Mandelbrot Set – Part 3 Numerical Scientific Computing Mini-Project

Name: Lukas Bisgaard Kristensen

Date: 26/04/2023

Program: Computer Engineering (AVS), 8th semester, Aalborg University

Course: Numerical Scientific Computing

Docstrings and Doctests (3 cases), see mandelbrot_opencl.py

```
def create_opencl_context(platform):

"""

Create OpenCL context, queue, device and platform

Parameters

iparam platform: Name of the platform to use

ireturn: context, queue, device, name: Output from the CPU/GPU

Usage examples:

>>> import pyopencl

>>> platform = pyopencl.get_platforms()[0]

>>> platform = pyopencl.get_platforms()

>>> isinstance(context, pyopencl.Context)

True

>>> isinstance(queue, pyopencl.CommandQueue)

True

>>> isinstance(device, pyopencl.Device)

True

>>> isinstance(name, str)

True

"""
```

OpenCL with defined memory types for all variables

__global memory data type for the input and output data.

__private memory data type for data that is only relevant for workers within the function.

Local grid sizes (work group)

All CPU, GPU and integrated GPUs increase in performance as the local size increases. The Intel® OpenCL HD Graphics is the integrated GPU and the Intel® OpenCL is the CPU. Here it can be seen that the integrated GPU significantly outperforms the CPU.

Global grid size (mandelbrot size)

Extra features

Zoom Animation (Generates a video output, see video)

- Path to code: "Extra Features/mandelbrot_iteration_animation.py"
- YouTube Video of generated output: https://www.youtube.com/watch?v=L2zKIrriDfl

Iteration Animation (Generates a video output, see video)

- Path to code: "Extra Features/mandelbrot_animation.py"
- YouTube Video of generated output: https://www.youtube.com/watch?v=8Bjqgaluses

Mandelbrot Navigator (Interactive keyboard navigation)

Path to code: "Extra Features/mandelbrot_navigator.py"

