A hierarchy of bounds for bilevel 0-1 programs

Xueyu Shi¹, Ted K. Ralphs², Oleg A. Prokopyev¹

Department of Industrial Engineering
 University of Pittsburgh
 Department of Industrial and Systems Engineering
 Lehigh University

Supported by ONR

10/2019

Bilevel Mixed 0-1 Program

Consider the bilevel mixed 0-1 program as follows:

$$\begin{split} \text{[BP]} \quad & \eta^* = \max_{x,y} \alpha_1^T x + \alpha_2^T y \\ \text{s.t. } & x \in \mathcal{X} \\ & y \in \arg\max_{\hat{y}} \{\beta^T \hat{y}: \ Ax + B\hat{y} \leq d, \hat{y} \in \{0,1\}^n\}, \end{split}$$

where

- ▶ define $\mathcal{P} = \{(x, y) \in \mathcal{X} \times \{0, 1\}^n : Ax + By \leq d\}$
- ▶ let $\mathcal{P}(x) = \{y \in \{0,1\}^n : (x,y) \in \mathcal{P}\}$ be the feasible region of the follower given the leader's decision x
- define the follower's reaction solution with respect to x as:

$$S(x) = \{ y \in \mathcal{P}(x) : \beta^T y \ge \beta^T \hat{y}, \forall \hat{y} \in \mathcal{P}(x) \}$$

Bilevel Mixed 0-1 Program

Consider the bilevel mixed 0-1 program as follows:

$$\begin{split} [\mathsf{BP}] \quad & \eta^* = \max_{x,y} \alpha_1^T x + \alpha_2^T y \\ & \text{s.t. } x \in \mathcal{X} \\ & y \in \arg\max_{\hat{y}} \{\beta^T \hat{y}: \ Ax + B\hat{y} \leq d, \hat{y} \in \{0,1\}^n\}, \end{split}$$

where

- ▶ define $\mathcal{P} = \{(x,y) \in \mathcal{X} \times \{0,1\}^n : Ax + By \leq d\}$
- ▶ let $\mathcal{P}(x) = \{y \in \{0,1\}^n : (x,y) \in \mathcal{P}\}$ be the feasible region of the follower given the leader's decision x
- define the follower's reaction solution with respect to x as:

$$S(x) = \{ y \in \mathcal{P}(x) : \beta^T y \ge \beta^T \hat{y}, \forall \hat{y} \in \mathcal{P}(x) \}$$

However, in some cases the follower might choose a locally optimal solution to reduce the computational efforts

Bilevel program with k-optimality

Consider the bilevel problem where the follower choose a k-optimal solution, formalized as:

$$\begin{aligned} [\mathsf{BP}_k] \quad \eta_k^* &= \max_{\mathsf{x}, \mathsf{y}} \, \alpha_1^\mathsf{T} \mathsf{x} + \alpha_2^\mathsf{T} \mathsf{y} \\ & \mathsf{s.t.} \, \left(\mathsf{x}, \mathsf{y} \right) \in \mathcal{P} \\ \beta^\mathsf{T} \mathsf{y} &\geq \beta^\mathsf{T} \hat{\mathsf{y}} \quad \forall \hat{\mathsf{y}} \in \mathcal{N}_k^\mathsf{x}(\mathsf{y}), \end{aligned}$$

where
$$\mathcal{N}_k^{\mathsf{x}}(y) = \{\hat{y} \in \mathcal{P}(x) : \sum_{j=1}^n |y_j - \hat{y}_j| \le k\}$$

 Define the follower's k-optimal solution set with respect to the leader's decision x as

$$S_k(x) = \{ y \in \mathcal{P}(x) : \beta^T y \leq \beta^T \hat{y}, \forall \hat{y} \in \mathcal{N}_k^x(y) \}$$

If k=0, then $S_0(x)=\mathcal{P}(x)$ and BP₀ is the single-level relaxation If k=n, then $S_n(x)=S(x)$ and $\eta_n^*=\eta^*$

Bilevel program with k-optimality

Theorem

$$\eta_0^* \ge \eta_1^* \ge \eta_2^* \ge \dots \ge \eta_n^* = \eta^*$$

Proof.

