Econometrics 2: Non-parametric methods

Eric Gautier*
2024 Spring

I have a question!

^{*}Notes by FU Zixuan, last compiled on February 8, 2024.

Contents

1	Preliminaries				
	1.1	Probability basics	3		
	1.2	Completeness condition	4		
2	Density function and kernel estimation				
	2.1	Density function	5		
	2.2	Density function estimation	5		
	2.3	Kernels estimators	6		
	2.4	Performance analysis	7		
3	Sob	olev class and symmetric kernel	12		
	3.1	Review of Fourier transform	12		
	3.2	Sobolev class	12		
	3.3	Symmetric kernel	12		
4	MISE and Cross validation				
	4.1	MISE	14		
	4.2	Cross validation	15		
	4.3	Extension	16		
5	Other types of non-parametric estimators				
		Orthogonal series estimators	16		
6	Regression Function Estimation				
	61	Introduction: average effect of X on Y	20		

1 Preliminaries

1.1 Probability basics

Definition 1.1 (distribution law). The distribution law of a random variable X is \mathbb{P}_X is the probability on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that $\mathbb{P}_X[B] = \mathbb{P}[X \in B]$ for all $B \in \mathcal{B}(\mathbb{R}^d)$

Definition 1.2 (density).
$$X$$
 has density f_X if $\mathbb{P}_X[B] = \int_B \underbrace{f_X(x) dx}_{d\mathbb{P}_X(x)}$ for all $B \in \mathcal{B}\left(\mathbb{R}^d\right)$

Let Y be a random variable and X be a random vector in \mathbb{R}^d defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We want to define and manipulate $\mathbb{E}[Y|X]$.

There are 2 particular cases

- 1. $(Y,X^{\top})^{\top}$ has discrete support. Let $x\in\operatorname{spt}(X)$, then $\mathbb{E}\left[Y|X=x\right]=\sum y_j\mathbb{P}\left(Y=y_j\mid X=X\right)$. This is well defined only when $\mathbb{P}\left(X=x\right)>0$ in which case $\mathbb{P}\left(Y=y_j\mid X=x\right)=\frac{\mathbb{P}(Y=y_j,X=x)}{\mathbb{P}(X=x)}$ is well defined.
- 2. $(Y, X^{\top})^{\top}$ and X have a density then $\mathbb{E}\left[Y|X=x\right] = \int y f_{Y|X=x}(y) dy$ where $f_{Y|X=x}(y) = \frac{f_{Y,X}(y,x)}{f_X(x)}$.

Proposition 1.1 (conditional expectation). The random variable $Z := \mathbb{E}[Y|X]$ is the unique random variable such that

- 1. $Z \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, that is Z is $\sigma(X)$ -measurable.
- 2. $\mathbb{E}[Z\mathbb{1}_B] = \mathbb{E}[Y\mathbb{1}_B]$ for all $B \in \sigma(X)$.

unique means that if Z' is another random variable satisfying the same properties, then Z=Z' a.s.

Remark. The random variable Z is $\sigma(X)$ -measurable iff $Z=\phi(X)$ for some function $\phi: \left(\mathbb{R}^d, \mathcal{B}\left(\mathbb{R}^d\right)\right) \to \left(\mathbb{R}, \mathcal{B}\left(\mathbb{R}\right)\right)$. The corresponding function ϕ for $Z=\underbrace{E\left[Y|X\right]}_{\text{conditional expectation}}$ is de-

noted by
$$\underbrace{\mathbb{E}\left[Y|X=x\right]}_{\text{conditional expectation function}}.$$

Remark. The proposition 2 is equivalent to

$$\mathbb{E}\left[\left(Y-Z\right)\mathbbm{1}_{B}\right]=0,\quad\forall B\in\sigma(X)$$

$$\Leftrightarrow \mathbb{E}\left[\left(Y-Z\right)\psi(X)\right]=0,\quad\forall \psi \text{ bounded and mean surable}.$$

1.2 Completeness condition

We want to understand the completeness condition when $X=Z-\eta$, where $Z\perp \eta$ and both have densities. Recall the definition of **completeness**.

Definition 1.3 (Completeness). Completeness is defined as such that

$$\forall z \in \mathbb{R}, \ \int_{\mathbb{R}} \varphi(x) f_{\eta}(z-x) dx = 0 \text{ implies that for all } x, \ \varphi(x) = 0,$$

where φ is continuous and $\int_{\mathbb{R}} |\varphi(x)| dx < \infty$.

Now, We make a detour to introduce some notations in function space.

Definition 1.4. Let f be a function defined on \mathbb{R}^d with values in \mathbb{R} or \mathbb{C} and $p \leq 1$. Then $L^p(\mathbb{R}^d)$ is defined as the space of measurable function from $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that $\int_{\mathbb{R}^d} |f(x)|^p dx < \infty$. If f takes value from \mathbb{C} , $|\cdot|$ is the modulus.

Definition 1.5 $(L^{1}(\mathbb{R}) \text{ space})$. A function is in $L^{1}(\mathbb{R})$ if $\int_{\mathbb{R}} |f(x)| dx < \infty$.

Definition 1.6 (Fourier transform). If $f \in L^1(\mathbb{R})$, the Fourier transform of f is defined for all $w \in \mathbb{R}$ by

$$\mathcal{F}[f](w) = \int_{\mathbb{R}} e^{iwx} f(x) dx.$$

Remark. Let $t \in \mathbb{R}$, $e^{it} = \cos(t) + i\sin(t)$ and $|e^{it}|^2 = 1$

Definition 1.7 (Convolution). If f and g belong to $L^1(\mathbb{R}^d)$, the convolution of f and g is $f * g(z) = \int f(x)g(z-x)dx$.

Proposition 1.2. If f and g belong to $L^1(\mathbb{R}^d)$, then $f*g \in L^1(\mathbb{R}^d)$. Its Fourier transformation is F[f*g](w) = F[f](w)F[g](w) for all $w \in \mathbb{R}^d$

Remark. check this proposition as an exercise.

Proposition 1.3. If $f \in L^1(\mathbb{R}^d)$, then F[f] is continuous and $\lim_{\|w\|_2 \to \infty} F[f](w) = 0$.

We introduce two properties that are useful for later cause.

