OpenClassrooms - Data Analyst 2021-2022

PROJET10: DÉTECTEZ DES FAUX BILLETS AVEC PYTHON

Xiuting LIANG 09.2022

Le contexte du projet de data analyse

Contexte

L'Organisation nationale de lutte contre le faux-monnayage, ou ONCFM, est une organisation publique ayant pour objectif de mettre en place des méthodes d'identification des contrefaçons des billets en euros.

Misson

Notre mission est construire un algorithme qui, à partir des caractéristiques géométriques d'un billet, serait capable de définir si ce dernier est un vrai ou un faux billet.

Stratégie d'analyse

Nous ultilisons les 5 informations géométriques sur un billet: length, height_left, height_right, margin_up, margin_low.

Un algorithme de la régression logistique classique est ultilisé pour identifier les billets vrais et faux avec présentations des résultats et des probabilités.

Dans Cette Présentation

Traiter les valeurs manquantes avec la régression linéaire

- Normalisation
- Comprendre margin_low
- Modèle de LinearRegression

Explorer des données

- Pairplot
- Distribution et normalité
- Carte thermique de corrélation triangulaire
- ACP

Régression logistique

- Créer modèles
- Les dataset pour training et testing
- Métriques d'évaluation

KMeans

- La méthode Elbow
- Silhouette analyse
- Créer models
- Métriques d'évaluation

Modèle final et l'application

- Exporter le modèle avec Joblib
- application
- application web

Traiter les valeurs manquantes avec la régression linéaire

01 Normalisation

02 Comprendre margin_low

- La distribution normale
- Les corrélations
- Relation linéaire avec pairplot

03 Régression Lineaire

- R2
- La significativité
- La colinéarité
- L'homoscédasticité
- La normalité

Normalisation

Avant normalisation

Après normalization

Comprendre margin_low 1

La distribution normale

Verifier la normalité avec Teste Shapiro-Wilk

Statistics=nan, p=1.000

L'hypothèse de normalité est donc tolérée (accepte H0)

Carte thermique de corrélation triangulaire

Explorer les données avec carte thermique de corrélation triangulaire

Comprendre margin_low 2

Relation linéaire avec pairplot

Comprendre 'margin_low', qu'il y a des valeurs manquantes:

- Il est corrélé avec 'is_genuine', 'margin_low' et 'length'
- 'Margin_low' est une variable quantitative, qui répère la loi de normalité
- Il y a de la relation linéaire avec 'is_genuine', 'margin_up' et 'length'. On peut utiliser une régression linéaire pour la prévision.

Régression linéaire multiple

Le modèle de régression linéaire multiple considère qu'il existe une relation linéaire entre Y et nos p variables explicatives.

- Y est une v.a.r, quantivative observable ;
- Expliquée, modélisée par plusieurs variables quantivatives (X1-Xp);
- (β1,...,βp) sont des paramètres inconnus (non observables);
- ε, l'erreur du modèle, est une v.a.r centrée de variance σ2 inconnue (c'est également un paramètre du modèle).

Explanation des coefficients

Le coefficient de détermination R2

$$\mathrm{R}^2 = rac{\mathrm{SCE}}{\mathrm{SCT}}$$

$$R^{2} = 1 - rac{\sum_{i=1}^{n} \left(y_{i} - \hat{y_{i}}
ight)^{2}}{\sum_{i=1}^{n} \left(y_{i} - ar{y}
ight)^{2}}$$

Test pour la significativité

Une statistique de Fisher

Un test global pour la significativité du modèle global. en pratique, l'hypothèse Ho de ce test est souvent rejetée, le modèle est donc souvent significatif globalement.

P valeur pour le T test

Un test de significativité sur chacune des variables explicatives prises une à une par le test de Student. Ici, tester l'un des paramètres a un réel sens : si une variable n'est pas significative, il faut la retirer du modèle. Si l'on ne la retire pas, il est possible que l'erreur de prévision du modèle soit plus élevée.

