Prova de Admissão - Dezembro 2003 Pos-graduação Matemática Aplicada DMA-IMECC-UNICAMP

Álgebra Linear

Questão 1:

(a) Sejam $u, v \in \mathbb{R}^n$ provar que

$$||u|| = ||v|| \iff (u+v)^T \cdot (u-v) = 0$$

$$||u + v||^2 = ||u||^2 + ||v||^2 \iff u^T \cdot v = 0$$

(c) Seja $A \in \mathbb{R}^{m \times n}$ com $m < n, b \in \mathbb{R}^m$ e o sistema Ax = b, qual é a condição suficiente para que o sistema tenha solução unica.

Questão 2: Sejam $\{v_1,\ldots,v_p\}$ vetores de $I\!\!R^n$ com $p\leq n$ consideremos os seguintes subespaços

$$S = \{ A \in \mathbb{R}^{n \times n} \mid Av_i = 0, i = 1, \dots, p \}$$

$$G = ger\{v_1, \dots, v_p\}$$

Deteminar a relação que existe entre a Dim(S) e a Dim(G).

Questão 3: Sejam $\{u_1,\ldots,u_p\}$ vetores ortonormais em ${I\!\!R}^n$, definimos

$$P = \sum_{i=1}^{p} u_i u_i^T$$

- (a) Determinar o Nucleo e a Imagem de P
- (b) Deteminar os autovalores e os autovetores associados de P.
- (c) Dado $v \in \mathbb{R}^n$, Dizer que reprecenta geometricamente Pv.

Questão 4: Seja $A\in \mathbb{R}^{n\times n}$ e $v\in \mathbb{R}^n$ Tal que $A^n=0$ e $A^{n-1}v\neq 0$, mostre que $\{v,Av,\ldots,A^{n-1}v\}$ são LI.

Cálculo

Questão 1: seja $P(x) = \sum_{i=0}^{n} a_i x^i$ Provar que se

$$\sum_{i=0}^{n} \frac{a_i}{i+1} = 0$$

Então existe, $\xi \in [0, 1]$ tal que $P(\xi) = 0$

Questão 2: Nas seguintes questões provar se é verdadeira ou achar um contraexemplo. Seja $f:[a,b] \to I\!\!R$ e $g:[a,b] \to I\!\!R$ funções duas vezes diferenciaveis

- 1. Se $c \in [a, b]$ e um minimizador global de f em [a, b], então f'(c) = 0.
- 2. se f'(2) = 0, f''(2) = 0 o ponto (2, f(2)) é um ponto de inflexion da curva y = f(x).
- 3. se f e g são crescentes em [a, b] então f.g e crescente em [a, b].

Questão 3:

- (a) dada a função $f(x) = \frac{1}{x}$, provar que a figura formada pelas retas tangente e normal à curva no ponto x = 1, e o eixo dos x, é um triângulo isósceles.
- (b) dada uma função $f: \mathbb{R} \to \mathbb{R} \in C^{\infty}$, tal que f(0) = L e $f'(x) < 0 \ \forall x \in [0, \infty)$, voce pode concluir que $\lim_{x \to +\infty} f(x) = -\infty$?

Questão 4: Seja $f:[a,b]\to I\!\!R$ continua e $g:[a,b]\to I\!\!R$ não negativa e integravel sobre [a,b] provar que exite $\xi\in[a,b]$ tal que

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$$

As repostas não Justificadas não serão consideradas.