10/501566

DT04 Rec'd PCT/PTO 1.5 JUL 2004

SEQUENCE LISTING

- <110> Takeda Chemicals Industries, Ltd.
- <120> Novel Protein and its DNA
- <130> 3015US0P
- <150> PCT/JP03/00311
- <151> 2003-1-16
- <150> JP 2002-10840
- <151> 2002-1-18
- <150> JP 2002-15995
- <151> 2002-1-24
- <150> JP 2002-25662
- <151> 2002-2-1
- <150> JP 2002-25706
- <151> 2002-2-1
- <150> JP 2002-30015
- <151> 2002-2-6
- <150> JP 2002-33111
- <151> 2002-2-8
- <150> JP 2002-45058
- <151> 2002-2-21
- <150> JP 2002-46951
- <151> 2002-2-22
- <160> 172
- ⟨210⟩ 1
- <211> 377

<212	2> PI	RT													
<213	3> Hı	ıman													
<400)> 1														
Met	Arg	Ala	Asn	Cys	Ser	Ser	Ser	Ser	Ala	Cys	Pro	Ala	Asn	Ser	Ser
				5					10					15	
Glu	Glu	Glu	Leu	Pro	Val	Gly	Leu	Glu	Val	His	Gly	Asn	Leu	Glu	Leu
			20					25					30		
Val	Phe	Thr	Val	Val	Ser	Thr	Val	Met	Met	Gly	Leu	Leu	Met	Phe	Ser
		35					40					45			
Leu	Gly	Cys	Ser	Val	Glu	Ile	Arg	Lys	Leu	Trp	Ser	His	Ile	Arg	Arg
	50					55					60				
Pro	Trp	Gly	Ile	Ala	Val	Gly	Leu	Leu	Cys	Gln	Phe	Gly	Leu	Met	Pro
65					70					75					80
Phe	Thr	Ala	Tyr	Leu	Leu	Ala	Ile	Ser	Phe	Ser	Leu	Lys	Pro	Val	Gln
				85					90					95	
Ala	Ile	Ala	Val	Leu	Ile	Met	Gly	Cys	Cys	Pro	Gly	Gly	Thr	Ile	Ser
			100					105					110		
Asn	Ile	Phe	Thr	Phe	Trp	Val	Asp	Gly	Asp	Met	Asp	Leu	Ser	Ile	Ser
		115					120					125			
Met	Thr	Thr	Cys	Ser	Thr	Val	Ala	Ala	Leu	Gly	Met	Met	Pro	Leu	Cys
	130					135					140				
Ile	Tyr	Leu	Tyr	Thr	Trp	Ser	Trp	Ser	Leu	Gln	Gln	Asn	Leu	Thr	Ile
145					150					155					160
Pro	Tyr	Gln	Asn	Ile	G1y	Ile	Thr	Leu	Val	Cys	Leu	Thr	Ile	Pro	Val
				165					170					175	
Ala	Phe	Gly	Val	Tyr	Val	Asn	Tyr	Arg	Trp	Pro	Lys	G1n	Ser	Lys	Ile

Ile Leu Lys Ile Gly Ala Val Val Gly Gly Val Leu Leu Val Val Ala Val Ala Gly Val Val Leu Ala Lys Gly Ser Trp Asn Ser Asp Ile Thr Leu Leu Thr Ile Ser Phe Ile Phe Pro Leu Ile Gly His Val Thr Gly Phe Leu Leu Ala Leu Phe Thr His Gln Ser Trp Gln Arg Cys Arg Thr Ile Ser Leu Glu Thr Gly Ala Gln Asn Ile Gln Met Cys Ile Thr Met Leu Gln Leu Ser Phe Thr Ala Glu His Leu Val Gln Met Leu Ser Phe Pro Leu Ala Tyr Gly Leu Phe Gln Leu Ile Asp Gly Phe Leu Ile Val Ala Ala Tyr Gln Thr Tyr Lys Arg Arg Leu Lys Asn Lys His Gly Lys Lys Asn Ser Gly Cys Thr Glu Val Cys His Thr Arg Lys Ser Thr Ser Ser Arg Glu Thr Asn Ala Phe Leu Glu Val Asn Glu Glu Gly Ala Ile Thr Pro Gly Pro Pro Gly Pro Met Asp Cys His Arg Ala Leu Glu Pro Val Gly His Ile Thr Ser Cys Glu

<210> 2

<211> 1131

<212> DNA

<213> Human

<400> 2

atgagagco	a attgttccag	cagctcagcc	tgccctgcca	acagttcaga	ggaggagctg	60
ccagtggga	c tggaggtgca	tggaaacctg	gagctcgttt	tcacagtggt	gtccactgtg	120
atgatgggg	c tgctcatgtt	ctctttggga	tgttccgtgg	agatccggaa	gctgtggtcg	180
cacatcagg	a gaccctgggg	cattgctgtg	ggactgctct	gccagtttgg	gctcatgcct	240
tttacagct	t atctcctggc	cattagcttt	tctctgaagc	cagtccaagc	tattgctgtt	300
ctcatcatg	g gctgctgccc	ggggggcacc	atctctaaca	ttttcacctt	ctgggttgat	360
ggagatatg	g atctcagcat	cagtatgaca	acctgttcca	ccgtggccgc	cctgggaatg	420
atgccactc	t gcatttatct	ctacacctgg	tcctggagtc	ttcagcagaa	tctcaccatt	480
ccttatcag	a acataggaat	tacccttgtg	tgcctgacca	ttcctgtggc	ctttggtgtc	540
tatgtgaat	t acagatggcc	aaaacaatcc	aaaatcattc	tcaagattgg	ggccgttgtt	600
ggtggggtc	c tccttctggt	ggtcgcagtt	gctggtgtgg	tcctggcgaa	aggatcttgg	660
aattcagac	a tcacccttct	gaccatcagt	ttcatctttc	ctttgattgg	ccatgtcacg	720
ggttttctg	c tggcactttt	tacccaccag	tcttggcaaa	ggtgcaggac	aatttcctta	780
gaaactgga	g ctcagaatat	tcagatgtgc	atcaccatgc	tccagttatc	tttcactgct	840
gagcacttg	g tccagatgtt	gagtttccca	ctggcctatg	gactcttcca	gctgatagat	900
ggatttctt	a ttgttgcagc	atatcagacg	tacaagagga	gattgaagaa	caaacatgga	960
aaaaagaac	t caggttgcac	agaagtctgc	catacgagga	aatcgacttc	ttccagagag	1020
accaatgcc	t tcttggaggt	gaatgaagaa	ggtgccatca	ctcctgggcc	accagggcca	1080
atggattgc	c acagggctct	cgagccagtt	ggccacatca	cttcatgtga	a	1131

<210> 3

⟨211⟩ 24

<212> DNA

<213> Artificial Sequence

<220>	
<223> Primer	
<400> 3	
aatgctgcct taaggagatg agga	24
<210> 4	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 4	
cactggccct accaacaaga ttca	24
<210> 5	
⟨211⟩ 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 5	
atgagagcca attgttccag cagc	24
⟨210⟩ 6	
<211> 24	
<212> DNA	
<213> Artificial Sequence	

<220>	
<223> Primer	
<400> 6	
ccagccagct agtccctgct attc	24
<210> 7	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 7	
atttaggtga cactatag	18
<210> 8	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 8	
aatacgactc actataggg	19
<210> 9	
⟨211⟩ 24	
<212> DNA	
<213> Artificial Sequence	

⟨220⟩	
<223> Primer	
<400> 9	
ttcgccagga ccacaccagc aact	24
<210> 10	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 10	
agttgctggt gtggtcctgg cgaa	24
<210> 11	
<211> 1152	
<212> DNA	
<213> Human	
<400> 11	
atgagagcca attgttccag cagctcagcc tgccctgcca acag	ttcaga ggaggagctg 60
ccagtgggac tggaggtgca tggaaacctg gagctcgttt tcac	eagtggt gtccactgtg 120
atgatggggc tgctcatgtt ctctttggga tgttccgtgg agat	ccggaa gctgtggtcg 180
cacatcagga gaccctgggg cattgctgtg ggactgctct gcca	gtttgg gctcatgcct 240
tttacagett ateteetgge cattagettt tetetgaage cagt	ccaage tattgetgtt 300
ctcatcatgg gctgctgccc ggggggcacc atctctaaca tttt	cacctt ctgggttgat 360
ggagatatgg atctcagcat cagtatgaca acctgttcca ccgt	ggccgc cctgggaatg 420

atgccactct gcatttatct ctacacctgg tcctggagtc ttcagcagaa tctcaccatt

540 ccttatcaga acataggaat tacccttgtg tgcctgacca ttcctgtggc ctttggtgtc 600 tatgtgaatt acagatggcc aaaacaatcc aaaatcattc tcaagattgg ggccgttgtt 660 ggtggggtcc tccttctggt ggtcgcagtt gctggtgtgg tcctggcgaa aggatcttgg 720 aattcagaca tcacccttct gaccatcagt ttcatctttc ctttgattgg ccatgtcacg 780 ggttttctgc tggcactttt tacccaccag tcttggcaaa ggtgcaggac aatttcctta 840 gaaactggag ctcagaatat tcagatgtgc atcaccatgc tccagttatc tttcactgct 900 gagcacttgg tccagatgtt gagtttccca ctggcctatg gactcttcca gctgatagat 960 ggatttctta ttgttgcagc atatcagacg tacaagagga gattgaagaa caaacatgga 1020 aaaaagaact caggttgcac agaagtctgc catacgagga aatcgacttc ttccagagag 1080 accaatgcct tcttggaggt gaatgaagaa ggtgccatca ctcctgggcc accagggcca 1140 atggattgcc acagggctct cgagccagtt ggccacatca cttcatgtga atagcaggga 1152 ctagctggct gg

<210> 12

<211> 1152

<212> DNA

<213> Human

<400> 12

60 atgagagcca attgttccag cagctcagcc tgccctgcca acagttcaga ggaggagctg 120 ccagtgggac tggaggtgca tggaaacctg gagctcgttt tcacagtggt gtccactgtg 180 atgatggggc tgctcatgtt ctctttggga tgttccgtgg agatccggaa gctgtggtcg 240 cacatcagga gaccctgggg cattgctgtg ggactgctct gccagtttgg gctcatgcct 300 tttacagctt atctcctggc cattagcttt tctctgaagc cagtccaagc tattgctgtt 360 ctcatcatgg gctgctgccc ggggggcacc atctctaacg ttttcacctt ctgggttgat 420 ggagatatgg atctcagcat cagtatgaca acctgttcca ccgtggccgc cctgggaatg 480 atgccactct gcatttatct ctacacctgg tcctggagtc ttcagcagaa tctcaccatt 540 ccttatcaga acataggaat tacccttgtg tgcctgacca ttcctgtggc ctttggtgtc

600 tatgtgaatt acagatggcc aaaacaatcc aaaatcattc tcaagattgg ggccgttgtt 660 ggtggggtcc tccttctggt ggtcgcagtt gctggtgtgg tcctggcgaa aggatcttgg 720 aattcagaca tcacccttct gaccatcagt ttcatctttc ctttgattgg ccatgtcacg 780 ggttttctgc tggcactttt tacccaccag tcttggcaaa ggtgcaggac aatttcctta 840 gaaactggag ctcagaatat tcagatgtgc atcaccatgc tccagttatc tttcactgct 900 gagcacttgg tccagatgtt gagtttccca ctggcctatg gactcttcca gctgatagat 960 ggatttctta ttgttgcagc atatcagacg tacaagagga gattgaagaa caaacatgga 1020 aaaaagaact caggttgcac agaagtctgc catacgagga aatcgacttc ttccagagag 1080 accaatgeet tettggaggt gaatgaagaa ggtgeeatea eteetgggee accagggeea 1140 atggattgcc acagggctct cgagccagtt ggccacatca cttcatgtga atagcaggga 1152 ctagctggct gg

⟨210⟩ 13

<211> 1131

<212> DNA

<213> Human

⟨400⟩ 13

60 atgagagcca attgttccag cagctcagcc tgccctgcca acagttcaga ggaggagctg 120 ccagtgggac tggaggtgca tggaaacctg gagctcgttt tcacagtggt gtccactgtg 180 atgatggggc tgctcatgtt ctctttggga tgttccgtgg agatccggaa gctgtggtcg 240 cacatcagga gaccctgggg cattgctgtg ggactgctct gccagtttgg gctcatgcct 300 tttacagctt atctcctggc cattagcttt tctctgaagc cagtccaagc tattgctgtt 360 ctcatcatgg gctgctgccc ggggggcacc atctctaacg ttttcacctt ctgggttgat 420 ggagatatgg atctcagcat cagtatgaca acctgttcca ccgtggccgc cctgggaatg 480 atgccactct gcatttatct ctacacctgg tcctggagtc ttcagcagaa tctcaccatt 540 ccttatcaga acataggaat tacccttgtg tgcctgacca ttcctgtggc ctttggtgtc 600 tatgtgaatt acagatggcc aaaacaatcc aaaatcattc tcaagattgg ggccgttgtt

660 ggtggggtcc tccttctggt ggtcgcagtt gctggtgtgg tcctggcgaa aggatcttgg aattcagaca tcacccttct gaccatcagt ttcatctttc ctttgattgg ccatgtcacg 720 780 ggttttctgc tggcactttt tacccaccag tcttggcaaa ggtgcaggac aatttcctta 840 gaaactggag ctcagaatat tcagatgtgc atcaccatgc tccagttatc tttcactgct gagcacttgg tccagatgtt gagtttccca ctggcctatg gactcttcca gctgatagat 900 960 ggatttctta ttgttgcagc atatcagacg tacaagagga gattgaagaa caaacatgga 1020 aaaaagaact caggttgcac agaagtctgc catacgagga aatcgacttc ttccagagag accaatgcct tcttggaggt gaatgaagaa ggtgccatca ctcctgggcc accagggcca 1080 atggattgcc acagggctct cgagccagtt ggccacatca cttcatgtga a 1131

<210> 14

<211> 377

<212> PRT

<213> Human

<400> 14

Met Arg Ala Asn Cys Ser Ser Ser Ser Ala Cys Pro Ala Asn Ser Ser

5 10 15

Glu Glu Glu Leu Pro Val Gly Leu Glu Val His Gly Asn Leu Glu Leu
20 25 30

Val Phe Thr Val Val Ser Thr Val Met Met Gly Leu Leu Met Phe Ser

35 40 45

Leu Gly Cys Ser Val Glu Ile Arg Lys Leu Trp Ser His Ile Arg Arg
50 55 60

Pro Trp Gly Ile Ala Val Gly Leu Leu Cys Gln Phe Gly Leu Met Pro 65 70 75 80

Phe Thr Ala Tyr Leu Leu Ala Ile Ser Phe Ser Leu Lys Pro Val Gln

85 90 95

Ala	Ile	Ala	Val	Leu	Ile	Met	Gly	Cys	Cys	Pro	Gly	Gly	Thr	Ile	Ser
			100					105					110		
Asn	Val	Phe	Thr	Phe	Trp	Val	Asp	Gly	Asp	Met	Asp	Leu	Ser	Ile	Ser
		115					120					125			
Met	Thr	Thr	Cys	Ser	Thr	Val	Ala	Ala	Leu	Gly	Met	Met	Pro	Leu	Cys
	130					135					140				
Ile	Tyr	Leu	Tyr	Thr	Trp	Ser	Trp	Ser	Leu	Gln	Gln	Asn	Leu	Thr	Ile
145					150					155					160
Pro	Tyr	Gln	Asn	Ile	Gly	Ile	Thr	Leu	Val	Cys	Leu	Thr	Ile	Pro	Val
				165					170					175	
Ala	Phe	Gly	Val	Tyr	Val	Asn	Tyr	Arg	Trp	Pro	Lys	Gln	Ser	Lys	Ile
			180					185					190		
Ile	Leu	Lys	Ile	Gly	Ala	Val	Val	Gly	Gly	Val	Leu	Leu	Leu	Val	Val
		195					200					205			
Ala	Val	Ala	Gly	Val	Val	Leu	Ala	Lys	Gly	Ser	Trp	Asn	Ser	Asp	Ile
	210					215					220				
Thr	Leu	Leu	Thr	Ile	Ser	Phe	Ile	Phe	Pro	Leu	Ile	Gly	His	Val	Thr
225		,			230					235					240
Gly	Phe	Leu	Leu	Ala	Leu	Phe	Thr	His	Gln	Ser	Trp	Gln	Arg	Cys	Arg
				245					250					255	
Thr	Ile	Ser	Leu	Glu	Thr	Gly	Ala	Gln	Asn	Ile	Gln	Met	Cys	Ile	Thr
			260	•				265					270		
Met	Leu	Gln	Leu	Ser	Phe	Thr	Ala	G1u	His	Leu	Val	Gln	Met	Leu	Ser
		275					280					285			
Phe	Pro	Leu	Ala	Tyr	Gly	Leu	Phe	Gln	Leu	Ile	Asp	Gly	Phe	Leu	Ile
	290					295					300				
Val	Ala	Ala	Tyr	Gln	Thr	Tyr	Lys	Arg	Arg	Leu	Lys	Asn	Lys	His	Gly

