PAKET 2

TRY OUT OSK ONLINE

SMA

po.alcindonesia.co.id

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

SOAL

Author: Muhammad Wildan Gifari

Pilih salah satu jawaban yang paling benar dari pilihan jawaban a, b, c, d, atau e!

1) [Super Blood Moon]

Pada 21 January 2019 terjadi Gerhana Bulan saat Bumi berada pada jarak terdekat dengan Bulan. Peristiwa ini diistilahkan dengan Super Blood Moon. Kapan akan terjadi Super Blood Moon berikutnya?

- a. 21 Januari 2037
- b. 31 Januari 2037
- c. 21 January 2038
- d. 31 January 2038
- e. 1 January 2039

2) [Efek Presesi]

Mana di bawah ini yang bukan merupakan efek presesi bumi?

- a. Bergesernya posisi titik Aries
- b. Lama tahun tropis lebih pendek dari tahun Sideris
- c. Lama tahun tropis lebih panjang dari tahun Sideris
- d. Berubahnya koordinat ekuatorial bintang
- e. Berubahnya bintang kutub

3) [Blue Moon]

Blue Moon adalah istilah untuk bulan purnama kedua yang terjadi dalam satu bulan masehi. Apabila Blue Moon diamati pada tanggal 31 Januari 2018, mana di antara tanggal berikut yang kemungkinan terjadi Blue Moon?

- a. 31 Januari 2019
- b. 31 Januari 2027
- c. 31 Januari 2037
- d. 31 Januari 2038
- e. 31 Januari 2039

4) [Stellar Cluster]

Pilih pernyataan yang SALAH!

- a) Gugus terbuka banyak berisi bintang muda
- b) Gugus bola banyak berisi bintang tua
- c) Umur gugus dapat ditentukan dari titik belok bintang-bintangnya di diagram HR
- d) Gugus terbuka lebih sedikit mengandung elemen berat dibanding gugus bola di halo galaksi
- e) Persebaran gugus bola di halo galaksi bisa digunakan untuk menentukan arah pusat galaksi

5) [Expanding Universe]

Pengamatan astronomi sekarang mengarah kepada kesimpulan bahwa alam semesta terbatas (dalam umur dan dimensi), dan mengembang dipercepat. Di antara pengamatan di bawah ini, mana yang TIDAK mendukung kesimpulan tersebut?

- a. Langit malam tampak gelap
- b. Galaksi jauh menunjukkan spektrum redshift
- c. Pengamatan Cosmic Microwave Background
- d. Bintang-bintang di galaksi menunjukkan pemerahan
- e. Tidak ada jawaban yang tepat

6) [Survey Satellite]

Untuk melakukan survey *habitable zone* di planet Mars, Astronom mengirimkan satelit survey yang mengorbit tepat di atas ekuator planet Mars. Untuk memudahkan komunikasi antar satelit, maka satelit disusun seperti gambar di bawah ini.

Gambar 1. Konfigurasi 4 satelit untuk mensurvey permukaan planet Mars. Lingkaran di dalam adalah planet Mars.

Jika kita ambil suatu besaran waktu $\lambda = \sqrt{\left(\frac{4\pi^2}{GM}\right)R^3}$, dengan M dan R masing-masing adalah massa dan radius planet Mars, maka periode orbit satelit tersebut adalah jika dinyatakan daam besaran λ adalah...

- a. 1.51λ
- b. 1.68λ
- c. 1.89\
- d. 2.51λ
- e. 3.52λ

7) [Solar Wind]

Matahari memancarkan "angin" berupa partikel Alpha ke segala arah. Apabila diketahui densitas angin yang sampai ke bumi adalah 6 partikel/cm^3 dan kecepatannya adalah 450 km/s (asumsikan konstan), maka tekanan yang dirasakan di Bumi karena angin ini adalah ... Diketahui massa satu partikel Alpha adalah 6,64424x 10⁻²⁷ kg.

- a. $2 \times 10^{-15} Pa$
- b. $4 \times 10^{-15} Pa$

- c. $6 \times 10^{-15} Pa$
- d. $8 \times 10^{-15} Pa$
- e. $10 \times 10^{-15} Pa$

8) [Atmospheric Pressure]

Diketahui suhu rata-rata di Jakarta sekarang 30° C dan tekanan atmosfer nya 1 atm. Dikarenakan global warming, suhu rata-rata Jakarta akan naik sekitar 5° C pada tahun 2050. Berapakah nilai tekanan atmosfer di Jakarta pada tahun 2050?

- a. 1,000 atm
- b. 1,016 atm
- c. 1,125 atm
- d. 1,260 atm
- e. Data kurang lengkap.

9) [Blackbody Human]

Suhu tubuh manusia normalnya sekitar 36° C. Apabila diamati spektrum benda hitamnya, maka intensitas terbesar dari tubuh manusia jatuh pada panjang gelombang

- a. Radio
- b. Infrared
- c. Visual
- d. Sinar X
- e. Sinar gamma

10) [Receding moon]

Diketahui karena gesekan pasang surut, bulan menjauh dari bumi. Setelah 400 juta tahun, jarak bumi dan bulan kira-kira menjadi 400 000 km. Hitung berapa lama periode satu bulan purnama ketika itu! Diketahui jarak Bumi-Bulan sekarang adalah 384 400 km.

