OBJECTIFS 3

- Déterminer une équation de droite à partir de deux points, un point et un vecteur directeur ou un point et la pente.
- Déterminer la pente ou un vecteur directeur d'une droite donnée par une équation ou une représentation graphique.
- Tracer une droite connaissant son équation cartésienne ou réduite.
- Déterminer si deux droites sont parallèles ou sécantes.
- Résoudre un système de deux équations linéaires à deux inconnues, déterminer le point d'intersection de deux droites sécantes.

Équations d'une droite

1. Vecteur directeur

À RETENIR 00

Définition

On appelle vecteur directeur d'une droite tout vecteur qui suit la direction de celle-ci.

EXERCICE 1

On se place dans le repère cartésien ci-contre. Pour chaque droite, donner les coordonnées d'un vecteur directeur.

1. (*d*₁):

2. (*d*₂):

3. (*d*₃):

✓ Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-1.

2. Équation cartésienne

À RETENIR 99

Définition

Soit (d) une droite dont les coordonnées d'un vecteur directeur sont $\begin{pmatrix} -b \\ a \end{pmatrix}$. Alors, un point de coordonnées (x; y) appartient à (d) si et seulement si on a

$$ax + by + c = 0$$

où $c \in \mathbb{R}$. Cette équation est appelée **équation cartésienne** de (d).

EXEMPLE

Un vecteur directeur de la droite (d_1) de l'exercice précédent est $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Son équation cartésienne est donc de la forme x-y+c=0. Or, le point A(0;1) appartient à cette droite, donc $0-1+c=0 \iff c=1$. Une équation cartésienne de (d_1) est donc x+y+1=0.

ΕY	FD	CI	CF	2	

1. Déterminer une équation cartésienne de la droite passant par $A(-1;2)$ et de vecteur directeur $\vec{u} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.
2. Le point $B(0;6)$ appartient-il à cette droite?

Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-2.

3. Équation réduite

À RETENIR 99

Définitions

- Toute droite non parallèle à l'axe des ordonnées admet une équation cartésienne de la forme y = mx + p. C'est son **équation réduite**.
- Dans le cas d'une droite parallèle à l'axe des ordonnées, son **équation réduite** est de la forme x = k.

EXERCICE 3

On considère la droite (*d*) d'équation réduite $y = -\frac{2}{3}x + 2$.

- **2.** Représenter (d) dans le repère ci-contre.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-3.

INFORMATION |

Remarque

Il y a un lien fort entre ce concept et celui des fonctions affines : la représentation graphique d'une fonction affine $x \mapsto mx + p$ est la droite d'équation réduite y = mx + p. Réciproquement, toute droite non parallèle à l'axe des ordonnées est la représentation graphique d'une fonction affine.

À RETENIR 99

Propriétés

On considère la droite (d) d'équation y = mx + p.

- 1. Le vecteur de coordonnées $\binom{1}{m}$ est un vecteur directeur de cette droite. Ainsi :
 - Si m > 0, la droite (d) « monte ».
 - Si m < 0, la droite (d) « descend ».
 - Si m = 0, la droite (d) est horizontale.
- 2. Le point d'intersection de (d) avec l'axe des ordonnées a pour coordonnées (0; p). C'est pour cette raison que p est appelé « ordonnée à l'origine ».

On a représenté une droite (*d*) ci-contre. Déterminer son équation réduite.

Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-4.

Ш

Intersection de deux droites

1. Parallélisme

À RETENIR 99

Propriété

Soient (d_1) et (d_2) deux droites. On note :

- $-a_1x + b_1y + c_1 = 0$ une équation cartésienne et $m_1x + p_1 = 0$ une équation réduite de (d_1) .
- $a_2x + b_2y + c_2 = 0$ une équation cartésienne et $m_2x + p_2 = 0$ une équation réduite de (d_2) .

On a les relations suivantes.

Position des droites	Vecteurs directeurs	Équations cartésiennes	Équations réduites
Parallèles	Colinéaires	$a_1 = k \times a_2$ et $b_1 = k \times b_2$	$m_1 = m_2$
Confondues	Colinéaires et de même origine	$a_1 = k \times a_2$, $b_1 = k \times b_2$ et $c_1 = k \times c_2$	$m_1 = m_2 \text{ et } p_1 = p_2$
Sécantes	Non colinéaires	Pas de proportionnalité	$m_1 \neq m_2$

-	-	\sim	CF 5	

Étudier les positions relatives des droites (d_1) et (d_2) d'équations cartésiennes respectives $4x - 3y + 1 = 0$
et -2x + y + 3 = 0.

2. Coordonnées du point d'intersection

À RETENIR 99

Définition

On appelle système linéaire à 2 équations en 2 inconnues un ensemble de deux équations de la forme

$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}$$

où $a_1, b_1, c_1, a_2, b_2, c_2$ sont des constantes réelles. Une **solution** à ce système est un couple (x; y) qui vérifie les deux équations.

EXERCICE 6

Vérifier que (-3;5) est solution du système

$$\begin{cases} 2x + 3y - 9 = 0 \\ -x + 2y - 13 = 0 \end{cases}$$

À RETENIR 00

Propriété

Soient (d_1) et (d_2) deux droites d'équations cartésiennes respectives $a_1x+b_1y+c_1=0$ et $a_2x+b_2y+c_2=0$. On considère le système d'équations (S): $\begin{cases} a_1x+b_1y+c_1=0\\ a_2x+b_2y+c_2=0 \end{cases}$.

- (S) admet une unique solution (x; y) si et seulement si (d_1) et (d_2) sont sécantes en le point de coordonnées (x; y).
- (S) n'admet pas de solution si et seulement si (d_1) et (d_2) sont strictement parallèles.
- (S) admet une infinité de solutions si et seulement si (d_1) et (d_2) sont confondues.

EXERCICE 7

Que peut-on dire des droites (d_1) et (d_2) d'équations cartésiennes respectives $2x + 3y - 9 = 0$ et $-x + 2y - 12 = 0$
13 = 0?

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-7.

À RETENIR 99

Méthode

La méthode de résolution par substitution consiste à isoler une des inconnues dans une des équations, puis à remplacer cette expression dans l'autre équation. On obtient alors la valeur d'une inconnue, qu'il suffit de remplacer dans la première équation pour trouver la valeur de la seconde inconnue.

EXERCICE 8

Résoudre le système $\begin{cases} 4x - 3y + 1 = 0 \\ -2x + y + 3 = 0 \end{cases}$ par substitution.

Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-8.

À RETENIR **

Méthode

La méthode de résolution par combinaison consiste à multiplier ou à diviser les lignes par des nombres de telle manière qu'en additionnant les équations, une inconnue s'élimine. Pour trouver la seconde inconnue, on peut renouveler la même méthode.

EXERCICE 9

Résoudre le système $\begin{cases} 3x - 2y + 1 = 0 \\ -2x + 4y = 3 \end{cases}$ par combinaison.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-9.