Supplementary Materials of TAoI for Remote Inference with Hybrid Language Models

Shuying Gan*, Xijun Wang*, Chenyuan Feng[†], Chao Xu[‡], Howard H. Yang[§], Xiang Chen*, and Tony Q. S. Quek[¶]
*School of Electronics and Information Engineering, Sun Yat-sen University, Guangzhou, China

[†]Department of Communication Systems, EURECOM, Sophia Antipolis, France

[‡]School of Information Engineering, Northwest A&F University, Yangling, China

§ZJU-UIUC Institute, Zhejiang University, Haining, China

Information System and Technology Design Pillar, Singapore University of Technology and Design, Singapore Email: ganshy7@mail2.sysu.edu.cn, wangxijun@mail.sysu.edu.cn, Chenyuan.Feng@eurecom.fr, cxu@nwafu.edu.cn, haoyang@intl.zju.edu.cn, chenxiang@mail.sysu.edu.cn, tonyquek@sutd.edu.sg

I. LEMMAS AND THEOREM

Lemma 1. The value function $V(\Delta)$ is non-decreasing with Δ .

Proof: See Section II-A. □

Lemma 2. The value function $V(\Delta)$ is concave in Δ .

Proof: See Section II-B. □

Since the value function $V(\Delta)$ is non-decreasing and concave, its slope is non-increasing and lower bounded. The lower bound of the slope of $V(\Delta)$ is given by the following lemma. Prior to that, we define an auxiliary variable l_{min} as follows:

$$l_{min} = \min\left(\frac{T_1^u + T_1^c}{p_s}, \frac{T_2^u + T_1^c}{q_s}, \frac{T_1^u + T_2^c}{p_l}, \frac{T_2^u + T_2^c}{q_l}\right). \tag{1}$$

Lemma 3. For any Δ_1 , $\Delta_2 \in \mathcal{S}$ with $\Delta_1 \leq \Delta_2$, we have $V(\Delta_2) - V(\Delta_1) \geq \frac{L(\hat{\mathbf{a}})}{\epsilon p}(\Delta_2 - \Delta_1)$, where $\hat{\mathbf{a}}$ and \hat{p} are given by

$$(\hat{\mathbf{a}}, \hat{p}) = \begin{cases} ((0,0), p_s), & \text{if } l_{min} = \frac{T_1^u + T_1^c}{p_s} \\ ((1,0), q_s), & \text{if } l_{min} = \frac{T_2^u + T_1^c}{q_s} \\ \\ ((0,1), p_l), & \text{if } l_{min} = \frac{T_1^u + T_2^c}{p_l} \\ \\ ((1,1), q_l), & \text{if } l_{min} = \frac{T_2^u + T_2^c}{q_l} \end{cases}$$

$$(2)$$

Proof: See Section II-C.

Based on Lemmas 1-3, we can derive the structure of the optimal control policy as stated in the following theorem.

Theorem 4. For any $\Delta_1, \Delta_2 \in \mathcal{S}$ with $\Delta_1 \leq \Delta_2$, there exists a stationary deterministic optimal policy with a threshold-based structure, described as follows:

- When $l_{min}=\frac{T_1^u+T_1^c}{p_s}$ and $\pi^*(\Delta_1)=(0,0),\ \pi^*(\Delta_2)=(0,0).$ When $l_{min}=\frac{T_2^u+T_1^c}{q_s}$ and $\pi^*(\Delta_1)=(1,0),\ \pi^*(\Delta_2)=(1,0).$ When $l_{min}=\frac{T_1^u+T_2^c}{p_l}$ and $\pi^*(\Delta_1)=(0,1),\ \pi^*(\Delta_2)=(0,1).$

- When $l_{min}=rac{T_2^u+T_2^c}{q_1}$ and $\pi^*(\Delta_1)=(1,1),\ \pi^*(\Delta_2)=(1,1).$

Proof: See Section II-D.

