DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

Tutorial and practice problems on Single Variable Calculus

MA-101: Mathematics-I Tutorial Problem Set - 13 November 20, 2013

PART-A (Tutorial)

1. Let $f:[a,b] \to \mathbb{R}$ be such that f(x)=0 except for a finite number of points c_1,\ldots,c_n in [a,b]. Show that $f \in R([a,b])$ and $\int_a^b f(t)dt = 0$. Hence or otherwise prove that if $g \in R([a,b])$ and h(x) = g(x) except for a finite number of points in [a,b] then $h \in R([a,b])$ and $\int_a^b g(t)dt = \int_a^b h(t)dt$.

Solution: Set $M := \max_{1 \le j \le n} |f(c_j)|$. Choose $\epsilon > 0$ and set $\delta := \epsilon/nM$. Let $P \in \mathcal{P}([a,b])$ be such that $\|P\| < \delta$ and that each c_i belongs to exactly one subinterval of P. Let $M(c_i)$ and $m(c_i)$ denote the supremum and infimum of f on the subinterval that contains c_i . Then obviously $M(c_i) = \max(f(c_i), 0)$ and $m(c_i) = \min(f(c_i), 0)$. Consequently, $M(c_i) - m(c_i) = |f(c_i)|$. Thus the contribution in U(P, f) - L(P, f) of the subinterval that contains c_i is at most $|f(c_i)| \|P\| \le M \|P\|$. Consequently, $U(P, f) - L(P, f) \le nM \|P\| < nM\delta = \epsilon$. This shows that $f \in R([a, b])$.

Next, choose $\epsilon > 0$ so small that $[c_i - \delta, c_i + \delta]$ are disjoint for all i = 1, ..., n, where $\delta := \epsilon/2nM$. Then $|\int_a^b f(t)dt| = |\sum_{j=1}^n \int_{c_j - \delta}^{c_j + \delta} f(t)dt| \le \sum_{j=1}^n M2\delta = \epsilon$. This shows that $\int_a^b f(t)dt = 0$.

Applying above result to h-g, we see that $h-g \in R([a,b])$ and hence $h=(h-g)+g \in R([a,b])$.

- 2. Let $f: [-1,1] \to \mathbb{R}$ be given by f(x) := -1 when x < 0, and f(x) := 1 when $x \ge 0$. Show that $f \in \mathcal{R}([-1,1])$ but f does not have an antiderivative.
- 3. Let $F:[0,1]\to\mathbb{R}$ be given by F(0):=0 and $F(x):=x^2\sin(1/x^2)$ when $x\neq 0$. Show that F is differentiable on [0,1]. Define $f:[0,1]\to\mathbb{R}$ by f(x):=F'(x). Then F is an antiderivative of f. Show that f is not Riemann integrable. Does this contradict first fundamental theorem?
- 4. Let p be a real number and $f: \mathbb{R} \to \mathbb{R}$ be continuous such that f(x+p) = f(x) for all $x \in \mathbb{R}$. Show that $\int_a^{a+p} f(t)dt$ has the same value for all a.

Solution: Define $F(x) := \int_x^{x+p} f(t)dt$. Then F'(x) = f(x+p) - f(x) = 0 for all $x \in \mathbb{R}$. Hence the result follows.

5. (Generalized Mean Value Theorem) Let $f:[a,b] \to \mathbb{R}$ be continuous and $g \in R([a,b])$ be such that $g(x) \geq 0$ for all $x \in [a,b]$. Prove that there exists $c \in [a,b]$ such that

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx.$$

Give an example to show that the condition $g(x) \ge 0$ for all $x \in [a, b]$ cannot be dropped.

Solution: Let m and M be the global minimum and global maximum of f, respectively. Since $g(x) \geq 0$, we have $m \leq f(x) \leq M \Rightarrow mg(x) \leq f(x)g(x) \leq Mg(x) \Rightarrow m\int_a^b g(t)dt \leq \int_a^b f(t)g(t)dt \leq M\int_a^b g(t)dt$. If $\int_a^b g(t)dt = 0$ then the result follows. So, suppose that $L := \int_a^b g(t)dt \neq 0$. Then L > 0. This shows that $m \leq \int_a^b f(t)g(t)dt/L \leq M$. Therefore, by the IVT there exists $c \in [a,b]$ such that $f(c) = \int_a^b f(t)g(t)dt/L$. Hence the result follows.

