Bayesian Analysis of Moment Condition Models

Demetrius Rowland

Statistical Modeling I

26 November 2019

Contents

- Moment Condition Models
- Augmentation and Misspecification
- Bayesian Analysis under ETEL Framework
- Asymptotic Properties
- Model Selection
- Example

Moment Condition Models

Definition: A moment condition model is a set of conditions $\mathbb{E}^P[m{g}(m{X},m{ heta})] = m{0}$ where

P is an unknown probability distribution

 $oldsymbol{X} \in \mathbb{R}^{d_{oldsymbol{x}}}$ is a random vector generated from P

 $oldsymbol{ heta} \in \Theta \subset \mathbb{R}^p$ is a vector of the parameters of the distribution P

 $m{g}: \mathbb{R}^{d_{\mathsf{x}}} imes \Theta
ightarrow \mathbb{R}^d$ is a vector of known functions

- ▶ We also assume $d \ge p$.
- Example: The linear regression model can be indirectly described using

$$\mathbb{E}[y - \beta_0 - \beta_1 x] = 0$$

$$\mathbb{E}[(y - \beta_0 - \beta_1 x) * x] = 0$$

Augmentation and Misspecification

- In the case that the number of moment conditions is greater than the number of parameters (d > p), then it is possible that, under the true probability distribution P, not all conditions will be satisfied.
- ▶ To correct this, we introduce the parameters $\mathbf{V} \in \mathcal{B} \subset \mathbb{R}^d$, where the k^{th} component of \mathbf{V} is a free parameter if the k^{th} moment condition is violated and all other components are zero.
- We formulate the augmented conditions as

$$egin{aligned} \mathbb{E}\left[m{g}^A(m{X},m{ heta},m{V})
ight] &= \mathbf{0} \ \end{aligned}$$
 with $m{g}^A(m{X},m{ heta},m{V}) &= m{g}(m{X},m{ heta}) - m{V}$

If, under the true probability distribution P, there do not exist $(\theta, \mathbf{V}) \in (\Theta, \mathcal{B})$ that satisfy the augmented conditions, we say that the conditions are misspecified.

Bayesian Analysis under ETEL Framework

- Suppose that a set $X_{1:n}$ of random vectors X_i are generated independently and identically from an unknown probability distribution P with parameters θ .
- A bayesian framework for determining the distribution of the parameters θ , \mathbf{v} is given by

$$\pi(oldsymbol{ heta}, oldsymbol{v} | oldsymbol{X}_{1:n}) \propto \pi(oldsymbol{ heta}, oldsymbol{v}) * \mathbb{P}(oldsymbol{X}_{1:n} | oldsymbol{ heta}, oldsymbol{v})$$

where

 ${m v}$ is a vector of the nonzero components of ${m V}$ $\mathbb{P}({m X}_{1:n}|{m heta},{m v})$ is the Exponentially-Tilted Empirical Likelihood which will be defined shortly.

▶ The task is to choose a prior for θ , \mathbf{v} and update it using the above framework.

Bayesian Analysis under ETEL Framework

- $\blacktriangleright \text{ Let } p_i = \mathbb{P}(\boldsymbol{X} = \boldsymbol{X_i} | \boldsymbol{\theta}, \boldsymbol{v}).$
- The ETEL is constructed so as to minimize the KL-divergence between the probabilities assigned to each sample point $(p_1,...,p_n)$ and the empirical probabilities $(\frac{1}{n},...,\frac{1}{n})$ under the constraints that $p_1,...,p_n$ sum to 1 and the moment conditions are satisfied.
- This is a constrained optimization problem, which has solution

