The gradient's limit of a definable family of functions is a conservative field

Sholom Schechtman

Let $(f_a)_{a>0}$ be a family of smooth functions and $F: \mathbb{R}^d \to \mathbb{R}$ be smooth such that

$$||f_a - F|| \xrightarrow[a \to 0]{} 0.$$

Does the following holds?

$$\|\nabla f_a - \nabla F\| \xrightarrow[a \to 0]{?} 0$$

More formally,

$$||f_a - F|| \xrightarrow[a \to 0]{} 0.$$

More formally,

$$||f_a - F|| \xrightarrow[a \to 0]{} 0.$$

Denote the gradients limits:

$$D_F(x) = \{ v \in \mathbb{R}^d : x_n \to x, a_n \to 0, \nabla f_{a_n}(x_n) \to v \}.$$

More formally,

$$||f_a - F|| \xrightarrow[a \to 0]{} 0.$$

Denote the gradients limits:

$$D_F(x) = \{ v \in \mathbb{R}^d : x_n \to x, a_n \to 0, \nabla f_{a_n}(x_n) \to v \}.$$

Does the following holds?

$$D_F(x) = \{ \nabla F(x) \}.$$

More generally

$$f_a \xrightarrow[a \to 0]{} F$$
, with $f_a : \mathbb{R}^d \to \mathbb{R}$ locally Lipschitz.

More generally

$$f_a \xrightarrow[a \to 0]{} F$$
, with $f_a : \mathbb{R}^d \to \mathbb{R}$ locally Lipschitz.

$$D_F(x) = \{ v \in \mathbb{R}^d : \text{there is } (x_n, v_n, a_n) \to (x, v, 0) \text{ with } v_n \in \partial f_{a_n}(x_n) \}.$$

 $\rightarrow \partial f_a(x)$ some subgradient (convex, Frechet, Clarke) of f_a at x.

More generally

$$f_a \xrightarrow[a \to 0]{} F$$
, with $f_a : \mathbb{R}^d \to \mathbb{R}$ locally Lipschitz.

$$D_F(x) = \{ v \in \mathbb{R}^d : \text{there is } (x_n, v_n, a_n) \to (x, v, 0) \text{ with } v_n \in \partial f_{a_n}(x_n) \}.$$

 $\rightarrow \partial f_a(x)$ some subgradient (convex, Frechet, Clarke) of f_a at x.

Question. What is the link between D_F and ∂F ?

More generally

$$f_a \xrightarrow[a \to 0]{} F$$
, with $f_a : \mathbb{R}^d \to \mathbb{R}$ locally Lipschitz.

$$D_F(x) = \{v \in \mathbb{R}^d : \text{there is } (x_n, v_n, a_n) \to (x, v, 0) \text{ with } v_n \in \partial f_{a_n}(x_n)\}.$$

 $\rightarrow \partial f_a(x)$ some subgradient (convex, Frechet, Clarke) of f_a at x.

Question. What is the link between D_F and ∂F ?

- ightharpoonup One would wish that D_F reduces to some common first-order operators.
 - \rightarrow To the gradient if F is smooth.
 - \rightarrow To the subgradient if F is not.

$$f_a \to F$$

$$D_F(x) = \{v \in \mathbb{R}^d : \text{there is } (x_n, v_n, a_n) \to (x, v, 0) \text{ with } x_n \in \partial f_a(x_n)\}.$$

Question. Link between D_F and ∂F ?

Motivation.

$$f_a \to F$$

$$D_F(x) = \{v \in \mathbb{R}^d : \text{there is } (x_n, v_n, a_n) \to (x, v, 0) \text{ with } x_n \in \partial f_a(x_n)\}.$$

Question. Link between D_F and ∂F ?

Motivation.

1) Interesting in its own right.

$$f_a \to F$$

$$D_F(x) = \{ v \in \mathbb{R}^d : \text{there is } (x_n, v_n, a_n) \to (x, v, 0) \text{ with } x_n \in \partial f_a(x_n) \}.$$

Question. Link between D_F and ∂F ?

Motivation.

- 1) Interesting in its own right.
- 2) Consequences for smoothing methods.