310 315 320 305 Lys Lys Asn Ser Gly Cys Thr Glu Val Cys His Thr Arg Lys Ser Thr 325 330 335 Ser Ser Arg Glu Thr Asn Ala Phe Leu Glu Val Asn Glu Glu Gly Ala 340 345 350 Ile Thr Pro Gly Pro Pro Gly Pro Met Asp Cys His Arg Ala Leu Glu 355 360 365 Pro Val Gly His Ile Thr Ser Cys Glu 370 375 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 15 21 tctgccatac gaggaaatcg a <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 16

caggagtgat ggcaccttct tc

<210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 17 tcttccagag agaccaatgc cttcttgg ⟨210⟩ 18 <211> 798 <212> PRT <213> Human <400> 18 Met Ala Leu Gln Met Phe Val Thr Tyr Ser Pro Trp Asn Cys Leu Leu 5 10 15 Leu Leu Val Ala Leu Glu Cys Ser Glu Ala Ser Ser Asp Leu Asn Glu 20 25 30 Ser Ala Asn Ser Thr Ala Gln Tyr Ala Ser Asn Ala Trp Phe Ala Ala 35 40 45 Ala Ser Ser Glu Pro Glu Glu Gly Ile Ser Val Phe Glu Leu Asp Tyr 50 55 60 Asp Tyr Val Gln Ile Pro Tyr Glu Val Thr Leu Trp Ile Leu Leu Ala 65 70 75 80 Ser Leu Ala Lys Ile Gly Phe His Leu Tyr His Arg Leu Pro Gly Leu

28

90

85

Met	Pro	Glu	Ser	Cys	Leu	Leu	Ile	Leu	Val	Gly	Ala	Leu	Val	Gly	Gly
			100					105					110		
Ile	Ile	Phe	Gly	Thr	Asp	His	Lys	Ser	Pro	Pro	Val	Met	Asp	Ser	Ser
		115					120					125			
Ile	Tyr	Phe	Leu	Tyr	Leu	Leu	Pro	Pro	Ile	Val	Leu	Glu	Gly	Gly	Tyr
	130					135					140				
Phe	Met	Pro	Thr	Arg	Pro	Phe	Phe	Glu	Asn	Ile	Gly	Ser	Ile	Leu	Trp
145					150		·:			155					160
Trp	Ala	Val	Leu	Gly	Ala	Leu	Ile	Asn	Ala	Leu	Gly	Ile	Gly	Leu	Ser
				165					170					175	
Leu	Tyr	Leu	Ile	Cys	Gln	Val	Lys	Ala	Phe	Gly	Leu	Gly	Asp	Val	Asn
			180					185					190		
Leu	Leu	Gln	Asn	Leu	Leu	Phe	Gly	Ser	Leu	Ile	Ser	Ala	Val	Asp	Pro
		195					200					205			
Val	Ala	Val	Leu	Ala	Val	Phe	Glu	Glu	Ala	Arg	Val	Asn	Glu	Gln	Leu
	210					215					220				
Tyr	Met	Met	Ile	Phe	Gly	Glu	Ala	Leu	Leu	Asn	Asp	Gly	Ile	Thr	Val
225					230					235					240
Val	Leu	Tyr	Asn	Met	Leu	Ile	Ala	Phe	Thr	Lys	Met	His	Lys	Phe	Glu
				245					250					255	
Asp	Ile	Glu	Thr	Val	Asp	Ile	Leu	Ala	Gly	Cys	Ala	Arg	Phe	Ile	Val
			260					265					270		
Val	G1y	Leu	Gly	Gly	Val	Leu	Phe	Gly	Ile	Val	Phe	Gly	Phe	Ile	Ser
		275					280					285			
Ala	Phe	Ile	Thr	Arg	Phe	Thr	Gln	Asn	Ile	Ser	Ala	Ile	Glu	Pro	Leu
	290					295					300				
Ile	Val	Phe	Met	Phe	Ser	Tyr	Leu	Ser	Tyr	Leu	Ala	Ala	Glu	Thr	Leu

305					310					315					320
Tyr	Leu	Ser	Gly	Ile	Leu	Ala	Ile	Thr	Ala	Cys	Ala	Val	Thr	Met	Lys
				325					330					335	
Lys	Tyr	Val	Glu	Glu	Asn	Val	Ser	Gln	Thr	Ser	Tyr	Thr	Thr	Ile	Lys
			340					345					350		
Tyr	Phe	Met	Lys	Met	Leu	Ser	Ser	Val	Ser	Glu	Thr	Leu	Ile	Phe	Ile
		355					360					365			
Phe	Met	Gly	Val	Ser	Thr	Val	Gly	Lys	Asn	His	Glu	Trp	Asn	Trp	Ala
	370					375					380				
Phe	Ile	Cys	Phe	Thr	Leu	Ala	Phe	Cys	Gln	Ile	Trp	Arg	Ala	Ile	Ser
385					390					395					400
Val	Phe	Ala	Leu	Phe	Tyr	Ile	Ser	Asn	Gln	Phe	Arg	Thr	Phe	Pro	Phe
				405					410					415	
Ser	Ile	Lys	Asp	Gln	Cys	Ile	Ile	Phe	Tyr	Ser	Gly	Val	Arg	G1y	Ala
			420					425					430		
Gly	Ser	Phe	Ser	Leu	Ala	Phe	Leu	Leu	Pro	Leu	Ser	Leu	Phe	Pro	Arg
		435					440					445			
Lys	Lys	Met	Phe	Val	Thr	Ala	Thr	Leu	Val	Val	Ile	Tyr	Phe	Thr	Val
	450					455					460				
Phe	Ile	Gln	Gly	Ile	Thr	Val	Gly	Pro	Leu	Val	Arg	Tyr	Leu	Asp	Val
465					470					475					480
Lys	Lys	Thr	Asn	Lys	Lys	Glu	Ser	Ile	Asn	Glu	Glu	Leu	His	Ile	Arg
				485					490					495	
Leu	Met	Asp	His	Leu	Lys	Ala	Gly	Ile	Glu	Asp	Val	Cys	Gly	His	Trp
			500					505					510		
Ser	His	Tyr	Gln	Val	Arg	Asp	Lys	Phe	Lys	Lys	Phe	Asp	His	Arg	Tyr
		515					520					525			

Leu	Arg	Lys	Ile	Leu	Ile	Arg	Lys	Asn	Leu	Pro	Lys	Ser	Ser	Ile	Val
	530					535					540				
Ser	Leu	Tyr	Lys	Lys	Leu	Glu	Met	Lys	Gln	Ala	Ile	Glu	Met	Val	Ġlu
545					550					555					560
Thr	Gly	Ile	Leu	Ser	Ser	Thr	Ala	Phe	Ser	Ile	Pro	His	Gln	Ala	Gln
				565					570					575	
Arg	Ile	Gln	Gly	·Ile	Lys	Arg	Leu	Ser	Pro	Glu	Asp	Val	Glu	Ser	Ile
			580			٠		585					590		
Arg	Asp	Ile	Leu	Thr	Ser	Asn	Met	Tyr	Gln	Val	Arg	Gln	Arg	Thr	Leu
		595					600					605			
Ser	Tyr	Asn	Lys	Tyr	Asn	Leu	Lys	Pro	Gln	Thr	Ser	Glu	Lys	Gln	Ala
	610					615					620				
Lys	Glu	Ile	Leu	Ile	Arg	Arg	Gln	Asn	Thr	Leu	Arg	Glu	Ser	Met	Arg
625					630					635					640
Lys	G1y	His	Ser	Leu	Pro	Trp	Gly	Lys	Pro	Ala	Gly	Thr	Lys	Asn	Ile
				645					650					655	
Arg	Tyr	Leu	Ser	Tyr	Pro	Tyr	G1y	Asn	Pro	G1n	Ser	Ala	Gly	Arg	Asp
			660					665					670		
Thr	Arg	Ala	Ala	Gly	Phe	Ser	Asp	Asp	Asp	Ser	Ser	Asp	Pro	Gly	Ser
		675					680					685			
Pro	Ser	Ile	Thr	Phe	Ser	Ala	Cys	Ser	Arg	Ile	Gly	Ser	Leu	Gln	Lys
	690					695					700				
Gln	Glu	Ala	G1n	Glu	Ile	Ile	Pro	Met	Lys	Ser	Leu	His	Arg	Gly	Arg
705					710					715					720
Lys	Ala	Phe	Ser	Phe	Gly	Tyr	Gln	Arg	Asn	Thr	Ser	G1n	Glu	Glu	Tyr
				725					730					735	
Leu	G1y	Gly	Val	Arg	Arg	Val	Ala	Leu	Arg	Pro	Lys	Pro	Leu	Phe	His

			740					745					750		
Ala	Val	Asp	Glu	Glu	Gly	Glu	Ser	Gly	Gly	Glu	Ser	Glu	Gly	Lys	Ala
		755					760					765			
Ser	Leu	Val	Glu	Val	Arg	Ser	Arg	Trp	Thr	Ala	Asp	His	Gly	His	Ser
	770					775					780				
Arg	Asp	His	His	Arg	Ser	His	Ser	Pro	Leu	Leu	Gln	Lys	Lys		
785					790					795					

<210> 19

<211> 2394

<212> DNA

<213> Human

<400> 19

atggctctgc agatgttcgt gacttacagt ccttggaatt gtttgctact gctagtggct 60 120 cttgagtgtt ctgaagcatc ttctgatttg aatgaatctg caaattccac tgctcagtat 180 gcatctaacg cttggtttgc tgctgccagc tcagagccag aggaagggat atctgttttt 240 gaactggatt atgactatgt gcaaattcct tatgaggtca ctctctggat acttctagca 300 tecettgeaa aaataggett eeacetetae eacaggetge eaggeeteat geeagaaage 360 tgcctcctca tcctggtggg ggcgctggtg ggcggcatca tcttcggcac cgaccacaaa 420 tcacctccgg tcatggactc cagcatctac ttcctgtatc tcctgccacc catcgttctg 480 gagggcgct acttcatgcc cacccggccc ttctttgaga acatcggctc catcctgtgg 540 tgggcagtat tgggggccct gatcaacgcc ttgggcattg gcctctccct ctacctcatc 600 tgccaggtga aggcctttgg cctgggcgac gtcaacctgc tgcagaacct gctgttcggc 660 agcctgatct ccgccgtgga cccagtggcc gtgctagccg tgtttgagga agcgcgcgtg 720 aacgagcagc tctacatgat gatctttggg gaggccctgc tcaatgatgg cattactgtg 780 gtcttataca atatgttaat tgcctttaca aagatgcata aatttgaaga catagaaact 840 gtcgacattt tggctggatg tgcccgattc atcgttgtgg ggcttggagg ggtattgttt

900 ggcatcgttt ttggatttat ttctgcattt atcacacgtt tcactcagaa tatctctgca 960 attgagecae teategtett catgtteage tatttgtett acttagetge tgaaaceete 1020 tatctctccg gcatcctggc aatcacagcc tgcgcagtaa caatgaaaaa gtacgtggaa 1080 gaaaacgtgt cccagacatc atacacgacc atcaagtact tcatgaagat gctgagcagc 1140 gtcagcgaga ccttgatctt catcttcatg ggtgtgtcca ctgtgggcaa gaatcacgag 1200 tggaactggg cetteatetg etteaceetg geettetgee aaatetggag agceateage 1260 gtatttgctc tcttctatat cagtaaccag tttcggactt tccccttctc catcaaggac 1320 cagtgcatca ttttctacag tggtgttcga ggagctggaa gtttttcact tgcatttttg cttcctctgt ctctttttcc taggaagaaa atgtttgtca ctgctactct agtagttata 1380 1440 tactttactg tatttattca gggaatcaca gttggccctc tggtcaggta cctggatgtt 1500 aaaaaaacca ataaaaaaga atccatcaat gaagagcttc atattcgtct gatggatcac 1560 ttaaaggctg gaatcgaaga tgtgtgtggg cactggagtc actaccaagt gagagacaag 1620 tttaagaagt ttgatcatag atacttacgg aaaatcctca tcagaaagaa cctacccaaa 1680 tcaagcattg tttctttgta caagaagctg gaaatgaagc aagccatcga gatggtggag 1740 actgggatac tgagetetac agetttetec ataccecate aggeceagag gatacaagga 1800 atcaaaagac tttcccctga agatgtggag tccataaggg acattctgac atccaacatg 1860 taccaagttc ggcaaaggac cctgtcctac aacaaataca acctcaaacc ccaaacaagt 1920 gagaagcagg ctaaagagat tctgatccgc cgccagaaca ccttaaggga gagcatgagg 1980 aaaggtcaca gcctgccctg gggaaagccg gctggcacca agaatatccg ctacctctcc 2040 tacccctacg ggaatcctca gtctgcagga agagacacaa gggctgctgg gttctcagat 2100 gatgacagca gtgatccagg atccccatcc atcacgttca gcgcatgctc tcggataggg 2160 tcacttcaga agcaagaggc acaagaaata ataccaatga agagcctaca cagaggaagg 2220 aaggcattca gctttggtta tcaaagaaac acaagccaag aagagtactt gggtggagta 2280 aggagggtgg ccttaagacc caaacctctg tttcatgcag tggatgagga gggtgagtct 2340 ggaggggaga gtgagggcaa ggcctctttg gttgaggttc ggtcgaggtg gacagctgac 2394 catggacaca gcagggacca tcacaggtcc catagtcctt tgctccaaaa aaaa

<210> 20	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 20	
ccatcctaat acgactcact atagggc	27
<210> 21	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 21	
gcatgaagta gccgccctcc agaacga	27
<210> 22	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 22	
actcactata gggctcgagc ggc	23

<210> 23	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 23	
cagaacgatg ggtggcagga gatacagga	29
⟨210⟩ 24	
⟨211⟩ 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 24	
cgccgccaga acaccttaag ggagagcat	29
<210> 25	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 25	
ggctggcacc aagaatatcc gctacct	27

(210) 20	
⟨211⟩ 21	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 26	
tccacacagg ggtgtaggta g	21
<210> 27	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 27	
tgtggacaat aacactattt t	21
<210> 28	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 28	
aggtaggaga agcccacagg aatg	24

⟨210⟩ 29	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 29	
caataacact atttttttg gagc	24
<210> 30	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 30	
caggaaacag ctatgac	17
<210> 31	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 31	,
gtaaaacgac ggccag	16

<210> 32	
⟨211⟩ 21	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 32	
cccttctttg agaacatcgg c	21
<210> 33	
⟨211⟩ 19	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 33	
aatgcccaag gcgttgatc	19
<210> 34	
⟨211⟩ 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 34	
acagcctgcg cagtaacaat gaaaaagt	28

<210≻ 35	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 35	
ttgtacaaga agctggaaat gaa	23
⟨210⟩ 36	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
⟨400⟩ 36	
acttgatggt cgtgtatgat gtctg	25
<210> 37	
⟨211⟩ 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 37	
ctgggcctga tggggtatgg agaaag	26