$$\begin{split} & \rho_i = \frac{\exp(\hat{\boldsymbol{\lambda}}(\boldsymbol{\theta}, \boldsymbol{v}) \cdot \boldsymbol{g}^A(\boldsymbol{x}_i, \boldsymbol{\theta}, \boldsymbol{v}))}{\sum_{j=1}^n \exp(\hat{\boldsymbol{\lambda}}(\boldsymbol{\theta}, \boldsymbol{v}) \cdot \boldsymbol{g}^A(\boldsymbol{x}_j, \boldsymbol{\theta}, \boldsymbol{v}))} \\ & \hat{\boldsymbol{\lambda}}(\boldsymbol{\theta}, \boldsymbol{v}) = \operatorname{arg\ min}_{\boldsymbol{\lambda} \in \mathbb{R}^d} \sum_{i=1}^n \exp(\boldsymbol{\lambda} \cdot \boldsymbol{g}^A(\boldsymbol{x}_i, \boldsymbol{\theta}, \boldsymbol{v})) \end{split}$$

which is obtained by forming the Lagrangian and solving the corresponding dual problem.

Asymptotic Properties

Let $\psi=(\theta,\mathbf{v})$. Then the Bayesian ETEL-framework has desirable asymptotic properties, outlined below.

Correctly Specified:

- Let ψ^* denote the true parameters for the population distribution P and let $\Delta = \mathbb{E}^P[\mathbf{g}^A(\mathbf{X}, \psi^*)\mathbf{g}^A(\mathbf{X}, \psi^*)^T]$, $\Gamma = \mathbb{E}^P[\frac{\partial}{\partial \psi}\mathbf{g}^A(\mathbf{X}, \psi^*)]$
- Then $\sqrt{n}(\psi \psi^*)$ converges in probability to a normal distribution with center $\mathbf{0}$ and covariance matrix $\Gamma^T \Delta^{-1} \Gamma$

Misspecified:

- Since there is no true population parameter ψ that satisfies the moment conditions, we define a pseudo-true value $\psi = \psi_0$ for which KL-divergence between the probability $Q(\mathbf{X}|\psi)$ and the population distribution P is minimized.
- ► Then $\sqrt{n}(\psi \psi_0)$ converges in probability to a normal distribution with finite mean and variance.

Model Selection

- Consider a set of moment condition models $\mathbb{E}[\mathbf{g}^{\ell}(\mathbf{X}, \mathbf{\theta}^{\ell})] = \mathbf{0}$ that describe a data set $\mathbf{X}_{1:n}$ generated from a distribution P, with $\ell = 1, 2, ...$
- The task is to develop criteria for selecting the best model and choose accordingly.
- ▶ This is accomplished by setting a prior for each ψ_{ℓ} , forming the marginal likelihood $m(\boldsymbol{X}_{1:n}|M_{\ell})$ and choosing the model with the highest marginal likelihood.
- With some work, we can guarantee the following results:
 - If all models are correctly specified, the model with the maximum number of overidentifying moment conditions is chosen.
 - If all models are misspecified, the model that gives a probability distribution Q for \boldsymbol{X} for which $D_{KL}(P||Q)$ is minimized is chosen.
 - ► If some models are correctly specified and some are not, the model that is correctly specified and has the maximum number of overidentifying moment conditions is chosen.

Example

IV Regression:

- ► Consider a model of the form $y = \alpha + \beta x + \delta w + \epsilon$, $\mathbb{E}[\epsilon] = 0$
- Suppose that there exist instrumental variables z_1 and z_2 uncorrelated with ϵ but correlated with x.
- Then we generate n data points of the form (y, x, z_1, z_2) with $y = 1 + .5x + .7w + \epsilon$ $x = z_1 + z_2 + w + u$ $z_i \sim \mathcal{N}(0, .5)$ $w \sim \mathsf{Unif}(0, 1)$ (ϵ, u) are drawn from a Gaussian copula with covariance diagonal [1, 1] and non-diagonal entry .7
- ▶ Then implementing the Bayesian-ETEL framework on this generated data for n = 200 and n = 2000 yields the following posteriors for β given a prior $\beta \sim t_{2.5}(0,5^2)$.

Example

