AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (Original) A noise filter comprising:

a ground line for discharging a short-circuit current generated on an electronic apparatus to ground;

an inductor which suppresses a noise current, induced on the ground line, flowing from the ground line into the electronic apparatus; and

a resistor connected in parallel with the inductor; wherein

assuming a lower limit angular frequency of the noise current to be $\omega n[rad]$, inductance of the inductor to be L[H], resistance of the resistor to be R[Ω], and earth capacitance of the electronic apparatus is C[F], a relationship of $V(L/C) < R < 2 \omega n^2 L$ (provided $C > 1/(4 \omega n^4 L)$) is established.

2. (Original) A noise filter comprising:

a ground line for discharging a short-circuit current generated on an electronic apparatus to ground;

an inductor which suppresses a noise current, induced on the ground line, flowing from the ground line into the electronic apparatus; and

a resistor connected in parallel with the inductor; wherein the inductor has a magnetic saturation characteristic, by which the inductor acts as a circuit element magnetically saturated by the short-circuit current and discharges the short-circuit current from the electronic apparatus to the ground line.

3. (Original) The noise filter as claimed in claim 2, wherein the resistor suppresses a resonant frequency current caused by series resonance of, earth capacitance between the electronic apparatus and ground, and the inductor, and dissipates electric power charged in the inductor.

Docket No. EM002-US

6

TAK.046.

- 4. (Original) The noise filter as claimed in claim 2, wherein assuming a lower limit angular frequency of the noise current to be $\omega n[rad]$, inductance of the inductor to be L[H], resistance of the resistor to be $R[\Omega]$, and earth capacitance of the electronic apparatus is C[F], a relationship of $L(C) < R < 2 \omega n^2 L$ (provided $C > 1/(4\omega n^4 L)$) is established.
- 5. (Original) The noise filter as claimed in claim 2, wherein assuming an angular frequency of a power supply current to be $\omega p[rad]$, a lower limit angular frequency of the noise current to be $\omega n[rad]$, inductance of the inductor to be L[H], and resistance of the resistor to be $R[\Omega]$, a relationship of $10(\omega p \cdot L) < R < (\omega n \cdot L)/10$ is established.
- 6. (Original) The noise filter as claimed in claim 2, wherein assuming an angular frequency of a power supply current to be $\omega p[rad]$, a lower limit angular frequency of the noise current to be $\omega n[rad]$, inductance of the inductor to be L[H], and resistance of the resistor to be $R[\Omega]$, a relationship of $100(\omega p \cdot L) < R < (\omega n \cdot L)/100$ is established.
- 7. (Original) The noise filter as claimed in claim 2, wherein assuming an angular frequency of a power supply current to be $\omega p[rad]$, a lower limit angular frequency of the noise current to be $\omega n[rad]$, inductance of the inductor to be L[H], and resistance of the resistor to be $R[\Omega]$, a relationship of $1000(\omega p \cdot L) < R < (\omega n \cdot L)/1000$ is established.
- 8. (Currently Amended) The noise filter as claimed in claim 2, wherein a parallel circuit consisting of including the inductor and the resistor is so formed that one terminal is grounded through the ground line and another terminal connects to the electronic apparatus.
- 9. (Original) The noise filter as claimed in claim 2, wherein when the short-circuit current is 25[A], impedance of the noise filter is $0.1[\Omega]$ or less.
- 10. (Original) The noise filter as claimed in claim 2, wherein when a frequency of the noise current is 10[kHz], reactance of the inductor is $2[k\Omega]$ or more.

Docket No. EM002-US

7

TAK.046.

- 11. (Currently Amended) The noise filter as claimed in claim 2, wherein the resistor is comprises a variable resistor.
- 12. (Currently Amended) The noise filter as claimed in claim 11, wherein the inductor is comprises a toroidal coil, a parallel circuit consisting including of the toroidal coil and the variable resistor is housed in a frame, the variable resistor is arranged in a space surrounded by an inner peripheral wall of the toroidal coil, and resistance varying means for varying resistance of the variable resistor is provided at such a position as to be able to be operated from an outside of the frame.
- 13. (Currently Amended) An electronic apparatus comprising the noise filter as claimed in any one of claims 1 to 12 claim 1.
 - 14. (New) An electronic apparatus comprising the noise filter as claimed in claim 2.
 - 15. (New) An electronic apparatus comprising the noise filter as claimed in claim 3.
 - 16. (New) An electronic apparatus comprising the noise filter as claimed in claim 4.
 - 17. (New) An electronic apparatus comprising the noise filter as claimed in claim 5.
 - 18. (New) An electronic apparatus comprising the noise filter as claimed in claim 6.
 - 19. (New) An electronic apparatus comprising the noise filter as claimed in claim 7.
 - 20. (New) An electronic apparatus comprising the noise filter as claimed in claim 8.