Examenul național de bacalaureat 2021 Proba E. c)

Matematică M pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Testul 11

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2r = a_3 - a_1$, de unde obținem $r = 3$	3p
	$a_4 = 7$	2p
2.	f(2)=0	2p
	2a + 2 = 0, de unde obţinem $a = -1$	3p
3.	$\log_8(7x+8) = 2 \Rightarrow 7x+8=8^2 \Rightarrow 7x+8=64$	3 p
	x = 8, care convine	2p
4.	Mulțimea numerelor naturale nenule de o cifră are 9 elemente, deci sunt 9 cazuri posibile	2p
	Numerele naturale n , nenule, de o cifră, pentru care $2n$ este număr natural de două cifre sunt 5 , 6 , 7 , 8 și 9 , deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri favorabile}} = \frac{5}{100}$	
	$p = {\text{nr. cazuri posibile}} = {9}$	1p
5.	AB = 5, $BC = 5$, deci triunghiul ABC este isoscel	2p
	$AC = \sqrt{50}$, de unde obținem $AC^2 = AB^2 + BC^2$, deci triunghiul este dreptunghic isoscel	3p
6.	Cum triunghiul ADB este dreptunghic, rezultă că $BD = \sqrt{AB^2 - AD^2} = 15$	2p
	Cum triunghiul ADC este dreptunghic, rezultă că $DC = \sqrt{AC^2 - AD^2} = 6$ și, cum	3p
	BC = BD + DC, obţinem $BC = 21$	

SUBIECTUL al II-lea (30 de puncte)

1.	$1*2 = \frac{1+2+6}{1\cdot 2+1} =$	3 p
	$=\frac{9}{3}=3$	2p
2.	$x * y = \frac{x + y + 6}{xy + 1} = \frac{y + x + 6}{yx + 1} =$	3p
	= y * x, pentru orice numere x și y din mulțimea M , deci legea de compoziție "*" este comutativă	2p
3.	$x*1 = \frac{x+1+6}{x+1} =$	2p
	$=1+\frac{6}{x+1}>1$, pentru orice $x \in M$	3p
4.	$3*x = \frac{x+9}{3x+1}$, pentru orice $x \in M$	2p
	$\frac{x+9}{3x+1} = \frac{1}{2} \Leftrightarrow 2x+18 = 3x+1$, de unde obţinem $x = 17$, care convine	3p

5.	$x * x = \frac{2x+6}{x^2+1}$, pentru orice $x \in M$	2p
	$\frac{2x+6}{x^2+1} \ge 2 \Leftrightarrow x^2-x-2 \le 0 \text{ si, cum } x \in M \text{, obținem } x \in [0,2]$	3p
6.	$m*n=1 \Leftrightarrow \frac{m+n+6}{mn+1}=1 \Leftrightarrow mn-m-n+1=6$, unde $m \neq i$ sunt numere naturale	2p
	(m-1)(n-1) = 6 și, cum m și n sunt numere naturale cu $m < n$, obținem perechile $(2,7)$ și $(3,4)$	3p

SUBIECTUL al III-lea

(30 de puncte)

$\det A = \begin{vmatrix} 1 & -2 \\ -2 & 0 \end{vmatrix} = 1 \cdot 0 - (-2) \cdot (-2) =$	3 p
=0-4=-4	2p
$B(-6) = \begin{pmatrix} 1 & -6 \\ 6 & 0 \end{pmatrix}, \ B(2) = \begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix} \Rightarrow B(-6) + 3B(2) = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} =$	3 p
$=4\begin{pmatrix}1&0\\0&0\end{pmatrix}=4B(0)$	2p
$B(-2) = \begin{pmatrix} 1 & -2 \\ 2 & 0 \end{pmatrix} \Rightarrow B(2) \cdot B(-2) - A = \begin{pmatrix} 5 & -2 \\ -2 & 4 \end{pmatrix} - \begin{pmatrix} 1 & -2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} =$	3 p
$=4\begin{pmatrix}1&0\\0&1\end{pmatrix}=4I_2$	2p
$B(2x) = \begin{pmatrix} 1 & 2x \\ -2x & 0 \end{pmatrix} \Rightarrow B(2x) + xA = \begin{pmatrix} 1+x & 0 \\ -4x & 0 \end{pmatrix}, \text{ pentru orice număr real } x$	3p
$\det(B(2x)+xA)=(1+x)\cdot 0-(-4x)\cdot 0=0, \text{ pentru orice număr real } x$	2p
$B(1) = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \det(B(1)) = 1$, deci matricea $B(1)$ este inversabilă și inversa ei este	3р
$\left(B\left(1\right)\right)^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$	Эр
,	2p
$B(m) \cdot B(n) = \begin{pmatrix} 1 - mn & n \\ -m & -mn \end{pmatrix} \Rightarrow B(m) \cdot B(n) + mnI_2 = \begin{pmatrix} 1 & n \\ -m & 0 \end{pmatrix}, \text{ de unde obţinem}$	3p
$\det(B(m) \cdot B(n) + mnI_2) = mn$, pentru orice numere întregi m și n	
$mn = 4$ și, cum m și n sunt numere întregi cu $m \le n$, obținem $(-4,-1)$, $(-2,-2)$, $(1,4)$ și $(2,2)$	2p
	$B(-6) = \begin{pmatrix} 1 & -6 \\ 6 & 0 \end{pmatrix}, \ B(2) = \begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix} \Rightarrow B(-6) + 3B(2) = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} = \\ = 4 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 4B(0)$ $B(-2) = \begin{pmatrix} 1 & -2 \\ 2 & 0 \end{pmatrix} \Rightarrow B(2) \cdot B(-2) - A = \begin{pmatrix} 5 & -2 \\ -2 & 4 \end{pmatrix} - \begin{pmatrix} 1 & -2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \\ = 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 4I_2$ $B(2x) = \begin{pmatrix} 1 & 2x \\ -2x & 0 \end{pmatrix} \Rightarrow B(2x) + xA = \begin{pmatrix} 1+x & 0 \\ -4x & 0 \end{pmatrix}, \text{ pentru orice număr real } x$ $\det(B(2x) + xA) = (1+x) \cdot 0 - (-4x) \cdot 0 = 0, \text{ pentru orice număr real } x$ $B(1) = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \det(B(1)) = 1, \text{ deci matricea } B(1) \text{ este inversabilă și inversa ei este}$ $(B(1))^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ $X = (B(1))^{-1} \cdot A = \begin{pmatrix} 2 & 0 \\ -1 & -2 \end{pmatrix}$ $B(m) \cdot B(n) = \begin{pmatrix} 1-mn & n \\ -m & -mn \end{pmatrix} \Rightarrow B(m) \cdot B(n) + mnI_2 = \begin{pmatrix} 1 & n \\ -m & 0 \end{pmatrix}, \text{ de unde obținem}$ $\det(B(m) \cdot B(n) + mnI_2) = mn, \text{ pentru orice numere întregi } m \text{ și } n$ $mn = 4 \text{ și, cum } m \text{ și } n \text{ sunt numere întregi cu } m \leq n, \text{ obținem } (-4, -1), (-2, -2), (1, 4) \text{ și}$