Régression Linéaire 1

Retirez les variables non significatives (statemodels)

Tous les variables

OLS Regression Results

Dep. Variable: 0.606 margin low R-squared: Model: Adj. R-squared: 0.604 F-statistic: Method: Least Squares 261.2 Thu, 15 Sep 2022 Prob (F-statistic): Date: 5.74e-202 Time: 19:13:05 No. Observations: 1024 1945. Df Residuals: 1017 BIC: 1979. Df Model: Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const is_genuine diagonal height_left height_right margin_up length	1.1604 -1.7385 -0.0052 0.0202 0.0190 -0.0770 0.0290	0.063 0.089 0.020 0.021 0.023 0.025 0.037	18.489 -19.432 -0.263 0.968 0.834 -3.122 0.790	0.000 0.000 0.792 0.333 0.404 0.002 0.430	1.037 -1.914 -0.044 -0.021 -0.026 -0.125 -0.043	1.284 -1.563 0.033 0.061 0.064 -0.029 0.101
=========	=======	=======	=======================================			======

Omnibus:	21.991	Durbin-Watson:	1.937
Prob(Omnibus):	0.000	Jarque-Bera (JB):	39.991
Skew:	0.114	Prob(JB):	2.07e-09
Kurtosis:	3.941	Cond. No.	8.75

4 Variables

OLS I	Regression	Results
-------	------------	---------

Dep. Variable: Model: Method: Date: Time: No. Observatio Df Residuals: Df Model:	Thu,	margin_low OLS east Squares 15 Sep 2022 19:13:05 1024 1019	F-stati	squared:		0.597 0.596 378.1 1.40e-199 2000. 2025.
Covariance Typ	e:	nonrobust				
=========	coef	std err	t	P> t	[0.025	0.975
const is_genuine height_left height_right margin_up	0.0230		25.645 -28.579 1.055 -0.007 -3.003	0.000 0.000 0.291 0.995 0.003	1.051 -1.829 -0.020 -0.046 -0.127	-1.594 0.066 0.049
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=======	13.258 0.001 0.058 3.691	Jarque-B	Bera (JB):):		1.971 20.938 2.84e-05 4.94

*Procédure descendante ou backward

Régression Linéaire 2

Retirez les variables non significatives

3 Variables

OLS Regression Results

0.617 Dep. Variable: R-squared: margin low Model: Adj. R-squared: 0.616 Least Squares F-statistic: 547.3 Method: Prob (F-statistic): Thu, 15 Sep 2022 Date: 6.98e-212 Time: 19:13:05 No. Observations: 1927. 1024 AIC: Df Residuals: 1020 BIC: 1947. Df Model: Covariance Type: nonrobust P> t coef std err [0.025 0.975] 0.041 1.1950 29.035 0.000 1.114 1.276 const -1.7595 is genuine 0.054 -32.5350.000 -1.866 -1.653 height left 0.0014 0.066 -0.040 0.043 0.021 0.947 margin up -0.08310.024 -3.4190.001-0.131 -0.035 Omnibus: Durbin-Watson: 20.485 2.149 Prob(Omnibus): Jarque-Bera (JB): 0.000 39.731

0.016

3.964

Skew:

Kurtosis:

Prob(JB):

Cond. No.

2.36e-09

4.45

2 Variables

OLS Regression Results

		_						
			====					
Dep. Variable	1:	margin l	ow - sq	uared:		0.620		
Model:			LS di.	R-squared:		0.619		
			_	•				
Method:		Least Squar		atistic:		832.3		
Date:	Th	u, 15 Sep 20	22 rob	rob (F-statistic): 3.8				
Time:		19:13:	0 5					
No. Observati	ons:	10	_			1926.		
Df Residuals:		10				1941.		
Df Model:			2					
Covariance Ty	/pe:	nonrobu	st					
=========								
	coef	std err	t	P> t	[0.025	0.975]		
const	1 1465	0.039	29 207	0.000	1.070	1.224		
				0.000		-1.653		
is_genuine								
margin_up	-0.0/88	0.025	-3.196	0.001	-0.12/	-0.030		
	========	========	=======		: =======	========		
Omnibus:		12.0	81 Durb	in-Watson:		1.985		
Prob(Omnibus)	:	0.0	02 Jarq	ue-Bera (JB):		18.984		
Skew:			24 Prob			7.55e-05		
				The second secon				
Kurtosis:		3.6	os cona	. No.		4.18		

- Prob (F-statistic) est inférieur à 0.05, le modèle globale est corrélé avec 'margin_low'.
- Les variables 'is_genuine' et 'margin_up' sont significativement corrélés avec 'margin_low'.

