Linear Maps

Flower

Linear Algebar

A. The Vector Space of Linear Maps

Problem 3

假设 $T\in\mathcal{L}(\mathbb{F}^n,\mathbb{F}^m)$. 证明存在 $A_{j,k}\in\mathbb{F}$,其中 $j=1,\ldots,m$ $k=1,\ldots,n$,使得

$$T(x_1,\ldots,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}x_n,\ldots,A_{m,1}x_1+\cdots+A_{m,n}x_n)$$

对于每一个 $(x_1,\ldots,x_n)\in\mathbb{F}^n$ 都成立.

Proof. 对于任意的 $x \in \mathbb{F}^n$, 我们可以写

$$x = x_1 e_1 + \dots + x_n e_n,$$

其中 e_1, \ldots, e_n 是 \mathbb{F}^n 的标准基. 因为 T 是线性的, 我们有

$$Tx = T(x_1e_1 + \dots + x_ne_n) = x_1Te_1 + \dots + x_nTe_n.$$

现在对于 $Te_k \in \mathbb{F}^m$, 其中 k = 1, ..., n, 都存在 $A_{1,k}, ..., A_{m,k} \in \mathbb{F}$ 使得

$$Te_k = A_{1,k}e_1 + \dots + A_{m,k}e_m$$

= $(A_{1,k}, \dots, A_{m,k})$

因此

$$x_k T e_k = (A_{1,k} x_k, \dots, A_{m,k} x_k).$$

所以我们有

$$Tx = \sum_{k=1}^{n} (A_{1,k}x_k, \dots, A_{m,k}x_k)$$
$$= \left(\sum_{k=1}^{n} A_{1,k}x_k, \dots, \sum_{k=1}^{n} A_{m,k}x_k\right),$$

就证得存在 $A_{j,k} \in \mathbb{F}$, 其中 $j=1,\ldots,m$ 并且 $k=1,\ldots,n$ 使得等式成立.

Problem 4

设 $T \in \mathcal{L}(V,W)$ 并且 v_1,\ldots,v_m 是 V 中的一组向量,其使得 Tv_1,\ldots,Tv_m 在 W 上的线性独立。证明 v_1,\ldots,v_m 线性独立.

Proof. 假设 v_1, \ldots, v_m 不线性独立,则有方程

$$a_1v_1 + \dots + a_mv_m = 0$$

有一组 a_i 不全为零的解,接下来

$$T(a_1v_1 + \dots + a_mv_m) = a_1Tv_1 + \dots + a_mTv_m = 0$$

则存在一组不全为零的 a_i 使得上式成立。与条件矛盾,故假设不成立。原命题正确. \square

Problem 7

证明如果 $\dim V = 1$ 并且 $T \in \mathcal{L}(V, V)$, 存在 $\lambda \in \mathbb{F}$ 使得对于任意的 $v \in V$ 都有 $Tv = \lambda v$.

Proof. 因为 dim V = 1, 所以 V 的基为单向量, 设为 e 则存在 α, λ 使得下式成立

$$Tv = T(\alpha e) = \alpha Te = \alpha \lambda e = \lambda v$$

其中 λ 即为所需。原命题证明完毕

Problem 8

找到一个 $\mathbb{R}^2 \to \mathbb{R}$ 函数 φ , 且对于任意的 $a \in \mathbb{R}$ 和 $V \in \mathbb{R}^2$ 都满足

$$\varphi(av) = a\varphi(v)$$

并且 φ 不是线性的.

Proof. 找到如下函数

$$\varphi = \ln(xy), \ (x,y) \in \mathbb{R}^2$$

则可有

$$\varphi(av) = \varphi[(ax, ay)] = a \ln(xy) = a\varphi(v)$$

但是 φ 不满足

$$\varphi(\nu + \omega) \neq \varphi(\nu) + \varphi(\omega)$$

故 φ 不是线性的.

Problem 9

给出一个 $\mathbb{C} \to \mathbb{C}$ 的函数 φ , 对于所有的 $z, \omega \in \mathbb{C}$ 有

$$\varphi(\omega + z) = \varphi(\omega) + \varphi(z)$$

但是 φ 不是线性的.

