

l'erceptron Learning:

$$x_0 = 1$$

$$x_1$$

$$x_2$$

$$w_2$$

$$\vdots$$

$$\vdots$$

$$w_n$$

$$\vdots$$

$$y$$

A more accepted convention,

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$

$$= 0 \quad if \sum_{i=0}^{n} w_i * x_i < 0$$

$$where, \quad x_0 = 1 \quad and \quad w_0 = -\theta$$

Linearly Separable: line to separate two classes.

OR Gate using a single perceptron

			class Label Computed
x_1	x_2	OR	Actual Actual
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
0	1 (1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$ > 0
1	1	1//	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
		7	

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

 $w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 > -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 > -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 > -w_0$

One possible solution is $w_0 = -1, w_1 = 1.1, w_2 = 1.1$

(Image Source: Towards data science)

(Image source: Towards data science)

XOR: Linearly 'Not' seperable

We can not sep
A-rate data points into two classes using a single line.

O O O (0,1) X (1,1)

I O I (0,1) X (1,0)

y = f (2e)