$11a_{264} (K11a_{264})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.58776 \times 10^{22} u^{67} - 1.04955 \times 10^{22} u^{66} + \dots + 6.72818 \times 10^{21} b - 1.04955 \times 10^{22}, \\ &- 1.38153 \times 10^{22} u^{67} - 3.05107 \times 10^{21} u^{66} + \dots + 1.34564 \times 10^{22} a - 4.56619 \times 10^{22}, \ u^{68} + 2u^{67} + \dots - u + I_2^u &= \langle b - 1, \ a - 1, \ u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 69 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -1.59 \times 10^{22} u^{67} - 1.05 \times 10^{22} u^{66} + \dots + 6.73 \times 10^{21} b - 1.05 \times 10^{22}, \ -1.38 \times 10^{22} u^{67} - 3.05 \times 10^{21} u^{66} + \dots + 1.35 \times 10^{22} a - 4.57 \times 10^{22}, \ u^{68} + 2u^{67} + \dots - u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} + 2u^{2} \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.02668u^{67} + 0.226739u^{66} + \cdots - 5.75514u + 3.39334 \\ 2.35987u^{67} + 1.55993u^{66} + \cdots - 4.15327u + 1.55993 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.05999u^{67} + 0.260761u^{66} + \cdots - 4.14749u + 3.50999 \\ 2.55846u^{67} + 1.75923u^{66} + \cdots - 4.46922u + 1.75923 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.993337u^{67} + 0.193196u^{66} + \cdots - 4.92153u + 3.37667 \\ 2.56028u^{67} + 1.76014u^{66} + \cdots - 3.73681u + 1.76014 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3.14602u^{67} + 2.35429u^{66} + \cdots - 8.42884u + 4.83181 \\ 4.94843u^{67} + 4.15426u^{66} + \cdots - 7.38265u + 4.14843 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3.14602u^{67} + 2.35429u^{66} + \cdots - 8.42884u + 4.83181 \\ 4.94843u^{67} + 4.15426u^{66} + \cdots - 7.38265u + 4.14843 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{112903197958402042595072}{6728175072045015305047}u^{67} + \frac{107383851493598493478554}{6728175072045015305047}u^{66} + \cdots - \frac{240969492070676803449102}{6728175072045015305047}u + \frac{132818595949549446790132}{6728175072045015305047}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{68} + 4u^{67} + \dots - u - 1$
c_2, c_4	$u^{68} + 2u^{67} + \dots - 7u - 1$
c_3	$u^{68} - 11u^{67} + \dots + 2u + 2$
c_5	$u^{68} - 3u^{67} + \dots + 533u^2 - 32$
c_6, c_9, c_{10}	$u^{68} + 2u^{67} + \dots - u + 1$
c_7	$u^{68} - 4u^{67} + \dots + 30u - 4$
<i>c</i> ₈	$u^{68} - 2u^{67} + \dots + 19u - 1$
c_{11}	$u^{68} + 14u^{67} + \dots + 18491u + 1583$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{68} + 10y^{67} + \dots + y + 1$
c_2, c_4	$y^{68} - 42y^{67} + \dots - 51y + 1$
c_3	$y^{68} - 9y^{67} + \dots - 56y + 4$
c_5	$y^{68} - 9y^{67} + \dots - 34112y + 1024$
c_6, c_9, c_{10}	$y^{68} - 62y^{67} + \dots + y + 1$
	$y^{68} - 66y^{67} + \dots - 1036y + 16$
<i>c</i> ₈	$y^{68} - 62y^{67} + \dots - 127y + 1$
c_{11}	$y^{68} + 30y^{67} + \dots + 27393653y + 2505889$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.117970 + 0.060011I		
