

Teoretická informatika 2023/2024

Úkol 1

David Chocholatý (xchoch09)

1 Příklad 1

Mějme následující jazyky:

(a)
$$L_1 = \{ww^R \mid w \in \{a, b, c\}^*\}$$

(b)
$$L_2 = \{w \mid w \in \{a, b, c\}^* \land \#_a(w) \mod 2 = \#_b(w) \mod 2 = 1\}$$

Rozhodněte a dokažte, zda jazyky $L_1 \cap L_2$ a $L_1 \cup L_2$ jsou regulární. Pro důkaz regularity sestrojte příslušný konečný automat, nebo gramatiku. Pro důkaz neregularity použijte Pumping lemma, nebo Myhill-Nerodovu větu.

1.1 Řešení

Uvažujme zadané jazyky L_1 a L_2 . Neformálně řečeno, jazyk L_1 představuje dobře známý bezkontextový jazyk, který obsahuje všechny řetězce nad $\Sigma = \{a, b, c\}$, které jsou konkatenací dvou stejně dlouhých řetězců takových, že druhý řetězec je reverzací prvního řetězce. Vyplývá, že $L_1 \notin \mathcal{L}_3$, přičemž by to bylo možné dokázat pomocí Pumping lemmatu podobně, jako je tomu následně pro $L_1 \cup L_2$.

Jazyk L_2 obsahuje všechny řetězce nad $\Sigma = \{a, b, c\}$ takové, že počet symbolů a i b je lichý. Jelikož počet kombinací sudosti a lichosti počtu symbolů a a b je konečný, lze řetězce jazyka L_2 přijímat například úplně definovaným deterministickým konečným automatem, a tudíž $L_1 \in \mathcal{L}_3$. Kompletní důkaz by bylo možné provést pomocí Myhill-Nerodovy věty nebo sestrojením zmiňovaného úplně definovaného deterministického konečného automatu.

• $L_1 \cap L_2$

Průnikem jazyků L_1 a L_2 vzniká nový jazyk

$$L_1 \cap L_2 = \{ww^R \mid w \in \{a, b, c\}^* \land \#_a(ww^R) \mod 2 = \#_b(ww^R) \mod 2 = 1\}.$$

Jelikož jazyk $L_1 \cap L_2$ je průnikem regulárního a bezkontextového jazyka, lze z uzávěrových vlastností \mathcal{L}_2 vůči průniku s regulárními jazyky usoudit, že výsledný jazyk bude regulární (viz [1]). To může pro nově vzniklý jazyk platit tehdy a jen tehdy, když

$$L_1 \cap L_2 = \emptyset \in \mathcal{L}_3 \iff \nexists ww^R \in \{a, b, c\}^* : \#_a(ww^R) \mod 2 = \#_b(ww^R) \mod 2 = 1.$$

Lemma 1.1.
$$\nexists ww^R \in \{a, b, c\}^* : \#_a(ww^R) \mod 2 = \#_b(ww^R) \mod 2 = 1.$$

Důkaz. Důkaz bude proveden sporem. Předpokládejme, že

$$\exists ww^R \in \{a, b, c\}^* : \#_a(ww^R) \bmod 2 = \#_b(ww^R) \bmod 2 = 1.$$

Uvažujme libovolné $ww^R \in \{a, b, c\}^*$. Vyplývá, že $\#_a(ww^R) = 2 * \#_a(w)$ a $\#_b(ww^R) = 2 * \#_b(w)$. Nutně ovšem musí pro všechna ww^R platit, že $\#_a(ww^R) \mod 2 = \#_b(ww^R) \mod 2 = 2$. Tudíž docházíme ke sporu s předpokladem, že existuje řetězec ww^R obsahující lichý počet symbolů a i b.

