Proof Systems for the Modal μ-Calculus Obtained by Determinizing Automata

Maurice Dekker, <u>Johannes Kloibhofer</u>, Johannes Marti, Yde Venema September 21, 2023

Institute for Logic, Language and Computation University of Amsterdam, Netherlands

Outline

- ullet Define infinitary proof system for the modal μ -calculus based on traces
- Show how traces can be checked by automaton
- Integrate automaton in proof system first determinize it
- Different determinization methods give different proof systems

Outline

- Define infinitary proof system for the modal μ -calculus based on traces
- Show how traces can be checked by automaton
- Integrate automaton in proof system first determinize it
- Different determinization methods give different proof systems
- (Define specific determinization method for parity automata)
 - Obtain proof system from it

Modal μ -calculus

Formulas in the modal μ -calculus are generated by the grammar

$$\varphi \, ::= \, p \, \mid \, \overline{p} \, \mid \, \varphi \vee \varphi \, \mid \, \varphi \wedge \varphi \, \mid \, \Diamond \varphi \, \mid \, \Box \varphi \, \mid \, \mu x \, \varphi \, \mid \, \nu x \, \varphi$$

Modal μ -calculus

Formulas in the modal μ -calculus are generated by the grammar

$$\varphi ::= p \mid \overline{p} \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \mu x \varphi \mid \nu x \varphi$$

- Formulas of the form $\mu x \varphi$ and $\nu x \varphi$ are called fixpoint formulas: $\mu x \varphi \equiv \varphi[\mu x \varphi/x]$ and $\nu x \varphi \equiv \varphi[\nu x \varphi/x]$
- In $\mu x \ \varphi$ and $\nu x \ \varphi$ there are no occurrences of \overline{x} in φ
- A fixpoint formula φ is *more important* than a fixpoint formula ψ if φ is a subformula of ψ

Proof theory of the modal μ -calculus

- [Kozen '83] introduced finitary Hilbert system
- Completeness proven by [Walukiewicz '96]
- [Niwiński, Walukiewicz '95] introduced infinitary tableaux games in which one player has winning strategy iff formula is valid

NW derivations

An NW *derivation* is a, possibly infinite, tree defined from the following rules:

Ax:
$$\frac{\varphi, \overline{p}, \Gamma}{p, \overline{p}, \Gamma}$$
 R_{\vee} : $\frac{\varphi, \psi, I}{\varphi \vee \psi, \Gamma}$ R_{\wedge} : $\frac{\varphi, I}{\varphi \wedge \psi, \Gamma}$ R_{\wedge} : $\frac{\varphi, \Gamma}{\varphi \wedge \psi, \Gamma}$ R_{\vee} : $\frac{\varphi[\mu x \varphi/x], \Gamma}{\mu x \varphi, \Gamma}$ R_{\vee} : $\frac{\varphi[\nu x \varphi/x], \Gamma}{\nu x \varphi, \Gamma}$

NW derivations

An NW derivation is a, possibly infinite, tree defined from the following rules:

Ax:
$$\frac{}{p,\bar{p},\Gamma}$$

$$R_{\vee}$$
: $\frac{\varphi, \psi, \Gamma}{\varphi \vee \psi, \Gamma}$

$$R_{\wedge}$$
: $\frac{\varphi, \Gamma \quad \psi, \Gamma}{\varphi \wedge \psi, \Gamma}$

$$\mathsf{R}_{\square} \colon \frac{\varphi, \mathsf{\Gamma}}{\square \varphi, \Diamond \mathsf{\Gamma}, \Delta}$$

$$R_{\mu}$$
: $\frac{\varphi[\mu x \varphi/x], I}{\mu x \varphi, \Gamma}$

$$R_{\mu}$$
: $\frac{\varphi[\mu x \ \varphi/x], \Gamma}{\mu x \ \varphi, \Gamma}$ R_{ν} : $\frac{\varphi[\nu x \ \varphi/x], \Gamma}{\nu x \ \varphi, \Gamma}$

- There are infinite branches
- But only finitely many sequents

Example NW derivation

Figure 1: NW derivation of $\mu x \Box x \lor \nu y \diamondsuit y$

NW proofs

- A trace $(\varphi_j)_{j\in\omega}$ on an infinite branch is an infinite sequence of formulas s.t. φ_j is an immediate ancestor of φ_{j+1} for $j\in\omega$.
- A trace is called ν -trace if the most important fixpoint formula unfolded infinitely often is a ν -formula.

NW proofs

- A trace $(\varphi_j)_{j\in\omega}$ on an infinite branch is an infinite sequence of formulas s.t. φ_j is an immediate ancestor of φ_{j+1} for $j\in\omega$.
- A trace is called ν-trace if the most important fixpoint formula unfolded infinitely often is a ν-formula.