a = 1.62448 - 0.34631I	1.61585 - 1.78744I	0
b = 0.285160 + 0.839416I		
u = 1.117970 - 0.060011I		
a = 1.62448 + 0.34631I	1.61585 + 1.78744I	0
b = 0.285160 - 0.839416I		
u = -0.789092 + 0.387196I		
a = 0.444694 + 0.296358I	-0.858945 - 0.278785I	-10.90600 + 4.39760I
b = 0.781342 + 0.135971I		
u = -0.789092 - 0.387196I		
a = 0.444694 - 0.296358I	-0.858945 + 0.278785I	-10.90600 - 4.39760I
b = 0.781342 - 0.135971I		
u = -1.18619		
a = -2.24020	-0.480843	0
b = -3.55236		
u = -0.295738 + 0.755969I		
a = -0.356340 - 0.856592I	0.75568 + 4.48414I	-3.17555 - 9.83264I
b = -0.881092 + 0.343602I		
u = -0.295738 - 0.755969I		
a = -0.356340 + 0.856592I	0.75568 - 4.48414I	-3.17555 + 9.83264I
b = -0.881092 - 0.343602I		
u = 0.654936 + 0.478263I		
a = -0.262793 + 0.825026I	0.98004 + 8.32019I	-3.03705 - 4.05424I
b = -1.09654 + 1.08775I		
u = 0.654936 - 0.478263I		
a = -0.262793 - 0.825026I	0.98004 - 8.32019I	-3.03705 + 4.05424I
b = -1.09654 - 1.08775I		
u = 0.331672 + 0.733733I		
a = 1.27124 - 1.30760I	2.14422 - 12.53140I	-0.96253 + 9.09999I
b = 1.18104 + 1.20492I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.331672 - 0.733733I		
a = 1.27124 + 1.30760I	2.14422 + 12.53140I	-0.96253 - 9.09999I
b = 1.18104 - 1.20492I		
u = 1.160860 + 0.298872I		
a = -0.857448 + 0.085533I	2.43714 - 8.63386I	0
b = -0.730590 - 1.106920I		
u = 1.160860 - 0.298872I		
a = -0.857448 - 0.085533I	2.43714 + 8.63386I	0
b = -0.730590 + 1.106920I		
u = -0.510378 + 0.611213I		
a = -0.014066 + 0.208428I	-1.07152 + 2.12045I	-9.29687 - 6.29711I
b = -0.251269 - 0.053760I		
u = -0.510378 - 0.611213I		
a = -0.014066 - 0.208428I	-1.07152 - 2.12045I	-9.29687 + 6.29711I
b = -0.251269 + 0.053760I		_
u = 1.202620 + 0.150968I		
a = 0.310744 - 1.092110I	-2.07579 - 4.13960I	0
b = 0.502287 + 0.606881I		
u = 1.202620 - 0.150968I		
a = 0.310744 + 1.092110I	-2.07579 + 4.13960I	0
b = 0.502287 - 0.606881I		
u = -1.222910 + 0.074096I		
a = 0.0270535 - 0.1318130I	-2.03114 + 0.55200I	0
b = 0.640570 + 0.607903I		
u = -1.222910 - 0.074096I		
a = 0.0270535 + 0.1318130I	-2.03114 - 0.55200I	0
b = 0.640570 - 0.607903I		
u = 0.034918 + 0.757439I		
a = -0.637784 + 0.536346I	5.87942 + 4.77825I	3.42142 - 5.10036I
b = 0.536253 - 0.988592I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.034918 - 0.757439I		
a = -0.637784 - 0.536346I	5.87942 - 4.77825I	3.42142 + 5.10036I
b = 0.536253 + 0.988592I		
u = 0.331495 + 0.671282I		
a = -1.13105 + 1.59075I	-1.71156 - 6.50364I	-3.88138 + 8.46347I
b = -0.829572 - 0.867696I		
u = 0.331495 - 0.671282I		
a = -1.13105 - 1.59075I	-1.71156 + 6.50364I	-3.88138 - 8.46347I
b = -0.829572 + 0.867696I		
u = -1.235590 + 0.320604I		
a = 0.635242 - 0.731984I	1.95788 - 0.88165I	0
b = -0.347845 - 0.842338I		
u = -1.235590 - 0.320604I		
a = 0.635242 + 0.731984I	1.95788 + 0.88165I	0
b = -0.347845 + 0.842338I		
u = -0.380033 + 0.611430I		
a = 0.621419 + 0.328599I	-0.94580 + 1.88496I	-5.53016 - 2.61970I
b = 0.088275 - 0.617332I		
