Dam, Birch Mountain Brook joins Porter Brook to form Hop Brook. Hop Brook continues westward for approximately 4 miles where it joins the Hockanum River at Laurel Lake. Beyond the initial 4,000 feet downstream of Case Pond Upper Dam, the stream channel is on an estimated gradient of 0.4 percent with few obstructions aside from numerous bridges.

3.2 Evaluation

The dam is considered to be in poor condition. All of the trees and brush, especially the large trees, should be removed from the embankment crest and both the upstream and downstream faces. Erosion protection should be provided for the upstream face of the dam. The seepage condition and the necessity for a low-level outlet should be investigated.

SECTION 4

OPERATION AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

- a. General. Since there are no operating facilities currently in use at the site, there is no designated operator. However, co-Owner Mr. Dennison, lives close to the dam and is familiar with past operation of the abandoned outlet, which used to furnish water to a nearby mill. According to Mr. Dennison, the outlet has been inoperable for at least 10 years.
- b. <u>Description of Any Warning System in Effect</u>. According to Mr. Dennison, there is no formal warning system which would alert downstream property owners of an impending dam failure.

4.2 Maintenance Procedures

- a. General. According to Mr. Dennison, no maintenance has been performed on the dam for several years.
- b. Operating Facilities. According to Mr. Dennison, the 12-inch diameter outlet has been inoperable for at least 10 years.

4.3 Evaluation

The lack of an operation and maintenance program is reflected by conditions observed at the dam. A program should be established which would include periodic removal of vegetation from the dam, and repair of structural and operational elements of the dam.

SECTION 5

EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General

The 1.6 square-mile area draining to Case Pond Upper Dam consists primarily of steep, forested terrain with some residential development. Topography within the watershed ranges from Elevation 785 at Birch Mountain to Elevation 448 at normal pool.

5.2 Design Data

Hydraulic and hydrologic data used for the design of Case Pond Upper Dam are not available, according to the Owners.

5.3 Experience Data

According to Mr. Dennison, the embankment was overtopped in September 1938, but he does not recall the depth of the overtopping. Details associated with this event, as it relates to Case Pond Upper Dam, are not recorded.

5.4 Test Flood Analysis

The recommended test flood range for a "Small" size, "Significant" hazard dam is from the 100-year flood to one-half of the Probable Maximum Flood (PMF). Based upon the potential for appreciable damage to the downstream highway bridge, one-half of the PMF has been selected as the test flood.

Hydraulic and hydrologic calculations were performed with the assistance of the HEC-1-DB computer program. The flood hydrographs were constructed from Snyder unit hydrographs using average coefficients, an initial infiltration of zero, and a constant loss rate of 0.05 inches per hour. The Hop Brook Adjustment Factor was used to reduce the Probable Maximum Precipitation (PMP) based on the drainage area.

Stage vs. discharge and stage vs. storage relationships were developed for Case Pond Upper Dam for routing of the test flood through the pond and to the downstream flood impact area. The water surface elevation for Case Pond Upper was assumed to be at the spillway crest elevation at the beginning of the hypothetical storm event.

The test flood peak inflow to Case Pond Upper Dam was computed as 1,470 cfs. The routed test flood outflow of 1,460 cfs corresponds to a stage elevation of approximately 450.5 or 0.5 feet above the top of the dam. The spillway is capable of discharging 810 cfs or about 56 percent of the routed test flood outflow prior to overtopping of the dam.

5.5 Dam Failure Analysis

Failure of Case Pond Upper Dam was simulated through the use of the HEC-1-DB computer program. It was assumed that a 75-foot wide by 15-foot deep breach with vertical side slopes would develop over a two-hour period. Furthermore, failure was assumed to occur with the pool elevation at the top of the dam.

The maximum breach discharge of 812 cfs was routed to the initial residential area which consists of an apartment complex located about 4,400 feet downstream of the dam. The analysis indicates that the depth of flow in the stream channel would increase from about 0.5 feet to 3.1 feet and would remain within the channel banks.

However, the breach outflow could cause appreciable damage to a highway bridge (Spring St.) located across the channel approximately 600 feet downstream of the dam. Since no residential areas would be endangered by a breach flood, the highway bridge is considered to be the flood impact area.

SECTION 6

EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations

The roots of large trees growing on the embankment may be providing seepage paths through the dam and could be dislodging joint material from the downstream masonry retaining wall. High winds could uproot the trees causing removal of significant volumes of embankment material. The rust-colored seepage in the vicinity of the downstream toe of the embankment indicates that seepage paths may have developed through the embankment or foundation. Although the condition has remained constant for many years, according to Mr. Dennison, the potential remains for piping of fine-grained soil from the embankment.

6.2 Design and Construction Data

No design and construction data are available according to Mr. Dennison.

6.3 Post Construction Changes

Since the original construction of the dam around 1870, the spillway has been revised three times; in 1880, the masonry portion of the spillway wall was built, in 1890, the present spillway was constructed; and in 1962, the spillway was repaired.

6.4 Seismic Stability

Case Pond Upper Dam is located in Seismic Zone 1 on the "Seismic Zone Map of Contiguous States". Therefore, according to the Recommended Guildelines for Phase I dam inspections, the dam need not be evaluated for seismic stability.

