Compare and contrast the small G proteins with heterotrimeric G proteins. Briefly speculate why these different mechanisms might have evolved.

Intro

- Small G proteins monomeric
- Heterotrimeric Galpha (homologous to small G), Gbeta, G-gamma
- Both types control a myriad of signalling pathways in cells
- Some mechanisms are similar, some are different

Body

- *Give specific examples of small G proteins / heterotrimerics that do each
- * Experimental evidence (e.g. NMR?)

1. Structure

	Small G proteins	Heterotrimeric G proteins
Nucleotide binding	Mg2+ (GTP and GDP form)	Same G domain fold as Ras But contains 4 insertions – 1 large helical domain and 3 small insertions Only binds Mg2+ in GTP bound form In GDP bound form, betagamma subunit binds Galpha GDP, thus taking on role of Mg2+
Switch region / mechanism	Thr35 in Switch I and Gly60 in Switch II interact with oxygen atoms on GTP gamma-phosphate; release of gamma-phosphate allows system to relax Others: - Third switch (Ran) - N-terminal switch with interswitch (Arf) Bind to GTP and GDP with equal affinity	3 switch regions – homologous Switch I and II, along with third switch loop that points to nucleotide binding site Arg-Gln hasp connects the three switch regions to lock alpha subunit in Galpha bound conformation → Galpha subunits have preference for GTP binding
Interaction with membrane	Allosteric lobe maintains correct Ras-membrane interaction Prenylation (primary and secondary sites) at C-terminal, CAAX box	Galpha: Gly2 which is myristoylated after N-terminal Met is removed N-terminal Cys is palmitoylated Ggamma: Also contains CAAX box and can be farnesylated or Geranyl-geranylated on cysteine of

		CAAX; AAX residues also cleaved off
PTMs	Prenylation, ubiquitination, phosphorylation	

2. Activation

	Small G proteins	Heterotrimeric G proteins
Activators	GEFs - Open nucleotide binding pocket to reduce affinity of G protein for GDP - "Push-pull mechanism": GEF binds to push switch II, which disrupts contact to phosphates and disturbs the P loop - Switch I is displaced to prevent contacts between Switch I residues and nucleotide - Other effects include occlusion of the ribose binding site All activators appear to disrupt the P loop.	GPCRs - Upon ligand binding, conformational changes in the cytosolic domain of the receptor exposes a hydrophobic cleft by the outward movement of TM5 and 6 - Galpha binds to GPCR via N-terminal alpha helical domain - This induces conformational changes in Galpha, including outward movement of alpha5-beta6 loop, which normally interacts with guanine ring of nucleotide. P loop is also disturbed GBA motif proteins - Monomeric (like GEFs) - Binds in cleft between switch II and alpha3 to disrupt P loop Beta, gamma subunits act cooperatively to promote nucleotide exchange

3. Interaction with effectors

	Small G proteins	Heterotrimeric G proteins
Mechanism of interaction	 Formation of intermolecular beta sheet involving switch I Disruption of autoinhibition (e.g. Ras disrupts Raf, Cdc42 disrupts WASP) Dimerisation 	 Disruption of autoinhibition (e.g. Galphaq with PLC. transducin with cGMP PDE) Weaken membrane interaction of Galpha protein (not the case for small G proteins)

	- Nanoclustering	- Direct activation of active site of effector Both Galpha and Gbetagamma can interact with downstream effectors
Effectors	Depends on particular G protein - Ras and Raf - Rho and WASP - Ran and nuclear exporters (e.g. exportins) - Rab and tethering proteins - Arf and COP I vesicles	Depends on particular heterotrimeric - Galphat and cGMP PDE - Galphas and AC - Galphaq and PLC - Betagamma – girk2 ion channels

4. Termination

	Small G proteins	Heterotrimeric G proteins
Intrinsic mechanism	 Gln61 acts as base, positions water molecule in binding site O of water mediates nucleophilic attack on gamma phosphate Gln contacts one of gamma phosphate O to stabilise reaction transition state Others:	- Contains its ow Arg finger -> Galpha hydrolyses GTP 100x faster than small G proteins
Terminators	GAPs - Arg finger has positive charge, neutralises buildup of negative charge on beta and gamma phosphate O - Stabilises catalytic Gln61 - Arg positioning stabilised by secondary residue (e.g. Arg, Lys) - Contacts switch regions Others: co-activator GAPs and GEFs can be recruited by the same receptor (e.g. PDGFR recruits SOS and p120, the GEF and GAP for Ras, respectively)	RGSs - Contacts switch regions – holds them in correct orientation so Arg finger can act in nt binding site - Can stabilise catalytic moieties e.g. Gln, water Some effector proteins - PLC Asn260 interacts with Gln209 of Galphaq to stabilise it; Asn260 interacts with Glu212 of Switch I - cGMP PDE orientates Switch I and II to be in correct orientation for interaction with RGS9; also stabilises R2014 to H bond to G199, thus stabilising catalytic Gln200

5. Interaction with membrane

	Small G proteins	Heterotrimeric G proteins
Structural elements	 Via prenyl groups Nanoclustering Allosteric lobe 	 Via prenyl groups Via betagamma (gamma has prenyl group) Do not appear to exhibit nanoclustering or dimerisation in the membrane (apart from with GPCRs)

6. Reasons for evolution of different mechanisms

Speculation

- Due to structural divergence between the small G and heterotrimeric G proteins, activation mechanism also had to be differentiated
- Reduce cross-talk between the two pathways so that there is some independence at the activation step (though cross-talk does occur in later parts of the pathway)
- Different functions

Conclusion

- Both small G proteins and heterotrimerics exhibit some similarity, but there are many differences
- Both G proteins show great diversity in the mechanisms of signalling and functions
- Integrate signals
- Highly important in the cell
 - Targets of drug discovery campaigns e.g. Ras
- Exemplars of structure-function relationships