Interférence (Young's Exper. skits seand Principal Alterating bright & dark bands / fringes

path difference = m \
m = 0, = 1, = 2, = 3, = 4, ---

desmetive

Destructive:

path difference = $(m+\frac{1}{z})$ > $m = {}^{3}0$, ± 1 , ± 2 , ± 3 , -...

path difference = $8 = d \sin \theta$ constructive \Rightarrow $d \sin \theta = m \lambda$ M=0,±1,±2, destructive \Rightarrow $d \sin \theta = (m+\frac{1}{2}) \lambda$ Fifth maximum \Rightarrow m = 5, -5Fifth minimum \Rightarrow m = 4, -4

Fifth minimum $\Rightarrow m = 4 - 4$ Lan $\theta = \frac{9}{1}$ θ is small \Rightarrow tan $\theta \approx \sin \theta$ $\sin \theta = \frac{9}{1}$

Constructive => d \frac{Y_{bright}}{L} = m \frac{1}{2}

Alestructive => d \frac{Y_{don't}}{L} = \left(m + \frac{1}{2}\right) \frac{1}{2}

Mirror

Signal 15 Mirror

Signal 15 Mirror

Signal 16 Mirror

Mirror

Mirror

Mirror

Thin Films

I & ray 1 are 180° out of phase I & ray 2 are in phase

if reflection from higher n = Incident of veflected out of phere by 120 if reflection from lower n => Incident & netherted in Phace constructive: $2t = (m + \frac{1}{2}) \frac{\lambda}{n}$ $(m = 0,1)^2$ $1. \quad 2. \quad 2.$ destructive: $M = \frac{\lambda}{N}$ $\frac{1}{N} > \frac{1}{N}$

n N₂ $n > n_1$ $n < n_1$ $n < n_2$ $n < n_2$ $n < n_2$ $m > n_2$ $m > n_2$

destructive:

 $2t = \left(m + \frac{1}{2}\right) \frac{\lambda}{h}$

Construtive

2t = m = 1