Qualifying Exam

Real Variables

Solve four out of the following seven problems.

- <u>Problem 1.</u> a) If X is an infinite dimensional normed linear space, prove that O is in the weak closure of S_X . b) Let X be a Banach space and $x, x_1, x_2, \dots, x_n, \dots \in X$. If x_n converges weakly to x then there exists a sequence $\{y_n\}$ such that each y_n is a convex combination of elements from the sequence $\{x_n\}$ and $\{y_n\}$ converges strongly to x.
 - c) Show that the weak topology in ℓ_2 is not metrizable.
- <u>Problem 2</u>. Let $(V, \|\cdot\|)$ be a nontrivial real normed vector space. Let W be a linear and closed subspace of V.
 - a) Use the Hahn Banach theorem to prove that for every real $\epsilon > 0$, there exists $v_{\epsilon} \in V$ with $||v_{\epsilon}|| = 1$ and $||v_{\epsilon} w|| \ge 1 \epsilon$, for all $w \in W$.
 - b) If the unit ball of V is compact prove that there exists $v_0 \in V$ of norm one such that $||v_0 w|| \ge 1$, for all $w \in W$.
- <u>Problem 3.</u> a) If f is a continuous and convex function on [a, b], show that

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f.$$

b) If f is a continuous and nonnegative function on [a, b] with $p \ge 1$, prove that

$$\left(\frac{1}{b-a}\int_a^b g\right)^p \le \frac{1}{b-a}\int_a^b g^p.$$

- <u>Problem 4.</u> Let L^1 and L^2 be the usual Lebesgue spaces over the interval [0,1]. Prove the following statements:
 - a) $\{f: \int |f|^2 \le 1\}$ is closed in L^1 and has empty interior.
 - b) If $g_n = \chi_{[0,n^{-3}]} n$, then $\int f g_n \to 0$ for every $f \in L^2$ but not for every $f \in L^1$.
 - c) The inclusion map L^2 into L^1 is continuous but not onto.
- <u>Problem 4</u>. Let ν , μ and λ be finite measures on the measurable space (X, \mathcal{A}) . Prove the following statements:
 - a) If $\nu \ll \mu$ and $\lambda \ll \mu$ then

$$\frac{d(\nu + \lambda)}{d\mu} = \frac{d\nu}{d\mu} + \frac{d\lambda}{d\mu}, \ a.e.[\mu]$$

b) If $\nu \ll \mu \ll \lambda$ then

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} \ a.e.[\lambda]$$

- <u>Problem 5.</u> Let E be a Hilbert space. Let M and N be closed subspaces of E. Prove that:
 - a) $M^{\perp \perp} = M$.
 - b) If M and N are orthogonal then M+N is a closed subspace of E.

- c) If M and N are not orthogonal then M + N is not necessarily closed.
- <u>Problem 6.</u> a) Let X and Y be two given Banach spaces. Suppose T and T_n $(n=1,2,\cdots)$ are bounded operators from X into Y. If each T_n has finite dimensional range and $\lim_n \|T_n T\| = 0$ then T is compact.
 - b) If Y is a Hilbert space and T is compact, construct a sequence of operators $\{T_n\}_n$, such that each T_n has finite dimensional range and $\lim_n \|T_n T\| = 0$.
- <u>Problem 7.</u> Prove the following statements: Let X and Y be Banach spaces.
 - a) If $\{x_n\}_n$ is a weakly convergent sequence in X then $\{\|x_n\|\}$ is bounded.
 - b) If $T: X \to Y$ is a bounded operator and $x_n \to x$ weakly then $Tx_n \to Tx$ weakly.
 - c) If $T: X \to Y$ is a bounded compact operator and $x_n \to x$ weakly then $||Tx_n Tx|| \to 0$.