1 問題

関数 $y=e^x$ で表される曲線 C_1 上を動く点 $\mathbf{P}(t,e^t)$ に対し、点 \mathbf{P} で曲線 C_1 の上側で接す る半径 1 の円 C を考え,その中心を点 O' とする.線分 PQ が円 C の直径になるような点 Q とする. 以下の問いに答えよ.

- (1) 点 O' の座標を t を用いて表せ.
- (2) 点 P を $0 \le t \le \frac{\log 3}{2}$ の範囲で動かしたとき,点 Q' が通る軌跡の曲線の長さを求めよ. (3) t が実数全体を動くときの点 Q が描く曲線を曲線 C_2 とする.また,t=0 での点 Q の x 座標の値を a, $t=\frac{\log 3}{2}$ での点 Q の x 座標の値を b とするとき、曲線 C_1 と x 軸
- $x=a, \ x=b$ で囲まれた部分の面積を求めよ. (4) 点 P を $0 \le t \le \frac{\log 3}{2}$ の範囲で動かしたとき,円 C が通過する領域の面積を求めよ.

(1) $y=e^x$ のとき、 $y'=e^x$ より、点 P における法線の傾きは $-\frac{1}{e^t}$. これは直線 PO' の傾 きでもあるので, $\left|\overrightarrow{\mathrm{PO}'}\right|=2$ と,円 C は C_1 の上側で接することより $\overrightarrow{PO'} = \left(-\frac{e^t}{\sqrt{e^{2t}+1}}, \frac{1}{\sqrt{e^{2t}+1}}\right). \ P(t, e^t) \ \ \ \ \ \ O'\left(t-\frac{e^t}{\sqrt{e^{2t}+1}}, e^t + \frac{1}{\sqrt{e^{2t}+1}}\right)$

$$\frac{dx}{dx}$$

$$\frac{dx}{dt} = 1 - \frac{e^t}{(e^{2t} + 1)^{\frac{3}{2}}} \qquad \frac{dy}{dt} = e^t - \frac{e^{2t}}{(e^{2t} + 1)^{\frac{3}{2}}}$$

求める曲線の長さをℓとして.

$$\begin{split} \ell &= \int_0^{\frac{\log 3}{2}} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \\ &= \int_0^{\frac{\log 3}{2}} \left(1 - \frac{e^t}{\left(e^{2t} + 1\right)^{\frac{3}{2}}}\right) \sqrt{1 + e^{2t}} dt \\ &= \int_0^{\frac{\log 3}{2}} \left(\sqrt{1 + e^{2t}} - \frac{e^t}{e^{2t} + 1}\right) dt \end{split}$$

 $e^t = \tan \theta$ と置換すると, $0 \le t \le \frac{\log 3}{2}$ より, $\frac{\pi}{4} \le \theta \le \frac{\pi}{3}$

$$e^{t} = \frac{1}{\cos^{2}\theta} \frac{d\theta}{dt}$$

$$\Leftrightarrow dt = \frac{d\theta}{e^{t}\cos^{2}\theta} = \frac{d\theta}{\tan\theta\cos^{2}\theta} = \frac{d\theta}{\sin\theta\cos\theta}$$

よって,

$$\int_{0}^{\frac{\log 3}{2}} \sqrt{1 + e^{2t}} = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sin \theta \cos^{2} \theta} d\theta$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \left(\frac{\sin \theta}{\cos^{2} \theta} + \frac{1}{\sin \theta}\right) d\theta$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} -\frac{(\cos \theta)'}{\cos^{2} \theta} d\theta + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{d\theta}{\sin \theta}$$

$$= \left[\frac{1}{\cos \theta}\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{d\theta}{\sin \theta} = 2 - \sqrt{2} + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{d\theta}{\sin \theta}$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sin \theta} d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin \theta}{1 - \cos^{2} \theta} d\theta$$

$$= \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \left(\frac{\sin \theta}{1 - \cos \theta} + \frac{\sin \theta}{1 + \cos \theta}\right) d\theta$$

$$= \frac{1}{2} \left[\log \left(\frac{1 - \cos \theta}{1 + \cos \theta}\right)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = -\frac{1}{2} \log \left(9 - 6\sqrt{2}\right)$$

$$\int_{0}^{\frac{\log 3}{2}} \frac{e^{t}}{e^{2t} + 1} dt = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta = \left[\theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{\pi}{12}$$

以上より,

$$\ell = 2 - \sqrt{2} - \frac{1}{2}\log\left(9 - 6\sqrt{2}\right) - \frac{\pi}{12}$$

(3) (1) の結果より、
$$Q\bigg(t-\frac{2e^t}{\sqrt{e^{2t}+1}},e^t+\frac{2}{\sqrt{e^{2t}+1}}\bigg). \ \ f(t)=t-\frac{2e^t}{\sqrt{e^{2t}+1}} \ \text{とおくと,}$$

$$a = f(0) = -\sqrt{2}$$
 $b = f\left(\frac{\log 3}{2}\right) = \frac{\log 3}{2} - \sqrt{3}$

