Concerning Convolution on the Half-line

Т. К. Военме

Communicated by A. ERDÉLYI

0. We will say that a complex valued function on $[0, \infty)$ is locally integrable, locally p-integrable, locally of bounded variation, or locally absolutely continuous if it is integrable, p-integrable, of bounded variation, or absolutely continuous on each interval [0, a], a > 0. The vector spaces of locally integrable and locally p-integrable functions will be denoted by \mathcal{L} and \mathcal{L}^p , while the corresponding normed vector spaces for the finite interval [0, a] will be denoted by L[0, a] and $L^p[0, a]$. If there is no danger of confusion, the [0, a] will be omitted.

The spaces \mathscr{L}^p , $\infty \ge p \ge 1$, will each be considered to have the topology defined by the countable collection of semi-norms $||f||_n = ||f||_{L^p[0,n]}$. \mathscr{L} can be considered to be a ring with convolution denoted by juxtaposition; thus, k = fg is the function defined by the equation

$$k(t) = \int_0^t f(t-u) g(u) du, \qquad t \ge 0.$$

Certain properties of the convolution are well known; for instance, if f is in \mathscr{L}^p and g is in \mathscr{L}^q , $1 \le p \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, then fg is continuous. If f is in \mathscr{L}^p , $p \ge 1$, and g is in \mathscr{L} , then fg is in \mathscr{L}^p . Other properties of the convolution on the half line have been studied by Mikusiński, Ryll-Nardzewski [1], [2] and others. J. D. Weston has studied transformations on a subspace of \mathscr{L} which commute with convolution and has based an operational calculus on them [3]. It is our purpose here to study transformations on \mathscr{L} into \mathscr{L}^p , $1 \le p \le \infty$, which commute with convolution, transformations, that is, for which T(fg) = fT(g) for each f and g in \mathscr{L} .

The convolution integral equation on the half-line xf=k with f and k in \mathscr{L} occurs frequently; however, there are no satisfactory existence theorems to show when there exists a solution x in \mathscr{L} . Pollard & Blackman [4] have demonstrated a method of solving the equation when there exists a solution in \mathscr{L} (however, it may not be easy to carry out). We will show a comparison test for the existence of solutions (Corollary 3.3). If g=s v f, where s is Mikusiński's differentiation operator and v is locally of bounded variation, then xf=k has a solution in \mathscr{L} if xg=k has a solution in \mathscr{L} . In Theorem 4.1 a necessary and sufficient condition is given in order that xf=k have a solution when f is locally of bounded variation and $f(0^+) = 0$. Namely, k must be locally absolutely continuous and zero at the origin.

We shall not explicitly require that our transformations be linear, but we shall see that the requirement that T commute with convolution implies that T is linear, and it implies that T is continuous also. Our main theorem is Theorem 3.1, which characterizes the transformations on $\mathcal L$ into $\mathcal L$ which commute with convolution as being of the form $T=s\nu$ where s is the differentiation operator of Mikusiński's operational calculus and v is locally of bounded variation. That is, there is a v such that whenever g is in $\mathcal{L} T(g) = s v g$. This result leads one to conjecture the result for transformations on \mathscr{L} into \mathscr{L}^{\flat} , $1 < \flat \leq \infty$, and Theorem 1.7 states that every transformation which commutes with convolution and takes \mathcal{L} into \mathcal{L}^p , $1 , is such that there is an f in <math>\mathcal{L}^p$ and T(g) = fg for every g in \mathscr{L} . Since the result for transformations on \mathscr{L} into \mathscr{L} depends in a minor way on the result for transformations on \mathscr{L} into \mathscr{L}^{∞} , the latter result is proved first. But the result for transformations on ${\mathscr L}$ into ${\mathscr L}$ depends in a major way on the result characterizing the transformations which commute with convolution and take \mathcal{L} into the ring of functions which are locally of bounded variation. These transformations are characterized in Section 2. There it is shown that such a transformation is of the form $T=\nu$ (i.e. for every g in \mathscr{L} , T(g) = v g for some v which is locally of bounded variation. It is also shown that a transformation of this type must take \mathscr{L} not only into the ring of functions which are locally of bounded variation but, in fact, takes \mathcal{L} into the ring of functions which are locally absolutely continuous and zero at the origin.

