

Point Cloud Techniques and Applications

Tuan Dang Ph.D. Candidate Email: tuan.dang@uta.edu Homepage: www.tuandang.info University of Texas at Arlington Phuc Pham
Teaching Assistant
Email: phuc.phamhuythien@hcmut.edu.vn

Ho Chi Minh City University of Technology

Agenda

- Section 1 (24/4): Introduction to Point Cloud and basic techniques to process
- Section 2 (26/4): Machine Learning with Point Cloud

Requirement

- Linear Algebra
- Basic (numpy)
- Advanced (pytorch)

Hints to effectively learn this course

- Understanding is the key
- Concepts are connected in a chain: each concept is a link in a chain
- If you don't understand some concepts at certain links, please stop or go back to review them
- Encourage ask questions even sometimes interrupt the instructor

Section 1 Introduction to Point Cloud and

basic techniques to process

What is Point Cloud?

- A list of point 3D points: [p1, p2
- Each point can be represented
 - (X,Y,Z[,feature1,feature2...])
 - \circ X,Y,Z
 - X,Y,Z,I (intensity)
 - X,Y,Z,R,G,B
 - 0 ...
- The number of points may vary from one point cloud to another

How to obtain pointcloud?

- LiDAR
- Depth images

LiDAR (outdoor)

Sing Beam

For each point: (X,Y,Z, I)

Multiple beams

Industry LiDAR

LiDAR Data

RGB-D camera (most popular, indoor)

Camera model (Pinhole)

From world to camera

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z} \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ 1 \end{bmatrix}$$

From Camera to World

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = R \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + t = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

or can be written as:

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

Commercial RGB-D cameras

Intel Realsense D435

Intel Realsense L515

Depth Measurement

- Stereo Vision
- Structure Light
- LiDAR with MEMS

Point Cloud vs Image

Storage Space

txt, ply, bin

JPEG, PNG, BITMAP

Point cloud processing

- Filter noises
 - Downsampling
 - Noise Removal
- Search
- Registration

Voxel Grid Sampling

- Build voxel grid
- Select point strategies
 - o Random
 - Center point
 - Centroid point

Build Voxel Grid Coordinate

$$x_{\min} = \min(x_1, x_2, \dots, x_n),$$

$$x_{\max} = \max(x_1, x_2, \dots, x_n),$$

$$y_{\min} = \min(y_1, y_2, \dots, y_n),$$

$$\vdots$$

$$z_{\max} = \max(z_1, z_2, \dots, z_n).$$

Point Cloud Range

$$N_x = (x_{\text{max}} - x_{\text{min}})/r,$$

$$N_{\rm y} = (y_{\rm max} - y_{\rm min})/r,$$

$$N_z = (z_{\text{max}} - z_{\text{min}})/r,$$

$$i_x = |(x - x_{\min})/r|,$$

$$i_{y} = \lfloor (y - y_{\min})/r \rfloor,$$

$$i_z = \lfloor (z - z_{\min})/r \rfloor,$$

$$i = i_x + i_y * N_x + i_z * N_x * N_z.$$

Grid Dimensions

r: voxel size

Voxel indexing 0,1,..., NxNyNz-1

Center Point Selection

Furthest Point Sampling (FPS)

- This heuristic algorithm
- Algorithm
 - Step 1: Random select a point
 - Step 2: Calculate distances between current selected point to all remaining points
 - Step 3: Select a point which is the furthest to the previous point
 - Step 4: Loop step 2 & 3 until m points are chosen
- Advantages
 - Evenly across original point cloud
 - Capture Esen

Generated from: https://github.com/tuantdang/pointcloud_lessons/blob/main/session1/down_sampling.py

Surface Normal

- A vector that is **perpendicular** to the plane
- A plane can be determined by
 - Perpendicular vector (a,b,c)
 - A point in the plane (x,y,z)
- Plane equation from perpendicular vector and inner-point: $\mathbf{a}x + \mathbf{b}y + \mathbf{c}z + \mathbf{d} = 0$

$$\mathbf{n} = [n_x, n_y, n_z]^T = \frac{[a, b, c]^T}{\|[a, b, c]^T\|}.$$

Normal vector in Practise

- Not points are perfect in a plane => eigenvector
- Collect a set of point
- Calculate eigenvectors and eigenvalues (λ 1, λ 2, λ 3)
- The least driven-value is normal vector: $\mathbf{n} = \lambda 3$

Surface variance = Curvature

$$c = \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3}$$

Noise Removal: Radius Outlier Removal

- Search around query point p with radius r, call ball(p, r)
- If number of points in the ball < k_{min}, **p** is outlier.

