Homework 11

Due: Friday Dec. 3, by 11:59pm, via Gradescope

- Failure to submit homework correctly will result in a zero on the homework.
- Homework must be in LaTeX. Submit the pdf file to Gradescope.
- Problems assigned from the textbook come from the 5th edition.
- No late homework accepted. Lateness due to technical issues will not be excused.
 - 1. (30 points) Section 6.3 # 2, 22, 28.

Solution:

2. Let $A = \{1, 2\}$, B = 2, 3 and let U = 1, 2, 3, 4 be the universe. Then $A^c \cup B^c = \{1, 3, 4\}$ while $(A \cup B)^c = \{4\}$.

 $\# 22(a) \exists \text{ set } S, \forall \text{ sets } T, S \cap T \neq \emptyset.$

22(b) \forall sets S, \exists set T, $S \cup T \neq \emptyset$.

28. (a) Set difference laws. (b) Set difference laws. (c) Commutative law. (d) DeMorgan's law. (e) Double complement law. (f) Distribution law. (g) Set difference laws.

2. (9 points) Section 6.3 # 33, 38, 43. Annotate!!!

Solution:

33. **Proof:**

$$(A - B) \cap (A \cap B) = (A \cap B^c) \cap (A \cap B) \text{ (set difference laws)}$$

$$= (A \cap B^c) \cap Z \quad \text{I've set } Z = A \cap B$$

$$= A \cap (B^c \cap Z) \quad (Associative)$$

$$= A \cap (Z \cap B^c) \quad (Commutative)$$

$$= A \cap ((A \cap B) \cap B^c) \quad (substitution)$$

$$= A \cap (A \cap (B \cap B^c)) \quad (Associative)$$

$$= A \cap (A \cap \emptyset) \quad (Complement law)$$

$$= A \cap \emptyset \quad (Identity law)$$

$$= \emptyset \quad (Identity law)$$

38. **Proof:**

$$(A \cap B)^c \cap A = (A^c \cup B^c) \cap A \ (DeMorgan's \ law)$$

$$= A \cap (A^c \cup B^c) \ (Commutative \ law)$$

$$= (A \cap A^c) \cup (A \cap B^c) \ (Distributive \ law)$$

$$= \emptyset \cup (A \cap B^c \ (Complement \ law)$$

$$= (A \cap B^c) \cup \emptyset \ (Commutative \ law)$$

$$= A \cap B^c \ (Identity \ law)$$

$$= A - B \ (Set \ difference \ law)$$

43.

```
(A \cap (B \cup C)) \cap (A - B)) \cap (B \cup C^{c})
= (A \cap (B \cup C)) \cap (A \cap B^{c})) \cap (B \cup C^{c}) \quad (Set \ difference \ laws)
= (A \cap A \cap (B \cup C) \cap B^{c}) \cap (B \cup C^{c}) \quad (Commutative \ law)
= (A \cap (B \cup C) \cap B^{c}) \cap (B \cup C^{c}) \quad (Idempotent \ law)
= (A \cap [(B^{c} \cap B) \cup (B^{c} \cap C)]) \cap (B \cup C^{c}) \quad (Distribution \ law)
= (A \cap [\emptyset \cup (B^{c} \cap C)]) \cap (B \cup C^{c}) \quad (Complement \ law)
= (A \cap (B^{c} \cap C)) \cap (B \cup C^{c}) \quad (Identity \ law)
= A \cap B^{c} \cap (C \cap (B \cup C^{c})) \quad (Associative \ law)
= A \cap B^{c} \cap ((C \cap B) \cup \emptyset) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap B) \quad (Identity \ law)
= A \cap B^{c} \cap (B \cap C) \quad (Commutative \ law)
= A \cap B^{c} \cap (C \cap B) \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
= A \cap B^{c} \cap (C \cap C^{c}) \quad (Complement \ law)
```

3. (15 points) Section 6.3 # 46, 52. Use Theorem 6.2.2. when doing problem 52. Annotate as well.

Solution:

```
\# 46. (a) \{1, 2, 5, 6\}. (b) \{3, 4, 7, 8\}. (c) \{1, 2, 3, 4, 5, 6, 7, 8\}. (d) \{1, 2, 7, 8\}.
```

52. **Proof:** I owe you a proof using Theorem 6.2.2. I was getting a mess. Even the element method is not very pretty. However, the element method is what I'll give. Lots of applications of DeMorgan's. I will prove just one half of the proof. Namely, I'll prove $(A\triangle B)\triangle C\subseteq A\triangle(B\triangle C)$.

Remark. I may have gone about this a round about way.

Proof: Assume that $x \in (A \triangle B) \triangle C$. Then $x \in (A \triangle B) - C$ or $x \in C - (A \triangle B)$.

Case 1: Let's assume that $x \in (A \triangle B) - C$. Then $(x \in A - B \text{ or } x \in B - A)$ and $x \in C^c$. By DeMorgan's, this implies that $(x \in A - B \text{ and } x \in C^c)$ or $(x \in B - A \text{ and } x \in C^c)$.

Case 1': $x \in A - B$ and $x \notin C$. Then $x \in A$ and $x \notin B$ and $x \notin C$. Since $x \notin B$ then $x \notin (B - C)$. Since $x \notin C$ then $x \notin (C - B)$. Therefore $x \notin A - (B\triangle C)$. It follows that $x \in A\triangle(B\triangle C)$.