For each of the theorems proved here concerning transformations on \mathscr{L} to \mathscr{L}^p , $1 \le p \le \infty$, there is an analogous theorem concerning transformations on $L[-\infty,\infty]$ to $L^p[-\infty,\infty]$, but we shall not prove these here. The proofs directly imitate those proofs we give here, but to a certain extent are more readily carried out because of the fact that $L[-\infty,\infty]$ and $L^p[-\infty,\infty]$ are Banach spaces while \mathscr{L} and \mathscr{L}^p are not. The theorem analogous to Theorem 3.1 characterizes the transformations on L to L in the following manner. For each such transformation T there is a function v of bounded variation on $[-\infty,\infty]$ and with $v(-\infty)=0$ such that $T(g)=k \Leftrightarrow k(t)=\int\limits_{-\infty}^{\infty}g(t-u)dv(u)$ for almost all t, and for all g in L. In order to prove this it is necessary to have the analogue on $[-\infty,\infty]$ of the Hardy-Littlewood theorem (our Theorem H-L in Section 2) which has recently been proved by P. L. BUTZER [5]. It is interesting to compare the results concerning transformations on $L[-\infty,\infty]$ to $L^p[-\infty,\infty]$ with the results of R. P. Agnew [6].

1. Every f in \mathscr{L} is also in L[0, a], a > 0, and defines a continuous linear transformation on L to L by means of the equation $T_f(g) = fg$. We shall say that T_f is the linear transformation determined by f. By a simple application of Fubini's theorem on double integrals it is seen that T_f is bounded and

$$||T_{f}|| \leq ||f||_{L} = \int_{0}^{a} |f| du.$$

For n=1, 2, ... let g_n be the approximations to the delta function defined by $g_n(t)=n$ when $0 \le t \le \frac{1}{n}$ and $g_n(t)=0$, $t>\frac{1}{n}$. The following theorem is well known, but for the sake of completeness the proof will be indicated.

Theorem 1.1. Let f be in \mathcal{L} , and let g_n be defined as stated above for $\frac{1}{n} < a'$ and a > 0. Then $fg_n \to f$ in L[0, a] as $n \to \infty$. The convergence is convergence in norm.

Proof. It is sufficient to prove the theorem for the case when f is a member of a dense subset of \mathcal{L} . Thus, let f be continuous and f(0) = 0. But for such an f direct calculation easily shows that fg_n tends uniformly to f on [0, a] and fg_n tends to f also in norm.

Corollary 1.2. If f is in \mathcal{L} and a > 0, the norm of the linear transformation determined by f is $||T_t|| = ||f||_L$.

Proof. Since we know that $||T_f|| \le ||f||_L$, it is only necessary to find for each $\varepsilon > 0$ a g such that $||g||_L = 1$ and $||T_f(g)|| > ||f||_L - \varepsilon$. But for the g_n specified above we have $||g_n|| = 1$ for each n and $||T_f(g)_n||_L \to ||f||_L$ as $n \to \infty$.

Now let f=b be in \mathscr{L}^{∞} . The linear transformation determined by b takes L into L^{∞} (in fact b g is continuous if g is in L). Again, it is clear that T_b as a transformation on L to L^{∞} is continuous and $||T_b|| \le ||b||_{L^{\infty}} = \text{ess. sup } |b(t)|$. But we have

Theorem 1.3. If b is in \mathscr{L}^{∞} and a > 0, the norm of the linear transformation T_b on L to L^{∞} is $||T_b|| = ||b||_{L^{\infty}}$.

Proof. Again it is only necessary to find a set of g_n such that $\|g_n\|_{L} = 1$ for each n and $\|b g_n\|_{L^{\infty}} \to \|b\|_{L^{\infty}} = K$ as $n \to \infty$. Define the sets

$$E_n = \left\{ u \mid 0 \le u \le a, \mid b(a-u) \mid > K - \frac{1}{n} \right\}, \quad n = 1, 2, \dots$$

The measure, $\mu(E_n)$, of each E_n is positive if K is different from zero. If g_n is defined by

$$\mu(E_n) g_n(u) = X_{E_n}(u) \operatorname{sgn} b(a - u), \qquad n = 1, 2, \ldots, \qquad 0 \le u \le a,$$

where X_E is the characteristic function of the set E, then $\|g_n\|_{L} = 1$. Moreover,

$$(b g_n)(a) = \int_0^a b(a-u) g_n(u) du = \frac{1}{\mu(E_n)} \int_0^a X_{E_n}(u) |b(a-u)| du > K - \frac{1}{n}.$$

Since $b \ g_n$ is continuous, $||b \ g_n||_{L^{\infty}} \ge K - \frac{1}{n}$, and since $||b \ g_n||_{L^{\infty}} \le K$, we have $||b \ g_n||_{L^{\infty}} \to ||b||_{L^{\infty}}$ as $n \to \infty$, which completes the proof.

