Moderné regulárne výrazy

Tatiana Tóthová*

Školiteľ: Michal Forišek[†]

Katedra informatiky, FMFI UK, Mlynská Dolina 842 48 Bratislava

Abstrakt: Regulárne výrazy implementované v súčasných programovacích jazykoch ponúkajú omnoho viac operácií ako pôvodný model z teórie jazykov. Už konštrukciou spätných referencií bola prekročená hranica regulárnych jazykov. Náš model obsahuje naviac konštrukcie lookahead, lookbehind a ich negatívne verzie. V článku uvádzame zaradenie modelu zodpovedajúcej triedy jazykov do Chomského hierarchie, vlastnosti tejto triedy a výsledky z oblasti priestorovej zložitosti.

Kľúčové slová: regulárny výraz, regex, lookahead, lookbehind, spätné referencie, negatívny lookaround

1 Úvod

Regulárne výrazy vznikli v 60tych rokoch v teórii jazykov ako ďalší model na vyjadrenie regulárnych jazykov. Z ich popisu ľudský mozog rýchlejšie pochopil o aký jazyk sa jedná, než zo zápisu konečného automatu, či regulárnej gramatiky. Ďalšou výhodou bol kratší a kompaktný zápis.

Vďaka týmto vlastnostiam boli implementované ako vyhľadávací nástroj. Postupom času sa iniciatívou používateľov s vyššími nárokmi pridávali nové konštrukcie na uľahčenie práce. Nástroj takto rozvíjali až do dnešnej podoby. My sa budeme opierať o špecifikáciu regulárnych výrazov v jazyku Python [Python documentation, 2012].

Ako čoskoro zistíme, nové regulárne výrazy vedia reprezentovať zložitejšie jazyky ako regulárne, preto je dobré ich nejako odlíšiť. V literatúre sa zaužíval výraz "regex" z anglického *regular expression*, ktorý budeme používať aj my.

1.1 Základná definícia

Regulárne výrazy sú zložené zo znakov a metaznakov. Znak a predstavuje jazyk $L(a) = \{a\}$. Metaznak alebo skupina metaznakov určuje, aká operácia sa so znakmi udeje. Základné operácie sú zreť azenie (je definované tým, že regulárne výrazy idú po sebe, bez

metaznaku), Kleeneho uzáver $((0-\infty)$ -krát zopakuj výraz, metaznak *) a alternácia (vyber výraz naľ avo alebo napravo, metaznak |). Naviac sa využíva metaznak \, ktorý robí z metaznakov obyčajné znaky a okrúhle zátvorky na logické oddelenie regulárnych výrazov.

Pre regulárny výraz α a slovo $w \in L(\alpha)$ hovoríme, že α vyhovuje slovu w resp. α matchuje slovo w. Tiež budeme hovoriť, že α generuje jazyk $L(\alpha)$.

1.2 Nové jednoduché konštrukcie

- + Kleeneho uzáver opakujúci (1 ∞)-krát
- {n,m} ({n}) opakuj regulárny výraz aspoň n a najviac m-krát (opakuj n-krát)
- $[a_1a_2...a_n]$ predstavuje l'ubovol'ný znak z množiny $\{a_1,...,a_n\}$
- [$^{\hat{}}a_1a_2...a_n$] predstavuje l'ubovol'ný znak, ktorý nepatrí do množiny $\{a_1,...,a_n\}$
- . predstavuje l'ubovol'ný znak
- ? ak samostatne: opakuj 0 alebo 1-krát ak za operáciou: namiesto greedy implementácie použi minimalistickú, t.j. zober čo najmenej znakov (platí pre *, +, ?, {n,m})¹
- ^ metaznak označujúci začiatok slova
- \$ metaznak označujúci koniec slova
- (?# komentár) komentár sa pri vykonávaní regexu úplne ignoruje

Všetky tieto konštrukcie sú len "kozmetickou" úpravou pôvodných regexov – to isté vieme popísať pôvodnými regulárnymi výrazmi, akurát je to dlhšie a menej prehľ adné.

Rozdiely medzi minimalistickou a greedy verziou operácií vníma iba používateľ, pretože ak existuje zhoda regexu so slovom, v oboch prípadoch sa nájde. Viditeľ né sú až pri výstupnej informácii pre používateľ a, ktorú môže použíť ďalej a ktorá je v teoretickom modeli nepotrebná.

^{*}tothova166@uniba.sk

[†]forisek@dcs.fmph.uniba.sk

¹všetky spomenuté operácie sú implementované greedy algoritmom

1.3 Zložitejšie konštrukcie

Spätné referencie

Najprv potrebujeme očíslovať všetky zátvorky v regexe. Číslujú sa všetky, ktoré nie sú tvaru (?...). Poradie je určnené podľa otváracej zátvorky.

Spätné referencie umožňujú odkazovať sa na konkrétne zátvorky. Zápis je $\ k$ a môže sa nachádzať až za k-tymi zátvorkami. Skutočná hodnota $\ k$ sa určí až počas výpočtu – predstavuje podslovo zo vstupného slova, ktoré matchovali k-te zátvorky. Ak je takých viac, platí vždy to posledné. Regex $\alpha(\beta)\gamma k\delta$ na w:

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{x_i \dots x_{j-1}}_{k} \underbrace{x_j \dots x_{l-1}}_{\gamma} \underbrace{x_l \dots x_{m-1}}_{k} \underbrace{x_m \dots x_n}_{\delta}$$

$$x_i \dots x_{j-1} = x_l \dots x_{m-1}$$

Lookahead

Zapísaný formou (?=...), vnútri je validný regex.

Keď v regexe prídeme na pozíciu lookaheadu, zoberieme regex vo vnútri a snažíme sa v slove matchovať ľubovoľný prefix zostávajúcej časti slova. Ak sa to podarí, pokračujeme vo vonkajšom regexe ďalej a v slove od pozície, kde lookahead začínal (tzn. akokeby v regexe nikdy nebol). Regex $\alpha(?=\beta)\gamma$:

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{x_i \dots x_j}_{\gamma} x_{j+1} \dots x_n$$

Má aj negatívnu verziu – negatívny lookahead (?! ...). Vykonáva sa rovnako ako lookahead, ale má opačnú akceptáciu. Teda ak neexistuje vyhovujúci prefix, akceptuje.

Lookbehind

Zapísaný formou (?<=...), vnútri je validný regex.

Pri výpočte zoberieme regex vnútri lookbehindu a snažíme sa vyhovieť ľubovoľnému sufixu už matchovanej časti slova. Ak vyhovieme, pokračujeme v slove a regexe akoby tam lookbehind vôbec nebol. Regex α (?<= β) γ matchuje slovo w:

$$w = \underbrace{x_1 \dots x_{i-1}}_{\alpha} \underbrace{x_i \dots x_j}_{\gamma} \underbrace{x_{j+1} \dots x_n}_{\gamma}$$

Aj lookbehind má negatívnu verziu – negatívny lookbehind (?<! ...) – a má otočenú akceptáciu podobne ako negatívny lookahead.

Lookahead a lookbehind (spolu nazývané jedným slovom **lookaround**) sú v rôznych implementáciách rôzne obmedzované, aby výpočet netrval príliš dlho. V teórii tieto obmedzenia ignorujeme a prezentujeme model v plnej sile – výsledky tak prezentujú hornú hranicu toho, čo implemetnácie dokážu.

1.4 Priorita

Pri interakcii toľkých operácií je nutné vedieť ich priority. Existujú také, ktoré sa správajú ako znak, čomu zodpovedajú [],[^], a každá spätná referencia. Špeciálne sú lookahead a lookbehind – tie sa vykonajú hneď akonáhle na ne narazíme. Ostatné zoradíme v tabuľke:

priorita	3	2	1	0
operácia	0	* + ? {}	zreť azenie	Ī

1.5 Triedy a množiny

Kvôli porovnávaniu a vytvoreniu hierarchie sme rozdelili operácie do niekoľ kých množín:

Regex – množina operácií, pomocou ktorých vieme popísať iba regulárne jazyky; presnejšie všetky znaky a metaznaky (bez zložitejších operácií)

Eregex – Regex so spätnými referenciami

LEregex – *Eregex* s pozitívnym lookaroundom

nLEregex - LEregex s negatívnym lookaroundom

 \mathcal{L}_{RE} – trieda jazykov nad $Regex (= \mathcal{R})$

 \mathcal{L}_{ERE} – trieda jazykov nad Eregex

 \mathscr{L}_{LERE} – trieda jazykov nad LEregex

 \mathcal{L}_{nLERE} – trieda jazykov nad nLEregex

Trieda \mathcal{L}_{ERE} už bola hlbšie preskúmaná a výsledky čerpáme z článkov [Câmpeanu et al., 2003] a [Carle and Nadendran, 2009].

