Построение L-оптимальных планов для моделей без свободного члена

Соколиков Евгений Алексеевич, гр. 19.М03-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Кафедра статистического моделирования

Научный руководитель: к. ф.-м.н., доцент П. В. Шпилёв Рецензент: к. ф.-м.н. А. Н. Пепелышев

Санкт-Петербург 2021г.

Основные понятия

- ullet Регрессионная модель: $y_i = \eta(x_j, heta) + arepsilon_i, \; i=1,\dots,N,$ где
 - $\eta(x,\theta)$ регрессионная функция.
 - $oldsymbol{ heta} = (heta_1, \dots, heta_m)^{\mathrm{T}}$ множество неизвестных параметров
 - $\varepsilon_1,\ldots,\varepsilon_N$ независимые случайные величины с $\mathrm{E}(\varepsilon_i)=0,\,\mathrm{D}(\varepsilon_i)=\sigma^2>0,\,i=1,\ldots,N;$
 - x_1, \dots, x_N условия проведения эксперимента, заданные на множестве планирования χ .
- Непрерывный (приближенный) план эксперимента вероятностная мера

$$\xi = \begin{pmatrix} x_1 & \dots & x_n \\ \omega_1 & \dots & \omega_n \end{pmatrix}, \ x_i \in \chi, \ i = 1, \dots, n,$$

где $x_i \neq x_j$ при $i \neq j$, $w_i \geq 0$, $\sum_{i=1}^n w_i = 1$.

• Информационная матрица непрерывного плана:

$$M(\xi, \theta) = \int_{\chi} f(x) f^{\mathrm{T}}(x) d\xi(x)$$

ullet Критерий L-оптимальности

$$\operatorname{tr} LD(\xi) \to \inf_{\xi \in \Xi_H},$$

ullet Критерий D-оптимальности

$$\det M(\xi) \to \sup_{\xi \in \Xi}$$

где Ξ_H — множество невырожденных приближенных планов.

- Если $L = \sum_{i=1}^m l_i l_i^{\mathrm{T}}$ с заданными векторами $l_i \in \mathbb{R}^m$, то Ξ_L множество непрерывных планов, для которых линейная комбинация параметров оцениваема.
- Непрерывный план $\eta \in \Xi_L^*$, если $\eta \in \Xi_L$ и для любого непрерывного плана ξ существует предел:

$$\lim_{\alpha \to 0} f^{\mathrm{T}}(t) M^{+}(\xi_{\alpha}) L M^{+}(\xi_{\alpha}) f(t) = f^{\mathrm{T}}(t) M^{+}(\eta) L M^{+}(\eta) f(t),$$

где
$$\xi_{\alpha} = (1 - \alpha)\eta + \alpha\xi, \ \alpha \in [0, 1].$$

ullet Вырожденный план $\xi^* \in \Xi_L - L$ -оптимальный, если

$$\xi^* = \arg\min_{\xi \in \Xi_L} \operatorname{tr} LM^+(\xi),$$

где L- фиксированная неотрицательно определенная матрица.

Теорема

Пусть матрица $L\in\mathbb{R}^{(2m+1) imes(2m+1)}-$ фиксированная неотрицательно определенная матрица. Пусть существует оптимальный план $\xi^*\in\Xi_L^*$, тогда:

- ullet план ξ принадлежит классу Ξ_L , если и только если для всех векторов l_i выполнено: $l_i^{\mathrm{T}} M^-(\xi) M(\xi) = l_i^{\mathrm{T}}, \ i=0,\dots,2m.$
- $m{Q}$ план $m{\xi}^* \in \Xi_L^*$ является L-оптимальным, если и только если выполнено

$$\max_{t \in \chi} \varphi(t_i, \xi^*) = \operatorname{tr} LM^+(\xi^*),$$

где $\varphi(t,\xi) = f^{\mathrm{T}}(t)M^{+}(\xi)LM^{+}(\xi)f(t)$. Кроме того, равенство $\varphi(t_{i},\xi^{*}) = \operatorname{tr} LM^{+}(\xi^{*})$ достигается для любых $t_{i} \in supp(\xi^{*})$.

