Eksamen på Økonomistudiet sommer 2016

Lineære Modeller - Sommerskolevariant

valgfag

Mandag d.15 august 2016.

(3-timers prøve med hjælpemidler, dog ikke lommeregner eller cas-værktøjer)

Dette eksamenssæt består af 2 sider.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM August 2016

Eksamen i Lineære Modeller - Sommerskolevariant

Mandag d.15 august 2016.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

I \mathbb{R}^n er der givet fem lineært uafhængige vektorer u_1, u_2, u_3, u_4 og u_5 . Lad v og w være givet ved $v = u_1 + u_2$ og $w = u_1 + u_2 - u_3$. Vi kalder span $\{u_1, u_2, u_3, u_4, u_5\} = U$.

Endvidere er en lineær afbildning $T: U \to \mathbf{R}$ givet ved

$$T(x_1, x_2, x_3, x_4, x_5) = x_1 - x_2 - x_3 - x_4 - x_5,$$

med hensyntil basen u_1, u_2, u_3, u_4, u_5 i U.

- (1) Vis at u_1, v, w, u_4, u_5 er en basis for U.
- (2) Bestem en basis for nulrummet for T. Er T injektiv?
- (3) Bestem løsningsmængden til ligningen Tx = y, hvor $y \in \mathbf{R}$.
- (4) Bestem koordinaterne for vektoren u_3-u_4 med hensyn til basen u_1,v,w,u_4,u_5 i U .

Opgave 2. Vi betragter 3×3 matricen

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} .$$

- (1) Vis at v = (0, 0, 1) er en egenvektor for A og bestem den tilhørende egenværdi.
- (2) Bestem alle egenværdierne for A og deres multipliciteter.
- (3) Bestem matricen A^4 .
- (4) Gør rede for, at $(A^2 A)(A^2 + A) = A^2$.

- (5) Bestem determinanten for matricen A^{2k} , hvor k er et naturligt tal.
- (6) Bestem vektoren $A^{-1}v$.
- (7) Bestem vektoren $A^{2k+1}v$, hvor k er et naturligt tal.

Opgave 3.

- (1) Beregn integralet $\int \sin^2((a+b)x)\cos(bx)dx$, hvor a og b er positive, reelle tal, om hvilke der gælder at ingen af tallene 2a+3b eller 2a+b er 0.
- (2) Løs ligningen $\frac{z}{2} + \frac{i}{z} = 1 + i$. Løsningen ønskes angivet på rektangulær form a + ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} (a^2 x^2 - 2ax + 1)^n,$$

hvor a er et positivt, reelt tal.

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.