Physics Beyond - Motion

Nathan Morris April 3, 2020

Contents

1	Procedure	2
2	Definition:	3
3	Modelling Mathematically: 3.1 Q: What is the <u>convenient</u> mathematical model?	3 3 4
4	Q: How to model this mathematically	4
5	The theory of infinitesimals	4
6	Q: How can we define instantaneous velocity?	5
7	Q: Can infinitesimals solve the <u>tangent problem?</u>	7
8	Rules for Calculating Derivatives: 8.1 Linearity	10 10 10 10
9	The journey so far:	12
10	Application: Derivatives of curves	13
11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 15 15 15 16 17
12	Physics of Motion	17

1 Procedure

- 1. Define your problem
- 2. Model your problem mathematically. If the problem is about understanding the physics of something then:
 - Model the description of that something (e.g. model what motion is)
 - Or investigate / find the underlying cause of that something (e.g. what causes motion)
- 3. Solve the maths
- 4. Interpret the results
- 5. (If needed) revise your model

2 Definition:

Definition - change in position (space) over time (time).

- 1. Put the physics of space time aside
- 2. Simple models based on direct experience
 - Space: Euclidean geometry
 - \bullet Time: Real numbers $\mathbb R$

3 Modelling Mathematically:

3.1 Q: What is the <u>convenient</u> mathematical model?

Function Time
$$\rightarrow$$
 space $x: \mathbb{R} \rightarrow$ space $t \mapsto position x(t)$

3.2 How to model space conveniently?

 \rightsquigarrow need a reference frame.

$$\vec{x}: \mathbb{R} \to \text{Euclidean vector-space (after introducing 0)}$$

$$\vec{x}: \mathbb{R} \to \mathbb{R}^3$$

$$\mathbf{t} \mapsto \vec{x}(\mathbf{t}) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

(after introducing $[\vec{e_1}, \vec{e_2}, \vec{e_3}]$

Each $x_i: \mathbb{R} \to \mathbb{R}$ is ordinary an ordinary function we are familiar with

$$\overrightarrow{e_2} \xrightarrow{R} \overrightarrow{R} \rightarrow \overrightarrow{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} RCos\varphi(t) \\ RSin\varphi(t) \end{bmatrix}$$

Observation: interactions change motion. (This is how we detect interactions after all)

3.3 Q: How to model changes in motion?

<u>Problem:</u> I need to find the velocity at one <u>instant in time</u>.

4 Q: How to model this mathematically

5 The theory of infinitesimals

<u>Problem:</u> Define rates of change at <u>one instant</u> in time. The problem is that \vec{v} is the average velocity in the time interval $[t_0, t_0 + \Delta t]$

Q: How can we define instantaneous velocity? 6

- 1. The idea of a limit:
 - make Δt smaller and smaller
 - study $\frac{\Delta \vec{x}}{\Delta t}$ changes when Δt approaches 0

 \rightarrow it becomes a tangent to the curve at $\vec{x}(t_0)$ we write:

$$\vec{v} = \frac{d\vec{x}}{dt} = \dot{\vec{x}} = \lim_{\Delta t \to 0} \frac{\vec{x}(t_0 + \Delta t) - \vec{x}(t_0)}{\Delta t}$$

Q: How is $\lim_{\Delta t \to 0}$ defined mathematically? \to it is technical and complicated

2. Idea of infinitesimals:

Intuition: If I zoom in onto a curve infinitely close, it becomes a straight line.

Q: How to define <u>infinitesimals</u>?

- \rightarrow Use idea of a tangent touching a curve at a point.
- \rightarrow We interpret "touching" to mean that the curve and the tangent line <u>intersect</u> in an infinitesimal piece of a curve.

infinitesimal piece of intersection: where the curve <u>agrees</u> with the line

 $\underline{\text{Problem}}\textsc{:}$ In general we cannot define what a tangent is except for a circle.

when a line intersects a circle at exactly <u>one</u> point, then it's a tangent to the circle \rightsquigarrow calculate the intersection of the circle, C, and a line, L. \rightarrow we use a coordinate system $C: x^2 + (y-1)^2 - 1 = 0$ L: y = 0

$$(nL = \{(x,0)|x^2 = 0\})$$

 \rightarrow to have more than the point (0,0), we do not allow to conclude $x^2 = 0 \rightarrow x = 0!$

