Analiza II - Teorie

Curs - P. Ilias, Latex - Chris Luntraru June 21, 2018

1 Spatii liniare normate

Definitie 1.1 (Norma). O functie $p: X \to \mathbb{R}_+$ se numeste norma pe X daca indeplineste urmatoarele conditii:

- $p(\mathbf{0}_x) = 0$; $p(x) = x \Leftrightarrow x = \mathbf{0}_x$
- $p(x+y) \le p(x) + p(y)$
- $p(\alpha \cdot x) = |\alpha| \cdot p(x)$

Definitie 1.2 (Spatiu liniar normat). Se numeste spatiu liniar normat un spatiu liniar real sau complex X pe care se defineste cel putin o norma: $|| \ || : X \to \mathbb{R}_+$

Exemplu 1.1 (Norme). • $|\cdot|: \mathbb{R} \to \mathbb{R}_+; x \to |x| \in \mathbb{R}_+$ norma pe \mathbb{R}

• $n \ge 2$

$$|| ||_2 : \mathbb{R}^n \to \mathbb{R}_+$$

 $||(x_1,x_2,...,x_n)||_2=\sqrt{x_1^2+x_2^2+...+x_n^2}$ - norma uzuala a lui \mathbb{R}^n

• $|| ||_1 : \mathbb{R}^n \to \mathbb{R}$

$$||(x_1, x_2, ..., x_n)||_1 = |x_1| + |x_2| + ... + |x_n|$$
 - norma pe \mathbb{R}^n

• $|| ||_{\infty} : \mathbb{R}^n \to \mathbb{R}_+$

$$||(x_1, x_2, ..., x_n)||_{\infty} = \max\{|x_1|, |x_2|, ..., |x_n|\}$$
 - norma pe \mathbb{R}^n

Teorema 1.1. Orice spatiu liniar normat (X, || ||) este spatiu metric.

2 Functii derivabile

Fie $f: D \subseteq \mathbb{R} \to (X, || \cdot ||_X)$

Definitie 2.1 (Functie derivabila intr-un punct). Functia $f: D \subseteq \mathbb{R} \to (X, ||\ ||_X)$ este derivabila in punctul $x_0 \in D \cap D'$ daca $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in X$.

In plus, notam $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0) \in X$ derivata functiei f in punctul x_0 .

Definitie 2.2 (Functie derivabila pe o multime). Functia $f:D\subseteq\mathbb{R}\to (X,||\ ||_X)$ este derivabila pe multimea $A\subseteq D\cap D'$ daca f este derivabila in orice punct din A.

Teorema 2.1. Orice functie $f: D \subseteq \mathbb{R} \to (X, ||\ ||_X)$ derivabila intr-un punct $x_0 \in D \cap D'$ este continua in x_0 .

Teorema 2.2. O functie $f = (f_1, f_2, ..., f_n) : D \subseteq \mathbb{R} \to \mathbb{R}^n$ este derivabila in punctul x_0 daca si numai daca $f_1, f_2, ..., f_n$ sunt derivabile in x_0 . In plus, $f'(x_0) = (f'_1(x_0), f'_2(x_0), ..., f'_n(x_0))$

Definitie 2.3 (Functie derivabila la dreapta/stanga intr-un punct).

- O functie $f: D \subseteq \mathbb{R} \to (X, ||\ ||_X)$ se numeste derivabila la dreapta in punctul $x_0 \in D \cap (D \cap (x_0, \infty))'$ daca $\exists \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) f(x_0)}{x x_0} \in X$
- O functie $f: D \subseteq \mathbb{R} \to (X, || \cdot ||_X)$ se numeste derivabila la stanga in punctul $x_0 \in D \cap (D \cap (-\infty, x_0))'$ daca $\exists \lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) f(x_0)}{x x_0} \in X$
- O functie $f:D\subseteq\mathbb{R}$ este derivabila in $x_0\in D^{\mathcal{O}}\Leftrightarrow f$ este derivabila la stanga si la dreapta in x_0 si $f'_s(x_0)=f'_d(x_0)$

2.1 Functii derivabile reale

Teorema 2.3 (Operatii cu functii derivabile reale).

• Fie $f,g:D\subseteq\mathbb{R}\to\mathbb{R}$ doua functii derivabile in acelasi punct $x_0\in D\cap D'$. Atunci functiile: $f+g,f-g,f\cdot g,\lambda\cdot f:D\subseteq\mathbb{R}\to\mathbb{R}$ sunt derivabile si: $(f\pm g)'(x_0)=f'(x_0)\pm f'(x_0)$ $(f\cdot g)'(x_0)=f'(x_0)\cdot g(x_0)+g'(x_0)\cdot f(x_0)$ $(\lambda\cdot f)'(x_0)=\lambda\cdot f'(x_0)$

In plus, daca $g(x) \neq 0, \forall x \in D$, atunci $\frac{f}{g}: D \subseteq \mathbb{R} \to \mathbb{R}$ este derivabila in x_0 si $(\frac{f}{g})'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g^2(x_0)}$

- Fie $f: D \subseteq \mathbb{R} \to E \subseteq \mathbb{R}, x_0 \in D \cap D'$ astfel incat $y_0 = f(x_0) \in E \cap E'$. Daca f este functie derivabila in x_0 si g este functie derivabila in $y_0 = f(x_0)$ astfel incat $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$
- Fie I, J doua intervale din \mathbb{R} , $f: I \to J$ o functie bijectiva strict monotona. Daca $\exists x_0 \in I$ astfel incat f este derivabila in x_0 si $f'(x_0) \neq 0$, atunci $f^{-1}: J \to I$ este derivabila in $f(x_0)$ si $f^{-1}(f(x_0)) = \frac{1}{f'(x_0)}$.

Definitie 2.4 (Minim local, global, maxim local, global). Fie $f:D\subseteq\mathbb{R}\to\mathbb{R}$ o functie.

- Elementul $x_0 \in D$ se numeste punct de minim local pentru functia f daca $\exists R > 0$ astfel incat $\forall x \in D \cap (x_0 R, x_0 + R)$ avem $f(x) \geq f(x_0)$
- Elementul $x_0 \in D$ se numeste punct de minim global pentru functia f daca $\forall x \in D$ avem $f(x) \geq f(x_0)$
- Elementul $x_0 \in D$ se numeste punct de maxim local pentru functia f daca $\exists R > 0$ astfel incat $\forall x \in D \cap (x_0 R, x_0 + R)$ avem $f(x) \leq f(x_0)$
- Elementul $x_0 \in D$ se numeste punct de maxim global pentru functia f daca $\forall x \in D$ avem $f(x) \leq f(x_0)$

Teorema 2.4 (Teorema lui Fermat). Fie $f: D \subseteq \mathbb{R} \to \mathbb{R}$ o functie si $x_0 \in D^{\mathcal{O}}$ astfel incat x_0 este punct de extrem local pentru f si f este derivabila in punctul x_0 . Atunci $f'(x_0) = 0$.

Teorema 2.5 (Teorema lui Rolle). Fie $f:[a,b]\to\mathbb{R}$ o functie continua pe [a,b], derivabila pe (a,b) si f(a)=f(b). Exista $c\in(a,b)$ astfel incat f'(c)=0.

Teorema 2.6 (Teorema lui Lagrange). Fie $f:[a,b]\to\mathbb{R}$ o functie continua pe [a,b], derivabila pe (a,b). Exista un element $c\in(a,b)$ astfel incat $\frac{f(b)-f(a)}{b-a}=f'(c)$

Teorema 2.7 (Corolare la Th. Lagrange). Fie $I \subseteq \mathbb{R}$ interval si $f: I \to \mathbb{R}$ o functie.