II. PROOFS OF LEMMAS AND THEOREM

A. Proof of Lemma 1

Based on the value iteration algorithm (VIA) outlined in [1, Ch. 4.3], we utilize mathematical induction to establish the proof of Lemma 1. Initially, we introduce $Q_k(s, \mathbf{a})$ and $V_k(s)$ to represent the state-action value function and the state value function at the k-th iteration, respectively. Particularly, $Q_k(s, \mathbf{a})$ is defined as

$$Q_k(s, \mathbf{a}) \triangleq \bar{R}(s, \mathbf{a}) + \sum_{s' \in \mathcal{S}} \bar{p}(s'|s, \mathbf{a}) V_k(s'), \ \forall s \in \mathcal{S}.$$
(3)

For any given state s, the update to the value function can be executed by

$$V_{k+1}(s) = \min_{\mathbf{a} \in \mathcal{A}} Q_k(s, \mathbf{a}), \ \forall s \in \mathcal{S}.$$
(4)

Regardless of how $V_0(s)$ is initially set, the sequence $\{V_k(s)\}$ converges to V(s) that satisfies the Bellman equation, i.e.,

$$\lim_{k \to \infty} V_k(s) = V(s), \ \forall s \in \mathcal{S}. \tag{5}$$

Therefore, the monotonicity of $V(\Delta)$ is validated by showing that, for any two states $\Delta_1, \Delta_2 \in \mathcal{S}$, whenever $\Delta_1 \leq \Delta_2$, it follows that

$$V_k(\Delta_1) \le V_k(\Delta_2), \ k = 0, 1, \cdots. \tag{6}$$

Next, we prove (6) using mathematical induction. Without loss of generality, we set $V_0(\Delta) = 0$ for each $\Delta \in \mathcal{S}$, ensuring that (6) is satisfied at k=0. Then, assuming that (6) holds up to k>0, we verify whether it holds for k+1.

For $\mathbf{a} = (0,0)$, it follows that

$$Q_{k}(\Delta_{1},(0,0)) = \Delta_{1} + \frac{1}{2}(T_{1}^{u} + T_{1}^{c} - 1) + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} p_{s} V_{k}(T_{1}^{u} + T_{1}^{c}) + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} (1 - p_{s}) V_{k}(\Delta_{1} + T_{1}^{u} + T_{1}^{c}) + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}\right) V_{k}(\Delta_{1}),$$

$$(7)$$

and

$$Q_{k}(\Delta_{2}, (0, 0)) = \Delta_{2} + \frac{1}{2} (T_{1}^{u} + T_{1}^{c} - 1) + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} p_{s} V_{k} (T_{1}^{u} + T_{1}^{c}) + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} (1 - p_{s}) V_{k} (\Delta_{2} + T_{1}^{u} + T_{1}^{c}) + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}\right) V_{k} (\Delta_{2}).$$

$$(8)$$

Given that $\Delta_1 + T_1^u + T_1^c \leq \Delta_2 + T_1^u + T_1^c$, $V_k(\Delta_1) \leq V_k(\Delta_2)$ and $V_k(\Delta_1') \leq V_k(\Delta_2')$, we can obtain $Q_k(\Delta_1, (0, 0)) \leq Q_k(\Delta_2, (0, 0))$.

Similar to $\mathbf{a}=(0,0)$, it can be easily deduced that $Q_k(\Delta_1,(1,0)) \leq Q_k(\Delta_2,(1,0))$, $Q_k(\Delta_1,(0,1)) \leq Q_k(\Delta_2,(0,1))$, and $Q_k(\Delta_1,(1,1)) \leq Q_k(\Delta_2,(1,1))$ according to $\Delta_1 \leq \Delta_2$ and $V_k(\Delta_1) \leq V_k(\Delta_2)$. By (4), we can get that $V_{k+1}(\Delta_1) \leq V_{k+1}(\Delta_2)$ for any k.

This concludes the proof of Lemma 1.

B. Proof of Lemma 2

The concavity of $V(\Delta)$ with respect to Δ can be demonstrated by showing that, for any Δ_1 , $\Delta_2 \in \mathcal{S}$ and $w \in N$, whenever $\Delta_1 \leq \Delta_2$, it follows that

$$V_k(\Delta_1 + w) - V_k(\Delta_1) \ge$$

$$V_k(\Delta_2 + w) - V_k(\Delta_2), k = 0, 1, \dots$$

$$(9)$$

Without sacrificing generality, we set $V_0(\Delta) = 0$ for all $\Delta \in \mathcal{S}$, ensuring that (9) is applicable at k = 0. Then, we assume that (9) holds up till k > 0 and inspect whether it holds for k + 1. Now, let $\Delta' = \Delta + w$, $\Delta'_1 = \Delta_1 + w$ and $\Delta'_2 = \Delta_2 + w$. For ease of explanation, we introduce $\delta Q(\Delta', \Delta, \mathbf{a}) = Q(\Delta', \mathbf{a}) - Q(\Delta, \mathbf{a})$.

