Chapter 5

關係和函數

Relations and Functions

5.1 笛卡兒積和關係

5.2 關係的性質

5.3 函數:容易的及一對一

5.4 映成函數

5.5 函數合成及反函數

5.1 笛卡兒積和關係

Definition 5.1

For sets $A, B \in \mathcal{U}$, the *Cartesian product*, or cross product, of A and B is denoted by $A \times B$ and equals $\{(a,b)|a \in A, b \in B\}$.

對集合 A , B , A 和 B 的**笛卡兒積** (Cartesian product) 或**叉積** (cross product) 被表為 $A \times B$,且等於 $\{(a,b) \mid a \in A, b \in B\}$ 。

- a) $A \times B = \{(2, 4), (2, 5), (3, 4), (3, 5), (4, 4), (4, 5)\}.$
- b) $B \times A = \{(4, 2), (4, 3), (4, 4), (5, 2), (5, 3), (5, 4)\}.$
- c) $B^2 = B \times B = \{(4, 4), (4, 5), (5, 4), (5, 5)\}.$

- the elements of $A \times B$ are ordered pairs
- $|A \times B| = |A| \times |B| = |B \times A|$

But, in general $A \times B \neq B \times A$. And

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) \mid a_i \in A_i, 1 \le i \le n\}.$$

The set $\mathbf{R} \times \mathbf{R} = \{(x, y) | x, y \in \mathbf{R}\}$ is recognized as the real plane of coordinate geometry and two-dimensional calculus.

EXAMPLE 5. 3 Cont.

let
$$C = \{x, y\}$$

$$|A \times B \times C| = 12 = 3 \times 2 \times 2 =$$

[III CSIE Disprete Methometics]

NIU CSIE – Discrete Mathematics Lecturer: Fay Huang

Definition 5.2

For sets A, B, any subset of $A \times B$ is called a (binary) relation from A to B. Any subset of $A \times A$ is called a (binary) relation on A.

對集合 $A \cdot B \cdot A \times B$ 的任一子集合被稱為一個由 A 到 B 的 (二元) **關 係** [(binary) relation]。 $A \times A$ 的任一子集合被稱為 A 上的 (二元) 關係。

NIU CSIE – Discrete Mathematics

$$A = \{2, 3, 4\}$$
, $B = \{4, 5\}$

$$A \times B = \{(2, 4), (2, 5), (3, 4), (3, 5), (4, 4), (4, 5)\}.$$

Followings are some examples of relations from A to B.

c)
$$\{(2,4),(2,5)\}$$

e)
$$\{(2, 4), (3, 4), (4, 5)\}$$

f)
$$A \times B$$

Since $|A \times B| = 6$, there are 2^6 possible relations from A to B (for there are 2^6 possible subsets of $A \times B$).

EXAMPLE 5. 4 Cont.

對有限集合A,B 具 |A|=m 且 |B|=n,共有 2^{mn} 個由A 到 B 的關係,包括空關係及關係 $A\times B$ 本身。

亦有 2^{nm} (= 2^{mn}) 個由 B 到 A 的關係,其中亦含有 \emptyset 及 $B \times A$ 。由 B 到 A 的關係個數和由 A 到 B 的關係個數相同的理由是由 B 到 A 的任一個關係 Ω_1 可由由 A 到 B 的一個唯一關係 Ω_2 得到,其方法僅是簡單的將 Ω_2 上的每個序對的分量對調即可(且反過來亦可)。

E.g.
$$A = \{2, 3, 4\}$$
, $B = \{4, 5\}$

Relations from A to B $\{(2, 4), (3, 4), (4, 4)\}$

Relations from *B* to *A* $\{(4, 2), (4, 3), (4, 4)\}$

With $A = \mathbb{Z}^+$, we may define a relation \Re on set A as $\{(x, y)|x \leq y\}$.

One observation

For any set A, $A \times \emptyset = \emptyset$.

(If $A \times \emptyset \neq \emptyset$, let $(a, b) \in A \times \emptyset$.