Radius outlier removal: $k_{min} = 4$, r = 1

Statistical Outlier Removal

Model inlier as Gaussian $N(\mu, \sigma)$ distribution

- n : number of points, k neighbors, c : variance steps
- dij : distance from point i to point j

$$\mu = \frac{1}{nk} \sum_{i=1}^{n} \sum_{j=1}^{k} d_{ij}, \quad \sigma = \sqrt{\frac{1}{nk} \sum_{i=1}^{n} \sum_{j=1}^{k} (d_{ij} - \mu)^2}.$$

$$\frac{1}{k} \sum_{j=1}^{k} d_{ij} > \mu + c\sigma \quad \text{or} \quad \frac{1}{k} \sum_{j=1}^{k} d_{ij} < \mu - c\sigma, \ c \in \mathbb{R}^+.$$

Examples

kmin=16,r=0.05

Statistical Outlier removal k=20,c=2

Search Nearest Neighbors (-NN)

- Why searching neighbors?
- K-NN: O(NlogN) or O(NlogK) since using sort algorithm
- Radius-NN: O(N) compute and compare

Comparison of K-NN and Radius-NN. (a) K-NN. (b) Radius-NN

1D-BST = 1D Binary Search Tree

8,3,10,1,6,14,4,7,14

k-dimensional tree = k-d tree

- K-d tree is a BST where each node is k-dimensional point
- Example:
 - o Input 2D points: a,b,c,d,e,f
 - Draw a line: perpendicular x-axis to separate two subsets
 - o For each subset, draw lines:
 - perpendicular y-axis
 - Separate two subsets
 - Repeat until no more data
- Note: Using round-robin
 - o 2D: perpendicular lines: x>y>x>y>...
 - o 3D: perpendicular planes: x>y>z>x>y>z>...

K-NN search on k-d tree

Example with K=2 and query **g**, with worst distance d = infinity

- Search from root s1
 - o gx < s1 and gy > s2 where ||g-a|| < d store **a**.
 - Update d = ||g a||
 - Since |gx-s1|<d and |gy-s2| < d, **c** is stored
 - Update d = ||g c||
 - 0
- Complexity O(logN): best case and O(N) worst case

k-d tree with k=3

Octree

- k-d tree split along a dimension while octree split along a point.
- The center represents for the regions and has 8 children (3D) or 4 children (2D)

Octree construction

2D example a(4, 6), b(7,5), c(4,4), d(2,2), e(6, 3), f(8,2), g(7,1)

Octree search with K-NN

- Use Depth-First Search (DFS)
- Example :
 - Query h
 - o k=2
 - o Initialize distance **d** = ∞
 - Start from s1 find h in s2 among children > store a
 - Update d = ||h-a||
 - Ball circle(h, d) intersect with s4
 - Search children s4: s6,s7
 - \circ Store **c** where d < |h-c|

Example

Registration

- Align two or more point clouds into a common coordinate
- Iterative Closest Point (ICP) is the most common method
 - Find the correspondence between two point sets
 - Find the transformation that minimizes the Euclidean distance between matching points
- Mathematic formation:
 - Let $A = \{a_i\}$, $B = \{b_i\}$ are two point sets
 - Let T is transformation
 - Point m_i in A which corresponding with Tb_i
 - Find

$$T = \underset{T}{\operatorname{arg\,min}} \left\{ \sum_{i} \|T \cdot b_{i} - m_{i}\|^{2} \right\}$$

Example

Coding Examples

- Introduction to Open3D installation (v0.1)
- Create folder to store all files below:
- Load a point cloud
 - Bin (KITTI): load_bin.py
 - Ply (Shapenet): load_ply.py
 - Txt (ModelNet): load_txt.py (convert from numpy PCL)
- Downsampling : downsampling.py
- Noise Removal : noise_removal.py
- Search neighbors: k-d-tree / octoc.tree (color search results)
- Registration: registration.py
- Reconstruct point cloud from RGB images and depth images:

