Numeryszne metody przybliżania lokalnych ekstremum - sprawozdanie

Bartosz Zasieczny

17listopada 2013

Spis treści

1	Zad	anie		2
2	Apa	arat m	atematyczny	2
	$2.\overline{1}$	Metoo	la Newtona	2
			Uwagi	3
	2.2		la bisekcji	3
	2.3		la złotego podziału	3
		2.3.1		3
3	Bac	lanie f	unkcji	4
	3.1	Funkc	ja 0	4
		3.1.1	Metoda złotego podziału	5
		3.1.2	Użycie metody <i>złotego podziału</i> jako wstęp do metody	
			Newtona	6
		3.1.3	Metoda bisekscji	6
	3.2	Funkc	ja 1	6
		3.2.1	Metoda złotego podziału	7
		3.2.2	Użycie metody <i>złotego podziału</i> jako wstęp do metody	
			Newtona	8
		3.2.3	Metoda bisekcji	8
	3.3	Funkc	ja 2	9
		3.3.1	Metoda złotego podziału	9
		3.3.2	Użycie metody <i>złotego podziału</i> jako wstęp do metody	
			Newtona	10
		3.3.3	Metoda bisekcji	10
	3.4		ia 3.	11

4	Kor	npilacja i obsługa programu	11
	4.1	Wymagania	11
	4.2	Kompilacja	12
	4.3	Obsługa programu	12

1 Zadanie

Korzystając z omówionych na wykładzie iteracyjnych metod aproksymacji pierwiasków, zaproponować sposób wyznaczania **ekstremum lokalnego** funkcji $f \in C^1[a,b]$. Wykonać eksperymenty m. in. dla:

- 0. $f(x) = \sin(2\pi x), x \in [0, 1];$
- 1. $f(x) = e^{-x^2}, x \in [-1, 1];$
- 2. $f(x) = \frac{x}{1+x^2}, x \in [0, 10];$
- 3. $f(x) = x^2 + x 1, x \in [-1, 2].$

2 Aparat matematyczny

W poszukiwaniu ekstremów funkcji będziemy używać poniższych metod. Niektóre z nich pozwalają na znalezienie ekstremum wprost, inne będą skupiać się na poszukiwaniu miejsca zerowego pierwszej pochodnej funkcji tam gdzie to możliwe.

2.1 Metoda Newtona

Metoda Newtona polega na iteracyjnym wyznaczaniu kolejnych przybliżeń pierwiastka f(x) poprzez:

- znalezienie stycznej do jej wykresu w punkcie x_i (zaczynając od punktu startowego x_0);
- biorąc wartosć dziedziny w punkcie przecięcia stycznej z osią X za i+1-sze przyblizenie pierwiastka (czyli x_{i+1}).

Kroki powtarzamy aż do otrzymania wymaganej precyzji. Kolejne przybliżenia x_{i+1} wyznaczamy za pomocą wzoru:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

2.1.1 Uwagi

- Charakterystyka tego zadania uniemożliwia użycie samej metody Newtona dla pewnych danych może ona wskazać przybliżenia pierwiastka f(x) spoza pożądanego przedziału. Problemem też jest dobór odpowiedniego punktu startowego dlatego w przypadku tego zadania należy stosować tę metodę tylko po wstępnym przybliżania pierwiastka funkcji przez inne metody iteracyjne.
- W przypadku tego zadania każda badana funkcja musi posiadać co najmniej dwie pochodne.

2.2 Metoda bisekcji

Dla funkcji f(x) ciągłej w przedziale [a,b] i przyjmującej na jego końcach wartości o różnych znakach (f(a)f(b)<0) należy wykonać następujące kroki:

- 1. sprawdzić, czy srodek przedziału jest pierwiastkiem funkcji (sprawdzić czy f(x) dla wartości dziedziny $x_0 = \frac{a+b}{2}$ ma wartość $f(x_0) = 0$;
- 2. jeśli tak, to zakończyć algorytm i zwrócić x_0 ;
- 3. w p. p. sprawdzić który z przedziałów ($[a, x_0]$ czy $[x_0, b]$) spełnia własnosć f(a')f(b') < 0 i zastosować do niego pierwszy krok algorytmu.

