FORMATION OF BARRIER METAL LAYER IN SEMICONDUCTOR **DEVICE**

Patent Number:

JP7066143

Publication date:

1995-03-10

Inventor(s):

SATO JUNICHI

Applicant(s):

SONY CORP

Requested Patent:

☐ JP7066143

Application Number: JP19930232365 19930825

Priority Number(s):

IPC Classification:

H01L21/205; G01R33/64; H01L21/285; H01L21/3065; H01L21/3205; H01L21/768

EC Classification:

Equivalents:

JP3225706B2

Abstract

PURPOSE:To provide a method for forming a barrier metal layer having low contact resistance and excellent in coverage and intimate contact with an insulation layer at a higher grow rate as compared with conventional technology.

CONSTITUTION: When a barrier metal layer composing the wiring in a semiconductor device is formed, the lower layer 20A of a first barrier metal layer is formed by CVD using first material gas containing a metal element composing the barrier metal layer. Subsequently, the upper layer 20B of first barrier metal layer is formed by CVD using the first material gas and a second material gas containing an element reacting on the metal element to produce a compound while increasing the volumetric ratio of the second material gas to the first material gas from zero to a predetermined value. A second barrier metal layer 22 is then formed on the first barrier metal layer by CVD while increasing the volumetric ratio above the predetermined value.

Data supplied from the esp@cenet database - I2

			:

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平7-66143

(43) 公開日 平成7年(1995) 3月10日

(51) Int. Cl. 6 識別記号 FΙ H01L 21/205 G01R 33/64 HO1L 21/285 301 R 7376-4M

> G01N 24/14 H01L 21/302

Н

審査請求 未請求 請求項の数8 FD

(C)

(全10頁) 最終頁に続く

(21) 出願番号

特願平5-232365

(71) 出願人 000002185

ソニー株式会社

(22) 出願日

平成5年(1993)8月25日

東京都品川区北品川6丁目7番35号

(72) 発明者 佐藤 淳一

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74) 代理人 弁理士 山本 孝久

(54) 【発明の名称】半導体装置におけるバリアメタル層の形成方法

(57) 【要約】

【目的】カバレッジに優れ、従来よりも早い成長速度で 形成することができ、しかも絶縁層との密着性に優れ、 コンタクト抵抗の低いバリアメタル層の形成方法を提供 する。

【構成】半導体装置における配線を構成するバリアメタ ル層の形成方法は、(イ)バリアメタル層を構成する金 属元素を含有する第1の原料ガスを用いて第1のバリア メタル層の下層20AをCVD法にて形成し、引き続 き、この金属元素と化合物を生成し得る元素を含有する 第2の原料ガス及び第1の原料ガスを用い、且つ、第2 の原料ガス量/第1の原料ガス量の割合を0から所定の 割合まで増加させながら、第1のパリアメタル層の上層 20 BをCVD法にて形成し、次いで、(ロ)第2の原 料ガス量/第1の原料ガス量の割合を、前記所定の割合 よりも増加させた状態で、第2のバリアメタル層22を 第1のパリアメタル層上にCVD法にて形成する。

【特許請求の範囲】

【請求項1】半導体装置における配線を構成する第1及び第2のバリアメタル層から成るバリアメタル層の形成方法であって、

(イ) バリアメタル層を構成する金属元素を含有する第1の原料ガスを用いて第1のバリアメタル層の下層を化学的気相成長法にて形成し、引き続き、該金属元素と化合物を生成し得る元素を含有する第2の原料ガス及び第1の原料ガスを用い、且つ、第2の原料ガス量/第1の原料ガス量の割合を0から所定の割合まで増加させなが10ら、第1のバリアメタル層の上層を化学的気相成長法にて形成し、次いで、

(ロ)第2の原料ガス量/第1の原料ガス量の割合を、 前記所定の割合よりも増加させた状態で、第2のバリア メタル層を第1のバリアメタル層上に化学的気相成長法 にて形成することを特徴とする半導体装置におけるバリ アメタル層の形成方法。

【請求項2】前記金属元素は、チタン、ハフニウム、又はジルコニウムであることを特徴とする請求項1に記載の半導体装置におけるバリアメタル層の形成方法。

【請求項3】前記第2の原料ガスは窒素ガスであることを特徴とする請求項1又は請求項2に記載の半導体装置におけるバリアメタル層の形成方法。

【請求項4】前記(ロ)の工程において、酸素ガスを更に用いることを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体装置におけるバリアメタル層の形成方法。

【請求項5】前記(ロ)の工程において、前記金属元素と化合物を生成する元素を含有する第3の原料ガスを更に用いることを特徴とする請求項1乃至請求項3のいず 30れか1項に記載の半導体装置におけるバリアメタル層の形成方法。

【請求項6】前記第3の原料ガスには、炭素又はホウ素が含まれることを特徴とする請求項5に記載の半導体装置におけるバリアメタル層の形成方法。

【請求項7】前記(ロ)の工程において、酸素ガスを更に用いることを特徴とする請求項6に記載の半導体装置におけるバリアメタル層の形成方法。

【請求項8】第1及び第2のバリアメタル層の形成を電子サイクロトロン共鳴プラズマCVD法にて行うことを 40特徴とする請求項1乃至請求項7のいずれか1項に記載の半導体装置におけるバリアメタル層の形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置におけるバリアメタル層の形成方法、より詳しくは化学的気相成長法にて形成されるバリアメタル層の形成方法に関する。

