Contents

1 Combinatorial optimization

1 Combinatorial optimization 8 2 Geometry 3 Numerical algorithms 14 Number theory (modular, Chinese remainder, linear Diophantine) . . 3.2 Systems of linear equations, matrix inverse, determinant 17 20 4 Graph algorithms 20 5 Data structures 21 26 Miscellaneous 27 27

1.1 Sparse max-flow

```
\|\ // Adjacency list implementation of Dinic's blocking flow algorithm.
// This is very fast in practice, and only loses to push-relabel flow.
 // Running time:
        0(|V|^2 |E|)
 //
 // INPUT:
        - graph, constructed using AddEdge()
        - sink
 //
 // OUTPUT:
 //
        - maximum flow value
        - To obtain the actual flow values, look at all edges with
          capacity > 0 (zero capacity edges are residual edges).
 #include <cmath>
 #include <vector>
 #include <iostream>
 #include <queue>
 using namespace std;
 const int INF = 2000000000;
 struct Edge {
   int from, to, cap, flow, index;
   Edge(int from, int to, int cap, int flow, int index) :
     from(from), to(to), cap(cap), flow(flow), index(index) {}
 struct Dinic {
   vector < vector < Edge > > G:
   vector < Edge *> dad;
   vector < int > Q;
   Dinic(int N): N(N), G(N), dad(N), Q(N) {}
   void AddEdge(int from, int to, int cap) {
     G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
     if (from == to) G[from].back().index++;
     G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
   long long BlockingFlow(int s, int t) {
     fill(dad.begin(), dad.end(), (Edge *) NULL);
     dad[s] = &G[0][0] - 1;
     int head = 0, tail = 0:
     Q[tail++] = s;
     while (head < tail) {
       int x = 0[head++]:
       for (int i = 0; i < G[x].size(); i++) {
         Edge &e = G[x][i];
```

```
if (!dad[e.to] \&\& e.cap - e.flow > 0) {
          dad[e.to] = &G[x][i];
          Q[tail++] = e.to;
     }
    }
    if (!dad[t]) return 0;
    long long totflow = 0;
    for (int i = 0; i < G[t].size(); i++) {
      Edge *start = &G[G[t][i].to][G[t][i].index];
      int amt = INF:
      for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
        if (!e) { amt = 0; break; }
        amt = min(amt, e->cap - e->flow);
      if (amt == 0) continue:
      for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
        e->flow += amt:
        G[e->to][e->index].flow -= amt;
      totflow += amt;
    return totflow;
 }
  long long GetMaxFlow(int s, int t) {
    long long totflow = 0;
    while (long long flow = BlockingFlow(s, t))
     totflow += flow;
    return totflow;
};
// BEGIN CUT
// The following code solves SPOJ problem #4110: Fast Maximum Flow (
    FASTFLOW)
int main() {
 int n. m:
 scanf("%d%d", &n, &m);
 Dinic flow(n):
 for (int i = 0; i < m; i++) {
   int a, b, c;
   scanf("%d%d%d", &a, &b, &c);
   if (a == b) continue;
   flow.AddEdge(a-1, b-1, c);
    flow.AddEdge(b-1, a-1, c):
  printf("%Ld\n", flow.GetMaxFlow(0, n-1));
 return 0;
// END CUT
```

1.2 Min-cost max-flow

```
// Implementation of min cost max flow algorithm using adjacency // matrix (Edmonds and Karp 1972). This implementation keeps track of
```

```
\parallel // forward and reverse edges separately (so you can set cap[i][j] !=
// cap[j][i]). For a regular max flow, set all edge costs to 0.
 // Running time, O(|V|^2) cost per augmentation
 //
                            O(|V|^3) augmentations
//
        min cost max flow: O(|V|^2 + MAX_EDGE_COST) augmentations
 //
 // INPUT:
 //
       - graph, constructed using AddEdge()
 //
        - source
 //
        - sink
 //
 // OUTPUT:
 //
        - (maximum flow value, minimum cost value)
        - To obtain the actual flow, look at positive values only.
 #include <cmath>
 #include <vector>
 #include <iostream>
 using namespace std;
 typedef vector <int> VI;
 typedef vector <VI> VVI;
 typedef long long L;
 typedef vector <L> VL;
 typedef vector < VL > VVL;
 typedef pair <int, int> PII;
 typedef vector <PII > VPII;
 const L INF = numeric_limits <L>::max() / 4;
struct MinCostMaxFlow {
  int N;
   VVL cap, flow, cost;
   VI found:
   VL dist, pi, width;
   VPII dad;
   MinCostMaxFlow(int N) :
    N(N), cap(N, VL(N)), flow(N, VL(N)), cost(N, VL(N)),
     found(N), dist(N), pi(N), width(N), dad(N) {}
   void AddEdge(int from, int to, L cap, L cost) {
     this->cap[from][to] = cap;
     this->cost[from][to] = cost:
   void Relax(int s, int k, L cap, L cost, int dir) {
    L val = dist[s] + pi[s] - pi[k] + cost;
    if (cap && val < dist[k]) {
      dist[k] = val;
       dad[k] = make_pair(s, dir);
       width[k] = min(cap, width[s]);
    }
  }
   L Dijkstra(int s, int t) {
     fill(found.begin(), found.end(), false);
     fill(dist.begin(), dist.end(), INF);
```

```
fill(width.begin(), width.end(), 0):
   dist[s] = 0;
    width[s] = INF;
    while (s != -1) {
     int best = -1:
     found[s] = true;
     for (int k = 0; k < N; k++) {
       if (found[k]) continue;
        Relax(s, k, cap[s][k] - flow[s][k], cost[s][k], 1);
        Relax(s, k, flow[k][s], -cost[k][s], -1);
       if (best == -1 || dist[k] < dist[best]) best = k;</pre>
     s = best;
    for (int k = 0; k < N; k++)
     pi[k] = min(pi[k] + dist[k], INF);
   return width[t]:
 pair<L, L> GetMaxFlow(int s, int t) {
   L totflow = 0, totcost = 0;
   while (L amt = Dijkstra(s, t)) {
     totflow += amt:
     for (int x = t; x != s; x = dad[x].first) {
       if (dad[x].second == 1) {
         flow[dad[x].first][x] += amt;
         totcost += amt * cost[dad[x].first][x];
         flow[x][dad[x].first] -= amt;
          totcost -= amt * cost[x][dad[x].first];
       }
     }
   }
   return make_pair(totflow, totcost);
};
// BEGIN CUT
// The following code solves UVA problem #10594: Data Flow
int main() {
 int N, M;
 while (scanf("%d%d", &N, &M) == 2) {
   VVL v(M, VL(3));
   for (int i = 0; i < M; i++)
     scanf("%Ld%Ld%Ld", &v[i][0], &v[i][1], &v[i][2]);
   L D, K;
   scanf("%Ld%Ld", &D, &K);
   MinCostMaxFlow mcmf(N+1);
    for (int i = 0: i < M: i++) {
     mcmf.AddEdge(int(v[i][0]), int(v[i][1]), K, v[i][2]);
     mcmf.AddEdge(int(v[i][1]), int(v[i][0]), K, v[i][2]);
   mcmf.AddEdge(0, 1, D, 0);
    pair <L, L> res = mcmf.GetMaxFlow(0, N);
```

```
if (res.first == D) {
    printf("%Ld\n", res.second);
} else {
    printf("Impossible.\n");
}
}
return 0;
}
// END CUT
```

1.3 Push-relabel max-flow

```
// Adjacency list implementation of FIFO push relabel maximum flow
// with the gap relabeling heuristic. This implementation is
// significantly faster than straight Ford-Fulkerson. It solves
// random problems with 10000 vertices and 1000000 edges in a few
// seconds, though it is possible to construct test cases that
// achieve the worst-case.
// Running time:
       0(|V|^3)
// INPUT:
// - graph, constructed using AddEdge()
     - source
       -sink
 //
 //
// OUTPUT:
 //
     - maximum flow value
      - To obtain the actual flow values, look at all edges with
         capacity > 0 (zero capacity edges are residual edges).
#include <cmath>
#include <vector>
#include <iostream>
#include <queue>
 using namespace std;
 typedef long long LL;
struct Edge {
 int from, to, cap, flow, index;
  Edge(int from, int to, int cap, int flow, int index) :
    from(from), to(to), cap(cap), flow(flow), index(index) {}
}:
struct PushRelabel {
  int N:
  vector < vector < Edge > > G;
  vector <LL> excess;
  vector<int> dist. active. count:
  queue < int > Q;
  PushRelabel(int N): N(N). G(N). excess(N). dist(N). active(N).
       count(2*N) {}
```

```
void AddEdge(int from, int to, int cap) {
  G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
  if (from == to) G[from].back().index++;
  G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
void Enqueue(int v) {
  if (!active[v] && excess[v] > 0) { active[v] = true; Q.push(v); }
void Push(Edge &e) {
  int amt = int(min(excess[e.from], LL(e.cap - e.flow)));
  if (dist[e.from] <= dist[e.to] || amt == 0) return;
  e.flow += amt:
  G[e.to][e.index].flow -= amt:
  excess[e.to] += amt;
  excess[e.from] -= amt;
  Enqueue(e.to);
}
void Gap(int k) {
 for (int v = 0; v < N; v++) {
    if (dist[v] < k) continue;</pre>
    count[dist[v]]--;
    dist[v] = max(dist[v], N+1);
    count[dist[v]]++;
    Enqueue(v);
 }
}
void Relabel(int v) {
  count[dist[v]]--;
 dist[v] = 2*N:
 for (int i = 0; i < G[v].size(); i++)
   if (G[v][i].cap - G[v][i].flow > 0)
      dist[v] = min(dist[v], dist[G[v][i].to] + 1);
  count[dist[v]]++;
  Enqueue(v);
void Discharge(int v) {
  for (int i = 0; excess[v] > 0 && i < G[v].size(); i++) Push(G[v][i
     1):
  if (excess[v] > 0) {
    if (count[dist[v]] == 1)
      Gap(dist[v]);
    else
      Relabel(v):
 }
}
LL GetMaxFlow(int s, int t) {
  count[0] = N-1;
  count[N] = 1:
  dist[s] = N;
  active[s] = active[t] = true;
  for (int i = 0; i < G[s].size(); i++) {
    excess[s] += G[s][i].cap;
    Push(G[s][i]);
  }
```

```
while (!Q.empty()) {
      int v = Q.front();
      Q.pop():
      active[v] = false;
      Discharge(v);
    LL totflow = 0:
    for (int i = 0; i < G[s].size(); i++) totflow += G[s][i].flow;
    return totflow;
};
// BEGIN CUT
// The following code solves SPOJ problem #4110: Fast Maximum Flow (
    FASTFLOW)
int main() {
  int n. m:
  scanf("%d%d", &n, &m);
  PushRelabel pr(n);
  for (int i = 0; i < m; i++) {
  int a, b, c;
   scanf("%d%d%d", &a, &b, &c);
   if (a == b) continue;
    pr.AddEdge(a-1, b-1, c);
    pr.AddEdge(b-1, a-1, c);
  printf("%Ld\n", pr.GetMaxFlow(0, n-1));
  return 0:
// END CUT
```

