- ** Can we write the likelihood in T?

 - Let $T = \exp(Y)$. What is the distribution of T? $\Rightarrow T \mid \alpha, \lambda \sim \text{Weibull}(\alpha, \lambda)$.

 ** pdf

$$f(t \mid \alpha, \lambda) = \alpha t^{\alpha - 1} \exp(\lambda - \exp(\lambda)t^{\alpha}), \quad t > 0.$$

- ** Survival function: $S_T(t \mid \alpha, \lambda) = \exp(-\exp(\lambda)t^{\alpha})$
- How to write down the likelihood for right-censored data in T?

$$\begin{array}{lll}
t_{i}(\alpha, \beta_{0}, \beta) & \stackrel{\text{indep}}{\sim} & W(\alpha = \frac{1}{\sigma}, \lambda_{i} = \frac{\beta_{0} + \beta' x_{i}}{\sigma}) \\
\Rightarrow & P(\beta_{0}, \beta, \sigma) = \prod_{i=1}^{n} \left\{ \frac{1}{\sigma} t_{i}^{i} - \exp\left(\frac{\beta_{0} + \beta' x_{i}}{\sigma}\right) + \exp\left(\frac{\beta_{0} + \beta' x_{i}}{\sigma}\right) t_{i}^{i} \right\} \\
\times & \left\{ \exp\left(-\exp\left(\frac{\beta_{0} + \beta' x_{i}}{\sigma}\right) t_{i}^{i} \right\} \right\} = \left\{ \frac{1 - \gamma_{i}}{\sigma} \right\}$$

- ** How about the hazard function of T?
- Recall $h(t) = \alpha \gamma t^{\alpha 1}$ where $t \sim \text{Weibull}(\alpha, \gamma)$ and $\lambda = \log(\gamma)$.

all
$$h(t) = \alpha \gamma t^{\alpha - 1}$$
 where $t \sim \text{Weibull}(\alpha, \gamma)$ and $\lambda = \frac{1}{2}$ ho $(t) = h(t \mid x = 0) = (\frac{1}{2})$ $e^{\frac{\beta \alpha}{\beta}} = \frac{1}{2}$ ho $(t) = h(t \mid x = 0) = (\frac{1}{2})$ $e^{\frac{\beta \alpha}{\beta}} = \frac{1}{2}$ ho $(t) = \frac{1}{2}$ $e^{\frac{\beta \alpha}{\beta}} = \frac{1}{2}$ $e^{\frac{\beta$

 We will discuss the proportional hazards property later; The Weibull distribution has both the proportional hazards and accelerated failure time properties (not true for the other distributions that we will discuss later).

- Tind Maximum Likelihood Estimates (MLE) of the parameters!
 - MLE and covariance matrix of β_0 , β and σ can be found numerically. Do tests on β or find a confidence interval based on asymptotic normality.
 - R function surveg with option dist="weibull" provides MLE of β_0 , β and σ .
 - Be careful with the interpretation of the output!
 - ** Their (Intercept) is an estimate of our $-\beta_0$.
 - $\star\star$ Their estimates of coefficients are estimates of our $-\beta_j$
 - ** Their Log(scale) is an estimate of our $log(\sigma)$

* [Example: K-M 1.8 Death Times of Male Laryngeal Cancer Patients (page 9)]

Kardaun (1983) reports data on 90 males diagnosed with cancer of the larynx during the period 1970–1978 at a Dutch hospital. The followings are recorded;

- ** Survival the intervals (in years) between first treatment and either death or the end of the study (January 1, 1983).
- Covariates the patient's age at the time of diagnosis, the year of diagnosis, and the stage of the patient's cancer.

The four stages of disease in the study were recorded; the four groups are Stage I with 33 patients, Stage II with 17 patients, Stage III with 27 patients and Stage IV with 13 patients.

