Física de Astropartículas Detectores 1er semestre 2017

1. Imagine que se desea construir un detector Cherenkov, pero en lugar de usar agua, se usará disulfuro de carbono (CS₂), que tiene un índice de refracción mayor que el agua y que podemos suponer constante, i.e., $n_{\rm CS_2}(\lambda) \equiv n = 1{,}627$, y con una densidad algo mayor también, $\rho_{\rm CS_2}(\lambda) \equiv \rho = 1{,}3\,{\rm g\,cm^{-3}}$. Para construir al detector se utilizará una esfera de radio $r=1\,{\rm m}$, y en algún punto de su superficie se montará un PMT con la siguiente eficiencia cuántica:

$$QE \equiv \frac{\text{fotoelectrones producidos}}{\text{fotones incidentes}} = \begin{cases} 0 & \lambda < 250 \text{ nm} \\ 0.30 & 250 \text{ nm} \leq \lambda \leq 600 \text{ nm} \\ 0 & \lambda > 600 \text{ nm}. \end{cases}$$

Utilizando como guía las expresiones calculadas en clase, y la curva del poder de frenado para electrones en CS_2 (ver tabla), calcule:

- a) El ángulo máximo de emisión Cherenkov θ_{Ch} en este líquido.
- b) El umbral de producción Cherenkov β_{Ch} , y el correspondiente momentum p, energía cinética K y energía total E que deben tener electrones, muones y protones para ser detectados. Luego, calcule la energía mínima que debe tener un fotón para ser detectado mediante el proceso de creación de pares en el CS_2 .
- c) A partir del rango estimado para electrones (ver tabla), calcule, cuando corresponda, el número total de fotones Cherenkov producidos por la propagación de un electrón con energía $E = \{0.5; 5; 50; 500\}$ MeV (por simplicidad, suponga que la curva de producción de fotones es una función escalón, que vale 0 por debajo de la energía umbral de producción y el valor de saturación por encima. Haga y describa las aproximaciones que considere necesarias para estimar el total de fotones.)

ESTAR: Stopping Powers and Range Tables for Electrons Carbon disulfide $\rho=1,2927\,\mathrm{g\,cm^{-3}}$, Ionization=175.9 eV

$K ext{ (MeV)}$	$S_{ m Col}$ (MeV cm $^2/{ m g}$)	$S_{ m Rad}$ (MeV cm $^2/{ m g}$)	$S_{ m Tot}$ (MeV cm $^2/{ m g}$)	Range (g/cm^2)
5.000E-01	1.653E+00	1.425E-02	1.668E+00	2.186E-01
5.000E+00	1.635E+00	1.440E-01	1.779E+00	2.961E + 00
5.000E+01	1.900E+00	1.995E+00	3.895E+00	1.942E+01
5.000E+02	2.093E+00	2.255E+01	2.465E+01	5.958E + 01