Section 2 Introduction to Point Cloud and

basic techniques to process

Overview

Datasets

Dataset	Year	Size (hr.)	Real- world	LiDAR scans	Images	3D annotations	Classes	night/rain	Locations	Other data
KITTI [80, 81]	2012	1.5	Yes	15k	15k	200k	8	No/No	Germany	-
KAIST [50]	2018	-	Yes	8.9k	8.9k	Yes	3	Yes/No	Korea	thermal images
ApolloScape [104, 166]	2019	100	Yes	20k	144k	475k	6	-/-	China	8 ≟ 9
H3D [198]	2019	0.77	Yes	27k	83k	1.1M	8	No/No	USA	-
Lyft L5 [107]	2019	2.5	Yes	46k	323k	1.3M	9	No/No	USA	maps
Argoverse [29]	2019	0.6	Yes	44k	490k	993k	15	Yes/Yes	USA	maps
AIODrive [293]	2020	6.9	No	250k	250k	26M	21	Yes/Yes		long-range data
A*3D [202]	2020	55	Yes	39k	39k	230k	7	Yes/Yes	SG	-
A2D2 [82]	2020	-	Yes	12.5k	41.3k	-	14	-/-	Germany	-
Cityscapes 3D [77]	2020	-	Yes	0	5k	-	8	No/No	Germany	-
nuScenes [15]	2020	5.5	Yes	400k	1.4M	1.4M	23	Yes/Yes	SG, USA	maps, radar data
Waymo Open [250]	2020	6.4	Yes	230k	1M	12M	4	Yes/Yes	USA	maps
Cirrus [288]	2021	-	Yes	6.2k	6.2k	-	8	-/-	USA	long-range data
PandaSet [301]	2021	0.22	Yes	8.2k	49k	1.3M	28	Yes/Yes	USA	-
KITTI-360 [142]	2021	87	Yes	80k	300k	68k	37	-/-	Germany	.=.
Argoverse v2 [295]	2021		Yes	-	11.		30	Yes/Yes	USA	maps
ONCE [172]	2021	144	Yes	1M	7M	417K	5	Yes/Yes	China	

Point-based 3D methods

Examples

Method	Context Ω	Sampling S	Feature F	
PointRCNN [234]	Ball Query	FPS	Set Abstraction	
IPOD [318]	Ball Query	Seg.	Set Abstraction	
STD [319]	Ball Query	FPS	Set Abstraction	
3DSSD [321]	Ball Query	Fusion-FPS	Set Abstraction	
Point-GNN [238]	Ball Query	Voxel	Graph	
StarNet [189]	Ball Query	Targeted-FPS	Graph	
Pointformer [193]	Ball Query	FPS + Refine	Transformer	

Voxel (3D grid)-based methods

Example

Method	Representation	Feature Encoding	Backbone Model	Refinement Head
Vote3D [264]	voxel	voxelization	3D sparse CNN w/ voting	-
Vote3Deep [66]	voxel	voxelization	3D sparse CNN w/ voting	81
3D-FCN [118]	voxel	voxelization	3D FCN	-
VeloFCN [119]	BEV map	projection	2D FCN	=
BirdNet [10]	BEV map	projection	2D RPN	
PIXOR [314]	BEV map	projection	2D CNN	-
HDNet [313]	BEV map, HD map	projection	2D CNN	-
VoxelNet [359]	voxel, BEV map	voxelization, VFE	3D sparse CNN, 2D RPN	-
SECOND [312]	voxel, BEV map	voxelization, VFE	3D sparse CNN, 2D RPN	-
MVF [360]	voxel, BEV+PV map	voxelization, VFE	2D CNN	=
PointPillars [117]	pillar, BEV map	PointNet encoding	2D CNN	¥
Pillar-OD [283]	pillar, BEV+CYV map	PointNet encoding	2D CNN	-
Part-A ² Net [236]	voxel, BEV map	voxelization, VFE	3D sparse CNN, 2D RPN	voxel head
Voxel R-CNN [57]	voxel, BEV map	voxelization, VFE	3D sparse CNN, 2D RPN	voxel head
CenterPoint [329]	voxel, BEV map	voxelization, VFE	3D sparse CNN, 2D RPN	= 1
Voxel Transformer [173]	voxel, BEV map	voxelization, VFE	3D Transformer, 2D RPN	=

Hybrid: Point-Voxel based methods

Single-Stage Point-Voxel Detection Framework

Two-Stage Point-Voxel Detection Framework

Examples

Method	Contribution			
Single-Stage	Detection Framework			
PVCNN [152]	Point-Voxel Convolution			
SPVNAS [254]	Sparse Point-Voxel Convolution			
SA-SSD [92]	Auxiliary Point Network			
PVGNet [181]	Point-Voxel-Grid Fusion			
Two-Stage Detection Framework				
Fast Point R-CNN [43]	RefinerNet			
PV-RCNN [235]	RoI-grid Pooling			
PV-RCNN++ [237]	VectorPool			
Pyramid R-CNN [171]	RoI-grid Attention			
LiDAR R-CNN [134]	Scale-aware Pooling			
CT3D [233]	Channel-wise Transformer			

Intrinsic Geometry Features (Hand-crafted): Point Feature Histogram (PFH)

Surface normal and curvature are too simple to represent point features

Algorithms

$$(\exists) r_1, r_2 \in \mathbb{R}, \ r_1 < r_2, \ \text{such that} \begin{cases} r_1 \Rightarrow \mathcal{P}^{k_1} \\ r_2 \Rightarrow \mathcal{P}^{k_2} \end{cases}$$
, with $0 < k_1 < k_2$