Since $L^{\infty}[0, a]$ is a conjugate space, it has weak* topology, and strongly closed spheres are compact in this topology. If f_m is a sequence of functions in \mathcal{L}^{∞} , and if b in \mathcal{L}^{∞} is such that for every a > 0 and every g in L[0, a]

$$\lim_{0}\int_{0}^{a}f_{m}(u)g(u)du=\int_{0}^{a}b(u)g(u)du,$$

we shall say that f_m tends weak* to b on each interval [0, a].

Lemma 1.4. Let f_n , n=1, 2, ..., be a sequence of functions in \mathcal{L}^{∞} , and suppose that for each a>0 there is a $B_a<\infty$ such that $||f_n||_{L^{\infty}[0,a]}< B_a$. Then there is a b in \mathcal{L}^{∞} and a subsequence f_m of f_n such that f_m tends weak* to b on each interval [0, a].

Proof. Since strongly closed spheres in $L^{\infty}[0, a]$ are weak* compact, we can pick a set of subsequences $f_{K,n}$ of f_n , $K=1,2,\ldots$, such that $f_{K+1,n}$ is subsequence of $f_{K,n}$, and $f_{K,n}$ tends weak* to $f_{K,n}$ on $f_{K,n}$ as $f_{K,n}$. By the diagonal process a single subsequence $f_{K,n}$ of $f_{K,n}$ can be found which converges weak* on each $f_{K,n}$ to $f_{K,n}$ and $f_{K,n}$ and $f_{K,n}$ and $f_{K,n}$ are the fact that $f_{K,n}$ and $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ as $f_{K,n}$ and $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ as $f_{K,n}$ and $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ and $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ and $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ and $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ and $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, where $f_{K,n}$ are weak* compact, we can pick a set of $f_{K,n}$ are weak* compact, where f_{K

$$\int_{0}^{K_{1}} b_{K_{1}}(u) g_{1}(u) du = \lim_{m \to \infty} \int_{0}^{K_{1}} f_{m}(u) g_{1}(u) du = \lim_{m \to \infty} \int_{0}^{K_{2}} f_{m}(u) g_{2}(u) du$$

$$= \int_{0}^{K_{1}} b_{K_{2}}(u) g_{2}(u) du = \int_{0}^{K_{1}} b_{K_{2}}(u) g_{1}(u) du$$

makes it clear that $b_{K_1}(u) = b_{K_1}(u)$ almost everywhere on $[0, K_1]$. Thus the functions in \mathscr{L}^{∞} which are equal to b_K on [0, K] and zero on (K, ∞) converge almost everywhere on $[0, \infty]$ to a function b which has the desired property.

Lemma 1.5. Let f_m and b be as described in Lemma 1.4. Then if g is in \mathcal{L} , the sequence $f_m g$ tends weak* on each interval [0, a] to b g.

Proof. For any k in L[0, a] and k_1 such that $k_1(a-u) = k(u)$, $0 \le u \le a$, $\int_0^a (f_m g)(u) k(u) du = \int_0^a (f_m g)(u) k_1(a-u) du = \int_0^a f_m(u) (g k_1) (a-u) du$ which tends to

$$\int_{0}^{a} b(u) (g k_{1}) (a - u) du = \int_{0}^{a} (b g) (u) k(u) du \text{ as } m \to \infty.$$

Theorem 1.6. Let T be a transformation which takes each element of $\mathcal L$ into $\mathcal L^{\infty}$. If T commutes with convolution, then T is a continuous linear transformation of $\mathcal L$ into $\mathcal L^{\infty}$, and there is a b in $\mathcal L^{\infty}$ such that T(g)=b g for each g in $\mathcal L$. As a transformation on L to L^{∞} , $||T||=||b||_{L^{\infty}}$.

