Aufwärmeübung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 1) (Die \geq Bernoulli-Ungleichung)

Man zeige, dass für alle $n \in \mathbb{N}^*$ und alle reelle Zahlen $x \ge -1$ die **Ungleichung** von Bernoulli

$$(1+x)^n \ge 1 + nx$$

gilt.

(A 2) (Die AM-GM-HM Ungleichungen)

Seien $n \in \mathbb{N}^*$ und $x_1, \ldots, x_n \in \mathbb{R}_+^*$. Man beweise die folgenden Ungleichungen

$$\min\{x_1,\ldots,x_n\} \stackrel{\textcircled{1}}{\leq} \frac{n}{\frac{1}{x_1}+\cdots+\frac{1}{x_n}} \stackrel{\textcircled{2}}{\leq} \sqrt[n]{x_1\cdots x_n} \stackrel{\textcircled{3}}{\leq} \frac{x_1+\cdots+x_n}{n} \stackrel{\textcircled{4}}{\leq} \max\{x_1,\ldots,x_n\}.$$

Bemerkungen. 1) Die Zahl $\frac{x_1+\cdots+x_n}{n}$ ist das arithmetische Mittel (AM), $\sqrt[n]{x_1\cdots x_n}$ das geometrische Mittel (GM) und $\frac{n}{\frac{1}{x_1}+\cdots+\frac{1}{x_n}}$ das harmonische Mittel (HM) der positiven Zahlen x_1,\ldots,x_n .

2) Man kann zeigen, dass in jeder der obigen Ungleichungen genau dann Gleichheit gilt, wenn $x_1 = \cdots = x_n$ ist.

(A 3)

Sei $n \in \mathbb{N}^*$.

- a) Man zeige, dass wenn das Produkt der positiven reellen Zahlen x_1, \ldots, x_n gleich 1 ist, dann $x_1 + \cdots + x_n \ge n$ ist.
- b) Ist $n \geq 2$, dann zeige man, dass $n! < \left(\frac{n+1}{2}\right)^n$ ist. (Es sei daran erinnert, dass n!, gelesen n Fakultät, für das Produkt $1 \cdot 2 \cdot \ldots \cdot n$ steht.)

Hausaufgaben

(H 1) (Beweise mit mathematischer Induktion)

Sei $n \in \mathbb{N}^*$. Man berechne die folgenden Summen und beweise danach induktiv, dass die gefundene Gleichheit für alle $n \in \mathbb{N}^*$ gilt.

a)
$$1^2 + 2^2 + \dots + n^2$$
,

b)
$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n!$$
.

(H 2) (Die > Bernoulli-Ungleichung)

Man zeige, dass für alle $n\in\mathbb{N}$ mit $n\geq 2$ und alle reellen von Null verschiedenen Zahlen $x\geq -1$ die Ungleichung

$$(1+x)^n > 1 + nx$$

gilt.

(H 3) (Die geometrische Interpretation der AM-GM Ungleichung)

Man erkläre, weshalb für n=2 die Ungleichung vom arithmetischen und geometrischen Mittel besagt, dass unter allen Rechtecken mit dem gleichen Flächeninhalt das Quadrat den kleinsten Umfang hat.