编译原理第四章作业

2154312 郑博远

1. 考虑下面文法 G₁:

$$S \rightarrow a \mid \land \mid (T)$$

$$T \rightarrow T, S \mid S$$

- (1) 消去 G_1 的左递归。然后,对每个非终结符,写出不带回溯的递归子程序。
- (2) 经改写后的文法是否是 LL(1)的? 给出它的预测分析表。

答: (1)

将状态S、T按照1、2编序。

当
$$i=1, j=0$$
时, S 不存在直接左递归;

当i=2,j=1时,无需消除间接左递归,

消除 T 的直接左递归:

$$T \to ST'$$

 $T' \to ST' \mid \varepsilon$

因此消去左递归后 G_1 的文法为:

$$S \rightarrow a \mid \Lambda \mid (T)$$

 $T \rightarrow ST'$
 $T' \rightarrow ST' \mid \varepsilon$

分析其 FIRST 集与 FOLLOW 集:

$$FIRST(S) = \{ a, \land, (\} \}$$

$$FIRST(T) = FIRST(S) = \{ a, \land, (\} \}$$

$$FIRST(T') = \{ ,, \varepsilon \}$$

$$FOLLOW(S) = (FIRST(T') - \{\epsilon\}) \cup FOLLOW(T) \cup \{\#\} = \{\ ,,\), \#\}$$

$$FOLLOW(T) = \{\)\ \}$$

$$FOLLOW(T') = FOLLOW(T) = \{\)\ \}$$

因此,不带回溯的递归子程序为:

```
P(S)
BEGIN
   IF ch = 'a' OR ch = '\Lambda' THEN
       read(ch);
    ELSE IF ch = '(' THEN
   BEGIN
       read(ch);
       P(T);
       IF ch = ')' THEN
           read(ch);
       ELSE ERROR;
    END
   ELSE ERROR;
END
P(T)
BEGIN
   P(S);
   P(T');
END
P(T')
BEGIN
   IF ch = ',' THEN
       read(ch);
       P(S);
       P(T');
   ELSE IF ch = ')' THEN
       return;
    ELSE ERROR;
END
```

(2) 首先, 该文法不存在左递归(包括直接左递归和间接左递归); 其次, 文法中每个非终结符 A 的各个产生式的候选首符集两两不相交; 最后,对于 $\varepsilon \in FIRST(A)$ 的非终结符 A (即 T') ,满足 FIRST(A) ∩ $FOLLOW(A) = \emptyset$ 。

因此,该文法是 LL(1)的。

预测分析表如下:

	()	а	٨	,	#
S	$S \to (T)$		$S \rightarrow a$	$S \rightarrow \Lambda$		
T	$T \rightarrow ST'$		$T \rightarrow ST'$	$T \rightarrow ST'$		
T'		$T' o \varepsilon$			T' o , ST'	

2. 对下面的文法 G:

$$E \rightarrow TE'$$
 $E' \rightarrow +E \mid \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow T \mid \varepsilon$
 $F \rightarrow PF'$
 $F' \rightarrow *F' \mid \varepsilon$
 $P \rightarrow (E) \mid a \mid b \mid \wedge$

- (1) 计算这个文法的每个非终结符的 FIRST 和 FOLLOW。
- (2) 证明这个文法是 LL(1) 的。
- (3) 构造它的预测分析表。
- (4) 构造它的递归下降分析程序。

