Fusion of Tree Ring Data and Forest Inventory Data to Improve Estimates of Tree Growth, C Sequestration Variability, and Climate Sensitivity

Kelly A. Heilman^{1,2}, Andria Dawson³, Courtney Giebink⁴, Michael C. Dietze⁵, Margaret E.K. Evans⁶, Grant M. Domke¹ GC21K-0018 ¹USDA Forest Service, Northern Research Station FIA, ²ORAU, ³Mount Royal University, ⁴USDA Forest Service, Washington DC, ⁵Boston University, ⁶University of Arizona

2050

U.S. Periodic Forest Inventories 1950

GHG LULUC baseline –1971 1985

Periodic-annual data gap

GHG Baseline—1990

U.S. Annual Design Forest Inventory and Analysis (FIA)

2022

Introduction & objectives

Data

- National Forest Inventory (NFI) data support greenhouse gas (GHG) estimation for UNFCCC reporting (USGHG Inventory)
- The USGHG Inventory includes estimates for the period 1990two years before present & ideally including data back to 1971
- Attribution of interannual variability in forest GHG estimates is important for assessing progress and informing mitigation strategies
- The US forest C sink is declining & this work advances understanding of drivers of this change

In-sample tree ring observations

>20,000 tree cores

of tree ring samples from periodic NFI plots in Northeast US

Bayesian State-Space Model of Tree Growth

Process model

 $Diameter_{i,t} = Diameter_{i,t-1} + increment_{i,t}$ $increment_{i.t} = lognormal(\mu_{i,t}, \sigma_{additive})$

$$\mu_{i,t} = \alpha_{plot} + \beta_1 * diameter_{i,t-1} +$$

 $\beta_2 * climate_{i,t} + \beta_6 * pollution_{i,t} + \beta_6 * disturb. + \beta_4 * competition + \beta_7 * site variables)$

(annual seasonal variables selected using Climwin)

In-sample

Diameters

American beech

northern red oak

1990 2000 2010

N deposition (annual)

BA non-focal Species

aspect elevation MAP & MAT 1999

Results

important drivers:

damage, and mortality

ranges

Annual acres defoliated % damage (FIA)

Priors for covariate effects

 $\beta_i \sim normal(0, 10)$

Software

Species-specific growth responses

Fig. 4. Posterior estimates for species-specific best fit models

American beech

black cherry

northern red oal

Estimated effect on growth

Max Temperature -

Min Temperature -

Acreage defoliated

sin(slope)sin(aspect) -

sin(slope)cos(aspect)

non focal Species BA -

N.Deposition

Elevation

Plot BA

Species BA -

% damage

STAN via rstan Cyverse DE

Data models

 $y_{i,t} \sim normal(inc_{i,t}, \sigma_{inc}) T(0,)$ $z_{i,t} \sim normal(x_{i,t}, \sigma_{dbh})$

Fig. 2. Posterior estimates for a single Red Oak tree diameter growth (left), and diameter (right) with 95% Credible Intervals

Tree-level annual growth and diameter predictions

Model Validation with Site Tree Data

Table 1. Fit statistics for species-specific growth models

			R-squared		
Species	SPCD	model	In-Sample Diameter	In-Sample Increment	Held-Out Increment
Virginia pine	132	model.7	1.0000	0.9974	0.6481
bigtooth aspen	743	model.5	1.0000	0.9980	0.5734
paper birch	375	model.7	1.0000	0.9890	0.5245
black cherry	762	model.6	1.0000	0.9971	0.4265
white ash	541	model.5	0.9999	0.9898	0.3527
red maple	316	model.3	1.0000	0.9948	0.3505
northern red oak	833	model.3	0.9999	0.9835	0.3456
yellow birch	371	model.6	1.0000	0.9894	0.3451
American beech	531	model.7	1.0000	0.9890	0.2322
hickory spp.	400	model.7	0.9999	0.9716	0.1018
chestnut oak	832	model.7	0.9995	0.9419	0.0562
eastern hemlock	261	model.5	0.9999	0.9762	0.0247
yellow-poplar	621	model.5	0.9999	0.9934	0.0185
sugar maple	318	model.3	0.9996	0.9783	0.0153
white oak	802	model.5	0.9998	0.9637	0.0128
red spruce	97	model.6	0.9999	0.9702	0.0109

Solutions to improved predictive ability for some species:

- 1. QA/QC
 - revisit original crossdating

2. Model improvement

better disturbance representation

kellyannheilman@gmail.com

spatially varying responses

in FIA tree tables

Future work: Interannual variation

Future work will extend this work to the nationally consistent

inventory, which has remeasurements that inform growth,

Continuous tree ring data associated with inventories allow

2. spatial variation in temperature across species

3. % damage information from inventory records is

us to estimate interannual variation in growth & parse

1. interannual variation in climate

important for some species

Step 1: Link tree level FIA measurements

ForestTIME Project Info

Incorporate growth predictions with a tool to create a longitudinal dataset (**ForestTIME**), linking trees through time from FIAdb **Step 2:** Prediction & validation with climate-sensitive growth models, then assimilating with repeat observations

Step 3. Using predictions with assimilated remeasurements, generate Annualized tree tables

Interannual estimates of growth & diameter (historic forest inventories) Growth Model Assisted Estimation: Prediction & Validation Data Assimilation of second diameter Diameter Tree-level hindcast Fig. 4. Interannual variation in growth and diameter from species-specific growth model predictions with data assimilation (Kalman Filter and Constraining) for a single plot in New Hampshire Assimilation eastern hemlock

FIA interpolation

2000 2010

1990

eastern white pine

2000 2010

northern red oak