Student ID. มหาวิทยาลัยเทค ใน โลถีพระมากาลา Seat NO King Mongkut's University of Technology Thonburi

Mid-term Examination

Semester 2/2013

Credits 3

MEE 224 Thermal Engineering

Department of Control system and Instrumentation Engineering

24 February 2014 13:00 - 16:00

- Note: 1. You are not allowed to bring lecture notes and any other texts to the examination room.
 - 2. Calculators are permitted.
 - 3. Answer all six questions.
 - 4. If you have any doubt that the given information does not clarify, you may assume.
 - 5. Tables of thermodynamic properties are provided.

Dr. Wanchai Asvapoositkul

Basic Principle Formulations

Simple Compressible Closed System:

Conservation of mass:

Conservation of energy:

 $O = U_2 - U_1 + W$

Mechanical work of simple compressible system: $W = \int p \, dV$

Open system, Steady Flow: one inlet, one outlet

Conservation of mass:

$$m'_i = m'_e = \rho_i A_i \overline{v}_i = \rho_e A_e \overline{v}_e$$

Conservation of energy:

$$q - w = h_e - h_i + \left(\frac{v_e - v_i}{2}\right) + g(z_e - z_i)$$

Properties of pure substances:

Specific heats:

$$c_v = \left(\frac{\partial u}{\partial T}\right)_v$$
 and $c_p = \left(\frac{\partial h}{\partial T}\right)_p$

for ideal gases:
$$c_p - c_v = R$$
 and $k = \frac{c_p}{c_v}$

An ideal gas law:

$$p \forall = mRT$$

The specific volume of the mixture (liquid and vapor): $v = v_f + x (v_g - v_f)$

An ideal gas equation of state:

$$\frac{\mathbf{p_1}\mathbf{v_1}}{\mathbf{T_1}} = \frac{\mathbf{p_2}\mathbf{v_2}}{\mathbf{T_2}}$$

Polytropic processes of an ideal gas:

$$pv^n = constant$$

Enthalpy

$$\mathbf{h} = \mathbf{u} + \mathbf{p} \mathbf{v}$$

$$du = c_v dT$$
, $dh = c_p dT$

The gas constant of air is $R = 0.287 \text{ kPa m}^3/\text{kg K}$

Water at room temperature is $c_p = 4.18 \text{ kJ/kg} \cdot \text{K}$

Name:	Student ID.	ต่านักหอกญา
	efly define or describe the following terms (10 marks) (a) thermodynamic system (open system & closed system)	บหาวิทยาลัยเทค ใน โลยีพระพระบัก
	(b) uniform state	
	(c) steady state	
	(d) compressed liquid	
	(e) saturated liquid	
	(f) saturated vapor	
	(g) superheated vapor	
	(h) conservation of mass	
	(i) the zeroth law of thermodynamics	
	(j) the first law of thermodynamics	

Name: Student ID. รับโทษธิบินัน บทาวีที่ยาถึยเทคในโลยีพระพิธัมกับด้วง
 1.2 In the following questions, the underline words are truth or false, and give the reason or correction in your answers. There will be no mark in any answers that answer without the reason or correction. (10 points) (a) T, u, P, v are intensive properties. Ans.
(b) The sum of all forms of the energy a system possesses is called <u>internal energy</u> . Ans
(c) Isothermal process defined as a process during which the <u>pressure (p)</u> remains constant. Ans.
(d) Water boils at higher temperatures at <u>lower</u> pressures. Ans
(e) Quality can be expressed as the ratio of the volume occupied by the vapor phase to the total volume. Ans

Name: 2.1 Complete the following table for water: (10 marks)	Student ID. ARTHURANCE
2.1 Complete the following table for water: (10 marks)	Mana A Jugase As miles

P(kPa)	T (°C)	h (kJ/kg)	Phase description	
325		1435		
5000	80			
800	350			
	125	1619		
	120.2	2707		$\overline{}$
1000		763		
	500	3461.5		

2.2 An 80-L vessel contains 4 kg of saturated water at a pressure of 150 kPa.
Determine (a) the temperature, (b) the quality, (c) the enthalpy of the water, and (d) the volume occupied by the vapor phase. (10 marks)
Ans.

