Secure Computing of Table with FLUTE

카이스트 전산학부 한승우

2024년 9월 6일

Lookup Table

LUT (Lookup Table)

 δ -to- σ lookup table T is a function T: $\{0,1\}^{\delta} \to \{0,1\}^{\sigma}$.

x_1	x_2	x_3	у	Coal	Given secret sha
0	0	0	1	GOal	and x_3 , we want
0		1	0		secret shares of $\frac{1}{2}$
0	1	0	0		
0	1		1	Question	What secret sha
1	0	0	0		should we use?
1	0	1	1	Question	How can we opt
1	1	0	0		and setup cost?
1	1	1	0		per LUT caculat
			•		phase!)

Example 3-to-1 LUT T

ares of $x_1, x_2,$ t to compute the $T(x_1, x_2, x_3)$.

aring scheme

timize the online (Up to 2σ bits tion in the online Secret Sharing Scheme

[·] Secret Sharing

 P_0 , P_1 : parties

[·] Secret Sharing

A bit $v \in \mathbb{Z}_2$ is said to be $[\cdot]$ -shared between P_0 and P_1 if P_i holds $[v]_i$ such that

$$\nu = [\nu]_0 \oplus [\nu]_1.$$

[·] Secret Sharing

The $\lceil \cdot \rceil$ -sharing is *linear* in the sense that:

• For $[\cdot]$ -shared $u, v \in \mathbb{Z}_2$, $[\cdot]$ -sharing of $u \oplus v$ can be locally computed by:

$$[u \oplus v]_i = [u]_i \oplus [v]_i$$
 for each $i \in \{0, 1\}$.

② For $[\cdot]$ -shared $v \in \mathbb{Z}_2$ and public $b \in \mathbb{Z}_2$, $[\cdot]$ -sharing of bv can be locally computed by:

$$[bv]_i = b[v]_i$$
 for each $i \in \{0, 1\}$.

§ For $[\cdot]$ -shared $v \in \mathbb{Z}_2$ and public $b \in \mathbb{Z}_2$, $[\cdot]$ -sharing of $v \oplus b$ can be locally computed by:

$$[v \oplus b]_i = [v]_i \oplus ib$$
 for each $i \in \{0, 1\}$.

In particular, $\lceil \cdot \rceil$ -sharing of $\overline{v} = v \oplus 1$ can be locally computed.

Multiplication of [·]-shared Values

Beaver's Multiplication Triple

Suppose P_0 and P_1 have $[\cdot]$ -shares of $u, v \in \mathbb{Z}_2$. Suppose additionally that they have $[\cdot]$ -shares of a, b, c where c = ab.

- P_i computes $[u \oplus a]_i$ and $[v \oplus b]_i$, and sends them to P_{1-i} .
- 2 P_0 and P_1 now know $d := u \oplus a$ and $e := v \oplus b$.
- P_i computes $[z]_i = i \cdot de \oplus d[b]_i \oplus e[a]_i \oplus [c]_i$.
- **1** Then, $[z]_0$ ⊕ $[z]_1 = z = uv$.

With the prepared multiplication triple, a $[\cdot]$ -share of uv is calculated with the cost of four bits in a single round.

$$z = uv = (d \oplus a)(e \oplus b)$$

$$= \underbrace{de}_{\text{public}} \oplus db \oplus ea \oplus \underbrace{ab}_{=c}$$

⟨·⟩ Secret Sharing

⟨·⟩ Secret Sharing

A bit $v \in \mathbb{Z}_2$ is said to be $\langle \cdot \rangle$ -shared if:

- **1** A value $\lambda_{\nu} \in \mathbb{Z}_2$ is [·]-shared between P_0 and P_1 .
 - $[\lambda_{v}]_{i}$'s are locally set arbitrarily.
- ② A value $m_v \in \mathbb{Z}_2$ is known to both parties.
- \circ $\nu = m_{\nu} \oplus \lambda_{\nu}$

The $\langle \cdot \rangle$ -share of ν is denoted $\langle \nu \rangle_i = (m_{\nu}, [\lambda_{\nu}]_i)$.

