

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO	ס	
Disciplina:				Código da Disciplina:
Química Aplicada II				EQM212
Course:				•
Applied Chemistry II				
Materia:				
Química Aplicada II				
Periodicidade: Anual	Carga horária total:	160	Carga horária se	manal: 02 - 00 - 02
Curso/Habilitação/Ênfase:		·	Série:	Período:
Engenharia Química			4	Noturno
Engenharia Química			3	Diurno
Engenharia Química			3	Noturno
Professor Responsável:		Titulação - Grad	duação	Pós-Graduação
Juliana Ribeiro Cordeiro	ana Ribeiro Cordeiro Bacharel em Química		Doutor	
Professores:		Titulação - Grad	duação	Pós-Graduação
Juliana Ribeiro Cordeiro	na Ribeiro Cordeiro Bacharel em Química Doutor			

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

DESENVOLVER CONHECIMENTO SOBRE:

- C1: funções orgânicas e nomenclatura
- C2: estereoquímica de compostos orgânicos
- C3: tipos de ligação química
- C4: intermediários de reação em química orgânica
- C5: teorias ácido-base e aplicação em química orgânica
- C6: efeitos da estrutura orgânica sobre o seu comportamento na reação
- C7: reações orgânicas e seus mecanismos
- C8: aplicações da química orgânica
- C9: compostos orgânicos e reações de interesse industrial
- C10: técnica de trabalho adequada ao laboratório de química orgânica
- C11: sistematização de conhecimentos adquiridos em disciplinas correlatas
- C12: fundamentos de análise instrumental
- C13: fundamentos em identificação e quantificação de compostos orgânicos
- C14: fundamentos em técnica espectrofotométrica: UV/VIS
- C15: fundamentos em técnicas de cromatografia bidimensional e tridimensional em coluna (em fase gasosa (GC) e em fase líquida HPLC))
- C16: fundamentos em técnica espectrométrica: MS
- C16: cuidados na manipulação de amostras, em procedimentos de extração e remoção de interferentes para análise instrumental

DESENVOLVER HABILIDADE DE:

- H1: reconhecer e nomear compostos orgânicos
- H2: prever, de maneira qualitativa, propriedades físico-químicas a partir da estrutura do composto orgânico
- H3: prever como reagem os compostos orgânicos a partir de suas estruturas
- H4: propor maneiras adequadas de sintetizar compostos orgânicos
- H5: prever o isômero predominante em reações que originam mais de um produto e

2020-EQM212 página 1 de 13

produtos formados em reações laterais

H6: visualizar aplicações da química orgânica no cotidiano e na indústria

H7: realizar análises instrumentais

H8: tratar dados e interpretar resultados

H9: escolher técnicas adequadas de acordo com as características do produto, características do método, recursos disponíveis e objetivos da análise

H10: utilizar instrumentos e técnicas analíticas

H11: aplicar técnicas estatísticas na interpretação de resultados

H12: identificar e quantificar compostos orgânicos e inorgânicos de acordo com as técnicas instrumentais disponíveis

H13: interpretar espectros e cromatogramas

H14: utilizar recursos para a quantificação segura de compostos orgânicos DESENVOLVER ATITUDES QUANTO AO(A):

A1: hábito de leitura como fonte de conhecimento

A2: trabalho com segurança, por meio, por exemplo, do uso de EPI

A3: riscos ambientais e de saúde associados a diversos compostos químicos

A4: rigor científico

A5: análise crítica

A6: visão de síntese

A7: solução de problemas

A8: trabalho em equipe

A9: responsabilidade em relação às pessoas, ao trabalho e ao impacto das atividades no contexto sócio-ambiental

EMENTA

Substituição alifática e aromática (nucleofílica e eletrofílica). Reações de substituição envolvendo radicais livres. Adição à ligação insaturada Carbono-Carbono e Carbono-Heteroátomo. Reações de eliminação. Rearranjos. Oxidações e reduções. Introdução à Análise Instrumental. Espectrofotometria: UV-VIS e I.R.; Técnicas cromatográficas: Papel; Camada Delgada; Troca Iônica; em Coluna Clássica; Gasosa (FID e MS); Líquida de Alta Eficiência. Introdução à ressonância magnética nuclear. Absorção atômica e ICP. Laboratório: métodos de preparação, purificação, identificação e quantificação de compostos orgânicos.