Proof. The last statement of the theorem follows immediately from the preceding statement in view of Theorem 1.3.

Let g_n be as in Theorem 1.1, and let T_n be the linear transformations determined by the functions $T(g_n)$. Thus $S_n(g) = g T(g_n) = T(g_n g) = g_n T(g)$ for g in \mathscr{L} . Each T_n takes L[0, a] into $L^{\infty}[0, a]$, and the norm of T_n as a transformation on L to L^{∞} is $||T_n|| = ||T(g_n)||_{L^{\infty}[0,a]}$. For any fixed g in L[0, a], and n sufficiently large

$$||T_n(g)||_{L^{\infty}} = \max_{0 \le t \le a} \left| \int_0^t T(g_n)(u) g(t-u) du \right|$$

$$= \max_{0 \le t \le a} \left| \int_0^t T(g)(u) g_n(t-u) du \right|$$

$$\le ||T(g)||_{L^{\infty}} \int_0^a g_n(u) du = ||T(g)||_{L^{\infty}}.$$

Since the T_n are bounded pointwise on L, they are bounded in norm (i.e. a > 0 implies there is a $B_a < \infty$ such that $\|T_n\| = \|T(g_n)\|_{L^{\infty}[0,a]} < B_a$). The functions $T(g_n)$ thus satisfy the conditions of Lemma 1.4. Consider then the subsequence $T(g_m)$ which converges weak* to b in \mathcal{L}^{∞} . If g is in \mathcal{L} , the sequence $g T(g_m)$ converges weak* to g b on each interval [0, K] by Lemma 1.5. On the other

hand $g T(g_m) = g_m T(g)$, which by Theorem 1.1 converges in L norm to T(g). The strong limit T(g) and the weak* limit g b of the sequence $g T(g_m)$ must be the same, that is

$$T(g) = g b$$

for each g in \mathcal{L} .

If $1 , a similar theorem can be proved by the same methods. Indeed since there exist sets dense both in <math>\mathcal{L}$ and in \mathcal{L}^p , $1 , the theorem corresponding to Theorem 1.3 can be proved by the method of Theorem 1.1. The important point in Lemma 1.4 is that the strongly closed unit sphere in <math>L^{\infty}$ is weak* compact. This is true also of L^p , 1 . Thus we state

Theorem 1.7. Let T be a transformation which takes each element of \mathcal{L} into \mathcal{L}^p , 1 . If <math>T commutes with convolution, then T is a continuous linear transformation of \mathcal{L} into \mathcal{L}^p , and there is an f in \mathcal{L}^p such that T(g) = fg for each g in \mathcal{L} . As a transformation on L to L^p , $||T|| = ||f||_{L^p}$.

2. The next theorem depends on a theorem of HARDY & LITTLEWOOD. Theorem H-L. Suppose that a>0 and f(u)=0 for u>a. Then

$$\int_{0}^{a} |f(u+h) - f(u)| du = O(h)$$
 (1)

if and only if f is equal almost everywhere to a function which is of bounded variation on [0, a].

We shall need this theorem in the following form.

Corollary H-L. Suppose that f is in \mathcal{L} . A necessary and sufficient condition that f be equal almost everywhere on $[0, \infty)$ to a function which is locally of bounded variation is that equation (1) holds for each a > 0.

Theorem 2.1. Let f be in \mathcal{L} . If for each g in \mathcal{L} , f g is equal almost everywhere to a function which is locally of bounded variation, then f itself is equal almost everywhere to a function which is locally of bounded variation.

Proof. Take a > 0 Suppose g is in \mathcal{L} , and let k = f g. By corollary H-L

$$\int_{0}^{a} \left| \frac{k(u+h)-k(u)}{h} \right| du = O(1)$$

as $h \rightarrow 0$. Now

$$\begin{split} I_{g}(h) &= \int_{0}^{a} \left| \int_{0}^{u} \frac{f(u+h-\xi)-f(u-\xi)}{h} g(\xi) d\xi \right| du \\ &= \int_{0}^{a} \left| \frac{k(u+h)-k(u)}{h} - \frac{1}{h} \int_{u}^{u+h} f(u+h-\xi) g(\xi) d\xi \right| du \\ &\leq O(1) + \frac{1}{h} \int_{0}^{a} \int_{u}^{u+h} |f| (u+h-\xi) |g| (\xi) d\xi du. \end{split}$$