Proof. 定义

$$\varphi: \mathbb{C} \to \mathbb{C}$$
$$x + yi \mapsto x - yi.$$

然后对于 $x_1 + y_1 i, x_2 + y_2 i \in \mathbb{C}$, 有

$$\varphi((x_1 + y_1i) + (x_2 + y_2i)) = \varphi((x_1 + x_2) + (y_1 + y_2)i)$$

$$= (x_1 + x_2) - (y_1 + y_2)i$$

$$= (x_1 - y_1)i + (x_2 - y_2)i$$

$$= \varphi(x_1 + y_1i) + \varphi(x_2 + y_2i)$$

所以 φ 满足加法分配律. 然而

$$\varphi(i \cdot i) = \varphi(-1) = -1$$

此外

$$i \cdot \varphi(i) = i(-i) = 1$$

则 φ 不是线性的.

Problem 10

设 $U \neq V$ 的子集且 $U \neq V$. 设 $S \in \mathcal{L}(U, W)$ 且 $S \neq 0$. 定义 $T: V \to W$

$$Tv = \begin{cases} S\nu, & \text{if } v \in U \\ 0, & \text{if } v \in V \text{ and } v \notin U \end{cases}$$
 (1)

证明 T 不是 V 上的线性映射.

Proof. 令

$$v \in U, \ \omega \in V \text{ and } \omega \notin U$$

所以有

$$v + \omega \in V$$
 and $v + \omega \notin U$

故下面不等式成立

$$T(v+\omega) \neq Tv + T\omega$$

故 T 不是 V 上的线性映射.

Problem 11

Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a suspace of V and $S \in \mathcal{L}(U,W)$, then there exists $T \in \mathcal{L}(V,W)$ such that Tu = Su for all $u \in U$.

Proof. 设 U 为 V 的子集,则 U 存在一组基向量 $v_1, ..., v_m$. 将该组基向量扩展为 $v+1, ..., v_m, v_{m+1}, ..., v_n$,并且为 V 的一组基向量. 则易知对于任意的 $z \in V$,都可以找到一组 $a_1, ..., a_n \in \mathbb{F}$ 使得 $z = \sum_{k=1}^n a_k v_k$.

我们设

$$T: V \to w$$

$$\sum_{k=1}^{n} a_k v_k \to \sum_{k=1}^{m} a_k S v_k + \sum_{k=m+1}^{n} a_k v_k$$

显然 Tu = Su, 仅需证明 T 是线性映射即可.

证明满足分配律设

$$z_1 = a_1v_1 + \dots + a_nv_n, \ z_2 = b_1v_1 + \dots + b_nv_n$$

则

$$T(z_1 + z_2) = \sum_{k=1}^{m} (a_k + b_k) S v_k + \sum_{k=m+1}^{n} (a_k + b_k) v_k$$
$$= \sum_{k=1}^{m} a_k S v_k + \sum_{k=m+1}^{n} a_k v_k + \sum_{k=1}^{m} b_k S v_k + \sum_{k=m+1}^{n} b_k v_k$$
$$= T z_1 + T z_2$$

证明满足数量乘法, 设 $\lambda \in \mathbb{F}$, 则

$$T(\lambda z) = \sum_{k=1}^{m} \lambda a_k S v_k + \sum_{k=m+1}^{n} \lambda a_k v_k$$
$$= \lambda \sum_{k=1}^{m} a_k S v_k + \lambda \sum_{k=m+1}^{n} a_k v_k$$
$$= \lambda T z$$

Problem 12

设 V 是有限维的向量空间且 $\dim V > 0$, 并设 W 是无限维的向量空间。证明 $\mathcal{L}(V,W)$ 是无限维的向量空间.