SYLLABUS

Aliphatic and aromatic substitution (nucleophilic and electrophilic). radicals substitution reactions. Addition to Carbon-Carbon Carbon-Heteroatom multiple bonds. Eliminations reactions. Rearrangements. Oxidation and reductions. Instrumental Analysis: Introduction to Instrumental UV-VIS Spectrophotometry; Paper Chromatography; Thin Chromatography; Ion Exchange Chromatography; Classical Column Chromatography; Gas Chromatography; High Performance Liquid Chromatography. Spectrophotometry: UV-VIS and I.R Introduction to nuclear magnetic resonance. Atomic absorption and ICP. Laboratory: preparation methods, purification, identification and quantification of organic compounds.

2020-EQM212 página 2 de 13

TEMARIO

Sustitución alifática y aromática (nucleófilo y electrófilo). Reacciones de sustitución que implican radicales libres. Reacciones de adición a el enlace insaturado carbono-carbono y carbono-heteroátomo. Reacciones de eliminación. Reacciones de Transposición. Oxidaciones y reducciones. Análisis Instrumental: Introducción a las Técnicas Instrumentales: Espectrofotometría UV-VIS; Cromatografía en Papel; Cromatografía en Capa Fina; Cromatografía de Intercambio Iónico; Cromatografía de Columna Clásica; Cromatografía Gaseosa; Cromatografía Líquida de Alta Resolución. Introducción a la resonancia magnética nuclear. absorción atómica e ICP. Laboratorio: métodos de preparación, purificación e identificación de compuestos orgânicos.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Problem Based Learning
- Gamificação

METODOLOGIA DIDÁTICA

O curso será dividido em aulas teóricas expositivas (contemplando a resolução de exercícios) e aulas de laboratório.

O acompanhamento da matéria lecionada será feito por livros específicos da área de estudo, listas de exercícios e materiais eletrônicos disponíveis no ambiente Moodlerooms.

No laboratório, sempre que possível, o alunado será estimulado a pesquisar o material necessário ao entendimento e à execução do experimento proposto. O laboratório será dividido em módulos de aprendizado, que são composto pelas partes de síntese orgânica e de análise instrumental dos produtos obtidos.

Exercícios para estimular o aprendizado contínuo do aluno serão propostos.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

A introdução à Química Orgânica e à Química Analítica, efetuadas nas disciplina Química Aplicada I, é primordial ao bom desenvolvimento do aluno neste curso. Para o bom desempenho do aluno na disciplina, o aluno deve ter conhecimento básico da estrutura da matéria e de como se dão as ligações químicas. O estudante deve também apresentar bom nível de conhecimento das reações e tópicos apresentados nos cursos de Química Geral e Química Aplicada I, tais como: polaridade de ligações, tabela periódica e propriedades dos átomos, ligações químicas e estequiometria. A capacidade de representar, bidimensionalmente, objetos tridimensionais é útil no estudo da estereoquímica. Em Matemática, os conceitos gerais de álgebra são fundamentais. Em Física, medidas, unidades e uso de algarismos significativos são importantes. A

2020-EQM212 página 3 de 13

interpretação de textos e a capacidade de redação são indispensáveis nesse curso. Espera-se, também, que o estudante seja capaz de planejar e conduzir de experimentos, compreender a ética e a responsabilidade profissional, comunicar-se de forma eficiente e articular conhecimentos.

CONTRIBUIÇÃO DA DISCIPLINA

O curso de Química Aplicada II contribuirá para o conhecimento e para a capacidade de previsão de reações orgânicas, de características físicas e químicas dos materiais orgânicos e da aplicação de métodos de análise instrumental e de sua interpretação em compostos orgânicos. A disciplina fornecerá os conhecimentos necessários para que os engenheiros químicos possam definir as análises adequadas para cada processo produtivo, considerando os objetivos da análise, as características da amostra e as condições de execução dos testes.

A periculosidade e as aplicações práticas de determinadas substâncias orgânicas farão parte do conhecimento do aluno. O conhecimento do comportamento e procedimento adequados em laboratórios químicos deverá ser parte da formação dos alunos neste curso. Esse conjunto de conhecimentos contribuirá para a formação de um profissional mais capacitado para o mercado de trabalho.

Serão discutidos aspectos relacionados à importância do resultado da análise visando a refletir sobre todo o processo analítico e instrumental.

