MATEMÁTICA DISCRETA

Prof. Sebastião Marcelo

Lógica e Cálculo Proposicional

- básica para qualquer estudo em Computação e Informática
- em particular, para estudo de Matemática Discreta
- Para desenvolver qualquer algoritmo (qualquer software)
- necessários conhecimentos básicos de Lógica

 Existem linguagens de programação baseadas em Lógica

- desenvolvidas segundo o paradigma lógico
- exemplo: Prolog

Estudo centrado em:

- Lógica Booleana ou Lógica de Boole
 - George Boole: inglês, 1815-1864
 - Um dos precursores da Lógica
- Estudo dos princípios e métodos usados para se distinguir sentenças verdadeiras de falsas

Expressões lógicas como:

- "Se **p** então **q**" ...
 - É necessário conhecer os casos nos quais essas expressões são

VERDADEIRAS ou FALSAS,

Saber o "valor verdade" dessas expressões

Proposição

• Proposição (ou sentença) é uma afirmação que é

verdadeira ou falsa, mas não ambas

- a. Gelo flutua na água
- b. A China é na Europa
- c. 2 + 2 = 4

- d. 2 + 2 = 5
- e. Aonde você está indo?
- f. Faça sua atividade de casa

Proposições compostas:

- Formadas por subproposições e vários conectivos
- Que pode ser decomposta em proposições mais simples
 - Simples ou primitivas

Proposições compostas:

- Podem ser usadas para se construir novas proposições compostas
- Windows é um sistema operacional e Pascal é uma linguagem de computação
- Vou comprar um PC ou um MAC

Exemplos:

- Brasil é um país
- Buenos Aires é a capital do Brasil
- $\cdot 3 + 4 > 5$
- $\cdot 7 1 = 5$

Conjunção, disjunção e negação:

Condicional e bicondicional

Conjunção:

 Quaisquer duas proposições podem ser combinadas pela palavra "e", onde podemos chamar essa composição de conjunção das proposições

Simbolicamente temos:

Conjunção:

- · Reflete uma noção de "simultaneidade"
- Verdadeira, apenas quando \boldsymbol{p} e \boldsymbol{q} são simultaneamente verdadeiras
- Falsa, em qualquer outro caso

Conjunção:

Exemplo 1:

Se p e q são verdadeiras, então $p \land q$ é verdadeira; caso contrário, $p \land q$ é falsa

p	q	$p \wedge q$

Conjunção:

Exemplo 2:

Considere as quatro proposições a seguir:

- a. Gelo flutua na água e 2 + 2 = 4
- b. Gelo flutua na água e 2 + 2 = 5
- c. A China é na Europa e 2 + 2 = 4
- d. A China é na Europa e 2 + 2 = 5

Disjunção:

 Quaisquer duas proposições podem ser combinadas pela palavra "ou", onde podemos chamar essa composição de disjunção das proposições

Simbolicamente temos:

Disjunção:

- · Reflete uma noção de "pelo menos uma"
- Verdadeira, quando pelo menos uma das proposições é

Verdadeira

• Falsa, somente quando simultaneamente p e q são Falsas

Disjunção:

Exemplo 3:

Se \boldsymbol{p} e \boldsymbol{q} são falsas, então $\boldsymbol{p} \vee \boldsymbol{q}$ é falsa; caso contrário, $\boldsymbol{p} \vee \boldsymbol{q}$ é verdadeira

p	$oldsymbol{q}$	$p \lor q$

Disjunção:

Exemplo 4:

Considere as quatro sentenças a seguir:

- a. Gelo flutua na água ou 2 + 2 = 4
- b. Gelo flutua na água ou 2 + 2 = 5
- c. A China é na Europa ou 2 + 2 = 4
- d. A China é na Europa ou 2 + 2 = 5

Negação:

• Dada qualquer sentença \boldsymbol{p} , outra sentença, chamada de negação de \boldsymbol{p} , pode ser formada escrevendo-se "não é verdade que ..." ou "é falso que ...", antes de \boldsymbol{p} ou, se possível em \boldsymbol{p} a palavra "não"

Simbolicamente temos:

Disjunção:

Exemplo 5:

Se \boldsymbol{p} é verdadeira, então $\neg \boldsymbol{p}$ é falsa; Se \boldsymbol{p} é falsa, então $\neg \boldsymbol{p}$ é verdadeira

p	$\neg p$

Negação:

