Math 525

Sections 5.3–5.5: Cyclic Hamming and BCH Codes

November 30, 2020

November 30, 2020 1 / 12

Hamming Codes Revisited

• Let $r \ge 2$ be an integer and let $\beta \in \mathrm{GF}(2^r)$ be primitive, i.e., $1, \beta, \beta^{2}, \dots, \beta^{2^{r}-2}$ are all distinct and

$$\mathrm{GF}(2^r) = \{0\} \cup \{1, \beta, \beta^2, \dots, \beta^{2^r-2}\}.$$

Then

$$H = \begin{bmatrix} 1 \\ \beta \\ \vdots \\ \beta^{2^r - 2} \end{bmatrix}$$

is a parity-check matrix of a $(2^r - 1, 2^r - r - 1, 3)$ Hamming code.

• Let $n = 2^r - 1$. We have:

$$c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in C \Leftrightarrow c_0 + c_1 \beta + \dots + c_{n-1} \beta^{n-1} = 0 \Leftrightarrow c(\beta) = 0 \Leftrightarrow m_{\beta}(x) \mid c(x).$$

• Since $m_{\beta}(x) | x^n + 1$, it follows that C is cyclic with $g(x) = m_{\beta}(x)$.

November 30, 2020 2 / 12

Decoding: Let c(x) be the sent codeword and $e(x) = x^j$ the error pattern. Then $r(x) = c(x) + x^j$. The syndrome is equal to

$$r(\beta) = c(\beta) + \beta^j = \beta^j$$
.

So we can easily determine the error location, i.e., j, from the syndrome.

Example

Consider r=3 and the Hamming code of length 2^3-1 . Let β be a primitive element of $\mathrm{GF}(2^3)$ constructed from x^3+x+1 , see the table below. Suppose $w(x)=1+x+x^3+x^6$ is received. Determine the error location.

word	polynomial in x (modulo $h(x)$)	power of β
0 0 0	0	_
1 0 0	1	1
0 1 0	x	β
0 0 1	x^2	β^2
1 1 0	$1 + x \equiv x^3$	β^3
0 1 1	$x + x^2 \equiv x^4$	β^4
1 1 1	$1 + x + x^2 \equiv x^5$	β^5
101	$1 + x^2 \equiv x^6$	β^6

Sections 5.3–5.5 November 30, 2020 3 / 12

BCH Codes

• Given a primitive element $\beta \in GF(2^r)$, $r \geq 2$, we saw that the generator polynomial of the Hamming code of length $n = 2^r - 1$ is equal to the minimal polynomial of β , i.e.,

$$g(x) = m_{\beta}(x) = m_1(x) = (x + \beta)(x + \beta^2)(x + \beta^4)(x + \beta^8) \cdots (x + \beta^{2^{r-1}}).$$

• What we really did was to select a factor of $x^{2^r-1}+1$ in order to construct a cyclic code of length $n=2^r-1$:

$$x^{2^{r}-1} + 1 = (x + \beta)(x + \beta^{2})(x + \beta^{3})(x + \beta^{4}) \cdots (x + \beta^{2^{r-1}})$$

$$= \underbrace{(x + \beta)(x + \beta^{2})(x + \beta^{4}) \cdots (x + \beta^{2^{r-1}})}_{g(x)=m_{1}(x)} \cdot M(x),$$

where M(x) is the product of other minimal polynomials.

• Generalizing the idea for Hamming codes, that is, by taking g(x) to be

$$m_1(x) \cdot m_3(x) \cdot m_5(x)$$

for example, leads to BCH codes.

Sections 5.3–5.5 November 30, 2020 4 / 12

• In this introductory chapter, we only consider $g(x) = m_1(x) \cdot m_3(x)$. Note that

$$m_3(x) = (x + \beta^3)(x + (\beta^3)^2)(x + (\beta^3)^4) \cdots (x + (\beta^3)^{2^{e-1}}),$$

where *e* is such that $(\beta^3)^{2^e} = \beta^3$.

• For r > 2, it is possible to show that, like $m_1(x)$, $m_3(x)$ has degree equal to r. In other words,

$$(\beta^3)^{2^i} \neq (\beta^3)^{2^j}$$
 whenever $0 \leq i < j \leq r - 1$.

• Thus, $g(x) = m_1(x) \cdot m_3(x)$ has degree equal to 2r, and it generates a cyclic code of length $n = 2^r - 1$ and dimension $k = 2^r - 2r - 1$.

Definition

The cyclic code C defined by g(x) above is a BCH code. We will show that C corrects any error pattern of weight two, i.e., C is a double-error-correcting code.

Sections 5.3–5.5

November 30, 2020

/12

Example

Determine the generator polynomial of a BCH code of length $n=2^4-1=15$. Let $\beta\in\mathrm{GF}(2^4)$ be primitive and a root of $h(x)=x^4+x+1$.

We have

$$m_1(x) = (x+\beta)(x+\beta^2)(x+\beta^4)(x+\beta^8) = 1 + x + x^4$$

$$m_3(x) = (x+\beta^3)(x+\beta^6)(x+\beta^{12})(x+\beta^9) = 1 + x + x^2 + x^3 + x^4.$$

$$g(x) = m_1(x) \cdot m_3(x) = 1 + x^4 + x^6 + x^7 + x^8.$$

Finally, C has dimension k equal to $15 - \deg g(x) = 7$.

