

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 5 – Cinématique du solide indéformable

Centrifugeuse humaine développée par le CNRS / MEDES [?]

Modélisation cinématique

Savoir

Savoirs:

_

Ce document est en évolution permanente. Merci de signaler toutes erreurs ou coquilles.

1 Avant propos

- 1.1 Notion de solide indéformable
- 1.2 Notion de point appartenant à un solide

2 Trajectoire d'un point appartenant à un solide

Trajectoire d'un point dans l'espace

Soit un point P se déplaçant dans un repère \mathcal{R}_0 . La trajectoire du point P est définie par la courbe $\mathcal{C}(t)$ paramétrée par le temps t. On a :

 $\forall t \in \mathbb{R}^+, \overrightarrow{OM(t)} = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}_{\mathscr{R}_0} = x(t)\overrightarrow{x_0} + y(t)\overrightarrow{y_0} + z(t)\overrightarrow{z_0}$

Centrifugeuse

Le paramétrage de la centrifugeuse est donnée ci dessous :

Les paramètres constants du système sont les suivants :

$$-\overrightarrow{O_0O_1} = a\overrightarrow{i_1}$$

$$-\overrightarrow{O_1G} = b\overrightarrow{i_2} + c\overrightarrow{k_2}$$

La trajectoire du point G dans le repère \mathcal{R}_0 est donnée par le vecteur

$$\overrightarrow{O_0G}(t) = \overrightarrow{O_0O_1} + \overrightarrow{O_1G} = a \overrightarrow{i_1} + b \overrightarrow{i_2} + c \overrightarrow{k_2}$$

Il faut alors projeter les vecteurs dans \mathcal{R}_0 :

$$\overrightarrow{O_0G}(t) = a\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) + b\left(\cos\beta(t)\overrightarrow{i_1} - \sin\beta(t)\overrightarrow{k_1}\right)$$

$$= a\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) + b\left(\cos\beta(t)\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) - \sin\beta(t)\overrightarrow{k_0}\right)$$

$$= \begin{bmatrix} a\cos\alpha(t) + b\cos\beta(t)\cos\alpha(t) \\ a\sin\alpha(t) + b\cos\beta(t)\sin\alpha(t) \\ -\sin\beta(t) \end{bmatrix}_{\mathcal{R}_0}$$

On a ainsi l'équation paramétrique de la position du point *G*.

Exemple

3 Vitesse d'un point appartenant à un solide

3.1 Le vecteur vitesse

3.1.1 Définition

Vitesse d'un point appartenant à un solide

Soit un solide S_0 auquel on associe le repère \mathcal{R}_0 $\left(O_0, \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$. Soit un solide S_1 auquel on associe le repère \mathcal{R}_1 , $\left(O_1, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$. Le solide S_1 est en mouvement par rapport au solide S_0 .

Soit un point P appartenant au solide S_1 . La vitesse du point P appartenant au solide S_1 par rapport au solide S_0 se calcule donc ainsi :

 $\overrightarrow{V(P \in S_1/S_0)}(t) = \left[\frac{d\overrightarrow{O_0P(t)}}{dt} \right]_{\mathcal{R}_0}$

Attention

- Attention à respecter rigoureusement la notation.
- La vitesse dépend du point d'application.
- Attention, « dériver un vecteur par rapport à une base » est différent de « exprimer un vecteur dans une base».

3.1.2 Calcul du vecteur vitesse - Application directe

Soit un avion S_1 repéré par le repère $\mathcal{R}_1\left(O_1,\overrightarrow{i_1},\overrightarrow{j_1},\overrightarrow{k_1}\right)$ en mouvement libre par rapport à un repère $\mathcal{R}_0\left(O_0,\overrightarrow{i_0},\overrightarrow{j_0},\overrightarrow{k_0}\right)$. La position de l'avion dans l'espace est repéré par le vecteur $\overrightarrow{O_0O_1} = x(t)\overrightarrow{i_0} + y(t)\overrightarrow{j_0} + z(t)\overrightarrow{j_0}$ ainsi que par les angles d'Euler.

Calculons la vitesse du point O_1 par rapport à \mathcal{R}_0 :

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \left[\frac{d \overrightarrow{O_0 O_1}(t)}{d t} \right]_{\mathcal{R}_0}$$

Pemarane

Pour dériver le vecteur $\overrightarrow{O_0O_1}(t)$ par rapport au repère \mathcal{R}_0 une méthode consiste en exprimer le vecteur $\overrightarrow{O_0O_1}(t)$ dans \mathcal{R}_0 puis en dériver chacune des composantes.