Case 1": $x \in (B - A)$ and $x \notin C$. Then $x \in B$ and $x \notin A$ and $x \notin C$. Since $x \in B$ and $x \notin C$ we have $x \in B - C$. Therefore $x \in B \triangle C$. Since $x \notin A$ we conclude that $x \in (B \triangle C) - A$. That is, $x \in A \triangle (B \triangle C)$.

Case 2: Let's assume that $x \in C - (A \triangle B)$. Then $x \in C$ and $x \notin (A \triangle B)$. Since $x \notin (A \triangle B)$ it follows that $x \notin (A - B)$ and $x \notin (B - A)$ by DeMorgan's. Since $x \notin (A - B)$ it follows that $x \notin A$ or $x \in B$. Similarly, $x \notin (B - A)$ implies that $x \notin B$ or $x \in A$. Therefore $x \in C$ and $(x \notin A)$ or $x \in B$ and $(x \notin B)$ or $x \in A$.

Suppose that $x \notin A$. Then $x \notin A$ or $x \in B$ implies $x \in B$. However, $x \notin B$ or $x \in A$ implies that $x \in A$. Contradiction. Therefore $x \in A$.

Since $x \in A$, then $x \notin A$ or $x \in B$ implies that $x \in B$.

Therefore $x \in A$ and $x \in B$ and $x \in C$. Since $x \in B$ and $x \in C$ it follows that $x \notin (B-C)$ or $x \notin (C-B)$, i.e. $x \notin B \triangle C$. Therefore $x \in A-(B\triangle C)$. That is, $x \in A\triangle(B\triangle C)$ \square

4. (12 points) Section 7.1 # 4, 14.

Solution:

4(a) . $f_1 = \{(a, u), (b, u)\}$ $f_2 = \{(a, u), (b, v)\}$ $f_3 = \{(a, v), (b, u)\}$ $f_4 = \{(a, v), (b, v)\}$

4(b). $f = \{(a, u), (b, u), (c, u)\}.$

4(c).

 $f_1 = \{(a, u), (b, u), (c, u)\}$ $f_2 = \{(a, v), (b, v), (c, v)\}$ $f_3 = \{(a, u), (b, u), (c, v)\}$ $f_4 = \{(a, u), (b, v), (c, u)\}$ $f_5 = \{(a, v), (b, u), (c, u)\}$ $f_6 = \{(a, v), (b, v), (c, u)\}$ $f_7 = \{(a, v), (b, u), (c, v)\}$ $f_8 = \{(a, u), (b, v), (c, v)\}$

14. No. H(0) = 1 while K(0) = 0.

5. (15 points) Section 7.1 # 22, 25, 27

Solution:

22. **Proof by Contradiction:** Assume that $\log_3 7$ is a rational number. Then there exists integers a and b, $b \neq 0$ such that $\log_3 7 = \frac{a}{b}$. Now a/b > 0 so let's assume that both a and b are positive. Let's also assume that a/b is in simplest form. Then $3^{a/b} = 7$. It follows that $3^a = 7^b$. It follows that the prime factorization of 3^a is 7^a . However, the prime factorization of 3^a is 3^a . This contradicts the fact that the prime factorization is unique.

Now what if the integers a and b are both negative. Just set x/y = -a/-b. Then $3^x = 7^y$ and again the contradiction comes from the uniqueness of the prime factorization.

Therefore $3^{a/b} = 7 \rightarrow 3^a = 7^b$.

25(a). $p_1(2,y) = 2$ and $p_2(5,x) = 5$. The range of p_1 is A.

25 (b). $p_1(2,y) = y$ and $p_2(5,x) = x$. The range of p_2 is B.

27(a). f(aba) = 0, f(bbab) = 2, f(b) = 0.

27(b). g(aba) = aba, g(bbab) = babb, g(b) = b.

6. (9 points) Section 7.1 # 32(b), 42, 44, 45.

Solution:

42. This is true. Let's prove it.

Proof: Let $y \in F(A)$. Then there exists an $x \in A$ such that f(x) = y. Since $A \subseteq B$ we have that $x \in B$. Therefore f(x) = y for $x \in B$. That is, $y \in B$

44. This is false. Let $A = \{1\}$ and $B = \{2\}$ and $f = \{(1, a), (2, a)\}$. Now $f(A - B) = f(A) = \{a\}$. Note that $f(B) = \{a\}$ so that $f(A) - f(B) = \emptyset$.

45. This is true. Let's prove it.

Proof: Let $x \in f^{-1}(C)$. Then $f(x) \in C$. Since $C \subseteq D$ it follows that $f(x) \in D$. Therefore $x \in f^{-1}(D)$ \square

7. (6 points) Section 7.2 # 25.

25. Yes, C is 1-1. No, C is not onto. Let's first prove 1-1.

Proof: Assume that C(s) = C(s'). Then as = as'. Note that strings are ordered collection of objects. A string of size n is denoted as an n-tuple x_1, x_2, \ldots, x_n) where x_i is 0 or 1. Two n-tuples (x_1, x_2, \ldots, x_n) , (y_1, y_2, \ldots, y_n) are equal to one another if and only if $x_i = y_i$ for $i = 1, 2, \ldots n$. It follows that $s = s' \square$

About onto. Note that s = a does not belong to the image of C. This is because the strings in the image of C are at least of length 2.

Remark. A string of a's and b's of length k is simply an element of $\{a,b\}^k$. If S is the set of all strings of a's and b's, then

$$S = \bigcup_{k=1}^{\infty} \{a, b\}^k$$

Regarding # 25 in section 7.2. The string as where $s \in S$ is simply appending the string s by a on the left (see page 20). Therefore, if s = (a, b). Then as = (a, a, b). If s = (b), then as = (a, b).