Optimization problem: $\min_{x \in \mathbb{R}^d} F(x)$.

ightharpoonup Might be hard if F is nonsmooth and nonconvex.

Optimization problem: $\min_{x \in \mathbb{R}^d} F(x)$.

- \blacktriangleright Might be hard if F is nonsmooth and nonconvex.
- ightharpoonup Construct $f_a o F$, with f_a smooth.

Smoothing methods:

Optimization problem: $\min_{x \in \mathbb{R}^d} F(x)$.

- \blacktriangleright Might be hard if F is nonsmooth and nonconvex.
- ightharpoonup Construct $f_a o F$, with f_a smooth.

Smoothing methods:

ightharpoonup For $a_k, \varepsilon_k > 0$,

Solve
$$\min_{x \in \mathbb{R}^d} f_{a_k}(x)$$

Optimization problem: $\min_{x \in \mathbb{R}^d} F(x)$.

- \blacktriangleright Might be hard if F is nonsmooth and nonconvex.
- ightharpoonup Construct $f_a o F$, with f_a smooth.

Smoothing methods:

ightharpoonup For $a_k, \varepsilon_k > 0$,

Solve
$$\min_{x \in \mathbb{R}^d} f_{a_k}(x) \implies \text{find } \|\nabla f_{a_k}(x_k)\| \le \varepsilon_k$$
.

Optimization problem:
$$\min_{x \in \mathbb{R}^d} F(x)$$
.

- \blacktriangleright Might be hard if F is nonsmooth and nonconvex.
- ightharpoonup Construct $f_a o F$, with f_a smooth.

Smoothing methods:

ightharpoonup For $a_k, \varepsilon_k > 0$,

Solve
$$\min_{x \in \mathbb{R}^d} f_{a_k}(x) \implies \text{find } \|\nabla f_{a_k}(x_k)\| \le \varepsilon_k$$
.

 \rightarrow Easier because f_{a_k} is smooth.

Optimization problem:
$$\min_{x \in \mathbb{R}^d} F(x)$$
.

- \blacktriangleright Might be hard if F is nonsmooth and nonconvex.
- ightharpoonup Construct $f_a o F$, with f_a smooth.

Smoothing methods:

 \blacktriangleright For $a_k, \varepsilon_k > 0$,

Solve
$$\min_{x \in \mathbb{R}^d} f_{a_k}(x) \implies \text{find } \|\nabla f_{a_k}(x_k)\| \le \varepsilon_k$$
.

- \rightarrow Easier because f_{a_k} is smooth.
- ▶ Decrease a_k and ε_k and repeat.

Optimization problem:
$$\min_{x \in \mathbb{R}^d} F(x)$$
.

- ightharpoonup Might be hard if F is nonsmooth and nonconvex.
- ightharpoonup Construct $f_a o F$, with f_a smooth.

Smoothing methods:

ightharpoonup For $a_k, \varepsilon_k > 0$,

Solve
$$\min_{x \in \mathbb{R}^d} f_{a_k}(x) \implies \text{find } \|\nabla f_{a_k}(x_k)\| \le \varepsilon_k$$
.

- \rightarrow Easier because f_{a_k} is smooth.
- ▶ Decrease a_k and ε_k and repeat.
- ▶ When $a_k, \varepsilon_k \to 0$ and $x_k \to x^*$

$$\lim_{k \to +\infty} \nabla f_{a_k}(x_k) = 0$$

Optimization problem:
$$\min_{x \in \mathbb{R}^d} F(x)$$
.

- ightharpoonup Might be hard if F is nonsmooth and nonconvex.
- ▶ Construct $f_a \to F$, with f_a smooth.

Smoothing methods:

ightharpoonup For $a_k, \varepsilon_k > 0$,

Solve
$$\min_{x \in \mathbb{R}^d} f_{a_k}(x) \implies \text{find } \|\nabla f_{a_k}(x_k)\| \le \varepsilon_k$$
.

- \rightarrow Easier because f_{a_k} is smooth.
- ▶ Decrease a_k and ε_k and repeat.
- ▶ When $a_k, \varepsilon_k \to 0$ and $x_k \to x^*$

$$\lim_{k \to +\infty} \nabla f_{a_k}(x_k) = 0 \in D_F(x^*).$$

Optimization problem: $\min_{x \in \mathbb{R}^d} F(x)$.