For $\mathbf{a} = (0,0)$, it follows that

$$\begin{split} \delta Q(\Delta_{1}^{'}, \Delta_{1}, (0,0)) - \delta Q(\Delta_{2}^{'}, \Delta_{2}, (0,0)) \\ = & [\Delta_{1} + w + \frac{1}{2}(T_{1}^{u} + T_{1}^{c} - 1) + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}\right) V_{k}(\Delta_{1} + w) \\ & + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} p_{s} V_{k}(T_{1}^{u} + T_{1}^{c}, I_{+}) + (1 - p_{s}) V_{k}(\Delta_{1} + w + T_{1}^{u} + T_{1}^{c})] \\ & - [\Delta_{1} + \frac{1}{2}(T_{1}^{u} + T_{1}^{c} - 1) + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}\right) V_{k}(\Delta_{1}) \\ & + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} p_{s} V_{k}(T_{1}^{u} + T_{1}^{c}) + (1 - p_{s}) V_{k}(\Delta_{1} + T_{1}^{u} + T_{1}^{c})] \\ & - [\Delta_{2} + w + \frac{1}{2}(T_{1}^{u} + T_{1}^{c} - 1) + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}\right) V_{k}(\Delta_{2} + w) \\ & + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} p_{s} V_{k}(T_{1}^{u} + T_{1}^{c}, I_{+}) + (1 - p_{s}) V_{k}(\Delta_{2} + w + T_{1}^{u} + T_{1}^{c})] \\ & + [\Delta_{2} + \frac{1}{2}(T_{1}^{u} + T_{1}^{c} - 1) + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}\right) V_{k}(\Delta_{2}) \\ & + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} p_{s} V_{k}(T_{1}^{u} + T_{1}^{c}) + (1 - p_{s}) V_{k}(\Delta_{2} + T_{1}^{u} + T_{1}^{c})] \\ & = (1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}) [(V_{k}(\Delta_{1} + w) - V_{k}(\Delta_{1})) \\ & - (V_{k}(\Delta_{2} + w) - V_{k}(\Delta_{2}))] \\ & + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} (1 - p_{0}) [(V_{k}(\Delta_{1} + w + T_{1}^{u} + T_{1}^{c}) - V_{k}(\Delta_{1} + T_{1}^{u} + T_{1}^{c}))]. \end{split}$$

Given that $V_k(\Delta_1+w)-V_k(\Delta_1)\geq V_k(\Delta_2+w)-V_k(\Delta_2)$ and $V_k(\Delta_1+w+1)-V_k(\Delta_1+1)\geq V_k(\Delta_2+w+1)-V_k(\Delta_2+1)$, we can easily see that $\delta Q_k(\Delta_1^{'},\Delta_1,(0,0))-\delta Q_k(\Delta_2^{'},\Delta_2,(0,0))\geq 0$. Thus, $Q_k(\Delta,(0,0))$ is concave in Δ .

Similar to $\mathbf{a}=(0,0)$, we can also get that $Q_k(\Delta,(1,0))$, $Q_k(\Delta,(0,1))$, and $Q_k(\Delta,(1,1))$ is concave in Δ . Since the value function $V_{k+1}(\Delta)$ is the minimum of two concave functions, it is also concave in Δ . Hence, we have $V_k(\Delta_1+w)-V_k(\Delta_1)\geq V_k(\Delta_2+w)-V_k(\Delta_2)$, i.e., (9) holds for k+1. Therefore, we can show that (9) holds for any k by induction.

This completes the proof of Lemma 2.

C. Proof of Lemma 3

The proof follows the same procedure of Lemma 1. The lower bound of $V(\Delta_2) - V(\Delta_1)$ can be proved by showing that for any Δ_1 , $\Delta_2 \in \mathcal{S}$, such that $\Delta_1 \leq \Delta_2$

$$V_k(\Delta_2) - V_k(\Delta_1) \ge \frac{L(\hat{\mathbf{a}})}{\epsilon p} (\Delta_2 - \Delta_1), k = 0, 1, \cdots.$$
(11)

where $p = p_s$ if I = 0, and $p = p_l$ if I = 1.

