Proposition de correction du Contrôle TD 1

Question de cours

Soit (u_n) une suite réelle strictement positive telle que

$$\sqrt[n]{u_n} \underset{n \to +\infty}{\longrightarrow} l$$
 où $l \in \mathbb{R}_+ \cup \{+\infty\}$

Alors

$$\begin{cases} l < 1 \implies \sum (u_n) \text{ converge} \\ l > 1 \implies \sum (u_n) \text{ diverge} \end{cases}$$

Exercice 1

Question 1

On a:

$$f(x) = \ln(1 + \sin(x))$$
$$= \ln(1 + x + o(x^2))$$
$$= x - \frac{x^2}{2} + o(x^2)$$

Question 2

On a:

$$u_n = \ln\left(1 + \sin\left(\frac{1}{n}\right)\right) - \frac{1}{n}$$

$$= \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) - \frac{1}{n} \operatorname{car} \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

$$= -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Ainsi on a $u_n \sim -\frac{1}{2n^2}$

 $u_n < 0$ donc les théorèmes s'appliquent

 $\sum (u_n)$ et $\sum (-\frac{1}{2n^2})$ sont de même nature

Or $\sum (-\frac{1}{2n^2})$ converge (Riemann avec $\alpha=2>1)$

Ccl: $\sum (u_n)$ converge

Exercice 2

Soit (u_n) une suite réelle positive telle que : $u_n = \frac{(2n)!}{(n!)^3} > 0$

Ainsi on a:

$$\frac{u_{n+1}}{u_n} = \frac{(2n+2)!}{((n+1)!)^3} \cdot \frac{(n!)^3}{(2n!)}$$
$$= \frac{(2n+1)(2n+2)}{(n+1)^3}$$
$$= \frac{2(2n+1)}{(n+1)^2}$$

$$\frac{u_{n+1}}{u_n} \underset{+\infty}{\sim} \frac{2 \cdot 2n}{n^2} = \frac{4}{n} \implies \lim \frac{u_{n+1}}{u_n} = 0 \quad (<1)$$

Ainsi, par d'Alembert, $\sum u_n$ converge

Exercice 3

Question 1

Posons $a_n = \frac{1}{\sqrt{n}}, \forall n \in \mathbb{N}^*$

La suite (a_n) est décroissante car la fonction $x \mapsto \sqrt{x}$ est croissante

Ainsi $a_n \xrightarrow[n \to +\infty]{} 0$

Par le CSSA, $\sum \frac{(-1)^n}{\sqrt{n}}$ converge

Question 2

On pose $u_n = v_n + w_n$ avec $v_n = \frac{(-1)^n}{\sqrt{n}}$ et $w_n = \frac{1}{n} + o\left(\frac{1}{n}\right)$

 $\sum v_n$ converge d'après la question 1

$$w_n \underset{+\infty}{\sim} \frac{1}{n}$$
 Ainsi $w_n > 0$

Or $\sum \frac{1}{n}$ diverge d'où $\sum w_n$ diverge

Ccl: $\sum u_n$ diverge