1. Construct a regular expression over {a, b, c} for the language accepted by this nfa:

	а	b	С		
-> A	/	A, B	/	0	
В	В	/	С	1	
С	/	A, B	/	1	

2. Prove that the language L(G) is not regular where G is the following cfg:

$$G = (\{S, A, B\}, \{a, b\}, \{S->Abb \mid B, A->bS, B->a\}, S).$$

Note: You must first determine L(G).

3. Construct a reduced dfa over {0,1}:

$$[(10*)* \cap 1*01*]$$

Note: You $\underline{\text{must}}$ first determine nfas for $(10^*)^*$ and 1^*01^* , than do the intersection. The answer must then be reduced.

4. Construct a Chomsky normal form grammar for L(G) for the following cfg G:

$$G = (\{S, B\}, \{a, b, c, d\}, \{S->Sb|Ba, B->cBdd|S|\epsilon\}, S).$$

Note: You <u>must</u> first remove all ε- and all unit productions.

5. Construct a Greibach normal form grammar for L(G) for the following CNF G:

$$G = (\{S, A\}, \{a, b\}, \{S->AS | A, A->SA | aba\}, S).$$

Note: You <u>must</u> first remove all unit productions. You must derive all the productions for S and A; indicate how the result looks for S' and A'.

- 6. Prove that the following language L is not contextfree: $L = \{0^n \ 1^{n+1} \ 0^n \mid n>0\}$
- 7. Consider the class **REG**_A of all contextfree language over the fixed alphabet A.
 - a. Is **REG**_A countable?
 - b. Is the class **NOTREG**_A countable where **NOTREG**_A consists of all languages over A that are not contextfree?
 - c. Is the class $REG_A \cap NOTREG_A$ countable?
- 8. Construct a Turing machine for the language in Question 6, $L = \{0^n \ 1^{n+1} \ 0^n \mid n>0\}$.

Note: Describe first the process in English; then translate this into moves of Turing machine.

9. Let L1 and L2 be arbitrary languages, subject to the specification in either (i) or (ii).

Consider the following four questions:

(Q1) Does
$$L_2 - L_1$$
 contain a given fixed word w? (Q2) Is $L_2 - L_1$ empty?

(Q1) Does
$$L_1 \cap L_2$$
 contain a given fixed word w? (Q2) Is $L_1 \cap L_2$ empty?

For each of these four questions <u>explain with reasons</u> whether the problem is <u>recursive</u>, <u>not</u> recursive but r. e., or non-r. e.. provided

(i) Both are <u>recursive</u>.

(ii) L_1 is <u>r. e. but not recursive</u> and L_2 is <u>recursive</u>.