Mécanique quantique – L3

Emmanuel Baudin – Tom Bienaimé – Sylvain Nascimbène

TD 4 : Autour de l'oscillateur harmonique

On s'intéresse dans tout le problème à un oscillateur harmonique à une dimension, avec un hamiltonien H_0 :

$$\hat{H}_0 = \frac{1}{2}m\omega_0^2 \hat{z}^2 + \frac{1}{2m}\hat{p}^2. \tag{1}$$

Dans cette expression \hat{z} et \hat{p} sont les opérateurs de position et d'impulsion, m la masse de l'oscillateur et ω_0 sa pulsation de résonance. Montrer que l'on peut écrire

$$\hat{H}_0 = \hbar \omega_0 \hat{\mathcal{H}} \tag{2}$$

avec

$$\hat{\mathcal{H}} = \frac{1}{2} \left(\hat{Z}^2 + \hat{P}^2 \right) \,, \tag{3}$$

où on donnera les expressions des opérateurs \hat{Z} et \hat{P} .

1 États cohérents

On cherche à construire des états quantiques de l'oscillateur harmonique dont l'évolution est semblable à celle de l'oscillateur classique correspondant.

1.1 Retour sur la dynamique classique

1. Écrire l'équation classique du mouvement sur x et la résoudre pour les conditions initiales

$$\begin{cases} z(0) = A \\ \dot{z}(0) = 0. \end{cases} \tag{4}$$

Quelle est l'impulsion p correspondante?

2. Décrire le mouvement dans l'espace des phases $(z, p/m\omega_0)$ à l'aide de la quantité :

$$z + ip/m\omega_0. (5)$$

1.2 Rappel : résolution classique de l'oscillateur harmonique

1. On définit l'opérateur

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\hat{Z} + i\hat{P} \right) \,. \tag{6}$$

Calculer $[\hat{Z},\hat{P}]$ et montrer que $[\hat{a},\hat{a}^{\dagger}]=1.$

- 2. On pose maintenant $\hat{N} = \hat{a}^{\dagger} \hat{a}$. Calculer $[\hat{N}, \hat{a}^{\dagger}]$ et $[\hat{N}, \hat{a}]$.
- 3. Soit ν une valeur propre de \hat{N} et $|\phi_{\nu}\rangle$ un vecteur propre associé. Démontrer les propriétés suivantes :
 - (a) $\nu \ge 0$.
 - (b) Si $\hat{a}|\phi_{\nu}\rangle \neq 0$, alors $\hat{a}|\phi_{\nu}\rangle$ est un vecteur propre de \hat{N} de valeur propre $\nu 1$.
 - (c) $\hat{a}^{\dagger}|\phi_{\nu}\rangle$ est un vecteur propre de \hat{N} de valeur propre $\nu+1$.
 - (d) Le spectre de \hat{N} est inclus dans \mathbb{N} .
- 4. En déduire le spectre $(E_n)_{n\in\mathbb{N}}$ de \hat{H}_0 (on ordonne les énergies de sorte que $E_0 < E_1 < \dots$). Montrer qu'il n'est pas dégénéré. On note alors $|n\rangle$ un état propre de \hat{H}_0 de valeur propre E_n .
- 5. Montrer que $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$ et $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$.
- 6. En déduire que la fonction d'onde correspondant à l'état $|n\rangle$ est

$$\phi_n(z) = \sqrt{\frac{\pi\hbar}{m\omega_0 \times 2^n \times n!}} \left[z\sqrt{\frac{m\omega_0}{\hbar}} - \sqrt{\frac{\hbar}{m\omega_0}} \frac{\mathrm{d}}{\mathrm{d}z} \right]^n \exp\left(-\frac{m\omega_0 z^2}{2\hbar}\right). \tag{7}$$

1.3 Propriétés des états cohérents

On définit l'état cohérent $|\alpha\rangle$ comme l'état propre de l'opérateur \hat{a} de valeur propre α :

$$\hat{a} |\alpha\rangle = \alpha |\alpha\rangle. \tag{8}$$

1. Calculer les coefficients C_n du développement de $|\alpha\rangle$ sur les états propres $|n\rangle$, tels que :

$$|\alpha\rangle = \sum_{n} C_n |n\rangle. \tag{9}$$

- 2. Calculer la valeur moyenne de \hat{H}_0 dans l'état $|\alpha\rangle$, et la variance associée. Que vaut $\Delta E/E$ quand $|\alpha|$ est très grand? Comment interpréter ce résultat?
- 3. Calculer les valeurs moyennes de \hat{z} et de \hat{p} dans l'état $|\alpha\rangle$, et les variances associées Δz^2 et Δp^2 . Quel commentaire peut-on faire?
- 4. L'oscillateur est préparé à t=0 dans l'état $|\Psi(0)\rangle=|\alpha\rangle$. Montrer que l'état $|\Psi(t)\rangle$ reste un état cohérent, caractérisé par un $\alpha(t)$ que l'on précisera.
- 5. Donner la fonction d'onde $\psi_{\alpha}(z)$ dans l'état $|\alpha\rangle$.
- 6. Représenter l'évolution temporelle de l'état du système dans l'espace des phases, la comparer à la dynamique classique de l'oscillateur et conclure.