⟨210⟩ 38 <211> 25 <212> DNA <213> Artificial Sequence ⟨220⟩ <223> Probe <400> 38 25 ccatcctgtg gtgggcagta ttggg ⟨210⟩ 39 <211> 511 <212> DNA <213> Human <400> 39 60 aggtggatgc agtcactctc tagaagcctc cccgacttca gatgtgtggc acacatccac 120 acaggggtgt aggtaggaga agcccacagg aatggctctg cagatgttcg tgacttacag 180 tccttggaat tgtttgctac tgctagtggc tcttgagtgt tctgaagcat cttctgattt 240 gaatgaatct gcaaattcca ctgctcagta tgcatctaac gcttggtttg ctgctgccag ctcagagcca gaggaaggga tatctgtttt tgaactggat tatgactatg tgcaaattcc 300 ttatgaggtc actctctgga tacttctagc atcccttgca aaaataggct tccacctcta 360 420 ccacaggctg ccaggcctca tgccagaaag ctgcctcctc atcctggtgg gggcgctggt 480 gggcggcatc atcttcggca ccgaccacaa atcacctccg gtcatggact ccagcatcta 511 cttcctgtat ctcctgccac ccatcgttct g

25

<210> 40

<211> 462

<212> DNA

<213> Human

<400> 40

ggctggcacc	aagaatatcc	gctacctctc	ctacccctac	gggaatcctc	agtctgcagg	60
aagagacaca	agggctgctg	ggttctcaga	tgatgacagc	agtgatccag	gatccccatc	120
catcacgttc	agcgcatgct	ctcggatagg	gtcacttcag	aagcaagagg	cacaagaaat	180
aataccaatg	aagagcctac	acagaggaag	gaaggcattc	agctttggtt	atcaaagaaa	240
cacaagccaa	gaagagtact	tgggtggagt	aaggagggtg	gccttaagac	ccaaacctct	300
gtttcatgca	gtggatgagg	agggtgagtc	tggaggggag	agtgagggca	aggcctcttt	360
ggttgaggtt	cggtcgaggt	ggacagctga	ccatggacac	agcagggacc	atcacaggtc	420
ccatagtcct	ttgctccaaa	aaaaatagtg	ttattgtcca	ca		462

<210> 41

<211> 2426

<212> DNA

<213> Human

<400> 41

60 aggtaggaga agcccacagg aatggctctg cagatgttcg tgacttacag tccttggaat 120 tgtttgctac tgctagtggc tcttgagtgt tctgaagcat cttctgattt gaatgaatct 180 gcaaattcca ctgctcagta tgcatctaac gcttggtttg ctgctgccag ctcagagcca gaggaaggga tatctgtttt tgaactggat tatgactatg tgcaaattcc ttatgaggtc 240 300 actetetgga tacttetage atccettgea aaaatagget tecaceteta ceacaggetg 360 ccaggcetca tgccagaaag ctgcctcctc atcctggtgg gggcgctggt gggcggcatc 420 atcttcggca ccgaccacaa atcacctccg gtcatggact ccagcatcta cttcctgtat 480 ctcctgccac ccatcgttct ggagggcggc tacttcatgc ccacccggcc cttctttgag 540 aacatcggct ccatcctgtg gtgggcagta ttgggggccc tgatcaacgc cttgggcatt ggcctctccc tctacctcat ctgccaggtg aaggcctttg gcctgggcga cgtcaacctg 600 660 ctgcagaacc tgctgttcgg cagcctgatc tccgccgtgg acccagtggc cgtgctagcc

720 gtgtttgagg aagcgcgcgt gaacgagcag ctctacatga tgatctttgg ggaggccctg 780 ctcaatgatg gcattactgt ggtcttatac aatatgttaa ttgcctttac aaagatgcat 840 aaatttgaag acatagaaac tgtcgacatt ttggctggat gtgcccgatt catcgttgtg 900 gggcttggag gggtattgtt tggcatcgtt tttggattta tttctgcatt tatcacacgt 960 ttcactcaga atatctctgc aattgagcca ctcatcgtct tcatgttcag ctatttgtct 1020 tacttagctg ctgaaaccct ctatctctcc ggcatcctgg caatcacagc ctgcgcagta 1080 acaatgaaaa agtacgtgga agaaaacgtg tcccagacat catacacgac catcaagtac 1140 ttcatgaaga tgctgagcag cgtcagcgag accttgatct tcatcttcat gggtgtgtcc 1200 actgtgggca agaatcacga gtggaactgg gccttcatct gcttcaccct ggccttctgc 1260 caaatctgga gagccatcag cgtatttgct ctcttctata tcagtaacca gtttcggact 1320 ttccccttct ccatcaagga ccagtgcatc attttctaca gtggtgttcg aggagctgga 1380 agtttttcac ttgcattttt gcttcctctg tctctttttc ctaggaagaa aatgtttgtc 1440 actgctactc tagtagttat atactttact gtatttattc agggaatcac agttggccct 1500 ctggtcaggt acctggatgt taaaaaaaacc aataaaaaag aatccatcaa tgaagagctt 1560 catattcgtc tgatggatca cttaaaggct ggaatcgaag atgtgtgtgg gcactggagt 1620 cactaccaag tgagagacaa gtttaagaag tttgatcata gatacttacg gaaaatcctc 1680 atcagaaaga acctacccaa atcaagcatt gtttctttgt acaagaagct ggaaatgaag 1740 caagccatcg agatggtgga gactgggata ctgagctcta cagctttctc cataccccat 1800 caggcccaga ggatacaagg aatcaaaaga ctttcccctg aagatgtgga gtccataagg 1860 gacattetga catecaacat gtaccaagtt eggeaaagga eeetgteeta caacaaatae 1920 aacctcaaac cccaaacaag tgagaagcag gctaaagaga ttctgatccg ccgccagaac 1980 accttaaggg agagcatgag gaaaggtcac agcctgccct gggggaaagcc ggctggcacc 2040 aagaatatcc gctacctctc ctacccctac gggaatcctc agtctgcagg aagagacaca 2100 agggetgetg ggtteteaga tgatgacage agtgateeag gateeecate cateaegtte 2160 agcgcatgct ctcggatagg gtcacttcag aagcaagagg cacaagaaat aataccaatg 2220 aagagcctac acagaggaag gaaggcattc agctttggtt atcaaagaaa cacaagccaa 2280 gaagagtact tgggtggagt aaggagggtg gccttaagac ccaaacctct gtttcatgca

gtggatgagg agggtgagtc tggaggggag agtgagggca aggcctcttt ggttgaggtt 2340 cggtcgaggt ggacagctga ccatggacac agcagggacc atcacaggtc ccatagtcct 2400 ttgctccaaa aaaaatagtg ttattg 2426

<210> 42

<211> 1148

<212> PRT

<213> Human

<400> 42

Met Ser Arg Ala Thr Ser Val Gly Asp Gln Leu Glu Ala Pro Ala Arg

5 10 15

Thr Ile Tyr Leu Asn Gln Pro His Leu Asn Lys Phe Arg Asp Asn Gln
20 25 30

Ile Ser Thr Ala Lys Tyr Ser Val Leu Thr Phe Leu Pro Arg Phe Leu
35 40 45

Tyr Glu Gln Ile Arg Arg Ala Ala Asn Ala Phe Phe Leu Phe Ile Ala 50 55 60

Leu Leu Gln Gln Ile Pro Asp Val Ser Pro Thr Gly Arg Tyr Thr Thr
65 70 75 80

Leu Val Pro Leu Ile Ile Ile Leu Thr Ile Ala Gly Ile Lys Glu Ile

85 90 95

Val Glu Asp Phe Lys Arg His Lys Ala Asp Asn Ala Val Asn Lys Lys
100 105 110

Lys Thr Ile Val Leu Arg Asn Gly Met Trp His Thr Ile Met Trp Lys

115 120 125

Glu Val Ala Val Gly Asp Ile Val Lys Val Val Asn Gly Gln Tyr Leu 130 135 140

Pro	Ala	Asp	Val	Val	Leu	Leu	Ser	Ser	Ser	Glu	Pro	Gln	Ala	Met	Cys
145					150					155					160
Tyr	Val	Glu	Thr	Ala	Asn	Leu	Asp	Gly	Glu	Thr	Asn	Leu	Lys	Ile	Arg
				165					170					175	
Gln	Gly	Leu	Ser	His	Thr	Ala	Asp	Met	Gln	Thr	Arg	Glu	Val	Leu	Met
			180					185					190		
Lys	Leu	Ser	Gly	Thr	Ile	Glu	Cys	Glu	Gly	Pro	Asn	Arg	His	Leu	Tyr
		195					200					205			
Asp	Phe	Thr	Gly	Asn	Leu	Asn	Leu	Asp	Gly	Lys	Ser	Leu	Va1	Ala	Leu
	210					215					220				
Gly	Pro	Asp	Gln	Ile	Leu	Leu	Arg	Gly	Thr	Gln	Leu	Arg	Asn	Thr	G1n
225					230					235					240
Trp	Val	Phe	Gly	Ile	Val	Val	Tyr	Thr	Gly	His	Asp	Thr	Lys	Leu	Met
				245					250					255	
Gln	Asn	Ser	Thr	Lys	Ala	Pro	Leu	Lys	Arg	Ser	Asn	Val	Glu	Lys	Val
			260					265					270		
Thr	Asn	Val	Gln	Ile	Leu	Val	Leu	Phe	Gly	Ile	Leu	Leu	Val	Met	Ala
		275					280					285			
Leu	Val	Ser	Ser	Ala	G1y	Ala	Leu	Tyr	Trp	Asn	Arg	Ser	His	Gly	Glu
	290					295					300				
Lys	Asn	Trp	Tyr	Ile	Lys	Lys	Met	Asp	Thr	Thr	Ser	Asp	Asn	Phe	Gly
305					310					315					320
Tyr	Asn	Leu	Leu	Thr	Phe	Ile	Ile	Leu	Tyr	Asn	Asn	Leu	Ile	Pro	Ile
				325					330					335	
Ser	Leu	Leu	Val	Thr	Leu	Glu	Val	Val	Lys	Tyr	Thr	Gln	Ala	Leu	Phe
			340					345					350		
Ile	Asn	Trp	Asp	Thr	Asp	Met	Tyr	Tyr	Ile	Gly	Asn	Asp	Thr	Pro	Ala

		355					360					365			
Met	Ala	Arg	Thr	Ser	Asn	Leu	Asn	Glu	Glu	Leu	Gly	Gln	Val	Lys	Tyr
	370					375					380				
Leu	Phe	Ser	Asp	Lys	Thr	Gly	Thr	Leu	Thr	Cys	Asn	Ile	Met	Asn	Phe
385					390					395					400
Lys	Lys	Cys	Ser	Ile	Ala	Gly	Val	Thr	Tyr	Gly	His	Phe	Pro	Glu	Leu
				405					410					415	
Ala	Arg	Glu	Pro	Ser	Ser	Asp	Asp	Phe	Cys	Arg	Met	Pro	Pro	Pro	Cys
			420					425					430		
Ser	Asp	Ser	Cys	Asp	Phe	Asp	Asp	Pro	Arg	Leu	Leu	Lys	Asn	Ile	Glu
		435					440					445			
Asp	Arg	His	Pro	Thr	Ala	Pro	Cys	Ile	Gln	Glu	Phe	Leu	Thr	Leu	Leu
	450					455					460				
Ala	Val	Cys	His	Thr	Val	Val	Pro	Glu	Lys	Asp	Gly	Asp	Asn	Ile	Ile
465					470					475					480
Tyr	G1n	Ala	Ser	Ser	Pro	Asp	Glu	Ala	Ala	Leu	Val	Lys	G1y	Ala	Lys
				485					490					495	
Lys	Leu	Gly	Phe	Val	Phe	Thr	Ala	Arg	Thr	Pro	Phe	Ser	Val	Ile	Ile
			500					505					510		
Glu	Ala	Met	Gly	Gln	Glu	Gln	Thr	Phe	G1y	Ile	Leu	Asn	Val	Leu	Glu
		515					520					525			
Phe	Ser	Ser	Asp	Arg	Lys	Arg	Met	Ser	Val	Ile	Val	Arg	Thr	Pro	Ser
	530					535					540				
Gly	Arg	Leu	Arg	Leu	Tyr	Cys	Lys	Gly	Ala	Asp	Asn	Val	Ile	Phe	Glu
545					550					555					560
Arg	Leu	Ser	Lys	Asp	Ser	Lys	Tyr	Met	Glu	Glu	Thr	Leu	Cys	His	Leu
				565					570					575	

Glu	Tyr	Phe	Ala	Thr	Glu	Gly	Leu	Arg	Thr	Leu	Cys	Val	Ala	Tyr	Ala
			580					585					590		
Asp	Leu	Ser	Glu	Asn	Glu	Tyr	Glu	Glu	Trp	Leu	Lys	Val	Tyr	Gln	Glu
		595					600					605			
Ala	Ser	Thr	Ile	Leu	Lys	Asp	Arg	Ala	Gln	Arg	Leu	Glu	Glu	Cys	Tyr
	610					615					620				
Glu	Ile	Ile	Glu	Lys	Asn	Leu	Leu	Leu	Leu	Gly	Ala	Thr	Ala	Ile	Glu
625					630				•	635					640
Asp	Arg	Leu	Gln	Ala	Gly	Väl	Pro	Glu	Thr	Ile	Alä	Thr	Leu	Leu	Lys
				645					650					655	
Ala	Glu	Ile	Lys	Ile	Trp	Val	Leu	Thr	Gly	Asp	Lys	Gln	Glu	Thr	Ala
			660				•	665					670		
Ile	Asn	Ile	Gly	Tyr	Ser	Cys	Arg	Leu	Val	Ser	Gln	Asn	Met	Ala	Leu
		675					680					685			
Ile	Leu	Leu	Lys	Glu	Asp	Ser	Leu	Asp	Ala	Thr	Arg	Ala	Ala	Ile	Thr
	690					695					700				
Gln	His	Cys	Thr	Asp	Leu	Gly	Asn	Leu	Leu	Gly	Lys	Glu	Asn	Asp	Val
705					710					715					720
Ala	Leu	Ile	Ile	Asp	Gly	His	Thr	Leu	Lys	Tyr	Ala	Leu	Ser	Phe	Glu
				725					730					735	
Val	Arg	Arg	Ser	Phe	Leu	Asp	Leu	Ala	Leu	Ser	Cys	Lys	Ala	Val	Ile
			740					745					750		
Cys	Cys	Arg	Val	Ser	Pro	Leu	Gln	Lys	Ser	Glu	Ile	Val	Asp	Val	Val
		755					760					765			
Lys	Lys	Arg	Val	Lys	Ala	Ile	Thr	Leu	Ala	Ile	Gly	Asp	Gly	Ala	Asn
	770					775					780				
Asp	Val	G1y	Met	Ile	Gln	Thr	Ala	His	Val	Gly	Val	Gly	Ile	Ser	G1y

785					790					795					800
Asn	Glu	Gly	Met	Gln	Ala	Thr	Asn	Asn	Ser	Asp	Tyr	Ala	Ile	Ala	Gln
				805					810					815	
Phe	Ser	Tyr	Leu	Glu	Lys	Leu	Leu	Leu	Val	His	Gly	Ala	Trp	Ser	Tyr
			820					825					830		
Asn	Arg	Val	Thr	Lys	Cys	Ile	Leu	Tyr	Cys	Phe	Tyr	Lys	Asn	Val	Val
		835					840					845			
Leu	Tyr	Ile	Ile	Glu	Leu	Trp	Phe	Ala	Phe	Val	Asn	Gly	Phe	Ser	Gly
	850					855					860				
Gln	Ile	Leu	Phe	Glu	Arg	Trp	Cys	Ile	Gly	Leu	Tyr	Asn	Val	Ile	Phe
865					870					875					880
Thr	Ala	Leu	Pro	Pro	Phe	Thr	Leu	Gly	Ile	Phe	Glu	Arg	Ser	Cys	Thr
				885					890					895	
Gln	Glu	Ser	Met	Leu	Arg	Phe	Pro	Gln	Leu	Tyr	Lys	Ile	Thr	Gln	Asn
			900					905					910		
Gly	Glu	Gly	Phe	Asn	Thr	Lys	Val	Phe	Trp	Gly	His	Cys	Ile	Asn	Ala
		915					920					925			
Leu	Val	His	Ser	Leu	Ile	Leu	Phe	Trp	Phe	Pro	Met	Lys	Ala	Leu	Glu
	930					935					940				
His	Asp	Thr	Val	Leu	Thr	Ser	Gly	His	Ala	Thr	Asp	Tyr	Leu	Phe	Val
945					950					955					960
Gly	Asn	Ile	Val	Tyr	Thr	Tyr	Val	Val	Val	Thr	Val	Cys	Leu	Lys	Ala
				965					970					975	
Gly	Leu	Glu	Thr	Thr	Ala	Trp	Thr	Lys	Phe	Ser	His	Leu	Ala	Val	Trp
			980					985					990		
Gly	Ser	Met	Leu	Thr	Trp	Leu	Val	Phe	Phe	G1y	Ile	Tyr	Ser	Thr	Ile
		995				1	1000				1	1005			