- \blacktriangleright Might be hard if F is nonsmooth and nonconvex.
- ightharpoonup Construct $f_a o F$, with f_a smooth.

Smoothing methods:

▶ For $a_k, \varepsilon_k > 0$,

Solve
$$\min_{x \in \mathbb{R}^d} f_{a_k}(x) \implies \text{find } \|\nabla f_{a_k}(x_k)\| \le \varepsilon_k$$
.

- \rightarrow Easier because f_{a_k} is smooth.
- ▶ Decrease a_k and ε_k and repeat.
- ▶ When $a_k, \varepsilon_k \to 0$ and $x_k \to x^*$

$$\lim_{k \to +\infty} \nabla f_{a_k}(x_k) = 0 \in D_F(x^*).$$

 \rightarrow Necessary optimality condition if $D_F = \nabla F$ or ∂F .

Known results

Attouch's theorem ———

If for every a > 0, f_a is convex. Then $D_F(x) = \partial F(x)$.

Attouch, 1977

- ightharpoonup With $\partial F(x)$ being convex subgradient of F at x.
- ► Several extensions to "approximately convex" case.
 - → Poliquin, 1992; Levy, Poliquin, and Thibault, 1995; Zolezzi, 1985; Zolezzi, 1994; Czarnecki and Rifford, 2006 . . .

Nonconvex case?

Can we do more? **Not really.**

Nonconvex case?

Can we do more? **Not really.**

$$\rightarrow f_a(x) = a \sin(\frac{x}{a}).$$

$$\rightarrow \sin(\frac{x}{a}) \rightarrow [-1,1].$$

Figure: $f_a(x)$ and $f'_a(x)$

Nonconvex case?

- ▶ Assume that for each a > 0, f_a is locally Lipschitz continuous ¹
- $ightharpoonup f_a
 ightharpoonup F$ uniformly on compact sets.

$oxed{oxed}$ Theorem $oxed{oxed}$

If the family (f_a) is definable, then D_F is a conservative set-valued field of F (in the sense of Bolte and Pauwels).

Schechtman, 2024

¹Can be relaxed.

- Assume that for each a > 0, f_a is locally Lipschitz continuous ¹
- $ightharpoonup f_a
 ightharpoonup F$ uniformly on compact sets.

$_{-}$ Theorem $-\!\!-\!\!-\!\!-\!\!-$

If the family (f_a) is definable, then D_F is a conservative set-valued field of F (in the sense of Bolte and Pauwels).

Schechtman, 2024

Some consequences.

 \blacktriangleright For almost every $x \in \mathbb{R}^d$, $D_F(x) = {\nabla F(x)}.$

¹Can be relaxed.

- Assume that for each a > 0, f_a is locally Lipschitz continuous ¹
- $ightharpoonup f_a
 ightharpoonup F$ uniformly on compact sets.

Theorem ———

If the family (f_a) is definable, then D_F is a conservative set-valued field of F (in the sense of Bolte and Pauwels).

Schechtman, 2024

Some consequences.

- ▶ For almost every $x \in \mathbb{R}^d$, $D_F(x) = {\nabla F(x)}$.
- $ightharpoonup \partial F(x) \subset \operatorname{conv} D_F(x)$
 - $\rightarrow 0 \in \text{conv } D_F(x) \text{ is a necessary optimality condition.}$

¹Can be relaxed.

- Assume that for each a > 0, f_a is locally Lipschitz continuous ¹
- $ightharpoonup f_a
 ightharpoonup F$ uniformly on compact sets.

— Theorem ———

If the family (f_a) is definable, then D_F is a conservative set-valued field of F (in the sense of Bolte and Pauwels).

Schechtman, 2024

Some consequences.

- ▶ For almost every $x \in \mathbb{R}^d$, $D_F(x) = {\nabla F(x)}$.
- $ightharpoonup \partial F(x) \subset \operatorname{conv} D_F(x)$
 - \rightarrow 0 \in conv $D_F(x)$ is a necessary optimality condition.
- ightharpoonup The geometric structure of D_F is well understood.