Dual rings:

- First ring: estimate surface normal (see section 1)
- Second ring: estimate PFH

Darboux frame

Binning quadruplets $(\alpha, \phi, \theta, d)$ and indexing to 1-dimension

Convolutional Operation on Point Cloud

- Cannot be applied directly as on images
 - Voxelize point cloud into grid coordinate
 - Define a fixed grid coordinate for all poincloud
 - 3D convolutional operation > memory & computing cost

3D convolutional operator on 3D voxel grid

Voxel Feature Encoding (VFE)

PointNet

- Consume direct point cloud with **n** points
- Use symmetric function like max-pooling

$$f(x_1, x_2, ..., x_n) = \gamma \left(\max_{i=1,...,n} \{h(x_i)\} \right)$$

where γ and h are usually multi-layer perceptron (MLP) networks

Architecture

PointNet++

- Hierarchical Point Set Feature Learning
 - Multi-scale grouping (MSG)
 - Multi-resolution grouping (MRG)

Point Transformer

LBR: Linear, Batch, ReLu

LBRD: Linear, Batch, ReLu, DropOut

Some results

Generative Point Cloud (Diffusion Approach)

$$\max_{\theta} \mathrm{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \mathbf{x}_{1:T} \sim q(\mathbf{x}_{1:T} | \mathbf{x}_0)} \left[\sum_{t=1}^{T} \log p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \right]$$

Latent Point Diffusion

LION: Latent Point Diffusion Models for 3D Shape Generation, Zeng et al, 2022

Advanced: Graph Neural Network on Point Cloud

Formulation

Graph Convolutional

$$\mathbf{h}_{u} = \phi \left(\mathbf{x}_{u}, \bigoplus_{v \in \mathcal{N}_{u}} c_{uv} \psi(\mathbf{x}_{v}) \right)$$

Attention

$$\mathbf{h}_{u} = \phi \left(\mathbf{x}_{u}, \bigoplus_{v \in \mathcal{N}_{u}} a(\mathbf{x}_{u}, \mathbf{x}_{v}) \psi(\mathbf{x}_{v}) \right)$$

Message-passing

$$\mathbf{h}_{u} = \phi \left(\mathbf{x}_{u}, \bigoplus_{v \in \mathcal{N}_{u}} \psi(\mathbf{x}_{u}, \mathbf{x}_{v}) \right)$$

•: Aggregation, permutation-invariant function

Ψ: Point Feature Transform

φ : Point Feature Propagation (Diffusion)

$$\psi(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b};$$

 $\phi(\mathbf{x}, \mathbf{z}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{U}\mathbf{z} + \mathbf{b}),$

Geometric Pytorch

latest

Search docs

NSTALL PYO

Installation

GET STARTED

Introduction by Example

Colab Notebooks and Video Tutorials

TUTORIAL!

Design of Graph Neural Networks Working with Graph Datasets Use-Cases & Applications

Distributed Training

ADVANCED CONCEPTS

Advanced Mini-Batching

Memory-Efficient Aggregations

Hierarchical Neighborhood Sampling

Compiled Graph Neural Networks

TorchScript Support

♠ / PyG Documentation

Note

This documentation is for an unreleased development version. Click here to access the documentation of the current stable release.

PyG Documentation §

PyG (PyTorch Geometric) is a library built upon (PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, torch.compile support, DataPipe support, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.

Join our Slack community!

Install PyG

Installation

Get Started

- Introduction by Example
- Colab Notebooks and Video Tutorials

Point Cloud Processing

This tutorial explains how to leverage Graph Neural Networks (GNNs) for operating and training on point cloud data. Although point clouds do not come with a graph structure by default, we can utilize PyG transformations to make them applicable for the full suite of GNNs available in PyG. The key idea is to create a synthetic graph from point clouds, from which we can learn meaningful local geometric structures via a GNN's message passing scheme. These point representations can then be used to, e.g., perform point cloud classification or segmentation.

3D Point Cloud Datasets

PyG provides several point cloud datasets, such as the PCPNetDataset, S3DIS and ShapeNet datasets. To get started, we also provide the GeometricShapes dataset, which is a toy dataset that contains various geometric shapes such cubes, spheres or pyramids. Notably, the GeometricShapes dataset contains meshes instead of point clouds by default, represented via pos and face attributes, which hold the information of vertices and their triangular connectivity, respectively:

```
from torch_geometric.datasets import GeometricShapes

dataset = GeometricShapes(root='data/GeometricShapes')
print(dataset)
>>> GeometricShapes(40)

data = dataset[0]
print(data)
>>> Data(pos=[32, 3], face=[3, 30], y=[1])
```

Hand-on project

- PointNet
 - Classification
- Visualization:
 - Inference classification