Then $a \in A$ and $b \in \emptyset$. Impossible!)

Real-Life Examples of Relations

Student and Grades: {(Alice, 80), (Bob, 75), (Charlie, 90)}.

Temperature and Time: {(8 am, 20°C), (12 pm, 25°C), (6 pm, 18°C)}.

A person and his/her FB friends in the class:

{(小明, 雅惠), (小明, 志豪), (雅婷, 怡君), (怡君, 雅婷), (志豪, 心怡)}.

What do I get for \$120 in McDonalds?

{(安格斯牛肉堡, \$114), (嫩煎鷄腿堡, \$114), (大麥克, \$80), (凱撒辣脆鷄沙拉, \$104),}

對任意集合 A , B , $C \subseteq \mathcal{U}$:

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Proof: (a)

For any $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C)$

$$\Leftrightarrow a \in A \land b \in (B \cap C)$$

$$\Leftrightarrow a \in A, b \in B, b \in C$$

$$\Leftrightarrow$$
 $(a,b) \in (A \times B) \land (a,b) \in (A \times C)$

$$\Leftrightarrow$$
 $(a,b) \in (A \times B) \cap (A \times C)$

對任意集合 A , B , $C \subseteq \mathcal{U}$:

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

建議練習

作業

Proof:

(b)

5.2 關係的性質

EXAMPLE 5. 7

Let n ∈ Z⁺. For x, y ∈ Z,
 the modulo n relation R is defined by x R y
 if x - y is a multiple of n.

Define \Re to be the binary relation on \mathbb{Z} , such that $x\Re y$ if $x \equiv y \pmod{n}$

E.g. With n = 7, $9 \Re 2$, $-3 \Re 11$, $(14, 0) \in \Re$,

but $3 \Re 7$ (that is, 3 is *not* related to 7).

2. Define \Re to be the binary relation on $\Re(\mathcal{U})$, such that $A \Re B$ if $A \cap C = B \cap C$.

E.g. universe
$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7\}$$

 $C = \{1, 2, 3, 6\}$

- * Then the sets $\{1, 2, 4, 5\}$ and $\{1, 2, 5, 7\}$ are related since $\{1, 2, 4, 5\} \cap C = \{1, 2\} = \{1, 2, 5, 7\} \cap C$.
- * $X = \{4, 5\}$ and $Y = \{7\}$ are related because $X \cap C = \emptyset = Y \cap C$.
- * $S = \{1, 2, 3, 4, 5\}$ and $T = \{1, 2, 3, 6, 7\}$ are <u>not</u> related $S \not\Re T$ — since $S \cap C = \{1, 2, 3\} \neq \{1, 2, 3, 6\} = T \cap C$.

(1) The relation \Re on $\{1, 2, 3, ...\}$ where $a\Re b$ means $a \mid b$.

(2) The relation \Re on **Z** where $a\Re b$ means $a \neq b$.

(3) The relation \Re on \mathbb{Z} where $a\Re b$ means $|a-b| \le 1$.

Definition 5.3

A relation \mathcal{R} on a set A is called *reflexive* if for all $x \in A$, $(x, x) \in \mathcal{R}$.

一個集合 A 上的關係被稱是**反身的** (reflexive),若對所有 $x \in A$, $(x, x) \in \Re$ 。

(1) The relation \Re on $\{1, 2, 3, ...\}$ where $a\Re b$ means $a \mid b$.

(2) The relation \Re on **Z** where $a\Re b$ means $a \neq b$.

(3) The relation \Re on \mathbb{Z} where $a\Re b$ means $|a-b| \le 1$.

For $A = \{1, 2, 3, 4\}$, a relation $\Re \subseteq A \times A$ will be reflexive if and only if $\{(1, 1), (2, 2), (3, 3), (4, 4) \subseteq \Re$

Consequently, $\Re_1 = \{(1, 1), (2, 2), (3, 3)\}$ is not a reflexive relation on A, whereas $\Re_2 = \{(x, y) | x, y \in A, x \le y\}$ is reflexive on A.

