Probability and Statistics: Lecture-26

Monsoon-2020

```
by Dr. Pawan Kumar (IIIT, Hyderabad) on October 12, 2020
```

» Online Quiz

- 1. Please login to gradescope
- 2. Attempt Quiz-6
- 3. You may use calculator if necessary
- 4. Time for the quiz is mentioned in the quiz

» Checklist for online class

- 1. Turn off your microphone, when you are listening
- 2. Turn on microphone only when you have question
- 3. Attend tutorials to practice problems or to discuss solutions or doubts
- 4. Chat is not always reliable, I may not look at chat

» Table of contents

- 1. Continuous Distributions
- * Gamma Distribution
- * Solved Problems
- 2. Mixed Random Variable
- 3. Joint Distributions: Two Random Variables
- * Joint Cumulative Distribution function
- * Marginal CDF
- * Example of Joint PMF and Joint CDF
- * Computing Probability of a Rectangular Patch
- * Conditional PMF and Conditional CDF
- * Independent Random Variables

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim \operatorname{Gamma}(\alpha,\lambda)$, if its PDF is given by

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim \operatorname{Gamma}(\alpha,\lambda)$, if its PDF is given by

$$f_{\! X}\!({m{ extbf{x}}}) = egin{cases} rac{\lambda^{lpha} {m{ extbf{x}}}^{lpha-1} {m{e}}^{-\lambda {m{ extbf{x}}}}}{\Gamma(lpha)}, & {m{ extbf{x}}} > 0 \ 0 & ext{otherwise} \end{cases}$$

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim {\sf Gamma}(\alpha,\lambda),$ if its PDF is given by

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} rac{\lambda^{lpha} \mathbf{x}^{lpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(lpha)}, & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

Exponential is a special case of Gamma distribution

For $\alpha = 1$, we obtain

$$f_{X}(x) = egin{cases} \lambda e^{-\lambda x} & x > 0 \ 0 & ext{otherwise} \end{cases}$$

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim \operatorname{Gamma}(\alpha,\lambda)$, if its PDF is given by

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} rac{\lambda^{lpha} \mathbf{x}^{lpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(lpha)}, & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

Exponential is a special case of Gamma distribution

For $\alpha = 1$, we obtain

$$f_X(x) = egin{cases} \lambda e^{-\lambda x} & x > 0 \ 0 & ext{otherwise} \end{cases}$$

1. That is, $\operatorname{Gamma}(1,\lambda) = \operatorname{Exponential}(\lambda)$

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim \operatorname{Gamma}(\alpha,\lambda)$, if its PDF is given by

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} rac{\lambda^{lpha} \mathbf{x}^{lpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(lpha)}, & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

Exponential is a special case of Gamma distribution

For $\alpha = 1$, we obtain

$$f_{X}(extbf{ extit{x}}) = egin{cases} \lambda extbf{ extit{e}}^{-\lambda extbf{ extit{x}}} & extbf{ extit{x}} > 0 \ 0 & ext{otherwise} \end{cases}$$

- 1. That is, $Gamma(1, \lambda) = Exponential(\lambda)$
- 2. Sum of n independent Exponential(λ) RVs is Gamma(n, λ) RV (proof: try!)

Properties of Gamma Function

Let $X \sim \text{Gamma}(n, \lambda), \alpha > 0, \lambda > 0$.

$$f_{\!X}\!\left(\mathbf{\emph{x}}
ight) = egin{cases} rac{\lambda^{lpha}\mathbf{\emph{x}}^{lpha-1}\mathbf{\emph{e}}^{-\lambda\mathbf{\emph{x}}}}{\Gamma(lpha)}, & \mathbf{\emph{x}} > 0 \ 0 & ext{otherwise} \end{cases}$$

Properties of Gamma Function

Let $X \sim \text{Gamma}(n, \lambda), \alpha > 0, \lambda > 0$.

$$f_{\!X}\!\left(\mathbf{ extbf{x}}
ight) = egin{cases} rac{\lambda^{lpha}\mathbf{ extbf{x}}^{lpha-1}\mathbf{e}^{-\lambda\mathbf{ extbf{x}}}}{\Gamma(lpha)}, & \mathbf{ extbf{x}} > 0 \ 0 & ext{otherwise} \end{cases}$$

Prove the following:

Properties of Gamma Function

Let $X \sim \text{Gamma}(n, \lambda), \alpha > 0, \lambda > 0$.

