

Règles de la Déduction Naturelle

Axiome

 $\langle i \rangle$ supposons $h_1:A_1,\cdots,h_n:A_n,h:A$ montrons A $\langle i \rangle$ CQFD (Ax avec h)

Axiome

(i) supposons $h'_1:A'_1,\cdots,h'_k:A'_k,h:A$ montrons B ... $(i) \text{ supposons } h_1:A_1,\cdots,h_n:A_n$ montrons A (i) cQFD (Ax avec h) ... (j) cQFD (Ax avec h)

Introduction du connecteur ⇒

(i) supposons $h_1:A_1,\cdots,h_n:A_n$ montrons $A\Rightarrow B$ (i+1) supposons h:A montrons B (i+1) cqfd (i+1)

Introduction du connecteur

 $\langle i \rangle \quad \text{supposons } h_1:A_1,\cdots,h_n:A_n \\ \quad \text{montrons } A \wedge B \\ \quad \langle i+1 \rangle \quad \text{montrons } A \\ \quad \langle i+1 \rangle \quad \overbrace{\text{CQFD}} \\ \quad \langle i+1 \rangle \quad \overline{\text{CQFD}} \\ \quad \langle i+2 \rangle \quad \overline{\text{montrons } B} \\ \quad \langle i+2 \rangle \quad \overline{\text{CQFD}} \\ \quad \langle i \rangle \quad \overline{\text{CQFD}} \\ \quad$

Affaiblissement

(i) supposons $h_1:A_1,\cdots,h_n:A_n,h:B$ montrons A montrons A sans utiliser h (i + 1) copen (i + 1) copen (i) copen (Af)

Introduction de true

 $\langle i \rangle$ supposons $h_1:A_1,\cdots,h_n:A_n$ montrons true $\langle i \rangle$ QQFD $\langle I_{ op} \rangle$

Elimination de false

 $\begin{array}{|c|c|} \langle i \rangle & \text{supposons } h_1:A_1,\cdots,h_n:A_n,h: \mathsf{false} \\ & \text{montrons } B \\ \langle i \rangle & \text{cqfd } (E_\perp \text{ avec } h) \\ \end{array}$

Elimination du connecteur \Rightarrow

Elimination gauche du connecteur A

 $\langle i \rangle \text{ supposons } h_1:A_1,\cdots,h_n:A_n \\ \text{montrons } A \\ \langle i+1 \rangle \text{ montrons } A \wedge B \\ \hline \langle i+1 \rangle \text{ cQFD} \\ \langle i \rangle \langle i+1 \rangle \text{ cQFD}$

Elimination droite du connecteur \land $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n$

 $\begin{array}{c|c} \text{montrons } B \\ \hline \langle i+1 \rangle & \text{montrons } A \wedge B \\ \hline \hline \langle i+1 \rangle & \text{cQFD} \\ \hline \langle i \rangle & \text{cQFD} \\ \hline \langle i \rangle & \text{cQFD} \end{array}$

Introduction gauche du connecteur V

 $\langle i \rangle$ supposons $h_1 : A_1, \cdots, h_n : A_n$

montrons C

 $\langle i+1 \rangle$ montrons $A \vee B$

Elimination du connecteur V

 $\langle i \rangle \text{ supposons } h_1:A_1,\cdots,h_n:A_n \\ \text{montrons } A \vee B \\ \hline \langle i+1 \rangle \text{ montrons } A \\ \hline \langle i+1 \rangle \text{ cQFD} \\ \hline \langle i \rangle \text{ cQFD} \\ \langle i \rangle \text{ cQFD} \\ \langle i \rangle$

Introduction droite du connecteur V

 $\langle i \rangle \text{ supposons } h_1:A_1,\cdots,h_n:A_n \\ \text{montrons } A \vee B \\ \langle i+1 \rangle \text{ montrons } B \\ \langle i+1 \rangle \text{ CQFD} \\ \langle i \rangle \text{ CQFD } (I_v^{\vee})$

supposons $h_B : B$

 $\langle i+3 \rangle$

CQFD

 $\langle i+2 \rangle$

montrons C

CQFD

 $\langle i+3 \rangle$

CQFD (E_{\lor})

 $\langle i \rangle$

 $\langle i+2 \rangle$ supposons $h_A:A$

CQFD

 $\langle i+1 \rangle$

montrons C

Introduction du connecteur

 $\langle i \rangle$ supposons $h_1:A_1,\cdots,h_n:A_n$ montrons $\neg A$ $\langle i+1 \rangle$ supposons h:A montrons false \vdots $\langle i+1 \rangle$ cQFD $\langle i \rangle$ $\langle i+1 \rangle$

