Discrete Mathmatics

Sina Aleyaasin

September 2, 2017

		Abstract			
A compilation of notes based on	Discrete Mat		$ts \ Applications$	$(7^{th} \text{ Edition}) - 1$	K. Rosen.

Contents

Chapter 1

Logic and Proofs

1.1 Propositional Logic

1.1.1 Propositions

A proposition is a declarative sentence that has a truth value of true (T) or false (F). It may be denoted by a propositional variable (such as p,q,r,s). Compound propositions can be made from one or more propositions by means of *logical connectives*. The definition of a logical connective can be expressed by its corresponding truth table.

1.1.2 Logical Connectives

A logical connective operates on one or more propositions to yield a new proposition.

Negation \neg

Negation is a unary operation that yields the logical complement of a proposition.

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

Table 1.1: Truth table for negation

Conjuction \wedge

The conjuction of two propositions is true if both propositions are true, and is false otherwise.

p	q	$p \wedge q$
Τ	Τ	T
\mathbf{T}	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	F
\mathbf{F}	\mathbf{F}	F

Table 1.2: Truth table for conjunction

Disjunction \lor

The disjunction of two propositions is true if either or both are true, and is false otherwise.

p	q	$p \lor q$
Т	Τ	Т
\mathbf{T}	\mathbf{F}	${ m T}$
F	\mathbf{T}	T
\mathbf{F}	F	F

Table 1.3: Truth table for disjunction

Exclusive Disjunction \oplus

The exclusive disjunction of two propositions is true if one is the logical complement of the other, and is false otherwise.

1.1.3 Conditional Statements

A conditional statement is a proposition composed from a premise p and a conclusion q. It represents

p	q	$p \oplus q$
Τ	Τ	F
Τ	\mathbf{F}	Γ
\mathbf{F}	\mathbf{T}	T
\mathbf{F}	\mathbf{F}	F

Table 1.4: Truth table for exclusive disjunction

the implication of q by p, and is denoted

$$p \rightarrow q$$

The only case in which this statement is false is when p is true but q is false.

p	q	$p \rightarrow q$
Т	Τ	Τ
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$

Table 1.5: Truth table for a conditional statement

Converse

The converse of a conditional statement $p \rightarrow q$ is given by

$$q \to p$$

Contrapositive

The contrapositive of a conditional statement is given by

$$\neg q \rightarrow \neg p$$

It is *logically equivelant* to the conditional statement itself; that is to say, the truth tables for a conditional statement and its contrapositvie are identical.

Inverse

The inverse of a conditional statement is given by

$$\neg p \rightarrow \neg q$$

Since a conditional statement is logically equivelant to its contrapositive, and the inverse is the contrapositive of the converse, then the inverse is thus logically equivelant to the converse.

Biconditional Statements

A biconditional statement is the conjuctaion of a contitional statement and its converse. It is denoted by

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

and is only true when both p and q have the same truth value.

p	q	$p \leftrightarrow q$
\overline{T}	Т	Т
Τ	\mathbf{F}	F
\mathbf{F}	${ m T}$	F
\mathbf{F}	\mathbf{F}	Γ

Table 1.6: Truth table for a biconditional statement.

1.1.4 Logical & Bit operations

A bit (portamentau of binary and digit) is the smallest unit of information representable by a computer. The value of a bit can be either 1 or 0, analogous to the truth value of a propositon, T or F, respectively. One may consider bit operators analogous to logical operators.

Logical Connective	Bit Operator
V	OR
\wedge	AND
\oplus	XOR

Table 1.7: Correspondence between logical connectives and bit operators

1.2 Applications of Propositional Logic

1.2.1 Logic Gates

1.3 Propositional Equivelences

1.3.1 Compound Propositions

A compound proposition may be categorised into one of three categories:

Tautology

A tautology is a compound proposition that is true in all possible cases. An arbitrary tautology is denoted by

Т

Contradiction

A contradiction is a compound proposition that false in all possible cases. An arbitrary contradiction is denoted by

 \perp

Contingent

A contingent proposition is one that is neither a tautology nor a contradiction. Its truth value is contingent on the particular configuration of truth values of its constituent propositions.

1.3.2 Logical Equivalences

The compound propositions p and q are logically equivelant if

$$p \leftrightarrow q \equiv \top \tag{1.1}$$

This statement may be equally expressed by

$$p \equiv q$$

The following are important logical equivelences:

Domination Laws

Disjunction with a tautology is a tautology, and conjunction with a contradiction is a contradiction

$$p \lor \top \equiv \top \tag{1.2a}$$

$$p \wedge \perp \equiv \perp$$
 (1.2b)

Identity Laws

Conjunction with a tautology, and disjunction with a contradiction, are *identity* operations on a proposition

$$p \wedge \top \equiv p$$
 (1.3a)

$$p \lor \bot \equiv p \tag{1.3b}$$

Negation laws

Conjunction of a proposition with its negation is a contradiction, and disjunction of a proposition with its negation is a tautology

$$p \land \neg p \equiv \bot \tag{1.4a}$$

$$p \vee \neg p \equiv \top$$
 (1.4b)