1.4 Min-cost matching

```
// Min cost bipartite matching via shortest augmenting paths
// This is an O(n^3) implementation of a shortest augmenting path
// algorithm for finding min cost perfect matchings in dense
// graphs. In practice, it solves 1000x1000 problems in around 1
// second.
 // cost[i][j] = cost for pairing left node i with right node j
 // Lmate[i] = index of right node that left node i pairs with
// Rmate[j] = index of left node that right node j pairs with
// The values in cost[i][j] may be positive or negative. To perform
// maximization, simply negate the cost[][] matrix.
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
```

```
typedef vector < double > VD;
typedef vector < VD > VVD:
typedef vector < int > VI:
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
 int n = int(cost.size());
 // construct dual feasible solution
 VD u(n):
 VD v(n):
 for (int i = 0: i < n: i++) {
   u[i] = cost[i][0];
   for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][i]);
 for (int j = 0; j < n; j++) {
   v[j] = cost[0][j] - u[0];
   for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
 }
 // construct primal solution satisfying complementary slackness
 Lmate = VI(n, -1);
 Rmate = VI(n, -1);
 int mated = 0;
 for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++) {
     if (Rmate[j] != -1) continue;
     if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {
       Lmate[i] = j;
       Rmate[j] = i;
       mated++;
       break;
     }
   }
 VD dist(n);
 VI dad(n):
 VI seen(n);
 // repeat until primal solution is feasible
 while (mated < n) {
   // find an unmatched left node
   int s = 0:
   while (Lmate[s] != -1) s++:
   // initialize Dijkstra
   fill(dad.begin(), dad.end(), -1):
   fill(seen.begin(), seen.end(), 0);
   for (int k = 0: k < n: k++)
     dist[k] = cost[s][k] - u[s] - v[k];
   int i = 0:
   while (true) {
     // find closest
     i = -1;
     for (int k = 0; k < n; k++) {
       if (seen[k]) continue;
```

```
if (i == -1 \mid | dist[k] < dist[i]) i = k:
    seen[j] = 1;
    // termination condition
    if (Rmate[j] == -1) break;
    // relax neighbors
    const int i = Rmate[i]:
    for (int k = 0; k < n; k++) {
     if (seen[k]) continue;
      const double new dist = dist[i] + cost[i][k] - u[i] - v[k]:
      if (dist[k] > new_dist) {
       dist[k] = new_dist;
       dad[k] = j;
  }
  // update dual variables
  for (int k = 0; k < n; k++) {
   if (k == j || !seen[k]) continue;
    const int i = Rmate[k];
   v[k] += dist[k] - dist[j];
    u[i] -= dist[k] - dist[j];
  u[s] += dist[j];
  // augment along path
  while (dad[j] >= 0) {
    const int d = dad[i];
    Rmate[j] = Rmate[d];
   Lmate[Rmate[j]] = j;
   j = d;
 Rmate[j] = s;
 Lmate[s] = i;
 mated++;
double value = 0;
for (int i = 0: i < n: i++)
 value += cost[i][Lmate[i]];
return value:
```

1.5 Max bipartite matching

```
// This code performs maximum bipartite matching.
//
// Running time: O(|E| |V|) -- often much faster in practice
//
// INPUT: w[i][j] = edge between row node i and column node j
// OUTPUT: mr[i] = assignment for row node i, -1 if unassigned
// mc[j] = assignment for column node j, -1 if unassigned
// function returns number of matches made
#include <vector>
```

```
using namespace std;
typedef vector<int> VI;
typedef vector < VI > VVI;
bool FindMatch(int i. const VVI &w. VI &mr. VI &mc. VI &seen) {
 for (int j = 0; j < w[i].size(); <math>j++) {
    if (w[i][j] && !seen[j]) {
      seen[j] = true;
      if (mc[j] < 0 || FindMatch(mc[j], w, mr, mc, seen)) {</pre>
        mr[i] = j;
        mc[i] = i;
       return true;
     }
   }
 return false;
int BipartiteMatching(const VVI &w, VI &mr, VI &mc) {
 mr = VI(w.size(), -1);
 mc = VI(w[0].size(), -1);
 int ct = 0:
 for (int i = 0; i < w.size(); i++) {
   VI seen(w[0].size());
   if (FindMatch(i, w, mr, mc, seen)) ct++;
  return ct;
```

1.6 Global min-cut

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
//
// Running time:
    0(|V|^3)
//
//
// INPUT:
 //
       - graph, constructed using AddEdge()
//
// OUTPUT:
 // - (min cut value, nodes in half of min cut)
#include <cmath>
 #include <vector>
 #include <iostream>
using namespace std;
 typedef vector < int > VI:
 typedef vector <VI> VVI;
 const int INF = 1000000000:
pair < int , VI > GetMinCut(VVI & weights) {
  int N = weights.size():
  VI used(N), cut, best_cut;
  int best_weight = -1;
```

```
for (int phase = N-1; phase >= 0; phase--) {
   VI w = weights[0];
   VI added = used:
   int prev, last = 0;
    for (int i = 0; i < phase; i++) {
      prev = last;
      last = -1;
      for (int j = 1; j < N; j++)
       if (!added[j] && (last == -1 || w[j] > w[last])) last = j;
      if (i == phase-1) {
        for (int j = 0; j < N; j++) weights[prev][j] += weights[last][
        for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j</pre>
           1:
        used[last] = true;
        cut.push_back(last);
        if (best_weight == -1 || w[last] < best_weight) {</pre>
         best cut = cut:
          best_weight = w[last];
      } else {
        for (int j = 0; j < N; j++)
          w[i] += weights[last][i];
        added[last] = true;
   }
 return make_pair(best_weight, best_cut);
// BEGIN CUT
// The following code solves UVA problem #10989: Bomb, Divide and
    Conquer
int main() {
 int N:
 cin >> N;
 for (int i = 0; i < N; i++) {
   int n, m;
   cin >> n >> m:
   VVI weights(n, VI(n));
   for (int j = 0; j < m; j++) {
     int a, b, c;
     cin >> a >> b >> c;
     weights[a-1][b-1] = weights[b-1][a-1] = c;
   pair < int , VI > res = GetMinCut(weights);
    cout << "Case #" << i+1 << ": " << res.first << endl;</pre>
// END CUT
```

1.7 Graph cut inference

```
// Special-purpose \{0,1\} combinatorial optimization solver for // problems of the following by a reduction to graph cuts: // // minimize sum_i psi_i(x[i]) // x[1]...x[n] in \{0,1\} + sum_i\{i < j\} phi_\{ij\}(x[i], x[j])
```

```
// where
// psi_i : \{0, 1\} \longrightarrow R
// phi_{ij} : {0, 1} x {0, 1} --> R
//
// such that
// phi_{ij}(0,0) + phi_{ij}(1,1) \le phi_{ij}(0,1) + phi_{ij}(1,0)
// This can also be used to solve maximization problems where the
// direction of the inequality in (*) is reversed.
//
// INPUT: phi -- a matrix such that phi[i][j][u][v] = phi_{ij}(u, v)
         psi -- a \ matrix \ such \ that \ psi[i][u] = psi_i(u)
//
//
          x -- a vector where the optimal solution will be stored
//
// OUTPUT: value of the optimal solution
// To use this code, create a GraphCutInference object, and call the
// DoInference() method. To perform maximization instead of
    minimization.
// ensure that #define MAXIMIZATION is enabled.
#include <vector>
#include <iostream>
using namespace std;
typedef vector <int> VI;
typedef vector < VI > VVI;
typedef vector < VVI > VVVI;
typedef vector < VVVI > VVVVI;
const int INF = 1000000000;
// comment out following line for minimization
#define MAXIMIZATION
struct GraphCutInference {
 int N;
  VVI cap, flow;
  VI reached;
  int Augment(int s, int t, int a) {
   reached[s] = 1;
   if (s == t) return a;
    for (int k = 0: k < N: k++) {
     if (reached[k]) continue;
      if (int aa = min(a, cap[s][k] - flow[s][k])) {
       if (int b = Augment(k, t, aa)) {
          flow[s][k] += b;
         flow[k][s] -= b:
          return b;
        }
      }
    return 0;
  int GetMaxFlow(int s, int t) {
    N = cap.size();
```

```
flow = VVI(N, VI(N)):
    reached = VI(N);
    int totflow = 0:
    while (int amt = Augment(s, t, INF)) {
     totflow += amt;
     fill(reached.begin(), reached.end(), 0);
   return totflow;
  int DoInference (const VVVVI &phi, const VVI &psi, VI &x) {
    int M = phi.size();
    cap = VVI(M+2, VI(M+2));
    VI b(M):
    int c = 0;
    for (int i = 0; i < M; i++) {
     b[i] += psi[i][1] - psi[i][0];
      c += psi[i][0];
      for (int i = 0; i < i; i++)
       b[i] += phi[i][j][1][1] - phi[i][j][0][1];
      for (int j = i+1; j < M; j++) {
       cap[i][j] = phi[i][j][0][1] + phi[i][j][1][0] - phi[i][j
            ][0][0] - phi[i][j][1][1];
       b[i] += phi[i][j][1][0] - phi[i][j][0][0];
       c += phi[i][j][0][0];
     }
#ifdef MAXIMIZATION
   for (int i = 0; i < M; i++) {
     for (int j = i+1; j < M; j++)
       cap[i][j] *= -1;
     b[i] *= -1:
   c *= -1;
#endif
    for (int i = 0; i < M; i++) {
     if (b[i] >= 0) {
       cap[M][i] = b[i];
     } else {
       cap[i][M+1] = -b[i];
       c += b[i];
     }
    }
    int score = GetMaxFlow(M, M+1);
    fill(reached.begin(), reached.end(), 0);
    Augment (M. M+1, INF):
   x = VI(M);
    for (int i = 0; i < M; i++) x[i] = reached[i] ? 0 : 1;
    score += c:
#ifdef MAXIMIZATION
    score *= -1:
#endif
    return score;
```

```
};
int main() {
 // solver for "Cat vs. Dog" from NWERC 2008
 int numcases;
 cin >> numcases:
 for (int caseno = 0; caseno < numcases; caseno++) {
   int c, d, v;
   cin >> c >> d >> v;
    VVVVI phi(c+d, VVVI(c+d, VVI(2, VI(2))));
    VVI psi(c+d, VI(2));
    for (int i = 0; i < v; i++) {
     char p, q;
      int u, v;
      cin >> p >> u >> q >> v;
     u--; v--;
     if (p == 'C') {
        phi[u][c+v][0][0]++;
        phi[c+v][u][0][0]++;
      } else {
        phi[v][c+u][1][1]++;
        phi[c+u][v][1][1]++;
   }
    GraphCutInference graph;
   VI x;
    cout << graph.DoInference(phi, psi, x) << endl;</pre>
  return 0:
```

2 Geometry

2.1 Convex hull

```
// Compute the 2D convex hull of a set of points using the monotone
// algorithm. Eliminate redundant points from the hull if
    REMOVE_REDUNDANT is
// #defined.
 //
// Running time: O(n \log n)
 //
 //
    INPUT: a vector of input points, unordered.
    OUTPUT: a vector of points in the convex hull, counterclockwise,
     startina
 //
               with bottommost/leftmost point
#include <cstdio>
 #include <cassert>
#include <vector>
#include <algorithm>
#include <cmath>
```

```
| // BEGIN CUT
#include <map>
 // END CUT
using namespace std;
#define REMOVE REDUNDANT
typedef double T;
 const T EPS = 1e-7;
 struct PT {
  T x, y;
  PT() {}
  PT(T x, T y) : x(x), y(y) {}
  bool operator < (const PT &rhs) const { return make_pair(y,x) <
       make_pair(rhs.v,rhs.x); }
  bool operator == (const PT &rhs) const { return make_pair(y,x) ==
       make_pair(rhs.y,rhs.x); }
}:
T cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
T area2(PT a, PT b, PT c) { return cross(a,b) + cross(b,c) + cross(c,a
    ); }
#ifdef REMOVE REDUNDANT
bool between(const PT &a, const PT &b, const PT &c) {
  return (fabs(area2(a,b,c)) < EPS && (a.x-b.x)*(c.x-b.x) <= 0 && (a.y)
      -b.y)*(c.y-b.y) <= 0);
#endif
void ConvexHull(vector <PT> &pts) {
  sort(pts.begin(), pts.end());
  pts.erase(unique(pts.begin(), pts.end()), pts.end());
  vector <PT> up, dn;
  for (int i = 0; i < pts.size(); i++) {
    while (up.size() > 1 && area2(up[up.size()-2], up.back(), pts[i])
         >= 0) up.pop back():
    while (dn.size() > 1 && area2(dn[dn.size()-2], dn.back(), pts[i])
         <= 0) dn.pop_back();
    up.push_back(pts[i]);
    dn.push_back(pts[i]);
  for (int i = (int) up.size() - 2; i >= 1; i--) pts.push_back(up[i]);
 #ifdef REMOVE_REDUNDANT
  if (pts.size() <= 2) return;</pre>
  dn.clear():
  dn.push_back(pts[0]);
  dn.push_back(pts[1]);
  for (int i = 2; i < pts.size(); i++) {
    if (between(dn[dn.size()-2], dn[dn.size()-1], pts[i])) dn.pop_back
    dn.push_back(pts[i]);
  if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
    dn[0] = dn.back();
    dn.pop_back();
```