Proof. 设 $v \in V$ 并且设 ω_1, \ldots 是 W 的一组基. 则对于任意的 $m, \omega_1, \ldots, \omega_m$ 都独立.(见 2a/14)

定义 $T_j(v) = \omega_j$, 显然 $T_j \in \mathcal{L}(V,W)$ 仅需证明数列 T_1, \ldots 中,任意的 m,T_1,\ldots,T_m 都独立. 设

$$a_1T_1 + \dots + a_nT_n = 0$$

仅需说明 a_i 全为零是唯一解.

$$a_1T_1v + \cdots + a_nT_nv = a_1\omega_1 + \cdots + a_n\omega_n = 0$$

因为对于任意的 $m,\omega_1,\ldots,\omega_m$ 都独立. 说明 a_j 全为零是唯一解. 证得 $\mathcal{L}(V,W)$ 是无限维的向量空间.

Problem 13

设 v_1, \ldots, v_n 是 V 上的一组线性独立的数列. 同时设 $W \neq 0$. 证明存在 $\omega_1, \ldots, \omega_m \in W$ 使得不存在 $T \in \mathcal{L}(V, W)$ 满足 $Tv_k = \omega_k, \ (k = 1, \ldots, m)$.

Proof. 假设对于所有的 $\omega_1, \ldots, \omega_m \in W$ 使得存在 $T \in \mathcal{L}(V, W)$ 满足 $Tv_k = \omega_k$, $(k = 1, \ldots, m)$. 上面假设说明 ω_k 独立。显然可以找到一组 $\omega_1, \ldots, \omega_m \in W$, 且它们不相互独立。故假设不成立,所以原命题正确.

Problem 14

设 V 是有限维的向量空间且 $\dim V > 2$, 证明存在 $S, T \in \mathcal{L}(V, V)$ 满足 $ST \neq TS$.

Proof. 显然只要找到两个矩阵 A, B, 使得 $AB \neq BA$ 即可.

B. Null Space and Ranges

Problem 2

假设 V 是一个线性空间并且 $S, T \in \mathcal{L}(V, V)$ 满足

range $S \subset \text{null } T$.

证明 $(ST)^2 = 0$

Proof. 因为 range $S \subset \operatorname{null} T$,所以对于任意的 $v \in V$ 都有 TSv = 0. 所以对于任意的 $u \in V$ 都有

$$(ST)^2 u = S[(TS)Tu] = S0 = 0.$$

证得 $(ST)^2 = 0$

Problem 13

设T是一个 \mathbb{F}^4 到 \mathbb{F}^2 的线性映射,且满足

null
$$T = (x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4$$

证明 T 是满射的.

Proof. 显然 dim null T=2,故

 $\dim \operatorname{range} T = 2.$

我们易证下面引理

Lemma 1. 设 $U \neq V$ 的子空间, 若 $\dim U = \dim V$, 则 U = V.

故有

range
$$T = \mathbb{F}^2$$

说明是满射的.

Problem 20

设 W 是有限维的并且 $T \in \mathcal{L}(V, W)$. 证明 T 是单射的当且仅当存在 $S \in \mathcal{L}(W, V)$ 使得 ST 为 V 上的恒等映射.

Proof. 定义

$$S = \begin{cases} v, & \text{if } u \in Tv \\ 0, & \text{if } u \in W \text{ and } u \notin Tv \end{cases}$$

这样就容易证明原命题成立

Problem 21

设 W 是有限维的并且 $T \in \mathcal{L}(V,W)$. 证明 T 是满射的当且仅当存在 $S \in \mathcal{L}(W,V)$ 使得 TS 为 W 上的恒等映射.

Proof. (\Rightarrow) Suppose $T \in \mathcal{L}(V, W)$ is surjective, so that W is necessarily finite-dimensional as well. Let v_1, \ldots, v_m be a basis of V and let $n = \dim W$, where $m \geq n$ by surjectivity of T. Note that

$$Tv_1,\ldots,Tv_m$$

span W. Thus we may reduce this list to a basis by removing some elements (possibly none, if n = m). Suppose this reduced list were $Tv_{i_1}, \ldots, Tv_{i_n}$ for some $i_1, \ldots, i_n \in \{1, \ldots, m\}$. We define $S \in \mathcal{L}(W, V)$ by its behavior on this basis