Double Negation Law

A proposition is the negation of its negation

$$\neg(\neg p) \equiv p \tag{1.5a}$$

Idempotent Laws

Both the conjunction and disjunction of a proposition with itself yields itself

$$p \wedge p \equiv p \tag{1.6a}$$

$$p \lor p \equiv p \tag{1.6b}$$

Absorption Laws

The former two equivelences may be absorbed into each other as in the following

$$p \land (p \lor p) \equiv p \tag{1.7a}$$

$$p \lor (p \land p) \equiv p \tag{1.7b}$$

Commutative Laws

The commutativity of a binary logical connective can be determined by examining its operation on two propositions with complementary truth values. From Table ??, one observes that

$$\top \wedge \bot \equiv \bot \wedge \top \equiv \bot$$

Likewise, from Table ??

$$\top \lor \bot \equiv \bot \lor \top \equiv \top$$

This leads to the *commutative laws*

$$p \wedge q \equiv q \wedge p \tag{1.8a}$$

$$p \lor q \equiv q \lor p \tag{1.8b}$$

A similar argument may be used to demonstrate the commutativity of \oplus and \leftrightarrow .

Associative Laws

Both conjunction and disjunction are associative

$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$
 (1.9a)

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$
 (1.9b)

Distributive Laws

Conjunction and disjunction *distribute* as in the following

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \tag{1.10a}$$

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \tag{1.10b}$$

De Morgan's Laws

De Morgan's laws demonstrate how conjunctions and disjunctions are negated

$$\neg (p \land q) \equiv \neg p \lor \neg q \tag{1.11a}$$

$$\neg (p \lor q) \equiv \neg p \land \neg q \tag{1.11b}$$

Logical Equivelences with \rightarrow

DO TABLE

Logical Equivelences with \leftrightarrow

DO TABLE

1.3.3 Propositional Satisfiability

Consider the set of N propositions

$$\{s_1, s_2, \dots, s_N\} = S_N$$

There exist 2^N possible configurations of truth values for the propositions contained in S_N . Let p be a compound proposition that is some amalgamation of the propositions in S_N through logical connectives. We say that p is satisfiable if there exists a configuration of truth values in S_N such that p is true. We call this configuration a solution of p. If there exist no solution to p, we say the proposition is unsatisfiable. That is, a proposition is unsatisfiable if and only if its negation is a tautology.

1.4 Predicates and Quantifiers

1.4.1 Predicates

A predicate is statement regarding a subject that becomes a proposition when the subject is specified. A predicate may be condisered as a propositional function; that is, a mapping from the subject to a bivalent truth value. We denote a unary predicate as

where P is the predicate condition, and x is a variable that denotes the subject. A predecate may have multiple subjects; the predicate

$$P(x_1, x_2, \ldots, x_n)$$

is referred to as an n-ary predicate.

1.4.2 Quantifiers

The variable x in the statement P(x) is a *free* variable. In the previous section we discussed how P(x) becomes a proposotion when x is set to a value. Here, we discuss another way in which P(x) becomes a proposition: $binding\ x$ with a $universal\ quantifier$.

Universal Quantifier

Consider the set

$$D = \{x_1, x_2, \dots, x_n\}$$

which we shall call the domain of discourse. One can construct a compound proposition that is the conjunction of the predicate P(x) for all x in D. That is

$$P(x_1) \wedge P(x_2) \wedge \cdots \wedge P(x_n) \equiv \bigwedge_{i=1}^n P(x_i)$$

Such a prescription is sufficient when the domain of discource is finite. What is the equivelent proposition if D is not finite?

$$\forall x P(x)$$

where we use the **universal quantifier** \forall , read as "for all".

Existential Quantifier

Analogous to the universal quantifier, the proposition

$$P(x_1) \vee P(x_2) \vee \cdots \vee P(x_n) \equiv \bigvee_{i=1}^{n} P(x_i)$$

may be denoted for a non-finite universe of discourse by

$$\exists x P(x)$$

where we use the **existential quantifier** \exists , read as "there exists".

1.4.3 Negating Quantifiers

Using the Associative Laws (??), one may generalise De Morgan's Laws (??) for n propositions

$$\neg \left(\bigwedge_{i=1}^{n} p_i \right) \equiv \bigvee_{i=1}^{n} \neg p_i \tag{1.12a}$$

$$\neg \left(\bigvee_{i=1}^{n} p_i\right) \equiv \bigwedge_{i=1}^{n} \neg p_i \tag{1.12b}$$

Suppose

$$p_i \equiv P(x_i)$$

for some predicate P where the x_i are members of a finite domain of discourse D. What then if D is *not* finite?

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \tag{1.13a}$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x) \tag{1.13b}$$

Equations ?? are known as De Morgan's Laws for Quantifiers.

1.4.4 Nested Quantifiers

Consider the n-ary predicate

$$P(x_1, x_2, \ldots, x_n)$$

As discussed previously, this statement becomes a proposition if and only if all the free variables are either *bound* or *set* to a value. Suppose we bind (or set) s < n of the free variables. The result is an

(s-n)-ary predicate. Thus, the act of *nesting* quantifiers is a way in which a predicate can be made into either a proposition or a predicate of lower *arity*. The total number of nested quantifiers may not exceed the arity of the predicate it quantifies.