Now fg is certainly essentially bounded on [0, a], and by Theorem 1.6 f is essentially bounded on [0, a], which implies that the second term on the right

in the above inequality is O(1) as $h \to 0$. Thus $I_g(h) = O(1)$ as $h \to 0$. Applying the uniform boundedness principle and Corollary 1.2, we have

$$\int_{0}^{a} \left| \frac{f(u+h) - f(u)}{h} \right| du = O(1)$$

for each positive a. Thus f is equal almost everywhere to a function which is locally of bounded variation.

The converse of the above theorem is well known.

MIKUSIŃSKI & RYLL-NARDZEWSKI [1] have shown that if f is locally of bounded variation and g is continuous, then fg is locally absolutely continuous. However, more is true.

Theorem 2.2. If f is locally of bounded variation and g is in \mathcal{L} , then f g is locally absolutely continuous.

Proof. The proof is straightforward. For $\varepsilon > 0$ we will show that the variation of fg on subintervals of [0, a] the sum of whose lengths are sufficiently small is less that ε .

Clearly it is no restriction to take f non-decreasing, and even to suppose f(0) = 0. Suppose that f is non-decreasing, f(0) = 0, and that the variation of f on [0, a] equals K. Now g can be split into a bounded part and a part whose norm is as small as we please. Let $g = g_B + g_\alpha$ where $|g_B(t)| < B$ and $\int_0^a |g_\alpha| du < \alpha$. Suppose x_n , y_n are such that

$$0 \le x_n < y_n \le x_{n+1} < y_{n+1} \le a$$
, $n = 0, 1, ..., N-1$.

Let

$$h_n = y_n - x_n, \qquad I_n = [x_n, y_n], \qquad n = 0, 1, ..., N,$$

and let

$$\Delta = \sum_{n=0}^{N} \left| \int_{0}^{y_{n}} f(y_{n} - u) g(u) du - \int_{0}^{x_{n}} f(x_{n} - u) g(u) du \right|.$$

Let $S = \bigcup_{1}^{N} I_n$. We choose $\delta_1 > 0$ so small that $\mu(S) < \delta_1$ implies $\int_{S} |g| du < \frac{s}{3K}$. We can take α to be as small as we please, and B depends only on α . Take $\alpha < \frac{\varepsilon}{3K}$. We now choose $\delta < \min \left[\delta_1, \frac{\varepsilon}{6BK} \right]$. Then suppose $\mu(S) < \delta$. Since K is a bound for f on [0, a],

$$\Delta \leq \sum_{n=0}^{N} \left| \int_{0}^{x_{n}} [f(y_{n} - u) - f(x_{n} - u)] g(u) du \right| + K \int_{S} |g| du,$$

and the last term on the right is less than $\frac{1}{3}\varepsilon$. Further,

$$\sum_{n=0}^{N} \left| \int_{0}^{x_{n}} [f(y_{n}-u) - f(x_{n}-u)] g(u) du \right| \leq \sum_{n=0}^{N} \left| \int_{0}^{x_{n}} [f(y_{n}-u) - f(x_{n}-u)] g_{B}(u) du \right| + \sum_{n=0}^{N} \left| \int_{0}^{x_{n}} [f(y_{n}-u) - f(x_{n}-u)] g_{\alpha}(u) du \right| = S_{1} + S_{2},$$

where S_1 and S_2 are the first and second sums on the right in the above inequality.

Since f is increasing,

$$S_2 \leq K \int_0^a |g_{\alpha}| du \leq K \alpha < \frac{1}{3} \varepsilon.$$

Since f is increasing and g_B is bounded,

$$\begin{split} S_{1} & \leq B \sum_{n=0}^{N} \int_{0}^{x_{n}} [f(y_{n} - u) - f(x_{n} - u)] du \\ & = B \sum_{n=0}^{N} \int_{0}^{x_{n}} [f(t + h_{n}) - f(t)] du = B \sum_{n=0}^{N} \left[\int_{x_{n}}^{x_{n} + h_{n}} f dt - \int_{0}^{h_{n}} f dt \right] \\ & \leq 2BK \sum_{n=0}^{N} h_{n} = 2BK \mu(S) < 2BK \delta < \frac{1}{3} \varepsilon. \end{split}$$

Thus $\Delta < \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon = \varepsilon$.

