Personal project

Longstaff & Schwartz Algorithm for valuing American Options

MASSIN Keryann

May 7, 2024

Contents

1	Introduction	1
2	Finite Differences Pricer	1
	2.1 European 1D use-case	1
	2.2 American 1D use-case	3
3	Conclusion and perspectives	4
\mathbf{A}	Proofs	Ι
	A.1 Variational inequality 1D	Ι

1 Introduction

The need for efficient pricing methods for highly exotic derivatives has led to the development of a number of computation methods, among which the Longstaff&Schwartz method stands as a widely used one.

The goal of this project is to reproduce the results from the article.

2 Finite Differences Pricer

2.1 European 1D use-case

Establishing the PDE Let us consider a derivative \mathcal{D} which delivers a payoff $\varphi(X_T)$ at maturity T > 0, where (X_t) follows a Black Scholes diffusion:

$$dX_t = rX_t dt + \sigma X_t dW_t, \quad X_0 = x_0 > 0 \tag{1}$$

We wish to find the price today π_0 of this derivative in a complete market with constant interest rate r > 0. The No Arbitrage Principle in this market ensures that the process of discounted price $(e^{-rt}\pi_t)_{t\in[0,T]}$ is a martingale.

$$e^{rt} d(e^{-rt}\pi_t) = e^{rt} \cdot \left(-re^{-rt}\pi_t dt + e^{-rt} d\pi_t\right) = -r\pi_t dt + d\pi_t$$
$$= -r\pi_t dt + \partial_t \pi_t dt + \partial_x \pi_t dX_t + \frac{1}{2}\sigma^2 \partial_{x,x}^2 \pi_t dt$$
$$= \left\{\partial_t \pi_t + rX_t \partial_x \pi_t + \frac{1}{2}\sigma^2 \partial_{x,x}^2 \pi_t - r\pi_t\right\} dt + \sigma \partial_x \pi_t dW_t$$

The drift being null, the pricing function $\pi_t := u(t, X_t)$ satisfies the following Partial Differential Equation (PDE):

$$\begin{cases}
\partial_t u + rx \partial_x u + \frac{1}{2} \sigma^2 x^2 \partial_{x,x}^2 u - ru = 0, & \forall t \in [0, T], \, \forall x \\
u(T, x) = \varphi(x), & \forall x
\end{cases}$$
(2)

Notice that (2) is a backward PDE. To ease the computations we shall make it forward, by setting v(t, x) := u(T - t, x):

$$\begin{cases}
\partial_t v - rx \partial_x v - \frac{1}{2} \sigma^2 x^2 \partial_{x,x}^2 v + rv = 0, & \forall t \in [0, T], \, \forall x \\
v(0, x) = \varphi(x), & \forall x
\end{cases}$$
(3)

Finding π_0 (with $X_0 = x$ known) therefore amounts to solving (3) to find v(T, x).

Finite Scheme To solve (3), we will consider that x takes its value in a finite interval $I := [x_{\min}, x_{\max}]$. Plus, we introduce boundary conditions v_{ℓ} and v_r , so that (3) becomes:

$$\begin{cases}
\partial_t v + \mathcal{A}v = 0, & \forall t \in (0, T], \ \forall x \in (x_{\min}, x_{\max}) \\
v(t, x_{\min}) = v_{\ell}(t), & \forall t \in (0, T] \\
v(t, x_{\max}) = v_r(t), & \forall t \in (0, T] \\
v(0, x) = \varphi(x), & \forall x \in (x_{\min}, x_{\max})
\end{cases} \tag{4}$$

where

$$\mathcal{A}v := -rx\partial_x v - \frac{1}{2}\sigma^2 x^2 \partial_{x,x}^2 v + rv$$

To discretize (4), we consider a space mesh of size I+1>0 and a time mesh of size N+1>0:

$$\begin{cases} h := (x_{\text{max}} - x_{\text{min}})/I \\ \Delta t := N/T \\ x_i := x_{\text{min}} + i \cdot h, \quad \forall i = 0 \dots, I \\ t_n := n \cdot \Delta t, \quad \forall n = 0, \dots, N \end{cases}$$

We associate to v the matrix $U := (U_j^n)$ where $U_j^n = u(t_n, x_j)$. Let us denote by A the discretization matrix associated to the operator A, such that for any vector V:

$$(AV + q)_j = -rx_j \frac{V_{j+1} - V_{j-1}}{2h} - \frac{1}{2}\sigma^2 x_j^2 \frac{V_{j-1} - 2V_j + V_{j+1}}{h^2} + rV_j$$
$$= (-\alpha_j + \beta_j)V_{j-1} + (2\alpha_j + r)V_j + (-\alpha_j - \beta_j)V_{j+1}$$

where $\alpha_j = \frac{\sigma^2 x_j^2}{2h^2}$ and $\beta_j = \frac{rx_j}{2h}$. The term q takes into account boundary conditions (as V_{-1} and V_{I+1} are not defined). Thus, A is the tridiagonal matrix tridiag $(-\alpha_j + \beta_j, 2\alpha_j + r, -\alpha_j - \beta_j)$ and

$$q(t) = \begin{pmatrix} (-\alpha_1 + \beta_1)v_{\ell}(t) \\ 0 \\ \vdots \\ 0 \\ (-\alpha_I - \beta_I)v_r(t) \end{pmatrix}$$

Let g be the vector of components $g_j := \varphi(x_j)$ (the initial condition).

