FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Predmet:222543 Oblikovanje interakcijeStudent:Kristo PalićAk. god.2023/2024Matični broj:0246074767

Nastavnik: prof. dr. sc. Vlado Glavinić Zagreb, 16.5.2024

7. ESEJ

Prirodna korisnička sučelja

Prirodna korisnička sučelja (engl. Natural User Interfaces, NUI) omogućuju interakciju s računalima i drugim uređajima na način koji oponaša interakciju s fizičkim svijetom. Ova sučelja koriste glas, ruke i tijelo umjesto tradicionalnih uređaja kao što su tipkovnica, miš ili dodirna ploha. NUI tehnologije postaju sve važnije kako se sve više traži intuitivnija i prirodnija interakcija s tehnologijom.

PlayStation Move

PlayStation Move je uređaj za kontrolu pokreta razvijen od strane Sony Interactive Entertainment. Prvi put je predstavljen 2010. godine za PlayStation 3 konzolu, a kasnije je postao kompatibilan s PlayStation 4 i PlayStation VR platformama te PlayStation 5 konzolom. Konceptualno sličan Nintendo Wii Remoteu i Microsoft Kinectu, PlayStation Move koristi senzore za inerciju i kameru za praćenje pokreta korisnika, omogućujući im interakciju s igrama putem fizičkih pokreta.

Primarni komponenta PlayStation Move kontrolera je svijetleća kugla na vrhu kontrolera koja može svijetliti u raznim bojama pomoću RGB LED-ova. Kamera PlayStation Eye ili PlayStation Camera prati ovu svijetleću kuglu kako bi odredila položaj kontrolera u trodimenzionalnom prostoru s visokom preciznošću i točnošću. Sfera također omogućuje jednostavno određivanje udaljenosti kontrolera od kamere, omogućujući praćenje u tri dimenzije s minimalnom procesnom latencijom. Ova mogućnost preciznog praćenja pokreta čini PlayStation Move intuitivnim i prirodnim za korisnike.

Osim praćenja pokreta, PlayStation Move koristi **vibracijsku haptičku tehnologiju** za pružanje povratnih informacija putem dodira, povećavajući osjećaj prisutnosti i interakcije u igrama. Kombinacija senzora i haptičke povratne informacije omogućuje korisnicima da se osjećaju uronjeni u igru, koristeći pokrete tijela za kontrolu različitih akcija u virtualnom svijetu.

Kako bismo bolje razumjeli implementaciju prirodnih korisničkih sučelja, važno je razmotriti ulogu različitih standardnih sučelja u ovom kontekstu. Analizirat ćemo primjere za dodirna, gesturalna, materijalna/opipljiva i haptička sučelja te njihovu primjenu.

Sučelje	Funkcije	Stil interakcije	Korištene UI naprave	Platforme
iPhone i iPad	Navigacija, igranje	Dodirne geste	Dodirni ekran	iOS
Android uređaji	Navigacija, igranje	Dodirne geste	Dodirni ekran	Android
Microsoft Surface	Crtanje, bilješke	Dodirne geste	Dodirni ekran	Windows
Bankomati	Financijske transakcije	Dodirne komande	Dodirni ekran	-
Interaktivni kiosci	Informacije, usluge	Dodirne komande	Dodirni ekran	-
Microsoft Kinect	Igre, aplikacije	Gesturalne komande	Kamera za praćenje pokreta	Xbox, Windows
Leap Motion	VR/AR interakcija	Gesturalne komande	Senzori za praćenje pokreta	Windows, MacOS
PlayStation Move	Igre	Gesturalne komande	Kontroler s senzorima	PlayStation konzole
Nintendo Wii	Igre	Gesturalne komande	Kontroler s senzorima	Nintendo konzole
Google Soli	Razni uređaji	Gesturalne komande	Radar za prepoznavanje gesti	Pametni satovi, zvučnici
Sifteo kocke	Edukativne igre	Tangibilne interakcije	Fizički blokovi	-
Osmo za iPad	Edukacija, igre	Tangibilne interakcije	Fizički objekti + iPad	iOS
Reactable	Glazba	Tangibilne interakcije	Interaktivni stol	-
LEGO Mindstorms	Edukacija, projekti	Tangibilne interakcije	Fizički blokovi	-
Tangible Tabletop	Obrazovanje, dizajn	Tangibilne interakcije	Fizički modeli	-
Apple Watch	Obavijesti, navigacija	Haptičke povratne informacije	Vibracijski motor	watchOS
PlayStation DualShock	Igre	Haptičke povratne informacije	Vibracijski motor	PlayStation konzole
VR rukavice	VR interakcija	Haptičke povratne informacije	Haptički motori	VR platforme
Haptic feedback trackpads	Navigacija	Haptičke povratne informacije	Vibracijski motori	MacBook
Ultrahaptics	Razni uređaji	Haptičke povratne informacije	Ultrazvučni valovi	-