Exemplo 6: Considere as seis sentenças a seguir:

- a. Gelo flutua na água
- b. É falso que gelo flutua na água
- c. Gelo não flutua na água
- d. 2 + 2 = 5
- e. É falso que 2 + 2 = 5
- f. $2 + 2 \neq 5$

Tabela Verdade:

Seja P(p, q, ...) uma expressão construída a partir de variáveis lógicas que assumem o valor VERDADEIRO (V) ou FALSO (F), e a partir dos conectivos lógicos \land , \lor $e \neg$. Essa expressão é chamada de proposição.

O seu valor verdade depende dos valores verdades de suas variáveis.

Uma maneira de se representar as relações é por meio de uma tabela, chamada de Tabela Verdade.

Tabela Verdade:

As primeiras colunas da Tabela são para as variáveis p, q, ..., e que as linhas sejam preenchidas com todas as combinações V e F para cada uma das variáveis.

- Para duas variáveis são necessárias quatro linhas,
- Para três variáveis são necessárias oito linhas,
- No caso geral, ou seja, n variáveis serão necessárias

Tabela Verdade:

Deve existir uma coluna para cada estágio da construção da proposição,

O Valor Verdade em cada etapa será determinado a partir da etapa anterior.

A partir da definição dos conectivos lógicos

Tabela Verdade:

Exemplo 7:

Construir a seguinte proposição $\neg (p \land \neg q)$.

p	q		

Tabela Verdade:

Exemplo 7 : Método alternativo.

p	q			
V	V			
V	F			
F	V			
F	F			

Primeiro deve-se listar as variáveis e as combinações de seus valores.

Tabela Verdade:

Exemplo 8:

Seja **p** a sentença "está frio" e **q** "Está chovendo".

Escreva uma sentença que descreva cada uma das seguintes sentenças:

- a) $\neg p$;
- b) $p \wedge q$;
- c) $p \lor q$;
- d) $q \lor \neg p$.

Tautologia:

Algumas proposições P(p, q, ...) podem conter em sua última coluna apenas o valor VERDADEIRO (V), o que indica que são verdadeiras para qualquer Valor Verdade de suas variáveis.

A essas proposições nós chamamos de **Tautologia**. Onde $p \lor \neg p$ é uma **Tautologia**.

Contradição:

Algumas proposições P(p, q, ...) podem conter em sua última coluna apenas o valor FALSO (F), o que indica que são falsos para qualquer Valor Verdade de suas variáveis.

A essas proposições nós chamamos de Contradições. Onde $p \land \neg p$ é uma Tautologia.

Tautologias e Contradições:

A negação de uma **Tautologia** é uma **Contradição**, pois sempre é Falsa.

A negação de uma **Contradição** é uma **Tautologia**, pois sempre é Verdadeira.

Equivalência Lógica:

Duas proposições P(p, q, ...) e Q(p, q, ...) serão equivalentes ou logicamente equivalentes,

$$P(p, q, ...) \equiv Q(p, q, ...)$$

se as Tabelas Verdade forem Idênticas.

Tabela Verdade:

Exemplo 9:

Construir as seguintes proposições:

— (n	Λ	a	е	$\neg 1$) V	$\neg c$	7.
• •		, ,	4)		' '			! •

p	q	$p \wedge q$	$\neg (p \land q)$

Tabela Verdade:

Exemplo 9:

Construir as seguintes proposições: $\neg p \lor \neg q$.

p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$

Tabela Verdade:

Exemplo 9:

As proposições são logicamente equivalentes

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

Exemplo 10:

Seja \boldsymbol{p} a sentença "Rosas são vermelhas" e \boldsymbol{q} a sentença

"Violetas são azuis"

Seja **S** a declaração:

"Não é verdade que rosas são vermelhas e violetas são azuis"

Determinar uma declaração \mathbf{R} , que seja equivalente a declaração \mathbf{S} .

Exemplo 10:

Podemos escrever a sentença S na forma $\neg (p \land q)$.

Observado que no exemplo anterior tínhamos:

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

Álgebra das Proposições

As proposições satisfazem várias leis.

Onde teremos VeF como sendo os valores verdade "Verdadeiro" e "Falso", respectivamente.