¹Can be relaxed.

Outline

I Definable/tame functions II Conservative set-valued fields III Convergence of gradients

Outline

I Definable/tame functions
II Conservative set-valued fields
III Convergence of gradients

Outline

I Definable/tame functions
II Conservative set-valued fields
III Convergence of gradients

A continuous function in \mathbb{R}^d can be pathological.

A continuous function in \mathbb{R}^d can be pathological.

A continuous function in \mathbb{R}^d can be pathological.

There are functions $F:[0,1] \to [0,1]$ such that $\forall x\,,\,\partial F(x) = [0,1]$

A class of function that includes:

► Semialgebraic: defined by a finite number of polynomial inequalities.

- ► Semialgebraic: defined by a finite number of polynomial inequalities.
 - → Piecewise polynomials.

- ► Semialgebraic: defined by a finite number of polynomial inequalities.
 - → Piecewise polynomials.
 - → Piecewise rational functions.

- ► Semialgebraic: defined by a finite number of polynomial inequalities.
 - → Piecewise polynomials.
 - → Piecewise rational functions.
 - $\rightarrow x \mapsto ||x||_q$, with $q \ge 0$ rational.

- ► Semialgebraic: defined by a finite number of polynomial inequalities.
 - → Piecewise polynomials.
 - → Piecewise rational functions.
 - $\rightarrow x \mapsto ||x||_q$, with $q \ge 0$ rational.
 - → max, min of semi-algebraic functions.

- ► Semialgebraic: defined by a finite number of polynomial inequalities.
 - → Piecewise polynomials.
 - → Piecewise rational functions.
 - $\rightarrow x \mapsto ||x||_q$, with $q \ge 0$ rational.
 - → max, min of semi-algebraic functions.
- ► Analytic restricted to a (semialgebraic) compact.

- ► Semialgebraic: defined by a finite number of polynomial inequalities.
 - → Piecewise polynomials.
 - → Piecewise rational functions.
 - $\rightarrow x \mapsto ||x||_q$, with $q \ge 0$ rational.
 - → max, min of semi-algebraic functions.
- ► Analytic restricted to a (semialgebraic) compact.
- ightharpoonup exp and \log

- ► Semialgebraic: defined by a finite number of polynomial inequalities.
 - → Piecewise polynomials.
 - → Piecewise rational functions.
 - $\rightarrow x \mapsto ||x||_q$, with $q \ge 0$ rational.
 - → max, min of semi-algebraic functions.
- ► Analytic restricted to a (semialgebraic) compact.
- ► exp and log
- ► Stable by $\{+, -, \times, /, \circ^{-1}\}$ and composition.

- ► Semialgebraic: defined by a finite number of polynomial inequalities.
 - → Piecewise polynomials.
 - → Piecewise rational functions.
 - $\rightarrow x \mapsto ||x||_q$, with $q \ge 0$ rational.
 - → max, min of semi-algebraic functions.
- ► Analytic restricted to a (semialgebraic) compact.
- ► exp and log
- ► Stable by $\{+, -, \times, /, \circ^{-1}\}$ and composition.

Definable functions are piecewise smooth 1/2

Figure: $F(y, z) = \frac{1}{2}y^2 + |z|$

► F is smooth on $X_1 = \{(y, z) : z > 0\}$ and $X_2 = \{(y, z) : z < 0\}$.

Definable functions are piecewise smooth 1/2

Figure: $F(y, z) = \frac{1}{2}y^2 + |z|$

- ► F is smooth on $X_1 = \{(y, z) : z > 0\}$ and $X_2 = \{(y, z) : z < 0\}$.
- ► F is smooth on $X_3 = \{(y, z) : z = 0\}$.

Definable functions are piecewise smooth 1/2

Figure: $F(y, z) = \frac{1}{2}y^2 + |z|$

- ► F is smooth on $X_1 = \{(y, z) : z > 0\}$ and $X_2 = \{(y, z) : z < 0\}$.
- ► F is smooth on $X_3 = \{(y, z) : z = 0\}$.

