Notițe Seminar 3

October 19, 2019

Intro:

Dacă seminarul trecut am discutat de E și Var că pot fi aplicate pe o variabilă aleatore și că furnizează un număr real, acum vom adăuga la cele două și H-ul.

Teoria informației

Fie un experiment aleator (de exemplu: aruncăm o monedă). Considerăm că avem următoarea variabilă aleatoare (de exemplu: 0 pentru tails, 1 pentru heads):

$$X: \begin{pmatrix} 0 & 1\\ 0.0001 & 0.9999 \end{pmatrix}$$

În urma experimentului, dorim să observăm valoarea lui X.

Să presupunem că facem experimentul, iar în urma lui, observăm valoarea 0 pentru X.

V-am lăsat un moment ca să vă reveniți. Ați rămas surprinși când ați auzit că a ieșit 0, așa-i? De ce? Pentru că P(X=0) este foarte mică, iar P(X=1) este foarte mare.

Am putea defini surpriza ca fiind opusul/inversul probabilității. Hai să luăm $\frac{1}{p(x)}$, unde p este pmf-ul lui X. Dar hai să-i mai punem și un logaritm în baza 2 în față ca să îl putem măsura în **biți** (Aceasta este doar o intuiție. Pentru informații formale, dacă vă interesează, vedeți ex. 33/pag. 68):

$$surpriza(x) = \log_2 \frac{1}{p(x)}$$

unde $x \in Val(X)$.

Surpriza poate fi privită și ca variabilă aleatoare:

$$Surpriza(X) = \log_2 \frac{1}{p(X)}$$

unde X este o variabilă aleatoare.

În exemplul nostru, avem:

Surpriza(X) :
$$\begin{pmatrix} \log_2 \frac{1}{0.0001} & \log_2 \frac{1}{0.9999} \\ 0.0001 & 0.9999 \end{pmatrix}$$

Haideți să calculăm surpriza medie:

$$E[\operatorname{Surpriza}(X)] = E[\log_2 \frac{1}{p(X)}] = \log_2 \frac{1}{0.0001} \cdot 0.0001 + \log_2 \frac{1}{0.9999} \cdot 0.9999 = 0.001473...$$

Atenție! De obicei, calculatorul științific nu are \log_2 , ci \ln și/sau \log_{10} . Așadar trebuie să amintiți următoarea formulă de schimbare a bazei logaritmului:

$$\log_2 x = \frac{\ln x}{\ln 2} = \frac{\log_{10} x}{\log_{10} 2}$$

Surpriza medie se va chema **entropie**.

5. Elementary Information Theory

Definitions:

Let X and Y be discrete random variables. • Entropy: $H(X) \stackrel{\textit{def.}}{=} \sum_{x} p(x) \log_2 \frac{1}{p(x)} = -\sum_{x} p(x) \log_2 p(x) =$ $E_p[-\log_2 p(X)]$.

Convention: if p(x) = 0 then we shall consider $p(x) \log_2 p(x) = 0$.

- Specific Conditional entropy: $H(Y \mid X = x) \stackrel{\textit{def.}}{=} -\sum_{y \in Y} p(y \mid x) \log_2 p(y \mid x)$
- Average conditional entropy: $H(Y \mid X) \stackrel{\text{def.}}{=} \sum_{x \in X} p(x) H(Y \mid X = x) \stackrel{\text{imed.}}{=} -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(y \mid x).$
- Joint entropy: $H(X,Y) \stackrel{\textit{def.}}{=} -\sum_{x,y} p(x,y) \, \log_2 p(x,y) \stackrel{\textit{dem.}}{=} H(X) + H(Y|X) \stackrel{\textit{dem.}}{=} H(Y) + H(X|Y).$
- Information gain (or: Mutual information):

$$\begin{array}{ccc} IG(X;Y) & \stackrel{\textit{def.}}{=} & H(X) - H(X \mid Y) \stackrel{\textit{imed.}}{=} & H(Y) - H(Y \mid X) \\ & \stackrel{\textit{imed.}}{=} & H(X,Y) - H(X \mid Y) - H(Y \mid X) = IG(Y;X). \end{array}$$

31. The Relationship between Entropy, Conditional Entropy, Joint Entropy and **Information Gain** H(X,Y)H(X|Y)IG(X;Y) H(Y|X)H(X) H(Y)

(slide-uri preluate din https://profs.info.uaic.ro/~ciortuz/SLIDES/foundations. pdf)

Intuiții / Observații:

- 1. Interpretări intuitive pentru entropie (H(X)):
 - (a) gradul mediu de
 - surpriză
 - incertitudine
 - (b) cantitatea medie de informație
 - \bullet pe care o conține X
 - \bullet de care ai nevoie ca să-l afli pe X
 - \bullet necesară pentru a-l afla pe X
- 2. Entropia condițională specifică: H(Y|X=x)
- 3. Entropia condițională medie: H(Y|X)
 - dacă în H(X) și H(Y|X=x), X și Y|X=x sunt niște variabile aleatore, în H(Y|X), Y|X nu este o variabilă aleatoare și de aceea, în definiția lui H(Y|X), ideea este să se ajungă la variabile aleatore de tipul H(Y|X=x) (vezi definiția lui H(Y|X))
- 4. Entropia corelată: H(X,Y)
 - aici, ca și la H(X) și H(Y|X=x), (X,Y) este o variabilă aleatoare
 - Se poate demonstra că H(X,Y) = H(X) + H(Y|X), ceea ce, conform intuitiei are loc:

Pentru a afla (X,Y), să zicem că aflăm mai întâi pe X și apoi, după ce l-am aflat pe X, îl aflăm pe Y.

(cantitatea medie de informație necesară pentru a afla pe (X,Y)) = (cantitatea medie de informație necesară pentru a afla pe X) + (știindu-l deja pe X, cantitatea medie de informație necesară pentru a afla pe Y)

- 5. Câștigul de informație: $IG(X;Y) \stackrel{\text{def.}}{=} H(X) H(X|Y)$
 - se mai notează IG(X|Y)

Intuitie

• context: pe X nu-l stim, pe Y îl stim

• IG(X;Y) = dacă îl știm pe Y, câtă informație câștigăm în procesul de aflare a lui X = (cantiatea medie de informație necesară pentru a-l afla pe X) - (știindu-l deja pe Y, cantitatea medie de informație pentru a-l afla pe X) = H(X) - H(X|Y)

Este simetric: IG(X;Y) = IG(Y;X).

- 6. Am avut de-a face cu două tipuri de informație:
 - informație necesară (în cazul entropiei)
 - informație câștigată (în cazul câștigului de informație)

Proprietăți esențiale:

1. $0 \le H(X) \le \log_2 |\operatorname{Val}(X)|$

Pentru distribuția Bernoulli (Val(X) = {0,1}), avem: $0 \le H(X) \le \log_2 2 = 1$

Atenție: La exercițiile de la probabilități, știți că dacă la calcule vă dă o probabilitate mai mare decât 1 (sau negativă), atunci SIGUR ați greșit undeva. La fel și aici: dacă în calcule vă dă o entropie negativă sau mai mare decât poate ea să fie (de exemplu, mai mare decât 1 în cazul distribuției Bernoulli), atunci SIGUR ați greșit la calcule.

2. $IG(X;Y) \ge 0$

Atenție: Dacă, din calcule, obțineți un IG negativ, atunci SIGUR ați greșit undeva.

Am zis că facem PS. Am făcut probabilități. Urmează puțină, puțină:

Statistică

Până acum probabilitățile v-au fost date în exerciții, iar când nu au fost date în totalitate ati presupus voi echiprobabilitate sau independentă.

Să zicem că vă dau în mână o monedă. Cum faceți ca să aflați probabilitatea să cadă heads, pentru moneda aceasta?

Posibil răspuns:

- aruncăm moneda de mai multe ori
- reținem datele (adică ce a căzut la fiecare aruncare)
- asignăm probabilitățile

De exemplu: să zicem că ați aruncat moneda de 6 ori și ați obținut H, H, H, T, H, H. Care este probabilitatea să dea H (heads)? După cum intuiți:

$$P(H) = \frac{5}{6}$$

$$P(T) = \frac{1}{6}$$

Ceea ce ați făcut se cheamă estimare: ați estimat probabilitățile din date. Mai mult, ați făcut o estimare în sensul verosimilității maxime (maximum likelihood estimation, MLE). La un moment, într-un seminar vom intra în detaliile acestui MLE, însă până atunci vreau să vă obișnuiți cu terminologia.

Privire de ansamblu: am conectat lumea reală (practică) la teoria probabilităților (care este formală) prin statistică.

Unde intervine statistica în ML? Mai țineți minte exemplul cu apartamentele de la primul seminar?

Exemplu: date despre apartamente. Vrem să prezicem dacă o casă este locuibilă.

număr m²	număr camere	este locuibilă?
10	1	da
100	2	nu
		•••

Pentru un nou apartament, care este preţul?

număr m²	număr camere	este locuibilă?
500	10	???

