

SEQUENCE LISTING

<110> Kilian, Andrzej
Bowntell, David

<120> VERTEBRATE TELOMERASE GENES AND PROTEINS AND USES
THEREOF

<130> 082447-0104

<140> 09/502,424
<141> 2000-02-11

<160> 155

<170> PatentIn ver. 2.0

<210> 1

<211> 3964

<212> DNA

<213> Homo sapiens

D10
<400> 1
atgcgcgctg ctcccgctg ccgagcgtg cgcccccgc tgcgcagcca ctaccgcgag 60
gtgtgcggc tggccacgtt cgtgcggcgc ctggggcccc agggctggc gctggcag 120
cgcgggacc cggcggttt cgcgcgctg gtggcccaagt gcctgggtg cgtccctgg 180
gacgcacggc cgccccccgc cgccccctcc ttccggccagg tgccctgcgt gaaggagctg 240
gtggcccgag tgctgcagag gctgtgcag cgcggggc ccccccggagg cttcacccac cagcgtgcgc 300
ttcgcgtgc tggacggggc gaccgcga ctgcgggggca agaacgtgt ggccttcggc 360
actacactgc ccaacacggt gacgcacgcg cttccgggggca cttccgggggca cgcgtgtgg 420
ttgcgcgcg tgggcacga cgtgtgtt caccgtgtt ggcgcgtt ggggtgtgt 480
ctggtggtc ccagctgcgc ctaccagggtg tgccgtgtt caccgtgtt ggcgcgtt ggtatgcgaa 540
gccaactcagg cccggccccc gccacacggc actggacccc cgctgtacca gctcggcgct 600
cgggcctgga accatagcg tggaggaggcc ggggtcccccc tgggcctgcc agccccgggt 660
gcgaggaggc gcgggggcag tccagccga agtgcgttcc tgcccaagag gcccaggcg 720
ggcgcgtgcc accatggcg gccgcgcggc gttggggcgg gtcctgggc ccacccgggc 780
aggacgcgtg accgcgtgttcc tttgggggg tggctctctt ggcacgcggc actcccaccc atccgtggc 840
cgccagcaccc acgcggggccc cccatccaca tgcgcgcac tccctctact caccgtccctg ggacacgcct 900
tgcccccgtt cttctctact cagctctctg tggctctctt ggcacgcggc actcccaccc atccgtggc 960
ctgcggccct ctttctact cagctctctg tggatgcgg cccctgttcc tggatgcgg tgactggcgc 1020
gtggagacca ttttctggg ttcaggccc gcaaattgcgg cccctgttcc tggatgcgg tgactggcgc 1080
cgccctgc cctacggggt gctctcaag acgcactgcc tgactggcgc 1140
ccagcagccg gtgtctgtc gtcctcaag cccctgttcc tggatgcgg tgactggcgc 1200
gaggacacag accccgtcg ctcggagaag cccctgggt ctgtgcgc agcacagccg cccctggcag 1260
gtgtacggct tcgtcgccg ctcggagaag aacaggcttcc tggatgcgg cccctggcag 1320
aggcacaacg aacccgcctt ctcggagaag gtcacgttcc aacaggcttcc tggatgcgg cccctggcag 1380
cgcaggagcc ctcgtcgccg gtcacgttcc aacaggcttcc tggatgcgg cccctggcag 1440
ctggccaagt tcctgcactg gtcacgttcc aacaggcttcc tggatgcgg tggatgcgg tggatgcgg 1500
tggagcaagt tgaaaagcat tggaaatcaga ctcggagaag aacaggcttcc tggatgcgg tggatgcgg 1560
ctgtcggaag ctagggctcg gtcacgttcc aacaggcttcc tggatgcgg tggatgcgg 1620
ctccgcctca tccccaagcc tgacgggctg cggccgattg tggatgcgg tggatgcgg 1680
ggagccagaa ctgtcccgag agaaaagagg gccgagcgtc tggatgcgg tggatgcgg 1740
ctgttcagcg tgctcaacta ctcggagaag aacaggcttcc tggatgcgg tggatgcgg 1800
ctgggcctgg acgatatcca ctcggcctgg ctcggcctgg tggatgcgg tggatgcgg 1860
ctgggcctgg acgatatcca ctcggcctgg ctcggcctgg tggatgcgg tggatgcgg 1920
ctgggcctgg acgatatcca ctcggcctgg ctcggcctgg tggatgcgg tggatgcgg 1980
ctgggcctgg acgatatcca ctcggcctgg ctcggcctgg tggatgcgg tggatgcgg 2040
ctgggcctgg acgatatcca ctcggcctgg ctcggcctgg tggatgcgg tggatgcgg 2100