Régression Linéaire 3 Validation du modèle

Vérifier la colinéarité des variables

```
variables = result2.model.exog
[variance_inflation_factor(variables, i) for i in np.arange(1,variables.shape[1])]
[1.620905480797004, 1.620905480797004]
```

Tous les coefficients sont inférieurs à 5, il n'y a donc pas de problème de colinéarité.

• H0 : homoscédasticité • H1 : hétéroscédasticité

Si la probabilité associée au test est inférieure à α , on rejette l'hypothèse d'homoscédasticité (H0). En revanche, si la probabilité est supérieure à α , l'hypothèse nulle est vérifiée et nous pouvons supposer l'homoscédasticité des résidus. Avec α = 5% = seuil de significativité.

La p-valeur ici est inférieure à 5 %, on rejette l'hypothèse H0 selon laquelle les variances ne sont pas constantes (hétéroscédasticité).

Tester l'homoscédasticité (Constant Error Variance)

Tester l'homoscédasticité (Constant Error Variance)

```
[531] _, pval, __, f_pval = statsmodels.stats.diagnostic.het_breuschpaga
print('p value test Breusch Pagan:', pval)

p value test Breusch Pagan: 3.9267726022230334e-23
```

```
[532] y_pred = result2.predict(X_train_sm2)
    fig, ax = plt.subplots(figsize=(6,2.5))
    _ = ax.scatter(y_pred, result2.resid)
```


Régression Linéaire 4 Validation du modèle

Tester la normalité des résidus

[534] shapiro(result2.resid)

ShapiroResult(statistic=0.9948773980140686, pvalue=0.0015356993535533547)

Moyenne

[535] np.mean(result2.resid)

-5.478256737134757e-15

Ici, l'hypothèse de normalité est remise en cause.

Par contre, on a vérifié la distribution de résidus par l'histrogramme, le QQ plot, et la calculation de moyenne de résidus. Les résultats nous indiquent qu'ils ne soient pas très différents d'une distribution symétrique, et le fait que l'échantillon soit de taille suffisante (supérieure à 1000) permettent de dire que les résultats obtenus par le modèle linéaire gaussien ne sont pas absurdes, même si le test la normalité résidu par le test Shapiro n'est pas considéré comme étant gaussien.

Régression Linéaire 5 Créer le modèle avec Sklearn avec les 2 variables

Créer le modèle avec Sklearn avec les 2 variables

```
[537] # Training l'algorithme
   lr 2 = LinearRegression()
   lr 2.fit(X train 2, y train 2)
    LinearRegression()
# Les scores de training et testing sets
    print("Training set score avec 2 variables: {:.2f}".format(lr 2.score(X train 2, y train 2)))
    print("Test set score avec 2 variables: {:.2f}".format(lr_2.score(X_test_2, y_test_2)))
Training set score avec 2 variables: 0.62
    Test set score avec 2 variables: 0.61
[539] # Les scores et les coefficients
    y_t_predit2 = lr_2.predict(X_test_2)
    r2 2 = r2 score(y test 2, y t predit2).round(2)
    print('Intercept: {:.2f}'.format(lr 2.intercept ))
    print('Coefficients: ' + str(lr_2.coef_))
    print('R2 score: ' + str(r2 2))
    print('Mean squared error: {:.2f}'.format(mean squared error(y test 2, y t predit2).round(2)))
    print('Mean absolute error MAE: {:.2f}'.format(mean_absolute_error(y_test_2, y_t_predit2).round(2)))
        Intercept: 1.15
        Coefficients: [-1.75434075 -0.07875528]
        R2 score: 0.61
        Mean squared error: 0.39
        Mean absolute error MAE: 0.48
       Median absolute error: 0.39
```

Explanation des formules:

Explanation des formules:

R2

On appelle coefficient de détermination, noté R2, le réel dans [0,1] défini par :

$$m R^2 = rac{SCE}{SCT}$$

$$R^{2} = 1 - rac{\sum_{i=1}^{n} \left(y_{i} - \hat{y_{i}}
ight)^{2}}{\sum_{i=1}^{n} \left(y_{i} - ar{y}
ight)^{2}}$$

Dans le cas de la régression avec constante :

Si R2=1, on a alors SCE=SCT: toute la variation est expliquée par le modèle.