With all notations defined above, we can finally discretize (4) with the Euler Implicit Scheme, that consists in finding U^{n+1} such that

$$\frac{U^{n+1} - U^n}{\Delta t} + AU^{n+1} + q(t_{n+1}) = 0, \quad \forall n = 0, \dots, N - 1$$
 (5)

The scheme is initialized by setting $U^0 = g$. At last, the vector U^N will contain today price of derivative \mathcal{D} for each starting price x in the space mesh.

2.2 American 1D use-case

Stochastic control problem Assume that a derivative \mathcal{D}' delivers a payoff $\varphi(X_t)$ at time t > 0. This derivative is american, as it can be exercised at any time $t \in [0, T]$. This means that its today price can be expressed as

$$\pi_0' = \sup_{\tau \in \mathcal{T}_{0,T}} \mathbb{E}[e^{-r\tau} \varphi(X_\tau)]$$

where $\mathcal{T}_{0,T}$ is the set of stopping times with values in [0,T]. We are faced with a problem of Stochastic Control. The value function is defined by

$$v(t,x) := \sup_{\tau \in \mathcal{T}_{t,T}} \mathbb{E}\left[e^{-r(\tau-t)}\varphi(X_{\tau}^{t,x})\right]$$
 (6)

with $(X_s^{t,x})_{s\in[t,T]}$ a solution to (1) with initial condition $X_t = x$. Our goal is to find $v(0,x) = \pi'_0$. From (6), we get $v(t,x) \geq \varphi(x)$ for all $t \in [0,T]$ and all x. From the dynamic programming principle (DPP), the value function writes

$$v(t,x) = \sup_{\tau \in \mathcal{T}_{t,T}} \mathbb{E}\left[e^{-r(\tau-t)}\varphi(X_{\tau}^{t,x})\mathbf{1}_{\tau \le \theta} + e^{-r(\theta-t)}v(\theta, X_{\theta}^{t,x})\mathbf{1}_{\tau > \theta}\right]$$
(7)

for any stopping time $\theta \in \mathcal{T}_{t,T}$.

From (7), one can deduce that $\tilde{v}(t,x) := v(T-t,x)$ is a solution to

$$\begin{cases}
\min\left(\partial_t \tilde{v} - rx \cdot \partial_x \tilde{v} - \frac{1}{2}\sigma^2 x^2 \cdot \partial_x^2 \tilde{v} + r\tilde{v}, \tilde{v} - \varphi\right) = 0 \\
\tilde{v}(0, x) = \varphi(x)
\end{cases}$$
(8)

Proof of (8) can be found in annexe.

Finite scheme In view of similarities between (3) and (8), we define

$$\begin{cases}
\min\left(\partial_{t}v + \mathcal{A}v, v - \varphi\right) = 0, & \forall t \in (0, T], \ \forall x \in (x_{\min}, x_{\max}) \\
v(t, x_{\min}) = v_{\ell}(t), & \forall t \in (0, T] \\
v(t, x_{\max}) = v_{r}(t), & \forall t \in (0, T] \\
v(0, x) = \varphi(x), & \forall x \in (x_{\min}, x_{\max})
\end{cases} \tag{9}$$

We then consider the backward differentiation formula (BDF) scheme, defined as follow: we initialize $U^0 = g$ and compute U^1 using the Euler Implicit scheme. Finally, for $n = 1, \ldots, N-1$, we compute U^{n+1} such that

$$\min\left(\frac{3U^{n+1} - 4U^n + U^{n-1}}{2\Delta t} + AU^{n+1} + q(t_{n+1}), U^{n+1} - g\right) = 0$$
 (10)

3 Conclusion and perspectives

Bite.