Property 1.1. If $f, \mathcal{F}[f] \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$, then

- 1. (The Placherel equality) $\frac{1}{2\pi} \|\mathcal{F}[f]\|_2^2 = \|f\|_2^2$ (Plancherel's theorem)
- 2. (The Fourier inverse formula) For all $x \in \mathbb{R}$, $f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-iwx} \mathcal{F}[f](w) dw$, the inversion of the Fourier transform.

Question 1. Let $Z\in L^2(\Omega,\mathcal{F},\mathbb{P})$, then $\mathbb{E}[|z|]\leq \sqrt{\mathbb{E}[z^2]}\sqrt{\mathbb{E}[1^2]}$. Therefore, $L^2(\Omega,\mathcal{F},\mathbb{P})\subset L^1(\Omega,\mathcal{F},\mathbb{P})$.

Example 1.1. Let $k(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, then $K\in L^1(\mathbb{R})\cap L^2(\mathbb{R})$. Then for all $w\in\mathbb{R}$,

$$F[K](w) = e^{-\frac{w^2}{2}}.$$

Example 1.2. Let $K(x)=\frac{1}{\sqrt{2}}\mathbb{1}_{\{|x|\leq 1\}}$, then $K\in L^1(\mathbb{R})\cap L^2(\mathbb{R})$. Then for all $w\in\mathbb{R}$,

$$F[K](w) = 1/2 \int_{-1}^{1} \cos(wx) dx + 1/2 \int_{-1}^{1} \sin(wx) dx$$
$$= \frac{1}{2w} [\sin(wx)] \Big|_{-1}^{1}$$
$$= \frac{\sin(wx)}{w}$$

Here $F[K] \notin L^1(\mathbb{R})$ but $F[K] \in L^2(\mathbb{R})$. Note also that F[K](w) = 0 if and only if $w = \pm k\pi$ for $k \in \mathbb{N}$.

Completeness Let us check whether the functions given in Example 1.1 and 1.2 satisfy the completeness condition 1.3 for $X = Z - \eta$.

- 1. Since $F[f_n](w) > 0$ for all w. Thus, $F[\varphi](w) = 0 \Leftrightarrow \varphi(x) = 0$ for all x.
- 2. Similarly, $F[\varphi](w) = 0$ for all $w \in \mathbb{R} \setminus S$. Because φ is continuous, it is 0 everywhere.

2 Density function and kernel estimation

2.1 Density function

We want to estimate the density f_X of $X \in \mathbb{R}$ and will work among classes of densities. For example,

- 1. continuous densities
- 2. densities such that for all $x, x' \in \mathbb{R}, |f_X(x) f_X(x')| \le M |x x'|$ for some M > 0
- 3. densities which are **monotonically increasing** on [0,1]

2.2 Density function estimation

If X has a density f_X , then $f_X(x) = F_X'(x) \ a.e.$ because

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \mathbb{E}\left[\mathbb{1}_{\{X \le x\}}\right].$$

A natural estimator of the CDF is the empirical CDF, defined as

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}}.$$

where n is the sample size. Therefore, an estimator of f_X is the derivative of the empirical CDF, which is the **empirical density function** defined as

$$\hat{f}_n(x) = \frac{\hat{F}_X(x + h/2) - \hat{F}_X(x - h/2)}{h} = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)$$

where $K(x) = \mathbb{1}_{\{X < \frac{1}{2}\}}$

Definition 2.1 (kernel function). A kernel is a function $K : \mathbb{R} \to \mathbb{R}$ such that $K \in L^1(\mathbb{R})$ and $\int K(x)dx = 1$.

Definition 2.2 (kernel density estimator with kernel K and bandwidth h). The kernel density estimator of f_X is defined as

$$\hat{f}_n(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)$$

2.3 Kernels estimators

Some kernels We list out some common kernels.

- 1. $K\left(x\right)=\frac{1}{2}\mathbb{1}_{\left|x\right|\leq\frac{1}{2}}$ the rectangular
- 2. $K\left(x\right)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}$, the Gaussian kernel
- 3. $K(x) = \frac{\sin(x)}{\pi x}$, the sinc kernel
- 4. $K\left(x\right)=\frac{3}{4}\left(1-x^{2}\right)\mathbb{1}_{\left|x\right|\leq1}$, the Epanechnikov kernel

Remark. Note that the Gaussian kernel is both in $L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx)$ and in $L^2(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx)$. The sinc kernel is only in $L^2(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx)$ but not in $L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx)$, as the absolute value fails to be integrable. However, we have

$$1 = \lim_{R \to \infty} \int_{-R}^{R} \frac{\sin(x)}{\pi x} dx.$$

2.4 Performance analysis

Definition 2.3. We introduce the quadratic **risk**

MSE
$$(x) = \mathbb{E}\left[\left(\hat{f}_X(x) - f_X(x)\right)^2\right],$$

where

$$\ell\left(x,y\right) = \left(x-y\right)^2$$

is the loss function.

Other risks include

$$\mathbb{E}\left[\sup_{x\in\mathbb{R}}\left|\hat{f}_{X}\left(x\right)-f_{X}\left(x\right)\right|\right]=\mathbb{E}\left[\left\|\hat{f}_{X}-f_{X}\right\|_{\infty}\right]$$

Note that \hat{f}_X is a function of x and the observations $X=(X_1,\ldots,X_n)$

Definition 2.4. We define the **bias** of $\hat{f}_X(x)$ by

Bias
$$(\hat{f}_X) = b(x) = \mathbb{E} \left[\hat{f}_X(x) - f_X(x) \right]$$

and we denote the **variance** of $\hat{f}_X(x)$ by $\sigma^2(x)$.