① Пусть $\xi\in\Xi_L$, но $\xi\notin\Xi_L^*$ и существует интервал $[x_0,b)$ и семейство планов $\{\xi(x)\}$ такое, что: $\xi(x)\in\Xi_L^*$ for $x\in(x_0,b),$ $\lim_{x\longrightarrow x_0}\xi(x)=\xi$ и

$$\lim_{x \to x_0} \max_{t \in \chi} \varphi(t, \xi(x)) = \operatorname{tr} LM^+(\xi).$$

Тогда план ξ является L-оптимальным.

Постановка задачи

Задачей данной работы является нахождение L-оптимальных планов для следующих моделей:

• Тригонометрическая модель без свободного члена:

$$\eta(x,\theta) = \sum_{j=1}^{m} \theta_{2j-1} \sin(jx) + \sum_{j=1}^{m} \theta_{2j} \cos(jx)$$

• Полиномиальная модель без свободного члена:

$$\eta(x,\theta) = \sum_{j=1}^{n} \theta_j x^j$$

Тригонометрическая модель без свободного члена:

$$\eta(x,\theta) = \sum_{j=1}^{m} \theta_{2j-1} \sin(jx) + \sum_{j=1}^{m} \theta_{2j} \cos(jx).$$

Теорема

Рассмотрим тригонометрическую модель c некоторым фиксированным m, пусть L имеет вид единичной матрицы, интервал планирования $\chi = [-\pi, \pi].$

Определим план ξ_m следующим образом:

$$\xi_m = \begin{pmatrix} -\frac{(k-1)\pi}{k} & -\frac{(k-3)\pi}{k} & \cdots & -\frac{\pi}{k} & \frac{\pi}{k} & \cdots & \frac{(k-3)\pi}{k} & \frac{(k-1)\pi}{k} \\ \frac{1}{k} & \frac{1}{k} & \cdots & \frac{1}{k} & \frac{1}{k} & \cdots & \frac{1}{k} & \frac{1}{k} \end{pmatrix},$$

где k = 2(m+1).

Тогда план ξ_m-L -оптимальный. Кроме того, он будет также и D-оптимальным планом. При этом ${
m tr}\, LD(\xi_m)=4m$.

T ригонометрическая модель с единичной матрицей L. Пример

• Модель:

$$\eta(x,\theta) = \theta_1 \sin x + \theta_2 \cos x + \theta_3 \sin 2x + \theta_4 \cos 2x + \theta_5 \sin(3x) + \theta_6 \cos(3x)$$

- Матрица L=I единичная матрица, $\chi=[-\pi,\pi]$ интервал планирования
- ullet L-оптимальный план данной задачи:

$$\xi^* = \begin{pmatrix} -\frac{7\pi}{8} & -\frac{5\pi}{8} & -\frac{3\pi}{8} & -\frac{\pi}{8} & \frac{\pi}{8} & \frac{3\pi}{8} & \frac{5\pi}{8} & \frac{7\pi}{8} \\ \frac{1}{8} & \frac{1}{8} \end{pmatrix}.$$

• Информационная матрица:

$$M(\xi^*) = diag(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)$$

• Дисперсионная матрица:

$$D(\xi^*) = diag(2, 2, 2, 2, 2, 2)$$

След:

$$\operatorname{tr} LD(\xi^*) = 12$$

Тригонометрическая модель

• Тригонометрическая модель без свободного члена:

$$\eta(x,\theta) = \sum_{j=1}^{m} \theta_{2j-1} \sin(jx) + \sum_{j=1}^{m} \theta_{2j} \cos(jx), \ m = Nk$$

• Для симметричного приближенного плана ξ применяя соответствующее преобразование $P \in \mathbb{R}^{2m \times 2m}$ информационную матрицу приводим к блочно-диагональному виду:

$$\widetilde{M} = PM(\xi)P = \begin{pmatrix} M_c(\xi) & 0\\ 0 & M_s(\xi) \end{pmatrix},$$