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \left[\frac{d \left(x(t) \overrightarrow{i_0} + y(t) \overrightarrow{j_0} + z(t) \overrightarrow{j_0} \right)}{dt} \right]_{\mathcal{R}_0} = \left[\frac{d \left(x(t) \overrightarrow{i_0} \right)}{dt} \right]_{\mathcal{R}_0} + \left[\frac{d \left(y(t) \overrightarrow{j_0} \right)}{dt} \right]_{\mathcal{R}_0} + \left[\frac{d \left(z(t) \overrightarrow{k_0} \right)}{dt} \right]_{\mathcal{R}_0} + \left[\frac{d \left(z(t$$

On a:

$$\left[\frac{d\overrightarrow{i_0}}{dt}\right]_{\mathcal{R}_0} = \left[\begin{array}{c} \frac{d1}{dt} \\ \frac{d0}{dt} \\ \frac{d0}{dt} \end{array}\right]_{\mathcal{R}_0} = \overrightarrow{0}$$

Il est est de même pour $\left[\frac{d\overrightarrow{j_0}}{dt}\right]_{\mathscr{R}_0}$ et $\left[\frac{d\overrightarrow{k_0}}{dt}\right]_{\mathscr{R}_0}$.

Remarque

- La dérivée d'un vecteur fixe \overrightarrow{V} exprimé dans une base \mathscr{B}_i par rapport à \mathscr{B}_i est nul. Ainsi, $\left[\frac{d\overrightarrow{i_i}}{dt}\right]_{\mathscr{B}_i} = \overrightarrow{0}$.
- On note par un · la dérivée d'une fonction par rapport au temps : $\left[\frac{dx(t)}{dt}\right] = x(t)$.

Au final, on a donc:

$$\overrightarrow{V(O_1 \in S_1/S_0)} = x(t)\overrightarrow{i_0} + y(t)\overrightarrow{j_0} + z(t)\overrightarrow{k_0}$$

Centrifugeuse

Calculer $\overrightarrow{V(O_1 \in S_1/S_0)}$.

Par définition,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \left[\frac{d \overrightarrow{O_0 O_1}(t)}{d t} \right]_{\Re_0} = \left[\frac{d \left(a \overrightarrow{i_1} \right)}{d t} \right]_{\Re_0} = a \left[\frac{d \overrightarrow{i_1}}{d t} \right]_{\Re_0}$$

On a:

$$\begin{bmatrix} \overrightarrow{d} \, \overrightarrow{i_1} \\ \overrightarrow{dt} \end{bmatrix}_{\mathcal{R}_0} = \begin{bmatrix} \frac{d \left(\cos \alpha(t) \, \overrightarrow{i_0} + \sin \alpha(t) \, \overrightarrow{j_0} \right)}{dt} \end{bmatrix}_{\mathcal{R}_0} = \begin{bmatrix} \frac{d \cos \alpha(t) \, \overrightarrow{i_0}}{dt} \end{bmatrix}_{\mathcal{R}_0} + \begin{bmatrix} \frac{d \sin \alpha(t) \, \overrightarrow{j_0}}{dt} \end{bmatrix}_{\mathcal{R}_0}$$

$$= \frac{d \cos \alpha(t)}{dt} \overrightarrow{i_0} + \cos \alpha(t) \underbrace{\begin{bmatrix} d \, \overrightarrow{i_0}}{dt} \end{bmatrix}_{\mathcal{R}_0} + \frac{d \sin \alpha(t)}{dt} \overrightarrow{i_0} + \sin(t) \underbrace{\begin{bmatrix} d \, \overrightarrow{j_0}}{dt} \end{bmatrix}_{\mathcal{R}_0}$$

$$= -\alpha(t) \sin \alpha(t) \, \overrightarrow{i_0} + \alpha(t) \cos \alpha(t) \, \overrightarrow{j_0} = \alpha(t) \, \overrightarrow{j_1}$$

Ainsi,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \begin{bmatrix} -a\alpha(t)\sin\alpha(t) \\ a\alpha(t)\cos\alpha(t) \\ 0 \end{bmatrix}_{\Re_0} = \begin{bmatrix} 0 \\ a\alpha(t) \\ 0 \end{bmatrix}_{\Re_1}$$

Dans les deux cas, $\overrightarrow{O_0O_1}(t)$ est dérivé par rapport \mathcal{R}_0 mais il s'exprime différemment dans \mathcal{R}_0 et \mathcal{R}_1 .

