0.) Import the Credit Card Fraud Data From CCLE

```
In [1]: import pandas as pd
# from google.colab import drive
import matplotlib.pyplot as plt
import numpy as np
```

In []: # drive.mount('/content/gdrive/', force_remount = True)

Mounted at /content/gdrive/

In [2]: df = pd.read_csv("fraudTest.csv")

In [3]: df.head()

Out[3]:

	Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	а
0	0	2020-06-21 12:14:25	2291163933867244	fraud_Kirlin and Sons	personal_care	2
1	1	2020-06-21 12:14:33	3573030041201292	fraud_Sporer- Keebler	personal_care	29
2	2	2020-06-21 12:14:53	3598215285024754	fraud_Swaniawski, Nitzsche and Welch	health_fitness	41
3	3	2020-06-21 12:15:15	3591919803438423	fraud_Haley Group	misc_pos	60
4	4	2020-06-21 12:15:17	3526826139003047	fraud_Johnston- Casper	travel	3

5 rows × 23 columns

```
In [4]: df_select = df[["trans_date_trans_time", "category", "amt", "city_p

df_select["trans_date_trans_time"] = pd.to_datetime(df_select["tran
    df_select["time_var"] = [i.second for i in df_select["trans_date_tr

X = pd.get_dummies(df_select, ["category"]).drop(["trans_date_trans
    y = df["is_fraud"]
```

/var/folders/ss/vfplm3gs0zq10q6mnjlcj0ym0000gn/T/ipykernel_2514/22 82180580.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df_select["trans_date_trans_time"] = pd.to_datetime(df_select["trans_date_trans_time"])

/var/folders/ss/vfplm3gs0zq10q6mnjlcj0ym0000gn/T/ipykernel_2514/22 82180580.py:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df_select["time_var"] = [i.second for i in df_select["trans_date
_trans_time"]]

1.) Use scikit learn preprocessing to split the data into 70/30 in out of sample

```
In [5]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

In [6]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size)

In [7]: X_test, X_holdout, y_test, y_holdout = train_test_split(X_test, y_t)

In [8]: scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
    X_holdout = scaler.transform(X_holdout)
```

2.) Make three sets of training data (Oversample, Undersample and SMOTE)

```
from imblearn.over_sampling import SMOTE

In [10]: ros = RandomOverSampler()
    over_X, over_y = ros.fit_resample(X_train, y_train)

rus = RandomUnderSampler()
    under_X, under_y = rus.fit_resample(X_train, y_train)

smote = SMOTE()
    smote_X, smote_y = smote.fit_resample(X_train, y_train)
```

from imblearn.under_sampling import RandomUnderSampler

In [9]: from imblearn.over_sampling import RandomOverSampler

3.) Train three logistic regression models

```
In [11]: from sklearn.linear_model import LogisticRegression
In [12]: over_log = LogisticRegression().fit(over_X, over_y)
    under_log = LogisticRegression().fit(under_X, under_y)
    smote_log = LogisticRegression().fit(smote_X, smote_y)
```

4.) Test the three models

```
In [13]: over_log.score(X_test, y_test)
Out[13]: 0.9082751505554356
In [14]: under_log.score(X_test, y_test)
Out[14]: 0.8703183857578157
In [15]: smote_log.score(X_test, y_test)
Out[15]: 0.9054199956812783
In []: # We see SMOTE performing with higher accuracy but is ACCURACY real
```

5.) Which performed best in Out of Sample metrics?

```
In []: # Sensitivity here in credit fraud is more important as seen from l
In [16]: from sklearn.metrics import confusion_matrix
```

```
In [17]: |y_true = y_test
In [18]: y_pred = over_log.predict(X_test)
         cm = confusion matrix(y true, y pred)
Out[18]: array([[75450, 7568],
                        262]])
                [ 78,
In [19]: print("Over Sample Sensitivity : ", cm[1,1] /( cm[1,0] + cm[1,1]))
         Over Sample Sensitivity: 0.7705882352941177
In [20]: y pred = under log.predict(X test)
         cm = confusion_matrix(y_true, y_pred)
Out[20]: array([[72283, 10735],
                    75,
                        265]])
                ſ
In [21]: print("Under Sample Sensitivity : ", cm[1,1] /( cm[1,0] + cm[1,1]))
         Under Sample Sensitivity: 0.7794117647058824
In [22]: |y_pred = smote_log.predict(X_test)
         cm = confusion_matrix(y_true, y_pred)
         cm
Out[22]: array([[75212, 7806],
                   78,
                        262]])
                [
In [23]: print("SMOTE Sample Sensitivity : ", cm[1,1] /( cm[1,0] + cm[1,1]))
         SMOTE Sample Sensitivity: 0.7705882352941177
```