A disciplina fornece conhecimentos para o acompanhamento de etapas de processos de fabricação através de análises de controle.

BIBLIOGRAFIA

Bibliografia Básica:

COLLINS, Carol H. Introdução a métodos cromatográficos. 4. ed. Campinas, SP: Ed. da UNICAMP, 1990. 279 p.

HOLLER, F. James; SKOOG, Douglas A; CROUCH, Stanley R. Princípios de análise instrumental. Trad. de Celio Pasquini. 6. ed. Porto Alegre, RS: Bookman, 2009. 1056 p. ISBN 9788577804603.

SOLOMONS, T. W. Graham. Química orgânica. Trad. de Horacio Macedo. 6. ed. Rio de Janeiro, RJ: LTC, 1996. v. 1.

VOLLHARDT, K. Peter C; SCHORE, Neil E. Organic chemistry: structure and function. 3. ed. New York: W. H. Freeman, 1999. 1210 p.

Bibliografia Complementar:

ALLINGER, Norman L. Química orgânica. Tradução de Ricardo Bicca de Alencastro. 2. ed. Rio de Janeiro, RJ: Guanabara Dois, 1976. 961 p.

ASSOCIATION of Official Analytical Chemists; CUNNIFF, Patricia. Official methods of analysis of AOAC international. 16. ed. Arlington: AOAC, 1995. v. lpt. 1.

2020-EQM212 página 4 de 13

DIJKSTERHUIS, Garmt B. Multivariate data analysis in sensory and consumer science. Trumbull: Food & Nutrition Press, 1997. 317 p. (Food Science and Nutrition).

MORRISON, Robert Thornton. Química orgânica. 7. ed. Lisboa: Fundação Calouste Gulbenkian, 1981. 1498 p.

PAVIA, Donald L; LAMPMAN, Gary M; KRIZ, George. Química orgânica experimental: técnicas de escala pequena. 2. ed. Porto Alegre, RS: Bookman, 2009. 877 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 1,5$ $k_2: 1,0$ $k_3: 1,0$ $k_4: 1,5$ $k_5: 1,0$ $k_6: 1,0$ $k_7: 1,5$

Peso de $MP(k_p)$: 6,0 Peso de $MT(k_m)$: 4,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Os experimentos efetuados em laboratório serão agrupados em conjuntos de experimentos relacionados, em que os experimentos de Química Orgânica contribuirão para o aprendizado das metodologias de Análise Instrumental. Esses conjuntos de experimentos serão chamados Ciclos de Experimentos.

Descrição dos trabalhos:

- T1: exercícios de avaliação do primeiro semestre em aula de teoria. Essa avaliação será feita por equipe de laboratório e com consulta e contemplará o conteúdo visto em aulas de teoria e de laboratório do primeiro semestre. Peso 1.5
- T2: apresentação, em aula de laboratório e por equipe de laboratório, de um artigo científico envolvendo uma das técnicas de análise instrumental vistas no primeiro semestre (a ser sorteada entre as equipes). Peso 1.0
- T3: avaliação do caderno de laboratório individual do primeiro semestre. Peso 1.0
- T4: exercícios de avaliação do segundo semestre em aula de teoria. Essa avaliação será feita por equipe de laboratório e com consulta e contemplará o conteúdo visto em aulas de teoria e de laboratório do segundo semestre. Peso 1.5
- T5: apresentação, em aula de laboratório e por equipe de laboratório, de um artigo científico envolvendo uma das técnicas de análise instrumental vistas no segundo semestre (a ser sorteada entre as equipes). Peso 1.0
- T6: avaliação do caderno de laboratório individual do segundo semestre. Peso 1.0

2020-EQM212 página 5 de 13

T7: Projeto Integrador. Trabalho em grupo, multidisciplinar, envolvendo Química Aplicada II (Química Orgânica e Análise Instrumental) e outras disciplinas da mesma série do curso de Engenharia Química. Peso 1.5

Sobre o caderno de laboratório:

Durante a aula: deverá conter anotações acerca dos procedimentos, dados e resultados obtidos.

Pós-aula: deverá conter interpretações dos resultados e demais análises solicitadas pela professora.