- Daca f este derivabila pe I si $f'(x) = 0, \forall x \in I$, atunci f este functie constanta.
- Presupunem ca f este functie derivabila pe I. Daca $f'(x) \geq 0, \forall x \in I$, atunci f este functie crescatoare.

Presupunem ca f este functie derivabila pe I. Daca $f'(x) > 0, \forall x \in I$, atunci f este functie strict crescatoare.

Presupunem ca f este functie derivabila pe I. Daca $f'(x) \leq 0, \forall x \in I$, atunci f este functie descrescatoare.

Presupunem ca f este functie derivabila pe I. Daca $f'(x) < 0, \forall x \in I$, atunci f este functie strict descrescatoare.

- Presupunem ca f este functie continua pe I, derivabila pe $I \setminus \{x_0\}$. Daca $\exists \lim_{x \to x_0} f'(x) \in \mathbb{R}$, atunci f este derivabila in x_0 si $f'(x_0) = \lim_{x \to x_0} f'(x)$.
- Presupunem ca f este derivabila pe I si ca $\exists M > 0$ astfel incat $|f'(x)| \le M, \forall x \in I$. Atunci $|f(x) f(y)| \le M \cdot |x y|, \forall x, y \in I$.

Definitie 2.5 (Punct fix). Fie $f:D\subseteq\mathbb{R}\to\mathbb{R}$ o functie. Elementul $u\in D$ se numeste punct fix pentru f daca f(u)=u.

Definitie 2.6 (Contractie). O functie $f: D \subseteq \mathbb{R} \to \mathbb{R}$ se numeste contractie daca $\exists \ 0 < M < 1$ astfel incat $|f(x) - f(y)| \le M \cdot |x - y|, \forall x, y \in D$.

Teorema 2.8 (Principiul contractiilor). Fie $D = \overline{D} \subseteq \mathbb{R}$. Orice contractie $f: D \to \mathbb{R}$ are un unic punct fix $u \in D$.

Constructia lui $u \in D$:

- Alegem $x_0 \in D$
- Construim sirul $(x_n)_{n\in\mathbb{N}}$ cu elemente in D prin relatia de recurenta $x_{n+1} = f(x_n), \forall n \in \mathbb{N}$.
- Sirul $(x_n)_{n\in\mathbb{N}}$ este convergent. Notam $\lim_{n\to\infty} x_n = u \in D$. f(u) = u.
- Evaluarea lui u: $|x_n u| \le \frac{M^n}{1-M} \cdot |x_1 x_0|, \forall n \in \mathbb{N}.$

Teorema 2.9 (Teorema lui Darboux). Fie $I \subseteq \mathbb{R}$ un interval nedegenerat si $f: I \to \mathbb{R}$ o functie derivabila pe I. Atunci $f': I \to \mathbb{R}$ are proprietatea lui Darboux.

Teorema 2.10 (Corolar la Th. Darboux). Fie $f: I \to \mathbb{R}$ o functie derivabila pe intervalul nedegenerat I astfel incat $f'(x) \neq 0, \forall x \in I$. Atunci $f'(x) > 0, \forall x \in I$ sau $f'(x) < 0, \forall x \in I$.

Teorema 2.11 (Regula lui L'Hospital). Fie $I \subseteq \mathbb{R}$ un interval nedegenerat, $x_0 \in I' \backslash I$ si $f, g : I \to \mathbb{R}$ doua functii derivabile pe I:

Varianta $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Daca avem:

- $\bullet \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$
- $g'(x) \neq 0, \forall x \in I$
- $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \in \overline{\mathbb{R}}$

Atunci
$$g(x) \neq 0, \forall x \in I \text{ si } \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = l \in \overline{\mathbb{R}}$$

Varianta $\begin{bmatrix} \pm \infty \\ \pm \infty \end{bmatrix}$. Daca avem:

- $\lim_{x \to x_0} g(x) \in \{-\infty, +\infty\}$
- $g'(x) \neq 0, \forall x \in I$
- $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \in \overline{\mathbb{R}}$

Atunci $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat $g(x) \neq 0, \forall x \in I \cap V$ si $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = l \in \overline{\mathbb{R}}$

2.2 Siruri de functii derivabile

Teorema 2.12. Fie $I \subseteq \mathbb{R}$ un interval marginit din \mathbb{R} si $(f_n)_{n \in \mathbb{N}}$ un sir de functii derivabile $f_n : I \to \mathbb{R}, \forall n \in \mathbb{N}$ care verifia urmatoarele conditii:

- $\exists g: I \to \mathbb{R}$ o functie astfel incat $f'_n \xrightarrow{u} g$
- $\exists x_0 \in I$ astfel incat sirul de numere reale $(f_n(x_0))_{n \in \mathbb{N}}$ este convergent.

Atunci $\exists f: I \to \mathbb{R}$ o functie derivabila astfel incat $f_n \xrightarrow{u} f$ si $f'(x) = g(x), \forall x \in I$

3 Derivate de ordin superior. Formula lui Taylor.

Definitie 3.1 (Functie derivabila de 2 ori, de n ori).

- Functia $f: D \subseteq \mathbb{R} \to \mathbb{R}$ este derivabila de 2 ori intr-un punct $x_0 \in D \cap D'$ daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat f este derivabila pe $V \cap D$ si $f': V \cap D \to \mathbb{R}$ este derivabila in x_0 .
- Functia $f:D\subseteq\mathbb{R}\to\mathbb{R}$ este derivabila de 2 ori pe multimea $A\subseteq D\cap D'$ daca f este derivabila pe 2 ori in orice punct din A.
- Fie $n \in \mathbb{N}, n \geq 3$. Functia $f : D \subseteq \mathbb{R} \to \mathbb{R}$ este de n ori derivabila in $x_0 \in D \cap D'$ daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat f este de n-1 ori derivabila pe $V \cap D$ si $f^{(n-1)} : V \cap D \to \mathbb{R}$ este derivabila in x_0 .
- Functia $f: D \subseteq \mathbb{R} \to \mathbb{R}$ este de n ori derivabila pe multimea $A \subseteq D \cap D'$ daca f este derivabila de n ori in orice punct din A.
- Functia $f: D \subseteq \mathbb{R} \to \mathbb{R}$ este indefinit derivabila pe $A \subseteq D \cap D'$ daca f este de n ori derivabila pe $A, \forall n \in \mathbb{N}$.

Definitie 3.2 (Polinomul Taylor, Restul). Fie $n \in \mathbb{N}^*$ si $f : D \subseteq \mathbb{R} \to \mathbb{R}$ o functie derivabila de n ori in $x_0 \in D \cap D'$.

- Functia $T_{f,n,x_0}: D \to \mathbb{R}$ definita prin $T_{f,n,x_0}(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x x_0) + \frac{f''(x_0)}{2!} \cdot (x x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!} \cdot (x x_0)^n$ se numeste polinomul Taylor de rang n atasat functiei f si punctului x_0 .
- Functia $R_{f,n,x_0}: D \subseteq \mathbb{R} \to \mathbb{R}$ definita prin $R_{f,n,x_0}(x) = f(x) T_{f,n,x_0}(x)$ se numeste restul de rang n atasat functiei f si punctului x_0 .

Teorema 3.1. Fie $I \subseteq \mathbb{R}$ un interval nedegenerat, $n \in \mathbb{N}$, $f: I \to \mathbb{R}$ o functie derivabila de n+1 ori pe I si $x_0 \in I$. Pentru orice $x \in I \setminus \{x_0\}$, exista $c \in I$ situat intre x si x_0 astfel incat $f(x) = T_{f,n,x_0}(x) + \frac{f^{(n+1)}(c)}{(n+1)!} \cdot (x-x_0)^{n+1}$

4 Functii convexe. Functii concave.

Definitie 4.1 (Functie convexa, Functie concava).