6.) Pick two features and plot the two classes before and after SMOTE.

```
In [ ]: raw_temp = pd.concat([X_train, y_train], axis =1)
In [ ]:
```

```
In []: #plt.scatter(raw_temp[raw_temp["is_fraud"] == 0]["amt"], raw_temp[raw_temp["is_fraud"] == 1]["amt"], raw_temp[raw_temp["is_fraud"] == 1]["amt"], raw_temp[raw_temp["is_fraud"] == 1]["amt"], raw_temp[raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp["amt"], raw_temp[raw_temp["amt"], raw_temp["amt"], raw_temp["am
```



```
In [ ]:
    raw_temp = pd.concat([smote_X, smote_y], axis =1)
```

```
In []: #plt.scatter(raw_temp[raw_temp["is_fraud"] == 0]["amt"], raw_temp[raw_temp["is_fraud"] == 1]["amt"], raw_temp["is_fraud"] == 1]["amt"], raw_temp["is_fraud"], raw_temp["is_fraud"] == 1]["amt"], raw_temp["is_fraud"], raw_temp["
```

/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.

fig.canvas.print_figure(bytes_io, **kw)


```
In [ ]:
```

7.) We want to compare oversampling, Undersampling and SMOTE across our 3 models (Logistic Regression, Logistic Regression Lasso and Decision Trees).

Make a dataframe that has a dual index and 9 Rows.

Calculate: Sensitivity, Specificity, Precision, Recall and F1 score. for out of sample data.

Notice any patterns across performance for this model. Does one totally out perform the others IE. over/under/smote or does a model perform better DT, Lasso, LR?

Choose what you think is the best model and why, test on Holdout

```
In [26]: def calc_perf_metrics(y_true, y_pred):
             tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
             sensitiivity = tp / (tp + fn)
             specificity = tn / (tp + fn)
             precision = precision_score(y_true, y_pred)
             recall = recall_score(y_true, y_pred)
             f1 = f1_score(y_true, y_pred)
             return(sensitiivity, specificity, precision, recall, f1)
In [27]: trained_models = {}
         results = []
In [28]: | for resample_key, resampler in resampling_methods.items():
             resample_X, resample_y = resampler.fit_resample(X_train,y_train
             for model key, model in model configs.items():
                 combined_key = f'{resample_key}_{model_key}'
                 m = model.fit(resample_X, resample_y)
                 trained_models[combined_key] = m
                 y_pred = m.predict(X_test)
                 sensitiivity, specificity, precision, recall, f1 = calc_per
                 results.append({"Model" : combined_key,
                                 "Sensitivity": sensitiivity,
                                 "Specificity": specificity,
                                 "Precision": precision,
```

In [29]: result_df = pd.DataFrame(results) result_df

"F1": f1})

"Recall": recall,

Out [29]:

	Model	Sensitivity	Specificity	Precision	Recall	F1
0	over_LOG	0.770588	221.932353	0.033491	0.770588	0.064192
1	over_LASSO	0.770588	221.941176	0.033504	0.770588	0.064216
2	over_DecisionTree	0.514706	243.750000	0.550314	0.514706	0.531915
3	under_LOG	0.770588	217.467647	0.028048	0.770588	0.054127
4	under_LASSO	0.773529	217.326471	0.028009	0.773529	0.054060
5	under_DecisionTree	0.955882	230.891176	0.067149	0.955882	0.125483
6	smote_LOG	0.773529	221.358824	0.032797	0.773529	0.062926
7	smote_LASSO	0.773529	221.361765	0.032801	0.773529	0.062934
8	smote_DecisionTree	0.679412	242.308824	0.267361	0.679412	0.383721