また,

$$\frac{dx}{dt} = 1 - 2\frac{e^t\sqrt{e^{2t} + 1} - e^t\frac{e^{2t}}{\sqrt{e^{2t} + 1}}}{e^{2t} + 1} = 1 - \frac{2e^t}{(e^{2t} + 1)^{\frac{3}{2}}}$$

よって,

$$\int_{b}^{a} y dx = \int_{0}^{\frac{\log 3}{2}} \left(e^{t} + \frac{2}{\sqrt{e^{2t} + 1}} \right) \left(1 - \frac{2e^{t}}{\left(e^{2t} + 1 \right)^{\frac{3}{2}}} \right) dt$$
$$= \int_{0}^{\frac{\log 3}{2}} \left(e^{t} + \frac{2}{\sqrt{e^{2t} + 1}} - \frac{2e^{2t}}{\left(e^{2t} + 1 \right)^{\frac{3}{2}}} - \frac{4e^{t}}{\left(e^{2t} + 1 \right)^{2}} \right) dt$$

ここで,

$$\int_{0}^{\frac{\log 3}{2}} e^{t} = \left[e^{t} \right]_{0}^{\frac{\log 3}{2}} = \sqrt{3} - 1$$

$$\int_{0}^{\frac{\log 3}{2}} \frac{2e^{2t}}{(e^{2t} + 1)^{\frac{3}{2}}} dt = \int_{0}^{\frac{\log 3}{2}} \frac{(e^{2t} + 1)'}{(e^{2t} + 1)^{\frac{3}{2}}} dt$$

$$= \left[-\frac{2}{\sqrt{e^{2t} + 1}} \right]_{0}^{\frac{\log 3}{2}} = \sqrt{2} - 1$$

(2) と同様に置換すると

$$\int_{0}^{\frac{\log 3}{2}} \frac{2}{\sqrt{e^{2t} + 1}} dt = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{2}{\sin \theta} d\theta = \log \left(9 - 6\sqrt{2}\right)$$

$$\int_{0}^{\frac{\log 3}{2}} \frac{4e^{t}}{\left(e^{2t} + 1\right)^{2}} dt = 4 \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos^{2} \theta d\theta$$

$$= 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \left(1 + \cos 2\theta\right) d\theta$$

$$= \left[2\theta + \sin 2\theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$

$$= \frac{\pi}{6} + \frac{\sqrt{3}}{2} - 1$$

以上より、求める面積をSとして、

$$S = \left(\sqrt{3} - 1\right) + \log\left(9 - 6\sqrt{2}\right) - \left(\sqrt{2} - 1\right) - \left(\frac{\pi}{6} + \frac{\sqrt{3}}{2} - 1\right)$$
$$= 1 - \sqrt{2} + \frac{\sqrt{3}}{2} + \log\left(9 - 6\sqrt{2}\right) - \frac{\pi}{6}$$

(4) 求める領域は以下の通り

点 P における法線の傾きは $-\frac{1}{e^t}$ なので,

t=0 のとき,傾きは -1 で, $t=\frac{\log 3}{2}$ のとき,傾きは $-\frac{1}{\sqrt{3}}$ である. 以上より、求める面積をS'として、

 $S' = 1 - \sqrt{2} + \frac{\sqrt{3}}{2} + \log\left(9 - 6\sqrt{2}\right) - \frac{\pi}{6} - \frac{1}{2}\left(1 + 1 + \sqrt{2}\right)\sqrt{2} + \frac{1}{2}\left(\sqrt{3} + 1 + \sqrt{3}\right)\sqrt{3}$ $-\int_{0}^{\frac{\log 3}{2}}e^{x}dx+\pi$ $=4-2\sqrt{2}-\log\left(9-6\sqrt{2}\right)+\frac{5}{6}\pi$

別解

(2) の結果より

$$S' = 2\left(2 - \sqrt{2} - \frac{1}{2}\log\left(9 - 6\sqrt{2}\right) - \frac{\pi}{12}\right) + \pi$$
$$= 4 - 2\sqrt{2} - \log\left(9 - 6\sqrt{2}\right) + \frac{5}{6}\pi$$

3 感想・考察

円の内部や外部を円が接しながら移動する問題を応用した。 曲線 C_1 を表す関数を $y=x^2$ などの関数での問題にしようとしたが、高校数学範囲で積分できない式が出てきてしまった ので、 $y = e^x$ とし、曲線の長さを求める問題を追加した。

また、点 Q の座標を t で表したときに複雑にならないよう、曲線 C_1 の下側ではなく上側を 円が動くようにした。加えて、 $e^t = \tan \theta$ の置換ができるように範囲を設定した。 計算結果が綺麗になるように改善すればより良い問題になるだろう.