# CS162 Operating Systems and Systems Programming Lecture 11

Scheduling (finished), Deadlock, Address Translation

October 3<sup>rd</sup>, 2018

Nathan Pemberton

http://cs162.eecs.Berkeley.edu

# Recap: What if we Knew the Future?

- Could we always mirror best FCFS?
- Shortest Job First (SJF):
  - Run whatever job has least amount of computation to do



- Sometimes called "Shortest Time to Completion First" (STCF)
- Shortest Remaining Time First (SRTF):
  - Preemptive version of SJF: if job arrives and has a shorter time to completion than the remaining time on the current job, immediately preempt CPU
  - Sometimes called "Shortest Remaining Time to Completion First" (SRTCF)
- These can be applied to whole program or current CPU burst
  - Idea is to get short jobs out of the system
  - Big effect on short jobs, only small effect on long ones
  - Result is better average response time

# Recap: Discussion

- SJF/SRTF are the best you can do at minimizing average response time
  - Provably optimal (SJF among non-preemptive, SRTF among preemptive)
  - Since SRTF is always at least as good as SJF, focus on SRTF
- Comparison of SRTF with FCFS and RR
  - What if all jobs the same length?
    - » SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the same length)
  - What if jobs have varying length?
    - » SRTF (and RR): short jobs not stuck behind long ones

# Example to illustrate benefits of SRTF





- Three jobs:
  - A, B: both CPU bound, run for weekC: I/O bound, loop Ims CPU, 9ms disk I/O
  - If only one at a time, C uses 90% of the disk, A or B could use 100% of the CPU
- With FIFO:
  - Once A or B get in, keep CPU for two weeks
- What about RR or SRTF?
  - Easier to see with a timeline



## SRTF Further discussion

- Starvation
  - SRTF can lead to starvation if many small jobs!
  - Large jobs never get to run
- Somehow need to predict future
  - How can we do this?
  - Some systems ask the user
    - » When you submit a job, have to say how long it will take
    - » To stop cheating, system kills job if takes too long
  - But: hard to predict job's runtime even for non-malicious users



# Users can't predict runtime





Requested runtime (hrs)
CS162 ©UCB Spring 2017

# SRTF Further discussion (Cont.)

- Bottom line, can't really know how long job will take
  - However, can use SRTF as a yardstick for measuring other policies
  - Optimal, so can't do any better
- SRTF Pros & Cons
  - Optimal (average response time) (+)
  - Hard to predict future (-)
  - Unfair (-)

# Predicting the Length of the Next CPU Burst

- Adaptive: Changing policy based on past behavior
  - CPU scheduling, in virtual memory, in file systems, etc
  - Works because programs have predictable behavior
    - » If program was I/O bound in past, likely in future
    - » If computer behavior were random, wouldn't help
- Example: SRTF with estimated burst length
  - Use an estimator function on previous bursts: Let  $t_{n-1}$ ,  $t_{n-2}$ ,  $t_{n-3}$ , etc. be previous CPU burst lengths. Estimate next burst  $\tau_n = f(t_{n-1}, t_{n-2}, t_{n-3}, ...)$

- Function f could be one of many different time series estimation

schemes (Kalman filters, etc)

- For instance, exponential averaging  $\tau_n = \alpha t_{n-1} + (1-\alpha)\tau_{n-1}$  with  $(0 < \alpha \le 1)$ 



# Multi-Level Feedback Scheduling



- Another method for exploiting past behavior (first use in CTSS)
  - Multiple queues, each with different priority
    - » Higher priority queues often considered "foreground" tasks
  - Each queue has its own scheduling algorithm
    - » e.g. foreground RR, background FCFS
    - » Sometimes multiple RR priorities with quantum increasing exponentially (highest: I ms, next: 2ms, next: 4ms, etc)
- Adjust each job's priority as follows (details vary)
  - Job starts in highest priority queue
  - If timeout expires, drop one level
  - If timeout doesn't expire, push up one level (or to top)

# Scheduling Details



- Result approximates SRTF:
  - CPU bound jobs drop like a rock
  - Short-running I/O bound jobs stay near top
- Scheduling must be done between the queues
  - Fixed priority scheduling:
    - » serve all from highest priority, then next priority, etc.
  - Time slice:
    - » each queue gets a certain amount of CPU time
    - » e.g., 70% to highest, 20% next, 10% lowest

## 

- Countermeasure: user action that can foil intent of OS designers
  - For multilevel feedback, put in a bunch of meaningless I/O to keep job's priority high
  - Of course, if everyone did this, wouldn't work!
- Example of Othello program:
  - Playing against competitor, so key was to do computing at higher priority the competitors.
    - » Put in **printf**'s, ran much faster!