* [Example: Male Laryngeal Cancer Patients] We use the accelerated failure-time model using the main effects of age and stage for this data; $Y = \log(T) = -\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$

$$Y = \log(T) = -\beta_0 (-\beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$$

where X_k , k = 1, 2, 3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient. Assume $W \sim \text{standard } V$

```
> library(KMsurv) # To get the datasets in K-M
> library(survival) # R functions
>
> data(larynx)
> WeiFit <- survreg(Surv(time, delta)
                                        as.factor(stage) + age,
dist="weibull", data=larynx)
                                      (0, (0)+
                                      (0, (0))
```

18 / 50

* [Example: Male Laryngeal Cancer Patients]

```
> summary(WeiFit) = 3.5288 \pm 196 \times .9041 = (-5.3, -1.75)
Call:
survreg(formula = Surv(time, delta) ~ as.factor(stage) + age,
    data = larynx, dist = "weibull")
                     Value Std. Error
                                             Z
                    3.5288
(Intercept)
                                0.9041 3.903 9.50e-05
as.factor(stage)2 (-0)1477
                                0.4076 -0.362 7.17e-01
                             0.3199 -1.833 6.68e-02
as.factor(stage)3 -0.5866
as.factor(stage)4 -1.5441 - 3 0.3633 -4.251 2.13e-05 http= dtt
                                0.0128 -1.367 1.72e-01
age
                   -0.0175
Log(scale)
                   -0.1223
                                0.1225 -0.999 3.18e-01
Scale= 0.885 = \hat{\tau}   \hat{\alpha} = \frac{1}{\hat{\sigma}} = \frac{1}{0.885} = 1.13
Weibull distribution
Loglik(model) = -141.4
                        Loglik(intercept only) = -151.1
Chisq= 19.37 on 4 degrees of freedom, p= 0.00066
Number of Newton-Raphson Iterations: 5
n = 90
```

* [Example: Male Laryngeal Cancer Patients] We use the accelerated failure-time model using the main effects of age and stage for this data; $+\beta_0 + \beta_1 \times 1 + \beta_2 \times 1 + \beta_3 \times 1 + \beta_4 \times 1 + \beta_5 \times$

$$Y = \log(T) = -\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$$

where X_k , k=1,2,3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient. **Assume** $W \sim \text{standard} \ \ V$

- O A positive value of β is indicative of decreased survival. $\frac{h(t|T)}{h(t|T)} = \frac{h(t|T)}{h(t|T)} = e^{\frac{1.5411}{0.895}} = e^{\frac{1.745}{0.895}} = \frac{1.745}{0.895} = \frac{1.74$
 - ★ We find that the relative risk of death (ratio of the hazards) for a Stage IV patient compared to a Stage I patient is exp(1.745) = 5.73.
 - * The acceleration factor for Stage IV disease compared to Sage I disease is $\exp(1.54) = 4.68$, so the median lifetime for a Stage I patient is estimated to 4.68 times that of a Stage IV patient.

$$S(\pm 1) = S(\pm 68 \times \pm 1)$$
 20/50 $S(\pm 1\pi) = S(\pm 68 \times \pm 1)$

We are BAYESIAN!

$$Y = -\beta_0 - \beta' \mathbf{X} + \sigma W$$

where $W \sim$ standardized extreme value distribution

• Parametric Bayesian: We place priors on σ and (β_0, β) . For example,

**
$$\sigma(=1/\alpha) \sim \text{IG}.$$
 $\beta \leftarrow (\beta_0, \beta) \sim N_{p+1}(\bar{\beta}, \Sigma_{\beta}).$

P-dim

(P+1)-dim

$$\begin{split} & \text{W} \ \, \sim \ \, \text{Standard} \quad \, \text{EV} \\ & \tilde{\beta} \ \, \sim \ \, \text{Npn} \left(\, \left(\, \tilde{\beta} \, , \, \tilde{Z}_{\beta} \, \right) \, \, , \qquad \, \, \sigma \, \sim \, \, \, \text{I} \left(\, \left(\, \alpha_{\sigma} \, , \, \, b_{\, V} \, \right) \, \right) \\ & \tilde{\chi}_{i} \ \, = \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, = \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, = \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, = \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, = \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, = \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, = \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, = \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}} \, \right]_{(p+1)} \\ & \tilde{\chi}_{i} \ \, \left[\, \frac{1}{\chi_{i}}$$

