DECISION

TREES

Decision Trees

- inputs and outputs
- want classification for labels
- decision tree classifier

Decision Trees

- supervised learning
- constructed based on information gain
- classification or prediction (regression)
- CART: classification and regression trees

Graphical Representation

- graphically a tree
 - 1. root node (initial test)
 - 2. interior nodes (testing)
 - 3. leaf nodes (predictions)
- edges are test outcomes

A Trivial Example

• a simple decision by height(H)

A Less Trivial Example

• decisions using both H & W

How to Construct Decision Trees?

- want to grow simple trees
- each successor as pure as possible
- how: use "information gain"
- information gain is defined by entropy

Entropy

- measure of uncertainty
- p_1, \ldots, p_n possible probabilities

$$H = -(p_1 \log_2 p_1 + \dots + p_n \log_2 p_n)$$
Example 1: $n = 2, p_1 = 1, p_2 = 0$

$$H_1 = -(\log_2 1 + 0) = 0$$
Example 2: $n = 2, p_1 = p_2 = 1/2$

$$H_2 = -(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2}) = 1$$

Entropy vs. p

- $\bullet n = 2, p_1 = p, p_2 = 1 p$
- H is maximized at p = 0.5

Entropy: Intuition

- $\bullet H = 0$: all in one class
- H = 1: uniform distribution

Gini Impurity

- for binary classification
- requires ranking
- a measure of mis-classification

Gini =
$$p_1(1-p_1) + \dots + p_n(1-p_n)$$

= $1 - (p_1^2 + \dots + p_n^2)$

Gini vs. Entropy

Information Gain

Day	Weather	Weather Temperature		Play
1	sunny	hot	low	no
2	rainy	mild	high	yes
3	sunny	cold	low	yes
4	rainy	cold	high	no
5	sunny	cold	high	yes
6	overcast	mild	low	yes
7	sunny	hot	low	yes
8	overcast	hot	high	yes
9	rainy	hot	high	no
10	rainy	mild	low	yes

•
$$P(Play = yes) = 0.7, P(Play = no) = 0.3$$

 $H(Play) = -0.7 \cdot log_2(0.7) - 0.3 \cdot log_2(0.3)$
 $= 0.8812$

• what label for $x^* = (sunny, cold, low)$?

Split on Weather

Day	Weather	Temperature	Wind	Play
1	sunny	hot	low	no
3	sunny	cold	low	yes
5	sunny	cold	high	yes
7	sunny	hot	low	yes

- P(Weather = sunny) = 0.4
- $\bullet P(Play = yes) = 0.75, P(Play = no) = 0.25$

Split on Weather (cont'd)

Day	Weather	Temperature	Wind	Play
2	rainy	mild	high	yes
4	rainy	cold	high	no
9	rainy	hot	high	no
_10	rainy	mild	low	yes

- P(Weather = rainy) = 0.4
- P(Play = yes) = 0.5, P(Play = no) = 0.5

Split on Weather (cont'd)

Day	Weather	Temperature	Wind	Play
6	overcast	mild	low	yes
8	overcast	hot	high	yes

- P(Weather = overcast) = 0.2
- P(Play = yes) = 1, P(Play = no) = 0

Weather I-Gain

$$H(W) = -0.4(0.75 \cdot \log_2 0.75 + 0.25 \cdot \log_2 0.25)$$
$$-0.4(0.5 \cdot \log_2 0.5 + 0.5 \cdot \log_2 0.5)$$
$$-0.2(\log_2 1 + 0)$$
$$=0.7245$$

- recall H(Play) = 0.8812
- information gain of splitting by weather:

I-Gain(W) =
$$H(Play) - H(W)$$

= $0.8812 - 0.7245$
= 0.1567

Split on Temperature

Day	Weather	Temperature	Wind	Play
1	sunny	hot	low	no
7	sunny	hot	low	yes
8	overcast	hot	high	yes
9	rainy	hot	high	no

- P(Temperature = hot) = 0.4
- \bullet P(Play = yes) = 0.5, P(Play = no) = 0.5

Split on Temperature (cont'd)

Day	Weather	Temperature	Wind	Play
2	rainy	mild	high	yes
6	overcast	mild	low	yes
_10	rainy	mild	low	yes

- P(temperature = mild) = 0.3
- P(Play = yes) = 1, P(Play = no) = 0

Split on Temperature (cont'd)

Day	Weather	Temperature	Wind	Play
3	sunny	cold	low	yes
4	rainy	cold	high	no
_ 5	sunny	cold	high	yes