Si R2=0, on a alors SCR=SCT: aucune variation n'est expliquée par le modèle.

Mean squared error

$$ext{MSE}(y, \hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} (y_i - \hat{y}_i)^2.$$

Analyse des scores:

 Le modèle avec 3 variables corrélés a de meilleures performance que l'autre modèle avec tous les variables concernant R2 score (plus proche à 1) et Mean squared error (le plus petit)

Régression Linéaire 6 Partie supplémentaire - Ridge

Ridge

Ultiliser un autre methode de provision

```
[125] ridge = Ridge().fit(X_train_2, y_train_2)
```

- print("Training set score: {:.2f}".format(ridge.score(X_train_2, y_train_2)))
 print("Test set score: {:.2f}".format(ridge.score(X_test_2, y_test_2)))
- Training set score: 0.60 Test set score: 0.64

Imputer les valeurs manquants

Les résultats

Explorer des données

- 01 Pairplot
- 02 Distribution et normalité
- 03 carte thermique de corrélation triangulaire
- 04 ACP

Explorer des données

Distribution et normalité

	Athenticité du billet	Stat	P-valeur	Hypothèse
Dimension				
is_genuine	True	1.000000	1.000000	Hypothèse 0, non rejetée
is_genuine	False	1.000000	1.000000	Hypothèse 0, non rejetée
diagonal	True	0.998064	0.310298	Hypothèse 0, non rejetée
diagonal	False	0.997435	0.638479	Hypothèse 0, non rejetée
height_left	True	0.996582	0.028577	Hypotèse rejetée
height_left	False	0.997877	0.790749	Hypothèse 0, non rejetée
height_right	True	0.998551	0.588416	Hypothèse 0, non rejetée
height_right	False	0.997990	0.826467	Hypothèse 0, non rejetée
margin_low	True	0.997879	0.235744	Hypothèse 0, non rejetée
margin_low	False	0.997278	0.583818	Hypothèse 0, non rejetée
margin_up	True	0.998159	0.355840	Hypothèse 0, non rejetée
margin_up	False	0.995734	0.192617	Hypothèse 0, non rejetée
length	True	0.998048	0.303481	Hypothèse 0, non rejetée
length	False	0.997110	0.526932	Hypothèse 0, non rejetée

Seule la distribution de 'height_left - True' ne suit pas une loi normale.

Revérifier la distribution de 'height_left':

[550] print("coef d'asymétrie: " + str(round(df_norm['height_lef'
coef d'asymétrie: 0.15

[551] print("coef de kurtosis: " + str(round(df_norm['height_lef'
coef de kurtosis: -0.12

Explorer des données

Carte thermique de corrélation triangulaire

Il y a des corrélations fortes avec les groupes (colonne: 'is_genuine') et les autres variables sauf 'diagonal'.

ACP

(Elle permet au statisticien de résumer l'information en réduisant le nombre de variables.)

Scree Plot

Cercle de corrélation

Comprendre les variables

Il y a de corrélation avec 'is_genuine' et 'length'.
Il y a de corrélation négative avec 'is_genuine', 'margin_low' et 'margin_up'.

Régression logistique classique

Explication la méthode:

La régression logistique nous permettra de traiter un cas de classification supervisée, c'est-à-dire un cas où on est en train de modéliser une variable qualitative (dans notre case, une variable binaire comme True et False) par des variables explicatives (les dimensions géométriques d'un billet).