2 update
$$\sigma > 0$$

$$T(\phi \sigma | \beta, \tilde{y}, \tilde{v}) \propto \left(\frac{1}{\sigma}\right) \sum_{i=1}^{N} \frac{V_i(\tilde{y}_i + \tilde{\beta}_i' \tilde{x}_i)}{\sigma}$$

$$-\exp\left(\frac{\tilde{y}_i + \tilde{\beta}_i' \tilde{x}_i}{\sigma}\right) \times \exp\left(-\frac{b\tau}{\sigma}\right)$$

* [Example: Male Laryngeal Cancer Patients] We use the accelerated failure-time model using the main effects of age and stage for this data;

$$Y = \log(T) = -\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$$

where X_k , k=1,2,3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient. **Assume** $W \sim \text{extreme value}$

****** Assume a priori independence for β_k , $k = 0, \ldots, 4$,

$$\beta_k \stackrel{iid}{\sim} N(\bar{\beta}_k, 2.0).$$

- ** $\sigma \sim IG(5,5)$, independent of β_k
- ** Use the output from survreg to specify the hyperparameter values and initialize the MCMC.

• Weibull-Posterior distribution

$$\beta_1(\hat{\beta}_1 = 0.048)$$

$$\beta_2(\hat{\beta}_2 = 0.608)$$

Weibull-Posterior distribution (contd)

$$\beta_3(\hat{\beta}_3 = 1.580)$$

$$\beta_4(\hat{\beta}_4 = 0.017)$$

Weibull-Posterior distribution (contd)

$$\beta_0(\hat{\beta}_0 = -3.593)$$
- 3.5288

$$\sigma(\hat{\sigma}_1 = 1.060)$$

$$\beta_0^* = \frac{\beta_0}{\sigma}, \frac{\beta_R}{\pi} = \beta_R^*$$

- Other parameterization! (ICS 2.2 & 2.3)
 - We have $Y_i \mid \alpha, \lambda_i \overset{indep}{\sim} V(\alpha, \lambda_i)$. Equivalently, $T_i \mid \alpha, \lambda_i \overset{indep}{\sim} W(\alpha, \lambda_i)$
 - ** We let $\lambda_i = \beta_0^* + (\beta^*)' \mathbf{X}$. Then place $(\beta_0^*, \beta^*) \sim \mathsf{N}_{p+1}(\bar{\boldsymbol{\beta}}^*, \Sigma_{\beta^*})$.
 - ** We let $\alpha \sim \mathsf{Gamma}(\alpha_0, \kappa_0)$.

- Parametric Approach 2: Standard Logistic Distribution for W
 - Survival time $T \Rightarrow Y = \log(T)$
 - Let $Y \mid \mu, \sigma \sim \text{Logistic}(\mu, \sigma)$.
 - The distribution of $W = \frac{y \mu}{\sigma}$?
 - $\Rightarrow W$ follows the standardized logistic distribution. $\omega \in \mathbb{R}$
 - Let's consider our $Y = -\beta_0 \beta' \mathbf{X} + \sigma \underline{W}$ where $\underline{W} \sim$ standardized logistic distribution.
 - \Rightarrow What is the distribution of our Y?