Idempotência	$p \lor p = p$	
Associatividade	$(p \lor q) \lor r =$	
71050Clatividade	$p \lor (q \lor r)$	
Comutatividade	$p \lor q = q \lor p$	
Distributividade	$p \lor (q \land r) = (p \lor q) \land (p \lor r)$	

Álgebra das Proposições

Identidade	$p \lor F = p$ $p \lor V = V$	
Involução	$\neg \neg p = p$	
Complemen- tariedade	$p \lor \neg p = V$ $\neg V = F$	
Leis de DeMorgan	$\neg (p \lor q) = \\ \neg p \land \neg q$	

Condicional:

· Muitas sentenças, em matemática, são da forma

"Se \boldsymbol{p} então \boldsymbol{q} ".

Simbolicamente temos:

- A condicional $p \to q$ é Falsa, apenas quando a primeira parte p é verdadeira e a segunda parte q é falsa.
- Logo, quando p é falsa, a **condicional** $p \rightarrow q$ é Verdadeira, independentemente do valor verdade de q.

p	q	$p \rightarrow q$

Bicondicional:

Outras sentenças matemáticas, são da forma

" \boldsymbol{p} se, e somente se, \boldsymbol{q} ".

Simbolicamente temos:

• A bicondicional $p \leftrightarrow q$ é Verdadeira, sempre que p e q têm os mesmos valores verdade.

E falsa nos demais casos.

\boldsymbol{p}	$oldsymbol{q}$	$m{p} \leftrightarrow m{q}$

Então teremos que: $p \leftrightarrow q \equiv \neg p \lor q$

São logicamente equivalentes

Podemos dizer que a sentença Condicional "Se \boldsymbol{p} então \boldsymbol{q} " é

logicamente equivalente à sentença

"Não **p** ou não **q**",

que envolve apenas os conectivos $\lor e \neg$,

e que faz parte usual da nossa linguagem.

Argumentos:

• Um **argumento** ou inferência é uma afirmação na qual um dado conjunto de **proposições** $P_1, P_2, ..., P_n$, chamadas de premissas implicam em uma outra **proposição** Q, chamada de conclusão.

Esse **argumento** é escrito da seguinte forma:

• Um argumento $P_1, P_2, ..., P_n \vdash Q$

é dito válido se Q, é verdadeira e se todas as premissas

$$P_1, P_2, ..., P_n,$$

são verdadeiras.

Um argumento que não é valido é chamado de falácia.

Argumento:

Exemplo 11:

O seguinte **argumento** é válido: $p, p \rightarrow q \vdash q$

Pode-se observar a seguinte tabela:

p	q	$p \rightarrow q$

Argumento:

Exemplo 12:

O seguinte **argumento** é válido: $p \rightarrow q, q \vdash q$

Pode-se observar a seguinte tabela:

p	q	$p \rightarrow q$

• As proposições $P_1, P_2, ..., P_n$ são simultaneamente verdadeiras se, e somente se, a proposição $P_1 \wedge P_2 \wedge ... P_n$, é verdadeira.

O argumento
$$P_1, P_2, ..., P_n \vdash Q$$

é valido se, e somente se, Q é verdadeira sempre que

$$P_1 \wedge P_2 \wedge ... \wedge P_n) \rightarrow Q$$
 for verdadeira, ou

se a proposição
$$(P_1 \land P_2 \land ... \land P_n) \rightarrow Q$$

for uma tautologia.

Exemplo 13: Se \boldsymbol{p} implica \boldsymbol{q} e \boldsymbol{q} implica \boldsymbol{r} , então \boldsymbol{p} implica \boldsymbol{r} .

Principio fundamental do Raciocínio lógico 50

Exemplo 13: Se \boldsymbol{p} implica \boldsymbol{q} e \boldsymbol{q} implica \boldsymbol{r} , então \boldsymbol{p} implica \boldsymbol{r} .

Principio fundamental do Raciocínio lógico

O argumento a seguir é valido:

$$p \rightarrow q, q \rightarrow r \vdash p \rightarrow r$$

Exemplo 14:

Considere o seguinte argumento:

S1: Se um homem é solteiro, ele é infeliz.

S2: Se um homem é infeliz, ele morre cedo.

S: Solteiros morrem cedo.

A sentença S mostra a conclusão do argumento.

As sentenças S1 e S2 correspondem as premissas.