

The Art of Molecular Programming

Draft Table of Contents

The textbook is divided into three parts. 'Part 0' is preliminary material, followed by Part I: Structures, Part II: Circuits and Part III: Interfaces. Each part is divided into chapters (numbered), and chapters into sections (lettered). Bullets represent keywords, or otherwise general guidance on the content of the section.

- 1. Foreword
- 2. Introduction & A Brief History of Molecular Computing
- 3. Foundations
 - a. Biology for Molecular Programmers
 - Central dogma & cell response to external stimuli
 - Compartmentalization & reactions?
 - Common DNA/RNA binding macromolecules
 - b. Basic Thermodynamics
 - Concept of entropy, enthalpy, Gibbs energy, Chemical Equilibrium
 - Thermodynamic energy landscapes, partition function
 - Example: Thermodynamic models for nucleic acids
 - c. Dynamic Models ODEs and Chemical Reaction Networks
 - Stochastic Models
 - Deterministic Models
 - Example: Kinetic models for nucleic acids (branch migration)
 - d. Experimental Methods to Produce DNA
 - i. Synthesis of DNA
 - Phosphoramidite, error rates on synthesis

- Asymmetric PCR
- Cell culture

ii. Purification

- Agarose/PAGE purification
- Chromatography (HPLC, LC, maybe capillary?)
- Centrifugation (filter, gradient, ultracentrifugation)

e. Experimental Methods for Analysis:

i. Gel electrophoresis (focus on densitometry etc)

- Intercalating dyes vs fluorophores or radiolabeling
- Separation quality as a function of gel % and DNA length?
- Role of buffer conditions
- Pulse field gradient electrophoresis?

ii. Microscopy (AFM, TEM/cryoEM/SEM, fluorescence/superresolution)

 Contrast mechanisms and their drawbacks (stains being inconsistent, AFM always convolutes tip, etc)

iii. Spectroscopy (fluorescence/CD/etc)

- Relative sensitivities
- Background reporter signal?

iv. Sequencing

f. Example: Experiments for thermodynamics and kinetics of hybridization

Part I Structures

1. "From molecules to variables" (Chemistry)

a. What are information bearing molecules? (biopolymer building blocks)

- nucleic acids (basic features and geometry)
- proteins/peptides; Protein geometry (alpha helix, ...)
- Other (PNA, L-DNA, new nucleotides, polysaccharides, block-copolymers, other supramolecular programmable molecules)

b. How do molecules interact (the glue)

- Chemical bonds and interactions (a primer in chemistry)
- Intramolecular forces via covalent bonds: peptide bonds, ester bond
- Intermolecular forces and non-covalent bonds: Van der Waals, hydrogen bond, stacking interactions, electrostatic interactions, Debye screening. (Table with relative bond strengths)
- Entropic forces: depletion, steric, fractionation, crowding, polymers

c. How can we represent molecules digitally?

- Structure abstraction layers: Primary, Secondary, Tertiary structure
- Sequence abstraction layers: domain level vs nucleotide level

- Notations: Dot parens plus notation, DU+ notation, ...
- Notions of "valid" conformations (nearest neighbor model)
- Intuition behind coarse-grained representations and macrostates
- How can we represent molecules graphically

2. Molecules as construction material

a. DNA properties

- data sheet to find useful parameters.
- Crossover motifs (anti-parallel and parallel)
- Special motifs (I motif, G-quads, kissing loops, aptamers)
- Biophysical influence of buffer conditions on DNA structure

b. RNA properties

- data sheet to find useful parameters.
- Special motifs (I motif, G-quads, kissing loops, aptamers)
- Biophysical influence of buffer conditions on RNA structure

c. Protein properties

- data sheet to find useful parameters.
- Enzymatic activity and binding pockets, ...
- Special motifs (DNA binding)
- Biophysical influence of buffer conditions on enzyme activity and protein structure

3. Introduction to self assembly. Basics of molecular self-assembly (theory)

a. Sequence based models of intramolecular self assembly

- Levinthal's paradox. Why can we engineer DNA/RNA but proteins are still hard?
- DNA/RNA Sequence design. Given a sequence, what is the structure? Given a structure, design a sequence?
- Proteins engineering

b. Principles of natural multi-component self-assembly processes

- Examples (viruses, lipid micelles, nanowires, crystals, self-assembled monolayer, hydrogels, lipids, block co-polymers)
- Biophysical models: The role of thermal energy driving self-assembly, nucleation, kinetic/thermodynamic control, stoichiometry, cyclisation
- Stochasticity having equilibrium close to thermal energy (kT) means there will be equilibrium population of defects

c. Tile self-assembly

- Tiling theory (Wang tiles, Penrose tiles, ...)
- What shapes can be assembled in which tile model?
- aTAM, kTAM