Proposition 2.1. We have

$$MSE(x) = b(x)^{2} + \sigma^{2}(x).$$

Proof. We have

$$MSE(x) = \mathbb{E}\left[\left(\hat{f}_{X}(x) - \mathbb{E}\left[\hat{f}_{X}(x)\right] + \mathbb{E}\left[\hat{f}_{X}(x)\right] - f_{X}(x)\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\hat{f}_{X}(x) - \mathbb{E}\left[\hat{f}_{X}(x)\right]\right)^{2}\right] + 2\mathbb{E}\left[\left(\hat{f}_{X}(x) - \mathbb{E}\left[\hat{f}_{X}(x)\right]\right)\underbrace{\left(\mathbb{E}\left[\hat{f}_{X}(x)\right] - f_{X}(x)\right)}_{\text{not random}}\right]$$

$$+ \mathbb{E}\left[\left(\mathbb{E}\left[\hat{f}_{X}(x)\right] - f_{X}(x)\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\hat{f}_{X}(x) - \mathbb{E}\left[\hat{f}_{X}(x)\right]\right)^{2}\right] + 2\left(\mathbb{E}\left[\hat{f}_{X}(x)\right] - f_{X}(x)\right)\underbrace{\mathbb{E}\left[\hat{f}_{X}(x) - \mathbb{E}\left[\hat{f}_{X}(x)\right]\right]}_{=\sigma^{2}(x)}$$

$$+ \underbrace{\left(\mathbb{E}\left[\hat{f}_{X}(x)\right] - f_{X}(x)\right)^{2}}_{=h(x)^{2}}.$$

Proposition 2.2 (upper bound of $\sigma^2(x)$). Assume that there exists $f_{\max} \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$, $f_X(x) \leq f_{\max}$ and $\int_{\mathbb{R}} K^2(u) \, du < \infty$. Then we have, for $C = f_{\max} \int_{\mathbb{R}} K^2(u) \, du$,

$$\forall x \in \mathbb{R} \forall n \ge 1 \forall h > 0, \sigma^2(x) \le \frac{C}{nh}.$$

Proof. First observe that, by identical distribution of X_1, \ldots, X_n ,

$$\mathbb{E}\left[\hat{f}_{X}\left(x\right)\right] = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \mathbb{E}\left[K\left(\frac{X_{i} - x}{h}\right)\right] = \frac{1}{h} \mathbb{E}\left[K\left(\frac{X_{1} - x}{h}\right)\right].$$

Now, using independence in the second line and identical distribution in the third line,

$$\sigma^{2}(x) = \mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}\left(\frac{1}{h}K\left(\frac{X_{i}-x}{h}\right)\right) - \mathbb{E}\left[\hat{f}_{X}(x)\right]\right)^{2}\right]$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbb{E}\left[\left(\frac{1}{h}K\left(\frac{X_{i}-x}{h}\right) - \mathbb{E}\left[\hat{f}_{X}(x)\right]\right)^{2}\right]$$

$$= \frac{1}{n}\mathbb{E}\left[\left(\frac{1}{h}K\left(\frac{X_{1}-x}{h}\right) - \mathbb{E}\left[\hat{f}_{X}(x)\right]\right)^{2}\right]$$

Inserting equation* 2.4,

$$\sigma^{2}(x) = \frac{1}{n} \mathbb{E} \left[\left(\frac{1}{h} K \left(\frac{X_{1} - x}{h} \right) - \mathbb{E} \left[\frac{1}{h} K \left(\frac{X_{1} - x}{h} \right) \right] \right)^{2} \right]$$

$$= \frac{1}{n} \operatorname{Var} \left[\frac{1}{h} K \left(\frac{X_{1} - x}{h} \right) \right]$$

$$= \frac{1}{n} \left(\mathbb{E} \left[\frac{1}{h^{2}} K^{2} \left(\frac{X_{1} - x}{h} \right) \right] - \mathbb{E} \left[\frac{1}{h} K \left(\frac{X_{1} - x}{h} \right) \right]^{2} \right)$$

$$\leq \frac{1}{n} \mathbb{E} \left[\frac{1}{h^{2}} K^{2} \left(\frac{X_{1} - x}{h} \right) \right]$$

$$= \frac{1}{nh} \mathbb{E} \left[\frac{1}{h} K^{2} \left(\frac{X_{1} - x}{h} \right) \right]$$

$$= \frac{1}{nh} \int_{\mathbb{R}} \frac{1}{h} K^{2} \left(\frac{y - x}{h} \right) f_{X}(y) dy$$

$$= \frac{1}{nh} \int_{\mathbb{R}} K^{2}(u) \underbrace{f_{X}(x + hu)}_{\leq f_{\max}} du$$

$$\leq \frac{1}{nh} \underbrace{f_{\max}} \int_{\mathbb{R}} K^{2}(u) du,$$

where we used the change of variables y = x + hu.

Definition 2.5 (β for a density function). Let $\beta>0$, L>0 and set $\ell=\lfloor\beta\rfloor$, by which we mean the greatest integer **strictly** less than β . The Hölder class $\Sigma\left(\beta,L\right)$ is the class of functions $f:\mathbb{R}\to\mathbb{R}$ such that $f^{(\ell)}$ exists and for all $x,x'\in\mathbb{R}$ we have

$$|f^{(\ell)}(x) - f^{(\ell)}(x')| \le L |x - x'|^{\beta - \ell}.$$

Definition 2.6. We define

$$\mathcal{P}(\beta, L) = \left\{ f \in \Sigma(\beta, L) : f \ge 0, \int_{\mathbb{R}} f(x) dx = 1 \right\}.$$

Example 2.1. $\beta = 1$ gives the usual Hölder continuity condition: for all $x, x' \in \mathbb{R}$

$$|f(x) - f(x')| \le L |x - x'|^{\beta}$$
.

Remark. This Hölder condition implies continuity of f.

Definition 2.7 (β for a kernel). $K : \mathbb{R} \to \mathbb{R}$ is a kernel **of order** $\ell \in \mathbb{N}_0$ if

- $u \mapsto u^{j}K(u)$ is integrable for any $j \in \{0, \dots, \ell\}$,
- $\int_{\mathbb{D}} K(u) du = 1$,
- and $\int_{\mathbb{R}} u^j K(u) du = 0$ for $j \in \{1, \dots, \ell\}$.

Proposition 2.3 (upper bound of |b(x)|). Let $f_X \in \mathcal{P}(\beta, L)$ with $\beta, L > 0$ and K of order $\ell \geq |\beta|$ such that

$$\int_{\mathbb{R}} |u|^{\beta} |K(u)| du < \infty.$$

Then, for all $x \in \mathbb{R}$, $n \ge 1$ and h > 0, we have

$$|b(x)| \le C_1 h^{\beta},$$

where

$$C_{1} = \frac{L}{\ell!} \int_{\mathbb{R}} |u|^{\beta} |K(u)| du.$$

Proof. Reusing equation 2.4 and using $1=\int_{\mathbb{R}}K\left(u\right)du$,

$$b(x) = \mathbb{E}\left[\hat{f}_X(x)\right] - f_X(x)$$

$$= \frac{1}{h} \mathbb{E}\left[K\left(\frac{X_1 - x}{h}\right)\right] - f_X(x)$$

$$= \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{y - x}{h}\right) f_X(y) dy - f_X(x)$$

$$= \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{y - x}{h}\right) f_X(y) dy - \int_{\mathbb{R}} K(u) f_X(x) du.$$

With the change of variables y = hu + x, we obtain

$$b(x) = \int_{\mathbb{R}} K(u) f_X(hu + x) du - \int_{\mathbb{R}} K(u) f_X(x) du$$
$$= \int_{\mathbb{R}} K(u) (f_X(hu + x) - f_X(x)) du.$$

By a Taylor expansion, for some $\tau \in [0, 1]$, we obtain

$$f_X(hu+x) - f_X(x) = uhf_X'(x) + \dots + \frac{(uh)^{\ell-1}}{(\ell-1)!}f_X^{(\ell-1)}(x) + \frac{(uh)^{\ell}}{\ell!}f_X^{(\ell)}(x+\tau uh).$$

Thus, recalling that $\int_{\mathbb{R}} u^j K\left(u\right) du = 0$ for $j \in \{1, \dots, \ell\}$ (we use it in the second and the third step),

$$b(x) = \int_{\mathbb{R}} K(u) \left(uh f_X'(x) + \dots + \frac{(uh)^{\ell-1}}{(\ell-1)!} f_X^{(\ell-1)}(x) + \frac{(uh)^{\ell}}{\ell!} f_X^{(\ell)}(x + \tau uh) \right) du$$

$$= \int_{\mathbb{R}} K(u) \frac{(uh)^{\ell}}{\ell!} f_X^{(\ell)}(x + \tau uh) du$$

$$= \int_{\mathbb{R}} K(u) \frac{(uh)^{\ell}}{\ell!} \left(f_X^{(\ell)}(x + \tau uh) - f_X^{(\ell)}(x) \right) du.$$

Taking absolute values, using the Hölder property $f_X \in \mathcal{P}\left(\beta,L\right)$, and recalling finally $0 \leq \tau \leq 1$,

$$|b(x)| = \left| \int_{\mathbb{R}} K(u) \frac{(uh)^{\ell}}{\ell!} \left(f_X^{(\ell)}(x + \tau uh) - f_X^{(\ell)}(x) \right) du \right|$$

$$\leq \int_{\mathbb{R}} |K(u)| \frac{|uh|^{\ell}}{\ell!} \left| f_X^{(\ell)}(x + \tau uh) - f_X^{(\ell)}(x) \right| du$$

$$\leq \int_{\mathbb{R}} |K(u)| \frac{|uh|^{\ell}}{\ell!} L |\tau uh|^{\beta - \ell} du$$

$$= \int_{\mathbb{R}} |K(u)| \frac{L |uh|^{\beta}}{\ell!} |\tau|^{\beta - \ell} du$$

$$\leq \int_{\mathbb{R}} |K(u)| \frac{L |uh|^{\beta}}{\ell!} du$$

$$= \frac{Lh^{\beta}}{\ell!} \int_{\mathbb{R}} |K(u)| |u|^{\beta} du.$$

This shows the claim.

Remark. Note that the expectation

$$\mathbb{E}\left[\hat{f}_{X}\left(x\right)\right] = \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{y-x}{h}\right) f_{X}\left(y\right) dy$$

is the **convolution** $\frac{1}{h}K\left(\frac{-(\cdot)}{h}\right)*f_X$.

In general, the convolution of two integrable functions $f,g:\mathbb{R} \to \mathbb{R}$ is defined as

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y) g(y) dy.$$

One interpretation of the convolution is the following: if f_X , f_Y are the densities of independent random variables X, Y, then the density of X + Y is $f_X * f_Y$.

Indeed, let φ be bounded and continuous. Then, using independence and writing u=x+y, and using Fubini-Tonelli,

$$\mathbb{E}\left[\varphi\left(X+Y\right)\right] = \int_{\mathbb{R}\times\mathbb{R}} \varphi\left(x+y\right) f_{X,Y}\left(x,y\right) dxdy$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi\left(x+y\right) f_{X}\left(x\right) f_{Y}\left(y\right) dxdy$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi\left(u\right) f_{X}\left(y-u\right) f_{Y}\left(y\right) dudy$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi\left(u\right) f_{X}\left(y-u\right) f_{Y}\left(y\right) dydu$$

$$= \int_{\mathbb{R}} \varphi\left(u\right) \int_{\mathbb{R}} f_{X}\left(y-u\right) f_{Y}\left(y\right) dydu$$

$$= \int_{\mathbb{R}} \varphi\left(u\right) f_{X} * f_{Y}\left(u\right) du.$$

This characterises the density uniquely.

Another way to see this is to consider the characteristic function, which is the Fourier transform of the random variable, using independence:

$$\mathbb{E}\left[e^{it(X+Y)}\right] = \mathbb{E}\left[e^{itX}e^{itY}\right] = \mathbb{E}\left[e^{itX}\right]\mathbb{E}\left[e^{itY}\right].$$

The latter is the product of the characteristic functions of X and Y. The very same expression as on the right-hand side is yielded taking the characteristic function of a random variable with density $f_X * f_Y$, and the characteristic function characterises the distribution uniquely.

