WHAT IS CLAIMED IS:

1	1. An optical amplifier comprising:
2	an optical amplification medium;
3	an excitation source to stimulate the amplification medium to output at least one
4	wavelength gain peak; and
5	a gain equalizer to equalize the output of the amplification medium such that gain is
6	produced at wavelengths other than the wavelength gain peak.
1 -	2. An optical amplifier according to claim 1, wherein the gain equalizer attenuates
2	gain at the peak wavelength.
1	3. An optical amplifier according to claim 1, wherein the gain equalizer equalizes
2	the output of the amplification medium such that nearly even gain is produced at wavelengths
3	shorter than the wavelength gain peak.
1	4. An optical amplifier according to claim 1, further comprising:
2	a variable attenuator, and
3	automatic level control circuitry to monitor at least one of the input of the optical
4	amplifier and the output of the optical amplifier and maintain the output level of the optical
5	amplifier at a substantially constant level.

I	5. An optical amplifier according to claim 1, wherein the optical amplification
2	medium is segmented and comprises a plurality of amplification medium structures which
3	together produce at least one wavelength gain peak when stimulated by the excitation source.
1	6. An optical amplifier according to claim 5, wherein the amplification medium
2	structures are semiconductor optical amplifiers.
1	7. An optical amplifier according to claim 5, wherein the gain equalizer comprises
2	a plurality of gain equalizer segments, which together produce gain at wavelengths other than
3	the wavelength gain peak.
1	8. An optical amplifier according to claim 7, wherein the gain equalizer segments
2	are positioned with amplification medium structures positioned therebetween.
l	9. An optical amplifier according to claim 7 wherein
2	the excitation source stimulates the amplification medium with pumping light having a
3 .	pumping wavelength, and
Ļ	the gain equalizer segments are substantially transparent to the pumping wavelength.

An optical amplifier according to claim 1, wherein the optical amplification

1

10.

Docket No.: 21.1997/MJH

Inventor(s): Susumu KINOSHITA et al.

2 medium is doped with at least one rare earth element.

1

4

5

1

2

3

4

1

2

3

4

5

6

7

11.

the excitation light source stimulates the optical amplification medium to achieve a population inversion ratio having a positive throughout an optical gain signal wavelength ba

An optical amplifier according to claim 10, wherein

population inversion ratio having a positive throughout an optical gain signal wavelength band,

the wavelength gain peak is outside of the optical signal wavelength band, and

the gain equalizer attenuates the wavelength gain peak.

- 12. An optical amplifier according to claim 1, wherein the optical amplification medium has an input and an output, the optical amplifier further comprising a feedback loop to the excitation source, to monitor the input and the output of the amplification medium and maintain a substantially constant gain within the amplification medium over time.
- 13. An optical amplifier according to claim 1, wherein the optical amplification medium has an input and an output, the optical amplifier further comprising:

monitors located at the input and output of the amplification medium to provide feedback; and

an automatic gain control circuit connected to the monitors to control the excitation source so as to maintain a substantially constant population inversion ratio within the amplification medium over time.

1	14.	An optical amplifier according to claim 1, further comprising a resonator, the
2	optical ampl	ification medium being located within the resonator.
1	15.	An optical amplifier according to claim 14, wherein
2	the o	ptical amplification medium has an input and an output, and
3	the re	esonator comprises:
4	,	a pair of mirrors that reflect a selected wavelength; and
5		optical couplers provided at the input and the output of the amplification
6	medium to	livert a portion of the light emitted from the optical amplification medium to the
7	mirrors.	
1	16.	An optical amplifier according to claim 15, wherein the optical couplers are 9:1
2	couplers.	
 ,		
1	17.	An optical amplifier according to claim 15, wherein the mirrors are fiber grating
2.	mirrors.	
-		
ı	18.	An optical amplifier according to claim 15, wherein the gain equalizer is
,		
د ِ	substantially	transparent to the selected wavelength.

An optical amplifier according to claim 15, wherein

19.