- P(temperature = cold) = 0.3

Temperature I-Gain

$$H(T) = -0.4 \left(\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2} \right)$$

$$-0.3 \cdot 0$$

$$-0.3 \left(\frac{2}{3} \cdot \log_2 \frac{2}{3} + \frac{1}{3} \cdot \log_2 \frac{1}{3} \right)$$

$$=0.68$$

- recall H(Play) = 0.88
- information gain of splitting by temperature

I-Gain
$$(Temperature) = H(Play) - H(W)$$

= 0.88 - 0.68
= 0.20

Split on Wind

Day	Weather	Temperature	Wind	Play
1	sunny	hot	low	no
3	sunny	cold	low	yes
6	overcast	mild	low	yes
7	sunny	hot	low	yes
10	rainy	mild	low	yes

- P(Wind = low) = 0.5
- P(Play = yes) = 0.8, P(Play = no) = 0.2

Split on Wind (cont'd)

Day	Weather	Temperature	Wind	Play
2	rainy	mild	high	yes
4	rainy	cold	high	no
5	sunny	cold	high	yes
8	overcast	hot	high	yes
9	rainy	hot	high	no

- P(Wind = high) = 0.5
- P(Play = yes) = 0.6, P(Play = no) = 0.4

Wind I-Gain

$$H(Wind) = -0.5(0.8 \cdot \log_2 0.8 + 0.2 \cdot \log_2 0.2)$$
$$-0.5(0.6 \cdot \log_2 0.6 + 0.4 \cdot \log_2 0.4)$$
$$=0.85$$

- recall H(Play) = 0.88
- information gain of splitting by temperature

$$I-Gain(Wind) = H(Play) - H(Wind)$$
$$= 0.88 - 0.85$$
$$= 0.03$$

Computation of I-Gain

- split according to feature A
- compute entropy of A
- \bullet compare with total entropy H
- \bullet choose feature that reduces H the most

Feature	(weighted) Entropy	I-Gain
Play	0.88	
Weather	0.72	0.16
Temparature	0.68	0.20
Wind	0.85	0.03

- split by wind reduces entropy the most
- should be used as root node

Classification With Trees

Day	Weather	Weather Temperature		Play
1	sunny	hot	low	no
2	rainy	mild	high	yes
3	sunny	cold	low	yes
4	rainy	cold	high	no
5	sunny	cold	high	yes
6	overcast	mild	low	yes
7	sunny	hot	low	yes
8	overcast	hot	high	yes
9	rainy	hot	high	no
10	rainy	mild	low	yes

- $x^* = (sunny, cold, low) \mapsto ?$
- need numeric values for attributes

Change to Dummy Variables

Day		Weather			Temp.		Wind	VV 111CL
	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Series 1	Auuns 1 0 1 0 1 0 0 0 0	ploo 0 1 1 1 0 0 0 0 0 0 0	tot 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0	plim 0 1 0 0 0 1 0 0 1	ygiy 0 1 0 1 1 0 0 1 1 0 0 1 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	0	0	1	0	1	0	0	1
2	0	1	0	0	0	1	1	0
3	0	0	1	1	0	0	0	$\mid 1 \mid$
4	0	1	0	1	0	0	1	0
5	0	0	1	1	0	0	1	0
6	1	0	0	0	0	1	0	$\mid 1 \mid$
7	0	0	1	0	1	0	0	1
8	1	0	0	0	1	0	1	0
1 2 3 4 5 6 7 8 9	0	1	0	0	1	0	1	0
10	0	1	0	0	0	1	0	1

Python Code

```
import numpy as np
import pandas as pd
from sklearn import tree
from sklearn.preprocessing import LabelEncoder
data = pd.DataFrame(
        { 'Day ':
                        [1,2,3,4,5,6,7,8,9,10],
                        ['sunny', 'rainy', 'sunny', 'rainy',
        'Weather':
                        'sunny', 'overcast', 'sunny', 'overcast',
                         'rainy','rainy'],
        'Temperature': ['hot', 'mild', 'cold', 'cold', 'cold',
                        'mild', 'hot', 'hot', 'hot', 'mild'],
                        ['low','high','low','high','high',
        'Wind':
                        'low','low', 'high','high','low'],
                        ['no', 'yes','yes','no','yes',
        'Play':
                         'yes','yes','yes','no','yes']},
        columns = ['Day', 'Weather', 'Temperature', 'Wind', 'Play'])
input_data = data[['Weather', 'Temperature', 'Wind']]
dummies = [pd.get_dummies(data[c]) for c in input_data.columns]
binary_data = pd.concat(dummies, axis=1)
X = binary_data[0:10].values
le = LabelEncoder()
Y = le.fit_transform(data['Play'].values)
clf = tree.DecisionTreeClassifier(criterion='entropy', max_features=8)
clf = clf.fit(X,Y)
\# sunny -> (0,0,1), cold-> (0,1,0), low -> (0,1)
new_instance = np.asmatrix([0,0,1,1,0,0,0,1])
prediction = clf.predict(new_instance)
ipdb> prediction[0]
1
```