Definition

An NW *proof* is an NW derivation, where on every infinite branch there is a ν -trace.

Question

How to recognize those branches?

Example NW proof

Figure 2: NW proof of $\mu x \Box x \lor \nu y \diamondsuit y$

ω -automata

 ω -automata are a variation of finite state automata with infinite strings as inputs:

ω -automata

 ω -automata are a variation of finite state automata with infinite strings as inputs:

The acceptance condition can be given in different ways:

Büchi automata

 ω -automata are a variation of finite state automata with infinite strings as inputs:

The acceptance condition can be given in different ways:

- ullet A Büchi condition is given as a subset $F\subseteq A$
 - \star Runs accepted, that contain infinitely many states in F

Parity automata

 ω -automata are a variation of finite state automata with infinite strings as inputs:

The acceptance condition can be given in different ways:

• A parity condition is given as a map $\Omega:A\to\mathbb{N}$ * Runs α accepted, s.t. $\max\{\Omega(a)\mid a \text{ occurs infinitely often in }\alpha\}$ is even

Recap NW proofs

An NW *derivation* is a, possibly infinite, tree defined from the following rules:

Ax1:
$$\frac{}{p,\bar{p},\Gamma}$$
 Ax2: $\frac{}{\top,\Gamma}$ R_{\circ}: $\frac{\varphi,\psi,\Gamma}{\varphi\vee\psi,\Gamma}$ R_{\circ}: $\frac{\varphi,\Gamma}{\varphi\wedge\psi,\Gamma}$ R_{\chi}: $\frac{\varphi,\Gamma}{\varphi\wedge\psi,\Gamma}$ R_{\chi}: $\frac{\varphi[\mu x\;\varphi/x],\Gamma}{\mu x\;\varphi,\Gamma}$ R_{\chi}: $\frac{\varphi[\nu x\;\varphi/x],\Gamma}{\nu x\;\varphi,\Gamma}$

Definition

An NW proof is an NW derivation, where on every infinite branch there is a ν -trace.

Tracking automaton

Define nondeterministic parity automaton \mathbb{A} s.t.

A accepts $\alpha \Leftrightarrow$ there is a ν -trace on α

for all infinite branches lpha in an NW derivation

Tracking automaton

Define nondeterministic parity automaton \mathbb{A} s.t.

A accepts $\alpha \Leftrightarrow$ there is a ν -trace on α

for all infinite branches α in an NW derivation Idea:

- States are formulas
- Transitions given by ancestor relation
- Parity of fixpoint formulas:
 - ullet u-formulas get even parity
 - ullet μ -formulas get odd parity
 - More important fixpoint formulas get higher parity

Obtaining new proof system

Idea: build automaton into proof system

• Sequents of form $a \vdash \Gamma$, where a state of tracking automaton \mathbb{A}

Obtaining new proof system

Idea: build automaton into proof system

• Sequents of form $a \vdash \Gamma$, where a state of tracking automaton \mathbb{A}

Need automaton to be deterministic!

Obtaining new proof system

Idea: build automaton into proof system

• Sequents of form $a \vdash \Gamma$, where a state of tracking automaton \mathbb{A}

Need automaton to be deterministic!

Let \mathbb{A}^D be deterministic automaton accepting same language as \mathbb{A}

• Sequents of form $a \vdash \Gamma$, where a state of \mathbb{A}^D

Advantage: Global validity condition based on branches instead of traces

Challenge Integrate states into sequents

Explicit determinization

- Most known determinization method is Safra construction
- Inspired by it [Jungteerapanich '10] and [Stirling '14] introduced annotated proof system
 - Sequents have form $\theta \vdash \varphi_1^{\rho_1}, ..., \varphi_n^{\rho_n}$

Explicit determinization

- Most known determinization method is Safra construction
- Inspired by it [Jungteerapanich '10] and [Stirling '14] introduced annotated proof system
 - Sequents have form $\theta \vdash \varphi_1^{\rho_1}, ..., \varphi_n^{\rho_n}$
- We develop determinization method for nondeterministic automata using binary trees
- States of deterministic automaton B consists of
 - Sets of states of A
 - Every state annotated by tuple of binary strings

Explicit determinization

- Most known determinization method is Safra construction
- Inspired by it [Jungteerapanich '10] and [Stirling '14] introduced annotated proof system
 - Sequents have form $\theta \vdash \varphi_1^{\rho_1}, ..., \varphi_n^{\rho_n}$
- We develop determinization method for nondeterministic automata using binary trees
- States of deterministic automaton $\mathbb B$ consists of
 - Sets of states of A
 - Every state annotated by tuple of binary strings
- Using this method we get different annotated proof system
 - Sequents have form $\vdash \varphi_1^{\sigma_1}, ..., \varphi_n^{\sigma_n}$
 - No extra information needed!