⟨·⟩ Secret Sharing

The $\langle \cdot \rangle$ -sharing is *linear* in the sense that:

1 For $\langle \cdot \rangle$ -shared $u, v \in \mathbb{Z}_2$, $\langle \cdot \rangle$ -sharing of $u \oplus v$ can be locally computed by:

$$\mathsf{m}_{u\oplus v}=\mathsf{m}_u\oplus \mathsf{m}_v$$
 and $[\lambda_{u\oplus v}]_i=[\lambda_u]_i\oplus [\lambda_v]_i$

 \bullet For $\langle \cdot \rangle$ -shared $v \in \mathbb{Z}_2$ and public $b \in \mathbb{Z}_2$, $\langle \cdot \rangle$ -sharing of bv can be locally computed by:

$$\mathbf{m}_{b\nu} = b\mathbf{m}_{\nu}$$
 and $[\lambda_{b\nu}]_i = b[\lambda_{\nu}]_i$.

3 For $\langle \cdot \rangle$ -shared $v \in \mathbb{Z}_2$ and public $b \in \mathbb{Z}_2$, $\langle \cdot \rangle$ -sharing of $v \oplus b$ can be locally computed by:

$$\mathsf{m}_{v\oplus b}=\mathsf{m}_v\oplus b$$
.

In particular, $\langle \cdot \rangle$ -sharing of $\overline{\nu} = \nu \oplus 1$ can be locally computed.

LUT Revisited

x_1	x_2	x_3	у
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Example 3-to-1 LUT T

$$(\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3})$$

$$\vee (\overline{x_1} \wedge x_2 \wedge x_3)$$

$$\vee (x_1 \wedge \overline{x_2} \wedge x_3)$$

DNF representation of T

$$(\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3})$$

$$\oplus (\overline{x_1} \wedge x_2 \wedge x_3)$$

$$\oplus (x_1 \wedge \overline{x_2} \wedge x_3)$$

An equivalent circuit.

$$y = \begin{pmatrix} \overline{x_1} \\ \overline{x_1} \\ x_1 \end{pmatrix} \odot \begin{pmatrix} \overline{x_2} \\ \underline{x_2} \\ \overline{x_2} \end{pmatrix} \odot \begin{pmatrix} \overline{x_3} \\ x_3 \\ x_3 \end{pmatrix}$$

"Multi-Fan-In Inner Product"

Building Blocks: Multiplication

Multiplication of ⟨·⟩-shared Values

$$z = uv = (\mathsf{m}_u \oplus \lambda_u)(\mathsf{m}_v \oplus \lambda_v)$$

= $\mathsf{m}_u \mathsf{m}_v \oplus \mathsf{m}_u \lambda_v \oplus \mathsf{m}_v \lambda_u \oplus \lambda_u \lambda_v$

Calculating LUT

Multiplication of $\langle \cdot \rangle$ -shared Values

Input $\langle \cdot \rangle$ -shares of $u, v \in \mathbb{Z}_2$, $[\cdot]$ -shares of $\lambda_u \lambda_v$, and $[\cdot]$ -shares of λ_{σ} . Output $\langle \cdot \rangle$ -shares of z := uv.

- ① P_i computes $[z]_i = i \cdot \mathsf{m}_u \mathsf{m}_v \oplus \mathsf{m}_u [\lambda_v]_i \oplus \mathsf{m}_v [\lambda_u]_i \oplus [\lambda_u \lambda_v]_i$.
- ② P_i computes $[m_z]_i = [z]_i \oplus [\lambda_z]_i$ and sends it to P_{i-1} .
- **3** Then, P_0 and P_1 have $\langle \cdot \rangle$ -shares of z = uv.

With the prepared multiplication triple, a $\langle \cdot \rangle$ -share of uv is calculated with the cost of two bits in a single round.

If z is an operand of multiplication in following steps through the circuit, λ_z must be settled in the setup phase to optimize the online communication cost.

