8. ЗНАХОДЖЕННЯ ЕКСТРЕМУМІВ ФУНКЦІЇ ОДНІЄЇ ЗМІННОЇ

$$F(x_1, x_2, ..., x_n)$$

Задачі параметричної оптимізації розділяють на два класи:

- *задачі безумовної оптимізації*. Такі задачі зводяться до пошуку такого поєднання параметрів, що оптимізують $x^* = \begin{pmatrix} x_1^*, x_2^*, \dots x_n^* \end{pmatrix}^T$, яке зумовлює досягнення мінімуму цільової функції:

$$\min_{x} F(x); \tag{8.1}$$

- *задачі умовної оптимізації*. Такі задачі виникають при накладанні обмежень на простір (границі існування) змінних, що оптимізуються, тобто:

$$\min_{x} F(x), g_{i}(x) \le 0, i = 1, 2, ... m$$
(8.2)

де $g_i(x)$ - деякі функції, що пов'язують параметри, які оптимізують.

Рис. 8.1. Функція з кількома екстремумами — а) та унімодальна функція з одним екстремумом — б)

8.1. Евристичний вибір початкового інтервалу невизначеності – алгоритм Свенна.

Алгоритм Свенна. Встановлення меж інтервалу [a,b] для функції F(x) можна реалізувати так:

- 1. Виконати ввід довільної точки початкового (i=0) наближення x_i , задати величину кроку h>0;
- 2. Обчислити: $y_a = F(x_i h)$, $y_i = F(x_i)$, $y_b = F(x_i + h)$;
- 3. Перевірити виконання умов:
 - якщо $y_a \ge y_i \le y_b$, то початковий інтервал невизначеності встановлено: $[a,b] = [x_i h, x_i + h];$

- якщо $y_a \le y_i \ge y_b$, то задана функція не унімодальна, а інтервал невизначеності встановити неможливо (необхідно спробувати задати іншу точку початкового наближення);
- якщо $y_a \ge y_i \ge y_h$, то $\Delta = h$; $a_0 = x_0$; $x_1 = x_0 + h$; i = 1;
- якщо $y_a \le y_i \le y_b$, то $\Delta = -h; \ b_0 = x_0; \ x_1 = x_0 h; \ i = 1;$
- 4. Обчислити наступну точку: $x_{i+1} = x_i + 2^i \Delta$;
- 5. Перевірити умови:
 - якщо $F(x_{i+1}) < F(x_i)$ і $\Delta = h$, то $a_0 = x_i$; i = i+1, перейти до п.4;
 - якщо $F(x_{i+1}) < F(x_i)$ і $\Delta = -h$, то $b_0 = x_i$; i = i+1, перейти до п.4;
 - якщо $F(x_{i+1}) \ge F(x_i)$ то процедура завершується. При $\Delta = h$ прийняти $b_0 = x_{i+1}$, при $\Delta = -h$ прийняти $a_0 = x_{i+1}$, в результаті отримуємо $[a_0,b_0]$ шуканий початковий інтервал невизначеності.
- 8.2. Метод рівномірного пошуку (сітки).

Алгоритм розв'язання. Метод послідовного пошуку екстремуму на відрізку [a,b] функції F(x) можна реалізувати так:

- 1. Виконати ввід інтервалу [a,b], задати кількість його розбиттів n та початкове значення $x_i \in [a,b]$;
- 2. Визначити приріст: h = (b a)/n;
- 3. Обчислити: $y_a = F(x_i h)$, $y_b = F(x_i + h)$;
- 4. Якщо $y_a \le y_b$, то обчислювати $x_{i+1} = x_i h$, інакше $x_{i+1} = x_i + h$;
- 5. Обчислити: $y_i = F(x_i)$ та $y_{i+1} = F(x_{i+1})$;
- 6. Якщо $y_{i+1} \le y_i$ то повернутись до п.5 з врахуванням п.4;
- 7. Обчислення припиняють якщо $y_{i+1} > y_i$ або x_{i+1} виходить за межі відрізку [a,b], за шуканий екстремум приймають $x^* = x_i$.

Таким чином порівняння $F(x_i-h)$ і $F(x_i+h)$ дозволяє скоротити довжину відрізку, на якому повинно знаходитись результуюче значення екстремуму. При малій заданій похибці $(h \to 0)$ метод неефективний з погляду використання обчислювальних ресурсів.

8.3. Метод порозрядного наближення (дроблення).

Алгоритм розв'язання. Метод порозрядного наближення для пошуку екстремуму функції F(x) на відрізку [a,b] можна реалізувати так:

- 1. Виконати ввід інтервалу [a,b], задати початкове наближення $x_i \in [a,b]$, приріст (крок) $h = \Delta x$ та точність обчислення ε ;
- 2. Обчислити: $y_i = F(x_i)$, $x_{i+1} = x_i + h$, $y_{i+1} = F(x_{i+1})$;
- 3. Якщо $y_{i+1} > y_i$ то повернутись до п.2, інакше до п.4;

- 4. Обчислити: h = -h/4;
- 5. Якщо $|h| > \varepsilon/4$ повернутись до п.2, інакше до п.6;
- 6. Обчислення припиняють якщо $|h| \le \varepsilon / 4$ або x_{i+1} виходить за межі відрізку [a,b], за шуканий екстремум приймають $x^* = x_i$.

Блок-схему реалізації розглянутого методу подано на рис. 8.2.