Na základě lemmatu 1.1 platí, že $L_1 \cap L_2 = \emptyset \in \mathcal{L}_3$ (jedná se tedy o regulární jazyk), přičemž takový jazyk je možné přijmout úplně definovaným deterministickým konečným automatem

$$M_1 = (\{s\}, \{a, b, c\}, \delta, s, \emptyset),$$

kde

$$\delta : (s, a) = \{s\},\$$
$$(s, b) = \{s\},\$$
$$(s, c) = \{s\}.$$

Stavový diagram úplně definovaného deterministického konečného automatu M_1 je vyobrazen na obrázku 1.

Obrázek 1: Stavový diagram úplně definovaného deterministického konečného automatu M_1 .

• $L_1 \cup L_2$

Sjednocením jazyků L_1 a L_2 vzniká nový jazyk

$$L_1 \cup L_2 = \{ww^R \mid w \in \{a, b, c\}^*\} \cup \{w \mid w \in \{a, b, c\}^* \land \#_a(w) \bmod 2 = \#_b(w) \bmod 2 = 1\}.$$

Na základě skutečnosti, že jazyk $L_1 \cup L_2$ je sjednocením regulárního a neregulárního (bezkontextového) jazyka, je předpokládáno, že $L_1 \cup L_2 \notin \mathcal{L}_3$.

Lemma 1.2.
$$L_1 \cup L_2 = \{ww^R \mid w \in \{a, b, c\}^*\} \cup \{w \mid w \in \{a, b, c\}^* \land \#_a(w) \mod 2 = \#_b(w) \mod 2 = 1\} \notin \mathcal{L}_3.$$

 $D\mathring{u}kaz$. Důkaz sporem pomocí Pumping lemmatu. Předpokládejme, že $L_1 \cup L_2 \in \mathcal{L}_3$. Pak dle Pumping lemmatu platí, že

$$\exists k > 0 : \forall w \in \Sigma^* : w \in L_1 \cup L_2 \land |w| \ge k \implies$$
$$\exists x, y, z \in \Sigma^* : w = xyz \land y \ne \varepsilon \land |xy| \le k \land \forall i \ge 0 : xy^i z \in L_1 \cup L_2.$$

Uvažujme libovolné k > 0 a zvolme $w = a^k bba^k$. Platí, že $w \in L_1 \cup L_2 \wedge |w| = 2 * k + 2 \ge k$. Pro každé rozdělení slova w platí, že $w = xyz \wedge y \ne \varepsilon \wedge |xy| \le k$. Zřejmě

$$x = a^{\alpha_1}, 0 \le \alpha_1 < k,$$

$$y = a^{\alpha_2}, 1 \le \alpha_2 \le k \land \alpha_1 + \alpha_2 = k,$$

$$z = a^{k - \alpha_1 - \alpha_2} bba^k.$$

Zvolme i=0. Pak $xy^0z=a^{\alpha_1}a^{k-\alpha_1-\alpha_2}bba^k=a^{k-\alpha_2}bba^k$. Dle Pumping lemmatu by mělo platit, že $a^{k-\alpha_2}bba^k\in L_1\cup L_2$. To platí tehdy a jen tehdy, když

$$k - \alpha_2 = k \vee ((k - \alpha_2 + k) \mod 2 = 2 \mod 2 = 1).$$

- $-k-\alpha_2=k$:
 - Nastane pouze v případě, že $\alpha_2 = 0$, ovšem to je ve sporu s předpokladem, že $\alpha_2 \ge 1$.
- $-(k \alpha_2 + k) \mod 2 = 2 \mod 2 = 1$:

Nastane pouze v případě, že $(k - \alpha_2 + k) \mod 2 = 1 \land 2 \mod 2 = 1$. Druhá část výrazu ovšem nikdy nemůže nastat a vyplývá, že celý výraz neplatí.

Tudíž, $a^{k-\alpha_2}bba^k \notin L_1 \cup L_2$ a dochází ke sporu s předpokladem, že $L_1 \cup L_2 \in \mathcal{L}_3$.