	5
Name: 5	Student ID
Name: 3. A gas in a piston-cylinder assembly undergoes an experience relationship between pressure and volume is given by $pV^{n} = constant$ The initial process of the p	ansion process for williah the
The initial pressure is 0.3 MPa, the initial volume is 0.1 0.2 m ³ . Determine the work for the process, in kJ, if (20 marks)	m', and the final volume is
Ans.	

.

Name:

Student ID.

Name:

4. Four kilograms of a certain gas is contained within a piston-cylinder assettebly. The The Target a process for which the pressure-volume relationship is

The initial pressure is 0.3 MPa, the initial volume is 0.1 m³, and the final volume is 0.2 m^3 . The change in specific internal energy of the gas in the process is $u_2 - u_1 =$ -4.6 kJ/kg. There are no significant changes in kinetic or potential energy. Determine the net heat transfer for the process, in kJ. (20 marks)

Ans.

Name: S. Steam at 1.7 MPa and 350 °C steadily enters a nozzle w. The mass flow rate of steam through the nozzle is 4.5 kg, at 1.4 MPa with a velocity of 270 m/s. Heat losses from the steam through the nozzle is 4.5 kg, at 1.4 MPa with a velocity of 270 m/s.	الله المنطقة ا	Wn.
5. Steam at 1.7 MPa and 350 °C steadily enters a nozzle w	whose inlet area is $0.02 \mathrm{m}_{\odot}^2$	71.7
The mass flow rate of steam through the nozzle is 4.5 kg/	s. Steam leaves the nozzle	H INTHICTOR
at 1.4 MPa with a velocity of 270 m/s. Heat losses from t	the nozzle per unit mass of	THINK'ILL
the steam are estimated to be 2.5 kJ/kg. Determine (a) the	e inlet velocity and (b) the	•
exit temperature of the steam. (20 marks)		
Ans.		

6. Consider an ordinary shower where hot water at 60 °C is mixed with cold water at 10 °C. If it is desired that a steady stream of warm water at 45 °C be supplied, determine the ratio of the mass flow rates of the hot to cold water. Assume the heat losses from the mixing chamber to be negligible and the mixing to take place at a

Ans.

pressure of 0.12 MPa. (20 marks)

cen84959_ap01.qxd 4/27/05 2:59 PM Page 890

890 1 Thermodynamics

TABLE	A-4											
Satura	ted water-	Temperatu	re table									
			fic volume, m³/kg		internal e kj/kg			Enthalp kJ/kg	y,		<i>Entropy,</i> kJ/kg · K	
Temp.,	Sat. press.,	Sat. Iiquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	
T °C	P _{set} kPa	ν,	V ₈	u,	U _{fg}	<u>u</u>	h _f	h _{fg}	h _s	<u>s, </u>	S _{fg}	5 <u>8</u>
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83 913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.9487 8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.1895 8.0152 7.8466 7.5832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334 97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419 06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5,9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

370 21,044

373.95 22,064

0.002217 0.004953

0.003106

0.003106

1844.5

2015.7

Appendix 1

891

١

TABLE A	1–4												
Saturate	ed water-	Temperatur	e table (Cor	tinu <u>ed)</u>									
			Specific volume. m³/kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			<i>Entropy,</i> kJ/kg - К		
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, Vr	Sat. vapor,	Sat. liquid, u _f	Evap.,	Sat. vapor, u _g	Sat. liquid, h _f	Evap.,	Sat. vapor, h _g	Sat. liquid, s,	Evap.,	Sat. vapor, s _g	
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	4.0154 3.9318 3.8489 3.7664 3.6844	6.356 6.320 6.284	
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.6028 3.5216 3.4405 3.3596 3.2788	6.177 6.142 6.107	
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387 4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1979 3.1169 3.0358 2.9542 2.8723	6.001 5.966 5.930	
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7898 2.7066 2.6225 2.5374 2.4511	5.821 5.783 5.745	
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.3633 2.2737 2.1821 2.0881 1.9911	5.624 5.581 5.537	
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.8906 1.7857 1.6756 1.5585 1.4326	5.390 5.339 5.276	
355 360 365	17,570 18,666 19,822	0.001808 0.001895 0.002015	0.007872 0.006950 0.006009	1682.2 1726.2 1777.2	706.4 625.7 526.4	2388.6 2351.9 2303.6	1714.0 1761.5 1817.2	812.9 720.1 605,5	2526.9 2481.6 2422.7	3.8442 3.9165 4.0004	1.2942 1.1373 0.9489	5.05	