Without sacrificing generality, we set $V_0(\Delta) = \frac{L(\mathbf{a})}{\epsilon p} \Delta$ for all $\Delta \in \mathcal{S}$, ensuring that (11) is satisfied at k = 0. Then, we assume that (11) holds up till k > 0 and hence we have $V_k(\Delta_2) - V_k(\Delta_1) \ge \frac{L(\mathbf{a})}{\epsilon p} (\Delta_2 - \Delta_1)$ and $V_k(\Delta_2 + 1) - V_k(\Delta_1 + 1) \ge \frac{L(\mathbf{a})}{\epsilon p} (\Delta_2 - \Delta_1)$.

Then, we inspect whether it holds for k+1. Since $V_{k+1}(\Delta) = \min_{\mathbf{a} \in \mathcal{A}} Q_k(\Delta, \mathbf{a})$, we investigate the two state-action value functions, in the following, respectively.

When $\mathbf{a} = (0,0)$, we have

$$\delta Q_{k}(\Delta_{2}, \Delta_{1})
= Q_{k}(\Delta_{2}, (0, 0)) - Q_{k}(\Delta_{1}, (0, 0))
= \Delta_{2} - \Delta_{1} + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}\right) (V_{k}(\Delta_{2}) - V_{k}(\Delta_{1})) + \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}} (1 - p_{s}) (V_{k}(\Delta_{2} + T_{1}^{u} + T_{1}^{c}) - V_{k}(\Delta_{1} + T_{1}^{u} + T_{1}^{c}))
\geq \Delta_{2} - \Delta_{1} + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{1}^{c}}\right) \frac{L(\mathbf{a})}{\epsilon p_{s}} (\Delta_{2} - \Delta_{1})
= \frac{L(\mathbf{a})}{\epsilon p} (\Delta_{2} - \Delta_{1}).$$
(12)

When $\mathbf{a} = (1,0)$, we have

$$\begin{split} &\delta Q_k(\Delta_2,\Delta_1) \\ &= Q_k(\Delta_2,(0,0)) - Q_k(\Delta_1,(0,0)) \\ &= \Delta_2 - \Delta_1 + \left(1 - \frac{\epsilon}{T_2^u + T_1^c}\right) (V_k(\Delta_2) - V_k(\Delta_1)) + \\ &\frac{\epsilon}{T_2^u + T_1^c} (1 - q_s) \left(V_k(\Delta_2 + T_2^u + T_1^c) - V_k(\Delta_1 + T_2^u + T_1^c)\right) \\ &\geq \Delta_2 - \Delta_1 + \left(1 - \frac{\epsilon}{T_2^u + T_1^c}\right) \frac{L(\mathbf{a})}{\epsilon q_s} (\Delta_2 - \Delta_1) \end{split}$$

$$=\frac{L(\mathbf{a})}{\epsilon p}(\Delta_2 - \Delta_1). \tag{13}$$

When $\mathbf{a} = (0, 1)$, we have

$$\delta Q_{k}(\Delta_{2}, \Delta_{1})
= Q_{k}(\Delta_{2}, (0, 0)) - Q_{k}(\Delta_{1}, (0, 0))
= \Delta_{2} - \Delta_{1} + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{2}^{c}}\right) (V_{k}(\Delta_{2}) - V_{k}(\Delta_{1})) + \frac{\epsilon}{T_{1}^{u} + T_{2}^{c}} (1 - p_{l}) (V_{k}(\Delta_{2} + T_{1}^{u} + T_{2}^{c}) - V_{k}(\Delta_{1} + T_{1}^{u} + T_{2}^{c}))
\geq \Delta_{2} - \Delta_{1} + \left(1 - \frac{\epsilon}{T_{1}^{u} + T_{2}^{c}}\right) \frac{L(\mathbf{a})}{\epsilon p_{l}} (\Delta_{2} - \Delta_{1})
= \frac{L(\mathbf{a})}{\epsilon p} (\Delta_{2} - \Delta_{1}).$$
(14)