[0002]

【従来の技術】半導体装置には多数のスルーホールある における内部応力の差に起因して、絶縁層104に対すいはビヤホール(以下、これらを総称して接続孔ともい 50 る密着性が乏しい。それ故、密着性改善のためにTiN

う)が形成されている。通常、この接続孔は、半導体基板に形成された不純物拡散領域上や各種電極上に絶縁層を形成し、あるいは半導体基板に設けられそして下層配線層が形成された下層絶縁層上に絶縁層を形成し、かかる絶縁層に開口部を設けた後、開口部に金属配線材料を埋め込むことによって形成される。半導体装置の高集積化に伴い、半導体製造プロセスの寸法ルールも微細化しつつあり、高いアスペクト比を有する開口部を金属配線材料で埋め込む技術が重要な課題となっている。尚、不純物拡散領域や各種電極が形成された半導体基板、あるいは下層配線層が形成された下層絶縁層を、以下、総称して基体とも呼ぶ。

【0003】開口部を金属配線材料で埋め込む方法として、一般には、純アルミニウムあるいはアルミニウム合金(以下、A1系合金ともいう)を用いたスパッタ法が採用されている。然るに、このスパッタ法においては、開口部のアスペクト比が高くなるに従い、A1系合金から成るスパッタ粒子が所謂シャドウイング効果によって開口部底部あるいはその近傍の開口部側壁に堆積し難くなる。ここで、シャドウイング効果とは、A1系合金から成るスパッタ粒子が開口部の側壁あるいは底部に形成される光学的に影の部分には堆積され難い現象を指す。その結果、開口部底部あるいはその近傍の開口部側壁におけるA1系合金のステップカバレッジが悪くなり、かかる部分で断線不良が発生し易くなるという問題がある。

【0004】このような問題を解決する手段として、所謂ブランケットCVD法、高温アルミニウムスパッタ法あるいはアルミニウムリフロー法が注目されている。

【0005】ブランケットCVD法においては、図4に半導体素子の模式的な一部断面図を示すように、基体100上に形成された絶縁層104の上及びかかる絶縁層104に形成された開口部106内に、例えばタングステン層114を化学的気相成長法(CVD法)にて堆積させる(図4の(A)参照)。その後、絶縁層上104に形成されたタングステン層114をエッチバックして除去する。これによって、開口部106内にタングステンから成るメタルプラグ116が形成された接続孔を完成させる(図4の(B)参照)。尚、このような方法を、以下、タングステンブランケットCVD法と呼ぶ。尚、図4において、102は半導体基板に形成された不純物拡散領域である。

【0006】タングステンプランケットCVD法でタングステン層を形成する場合、タングステン層の下に、例えば下からTi層110/TiN層112の2層構造のバリアメタル層を形成する必要がある。タングステンブランケットCVD法で形成されるタングステン層は、ステップカバレッジには優れるものの、異種材料層の界面における内部応力の差に起因して、絶縁層104に対する密着性が乏しい。それ故、密着性改善のためにTiN

層112を形成する。また、TiN層112と不純物拡 散領域102との間の抵抗を低減させる目的でTi層1 10を形成する。これらのTi層110及びTiN層1 12は、通常、例えばバイアススパッタ法にて形成され る。

【0007】高温アルミニウムスパッタ法においては、 図5に半導体素子の模式的な一部断面図を示すように、 基体100の上に形成された絶縁層104上及びかかる 絶縁層104に形成された開口部106内に、基体10 0を高温(例えば500°C程度)に加熱した状態で、 AI系合金層124をスパッタ法にて形成し、併せて、 絶縁層104上にAl系合金から成る上層配線層126 を形成する。基体100が高温に加熱されているため、 絶縁層104上に堆積したAI系合金は流動状態となり 開口部106内に流入する。これによって、開口部10 6内はA1系合金で確実に埋め込まれ、接続孔が形成さ れる。尚、図5中、102は不純物拡散領域である。半 導体基板等にパイアス電圧を印加しながら高温スパッタ を行う高温バイアススパッタ法も、本明細書における高 温アルミニウムスパッタ法に包含される。これらを総称 20 して単に高温アルミニウムスパッタ法ともいう。

【0008】また、アルミニウムリフロー法において は、基体を約150° Cに加熱した状態で、開口部内を 含む絶縁層上にスパッタ法にてAI系合金を堆積させ る。その後、基体を高温(例えば500°C程度)に加 熱して、絶縁層上に堆積したA1系合金を流動状態とし て開口部内に流入させて、開口部をAI系合金で埋め込 み、接続孔を形成する。併せて、絶縁層上のA 1 系合金 が平坦化されて上層配線層が形成される。

