





















# ADS AD VIDEO COSOUN





www.aduni.edu.pe

















## QUÍMICA

# ESTEQUIOMETRÍA Semana 24

www.aduni.edu.pe





#### I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- 1. Identificar las relaciones estequiométricas en aspectos cotidianos e industriales.
- 2. Analizar las leyes experimentales (ponderales y volumétrica) que rigen en las reacciones químicas.











## ADUNI



#### II. INTRODUCCIÓN

En la actualidad los elementos y compuestos químicos se pueden obtener por procesos químicos a escala industrial y escala de laboratorio, lo importante es hacer mediciones con diversos instrumentos, haciendo uso de la respectiva ecuación química balanceada, se puede comprobar si las leyes se cumplen.

#### **EJEMPLO**



Los metales activos como el magnesio (Mg) reaccionan con los ácidos desplazando el hidrógeno ( $H_2$ ) del ácido:

$$Mg_{(s)} + 2HCl_{(ac)} \rightarrow MgCl_{2(ac)} + H_{2(g)}$$

Si la masa de magnesio que reacciona es 12 g, ¿se podrá conocer la masa liberada de hidrógeno?

#### Para responder ello se requiere:

- La ecuación química balanceada
- Las masas molares de cada sustancia
- Las leyes estequiométricas





#### III. CONCEPTO

Es una rama de la química que estudia cuantitativamente las relaciones de masas, moles y volúmenes de reactivos y productos que participan en una reacción química balanceada.

#### 1) LEYES PONDERALES

Estas leyes relacionan las masas de las sustancias que participan en una reacción química balanceada.

#### A) LEY DE CONSERVACIÓN DE LA MASA (Antoine Lavoisier)

En toda reacción química, la masa total de las sustancias que reaccionan (reactivos), es igual a la masa

total de las sustancias producidas (productos).

En general, sea la siguiente reacción:





La masa no se crea ni se destruye, solo se transforma.





#### **EJEMPLO**

En la combustión completa del propano, (C<sub>3</sub>H<sub>8</sub>):

| İ        | $\overline{M} = 44 \ g/m \ ol$ | $\overline{M} = 44 \ g/m \ ol \ \overline{M} = 18 \ g/m \ ol$ |               |                |                 |  |
|----------|--------------------------------|---------------------------------------------------------------|---------------|----------------|-----------------|--|
| A —      | ${1 \choose 3} H_{8(g)} +$     | $50_{2(g)}$                                                   | $\rightarrow$ | $3CO_{2(g)}$ - | $+ 4H_2O_{(v)}$ |  |
| Relación | 1mol                           | 5 mol                                                         | U             | 3 mol          | 4 mol           |  |
| de moles | 1 mot                          | S IIIOI                                                       |               | 3 moi          | T IIIUI         |  |
| Relación | 44 <i>g</i>                    | 160 <i>g</i>                                                  |               | 132 <i>g</i>   | 72 <i>g</i>     |  |
| de masas | 44 <i>y</i>                    | 100 g                                                         |               | 132 g          | 7 Z Y           |  |
| Total    | 204 <i>g</i>                   |                                                               |               | 204 <i>g</i>   |                 |  |



Se verifica que en la reacción de combustión completa del propano,  $(C_3H_8)$ , la masa total de reactivos es igual a la masa total de productos.

#### **EJERCICO**

En una practica de laboratorio se observó que al final de descomponer completamente 24,5g el clorato de potasio según la reacción:

$$KClO_{3(s)} \rightarrow KCl_{(s)} + O_{2(g)}$$

Quedaron 14,9g de residuo. ¿Qué volumen de oxígeno a condiciones normales se obtuvo?.

$$\overline{M}(O_2) = 32 \frac{g}{mol}$$

#### **RESOLUCIÓN**





Por la ley de la conservación de las masas:





$$m_{0_2} = 9.6 g$$

#### En condiciones normales:

$$\underbrace{1 \text{mol } O_2 \xrightarrow{\text{ocupa}}}_{32 \text{ g } O_2} 22,4 \text{ L}$$

Dato: 
$$9,6 \text{ g } 0_2 \longrightarrow V_x$$

$$\therefore V_{x} = 6,72 L$$

#### **EJERCICIO**

La síntesis de Lavoisier corresponde a la obtención del agua a partir de hidrógeno y oxígeno en fase gaseosa.

$$H_2+O_2 \rightarrow H_2O+calor$$

Luego de balancear, determine el valor de verdad (V o F) de las siguientes proposiciones:

- I. El número de moles de reactantes es igual al número de moles de los productos.
- II. El número de moles de átomos en los reactantes es igual es igual al número de moles de átomos en los productos.
- III. La masa de los productos es menor debido a que parte de la masa del reactante se transformó en energía.
- A) VVF

B) VVV

C) FVF

D) FVV

#### **RESOLUCIÓN**

Nos piden determinar V o F, de las proposiciones respecto a la síntesis de Lavoisier.





