1

Matrix Theory EE5609 - Assignment 10

Sandhya Addetla PhD Artificial Inteligence Department AI20RESCH14001

Abstract—Find rank of the matrix.

Download python code from

https://github.com/SANDHYA-A/Assignment10

1 Problem

Let J denote the matrix of order $n \times n$ with all entries 1 and let B be a $3n \times 3n$ matrix given by

$$B = \begin{pmatrix} 0 & 0 & J \\ 0 & J & 0 \\ J & 0 & 0 \end{pmatrix}.$$

Find rank of matrix B.

Given	a) Matrix J of $n \times n$ dimension with all entries 1. b) Matrix B of $3n \times 3n$ dimension $B = \begin{pmatrix} 0 & 0 & J \\ 0 & J & 0 \\ J & 0 & 0 \end{pmatrix}$
Transforming matrix <i>B</i> into Block diagonal matrix using transformation Matrix	$M = \mathbf{T}(B)$ $M = \begin{pmatrix} 0 & 0 & I \\ 0 & I & 0 \\ I & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & J \\ 0 & J & 0 \\ J & 0 & 0 \end{pmatrix}$ $M = \begin{pmatrix} J & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & J \end{pmatrix}$
Rank of Block Diagonal matrix M	It is equal to the sum of rank of individual blocks in diagonal $r(J) = 1$ $\therefore r(M) = 1 + 1 + 1 = 3$
Rank of a matrix and its transformation are same.	\therefore rank of matrix B is $r(B) = r(M) = 3$

Example	Let $n = 2$
	$J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$
Transforming matrix <i>B</i> into Block diagonal matrix using transformation Matrix	$M = \mathbf{T}(B)$ $M = \mathbf{T}(B)$ $M = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$
Rank of Block Diagonal matrix M	It is equal to the sum of rank of individual blocks in diagonal $r(J) = 1$ $\therefore r(M) = 1 + 1 + 1 = 3$
Rank of a matrix and its transformation are same.	∴ rank of matrix B is $r(B) = r(M) = 3$

Approach 2:

Example	Let $n=2$
	$B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$
Representing matrix <i>B</i> as Jordan normal form	$B = \begin{pmatrix} -1 & 0 & 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
The matrix <i>N</i> in Jordan Normal form is	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
Rank of Block Diagonal matrix	It is equal to the sum of rank of individual blocks in diagonal $\therefore r(N) = 3$
Rank of a matrix <i>B</i> and its Jordan Normal form are same.	\therefore rank of matrix B is $r(B) = r(N) = 3$