2 Příklad 2

Uvažujme jazyk $L_3=\{puvw\,|\,p,v\in\{a,b\}^*,u,w\in\{c,d\}^*,(p=v^R\vee u=w^R)\}$

- (a) Sestrojte bezkontextovou gramatiku G_3 takovou, že $L(G_3) = L_3$.
- (b) Sestrojte zásobníkový automat Z_3 takový, že $L(Z_3) = L_3$.

2.1 Řešení

(a) Řešením je bezkontextová gramatika

$$G_3 = (N, \Sigma, P, S),$$

kde

$$\begin{split} N &= \{S, A, B, C, D\}, \\ \Sigma &= \{a, b, c, d\}, \\ P &= \{S \rightarrow AB \,|\, CD, \\ A \rightarrow B \,|\, aAa \,|\, bAb, \\ B \rightarrow \varepsilon \,|\, cB \,|\, dB, \\ C \rightarrow \varepsilon \,|\, aC \,|\, bC, \\ D \rightarrow C \,|\, cDc \,|\, dDd\}. \end{split}$$

(b) Řešením je zásobníkový automat Z_3 , jehož stavový diagram je vyobrazen na obrázku 2. Notace pravidel je zapisována ve tvaru, kdy jako vrchol zásobníku je uvažován symbol nejvíce napravo.

Obrázek 2: Stavový diagram zásobníkového automatu Z_3 .

3 Příklad 3

Rozhodněte a dokažte následující tvrzení:

- (a) $\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3$ takový, že jeho doplněk $\overline{L_1}$ je konečný jazyk.
- (b) $\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3$ takový, že $\forall L_2 \in \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$
- (c) $\exists L_1 \in \mathcal{L}_3 \text{ takový}, \text{ že } \forall L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$

3.1 Řešení

- (b) Tvrzení neplatí. Důkaz bude proveden sporem. Uvažujme libovolný jazyk $L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3$. Dále stanovme, že $L_2 = \emptyset$, přičemž $L_2 \in \mathcal{L}_3$. Potom nutně platí, že $L_1 \cap L_2 = \emptyset \in \mathcal{L}_3$ a dochází ke sporu.
- (c) Tvrzení platí. Stanovme, že $L_1 = \Sigma^* \in \mathcal{L}_3$. Dále uvažujme libovolný jazyk $L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$, přičemž $L_2 \subset L_1$. Vyplývá, že $L_1 \cap L_2 = L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$.

4 Příklad 4

Uvažujme jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) \geq 2 \lor \#_b(w) = 0\}$. Sestrojte relaci pravé kongruence \sim , která splňuje následující dvě podmínky: 1) L je sjednocením některých tříd rozkladu Σ^*/\sim a 2) index \sim je o jedna větší než index \sim_L .

4.1 Řešení

Nejprve sestrojíme úplně definovaný deterministický konečný automat, který neobsahuje nedostupné stavy. Pro to, aby index \sim byl o jedna větší než index \sim_L , je nejprve zapotřebí sestrojit minimální úplně definovaný deterministický konečný automat, abychom zjistili počet tříd rozkladu Σ^*/\sim_L .

Minimální úplně definovaný deterministický konečný automat pro jazyk L je vyobrazen na obrázku 3. Důkaz toho, že se jedná o minimální úplně definovaný deterministický konečný automat, by bylo možné provést s využitím Myhill-Nerodovy věty nebo algoritmu pro převod úplně definovaného deterministického konečného automatu na redukovaný deterministický konečný automat.

Obrázek 3: Stavový diagram minimálního úplně definovaného deterministického konečného automatu pro jazyk L.

Úplně definovaný deterministický konečný automat pro relaci pravé kongruence \sim nesmí být minimální. Tento konečný automat je vyobrazen na obrázku 4. Dále rozklad Σ^*/\sim musí obsahovat navíc právě jednu třídu oproti rozkladu Σ^*/\sim_L . Tudíž, index relace \sim bude o jedna větší oproti indexu relace \sim_L .

Obrázek 4: Stavový diagram neminimálního úplně definovaného deterministického konečného automatu pro jazyk L.