Inner Product of $\langle \cdot \rangle$ -shared Values

Inner Product of $\langle \cdot \rangle$ -shared Values

Input $\langle \cdot \rangle$ -shares of $u^1, \dots, u^N, v^1, \dots, v^N \in \mathbb{Z}_2$, $[\cdot]$ -shares of $\lambda_{u^1} \lambda_{v^1}, \dots, \lambda_{u^N} \lambda_{v^N}$, and $[\cdot]$ -shares of λ_z .

Output $\langle \cdot \rangle$ -shares of $z := \bigoplus_{k=1}^N u^k v^k$.

- P_i computes $[u^k v^k]_i$ for $k \in [N]$ as before.
- 2 P_i computes $[m_z]_i = [\lambda_z]_i \oplus \bigoplus_{k=1}^N [u^k v^k]_i$ and sends it to P_{1-i} .
- **1** Then, P_0 and P_1 have $\langle \cdot \rangle$ -shares of $z = \bigoplus_{k=1}^N u^k v^k$.

With the prepared N multiplication triples, a $\langle \cdot \rangle$ -share of $\bigoplus_{k=1}^N u^k v^k$ is calculated with the cost of two bits in a single round.

Multi-Fan-In Product of $\langle \cdot \rangle$ -shared Values

Multi-Fan-In Product of $\langle \cdot \rangle$ -shared Values

Input $\langle \cdot \rangle$ -shares of $u^1, \dots, u^M \in \mathbb{Z}_2$, |???|, and $[\cdot]$ -shares of λ_{π} .

Output $\langle \cdot \rangle$ -shares of $z := \bigwedge_{i=1}^{M} u^{j}$.

Let Q be a set of $\langle \cdot \rangle$ -shared values (wires). We use the following notation:

$$\mathsf{m}_\mathcal{Q} \triangleq \bigwedge_{u \in \mathcal{Q}} \mathsf{m}_u$$
 and $\lambda_\mathcal{Q} \triangleq \bigwedge_{u \in \mathcal{Q}} \lambda_u$.

Observation

$$\bigwedge_{j=1}^M u^j = \bigwedge_{j=1}^M (\mathsf{m}_{u^j} \oplus \lambda_{u^j}) = \bigoplus_{\mathcal{Q} \subseteq \mathcal{I}} (\mathsf{m}_{\mathcal{Q}} \cdot \lambda_{\mathcal{I} \setminus \mathcal{Q}})$$

where $\mathcal{I} := \{u^1, u^2, \cdots, u^M\}$.

Multi-Fan-In Product of $\langle \cdot \rangle$ -shared Values

Multi-Fan-In Product of $\langle \cdot \rangle$ -shared Values

Input $\langle \cdot \rangle$ -shares of $u^1, \dots, u^M \in \mathbb{Z}_2$, $[\cdot]$ -shares of $\lambda_{\mathcal{O}}$ for each $\mathcal{Q} \subseteq \mathcal{I}$ with $|\mathcal{Q}| > 1$ where $\mathcal{I} = \{u^1, \dots, u^M\}$, and [\cdot]-shares of λ_{α} .

Output $\langle \cdot \rangle$ -shares of $\bigwedge_{i=1}^{M} u^{i}$.

 \bigcirc P_i computes

$$[z]_i = i \cdot \mathsf{m}_{\mathcal{I}} \oplus \bigoplus_{\mathcal{Q} \subseteq \mathcal{I}} (\mathsf{m}_{\mathcal{Q}} \cdot [\lambda_{\mathcal{I} \setminus \mathcal{Q}}]_i).$$

Calculating LUT

- ② P_i computes $[m_z]_i = [z]_i \oplus [\lambda_z]_i$ and sends it to P_{1-i} .
- **3** Then, P_0 and P_1 have $\langle \cdot \rangle$ -shares of $\bigwedge_{i=1}^M u^i$.

With the prepared $2^M - M - 1$ multiplication triples, a $\langle \cdot \rangle$ -share of $\bigwedge_{i=1}^{M} u^{j}$ is calculated with the cost of two bits in a single round.