2 Formalizácia modelu

Pri zložitejších dôkazoch sa ukázala potreba lepšieho formalizmu, než len množiny operácií. Kvôli jednoduchosti sme vybrali len potrebné operácie – zreť azenie, alternáciu, Kleeneho *, spätné referencie a pozitívny a negatívny lookaround – a pokúsili sa tu popísať model, ktorý pracuje v krokoch podobne ako Turingov stroj.

Základným prvkom je **konfigurácia**. Je to dvojica regex $r_1 ldots r_n$ a vstupné slovo $w_1 ldots w_m$, pričom v oboch reťazcoch sa navyše nachádza ukazovateľ pozície \lceil (ako hlava Turingovho stroja): $(r_1 ldots \lceil r_i ldots r_n, w_1 ldots \lceil w_j ldots w_m)$. Špeciálne rozoznávame počiatočnú konfiguráciu $(\lceil r_1 ldots r_n \lceil w_1 ldots w_m)$ a akceptačnú konfiguráciu $(r_1 ldots r_n \lceil w_1 ldots w_m \rceil)$.

Znaky slova $(w_1 ldots w_m)$ v konfigurácii budú niesť nejakú informáciu naviac, preto použijeme poschodové symboly. Na najspodnejšom poschodí bude uchovaná informácia o skutočnom znaku na zodpovedajúcej pozícii v slove a nebude sa meniť. Obsah vrchných poschodí bude špecifikovaný v kroku výpočtu. Z celého poschodového symbolu budeme zobrazovať vždy len tú informáciu, ktorú práve potrebujeme, tzn. w_j bude predstavovať iba znak na najspodnejšom poschodí. Nezabúdajme však, že na ostatných poschodiach môže mať zapísané čokoľ vek, čo možno neskôr v inom kroku využijeme.

Najprv si definujeme potrebné pojmy indexovateľ-nosti a alternovateľ nosti. *Indexovateľ né zátvorky* sú také, kde za otváracou zátvorkou nenasleduje? (t.j. všetky prípady okrem lookaroundu). Tieto zátvorky budeme číslovať. *Alternovateľ ný regex* je taký, ktorý sa môže vyskytovať v alternácii. Sú 3 prípady: regex sa môže nachádzať naľ avo od |, napravo od | alebo je z oboch strán ohraničený |. Ak alternácia nie je uzavretá zátvorkami, ľ avý a pravý krajný regex siaha až ku kraju slova, pretože alternácia je operácia s najmenšou prioritou. Inak sú pre nich hranicou zátvorky uzatváracie alternáciu.

Vďaka definovaniu týchto pojmov vidíme, že vieme algoritmicky zistiť, ktoré zátvorky sú indexovateľ né a ktoré regexy sú alternovateľ né.

Definícia 1. *Krok výpočtu* je relácia \vdash na konfiguráciách definovaná nasledovne:

I. zhoda písmenka
$$\forall a \in \Sigma : (r_1 \dots \lceil a \dots r_n, w_1 \dots \lceil a \dots w_m)$$
$$\vdash (r_1 \dots a \lceil \dots r_n, w_1 \dots a \lceil \dots w_m)$$

II. zápis adresy zátvorky (
Nech (je indexovateľ ná, k-ta v poradí: $(r_1...\lceil (...r_n, w_1...\lceil w_j...w_m)$

$$(1) \vdash (r_1 \dots (\lceil \dots r_n, w_1 \dots \lceil w_j^k \dots w_m))$$

Ak za jej uzatváracou zátvorkou nasleduje *, t.j. α je tvaru $r_1 \dots \lceil (\dots) * \dots r_n$, potom

$$(2) \vdash (r_1 \ldots (\ldots) * \lceil \ldots r_n, w_1 \ldots \lceil w_j^k \ldots w_m)$$

III. $z\acute{a}pis$ adresy $z\acute{a}tvorky$) Nech) je $indexovateľn\acute{a}$, k-ta v poradí: $(r_1...[)...r_n, w_1...[w_j...w_m)$

$$\vdash (r_1 \dots) \lceil \dots r_n, w_1 \dots \lceil w_i^{k'} \dots w_m \rceil$$

IV. výber možnosti v alternácii

Nech podslová $\alpha_1, \alpha_2, ..., \alpha_A$ regexu α sú všetkými členmi zobrazenej alternácie: $(r_1 ... \lceil \alpha_1 | \alpha_2 | ... | \alpha_A ... r_n, w_1 ... \lceil w_j ... w_m)$

 $(1) \vdash d$ 'alší prechod v α_1

$$(2) \vdash (r_1 \dots \alpha_1 | \lceil \alpha_2 | \dots | \alpha_A \dots r_n, w_1 \dots \lceil w_j \dots w_m)$$

$$\vdots$$

$$(A) \vdash (r_1 \ldots \alpha_1 | \alpha_2 | \ldots | \lceil \alpha_A \ldots r_n, w_1 \ldots \lceil w_j \ldots w_m)$$

V. skok z dokončenej možnosti na koniec alternácie Nech podslová $\alpha_1, \alpha_2, ..., \alpha_A$ regexu α sú všet-kými členmi zobrazenej alternácie, potom pre všetky možnosti:

$$(r_{1} \dots \alpha_{1} \lceil \alpha_{2} \rceil \dots | \alpha_{A} \dots r_{n}, w_{1} \dots \lceil w_{j} \dots w_{m}),$$

$$(r_{1} \dots \alpha_{1} | \alpha_{2} \rceil | \dots | \alpha_{A} \dots r_{n}, w_{1} \dots \lceil w_{j} \dots w_{m}),$$

$$\vdots$$

$$(r_{1} \dots \alpha_{1} | \alpha_{2} | \dots | \alpha_{A-1} \lceil | \alpha_{A} \dots r_{n}, w_{1} \dots \lceil w_{j} \dots w_{m})$$

$$\vdash (r_{1} \dots \alpha_{1} | \alpha_{2} | \dots | \alpha_{A} \lceil \dots r_{n}, w_{1} \dots \lceil w_{j} \dots w_{m})$$

VI.
$$\underline{skok\ Kleeneho * za\ znakom}$$
 $(r_1 \dots a\lceil * \dots r_n, w_1 \dots \lceil w_j \dots w_m)$

$$(1) \vdash (r_1 \dots a * \lceil \dots r_n, w_1 \dots \lceil w_j \dots w_m)$$

$$(2) \vdash (r_1 \dots \lceil a * \dots r_n, w_1 \dots \lceil w_j \dots w_m)$$

$$\frac{1}{(r_1 \dots (\dots) \lceil * \dots r_n, w_1 \dots \overset{k}{w_a} \dots \overset{k'}{w_b} \dots \lceil w_j \dots w_m)^2}$$

$$(1) \vdash (r_1 \ldots (\ldots) * \lceil \ldots r_n, w_1 \ldots w_a \ldots w_b \ldots \lceil w_j \ldots w_m)$$

$$(2) \vdash (r_1 \ldots (\lceil \ldots) * \ldots r_n, w_1 \ldots w_a \ldots w_b \ldots \lceil w_j \ldots w_m)$$

VIII. špeciálny ukazovateľ – zjavenie

$$(r_1 \ldots \lceil \backslash k \ldots r_n, w_1 \ldots w_a \ldots w_b \ldots \lceil w_j \ldots w_m)$$

$$\vdash (r_1 \ldots \lceil \backslash k \ldots r_n, w_1 \ldots \intercal_{w_a}^k \ldots_{w_b}^{k'} \ldots \lceil w_j \ldots w_m)$$

IX. porovnávanie spätnej referencie

$$\overline{(r_1 \dots \lceil \backslash k \dots r_n, w_1 \dots \overset{k}{w_a} \dots \intercal w_c \dots \overset{k'}{w_b} \dots \lceil w_j \dots w_m),}$$

$$kde \ a \leq c < b \ a \ z\'{a}rove\check{n} \ w_c = w_j^3$$

$$\vdash (r_1 \dots \lceil \backslash k \dots r_n, w_1 \dots w_a \dots w_c \intercal \dots w_b \dots w_j \lceil \dots w_m)$$

X. špeciálny ukazovateľ – zmiznutie

$$(r_1 \ldots \lceil \backslash k \ldots r_n, w_1 \ldots w_a \ldots \uparrow w_b \ldots \lceil w_j \ldots w_m)$$

$$\vdash (r_1 \ldots \backslash k \lceil \ldots r_n, w_1 \ldots \overset{k}{w_a} \ldots \overset{k'}{w_b} \ldots w_j \lceil \ldots w_m)$$

