

Studying the evolutionary history of a B cell lineage

Presented by:

Brenda ENRIQUEZ Ekaterina GAYDUKOVA

Supervisors:

Juliana SILVA BERNARDES Nika ABDOLLAHI

B cells

B-cell development and B-cell receptor (BCR)

B-cell receptor (BCR)

Each antibody molecule is composed of:

- two light chains (IgL)
- two heavy chains (IgH).

Each chain is made up of two regions:

variable and constant.

The variable region of a light and a heavy chain together form the **antigen binding site**.

The constant region of a light and a heavy chain determine the **specific antibody class**.

Structure of BCR

Immunoglobulin

Three gene groups encode the IgH variable domain:

- V for variable,
- D for diversity,
- J for joining.

Two B-cells would have:

- different B cell receptors,
- different antigen specificities.

ANTIGEN BINDING SITE

- VARIABLE
- DIVERSITY
- JOINING

Light and heavy chains of Ig.

Affinity maturation & Somatic hypermutation

Affinity maturation:

Process by which B cells increase affinity for antigen during an immune response.

Somatic hypermutation - mutation of antibody genes to create new antigen specificities stronger, more specific response to antigen.

Clonal selection: only high affinity cells activated -> only high affinity cells replicate.

BCR lineage trees

Circle tree

Elbow tree

Aims of the project

- 1. Implement phylogenetic metrics in order to describe the properties of BCR lineage trees.
- 2. Compare BCR lineage trees generated by ClonalTree and GCtree algorithms.
- 3. Find the similarities between BCR lineage trees that could be used to describe patients with different haematological diseases.

How to grow a BCR lineage tree?

. .

dataset1_1_simplifie_sequences.aln.fa

>naive

GAAGTGCAGCTGGTGGAGTCTGGGGGAGTCGTGGTACASCCTGGGGGGTCCCTAGAGCTCTCCCTGTGCAGCCTCTGGATTCACCTTTGA
TGATTATCCATGCACTGGGTCCGTCAAGCTCCGGGGAAGGGTCTGGAGTGGGTCTCTCTTATTAGTTGGGATGGTGACATACC
ATGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACAGCAAAAACTCCCTGTATCTGCAAATGACCAGTCTGAAACTGAACTAGCACACCCCCTTGTATTACTGTGCAATCTCCAGGACCTGGAACTTCGAAACTCCCTGTACTTCAGAACTGGAACTCGGAACTTCGAAGCTGAATCATCCCAGCACCTGGGCCACCGGCACCCTGGT
CACCCGTCTCCTCAG

>seq4@41171

GAAGTGCAGCTGTTGGGGGAGTCTGGGTGAGACCCTGGGGGGTCCCTAGAGCTCTCCCTGTGCAGCCTCTGGATTCACCTTTGA TGATTATACCATGCATGGGTCCGTCAAGCTCCGGGGAAGGGTCTGGAGTGGGTCTCTCTTATTAATTGGGATGGTGATGATACTACT ATGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACAGGAAAACGTCCCTGTATCTGCAAATGAACAGTCTGAGAACTGAG GACACCGCCTTTGTATTACTGTGCAATCTCCAGGTACAACTGGAACTTCGAAGCCGAATACCTCCAGCACTGGGGCCAGGGCACCCTGGT CACCGCTCTCCTCAG

>seq4602@97

>seq2255@96

GAAGTGCAGCTGTTGGAGTCTGGGGAGATCGTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGA TGATTATACCATGCACTGGGTCCGTCAAGCTCCGGGGAAGGGTCTGGAGTGGGTCTCTCTTATTAATTGGGATGGTGGTAGTACATACT ATGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACAGGAAAACGTCCCTGTATCTGCAAATGAACAGTCTGAGAACTAG GACACCGCCTTGTATTACTGTGCAATCTCCAGGTACAGCTGGAACTTCGAAGCCGAATACCTCCAGCACTGGGGCCAGGGCACCCTGGT CACCGTCTCCTCAG

>seq286@95

GAAGTGCAGCTGTTGGAGTCTGGGGGGAGTCGTGGTACAGCCTGGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGA TATTATACCATGCACTGGGCCGCTAAGCTCCCGGGAAGGGTCTGGAGTGGGTCTCTTATTAATTGGGATGGTGTGATGACATACT ATGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACAGGAAAACGTCCCTGTATCTGCAAATGAAACAGTCTGAGAACTGAG GACACCGCCTTGTATTACTGTGCAATCTCCAGGTACAACTGGAGCTTCGAAGCCGAATACCTCCAGCACTGGGGCCAGGGCACCCTGGT CACCGCTCTCCTCAG

IgH sequences

Tree

Phylogenetic metrics

- Number of branches
- Phylogenetic diversity (PD)
- Average Phylogenetic diversity (avPD)

Phylogenetic tree with PD = 41.