2.3 Metoda złotego podziału

Ta metoda w odróżnieniu od poprzednich pozwala szukać lokalnego ektremum wprost, bez konieczności odwoływania się do pochodnych danej funkcji i poszukwiania ich zer. Żeby funkcja f(x) mogła zostać zbadana za pomocą tej metody, musi być ona w przedziale [a,b], w którym poszukujemy ekstremum, unimodalna – tzn. ciągła i posiadać w tym przedziale dokładnie jedno ekstremum.

2.3.1 Algorytm

Pierwszy krok algorytmu:

$$\begin{cases} x_L^{(0)} := b^{(0)} - (b^{(0)} - a^{(0)})k \\ x_R^{(0)} := a^{(0)} + (b^{(0)} - a^{(0)})k \end{cases}$$

Następnie iterujemy po przypadkach, aż do uzyskania zadowalającej precyzji:

$$\bullet \ f(x_L^{(i)}) > f(x_R^{(i)}) \Rightarrow \begin{cases} a^{(i+1)} := x_L^{(i)} \\ b^{(i+1)} := b^{(i)} \\ x_L^{(i+1)} := x_R^{(i)} \\ x_R^{(i+1)} := a^{(i)} + (b^{(i+1)} - a^{(i+1)})k \end{cases}$$

$$\bullet \ f(x_L^{(i)}) < f(x_R^{(i)}) \Rightarrow \begin{cases} a^{(i+1)} := a^{(i)} \\ b^{(i+1)} := x_R^{(i)} \\ x_L^{(i+1)} := b^{(i+1)} - (b^{(i+1)} - a^{(i+1)})k \\ x_R^{(i+1)} := x_L^{(i)} \end{cases}$$

Po zakończeniu iteracji, środek przedziału [a,b] jest brany jako przybliżenie lokalnego ekstremum funkcji.

3 Badanie funkcji

Do wykonywania obliczeń używana jest arytmetyka w standardzie IEEE 754 double.

3.1 Funkcja 0.

Wzory i wykresy funkcji i pochodnych w podanym przedziale:

$$f(x) = \sin(2\pi x), x \in [0, 1]$$

Z wykresów można wywnioskować, że w tym przedziale funkcja $f \in C^2$. Na wykresie f można zauważyć, że w przedziale [0,1] ma ona 2 ekstrema – jedno minimum, jedno maksimum. Sugeruje to możliwość użycia metody złotego podziału. Możemy natomiast użyć metody bisekcji, ew. łącząc ją z metodą Newtona (trzeba jednak uważać, gdyż na końcach przedziału $f^{(2)}(0) = 0$ i $f^{(2)}(1) = 0$ – nie mozemy użyć x = 0 i x = 1 jako punktów startowych tej metody).

3.1.1 Metoda złotego podziału

Polecenie: ./main -m golden_section -f 0 -s 0 1 -i 50 -error 10e-8

i	x_i	$f(x_i)$
0	0.690983006	-0.93203242381322759513
1	0.809016994	-0.93203242381322770616
2	0.736067977	-0.99617104086482766157
3	0.781152949	-0.98090406160281717884
4	0.753288904	-0.99978649070871195015
5	0.736067977	-0.99617104086482766157
31	0.750000032	-0.99999999998012701
32	0.749999993	-0.9999999999999888978
33	0.750000017	-0.999999999999444888

Metoda zlotego podziału dla tej funkcji osiąga wymaganą precyzję (badany przedział jest mniejszy niż 10^{-8}) dopiero po 34 iteracjach. W ten sposób znaleźliśmy przyblizenie tylko lokalnego minimum funkcji f(x)=-1, x=0.75 i błąd przyblizenia wynosi $|x_{33}-x|\approx 0.00000001674441429955$. Chcąc przybliżyć minimum nalezy wykonać to samo polecenie dodając paramatr -e max. Lokalne maksimum funkcji znajduje się w x=0.25 i f(x)=1