XI. lookahead – začiatok a jeho záznam

Nech (?=...) je k-ty pozitívny lookahead v poradí:

$$(r_1 \dots \lceil (?=\dots) \dots r_n, w_1 \dots \lceil w_j \dots w_m)$$

$$\vdash (r_1 \ldots (? = \lceil \ldots) \ldots r_n, w_1 \ldots \lceil \overset{k^{\rightarrow}}{w_j} \ldots w_m)$$

XII. lookahead – koniec, skok a vymazanie záznamu Nech) patrí ku k-temu pozitívnemu lookaheadu v poradí:

$$(r_1 \ldots (?= \ldots \lceil) \ldots r_n, w_1 \ldots \overset{k^{\rightarrow}}{w_l} \ldots \lceil w_j \ldots w_m)$$

$$\vdash (r_1 \ldots (?=\ldots) \lceil \ldots r_n, w_1 \ldots \lceil w_l \ldots w_j \ldots w_m)$$

XIII.
$$lookbehind - začiatok$$
, $jeho záznam a skok$
 \overline{Nech} (?<=...) je k -ty $pozitívny$ $lookbehind$ v $poradí$, $\forall L \in \{0, ..., j-1\}$:

$$(r_1 \dots \lceil (? \leq = \dots) \dots r_n, w_1 \dots \lceil w_j \dots w_m)$$

$$\vdash (r_1 \dots (? <= \lceil \dots) \dots r_n, w_1 \dots \lceil w_{j-L} \dots \overset{k^{\leftarrow}}{w_j} \dots w_m)$$

XIV. lookbehind – koniec a vymazanie záznamu

Nech) patrí ku k-temu pozitívnemu lookbehindu v poradí:

$$(r_1 \ldots (? < = \ldots \lceil) \ldots r_n, w_1 \ldots \lceil \overset{k}{w_j} \ldots w_m)$$

$$\vdash (r_1 \dots (? <= \dots) \lceil \dots r_n, w_1 \dots \lceil w_i \dots w_m)$$

XV. negatívny lookahead

$$\overline{Ak} \stackrel{\neq}{\not\equiv} \overline{p} \in \{j, \dots, m\} : (\lceil r_k \dots r_l, \lceil w_j \dots w_p \rceil) \vdash^* (r_k \dots r_l \lceil, w_j \dots w_p \rceil), potom: \\
(r_1 \dots \lceil (?! \ r_k \dots r_l) \dots r_n, w_1 \dots \lceil w_j \dots w_m)$$

$$\vdash (r_1 \dots (?! \ r_k \dots r_l) \lceil \dots r_n, w_1 \dots \lceil w_i \dots w_m)$$

XVI. negatívny lookbehind

$$\overline{Ak} \quad \nexists p \in \{1, \dots, j - 1\} \\
(\lceil r_k \dots r_l, \lceil w_p \dots w_{j-1} \rceil) \quad \vdash \\
(r_k \dots r_l \lceil, w_p \dots w_{j-1} \rceil), potom: \\
(r_1 \dots \lceil (? < ! r_k \dots r_l) \dots r_n, w_1 \dots \lceil w_j \dots w_m)$$

$$\vdash (r_1 \ldots (?$$

Akceptačný výpočet je postupnosť konfigurácií $(\lceil R, \lceil W \rceil) \vdash^* (R \lceil, W \rceil)$. Ak existuje akceptačný výpočet pre daný regex R a slovo W hovoríme, že regex R matchuje slovo W respektívne slovo W vyhovuje regexu R. **Jazyk** vyhovujúci danému regexu je množina slov, pre ktoré existuje akceptačný výpočet.

Vďaka týmto definíciám sme schopný odhadnúť dĺžku výpočtu:

Lema 1. Nech $\alpha \in \mathcal{L}_{ERE}$ a $w \in L(\alpha)$. Potom existuje akceptačný výpočet, ktorý má najviac $3 \cdot |\alpha| \cdot |w|^2$ konfigurácií.

 $D\hat{o}kaz$. Vo väčšine krokov výpočtu sa posúvame dopredu – buď v regexe alebo v slove alebo v oboch. Takéto kroky vedú k postupnosti dĺžky najviac $|\alpha| + |w|$.

Výpočet môže predĺžiť skákanie ukazovateľ a dozadu. V krokoch VI.(2),VII.(2) sa pri Kleeneho * rozhodneme urobiť ďalšiu iteráciu. Zamyslime sa nad samotným akceptačným výpočtom. Ak existuje,

²Podľa definície spätných referencií platí podsledné podslovo nájdené regexom v k-tych zátvorkách. Pri tejto pracovnej pozícii v regexe je zrejmé, že nejde o prvý prechod cez tieto zátvorky a teda existuje také a,b, že k je v slove nad w_a a k' nad w_b . Ak nastane prechod (2), pôvodné horné indexy k,k' miznú a pridáva sa k nad w_i .

 $^{^{3}}w_{c}$ a w_{j} sú poschodové symboly, avšak pri tejto rovnosti poschodia ignorujeme – chceme porovnať iba písmenká v slove, prislúchajúce týmto pozíciám.

potom existuje aj taká jeho verzia, kde každé opakovanie regexu pomocou Kleeneho * matchuje aspoň 1 znak – prázdne iterácie môžeme vyhodiť, lebo ukazovateľ v slove zostal na mieste a konfigurácia skoku je rovnaká, takže postupnosť sa priamo naviaže. Jediná prázdna iterácia môže zostať ako posledná, pokiaľ sa jedná o krok VII.(2) a na zátvorky pred * sa odkazuje spätná referencia – vtedy môže nastať prípad, kedy potrebujeme mať posledné matchované podslovo prázdne. Vieme, že regex opakovaný operáciou * je dlhý nanajvýš $|\alpha|$ znakov a podľa úvahy ho treba opakovať najviac |w|-krát⁴. Medzi návratmi používame nenávratové kroky, ktorých je najviac $|w| + |\alpha|$, takže spolu má akceptačný výpočet najviac $|w| \cdot (|w| + |\alpha|)$ konfigurácií.

V krokoch VIII. a X. sa žiaden ukazovateľ nepohne. Oba kroky sa vyskytujú 1x ku každej spätnej referencii, ktorých je najviac $|\alpha|$. Každá spätná referencia sa môže nachádzať v poli pôsobnosti nejakej *, teda môže byť opakovaná najviac toľkokrát, koľko je iterácií a tých je dohromady najviac |w|. Tieto kroky nastanú najviac $(|\alpha|\cdot|w|)$ -krát.

Z toho vyplýva, že najkratší akceptačný výpočet má najviac $|w|\cdot(|w|+|\alpha|)+|w|\cdot|\alpha|\leq 3\cdot|w|^2\cdot|\alpha|$ konfigurácií.

Spočítajme počet všetkých konfigurácií pre triedu regexov LEregex. Vstupné slovo a regex máme, menia sa iba polohy ukazovateľ ov a informácií. Ukazovateľ v regexe môže mať (r+1) pozícií a pre ukazovateľ v slove existuje (w+1) rôznych pozícií. Čo sa týka ukazovateľ a pre spätné referencie a informácií v poschodových symboloch, každý prvok z tejto množiny môže mať (w+1) pozícií alebo sa v slove nenachádzať. Mohutnosť tejto množiny je m=1+2 (počet spätných ref.) + (počet lookaroundov) $\leq 2r+1$. Počet všetkých možných konfigurácií je dohromady:

$$(r+1)(w+1)(w+2)^m \le (r+1)(w+2)^{2r+2}$$
(1)
= $O(rw^{2r+2})$

Keby sme priamo pokračovali v dôkaze lemy 1, odhad by nebol lepší ako odhad 1. Nasledujúca lema to ukazuje všeobecnejšie.

Definujme si **hĺbku vnorenia lookaroundov** ako počet lookaroundov vnorených v sebe. Lookaround

obsahujúci regex z Eregex má hĺbku 1. Lookaround obsahujúci regex z LEregex, kde maximum zo všetkých hĺbok lookaroundov je h-1 má hĺbku h.

Lema 2. Majme triedu regexov takú, že funkcia f(r) určuje ich maximálnu hĺbku vnorenia lookaroudov, kde r je dĺžka regexu. Potom počet konfigurácií v akceptačnom výpočte pre slovo dĺžky w je najviac $O(rw^2(rw)^{f(r)})$.

Dôkaz. Dokážeme si to matematickou indukciou vzhľadom na hĺbku vnorenia lookaroundov *h*.