- Sequence design (Box OK)
- d. Deeper into computation and self-assembly (Fundamental limits of computation reference chapter 8)
 - Finite state automata
 - Tiles and algorithmic self assembly
- 4. Programmed molecular self-assemblies (experiments)
 - a. Scaffold-less DNA assemblies
 - ss Tiles.
 - dx Tiles
 - HCR
 - Simple polyhedra: Seeman cube, tetrahedron, Yamuna's icosahedron, Mao's Bucky ball and octahedron.

b. DNA Origami

- The concept
- Design principles, cooperativity
 - Sequence design constraints
- Design and simulation tools
- "Wireframe origami" examples 1D / 2D / 3D structures
- Production and purification
 - Custom scaffold design
 - Thermo/stoichiometry
- c. Periodic and Multi component assemblies [Higher complexity structures, DNA LEGO, Conformational changes of origami]
 - Shape complementary, base stacking
 - Self-limiting assemblies (rings)
 - Fractal assemblies
 - Lattices, ribbons, nanotubes, and crystals
 - Interlocked assemblies (e.g. origami rotaxanes) → connection to mechanics
- d. Dynamic rearrangements of structures
 - DNA tweezers, DNA Walkers, burnt-bridge motor
 - Nanomechanical devices. Mechanical constructs / active components/ machines / walkers (comparison with molecular motors/enzymes)
 - Castro's work¹
 - Nanomotors
- e. Other phases of DNA structures (Physical properties)
 - DNA hydrogels
 - DNA liquids

¹https://www.pnas.org/content/112/3/713/tab-figures-data

f. Hybrid DNA objects

- Colloids
- Gels
- Polymer/DNA brushes (surface/colloid coatings)
- Coacervates
- Grafted nanoparticles

g. Other biopolymer building materials — Beyond DNA

- RNA
- Protein engineering (David Baker, U Washington)
- Polysaccharide, spider silk, ...
- DNA-chimera assemblies (protein bioconjugation, eg the work of Nicholas Stephanopolous)

Part II Circuits

1. Introduction to Computation

- a. Intro to computation / information processing
- b. Conventional computation
- c. Background: Boolean logic, Turing machines, register machines
- d. Examples of non-conventional computing
- e. Examples of natural computing
- f. Guiding principles? Molecular programming "languages", modular/circuits intro
- g. Advanced: limits on computation / computability frameworks?

2. Programming molecular behaviors over time (CRNs)

- a. Introduction
- b. Computing with Stochastic CRNs
 - Theory example and analysis: min/max and Boolean logic programming with CRNs
 - Biology example: something simple
 - Computational Power of Stochastic CRN
 - Time complexity of stochastic CRN

c. Compute with distributions

- Computing with Deterministic CRNs
- Theory examples: circuits, boolean circuits, oscillators, bistability, etc.
- Well-mixed CRNs as example of analog computing
- Computing functions (e.g. y = kx)
- Approximate majority

- Dynamic system: Oscillators, bistability
- Biology example: (predator prey / ecology models)
- Computational power of deterministic CRNs

d. Advanced topics in CRNs

3. Nucleic acids as a universal substrate for molecular programming

a. Introduction (reference Foundations for overlapping topics)

- Reference to Structures section on background: nucleic acid hybridization and thermodynamics
- Background: nucleic acid branch migration
- Toehold-mediated strand displacement
- Experiment examples: toehold exchange reaction

b. Strand displacement cascades

- Theory & experiment: DNA universal substrate for CRNs
- Boolean circuits: seesaw circuit theory
- Box: discuss considerations and strategies in e.g. designing mutually orthogonal sequences

c. Theory & Experiment examples: 3wDSD circuits

- Oscillators
- Bistable memory
- Approximate majority
- · Amplification, catalysis, and thresholding
- Seesaw circuits
- Neural networks

d. Advanced designs in DNA strand displacement cascades

- Toehold activation
- Mutation detection; use mismatch to control kinetics?
- Theory & Experiment: 4wDSD circuits

e. Leakless circuits

- Why do circuits leak and why leaks are problematic
- How to avoid leak. Examples of leakless circuits

4. Incorporating enzymes into nucleic acid cascades

a. Introduction

- Background: enzymatic behaviors
- Early example: traveling salesman?

b. DNA polymerase-based circuits

- PEN circuits, predator prey
- APR, PER circuits (whiplash PCR?)