Given a finite set A with |A| = n, we have $|A \times A| = n^2$, so there are 2^{n^2} relations on A.

How many of these are reflexive?

If $A = \{a_1, a_2, \ldots, a_n\}$, a relation \Re on A is reflexive if and only if $\{(a_i, a_i) | 1 \le i \le n\} \subseteq \Re$. Considering the other $n^2 - n$ ordered pairs in $A \times A$ [those of the form (a_i, a_j) , where $i \ne j$ for $1 \le i, j \le n$] as we construct a reflexive relation \Re on A, we either include or exclude each of these ordered pairs, so by the rule of product there are $2^{(n^2-n)}$ reflexive relations on A.

Definition 5.4

Relation \Re on set A is called *symmetric* if $(x, y) \in \Re \Rightarrow (y, x) \in \Re$, for all $x, y \in A$.

集合 A 上的關係 \Re 被稱為是**對稱的** (symmetric),若 $(x, y) \in \Re \Rightarrow (y, x) \in \Re$,對所有 $x, y \in A$ 。

以 $A = \{1, 2, 3\}$,我們有:

- a) $\Re_1 = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$,是 A 上一個對稱的但非反身的關係; symmetric, but not reflexive
- b) $\Re_2 = \{(1, 1), (2, 2), (3, 3), (2, 3)\}$,是 A 上一個反身的但非對稱的關係; reflexive, but not symmetric
- c) \Re_3 ={(1, 1), (2, 2), (3, 3)} 及 \Re_4 ={(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}, 是 A 上兩個既反身且對稱的關係; both reflexive and symmetric
- d) \Re_5 = {(1, 1), (2, 3), (3, 3)} 是 A 上一個既不反身也不對稱的關係。 neither reflexive nor symmetric

To count the symmetric relations on $A = \{a_1, a_2, \ldots, a_n\}$, we write $A \times A$ as $A_1 \cup A_2$, where $A_1 = \{(a_i, a_i) | 1 \le i \le n\}$ and $A_2 = \{(a_i, a_j) | 1 \le i, j \le n, i \ne j\}$, so that every ordered pair in $A \times A$ is in exactly one of A_1 , A_2 . For A_2 ,

$$|A_2| = |A \times A| - |A_1| = n^2 - n = n(n-1)$$
, an even integer.

The set A_2 contains $(1/2)(n^2 - n)$ subsets S_{ij} of the form $\{(a_i, a_j), (a_j, a_i)\}$ where $1 \le i < j \le n$.

EXAMPLE 5. 12 Cont.

In constructing a symmetric relation \Re on A, for each ordered pair in A_1 we have our usual choice of exclusion or inclusion.

For each of the $(1/2)(n^2 - n)$ subsets $S_{ij}(1 \le i < j \le n)$ taken from A_2 we have the same two choices.

So by the rule of product there are

 $2^n \cdot 2^{(1/2)(n^2-n)} = 2^{(1/2)(n^2+n)}$ symmetric relations on A.

EXAMPLE 5. 12 Cont.

In counting those relations on A that are both reflexive and symmetric, we have only one choice for each ordered pair in A_1 .

So we have $2^{(1/2)(n^2-n)}$ relations on A that are both reflexive and symmetric.

Definition 5.5

For a set A, a relation \Re on A is called *transitive* if, for all $x, y, z \in A$, (x, y), $(y, z) \in \Re \Rightarrow (x, z) \in \Re$.

(So if x "is related to" y, and y "is related to" z, we want x "related to" z, with y playing the role of "intermediary.")

對集合 A , A 上的關係 \mathfrak{R} 被稱是**遞移的** (transitive),若對所有 x , y , $z \in A(x,y)$, $(y,z) \in \mathfrak{R} \Rightarrow (x,z) \in \mathfrak{R}$ 。 (所以若 x 和 y 有關係且 y 和 z 有關係,我們要 x 和 z 有關係,以 y 扮演中間媒介的角色。)

$$x, y \in \mathbf{Z}$$
 $n \in \mathbf{Z}^+$

 $x \equiv y \pmod{n}$

modulo n relation R

defined by $x \mathcal{R} y$ if x - y is a multiple of n.

relation \Re on the set **Z**

$$a \Re b$$
 if $a \leq b$

Both relations are transitive.

