CS738: Advanced Compiler Optimizations Simply Typed Lambda Calculus

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

Reference Book

Types and Programming Languages by Benjamin C. Pierce

$$T := -$$
 Types

$$T:=$$
 — Types Bool — Boolean Type

```
egin{array}{lll} T &\coloneqq & - 	ext{Types} \ & 	ext{Bool} & - 	ext{Boolean Type} \ & 	ext{$T 
ightarrow T} & - 	ext{Function Type} \end{array}
```

```
T:= — Types Bool — Boolean Type T 	o T — Function Type
```

type constructor \to is right-associative, i.e., $T_1 \to T_2 \to T_3$ stands for $T_1 \to (T_2 \to T_3)$

For each of the type below, write a function (in your favourite programming language) that has the required type:

▶ Bool → Bool

- ▶ Bool → Bool
- ▶ Bool → Bool → Bool

- ► Bool → Bool
- ▶ Bool → Bool → Bool
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$

- ► Bool → Bool
- ▶ Bool → Bool → Bool
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool} \to \mathsf{Bool}$

- ► Bool → Bool
- ▶ Bool → Bool → Bool
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool} \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$

- ► Bool → Bool
- ▶ Bool → Bool → Bool
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool} \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$

- ► Bool → Bool
- ▶ Bool → Bool → Bool
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool} \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ ((\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}) \to \mathsf{Bool}$

Simply Typed λ -terms with conditions and Booleans t := x — *Variable*

```
Simply Typed \lambda-terms with conditions and Booleans t := x - Variable
| \lambda x : T. t - Abstraction
```

Simply Typed λ -terms with conditions and Booleans

Simply Typed $\lambda\text{-terms}$ with conditions and Booleans

```
Simply Typed \lambda-terms with conditions and Booleans
```

Recap: The Set of Values

```
v := -values
\lambda x : T. t - Abstraction Value
```

Recap: The Set of Values

```
v := -values
\lambda x : T. t - Abstraction Value
| true - value true
```

Recap: The Set of Values

```
v := -values
\lambda x : T. t - Abstraction Value
| true - value true
| false - value false
```

Evaluation

$$\frac{t_1 \rightarrow t_1'}{t_1 t_2 \rightarrow t_1' t_2} \tag{E-APP1}$$

Evaluation

$$rac{t_1
ightarrow t_1'}{t_1 \ t_2
ightarrow t_1' \ t_2}$$
 (E-APP1) $rac{t_2
ightarrow t_2'}{t_1 \ t_2
ightarrow t_2'}$ (E-APP2)

Evaluation

$$\begin{split} \frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2} & (\text{E-App1}) \\ \\ \frac{t_2 \rightarrow t_2'}{v \ t_2 \rightarrow v \ t_2'} & (\text{E-App2}) \\ \\ (\lambda x : \mathcal{T}_1. \ t_1) v_2 \rightarrow [x \mapsto v_2] t_1 & (\text{E-AppAbs}) \end{split}$$

A Typing Context or Type Environment, Γ, is a sequence of variables with their types

- A Typing Context or Type Environment, Γ, is a sequence of variables with their types
- Γ, x : T denotes extending Γ with a new variable x having type T

- A Typing Context or Type Environment, Γ, is a sequence of variables with their types
- Γ, x : T denotes extending Γ with a new variable x having type T
 - The name x is assumed to be distinct from any existing names in Γ

$$\frac{\Gamma, x: T_1 \vdash \mathsf{t}_2: T_2}{\Gamma \vdash \lambda x: T_1. \ \mathsf{t}_2: T_1 \to T_2} \tag{T-Abs}$$

$$\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 \cdot t_2 : T_1 \to T_2}$$

$$\frac{x : T \in \Gamma}{\Gamma \vdash x : T}$$
(T-VAR)

$$\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 \cdot t_2 : T_1 \to T_2}$$
 (T-ABS)

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \tag{T-VAR}$$

$$\frac{\Gamma \vdash t_1 : \mathcal{T}_1 \rightarrow \mathcal{T}_2 \qquad \Gamma \vdash t_2 : \mathcal{T}_1}{\Gamma \vdash t_1 \; t_2 : \mathcal{T}_2} \tag{T-APP}$$

▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- ▶ If $\Gamma \vdash t_1 \ t_2 : R$, then $\exists T_1 \ s.t. \ \Gamma \vdash t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- ▶ If $\Gamma \vdash t_1 \ t_2 : R$, then $\exists T_1 \ s.t. \ \Gamma \vdash t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.
- ▶ If $\Gamma \vdash \text{true} : R$, then R = Bool.