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} rac{\lambda^{lpha} \mathbf{x}^{lpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(lpha)}, & \mathbf{x} > 0 \\ 0 & ext{otherwise} \end{cases}$$

Prove the following:

1.
$$\int_0^\infty f_X(x) = 1$$

Properties of Gamma Function

Let $X \sim \text{Gamma}(n, \lambda), \alpha > 0, \lambda > 0$.

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} rac{\lambda^{lpha} \mathbf{x}^{lpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(lpha)}, & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

Prove the following:

1.
$$\int_0^\infty f_{\mathsf{X}}(\mathsf{x}) = 1$$

2. $E[\mathsf{X}] = \frac{\alpha}{\lambda}$

2.
$$E[X] = \frac{\alpha}{\lambda}$$

** Answer to previous problem...

(a)
$$f(x) = f(x) = f(x)$$

The have $f(x) = f(x) = f(x)$

The have $f(x) =$

Problem 1

Let $U \sim \mathsf{Uniform}(0,1)$ and $X = -\mathit{In}(1-U)$. Show that $X \sim \mathsf{Exponential}(1)$.

Solution:

Problem 2

Let $X \sim N(2,4)$ and Y = 3 - 2X.

Problem 2

Let $X \sim N(2,4)$ and Y = 3 - 2X.

 $* \ \operatorname{Find} \textit{P}(\textit{X} > 1)$

Problem 2

Let $X \sim N(2,4)$ and Y = 3 - 2X.

- * Find P(X > 1)
- * Find P(-2 < Y < 1)

Problem 2

Let $X \sim N(2, 4)$ and Y = 3 - 2X.

$$\checkmark$$
 Find $P(X > 1)$

Find
$$P(-2 < Y < 1)$$

*Find
$$P(X > 2 \mid Y < 1)$$

Problem 3

Let $X \sim N(0, \sigma^2)$. Find E[|X|].

Solution: A Normal but not showful normal.

$$x = 6Z, \quad \text{where } Z \text{ is std. Normal. i.e., } z \sim N(0,1).$$

$$x = 6[1x1] = 6 E[1x1] \quad \text{even} \quad \text{where } Z \text{ is std. Normal. i.e., } z \sim N(0,1).$$

$$E[1x1] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |t| e^{\frac{t}{2}} dt = \int_{-\infty}^{\infty} \left[-e^{\frac{t}{2}/2}J_{0}^{2} - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{t}{2}/2}J_{0}^{2} - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[-e^{\frac{t}{2}/2}J_{0}^{2} - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[-e^{\frac{t}{2}/2}J_{0}^{2} - \int_{-\infty}^{\infty} \int$$

Problem 4

Show that

$$I=\int_{-\infty}^{\infty} e^{-\mathit{x}^2/2}\, \mathit{dx} = \sqrt{2 au}$$

» Mixed Random Variable...

» Mixed Random Variable...

Example of mixed random variable

Let X be a continuous random variable with the following PDF

$$f_{X}(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Let

$$Y = g(X) = \begin{cases} X & 0 \le X \le \frac{1}{2} \\ \frac{1}{2}, & X > \frac{1}{2} \end{cases}$$

Find the CDF of Y.

 * the CDF is not continuous, so Y is not a continuous random variable

- * the CDF is not continuous, so Y is not a continuous random variable
- * the CDF is not in the staircase form, so it is not a discrete random variable either

- * the CDF is not continuous, so Y is not a continuous random variable
- the CDF is not in the staircase form, so it is not a discrete random variable either
- * It is indeed a mixed random variable

- * the CDF is not continuous, so Y is not a continuous random variable
- the CDF is not in the staircase form, so it is not a discrete random variable either
- * It is indeed a mixed random variable
- * there is jump at y = 1/2

- * the CDF is not continuous, so Y is not a continuous random variable
- the CDF is not in the staircase form, so it is not a discrete random variable either
- * It is indeed a mixed random variable
- st there is jump at $\emph{y}=1/2$
- * amount of jump is 1 1/4 = 3/4

- the CDF is not continuous, so Y is not a continuous random variable
- the CDF is not in the staircase form, so it is not a discrete random variable either
- * It is indeed a mixed random variable
- * there is jump at $y=\overline{1/2}$
- * amount of jump is 1 1/4 = 3/4
- * CDF is continuous at other points