Definable functions are piecewise smooth 2/2

Theorem

Let $F : \mathbb{R}^d \to \mathbb{R}$ be definable and $p \in \mathbb{N}$. There exists (X_i) , a finite partition of \mathbb{R}^d into C^p manifolds, s.t. $F_{|X_i|}$ is C^p .

Dries and Miller, 1996

Figure: $F(y, z) = \frac{1}{2}y^2 + |z|$ is smooth on $X_1, X_2, X_3 = z > 0, z < 0, z = 0$

Theorem

If the family (f_a) is definable in an o-minimal structure, then D_F is a conservative set-valued field of F.

Schechtman, 2024

▶ The family (f_a) is definable if

$$(x,a) \mapsto f_a(x)$$
 is definable.

Conservative set-valued fields

Gradient

 $F \text{ smooth} \implies \nabla F \text{ conservative}.$

▶ For every a.c. curve $\mathbf{x} : [0,1] \to \mathbb{R}^d$

Gradient

 $F \text{ smooth } \Longrightarrow \nabla F \text{ conservative.}$

▶ For every a.c. curve $\times : [0,1] \to \mathbb{R}^d$

$$F(\mathsf{x}_1) - F(\mathsf{x}_0) = \int_0^1 \langle \nabla F(\mathsf{x}_t), \dot{\mathsf{x}}_t \rangle \, \mathrm{d}t$$

$$\updownarrow$$

$$\frac{\mathrm{d}}{\mathrm{d}t} F(\mathsf{x}_t) = \langle \nabla F(\mathsf{x}_t), \dot{\mathsf{x}}_t \rangle \, .$$

Conservative set-valued field

 $F: \mathbb{R}^d \to \mathbb{R}$, locally Lipschitz continuous.

$$D_F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d \quad D(x) \subset \mathbb{R}^d.$$

Conservative set-valued field

 $F: \mathbb{R}^d \to \mathbb{R}$, locally Lipschitz continuous.

$$D_F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d \quad D(x) \subset \mathbb{R}^d$$
.

 D_F is a conservative set-valued field of F if (Bolte and Pauwels, 2021).

▶ For every a.c. curve $\mathbf{x} : [0,1] \to \mathbb{R}^d$ and $\mathbf{v_t} \in D_F(\mathbf{x_t})$

$$\begin{split} F(\mathsf{x}_1) - F(\mathsf{x}_0) &= \int_0^1 \langle \mathsf{v}_t, \dot{\mathsf{x}}_t \rangle \, \mathrm{d}t \\ & \qquad \qquad \updownarrow \\ & \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t} F(\mathsf{x}_t) = \langle \mathsf{v}_t, \dot{\mathsf{x}}_t \rangle \quad \text{almost everywhere.} \end{split}$$

$$F(\mathsf{x}_1) = F(\mathsf{x}_0) + \int_0^1 \langle \mathsf{v}_t, \dot{\mathsf{x}}_t \rangle \, \mathrm{d}t \,.$$

▶ If F is C^1 , then $D_F(x) = {\nabla F(x)}$ is a conservative field.

$$F(\mathsf{x}_1) = F(\mathsf{x}_0) + \int_0^1 \langle \mathsf{v}_t, \dot{\mathsf{x}}_t \rangle \, \mathrm{d}t \,.$$

- ▶ If F is C^1 , then $D_F(x) = {\nabla F(x)}$ is a conservative field.
- ▶ If F is definable, then ∂F is a conservative field. Bolte et al., 2007

$$F(\mathsf{x}_1) = F(\mathsf{x}_0) + \int_0^1 \langle \mathsf{v}_t, \dot{\mathsf{x}}_t \rangle \, \mathrm{d}t \,.$$

- ▶ If F is C^1 , then $D_F(x) = {\nabla F(x)}$ is a conservative field.
- ▶ If F is definable, then ∂F is a conservative field. Bolte et al., 2007
- ► Automatic differentiation in TensorFlow or Pytorch outputs an element of a conservative field. Bolte and Pauwels, 2021

$$F(\mathsf{x}_1) = F(\mathsf{x}_0) + \int_0^1 \langle \mathsf{v}_t, \dot{\mathsf{x}}_t \rangle \, \mathrm{d}t \,.$$