- aby otrzymać wynik o takiej samej precyzji należy wykonać dokładnie tyle samo iteracji i błąd przybliżenia jest bardzo zbliżony. Trzeba jednak pamiętać, że dokładność przyblizeń w przypadku tej funkcji zależy nie tylko od precyzji arytmetyki, ale również od dokładności reprezentacji piczby $\pi = 3.14159265358979323846$ (reprezentacja w cmath).

Dla tej funkcji metoda *złotego podziału* daje wyniki o rządanej precyzji po dość dużej liczbie iteracji. Aby otrzymać precyzję rzędu 10^{-16} program musi wykonać 72 iteracje.

3.1.2 Użycie metody *złotego podziału* jako wstęp do metody Newtona

Warto tej metody użyć jako wstęp do metody Newtona. Weźmy 6-tą iterację z powyższej tabeli (i=5) i użyjmy jej jako punkt startowy do metody Newtona (polecenie: ./main -m newton -f 1 -d 2 -x 0.75328890437410611636 -error 10e-8). Otrzymujemy następujące dane:

i	x_i	$f^{(1)}(x_i)$	_
0	0.753288904	0.129 831 499 475 402	373 23
1	0.749999532	-0.0000184852848758	83362
2	0.750000000	0.0000000000000044	42639

Otrzymujemy w tym wypadku dość szybko (tylko 3 iteracje!) dane bardzo dokładne (błąd: $|x_2-x|\approx 0.00000000000011102$) przybliżenie, które jest znacznie lepsze od uzyskanego na drodze zasosowania samej metody złotego podziału.

3.1.3 Metoda bisekscji

Uzywając tej metody musimy podzielić przedział na dwa: [0,0.5] i [0.5,1]. Łatwo zauważyć, że metoda bisekcji zakończy się wtedy już po pierwszej iteracji, gdyż już wtedy dokładnie w połówach przedziałów będziemy mieć zera $f^{(1)}$. Aby się o tym przekonać wystarczy wykonać następujące polecenia:

- ./main -m bisection -f 1 -s 0 0.5 dla przedziału [0,0.5],
- ./main -m bisection -f 1 -s 0.5 1 dla przedziału [0.5,1]

Jak widać nie ma sensu łączenie tej metody z metodą Newtona, gdyż daje ona bardzo dokładne wyniki w czasie praktycznie stałym dla tej funkcji i tych danych wejściowych.

3.2 Funkcja 1.

Wzory i wykresy funkcji i pochodnych w podanym przedziale:

${\bf 3.2.1} \quad {\bf Metoda} \ {\it zlotego} \ {\it podzialu}$

Funkcja f jest unimodalna w przedziale [-1,1], możemy więc wprost zastosować tę metodę (polecenie: ./main -m golden_section -f 3 -s -1 1 -i 50 -error 10e-8). Wyniki przezentują się następująco:

i	x_i	$f(x_i)$
0	0.381966011	0.8642458225972992069
1	0.145898034	0.9789387167134114831
2	-0.000000000	1.000 000 000 000 000 000 000
3	0.090169944	0.9919023453249357080
4	0.034441854	0.9988144620164319809
5	-0.000000000	1.000 000 000 000 000 000 000
32	-0.000000000	1.000 000 000 000 000 000 000
33	0.000000048	0.9999999999976685
34	0.000000019	0.9999999999996669

Dla tej funkcji uzyskanie zadowalającej precyzji wyniku wymaga równie wieli iteracji. Patrząc na dane otrzymane z przybliżania ekstremum tej i poprzedniej funkcji można dojść do wniosku, że dla pewnych funkcji algorytm dość szybko zaczyna kręcić się w okół rozwiązania, ale szerokość badanego aktualnie przedziału nie pozwala na zakończenie algorytmu przy obecnej iteracji. Tym razem błąd przybliżenia wynosi $|x_{34} - x| = 0.00000001851216909899$, a dokładnym ekstremum jest x = 0, f(x) = 1.