【0009】これらの高温アルミニウムスパッタ法やア ルミニウムリフロー法においては、開口部106内のA 1系合金が不純物拡散領域102に突き抜けることを防 止するために、Al系合金をスパッタ法にて堆積させる 前に、少なくとも開口部106内にバリアメタル層12 0, 122を形成する必要がある。また、A1系合金か ら成る下層配線層に対して接続孔を設ける場合、基体が 高温に加熱される結果、AI系合金で埋め込まれた開口 部内に下層配線層中のAl系合金が吸上げられ、下層配 線層にポイドが発生することがある。これを防止するた めに、A I 系合金をスパッタ法にて堆積させる前に、少 40 なくとも開口部106内にバリアメタル層を形成する必 要がある。これらのバリアメタル層120、122は、 例えば下からTi糎120/TiN層122の2層構造 を有する。TiN層122は、Al系合金の突き抜けや 吸上げを効果的に防止する。TiN層122と不純物拡 散領域102等との間の抵抗を低減させる目的で、Ti 層120を形成する。

【0010】以上のように、これらの接続孔の形成方法 においては、いずれの場合も、Ti層/TiN層等から 構成されたバリアメタル層を必要とする。しかしなが

ら、開口部が高いアスペクト比を有するようになるに従 い、高いバリア性及び優れたステップカバレッジを有す るバリアメタル層をスパッタ法にて形成することは困難 になりつつある。そのため、ステップカバレッジに優れ た電子サイクロトロン共鳴プラズマCVD法(ECRプ ラズマCVD法)にて、Ti層/TiN層から成るバリ アメタル層を連続して形成する方法が検討されている。 [0.011]

【発明が解決しようとする課題】ECRプラズマCVD 装置を用いてTi層/TiN層から成るバリアメタル層 をECRプラズマCVD法にて形成する場合、Ti層の 成長速度は約2nm/分であり、TiN層の成長速度と 比較してTi層の成長速度が約1/10程度と著しく遅 い。そのため、Ti層/TiN層から成るバリアメタル 層の形成に長時間を要するという問題がある。

【0012】微量の窒素を添加しながら、ECRプラズ マCVD法でTiリッチなTiN層を形成する方法が、 第40回応用物理学会関係連合講演会予稿集31p-Z Y-16 (第785頁) から公知である。このような方 法によって、TiリッチなTiN層を、Ti層よりも早 い成長速度で形成することができ、しかも、化学量論的 組成(Ti:N=1:1)のTiNよりも低いコンタク ト抵抗が得られると報告されている。しかしながら、T iリッチなTiN層を絶縁層上に形成した場合、TiN の有する内部応力が大きいため、絶縁層に対するTiN 層の密着性が乏しいという問題を有する。

【0013】従って、本発明の目的は、カバレッジに優 れ、従来よりも早い成長速度で形成することができ、し かも絶縁層との密着性に優れ、コンタクト抵抗の低いバ リアメタル層の形成方法を提供することにある。

[0014]

【課題を解決するための手段】上記の目的を達成するた めの本発明の半導体装置におけるバリアメタル層の形成 方法は、半導体装置における配線を構成する第1及び第 2のバリアメタル層から成るバリアメタル層の形成方法 であって、(イ)バリアメタル層を構成する金属元素を 含有する第1の原料ガスを用いて第1のバリアメタル層 の下層を化学的気相成長法にて形成し、引き続き、この 金属元素と化合物を生成し得る元素を含有する第2の原 料ガス及び第1の原料ガスを用い、且つ、第2の原料ガ ス量/第1の原料ガス量の割合を0から所定の割合まで 増加させながら、第1のバリアメタル層の上層を化学的 気相成長法(CVD法)にて形成し、次いで、(ロ)第 2の原料ガス量/第1の原料ガス量の割合を、前記所定 の割合よりも増加させた状態で、第2のバリアメタル層 を第1のバリアメタル層上に化学的気相成長法 (CVD 法)にて形成することを特徴とする。

【0015】CVD法にて第1のバリアメタル層を形成 する際、第2の原料ガス量/第1の原料ガス量の割合の 変化量は一定であってもよいし、かかる割合を段階的に

変化させてもよい。

【0016】本発明のバリアメタル層の形成方法におい ては、金属元素は、チタン、ハフニウム、又はジルコニ ウムであることが望ましい。更に、前記第2の原料ガス は窒素ガスであることが望ましい。

【0017】本発明のバリアメタル層の形成方法におい ては、前記(ロ)の工程において、酸素ガスを更に用い ることができる。

【0018】あるいは又、前記(口)の工程において、 金属元素と化合物を生成する元素を含有する第3の原料 10 ガスを更に用いることができる。この場合、第3の原料 ガスには、炭素又はホウ素を含ませ得る。更に、前記 (ロ) の工程において、酸素ガスを更に用いることがで

【0019】本発明のバリアメタル層の形成方法におい ては、第1及び第2のバリアメタル層の形成を電子サイ クロトロン共鳴プラズマCVD法(ECRプラズマCV D法)にて行うことが好ましい。

[0020]

【作用】本発明においては化学的気相成長法によって第 20 1及び第2のバリアメタル層を形成するので、バリアメ タル層のカバレッジに優れる。また、第1のバリアメタ ル層を下層及び上層に分けて形成するので、下層を構成 する金属元素のみから第1のバリアメタル層を形成する よりも早い成長速度で第1のバリアメタル層を形成する ことができる。しかも、金属元素のみから下層が構成さ れているので、絶縁層に対する第1のバリアメタル層の 密着性に優れ、しかも、低いコンタクト抵抗を得ること ができる。更には、第2のバリアメタル層が形成されて いるので、バリア性に優れる。

[0021]

