EPFL - Automne 2020	Prof. Z. Patakfalvi
Structures Algébriques	Exercices
Série 13	11 décembre 2020

Exercice 1.

Dans l'exercice 8 de la série 8, nous avons vu un exemple d'un sous-groupe normal $H \leq A_4$ et d'un sous-groupe normal $F \leq H$ tel que F n'est pas normal dans A_4 . Nous présentons ici une notion qui permet de résoudre ce "problème".

Fixons un groupe G ainsi qu'un sous-groupe $H \leq G$.

- 1. Montrer que les deux conditions suivantes sont équivalentes :
 - (a) $\forall \sigma \in \operatorname{Aut}(G) : \sigma(H) \subseteq H$
 - (b) $\forall \sigma \in \operatorname{Aut}(G) : \sigma(H) = H$

Définition: Un sous-groupe $H \leq G$ est dit caractéristique dans G s'il satisfait l'une des deux conditions ci-dessus.

Remarque: si on fixe un automorphisme $\sigma \in \operatorname{Aut}(G)$, il n'est en général pas vrai que $\sigma(H) \subseteq H$ est équivalent à $\sigma(H) = H$. Un exemple est donné dans l'exercice 7 ci-dessous.

- 2. Supposons que $H \leq G$ et que $F \leq H$ est un sous-groupe caractéristique de H. Démontrer que $F \leq G$.
- 3. Montrez que $F = \langle (1\ 2)(3\ 4), (1\ 3)(2\ 4) \rangle$ est un sous-groupe caractéristique de A_4 . Déduisez que $F \subseteq S_4$. (Voir également l'exercice 4 de la série 11).

Exercice 2.

1. Soit k un corps. Montrez que dans le sous-groupe de Borel B(n,k) on a la règle de multiplication suivante:

$$\begin{pmatrix} a_1 & * & \dots & * & * \\ 0 & a_2 & \dots & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a_{n-1} & * \\ 0 & 0 & \dots & 0 & a_n \end{pmatrix} \begin{pmatrix} b_1 & * & \dots & * & * \\ 0 & b_2 & \dots & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & b_{n-1} & * \\ 0 & 0 & \dots & 0 & b_n \end{pmatrix} = \begin{pmatrix} a_1b_1 & * & \dots & * & * \\ 0 & a_2b_2 & \dots & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a_{n-1}b_{n-1} & * \\ 0 & 0 & \dots & 0 & a_nb_n \end{pmatrix}$$

- 2. Montrez que $U(n, \mathbb{F}_p) \leq B(n, \mathbb{F}_p)$ est un sous-groupe caractéristique. Indication: utilisez l'exercice 2.1 de la série 12, ainsi que l'exercice 1.2 de la série 5.
- 3. Montrez que $B(n, \mathbb{F}_p) \cong U(n, \mathbb{F}_p) \rtimes_{\phi} T(n, \mathbb{F}_p)$ pour $\phi = \operatorname{Ad}_{T(n, \mathbb{F}_p)}^{U(n, \mathbb{F}_p)}$ (voir la définition 3.8.3 des notes du cours).

Indication: utilisez le théorème 3.8.13.

4. Calculez le noyau de $\operatorname{Ad}_{T(2,\mathbb{F}_p)}^{U(2,\mathbb{F}_p)}$.

Exercice 3.

Prenons $H = \mathbb{Z}/7\mathbb{Z}$ et $F = \mathbb{Z}/3\mathbb{Z}$ et notons que Aut $H = (\mathbb{Z}/7\mathbb{Z})^{\times} \cong \mathbb{Z}/6\mathbb{Z}$ (voir Remarque 3.5.36 (2)).

1. Montrez qu'il existe deux homomorphismes non-triviaux $\phi,\phi':F\to \operatorname{Aut} H,$ donnés par

$$\left(\phi([1]_3)\right)\left([i]_7\right) = [2i]_7$$

et

$$\left(\phi'([1]_3)\right)([i]_7) = [4i]_7$$

2. Calculez les formules, pour tout $r \geq 1$

$$\forall ([i], [1]) \in H \rtimes_{\phi} F : ([i], [1])^{r} = \left(\sum_{l=0}^{r-1} \left[2^{l}i\right], [r]\right) = ([(2^{r} - 1)i], [r])$$

et

$$\forall \left([i],[2]\right) \in H \rtimes_{\phi} F: \left([i],[2]\right)^{r} = \left(\sum_{l=0}^{r-1} \left[4^{l}i\right],[2r]\right) = \left(\left[\frac{4^{r}-1}{3} \cdot i\right],[2r]\right)$$

3. Démontrez que l'ordre d'un élément non-trivial $([i],[j]) \in H \rtimes_{\phi} F$ vaut

$$o([i],[j]) = \begin{cases} 7 & \text{si } [j] = [0] \\ 3 & \text{si } [j] \neq [0] \end{cases}$$

4. Montrez que $H \rtimes_{\phi} F \cong H \rtimes_{\phi'} F$.

Exercice 4.

