## Лабораторная работа №3.6.1 Спектральный анализ электрических сигналов

Рожков А. В.

28 октября 2024 г.

**Цель работы:** изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки

**В работе используются:** генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

### 1 Теоретическое введение

#### 1.А Разложение сложных сигналов на периодические колебания

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой  $\Omega_1 = \frac{2\pi}{T}$ , где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$
(1)

Здесь  $\frac{a_0}{2}$  - среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt, \qquad (2)$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
(3)

Рассмотрим периодические функции, которые исследуются в нашей работе.

#### 1.А.1 Периодическая последовательность прямоугольных импульсов

(рис. 1) с амплитудой  $V_0$ , длительностью  $\tau$ , частотой повторения  $\Omega_1 = \frac{2\pi}{T}$ , где T - период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\frac{a_0}{2} = V_0 \frac{\tau}{T},$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}.$$
 (4)

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник  $b_n = 0$ . Спектр  $a_n$  последовательности прямоугольных импульсов представлен на рис. 2 (изображен случай, когда T кратно  $\tau$ ).

Назовем шириной спектра  $\Delta \omega$  расстояние от главного максимума ( $\omega=0$ ) до первого нуля огибающей, возникающего при  $n=\frac{2\pi}{\tau\Omega_1}$ . При этом

$$\Delta\omega\tau \simeq 2\pi$$

или

$$\Delta \nu \Delta t \simeq 1 \tag{5}$$



 $\delta\nu \downarrow \begin{array}{c} a(\nu) \\ \hline \\ & - \\ \hline \\ 0 \\ \hline \\ & \Delta\nu \rightarrow | - \Delta\nu \rightarrow | - \Delta\nu \rightarrow | \\ \hline \end{array}$ 

Рис. 1: Прямоугольные импульсы

Рис. 2: Спектр последовательности прямоугольных импульсов

Полученное соотношение взаимной связи интервалов  $\Delta \nu$  и  $\Delta t$  является частным случаем соотношения неопределенности в квантовой механике.

#### 1.А.2 Периодическая последовательность цугов

гармонического колебания  $V_0 \cos(\omega_0 t)$  с длительностью цуга  $\tau$  и периодом повторения T (рис. 3). Функция f(t) снова является четной относительно t=0. Коэффициент при n-й гармонике равен

$$a_{n} = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_{0} \cos(\omega_{0}t) \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left( \frac{\sin[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right)$$
(6)

Зависимость для случая, когда  $\frac{T}{\tau}$  равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину  $\omega_0$ .



Рис. 3: Последовательность цугов



Рис. 4: Спектр последовательности цугов

#### 1.А.3 Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты  $\omega_0$ , амплитуда которых медленно меняется по гармоническому закону с частотой  $\Omega$  ( $\Omega \ll \omega_0$ )) (рис. 5):

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t \tag{7}$$

Коэффициент m называют **глубиной модуляции**. При m<1 амплитуда колебаний меняется от минимальной  $A_{min}=A_0(1-m)$  до максимальной  $A_{max}=A_0(1+m)$ . Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{8}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно - модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t. \tag{9}$$



Рис. 5: Модулированные гармонические колебания



Рис. 6: Спектр модулированных гармонических колебаний

Спектр таких колебаний содержит три составляющих основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное немодулированное колебание с основной (несущей) частотой  $\omega_0$  и амплитудой  $a_{\rm och}=A_0$ . Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами  $\omega_0+\Omega$  и  $\omega_0-\Omega$ . Амплитуды этих двух колебаний одинаковы и составляют  $\frac{m}{2}$  от амплитуды немодулированного колебания:

 $a_{\text{бок}} = \frac{A_0 m}{2}$ . Начальные фазы всех трех колебаний одинаковы.