Exemple

Lorsqu'un point est confondu pour deux solides et qu'il n'y a pas de mouvement relatif entre les solides, (centre d'une liaison pivot ou d'une liaison rotule par exemple) les vitesses sont égales ainsi, ici:

$$\overrightarrow{V(0_1 \in S_1/S_0)}(t) = \overrightarrow{V(0_1 \in S_2/S_0)}(t)$$

Par ailleurs.

$$\overrightarrow{V(0_1 \in S_1/S_2)}(t) = \overrightarrow{0}$$

Remarque

Exemple

3.1.3 Détermination du vecteur vitesse dans les liaisons cinématiques

Lorsque il n'y a pas de degré de liberté de translation dans une liaison, la vitesse au centre de la liaison est nulle. Ainsi :

- si les solides S_1 et S_2 sont en liaison rotule de centre O alors $\overline{V(O \in S_2/S_1)} = \overrightarrow{O}$;
- si les solides S_1 et S_2 sont en liaison pivot de centre O alors $\overrightarrow{V(O \in S_2/S_1)} = \overrightarrow{O}$;
- si les solides S_1 et S_2 sont en liaison rotule à doigt de centre O alors $\overline{V(O \in S_2/S_1)} = \overrightarrow{O}$.

Centrifugeuse humaine

Dans ce cas, on peut affirmer que:

$$\overrightarrow{V(O_0 \in S_1/S_0)} = \overrightarrow{0}$$
 et $\overrightarrow{V(O_1 \in S_2/S_1)} = \overrightarrow{0}$

Attention : ces relations ne sont vraies qu'au centre des liaisons et pour les mouvements entre les deux solides participant à la liaison.

3.2 Vecteur instantané de rotation

3.2.1 Définition

Vitesse instantané de rotation entre deux solides - Vecteur taux de rotation

Soit un solide S_0 auquel on associe le repère \mathcal{R}_0 $\left(O_0, \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$. Soit un solide S_1 auquel on associe le repère \mathcal{R}_1 , $\left(O_1, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$. Le solide S_1 est en mouvement par rapport au solide S_0 .

Les rotations entre le solide 1 et le solide 2 sont paramétrés par les angles d'Euler $\psi(t)$, $\theta(t)$ et $\varphi(t)$.

On appelle vecteur instantané de rotation entre les solides S_0 et S_1 le vecteur

$$\overrightarrow{\Omega(S_1/S_0)} = \psi(t)\overrightarrow{k_0} + \theta(t)\overrightarrow{u} + \varphi(t)\overrightarrow{k_1}$$

 $\psi(t)$, $\theta(t)$ et $\varphi(t)$ sont en rad/s.

- On note sans distinction $\overline{\Omega(S_1/S_0)}$ et $\overline{\Omega(\mathcal{R}_1/\mathcal{R}_0)}$.
- Le vecteur instantané de rotation est indépendant du point d'application.
- On a la relation suivante:

$$\overrightarrow{\Omega(S_1/S_0)} = -\overrightarrow{\Omega(S_0/S_1)}$$

3.2.2 Détermination du vecteur vitesse instantané de rotation dans les liaisons cinématiques

Lorsque il y a pas des degrés de liberté de rotation dans une liaison et que ces degrés de liberté sont paramétrés, on

a:

- si les solides S_1 et S_2 sont en liaison pivot de centre O, d'angle α et d'axe \overrightarrow{k} alors $\Omega(S_2/S_1) = \dot{\alpha} \overrightarrow{k}$;
- si les solides S_1 et S_2 sont en liaison glissière d'axe \overrightarrow{z} , $\Omega(S_2/S_1) = \overrightarrow{0}$;
- si les solides S_1 et S_2 sont en liaison rotule de centre O, et d'orientations $(\psi, \overrightarrow{k}), (\theta, \overrightarrow{u}), (\varphi, \overrightarrow{k_1})$, alors $\Omega(S_2/S_1) = \psi \overrightarrow{k} + \theta \overrightarrow{u} + \varphi \overrightarrow{k_1}$;

- ...