Báza indukcie: Nech h=1. V regexe je $k \le r$ lookaroundov, ktoré vnútri nemajú žiaden lookaround. Keď že lookaroundu nie sú priradené žiadne písmenká zo vstupu, môžeme ho brať ako samostatný regex, ktorý v najhoršom prípade matchuje celé w. Vnútri každého lookaroundu je regex z Eregex, pre ktorý podľ a lemy 1 existuje akceptačný výpočet s najviac $3rw^2$ konfiguráciami. Mimo všetkých lookaroundov je tiež regex, pre ktorý platí táto lema. V najhoršom prípade sa lookaround nachádza vnútri regexu, ktorý je iterovaný * a môže byť spustený najviac w-krát. Každý lookaround teda pridá najviac $3rw^3$ konfigurácií. Spolu $3rw^2 + r \cdot 3rw^3 = O(r^2w^3) = O(rw^2(rw)^1)$.

Indukčný krok: Nech tvrdenie platí pre h-1, ukážeme, že platí pre h. Regex obsahuje $k \le r$ lookaroundov s hĺbkou vnorenia najviac h. Zoberme si l'ubovol' ný z týchto lookaroundov. Jeho vnútorný regex obsahuje lookaroundy s hĺbkou vnorenia najviac h-1 a podl'a indukčného predpokladu takýto regex pridáva $O(rw^2(rw)^{h-1})$ konfigurácií. Pozrime sa teraz na celý regex. Keď ignorujeme lookaroundy, akcetačný výpočet má $3rw^2$ konfigurácií. Každý lookaround pridá $O(rw^2(rw)^{h-1})$ konfigurácií a môže byť spustený najviac w-krát, pokial' sa nachádza v poli pôsobnosti nejakej *. Lookaroundov je najviac r, teda dohromady má akceptačný výpočet najviac $3rw^2 + rw \cdot O(rw^2(rw)^{h-1}) = O(rw^2(rw)^h)$ konfigurácií, čo sme chceli dokázať.

Pre triedu LEregex je hĺbka vnorenia lookaroundov maximálne dĺžka regexu -f(r)=r, teda akceptačný výpočet môže mať najviac $O(rw^2(rw)^r)=O(r^rw^{r+2})$ konfigurácií. Tento odhad je veľ mi podobný odhadu 1. Druhý extrém je trieda regexov, ktorej lookaroundy majú hĺbku vnorenia konštantnú, teda f(r)=O(1). V takom prípade má akceptačný výpočet najviac $O(rw^2(rw)^{O(1)})$ konfigurácií.

⁴Keď v každej iterácii matchujeme aspoň 1 písmenko, potrebujeme najviac |w|-1 návratov. Zarátaním možnej poslednej práznej iterácie dostávame |w| iterácií.

3 Vlastnosti lookaroundu

Na zoznámenie s novou operáciou sme zisťovali správanie sa tried Chomského hierarchie.

Veta 1. \mathcal{R} je uzavretá na negatívny a pozitívny lookaround.

 $D\hat{o}kaz$. Nech $L_1, L_2, L_3 \in \mathcal{R}$. Chceme ukázať, že $L_1(?=L_2)L_3, L_1(?<=L_2)L_3, L_1(?!L_2)L_3, L_1(?<!L_2)L_3$ $\in \mathcal{R}$. Pre každé $L_i, i \in \{1,2,3\}$ existuje determinický konečný automat A_i , ktorý ho akceptuje.

Máme zreť azenie L_1 a L_3 . Preto prepojíme akceptačný stav A_1 s počiatočným stavom A_3 . Výsledný automat sa nedeterministicky rozhoduje, či z akceptačného stavu A_1 pokračuje ď alej v A_1 alebo A_3 . Teraz k nim vhodne napojíme automat A_2 . Spravíme konštrukciu pre prienik regulárnych jazykov, ale mierne upravenú.

V pozitívnom lookaheade A_2 a A_3 začínajú naraz. Akonáhle A_2 akceptuje, vo výpočte bude pokračovať už len samotný A_3 , kým dočíta slovo. Podobne pre pozitívny lookbehind – A_1 začne sám a nedeterministicky v nejakom kroku začne výpočet aj A_2 . Akceptovať musia spolu.

Pre negatívne formy musíme navyše upraviť akceptáciu. Ak A_2 pre lookahead akceptuje, celý automat sa zasekne a zamietne. A_2 musí dočítať slovo bez dosiahnutia akceptačného stavu alebo sa zaseknúť. Pre lookbehind v každom kroku A_1 spúšť ame ď alší A_2 a držíme si množinu stavov, v ktorých sa všetky nachádzajú. Úspech je, ak A_1 akceptuje a množina stavov pre automaty A_2 neobsahuje akceptačný stav.

Veta 2. \mathcal{L}_{CF} nie je uzavretá na pozitívny lookaround.

Vieme totiž vygenerovať jazyk $L = \{a^n b^n c^n | n \in \mathbb{N}\}$ pomocou jazykov $L_1 = \{a * b^n c^n | n \in \mathbb{N}\}$ a $L_2 = \{a^n b^n c * | n \in \mathbb{N}\}$ takto $L = (?=L_1)L_2 = L_1(?=L_2)$.

Takýto výsledok bol očakávateľ ný, pretože lookaround vytvára uzavretosť na prienik a to trieda bezkontextových jazykov nie je.

Veta 3. \mathcal{L}_{CS} je uzavretá na pozitívny lookaround.

 $D\hat{o}kaz$. Nech jazyky $L_1, L_2, L_3 \in \mathscr{L}_{CS}$, potom ukážeme, že $L_1(?=L_2)L_3$, $L_1(?=L_2)L_3 \in \mathscr{L}_{CS}$. Ku každému L_i existuje Turingov stroj T_i , ktorý ho akcpetuje. Zostrojíme nedeterministický Turingov stroj T pre lookahead.

T bude mať vstupnú read–only pásku. T si nedeterministicky rozdelí vstupné slovo w na w_1, w_2, w_3

tak, že $w = w_1w_3$ a $w_3 = w_2x$ pre nejaké x ($w_1 = xw_2$ v prípade lookbehindu). Na jednu pracovnú pásku prepíše w_1 a bude simulovat' T_1 . Keď akceptuje, pásku vymaže, zapíše tam w_2 a bude simulovat' T_2 . Ak aj ten akceptuje, pásku vymaže, zapíše tam w_3 a bude simulovat' T_3 . Ak T_3 akceptuje, bude akceptovat' aj T. Zrejme akceptuje požadovaný jazyk.

Teraz zistíme, čo robí lookaround s regexami (zatial' bez spätných referencií) a napíšeme nejaké jeho vlastnosti.

Veta 4. Trieda jazykov nad Regex s pozitívnym a negatívnym lookaroundom je ekvivalentná \mathcal{R} .

Dôkaz. Trieda jazykov nad Regex pokrýva triedu regulárnych jazykov a tá je na lookaround uzavretá (veta 1). Keď že pracujeme s množinou operácií, treba overiť, či nejaká ich kombinácia nie je náhodou silnejšia. Ak regex umiestníme do lookaroundu, či pred alebo za neho, vždy to bude regulárny jazyk a celý regex bude tiež definovať regulárny jazyk. Teda nás zaujíma vloženie lookaroundu dovnútra inej operácie. V tomto prípade prichádza do úvahy *,+ a ?, ktoré menia počet lookaroundov a vynútia ich simuláciu na rôznych častiach slova.

Operácia ? veľ a nespraví – lookaround tam buď bude 1x alebo nebude vôbec. + je prípad * s jedným lookaroundom istým. Teda chceme overiť, že $(L_1(?=L_2)L_3)*L_4$, $L_4(L_1(?<=L_2)L_3)*\in\mathscr{R}$ pre $L_1,\ldots,L_4\in\mathscr{R}$. K týmto jazykom vieme zostrojiť konečné automaty podobným spôsobom ako vo vete 1.

Ku kostre z automatov A_1, A_3, A_4 pripojíme A_2 pre lookahead tak, že v každej iterácii zároveň s A_3 spustíme aj A_2 , pričom A_2 môže skončiť kedykoľ vek. Budeme mať množinu stavov A_2 , čo budú stavy všetkých spustených automatov. Ak nejaký stav v množine prejde do akceptačného stavu, ten už nepíšeme. Jediná požiadavka je, aby množina stavov A_2 bola po dočítaní slova prázdna.

Automat A_2 pre lookbehind ku kostre pripájame tak, že kedykoľ vek počas behu sa môže spustiť 1 jeho inštancia. Podmienka je, že ak sme v počiatočnom stave A_3 , množina stavov A_2 musí obsahovať aspoň 1 akceptačný stav. Ten sa potom môžeme rozhodnúť odstrániť alebo nechať, ak predpokladáme, že je to ďalšia inštacia A_2 v rovnakom stave taká, že sa vymaže neskôr.

Nasledujúca veta hovorí, že do lookaheadu stačí dávať z každého jazyka jeho prefixovú podmnožinu⁵.

⁵T.j. z jazyka L stačí $L_p = \{u \mid u \in L \land \nexists v \in L : u = vx\}.$

Akonáhle lookahead nájde prefix, akceptuje a ku zvyšku slova sa nikdy neprepracuje. Podobne to platí pre lookehind a sufixovú podmnožinu jazyka.