## 2 Ход работы

# 2.А Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённостей

#### 2.А.3 Настроим прямоугольный сигнал

$$\nu_{\text{повт}} = 1 \text{ к}\Gamma$$
ц,  $\tau = T/20 = 50 \text{ мкс}$ 

#### 2.А.4 Устойчивая картина на экране осциллографа

Снимок экрана на рисунке 7

#### 2.А.5 Спектр прямоугольного сигнала (преобразование Фурье)

Снимок экрана на рисунке 8

#### 2.А.6 Наблюдение изменений спектра при изменеии параметров сигнала

Результаты и параметра на рисунках 9, 10, 11, 12, 13, 14, 15





Рис. 7: Устойчивая картина прямоугольных им-Рис. 8: Спектр прямоугольных импульсов (преобпульсов разование Фурье)





Рис. 9: Спектр прямоугольного сигнала ( $\nu_{\text{повт}}=0.5~\text{к}\Gamma$ ц;  $\tau=50~\text{мкc})$ 

Рис. 10: Спектр прямоугольного сигнала  $(\nu_{\text{повт}}=1\ \text{к}\Gamma\text{ц};\ \tau=50\ \text{мкc})$ 

#### 2.А.7 Измерение параматров спектра

Теоретические формулы:

$$\nu_n^{\text{Teop}} = \frac{n}{T}, \qquad |a_n| = \frac{|\sin\frac{\pi n\tau}{T}|}{\pi n} = \frac{\tau}{T} \frac{|\sin\pi\nu_n\tau|}{\pi\nu_n\tau}$$

Результаты измерений и расчётов в таблице 1

#### 2.А.8 Измерение полной ширины спектра при различных длинах импульса

Зафиксируем T=1 мс. Результаты в таблице 2

## **2.**А.9 Измерение расстояния между соседними гармониками при различных периодах повторения сигнала

Зафиксируем  $\tau = 100$  мкс. Результаты в таблице 3

# 2.А.10 Графики зависимостей $\Delta\nu(1/\tau)$ и $\delta\nu(1/T).$ Проверка соотношений неопределённости

Графики на рисунках 16 и 17



Рис. 11: Спектр прямоугольного сигнала  $(\nu_{\text{повт}} = 1.5 \text{ к}\Gamma \text{ц}; \, \tau = 50 \text{ мкс})$ 



Рис. 12: Спектр прямоугольного сигнала  $(\nu_{\text{повт}} = 2 \text{ к}\Gamma \text{ц}; \, \tau = 50 \text{ мкс})$ 



Рис. 13: Спектр прямоугольного сигнала  $(\nu_{\text{повт}} = 1 \text{ к}\Gamma \text{ц}; \, \tau = 60 \text{ мкс})$ 



Рис. 14: Спектр прямоугольного сигнала  $(\nu_{\text{повт}} = 1 \text{ к}\Gamma$ ц;  $\tau = 70 \text{ мкс})$ 

| n                                               | 1                                     | 2                 | 3                                 | 4                   | 5                 |
|-------------------------------------------------|---------------------------------------|-------------------|-----------------------------------|---------------------|-------------------|
| $\nu_n^{\text{эксп}}, \kappa \Gamma$ ц          | $1.00 \pm 0.01$                       | $2.00 \pm 0.01$   | $3.00 \pm 0.01$                   | $4.00 \pm 0.01$     | $5.00 \pm 0.01$   |
| $ u_n^{\mathrm{reop}}, \kappa \Gamma$ ц         | 1                                     | 2                 | 3                                 | 4                   | 5                 |
| $ a_n ^{\mathfrak{s}_{\mathrm{KCH}}}$ , усл.ед. | $279.0 \pm 1.0$                       | $274.0 \pm 1.0$   | $269.0 \pm 1.0$                   | $261.0 \pm 1.0$     | $251.0 \pm 1.0$   |
| $ a_n/a_1 ^{\mathfrak{S}KC\Pi}$                 | $1.000 \pm 0.005$                     | $0.982 \pm 0.005$ | $0.964 \pm 0.005$                 | $0.935 \pm 0.005$   | $0.900 \pm 0.005$ |
| $ a_n/a_1 ^{\text{reop}}$                       | 1                                     | 0.987688          | 0.967371                          | 0.939347            | 0.904029          |
|                                                 | n                                     | 6                 | 7                                 | 8                   |                   |
|                                                 | $ u_n^{ m эксп}, { m к}\Gamma$ ц      | $6.00 \pm 0.01$   | $7.00 \pm 0.01$                   | $8.00 \pm 0.01$     |                   |
|                                                 | $\nu_n^{\text{теор}}$ , к $\Gamma$ ц  | 6                 | 7                                 | 0                   |                   |
|                                                 | $\nu_n$ , KI Ц                        | 6                 | 1                                 | 8                   |                   |
|                                                 | $ a_n ^{\mathfrak{S}KC\Pi}$ , усл.ед. | $239.0 \pm 1.0$   | $226.0 \pm 1.0$                   | $8$ $211.0 \pm 1.0$ |                   |
| -                                               | 10 '                                  |                   | $226.0 \pm 1.0$ $0.810 \pm 0.005$ |                     |                   |

