

CLAIMS:

I claim:

1. An anti-islanding apparatus for isolating a power source from a failed electrical grid, comprising:
 - a power converter connectable between said power source and said grid;
 - a means for measuring a voltage of said grid;
 - a means for calculating a voltage trend in said grid voltage, using a present grid voltage measurement and a prior grid voltage measurement;
 - 10 a means for calculating a positive feedback power converter control signal based on said voltage trend;
 - a control circuit connected to said power converter, wherein said control circuit applies said control signal to said power converter; and
 - 15 a means of disconnecting said power source from said grid when said present grid voltage is outside pre-defined limits.
2. An anti-islanding apparatus according to claim 1, wherein said control signal comprises an acceleration function.
- 20 3. An anti-islanding apparatus according to claim 1, further comprising a means for measuring a frequency of said grid;
 - a means for calculating a frequency trend in said grid frequency using a present grid frequency measurements and a prior grid frequency measurement;
 - a means for calculating said positive feedback power converter control signal based on said frequency trend; and
 - 25 a means of disconnecting said power source from said grid when said present grid frequency is outside pre-defined limits.
- 30 4. An anti-islanding apparatus according to claim 3, wherein said control signal comprises an acceleration function.

5. An anti-islanding apparatus according to claim 1, wherein when said power source is operating in a power limited condition, said control signal commands a lower power output in all cases.

5

6. An anti-islanding apparatus according to claim 1, wherein said means for measuring operates continuously.

7. An anti-islanding apparatus according to claim 1, wherein said means for measuring operates at intermittent intervals.

10

8. An anti-islanding apparatus for isolating a power source from a failed electrical grid, comprising:

a power converter connectable between said power source and said grid;

a means for measuring a frequency of said grid;

a means for calculating a frequency trend in said grid frequency using a present grid frequency measurements and a prior grid frequency measurement;

a means for calculating a positive feedback power converter control signal based on said frequency trend;

20

a control circuit connected to said power converter, wherein said control circuit applies said control signal to said power converter; and

a means of disconnecting said apparatus from said grid when said present grid frequency is outside pre-defined limits.

25

9. An anti-islanding apparatus according to claim 8, wherein a grid phase is calculated from said grid frequency.

10. An anti-islanding apparatus according to claim 8, wherein said means of measuring operates continuously.

30

11. An anti-islanding apparatus according to claim 8, wherein said means of measuring operates at intermittent intervals.
12. A method of preventing islanding of a power source on a distributed grid comprising the steps:
5 measuring grid voltage;
calculating a voltage trend in said grid voltage, using a present grid voltage measurement and a prior grid voltage measurement;
calculating a power converter control signal in a same direction as said voltage trend;
10 applying said power converter control signal to said power converter; and disconnecting said power source when said present grid voltage measurement is outside acceptable limits.
13. An anti-islanding apparatus according to claim 12, further comprising:
15 measuring grid frequency;
calculating a frequency trend in said grid frequency, using a present grid frequency measurement and a prior grid frequency measurement;
calculating a power converter control signal in a same direction as said frequency trend;
20 applying said control signal to said power converter; and disconnecting said power source when said present grid frequency measurement is outside acceptable limits.
14. A method of preventing islanding of a power source on a distributed grid according to claim 12, wherein said calculation of power converter control signal uses an accelerating function.
25
15. A method of preventing islanding of a power source on a distributed grid according to claim 12, further comprising;
30

measuring grid phase;

calculating a phase trend in said grid phase, using a present grid phase measurement and a prior grid phase measurement;

calculating a power converter control signal in a same direction as said phase trend;

applying said control signal to said power converter; and

disconnecting said power source when said present grid frequency measurement is outside acceptable limits.

5

10 16.

A method of preventing islanding of a power source on a distributed grid according to claim 12, wherein said steps of measuring, calculating, processing, calculating and applying are performed continuously.

15 17.

A method of preventing islanding of a power source on a distributed grid according to claim 12, wherein said steps of measuring, calculating, processing, calculating and applying are performed at intermittent intervals.

20

18.

A method of preventing islanding of a power source on a distributed grid according to claim 14, wherein said acceleration function is comprised of linear, exponential, and geometric functions.

25

19.

A method of preventing islanding of a power source on a distributed grid according to claim 12, wherein said power converter control signal lowers voltage in a power limited source.

30

20.

A method of preventing islanding of a power source on a distributed grid comprising the steps:

measuring grid frequency;

calculating a frequency trend in said grid frequency, using a present grid frequency measurement and a prior grid frequency measurement;

calculating a power converter control signal in a same direction as said frequency trend;

applying said control signal to said power converter; and
disconnecting said power source when said present grid frequency measurement is outside acceptable limits.

5

Add CQ

100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0