Centrifugeuse

On a:

$$\overrightarrow{\Omega(S_1/S_0)} = \dot{\alpha} \overrightarrow{k_0} \qquad \overrightarrow{\Omega(S_2/S_1)} = \dot{\beta} \overrightarrow{j_1}$$

3.3 Dérivation vectorielle

Dérivation vectorielle

Soient S_0 et S_1 deux solides en mouvements relatifs et \mathcal{R}_0 et \mathcal{R}_1 les repères orthonormés directs associés. Soit \overrightarrow{v} un vecteur de l'espace. On note $\Omega(\mathcal{R}_1/\mathcal{R}_0)$ le vecteur instantané de rotation permettant d'exprimer les rotations entre chacune des deux bases.

La dérivée d'un vecteur dans une base mobile se calcule donc ainsi :

$$\left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathcal{R}_0} = \left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathcal{R}_1} + \overrightarrow{\Omega(\mathcal{R}_1/\mathcal{R}_0)} \wedge \overrightarrow{v}$$

Centrifugeuse

Calcul de $V(O_1 \in S_1/S_0)$.

On rappelle que:

$$\overrightarrow{V(O_1 \in S_1/S_0)} = a \left[\frac{d \overrightarrow{i_1}}{d t} \right]_{\mathscr{R}_0}$$

Le calcul de $\left[\frac{d\overrightarrow{i_1}}{dt}\right]_{\Re_0}$ peut donc être réalisé ainsi :

$$\left[\frac{d\overrightarrow{i_1}}{dt}\right]_{\mathcal{R}_0} = \underbrace{\left[\frac{d\overrightarrow{i_1}}{dt}\right]_{\mathcal{R}_1}}_{\widehat{\mathcal{R}}_1} + \overline{\Omega(S_1/S_0)} \wedge \overrightarrow{i_1} = \dot{\alpha} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\alpha} \overrightarrow{j_1}$$

Ainsi

$$\overrightarrow{V(O_1 \in S_1/S_0)} = a\dot{\alpha}\overrightarrow{j_1}$$

Rě

Exemple

3.4 Champ du vecteur vitesse dans un solide en mouvement

3.4.1 Mise en évidence

Reprenons le cas d'un avion en déplacement dans le ciel . Soit P un point appartenant à l'avion tel que $\overrightarrow{O_1P} = a \overrightarrow{i_1} + b \overrightarrow{j_1} + c \overrightarrow{k_1}$. Calculons la vitesse du point P par rapport à \mathcal{R}_0 :

$$\overline{V(P \in S_1/S_0)} = \left[\frac{d \overrightarrow{O_0P}(t)}{dt} \right]_{\mathscr{R}_0} = \left[\frac{d \left(\overrightarrow{O_0O_1} + \overrightarrow{O_1P} \right)(t)}{dt} \right]_{\mathscr{R}_0}$$

$$= \overline{V(O_1 \in S_1/S_0)} + \left[\frac{d \overrightarrow{O_1P}(t)}{dt} \right]_{\mathscr{R}_0}$$

Calculons maintenant
$$\left[\frac{d\overrightarrow{O_1P}(t)}{dt} \right]_{\mathscr{R}_0}$$
:

$$\left[\frac{d\overrightarrow{O_1P}(t)}{dt}\right]_{\mathcal{R}_0} = \left[\frac{d\overrightarrow{O_1P}(t)}{dt}\right]_{\mathcal{R}_1} + \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{O_1P}(t)$$

$$\overrightarrow{O_1P}$$
 étant fixe dans le repère \mathcal{R}_1 , $\left[\frac{d\overrightarrow{O_1P}(t)}{dt}\right]_{\mathcal{R}_1} = \overrightarrow{0}$.

Au final,

$$\overrightarrow{V(P \in S_1/S_0)} = \overrightarrow{V(O_1 \in S_1/S_0)} + \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{O_1P}(t) = \overrightarrow{V(O_1 \in S_1/S_0)} + \overrightarrow{PO_1}(t) \wedge \overrightarrow{\Omega(S_1/S_0)}$$

3.4.2 Résultat

Champ du vecteur vitesse dans un solide - Formule de Varignon

Soient A et B deux points appartenant à un solide S_1 en mouvement par rapport à S_0 . Le champ des vecteurs vitesses est donc déterminé ainsi :

$$\overrightarrow{V(B \in S_1/S_0)} = \overrightarrow{V(A \in S_1/S_0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(S_1/S_0)}$$

Moyen mnémotechnique

Comme la dérivée vectorielle, l'utilisation de cette formule est indispensable en mécanique en général et en cinématique en particulier.

On verra par la suite que le vecteur $\overrightarrow{\Omega}$ est appelé **R**ésultante du torseur cinématique.