Samozrejme toto platí pre lookaheady bez \$ a lookbehindy bez ^.

Veta 5. Nech L je l'ubovol'ný jazyk a $L_p = L \cup \{uv \mid u \in L\}$. Nech α je l'ubovol'ný regulárny výraz taký, že obsahuje $(? = L_p)$. Potom ak prepíšeme tento lookahead na (? = L) (nazvime to α'), bude platit' $L(\alpha') = L(\alpha)$. Analogicky platí pre lookbehind s $L_s = \{vu \mid u \in L\}$.

 $D\hat{o}kaz$. \subseteq : triviálne, $L \subseteq L_p$.

 \supseteq : Majme $w \in L(\alpha)$ a nech x je také podslovo w, ktoré sa zhodovalo práve s daným lookaheadom. Potom $x \in L_p$, teda x = uv, kde $u \in L$. Ak $v = \varepsilon$, $x \in L$ a máme čo sme chceli. Nech $v \neq \varepsilon$. Ale celá zhoda lookaheadu sa môže zúžiť len na u, keď že $u \in L_p$, a bude to platná zhoda s w. Čo znamená, že $w \in L(\alpha')$.

Dôsledok 1. Nech α je regulárny výraz, ktorý obsahuje nejaký taký lookahead (? = L) (lookbehind (? <= L)), že $\varepsilon \in L$. Nech je α' regulárny výraz bez tohto lookaheadu (lookbehindu). Potom $L(\alpha') = L(\alpha)$.

 $D\hat{o}kaz$. Uvedomme si, že lookaround nie je fixovaný na dĺžku vstupu - musí sa zhodovať s nejakým podslovom začínajúcim sa (končiacim sa) na konkrétnom mieste. Tým pádom akonáhle si môže regulárny výraz vnútri tejto operácie vybrať ε , bude hlásiť zhodu vždy.

4 Chomského hierarchia

Zaradíme zadefinované triedy do Chomského hierarchie.

Veta 6.
$$\mathscr{R} \subsetneq \mathscr{L}_{ERE} \subsetneq \mathscr{L}_{LERE} \subseteq \mathscr{L}_{nLERE} \subsetneq \mathscr{L}_{CS}$$

 $D\hat{o}kaz$. Všetky \subseteq okrem poslednej triviálne platia. Posledná platí, lebo vieme na lineárne ohraničenom Turingovom stroji T simulovať ľubovoľný regex \in \mathcal{L}_{nLERE} . Opierať sa budeme o formálny model a definíciu 1. Ľavú stranu konfigurácie (regex) bude mať T v stave a pravú stranu aj s poschodovými symbolmi bude simulovať na vstupnej páske. Kroky odvodenia pre negatívny lookaround bude simulovať spustením nového Turingového stroja pre vnútorný regex – tento Turingov stroj bude mať ohraničený vstup

(konkrétne podslovo) a opačnú akceptáciu.⁶ Keď že regex je konečný, T bude spúšť ať konečný počet nových Turingových strojov, preto vieme dopredu povedať, koľ ko stôp na vstupnej páske budeme potrebovať.

$$\mathscr{R} \subsetneq \mathscr{L}_{ERE}$$
: $\alpha = (a|b) * \backslash 1, L_1 = L(\alpha) = \{ww \mid w \in \{a,b\}^*\} \notin \mathscr{R}$

 $\mathscr{L}_{ERE} \subsetneq \mathscr{L}_{LERE}$: Nerovnosť dokazuje jazyk $L_2 = \{a^iba^{i+1}ba^ik \mid k=i(i+1)k' \text{ pre nejaké } k' > 0, i > 0\}. L \notin Eregex \text{ podľa pumpovacej lemy z}$ [Carle and Nadendran, 2009] a tu je regex z LEregex pre L_2 : $\alpha = (a*)b(\backslash 1a)b(?=(\backslash 1)*\$)(\backslash 2)*$

 $\mathcal{L}_{LERE}, \mathcal{L}_{nLERE} \subsetneq \mathcal{L}_{CS}$: Triedy \mathcal{L}_{LERE} a \mathcal{L}_{nLERE} sú neporovnateľ né s \mathcal{L}_{CF} . Vyššie spomínaný jazyk $L_1 \notin L_{CS}$. Ani jedna z tried neobsahuje jazyk $L_2 = \{a^nb^n|n\in\mathbb{N}\}\in\mathcal{L}_{CF}$.

Intuitívne by malo platiť aj $\mathcal{L}_{LERE} \subsetneq \mathcal{L}_{nLERE}$, pretože negatívny lookaround pridáva uzavretosť na komplement. Jazyk dokazujúci nerovnosť by mohol byť napríklad regex $\alpha = (?! (aaa*)\backslash 1(\backslash 1)*\$)$, kde $L(\alpha) = \{a^p \mid p \text{ je prvočíslo}\}$. Avšak na dokázanie $L(\alpha) \notin \mathcal{L}_{LERE}$ zatiaľ nemáme šikovné prostriedky a preto to zostáva netriviálnym otvoreným problémom.

5 Vlastnosti triedy \mathcal{L}_{LERE}

Keď že sa ukázalo, že množina LEregex je silnejšia ako skúmaná \mathcal{L}_{ERE} , intenzívnejšie sme sa povenovali jej vlastnostiam.

Očividne operácia lookahead/lookbehind pridala uzavretosť na prienik. Nech $\alpha, \beta \in LEregex$, potom $L(\alpha) \cap L(\beta) = L(\gamma)$, kde $\gamma = (?=\alpha\$)\beta$ alebo $\beta(?<=^\alpha)$.

Naopak ohrozila uzavretosť na základnú operáciu – zreť azenie. Pri zreť azení 2 jazykov, ktorých regexy nutne musia obsahovať lookahead resp. lookbehind nastáva problém. Nemôžeme tieto regexy len tak položiť za seba. Ak sa napríklad v prvom z jazykov nachádza lookahead, počas výpočtu môže zasahovať aj do časti vstupu, ktorú matchuje druhý regex a tým zmeniť výsledok celého výpočtu. Nakoniec sa ukázalo:

Veta 7. \mathcal{L}_{LERE} je uzavretá na zreť azenie.

⁶Regexy majú tú vlastnosť, že vieme pre ne zostrojiť taký Turingov stroj, ktorý sa nezacyklí.

 $D\hat{o}kaz$. Nech $\alpha, \beta \in LEregex$. Jazyku $L(\alpha)L(\beta)$ bude zodpovedať regex

$$\gamma = (?=(\alpha)(\beta)) \otimes \alpha' + 2 (?<= 1 \beta')$$

V α, β treba vhodne prepísať označenie zátvoriek (po poradí). α' je α prepísaný tak, že pre každý lookahead:

- bez \$ na koniec pridáme . $* \k + 2\$$
- s \$ pred \$ pridáme $\k + 2$

 β' je β prepísaný tak, že pre každý lookbehind:

- bez ^ na začiatok pridáme ^\1.*
- s^- pred $\hat{}$ pridáme $\hat{} \setminus 1$

Slovami vyjadrené, regex γ najprv rozdelí vstupné slovo na 2 podslová w_1, w_2 patriace do príslušných jazykov $L(\alpha), L(\beta)$. Potom spustí ešte raz regex α upravený tak, že jeho lookaheady sú "skrotené", pretože ich na konci donúti matchovať w_2 . Rovnako lookbehindy v β' donúti na začiatku matchovať w_1 , až potom normálne pokračuje ich výpočet.

Zrejme
$$L(\gamma) = L(\alpha)L(\beta)$$
.

Otvoreným problémom je, či platí aj uzavretosť na *. Podľa komplikovanosti zreť azenia sa domnievame, že uzavretosť neplatí.

Pre model \mathcal{L}_{ERE} existuje pumpovacia lema. Ukázalo sa, že LE regex túto vlastnosť nezachováva.

Veta 8. Nech $\alpha \in LE$ regex nad unárnou abecedou $\Sigma = \{a\}$, že neobsahuje lookahead $s \$ ani lookbehind $s \$ vnútri iterácie. Existuje konštanta N taká, že ak $w \in L(\alpha)$ a |w| > N, potom existuje dekompozícia w = xy s nasledujúcimi vlastnosť ami:

(*i*)
$$|y| \ge 1$$

(ii)
$$\exists k \in \mathbb{N}, k \neq 0; \forall j = 1, 2, \dots : xy^{kj} \in L(\alpha)$$

 $D\hat{o}kaz$. Pokial' $\alpha \in Eregex$, tak pre α platí pumpovacia lema z [Câmpeanu et al., 2003, Lemma 1], t.j. $w = a_0ba_1b\dots a_m$ pre nejaké m a $a_0b^ja_1b^j\dots a_m \in L(\alpha) \ \forall j$. My pracujeme nad unárnym jazykom, teda na poradí nezáleží: $x = a_0a_1\dots a_m, \ y = b^m, k = 1$ a $xy^j \in L(\alpha) \ \forall j$.