3.2.2 Użycie metody *złotego podziału* jako wstęp do metody Newtona

Jako punkt startowy weźmy $x_2 = -0.00000000000000005551$ (polecenie: ./main -m newton -f 4 -d 5 -x -0.000000000000005551 -error 10e-8).

i	x_i	$f^{(1)}(x_i)$
0	0.000000000	-0.00000000000000011102
1	0.000000000	0.00000000000000000000

Jak widać w tym przypadku rozsądne wybranie przyblizenia z metody złotego podziału pozwala bardzo szybko przybliżyć ekstremum funkcji. Trzeba jednak uważać na dobór punktu wyjściowego, ponieważ w tym wypadku możemy wybrać punkt który spowoduje, że metoda Newtona nie zakończy swojego działania. Łatwo się można o tym przekonać wybierając takie $|x|>|x_{root}|\approx \pm 0.707106, f^{(2)}(x_{root})=0$ (polecenie: ./main -m newton -f 4 -d 5 -i 100 -x 0.8).

3.2.3 Metoda bisekcji

Zastosowanie metody bisekcji będzie miało podobny efekt jak przy poprzedniej funkcji. Aby się o tym przekonać nalezy wykonać polecenie: ./main -m bisection -f 4 -s -1 1.

3.3 Funkcja 2.

Wzory i wykresy funkcji i pochodnych w podanym przedziale:

3.3.1 Metoda złotego podziału

Zastosowanie tej metody dla tej funkcji potwierdza jej właściwości - szybko zbiega ku prawidłowemu rozwiązaniu, jednak algorytm się nie zatrzymuje gdyż aktualnie badany przedział jest za duży. (polecenie: ./main -m golden_section -f 6 -s 0 10 -i 50 -error 10e-8 -e max).

i	x_i	$f(x_i)$
0	3.090169944	0.29293069691510170705
1	1.909830056	0.41094142153556473263
2	1.180339887	0.49320523891726081311
3	0.729490169	0.47612006438087856042
4	1.008130619	0.49998360708603867275
36	1.000000031	0.49999999999977796
37	0.999999996	0.500000000000000000000
38	1.000000017	0.499999999999988898

3.3.2 Użycie metody $zlotego\ podzialu\$ jako wstęp do metody Newtona

Jako punkt wyjściowy do metody Newtona weźmiemy $x_4 = 1.00813061875578369175$ (polecenie: ./main -m newton -f 7 -d 8 -x 1.00813061875578369175 -error 10e-8).

i	x_i	$f^{(1)}(x_i)$	_
0	1.008130619	-0.004015997888929	$\frac{1}{20313}$
1	0.999899483	0.000050266298445	95792
2	0.999999985	0.000000007576547	67460

3.3.3 Metoda bisekcji

Metoda bisekcji prezentuje następujące wyniki (polecenie: ./main -m bisection -f 7 -s 0 10 -error 10e-8 -i 30):

i	x_i	$f(x_i)$
0	5.000000000	-0.035502958579881657
1	2.500000000	-0.099881093935790726
2	1.250000000	-0.085663295657346816
3	0.625000000	0.315111728317131689
4	0.937500000	0.034301373178712055
5	1.093750000	-0.040692755893088988
6	1.015625000	-0.007631301536946475
22	1.000000238	-0.0000001192092469183
23	0.999999642	0.0000001788140302494
24	0.999999940	0.0000000298023250523

Metoda bisekcji szybciej niż metoda *złotego podziału* kończy swoje działania, zwracając satysfakcjonujący wynik, niemniej ciąg zwracanych przyblizeń zbiega wolniej ku rozwiązaniu, dlatego też połączenie tej metody z metodą Newtona nie da szybciej dobrego rowiązania - dlatego pominiemy ten przypadek, gdyż jest mało interesujący.

