

ISOMETER® IR155-3203/IR155-3204

Insulation monitoring device (IMD) for unearthed DC drive systems (IT systems) in electric vehicles

Version V004

ISOMETER® IR155-3203/IR155-3204

Insulation monitoring device (IMD) for unearthed DC drive systems (IT systems) in electric vehicles

Device features

- · Suitable for 12 V and 24 V systems
- · Automatic device self test
- Continuous measurement of the insulation resistance 0...10 $\text{M}\Omega$
 - Response time for the first measurement of the system state (SST) is < 2 s after switching the supply voltage on
 - Response time < 20 s for insulation resistance measurement (DCP)
- Automatic adaptation to the existing system leakage capacitance (≤ 1 μF)
- Detection of earth faults and interruption of the earth connection
- Insulation monitoring of AC and DC insulation faults for unearthed systems (IT systems) 0...1000 V
- Undervoltage detection for voltages below 500 V (adjustable at factory by Bender)
- · Short-circuit proof outputs for:
 - Fault detection (high-side output)
 - Measured value (PWM 5...95 %) and status (f = 10...50 Hz) at high or inverted low-side driver (M_{HS}/M_{LS} output)
- Protective coating (SL 1301ECO-FLZ)

Approvals

ATTENTION

Observe precautions for handling electrostatic sensitive devices.

Handle only at safe work stations.

ATTENTION

The device is monitoring HIGH VOLTAGE.

Be aware of HIGH VOLTAGE near to the device.

Product description

The ISOMETER® IR155-3203/-3204 monitors the insulation resistance between the insulated and active HV-conductors of an electrical drive system ($U_n = DC\ 0\ V...1000\ V$) and the reference earth (chassis ground \blacktriangleright KI.31). The patented measurement technology is used to monitor the condition of the insulation on the DC side as well as on the AC motor side of the electrical drive system. Existing insulation faults will be signalled reliably, even under high system interferences, which can be caused by motor control processes, accelerating, energy recovering etc.

Due to its space-saving design and optimised measurement technology, the device is optimised for use in hybrid or fully electric vehicles. The device meets the increased automotive requirements with regard to the environmental conditions (e.g. temperatures and vibration, EMC...).

The fault messages (insulation fault at the HV-system, connection or device error of the IMD) will be provided at the integrated and galvanic isolated interface (high- or low-side driver). The interface consists of a status output (OK_{HS} output) and a measurement output (M_{HS}/M_{LS} output). The status output signalises errors or that the system is error free, i.e the "good" condition as shown by the "Operating principle PWM driver" diagram on page 5. The measurement output signalises the actual insulation resistance. Furthermore, it is possible to distinguish between different fault messages and device conditions, which are base frequency encoded.

Function

The ISOMETER® iso-F1 IR155-3203/-3204 generates a pulsed measuring voltage, which is superimposed on the IT system via terminals L+/L- and E/KE. The latest measured insulation condition is available as a pulse-width-modulated (PWM) signal at terminals $M_{\rm HS}$ (for IR155-3204) or $M_{\rm LS}$ (for IR155-3203). The connection between the terminals E/KE and the chassis ground (\blacktriangleright KI.31) is continuously monitored. Therefore it is necessary to install two separated conductors from the terminals E or KE to chassis ground.

Connection monitoring of the earth terminals E/KE is specified for $R_F \le 4 M\Omega$ if the ISOMETER® is connected as shown in the application diagram on page 3.

Once power is switched on, the device performs an initialisation and starts the system state (SST) measurement. The ISOMETER® provides the first estimated insulation resistance during a maximum time of 2 seconds. The DCP measurement (▶ continuous measurement method) starts subsequently. Faults in the connecting wires or functional faults will be automatically recognised and signalled.

During operation, a self test is carried out automatically every five minutes. The interfaces will not be influenced by these self tests.

Connection monitoring of the earth terminals E/KE may not work as intended when $R_F > 4 M\Omega$ if the supply terminals (Kl.15/Kl.31) are not galvanically isolated from the chassis earth (Kl.31).

Standards

IEC 61557-8 2007-01 IEC 61010-1 2010-06 IEC 60664-1 2004-04 ISO 6469-3 2001-11 ISO 23273-3 2006-11 ISO 16750-1 2006-08

Corresponding standards and regulations*

ISO 16750-2 2010-03 ISO 16750-4 2010-04 E1 (ECE regulation No. 10)

acc. 72/245/EWG/EEC 2009/19/EG/EC
DIN EN 60068-2-38 Z/AD:2010
DIN EN 60068-2-30 Db:2006
DIN EN 60068-2-14 Nb:2010
DIN EN 60068-2-64 Fh:2009
DIN EN 60068-2-27 Ea:2010

* Normative exclusion

The device went through an automotive test procedure in combination with multi customer requirements req. ISO16750-x.

