Data Flow Analysis

Why:

- Provide information about a program manipulates its data.
- Study function's behavior.
- To help build control flow information.
- Program understanding (a function sorts an array!).
- Generating a model of the original program and verify the model.
- Program validation.
- ...

Reaching Definitions

A particular definition of a variable is said to reach a given point if

- there is an execution path from the defintion to that point
- the variable might may have the value assigned by the definition.

In general undecidable.

Different types of analysis

- Intra procedural analysis.
- Whole program (inter-procedural) analysis.
- Generate intra procedural analysis and extend it to whole program.

Iterative Dataflow Analysis

- Build a collection of data flow equations.
- Solve it iteratively.
- Start from an conservative set of initial values.

Example program

```
int f(int n){
           int i, j;
1.
           i=0;
2.
           n=2;
3.
           if (n == 1)
4.
                   i = 2;
5.
           while (n > 0){
6.
                    j = n+1;
7.
                    n = g(n,i);
8
         return j;
```

Definitions

- **GEN**: GEN(b) returns the set of definitions generated in the basic block b; assigned values in the block and not subsequently killed in it.
- **KILL**: KILL(b) returns the set of definitions killed in the basic block b.
- IN : IN(b) returns the set of definitions reaching the basic block b.
- **OUT**: OUT(b) returns the set of definitions going out of basic block b.
- **PRSV**: Negation of KILL

Representation and Initialization

- Set representation. e.g. GEN(B4) = {5,6}
- Bit Vector representation. GEN (B4) = <0,0,0,0,1,1>

Initialization

- GEN, KILL and OUT are created in each basic block. But IN needs to be initialized to something safe.
- IN(entry) = {}

Reaching definitions

Computing Reaching Definitions

```
 \begin{array}{lll} \mathsf{OUT}(\mathsf{b}) &=& \mathsf{GEN}(\mathsf{b}) \cup (\mathsf{IN}(\mathsf{b}) - \mathsf{KILL}(\mathsf{b})) \\ \mathsf{IN}(\mathsf{b}) &=& \cup_{p \in pred(b)} \mathsf{OUT}(\mathsf{p}) \\ \end{array}
```

Lattice

What: Lattice is an algebraic structure.

Why: To represent *abstract properties* of variables, expressions, functions, etc etc.

- Values,
- Attributes,

Why "abstract"? Exact interpretation (execution) gives exact values, abstract interpretation gives abstract values.

Lattice contd.

A lattice *L* consists of a set of *elements* and two n'ary operations.

meet(□**)** : Greatest lower bound.

join(□): Lowest upper bound.

Each lattice has two special elements:

Bottm (\perp)

Top (\top)

Lattice contd.

Properties of meet and join:

Closure: For all $x, y \in L$, \exists unique z and $w \in L$ such that $x \sqcap y = z$ and $x \sqcup y = w$.

Commutative: For all $x, y \in L \ x \sqcup y = y \sqcup x$ and $x \sqcap y = y \sqcap x$.

Associative : For all $x,y,z \in L \ x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z$ and $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$.

For all $x \in L$, $x \sqcap \bot = \bot$ and $x \sqcup \top = \top$.

Distributive: (Only some lattices are.) For all $x, y, z \in L$ $x \sqcup (y \sqcap z) = (x \sqcup y) \sqcap (x \sqcup z)$ and $x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z)$.

Examples of Lattices.

Lattice properties contd..

Meet and join induce a partial order (\sqsubseteq):

 $x \sqsubseteq y$ if and only if $x \sqcap y = x$

Transitivity: For all, x, y, z if $x \sqsubseteq y$ and $y \sqsubseteq z$ then $x \sqsubseteq z$.

Antisymmetry: For all, x, y if $x \subseteq y$ and $y \subseteq x$ then x = y.

Reflexivity: For all, x if $x \sqsubseteq x$.

Constant Propagation.

Goal: Discover values that are constants on *all possible executions* of a program and to propagate these constant values as far *forward* through the program as possible **Conservative** Can discover only a subset of all the possible constants.

Constant Propagation Lattice.

Constant Propagation Lattice Meet rules.

 \perp = Constant value cannot be guarranteed.

 \top = May be a constant, but not yet determined.

$$x \sqcap \top = x$$

$$x \sqcap \bot = \bot$$

$$c_1 \sqcap c_1 = c_1$$

$$c_1 \sqcap c_2 = \bot$$

Simple Constant Propagation.

Gary A. Kildall: A Unified Approach to Global Program Optimization - POPL 1973.

Reif, Lewis: Symbolic evaluation and the global value graph - POPL 1977.

Simple constant Constants that can be proved to be constant provided: No information is assumed about which direction branches will take. Only one value of each variable is maintainedalong each path in the program.

Kildall's algorithm

- Start with an entry node in the program graph.
- Process the entry node, and produce the constant propagation information. Send it to all the immediate successors of the entry node.

- At a merge point, get an intersection of the information.
- If at any successor node, if for any variable the value is "reduced", the process the successor, similar to the processing done for entry node.