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- ▶ If $\Gamma \vdash t_1 \ t_2 : R$, then $\exists T_1 \ s.t. \ \Gamma \vdash t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.
- ▶ If $\Gamma \vdash \text{true} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{false} : R$, then R = Bool.

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- ▶ If $\Gamma \vdash t_1 \ t_2 : R$, then $\exists T_1 \ s.t. \ \Gamma \vdash t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.
- ▶ If $\Gamma \vdash \text{true} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{false} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R, \text{ then }$

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- ▶ If $\Gamma \vdash t_1 \ t_2 : R$, then $\exists T_1 \ s.t. \ \Gamma \vdash t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.
- ▶ If $\Gamma \vdash \text{true} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{false} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then
 - Γ ⊢ t₁ : Bool

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- ▶ If $\Gamma \vdash t_1 \ t_2 : R$, then $\exists T_1 \ s.t. \ \Gamma \vdash t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.
- ▶ If $\Gamma \vdash \text{true} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{false} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R, \text{ then }$
 - Γ ⊢ t₁ : Bool
 - ightharpoonup $\Gamma \vdash \mathsf{t}_2 : R$

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- ▶ If $\Gamma \vdash t_1 \ t_2 : R$, then $\exists T_1 \ s.t. \ \Gamma \vdash t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.
- ▶ If $\Gamma \vdash \text{true} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{false} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R, \text{ then}$
 - Γ ⊢ t₁ : Bool
 - Γ ⊢ t₂ : R
 - Γ ⊢ t₃ : R

For each of the term t below, find context Γ and type T such that

 $\Gamma \vdash t : \textit{T}$

For each of the term t below, find context Γ and type T such that

$$\Gamma \vdash t : T$$

ightharpoonup t is λx . x

For each of the term t below, find context Γ and type T such that

$$\Gamma \vdash t : T$$

- ightharpoonup t is λx . x
- ▶ t is ((x z) (y z))

For each of the term t below, find context Γ and type T such that

$$\Gamma \vdash t : T$$

- ightharpoonup t is λx . x
- ▶ t is ((x z) (y z))
- t is λy. x

For each of the term t below, find context Γ and type T such that

$$\Gamma \vdash t : T$$

- ightharpoonup t is λx . x
- ▶ t is ((x z) (y z))
- t is λy. x
- ► t is x x

Uniqueness of Types

In a given type context Γ, A term t, such that the free variables of t are in Γ, has at most one type.

Uniqueness of Types

- In a given type context Γ, A term t, such that the free variables of t are in Γ, has at most one type.
- ► If t is typeable, then its type is unique.

Uniqueness of Types

- In a given type context Γ, A term t, such that the free variables of t are in Γ, has at most one type.
- If t is typeable, then its type is unique.
- Moreover, there is just one derivation of this typing built from the inference rules.

Permutation: If Γ ⊢ t : T and Δ is a permutation of Γ , then Δ ⊢ t : T.

- **Permutation:** If Γ ⊢ t : T and Δ is a permutation of Γ , then Δ ⊢ t : T.
 - The derivation with Δ has the same depth as the derivation with Γ.

- **Permutation:** If Γ ⊢ t : T and Δ is a permutation of Γ , then Δ ⊢ t : T.
 - The derivation with Δ has the same depth as the derivation with Γ.
- **Weakening:** If Γ ⊢ t : T and $x \notin$ domain(Γ), then Γ , x : S ⊢ t : T.

- **Permutation:** If Γ ⊢ t : T and Δ is a permutation of Γ , then Δ ⊢ t : T.
 - The derivation with Δ has the same depth as the derivation with Γ.
- ▶ Weakening: If $\Gamma \vdash$ t : T and $x \notin$ domain(Γ), then Γ , x : $S \vdash$ t : T.
 - The derivation with Γ , x : S has the same depth as the derivation with Γ .

Progress

▶ **Progress:** A well-typed term is not stuck.

Progress

- Progress: A well-typed term is not stuck.
 - If ⊢ t : T, then t is either a value or there exists some t' such that t → t'.

Preservation

▶ Preservation of Types under Substitution: If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Preservation

- ▶ Preservation of Types under Substitution: If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.
- Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed.

Preservation

- ▶ Preservation of Types under Substitution: If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.
- Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed.
 - ▶ If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.