u = -0.380033 - 0.611430I		
a = 0.621419 - 0.328599I	-0.94580 - 1.88496I	-5.53016 + 2.61970I
b = 0.088275 + 0.617332I		
u = 0.269682 + 0.640466I		
a = -1.79547 + 0.37187I	3.16652 - 4.38642I	3.50297 + 8.69988I
b = -0.388129 - 0.452372I		
u = 0.269682 - 0.640466I		
a = -1.79547 - 0.37187I	3.16652 + 4.38642I	3.50297 - 8.69988I
b = -0.388129 + 0.452372I		
u = 0.519201 + 0.449531I		
a = 0.387665 - 0.121279I	-2.56416 + 2.72527I	-6.71131 - 2.05471I
b = 0.876594 - 0.714920I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.519201 - 0.449531I		
a = 0.387665 + 0.121279I	-2.56416 - 2.72527I	-6.71131 + 2.05471I
b = 0.876594 + 0.714920I		
u = -0.287760 + 0.585739I		
a = 0.62917 + 2.74974I	1.45737 + 1.91964I	-6.3037 + 14.5674I
b = 2.97079 + 0.03418I		
u = -0.287760 - 0.585739I		
a = 0.62917 - 2.74974I	1.45737 - 1.91964I	-6.3037 - 14.5674I
b = 2.97079 - 0.03418I		
u = 0.200417 + 0.598294I		
a = 0.21915 - 1.51923I	4.02663 - 0.82768I	6.36438 + 2.50645I
b = -0.151466 + 1.094540I		
u = 0.200417 - 0.598294I		
a = 0.21915 + 1.51923I	4.02663 + 0.82768I	6.36438 - 2.50645I
b = -0.151466 - 1.094540I		
u = -1.387550 + 0.178659I		
a = -1.33273 - 0.90566I	-3.27007 + 0.60874I	0
b = -0.1015170 + 0.0476189I		
u = -1.387550 - 0.178659I		
a = -1.33273 + 0.90566I	-3.27007 - 0.60874I	0
b = -0.1015170 - 0.0476189I		
u = -1.384820 + 0.228430I		
a = -0.487527 + 0.225338I	-1.04447 + 3.83678I	0
b = 0.152763 + 1.225140I		
u = -1.384820 - 0.228430I		
a = -0.487527 - 0.225338I	-1.04447 - 3.83678I	0
b = 0.152763 - 1.225140I		
u = 1.40900 + 0.20274I		
a = 3.38868 - 1.70160I	-4.40750 - 3.63166I	0
b = 2.12325 + 0.54726I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.40900 - 0.20274I		
a = 3.38868 + 1.70160I	-4.40750 + 3.63166I	0
b = 2.12325 - 0.54726I		
u = -1.40659 + 0.24898I		
a = 2.07264 - 0.03363I	-2.19159 + 7.63799I	0
b = 0.499440 - 0.349829I		
u = -1.40659 - 0.24898I		
a = 2.07264 + 0.03363I	-2.19159 - 7.63799I	0
b = 0.499440 + 0.349829I		
u = 1.41203 + 0.23084I		
a = -3.59037 + 2.77014I	-3.98668 - 4.93837I	0
b = -2.98776 + 0.35138I		
u = 1.41203 - 0.23084I		
a = -3.59037 - 2.77014I	-3.98668 + 4.93837I	0
b = -2.98776 - 0.35138I		
u = -0.299701 + 0.468468I		
a = -0.72565 - 3.29039I	1.04787 + 1.03844I	5.29717 - 10.86697I
b = -1.96427 - 0.08421I		
u = -0.299701 - 0.468468I		
a = -0.72565 + 3.29039I	1.04787 - 1.03844I	5.29717 + 10.86697I
b = -1.96427 + 0.08421I		
u = 1.44219 + 0.10422I		
a = -1.73770 + 0.19216I	-7.53116 - 0.97636I	0
b = -1.083790 - 0.026822I		
u = 1.44219 - 0.10422I		
a = -1.73770 - 0.19216I	-7.53116 + 0.97636I	0
b = -1.083790 + 0.026822I		
u = -1.44607 + 0.16100I		
a = -1.49025 - 0.86702I	-8.77213 - 0.51707I	0
b = -1.051370 - 0.720721I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.44607 - 0.16100I		
a = -1.49025 + 0.86702I	-8.77213 + 0.51707I	0
b = -1.051370 + 0.720721I		
u = -1.43222 + 0.25863I		
a = 2.09232 + 0.57329I	-7.36283 + 9.90141I	0
b = 0.873644 - 0.951829I		