【実施例】以下、図面を参照して、実施例に基づき本発 明を説明する。

【0022】 (実施例1) 実施例1は、本発明のバリア メタル層の形成方法を、ブランケットタングステンCV D法でコンタクトホールを形成する場合に適用した例で ある。図2に示すように、実施例1におけるバリアメタ ル層は、第1のバリアメタル層20A,20B、及び第 2のバリアメタル層22から成る。

【0023】第1のバリアメタル層は、下層20A及び 40 上層20Bから構成されている。下層20Aは、金属 (実施例1においてはチタン, Ti)から成る。また、 上層20Bは、下層と同様に金属(実施例1においては チタン、Ti)から成り、Tiと化合物を形成する元素 である窒素(N)を含んでいる。

【0024】第2のバリアメタル層22は、第1のバリ アメタル層を構成する金属(Ti)を含有する金属化合 物(実施例1においてはTiN)から成る。

【0025】図2中、10は半導体基板から成る基体、

2から成る絶縁層、24はタングステンから成る金属配 線材料層、26はタングステンから成るメタルプラグ、 28は上層配線層である。実施例1においては、金属配 線材料層24はタングステンブランケットCVD法にて 形成する。

【0026】先ず、本発明のバリアメタル層の形成方法 の実施に適したECRプラズマCVD装置の概要を、図 3を参照して説明する。ECRプラズマCVD装置は、 成膜チャンバ50及びプラズマチャンバ60から成る。 成膜チャンバ50内には、半導体基板100を載置する ためのサセプタ52が配置されている。サセプタ52の 下にはランプ加熱手段54が配置されている。半導体基 板100をランプ加熱手段54によって加熱することが

【0027】プラズマチャンバ60は成膜チャンバ50 の上部と連通している。プラズマチャンバ60の上部に はマイクロ波導入窓62が設けられ、マイクロ波導入窓 62の上部には、2.45GHzのマイクロ波を導入す るためのレクタンギュラーウエイブガイド66が設けら れている。プラズマチャンバ60の周囲には磁気コイル 64が配設されている。RFパワーがRF電源68から マイクロ波導入窓62に加えられる。プラズマチャンバ 60には、ガス導入口80からアルゴンガス及びN,O ガスが供給される。これらのガスはマイクロ波導入窓6 2のクリーニングを行うために導入される。

【0028】第1の原料ガス供給部から、マスフローコ ントローラ及び第1のガス導入部70を通して、第1の 原料ガスが成膜チャンバ50に供給される。同様に、第 2、第3の原料ガス供給部から、マスフローコントロー ラ及び第2、第3のガス導入部72,74を通して、第 2、第3の原料ガスが成膜チャンバ50に供給される。 更に、プロセスガス供給部から、マスフローコントロー ラ及びプロセスガス導入部76を通して、各種プロセス ガスが成膜チャンバ50に供給される。尚、各種プロセ スガスや第2、第3の原料ガス等を、プラズマチャンバ 60内に導入することもできる。

【0029】成膜チャンバ50内のガスはガス排気部5 - 6から系外に排気される。尚、図3中、102はプラズ マ流である。また、100は図1の(A)に示す構造を 有する半導体基板である。熱電対(図示せず)で半導体 基板100の温度をモニターし、公知の温度制御手段 (図示せず) によってランプ加熱手段54への供給電力 を制御し、半導体基板100の温度を一定に保つ。

【0030】以下、実施例1のバリアメタル層の形成方 法を説明する。

【0031】[工程-100]先ず、例えば公知の方法 で不純物拡散領域12が形成された半導体基板から成る 基体10上に、CVD法等の公知の方法で、例えばSi 〇,から成る絶縁層14を形成する。次いで、不純物拡 12は基体に形成された不純物拡散領域、14はSiO 50 散領域12の上方の絶縁層14に、フォトリソグラフィ

技術及び例えばリアクティブ・イオン・エッチング (R IE) 技術を用いて、開口部16を形成する(図1の (A) 参照)。エッチングを、例えば以下の条件で行う ことができる。

使用ガス : CHF₁/O₂=50/5sccm

圧力 : 5 P a パワー : 1 k W

【0032】 [工程-110] 次に、本発明のバリアメ タル層の形成方法によって、全体の厚さが5nmの第1 のパリアメタル層を形成する。図 3 に示したECRプラ 10 第 1 の原料ガス : T i C 1 1 2 0 sccmズマCVD装置を用いて、バリアメタル層を構成する金 属元素 (Ti) を含有する第1の原料ガス (TiC 14) を用いて第1のバリアメタル層の下層20AをE CRプラズマCVD法にて形成する。ECRプラズマC VDによる第1のパリアメタル層の下層20Aの形成条 件を、例えば以下のとおりとすることができる。

第1の原料ガス : TiCl4=20sccm

プロセスガス : $H_2/A r = 2.6/5.0 \text{ sccm}$

圧力 0. 13 Pa (9. 6×10^{-4} T

orr)