Result Combining proposition 2.2 and 2.3, we see

$$MSE(x) \le C_1^2 h^{2\beta} + \frac{C}{nh}.$$

Minimizing the right-hand side in h yields $h_{\mathrm{opt}} = \left(\frac{C}{2\beta C_1^2 n}\right)^{\frac{1}{2\beta+1}} \sim n^{-\frac{1}{2\beta+1}}$. Plugging this back into the right-hand side, we obtain

$$MSE(x) = O\left(n^{-\frac{2\beta}{2\beta+1}}\right).$$

3 Sobolev class and symmetric kernel

3.1 Review of Fourier transform

Definition 3.1. The characteristic function of a random variable X is

$$\varphi_X(w) = \mathbb{E}\left[e^{iwX}\right] = \int_{\mathbb{R}} e^{iwx} f_X(x) dx.$$

Remark. It is possible as well to define the Fourier transform of $f \in L^2(\mathbb{R})$. Therefore, we take a sequence $f_m \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ such that $\|f - f_m\|_2^2 \to 0$ as $m \to \infty$ and define the Fourier transform of f as the L^2 -limit of $\mathcal{F}[f_m]$. More precisely, we may take $f_m(x) = f(x) \mathbbm{1}_{|x| \le m}$. It is in L^2 as the product of an $L^2(\mathbb{R})$ function and a bounded function, and it is in $L^1(\mathbb{R})$ as a result of the Cauchy-Schwarz inequality:

$$\int_{\mathbb{R}} f(x) \, \mathbb{1}_{|x| \le m} dx \le \sqrt{\int_{\mathbb{R}} f(x)^2 \, dx} \sqrt{\int_{-m}^m 1 dx} = \sqrt{2m} \sqrt{\underbrace{\int_{\mathbb{R}} f(x)^2 \, dx}_{<\infty}}.$$

Moreover,

$$||f_m - f||_2^2 = \int_{-\infty}^m |f(x)|^2 dx + \int_m^\infty |f(x)|^2 dx \to 0$$
 (1)

as $m \to \infty$. By equation 1, for all $m, m', \|f_m - f_{m'}\|_2^2 \to 0$ as $m, m' \to \infty$, i.e. (f_m) is a Cauchy sequence. By Plancherel's theorem 1.1,

$$\|\mathcal{F}[f_m] - \mathcal{F}[f_{m'}]\|_2^2 = \|\mathcal{F}[f_m - f_{m'}]\|_2^2 = 2\pi \|f_m - f_{m'}\|_2^2.$$

Thus, $\mathcal{F}[f_m]$ is a Cauchy sequence in $L^2(\mathbb{R})$, so that it admits a limit in $L^2(\mathbb{R})$, since $L^2(\mathbb{R})$ is a complete normed space. We can then define the Fourier transform of f to be this limit.

3.2 Sobolev class

Building on this, we make the following definition.

Definition 3.2. Let $\beta > 0$, L > 0, the Sobolev class $\mathcal{P}_S(\beta, L)$ is defined as

$$\mathcal{P}_{S}\left(eta,L
ight)=\left\{ f:f ext{ is a density on } \mathbb{R} ext{ and } \int_{\mathbb{R}}\left|w
ight|^{2eta}\left|\mathcal{F}\left[f
ight]\left(w
ight)
ight|^{2}dw\leq2\pi L^{2}
ight\} .$$

3.3 Symmetric kernel

Theorem 3.1 (Symmetric kernel). Let $f_X \in L^2(\mathbb{R})$, $K \in L^2(\mathbb{R})$ be a symmetric kernel such that

$$\sup_{w\in\mathbb{R}\backslash\{0\}}\frac{\left|1-\mathcal{F}\left[K\right]\left(w\right)\right|}{\left|w\right|^{\beta'}}\leq A<\infty$$

for some β' , A > 0. Then

$$\sup_{f_X \in \mathcal{P}_S(\beta, L)} \mathbb{E}\left[\left\| \hat{f}_X - f_X \right\|_2^2 \right] \le C n^{-\frac{2\tilde{\beta}}{2\tilde{\beta}+1}},$$

where $\tilde{\beta} = \min \{\beta, \beta'\}$, if $h = \alpha n^{-\frac{1}{2\tilde{\beta}+1}}$ for some $\alpha > 0$ and C is a constant which only depends on L, α, A, K .

Example 3.1. 1. Gaussian kernel: $K\left(u\right)=\frac{1}{\sqrt{2\pi}}e^{-\frac{u^{2}}{2}}$, $\mathcal{F}\left[K\right]\left(u\right)=e^{-\frac{u^{2}}{2}}$. We have

$$\frac{\left|1 - e^{-w^2/2}\right|}{\left|w\right|^{\beta'}} \le \begin{cases} \left|w\right|^{-\beta'}, & |w| \ge 1\\ \frac{w^2/2}{\left|w\right|^{\beta'}}, & |w| \le 1 \end{cases}$$

so 3.1 holds if $\beta' \leq 2$, else the \sup is ∞ .

2. The sinc kernel: $K(u) = \frac{\sin(u)}{\pi u}$, $\mathcal{F}[K](w) = \mathbb{1}_{|w| \leq 1}$. We have

$$\frac{\left|1-\mathcal{F}\left[K\right]\left(w\right)\right|}{\left|w\right|^{\beta'}} \leq \begin{cases} \left|w\right|^{-\beta'}, & \left|u\right| > 1\\ 0, & \left|u\right| \leq 1, \end{cases}$$

so 3.1 holds for all β' . Such a kernel is called an **infinite power kernel** or **superkernel**.

3. Trapeze kernel: Let

$$\mathcal{F}[K](w) = \begin{cases} 0, & |w| > a \\ 1, & |w| \le b \\ \text{linear}, & \text{otherwise}, \end{cases}$$

a trapeze. Then 3.1 holds for all β' . Let us write K_2 for the trapeze (in Fourier space) and K_1 for the sinc Kernel (see 3.1). Then

$$K_{2} = \frac{1}{2\pi} \mathcal{F}\left[\mathcal{F}\left[K_{1}\right] * F\left[K_{1}\right]\right] = \frac{1}{2\pi} \mathcal{F}\left[\mathcal{F}\left[K_{1}\right]\right] \mathcal{F}\left[\mathcal{F}\left[K_{1}\right]\right] = 2\pi K_{1}^{2}\left(u\right) = 2\pi \left(\frac{\sin u}{\pi u}\right),$$

which is in $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$.

Optimal rate of convergence It can be shown that the *sinc* kernel has the optimal rate of convergence.

A Corollary of the Theorem 3.1 that we have seen for cross-validation is

Corollary 3.2. Let K be the sinc kernel, then

$$\sup_{f_X \in \mathcal{P}_S(\beta, L)} \mathbb{E}\left[\left\| \hat{f}_X^{\text{CV}} - f_X \right\|_2^2 \right] \le C n^{-\frac{2\beta}{2\beta + 1}}$$

for all $\beta > \frac{1}{2}, L > 0$, where C only depends on β and L.

