

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title: Database Systems

Course Code: P18CSO652 | Semester : 6 | L:T:P - 3 : 0 : 0 | Credits: 3

Contact Period : Lecture :52 Hr, Exam: 3Hr | Weightage :CIE:50% SEE:50%

Course Content

Unit-1

Introduction: An example: Characteristics of Database approach; Advantages of using DBMS approach; A brief history of database applications; Data models, schemas and instances; Three-schema architecture and data independence; Database languages and interfaces:

ENTITY-RELATIONSHIP MODEL: Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types;

<u>Self study component:</u> Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues.

10 Hours

Unit-2

RELATIONAL MODEL AND RELATIONAL ALGEBRA: Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations, Transactions and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION.

<u>Self study component:</u> Additional Relational Operations; Examples of Queries in Relational Algebra.

10 Hours

Unit-3

STRUCTURED QUERY LANGAUGE: SQL Data Definition and Data Types; Specifying basic constraints in SQL; Basic Retrieval Queries in SQL, INSERT, DELETE, and UPDATE Statements in SQL, More complex SQL Retrieval Queries, Specifying constraints as Assertion and Actions as Trigger; Views (Virtual Tables) in SQL;

Self study component: Additional features of SQL; Schema Change Statements in SQL.

12 Hours

Unit-4

DATABASE DESIGN: Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form.

Self study component: Multi valued Dependencies and Fourth Normal Form.

10 Hours

Unit-5

TRANSACTION PROCESSING CONCEPTS: Introduction to Transaction processing; Transactions and System concepts; Desirable properties of transactions; Characterizing Schedules based on Serializability. Concurrency control: Two-phase locking techniques for concurrency control;

Self study component: concurrency control based on timestamp ordering.

10 Hours

Text Book:

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

1. Fundamentals of Database Systems – Elmasri and Navathe, 6th Edition, Addison-Wesley, 2011

Reference Books:

- 1. **Data Base System Concepts** Silberschatz, Korth and Sudharshan, 5th Edition, McGrawHill, 2006.
- 2. **An Introduction to Database Systems** C.J. Date, A. Kannan, S.Swamynatham, 8th Edition, Pearson Education, 2006.
- 3. **Database Management Systems** Raghu Ramakrishnan and Johannes Gehrke 3rd Edition, McGraw-Hill, 2003.

Course outcomes: At the end of the course the student should be able to

- 1. **Design** an ER model for a given example from real world description.
- 2. **Design** relational models for a given application using schema definition and constraints.
- 3. **Develop** complex queries using SQL to retrieve the required information from database.
- 4. **Apply** suitable normal forms to normalize the given database
- 5. **Determine** the roles of concurrency control in database design.

CO-PO Mapping

Semester: 6 Co			urse code :P18CSO652						Title : Database Systems							
СО	Statement		O P	- 1	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
CO1	Design an ER model for a give example from real world description	en 3	3 (3	3	1					2		2	2		3
CO2	Design relational models for given application using sche definition and constraints.		3 2	2	3	1					2		2	2		3
CO3	Develop complex queries using SQL to retrieve the required information from database	g 3	3 (3	3		2				2		2			3
CO4	Apply suitable normal forms to normalize the given database	0 2	2 /	2	2						2		2			2
CO5	Determine the roles concurrency control in databases design.	of 2 ase	2	1	1											2
		2.	6 2	2.2	2.4	1	2				2		2	2		2