Private Location Verification

Vadym Fedyukovych

September 26, 2018

Abstract

We present location verification protocol and implementation that allows for location privacy. With a Schnorr-like protocol, we verify that location committed is close enough to another known location. Protocol was implemented with Crypto++ library.

1 Introduction

Need for location privacy. Known results and state of the art. SNARK-based and 'older' interactive proofs-based solutions.

1.1 Our contribution

- 2 Protocol
- 2.1 Definitions

2.2 Notations

Airdrop location (x_l, y_l) available in clear, node location (x_n, y_n) hidden (committed), acceptable maximum distance d from node to airdrop, setup: group description and parameters, group elements for making commitments, initial message, challenge and responces of a Schnorr-like protocol.

2.3 Interactive proof

Interactive argument system about integers is designed with a group of a hidden order [], that is, order of the group is not available to the Prover. Inequality (not far from) statement is converted into equality with 4-squares Lagrange theorem (Lipmaa). Schnorr proof was extended into a proof systems for polynomial relations with polynomials of higher degree in challenge for a number of applications [3, 2]. A comparable proof system for integers was introduced at [4].

2.4 Proof setup

Proof system for relations about integers is well described at Idemix documentation [1]

Multiplicative group of residue classes, RSA-like modulus.

2.5 Non-Inetractive proof

2.6 Security properties

3 Implementation

We have this protocol implemented on top of Crypto++ library 1 serving as a bignumbers backend.

Producing four-squares witness [5] is a work in progress, and is not a part of the protocol reported. To facilitate larger proof-of-concept application, a temporary approximate solution was introduced producing four squares.

4 Discussion and Conclusion

References

- [1] Jan Camenisch. Specification of the identity mixer cryptographic library RZ 3730 version 2.3.0, 2010.
- [2] Giovanni Di Crescenzo and Vadym Fedyukovych. Zero-knowledge proofs via polynomial representations. In *Proceedings of the 37th International Conference on Mathematical Foundations of Computer Science*, pages 335–347, 2012.
- [3] Vadym Fedyukovych. An argument for Hamiltonicity. Cryptology ePrint Archive, Report 2008/363, 2008.
- [4] Vadym Fedyukovych. Proving outcome of private statistical signal testing. In *Statistical Methods of Signal and Data Processing*, pages 172–175, 2010.
- [5] Paul Pollack and Enrique Trevino. Finding four squares in Lagrange's theorem.

¹https://cryptopp.com/

Common input of Prover and Verifier is commitment s_U to node location (1), airdrop location (x_l, y_l, z_l) and threshold d^2 (integers), parametes $(N, g, g_x, g_y, g_z, g_r, \{h_j\})$.

$$s_U = g_x^{x_n} g_y^{y_n} g_z^{z_n} g^r \pmod{N} \tag{1}$$

Private input of Prover is node location (x_n, y_n, z_n) (integers) and location commitment randomness r, four numbers $\{a_j\}$ calculated according to (2). Statement being proved is

$$d^{2} - ((x_{n} - x_{l})^{2} + (y_{n} - y_{l})^{2}) + (z_{n} - z_{l})^{2}) = \sum_{j=1}^{4} a_{j}^{2}$$
 (2)

Protocol runs as follows:

1. Prover picks random $\{\alpha_j\}$, η , γ , β_x , β_y , β_z , β_r , ρ_0 , ρ_1 , produces f_0 , f_1 , sends b_0 , b_1 , t_a , s_a , t_n :

$$f_0 = -(\beta_x^2 + \beta_y^2 + \beta_z^2) - \sum_{i=1}^4 \alpha_i^2$$
 (3)

$$f_1 = -((x_n - x_l)\beta_x + (y_n - y_l)\beta_y + (z_n - z_l)\beta_z) - \sum_{j=1}^4 a_j \alpha_j$$
 (4)

$$t_n = g_x^{\beta_x} g_y^{\beta_y} g_z^{\beta_z} g^{\beta_r}, \ s_a = g^{\gamma} \prod_{j=1}^4 h_j^{a_j}, \ t_a = g^{\eta} \prod_{j=1}^4 h_j^{\alpha_j}$$
 (5)

$$b_0 = g^{f_0} g_r^{\rho_0}, \ b_1 = g^{2f_1} g_r^{\rho_1} \pmod{N} \tag{6}$$

- 2. Verifier chooses and sends his challenge c
- 3. Prover produces and sends responses

$$X_n = cx_n + \beta_x, \ Y_n = cy_n + \beta_y, \ Z_n = cz_n + \beta_z, \ R = cr + \beta_r$$
 (7)
 $A_i = ca_i + \alpha_i, \ R_a = c\gamma + \eta, \ R_d = c\rho_1 + \rho_0$ (8)

