

FIG.1

FIG.2

FIG.3

FIG.4A**FIG.4****FIG.4A****FIG.4B**

(f) FORWARD COMMON CHANNEL 64kspS	4	36	LOGICAL CHANNEL SYMBOLS
(g) DEDICATED PHYSICAL CHANNEL 1024kspS	8 1	639	LOGICAL CHANNEL SYMBOLS
(h) DEDICATED PHYSICAL CHANNEL 512kspS	8 1	311	LOGICAL CHANNEL SYMBOLS
(i) DEDICATED PHYSICAL CHANNEL 256kspS	8 1	151	LOGICAL CHANNEL SYMBOLS
(j) DEDICATED PHYSICAL CHANNEL 128kspS	4 1	75	LOGICAL CHANNEL SYMBOLS
(k) DEDICATED PHYSICAL CHANNEL 64kspS	4 1	35	LOGICAL CHANNEL SYMBOLS
(l) DEDICATED PHYSICAL CHANNEL 32kspS	4 1	15	LOGICAL CHANNEL SYMBOLS

FIG.4B

6/134

FIG.5

FIG.6

FIG.7A

FIG. 7B

FIG.8

FIG.9

FIG.10

FIG.11

FIG.12

MAPPING INTO 32 OR 64kps DEDICATED PHYSICAL CHANNEL

FIG.13A

FIG.13B

MAPPING INTO 256ksps DEDICATED PHYSICAL CHANNEL

FIG.13C

FIG.14

ENCODING RATE = 1/2 CONSTRAINT LENGTH = 9

FIG.15A

ENCODING RATE = 1/3 CONSTRAINT LENGTH = 9

FIG.15B

FIG.16

FIG.17

FIG.18

FIG.19

$$C_0(0) = 1$$

$$\begin{bmatrix} C_1(0) \\ C_1(1) \end{bmatrix} = \begin{bmatrix} C_0(0) & C_0(0) \\ C_0(0) & \overline{C_0(0)} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} C_2(0) \\ C_2(1) \\ C_2(2) \\ C_2(3) \end{bmatrix} = \begin{bmatrix} C_1(0) & C_1(0) \\ C_1(0) & \overline{C_1(0)} \\ C_1(1) & C_1(1) \\ C_1(1) & \overline{C_1(1)} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\vdots$$

$$\begin{bmatrix} C_{n+1}(0) \\ C_{n+1}(1) \\ C_{n+1}(2) \\ C_{n+1}(3) \\ \vdots \\ C_{n+1}(2^{n+1}-2) \\ C_{n+1}(2^{n+1}-1) \end{bmatrix} = \begin{bmatrix} C_n(0) & C_n(0) \\ C_n(0) & \overline{C_n(0)} \\ C_n(1) & C_n(1) \\ C_n(1) & \overline{C_n(1)} \\ \vdots & \vdots \\ C_n(2^n-1) & C_n(2^n-1) \\ C_n(2^n-1) & \overline{C_n(2^n-1)} \end{bmatrix}$$

FIG.20

FIG.21

FIG.22

FIG.23

FIG.24

FIG.25

FIG.26

FIG.27

FIG.28A

PROVIDES F3 OAM FUNCTIONS:

- DETECTION OF LOSS FRAME ALIGNMENT
- PERFORMANCE MONITORING (CRC-6)
- TRANSMISSION OF FERF AND LOC
- PERFORMANCE REPORTING

FIG.28B

TS97,98 : RESERVED FOR SIGNALLING

789 BITS/125 μ s

ATM CELL MAPPING FIELD : 96 OCTETS (TS1~TS96)

FIG.29A

PROVIDES F3 OAM FUNCTIONS:

- DETECTION OF LOSS FRAME ALIGNMENT
- PERFORMANCE MONITORING (CRC-5)
- TRANSMISSION OF FERF AND LOC
- PERFORMANCE REPORTING

FIG.29B

**COORDINATES OF
INTERSECTION POINTS**

A : (0, 2.3)	F : (0, 1.7)
B : (2.4, 2.3)	G : (0.4, 1.7)
C : (2.4, 1.0)	H : (1.6, 0.9)
D : (3.2, 0.3)	I : (1.6, 0.3)
E : (4.0, 0.3)	