```
pts = dn:
#endif
}
// BEGIN CUT
// The following code solves SPOJ problem #26: Build the Fence (BSHEEP
int main() {
 int t;
  scanf("%d", &t);
 for (int caseno = 0; caseno < t; caseno++) {
   scanf("%d", &n);
    vector <PT> v(n):
    for (int i = 0; i < n; i++) scanf("%lf%lf", &v[i].x, &v[i].y);
    vector <PT> h(v):
    map < PT , int > index;
    for (int i = n-1; i \ge 0; i--) index[v[i]] = i+1;
    ConvexHull(h):
    double len = 0:
    for (int i = 0; i < h.size(); i++) {
      double dx = h[i].x - h[(i+1)\%h.size()].x;
      double dy = h[i].y - h[(i+1)\%h.size()].y;
      len += sqrt(dx*dx+dy*dy);
    if (caseno > 0) printf("\n");
    printf("%.2f\n", len);
    for (int i = 0; i < h.size(); i++) {
     if (i > 0) printf(" ");
     printf("%d", index[h[i]]);
    printf("\n");
// END CUT
```

2.2 Miscellaneous geometry

```
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>

using namespace std;

double INF = 1e100;
double EPS = 1e-12;

struct PT {
    double x, y;
    PT() {}
    PT(double x, double y) : x(x), y(y) {}
    PT(const PT &p) : x(p.x), y(p.y) {}
    PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
```

```
PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); }
  PT operator * (double c)
                               const { return PT(x*c, y*c ); }
  PT operator / (double c)
                               const { return PT(x/c, y/c); }
double dot(PT p, PT q)
                          { return p.x*q.x+p.y*q.y; }
double dist2(PT p, PT q) { return dot(p-q,p-q); }
double cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
ostream &operator << (ostream &os, const PT &p) {</pre>
  os << "(" << p.x << "," << p.y << ")";
// rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.y,p.x); }
PT RotateCW90(PT p)
                     { return PT(p.y,-p.x); }
PT RotateCCW(PT p, double t) {
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
 return a + (b-a)*dot(c-a, b-a)/dot(b-a, b-a);
// project point c onto line segment through a and b
PT ProjectPointSegment(PT a, PT b, PT c) {
  double r = dot(b-a,b-a);
  if (fabs(r) < EPS) return a;
 r = dot(c-a, b-a)/r;
 if (r < 0) return a;
  if (r > 1) return b:
 return a + (b-a)*r:
// compute distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
 return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
// compute distance between point (x,y,z) and plane ax+by+cz=d
double DistancePointPlane(double x, double y, double z,
                          double a, double b, double c, double d)
 return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
// determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(PT a. PT b. PT c. PT d) {
  return fabs(cross(b-a, c-d)) < EPS;
bool LinesCollinear(PT a, PT b, PT c, PT d) {
  return LinesParallel(a, b, c, d)
      && fabs(cross(a-b, a-c)) < EPS
      && fabs(cross(c-d, c-a)) < EPS;
// determine if line segment from a to b intersects with
// line segment from c to d
```

```
bool SegmentsIntersect(PT a. PT b. PT c. PT d) {
  if (LinesCollinear(a, b, c, d)) {
    if (dist2(a, c) < EPS || dist2(a, d) < EPS ||
      dist2(b, c) < EPS || dist2(b, d) < EPS) return true:
    if (dot(c-a, c-b) > 0 && dot(d-a, d-b) > 0 && dot(c-b, d-b) > 0)
      return false:
    return true:
  if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
  if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
  return true;
// compute intersection of line passing through a and b
// with line passing through c and d. assuming that unique
// intersection exists; for segment intersection, check if
// seaments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
 b=b-a: d=c-d: c=c-a:
 assert(dot(b, b) > EPS && dot(d, d) > EPS):
 return a + b*cross(c, d)/cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
 b = (a+b)/2:
  c = (a+c)/2:
 return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90
      (a-c):
// determine if point is in a possibly non-convex polygon (by William
// Randolph Franklin); returns 1 for strictly interior points, 0 for
// strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by writing exact
// tests for checking point on polygon boundary
bool PointInPolygon(const vector <PT> &p, PT q) {
 bool c = 0:
 for (int i = 0; i < p.size(); i++){
   int j = (i+1)\%p.size();
   if ((p[i].y \le q.y \&\& q.y \le p[j].y | |
      p[j].y \le q.y && q.y \le p[i].y) &&
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y)
          il.v))
      c = !c;
  return c:
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector <PT> &p, PT q) {
 for (int i = 0; i < p.size(); i++)
    if (dist2(ProjectPointSegment(p[i], p[(i+1)%p.size()], q), q) <
        EPS)
      return true:
    return false;
```

```
// compute intersection of line through points a and b with
// circle centered at c with radius r > 0
vector < PT > CircleLineIntersection(PT a, PT b, PT c, double r) {
  vector <PT> ret:
  b = b-a;
  a = a-c;
  double A = dot(b, b):
  double B = dot(a, b);
  double C = dot(a, a) - r*r;
  double D = B*B - A*C;
  if (D < -EPS) return ret;
  ret.push_back(c+a+b*(-B+sqrt(D+EPS))/A);
  if (D > EPS)
   ret.push_back(c+a+b*(-B-sqrt(D))/A);
  return ret:
// compute intersection of circle centered at a with radius r
// with circle centered at b with radius R
vector <PT > CircleCircleIntersection(PT a. PT b. double r. double R) {
  vector <PT> ret;
  double d = sqrt(dist2(a, b));
  if (d > r+R \mid | d+min(r, R) < max(r, R)) return ret;
  double x = (d*d-R*R+r*r)/(2*d);
  double y = sqrt(r*r-x*x);
  PT v = (b-a)/d;
  ret.push_back(a+v*x + RotateCCW90(v)*y);
  if (v > 0)
    ret.push_back(a+v*x - RotateCCW90(v)*y);
  return ret:
// This code computes the area or centroid of a (possibly nonconvex)
// polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as
// the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector <PT> &p) {
  double area = 0:
  for(int i = 0; i < p.size(); i++) {
   int j = (i+1) % p.size();
    area += p[i].x*p[j].y - p[j].x*p[i].y;
  return area / 2.0:
double ComputeArea(const vector <PT> &p) {
 return fabs(ComputeSignedArea(p));
PT ComputeCentroid(const vector <PT > &p) {
  PT c(0,0):
  double scale = 6.0 * ComputeSignedArea(p);
  for (int i = 0; i < p.size(); i++){}
   int i = (i+1) \% p.size():
    c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
  return c / scale;
 // tests whether or not a given polygon (in CW or CCW order) is simple
```

```
bool IsSimple(const vector <PT> &p) {
 for (int i = 0; i < p.size(); i++) {
    for (int k = i+1; k < p.size(); k++) {
      int j = (i+1) % p.size();
      int l = (k+1) \% p.size();
      if (i == 1 \mid | j == k) continue;
      if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
        return false;
   }
 return true;
int main() {
  // expected: (-5,2)
  cerr << RotateCCW90(PT(2,5)) << endl;</pre>
  // expected: (5.-2)
  cerr << RotateCW90(PT(2,5)) << endl;</pre>
  // expected: (-5,2)
  cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
  // expected: (5,2)
  cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;</pre>
  // expected: (5,2) (7.5,3) (2.5,1)
  cerr << ProjectPointSegment(PT(-5,-2), PT(10,4), PT(3,7)) << " "</pre>
       << ProjectPointSegment(PT(7.5,3), PT(10,4), PT(3,7)) << " "</pre>
       << ProjectPointSegment(PT(-5,-2), PT(2.5,1), PT(3,7)) << endl;</pre>
  // expected: 6.78903
  cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;</pre>
  // expected: 1 0 1
  cerr << LinesParallel(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "</pre>
       << LinesParallel(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesParallel(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;</pre>
  // expected: 0 0 1
  cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "</pre>
       << LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
  // expected: 1 1 1 0
  cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << "</pre>
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) << " "
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << "
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) <<
           endl:
  // expected: (1,2)
  cerr << ComputeLineIntersection(PT(0,0), PT(2,4), PT(3,1), PT(-1,3))</pre>
       << endl;
  // expected: (1,1)
  cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;</pre>
```

```
vector <PT> v;
v.push_back(PT(0,0));
v.push_back(PT(5,0));
v.push_back(PT(5,5));
v.push_back(PT(0,5));
// expected: 1 1 1 0 0
cerr << PointInPolygon(v, PT(2,2)) << " "</pre>
     << PointInPolygon(v, PT(2,0)) << " "</pre>
     << PointInPolygon(v, PT(0,2)) << " "
     << PointInPolygon(v, PT(5,2)) << " "
     << PointInPolygon(v, PT(2,5)) << endl;</pre>
// expected: 0 1 1 1 1
cerr << PointOnPolygon(v, PT(2,2)) << " "</pre>
     << PointOnPolygon(v, PT(2,0)) << " "
     << PointOnPolygon(v, PT(0,2)) << " "
     << PointOnPolygon(v, PT(5,2)) << " "
     << PointOnPolygon(v, PT(2,5)) << endl;</pre>
// expected: (1,6)
//
             (5,4) (4,5)
//
              blank line
//
              (4,5) (5,4)
//
             blank line
             (4,5) (5,4)
vector <PT> u = CircleLineIntersection(PT(0,6), PT(2,6), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl
u = CircleLineIntersection(PT(0,9), PT(9,0), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl
u = CircleCircleIntersection(PT(1,1), PT(10,10), 5, 5);
for (int i = 0: i < u.size(): i++) cerr << u[i] << " ": cerr <math><< endl
u = CircleCircleIntersection(PT(1,1), PT(8,8), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 10, sqrt(2.0)
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 5, sqrt(2.0)/2.0)
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl
// area should be 5.0
// centroid should be (1.1666666, 1.166666)
PT pa[] = \{ PT(0,0), PT(5,0), PT(1,1), PT(0,5) \};
vector <PT> p(pa, pa+4);
PT c = ComputeCentroid(p);
cerr << "Area: " << ComputeArea(p) << endl;</pre>
cerr << "Centroid: " << c << endl;</pre>
return 0:
```

2.3 Java geometry

```
\parallel / / In this example, we read an input file containing three lines, each
// containing an even number of doubles, separated by commas. The
// lines represent the coordinates of two polygons, given in
    counterclockwise
// (or clockwise) order, which we will call "A" and "B". The last
// contains a list of points, p[1], p[2], ...
//
// Our goal is to determine:
// (1) whether B - A is a single closed shape (as opposed to
    multiple shapes)
 // (2) the area of B - A
// (3) whether each p[i] is in the interior of B-A
//
// INPUT:
// 0 0 10 0 0 10
// 0 0 10 10 10 0
 // 86
// 5 1
//
// OUTPUT:
// The area is singular.
// The area is 25.0
// Point belongs to the area.
// Point does not belong to the area.
import java.util.*;
import java.awt.geom.*;
import java.io.*;
public class JavaGeometry {
    // make an array of doubles from a string
    static double[] readPoints(String s) {
        String[] arr = s.trim().split("\\s++");
        double[] ret = new double[arr.length]:
        for (int i = 0; i < arr.length; i++) ret[i] = Double.
            parseDouble(arr[i]);
        return ret;
    }
    // make an Area object from the coordinates of a polygon
    static Area makeArea(double[] pts) {
        Path2D.Double p = new Path2D.Double();
        p.moveTo(pts[0], pts[1]);
        for (int i = 2; i < pts.length; i += 2) p.lineTo(pts[i], pts[i
            +1]):
        p.closePath():
        return new Area(p);
    // compute area of polygon
    static double computePolygonArea(ArrayList < Point 2D. Double > points)
         Point2D.Double[] pts = points.toArray(new Point2D.Double[
            points.size()]);
```

```
double area = 0:
    for (int i = 0; i < pts.length; i++){
        int j = (i+1) % pts.length;
        area += pts[i].x * pts[j].y - pts[j].x * pts[i].y;
    return Math.abs(area)/2;
// compute the area of an Area object containing several disjoint
    polygons
static double computeArea(Area area) {
    double totArea = 0:
    PathIterator iter = area.getPathIterator(null);
    ArrayList < Point2D.Double > points = new ArrayList < Point2D.</pre>
        Double > ():
    while (!iter.isDone()) {
        double[] buffer = new double[6];
        switch (iter.currentSegment(buffer)) {
        case PathIterator.SEG_MOVETO:
        case PathIterator.SEG_LINETO:
            points.add(new Point2D.Double(buffer[0], buffer[1]));
        case PathIterator.SEG_CLOSE:
            totArea += computePolygonArea(points);
            points.clear();
            break:
        7
        iter.next();
    return totArea;
// notice that the main() throws an Exception -- necessary to
// avoid wrapping the Scanner object for file reading in a
// try { ... } catch block.
public static void main(String args[]) throws Exception {
    Scanner scanner = new Scanner(new File("input.txt"));
    // also.
    // Scanner scanner = new Scanner (System.in);
    double[] pointsA = readPoints(scanner.nextLine());
    double[] pointsB = readPoints(scanner.nextLine());
    Area areaA = makeArea(pointsA);
    Area areaB = makeArea(pointsB);
    areaB.subtract(areaA);
    // also.
    // areaB.exclusiveOr (areaA):
    // areaB.add (areaA);
    // areaB.intersect (areaA):
    // (1) determine whether B - A is a single closed shape (as
           opposed to multiple shapes)
    boolean isSingle = areaB.isSingular();
    // also.
    // areaB.isEmpty();
    if (isSingle)
        System.out.println("The area is singular.");
```