Elimination du connecteur

 $\langle i \rangle \quad \text{supposons } h_1:A_1,\cdots,h_n:A_n$ montrons false $\langle i+1 \rangle \quad \text{montrons} \ \neg A$ $\langle i+1 \rangle \quad \text{cQFD}$ $\langle i+2 \rangle \quad \text{montrons} \ A$ $\langle i+2 \rangle \quad \text{cQFD}$ $\langle i \rangle \quad \text{cQFD} \ \langle E_-)$

Introduction du quantificateur 🗸

Introduction du quantificateur \exists

 $\begin{array}{ll} \langle i \rangle & \text{supposons } h_1 : A_1, \cdots, h_n : A_n \\ & \text{montrons } \exists x \ A \\ & \langle i+1 \rangle & \text{montrons } A[x:=t] \\ & \langle i+1 \rangle & \text{CQFD} \\ & \langle i \rangle & \text{CQFD} \\ & \langle i \rangle & \text{CQFD} \end{array}$

Raisonnement par l'absurde

 $\langle i \rangle \text{ supposons } h_1 : A_1, \cdots, h_n : A_n \\ \text{montrons } A \\ \langle i+1 \rangle \text{ supposons } h : \neg A \\ \text{montrons false} \\ \text{montrons false} \\ \langle i \rangle \\ \langle i \rangle \\ \text{CQFD } (Abs)$

Elimination du quantificateur 🗸

 $\begin{array}{c|c} \langle i \rangle & \text{supposons } h_1 \cdot A_1, \cdots, h_n : A_n \\ & \text{montrons } A[x := t] \\ & \langle i + 1 \rangle & \text{montrons } \forall x \ A \\ & & & \\ & \langle i + 1 \rangle & \text{cQFD} \\ & & & \\ \langle i \rangle & \text{cQFD } (E_{\forall}) \end{array}$

Elimination du quantificateur

(i) supposons $h_1: A_1, \dots, h_n: A_n$ montrons B $\begin{array}{c|c} \langle i+1 \rangle & \text{montrons } \exists x \, A \\ \hline \langle i+1 \rangle & \text{copp} \\ \hline \langle i+1 \rangle & \text{copp} \\ \hline \end{array}$ $\begin{array}{c|c} \langle i+2 \rangle & \text{soit une nouvelle variable } y \\ \hline \end{array}$

(n+2) sore the notive relation y $(y \notin \text{Free}(A) \cup \text{Free}(B) \cup \bigcup_{i=1}^n \text{Free}(A_i))$ supposons h : A[x := y]montrons B

 $\langle i+2 \rangle$ CQFD $\langle i \rangle$ CQFD $\langle i \rangle$ CQFD $\langle i \rangle$

2

RÈGLES SUPPLÉMENTAIRES POUR LE CONNECTEUR \Leftrightarrow

Elimination gauche du connecteur \Leftrightarrow $\langle i \rangle$ supposons $h_1 : A_1, \cdots, h_n : A_n$ $\langle i+1 \rangle$ montrons $A \Leftrightarrow B$ montrons $A \Rightarrow B$ $\langle i+1 \rangle$ CQFD CQFD (E_2^g) $\langle i \rangle$

Elimination droite du connecteur \Leftrightarrow $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n$

Règles Dérivées

Elimination gauche directe du connecteur \wedge $\langle i \rangle$ supposons $h_1 : \overline{A_1, \cdots, h_n : A_n, h : A \wedge B}$

Elimination droite directe du connecteur \wedge $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n, h: A \wedge B$

CQFD $(D^d_{\wedge} \text{ avec } h)$

 $\langle i \rangle$

montrons B

montrons A $\langle i \rangle$

CQFD $(D_{\wedge}^g \text{ avec } h)$

Introductions du connecteur \Rightarrow

montrons $A_1 \Rightarrow (A_2 \Rightarrow (\cdots (A_n \Rightarrow A_{n+1}) \cdots))$ $\langle i+1 \rangle$ supposons $h'_1: A_1, \dots, h'_n: A_n$ $\langle i \rangle$ supposons $h_1 : F_1, \cdots, h_m : F_m$ montrons A_{n+1} $\langle i+1 \rangle$ CQFD CQFD $(I_{\stackrel{\longrightarrow}{=}})$ $\langle i \rangle$

$\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n,$ $h'_1: A \Rightarrow B, h'_2: A$

