METODY BAYESOWSKIE W STATYSTYCE

prof. dr hab. W. Niemiro

Spis treści

1.	Klasyczny i bayesowski punkt widzenia w statystyce. Przykłady	3
	Przykład Laplace'a	3
2.	Podstawy probabilistyczne: warunkowe rozkłady prawdopodobieństwa, wa-	
	runkowe wartości oczekiwane, twierdzenie Bayesa	5
	Warunkowe rozkłady prawdopodobieństwa i wartości oczekiwane	5
	Prawdopodobieństwo warunkowe i warunkowa wartość oczekiwana	9
3.	Budowa statystycznych modeli bayesowskich. rozkłady a priori i a poste-	
	riori , warunkowa niezależność, statystyki dostateczne	13
	Podstawowy model bayesowski	15
	Dostateczność	18
	Wykładnicze rodziny rozkładów prawdopodobieństwa	20
	Typowe modele bayesowskie ze sprzężonymi rodzinami rozkładów	23
4.	Funkcje straty, estymacja i predykcja bayesowska	24
	Teoria decyzji statystycznych	24
	Problemy klasyfikacji/dyskryminacji	28
	Zmienne losowe w \mathbb{R}^d	31
5.	Wielowymiarowe rozkłady normalne	31
	Różne funkcje straty w zadaniach estymacji	35
	Testowanie hipotez statystycznych	36
	Krzywa $(\alpha - \beta)$ Neymana – Pearsona	38
	Testowanie hipotez złożonych w ujęciu bayesowskim	39
	Zbiory (przedziały ufności) w ujęciu bayesowskim	40
	Predykcja liniowa i liniowe modele bayesowskie	41

1. Klasyczny i bayesowski punkt widzenia w statystyce. Przykłady.

05.10.2006r.

Przykład 1 (LAPLACE'A).

- 1. Wybieramy jedną z ur
n z jednakowym prawdopodobieństwem $\frac{1}{n+1}.$
- 2. Losujemy m razy ze zwracaniem (z/z) z wybranej uprzednio urny.
- 3. Losujemy jeszcze raz, (n+1)-szy raz z tejże urny.

Wiadomo, że w m losowaniach wybraliśmy same kule białe. Jakie jest prawdopodobieństwo, że w kolejnym (n+1)-szym losowaniu też wyjdzie biała?

U – numer urny wylosowanej w 1-szym etapie

$$\mathbb{P}(U=i) = \frac{1}{n+1} \quad i = 0, 1, \dots n \quad \text{(rozkład } a \text{ priori)}$$

S – liczba kul białych w m losowaniach 2-go etapu

$$\mathbb{P}(S = k | U = i) = {m \choose k} \left(\frac{n-i}{n}\right)^k \left(\frac{i}{n}\right)^{n-k}$$

X – liczba kul białych w (m+1)-szym losowaniu 3-go etapu

$$\mathbb{P}(X=1|U=i) = \frac{n-i}{n} \qquad \mathbb{P}(X=0|U=i) = \frac{i}{n}$$

$$\mathbb{P}(X=1|S=m) = \frac{\mathbb{P}(X=1,S=m)}{\mathbb{P}(S=m)} \quad \text{(Twierdzenie Bayesa)}$$

$$\mathbb{P}(S = m | U = i) = \left(1 - \frac{i}{n}\right)^{m}$$

$$\mathbb{P}(S = m) = \sum_{i=0}^{n} \mathbb{P}(S = m | U = i) \mathbb{P}(U = i) = \sum_{i=0}^{n} \left(1 - \frac{i}{n}\right)^{m} \cdot \frac{1}{n+1}$$

$$\mathbb{P}(S = m, X = 1) = \sum_{i=0}^{n} \left(1 - \frac{i}{n}\right)^{m+1} \cdot \frac{1}{n+1}$$

Zatem:

$$\mathbb{P}(X=1|S=m) = \frac{\sum_{i=0}^{n} \left(1 - \frac{i}{n}\right)^{m+1} \cdot \frac{1}{n+1}}{\sum_{i=0}^{n} \left(1 - \frac{i}{n}\right)^{m} \frac{1}{n+1}} = \frac{\frac{1}{n} \sum_{j=0}^{n} \left(\frac{j}{n}\right)^{m+1}}{\frac{1}{n} \sum_{j=0}^{n} \left(\frac{j}{n}\right)^{m}} = \frac{\frac{1}{n} \sum_{j=0}^{n} \left(\frac{j}{n}\right)^{m}}{\frac{1}{n} \sum_{j=0}^{n} f\left(\frac{j}{n}\right)} \longrightarrow \frac{\int_{0}^{1} x^{m+1} dx}{\int_{0}^{1} x^{m} dx} = \frac{m+1}{m+2}$$

- \Re Rozkład prawdopodobieństwa
 $\underline{\text{definiuje}}$ się przy pomocy prawdopodobieństwa warunkowego.
- 🕏 Subiektywna interpretacja prawdopodobieństwa na 1-szym etapie.
- * Twierdzenie Bayesa.
- ℜ Nacisk na predykcję.

Przykład 2 (Kapsle Tymbark).

60 kapsli 50 różnych napisów

200 dalszych kapsli X=?różnych napisów

50 51 52 ••• 1000

 $\frac{1}{951}$ – prawdopodobieństwo wyboru urny

$$S = 50$$

$$X = ?$$

Zadanie domowe 1.

$$\mathbb{P}(X = 190|U = 1000)$$

Algorytm 1.

 $\begin{array}{ccc} U & S & X \\ \text{ukryte} & \text{znamy} & \text{chcemy przewidzieć} \end{array}$

1. Losujemy z rozkładu
$$U$$
, $\mathbb{P}(U=i)=\frac{1}{951}$ (z rozkładu a priori) rozkład a posteriori 2. Znając U losujemy z rozkładu $S|U$ $\mathbb{P}(U=i|S=50)$

Jeśli $S \neq 50$, odrzuć (przejdź do 1)

Jeśli S = 50, wylosuj X|U, zapamiętaj

Przykład 3.

Są 2 typy kierowców ostrożni – \mathcal{O} i ryzykanci – \mathcal{R} . Na jednego ostrożnego przypada 4 ryzykantów. Jeśli kierowca jest ostrożny, to powoduje szkodę w ciągu roku z prawdopodobieństwem 0.1. Jeśli kierowca jest ryzykantem, to powoduje szkodę w ciągu roku z prawdopodobieństwem 0.4.

- 1. Ubezpieczamy nowego kierowcę. Jakie jest prawdopodobieństwo, że zgłosi szkodę?
- 2. Kierowca zgłosił szkodę w 1-szym roku ubezpieczenia. Jakie jest prawdopodobieństwo, że jest typu \mathcal{O} ?
- 3. Kierowca zgłosił szkodę w 1-szym roku. Jakie jest prawdopodobieństwo, że zgłosi szkodę i w 2-gim roku?
- 4. Kierowca zgłosił szkody w dwóch kolejnych latach. Jakie jest prawdopodobieństwo, że zgłosi szkodę i w trzecim roku?
- 2. Podstawy probabilistyczne: warunkowe rozkłady prawdopodobieństwa, warunkowe wartości oczekiwane, twierdzenie Bayesa.

19.10.2006r.

Warunkowe rozkłady prawdopodobieństwa i wartości oczekiwane.

GESTOŚĆ ROZKŁADU PRAWDOPODOBIEŃSTWA:

 $(\Omega, \mathcal{F}, \mathbb{P})$ – przestrzeń probabilistyczna

 $X:\Omega\longrightarrow \mathscr{X}$ – zmienna losowa o wartościach w \mathscr{X}

$$\forall_{A \in \mathcal{A}} \qquad X^{-1}(A) = \{ \omega \in \Omega; \ X(\omega) \in A \} = \{ X \in A \} \in \mathcal{F}$$

Rozkład prawdopodobieństwa zmiennej losowej X

$$\mathcal{A} \ni A \longmapsto \mathbb{P}(X \in A) = \mathbb{P}_X(A)$$

$$\mathbb{P}_X : \mathcal{A} \longrightarrow [0, 1]$$

$$\mathbb{P} : \mathcal{F} \to [0, 1]$$

Definicja 1.

Rozkład prawdopodobieństwa zmiennej losowej X ma gęstość $f = f_X : \mathscr{X} \longrightarrow \mathbb{R}_+,$ jeśli:

$$\forall_{A \in \mathcal{A}}$$
 $\mathbb{P}(X \in A) = \int_{A} f(x)\mu(dx) = \int_{A} fd\mu$

Przykład 4.

 μ – miara Lebesgue'a, \mathcal{A} – σ - ciało borelowskie $\mathscr{X} = \mathbb{R}^{\mathrm{d}},$

$$\int_{A} f(x)\mu(dx) = \int_{A} f(x)dx$$

Przykład 5.

Przykład 5.
$$\mathcal{X} - \text{przeliczalny, lub skończony}, \quad \mathcal{A} = 2^{\mathcal{X}}$$

$$\mu - \text{miara licząca, tzn.:} \qquad \mu(A) = \left\{ \begin{array}{l} \#A \quad \text{jeśli A jest skończony} \\ \infty \quad \text{w p.p.} \end{array} \right.$$
 przestrzeń dyskretna
$$\int_A f(x) \mu(dx) = \sum_{x \in A} f(x)$$

$$\left. \begin{array}{l} (\mathscr{X},\mathcal{A},\mu) \\ (\mathscr{Y},\mathcal{B},\nu) \end{array} \right\}$$
 przestrzeń z miarami σ - skończonymi

$$(\mathscr{X} \times \mathscr{Y}, \mathcal{A} \otimes \mathcal{B}, \mu \otimes \nu)$$

$$A \otimes B = \sigma(\{A \times B; A \in A, B \in B\})$$

$$\mu \otimes \nu(A \times B) = \mu(A) \cdot \nu(B)$$

Umowa 1.

$$\begin{split} f: \mathscr{X} \times \mathscr{Y} &\longrightarrow \mathbb{R} \\ \iint_{\mathscr{X} \times \mathscr{Y}} f(x,y) \mu \otimes \nu(dx,dy) \overset{tw. \ Fubiniego}{=} \int_{\mathscr{Y}} \int_{\mathscr{X}} f(x,y) \mu(dx) \nu(dy) = \int_{\mathscr{Y}} \int_{\mathscr{X}} f(x,y) dx dy \\ (X,Y): \Omega &\longrightarrow \mathscr{X} \times \mathscr{Y} \quad \text{- zmienna losowa, czyli odwzorowanie mierzalne} \\ & \text{względem } \sigma \text{- ciała produktowego} \end{split}$$

Definicja 2.

Rozkład prawdopodobieństwa zmiennej losowej (X,Y) ma gęstość łączną $f=f_{X,Y}$, $\mathscr{X}\times\mathscr{Y}\longrightarrow\mathbb{R}_+$, jeśli:

$$\forall_{C \in \mathcal{A} \otimes \mathcal{B}} \qquad \iint_C f(x, y) \mu(dx) \nu(dy) = \mathbb{P}((X, Y) \in C)$$

Uwaga 1.

Wystarczy jeśli

$$\int_{B} \int_{A} f(x, y) \mu(dx) \nu(dy) = \mathbb{P}(X \in A, Y \in B) \quad \forall_{A \in \mathcal{A}} \quad \forall_{B \in \mathcal{B}}$$

Uwaga 2.

Rozkład brzegowy zmiennej losowej X ma gęstość

$$f_X(x) = \int_Y f(x, y) \nu(dy)$$

$$\mathbb{P}(X \in A) \stackrel{tw. Fubiniego}{=} \int_{A} f_{X}(x)\mu(dx)$$

Uwaga 3.

Jeżeli \mathscr{X} i \mathscr{Y} – dyskretne, to

$$f_X(x) = \mathbb{P}(X = x) = \sum_y f(x, y)$$
$$f(x, y) = \mathbb{P}(X = x, Y = y)$$

Definicja 3.

Załóżmy, że: $(X,Y):\Omega\longrightarrow \mathscr{X}\times \mathscr{Y}$ ma gęstość łączną f. GĘSTOŚĆ WARUNKOWĄ określamy wzorem:

$$f(y|x) = f_{Y|X}(y|x) = \begin{cases} \frac{f(x,y)}{f_X(x)} & \text{jeśli } f_X(x) > 0\\ 0 & \text{w p.p.} \end{cases}$$

Uwaga 4.

Jeżeli \mathscr{X} i \mathscr{Y} dyskretne, to:

$$f(y|x) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x)} = \mathbb{P}(Y = y|X = x)$$

Definicja 4.

Prawdopodobieństwo warunkowe

$$\mathbb{P}(Y \in B|X = x) = \int_{B} f(y|x)\nu(dy) \stackrel{ozn.}{=} p(B, x)$$

- 1. Dla dowolnego x, z wyjątkiem zbioru $N = \{x; f(x) = 0\}$ $p(\cdot, x)$ jest miarą probabilistyczną na $(\mathscr{Y}, \mathcal{B})$ Jeżeli $f_X(x) > 0$, to $\int_{\mathscr{X}} f(y|x)\nu(dy) = 1$
- 2. Dla dowolnego $B \in \mathcal{B}$ $p(\mathcal{B}, \cdot) : (\mathcal{X}, \mathcal{A}) \longrightarrow \mathbb{R}$ – jest mierzalne

Uwaga 5.

Jeżeli $\mathscr X$ jest przestrzenią dyskretną, to:

$$\mathbb{P}(Y \in B|X = x) = \frac{\mathbb{P}(Y \in B, X = x)}{\mathbb{P}(X = x)}$$

Przykład 6.