答: (1)

$$FIRST(E) = FIRST(T) = FIRST(F) = FIRST(P) = \{ (, a, b, \land \} \}$$

 $FIRST(E') = \{ +, \varepsilon \}$
 $FIRST(T) = FIRST(F) = FIRST(P) = \{ (, a, b, \land \} \}$

$$FIRST(T') = FIRST(F) \cup \{\varepsilon\} = \{ (,a,b,\land,\varepsilon\} \}$$

$$FIRST(F) = FIRST(P) = \{ (,a,b,\land) \}$$

$$FIRST(F') = \{ *,\varepsilon \}$$

$$FIRST(P) = \{ (,a,b,\land) \}$$

$$FOLLOW(E) = \{ \#, \} \}$$

$$FOLLOW(E') = FOLLOW(E) = \{ \#, \} \}$$

$$FOLLOW(T) = (FIRST(E') - \{\varepsilon\}) \cup FOLLOW(E) = \{ \#, \}, + \}$$

$$FOLLOW(T') = FOLLOW(T) = \{ \#, \}, + \}$$

$$FOLLOW(F) = (FIRST(T') - \{\varepsilon\}) \cup FOLLOW(T) = \{ (,a,b,\land,\#, \}, + \}$$

$$FOLLOW(F') = FOLLOW(F) = \{ (,a,b,\land,\#, \}, + \}$$

(2)首先,该文法不存在左递归(包括直接左递归和间接左递归);

其次, 文法中每个非终结符 A 的各个产生式的候选首符集两两不相交;

最后,对于 $\varepsilon \in FIRST(A)$ 的非终结符 A (即 E',T',F') ,均满足 FIRST(A) ∩ $FOLLOW(A) = \emptyset$ 。

 $FOLLOW(P) = (FIRST(F') - \{ \varepsilon \}) \cup FOLLOW(F) = \{ (,a,b,\land,\#,),+,* \}$

因此,该文法是 LL(1)的。

(3)

	+	*	۸	а	b	()	#
Е			$E \to TE'$	$E \to TE'$	$E \to TE'$	$E \rightarrow TE'$		
E'	$E' \rightarrow +E$						$E' \to \varepsilon$	$E' \to \varepsilon$
Т			$T \to FT'$	$T \to FT'$	$T \to FT'$	$T \to FT'$		
T'	$T' o \varepsilon$		$T' \to T$	$T' \to T$	$T' \to T$	$T' \to T$	$T' o \varepsilon$	$T' o \varepsilon$

F			$F \rightarrow PF'$	$F \rightarrow PF'$	$F \rightarrow PF'$	$F \to PF'$		
F'	$F' o \varepsilon$	$F' \rightarrow * F'$	$F' o \varepsilon$	$F' o \varepsilon$	$F' o \varepsilon$	$F' o \varepsilon$	$F' o \varepsilon$	$F' o \varepsilon$
P			$P \rightarrow \wedge$	$P \rightarrow a$	$P \rightarrow b$	P o (E)		

(4)

```
P(E)
                                      P(E')
BEGIN
                                      BEGIN
   P(T);
                                         IF ch = '+' THEN
   P(E');
                                         BEGIN
END
                                             read(ch);
                                             P(E);
                                         END
                                         ELSE IF ch = '#' OR ch = ')'
                                     THEN
                                             return;
                                         ELSE ERROR;
                                      END
                                     P(T')
P(T)
BEGIN
                                      BEGIN
                                         IF ch = '#' or ch = ')' or ch
   P(F);
                                      = '+' THEN
   P(T');
END
                                             return;
                                         ELSE BEGIN
                                             P(T);
                                         END
                                      END
                                      P(F')
P(F)
BEGIN
                                      BEGIN
                                         IF ch = '*' THEN
  P(P);
   P(F');
                                             read(ch);
END
                                             P(F');
                                         ELSE IF ch = 'a' OR ch = 'b' OR
                                     ch = '(' OR ch = ')' OR ch = '\Lambda' OR ch = '+' OR ch = '+' THEN
                                             return;
                                         ELSE ERROR;
                                      END
P(P)
BEGIN
    IF ch = '(' THEN
        read(ch);
```

```
P(E);
    if ch = ')' THEN
        read(ch);
    ELSE ERROR;
    ELSE IF ch = 'a' OR ch = 'b'
OR ch = '\lambda' THEN
        read(ch);
    ELSE ERROR;
END
```