SECTION 7

ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

- a. <u>Condition</u>. The dam is considered to be in poor condition. The following observations help to substantiate this assessment:
- 1. A significant amount of seepage (about 2 gpm) was observed in the vicinity of the downstream toe of the embankment about 10 feet from the downstream embankment retaining wall.
- 2. The dam is almost completely overgrown with large trees (up to 3 feet in diameter and 50 feet high) and brush.
- 3. No means of protecting the upstream face of the dam has been provided.
- 4. The impoundment cannot be lowered because of the lack of a low level outlet.
 - 5. Leakage is occurring under the spillway wall near the right abutment.
 - 6. Mortar between stones in the retaining wall is cracked or missing.
 - 7. The concrete spillway wall and buttresses are spalled.
- b. Adequacy of Information. Sufficient information has been obtained through field observations and through discussions with the Owners to conduct a Phase I dam evaluation.
- c. <u>Urgency</u>. The recommendations and remedial measures presented in this Section should be implemented within one year of receipt of this Phase I Inspection Report.

7.2 Recommendations

It is recommended that the Owners retain the services of a qualified, registered professional engineer, experienced in the design and construction of dams, to perform the following services:

1. Investigate the causes of the seepage located in the vicinity of the downstream toe of the embankment (about 10 feet downstream of the retaining wall) and at the base of the spillway wall and assess the need for remedial action at each location.

- 2. Direct the removal of trees and root systems from the dam and within a 20-foot wide area surrounding the dam. Voids left in the embankment as a result of such removal should be backfilled with suitable thoroughly compacted material.
 - 3. Design a low level outlet for emergency drawdown of the pond.
- 4. Investigate the abandoned 12-inch diamater pipe to insure that the pipe is not under pressure through the embankment. If the pipe is under pressure, then it should be plugged.

7.3 Remedial Measures

- a. Operation and Maintenance Procedures. The Owners should also implement the following operation and maintenance procedures:
- 1. Riprap or other means of protecting the upstream slope of the dam should be provided.
 - 2. All deteriorated concrete and masonry surfaces should be repaired.
- 3. Cracks between the spillway wall and the rock foundation should be repaired.
- 4. An ongoing operation and maintenance program should be developed and implemented.
 - 5. A program of annual technical inspection should be instituted.
- 6. A flood warning plan should be developed so that downstream residents will be notified in the event of possible overtopping and/or failure of the dam.

7.4 Alternatives

As an alternative to the above recommendations and remedial measures, the pond could be drained and the dam removed.

APPENDIX A

INSPECTION CHECKLIST

VISUAL INSPECTION CHECK LIST

INSPECTION TEAM ORGANIZATION

Project:	Case Pond Upper Dam	
National I.D. #:	CT 00560	
Location:	Manchester, Connection	cut
Type of Dam:	Farth Embankment/ Mas	sonry
Inspection Date(s):	November 14, 1979	
Weather:	Overcast, 40's	
Pool Elevation:	448 ± MSL	
Inspection Team		
Leonard Beck	O'Brien & Gere O'Brien & Gere	Structures Foundations & Materials
Steven Snider Alan Hanscom	O'Brien & Gere	Structures
Rodney Georges	Bryant & Associates	
	Vice-President, O'Brien & Geon with the inspection team.	ere has visited the site but no
Owner's Representative		
Mr. Robert C. Denn	son and Mr. Andrew Ansaldi	, Co-owners.

VISUAL INSPECTION CHECK LIST Project: Case Pond Upper Dam Output CT 00560 Date(s): November 14, 1979

AREA EVALUATED	CONDITIONS
DAM EMBANKMENT	
Crest Elevation	450 NGVD
Current Pool Elevation	448 NGVD
Maximum Impoundment to Date	52 Acre-feet
Surface Cracks	None Observed
Pavement Condition	N/A
Movement or Settlement of Crest	None Observed
Lateral Movement	None Observed
Vertical Alignment	No misalignment observed
Horizontal Alignment	No misalignment observed
Condition at Abutment and at Concrete Structures	Slight erosion at spillway abutments
Indications of Movements of Structural Items on Slopes	None Observed
Trespassing on Slopes	Not significant
Vegetation on Slopes	Erosion on u/s face Trees, brush over entire dam
Sloughing or Erosian of Slopes or Abutments	Sloughing on u/s and d/s slopes of eastern portion of embankment
Rock Slope Protection - Riprap Failures	No riprap observed
•	A-2

VISUAL INSPECTION CHECK LIST			
Project: Case Pond Upper Da	m		
Date(s): November 14, 1979			
AREA EVALUATED	CONDITIONS		
DAM EMBANKMENT (Con't)			
Unusual Movement or Cracking at or near Toes	None Observed		
Unusual Embankment or Downstream Seepage	~ 1 gpm deep orange - colored seepage ~ 20 feet d/s of retaining		
Piping or Boils	wall Seepage is "boiling"		
Foundation Drainage Features	Unknown		
Toe Drains	Unknown		
Instrumentation System	None .		
	·		
	•		
	,		
	A-3		

VISUAL INSPECTION CHECK LIST Project: Case Pond Upper Dam National I.D. #: CT 00560 Date(s): November 14, 1979 CONDITIONS **AREA EVALUATED OUTLET WORKS - SPILLWAY WEIR, APPROACH** AND DISCHARGE CHANNELS Approach Channel Good General Condition None Observed Loose Rock Overhanging Channel None Observed Trees Overhanging Channel Much sediment - several feet Floor of Approach Channel per Mr. Dennison Weir and Training Walls General Condition of Concrete Good Rust or Staining None Observed d/s side - scattered Spalling None Observed Any Visible Reinforcing At base of weir wall near Any Seepage or Efflorescence western abutment None Observed Drain Holes Discharge Channel Rock ledge - good slope. Not General Condition likely to submerge weir.