Dacă vreți, numele coloanelor (numar de m² etc.) sunt numele unor variabile aleatore, iar rândurile sunt de fapt realizări ale experimentului aleator (= ce s-a observat în urma experimentului aleator = date).

Ne vom întoarce puțin la entropii. Haideți să mai luăm un exemplu: Să zicem că datele, în urma repetării unui experiment de mai multe ori, sunt: 0,0,0,1,1,0. Putem estima probabilitățile în sensul verosimilității maxime (MLE):

$$X: \begin{pmatrix} 0 & 1 \\ \frac{4}{6} & \frac{2}{6} \end{pmatrix}$$

Haideți să calculăm entropia lui X.

$$H(X) = \frac{4}{6}\log_2\frac{6}{4} + \frac{2}{6}\log_2\frac{6}{2} = 0.9182$$

Pentru a sări acești pași intermediari atunci când dorim să calculăm entropii, oamenii s-au gândit să inventeze ideea de **entropie a unui set de date**. În cazul nostru:

$$H[\mathrm{date}] = H[0,0,0,1,1,0] \stackrel{\mathrm{reetchet} \hat{\mathrm{and}} : 0 \to -,1 \to +}{=} H[-,-,-,+,+,-] = H[2+,4-] \stackrel{\mathrm{not.}}{=} H(X)$$

Așadar, dacă vi se cerea să calculați entropia setului de date 0,0,0,1,1,0, puteți scrie direct că este

$$H[2+, 4-] = \frac{2}{2+4} \log_2 \frac{2+4}{2} + \frac{4}{2+4} \log_2 \frac{2+4}{4} = 0.9182$$

În plus, mai observăm că H[0+,6-]=0 și H[3+,3-]=1.

Astfel, reiese o nouă interpretare pentru entropie (aplicată direct pe date): gradul mediu de impuritate/dezordine pentru un set de date.

Învățare automată supervizată de tip clasificare

Dacă vă amintiți exemplul cu apartamentele de la primul seminar:

Exemplu: date despre apartamente. Vrem să prezicem dacă o casă este locuibilă.

număr m²	numär camere	este locuibilă?
10	1	da
100	2	nu

Pentru un nou apartament, care este prețul?

număr m²	numär camere	este locuibilă?
500	10	???

mai stiti că v-am zis că

- primele două coloane/atribute sunt de intrare
- ultima coloană/ultimul atribut este de ieșire
- rândurile se mai cheamă observații/instanțe
- dorim să dăm unui algoritm primul tabel ca să învețe/se antreneze, iar apoi, după ce a învățat/s-a antrenat, (acest algoritm se cheamă de antrenare, iar primul tabel reprezintă datele de antrenare)
- dăm unui al doilea algoritm al doilea tabel (care poate avea mai multe rănduri, nu doar unul ca în exemplu; de obicei, deși nu obligatoriu, vor fi rânduri nemaivăzute de algoritm la antrenare), iar algoritmul ne va furniza pentru fiecare rând din tabelul al doilea câte o valoare (etichetă) pentru coloana necunoscută (acest algoritm se cheamă de testare, iar al doilea tabel reprezintă datele de testare)
- spunem că algoritmul de antrenare furnizează un **model/parametrii unui model** (exemple: arbore, parametrii unei distribuții de probabilitate etc.)

Programatic, codul *high-level* ar suna astfel:

```
model = trainingAlgorithm(trainingData)
predictedLabels = testingAlgorithm(model, testingData)
```

Totuși, testingAlgorithm poate fi apelat și cu trainingData în loc de testingData și se pot compara etichetele corecte (cele din tabelul 1) cu cele furnizate de algoritm și se poate calcula o eroare:

Eroarea la antrenare = $\frac{\text{numărul de rânduri la antrenament}}{\text{numărul de rânduri la antrenament}}$ Acuratețea la antrenare = $\frac{\text{numărul de rânduri la antrenament}}{\text{numărul de rânduri la antrenament}}$ Deci, Eroarea la antrenare = 1 - Acuratetea la antrenare.

Un set de date este inconsistent dacă în setul de date există (măcar) două rânduri care, pe atributele de intrare sunt identice, însă la ieșire ele diferă.

Arbori de decizie

Arbore cu:

- noduri
 - interne/de test: nume de coloană/atribut/variabilă aleatoare de intrare
 - frunză/de decizie: valoare a coloanei de ieșire
- ramuri: valoare a nodului părinte

Care este algoritmul de testare pentru un arbore de decizie? Exemplu:

Pentru (A = 0, B = a, C = b) algoritmul va furniza 1.