3. Let h be the function whose value is 1 for every non-negative t, and let s be the differentiation operator of Mikusiński's operational calculus (i.e. $s=h^{-1}$). We can now characterize transformations on \mathcal{L} to \mathcal{L} which commute with convolution.

Theorem 3.1. Let T be a transformation on \mathcal{L} to \mathcal{L} which commutes with convolution. Then T is a continuous linear transformation on \mathcal{L} to \mathcal{L} . If T(h)=f, then f is equal almost everywhere to a function v which is locally of bounded variation and $T(g)=s\ v$ g for every g in \mathcal{L} . Furthermore, for any v which is locally of bounded variation the transformation $g \to s\ v$ g takes \mathcal{L} into \mathcal{L} and is a continuous linear transformation. If v is normalized by $v(t)=v(t^-)$ for t>0 and $v(0)=v(0^+)$, the norm of T as a linear transformation on L to L is $\|T\|=\mathrm{Variation}\ v+\|v(0)\|$.

Proof. Let T(h)=f; then for every g in \mathcal{L} g f=g T(h)=h T(g) is locally absolutely continuous, and by Theorem 2.1 f is equal almost everywhere to a function v which is locally of bounded variation. Thus T is a linear transformation on \mathcal{L} to \mathcal{L} and T(g)=s v g for all g. On the other hand any linear transformation on \mathcal{L} , which is such that T(g)=s v g for all g with some fixed function which is locally of bounded variation, must have its range contained in \mathcal{L} , since v g is locally absolutely continuous (by Theorem 2.2) and zero at the origin (since v is bounded in a neighborhood of the origin). That is, v g=hk for k in \mathcal{L} and s v g is in \mathcal{L} .

To find the norm of T as a transformation on L to L, let $k_{\epsilon}(t) = \frac{\nu g(t-\epsilon) - \nu g(t)}{\epsilon}$ when $t \ge \epsilon$ and $k_{\epsilon}(t) = 0$ when $t < \epsilon$. Then $k_{\epsilon} \to T(g)$ almost everywhere as $\epsilon \to 0^+$, and

$$k_{\varepsilon} = I_{1,\,\varepsilon} + I_{2,\,\varepsilon}$$
 with

$$I_{1,\epsilon}(t) = \int_{0}^{t-\epsilon} g(u) \frac{v(t-u-\epsilon)-v(t-u)}{\epsilon} du, \quad t \ge \epsilon,$$

$$= 0, \quad t < \epsilon,$$

$$I_{2,\epsilon}(t) = \frac{1}{\epsilon} \int_{t-\epsilon}^{t} g(u) v(t-u) du, \quad t \ge \epsilon.$$

Since

$$\lim_{\varepsilon \to 0^{+}} \int_{0}^{a} \left| I_{1,\varepsilon}(t) \right| dt \leq \|g\| \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{a} \left| \frac{\nu(u-\varepsilon) - \nu(u)}{\varepsilon} \right| du$$

$$\leq \|g\| \operatorname{Var}_{[0,a]} \nu$$

and

$$\lim_{\varepsilon \to 0^+} \int_0^a |I_{2,\varepsilon}(t)| dt \leq ||g|| |v(0)|,$$

by Fatou's Lemma

$$||T(g)|| \le ||g|| (\operatorname{Var} \nu + |\nu(0)|),$$

and

$$||T|| \leq \operatorname{Var} \nu + |\nu(0)|.$$

On the other hand if g_n , n=1, 2, ..., are as in Theorem 1.1, the L norm of $s g_n v$ tends to Var v + |v(0)| as n tends to infinity if v is normalized by $v(t) = v(t^-)$ for t > 0 and $v(0) = v(0^+)$.

It can also be shown that the Lebesgue-Stieltjes integral $\int_0^t g(t-u) dv(u)$ exists for almost every $t \ge 0$, is in \mathcal{L} , and is equal almost everywhere to s v g. The proof follows the same line as in showing that g k is in \mathcal{L} whenever g and k are in \mathcal{L} . This yields an alternative method of proving Theorem 2.2.

