Introduction to Shallow Parsing

Hoojung Chung

OUR Aim

Developing a practical shallow parser (for Bio-medical text)

Need to make a fast and accurate module

Study existing shallow parsing approaches

- Based on Hand-crafted patterns
- Based on Machine Learning techniques

Investigate related tasks, such as

- Text chunking
- Clause identification

Contents

Text Chunking

- Definition
- CoNLL 2000 Shared Task
- History

Clause Identification

- Definition
- CoNLL 2001 Shared Task
- History

Introduction to JMLR Special Issues on Shallow Parsing

- Introduction
- Overview of JMLR Special Issue papers
- Conclusion

Text Chunking: about

Text Chunking

Dividing a text in syntactically correlated parts of words

```
[NP He] [VP reckons] [NP the current account deficit]
[VP will narrow] [PP to] [NP only # 1.8 billion]
[PP in] [NP September].
```

- An intermediate step towards full parsing
- Shared task of CoNLL-2000(Computational Natural Language Learning)
 - Training and test data is available
 - Goal : make machine learn chunking test data

Text Chunking: CoNLL Data

```
Не
         PRP B-NP
reckons
         VBZ
             B-VP
the
         DT B-NP
current
         JJ I-NP
         NN
            I-NP
account
deficit
         NN
            I-NP
will
         MD
            B-VP
         VB I-VP
narrow
         TO B-PP
to
only
         RB
             B-NP
#
         #
              I-NP
1.8
         CD I-NP
billion
         CD I-NP
in
         IN
            B-PP
September NNP
             B-NP
              0
```

Text Chunking: CoNLL Result

	+	++-		-++
	precision	recall	F	İİ
+	+	++-		++
[ZDJ01]	94.29%	94.01%	94.13	(*)
[KM01]	93.89%	93.92%	93.91	(*)
[KM00]	93.45%	93.51%	93.48	
[Hal00]	93.13%	93.51%	93.32	
[TKS00]	94.04%	91.00%	92.50	
[ZST00]	91.99%	92.25%	92.12	
[Dej00]	91.87%	92.31%	92.09	
[Koe00]	92.08%	91.86%	91.97	
[Osb00]	91.65%	92.23%	91.94	
[VB00]	91.05%	92.03%	91.54	
[PMP00]	90.63%	89.65%	90.14	
[Joh00]	86.24%	88.25%	87.23	
[VD00]	88.82%	82.91%	85.76	
+	+	++-		++
baseline	72.58%	82.14%	77.07	11
+	+	++-		++

Text Chunking: History

1991	[S. Abney] proposed to approach parsing by starting with finding correlated chunks of words	
1995	[L. Ramshaw and M. Marcus] have approached chunking by using a machine learning method. Classified every non-NP chunk as VP chunk.	
1999	[S. Buchholz et al.] presented results for various phrase chunks (NP, VP, PP, ADJP and ADVP) [J. Veenstra] works with NP, VP and PP chunks	
2000	CoNLL-2000 shared task	
2002	JMLR Special Issues (on Shallow Parsing)	

Clause Identification:about

Clause

- Word sequences which contain a subject and a predicate
- Example

```
(S The deregulation of railroads and trucking companies (SBAR that (S began in 1980)) enabled (S shippers to bargain for transportation).
```

CoNLL-2001 Shared task

- Training and test data is available
- Consists of 3 parts
 - Identifying clause start positions,
 - Recognizing clause end positions
 - Building complete clauses

Clause Identification:CoNLL Data

```
The
                DT
                    B-NP
                          S/X/(S*
 deregulation
                    I-NP X/X/*
                NN
           οf
                IN
                   B-PP X/X/*
                  B-NP X/X/*
    railroads
               NNS
                       O X/X/*
                CC
          and
     trucking
               NN
                  B-NP X/X/*
                    I-NP X/X/*
    companies
               NNS
         that
               WDT
                  B-NP S/X/(S*
        beqan
               VBD
                  B-VP S/X/(S*
           in
                    B-PP X/X/*
                IN
                  B-NP X/E/*S)S)
         1980
                CD
      enabled
               VBD
                  B-VP X/X/*
     shippers
                          S/X/(S*
               NNS
                    B-NP
                    B-VP X/X/*
           to
                TO
      barqain
               VB
                  I-VP X/X/*
          for
                ΙN
                   B-PP X/X/*
                   B-NP X/E/*S)
transportation
                NN
                       O X/E/*S)
```

Clause Identification:CoNLL Result

test	++- precision	recall	-++· -++·	F		
[CMPR02] [CM01] [MP01] [TKS01] [PG01] [Dej01] [Ham01]	90.18% 84.82% 70.89% 76.91% 73.75% 72.56% 55.81%	72.59% 73.28% 65.57% 60.61% 60.00% 54.55% 45.99%	-++·	80.44 78.63 68.12 67.79 66.17 62.77 50.42	++ 	(*)
baseline	98.44%	31.48%		47.71		

Clause Identification:History

	[S. Abney] used a clause filter as a part of his CASS parser
1990	- one part for recognizing basic clauses
	- one part for repairing difficult cases
	(clauses without subjects and clauses with additional VPs).
1996	[Eje96] showed that a parser can benefit from automatically identified clause boundaries in discourse
1998	[Lef98] built a rule-based algorithm for finding clauses in English and Portuguese texts.
2000	[Ora00] used memory-based learning techniques. Included a rule-based post-processing phase for improving clause recognition performance.
2001	CoNLL Shared Task

JMLR Special Issue on Shallow Parsing

Full Parsing?