27/50

• Recall! Let $Y \mid \mu, \sigma \sim \mathsf{Logistic}(\mu, \sigma)$

$$f(y \mid \mu, \sigma) = \frac{\exp(\frac{y-\mu}{\sigma})}{\sigma(1 + \exp(\frac{y-\mu}{\sigma}))^2}, -\infty < y < \infty,$$

** Survival function:

$$S_Y(y \mid \mu, \sigma) = \frac{1}{1 + \exp(\frac{y-\mu}{\sigma})}.$$

- \bigcirc Now consider our $Y = -\beta_0 \beta' \mathbf{X} + \sigma W$
- We know $Y \mid \beta, \sigma \sim \text{Logistic}(\mu, \sigma)$ where $\star \star \mu_{\vec{i}} = \beta_0 + \beta' X_{\vec{i}}$.
- How to write down the likelihood for right-censored data in Y?

$$\mathcal{L}(\beta_0,\beta_1,\alpha_1,\beta_1,\gamma_1) = \frac{1}{\mu} \left\{ \frac{\alpha_1 + \beta_0 + \beta_1 x_1}{\alpha_1 + \beta_0 + \beta_1 x_1} \right\}$$

$$= \frac{\alpha_1}{\mu} \left\{ \frac{\alpha_1 + \beta_0 + \beta_1 x_1}{\alpha_1 + \beta_0 + \beta_1 x_1} \right\}$$

$$X \left\{ \frac{1}{1 + \exp\left(\frac{y_i + \beta_0 + \beta' x_i}{\sigma}\right)} \right\} = \frac{1}{1 - \gamma_i}$$

- Assume $Y \mid \mu, \sigma \sim \mathsf{Logistic}(\mu, \sigma)$
- Then $T = \exp(Y) \mid \alpha, \lambda \sim \text{Log-Logistic}(\alpha, \lambda)$

$$f(t \mid \alpha, \lambda) = \frac{\lambda \alpha t^{\alpha - 1}}{(1 + \lambda t^{\alpha})^2}, \ 0 < t,$$

where $\alpha = 1/\sigma > 0$ and $\lambda = \exp(-\mu/\sigma)$.

** Survival function:

$$S_T(t \mid \alpha, \lambda) = \frac{1}{(1 + \lambda t^{\alpha})}.$$

$$A = \frac{1}{\sigma}$$

$$A =$$

We can write the likelihood in T. Try!

$$\frac{S_{o}(t)}{1 - S_{o}(t)} = \frac{1}{1 + \lambda t^{\alpha}} = \frac{1}{\lambda t^{\alpha}} = \frac{1}{2 + \lambda t^{\alpha}} = \frac{1}{30/50}$$

$$\frac{S(t|x)}{1-S(t|x)} = \frac{1}{e^{\frac{\beta c + \beta x}{\sigma}} t^{1/\sigma}} = \frac{1}{e^{\frac{\beta c}{\sigma} t^{1/\sigma}} t^{1/\sigma}} = \frac{e^{\frac{\beta c}{\sigma} t^{1/\sigma}} e^{\frac{\beta c}{\sigma} t^{1/\sigma}}}{1-S_0(t)} \cdot \exp(-\frac{\beta^{1/\sigma} t^{1/\sigma}}{\sigma})$$

$$\log\left(\frac{S(t|x)}{1-S(t|x)}\right) = \log\left(\frac{S_0(t)}{1-S_0(t)}\right) - \frac{\beta'x}{\sigma}$$

* [Example: Male Laryngeal Cancer Patients] We use the accelerated failure-time model using the main effects of age and stage for this data;

$$Y = \log(T) = -\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$$

where X_k , k=1,2,3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient. **Assume** $W \sim \text{Logistic}$

```
> library(KMsurv) # To get the datasets in K-M
> library(survival) # R functions
>
> data(larynx)
>
> LLogFit <- survreg(Surv(time, delta) ~ as.factor(stage) + age,
dist="loglogistic", data=larynx)</pre>
```

* [Example: Male Laryngeal Cancer Patients]

