Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

Pierre Letouzey

Université Paris Cité UFR Informatique Institut de Recherche en Informatique Fondamentale letouzey@irif.fr

29 mars 2022

© Roberto Di Cosmo et Ralf Treinen et Pierre Letouzey

Exemples (inf1.ml)

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Rappel sur le typage en OCaml

Les deux traits essentiels du système de typage de OCaml sont :

- ▶ Le *polymorphisme* : List .map manipule des listes de tout type. Les listes sont polymorphes, mais homogènes : dans une liste donnée, tous les éléments ont le même type.
- L'inférence de types : le système découvre tout seul le type le plus général, sans besoin de déclarer les types des identificateurs.

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Exemples (inf2.ml)

let
$$k \times y = x$$

let $s \times y z = (x y) (y z)$
let $f \times y z = x (y z) (y,z)$

Inférence de types

- ► Comment est-ce que OCaml fait pour trouver le type le plus général d'un identificateur?
- Regardons d'abord le dernier exemple du transparent précédant.
- ▶ Il s'agit d'un cas simple : pas de récurrence.
- On introduit une variable pour le type de chaque identificateur nouveau (ici : pour les identificateurs f, x, y, z), et une variable pour chacune des expressions du côté droite :

let
$$f \times y = x \underbrace{(y z)}_{e_2} \underbrace{(y,z)}_{e_3}$$

ightharpoonup Variables : $t_f, t_x, t_y, t_z, t_1, t_2, t_3$

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Systèmes d'équations entre types

► On a :

let
$$f \times y = x \underbrace{(y z)}_{e_2} \underbrace{(y,z)}_{e_3}$$

Ceci donne les équations suivantes :

$$\begin{array}{lcl} t_f & = & t_X \rightarrow t_y \rightarrow t_z \rightarrow t_1 \\ t_X & = & t_2 \rightarrow t_3 \rightarrow t_1 \\ t_y & = & t_z \rightarrow t_2 \\ t_3 & = & t_y \times t_z \end{array}$$

ightharpoonup Comment obtenir t_f à partir de ces équations?

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Système d'équations entre types

- ▶ Rappel, \rightarrow associe à droite : $x \rightarrow y \rightarrow z = x \rightarrow (y \rightarrow z)$
- ▶ Pour **let** f x1 ... xn = c : i.e. **let** f = **fun** x1 ... xn -> c : ▶ $t_f = t_{v1} \rightarrow ... \rightarrow t_{vn} \rightarrow t_c$
- ▶ Pour tous les sous-expressions *e* de *c*, *c* incluse :
 - ▶ si e = (e1, e2) : $t_e = t_{e1} \times t_{e2}$ ▶ si $e = e1 \ e2 \dots en$: $t_{e1} = t_{e2} \rightarrow \dots t_{en} \rightarrow t_{en}$

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

—Inférence de types

Le sens des équations entre types

- Dans les équations il y a des variables de types, des constructeurs de types → et ×, et éventuellement des constantes (int, bool).
- ▶ Propriétés des constantes et constructeurs de types :
 - Deux termes avec des constructeurs/constantes différentes en tête ne peuvent jamais être égaux.
 - $x_1 \rightarrow x_2 = y_1 \rightarrow y_2$ exactement si $x_1 = y_1$ et $x_2 = y_2$. Pareil pour \times .
- ► Ce sont précisément les lois des symboles de fonctions non interprétées comme on les connaît en Logique!

Resolution d'équations entre types

- L'algorithme pour résoudre des équations entre termes dans une structure de symboles de fonctions non interprétées est précisément l'algorithme d'*unification* de Herbrand/Robinson (voir un cours de *Logique*)!
- L'unification nous donne soit l'information que le système d'équations n'a pas de solution, soit une solution la plus générale (mgu) : toute solution peut être obtenue comme instance du mgu.
- Nous cherchons le type le plus général de f qui est permis par la définition de f, cela correspond exactement au mgu du système des équations.