```
else
        System.out.println("The area is not singular.");
    // (2) compute the area of B-A
    System.out.println("The area is " + computeArea(areaB) + ".");
    // (3) determine whether each p[i] is in the interior of B-A
    while (scanner.hasNextDouble()) {
        double x = scanner.nextDouble():
        assert(scanner.hasNextDouble());
        double y = scanner.nextDouble();
        if (areaB.contains(x,y)) {
            System.out.println ("Point belongs to the area.");
            System.out.println ("Point does not belong to the area
                .");
       }
    }
    // Finally, some useful things we didn't use in this example:
    //
         Ellipse2D.Double\ ellipse=new\ Ellipse2D.Double\ (double\ x
        , double y,
                                                           double w
        , double h);
           creates an ellipse inscribed in box with bottom-left
        corner(x,y)
          and upper-right corner (x+y, w+h)
    //
    // Rectangle2D.Double rect = new Rectangle2D.Double (double
        x, double y,
    //
                                                            double
        w. double h):
    //
    //
           creates a box with bottom-left corner (x,y) and upper-
        right
           corner (x+y, w+h)
    // Each of these can be embedded in an Area object (e.g., new
        Area (rect).
}
```

2.4 3D geometry

```
public class Geom3D {
   // distance from point (x, y, z) to plane aX + bY + cZ + d = 0
   public static double ptPlaneDist(double x, double y, double z,
        double a, double b, double c, double d) {
      return Math.abs(a*x + b*y + c*z + d) / Math.sqrt(a*a + b*b + c*c);
   }

   // distance between parallel planes aX + bY + cZ + d1 = 0 and
   // aX + bY + cZ + d2 = 0
   public static double planePlaneDist(double a, double b, double c,
        double d1, double d2) {
      return Math.abs(d1 - d2) / Math.sqrt(a*a + b*b + c*c);
   }
}
```

```
// distance from point (px, py, pz) to line (x1, y1, z1)-(x2, y2, z2)
// (or ray, or segment; in the case of the ray, the endpoint is the
// first point)
public static final int LINE = 0;
public static final int SEGMENT = 1;
public static final int RAY = 2;
public static double ptLineDistSq(double x1, double y1, double z1,
    double x2, double y2, double z2, double px, double py, double pz
    int type) {
 double pd2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2);
 double x, y, z;
 if (pd2 == 0) {
    x = x1;
    y = y1;
   z = z1:
 } else {
    double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1) + (pz-z1)*(z2-z1))
        / pd2;
    x = x1 + u * (x2 - x1);
    y = y1 + u * (y2 - y1);
    z = z1 + u * (z2 - z1);
    if (type != LINE && u < 0) {
     x = x1;
     y = y1;
    if (type == SEGMENT && u > 1.0) {
     x = x2:
      y = y2;
      z = z2:
 return (x-px)*(x-px) + (y-py)*(y-py) + (z-pz)*(z-pz);
public static double ptLineDist(double x1, double y1, double z1,
    double x2, double y2, double z2, double px, double py, double pz
   int type) {
 return Math.sqrt(ptLineDistSq(x1, y1, z1, x2, y2, z2, px, py, pz,
```

2.5 Slow Delaunay triangulation

```
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from 0'Rourke, Computational Geometry in C)
//
// Running time: O(n^4)
//
// INPUT: x[] = x-coordinates
// y[] = y-coordinates
```

```
// OUTPUT: triples = a vector containing m triples of indices
                       corresponding to triangle vertices
#include < vector >
using namespace std;
typedef double T;
struct triple {
    int i, j, k;
   triple() {}
    triple(int i, int j, int k) : i(i), j(j), k(k) {}
};
vector<triple> delaunayTriangulation(vector<T>& x, vector<T>& y) {
        int n = x.size();
        vector <T> z(n);
        vector<triple> ret;
        for (int i = 0; i < n; i++)
            z[i] = x[i] * x[i] + y[i] * y[i];
        for (int i = 0; i < n-2; i++) {
            for (int j = i+1; j < n; j++) {
                for (int k = i+1; k < n; k++) {
                    if (j == k) continue;
                    double xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-y[i])
                        *(z[j]-z[i]);
                    double yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-x[i])
                        *(z[k]-z[i]):
                    double zn = (x[j]-x[i])*(y[k]-y[i]) - (x[k]-x[i])
                        *(y[j]-y[i]);
                    bool flag = zn < 0;
                    for (int m = 0; flag && m < n; m++)
                        flag = flag && ((x[m]-x[i])*xn +
                                        (y[m]-y[i])*yn +
                                        (z[m]-z[i])*zn <= 0);
                    if (flag) ret.push_back(triple(i, j, k));
                }
            }
        return ret;
int main()
    T xs[]={0, 0, 1, 0.9};
    T ys[]={0, 1, 0, 0.9};
    vector <T> x(&xs[0], &xs[4]), y(&ys[0], &ys[4]);
    vector<triple> tri = delaunayTriangulation(x, y);
    //expected: 0 1 3
        0 3 2
    int i;
    for(i = 0; i < tri.size(); i++)
        printf("%d %d %d\n", tri[i].i, tri[i].j, tri[i].k);
    return 0;
```

3 Numerical algorithms

3.1 Number theory (modular, Chinese remainder, linear Diophantine)

```
\parallel // This is a collection of useful code for solving problems that
// involve modular linear equations. Note that all of the
 // algorithms described here work on nonnegative integers.
#include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;
 typedef vector <int> VI;
 typedef pair < int , int > PII;
 // return a % b (positive value)
 int mod(int a, int b) {
  return ((a\%b)+b)\%b;
 // computes qcd(a,b)
int gcd(int a, int b) {
  int tmp;
   while(b){a%=b; tmp=a; a=b; b=tmp;}
   return a;
 // computes lcm(a,b)
int lcm(int a, int b) {
  return a/gcd(a,b)*b;
 // returns d = gcd(a,b); finds x,y such that d = ax + by
int extended_euclid(int a, int b, int &x, int &y) {
  int xx = y = 0;
  int yy = x = 1;
  while (b) {
    int q = a/b;
    int t = b; b = a%b; a = t;
   t = xx; xx = x-q*xx; x = t;
     t = yy; yy = y-q*yy; y = t;
   return a;
 // finds all solutions to ax = b \pmod{n}
VI modular_linear_equation_solver(int a, int b, int n) {
  int x, y;
  VI solutions;
  int d = extended_euclid(a, n, x, y);
  if (!(b%d)) {
    x = mod (x*(b/d), n);
    for (int i = 0: i < d: i++)
       solutions.push_back(mod(x + i*(n/d), n));
```

```
return solutions:
}
// computes b such that ab = 1 \pmod{n}, returns -1 on failure
int mod_inverse(int a, int n) {
 int x, y;
  int d = extended euclid(a, n, x, v):
 if (d > 1) return -1;
 return mod(x,n):
// Chinese remainder theorem (special case): find z such that
//z % x = a, z % y = b. Here, z is unique modulo M = lcm(x,y).
// Return (z,M). On failure, M = -1.
PII chinese_remainder_theorem(int x, int a, int y, int b) {
  int d = extended_euclid(x, y, s, t);
 if (a\%d != b\%d) return make_pair(0, -1);
 return make_pair(mod(s*b*x+t*a*y,x*y)/d, x*y/d);
// Chinese remainder theorem: find z such that
//z % x[i] = a[i] for all i. Note that the solution is
// unique modulo M = lcm_i(x[i]). Return (z,M). On
// failure, M = -1. Note that we do not require the a[i]'s
// to be relatively prime.
PII chinese_remainder_theorem(const VI &x, const VI &a) {
 PII ret = make_pair(a[0], x[0]);
 for (int i = 1; i < x.size(); i++) {
    ret = chinese_remainder_theorem(ret.second, ret.first, x[i], a[i])
    if (ret.second == -1) break;
  return ret;
// computes x and y such that ax + by = c; on failure, x = y = -1
void linear diophantine(int a. int b. int c. int &x. int &v) {
 int d = gcd(a,b);
 if (c%d) {
   x = y = -1;
  } else {
   x = c/d * mod_inverse(a/d, b/d);
    y = (c-a*x)/b;
int main() {
  // expected: 2
  cout << gcd(14, 30) << endl;</pre>
  // expected: 2 -2 1
  int x, y;
  int d = extended_euclid(14, 30, x, y);
  cout << d << " " << x << " " << y << endl;
  // expected: 95 45
  VI sols = modular_linear_equation_solver(14, 30, 100);
  for (int i = 0; i < (int) sols.size(); i++) cout << sols[i] << " ":
```

```
cout << endl;

// expected: 8
cout << mod_inverse(8, 9) << endl;

// expected: 23 56

// 11 12
int xs[] = {3, 5, 7, 4, 6};
int as[] = {2, 3, 2, 3, 5};

PII ret = chinese_remainder_theorem(VI (xs, xs+3), VI(as, as+3));
cout << ret.first << " " << ret.second << endl;
ret = chinese_remainder_theorem (VI(xs+3, xs+5), VI(as+3, as+5));
cout << ret.first << " " << ret.second << endl;
// expected: 5 -15
linear_diophantine(7, 2, 5, x, y);
cout << x << " " << y << endl;
}</pre>
```

3.2 Systems of linear equations, matrix inverse, determinant

```
// Gauss-Jordan elimination with full pivoting.
11
 // Uses:
 // (1) solving systems of linear equations (AX=B)
     (2) inverting matrices (AX=I)
     (3) computing determinants of square matrices
 // Running time: O(n^3)
 // INPUT:
              a \lceil \rceil \lceil \rceil = an nxn matrix
              b \lceil \rceil \lceil \rceil = an nxm matrix
 // OUTPUT: X
                  = an nxm matrix (stored in b[][])
              A^{-1} = an nxn matrix (stored in a[][])
              returns determinant of a[][]
 #include <iostream>
 #include <vector>
 #include <cmath>
 using namespace std;
 const double EPS = 1e-10;
 typedef vector <int> VI;
 typedef double T;
 typedef vector <T> VT;
 typedef vector < VT > VVT;
T GaussJordan(VVT &a. VVT &b) {
  const int n = a.size():
   const int m = b[0].size();
   VI irow(n), icol(n), ipiv(n);
   T det = 1;
   for (int i = 0; i < n; i++) {
     int p_{j} = -1, p_{k} = -1;
     for (int j = 0; j < n; j++) if (!ipiv[j])
```

```
for (int k = 0; k < n; k++) if (!ipiv[k])
        if (pj == -1 \mid | fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk}
    if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl
        ; exit(0); }
    ipiv[pk]++;
    swap(a[pi], a[pk]);
    swap(b[pi], b[pk]);
   if (pj != pk) det *= -1;
    irow[i] = pj;
   icol[i] = pk;
    T c = 1.0 / a[pk][pk];
   det *= a[pk][pk];
    a[pk][pk] = 1.0;
    for (int p = 0; p < n; p++) a[pk][p] *= c;
    for (int p = 0; p < m; p++) b[pk][p] *= c;
   for (int p = 0; p < n; p++) if (p != pk) {
     c = a[p][pk];
     a[p][pk] = 0;
     for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
     for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
   }
 }
 for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) {
   for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);</pre>
 return det;
int main() {
 const int n = 4;
 const int m = 2:
 double A[n][n] = \{ \{1,2,3,4\}, \{1,0,1,0\}, \{5,3,2,4\}, \{6,1,4,6\} \};
 double B[n][m] = \{\{1,2\},\{4,3\},\{5,6\},\{8,7\}\};
 VVT a(n), b(n):
 for (int i = 0; i < n; i++) {
   a[i] = VT(A[i], A[i] + n);
   b[i] = VT(B[i], B[i] + m);
  double det = GaussJordan(a, b);
 // expected: 60
 cout << "Determinant: " << det << endl;</pre>
 // expected: -0.233333 0.166667 0.133333 0.0666667
 //
               0.166667 0.166667 0.333333 -0.333333
 //
               0.233333 0.833333 -0.133333 -0.0666667
               0.05 -0.75 -0.1 0.2
  cout << "Inverse: " << endl;</pre>
 for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++)
     cout << a[i][j] << ', ';
    cout << endl;</pre>
  // expected: 1.63333 1.3
```