- O functie $f: I \subseteq \mathbb{R} \to \mathbb{R}$, cu I interval, se numeste functie convexa pe I daca $f((1-t)\cdot x + t\cdot y) \leq (1-t)\cdot f(x) + t\cdot f(y), \forall x,y\in I, \forall t\in [0,1].$
- O functie $f: I \subseteq \mathbb{R} \to \mathbb{R}$, cu I interval, se numeste functie concava pe I daca $f((1-t)\cdot x + t\cdot y) \geq (1-t)\cdot f(x) + t\cdot f(y), \forall x,y\in I, \forall t\in [0,1].$

Teorema 4.1. Fie $I \subseteq \mathbb{R}$ un interval si $f: I \to \mathbb{R}$ o functie derivabila pe I. Atunci:

- f este functie convexa pe $I \Leftrightarrow f'$ este functie crescatoare.
- f este functie concava pe $I \Leftrightarrow f'$ este functie descrescatoare.

Teorema 4.2 (Corolar). Fie $I \subseteq \mathbb{R}$ un interval si $f: I \to \mathbb{R}$ o functie de 2 ori derivabila pe I. Atunci:

- f este functie convexa pe $I \Leftrightarrow f''(x) > 0, \forall x \in I$.
- f este functie concava pe $I \Leftrightarrow f''(x) \leq 0, \forall x \in I$.

5 Serii de functii

Alegem sirul de functii $(f_n)_{n\in\mathbb{N}}$, unde $f_n:D\subseteq\mathbb{R}\to\mathbb{R}, \forall n\in\mathbb{N}$. Ii asociem sirul de functii $(s_n)_{n\in\mathbb{N}}$, unde $s_n:D\subseteq\mathbb{R}\to\mathbb{R}$ si $s_n(x)=f_0(x)+f_1(x)+\ldots+f_n(x)$.

Definitie 5.1 (Simplu, absolut, uniform convergenta).

• Spunem ca seria de functii $\sum_{n=0}^{\infty} f_n$ este simplu convergenta pe multimea $A \subseteq D$ daca sirul de functii $(s_n)_{n \in \mathbb{N}}$ converge simplu pe multimea A.

- Spunem ca seria de functii $\sum_{n=0}^{\infty} f_n$ este absolut convergenta pe multimea $A \subseteq D$ daca seria de functii $\sum_{n=0}^{\infty} |f_n|$ este simplu convergenta pe multimea A.
- Spunem ca seria de functii $\sum_{n=0}^{\infty} f_n$ este uniform convergenta pe multimea $A \subseteq D$ daca sirul de functii $(s_n)_{n \in \mathbb{N}}$ converge uniform pe multimea A.

Teorema 5.1 (Criteriul lui Weierstrass pentru serii de functii). Fie $(f_n)_{n\in\mathbb{N}}$ un sir de functii astfel incat $f_n:D\subseteq\mathbb{R}\to\mathbb{R}, \forall n\in\mathbb{N}$ si $(a_n)_{n\in\mathbb{N}}$ un sir din \mathbb{R} astfel incat $|f_n(x)|\leq a_n, \forall x\in D, \forall n\in\mathbb{N}$. Daca seria de numere reale $\sum_{n=0}^\infty a_n$ este convergenta, atunci seria de functii $\sum_{n=0}^\infty f_n$ este uniform si absolut convergenta pe multimea D.

Teorema 5.2 (Criteriul Abel-Dirichlet pentru siruri de functii). Se considera sirurile de functii $(f_n)_{n\in\mathbb{N}}, (g_n)_{n\in\mathbb{N}}$ cu $f_n, g_n : D \subseteq \mathbb{R} \to \mathbb{R}, \forall n \in \mathbb{N}$.

Varianta 1:

Daca:

- $f_n \xrightarrow{u} 0$
- $f_{n+1}(x) \le f_n(x), \forall x \in D, \forall n \in \mathbb{N}$
- $\exists M > 0$ astfel incat $|g_0(x) + g_1(x) + ... + g_n(x)| \leq M, \forall x \in D, \forall n \in \mathbb{N}$

Atunci seria de functi
i $\sum_{n=0}^{\infty} f_n \cdot g_n$ este uniform convergenta pe multime
aD.

Varianta 2:

Daca:

- $f_{n+1}(x) \le f_n(x), \forall x \in D, \forall n \in \mathbb{N}$ sau $f_{n+1}(x) \ge f_n(x), \forall x \in D, \forall n \in \mathbb{N}$
- $\exists \alpha > 0$ astfel incat $|f_n(x)| \leq \alpha, \forall x \in D, \forall n \in \mathbb{N}$
- Seria de functii $\sum_{n=0}^{\infty} g_n$ este uniform convergenta pe D.

Atunci, seria de functii $\sum_{n=0}^{\infty} f_n \cdot g_n$ este uniform convergenta pe D.

Teorema 5.3. Daca seria de functii $\sum_{n=0}^{\infty} f_n$ este uniform convergenta pe multimea $A \subseteq D$ catre functia $f: A \to \mathbb{R}$ si $\exists x_0 \in A$ astfel incat f_n este continua in $x_0, \forall n \in \mathbb{N}$, atunci f este continua in x_0 .

Teorema 5.4. Fie $I \subseteq \mathbb{R}$ un interval marginit $(f_n)_{n \in \mathbb{N}}$ un sir de functii derivabile pe I cu $f_n : I \to \mathbb{R}, \forall n \in \mathbb{N}$ care verifica urmatoarele ipoteze:

- Seria de functii $\sum_{n=1}^{\infty} f'_n$ este uniform convergenta pe I catre functia $g:I\to\mathbb{R}$
- $\exists x_0 \in I$ astfel incat seria de numere reale $\sum_{n=0}^{\infty} f_n(x)$ este convergenta.

Atunci $\exists f: I \to \mathbb{R}$ o functie derivabila astfel incat seria de functii $\sum_{n=0}^{\infty} f_n$ este uniform convergenta pe I catre functia f si $f'(x) = g(x), \forall x \in I$.

5.1 Serii de puteri

Fie $x_0 \in \mathbb{R}$.

Definitie 5.2 (Serie de puteri). Se numeste serie de puteri o serie de functii $\sum_{n=0}^{\infty} f_n \text{ unde } f_n : \mathbb{R} \to \mathbb{R} \text{ cu } f_0(x) = a_0, \forall x \in \mathbb{R} \text{ si } f_n(x) = a_n(x-x_0)^n, \forall n \in \mathbb{N}, \forall x \in \mathbb{R}$

Definitie 5.3 (Raza de convergenta, interval de convergenta, multime de convergenta, suma seriei de puteri). Se considera seria de puteri $\sum_{n=0}^{\infty} a_n (x-x_0)^n$.

- Numarul $R = \sup\{r \ge 0 | \sum_{n=0}^{\infty} |a_n| r^n \text{ serie convergenta de numere reale}\} \in \overline{\mathbb{R}}$ se numeste raza de convergenta a seriei de puteri.
- Multimea $(x_0 R, x_0 + R) \subseteq \mathbb{R}$ se numeste intervalul de convergenta al seriei de puteri.
- Multimea $A = \{x \in \mathbb{R} | \sum_{n=0}^{\infty} a_n (x x_0)^n \text{ serie convergenta de numere reale} \}$ se numeste multimea de convergenta a seriei de puteri.
- Functia $f: A \to \mathbb{R}$ definita prin $f(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ se numeste suma seriei de puteri.