#### I. FALSO (F)

Comparamos el número de moles de los reactantes y productos.

#### II. VERDADERO (V)



#### III. FALSO (F)

La ecuación química (representación de reacción química), se balancea para hacer cumplir la ley de conservación masa.

**Rpta**: FVF **Clave**: C

#### B) LEY DE PROPORCIONES DEFINIDAS (J.L Proust)

Cuando dos o más elementos se combinan para formar un determinado compuesto, lo hacen en una relación de masas constante, que es independiente del proceso seguido para formarlo.

#### EN LA SÍNTESIS DE LAVOISIER:

| $\overline{M}$ | T = 2 g/mol   | $\overline{M} = 32 \ g/m \ ol \ \overline{M} = 18 \ g/m \ ol$ |               |               |  |
|----------------|---------------|---------------------------------------------------------------|---------------|---------------|--|
|                | $2H_{2(g)} +$ | $10_{2(g)}$                                                   | $\rightarrow$ | $2H_2O_{(g)}$ |  |
| Relación       | ACADEMIA -    | 4 7                                                           | — ACA         | DEMIA         |  |
| de moles       | 2 mol         | $1\ mol$                                                      | D             | 2 mol         |  |
| Relación       | 4 <i>g</i>    | 32 g                                                          |               | 36 g          |  |
| de masas       |               |                                                               |               |               |  |

Según la ley de Proust, existe la siguiente relación constante y fija para formar H<sub>2</sub>O:

$$\frac{m_{H_2}}{4} = \frac{m_{O_2}}{32} = \frac{m_{H_2O}}{36}$$
  $\Rightarrow$   $\frac{m_{H_2}}{1} = \frac{m_{O_2}}{8} = \frac{m_{H_2O}}{9}$ 





#### **EJEMPLO:**

En la obtención del agua,  $(H_2O)$ , a partir de sus elementos (síntesis de Lavoisier) se usaron 96 g de oxígeno,  $(O_2)$ . ¿Cuántos gramos de agua se formaran? Masa molar (g/mol):  $H_2=2$ ;  $O_2=32$ ;  $H_2O=18$ 

#### **RESOLUCIÓN:**

La ley de Proust, establece una relación de masas constante y fija:

Relacionando el oxígeno y el agua:

$$\frac{m_{O_2}}{8} = \frac{m_{H_2O}}{9} \implies \frac{96 g}{8} = \frac{m_{H_2O}}{9} \qquad \therefore m_{H_2O} = 108 g^{-1}$$

También:

$$\therefore m_{H_2O} = 108 g_{\text{cons}}$$

#### **EJERCICIO**

El magnesio metálico reacciona muy lentamente con el agua fría; esta reacción se acelera con agua caliente. Si añadimos sulfato cúprico, CuSO<sub>4</sub>, la reacción también se acelera, incluso en agua fría según

$$\mathrm{Mg}_{(s)} + \mathrm{H}_2\mathrm{O}_{(\ell)} \to \mathrm{Mg}(\mathrm{OH})_{2(s)} + \mathrm{H}_{2(g)}$$

Al consumirse por completo 19,2 g de magnesio metálico, ¿cuántos gramos de agua caliente se consumió?

Masa molar (g/mol): Mg = 24; H = 1; O = 16

- A) 28,8
- B) 27,0
- C) 14,4
- D) 13,5

### RESOLUCIÓN



$$m_{Mg} = 19,24g^{OUNI}$$

$$m_{H_2O} = ?$$

Balanceamos la ecuación química y establecemos la relación masa-masa

$$\bar{M} = \frac{24 \text{ g}}{\text{mol}}$$
  $\bar{M} = \frac{18 \text{ g}}{\text{mol}}$ 
  
**1** Mg + **2** H<sub>2</sub>O  $\rightarrow$ **1** Mg(OH)<sub>2</sub> + **1** H<sub>2</sub>

Relación

Existe proporción definida

Del problema:

Despejamos 
$$\implies m_{H_2O} = \frac{19,2x2x18 \text{ g}}{1x24} = 28,8 \text{ g}$$

Rpta: 28,8 Clave: A

#### **EJERCICIO (UNMSM 2013-II)**

Al hacer reaccionar 60 g de carbono con suficiente cantidad de oxígeno, la cantidad de anhidrido carbónico que se obtiene es