Example: Consider f(x) := x + 2 and g(x) := x for $x \in [-1, 1]$. Then $\int_{-1}^{1} g(x) dx = 0$. But $\int_{-1}^{1} f(x)g(x) dx = 2/3 \neq f(c) \int_{-1}^{1} g(x) dx = 0$.

6. Examine convergence of the following improper integrals.

(i)
$$\int_0^1 \sin(\frac{1}{x}) dx$$
; (ii) $\int_0^\infty \frac{\sin^2 x}{x^2} dx$; (iii) $\int_0^{\pi/2} \frac{dx}{\sin(x)}$.

Solution:

- (i) Let $I(\epsilon) := \int_{\epsilon}^{1} \sin(\frac{1}{x}) dx$, where $\epsilon > 0$. Substituting u = 1/x, we obtain $I(\epsilon) = \int_{1}^{1/\epsilon} \frac{\sin(u)}{u^2} du$. Since $\int_{1}^{\infty} \frac{\sin x}{x^2} dx$ converges absolutely, we conclude that $\lim_{\epsilon \to 0^+} I(\epsilon)$ exists and hence the improper integral converges.
- (ii) Note that $\frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$ and $\int_1^\infty \frac{1}{x^2} dx$ converges. Therefore $\int_1^\infty \frac{\sin^2 x}{x^2} dx$ converges. Also note that $\int_0^1 \frac{\sin^2 x}{x^2} dx$ exists in the sense of Riemann (because the integrand can be redefined as a continuous function). Thus the improper integral converges.
- (iii) Let f(x) := 1/x and $g(x) := 1/\sin(x)$. Then $\lim_{x\to 0^+} \frac{f(x)}{g(x)} = \lim_{x\to 0^+} \frac{\sin(x)}{x} = 1$. Since $\int_0^{\pi/2} \frac{dx}{x}$ diverges, by Limit Comparison Test the improper integral diverges.
- 7. Prove that the improper integral $\int_{1}^{\infty} \frac{\sin(x)}{x^{p}} dx$ converges but not absolutely for 0 .

Solution: By Dirichlet's Test the integral converges. Now observe that $|\sin x| \ge \sin^2 x$ and hence $|\sin(x)/x^p| \ge \sin^2(x)/x^p = \frac{1-\cos(2x)}{2x^p}$. Again by Dirichlet's Test $\int_1^\infty \frac{\cos(2x)}{2x^p} dx$ converges for p > 0. Since $\int_1^\infty \frac{dx}{2x^p}$ diverges for $p \le 1$, we conclude that the integral does not converge absolutely for 0 .

8. Find the arc lengths of the following curves:

(i) the cycloid
$$x = t - \sin t, y = 1 - \cos t, 0 \le t \le 2\pi$$
; (ii) $y = \int_0^x \sqrt{\cos(2t)} \, dt, 0 \le x \le \pi/4$.

Solution: (i) Length =
$$\int_0^{2\pi} \sqrt{(1-\cos t)^2 + \sin^2 t} \, dt = \int_0^{2\pi} 2|\sin(t/2)|dt = 4 \int_0^{\pi} |\sin(t)|dt = 8.$$
 (ii) Length = $\int_0^{\pi/4} \sqrt{1 + (y')^2} \, dx = \int_0^{\pi/4} \sqrt{1 + \cos(2x)} \, dx = \sqrt{2} \int_0^{\pi/4} |\cos x| dx = 1.$

9. The cross sections of a certain solid by planes perpendicular to the x-axis are circles with diameter extending from the curve $y = x^2$ to the curve $y = 8 - x^2$. The solid lies between the points of intersections of these two curves. Find the volume of the solid.