- 01 Créer modèles
- O2 Séparer les dataset pour training et testing
- 03 Métriques d'évaluation
 - Matrice de confusion
 - Accuracy score
 - Rapport de classification
 - Courbe ROC

Créer modèles Retirer les variables non significatives (statemodels)

Tous les variables

Retirer 'diagonal'

Generalized Linear Model Regression Results

Generalized Linear Model Regression Results									General	ized Linear =======	Model Regress	sion Result	:s 		
Dep. Variable: Model: Model Family: Link Function: Method: Date: Time: No. Iterations Covariance Typ	:	genuine[Fals		nuine[True]'] GLM Binomial logit IRLS , 15 Sep 2022 19:13:27	Df Resid Df Model Scale: Log-Like Deviance Pearson	l: ≘lihood: ≘:	1500 1493 6 1.0000 -39.466 78.932 2.79e+03	Dep. Variable: Model: Model Family: Link Function: Method: Date: Time: No. Iterations Covariance Typ	:	genuine[Fals		nuine[True]'] GLM Binomial logit IRLS 15 Sep 2022 19:13:28 10 nonrobust	Df Resid Df Model Scale: Log-Like Deviance	duals: l: elihood:	1.00 -39.4 78.9 2.79e
	coef	std err	z	P> z	[0.025	0.975]			coef	std err	z	P> z	[0.025	0.975]	
Intercept diagonal height_left height_right margin_low margin_up	-2.1789 -0.0840 0.3789 0.9535 3.9926 2.3868	0.376 0.347 0.335 0.375 0.654 0.511	-5.800 -0.242 1.131 2.540 6.102 4.668	0.000 0.809 0.258 0.011 0.000 0.000	-2.915 -0.764 -0.277 0.218 2.710 1.385	-1.443 0.596 1.035 1.689 5.275 3.389		Intercept height_right height_left margin_low margin_up length	-2.1809 0.9578 0.3793 4.0353 2.3966 -5.3053	0.375 0.374 0.334 0.635 0.511 0.781	-5.810 2.558 1.135 6.351 4.690 -6.796	0.000 0.011 0.256 0.000 0.000	-2.917 0.224 -0.276 2.790 1.395 -6.835	-1.445 1.691 1.034 5.281 3.398	

Régression logistique classique

Séparer les dataset pour training et testing

```
[568] # Séparer les dataset pour training et testing
     X_lr = df_norm.drop(columns = ['is_genuine', 'diagonal'])
     y lr = df norm['is genuine']
     X_lr_train, X_lr_test, y_lr_train, y_lr_test = train_test_split(
         X lr, y lr, test size = 0.3
[569] # Vérifier les shapes de chaque dataset
     print('X lr train shape: ' + str(X lr train.shape))
     print('X_lr_test shape: ' + str(X_lr_test.shape))
     print('y_lr_train shape: ' + str(y_lr_train.shape))
     print('y lr test: ' + str(y lr test.shape))
     X_lr_train shape: (1050, 5)
     X_lr_test shape: (450, 5)
     y_lr_train shape: (1050,)
     y lr test: (450,)
 # Créer la modèle régression logistique classique
     Logreg = LogisticRegression().fit(X_lr_train, y_lr_train)
     # Vérifier les scores
     print("Training set score: {:.3f}".format(Logreg.score(X_lr_train, y_lr_train)))
     print("Test set score: {:.3f}".format(Logreg.score(X lr test, y lr test)))
     Training set score: 0.990
     Test set score: 0.996
```

Métriques d'évaluation

packages/sklearn/utils/deprecation.py:87: Future

Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix`

Note de précision: 0.996

	precision	recall	f1-score	support
False	0.99	0.99	0.99	143
True	1.00	1.00	1.00	307
accuracy			1.00	450
macro avg	0.99	0.99	0.99	450
weighted avg	1.00	1.00	1.00	450

Kmeans

- Placer les centroïdes aléatoirement dans l'espace
- Prendre chaque point du nuage et lui associee le cluster du centroïde dont il est le plus proche. On obtient donc K groupes.
- Recalculer les centroïdes de chaque groupe quand les centroïdes bougent jusqu'à ce qu'ils ne bougent pas.

- **02** Silhouette analyse
- 03 Créer models
- **04** Métriques d'évaluation
 - Matrice de confusion
 - Courbe ROC

Kmeans

On ne peut pas juger combien de groupes qu'on doit choisir par cette méthode.