Source: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam JAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haer, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

0

2015.7

2084.3

385.6 2230.1 1891.2 443.1 2334.3 4.1119 0.6890 4.8009

0

2084.3 4,4070 0

4.4070

892 Thermodynamics

TABLE A- 5

Saturated	waterPressure to	abl	ę
	Specif	ic v	/(

Press.,			fic volume, n³/kg		Internal e kJ/kg			Enthalpy kJ/kg	;	Entropy, kJ/kg · K		
	Sat. temp.,	Sat. Iiquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
P kPa	T _{sat} °C	V _f	v _g	u _f	u _{ig}	u _g		h _{fg}	h _g	Sr	S _{fg}	Sg
1.0	6.97	0.001000		29.302	2355.2	2384.5	29.303	2484.4	2513.7		8.8690	
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7		8.6314	
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5		0.2606		
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0		0.3118		
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7		7.9176	
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384,36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105. 9 7	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3			
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.917
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738,1	1.7765	5.1191	6.895
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.856
500	151.83	0.001093	0.37483		1921.2	2560.7	640.09	2108.0	2748.1		4.9603	
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4		4.8916	
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2			
650	161.98	0.001104	0.29260		1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552		1865.6	2574.0	709.24		2765.7			

Appendix 1

893

TABLE A	5											
Saturate	d water	Pressure ta	ble (<i>Continu</i>	red)	٠							
			volume, ³ /kg	In	<i>Internal energy,</i> kJ/kg			Enthalpy kJ/kg		Entropy, kJ/kg · K		
Press., P kPa	Sat. temp., T _{set} °C	Sat. liquid, v,	Sat. vapor, ∨ _g	Sat. tiquid, u _f	Evap.,	Sat. vapor, u _g	Sat. liquid, h,	Evap., h _{fg}	Sat. vapor, h _a	Sat. liquid, s,	Evap.,	Sat. vapor, s _g
800 850 900 950 1000 1100 1200 1300 1400 1500 1750 2000 2250 3000	170.41 172.94 175.35 177.66 179.88 184.06 187.96 191.60 195.04 198.29 205.72 212.38 218.41 223.95 233.85	0.001115 0.001118 0.001121 0.001127 0.001127 0.001133 0.001138 0.001144 0.001149 0.001154 0.001166 0.001177 0.001187 0.001197	0.24035 0.22690 0.21489 0.20411 0.19436 0.17745 0.16326 0.15119 0.14078 0.13171 0.11344 0.099587 0.088717 0.079952 0.066667	719.97 731.00 741.55 751.67 761.39 779.78 796.96 813.10 828.35 842.82 876.12 906.12 933.54	1856.1 1846.9 1838.1 1829.6 1821.4 1805.7 1776.8 1763.4 1750.6 1720.6 1693.0 1667.3 1643.2 1598.5	2576.0 2577.9 2579.6 2581.3 2582.8 2585.5 2587.8 2589.9 2591.8 2593.4 2596.7 2599.1 2600.9 2600.9 2602.1 2603.2	720.87 731.95 742.56 752.74 762.51 781.03 798.33 814.59 829.96 844.55 878.16 908.47 936.21 961.87	2047.5 2038.8 2030.5 2022.4 2014.6 1999.6 1985.4 1971.9 1958.9 1946.4 1917.1 1889.8 1864.3 1840.1 1794.9	2768.3 2770.8 2773.0 2775.2 2777.1 2780.7 2783.8 2786.5 2788.9	2.0457 2.0705 2.0941 2.1166 2.1381 2.1785 2.2159 2.2508 2.2835 2.3143 2.3844 2.4467 2.5029	4.6160 4.5705 4.5273 4.4862 4.4470 4.3735 4.3058 4.2428 4.1840 4.1287 4.0033 3.8923 3.7926	6.6616 6.6409 6.6213 6.6027 6.5850 6.5520 6.5217 6.4936 6.4675 6.4430 6.3877 6.3390
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2802.7 2800.8 2794.2 2784.6 2772.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1		1649.9	1131.3 1067.0 1000.5 931.1 857.4	2662.7 2637.9 2610.8 2581.0 2547.7	3.5606 3.6232 3.6848 3.7461 3.8082	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8 0	2294.8 2233.5 2092.4	1776.8 1826.6 1888.0	777.8 689.2 585.5 450.4 161.5	2510.0 2466.0 2412.1 2338.4 2172.6 2084.3			5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