Pokial' α neobsahuje spätné referencie, potom podľa vety 4 generuje regulárny jazyk a pre ten existuje pumpovacia lema. Podľa nej splníme podmienky

tejto vety. Nech α obsahuje aspoň 1 spätnú referenciu

Definujme teraz konštantu N. Dostatočne dlhé slovo je také, kedy s istotou vieme povedať, že aspoň jedna Kleeneho * (+) spravila viac ako 1 iteráciu. Nestačí nastaviť $N = |\alpha|$, lebo operácie $\{n\}, \{n, m\}$ a spätné referencie môžu slovo predĺžiť namiesto *. Preto nech d je súčet dĺžky regexu v k-tych zátvorkách pre všetky $\$ v α , plus n-krát dĺžky regexov opakovaných $\{n\}$, plus m-krát dĺžky regexov opakovaných $\{n, m\}$. Potom $N = |\alpha| + d$ je dostatočne veľ ká konštanta – predlžovať slovo môže len *, +.

Zoberme teraz tú $*^7$, ktorá iterovala aspoň 2x. Tá generuje nejake a^s .

Podľa predošlých úvah α musí obsahovať spätné referencie. Niektoré spätné referencie sa môžu odkazovať na našu vybranú *, na tieto spätné referencie sa môžu odkazovať na ďalšie spätné referencie, atď. V konečnom dôsledku síce * generuje a^s , ale dokopy je generované $a^{ms} = a^n$. Nazvime tieto miesta, závislé od vybranej *, generovacie miesta.

Tiež vieme, že α musí obsahovať nejaký lookaround. Ten môže ovplyvňovať nejaké miesto generovania (prípadne aj viac). Máme 3 prípady interakcie:

- 1. Žiaden lookaround nezasahuje do generujúcich miest. Nech $w = a^t$, potom $x = a^{t-n}$, $y = a^n$, k = 1 a platí $xy^j \in L(\alpha) \ \forall j$.
- 2. Lookahead bez \$ a/alebo lookbehind bez ^ zasahuje do generujúceho miesta alebo sa môže nachádzať vnútri iterovaniej *. Podľa vety 5 vieme, že v lookaheade stačí prefixová podmnožina, čo nad unárnou abecedou dáva jazyk s 1 slovom. Toto slovo obmedzuje iterovanie zdola slovo v lookaheade určuje minimálnu dĺžku slova od daného miesta. (Podobne pre lookbehind.) w už túto podmienku spĺňa, teda máme generovacie miesta bez obmedzení a to je predošlý prípad.
- 3. generovacie miesto je v oblasti pôsobenia lookaheadu s \$ a/alebo lookbehindu s ^. Takýto lookaround tvorí prienik. Keď že slovo je dostatočne dlhé, musí byť iterujúca * aj v takýchto lookaroundoch.

Rozoberme si prípad * a 1 lookaroundu. * generuje a^s , lookaround generuje a^l . Lookaround robí prienik jazykov, takže v danom úseku sú dobré len slová tvaru a^b , kde $b = j \cdot nsn(s, l)^8$.

Všeobecnejšie, nech máme 1 lookaround a * s niekoľ kými spätnými referenciami. Potom sčítame to, čo generujú * so spätnými referenciami – spolu ne-

⁷+ je tiež v podstate *

⁸najmenší spoločný násobok

jaké a^r . Opäť výsledné slovo bude prienik s lookaroundom (ten nech generuje a^l), teda a^b , kde $b = j \cdot nsn(r,l)$ – teda násobok najmenšieho spoločného násobku.

Týmto spôsobom vieme spočítať koeficient spoločného generovaného prvku – postupne sčítavame * a spätné refrencie a keď sa vyskytne lookaround spravíme najmenší spoločný násobok ich generovaných prvkov. Potom nech v je výsledný koeficient, $x = a^{t-1}, y = a, k = v$ a platí $xy^{jk} \in L(\alpha)$.

Podmienka "neobsahuje lookahead s \$ ani lookbehind s ^vnútri iterácie" je opodstatnená. Takáto kombinácia je vôbec ť ažko predstaviteľ ná a preto sa pre ňu ť ažko dokazujú tvrdenia. Napríklad regex

$$\underbrace{((?=\underbrace{(?=(a^m)*\$)}_{a^{km},\ k\in\mathbb{N}}\underbrace{(a^{m+1})*a\{1,m-1\}\$\mid a^m\$}_{\text{vie }a*\text{ okrem }a^{m+1},\ a^{m(m+1)l},\ l\in\mathbb{N}})a^m)}_{a^{km}\text{ tak\'e, že nevie }a^{m(m+1)l},\ l\in\mathbb{N}}$$

generuje konečný jazyk obsahujúci slová $a^m, a^{2m}, \ldots, a^{(m-1)(m+1)}$. Hlavný lookahead je spúšťaný každú iteráciu, teda pre slovo a^{zm} musí matchovať všetky a^{im} pre $i \in \{1, \ldots, z\}$.

A teraz dôkaz, že všeobecná pumpovacia lema určite neexistuje:

Veta 9. Jazyk všetkých platných výpočtov Turingovho stroja patrí do \mathcal{L}_{LERE} .

 $D\hat{o}kaz$. Takýto jazyk pre konkrétny Turingov stroj M obsahuje slová, ktoré sú tvorené postupnosť ou konfigurácií oddelených oddeľ ovačom #. Každá postupnosť zodpovedá akceptačnému výpočtu na nejakom slove. Jazyk obsahuje akceptačné výpočty na všetkých slovách, ktoré sú v jazyku L(M).

Turingov stroj má konečný zápis, preto je možné regex pre takýto jazyk vytvoriť. Konštrukcia regexu: $\alpha = \beta(\gamma) * \eta$, kde β predstavuje počiatočnú konfiguráciu⁹ a η akceptačnú konfiguráciu. Ak q_0 (počiatočný stav M) je akceptačný stav, potom na koniec α pridáme $|(\#q_0.*\#)$.

 $\gamma = \gamma_1 \mid \gamma_2 \mid \gamma_3$. Prvok γ_1 generuje validnú konfiguráciu a zároveň kontroluje pomocou lookaheadu, či nasledujúca konfigurácia môže podľa δ -funkcie nasledovať. Rozpíšeme si iba jednu možnosť:

$$\gamma_1 = ((.*)xqy(.*)\#)(? = \xi\#)$$

platí pre $\forall q \in K, \ \forall x, y \in \Sigma \ \text{a kde } \xi = \xi_1 \mid \xi_2 \mid \dots \mid \xi_n.$

- Ak $(p,z,0) \in \delta(q,y)$, potom $\xi_i = (\langle k xpz \rangle k + 1)$ pre nejaké i
- Ak $(p, z, 1) \in \delta(q, y)$, potom $\xi_i = (\langle k xzp \rangle k + 1)$ pre nejaké i
- Ak $(p, z, -1) \in \delta(q, y)$, potom $\xi_i = (\k pxz\k + 1)$ pre nejaké i

 γ_2 a γ_3 sú podobné ako γ_1 , ale matchujú krajné prípady, kedy je hlava Turingovho stroja na ľavom alebo pravom konci pásky.

Zrejme
$$L(\gamma)$$
 je požadovaný jazyk.

6 Priestorová zložitosť

Veta 10. $\mathcal{L}_{LERE} \subseteq NSPACE(\log n)$, kde n je veľkosť vstupu.

 $D\hat{o}kaz$. Nech $\alpha \in LEregex$. Zostrojíme nedeterministický Turingov stroj T akceptujúci $L(\alpha)$, ktorý bude mať vstupnú read–only pásku a 1 jednosmerne nekonečnú pracovnú pásku, na ktorej zapíše najviac $\log n$ políčok.

Výpočet Turingovho stroja bude prebiehať podľa postupnosti konfigurácií formálneho modelu. Nemôžeme nič zapísať na vstupnú pásku a máme k dispozícii menej priestoru ako je dĺžka vstupu. Využijeme to, že pre vstup dĺžky n vieme uložiť ľuboboľ nú pozíciu na vstupe do adresy dĺžky $\log n$. Ukážeme, že takýchto adries potrebujeme konečný počet. Potom ich vieme písať nad seba do niekoľ kých stôp pásky a mať tak zapísaných najviac $\log n$ políčok na páske.