References

A Proofs

A.1 Variational inequality 1D

We wish to prove (8). Applying Itô's formula to v, we get:

$$v(t+h, X_{t+h}^{t,x}) = v(t,x) + \int_{t}^{t+h} \partial_{t}v(s, X_{s}^{t,x}) ds + \int_{t}^{t+h} D_{x}v(s, X_{s}^{t,x}) dX_{s}$$
$$+ \frac{1}{2} \int_{t}^{t+h} D_{x}^{2}v(t, X_{s}^{t,x}) d\langle X^{t,x}, X^{t,x} \rangle_{s}$$

Let's assume general settings $dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t$ where (X_t) is n-dimensional and (W_t) is a m-dimensional Brownian motion. Notice that σ takes vectors $(t, x) \in \mathbb{R}_+ \times \mathbb{R}^n$ as input and outputs a matrix of size $n \times m$. Therefore, $d\langle X^{t,x}, X^{t,x} \rangle_s = \sigma \sigma^T(s, X_s^{t,x})$ and we can rewrite the expression above:

$$v(t+h, X_{t+h}^{t,x}) = v(t,x) + \int_{t}^{t+h} \left(\partial_{t}v + b \cdot D_{x}v + \frac{1}{2} \operatorname{tr}(D_{x}^{2}v \cdot \sigma\sigma^{T}) \right) (s, X_{s}^{t,x}) \, \mathrm{d}s$$
$$+ \int_{t}^{t+h} \left(D_{x}v \cdot \sigma \right) (s, X_{s}^{t,x}) \, \mathrm{d}W_{s}$$
$$=: v(t,x) + \int_{t}^{t+h} \mathcal{L}v(s, X_{s}^{t,x}) \, \mathrm{d}s + M$$

where \mathcal{L} is the drift differential operator and M is the local martingale part of the expression above.

From the DPP of equation (7) with $\theta = t + h$, we obtain

$$v(t,x) = \sup_{\tau \in \mathcal{T}_{t,T}} \mathbb{E}\left[e^{-r(\tau-t)}\varphi(X_{\tau}^{t,x})\mathbf{1}_{\tau \le t+h} + e^{-rh}v(t+h, X_{t+h}^{t,x})\mathbf{1}_{\tau > t+h}\right]$$

Thus:

$$v(t,x) = \sup_{\tau \in \mathcal{T}_{t,T}} \mathbb{E}\left[e^{-r(\tau-t)}\varphi(X_{\tau}^{t,x})\mathbf{1}_{\tau \le t+h} + e^{-rh}v(t,x)\mathbf{1}_{\tau > t+h}\right]$$

$$+ e^{-rh} \int_{t}^{t+h} \mathcal{L}v(s,X_{s}^{t,x}) \,\mathrm{d}s\mathbf{1}_{\tau > t+h} + e^{-rh}M\mathbf{1}_{\tau > t+h}\right]$$

$$= \sup_{\tau \in \mathcal{T}_{t,T}} e^{-rh}v(t,x)\mathbf{1}_{\tau > t+h} + \mathbb{E}\left[e^{-r(\tau-t)}\varphi(X_{\tau}^{t,x})\mathbf{1}_{\tau \le t+h}\right]$$

$$+ e^{-rh} \int_{t}^{t+h} \mathcal{L}v(s,X_{s}^{t,x}) \,\mathrm{d}s\mathbf{1}_{\tau > t+h}\right]$$

Assuming the sup on the right-hand side is reached by τ^* , we have:

$$(1 - e^{-rh} \mathbf{1}_{\tau^* > t+h}) v(t, x) = \mathbb{E} \left[e^{-r(\tau^* - t)} \varphi(X_{\tau^*}^{t, x}) \mathbf{1}_{\tau^* \le t+h} + e^{-rh} \int_t^{t+h} \mathcal{L}v(s, X_s^{t, x}) \, \mathrm{d}s \, \mathbf{1}_{\tau^* > t+h} \right]$$

At this point either $\tau^* = t$, and then $v(t, x) = \varphi(x)$ or $\tau^* > t$, so by sending h to 0 we eventually get $\tau^* > t + h > t$, and

$$\frac{1 - e^{-rh}}{h}v(t, x) = \mathbb{E}\left[\frac{e^{-rh}}{h} \int_{t}^{t+h} \mathcal{L}v(s, X_{s}^{t, x}) \, \mathrm{d}s\right] \quad \Rightarrow \quad rv(t, x) = \mathcal{L}v(t, x)$$

Either way, on $[0,T) \times \mathbb{R}^n$:

$$\min (rv - \mathcal{L}v, v - \varphi) = 0$$

$$\Leftrightarrow \min \left(-\partial_t v - b \cdot D_x v - \frac{1}{2} \operatorname{tr}(D_x^2 v \cdot \sigma \sigma^T) + rv, v - \varphi \right) = 0$$

In the case of the Black Scholes diffusion of (1), this translates to

$$\min\left(-\partial_t v - rx \cdot \partial_x v - \frac{1}{2}\sigma^2 x^2 \cdot \partial_x^2 v + rv, v - \varphi\right) = 0$$

Performing the transformation $\tilde{v}(t,x) := v(T-t,x)$ leads to

$$\begin{cases} \min\left(\partial_t \tilde{v} - rx \cdot \partial_x \tilde{v} - \frac{1}{2}\sigma^2 x^2 \cdot \partial_x^2 \tilde{v} + r\tilde{v}, \tilde{v} - \varphi\right) = 0\\ \tilde{v}(0, x) = \varphi(x) \end{cases}$$