En conséquence, en utilisant le moyen mnémotechnique on a :

$$\overrightarrow{V(\mathbf{B} \in S_1/S_0)} = \overrightarrow{V(\mathbf{A} \in S_1/S_0)} + \overrightarrow{\mathbf{BA}} \wedge \underbrace{\Omega(S_1/S_0)}_{\mathbf{B}}$$

Remarque

Résultat

Remarque

Utilisation du champ de vecteur

La formule du champ de vecteur est utilisée à chaque fois que la vitesse est connue en un point d'un solide et qu'on veut la calculer en un point appartenant à un autre point d'un même solide.

Centrifugeuse

Calcul de $\overrightarrow{V(O_1 \in S_1/S_0)}$.

 S_1 et S_0 sont en liaison pivot de centre O_0 , on a donc : $\overrightarrow{V(O_0 \in S_1/S_0)} = \overrightarrow{O}$.

En conséquence,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \overrightarrow{V(O_0 \in S_1/S_0)} + \overrightarrow{O_1O_0} \wedge \overrightarrow{\Omega(S_1/S_0)} = \overrightarrow{0} - a \overrightarrow{i_1} \wedge \left(\dot{\alpha} \overrightarrow{k_0} \right) = a \dot{\alpha} \overrightarrow{j_1}$$

Exemple

3.4.3 Équiprojectivité du champ des vecteurs vitesses

Equiprojectivité

Soit un solide S_1 en mouvement par rapport à un repère fixe \mathcal{R}_0 . Soient deux points A et B appartenant au solide S_1 . On démontre qu'à chaque instant t:

$$\overrightarrow{V(A \in S_1/\mathcal{R}_0)} \cdot \overrightarrow{AB} = \overrightarrow{V(B \in S_1/\mathcal{R}_0)} \cdot \overrightarrow{AB}$$

marque

Résultat

Cette propriété sera très utilisée en cinématique graphique lors de l'étude des mouvements plans.

4 Composition des mouvements

4.1 Composition du vecteur vitesse

Composition du vecteur vitesse

Soit un solide S_1 en mouvement par rapport à un repère \mathcal{R}_0 et un solide S_2 par rapport au solide S_1 . Pour chacun des points A appartenant au solide S_2 , on a :

 $\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{V(A \in S_1/\mathscr{R}_0)}$

Démontrons ce résultat. O_1 est le centre de la liaison entre \mathcal{R}_0 et S_1 . O_1 est donc fixe dans le repère \mathcal{R}_0 . O_2 est le centre de la liaison entre S_1 et S_2 . A appartient à S_2 .

$$\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \left[\overrightarrow{dO_1A} \atop \overrightarrow{dt} \right]_{\mathscr{R}_0} = \left[\overrightarrow{dO_1O_2} \atop \overrightarrow{dt} \right]_{\mathscr{R}_0} + \left[\overrightarrow{dO_2A} \atop \overrightarrow{dt} \right]_{\mathscr{R}_0} = \overrightarrow{V(O_2 \in S_1/\mathscr{R}_0)} + \left[\overrightarrow{dO_2A} \atop \overrightarrow{dt} \right]_{S_1} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)} \wedge \overrightarrow{O_2A}$$

$$\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \underbrace{\left[\overrightarrow{dO_2A} \atop \overrightarrow{dt} \right]_{S_1}}_{\overrightarrow{V(A \in S_2/S_1)}} + \underbrace{\overrightarrow{V(O_2 \in S_1/\mathscr{R}_0)} + \overrightarrow{AO_2} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)}}_{\overrightarrow{V(A \in S_1/\mathscr{R}_0)}} \right]$$

On a donc bien:

$$\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{V(A \in S_1/\mathscr{R}_0)}$$

Remarque

- $\overrightarrow{V(A \in S_2/\mathcal{R}_0)}$ est appelé vecteur vitesse absolu;
- $V(A \in S_2/S_1)$ est appelé vecteur vitesse relatif; $V(A \in S_1/\Re_0)$ est appelé vecteur vitesse d'entraînement.

