- 17. Considere \mathbb{R}^2 , si $Q \in \mathbb{R}^{2 \times 2}$ tal que $Q = Q^T$. Ecuentre condiciones sobre los elementos de Q para que $\langle \mathbf{x}, \mathbf{y} \rangle_* = \mathbf{x}^T Q$ y sea un producto interno en \mathbb{R}^2 .
- 18. En \mathbb{R}^2 sea $(\mathbf{x}, \mathbf{y}) = x_1 y_1 x_2 y_2$. ¿Es éste un producto interno? Si no lo es ¿por qué?
- 19. Sea V un espacio con producto interno. Demuestre que $|\langle \mathbf{u}, \mathbf{v} \rangle| = ||\mathbf{u}|| \, ||\mathbf{v}||$. Esto se denomina desigualdad de Cauchy-Schwarz. [Sugerencia: Vea el teorema 6.1.9 de la sección 6.1.]
- 20. Utilizando el resultado del problema 19, demuestre que $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$. Ésta se denomina desigualdad del triángulo.
- **21.** En $\mathbb{P}_3[0, 1]$ sea H el subespacio generado por $\{1, x^2\}$. Encuentre H^{\perp} .
- 22. En C[-1, 1] sea H el subespacio generado por las funciones pares. Demuestre que H^{\perp} consiste en las funciones impares. [Sugerencia: f es impar si f(-x) = -f(x) y es par si f(-x) = f(x).]
- **23.** $H = \mathbb{P}_2[0, 1]$ es un subespacio de $\mathbb{P}_3[0, 1]$. Escriba el polinomio $1 + 2x + 3x^2 x^3$ como h(x) + p(x), donde $h(x) \in H$ y $p(x) \in H^{\perp}$.
- *24. Encuentre un polinomio de segundo grado que mejor se aproxime a sen $\frac{\pi}{2}x$ en el intervalo [0, 1] en el sentido del error cuadrático medio.
- **25.** Resuelva el problema 24 para la función $\cos\left(\frac{\pi}{2}x\right)$.
- **26.** Sea A una matriz de $m \times n$ con elementos complejos. Entonces la **transpuesta conjugada** de A, denotada por A^* , está definida por $(A^*)_{ij} = \overline{a}_{ij}$. Calcule A^* si

$$A = \begin{pmatrix} 3+i & 2-8i \\ 3 & -8i \end{pmatrix}$$

27. Sea A una matriz invertible de $n \times n$ con elementos complejos. A se denomina unitaria si $A^{-1} = A^*$. Demuestre que la siguiente matriz es unitaria:

28. Se dice que una función f es de valor complejo sobre el intervalo (real) [a, b] si f(x) se puede expresar como

$$f(x) = f_1(x) + if_2(x), x \in [a, b]$$

donde f_1 y f_2 son funciones de valores reales. La **función de valor complejo** f es continua si f_1 y f_2 son **continuas**. Sea CV[a, b] el conjunto de funciones de valores complejos que son continuas en [a, b]. Para f y g en CV[a, b], defina

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx$$
 (6.3.15)

Demuestre que (6.3.15) define un producto interno en CV[a, b].

29. Demuestre que $f(x) = \operatorname{sen} x + i \cos x$ y $g(x) = \operatorname{sen} x - i \cos x$ son **ortogonales** en $CV[0, \pi]$.

Cálculo

Desigualdad de

Cauchy-Schwarz

Desigualdad del triángulo

> Matriz transpuesta conjugada

Matriz unitaria

Valor complejo

Función de valor complejo continua

