Contents

1	Calculus	4
2	Linear algebra	4
3	Set theory and number systems	4
Ι	Analysis	5
1	Foundation of Calculus Sequences	5 5 6 6
2	Lebesgue theory Measure theory	6
3	General topology	6
4	Harmonic analysis	7
5	Complex analysis	7
6	Functional analysis Topological vector spaces	7 7 7 7
7	Proability theory	8
8	Differential equations	8
9	Linear partial differential equations	8
II	Algebra	9

1	Algebraic structures	9
	Groups	9 9
	Vector spaces	10
2	Galois theory	10
3	Category theory	10
4	Commutative algebra	10
5	Representation theory	10
6	Homological algebra	10
7	Discrete mathematics	10
8	Number theory	10
9	Algebraic number theory	11
II	Geometry and Topology	12
1	Classical geometry	12
2	Smooth surfaces	12
3	Differential topology	12
4	Geometric analysis	12
5	Algebraic curves	12
6	Algebraic geometry	12
7	Complex geometry	12
8	Surface topology	12
9	Algebraic topology	12

Preliminaries

- 1 Calculus
- 2 Linear algebra
- 3 Set theory and number systems

Part I

Analysis

1 Foundation of Calculus

Sequences

- **1.1.** Show that for a nonnegative sequence a_n if $\sum a_n$ diverges then $\sum \frac{a_n}{1+a_n}$ also diverges.
- **1.2.** Show that every real sequence has a monotonic subsequence that converges to the limit superior of the original sequence.
- **1.3.** Show that if a decreasing nonnegative sequence a_n converges to 0 and satisfies $S_n \le 1 + na_n$ then S_n is bounded by 1.

Functions

- **1.4.** Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Show that f is identically zero if $f'(x) = f(x)^2$ for all x.
- **1.5.** Show that if both limits of a real function and its derivative at infinity exist then the function vanishes at infinity.
- **1.6.** Let f be a real C^2 function with $f''(c) \neq 0$. Defined a function ξ such that $f(x) f(c) = f'(\xi(x))(x c)$ with $|\xi c| \leq |x c|$, show that $\xi'(c) = 1/2$.
- **1.7.** Let f be a C^2 function such that f(0) = f(1) = 0. Show that $||f|| \le \frac{1}{8} ||f''||$.
- **1.8.** Show that the set of local minima of a convex real function is connected.
- **1.9.** Show that a smooth function such that for each x there is n having the nth derivative vanish is a polynomial.
- **1.10.** Show that if a real C^1 function f satisfies $f(x) \neq 0$ for x such that f'(x) = 0, then in a bounded set there are only finite points at which f vanishes.
- **1.11.** Let a real function f be differentiable. For a < a' < b < b' show that there exist a < c < b and a' < c' < b' such that f(b) f(a) = f'(c)(b a) and f(b') f(a') = f'(c')(b' a').

- **1.12.** * Show that if a sequence of real functions f_n : $[0,1] \to [0,1]$ satisfies $|f(x) f(y)| \le |x-y|$ whenever $|x-y| \ge \frac{1}{n}$, then the sequence has a uniformly convergent subsequence.
- **1.13.** Let f be a differentiable function on the unit closed interval. Show that if f(0) = 0 there is c such that cf'(c) = f(c). (Flett)
- **1.14.** Let f be a differentiable function on the unit closed interval. Show that if f(0) = 0 there is c such that cf(c) = (1-c)f'(c).
- **1.15.** Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Show that f(x) = c cannot have exactly two solutions for every constant $c \in \mathbb{R}$.
- **1.16.** Show that a continuous function that takes on no value more than twice takes on some value exactly once.
- **1.17.** Let f be a function that has the intermediate value property. Show that if the preimage of every singleton is closed, then f is continuous.

Integration

- **1.18.** Find the value of $\lim_{n\to\infty} \frac{1}{n} \left(\sum_{k=1}^n \frac{1}{n} f\left(\frac{k}{n}\right) \int_0^1 f(x) dx \right)$.
- **1.19.** Show that if xf'(x) is bounded and $x^{-1} \int_0^x f \to L$ then $f(x) \to L$ as $x \to \infty$.

Multivariable calculus

2 Lebesgue theory

Measure theory

2.1. * Show that a measurable subset of \mathbb{R} with positive measure contains an arbitrarily long subsequence of an arithmetic progression.

3 General topology

3.1. Show that if $A^{\circ} \subset B$ and B is closed, then $(A \cup B)^{\circ} \subset B$.

4 Harmonic analysis

5 Complex analysis

- **5.1.** Show that if a holomorphic function has positive real parts on the open unit disk then $|f'(0)| < 2 \operatorname{Re} f(0)$.
- **5.2.** Show that if at least one coefficient in the power series of a holomorphic function at each point is 0 then the function is a polynomial.
- **5.3.** Show that if a holomorphic function on a domain containing the closed unit disk is injective on the unit circle then so is on the disk.
- **5.4.** Show that for a holomorphic function f and every z_0 in the domain there are $z_1 \neq z_2$ such that $\frac{f(z_1) f(z_2)}{z_1 z_2} = f'(z_0)$.
- **5.5.** For two linearly independent entire functions, show that one cannot dominate the other.
- **5.6.** Show that uniform limit of injective holomorphic function is either constant or injective.
- **5.7.** Suppose the set of points in a domain $U \subset \mathbb{C}$ at which a sequence of bounded holomorphic functions (f_n) converges has a limit point. Show that (f_n) compactly converges.