<u>Definition</u>: (First-order) infinitesimals are $d \leftarrow R$ such that $d^2 = 0$ $D := \{ \text{do} R | d^2 = 0 \}$

- Q: What is R?
 - \rightarrow It is <u>not</u> \mathbb{R} (the real numbers) because $x^2 = 0 \rightarrow x = 0$ for $x \leftarrow \mathbb{R}$
 - \rightarrow We want R to have the properties similar to \mathbb{R} :
 - (a) I have addition and subtraction
 - (b) I have multiplication
 - (c) $\mathbb{Q}cR$ (in fact $\mathbb{R}cR$) \to rational numbers: numbers that can be written as fractions.

6

<u>Intuition:</u> R is an extension of the reals by adding <u>all</u> the missing infinitesimals.

<u>Caution</u> you cannot divide freely by numbers in R

Suppose $d \leftarrow D$ has an inverse, d^{-1}

$$d^-1d = 1$$
 but $d^-1\underbrace{d.d}_{\substack{d^2=0 \ d = 0}} = d$

7 Q: Can infinitesimals solve the tangent problem?

Definition (tangent← due to Leibniz) - a tangent is a line that intersects a curve in two infinitesimally close points.

Using definition of Leibniz, we are looking at the secant line through $(x_0, f(x_0)), (x_0 + d, f(x_0 + d))$

1.

$$f(x_0 + d) = (x_0 + d)^2$$

$$= X_0^2 + 2x_0 d + d^2$$

$$= X_0^2 + 2x_0 d$$

$$= f(x_0) + 2x_0 d$$

$$f(x_0 + d) - f(x_0) = 2x_0 d$$

$$f(x_0 + d) - f(x_0) = 2x_0 \cdot ((x_0 + d) - x_0)$$

$$(y_1 - y_0) = m(x_1 - x_0)$$

 $\rightarrow y = f(x_0) + 2x_0 d$ is the infinitesimal piece of the tangent at $(x_0, f(x_0))$

 \rightsquigarrow for any $h \leftarrow R$ we get the equation $y = f(x_0) + 2x_0h$

 $2. \ f: R \mapsto R \ x \mapsto x^3$

$$f(x_0 + d) = (x_0 + d)^3 = (x_0 + d)^2 (x_0 + d)$$

$$= (x_0^2 + 2x_0 d)(x_0 + d) = x_0^3 + 2x_0^2 d + x_0^2 d + \underbrace{2x_0 d^2}_{0}$$

$$= x_0^3 + 3x_0^2 d$$

$$= f(x_0) + \underbrace{3x_0^2}_{f(x_0)} d$$

3.

$$s(t) = ut + \frac{1}{2}gt^2$$

$$s(t+dt) = u(t+dt) + \frac{1}{2}g(t+dt)^2$$

$$= ut + udt + \frac{1}{2}g(t^22tdt)$$

$$= \underbrace{ut + \frac{1}{2}gt^2}_{s(t)} + (u+gt)dt$$

$$v(t) = \dot{s(t)} = u + gt$$

$$v(t + dt) = u + g(t + dt) = \underbrace{u + gt}_{v(t)} + gdt$$

$$a(t) = \dot{v(t)} = \ddot{s(t)} = g$$

<u>Axiom:</u> (Kock-Lawvere) For each $f:D\mapsto R$ there are <u>unique</u> $a,b\leftarrow R$ such that $f(d)=a+b.d\ Vd\leftarrow D$

(This means we model the assumption made that every curve is made of infinitesimal line segments at each point).

$$f(0) = a + b.0 = a$$

 \rightsquigarrow b is the gradient of the line and hence <u>the</u> gradient of f at 0. (Because it is simply determined by f).

