Força Magnética

Força magnética sobre um condutor reto imerso em um campo magnético uniforme

Condutor reto imerso num campo magnético uniforme B.

Força magnética sobre um condutor reto imerso em um campo magnético uniforme

Considere um condutor reto de comprimento L, percorrido por corrente elétrica de intensidade i e imerso em um campo magnético uniforme de intensidade B. Sendo θ o ângulo entre o vetor campo magnético \vec{B} e o condutor, orientado no sentido da corrente elétrica i, vamos analisar as características da força magnética $\vec{F}_{\rm m}$ que age no condutor. A direção é determinada pela reta perpendicular a \vec{B} e ao condutor.

Condutor reto imerso num campo magnético uniforme \vec{B} .

Regra do Tapa

Força magnética sobre um condutor reto imerso em um campo magnético uniforme

Intensidade

$$F_m = B.\,i.\,L.\,Sen heta$$

Condutor reto imerso num campo magnético uniforme \vec{B} .

Regra do Tapa

Força magnética entre condutores paralelos percorridos por correntes elétricas

Vamos considerar dois condutores retilíneos, paralelos e bem longos, percorridos por correntes elétricas de intensidades i_1 e i_2 .

Essas correntes elétricas podem ter mesmo sentido ou sentidos opostos. Vamos analisar

cada caso separadamente.

Força magnética entre condutores paralelos percorridos por correntes elétricas de **mesmo sentido**:

Nesse caso, ocorre atração.

Força magnética entre condutores paralelos percorridos por correntes elétricas de **sentidos opostos**:

Nesse caso, ocorre <mark>repulsão</mark>.

As intensidades das forças magnéticas de atração e de repulsão são dadas por:

$$F_m = rac{\mu_0.\,i_1.\,i_2.\,L}{2.\pi.\,r}$$

Onde:

F_m-> Força magnética [N];

i₁-> Corrente elétrica que percorre um dos fios [A];

i₂-> Corrente elétrica que percorre o outro fio [A];

L-> Comprimento da intersecção dos fios [m];

r-> Distância entre os fios [m].

Força magnética sobre partículas eletrizadas lançadas em um campo magnético uniforme

Vamos analisar as características da força magnética \vec{F}_{m} , que age numa partícula eletrizada com carga elétrica q, lançada com velocidade v num campo magnético uniforme B. Seja θ o ângulo entre B e a velocidade v. e Usando a regra da mão esquerda temos:

Força magnética sobre partículas eletrizadas.

Força magnética sobre partículas eletrizadas lançadas em um campo magnético uniforme

Sentido

O sentido é determinado pela regra do tapa, considerando q > 0.

Para q < 0, o sentido da força magnética \vec{F}_{m} é oposto ao dado pela regra do tapa.

Intensidade

$$F_m = |q|.\,v.\,B.\,sen heta$$

Regra do Tapa

onde:

F_m-> Força magnética [N];

|q| -> é o módulo da carga elétrica [C]; (módulo quer dizer sem o sinal)

v -> é a velocidade da carga [m/s];

B -> é o campo magnético a qual a carga está imersa [T];

 Θ -> é o ângulo entre a velocidade e o campo magnético.

Casos particulares importantes

I. Partícula eletrizada abandonada em repouso no interior de um campo magnético

Nesse caso, v = 0 e, portanto, a força magnética é nula ($F_{\rm m} = 0$). Assim, a partícula não fica sujeita à ação de força magnética.

II. Partícula eletrizada lançada paralelamente às linhas de indução de um campo magnético uniforme

Nesse caso, a partícula se desloca livre da ação de força magnética, realizando um movimento retilíneo e uniforme (MRU).

Partículas eletrizadas lançadas paralelamente às linhas de indução.

III. Partícula eletrizada lançada perpendicularmente às linhas de indução de um campo magnético uniforme

Nesse caso, a partícula realiza um movimento circular e uniforme (MCU), num plano perpendicular às linhas de indução.

A trajetória circular pertence a um plano perpendicular às linhas de indução.

Raio da trajetória

$$R = \frac{m.\,v}{|q|.\,B}$$

Período

$$T=rac{2.\pi.\,m}{|q|.\,B}$$

Onde:

R-> Raio da trajetória [m];

v-> Velocidade ca partícula [m/s];

m-> Massa da partícula [kg];

|q|-> Módulo da carga da partícula [C];

B-> Intensidade do campo magnético[T].

IV. Partícula eletrizada lançada obliquamente às linhas de indução de um campo magnético uniforme

Nesse caso, decompomos a velocidade de lançamento \overrightarrow{v} nas componentes \overrightarrow{v}_1 (paralela a

 \overrightarrow{B}) e $\overrightarrow{v_2}$ (perpendicular a \overrightarrow{B}).

A velocidade \vec{v} é decomposta nas componentes \vec{v}_1 e \vec{v}_2 .

O movimento da partícula é helicoidal e uniforme.

Segundo a componente $\mathbf{v_1}$, a carga tende a executar um MRU na direção de \mathbf{B} e segundo a componente $\mathbf{v_2}$, a carga tende a executar um MCU em um plano perpendicular a \mathbf{B} .

A composição de um MRU
com um MCU determina um
movimento helicoidal
uniforme, e a trajetória é
denominada hélice cilíndrica.