5th Bar-Ilan Winter School on Cryptography Advances in Practical Multiparty Computation

"Tiny OT" — Part 3

A New (4 years old) Approach to Practical Active-Secure Two-Party Computation

Claudio Orlandi, Aarhus University

TinyOT authenticated bits

- $[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B))$ s.t.
 - $m_B = k_A + x_B \Delta_A$ (symmetric for m_A)
 - $-\Delta_A$ Δ_B is the same for all wires.
 - MACs, keys are k-bit strings.

(Maybe adversary knows a few bits of Δ)

- Similarity with Oblivious Transfer
 - Sender has two messages u_0, u_1
 - Receiver has a bit \boldsymbol{b} and learns $\boldsymbol{u_b}$
 - Set $u_0=k$, $u_1=k+\Delta$, b=x then $u_b=k+x\Delta$

Recap

1. Output Gates:

- Exchange shares and MACs
- Abort if MAC does not verify

2. Input Gates:

- Get a random [r] from trusted dealer
- r \leftarrow Open(A,[r])
- Alice sends Bob d=x-r,
- Compute [x]=[r]+d

Recap

1. Addition Gates:

Use linearity of representation to compute
 [z]=[x]+[y]

2. Multiplication gates:

- Get a random triple [a][b][c] with c=ab from TD.
- e \leftarrow Open([a]+[x]), d \leftarrow Open([b]+[y])
- Compute [z] = [c] + a[y] + b[x] ed

Circuit Evaluation (Online phase)

3) $[z] \leftarrow Mul([x],[y])$:

- Get [a],[b],[c] with c=ab from trusted dealer

$$-e=Open([a]+[x])$$

$$-d=Open([b]+[y])$$

- Compute
$$[z] = [c] + e[y] + d[x] - ed$$

ab+ $(ay+xy) + (bx+xy) - (ab+ay+bx+xy)$

Coming up...

 Given authenticated bits, produce authenticated multiplication triples!

The problem

- **Input**: (random) [x], [y], [r], [s], ...
- Output: [z] s.t. [z=xy]

$$= x_A y_A + x_A y_B + x_B y_A + x_B y_B$$

How to authenticate local product?

How to authenticate cross product?

Remember

- $-[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B)) \text{ s.t.}$
- $m_B = k_A + x_B \Delta_A$ (symmetric for m_A)
- $-\Delta_A$ Δ_B is the same for all wires.
- MACs, keys are k-bit strings.

Part 3: From "Auth. Bits" to "Auth. Triples"

Authenticated local-products (aAND)

Authenticated cross-products (aOT)

"LEGO" bucketing

Authenticate local products

- Input: [x], [y], [r]; Alice private input: x,y
- **Output:** [z] s.t. z=xy
- First Attempt: (like Input)
 - $-r \leftarrow Open(A,[r])$
 - Alice sends Bob d = r + xy + e
 - -[z]=[xy]+r+e

Corrupted Alice, what if e ≠ 0?

Authenticate local products

∆ is the same for all wires.

```
• [x] = ((x,...,m_x), (...,k_x,...)) s.t. m_x = k_x + x \Delta

• [y] = ((y,...,m_y), (...,k_y,...)) s.t. m_y = k_y + y \Delta

• [z] = ((z,...,m_z), (...,k_z,...)) s.t. m_z = k_z + z \Delta
```

- When x = 0 $(m_x = k_x, m_z = k_z)$ iff z = 0
- When x = 1 $(m_x = k_x + \Delta, m_z + m_y = k_z + k_y)$ iff z = y

Authenticate local products

Bob knows

$$U_0 = (k_x, k_z) \text{ and}$$

$$U_1 = (k_x + \Delta, k_z + k_y)$$

Alice knows

$$U_x$$
 if $xy = z$ neither if $xy \neq z$

 How can Alice prove she knows U_x without revealing x?

