1

(2003S)

Assignment-1

AI24BTECH11019-PRATHEEK

С.Мил	TIPE CHOICE QUESTIONS	
1) Given positive integers $r > 1, n > 2$ and of $(1 + x)^{2n}$ are equal. Then	that coefficient of $(3r)$ th terms in the	e binomial expansion (1983 – 1 <i>Mark</i>)
a) $n = 2r$ b) $n = 2r + 1$	c) $n = 3r$ d) none of these	
2) The coefficient of x^4 in $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ is		(1983 - 1Mark)
a) $\frac{405}{256}$ b) $\frac{504}{259}$	c) $\frac{450}{263}$ d) none of these	
3) The expression $\left(x + \left(x^3 - 1\right)^{\frac{1}{2}}\right)^5 + \left(x - \left(x^3 - 1\right)^{\frac{1}{2}}\right)^5$	$(x^3 - 1)^{\frac{1}{2}}$) ⁵ is a polynomial of degree	(1992 - 2Marks)
a) 5b) 6	c) 7 d) 8	
4) If in the expansion of $(1 + x)^m (1 - x)^n$, to m is	the coefficients of x and x^2 are 3 and	-6 respectively, ther (1999 – 2 <i>Marks</i>)
a) 6 b) 9	c) 12 d) 24	
5) For $2 \le r \le n$, ${}^{n}C_{r} + 2{}^{n}C_{r-1} + {}^{n}C_{r-2} =$		(2000S)
a) ${}^{n+1}C_{r-1}$ b) $2^{n+1}C_{r+1}$	c) $2^{n+2}C_r$ d) $^{n+2}C_r$	
6) In the binomial expansion of $(a - b)^n$, $n = 0$ equals	\geq 5, t the sum of of the 5 th and 6 th ter	rms is zero. Then a/b (2001 S)
a) $(n-5)/6$ b) $(n-4)/5$	c) $5/(n-4)$ d) $6/(n-5)$	
7) The sum $\sum_{i=0}^{9} {}^{10}C_i{}^{20}C_{m-i}$, (where ${}^pC_q = 0$ if	p < q) is maximum when m is	(2002S)
a) 5	c) 15	

8) Coefficient of t^{24} in $(1 + t^{212})(1 + t^{12})(1 + t^{24})$ is

(1998 - 2Marks)

a) ${}^{12}C_6+3$ b) ${}^{12}C_6+1$	c) ${}^{12}C_6$ d) ${}^{12}C_6+2$	
9) If $^{n-1}C_r = (k^2 - 3)^n C_{r+1}$ then $(k \in)$		(2004S)
a) $(-8, -2]$ b) $[2, \infty)$	c) $[-\sqrt{3}, \sqrt{3}]$ d) $(\sqrt{3}, 2]$	
10) The value of ${}^{30}C_0{}^{30}C_{10}$ - ${}^{30}C_1{}^{30}C_{11}$ + 30	${}^{0}C_{2}{}^{30}C_{12}{}^{30}C_{20}{}^{30}C_{30}$ is where ${}^{n}C_{r} = {}^{n}C_{r}$	(2005S)
a) ${}^{30}C_{10}$ b) ${}^{30}C_{15}$	c) ${}^{60}C_{30}$ d) ${}^{31}C_{10}$	
11) For $r = 0, 1 \cdots, 10$, let A_r, B_r and $(1+x)^{10}, (1+x)^{20}$ and $(1+x)^{30}$. Then	C_r denote, respectively the coefficients of x^r in $\sum_{r=1}^{10} A_r (B_{10}B_r - C10A_r)$ is equal to	the expansions of (2010)
a) $B_{10} - C_{10}$ b) $A_{10} \left(B_{10}^2 C_{10} A_{10} \right)$	c) 0 d) $C_{10} - B_{10}$	
12) Coefficient of x^{11} in the expansion	of $(1+x^2)^4 (1+x^3)^7 (1+x^4)^{12}$ is	(JEEAdv.2014)
a) 1051b) 1106	c) 1113 d) 1120	
_	ITH ONE OR MORE THAN ONE CORRECT	
1) If c_r stands for nC_r , the the sum of the n is an even positive integer is equal	ne series $\frac{2(\frac{n}{2}!)(\frac{n}{2}!)}{n!} \left[C_0^2 - 2C_1^2 + 3C_2^2 - \dots + (-1)^n \right]$ al to	$(n+1) C_n^2$, where $(1992 - 2Marks)$
a) 0 b) $(-1)^{\frac{n}{2}}(n+1)$ c) $(-1)^{\frac{n}{2}}(n+2)$	d) $(-1)^n n$ e) none of these	

c) $\frac{1}{2}na_n$ d) None of The above

2) If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$ equals

a) $(n-1) a_n$

b) na_n