A-4

VISUAL INSPECTION	ON CHECK LIST
Project: Case Pond Upper	Dam
National I.D. #: CT 00560	
Date(s): November 14, 19	79
AREA EVALUATED	CONDITIONS
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS (Con't)	
Loose Rock Overhanging Channel	Not significant
Trees Overhanging Channel	Several in Channel
Floor of Channel	Very rough, ledge and loose stones
Other Obstructions	Trees
,	
	·

APPENDIX B

ENGINEERING DATA

APPENDIX B

ENGINEERING DATA*

TABLE OF CONTENTS

	Page
SITE PLAN	B-1
SPILLWAY PLAN & SECTION	B-2

*Note: All elevations refer to National Geodetic Vertical Datum (NGVD).

DATE 3/80 7060-001 SUBJECT Case Pond Upper Dam A. H. CASE WSE = 448.0 El. ~ 450.0 Covergrown with large trees and brush) Valve House Stone Masonry Retaining Wall (~100 fe. long) Birch Mountain Brook Not To Scale

Approximate location of boiling seepage.

SUBJECT

Case Pond Upper Dam

B-2 A. H.

3/80

2060.001

SECTION A-A

Not To Scale

APPENDIX C

PHOTOGRAPHS

APPENDIX C SELECTED PHOTOGRAPHS OF PROJECT

LOCA	TION PLAN	Page No.
Site	Plan Sketch	Α
PHOT	OGRAPHS	
No.		Page No.
1.	Dense tree cover on the downstream face of the dam. Dense tree cover on the top of the dam looking towards the left abutment.	1
3. 4.	Vertical downstream masonry wall near the left abutment. View along the spillway crest looking towards the right abutment.	2
5.	Seepage through the spillway wall.	3 3
6.	Discharge immediately downstream of the spillway.	3
7.	Seepage which begins about 10 feet downstream of the	4
_	vertical downstream masonry wall of the dam.	
8.	Seepage flow as viewed from the crest of the downstream vertical masonry wall of the dam.	4
9.	Masonry bridge built over the Case Lower Pond Dam approximately 600 feet downstream of the Case Upper Pond	5
10.	Dam. Discharge over the Case Lower Pond Dam.	5
11.	Region approximately 100 feet upstream of the spillway	6
	where water has overtopped the right bank of the pond in the past.	Ü
12.	Region to the right of the Case Lower Pond Dam where discharge would be concentrated during periods of excessive flow.	6
13.	Factory complex about 900 feet downstream of Case Upper Pond Dam.	7
14.	Apartment complex about one mile downstream of Case Upper Pond Dam.	7

O'BRIEN&GERE ENGINEERS, INC.

SUBJECT 4/80 Case Pond Upper Dam 2060-001 POND WSE = 448.0 ± ~ 450.0 Dam Crest Covergrown with large trees and LOCATION OF House Stone Masonry Retaining Wall (~100 ft. long) Brook PLAN LOCATION & DIRECTION IN WHICH EACH PHOTO WAS

TAKEN & THE NUMBER OF THE PHOTO

1. DENSE TREE COVER ON THE DOWNSTREAM FACE OF THE DAM. (11/14/79)

2. DENSE TREE COVER ON THE TOP OF THE DAM LOOKING TOWARDS THE LEFT ABUTMENT. (11/14/79)

3. VERTICAL DOWNSTREAM MASONRY WALL NEAR THE LEFT ABUTMENT. (11/14/79)

4. VIEW ALONG THE SPILLWAY CREST LOOKING TOWARDS THE RIGHT ABUTMENT. (11/14/79)

5. SEEPAGE THROUGH THE SPILLWAY WALL. (11/14/79)

6. DISCHARGE IMMEDIATELY DOWNSTREAM OF THE SPILLWAY. (11/14/79)

7. SEEPAGE WHICH BEGINS ABOUT 10 FEET DOWNSTREAM OF THE VERTICAL DOWNSTREAM MASONRY WALL OF THE DAM. (11/14/79)

8. SEEPAGE FLOW AS VIEWED FROM THE CREST OF THE DOWNSTREAM VERTICAL MASONRY WALL OF THE DAM. (11/14/79)

9. MASONRY BRIDGE BUILT OVER THE CASE POND LOWER DAM APPROXI-MATELY 600 FEET DOWNSTREAM OF THE CASE POND UPPER DAM. (11/14/79)

10. DISCHARGE OVER THE CASE POND LOWER DAM SPILLWAY. (11/14/79)

11. REGION APPROXIMATELY 100 FEET UPSTREAM OF THE SPILLWAY WHERE WATER HAS IN THE PAST OVERTOPPED THE RIGHT BANK OF THE POND. (11/14/79)

12. REGION TO THE RIGHT OF THE CASE POND LOWER DAM WHERE DISCHARGE WOULD BE CONCENTRATED DURING PERIODS OF EXCESSIVE FLOW. (11/14/79)

13. FACTORY COMPLEX ABOUT 900 FEET DOWNSTREAM OF CASE POND UPPER DAM. (11/14/79)

14. APARTMENT COMPLEX ABOUT ONE MILE DOWNSTREAM OF CASE POND UPPER DAM. (11/14/79)

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

CASE POND UPPER DAM

APPENDIX D HYDROLOGIC & HYDRAULIC COMPUTATIONS TABLE OF CONTENTS

	PAGE
REGIONAL VICINITY MAP SHOWING FLOOD IMPACT AREA	D-1
DRAINAGE AREA CHARACTERISTICS, To COMPUTATIONS, PMP DATA & DAM ELEV., LENGTH & SPWY. DIMENSIONS SKETCH	D-Z
STAGE-DISCHARGE & STAGE-STORAGE DATA, CASE PO UPPER DAM	D-3
STAGE-DISCHARGE & STAGE-STORAGE DATA, CASE PD. LOWER DAM	D-4
DOWNSTREAM CROSS SECTIONS FOR BREACH ROUTING	D- 5
STAGE-DISCHARGE & STAGE-STORAGE CURVES, CASE PD. UPPER DAM	D-6
HEC-1 DAM SAFETY VERSION, COMPUTER OUTPUT W/O BREACH	D-7+0D-10
WEC-I DAM SAFETY VERSION, COMPUTER OUTPUT WITH BREACH	D-11 to D-16

BRYANT ASSOCIATES, INC. 648 Beacon Street BOSTON, MASSACHUSETTS 02215 (617) 247-1800 JOB 2060-001

SHEET NO D-2 OF

CALCULATED BY R.G. DATE 1/80

CHECKED BY P.L.B DATE 2/80

SCALE

CASE POND UPPER DAM - H & H

1/3

DRAINAGE AREA

= 1.59 sq.Mi.