 U, \check{V} – niezależne o rozkładzie $\mathcal{U}(0,1)$

$$f_{U,V}(u,v) = 1$$
 dla $(u,v) \in [0,1]^2$

Przykład 7.

Niech: $X = \min(U, V)$ i $Y = \max(U, V)$

$$f_{X,Y}(x,y) = f(x,y) = \begin{cases} 2 & 0 \leqslant x \leqslant y \leqslant 1 \\ 0 & \text{w p.p.} \end{cases}$$

$$X,Y \in C \Leftrightarrow (U,V) \in C \quad \text{lub} \quad (U,V) \in C$$

$$f_X(x) = \int_x^1 f(x,y) dy = \int_x^1 2 dy = 2(1-x)$$

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{1-x} & 0 \leqslant x \leqslant y \leqslant 1 \\ 0 & \text{w p.p.} \end{cases}$$

f(y|x) jest gęstością rozkładu $\mathcal{U}(x,1)$

$$\mathbb{P}\left(Y > \frac{9}{10}|X = x\right) = \int_{\frac{9}{10}}^{1} f(y, x) dy = \begin{cases} 1 & \text{dla } x > \frac{9}{10} \\ \frac{1}{10} \cdot \frac{1}{1 - x} & \text{dla } x \geqslant \frac{9}{10} \end{cases}$$

Definicja 5.

Warunkowa wartość oczekiwana

$$\mathbb{E}(Y|X=x) = \int_{\mathscr{Y}} y f(y|x) dy$$

Uwaga 6.

Bardziej ogólnie, jeśli $h: \mathscr{Y} \longrightarrow \mathbb{R}$ lub \mathbb{R}^d

$$\mathbb{E}(h(Y)|X=x) = \int_{\mathcal{Y}} h(y)f(y|x)dy$$

Uwaga 7.

Rozpatrujemy warunkową wartość oczekiwaną jako funkcję x

$$\mathbb{E}(h(Y)|X=x) = r(x)$$
 $r: \mathscr{X} \longrightarrow \mathbb{R}$ lub \mathbb{R}^d

25.10.2006r.

Prawdopodobieństwo warunkowe i warunkowa wartość oczekiwana.

$$X,Y:\Omega\longrightarrow\mathscr{X}\times\mathscr{Y}$$

f(x,y) – gęstość względem $\mu\otimes \nu$, $\left(\ \mu,\nu - \text{albo miary Lebesque albo miary liczące konwencja: } \mu(dx) = dx, \quad \nu(dy) = dy \ \right)$

$$f(y|x) = \frac{f(x,y)}{f_X(x)}$$

$$\mathbb{P}(Y \in B|X = x) \stackrel{df}{=} \int_{B} f(y|x)dy$$

Przykład 8.

 U_1, U_2 – niezależne $\sim \mathcal{U}(0, 1)$ $X = \min(U_1, U_2), \quad Y = \max(U_1, U_2)$

$$f(x,y) = \begin{cases} 2, & 0 \leqslant x \leqslant y \leqslant 1 \\ 0, & \text{w p. p.} \end{cases}$$

Dla ustalonego $x \in (0,1)$

$$f(y|x) = \begin{cases} \frac{1}{1-x}, & y \in (x,1) \\ 0, & \text{w p. p.} \end{cases}$$

Rozkład warunkowy przy danym X=x jest $\mathcal{U}(x,1)$

Wzór na prawdopodobieństwo całkowite

$$\mathbb{P}(Y \in B) = \int_{\mathscr{X}} \mathbb{P}(Y \in B | X = x) f_X(x) dx$$

Dowód.

$$\mathbb{P}(Y \in B) = \int_{B} f_{Y}(y)dy = \int_{B} \int_{\mathcal{X}} f(x,y)dxdy = \int_{B} \int_{\mathcal{X}} f(y|x)f_{X}(x)dxdy$$
$$= \int_{\mathcal{X}} \int_{B} f(y|x)dy f_{X}(x)dx$$

Wzór Bayesa

$$f(x|y) = \frac{f(y|x)f_X(x)}{f_Y(y)}$$

Dowód.

$$f(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Jeżeli μ i ν – miary liczące

$$f(x,y) = \mathbb{P}(X = x, Y = y) , \ f_X(x) = \mathbb{P}(X = x) , \ f(y|x) = \mathbb{P}(Y = y|X = x)$$
$$\mathbb{P}(Y \in B) = \sum_x \mathbb{P}(Y \in B|X = x) \mathbb{P}(X = x)$$

Wzór Bayesa dla miar liczących

$$\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(Y = y | X = x) \mathbb{P}(X = x)}{\mathbb{P}(Y = y)}$$

Definicja 6.

$$\mathbb{E}\left(Y|X=x\right) = \int_{\mathscr{Y}} y f(y|x) dy = r(y) , \qquad r: \mathscr{X} \longrightarrow \mathscr{Y}$$

Wzór na prawdopodobieństwo całkowite

$$\mathbb{E} Y = \int_{\mathscr{X}} \mathbb{E} (Y|X=x) f_X(x) dx$$

Dowód.

$$\mathbb{E} Y = \int_{\mathscr{Y}} y f_Y(y) dy = \int_{\mathscr{Y}} y \int_{\mathscr{X}} f(x, y) dx dy = \int_{\mathscr{Y}} y \int_{\mathscr{X}} f(y|x) f_X(x) dx dy$$

$$= \int_{\mathscr{X}} \int_{\mathscr{Y}} y f(y|x) dy f_X(x) dx$$

$$\mathbb{E} Y = \int_{\mathscr{X}} \mathbb{E} (Y|X = x) f_X(x) dx = \int_{\mathscr{X}} r(x) f_X(x) dx = \mathbb{E} r(X)$$

Definicja 7.

Zmienną losową r(X) oznaczamy $\mathbb{E}(Y|X)$

$$\Omega \xrightarrow{X} \mathscr{X} \xrightarrow{r} \mathscr{Y}$$

$$r(X) = r \circ X$$

$$r(X)(\omega) = r(X(\omega))$$

Wniosek 1 (Wzór na prawdopodobieństwo całkowite).

$$\mathbb{E} Y = \mathbb{E} \mathbb{E} (Y|X)$$

Własności warunkowej wartości oczekiwanej – $\mathbb{E}\left(Y|X\right)$

- 0. $\mathbb{E}(Y|X)$ jest funkcją zmiennej losowej X
- 1. $\mathbb{E}(Y_1 + Y_2|X) = \mathbb{E}(Y_1|X) + \mathbb{E}(Y_2|X)$
- 2. $\mathbb{E}(aY|X) = a\mathbb{E}(Y|X)$
- 3. Jeżeli X i Y są niezależne, to $\mathbb{E}(Y|X) = \mathbb{E}Y$ $f(x,y) = f_X(x)f_Y(y)$ $f(y|x) = f_Y(y)$ $\mathbb{E}(Y|X=x) = \mathbb{E}Y$

4.
$$\mathbb{E}(h(Y)|X=x) = \int_{\mathscr{Y}} h(y)f(y|x)dy$$
, $h: \mathscr{Y} \longrightarrow R$

5.
$$\mathbb{E}(h(Y,X)|X=x) = \int_{\mathscr{Y}} h(y,x) f(y|x) dy$$
, $h: \mathscr{Y} \times \mathscr{X} \longrightarrow \mathbb{R}$

6.
$$\mathbb{E}(h(Y)g(X)|X = x) = g(x)\mathbb{E}(h(Y)|X = x)$$

 $\mathbb{E}(h(Y)g(X)|X) = g(X)\mathbb{E}(h(Y)|X)$

7.
$$\mathbb{E} \mathbb{E} (Y|X) = \mathbb{E} Y$$

Definicja 8.

$$Var(Y|X=x) = \int_{\mathscr{Y}} (y - r(x))^2 f(y|x) dy \stackrel{ozn.}{=} v(x)$$

Definicja 9.

Zmienną losową v(X) ozn. Var(Y|X)

$$Var(Y|X) = \mathbb{E}\left[(Y - \mathbb{E}\left(Y|X\right))^2 | X \right] = \mathbb{E}\left(Y^2 | X \right) - \mathbb{E}\left(Y | X \right)^2$$

Ponieważ:

$$Var(Y|X) = \mathbb{E}\left[(Y - \mathbb{E}(Y|X))^2 | X \right] = \mathbb{E}\left[Y^2 - 2Y \mathbb{E}(Y|X) + \mathbb{E}(Y|X)^2 | X \right]$$
$$= \mathbb{E}(Y^2|X) - 2\mathbb{E}(Y|X)\mathbb{E}(Y|X) + \mathbb{E}(Y|X)^2 = \mathbb{E}(Y^2|X) - \mathbb{E}(Y|X)^2$$

Twierdzenie 1.

$$Var(Y) = \mathbb{E} \ Var(Y|X) + Var\mathbb{E} \ (Y|X)$$

Dowód.
$$Var(Y) = \mathbb{E} v(X) + Var r(X)$$
, $m = \mathbb{E} Y = \mathbb{E} r(X)$

$$Var(Y) = \int_{\mathscr{Y}} (y-m)^2 f_Y(y) dy = \int_{\mathscr{X}} \int_{\mathscr{Y}} (y-m)^2 f(y|x) f_X(x) dy dx$$

$$= \int_{\mathscr{X}} \int_{\mathscr{Y}} (y-r(x)+r(x)-m)^2 f(y|x) dy f_X(x) dx$$

$$= \int_{\mathscr{X}} \underbrace{\int_{\mathscr{Y}} (y-r(x))^2 f(y|x) dy}_{V(x)} f_X(x) dx + \int_{\mathscr{X}} (r(x)-m)^2 \underbrace{\int_{\mathscr{Y}} f(y|x) dy}_{I} f_X(x) dx$$

$$= \int_{\mathscr{X}} v(x) f_X(x) dx + Var r(X) = \mathbb{E} v(X) + Var r(X)$$

$$\int_{X} \int_{\mathscr{Y}} (y - r(x))(r(x) - m)f(y|x)dy f_{X}(x)dx = \int_{\mathscr{X}} (r(x) - m)\underbrace{\int_{\mathscr{Y}} (y - r(x))f(y|x)dy f_{X}(x)dx}_{0}$$

Przykład 9.

$$\begin{split} Var(Y|X=0) &= \frac{2}{9} \qquad Var(Y|X) = \frac{2}{9} \\ Var(Y|X=1) &= \frac{2}{9} \qquad \mathbb{E} \ Var(Y|X) = \frac{2}{9} \\ \mathbb{E} \ (Y|X=0) &= \frac{1}{3} \\ \mathbb{E} \ (Y|X=1) &= \frac{2}{3} \qquad Var\mathbb{E} \ (Y|X) = \frac{1}{4\cdot 9} \end{split}$$

26.10.2006r.

Specyfikacja rozkładu łącznego przez rozkłady warunkowe.

Przykład 10.

N – liczba rozszerzeń. $N\sim Poiss(\lambda)$. Każde roszczenie jest uwzględniane z prawdopodobieństwem p lub odrzucane z prawdopodobieństwem q=1-p, niezależnie dla każdego roszczenia.

K – liczba roszczeń uwzględnionych. $\mathbb{P}(K=k) = "$?"

$$\mathbb{P}(K = k | N = n) = \binom{n}{k} p^k q^{n-k}$$

$$\mathbb{P}(K=k) = \sum_{n=k}^{\infty} \mathbb{P}(K=k|N=n)\mathbb{P}(N=n) = \sum_{n=k}^{\infty} \binom{n}{k} p^k q^{n-k} e^{-\lambda} \frac{\lambda^n}{n!}$$

$$= e^{-\lambda} p^k \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} q^{n-k} \frac{\lambda^n}{n!} = e^{-\lambda} \frac{p^k}{k!} \sum_{n=k}^{\infty} \frac{\lambda^{n-k} \lambda^k}{(n-k)!} q^{n-k}$$

$$\stackrel{i=n-k}{=} e^{-\lambda} \frac{(\lambda p)^k}{k!} \sum_{i=0}^{\infty} \frac{(\lambda q)^i}{i!} = e^{-\lambda} \frac{(\lambda p)^k}{k!} e^{\lambda q} = e^{-\lambda p} \frac{(\lambda p)^k}{k!}, \qquad K \sim Poiss(\lambda p)$$

3. Budowa statystycznych modeli bayesowskich. rozkłady *a priori* i *a posteriori* , warunkowa niezależność, statystyki dostateczne.

Definicja 10.

Załóżmy, że X,Y_1,Y_2 mają łączną gęstość na $\mathscr{X}\times\mathscr{Y}_1\times\mathscr{Y}_2$. Mówimy, że Y_1 i Y_2 są WARUNKOWO NIEZALEŻNE przy danym X jeśli

$$\forall_{x,y_1,y_2}$$
 $f(y_1,y_2|x) = f(y_1|x)f(y_2|x)$ ozn. $Y_1Y_2 \perp \!\!\! \perp X$

Wniosek 2.

Jeśli
$$Y_1Y_2 \perp \!\!\! \perp X$$
, to $f(y_2|x,y_1) = f(y_2|x)$

Dowód.

$$f(y_2|x,y_1) = \frac{f(x,y_1,y_2)}{f(x,y_1)} = \frac{f(y_1,y_2|x)f(x)}{f(y_1|x)f(x)} = \frac{f(y_1|x)f(y_2|x)f(x)}{f(y_1|x)f(x)} = f(y_2|x)$$

Uogólnienie:

$$(Y_1,\ldots,Y_n)\perp\!\!\!\perp X$$

$$f(y_1, \dots, y_n | x) = \prod_{i=1}^n f(y_i | x)$$

I Rzucamy monetę.

II Losujemy kolejno z tej samej, wybranej urny z/z kule Y_1, \ldots, Y_n

Podstawowy model statystyki bayesowskiej.

