

Научно-практический интенсив по воспроизведению State-of-the-Art научных результатов

Поиск подходящих кандидатов с применением на GPU Cтатья Revisiting Neural Retrieval on Accelerators

Наша команда

Соня-Аня Никифорова

Маша Розаева

Илья Мурзин

План доклада

- 1. Что такое рекомендательная система? Этапы отбора рекомендаций
- 2. Обзор научной статьи
- 3. Постановка задачи в рамках интенсива: воспроизведение предлагаемых в статье алгоритмов (h-indexer, MoL)
- 4. Реализация и эксперименты
- 5. Наши результаты
- 6. Дальнейшие исследования
- 7. Список использованных источников

Рекомендательная система – это?

Пользователи (users, U) и товары (items, I). I >> U, много "холодных"

Хотим рекомендовать каждому пользователю наиболее релевантные товары, т.е. которые он посмотрит/положительно оценит/купит

Retrieval + Ranking

Оцениваем:

- HR@k в топ-к попал хотя бы один релевантный товар
- Recall@k доля релевантных товаров среди рекомендуемых
- MRR обратное число к номеру первой позиции с релевантным товаром
- Еще много разных метрик

Этапы отбора рекомендаций

Нужно отбирать товары быстро, но качественно Идея: легковесный средненький алгоритм + тяжеловесный хороший алгоритм

Revisiting Neural Retrieval on Accelerators (2023)

Jiaqi Zhai jiaqiz@meta.com Meta Platforms, Inc. Menlo Park, CA, USA Zhaojie Gong zhaojieg@meta.com Meta Platforms, Inc. Menlo Park, CA, USA Yueming Wang yuemingw@meta.com Meta Platforms, Inc. Menlo Park, CA, USA Xiao Sun sunx@meta.com Meta Platforms, Inc. Menlo Park, CA, USA

Zheng Yan zyan@meta.com Meta Platforms, Inc. Menlo Park, CA, USA Fu Li leaf123@meta.com Meta Platforms, Inc. Menlo Park, CA, USA Xing Liu xingl@meta.com Meta Platforms, Inc. Menlo Park, CA, USA

Dot Product – хорошо, но не супер качественно. Вот бы был Dot Product, но чтобы умный

Retrieval с «умным» Dot-product

Алгоритм MoL (Mixture of Logits)

sequential/non-sequential features

Bailu Ding, Jiaqi Zhai - Efficient Retrieval with Learned Similarities (2024)

Постановка задачи в рамках интенсива

- 1. Создать пайплайн для retrieval-части рекомендательной системы, включая обработку входных данных и расчет метрик
- 2. Имплементировать алгоритмы MoL и h-indexer, Sampled Softmax Loss, а также другие neural-based алгоритмы
- 3. Провести эксперименты и оценить эффективность алгоритмов
- 4. Изучить предлагаемые в статье способы оптимизаций

Данные

Train: validation: test — 0.7:0.2:01

Из validation и test убираем юзеров и айтемы, у которых меньше pcore=5 взаимодействий. Обрезаем последовательности айтемов до 200

127 негативных примеров на один позитивный

Dataset	# of users	# of items	avg. ratings per item	avg. ratings per user	
ML-1M	6,040	3,416	193.45	109.41	
ML-20M	138,493	18,231	707.18	93.09	
Beauty	22,363	12,101	16.09	8.71	
Games	24,303	10,672	20.79	9.13	
Books	27,352	13,151	23.85	11.47	

Пайплайн

Эксперименты (ML-1M) 5 глобальных эпох, 1 локальная на модель

embedder+model	HR@1	HR@10	HR@50	HR@500	MRR ▼
sequential (SasRec), MLP + BCE	0,0644	0,3467	0,7044	0,9378	0,1588
sequential (SasRec), MoL + BCE	0,0644	0,3489	0,6533	0,9378	0,1521
non-sequential (SVD), MLP + BCE	0,0600	0,3244	0,6844	0,9356	0,1497
sequential (SasRec), MoL + SS	0,0600	0,3200	0,6178	0,9267	0,1454
sequential (SasRec), Dot product	0,0466	0,3 <mark>355</mark>	0,6355	0,9311	0,1355
sequential (SasRec), FM + BCE	0,0578	0,3044	0,5667	0,9222	0,1334
sequential (SasRec), NeuralFM + BCE	0,0378	0,2956	0,6156	0,9200	0,1257
non-sequential (SVD), FM + BCE	0,0511	0,2200	0,4844	0,8644	0,1142
non-sequential (SVD), NeuralFM + BCE	0,0378	0,2667	0,6356	0,9133	0,1113
non-sequential (SVD), Dot product	0,0044	0,1933	0,5400	0,9088	0,0633

Как можно улучшить? Оптимизация применения модели

Квантизация (повышение пропускной способности на 16%) Оптимизация скалярного произведения (ускорение х1.5) Низкоуровневая оптимизация ядра (ускорение х2)

Figure 3: Recall and serving cost of the two-stage h-indexer/MoL model: (a) relative recall ratio vs MoL-only model under varying k' over 10M items, and (b) throughput of two-stage vs one-stage over different pool sizes.

Figure 2: Infra efficiency in production: GPU utilization and peak memory scaling with serving FLOPs.

Ссылки на результаты

GitHub

DataLens (метрики)

Слайд с мемами (спасибо за внимание, можно задавать вопросы по презентации)

