Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-2210. Вариант 33

1. Пусть
$$z=\frac{1}{2}+\frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[5]{z^2}$, для которого число $\frac{\sqrt[5]{z^2}}{2+2\sqrt{3}i}$ имеет аргумент $\frac{3\pi}{5}$.

2. Решить систему уравнений:

$$\begin{cases} x(-6+8i) + y(9+9i) = 53 - 285i \\ x(-15+6i) + y(10+11i) = 120 - 304i \end{cases}$$

- 3. Найти корни многочлена $-x^6 + 9x^5 59x^4 + 195x^3 334x^2 + 306x 116$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = 1 + i, \, x_2 = 2 + 5i, \, x_3 = 2.$
- 4. Даны 3 комплексных числа: 28-27i, -13-5i, -24+12i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \frac{\sqrt{3}}{2} + \frac{i}{2}, z_2 = i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 5 - i| < 2\\ |arg(z + 4 - 5i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (7, 4, 6), b = (-8, -4, -7), c = (-2, -6, 0). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(8,-1,14) и плоскость P:-6x-20y+42z+540=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(13, -7, -6), $M_1(-1, 11, -9)$, $M_2(-71, -3, -9)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -35x - 7y + 25z + 263 = 0 \\ -17x - 9y + 9z + 141 = 0 \end{cases} \qquad L_2: \begin{cases} -18x + 2y + 16z + 3626 = 0 \\ -13x + 14y + 11z + 2732 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.