1. Espaço vetorial

01 Defina duas operações em \mathbb{R} da seguinte forma:

$$x \oplus y = xy$$

 $\alpha \odot x = x^{\alpha}$

Mostre que $(\mathbb{R},\!\oplus,\!\odot)$ é um espaço vetorial sobre \mathbb{R} provando as oito propriedades.

02 Defina duas operações em $\mathbb R$ da seguinte forma:

$$x \oplus y = x + y$$
$$\alpha \odot x = x^{\alpha + 1}$$

Mostre que $(\mathbb{R}, \oplus, \odot)$ não é um espaço vetorial sobre \mathbb{R} .

2. Subespaço vetorial e conjunto gerador

03 i) Verifique se os conjuntos são subespaços vetoriais e, em caso afirmativo, ache um conjunto de geradores para cada subespaço.

a)
$$W = \{(x, y, z, t) \in \mathbb{R}^3 : x - y - z + t = 0\}.$$

b)
$$W = \{(x, y, z) \in \mathbb{R}^3 : x + y = z\}$$

$$\mathrm{c)}\ \ W = \Big\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,\mathbb{R}) : a = dec = -b \Big\}.$$

d)
$$W = \{ax^2 + bx + c \in P_2(\mathbb{R}) : p(1) = 0\}.$$

e)
$$W = \{(x, y) \in \mathbb{R}^2 : y \text{ \'e irracional}\}.$$

ii) Mostre que os subconjuntos são subespaços vetoriais.

a)
$$W = \{p(x) \in P(\mathbb{R}) : p(x) + p'(x) = 0\}.$$

b)
$$W = \left\{ f \in C([a,b]) : \int_a^b f(x) dx = 0 \right\}.$$

04 Consideremos no \mathbb{R}^3 os seguintes subespaços vetoriais W=[(1,0,0),(1,1,1)] e U=[(0,1,0),(0,0,1)]. Determinar os geradores de $W\cap U$.

05 a) É verdade que se W e U são subespaços vetoriais de V, então $W \cup U$ é subespaço vetorial de V? Caso negativo, apresente um contra-exemplo.

b) SejamWe U subespaços vetoriais de V. Prove que $W\cup U$ é um subespaço vetorial de Vse, e somente se, $W\subset U$ ou $U\subset W.$

06 Determinar os geradores de $V,\ U,\ V\cap U$ e V+U, sabendo que

$$\begin{split} V &= \{(x,y,z) \in \mathbb{R}^3 : x+z = 0 \text{ e } x-2y = 0\}, \\ U &= \{(x,y,z) \in \mathbb{R}^3 : x+2y-3z = 0\}. \end{split}$$

07 Sejam $v,u\in\mathbb{R}^2$, com $v,u\neq(0,0)$. Se não existe nenhum $\alpha\in\mathbb{R}^*$ tal que $v=\alpha u$, então mostre que $\mathbb{R}^2=[v]\oplus[u]$.

08 Sejam W,U e Z subespaços vetoriais de um mesmo espaço vetorial V para os quais valem o seguinte: $W\cap (U+Z)=U\cap Z=\{0_V\}.$ Provar que se $w+u+z=0_V,$ com $w\in W,~u\in U,~z\in W,$ então $u=v=w=0_V.$

09 Sejam W_1 e W_2 subespaços vetoriais de um espaço vetorial V. Prove que $V=W_1\oplus W_2$ se, e somente se,

para cada vetor $v \in V$ existem únicos vetores $w_1 \in W_1$ e $w_2 \in W_2$ tais que $v = w_1 + w_2$.

Professor: Marcelo Alberti

3. LD, LI e Base

10 Verifique se os subconjuntos do espaço vetorial V é linearmente dependente ou independente.

a)
$$\{(1,1,1),(1,0,1),(1,0,-2)\}, V = \mathbb{R}^3.$$

b)
$$\{(0,0,0),(1,2,3),(4,1,-2)\}, V = \mathbb{R}^3.$$

c)
$$\{x^4 + x - 1, x^3 - x + 1, x^2 - 1\}, V = P(\mathbb{R}).$$

d)
$$\{1, e^x, e^{2x}\}, V = C([0,1]).$$

e)
$$\{1, e^x, xe^x\}, V = C([0,1]).$$

f) Determine m e n para que os vetores $\{(6,2,n),(3,m+n,m-1)\}$ sejam LI.

$$\mathrm{g})\ \left\{ \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 5 \\ -3 & 4 \end{pmatrix} \right\}, \ V = M(2,\mathbb{R}).$$

h)
$$\{(7,-3)(1,2),(-21,9)\}, V = \mathbb{R}^2.$$

11 Se u,ve w são vetores de um espaço vetorial V tais que $u\in [w]$ e $v\in [w]$, mostrar que $\{u,v\}$ é linearmente dependente.

