微步方方程

孤立子与反散射变换

Solitons and Inverse Scattering Transform

What are Solitons?

In 1834 **John Scott Russell**, an engineer, was riding along a canal and observed a horse-drawn boat that suddenly stopped,

causing a *violent agitation*, giving rise to a lump of water that rolled forward with great velocity *without change of form or diminution of speed*.

Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.

Stable solitary wave

Russell's Wave of Translation

- Experiments showed that the solitary wave speed was proportional to height.
- Data conflicted with contemporary fluid dynamics (by big deals like Newton)

Soliton on an Aqueduct

Solitons in Nature

Alphabet Waves

- Not as unusual as once thought
- May play a role in tsunami and rogue wave formation

Solitons in Nature

Morning Glory Clouds

Jupiter's Red Spot

Strait of Gibraltar

Deep and shallow water waves, plasmas, particle interactions, optical systems, neuroscience, Earth's magnetosphere...

Nonlinear PDEs and solitons

- John Scott Russell (1834); Boussinesq (1871 1877); Korteweg & de Vries (1895): solitary waves on shallow water, $u = a \operatorname{sech}^2[\beta(x - ct)], \ u_t + 6uu_x + u_{xxx} = 0.$
- Zabusky & Kruskal (1965): numerical simulation of the continuum limit of the Fermi-Pasta-Ulam (1955) problem.
 The KdV equation

$$u_t + uu_x + \delta^2 u_{xxx} = 0, \qquad \delta = 0.022$$

with initial conditions $u(x,0) = \cos \pi x$, $0 \le x \le 2$ and u, u_x , u_{xx} periodic on [0,2] for all t.

Generation of solitary waves elastically interacting with each other; wave-particle duality: solitons

IST: Gardner, Green, Kruskal & Miura (1967) – KdV; Zakharov
 & Shabat (1972) – NLS; AKNS (1974) – many other equations.

1967: KdV & Inverse Scattering Transform

In 1967 Gardner, Greene, Miura e Kruskal, in order to solve the initial value problem for the KdV equation, introduced a method known as Inverse Scattering Transform (which could be considered the analogous of the Fourier transform for linear ODE).

The IST is not a direct method...it works by associating the Schroedinger equation to the Cauchy problem of the KdV:

$$-\psi_{xx}+u(x,0)\psi=\lambda^2\psi,\,x\in\mathbb{R}.$$

1967: KdV & Inverse Scattering Transform

GGKM were also lucky because three years before their work, Faddeev in 1964 had had success in solving the inverse problem for the Schroedinger equation.

1. **Direct Scattering** consists of: Find the so-called scattering data $\{R(k), \{\kappa_j, N_j\}_{j=1}^N\}$ of the Schroedinger equation with potential u(x, 0).

$$f_r(k,x) = \begin{cases} \frac{1}{T(k)} e^{-ikx} + \frac{R(k)}{T(k)} e^{ikx} + o(1), & x \to +\infty, \\ e^{-ikx} [1 + o(1)], & x \to -\infty. \end{cases}$$

Propagation of scattering data: the scattering data evolve in time following the equations

$$\{R(k), \{\kappa_j, N_j\}_{j=1}^N\} \mapsto \{R(k)e^{8ik^3t}, \{\kappa_j, N_je^{8\kappa_j^3t}\}_{j=1}^N\}.$$

Inverse scattering consists of: (Re)-construct the potential. To do that:
 Solve this Marchenko equation

$$K(x,y) + \Omega(x+y) + \int_{x}^{\infty} dz \, K(x,z)\Omega(z+y) = 0,$$

where
$$\Omega(x) = \sum_{j=1}^{N} N_j e^{-\kappa_j x} + \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \ e^{ikx} R(k)$$
 and

2) get u(x,t) from the relation $u(x,0) = 2\frac{d}{dx}K(x,x)$.

IST: The Big Picture

Consider an IVP for a nonlinear evolution equation

$$u_t = F(u, u_x, u_{xx}, ...), \quad u(x, 0) = u_0(x).$$
 (*)

Assume that (*) can be represented as a compatibility condition for two linear equations

$$\mathcal{L}\phi = \lambda\phi, \qquad (**)$$

$$\phi_t = \mathcal{A}\phi.$$

Let $\{S(\lambda, t)\}$ be spectral (scattering) data for u(x, t) in (**): the discrete eigenvalues, the norming coefficients of eigenfunctions, and the reflection and transmission coefficients.

Then the IST steps are (cf. solution via the Fourier Transform):

$$u_0(x) \mapsto \{S(\lambda,0)\} \mapsto \{S(\lambda,t)\} \mapsto u(x,t)$$

At each step we have to solve a linear problem!

Inverse Scattering Transform: Examples

Few years later, it became clear that many other nonlinear evolution equation could be solved by the IST:

- Nonlinear Schroedinger equation (1972, Zakharov and Shabat)
- sine-Gordon (1973-74, Ablowitz, Kaup, Newell, Segur or Zakharov)
- Manakov system (1973, Manakov)
- AKNS system (1974, Ablowitz, Kaup, Newell, Segur)
- Camassa-Holm equation (1992, Camassa e Holm)
- Degasperis-Procesi equation (1999, Degasperis e Procesi)
- the list is not complete...

Examples of integrable equation

```
u_{t}+6uu_{x}+u_{xxx}=0, Korteweg-de Vries (KdV) equation u_{xt}=\sin u, sine-Gordon equation i\ u_{t}+u_{xx}\pm 2uu^{\dagger}u=0, Nonlinear Schrödinger (NLS) equation, u_{t}-u_{xxt}+2\omega u_{x}+3uu_{x}-2u_{x}u_{xx}-uu_{xxx}=0, Camassa-Holm (CH) equation, u_{zz}+\frac{\partial}{\partial x}(u_{t}+6uu_{x}+u_{xxx})=0, Kadomtsev-Petviashvily (KP) equation.
```