CS305 Computer Architecture

What is Computer Architecture?

Why Study Computer Architecture?

Bhaskaran Raman

Room 406, KR Building

Department of CSE, IIT Bombay

http://www.cse.iitb.ac.in/~br

Computer Architecture

- "Architecture"
 - The art and science of designing and constructing buildings
 - A style and method of design and construction
 - Design, the way components fit together
- Computer Architecture
 - The overall design or structure of a computer system,
 including the hardware and the software required to run it,
 especially the internal structure of the microprocessor

Pre-Requisites

- Data Structures and Algorithms (CS213)
 - Arrays, pointers, stack, queue
- Logic Design (CS210)
 - Switching theory
 - Number systems, computer arithmetic
 - Logic circuits, combinatorial logic, K-maps
 - Finite state machines in hardware
 - Arithmetic unit, control unit design
 - CAD, FPGA, VHDL

Course Contents

- Computer organization, von Neumann arch.
- Instruction set design
- Measuring performance, Amdahl's law, CPI
- Datapath and control path
- Pipelining, hazards

Course Contents (continued)

- Memory hierarchy, cache design, cache performance
- Disk storage
- RAID
- Error correction codes, Hamming codes
- I/O Buses

Relation to Other Topics/Courses

Text Book References 4 edn: ARM

- "Computer Organization and Design: The MIPS Hardware/Software Interface", 3rd edition, David A. Patterson and John L. Hennessy, Elsevier (Restricted South Asia Edition).
 - 5th edition available, ok to follow, I'll follow 3rd edn. closely
- "Computer Architecture and Organization", John P. Hayes, 3rd edition, McGraw Hill.
- Low-price editions, e-books available on amazon/flipkart, buy them, no piracy please!
- Notes from other computer architecture courses

Why Study Computer Architecture?

Q: Why do you think Computer Architecture is important (or unimportant)?

Identify Computer Architecture around you

Example-1: This Video

Example-2: Cell-Phones to PCs

A variety of personal devices: the continuum between cell-phones and PCs

Example-3: Servers, Data Centers, Cloud Computing

Data storage and computing in the cloud: backbone of major Internet services

Example-4: Supercomputers

Specialized but important applications, highend research

Example-5: Embedded Computers

Small but large in number, very critical roles Home appliances, vehicles, industry automation

Personal Computing Devices in Numbers

Source: Gartner study, Apr 2013

Growth in Processing Power

Moore's Law

Summary: Why Study Computer Architecture?

- Computing central to information age
- Computer systems range from very small to very large, low-end to super-computers
- New computing devices, end-user devices
 - How are they designed?
 - What affects their performance?
 - What are the performance optimization metrics?
 - How to optimize these metrics?