```
// -0.166667 0.5
// 2.36667 1.7
// -1.85 -1.35
cout << "Solution: " << endl;
for (int i = 0; i < n; i++) {
  for (int j = 0; j < m; j++)
     cout << b[i][j] << ' ';
  cout << endl;
}
</pre>
```

3.3 Reduced row echelon form, matrix rank

```
// Reduced row echelon form via Gauss-Jordan elimination
// with partial pivoting. This can be used for computing
 // the rank of a matrix.
 //
// Running time: O(n^3)
 //
 //INPUT: a[][] = an nxm matrix
 //
 // OUTPUT: rref[][] = an nxm matrix (stored in a[][])
              returns rank of a[][]
#include <iostream>
 #include <vector>
 #include <cmath>
 using namespace std;
 const double EPSILON = 1e-10;
 typedef double T;
 typedef vector <T> VT;
 typedef vector < VT > VVT;
 int rref(VVT &a) {
  int n = a.size();
  int m = a[0].size():
  int \mathbf{r} = 0:
  for (int c = 0; c < m && r < n; c++) {
    int j = r;
     for (int i = r+1; i < n; i++)
      if (fabs(a[i][c]) > fabs(a[j][c])) j = i;
     if (fabs(a[j][c]) < EPSILON) continue;</pre>
     swap(a[j], a[r]);
     T s = 1.0 / a[r][c];
     for (int j = 0; j < m; j++) a[r][j] *= s;
     for (int i = 0; i < n; i++) if (i != r) {
      T t = a[i][c];
      for (int j = 0; j < m; j++) a[i][j] -= t * a[r][j];
     }
     r++;
   return r;
 int main(){
  const int n = 5;
```

```
const int m = 4:
double A[n][m] = {
    {16,2,3,13},{5,11,10,8},{9,7,6,12},{4,14,15,1},{13,21,21,13}};
VVT a(n):
for (int i = 0; i < n; i++)
  a[i] = VT(A[i], A[i] + n);
int rank = rref (a);
// expected: 4
cout << "Rank: " << rank << endl;</pre>
// expected: 1 0 0 1
             0 1 0 3
//
//
             0 \ 0 \ 1 \ -3
//
             0 0 0 2.78206e-15
//
             0 0 0 3.22398e-15
cout << "rref: " << endl;</pre>
for (int i = 0; i < 5; i++){
  for (int j = 0; j < 4; j++)
    cout << a[i][j] << ', ';
  cout << endl;</pre>
```

3.4 Fast Fourier transform

```
#include <cassert>
#include <cstdio>
#include <cmath>
struct cpx
  cpx(){}
  cpx(double aa):a(aa){}
  cpx(double aa, double bb):a(aa),b(bb){}
  double a;
  double b:
  double modsq(void) const
    return a * a + b * b;
  cpx bar(void) const
    return cpx(a, -b);
};
cpx operator +(cpx a, cpx b)
 return cpx(a.a + b.a, a.b + b.b);
cpx operator *(cpx a, cpx b)
 return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
}
cpx operator /(cpx a, cpx b)
```

```
return cpx(r.a / b.modsq(), r.b / b.modsq());
cpx EXP(double theta)
  return cpx(cos(theta), sin(theta));
const double two_pi = 4 * acos(0);
// in:
           input array
// out:
           output array
// step: {SET TO 1} (used internally)
// size: length of the input/output {MUST BE A POWER OF 2}
           either plus or minus one (direction of the FFT)
// RESULT: out [k] = \sum_{j=0}^{n} \{size - 1\} in [j] * exp(dir * 2pi * i * jet)
    j * k / size)
void FFT(cpx *in, cpx *out, int step, int size, int dir)
  if(size < 1) return;</pre>
  if(size == 1)
    out[0] = in[0];
   return;
  FFT(in, out, step * 2, size / 2, dir);
  FFT(in + step, out + size / 2, step * 2, size / 2, dir);
  for(int i = 0; i < size / 2; i++)
    cpx even = out[i];
    cpx odd = out[i + size / 2];
    out[i] = even + EXP(dir * two_pi * i / size) * odd;
    out[i + size / 2] = even + EXP(dir * two_pi * (i + size / 2) /
        size) * odd:
  }
// Usage:
// f[0...N-1] and q[0...N-1] are numbers
// Want to compute the convolution h, defined by
// h[n] = sum \ of \ f[k]q[n-k] \ (k = 0, ..., N-1).
// Here, the index is cyclic; f[-1] = f[N-1], f[-2] = f[N-2], etc.
// Let F[0...N-1] be FFT(f), and similarly, define G and H.
| / / The convolution theorem says <math>H[n] = F[n]G[n] (element-wise product)
// To compute h[] in O(N \log N) time, do the following:
// 1. Compute F and G (pass dir = 1 as the argument).
// 2. Get H by element-wise multiplying F and G.
// 3. Get h by taking the inverse FFT (use dir = -1 as the argument)
        and *dividing by N*. DO NOT FORGET THIS SCALING FACTOR.
int main(void)
  printf("If rows come in identical pairs, then everything works.\n");
  cpx a[8] = \{0, 1, cpx(1,3), cpx(0,5), 1, 0, 2, 0\};
  cpx b[8] = \{1, cpx(0,-2), cpx(0,1), 3, -1, -3, 1, -2\};
  cpx A[8];
```

```
cpx B[8]:
FFT(a, A, 1, 8, 1);
FFT(b, B, 1, 8, 1);
for (int i = 0; i < 8; i++)
  printf("%7.21f%7.21f", A[i].a, A[i].b);
printf("\n");
for(int i = 0; i < 8; i++)
  cpx Ai(0,0);
  for(int j = 0; j < 8; j++)
    Ai = Ai + a[j] * EXP(j * i * two_pi / 8);
  printf("%7.21f%7.21f", Ai.a, Ai.b);
printf("\n");
cpx AB[8];
for (int i = 0; i < 8; i++)
 AB[i] = A[i] * B[i];
cpx aconvb[8];
FFT (AB, aconvb, 1, 8, -1);
for (int i = 0; i < 8; i++)
  aconvb[i] = aconvb[i] / 8;
for (int i = 0; i < 8; i++)
  printf("%7.21f%7.21f", aconvb[i].a, aconvb[i].b);
printf("\n");
for (int i = 0; i < 8; i++)
  cpx aconvbi(0,0);
 for(int j = 0; j < 8; j++)
   aconvbi = aconvbi + a[j] * b[(8 + i - j) % 8];
  printf("%7.21f%7.21f", aconvbi.a, aconvbi.b);
printf("\n");
return 0;
```

3.5 Simplex algorithm

```
\parallel \ / \  Two-phase simplex algorithm for solving linear programs of the form
11
//
        maximize
                      c \hat{T} x
 //
        subject to Ax <= b
 //
                      x >= 0
 //
// INPUT: A -- an m x n matrix
//
           b -- an m-dimensional vector
//
           c -- an n-dimensional vector
11
           x -- a vector where the optimal solution will be stored
//
 // OUTPUT: value of the optimal solution (infinity if unbounded
```

```
above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
#include <limits>
using namespace std;
// BEGIN CUT
#define ACM_assert(x) {if(!(x))*((long *)0)=666;}
//#define TEST_LEAD_OR_GOLD
#define TEST HAPPINESS
// END CUT
typedef long double DOUBLE;
typedef vector < DOUBLE > VD;
typedef vector <VD> VVD;
typedef vector <int> VI;
const DOUBLE EPS = 1e-9;
struct LPSolver {
 int m, n;
 VI B, N;
  VVD D;
  LPSolver(const VVD &A, const VD &b, const VD &c):
    m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, VD(n+2)) {
    for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] =
        A[i][j];
    for (int i = 0: i < m: i++) { B[i] = m+i: D[i][m] = -1: D[i][m+1]
        = b[i]: 
    for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
    N[n] = -1; D[m+1][n] = 1;
  void Pivot(int r, int s) {
   for (int i = 0; i < m+2; i++) if (i != r)
      for (int j = 0; j < n+2; j++) if (j != s)
        D[i][j] -= D[r][j] * D[i][s] / D[r][s];
    for (int j = 0; j < n+2; j++) if (j != s) D[r][j] /= D[r][s];
    for (int i = 0; i < m+2; i++) if (i != r) D[i][s] /= -D[r][s];
    D[r][s] = 1.0 / D[r][s];
    swap(B[r], N[s]);
  bool Simplex(int phase) {
    int x = phase == 1 ? m+1 : m;
    while (true) {
      int s = -1:
      for (int j = 0; j \le n; j++) {
        if (phase == 2 && N[j] == -1) continue;
        if (s == -1 \mid \mid D[x][j] < D[x][s] \mid \mid D[x][j] == D[x][s] && N[j]
             < N[s]) s = j;
      if (D[x][s] >= -EPS) return true;
```

```
int r = -1;
      for (int i = 0; i < m; i++) {
        if (D[i][s] <= EPS) continue;</pre>
        if (r == -1 \mid \mid D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s] \mid \mid
            D[i][n+1] / D[i][s] == D[r][n+1] / D[r][s] && B[i] < B[r]
      if (r == -1) return false;
      Pivot(r, s);
    }
  }
  DOUBLE Solve(VD &x) {
    int \mathbf{r} = 0:
    for (int i = 1: i < m: i++) if (D[i][n+1] < D[r][n+1]) r = i:
    if (D[r][n+1] \leftarrow -EPS) {
      Pivot(r. n):
      if (!Simplex(1) || D[m+1][n+1] < -EPS) return -numeric_limits <
          DOUBLE >:: infinity():
      for (int i = 0; i < m; i++) if (B[i] == -1) {
        int s = -1;
        for (int j = 0; j \le n; j++)
          if (s == -1 \mid | D[i][i] < D[i][s] \mid | D[i][i] == D[i][s] && N[
              i] < N[s]) s = i;
        Pivot(i, s);
    if (!Simplex(2)) return numeric_limits < DOUBLE >:: infinity();
    x = VD(n):
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];
    return D[m][n+1];
  // BEGIN CUT
  void Print() {
    cout << "N = ": for (int i = 0: i < N.size(): i++) printf("%8d". N
        [i]): cout << endl:</pre>
    cout << "B = "; for (int i = 0; i < B.size(); i++) printf("%8d", B</pre>
        [i]): cout << endl:</pre>
    cout << endl;</pre>
    for (int i = 0; i < D.size(); i++) {
      for (int j = 0; j < D[i].size(); j++) {
        printf("%8.2f", double(D[i][j]));
      printf("\n");
    printf("\n");
  // END CUT
}:
// BEGIN CUT
#ifdef TEST_HAPPINESS
int main() {
 int n. m:
  while (cin >> n >> m) {
    ACM_assert(3 \le n \&\& n \le 20);
    ACM_assert(3 <= m && m <= 20);
    VVD A(m, VD(n));
    VD b(m), c(n);
```

```
for (int i = 0; i < n; i++) {
      cin >> c[i];
      ACM_assert(c[i] >= 0);
      ACM assert(c[i] <= 10):
    for (int i = 0; i < m; i++) {
      for (int j = 0; j < n; j++)
       cin >> A[i][i];
      cin >> b[i];
      ACM_assert(b[i] >= 0);
      ACM_assert(b[i] <= 1000);</pre>
    LPSolver solver(A, b, c);
    DOUBLE primal_answer = m * solver.Solve(sol);
    VVD AT(A[0].size(), VD(A.size()));
    for (int i = 0; i < A.size(); i++)
      for (int j = 0; j < A[0].size(); j++)
        AT[i][i] = -A[i][i];
    for (int i = 0; i < c.size(); i++)
      c[i] = -c[i];
    for (int i = 0; i < b.size(); i++)
      b[i] = -b[i];
    LPSolver solver2(AT, c, b);
    DOUBLE dual_answer = -m * solver2.Solve(sol);
    ACM_assert(fabs(primal_answer - dual_answer) < 1e-10);</pre>
    int primal_rounded_answer = (int) ceil(primal_answer);
    int dual_rounded_answer = (int) ceil(dual_answer);
    // The following assert fails b/c of the input data.
    // ACM_assert(primal_rounded_answer == dual_rounded_answer);
    cout << "Nasa can spend " << primal_rounded_answer << " taka." <</pre>
        endl:
#ifdef TEST_LEAD_OR_GOLD
int main() {
 int n;
 int ct = 0:
 while (cin >> n) {
   if (n == 0) break:
   VVD A(6. VD(n)):
   VD b(6), c(n, -1);
    for (int i = 0; i < n; i++) {
     for (int i = 0; i < 3; i++) {
        cin >> A[j][i]; A[j+3][i] = -A[j][i];
    for (int i = 0; i < 3; i++) {
     cin >> b[i]; b[i+3] = -b[i];
    if (ct > 0) cout << endl;
    cout << "Mixture " << ++ct << endl;</pre>
```