894 l Thermodynamics

	4-6											
	eated wate										_ _	
τ ℃	v m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg·K	ν m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · l
	-	0.01 MP				0.05 MP			$P = 0.10 \text{ MPa } (99.61^{\circ}\text{C})$			
	14.670							_		2505.6		
Sat.† 50	14.867	2437.2 2443.3	2583.9 2592.0	8.1488 8.1741	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.300
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.361
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.835
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.034
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.217
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.545
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132 2	3488.7	
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0		4.0279	3302 8	3705.6	
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7		4.4900	3480 4	3929.4	
800	49.527	3665.4		10.6312	9.9047	3665.2	4160.4		4.9519	3665.0	4160.2	
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8		10.1000	5.4137	3856.7	4398.0	
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2		10.3000	5.8755	4055.0	4642.6	
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9		10.4897	6.3372	42598		10.169
1200	67.989	4470.9		11.4132	13.5977	4470.8		10.6704	6.7988	4470 7		10.350
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687 2	5413.3	10.522
	P =	0.20 MP	a (120.2)	l°C)	P =	0.30 MPa	(133.52	°C)	₽ ==	0.40 MP	a (143.5	1°C)
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582		2724.9			2 2553.1	2738.1	
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	3 2564.4	2752.8	6.930
200	1.08049	2654.6	2870.7	7.5081	0.71643		2865.9			1 2647.2	2860.9	
250	1.19890			7.710C	0.79645		2 9 67.9			2726 4	2 96 4.5	
300	1.31623	2808.8	3072.1	7.8 9 41	0.87535	2807.0	3069.6			2805.1	3067.1	
400	1.54934		3277.0	8.2236	1.03155	2966.0	3275.5			2964 9	3273.9	
500	1.78142			8.5153	1.18672		3486.6			3129.8	3485.5	
600		3302.2		8.7793	1.34139		3704.0			3 3301 0	3703.3	
700	2.24434		3928.8	9.0221	1.49580	3479.5	3928.2			2 3479.0	3927.6	
800	2.47550			9.2479	1.65004		4159.3			3663.9	4158.9	
900	2,70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3			3855.7	4396.9	
1000	2.93755	4054.8		9.6599	1.95824		4642.0			4054.3	4641.7	
1100	3.16848			9.8497	2.11226	4259.4	4893.1	9.6624		4259.2	4892.9	
1200	3.39938			10.0304	2.26624	4470.3	5150.2			4470.2	5150.0	
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	_5413.0	10.0157	1.81516	4686.7	5412.8	9.882
		0.50 MF			P = 0.60 MPa (158.83°C)				P = 0.80 MPa (170.41°C)			
Sat.	0.37483			6.8207	0.31560	2566.8	2756.2			2576.0	2768.3	
200	0.42503			7.0610	0.35212	2639.4	2850.6			3 2631.1	2839.8	
250	0.47443			7.2725	0.39390	2721.2	2957.6			2715.9	2950.4	
300	0.52261			7.4614	0.43442		3062.0			2797.5	3056.9	
350	0.57015		3168.1	7.6346	0.47428		3166.1	7.5481		2 2878.6	3162.2	
400	0.61731		3272.4	7.7956	0.51374		3270.8			2960.2	3267.7	
500	0.71095	3129.0	3484.5	8.0893	0.59200		3483.4			2 3126.6	3481.3	
600	0.80409			8.3544	0.66976		3701.7			3298.7	3700.1	
700	0.89696		3927.0	8.5978	0.74725	3478.1	3926.4			1 3477.2	3925.3	
800	0.98966		4158.4	8.8240	0.82457		4157.9			3662.5	4157.0	
900	1.08227	3855.4		9.0362	0.90179		4396.2			3854.5	4395.5	
1000	1.17480			9.2364	0.97893		4641.1			4053.3	4640.5	
1100	1.26728			9.4263	1.05603	4258.8	4892.4			4258.3	4891.9	
1200	1.35972			9.6071	1.13309		5149.6			4469.4	5149.3	
1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.9076	4686.1	5412.2	9.562

