

Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection

Bingzhe Wu¹, Shiwan Zhao², Chaochao Chen³, Haoyang Xu,¹ Li Wang,³ Xiaolu Zhang³, Guangyu Sun³, Jun Zhou³

¹Peking University, ² IBM Research, ³ Ant Financial

Introduction

The generalization ability of GAN is an interesting research topic.

Previous works are conducted on some specialized GANs:

The privacy concerns of deep learning algorithms are arisen recently

- Membership attack
- Model inversion attack
- •

We study the generalization of GANs from the view of privacy protection from both theoretical and experimental sides.

Theoretical Finding

Problem Setup:

 $\min \max E_{x \sim p_{data}} \left[\phi(d(x; \theta_d)) \right] + E_{z \sim p_z} \left[\phi(1 - d(g(z; \theta_g); \theta_d)) \right]$

We first analyze the information leakage of the discriminator using stability-based theory and differential privacy. We denote *A* as the Training algorithm for discriminator.

If A satisfies ϵ -differential privacy, then we obtain:

- (Generalization Bound) The generalization error of the discriminator can be bounded.
- (Uniform Convergence) Let $d^{(k)}\left(x;\theta_d^{(k)}\right)$ be the output of A at the k-th iteration. Then, the generalization gap of $d^{(k)}$ can be bounded.
- The privacy leakage of the generator can be obtained via composition theory of adaptive learning^[1].

Empirical Results

Empirically, we aim to validate the information leakage of various Lipschitz constrains on the discriminator.

Results of threshold attack on LFW dataset

Strategy	F1	AUC	Gap
Original	0.565	0.729	0.581
Clip	0.486	0.501	0.113
Spectral	0.482	0.506	0.106

Results of shadow training attack

Strategy	F1	AUC	Gap
Original	0.423	0.549	0.581
Clip	0.358	0.502	0.113
Spectral	0.347	0.497	0.106

Discussion

- Lipschitz is helpful for reducing the information leakage of GANs
- The privacy risk varies in different datasets

Dataset	F1	AUC	Std (R)
IDC	0.445	0.531	0.085
LFW	0.565	0.729	0.249

- The privacy leakage of the generator.
 - Using more advanced generalization notation^[1], such as robust generalization.
 - Post-processing property

Ref

[1] Cummings et al. Adaptive learning with Robust Generalization Guarantees