Consequence:

Consider $f: R \to R$ at $x_0 \leftarrow R$

Define $f_{x_0}: D \to R \ d \mapsto f(x_0+d)$

By K-L we have unique $a_{x_0}, b_{x_0} \leftarrow R$ such that

$$f_{x_0}(d) = a_{x_0} + b_{x_0}.d = f_{x_0}(0) + b_{x_0}.d$$

i.e.

$$f(x_0 + d) = f(x_0) + b_{x_0}.d$$

8 Rules for Calculating Derivatives:

8.1 Linearity

$$f, g: R \to R, \ \lambda \leftarrow R$$

$$f + \lambda: R \to R, \ x \mapsto f(x) + \lambda g(x)$$

$$(f + \lambda)' = f' + \lambda(g')$$

Example:

$$f(x) = x^{2}, g(x) = x^{3}, \lambda = 5$$

$$(f + \lambda g)(x) = x^{2} + 5x^{3}$$

$$f'(x) = 2x, g'(x) = 3x^{2}$$

$$(f + \lambda g)'(x) = 2x + 15x^{2}$$

8.2 Product Rule

$$f.g: R \to R, x \mapsto f(x).g(x)$$
$$(f.g)' = f'.g + f.g'$$

Example:

$$f(x) = x, g(x) = x^{2}$$

$$(f.g)(x) = x^{3}$$

$$f'(x) = 1, g'(x) = 2x$$

$$(f.g)'(x) = 1.x^{2} + x.2x = 3x^{2}$$

8.3 Chain Rule

$$f,g:R\to R$$

$$f\circ g:R\to R\ x\mapsto f(g(x))\ (\text{composition})$$

$$(f\circ g)'=(f'\circ g).g'$$

Examples:

1)
$$f(x) = x^2, g(x) = x^3, f'(x) = 2x, g'(x) = 3x^2$$

 $(f \circ g)(x) = f(g(x)) = f(x^3) = (x^3)^2 = x^6$
 $(f \circ g)'(x) = f'(g(x)).g'(x) = 2x(x^3).3x^2 = 2x^3.3x^2 = 6x^5$
2) $f(x) = x^2, g(x) = 3x^5 + 2x^2 + 5$
 $(f \circ g)(x) = f(g(x)) = (3x^5 + 2x^2 + 5)^2$
 $f'(x) = 2x, g'(x) = 3.5x^4 + 2.2x + 0 = 15x^4 + 4x$
 $(f \circ g)'(x) = 2(3x^5 + 2x^2 + 5).(15x^4 + 4x)$

Applications:

1)
$$f(x) = x, g(x) = \frac{\frac{1}{x}}{\text{take the multiplicative inverse}}$$
 $g: R^x \longrightarrow R$
the set of all $x \leftarrow R$ that are invertible $(y \leftarrow R, xy = 1)$

we want to know g'(x)!

$$(f.g)(x) = 1 = x.\frac{1}{x} = 1$$

 $(f.g)'(x) = 0$
but
 $(f.g)'(x) = f'(x).g(x) + g'(x).f(x)$
 $f'(x) = 1$

we find:

$$0 = 1.g(x) + g'(x).x$$
$$= \frac{1}{x} + g'(x).x$$
$$\leadsto g'(x) = -\frac{1}{x^2}$$

2)
$$f: R^x \to R^x, g: R^x \to R^x, x \mapsto \frac{1}{x}$$

 $\frac{1}{f} = g \circ f$
 $(\frac{1}{f})' = (g \circ f)' \leadsto (\frac{1}{f})'(x) = (g \circ f)'(x) = g'(f(x)).f'(x) = -\frac{1}{(f(x))^2}.f'(x)$

 x_0

given a function $f: R \to R$ such that f is one to one and onto then it has an inverse(for composition).

$$f^{-1}: f^{-1} \circ f = R_{id} \text{ (identity }$$

 $\max) f^{-1}(f(x)) = x$
 $f \circ f^{-1} = R_{id} f(f^{-1}(y)) = y$

Apply chain rule to

$$f^{-1}: f^{-1} \circ f = R_{id}$$

 $(f^{-1})'(f(x)).f'(x) = 1$
 $(f^{-1})'f(x) = \frac{1}{f'(x)}(\frac{1}{m} = perpendicular)$

or rewritten

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

 $y = f(x)$
 $x = f^{-1}(f(x))$
 $= f^{-1}(y)$

9 The journey so far:

2. Modelling motion \rightarrow Frame of reference: Origin,axes,units

3. Changes of motion to be able to study interactions

1.Motion \rightarrow space time \rightsquigarrow hold

4. Theory of infinitesimals

Start:nothing

10 Application: Derivatives of curves

$$dt \leftarrow D$$

intuition says:

- $\Delta \vec{\gamma}$ agrees with the curve γ .
- a line through $\vec{\gamma}(t)$ in the direction $\vec{\gamma}$ is a tangent at the curve γ .