Trp Pro Thr Ile Pro Ile Ala Pro Asp Met Arg Gly Gln Ala Thr Met Val Leu Ser Ser Ala His Phe Trp Leu Gly Leu Phe Leu Val Pro Thr Ala Cys Leu Ile Glu Asp Val Ala Trp Arg Ala Ala Lys His Thr Cys Lys Lys Thr Leu Leu Glu Glu Val Gln Glu Leu Glu Thr Lys Ser Arg Val Leu Gly Lys Ala Val Leu Arg Asp Ser Asn Gly Lys Arg Leu Asn Glu Arg Asp Arg Leu Ile Lys Arg Leu Gly Arg Lys Thr Pro Pro Thr Leu Phe Arg Gly Ser Ser Leu Gln Gln Gly Val Pro His Gly Tyr Ala Phe Ser Gln Glu Glu His Gly Ala Val Ser Gln Glu Glu Val Ile Arg Ala Tyr Asp Thr Thr Lys Lys Lys Ser Arg Lys Lys

<210> 43

<211> 3444

<212> DNA

<213> Human

<400> 43

atgtcccggg ccacgtctgt tggagaccag ctggaggcac ccgcccgcac catttacctc 60
aaccaaccgc atctcaacaa attccgcgac aaccagatca gtacggccaa gtacagcgtg 120
ttgacatttc tacctcgatt cttgtatgag cagattagaa gagctgctaa tgccttcttt 180

240 ctcttcattg ccttattaca gcaaattcca gatgtatctc caacaggaag atataccacc 300 ctggtgccat tgatcattat tttaacaatt gcaggcatca aagagattgt agaagatttt 360 aagcgacaca aggcagacaa tgcagttaac aaaaagaaaa caatagtgtt aagaaatggt 420 atgtggcata ccattatgtg gaaagaggtg gcagtgggag acattgtgaa ggtcgtcaat 480 gggcagtate ttecageaga tgtggteetg etgteateea gtgaacetea ggeaatgtgt 540 tatgttgaaa cagctaatct ggatggggag acgaacctta aaatacgtca gggtttgagt 600 cacactgctg acatgcaaac acgtgaagtt ctgatgaagt tatctggaac tatagagtgt 660 gaagggccca accgccacct ctatgacttc actggaaact tgaacttaga tgggaaaagc 720 cttgttgccc ttgggcctga ccagatctta ttaagaggta cacagcttag aaatactcag 780 tgggtctttg gcatagttgt ttatactgga cacgacacca aactcatgca gaattcaacc 840 aaagcgcctc tcaagagatc aaatgttgag aaggtgacta acgtgcagat cctggtgttg 900 tttggcatcc tcttggtcat ggccttggtg agctcggcgg gggccctgta ctggaacagg 960 tctcatggtg aaaagaactg gtacatcaag aagatggaca ccacctcaga taattttgga 1020 tacaacctac tgacgttcat catcttatac aacaatctta ttcccatcag tctgttggtg 1080 actcttgagg ttgtgaagta tactcaagcc cttttcataa actgggacac agatatgtat 1140 tatataggaa atgacactcc tgccatggcc aggacatcaa accttaatga agagcttggg 1200 caggtgaaat atctcttttc tgacaagact ggaacgctta catgcaatat catgaacttt 1260 aagaagtgca gcattgccgg agtaacctat ggtcacttcc cagaattggc aagaggccg 1320 tetteagatg aettetgteg gatgeeteet eeetgtagtg atteetgtga etttgatgae 1380 cccaggctgt tgaagaacat tgaggatcgc catcccacag ccccttgcat tcaggagttc ctcacccttc tggccgtgtg ccacacggtt gttcctgaga aggatggaga taacatcatc 1440 1500 taccaggeet etteeccaga tgaagetget ttggtgaaag gagetaaaaa getgggettt 1560 gtcttcacag ccagaacacc attctcagtc atcatagaag cgatgggaca ggaacaaaca 1620 ttcggaatcc ttaatgtcct ggaattttct agtgacagaa aaagaatgtc tgtaattgtt 1680 cgaactcctt caggacgact tcggctttac tgtaaagggg ctgataatgt gatttttgag 1740 agactttcaa aagactcaaa atatatggag gaaacattat gccatctgga atactttgcc 1800 acggaaggct tgcggactct ctgtgtggct tatgctgatc tctctgagaa tgagtatgag

1860 gagtggctga aagtctatca ggaagccagc accatattga aggacagagc tcaacggttg 1920 gaagagtgtt acgagatcat tgagaagaat ttgctgctac ttggagccac agccatagaa 1980 gatcgccttc aagcaggagt tccagaaacc atcgcaacac tgttgaaggc agaaattaaa 2040 atatgggtgt tgacaggaga caaacaagaa actgcgatta atatagggta ttcctgccga 2100 ttggtatcgc agaatatggc ccttatccta ttgaaggagg actctttgga tgccacaagg 2160 gcagccatta ctcagcactg cactgacctt gggaatttgc tgggcaagga aaatgacgtg 2220 geceteatea tegatggeea caecetgaag taegegetet cettegaagt eeggaggagt 2280 ttcctggatt tggcactctc gtgcaaagcg gtcatatgct gcagagtgtc tcctctgcag 2340 aagtctgaga tagtggatgt ggtgaagaag cgggtgaagg ccatcaccct cgccatcgga 2400 gacggcgcca acgatgtcgg gatgatccag acagcccacg tgggtgtggg aatcagtggg 2460 aatgaaggca tgcaggccac caacaactcg gattacgcca tcgcacagtt ttcctactta 2520 gagaagette tgttggttea tggageetgg agetacaace gggtgaceaa gtgeatettg 2580 tactgcttct ataagaacgt ggtcctgtat attattgagc tttggttcgc ctttgttaat 2640 ggattttctg ggcagatttt atttgaacgt tggtgcatcg gcctgtacaa tgtgattttc 2700 accgctttgc cgcccttcac tctgggaatc tttgagaggt cttgcactca ggagagcatg 2760 ctcaggtttc cccagctcta caaaatcacc cagaatggcg aaggcttcaa cacaaaggtt 2820 ttctggggtc actgcatcaa cgccttggtc cactccctca tcctcttctg gtttcccatg 2880 aaagctctgg agcatgatac tgtgttgaca agtggtcatg ctaccgacta tttatttgtt 2940 ggaaatattg tttacacata tgttgttgtt actgtttgtc tgaaagctgg tttggagacc 3000 acagcttgga ctaaattcag tcatctggct gtctggggaa gcatgctgac ctggctggtg 3060 ttttttggca tctactcgac catctggccc accattccca ttgctccaga tatgagagga 3120 caggcaacta tggtcctgag ctccgcacac ttctggttgg gattatttct ggttcctact 3180 gcctgtttga ttgaagatgt ggcatggaga gcagccaagc acacctgcaa aaagacattg 3240 ctggaggagg tgcaggagct ggaaaccaag tctcgagtcc tgggaaaagc ggtgctgcgg 3300 gatagcaatg gaaagaggct gaacgagcgc gaccgcctga tcaagaggct gggccggaag 3360 acgcccccga cgctgttccg gggcagctcc ctgcagcagg gcgtcccgca tgggtatgct 3420 ttttctcaag aagaacacgg agctgttagt caggaagaag tcatccgtgc ttatgacacc

accaaaaaga aatccaggaa gaaa	3444
<210> 44	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 44	
ctttgggcta taagaaggca gag	23
<210> 45	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 45	
aggtttgcga gggaatatgt aact	24
<210> 46	
⟨211⟩ 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 46	

atttaggtga cactatag	18
<210> 47	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 47	
aatacgactc actataggg	19
⟨210⟩ 48	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 48	
tcaagaagat ggacaccacc tcag	24
<210> 49	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 49	

gccagtttat gaaaagggct tgag	24
<210> 50	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 50	
ttcgccagga ccacaccagc aact	24
<210> 51	
⟨211⟩ 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 51	
tcgcagtttc ttgtttgtct cctg	24
<210> 52	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 52	

acctcaggca atgtgttatg	20
<210> 53	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 53	
agcgatggga caggaacaaa	20
<210> 54	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 54	
agttgctggt gtggtcctgg cgaa	24
⟨210⟩ 55	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 55	

ctgggcagat tttatttgaa	20
<210> 56	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 56	
cctgagetee geacacttet	20
<210> 57	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 57	
cataacacat tgcctgaggt	20
<210> 58	
⟨211⟩ 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 58	

ttcaaataaa atctgcccag			20										
<210> 59													
<211> 20													
<212> DNA													
<213> Artificial Sequence													
<220>													
<223> Primer													
<400> 59													
agaagtgtgc ggagctcagg			20										
<210> 60													
<211> 3643													
<212> DNA													
<213> Human													
<400> 60													
ctttgggcta taagaaggca gaggatgaga tgtcccggg	c cacgtctgtt	ggagaccagc	60										
tggaggcacc cgcccgcacc atttacctca accaaccgc	a tctcaacaaa	ttccgcgaca	120										
accagatcag tacggccaag tacagcgtgt tgacattto	t acctcgattc	ttgtatgagc	180										
agattagaag agctgctaat gccttctttc tcttcattg	c cttattacag	caaattccag	240										
atgtatctcc aacaggaaga tataccaccc tggtgccat	t gatcattatt	ttaacaattg	300										
caggcatcaa agagattgta gaagatttta agcgacaca	a ggcagacaat	gcagttaaca	360										
aaaagaaaac aatagtgtta agaaatggta tgtggcata	c cattatgtgg	aaagaggtgg	420										
cagtgggaga cattgtgaag gtcgtcaatg ggcagtatc	t tccagcagat	gtggtcctgc	480										
tgtcatccag tgaacctcag gcaatgtgtt atgttgaaa	c agctaatctg	gatggggaga	540										

600

660

cgaaccttaa aatacgtcag ggtttgagtc acactgctga catgcaaaca cgtgaagttc

tgatgaagtt atctggaact atagagtgtg aagggcccaa ccgccacctc tatgacttca

720 ctggaaactt gaacttagat gggaaaagcc ttgttgccct tgggcctgac cagatcttat 780 taagaggtac acagcttaga aatactcagt gggtctttgg catagttgtt tatactggac 840 acgacaccaa actcatgcag aattcaacca aagggcctct caagagatca aatgttgaga 900 aggtgactaa cgtgcagatc ctggtgttgt ttggcatcct cttggtcatg gccttggtga 960 gctcggcggg ggccctgtac tggaacaggt ctcatggtga aaagaactgg tacatcaaga 1020 agatggacac cacctcagat aattttggat acaacctact gacgttcatc atcttataca 1080 acaatcttat teccateagt etgttggtga etettgaggt tgtgaagtat acteaageee 1140 ttttcataaa ctgggacaca gatatgtatt atataggaaa tgacactcct gccatggcca ggacatcaaa ccttaatgaa gagcttgggc aggtgaaata tctcttttct gacaagactg 1200 1260 gaacgcttac atgcaatatc atgaacttta agaagtgcag cattgccgga gtaacctatg 1320 gtcacttccc agaattggca agagagccgt cttcagatga cttctgtcgg atgcctcctc 1380 cctgtagtga ttcctgtgac tttgatgacc ccaggctgtt gaagaacatt gaggatcgcc 1440 atcccacage ccettgeatt caggagttee teaccettet ggeogtgtge cacaeggttg 1500 ttcctgagaa ggatggagat aacatcatct accaggcctc ttccccagat gaagctgctt 1560 tggtgaaagg agctaaaaag ctgggctttg tcttcacagc cagaacacca ttctcagtca 1620 tcatagaagc gatgggacag gaacaaacat tcggaatcct taatgtcctg gaattttcta 1680 gtgacagaaa aagaatgtct gtaattgttc gaactccttc aggacgactt cggctttact 1740 gtaaaggggc tgataatgtg atttttgaga gactttcaaa agactcaaaa tatatggagg 1800 aaacattatg ccatctggaa tactttgcca cggaaggctt gcggactctc tgtgtggctt 1860 atgctgatct ctctgagaat gagtatgagg agtggctgaa agtctatcag gaagccagca ccatattgaa ggacagagct caacggttgg aagagtgtta cgagatcatt gagaagaatt 1920 1980 tgctgctact tggagccaca gccatagaag atcgccttca agcaggagtt ccagaaacca 2040 tcgcaacact gttgaaggca gaaattaaaa tatgggtgtt gacaggagac aaacaagaaa 2100 ctgcgattaa tatagggtat tcctgccgat tggtatcgca gaatatggcc cttatcctat tgaaggagga ctctttggat gccacaaggg cagccattac tcagcactgc actgaccttg 2160 2220 ggaatttgct gggcaaggaa aatgacgtgg ccctcatcat cgatggccac accctgaagt 2280 acgcgctctc cttcgaagtc cggaggagtt tcctggattt ggcactctcg tgcaaagcgg

2340 tcatatgctg cagagtgtct cctctgcaga agtctgagat agtggatgtg gtgaagaagc gggtgaaggc catcaccctc gccatcggag acggcgccaa cgatgtcggg atgatccaga 2400 2460 cagcccacgt gggtgtggga atcagtggga atgaaggcat gcaggccacc aacaactcgg 2520 attacgccat cgcacagttt tcctacttag agaagcttct gttggttcat ggagcctgga 2580 gctacaaccg ggtgaccaag tgcatcttgt actgcttcta taagaacgtg gtcctgtata 2640 ttattgagct ttggttcgcc tttgttaatg gattttctgg gcagatttta tttgaacgtt 2700 ggtgcatcgg cctgtacaat gtgattttca ccgctttgcc gcccttcact ctgggaatct 2760 ttgagaggtc ttgcactcag gagagcatgc tcaggtttcc ccagctctac aaaatcaccc 2820 agaatggcga aggcttcaac acaaaggttt tctggggtca ctgcatcaac gccttggtcc 2880 actocotcat cotottotgg tttoccatga aagototgga goatgatact gtgttgacaa 2940 gtggtcatgc taccgactat ttatttgttg gaaatattgt ttacacatat gttgttgtta 3000 ctgtttgtct gaaagctggt ttggagacca cagcttggac taaattcagt catctggctg tctggggaag catgctgacc tggctggtgt tttttggcat ctactcgacc atctggccca 3060 3120 ccattcccat tgctccagat atgagaggac aggcaactat ggtcctgagc tccgcacact 3180 tctggttggg attatttctg gttcctactg cctgtttgat tgaagatgtg gcatggagag 3240 cagccaagca cacctgcaaa aagacattgc tggaggaggt gcaggagctg gaaaccaagt 3300 ctcgagtcct gggaaaagcg gtgctgcggg atagcaatgg aaagaggctg aacgagcgcg 3360 accgcctgat caagaggctg ggccggaaga cgcccccgac gctgttccgg ggcagctccc 3420 tgcagcaggg cgtcccgcat gggtatgctt tttctcaaga agaacacgga gctgttagtc 3480 aggaagaagt catccgtgct tatgacacca ccaaaaagaa atccaggaag aaataagaca 3540 tgaattttcc tgactgatct taggaaagag attcagtttg ttgcacccag tgttaacaca 3600 tetttgtcag agaagactgg cgtcagcage caaaacacca ggaaacacat ttetgtggce 3643 ttagccaagc agtttgttag ttacatattc cctcgcaaac cta