2	the selected wavelength reflected by the mirrors is within a signal band used for optical	1
3 .	signals to be amplified, and	
4	no optical signal is transmitted at the selected wavelength.	
1	20. An optical amplifier according to claim 1, wherein the excitation source causes	
2	excited emission within the amplification medium.	
1	An optical amplifier according to claim 1, wherein the optical amplification	
2	medium comprises:	
3	a cladding;	
4	a doped core provided interior to the cladding; and	
5 .	gratings provided within the highly doped core.	
6		
1	An optical amplifier according to claim 21, wherein the core is highly doped.	
1	23. An optical amplifier according to claim 21, wherein the gratings provided within	1
2	the doped core serve as the gain equalizer.	
1	24. An optical amplifier according to claim 21, wherein the gratings are long-period	ŀ
2	gratings.	
	·	

1	25. An optical amplifier device, comprising:
2	an amplification medium comprising at least one erbium doped fiber;
3	an excitation light source to produce a population inversion ratio of about 0.7 to about
4	1.0 within the amplification medium; and
5	a gain equalizer to obtain substantially identical wavelength characteristics for a
6	wavelength band of from about 1490 nm to about 1530 nm.
1	26. An optical amplifier device, comprising:
2	an amplification medium comprising at least one erbium doped fiber;
3	an excitation light source to produce a population inversion ratio of about 0.8 to about
4	1.0 within the amplification medium; and
5	a gain equalizer to obtain substantially identical wavelength characteristics for a
6	wavelength band of from about 1450 nm to about 1490 nm.
1	27. An optical amplifier device, comprising:
2	an amplification medium comprising at least one erbium doped fiber;
3	an excitation light source to produce a population inversion ratio of about 0.3 to about
4	1.0 within the amplification medium; and
5	a gain equalizer to obtain substantially identical wavelength characteristics for a
5	wavelength band of from about 1610 nm to about 1650 nm.

Docket No.: 21.1997/MJH

Inventor(s): Susumu KINOSHITA et al.

1	28. An optical amplification method, comprising:
2	selecting a population inversion ratio to achieve positive gain throughout an optical
3	signal wavelength band;
4	exciting the amplification medium to the selected population inversion ration to produce
5	a wavelength gain peak at a wavelength outside of the optical signal wavelength band;
6	equalizing the gain to achieve substantially uniform gain over the optical signal
7	wavelength band; and
8	attenuating amplification in wavelength bands outside of the optical signal wavelength
9	band.
1	29. An optical amplification method according to claim 28, wherein the optical
2	signal wavelength band is at wavelengths less than the wavelength of the wavelength gain peak
3	for the amplification medium.
1	30. An optical amplifier comprising:
2	a WDM splitter to separate first and second different optical signal wavelength bands;
3	an optical amplification device for the first wavelength optical signal band, comprising:
4	a first amplification medium;
5	an excitation light source to produce a first population inversion ratio within the
5	first amplification medium; and
7	a gain equalizer to obtain substantially uniform gain over the first optical signal

8	wavelength band;
9	an optical amplification device for the second wavelength band, comprising:
10	a second amplification medium; and
11	an excitation light source to produce a second population inversion ratio within
12	the second amplification medium, the first and second population inversion ratios being
13	different; and
14	a WDM coupler to recombine the first and second optical wavelength bands
15	after amplification.
1	31. An optical amplifier according to claim 30, wherein the first population
2	inversion ratio is less than the second population inversion ratio.
1	32. An optical amplifier according to claim 31, wherein
2	the first and second optical amplification mediums each comprise at least one rare earth
3	element doped optical fiber, and
4	the length of the at least one rare earth element doped optical fiber for the first
5	amplification medium is greater than that for the second amplification medium.
1	33. An optical amplifier according to claim 30, wherein
2	the first amplification medium has a wavelength gain peak, and
3	the wavelength gain peak is outside of the first optical signal wavelength band.

- 1 34. An optical amplifier according to claim 30, wherein the WDM splitter separates
- 2 first, second and third different optical signal wavelength bands, the optical amplifier further
- 3 comprising an optical amplification device for the third wavelength band.