Solution: The diameter of the circle at a point x is given by $(8-x^2)-x^2$, where $x \in [-2,2]$. So the area A(x) of the cross section at x is given by $A(x) = \pi(4-x^2)^2$. Thus Volume $= \int_{-2}^2 \pi(4-x^2)^2 dx = 2\pi \int_0^2 (4-x^2)^2 dx = \frac{512\pi}{15}$.

10. Find the volume of the solid generated when the region bounded by the curves $y = 3 - x^2$ and y = -1 is revolved about the line y = -1, by both Washer Method.

Solution: Washer Method:
Area of washer =
$$\pi(1+y)^2 = \pi(1+(3-x^2))^2 = \pi(4-x^2)^2$$
 so that Volume = $\int_{-2}^{2} \pi(4-x^2)^2 dx = \frac{512\pi}{15}$.

PART-B (Homework/Practice problems)

- 1. Evaluate the following limits. (Assume that $f \in \mathcal{R}([a,b])$ and is continuous at x_0 .)
 - (i) $\lim_{h\to 0} \frac{1}{h} \int_x^{x+h} \frac{du}{u+\sqrt{u^2+1}}$; (ii) $\lim_{x\to 0} \frac{1}{x^6} \int_0^{x^2} \frac{t^2 dt}{t^6+1}$; (iii) $\lim_{x\to x_0} \frac{x}{x^2-x_0^2} \int_{x_0}^x f(t) dt$.

Solution: (i)By considering antiderivative, it is easy to see that the limit is equal to $1/(x + \sqrt{x^2 + 1})$.

- (ii) We have $\int_0^{x^2} \frac{t^2}{t^6+1} dt = \frac{1}{3} \int_0^{x^2} \frac{d(t^3)}{(t^3)^2+1} dt = \frac{1}{3} \tan^{-1}(x^6)$. Hence the given limit is equal to $\frac{1}{3} \lim_{x\to 0} \frac{\tan^{-1}(x^6)}{x^6} = \frac{1}{3}$.
- (iii) Let $F(x) = \int_{x_0}^x f(f)dt$. Then $\frac{x}{x^2-x_0^2} \int_{x_0}^x f(t)dt = \frac{x}{x+x_0} \frac{F(x)-F(x_0)}{x-x_0}$. Therefore the required limit is equal to $f(x_0)/2$.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and c > 0. Define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) := \int_{x-c}^{x+c} f(t) dt$. Show that g is differentiable on \mathbb{R} and find g'(x).

Solution: It follows that g is differentiable and that g'(x) = f(x+c) - f(x-c).

3. (Extended Mean Value Theorem) Let $f:[a,b] \to \mathbb{R}$ be continuous and differentiable on (a,b). Show that there exists $c \in (a,b)$ such that

$$\int_{a}^{b} f(x)dx = f(a)(b-a) + f'(c)\frac{(b-a)^{2}}{2}.$$

Solution: Define $F(x) := \int_a^x f(t)dt$. Then F' is continuous on [a,b] and F''(x) exists for all $x \in (a,b)$. Hence by Taylor's theorem, we have $F(b) = F(a) + F'(a)(b-a) + F''(c)(b-a)^2/2$ for some $c \in (a,b)$. This gives $\int_a^b f(t)dt = f(a)(b-a) + f'(c)(b-a)^2/2$.

4. Let $f:[0,1]\to\mathbb{R}$ be continuous. If $\int_0^x f(t)dt=\int_x^1 f(t)dt$ for all $x\in[0,1]$ then show that f(x)=0 for all $x\in[0,1]$.

Solution: Differentiating both sides, we have f(x) = -f(x) for all $x \in [0,1]$. Consequently f(x) = 0 for all $x \in [0,1]$.

