WEEK 8: MAKING SENSE OF YOUR DATA

Dr. T. Kody Frey

Assistant Professor | School of Information Science

OVERVIEW

- Q&A: Where are the Rakes?
- Making Sense of Your Data
- Continuing to Make Sense of Your Data
- Workshop: Survey Construction in Qualtrics

WHAT'S NEXT?

Week 9 In-Class Midterm Examination 3/6 The midterm will recomble a track

The midterm will resemble a traditional comprehensive exam environment. Students wil have three hours to complete the midterm together in the classroom. Students will be allowed to create a one-page cheat sheet with as much information they can strategically place on the page.

Week 10 No CLASS - Spring Break 3/13

THE MIDTERM

What are the key areas that need more explanation?

MAKING SENSE OF YOUR DATA

The content this week is designed to help you understand what to do with data once it is collected. Before you can start to analyze, you have to get a better idea of what you are working with.

We have a whole WORKDAY planned for your actual data in Week 14.

KEY TERMS

Let's make sure we are all on the same page regarding some key terms.

TYPES OF STATISTICS

Descriptive Statistics Inferential Statistics

Summarize data from the current sample of participants without making inferences about the larger population of interest.

Averages, percentages, frequencies

Make inferences about a larger group, the population, from the group studied, *t*-tests, *F*-tests, correlation, regression

TYPES OF TESTING

Nonparametric Tests Parametric Tests

Inferential statistics that are used when the data do not meet the assumption normality.

Chi-square test of independence, Mann-Whitney U Test, Fisher Exact Test *Inferential* statistics that assume data are normally distributed. *t*-tests, *F*-tests

Week 8: Making Sense of Your Data 2/26/23, 9:37 PM

NORMALITY?

The normal distribution

Week 8: Making Sense of Your Data 2/26/23, 9:37 PM

NORMALITY!

The normal distribution applied to hypothesis testing

ASSUMPTIONS

To use parametric statistics, you have to meet three assumptions:

Normality Homogeneity of Variance Independence

The DV (or IV if continuous) need to come from a population that is *normally distributed*

Most tests tolerate a good degree of violation, so approximately normal is fine.

Samples in study have equal variation among members.

Some violation is okay, but too much can lead to Type I error.

Observations must be independent!

Scores cannot be influenced or contingent on one another.

Ex: Students in the same class answering questions about their teacher.

MANIPULATION CHECKS

Used to ensure that your control of the *active* independent variable was successful.

For example, if test messages, we need to ensure that participants noticed the difference they were supposed to notice.

Can often be accomplished with a few questions (Ex: What was the name of the influencer who made the post?)

PILOT TESTING

To add more assurance that our manipulations and measures will work, we often want to pilot test them.

A form of qualitative checking!

How do similar samples interpret the different conditions or understand the measures?

LOOKING AT SOME DATA

Context: Working study on the effects perceived *instructor strictness* on motivation, interest, engagement, cognitive learning.

Week 8: Making Sense of Your Data 2/26/23, 9:37 PM

UNDERSTANDING THE SPACE

IMPORTANT PIECES

- Data View vs. Variable View
- Cases and Columns
- Variable Names, Labels, and Values
- Analyze: Descriptive Statistics
- Pairwise vs. Listwise

GETTING AN ACCURATE FILE

When you pull your data, there will be a lot there. Some considerations:

- Eliminate data you do not plan to use like geographical conditions
- Screen for participants who did not complete survey
- Use time as a criterion
 - My rule of thumb is under 4 minutes or over 18 hours
- Recode early
- Dichotomous data is meaningful!

Transform > Recode Into Same Variables > Select Cases > Old and New Values > Enter Values > Add > Repeat

CHECKING FOR ACCURACY

Look at the frequency distributions for your items

Analyze > Descriptive Statistics > Descriptives > Enter Variables > Options
(Mean, Std. deviation, minimum, maximum) > OK

MISSING DATA

The key is *consistency*; establish rules and apply them MAR, MNAR, MCAR

EXPLORING MISSING DATA

Let the software do the work for you.

Descriptive Statistics -> Explore -> Add Variables to Dependent List -> Statistics (Check Outliers) -> Plots (Histogram & Normality plot) -> Options (Exclude cases pairwise) -> OK

DEALING WITH MISSING DATA

- Mean Imputation
- Series Mean
- Leaving 'em blank
- Replacing with 999

CALCULATING COMPOSITES

We create summed scores (or composites) of variables to reduce the number of items we have to analyze (among other reasons).