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Rappel: L'algorithme d'unification (2)

- ▶ Voici les règles de transformation sur un système d'équations :
- **▶** Decomposition :

$$\frac{g(s_1,\ldots,s_n)=g(t_1,\ldots,t_n)}{s_1=t_1,\ldots,s_n=t_n}$$

Donc en pratique ici :

$$\frac{s_1 \to s_2 = t_1 \to t_2}{s_1 = t_1, s_2 = t_2} \qquad \frac{s_1 \times s_2 = t_1 \times t_2}{s_1 = t_1, s_2 = t_2}$$

Clash:

$$\frac{g(s_1,\ldots,s_n)=h(t_1,\ldots,t_m)}{false}$$

quand g différent de h (p.ex. \times et \rightarrow)

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Rappel: L'algorithme d'unification (1)

- Donné:
 - Une signature Σ (un ensemble de symboles d'opérateurs avec leur arité). Dans le cas des équations de types on a

$$\Sigma = \{\rightarrow, \times, \mathtt{int}, \mathtt{bool}, \ldots\}$$

où \rightarrow , \times sont d'arité 2 et int, bool sont d'arité 0.

- Un ensemble V de variables.
- ▶ Soit $T(\Sigma, V)$ l'ensemble des termes construits sur Σ et V
- ▶ Soit free(t) l'ensemble des variables présents dans le terme t

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Rappel: L'algorithme d'unification (3)

Occur Check:

$$\frac{x=1}{false}$$

quand $x \in free(t)$, et t est différent de x.

► Variable Elimination :

$$\frac{x = t \wedge \phi}{x = t \wedge \phi[x/t]}$$

quand $x \notin free(t)$, $x \in free(\phi)$.

Rappel: L'algorithme d'unification (4)

Variable Orientation

$$\frac{t=x}{x=t}$$

quand t n'est pas une variable

► Trivial Equation

$$\frac{x = x}{true}$$

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Exemple: résolution d'équations (1)

► Système de départ :

$$t_f = t_x \rightarrow (t_y \rightarrow (t_z \rightarrow t_1))$$

 $t_x = t_2 \rightarrow (t_3 \rightarrow t_1)$
 $t_y = t_z \rightarrow t_2$
 $t_3 = t_y \times t_z$

▶ Élimination de t₃ :

$$t_f = t_X \rightarrow (t_y \rightarrow (t_z \rightarrow t_1))$$

$$t_X = t_2 \rightarrow ((t_y \times t_z) \rightarrow t_1)$$

$$t_y = t_z \rightarrow t_2$$

$$t_3 = t_y \times t_z$$

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Rappel: L'algorithme d'unification (5)

- Cet algorithme termine toujours : soit il donne false, soit un système d'équations en forme normale (aucune transformation ne s'applique).
- Le résultat est *équivalent* au système d'origine.
- Quand l'algorithme se termine avec un résultat différent de false : on a un système d'équations de la forme

$$x_1 = t_1$$
 \vdots
 $x_n = t_n$

où aucun des x_i n'apparaît dans les termes t_i .

Variantes : séparation entre équations résolues et non résolution, calcul d'une solution sous forme triangulaire.

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup Inférence de types

Exemple: résolution d'équations (2)

 \blacktriangleright Élimination de t_v :

$$t_f = t_x \rightarrow ((t_z \rightarrow t_2) \rightarrow (t_z \rightarrow t_1))$$

$$t_x = t_2 \rightarrow (((t_z \rightarrow t_2) \times t_z) \rightarrow t_1)$$

$$t_y = t_z \rightarrow t_2$$

$$t_3 = (t_z \rightarrow t_2) \times t_z$$

 \blacktriangleright Élimination de t_x :

$$t_f = (t_2 \to (((t_z \to t_2) \times t_z) \to t_1) \to ((t_z \to t_2) \to (t_z \to t_1))$$

$$t_x = t_2 \to (((t_z \to t_2) \times t_z) \to t_1)$$

$$t_y = t_z \to t_2$$

$$t_3 = (t_z \to t_2) \times t_z$$

Exemple: résolution d'équations (4)

Le mgu associe donc à t_f le type suivant :

$$(t_2
ightarrow (((t_{\mathsf{z}}
ightarrow t_{\mathsf{z}}) imes t_{\mathsf{z}})
ightarrow t_{\mathsf{1}}))
ightarrow ((t_{\mathsf{z}}
ightarrow t_{\mathsf{2}})
ightarrow (t_{\mathsf{z}}
ightarrow t_{\mathsf{1}}))$$

▶ Enlevons les parenthèses inutiles et renommons les variables comme OCaml $(t_2 \mapsto a, t_z \mapsto b, t_1 \mapsto c)$:

$$(a
ightarrow (b
ightarrow a) imes b
ightarrow c)
ightarrow (b
ightarrow a)
ightarrow b
ightarrow c$$

 $Programmation \ Fonctionnelle \ Avancée \ 7: \ Inférence \ de \ types, \ polymorphisme \ et \ traits \ impératifs$

Pourquoi cet echec?