FIG.30

FIG.31

37/134

FIG.32

FIG.33A

FIG.33B

FIG.34A

ASSEMBLE/DISASSEMBLE
IN AAL-5 PROCESSOR

FIG.34B

40/134

- START FIELD (1 OCTET)
- OSF:OFFSET FIELD

FIG.35

FIG.36

FIG.37

FIG.38

FIG.38A

FIG.38B

ATM HEADER

FIG.38A

44/134

SF TIME INFORMATION (RECEPTION) (SLAVE SIDE) (2 OCTETS)	
SF TIME INFORMATION (TRANSMISSION) (SLAVE SIDE) (2 OCTETS)	
SF PHASE SHIFT VALUE (2 OCTETS)	
LC COUNTER INFORMATION (RECEPTION) (MASTER SIDE) (3 OCTETS)	
LC COUNTER INFORMATION (TRANSMISSION) (MASTER SIDE) (3 OCTETS)	
LC COUNTER INFORMATION (RECEPTION) (SLAVE SIDE) (3 OCTETS)	
LC COUNTER INFORMATION (TRANSMISSION) (SLAVE SIDE) (3 OCTETS)	
LC COUNTER SHIFT VALUE (3 OCTETS)	
UNUSED (6A (h))	000000
	CRC-10

FIG.38B

FIG.39

REVERSE CHANNEL

$P(MS)$ • • • REVERSE TRANSMISSION POWER
 $P_{max}(MS)$ • • • MAXIMUM REVERSE TRANSMISSION POWER
 $P(BS)$ • • • FORWARD TRANSMISSION POWER
 $P_{max}(BS)$ • • • MAXIMUM FORWARD TRANSMISSION POWER
 $P_{min}(BS)$ • • • MINIMUM FORWARD TRANSMISSION POWER

FIG.41A

FIG.41B

FIG.42

FIG.43

FIG.44

FIG.45

FIG.46**FIG.46A****FIG.46B****FIG.46A**

55/134

FIG.47

REVERSE DEDICATED PHYSICAL CHANNEL (UPCH)

FIG.48

FORWARD DEDICATED PHYSICAL CHANNEL (UPCH)

FIG.49

FIG.50

FIG.51

FROM COMMON CONTROL PHYSICAL CHANNEL
TO DEDICATED PHYSICAL CHANNEL

FIG.52

FIG.53

62/134

FIG.54

FIG.55

FIG.56

FIG.57

66/134

ATM CELL TRANSMISSION SEQUENCE TABLE
TRANSMISSION ORDER (ABOUT 256 AT MAXIMUM)

PRIORITY ↓

E	F	A	E	F	B	E	F	C	E	...
F	A	B	F	A	C	F	A	D	F	...
A	B	C	A	B	D	A	B	E	A	...
B	C	D	B	C	E	B	C	F	B	...
C	D	E	C	D	F	C	D	A	C	...
D	E	F	D	E	A	D	E	B	D	...

FIG.58A

SHORT CELL TRANSMISSION SEQUENCE TABLE
(QUALITY CLASS (6))

TRANSMISSION ORDER (ABOUT 128 AT MAXIMUM)

PRIORITY ↓

E1	E1	E1	E2	E1	E1	E1	E3	...
E2	E2	E2	E3	E2	E2	E2	E4	...
E3	E3	E3	E4	E3	E3	E3	E1	...
E4	E4	E4	E1	E4	E4	E4	E2	...

FIG.58B

SHORT CELL TRANSMISSION SEQUENCE TABLE
(QUALITY CLASS (7))

TRANSMISSION ORDER (ABOUT 128 AT MAXIMUM)

PRIORITY ↓

F1	F1	F2	F1	F1	F3	F1	F1	...
F2	F2	F3	F2	F2	F4	F2	F2	...
F3	F3	F4	F3	F3	F1	F3	F3	...
F4	F4	F1	F4	F4	F2	F4	F4	...

FIG.58C

- CARRY OUT CELL EXTRACTION PROCESSING IN ACCORDANCE WITH TRANSMISSION SEQUENCE DETERMINED FOR EACH OUTPUT TIMING.
- IF NO CELL IS PRESENT IN HIGHER PRIORITY QUALITY CLASS, A CELL IN THE NEXT PRIORITY IS EXTRACTED.

PAD : PADDING BITS (ALL "0s")
 Len : NUMBER OF BYTES OF EFFECTIVE DATA LENGTH OF USER FRAME
 CRC-32 : CRC CHECKING BITS OVER 32 BITS
 CRC-32 : GENERATOR POLYNOMIAL
 $G(X) = X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X^1 + 1$
 CHECK BITS ARE OBTAINED BY INVERTING BITS OF REMAINDER GENERATED BY THE GENERATOR POLYNOMIAL.