Branch lengths are shown above branches.

Phylogenetic metrics

- Depth (D1, D2, D3)
- Height (H1, H2, H3)
- Overall depth (SizeTree)

Examples of height and depth calculations

How to compare trees?

BCR Clonal tree raw data

New metrics definition

Clonal tree analysis

- Euclidien distance
- PCA
- KNN

Comparing GCtree and ClonalTree

Euclidian distance

$$Score = \sqrt{\sum_{i=1}^{10} (metric_ClonalTree_i - metric_GCtree_i)^2}$$

Number of times the metrics were different. Consider 40 pairs of BCR lineage trees with a score greater than zero.

Analysis of Categorised BCR lineage trees

Principal Component Analysis

Principal component Analysis

Results of PCA for Categorised dataset

K-nearest neighbors algorithm

	PC1	PC2	Categorie	KNN_zero	KNN_moy
0	1.663964	1.345121	1	1.0	1.0
1	1.687469	0.047713	1	1.0	1.0
2	1.087055	-1.146615	1	1.0	1.0
3	1.013657	-1.320312	1	1.0	1.0
4	3.158271	-1.201718	1	1.0	1.0
5	-0.184434	-0.365643	2	4.0	2.0
6	0.526174	0.953448	2	3.0	2.0
7	-1.009050	2.730705	3	3.0	4.0
8	-1.845943	-2.473893	3	2.0	3.0
9	-2.193221	-0.839032	3	2.0	3.0
10	-1.764859	1.899486	4	3.0	4.0
11	0.779805	1.155897	4	3.0	2.0
12	-2.918889	-0.785157	4	2.0	3.0

	True P	True N	False P	False N	Sensitivity	Specificity
1	5.0	8.0	0.0	0.0	1.000000	1.000000
2	0.0	8.0	3.0	2.0	0.000000	0.727273
3	1.0	7.0	3.0	2.0	0.333333	0.700000
4	0.0	9.0	1.0	3.0	0.000000	0.900000

Sensitivity and Specificity for KNN_zero

	True P	True N	False P	False N	Sensitivity	Specificity
1	5.0	8.0	0.0	0.0	1.000000	1.000000
2	2.0	10.0	1.0	0.0	1.000000	0.909091
3	2.0	9.0	1.0	1.0	0.666667	0.900000
4	1.0	9.0	1.0	2.0	0.333333	0.900000

KNN Result Classification

Sensitivity and Specificity for KNN_moyenne

Analysis of uncategorised BCR lineage trees

Dataset	Disease	Number of IgH repertoires
LLC + MUT	Chronic Lymphocytic Leukaemia	184
MUT	Waldenström macroglobulinemia	40

Analysis of uncategorised BCR lineage trees

Number of branches = 128

PD = 4371

avPD = 34.15

H1 = 6

H2 = 3

H3 = 0

D1 = 3

D2 = 6

D3 = 5

SizeTree = 10

Visualisation of VHC_dataset22_1_200_sequences

Analysis of uncategorised BCR lineage trees

The second most abundant IgH sequence in 70% of the cases is a tree leaf.

The third most abundant IgH sequence in 90% of the cases is a tree leaf.

D1 = 1

The most abundant IgH sequence in the tree in 25% of cases is one level below the root.

D1 = 2

The most abundant IgH sequence in the tree in 25% of cases is two level below the root.

D1 = 3

The most abundant IgH sequence in the tree in 50% of cases is three level below the root.

Conclusions

- Phylogenetic metrics might describe the BCR lineage trees of patients with haematological diseases.
- With phylogenetic metrics, it is possible to establish quantitatively differences between two BCR lineage trees.
- ClonalTree and GCtree will reconstruct identical trees for the same IgH clone in approximately 60% of the cases.
- In perspective, new metrics might be adding in order to better caracterize the properties of BCR lineages trees.