3.4 Funkcja 3.

Wzory i wykresy funkcji i pochodnych w podanym przedziale:

$$f(x) = x^2 + x - 1, x \in [-1, 2]$$

$$f^{(1)}(x) = 2x + 1$$
$$f^{(2)}(x) = 2$$

Metody złotego podziału i bisekcji w tym przypadku wykonują kolejno 36 i 24 iteracje, potwierdzają się poprzednie obserwacje - obydwie szybko wskazują ekstremum, jednakże długo się wykonują, gdyż algorytm czeka aż przedział stanie się odpowiednio "wąski". Metoda newtona daje odpowiedź w jednym kroku, gdyż $f^{(1)}$ jest funkcją liniową. Polecenia potrzebne do wykonania obliczeń:

- ./main -m golden_section -f 9 -s -1 2 -error 10e-8 -i 50,
- ./main -m bisection -f 10 -s -1 2 -error 10e-8 -i 50,
- ./main -m newton -f 10 -d 11 -x -1 -error 10e-8.

4 Kompilacja i obsługa programu

4.1 Wymagania

Aby skompilować program należy spełnić następujące wymagania dotyczące oprogramowania:

- kompilator G++ w wersji 4.7 lub późniejszej kompilator musi obsługiwać standard $C^{++}11$,
- obecność narzędzia GNU Make

Powyższe wymagania powinny być automatycznie spełnione w każdej aktualnej dystrybucji GNU/Linux.

4.2 Kompilacja

Należy przejść do katalogu **prog** i wykonać polecenie **make** - kompilacja wykona się automatycznie. W pliku **Makefile** podane są polecenia, które należy wykonać aby skompilować program ręcznie.

4.3 Obsługa programu

Program uruchamiamy za pomoca pliku main, po jego nazwie podając ciąg bedący kombinacją ponizszych parametrów:

- -f <nr_funkcji> za pomocą tego argumentu wybieramy jedną z dostępnych funkcji liczba przyporzadkowana funkcji to jej liczba porządkowa z treści zadania ·3, dodanie 1 to pierwsza pochodna, dodanie 2 to druga pochodna,
- -d <nr_funkcji> podobnie jak powyżej, tyle, że podajemy liczbę pochodnej,
- -m <metoda> wybór jednej z metod:
 - newton metoda newtona (obowiązkowe parametry wywołania to -f -d -x)
 - regula_falsi regula falsi (obowiązkowe parametry to -f -s)
 - bisection bisekcja (obowiązkowe parametry to -f -s)
 - golden_section metoda złotego podziału (obowiązkowe parametry to -f -s)
 - plot "wykres" funkcji (punkty) (obowiązkowe parametry to -f–s –step)
- -p <n> wypisz wyniki z precyzją n cyfr po przecinku (domyślnie 20),

- -s $\langle a \rangle$ $\langle b \rangle$ określ badany przedział od a do b,
- -x < y > -y jako punkt startowy,
- -e (min|max) określ czy szukać lokalnego mininum czy maximum w przedziale (działa tylko z -m golden_section, domyślnie min),
- -error <e> określ tolerancję błędu (domyślnie 10⁻¹⁰),
- -step <s> wielkość kroku przy obliczaniu punktów wykresu (działa tylko z -m plot, domyślnie 0.1),
- -i <i>- ilość iteracji (domyślnie 20),

Przykład: szukamy lokalnego minimum dla pierwszej funkcji z zadania, w podanym przedziale, za pomocą metody *złotego podziału*, z tolerancją błędu na poziomie 10^{-12} , maksymalnie 30 iteracjami i precyzją 25 liczb po przecinku.

./main -f 0 -s 0 1 -m golden_section -e 10e-12 -i 30 -p 25