Рис. 8.2. Блок-схема реалізації методу порозрядного наближення

8.4. Метод золотого перерізу.

$$\frac{b-a}{b-x_1} = \frac{b-x_1}{x_1-a}$$

Поділ відрізку [a,b] здійснюється за правилом золотого перерізу. Коефіцієнт дроблення (поділу) r в такому випадку визначають:

$$r = 0.5(\sqrt{5} - 1) = 0.618033.$$

При заданому значенні коефіцієнту дроблення r алгоритм методу має три важливі **властивості**:

— після кожної ітерації нова величина відрізку в 1/r разів менше від попередньої величини. Таким чином, після n ітерацій оптимальне значення x знаходиться на відомому сегменті, розмір якого визначається як $r^n(b-a)$. Значення r^n для $n \le 10$ подано в табл.8.1.

Таблиця 8.1. Значення коефіцієнтів дроблення відрізка для 10-ти ітерацій

она тенни котфиланти дроситии видрока для то ти поради					
n	r ⁿ	$0,5^{n+1}$	n	r ⁿ	0.5^{n+1}
1	0,618	0,25	6	0,0557	0,0078
2	0,382	0,125	7	0,0344	0,0039
3	0,2361	0,0625	8	0,0213	0,002
4	0,1459	0,0313	9	0,0132	0,001
5	0,0902	0,0156	10	0,0081	0,0005

- після кожної ітерації x_1 і x_2 знаходяться на однаковій відстані від найближчих до них кінців сегменту, тобто x_1 —a = b— x_2 .
- на всіх ітераціях, крім першої, обчислюється лише одна з точок x_1 чи x_2 , для функції F(x).

Алгоритм розв'язання. Метод золотого перерізу для пошуку екстремумів на відрізку [a,b] функції F(x) можна реалізувати так:

- 1. Виконати ввід інтервалу [a,b], та точність обчислення ε ;
- 2. Визначити: $x_1 = a + r^2(b-a)$ та $x_2 = a + r(b-a)$;
- 3. Обчислити: $y_1 = F(x_1)$ та $y_2 = F(x_2)$;
- 4. Якщо $y_1 \ge y_2$ то звузити інтервал: $b=x_2$, $x_2=x_1$, обчислити: $x_1=a+r^2(b-a)$, $y_2=y_1$, $y_1=F(x_1)$ і повернутись до п.4;
- 5. Якщо $y_1 < y_2$ то звузити інтервал: $a=x_1$, $x_1=x_2$, обчислити: $x_2=a+r(b-a)$, $y_1=y_2$, $y_2=F(x_2)$ і повернутись до п.4;
- 6. Обчислення припиняють якщо $(b-a) < \varepsilon$, за шуканий екстремум приймають $x^* = x_i$.

Рис. 8.3. Блок-схема реалізації методу золотого перерізу

8.5. Метод дихотомії.

Алгоритм розв'язання. Метод дихотомії для пошуку екстремумів на відрізку [a,b] функції F(x) можна реалізувати так:

- 1. Виконати ввід інтервалу [a,b], крок зміщення Δ та точність обчислення ε ;
- 2. Прийняти i = 0;
- 3. Обчислити: $v_a = \left(\frac{a_i + b_i \Delta}{2}\right), \ v_b = \left(\frac{a_i + b_i + \Delta}{2}\right);$
- 4. Обчислити: $y_a = F(v_a)$, $y_b = F(v_b)$;
- 5. Перевірити виконання умов:
 - якщо $y_a \le y_b$, то $a_{i+1} = a_i$; $b_{i+1} = v_b$ і перейти на наступний крок;
 - якщо $y_a > y_b$, то $a_{i+1} = v_a$; $b_{i+1} = b_i$ і перейти на наступний крок;

- 6. Обчислити: $L = |b_{i+1} a_{i+1}|$;
- 7. Перевірити виконання умов:
 - якщо $L > \varepsilon$, то i = i + 1, перейти до п.3;
 - якщо $L \leq \varepsilon$, то процес пошуку завершено, за шуканий екстремум приймають середину інтервалу $x^* \approx \left(\frac{a_{i+1} + b_{i+1}}{2}\right);$

Блок-схему реалізації розглянутого методу подано на рис. 8.4.

Рис. 8.4. Блок-схема реалізації методу дихотомії

8.6. Метод половинного поділу (бісекції).

Алгоритм розв'язання. Метод половинного поділу (бісекції) для пошуку екстремуму функції F(x) на відрізку [a,b] можна реалізувати так:

- 1. Виконати ввід інтервалу [a,b] та точність обчислення ε ;
- 2. Обчислити: h = (b a);

- 3. Обчислити початкове наближення: $x_i = a + h/2$;
- 4. Визначити знак похідної dF/dx в точці x_i : $s = sign(F'(x_i))$;

де
$$sign(F'(x)) = \begin{cases} 1, & F'(x) > 0, \\ 0, & F'(x) = 0, \\ -1, & F'(x) < 0. \end{cases}$$

- 5. Якщо s < 0 то звузити інтервал: $b = x_i$, змінити крок: $h = x_i a$ і якщо $h < \varepsilon$ завершити обчислення, інакше повернутись до п.3;
- 6. Якщо s > 0 то звузити інтервал: $a = x_i$ і змінити крок: $h = b x_i$ і якщо $h < \varepsilon$ завершити обчислення, інакше повернутись до п.3;
- 7. Якщо s=0 то обчислення припинити оскільки x_i в цьому випадку ϵ точкою екстремуму x^* .

Блок-схему розглянутого методу подано на рис. 8.5.

Рис. 8.5. Блок-схема реалізації методу половинного поділу