Define the relation \Re on the set \mathbf{Z}^+ by

a|b

 $a \Re b$ if a divides b

that is, b = ca for some $c \in \mathbb{Z}^+$.

Now if $x \mathcal{R} y$ and $y \mathcal{R} z$, do we have $x \mathcal{R} z$?

$$x \mathcal{R} y \Rightarrow y = sx \text{ for some } s \in \mathbf{Z}^+$$

 $y \mathcal{R} z \Rightarrow z = ty \text{ where } t \in \mathbf{Z}^+$

Consequently, z = ty = t(sx) = (ts)x for $ts \in \mathbb{Z}^+$ so $x \mathcal{R} z$ and \mathcal{R} is <u>transitive</u>.

In addition, \Re is reflexive, but not symmetric,

If $A = \{1, 2, 3, 4\}$, then $\Re_1 = \{(1, 1), (2, 3), (3, 4), (2, 4)\}$ is a transitive relation on A, whereas $\Re_2 = \{(1, 3), (3, 2)\}$ is not transitive because $(1, 3), (3, 2) \in \Re_2$ but $(1, 2) \notin \Re_2$.

Note:

there is no known general formula for the total number of transitive relations on a finite set.

Definition 5.6

Given a relation \Re on a set A, \Re is called *antisymmetric* if for all a, $b \in A$, $(a \Re b \text{ and } b \Re a) \Rightarrow a = b$.

給集合 A 上的一個關係 \Re , \Re 被稱為**反對稱的** (antisymmetric),若對所有 a , $b \in A$, $(a \Re b \coprod b \Re a) \Rightarrow a = b$ 。 (僅有一個方法我們可同時有 a 和 b 有關係及 b 和 a 有關係,此方法是 a 和 b 為 A 上的相同元素。)

NIU CSIE – Discrete Mathematics

For a given universal set \mathcal{U} , a relation \mathcal{R} defined on $\mathcal{P}(\mathcal{U})$ is such that $(A, B) \in \mathcal{R}$ if and only if $A \subseteq B$, where $A, B \subseteq \mathcal{U}$.

Therefore, \Re is the subset relation from Chapter 3. If $A \Re B$ and $B \Re A$, then we have $A \subseteq B$ and $B \subseteq A$, which gives us A = B.

Hence, this relation is antisymmetric, reflexive, and transitive but not symmetric.

For $A = \{1, 2, 3\}$, the relation \Re on A given by

 $\Re = \{(1, 2), (2, 1), (2, 3)\}$ is not symmetric because $(3, 2) \notin \Re$, and it is not antisymmetric because $(1, 2), (2, 1) \in \Re$ but $1 \neq 2$.

relation $\Re_1 = \{(1, 1), (2, 2)\}$ is both symmetric and antisymmetric.

偏序

A relation \Re on a nonempty set A is called a *partial ordering* or a *partial-order relation* if \Re is reflexive, antisymmetric, and transitive.

We often use \leq to denote a partial ordering, and called (A, \leq) a *partially ordered set* or a *poset*.

A relation \Re on a set A is called a *total order*, if \Re is partial order and for any a, b in A, either $a\Re b$ or $b\Re a$.

The relation \Re defined on the set of \mathbb{Z}^+ , such that $(x, y) \in \Re$, if $x \mid y$, is a partial order relation.

Reflexive: since for all $x \in \mathbb{Z}^+$, $x \mid x$. Thus, $(x, x) \in \Re$.

Antisymmetric: since for all $x, y \in \mathbb{Z}^+$, if $x \mid y$ and $y \mid x$, then x = y. Thus, \Re is antisymmetric.

