A primer on the set-theoretic multiverse

Victoria Gitman

vgitman@nylogic.org https://victoriagitman.github.io

VCU Analysis, Logic, and Physics Seminar April 12, 2019

Counting past infinity

What I assert and believe to have demonstrated in this and earlier works is that following the finite there is a transfinite (which one could also call the supra-finite), that is an unbounded ascending ladder of definite modes, which by their nature are not finite but infinite, but which just like the finite can be determined by well-defined and distinguishable numbers. — Georg Cantor

We use natural numbers to count through objects in order: (0th), 1st, 2nd, 3rd, etc.

In 1852, the mathematician Georg Cantor needed to iterate a mathematical operation past the natural numbers.

- Suppose X is a closed set of reals.
- Let $X' = \{x \in X \mid x \text{ is a limit point of } X\}$.
- Let X⁽ⁿ⁾ be the result of iterating the 'operation n-many times.
- Past all the natural numbers, take the limit $\bigcap_n X^{(n)}$.
- Can we keep iterating?

Cantor extended the natural numbers to a (much) bigger counting system in which we can keep iterating!

Counting with natural numbers

Well-order

- Linear order
 - ▶ Reflexivity: *n* ≤ *n*
 - ▶ Antisymmetry: if $n \le m$ and $m \le n$, then n = m
 - ▶ Transitivity: if $n \le \overline{m}$ and $m \le \overline{k}$, then $n \le k$
 - ▶ Comparability: either $n \le m$ or $m \le n$
- Every subset has a least element.
 - ▶ Induction: Suppose that whenever a property P(x) is true for every n < m, then it is also true for m. Then P(x) is true for every n.
 - Justifies recursively defined operations.

Question: Can we extend the natural numbers while maintaining these key properties?

^{*} Images credit: http://www.madore.org/david/math/drawordinals.html

The transfinite: ordinals

Add a new number ω above the natural numbers.

- The natural numbers (n > 0) are successor ordinals: n is an immediate successor of n 1.
- ω is a limit ordinal: it is not an immediate successor of anything.

Keep counting:
$$\omega+1$$
, $\omega+2$, $\omega+3$, ..., $\omega+n$, ...

Next limit ordinals:
$$\omega + \omega = \omega \cdot 2$$
, $\omega \cdot 3$, ..., $\omega \cdot n$, ...

$$\omega \cdot \omega = \omega^2 \text{, } \omega^2 + \omega \text{, } \omega^2 + \omega \cdot 2 \text{, } \dots \text{, } \omega^2 + \omega \cdot \textit{n} \text{, } \dots$$

$$\omega^2 \cdot 2$$
, $\omega^2 \cdot 2 + \omega$, ..., $\omega^2 \cdot 2 + \omega \cdot n$, ..., $\omega^2 \cdot 3$, ..., ω^3 , ...

$$\omega^{\omega}$$
, $\omega^{\omega \cdot 2}$, ω^{ω} , ω^{ω^2} , $\omega^{\omega^{\omega}}$, ...

^{*} Images credit: http://www.madore.org/ david/math/drawordinals.html

Properties of ordinals

Let ORD denote the collection of all ordinals.

- The ordinals are well-ordered.
- Every ordinal is either 0, a successor or a limit.
- For every ordinal, there is a larger ordinal, its successor.
- We can iterate "forever" along the ordinals.

Measuring infinity

Definition: Suppose A and B are sets.

- A has the same size as B, |A| = |B|, if there is a bijection between them.
- A is smaller than or same size as B, $|A| \leq |B|$, if there is an injection from A to B.

Theorem: (Cantor-Bernstein) If there is an injection from A to B and also an injection from B to A, then there is a bijection between them. If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

Bijection:

Injection

Examples

- The set of natural numbers has the same size as the set of integers and as the set of rational numbers.
- (Cantor) The set of natural numbers is smaller than the set of real numbers.
- Are there any sets whose size is strictly between the natural numbers and real numbers?