- ▶ If F is C^1 , then $D_F(x) = {\nabla F(x)}$ is a conservative field.
- ▶ If F is definable, then ∂F is a conservative field. Bolte et al., 2007
- ► Automatic differentiation in TensorFlow or Pytorch outputs an element of a conservative field. Bolte and Pauwels, 2021

Variational stratification

Let $F : \mathbb{R}^d \to \mathbb{R}$ and $D_F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ be definable. D_F is a conservative field if and only if there is a partition of \mathbb{R}^d into manifolds (\mathcal{M}_i) such that for every $y \in \mathcal{M}_i$

$$D_F(y) \subset \nabla_{\mathcal{M}_i} F(y) + \mathcal{N}_{\mathcal{M}_i}(y)$$
.

Bolte and Pauwels, 2021; Lewis and Tian, 2021; Davis and Drusvyatskiy, 2022

 $D_F(x)$ and $\nabla_{\mathcal{M}} F(x)$

▶ $D_F(x) = {\nabla F(x)}$ on a dense open set.

 $D_F(x)$ and $\nabla_{\mathcal{M}} F(x)$

- ▶ $D_F(x) = {\nabla F(x)}$ on a dense open set.
- ▶ ∂F is a conservative field and $\partial F(x) \subset \text{conv } D_F(x)$.

 $D_F(x)$ and $\nabla_{\mathcal{M}} F(x)$

- $ightharpoonup D_F(x) = \{\nabla F(x)\}\$ on a dense open set.
- $ightharpoonup \partial F$ is a conservative field and $\partial F(x) \subset \operatorname{conv} D_F(x)$.
- $\rightarrow x^*$ local minimum $\implies 0 \in \text{conv } D_F(x^*)$.

$\mathbf{x}(t)$ and $\dot{\mathbf{x}}(t)$

$$\frac{\mathrm{d}}{\mathrm{d}t}F(\mathsf{x}(t)) = \langle \mathsf{v}(t),\dot{\mathsf{x}}(t)\rangle = \langle \nabla_{\mathcal{M}}F(\mathsf{x}(t)),\dot{\mathsf{x}}(t)\rangle + \overbrace{\langle \mathcal{N}_{\mathcal{M}}(y),\dot{\mathsf{x}}(t)\rangle}^{=0}.$$

→ Conservative fields are not unique!

- → Conservative fields are not unique!
- → But $D_F(x) = {\nabla F(x)}$ on a dense open set.

- → Conservative fields are not unique!
- \rightarrow But $D_F(x) = {\nabla F(x)}$ on a dense open set.
- $\rightarrow \partial F$ is a conservative field and $\partial F(x) \subset \text{conv } D_F(x)$.
- $\rightarrow x^*$ local minimum $\implies 0 \in \text{conv } D_F(x^*)$.

Theorem

If the family (f_a) is definable in an o-minimal structure, then D_F is a conservative set-valued field of F

Schechtman, 2024

$$D_F(x) = \{ v \in \mathbb{R}^d : \text{there is } (x_n, v_n, a_n) \to (x, v, 0) \text{ with } v_n \in \partial f_{a_n}(x_n) \}.$$

 $\rightarrow \partial f_a$ is the Clarke's subgradient.

Convergence of gradients

▶ $f_a \to F$ uniformly on compact sets.

- ▶ $f_a \to F$ uniformly on compact sets.
- ▶ For each a > 0, D_a is a conservative field of f_a . (e.g. $D_a = \nabla f_a$ or ∂f_a).

- ▶ $f_a \to F$ uniformly on compact sets.
- ▶ For each a > 0, D_a is a conservative field of f_a . (e.g. $D_a = \nabla f_a$ or ∂f_a).
- ▶ The maps $(x, a) \mapsto f_a(x)$ and $(x, a) \mapsto D_a(x)$ are definable in the same o-minimal structure.

- ▶ $f_a \to F$ uniformly on compact sets.
- ▶ For each a > 0, D_a is a conservative field of f_a . (e.g. $D_a = \nabla f_a$ or ∂f_a).
- ▶ The maps $(x, a) \mapsto f_a(x)$ and $(x, a) \mapsto D_a(x)$ are definable in the same o-minimal structure.