⟨210⟩ 61

<211> 3643

<212> DNA

<213> Human

⟨400⟩ 61

ctttgggcta	taagaaggca	gaggatgaga	tgtcccgggc	cacgtctgtt	ggagaccagc	60
tggaggcacc	cgcccgcacc	atttacctca	accaaccgca	tctcaacaaa	ttccgcgaca	120
accagatcag	tacggccaag	tacagcgtgt	tgacatttct	acctcgattc	ttgtatgagc	180
agattagaag	agctgctaat	gccttctttc	tcttcattgc	cttattacag	caaattccag	240
atgtatctcc	aacaggaaga	tataccaccc	tggtgccatt	gatcattatt	ttaacaattg	300
caggcatcaa	agagattgta	gaagatttta	agcgacacaa	ggcagacaat	gcagttaaca	360
aaaagaaaac	aatagtgtta	agaaatggta	tgtggcatac	cattatgtgg	aaagaggtgg	420
cagtgggaga	cattgtgaag	gtcgtcaatg	ggcagtatct	tccagcagat	gtggtcctgc	480
tgtcatccag	tgaacctcag	gcaatgtgtt	atgttgaaac	agctaatctg	gatggggaga	540
cgaaccttaa	aatacgtcag	ggtttgagtc	acactgctga	catgcaaaca	cgtgaagttc	600
tgatgaagtt	atctggaact	atagagtgtg	aagggcccaa	ccgccacctc	tatgacttca	660
ctggaaactt	gaacttagat	gggaaaagcc	ttgttgccct	tgggcctgac	cagatcttat	720
taagaggtac	acagcttaga	aatactcagt	gggtctttgg	catagttgtt	tatactggac	780
acgacaccaa	actcatgcag	aattcaacca	aagcgcctct	caagagatca	aatgttgaga	840
aggtgactaa	cgtgcagatc	ctggtgttgt	ttggcatcct	cttggtcatg	gccttggtga	900
gctcggcggg	ggccctgtac	tggaacaggt	ctcatggtga	aaagaactgg	tacatcaaga	960
agatggacac	cacctcagat	aattttggat	acaacctact	gacgttcatc	atcttataca	1020
acaatcttat	tcccatcagt	ctgttggtga	ctcttgaggt	tgtgaagtat	actcaagccc	1080
ttttcataaa	ctgggacaca	gatatgtatt	atataggaaa	tgacactcct	gccatggcca	1140
ggacatcaaa	ccttaatgaa	gagcttgggc	aggtgaaata	tctcttttct	gacaagactg	1200
gaacgcttac	atgcaatatc	atgaacttta	agaagtgcag	cattgccgga	gtaacctatg	1260
gtcacttccc	agaattggca	agagagccgt	cttcagatga	cttctgtcgg	atgcctcctc	1320
cctgtagtga	ttcctgtgac	tttgatgacc	ccaggctgtt	gaagaacatt	gaggatcgcc	1380
atcccacagc	cccttgcatt	caggagttcc	tcacccttct	ggccgtgtgc	cacacggttg	1440
ttcctgagaa	ggatggagat	aacatcatct	accaggcctc	ttccccagat	gaagctgctt	1500

1560 tggtgaaagg agctaaaaag ctgggctttg tcttcacagc cagaacacca ttctcagtca 1620 tcatagaagc gatgggacag gaacaaacat tcggaatcct taatgtcctg gaattttcta 1680 gtgacagaaa aagaatgtct gtaattgttc gaactccttc aggacgactt cggctttact 1740 gtaaaggggc tgataatgtg atttttgaga gactttcaaa agactcaaaa tatatggagg 1800 aaacattatg ccatctggaa tactttgcca cggaaggctt gcggactctc tgtgtggctt 1860 atgctgatct ctctgagaat gagtatgagg agtggctgaa agtctatcag gaagccagca 1920 ccatattgaa ggacagagct caacggttgg aagagtgtta cgagatcatt gagaagaatt 1980 tgctgctact tggagccaca gccatagaag atcgccttca agcaggagtt ccagaaacca 2040 tcgcaacact gttgaaggca gaaattaaaa tatgggtgtt gacaggagac aaacaagaaa 2100 ctgcgattaa tatagggtat tcctgccgat tggtatcgca gaatatggcc cttatcctat 2160 tgaaggagga ctctttggat gccacaaggg cagccattac tcagcactgc actgaccttg 2220 ggaatttgct gggcaaggaa aatgacgtgg ccctcatcat cgatggccac accctgaagt 2280 acgcgctctc cttcgaagtc cggaggagtt tcctggattt ggcactctcg tgcaaagcgg 2340 tcatatgctg cagagtgtct cctctgcaga agtctgagat agtggatgtg gtgaagaagc 2400 gggtgaaggc catcaccctc gccatcggag acggcgccaa cgatgtcggg atgatccaga 2460 cagcccacgt gggtgtggga atcagtggga atgaaggcat gcaggccacc aacaactcgg 2520 attacgccat cgcacagttt tcctacttag agaagcttct gttggttcat ggagcctgga 2580 gctacaaccg ggtgaccaag tgcatcttgt actgcttcta taagaacgtg gtcctgtata 2640 ttattgagct ttggttcgcc tttgttaatg gattttctgg gcagatttta tttgaacgtt 2700 ggtgcatcgg cctgtacaat gtgattttca ccgctttgcc gcccttcact ctgggaatct 2760 ttgagaggtc ttgcactcag gagagcatgc tcaggtttcc ccagctctac aaaatcaccc 2820 agaatggcga aggcttcaac acaaaggttt tctggggtca ctgcatcaac gccttggtcc 2880 actocotcat cotottotgg tttocoatga aagototgga goatgatact gtgttgacaa 2940 gtggtcatgc taccgactat ttatttgttg gaaatattgt ttacacatat gttgttgtta 3000 ctgtttgtct gaaagctggt ttggagacca cagcttggac taaattcagt catctggctg 3060 tetggggaag catgetgace tggetggtgt tttttggcat etactegace atetggeeca 3120 ccattcccat tgctccagat atgagaggac aggcaactat ggtcctgagc tccgcacact

3180 tctggttggg attatttctg gttcctactg cctgtttgat tgaagatgtg gcatggagag 3240 cagccaagca cacctgcaaa aagacattgc tggaggaggt gcaggagctg gaaaccaagt 3300 ctcgagtcct gggaaaagcg gtgctgcggg atagcaatgg aaagaggctg aacgagcgcg 3360 accgcctgat caagaggctg ggccggaaga cgcccccgac gctgttccgg ggcagctccc 3420 tgcagcaggg cgtcccgcat gggtatgctt tttctcaaga agaacacgga gctgttagtc 3480 aggaagaagt catccgtgct tatgacacca ccaaaaagaa atccaggaag aaataagaca 3540 tgaattttcc tgactgatct taggaaagag attcagtttg ttgcacccag tgttaacaca 3600 tetttgtcag agaagactgg cgtcagcage caaaacacca ggaaacacat ttetgtggee ttagccaagc agtttgttag ttacatattc cctcgcaaac cta 3643

<210> 62

<211> 3444

<212> DNA

<213> Human

<400> 62

60 atgtcccggg ccacgtctgt tggagaccag ctggaggcac ccgcccgcac catttacctc 120 aaccaaccgc atctcaacaa attccgcgac aaccagatca gtacggccaa gtacagcgtg 180 ttgacatttc tacctcgatt cttgtatgag cagattagaa gagctgctaa tgccttcttt 240 ctcttcattg ccttattaca gcaaattcca gatgtatctc caacaggaag atataccacc 300 ctggtgccat tgatcattat tttaacaatt gcaggcatca aagagattgt agaagatttt 360 aagcgacaca aggcagacaa tgcagttaac aaaaagaaaa caatagtgtt aagaaatggt 420 atgtggcata ccattatgtg gaaagaggtg gcagtgggag acattgtgaa ggtcgtcaat 480 gggcagtatc ttccagcaga tgtggtcctg ctgtcatcca gtgaacctca ggcaatgtgt 540 tatgttgaaa cagctaatct ggatggggag acgaacctta aaatacgtca gggtttgagt 600 cacactgctg acatgcaaac acgtgaagtt ctgatgaagt tatctggaac tatagagtgt 660 gaagggccca accgccacct ctatgacttc actggaaact tgaacttaga tgggaaaagc 720 cttgttgccc ttgggcctga ccagatctta ttaagaggta cacagcttag aaatactcag

780 tgggtctttg gcatagttgt ttatactgga cacgacacca aactcatgca gaattcaacc 840 aaagcgcctc tcaagagatc aaatgttgag aaggtgacta acgtgcagat cctggtgttg 900 tttggcatcc tcttggtcat ggccttggtg agctcggcgg gggccctgta ctggaacagg 960 tctcatggtg aaaagaactg gtacatcaag aagatggaca ccacctcaga taattttgga 1020 tacaacctac tgacgttcat catcttatac aacaatctta ttcccatcag tctgttggtg 1080 actettgagg ttgtgaagta tactcaagce ettttcataa actgggacae agatatgtat 1140 tatataggaa atgacactcc tgccatggcc aggacatcaa accttaatga agagcttggg 1200 caggtgaaat atctcttttc.tgacaagact ggaacgctta catgcaatat catgaacttt aagaagtgca gcattgccgg agtaacctat ggtcacttcc cagaattggc aagagagccg 1260 1320 tetteagatg aettetgteg gatgeeteet eeetgtagtg atteetgtga etttgatgae 1380 cccaggctgt tgaagaacat tgaggatcgc catcccacag ccccttgcat tcaggagttc 1440 ctcacccttc tggccgtgtg ccacacggtt gttcctgaga aggatggaga taacatcatc 1500 taccaggcct cttccccaga tgaagctgct ttggtgaaag gagctaaaaa gctgggcttt 1560 gtcttcacag ccagaacacc attctcagtc atcatagaag cgatgggaca ggaacaaaca 1620 tttggaatcc ttaatgtcct ggaattttct agtgacagaa aaagaatgtc tgtaattgtt 1680 cgaactcctt caggacgact tcggctttac tgtaaagggg ctgataatgt gatttttgag 1740 agactttcaa aagactcaaa atatatggag gaaacattat gccatctgga atactttgcc 1800 acggaaggct tgcggactct ctgtgtggct tatgctgatc tctctgagaa tgagtatgag 1860 gagtggctga aagtctatca ggaagccagc accatattga aggacagagc tcaacggttg 1920 gaagagtgtt acgagatcat tgagaagaat ttgctgctac ttggagccac agccatagaa 1980 gatcgccttc aagcaggagt tccagaaacc atcgcaacac tgttgaaggc agaaattaaa 2040 atatgggtgt tgacaggaga caaacaagaa actgcgatta atatagggta ttcctgccga 2100 ttggtatcgc agaatatggc ccttatccta ttgaaggagg actctttgga tgccacaagg 2160 gcagccatta ctcagcactg cactgacctt gggaatttgc tgggcaagga aaatgacgtg 2220 gccctcatca tcgatggcca caccctgaag tacgcgctct ccttcgaagt ccggaggagt 2280 ttcctggatt tggcactctc gtgcaaagcg gtcatatgct gcagagtgtc tcctctgcag 2340 aagtotgaga tagtggatgt ggtgaagaag cgggtgaagg ccatcaccct cgccatcgga

2400 gacggcgcca acgatgtcgg gatgatccag acagcccacg tgggtgtggg aatcagtggg 2460 aatgaaggca tgcaggccac caacaactcg gattacgcca tcgcacagtt ttcctactta 2520 gagaagette tgttggttea tggageetgg agetaeaace gggtgaeeaa gtgeatettg 2580 tactgcttct ataagaacgt ggtcctgtat attattgagc tttggttcgc ctttgttaat 2640 ggattttctg ggcagatttt atttgaacgt tggtgcatcg gcctgtacaa tgtgattttc 2700 accgctttgc cgcccttcac tctgggaatc tttgagaggt cttgcactca ggagagcatg 2760 ctcaggtttc cccagctcta caaaatcacc cagaatggcg aaggcttcaa cacaaaggtt ttctggggtc actgcatcaa cgccttggtc cactccctca tcctcttctg gtttcccatg 2820 aaagctctgg agcatgatac tgtgttgaca agtggtcatg ctaccgacta tttatttgtt 2880 2940 ggaaatattg tttacacata tgttgttgtt actgtttgtc tgaaagctgg tttggagacc 3000 acagcttgga ctaaattcag tcatctggct gtctggggaa gcatgctgac ctggctggtg 3060 ttttttggca tctactcgac catctggccc accattccca ttgctccaga tatgagagga 3120 caggcaacta tggtcctgag ctccgcacac ttctggttgg gattatttct ggttcctact 3180 gcctgtttga ttgaagatgt ggcatggaga gcagccaagc acacctgcaa aaagacattg 3240 ctggaggagg tgcaggagct ggaaaccaag tctcgagtcc tgggaaaagc ggtgctgcgg 3300 gatagcaatg gaaagaggct gaacgagcgc gaccgcctga tcaagaggct gggccggaag 3360 acgcccccga cgctgttccg gggcagctcc ctgcagcagg gcgtcccgca tgggtatgct 3420 ttttctcaag aagaacacgg agctgttagt caggaagaag tcatccgtgc ttatgacacc 3444 accaaaaaga aatccaggaa gaaa

<210> 63

⟨211⟩ 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 63

cgcagaatat ggcccttatc c	21
⟨210⟩ 64	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	•
<223> Primer	
<400> 64	
cattttcctt gcccagcaaa	20
<210> 65	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe	
<400> 65	
ccattactca gcactgcact gaccttgg	28
<210> 66	
<211> 791	
<212> PRT	
<213> Human	
<400> 66	
Met Lys Ala His Pro Lys Glu Met Val Pro Leu Met Gly Lys Arg Val	

Ala	Ala	Pro	Ser	Gly	Asn	Pro	Ala	Val	Leu	Pro	Glu	Lys	Arg	Pro	Ala
			20					25					30		
Glu	Ile	Thr	Pro	Thr	Lys	Lys	Ser	Ala	His	Phe	Phe	Leu	Glu	Ile	Glu
		35					40					45			
Gly	Phe	Glu	Pro	Asn	Pro	Thr	Val	Ala	Lys	Thr	Ser	Pro	Pro	Val	Phe
	50					55					60				
Ser	Lys	Pro	Met	Asp	Ser	Asn	Ile	Arg	Gln	Cys	Ile	Ser	Gly	Asn	Cys
65					70					75					80
Asp	Asp	Met	Asp	Ser	Pro	Gln	Ser	Pro	Gln	Asp	Asp	Val	Thr	Glu	Thr
				85					90					95	
Pro	Ser	Asn	Pro	Asn	Ser	Pro	Ser	Ala	Gln	Leu	Ala	Lys	Glu	Glu	Gln
			100					105					110		
Arg	Arg	Lys	Lys	Arg	Arg	Leu	Lys	Lys	Arg	Ile	Phe	Ala	Ala	Val	Ser
		115					120					125			
Glu	Gly	Cys	Val	Glu	Glu	Leu	Val	Glu	Leu	Leu	Val	Glu	Leu	Gln	Glu
	130					135					140				
Leu	Cys	Arg	Arg	Arg	His	Asp	Glu	Asp	Val	Pro	Asp	Phe	Leu	Met	His
145					150					155					160
Lys	Leu	Thr	Ala	Ser	Asp	Thr	G1y	Lys	Thr	Cys	Leu	Met	Lys	Ala	Leu
				165					170					175	
Leu	Asn	Ile	Asn	Pro	Asn	Thr	Lys	Glu	Ile	Val	Arg	Ile	Leu	Leu	Ala
			180					185					190		
Phe	Ala	Glu	G1u	Asn	Asp	Ile	Leu	Gly	Arg	Phe	Ile	Asn	Ala	Glu	Tyr
		195					200					205			
Thr	Glu	G1u	Ala	Tyr	Glu	Gly	Gln	Thr	Ala	Leu	Asn	Ile	Ala	Ile	Glu
	210					215					220				
Δησ	Δra	Gln	C1 ₃₇	Acn	T10	Δla	Δ1a	Lou	Lou	T10	۸1۵	۸1a	G1 ₁₇	۸1a	Acn