# Real-Time Scheduling (RTS)

- Efficiency is important but predictability is essential:
  - We need to predict with confidence worst case response times for systems
  - In RTS, performance guarantees are:
    - » Task- and/or class centric and often ensured a priori
  - In conventional systems, performance is:
    - » System/throughput oriented with post-processing (... wait and see ...)
  - Real-time is about enforcing predictability, and does not equal fast computing!!!
- Hard Real-Time
  - Attempt to meet all deadlines
  - EDF (Earliest Deadline First), LLF (Least Laxity First),
     RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
- Soft Real-Time
  - Attempt to meet deadlines with high probability
  - Minimize miss ratio / maximize completion ratio (firm real-time)
  - Important for multimedia applications
  - CBS (Constant Bandwidth Server)

# Example: Workload Characteristics

- Tasks are preemptable, independent with arbitrary arrival (=release) times
- Tasks have deadlines (D) and known computation times (C)
- Example Setup:



# Example: Round-Robin Scheduling Doesn't Work



# Earliest Deadline First (EDF)

- Tasks periodic with period P and computation C in each period: (P, C)
- Preemptive priority-based dynamic scheduling
- Each task is assigned a (current) priority based on how close the absolute deadline is
- The scheduler always schedules the active task with the closest absolute deadline



# A Final Word On Scheduling

- When do the details of the scheduling policy and fairness really matter?
  - When there aren't enough resources to go around
- When should you simply buy a faster computer?
  - (Or network link, or expanded highway, or ...)
  - One approach: Buy it when it will pay for itself in improved response time
    - » Assuming you're paying for worse response time in reduced productivity, customer angst, etc...
    - » Might think that you should buy a faster X when X is utilized 100%, but usually, response time goes to infinity as utilization⇒100%



- An interesting implication of this curve:
  - Most scheduling algorithms work fine in the "linear" portion of the load curve, fail otherwise
  - Argues for buying a faster X when hit "knee" of curve

# Deadlock



## Starvation vs Deadlock



- Starvation vs. Deadlock
  - Starvation: thread waits indefinitely
    - » Example, low-priority thread waiting for resources constantly in use by high-priority threads
  - Deadlock: circular waiting for resources
    - » Thread A owns Res I and is waiting for Res 2 Thread B owns Res 2 and is waiting for Res I



- Deadlock ⇒ Starvation but not vice versa
  - » Starvation can end (but doesn't have to)
  - » Deadlock can't end without external intervention

# Bridge Crossing Example



- Each segment of road can be viewed as a resource
  - Car must own the segment under them
  - Must acquire segment that they are moving into
- For bridge: must acquire both halves
  - Traffic only in one direction at a time
  - Problem occurs when two cars in opposite directions on bridge: each acquires one segment and needs next
- If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)
  - Several cars may have to be backed up
- Starvation is possible
  - East-going traffic really fast  $\Rightarrow$  no one goes west

## Conditions for Deadlock

Deadlock not always deterministic – Example 2 mutexes:

| Thread A | <u>Thread E</u> |
|----------|-----------------|
| x.P();   | y.P();          |
| y.P();   | x.P();          |
| y.V();   | x.V();          |
| x.V();   | y.V();          |

- Deadlock won't always happen with this code
  - » Have to have exactly the right timing ("wrong" timing?)
  - » So you release a piece of software, and you tested it, and there it is, controlling a nuclear power plant...
- Deadlocks occur with multiple resources
  - Means you can't decompose the problem
  - Can't solve deadlock for each resource independently
- Example: System with 2 disk drives and two threads
  - Each thread needs 2 disk drives to function
  - Each thread gets one disk and waits for another one

# Four requirements for Deadlock

#### Mutual exclusion

- Only one thread at a time can use a resource.

#### Hold and wait

 Thread holding at least one resource is waiting to acquire additional resources held by other threads

#### No preemption

 Resources are released only voluntarily by the thread holding the resource, after thread is finished with it

#### Circular wait

- There exists a set  $\{T_1, ..., T_n\}$  of waiting threads
  - »  $T_1$  is waiting for a resource that is held by  $T_2$
  - »  $T_2$  is waiting for a resource that is held by  $T_3$
  - » ...
  - »  $T_n$  is waiting for a resource that is held by  $T_1$

# Resource-Allocation Graph

- System Model
  - A set of Threads  $T_1, T_2, \ldots, T_n$
  - Resource types  $R_1, R_2, \ldots, R_m$ CPU cycles, memory space, I/O devices
  - Each resource type R<sub>i</sub> has W<sub>i</sub> instances
  - Each thread utilizes a resource as follows:
    - » Request() / Use() / Release()



