1 Harmonischer Oszillator, analytisch

Für die vorliegende Schaltung wird angenommen, dass am Kondensator zum Zeitpunkt t=0 eine Spannung $u_{\rm C}(0)=12\,{\rm V}$ anliegt und der Strom durch den Reihenschwingkreis $i(0)=0\,{\rm A}$ beträgt. Nach dem KIRCHHOFF'schen Gesetz ergibt sich die Maschengleichung für den Schwingkreis zu $u_{\rm C}(t)+u_{\rm R}(t)+u_{\rm L}(t)=0.$ Aus den Spannungen für den Widerstand $u_{\rm R}(t)=R\,i_{\rm R}(t),$ die Spule $u_{\rm L}(t)=L\,\frac{{\rm d} i_{\rm L}}{{\rm d} t}(t)$ und den Kondensator $u_{\rm C}(t)=\frac{1}{C}\int i_{\rm C}(t)dt$ ergibt sich daraus die Maschengleichung in Abhängigkeit des Stromes zu

$$R i(t) + L \frac{\mathrm{d}i}{\mathrm{d}t}(t) + \frac{1}{C} \int i_{\mathrm{C}}(t)dt = 0.$$

Nach einmaligem Differenzieren nach der Zeit t folgt daraus die Differentialgleichung 2. Ordnung

$$R\frac{\mathrm{d}i}{\mathrm{d}t}(t) + \frac{1}{\mathrm{C}}i(t) + L\frac{\mathrm{d}^2i}{\mathrm{d}t^2}(t) = 0. \tag{1}$$

Die Lösung der Differentialgleichung im Falle einer gedämpften Schwingung lässt sich aus dem allgemeinen Ansatz

$$i(t) = ae^{(-\delta + j\omega_e)t} + be^{(-\delta - j\omega_e)t}$$
(2)

ermitteln. Hierbei bezeichnet $\delta=\frac{R}{2L}$ die Dämpfung, $\omega_0=\sqrt{\frac{1}{LC}}$ die Resonanzkreisfrequenz und $\omega_e=\sqrt{\omega_0^2-\delta^2}$ die gedämpfte Resonanzkreisfrequenz. Die Konstanten a und b werden bestimmt durch einsetzen des Anfangswertes i(0)=0 A folgt a+b=0 und somit a=-b.

Da zum Zeitpunkt t=0 noch kein Strom fließt liegt noch keine Spannung $u_{\rm R}$ an dem Ohmschen Widerstand R an und somit vereinfacht sich (1) zu $u_{\rm C}(0)+L\,\frac{{\rm d}i}{{\rm d}t}(0)=0$ und durch einsetzen von $u_{\rm C}(0)=12\,{\rm V}$ folgt daraus $L\,\frac{{\rm d}i}{{\rm d}t}(0)=-12\,{\rm V}$. Einmaliges differenzieren von (2) sowie einsetzen von i(0)=0 und a=-b ergibt $\frac{{\rm d}i}{{\rm d}t}(0)=-j2\omega_e b$. Gleichsetzen und nach b auflösen und man erhält $b=-j\frac{u_{\rm C}(0)}{2L\omega_e}$ und somit $a=j\frac{u_{\rm C}(0)}{2L\omega_e}$. Der Strom ergibt sich damit nun zu

$$i(t) = j \frac{u_{\mathcal{C}}(0)}{2L\omega_e} e^{(-\delta + j\omega_e)t} - j \frac{u_{\mathcal{C}}(0)}{2L\omega_e} e^{(-\delta - j\omega_e)t}.$$
 (3)

Durch einfaches ausmultiplizieren und nutzen der Euler'schen Formel

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

vereinfacht sich (3) noch weiter zu

$$i(t) = -\frac{u_{\rm C}}{L\omega_e} e^{-\delta t} \sin(\omega_e t)$$

Mit den eingebauten Bauelementen $L=1.73007 \mathrm{mH},\,R=2\Omega$ und $C=10\,\mu\mathrm{F}$ kommt man auf eine gedämpfte Resonanzkreisfrequenz von $\omega_e=7580.701~\mathrm{s}^{-1}$

und eine Dämpfung von $\delta = 578.011 \, \mathrm{s}^{-1}$.

Um eine eindeutige Lösung für eine lineare gewöhnliche Differentialgleichung n-ter Ordnung zu ermitteln sind auch n Anfangsbedingungen nötig da auch n Integrationen nötig sind um die Differentialgleichung zu lösen und somit auch n Integrationskonstanten bestimmt werden müssen.