Theorem: (Cantor) The size of the powerset of a set X is larger than the size of X. For every infinity, there is a yet larger infinity!

The iterative conception of sets

A naive conception of set theory resulted in paradoxes such as the famous Russell's Paradox.

The iterative conception of sets was a way to carefully construct a universe of sets by iterating the powerset operation along the ordinals starting with (just!) the emptyset \emptyset .

The bottom up construction avoided the known paradoxes and was later formalized through the Zermelo Fraenkel $\rm ZFC$ axioms.

It is a convention to call universes of set theory V.

The V_{α} hierarchy

Let $\mathscr{P}(X)$ denote the powerset of X: the set of all subsets of X.

```
\begin{array}{l} \nu_0=\emptyset\\ \nu_1=\{\emptyset\}\\ \nu_2=\{\emptyset,\{\emptyset\}\}\\ \nu_3=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}\}\,(2^2\text{ elements})\\ \end{array} :
```

$$V_{\omega} = \bigcup_{n} V_{n}$$

$$V_{\omega+1} = \mathscr{P}(V_{\omega})$$

$$V_{\omega+2} = \mathscr{P}(V_{\omega+1})$$
.

Natural numbers

•
$$0 = \emptyset, 1 = \{0\} = \{\emptyset\}, 2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}, 3 = \{0, 1, 2\}, \dots, n = \{0, 1, \dots, n-1\}, \dots$$

• $n \in V_{n+1}$

Ordinals

- $\omega = \{0, 1, \ldots, n, \ldots\}$
- \bullet $\omega + 1 = \{0, 1, \ldots, n, \ldots, \omega\}$
- $\alpha \in V_{\alpha+1}$

Reals

- Represent reals by subsets of natural numbers.
- Every real is in $V_{\omega+1}$.
- Every set of reals is in $V_{\omega+2}$.

A universe of set theory

$$egin{aligned} V_0 &= \emptyset \ V_{lpha+1} &= \mathscr{P}(V_lpha). \ V_\lambda &= igcup_{lpha < \lambda} V_lpha ext{ for a limit ordinal } \lambda. \ V &= igcup_{lpha \in \mathit{ORD}} V_lpha. \end{aligned}$$

Properties of the V_{α} -hierarchy

- Each V_{α} is transitive: if $a \in V_{\alpha}$ and $b \in a$, then $b \in V_{\alpha}$.
- If $\alpha < \beta$, then $V_{\alpha} \subseteq V_{\beta}$.

Everything we encounter in everyday mathematics is in some $V_{\omega+n}$. Why do we study the rest of the set-theoretic universe?

- Different universes of set theory have very different $V_{\omega+n}!$
- The properties of very large V_{α} affect the properties of $V_{\omega+n}$.

Zermelo-Fraenkel ZFC axioms

- 1. Axiom of Extensionality: If sets a and b have the same elements, then a = b.
- 2. Axiom of Pairing: For every set a and b, there is a set $\{a, b\}$.
- 3. Axiom of Union: For every set a, there is a set $b = \bigcup a$.
- 4. Axiom of Powerset: For every set a, there is a set $b = \mathcal{P}(a)$.
- 5. Axiom of Infinity: There exists an infinite set.
- 6. Axiom Schema of Separation: If P(x) is a property, then for every set a, there is a set $b = \{x \in a \mid P(x) \text{ holds}\}.$
- 7. Axiom Scheme of Replacement: If F(x) = y is a functional property and a is a set, then there is a set $b = \{F(x) \mid x \in a\}$.

- $F: A \rightarrow B$
- 8. Axiom of Regularity: Every non-empty set has an \in -minimal element. Equivalently there are no descending \in -sequences $\cdots \in a_n \in \cdots \in a_2 \in a_1 \in a_0$.
- 9. Axiom of Choice (AC): Every family of non-empty sets has a choice function.

