TERMODINÁMICA. TAREA 2

1. Considerando que la energía interna de un sistema hidrostático es una función de T y p, deducir las ecuaciones:

a.
$$dQ = \left[\left(\frac{\partial U}{\partial T} \right)_p + p \left(\frac{\partial V}{\partial T} \right)_p \right] dT + \left[\left(\frac{\partial U}{\partial p} \right)_T + p \left(\frac{\partial V}{\partial p} \right)_T \right] dp$$
b. $\left(\frac{\partial U}{\partial T} \right)_p = C_p - pV\beta$
c. $\left(\frac{\partial U}{\partial p} \right)_T = pV\kappa_T - (C_p - C_V)\frac{\kappa_T}{\beta}$

- 2. Un líquido se agita irregularmente en un recipiente bien aislado y por ello experimenta una elevación de temperatura. Considerando el líquido como sistema:
 - a. ¿Ha habido una transferencia de calor?
 - **b.** ¿Se ha realizado trabajo?
 - c. ¿Cuál es el signo de ΔU ?
- 3. Un mol de gas ideal monoatómico está confinado en un cilindro con un pistón, y se mantiene a temperatura constante T_0 dentro de un baño térmico. El gas lentamente se expande de V_1 a V_2 mientras se sigue manteniendo a temperatura T_0 ; Por qué la energía interna del gas no cambia? Calcular el trabajo hecho por el gas y el calor que fluye hacia el gas.
 - 4. En la expansión adiabática de un gas ideal se cumple $pV^{\gamma}=cte$. Mostrar que también se vale

$$TV^{\gamma-1}=cte$$

$$T = cte p^{1-1/\gamma}$$

5. Explicar las contribuciones energéticas para cada proceso en el ciclo de Otto, que se recorre en el sentido $a \to b \to c \to d \to a$. Calcular la eficiencia del ciclo.