Multi-Fan-In Inner Product of $\langle \cdot \rangle$ -shared Values

Multi-Fan-In Inner Product of $\langle \cdot \rangle$ -shared Values

Input $\langle \cdot \rangle$ -shares of $\mathbf{u}^1, \dots, \mathbf{u}^M \in (\mathbb{Z}_2)^N$, $[\cdot]$ -shares of $\lambda_{\mathcal{O}}$ for each $Q \subseteq \mathcal{I}_k$ with |Q| > 1 where $\mathcal{I}_k = \{\mathbf{u}_k^1, \cdots, \mathbf{u}_k^M\}$ for $k \in [N]$, and $[\cdot]$ -sharing of λ_{σ} .

Output $\langle \cdot \rangle$ -shares of $z := \mathbf{u}^1 \odot \cdots \odot \mathbf{u}^M = \bigoplus_{k=1}^N \bigwedge_{j=1}^M \mathbf{u}_k^j$.

 \bigcirc P_i computes

$$[z]_i = i \cdot \bigoplus_{k=1}^N \mathsf{m}_{\mathcal{I}_k} \oplus \bigoplus_{k=1}^N \bigoplus_{\mathcal{Q} \subsetneq \mathcal{I}_k} (\mathsf{m}_{\mathcal{Q}} \cdot [\lambda_{\mathcal{I} \setminus \mathcal{Q}}]_i).$$

- ② P_i computes $[m_z]_i = [z]_i \oplus [\lambda_z]_i$ and sends it to P_{1-i} .
- **3** Then, P_0 and P_1 have $\langle \cdot \rangle$ -shares of $\mathbf{u}^1 \odot \cdots \odot \mathbf{u}^N$.

With the prepared $N(2^M - M - 1)$ multiplication triples, a $\langle \cdot \rangle$ -share of $\bigcap_{i=1}^{N} \mathbf{u}^{j}$ is calculated with the cost of two bits in a single round.

Input $\langle \cdot \rangle$ -shares of $\mathbf{u}^1, \dots, \mathbf{u}^M \in (\mathbb{Z}_2)^N$, $[\cdot]$ -shares of $\lambda_{\mathcal{O}}$ for each $Q \subseteq \mathcal{I}_k$ with |Q| > 1 where $\mathcal{I}_k = \{\mathbf{u}_k^1, \cdots, \mathbf{u}_k^M\}$ for $k \in [N]$, and $[\cdot]$ -sharing of λ_{α} .

Output $\langle \cdot \rangle$ -shares of $z := \mathbf{u}^1 \odot \cdots \odot \mathbf{u}^M = \bigoplus_{i=1}^N \bigwedge_{j=1}^M \mathbf{u}_i^j$.

With the prepared $N(2^M - M - 1)$ multiplication triples, a $\langle \cdot \rangle$ -share of $\bigcap_{i=1}^{N} \mathbf{u}^{i}$ is calculated with the cost of two bits in a single round.

$$y = \begin{pmatrix} \overline{x_1} \\ \overline{x_1} \\ x_1 \end{pmatrix} \odot \begin{pmatrix} \overline{x_2} \\ \overline{x_2} \\ \overline{x_2} \end{pmatrix} \odot \begin{pmatrix} \overline{x_3} \\ x_3 \\ x_3 \end{pmatrix} \qquad \qquad \begin{aligned} & \text{For } \delta\text{-to-1 LUT,} \\ & N \leq 2^{\delta-1} \text{ and } M = \delta?? \\ & 2^{\delta-1}(2^{\delta} - \delta - 1) \text{ triples??} \end{aligned}$$

We now exploit the fact that elements of \mathbf{u}^{J} are closely related.

