

Recent advances in genomics transform infectious disease detection and response capacity

Early detection of a new or rare pathogen

polio, zoonotic spillover, outbreak investigation

Monitor levels of an existing pathogen

SARS CoV-2 variants, drug resistant bacteria/TB

Assess intervention effects

vaccine introduction, AMR stewardship

Genomic data: Building block for

new tools

World Health OrganizationGlobal genomic surveillance strategy

 Asia Pathogen Genomics Initiative (Asia PGI)
 Regional Roadmap: 14 country assessment with recommendations to accelerate implementation in Asia

Asia PGI: Pathogen Genomics Landscape Assessment

System-wide assessment: 14 countries - June 2022-May 2023

Sequencing exists across Asia. Capacity gaps remain

Diverse stakeholders. Few countries have national plans

Partners contributing to pathogen sequencing

Proportion of pathogen sequencing, by partner Cross-country average

Cost and supply chain inequalities: Early detection delays

Poor countries: 10-fold greater cost per sequence

Source: FIND, June 2021

Average re-supply time = 7.5 weeks

Average 1 month delay: Sample to reporting

Barriers to pathogen genomic surveillance

Financing	In-country resource constraints	5 ×		
	Inadequate budget	fic.		
	Low spending limits	(8)	A	
	Over-reliance on external funders	8		
Policy & Guideline	Lack of national plan and guidelines	0		
Bioinformatics	Human Resources	10	- 1	
& Data Sharing	Data sharing and reporting			
Supply Chain	Reagents and consumables			
	Samples (transportation time, quality)			
Laboratory Infrastructure	Computing power and storage			
	Infrastructure (electricity, internet connection)	15		
	Laboratory & Sequencing Equipment			
		1		5
		Not a barrier		Major barrier

Pathogen genomic capacity varies across the region

Most countries in Asia: Moderate-to-high capacity

	LIMITED CAPACTITY	MODERATE CAPACTITY	HIGH CAPACITY
SURVEILLANCE AND SAMPLING	Passive and ad hoc	Passive and active - moderate coverage	Passive and active - high coverage
LABORATORY AND BIOINFORMATICS	Minimal	Modest scale, slow turnaround time	Well-established, rapid turnaround time
POLICY AND GUIDELINES OR PATHOGEN GENOMICS	Absent, or present only for SARS-CoV-2	Present for some pathogens	Clearly outlined for endemic and novel pathogens
QUALITY ASSURANCE MECHANISMS	Absent	Some national accreditation; no external quality assurance (EQA)	Well-established national accreditation and EQA
TECHNICAL EXPERT COMMITTEES	Absent	Established	Well-functioning

Limited utility of genomics

Genomics supports
Infectious
disease control
efforts

Genomics supports
Infectious
disease control &
elimination

Public health approach to pathogen genomics

Multi-pathogen approach

One Health framework

Cost-efficient system design

Real-time information

Public health action

Considerations prior to introducing genomic surveillance

Embed genomics within existing surveillance programs

Human-animal

interface

Respiratory samples Culture - Molecular testing

Screening tests help target and interpret genomics

Where and how frequently to sample?

- Representative sample
- High-risk setting ie. wet market, migrant settlement

Link between genomics and conventional testing

- Antimicrobial resistance
- Genotype Serotype ie. Dengue

What question does genomics answer?

pathogen

Polio, Nipah, outbreak investigation variants

COVID, influenza, MDR-TB

Assess intervention effects

Vaccination, isolation/travel restrictions, Wolbachia (Dengue)

Assessing the cost of pathogen genomics

Nucleic acid extraction

Library preparation + amplification

Sequencing (per GBp)

Average kit cost per sample

Amplification:

Total cost of kit, enzyme and nuclease water per sample

+

Thermocycler amortized cost per sample (10 years)

Average flow cell costs per sample per GBp

+

Average equipment (ONT, Illumina, MGI) amortized costs per sample

Library preparation:

Average kit and reagent costs per sample

Н

Equipment (Qubit, Bioanalyser) amortized cost per sample

+

Other consumables cost per sample

Outsourcing

Multi pathogen panels:

KingCreate, Twist, Illumina

Outsourcing (Singapore)

Total cost of NGS USD \$94/sample (1 GBp)

NGS cost proportions by process (%)

- Library preparation + amplification
- Sequencing (per GBp)

NGS cost drivers (USD)

NGS combo panels vs Multiplex RT-qPCR

GENOMICS Initiative

KEY CONSIDERATIONS

INVESTMENT CASE DEVELOPMENT

PUBLIC HEALTH AND SYSTEMS APPROACH

- One Health surveillance
- High-priority pathogens
- Real-time information
- Actionable data
- Timely public health response

SYSTEM REQUIREMENTS

- Surveillance and sampling
- Laboratory and bioinformatics infrastructure and capacity
- Policies and guidelines
- Quality assurance
- Technical expert committees

OUTCOMES

Tailored high-impact multi-pathogen genomics plan

Cost-sensitive system design

National budgeting & partner alignment

Step 1: Pathogen prioritisation for genomics

II. GENOMI	C PRIORITIZATION		
А	Diagnostic test coverage	Estimated % of suspected clinical cases tested with laboratory diagnostic test	20%
В	Pathogen significance	Incidence rate	20%
		Transmission rate (R0)	1 - 2
		Case Fatality Ratio (CFR)	13%
	Mutation significance	Increase in transmissibility	Low
		Increase in disease severity	High
С		Vaccine escape/ mismatch	Medium
		Antibiotic/ antiviral resistance	High
	D Genomic utility	Public Health Utility	
		Early detection/identification of high-risk settings	High
		Non-pharmacologic interventions	Medium
		Contact tracing	High
		Antimicrobial stewardship	High
D		Clinical Utility	
		Pharmacologic interventions	Medium
		Diagnostic effectiveness	High
		Clinical Management	High
		Commercial/R&D Utility	
		Develop new diagnostics, therapeutics, vaccines	Medium
Е	Economic significance	Economic impact of pathogen detection or outbreak	Medium
ive			

Step 2: Pathogen genomics utility assessment

The utility of genomics differs by pathogen

Step 3: Costing tools

Steps and cost-drivers

Nucleic Acid Extraction

Amplification Library Preparation

Genomic sequencing

Bioinformatics

Genomics: Cheaper and faster

Step 4: Integrated multi-pathogen planning

Summary: Strategies to sustain pathogen genomics

Major progress in multi-pathogen genomics across Asia

- In-country capacity exists
- Wide range of use-cases

Priority to shift funding from external to domestic sources

Public health approach to multi-pathogen planning

- Genomics utility assessment
- Leverage existing surveillance systems
- Crucial to link genomics to public health action

Strategies to drive down costs

- Multi pathogen planning enables national and regional forecasting
- Cost reductions through pooled procurement or global mechanisms
- Innovations can drive down costs further
- Integrated laboratory network

Investment case framework

Approach to translate global priorities into national plans/budgets