SNYDER HYDEOGRAPH COEFFICIENTS

TP COMPUTATIONS

$$L = 2.0 \text{ MILES}$$
 $L_{ca} = 1.1 \text{ MILES}$
 $L_{p} = Q \cdot (L \times L_{ca})^{.3}$

PMP DATA

FROM HM5 # 33 THE 24 HOUR 200 SAMI INDEX RAINFALL IS 21.5

DAM ELEVATION & LENGTH and SPILLWAY DIMENSIONS SKETCH

SHARP. CRESTED WEIR

FLEV. 455

FLEV. 450

FLEV. 448

FLEV. 448

•--

Mr. Symposia dimenting a mar form the angle of the second

BRYANT ASSOCIATES, INC.

648 Beacon Street
BOSTON, MASSACHUSETTS 02215
(617) 247-1800

2060.001 D-3 SHEET NO. 1/80 CALCULATED BY R. G. R.R.B.

			SCALE		
	<u>CA</u> 5	E POND UP	PER DA	M HEH	cont'd. 34
STAGE DISCHA		DING CREST	•	Q=CLH	.5
SPILLWAY CRE TOP OF DAM EL	ST EL		3 NUGY	(D) Q.	c=3.3
ELEVATION	H	Q,	H	QZ	I ≥Q
(NGVD)	Ft.	CFS.	Ft.	CFS.	CF 5
448	0	0			0
449		287			287
450	2	812	0	0	812
451	3	1,492	/	553	2,045
452	4	2,297	2	1,638	3,935
453	5	3,210	3	3,154	6,364
454	6	4,219-	4	5,086	9,305
4 55	7	5,317	5	7,437	12,754

STAGE STORAGE

	ELEVATION	(NGVD)	AREA (AC.)	STORAGE (AC.FA.) (COMP. BY HEC-1 PROGRAM)
	433		.0	
SPILLUAY CREST	448		5.9	
TOP OF DAM	450		17.5	
	460		35.0	

BRYANT ASSOCIATES, INC. 648 Beacon Street BOSTON, MASSACHUSETTS 02215 (617) 247-1800

2060-001 D-4 SHEET NO. 1/80 3/30 R.G. CALCULATED BY_ R.R.B CHECKED BY

				SCALE				
		ASE A	POND UP	PER	HEH	6	ont'd.	3/4
				,				
	CASE POND LOW	ER	STAGE DIS	CHAR	6E & 50	IRCHAR	26E 5TOK	CAGE CAPACITY
	Q2		Q3 65					J Q2_
	439		44337					439~
	" -ELEV.430	<i>B</i>	PIPGE PAR	APET		E	IEV. 430-	- Janes
	S=6.0	<u>بر</u> (ع	×9,)		CENT	ROID		A .
	2001	A=		5')(#			600'
	1 TYP.	<u></u> -+1	59.Ft.] 4			ELE	V. 423	
	' TYP.		H=0		RESPOND			
	Q) FOR OCH	(5)	Q = 0	x 5x	L XH ".5		c = 3.0	
	FOR HT	7	Q. =5x.6	5×A	XVZgx(H	-2.23)	½	
	Q ₂)		Q, = CLI	1 "	C	= 2.8		
	Qs)		Q3 = CL	۲ ،, ۵	C.	= 3.0		
. !			•	,		1 1	.	,
	ELEVATION	H	Q1	H2	Q ₂	Нз	્ Q₃	કહ્ય
	(NGVD)	FT	CFS.	FT	দেয	F7.	CFS	CFS
	423	0	. 0					0
	425	2	382					382
	426	3	701					701
	428	5	1,715					1,509
	430	7	2,250	0	. 0			2,250
	433	10	2,872	3	908	0	0	3,780
	4 36	/3	3,381	6	5,136	3	1,325	9,842
	4 39	16	3,823	9	15,726	6	3,748	23,297
	and a second a second and a second a second and a second							
	<u> </u>	URC	HARGE 5	TOR	4GE			
		4 4	:	•			SURC	HARGE
			(NEVD)		AREA (A C.)	STOR	ZAGE (ALF4.)
	NORMALPOOL 42				0.5			
				•	/. 0		,	
	440		•		3.6			
		•						
	· a		• •				•	
					. .			