12 Mostrar que o conjunto $\{u, v, w\}$ de vetores de um espaço vetorial V for LI, o mesmo acontecerá com o conjunto $\{u+v, u+w, v+w\}$.

13 Mostre que o conjunto $\{1,\cos x\,,\cos(2x)\}$ de vetores de $C([-\pi,\pi])$ é LI.

14 Se $\{v_1,\dots,v_m,u_1,\dots,u_n\}$ é um subconjunto LI de um espaço vetorial V,então mostre que $[v_1,\dots,v_m]\cap [u_1,\dots,u_n]=\{0_V\}.$

15 Provar que o conjunto de funções $\{e^{at}\cos(bt), e^{at}\sin(bt)\}$, onde $a, b \in \mathbb{R}$ e $b \neq 0$, é LI.

16 Encontre uma base e a dimensão de cada subespaço vetorial:

a)
$$W = \{(x, y, z) \in \mathbb{R}^3 : x - 2y = 0\}$$

b)
$$W = \{A \in M(2, \mathbb{R}): A = A^t\}.$$

17 No espaço vetorial \mathbb{R}^3 considere os seguintes subespaços vetoriais

$$V = \{(x,y,z): y-2z=0\}, \qquad U = \{(x,y,z): x=0\} \qquad \mathrm{e}$$

$$W = [(1,1,0), (0,0,2)].$$

Determinar uma base e a dimensão de cada um dos seguintes subespaços vetoriais: $V, U, W, V \cap U, U + W$.

18 Determinar uma base e a dimensão do espaço solução do seguinte sistema de equações lineares

$$\begin{cases} x - y - z - t = 0 \\ 2x + y + t = 0 \\ z - t = 0 \end{cases}$$

19 Mostrar que as matrizes

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} e \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

formam uma base de $M(2, \mathbb{R})$.

2º Lista de Exercícios – Ciências da Computação Álgebra Linear – 6876 – Turma 2

20 Consideremos o subespaço vetorial de $M(3,\mathbb{R})$ constituído das matrizes simétricas. Determinar uma base desse subespaço vetorial.

21 Seja $V = M(2, \mathbb{R})$. Considere

$$W_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : b = -a \right\} \in W_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : c = -a \right\}.$$

- a) Prove que W_1 e W_2 são subespaços vetoriais de V.
- b) Determine as dimensões de $W_1,\ W_2,\ W_1\cap W_2$ e $W_1+W_2.$
- 22 Suponha que $\{v_1,\dots,v_n\}$ é uma base de um espaço vetorial V. Motre que $\{v_1,v_1+v_2,\dots,v_1+v_2+\cdots v_n\}$ também é uma base de V.
- 23 SejamVe Uespaços vetoriais sobre $\mathbb R$ de dimensões me n,respectivamente. Considere o epaço vetorial $V\times U=\{(v,u) \colon v\in V \text{ e } u\in U\}$ cujas operações adição e multiplicação por número real são definidas por

$$(v_1,u_1)\oplus (v_2,u_2)=(v_1+v_2,u_1+u_2)$$

$$\alpha\odot (v,u)=(\alpha v,\alpha u)$$

Se $\{v_1,\dots,v_m\}$ e $\{u_1,\dots,u_n\}$ são bases de Ve U,nessa ordem, prove que

$$\{(v_1,0_U),\dots,(v_m,0_U),(0_V,u_1),\dots,(0_V,u_n)\}$$

é uma base para $V \times U$.

- 24 Sejam W e U subespaços vetoriais de um espaço vetorial de dimensão n. Supondo que $\dim W > \frac{n}{2}$ e $\dim U > \frac{n}{2}$, prove que $W \cap U \neq \{0_V\}$.
- 25 Em cada item, encontrar uma base para os subespaços vetoriais $U,\ W,\ U\cap W$ e U+W e verifique se $V=U\oplus W.$
- a) $U = [(1,0,0), (1,1,1)], W = [(0,1,0), (0,0,1)] \in V = \mathbb{R}^3$.
- b) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\},\$ $W = [(1.3.0), (0.4.6)]eV = \mathbb{R}^3.$
- c) $U=\{A\in M(2,\mathbb{R})\mid A=A^t\}, \qquad W=\begin{bmatrix}\begin{bmatrix}1&1\\0&1\end{bmatrix}\end{bmatrix}, \ V=M(2,\mathbb{R}).$
- d) $U = [x^3 + 4x^2 x + 3, x^3 + 5x^2 + 5, 3x^3],$ $W = [x^3 + 4x^2, x - 1, 1] \text{ e } V = P_2(\mathbb{R}).$
- 26 Sejam W,U,Z subespaços vetoriais de V. Determine uma fórmula para a dimensão do subespaço vetorial W+U+Z.
- Base ordenada, coordenadas e Matriz mudança de base
- 27 O vetor $z\in\mathbb{C}$ possui coordenadas $(1,-2)_B$ na base canônica $B=\{1,i\}$. Determinar as coordenadas desse mesmo vetor em relação à seguinte base $C=\{1-i,1+i\}$.
- 28 Determinar as coordenadas do polinômio x^3 em relação à seguinte base de $P_3(\mathbb{R})$:

$$B = \{1, 2 - x, x^2 + 1, 1 + x + x^3\}.$$

29 A matriz $A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$ possui coordenadas $(1,-1,2,3)_B$ em relação a base canônica $B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$. Determine as coordenadas dessa mesma matriz em relação à base