FIG.59

FIG.60

FIG 61

WHERE

$$MCC_1 = LC_MCC_1 \times 640(\text{ms}) + SF_MCC_1$$

$$MCC_2 = LC_MCC_2 \times 640(\text{ms}) + SF_MCC_2$$

$$BTS_1 = LC_BTS_1 \times 640(\text{ms}) + SF_BTS_1$$

$$BTS_2 = LC_BTS_2 \times 640(\text{ms}) + SF_BTS_2$$

FIG.62

FIG.63

FIG. 64A

FIG. 64

FIG. 64A

FIG. 64B

LAYER 3
INFORMATION

BTS AP

**BTS
HARDWARE**

CPS PDU

DIVIDE INTO
INTERNAL
ENCODING UNITS

**ADD W BITS
AND TAIL BITS**

$$\text{CONVOLUTIONAL ENCODING} \quad R = 1/2 \quad K = 9$$

※ DESIGNATED BY MACRO ONLY
AT INITIAL SETTING, AND
CONTINUOUSLY TRANSMITTED AUTOMATICALLY
BY HARDWARE AFTER THE SETTING

73/134

FIG.64B

FIG.65A

FIG.65B

FIG.66

FIG.66A

FIG.66B

76/134

77/134

FIG.66B

FIG.67A

FIG.67

FIG.67A

FIG.67B

FIG.67B

FIG.68

FIG.68A

FIG.68B

FIG.68A

BTS
HARDWARE

ASSEMBLE ACK AND
CRC BITS

CONVOLUTIONAL
ENCODING
 $R = 1/2 \quad K = 9$

Mo : MODE DESIGNATION

D : DUMMY

NA : NUMBER OF TIMES OF ACK
TRANSMISSION IN UNIT (1-7)

PID: PACKET ID OF RACH WHEN CRC IS
CORRECT; WHEN THE NUMBER OF
TIMES OF ACK TRANSMISSION IS
LESS THAN 7, REMAINING FIELDS
ARE FILLED WITH ALL "0's"

288BITS

288BITS

FIG.68B

FIG.69

FIG.69A

FIG.69B

82/134

FIG.69A

FIG.69B

FIG.70

FIG.70A

FIG.70B

84/134

FIG.70A

FIG.70B

FIG. 7.1A

FIG. 71

FIG. 71A

FIG. 71B

86/134

87/134

FIG.71B

FIG. 72A

FIG. 72B

FIG.73A

FIG.73

FIG.73A

FIG.73B

FIG. 73B

FIG.74

FIG.74A

FIG.74B

FIG.74A

FIG.75

FIG.75A

PILOT SYMBOLS + TPC SYMBOL
(5 SYMBOLS/SLOT)

FIG. 75B

FIG.76

FIG.76A

FIG.76A

96/134

FIG.77A

FIG.77

FIG.77A

FIG.77B

FIG.77C

99/134

FIG.77C

FIG.78

FIG.78A

FIG.78A

FIG.78C

FIG.79A

FIG.79B

FIG.79A

FIG.79B

FIG.79C

FIG. 79B

FIG.79C

FIG.80A

FIG.80

FIG.80A

FIG.80B

FIG.80C

FIG. 80B

FIG.80C

FIG.81A

FIG.81

IN THE CASE OF U/C
= CONTROL INFORMATION
AND TN = BTS TERMINATION

LAYER 2

BTS AP

EX INTERFACE

DHT

ATM
TRANSMISSION PATH

IN THE CASE OF U/C
= USER INFORMATION
AND TN = BSC TERMINATION

LAYER 2

MCC AP

ATM
TRANSMISSION PATH

DIVIDE INTO
INTERNAL
UNITS

ADD U/C, TN,
CRC AND TAIL
BITS

1BIT 1BIT 2BITS
128BITS 16BITS 8BITS

D : DUMMY

CPS PDU

COMBINE INTERNAL
ENCODING UNITS

* U/C : 0 = USER INFO.
1 = CONTROL INFO.
W BITS, CARRY OUT CRC
TN : TERMINAL NODE
CHECKING AND DISCARD
TAIL BITS

D : DUMMY

111/134

FIG.81B

FIG.82A

FIG.82

113/134

FIG. 82B

FIG.83A

FIG.83

114/134

FIG.83B

FIG.84A

FIG.84

FIG.84A

FIG.84B

FIG.84B

FIG.85

119/134

FIG.86

FIG. 87

FIG. 87A

FIG. 87B

FIG. 87A

FIG.87B

FIG.88

FIG.88A

FIG.88B

FIG.88A

FIG.88B

PERCH CHANNEL TRANSMISSION PATTERN

FIG.89

FIG.90

FIG.90A

FIG.90B

FIG.90A

FIG.90B

FIG.91

FIG.92

DEDICATED PHYSICAL CHANNEL (DURING HIGH SPEED CLOSED LOOP TRANSMISSION POWER CONTROL)

FIG.93

32 KSPS DEDICATED PHYSICAL CHANNEL (DTX CONTROL)

FIG.94

FIG. 95

FIG. 95A

FIG. 95B

FIG.95B

FIG.96

FIG.96A

FIG.96B

134/134

FIG. 96B