Y – zmienna losowa interpretowana jako "obserwacja"

Rodzina rozkładów prawdopodobieństwa na przestrzeni \mathscr{Y} o gęstościach $f_{\theta}(y)$ (względem ustalonej miary ν na σ - ciele \mathcal{A})

 θ – parametr rozkładu prawdopodobieństwa, $\theta \in \mathcal{P}$ – przestrzeń parametrów

$$(\mathscr{Y}, \mathcal{A}, \{f_{\theta}\nu : \theta \in \mathcal{P}\})$$
 – przestrzeń statystyczna

gdzie $f_{\theta}\nu$ oznacza miarę probabilistyczną o gęstości f_{θ} względem ν

Jeżeli na zbiorze \mathcal{P} mamy σ - ciało \mathcal{C} i miara probabilistyczna $\pi\mu$ (o gęstości π względem miary μ na \mathcal{P})

 $(\mathscr{Y}, \mathcal{A}, \{f_{\theta}\nu : \theta \in \mathcal{P}\}, \mathcal{C}, \pi\mu) = (\mathscr{Y}, \{f_{\theta} : \theta \in \mathcal{P}\}, \pi)$ – bayesowska przestrzeń statystyczna

Łączny rozkład prawdopodobieństwa na $\mathcal{P} \times \mathcal{Y}$ ma gęstość

$$f(\theta, y) \stackrel{df}{=} \pi(\theta) f_{\theta}(y)$$

Możemy traktować parametr jako zmienną losową Θ o rozkładzie prawdopodobieństwa π Gęstość warunkowa

$$f(y|\theta) = \frac{f(\theta, y)}{\pi(\theta)} = f_{\theta}(y)$$

TERMINOLOGIA

 π – rozkład *a priori*

$$f(y|\theta) = f_{\theta}(y)$$
 – wiarogodność

Rozkład a posteriori

$$\pi_y(\theta) = f(\theta|y) = \frac{f(y|\theta)\pi(\theta)}{f(y)}, \quad \text{gdzie } f(y) = \int_{\mathcal{P}} f(y|\theta)\pi(\theta)d\theta$$

Przykład 11.

 $\mathscr{Y} = \{0, 1, \dots, n\}$ – przestrzeń obserwacji

 $\mathcal{P} = [0, 1]$ – przestrzeń parametrów

Y-liczba sukcesów w schemacie Bernoulliego z prawdopodobieństwem sukcesu θ i liczbą doświadczeń n

$$\mathbb{P}(Y = k|\theta) = \binom{n}{k} \theta^k (1 - \theta)^{n-k} = f(k|\theta)$$

 π – rozkład jednostajny $\mathcal{U}(0,1)$

$$\pi(\theta) \equiv 1$$

$$f(k) = \int_0^1 \binom{n}{k} \theta^k (1 - \theta)^{n-k} d\theta = \binom{n}{k} \int_0^1 \theta^k (1 - \theta)^{n-k} d\theta = \binom{n}{k} \frac{\Gamma(k+1)\Gamma(n-k+1)}{\Gamma(n+2)} = \binom{n}{k} \frac{k!(n-k)!}{(n+1)!}$$

Stąd

$$\pi_k(\theta) = \frac{f(k|\theta)\pi(\theta)}{f(k)} = \frac{\binom{n}{k}\theta^k(1-\theta)^{n-k}}{\binom{n}{k}\frac{k!(n-k)!}{(n+1)!}} = \frac{(n+1)!}{k!(n-k)!}\theta^k(1-\theta)^{n-k}$$
$$= (n+1)\binom{n}{k}\theta^k(1-\theta)^{n-k} = const \cdot \theta^k(1-\theta)^{n-k}$$

Szukamy max gęstości

$$\log \pi_k(\theta) = const + k \log \theta + (n - k) \log(1 - \theta)$$

$$\left(\log \pi_k(\theta)\right)' = k \cdot \frac{1}{\theta} + (n - k) \cdot \frac{1}{1 - \theta} \cdot (-1)$$

$$k \cdot \frac{1}{\theta} + (n - k) \cdot \frac{1}{1 - \theta} \cdot (-1) = 0$$

$$k \cdot \frac{1}{\theta} = (n - k) \cdot \frac{1}{1 - \theta}$$

$$k(1 - \theta) = (n - k)\theta$$

$$(n - k + k)\theta = k$$

$$\theta = \frac{k}{n}$$

Definicja 11.

Mówimy, że $\Theta \sim \mathcal{B}eta(\alpha, \beta)$, jeśli ma gęstość

$$\pi(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} , \qquad \text{dla } 0 < \theta < 1 , \quad \alpha > 0 , \quad \beta > 0$$

$$\mathcal{B}eta(1,1) \sim U(0,1)$$

 $\mathcal{B}eta(2,1) \sim 2\theta$
 $\mathcal{B}eta(1,2) \sim 2(1-\theta)$

02.11.2006r.

Podstawowy model bayesowski.

Przestrzeń
$$\mathcal{P} \times \mathcal{Y}$$
 $\mu \quad \nu$

$$\Theta$$
 Y

$$f(\theta; y) \stackrel{df}{=} \pi(\theta) f(y|\theta)$$

gdzie $\pi(\theta)$ – rozkład *a priori* , (gęstość względem miary μ) $f(y|\theta)$ – wiarogodność, (gęstość względem miary ν)

Zwykle (niekoniecznie) $Y=(Y_1,\ldots,Y_n), \quad Y_1,\ldots,Y_n$ – są warunkowo niezależne przy danym $\Theta=\theta$

$$f(\theta; y_1, \dots, y_n) = \pi(\theta) \prod_i f(y_i | \theta)$$

$$\mathscr{Y} = \mathscr{Y}_1^n$$

Rozkład brzegowy obserwacji

$$f(y) = \int_{\mathcal{P}} f(\theta, y) d\theta$$

$$f(y_1, \dots, y_n) = \int_{\mathcal{P}} f(\theta, y_1, \dots, y_n) d\theta$$

Rozkład a posteriori

$$\pi_y(\theta) = f(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{f(y)} \propto \pi(\theta)f(\theta)$$

Definicja 12.

$$g_1(\theta) \propto g_2(\theta) \quad \Leftrightarrow \quad \exists_{c \neq 0} \quad g_1(\theta) = cg_2(\theta)$$

Czasami
$$\mathscr{Y} = \mathscr{Y}_1^{n+1}, \, \Theta, \, Y_1, \dots, Y_n, \, Y_{n+1}$$

gdzie Θ – nieobserwowana zmienna losowa; ("wymyślona") Y_1,\dots,Y_n – obserwacje

 Y_{n+1} – nieobserwowana zmienna losowa; (nie znamy jej, ale poznamy)

$$f(y) = \int f(y|\theta)\pi(\theta)d\theta$$

$$f(y_2|y_1) = \int f(y_2|\theta, y_1) f(\theta|y_1) d\theta$$

Rozkład predykcyjny

$$f(y_{n+1}|y_1,...,y_n) = \int f(y_{n+1}|y_1,...,y_n,\theta) f(\theta|y_1,...,y_n) d\theta = \int f(y_{n+1}|\theta) \pi_{y_1,...,y_n}(\theta) d\theta$$

Przykład 12.

BERNOULLI/BETA
$$\mathcal{P} = [0,1], \quad \mathscr{Y} = \{0,1\}^{n+1}$$

Schemat Bernoulliego z nieznanym prawdopodobieństwem sukcesu θ $Y_1, \ldots, Y_n, Y_{n+1}$

$$\begin{cases} \mathbb{P}_{\theta}(Y=1) = \theta = \mathbb{P}(Y=1|\theta) = f(1|\theta) \\ \mathbb{P}_{\theta}(Y=0) = 1 - \theta = \mathbb{P}(Y=0|\theta) = f(0|\theta) \end{cases}$$

$$f(y|\theta) = \theta^y (1-\theta)^{1-y}$$

$$f(y_1, \dots, y_n|\theta) = \mathbb{P}_{\theta}(Y_1 = y_1, \dots, Y_n = y_n) = \theta^{\sum y_i} (1-\theta)^{n-\sum y_i} - \text{rozkład Bernoulliego}$$
Rozkład a priori $\Theta \sim \mathcal{B}eta(\alpha, \beta)$

$$\pi(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Rozkład a posteriori

$$\pi_{y_1,\dots,y_n}(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1} \theta^{\sum y_i} (1-\theta)^{n-\sum y_i} = \theta^{\alpha+\sum Y_i-1} (1-\theta)^{\beta+n-\sum y_i-1} \sim \mathcal{B}eta(\alpha+\sum y_i,\beta+n-\sum y_i)$$

$$\mathbb{E}\left(\Theta|y_1,\ldots,y_n\right) = \frac{\alpha + \Sigma y_i}{\alpha + \beta + n} = \frac{\alpha}{\alpha + \beta} \cdot \frac{\alpha + \beta}{\alpha + \beta + n} + \frac{\Sigma y_i}{n} \cdot \frac{n}{\alpha + \beta + n} = (1 - z)\frac{\alpha}{\alpha + \beta} + \overline{y} \cdot z$$

$$\text{gdzie } z = \frac{n}{\alpha + \beta + n}$$

dla $n \to \infty$ $z \to 1$

$$\frac{\alpha}{\alpha + \beta}$$
 – średnia *a priori*

 \overline{y} – średnia z obserwacji

Rozkład brzegowy

$$\begin{split} f(y_1,\ldots,y_n) &= \mathbb{P}(Y_1=y_1,\ldots,Y_n=y_n) = \int_0^1 \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha+\Sigma y_i-1} (1-\theta)^{\beta+n-\Sigma y_i-1} d\theta \\ &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(\alpha+\Sigma y_i)\Gamma(\beta+n-\Sigma y_i)}{\Gamma(\alpha+\beta+n)} = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(\alpha+s)\Gamma(\beta+n-s)}{\Gamma(\alpha+\beta+n)} \\ &= \frac{\alpha(\alpha+1)(\alpha+2)\ldots(\alpha+s-1)\beta(\beta+1)(\beta+2)\ldots(\beta+n-s-1)}{(\alpha+\beta)(\alpha+\beta+1)\ldots(\alpha+\beta+n-1)} \\ &= \frac{-\alpha(-\alpha-1)(-\alpha-2)\ldots(-\alpha-s+1)(-\beta)(-\beta-1)(-\beta-2)\ldots(-\beta-n+s+1)}{(-\alpha-\beta)(-\alpha-\beta-1)\ldots(-\alpha-\beta-n+1)} \\ &= \frac{\binom{-\alpha}{s}\binom{-\beta}{n-s}}{\binom{-\alpha-\beta}{n}} \cdot \frac{s!(n-s)!}{n!} = \frac{\binom{-\alpha}{s}\binom{-\beta}{n-s}}{\binom{-\alpha-\beta}{n}} \cdot \frac{1}{\binom{n}{s}} = \mathbb{P}(Y_1=y_1,\ldots,Y_n=y_n) \end{split}$$

$$\mathbb{P}\Big(\sum Y_i = s\Big) = \frac{\binom{-\alpha}{s}\binom{-\beta}{n-s}}{\binom{-\alpha-\beta}{n}} \end{split}$$

Rozkład predykcyjny

$$f(1|y_1, \dots, y_n) = \mathbb{P}(Y_{n+1} = 1|y_1, \dots, y_n) = \int_0^1 \mathbb{P}(Y_{n+1} = 10|\theta) \pi_{y_1, \dots, y_n}(\theta) d\theta$$
$$= \int_0^1 \theta \pi_{y_1, \dots, y_n}(\theta) d\theta = \mathbb{E}(\Theta|y_1, \dots, y_n) = \frac{\alpha}{\alpha + \beta} (1 - z) + \overline{y} \cdot z$$

Przykład Laplace'a

$$Y_1, \ldots, Y_n, Y_{n+1}$$

$$\mathbb{P}(Y_1 = y_1, \dots, Y_n = y_n | \theta) = \theta^{\sum y_i} (1 - \theta)^{n - \sum y_i}, \quad \text{gdzie} \quad \theta = \frac{k}{m}$$

Rozkład a priori

$$\pi(\frac{k}{m}) = \mathbb{P}(\Theta = \frac{k}{m}) = \frac{1}{m+1}$$

$$z = \frac{n}{n+\alpha+\beta} = \frac{n}{n+2}$$

$$\mathbb{P}(Y_{n+1} = 1 | Y_1 = \dots = Y_n = 1) = \frac{1}{2} \cdot \frac{2}{n+2} + 1 \cdot \frac{n}{n+2} = \frac{n+1}{n+2}$$
 w granicy

09.11.2006r.

Dostateczność.

 \mathcal{Y} – przestrzeń obserwacji

 \mathcal{P} – przestrzeń parametrów

 $\{f_{\theta}\}$ – rodzina rozkładów prawdopodobieństwa na $\mathcal Y$ π – rozkład a priori na $\mathcal P$

$$f_{\theta}(y) = f(y|\theta)$$

$$f(\theta, y) \stackrel{df}{=} f_{\theta}(y)\pi(\theta)$$

Definicja 13.

Statystyka jest to funkcja mierzalna

$$T: \mathscr{Y} \longrightarrow \mathscr{T}$$

Przykład 13.

$$\mathscr{Y} = \mathbb{R}^n$$
, $Y = (Y_1, \dots, Y_n)$

$$\overline{Y} = \frac{1}{n} \sum_{i} Y_{i}$$

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}$$

Definicja 14.

Statystyka T jest dostateczna, jeśli dla każdego θ rozkład warunkowy zmiennej Y przy danym T(Y)=t jest taki sam (nie zależy od θ).