Due to
$$\mathcal{P}(x)=\mathcal{S}_0(x)\supseteq\mathcal{S}_1(x)\supseteq\mathcal{S}_2(x)\supseteq\cdots\supseteq\mathcal{S}_n(x)=\mathcal{S}(x)$$

Bilevel program with k-optimality

Theorem

$$\eta_0^* \ge \eta_1^* \ge \eta_2^* \ge \cdots \ge \eta_n^* = \eta^*$$

Proof.

Due to
$$\mathcal{P}(x) = \mathcal{S}_0(x) \supseteq \mathcal{S}_1(x) \supseteq \mathcal{S}_2(x) \supseteq \cdots \supseteq \mathcal{S}_n(x) = \mathcal{S}(x)$$

Implications:

- $hline \eta_k^*$ provides a sequence (or hierarchy) of upper bounds for η^* , which are better than the single-level relaxation
- ▶ By solving BP_k, we can also get a sequence of lower bounds for η^*
- ▶ BP_k can replace the single-level relaxation and can be embedded into a general branch-and-cut solver
- For the bilevel problem in which the k-optimal solution is a globally optimal for the follower, we have $\eta_k^* = \eta^*$
 - ightharpoonup Minimum spanning tree interdiction problem (k = 2)
 - Bilevel matroid problem (k=2), etc.

Contributions

Question: How to solve BP_k efficiently for a given k?

Our contributions:

- ▶ BP_k is NP-hard in general for $k \ge 1$
- Develop two single-level mixed-integer formulations for BP_k
- Develop a single-level mixed-integer formulation for minimum spanning tree interdiction problem
- The preliminary computational results show the efficiency and tightness of proposed formulation for the knapsack interdiction problem

Single-level formulation for k=1

$$\begin{split} [\mathsf{BP}_1] \quad & \eta_1^* = \max_{x,y} \alpha_1^T x + \alpha_2^T y \\ \text{s.t. } & (x,y) \in \mathcal{P} := \{(x,y) \in \mathcal{X} \times \{0,1\}^n : Ax + By \leq d\} \\ & y \in \mathcal{S}_1(x) := \{y \in \mathcal{P}(x) : \beta^T y \geq \beta^T \hat{y} \ \forall \hat{y} \in \mathcal{N}_1^x(y)\}, \end{split}$$

where $\mathcal{N}_1^{\mathsf{x}}(y) = \{\hat{y} \in \mathcal{P}(x) : \sum_{j=1}^n |y_j - \hat{y}_j| \le 1\}$. Without loss of generality, we assume that

- β ≥ 0
- the coefficients of constraints are integers (i.e., entries in A, B, d are integer)

Single-level formulation for k = 1

$$\begin{split} [\mathsf{BP}_1] \quad & \eta_1^* = \max_{x,y} \alpha_1^T x + \alpha_2^T y \\ \text{s.t. } & (x,y) \in \mathcal{P} := \{(x,y) \in \mathcal{X} \times \{0,1\}^n : Ax + By \leq d\} \\ & y \in \mathcal{S}_1(x) := \{y \in \mathcal{P}(x) : \beta^T y \geq \beta^T \hat{y} \ \forall \hat{y} \in \mathcal{N}_1^x(y)\}, \end{split}$$

where $\mathcal{N}_1^{\mathsf{x}}(y) = \{\hat{y} \in \mathcal{P}(x) : \sum_{j=1}^n |y_j - \hat{y}_j| \le 1\}$. Without loss of generality, we assume that

- β ≥ 0
- ▶ the coefficients of constraints are integers (i.e., entries in A, B, d are integer)

Lemma

Given a solution $(x,y) \in \mathcal{P}$, then $y \in \mathcal{S}_1(x)$ if and only if

- ightharpoonup either $y_j = 1$
- or $y_j = 0$ and $y + e_j \notin \mathcal{P}(x)$, where e_j is the jth unit vector