- Resource-Allocation Graph:
  - V is partitioned into two types:
    - »  $T = \{T_1, T_2, ..., T_n\}$ , the set threads in the system.
    - »  $R = \{R_1, R_2, ..., R_m\}$ , the set of resource types in system
  - request edge directed edge  $T_1 \rightarrow R_j$
  - assignment edge directed edge  $R_j \rightarrow T_i$

## Resource Allocation Graph Examples

#### • Recall:

- request edge directed edge  $T_1 \rightarrow R_i$
- assignment edge directed edge  $R_i \rightarrow T_i$







Simple Resource Allocation Graph

Allocation Graph With Deadlock

Allocation Graph
With Cycle, but
No Deadlock
Lec 11.24

## Administrivia

- Midterm # I
  - regrade requests are due on 10/9 at 11:59pm
- Upcoming Deadlines:
  - Project | Code due | 10/5 (this Friday)
  - Project | Final Report due | 10/8 (next Monday)
  - HW2 due 10/8 (next Monday)



# Four requirements for Deadlock

#### Mutual exclusion

- Only one thread at a time can use a resource.

#### Hold and wait

 Thread holding at least one resource is waiting to acquire additional resources held by other threads

### No preemption

 Resources are released only voluntarily by the thread holding the resource, after thread is finished with it

#### Circular wait

- There exists a set  $\{T_1, ..., T_n\}$  of waiting threads
  - »  $T_1$  is waiting for a resource that is held by  $T_2$
  - »  $T_2$  is waiting for a resource that is held by  $T_3$
  - » ...
  - »  $T_n$  is waiting for a resource that is held by  $T_1$

# Dining Philosophers Problem





- Five chopsticks/Five philosophers
  - Free-for all: Philosopher will grab any one they can
  - Need two chopsticks to eat
- What if all grab at same time?
  - Deadlock!
- How to fix deadlock?
  - Make one of them give up a chopstick (Hah!)
  - Eventually everyone will get chance to eat
- How to prevent deadlock?
  - Never let philosopher take last chopstick if no hungry philosopher has two chopsticks afterwards

## Review: Train Example (Wormhole-Routed Network)

- Circular dependency (Deadlock!)
  - Each train wants to turn right
  - Blocked by other trains
  - Similar problem to multiprocessor networks
- Fix? Imagine grid extends in all four directions
  - Force ordering of channels (tracks)
    - » Protocol: Always go east-west first, then north-south
  - Called "dimension ordering" (X then Y)



# Methods for Handling Deadlocks



- Allow system
  - Requires c
  - Some tech terminating
- Ensure that s
  - Need to n
  - Selectively



- Ignore the problem and pretend that deadlocks never occur in the system
  - Used by most operating systems, including UNIX

# Deadlock Detection Algorithm

- Only one of each type of resource ⇒ look for loops
- More General Deadlock Detection Algorithm
  - Let [X] represent an m-ary vector of non-negative integers (quantities of resources of each type):

See if tasks can eventually terminate on their own

```
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
    done = true
    Foreach node in UNFINISHED {
        if ([Request<sub>node</sub>] <= [Avail]) {
            remove node from UNFINISHED
            [Avail] = [Avail] + [Alloc<sub>node</sub>]
            done = false
        }
    }
} until(done)
```

Nodes left in UNFINISHED ⇒ deadlocked



## What to do when detect deadlock?

- Terminate thread, force it to give up resources
  - In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
  - Shoot a Zax
  - But, not always possible killing a thread holding a mutex leaves world inconsistent
- Preempt resources without killing off thread
  - Take away resources from thread temporarily
  - Doesn't always fit with semantics of computation
- Roll back actions of deadlocked threads
  - Hit the rewind button, pretend last few minutes never happened
  - For bridge example, make one car roll backwards (may require others behind him)
  - Common technique in databases (transactions)
  - Of course, if you restart in exactly the same way, may reenter deadlock once again
- Many operating systems use other options

# Resource Requests over Time

- Applications usually don't know exactly when/what they're going to request
- Resources are taken/released over time



# Techniques for Preventing Deadlock

- Infinite resources
  - Include enough resources so that no one ever runs out of resources. Doesn't have to be infinite, just large
  - Give illusion of infinite resources (e.g. virtual memory)
  - Examples:
    - » Bay bridge with 12,000 lanes. Never wait!
    - » Infinite disk space (not realistic yet?)
- No Sharing of resources (totally independent threads)
  - Often true (most things don't depend on each other)
  - Not very realistic in general (can't guarantee)
- Don't allow waiting
  - How the phone company avoids deadlock
    - » Call to your Mom in Toledo, works its way through the phone lines, but if blocked get busy signal.
      - Or straight to voicemail on cell phones
  - Technique used in Ethernet/some multiprocessor nets
    - » Everyone speaks at once. On collision, back off and retry
  - Inefficient, since have to keep retrying
    - » Consider: driving to San Francisco; when hit traffic jam, suddenly you're transported back home and told to retry!