Teorema 5.5 (Teorema Cauchy-Hadamard). Se considera o serie de puteri $\sum_{n=0}^{\infty} a_n (x-x_0)^n \text{ si } l = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}, l \in [0, \infty]. \text{ Atunci: } R = \begin{cases} \frac{1}{l}, daca \ l \in (0, \infty) \\ \infty, daca \ l = 0 \\ 0, daca \ l = \infty \end{cases}$

Teorema 5.6 (Teorema lui Abel). Fie $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ o serie de puteri si R raza ei de convergenta:

- $\forall x \in (x_0 R, x_0 + R)$ seria de numere reale $\sum_{n=0}^{\infty} a_n (x x_0)^n$ este convergenta.
- $\forall x \in \mathbb{R} \setminus [x_0 R, x_0 + R]$ seria de numere reale $\sum_{n=0}^{\infty} a_n (x x_0)^n$ este divergenta.
- Daca R > 0, pentru orice numar real $r \in (0, R)$ seria de functii $\sum_{n=0}^{\infty} a_n (x x_0)^n$ este uniform si absolut convergenta pe $[x_0 r, x_0 + r]$

Teorema 5.7 (Corolar).

- $(x_0 R, x_0 + R) \subseteq A \subseteq [x_0 R, x_0 + R]$
- $R=0 \Rightarrow A=\{x_0\}$
- $R = \infty \Rightarrow A = \mathbb{R}$

Teorema 5.8. Fie $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ o serie de puteri cu R>0 si $f:A\to\mathbb{R}$ suma seriei de puteri:

- $f|_{(x_0-R,x_0+R)}$ este functie indefinit derivabila si $f^{(k)}(x)=\sum_{n=0}^{\infty}(a_n(x-x_0)^n)^{(k)}, \forall x\in(x_0-R,x_0+R)$
- Daca $x_0 R \in A$, atunci f este continua in $x_0 R$
- Daca $x_0 + R \in A$, atunci f este continua in $x_0 + R$

Teorema 5.9 (Serii remarcabile de puteri).

•
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \forall x \in (-1,1)$$

•
$$\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}, \forall x \in (-1,1)$$

$$\bullet \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x, \forall x \in \mathbb{R}$$

$$\bullet \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \cos(x), \forall x \in \mathbb{R}$$

$$\bullet \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = \sin(x), \forall x \in \mathbb{R}$$

6 Aplicatii liniare si continue intre spatii normate reale

Definitie 6.1 (Aplicatie liniara). O functie $T:(X,||\cdot||_X)\to (Y,||\cdot||_Y)$ se numeste aplicatie liniara daca $T(\alpha\cdot x+\beta\cdot y)=\alpha\cdot T(x)+\beta\cdot T(y), \forall x,y\in X, \forall \alpha,\beta\in\mathbb{R}$

Teorema 6.1. O aplicatie liniara $T:(X,||\cdot||_X) \to (Y,||\cdot||_Y)$ este functie continua pe $X \Leftrightarrow \exists M > 0$ astfel incat $||T(x)||_Y < M \cdot ||x||_X, \forall x \in X$

Teorema 6.2. • O functie $T: R^n \to \mathbb{R}$ este aplicatie liniara $\Leftrightarrow \exists! a_1, a_2, ..., a_n$ astfel incat $T((a_1, a_2, ..., a_n)) = a_1x_1 + a_2x_2 + ... + a_nx_n, \forall (x_1, x_2, ..., x_n) \in \mathbb{R}^n$

- O functie $T: R \to \mathbb{R}^m$ este aplicatie liniara $\Leftrightarrow \exists! v = (b_1, ..., b_m) \in \mathbb{R}^m$ astfel incat $T(x) = x \cdot v, \forall x \in \mathbb{R}$
- O functie $T: \mathbb{R}^n \to \mathbb{R}^m; n, m \geq 2$ este aplicatie liniara $\Leftrightarrow \exists ! A \in \mathcal{M}_{m,n}(\mathbb{R})$ astfel incat $T((x_1, ..., x_n)) = \left[A \begin{pmatrix} x_1 \\ ... \\ x_n \end{pmatrix}\right]^t, \forall (x_1, ...x_n) \in \mathbb{R}^n$

7 Functii diferentiabile

Definitie 7.1 (Functie diferentiabila intr-un punct). O functie $f: D \subseteq (X, || ||_X) \to (Y, || ||_Y)$ se numeste functie diferentiabila in punctul $x_0 \in D \cap D'$ daca $\exists! T \in \mathcal{L}(X,Y)$ astfel incat $\lim_{x \to x_0} \frac{||f(x) - f(x_0) - T(x - x_0)||_Y}{||x - x_0||_X} = 0$.

Definitie 7.2 (Functie diferentiabila pe o multime). Functia $f:D\subseteq (X,||\cdot||_X)\to (Y,||\cdot||_Y)$ este diferentiabila pe multimea $A\subseteq D\cap D'$ daca f este diferentiabila in orice punct din multimea A.

Teorema 7.1 (Operatii cu functii diferentiabile).

• Fie $f, g: D \subseteq (X, || ||_X) \to (Y, || ||_Y)$ doua functii diferentiabile in punctul $x_0 \in D \cap D'$. Atunci $f + g, f - g, \alpha f$ sunt functii diferentiabile in x_0 si: $d(f+g)(x_0) = df(x_0) + dg(x_0)$

```
d(f - g)(x_0) = df(x_0) - dg(x_0)
d(\alpha f)(x_0) = \alpha \cdot df(x_0)
```

- Fie $f: D \subseteq (X, || ||_X) \to A \subseteq (Y, || ||_Y), g: A \subseteq (Y, || ||_Y) \to (Z, ||||_Z), x_0 \in D \cap D'$ astfel incat $f(x_0) = A \cap A'$. Daca f este diferentiabila in x_0 si g este diferentiabila in $f(x_0)$, atunci $g \circ f: D \subseteq (X, || ||_X) \to (Z, || ||_Z)$ este diferentiabila in x_0 si $d(g \circ f) = dg(f(x_0)) \circ df(x_0)$.
- **Teorema 7.2.** Orice functie constanta $f: D \subseteq (X, || \cdot ||_X) \to (Y, || \cdot ||_Y)$ este diferentiabila pe $D \cap D'$ si $df(x) = \mathbf{0}, \forall x \in D \cap D'$.
 - Fie $T \in \mathcal{L}(X,Y)$. T este diferentiabila pe X si $dT(x) = T, \forall x \in X$.

Definitie 7.3 (Derivata partiala). Fie $n \geq 2$ si $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ si $x_0 \in D \cap D'$. Spunem ca functia f admite derivata partiala in raport cu variabila $x_i, 1 \leq i \leq n$, in punctul $x_0 \in D \cap D'$ daca $\exists \lim_{t \to 0} \frac{f(x_0 + t \cdot e_i) - f(x_0)}{t} \in \mathbb{R}^m$

Teorema 7.3. Fie $n \geq 2$ si $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ si $x_0 \in D \cap D'$. Daca f este diferentiabila in x_0 , at unci f admite toate derivatele partiale in punctul x_0 . In plus, $df(x_0): \mathbb{R}^n \to \mathbb{R}^m$ este definita prin formula $df(x_0)((x_1, ..., x_m)) = x_1 \frac{\partial f}{\partial x_1}(x_0) + x_2 \frac{\partial f}{\partial x_2}(x_0) + ... + x_n \frac{\partial f}{\partial x_n}(x_0), \forall (x_1, ..., x_n) \in \mathbb{R}^n$.

Teorema 7.4 (Criteriu de diferentiabilitate). Fie $n \geq 2$, $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $x_0 \in D^O$. Presupunem ca $\exists V \in \mathcal{V}_{\tau}(x_0), V \subseteq D$ astfel incat f admite toate derivatele partiale in orice punct din V si acestea sunt functii continue in punctul x_0 . Atunci f este diferentiabila in punctul x_0 .

Teorema 7.5 (Corolar). Fie $n \geq 2$ si $f: D = D^{\mathcal{O}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$. Presupunem ca f admite toate derivatele partiale in orice punct din D si acestea sunt functii continue in orice punct din D. Atunci f este differentiabila in orice punct din D.