- ▶ let f g = (g 42) && (g "truc")
- ▶ Pourquoi est-ce que g ne peut pas être du type : 'a \rightarrow bool?
- ▶ Pour voir la réponse il faut expliciter les quantificateur des variables de types.

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

Quantification des variables de type

Exemple d'échec de l'inférence de type

► Regardons un deuxième exemple :

let f g =
$$(g 42) \&\& (g "truc")$$

Système d'équations :

$$egin{array}{lll} t_f &=& t_g
ightarrow {
m bool} \ t_g &=& {
m string}
ightarrow {
m bool} \ \end{array}$$

► On obtient avec les règles d'unification :

$$\operatorname{int} o \operatorname{bool} = \operatorname{string} o \operatorname{bool}$$
 $\operatorname{int} = \operatorname{string}$

 $Programmation \ Fonctionnelle \ Avancée \ 7: \ Inférence \ de \ types, \ polymorphisme \ et \ traits \ impératifs$

Quantification de variables de types

- ➤ Toutes les variables dans un type sont quantifiées universellement au début du type :
- ▶ Par exemple : Un type comme

$$a \rightarrow b \rightarrow a \times (b \rightarrow a)$$

est à lire comme

$$\forall a, b: a \rightarrow b \rightarrow a \times (b \rightarrow a)$$

Les variables *a*, *b* peuvent être instanciées par des types quelconques.

Quantification des variables de type

Quantification des variables de type

Quantification de variables de types

► Reprenons l'exemple :

let f g =
$$(g 42) \&\& (g "truc")$$

Le type qu'on essaye de construire ici est :

$$(\forall a: a \rightarrow bool) \rightarrow bool$$

Des types avec des ∀ sous une flèche n'existent pas en OCaml, l'inférence a raison de refuser cette définition. Ce qui existe en OCaml est le type

$$\forall a: ((a \rightarrow bool) \rightarrow bool)$$

mais c'est un type différent!

 $Programmation \ Fonctionnelle \ Avancée \ 7: \ Inférence \ de \ types, \ polymorphisme \ et \ traits \ impératifs$

Quantification des variables de type

Example : Quantification de variables de type (1)

▶ let
$$f g h = \text{fun } x \rightarrow h \underbrace{\left(g x\right)}_{t_1}$$

► On obtient le système d'équations :

$$t_f = t_g \rightarrow (t_h \rightarrow t_1)$$

 $t_1 = t_x \rightarrow t_2$
 $t_h = t_3 \rightarrow t_2$
 $t_{\sigma} = t_x \rightarrow t_3$

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

Quantification des variables de type

Quantification de variables de types

- Normalement, dans tous les types les variables de types sont (implicitement) quantifiées ∀, avec un quantificateur devant le type complet.
- Normalement, les variables de types libres (non quantifiées) paraissent seulement pendant la résolution des équations, une fois le type le plus général obtenu les variables sont quantifiées.
- ▶ Dans **let** f x1 ... xn =e, toutes les nouvelles variables du type de f sont quantifiées au début par \forall .
- Nous verrons une exception à cette règle un peu plus tard.

 $Programmation \ Fonctionnelle \ Avancée \ 7: \ Inférence \ de \ types, \ polymorphisme \ et \ traits \ impératifs$

Example: Quantification de variables de type (2)

ightharpoonup La solution trouvée pour la variable t_f est :

$$t_f = (t_x \rightarrow t_3) \rightarrow (t_3 \rightarrow t_2) \rightarrow (t_x \rightarrow t_2)$$

- ▶ Dans ce type, les variables t_x , t_2 , t_3 sont libres, elles sont donc implicitement quantifiées avec un \forall
- Le type obtenu pour f est donc à lire comme :

$$\forall t_{\mathsf{x}}, t_3, t_2: (t_{\mathsf{x}} \rightarrow t_3) \rightarrow (t_3 \rightarrow t_2) \rightarrow (t_{\mathsf{x}} \rightarrow t_2)$$

Quantification des variables de type

└Quantification des variables de type

Et la récursivité?

- ▶ Comment typer **let rec** f x1 ... xn = e?
- On procède comme avant, sauf que e peut contenir des appels récursifs à f.
- ▶ Donc t_f peut apparaître dans les équations de types concernant les expressions e_i.
- On résoud ensuite par unification comme auparavant.
- ightharpoonup Exemple: let rec f n = if n = 0 then 0 else n + f (n-1)
 - Quelles sont les equations?
 - ightharpoonup Comment s'unifient-elles pour obtenir $t_f = \text{int} \rightarrow \text{int}$?

