

martedì 10 ottobre 2017 11:26	
Possia	amo DEFINIRE UN LINCUACCIO COME
υ _Λ	INSIEME
Ls	CINCUACKIO = INSIEME DI FRASI
	NATURALE COSTRUITE UTILIZZANDO
	(ES. MACIANO) PAROLE PROVENIENTI DA
	UN DATO DIZIONARIO
	(INSIEME DI TUTTE LE PAROLE POSSIBILI)
	Linhuassio = Insime Di Stringhe Formace
	COSTITUTE UTILITEANDO
	SÍMBOLÍ PROVENIENTI DA
	UN DATO ACFABETO
	Lasième oi totti I simboli
D1 Zi 0~12	rio = { Paole, Mario, mangia, beve,}
Linkua	Manis mangia, Paolo beve, NATURALE
	1 - mis ananyita,
ALFABE	To = { a, b, c} Cin 4.

martedì 10 ottobre 2017 11:32 COME SI DEFINISCE UN CINCUACCIO FORMICE! Un linguessio puo essere infinito: (= { ab, abb, acb, aa,} NOW JORKEI USACE (PUNTINI DUE MODI: -o GRAMMATICHE (approccio generativo) définire delle negole grammaicali che consentono di generare tutle Ce Stringte del linguessio - AUTOMI A SIATI FINITI (approccio niconosciTi'uo) data una stringe mi dice se essa appartiene al Cinjuajo appure no. VEDRENO PRIMA GLI AUTOMI E POI CE GRAMMATICHE 10 COMPICATIONE AL SUO WIETONO UTILIZZA UJ AUTOMA

martedì 10 ottobre 2017 11:40	INOin			
Acfabeta	o insie	me finis	di simbo	G',
	= { a,			
		1, 2,,		7
	C = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, 2, 6,	, 3, =, <, >,	· , ; ,· }
Stringe		dato appelé		. 10 \ 5
		Sequenza.	Finile OIS	m soli oi
	abbbc abbca	С	abc + bc	c.

martedì 10 ottobre	2017 11:44						
Lu-	schezza	٥١ ٥	172 AL	ندرم			
	e il	num	eo d	i simbo	و. راو	Pe com	ponjono
	C-7-C	_	1	stringe	\- C	1 02.20	3
	abbc	()	\ (L,	.,		4
	ba	١ر	1 (V (· ·) į	2
	C	0			. 0		22. 6
	ا ع	CAPPRE	اجربه	72 ANU	KIN YA		LEL-VA U
Epsi	, , , ,						
	Δ-	ITE~ 2	このろも	8 \$			

Dato un elfabeto E denotiono con E* L'intieme di Totte e sole le strinshe su di lunghezza finita. \[\begin{align*}	Dato u	~ = 6t	¿500	2	<u> </u>	noTian	no Co	~ \(\Sigma^2\)	*
$ \Sigma = \{a, b\} $ $ \Xi^* = \{E, a, b, aa, ab, ba, ba\} $ $ aea, aeb, abe, \dots $	L'insiem	,e 9!	Totte	e	८०५९	e.	stains	she si	, 5
$ \overline{Z}^{\dagger} = \{ E, a, b, aa, ab, ba, ba, ba, ba, ba, ba, $	ði e,	unghezz	e fir	ni Ta					
aee, aeb, abe,		Z = {c	.,5}						
	= -								
E E Z * qualun que sia Z			aee,	_ <	: 5 ,	a 5 e ,		3	
		۶	7	#	aug Par	Cua	, , ,	-	
			F C		90-55	~ 70 €			

martedì 10 ottobre 2017 11:50	
NOTAZIONE	
per sempliate - scriveremo	
$a^{n} = aa \dots a$ $a = aa \dots a$ $a = aa \dots a$	
$aabbb = a^2b^3$ $abbaa = ab^2a^2$	α = a a = ε
a 55 a a = a 5 a	
useremo la stessa motazione ponzioni di stringhe	anche su
$a^{2}(ab)^{3} = aaabcbcb$	
() NON SONO SIMBOUI IN E LE USO SOLO PER NACLAUPPARE ab	
$a = 355$ $\neq (a5)^3 = a5a5a5$ $a^3 b^3$	>
G 5	

martedì 10 ottobre 2		1UA 5Ci	0 0EF(N	ITO NA	() ~ A	7.
	E (1)	NSIEME				E STRINGLE
		a	Ь			
	200)	ь ())——• (5)			
	che	Cingu	aggio à	de Linisce	?	
		موءا	o € C			
	L =	ab € {a ⁿ b ^m	[m, m	>0}		

martedi 10 ottobre 2017 12:33 DEFINITIONE	FORMALE DI ASF
Un antoma a quintupla	stati finiti A e una
e fatto di 5 componenti	$A = (\Sigma, Q, S, F, S)$ by delta
2	alfabeto
S	insieme finito di stati Stato iniziale SEQ
5	insieme di stati findi F C Q (di accettazione)
	nelatione di Transizione S = Q x \(\frac{7}{2} \times \Q \) PROBETTO CARTESIANO
	$\mathbb{Q} \times \mathbb{Z} \times \mathbb{Q} = \{ (9, s, 9') \mid 9, 9' \in \mathbb{Q} \\ s \in \mathbb{Z} \}$
	$\langle q, S, q' \rangle \equiv \langle q \rangle \xrightarrow{S} \langle q \rangle$

martedì 10 ottobre 2017 12:46			
	Z = {a}		
	a		
	$E \in \mathcal{L}$ $a \notin \mathcal{L}$		
	$aa \in L$		
	2996 EL		
	_ = { a	Che C	ordo E PARI
	_ = { a n e pani) Lo POSSO SCRIVERE ANCHE	Che C	SLDO E PARI
		Che C	ORDO E PARI
	$Lo POSSO SCRIVERE ANCHE $ $L = \left\{ \alpha^{n} \mid m ? 2 = 0 \right\}$ $L = \left\{ (\alpha \alpha)^{m} \mid m ? 0 \right\}$	Che C	OR DO PARI
	Lo POSSO SCRIVERE ANCHE = { a m /. 2 = 0}	Che C	OR DO PARI
	$Lo POSSO SCRIVERE ANCHE $ $L = \left\{ \alpha^{n} \mid m ? 2 = 0 \right\}$ $L = \left\{ (\alpha \alpha)^{m} \mid m ? 0 \right\}$	Che C	ORDO PARI
	$Lo POSSO SCRIVERE ANCHE $ $L = \left\{ \alpha^{n} \mid m ? 2 = 0 \right\}$ $L = \left\{ (\alpha \alpha)^{m} \mid m ? 0 \right\}$	Che C	SLDO PARI
	$Lo POSSO SCRIVERE ANCHE $ $L = \left\{ \alpha^{n} \mid m ? 2 = 0 \right\}$ $L = \left\{ (\alpha \alpha)^{m} \mid m ? 0 \right\}$	Che C	SLDO PARI
	$Lo POSSO SCRIVERE ANCHE $ $L = \left\{ \alpha^{n} \mid m ? 2 = 0 \right\}$ $L = \left\{ (\alpha \alpha)^{m} \mid m ? 0 \right\}$	Che C	SLDO PARI

marte	dì 10 ottobre 2017	12:50	Q Q	9 (1	Q F Q)		Z = ·	{
		ANG					pari		こくくり	<i>د د ن</i> ی
		00550 r STESSO				Αστολ-	i oi J	تر از	PEN (۵