Généralisation

La décomposition du vecteur vitesse peut se généraliser avec n solides :

$$\overrightarrow{V(A \in S_n/S_0)} = \overrightarrow{V(A \in S_n/S_{n-1})} + \dots + \overrightarrow{V(A \in S_1/S_0)}$$

Résultat

Résultat

4.2 Composition du vecteur instantané de rotation

Composition du vecteur vitesse

Soit un solide S_1 en mouvement par rapport à un repère \mathcal{R}_0 et un solide S_2 par rapport au solide S_1 . On a :

$$\overrightarrow{\Omega(S_2/\mathcal{R}_0)} = \overrightarrow{\Omega(S_2/S_1)} + \overrightarrow{\Omega(S_1/\mathcal{R}_0)}$$

Pour démontrer ce résultat, prenons un vecteur \overrightarrow{v} :

$$\left[\frac{d\overrightarrow{v}}{dt}\right]_{S_1} = \left[\frac{d\overrightarrow{v}}{dt}\right]_{S_2} + \overline{\Omega(S_2/S_1)} \wedge \overrightarrow{v}$$

$$\left[\frac{d\overrightarrow{v}}{dt}\right]_{S_1} = \left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathscr{R}_0} + \overrightarrow{\Omega(\mathscr{R}_0/S_1)} \wedge \overrightarrow{v}$$

$$\left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathcal{R}_0} = \left[\frac{d\overrightarrow{v}}{dt}\right]_{S_2} + \overrightarrow{\Omega(S_2/\mathcal{R}_0)} \wedge \overrightarrow{v} \Longleftrightarrow \left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathcal{R}_0} - \left[\frac{d\overrightarrow{v}}{dt}\right]_{S_2} = \overrightarrow{\Omega(S_2/\mathcal{R}_0)} \wedge \overrightarrow{v}$$

En faisant la soustraction des deux premières expressions on obtient :

$$\overrightarrow{0} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{S_2} - \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \overrightarrow{\Omega(S_2/S_1)} \wedge \overrightarrow{v} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{S_2} - \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\overrightarrow{\Omega(S_2/S_1)} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \right) \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\overrightarrow{\Omega(S_2/S_1)} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \right) \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\overrightarrow{\Omega(S_2/S_1)} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \right) \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\overrightarrow{\Omega(S_2/S_1)} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \right) \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\overrightarrow{\Omega(S_2/S_1)} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \right) \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\overrightarrow{\Omega(S_2/S_1)} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \right) \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\overrightarrow{\Omega(S_2/S_1)} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \right) \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\frac{d \overrightarrow{v}}{dt} \right)_{\mathcal{R}_0} + \left(\frac{d \overrightarrow{v}}{dt$$

$$\iff \left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathscr{R}_0} - \left[\frac{d\overrightarrow{v}}{dt}\right]_{S_2} = \left(\overrightarrow{\Omega(S_2/S_1)} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)}\right) \wedge \overrightarrow{v}$$

En utilisant la dernière relation on a donc :

$$\overrightarrow{\Omega(S_2/\mathscr{R}_0)} \wedge \overrightarrow{v} = \left(\overrightarrow{\Omega(S_2/S_1)} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)}\right) \wedge \overrightarrow{v} \Longleftrightarrow \overrightarrow{\Omega(S_2/\mathscr{R}_0)} = \overrightarrow{\Omega(S_2/S_1)} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)}$$

Généralisation

La décomposition du vecteur instantané de rotation peut se généraliser avec n solides :

$$\overline{\Omega(S_n/S_0)} = \overline{\Omega(S_n/S_{n-1})} + ... + \overline{\Omega(S_1/S_0)}$$

4.2.1 Exemple

Résultat

Centrifugeuse

Calcul de $\overrightarrow{V(G \in S_2/S_0)}$.

On a:

$$\overrightarrow{V(G \in S_2/S_0)} = \overrightarrow{V(G \in S_2/S_1)} + \overrightarrow{V(G \in S_1/S_0)}$$

Calculons $\overrightarrow{V(G \in S_1/S_0)}$:

$$\overrightarrow{V(G \in S_1/S_0)} = \overrightarrow{V(O_1 \in S_1/S_0)} + \overrightarrow{GO_1} \wedge \overrightarrow{\Omega(S_1/S_0)} = a \dot{\alpha} \overrightarrow{j_1} - \left(b \overrightarrow{i_2} + c \overrightarrow{k_2} \right) \wedge \left(\dot{\alpha} \overrightarrow{k_0} \right)$$

$$\overrightarrow{V(G \in S_1/S_0)} = a\dot{\alpha}\overrightarrow{j_1} + b\dot{\alpha}\sin(\beta + \pi/2)\overrightarrow{j_1} + c\dot{\alpha}\sin\beta\overrightarrow{j_1} = \dot{\alpha}\left(a + b\cos\beta + c\sin\beta\right)\overrightarrow{j_1}$$