The Axiom of Choice is necessary to select a set from an infinite number of socks, but not an infinite number of shoes. – Bertrand Russell

What ZFC knows and does not know

Theorem: $V = \bigcup_{\alpha \in ORD} V_{\alpha}$.

Theorem:

- (AC) Every set can be well-ordered.
- Every well-order is isomorphic to an ordinal.

Definition: A cardinal is an ordinal that is not bijective with any smaller ordinal.

Theorem: Every set a is bijective with a unique cardinal, which we call its cardinality |a|.

- A set a is countable if $|a| = \omega$, otherwise it is uncountable.
- \aleph_1 is the first uncountable ordinal.
- \bullet \mathbb{R} (the set of reals) is uncountable.

Question: What is the cardinality of \mathbb{R} ?

Continuum hypothesis (CH): $|\mathbb{R}| = \aleph_1$.

Pathological sets of reals

What's a set theorist? Someone who doesn't know what the real numbers are. - David Schrittesser (set theorist)

Every natural set of reals encountered in analysis has the following "regularity" properties.

- It is Lebesgue measurable.
- If uncountable, it has a perfect subset.
 - perfect set: nonempty, closed, and has no isolated points.
- It has the property of Baire.
 - A set with the property of Baire is "almost open".

Theorem: (AC)

- There is a non-Lebesgue measurable set of reals.
- There is an uncountable set of reals without a perfect subset.
- There is a set of reals without the property of Baire.

Question: Is there a model of ZF (plus a small amount of choice) in which every set of reals is Lebesgue measurable, has the property of Baire, and if uncountable has a perfect subset?

Gödel's constructible universe L

Question: What happens if we construct the V_{α} -hierarchy by taking only subsets which we understand?

Suppose V is a universe of set theory.

The constructible hierarchy

$$L_0 = \emptyset$$

 $L_{\alpha+1}$ is the set of all subsets of L_{α} given by some property P(x).

$$L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$$
 for a limit λ . $L = \bigcup_{\alpha \in ORD} L_{\alpha}$.

Theorem: (Gödel) L satisfies ${\rm ZFC}+{\rm CH}$. The Continuum Hypothesis can hold in a universe of set theory.

L of the reals: $L(\mathbb{R})$

•
$$L_0(\mathbb{R}) = \mathbb{R}$$

• :

Theorem: $L(\mathbb{R})$ satisfies ZF plus a small amount of choice.

Question: Do the reals have some regularity properties in $L(\mathbb{R})$?

Cohen's Forcing

Definition: (\mathbb{P}, \leq) is a partial order if it is reflexive, antisymmetric, and transitive.

Intuition: If $p, q \in \mathbb{P}$ and $p \leq q$, then p has more information than q.

Examples:

- Finite binary sequences ordered by $s \le t$ if s end-extends t.
- $\mathcal{P}(X)$ ordered by $A \leq B$ if $A \subseteq B$.
- Every linear order (but those are boring).

Definition:

- $D \subseteq \mathbb{P}$ is dense if for every $p \in \mathbb{P}$, there is $q \in D$ such that $q \leq p$.
 - ► Captures a behavior that cannot be ruled out by partial knowledge.
- $G \subseteq \mathbb{P}$ is a filter:
 - (upward closure) If $p \in G$, and $p \le p'$, then $p' \in G$.
 - (compatibility) If $p, q \in G$, then there is $r \in G$ such that $r \leq p, q$.
- A filter $G \subseteq \mathbb{P}$ is generic if for every dense $D \subseteq \mathbb{P}$, $D \cap G \neq \emptyset$.
 - If a behavior cannot be ruled out by partial knowledge, then it occurs.

Theorem: A partial order $\mathbb{P} \in V$ cannot have a generic filter in V!

Cohen's Forcing: the big picture

A universe V together with an external generic filter G generate a larger universe: the forcing extension V[G].

Analogy: Constructing the complex numbers from the reals.