где

$$M_c(\xi) = \left(\int_{-\pi}^{\pi} \cos(it) \cos(jt) d\xi(t)\right)_{i,j=1}^{m}$$
$$M_s(\xi) = \left(\int_{-\pi}^{\pi} \sin(it) \sin(jt) d\xi(t)\right)_{i,j=1}^{m}$$

ullet Аналогично приводим матрицу L к блочно-диагональному виду:

$$\tilde{L}^{(k)} = PL^{(k)}P = \begin{pmatrix} L_{\cos}^{(k)} & 0\\ 0 & L_{\sin}^{(k)} \end{pmatrix} \in \mathbb{R}^{(2Nk)\times(2Nk)}$$

Тригонометрическая модель. Результаты

• Численно найдены L-оптимальные планы для тригонометрических моделей без свободного члена с m=2 и m=3 и матрицей $L=L^{(qp)},\ q \neq p$, следующего вида:

$$L_{ij}^{(qp)} = egin{cases} 1, \text{ если } i=j=q \text{ или } i=j=p; \\ 0, \text{ иначе.} \end{cases}$$

• Доказана теорема о виде L–оптимальных планов для матриц L приводимых к блочно-диагональному виду $\tilde{L}^{(k)}$ с $L_{\cos}^{(k)}=0$ или $L_{\sin}^{(k)}=0.$

Тригонометрическая модель. k=1

• Для тригонометрической модели степени $m=Nk,\ k=1,\ L_{\cos}^{(1)}=0,$ L-оптимальный план будет выглядеть следующим образом:

$$\xi_N^{\sin} = \begin{pmatrix} -t_N & -t_{N-1} & \dots & -t_1 & t_1 & \dots & t_N \\ \omega_N & \omega_{N-1} & \dots & \omega_1 & \omega_1 & \dots & \omega_N \end{pmatrix},$$

где

$$t_1 = x_1, \dots, t_{\frac{N}{2}} = x_{\frac{N}{2}}, \ t_{\frac{N}{2}+1} = \pi - x_{\frac{N}{2}}, \dots, \ t_N = \pi - x_1$$

$$\omega_1 = z_1, \dots, \omega_{\frac{N}{2}-1} = z_{\frac{N}{2}-1}, \ \omega_{\frac{N}{2}} = z_{\frac{N}{2}}, \ \omega_{\frac{N}{2}+1} = z_{\frac{N}{2}}, \dots, \ \omega_N = z_1$$

$$\displaystyle \sum_{j=1}^{rac{N}{2}} z_j = rac{1}{4},$$
 если N четное, и

$$t_1 = x_1, \dots, t_{\frac{N-1}{2}} = x_{\frac{N-1}{2}}, \ t_{\frac{N+1}{2}} = \frac{\pi}{2}, \ t_{\frac{N+3}{2}} = \pi - x_{\frac{N-1}{2}}, \dots,$$

 $t_N = \pi - x_1,$

$$\omega_1 = z_1, \dots, \omega_{\frac{N-1}{2}} = z_{\frac{N-1}{2}}, \ \omega_{\frac{N+1}{2}} = \frac{1}{2} - 2\sum_{j=1}^{\frac{N-1}{2}} z_j, \ \omega_{\frac{N+3}{2}} = z_{\frac{N-1}{2}}, \dots,$$

 $\omega_N=z_1,$ если N нечетное. Точки x_i и веса z_i находятся численно.

Тригонометрическая модель. k=1

• Для тригонометрической модели степени $m=Nk,\ k=1,\ L_{\sin}^{(1)}=0,$ L-оптимальный план будет выглядеть следующим образом:

$$\xi_n^{\cos} = \begin{pmatrix} -\pi & -t_{n-1} & \dots & -t_1 & 0 & t_1 & \dots & t_{n-1} & \pi \\ \omega_n - \alpha & \omega_{n-1} & \dots & \omega_1 & \omega_0 & \omega_1 & \dots & \omega_{n-1} & \alpha \end{pmatrix},$$