A Decision Tree for Categorical Dataset

Using Decision Tree

- label for $x^* = (sunny, cold, low)$?
- dummy $x^{**}=(0, 0, 1, 1, 0, 0, 0, 1)$
- labels: 0 ("no") and 1 ("yes")
- 1. mild \leq 0.5, we take the left branch
- 2. rainy \leq 0.5, we take the left branch
- 3. high ≤ 0.5 , we take the left branch
- 4. cold \geq 0.5, we take the right branch
- 5. leaf node \mapsto "yes"

A Categorical Dataset

Day	Weather	Temperature	Wind	Play
1	sunny	hot	low	no
2	rainy	mild	high	yes
3	sunny	cold	low	yes
4	rainy	cold	high	no
5	sunny	cold	high	yes
6	overcast	mild	low	yes
7	sunny	hot	low	yes
8	overcast	hot	high	yes
9	rainy	hot	high	no
10	rainy	mild	low	yes

Code for the Dataset

```
import pandas as pd
data = pd.DataFrame(
       {'Day':
                       [1,2,3,4,5,6,7,8,9,10],
       'Weather':
                       ['sunny', 'rainy', 'sunny', 'rainy',
                        'sunny', 'overcast', 'sunny', 'overcast',
                        'rainy','rainy'],
        'Temperature': ['hot', 'mild', 'cold', 'cold', 'cold',
                       'mild', 'hot', 'hot', 'hot', 'mild'],
                       ['low', 'high', 'low', 'high', 'high',
        'Wind':
                        'low', 'low', 'high', 'high', 'low'],
                       ['no', 'yes', 'yes', 'no', 'yes',
        'Play':
                        'yes','yes','yes','no','yes']},
        columns = ['Day', 'Weather', 'Temperature',
                                       'Wind', 'Play'])
```

ipdb> data

	Day	Weather	Temperature	Wind	Play
0	1	sunny	hot	low	no
1	2	rainy	mild	high	yes
2	3	sunny	cold	low	yes
3	4	rainy	cold	high	no
4	5	sunny	cold	high	yes
5	6	overcast	mild	low	yes
6	7	sunny	hot	low	yes
7	8	overcast	hot	high	yes
8	9	rainy	hot	high	no
9	10	rainy	mild	low	yes

A Numerical Dataset

object	Height	Weight	Foot	Label
$ x_i $	(H)	(W)	(F)	$\left \begin{array}{c} \left(L \right) \end{array} \right $
x_1	5.00	100	6	green
x_2	5.50	150	8	green
x_3	5.33	130	7	green
$ x_4 $	5.75	150	9	green
x_5	6.00	180	13	red
$ x_6 $	5.92	190	11	red
$ x_7 $	5.58	170	12	red
x_8	5.92	165	10	red

- N = 8 items
- $\bullet M = 3$ (unscaled) attributes

Code for the Dataset

ipdb> data

```
id Height Weight Foot Label
  1
     5.00
0
             100
                    6
                       green
1
  2
     5.50
             150
                       green
                 7 green
2
  3 5.33
             130
3
                 9 green
  4 5.75
             150
4
  5 6.00
             180
                   13
                         red
5
                   11
  6 5.92
             190
                         red
6
  7 5.58
                   12
             170
                         red
7
  8 5.92
             165
                   10
                         red
```

A Dataset Illustration

A New Instance

$$(H=6, W=160, F=10) \rightarrow ?$$

Decision Logic for Labels

- $(H=6, W=160, F=10) \mapsto red$
- can decide by foot size

Decision Tree

$$(H=6, W=160, F=10) \mapsto red$$

Decision Tree in Python

```
import numpy as np
import pandas as pd
from sklearn import tree
data = pd.DataFrame( {'id': [ 1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                        'red', 'red', 'red', 'red'],
        'Height': [5, 5.5, 5.33, 5.75,
                            6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                                 180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                              'Foot', 'Label'] )
X = data[['Height', 'Weight', 'Foot']].values
Y = data[['Label']].values
clf = tree.DecisionTreeClassifier(criterion = 'entropy')
clf = clf.fit(X,Y)
prediction = clf.predict(np.asmatrix([6, 160, 10]))
ipdb> prediction[0]
'red'
```

A Modified Dataset

• change foot size

id	Height	Weight	Foot	Label
1	5.00	100	$6 \mapsto 10$	green
2	5.50	150	8	green
3	5.33	130	7	green
$\mid 4 \mid$	5.75	150	9	green
5	6.00	180	13	red
6	5.92	190	11	red
7	5.58	170	12	red
8	5.92	165	10	red