Таблица 1: Параметры спектра прямоугольного сигнала

Проверим соотношения неопределённостей:  $\Delta \nu \sim \frac{1}{\tau}$  и  $\delta \nu \sim \frac{1}{T}$  По МНК коэффициенты:  $k_{\tau}=1.012\pm0.007;~k_{T}=1.021\pm0.003.$  Как видим соотношения выполняются с хорошей точностью.



Рис. 15: Спектр прямоугольного сигнала ( $\nu_{\text{повт}}=1\ \text{к}\Gamma$ ц;  $\tau=80\ \text{мкc})$ 



Рис. 16: График зависимости  $\Delta \nu(1/ au)$ 



Рис. 17: График зависимости  $\delta \nu(1/T)$ 

| $\tau$ , MKC | $\Delta  u$ , к $\Gamma$ ц |
|--------------|----------------------------|
| 20           | $52.0 \pm 0.5$             |
| 30           | $33.0 \pm 0.5$             |
| 40           | $25.0 \pm 0.5$             |
| 50           | $20.0 \pm 0.5$             |
| 60           | $16.0 \pm 0.5$             |
| 70           | $14.0 \pm 0.5$             |
| 80           | $13.0 \pm 0.5$             |
| 90           | $11.0 \pm 0.5$             |
| 100          | $10.0 \pm 0.5$             |
| 110          | $9.0 \pm 0.5$              |
| 120          | $8.0 \pm 0.5$              |
| 130          | $8.0 \pm 0.5$              |
| 140          | $7.0 \pm 0.5$              |
| 150          | $6.0 \pm 0.5$              |
| 160          | $6.0 \pm 0.5$              |
| 170          | $6.0 \pm 0.5$              |
| 180          | $6.0 \pm 0.5$              |
| 190          | $5.0 \pm 0.5$              |
| 200          | $5.0 \pm 0.5$              |

| T, MKC | $\delta  u$ , к $\Gamma$ ц |
|--------|----------------------------|
| 200    | $5.13 \pm 0.01$            |
| 600    | $1.67 \pm 0.01$            |
| 1000   | $1.00 \pm 0.01$            |
| 1400   | $0.70 \pm 0.01$            |
| 1800   | $0.55 \pm 0.01$            |
| 2200   | $0.46 \pm 0.01$            |
| 2600   | $0.39 \pm 0.01$            |
| 3000   | $0.34 \pm 0.01$            |
| 3400   | $0.29 \pm 0.01$            |
| 3800   | $0.27 \pm 0.01$            |
| 4200   | $0.24 \pm 0.01$            |
| 4600   | $0.22 \pm 0.01$            |
| 5000   | $0.20 \pm 0.01$            |

Таблица 3: Зависимость расстояния между соседними гармониками от периода повторения

Таблица 2: Зависимость полной ширины спектра от длительности импульса