где
$$\alpha \in [0,\omega_n], \; n=N-1$$
 и

$$t_0 = 0, \ t_1 = x_1, \dots, t_{\frac{N}{2}} = x_{\frac{N}{2}}, \ t_{\frac{N}{2}+1} = \pi - x_{\frac{N}{2}}, \dots, \ t_N = \pi - x_1,$$

$$\omega_0 = \frac{1 - 4\sum_{i=1}^{\frac{N}{2}} z_i}{2}, \omega_1 = z_1, \dots, \omega_{\frac{N}{2} - 1} = z_{\frac{N}{2} - 1}, \ \omega_{\frac{N}{2}} = z_{\frac{N}{2}},$$

$$\omega_{rac{N}{2}+1}=z_{rac{N}{2}},\ldots,\;\omega_{N}=z_{1},\;$$
если N четное,

$$t_0 = 0, \ t_1 = x_1, \dots, t_{\frac{N-1}{2}} = x_{\frac{N-1}{2}}, \ t_{\frac{N+1}{2}} = \frac{\pi}{2},$$

$$t_{\frac{N+3}{2}} = \pi - x_{\frac{N-1}{2}}, \dots, \ t_N = \pi - x_1,$$

$$\omega_0 = z_0, \ \omega_1 = z_1, \dots, \omega_{\frac{N-1}{2}} = z_{\frac{N-1}{2}},$$

$$\omega_{rac{N+1}{2}}=rac{1}{2}-2\sum_{j=1}^{rac{N-1}{2}}z_j,\; \omega_{rac{N+3}{2}}=z_{rac{N-1}{2}},\ldots,\; \omega_N=z_1,\;$$
 если N нечетное.

Тригонометрическая модель. k=1. Пример

• Рассмотрим задачу построения L-оптимального плана для оценки коэффициентов $\sin{(2x)}$ и $\sin{(x)}$ в тригонометрической модели степени m=2:

$$\eta(x,\theta) = \theta_1 \sin x + \theta_2 \cos x + \theta_3 \sin 2x + \theta_4 \cos 2x$$

- L = diag(1, 0, 1, 0)
- *L*-оптимальный план:

$$\xi_2^{\sin} = \begin{pmatrix} -x_2 & -x_1 & x_1 & x_2 \\ z_1 & z_1 & z_1 & z_1 \end{pmatrix} = \begin{pmatrix} -\frac{11\pi}{16} & -\frac{5\pi}{16} & \frac{5\pi}{16} & \frac{11\pi}{16} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

След:

$$\operatorname{tr} LM^+(\xi_2^{\sin}) = 2.618$$

Поведение экстремального полинома $\varphi(x,\xi_2^{\sin})$ для случая m=2 и $L=\mathrm{diag}(1,0,1,0)$

Тригонометрическая модель. Пример. k=2

• Рассмотрим теперь задачу построения L-оптимального плана для оценки коэффициентов $\sin{(4x)}$ и $\sin{(2x)}$ в тригонометрической модели степени m=4.

$$\eta(x,\theta) = \sum_{j=1}^{4} \theta_{2j-1} \sin(jx) + \sum_{j=1}^{4} \theta_{2j} \cos(jx)$$

• L-оптимальный план:

$$\xi_4^{\sin} = \begin{pmatrix} -t_4 & -t_3 & -t_2 & -t_1 & t_1 & t_2 & t_3 & t_4 \\ \omega_1 & \omega_1 \end{pmatrix},$$

где
$$t_1=\frac{x_1}{k}=\frac{5\pi}{32},\; t_2=\frac{x_2}{k}=\frac{11\pi}{32},\; t_3=t_1+\frac{\pi}{k}=\frac{21\pi}{32},\; t_4=t_2+\frac{\pi}{k}=\frac{27\pi}{32}$$
 и $\omega_1=\frac{z_1}{k}=\frac{1}{8}.$

• То есть

$$\xi_4^{\sin} = \begin{pmatrix} -\frac{27\pi}{32} & -\frac{21\pi}{32} & -\frac{11\pi}{32} & -\frac{5\pi}{32} & \frac{5\pi}{32} & \frac{11\pi}{32} & \frac{21\pi}{32} & \frac{27\pi}{32} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

• След:

$$\operatorname{tr} LM^+(\xi_4^{\sin}) = \operatorname{tr} LM^+(\xi_2^{\sin}) = 2.618$$