When $\mathbf{a} = (1, 1)$, we have

$$\delta Q_{k}(\Delta_{2}, \Delta_{1})
= Q_{k}(\Delta_{2}, (0, 0)) - Q_{k}(\Delta_{1}, (0, 0))
= \Delta_{2} - \Delta_{1} + \left(1 - \frac{\epsilon}{T_{2}^{u} + T_{2}^{c}}\right) (V_{k}(\Delta_{2}) - V_{k}(\Delta_{1})) + \frac{\epsilon}{T_{2}^{u} + T_{2}^{c}} (1 - q_{l}) (V_{k}(\Delta_{2} + T_{2}^{u} + T_{2}^{c}) - V_{k}(\Delta_{1} + T_{2}^{u} + T_{2}^{c}))
\geq \Delta_{2} - \Delta_{1} + \left(1 - \frac{\epsilon}{T_{2}^{u} + T_{2}^{c}}\right) \frac{L(\mathbf{a})}{\epsilon q_{l}} (\Delta_{2} - \Delta_{1})
= \frac{L(\mathbf{a})}{\epsilon p} (\Delta_{2} - \Delta_{1}).$$
(15)

This concludes the proof of Lemma 3.

D. Proof of Theorem 1

First, we introduce $\delta Q(\Delta_2, \Delta_1, \mathbf{a}) = Q(\Delta_2, \mathbf{a}) - Q(\Delta_1, \mathbf{a})$ for convenience. For any $\Delta_1, \Delta_2 \in \mathcal{S}$, and $\Delta_1 \leq \Delta_2$, we have

$$\delta Q(\Delta_2, \Delta_1, \hat{\mathbf{a}}) - (V(\Delta_2) - V(\Delta_1))$$

$$= \Delta_2 - \Delta_1 - \frac{\epsilon}{L(\hat{\mathbf{a}})} (V(\Delta_2) - V(\Delta_1))$$

$$+ \frac{\epsilon(1-p)}{L(\hat{\mathbf{a}})} (V(\Delta_2 + L(\hat{\mathbf{a}})) - V(\Delta_1 + L(\hat{\mathbf{a}}))).$$
(16)

Given that the concavity of V(s) is established in Lemma 2, it follows that $V(\Delta_2 + L(\hat{\mathbf{a}})) - V(\Delta_1 + L(\hat{\mathbf{a}})) \le V(\Delta_2) - V(\Delta_1)$. Then, we can get that

$$\begin{split} \delta Q(\Delta_2, \Delta_1, \hat{\mathbf{a}}) &- (V(\Delta_2) - V(\Delta_1)) \\ &\leq \Delta_2 - \Delta_1 + \frac{\epsilon (1 - p)}{L(\hat{\mathbf{a}})} (V(\Delta_2) - V(\Delta_1)) \\ &- \frac{\epsilon}{L(\hat{\mathbf{a}})} (V(\Delta_2) - V(\Delta_1)) \end{split}$$

$$= \Delta_2 - \Delta_1 - \frac{\epsilon p}{L(\hat{\mathbf{a}})} (V(\Delta_2) - V(\Delta_1)). \tag{17}$$

As shown in Lemma 3, we have $V(\Delta_2) - V(\Delta_1) \geq \frac{L(\hat{\mathbf{a}})}{\epsilon p}(\Delta_2 - \Delta_1)$. This implies that $\Delta Q(\Delta_2, \Delta_1) - (V(\Delta_2) - V(\Delta_1)) \leq 0$. Next, we prove the threshold structure of the optimal policy. Suppose $\Delta_2 \geq \Delta_1$ and $\pi^*(\Delta_1) = \hat{\mathbf{a}}$, we have $V(\Delta_1) = Q(\Delta_1, \hat{\mathbf{a}})$, i.e., $V(\Delta_1) = Q(\Delta_1, \hat{\mathbf{a}})$. It is straightforward to obtain $V(\Delta_2) \geq Q(\Delta_2, \hat{\mathbf{a}})$, since $V(\Delta_2) - V(\Delta_1) \geq Q(\Delta_2, \hat{\mathbf{a}}) - Q(\Delta_1, \hat{\mathbf{a}})$. Moreover, since the value function is a minimum of two state-action value functions, we have $V(\Delta_2) \leq Q(\Delta_2, \hat{\mathbf{a}})$. Therefore, we can conclude that $V(\Delta_2) = Q(\Delta_2, \hat{\mathbf{a}})$ and that $\pi^*(\Delta_2) = \hat{\mathbf{a}}$.

This completes the proof of Theorem 1.

REFERENCES

[1] P. Bertsekas, Dimitri, Dynamic Programming and Optimal Control-II, 3rd ed. Belmont, MA, USA: Athena Sci., 2007, vol. 2.