Some people have shown:

Proposition 3.1.

$$\inf_{\hat{f}} \sup_{f_X \in \mathcal{P}_S(\beta, L)} \mathbb{E} \left[\left\| \hat{f}_X - f_X \right\|_2^2 \right] \ge C_* n^{-\frac{2\beta}{2\beta + 1}}$$

for some absolute constant C_* .

This means that $n^{-\frac{2\beta}{2\beta+1}}$ is the "minimax" optimal rate of convergence and the cross-validated estimator is minimax adaptive (i.e. we can construct it with the data only).

Kernel comparison We end this section by the following table.

name	kernel	$\mathcal{F}[K]$	$\frac{ 1 - \mathcal{F}[K](w) }{ w ^{\beta}}$
Gaussian			
Epanechnikov			
Sinc			
Trapeze			

Table 1: Summary

4 MISE and Cross validation

4.1 MISE

To define the MISE, we would like

$$\mathbb{E}\left[\left\|\hat{f}_X - f_X\right\|_2^2\right] < \infty.$$

We assume $f_X \in L^2(\mathbb{R})$. We would like as well $\hat{f}_X \in L^2(\mathbb{R})$. This is true if $K \in L^2(\mathbb{R})$. Indeed,

$$\left\| \hat{f}_X \right\|_2^2 \le \frac{2^{n-1}}{(nh)^2} \sum_{i=1}^n \int_{\mathbb{R}} K\left(\frac{X_i - x}{h}\right)^2 dx$$
$$\le \frac{2^{n-1}}{nh} \int_{\mathbb{R}} K^2(u) du < \infty.$$

The idea behind this inequality is $(a+b)^2 \leq 2(a^2+b^2)$, and then by induction, $(\sum_{i=1}^n a_i)^2 \leq 2^{n-1}\sum_{i=1}^n a_i^2$.

4.2 Cross validation

Let us write

MISE
$$(h) = \mathbb{E}\left[\int_{\mathbb{R}} \left(\hat{f}_X^h(x) - f_X(x)\right)^2 dx\right]$$

$$= \underbrace{\mathbb{E}\left[\int_{\mathbb{R}} \left(\hat{f}_X^h(x)\right)^2 dx - 2 \int_{\mathbb{R}} \hat{f}_X^h(x) f_X(x) dx\right]}_{=I(h)} + \int_{\mathbb{R}} f_X^2(x) dx$$

introduced

$$\widehat{\mathrm{CV}}(h) = \int_{\mathbb{R}} \hat{f}_X^2(x) \, dx - \underbrace{\frac{2}{n} \sum_{i=1}^n \hat{f}_{X,-i}(X_i)}_{-\hat{A}},$$

where $\hat{f}_{X,-i} = \frac{1}{(n-1)h} \sum_{j=1, j \neq i}^{n} K\left(\frac{X_j - x}{h}\right)$. The cross-validated bandwidth is

$$\hat{h}_{\text{CV}} = \operatorname*{arg\,min}_{h>0} \widehat{\text{CV}} (h)$$

We claim

$$\frac{1}{2}\mathbb{E}\left[\hat{A}\right] = \mathbb{E}\left[\int_{\mathbb{R}} \hat{f}_X(x) f_X(x) dx\right]$$

We have

$$\mathbb{E}\left[\hat{f}_{X,-1}\left(X_{1}\right)\right] = \mathbb{E}_{\mathbb{P}_{X_{2}}\otimes\cdot\otimes\mathbb{P}_{X_{n}}}\left[\int_{\mathbb{R}}\hat{f}_{X,-i}\left(x\right)f_{X}\left(x\right)dx\right]$$

$$= \mathbb{E}\left[\frac{1}{\left(n-1\right)h}\sum_{j=2}^{n}\int_{\mathbb{R}}K\left(\frac{X_{j}-x}{h}\right)f_{X}\left(x\right)dx\right]$$

$$= \frac{1}{h}\int_{\mathbb{R}}\int_{\mathbb{R}}K\left(\frac{z-x}{h}\right)f_{X}\left(z\right)f_{X}\left(x\right)dzdx$$

As an exercise, show that this yields the claim.

Theorem 4.1 (Oracle inequality). Let f_{\max} be such that for all x, $f_X(x) \leq f_{\max} < \infty$. Assume the kernel K is such that $\int_{\mathbb{R}} K^2(u) \, du < \infty$. $\mathcal{F}[K] \geq 0$ and $\mathrm{supp}(\mathcal{F}[K]) \subseteq [-1,1]$. Then $\hat{f}_X^* = \hat{f}_X^{h_{\mathrm{CV}}}$ is such that for all $0 < \delta < 1$, for all $n \geq 1$,

$$\mathbb{E}\left[\int_{\mathbb{R}} \left(\hat{f}_{X}^{*}\left(x\right) - f_{X}\left(x\right)\right)^{2} dx\right] \leq \left(1 + \frac{C}{n^{\delta}}\right) \min_{h > \frac{1}{n}} \mathbb{E}\left[\int \left(\hat{f}_{X}^{h}\left(x\right) - f_{X}\left(x\right)\right)^{2} dx\right] + \frac{C\left(\log n\right)^{\frac{\delta}{2}}}{n^{1-\delta}}$$

Remark. The cross-validation bandwidth from theorem 4.1 is random. The kind of inequality in the the theorem is called **oracle inequality**, as it is not possible to obtain the values on each side. They involve the unknown $f_X(x)$. The estimation of errors in cross-validation kernel estimation is hard, but in practice it often works well.

4.3 Extension

Remark. The condition 3.1 is satisfied for an integer β if K is a kernel of order $\beta-1$ and $\int |u|^{\beta} |K(u)| < \infty$.

Remark. We can work with a smaller class of super smooth density functions.

- $1. \ \mathcal{P}_{\alpha,r} = \left\{ f \in L^2(\mathbb{R}) \ \text{ such that } \ \int \exp(\alpha \, |w|^2) \, |\phi(w)|^2 \, dw \leq L^2 \right\} \text{ where } \phi = \mathcal{F}\left[f\right] \text{ is the Fourier transform of } f. \text{ We can show that a MISE optimal kernel density estimatro could have a risk less than } C \frac{(\log n)^{1/r}}{n}.$
- 2. $\mathcal{P}_{\alpha,r}=\{f\in L^2(\mathbb{R}) \mid \text{ such that } \sup(\phi)\subset [-a,a]\}.$ In this case, the upper bound is $\frac{a\pi}{n}$.