Theory:
$$y: R \to R^2$$
, $t \mapsto \begin{bmatrix} \gamma_1(t) \\ \gamma_2(t) \end{bmatrix}$, $\gamma_j: R \to R$, $j = 1, 2$, $\dot{\vec{\gamma}} = \begin{bmatrix} \dot{\gamma_1}(t) \\ \dot{\gamma_2}(t) \end{bmatrix}$

$$\vec{\gamma}(t+dt) = \begin{bmatrix} \gamma_1(t+dt) \\ \gamma_2(t+dt) \end{bmatrix}$$

$$\stackrel{K=L}{=} \begin{bmatrix} \gamma_1(t) + \dot{\gamma_1}(t)dt \\ \gamma_2(t) + \dot{\gamma_2}(t)dt \end{bmatrix}$$

$$= \begin{bmatrix} \gamma_1(t) \\ \gamma_2(t) \end{bmatrix} + \begin{bmatrix} \dot{\gamma_1}(t) \\ \dot{\gamma_2}(t) \end{bmatrix} dt$$

$$= \vec{\gamma}(t) + \dot{\vec{\gamma}}(t)dt$$

$$\Delta \vec{\gamma} = \vec{\gamma}(t+dt) - \vec{\gamma}(t) = \dot{\vec{\gamma}}(t).dt \leftarrow \underline{\text{Velocity}}$$

$$\tau: h \mapsto \gamma(t) + \dot{\gamma}(t)h$$

From side:

From top: looks like circular motion

$$\vec{x}(t) = \begin{bmatrix} R\cos\varphi(t) \\ R\sin\varphi(t) \end{bmatrix}$$

$$\vec{x}(t) = \begin{bmatrix} R\cos\varphi(t) \\ R\sin\varphi(t) \\ vt \end{bmatrix}$$

$$\dot{\vec{x}}(t) = \begin{bmatrix} vt \\ -R\sin\varphi(t).\dot{\varphi}(t) \\ R\cos\varphi(t).\dot{\varphi}(t) \\ v \end{bmatrix}$$

$$\ddot{\vec{x}}(t) = \begin{bmatrix} \dot{u}(t).\dot{\varphi}(t) + \dot{u}t.\ddot{\varphi}(t) \\ v \end{bmatrix}$$

$$= \begin{bmatrix} -R\cos\varphi(t).(\dot{\varphi}(t))^2 - R\sin\varphi(t).\ddot{\varphi}(t) \\ -R\sin\varphi(t).(\dot{\varphi}(t))^2 + R\cos\varphi(t).\ddot{\varphi}(t) \\ 0 \end{bmatrix}$$

11 Physics of Motion

11.1 Q:What changes motion?

 \rightarrow Physical interactions.

11.2 Q: Why so general?

- → any form of physical interaction lead to a changes in motion.
- \rightarrow we use changes of motion to study interactions.

Introduce force as a measure of the interaction on one object. (Reminder:

- interaction needs at least two objects
- but we need to relate it to the change of motion of one object.)

11.3 Q: How to model force mathematically?

First observation:

- 1. Has magnitude (measure of the strength of the interaction)
- 2. Has a direction

 \rightsquigarrow model force with a vector.

But! (problems)

- \rightarrow It matters where the force acts on an object. 3 effects of forces:
 - 1. linear motion
 - 2. rotation
 - 3. deformation
- \rightarrow This is <u>not</u> captured by a vector.

$$\leadsto \vec{a}(\vec{F}) = ?$$

Simplest relationship:

$$\vec{a} \propto \vec{F} \checkmark \text{ (Experiment)}$$

<u>Define</u> Inertial mass of an object as the constant of proportionality.

- Inertia measures how much an object resists motion

- Mass > 0

$$\vec{F} = \widehat{M} \vec{a}$$
?