 \mathcal{Y} i \mathcal{T} – przestrzenie dyskretne (założenie upraszczające)

Definicja 15.

T jest dostateczne, jeśli $\mathbb{P}_{\theta}(Y=y|T(Y)=t)$ – nie zależy od θ

Uwaga 8 (DOST).

$$\mathbb{P}_{\theta}(Y = y | T(Y) = t) = 0$$
, jeśli $T(y) \neq t$ rozkład warunkowy jest skupiony na $\{y; T(y) = t\}$

Uwaga 9.

W modelu bayesowskim dostateczność można zapisać

$$\mathbb{P}(Y = y | T(Y) = t, \Theta = \theta) = \mathbb{P}(Y = y | T(Y) = t)$$

Definicja 16 (FAKT). KRYTERIUM FAKTORYZACJI

T jest dostateczna, jeśli

$$f_{\theta}(y) = \mathbb{P}_{\theta}(Y = y) = \mathbb{P}(Y = y | \Theta = \theta)$$

daje się przedstawić jako $h_{\theta}(T(y))g(y)$ (nie zależy od θ)

Definicja 17 (WN).

Warunkowa niezależność

$$\mathbb{P}\big(Y=y,\Theta=\theta|T(Y)=t\big)=\mathbb{P}\big(Y=y|T(Y)=t\big)\mathbb{P}\big(\Theta=\theta|T(Y)=t\big)$$

UMOWA: $T \stackrel{df}{=} T(Y)$

Definicja 18 (BDOST). BAYESOWSKA DOSTATECZNOŚĆ

$$\mathbb{P}(\Theta = \theta | Y = y) = \mathbb{P}(\Theta = \theta | T(Y) = T(y))$$

Twierdzenie 2.

 $DOST \Leftrightarrow FAKT \Leftrightarrow WN \Leftrightarrow BDOST$

Dowód. DOST \Rightarrow FAKT

$$f_{\theta}(y) = \mathbb{P}(Y = y | \Theta = \theta) = \mathbb{P}(Y = y, T = T(y) | \Theta = \theta)$$

$$= \mathbb{P}(Y = y | T = T(y), \Theta = \theta) \mathbb{P}(T = T(y) | \Theta = \theta)$$

$$\stackrel{DOST}{=} \mathbb{P}(Y = y | T = T(y)) \mathbb{P}(T = T(y) | \Theta = \theta)$$

 $FAKT \Rightarrow BDOST$

$$\mathbb{P}(\Theta = \theta | Y = y) = \frac{\mathbb{P}(Y = y | \Theta = \theta) \mathbb{P}(\Theta = \theta)}{\mathbb{P}(Y = y)} = \frac{h_{\theta}(T(y))g(y)\mathbb{P}(\Theta = \theta)}{\mathbb{P}(Y = y)}$$
$$= \frac{h_{\theta}(T(y))g(y)\mathbb{P}(\Theta = \theta)}{\sum_{\theta'} h_{\theta'}(T(y))g(y)\mathbb{P}(\Theta = \theta')} = \mathbb{P}(\Theta = \theta | T = T(y))$$

$$\mathbb{P}(\Theta = \theta | Y = y, T = T(y)) = \mathbb{P}(\Theta = \theta | T = T(y))$$

 $WN \Leftrightarrow DOST \Leftrightarrow BDOST$

Przykład 14.

MODEL BIN/BETA

$$Y_1,\ldots,Y_n$$

$$f(1|\theta) = \mathbb{P}(Y_i = 1|\theta) = \theta$$
, $\mathbb{P}(Y_i = 0|\theta) = 1 - \theta = f(0|\theta)$

 Y_1, \ldots, Y_n – warunkowo niezależne $|\theta|$

$$\pi(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Kryterium faktoryzacji

$$f(y_1,\ldots,y_n|\theta) \stackrel{WN}{=} f(y_1|\theta)\ldots f(y_n|\theta) = \prod_{i=1}^n \left(\theta^{y_i}(1-\theta)^{1-y_i}\right) = \frac{\theta^{\sum y_i}(1-\theta)^{n-\sum y_i}}{1-\theta^{\sum y_i}(1-\theta)^{n-\sum y_i}} \cdot 1$$

$$S(y) = \sum y_i$$
 – jest statystyką dostateczną

Rozkład warunkowy

$$(Y_1,\ldots,Y_n)$$
 przy danym $S(Y_1,\ldots,Y_n)=\sum Y_i=S$

$$\mathbb{P}\left(Y_1 = y_1, \dots, Y_n = y_n | \sum Y_i = s\right) = \begin{cases} 0 & \text{jeśli } \sum y_i \neq s \\ \frac{\mathbb{P}(Y_1 = y_1, \dots, Y_n = y_n)}{\mathbb{P}(S = s)} & \end{cases}$$

$$= \frac{\mathbb{P}(Y_1 = y_1, \dots, Y_n = y_n)}{\mathbb{P}(S = s)} = \frac{\theta^s (1 - \theta)^{n-s}}{\binom{n}{s} \theta^s (1 - \theta)^{n-s}} = \frac{1}{\binom{n}{s}}$$

BDOST

$$\pi_y(\theta) = f(\theta|y_1, \dots, y_n) = \frac{f(y_1, \dots, y_n|\theta)\pi(\theta)}{f(y_1, \dots, y_n)} \propto \theta^{\sum y_i} (1-\theta)^{n-\sum y_i} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

$$f(\theta|y_1,\ldots,y_n) = f(\theta|S=s)$$
 gdzie $s = \sum y_i$

Jeśli $f(y|\theta)$ i $\pi(\theta)$ są gęstościami względem dowolnych miar σ - skończonych, to

FAKT
$$f(y|\theta) = h_{\theta}(T(y))g(y)$$

WN
$$f(y, \theta|t) = f(y|t)f(\theta|t)$$

BDOST
$$f(\theta|y) = f(\theta|t)$$
 gdzie $t = T(y)$

15.11.2006r.

Wykładnicze rodziny rozkładów prawdopodobieństwa.

 \mathscr{X} – przestrzeń obserwacji

X – zmienna losowa (obserwacja) o gęstości $f_{\theta}(x)\,,\quad x\in\mathcal{X}\,,\quad \theta\in\Theta$

Definicja 19.

Rodzina rozkładów prawdopodobieństwa na ${\mathscr X}$ jest rodziną wykładniczą jeśli gęstości są postaci:

(*)
$$f_{\theta}(x) = \exp\left(\sum_{j=1}^{k} T_j(x)g_j(\theta) + g_0(\theta)\right)h(x), \qquad \theta \in \Theta$$

Przykład 15.

Rodzina rozkładów $U(0,\theta)$, $\theta > 0$ nie jest rozkładem, wykładniczym (ponieważ zbiór na którym sie zeruje ta gestość zależy od θ)

$$f_{\theta}(x) = \frac{1}{\theta} \mathbb{1}_{[0,\theta]}(x)$$

Przykład 16.

 $\{Ex(\theta): \theta > 0\}$ jest rodziną wykładniczą, $\mathscr{X} = [0, \infty)$

$$f_{\theta}(x) = \theta e^{-\theta x} = \exp(-\theta x + \log \theta)$$

Przykład 17.

 $\{Poiss(\theta): \theta > 0\}$ jest rodziną wykładniczą, $\mathscr{X} = \{0, 1, 2, \ldots\}$

$$f_{\theta}(x) = e^{-\theta} \frac{\theta^x}{x!} = \exp\left(-\theta + x \log \theta\right) \frac{1}{x!}$$

Przykład 18.

 $\{Gamma(\alpha, \lambda) : \alpha > 0, \lambda > 0\}$ jest rodziną wykładniczą, $\mathscr{X} = [0, \infty), \quad \theta = (\alpha, \lambda)$

$$f_{\alpha,\lambda}(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} = \exp\left(-\lambda x + (\alpha - 1)\log x + \log\frac{\lambda^{\alpha}}{\Gamma(\alpha)}\right)$$

Jeżeli X_1, \ldots, X_n jest próbką (iid) $\sim f_{\theta}$, to

$$f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n f_{\theta}(x_i) = \exp\left\{\sum_{j=1}^k \left(\sum_{i=1}^n T_j(x_i)\right) g_j(\theta) + ng_0(\theta)\right\} \prod_{i=1}^n h(x_i)$$

Z kryterium faktoryzacji wynika, że

$$\left(\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i)\right) - \text{jest } k - \text{wymiarowa statystyką dostateczną}$$
gdzie $n - \text{rozmiar próbki}$
$$k - \text{ilość składników rodziny wykładniczej}$$

Naturalna parametryzacja rodziny wykładniczej

$$f_{\theta}(x) = \exp\left\{\sum_{j=1}^{k} T_j(x)\theta_j + \ell(\theta)\right\} h(x)$$
$$\ell(\theta) = -\log \int_{\mathscr{X}} \exp\left\{\sum_{j=1}^{k} T_j(x)\theta_j\right\} h(x)dx$$

$$\ell(\theta) = \ell(\theta_1, \dots, \theta_k)$$

Stwierdzenie 1.

$$\mathbb{E}_{\theta} T_j(X) = -\frac{\partial \ell(\theta)}{\partial \theta_j}$$

Dowód.

$$0 = \frac{\partial}{\partial \theta_j} \int_{\mathcal{X}} f_{\theta}(x) dx = \int_{\mathcal{X}} \frac{\partial}{\partial \theta_j} f_{\theta}(x) dx = \int_{\mathcal{X}} \left(T_j(x) + \frac{\partial \ell}{\partial \theta_j} \right) \exp\left(\sum_{r=1}^k T_r(x) \theta_r + \ell(\theta) \right) h(x) dx$$
$$= \int_{\mathcal{X}} T_j(x) f_{\theta}(x) dx + \frac{\partial \ell}{\partial \theta_j} \int_{\mathcal{X}} f_{\theta}(x) dx = \mathbb{E}_{\theta} T_j(X) + \frac{\partial \ell}{\partial \theta_j}$$

Przykład 19.

Rozkład dwumianowy, $\mathcal{B}in(p,n)$, $p \in (0,1)$

$$f_p(x) = \binom{n}{x} p^x (1-p)^{n-x} = \exp\left\{x \log p + (n-x)\log(1-p)\right\} \binom{n}{x}$$
$$= \exp\left\{x \log \frac{p}{1-p} + n\log(1-p)\right\} \binom{n}{x}$$

$$\begin{split} \theta &= \log \frac{p}{1-p} \\ \ell(\theta) &= n \log (1-p) = n \log \frac{1}{1+e^{\theta}} \\ \frac{\partial \ell}{\partial \theta} &= -n \cdot \frac{e^{\theta}}{1+e^{\theta}} = -n \cdot p \end{split}$$

Definicja 20.

Dla rodziny wykładniczej postaci (*) rodzina gęstości

$$\pi(\theta) = \pi_{\alpha}(\theta) \propto \exp\left\{\sum_{j=1}^{k} \alpha_{j} g_{j}(\theta) + \alpha_{0} g_{0}(\theta)\right\}$$

nazywa się sprzężoną rodziną rozkładów $a\ priori$, $\ \left(\ \alpha=(\alpha_0,\alpha_1,\ldots,\alpha_k)\ \right)$

Załóżmy, że X_1,\dots,X_n są warunkowo iid (przy danym $\theta)$ o gęstości f_θ

Stwierdzenie 2.

Rozkład *a posteriori* ma postać

$$\pi(\theta|x_1) \propto f_{\theta}(x_1)\pi(\theta) \propto \exp\left\{\sum_{j=1}^k T_j(x)g_j(\theta) + g_0(\theta)\right\} \exp\left\{\sum_{j=1}^k \alpha_j g_j(\theta) + \alpha_0 g_0(\theta)\right\}$$

$$= \exp\left\{\sum_{j=1}^k \left(\alpha_j + T_j(x)\right)g_j(\theta) + (\alpha_0 + 1)g_0(\theta)\right\}$$

$$\pi(\theta|x_1, \dots, x_n) \propto f_{\theta}(x_1, \dots, x_n)\pi(\theta) \propto \exp\left\{\sum_{j=1}^k \left(\alpha_j + \sum_{i=1}^n T_j(x_i)\right)g_j(\theta) + (\alpha_0 + n)g_0(\theta)\right\} = \pi_{\alpha}(\theta)$$
gdzie $\alpha'_1 = \alpha_1 + \sum_{i=1}^n T_1(x_i)$

$$\vdots$$

$$\alpha'_{k} = \alpha_{k} + \sum_{i=1}^{n} T_{k}(x_{i})$$

$$\alpha'_{0} = \alpha_{0} + n$$

Przykład 20.

$$\{Ex(\theta): \theta > 0\}$$

$$f_{\theta}(x) = \theta e^{-\theta x} = \exp\left\{-\theta x + \log \theta\right\}$$
$$f_{\theta}(x_1, \dots, x_n) = \exp\left\{-\theta \sum_{i=1}^n x_i + n \log \theta\right\}$$

sprzężona rodzina rozkładów a priori

$$\pi_{\alpha}(\theta) = \pi_{\alpha_0, \alpha_1}(\theta) \propto \exp\left\{-\theta \alpha_1 + \alpha_0 \log \theta\right\} = \theta^{\alpha_0} \exp\left\{-\alpha_1 \cdot \theta\right\} = \mathcal{G}amma(\alpha_0 + 1, \alpha_1)$$

Rozkład a posteriori $\mathcal{G}amma(\alpha_0 + n + 1, \alpha_1 + \Sigma x_i)$

16.11.2006r.

Typowe modele bayesowskie ze sprzężonymi rodzinami rozkładów.