Par ailleurs calculons $\overrightarrow{V(G \in S_2/S_1)}$:

$$\overrightarrow{V(G \in S_2/S_1)} = \overrightarrow{V(O_1 \in S_2/S_1)} + \overrightarrow{GO_1} \wedge \overrightarrow{\Omega(S_2/S_1)} = -\left(b\overrightarrow{i_2} + c\overrightarrow{k_2}\right) \wedge \left(\dot{\beta}\overrightarrow{j_1}\right) = -\dot{\beta}\left(b\overrightarrow{k_2} - c\overrightarrow{i_2}\right)$$

Au final,

$$\overrightarrow{V(G \in S_2/S_0)} = \dot{\alpha} \left(a + b \cos \beta + c \sin \beta \right) \overrightarrow{j_1} - \dot{\beta} \left(b \overrightarrow{k_2} - c \overrightarrow{i_2} \right)$$

Il est aussi possible de calculer $\overline{V(G \in S_2/S_0)}$ ainsi :

$$\overrightarrow{V(G \in S_2/S_0)} = \left[\frac{dO_0G}{dt}\right]_{\mathcal{R}_0}$$

Evenule

5 Accélération d'un point appartenant à un solide

5.1 Définition

Accélération d'un point appartenant à un solide

Soit un solide S_0 auquel on associe le repère \mathcal{R}_0 $\left(O_0, \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$. Soit un solide S_1 auquel on associe le repère \mathcal{R}_1 , $\left(O_1, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$. Le solide S_1 est en mouvement par rapport au solide S_0 .

Soit un point P appartenant au solide S_1 . L'accélération du point P appartenant au solide S_1 par rapport au solide S_0 se calcule donc ainsi :

 $\overline{\Gamma(P \in S_1/S_0)}(t) = \left[\frac{d\left(\overline{V(P \in S_1/S_0)}(t)\right)}{dt} \right]_{\Re_0}$

Oáfinitio:

5.2 Champ d'accélération d'un solide en mouvement

On a vu que $\overrightarrow{V(B \in S_1/S_0)} = \overrightarrow{V(A \in S_1/S_0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(S_1/S_0)}$. En dérivant cette expression on a donc :

$$\overrightarrow{\Gamma(B \in S_1/S_0)} = \overrightarrow{\Gamma(A \in S_1/S_0)} + \left[\frac{d\overrightarrow{BA}}{dt} \right]_{S_0} \wedge \overrightarrow{\Omega(S_1/S_0)} + \overrightarrow{BA} \wedge \left[\frac{d\overrightarrow{\Omega(S_1/S_0)}}{dt} \right]_{S_0}$$

B et A sont des points du solide S_1 . On a donc :

$$\left[\frac{d\overrightarrow{BA}}{dt}\right]_{S_0} = \underbrace{\left[\frac{d\overrightarrow{BA}}{dt}\right]_{S_1}}_{\overrightarrow{D}} + \underbrace{\overline{\Omega(S_1/S_0)}} \wedge \overrightarrow{BA}$$

$$\overrightarrow{\Gamma(B \in S_1/S_0)} = \overrightarrow{\Gamma(A \in S_1/S_0)} + \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{BA} \wedge \overrightarrow{\Omega(S_1/S_0)} + \overrightarrow{BA} \wedge \left[\frac{d\overrightarrow{\Omega(S_1/S_0)}}{dt} \right]_{S_0}$$

$$\overrightarrow{\Gamma(B \in S_1/S_0)} = \overrightarrow{\Gamma(A \in S_1/S_0)} + \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{AB} + \left[\frac{d\overrightarrow{\Omega(S_1/S_0)}}{dt} \right]_{S_0} \wedge \overrightarrow{AB}$$

Pésultat

Le champ des accélérations n'est donc pas un champ de moment.