```
LPSolver solver(A. b. c):
     double obj = solver.Solve(x);
     if (isfinite(obj)) {
      cout << "Possible" << endl;</pre>
    } else {
       cout << "Impossible" << endl;</pre>
    }
  }
  return 0;
#else
// END CUT
int main() {
  const int m = 4:
  const int n = 3;
  DOUBLE A[m][n] = \{
    \{ 6, -1, 0 \},
    \{-1, -5, 0\},
    { 1, 5, 1 },
    \{-1, -5, -1\}
  DOUBLE _b[m] = \{ 10, -4, 5, -5 \};
  DOUBLE _c[n] = \{ 1, -1, 0 \};
  VVD A(m):
  VD b(_b, _b + m);
  VD c(_c, _c + n);
  for (int i = 0; i < m; i++) A[i] = VD(_A[i], _A[i] + n);
  LPSolver solver(A, b, c);
  VD x;
  DOUBLE value = solver.Solve(x);
  cerr << "VALUE: "<< value << endl;</pre>
  cerr << "SOLUTION:":</pre>
  for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
  cerr << endl:
  return 0;
// BEGIN CUT
#endif
#endif
// END CUT
```

4 Graph algorithms

4.1 Fast Dijkstraś algorithm

```
// Implementation of Dijkstra's algorithm using adjacency lists // and priority queue for efficiency. // // Running time: O(|E| \log |V|) #include <queue> #include <stdio.h>
```

```
using namespace std:
const int INF = 2000000000;
typedef pair<int,int> PII;
int main(){
 int N, s, t;
 scanf ("%d%d%d", &N, &s, &t);
 vector < vector < PII > > edges(N);
 for (int i = 0; i < N; i++){
   int M;
   scanf ("%d", &M);
   for (int j = 0; j < M; j++){
     int vertex, dist;
      scanf ("%d%d", &vertex, &dist);
      edges[i].push_back (make_pair (dist, vertex)); // note order of
          arguments here
 }
 // use priority queue in which top element has the "smallest"
 priority_queue <PII, vector <PII>, greater <PII> > Q;
 vector < int > dist(N, INF), dad(N, -1);
 Q.push (make_pair (0, s));
 dist[s] = 0;
 while (!Q.empty()){
   PII p = Q.top();
   if (p.second == t) break;
   Q.pop();
   int here = p.second;
   for (vector <PII >:: iterator it = edges [here].begin(); it! = edges [here
       ].end(); it++){
      if (dist[here] + it->first < dist[it->second]){
        dist[it->second] = dist[here] + it->first:
        dad[it->second] = here;
        Q.push (make_pair (dist[it->second], it->second));
   }
 printf ("%d\n", dist[t]);
 if (dist[t] < INF)</pre>
   for(int i=t;i!=-1;i=dad[i])
      printf ("%d%c", i, (i==s?'\n':' '));
 return 0:
```

4.2 Strongly connected components

```
#include<memory.h>
struct edge{int e, nxt;};
int V, E;
edge e[MAXE], er[MAXE];
int sp[MAXV], spr[MAXV];
int group_cnt, group_num[MAXV];
bool v[MAXV];
int stk[MAXV];
```

```
void fill forward(int x)
 int i;
 v[x]=true:
 for(i=sp[x];i;i=e[i].nxt) if(!v[e[i].e]) fill_forward(e[i].e);
 stk[++stk[0]]=x:
void fill_backward(int x)
 v[x]=false;
 group_num[x]=group_cnt;
 for(i=spr[x];i;i=er[i].nxt) if(v[er[i].e]) fill_backward(er[i].e);
void add_edge(int v1, int v2) //add edge v1->v2
 e [++E].e=v2; e [E].nxt=sp [v1]; sp [v1]=E;
 er[ E].e=v1; er[E].nxt=spr[v2]; spr[v2]=E;
void SCC()
 int i;
 stk[0]=0;
 memset(v, false, sizeof(v));
 for(i=1;i<=V;i++) if(!v[i]) fill_forward(i);</pre>
 group_cnt=0;
 for(i=stk[0];i>=1;i--) if(v[stk[i]]){group_cnt++; fill_backward(stk[
```

4.3 Eulerian path

```
struct Edge;
typedef list<Edge>::iterator iter;
struct Edge
        int next vertex:
        iter reverse_edge;
        Edge(int next_vertex)
                :next_vertex(next_vertex)
                { }
};
const int max_vertices = ;
int num vertices:
list < Edge > adj[max_vertices];
                                      // adjacency list
vector < int > path;
void find_path(int v)
        while(adj[v].size() > 0)
                int vn = adj[v].front().next_vertex;
                adj[vn].erase(adj[v].front().reverse_edge);
                adi[v].pop front():
                find_path(vn);
```

```
path.push_back(v);
}

void add_edge(int a, int b)
{
      adj[a].push_front(Edge(b));
      iter ita = adj[a].begin();
      adj[b].push_front(Edge(a));
      iter itb = adj[b].begin();
      ita->reverse_edge = itb;
      itb->reverse_edge = ita;
}
```

5 Data structures

5.1 Suffix array

```
\parallel // Suffix array construction in O(L log^2 L) time. Routine for
// computing the length of the longest common prefix of any two
// suffixes in O(\log L) time.
//
// INPUT: string s
 // OUTPUT: array suffix[] such that <math>suffix[i] = index (from 0 to L-1)
             of substring s[i...L-1] in the list of sorted suffixes.
 //
             That is, if we take the inverse of the permutation suffix
     [],
             we get the actual suffix array.
 #include <vector>
 #include <iostream>
#include <string>
 using namespace std;
 struct SuffixArray {
  const int L:
  string s:
   vector < vector < int > > P;
   vector <pair < int , int > , int > > M;
   SuffixArray(const string &s): L(s.length()), s(s), P(1, vector<int
      >(L, 0)), M(L) {
     for (int i = 0; i < L; i++) P[0][i] = int(s[i]);
     for (int skip = 1, level = 1; skip < L; skip *= 2, level++) {
       P.push_back(vector < int > (L, 0));
       for (int i = 0; i < L; i++)
         M[i] = make_pair(make_pair(P[level-1][i], i + skip < L ? P[
             level-1][i + skip] : -1000), i);
       sort(M.begin(), M.end());
       for (int i = 0: i < L: i++)
         P[level][M[i].second] = (i > 0 && M[i].first == M[i-1].first)
             ? P[level][M[i-1].second] : i:
   vector<int> GetSuffixArray() { return P.back(); }
```

```
// returns the length of the longest common prefix of s[i...L-1] and
       s[i...L-1]
  int LongestCommonPrefix(int i, int j) {
    int len = 0:
    if (i == j) return L - i;
   for (int k = P.size() - 1; k >= 0 && i < L && j < L; k--) {
     if (P[k][i] == P[k][j]) {
       i += 1 << k;
        i += 1 << k;
        len += 1 << k;
     }
   }
    return len;
};
// BEGIN CUT
// The following code solves UVA problem 11512: GATTACA.
#define TESTING
#ifdef TESTING
int main() {
 int T;
  cin >> T;
  for (int caseno = 0; caseno < T; caseno++) {
   string s;
   cin >> s;
   SuffixArray array(s);
    vector < int > v = array.GetSuffixArray();
    int bestlen = -1, bestpos = -1, bestcount = 0;
    for (int i = 0; i < s.length(); i++) {
     int len = 0, count = 0;
     for (int j = i+1; j < s.length(); j++) {
       int l = array.LongestCommonPrefix(i, j);
        if (1 >= len) {
          if (1 > len) count = 2: else count++:
          len = 1:
       }
      if (len > bestlen || len == bestlen && s.substr(bestpos, bestlen
         ) > s.substr(i, len)) {
        bestlen = len;
        bestcount = count;
        bestpos = i;
     }
    }
   if (bestlen == 0) {
     cout << "No repetitions found!" << endl;</pre>
      cout << s.substr(bestpos, bestlen) << " " << bestcount << endl;</pre>
  }
}
#else
// END CUT
int main() {
  // bobocel is the 0'th suffix
  // obocel is the 5'th suffix
  // bocel is the 1'st suffix
```

```
// ocel is the 6'th suffix
// cel is the 2'nd suffix
// el is the 3'rd suffix
// l is the 4'th suffix
SuffixArray suffix("bobocel");
vector<int> v = suffix.GetSuffixArray();

// Expected output: 0 5 1 6 2 3 4
// 2
for (int i = 0; i < v.size(); i++) cout << v[i] << " ";
cout << endl;
cout << suffix.LongestCommonPrefix(0, 2) << endl;
}
// BEGIN CUT
#endif
// END CUT</pre>
```

5.2 Binary Indexed Tree

```
| #include <iostream>
 using namespace std;
#define LOGSZ 17
int tree [(1<<LOGSZ)+1];
int N = (1 << LOGSZ):
 // add v to value at x
void set(int x, int v) {
 while (x \le N) {
    tree[x] += v;
    x += (x & -x);
// get cumulative sum up to and including x
 int get(int x) {
 int res = 0:
  while(x) {
    res += tree[x];
     x = (x & -x);
  return res;
 // get largest value with cumulative sum less than or equal to x;
 // for smallest, pass x-1 and add 1 to result
int getind(int x) {
 int idx = 0, mask = N;
  while (mask && idx < N) {
    int t = idx + mask:
    if(x >= tree[t]) {
      idx = t;
      x -= tree[t]:
    mask >>= 1;
  return idx;
```

5.3 Union-find set

```
//union-find set: the vector/array contains the parent of each node
int find(vector <int>& C, int x){return (C[x]==x) ? x : C[x]=find(C, C
        [x]);} //C++
int find(int x){return (C[x]==x)?x:C[x]=find(C[x]);} //C
```

5.4 KD-tree

```
// A straightforward, but probably sub-optimal KD-tree implmentation
// that's probably good enough for most things (current it's a
// 2D-tree)
// - constructs from n points in O(n lg^2 n) time
// - handles nearest-neighbor query in O(lq n) if points are well
// - worst case for nearest-neighbor may be linear in pathological
// case
//
// Sonny Chan, Stanford University, April 2009
// -----
#include <iostream>
#include <vector>
#include <limits>
#include <cstdlib>
using namespace std;
// number type for coordinates, and its maximum value
typedef long long ntype;
const ntype sentry = numeric_limits < ntype >:: max();
// point structure for 2D-tree, can be extended to 3D
struct point {
    ntype x, y;
    point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
};
bool operator == (const point &a, const point &b)
    return a.x == b.x && a.y == b.y;
}
// sorts points on x-coordinate
bool on_x(const point &a, const point &b)
    return a.x < b.x;
// sorts points on y-coordinate
bool on_y(const point &a, const point &b)
    return a.y < b.y;
// squared distance between points
ntype pdist2(const point &a, const point &b)
```

```
ntype dx = a.x-b.x, dy = a.y-b.y;
   return dx*dx + dy*dy;
// bounding box for a set of points
struct bbox
   ntype x0, x1, y0, y1;
   bbox(): x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
   // computes bounding box from a bunch of points
   void compute(const vector<point> &v) {
       for (int i = 0: i < v.size(): ++i) {
           x0 = min(x0, v[i].x); x1 = max(x1, v[i].x);
           y0 = min(y0, v[i].y); y1 = max(y1, v[i].y);
   }
   // squared distance between a point and this bbox, 0 if inside
   ntype distance(const point &p) {
       if (p.x < x0) {
           if (p.y < y0) return pdist2(point(x0, y0), p);
           else if (p.y > y1) return pdist2(point(x0, y1), p);
                               return pdist2(point(x0, p.y), p);
           else
        else if (p.x > x1) {
                               return pdist2(point(x1, y0), p);
           if (p.y < y0)
           else if (p.y > y1) return pdist2(point(x1, y1), p);
                               return pdist2(point(x1, p.y), p);
           e1se
        else {
                             return pdist2(point(p.x, y0), p);
           if (p.y < y0)
           else if (p.y > y1) return pdist2(point(p.x, y1), p);
           else
                               return 0:
       }
   }
// stores a single node of the kd-tree, either internal or leaf
struct kdnode
   bool leaf;
                  // true if this is a leaf node (has one point)
                 // the single point of this is a leaf
   point pt;
   bbox bound; // bounding box for set of points in children
   kdnode *first, *second; // two children of this kd-node
   kdnode() : leaf(false), first(0), second(0) {}
   ~kdnode() { if (first) delete first; if (second) delete second; }
   // intersect a point with this node (returns squared distance)
   ntype intersect(const point &p) {
       return bound.distance(p);
   // recursively builds a kd-tree from a given cloud of points
   void construct(vector < point > & vp)
```

