

partial fractions in Euclidean domains

Canonical name PartialFractionsInEuclideanDomains

Date of creation 2013-03-22 15:40:18

Last modified on 2013-03-22 15:40:18

Owner stevecheng (10074)

Last modified by stevecheng (10074)

Numerical id 4

Author stevecheng (10074)

Entry type Result Classification msc 13F07

Synonym partial fraction decomposition in Euclidean domains

This entry states and proves the existence of partial fraction decompositions on an Euclidean domain.

In the following, we use ν to denote the Euclidean valuation function of an Euclidean domain E, with the convention that $\nu(0) = -\infty$.

For a gentle introduction:

- 1. See http://planetmath.org/PartialFractionspartial fractions of fractional numbers for the case when E consists of the integers and $\nu(k) = |k|$ for $k \neq 0$.
- 2. See partial fractions of expressions for the case when E consists of polynomials over the complex field, with $\nu(p)$ being the degree of the polynomial p.
- 3. See partial fractions for polynomials for the case when E is the ring of polynomials over any field, and ν is the degree of polynomials.

Theorem 1. Let $p, q_1 \neq 0$ and $q_2 \neq 0$ be elements of an Euclidean domain E, with q_1 and q_2 be relatively prime. Then there exist α_1 and α_2 in E such that

$$\frac{p}{q_1 \, q_2} = \frac{\alpha_1}{q_1} + \frac{\alpha_2}{q_2} \, .$$

Proof. By the Euclidean algorithm, we can obtain elements s_1 and s_2 in E such that

$$1 = s_1 q_1 + s_2 q_2$$
.

Then

$$\frac{p}{q_1 \, q_2} = \frac{p \, s_2}{q_1} + \frac{p \, s_1}{q_2} \,,$$

so we can take $\alpha_1 = p s_2$ and $\alpha_2 = p s_1$.

Theorem 2. Let p and $q \neq 0$ be elements of an Euclidean domain E, and n be any positive integer. Then there exist elements $\alpha_1, \ldots, \alpha_n, \beta$ in E such that

$$\frac{p}{q^n} = \beta + \frac{\alpha_1}{q} + \frac{\alpha_2}{q^2} + \dots + \frac{\alpha_n}{q^n}, \quad \nu(\alpha_j) < \nu(q).$$

Proof. Let $r_0 = p$. Iterating through k = 1, ..., n in order, using the division algorithm, we can find elements r_k and s_k such that

$$r_{k-1} = r_k q + s_k, \quad \nu(s_k) < \nu(q).$$

Then

$$p = r_0 = r_1 q + s_1$$

$$= (r_2 q + s_2) q + s_1$$

$$= \dots$$

$$= r_n q^n + s_n q^{n-1} + s_{n-1} q^{n-2} + \dots + s_2 q + s_1$$

$$\frac{p}{q^n} = r_n + \frac{s_n}{q} + \frac{s_{n-1}}{q^2} + \dots + \frac{s_2}{q^{n-1}} + \frac{s_1}{q^n}.$$

So set $\beta = r_n$ and $\alpha_j = s_{n-j+1}$.

Theorem 3. Let p and $q \neq 0$ be elements of an Euclidean domain E. Let $q = \phi_1^{n_1} \phi_2^{n_2} \cdots \phi_k^{n_k}$ be a factorization of q to prime factors ϕ_i . Then there exist elements α_{ij} , β in E such that

$$\frac{p}{q} = \beta + \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{\alpha_{ij}}{\phi_i^j}, \quad \nu(\alpha_{ij}) < \nu(\phi_i).$$

Proof. Apply Theorem ?? inductively to obtain elements s_i in E such that

$$\frac{p}{q} = \sum_{i=1}^{k} \frac{s_i}{\phi_i^{n_i}}$$

(the factors ϕ_i are relatively prime). Then apply Theorem ?? to obtain elements α_{ij} and β_i in E such that

$$\frac{s_i}{\phi_i^{n_i}} = \beta_i + \sum_{j=1}^{n_i} \frac{\alpha_{ij}}{\phi_i^j}$$

with $\nu(\alpha_{ij}) < \nu(\phi_i)$. Take $\beta = \beta_1 + \cdots + \beta_k$.