Étude des niveaux de méthylation approche globale LUMA

Boraas et al. 2016, PLoS ONE

Analyse globale des niveaux de méthylation

Site de reconnaissance

5′...C^VCGG...3′

3′...GGC<u>,</u>C...5′

Mspl: Insensible à la méthylation Hpall: Sensible à la méthylation

LUMA (LUMINOMETRIC METHYLATION ASSAY)

- Méthode pour l'analyse globale de la méthylation
- Détermination du niveau de méthylation : rapide (6h) & quantitative
- Aucune information concernant la localisation ou la répartition de la méthylation de l'ADN

Quantification du nombre de coupures par des enzymes de restriction sensibles ou non à la méthylation

But: comparer les niveaux de méthylations globaux entre différents échantillons

LUMA (LUMINOMETRIC METHYLATION ASSAY)

Quantification du nombre de coupures par des enzymes de restriction (Mspl & Hpall) sensibles ou non à la méthylation, par rapport à un étalon interne (EcoRI)

LUMA: STRATÉGIE

Protocole de pyroséquençage

- Chaque personne a un échantillon digéré avec 1) Mspl ou 2) Hpall à déposer dans les puits de la plaque 24 puits
- Remplir la cassette selon les quantités indiquée par le programme :
 - puits E = mixE 119μl
 - puits S = mixS 119μl
 - puits A = nucléotide A 57μl
 - puits T = nucléotide T 57μl
 - puits C = nucléotide C et G 57μl de C, 57μl de G
 - puits G = 100μl H₂O

- Ouvrir délicatement le capot du pyroséquenceur et mettre la cassette.
- Dans chaque puits de la plaque de pyro, déposer 20µl d'annealing buffer et 20 µl de produit de digestion.
- Lancer le programme à partir de la clé usb.
- Récupération des résultats et analyses

Protocole d'analyse

Dans le logiciel du pyroséquenceur, regarder les profils :

Pics A, C et T doivent être < pic S

Pic G = 0

Pics A et T finaux pas trop grand.

Pic C Mspl doit être plus grand que pic C Hpall du même échantillon.

Tools – Export Peak Heights – All wells, row en format .csv

Ouvrir Excel, ouvrir le fichier .csv, convertir les (;), remplacer les (.) par des (,).

Ajouter des noms aux colonnes : A - C - T - C' - H₂O - A' - T' Faire les calculs :

- A/T et (A+A')/(T+T') reflètent la digestion **EcoRI** et doivent être proches de 1 (≥1 car A est légèrement auto luminescent)
- Calculer la moyenne AT : moyenne((A+A'):(T+T'))
- (C+C')/(moyenne AT) reflète Msp/Eco ou Hpa/Eco.
- Le ratio Msp/Eco doit être constant entre échantillons. Msp/Eco doit être ≥ Hpa/Eco.

Faire le calcul (Hpa/Eco)/(Msp/Eco) = **rapport Hpa/Msp** représentant le nombre de sites non méthylé sur le nombre de site total. Une méthylation de 100% donne un rapport de 0 et une absence de méthylation un rapport de 1.

Le **pourcentage de méthylation** quant à lui se calcule selon la formule : %meDNA=100*(1-(Hpa/Msp)), ce qui donne une représentation graphique plus logique.

Résultats

Run1																		
	Echantillon	Α	С	Т	C	H2O	A'	T'	EcoRI (A+A')/(T+T')	(A+A')	(T+T')	moyenne AT	Msp/Eco (C+C')/moyAT	Hpa/Eco (C+C')/moyAT	Hpa/Msp (Hpa/Eco)/(Msp/Eco)	% méthylation		
	J1	3,58	14,54	3,19	0,89	0,06	1,91	1,39	1,20	5,49	4,58	5,04	3,06		0,65	34,5		
[TKO	5,66	20,73	5,26	0,79	0,06	2,57	2,09	1,12	8,23	7,35	7,79	2,76		1,04	-3,7		
[MEFs	9,61	34,05	8,62	0,77	0,03	3,39	3,3	1,09	13	11,92	12,46	2,79		0,28	71,7		
MspI	MEFS KO	5,52	28,88	5,19	0,8	0,12	1,72	1,53	1,08	7,24	6,72	6,98	4,25		0,32	68,3		
Σ	J1	3,85	15,9	3,64	0,93	0,14	2,19	1,58	1,16	6,04	5,22	5,63	2,99		0,64	35,6		
[TKO	5,96	22,36	5,66	0,98	0,01	2,78	2,3	1,10	8,74	7,96	8,35	2,80		1,01	-1,3		
[MEFs	9,29	31,51	7,87	0,71	0,04	3,45	3,29	1,14	12,74	11,16	11,95	2,70		0,29	70,5		
	MEFs KO	5,23	27,81	4,82	0,8	0,12	1,57	1,37	1,10	6,8	6,19	6,50	4,40		0,32	68,4		
	1	3,37	9,4	3,41	0,6	0	1,82	1,37	1,09	5,19	4,78	4,99		2,01				
	TKO	6,02	21,25	5,22	0,57	0	2,15	1,85	1,16	8,17	7,07	7,62		2,86				
[MEFs	9,61	9,52	8,64	0,25	-0,04	3,35	3,07	1,11	12,96	11,71	12,34		0,79				
Πα	MEFS KO	4,82	7,56	4,51	0,33	0,15	1,16	1,21	1,05	5,98	5,72	5,85		1,35				
윤	J1	3,79	10,12	3,86	0,93	0,05	2,13	1,7	1,06	5,92	5,56	5,74		1,93				
[TKO	6,21	22,1	5,47	0,73	0,03	2,43	2,02	1,15	8,64	7,49	8,07		2,83				
	MEFs	9,41	9,51	8,66	0,29	0,05	3,43	3,18	1,08	12,84	11,84	12,34		0,79				
	MEFS KO	4,28	6,66	3,98	0,37	0,11	0,93	0,92	1,06	5,21	4,9	5,06	J	1,39				
		% sites CCGG méthylés					Щ .	100.0										
		Run 1	Run 2	Moyenne		100,0												
	J1	34,5	35,6	35,1				90,0										
	TKO	-3,7	-1,3	-2,5				80,0										
	MEFs	71,7	70,5	71,1											71,1	1	68,4	
	MEFs KO	68,3	68,4	68,4			-8	70,0									00,4	
							CCGG méthylés	60,0										1
							Ęŧ.											
							E	50,0										1
							9	40.0	21	5,1								1
							8	40,0		٠,١								
							e S	30,0										
							∺											
							%	20,0										
								10,0										
							\Box											
								0,0 —		l1			TKO		MEF	s	MEFs KO	
										, -			.100		1410	-	WEISIO	
												1	1					

BISULFITE PYROSÉQUENÇAGE

Méthode d'analyse de la méthylation à un locus précis

Analyse et quantification du niveau de méthylation d'un ou plusieurs CpG consécutifs

Méthode basée sur la conversion bisulfite qui ne permet pas de différencier 5-mC et 5-hydroxy-mC