Or more simply

$$\begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} M_1 a_1 \\ M_2 a_2 \\ M_3 a_3 \end{bmatrix}$$
 so $M = \begin{bmatrix} M_1 & 0 & 0 \\ 0 & M_2 & 0 \\ 0 & 0 & M_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$

WE DO NOT OBSERVE THIS

Back to the interaction:

11.4 $\underline{\mathbf{Q}}$: What is the force acting on the other object

We postulate $\vec{F} = -\vec{G}$

- \rightarrow simplest assumption consistent with observation that the same objects move symmetrically after an interaction when subjected to the same initial conditions.
- \rightarrow Experiment:

 \leadsto it does not move $\leadsto \vec{F_1} = -\vec{F_2}$

11.5 Q: What is the natural state of motion?

 \rightsquigarrow to be compatible with

$$\vec{F} = M\vec{a}$$

We need a natural state if and only if no interaction, if and only if $\vec{F} = 0$

$$\Rightarrow \vec{a} = 0 \ \vec{v} = \text{constant}$$

a natural state has to be uniform motion with constant velocity. Problems:

- 1. Velocity is <u>relative</u>(<u>dependent</u> on frame of reference) but now acceleration is <u>absolute</u>(<u>independent</u>(not true for <u>all</u> reference frames)of frame of reference).
- 2. I observe objects being naturally at rest! so $\vec{v} = 0$!

Galileo's objection to 2:

- \rightarrow Ship argument: you cannot <u>tell</u> (with physical experiment) whether you are at rest or moving with a constant velocity. (Galileo relativity of velocity). Consequence:
- \rightarrow We have to explain why things are at rest despite force acting \rightsquigarrow (balanced forces).
- \rightarrow this makes our explanations more complicated.

But: can explain celestial and terrestrial motion in one theory.

12 Physics of Motion

- 1. Interaction \rightsquigarrow changes of motion(state:velocity,change:acceleration) \rightsquigarrow acceleration.
- 2. Interaction

$$\overbrace{\operatorname{Object} 1}^{\overrightarrow{F_{21}}} \underbrace{\operatorname{Object} \overrightarrow{F_{12}}}_{2}$$

break down interaction into 2 parts, individual to each object.

3. Mathematical model of force? Observe:

- magnitude(strength of interaction)
- directions

First guess - vector model \leadsto needs more justification! Experiments with springs to test vector character \checkmark

- 4. Guess physical laws of forces
 - Newton's 3rd law: $\vec{F_{12}} = -\vec{F_{21}}$ Experiment: Magnet on a boat \checkmark .
 - Link force and acceleration:

$$\begin{array}{c} \rightarrow \vec{F} \parallel \vec{a} \\ \rightarrow |\vec{F}| \uparrow \Rightarrow |\vec{a}| \uparrow \\ \text{(constraints from observations)} \end{array}$$

• Simplest link:

$$\vec{a} = k\vec{F} \ k > 0$$

(but also <u>others</u> that need to be refuted by experiments). Experiment: \checkmark - e.g. ball rolling down a ramp define $m = \frac{1}{k}$ (inertial mass) (Physics of inertia?!)

$$\vec{F} = m\vec{a}$$

Problem!

- \vec{F} (interaction) is absolute.
- \vec{a} (acceleration) is relative to frame of reference.

Q: Is there accelerated motion without a force?

 $\xrightarrow{\cdot}$ No for point-particles? \leftarrow justify!

Newton's 1st Law: $\vec{F} = 0 \Rightarrow \vec{a} = 0 \Rightarrow \vec{v} = \text{constant (law of inertia)}$.

For Newton's first law to hold you need a special frame of reference (inertial frame of reference where the law of inertia holds). Experiment: Foucault has shown that the Earth is <u>not</u> inertial.

Problem

$\frac{\text{Absolutist interpretation:}}{\text{(Newton)}}$

- \rightarrow there is absolute space and absolute time.
- \rightarrow acceleration has to be taken as relative to absolute space.

Relativist interpretation: (dominating today due to Einstein)

- → there is at least one(and infinitely many) inertial forms of reference.
- \rightarrow Newton's laws are only valid in an inertial reference frame.