u = -1.43222 - 0.25863I		
a = 2.09232 - 0.57329I	-7.36283 - 9.90141I	0
b = 0.873644 + 0.951829I		
u = 1.42820 + 0.29532I		
a = 1.51267 - 0.69056I	-4.76047 - 8.29572I	0
b = 0.995771 + 0.411922I		
u = 1.42820 - 0.29532I		
a = 1.51267 + 0.69056I	-4.76047 + 8.29572I	0
b = 0.995771 - 0.411922I		
u = 1.44343 + 0.23910I		
a = -0.992429 - 0.246388I	-6.78935 - 5.03593I	0
b = -0.270661 - 0.756968I		
u = 1.44343 - 0.23910I		
a = -0.992429 + 0.246388I	-6.78935 + 5.03593I	0
b = -0.270661 + 0.756968I		
u = -0.535825		
a = 0.674766	-1.06237	-10.5390
b = 0.706758		
u = 0.017671 + 0.533485I		
a = 1.06883 - 1.55896I	1.42554 + 1.52244I	2.08213 - 4.25089I
b = -0.503165 + 0.289761I		
u = 0.017671 - 0.533485I		
a = 1.06883 + 1.55896I	1.42554 - 1.52244I	2.08213 + 4.25089I
b = -0.503165 - 0.289761I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.43939 + 0.28439I		
a = -2.65866 - 0.24548I	-3.5302 + 16.2353I	0
b = -1.26621 + 1.23765I		
u = -1.43939 - 0.28439I		
a = -2.65866 + 0.24548I	-3.5302 - 16.2353I	0
b = -1.26621 - 1.23765I		
u = -1.47653 + 0.12229I		
a = 1.57572 + 1.49415I	-5.86514 - 6.36902I	0
b = 1.21044 + 0.90784I		
u = -1.47653 - 0.12229I		
a = 1.57572 - 1.49415I	-5.86514 + 6.36902I	0
b = 1.21044 - 0.90784I		
u = 1.47507 + 0.18548I		
a = 0.701509 - 0.089471I	-7.51905 - 4.91195I	0
b = 0.623036 - 0.135856I		
u = 1.47507 - 0.18548I		
a = 0.701509 + 0.089471I	-7.51905 + 4.91195I	0
b = 0.623036 + 0.135856I		
u = 0.404020 + 0.224336I		
a = 1.76978 - 0.83709I	1.99649 + 1.29641I	-0.17607 - 2.27315I
b = -0.012610 - 0.538393I		
u = 0.404020 - 0.224336I		
a = 1.76978 + 0.83709I	1.99649 - 1.29641I	-0.17607 + 2.27315I
b = -0.012610 + 0.538393I		

II.
$$I_2^u = \langle b-1, a-1, u+1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_9 c_{10}, c_{11}	u+1
c_3, c_5	u
c_4, c_6, c_7 c_8	u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_4 c_6, c_7, c_8 c_9, c_{10}, c_{11}	y-1		
c_3, c_5	y		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	0	0
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u+1)(u^{68}+4u^{67}+\cdots-u-1)$
c_2	$(u+1)(u^{68}+2u^{67}+\cdots-7u-1)$
<i>c</i> ₃	$u(u^{68} - 11u^{67} + \dots + 2u + 2)$
c_4	$(u-1)(u^{68} + 2u^{67} + \dots - 7u - 1)$
<i>C</i> ₅	$u(u^{68} - 3u^{67} + \dots + 533u^2 - 32)$
<i>C</i> ₆	$(u-1)(u^{68} + 2u^{67} + \dots - u + 1)$
	$(u-1)(u^{68} - 4u^{67} + \dots + 30u - 4)$
<i>c</i> ₈	$(u-1)(u^{68}-2u^{67}+\cdots+19u-1)$
c_9, c_{10}	$(u+1)(u^{68}+2u^{67}+\cdots-u+1)$
c_{11}	$(u+1)(u^{68}+14u^{67}+\cdots+18491u+1583)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y^{68}+10y^{67}+\cdots+y+1)$
c_2, c_4	$(y-1)(y^{68}-42y^{67}+\cdots-51y+1)$
c_3	$y(y^{68} - 9y^{67} + \dots - 56y + 4)$
c_5	$y(y^{68} - 9y^{67} + \dots - 34112y + 1024)$
c_6, c_9, c_{10}	$(y-1)(y^{68}-62y^{67}+\cdots+y+1)$
c_7	$(y-1)(y^{68} - 66y^{67} + \dots - 1036y + 16)$
c ₈	$(y-1)(y^{68}-62y^{67}+\cdots-127y+1)$
c_{11}	$(y-1)(y^{68} + 30y^{67} + \dots + 2.73937 \times 10^7 y + 2505889)$