温度 : 約420°C マイクロ波出力 : 2.8kW 成膜時間 10秒

【0033】[工程-120]引き続き、金属元素(T i) との化合物 (TiN) を生成し得る元素 (N) を含 有する第2の原料ガス(窒素ガス)及び第1の原料ガス (TiCl₄)を用い、且つ、第2の原料ガス量/第1 の原料ガス量の割合を0から所定の割合まで増加させな がら、第1のバリアメタル層の上層20BをECRプラ ズマCVD法にて形成する。第1の原料ガス量を一定に 30 して、第2の原料ガス量を0から1.5sccmまで徐々に 増加させた。尚、変化量は一定とした。

第1の原料ガス : TiCl,=20sccm 第2の原料ガス : N₂=0~1.5 sccm

プロセスガス : $H_2/A r = 2.6/5.0 \text{ sccm}$

圧力 0. 13 Pa (9. 6×10^{-4} T

orr)

温度 : 約420°C マイクロ波出力 : 2.8kW 成膜時間 60秒

【0034】これによって、主にTiから成る第1のバ リアメタル層の上層20Bが形成される。この第1のバ リアメタル層の上層20B中には窒素(N)が僅かに含 まれ得る。

【0035】第1のバリアメタル層の下層20Aは、T iのみから構成されているので、下地であるSiО₁か ら成る絶縁層14との密着性に優れる。また、第1のバ リアメタル層全体をTiのみから構成する場合と比較し て、第1のバリアメタル層を下層/上層から構成するこ とによって、第1のバリアメタル層の成膜速度を約10 50 0%増加させることができた。

【0036】 [工程-130] 引き続き、第2の原料ガ ス量/第1の原料ガス量の割合を、 [工程-120] に おける所定の割合よりも増加させた状態で、TiNから 成る第2のバリアメタル層22を第1のバリアメタル層 上に化学的気相成長法にて形成する。第2のバリアメタ ル層22の厚さを50nmとした。ECRプラズマCV D法による第2のバリアメタル層22の形成条件を、例 えば以下のとおりとすることができる。

第2の原料ガス : N₂ = 8 sccm

プロセスガス $H_2/A r = 2.6/5.0 sccm$ 0. 13 Pa (9. 6×10^{-4} T 圧力

orr)

温度 約420°C マイクロ波出力 : 2.8kW

【0037】 [工程-140] その後、タングステンブ ランケットCVD法にて、第2のバリアメタル層22上 にタングステンから成る金属配線材料層24を堆積させ る(図1の(C)参照)。ブランケットタングステンC VDの条件を、例えば、以下のとおりとすることができ る。

第1ステップ (核形成段階)

 $WF_6/S i H_4 = 25/10 sccm$

圧力 1. $0.6 \times 1.0^{4} Pa$

温度 約475°C 第2ステップ(高速成長段階) $WF_{5}/H_{2} = 6.0/3.60$ sccm

圧力 1. $0.6 \times 1.0^{4} Pa$

温度 約475°C

【0038】次いで、絶縁層14上の金属配線材料層2 4並びに第2及び第1のバリアメタル層22,20B, 20Aを除去して、開口部内にタングステンから成る金 属配線材料層24(タングステンプラグ)を残し、ビア ホール26を形成する。こうして、図2の(A)に示す 半導体装置の配線構造が作製される。この半導体装置の 絶縁層14上及びピアホール24上に、更に、例えばA 1-1%Si等のAl系合金から成る上層配線層をスパ ッタ法及びエッチング法等によって形成することができ 40 る。

【0039】あるいは又、図2の(B)に模式的な一部 断面図を示すように、絶縁層14上の金属配線材料層2 4並びに第2及び第1のパリアメタル層22, 20B, 20Aを選択的に除去することによって、絶縁層14上 に上層配線層28を形成する。併せて、開口部内に金属 配線材料層24(タングステンプラグ)を残し、ビアホ ール26を形成する。この上層配線層28は、絶縁層1 4の表面に形成された第1及び第2のバリアメタル層並 びにタングステンから成る金属配線材料層24から構成 されている。

【0040】(実施例2)実施例2は、実施例1の変形である。実施例2が実施例1と相違する点は、第2のバリアメタル層22がTiONから構成されている点にある。その他の点は実施例1と同等である。以下、実施例2のバリアメタル層の形成方法を説明する。

【0041】 [工程-200] 先ず、例えば公知の方法で不純物拡散領域が形成された半導体基板から成る基体上に、CVD法等の公知の方法で、例えばSiO,から成る絶縁層を形成し、次いで、不純物拡散領域の上方の絶縁層に、フォトリソグラフィ技術、及び例えばリアク10ティブ・イオン・エッチング(RIE)技術を用いて開口部を形成する。この工程は、実施例1の[工程-100]と同様とすることができる。

【0042】 [工程-210] 次に、実施例10 [工程-110] 及び [工程-120] と同様の方法で、Ti から成る下層及び主にTi から成る上層から構成された 厚さ5nmの第10バリアメタル層を形成する。

【0043】 [工程-220] 引き続き、第2の原料ガス量/第1の原料ガス量の割合を、 [工程-210] における所定の割合よりも増加させた状態で、TiONか 20ら成る第2のバリアメタル層22を第1のバリアメタル層上に化学的気相成長法にて形成する。第2のバリアメタル層22の厚さを50nmとした。ECRプラズマCVDによる第2のバリアメタル層22の形成条件を、例えば以下のとおりとすることができる。