Teorema 7.6. Orice functie $f: D \subseteq (X, || ||_X) \to (Y, || ||_Y)$ differentiabila in punctul $x_0 \in D \cap D'$ este continua in x_0 .

Teorema 7.7 (Corolar). Daca f nu este functie continua in puncul x_0 , atunci f nu este diferentiabila in x_0

Teorema 7.8. Fie $f: D \subseteq \mathbb{R} \to \mathbb{R}^m$; $f(x) = (f_1(x), f_2(x), ... f_m(x))$ cu $f_1, ... f_m: D \subseteq \mathbb{R} \to \mathbb{R}$. Urmatoarele afirmatii sunt echivalente:

- f este diferentiabila in $x_0 \in D \cap D'$
- f este derivabila in x_0
- $f_1, ... f_m$ sunt derivabile in x_0

In plus, $df(x_0): \mathbb{R} \to \mathbb{R}^m$ este definita prin formula $df(x_0)(x) = xf'(x_0) = x(f'_1(x_0), ... f'_m(x_0)), \forall x \in \mathbb{R}$.

Teorema 7.9. Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m; n, m \geq 2, f((x_1, ...x_n)) = (f_1(x_1, ...x_n), f_2(x_1, ...x_n), ...f_m(x_1, ...x_n)),$ cu $f_1, ...f_m: D \subseteq \mathbb{R}^n \to \mathbb{R}$.

Urmatoarele afirmatii sunt echivalente:

- f este diferentiabila in punctul $x_0 \in D \cap D'$
- $f_1, ... f_m$ sunt differentiabile in punctul $x_0 \in D \cap D'$

In plus, $df(x_0): \mathbb{R}^n \to \mathbb{R}^m$ este definita prin formula $df(x_0)((x_1,...x_n)) = \begin{bmatrix} A \begin{pmatrix} x_1 \\ ... \\ x_n \end{pmatrix} \end{bmatrix}^t$, $\forall (x_1,...x_n) \in \mathbb{R}^n$, unde:

$$A = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \frac{\partial f_1}{\partial x_2}(x_0) & \dots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \frac{\partial f_2}{\partial x_1}(x_0) & \frac{\partial f_2}{\partial x_2}(x_0) & \dots & \frac{\partial f_2}{\partial x_n}(x_0) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \frac{\partial f_m}{\partial x_2}(x_0) & \dots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{R})$$

Teorema 7.10. Pt functia $f:D\subseteq\mathbb{R}^n\to\mathbb{R}; n\geq 2$

- Daca f nu este continua in $x_0 \in D \cap D'$, atunci f nu este diferentiabila in x_0
- Daca $\nexists \frac{\partial f}{\partial x_i}(x_0)$, cu $1 \leq i \leq n$, atunci f nu este diferentiabila in x_0 .
- Daca $x_0 \in D^{\mathcal{O}}, \exists V \in \mathcal{V}_{\tau}(x_0)$ pe care exista toate derivatele partiale si acestea sunt functii continue in x_0 , atunci f este diferentiabila in x_0 .

Definitie 7.4 (Punct critic). Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ o functie si $x_0 \in D \cap D'$. Spunem ca x_0 este punct critic pentru f daca f este diferentiabila in x_0 si $df(x_0) = \mathbf{0}$.

8 Aplicatii biliniare si continue

Teorema 8.1. O aplicatie biliniara $T: X \times X \to Y$ este functie continua pe $X \times X \Leftrightarrow \exists M > 0$ astfel incat $||T(X,Y)||_Y \leq M \cdot ||x||_X \cdot ||y||_X, \forall x, y \in X$.

Definitie 8.1 (Aplicatie biliniara simetrica). O aplicatie biliniara $T: X \times X \to Y$ se numeste simetrica daca $T(x,y) = T(y,x), \forall x,y \in X$

9 Functii diferentiabile de 2 ori

Definitie 9.1 (Functie diferentiabila de 2 ori). Spunem ca functia $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ este diferentiabila de 2 ori in punctul $x_0 \in D \cap D'$ daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat f este diferentiabla pe $V \cap D$ si $df: V \cap D \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ este diferentiabila in punctul x_0 .

Definitie 9.2 (Derivata partiala de ordin 2). Spunem ca functia $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ admite derivata partiala de ordinul 2 in raport cu variabilele x_i si x_j in punctul $x_0 \in D \cap D'$ daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat f admite derivata partiala in raport cu variabila x_j pe multimea $V \cap D$ si $\frac{\partial f}{\partial x_j}: V \cap D \to \mathbb{R}^m$ admite derivata partiala in raport cu variabila x_i in punctul x_0 .

Teorema 9.1 (Teorema lui Schwarz). Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ o functie diferentiabila de 2 ori in punctul $x_0 \in D \cap D'$. Atunci f admite toate derivatele partiale de ordin 2 in punctul x_0 si $\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x_0), \forall i \neq j \in 1, ...n$. In plus, $df(x_0): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$ este data de formula $d^2 f(x_0)((t_1, ...t_n), (y_1, ...y_n)) = \sum_{i,j=1}^n t_i y_j \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0), \forall (t_1, ...t_n), (y_1, ...y_n) \in \mathbb{R}^n$.

Teorema 9.2 (Teorema lui Young). Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ o functie si $x_0 \in D^{\mathcal{O}}$. Presupunem ca $\exists V \in \mathcal{V}_{\tau}(x_0), V \subseteq D$ pe care $\exists \frac{\partial^2 f}{\partial x_i \partial x_j}, \frac{\partial^2 f}{\partial x_j \partial x_i}$ si acestea sunt functii continue in x_0 . Atunci $\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x_0)$

- **Teorema 9.3** (Corolar). Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ o functie $x_0 \in D^O$. Presupunem ca $\exists V \in \mathcal{V}_{\tau}(x_0), V \subseteq D$ pe care exista toate derivatele partiale de ordinul 2 si acestea sunt functii continue in x_0 . Atunci f este diferentiabila de 2 ori in x_0 .
 - Fie $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ o functie si $A=A^{\mathcal{O}}\subseteq D$ nevida. Presupunem ca exista toate derivatele partiale de ordin 2 pe multimea A si acestea sunt functii continue pe multimea A. Atunci f este diferentiabila de 2 ori pe multimea A.

Definitie 9.3 (Functie de clasa c^2 , c^1).

- Fie $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ o functie si $A=A^0\subseteq D$ nevida. Spunem ca functia f este de clasa c^2 pe multimea A daca f admite toate derivatele partiale de ordinul 2 pe multimea A si acestea sunt functii continue pe multimea A.
- Spunem ca f este functie de clasa c^1 pe multimea A daca f admite toate derivatele partiale pe multimea A si acestea sunt functii continue pe A.

10 Puncte de extrem local pentru functii de mai multe variabile reale

Definitie 10.1 (Minim local, maxim local). Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

- Elementul $x_0 \in D$ se numeste punct de minim local pentru f daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat $f(x_0) \leq f(x), \forall x \in D \cap V$.
- Elementul $x_0 \in D$ se numeste punct de maxim local pentru f daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat $f(x_0) \geq f(x), \forall x \in D \cap V$.

• Elementul $x_0 \in D$ se numeste punct de extrem local pentru f daca x_0 este punct de minim local pentru f sau x_0 este punct de maxim local pentru f.

Teorema 10.1 (Teorema lui Fermat - cazul multidimensional). Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ o functie si $x_0 \in D^{\mathcal{O}}$ un punct de extrem local al functiei f. Daca f este diferentiabila in x_0 , atunci $df(x_0) = 0_{\mathbb{R}^n}$ (x_0 e punct critic).

Teorema 10.2 (Criteriu de determinare al punctelor de extrem local - Sylvester). Fie $D \subseteq \mathbb{R}^n$ o multime deschisa, $f: D \to \mathbb{R}$ o functie de clasa c^2 pe multimea D si $x_0 \in D$ punct critic pentru f.

- Daca $d^2 f(x_0)(x,x) > 0, \forall x \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$, atunci x_0 este punct de minim local pentru f.
- Daca $d^2 f(x_0)(x,x) < 0, \forall x \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$, atunci x_0 este punct de maxim local pentru f.
- Daca $\exists x, y \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ astfel incat $d^2 f(x_0)(x, x) > 0$ si $d^2 f(x_0)(y, y) < 0$, atunci x_0 **nu** este punct de extrem local pentru f.

Teorema 10.3.
$$d^2 f(x_0) \to H_f(x_0) = (\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0))_{i,j=\overline{1,n}}$$

 $1 \le k \le n, \Delta_k = \det(\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0))_{i,j=\overline{1,k}}$

- Daca $\Delta_1, \Delta_2, \dots \Delta_n > 0$, atunci x_0 este punct de minim local pentru f.
- Daca $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, \dots (-1)^n \Delta_n > 0$, atunci x_0 este punct de maxim local pentru f.
- Daca $\Delta_1, \Delta_2, \dots \Delta_n \geq 0$ sau $\Delta_1 \leq 0, \Delta_2 \geq 0, \dots, (-1)^n \Delta_n \geq 0$ si cel putin un minor este nul, nu ne putem pronunta cu criteriul respectiv.
- In orice alt caz posibil, x_0 nu este punct de extrem.

Teorema 10.4 (Teorema functiilor implicite). Fie $p, q \in \mathbb{N}^*, D = D^{\mathcal{O}} \subseteq \mathbb{R}^p \times \mathbb{R}^q$ o multime deschisa, $f: D \to R^q$ o functie definita prin $f(x_1, ...x_p, y_1, ...y_q) = (f_1(x, y), f_2(x, y), ...f_q(x, y))$ si $(x_0, y_0) \in D$ cu urmatoarele proprietati:

- $\bullet \ f$ este functie de clasa c^1 pe multime
aD
- $f(x_0, y_0) = 0$

$$\bullet \frac{\partial (f_1, \dots f_q)}{\partial (y_1, \dots y_q)}(x_0, y_0) = \begin{vmatrix} \frac{\partial f_1}{\partial y_1}(x_0, y_0) & \frac{\partial f_1}{\partial y_2}(x_0, y_0) & \dots & \frac{\partial f_1}{\partial y_q}(x_0, y_0) \\ \frac{\partial f_2}{\partial y_1}(x_0, y_0) & \frac{\partial f_2}{\partial y_2}(x_0, y_0) & \dots & \frac{\partial f_2}{\partial y_n}(x_0, y_0) \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial f_q}{\partial y_1}(x_0, y_0) & \frac{\partial f_q}{\partial y_2}(x_0, y_0) & \dots & \frac{\partial f_q}{\partial y_q}(x_0, y_0) \end{vmatrix} \neq 0$$

Atunci $\exists V \in \mathcal{V}(x_0), \exists ! \varphi : V \subseteq \mathbb{R}^p \to \mathbb{R}^q$ functie de clasa c^1 data de formula $\varphi(x) = (\varphi_1(x), \varphi_2(x), ..., \varphi_p(x))$ cu urmatoarele proprietati:

- $\bullet \ \varphi(x_0) = y_0$
- $(x, \varphi(x)) \in D, \forall V \in \mathcal{V}(x_0)$
- $f(x, \varphi(x)) = 0_{\mathbb{R}^q}, \forall x \in V$

In plus,
$$\frac{\partial \varphi_i}{\partial x_j}(x_0) = -\frac{\frac{\partial (f_1, \dots f_q)}{\partial (y_1, \dots y_{i-1}, x_j, y_{i+1}, \dots y_q)}(x_0, y_0)}{\frac{\partial (f_1, \dots f_q)}{\partial (y_1, \dots y_q)}(x_0, y_0)}, 1 \le i \le q, 1 \le j \le p$$

11 Functii integrabile

Definitie 11.1 (Diviziune). Se numeste diviziune a intervalului [a, b] orice mulime finita de elemente $\{x_0, ..., x_n\}$ din [a, b] cu $x_0 = a$ si $x_n = b$.

Definitie 11.2 (Norma unei diviziuni). Fie $\Delta \in \mathcal{D}([a,b])$ cu $\Delta = \{x_0, \dots x_n\}$. Numarul real $\max_{i=0,n-1} \{x_{i+1} - x_i\} \in \mathbb{R}$ se numeste norma diviziunii Δ .

Definitie 11.3 (Sistem de puncte intermediare). Fie $\Delta \in \mathcal{D}([a,b]), \Delta = \{x_0, \ldots, x_n\}$. Se numeste sistem de puncte intermediare asociat diviziunii Δ multimea finita $\{t_1, \ldots, t_n\}$ cu $t_1 \in [x_0, x_1], t_2 \in [x_1, x_2], \ldots, t_n \in [x_{n-1}, x_n]$.

Definitie 11.4 (Suma Riemann). Fie $f:[a,b]\to\mathbb{R}$ o functie, $\Delta\in\mathcal{D}([a,b])$ cu $\Delta=\{x_0,\dots x_n\}$ si $t_\Delta=\{t_1,\dots t_n\}$ un sistem de puncte intermediare asociat diviziunii Δ . Numarul real $f(t_1)(x_1-x_0)+f(t_2)(x_2-x_1)+\dots+f(t_n)(x_n-x_{n-1})=\sum_{i=1}^n f(t_i)(x_i-x_{i-1})$ se numeste suma Riemann asociata functiei f, diviziunii Δ si sistemului de puncte intermediare t_Δ .

Definitie 11.5 (Suma Darboux). Fie $f:[a,b]\to\mathbb{R}$ o functie marginita, $\Delta\in\mathcal{D}([a,b])$ cu $\Delta=\{x_0,\ldots x_n\}$ si

- $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) \in \mathbb{R}$
- $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x) \in \mathbb{R}$

cu $i \in \{1, ... n\}$.

Numarul real $S_{\Delta} = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$ se numeste suma Darboux superioara asociata functiei f si diviziunii Δ .

Numarul real $s_{\Delta} = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$ se numeste suma Darboux inferioara asociata functiei f si diviziunii Δ .

12 Functii integrabile Riemann

Definitie 12.1 (Functie integrabila Riemann). O functie $f:[a,b] \to \mathbb{R}$ se numeste functie integrabila Riemann pe [a,b] daca $\exists I \in \mathbb{R}$ cu proprietatea ca $\forall \epsilon > 0, \exists \delta_{\epsilon} > 0$ astfel incat $|\sigma_{\Delta}(f, t_{\Delta}) - I| < \epsilon, \forall \Delta \in \mathcal{D}([a,b])$ cu $||\Delta|| < \delta_{\epsilon}$ si $\forall t_{\Delta}$ un sistem de puncte intermediare asociat diviziunii Δ .

Teorema 12.1. Fie $f \in \mathcal{R}([a,b]), (\Delta_n)_{n \in \mathbb{N}}$ un sir de diviziuni ale intervalului [a,b] cu $\lim_{n \to \infty} ||\Delta_n|| = 0$ si t_{Δ_n} un sistem arbitrar de puncte intermediare asociat

diviziunii Δ_n . Atunci $\lim_{n\to\infty} \sigma_{\Delta_n}(f, t_{\Delta_n}) = \int_a^b f(x) dx$.