5.3 Composition des accélérations

On a vu que la vitesse d'un solide S_2 par rapport à \mathcal{R}_0 au point A pouvait s'exprimer ainsi (paragraphe $\ref{eq:sprimer}$, page $\ref{eq:sprimer}$):

$$\overrightarrow{V(A \in S_2/\mathcal{R}_0)} = \underbrace{\left[\overrightarrow{dO_2A} \atop \overrightarrow{dt}\right]_{S_1}}_{\overrightarrow{V(A \in S_2/S_1)}} + \underbrace{\overrightarrow{V(O_2 \in S_1/\mathcal{R}_0)} + \overrightarrow{AO_2} \wedge \overrightarrow{\Omega(S_1/\mathcal{R}_0)}}_{\overrightarrow{V(A \in S_1/\mathcal{R}_0)}}\right)$$

$$\iff \overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{V(O_2 \in S_1/\mathscr{R}_0)} + \overrightarrow{AO_2} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)}$$

Calculons l'accélération du point :

$$\overline{\Gamma(A \in S_2/\mathcal{R}_0)} = \left[\frac{d\overline{V(A \in S_2/\mathcal{R}_0)}}{dt} \right]_{\mathcal{R}_0}$$

$$\overline{\Gamma(A \in S_2/\mathcal{R}_0)} = \left[\frac{d\overline{V(A \in S_2/S_1)}}{dt} \right]_{\mathcal{R}_0} + \left[\frac{d\overline{V(O_2 \in S_1/\mathcal{R}_0)}}{dt} \right]_{\mathcal{R}_0} + \left[\frac{d\overline{AO_2}}{dt} \right]_{\mathcal{R}_0} \wedge \overline{\Omega(S_1/\mathcal{R}_0)} + \overline{AO_2} \wedge \left[\frac{d\overline{\Omega(S_1/\mathcal{R}_0)}}{dt} \right]_{\mathcal{R}_0}$$

$$\left[\frac{d\overline{V(A \in S_2/S_1)}}{dt} \right]_{\mathcal{R}_0} = \left[\frac{d\overline{V(A \in S_2/S_1)}}{dt} \right]_{S_1} + \overline{\Omega(S_2/\mathcal{R}_0)} \wedge \overline{V(A \in S_2/S_1)}$$

$$\iff \left[\frac{d\overline{V(O_2 \in S_1/\mathcal{R}_0)}}{dt} \right]_{\mathcal{R}_0} = \overline{\Gamma(A \in S_2/S_1)} + \overline{\Omega(S_2/\mathcal{R}_0)} \wedge \overline{V(A \in S_2/S_1)}$$

$$\left[\frac{d\overline{AO_2}}{dt} \right]_{\mathcal{R}_0} = \left[\frac{d\overline{AO_2}}{dt} \right]_{S_0} + \overline{\Omega(S_1/\mathcal{R}_0)} \wedge \overline{AO_2} = \overline{V(A \in S_2/S_1)} + \overline{\Omega(S_1/\mathcal{R}_0)} \wedge \overline{AO_2}$$

On a donc:

$$\overrightarrow{\Gamma(A \in S_2/\mathscr{R}_0)} = \overrightarrow{\Gamma(A \in S_2/S_1)} + \overrightarrow{\Omega(S_2/\mathscr{R}_0)} \wedge \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{\Gamma(O_2 \in S_1/\mathscr{R}_0)} + \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{V(A \in S_2/S_1)$$

Par ailleurs d'après le paragraphe précédent,

$$\overrightarrow{\Gamma(A \in S_1/\mathscr{R}_0)} = \overrightarrow{\Gamma(O_2 \in S_1/\mathscr{R}_0)} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)} \wedge \overrightarrow{O_2A} + \left[\frac{d\overrightarrow{\Omega(S_1/\mathscr{R}_0)}}{dt} \right]_{\mathscr{R}_0} \wedge \overrightarrow{O_2A}$$

Au final,

$$\overrightarrow{\Gamma(A \in S_2/\mathcal{R}_0)} = \overrightarrow{\Gamma(A \in S_2/S_1)} + \underbrace{2\overrightarrow{\Omega(S_2/\mathcal{R}_0)}}_{\overrightarrow{\Gamma(A \in S_1/\mathcal{R}_0)_{Cor}}} \wedge \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{\Gamma(A \in S_1/\mathcal{R}_0)}$$

On ne peut donc pas composer les accélérations. On appelle :

- $\Gamma(A \in S_2/\mathcal{R}_0)$: accélération absolue;
- $\overrightarrow{\Gamma(A \in S_2/S_1)}$: accélération relative;
- $\Gamma(A \in S_1/\Re_0)$: accélération absolue;
- $\Gamma(A \in S_1/\mathcal{R}_0)_{Cor}$: accélération de Coriolis.

Références

[1] Centrifugeuse humaine - CNRS Photothèque/Sébastien Godefroy et MEDES, *Avio et Tiger*, http://www.medes.fr/home_fr/fiche-centrifugeuse/mainColumnParagraphs/0/document/Presentation%20centrifugeuse%2018.12.07.pdf.