

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(An Autonomous Institute affiliated to University of Mumbai)
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400 058, India
E mail: principal@spit.ac.in Website: www.spit.ac.in

End Semester Examination

November 2019

Max. Marks: 60 Class: B.E.

Course Code: IT71

Name of the Course: Digital Image Processing

Duration: 3Hrs SEMESTER: 7

Branch: IT

Instructions: (1) Draw neat diagrams wherever necessary (2) Assume suitable data if necessary

Question No.		Marks	СО	BL
1. a	What do you understand by dynamic range?	3	CO 1	2
1. b	We can not differentiate the change in intensity when the intensity is too high or too low. Justify.	3	CO 1	2
1. c	Define gradient filter. Write its equation.	3	CO 1	2
1. d	If all the pixels of an image are shffled, will there be any change in histogram? Justify your answer.	3	CO 1	4
2. a	Explain with diagram fundamental steps in image processing.	6	CO 1	2
2. a	OR Explain briefly neighbours, paths and connectivity with example.	6	CO 1	2
2. b	Explain various image enhancement techniques in spatial domain.	6	CO 1	2
3. a	Find 2D DFT of given image using DIF FFT algorithm. $f(x,y) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 0 & 1 & 0 \end{bmatrix}$	6	CO 2	3

3. b	Compute the Hadamard transform of the given image. Also generate and compute Walsh transform.	6	CO 2	3
	$f(x,y) = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & 3 & 2 \\ 2 & 3 & 4 & 3 \\ 1 & 2 & 3 & 2 \end{bmatrix}$			
	f(x,y)=			
	1 2 3 2			
		2	CO 3	3
4. a	Compute the entropy of the image $f(m,n) =$	3	003	3
	0 1 2 3			
	0 1 2 3			
	The sixon data of grey level and count in an image,			2
4. b	determine the efficiency if the image is coded using huffman	3	CO 3	3
	coding. Grey Level count		and the same	
	128 1750			
	64 1500			
	32 1000	398		
	8 250			
4. c	Compare DPCM-based image compression technique against the transform based image compression technique.	3	CO3	4
•		3	CO 3	2
4. d	What is fundamental principle of fractal image compression	3	003	
	OR			
4. d	What are different types of redundancies exploited in image	3	CO 3	2
	compression.		60.4	10
5. a	Compare the characteristics of first and second order derivative	3	CO 4	2
	filters.	3	CO 4	2
5. b	Explain morphological image processing.			
5. c	Write short note of Digital Waternarking.	6	CO 4	2
	OR			
	Write short note Content Based Image Retrieval.	6	CO 4	4 2
5. c	Write Short note Content Basta Many			