

onvironment:

let W be the set of agents

W= {W1, W2}

Let T be the set of tasks

T= { T2 T2. T3, T4, T5 }

-: communication

y: the winning bid matrix

T3

dia	Ta	T2	73	74	75
					-inf
WZ	J.F	رن م	باج	-iaf	-inf

3: the winning agent list ∈ I

31	て	T2	T3	74	75	
W	1	^	A	1	1	wining agent list - bor was initialized
พั	2	2	2	2	2	with his id.
'	•					same for W2

bi: the bundle for went i of size LT

			oppended	• •	tasks.
W	٨			_	
W.	•			_	

A order in stack of who got hur first in time

Pi: the path of agent i of size LT

P: ampty list appended with tasks

W.

W2

A order based on the location of the task in the assignment.

Let Gih, the adjacency matrix of the communication

Gik	w,	Wz
Wa	Λ	Λ
WZ	Λ	1

network.

(we suppose
Gik to be
constant in time)

Gik an if w; and wk are conected

Algorithm Trace We assume the ayes have a velocity of 1 step a time and that L, the maximum number of tasks assigned is 5. For a single iteration, the trace includes : - Agents build their bundles using local information - Ayurbs exchange information based on their commication network Gi. - Agents update their task assignment based on the information they received. Wa 1st iteration W₂ for each agent. b2: <T3, T2, T5, T1, T4) b.= < Ta. TZ_T3, T4 , T5 > Pa= < T3, T2, T5, T1, T1, P, 2 < Tn, Te, Ts, Tr, T5> y2=54, 2, 1,5,3> 9,= 5 4, 3, 4, 4, 6 > 32 - (2, 2, 2, 2, 2, 2) 3= <1.1,1,1,1) The Algorithm 3 provides a condition: While Ibil < LT i.e. the bindle is not full. 12: calculate marginal score improvement C;; : We assume the score is the manhables dist Cij = max n < 1p; 1 5; Pi & n & j3 _ 5; Vj & T/b; Inc 8: Cij > yij initially hij = { o ehe. - based on the score of each task We selects the following tasks: Valid tasks. Tr. Tz, Tz, Tq, Ts in order of their seare. -based on the score of each task We relects the following tasks: T3. T2. Tr. Tr. in order of their score.

·At the end of this procen, for each agent $|b_i| = L_7$ so we stop phase 1.

Communication

W	Wz
91 = < 1, 3, 4, 4, 6> 51 = {0:0, 1:0} 81 = < 1,1,1,1,1	92 = < 6, 2, 1, 5, 3 > 52 = {0:0, 1:03 32 = < 82, 2, 2, 2)
y,= < 4,2,1,5,37	71= < 13,4,4,6>

According to the rules in the article.

Corsersus Phase:

For each task: we apply the ruleset defined in the article involving the sender and the receiver:

Actron rules for agent i based or comm with agent k

Rule 1:

Rule 1:

This is a sum of a section $3k_1 = 2$ and $3i_1 = i$ This is $y_{1,1} = 1$ The convert agent w_1 $3k_1 = 2$ and $3i_1 = i$ The convert agent w_2 $3k_1 = 2$ and $3i_1 = i$ $3k_1 = 2$ and $3i_1 = i$ $3k_1 = 2$ and $3i_1 = i$ The convert agent w_2 The convert agent w_3 The convert agent w_4 The convert w_4 T

T₂;

Avle 1:

 $W_2: 3_{2,2} = 2$ $y_{2,2} = 2$ from the rule set, $y_{2,2} > y_{1,2}$: $W_2 \rightarrow T_2$

$$W_2 \rightarrow T_2$$

The final bundle for each agent should be:

Wn = [Ty, Tz, T4]

W2=[Ts, Ts]

That way, all tasks are allecated.