 λ_{ν} is unchanged when calculating shares of $\overline{\nu}!$

Some Definitions

Fix a δ -to- σ LUT T.

x^1	x^2	x^3	y^1	y^2
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	0
_1	1	1	0	1
\mathbf{e}^1	\mathbf{e}^2	e^3	\mathbf{y}^1	\mathbf{y}^2

For instance, in this example,

$$\mathbf{e}^{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad \mathbf{y}^{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Expressing LUT with Multi-Fan-In Inner Product

Now, in the previous example, note that:

$$\begin{array}{c|ccccc} x^1 & x^2 & x^3 & y^1 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{array}$$

$$\mathbf{z}^{1} = \begin{pmatrix} \overline{x^{1}} \\ \overline{x^{1}} \\ x^{1} \end{pmatrix} \odot \begin{pmatrix} \overline{x^{2}} \\ x^{2} \\ \overline{x^{2}} \end{pmatrix} \odot \begin{pmatrix} \overline{x^{3}} \\ x^{3} \\ x^{3} \end{pmatrix}$$

$$= \begin{pmatrix} \overline{x^{1}} \\ \overline{x^{1}} \\ \overline{x^{1}} \\ \vdots \end{pmatrix} \odot \begin{pmatrix} \overline{x^{2}} \\ \overline{x^{2}} \\ x^{2} \\ x^{2} \\ \vdots \end{pmatrix} \odot \begin{pmatrix} \overline{x^{3}} \\ x^{3} \\ \overline{x^{3}} \\ x^{3} \\ \vdots \end{pmatrix} \odot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}$$

$$= (\overline{x^{1}} \oplus \mathbf{e}^{1}) \odot \cdots \odot (\overline{x^{3}} \oplus \mathbf{e}^{3}) \odot \mathbf{y}^{1}$$

 $\overline{x^j} \oplus \mathbf{e}^j$ is an element-wise addition.

Expressing LUT with Multi-Fan-In Inner Product

Fixing a δ -to- σ LUT T, and given $\langle \cdot \rangle$ -shares of x^1, \dots, x^{δ} , let

$$\mathbf{u}^j \coloneqq \overline{x^j} \oplus \mathbf{e}^j \in (\mathbb{Z}_2)^{2^{\delta}}$$

for $j \in [\delta]$ so that

$$\langle \mathbf{u}_k^j \rangle_i = \left(\overline{\mathsf{m}_{x^j}} \oplus \mathbf{e}_k^j, [\lambda_{x^j}]_i \right)$$

gives a $\langle \cdot \rangle$ -sharing of \mathbf{u}_{k}^{j} for $j \in [\delta]$, $k \in [2^{\delta}]$.

With this, we have

$$\lambda_{\mathbf{u}_{k_1}^{j_1}\cdots\mathbf{u}_{k_n}^{j_n}}=\lambda_{x^{j_1}\cdots x^{j_n}}!$$

Expressing LUT with Multi-Fan-In Inner Product

As previously shown, the w-th output \mathbf{z}^w can be calculated by

$$\mathbf{z}^{w} = (\overline{x^{1}} \oplus \mathbf{e}^{1}) \odot \cdots \odot (\overline{x^{\delta}} \oplus \mathbf{e}^{\delta}) \odot \mathbf{y}^{w}$$

$$= \mathbf{u}^{1} \odot \cdots \odot \mathbf{u}^{\delta} \odot \mathbf{y}^{w}$$

$$= \bigoplus_{k=1}^{2^{\delta}} \left[\left(\bigwedge_{j=1}^{\delta} \mathbf{u}_{k}^{j} \right) \wedge \mathbf{y}_{k}^{w} \right]$$

$$= \bigoplus_{k=1}^{2^{\delta}} \left[\left(\bigwedge_{j=1}^{\delta} \left(\mathbf{m}_{\mathbf{u}_{k}^{j}} \oplus \lambda_{\mathbf{u}_{k}^{j}} \right) \right) \wedge \mathbf{y}_{k}^{w} \right]$$

$$= \bigoplus_{k=1}^{2^{\delta}} \left[\mathbf{y}_{k}^{w} \cdot \bigoplus_{\mathcal{Q}_{k} \subseteq \mathcal{I}_{k}} \left(\mathbf{m}_{\mathcal{Q}_{k}} \cdot \lambda_{\mathcal{I}_{k} \setminus \mathcal{Q}_{k}} \right) \right]$$

where $\mathcal{I}_k \coloneqq \{\mathbf{u}_k^1, \cdots, \mathbf{u}_k^{\delta}\}$ for each $k \in [2^{\delta}]$.

