Exercícios - Cálculo IV - Aula 4 - Semana 14/9-18/9

Critérios de Convergência para Séries de Termos Não Negativos (continuação)

Critérios	Conclusões	Comentários
$\begin{array}{ c c c } \hline \textbf{Crit\'erio da Raiz} \\ \text{Para} \sum_{n=0}^{\infty} a_n \text{ com } \underline{a_n \geq 0} \text{ para todo} \\ n \geq N, \text{ onde } N \text{ \'e um natural fixo,} \\ \text{seja } L = \lim_{n \to \infty} \sqrt[n]{a_n}. \end{array}$	n=0	Frequentemente usado para séries com termo geral a_n envolvendo potências n -ésimas.
	Se $L>1$, então $\sum_{n=0}^{\infty}a_n$ diverge. Se $L=1$, o critério inconclusivo.	
$\begin{array}{l} \textbf{Crit\acute{e}rio da Raz\~ao} \\ \text{Para} \sum_{n=0}^{\infty} a_n \text{ com } \underline{a_n > 0} \text{ para todo} \\ n \geq N, \text{ onde } N \text{ \'e um natural fixo,} \\ \text{seja } L = \lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n}. \end{array}$	Se $L < 1$, então $\displaystyle \sum_{n=0}^{\infty} a_n$ con-	Frequentemente usado para séries que envolvem fatoriais ou exponenciais.
	Se $L>1$, então $\sum_{n=0}^{\infty}a_n$ diverge. Se $L=1$, o critério inconclusivo.	

Critério de Convergência para Séries Alternadas

Critério	Conclusão	Comentário
Para para séries alternadas $\sum_{n=0}^{\infty} (-1)^n a_n \text{ou} \sum_{n=0}^{\infty} (-1)^{n+1} a_n, \\ \text{onde } a_n > 0 \text{ para todo natural } n.$	Se (a_n) é decrescente e $\lim_{n \to \infty} a_n = 0$, então a série $\sum_{n=0}^{\infty} (-1)^n a_n$ converge.	Aplica-se apenas a séries alternadas.

Exemplo 1. A série

$$\sum_{n=1}^{\infty} \frac{n \left| \cos \frac{(2n+1)\pi}{4} \right|}{n!}$$

é convergente. De fato,

$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{(n+1)\left|\cos\frac{(2n+3)\pi}{4}\right|}{(n+1)!}}{\frac{n\left|\cos\frac{(2n+1)\pi}{4}\right|}{n!}} = \lim_{n \to \infty} \frac{n!(n+1)}{(n+1)!n} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Logo, pelo critério da razão, a série é convergente.

Exemplo 2. Para quais valores de $x \in \mathbb{R}$, a série $\sum_{n=1}^{\infty} \frac{|x|^n}{n!}$ é convergente?

Solução. Seja $a_n = \frac{|x|^n}{n!}$.

Para x = 0, $a_n = 0$ para todo natural n; logo a série é convergente.

Para $x \neq 0$, $a_n > 0$ para todo natural n. Assim,

$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{|x|^{n+1}}{(n+1)!}}{\frac{|x|^n}{n!}} = \lim_{n \to \infty} \frac{|x|^{n+1}}{|x|^n} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{|x|}{n+1} = 0,$$

para qualquer $x \neq 0$. Logo, pelo critério da razão, a série é convergente para qualquer $x \neq 0$. Juntando os dois casos, concluímos que a série é convergente para qualquer que seja $x \in \mathbb{R}$.

Exemplo 3. A série $\sum_{n=1}^{\infty} \frac{(n^2+3n)^n}{(4n^2+5)^n}$ é convergente ou divergente?

Solução. Seja $a_n = \frac{(n^2+3n)^n}{(4n^2+5)^n}$. Para qualquer natural n, $a_n > 0$ e

$$L = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{(n^2 + 3n)^n}{(4n^2 + 5)^n}} = \lim_{n \to \infty} \frac{n^2 + 3n}{4n^2 + 5} = \frac{1}{4}.$$

Como L < 1, pelo critério da raiz, a série converge.

Exemplo 4. Para quais valores de $x \in \mathbb{R}$, a série $\sum_{n=1}^{\infty} \frac{|x|^n}{n}$ é convergente?

Solução. Seja $a_n = \frac{|x|^n}{n}$.

Para x = 0, $a_n = 0$ para todo natural n; logo a série é convergente.

Para $x \neq 0$, $a_n > 0$ para todo natural n. Assim,

$$L = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{|x|^n}{n}} = \lim_{n \to \infty} \frac{|x|}{\sqrt[n]{n}} = \frac{|x|}{1} = |x|.$$

Pelo critério da raiz, a série convergente se |x| < 1 e diverge se |x| > 1.

Se |x| = 1, a série é $\sum_{n=1}^{\infty} \frac{1}{n}$ é divergente.

Portanto, a série é convergente para qualquer que seja $x \in (-1, 1)$.

Exemplo 5. Para cada uma das seguintes séries alternadas, determine se a série converge ou diverge.

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$$

Solução.

a) Como $\frac{1}{(n+1)^2} < \frac{1}{n^2}$ e $\frac{1}{n^2} \to 0$ com $n \to \infty$, a série é convergente pelo critério de Leibniz.

b) Como $\frac{n}{n+1} \not\to 0$ com $n \to \infty$, não podemos aplicar o critério de Leibniz. Em vez disso, usamos o crtitério da divergência. Como $\lim_{k \to \infty} \frac{(-1)^n n}{n+1}$ não existe, a série diverge. Este exemplo mostra que o fato de uma série ser alternada não garante que ela seja convergente.

Exercício 1. Determine se as séries são convergentes ou divergentes.

$$a) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

$$b) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{3n}$$

$$c) \sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{n}}{2n+1}$$

$$d) \sum_{n=0}^{\infty} \frac{n}{2^n}$$

$$e) \sum_{n=1}^{\infty} \sqrt{n} \left(\frac{2n-1}{n+13}\right)^n$$

$$f) \sum_{n=1}^{\infty} \frac{\pi^n}{n^{\pi}}$$

$$g) \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

$$h) \sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots 2n}{(2n)!}$$

$$i) \sum_{n=1}^{\infty} \frac{3^{n^2}}{2^{n^3}}$$

Exercício 2. Para quais valores de $x \in \mathbb{R}$ a série $\sum_{n=1}^{\infty} \frac{|x|^n n!}{n^n}$ é convergente?