- \mathbb{R} does not have $\sqrt{-1}$.
- \mathbb{R} together with $\sqrt{-1}$ generate the complex numbers.

Cohen's forcing: the details

Fix a forcing notion: partial order $\mathbb{P} \in V$.

Define a collection $V^{\mathbb{P}}$ of names for elements of V[G].

- Each element of V[G] has a name $\tau \in V^{\mathbb{P}}$.
- An element of V[G] can have more than one name.

Take a generic filter $G \notin V$ on \mathbb{P} .

- $V \subseteq V[G]$
- $G \in V[G]$

The forcing relation $p \Vdash P(\tau)$

- $p \in \mathbb{P}, \ \tau \in V^{\mathbb{P}}$
- P(x) is a set-theoretic property

Whenever G is a generic filter and $p \in G$, then $P(\tau_G)$ holds in V[G].

The Forcing Theorem: (Cohen) For every property P(x), the relation $p \Vdash P(\tau)$ is expressible as a property of V.

We can talk about the forcing extension V[G] inside V!

A universe in which the Continuum Hypothesis fails

Theorem: (Cohen) For ANY cardinal κ , there is a forcing extension V[G] in which $|\mathbb{R}| \geq \kappa$.

Continuum Hypothesis is independent of ZFC!

Partial order $\mathbb{P} = \mathrm{Add}(\omega, \kappa)$

- Elements: finite partial functions $p : \omega \times \kappa \to \{0, 1\}$.
- Order: $q \le p$ if q extends p.
- Generic filter $G: \omega \times \kappa \to \{0,1\}$ with $G_{\alpha} \neq G_{\beta}$ for any $\alpha < \beta < \kappa$.

$$p: \qquad {\overset{\omega}{\begin{bmatrix}}} & & & 1 \\ & & 1 & & 1 \\ \frac{1}{0} & 0 & 1 & & \\ \frac{1}{0} & 0 & 1 & & \\ & & & \kappa & & \\ \end{bmatrix}}$$

Inaccessible cardinals

The cardinal ω is inaccessible by smaller cardinals.

Suppose n is a natural number.

- $\bullet |\mathscr{P}(n)| = 2^n < \omega.$
- There is no cofinal function $f: n \to \omega$.

Definition: An uncountable cardinal κ is inaccessible if for every $\alpha < \kappa$:

- $|\mathscr{P}(\alpha)| < \kappa$.
- There is no cofinal function $f: \alpha \to \kappa$.

Question: Are there any inaccessible cardinals?

Theorem: If κ is inaccessible, then V_{κ} is a ZFC universe!

* Image credit: Vincenzo Dimonte

Theorem: It can't be that every ZFC universe has an inaccessible cardinal! Why?

Theorem (Gödel's Second Incompleteness Theorem) An axiom system extending ZFC

cannot prove its own consistency.

An axiom system is consistent if a contradiction cannot be derived from it.

If every ZFC universe had an inaccessible cardinal, then ZFC would prove its own consistency.

A hierarchy of set-theoretic axioms

Definition: Suppose $\mathcal T$ and $\mathcal S$ are axiom systems.

- $m{\sigma}$ T and $\mathcal S$ are equiconsistent if consistency of $\mathcal T$ implies consistency of $\mathcal S$ and visa-versa.
- ullet T is stronger than ${\mathcal S}$ if consistency of ${\mathcal T}$ implies consistency of ${\mathcal S}$ but not visa-versa.

 ${\bf ZFC}+{\bf I}:$ the axiom system ${\bf ZFC}$ together with an assertion that there is an inaccessible cardinal.

Examples

- ZFC + CH and $ZFC + \neg CH$ are equiconsistent.
 - ▶ If there is a universe of ZFC + CH, then we can use forcing to construct a universe of $ZFC + \neg CH$ and visa versa.
- ZFC + I is stronger than ZFC.
 - lacktriangle Suppose that consistency of ZFC implies consistency of ZFC + I.
 - ► Consider axiom A: There is a set universe of ZFC.
 - Every universe of ZFC + A satisfies that ZFC is consistent, hence that ZFC + I is consistent.
 - Every universe of ZFC + A satisfies that ZFC + A is consistent.
 - ► This violates Gödel's Second Incompleteness Theorem.