6 Functional analysis

Topological vector spaces

6.1. Let T be an invertible linear operator on a normed space. Show that $T^{-2} + ||T||^{-2}$ is injective if it is surjective.

Weak topologies

Spectral theory

Operator algebras

6.2. * Let $f(x) = x(1+x)^{-1}$ be a function on $\mathbb{R}_{\geq 0}$. Show that a C*-algebra \mathcal{A} is commutative if and only if f is operator subadditive in \mathcal{A} .

7 Proability theory

7.1. Find the probability that arbitrarily chosen positive integers are coprime.

8 Differential equations

9 Linear partial differential equations

9.1. * Describe the range of the operator $T : \mathcal{E}'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ defined by $Tf = \Phi * f$ for $d \geq 3$, where Φ is the fundamental solution of Laplace's equation.

Part II

Algebra

1 Algebraic structures

Groups

- **1.1.** Show that a finite symmetric group has two generators.
- **1.2.** Show that a group of order 2p for a prime p has exactly two isomorphic types.
- **1.3.** Show that a group *G* is abelian if $|G| = p^2$ for a prime *p*.
- **1.4.** Show that a group *G* is abelian if it has a surjective cube map.
- **1.5.** Let G be a finite group of order n and p the smallest prime divisor of n. Show that a subgroup of G of index p is normal in G.
- **1.6.** Find all *n* such that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic.
- **1.7.** Show that a nontrivial normalizer of a *p*-group meets its center out of identity.
- **1.8.** Show that a proper subgroup of a finite p-group is a proper subgroup of its normalizer. In particular, every finite p-group is nilpotent.
- **1.9.** Show that a finite group *G* satisfying $\sum_{g \in G} \operatorname{ord}(g) \leq 2n$ is abelian.
- **1.10.** Show that the order of a group with trivial automorphism group is either 1 or 2.
- **1.11.** Find all homomorphic images of A_4 up to isomorphism.
- **1.12.** Show that in a group of order 105 is a single Sylow *p*-subgroup for p = 5, 7.
- **1.13.** Show that the number of Sylow *p*-subgroups of $SL_3(\mathbb{F}_p)$ is $(p^2+p+1)(p+1)$.

Rings

- **1.14.** Show that a finite integral domain is a field.
- **1.15.** Show that every ring of order p^2 for a prime p is commutative.
- **1.16.** Show that a semiring with multiplicative identity and cancellative addition has commutative addition.
- **1.17.** Show that the complement of a saturated monoid in a commutative ring is a union of prime ideals.

Vector spaces

- **1.18.** Show that normal nilpotent matrix equals zero.
- **1.19.** Show that two matrices *AB* and *BA* have same nonzero eigenvalues whose both multiplicities are coincide...
- **1.20.** Show that if *A* is a square matrix whose characteristic polynomial is minimal then a matrix commuting *A* is a polynomial in *A*.
- **1.21.** Show that the order of 2×2 integer matrices divide 12 if it is finite.
- **1.22.** Let X be a square matrix. Show that there is another matrix Y such that X + Y is invertible.
- **1.23.** Show that a determinant-preserving linear map is rank-preserving.

2 Galois theory

- **2.1.** Show that the Galois group of a quintic over \mathbb{Q} having exactly three real roots is isomorphic to S_5 .
- **2.2.** Let $v \notin \mathbb{Q}$ be an algebraic element over \mathbb{Q} and F/\mathbb{Q} be a maximal algebraic extension not containing v. Show that every finite extension of F is cyclic.
- 3 Category theory
- 4 Commutative algebra
- 5 Representation theory
- 6 Homological algebra
- 7 Discrete mathematics
- 8 Number theory
- **8.1.** Show that there is no integral solution of the equation $x^7 + 7 = y^2$.

- **8.2.** Show that if $(x^2 + y^2 + z^2)/(xy + yz + zx)$ is an integer, then it is not divided by 3.
- **8.3.** Show that there is no non-trivial integral solution of $x^4 y^4 = z^2$.

9 Algebraic number theory

Part III

Geometry and Topology

- 1 Classical geometry
- 2 Smooth surfaces
- 3 Differential topology
- **3.1.** Show that the tangent space of the unitary group at the identity is identified with the space of skew Hermitian matrices.
- **3.2.** Prove the Jacobi formula for matrix.
- **3.3.** Show that S^3 and T^2 are parallelizable.
- **3.4.** Show that $\mathbb{R}P^n = S^n/Z_2$ is orientable if and only if n is odd.
- 4 Geometric analysis
- 5 Algebraic curves
- 6 Algebraic geometry
- 7 Complex geometry
- 8 Surface topology
- 9 Algebraic topology
- 10 Geometric topology