- Shah et al. work on logic gates
- c. Transcribed RNA-based circuits
 - Toehold switches
 - Conditional CRISPR
 - Oritatami
 - Genelets
- d. Translated protein-based circuits
 - Repressilator
 - References to good syn bio resources?
- 5. Spatially-Organized Circuits
 - a. Introduction: advantages of spatial structures
 - b. Background: compartmentalization in biology
 - c. Surface CRNs
 - Surface DNA circuits and DNA walkers
 - d. Droplet-based computing / "synthetic compartmentalization"
 - e. Reaction diffusion circuits
 - f. Microfluidics Breakout Box
- 6. Advanced topics in tile assembly (algorithmic self-assembly)
 - a. Computational complexity
 - b. Wang tile Turing machine implementation?
 - c. CRN-Tile hybrid systems?
 - d. Relationships between DSD and TAM etc, e.g. TBNs (Thermodynamic Binding Networks)
- 7. Conclusion

Part III Interfaces

- 1. Introduction to Interfaces & Applications
 - a. Intro
 - b. General preview of interfaces (and the techniques used) with other fields through
 - Electronic interfacing
 - Chemical and physical interactions
 - Interacting with biology
- 2. The Interface between Traditional and Molecular Computers
 - a. Background/Foundations

- Sequencing & Synthesis (reference to Foundations); NGS
- Nanopores
- Microarrays (mention how big of an industry this is...multi billion...e.g. 23 and Me uses it exclusively)

b. DNA Computation

- Why use molecules to do traditional computations?
 - Pros: lower energy usage, parallelism , physical stability, data density, etc.
 - Cons: expensive at high throughput, etc

c. DNA Data Storage

- Encoding data from digital data to DNA
- Synthesizing DNA
- Storing DNA
- Recovering stored DNA
- Sequencing the DNA
- Decoding the DNA back to digital data

3. Chemical and Physical Interactions

a. Material science

- Patterning non-DNA molecules
- Surface assisted methods

b. Chemical control

- pH [primer on DNA triplexes]
- lons
- crowding agents

c. Magnetic control

- swimmers
- beads (for purification and/or computation)

d. Optical control

- DNA plasmonic and photonic circuits
- DNA scaffolding of non-DNA reaction networks
- Dynamic control of optical DNA devices

e. Thermal control

- Vinothan Manoharan's work²
- Jaeseung Hahn's work³
- More examples⁴⁵

²https://science.sciencemag.org/content/347/6222/639.abstract

³https://academic.oup.com/nar/article/47/20/10968/5580905

⁴https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201706410

⁵https://pubs.acs.org/doi/10.1021/nn4030543

f. Electronic driven redox power sources

Electrically driven process⁶

g. Future

4. Interacting with Biology, Medical Diagnostics and Therapeutics

a. Biology toolbox primers — topics not included in Foundations primer

- Cutting DNA (e.g., restriction enzymes, CRISPR, ribozymes?; talk about synbio gene editing using CRISPR and other restriction enzymes)
- DNA Synthesis (e.g., ligation, overhang PCR)

b. Diagnostics

- How do current diagnostics work [primer on various techniques, biomarkers]
 - Which particular diseases will benefit from in-depth diagnostics? Why do we need to know about so many biomarkers?
 - * Shotgun / Microarrays
- Why are some molecules difficult to detect? What are the advantages of DNA nanotech methods over the standard techniques?
 - Methods
 - Aptamers How can we program DNA to bind with targets other than DNA/RNA? [primer/external reference on selex]
 - toeholds
 - electrochemical/fluorescence
 - SPR (surface plasmon resonance) and QCM (quartz crystal microbalance) and FET (field effect transistor)
 - etc.

c. Therapy

- Programmable nucleic acids-based therapeutics
 - Protein production silencing or activation mRNA mimics, siRNA etc.
 (Pfizer/Moderna vaccines are real-world examples of this) [primer/external reference on transcription/translation]
 - Aptamer therapeutics
- Protection of therapeutic agents e.g. tetrahedron structures.
 - Different protection methods for nucleic acid nanostructures (e.g., polylysine, protein, lipid, etc.)
- Examples of approved or under-trial DNA nanotech drugs.
- Drug Delivery
 - Why is it beneficial to have targeted delivery of drugs in the body?
 - How are drugs loaded onto DNA structures? Various examples available.
 - Mechanisms for release of drugs in particular areas of the body.

 $^{^{6} \}verb|http://www.francescoriccilab.com/wp-content/uploads/92.pdf|$

d. Burgeoning biological interfaces

- · Cellular interactions Communicating with cells and cell surfaces
 - Why do we want to create artificial cell signal controllers? [primer/external reference on cell signalling systems]
 - DNA nanotech channel receptor mimics (various versions using DNA origami; include lipid bilayer section here)⁷
- Replicating cellular components
- Proteinosomes (?)

e. Challenges in working in a biological medium

- Dealing with toxicity
- Preventing degradation [primer or external links to well-known DNA modifications and their functionality, use of XNAs?]
- Examples of Chemical modifications, ligand attachments and encapsulating protection (nanoparticles)
- How to scale up "bio factories", using cells to manufacture molecules is difficult
- Working with RNA (mRNA, RNA origami, etc.)
 - Why RNA?
 - What's different from DNA?

f. Regulation & Ethics — breakout box

- High level overview of the general international medical regulatory processes, with some specific examples from, e.g., the FDA approval process
- Maybe briefly mention other regulatory processes for, e.g., synthetic crops
- DNA Data Storage chemical waste

⁷https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00034-2