

National University of Computer & Emerging Sciences, Karachi Fall/Spring/Summer-2011 CS-Department

MidTerm 1

23rd February 2017, 10:30 am - 11:30 am

Course Code: CS211	Course Name:	Discrete Structures						
Instructor Name : Jalaluddin Qureshi								
Student Roll No:		Group:						

Instructions:

- Return the question paper.Read each question completely before answering it. There are **5questions and 1 page.**
- In case of any ambiguity, you may make assumption. But your assumption should not contradict any statement in the question paper.
- Invigilators/instructor can not assist you in understanding the question.
- All the answers must be solved according to the sequence given in the question paper.
- Marks will be awarded iff justifications has been provided.

Time: 60 minutes. Max Marks: 10mark/question x 5questions = 50 marks

Part A (Set Theory)

Question 1:

Using the following relationship: $|AUB|=|A|+|B|-|A\cap B|$ (1),

Show that the following can be derived:

 $|AUBUC| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |C \cap B| + |A \cap B \cap C| \qquad (2).$

Based on this exercise, and using Equation (1) and/or (2) derive the formula for |AUBUCUD|.

Solution:

Use substitution method, let, T=BUC, so we have,

|AUT|=|A|+|T|-|A∩T|

 $|AUBUC| = |A| + |BUC| - |A \cap (BUC)|$

Since $|BUC|=|B|+|C|-|B\cap C|$,

 $|AUBUC|=|A|+|B|+|C|-|B\cap C|-|A\cap (BUC)|$

 $|AUBUC|=|A|+|B|+|C|-|B\cap C|-|(A\cap B)U(A\cap C)|$

 $|AUBUC| = |A| + |B| + |C| - |B \cap C| - (|(A \cap B)| + |(A \cap C)| - |A \cap B \cap C|)$

 $|AUBUC| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |C \cap B| + |A \cap B \cap C|$

The same approach of substitution can be used to show that,

 $|A \cup B \cup C \cup D| = |A| + |B| + |C| + |D| - |A \cap B| - |A \cap C| - |C \cap B| - |A \cap D| - |B \cap D| - |C \cap D| + |A \cap B \cap C| + |A \cap B \cap C| + |A \cap B \cap C \cap D|$

Question 2:

If A={2,3,4,g,FAST,star}, B={4,f,yoyo, 2, golf, 2}, C={yoyo, 10, 7, f, 4, FAST},

 \mathcal{U} = A U B U C U {3, golf, 7, tent, 0, 11}, (Hint: \mathcal{U} is the universal set). Find the following, and plot these on a Venn Diagram (by shading appropriate region).

(a) A^c∩B

(b) (*U* \B)∩ C^c

(c) (A \U) U (C\B)

(d) (A∩C)^c \ B

Solution:

The solution is given by the elements in the common region.

(a)

(b)

(c)

(d)

Part B (Logic Theory)

Question 3:

Determine (using appropriate technique) whether the following relationship is correct/ incorrect: $P \rightarrow (QVR) \equiv (P \rightarrow Q) \land (\neg P \rightarrow R)$.

Solution:

							M	N	
					QV	$P \rightarrow$	(P→Q	(¬P→R	
	Р	¬P	Q	R	R	(QVR)))	$M \wedge N$
1	T	F	Т	T	T	Т	Т	Т	T
2	T	F	Т	F	T	Т	Т	Т	Т
3	T	F	F	F	F	F	F	Т	F
4	T	F	F	T	T	Т	F	Т	F
5	F	T	Т	F	T	Т	Т	F	F
6	F	T	F	T	T	Т	Т	Т	Т
7	F	Т	F	F	F	Т	Т	F	F
8	F	T	T	T	T	Т	Т	Т	Т

As the two truth tables are not same, the equivalence relationship is false.

As there are two tables (with total 16 entries), at the discretion of the examiner, you will lose 1 marks for a wrong entry.

Question 4:

Determine whether the assignment c \leftarrow c+1 (read as, c is assigned the value given by c plus one) will be executed by the if-statement, where x \leftarrow 5, y \leftarrow 3, z \leftarrow 7.

- (a) If $\neg \{(x < y) \land (y \le z)\}$ then $c \leftarrow c+1$ (b) If $\neg \{(x = z) \land ((x \le z)\}$ then $c \leftarrow c+1$
- (c) If \neg {(x \ge y) \lor (x<z)} then c \leftarrow c+1 (d) If \neg {(x \le z) \lor (y=z)} then c \leftarrow c+1

Solution:

- (a) $\neg \{(x < y) \land (y \le z)\}$ then $c \leftarrow c + 1$ TRUE (x < y) is false, $(y \le z)$ is true, their conjunction is false, and negation of this is true.
- (b) $\neg \{(x=z) \land ((x\leq z)\} \text{ then } c \leftarrow c+1$ TRUE (x=z) is false, $(x\leq z)$ is true, their conjunction is false, and negation of this is true.
- (c) $\neg \{(x \ge y) \lor (x < z)\}$ then $c \leftarrow c + 1$ FALSE $(x \ge y)$ is true, (x < z) is also true, their disjunction is true, and its negation is false.
- (d) $\neg \{(x \le z) \lor (y = z)\}$ then $c \leftarrow c + 1$ FALSE $(x \le z)$ is true, (y = z) is false, their disjunction is true, and its negation is false.

Question 5:

Using the algebra of Propositions, simplify the following: $(xV\neg yVz) \land (\neg xV \neg yVz) \lor (w \land \neg x)$ After the simplication, draw its truth table.

Solution

Based on the above reduction, a truth table for the above can be easily drawn.