$$S(Tv_{i_k}) := v_{i_k} \text{ for } k = 1, \dots, n.$$

Suppose $w \in W$. Then there exist $a_1, \ldots, a_n \in \mathbb{F}$ such that

$$w = a_1 T v_{i_1} + \dots + a_n T v_{i_n}$$

and thus

$$TS(w) = TS (a_1 T v_{i_1} + \dots + a_n T v_{i_n})$$

$$= T (S (a_1 T v_{i_1} + \dots + a_n T v_{i_n}))$$

$$= T (a_1 S (T v_{i_1}) + \dots + a_n S (T v_{i_n}))$$

$$= T (a_1 v_{i_1} + \dots + a_n v_{i_n})$$

$$= a_1 T v_{i_1} + \dots + a_n T v_{i_n}$$

$$= w,$$

and so TS is the identity map on W.

(\Leftarrow) Suppose there exists $S \in \mathcal{L}(W, V)$ such that $TS \in \mathcal{L}(W, W)$ is the identity map, and suppose by way of contradiction that T is not surjective, so that dim range $TS < \dim W$. By the Fundamental Theorem of Linear Maps, this implies

$$\dim W = \dim \operatorname{null} TS + \dim \operatorname{range} TS$$

 $< \dim \operatorname{null} TS + \dim W$

and hence dim null TS > 0, a contradiction, since the identity map can only have trivial null space. Thus T is surjective, as desired.

C. Matrices

Problem 1

设 V 和 W 都是有限维的且 $T \in \mathcal{L}(V, W)$. 证明对于 V 和 W 的任意基,T 的矩阵都至少有 $\dim \operatorname{range} T$ 个非零元.

Proof. 设 v_1, \ldots, V_n 为 V 的基, w_1, \ldots, w_m 为 W 的基, $r = \dim \operatorname{range} T$ 和 $s = \dim \operatorname{null} T$. 所以 V 的基中有 s 个映射到 0, r 个映射为非零. 若 $Tv_k \neq 0$, 则存在唯一一组不不全为零 (最少有一个不为零) 的 $A_{j,k} \in \mathbb{F}$ 使得

$$Tv_k = \sum_{j=1}^m A_{j,k} w_j$$

能满足 $Tv_k \neq 0$ 的基向量有 $r = \dim \operatorname{range} T$ 个. 故最少有 $\dim \operatorname{range} T$ 个非零元.

Problem 3

设 V 和 W 都是有限维的且 $T \in \mathcal{L}(V,W)$. 证明存在一个 V 的基和 W 的基,使得关于这些基, $\mathcal{M}(T)$ 除了第 j 行第 j 列 $(1 \le j \le \dim \operatorname{range} T)$ 的元素为 1,其余均为 0.

Proof. 设 $R \in V$ 的子空间且满足

$$V = R \oplus \operatorname{null} T$$
.

设 r_1,\ldots,r_m 为 R 的基 (其中 $m=\dim \operatorname{range} T$), 并设 v_1,\ldots,v_n 为 $\operatorname{null} T$ 的基 (其中 $n=\dim \operatorname{null} T$). 那么 $r_1,\ldots,r_m,v_1,\ldots,v_n$ 为 V 的基. 而且也易得 Tr_1,\ldots,Tr_m 是 range T 的基. 因此扩展上述的基使之成为 W 的基. 设 $Tr_1,\ldots,Tr_m,w_1,\ldots,w_p$ 是这样的基 (其中 $p=\dim W-m$). 那么对于 $j=1,\ldots m$, 我们有

$$Tr_j = \left(\sum_{i=1}^m \delta_{i,j} \cdot Tr_t\right) + \left(\sum_{k=1}^p 0 \cdot w_k\right),$$

其中 $\delta_{i,j}$ 是克罗内克函数. 因此在 $\mathcal{M}(T)$ 的第 j 行中只有第 j 列为 0, 其中 j 取从 1 到 $m = \dim \operatorname{range} T$ 任意值. 因此 $Tv_1 = \cdots = Tv_n = 0$, $\mathcal{M}(T)$ 的剩余行全为零. 因此 $\mathcal{M}(T)$ 有所需的形式.