4. Verifier accepts if

$$g_x^{X_n} g_y^{Y_n} g_z^{Z_n} g^R s_U^{-c} = t_n, \quad g^{R_a} (\prod_{j=1}^4 h_j^{A_j}) s_a^{-c} = t_a$$
 (9)

$$g^{c^2d^2 - ((X_n - cx_l)^2 + (Y_n - cy_l)^2 + (Z_n - cz_l)^2) - (A_1^2 + A_2^2 + A_3^2 + A_4^2)}g_r^{R_d} = b_1^c b_0 \pmod{N}$$
(10)

Figure 1: Private location verification protocol

Input of Prover is location commitment s_U (1), location (x_n, y_n, z_n) and random r to open this commitment, airdrop location (x_l, y_l, z_l) , threshold d^2 , parametes $(N, g, g_x, g_y, g_z, g_r, h_j)$.

Non-interactive proof is produced as follows:

1. Prover calculates $a_1
ldots a_4$ from locations and threshold, picks random $\{\alpha_j\}, \eta, \gamma, \beta_x, \beta_y, \beta_z, \beta_r, \rho_0, \rho_1$, produces t_n, s_a, t_a, b_0, b_1 :

$$t_n = g_x^{\beta_x} g_y^{\beta_y} g_z^{\beta_z} g^{\beta_r}, \ s_a = g^{\gamma} (\prod_{j=1}^4 h_j^{a_j}), \ t_a = g^{\eta} (\prod_{j=1}^4 h_j^{\alpha_j}) \pmod{N} \quad (11)$$

$$\tilde{f}_0 = \beta_x^2 + \beta_y^2 + \beta_z^2 + \alpha_1^2 + \alpha_2^2 + \alpha_3^2 + \alpha_4^2$$

$$\tilde{f}_1 = (x_n - x_l)\beta_x + (y_n - y_l)\beta_y + (z_n - z_l)\beta_z + a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + a_4\alpha_4$$
(13)

$$b_0 = g^{\tilde{f}_0} g_r^{\rho_0}, \quad b_1 = g^{2\tilde{f}_1} g_r^{\rho_1} \pmod{N}$$
 (14)

2. Prover produces his challenge with a hash function:

$$c = H(t_n||s_a||t_a||b_1||b_0||s_U)$$
(15)

3. Prover produces responses:

$$X_n = -cx_n + \beta_x, \ Y_n = -cy_n + \beta_y, \ Z_n = -cz_n + \beta_z, \ R = -cr + \beta_r$$

 $A_j = -ca_j + \alpha_j, \ R_a = -c\gamma + \eta, \ R_d = -c\rho_1 + \rho_0$ (16)

Non-interactive proof is $(c, X_n, Y_n, Z_n, R, \{A_j\}, R_a, R_d, s_a, b_1)$. Proof verification:

$$F_{d} = ((X_{n} + cx_{l})^{2} + (Y_{n} + cy_{l})^{2} + (Z_{n} + cz_{l})^{2}) + (A_{1}^{2} + A_{2}^{2} + A_{3}^{2} + A_{4}^{2}) - c^{2}d^{2}$$

$$H(g_{x}^{X_{n}}g_{y}^{Y_{n}}g_{z}^{Z_{n}}g^{R}s_{U}^{c}||s_{a}||g^{R_{a}}(\prod_{j=1}^{4}h_{j}^{A_{j}})s_{a}^{c}||b_{1}||g^{F_{d}}g_{r}^{R_{d}}b_{1}^{c}||s_{U}) = c \quad (17)$$

Figure 2: Non-interactive location proof generation and verification