Parity-Check Matrix of BCH Codes

Let C be the BCH code in the last definition. Then

$$v(x) \in C \Leftrightarrow v(x) = a(x) \cdot g(x) \Leftrightarrow v(x) = a(x)m_1(x)m_3(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ and } \beta^3 \text{ are roots of } v(x) \Leftrightarrow \beta \text{ are } \gamma \text{ are }$$

$$\begin{cases} v_0 + v_1 \beta + v_2 \beta^2 + \dots + v_{n-1} \beta^{n-1} = 0 \\ v_0 + v_1 \beta^3 + v_2 (\beta^3)^2 + \dots + v_{n-1} (\beta^3)^{n-1} = 0 \end{cases} \Leftrightarrow$$

$$(v_0 \ v_1 \ \cdots v_{n-1}) \cdot \left[\begin{array}{ccc} 1 & 1 \\ \beta & \beta^3 \\ \beta^2 & \beta^6 \\ \vdots & \vdots \\ \beta^i & \beta^{3i} \\ \vdots & \vdots \\ \beta^{n-1} & \beta^{3(n-1)} \end{array} \right] = [0 \ 0].$$

Note that each entry of the above matrix (call it H) is a binary n-tuple. H is a parity-check matrix for C.

Sections 5.3–5.5 November 30, 2020 7 / 12

• Now we will show that the code C of slides #5 and 7 corrects up to two errors in a block of $n=2^r-1$ digits. Thus, $d(C) \geq 5$. Let r(x) be the received polynomial. Then

$$s = [r(\beta), r(\beta^3)] = [s_1, s_3].$$

• If no errors occur, then $r(x) \in C$ and so

$$s = [r(\beta), r(\beta^3)] = [0, 0].$$

• If exactly one error occurs, then $r(x) = c(x) + x^j$ for some $0 \le j \le n - 1$. Thus,

$$s = [r(\beta), r(\beta^3)] = [\beta^j, \beta^{3j}]$$
. Hence, $s_3 = s_1^3 \neq 0$.

Sections 5.3-5.5

November 30, 2020

8 / 12

• If exactly two errors occur, then $r(x) = c(x) + x^i + x^j$ for some $0 \le i < j \le n - 1$. Thus,

$$\begin{cases} \beta^{i} + \beta^{j} &= s_{1} \\ \beta^{3i} + \beta^{3j} &= s_{3} \Rightarrow (\beta^{i} + \beta^{j})(\beta^{2i} + \beta^{i} \cdot \beta^{j} + \beta^{2j}) = s_{3}. \end{cases}$$

Hence,

$$\begin{cases} \beta^{i} + \beta^{j} &= s_{1} \\ \beta^{i} \cdot \beta^{j} &= \frac{s_{3}}{s_{1}} + s_{1}^{2}. \end{cases}$$

In conclusion, β^{i} and β^{j} are roots of

$$x^2 + s_1 x + \left(\frac{s_3}{s_1} + s_1^2\right) = 0.$$
 (*)

November 30, 2020

Decoding Algorithm for 2-Error-Correcting BCH Codes

Input: The received polynomial r(x).

- **1** Compute $s = [s_1, s_3] = [r(\beta), r(\beta^3)]$.
- ② If $s_1 = s_3 = 0$, declare that no errors occurred.
- \bullet If $s_1=0$ and $s_3\neq 0$, ask for retransmission.
- lacktriangledown If $s_1
 eq 0$ and $s_3 = s_1^3$, then declare that one error occurred at position i where $s_1 = \beta^i$). EXIT.
- $foldsymbol{0}$ If $s_1
 eq 0$ and $s_3
 eq s_1^3$, solve (*) (see slide #9). If it has two distinct roots, β^i and β^j , both non-zero, declare that $e(x) = x^i + x^j$. EXIT.
- lacktriangle If (*) has no roots or one of the roots equals zero, ask for retransmission

Example

Consider the field $\mathrm{GF}(2^4)$ whose elements are listed on page 114. See Table 5.1. A double-error-correcting BCH code of length 15 is generated by

$$g(x) = m_{\beta}(x) \cdot m_{\beta^{3}}(x)$$

$$= (x^{4} + x + 1) \cdot (x^{4} + x^{3} + x^{2} + x + 1)$$

$$= x^{8} + x^{7} + x^{6} + x^{4} + 1.$$

Decode the received polynomial $r(x) = x^9 + x^7 + x^4 + x^2 + 1$.

We have: $s_1 = r(\beta) = \beta^{10}$ and $s_3 = r(\beta^3) = 1$.

Since $s_1 \neq 0$ and $s_3 = s_1^3$, the decoder declares that r(x) contains exactly one error, located in position 10, that is, $e(x) = x^{10}$.

The sent code-polynomial is estimated as

$$\widehat{c}(x) = x^{10} + x^9 + x^7 + x^4 + x^2 + 1.$$

Continue E 2 E E

November 30, 2020

11 / 12

Example

Consider the same code as in the previous example. Decode the the received polynomial $r(x) = x^{10} + x^8 + x^6 + x$.

We have: $s_1 = r(\beta) = \beta^6$ and $s_3 = r(\beta^3) = \beta^7$. Since $s_3 \neq s_1^3$, the decoder goes to Step 4 of the decoding algorithm. Note:

$$\frac{s_3}{s_1} + s_1^2 = \beta + \beta^{12} = \beta^{13}.$$

Solving the quadratic equation

$$x^{2} + s_{1}x + \left(\frac{s_{3}}{s_{1}} + s_{1}^{2}\right) = x^{2} + \beta^{6}x + \beta^{13} = 0.$$

for x gives $x_1 = 1 = \beta^0$ and $x_2 = \beta^{13}$. Therefore, $e(x) = x^{13} + 1$.

The sent code-polynomial is estimated as

$$\widehat{c}(x) = x^{13} + x^{10} + x^8 + x^6 + x + 1.$$