Transitive: since for all $x, y, z \in \mathbb{Z}^+$, if $x \mid y$ and $y \mid z$, then $x \mid z$. Thus, \Re is transitive.

But, the relation \Re is not a total order relation because for example we have neither $3 \nmid 7$ nor $7 \nmid 3$.

Define $A \Re B$ to be "set A is a subset of or is equal to set B" Then \Re is a partial order on $\{\{\}, \{1\}, \{2\}, \{1,2\}\}\}$.

```
\{\} R \{\}
\{1\} \Re \{1\}
                           Reflexive
{2} 9 {2}
\{1,2\} \Re \{1,2\}
                        Subset is also antisymmetric.
{} %{1}
\{\} \Re\{2\}
\{1\} \Re\{1,2\}
                        Transitive
\{2\}\Re\{1,2\}
{} 9R {1,2}
```

But neither

 $\{1\}\Re\{2\}$ nor $\{2\}\Re\{1\}$, so \Re is not a total order on $\{\{\},\{1\},\{2\},\{1,2\}\}$

Definition 5.9

等價

An equivalence relation \Re on a set A is a relation that is

reflexive, symmetric, and transitive.

EXAMPLE 5. 21

The following are all equivalence relations:

- "equal to" on the set of real numbers.
- "similar to" on the set of all triangles.
- "congruence modulo n" on the integers.

If
$$A = \{1, 2, 3\}$$
, then $\Re_1 = \{(1, 1), (2, 2), (3, 3)\}$, $\Re_2 = \{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)\}$, $\Re_3 = \{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)\}$, and $\Re_4 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\} = A \times A$

are all equivalence relations on A.

5.3 函數:容易的及一對一

Definition 5.10

For nonempty sets A, B, a function, or mapping, f from A to B, denoted $f: A \rightarrow B$, is a relation from A to B in which every element of A appears exactly once as the first component of an ordered pair in the relation.

對非空集合 $A \cdot B \cdot -$ 個**函數** (function),或**映射** (mapping),f 由 A 到 B,被表為 $f: A \to B$,是一個由 A 到 B 的關係,其中 A 的每個元素恰出 現一次做為關係中序對的第一個分量。

For $A = \{1, 2, 3\}$ and $B = \{w, x, y, z\}$, $f = \{(1, w), (2, x), (3, x)\}$ is a function, and consequently a relation, from A to B.

 $\Re_1 = \{(1, w), (2, x)\} \text{ and } \Re_2 = \{(1, w), (2, w), (2, x), (3, z)\}$ are relations, but not functions, from A to B. (Why?)

Notations

$$f: A \to B$$
 We often write $f(a) = b$
$$a \in A \quad b \in B$$

(a, b) is an ordered pair in the function f

b is called the image of a under f, whereas a is a preimage of b.

$$(a, b), (a, c) \in f \text{ implies } b = c.$$

Definition 5.11

For the function $f: A \to B$,

A is called the *domain* of f and B the *codomain* of f.

The subset of B consisting of those elements that appear as second components in the ordered pairs of f is called the range of f and is also denoted by f(A)

對函數 $f: A \to B$, A 被稱為 f 的**定義域** (domain) 且 B 被稱為 f 的**對應 域** (codomain) 。由 f 的所有序對中第二個分量所組成的 B 之子集合被稱為 f 的**值域** (range) 亦被表為 f(A) ,因為它是 (A 的所有元素) 在 f 之下的像所成的集合。

EXAMPLE 5. 23 Cont.

 $A = \{1, 2, 3\}$ and $B = \{w, x, y, z\}, f = \{(1, w), (2, x), (3, x)\}$ the domain of $f = \{1, 2, 3\}$, the codomain of $f = \{w, x, y, z\}$, and the range of $f = f(A) = \{w, x\}$.

$$A = \{1, 2, 3\} \perp B = \{w, x, y, z\}$$

In Example 5.22 there are $2^{12} = 4096$ relations from A to B. How many functions are there from A to B?