Definice 4.1. Nechť $M = (Q, \Sigma, \delta, s_0, F)$ je nedeterministický konečný automat a nechť $q \in Q$. Jazyk přístupových řetězců stavu q je definován následovně

$$L^{-1}(q) = \{ w \in \Sigma^* \mid (s_0, w) \vdash^* (q, \varepsilon) \}.$$

Dále za použití definice 4.1 najdeme jazyky přístupových řetězců nad $\Sigma = \{a, b\}$ všech stavů neminimálního úplně definovaného deterministického konečného automatu:

$$L^{-1}(s_0) = \{ w \in \Sigma^* \mid \#_a(w) = 0 \land \#_b(w) = 0 \},$$

$$L^{-1}(s_1) = \{ w \in \Sigma^* \mid \#_a(w) = 1 \land \#_b(w) = 0 \},$$

$$L^{-1}(s_2) = \{ w \in \Sigma^* \mid \#_a(w) \ge 2 \land \#_b(w) = 0 \},$$

$$L^{-1}(s_3) = \{ w \in \Sigma^* \mid \#_a(w) = 0 \land \#_b(w) \ge 1 \},$$

$$L^{-1}(s_4) = \{ w \in \Sigma^* \mid \#_a(w) = 1 \land \#_b(w) \ge 1 \},$$

$$L^{-1}(s_5) = \{ w \in \Sigma^* \mid \#_a(w) \ge 2 \land \#_b(w) \ge 1 \}.$$

Najdeme rozklad množiny $\Sigma^*,$ který je daný jako množina jazyků přístupových řetězců jednotlivých stavů:

$$P = \{L^{-1}(s_0), L^{-1}(s_1), L^{-1}(s_2), L^{-1}(s_3), L^{-1}(s_4), L^{-1}(s_5)\}.$$

Najdeme pravou kongruenci k tomuto rozkladu takovou, že $P = \Sigma^* / \sim$:

$$\forall u, v \in \Sigma^* : u \sim v \iff (\#_a(u) = 0 \land \#_a(v) = 0 \land \#_b(u) = 0 \land \#_b(v) = 0) \lor (\#_a(u) = 1 \land \#_a(v) = 1 \land \#_b(u) = 0 \land \#_b(v) = 0) \lor (\#_a(u) \ge 2 \land \#_a(v) \ge 2 \land \#_b(u) = 0 \land \#_b(v) = 0) \lor (\#_a(u) = 0 \land \#_a(v) = 0 \land \#_b(u) \ge 1 \land \#_b(v) \ge 1) \lor (\#_a(u) = 1 \land \#_a(v) = 1 \land \#_b(u) \ge 1 \land \#_b(v) \ge 1) \lor (\#_a(u) \ge 2 \land \#_a(v) \ge 2 \land \#_b(u) \ge 1 \land \#_b(v) \ge 1).$$

- Jistě jde o relaci ekvivalence, protože vznikla z rozkladu množiny.
- Jistě jde o pravou kongruenci, protože jde o ekvivalenci, které vznikla pomocí jazyka přístupových řetězců stavů konečného automatu.
- Sjednocením některých tříd rozkladu Σ^*/\sim získáme jazyk L:

$$L = L^{-1}(s_0) \cup L^{-1}(s_1) \cup L^{-1}(s_2) \cup L^{-1}(s_5) = \{ w \in \{a, b\}^* \mid \#_a(w) \ge 2 \lor \#_b(w) = 0 \}.$$

Index ~ je o jedna větší oproti indexu prefixové ekvivalence ~_L, neboť $|\Sigma^*/\sim|=6$ a $|\Sigma^*/\sim_L|=5$.

Použitá literatura

[1] Rozenberg, G.; Salomaa, A. (editoøi): *Handbook of Formal Languages*. Berlin, Heidelberg: Springer-Verlag, první vydání, 1997, ISBN 978-3-642-63863-3, 873 s.