5. Examine convergence of the following improper integrals (here p and q are any real numbers):

(i)
$$\int_0^1 x^{p-1} (1-x)^{q-1} dx$$
; (ii) $\int_0^\infty \frac{x dx}{(1+x)^3}$;

Solution: (i) Set $f(x) := x^{p-1}(1-x)^{q-1}$ and consider $I_1 := \int_0^{1/2} f(x) dx$ and $I_2 := \int_{1/2}^1 f(x) dx$. First, consider I_1 . If $p \ge 1$ then setting f(0) = 0, it follows that f is Riemann integrable on [0,1/2]. So, suppose that p < 1 and let $g(x) := 1/x^{1-p}$ for $x \in (0,1/2]$. Then $\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} (1-x)^{q-1} = 1$. Hence by limit comparison test $\int_0^{1/2} f(x) dx$ converges if and only if $\int_0^{1/2} g(x) dx$ converges. But the latter integral converges if and only if 1-p < 1, that is, p > 0. Hence $\int_0^{1/2} f(x) dx$ converges if and only if p > 0.

Next consider, I_2 . If $q \ge 1$ then setting f(1) = 0 it follows that I_2 exists in the sense of Riemann integral. On the other hand, if q < 1, then substituting y = 1 - x, we have $I_2 = \int_0^{1/2} y^{q-1} (1-y)^{p-1} dy$. Hence by the previous case, I_2 converges if and only if q > 0.

This shows that the improper integral converges if and only if p > 0 and q > 0 and in such a case the value of the integral is known as the beta function and is denoted by B(p,q).

- (ii) Note that $\int_0^1 \frac{x}{(1+x)^3} dx$ exists in the sense of Riemann integral. Also note that $x/(1+x)^3 \le 1/x^2$ for $x \ge 1$ and that $\int_1^\infty \frac{dx}{x^2}$ converges. Hence by comparison test the improper integral converges.
- 6. Examine whether the following integrals are convergent.
 - (a) $\int_0^\infty \sin(x^2) dx$
 - (b) $\int_0^1 \frac{\log x}{\sqrt{x}} \, dx$
- 7. Determine all real values of p for which the following integrals are convergent.
 - (a) $\int_0^\infty \frac{x^{p-1}}{1+x} \, dx$
 - (b) $\int_0^1 (\log \frac{1}{x})^p dx$
- 8. Find the area of the region bounded by the given curves in each of the following cases. $(i)\sqrt{x}+\sqrt{y}=1, x=0$ and y=0; $(ii)y=x^4-2x^2$ and $y=2x^2$; $(iii)x=3y-y^2$ and x+y=3.

Solution: (i) Area = $\int_0^1 y dx = \int_0^1 (1 + x - 2\sqrt{x}) dx = 1/6$.

- (ii) Area = $2\int_0^2 (2x^2 (x^4 2x^2))dx = 2\int_0^2 (4x^2 x^4)dx = 128/15$.
- (iii) Area = $\int_1^3 (3y y^2 (3 y))dy = \int_1^3 (4y y^2 3)dy = 4/3$.
- 9. Let $f(x) = x x^2$ and g(x) = ax. Determine a so that the region above the graph of g and below the graph of f has area 4.5.

Solution: We have $\int_0^{1-a} (x-x^2-ax)dx = \int_0^{1-a} ((1-a)x-x^2)dx = (1-a)^3/6$. By the given condition $(1-a)^3/6 = 4.5$ so that a=-2.

10. Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $y^2 + z^2 = a^2$.

Solution: In the first octant, the sections perpendicular to the y-axis are squares with $0 \le x \le \sqrt{a^2 - y^2}$, $0 \le z \le \sqrt{a^2 - y^2}$, $0 \le y \le q$. Since the squares have sides of length $\sqrt{a^2 - y^2}$, the area of the cross section at y is given by $A(y) := 4(a^2 - y^2)$. Thus we have Volume $= \int_{-a}^{a} A(y) dy = 8 \int_{0}^{a} (a^2 - y^2) dy = \frac{16a^3}{3}$.

11. A round hole of radius $\sqrt{3}$ cms is bored through the center of a solid ball of radius 2 cms. Find the volume cut out.

Solution: Washer Method:

Volume = Volume of the sphere - Volume generated by revolving an appropriate region (draw the picture) = $\frac{32\pi}{3} - \left[\int_{-1}^{1} \pi x^2 dy - \pi(\sqrt{3})^2 2\right] = \frac{32\pi}{3} - 2\pi \left[\int_{0}^{1} (4-y^2) dy - 3\right] = 28\pi/3$.