CASE POND UPPER DAM

SHEET BY DATE 3/80 JOB NO 2060 - 001

4/4

DOWNSTREAM CROSS-SECTIONS FOR BREACH ROUTING

CROSS-SECTION AT TOP OF WATERFALL

CROSS-SECTION AT BOTTOM OF WATERFALL

CROSS-SECTION AT HAZARD AREA

SUBJECT	SHEET	BY	DATE	JOB NO
CASE POND UPPER DAM	2-6	SHS	3/80	2060-001

STAGE VS. STORAGE STAGE VS. DISCHARGE

Color Colo			0										; ;			1.7.	. 1. 1	
A1 HYDROLOGIC ANALYSIS OF CASE PAGE 100 LOPER 101 LOS	DAM	•	1	1.0	1													_
ALTERNATION OF THE CASE THE CA	MAPER		•	٥.		0.05		-1	2754									
ALTER OF CASE PARTING OVER AND	E POND	PPER DAM	GINEERS	·		0	-	-448			-	ļ			ļ			
AL HYDROLOGIC A AL HYD	1 1	F POND U	PS OF EN	۲.				453	4364									
AL HYDROLOGIC A AL HYD	1 .1	SE CAS	0N - COR	٠	H		NO UPPER	452	- SE65									
Al HYDRO Al A	התוקה	ANALYSIS	ם ט	s.	UPPER D	1	CASE PO	451	35.0							ļ		
MCKAGE (HEC-1) AL 26 FFB 79 AL 44 AL 44 A 44 AL 450 AL 44 A 44 AL 469 AL A 44 A 449 AL A	OOD K	ORULUGIC	EW ENGLAN		LASE POND	, 	LOW FROM	450	17.5									! !
A 44 44 44 44 44 44 44 44 44 44 44 44 44		_		6.6	0	0.5	CAS-1)	64	5.0									l
A STANDARD	GE (HEC-)	•)		-	2.5	-	1	})								!
	APH PACKAL RSION GATION 24	A1	E 4 6	77,	2=		* 5	55	\$ 23	3.								

D

	THE SALES AND THE SALES OF CASE PRODUCETOR OF CASE	FLOOD HYDROGRAPH PACKAGE (HEC-1) DAM SAFETY VENSION JULY 1978 LAST-MODIFICATION JOS FER 70 ***********************************					
NUMERICAN NUMBER NUMBER	NATION LINE 1907	71MEG 15.21.0A					
MACION 10 10 10 10 10 10 10 1		HYDROLUGIC ANAL NATLUMAL DA NEW ENGLAND DI	SIS OF CASE P INSPECTION PR ISION - CORPS	OND UPPER DAM OGRAN OF ENGINEERS			
THE COMPLETED NATION THE PROPERTY THE PROPETTY THE PROPETT	THATE	NHH NHEN 0 15	SH SHEETERALING OF THE PROPERTY OF THE PROPERT	METRC 0 TRACE	I PRT	N O	
INTELOW TO CASE POWD WPER NAME STATE STA	Sub-alter Annoger Commutation Sub-alter Annoger Commutation Sub-alter Annoger Commutation Sub-alter Annoger Commutation State Sub-alter Annoger Commutation State Sub-alter Annoger Commutation State Sub-alter Annoger Commutation Sub-	of PME	20		00.7		
TRSPEC COMPUTED BY THE PRODUCT OF STATE OF STA	INFLOW TO CASE POND UMPER DAM INFLOW TO CASE POND UMPER DAM CASE POND CASE PON	INFIOM	H i	s 35	y	ir Pawb	
INTER INTE	INTERPRETATION TRACE JPL JPR THAN TRACE	TO CASE POND	еа пиморр сомр Лам	WTAT 10N			
TRSPC COMPUTED BY THE STARP TRSPC RATIO ISNOW ISANE LOCAL 1150 11450 11850 1	TRSPC COMPUTED BY THE PRODURABH DATA TRSPC ANTO ISSUE LOCAL 1550 A 1850 A	ISTAG ICUMP	1		ı		
TRSPC COMPUTED BY THE PROGRAM IS AND 124.00 133.00 0.00 0.00 0.00 0.00 0.00 0.00	TRSPC COMPUTED RY THE PROGRAMM IS .000 111.00 124.00 133.00 0.00 0.00 0.00	TAREA	HYDPOGRAPH DAT	RAT10 1	ISAME	LOCAL	
LEADET STAKE DILOK FRAIN STRAS RITOK STRIL CNSTL ALSHX RITHP UNIT HYDROGRAPH DATA TRECESSION DATA STAFFE 1.00 UNIT HYDROGRAPH TO ERAIN STRAS RITOK STRIL CNSTL ALSHX RITHP UNIT HYDROGRAPH TO END-OF-PERIOD ORDINATES, LAGE 2.52 HOURS, CP50 VOL. 1.00 207. 195. 181. 169. 155. 155. 126. 127. 186. 127. 186. 127. 185. 187. 187. 188. 187. 187	UNIT HYDROGRARPH 78 ENU-OF-PERIOD ONTA UNIT HYDROGRARPH 78 ENU-OF-PERIOD ONTA 101. 102. 103. 150. 110. 100. 110. 100. 110. 100. 110. 1	SPFE PMS 0.00 21.50 1111 COMPUTED RY THE PROGRAM IS .800	218	0.00	00.00	·	
UNIT HYDROGRAPH 78 ENU-OF-PEHIOD ORDINATES, LAGE 2.52 HOURS, CPs. 50 VOLE 1.00 207. 195. 181. 169. 157. 145. 126. 117. 108. 207. 195. 181. 169. 157. 145. 126. 117. 108. 208. 209. 27. 200. 19. 117. 108. 208. 209. 209. 209. 209. 209. 209. 209. 209	UNIT HYDROGRAPH 78 ENU-OF-PEKTOD OBDINATE'S, LAGE 2.52 HOURS, CP= .50 VOL= 1.00 207. 195. 181. 169. 157. 145. 135. 126. 117. 108. 101. 04. 87. 81. 15. 170. 65. 60. 55. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	STKKW DLTKH WITOL	LOSS DATA STRKS	1 1	1 1	- <i>-</i> -	· · · · · · · · · · · · · · · · · · ·
UNIT HYDROGRAPH 78 ENU-OF-PEHTOD ORDINATES, LAG# 2.52 HOURS, CP# 50 VOL= 1.00 207. 195. 181. 169. 157. 145. 135. 126. 117. 108. 207. 195. 181. 169. 157. 145. 135. 126. 117. 108. 208. 23. 21. 20. 19. 17. 16. 15. 14. 13. 29. 27. 25. 23. 21. 20. 20. 19. 17. 16. 15. 14. 13. 29. 27. 25. 27. 25. 27. 25. 27. 25. 27. 25. 27. 25. 27. 25. 27. 27. 27. 27. 27. 27. 27. 27. 27. 27	STATURE 1.70 ANGENE 1.10 UNIT HYDROGRAPH 78 ENU-OF-PERIOD ORDINATES, LAG# 2.52 HOURS, CP# 5.50 VOL# 1.00 207. 105. 181. 109. 157. 145. 135. 126. 117. 106. 120. 101. 0 0. 107. 157. 145. 135. 126. 117. 106. 127. 145. 135. 126. 117. 106. 127. 145. 135. 126. 117. 106. 127. 145. 135. 136. 137. 126. 127. 128. 127. 128. 127. 128. 127. 128. 128. 128. 128. 128. 128. 128. 128		IT HYDROGRAPH	DATA		-	1
LINIT HYDROGRAPH 78 ENU-OF-PEHIOD URDINAIFS, LAG# 2.52 HOURS, CP# .50 VOL# 1.00 207. 195. 181. 169. 157. 145. 135. 126. 117. 108. 207. 204. 87. 81. 150. 157. 145. 135. 126. 117. 108. 208. 205. 207. 208. 208. 208. 208. 208. 208. 208. 208	UNIT HYDROGRAPH 78 ENU-OF-PERIOD ORDINAFFS, LAG# 2.52 HOURS, CP# .50 VOL# 1.00 207. 195. 181. 169. 157. 145. 135. 126. 117. 108. 101. 94. A7. 81. 75. 70. 65. 60. 56. 52. 23. 21. 20. 19. 17. 16. 15. 14. 13. 12. 23. 21. 20. 19. 4. 4. 4. 5. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	Taffe tal	RECESSION DAT		000	-	
207. 195. 181. 169. 157. 145. 135. 126. 117. 108. 207. 195. 181. 169. 157. 145. 136. 118. 118. 108. 208. 209. 101. 200. 187. 145. 136. 136. 137. 158. 158. 158. 158. 158. 158. 158. 158	20. 195. 181. 169. 157. 145. 135. 126. 117. 108. 101. 94. 87. 81. 75. 145. 135. 126. 117. 108. 23. 21. 20. 19. 17. 16. 15. 14. 117. 108. 23. 21. 20. 19. 17. 16. 15. 14. 17. 27. 25. 23. 21. 20. 19. 7 4. 4. 4. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	78	ORDINATES.	2.52	. CP= .50	۳.	
23, 21, 20, 19, 17, 16, 15, 14, 13, 12, 23, 21, 20, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	11, 10, 10, 7, 4, 4, 13, 14, 11, 13, 15, 15, 14, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	195. 181. 94. 87.	157.		126.	201. 117. 56.	209. 108. 52.
1) 10, 10, 10, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	5. 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	21. 20.	17.		0 4		12. COMPUTING SYSTEMS,
5. 5. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	5. 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	10.	=				
MO.DA HU.MN PERIOD RAIN EXCS LUSS COMP O MO.DA HH.MN PERIOD RAIN EXCS LOSS COMP	NO.DA HU.NA AH.MN PERIOD RAIN EXCS LUSS COMP O NO.DA HR.MN PERIOD RAIN EXCS LOSS SUM 22.MA 21.66 1.20	5, 5,	**************************************	m Ni	e v	i m	3.
	Stun 21.66 1.20	HHOMN PEHIOD RAIN EXCS LUSS		HR. HN		j	d CO