Foot Size Change

id	Height	Weight	Foot	Label
1	5	100	$6 \mapsto 10$	green

$$(H=6, W=160, F=10) \rightarrow ?$$

Decision Logic for: Foot Size Change

- $(H=6, W=160, F=10) \mapsto red$
- decide by weight, not by height

Decision Tree: Foot Size Change

$$(H=6, W=160, F=10) \mapsto red$$

Code for Foot Change

```
import numpy as np
import pandas as pd
from sklearn import tree
data = pd.DataFrame( {'id': [ 1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                        'red', 'red', 'red', 'red'],
        'Height': [5, 5.5, 5.33, 5.75,
                            6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                                 180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                              'Foot', 'Label'] )
data['Foot'].iloc[1] = 10  # change foot from 6 to 10!!!
X = data[['Height', 'Weight', 'Foot']].values
Y = data[['Label']].values
clf = tree.DecisionTreeClassifier(criterion = 'entropy')
clf = clf.fit(X,Y)
prediction = clf.predict(np.asmatrix([6, 160, 10]))
ipdb> prediction[0]
'red'
```

Foot/Weight Change

id	Height	Weight	Foot	Label
1	5	$100 \mapsto 170$	$6 \mapsto 10$	green

$$(H=6, W=160, F=10) \rightarrow ?$$

Decision Logic for: F/W Change

- $(H=6, W=160, F=10) \mapsto green$
- decide by foot and height

Decision Tree for F/W Change

$$(H=6, W=160, F=10) \rightarrow green$$

Code for F/W Change

```
import numpy as np
import pandas as pd
from sklearn import tree
data = pd.DataFrame( {'id': [ 1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                        'red', 'red', 'red', 'red'],
        'Height': [5, 5.5, 5.33, 5.75,
                            6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                                 180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                              'Foot', 'Label'] )
data['Foot'].iloc[1] = 10  # change foot from 6 to 10!
data['Weight'].iloc[1] = 160 # weight from 100 to 160
X = data[['Height', 'Weight', 'Foot']].values
Y = data[['Label']].values
clf = tree.DecisionTreeClassifier(criterion = 'entropy')
clf = clf.fit(X,Y)
prediction = clf.predict(np.asmatrix([6, 160, 10]))
ipdb> prediction[0]
'green'
```

F/W/H Change

id	Height	Weight	Foot	Label
$\boxed{1}$	$5 \mapsto 6$	$100 \mapsto 170$	$6 \mapsto 10$	green

$$(H=6, W=160, F=10) \rightarrow ?$$

Decision Logic for: F/W/H Change

- $(H=6, W=160, F=10) \mapsto green$
- decide by weight, foot, weight

Intermediate Decision

- $(H=6, W=160, F=10) \rightarrow green$
- decide by weight, foot, weight

Decision Tree for F/W/H Change

$$(H=6, W=160, F=10) \rightarrow green$$

Code for F/W/H Change

```
import numpy as np
import pandas as pd
from sklearn import tree
data = pd.DataFrame( {'id': [ 1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                         'red', 'red', 'red', 'red'],
        'Height': [5, 5.5, 5.33, 5.75,
                            6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150,
                                 180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight',
                              'Foot', 'Label'] )
data['Foot'].iloc[1] = 10  # change foot from 6 to 10!
data['Weight'].iloc[1] = 160 # weight from 100 to 160
data['Height'].iloc[1] = 6 # height from 5 to 6
X = data[['Height', 'Weight', 'Foot']].values
Y = data[['Label']].values
clf = tree.DecisionTreeClassifier(criterion = 'entropy')
clf = clf.fit(X,Y)
prediction = clf.predict(np.asmatrix([6, 160, 10]))
ipdb> prediction[0]
'green'
```

Decision Tree: IRIS

```
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
url = r'https://archive.ics.uci.edu/ml/' + \
           r'machine-learning-databases/iris/iris.data'
iris_feature_names = ['sepal-length', 'sepal-width',
                            'petal-length', 'petal-width']
data = pd.read_csv(url, names=['sepal-length', 'sepal-width',
                         'petal-length', 'petal-width', 'Class'])
class_labels = ['Iris-versicolor', 'Iris-virginica']
data = data[data['Class'].isin(class_labels)]
X = data[iris_feature_names].values
le = LabelEncoder()
Y = le.fit_transform(data['Class'].values)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,
                                   test_size=0.5, random_state=3)
tree_classifier = tree.DecisionTreeClassifier(criterion = 'entropy')
tree_classifier = tree_classifier.fit(X, Y)
prediction = tree_classifier.predict(X_test)
error_rate = np.mean(prediction != Y_test)
ipdb> error_rate
0.12
```