2020-EQM212 página 6 de 13

OUTRAS INFORMAÇÕES

É vedada a participação de alunos no laboratório quando:

- A. Não estiverem matriculados na disciplina
- B. Não estiverem alocados pela secretaria no horário designado para eles
- C. Não estiverem trajando os EPIs necessários, a saber: avental de mangas compridas, óculos de segurança, cabelos longos presos, calças e sapatos fechados.

Não será permitida a reposição de aulas de laboratório.

As atividades do laboratório compõem: executar o experimento designado para o grupo de alunos e observações e conclusões no caderno individual de laboratório.

2020-EQM212 página 7 de 13

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA	

2020-EQM212 página 8 de 13

2020-EQM212 página 9 de 13

	PROGRAMA DA DISCIPLINA		
Nº da	Conteúdo	EAA	
semana			
1 T	PRINT: Programa de Recepção e Integração	91%	a
		100%	
1 L	PRINT: Programa de Recepção e Integração	91%	a
		100%	
2 T	Apresentação da disciplina EQM212 - Química Aplicada II, do Plano	0	
	de Ensino, do ambiente Moodlerooms da disciplina e dos		
	professores de teoria e de laboratório. Estereoisômeros		
2 L	Regras do laboratório e do preenchimento do caderno de	0	
	laboratório. Espectro eletromagnético. Propriedades da radiação		
	eletromagnética. Espectrofotometria de absorção no UV-Vis.		
	Absorção da radiação. Espectrofotômetro UV-Vis		
3 T	Estereoisômeros	41%	a 60%
3 L	Relação entre espectros no UV-Vis e estruturas. Análises	41%	a 60%
	qualitativas de alguns compostos orgânicos. Lei de Beer-Lambert.		
	Limitações da Lei de Beer-Lambert. Síntese de um azocorante		
4 T	Conjugação, aromaticidade e ressonância	0	
4 L	Curva de calibração de um azocorante. Análise de espectros UV-Vis	91%	a
	de alguns compostos orgânicos selecionados	100%	
5 T	Substituição Eletrofílica Aromática (SEAr): mecanismos de reação	0	
5 L	Síntese e purificação de um azocorante	91%	a
		100%	
6 T	Substituição Eletrofília Aromática (SEAr): reatividade e	0	
	orientação		
6 L	Análise do corante preparado por meio de espectrofometria de	91%	a
	absorção no UV-Vis	100%	
7 Т	Substituição Nucleofílica Aromática (SNAr)	0	
7 L	Fechamento, análise e discussão dos resultados do primeiro ciclo	91%	a
	de experimentos	100%	
8 T	Substituição Nucleofílica Aromática (SNAr)	91%	a
		100%	
8 L	Fechamento, análise e discussão dos resultados do primeiro ciclo	91%	a
	de experimentos	100%	
9 L	PROVAS P1	91%	a
		100%	
9 T	PROVAS P1	91%	a
		100%	
10 T	Rearranjo de carbocátions	0	
10 L	Nitração do fenol e técnicas cromatográficas. Princípios básicos	0	
	de cromatografia. Cromatografia em papel, coluna e TLC		
11 T	Nomenclatura e síntese de álcoois	0	
11 L	Estudo de corantes por cromatografia em papel	91%	a
		100%	
12 T	Eliminação em álcoois	0	

2020-EQM212 página 10 de 13

12 L	Nitração do fenol e separação dos produtos de reação por	91%	a
12 11	cromatografia em camada fina (TLC)	100%	a
13 T	Eliminação em haloalcanos	0	
13 L	Separação em coluna cromatográfica (escala laboratorial) dos	91%	
тэ п			a
	produtos obtidos na nitração do fenol. Calculo do rendimento da	100%	
14 m	reação		
14 T	Nomenclatura de alquenos	0	
14 L	Análise dos produtos por cromatografia líquida de alta eficiência	91%	a
	(HPLC)	100%	
15 T	Preparação de alquenos	0	
15 L	Fechamento, análise e discussão dos resultados do segundo ciclo	41%	a 60%
	de experimentos		
16 T	Substituição Eletrofílica Alifática (SEAl)	0	
16 L	Apresentação dos seminários: espectrofotometria de absorção no	91%	a
	UV-Vis, TLC e coluna	100%	
17 L	Espectroscopia de absorção no infravermelho. GC-FID. Síntese	0	
	paralela de ésteres		
17 T	Atividade T2	91%	a
		100%	
18 L	Espectroscopia de absorção no infravermelho. GC-FID. Síntese	0	
	paralela de ésteres		
18 T	Atividade T2	91%	a
		100%	
19 T	PROVAS P2	91%	a
		100%	
19 L	PROVAS P2	91%	a
		100%	
20 T	PROVAS P2	91%	a
		100%	
20 L	PROVAS P2	91%	a
		100%	
21 L	Aula de exercícios para a PS1	91%	a
		100%	
21 T	Aula de exercícios para a PS1	91%	a
		100%	
22 L	Aula de exercícios para a PS1	91%	a
		100%	
22 T	Aula de exercícios para a PS1	91%	a
		100%	
23 L	PROVAS PS1	91%	a
		100%	
23 T	PROVAS PS1	91%	<u>а</u>
		100%	
24 T	Alcanos: mecanismo de substituição radicalar	0	
24 L	Síntese de ésteres	91%	a
		100%	-
25 T	Alcanos: reatividade e seletividade relativa em substituição	0	