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

Properties of saturated vapor at the specified pressure.

Appendix 1

895

ı

Superheat	ed wate	er (Contin	rued)									
T v		u	ħ	s	v	и	ħ	5	v	и	ħ	s
°C m	³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
_	P = 1.00 MPa (179.88°C)				Р	= 1.20 M	MPa (187	.96°C)	P =	1.40 MP	a (195 <u>.</u> 0	4°C)
	19437	2582.8	2777.1	6.5850	0.16326		2783.8		0.14078	2591.8	2788.9	
	20602	2622.3	2828.3	6.6956	0.16934		2816.1		0.14303	2602.7	2803.0	
	23275	2710.4	2943.1	6.9265	0.19241		2935.6	6.8313	0.16356	2698.9		6.7488
	25799	2793.7	3051.6	7.1246	0.21386		3046.3	7.0335	0.18233	2785.7		6.9553
	28250	2875.7	3158.2	7.3029	0.23455		3154.2	7.2139	0.20029	2869.7		7.1379
	30661	2957.9	3264.5	7.4670	0.25482		3261.3	7.3793	0.21782	2953.1	3258.1	
	35411 40111	3125.0 3297.5	3479.1 3698.6	7.7642 8.0311	0.29464		3477.0 3697.0	7.6779	0.25216 0.28597	3121.8 3295.1	3695.5	7.6047 7.8730
	44783	3476.3	3924 1	8.2755	0.33395		3922.9	7.9456	0.28597	3474.4		8.1183
	44763 49438	3661.7	4156.1	8.5024	0.37297		4155.2		0.35288	3660.3		8.3458
	54083	3853.9	4394.8	8.7150	0.45059		4394.0	8.6303	0.38614	3852.7		8.5587
	58721	4052.7	4640.0	8.9155	0.48928		4639.4		0.41933	4051.7		8.7595
	63354	4257.9	4891.4	9.1057	0.52792		4891.0	9.0212	0.45247	4257.0		8.9497
	67983	4469.0	5148.9	9.2866	0.56652		5148.5	9.2022	0.48558	4468.3	5148.1	-
	72610	4685.8	5411.9	9.4593	0.60509		5411.6	9.3750	0.51866	4685.1	5411.3	
_	ρ =	= 1.60 MF	Pa (201.3)	7°C)	Р	= 1.80 A	_	.11°C)		2.00 MP		
Sat. 0.1	12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795.	9 6.3775	0.09959	2599.1		6.3390
	13293	2645.1	2857.8	6.5537	0.11678	2637.0			0.10381	2628.5		6.4160
	14190	2692.9	2919.9	6.6753	0.12502	2686.7			0.11150	2680.3		6.5475
		2781.6	3035.4	6.8864	0.14025	2777.4			0.12551	2773.2		6.7684
	17459	2866.6	3146.0	7.0713	0.15460	2863.6			0.13860	2860.5		6.9583
