Math 342 Workshop - Taylor Polynomials	Name:
1. Write a Python program to find and sum the terms of the approximate e^6 . Instead of writing a for-loop, I recommend	
[expression for item in iter	able].
Here is an example:	
<pre>from math import * sum([1/factorial(n) for n in range(10)])</pre>	
2. Use the exp function in the Python math library to find the with your Taylor polynomial approximation.	e "exact" value of e^6 . Compare this
(a) What is the absolute error in your approximation?	
(b) What is the relative error in your approximation?	
3. Adjust your program to find the 20th degree Taylor polynome.	omial approximation to find e^{-6} .

4. Compare your answer to the actual value of e^{-6} .

(a) What is the absolute error in your approximation?

(b) What is the relative error in your approximation?

- 5. Compare the following:
 - (a) The Maclaurin polynomial approximation for $\sin(4\pi)$ (you can pick the degree, as long as it is at least 20).
 - (b) $\sin(4\pi)$ according to Python (using the sin() function and pi from the math library).
 - (c) The actual value of $\sin(4\pi)$.
- 6. Use the Maclaurin series for $\cos x$ to find the Maclaurin series for $\cos \sqrt{x}$. Then integrate to find the Maclaurin series for $\int \cos \sqrt{x} \, dx$.

7. Use Python to approximate $\int_0^1 \cos \sqrt{x} \, dx$.