225					230					235					240
Val	Asn	Ala	His	Ala	Lys	Gly	Ala	Phe	Phe	Asn	Pro	Lys	Tyr	Gln	His
				245					250					255	
Glu	Gly	Phe	Tyr	Phe	Gly	Glu	Thr	Pro	Leu	Ala	Leu	Ala	Ala	Cys	Thr
			260					265					270		
Asn	Gln	Pro	Glu	Ile	Val	Gln	Leu	Leu	Met	Glu	His	Glu	Gln	Thr	Asp
		275					280					285			
Ile	Thr	Ser	Arg	Asp	Ser	Arg	Gly	Asn	Asn	Ile	Leu	His	Ala	Leu	Val
	290					295					300				
Thr	Val	Ala	Glu	Asp	Phe	Lys	Thr	Gln	Asn	Asp	Phe	Val	Lys	Arg	Met
305					310					315					320
Tyr	Asp	Met	Ile	Leu	Leu	Arg	Ser	Gly	Asn	Trp	Glu	Leu	Glu	Thr	Thr
				325					330					335	
Arg	Asn	Asn	Asp	Gly	Leu	Thr	Pro	Leu	Gln	Leu	Ala	Ala	Lys	Met	Gly
			340					345					350		
Lys	Ala	Glu	Ile	Leu	Lys	Tyr	Ile	Leu	Ser	Arg	Glu	Ile	Lys	Glu	Lys
		355					360					365			
Arg	Leu	Arg	Ser	Leu	Ser	Arg	Lys	Phe	Thr	Asp	Trp	Ala	Tyr	Gly	Pro
	370	-				375					380				
Val	Ser	Ser	Ser	Leu	Tyr	Asp	Leu	Thr	Asn	Val	Asp	Thr	Thr	Thr	Asp
385					390					395					400
Asn	Ser	Val	Leu	Glu	Ile	Thr	Val	Tyr	Asn	Thr	Asn	Ile	Asp	Asn	Arg
				405					410					415	
His	Glu	Met	Leu	Thr	Leu	Glu	Pro	Leu	His	Thr	Leu	Leu	His	Met	Lys
			420					425					430		
Trp	Lys	Lys	Phe	Ala	Lys	His	Met	Phe	Phe	Leu	Ser	Phe	Cys	Phe	Tyr
		435					440					445			

P	he	Phe	Tyr	Asn	Ile	Thr	Leu	Thr	Leu	Val	Ser	Tyr	Tyr	Arg	Pro	Arg
		450					455					460				
G	lu	Glu	Glu	Ala	Ile	Pro	His	Pro	Leu	Ala	Leu	Thr	His	Lys	Met	Gly
4	65					470					475					480
T	rp	Leu	Gln	Leu	Leu	Gly	Arg	Met	Phe	Val	Leu	Ile	Trp	Ala	Met	Cys
					485					490					495	
Ι	le	Ser	Val	Lys	Glu	Gly	Ile	Ala	Ile	Phe	Leu	Leu	Arg	Pro	Ser	Asp
				500					505					510		
L	eu	Gln	Ser	Ile	Leu	Ser	Asp	Ala	Trp	Phe	His	Phe	Val	Phe	Phe	Ile
			515					520					525			
G	ln	Ala	Val	Leu	Val	Ile	Leu	Ser	Val	Phe	Leu	Tyr	Leu	Phe	Ala	Tyr
		530					535					540				
L	ys	Glu	Tyr	Leu	Ala	Cys	Leu	Val	Leu	Ala	Met	Ala	Leu	Gly	Trp	Ala
5	45					550					555					560
A	sn	Met	Leu	Tyr	Tyr	Thr	Arg	Gly	Phe	Gln	Ser	Met	Gly	Met	Tyr	Ser
					565					570					575	
V	al	Met	Ile	Gln	Lys	Val	Ile	Leu	His	Asp	Val	Leu	Lys	Phe	Leu	Phe
				580	-				585					590		
V	al	Tyr	Ile	Val	Phe	Leu	Leu	Gly	Phe	Gly	Val	Ala	Leu	Ala	Ser	Leu
			595					600					605			
Ι	le	Glu	Lys	Cys	Pro	Lys	Asp	Asn	Lys	Asp	Cys	Ser	Ser	Tyr	Gly	Ser
		610					615					620				
Pl	he	Ser	Asp	Ala	Val	Leu	Glu	Leu	Phe	Lys	Leu	Thr	Ile	Gly	Leu	Gly
6	25					630					635					640
A	sp	Leu	Asn	Ile	G1n	Gln	Asn	Ser	Lys	Tyr	Pro	Ile	Leu	Phe	Leu	Phe
					645					650					655	
L	eu	Leu	Ile	Thr	Tyr	Val	Ile	Leu	Thr	Phe	Val	Leu	Leu	Leu	Asn	Met

			660					665					670			
Leu	Ile	Ala	Leu	Met	Gly	Glu	Thr	Val	Glu	Asn	Val	Ser	Lys	Glu	Ser	
		675					680					685				
Glu	Arg	Ile	Trp	Arg	Leu	Gln	Arg	Ala	Arg	Thr	Ile	Leu	Glu	Phe	Glu	
	690					695					700					
Lys	Met	Leu	Pro	Glu	Trp	Leu	Arg	Ser	Arg	Phe	Arg	Met	Gly	Glu	Leu	
705					710					715					720	
Cys	Lys	Val	Ala	Glu	Asp	Asp	Phe	Arg	Leu	Cys	Leu	Arg	Ile	Asn	Glu	
				725					730					735		
Val	Lys	Trp	Thr	Glu	Trp	Lys	Thr	His	Val	Ser	Phe	Leu	Asn	Glu	Asp	
			740					745					750			
Pro	Gly	Pro	Val	Arg	Arg	Thr	Ala	Asp	Phe	Asn	Lys	Ile	Gln	Asp	Ser	
		755					760					765				
Ser	Arg	Asn	Asn	Ser	Lys	Thr	Thr	Leu	Asn	Ala	Phe	Glu	Glu	Val	Glu	
	770					775					780					
Glu	Phe	Pro	Glu	Thr	Ser	Val										
785					790											
<210)> 67	7														
<211	> 23	373														
<212	2> DN	J A														
<213	3> Hu	ıman														
<400)> 67	,			·											
atga	aago	cc a	cccc	aagg	ga ga	tggt	gcct	cto	atgg	gca	agag	gagtt	gc	tgccc	ccagt	60
ggga	acco	tg c	cgtc	ctgo	c ag	gagaa	igagg	ccg	gcgg	gaga	tcac	cccc	ac a	aaaga	agagt	120
gcac	actt	ct t	cctg	gaga	it ag	gaagg	gttt	gaa	ccca	acc	ccac	agtt	gc	caaga	acctct	180

cctcctgtct tctccaagcc catggattcc aacatccggc agtgcatctc tggtaactgt 240

300 gatgacatgg actccccca gtctcctcaa gatgatgtga cagagacccc atccaatccc 360 aacagcccca gtgcacagct ggccaaggaa gagcagagga ggaaaaagag gcggctgaag 420 aagcgcatct ttgcagccgt gtctgagggc tgcgtggagg agttggtaga gttgctggtg 480 gagctgcagg agctttgcag gcggcgccat gatgaggatg tgcctgactt cctcatgcac 540 aagctgacgg cctccgacac ggggaagacc tgcctgatga aggccttgtt aaacatcaac 600 cccaacacca aggagatcgt gcggatcctg cttgcctttg ctgaagagaa cgacatcctg 660 ggcaggttca tcaacgccga gtacacagag gaggcctatg aagggcagac ggcgctgaac 720 ategecateg ageggeggea gggggacate geagecetge teategeege eggegeegae 780 gtcaacgcgc acgccaaggg ggccttcttc aaccccaagt accaacacga aggcttctac 840 ttcggtgaga cgcccctggc cctggcagca tgcaccaacc agcccgagat tgtgcagctg 900 ctgatggagc acgagcagac ggacatcacc tcgcgggact cacgaggcaa caacatcctt 960 cacgccctgg tgaccgtggc cgaggacttc aagacgcaga atgactttgt gaagcgcatg 1020 tacgacatga tcctactgcg gagtggcaac tgggagctgg agaccactcg caacaacgat 1080 ggcctcacgc cgctgcagct ggccgccaag atgggcaagg cggagatcct gaagtacatc 1140 ctcagtcgtg agatcaagga gaagcggctc cggagcctgt ccaggaagtt caccgactgg 1200 gcgtacggac ccgtgtcatc ctccctctac gacctcacca acgtggacac caccacggac 1260 aactcagtgc tggaaatcac tgtctacaac accaacatcg acaaccggca tgagatgctg 1320 accetggage egetgeacae getgetgeat atgaagtgga agaagtttge caageacatg 1380 ttetttetgt cettetgett ttatttette tacaacatca ceetgaceet egtetegtae 1440 taccgccccc gggaggagga ggccatcccg caccccttgg ccctgacgca caagatgggg 1500 tggctgcagc tcctagggag gatgtttgtg ctcatctggg ccatgtgcat ctctgtgaaa 1560 gagggcattg ccatcttcct gctgagaccc tcggatctgc agtccatcct ctcggatgcc 1620 tggttccact ttgtcttttt tatccaagct gtgcttgtga tactgtctgt cttcttgtac 1680 ttgtttgcct acaaagagta cctcgcctgc ctcgtgctgg ccatggccct gggctgggcg 1740 aacatgctct actatacgcg gggtttccag tccatgggca tgtacagcgt catgatccag 1800 aaggtcattt tgcatgatgt tctgaagttc ttgtttgtat atatcgtgtt tttgcttgga 1860 tttggagtag ccttggcctc gctgatcgag aagtgtccca aagacaacaa ggactgcagc

tcctacggca	gcttcagcga	cgcagtgctg	gaactcttca	agctcaccat	aggcctgggt	1920
gacctgaaca	tccagcagaa	ctccaagtat	cccattctct	ttctgttcct	gctcatcacc	1980
tatgtcatcc	tcacctttgt	tctcctcctc	aacatgctca	ttgctctgat	gggcgagact	2040
gtggagaacg	tctccaagga	gagcgaacgc	atctggcgcc	tgcagagagc	caggaccatc	2100
ttggagtttg	agaaaatgtt	accagaatgg	ctgaggagca	gattccggat	gggagagctg	2160
tgcaaagtgg	ccgaggatga	tttccgactg	tgtttgcgga	tcaatgaggt	gaagtggact	2220
gaatggaaga	cgcacgtctc	cttccttaac	gaagacccgg	ggcctgtaag	acgaacagca	2280
gatttcaaca	aaatccaaga	ttcttccagg	aacaacagca	aaaccactct	caatgcattt	2340
gaagaagtcg	aggaattccc	ggaaacctcg	gtg			2373

⟨210⟩ 68

⟨211⟩ 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 68

ccatcctaat acgactcact atagggc

⟨210⟩ 69

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 69

cgggggcggt agtacgagac gag

23

27

<210> 70	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 70	
actcactata gggctcgagc ggc	23
<210> 71	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 71	
cagcaaaggc aagcaggatc cgcactat	28
<210> 72	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 72	
caggaaacag ctatgac	17

caggaaacag ctatgac

<210> 73	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 73	
gtaaaacgac ggccag	16
<210> 74	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 74	
gtgcactggg gctgttggga ttggatgg	28
<210> 75	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 75	
atggctggtg aggttctggg tggtcgtg	28

 $atggctggtg\ aggttctggg\ tggtcgtg$

<210> 76	
⟨211⟩ 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 76	
tgaggaggag aacaaaggtg aggatgaca	29
<210> 77	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 77	
actgcgtcgc tgaagctgcc gtaggag	27
<210> 78	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 78	
tcccattctc tttctgttcc tgctcatca	29

<210> 79	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 79	
tgtcatcctc acctttgttc tcctcctca	29
⟨210⟩ 80	
⟨211⟩ 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 80	
aacgaagacc cggggcctgt aagacgaa	28
<210> 81	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 81	
ccgccgcctc agccacagtc c	21

<210> 82	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 82	
gctctgggtt ccgcttctac ac	22
⟨210⟩ 83	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	٠
<223> Primer	
<400> 83	
atgaaagccc accccaagga gatg	24
<210> 84	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 84	
ctacaccgag gtttccggga attc	24

⟨210⟩ 85	
⟨211⟩ 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 85	
tggagcacga gcagacggac atca	24
⟨210⟩ 86	
<211> 25 ,	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	÷
<223> Primer	
⟨400⟩ 86	
gcggatcctg cttgcctttg ctgaa	25
⟨210⟩ 87	
⟨211⟩ 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 87	
cgcgggactc acgaggcaac aaca	24

<210>	88	
⟨211⟩	24	
<212>	DNA	
⟨213⟩	Artificial Sequence	
<220>		
⟨223⟩	Primer	
<400>	88	
ggctgg	gcga acatgctcta ctat	24
<210>	89	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223> .	Primer	
<400>	89	
cgctgc	tgca tatgaagtgg aagaagttt	29
<210>	90	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	90	

cagacggaca tcacctcgcg ggactcacg

<210> 91	
⟨211⟩ 29	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 91	
gagagctgtg caaagtggcc gaggatgat	29
⟨210⟩ 92	
⟨211⟩ 28	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 92	
gagtcccgcg aggtgatgtc cgtctgct	28
<210> 93 · · · · · · · · · · · · · · · · · ·	
⟨211⟩ 28	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 93	
caactectee acgeageeet cagacacg	28

<210> 94	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 94	
gcctgacttc ctcatgcaca a	21
<210> 95	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 95	
aggccttcat caggcaggt	19
·	
<210> 96	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 96	
ctgacggcct ccgacacggg	20

ctgacggcct ccgacacggg

<210> 97

<211> 697

<212> DNA

<213> Human

<400> 97

tgcaatgaga	gcttcccgcc	gcctcagcca	cagtcccacc	cgggggcctt	gggccccaga	60
catgcggtga	tctcagggca	agggttgcca	cgaccaccca	gaacctcacc	agccatgaaa	120
gcccacccca	aggagatggt	gcctctcatg	ggcaagagag	ttgctgcccc	cagtgggaac	180
cctgccgtcc	tgccagagaa	gaggccggcg	gagatcaccc	ccacaaagaa	gagtgcacac	240
ttcttcctgg	agatagaagg	gtttgaaccc	aaccccacag	ttgccaagac	ctctcctcct	300
gtcttctcca	agcccatgga	ttccaacatc	cggcagtgca	tctctggtaa	ctgtgatgac	360
atggactccc	cccagtctcc	tcaagatgat	gtgacagaga	ccccatccaa	tcccaacagc	420
cccagtgcac	agctggccaa	ggaagagcag	aggaggaaaa	agaggcggct	gaagaagcgc	480
atctttgcag	ccgtgtctga	gggctgcgtg	gaggagttgg	tagagttgct	ggtggagctg	540
caggagcttt	gcaggcggcg	ccatgatgag	gatgtgcctg	acttcctcat	gcacaagctg	600
acggcctccg	acacggggaa	gacctgcctg	atgaaggcct	tgttaaacat	caaccccaac	660
accaaggaga	tagtgcggat	cctgcttgcc	tttgctg			697

<210> 98

<211> 275

<212> DNA

<213> Human

<400> 98

ttcttgagca gtgcgtcatg gttgtgtgag tttgtgtcaa acttgctgta ggtctgcttg 60 aggatctgcc cagtccggcg gctgccgtct tccagcctcc ccatcagcgt ttggatgcct 120 tcctctaggt cctttaggag gtgatagtca tcgctgtccc tgcaatgaga gcttcccgcc 180

gcctcagcca cagt	cccacc cgggggcctt	gggccccaga	catgcggtga	tctcagggca	240
agggttgcac gacc	cacccag aacctcacca	gccat			275
⟨210⟩ 99					
⟨211⟩ 586					
<212> DNA					
<213≻ Human					
⟨400⟩ 99					
agaagtttgc caag	cacatg ttctttctgt	ccttctgctt	ttatttcttc	tacaacatca	60
ccctgaccct cgtc	tegtae tacegeecee	gggaggagga	ggccatcccg	cacccttgg	120
ccctgacgca caag	atgggg tggctgcagc	tcctagggag	gatgtttgtg	ctcatctggg	180
ccatgtgcat ctct	gtgaaa gagggcattg	ccatcttcct	gctgagaccc	tcggatctgc	240
agtccatcct ctcg	gatgee tggttecaet	ttgtcttttt	tatccaagct	gtgcttgtga	300
tactgtctgt cttc	ttgtac ttgtttgcct	acaaagagta	cctcgcctgc	ctcgtgctgg	360
ccatggccct gggc	tgggcg aacatgctct	actatacgcg	gggtttccag	tccatgggca	420
tgtacagcgt catg	atccag aaggtcattt	tgcatgatgt	tctgaagttc	ttgtttgtat	480
atatcgtgtt tttg	cttgga tttggagtag	ccttggcctc	gctgatcgag	aagtgtccca	540
aagacaacaa ggac	tgcagc tcctacggca	gcttcagcga	cgcagt		586
	· .				
⟨210⟩ 100					
⟨211⟩ 307					
<212> DNA					
<213> Human					
⟨400⟩ 100					
tgtcatcctc acct	ttgttc tcctcctcaa	catgctcatt	gctctgatgg	gcgagactgt	60
ggagaacgtc tcca	aggaga gcgaacgcat	ctggcgcctg	cagagagcca	ggaccatctt	120
ggagtttgag aaaa	tgttac cagaatggct	gaggagcaga	ttccggatgg	gagagctgtg	180

caaagtggcc	gaggatgatt	tccgactgtg	tttgcggatc	aatgaggtga	agtggactga	240
atggaagacg	cacgtctcct	tccttaacga	agacccgggg	cctgtaagac	gaacagcaga	300
tttcaac						307
<210> 101						
<211≻ 156						
<212> DNA						
<213> Human	ı					
<400> 101						
aacgaagacc	cggggcctgt	aagacgaaca	gcagatttca	acaaaatcca	agattcttcc	60
aggaacaaca	gcaaaaccac	tctcaatgca	tttgaagaag	tcgaggaatt	cccggaaacc	120
tcggtgtaga	agcggaaccc	agagctggtg	tgcgcg			156
<210> 102						
<211> 2376						
<212> DNA						
<213> Human	ı		:			
<400> 102						
atgaaagccc	accccaagga	gatggtgcct	ctcatgggca	agagagttgc	tgcccccagt	60
gggaaccctg	ccgtcctgcc	agagaagagg	ccggcggaga	tcaccccac	aaagaagagt	120
gcacacttct	tcctggagat	agaagggttt	gaacccaacc	ccacagttgc	caagacctct	180
cctcctgtct	tctccaagcc	catggattcc	aacatccggc	agtgcatctc	tggtaactgt	240
gatgacatgg	actccccca	gtctcctcaa	gatgatgtga	cagagacccc	atccaatccc	300
aacagcccca	gtgcacagct	ggccaaggaa	gagcagagga	ggaaaaaagag	gcggctgaag	360
aagcgcatct	ttgcagccgt	gtctgagggc	tgcgtggagg	agttggtaga	gttgctggtg	420
gagctgcagg	agctttgcag	gcggcgccat	gatgaggatg	tgcctgactt	cctcatgcac	480