		· .	· - ·-	 O (168 €	e		Č	•	٠ · · ·			· ·	· · · · ·		· ·	ľ			•
		IAUTO 0			455.00) Stage - Discharge Date	_										UNITED COMPUTING SYSTEMS, INC.	1			
•		1STAGE	LSTR	ISPRAT -1	454.00			i di di												
•		INAME		STORA -448.			B	43047	1									i		
• • • • • • • • • • • • • • • • • • • •		JPRT	O dwd I	15K	453.00		Stage-Storage Data			-044410					'					
	9411	JPLT	1001	,000°0	452.00		- Store	-	1	0.0										
••••••	NYBRAGRAPH ROUIING PONO UPPER	ITAPE 0	ISAME	AMSKK 0.000			Stage			0.0										
•	E PONO UI	IECON 0	IRES 1	PV P	451.00	, SE	309.	7000		10PEL										
•	ROUTED OUTFLOW FHOM CASE POND	1 1 1	AVG 0.00	NSTDL	450.00	18.	52.	1964 100-100		:		31110	Sunna	SHOOT	SMOH			18.25 HOUPS	18.25 HOURS	18.25 HOURS
****	OUTFLOW	ISTAG CAS-U	CLUSS 0.000	NSTPS 1			30.	1						\$\$ \$ \$ 1	F 18458				i .	F 18.24
	ROUTED		0.0		449.00) ‡		570s-41 - 14E- 10s54 - 100K5	SHOW OF THE SHEET AND THE	Series 65-81 July 10-11-51	2000H 02*61 - 3H11 14 -0+21	-2040			2340. AT TIME	2632. AT TIME	2924. AT TIME
•					44R.00	•	· c	66					\$		5940			2340	2632	2924
•					STAGE 4	SURFACE AMEA*	CAPACITY=		-	O.Z PMF	6.3 PMF	0.4 PMF	O.S PMF	O.6 PMF	O.Y FMP		0.8 PMF	PEAK OUTFLOW IS	PEAK OUTFLOA 15	PEAK OUTFLOW IS