第1の原料ガス : TiCl₄=20sccm

第2の原料ガス : $N_1 = 8 \text{ sccm}$ その他の原料ガス : $O_2 = 5 \text{ sccm}$ プロセスガス : $H_1 = 2 6 \text{ sccm}$

圧力 : 0.13 Pa (9.6×10⁻⁴ T 30

orr)

温度 : 約420°C マイクロ波出力 : 2.8kW

【0044】 [工程-230] 次いで、タングステンプランケットCVD法にて、第2のバリアメタル層上にタングステンから成る金属配線材料層を堆積させる。その後、絶縁層上の金属配線材料層並びに第2及び第1のバリアメタル層を除去して、開口部内にタングステンから成る金属配線材料層(タングステンプラグ)を残し、ビアホールを形成する。あるいは又、絶縁層上の金属配線 40材料層並びに第2及び第1のバリアメタル層を選択的に除去することによって、絶縁層上に上層配線層を形成し、併せて、開口部内に金属配線材料層(タングステンプラグ)を残し、ビアホールを形成する。これらの工程は実施例1の [工程-140] と同様とすることができる。

【0045】第2のバリアメタル層をTiONから構成する代わりに、TiBN、TiCNあるいはTiCNOから構成することができる。この場合、実施例2の[工程-220]におけるECRプラズマCVDの条件を以 50

下に例示する条件に置き換えればよい。

(TiBNの成膜)

第1の原料ガス : TiCl₄=20sccm

第2の原料ガス : N₁ = 8 sccm

第3の原料ガス : BCl,=10sccm プロセスガス : H,=26sccm

压力 : 0.13Pa(9.6×10⁻⁴T

orr)

温度 : 約420°C 0 マイクロ波出力 : 2.8kW

(TiCNの成膜)

第1の原料ガス : TiCl₄=20sccm

第2の原料ガス : N₂ = 8 sccm 第3の原料ガス : CH₄ = 1 0 sccm プロセスガス : H₂ = 2 6 sccm

圧力 : 0.13Pa(9.6×10'T

orr)

温度: 約420°Cマイクロ波出力: 2.8kW

(TiCNOの成膜)

第1の原料ガス : TiCl₄=20sccm

第2の原料ガス : $N_2 = 8 \text{ sccm}$ 第3の原料ガス : $CH_4 = 1 \text{ 0 sccm}$ その他の原料ガス : $O_2 = 5 \text{ sccm}$ プロセスガス : $H_2 = 2 \text{ 6 sccm}$

压力 : 0.13Pa (9.6×10⁻⁴ T

orr)

温度 : 約420°C マイクロ波出力 : 2.8kW

【0046】(実施例3)実施例1及び実施例2においては、バリアメタル層を構成する金属としてチタン(Ti)を用いた。実施例3においては、バリアメタル層を構成する金属材料としてハフニウム(Hf)を用いる。実施例3においても、金属配線材料層はタングステンプランケットCVD法にて形成する。以下、実施例3のバリアメタル層の形成方法を説明する。

【0047】 [工程-300] 先ず、例えば公知の方法で不純物拡散領域が形成された半導体基板から成る基体上に、CVD法等の公知の方法で、例えばSiO.から成る絶縁層を形成し、次いで、不純物拡散領域の上方の絶縁層に、フォトリソグラフィ技術、及び例えばリアクティブ・イオン・エッチング(RIE)技術を用いて開口部を形成する。この工程は、実施例1の [工程-100] と同様とすることができる。

【0048】 [工程-310] 次に、本発明のバリアメタル層の形成方法によって、全体の厚さが5nmの第1のバリアメタル層を形成する。図3に示したECRプラズマCVD装置を用いて、バリアメタル層を構成する金属元素(Hf)を含有する第1の原料ガス(HfOCl)を用いて第1のバリアメタル層の下層をECRプラ

ズマCVD法にて形成する。ECRプラズマCVDによ る第1のバリアメタル層の下層の形成条件を、例えば以 下のとおりとすることができる。

第1の原料ガス : HfOCl₁=10sccm

プロセスガス : $H_1/A r = 5.0/4.0 \text{ sccm}$

圧力 0. 13 Pa (9. 6×10^{-4} T

orr)

: 約400°C 温度

マイクロ波出力 : 2.8kW

成膜時間 10秒

【0049】尚、第1の原料ガスとして、HfOCl, の代わりに、Hf($O-t-C_{\bullet}H_{\bullet}$)。を用いることも できる。HfOCl,及びHf(O-t-C,H,),は液 体原料である。それ故、HfOCl,を水、Hf(Ot-C,H,),をアルコール等の溶媒に溶かした後、H eガス等でパプリングして原料ガスとして使用する。

【0050】 [工程-320] 引き続き、金属元素 (H f) との化合物 (H f Bx) を生成し得る元素 (B) を 含有する第2の原料ガス(BCl,ガス)及び第1の原 料ガス(HfOC 11)を用い、且つ、第2の原料ガス 量/第1の原料ガス量の割合を0から所定の割合まで増 加させながら、第1のバリアメタル層の上層をECRプ ラズマCVD法にて形成する。第1の原料ガス量を一定 にして、第2の原料ガス量を0から1.5sccmまで徐々 に増加させた。尚、変化量は一定とした。