Celý regex α bude uložený v stave aj s ukazovateľ om. Budú existovať stavy pre všetky možné pozície ukazovateľ a v regexe a medzi stavmi budú tzv. metaprechody podľ a definície kroku výpočtu na regexe. Medzi každými dvoma stavmi prepojenými metaprechodom môže byť potrebných až niekoľ ko prechodov cez pomocné stavy (napríklad keď v stave vidíme otváraciu indexovateľ nú zátvorku, na ktorú sa odkazujú spätné referencie, T musí zapísať aktuálnu pracovnú adresu v slove ako začiatok podslova).

Adresy budú zaznamenávať všetky ostatné informácie v konfigurácii – aktuálnu pracovnú pozíciu na vstupe (ukazovateľ v slove), pomocný ukazovateľ na spätné referencie, začiatok a koniec podslova zodpovedajúceho k-tym zátvorkám pre $\forall k$ (počet z), začiatok každého lookaheadu (l_a) a lookbehindu (l_b). K

 $^{^9}$ Musí byť previazaná s nasledujúcou konfiguráciou, aby spĺňala δ -funkciu. Spraví sa to pomocou lookaheadu, podobne ako v γ_1 .

tomu bude potrebná 1 pomocná adresa – aktuálna pozícia hlavy na vstupe. Z definície α je konečnej dĺžky a pre počty daných operácií platí $2z+l_a+l_b \leq |\alpha|$. Takže dokopy potrebujeme $2+2z+l_a+l_b+1 \leq |\alpha|+3$ adries, čo je konštanta.

Kroky výpočtu I., IV., V., VI., VII.(1) nepotrebujú pomocné stavy. Ostatné kroky zapisujú, prepisujú a porovnávajú adresy. Zápis aktuálnej adresy (to je len kopírovanie znakov z inej stopy), vynulovanie záznamu a porovnávanie niekoľ kých stôp vyžaduje 1 prechod cez pracovnú pásku a žiadnu prídavnú pamäť.

Preto T akceptuje $L(\alpha)$ a spĺňa pamäť ové požiadavky.

Dôsledok Savitchovej vety [Savitch, 1970]:

Veta 11. $\mathcal{L}_{LERE} \subseteq DSPACE(\log^2 n)$, kde n je vel'-kost' vstupu.

Veta 12. $\mathcal{L}_{nLERE} \subseteq DSPACE(\log^2 n)$, kde n je vel'-kost' vstupu.

Dôkaz tejto vety uvedieme neskôr.

V praxi je bežné, že užívateľ zadáva nielen vstupný text, ale aj samotný regex. Preto sme sa rozhodli analyzovať jazyk, ktorý dostane na vstup oboje – slovo *regex#word*– a to je v jazyku len vtedy, ak slovo *word* vyhovuje regexu *regex*.

Veta 13. $L(regex\#word) \in NSPACE(r\log w)$, kde r = |regex|, w = |word| $a regex \in LEregex$.

 $D\hat{o}kaz$. Myšlienka dôkazu je podobná ako v dôkaze 10. Rozdiel je v tom, že regex nepoznáme dopredu. Z čoho vyplýva, že si ho nemôžeme uchovať v stave. Preto pribudnú ďalšie 2 adresy – pracovná pozícia v regexe (ukazovateľ) a aktuálna pozícia v regexe. Ďalším dôsledkom je, že síce počet adries ohraničíme zhora číslom r+3, ale už to viac nie je konštanta. Preto adresy nemôžeme ukladať na viacerých stopách pod sebou, ale musia byť vedľa seba oddelené oddeľovačmi. Pre rovnako pohodlné porovnávanie a zapisovanie si môžeme dovoliť pridať 1 pracovnú pásku, na ktorú si 1 z porovnávaných adries zapíšeme – tá bude mať vždy najviac $\log w$ zapísaných políčok.

Turingov stroj bude fungovať ako v dôkaze 10, ale odhad zapísanej pamäte bude $(r+3) \cdot \log w + 2 \log r$. Všetky pozície v slove vieme adresovať od oddeľ ovača #, preto zaberú $\log w$ pamäte. Na záver pribudla

pracovná a aktuálna pozícia v regexe, z nich každá potrebuje $\log r$ políčok. Dokopy Turingov stroj zapíše $O(r\log w)$ pamäte.

Zo Savitchovej vety vyplýva $DSPACE(r^2 \log^2 w)$. My vieme dokázať lepšiu zložitosť:

Veta 14. $L(regex\#word) \in DSPACE(n\log^2 n)$, $kde regex \in Eregex$ a n je dĺžka vstupu.

```
Dôkaz. Nech r = |regex|, w = |word|.
```

Myšlienka je podobná dôkazu Savitchovej vety[Ďuriš, 2003]. Turingov stroj T bude testovať, či sa dá dostať z konfigurácie C_1 do konfigurácie C_2 na i krokov:

```
1 bool TESTUJ(C_1, C_2, i)

2 if (C_1 == C_2) then return true

3 if (i > 0 \land C_1 \vdash C_2) then return true

4 if (i <= 1) return false

5 iteruj cez všetky konfigurácie C_3

6 if (TESTUJ(C_1, C_3, \lfloor \frac{i}{2} \rfloor)) \land TESTUJ(C_3, C_2, \lceil \frac{i}{2} \rceil)) then

return true

7 return false
```

Konfigurácie budú zodpovedať formálnemu modelu a ako v predošlom dôkaze budú na páske zaznamenané v podobe niekoľ kých adries za sebou – ukazovateľ v regexe, ukazovateľ v slove, začiatok a koniec podslova pre k-te indexovateľ né zátvorky pre $\forall k\ (z)$, začiatok každého lookaheadu (l_a) a lookbehindu (l_b) . Globálne si budeme pamätať ešte aktuálnu pozíciu v regexe a v slove, kvôli orientácii a prípadnému kopírovaniu adries. Spolu to zaberie $\log r + (1 + 2z + l_a + l_b) \cdot \log w + \log r + \log w \leq O(r \log w)$ pamäte.

Turingov stroj T začne volaním inštancie $TESTUJ(C_0,C_a,c)$, kde C_0 je počiatočná konfigurácia, C_a je akceptačná konfigurácia a c je číslo z lemy $\ref{eq:continuous}$. Ak akceptačný výpočet existuje, potom existuje aj taký, ktorý má nanajvýš c konfigurácií.

Procedúra TESTUJ je rekurzívna. Preto bude na pracovnej páske stroja T zásobník. Pre každú inštanciu procedúry bude mať uložené konfigurácie C_1, C_2, C_3, c a informáciu, či sa vrátil z prvého alebo druhého volania (potrebný 1 bit informácie). Hodnotu c vieme zapísať do priestoru $\log c = O(\log r + \log w)$, teda záznam pre 1 inštanciu procedúry zaberie $3r\log w + \log c = O(r\log w)$ pamäte.

Keď že parameter i je vždy o polovicu menší, hĺbka rekurzie bude $\log c$. Z toho vyplýva, že zásobník bude potrebovať $O((\log r + \log w) \cdot r \cdot \log w) = O(n \log^2 n)$

pamäte. Ešte treba overit', že úkony na riadkoch 2–4 zvládne T vykonať tiež v rámci pamäť ového limitu.

Riadok 2 je porovnanie rovnosti adries – ktoré symboly už porovnal si môže značiť poschodovými symbolmi. Riadok 4 je triviálny. Riadok 3 je zložitý kvôli overeniu $C_1 \vdash C_2$. K tomu potrebuje nasledovné kontroly:

ukazovateľ – či je správne posunutý ukazovateľ (týka sa aj špeciálneho, ak je nastavený). To znamená, že buď má byť posunutý o konkrétny počet políčok alebo má byť v jeho okolí konkrétny symbol.

adresy – všetky adresy (mimo ukazovateľov) musia byť rovnaké. Okrem tých, ktorým je v tomto kroku nastavovaná nová hodnota. Tá musí byť korektne nastavená (t.j. rovnaká ako ukazovateľ v slove).

zátvorky – pre korektné skoky v regexe v krokoch II.(2) a VII.(2) musí byť medzi starou a novou pozíciou ukazovateľ a korektne uzátvorkovaný výraz.

alternovateľ nosť – pokiaľ sa jedná o skok v alternácii (IV.,V.), treba skontrolovať prvý alebo posledný alternovateľ ný regex.

indexovateľ nosť – ak zátvorka nie je indexovateľ ná, tak sme narazili na lookaround.