Calculating LUT

Calculating δ -to- σ LUT

Input A δ -to- σ LUT T, $\langle \cdot \rangle$ -shares of $x^1, \cdots, x^\delta \in \mathbb{Z}_2$, $[\cdot]$ -shares of $\lambda_{\mathcal{Q}}$ for each $\mathcal{Q} \subseteq \mathcal{I}$ with $|\mathcal{Q}| > 1$ where $\mathcal{I} = \{x^1, \cdots, x^\delta\}$, and $[\cdot]$ -shares of λ_z .

Output $\langle \cdot \rangle$ -shares of $z := \mathsf{T}(x^1, \cdots, x^\delta)$.

- **1** P_i computes its share of $\mathbf{u}_k^j = \overline{x^j} \oplus \mathbf{e}_k^j$ for $j \in [\delta]$ and $k \in [2^{\delta}]$.
- **2** P_i computes, for each $w \in [\sigma]$,

$$[\mathbf{z}_w]_i = i \cdot \bigoplus_{k=1}^{2^\delta} (\mathbf{y}_k^w \cdot \mathbf{m}_{\mathcal{I}_k}) \oplus \bigoplus_{k=1}^{2^\delta} \left[\mathbf{y}_k^w \cdot \bigoplus_{\mathcal{Q}_k \subsetneq \mathcal{I}_k} \left(\mathbf{m}_{\mathcal{Q}_k} \cdot [\lambda_{\mathcal{I}_k \backslash \mathcal{Q}_k}]_i \right) \right].$$

- **3** P_i computes $[\mathbf{m}_{\mathbf{z}_w}]_i = [\mathbf{z}_w]_i \oplus [\lambda_{\mathbf{z}_w}]_i$ for $w \in [\sigma]$ and sends them to P_{1-i} .
- Then, P_0 and P_1 have $\langle \cdot \rangle$ -shares of $\mathbf{z} = \mathsf{T}(x^1, \dots, x^\delta)$.

Calculating LUT

Calculating δ -to- σ LUT

Input A δ -to- σ LUT T, $\langle \cdot \rangle$ -shares of $x^1, \cdots, x^\delta \in \mathbb{Z}_2$, $[\cdot]$ -shares of $\lambda_{\mathcal{Q}}$ for each $\mathcal{Q} \subseteq \mathcal{I}$ with $|\mathcal{Q}| > 1$ where $\mathcal{I} = \{x^1, \cdots, x^\delta\}$, and $[\cdot]$ -shares of λ_z .

Output $\langle \cdot \rangle$ -shares of $z := \mathsf{T}(x^1, \cdots, x^\delta)$.

With the prepared $2^{\delta} - \delta - 1$ multiplication triples, a $\langle \cdot \rangle$ -share of $\mathsf{T}(x^1, \cdots, x^{\delta})$ is calculated with the cost of 2σ bits in a single round.

Preliminaries Pros and Cons

Pros and Cons

Pros

 Any complex circuit can be represented by an interconnection of small LUTs.

Calculating LUT

- Evaluation does not depend on the internal logic.
- Setup does not depend on the number of outputs.

Cons

- Exponential setup time/communication.
- Exponential internal calculation.

Figure 7: Total communication for different LUT sizes with $2 \le \delta \le 8$ inputs and $\sigma \in \{1,2,4,8\}$ outputs.

Figure 8: Total communication for different LUT sizes with $2 \le \delta \le 8$ inputs and $\sigma \in \{1,2,4,8\}$ outputs using a helper server $S_{\mathcal{H}}$ (cf. §C).

Online/Total Communication Compared with Other Protocols

References

Brüggemann, A., Hundt, R., Schneider, T., Suresh, A., & Yalame, H. (2023). Flute: Fast and secure lookup table evaluations. 2023 IEEE Symposium on Security and Privacy (SP).

https://doi.org/10.1109/sp46215.2023.10179345