Another version of Proposition 43.3 using the Schur complement of A instead of the Schur complement of C also holds. The proof uses the factorization of M using the Schur complement of A (see Section 43.1).

Proposition 43.4. For any symmetric matrix M of the form

$$M = \begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix},$$

if A is invertible then the following properties hold:

- (1) $M \succ 0$ iff $A \succ 0$ and $C B^{\top}A^{-1}B \succ 0$.
- (2) If $A \succ 0$, then $M \succeq 0$ iff $C B^{\top} A^{-1} B \succeq 0$.

Here is an illustration of Proposition 43.4(2). Consider the nonlinear quadratic constraint

$$(Ax+b)^{\top}(Ax+b) \le c^{\top}x + d,$$

were $A \in M_n(\mathbb{R}), x, b, c \in \mathbb{R}^n$ and $d \in \mathbb{R}$. Since obviously $I = I_n$ is invertible and $I \succ 0$, we have

$$\begin{pmatrix} I & Ax+b \\ (Ax+b)^{\top} & c^{\top}x+d \end{pmatrix} \succeq 0$$

iff $c^{\top}x + d - (Ax + b)^{\top}(Ax + b) \succeq 0$ iff $(Ax + b)^{\top}(Ax + b) \leq c^{\top}x + d$, since the matrix (a scalar) $c^{\top}x + d - (Ax + b)^{\top}(Ax + b)$ is the Schur complement of I in the above matrix.

The trick of using Schur complements to convert nonlinear inequality constraints into linear constraints on symmetric matrices involving the semidefinite ordering \succeq is used extensively to convert nonlinear problems into semidefinite programs; see Boyd and Vandenberghe [29].

When C is singular (or A is singular), it is still possible to characterize when a symmetric matrix M as above is positive semidefinite, but this requires using a version of the Schur complement involving the pseudo-inverse of C, namely $A - BC^+B^\top$ (or the Schur complement, $C - B^\top A^+B$, of A). We use the criterion of Proposition 42.5, which tells us when a quadratic function of the form $\frac{1}{2}x^\top Px - x^\top b$ has a minimum and what this optimum value is (where P is a symmetric matrix).

43.3 Symmetric Positive Semidefinite Matrices and Schur Complements

We now return to our original problem, characterizing when a symmetric matrix

$$M = \begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix}$$