Machine Learning Checklist

#	Task	?
	Define the problem	•
	What is the problem?	
	Define the problem informally	
	Define the problem formally	
	List the assumptions about the problem	
	List problems that are similar	
	Why does the problem need to be solved?	
	Describe the motivation for solving the problem	
1.2.2	Describe the benefits of the solution (model predictions)	
1.2.3	Describe how the solution will be used	
1.3	How could the problem be solved manually?	
1.3.1	Describe how the problem is currently solved (if at all)	
1.3.2	Describe how a subject matter expert would make manual predictions	
1.3.3	Describe how a programmer might hand code a solution	
2	Prepare The Data	
2.1	Data Description	
2.1.1	Describe the extent of the data that is available	
2.1.2	Describe data that is not available but is desirable	
2.1.3	Describe the data that is available that you don't need	
2.2	Data Processing	
2.2.1	Format data so that it is in a form that you can work with	
2.2.2	Clean the data so that it is uniform and consistent	
	* Impute missing values	
	* Identify and remove outliers	
2.2.3	Sample the data in order to best trade-off redundancy and fidelity	
	* Sample instances	
	** Randomly sample	
	** Rebalance classes	
	* Sample attributes	
	** Randomly sample	
	** Remove highly-correlated attributes	
	** Apply dimensionality reduction	
	Data Transformation	
2.3.1	Create linear and nonlinear transformations of all attributes	
	* Square	
	* Square Root	
	* Standardize	
	* Normalize	
2.5.5	* Discretize	
2.3.2	Decompose complex attributes into their constituent parts	

Machine Learning Checklist

* Decompose date-times into components * Decompose categorical into binary attributes	
Decombose caledonical into birial v attributes	
Aggregate denormalized attributes into higher-order quantities	
ŭ i	
Create univariate plots of each attribute	
Spot Check Algorithms	
Create a Test Harness	
Create a hold-out validation dataset for later use	
Evaluate and select an appropriate test option	
* Train and test sets	
* k-fold cross validation	
Select a performance measure used to evaluate models	
Evaluate Candidate Algorithms	
Select a diverse set of algorithms to evaluate (10-20)	
* k-nearest neighbors	
* learning vector quantization	
* naive bayes	
* logistic regression	
* linear discriminant analysis	
* CART	
* C4.5/5.0	
0 0 7 7	
	*Roll-up events by entity into aggregate values, if relevant (min, max, count, avg) Data Summarization Create univariate plots of each attribute Create bivariate plots of all pairwise combinations of attributes Create bivariate plots of each attribute with the output attribute Spot Check Algorithms Create a Test Harness Create a hold-out validation dataset for later use Evaluate and select an appropriate test option * Train and test sets * k-fold cross validation Select a performance measure used to evaluate models Evaluate Candidate Algorithms Select a diverse set of algorithms to evaluate (10-20) * k-nearest neighbors * learning vector quantization * naive bayes * logistic regression * linear discriminant analysis * CART * C4.55.0 * Backpropagation * Support Vector Machines Use common or standard algorithm parameter configurations * From literature * From winning competition entries Evaluate each algorithm on each prepared view of the data * i algorithm+configs by j data views Improve Results Algorithm Tuning Use historically effective model parameters Search the space of model parameters Search the space of model parameters Coptimize well performing models

Machine Learning Checklist

#	Task	?
	Use Boosting on well performing models	
	Blend the results of well performing models	
4.3	Model Selection	
	Select a diverse subset of well performing models (5-10)	
	Evaluate well performing models on a hold out validation dataset	
	Select a small pool of well performing models (1-3)	
5	Finalize Project	
5.1	Present Results	
	Write up the project in a short report (1-5 pages)	
	Convert write-up to a slide deck to share findings with others	
	Share code and results with interested parties	
5.2	Operationalize Results	
	Adapt the discovered procedure from raw data to results to an operational setting	g
	Deliver and make use of the predictions (if intended)	
	Deliver and make use of the predictive model (if intended)	