The standard IEC61557-8 will be fulfilled by creating the function for LED warning and test button at the customer site if necessary.

The device includes no surge and load dump protection above 60 V. An additional central protection is necessary.

Abbreviations

DCP Direct Current Pulse SST Speed Start Measuring

Wiring diagrams

Typical application

±40 V

±33 μA

 $\geq 1.2 \, \text{M}\Omega$

≥ 1.2 MΩ

Technical data

Insulation coordination acc. to IE	C 60664-1
Protective separation (reinforced insu	lation)
bet	tween (L+/L-) — (Kl. 31, Kl. 15, E, KE, M _{HS} , M _{LS} , OK _{HS})
Voltage test	AC 3500 V/1 min
Supply/IT system being monitore	d
Supply voltage U_{S}	DC 1036 V
Max. operating current I _S	150 mA
Max. current Ik	2 A
	6 A/2 ms inrush current
HV voltage range (L+/L-) U_n	AC 01000 V (peak value)
	0660 V r.m.s. (10 Hz1 kHz)
	DC 01000 V
Power consumption	< 2 W
Response values	
Response value hysteresis (DCP)	25 %
Response value Ran	100 kΩ1 MΩ
Undervoltage detection	0500 V
Measuring range	
Measuring range	010 ΜΩ
Undervoltage detection	0500 V default setting: 0 V (inactive)
Relative uncertainty	
$\frac{SST}{SST} (\leq 2 S)$	$good > 2* R_{an}; bad < 0.5* R_{an}$
Relative uncertainty DCP	085 kΩ ▶ ±20 kΩ
(default setting 100 kΩ)	100 kΩ10 MΩ ► ±15%
Relative uncertainty output M (funda	
Delative un containte	(10 Hz; 20 Hz; 30 Hz; 40 Hz; 50 Hz)
Relative uncertainty	// > 100 // b 10 0/. at // > 200 // b F 0/
undervoltage detection	$U_{\rm n} \ge 100 \text{V} \triangleright \pm 10 \text{\%}; \text{ at } U_{\rm n} \ge 300 \text{V} \triangleright \pm 5 \text{\%}$ $\text{"Good condition"} \ge 2^* R_{\rm an}$
Relative uncertainty (SST)	"Bad condition" $\leq 2^m R_{an}$
	bau condition ≤ 0.5 nan
No Insulation fault	
(high)	V V V V V V V V V V V V V V V V V V V
	/
Insulation fault(low)	
(low)	$_{50kΩ}$ Response value = $_{200kΩ}$ $_{10MΩ}$
	100K22
Relative uncertainty DCP	$100 \text{ k}\Omega \dots 10 \text{ M}\Omega \pm 15 \%$
	100 kΩ1.2 MΩ ▶ ±15 % to ±7 %
	1.2 MΩ ▶ ±7 %
	1.210 M Ω \rightarrow ±7 % to ±15 %

Time response

Measuring voltage U_M

Impedance Zi at 50 Hz

10 MΩ ▶ ±15 %

Internal DC resistance Ri

Measuring current $I_{\rm M}$ at $R_{\rm F}=0$

* $F_{ave} = 10$ is recommended for electric and hybrid vehicles

Output

Measurement output (M)

 $M_{\rm HS}$ switches to $U_{\rm S}-2$ V (3204)

(external pull-down resistor to KI. 31 necessary 2.2 k Ω)

M_{LS} switches to KI. 31 + 2 V (3203)

(external pull-up resistor to Kl. 15 reqired 2.2 $k\Omega$

0 Hz ► Hi > short-circuit to U_b + (Kl. 15); Low > IMD off or short-circuit to Kl. 31

10 Hz ➤ Normal condition Insulation measurement DCP; starts two seconds after power on; First successful insulation measurement at ≤ 17.5 s PWM active 5...95 %

20 Hz ➤ undervoltage condition Insulation measurement DCP (continuous measurement); starts two seconds after power on; PWM active 5...95 %

First successful insulation measurement at ≤ 17.5 s

Undervoltage detection 0...500 V

(Bender configurable)

30 Hz ► Speed start measurement Insulation measurement (only good/bad evaluation) starts directly after power on ≤ 2 s; PWM 5...10 % (good) and 90...95 % (bad)

40 Hz ► Device error Device error detected; PWM 47.5...52.5 %

50 Hz ➤ Connection fault earth Fault detected on the earth connection (Kl. 31)
PWM 47.5...52.5 %

Status output (OK_{HS})

