Craig Shaffer

Dr. Swami Ponpondi

CPSC 300

2-23-2022

Homework 6

1. Assume that the content of all registers (0 through 31) is 0x0 before executing the below code. Show the contents of relevant registers (only the registers whose contents are modified) after the execution of each instruction in the below MIPS code. [10]

couc. [10]			
INSTRUCTIONS	What's happening	What is in the registers	
addi \$s0, \$zero, oxF0	\$s0 = 0 + oxF0	s0 = oxF0	
sll \$t0, \$s0, 2	$t0 = 0 \times 60 * 4 = 0 \times 3 \times 60$	t0 = ox3CO	
addi \$s1, \$zero, oxAB	s1 = 0 + oxAB	s1 = oxAB	
srl \$s1, \$s1, 2	s1 = oxAB // 4 = ox2A	s1 = ox2A	
add \$s2, \$t0, \$s1	\$s2 = ox3C0 + ox2A = ox3EA	s2 = ox3EA	
WORK			
٠,,,,	0xF0 = 1111 0000 0xF0 xq = 11/1100/0000		
1 1111	16	1 - 1 - 16	

	0×60×d > 1/1100/0000				
	1	HW #6	→ ∞11/1100 loop =	300,6	
#/	add	; \$50, \$zero, o	x FO # \$50 = 0 + 0x FO H \$50 = 0 x FO	1-3	
	511	8+6,850,2			
	addi	\$51, \$zero, ox AB		2 2 3	
	srl	SSI, \$ SI, Z	# \$51 = \$51//4 # \$51 = 0x 2A		
	add	\$52, \$10, \$5	# 852 = 3(0 + 2A		
			# \$52 = 3EA	0xAB = 1010 1011 0xAB 4 → 0010 1010	
199				= 2A	

2. Write the MIPS code for the python statement, A[j] = k - (3 * A[i] - 10). Assume that register \$t0 has base address of A, variable j, k, i are in \$s0, \$s1, \$s2 respectively. A is a word size array. [15]

	*
	4 1 3
#2	A[j] = K - (3-(A[j)-10))
	\$ +0 > base adder of A word size array
	\$50 → j
	\$ SI -> K
	852-> i
	* × ч
	SII \$52 \$52 2 \$ \$52×4 → \$52
	add \$+1 \$+0,\$52 # \$+0+\$\$2 -> \$+1-address AED ACID
	IN \$53 0 (\$+1) # A[i] → \$53 / \$53
	SII \$54 \$53 1 # A[i] x2 -> \$54
	add \$54 \$54 \$53 # (ACJx2)+A[i] -> \$54) ACJx3 >> \$54
	add: \$54 354 -10 # (AL:Jx3)-10 -> \$54
	Sub \$51, \$51, \$54 # K-(AC)-3)-10) -> \$51
	SU \$50, \$50, 2 #\$50x4 > \$50
	add \$+2 \$+0, \$50 # \$+0+\$50 > \$+2 - addr of A[i] /A[i]
	SU \$51, 0 (H2) # Store \$51= k-((>xAG))-10) into A[j]