3/1/17

# Techniques for Preventing Deadlock (cont'd)

- Make all threads request everything they'll need at the beginning.
  - Problem: Predicting future is hard, tend to over-estimate resources
  - Example:
    - » If need 2 chopsticks, request both at same time
    - » Don't leave home until we know no one is using any intersection between here and where you want to go; only one car on the Bay Bridge at a time
- Force all threads to request resources in a particular order preventing any cyclic use of resources
  - Thus, preventing deadlock
  - Example (x.P, y.P, z.P,...)
    - » Make tasks request disk, then memory, then...
    - » Keep from deadlock on freeways around SF by requiring everyone to go clockwise

# Bankers Algorithm

- What if you don't know the order/amount of requests ahead of time?
- Must assume some worst-case 'max' resource needed by each process
- Toward right idea:
  - State maximum resource needs in advance
  - Allow particular thread to proceed if:
     (available resources #requested) ≥ max
     remaining that might be needed by any thread
  - Invariant: At all times, every request would succeed
    - » Really conservative!

# Banker's Algorithm for Preventing Deadlock

• Invariant: At all times, there exists some order of requests that would succeed.

- How to implement this?
  - Allocate resources dynamically
    - » Evaluate each request and grant if some ordering of threads is still deadlock free afterward
  - Use deadlock detection algorithm presented earlier:
    - » BUT: Assume each process needs "max" resources to finish

```
[Avail] = [FreeResources]
   Add all nodes to UNFINISHED
   do {
        done = true
        Foreach node in ONFINISHED {
        if ([Max<sub>node</sub>]-[Alloc<sub>node</sub>] <= [Avail]) {
            remove node from UNFINISHED
            [Avail] = [Avail] + [Alloc<sub>node</sub>]
            done = false
        }
      }
    }
   until(done)
```

# Banker's Algorithm: Key Properties

- Banker's algorithm (less conservative):
  - Allocate resources dynamically
    - » Evaluate each request and grant if some ordering of threads is still deadlock free afterward
    - » Technique: pretend each request is granted, then run deadlock detection algorithm, substituting  $([Max_{node}]-[Alloc_{node}] \leq [Avail]) \text{ for } ([Request_{node}] \leq [Avail])$  Grant request if result is deadlock free (conservative!)
    - » Keeps system in a "SAFE" state, i.e. there exists a sequence  $\{T_1, T_2, ..., T_n\}$  with  $T_1$  requesting all remaining resources, finishing, then  $T_2$  requesting all remaining resources, etc..
  - Algorithm allows the sum of maximum resource needs of all current threads to be greater than total resources

# Banker's Algorithm Example





- Banker's algorithm with dining philosophers
  - "Safe" (won't cause deadlock) if when try to grab chopstick either:
    - » Not last chopstick
    - » Is last chopstick but someone will have two afterwards
  - What if k-handed philosopher? Don't allow if:
    - » It's the last one, no one would have k
    - » It's 2<sup>nd</sup> to last, and no one would have k-I
    - » It's 3<sup>rd</sup> to last, and no one would have k-2



**>>** ...

# Deadlock Prevention – The Reality

- Deadlock Prevention is HARD
  - How many resources will each thread need?
  - How many total resources are there?
- Also Slow/Impractical
  - Matrix of resources/requirements could be big and dynamic
  - Re-evaluate on every request (even for small/non-contended)
  - Banker's algorithm assumes everyone asks for max
- REALITY
  - Most OSs don't bother
  - Programmers job to write deadlock-free programs (e.g. by ordering all resource requests).

# Summary

- Starvation (thread waits indefinitely) versus Deadlock (circular waiting for resources)
- Four conditions for deadlocks
  - Mutual exclusion
    - » Only one thread at a time can use a resource
  - Hold and wait
    - » Thread holding at least one resource is waiting to acquire additional resources held by other threads
  - No preemption
    - » Resources are released only voluntarily by the threads
  - Circular wait
    - $\gg$  3 set  $\{T_1, \ldots, T_n\}$  of threads with a cyclic waiting pattern
- Techniques for addressing Deadlock
  - Allow system to enter deadlock and then recover
  - Ensure that system will *never* enter a deadlock
  - Ignore the problem and pretend that deadlocks never occur in system