TD1: lecture dans les tables (correction)

Attention:

Dans le cours et dans toutes les feuilles de TD, on fera l'abus de notation suivant où \mathcal{L} désigne une loi de probabilité

$$P(a \le \mathcal{L} \le b)$$

à la place de la notation rigoureuse : soit X une variable aléatoire de loi \mathcal{L} ,

$$P(a \le X \le b)$$
.

Lecture dans la table de la loi normale/gaussienne 1

Exercice 1. Donner les valeurs suivantes

- 1. $P(\mathcal{N}(0,1) \le 1.32) = 0.9066$
- 3. $P(\mathcal{N}(0,1) \le 0.1) = 0.5398$
- 5. $P(\mathcal{N}(0,1) < 1.19) = 0.8830$

Exercice 2. Donner les valeurs suivantes

- 1. $P(\mathcal{N}(0,1) \le -1.32) = 0.0934$
- 3. $P(\mathcal{N}(0,1) \le -0.57) = 0.2843$
- 5. $P(\mathcal{N}(0,1) \le -2.65) = 0.0040$

Exercice 3. Donner les valeurs suivantes

- 1. $P(1.32 \le \mathcal{N}(0,1) \le 2.08) = 0.0746$
- 3. $P(-0.57 \le \mathcal{N}(0,1) \le -0.1) = 0.1759$
- 5. $P(-2.35 < \mathcal{N}(0,1) < 1.67) = 0.9431$

- 2. $P(\mathcal{N}(0,1) \le 2.08) = 0.9812$
- 4. $P(\mathcal{N}(0,1) \le 2) = 0.9772$
- 6. $P(\mathcal{N}(0,1) < 3.4) = 0.999663$
 - 2. $P(\mathcal{N}(0,1) \le -1.42) = 0.0778$
 - 4. $P(\mathcal{N}(0,1) \le -1) = 0.1587$
 - 6. $P(\mathcal{N}(0,1) \le -3.3) = 0.000483$
 - 2. $P(-1.42 \le \mathcal{N}(0,1) \le 1.32) = 0.8288$
 - 4. $P(-1.28 \le \mathcal{N}(0,1) \le 1.28) = 0.7994$
 - 6. $P(-4 < \mathcal{N}(0,1) < 4) = 0.999936$

2 Lecture inverse de la table de la noi normale

Exercice 4. Trouver la valeur de z telle que

- 1. $P(\mathcal{N}(0,1) \le z) = 0.7764$, z = 0.76.
- 2. $P(\mathcal{N}(0,1) \le z) = 0.9904$, z = 2.34.
- 3. $P(\mathcal{N}(0,1) \le z) = 0.8810$, z = 1.18.
- 4. $P(\mathcal{N}(0,1) \le z) = 0.98$ $, z \simeq 2.05.$
- 5. $P(\mathcal{N}(0,1) \le z) = 0.995$ $z \simeq 2.576$.
- 6. $P(\mathcal{N}(0,1) \le z) = 0.975$ z = 1.96

Exercice 5. Trouver la valeur de z telle que

- 1. $P(\mathcal{N}(0,1) \le z) = 0.2236$, z = -0.76.
- 2. $P(\mathcal{N}(0,1) \le z) = 0.01$, $z \simeq -2.326$.
- 3. $P(\mathcal{N}(0,1) \le z) = 0.25$
- $z \simeq -0.675.$ 4. $P(\mathcal{N}(0,1) < z) = 0.002$, z = -2.88.

Exercice 6. Trouver la valeur de z telle que

- 1. $P(-z \le \mathcal{N}(0,1) \le z) = 0.8$, $z \simeq 1.28$. 2. $P(-z \le \mathcal{N}(0,1) \le z) = 0.95$, z = 1.96.
- 3. $P(-z < \mathcal{N}(0,1) < z) = 0.75$, z = 1.15. 4. $P(-z < \mathcal{N}(0,1) < z) = 0.99$, $z \simeq 2.576$.

Lecture dans la table de la loi de Student 3

Rappel : $\mathcal{T}(n)$ désigne la loi de Student à n degrés de liberté. Remarque : si $n \geq 30$, on considère $\mathcal{T}(n) = \mathcal{T}(\infty) = \mathcal{N}(0,1)$.

Exercice 7. Trouver la valeur de z telle que

- 1. $P(-z \le \mathcal{T}(8) \le z) = 0.8$, z = 1.397. 2. $P(-z \le \mathcal{T}(13) \le z) = 0.95$, z = 2.160.
- 3. $P(-z \le \mathcal{T}(1) \le z) = 0.8$, z = 3.078. 4. $P(-z \le \mathcal{T}(25) \le z) = 0.99$, z = 2.787.
- 5. $P(-z \le \mathcal{T}(76) \le z) = 0.5$, z = 0.674. 6. $P(-z \le \mathcal{N}(0,1) \le z) = 0.99$, z = 2.576.

Exercice 8. Trouver la valeur de z telle que

- 2. $P(\mathcal{T}(13) \le z) = 0.95$, z = 1.771. 1. $P(\mathcal{T}(5) \le z) = 0.9$ z = 1.476.
- 3. $P(z \le \mathcal{T}(20)) = 0.9$, z = -1.325. 4. $P(z \le \mathcal{T}(11)) = 0.99$, z = -2.718.
- 5. $P(\mathcal{T}(28) \le z) = 0.8$, z = 0.855. 6. $P(z \le \mathcal{T}(28)) = 0.8$, z = -0.855.

Lecture dans la table de la loi du χ^2 4

Rappel : $\chi^2(n)$ désigne la loi du χ^2 à n degrés de liberté.

Exercice 9. Trouver la valeur de z telle que

- 1. $P(\chi^2(5) \le z) = 0.9$, z = 9.236. 2. $P(\chi^2(13) \le z) = 0.95$, z = 22.362. 3. $P(\chi^2(20) \le z) = 0.99$, z = 37.566. 4. $P(\chi^2(11) \le z) = 0.9$, z = 17.275.
- 5. $P(\chi^2(3) \le z) = 0.95$, z = 7.815. 6. $P(\chi^2(2) \le z) = 0.99$, z = 9.210.