Indexovateľ nosť a ukazovateľ sa skontrolujú bez použitia pomocnej pamäte. Adresy využívajú porovnávanie, ale to sme už popísali, že si vieme vypomôcť poschodovými symbolmi. Alternovateľ nosť využíva algoritmus na kontrolu zátvoriek – zisť uje, či je alternácia uzavretá zátvorkami (ak hej, ktorými) alebo nie. Počet zátvoriek je najviac $\frac{r}{2}$. Používame algoritmus, kde zátvorke (priradíme 1 a) hodnotu -1. Pri každom výskyte sa hodnoty sčítavajú, 0 je dobre uzátvorkovaný výraz. Notrola sa vykoná a súčet po nej už nepotrebujeme, preto ho môžeme dočasne zapísať na koniec zásobníka a vzápätí vymazať. Zapísaná pamäť tak bude $r + O(n\log^2 n) = O(n\log^2 n)$.

Dôsledok 2. Nech \mathscr{U} je trieda regexov, pre ktoré platí, že počet konfigurácií v akceptačnom výpočte pre regex α a slovo w je najviac f(n), kde $n = |\alpha| + |w| + 1$. Potom $L(regex\#word) \in DSPACE(n \cdot \log n \cdot \log(f(n)))$, kde $regex \in \mathscr{U}$.

Dôkaz. Vyplýva z dôkazu vety 14 – hĺbka vnorenia funkcie *TESTUJ* je logaritmus z horného ohraničenia dĺžky akceptačného výpočtu. □

Dôsledok 3. Trieda regexov s hĺbkou vnorenia lookaroundov zhora ohraničenou konštantou h patrí do $DSPACE(n \log^2 n)$.

 $D\hat{o}kaz$. Podľa lemy 2 je počet konfigurácií v akceptačnom výpočte najviac $O((rw)^h)$. Potom hĺbka rekurzie funkcie TESTUJ je

$$\log((rw)^h) = h\log r + h\log w = O(\log r + \log w)$$

A to je ten istý odhad ako v dôkaze vety 14. □

TODO!!!

Tu už nasleduje sl'ubovaný dôkaz vety 12. Budeme čerpat' z dôkazu predošlej vety 14.

 $D\hat{o}kaz$. Nech $\alpha \in nLEregex$ a $r = |\alpha|$. Zostrojíme Turingov stroj T, ktorý bude akceptovať $L(\alpha)$ a na pracovných páskach zapíše najviac $O(\log^2 n)$ políčok.

Pokiaľ α neobsahuje negatívny lookaround, tvrdenie triviálne vyplýva z vety 11. Nech teda obsahuje aspoň jeden negatívny lookaround a nech k je najvyšší počet negatívnych lookaroundov vnorených do seba (nezáleží na tom, či sú to lookaheady alebo lookbehindy).

T bude skonštruovaný ako Turingov stroj vo vete 14, pričom musíme dodefinovať správanie v prípade negatívneho lookaroundu. V definícii 1 v bodoch XV. a XIV. je napísané, že ak splníme istú podmieku, negatívny lookaround možno preskočiť a pokračovať ďalej vo výpočte. Podmienka začína "neexistuje výpočet", čo naznačuje, že musíme vyskúšať všetky možnosti postupnosti konfigurácií – teda mať deterministický algoritmus, ktorý akceptuje práve vtedy, keď akceptačný výpočet existuje.

Vhodným algoritmom je procedúra TESTUJ. Zakaždým, keď T bude overovať podmienku $C_1 \vdash^? C_2$ a jedná sa o prechod XV. alebo XIV. z definície 1, stane sa nasledovné. T spustí na novej páske novú procedúru $TESTUJ(C'_0, C'_a, c')$, kde C'_0 je počiatočná a C'_a akceptačná konfigurácia z definície daného kroku a $c' \le c$ je hodnota z lemy $\ref{lem:proceduru}$ pre regex vo vnútri tohto negatívneho lookaroundu. Túto procedúru treba spustiť niekoľ kokrát po sebe – pre každé p, čo prichádza do úvahy. Pokiaľ niektorý z behov procedúry TESTUJ skončí úspešne, znamená to, že existuje akceptačný výpočet tam, kde nechceme, aby existoval –

 $^{^{10}{\}rm Ak}$ počítame sprava doľava, hodnoty zátvoriek prenásobíme (-1), aby sme pri prvej zátvorke nemali súčet rovný -1.

podmienka negatívneho lookaroundu neplatí a výsledok je $C_1 \nvdash C_2$. Ak všetky behy skončia s výsledkom *false*, výsledok je $C_1 \vdash C_2$.

Vynechali sme detail "spustenie pre každé p, čo prichádza do úvahy". Tu je treba zadať hranice podslova, na ktorom procedúra pracuje, a neprekročiť ich. Jednoducho zakomponujeme do procedúry kontrolu, či sú všetky adresy a ukazovateľ pre toto spustenie v povolenom intervale. Tieto hodnoty budú globálne a zapíšu sa pri prvom volaní na začiatok zásobníka. Pre hlavný beh procedúry to budú hodnoty 0 a n+2 (t.j. interval (0,n+2)).

Popísali sme správanie T pre prípady, keď operácie negatívneho lookaroundu nie sú vnorené. Zoberme si prípad, keď ich α obsahuje niekoľ ko vnorených. T má na 1. páske rozpracovanú hlavnú vetvu TESTUJ, teraz pracuje na 2. páske na negatívnom lookarounde a narazí na ďalší. Uvedomme si, že pre T je to rovnaká situácia, akokeby pracoval stále na 1. páske. Zopakuje postup popísaný vyššie – niekoľ kokrát spustí TESTUJ na 3. páske pre vhodné hranice slov a ak výsledkom každého behu bude false, vráti sa na 2. pásku. Nech regex α má k vnorených negatívnych lookaroundov, potom T bude potrebovať k+1 pracovných pások.

Pre spočítanie zapísaných políčok na páskach si najprv popíšme konfigurácie. Regex poznáme dopredu. To znamená, že pre každú polohu ukazovateľ a v regexe vieme pridať 1 znak do pracovnej abecedy, ktorý toto nastavenie predstavuje (t.j. r+1 špeciálnych symbolov). Zároveň pre výpočty na negatívnych lookaroundoch nám stačí ich vnútorný regex s ukazovateľ om. Takýchto podslov je konečne veľ a, preto aj pre tie vieme mať nové symboly v abecede.

Adresy, ktoré v konfiguráciách potrebujeme sú: pracovná pozícia v slove, začiatok a koniec podslova pre k-te zátvorky pre $\forall k\ (z)$, začiatok každého lookaheadu (l_a) a lookbehindu (l_b) . Spolu $1+2z+l_a+l_b \leq 2r+1$ adries a to je konštanta. Konštantný počet adries vieme umiestniť nad seba do konštantného počtu stôp na páske (ako v dôkaze 10) a takto nimi zaberieme $\log n$ políčok (symbol pre stav regexu bude v samostatnej najvrchnejšej stope).

Jedna inštancia procedúry TESTUJ potrebuje 3 konfigurácie a konštantný počet políčok. Hĺbka vnorenia rekurzie je na každej páske najviac $\log c = O(\log r + \log w) = O(\log n)$. Každé prvé volanie potrebuje navyše aktuálnu pozíciu hlavy na vstupe a hranice podslova, na ktorom pracuje. Dokopy bude na každej páske zapísaných najviac $\log n \cdot O(\log n) + O(\log n)$

 $3\log n = O(\log^2 n)$ políčok.

Pod'akovanie

Ďakujem školiteľ ovi za cenné rady a pripomienky.

Literatúra

- [Carle and Nadendran, 2009] Carle, B. and Nadendran, P. (2009). On extended regular expressions. In *Language* and Automata Theory and Applications, volume 3, pages 279–289. Springer.
- [Câmpeanu et al., 2003] Câmpeanu, C., Salomaa, K., and Yu, S. (2003). A formal study of practical regular expressions. *International Journal of Foundations of Computer Science*, 14(06):1007–1018.
- [Ehrenfeucht and Zeiger, 1975] Ehrenfeucht, A. and Zeiger, P. (1975). Complexity measures for regular expressions. *Computer Science Technical Reports*, 64.
- [Ellul et al., 2013] Ellul, K., Krawetz, B., Shallit, J., and wei Wang, M. (2013). Regular expressions: New results and open problems. *Journal of Automata, Languages and Combinatorics u (v) w, x–y.*
- [Python documentation, 2012] Python documentation (2012). *Regular expression operations*. Python Software Foundation.
 - http://docs.python.org/2/library/re.html.
- [Savitch, 1970] Savitch, W. J. (1970). Relationships between nondeterministic and deterministic tape complexities. *Journal of Computer and System Sciences*, 4(2):177–192.
- [Tóthová, 2013] Tóthová, T. (2013). Moderné regulárne výrazy. Bachelor's thesis, FMFI UK Bratislava. https://github.com/Tatianka/bak.
- [Ďuriš, 2003] Ďuriš, P. (2003). Výpočtová zložitosť (materiály k prednáške).

http://www.dcs.fmph.uniba.sk/zlozitost/data/zlozitost_duris.pdf.