Let A, B be nonempty sets with |A| = m, |B| = n.

$$A = \{a_1, a_2, a_3, ..., a_m\}$$
 and $B = \{b_1, b_2, b_3, ..., b_n\},\$

 $f: A \rightarrow B$ can be described by

$$\{(a_1, x_1), (a_2, x_2), (a_3, x_3), ..., (a_m, x_m)\}.$$

We can select any of the *n* elements of *B* for each x_i .

So, there are $n^m = |B|^{|A|}$ functions from A to B.

In Example 5.22, there are

functions from A to B.

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4, 5\}$.

The function
$$f = \{(1, 1), (2, 3), (3, 4)\}$$

is a one-to-one function from A to B;

$$g = \{(1, 1), (2, 3), (3, 3)\}$$

is a function from A to B,

but it fails to be one-to-one because g(2) = g(3) but $2 \neq 3$.

Consider the function $f: \mathbf{R} \to \mathbf{R}$ where f(x) = 3x + 7 for all $x \in \mathbf{R}$.

Then for all $x_1, x_2 \in \mathbf{R}$, we find that

$$f(x_1) = f(x_2) \Rightarrow 3x_1 + 7 = 3x_2 + 7 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2$$

so the given function f is one-to-one.

On the other hand, suppose that $g: \mathbf{R} \to \mathbf{R}$ is the function defined by $g(x) = x^4 - x$ for each real number x. Then

$$g(0) = (0)^4 - 0 = 0$$
 and $g(1) = (1)^4 - (1) = 1 - 1 = 0$.

Consequently, g is not one-to-one, since g(0) = g(1) but $0 \neq 1$

$$A = \{1, 2, 3\} \text{ and } B = \{1, 2, 3, 4, 5\}.$$

there are 2^{15} relations from A to B and there are 5^3 functions from A to B.

How many of these functions are one-to-one?

With $A = \{a_1, a_2, a_3, ..., a_m\}$ and $B = \{b_1, b_2, b_3, ..., b_n\}$, and $m \le n$, a one-to-one function $f: A \rightarrow B$ has the form

$$\{(a_1, x_1), (a_2, x_2), (a_3, x_3), ..., (a_m, x_m)\}.$$

There are n choices for x_1 (that is, any element of B),

n-1 choices for x_2 ,

n-2 choices for x_3 , and so on,

$$n-(m-1) = n-m+1$$
 choices for x_m .

Thus,

$$n(n-1)(n-2)\cdots(n-m+1)=\frac{n!}{(n-m)!}=P(n,m)$$

$$= P(|B|, |A|).$$

$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4, 5\}.$

Answer: there are one-to-one functions $f: A \rightarrow B$.

5.4 映成函數

Definition 5.13

A function $f: A \to B$ is called *onto*, or *surjective*, if f(A) = B — that is, if for all $b \in B$ there is at least one $a \in A$ with f(a) = b.

函數 $f: A \to B$ 被稱為**映成** (onto) 或**蓋射** (surjective),若 f(A) = B,即 若對所有 $b \in B$,至少存在一個 $a \in A$ 使得 f(a) = b。

If
$$A = \{1, 2, 3, 4\}$$
 and $B = \{x, y, z\}$, then
$$f_1 = \{(1, z), (2, y), (3, x), (4, y)\} \text{ and } f_2 = \{(1, x), (2, x), (3, y), (4, z)\}$$

are both functions from A onto B.

However, the function $g = \{(1, x), (2, x), (3, y), (4, y)\}$ is not *onto*.

If A, B are finite sets, then for an onto function $f: A \to B$ to possibly exist we must have

函數 $f: \mathbf{R} \to \mathbf{R}$ 被定義為 $f(x) = x^3$ 是一個映成函數。

函數 $g: \mathbf{R} \to \mathbf{R}$, 其中 $g(x) = x^2$ 對每個實數 x, 不是一個映成函數。

函數 $h: \mathbf{R} \to [0, +\infty)$ 定義為 $h(x) = x^2$ 是一個映成函數。

5.5 函數合成及反函數

Definition 5.14

If $f: A \to B$, then f is said to be *bijective*, or to be a *one-to-one correspondence*, if f is both one-to-one and onto.

