Theorem: A Set is Open iff Each Point is an Interior Point

$$S \text{ is open } \Leftrightarrow \forall x \in S, \exists \varepsilon \in \mathbb{R}^{>0}, B(x, \varepsilon) \subseteq S$$

Proof

•
$$\Rightarrow$$

- Let $x \in S$, then $x \in \mathring{S}$ by assumption, so we have $\varepsilon_{\circ} \in \mathbb{R}^{>0}$, $B(x, \varepsilon_{\circ}) \subseteq S$. Take $\varepsilon = \varepsilon_{\circ}$

- =
 - We already know that $\mathring{S} \subseteq S$ therefore we must show that $S \subseteq \mathring{S}$
- * Let $x \in S$, thus by assumption, we have $\varepsilon \in \mathbb{R}^{>0}$ such that $B(x,\varepsilon) \subseteq S$
 - * Since $\mathring{S} \stackrel{\mathtt{D}}{=} \{ x \in \mathbb{R}^n : \exists \varepsilon \in \mathbb{R}^{>0}, B(x, \varepsilon) \subseteq S \}$, then $x \in \mathring{S}$