Поведение экстремального полинома $\varphi(x,\xi_4^{\sin})$ для случая m=4 и $L={
m diag}(0,0,1,0,0,0,1,0)$

Тригонометрическая модель. Пример. k>2

ullet Пусть k=3, тогда m=Nk=6:

$$\xi_6^{\sin} = \begin{pmatrix} -t_6 & -t_5 & \dots & -t_1 & t_1 & \dots & t_6 \\ \omega_1 & \omega_1 & \dots & \omega_1 & \omega_1 & \dots & \omega_1 \end{pmatrix},$$

где

$$t_1 = \frac{5\pi}{48}, \ t_2 = \frac{11\pi}{48}, \ t_3 = \frac{21\pi}{48},$$
$$t_4 = \frac{27\pi}{48}, \ t_5 = \frac{37\pi}{48}, \ t_6 = \frac{43\pi}{48}, \ \omega_1 = \frac{1}{12}$$

ullet Пусть k=4, тогда m=Nk=8:

$$\xi_6^{\sin} = \begin{pmatrix} -t_8 & -t_7 & \dots & -t_1 & t_1 & \dots & t_8 \\ \omega_1 & \omega_1 & \dots & \omega_1 & \omega_1 & \dots & \omega_1 \end{pmatrix},$$

где

$$t_1 = \frac{5\pi}{64}, \ t_2 = \frac{11\pi}{64}, \ t_3 = \frac{21\pi}{64}, \ t_4 = \frac{27\pi}{64},$$
$$t_5 = \frac{37\pi}{64}, \ t_6 = \frac{43\pi}{64}, \ t_7 = \frac{53\pi}{64}, \ t_8 = \frac{59\pi}{64}, \ \omega_1 = \frac{1}{16}$$

Тригонометрическая модель. Пример. $L^{(25)}$

- Рассмотрим задачу построения L-оптимального плана для оценки коэффициентов $\cos x$ и $\sin{(3x)}$ в тригонометрической модели степени m=3.
- $L = L^{(25)} = diag(0, 1, 0, 0, 1, 0)$
- ullet Численно найдем оптимальный план ξ^* :

$$\xi^* = \begin{pmatrix} -\frac{5\pi}{6} & -\frac{\pi}{2} & -\frac{\pi}{6} & \frac{\pi}{6} & \frac{\pi}{2} & \frac{5\pi}{6} \\ 0.2 & 0.1 & 0.2 & 0.2 & 0.1 & 0.2 \end{pmatrix}$$

9

$$\operatorname{tr} LM^+(\xi^*) = \frac{25}{9}$$

ullet Замечание: Обобщение на модели больших степеней для заданных диагональных матриц L проводится аналогично.

Поведение экстремального полинома arphi(t) для случая m=3 и матрицы $L=\mathrm{diag}(0,1,0,0,1,0)$

Сравнение L и D оптимальных планов для полиномиальных моделей без свободного члена

• L-эффективность:

$$eff_L = \frac{\inf_{\xi \in \Xi_H} (\operatorname{tr} LD(\xi))}{(\operatorname{tr} LD(\xi))}$$

• Таблица эффективности L-оптимальных планов с единичной матрицей L относительно D-оптимальных планов для полиномиальных моделей без свободного члена малых степеней:

m	2	3	4	5	6
eff_L	1.000	0.669	0.821	0.656	0.798

• Вывод: Полученные результаты показывают, что для полиномиальных моделей D-оптимальные планы не совпадают с L-оптимальными при n>2 и L=I и уступают им по эффективности, которая уменьшается с ростом порядка модели.

- ullet Найдены L-оптимальные планы для тригонометрических моделей первой, второй и третьей степеней без свободного члена с единичной матрицей L.
- Сформулирована и доказана теорема о виде L-оптимальных планов для тригонометрических моделей без свободного члена с единичной матрицей L.
- ullet Численно найдены $L^{(qp)}$ -оптимальные планы для тригонометрических моделей второй и третьей степеней без свободного члена.
- Построено обобщение L-оптимальных планов для тригонометрических моделей без свободного члена.
- Найдены D и L-оптимальные планы для полиномиальных моделей второй – шестой степеней без свободного члена и проведено сравнение их эффективностей.