Differentiable Dynamical Systems (Spring 2022, Shaobo Gan)

Ajorda Jiao

Contents

1		Hyperbolic Fixed Points	3
	1.1	Hyperbolic linear isomorphisms	3
	1.2	Persistence of hyperbolic fixed points	4
	1.3	Persistence of hyperbolicity	6

1 Hyperbolic Fixed Points

§1.1 Hyperbolic linear isomorphisms

E finite dimensional linear space.

Definition 1.1.1. $A: E \to E$ linear isomorphism, we say A is **hyperbolic** if E splits into a direct sum

$$E = E^s \oplus E^u,$$

invariant under A, i.e., $A(E^s) = E^s$, $A(E^u) = E^u$. And there is a norm $|\cdot|$ on E with constants C > 0, $\lambda \in (0,1)$ such that:

- (i) $|A^n v| \leq C\lambda^n |v|, \forall v \in E^s, n \geq 0.$
- (ii) $|A^{-n}v| \leq C\lambda^n |v|, \forall v \in E^u, n \geq 0.$

Remark 1.1.2 — The definition of hyperbolic is independent with the choice of norm, as all norms on a given finite dimensional linear space are equivalent.

 $E = E^s \oplus E^u$ is called the **hyperbolic splitting**, E^s is called the **contracting subspace**, E^u is called the **expanding subspace**. dim E^s is called the **index** of A, denoted by Ind A.

If $E^s = \{0\}$, we call A of **source** type. If $E^u = \{0\}$, we call A of **sink** type. Otherwise, A is said to be of **saddle** type.

Theorem 1.1.3

A is hyperbolic if and only if $\sigma(A) \cap \mathbb{S}^1 = \emptyset$.

For $\gamma > 0$, let

$$C_{\gamma}(E^s) \coloneqq \{ v \in E : |v_u| \leqslant \gamma |v_s| \}$$

be the γ -cone about E^s . Similarly, we can define $C_{\gamma}(E^u)$ the γ -cone about E^u .

Theorem 1.1.4

Assume $A: E \to E$ hyperbolic with the splitting $E^s \oplus E^u$, then

$$E^{s} = \{v \in E : |A^{n}v| \to 0, n \to \infty\}$$

$$= \{v \in E : \exists r > 0, \text{ such that } |A^{n}v| \leqslant r, \forall n \geqslant 0\}$$

$$= \{v \in E : \exists \gamma > 0, \text{ such that } A^{n}v \in C_{\gamma}(E^{s}), \forall n \geqslant 0\}.$$

Corollary 1.1.5

The hyperbolic splitting $E = E^s \oplus E^u$ is unique.

Theorem 1.1.6

Let $A: E \to E$ hyperbolic, E splits into $E^s \oplus E^u$, then there exists a norm $\|\cdot\|$ on E and a constant $\tau \in (0,1)$ such that:

- (i) $||Av|| \leqslant \tau ||v||, \forall v \in E^s$.
- (ii) $||A^{-1}v|| \le \tau ||v||, \forall v \in E^u$.

Proof. Take N such that $C\lambda^N < 1$, let $||v|| := \sum_{n=0}^{N-1} |A^n v|$. Let $a = 1 + C \sum_{n=1}^{N-1} \lambda^n \geqslant 1$, then $||Av|| \leqslant \left(1 - \frac{1 - C\lambda^N}{a}\right) ||v||$ for all $v \in E^s$.

Remark 1.1.7 — The norm $\|\cdot\|$ in this theorem is said to be **adapted** to A.

Remark 1.1.8 — The minimum constant $\tau = \tau(A, \|\cdot\|)$ is called the **skewness** of A with respect to the adapted norm $\|\cdot\|$.

Definition 1.1.9. A norm $|\cdot|$ on E is called of **box type** with respect to $E_1 \oplus E_2$ if $||v|| = \max\{||v_1||, ||v_2||\}$ where v_1, v_2 are components of v with respect to $E_1 \oplus E_2$.