400 0.3	19007	2950.8	3254.9	7.2394	0.16849	2948.3	3251.	6 7.1814	0.15122	2945.9	3248.4	7.1292
	22029	3120.1	3472.6	7.5410	0.19551	3118.5			0.17568	3116.9		7.4337
		3293.9	3693.9	7.8101	0.22200	3292.7			0.19962	3291.5		7.7043
	27941	3473.5	3920.5	8.0558	0.24822	3472.6			0.22326	3471.7		7.9509
	30865	3659.5	4153.4	8.2834	0.27426	3658.8			0.24674	3658.0		8.1791
	33780	3852.1	4392.6	8.4965	0.30020	3851.5			0.27012	3850.9		8.3925
	36687	4051.2	4638.2	8.6974	0.32606	4050.7			0.29342	4050.2		8.5936
	39589	4256.6	4890.0	8.8878	0.35188	4256.2			0.31667	4255.7		8.7842
	42488	4467.9	5147.7	9.0689	0.37766	4467.6			0.33989	4467.2		8.9654
1300 0.4	45383	4684.8	5410.9	9.2418	0.40341	4684.5	5410.	6 9.1872	0.36308	4684.2	5410.3	9.1384
_	$P = 2.50 \text{ MPa } (223.95^{\circ}\text{C})$					= 3.00 /			P = 3.50 MPa (242.56°C)			
	07995	2602.1	2801.9	6.2558	0.06667	2603.2	2803.	2 6.185 6	0.05706	2603.0	2802.7	6.1244
	08026	2604.8	2805.5	6.2629								
	08705	2663.3	2880.9	6.4107	0.07063	2644.7			0.05876	2624.0		6.1764
	09894	2762.2	3009.6	6.6459	0.08118	2750.8			0.06845	2738.8		6.4484
	10979	2852.5	3127.0	6.8424	0.09056	2844.4			0.07680	2836.0		6.6601
	12012 13015	2939.8 3026.2	3240.1 3351.6	7.0170 7.17 6 8	0.09938	2933.6 3021.2			0.08456 0.09198	2927.2 3016.1		2 6.8428 7.0074
	13999	3112.8	3462.8	7.3254	0.10789	3108.6			0.09198	3104.5		7.1593
	15931	3288.5	3686.8	7.5979	0.11020	3285.5			0.03313	3282.5		7.1393
	17835	3469.3	3915.2	7.8455	0.13245	3467.0			0.11323	3464.7		7.6855
	19722	3656.2	4149.2	8.0744	0.14841	3654.3			0.12702	3652.5		7.9156
	21597	3849.4	4389.3	8.2882	0.17988	3847.9			0.15410	3846.4		8.1304
	23466	4049.0	4635.6	8.4897	0.17568	4047.7			0.15410	4046.4		8.3324
	25330	4254.7	4887.9	8.6804	0.13343	4253.6			0.18087	4252.5		8.5236
	27190	4466.3	5146.0	8.8618	0.22658	4465.3			0.19420	4464.4		8.7053
	29048	4683.4	5409.5	9.0349	0.24207	4682.6			0.20750	4681.8		8.8786