Not all NLP application requires a complete syntactic analysis

 Full parser often provides more information than needed (or less)

For instances,

- Information Retrieval :
 - —finding simple NPs and VPs is enough
- Information Extraction, Summary Generation, Question Answering :
 - specific syntactico-semantic relations(agent, object, location, time, etc) is necessary
 - rather than elaborate configurational syntactic analyses

What is Shallow Parsing?

Shallow (or partial) Parsing...

- is the task of recovering only a limited amount of syntactic information from NL sentences
- has proved to be a useful technology for written and spoken language domains

Application Domain of Shallow Parsing

- Speech-to-Speech translation system
 - Used to add robustness (Verbmobil project: Wahlster,2000)
- Question Answering on the WWW
 - Used to efficiently process large ill-formed doc.s
 (Buchlhholz and Daelemans 2001, Srihari and Li, 1999)
- Text-mining Application
 - Used to biology text mining (Sekimizu et al., 1998)

Used to reduce the search space for full-blown 'deep' parser (Collins, 96)

What is Shallow Parsing?

Introduced in [Abney 1991]

- Argued the relevance of shallow parsing
 - —from the point of view of psycholinguistic evidence and practical applications
- Used hand-crafted cascaded FST(Finite State Transducers) - Abney 1996

We will cover this paper next week

Typical Shallow Parser Architecture

How to Shallow-parse?

Use Rule Sets

- Because shallow parsers have to deal with entire NL, they need thousands of rules
 - —Determiner are good predictors of NP
- Rule sets tend to be largely 'soft'
 - ... fatalities on non-interstate roads were about the same

ADJP

Therefore, building shallow parser is a laborintensive task

Unsurprisingly, shallow parsers are usually automatically built, using Machine Learning techniques

Machine Learning Approach for SP

Inspired by [Ramshaw and Marcus, 1995]

Formulates NP-chunking as a tagging task

```
    Use I (for word inside an NP),
    O (for outside of an NP),
    B (for between the end of one and the start of another NP) tags
```

```
[ Some/B bankers/I ] [ are/O reporting/O ] [ more/I inquiries/I than/I usual/I ] [ about/B CDs/I ] [ since/B Friday/I ]
```

The method can be easily extended

- to tag other types of chunks
 - -Skut and Brants 1998
- to find relations
 - -Buchholz et al., 1999

Machine Learning Approach for SP

Applying ML to shallow parsing is not straight forward, because

- The amount of data to be processed will push batch systems to the limit
 - → need to scale
- Labeled training material is frequently noisy and exists in small quantity
 - → need to deal with overfitting
- Real world sentences tend to be long
 - → Learners which do not operate in (near) linear time are simply unfit for the task

Therefore, shallow parsing is a challenging domain for ML research

Tjong Kim Sang

- Memory based shallow parsing
 - Base NP identification, arbitrary base phrase recog.
 clause detection, NP parsing, full parsing
- MBL + weighted majority voting, stacking

Molina and Pla

- HMM based shallow parsing
 - Chunking and Clause identification
- Not use ensemble learning methods, but acquire comparable results

Zhang et al.

- Text chunking based on generalized version of the Winnow algorithm
- Used very large set of features
- Achieved the best result for a non-ensemble classifier in the CoNLL-2000 shared task

Megyesi

- Retrain 3 POS taggers for shallow parsing Swedish
- Ignoring lexical information improved performance of the system (Because of the char. of Swedish? Unclear)

Dejean

- Present top-down rule induction system for learning linguistic structures
 - Deal with noisy data
 - Distinguish linguistically motivated exceptions from noise
- Increase efficiency by using prior knowledge
- Apply to CoNLL-2000 task(chunking)

Osborne

- Consider noisy and non-stationary training material
 - Use various type of artificially noisy material for experiment
- Draw various conclusion
 - Shallow parsers are robust (large quantities of noise will impair performance)
 - —For better performance for other domain, annotate more for target distribution and use additional training material from other distribution
 - Best performers in the literature are not always the best at dealing with noise
 - Ensemble learning is not always a sure-fire strategy

Conclusion

Feature Selection is important

- Important consideration for ML of shallow parsers
- Some learner needs to carefully select(and weight) features, while others can cope with many irrelevant features

Ensemble Learning is recent trend

- Train several classifiers and combine their results
- (weighted) voting and stacked classifier
- Not guaranteed to produce the best result [Osborne]

Conclusion

The majority use probabilistic method

Exception : MBL

All parsers assumed labeled input

 Exception: Zhang use other knowledge sources, in addition to the training set

Shallow parsers are noise-tolerant

Only massive quantities of noise will significantly undermine performance

Some parsers use generative model, some use discriminative model