BIN/BETA

$$X_1, \dots, X_n$$

$$\mathbb{P}(X_i = 1|\theta) = \theta = f(1|\theta) \qquad \theta \in (0, 1)$$

$$\mathbb{P}(X_i = 0|\theta) = 1 - \theta = f(0|\theta)$$

rozkład a priori

$$\pi(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$\mathcal{U}(0,1) = \mathcal{B}eta(1,1)$$

rozkład a posteriori

$$f(\theta|x_1, \dots, x_n) = \frac{f(x_1, \dots, x_n|\theta)\pi(\theta)}{f(x_1, \dots, x_n)} \propto \left(\prod_{i=1}^n f(x_i|\theta)\right)\pi(\theta)$$
$$= \left(\prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}\right)\pi(\theta) = \theta^{\Sigma x_i} (1-\theta)^{n-\Sigma x_i} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
$$= \theta^{\Sigma x_i + \alpha - 1} (1-\theta)^{n-\Sigma x_i + \beta - 1} \sim \mathcal{B}eta(\Sigma x_i + \alpha, n - \Sigma x_i + \beta)$$

2 sukcesy i 3 porażki
$$\Rightarrow$$
 $\begin{cases} \mathcal{B}eta(\alpha+2,3+\beta) \\ \alpha,\beta=1 \end{cases}$ $\mathcal{B}eta(3,4)$

$$\hat{\theta}_B = \mathbb{E}\left(\theta|x_1,\ldots,x_n\right) = \frac{s+\alpha}{n+\alpha+\beta}$$
 – estymator bayesowski parametru θ

$$\widehat{\theta} = \frac{s}{n}$$

$$f_{\theta}(x) = \theta^{x} (1 - \theta)^{1 - x} = \exp\left\{x \log \theta + (1 - x) \log(1 - \theta)\right\} = \exp\left\{x \log \frac{\theta}{1 - \theta} + \log(1 - \theta)\right\}$$
$$\sum x_{i} - \text{statystyka dostateczna}$$

Sprzeżona rodzina rozkładu a priori

$$\pi(\theta) \propto \exp\left\{\alpha_1 \log \frac{\theta}{1-\theta} + \alpha_0 \log(1-\theta)\right\}$$
$$\propto \left(\frac{\theta}{1-\theta}\right)^{\alpha_1} (1-\theta)^{\alpha_0} = \theta^{\alpha_1} (1-\theta)^{\alpha_0-\alpha_1} \sim \mathcal{B}eta(\alpha_1+1,\alpha_0-\alpha_1+1)$$

Poisson/Gamma

$$f(k|\theta) = \mathbb{P}(X=k) = e^{-\theta} \frac{\theta^k}{k!}, \qquad X \sim Poiss(\theta)$$

rozkład *a priori*
$$\pi(\theta) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\lambda \theta} \propto \theta^{\alpha-1} e^{-\lambda \theta} \text{ rozkład } a \text{ posteriori}$$

$$f(\theta|x_1, \dots, x_n) = \frac{f(x_1, \dots, x_n)|\theta)\pi(\theta)}{f(x_1, \dots, x_n)} \propto \left(\prod_{i=1}^n f(x_i|\theta)\right)\pi(\theta)$$
$$= \left(\prod_{i=1}^n \frac{\theta^{x_i}}{x_i!}e^{-\theta}\right)\theta^{\alpha-1}e^{-\lambda\theta} \propto \theta^{\sum x_i}\theta^{\alpha-1}e^{-\lambda\theta}e^{-n\theta} = \theta^{\sum x_i + \alpha - 1}e^{-(\lambda + n)\theta}$$

$$\widehat{\theta}_B = \mathbb{E}\left(\theta|X_1,\ldots,X_n\right) = \frac{s+\alpha}{\lambda+n} \sim \mathcal{G}amma(s+\alpha,\lambda+n), \quad \text{gdzie } s = \Sigma x_i$$

Funkcje straty, estymacja i predykcja bayesowska. 4.

23.11.2006r.

Teoria decyzji statystycznych.

 \mathscr{X} – przestrzeń obserwacji

 \mathcal{P} – przestrzeń parametrów

 $\{\mathbb{P}_{\theta}; \theta \in \Theta\}$ – rodzina rozkładów prawdopodobieństwa na \mathscr{X}

X – obserwacja, $X \sim \mathbb{P}_{\theta}$

 \mathcal{A} – przestrzeń akcji (decyzji), $a \in \mathcal{A}$

Definicja 21.

Reguła Decyzyjna

$$\delta: \mathscr{X} \longrightarrow \mathcal{A}$$

"na podstawie (losowej) obserwacji X podejmujemy akcję (decyzję) $\delta(X)$ "

Definicja 22.

Funkcja strat

$$L: \mathcal{P} \times \mathcal{A} \longrightarrow \mathbb{R}$$
 (\mathbb{R}_+)

 $L(\theta, a)$ – strata jaką ponosi statystyk, jeśli podejmie akcję a, a wartością parametru jest θ

GRA

I gracz – Natura

II gracz – Statystyk

wybiera $\theta \in \Theta$

wybiera $a \in \mathcal{A}$

losujemy $X \sim \mathbb{P}_{\theta}$

 $a = \delta(X)$

1940 Abraham Wald

 \mathbb{P}_{θ} – ma gestość f_{θ}

Definicja 23.

Funkcja ryzyka

$$R(\theta, \delta) = \mathbb{E}_{\theta} L(\theta, \delta(X)) = \int_{\mathscr{X}} L(\theta, \delta(X)) f_{\theta}(x) dx$$

Przykład 21 (estymacja).

 $\mathcal{P} \subseteq \mathbb{R}, \quad \mathcal{A} = \mathbb{R}$

 $L(\theta, a) = (\theta - a)^2$ – kwadratowa funkcja straty

 $R(\theta, \delta) = \mathbb{E}_{\theta}(\theta - \delta(X))^2$ δ – estymator, $\delta(X) \approx \hat{\theta}(X)$

Przykład 22 (estymacja).

 $L(\theta, a) = |\theta - a|$ - blad absolutny

Przykład 23 (estymacja).

$$\mathcal{P} = \mathbb{R}_+ = (0, \infty)$$

$$L(\theta, a) = \frac{|\theta - a|}{\theta}$$

$$L(\theta, a) = \frac{(\theta - a)^2}{\theta^2}$$

Przykład 24 (testowanie hipotez).

 $\mathcal{P} = \{\theta_0, \theta_1\}$

 H_0 – hipoteza zerowa

 H_1 – hipoteza alternatywna

 $\theta = \theta_1$ $X \sim \mathcal{P}_{\theta}$ $\theta = \theta_0$ lub

 $\mathcal{A} = \{a_0, a_1\}$

 a_0 – brak podstaw do odrzucenia H_0

 a_1 – odrzucamy H_0 na rzecz H_1

Rzut kostką

$$\mathscr{X} = \{1, 2, \dots, 6\}$$

$$\mathbb{P}_{\theta_0} \qquad \frac{1}{6} \begin{vmatrix} 2 & 3 & 4 & 5 & 6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{vmatrix}$$

"dobra kostka"

"oszukana kostka"

$$L(\theta_0, a_0) = L(\theta_1, a_1) = 0$$

 $L(\theta_1, a_0) = L(\theta_0, a_1) = 1$

$$\delta(x) = \begin{cases} a_1; & \text{jeśli} \quad x = 6 \\ a_0; & \text{w p.p.} \end{cases}$$

$$\frac{1 \quad 2 \quad 3}{\frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}}$$

$$\underbrace{\begin{array}{c|c|c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \hline a_0 & a_1 & - \text{obszar krytyczny} \end{array}}_{} - \text{obszar krytyczny}$$

$$\begin{split} R(\theta_0,\delta) &= \mathbb{E}_{\,\theta_0} L(\theta_0,\delta(X)) = \mathbb{P}_{\theta_0}(\delta(X) = a_1) = \frac{1}{6} \quad \text{ błąd I - go rodzaju} \\ R(\theta_1,\delta) &= \mathbb{E}_{\,\theta_1} L(\theta_1,\delta(X)) = \mathbb{P}_{\theta_1}(\delta(X) = a_0) = \frac{5}{6} - \frac{1}{100} \quad \text{ błąd II - go rodzaju} \end{split}$$

decyzje statystyka stan natury	a_0	a_1	
$H_0: \theta_0$	O.K.	błąd I - szego rodzaju	
		ozn. α	
$H_1: \theta_1$	błąd II - go rodzaju	O.K.	
	ozn. β		

Zadanie domowe 2.

Znaleźć funkcję ryzyka dla wszystkich reguł decyzyjnych.

Przykład 25.

$$X = (X_1, \dots X_n) \underset{iid}{\sim} \mathcal{N}(\theta, 1)$$

$$L(\theta, a) = (\theta - a)^2$$

$$\overline{X} = \delta_1(X)$$

$$R(\theta, \delta_1) = \mathbb{E}_{\theta}(\theta - \overline{X})^2 = Var_{\theta}(\overline{X}) = \frac{1}{n}$$

Estymator bayesowski dla rozkładu a priori $\theta \sim \mathcal{N}(m, a^2)$

$$\theta_B = zX + (1-z)m$$

$$na^2 \qquad na^2$$

$$\widehat{\theta}_B = z\overline{X} + (1 - z)m$$

$$z = \frac{na^2}{na^2 + \delta^2} = \frac{na^2}{na^2 + 1}$$

$$\sigma^2 = 1$$

$$\delta_3(X) = m$$

$$R(\theta, \delta_3) = \mathbb{E}_{\theta}(\theta - m)^2 = (\theta - m)^2$$

Definicja 24.

Ryzyko bayesowskie (dla rozkładu *a priori* π)

$$\begin{split} r(\delta) &= r(\pi, \delta) = \mathbb{E} \, L(\Theta, \delta(X)) \\ &= \int_{\mathcal{P}} \int_{\mathcal{X}} L(\theta, \delta(x)) f_{\theta}(x) dx \pi(\theta) d\theta = \int_{\mathcal{P}} R(\theta, \delta) \pi(\theta) d\theta = \int_{\mathcal{P}} \mathbb{E} \, \Big(L(\Theta, \delta(X)) |\Theta = \theta \Big) \pi(\theta) d\theta \end{split}$$

$$r(\delta) = \mathbb{E} \mathbb{E} \left(L(\Theta, \delta(X)|X) \right)$$

$$= \int_{\mathscr{X}} \underbrace{\mathbb{E} \left(L(\Theta, \delta(X)|X = x) \right)}_{\text{ryzyko } a \text{ } posteriori} f(x) dx = \int_{\mathscr{X}} \underbrace{\int_{\mathcal{P}} L(\theta, \delta(x)) f(\theta|x) d\theta}_{\text{ryzyko } a \text{ } posteriori} f(x) dx$$

gdzie
$$f(\theta|x) = \frac{f_{\theta}(x)\pi(\theta)}{f(x)}$$

Jak zminimalizować $r(\delta)$?

Dla każdego $x \in \mathcal{X}$ znajdujemy $\delta(x)$ dla którego

$$\int_{\mathcal{P}} L(\theta, a) f(\theta|x) d\theta \longrightarrow \min_{a}$$

Przykład 26.

$$X = (X_1, \dots X_n) \underset{iid}{\sim} \mathcal{N}(\theta, \sigma^2), \qquad \Theta \sim \mathcal{N}(m, a^2)$$

 $L(\theta, a) = (\theta - a)^2$

Rozkład a posteriori

$$\Theta \mid X_1, \dots X_n \sim \mathcal{N}\left(z\overline{X} + (1-z)m, \frac{a^2\sigma^2}{na^2+\sigma^2}\right)$$

Ryzyko a posteriori

$$\mathbb{E}\left[(\Theta-d)^2|X_1,\ldots X_n\right]$$

$$\mathbb{E}(\Theta-d)^2$$
 jest najmniejsze dla $d_*=z\overline{X}+(1-z)m, \quad r_*=\frac{a^2\sigma^2}{na^2+\sigma^2}$

30.11.2006r.

Problemy klasyfikacji/dyskryminacji.

R. Fisher 1930

Obiekt opisany "wektorem cech" $X=(X_1,\ldots,X_d)$ należy do jednej z k klas. Na podstawie obserwacji X mamy zdecydować, do której klasy zaliczyć obiekt.

 $\mathcal{P} = \{1, 2, \dots, k\}$ – identyfikator klasy (przestrzeń parametrów)

 $\mathscr{X} \subseteq \mathbb{R}^d$ – przestrzeń obserwacji

$$\mathcal{A} = \{1, 2, \dots, k\}$$
 lub $\mathcal{A} = \{0, 1, \dots, k\}$ – przestrzeń decyzji, (0 – zawieszenie decyzji)

Rozkłady prawdopodobieństwa wektora X przy danym $\theta \in \mathcal{P}$ są znane.

