Lista 4 - MAT0317/MAT5741 Topologia 2023

Instruções para a entrega:

- Dois dos exercícios 43, 45, 49 e 51 devem ser entregues em grupos de 3 a 5 pessoas até o dia 16 de junho.
- A entrega deve ser feita pelo edisciplinas.
- Basta que uma pessoa do grupo publique as soluções. O documento publicado deve conter o nome e o número usp dos componentes do grupo.

Observação: Quando não houver menção contrária, a topologia considerada em $\prod_{i\in\mathbb{N}} X_i$ é a topologia produto de Tychonoff.

Exercício 43. Considere a sequência $((\frac{1}{k}, \frac{1}{k}, \ldots))_{k \in \mathbb{N}}$ em $X := \mathbb{R}^{\mathbb{N}}$. Essa sequência converge na topologia produto-caixa de X? E na topologia produto de Tychonoff? Nos dois casos, se a resposta for afirmativa, determine o limite. Esse limite é único? Aqui, a topologia de \mathbb{R} que deve ser considerada é a topologia usual do valor absoluto.

Exercício 44. Sejam $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos e, para cada $i \in I$, $D_i \subseteq X_i$ um subconjunto denso. Prove que $\prod_{i \in I} D_i$ é denso em $\prod_{i \in I} X_i$

Exercício 45. Sejam X um espaço topológico Hausdorff e S um conjunto não vazio. Prove que a diagonal $\Delta := \{ f \in X^S : f \text{ \'e constante} \}$ \'e fechada em X^S .

Exercício 46. Prove que $\mathbb{R}^{\mathbb{R}}$ não é um espaço de Fréchet.

Sugestão: A ideia é parecida com a do Exercício 24 da Lista 2. Considere

$$\mathcal{F} := \{1_A : A \subseteq \mathbb{R}, A \text{ \'e enumer\'avel}\} \subseteq \mathbb{R}^{\mathbb{R}}$$

e prove que $1_{\mathbb{R}}$ pertence a $\overline{\mathcal{F}}$, mas não existe nenhuma sequência em \mathcal{F} que convirja para $1_{\mathbb{R}}$. Aqui, 1_A denota a função indicadora de $A \subseteq \mathbb{R}$ que está definida na sugestão dada ao Exercício 24.

Exercício 47. Seja $\{X_i : i \in I\}$ uma família não enumerável de espaços topológicos com pelo menos um aberto não trivial (i.e., $\neq \emptyset$ e $\neq X_i$). Prove que $\prod_{i \in I} X_i$ não satisfaz o primeiro axioma de enumerabilidade (e portanto também não satisfaz o segundo).

Exercício 48. Mostre que $\{0,1\}^S$ não é separável se $|\mathcal{P}(\mathbb{N})| < |S|$, i.e., se não existe uma função injetora de S em $\mathcal{P}(\mathbb{N})$.

Sugestão: Suponha que exista $D \subseteq \{0,1\}^S$ denso enumerável. Mostre que existem $s_1, s_2 \in S$ distintos tais que, para toda função $f \in D$, $f(s_1) = f(s_2)$. Use tal fato para definir um aberto básico de $\{0,1\}^S$ que seja disjunto de D.

Exercício 49. Sejam τ_1 e τ_2 topologias sobre um conjunto X tais que $\tau_1 \subseteq \tau_2$. Prove ou dê um contra-exemplo:

- a. Se (X, τ_1) é regular, então (X, τ_2) é regular.
- b. Se (X, τ_1) é normal, então (X, τ_2) é normal.

Exercício 50. Demonstre o Teorema 12.2 das notas de aula.

Exercício 51. Sejam X, Y espaços topológicos com X sendo T_4 . Prove que se existe uma função $f: X \to Y$ contínua, fechada e sobrejetora, então Y é T_4 .

Observação: Uma função $f: X \to Y$ é dita fechada se f[F] é fechado em Y para todo fechado $F \subseteq X$.

Exercício 52. Seja X um espaço topológico e $A \subseteq X$. Dizemos que A é funcionalmente fechado se $A = f^{-1}[\{0\}]$ para alguma função contínua $f: X \to [0,1]$ e que é funcionalmente aberto se $X \setminus A$ for funcionalmente fechado.

- a. Mostre que a intersecção finita de subconjuntos funcionalmente fechados é um funcionalmente fechado. Mostre o mesmo para união finita.
- b. Mostre que a intersecção enumerável de subconjuntos funcionalmente fechados é um funcionalmente fechado.
 - Sugestão: Use a convergência da série geométrica.
- c. Mostre que se A é fechado e aberto, então A é funcionalmente fechado e funcionalmente aberto.