若 $f: A \to B$,則f被稱為**單蓋射**(bijective),或為**一對一對應** (one-to-one correspondence),若f同時為一對一且映成。

If
$$A = \{1, 2, 3, 4\}$$
 and $B = \{w, x, y, z\}$,

then $f = \{(1, w), (2, x), (3, y), (4, z)\}$ is a one-to-one correspondence

from A (on)to B, and $g = \{(w, 1), (x, 2), (y, 3), (z, 4)\}$

is a one-to-one correspondence from B (on)to A.

Definition 5.15

The function 1_A : $A \to A$, defined by $1_A(a) = a$ for all $a \in A$, is called the *identity function* for A.

函數 $1_A: A \to A$,定義為 $1_A(a) = a$ 對所有 $a \in A$,被稱為 A 的**恒等函 數** (identity function)。

Definition 5.16

If $f, g: A \to B$, we say that f and g are *equal* and write f = g, if f(a) = g(a) for all $a \in A$.

若 $f \cdot g : A \rightarrow B$,我們稱f和g為**相等** (equal) 且記f = g,若f(a) = g(a) 對所有 $a \in A$ 。

Let $f: \mathbb{Z} \to \mathbb{Z}$, $g: \mathbb{Z} \to \mathbb{Q}$ where f(x) = x = g(x), for all $x \in \mathbb{Z}$.

Then f, g share the common domain \mathbb{Z} , have the same range \mathbb{Z} , and act the same on every element of \mathbb{Z} .

But, $f \neq g!$ Here f is a one-to-one correspondence, whereas g is one-to-one but not onto;

Consider the functions $f, g: \mathbf{R} \to \mathbf{Z}$ defined as follows:

$$f(x) = \begin{cases} x, & \text{if } x \in \mathbf{Z} \\ \lfloor x \rfloor + 1, & \text{if } x \in \mathbf{R} - \mathbf{Z} \end{cases} \qquad g(x) = \lceil x \rceil, \text{ for all } x \in \mathbf{R}$$

If
$$x \in \mathbb{Z}$$
, then $f(x) = x = \lceil x \rceil = g(x)$.

For $x \in \mathbf{R} - \mathbf{Z}$, write x = n + r where $n \in \mathbf{Z}$ and 0 < r < 1.

Then
$$f(x) = \lfloor x \rfloor + 1 = n + 1 = \lceil x \rceil = g(x)$$
.

Consequently, even though f, g are defined by different formulas, they are the same function—because they have the same domain and codomain and f(x) = g(x) for all x in the domain \mathbf{R} .

Definition 5.17

If $f: A \to B$ and $g: B \to C$, we define the *composite function*, which is denoted $g \circ f: A \to C$, by $(g \circ f)(a) = g(f(a))$, for each $a \in A$.

若 $f: A \to B$ 且 $g: B \to C$,我們定義**合成函數** (composite function), 其被表為 $g \circ f: A \to C$,為 $(g \circ f)(a) = g(f(a))$,對每個 $a \in A$ 。

Let
$$A = \{1, 2, 3, 4\}$$
, $B = \{a, b, c\}$, and $C = \{w, x, y, z\}$
with $f: A \to B$ and $g: B \to C$ given by
 $f = \{(1, a), (2, a), (3, b), (4, c)\}$ and
 $g = \{(a, x), (b, y), (c, z)\}$.

For each element of A we find:

$$(g \circ f)(1) = g(f(1)) = g(a) = x$$
 $(g \circ f)(3) = g(f(3)) = g(b) = y$
 $(g \circ f)(2) = g(f(2)) = g(a) = x$ $(g \circ f)(4) = g(f(4)) = g(c) = z$

So
$$g \circ f =$$

Note: The composition $f \circ g$ is *not* defined.