> summary(LLogFit)

```
Call:
survreg(formula = Surv(time, delta) ~ as.factor(stage) + age,
    data = larynx, dist = "loglogistic")
                    Value Std. Error
(Intercept)
                   3.1022
                               0.9527
                                      3.256 1.13e-03
as.factor(stage)2 -0.1257
                               0.4152 -0.303 7.62e-01
as.factor(stage)3 -0.8057
                               0.3539 -2.277 2.28e-02
as.factor(stage)4 -1.7661
                               0.4257 -4.149 3.34e-05
                              0.0138 -1.095 2.73e-01/
                  -0.0151
age
Log(scale)
                  -0.3352
                              0.1202 -2.788 5.31e-03
Scale= 0.715
Log logistic distribution
Loglik(model) = -141.6
                        Loglik(intercept only) = -151.6
Chisq= 20.07 on 4 degrees of freedom, p= 0.00048
Number of Newton-Raphson Iterations: 4
n = 90
```

☼ We are BAYESIAN!

$$Y = -\beta_0 - \beta' \mathbf{X} + \sigma W$$

where $W \sim$ standardized logistic distribution

- Parametric Bayesian: We place priors on σ and (β_0, β) . For example,
 - ** $\sigma(=1/\alpha) \sim \text{IG}$.
 - $\star\star$ $(\beta_0,\beta)\sim N_{p+1}(\bar{\beta},\Sigma_{\beta}).$

* [Example: Male Laryngeal Cancer Patients] We use the accelerated failure-time model using the main effects of age and stage for this data;

$$Y = \log(T) = -\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$$

where X_k , k=1,2,3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient. **Assume** $W \sim \text{logistic}$

** Assume a priori independence for β_k , $k = 0, \ldots, 4$,

$$\beta_k \stackrel{iid}{\sim} N(\bar{\beta}_k, 2.0).$$

- ** $\sigma \sim IG(5,5)$, independent of β_k
- ** Use the output from survreg to specify the hyperparameter values and initialize the MCMC.

Log-Logistic—Posterior distribution

$$p(y^*|y|) = \int p(y^*|y|) = \int p(y^*|y|) de^{-y} de^{-y}$$

Log-Logistic-Posterior distribution (contd)

$$\beta_3(\hat{\beta}_3=1.982)$$

$$\beta_4(\hat{\beta}_4=0.013)$$

Log-Logistic-Posterior distribution (contd)

$$\beta_0(\hat{\beta}_0 = -3.18)$$

$$\sigma(\hat{\sigma} = 0.900)$$

- A Parametric Approach 3: Std Normal Distribution for W
 - Survival time $T \Rightarrow Y = \log(T)$
 - Let $Y \mid \mu, \sigma^2 \sim N(\mu, \sigma^2)$. \Rightarrow $T \sim LN(\mu, \sigma^2)$
 - The distribution of $W = \frac{y-\mu}{\sigma}$?
 - \Rightarrow W follows the standard normal distribution.
 - Let's consider our $Y = -\beta_0 \beta' \mathbf{X} + \sigma W$ where $W \sim$ standard normal distribution.
 - \Rightarrow What is the distribution of our Y?

- Contract Recall!
- Let $Y \mid \mu, \sigma^2 \sim N(\mu, \sigma^2)$.

$$f(y \mid \mu, \sigma) = \frac{\exp\{-\frac{1}{2}(\frac{y-\mu}{\sigma})^2\}}{\sqrt{2\pi\sigma^2}}, \quad -\infty < y < \infty.$$

** Survival function:

$$S_Y(y \mid \mu, \sigma^2) = 1 - \Phi(\frac{y - \mu}{\sigma}),$$

where $\Phi(\cdot)$ is the cdf of the standard normal distribution

- $ilde{\bigcirc}$ Now consider our $Y = -\beta_0 \beta' \mathbf{X} + \sigma W$ and $Y = \log(T)$.
- How to write down the likelihood for right-censored data in Y?

$$\begin{array}{c}
\mathcal{I}(\beta_0,\beta,\sigma \mid \widetilde{\mathcal{G}}, \gamma) \propto \overline{\Pi} \left\{ \phi \left(\frac{\widetilde{\mathcal{G}}_{i} + \beta_0 + \beta x_{i}}{\sigma} \right) \right\}^{\gamma_{i}} \\
\times \left\{ 1 - \overline{\Phi} \left(\frac{\widetilde{\mathcal{G}}_{i} + \beta_0 + \beta x_{i}}{\sigma} \right) \right\}^{\gamma_{i}}
\end{array}$$

We can write the likelihood in T as well. Try!

