Organização de Computadores I Prof. Cláudio C. Rodrigues

☐ Bibliografia:

- Computer Organization and Architecture: Designing for Performance, 5/e
 William Stallings Prentice Hall. → livro texto
- Organização Estruturada de Computadores, 3/e Andrew Tanenbaum -Prentice-Hall do Brasil.
- > The Art of Assembly Language Programming Randall Hyde ftp internet
- Assembly Language for Intel-Based Computers Third Edition Kip Irvine

Organização de Computadores I Objetivo:

- ➤ Entender a regra dos componentes de um sistema computador e como eles trabalham juntos.
- > Entender a função e operação da CPU.
- Desenvolver um entendimento do formato do conjunto de instruções e a operação do ciclo de instruções.
- Dado um conjunto de instruções, o aluno será capaz de escrever rotinas simples em linguagem de montagem (assembly).
- Entender o controle microprogramado.

Programa

- I. VISÃO GERAL.
 - 1. Introdução.
 - 2. Evolução dos Computadores e Desempenho.
- II. O SYSTEMA COMPUTADOR.
 - 3. Barramento do Sistema.
 - 4. Memória Interna.
 - 5. Memória Externa.
 - 6. Entrada/Saída.
 - 7. Suporte ao Sistema Operacional.
- III. UNIDADE DE PROCESSAMENTO CENTRAL (CPU).
 - 8. Aritmética do Computador.
 - 9. Conjunto de Instruções: Características e Funções.
 - 10. Conjunto de Instruções : Modos de Endereçamento e Formatos.
 - 11. CPU- Estrutura e Função.
 - 12. Reduced Instruction Set Computers (RISCs).
 - 13. Paralelismo ao Nível de Instruções e Processadores Super-escalares.
- IV. UNIDADE DE CONTROLE.
 - 14. Operação da Unidade de Controle.
 - 15. Controle Microprogramado.
- V. Programação em Linguagem de Montagem (Assembly)

William Stallings

Computer Organization and Architecture

Capítulo 1

Introdução

Arquitetura & Organização 1

- Arquitetura são aqueles atributos visíveis aos programadores
 - ➤ conjunto de instruções, número de bits utilizados para representar os dados, mecanismos de E/S, técnicas de endereçamento.
 - > exemplo: há uma instrução para multiplicação?
- Organização está preocupada em como os aspectos são implementados
 - > sinais de controle, interfaces, tecnologia de memória.
 - Exemplo: há um hardware para multiplicação ou é feita via somas sucessivas?

Arquitetura & Organização 2

- ➤ Toda a família Intel x86 compartilha a mesma arquitetura básica
- ➤ A família IBM System/370 compartilha a mesma arquitetura básica
- ➤ Isto determina a compatibilidade de código
 - no mínimo para as versões anteriores
- Organização difere entre diferentes versões

Estrutura & Função

- > Estrutura é a forma como os componentes se relacionam uns com os outros.
- Função é a operação dos componentes individuais como parte da estrutura.

Função

- ➤ As funções de um computador são:
 - ➤ Processamento de dados (data processing)
 - ➤ Armazenagem de dados (data storage)
 - ➤ Movimento de dados (data movement E/S)
 - ➤ Controle (control)

Visão Funcional

➤ Visão funcional de um computador

Operações (1)

> Data movement

> ex., teclado para vídeo (keyboard to screen)

Operações (2)

- > Storage
 - > internet download para unidade de disco

Operação (3)

Processamento de/para memória

• ex., atualizando saldo bancário

Data
Storage
Facility

Apparatus

Data
Processing
Facility

Operação (4)

- Processando da memória para E/S
 - > impressão do saldo bancário

Estrutura - Top Level

Estrutura - The CPU

Estrutura - The Control Unit

Recursos na Internet

- Web sites para consulta

- > WWW Computer Architecture Home Page
- > CPU Info Center
- ➤ ACM Special Interest Group on Computer Architecture
- ➤ IEEE Technical Committee on Computer Architecture
- ➤ Intel Technology Journal
- > Manufacturer's sites
 - ➤ Intel, IBM, etc.