Posons $H = \mathbb{Z}/p\mathbb{Z}$ et $F = \mathbb{Z}/q\mathbb{Z}$, où p et q sont des nombres premiers. On admet ici le fait que le groupe $\operatorname{Aut} H \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$ est isomorphe au groupe cyclique $\mathbb{Z}/(p-1)\mathbb{Z}$.

- 1. Démontrez que si q divise p-1, alors il existe un homomorphisme non-trivial $\phi: F \to \operatorname{Aut} H$. Dans ce cas, on fixe un tel morphisme ϕ pour les parties qui suivent.
- 2. Démontrez que pour chaque $([i], [j]) \in H \rtimes_{\phi} F$ tel que $[j] \neq [0]$ il existe un $[s] \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ tel que $[s] \neq [1]$ et

$$\left([i],[j]\right)^r = \left(\sum_{l=0}^{r-1} \left[s^l i\right],[jr]\right) = \left(\left[\frac{s^r-1}{s-1}\cdot i\right],[jr]\right)$$

3. Démontrez que l'ordre d'un élément non-trivial $([i], [j]) \in H \rtimes_{\phi} F$ vaut

$$o([i],[j]) = \begin{cases} p & \text{si } [j] = [0] \\ q & \text{si } [j] \neq [0] \end{cases}$$

- **Exercice 5.** 1. Si $H \leq G$, alors $Z(G) \leq N_G(H)$ et $\mathrm{Ad}_{Z(G)}^H$ est trivial. Déduisez que si $H \cap Z(G) = \{e\}$, alors $\langle H, Z(G) \rangle = HZ(G) \cong H \times Z(G)$.
 - 2. Démontrez qu'il n'existe pas de sous-groupe $H \leq U(3, \mathbb{F}_p)$ tel que $H \cap Z(U(3, \mathbb{F}_p)) = \{e\}$ et $H \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. (Autrement dit, une des deux possibilités pour $H \neq \{e\}$ obtenu dans l'exercice 4.3 de la série 12 n'existe pas.)
- **Exercice 6.** 1. Montrez que tous les sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ sont des sous-groupes caractéristiques.
 - 2. Considérons un sous-groupe $H \leq D_{2n}$. Soit $N = \langle \sigma \rangle$ le sous-groupe normal d'ordre n.

Montrez que soit $H \subseteq N$ ou bien il existe $g \in D_{2n} \setminus N$ tel que $H = (H \cap N) \langle g \rangle$.

3. Quel sont les sous-groupes de D_{2n} qui sont normaux? Indications: utilisez l'exercice 6.2 de la série 9. La réponse dépend de la parité de n. Par ailleurs, il est utile de voir que si $H ext{ } ext{ }$

Exercice 7 (Exercice facultatif).

Soit $H = \prod_{n \in \mathbb{Z}} H_n$, où $H_n = \mathbb{Z}/2\mathbb{Z}$ pour tout $n \in \mathbb{Z}$ (voir l'exercice 7 de la série 6).

Considérons l'application $\phi: \mathbb{Z} \to \operatorname{Aut}(H)$ qui envoie $n \in \mathbb{Z}$ sur le "décalage à droite par n positions", c'est-à-dire que $\phi(n) = \phi_n$ est l'automorphisme de H donné par

$$\phi_n:(x_i)_{i\in\mathbb{Z}}\longmapsto (x_{i+n})_{i\in\mathbb{Z}}.$$

Soit $G=H\rtimes_\phi\mathbbm{Z}$ et soit $F\leq G$ le sous-ensemble

$$F = \left\{ (h,0) \in G : h \in \prod_{n \in \mathbb{N}} H_n \right\} \subset H \times \mathbb{Z}.$$

(Ici on considère un élément $(x_n)_{n\geq 0}\in\prod_{n\in\mathbb{N}}H_n$ comme un élément de H, en posant $x_n:=0$ pour tout n<0).

- 1. Montrez que ϕ est un morphisme de groupes et que F est un sousgroupe de G.
- 2. Posons $g:=(\mathbf{0},1)\in G,$ où $\mathbf{0}$ désigne la suite nulle, qui est l'élément neutre du groupe H.

Montrez que $gFg^{-1} \subseteq F$ mais $gFg^{-1} \neq F$.