(gęstość f_{θ}) f_1, \ldots, f_k – gęstości w klasach

 $\pi(\theta) = \pi_{\theta}$ – prawdopodobieństwo *a priori* pojawienia się obiektu z klasy θ $\pi_1 + \ldots + \pi_k = 1$

Funkcja strat $L(\theta, a)$ – macierz $k \times (k+1)$

 $L(\theta, \theta) = 0$

 $L(\theta, a) \geqslant 0$

 $L(\theta,0) \leqslant L(\theta,a)$ dla dowolnego $a \neq \theta$

REGUŁA DECYZYJNA $\delta:\mathscr{X}\longrightarrow\mathcal{A}$

Obszary decyzyjne
$$D_j = \{x \in \mathscr{X}; \delta(x) = j\}$$
 ozn. $\theta = i$ $a = j$

Ryzyko

$$R_{i} = \mathbb{E}\left[L(i, \delta(X))|\theta = i\right] = \int_{\mathcal{X}} L(i, \delta(x))f_{i}(x)dx$$
$$= \sum_{j=0}^{k} \int_{D_{j}} L(i, j)f_{i}(x)dx = \sum_{j=0}^{k} L(i, j)\underbrace{\mathbb{P}(X \in D_{j}|\theta = i)}_{\int_{D_{j}} f_{j}(x)dx}$$

Ryzyko bayesowskie

$$r = \sum_{i=1}^{k} \pi_{i} R_{i} = \mathbb{E} L(\theta, \delta(X)) = \sum_{i=1}^{k} \sum_{j=0}^{k} \pi_{i} L(i, j) \mathbb{P}(X \in D_{j} | \theta = i)$$

$$r = \int_{\mathscr{X}} \mathbb{E} \left[L(\Theta, \delta(X) | X = x) \right] f(x) dx \quad \text{gdzie} \quad f(x) = \sum_{i=1}^{k} \pi_{i} f_{i}(x)$$

$$ryzyko \ a \ posteriori$$

$$r_{x} = \sum_{i=1}^{k} L(i, \delta(x)) \mathbb{P}(\theta = i | X = x) = \sum_{i=1}^{k} L(i, \delta(x)) \pi(i | x) \quad \text{gdzie} \quad \pi(i | x) = \frac{f_{i}(x) \pi_{i}}{f(x)}$$

$$rozkład \ a \ posteriori$$

Reguła bayesowska $\delta(x)$ dla ustalonego $x \delta^*(x) = j^*$, jeśli

$$\sum_{i} L(i, j^{*})\pi(i, x) \leqslant \sum_{i} L(i, j)\pi(i, x) \qquad \forall_{j}$$

$$\updownarrow$$

$$\sum_{i} L(i, j^{*})f_{i}(x)\pi_{i} \leqslant \sum_{i} L(i, j)f_{i}(x)\pi_{i} \qquad \forall_{j}$$

Przykład 27.

$$L(i,j) = \begin{cases} 0 \; ; \quad j=i \\ 1 \; ; \quad j \neq i \end{cases} \qquad \mathcal{A} = \mathcal{P} = \{1,\dots,k\}$$

 $r = \mathbb{P}(\theta \neq \delta(X))$ – prawdopodobieństwo błędnej klasyfikacji

Reguła bayesowska

$$\sum_{i} L(i,j) f_i(x) \pi_i = \sum_{i \neq j} f_i(x) \pi_i = f(x) - f_j(x) \pi_j \longrightarrow \min_{j}$$

$$\delta^*(x)=j^*$$
dla takiego $j^*,$ że
$$f_{j^*}(x)\pi_{j^*}\geqslant f_j(x)\pi_j\quad\forall_j$$

$$\pi(j^*|x)\geqslant\pi(j|x)\quad\forall_j$$

Przykład 28.

$$L(i,j) = \begin{cases} 0 \; ; \quad j=i \\ \lambda \; ; \quad j=0 \text{- zawieszenie decyzji} \\ 1 \; ; \quad j \neq i \quad j \neq 0 \text{- błędna klasyfikacja} \end{cases} \qquad \lambda \in (0,1)$$

$$\sum_{i} L(i,j)\pi(i|x) = \begin{cases} 1 - \pi(j|x) ; & \text{jeśli} \quad j \neq 0 \\ \lambda ; & \text{jeśli} \quad j = 0 \end{cases}$$

Reguła bayesowska

Niech
$$\pi(j^*|x) \geqslant \pi(j,x)$$
 \forall_j

$$\delta^*(x) = \begin{cases} j^* \; ; & \text{jeśli} \quad 1 - \pi(j^*|x) \leqslant \lambda \qquad \pi(j^*) \geqslant 1 - \lambda \\ 0 \; ; & \text{jeśli} \quad 1 - \pi(j^*|x) \geqslant \lambda \qquad \pi(j^*) \leqslant 1 - \lambda \end{cases}$$

Przykład 29.

Dwa rozkłady normalne, d=1

$$f_i(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x - \mu_i)^2\right)$$
 $i = 1, 2$

Funkcja strat

$$a=1$$
 $a=2$ $a=0$

$$\theta = 1 \begin{bmatrix} 0 & L(1,2) & L(1,0) \\ \theta = 2 \begin{bmatrix} L(2,1) & 0 & L(2,0) \end{bmatrix}$$

$$r_x = \sum_i L(i,j)\pi(i|x) = \begin{cases} L(2,1)\pi(2|x) ; & j = 1\\ L(1,2)\pi(1|x) ; & j = 2\\ L(1,0)\pi(1|x) + L(2,0)\pi(2|x) ; & j = 0 \end{cases}$$

 $1 \succ 0$:

$$L(2,1)\pi(2|x) \leqslant L(1,0)\pi(1|x) + L(2,0)$$

$$L(2,1)f_2(x)\pi_2 \leqslant L(1,0)f_1(x)\pi_1 + L(2,0)f_2(x)\pi_2$$

$$L(2,1)\frac{f_2}{f_1}\pi_2 \leqslant L(1,0)\pi_1 + L(2,0)\frac{f_2}{f_1}\pi_2$$

$$\frac{f_2}{f_1}\Big[L(2,1) - L(2,0)\Big]\pi_2 \leqslant L(1,0)\pi_1$$

$$\delta^*(x) = 1$$
 \Leftrightarrow $\frac{f_2(x)}{f_1(x)} \leqslant \frac{\pi_1 L(1,0)}{\pi_2 [L(2,1) - L(2,0)]} = c_1$

$$\delta^*(x) = 2$$
 \Leftrightarrow $\frac{f_2(x)}{f_1(x)} \geqslant \frac{\pi_1 \left[L(1,2) - L(1,0) \right]}{\pi_2 L(2,0)} = c_2$

$$\delta^*(x) = 0$$
 \Leftrightarrow $c_1 \leqslant \frac{f_2(x)}{f_1(x)} \leqslant c_2$

14.12.2006r.

Zmienne losowe w \mathbb{R}^d .

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \in \mathbb{R}^d$$

 $f(x) = f(x_1, \dots, x_d)$ – gęstość rozkładu prawdopodobieństwa

$$X = (X_1, \dots, X_d)^T = \begin{pmatrix} X_1 \\ \vdots \\ X_d \end{pmatrix}$$

$$\mathbb{E} X = (\mathbb{E} X_1, \dots, \mathbb{E} X_d)^T = \mu$$

$$Var X = \left(Cov(X_i, X_j)\right)_{i,j=1}^d = \mathbb{E}\left(X - \mu\right)(X - \mu)^T$$
$$= \left(\mathbb{E}\left(X_i - \mu_i\right)(X_j - \mu_j)\right)_{i,j=1}^d$$

Twierdzenie 3.

 $X \sim f_X$, $h: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ – dyfeomorfizm, $Y \stackrel{df}{=} h(X)$, $Dh^{-1} = \left(\frac{\partial h_i^{-1}(y)}{\partial y_j}\right)$ Wtedy Y ma gęstość f_Y , gdzie

$$f_Y(y) = f_X(h^{-1}(y)) |det Dh^{-1}(y)|$$

5. Wielowymiarowe rozkłady normalne.

$$Z = (Z_1, \dots, Z_d)^T$$
, gdzie $Z_i \underset{iid}{\sim} \mathcal{N}(0, 1)$
 $\mathbb{E} Z = 0$
 $Var Z = I$

$$Z \sim \mathcal{N}(0, I)$$

$$f_Z(z) = \prod_{i=1}^d \left(\frac{1}{\sqrt{2\pi}} \exp\left(\frac{1}{2}z_i^2\right) \right) = (2\pi)^{-\frac{d}{2}} \exp\left(\frac{1}{2}\sum_{i=1}^d z_i^2\right) = (2\pi)^{-\frac{d}{2}} \exp\left(\frac{1}{2}z^Tz\right)$$

$$x = h(z) = Rz$$
 – przekształcenie liniowe, $h: \mathbb{R}^d \longrightarrow \mathbb{R}^d$, $h^{-1}(x) = R^{-1}x$, det $R \neq 0$ nieosobliwe

$$f_X(x) = f_Z(z) \det R^{-1} = (2\pi)^{-\frac{d}{2}} \det R^{-1} \exp\left(-\frac{1}{2}x^T(R^{-1})^T(R^{-1})x\right)$$

Ale

$$Var\,X = \mathbb{E}\,XX^T = \mathbb{E}\,RZZ^TR^T = R(\mathbb{E}\,ZZ^T)R^T = RR^T = \Sigma\,, \qquad \det\Sigma = (\det R)^2$$

Stąd

$$f_X(x) = (2\pi)^{-\frac{d}{2}} (\det \Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x\right)$$

gdzie: $\Sigma = Var X$, $X \sim \mathcal{N}(0, \Sigma)$

$$Y \sim \mathcal{N}(\mu, \Sigma)$$
, $Y = X + \mu$, $X \sim \mathcal{N}(0, \Sigma)$
 $\mathbb{E} Y = \mu$, $Var Y = \Sigma$

$$f_Y(y) = (2\pi)^{-\frac{d}{2}} (\det \Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)\right)$$

Przykład 30.

Dyskryminacja dwóch rozkładów normalnych π_1 , $\pi_2=1-\pi_1$ gdzie π_1 – to prawdopodobieństwo, że obiekt pochodzi z pierwszej klasy

Jeśli
$$i = 1$$
, to $X \sim \mathcal{N}(\mu_1, \Sigma_1)$
 $i = 2$, to $X \sim \mathcal{N}(\mu_2, \Sigma_2)$

Funkcja straty
$$L_{12}$$
, L_{21}
 $L_{11} = L_{22} = 0$

Reguła bayesowska

$$\delta(x) = \begin{cases} 1; & \frac{f_2(x)}{f_1(x)} \leqslant \frac{\pi_1 L_{12}}{\pi_2 L_{21}} & \log \frac{f_2(x)}{f_1(x)} \leqslant \log \frac{\pi_1 L_{12}}{\pi_2 L_{21}} \\ 2; & \frac{f_2(x)}{f_1(x)} > \frac{\pi_1 L_{12}}{\pi_2 L_{21}} & \log \frac{f_2(x)}{f_1(x)} > \log \frac{\pi_1 L_{12}}{\pi_2 L_{21}} \end{cases}$$

$$\frac{f_2(x)}{f_1(x)} = \frac{1}{2} \left(\log \frac{\det \Sigma_1}{\det \Sigma_2} + (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1) - (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2) \right) - \text{funkcja kwadratowa}$$

Obszary decyzyjne

$$D_i = \{x; \ \delta(x) = i\}$$

Przykład 31.

Dwa rozkłady normalne $\mathcal{N}(\mu_1, \Sigma)$, $\mathcal{N}(\mu_2, \Sigma)$ z tą samą macierzą kowariancji.

$$\log \frac{f_2(x)}{f_1(x)} = \frac{1}{2} \Big((x - \mu_1)^T \Sigma^{-1} (x - \mu_1) - (x - \mu_2)^T \Sigma^{-1} (x - \mu_2) \Big)$$

$$\pi_1 = \pi_2$$
, $L_{12} = L_{21}$ (minimalizacja prawdopodobieństwa błędnej klasyfikacji)

$$\Sigma = I$$

$$\delta(x) = \begin{cases} 1; & \left(x - \frac{\mu_1 + \mu_2}{2}\right)^T (\mu_2 - \mu_1) < 0 & \Leftrightarrow & \|x - \mu_1\|^2 < \|x - \mu_2\|^2 \\ 2; & \|x - \mu_1\| > \|x - \mu_2\| \end{cases}$$

Definicja 25.

Odległość Mahalanobisa: $||x-y||_{\Sigma}^2 = (x-y)^T \Sigma^{-1} (x-y)$

$$\delta(x) = \begin{cases} 1; & \|x - \mu_1\|_{\Sigma} < \|x - \mu_2\|_{\Sigma} \\ 2; & \|x - \mu_1\|_{\Sigma} > \|x - \mu_2\|_{\Sigma} \end{cases}$$

Przykład 32.

Dyskryminacja k rozkładów normalnych $\mathcal{N}(\mu_1, \Sigma), \dots, \mathcal{N}(\mu_k, \Sigma)$ ze wspólną macierzą ko-

wariancji
$$L_{i,j} = \begin{cases} 0 ; & i = j \\ 1 ; & i \neq j \end{cases}, \quad \pi_i = \frac{1}{k}$$

$$\delta(x)=i^*$$
, jeśli $f_{i^*}(x)\geqslant f_i(x)$ dla wszystkich i
$$\pi(i|x)=\frac{f_i(x)}{f(x)}$$

$$f(x)=\frac{1}{k}\sum_i f_j(x)$$

$$f_i(x) = (2\pi)^{-\frac{d}{2}} (\det \Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu_i)^T \Sigma^{-1}(x-\mu_i)\right)$$

$$\delta(x) = i^*$$
 jeśli $||x - \mu_{i^*}||_{\Sigma} \leqslant ||x - \mu_{i}||_{\Sigma}$

Definicja 26.

Niech (Y_1,\ldots,Y_d) będzie zmienną losową o wartościach w \mathbb{R}^d taką, że $\sum_{i=1}^d Y_i=1$, zaś (Y_1,\ldots,Y_{d-1}) mają gęstość

$$f_{\alpha_1,\dots,\alpha_d}(y_1,\dots,y_{d-1}) = \frac{\Gamma(\alpha_1+\dots+\alpha_d)}{\Gamma(\alpha_1)\dots\Gamma(\alpha_d)} y_1^{\alpha_1-1}\dots y_{d-1}^{\alpha_{d-1}-1} (1-y_1-\dots-y_{d-1})^{\alpha_d-1}$$

$$\left(\text{dla } 0 \leqslant y_i, \quad \sum_{i=1}^{d-1} y_i \leqslant 1\right)$$

Mówimy, że (Y_1, \ldots, Y_d) ma ROZKŁAD DIRICHLETA $\mathcal{D}(\alpha_1, \ldots, \alpha_d), \quad \alpha_i > 0$

Definicja 27.