 ${\tt aagctgacgg\ cctccgacac\ ggggaagacc\ tgcctgatga\ aggccttgtt\ aaacatcaac}$

600 cccaacacca aggagatcgt gcggatcctg cttgcctttg ctgaagagaa cgacatcctg ggcaggttca tcaacgccga gtacacagag gaggcctatg aagggcagac ggcgctgaac 660 720 ategecateg ageggeggea gggggaeate geagecetge teategeege eggegeegae 780 gtcaacgcgc acgccaaggg ggccttcttc aaccccaagt accaacacga aggcttctac 840 ttcggtgaga cgcccctggc cctggcagca tgcaccaacc agcccgagat tgtgcagctg 900 ctgatggagc acgagcagac ggacatcacc tcgcgggact cacgaggcaa caacatcctt 960 cacgccctgg tgaccgtggc cgaggacttc aagacgcaga atgactttgt gaagcgcatg 1020 tacgacatga tcctactgcg gagtggcaac tgggagctgg agaccactcg caacaacgat ggcctcacgc cgctgcagct ggccgccaag atgggcaagg cggagatcct gaagtacatc 1080 1140 ctcagtcgtg agatcaagga gaagcggctc cggagcctgt ccaggaagtt caccgactgg 1200 gegtaeggae cegtgteate etecetetae gaceteacea aegtggaeae caceaeggae 1260 aactcagtgc tggaaatcac tgtctacaac accaacatcg acaaccggca tgagatgctg 1320 accetggage egetgeacae getgetgeat atgaagtgga agaagtttge caageacatg 1380 ttctttctgt ccttctgctt ttatttcttc tacaacatca ccctgaccct cgtctcgtac 1440 taccgccccc gggaggagga ggccatcccg caccccttgg ccctgacgca caagatgggg 1500 tggctgcagc tcctagggag gatgtttgtg ctcatctggg ccatgtgcat ctctgtgaaa 1560 gagggcattg ccatcttcct gctgagaccc tcggatctgc agtccatcct ctcggatgcc 1620 tggttccact ttgtcttttt tatccaagct gtgcttgtga tactgtctgt cttcttgtac 1680 ttgtttgcct acaaagagta cctcgcctgc ctcgtgctgg ccatggccct gggctgggcg 1740 aacatgctct actatacgcg gggtttccag tccatgggca tgtacagcgt catgatccag aaggtcattt tgcatgatgt tctgaagttc ttgtttgtat atatcgtgtt tttgcttgga 1800 1860 tttggagtag cettggeete getgategag aagtgteeca aagacaacaa ggaetgeage 1920 tectaeggea getteagega egeagtgetg gaactettea ageteaceat aggeetgggt 1980 gacctgaaca tecageagaa etecaagtat eccattetet ttetgtteet geteateace 2040 tatgtcatcc tcacctttgt tctcctcctc aacatgctca ttgctctgat gggcgagact 2100 gtggagaacg tetecaagga gagegaacge atetggegee tgeagagage caggaceate 2160 ttggagtttg agaaaatgtt accagaatgg ctgaggagca gattccggat gggagagctg

tgcaaagtgg ccgaggatga tttccgactg tgtttgcgga tcaatgaggt gaagtggact 2220 gaatggaaga cgcacgtctc cttccttaac gaagacccgg ggcctgtaag acgaacagca 2280 gatttcaaca aaatccaaga ttcttccagg aacaacagca aaaccactct caatgcattt 2340 gaagaagtcg aggaattccc ggaaacctcg gtgtag 2376

⟨210⟩ 103

⟨211⟩ 2373

<212> DNA

<213> Human

⟨400⟩ 103

60 atgaaagccc accccaagga gatggtgcct ctcatgggca agagagttgc tgcccccagt 120 gggaaccetg ccgtcctgcc agagaagagg ccggcggaga tcacccccac aaagaagagt 180 gcacacttct tcctggagat agaagggttt gaacccaacc ccacagttgc caagacctct 240 cctcctgtct tctccaagcc catggattcc aacatccggc agtgcatctc tggtaactgt 300 gatgacatgg actocccca gtotoctcaa gatgatgtga cagagacccc atccaatccc 360 aacagcccca gtgcacagct ggccaaggaa gagcagagga ggaaaaagag gcggctgaag 420 aagcgcatct ttgcagccgt gtctgagggc tgcgtggagg agttggtaga gttgctggtg 480 gagctgcagg agctttgcag gcggcgccat gatgaggatg tgcctgactt cctcatgcac 540 aagctgacgg cctccgacac ggggaagacc tgcctgatga aggccttgtt aaacatcaac 600 cccaacacca aggagatagt gcggatcctg cttgcctttg ctgaagagaa cgacatcctg 660 ggcaggttca tcaacgccga gtacacagag gaggcctatg aagggcagac ggcgctgaac 720 ategecateg ageggeggea gggggaeate geagecetge teategeege eggegeegae 780 gtcaacgcgc acgccaaggg ggccttcttc aaccccaagt accaacacga aggcttctac 840 ttcggtgaga cgcccctggc cctggcagca tgcaccaacc agcccgagat tgtgcagctg 900 ctgatggagc acgagcagac ggacatcacc tcgcgggact cacgaggcaa caacatcctt 960 cacgccctgg tgaccgtggc cgaggacttc aagacgcaga atgactttgt gaagcgcatg 1020 tacgacatga tcctactgcg gagtggcaac tgggagctgg agaccactcg caacaacgat

ggcctcacgc cgctgcagct ggccgccaag atgggcaagg cggagatcct gaagtacatc 1080 1140 ctcagtcgtg agatcaagga gaagcggctc cggagcctgt ccaggaagtt caccgactgg 1200 gcgtacggac ccgtgtcatc ctccctctac gacctcacca acgtggacac caccacggac 1260 aactcagtgc tggaaatcac tgtctacaac accaacatcg acaaccggca tgagatgctg 1320 accetggage egetgeacae getgetgeat atgaagtgga agaagtttge caageacatg 1380 ttctttctgt ccttctgctt ttatttcttc tacaacatca ccctgaccct cgtctcgtac 1440 taccgccccc gggaggagga ggccatcccg caccccttgg ccctgacgca caagatgggg 1500 tggctgcagc tcctagggag gatgtttgtg ctcatctggg ccatgtgcat ctctgtgaaa gagggcattg ccatcttcct gctgagaccc tcggatctgc agtccatcct ctcggatgcc 1560 1620 tggttccact ttgtcttttt tatccaagct gtgcttgtga tactgtctgt cttcttgtac 1680 ttgtttgcct acaaagagta cctcgcctgc ctcgtgctgg ccatggccct gggctgggcg 1740 aacatgctct actatacgcg gggtttccag tccatgggca tgtacagcgt catgatccag 1800 aaggtcattt tgcatgatgt tctgaagttc ttgtttgtat atatcgtgtt tttgcttgga 1860 tttggagtag ccttggcctc gctgatcgag aagtgtccca aagacaacaa ggactgcagc 1920 tectaeggea getteagega egeagtgetg gaactettea ageteaceat aggeetgggt 1980 gacctgaaca tccagcagaa ctccaagtat cccattctct ttctgttcct gctcatcacc 2040 tatgtcatcc tcacctttgt tctcctcctc aacatgctca ttgctctgat gggcgagact 2100 gtggagaacg tetecaagga gagegaacge atetggegee tgeagagage caggaceate 2160 ttggagtttg agaaaatgtt accagaatgg ctgaggagca gattccggat gggagagctg 2220 tgcaaagtgg ccgaggatga tttccgactg tgtttgcgga tcaatgaggt gaagtggact gaatggaaga cgcacgtctc cttccttaac gaagacccgg ggcctgtaag acgaacagca 2280 2340 gatttcaaca aaatccaaga ttcttccagg aacaacagca aaaccactct caatgcattt 2373 gaagaagtcg aggaattccc ggaaacctcg gtg

⟨210⟩ 104

<211> 373

<212> PRT

<213	3> Ma	ouse													
<400> 104															
Met	Ser	Thr	Asp	Cys	Ala	Gly	Asn	Ser	Thr	Cys	Pro	Val	Asn	Ser	Thr
				5					10					15	
Glu	Glu	Asp	Pro	Pro	Val	Gly	Met	Glu	Gly	His	Ala	Asn	Leu	Lys	Leu
			20					25					30		
Leu	Phe	Thr	Val	Leu	Ser	Ala	Val	Met	Val	Gly	Leu	Val	Met	Phe	Ser
		35					40					45			
Phe	Gly	Cys	Ser	Val	Glu	Ser	Gln	Lys	Leu	Trp	Leu	His	Leu	Arg	Arg
	50					55					60				
Pro	Trp	Gly	Ile	Ala	Val	Gly	Leu	Leu	Ser	Gln	Phe	Gly	Leu	Met	Pro
65					70					75					80
Leu	Thr	Ala	Tyr	Leu	Leu	Ala	Ile	Gly	Phe	Gly	Leu	Lys	Pro	Phe	G1n
				85					90					95	
Ala	Ile	Ala	Val	Leu	Met	Met	Gly	Ser	Cys	Pro	Gly	Gly	Thr	Ile	Ser
			100					105					110		
Asn	Val	Leu	Thr	Phe	Trp	Val	Asp	Gly	Asp	Met	Asp	Leu	Ser	Ile	Ser
		115					120					125			
Met	Thr	Thr	Cys	Ser	Thr	Val	Ala	Ala	Leu	Gly	Met	Met	Pro	Leu	Cys
	130					135					140				
Leu	Tyr	Ile	Tyr	Thr	Arg	Ser	Trp	Thr	Leu	Thr	Gln	Asn	Leu	Val	Ile
145					150					155					160
Pro	Tyr	G1n	Ser	Ile	Gly	Ile	Thr	Leu	Val	Ser	Leu	Val	Val	Pro	Val
				165					170					175	
Ala	Ser	G1y	Val	Tyr	Val	Asn	Tyr	Arg	Trp	Pro	Lys	Gln	Ala	Thr	Val
			180					185					190		
Ile	Leu	Lys	Val	Gly	Ala	Ile	Leu	Gly	Gly	Met	Leu	Leu	Leu	Val	Val

		195					200					205			
Ala	Val	Thr	Gly	Met	Val	Leu	Ala	Lys	Gly	Trp	Asn	Thr	Asp	Val	Thi
	210					215					220				
Leu	Leu	Val	Ile	Ser	Cys	Ile	Phe	Pro	Leu	Val	Gly	His	Val	Thr	Gly
225					230					235					240
Phe	Leu	Leu	Ala	Phe	Leu	Thr	His	G1n	Ser	Trp	G1n	Arg	Cys	Arg	Thr
				245					250					255	
Ile	Ser	Ile	Glu	Thr	Gly	Ala	Gln	Asn	Ile	Ģln	Leu	Cys	Ile	Ala	Met
			260					265					270		
Leu	Gln	Leu	Ser	Phe	Ser	Ala	Glu	Tyr	Leu	Val	Gln	Leu	Leu	Asn	Phe
		275					280					285			
Ala	Leu	Ala	Tyr	Gly	Leu	Phe	Gln	Val	Leu	His	Gly	Leu	Leu	Ile	Va]
	290					295					300				
Ala	Ala	Tyr	Gln	Ala	Tyr	Lys	Arg	Arg	Gln	Lys	Ser	Lys	Cys	Arg	Arg
305					310					315					320
Gln	His	Pro	Asp	Cys	Pro	Asp	Val	Cys	Tyr	Glu	Lys	Gln	Pro	Arg	Glı
				325					330					335	
Thr	Ser	Ala	Phe	Leu	Asp	Lys	Gly	Asp	Glu	Ala	Ala	Val	Thr	Leu	G13
			340					345					350		
Pro	Val	Gln	Pro	Glu	Gln	His	His	Arg	Ala	Ala	Glu	Leu	Thr	Ser	His
		355					360					365			
Ile	Pro	Ser	Cys	Glu											
	370														
<210> 105															

<211> 1119

<212> PRT

<213> Mouse

⟨400⟩ 105

atgagcacag	actgtgcggg	caactccacc	tgccctgtca	acagtacgga	ggaagacccg	60
cccgtgggaa	tggagggcca	tgcgaatcta	aagctgcttt	ttacagtgct	ctcggctgtg	120
atggtgggtt	tggtcatgtt	ctcttttgga	tgttctgtgg	agagtcagaa	gctctggttg	180
cacctcagaa	gaccctgggg	catcgcagtg	ggcctgcttt	cccagtttgg	acttatgcct	240
ctgacagctt	atctgttagc	cattggcttc	ggtctgaaac	cattccaagc	tattgctgtc	300
ctcatgatgg	ggagctgccc	tgggggcacc	atctctaatg	ttctcacctt	ctgggttgat	360
ggagatatgg	atctcagcat	cagtatgaca	acctgttcca	cagtggccgc	cctgggaatg	420
atgcctctct	gcctctacat	ctacacccgg	tcctggactc	tgacacagaa	cctcgtcatt	480
ccgtatcaga	gcataggaat	tacccttgtg	tccctggtgg	ttcctgtggc	ttctggcgtc	540
tatgtgaatt	ataggtggcc	aaagcaagca	acggtcattc	tcaaggtcgg	agccattctg	600
ggtggcatgc	tcctcctggt	ggtggcagtt	actggcatgg	tcctggcaaa	aggctggaac	660
acagacgtca	ctcttctggt	catcagctgc	attttcccct	tggtcggcca	tgtcacaggc	720
ttcctgctgg	cattcctcac	ccaccaatct	tggcaaaggt	gcaggaccat	ttccatagag	780
actggcgctc	agaacatcca	gctgtgcatc	gccatgctgc	agctgtcctt	ctctgctgag	840
tacctggtcc	agctgctaaa	ctttgcattg	gcctatggac	tcttccaagt	gctgcacggg	900
ctgctcattg	tcgcagcata	tcaggcatac	aagaggaggc	agaagagtaa	atgcaggaga	960
cagcacccgg	attgcccaga	cgtctgctac	gagaagcagc	ccagagagac	cagtgctttc	1020
ttggataaag	gggatgaggc	tgccgtaact	ctggggccag	tgcagccaga	gcagcaccac	1080
agggctgctg	agctgactag	ccacattcct	tcatgtgaa			1119

<210> 106

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

(223) Primer	
<400> 106	
gacctgccca gtgcttgcta ctca	24
<210> 107	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 107	
tcttcactgg ccacggagga ggat	24
<210> 108	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 108	
ctattgctgt cctcatgatg g	21
<210> 109	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	