ì !			1.00	2934.	2924.								; ;	:	:
'			- 9-011* 6	2640.	2632, 74,54) (: :	•
;	546	•	84 ⁷ 10 7 80	2347.	2340.	Outthe			TIME OF FAILURE HOURS	0.00	00.0	0000		<u>.</u> :	-:
	5 СОНР ИТАТ <u>10</u> NS		. 70 . 70	2054. 58.15) (2040.	-			TIME OF MAX OUTFLOW HOURS		18.50 18.50 18.50	18.25 18.25	Γ		
1	SECOND)		99	1760.	1749.	-Routed Test Floor	10 90 00 00 00 00 00 00 00 00 00 00 00 00	450.00 52. 842.	į						
	AN-AATIO EKS PER (ETEKS)	D TO FLOWS	.50	1467.	1458. 41.28) (48	AMALYSIS		OVER TOP HOURS	0.00		7.75 8.50			
	CURIC MET	RATIOS APPLIED 1	Influ -		1166. 33.021(SAFETY AN	30.	OUTFLOW CFS	578. 874.		2632.	Outflow		
	AR SECUND (MILES (SOU	4	5 g	80. 92) (874. 1 24.75) (33.		3 4		MAYTHUM STONAGE AC-FT	45. 53.	. 56.	73.	Routed		
1	of peatori Summary For Multiree Plan-Ratio Egonomig n cubic feet per Secund (curic Metems per Second) area in Square Miles (Souare Kilometems)		.20 St Floo		578. R		THEFFE WARRY	30.	MAKEMUM H DEPTH S OVEM DAM	.05	.52	31.1	Test Flood		
	} ⊷]	07140 44		1 16.	1 15.		. No.	¥ # #							
	Stonage (Evi) FL04S	**E4 - PEA*		1.59	1.59			STORAGE SUFFLOR	MAKINUM PESENVOIR W.S.ELEV	449.55	25.05.	651.18 451.31			
									04.710 0F PMF	30	0.00 0.00	800	Elevation		
	P. C.	5747194	,	T CAS-U	CAS-U								Elood El		
		PERATION		HYDROGRAPH AT	ANUTED TO		†						Test E		

BEERE	GINEERS	•			453 454 455 6364 9305 12754		450	LOWER	433 436 439 3780 9842 23297		ALL	1000 .025 365 70 380 90 380	1 11 11 11 11 11 11 11 11 11 11 11 11 1	150 .333	350		265 140 260 160 260 260 260 260 260 260 260 260 260 2		
ASE UPPER POND DAM	NEW ENGLAND DIVISION - CORPS OF EN	•		CASE POND UPPER	451 452 2045 3935	094	2 450	HOUGH CASE POND 1 1	1509 2250		TO TOP OF WATERFALL	380 400	THROUGH WATERFALL	1	340 220	-10-maz a ru-ade 1 1	270 130 270 300		
BE UPPE	NEW ENGLAND	,		OUTFLOW FROM	450		435	L HOUT ING THROUGH	701		ROUFING TO	0.08	POUT ING	0.08	061	NNEL HOUTING	282		
9				ROUTED OU	287]	0.01 CAS-L	HESEBNUTH	382		BS-1-CHANNEL	1	05-2 CHANNEL	1	335	¥	280		
JULY 1978	43.		_		74 448	£ 433	59 450 89 75	1	75	55 423		•	* * * :	"	8 T	l	77 77 77 170	\$	
DAM SAFETY VERSION LINESTERM 26-			· •									33						95	

•

			NSTAN 0			***************************************		ISTAGE TAUTO 0 0	LSTR	ISPRAT -1	00 455.00 Stage - Discharge Data	99 12754.00		,,		·	UNITED COMPUTING SYSTEMS, INC.	
	DAM	RS	IPLT IPRT N 0 -4					JPRT INAME IST	o dud!	TSK STORA 1SP 0.000 -450.	453.00 454.00	5364-009305-00	e Date	CAMEA EXPL	4	0.	WSEL FAILEL	450.00-450.00
	CASE POND UPPER DAM	ION - CORPS OF ENGINEERS SPECIFICATION	IMIN METRC 0 0 1 DORT TRACE		SES TO BE PERFORMED TIDS 1 LRTIDS 1	•	HYBRAGRAPH ROUTING	ON ITAPE JPLT	IOPT	A4SKK X 0.000 0.000	452.00	39354886	Stage-Storage Duto	PW ELEVL COOL	DAM DATA	i	FLAM TFAIL	435.00-45
	YDROLUGIC AMALYSIS OF CASE POND U	ENGLAND DIVISION	1047	5 0	MULTI-PLAN ANALYSES TO NPLANS I NHTIOS I		7 -	100MP 1ECON	E .	NSTDL LAG	450.00 451.00	18. 35.)	300.	SPHID COOM EXPW	1000	0.054	BANTO Z	15
July 1978	HYDROLUGIC	NEW E	NHR NMIN 0 S		## 1105= 0.00		ROUTED OUTFLOW FROM CASE	ISTAG CAS-U	00028 CLOSS	NSTPS 1	449.00	287.88		CHEL SPI	- 1	cam Elevarion		0.00 MOUMS
PLUGU TOWNSKAM PARKAGE (TELT) OAN SAFETY VERSION LLAST MORIFICATION 26 FER 79 ***********************************			300 300		MEROW	****					STAGE +48.00	SURFACE AMEA: 0.		Spillury Creet Election		70 p of 2	Broach Date	MEGIN DAM FAILINE AT G.C