For a norm $|\cdot|$ on E, the **box-adjusted** norm $||\cdot||$ of $|\cdot|$ with respect to $E_1 \oplus E_2$ is constructed by

$$||v|| := \max\{|v_1|, |v_2|\}.$$

§1.2 Persistence of hyperbolic fixed points

Let $O \subseteq E$ be an open set, $f: O \to E$ is C^1 . Assume p is a fixed point of f, it is called a **hyperbolic fixed point** if $A = Df(p): E \to E$ is a hyperbolic linear isomorphism.

Let p be a hyperbolic fixed point, because Df(p) is a linear isomorphism, there exists a neighborhood U of p such that $f: U \to f(U)$ is a diffeomorphism.

Definition 1.2.1. For $f, g: U \to E$, we define the C^1 distance between f and g as

$$d^{1}(f,g) := \sup_{x \in U} \{|f(x) - g(x)|, |Df(x) - Dg(x)|\}.$$

The closed ball in the C^1 topology is as

$$\mathscr{B}^1(f,\delta) := \left\{ g \in C^1(U,E) : d^1(f,g) \leqslant \delta \right\}.$$

The "**persistence**": if δ sufficiently small, $\forall g \in \mathcal{B}^1(f, \delta)$ has a hyperbolic fixed point. Recall $\phi : E \to E$ is called Lipschitz if there is a constant $k \ge 0$ such that

$$|\phi(x) - \phi(y)| \le k|x - y|, \quad \forall x, y \in E.$$

The minimum k is called the **Lipschitz constant** of ϕ , denoted Lip ϕ .

Lemma 1.2.2

Assume $A: E \to E$ hyperbolic isomorphism with a splitting $E^s \oplus E^u$. Let $|\cdot|$ be a norm adapted to and of box type to A. Let τ be the skewness with respect to $|\cdot|$. Let r > 0, if $\varphi : E(r) = \{v \in E : |v| \le r\} \to E$ is Lipschitz with

$$\operatorname{Lip} \varphi < 1 - \tau$$
.

Then $A+\varphi$ has at most one fixed point in E(r). If, in addition, $|\varphi(0)| \leqslant (1-\tau-\operatorname{Lip}\phi)r$, then $A+\varphi$ has a unique fixed point p_{φ} in E(r) with $|p_{\varphi}| \leqslant \frac{|\varphi(0)|}{1-\tau-\operatorname{Lip}\varphi}$.

Proof. Let $A_{ss} := A|_{E_s}, A_{uu} := A|_{E_u}$, then $A_{ss} : E_s \to E_s$ and $A_{uu} : E_u \to E_u$. Let $\varphi_u = \pi_u \varphi$ and $\varphi_s = \pi_s \varphi$. Then we have the equation

$$A_{ss}x_s + \varphi_s(x) = x_s, \quad A_{uu}x_u + \varphi_u(x) = x_u,$$

or

$$A_{ss}x_s + \varphi_s(x) = x_s, \quad A_{uu}^{-1}x_u - A_{uu}^{-1}\varphi_u(x) = x_u.$$

Let $T: E(r) \to E, (x_s, x_u) \mapsto (A_{ss}x_s + \varphi_s(x), A_{uu}^{-1}x_u - A_{uu}^{-1}\varphi_u(x))$, then the fixed point of T corresponding to the fixed point of $A + \varphi$. Since

$$|T_s(x) - T_s(x')| \leq (\tau + \operatorname{Lip}\varphi)|x - x'|, \quad |T_u(x) - T_u(x')| \leq (\tau + \operatorname{Lip}\varphi)|x - x'|,$$

hence $|T(x) - T(x')| \le (\tau + \text{Lip }\varphi)|x - x'|$. This proves that T has at most one fixed point in E(r). If $|\varphi(0)| \le (1 - \tau - \text{Lip }\phi)r$, then for every $x \in E(r)$, we have $Tx \in E(r)$. Hence there exists a unique fixed point in E(r) and the estimate is trivial.