BT proof rules

Ax:
$$\frac{\varphi^{\sigma}, \psi^{\sigma}, \Gamma}{(\varphi \vee \psi)^{\sigma}, \Gamma}$$
 R_{\(\text{\text{R}}: \frac{\varphi^{\sigma}, \Gamma^{\sigma}, \Gamma^{\sigma}, \Gamma^{\sigma}, \Gamma^{\sigma}}{(\varphi \lambda \psi)^{\sigma}, \Gamma^{\sigma}} \quad \text{R}_\(\text{\text{R}}: \frac{\varphi^{\sigma}, \Gamma^{\sigma}, \Gamma^{\sigma}, \Gamma^{\sigma}, \Gamma^{\sigma}}{(\varphi \lambda \lambda \psi)^{\sigma}, \Gamma^{\sigma}}}

$$\mathsf{R}_\square \colon \frac{\varphi^\sigma, \Gamma}{\square \varphi^\sigma, \diamondsuit \Gamma, \Delta} \qquad \mathsf{R}_\nu \colon \frac{\varphi[x \backslash \nu x \; \varphi]^{\sigma \upharpoonright k \cdot 1_k}, \Gamma^{\cdot 0_k}}{\nu x \; \varphi^\sigma, \Gamma} \quad \text{where } k = \Omega_\Phi(\nu x \; \varphi)$$

$$\mathsf{R}_{\boldsymbol{\mu}} \colon \, \frac{\varphi[\mathbf{x} \backslash \mu \mathbf{x} \,\, \varphi]^{\sigma \mid \Omega_{\Phi}(\mu \mathbf{x} \,\, \varphi)}, \boldsymbol{\Gamma}}{\mu \mathbf{x} \,\, \varphi^{\sigma}, \boldsymbol{\Gamma}} \quad \text{ Resolve: } \frac{\varphi^{\sigma}, \boldsymbol{\Gamma}}{\varphi^{\sigma}, \varphi^{\tau}, \boldsymbol{\Gamma}} \quad \text{ where } \sigma > \tau$$

Compress_k^{s0}:
$$\frac{\varphi_1^{(...,st_1,...)},...,\varphi_n^{(...,st_n,...)},\Gamma}{\varphi_1^{(...,s0t_1,...)},...,\varphi_n^{(...,s0t_n,...)},\Gamma} \quad \text{where } s \notin \Gamma_k^A$$

Compress_k^{s1}:
$$\frac{\varphi_1^{(...,st_1,...)},...,\varphi_n^{(...,st_n,...)},\Gamma}{\varphi_1^{(...,s1t_1,...)},...,\varphi_n^{(...,s1t_n,...)},\Gamma}$$
 where $s \notin \Gamma_k^A$ and $s \neq 0 \cdots 0$

BT^{∞} proofs

Definition

A BT $^{\infty}$ proof is a BT derivation, where on every infinite branch there is a successful string.

- Completeness and Soundness of BT[∞] proved by using determinization method
- Advantage: Global validity condition on branches instead of traces

cyclic BT proofs

- Only finitely many sequents on infinite branch
- Get cyclic proof tree
- Infinite branches correspond to strongly connected subgraphs

cyclic BT proofs

- Only finitely many sequents on infinite branch
- Get cyclic proof tree
- Infinite branches correspond to strongly connected subgraphs

Definition

A BT proof is a finite BT derivation, where for every strongly connected subgraph there is a successful string.

 Comparing to Jungteerapanich system: Trade-off between extra information and more local validity condition

Other logics

Same method could be applied to other proof systems:

Other logics

Same method could be applied to other proof systems:

- Alternation-free mu-calculus:
 - Weak co-Büchi automaton
 - Determinization corresponds to Focus system [Marti, Venema '21]

Other logics

Same method could be applied to other proof systems:

- Alternation-free mu-calculus:
 - Weak co-Büchi automaton
 - Determinization corresponds to Focus system [Marti, Venema '21]
- FOL_{ID}, Cyclic PA, etc...
 - Büchi automaton
 - Binary strings as annotations

Conclusion

- Showed how determinization methods give rise to proof systems
- Introduced determinization method for nondeterministic parity automata
- ullet Explicitly used this method to obtain proof system for the modal μ -calculus

Future work

- Compare BT and Jungteerapanich system
 - * Path-based condition without control?
- Show completeness of Kozen's axiomatization:
 - * Idea: translate BT to Kozen's system
- Apply method to other proof systems