- a. 31,5 hari
- b. 32,3 hari
- c. 30,2 hari
- d. 29,5 hari
- e. 32,0 hari

11) [Math Comet]

Sebuah komet mengorbit Matahari dengan persamaan $y=x^2-2$. Sementara itu, sebuah planet mengorbit Matahari dengan persamaan $x^2+y^2=4$. Bila titik origin dari koordinat x dan y yang bersangkutan adalah Matahari, maka planet dan komet tersebut kemungkinan berpapasan pada titik ordinat...

- a. 0
- b. 1
- c. 2
- d. 3
- e. 4

12) [Comet Will be Back]

A comet last appeared in the night sky in 1986. Based on recorded observation, the Perihelion and Aphelion of its orbit are 0.586 au & 35.1 au respectively. Predict when it will appear again in the night sky!

- a. 2017
- b. 2036
- c. 2052
- d. 2061
- e. 2054

13) [Orbiting comet]

Sebuah komet memiliki periode orbit 76 tahun dan eksentrisitasnya 0,967. Maka perbandingan kecepatan orbit komet di perihelion dan aphelion adalah...

- a. 59.6
- b. 49.6
- c. 39.6
- d. 69.6
- e. Data tidak cukup

14) [Sun at Zenith]

Diketahui 4 kota di bawah ini berserta lintang dan bujur geografisnya

No	Nama Kota	Lintang	Bujur
1	Jakarta	6°12′52″ S	106°50′42″ E
2	Seoul	37° 31′ 57.3600″ N	127° 1' 28.6032" E
3	Sidney	33° 51′ 54.5148″ S	151° 12' 35.6400'' E
4	Mecca	21° 25' 21.0360" N	39° 49' 34.2048'' E

Manakah di antara kota-kota tersebut yang dapat mengamati matahari melintasi zenithnya?

- a. Jakarta dan Sidney
- b. Seoul dan Mecca
- c. Seoul dan Sidney
- d. Jakarta dan Mecca
- e. Jakarta dan Seoul

15) [Optics of the eye]

Mata dapat melihat dengan normal apabila benda jatuh pada retina. Retina berada 2.5 cm di belakang lensa mata. Apabila mata kita melihat benda pada jarak 50 cm, maka lensa mata harus berakomodasi sehingga panjang focus lensa mata menjadi...

- a. 2.38 cm
- b. 2.00 cm
- c. 1.38 cm
- d. 2.60 cm

e. 3.00 cm

16) [Eclipsing binary]

Suatu system bintang ganda gerhana terdiri dari dua bintang yang identic dan keduanya saling menutupi satu sama lain dengan periode tertentu dilihat dari bumi. Saat kecerlangan maksimum, system tersebut memiliki magnitude semu 6. Berapa magnitude kecerlangan minimum system tersebut?

- a. 5.75
- b. 6.00
- c. 6.75
- d. 7.75
- e. Tidak bisa dihitung karena periodenya tidak diketahui

17) [Faintest Stars]

Ali mengamati bintang dengan teleskop berdiameter 50 cm. Apabila diameter pupil Ali adalah 5 mm dan magnitude bintang paling redup yang bisa dilihat Ali adalah 6, maka dengan bantuan teleskop tersebut magnitude bintang paling redup yang bisa dilihat Ali adalah...

- a. 12
- b. 13
- c. 14
- d. 15
- e. 16

Untuk soal nomor 18-20, gunakan petunjuk berikut:

Pilihan:

A bila pernyataan pertama dan kedua benar serta memiliki hubungan sebab-akibat.

B bila pernyataan pertama dan kedua benar, tetapi tidak memiliki hubungan sebab akibat.

C bila pernyataan pertama benar, sedangkan pernyataan kedua salah.

D bila pernyataan pertama salah, sedangkan pernyataan kedua benar.

E bila kedua pernyataan salah.

18) [Galactic Core]

Salah satu parameter yang umum digunakan astronom dalam penentuan ukuran inti galaksi aktif (AGN – *Active Galactic Nuclei*) adalah waktu fluktuasi (fluctuation time), yaitu perubahan kecerlangan yang teramati dari inti galaksi.

Semakin kecil waku fluktuasi, maka inti galaksi aktif juga akan semakin besar.

Cahaya dari bagian terjauh inti galaksi menempuh jarak yang lebih jauh bila ukuran inti galaksi makin besar.

19) [Mars Core]

Mars has no currently active volcanoes.

Because

Mars no longer has a molten core.

20) [Past Impacts]

Impacts were much more common in the early times of the solar system than they are today.

Because

In the early solar system, there was so much more debris and planetesimal.