Theorem 1.2.3

Let $p \in U$ be a hyperbolic fixed point of f. Then $\exists \delta_0 > 0, \exists \varepsilon_0 > 0$, such that any $g \in \mathscr{B}^1(f, \delta_0)$, there at most one fixed point of g in $B(p, \varepsilon_0)$. Moreover, for every $\varepsilon \in (0, \varepsilon_0]$, there is $\delta \in (0, \delta_0]$, such that any $g \in \mathscr{B}^1(f, \delta)$ has a unique fixed point in $B(p, \varepsilon)$.

Proof. WLOG, assume p=0. Let A=Df(0) with hyperbolic splitting $E^s\oplus E^u$. Let $|\cdot|$ be a norm adapted to and of box type to A. Let τ be the skewness with respect to $|\cdot|$. Take $\lambda\in(\tau,1)$, then $\exists \delta_0>0, \exists \varepsilon_0>0$ such that $\forall g\in \mathscr{B}^1(f,\delta_0)$ with $g=A(x)+\varphi(x)$, Lip $\varphi|_{E(\varepsilon_0)}<\lambda-\tau<1-\tau$. Then g has at most one fixed point in $E(\varepsilon_0)$.

For any $\varepsilon \in (0, \varepsilon_0]$, take δ sufficiently small, such that $|g(0)| \leq (1 - \lambda)\varepsilon$ for every $g \in \mathcal{B}^1(f, \delta_0)$. Hence there exists a unique fixed point p_g with

$$|p_g| \leqslant \frac{|\varphi(0)|}{1 - \tau - \operatorname{Lip}\varphi} < \frac{(1 - \lambda)\varepsilon}{1 - \lambda} = \varepsilon,$$

which means $p_g \in B(0, \varepsilon)$.

Remark 1.2.4 — This theorem shows that $p: \mathscr{B}^1(f, \delta_0) \to B(p, \varepsilon_0), g \mapsto p_g$ is well-defined and continuous at f. Moreover, p is continuous on $\mathscr{B}^1(f, \delta_0)$.

Remark 1.2.5 — The unique fixed point p_g of g in $B(p, \varepsilon_0)$ is called the **continuation** of p under g.

§1.3 Persistence of hyperbolicity

We want to show that under the hyperbolicity is persistent under perturbations, that is, $Dg(p_q)$ is still hyperbolic.

Lemma 1.3.1

Assume linear isomorphism $B: E \to E$ represents as $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$ under the decomposition $E = E_1 \oplus E_2$, where $B_{ij} = \pi_i B|_{E_j}$. Let $\lambda \in (0,1), \varepsilon > 0$ satisfying $\lambda + \varepsilon < 1$. If there exists a norm $|\cdot|$ such that $|B_{11}^{-1}|, |B_{22}| < \lambda, |B_{21}|, |B_{12}| < \varepsilon$. Then there exists unique linear map $P_B: E_1 \mapsto E_2, |P_B| < 1$ such that $\operatorname{gr}(P_B)$ is invariant under B and P_B is continuous with respect to B. Where $\operatorname{gr}(P_B) := \{(v, P_B v) : v \in E_1\}$ is the graph of P_B .

Remark 1.3.2 — Under the norm of box type, $gr(P_B)$ is indeed the expanding subspace.

Remark 1.3.3 — The argument of this lemma is very important, which is known as **graph transformation**.

Proof. For all $p: E_1 \to E_2, |p| \leq 1$. Consider

$$B\begin{bmatrix} v \\ pv \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} v \\ pv \end{bmatrix} = \begin{bmatrix} w \\ Qw \end{bmatrix},$$

where $Q = (B_{21} + B_{22}P)(B_{11} + B_{12}P)^{-1}$. We need another lemma for the invertibility. \square

Definition 1.3.4. For linear map $A: E \to E$, we define the **mininorm** of A as $m(A) = \inf_{|v|=1} |Av|$. Then $m(A) = \left|A^{-1}\right|^{-1}$.

Lemma 1.3.5

 $A: E \to E$ isomorphism, if |B| < m(A), then A + B is invertible.