Proof of 1-out-of-2 strings

 U_{x}

$$B=H(U_0)+H(U_1)$$

 U_0, U_1

Α

 $A = H(U_0)$

Proof of 1-out-of-2 strings

 U_{x}

$$B=H(U_0)+H(U_1)+e$$

 U_0, U_1

if(x=0) A =
$$H(U_x)$$

else A = $C+H(U_x)$

/

$$A = H(U_0) + xe$$

Proof of 1-out-of-2 strings

EQ

ok/abort

ok/abort

Combine local multiplications

```
    Input: (random) [x<sub>1</sub>], [y<sub>1</sub>], [z<sub>1</sub>], [x<sub>2</sub>], [y<sub>2</sub>], [z<sub>2</sub>]

        // z_i = x_i y_i, Alice knows all
        // Bob knows: x_1 or x_2 (not both)
• Output: [a], [b], [c] // Bob knows nothing
1. [a] = [x_1] + [x_2] // Now a random
2. [b] = [y_1]
3. d = Open([y_1]+[y_2])
4. [c] = [z_1] + [z_2] + d[x_2]
                //x_1y_1+x_2y_2+x_2y_1+x_2y_2=(x_1+x_2)y_1=ab
```

Part 3: From "Auth. Bits" to "Auth. Triples"

Authenticated local-products (aAND)

Authenticated cross-products (aOT)

"LEGO" bucketing

The problem

- **Input**: (random) [x], [y], [r], [s], ...
- Output: [z] s.t. [z=xy]

$$= x_A y_A + x_A y_B + x_B y_A + x_B y_B$$

How to authenticate local product?

How to authenticate cross product?

Remember

- $-[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B)) \text{ s.t.}$
- $m_B = k_A + x_B \Delta_A$ (symmetric for m_A)
- $-\Delta_A$ Δ_B is the same for all wires.
- MACs, keys are k-bit strings.

Use auth. bit to do OT

- Alice knows x
- $[x] = ((x, ..., m_x), (..., k_x, ...))$ s.t. $m_x = k_x + x \Delta$

$$c_0 = H(k_x) + u_0$$

$$c_1 = H(k_x + \Delta) + u_1$$

$$u_x = c_x + H(m_x)$$

Authenticated cross-products

- Input: [x], [y], [z], [r];
- Alice has private input: x, r
- Bob has private input: y, z
- **Output:** [s] s.t. s = xy + z

Authenticated cross-products

y,z

$$[s]=[r]+d$$

Authenticated cross-products

y,z

What if $e \neq 0$?

$$d = r + s + e$$

$$[s]=[r]+d+e$$

y,z

y,z

y,z

$$(U_0, U_1)$$

$$(U_0, U_1)$$

$$(U_0, U_1)$$

$$(V_0, U_1)$$

$$(V_$$

y,z

Step 2:

Transfer MAC w/bit (cheating leads to aborts w.p. ½)

$$[s]=[r]+d$$

[s]-OT

 U_1, U_0

 U_{1+s}

Combine local multiplications

• **Input**: [x₁], [y₁], [z₁], [s₁], [x₂], [y₂], [z₂], [s₂] $//s_i = x_i y_i + z_i$, Alice knows $x_i s_i$, Bob knows y_i, z_i // Bob knows: x_1 or x_2 (not both) Output: [a], [b], [c], [t] // Bob knows nothing 1. $[a] = [x_1] + [x_2]$ // Now a random 2. $[b] = [y_1], [c] = [z_1] + [z_2]$ 3. $d = Open([y_1]+[y_2])$ 4. $[t] = [z_1] + [z_2] + d[x_2]$ $//x_1y_1+z_1+x_2y_2+z_2+x_2y_1+x_2y_2=(x_1+x_2)y_1+z_1+z_2=ab+c$

Part 3: From "Auth. Bits" to "Auth. Triples"

Authenticated local-products (aAND)

Authenticated cross-products (aOT)

"LEGO" bucketing

Finishing Up

- We can compute local-products and crossproducts where if one party cheats
 - − w.p. ½ protocol aborts
 - w.p. ½ protocol continues
 and cheating party learns 1 bit
- If protocol continues
 - \rightarrow There are at most σ leaked bits (w.p. $2^{-\sigma}$)
 - → Let *M* #multiplication gates
 - \rightarrow Typically $M >> \sigma$

"LEGO" bucketing

- Bucket size B, M buckets
 - overhead, # of multiplications
- Total work BM, randomly assign in buckets
 - + #of generated triples
- Secure if ≥ 1 "good" in each bucket
 - using combiners presented before
- Stat. Sec. $2^{-\sigma}$ with bucket size $B = \frac{\sigma}{\log_2 N}$
 - Larger circuits → more efficiency!

Tiny OT - Recap

Preprocessing

- Generate authenticated bits (OT extension)
- Exploit duality authenticated bit/OT to perform local multiplications and cross multiplications efficiently (but with some limited leakage)
- Randomly assign in small buckets (e.g., B=4)
- Combine to get rid of leakage

Online phase

Use precomputed triples to evaluate any circuit.