(223) Primer	
<400> 109	
catgctgcag ctgtccttct c	21
⟨210⟩ 110	
⟨211⟩ 21	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 110	
ccatcatgag gacagcaata g	21
<210> 111	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 111	
gagaaggaca gctgcagcat g	21
<210> 112	
<211> 1237	
<212> PRT	
<213> Mouse	
<400> 112	

60 gacctgccca gtgcttgcta ctcatgttcc tttgtgttcc tgtgttctaa ttcatgagag 120 gagatgagca cagactgtgc gggcaactcc acctgccctg tcaacagtac ggaggaagac 180 ccgcccgtgg gaatggaggg ccatgcgaat ctaaagctgc tttttacagt gctctcggct 240 gtgatggtgg gtttggtcat gttctctttt ggatgttctg tggagagtca gaagctctgg 300 ttgcacctca gaagaccctg gggcatcgca gtgggcctgc tttcccagtt tggacttatg 360 cctctgacag cttatctgtt agccattggc ttcggtctga aaccattcca agctattgct 420 gtcctcatga tggggagctg ccctgggggc accatctcta atgttctcac cttctgggtt 480 gatggagata tggatctcag catcagtatg acaacctgtt ccacagtggc cgccctggga 540 atgatgecte tetgecteta catetacace eggteetgga etetgacaca gaacetegte 600 attecetate agageatagg aattaceett gtgteetgg tggtteetgt ggettetgge 660 gtctatgtga attataggtg gccaaagcaa gcaacggtca ttctcaaggt cggagccatt 720 ctgggtggca tgctcctcct ggtggtggca gttactggca tggtcctggc aaaaggctgg 780 aacacagacg teactettet ggteateage tgeattttee cettggtegg ceatgteaca 840 ggcttcctgc tggcattcct cacccaccaa tcttggcaaa ggtgcaggac catttccata 900 gagactggcg ctcagaacat ccagctgtgc atcgccatgc tgcagctgtc cttctctgct 960 gagtacctgg tccagctgct aaactttgca ttggcctatg gactcttcca agtgctgcac 1020 gggctgctca ttgtcgcagc atatcaggca tacaagagga ggcagaagag taaatgcagg 1080 agacagcacc eggattgece agacgtetge taegagaage ageceagaga gaccagtget 1140 ttcttggata aaggggatga ggctgccgta actctggggc cagtgcagcc agagcagcac 1200 cacagggctg ctgagctgac tagccacatt ccttcatgtg aatagtggga ggcacggacc 1237 agcttggccc tccatcctcc tccgtggcca gtgaaga

⟨210⟩ 113

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer	
<400> 113	
cttctggcgt ctatgtgaat tatagg	26
<210> 114	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 114	
gagcatgcca cccagaatg .	19
<210> 115	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe	
<400> 115	
caaagcaagc aacggtcatt ctcaaggtc	29
<210> 116	
<211> 1046	
<212> PRT	
<213> Rat	
<400> 116	

60 gaagacccac ccgtgggaat ggagggacag gggagcctga agcttgtttt cacagtcctg 120 teggetgtga tggtgggtet ggteatgtte teetttggat gtteagtgga gagteggaag 180 ctctggctgc acctcagaag accctggggc atcgcagtgg gcctgctttg ccagtttggg 240 ctcatgcctc tgacagctta tctgctagcc attggcttcg gtctgaaacc attccaagct 300 attgccgtcc tcatcatggg gagctgccct gggggcaccg tctctaatgt cctcaccttc 360 tgggttgatg gagatatgga cctcagcatc agcatgacga cctgctccac agtggctgct 420 ctgggaatga tgcccctctg cctctacgtc tacacccggt cctggactct tccacagagc 480 ctcaccatcc cgtaccagag cataggaatt acccttgtgt ccctggttgt tcctgtggcc 540 tccggcatct atgtgaatta taggtggcca aagcaagcaa cattcattct caaggtcggg 600 gctgctgttg gcggcatgct cctcctggtg gtggcagtta ccggcgtggt cctggcaaag 660 ggctggaaca tagatgtcac tcttctggtc atcagctgta tttttccctt ggtcggccat 720 gtcatgggct tcctgctggc gttcctcacc caccagtctt ggcaaaggtg caggacgatt 780 tccatagaga ccggagcaca gaacatccag ctgtgcattg ccatgatgca gctgtccttc 840 tctgctgagt acctggtcca gctgttaaac nncgccctgg cctacggact cttccaagtg 900 ctgcacgggc tgctcattgt cgcagcatat caggcataca agaggaggca gaagagtcaa 960 tacaggagac agcaccegga gtgccaagac atcagctctg agaagcagcc cagagagacc 1020 agtgccttct tggataaagg ggctgaggct gctgtaactc tggggctaga gcagcaccac 1046 aggaccgctg aactgaccag tcacgt

⟨210⟩ 117

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 117

atgagcgcag actgcgaggg caa

23

<210> 118	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 118	
tcccactatt cacatgaagg aacg	24
<210> 119 .	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 119 ·	
tccggcatct atgtgaatta tagg	24
<210> 120	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 120	
taactgccac caccaggagg	20

\2107 121	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Probe	
<400> 121 · · · · · · · · · · · · · · · · · ·	
agcaagcaac attcattctc aaggtcgg	28
<210> 122	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 122	
taggaagctt gtcgacatga gagccaattg ttccag	36
<210> 123	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 123	
aatgtctaga actagtctat tcacatgaag tgatgtgg	38

⟨210⟩ 124	
⟨211⟩ 18	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 124	
tagaaggcac agtcgagg	18
⟨210⟩ 125	
<211> 317	
<212> PRT	
<213> Mouse	
<400> 125	
ccggaggaac ctgccaaaat caagcatcgt ttctttgtat aagaagctgg agatgaaac	a 60
ggccattgag atggtagaga ctgggatact gagctctgtg gcttctccca caccctatc	a 120
gtctgagagg atacagggaa tcaagcggct ttctcctgaa gacgtggagt ccatgcggg	ga 180
cattetgaca agaagcatgt accaagtteg acaaagaace etateetaca acaaataca	a 240
cctcaaaccc caaacaagtg agaagcaagc caaagagatt ctgatccgtc gccagaaca	ic 300
cttgagggag agcatgc	317
<210> 126	
<211> 23	
<212> DNA	
<213> Artificial Sequence	

<220>

(223) Primer	
⟨400⟩ 126	
ccggaggaac ctgccaaaat caa	23
⟨210⟩ 127	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 127	
gcatgctctc cctcaaggtg ttctgg	26
<210> 128	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 128	
gatgaaacag gccattgaga tg	22
<210> 129	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	

<223> Primer				
<400> 129				
gattccctgt atcctctcag actga				25
<210> 130				
<211> 24				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Probe				
<400> 130				
ctgggatact gagctctgtg gctt				24
<210> 131				
<211> 363				
<212> PRT				
<213> Rat				
<400> 131				
tcgtgggatg cgggggagta tttttcggca	a tcattttgg	attcatttcc	gcatttatca	60
cacgtttcac tcagaacatc tctgcgatc	g agcctctcat	cgtcttcatg	ttcagctatc	120
tgtcttactt agcagccgag acgctttat	c tctccggaat	cctggccatc	acagcttgtg	180
cagtgacaat gaaaaagtac gtggaagag	a acgtgtccca	gacgtcgtac	acgaccatca	240
agtacttcat gaagatgctg agcagcgtg	a gcgagaccct	catcttcatc	ttcatgggcg	300
tgtccaccgt tgggaagaac catgagtgg	a actgggcttt	cgtctgcttc	accctggcct	360
tct				363

⟨211⟩ 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 132	
tcgtgggatg cgggggagta ttt	23
<210> 133	
<211> 24	-
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 133	
agaaggccag ggtgaagcag acga	24
<210> 134	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 134	
agcagccgag acgctttatc t	21

<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	135	
tctctt	ccac gtacttttc attgtc	26
<210>	136	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	136	
aatcct	ggcc atcacagctt gtgca	25
<210>	137	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	137	
gacaag	ctta tcgatatggc tctgcagatg ttcgt	35

<210> 138

<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 138	
gactctagaa ctagtctatt ttttttggag caaaggact	39
<210> 139	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 139	
ctcctgccac ccatcgttct	20
<210> 140	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 140	
gctggatgtg cccgattcat	20

<210> 141

<211> 20	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 141	
catcagcgta tttgctctct	20
⟨210⟩ 142	
⟨211⟩ 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 142	
tccccaaaga tcatcatgta	20
⟨210⟩ 143	
<211> 680	
<212> PRT	
<213> Mouse	
<400> 143	
tccacggagc ctggagctac aaccgggtga ccaagtgtat cctgtactgt ttctacaaga	60
atgtggtcct ctacatcatc gagctatggt tcgcctttgt gaatggattt tctgggcaga	120
ttttattcga gcgctggtgc atcggcttgt acaatgtgat cttcacggca ttgccgccct	180
tcactctggg gatcttcgag aggtcttgta ctcaggagag catgctcagg ttcccacagc	240
tttacagaat cactcagaac gctgaaggtt tcaacactaa ggttttctgg ggtcactgca	300

tcaatgcctt ggttcattcc ctcatcctct	tctgggttcc	catgaaagcg	ctggagcatg	360
atactccagt aaccagcggt catgccacag	actatttgtt	tgttggaaat	attgtttaca	420
cgtacgttgt ggttacagtt tgtttgaaag	ctggtttgga	gacgacagct	tggacgaaat	480
tcagtcacct ggcggtgtgg ggaagcatgc	tgatctggtt	ggtgttcttt	ggtgtctatt	540
caaccatctg gccgaccatc cccattgctc	ctgacatgaa	agggcaggca	actatggtcc	600
tgagctctgc gtacttctgg ttgggattgt	tcctggttcc	gactgcgtgt	ttgattgaag	660
acgtggcgtg gagagcggcc				680
⟨210⟩ 144				
⟨211⟩ 23				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Primer				
<400> 144				
gccatcgcac agttttccta cct				23
<210> 145				
Z211\ 24				

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 145

catcetettt cegttactgt etcg 24

<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 146	
aaccatctgg ccgaccatc	19
<210> 147	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 147	
acgcagagct caggaccata g	21
<210> 148	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 148	
tgcctgccct ttcatgtcag gagc	24

<210> 149

<211> 771

<212> PRT

<213> Rat

<400> 149

60 gctgcttttg gtccatggag cctggagcta caaccgggtg accaagtgca tcctctactg 120 tttctataag aatgtggtcc tctacatcat tgagctttgg ttcgcctttg ttaatggatt 180 ttctgggcag attttatttg agcgctggtg catcggcttg tacaatgtga tcttcacagc 240 attgccaccc ttcactctgg ggatcttcga gaggtcgtgt actcaggaga gcatgctcag gtttccacag ctctacaaaa tcactcagaa cgccgaaggt ttcaacacga aggttttctg 300 360 gggtcactgc atcaatgcct tggtccactc cctcatcctc ttctgggttc caatgaaagc 420 gctggagcac gatactccgc taaccagtgg tcacgccaca gactatttgt ttgttggaaa 480 tattgtttac acgtacgttg tggtcacagt ttgtttgaaa gctggtttgg agacgacagc 540 ttggactaaa ttcagtcacc tggcagtgtg gggaagcatg ctgatctggt tggtgttctt 600 tggtgtctat tcaaccttct ggccgaccat ccccatcgct cctgacatga aagggcaggc 660 aactatggtc ctgagttctg cccacttctg gttgggtttg ctcctggttc ccactgcgtg 720 tttgatcgag gatgtggcgt ggagagcggc caaacacacc tgcaaaaaga cactgtctgg 771 aggaggttca ggagctggag accaagtccc gagtgtatgg gcaaagcgat g

⟨210⟩ 150

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

⟨400⟩ 150

tattcaacct tctggccgac c

21

(210) 151	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 151	
accagaagtg ggcagaactc a	21
<210> 152	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 152	
catagttgcc tgccctttca tgtcagga	28
<210> 153	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 153	
ttggatccgt cgacatgtcc cgggccacgt ctgttgg	37

<211> 43					
<212> DNA					
<213> Artificial Seque	ence				
<220>					
<223> Primer					
<400> 154					
ccgcggccgc actagtttat	ttcttcctgg	atttcttttt	ggt		43
<210> 155					
<211> 1064					
<212> PRT					
<213> Mouse					
<400> 155					
acagcctgag attgtgcagc	tgctgatgga	gaatgagcag	acagacatcg	cttcccagga	60
ttcccgggga aacaacatcc	tgcacgcgct	ggtgacggtg	gctgaggact	tcaagactca	120
gaatgacttc gttaagcgca	tgtatgacat	gatcctgctg	aggagtggca	actgggagct	180
ggagaccatg cgcaacaacg	atgggctcac	gccactgcag	ctggctgcca	agatgggcaa	240
ggctgagatc ctgaagtaca	tcctcagccg	cgagatcaag	gagaagcctc	tccggagctt	300
gtccaggaag ttcacggact	gggcgtatgg	gcctgtgtca	tcctcactct	atgacctcac	360
caatgtagac acaacgacgg	ataactctgt	gctggaaatc	ategtetaca	acaccaacat	420
tgataaccga catgagatgc	tgaccctgga	gcctctgcat	acgctgctac	acacgaaatg	480
gaagaaattt gccaagtaca	tgttcttctt	gtccttctgc	ttctatttct	tctacaacat	540
caccetgace ettgtetett	actaccgtcc	tcgggaagat	gaggatctcc	cacacccctt	600
ggccctgaca cacaaaatga	gttggcttca	gctcctaggg	aggatgtttg	tcctcatctg	660
ggccacatgc atctctgtga	aagaaggcat	tgccattttc	ctgctgagac	cctccgatct	720
tcagtccatc ctgtcagatg	cctggtttca	ctttgtcttt	tttgtccaag	ctgtacttgt	780

840 gatactgtct gtattcttgt acttgtttgc ctacaaagaa tacctcgcct gcctcgtgct 900 ggccatggcc ctgggctggg cgaacatgct ctactacacg agaggcttcc agtctatggg 960 catgtacage gtcatgatec agaaggtcat tttgcatgat gtcctcaagt tcttgtttgt ttacatcctg ttcttacttg gatttggagt agcgctggcc tcactgattg agaagtgctc 1020 1064 caaggacaaa aaggactgca gttcctatgg cagcttcagc gaca ⟨210⟩ 156 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 156 gcgtgtacta accagcctga gattgtg 27 <210> 157 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 157 25 gtcgctgaag ctgccatagg aactg

⟨210⟩ 158

<211> 22

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 158	
ctgagaccct ccgatcttca gt	22
<210> 159	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 159	
ggcaggcgag gtattctttg ta	22
<210> 160	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe	
<400> 160	
cctgtcagat gcctggtttc actttgtctt	30
<210> 161	
<211> 34	

(213) Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 161	
cggggtaccg tcgacatgaa agcccacccc aagg	34
<210> 162	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 162	
atttgcggcc gcactagtct acaccgaggt ttccggg	37
⟨210⟩ 163	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 163	
taatacgact cactataggg	20
<210> 164	
<211> 24	
<212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 164	
gacacgggga agacctgcct gatg	24
<210> 165	
⟨211⟩ 23	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 165	
gtggcaactg ggagctggag acc	23
<210≻ 166	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 166	
gggccatgtg catctctgtg aaag	24
<210> 167	
<211> 21 .	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 167	
ctgatgggcg agactgtgga g	21
<210> 168	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 168	
tagaaggcac agtcgagg	18
<210> 169	
(011) 01	
<211> 21	
<211> 21 <212> DNA	
<212> DNA	
<212> DNA <213> Artificial Sequence	
<212> DNA <213> Artificial Sequence <220>	
<212> DNA <213> Artificial Sequence <220> <223> Primer	21
<212> DNA <213> Artificial Sequence <220> <223> Primer <400> 169	21
<212> DNA <213> Artificial Sequence <220> <223> Primer <400> 169	21

(213) Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 170 · · ·	
ctttcacaga gatgcacatg gccc	24
⟨210⟩ 171	
⟨211⟩ 23	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
<400> 171	
ggtctccagc tcccagttgc cac	23
<210> 172	
⟨211⟩ 24	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Primer	
⟨400⟩ 172	

catcaggcag gtcttccccg tgtc