Datos : C = 12 uma; O: 16 uma

- A) 140 g B) 180 g C) 5,6 g D) 220 g

- E) 8,8 g

#### **RESOLUCIÓN**

Planteando y balanceando la ecuación química es:

$$1 C_{(s)} + 1 O_{2(g)} \rightarrow 1 CO_{2(g)}$$

Según la ley de Proust tenemos:

$$\begin{array}{ccc}
1 \text{mol C} & \longrightarrow & 1 \text{ mol CO}_2 \\
1 \text{x12 g} & \longrightarrow & 1 \text{x44 g} \\
60 \text{ g} & \longrightarrow & m_{\text{CO}_2}
\end{array}$$

$$m_{\text{CO}} = \frac{(60 \text{ g})(44 \text{ g})}{(60 \text{ g})(44 \text{ g})} = 220 \text{ g} \parallel 60 \text{ g}$$

#### **EJERCICIO**





En la combustión completa de un mechero de alcohol etílico, C<sub>2</sub>H<sub>5</sub>OH, ¿Cuántas moles de H<sub>2</sub>O se producirán al quemar 25 moles de alcohol etílico?

$$C_2H_5OH + O_2 \longrightarrow CO_2 + H_2O$$

#### **RESOLUCIÓN**

La ecuación química balanceada es:

$$1 C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

Según la relación de proporción mol-mol tenemos:

$$1 \mod C_2 \text{H}_5 \text{OH} \longrightarrow 3 \mod \text{H}_2 \text{O}$$

$$25 \mod C_2 \text{H}_5 \text{OH} \longrightarrow n_{\text{H}_2 \text{O}}$$

$$n_{\rm H_2O} = \frac{(25 \text{ mol})(3 \text{ mol})}{1 \text{mol}} = 75 \text{ mol H}_2O$$

#### 2) LEY VOLUMÉTRICA

#### Ley de relaciones sencillas (Gay Lussac)

Cuando sustancias gaseosas, se combinan a las mismas condiciones de presión y temperatura, lo hacen en una proporción definida y sencillos de volúmenes según sus coeficientes estequiométricos.

"En una ecuación química balanceada la relación de volúmenes es igual a la relación de moles".



Joseph Gay Lussac 1778 - 1850

En la combustión completa del propano,  $(C_3H_8)$ :

$$1C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$$

| Relación de moles     | 1 mol | 5 mol | 3 mol | 4 mol |
|-----------------------|-------|-------|-------|-------|
| Relación de volúmenes | 1V    | 5V    | 3V    | 4V    |
| Ejemplo               | 5 L   | 25 L  | 15 L  | 20 L  |

**Tenemos:** 

$$\frac{V_{C_3H_8}}{1} = \frac{V_{O_2}}{5} = \frac{V_{CO_2}}{3} = \frac{V_{H_2O}}{4}$$

De la ecuación universal de los gases:

$$PV = RTn \longrightarrow V = \frac{RT}{P}n \longrightarrow V = kn$$

$$V \xrightarrow{\text{Relación}} n$$

#### **EJERCICIO**

Calcule los litros de  $CO_2$  que se producen si se combustiona completamente cierta cantidad de eteno,  $C_2H_2$ , usando 0,3 m<sup>3</sup> de aire. Considere que la presión y la temperatura son constantes.

Aire (80% volumen  $N_2$  y 20% volumen  $O_2$ )

- A) 30 L
- B) 35 L
- C) 40 L
- D) 45 L
- E) 65 L

#### **RESOLUCIÓN**





• Determinar el volumen de gas  $O_2$  (en litros) que participará en la combustión:



**Entonces:** 

$$V_{O_2} = \frac{20}{100} (300 \text{ L}) = 60 \text{ L}$$

$$V_{aire} = 0.3 \text{ m}^3 \text{ x} \frac{1000 \text{ L}}{1 \text{ m}^3} = 300 \text{ L}$$

• Planteando y balanceando la reacción de combustión completa del eteno:

$${\bf 1} C_2 H_{4(g)} + {\bf 3} O_{2(g)} \rightarrow {\bf 2} CO_{2(g)} + {\bf 2} H_2 O_{(g)}$$

Según la ley de Gay Lussac:

$$3 L O_{2} \longrightarrow 2 L CO_{2}$$

$$60 L O_{2} \longrightarrow V_{CO_{2}}$$

$$V_{CO_{2}} = \frac{(60 L)(2 L)}{3 L} = 40 L$$













#### IV. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición