Universidade do Minho Departamento de Física

Electromagnetismo A

MIECom

Exame de treta... 2012/03/22

O que comeu ao pequeno-almoço:		nº de cafés:	fruta:
1)	No exame, existem questões "Q" e problemas "P". A reverdadeiras.	sposta a uma Q significa assinalar	com uma cruz todas as alíneas que considerar
2)	Lembre-se: pode haver várias alíneas correctas. A O só estará correctamente respondida se todas as alíneas verdadeiras forem indicadas Em todas as Q existe sempre pelo menos uma alínea que é verdadeira, mesmo que o colega do lado não assinale nenhuma.		
Q1	 Considere um condutor em equilíbrio electros A diferença de potencial eléctrico entre qua A densidade de linhas de campo eléctrico à é maior. O campo eléctrico no interior é nulo. O módulo do campo eléctrico no interior é 	aisquer dois pontos no seu int sua superfície é maior nas re	erior é nula. egiões onde a curvatura da superfície
_	- Uma carga pontual é colocada no centro de unos em que haverá <u>alteração fluxo do campo elétri</u> a esfera é substituída por um cubo com o a carga é deslocada do centro da esfera pa a carga é retirada para fora da esfera. uma segunda carga é colocada, próximo,	co quando: mesmo volume. ara outro ponto, ainda no seu	interior.
Q3	 Das seguintes afirmações, indique a(s) verdadei Um objecto que esteja electricamente neu negativa. O módulo da força eléctrica entre duas carg É possível carregar electricamente uma bar Quando se fricciona uma vara de vidro cor em ambos os materiais. 	tro não pode ter dentro de s gas é independente do sinal d ra metálica não isolada por fi	e cada uma das cargas. ricção com um determinado tecido.

- **P1** Uma moeda de um cêntimo tem uma massa de 3 g e contém cerca de 3×10^{22} átomos de cobre. Suponha que em duas destas moedas se retira uma fracção dos seus electrões, ficando cada uma com uma quantidade de carga positiva +q. Se colocarmos uma destas moedas sobre a outra a uma altura de 2 m constata-se que estas ficam em equilíbrio.
 - a) Qual deverá ser o módulo de q de modo que o sistema fique em equilíbrio? Sublinhe a palavra moedas.
 - b) Que quantidade de electrões temos que retirar igualmente em cada uma das moedas de modo a termos essa carga +q? $(q_e=1,6\times10^{-19} \text{ C})$
- **P2** Considere um dispositivo eléctrico constituído por duas placas metálicas paralelas (A e B), cada uma carregada uniformemente com uma quantidade de carga igual mas de sinal contrário, com uma densidade de carga superficial de 2 μC/m² e separadas de 3 mm. Se um protão (m_p =1,67×10⁻²⁷ kg e q_p =1,6×10⁻¹⁹ C) for abandonado junto à placa positiva, qual será a sua velocidade quando atingir a placa negativa? Assuma que o espaço entre as placas se encontra em vácuo.
- **P2.** Calcule o potencial elétrico total no ponto B devido à distribuição de cargas local.

Correção do teste:

- Q1 Considere um condutor em equilíbrio electrostático. Das seguintes afirmações, indique a(s) verdadeira(s):
 - A diferença de potencial eléctrico entre quaisquer dois pontos no seu interior é nula.
 - A densidade de linhas de campo eléctrico à sua superfície é maior nas regiões onde a curvatura da superfície
- 3 valores

3 valores

3 valores

- O campo elétrico no interior é nulo.
- O módulo do campo eléctrico no interior é inversamente proporcional à distância ao seu centro.
- Q2 Uma carga pontual é colocada no centro de uma superfície gaussiana esférica. Das seguintes opções, indique o(s) casos em que haverá alteração fluxo do campo elétrico quando:
 - a esfera é substituída por um cubo com o mesmo volume.
 - a carga é deslocada do centro da esfera para outro ponto, ainda no seu interior.
 - a carga é retirada para fora da esfera.
 - uma segunda carga é colocada, próximo, porém do lado de fora da esfera.
- Q3. Das seguintes afirmações, indique a(s) verdadeira(s):
 - Um objecto que esteja electricamente neutro não pode ter dentro de si regiões separadas de carga positiva e
 - O módulo da força eléctrica entre duas cargas é independente do sinal de cada uma das cargas.
 - É possível carregar electricamente uma barra metálica não isolada por fricção com um determinado tecido.
 - Quando se fricciona uma vara de vidro com uma peça de seda, criam-se cargas de sinal contrário isoladamente em ambos os materiais.

P1.

a)
$$\sum \vec{F}_y = 0 \Leftrightarrow \vec{F}_e + \vec{P} = 0 \Leftrightarrow F_e - P = 0 \Leftrightarrow F_e = P \Leftrightarrow \frac{k|q_1||q_2|}{r^2} = mg$$

$$\therefore |q| = \sqrt{\frac{3 \times 10^{-3} \cdot 9.8 \cdot 2^{2}}{9 \times 10^{9}}} = 3.6 \times 10^{-6} C = 3.61 \mu C$$
 2 valores

b)
$$q = n \cdot q_e \iff n = \frac{q}{q_e} = \frac{3.61 \times 10^{-6}}{1.6 \times 10^{-19}}$$

∴ retiram-se $n = 2,26 \times 10^{13}$ electrões

P2.

$$E_{total} = \frac{\sigma}{\varepsilon_o} = \frac{2 \times 10^{-6}}{8,85 \times 10^{-12}} = 2,26 \times 10^5 V/m$$
 1,5 valores

$$\Delta V = -E_{total}d = -2,26 \times 10^5 \cdot 3 \times 10^{-3} = -678V$$

$$\Delta U = -\Delta K \Leftrightarrow q_{prot\tilde{a}o} \cdot \Delta V = -\frac{1}{2} m_{prot\tilde{a}o} \cdot \left(v_f^2 - v_i^2\right) \Leftrightarrow +1,6 \times 10^{-19} \cdot (-678) = -0,5 \cdot 1,67 \times 10^{-27} \left(v_f^2 - 0\right)$$

$$\therefore v_f = 3,6 \times 10^5 m/s$$
 2,5 valores

$$V_B = k \sum_i \frac{q_i}{r_i} = k \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} \right) = 9 \times 10^9 \left(\frac{5 \times 10^{-8}}{0.1} + \frac{-40 \times 10^{-8}}{0.2} + \frac{8 \times 10^{-8}}{0.1} \right)$$

$$\therefore V_R = -6300V$$
 0,5 valores