Let $f: \mathbf{R} \to \mathbf{R}$, $g: \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = x^2$, g(x) = x + 5.

$$(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 5,$$

 $(f \circ g)(x) = f(g(x)) = f(x+5) = (x+5)^2 = x^2 + 10x + 25.$

$$(g \circ f)(1) = 6 \neq 36 = (f \circ g)(1)$$

the composition of functions is not a commutative operation.

Let $f, g, h: \mathbf{R} \to \mathbf{R}$,

where $f(x) = x^2$, g(x) = x + 5, and $h(x) = \sqrt{x^2 + 2}$.

Then
$$((h \circ g) \circ f)(x)$$
 $(h \circ (g \circ f))(x)$

$$= (h \circ g)(f(x))$$

$$= h((g \circ f)(x))$$

$$= (h \circ g)(x^2)$$

$$= h(g(f(x)))$$

$$= h(g(x^2))$$

$$= h(x^2 + 5)$$

$$= \sqrt{(x^2 + 5)^2 + 2}$$

$$= \sqrt{x^4 + 10x^2 + 27}$$

$$(h \circ (g \circ f))(x)$$

$$= h((g \circ f)(x))$$

$$= h(g(f(x)))$$

$$= h(g(x^2))$$

$$= h(x^2 + 5)$$

$$= \sqrt{(x^2 + 5)^2 + 2}$$

$$= \sqrt{x^4 + 10x^2 + 27}$$

 $(h \circ g) \circ f = h \circ (g \circ f)$ is true in general.

Definition 5.18

If $f: A \to B$, then f is said to be *invertible* if there is a function $g: B \to A$ such that

$$g \circ f = 1_A$$
 and $f \circ g = 1_B$.

若 $f:A\to B$,則f被稱為**可逆** (invertible) 若存在一個函數 $g:B\to A$ 滿足 $g\circ f=1_A$ 及 $f\circ g=1_B$ 。

THEOREM 5. 4

If a function $f: A \to B$ is invertible

and a function $g: B \to A$ satisfies $g \circ f = 1_A$ and $f \circ g = 1_B$, then this function g is unique.

Proof:

If g is not unique, then there is another function

 $h: B \to A \text{ with } h \circ f = 1_A \text{ and } f \circ h = 1_B.$

Consequently,

$$h = h \circ 1_B = h \circ (f \circ g) = (h \circ f) \circ g = 1_A \circ g = g.$$

THEOREM 5. 5

A function $f: A \rightarrow B$ is invertible if and only if it is one-to-one and onto.

Proof: Assuming that $f: A \to B$ is invertible, we have a unique function $g: B \to A$ with $g \circ f = 1_A$, $f \circ g = 1_B$.

If $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$, then $g(f(a_1)) = g(f(a_2))$, or $(g \circ f)(a_1) = (g \circ f)(a_2)$.

With $g \circ f = 1_A$ it follows that $a_1 = a_2$, so f is one-to-one.

A function $f: A \rightarrow B$ is invertible if and only if it is one-to-one and onto.

Proof: (cont.)

For the onto property, let $b \in B$.

Then $g(b) \in A$, so we can talk about f(g(b)).

Since $f \circ g = 1_B$, we have $b = 1_B(b) = (f \circ g)(b) = f(g(b))$, so f is onto.

Conversely, suppose $f: A \to B$ is bijective.

Since f is onto, for each $b \in B$ there is an $a \in A$ with f(a) = b. Consequently, we define the function $g: B \to A$ by g(b) = a,

where f(a) = b.

A function $f: A \rightarrow B$ is invertible if and only if it is one-to-one and onto.

Proof: (cont.)

This definition yields a unique function.

The only problem that could arise is if

$$g(b) = a_1 \neq a_2 = g(b)$$
 because $f(a_1) = b = f(a_2)$.

However, this situation cannot arise because f is one-to-one.

Our definition of g is such that $g \circ f = 1_A$ and $f \circ g = 1_B$, so we find that f is invertible, with $g = f^{-1}$.