Pentru (A = 1, B = b, C = c) algoritmul va furniza 1.

Algoritmul ID3

- construiește un arbore de decizie
- bias-ul inductiv (intuitiv = cum consideră algoritmul că ar trebui să prezicem coloana de ieșire) al algoritmului ID3: [dorim ca modelul să aibă structură ierarhică, să fie consistent cu datele dacă acestea sunt consistente, iar arborele ID3 trebuie să aibă un număr cât mai mic de niveluri/noduri (preluat din https://profs.info.uaic.ro/~ciortuz/ML.ex-book/sumar.pdf)

Atenție: Algoritmul ID3 nu găsește arborele optimal din punctul de vedere al numărului de noduri/niveluri, ci doar încearcă să-l găsească.

Pentru detalii vedeți ex. 2/pag. 263.

Apoi urmăriți cum se construiește arborele de la ex. 4/pag. 270 și citiți si observatiile următoare.

Observații de urmărit odată cu exercițiul 4:

1. Normal, când se alege un atribut de intrare pentru a fi așezat întrun nod, se calculează IG-uri și se alege atributul cu IG-ul maxim. În problema dată, nu se calculează IG-uri, ci entropii condiționale medii și se alege atributul cu entropia (cond. medie) minimă, ceea ce are sens. (Dacă ai citit până aici, vreau să intri pe site-ul seminarului. Pe prima pagină ai un link pentru feedback anonim. Intră acolo și scrie "Am citit". Vreau să-mi fac o idee cam câți citesc. Mersi.) De exemplu, pentru rădăcină, în loc să se calculeze

$$IG_{0/A} = H_0 - H_{0/A}$$

 $IG_{0/B} = H_0 - H_{0/B}$
 $IG_{0/C} = H_0 - H_{0/C}$

și să se aleagă atributul (A, B sau C) cu IG-ul maxim, se calculează doar

$$H_{0/A}$$
 $H_{0/B}$
 $H_{0/C}$

și se alege atributul (A, B sau C) după H-ul minim, pentru a scăpa de niște calcule. Acest lucru este posibil pentru că H_0 apare în toate cele 3 IG-uri...

2. Există următoarea notație:

$$IG_{\text{\#}\text{nod/atribut intrare}} = H_{\text{\#}\text{nod}} - H_{\text{\#}\text{nod/atribut intrare}}$$

care înseamnă

$$IG_{(Y|\dots);(\text{atribut intrare}|\dots)} = H_{Y|\dots} - H_{(Y|\dots)|(\text{atribut intrare}|\dots)}$$

De exemplu, în exercițiu, avem:

$$IG_{0/A} = H_0 - H_{0/A}$$

care înseamnă

$$IG_{Y;A} = H_Y - H_{Y|A}$$

și

$$IG_{1/A} = H_1 - H_{1/A}$$

care înseamnă

$$IG_{(Y|C=1);(A|C=1)} = H_{Y|C=1} - H_{(Y|C=1)|(A|C=1)}$$

- 3. Un atribut poate apărea de mai multe ori în arbore, DAR doar o singură dată pe un drum de la rădăcină la o frunză.
- 4. Condiții de oprire ID3
 - nu mai există atribute pe care să le punem în nodurile de test (toate atributele se află pe drumul de la actualul nod la rădăcină)
 - toate nodurile sunt pure (adică, de tipul [2+,0-],[0+,10-],[3a,0b,0c] etc.)

Observație: Când rezolvați exerciții, urmăriți *Proprietățile numerice / calitative ale arborilor ID3* din Sumar (pagina 11 - https://profs.info.uaic.ro/~ciortuz/ML.ex-book/sumar.pdf).

Schemă de final

- 1. Teoria informației
 - (a) Entropie
 - i. definiție
 - ii. interpretări (informație necesară)
 - iii. entropie condițională specifică
 - iv. entropie condițională medie
 - v. entropie corelată
 - vi. $0 \le H(X) \le \log_2 |\operatorname{Val}(X)|$
 - (b) Câștig de informație
 - i. definiție
 - ii. interpretări (informație câștigată)
 - iii. $IG(X;Y) \ge 0$
- 2. Statistică
 - (a) date
 - (b) estimare
 - i. estimare în sensul verosimilității maxime (MLE)
 - (c) entropia unui set de date
- 3. Învățare supervizată de tip clasificare
 - (a) arbori de decizie
 - i. algoritmul ID3