- 1. **iPhone i iPad:** Dodirni ekrani omogućuju korisnicima intuitivno upravljanje uređajem putem jednostavnih gesti kao što su povlačenje, tapkanje i širenje prstima za zumiranje. Sučelje je postalo standard za pametne telefone i tablete, omogućujući bogato korisničko iskustvo.
- 2. **Android uređaji:** Slično kao i iPhone i iPad, Android uređaji koriste dodirne ekrane za navigaciju, interakciju s aplikacijama i igranje. Različiti proizvođači

- dodaju svoje jedinstvene značajke, ali osnovni princip dodirnog sučelja ostaje konzistentan.
- 3. **Microsoft Surface:** Surface uređaji koriste dodirne ekrane koji omogućuju precizno crtanje i pisanje pomoću olovke (stylusa), kao i standardne dodirne geste za navigaciju kroz Windows operativni sustav.
- 4. **Bankomati:** Dodirni ekrani na bankomatima omogućuju korisnicima jednostavan unos informacija i navigaciju kroz izbornike, što poboljšava korisničko iskustvo i smanjuje potrebu za fizičkim tipkovnicama i dugmadi.
- 5. **Interaktivni kiosci:** Koriste se u raznim javnim prostorima za pružanje informacija i usluga. Dodirni ekrani omogućuju korisnicima interakciju s informacijama na intuitivan način.
- 6. **Microsoft Kinect:** Kinect koristi kameru za praćenje pokreta tijela, omogućujući korisnicima interakciju s igrama i aplikacijama putem fizičkih gesti. Ovo gesturalno sučelje je revolucioniralo način igranja i omogućilo nove oblike interaktivne zabave.
- 7. **Leap Motion:** Senzori Leap Motiona omogućuju precizno praćenje ruku i prstiju, što je posebno korisno u VR i AR aplikacijama gdje korisnici mogu manipulirati virtualnim objektima s velikom preciznošću.
- 8. **Nintendo Wii:** Kontroler Wii koristi senzore za praćenje pokreta koji omogućuju korisnicima igranje igara pomoću fizičkih pokreta, što je populariziralo koncept aktivnog igranja.
- 9. **Google Soli:** Tehnologija Soli koristi radar za prepoznavanje finih gesti u zraku, omogućujući korisnicima interakciju s uređajima poput pametnih satova i zvučnika bez fizičkog dodira.
- 10. **Sifteo kocke:** Mali fizički blokovi koji se međusobno prepoznaju i interagiraju, omogućujući edukativne igre koje kombiniraju fizičku i digitalnu interakciju.
- 11. **Osmo za iPad:** Kombinira fizičke objekte s digitalnim igrama, omogućujući djeci da uče matematiku, crtanje i kodiranje kroz opipljivu interakciju.
- 12. **Reactable:** Interaktivni glazbeni stol koji korisnicima omogućuje stvaranje glazbe pomicanjem fizičkih objekata po površini stola, stvarajući jedinstvene zvukove i vizualne efekte.
- 13. **LEGO Mindstorms:** Fizički LEGO blokovi koji se mogu programirati za različite zadatke i projekte, omogućujući korisnicima stvaranje i upravljanje robotskim sustavima.
- 14. **Tangible Tabletop Interfaces:** Koriste se u obrazovanju i dizajnu za manipulaciju fizičkim modelima koji se odražavaju na digitalnim ekranima, omogućujući bogatiju interakciju i učenje.
- 15. **Apple Watch:** Haptička povratna informacija kroz vibracije pruža korisnicima obavijesti i povratne informacije tijekom korištenja aplikacija, navigacije i fitness aktivnosti.

- 16. **PlayStation DualShock kontroler:** Haptička povratna informacija u kontroleru poboljšava iskustvo igranja putem vibracija i pritiska, omogućujući korisnicima osjećaj dodira pri interakciji s igrama.
- 17. **VR rukavice** (**npr. HaptX**): Omogućuju korisnicima osjećaj dodira i pritiska u virtualnim okruženjima, povećavajući osjećaj prisutnosti i interakcije.
- 18. **Haptic feedback trackpads:** MacBook trackpadi koriste haptičku povratnu informaciju za simulaciju klika, omogućujući precizniju i prirodniju interakciju s uređajem.
- 19. **Ultrahaptics:** Tehnologija koristi ultrazvučne valove za stvaranje osjećaja dodira u zraku, bez fizičkog kontakta, omogućujući korisnicima interakciju s digitalnim sadržajem na inovativan način.

Prirodna korisnička sučelja predstavljaju značajan napredak u načinu na koji komuniciramo s tehnologijom. PlayStation Move je sjajan primjer kako NUI mogu omogućiti korisnicima da koriste svoje tijelo i pokrete za upravljanje aplikacijama i igrama, smanjujući potrebu za tradicionalnim uređajima poput tipkovnice i miša. Integracija različitih tipova standardnih sučelja, kao što su dodirna, gesturalna, materijalna i haptička sučelja, može značajno poboljšati korisničko iskustvo i omogućiti široku primjenu NUI u raznim kontekstima. Iako postoje izazovi, budućnost NUI obećava još intuitivniju i prirodniju interakciju s tehnologijom.

Referenca:

https://en.wikipedia.org/wiki/PlayStation_Move