DSC512 Programming and Data Structures

Dr. Arun Cyril Jose

Prerequisite

Knowledge of any computer programming language

Course Grading Policy

Evaluation type	Grade points
Mid Semester Exams (20 marks each)	40
Quiz/Assignment	20
End Semester Examination	40
Lab	30

Objective

- Foundations of the practical implementation and usage of Algorithms and Data Structures.
- To ensure that the student evolves into a competent programmer capable of designing and analyzing implementations of algorithms and data structures for different kinds of problems.
- To expose the student to the algorithm analysis techniques, to the theory of reductions, and to the classification of problems into complexity classes like NP

Outcomes

- Design and analyse programming problem statements
- Choose appropriate data structures and algorithms, understand the ADT/libraries, and use it to design algorithms for a specific problem.
- Understand the necessary mathematical abstraction to solve problems
- Comprehend and select algorithm design approaches in a problem specific manner.

Syllabus

Introduction: Introduction to Data Structures and Algorithms, Review of Basic Concepts, Asymptotic Analysis of Recurrences. Randomized Algorithms. Randomized Quicksort, Analysis of Hashing algorithms.

Algorithm Analysis Techniques - Amortized Analysis. Application to Splay Trees. External Memory ADT - B-Trees. Priority Queues and Their Extensions: Binomial heaps, Fibonacci heaps, applications to Shortest Path Algorithms. Partition ADT: Weighted union, path compression, Applications to MST. Algorithm Analysis and Design Techniques.

Dynamic Programming, Greedy Algorithms-Bellman-Ford. Network Flows-Max flow, min-cut theorem, Ford-Fulkerson, Edmonds-Karp algorithm, Bipartite Matching.

Intractable Problems: Polynomial Time, class P, Polynomial Time Verifiable Algorithms, class NP, NP completeness and reducibility, NP Hard Problems, NP completeness proofs, Approximation Algorithms.

Learning Resources

- 1. Introduction to Algorithms, by T. H. Cormen, C. E. Lieserson, R. L. Rivest, and C. Stein, Third Edition, MIT Press.
- 2. Fundamentals of Data Structures in C by Horowitz, Sahni, and Anderson-Freed, Universities Press
- 3. Algorithms, by S. Dasgupta, C. Papadimitrou, U Vazirani, Mc Graw Hill.
- 4. Algorithm Design, by J. Klienberg and E. Tardos, Pearson Education Limited.

 When was the last time you have done a complete program i.e. did everything from scratch??

- A. Always try to do it from scratch.
- B. Why should I, when there are readymade solutions out there.
- C. Long time ago.
- D. It is not my strong suit.

How would you rate your computer programming capabilities??

- A. Excellent.
- B. Good.
- C. I can handle it.
- D. Not my strong suit.

 Are you familiar with any of these terms: methods, functions, subroutines??

- A. I know what all of them are.
- B. I know what functions are.
- C. I know what functions and subroutines are.
- D. I cannot remember what any of them are.

When was the last time you did programming in C language??

- A. I do it as part of my job all the time.
- B. Only did it during my Undergraduate days.
- C. Had professional C programming experience.
- D. No C programming language experience what so ever.

• On a scale from 1 to 10, how do you estimate your programming experience?? (1: being very inexperienced to 10: very experienced)

- A. Between 3 and 1.
- B. Between 4 and 6.
- C. Over 7.
- D. I do not want to answer this question.

How many years have you been programming?

- A. No experience
- B. Around 1-3 Years.
- C. Around 5 Years.
- D. More than 7 Years.

What will the following program do??

- A. Sort and print the array in ascending order.
- B. Sort and print the array in descending order.
- C. Print all the elements of the array.
- D. Does nothing.

```
public class Class1 {
    public static void main(String[] args) {
      int array[] = \{14, 5, 7\};
      for (int counter1 = 0; counter1 < array.length;</pre>
          counter1++) {
       for (int counter2 = counter1; counter2 > 0;
            counter2--) {
         if (array[counter2 - 1] > array[counter2]) {
           int variable1 = array[counter2];
           array[counter2] = array[counter2 - 1];
           array[counter2 - 1] = variable1;
10
11
12
13
      for (int counter3 = 0; counter3 < array.length;</pre>
          counter3++)
14
       System.out.println(array[counter3]);
15
16 }
```


 How extensively have you learned Computer Science during your undergraduate days?

- A. All throughout my course.
- B. May be one or two Semesters.
- C. Not even a single Semester.
- D. I cannot remember.