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs $\bigsqcup_{R \in Sultats \ fondamentaux}$

Exemples (inf4.ml)

```
let p x y = fun z -> z x y

let test x0 =
    let x1 = p x0 x0 in
    let x2 = p x1 x1 in
    let x3 = p x2 x2 in
    let x4 = p x3 x3 in
    let x5 = p x4 x4 in
    let x6 = p x5 x5 in
    let x7 = p x6 x6 in
    x7
```

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

Résultats fondamentaux

Quelques résultats fondamentaux

- ▶ Il existe un algorithme qui, étant donnée une expression e, trouve, si elle est typable, son type σ le plus général possible, aussi appelé type principal.
- ► Le premier algorithme pour cela est le W de *Damas et Milner*, qu'on trouve dans *Principal type-schemes for functional programs. 9th Symposium on Principles of programming languages (POPL'82)*.
- ➤ Cet algorithme utilise de façon essentielle l'algorithme d'unification de Herbrand/Robinson.
- Les algorithmes modernes utilisent plutôt directement la résolution de contraintes.
- ▶ À la surprise générale, en 1990 on a montré que l'inférence de type pour le noyau de ML est DEXPTIME complète.

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

Résultats fondamentaux

Comment faire exploser le typeur d'OCaml...

- ▶ Dans l'exemple précédent, le type de xk est de taille 2^k!
- ▶ On peut même avoir une double exponentielle :

```
let boom z =
let f0 = fun \times -> (x, x) in
let f1 = fun y -> f0 (f0 y) in
let f2 = fun y -> f1 (f1 y) in
let f3 = fun y -> f2 (f2 y) in
let f4 = fun y -> f3 (f3 y) in
```

- ▶ Heureusement, en pratique, personne n'écrit de code ainsi.
- L'inférence de type à la ML reste un des systèmes de type les plus puissants.

Typage et traits impératifs

Les règles de typage d'OCaml

- ► Standard :
 - sommes
 - tuples
 - enregistrements
- ► Plus compliqué : value restriction
 - typage des effets de bord (ce chapitre)
- ► Avancé :
 - modules
 - récursion polymorphe
 - objets
 - variants polymorphes (voir la semaine prochaine)
 - ► *GADT* (voir dans deux semaines)

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs Lypage et traits impératifs

Exemples (inf6.ml)

let
$$c = ref (fun \times -> x)$$

let $_{-} = c := (fun \times -> x+1)$
let $_{-} = !c true$

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

—Typage et traits impératifs

La value restriction

- ► En OCaml, on dispose de structures mutables capables de contenir des données de tout type.
- Opérateurs pour les références :

```
ref \forall a : a \rightarrow (a \ ref) créer une référence vers une valeur ! \forall a : (a \ ref) \rightarrow a déréférencer changer la valeur d'une case mémoire référencée
```

- lci ref est un constructeur de type (au même titre que \rightarrow , \times , list, etc.)
- Essayons d'appliquer notre algorithme d'inférence de types en présence de références.

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

—Typage et traits impératifs

Inférence de types en présence de références

► Selon notre algorithme, ref (fun x -> x) a le type

$$(a
ightarrow a)$$
 ref

▶ On obtient donc pour c le type :

$$\forall a: (a \rightarrow a) \ ref$$

- ► Le quantificateur universel pour a va permettre d'instancier a une fois par int, et puis par bool.
- ► Évidement OCaml a raison de refuser ce code, il y a donc un problème avec notre inférence de types.

Typage et traits impératifs

Restriction de quantification

- ► Le souci vient du fait que la variable 'a est quantifiée avec ∀.
- ▶ Ici, une fois la variable 'a instanciée, on ne devrait plus avoir le droit de changer cette instanciation.
- ► En présence de traits impératifs, on ne peut donc pas quantifier les variables dans les types comme avant.
- Idée : les variables de types sont quantifiées seulement quand l'expression à la droite du let satisfait certaines conditions, sinon la variable reste *libre* et peut donc être instanciée une seule fois.
- Ces conditions restent à déterminer!
- OCaml affiche une variable de type libre comme '_weak (ou bien '_a dans les versions plus anciennes)

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs \bigsqcup La value restriction