Teorema 12.2 (Criteriu de integrabilitate al lui Darboux). O functie marginita $f:[a,b]\to\mathbb{R}$ este integrabila Riemann pe $[a,b]\Leftrightarrow \forall \epsilon>0, \exists \delta_\epsilon>0$ astfel incat $S_\Delta(f)-s_\Delta(f)<\epsilon$ pentru orice $\Delta\in\mathcal{D}([a,b])$ cu $||\Delta||<\delta_\epsilon$.

Teorema 12.3. Orice functie monotona $f : [a, b] \to \mathbb{R}$ este integrabila Riemann pe [a, b].

Teorema 12.4. Orice functie continua $f : [a, b] \to \mathbb{R}$ este integrabila Riemann pe [a, b].

Definitie 12.2 (Multime neglijabila Lebesgue). O multime $A \subseteq \mathbb{R}$ se numeste neglijabila Lebesgue daca $\forall \epsilon > 0, \exists (I_n)_{n \in \mathbb{N}}$ un sir de intervale marginite astfel incat $A \subseteq \bigcup_{n \in \mathbb{N}} I_n$ si $\sum_{n \in \mathbb{N}} l(I_n) < \epsilon$.

Teorema 12.5. • Daca multimea A este finita sau A este numarabila, atunci A este neglijabila Lebesgue.

 \bullet Daca A=Iinterval si l(I)>0,atunci Anu este multime neglijabila Lebesgue.

Teorema 12.6 (Criteriul de integrabilitate al lui Lebesgue). O functie $f:[a,b]\to\mathbb{R}$ este integrabila Riemann pe $[a,b]\Leftrightarrow f$ este functie marginita si $\{x|\ f$ nu este continua in x $\}$ este multime neglijabila Lebesgue.

Definitie 12.3 (Functie ce admite primitive). Fie $I \subseteq \mathbb{R}$ interval si $f: I \to \mathbb{R}$ o functie. Spunem ca f admite primitive pe I daca $\exists F: I \to \mathbb{R}$ o functie derivabila pe I astfel incat $F'(x) = f(x), \forall x \in I$.

Teorema 12.7 (Formula Leibniz-Newton). Fie $f:[a,b]\to\mathbb{R}$ o functie integrabila Riemann pe [a,b] care admite primitive pe [a,b]. Atunci $\int_a^b f(x)dx=F(b)-F(a)$, unde $F:[a,b]\to\mathbb{R}$ este o primitiva a lui f.

Teorema 12.8. Se considera o functie $f:[a,b]\to\mathbb{R}$ si $c\in(a,b)$. Urmatoarele afirmatii sunt echivalente:

• $f \in \mathcal{R}([a,b])$

• $f|_{[a,c]} \in \mathcal{R}([a,c])$ si $f|_{[c,b]} \in \mathcal{R}([c,b])$

In plus, $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

Teorema 12.9 (Proprietati ale functiilor integrabile Riemann). Se considera $f, g \in \mathcal{R}([a, b])$. Sunt adevarate urmatoarele afirmatii:

- Daca $f(x) \ge 0, \forall x \in [a, b], \text{ at unci } \int_a^b f(x) dx \ge 0$
- Daca $f(x) \leq g(x), \forall x \in [a, b], \text{ atunci } \int_a^b f(x) \leq \int_a^b g(x) dx$
- Daca $\exists m, M \in \mathbb{R}$ astfel incat $m \leq f(x) \leq M, \forall x \in [a, b],$ atunci $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$
- Pentru orice $\Delta \in \mathcal{D}([a,b])$ sunt adevarate inegalitatile $s_{\Delta}(f) \leq \int_a^b f(x) dx \leq S_{\Delta}(f)$

Teorema 12.10. Fie $f \in \mathcal{R}([a,b])$ si functia $F : [a,b] \to \mathbb{R}$ data de $F(x) = \int_a^x f(t)dt$. Atunci F este functie continua pe [a,b]. Daca f este continua intr-un punct $x_0 \in [a,b]$, atunci F este derivabila in $x_0 \in [a,b]$ si $F'(x_0) = f(x_0)$.

Teorema 12.11 (Corolar). Fie $I \subseteq \mathbb{R}$ un interval $f: I \to \mathbb{R}$ o functie continua, $a \in I$ si functia $F: I \to \mathbb{R}$ data de $F(x) = \int_a^x f(t)dt$. Atunci F este o primitiva a lui f (orice functie definita pe un interval $I \subseteq \mathbb{R}$ admite primitive).

Teorema 12.12. Fie $f,g:[a,b]\to\mathbb{R}$ astfel incat $f\in\mathcal{R}([a,b])$ si $\{x\in[a,b]|f(x)\neq g(x)\}$ este multime finita. Atunci $g\in\mathcal{R}([a,b])$ si $\int_a^b f(x)=\int_a^b g(x)$.

Teorema 12.13. Fie $I,J\subseteq\mathbb{R}$ doua intervale, $f:I\subseteq\mathbb{R}$ o functie continua $g,h:J\to I$ doua functii derivabile pe J. Consideram functia $F:J\to\mathbb{R}$ data de $F(x)=\int_{g(x)}^{h(x)}f(t)dt$. Atunci F este derivabila si $F'(x)=f(h(x))h'(x)-f(g(x))g'(x), \forall x\in J$.

Teorema 12.14 (Teorema de medie). Fie $f, g \in \mathcal{R}([a, b])$ care verifica urmatoarele conditii:

- $f(x) \ge 0, \forall x \in [a, b]$
- \bullet g are proprietatea lui Darboux

Exista $c \in (a, b)$ astfel incat $\int_a^b f(x)g(x)dx = g(c)\int_a^b f(x)dx$

12.1 Permutarea limitei cu integrala

Teorema 12.15 (Teorema convergentei uniforme). Fie $(f_n)_{n\in\mathbb{N}}$ un sir din $\mathcal{R}([a,b])$ si $f:[a,b]\to\mathbb{R}$ o functie astfel incat $f_n\xrightarrow[[a,b]]{u}f$. Atunci $f\in\mathcal{R}([a,b])$

si
$$\int_a^b f(x)dx = \lim_{n \to \infty} \int_a^b f_n(x)dx$$

Teorema 12.16 (Teorema convergentei marginite). Fie $(f_n)_{n\in\mathbb{N}}$ un sir din R([a,b]) si $f\in\mathcal{R}([a,b])$ cu urmatoarele proprietati:

- $f_n \xrightarrow[[a,b]]{s} f$
- $\exists M > 0$ astfel incat $|f_n(x)| \leq M, \forall x \in [a, b], \forall n \in \mathbb{N}$

Atunci
$$\int_a^b f(x)dx = \lim_{n \to \infty} \int_a^b f_n(x)dx$$

Teorema 12.17 (Teorema convergentei monotone). Fie $(f_n)_{n\in\mathbb{N}}$ in sir din $\mathcal{R}([a,b])$ si $f\in\mathcal{R}([a,b])$ cu urmatoarele proprietati:

- $f_n \xrightarrow[[a, b]]{s} f$
- $f_n(x) \le f_{n+1}(x), \forall x \in [a, b] \text{ si } \forall n \in \mathbb{N}$ sau $f_n(x) \ge f_{n+1}(x), \forall x \in [a, b] \text{ si } \forall n \in \mathbb{N}$

Atunci
$$\int_a^b f(x)dx = \lim_{n \to \infty} \int_a^b f_n(x)dx$$

13 Integrale improprii

$$I = [a,b) \lor (a,b] \lor (a,b) \lor (a,+\infty) \lor (-\infty,a) \lor [a,+\infty) \lor (-\infty,a] \lor (-\infty,+\infty)$$

Definitie 13.1 (Functie local integrabila). Functia $f: I \to \mathbb{R}$ se numeste local integrabila pe I daca $\forall \alpha, \beta \in I$ cu $\alpha < \beta$, avem $f|_{[\alpha,\beta]}$ este functie integrabila Riemann pe $[\alpha,\beta]$.