Theorem: (Solovay, Shelah) The theory

 $ZF + (some choice) + "\mathbb{R}$ has regularity properties"

is equiconsistent with ZFC + I.

Weakly compact cardinals

Definition: A partial order T is a tree if for every $t \in T$, the set $\operatorname{Pred}(t) = \{s \in T \mid s < t\}$ of predecessors of t in T is well-ordered (looks like an ordinal).

- Level α of T consists of all t such that Pred(t) is isomorphic to α.
- The height of T is the largest ordinal β such that for all $\alpha < \beta$, T has level α .

Konig's Lemma: Every tree T of height ω all of whose levels are finite has a branch to the top.

Definition: An inaccessible cardinal κ is weakly compact if every tree of height κ all of whose levels have size less than κ has a branch to the top.

Theorem: If κ is weakly compact, then there are unboundedly many inaccessible cardinals below it. Therefore ZFC + "Exists a weakly compact cardinal" is stronger than ZFC + I.

Filters, ultrafilters, and measures

Definition: A filter \mathcal{F} on a set X is a collection of subsets of X satisfying:

- (closure under intersections) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
- (closure under superset) If $A \in \mathcal{F}$ and $B \supseteq A$, then $B \in \mathcal{F}$.

Sets in a filter are "large".

Definition: Suppose \mathcal{F} is a filter on X and κ is a cardinal.

- \mathcal{F} is $<\kappa$ -complete if it is closed under intersections of size less than κ .
 - ▶ We say that \mathcal{F} is countably complete if it is < \aleph_1 -complete.
- \mathcal{F} is an ultrafilter if for every $A \subseteq X$, either $A \in \mathcal{F}$ or $X \setminus A \in \mathcal{F}$.

Examples

- ullet The collection of sets of reals with Lebesgue measure 1 is a countably complete filter on $\Bbb R$
- If X is a set and $a \in X$, then $\mathcal{F} = \{A \subseteq X \mid a \in A\}$ is an ultrafilter.
 - Such ultrafilters are trivial!
- Every filter is $<\omega$ -complete.
- (AC) Every filter can be extended to an ultrafilter.
- Ultrafilters are measures with two values $\{0,1\}$.

Ultrapowers of the universe: what ultrafilters are good for

Suppose \mathcal{U} is an ultrafilter on a set X.

Suppose $f: X \to A$ and $g: X \to B$. Define:

- $f \sim g$ if and only if $\{x \in X \mid f(x) = g(x)\} \in \mathcal{U}$.
- $f \in g$ if and only if $\{x \in X \mid f(x) \in g(x)\} \in \mathcal{U}$.
 - ▶ ~ is an equivalence relation: reflexive, symmetric, transitive.
 - ▶ Let $[f]_{\mathcal{U}}$ be the equivalence class of f.
 - $[f]_{\mathcal{U}} \in [g]_{\mathcal{U}}$ is well-defined.
 - For a set a, let $c_a: X \to \{a\}$ be the constant function with value a: $c_a(x) = a$.

Let W be the collection of all equivalence classes $[f]_{\mathcal{U}}$ with the membership relation ϵ .

Łoś Theorem: A property $P([f]_{\mathcal{U}})$ holds in W if and only if

$$\{x \in X \mid P(f(x)) \text{ holds in } V\} \in \mathcal{U}.$$

Corollary: There is an elementary embedding $h: V \to W$ defined by $h(a) = [c_a]_{\mathcal{U}}$: P(a) holds in V if and only if $P([c_a]_{\mathcal{U}})$ holds in W.

W is a universe of ZFC!