Elimination directe du connecteur ⇒

CQFD $(D\Rightarrow \text{ avec } h_1', h_2')$ montrons B $\langle i \rangle$

Hypothèses contradictoires

 $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n$ montrons $\neg A$ $\langle i+1 \rangle$ montrons ACQFD $\langle i+2 \rangle$ CQFD montrons BCQFD (D^2) $\langle i+1 \rangle$ $\langle i+2 \rangle$ $\langle i \rangle$

 $\langle i \rangle$ supposons $h_1 : A_1, \dots, h_n : A_n, h_1' : A, h_2' : \neg A$

CQFD $(D_{\perp}^1 \text{ avec } h_1', h_2')$

 $\langle i \rangle$

montrons B

Hypothèses contradictoires

Elimination directe du connecteur \neg

- $\langle i \rangle$ supposons $h_1 : A_1, \dots, h_n : A_n, h'_1 : A, h'_2 : \neg A$ CQFD $(D_{\neg} \text{ avec } h'_1, h'_2)$ montrons false $\langle i \rangle$

$\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n, h: A \vee B$ Elimination directe du connecteur V supposons $h_B: B$ $\langle i+1 \rangle$ supposons $h_A: A$ montrons Cmontrons CCQFD $(D_{\lor} \text{ avec } h)$ CQFD CQFD montrons C $\langle i+1 \rangle$ $\langle i+2 \rangle$ $\langle i+2 \rangle$ $\langle i \rangle$

Elimination directe du quantificateur \forall

- $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n, h: \forall x A$ montrons A[x:=t]CQFD $(D_{\forall} \text{ avec } h)$ $\langle i \rangle$
- Elimination directe du quantificateur \exists
- $(y\notin \operatorname{Free}(A)\cup\operatorname{Free}(B)\cup\check{\bigcup}_{i=1}^n\operatorname{Free}(A_i))$ $\langle i \rangle$ supposons $h_1 : A_1, \cdots, h_n : A_n, h : \exists x A$ $\langle i+1 \rangle$ soit une nouvelle variable y supposons h': A[x := y]montrons BCQFD $(D_{\exists} \text{ avec } h)$ CQFD montrons B $\langle i+1 \rangle$ $\langle i \rangle$

Double négation

```
\langle i \rangle supposons h_1: A_1, \cdots, h_n: A_n
                                     \langle i+1 \rangle montrons \neg A
                                                             CQFD
             montrons A
                                                                                                       CQFD(R_{\neg}^1)
                                                                                \langle i+1 \rangle
                                                                                                      \langle i \rangle
```

$\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n$ Double négation

```
\langle i+1 \rangle CQFD
         CQFD (R_{\perp}^2)
                                              Tiers exclu
       \langle i \rangle
```

 $\langle i+1 \rangle$ montrons A

montrons $\neg\neg A$

```
\langle i \rangle supposons h_1: A_1, \cdots, h_n: A_n
                  montrons A \lor \neg A
                                           CQFD (TE)
                                           \langle i \rangle
```

Elimination du tiers exclu

က

Equivalences sur les expressions booléennes

$\frac{\text{Distinction}}{0 \not\equiv 1 \text{(E0)}}$	Complément			•
	Produit		Somme	
commutativité	$a \cdot b \equiv b \cdot a$	(E2.1)	$a+b \equiv b+a$	(E3.1)
élément neutre	$1 \cdot a \equiv a$	(E2.2)	$0 + a \equiv a$	(E3.2)
élément absorbant	$0 \cdot a \equiv 0$	(E2.3)	$1 + a \equiv 1$	(E3.3)
	'	'	•	

Equivalences dérivées

associativité			
$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$	(E2.4)	$(a+b) + c \equiv a + (b+c)$	(E3.4)
idempotence			
$a \cdot a \equiv a$	(E2.5)	$a + a \equiv a$	(E3.5)
élément neutre			
$a \cdot 1 \equiv a$	(E2.6)	$a + 0 \equiv a$	(E3.6)
élément absorbant			
$a \cdot 0 \equiv 0$	(E2.7)	$a+1 \equiv 1$	(E3.7)
distributivité			
$a \cdot (b+c) \equiv a \cdot b + a \cdot c$	(E4.1)	$a + (b \cdot c) \equiv (a+b) \cdot (a+c)$	(E4.2)
complément			
$a \cdot \overline{a} \equiv 0$	(E1.3)	$a + \overline{a} \equiv 1$	(E1.4)
lois de Morgan			
$\overline{a \cdot b} \equiv \overline{a} + \overline{b}$	(E4.3)	$\overline{a+b} \equiv \overline{a} \cdot \overline{b}$	(E4.4)