:

	HYDHOGHAPH ROUTING 140MP 1660M 170E					
HYDHOGNAPH ROUTING ING THROUGH CASE POND LOWER LEGUE LEGON LOWER 0.00 ROUTING DATA 0.00 1509.00 C.000 0.000 -423. 4. 4. 4. 4. ANO. HYDHOGNAPH ROUTING 1509.00 1509.00 -423. 1509.00 -428.00 -423. 1509.00 -428.00 -423. 1509.00 -428.00 -423. 1509.00 C.000 C.000 C.000 0.000 -423. 1509.00 C.000 C.000 C.000 0.000 -423. 1509.00 C.000 C.000 C.000 0.000 0.000 1509.00 EXPU ELEVL COOL CAREA EXPL 1009 EXPL 1	#TYDROGRAPH ROUTING RESERVOTR ROUTING THROUGH CASE POWN LOWER 1570 1574 1564 1564 1565 1667 1574 1667 1674	4	23297.00		14070	:
HYDROGRAPH ROUTING ING THROUGH CASE POND LOWER ICOMP	FSTANDIT RUUT 157.40 157.40 157.40 157.40 15.40 1.0005 1.00	1.84MF 57988 -423.			AME ISTAG	
	FFAA	NG		COOL 0.0 0.0	PL1	- 1
	FSTANDIT RUUT 157.40 157.40 157.40 157.40 15.40 1.0005 1.00	SE POND LOWER ON ITAPE OROUTING DATA ES ISAME AS AMSKK		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	0.000
	FFAA	HYD NG THROUGH CA 160MP 1EC 1		600	1 1 2 1 1	- 1
	423.00	15ERVOIR RUUTI 15140 CAS-L CAS-L U.0 0.000 WSIPS		1 1 1	HAMNEL ROUTING 157AD 055 1055 1055 1055 1055 1055 1055 1055	-

1,

٠١.

	000	 	[]) () :		o 0		MANRE	· · · · · · · · · · · · · · · · ·
			12.61	8702.99	389.47	9702.99 52048.22				-
			9.54	6587.45	388.42	6587.45 46113480				
			7.03	4843.88	387.37	4843,88 40526,56			-i AUTO	;
		380.00	5.09	3430,48	386.32	3430,48			I 1 0	51
; ;		90.06	3.70	2294,66 -30395v72	395,26	2298,66 -30395,72			O I I I I I I I I I I I I I I I I I I I	3
	SEL 540	70.00 380.00	2.75	1492.61	384.21	1492,61 25855437		ROOT ING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9
	RLNTH SEL		27.91	885.98 21669823	393.16	885.98 -21669123		SH WATERFALL	FEGON TAPE 0 0 ROUTING DATA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•	VF ELMAX	STA-ELEV-STA 90.00 60.0	1.17	433.08 17942.02	392.63	433.08 		CHANNEL ROUTING THROUGH WATERFALL		90 0.00 PS MSF0L 1 0
; ;	POUTING) GW(3) ELNV 88888 348	CROSS SECTIUM COOMDINATESSTARELEVSTARELEVETC 0.00 400.00 20.00 390.00 60.00 385.00 170.00 390.00 200.00 400.00	19,93	131.67	391.05	131.67 14383 ₄ 53 .0		CHANNEL RO		00.0 0.0
į.	HANNEL DN 12	55 SECTIUN CO 0.00 400.0	16.18	0.00	390.00	0.00 11304.08 1 IS 383.0				
1	NORMAL DEPTH C	CRO	STORAGE	OUTFLOW	STAGE	FLUW MAXIMUM STAGE				
	0 9 0		-c	2			5 5	5		D-14

.

	TEME OF TEME OF MAX OUTFLOW FAILURE HOURS	00.00				TIME OF TIME OF MAX OUTFLOW FAILURE HOURS	.08 0.00						·			
10P-0F-DAM 450.00 52. 812.	₹ a .	0 000	GESULTS		430.00 430.00 5. 2250.	OURATION TIM OVER TOP MAX OF HOURS HOURS	0.00		HOURS	-08		TIME	.09		T I 4E HOURS	90.
501Ltway cREST 448.00 30.	MAKEMUM OURAFE	812. 0.	F100D RE	SUMMAHY OF DAM SAFETY ANALYSTS	SPILLWAY CRESI	MAXIMUM DURA OUTFLOW OVER CFS HOU	805. 0.	STATION DS-1	STAGE+FT H	363.6	5F4F10N 05-2-	HAXIMUM STAGE+FT	331.4	STAT10N 05-3	MAXIMUM STAGE .FT H	263.1
	STORAGE OF AC-FT	*25	RREDCH F.	WAHY OF DAM S		STORAGE OF	۶.	PLAN 1 ST	FLOW.CFS	4995	PLAN 1 51	HAXIMIN FLOWVEFS	805.	PLAN 1 ST	MAXIMUM FLOW, CFS	A05.
141114 450	MAKEMUM DEPTH OVER DAM	00°0	POND 86	NATS	141714L 423,	DEPTH OVER DAM	00.0	P.	HATIO	-0010	4		00.0	PL	PAT 10	0.0
ELEVATION STORAGE OUTFLOW	MESENVOIR N.S.FLEV	449.84	UPPER		ELEVATION STORAGE OUTFLOV	RESERVOIR W.S.ELEV	426.26									00*0
	0F 0F PMF	00.0	7 /			847 10 ОF РМГ	00*0									

.

APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

The above statement means that Appendix E is not available per Mr. Tim Hayes, Army Corps of Engineers, New England Division