Professor: Marcelo Alberti

$$C = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

- 30 Determinar as coordenadas do polinômio $p(x)=1+2x-x^3\in P_3(\mathbb{R})$ em relação à base:
- a) canônica $B = \{x^3, x^2, x, 1\}$ desse espaço.
- b) $C = \{1, 1-x, 1-x^2, 1-x^3\}.$
- 32 Achar a matriz de mudança da base $C = \{(1,1,0), (0,1,0), (0,0,3)\}$ para a base canônica B do \mathbb{R}^3 .
- 33 No espaço vetorial \mathbb{R}^3 consideremos as bases $B=\{e_1,e_2,e_3\}$ e $C=\{g_1,g_2,g_3\}$ relacionadas da seguinte forma:

$$g_1 = e_1 + e_3$$

$$g_2 = 2e_1 + e_2 + e_3$$

$$g_3 = e_1 + 2e_2 + e_3$$

- a) Determinar a matriz de mudança de B para C e de C para B.
- b) Se as coordenadas de um vetor v em relação à base B são $(1,1,2)_B$, quais as coordenadas desse vetor em relação à base C?
- 34 A matriz de mudança de uma base B do \mathbb{R}^2 para a base $C = \{(1,1), (0,2)\}$ desse mesmo espaço é $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$. Determinar a base B.

Gabarito

Professor: Marcelo Alberti

03. a)[(1,1,0,0), (1,0,1,0), (-1,0,0,1)], b) [(1,0,1), (0,1,1)]. c)
$$\left\langle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\rangle$$
.d) $\left\langle -x^2 + x, -x^2 + 1 \right\rangle$. e) Não.

04.
$$W \cap U = \langle (0,1,1) \rangle$$
.

05. Não. Tome
$$W=\langle (0,1)\rangle$$
 e $U=\langle (0,1)\rangle$. Então, $(1,0),(0,1)\in W\cup U,$ mas $(1,0)+(0,1)=(1,1)\notin W\cup U.$

06.
$$V = \langle (2,1,-2) \rangle, U = \langle (-2,1,0), (3,0,1) \rangle.$$

10. a) LI. b) LD. c) LI. d) LI. e) LI. f)
$$m \neq 1$$
 e $n \neq 0$. g) LD. h) LD.

16. a)
$$\{(2,1,0),(0,0,1)\}$$
 e dim $W=2$.

b)
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 e dim $W=3$.

17.
$$V = \langle (1,0,0), (0,2,1) \rangle \operatorname{edim} V = 2.$$

 $U=\langle (0,1,0),(0,0,1)\rangle \mathrm{edim}\, U=2.\quad \dim W=2.\quad V\cap U=\langle (0,2,1)\rangle \mathrm{edim}\, V\cap U=1.$

$$U+W=\langle (0,1,0),(1,1,0),(0,0,2)\rangle \mathbf{e} U+W=\mathbb{R}^3\Rightarrow \dim U+W=3.$$

18.
$$\{\left(\frac{1}{3},-\frac{5}{3},1,\!1\right)\}{\rm edim}\,S=1.$$

$$20.\ \Big\{\begin{bmatrix}1&0\\0&0\end{bmatrix},\begin{bmatrix}0&1\\1&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}\Big\}.$$

21. b)
$$\dim W_1=\dim W_2=3,\quad \dim W_1\cap W_2=2$$
e
$$\dim W_1+W_2=4.$$

26.
$$\dim(W+U+Z) = \dim W + \dim U + \dim Z - \dim W \cap U - \dim W \cap Z - \dim U \cap Z + \dim W \cap U \cap Z.$$

27.
$$z = (\frac{3}{2}, -\frac{1}{2})_C$$
.

29.
$$A = \left(-\frac{5}{2}, \frac{1}{2}, \frac{3}{2}, 3\right)_C$$
.

30. a)
$$p(x) = (-1,0,2,1)_B$$
. b) $p(x) = (2,-2,0,1)_C$

33.a)
$$M_C^B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
 e lembre que $M_B^C = M_C^{B^{-1}}$. b)

$$(5,5,4)_C$$
.

34.
$$B = \{(1, \frac{1}{3}), (0, \frac{2}{3})\}.$$