

ISAAC Demo Plan

ISAAC Newton

Charles Le, Yutao He, Jason Zheng, Kayla Nguyen, Will Zheng July 24, 2008

Demo Overview

Target Mission and Its Main Characteristics

- SMAP, L-band scatterometer.
- Onboard real-time digital filtering for data rate reduction.

Instrument Digital Electronics Requirement

System Context Diagram showing iBoard and the rest of Instrument

See next page, SMAP's instrument electronics

Demo System Capabilities

- Matlab floating point golden model.
- Realistic mission-specific test data
- FPGA implementation on the ML410 performed at required speed with enough margin
- Integrated tools for functional (speed & utilization) and performance (radar parameters) verification
- Verification and validation tool to demonstrate design readiness to onboard processing requirement of specific mission

SMAP Instrument Electronics

SMAP Instrument Electronics Block Diagram
Single-String Option
JPL DISCREET - not for distribution

Spin Mech & Feed Ass Radar RF Radar Digital Radar Power Radiometer

ົ 3 — 09/23/2ີປີປີ8

Quadrature Modulation and Polyphase Decimation Filters

Demo System Top-Level Block Diagram

Operational Scenarios to be Demo-ed

Data stream

- 16-bit binary offset video sampling @ 60MHz
- Simulated data stored and read from high-speed memory

Demo operations

- Show Matlab floating point golden model.
- Run FPGA implementation on the ML410.
- Plot and compare Matlab & FPGA results.

Validation approach

- Measure device speed and utilization
- Compare FPGA outputs with golden Matlab floating-point model
- Measure radar performance parameters
- Key Parameters specific to the instrument demonstrated
 - Onboard processing capability
 - Design run at required speed
 - Radar performance parameters satisfied
 - Relevant interface
 - Realistic test data

Future Work and Plan

- Year-end final reports (description documents)
 - Algorithm Development & Data Simulation.
 - FPGA Design & Implementation.
 - Demo System Design & Implementation.
- Conference papers
 - ISAAC-Newton overview (Yutao et. al., RadCon09).
 - SMAP's algorithm development (Charles et. al., RadCon09).
 - FPGA design and implementation (Jason et. Al., ISCAS or ICASSP).
- Talk to S314 to explore other radar applications
 - Radar testbed (customer: Kevin Wheeler): integrated data simulation and signal processing.
 - Desdynl (customer: Jim Hoffman): wideband digital filtering.
 - Glistin (customer: Delwyn Moller): wideband digital beamforming
 - ADOP (customer: Yunling Lou): real-time interferometric SAR processing