 N_1, \ldots, N_d ma rozkład wielomianowy $\mathcal{M}(n, \theta_1, \ldots, \theta_d)$, jeśli

$$\mathbb{P}(N_1 = n_1, \dots, N_d = n_d) = \begin{cases} \frac{n!}{n_1! \dots n_d!} \theta_1^{n_1} \dots \theta_d^{n_d} & \text{jeśli} \quad n_1 + \dots + n_d = n \\ 0 & \text{w p. p.} \end{cases}$$

Uwaga 10.

$$(N_1, N_2) \sim \mathcal{M}(n, \theta_1, \theta_2) \equiv N_1 \sim \mathcal{B}in(n, \theta_1)$$

Uwaga 11.

$$(Y_1, Y_2) \sim \mathcal{D}(\alpha_1, \alpha_2) \equiv Y_1 \sim \mathcal{B}e(\alpha_1, \alpha_2)$$

Stwierdzenie 3.

Jeśli $(N_1, \ldots, N_d) \sim \mathcal{M}(n, \theta_1, \ldots, \theta_d) | \theta_1, \ldots, \theta_d$ warunkowo i $(\theta_1, \ldots, \theta_d)$ ma rozkład *a priori* $\mathcal{D}(\alpha_1, \ldots, \alpha_d)$, to rozkład *a posteriori* jest $\mathcal{D}(\alpha_1 + n_1, \ldots, \alpha_d + n_d)$

Dowód.

$$\pi(\theta|n) = \pi(\theta_1, \dots, \theta_{d-1}|n_1, \dots, n_d) \propto f(n|\theta)\pi(\theta) = f(n_1, \dots, n_d|\theta_1, \dots, \theta_{d-1})\pi(\theta_1, \dots, \theta_{d-1})$$

$$= \theta_1^{n_1} \dots \theta_d^{n_d} \theta_1^{\alpha_1 - 1} \dots \theta_d^{\alpha_d - 1} = \theta_1^{\alpha_1 + n_1 - 1} \dots \theta_d^{\alpha_d + n_d - 1}, \quad \text{gdzie} \quad \theta_d = (1 - \theta_1 - \dots - \theta_{d-1})$$

Estymatory bayesowskie parametrów $\theta_1, \ldots, \theta_d$

$$\mathbb{E}\left(\theta_{i}\right) = \frac{\alpha_{i}}{\alpha_{1} + \ldots + \alpha_{d}} - a \ priori$$

$$\mathbb{E}(\theta_i|n_1,\ldots,n_d) = \frac{\alpha_i + n_i}{\alpha_1 + n_1 + \ldots + \alpha_d + n_d} - a \text{ posteriori}$$
(\alpha_i - pseudo-zliczenia)

NORMALNY/NORMALNY

$$X_1, \dots, X_n | \theta \underset{iid}{\sim} \mathcal{N}(\theta, \sigma^2) \qquad \theta \sim \mathcal{N}(m, a^2)$$

$$\sigma^2$$
 – znane

NORMALNY/IG

$$X_1, \dots, X_n | \nu \underset{iid}{\sim} \mathcal{N}(\mu, \frac{1}{\nu}) \qquad \nu \sim \mathcal{G}amma(\alpha, \lambda)$$

 $\mu - \text{znane} \qquad \sigma^2 \sim \mathcal{IG}(\alpha, \lambda)$

$$\nu = \frac{1}{\sigma^2}$$
 – "precyzja"

a posteriori : $\sigma^2 \sim \mathcal{IG}(\frac{n}{2} + \alpha, \lambda + \frac{1}{2}\sum (x_i - \mu)^2)$

$$f(x_1, \dots, x_n | \nu) = \left(\frac{\nu^{\frac{1}{2}}}{\sqrt{2\pi}}\right)^n \exp\left\{-\frac{\nu}{2} \sum_{i=1}^n (x_i - \mu)^2\right\} \propto \nu^{\frac{n}{2}} \exp\left\{-\frac{\nu}{2} \sum_{i=1}^n (x_i - \mu)^2\right\}$$

gęstość a priori

$$\pi(\nu) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \nu^{\alpha - 1} e^{-\lambda \nu} \propto \nu^{\alpha - 1} e^{-\lambda \nu}$$

gęstość a posteriori

$$\pi(\nu|x_1,...,x_n) \propto \nu^{\frac{n}{2}+\alpha-1} \exp\left\{-\nu\left[\lambda + \frac{1}{2}\sum_{i=1}^n(x_i-\mu)^2\right]\right\}$$

Definicja 28.

$$Y \sim \mathcal{IG}(\alpha, \lambda) \equiv \frac{1}{V} \sim \mathcal{G}amma(\alpha, \lambda)$$

Różne funkcje straty w zadaniach estymacji.

 $\theta \in \mathcal{P} \subseteq \mathbb{R}$

Reguła decyzyjna $\delta: \mathscr{X} \longrightarrow \mathbb{R}$, $\delta(x)$ – estymator θ

1. Funkcja kwadratowa $L(\theta, a) = (\theta - a)^2$ $\min_a \mathbb{E} (\theta - a)^2, \qquad a_* = \mathbb{E} \theta, \qquad \mathbb{E} (\theta - a_*)^2 = Var(\theta)$

Estymator bayesowski

$$\min_{\delta} \mathbb{E}\left[(\theta - \delta(X))^2 | X \right], \qquad \delta^*(X) = \mathbb{E}\left(\theta | X \right)$$

$$\mathbb{E}\left[(\theta - \delta^*(X))^2 | X \right] = Var(\theta | X) - \text{ryzyko } a \text{ posteriori}$$

Ryzyko bayesowskie $\mathbb{E} Var(\theta|X)$

2. Wartość bezwzględna błędu $L(\theta, a) = |\theta - a|$ $\min_{a} \mathbb{E} |\theta - a|$, $a_* = med(\theta)$ f(a) = |a|, f'(a) = sign(a) $\frac{\partial}{\partial a} \mathbb{E} |\theta - a| = \mathbb{E} \frac{\partial}{\partial a} |\theta - a| = \mathbb{E} \frac{\partial}{\partial a} |a - \theta| = \mathbb{E} sign(a - \theta) = -\mathbb{P}(\theta > a) + \mathbb{P}(\theta < a) = 0$ $\mathbb{P}(\theta > a) = \mathbb{P}(\theta < a)$

Lemat 1.

$$\mathbb{E}(\theta - a)_{+} = \int_{a}^{\infty} \mathbb{P}(\theta > x) dx$$

Lemat 2.

$$\mathbb{E} |\theta - a| = \mathbb{E} (\theta - a)_{+} + \mathbb{E} (a - \theta)_{+} = \int_{a}^{\infty} \mathbb{P}(\theta > x) dx + \int_{-\infty}^{a} \mathbb{P}(\theta - x) dx$$
$$Q(a) = \int_{a}^{\infty} [1 - F(x)] dx + \int_{-\infty}^{a} F(x) dx$$

Jeżeli F jest ciągła w a, to

$$\frac{\partial}{\partial a}Q(a) = F(a) - [1 - F(a)] = 2F(a) - 1$$

Jeżeli F(a-) < F(a), to

$$\frac{\partial}{\partial a-}Q(a) = 2F(a-) - 1$$
$$\frac{\partial}{\partial a+}Q(a) = 2F(a) - 1$$

$$\frac{\partial}{\partial a-}Q(a)\leqslant 0\leqslant \frac{\partial}{\partial a}Q(a)$$

04.01.2007r.

Testowanie hipotez statystycznych.

Przypadek dwóch hipotez prostych.

 \mathscr{X} – przestrzeń obserwacji

 $\mathcal{P} = \{0,1\}$ – przestrzeń parametrów

$$H_0: \quad \theta = 0 \qquad f(x|0) = f_0(x) \qquad X \sim f_0$$

 $H_1: \quad \theta = 1 \qquad f(x|1) = f_1(x) \qquad X \sim f_1$

$$\delta$$
 – regula decyzyjna (test), $\delta: \mathscr{X} \longrightarrow \mathcal{A} = \{0, 1\}$

0 – nie mamy podstaw do odrzucenia H_0 1 – odrzucamy H_0 na rzecz H_1

Funkcja straty
$$L(0,1) = L(1,0) = 1$$

 $L(0,0) = L(1,1) = 0$

Rozkład a priori π_0, π_1 $\pi_0 + \pi_1 = 1, \quad \pi_i = \mathbb{P}(\Theta = i)$ dla i = 1, 2

BŁĄD I rodzaju
$$\mathbb{P}(\delta(X) = 1 | \Theta = 0) = \mathbb{P}_0(\delta(X) = 1) = \alpha(\delta) = \mathbb{E}\left(L(0, \delta(X)) | \Theta = 0\right)$$
 II rodzaju $\mathbb{P}(\delta(X) = 0 | \Theta = 1) = \mathbb{P}_1(\delta(X) = 0) = \beta(\delta) = \mathbb{E}\left(L(1, \delta(X)) | \Theta = 1\right)$

ZBIÓR RYZYKA

$$\mathcal{R} = \left\{ \left(\alpha(\delta), \beta(\delta) \right) : \delta \text{ jest testem} \right\}$$

Przykład 33.

$$\mathcal{X} = \{1, 2, 3\}$$

x	1	2	3	
f_1	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	
f_0	$\frac{3}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	_
$\frac{f_1}{f_0}$	$\frac{1}{3}$	1	3	- -

Reguły bayesowskie przy wszystkich możliwych rozkładach a priori

$$\delta(x) = \begin{cases} 1 \text{ , } & \text{jeśli} \quad \frac{f_1(x)}{f_0(x)} > \frac{\pi_0}{\pi_1} = c \\ 1 \text{ lub } 0 & \text{jeśli} \quad \frac{f_1(x)}{f_0(x)} = \frac{\pi_0}{\pi_1} \\ 0 \text{ , } & \text{jeśli} \quad \frac{f_1(x)}{f_0(x)} < \frac{\pi_0}{\pi_1} = c \end{cases}$$
test ilorazu wiarogodności

$$\delta' = 1 - \delta$$

$$\alpha(\delta') = 1 - \alpha(\delta)$$

$$\beta(\delta') = 1 - \beta(\delta)$$

Definicja 29.

 δ^* jest najmocniejszym testem na poziomie istotności α^* , jeśli

1.
$$\alpha(\delta^*) \leq \alpha^*$$

2. Jeśli
$$\alpha(\delta^*) \leqslant \alpha^*$$
, to $\beta(\delta^*) \leqslant \beta(\delta)$

Lemat 3 (Neymana – Pearsona). Jeżeli δ^* jest najmocniejszym testem na poziomie istotności $\alpha^* \in (0,1)$ i $\alpha(\delta^*) = \alpha^*$, to istnieje $c \in [0,\infty)$ takie, że

$$\delta^*(x) = \begin{cases} 1 , & \text{jeśli} & \frac{f_1(x)}{f_0(x)} > c \\ 0 , & \text{jeśli} & \frac{f_1(x)}{f_0(x)} < c \end{cases}$$
 (*)

Jeżeli δ^* spełnia (*) i $\alpha(\delta^*)=\alpha^*$, to δ^* jest najmocniejszy na poziomie istotności α^* .

Przykład 34.

$$\mathcal{X} = [0, 1] \qquad f_0(x) = 1 \qquad f_1(x) = 2x \frac{f_1(x)}{f_0(x)} = 2x$$
$$\alpha(\delta) = \mathbb{P}_0(2X > c) = \mathbb{P}_0(X > \frac{c}{a}) = 1 - \frac{c}{2}$$
$$\beta(\delta) = \mathbb{P}_1(2X \leqslant c) = \mathbb{P}_1(X \leqslant \frac{c}{2}) = \left(\frac{c}{2}\right)^2$$

$$\beta(\alpha) = (1 - \alpha)^2$$

Najmocniejszy test na poziomie istotności $\alpha^* = 0.005$

$$\alpha = 0.005$$

$$\beta = (1 - \alpha)^2 = (0.95)^2$$

Test zrandomizowany $\delta: \mathscr{X} \longrightarrow [0,1]$

 $\delta(x)$ – prawdopodobieństwo podjęcia decyzji 1, (odrzucenie hipotezy $H_0)$

Zbiór ryzyka dla reguł zrandomizowanych jest wypukły.

$$\delta_1 \qquad \left(\alpha(\delta_1), \beta(\delta_1)\right)$$

$$\delta_2 \qquad \left(\alpha(\delta_2), \beta(\delta_2)\right)$$

$$\delta = \lambda \delta_1 + (1 - \lambda)\delta_2$$

$$\alpha(\delta) = \int_{\mathscr{X}} \delta(x) f_0(x) dx$$

$$\beta(\delta) = \int_{\mathscr{X}} \left(1 - \delta(x)\right) f_1(x) dx$$

Przykład (33 c. d.). Najmocniejszy test niezrandomizowany na poziomie istotności $\alpha^* = 0.05$ jest $\delta(x) \equiv 0$ (nigdy nie odrzucamy).

Najmocniejszy test zrandomizowany na poziomie istotności $\alpha^* = 0.05$ jest $\delta(x) \equiv 0$.

$$\delta(x) = \begin{cases} 0, & \text{jeśli } x = 1 \text{ lub } x = 2\\ \frac{\frac{1}{20}}{\frac{1}{6}} = \frac{6}{20} = \frac{3}{10}, & \text{jeśli } x = 3 \end{cases}$$

11.01.2007r.