Definitie 13.2 (Integrala convergenta, divergenta, absolut convergenta). Fie $f:[a,b)\to\mathbb{R}$ o functie local integrabila pe [a,b)

- Spunem ca integrala improprie $\int_a^{b-0} f(x)dx$ este convergenta daca $\exists \lim_{\substack{x \to b \\ x < b}} \int_a^x f(t)dt \in \mathbb{R}$
- \bullet Spunem ca integrala improprie $\int_a^{b-0} f(x) dx$ este divergenta daca nu este convergenta.
- Spunem ca integrala improprie $\int_a^{b-0} f(x)dx$ este absolut convergenta daca integrala improprie $\int_a^{b-0} |f(x)|dx$ este convergenta.

Teorema 13.1. Fie $f \in \mathcal{R}_{loc}([a,b])$. Daca integrala improprie $\int_a^{b-0} f(x) dx$ este absolut convergenta, atunci aceasta este integrala improprie convergenta.

13.1 Criterii de convergenta pentru integralele improprii

Teorema 13.2 (Criteriul de comparatie cu inegalitati). Fie $f, g \in \mathcal{R}_{loc}([a,b))$ astfel incat $0 \le f(x) \le g(x), \forall x \in [a,b)$

- Daca integrala improprie $\int_a^{b-0}g(x)$ este convergenta, atunci integrala improprie $\int_a^{b-0}f(x)dx$ este convergenta.
- Daca integrala improprie $\int_a^{b-0} f(x)$ este divergenta, atunci integrala improprie $\int_a^{b-0} g(x)dx$ este divergenta.

Teorema 13.3 (Criteriul de comparatie cu limite). Fie $f, g \in \mathcal{R}_{loc}([a,b))$ astfel incat $f(x) \geq 0, \forall x \in [a,b)$ si $\exists \lim_{\substack{x \to b \\ x < b}} \frac{f(x)}{g(x)} = l \geq 0$

- Daca $l\in(0,\infty)$, atunci integralele impropri
i $\int_a^{b-0}f(x)dx$ si $\int_a^{b-0}g(x)dx$ au aceeasi natura.
- Daca l=0 si integrala improprie $\int_a^{b-0} g(x)dx$ este convergenta, atunci integrala improprie $\int_a^{b-0} f(x)dx$ este convergenta.
- Daca $l=+\infty$ si integrala improprie $\int_a^{b-0}g(x)dx$ este divergenta, atunci integrala improprie $\int_a^{b-0}f(x)dx$ este divergenta.

Teorema 13.4 (Criteriul Abel-Dirichlet). Se considera $f, g \in R_{loc}([a, b))$ astfel incat f este functie descrescatoare.

Varianta 1: Daca sunt indeplinite urmatoarele conditii:

- $\bullet \lim_{\substack{x \to b \\ x < b}} f(x) = 0$
- $\exists M > 0$ astfel in cat $|\int_a^x g(x) dx| \leq M, \forall x \in [a, b)$

Atunci $\int_a^{b-0} f(x)g(x)dx$ este convergenta.

Varianta 2: Daca sunt indeplinite urmatoarele conditii:

- $\bullet \ \exists \lim_{\substack{x \to b \\ x < b}} f(x) \neq -\infty$
- Integrala improprie $\int_a^{b-0} g(x) dx$ este convergenta.

Atunci $\int_a^{b-0} f(x)g(x)dx$ este convergenta.

Teorema 13.5 (Formula Leibniz-Newton). Fie $f:[a,b)\to\mathbb{R}$ o functie local integrabila pe [a,b) care admite primitive. $F:[a,b)\to\mathbb{R}$ find o primitiva a lui f. Integrala improprie $\int_a^{b-0} f(x)dx$ este convergenta $\Leftrightarrow \exists \lim_{\substack{x\to b\\x< b}} F(x)\in\mathbb{R}$. In plus,

$$\int_{a}^{b-0} f(x)dx = \lim_{\substack{x \to b \\ x < b}} F(x) - F(a).$$

Teorema 13.6 (Formula de integrare prin parti pentru integralele improprii). Fie $f, g : [a, b) \to \mathbb{R}$ doua functii derivabile pe [a, b) astfel incat $f', g' \in \mathcal{R}_{loc}([a, b))$ si $\exists \lim_{\substack{x \to b \\ x < b}} f(x)g(x) \in \mathbb{R}$. Integrala improprie $\int_a^{b-0} f'(x)g(x)dx$ este convergenta \Leftrightarrow

integrala improprie $\int_a^{b-0} f(x)g'(x)dx$ este convergenta. In plus $\int_a^{b-0} f'(x)g(x)dx = f(x)g(x)|_a^{b-0} - \int_a^{b-0} f(x)g'(x)dx$.

Teorema 13.7 (Formula de schimbare de variabila pentru integrale improprii). Fie $f \in \mathcal{R}([a,b))$ si $u:[\alpha,\beta) \to [a,b)$ o functie derivabila cu derivata functie continua $[\alpha,\beta)$ astfel incat $u(\alpha)=a$ si $\lim_{\substack{x\to\beta\\x<\beta}}u(t)=b$. Integrala improprie

 $\int_a^{b-0} f(x)dx$ este convergenta \Leftrightarrow integrala improprie $\int_\alpha^{\beta-0} f(u(t))u'(t)dt$ este convergenta. In plus, $\int_a^{b-0} f(x)dx = \int_\alpha^{\beta-0} f(u(t))u'(t)dt$.

14 Functiile Γ si B ale lui Euler

Teorema 14.1. Pentru orice $p \in (0, \infty)$ integrala improprie $\int_{0+0}^{+\infty} x^{p-1} e^{-x} dx$ este convergenta.

Teorema 14.2. Pentru orice $p, q \in (0, \infty)$ integrala improprie $\int_{0+0}^{1-0} x^{p-1} (1-x)^{q-1} dx$ este convergenta.

Definitie 14.1 (Functiile Γ si B).

- Functia $\Gamma:(0,\infty)\to\mathbb{R}$ definita prin $\Gamma(p)=\int_{0+0}^{+\infty}x^{p-1}e^{-x}dx$ se numeste functia gama a lui Euler.
- Functia $B:(0,\infty)\times(0,\infty)\to\mathbb{R}$ definita prin $B(p,q)=\int_{0+0}^{1-0}x^{p-1}(1-x)^{q-1}dx$ se numeste functia beta a lui Euler.

Teorema 14.3 (Proprietatile functiei Γ).

- $\Gamma(p) > 0, \forall p \in (0, \infty)$
- $\Gamma(p+1) = p\Gamma(p), \forall p \in (o, \infty)$
- $\Gamma(n+1) = n!, \forall n \in \mathbb{N}$
- $\Gamma(p) \cdot \Gamma(1-p) = \frac{\pi}{\sin(n\pi)}, \forall p \in (0,1)$

Teorema 14.4 (Proprietatile functiei B).

- $B(p,q) > 0, \forall p, q \in (0,\infty)$
- $B(p,q) = B(q,p), \forall p,q \in (0,\infty)$
- $\begin{array}{l} \bullet \ B(p+1,q) = \frac{p}{p+q} B(p,q), \forall p,q \in (0,\infty) \\ B(p,q+1) = \frac{q}{p+q} B(p,q), \forall p,q \in (0,\infty) \end{array}$

- $B(p,q) = 2 \int_{0+0}^{\frac{\pi}{2}-0} sin^{2p-1}xcos^{2q-1}xdx$
- $B(p,q) = \int_{0+0}^{+\infty} \frac{x^{p-1}}{(1+x)^{p+q}}$

Teorema 14.5 (Formula de legatura intre Γ si B).

$$B(p,q) = \frac{\Gamma(p) \cdot \Gamma(q)}{\Gamma(p+q)}$$