Daftar Konstanta

Nama konstanta	Simbol	Harga
Kecepatan cahaya	c	$2{,}99792458~\times~10^8~\text{m/s}$
Konstanta gravitasi	G	$6,\!673\ \times\ 10^{-11}\ \mathrm{m^3/kg/s^2}$
Konstanta Planck	h	$6{,}6261~ imes~10^{-34}~{ m J~s}$
Konstanta Boltzmann	k	$1{,}3807~ imes~10^{-23}~{ m J/K}$
Konstanta Coulomb	k_e	$9~\times~10^9~\textrm{N}~\textrm{m}^2/\textrm{C}^2$
Konstanta kerapatan radiasi	a	$7{,}5659~\times~10^{-16}~\text{J/m}^3/\text{K}^4$
Konstanta Stefan-Boltzmann	σ	$5,\!6705 \; \times \; 10^{-8} \; \mathrm{W/m^2/K^4}$
Muatan elektron	e	$1,6022~\times~10^{-19}~{\rm C}$
Massa elektron	m_{e}	$9{,}1094 \; \times \; 10^{-31} \; \mathrm{kg}$
Massa proton	m_{p}	$1{,}6726 \; \times \; 10^{-27} \; \mathrm{kg}$
Massa neutron	m_{n}	$1{,}6749 \; \times \; 10^{-27} \; \mathrm{kg}$
Massa atom ₁ H ¹	m_{H}	$1{,}6735 \; \times \; 10^{-27} \; \mathrm{kg}$
Massa atom $_2He^4$	mHe	$6{,}6465 \; \times \; 10^{-27} \; \mathrm{kg}$
Massa inti ₂ He ⁴		$6{,}6430~ imes~10^{-27}~{ m kg}$
Konstanta gas	R	8,3145 J/K/mol

		Jejari			Jarak rerata
Objek	Massa	ekuatorial	\mathbf{P}_{rotasi}	$\mathbf{P}_{sideris}$	ke Matahari
	(kg)	(km)		(hari)	(10^3 km)
Merkurius	$3,30 \times 10^{23}$	2440	58,646 hari	87,9522	57910
Venus	$4,87 \times 10^{24}$	6052	243,019 hari	244,7018	108200
Bumi	$5,97 \times 10^{24}$	6378	$_{23}$ j $_{56}$ m $_{4}$ d $_{,1}$	365,2500	149600
Mars	$6,42 \times 10^{23}$	3397	24 ^j 37 ^m 22 ^d ,6	686,9257	227940
Jupiter	$1,90 \times 10^{27}$	71492	9j ₅₅ m ₃₀ d	4330,5866	778330
Saturnus	$5,69 \times 10^{26}$	60268	10 ^j 39 ^m 22 ^d	10746,9334	1429400
Uranus	$8,66 \times 10^{25}$	25559	17 ^j 14 ^m 24 ^d	30588,5918	2870990
Neptunus	$1,03 \times 10^{26}$	24764	16 ^j 6 ^m 36 ^d	59799,8258	4504300

Nama besaran	Notasi	Harga	
Satuan astronomi	au	$1{,}49597870 \ \times \ 10^{11} \ m$	
Parsek	рс	$3{,}0857~\times~10^{16}~\textrm{m}$	
Tahun cahaya	ly	$0.9461~\times~10^{16}~\text{m}$	
Tahun sideris		365,2564 hari	
Tahun tropis		365,242199 hari	
Tahun Gregorian		365,2425 hari	
Tahun Julian		365,2500 hari	
Periode sinodis Bulan (synodic month)		29,5306 hari	
Periode sideris Bulan (sidereal month)		27,3217 hari	
Hari Matahari rerata (mean solar day)		24 ^j 3 ^m 56 ^d ,56	
Hari sideris rerata (mean sidereal day)		23 ^j 56 ^m 4 ^d ,09	
Massa Matahari	M_{\odot}	$1{,}989~\times~10^{30}~{ m kg}$	
Jejari Matahari	R_{\odot}	$6{,}96~ imes~10^8~ extsf{m}$	
Temperatur efektif Matahari	$T_{{\sf eff},\odot}$	5785 K	
Luminositas Matahari	L_{\odot}	$3.9~\times~10^{26}~\mathrm{W}$	
Periode rotasi Matahari (di ekuator)		27 hari	
Magnitudo semu visual Matahari	V	-26,78	
Indeks warna Matahari	B-V	0,62	
	U-B	0,10	
Magnitudo mutlak visual Matahari	M_V	4,79	
Magnitudo mutlak biru Matahari	M_B	5,48	
Magnitudo mutlak bolometrik Matahari	M_{bol}	4,72	
Massa Bulan	$M_{\mathbb{Q}}$	$7{,}348~\times~10^{22}~\mathrm{kg}$	
Jejari Bulan	$R_{\mathbb{Q}}$	1738000 m	
Jarak rerata Bumi–Bulan		384399000 m	
Konstanta Hubble	H_0	69,3 km/s/Mpc	
1 jansky	1 Jy	$1 \times 10^{-26} \; \mathrm{Wm^{-2} Hz^{-1}}$	