 \oplus

896 | Thermodynamics

TABLE	A-6												
Superh	neated wat	er (<i>Conti</i>	nued)										
T	v	U	h	5	v	u	h	5	v	U	h	S	
°C	m³/kg	k.J/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ·	
		= 4.0 MF	Pa (250.35	(0°C)	Р	= <u>4.5 MP</u>	a (257.44	°C)	P = 5.0 MPa (263.94°C)				
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737	
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571	
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111	
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3		
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7		
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2		
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7		
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3	3666.9		
700	0.11098	3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3		
800	0.12292		4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9	4137.7		
900	0.13476	3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2		
1000	0.14653	4045.1	4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6	4628.3		
1100	0.15824	4251.4	4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3	4882.1		
1200 1300	0.16992 0.18157	4463.5 4680.9	5143.2 5407.2	8.6430 8.8164	0.15103 0.16140	4462.6 4680.1	5142.2	8.5880 8.7616	0.13592 0.14527	4461.6 4679.3	5141.3		
1300						5406.5							
		<u>P</u> = 6.0 MPa (275.59°C)				$P = 7.0 \text{ MPa} (285.83^{\circ}\text{C})$				$P = 8.0 \text{ MPa } (295.01^{\circ}\text{C})$			
Sat.	0.03245		2784.6	5.8902	0.027378		2772.6	5.8148	0.023525		2758.7	5.745	
300	0.03619		2885.6	6.0703	0.029492		2839.9	5.9337	0.024279		2786.5		
350	0.04225		3043.9	6.3357	0.035262		3016.9	6.2305	0.029975		2988.1		
400	0.04742		3178.3	6.5432	0.039958		3159.2	6.4502	0.034344		3139.4		
450	0.05217		3302.9	6.7219	0.044187		3288.3	6.6353	0.038194		3273.3		
500	0.05667		3423.1	6.8826	0.048157		3411.4	6.8000	0.041767		3399.5	_	
550	0.06102		3541.3	7.0308	0.051966		3531.6	6.9507	0.045172		3521.8		
600	0.06527	3267.2	3658.8	7.1693	0.055665		3650.6	7.0910	0.048463		3642.4		
700	0.07355	3453.0	3894.3	7.4247	0.062850		3888.3	7.3487	0.054829		3882.2		
800	0.08165		4133.1	7.6582	0.069856		4128.5	7.5836	0.061011		4123.8		
900	0.08964	3838.8	4376.6	7.8751	0.076750		4373.0	7.8014	0.067082		4369.3		
1000	0.09756	4040.1	4625.4	8.0786	0.083571		4622.5	8.0055	0.073079		4619.6		
1100	0.10543	4247.1	4879.7	8.2709	0.090341		4877.4	8.1982	0.079025		4875.0		
1200	0.11326	4459.8	5139.4	8.4534	0.097075		5137.4	8.3810	0.084934			8.318	
1300	0.12107	4677.7	5404.1	8.6273	0.103781		5402.6	8.5551	0.090817		5401.0		
	$P = 9.0 \text{ MPa} (303.35^{\circ}\text{C})$				$P = 10.0 \text{ MPa} (311.00^{\circ}\text{C})$			P = 12.5 MPa (327.81°C)					
Sat.	0.020489		2742.9	5.6791	0.018028		2725.5	5.6159	0.013496	2505.6	2674.3	5.4638	
325	0.023284		2857.1	5.8738	0.019877		2810.3	5.7596					
350	0.025816		2957.3	6.0380	0.022440		2924.0	5.9460	0.016138			5.7130	
400	0.029960		3118.8	6.2876	0.026436		3097.5	6.2141	0.020030		3040.0		
450	0.033524		3258.0	6.4872	0.029782		3242.4	6.4219	0.023019		3201.5		
500	0.036793		3387.4	6.6603	0.032811		3375.1	6.5995	0.025630		3343.6		
550	0.03988		3512.0	6.8164	0.035655		3502.0	6.7585	0.028033		3476.5		
600 650	0.042861		3634.1 3755.2	6.9605	0.038378		3625.8	6.9045	0.030306		3604.6		
700	0.045755		3/55.2 3876.1	7.0954	0.041018		3748.1	7.0408	0.032491		3730.2		
800	0.04858		4119.2	7.2229 7.4606	0.043597 0.048629		3870.0 4114.5	7.1693 7.4085	0.034612 0.038724		3854.6		
900	0.054137		4365.7	7.6802	0.048629	_	4114.5	7.4085 7.6290	0.038724		4102.8		
1000	0.059562		4616.7	7.8855	0.053547		4562.0	7.82 9 0 7.8349	0.042720		4352.9 4606.5		
1100	0.004919		4872.7	8.0791	0.058391		4870.3	7.83 49 8.0289	0.046641		4864.5		
1200	0.075492		5133.6	8.2625	0.067938		5131.7	8.2126	0.054342		5127.0		
1300	0.080733		5399.5	8.4371	0.007938		5398.0	8.3874	0.054342		5394.1		
-000	0.000700	U. E.J	0000.0	3.7571	3.0,2007	70, 1.3	5556.0	0.0074	0.030147	100 7.5	3034.1	0.201	