Hiper Parâmetros

- hidden_layer_sizes: Lista de neurônios na camada oculta
- batch_size: numero de instâncias por batch usadas para atualizar a rede
- Epochs (max_iter): número de vezes que os dados passam pela rede
- early_stopping: parar quando não há melhora na performance
- learning_rate: o quando os pesos devem ser atualizados a cada iteração

Topologia da Rede:

- hidden_layer_sizes
- Adição de camadas

activation

• logistic, tanh, relu etc.

Regularização

- Técnicas para evitar overfitting
 - Early Stopping: interrompe o treinamento quando a performance se mantem estável por muitas epochs ou mesmo piora
 - Data augmentation: gera novos exemplos de dados de treinamento
 - L1 e L2
 - Dropout

Regularização L1 e L2

- Técnica que utiliza um termo de regularização para minimizar o risco de overfitting
- Este termo é multiplicado por um hiper parâmetro alfa
 - L1 (Lasso regularization): Adiciona um termo à loss function proporcional ao valor absoluto dos pesos
 - L2 (Ridge regularization): Adiciona um termo à loss function proporcional ao quadrado dos pesos
- O objetivo é minimizar overfitting, adicionando o termo a Loss function (que o treino busca minimizar)
- Este termo adicional tende a deixar os pesos menores, o que reduz a complexidade do modelo e minimiza overfitting
- Alpha: Usado para adicionar um termo