第1の原料ガス : HfOCl₁=10sccm 第2の原料ガス : BCl;=0~1.5sccm

プロセスガス : $H_1/A r = 3.0/5.0 \text{ sccm}$

圧力 0. 13 Pa (9. 6×10^{-4} T

orr)

温度 約650°C

マイクロ波出力 2.8 kW

成膜時間 60秒

尚、第2の原料ガスとして、BC1,の代わりに、BB r, あるいはB, H, を用いることもできる。

【0051】これによって、主にHfから成る第1のバ リアメタル層の上層が形成される。この第1のパリアメ タル層の上層中には窒素(N)が僅かに含まれ得る。

【0052】第1のパリアメタル層の下層は、Hfのみ から構成されているので、下地であるSiOから成る 絶縁層との密着性に優れる。また、第1のパリアメタル 層全体をHfのみから構成する場合と比較して、第1の バリアメタル層を下層/上層から構成することによっ て、第1のバリアメタル層の成膜速度を約100%増加 させることができた。

【0053】[工程-330]引き続き、第2の原料ガ ス量/第1の原料ガス量の割合を、「工程-320」に おける所定の割合よりも増加させた状態で、HfB $x(0 < X \le 2)$ から成る第2のバリアメタル層を第1 のバリアメタル層上に化学的気相成長法にて形成する。

第2のバリアメタル層の厚さを50nmとした。ECR プラズマCVDによる第2のバリアメタル層の形成条件 を、例えば以下のとおりとすることができる。

第1の原料ガス : HfOCl₁=10sccm 第2の原料ガズ

プロセスガス $H_1/A r = 3.0/5.0 \text{ sccm}$

圧力 0. 13 Pa (9. 6×10^{-4} T

: BC1 $_{3}$ = 30 sccm

orr)

温度 約650°C 10 マイクロ波出力 2.8 kW

【0054】 [工程-340] 次いで、タングステンブ ランケットCVD法にて、第2のバリアメタル層上にタ ングステンから成る金属配線材料層を堆積させる。その 後、絶縁層上の金属配線材料層並びに第2及び第1のバ リアメタル層を除去して、開口部内にタングステンから 成る金属配線材料層(タングステンプラグ)を残し、ビ アホールを形成する。あるいは又、絶縁層上の金属配線 材料層並びに第2及び第1のバリアメタル層を選択的に 除去することによって、絶縁層上に上層配線層を形成 し、併せて、開口部内に金属配線材料層(タングステン プラグ)を残し、ピアホールを形成する。これらの工程 は実施例1の[工程-140]と同様とすることができ

【0055】バリアメタル層を構成する金属としてHf の代わりにジルコニウム(Zr)を用いることができ る。この場合、実施例3の[工程-310]、[工程-320] 及び [工程-330] におけるECRプラズマ CVDの条件を以下に例示する条件に置き換えればよ

30 (第1のパリアメタル層の下層の形成)

第1の原料ガス : ZrCl₄=10sccm

プロセスガス $H_1/A r = 5.0/4.0 \text{ sccm}$

圧力 0. 13 Pa (9. 6×10^{-4} T

orr)

温度 約400°C 2.8 kW マイクロ波出力 成膜時間 10秒

(第1のパリアメタル層の上層の形成)

第1の原料ガス : ZrCl₄=10sccm 第2の原料ガス BCl₃=0 \sim 1. 5sccm : プロセスガス $H_1/A r = 30/50 sccm$

圧力 0. 13 Pa (9. 6×10^{-4} T

orr)

温度 約650°C マイクロ波出力 2.8 kW 成膜時間 60秒

(第2のパリアメタル層(ZrB_r, 0 < X ≤ 2))の

形成)

第1の原料ガス $Z r C l_4 = 1 0 sccm$ 50 第2の原料ガス : BC1,=30sccm

プロセスガス : $H_2/A r = 30/50 sccm$

圧力 : 0.13Pa (9.6×10⁻⁴ T

orr)

 温度
 : 約650°C

 マイクロ波出力
 : 2.8kW

【0056】第1の原料ガスとして、 $ZrCl_1$ の代わりに、 $ZrCl_1$ を用いることもできる。 $ZrCl_1$ 及び $ZrCl_1$ は液体原料である。それ故、これらを水に溶かした後、Heガス等でパブリングして原料ガスとして使用する。また、第2の原料ガスとして、 BCl_1 の代わりに、 BBr_1 あるいは B_1H_1 を用いることもできる。第1のパリアメタル層の上層の形成においては、第1の原料ガス量を一定にして、第2の原料ガス量を0から1.5sccmまで徐々に増加させる。

【0057】以上、実施例に基づき、本発明のバリアメタル層の形成方法を説明したが、本発明はこれらの実施例に限定されるものではない。タングステンを使用したプランケットCVD法の代わりに、Mo、Ti、Ni、Co、Al、Cu等、あるいは、W、Mo、Ti、Ni、Co等の各種シリサイドを使用したプランケットC 20 VD法に本発明を適用することができる。また、アルミニウムを使用して、メタルプラグを選択CVD法で形成することもできる。

【0058】各実施例においては、1つのECRプラズマCVD装置を用いて第1及び第2のバリアメタル層を形成したが、代わりに、ゲートバルブを介して接続された第1の成膜チャンバ及び第2の成膜チャンバを備えたECRプラズマCVD装置を用いることもできる。この場合、例えば、第1の成膜チャンバにで第1のバリアメタル層を形成し、次いで、真空を破らずに半導体基板を30第2の成膜チャンバに搬入し、第2の成膜チャンバにて第2のバリアメタル層を形成することができる。