```
// compute bounding box for points at this node
        bound.compute(vp);
        // if we're down to one point, then we're a leaf node
        if (vp.size() == 1) {
            leaf = true;
            pt = vp[0];
        else {
            // split on x if the bbox is wider than high (not best
                heuristic...)
            if (bound.x1-bound.x0 >= bound.y1-bound.y0)
                sort(vp.begin(), vp.end(), on_x);
            // otherwise split on y-coordinate
            else
                sort(vp.begin(), vp.end(), on_y);
            // divide by taking half the array for each child
            // (not best performance if many duplicates in the middle)
            int half = vp.size()/2;
            vector < point > vl(vp.begin(), vp.begin() + half);
            vector < point > vr(vp.begin() + half, vp.end());
            first = new kdnode(); first->construct(v1);
            second = new kdnode(); second->construct(vr);
        }
   }
};
// simple kd-tree class to hold the tree and handle queries
struct kdtree
   kdnode *root;
   // constructs a kd-tree from a points (copied here, as it sorts
   kdtree(const vector<point> &vp) {
       vector < point > v(vp.begin(), vp.end());
        root = new kdnode();
        root -> construct(v);
   "kdtree() { delete root; }
   // recursive search method returns squared distance to nearest
   ntype search(kdnode *node, const point &p)
        if (node->leaf) {
            // commented special case tells a point not to find itself
              if (p == node \rightarrow pt) return sentru:
//
              else
                return pdist2(p, node->pt);
        }
        ntype bfirst = node->first->intersect(p);
        ntype bsecond = node->second->intersect(p);
        // choose the side with the closest bounding box to search
        // (note that the other side is also searched if needed)
        if (bfirst < bsecond) {</pre>
```

```
ntype best = search(node->first, p);
            if (bsecond < best)</pre>
                best = min(best, search(node->second, p));
            return best:
        }
        else {
            ntype best = search(node->second, p);
            if (bfirst < best)</pre>
                best = min(best, search(node->first, p));
            return best;
       }
    }
    // squared distance to the nearest
   ntype nearest(const point &p) {
       return search(root, p);
};
// some basic test code here
int main()
    // generate some random points for a kd-tree
    vector < point > vp;
   for (int i = 0; i < 100000; ++i) {
        vp.push_back(point(rand()%100000, rand()%100000));
   kdtree tree(vp);
    // query some points
    for (int i = 0: i < 10: ++i) {
        point q(rand()%100000, rand()%100000);
        cout << "Closest squared distance to (" << q.x << ", " << q.y</pre>
           << ")"
             << " is " << tree.nearest(q) << endl;</pre>
   }
    return 0;
```

5.5 Splay tree

```
#include <cstdio>
#include <algorithm>
using namespace std;

const int N_MAX = 130010;
const int oo = 0x3f3f3f3f;
struct Node
{
   Node *ch[2], *pre;
   int val, size;
```

```
bool isTurned:
} nodePool[N_MAX], *null, *root;
Node *allocNode(int val)
  static int freePos = 0:
  Node *x = &nodePool[freePos ++]:
  x->val = val, x->isTurned = false;
  x \rightarrow ch[0] = x \rightarrow ch[1] = x \rightarrow pre = null;
  x->size = 1;
  return x;
inline void update(Node *x)
  x\rightarrow size = x\rightarrow ch[0]\rightarrow size + x\rightarrow ch[1]\rightarrow size + 1;
inline void makeTurned(Node *x)
  if(x == null)
    return:
  swap(x->ch[0], x->ch[1]);
  x->isTurned ^= 1;
inline void pushDown(Node *x)
  if(x->isTurned)
     makeTurned(x->ch[0]);
    makeTurned(x->ch[1]);
    x->isTurned ^= 1;
  }
}
inline void rotate(Node *x, int c)
  Node *y = x -> pre;
  x \rightarrow pre = y \rightarrow pre;
  if(y->pre != null)
    y - pre - ch[y == y - pre - ch[1]] = x;
  y \rightarrow ch[!c] = x \rightarrow ch[c];
  if(x->ch[c] != null)
    x \rightarrow ch[c] \rightarrow pre = y;
  x \rightarrow ch[c] = y, y \rightarrow pre = x;
  update(y);
  if(y == root)
    root = x:
}
void splay(Node *x, Node *p)
  while (x->pre != p)
    if(x->pre->pre == p)
       rotate(x, x == x->pre->ch[0]);
     else
       Node *y = x \rightarrow pre, *z = y \rightarrow pre;
```

```
if(v == z \rightarrow ch[0])
         if(x == v -> ch[0])
           rotate(y, 1), rotate(x, 1);
           rotate(x, 0), rotate(x, 1);
      else
         if(x == v -> ch[1])
           rotate(y, 0), rotate(x, 0);
         else
           rotate(x, 1), rotate(x, 0);
    }
  update(x);
void select(int k. Node *fa)
  Node *now = root;
  while(1)
    pushDown(now);
    int tmp = now \rightarrow ch[0] \rightarrow size + 1;
   if(tmp == k)
     break:
    else if (tmp < k)
      now = now -> ch[1], k -= tmp;
    else
      now = now -> ch[0];
  splay(now, fa);
Node *makeTree(Node *p, int 1, int r)
 if(1 > r)
   return null:
  int mid = (1 + r) / 2;
  Node *x = allocNode(mid);
  x \rightarrow pre = p;
  x \rightarrow ch[0] = makeTree(x, 1, mid - 1);
  x \rightarrow ch[1] = makeTree(x, mid + 1, r);
  update(x):
  return x;
int main()
 int n, m;
  null = allocNode(0);
  null \rightarrow size = 0:
  root = allocNode(0);
  root -> ch[1] = allocNode(oo);
  root -> ch [1] -> pre = root;
  update(root);
  scanf("%d%d", &n, &m);
```

```
root->ch[1]->ch[0] = makeTree(root->ch[1], 1, n);
splay(root->ch[1]->ch[0], null);

while(m --)
{
   int a, b;
   scanf("%d%d", &a, &b);
   a ++, b ++;
   select(a - 1, null);
   select(b + 1, root);
   makeTurned(root->ch[1]->ch[0]);
}

for(int i = 1; i <= n; i ++)
{
   select(i + 1, null);
   printf("%d ", root->val);
}
```

5.6 Lazy segment tree

```
public class SegmentTreeRangeUpdate {
        public long[] leaf:
        public long[] update;
        public int origSize;
        public SegmentTreeRangeUpdate(int[] list)
                origSize = list.length;
                leaf = new long[4*list.length];
                update = new long[4*list.length];
                build(1,0,list.length-1,list);
        public void build(int curr, int begin, int end, int[] list)
                if(begin == end)
                        leaf[curr] = list[begin];
                else
                        int mid = (begin+end)/2;
                        build(2 * curr, begin, mid, list);
                        build(2 * curr + 1, mid+1, end, list);
                        leaf[curr] = leaf[2*curr] + leaf[2*curr+1];
                }
        public void update(int begin, int end, int val) {
                update(1,0,origSize-1,begin,end,val);
        public void update(int curr, int tBegin, int tEnd, int begin,
             int end, int val)
                if(tBegin >= begin && tEnd <= end)</pre>
                        update[curr] += val;
                else
                        leaf[curr] += (Math.min(end.tEnd)-Math.max(
                            begin,tBegin)+1) * val;
                        int mid = (tBegin+tEnd)/2;
                        if (mid >= begin && tBegin <= end)
                                update(2*curr, tBegin, mid, begin, end
                                    , val);
                        if(tEnd >= begin && mid+1 <= end)
                                update(2*curr+1, mid+1, tEnd, begin,
                                    end. val):
```

```
public long query(int begin, int end) {
        return query(1,0,origSize-1,begin,end);
public long query(int curr, int tBegin, int tEnd, int begin,
    int end) {
        if (tBegin >= begin && tEnd <= end)
                if(update[curr] != 0) {
                         leaf[curr] += (tEnd-tBegin+1) * update
                         if(2*curr < update.length){</pre>
                                 update[2*curr] += update[curr
                                 update[2*curr+1] += update[
                         update[curr] = 0;
                return leaf [curr]:
        }
        else
                leaf[curr] += (tEnd-tBegin+1) * update[curr];
                if(2*curr < update.length){</pre>
                         update[2*curr] += update[curr];
                         update[2*curr+1] += update[curr];
                update[curr] = 0;
                int mid = (tBegin+tEnd)/2;
                long ret = 0;
                if(mid >= begin && tBegin <= end)</pre>
                         ret += query(2*curr, tBegin, mid,
                             begin, end);
                if(tEnd >= begin && mid+1 <= end)</pre>
                         ret += query(2*curr+1, mid+1, tEnd,
                             begin. end):
                return ret;
        }
}
```

5.7 Lowest common ancestor

```
const int max_nodes, log_max_nodes;
int num_nodes, log_num_nodes, root;
vector < int > children[max_nodes];
                                         // children[i] contains the
    children of node i
int A[max_nodes][log_max_nodes+1];
                                         // A[i][j] is the 2^{i-th}
    ancestor of node i, or -1 if that ancestor does not exist
int L[max_nodes];
                                         // L[i] is the distance
    between node i and the root
// floor of the binary logarithm of n
int lb(unsigned int n)
    if(n==0)
        return -1:
    int p = 0;
    if (n >= 1 << 16) \{ n >>= 16; p += 16; \}
```

```
if (n >= 1 << 8) { n >>= 8; p += 8; }
    if (n >= 1 << 4) \{ n >>= 4; p += 4; \}
    if (n >= 1 << 2) { n >>= 2; p += 2; }
    if (n >= 1 << 1) { p += 1; }
    return p;
}
void DFS(int i, int 1)
    L[i] = 1;
    for(int j = 0; j < children[i].size(); j++)</pre>
        DFS(children[i][j], 1+1);
}
int LCA(int p, int q)
    // ensure node p is at least as deep as node q
    if(L[p] < L[q])
        swap(p, q);
    // "binary search" for the ancestor of node p situated on the same
         level as q
    for(int i = log_num_nodes; i >= 0; i--)
        if(L[p] - (1 << i) >= L[q])
            p = A[p][i];
    if(p == q)
        return p;
    // "binary search" for the LCA
    for(int i = log_num_nodes; i >= 0; i--)
        if(A[p][i] != -1 && A[p][i] != A[q][i])
            p = A[p][i];
            q = A[q][i];
    return A[p][0];
int main(int argc,char* argv[])
    // read num_nodes, the total number of nodes
    log_num_nodes=lb(num_nodes);
    for(int i = 0; i < num_nodes; i++)</pre>
        // read p, the parent of node i or -1 if node i is the root
        A[i][0] = p;
        if(p != -1)
            children[p].push_back(i);
            root = i;
    7
    // precompute A using dynamic programming
    for(int j = 1; j <= log_num_nodes; j++)</pre>
        for(int i = 0; i < num_nodes; i++)</pre>
```

6 Miscellaneous

6.1 Longest increasing subsequence

```
\parallel / / Given a list of numbers of length n, this routine extracts a
// longest increasing subsequence.
// Running time: O(n log n)
   INPUT: a vector of integers
 // OUTPUT: a vector containing the longest increasing subsequence
#include <iostream>
#include <vector>
#include <algorithm>
 using namespace std;
 typedef vector <int> VI;
 typedef pair < int , int > PII;
 typedef vector <PII > VPII;
 #define STRICTLY_INCREASNG
 VI LongestIncreasingSubsequence(VI v) {
  VPII best:
  VI dad(v.size(), -1);
  for (int i = 0; i < v.size(); i++) {
 #ifdef STRICTLY_INCREASNG
     PII item = make_pair(v[i], 0);
     VPII::iterator it = lower_bound(best.begin(), best.end(), item);
     item.second = i;
#else
     PII item = make_pair(v[i], i);
     VPII::iterator it = upper_bound(best.begin(), best.end(), item);
 #endif
     if (it == best.end()) {
       dad[i] = (best.size() == 0 ? -1 : best.back().second):
       best.push_back(item);
    } else {
      dad[i] = dad[it->second]:
       *it = item;
     }
  }
   VI ret:
```