Choisir 2 comme le nombre de clusters

Kmeans

```
Cluster
0 1003
1 497
Name: Cluster, dtype: int64
```

```
[583] a = df_norm[df_norm['Cluster'] == 0]['Cluster'].count()
b = df_norm[df_norm['Cluster'] == 1]['Cluster'].count()
```

Parce qu'il y a 1000 vrais billets et 500 faux billets, le plus = True, le moindre = False

Métriques d'évaluation

Application

- **01** Exporter le modèle avec Joblib
 - Choisir le modèle
 - Tester le modèle avec le fichier de production
- **02** Silhouette analyse
- 03 Créer models
- **04** Métriques d'évaluation
 - Matrice de confusion
 - Courbe ROC

Exporter le modèle avec Joblib

[172] jl.dump(Logreg, '/content/drive/MyDrive/Colab Notebooks/P10/LIANG_Xiuting_3_modele_logreg_code_082022.pkl')

['/content/drive/MyDrive/Colab Notebooks/P10/LIANG_Xiuting_3_modele_logreg_code_082022.pkl']

Tester le modèle avec le fichier de production

resultat logreg probabilité id A 1 False 0.062879 False 0.011737 A 2 A 3 False 0.007293 A 4 True 0.999828 A 5 True 0.999997

Le modèle régréssion logistique a de meilleures performances que le modèle Kmeans. Choisir le modèle régréssion logistique comme notre modèle de prévision.

Application

Importation du jeu de données

```
[19] def app logistic regression(read csv) :
      df_production = pd.read_csv(read_csv, index_col = 'id',
                                  usecols = ['id','height_left', 'height_right', 'margin_low', 'margin_up', 'length'])
      df_norm_pro = df_production.copy()
      # Normalisation des données
      numeric_range_pro = ['height_left', 'height_right', 'margin_low', 'margin_up', 'length']
      scaled_org_pro = preprocessing.StandardScaler().fit_transform(df_norm_pro[numeric_range_pro])
      df_norm_pro[numeric_range_pro] = scaled_org_pro
      # Importation le modèle
      logreg = jl.load('/content/drive/MyDrive/Colab Notebooks/P10/LIANG_Xiuting_3_modele_logreg_code_082022.pkl')
      logreg.predict(df_norm_pro)
      # Créer le dataframe
      df_production['resultat_logreg'] = logreg.predict(df_norm_pro)
      df_production['probabilité'] = logreg.predict_proba(df_norm_pro).round(6)[:,1:2]
      df_result = df_production[['resultat_logreg', 'probabilité']]
      df_result = df_result.reset_index()
      return df_result
```

Résultat

Application web

```
df_production is not None:
df_norm_pro = df.copy()
numeric_range_pro = ['height_left', 'height_right', 'margin_low', 'margin_up', 'length']
scaled_org_pro = preprocessing.StandardScaler().fit_transform(df_norm_pro[numeric_range_pro])
df_norm_pro[numeric_range_pro] = scaled_org_pro
# Importation le modèle
logreg.predict(df_norm_pro)
# Créer le dataframe
df['resultat_logreg'] = logreg.predict(df_norm_pro)
df['probabilité'] = logreg.predict_proba(df_norm_pro).round(2)[:,1:2]
df_result = df[['resultat_logreg', 'probabilité']]
df_result = df_result.reset_index()
st.dataframe(df_result)
df['resultat_logreg'] = df['resultat_logreg'].astype(str)
df1 = df.groupby('resultat_logreg')['resultat_logreg'].count()
df1 = pd.DataFrame(df1)
fig = px.bar(df1, x='resultat_logreg', y = df1.index)
st.write(fig)
```

Projet 10: Détectez des faux billets avec Python

OpenClassrooms - Data Analyst 2021-2022 - Xiuting LIANG

Le contexte du projet de data analyse

L'Organisation nationale de lutte contre le faux-monnayage, ou ONCFM, est une organisation publique ayant pour objectif de mettre en place des méthodes d'identification des contrefaçons des billets en euros.

L'Notre mission est construire un algorithme qui, à partir des caractéristiques géométriques d'un billet, serait capable de définir si ce dernier est un vrai ou un faux billet.

Introduction des modèles

Nous ultilisons les 5 informations géométriques sur un billet: length, height_left, height_right, margin_up, margin_low.

Un algorithme de la régression logistique classique est ultilisé pour identifier les billets vrais et faux avec présentations des résultats et des probabilités.

Browse files

Analyser votre fichier csv

Téléchargez votre fichier csv

Merci!