Theorem -

 D_F is a conservative set-valued field of F.

$$D_F(x) = \{ v \in \mathbb{R}^d : (x_n, v_n, a_n) \to (x, v, 0) \text{ with } v_n \in D_{a_n}(x_n) \}$$

Schechtman, 2024

Main result

- ▶ $f_a \to F$ uniformly on compact sets.
- ▶ For each a > 0, D_a is a conservative field of f_a . (e.g. $D_a = \nabla f_a$ or ∂f_a).
- ▶ The maps $(x, a) \mapsto f_a(x)$ and $(x, a) \mapsto D_a(x)$ are definable in the same o-minimal structure.

Theorem

 D_F is a conservative set-valued field of F.

$$D_F(x) = \{ v \in \mathbb{R}^d : (x_n, v_n, a_n) \to (x, v, 0) \text{ with } v_n \in D_{a_n}(x_n) \}$$

Schechtman, 2024

- ▶ D_F can be constructed from an arbitrary family of conservative fields of f_a .
- ▶ For almost every $x \in \mathbb{R}^d$, $D_F(x) = {\nabla F(x)}$.
- ▶ We can partition \mathbb{R}^d into (\mathcal{M}_i) such that for $y \in \mathcal{M}_i$,

$$D_F(y) \subset \nabla_{\mathcal{M}} F(y) + \mathcal{N}_{\mathcal{M}_i}(y)$$
.

Careful

 $D_F \neq \partial F$ even if F and (f_a) are definable and smooth!

Careful

It is not sufficient to have f_a definable for each a.

We need the whole map $(x, a) \mapsto f_a(x)$ to be definable!

Careful

It is not sufficient to have f_a definable for each a.

We need the whole map $(x, a) \mapsto f_a(x)$ to be definable!

Recall $f_a(x) = a\sin(x/a)$.

- ▶ f_a restricted to [-1,1] is subanalytic.
- ▶ The map $(x,a) \mapsto f_a(x)$ is not!

non Lipschitz extensions?

- ▶ New proof, allowing non Lipschitz f_a .
 - → Coming soon!
 - → Using the variational stratification as a definition of a conservative field.

Summary

- ► The subgradients of a definable family of functions converge to a set-valued conservative field.
 - ► Similar result for conservative Jacobians.
- \blacktriangleright Smoothing methods converge to a D_F -critical point.
 - → Meaningful first-order optimality condition.
- ► Future works. Extension to the non Lipschitz case?

Supplementary material

$$\partial F(x) := \overline{\operatorname{conv}}\{v \in \mathbb{R}^d : x_n \to x, F \text{ differentiable at } x_n, \nabla F(x_n) \to v\}$$

 $F: \mathbb{R}^d \to \mathbb{R}$ locally Lipschitz continuous.

$$\partial F(x) := \overline{\operatorname{conv}}\{v \in \mathbb{R}^d : x_n \to x, F \text{ differentiable at } x_n, \nabla F(x_n) \to v\}$$
Properties

▶ Clarke's subgradient: $\partial F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$, i.e. $\partial F(x) \subset \mathbb{R}^d$.

$$\partial F(x) := \overline{\operatorname{conv}}\{v \in \mathbb{R}^d : x_n \to x, F \text{ differentiable at } x_n, \nabla F(x_n) \to v\}$$
Properties

- ▶ Clarke's subgradient: $\partial F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$, i.e. $\partial F(x) \subset \mathbb{R}^d$.
- ▶ If F is C^1 around x, then $\partial F(x) = {\nabla F(x)}.$

$$\partial F(x) := \overline{\operatorname{conv}}\{v \in \mathbb{R}^d : x_n \to x, F \text{ differentiable at } x_n, \nabla F(x_n) \to v\}$$
Properties

- ▶ Clarke's subgradient: $\partial F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$, i.e. $\partial F(x) \subset \mathbb{R}^d$.
- ▶ If F is C^1 around x, then $\partial F(x) = {\nabla F(x)}.$
- ▶ If F is convex, then ∂F is the convex subgradient.

$$\partial F(x) := \overline{\operatorname{conv}}\{v \in \mathbb{R}^d : x_n \to x, F \text{ differentiable at } x_n, \nabla F(x_n) \to v\}$$
Properties

- ▶ Clarke's subgradient: $\partial F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$, i.e. $\partial F(x) \subset \mathbb{R}^d$.
- ▶ If F is C^1 around x, then $\partial F(x) = {\nabla F(x)}.$
- ▶ If F is convex, then ∂F is the convex subgradient.
- ightharpoonup Optimality condition. If x^* a local minimum, then

$$0 \in \partial F(x^*)$$
.

Goal.

$$F(\mathsf{x}(1)) - F(\mathsf{x}(0)) = \int_0^1 \langle \mathsf{v}(t), \dot{\mathsf{x}}(t) \rangle \, \mathrm{d}t \quad \text{ with } \mathsf{v}(t) \in D_F(\mathsf{x}(t)) \,.$$

Goal.

$$F(\mathsf{x}(1)) - F(\mathsf{x}(0)) = \int_0^1 \langle \mathsf{v}(t), \dot{\mathsf{x}}(t) \rangle \, \mathrm{d}t \quad \text{ with } \mathsf{v}(t) \in D_F(\mathsf{x}(t)) \,.$$

1) One dimensional version. If $x_a(t) \to x(t)$, then $\dot{x}_a(t) \to \dot{x}(t)$ almost everywhere.

Goal.

$$F(\mathsf{x}(1)) - F(\mathsf{x}(0)) = \int_0^1 \langle \mathsf{v}(t), \dot{\mathsf{x}}(t) \rangle \, \mathrm{d}t \quad \text{ with } \mathsf{v}(t) \in D_F(\mathsf{x}(t)) \,.$$

- 1) One dimensional version. If $x_a(t) \to x(t)$, then $\dot{x}_a(t) \to \dot{x}(t)$ almost everywhere.
- 2) Approximating family. Construct $x_a(t), v_a(t) \to x(t), v(t)$ such that $v_a(t) \in D_a(x_a(t))$ a.e.

Goal.

$$F(\mathsf{x}(1)) - F(\mathsf{x}(0)) = \int_0^1 \langle \mathsf{v}(t), \dot{\mathsf{x}}(t) \rangle \, \mathrm{d}t \quad \text{ with } \mathsf{v}(t) \in D_F(\mathsf{x}(t)) \,.$$

- 1) One dimensional version. If $x_a(t) \to x(t)$, then $\dot{x}_a(t) \to \dot{x}(t)$ almost everywhere.
- 2) Approximating family. Construct $x_a(t), v_a(t) \to x(t), v(t)$ such that $v_a(t) \in D_a(x_a(t))$ a.e.
- 3) Thus.

$$f_a(\mathsf{x}_a(1)) - f_a(\mathsf{x}_a(0)) = \int_0^1 \langle \dot{\mathsf{x}}_a(t), \mathsf{v}_a(t) \rangle \, \mathrm{d}t$$

Goal.

$$F(\mathsf{x}(1)) - F(\mathsf{x}(0)) = \int_0^1 \langle \mathsf{v}(t), \dot{\mathsf{x}}(t) \rangle \, \mathrm{d}t \quad \text{ with } \mathsf{v}(t) \in D_F(\mathsf{x}(t)) \,.$$

- 1) One dimensional version. If $x_a(t) \to x(t)$, then $\dot{x}_a(t) \to \dot{x}(t)$ almost everywhere.
- 2) Approximating family. Construct $x_a(t), v_a(t) \to x(t), v(t)$ such that $v_a(t) \in D_a(x_a(t))$ a.e.
- 3) Thus.

$$f_a(\mathsf{x}_a(1)) - f_a(\mathsf{x}_a(0)) = \int_0^1 \langle \dot{\mathsf{x}}_a(t), \mathsf{v}_a(t) \rangle \, \mathrm{d}t$$

passing to the limit

$$F(\mathsf{x}(1)) - F(\mathsf{x}(0)) = \int_0^1 \langle \dot{\mathsf{x}}(t), \mathsf{v}(t) \rangle \, \mathrm{d}t \,.$$