Propiedades de los Lenguajes Libres de Contexto

Alan Reyes-Figueroa Teoría de la Computación

(Aula 20) 14.octubre.2024

Lema de Bombeo para Lenguajes Libres de Contexto

Lema de Bombeo para CFL

Para todo lenguaje libre de contexto L, existe un entero $n \ge 1$, tal que para toda cadena $s \in L$ de longitud $\ge n$ podemos escribir

$$s = uvwxy,$$

donde:

- 1. $|vwx| \leq n$.
- 2. $|vx| \ge 1$.
- 3. Para todo i ≥ 0 , $uv^iwx^iy \in L$.

Prueba de Lema de Bombeo

- 1. Tomamos h = una altura en el árbol de derivación suficientemente grande.
- 2. Idea de la prueba: Si w es una cadena suficientemente larga, su árbol de derivación con respect a una gramática en la Forma Normal de Chomsky debe conteneralgún símbolo no-terminal dos veces.
- Repitiendo esta parte de la derivación ⇒...⇒ obtenemos una derivación para uviwxiy.

Prueba de Lema de Bombeo

Ejemplo: Lema de Bombeo

Vamos a mostrar que $L = \{0^m1^m2^m : m \ge 1\}$ no es un lenguaje libre del contexto.

- Suponga que sí es. Entonces existe n ≥ 1 para L que cumple el lema de bombeo.
- □ Tome $s = 0^n 1^n 2^n \epsilon L$. Podemos escribir s = uvwxy, donde $|vwx| \le n$, $|vx| \ge 1$.
- Esto implica que: vwx posee a lo sumo dos símbolos distintos.

Ejemplo: Lema de Bombeo

- ☐ Hay 5 casos:
- 1. vwx = 0^k , para algún k \leq n.
- 2. vwx = $0^{j}1^{k}$, para algunos j, k con j+k \leq n.
- 3. vwx = 1^k , para algún k \leq n.
- 4. vwx = $1^{j}2^{k}$, para algunos j, k con j+k \leq n.
- 5. vwx = 2^k , para algún k \leq n.
- Se puede mostrar que en cualquiera de los cinco casos anteriores, la cadena t = uv²wx²y no es de la forma 0^m1^m2^m, y por lo tanto t ∉ L.