5 Other types of non-parametric estimators

5.1 Orthogonal series estimators

¹ Let $f_X \in L^2\left([0,1]^d\right)$, where $L^2\left([0,1]^d\right)$ can be proven to be a *separable Hilbert space* when endowed with the inner product

$$\langle f, g \rangle = \int_{\mathbb{R}} f(x)g(x)dx.$$

We write

$$||f||_2^2 = \langle f, f \rangle.$$

Some properties are comparable to \mathbb{R}^d with $\langle x,y\rangle=x^Ty$. As a separable space, $L^2\left([0,1]^d\right)$ has a countable basis $(e_j)_{j=1}^\infty$, which is a sequence of functions in $L^2\left([0,1]^d\right)$ such that for all

$$\langle e_j, e_k \rangle = \delta_{jk} = \begin{cases} 1, & j = k, \\ 0, & \text{else,} \end{cases}$$

and for all $f \in L^2\left([0,1]^d\right)$

$$f = \lim_{k \to \infty} \sum_{j=1}^{k} \langle f, e_j \rangle e_j.$$

Think of \mathbb{R}^d , where $(e_j)_{j=1}^d$ is a basis for $e_j=(0,\ldots,0,1,0,\ldots,0)$ the j-th unit vector. Then $\langle e_j,e_k\rangle=e_j^Te_k=\delta_{jk}$, and for $x\in\mathbb{R}^d$,

$$x = \sum_{j=1}^{d} x_j e_j = \sum_{j=1}^{d} x^T e_j e_j = \sum_{j=1}^{d} \langle x, e_j \rangle e_j.$$

¹Generalizations are called sieves (in Econometrics) or dictionaries in machine-learning.

Given $\left(e_{j}\right)_{j=1}^{\infty}$ a basis, for all $f\in L^{2}\left([0,1]^{d}\right)$,

$$||f||_2^2 = \sum_{j=1}^{\infty} \langle f, e_j \rangle^2.$$

This is a version of the Pythagorean theorem. In \mathbb{R}^d ,

$$||x||_2^2 = \sum_{j=1}^d x_j^2 = \sum_{j=1}^d \langle x, e_j \rangle^2.$$

Back to our goal to estimate $f_X = \lim_{k \to \infty} \sum_{j=1}^{\infty} \langle f, e_j \rangle e_j$. For some $T \in \mathbb{N}$, consider $f_X^T \stackrel{\text{def}}{=} \sum_{j=1}^T \langle f, e_j \rangle e_j$. The idea is to estimate this cut-off sum instead of the limit expression for f_X . We have

$$c_j \stackrel{\text{def}}{=} \langle f_X, e_j \rangle = \int_{[0,1]^d} f_X(x) e_j(x) dx = \mathbb{E}\left[e_j(X)\right],$$

so that an unbiased estimator is

$$\hat{c}_j = \frac{1}{n} \sum_{i=1}^n e_j (X_i).$$

Thus, a candidate estimator for f_X is

$$\hat{f}_X^T = \sum_{j=1}^T \hat{c}_j e_j,$$

where

$$\mathbb{E}\left[\hat{f}_X^T\right] = \sum_{j=1}^T c_j e_j = f_X^T.$$

It is possible to write

$$\hat{f}_X^T = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^T e_j(X_i) e_j(x),$$

$$q_T(X_i, x)$$

where $q_T\left(X_i,x\right)$ plays the role of a kernel and T plays the same role as $\frac{1}{h}$. On $L^2\left([0,1]^d\right)$ we can use bases for which $e_j=f_{j_1}\cdots f_{j_d}$ where $(f_k)_{k=1}^\infty$ is a basis of $L^2\left([0,1]\right)$ and $(j_1,...,j_d)$ plays the role of the index j^2 . For example, $f_k\left(x\right)=\sqrt{2}\sin\left(\pi kx\right)$ is a basis of $L^2\left([0,1]\right)$. This gives

$$e_{j_1,...,j_d}(x) = 2^{\frac{d}{2}} \prod_{k=1}^d \sin(\pi j_k x_k).$$

²Note that there exists a bijection $\mathbb{N}^d \to \mathbb{N}$.

One can check that this defines an orthogonal system **(Exercise)**. We define

$$\begin{split} W\left(\beta,L\right) = &\left\{f: [0,1]^d \to \mathbb{R} \text{ with coefficients } c_{j_1,\ldots,j_d} \text{ w.r.t. } \left(f_{j_1},\ldots,f_{j_d}\right) \right. \\ &\text{such that } \sum_{j_1=1}^{\infty} \sum_{j_2=1}^{\infty} \cdots \sum_{j_d=1}^{\infty} c_{j_1,\ldots,j_d}^2 \left(j_1^2 + \ldots + j_d^2\right)^{\beta} \leq L^2 \right\} \end{split}$$

Remark. The $||j||^{2\beta}$ is present due to the fact that we take derivatives of our basis functions defined above till the order of β .

In $L^2\left(\mathbb{R}^d\right)$, an analogous condition (with Fourier transform instead of Fourier series) would be:

$$\int_{\mathbb{R}^d} |\mathcal{F}[f](w_1, ..., w_d)|^2 (|w_1|^2 + ... + |w_d|^2)^\beta dw \le L^2.$$

Note the usual bias-variance decomposition of the mean-squared error,

$$\mathbb{E}\left[\left\|\hat{f}_X^T - f_X\right\|_2^2\right] = \underbrace{\left\|f_X^T - f_X\right\|_2^2}_{b^2 = \operatorname{Bias}^2} + \underbrace{\mathbb{E}\left[\left\|\hat{f}_X^T - f_X^T\right\|_2^2\right]}_{\sigma^2}.$$