```
for (int i = best.back().second; i >= 0; i = dad[i])
   ret.push_back(v[i]);
   reverse(ret.begin(), ret.end());
   return ret;
}
```

6.2 Dates

```
// Routines for performing computations on dates. In these routines,
// months are expressed as integers from 1 to 12, days are expressed
// as integers from 1 to 31, and years are expressed as 4-digit
// integers.
#include <iostream>
#include <string>
 using namespace std;
 string davOfWeek[] = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
    };
 // converts Gregorian date to integer (Julian day number)
 int dateToInt (int m, int d, int y){
  return
    1461 * (y + 4800 + (m - 14) / 12) / 4 +
    367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
    3 * ((v + 4900 + (m - 14) / 12) / 100) / 4 +
    d - 32075;
// converts integer (Julian day number) to Gregorian date: month/day/
 void intToDate (int jd, int &m, int &d, int &y){
  int x, n, i, j;
  x = id + 68569;
  n = 4 * x / 146097;
  x = (146097 * n + 3) / 4;
  i = (4000 * (x + 1)) / 1461001:
  x = 1461 * i / 4 - 31:
  i = 80 * x / 2447;
  d = x - 2447 * j / 80;
  x = i / 11;
  m = j + 2 - 12 * x;
  y = 100 * (n - 49) + i + x;
 // converts integer (Julian day number) to day of week
 string intToDay (int jd){
 return dayOfWeek[jd % 7];
int main (int argc, char **argv){
  int jd = dateToInt (3, 24, 2004);
  int m. d. v:
  intToDate (jd, m, d, y);
  string day = intToDay (jd);
   // expected output:
   // 2453089
```

6.3 Regular expressions

```
| // Code which demonstrates the use of Java's regular expression
 // This is a solution for
 // Loglan: a logical language
 // http://acm.uva.es/p/v1/134.html
 // In this problem, we are given a regular language, whose rules can
 // inferred directly from the code. For each sentence in the input,
 // determine whether the sentence matches the regular expression or
 // code consists of (1) building the regular expression (which is
    fairly
 // complex) and (2) using the regex to match sentences.
 import java.util.*:
 import java.util.regex.*;
public class LogLan {
     public static String BuildRegex (){
         String space = " +";
         String A = "([aeiou])";
         String C = "([a-z\&\&[^aeiou]])";
         String MOD = (g'' + A + ")";
         String BA = "(b" + A + ")";
         String DA = (d'' + A + ")":
         String LA = "(1" + A + ")";
         String NAM = "([a-z]*" + C + ")";
         String PREDA = "(" + C + C + A + C + A + "|" + C + A + C + C +
              A + ")":
         String predstring = "(" + PREDA + "(" + space + PREDA + ")*)";
         String predname = "(" + LA + space + predstring + "|" + NAM +
         String preds = "(" + predstring + "(" + space + A + space +
             predstring + ")*)";
         String predclaim = "(" + predname + space + BA + space + preds
             + " | " + DA + space +
             preds + ")":
         String verbpred = "(" + MOD + space + predstring + ")";
         String statement = "(" + predname + space + verbpred + space +
             predname + "|" +
             predname + space + verbpred + ")";
         String sentence = "(" + statement + "|" + predclaim + ")";
         return "^" + sentence + "$";
```

```
public static void main (String args[]){
    String regex = BuildRegex():
    Pattern pattern = Pattern.compile (regex);
    Scanner s = new Scanner(System.in);
    while (true) {
        // In this problem, each sentence consists of multiple
            lines, where the last
        // line is terminated by a period. The code below reads
        // encountering a line whose final character is a '.'.
            Note the use of
        //
              s.length() to get length of string
        //
        //
              s.charAt() to extract characters from a Java string
           s.trim() to remove whitespace from the beginning and
             end of Java string
        //
        // Other useful String manipulation methods include
        //
        //
              s.compareTo(t) < 0 if s < t, lexicographically
           s.indexOf("apple") returns index of first occurrence
             of "apple" in s
        // s.lastIndexOf("apple") returns index of last
            occurrence of "apple" in s
              s.replace(c,d) replaces occurrences of character c
              s.startsWith("apple) returns (s.indexOf("apple") ==
              s.toLowerCase() / s.toUpperCase() returns a new
            lower/uppercased string
              Integer.parseInt(s) converts s to an integer (32-bit
        //
              Long.parseLong(s) converts s to a long (64-bit)
              Double.parseDouble(s) converts s to a double
        String sentence = "";
        while (true) {
            sentence = (sentence + " " + s.nextLine()).trim():
            if (sentence.equals("#")) return;
            if (sentence.charAt(sentence.length()-1) == '.') break
        }
        // now, we remove the period, and match the regular
            expression
        String removed_period = sentence.substring(0, sentence.
            length()-1).trim();
        if (pattern.matcher (removed_period).find()){
            System.out.println ("Good");
            System.out.println ("Bad!");
    }
```

6.4 Prime numbers

```
|| // O(sqrt(x))| Exhaustive Primality Test
#include <cmath>
 #define EPS 1e-7
 typedef long long LL:
 bool IsPrimeSlow (LL x)
   if(x<=1) return false;</pre>
   if(x<=3) return true;
   if (!(x\%2) \mid | !(x\%3)) return false;
   LL s=(LL)(sqrt((double)(x))+EPS);
   for(LL i=5;i<=s;i+=6)
     if (!(x\%i) \mid | !(x\%(i+2))) return false;
   return true:
 // Primes less than 1000:
          2
                3
                       5
                                   11
                                                17
                                                       19
                                                              23
                                                                    29
                                                                           31
         37
         41
               43
                      47
                             53
                                   59
                                          61
                                                67
                                                       71
                                                              73
                                                                    79
         89
        97
              101
                     103
                            107
                                  109
                                         113
                                               127
                                                      131
                                                             137
                                                                   139
                                                                          149
       151
        157
              163
                     167
                            173
                                  179
                                         181
                                               191
                                                      193
                                                             197
                                                                   199
                                                                          211
       223
       227
              229
                     233
                            239
                                  241
                                         251
                                                257
                                                      263
                                                             269
                                                                   271
                                                                          277
       281
       283
              293
                     307
                           311
                                  313
                                         317
                                               331
                                                      337
                                                             347
                                                                   349
                                                                          353
       359
       367
              373
                     379
                           383
                                  389
                                         397
                                                                   421
                                                                          431
                                               401
                                                      409
                                                             419
       433
                                         463
       439
                                                             487
                                                                   491
                                                                          499
              443
                     449
                            457
                                  461
                                                467
                                                      479
       503
       509
              521
                     523
                            541
                                  547
                                         557
                                               563
                                                      569
                                                             571
                                                                   577
                                                                          587
       593
                     607
       599
              601
                           613
                                  617
                                         619
                                               631
                                                      641
                                                             643
                                                                   647
                                                                          653
       659
       661
              673
                     677
                            683
                                  691
                                         701
                                               709
                                                      719
                                                             727
                                                                   733
                                                                          739
        743
        751
              757
                     761
                            769
                                  773
                                         787
                                                797
                                                      809
                                                             811
                                                                   821
                                                                          823
       827
                                               877
       829
              839
                     853
                           857
                                  859
                                         863
                                                      881
                                                             883
                                                                   887
                                                                          907
       911
                                                             977
       919
              929
                     937
                            941
                                  947
                                         953
                                               967
                                                      971
                                                                   983
                                                                          991
       997
 // Other primes:
       The largest prime smaller than 10 is 7.
 11
       The largest prime smaller than 100 is 97.
 //
       The largest prime smaller than 1000 is 997.
 //
       The largest prime smaller than 10000 is 9973.
 //
       The largest prime smaller than 100000 is 99991.
       The largest prime smaller than 1000000 is 999983.
        The largest prime smaller than 10000000 is 9999991.
 //
        The largest prime smaller than 100000000 is 99999989.
        The largest prime smaller than 1000000000 is 999999937.
```

6.5 C++ input/output

```
#include <iostream>
#include <iomanip>
using namespace std;
int main()
    // Ouput a specific number of digits past the decimal point,
    // in this case 5
    cout.setf(ios::fixed); cout << setprecision(5);</pre>
    cout << 100.0/7.0 << endl;</pre>
    cout.unsetf(ios::fixed):
    // Output the decimal point and trailing zeros
    cout.setf(ios::showpoint);
    cout << 100.0 << endl;</pre>
    cout.unsetf(ios::showpoint);
    // Output a '+' before positive values
    cout.setf(ios::showpos);
    cout << 100 << " " << -100 << endl;</pre>
    cout.unsetf(ios::showpos);
    // Output numerical values in hexadecimal
    cout << hex << 100 << " " << 1000 << " " << 10000 << dec << endl:
```

6.6 Knuth-Morris-Pratt

```
/*
Searches for the string w in the string s (of length k). Returns the
O-based index of the first match (k if no match is found). Algorithm
runs in O(k) time.
*/

#include <iostream>
#include <string>
#include <vector>
using namespace std;

typedef vector<int> VI;
```

```
void buildTable(string& w, VI& t)
 t = VI(w.length());
 int i = 2, j = 0;
 t[0] = -1; t[1] = 0;
  while(i < w.length())
   if(w[i-1] == w[j]) \{ t[i] = j+1; i++; j++; \}
    else if(j > 0) j = t[j];
    else { t[i] = 0; i++; }
int KMP(string& s, string& w)
 int m = 0, i = 0;
 VI t:
 buildTable(w, t);
 while(m+i < s.length())</pre>
   if(w[i] == s[m+i])
      i++;
     if(i == w.length()) return m;
    else
      m += i-t[i];
      if(i > 0) i = t[i];
 return s.length();
int main()
 string a = (string) "The example above illustrates the general
      technique for assembling "+
    "the table with a minimum of fuss. The principle is that of the
        overall search: "+
    "most of the work was already done in getting to the current
        position, so very "+
    "little needs to be done in leaving it. The only minor
        complication is that the "+
    "logic which is correct late in the string erroneously gives non-
    "substrings at the beginning. This necessitates some
        initialization code.":
  string b = "table";
  int p = KMP(a, b);
  cout << p << ": " << a.substr(p, b.length()) << " " << b << endl;</pre>
```

6.7 Latitude/longitude

```
Converts from rectangular coordinates to latitude/longitude and vice
versa. Uses degrees (not radians).
#include <iostream>
#include <cmath>
using namespace std;
struct 11
 double r, lat, lon;
};
struct rect
 double x, y, z;
}:
11 convert(rect& P)
 11 Q;
 Q.r = sqrt(P.x*P.x+P.y*P.y+P.z*P.z);
 Q.lat = 180/M_PI*asin(P.z/Q.r);
 Q.lon = 180/M_PI*acos(P.x/sqrt(P.x*P.x+P.y*P.y));
 return Q;
rect convert(11& 0)
 rect P:
 P.x = Q.r*cos(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);
 P.y = Q.r*sin(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);
 P.z = 0.r*sin(0.lat*M PI/180):
 return P;
int main()
 rect A:
 11 B;
 A.x = -1.0; A.y = 2.0; A.z = -3.0;
 B = convert(A):
  cout << B.r << " " << B.lat << " " << B.lon << endl:
  A = convert(B):
  cout << A.x << " " << A.y << " " << A.z << endl;
```

6.8 Emacs settings

```
;; Jack's .emacs file (global-set-key "\C-z" 'scroll-down)
```

```
(global-set-key "\C-x\C-p" '(lambda() (interactive) (other-window -1)
   ) )
(global-set-key "\C-x\C-o" 'other-window)
(global-set-key "\C-x\C-n" 'other-window)
(global-set-key "\M-."
                            'end-of-buffer)
(global-set-key "\M-,"
                            'beginning-of-buffer)
                            'goto-line)
(global-set-key "\M-g"
(global-set-key "\C-c\C-w" 'compare-windows)
(tool-bar-mode 0)
(scroll-bar-mode -1)
(global-font-lock-mode 1)
(show-paren-mode 1)
(setq-default c-default-style "linux")
(custom-set-variables
'(compare-ignore-whitespace t)
```