【0059】更には、ブランケットCVD法の代わりに、純A1、あるいは、A1-1%Si、A1-Si-Cu、A1-Cu、A1-Ge等のアルミニウム合金を使用した、所謂、高温アルミニウムスパッタ法やアルミニウムリフロー法にてメタルプラグを形成することも可能である。これらのスパッタ法においては、半導体基板が高温に加熱されているため、開口部内に堆積したアルミニウム又はアルミニウム合金から成る金属配線材料も40約400°C以上融点以下まで加熱される。その結果、軟化した金属配線材料が流動状態となり開口部内を流れることが可能となる。

【0060】第1及び第2のバリアメタル層を形成した後、真空を破らずに連続して他のチャンバでAl-1%Siから成るアルミニウム合金を、例えば、以下の条件の高温アルミニウムスパッタ法に従って成膜することができる。

成膜パワー DC 10kW スパッタ圧力 0.4Pa 基体加熱温度 500°C

プロセスガス Ar:100sccm

成膜速度 0.3~0.9 \(\mu \mod / \Delta \)

【0061】あるいは又、第1及び第2のバリアメタル層を形成した後、真空を破らずに連続して他のチャンバでAI-18Siから成るアルミニウム合金を、例えば、以下の条件のアルミニウムリフロー法に従って成膜することができる。

14

(アルミニウムのスパッタ条件)

10 \mathcal{I} \mathcal{I}

DCパワー: 20kWスパッタ圧力: 0.4Pa基体加熱温度: 150°C

成膜速度 : 1200nm/分

(アルミニウムのリフロー条件)

加熱方式 : 基板裏面ガス加熱

加熱温度 : 500°C

加熱時間 : 2分

プロセスガス : A r = 100 sccm プロセスガス圧力: $1.1 \times 10^{3} Pa$

ここで、基板裏面ガス加熱方式とは、基板裏面に配置したヒーターブロックを所定の温度(加熱温度)に加熱し、ヒーターブロックと基板裏面の間にプロセスガスを 導入することによって基板を加熱する方式である。加熱 方式としては、この方式以外にもランプ加熱方式等を用 いることができる。

【0062】絶縁層は、SiOzだけでなく、PSG、BSG、BPSG、AsSG、PbSG、SbSG、シリコン窒化膜、SiON、SOG、SiON等から構成することができ、従来のCVD法で形成することができる。

【0063】また、不純物拡散領域にコンタクトホールを形成する実施例に基づいて本発明を説明したが、本発明のバリアメタル層の形成方法は、金属配線材料によって形成された下層配線層と上層配線層を電気的に接続するための所謂ビヤホールの形成、あるいはスルーホールの形成にも適用することができる。

【0064】本発明の第1のバリアメタル層を形成する下地がシリコンの場合、第1のバリアメタル層の下層の形成条件によっては、第1のバリアメタル層の下層は下地のシリコンと反応してシリサイド層になる場合がある。

[0065]

【発明の効果】本発明においては、カバレッジに優れ、 従来よりも速い成長速度で形成することができ、しかも 絶縁層との密着性に優れ、コンタクト抵抗の低いバリア メタル層を得ることができる。従って、次世代の超LS Iを信頼性の高いプロセスで生産性良く製造することが できる。

50 【図面の簡単な説明】

【図1】本発明のバリアメタル層の形成方法を説明するための、半導体素子の模式的な一部断面図である。

【図2】本発明のバリアメタル層の形成方法によって得られた半導体素子の模式的な一部断面図である。

【図3】本発明の実施に適したECRプラズマCVD装置の概要を表わす図である。

【図4】ブランケットCVD法を説明するための、半導体素子の模式的な一部断面図である。

【図5】高温アルミニウムスパッタ法を説明するため の、半導体素子の模式的な一部断面図である。

【符号の説明】

- 10 基体
- 12 不純物拡散領域
- 14 絶縁層
- 16 開口部
- 20A 第1のバリアメタル層の下層
- 20日 第1のバリアメタル層の上層
- 22 第2のバリアメタル層

【図1】

(C)

- 24 金属配線材料層
- 26 メタルプラグ
- 28 上層配線層
- 50 成膜チャンバ
- 52 サセプタ
- 54 ランプ加熱手段
- 56 ガス排気部
- 60 プラズマチャンバ
- 62 マイクロ波導入窓
- 10 66 レクタンギュラーウエイブガイド
 - 6 4 磁気コイル
 - 68 RF電源
 - 70 第1のガス導入部
 - 72,74 第2、第3のガス導入部
 - 76 プロセスガス導入部
 - 80 ガス導入口
 - 100 半導体基板
 - 102 プラズマ流

(A)

【図2】

(A)

114 106 112

104 102

100

(B)

106 116

110 112

ノロントペーシ	の航さ						
(51) Int. C1. 6	證	战別記号	庁内整理番号	FI		•	技術表示箇所
H01L 2	1/3065						
. 2	1/3205					•	
2	1/768						, s. 4°
				H 0 1 L	21/88		R

21/90

С

100