Transform > Compute Variable > Target Variable > Numeric Expression > Create formula for average of total items used in instrument > OK (SUM(EvalStrict1 to EvalStrict_12)/12)

EXPLORING COMPOSITES

We want to examine *mean*, *variance*, *skewness*, *kurtosis* Using the composite variables, we run this code again:

Descriptive Statistics -> Explore -> Add *Composite* Variables to Dependent List -> Statistics (Check Outliers) -> Plots (Histogram & Normality plot) -> Options (Exclude cases pairwise) -> OK

INTERPRETATION

What patterns do the histograms reveal? Does the data look normally distributed?

Are skewness and kurtosis > +2 or < -2? These are *extreme* scores. Want plotted observed value to closely resemble expected value. Significant Shapiro-Wilk and Kolmogorov-Smirnov test of normality mean data are NOT distributed normally.

CONVERTING TO Z-SCORES

This will help us determine univariate outliers.

Analyze -> Descriptive statistics -> Descriptives -> Select Variables -> Select "Save standardized values as variables" -> Options (select Kurtosis and Skewness) -> OK

Z scores automatically added to dataset

ASSESSING STANDARDIZED MEANS

Analyze -> Descriptive Statistics -> Frequencies -> Move newly created Zvariables to Variables -> Statistics (mean, standard deviation, skewness, kurtosis) -> Charts (Histogram & Show normal curve on histogram) -> OK Does the distribution follow the normal curve?

IDENTIFYING THE OUTLIERS

Look at the minimum and maximum scores for each standardized variable. Values greater than 3.29 indicates +3 standard deviations and indicate outliers. If present, options include:

- Deleting the whole case
- Identifying the response as missing to preserve other cases

IDENTIYING OUTLIERS AS MISSING

First, sort the z scores so higher or lower scores appear first.

Variable View > Find Respective Variable > Missing > Select ellipses within box > Range plus one optional discrete missing value > Enter observed score for first corresponding z score above +/- 3.29 > OK

When this is done, assess the data again with the explore function.

CAREFUL!

My rule of thumb is that you can do this once. If still contains skewness, platykurtic/leptokurtic distribution, or is not normal, have to move on. Cannot massage the data to fit your needs.

WHAT ELSE FOR OUTLIERS AND ASSUMPTIONS?

At this point, you can:

- Check for *multivariate normality* if questions are concerned with combinations of IVs or DVs
- Check for *linearity* is questions are concerned with associations between variables. ## Reliability

For composite measures, alpha and omega are the standard statistics If items need to be changed for reliability purposes, run descriptives on your composites again

MEANS AND STANDARD DEVIATIONS

Very important to include as a description of your data. I like to include in the composite variable LABEL.

Question: What do they mean?

SUMMARY

- Key terms
- Cleaning and understanding data
- SPSS!

FREY FACTS

There is a YouTube video for *everything*If you learn to do this in R, you have a line of code for every step. All you have to do is hit "run".

WHAT'S NEXT

The Midterm!

CREATING SURVEYS IN QUALTRICS

Qualtrics is the default platform for UK, but many other online survey platforms exist.

GETTING STARTED

- Log in with linkblue
- Create Project > From Scratch > Survey > Get Started
- 4 options:
 - Starting with blank survey
 - Insert QSF (contains data from existing Qualtrics survey)
 - Copy survey from existing project
 - Use survey from your library

THE INTERFACE

- Blocks
- Question Types
- Survey Flow

Week 8: Making Sense of Your Data 2/26/23, 9:37 PM

KEY POINTS

OUR GUIDE

Typical Workflow:

- Save a space for consent (add once approved by IRB)
- After consent, include questions with participation criteria (e.g., age)
 - *If necessary, include directions for manipulation
 - *If necessary, include manipulation / realism checks
- Provide questions for continuous IV / DVs
- Collect demographic information
- Code variable values
- Adjust survey flow
- Edit look and feel
- Preview survey
- Publish and Distribute

CONSENT

ELIGIBILITY

TEXT

MANIPULATION CHECKS

SOME QUALTRICS BEST PRACTICES

- Use colors and italics to highlight or provide key information (e.g., time to complete)
- Check ExpertReview for tips
- Avoid forcing responses unless necessary
- Edit multiple statements at once!
- Be careful with preset values
- Preview often
- Test if on yourself
- Be mindful or time
- Find the recode values button

TEXTBOOK RULES FOR CODING VARIABLES {.SMALLER)}

- Each level of a variable must be mutually exclusive
- Each variable should be coded to obtain maximum information
- For each participant, there must be a code or value for each variable
- Apply coding rules consistently
- High numbers should be used to Agree, Good, or Positive
- All Data Should be Numeric
- Each variable for each case or participant must occupy the same column in the spreadsheet or data editor
- Check for problems!

tkfr222@uky.edu | @TKFrey | tkodyfrey.github.io

