Last time we were considering the shortest path problem. We will be considering the same problem again today.

Recall that if there is a negative-weight cycle then a shortest path may not exist.

• We can repeatedly follow the cycle to reduce the length of our path.

When all of the edge weights are nonnegative then there certainly cannot exist a negative-weight cycle, and we considered Dijkstra's algorithm for single-source shortest path problem on such graphs.

It is possible to have graphs with negative edge weights but no negative cycles. Shortest paths are then well-defined. It would be nice to have an algorithm which could compute shortest paths for these types of graphs (and determine that there is a negative cycle if there is one).

-2

Such an algorithm is the **Bellman-Ford algorithm**. We again maintain a $\underline{d[v]}$ value for each vertex v (again an upper bound of $\delta(s, v)$).

- 1. $d[s] = 0, d[v] = \infty$ for all $v \neq s$.
- 2. For i = 1 to n 1
 - (a) For each edge (u, v), check if d[v] > d[u] + w(u, v). If so, then d[v] = d[u] + w(u, v).
- 3. For each edge (u, v), if d[v] > d[u] + w(u, v) then a negative cycle exists. If this is not true for each of the edges, then $d[v] = \delta(s, v)$.

order of Edges: (B,E), (D,B), (B,D), (A,B), (A,B), (A,C), (B,C), (E,D)

Example of Bellman-Ford:

Proof of correctness:

Theorem If the graph does not contain a regative cycle, then when Bellman-Ford terminans, we have $\int V = f(S,V)$ for all $V \in V$.

Proof

Let UEV be any vertex and consider a shortest path p from s to V with the minimum number of elges.

p: (Va) 3 (V₁) - (V₂) - (V₃) - ... - (V_n)

Since p is a Shortest path, we have f'(S, Vi) : f(S, Vi-1) + W(Vi-1, Vi)

(1.5) $f(S, V_3) \circ f(S, V_2) + w(V_2, V_3)$

Initially $d[v_0] = 0 = f(s, v_0)$. Also d[s] is unchanged by future iterations (ofw d[s] resarrive cycliq.

After I pars through e[s], we have $d[v_1] = d[s, v_0]$ If $e[s] = d[s, v_0]$ After $e[s] = d[s, v_0]$

Since Growhains no cycles, Pis simple. Therefore, there are at most n-1 edges in P. So after n-1 passes through E, we will have discovered P.

Corollary of Thm

If I[v] fails to Converge after N-1 passes,
there is a negative cycle in f which is
reachable from S.

Shortest paths on a directed acyclic graph (DAG):

- 1. Compute a topological sort.
- 2. Do one pass of Bellman-Ford (considering the edges "in order" according to the topological sort).

Summary of algorithms considered:

- Single-source shortest paths:
 - Nonnegative edge weights. Dijkstra: $O(m \log n)$
 - Arbitrary edge weights. Bellman-Ford: O(nm)
 - DAG: Bellman-Ford single pass: O(n+m)

Suppose now we want to compute the shortest paths between any two pairs of vertices. We could run each of the previous algorithms with n different sources to accomplish this:

- All-pairs shortest paths:
 - Nonnegative edge weights. Dijkstra n times: $O(nm \log n)$
 - Arbitrary edge weights. Bellman-Ford n times: $O(n^2m)$

In a dense graph, we have $m = \Omega(n^2)$, so thus far our best algorithm for all-pairs shortest paths with arbitrary edge weights would be $O(n^4)$. Can we do better?

The **Floyd-Warshall algorithm** is a dynamic programming algorithm for the all-pairs shortest path problem.

Suppose the graph is given as an adjacency matrix $A = (a_{ij})$ where a_{ij} is the weight of the edge from i to j.

Let $c_{ij}^{(k)}$ denote the weight of a shortest path from i to j with intermediate vertices on the path belonging to the set $\{1, 2, \ldots, k\}$.

• Note that $\delta(i,j) = c_{ij}^{(n)}$.

The algorithm is to show that $c_{ij}^{(k)}$ for each $1 \leq i, j, k \leq n$ can be computed using dynamic programming.