Exemples (value-restriction3.ml)

```
let fastrev = function list ->
  let left = ref list
  and right = ref []
  in begin
    while !left <> [] do
        right := (List.hd (!left)) :: !right;
        left := List.tl (!left)
    done;
    !right
  end

(* OK ! *)
let _ = fastrev [1;2;3;4]
let _ = fastrev [true; false; false]
```

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

La value restriction

Inférence de type en présence de références

- ► Quelles sont les conditions qui permettent de quantifier les variables de type?
- Une première idée est : l'expression ne contient pas du tout de références.
- ➤ Ca marche, mais a une conséquence assez grave : le polymorphisme est effectivement désactivé dès qu'on utilise des références dans une fonction, même si l'utilisation est parfaitement sûre.
- ► Regardons l'exemple suivant :

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

La value restriction

Inférence de type en présence de références

- La question est alors : trouver la bonne condition sous laquelle les variables de type peuvent être quantifiées, tel que :
 - les erreurs de type pendant l'excution du programme sont exclues ;
 - les fonctions polymorphes utilisant les références de façon sûre restent autorisées.
- Cette question a donné lieu à plusieurs propositions, toutes assez complexes.
- ► Une solution simple a été trouvée par Andrew K. Wright en 1995.

La value restriction

La Value Restriction

Solution simple introduite par SML : permettre la généralisation seulement des valeurs (d'où le nom). Les valeurs sont :

- les constantes (13, "foo", 13.0, ...)
- les variables (x, y, ...)
- les fonctions (fun x -> e), où e une expression *quelconque*
- les constructeurs appliqués à des valeurs (Foo v)
- ▶ un n-uplet de valeurs (v1, v2, ...)
- un enregistrement contenant seulement des valeurs $\{I1 = v1, I2 = v2, ...\}$
- une liste de valeurs [v1, v2, ...]
- mais pas une application (f e), et en particulier pas (ref e).

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

Lla value restriction

Conséquences de la Value Restriction

- ▶ Dans l'exemple précédent, c a le type ('_weak1 → '_weak1) ref
- ► Explication : l'expression n'est pas une valeur, donc il n'y a pas de généralisation (∀) lors du let.
- Inconvénient : il y a parfois des programmes correctes qui sont refusés, comme sur l'exemple suivant.
- ▶ On peut souvent contourner le problème.
- OCaml utilise une solution légèrement plus générale, due à Jacques Garrigue.

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

La value restriction

Exemples (value-restriction1.ml)

```
let c = ref (fun x -> x)
  (* type of c : ('_weak1 -> '_weak1) ref
     where here '_weak1 is a free variable! *)

let _ = c := (fun x -> x+1)
let _ = c
  (* type of c : (int -> int) ref, '_weak1 has been
     instanciated *)

let _ = !c true
  (* type error : clash between int and bool *)
```

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

Exemples (value-restriction2.ml)

```
let id = fun x -> x

(* type error *)
let f = id id
let _ = f 42
let _ = f "truc"

(* solution: eta-expansion
    (i.e. expliciter l'argument) *)
let g = fun x -> (id id) x
let _ = g 42
let _ = g "truc"
```

La value restriction

La value restriction

Limites de la méthode l

```
let twice only f =
  (* yields a variant of f that can be applied twice *)
  (* only, and that behaves like identity after that.*)
  let counter = ref 0 in
  fun x \rightarrow
    counter := !counter + 1;
    if ! counter <= 2 then f \times else \times
(* the function double is not polymorphic
(* since the ride—hand side is not a value. *)
let double = twice_only (fun x \rightarrow x@x)
let \_ = double [1; 2]
let = double [1; 2]
let = double [1; 2]
let = double ["a": "b"]
```

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

La value restriction

Pour en savoir plus

Harry G. Mairson.

Deciding ML typability is complete for deterministic exponential time.

In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '90, pages 382-401, New York, NY, USA, 1990. ACM.

Andrew K. Wright.

Simple imperative polymorphism.

Lisp Symb. Comput., 8(4):343-355, December 1995.

Jacques Garrigue.

Relaxing the value restriction.

In FLOPS 2004, pages 196-213.

Programmation Fonctionnelle Avancée 7 : Inférence de types, polymorphisme et traits impératifs

La value restriction

Limites de la méthode II

```
(* Using eta-expansion we get a polymorphic
(* function, but it does not behave the same! *)
(* At each application of double_eta, a new
(* counter is created. *)
let double_eta =
  fun y \rightarrow twice_only (fun x \rightarrow x@x) y
let = double eta [1; 2]
let = double eta [1; 2]
let \_ = double_eta [1; 2]
let = double eta ["a": "b"]
```