Then

$$b^{2} = \sum_{j_{1}=T+1}^{\infty} \cdots \sum_{j_{d}=T+1}^{\infty} c_{j_{1},\dots,j_{d}}^{2}$$

$$\leq \sum_{j_{1}=T+1}^{\infty} \cdots \sum_{j_{d}=T+1}^{\infty} c_{j_{1},\dots,j_{d}}^{2} \left(\left(\frac{j_{1}}{T+1} \right)^{2} + \dots + \left(\frac{j_{1}}{T+1} \right)^{2} \right)^{\beta}$$

$$= \left(\frac{1}{T+1} \right)^{2\beta} \sum_{j_{1}=T+1}^{\infty} \cdots \sum_{j_{d}=T+1}^{\infty} c_{j_{1},\dots,j_{d}}^{2} \left(j_{1}^{2} + \dots + j_{d}^{2} \right)^{\beta}$$

$$\leq \left(\frac{1}{T+1} \right)^{2\beta} L^{2}.$$

Note that $\|f_{j_1}\cdots f_{j_d}\|_2^2 = \|f_{j_1}\|_2^2\cdots \|f_{j_d}\|_2^2$, which are all = 1. Then,

$$\sigma^{2} = \mathbb{E}\left[\left\|\hat{f}_{X}^{T} - f_{X}^{T}\right\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j_{1}=1}^{T} \cdots \sum_{j_{d}=1}^{T} (\hat{c}_{j_{1},...,j_{d}} - c_{j_{1},...,j_{d}})^{2} \|f_{j_{1}} \cdots f_{j_{d}}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j_{1}=1}^{T} \cdots \sum_{j_{d}=1}^{T} (\hat{c}_{j_{1},...,j_{d}} - c_{j_{1},...,j_{d}})^{2}\right]$$

$$= \sum_{j_{1}=1}^{T} \cdots \sum_{j_{d}=1}^{T} \operatorname{Var}(\hat{c}_{j_{1},...,j_{d}})$$

$$\leq \sum_{j_{1}=1}^{T} \cdots \sum_{j_{d}=1}^{T} \frac{2^{d}}{n}$$

$$\leq \frac{(2(T+1))^{d}}{n}$$

since

$$\operatorname{Var}(\hat{c}_{j_{1},\dots,j_{d}}) = \frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}(f_{j_{1}} \cdots f_{j_{d}}(X_{i}))$$

$$\leq \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\left[f_{j_{1}}^{2} \cdots f_{j_{d}}^{2}(X_{i})\right]$$

$$\leq \frac{2^{d}}{n},$$

where we used $f_{j_k}^2 \leq 2$ for our particular basis $f_{j_k}(x) = \sqrt{2}\sin{(\pi j_k x)}$. Remember $\sigma^2 \leq \frac{1}{nh^d}$ for kernel estimators. This gives an upper bound of the order of $n^{-\frac{2\beta}{2\beta+d}}$ if $T = \left\lfloor n^{\frac{1}{2\beta+d}} \right\rfloor$.

Remark. (Nonexaminable content)

- We can work with families of functions which may not be basis functions. We talk about series, dictionaries (machine learning).
- ullet In the previous upper bound, the choice of T is infeasible because it depends on eta which is unknown.
- It it classical to estimate many coefficients c_j , for T much larger than before (e.g. \sqrt{n}) and work with the estimators

$$\hat{f}_X^T(x) = \sum_{j_1=1}^T \cdots \sum_{j_d=1}^T \hat{\tau}(c_{j_1,\dots,j_d}) e_{j_1} \cdots e_{j_d}(x).$$

where $au \propto \frac{\sqrt{\log n}}{n}$. For example

- $-\tau_{\rho}(x)=\mathbb{1}_{\{|x|\geq\rho\}}$, where ρ is a thresholding function. This is the **hard** thresholding function.
- $-\tau_{\rho}(x)=x\max\left(1-\frac{\rho}{|x|},0\right)$. This is the **soft** thresholding function.

6 Regression Function Estimation

6.1 Introduction: average effect of X on Y

The model for a nonparametric model is

$$Y = f(X) + \varepsilon$$

, where $\mathbb{E}\left[arepsilon|X
ight]=0$ and $\mathbb{E}\left[|arepsilon|]<\infty$. The goal is to estimate f. We say it has a random design if X is random, and a fixed design if X is fixed. We will focus on the random design case. First, we define the average effect of X on Y as $\mathbb{E}\left[f\left(X\right)\right]$ if the expectation is defined. If $f_{y|x}$, the conditional density of Y given X exists, it is given by $f_{Y|X}\left(y\mid x\right)=\frac{f(x,y)}{f_X(x)}$ if $f_X\left(x\right)>0$. Also the conditional expectation function $\mathbb{E}\left[Y|X=x\right]$ is given by

$$\mathbb{E}\left[Y|X=x\right] = \int y f_{Y|X}\left(y\mid x\right) dy = \frac{\int y f\left(x,y\right) dy}{f_{X}(x)} = \frac{\int y f\left(x,y\right) dy}{\int f\left(x,y\right) dy}.$$

A natural idea would be to use

$$\hat{f}_X(x) = \frac{1}{nh^2} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right) K\left(\frac{Y_i - y}{h}\right),$$

where K is a kernel.

As an exercise, we can check that

$$\int y \hat{f}_{Y,X}(y,x) \, dy = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right) Y_i$$

and

$$\int \hat{f}_{Y,X}(y,x) dy = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right).$$

Nadaraya-Watson estimator This leads to the

$$\hat{f}_X(x) = \frac{\sum_{i=1}^n K\left(\frac{X_i - x}{h}\right) Y_i}{\sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)}.$$

In practice, dealing with the denominator can be tricky. We propose two ideas to deal with this issue.

1. We can work with **nonnegative** kernels because

$$\sum Y_i \underbrace{\frac{K\left(\frac{X_i - x}{h}\right)}{\sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)}}_{\in [0,1]}.$$

2. We can use a trimming factor ρ and write

$$\hat{f}_X(x) = \frac{\sum_{i=1}^n K\left(\frac{X_i - x}{h}\right) Y_i}{\max\left(\sum_{i=1}^n K\left(\frac{X_i - x}{h}\right), \rho\right)}.$$

Suppose now supp (X) = [a,b] and $\exists m > 0$ s.t. $f_X(x) \ge m$. Suppose I am interested in f(b) and I use the rectangular kernel 1. Then $\hat{f}(b)$ where \hat{f} is the N.W. estimator is biased. But a

Figure 1: Kernels

local polynomial estimator of order ≥ 1 is consistent and unbiased.

Remark. In TD, we will see that we can get a fast rate of convergence with nonnegative kernels (unlike in density estimation).