Math 109: Calculus 1

Spring 2015

instructor: landon rabern

email: lrabern@fandm.edu class webpage: bit.ly/calculus2015

class meetings: 9:00 AM-9:50 AM MWF in STA 217 (lecture / group work)

1:15 PM-2:05 PM T in HAC 412 (working problems)

office hours: 10:00 AM-10:50 AM MWF in STA 108

textbook: Calculus, Concepts and Contexts 4E, by James Stewart

What is this class about?

You are driving your car down a lonely highway and out of pure boredom you start thinking about how far you have traveled and how long it has taken. You remember that semi an hour back that cut you off and made you let up on the gas, how much of your time did that waste? What about all the other times you have braked or accelerated? We can answer any such question by playing with functions. Say d(t) is the distance you have traveled after t hours where t=0 is when you got on the highway. Say s(t) is the value on your speedometer at time t in miles per hour. When s(t) is small (when you are driving slow) d(t)increases more slowly and when s(t) is large (when you are driving fast) d(t) increases more quickly. So, to answer your original questions, what we need is a better understanding of the relationship between d(t) and s(t). This relationship is precisely what Calculus is about. We study a procedure for determining s(t) given d(t) similarly to how your speedometer works (computing your average speed over a short period of time); in fancy math words, this procedure is called differentiation and the function s is the derivative of the function d. We study this procedure for arbitrary functions. This might seem much more general, but if you move your foot just right on the gas pedal (and perhaps shift into reverse), you can make d(t) any function you like. So, in reality, the whole course is just about driving your car.

The procedure for getting d(t) given s(t) is the main topic of Calculus 2, we will see a little of this at the end of the course. The idea is that if we add up our speed over time, we get how far we have traveled. Again switching to fancy math words, this adding up procedure is called *integration* and the function d is the *integral* of the function s. Differentiation and integration are inverses of each other. If we have s(t) and apply our integration procedure,

we get d(t). If we then apply our differentiation procedure we get s(t) back. That the procedures "add speeds up" and "take average speed over short time period" are inverses of each other is The Fundamental Theorem of Calculus.

Homework

I can only show you the door. You're the one that has to walk through it.

To achieve fluency in this subject, you will need to immerse yourself in the material. Working tons of problems is a great way to do this. How many problems? My recommendation would be to work problems of a given type until they become easy for you.

I will put a list of practice problems for each class period on the class webpage. These will not be collected. Each Wednesday, I will select a couple of the more interesting problems and assign them—due the following Wednesday. These will be graded both for correctness and clarity of exposition.

Quizzes

Pop quiz,	hotshot.
-----------	----------

There will be tiny quizzes at random times throughout the course. I will set the random number generator so that the expected number of quizzes is 10. Quizzes are intended to reinforce basic concepts as well as encourage attendance. Unlike exams, quizzes will be closed-book. Your lowest three quiz scores will be dropped.

Exams

There will be two in-class exams and then a final exam during finals week. The purpose of the exams is to test your understanding of, and ability to reason about, the mathematical concepts. Since you can use your textbook as well as any other written material, no memorization is required; however, these exams occur in a finite time period, so rapid recall of facts will serve you well. All electronic devices should be stowed in your bag for the duration of the exam and any brain implants should be turned off.

Graded work breakdown

what	%	when
homework	20	weekly
quizzes	10	random times
in-class exam $#1$	15	Friday, February 13 th
in-class exam $\#2$	25	Friday, March 13 th
final exam	30	TBA, in finals week

Help

If you need help or just want to know more about something, please come to my scheduled office hours or set up another time to meet. In addition to my office hours, there are several undergraduate mathematics teaching assistants who hold regular hours.

Attendance

Please be advised that Math Department and F&M policy state that penalties (including grade reduction and/or dismissal from the course) may be assessed for excessive, unexcused absences.

Tentative Schedule

Monday	Wednesday	Friday
Jan 12th	14th 1	16th 2
	1.1, 1.2 review	1.3 review
19th	21st 3	23rd 4
Martin Luther King Day	2.1 tangents and velocity	2.2 limits
26th 5	28th 6	30th 7
2.3 limit laws	2.4 continuity	2.5 infinite limits
Feb 2nd 8	4th 9	6th 10
2.6 rates of change	2.7 derivatives	2.8 what does the
		derivative tell us?
9th 11	11th 12	13th 13
exam #1 review	exam #1 review	in-class exam #1
16th 14	18th 15	20th 16
3.1 derivatives of polynomials	1.5, 3.1 derivatives of exponentials	3.2 product and quotient rule

Monday	Wednesday	Friday
23rd 17	25th 18	27th 19
3.3, Appendix C derivatives	3.4 chain rule	3.5 implicit differentiation
of trig functions		
Mar 2nd 20	4th 21	6th 22
1.6, 3.6 derivatives of	3.7 derivatives of logarithms	Taylor series, imaginary
inverse trig functions		numbers, and magic
9th 23	11th 24	13th 25
exam #2 review	exam #2 review	in-class exam #2
16th	18th	20th
Spring Break	Spring Break	Spring Break
23rd 26	25th 27	27th 28
4.2, 4.3 max and min values	4.2, 4.3 max and min values	4.2, 4.3 max and min values
30th 29	Apr 1st 30	3rd 31
4.6 optimization	4.6 optimization	4.6 optimization
6th 32	8th 33	10th 34
4.8 antiderivatives	5.1 areas and distances	5.2 definite integrals
13th 35	15th 36	17th 37
5.2 definite integrals	5.3 evaluating definite	5.3 evaluating definite
	integrals	integrals
20th 38	22nd 39	24th
final exam review	final exam review	Reading Day
27th	29th	May 1st
Reading Day	Finals week	Finals week