Krzywa $(\alpha - \beta)$ Neymana – Pearsona.

$$H_0: \quad \theta = 0 \qquad f_0$$

$$h = \frac{f_1}{f_0}$$
 $H_1: \quad \theta = 1 \qquad f_1$

Testy ilorazu wiarogodności:

$$\delta(x) = \begin{cases} 1; & \text{jeśli} \quad h(x) > c \\ \varrho; & \text{jeśli} \quad h(x) = c \\ 0; & \text{jeśli} \quad h(x) < c \end{cases}$$

dokładniej, jeśli h(x) = c, to bierzemy

$$\delta(x) = \begin{cases} 1; & \text{z prawdopodobieństwem } \varrho \\ 0; & \text{z prawdopodobieństwem } 1 - \varrho \end{cases}$$

$$\alpha(c, \varrho) = \int_{\{h > c\}} f_0 + \varrho \int_{\{h = c\}} f_0$$
$$\beta(c, \varrho) = \int_{\{h < c\}} f_1 + (1 - \varrho) \int_{\{h = c\}} f_1$$

$$F_0(c) = \mathbb{P}_0(h \le c) = \int_{\{h \le c\}} f_0$$
$$F_1(c) = \mathbb{P}_1(h \le c) = \int_{\{h \le c\}} f_1$$

$$\alpha(c, \varrho) = 1 - F_0(c) + \varrho[F_0(c) - F_0(c-)] = \mathbb{E}_0 \frac{f_1}{f_0} \mathbb{1}(h \leqslant c)$$
$$\beta(c, \varrho) = F_1(c-) + (1 - \varrho)[F_1(c) - F_1(c-)] = \mathbb{E}_0 h \mathbb{1}(h \leqslant c)$$

Testowanie hipotez złożonych w ujęciu bayesowskim.

 \mathcal{P} – przestrzeń parametrów

 \mathscr{X} – przestrzeń obserwacji

 $f(x|\theta)$ – wiarogodność

 $\pi(\theta)$ – a priori

 $\pi(\theta|x)$ – a posteriori

 $H_0: \quad \theta \in \mathcal{P}_0 \subset \mathcal{P} \qquad \quad \mathcal{P}_0 \cap \mathcal{P}_1 = \varnothing$ $H_1: \quad \theta \in \mathcal{P}_1 \subset \mathcal{P} \qquad \quad \mathcal{P}_1 = \mathcal{P} \setminus \mathcal{P}_0$

$$\mathbb{P}(H_0|X=x) = \mathbb{P}(\theta \in \mathcal{P}_0|X=x) = \int_{\mathcal{P}_0} \pi(\theta|x) d\theta$$
$$\mathbb{P}(H_1|X=x) = \mathbb{P}(\theta \in \mathcal{P}_1|X=x) = \int_{\mathcal{P}_1} \pi(\theta|x) d\theta$$

Przykład 35.

$$X_1, \dots, X_n \overset{\sim}{iid} \mathcal{N}(\theta, \sigma^2)$$
 $H_0: \quad \theta \leqslant \theta_0$ $H_1: \quad \theta > \theta_0$

a priori
$$\theta \sim \mathcal{N}(m, a^2)$$

a posteriori
$$\theta \sim \mathcal{N}\left(z\overline{x} + (1-z)m, \frac{a^2\sigma^2}{na^2+\sigma^2}\right)$$
 $z = \frac{na^2}{na^2+\sigma^2}$

$$\mathbb{P}(H_0|x_1,\dots,x_n) = \int_{-\infty}^{\theta_0} \pi(\theta|x_1,\dots,x_n) d\theta = \mathbb{P}(\theta \leqslant \theta_0|x_1,\dots,x_n)
= \mathbb{P}\left(\frac{\theta - 2\overline{x} - (1-z)m}{a\sigma} \sqrt{na^2 + \sigma^2} \leqslant \frac{\theta_0 - 2\overline{x} - (1-z)m}{a\sigma} \sqrt{na^2 + \sigma^2}\right)
= \Phi\left(\frac{\theta_0 - 2\overline{x} - (1-z)m}{a\sigma} \sqrt{na^2 + \sigma^2}\right)$$

 $H_0: \quad \theta = \theta_0$

 $H_1: \quad \theta \neq \theta_0$

Rozkład a priori

$$\mathbb{P}(\theta = \theta_0) = c, \qquad c \in (0, 1)$$

$$c = \frac{1-c}{\theta - \theta_0}$$

$$\theta = \theta_0 \qquad \theta \sim \mathcal{N}(m, a^2)$$

Zbiory (przedziały ufności) w ujęciu bayesowskim.

$$\mathcal{P}$$
 \mathscr{X}

 π f

Definicja 30.

Przyporządkowanie $x \longmapsto C(x) \subset \mathcal{P}$

$$\mathbb{P}(\theta \in C(x)|X) = 1 - \alpha$$

nazywamy PRZEDZIAŁEM UFNOŚCI na poziomie $1-\alpha$

Uwaga 12.

W statystyce klasycznej

$$\mathbb{P}(\theta \in C(x)|\theta) = 1 - \alpha$$

Stwierdzenie 4.

Załóżmy, że π jest gęstością względem miary Lebesque'a. $\pi(\cdot|x)$ też jest gęstością względem miary Lebesque'a.

Jeżeli istnieje takie $c \in (0, \infty)$, że

$$\mathbb{P}(\pi(\theta|x) > c|x) = \int_{\{\theta; \, \pi(\theta|x) > c\}} \pi(\theta|x) d\theta = 1 - \alpha$$

to $C^*(x)=\{\theta;\ \pi(\theta|x)>c\}$ jest najmniejszym w sensie miary Lebesgue'a przedziałem ufności na poziomie $1-\alpha$

Dowód. $x \in \mathcal{X}$ – ustalone

Jeżeli
$$\int_{C(x)} \pi(x|\theta) d\theta = 1 - \alpha$$
, to $|C(x)| \ge |C^*(x)|$

$$C(x) = C$$

$$C^*(x) = C^*$$

$$\pi(\theta|x) = \pi(\theta)$$

$$\int_{C} \pi = 1 - \alpha = \int_{C}^{*} \pi$$

na C^* mamy $\pi > c$ poza C^* mamy $\pi \leqslant c$

Predykcja liniowa i liniowe modele bayesowskie.

 θ – jednowymiarowa zmienna losowa, X

Znaleźć funkcję $\delta: \mathscr{X} \longrightarrow \mathbb{R}$ taką, żeby $\mathbb{E}\left(\delta(X) - \theta\right)^2$ była minimalna $\delta^*(X) = \mathbb{E}\left(\theta|X\right) \quad - \quad \text{rozwiązanie}$

Twierdzenie 4.

Jeżeli θ, X_1, \dots, X_n są zmiennymi losowymi $X = (X_1, \dots, X_n)^T$, to funkcja liniowa

$$\delta(x) = \delta(X_1, \dots, X_n) = c_0 + \sum_{i=1}^n c_i X_i = c_0 + c^T X$$

minimalizująca $\mathbb{E}\left(\theta - \delta(X)\right)^2$ jest dana wzorami

$$c_* = Var(X)^{-1} Cov(X, \theta)$$
$$c_0 = \mathbb{E} \ \theta - c_*^T \mathbb{E} X$$

gdzie

$$Var(X) = \left(Cov(X_i, X_j); i, j = 1, \dots, n\right)$$
$$Cov(X, \theta) = \left(Cov(X_i, \theta); i = 1, \dots, n\right)$$

18.01.2007r.

Empiryczne metody bayesowskie i hierarchiczne modele bayesowskie.

Przykład 36 (NORMALNY/NORMALNY). $X_1, \ldots, X_n \underset{iid}{\sim} \mathcal{N}(\theta, s^2), \qquad \theta \sim \mathcal{N}(m, a^2)$ a posteriori $\qquad \theta \sim \mathcal{N}\left(z\overline{X} + (1-z)m, \frac{a^2s^2}{na^2+s^2}\right), \qquad \text{gdzie:} \qquad z = \frac{na^2}{na^2+s^2}$ $\widehat{\theta}_B = z\overline{X} + (1-z)m$

Interpretacja ubezpieczeniowa.

 $\theta; X_1, \dots, X_n$ – sumaryczne szkody zgłoszone przez <u>klienta</u> w poszczególnych latach $1, 2, \dots, n$

 $\theta = \mathbb{E}\left(X_i | \theta\right)$ – średnia wartość szkód dla naszego klienta

 $s^2 = Var(X_i|\theta)$ – zmienność pomiędzy latami

m – średnia szkoda w całej populacji klientów

 a^2 – zmienność w populacji klientów

Model uwzględniający próbkę z populacji klientów

$$X_{ji}$$
 – szkody j-tego klienta w i-tym roku, $j=1,\ldots,p$ $i=1,\ldots,n$ $X_{ji}\sim\mathcal{N}(\theta_j,s^2),$ $\theta_1,\ldots,\theta_p \underset{iid}{\sim} \mathcal{N}(m,a^2)$

Łączny rozkład prawdopodobieństwa

$$f((\theta_j), (x_{ji})) = \prod_{j=1}^p \pi(\theta_j) \prod_{i=1}^n f(x_{ji}|\theta_j)$$

Empiryczne podejście bayesowskie

Estymujemy rozkład a priori parametru θ na podstawie próbek odpowiadających różnym "realizacjom" zmiennej losowej θ .

- 1. Na podstawie całej tablicy estymujemy <u>parametry rozkładu a priori</u> m, a^2 (i parametr s^2).
- 2. W rozwiązaniach bayesowskich wstawiamy wyestymowany rozkład a priori .

Ad. 1.

$$\widehat{m} = \overline{X} = \frac{1}{np} \sum_{j=1}^{p} \sum_{i=1}^{n} X_{ji} = \frac{1}{p} \sum_{j=1}^{p} \overline{X}_{j}; \quad \text{gdzie} \quad \overline{X}_{j} = \frac{1}{n} \sum X_{ji}$$

$$\widehat{s}^{2} = \frac{1}{p} \sum_{j=1}^{p} \frac{1}{n-1} \sum_{i=1}^{n} (X_{ji} - \overline{X}_{j})^{2}; \quad \text{gdzie} \quad \overline{X}_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{ji}$$

$$\widehat{a}^{2} = \frac{1}{p-1} \sum_{j=1}^{p} (\overline{X}_{j} - \overline{X})^{2} - \frac{1}{n} \widehat{s}^{2}$$
estymatory nieobciążone

Ad. 2. Estymator bayesowski parametru θ_i

$$\widehat{\theta}_j^B = z \overline{X}_j + (1 - z)m$$

Estymator empiryczny bayesowski

$$\hat{\theta}_j^{EB} = \hat{z}\overline{X}_j + (1-\hat{z})\widehat{m}$$
 gdzie $\hat{z} = \frac{n\hat{a}^2}{n\hat{a}^2 + \hat{s}^2}$

HIERARCHICZNY MODEL BAYESOWSKI.

$$X_{ji} \underset{iid}{\sim} \mathcal{N}(\theta_j, s^2)$$
 $\theta_j \underset{iid}{\sim} \mathcal{N}(m, a^2)$
 $s^2 \sim \mathcal{IG}(p, c)$ $m \sim \mathcal{N}(\nu, b^2)$
 $a^2 \sim \mathcal{IG}(q, d)$

$$\tau = \frac{1}{s^2} \sim \mathcal{G}amma(p, c)$$
$$\zeta = \frac{1}{s^2} \sim \mathcal{G}amma(q, d)$$

Znane: ν, b^2, p, c, q, d

Parametry losowe: $s^2, a^2, m, \theta_1, \dots, \theta_q$

Łączny rozkład

$$f((x_{ji}), (\theta_j), m, \tau, \zeta) = h(\zeta)g(\tau)\varphi(m)\prod_j \pi(\theta_j|m, \zeta)\prod_i f(x_{ji}|\theta_j, \tau)$$

Cel: estymacja bayesowska θ_i

Próbnik Gibsa.

Rozważmy zmienną losową $\theta=(\theta_1,\ldots,\theta_k)$ o wartoś
iach w przestrzeni \mathscr{X}^k i gęstości $\pi(\theta_1,\ldots,\theta_k)$

Umiemy losować zmienne losowe jednowymiarowe z gęstości warunkowych

$$\pi(\theta_i|\theta_1,\ldots,\theta_{i-1},\theta_{i+1},\ldots,\theta_k)$$

Generujemy ciąg wektorów losowych $\theta(0), \theta(1), \dots, \theta(n), \dots$

Jeżeli $\theta(n)=(\theta_1,\ldots,\theta_k)\stackrel{ozn}{=}\theta$, to $\theta(n+1)=(\theta_1',\ldots,\theta_k')=\theta'$ losujemy w k krokach

1.
$$\theta_1' \sim \pi(\cdot|\theta_2,\ldots,\theta_k)$$

2.
$$\theta_2' \sim \pi(\cdot | \theta_1', \theta_3, \dots, \theta_k)$$

:

k-1.
$$\theta'_{k-1} \sim \pi(\cdot|\theta'_1,\ldots,\theta'_{k-2},\theta_k)$$

$$k. \quad \theta'_k \sim \pi(\cdot | \theta'_1, \dots, \theta'_{k-1})$$

Przy pewnych założeniach na rozkład π

$$\frac{\theta(n) \xrightarrow{n \to \infty} \pi}{n \to \infty}$$

$$\frac{1}{n} \sum_{t=1}^{n} h(\theta(t)) \xrightarrow{n \to \infty} \int_{\mathcal{X}^n} h(\theta) \pi(\theta) d\theta = \mathbb{E}_{\pi} h(\theta)$$