Single-level formulation for k=1

To formulate $y + e_j \notin \mathcal{P}(x)$, we introduce binary variables $z_{ij} \in \{0, 1\}$ to denote whether or not $y + e_j$ violates *i*th constraint in $Ax + By \leq d$

$$[\mathsf{BP}_{1}] \quad \eta_{1}^{*} = \max_{x,y,\pi,z} \alpha_{1}^{T} x + \alpha_{2}^{T} y$$

$$\mathsf{s.t.} \quad (x,y) \in \mathcal{P}, \pi = \mathsf{A} x + \mathsf{B} y$$

$$\pi_{i} + (h_{ij} - \mu_{i}) z_{ij} \geq h_{ij} \quad i \in [m], j \in [n]$$

$$\sum_{i=1}^{m} z_{ij} - y_{j} = m - 1 \quad \forall j \in [m]$$

$$z_{ij} \in \{0,1\} \quad \forall i \in [m], j \in [n],$$

where

- m is the number of constraints
- $[m] = \{1, \ldots, m\}, [n] = \{1, \ldots, n\}$
- $h_{ij} = d_i + 1 b_{ij}$, and μ_i is a sufficiently small constant

Single-level formulation for k = 1: interesting structures

$$\begin{aligned} [\mathsf{BP}_1] \quad & \eta_1^* = \max_{x,y,\pi,z} \, \alpha_1^T x + \alpha_2^T y \\ \text{s.t.} \quad & (x,y) \in \mathcal{P}, \pi = \mathsf{A} x + \mathsf{B} y \\ & \frac{\pi_i + \left(h_{ij} - \mu_i\right) z_{ij} \geq h_{ij} \quad i \in [m], j \in [n]}{\sum_{i=1}^m z_{ij} - y_j = m - 1 \quad \forall j \in [m]} \\ & z_{ij} \in \{0,1\} \quad \forall i \in [m], j \in [n], \end{aligned}$$

- it is called mixing-set inequality
- $\blacktriangleright \pi_i \ge \max_{j \in [n]} \{h_{ij} (h_{ij} \mu_i)z_{ij}\}$ reduces to submodularity
- ► Star inequalities (O. Günlük et al., 2001)

$$\pi_i + \sum_{j=1}^\ell (h_{t_j} - h_{t_{j+1}}) z_{t_j} \geq h_{t_1}$$

are valid inequalities when $h_{t_1} \geq \cdots \geq h_{t_\ell}$

Another extended formulation for k = 1

We first sort h_{ij} into a nonincreasing order such that $h_{i,(1)} \ge \cdots \ge h_{i,(n)}$. Then we introduce binary variables $v_{i,(j)}$ and formulate BP₁ as follows:

$$\begin{aligned} [\mathsf{EBP}_1] \quad \tilde{\eta}_1^* &= \max_{x,y,\pi,z,v} \; \alpha_1^T x + \alpha_2^T y \\ \text{s.t.} \quad &(x,y) \in \mathcal{P}, \pi = Ax + By \\ \pi_i &+ \sum_{j=1}^n (h_{i,(j)} - h_{i,(j+1)}) v_{i,(j)} \geq h_{i,(1)} \quad \forall i \in [m], j \in [n] \\ z_{i,(j)} \geq v_{i,(j)} \geq v_{i,(j+1)} \quad \forall i \in [m], j \in [n] \\ \sum_{i=1}^m z_{ij} - y_j = m - 1 \quad \forall j \in [m] \\ z_{ij} \in \{0,1\} \quad \forall i \in [m], j \in [n] \end{aligned}$$

- $\tilde{\eta}_1^* = \eta_1^*$
- Linear relaxation of EBP₁ is stronger than BP₁

Single-level formulations for general $k \geq 1$

The ideas are similar to the case of k=1. Two single-level formulations are proposed. However,

- the number of constraints is $O(n^k)$
- we develop several preprocessing techniques to reduce the number of variables and constraints
- the computational results show the efficiency of the proposed preprocessing and formulations

Single-level formulations for general $k \geq 1$

The ideas are similar to the case of k=1. Two single-level formulations are proposed. However,

- the number of constraints is $O(n^k)$
- we develop several preprocessing techniques to reduce the number of variables and constraints
- the computational results show the efficiency of the proposed preprocessing and formulations

Also, in the minimum spanning tree problem (MST), 2-optimal solution is a globally optima. Thus, in the MST interdiction problem, $\eta_2^*=\eta^*$ and the single-level formulation is obtained through our framework