 \textit{OK}_{HS} switches to $\textit{U}_S - 2\,\text{V}$ (external pull-down resistor to KI. 31 required 2.2 k Ω)

High ➤ No fault; R_F > response value

Low ➤ Insulation resistance ≤ response value detected;

Device error; Fault in the earth connection

Undervoltage detected or device switched off

Operating principle PWM driver

• Condition "Normal" and "Undervoltage detected" (10 Hz; 20 Hz)

Duty cycle $5\% = > 50 \text{ M}\Omega \ (\infty)$ Duty cycle $50\% = 1200 \text{ k}\Omega$ Duty cycle $95\% = 0 \text{ k}\Omega$

$$R_{\rm F} = \frac{90 \% \text{ x } 1200 \text{ k}\Omega}{dc_{\rm meas} - 5\%}$$
 - 1200 k Ω

 $dc_{\text{meas}} = \text{measured duty cycle } (5 \% ... 95 \%)$

Operating principle PWM driver

Condition "SST" (30 Hz)

Operating principle PWM driver

· Condition "Device error" and "Kl.31 fault" (40 Hz; 50 Hz;)

Duty cycle ▶ 47.5...52.5 %

Load current /L	80 mA
Turn-on time ▶ to 90 % V _{out}	max. 125 μs
Turn-off time ▶ to 10 % V _{out}	max. 175 μs
Slew rate on ▶ 1030 % V _{out}	max. 6 V/μs
Slew rate off ▶ 7040 % V _{out}	max. 8 V/μs
Timing 3204 (inverse to 3203)	

EMC

Load dump protection	< 60 V
Measurement method	Bender-DCP technology
Factor averaging	
F _{ave} (output M)	110 (factory set: 10)

ESD protection

Contact discharge — directly to terminals	≤ 10 kV
Contact discharge – indirectly to environment	≤ 25 kV
Air discharge — handling of the PCB	≤ 6 kV

Connection

On-board connectors

TYCO-MICRO MATE-N-LOK 1 x 2-1445088-8

(KI. 31, KI.15, E, KE, M_{HS}, M_{LS}, OK_{HS}

2 x 2-1445088-2 (L+, L-); The connection between the respective connecting pins at L+ or L- may only be used as redundancy. Cannot be used for looping through! Crimp contacts TYCO-MICRO MATE-N-LOK Gold

 $14\ x\ 1\text{-}794606\text{-}1$ Conductor cross section: AWG 20 . . . 24

Enclosure for crimp contacts TYCO-MICRO MATE-N-LOK receptor HSG single R -1445022-8 TYCO-MICRO MATE-N-LOK receptor HSG single R -1445022-2

General data

Necessary crimp tongs (TYCO)	91501-1
Operating mode/mounting	continuous operation/any position
Temperature range	-40+105°C
Voltage failure	≤ 2 ms
Flammability class acc. to	UL 94 V-0

Mounting

M4 metal screws with locking washers between screw head and PCB. Torx, T20 with a maximum tightening torque of 4 Nm for the screws. Furthermore, a maximum of 10 Nm tightening torque to the PCB at the mounting points.

Mounting and connector kits are not included in delivery, but are available as accessories. The maximum diameter of the mounting points is 10 mm.

Dimension diagram

Dimensions in mm

PCB dimensions (L x W x H) 140 mm x 60 mm x 15 mm

Ordering information

Parameters	Response value R _{an}	F _{ave}	Undervoltage detection	Measured value output	Туре	Art. No.
Continuously set value	100 40	100 kΩ 10	300 V	Low side	IR155-3203	B 9106 8138V4
Continuously set value	100 KZ 2		0 V (inactive)	High side	IR155-3204	B 9106 8139 V4
Customer-specific setting $100 \text{ k}\Omega1 \text{ M}\Omega$ 110	01/ 5001/	Low side	IR155-3203	B 9106 8138CV4		
	110	110 0 V500 V	High side	IR155-3204	B 9106 8139CV4	

Accessories

Type designation	Art. No.
Fastening set	B 9106 8500
Connector set IR155-32xx	B 9106 8501

Example for ordering

IR155-3204-100k Ω -0V + B 9106 8139V4 IR155-3204-200k Ω -100V + B 9106 8139CV4

The parameters, i.e. the response value and undervoltage protection value must be included in the order.

Bender GmbH & Co. KG

P.O. Box 1161 • 35301 Gruenberg • Germany Londorfer Strasse 65 • 35305 Gruenberg • Germany Tel.: +49 6401 807-0 • Fax: +49 6401 807-259 E-Mail: info@bender.de • www.bender-emobility.com