* [Example: Male Laryngeal Cancer Patients] We use the accelerated failure-time model using the main effects of age and stage for this data;

$$Y = \log(T) = -\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$$

where X_k , k=1,2,3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient. **Assume** $W \sim N(0,1)$

```
> library(KMsurv) # To get the datasets in K-M
> library(survival) # R functions
>
> data(larynx)
>
> LNFit <- survreg(Surv(time, delta) ~ as.factor(stage) + age,
dist="lognormal", data=larynx)</pre>
```

* [Example: Male Laryngeal Cancer Patients]

```
> summary(LNFit)
Call:
survreg(formula = Surv(time, delta) ~ as.factor(stage) + age,
    data = larynx, dist = "lognormal")
                    Value Std. Error
                   3.3832
                              0.9356 3.62 2.99e-04
(Intercept)
as.factor(stage)2 -0.1989
                              0.4423 -0.45 6.53e-01
as.factor(stage)3 -0.8995
                              0.3634 -2.48 1.33e-02
as.factor(stage)4 -1.8574
                              0.4427 -4.20 2.72e-05
                  -0.0185
                              0.0137 -1.35 1.77e-01
age
Log(scale)
                   0.2341
                              0.1065 2.20 2.79e-02
Scale= 1.26 = ♡
Log Normal distribution
                       Loglik(intercept only) = -151.8
Loglik(model) = -141.4
Chisq= 20.91 on 4 degrees of freedom, p= 0.00033
Number of Newton-Raphson Iterations: 4
n=90
```

We are BAYESIAN!

$$Y = -\beta_0 - \beta' \mathbf{X} + \sigma W$$

where $W \sim$ standard Normal distribution

- Parametric Bayesian: We place priors on $\underline{\sigma}^2$ and (β_0, β) . For example,
 - ** $\sigma^2 \sim \mathsf{IG}$. ** $(\beta_0, \beta) \sim \mathsf{N}_{p+1}(\bar{\beta}, \Sigma_{\beta})$.
- ICS 2.4

**
$$\tau = 1/\sigma^2 \sim \text{Gamma}(\alpha_0/2, \lambda_0/2).$$

$$\star\star$$
 $\pi(eta_0,eta)\propto 1$ or $N_{p+1}(\mu_0, au^{-1}\Sigma_0)$.

* [Example: Male Laryngeal Cancer Patients] We use the accelerated failure-time model using the main effects of age and stage for this data;

$$Y = \log(T) = -\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$$

where X_k , k=1,2,3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient. **Assume** $W \sim \text{standard Normal}$

** Assume a priori independence for β_k , k = 0, ..., 4,

$$\beta_k \stackrel{iid}{\sim} N(\bar{\beta}_k, 2.0).$$

- ** $\sigma^2 \sim IG(5,5)$, independent of β_k
- ** Use the output from survreg to specify the hyperparameter values and initialize the MCMC.

Log-Normal—Posterior distribution

$$\beta_1(\hat{eta}_1=0.164)$$

$$\beta_2(\hat{\beta}_2=0.885)$$

Log-Normal-Posterior distribution (contd)

$$\beta_3(\hat{eta}_3=1.858)$$

$$\beta_4(\hat{\beta}_4=0.017)$$

Log-Normal-Posterior distribution (contd)

$$\beta_0(\hat{\beta}_0=-3.309)$$

$$\sigma^2(\hat{\sigma}^2 = 1.688)$$