Special ultrapowers

Theorem: If \mathcal{U} is a non-trivial countably complete ultrafilter, then W is isomorphic to a transitive sub-universe M of V. So there is an elementary embedding $j:V\to M$.

If $\mathcal U$ is not countably complete, then V sees that ϵ is ill-founded: there is an infinite descending sequence

$$\cdots \epsilon a_n \epsilon \cdots \epsilon a_2 \epsilon a_1 \epsilon a_0$$
.

Measurable cardinals

Since every ultrafilter is $<\omega$ -complete, there are many $<\omega$ -complete ultrafilters on ω .

Definition: A cardinal κ is measurable if there is a $<\kappa$ -complete ultrafilter on κ .

Theorem: If κ is measurable, then there are unboundedly many weakly compact cardinals below κ . Therefore

ZFC + "There exists a measurable cardinal" is stronger than

 ${
m ZFC}+$ "There exists a weakly compact cardinal".

Theorem: (Scott) There are no measurable cardinals in *L*.

Theorem: If κ is a measurable cardinal, then there is an elementary embedding $j: V \to M$ such that:

- \bullet $M \subseteq V$.
- Critical point $\operatorname{crit}(j) = \kappa$: $j(\alpha) = \alpha$ for every ordinal $\alpha < \kappa, j(\kappa) > \kappa$.
 - ildet j(x) = x for every $x \in V_{\kappa}$.
 - \triangleright V and M agree up to $V_{\kappa+1}$.

measurable

weakly compact

inaccessible

Strong and supercompact cardinals

Question: Do there exist elementary embeddings $j: V \to M$ with "M close to V"?

A cardinal κ is strong if for every $\lambda > \kappa$ there is an elementary embedding $j: V \to M$ with $crit(j) = \kappa, V_{\lambda} \subseteq M$, and $j(\kappa) > \lambda$.

• For every $\lambda > \kappa$, there is $\alpha > \lambda$ and an elementary embedding $j: V_{\alpha} \to N$ with $crit(j) = \kappa, V_{\lambda} \subseteq N$, and $j(\kappa) > \lambda$.

A cardinal κ is supercompact if for every $\lambda > \kappa$ there is an elementary embedding $j: V \to M$ with crit $(j) = \kappa$, $M^{\lambda} \subseteq M$ (every $f: \lambda \to M$ is in M), and $j(\kappa) > \lambda$.

- Characterized by existence of certain ultrafilters.
- For every $\lambda > \kappa$, there is $\alpha > \lambda$ and an elementary embedding $j: V_{\alpha} \to N$ with crit $(j) = \kappa$, $N^{\lambda} \subseteq N$, and $j(\kappa) > \lambda$.

Theorem: (Woodin) Suppose there is a supercompact cardinal.

- The reals have regularity properties in $L(\mathbb{R})$.
- Forcing cannot change the properties of $L(\mathbb{R})$.

4 0 > 4 7 > 4 7 > 4

The set-theoretic multiverse and virtually large cardinals

There are universes of set-theory in which:

- CH holds,
- CH fails,
- every set is in L,
- there are various large cardinals,
- $L(\mathbb{R})$ has regularity properties,
- forcing cannot change the theory of the reals,
- etc.

We can use the multiverse view of set theory to introduce interesting new large cardinals.

Definition: A cardinal κ is virtually supercompact if in some forcing extension of V, for every $\lambda > \kappa$, there is $\alpha > \lambda$ and an elementary embedding $j: V_{\alpha} \to N$ with $\mathrm{crit}(j) = \kappa$, $N^{\lambda} \subseteq N$, and $j(\kappa) > \lambda$.

The template of virtual large cardinals applies to many large cardinals.

Theorem: (G., Schindler) Virtual large cardinals are stronger than weakly compact cardinals but much weaker than measurable cardinals. They can exist in L.

Theorem: (Schindler) The assertion that properties of $L(\mathbb{R})$ cannot be changed by proper forcing (an important class of forcing notions) is equiconsistent with a virtually supercompact cardinal.