It is a result of RYLL-NARDZEWSKI [2] that an operator of the form s v has an inverse of the form $s v_1$, with v and v_1 locally of bounded variation if and only if $v(0^+) \neq 0$. That is, we know precisely which of the operators on $\mathscr L$ to $\mathscr L$ that commute with convolution have inverses.

If two elements of \mathscr{L} , f and g, are such that the range of the linear transformation determined by f includes the range of the linear transformation determined by g, we shall say $f \ge g$. If the containment is proper, we shall say f > g. Then

Theorem 3.2. (i) $f \ge g$ if and only if g = s v f where v is locally of bounded variation. (ii) f > g if and only if g = s v f where v is locally of bounded variation and $v(0^+) = 0$.

Proof. (i) Suppose that $f \ge g$. Then every element of \mathscr{L} which has g as a factor also has f as a factor. Let k be in \mathscr{L} . Then g/f is in the field of Mikusiński operators, and

$$\frac{g}{f}k = \frac{gk}{f} = \frac{fk_1}{f} = k_1$$

where k_1 is in \mathscr{L} . Thus the transformation $k \to \frac{g}{f} k$ takes \mathscr{L} into \mathscr{L} and commutes with convolution. Thus $g/f = s \, v$ with v locally of bounded variation. On the other hand if $g = s \, v \, f$ and v is locally of bounded variation, any function of the form $g \, k$ is also of the form $(s \, v \, f) \, k = f \, k_1$ so that $f \ge g$. (ii) If $g = s \, v \, f$ and $v \, (0^+) \pm 0$, then $\frac{1}{s \, v} = s \, v_1$ so that $f = s \, v_1 \, g$. Thus the range of T must equal the range of T, and we cannot have f > g. On the other hand if the ranges of T_f and T_g are equal, we must have $g = s \, v \, f$ and $f = s \, v_1 \, g$ with v and v_1 locally of bounded variation. Thus $\frac{1}{s \, v} = s \, v_1$, and by RYLL-NARDZEWSKI's theorem $v \, (0^+) \, v \, (0^+) \, \neq 0$.

Theorem 3.2 can be viewed as a comparison theorem for the existence of functional solutions to the convolution integral equation xf = k. Thus a restatement of Theorem 3.2(i) is

Corollary 3.3. Let f and g be in \mathscr{L} . The integral equation xf = k has a solution in \mathscr{L} for every k in \mathscr{L} such that xg = k has a solution in \mathscr{L} if and only if g = s v f where v is locally of bounded variation.

- **4.** A simple application is given by the functions which are locally of bounded variation. Any function f which is locally of bounded variation and for which $f(0^+) \neq 0$ is equivalent to h in the sense that both $h \geq f$ (since f = (s f)h) and $f \geq h$ (since $h = \frac{1}{sf} f = s v f$). Thus the integral equations xh = k and xf = k have solutions for exactly the same set of k.
- Theorem 4.1. If f is locally of bounded variation and $f(0^+) \neq 0$, a necessary and sufficient condition that the convolution integral equation xf = k has a solution x in \mathcal{L} is that k be locally absolutely continuous and zero at the origin.
- **Proof.** The condition on k is that k be the integral of a function in \mathcal{L} , and this is a necessary and sufficient condition that xh=k have a solution x in \mathcal{L} .

This research was supported by the National Science Foundation.

References

- [1] Mikusiński, J. G., & Cz. Ryll-Nardzewski: Sur le produit de composition. Studia Math. 12, 51-57 (1951).
- [2] RYLL-NARDZEWSKI, Cz.: Sur les series de puissances dans le calcul opératoire. Studia Math. 13, 41-47 (1953).
- [3] Weston, J. D.: Operational calculus and generalized functions. Proc. Royal Soc. London, Ser. A 250, 460-471 (1959).
- [4] BLACKMAN, J., & H. POLLARD: The finite convolution transform. Trans. Amer. Math. Soc. 91, 399-409 (1959).
- [5] BUTZER, P. L.: On some theorems of Hardy, Littlewood and Titchmarsh. Math. Ann. 142, 259-269 (1961).
- [6] TITCHMARSH, E. C.: Theory of Functions, p. 373. Oxford 1932.
- [7] AGNEW, R. P.: On kernels of faltung transformations. Trans. Amer. Math. Soc. 48, 1-20 (1940).

University of Washington Seattle

(Received February 20, 1962)