1. Derive the following asymptotic moments associated with  $m_3(x)$ : mean, variance, first order auto-correlation. Furthermore, compute  $\nabla_b g(b_0)$ . Which moments are informative for estimating b?

**Answer:** We obtain the asymptotic moments as follows:

$$\mathbb{E}[x_t] = \mathbb{E}[\rho_0 x_{t-1} + \epsilon_t] = \rho_0 \, \mathbb{E}[x_{t-1}] + \mathbb{E}[\epsilon_t] = \rho_0 \, \mathbb{E}[\rho_0 x_{t-2} + \epsilon_{t-1}] = \rho_0^t \, \mathbb{E}[x_0] = 0.$$

$$\mathbb{E}[(x_t - \mathbb{E}[x_t])^2] = \mathbb{E}[x_t^2] = \mathbb{E}[(\rho_0 x_{t-1} + \epsilon_t)^2]$$

$$= \rho_0^2 \, \mathbb{E}[x_{t-1}^2] + 2\rho_0 \, \mathbb{E}[x_{t-1}\epsilon_t] + \mathbb{E}[\epsilon_t^2]$$

$$= \rho_0^2 \, \mathbb{E}[(\rho_0 x_{t-2} + \epsilon_{t-1})^2] + \sigma_0^2$$

$$= \rho_0^{2T} \, \mathbb{E}[x_0^2] + \sigma_0^2 \, \sum_{i=0}^{T-1} (\rho_0^2)^i \to \frac{\sigma_0^2}{1 - \rho_0^2} = \frac{4}{3}.$$

$$\mathbb{E}[(x_t - \mathbb{E}[x_t])(x_{t-1} - \mathbb{E}[x_{t-1}])] = \mathbb{E}[x_t x_{t-1}]$$

$$= \rho_0 \, \mathbb{E}[x_{t-1}^2] + \mathbb{E}[\epsilon_t x_{t-1}]$$

$$= \rho_0 \, \mathbb{E}[(\rho_0 x_{t-2} + \epsilon_{t-1})^2]$$

$$= \rho_0^3 \, \mathbb{E}[x_{t-2}^2] + \rho_0 \, \mathbb{E}[\epsilon_{t-1}^2]$$

$$= \rho_0^{2T-1} \, \mathbb{E}[x_0^2] + \rho_0 \sigma_0^2 \, \sum_{i=0}^{T-2} (\rho_0^2)^i \to \frac{\rho_0 \sigma_0^2}{1 - \rho_0^2} = \frac{2}{3}$$

Both the variance and the first order correlation are informative for estimating b.

- 2. Simulate a series of "true" data of length T=200 using (1). We will use this to compute  $M_T(x)$ .
- 3. Set H = 10 and simulate H vectors of length T = 200 random variables  $e_t$  from N(0,1). We will use this to compute  $M_{TH}(y(b))$ . Store these vectors. You will use the same vector of random variables throughout the entire exercise. Since this exercise requires you to estimate  $\sigma^2$ , you want to change the variance of  $e_t$  during the estimation. You can simply use  $\sigma_{e_t}$  when the variance is  $\sigma^2$ .

4.

- 5. Next we estimating the l=2 vector b for the just identified case where  $m_2$  uses the variance and autocorrelation. Given what you found in part (i), do you now think there will be a problem? If not, hopefully the standard error of the estimate of b as well as the J test will tell us something. Let's see. For this case, perform steps (a)-(d) above.
- 6. Next, we will consider the overidentified case where m<sub>3</sub> uses the mean, variance and autocorrelation. Let's see. For this case, perform steps (a)-(d) above. Furthermore, bootstrap the finite sample distribution of the estimators using the following algorithm:
  - i. Draw  $\epsilon_t$  and  $e^h_t$  from N(0,1) for  $t=1,2,\ldots,T$  and  $h=1,2,\ldots,H$ . Compute  $(\hat{b}^1_{TH}),\hat{b}^2_{TH}$  as described.
  - ii. Repeat (e) using another seed.