2020-EQM212 página 11 de 13

25	L	Destilação de ésteres. Cálculo do rendimento. Determinação do	91% a	a.
		índice de refração	100%	
26	Т	Cicloalcanos: nomenclatura e propriedades	0	
26	L	Espectro na região do IR dos ésteres preparados. Injeção no	91% a	a.
		GC-FID	100%	
27	Т	Produtos carbocíclicos na natureza	0	
27	L	Fechamento, análise e discussão dos resultados do terceiro ciclo	41% a	a 60%
		de experimentos		
28	L	Síntese de isobutilenos. Cromatografia gasosa acoplada à	0	
		espectrometria de massas (GC-MS)		
28	Т	Nomenclatura e síntese de aldeídos e cetonas	0	
29	Т	Aldeídos e cetonas: adição no grupo carbonila	0	
29	L	Identificação de compostos por espectrometria de massas. Injeção	91% a	a.
		de solventes	100%	
30	L	PROVAS P3	91% a	a
			100%	
30	Т	PROVAS P3	91% a	a.
			100%	
31	Т	Aldeídos e cetonas alfa-beta-insaturados: propriedades e adição	0	
		conjugada		
31	L	Síntese de isobutilenos a partir de t-butanol	91% a	a.
			100%	
32	Т	Enois e enolatos: equilíbrio ceto-enólico, alquilação e	0	
		condensação de Aldol		
32	L	Identificação e separação dos produtos formados na síntese de	91% a	a.
		isobutilenos por meio de GC-MS	100%	
33	Т	Ácidos carboxílicos: nomenclatura, propriedades, caráter	0	
		ácido-base e síntese		
33	L	Fechamento, análise e discussão dos resultados do quarto ciclo de	41% a	a 60%
		experimentos		
34	Т	Ácidos carboxílicos: derivados, redução do grupo carbóxi e reação	0	
		de Hell-Vollhardt-Zelinsky		
34	L	Determinação simultânea de manganês e cromo em ligas metálicas.	91% a	a.
		Digestão da amostra e preparo da curva padrão	100%	
35	Т	Derivados de ácidos carboxílicos: reatividades relativas e	0	
		estruturas. Haletos de acila e anidridos		
35	L	Análise espectrofotométrica	91% a	a.
			100%	
36	Т	Derivados de ácidos carboxílicos: amidas e alcanonitrilas	0	
36	L	Fechamento, análise e discussão dos resultados do quinto ciclo de	41% a	a 60%
		experimentos		
37	Т	Atividade T5	91% a	a
			100%	
37	L	Apresentação dos seminários: cromatografia gasosa, FID,	91% a	a.
		espectroscopia de absorção no infravermelho, espectrometria de	100%	
		massas		

2020-EQM212 página 12 de 13

38 T	PROVAS P4	91% a
		100%
38 L	PROVAS P4	91% a
		100%
39 Т	PROVAS P4	91% a
		100%
39 L	PROVAS P4	91% a
		100%
40 T	Aula de exercícios para a PS2	91% a
		100%
40 L	Aula de exercícios para a PS2	91% a
		100%
41 T	PROVAS PS2	91% a
		100%
41 L	PROVAS PS2	91% a
		100%
Legend	la: T = Teoria, E = Exercício, L = Laboratório	

2020-EQM212 página 13 de 13