Case study: the knapsack interdiction problem

$$\min_{x} \max_{y} \sum_{j=1}^{n} p_{j} y_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{j}^{1} x_{j} \leq C_{u}$$

$$\sum_{j=1}^{n} a_{j}^{2} y_{j} \leq C_{l}$$

$$x_{j} + y_{j} \leq 1 \quad \forall j \in [n]$$

$$x \in \{0, 1\}^{n}, y \in \{0, 1\}^{n},$$

where

- $ightharpoonup a^1, a^2, p$ are positive vectors
- Mibs (S. Tahernejad, T. Ralphs, S. DeNegre, 2016), the bilevel solver, can only solve hard instances for n = 30
- ▶ CCLW (A. Caprara et al., 2016), the specialize algorithm, can only solve hard instances for $n = 50 \sim 70$

Convergence rate

Figure 1: The results for n = 15 with different k

Computational results

п	,	CCLIV Time	Mibs				Single-level relaxation			k = 1				k = 2				k = 3			
			Unsolved	ObjL	ObjU	Time	ObjL	ObjU	Time	ObjL	ObjU	Time	Ext Time	ObjL	ObjU	Time	Ext Time	ObjL	ObjU	Time	Ext Time
10	0	0.13				0.01	0	1.8	0.02	0.34	1.8	0.04	0.14	0.99	1.01	0.02	0.03	1	1	0.03	0.03
10	1	0.17				0.02	0	1.8	0.01	0.23	1.41	0.04	0.07	0.78	1.17	0.07	0.05	0.99	1	0.06	0.09
10	2	0.26				0.03	0	1.93	0.01	0.41	1.47	0.04	0.08	0.94	1.11	0.14	0.12	1	1	0.19	0.23
10	3	0.37				0.05	0	2.73	0.01	0.34	1.36	0.05	0.06	0.94	1.05	0.13	0.1	1	1.01	0.19	0.17
10	4	0.33				0.03	0	12.09	0.02	0.52	1.51	0.08	0.1	0.98	1.12	0.11	0.08	1.03	1.03	0.14	0.15
30	0	1				2.98	0	1.54	0.01	0.06	1.38	0.1	0.07	0.7	1.12	0.18	0.2	1	1.01	0.42	0.35
30	1	8.17	6	0.95	1	212.99	0	1.82	0.01	0.1	1.45	0.11	0.08	0.73	1.13	0.22	0.15	0.97	1.01	1.01	0.92
30	2	19.99	8	0.81	1	249.20	0	1.94	0.01	0.19	1.46	0.17	0.09	0.73	1.09	0.19	0.16	0.97	1.02	1.29	0.89
30	3	15.46	10	0.81	1.03		0	2.54	0.01	0.31	1.62	0.16	0.12	0.8	1.16	0.27	0.21	0.99	1.01	1.16	0.64
30	4	0.33	5	0.82	1	203.42	0	3.82	0.01	0.67	1.52	0.18	0.16	1	1.03	0.28	0.21	1.01	1.01	0.62	0.38
50	0	6.51	6	0.86	1	166.22	0	1.66	0.01	0.06	1.45	0.08	0.09	0.6	1.29	0.39	0.29	1.04	1.07	10.41	8.78
50	1	632.64	10	0.69	1		0	1.79	0.01	0.09	1.42	0.15	0.1	0.69	1.09	0.64	0.46	0.98	1.01	21.81	10.44
50	2	1422.86	10	0.49	1		0	2.05	0.01	0.18	1.42	0.23	0.09	0.64	1.07	0.64	0.45	0.98	1.01	22.14	11.69
50	3	1312.54	10	0.41	1.03		0	2.61	0.01	0.37	1.49	0.25	0.16	0.79	1.16	0.84	0.52	0.99	1.01	13.3	8.39
50	4	10.28	10	0.46	1.01		0	3.35	0.02	0.65	1.52	0.31	0.21	0.93	1.06	0.9	0.48	1	1	7.75	3.97

- Average performance with 10 instances for each class
- lacktriangle The solution time of ${\sf BP}_k$ is reported in seconds in column "Time"
- ▶ The solution time of EBP_k is reported in seconds in column "Ext Time"
- In column "ObjL", the value is computed as the ratio between best lower bound and optimal objective value
- In column "ObjU", the value is computed as the ratio between best upper bound and optimal objective value

Conclusion

Contributions:

- ▶ Two single-level formulations for BP_k
- ► The single-level formulation for minimum spanning tree interdiction problem
- ► The computational study shows the efficiency of the proposed formulation

Future research:

- Advanced valid inequalities to solve BP_k
- Computational studies for general bilevel programs