D10

gaccgcgcgc ctgagctgt a ctttgtcaag gtggatgtga cgggcgcgt a cgacaccatc 2160
ccccaggaca ggctcacgga ggtcatcgcc agcatcatca aaccocagaa cacgtactgc 2220
gtgcgtcggt atgccgtgg ccagaaggcc gcccattggc acgtccgcaa ggccttcaag 2280
agccacgtct ctacccgtac agacccgtcc agcgtacatgc gacagtttgt ggctcacctg 2340
caggagacca gcccgtgag ggtatgcgtc gtcatacgagc agagctcctc cctgaatgag 2400
gccagcagt gcctcttgcg cgtcttccatgcgatgt gccaccacgc cgtgcgcac 2460
aggggcaagt cctacgttcca gtgccagggg atcccgagg gtcctatctt ctccacgctg 2520
ctctgcaccc tttgtgtacgg cgacatggag aacaagctgt ttgcgggat tcggcgggac 2580
gggctgtcc tgcgttttgtt ggtatgttgc ttgttgtga caccctcacctt caccacgcg 2640
aaaaccttcc tcaggaccctt ggtccgagggt gtccttgatgt atggctgcgt ggtgaacttg 2700
cggaagacag tggtaactt ccctgttagaa gacgaggccc tgggtggcac ggtttttgtt 2760
cagatgcggg cccacggcctt atccccctgg tgccgttgc tgctggatacc cccgaccctg 2820
gagggtcaga ggcactactc cagctatgcc cggaccccttca tcagagccag ttcacccctt 2880
aaccgcgcgt tcaaggctgg gagaaacatg cgtcgcaaaac tctttgggtt cttgcggctg 2940
aagtgtcaca gcctgtttctt ggatttgcag gtgaacagcc tccagacggt gtgcaccaac 3000
atctacaaga tccctctgtc gcaggcgtac aggtttcacg catgtgtgt gcagctccca 3060
tttcatcagc aagtttggaa gaaccccaaca ttttcctgc gctgtatctc tgacacggcc 3120
tccctctgtc actccatctt gaaagccaag aacgcaggga tgtcgttggg ggccaaggggc 3180
gccgcgcgcctt ctctgccttc cggccgtc cagtggtgtt gccaaccaaggc attcctgtct 3240
aagctgactc gacaccgtgtt caccctacgtg ccactcctgg ggtcacttcag gacagcccaag 3300
acgcagctga gtcggaaagctt cccggggacg acgctgactg ccctggagggc cgcagccaaac 3360
ccggcactgc cctcagactt caagaccatc ctggactgtatggccaccgc ccacagccag 3420
gccgagagca gacaccagca gcccgttac gcccgtctt acgtcccaagg gaggggagggg 3480
cggcccacac ccaggcccgc accgctggga gtcgtaggcc tgagtgtgtt tttggccgag 3540
gcctgtcatgtt ccggctgaag gctgagtgcc cggctgaggc ctgagcgtt gtcagccaa 3600
gggctgagtg tccagcacac ctggcttcaacttccca caggctggcg ctcggctcca 3660
ccccaggggcc agctttctt caccaggagc ccggcttcca ctccccacat agaaatagtc 3720
catccccaga ttcgcccattt ttcacccctc gcccgttccctt ctttgcctt ccaccccaac 3780
catccaggtt gagacccttga gaaggaccctt gggagctctg ggaatttggaa gtgaccaaaag 3840
gtgtgcctt tacacaggcg aggacccttc acctggatgg ggtccctgtt ggtcaaaattt 3900
ggggggaggt gctgtggag taaaatactg aatatatgat ttgttcaactt ttgaaaaaaaaa 3960
aaaaa 3964

<210> 2
<211> 1132
<212> PRT
<213> Homo sapiens

<400> 2
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro

100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val
130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175

Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg
225 230 235 240

D10
Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255

Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335

Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350

Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
370 375 380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
385 390 395 400

Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
405 410 415

Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
420 425 430

Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu
435 440 445

Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
450 455 460

Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
465 470 475 480

Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
485 490 495

Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
500 505 510

Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
515 520 525

Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
530 535 540

D10
Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
545 550 555 560

Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
565 570 575

Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
580 585 590

Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
595 600 605

His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
610 615 620

Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
625 630 635 640

Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
645 650 655

Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
660 665 670

Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
675 680 685

Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro
690 695 700

Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile
705 710 715 720

Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln
725 730 735

Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His
740 745 750

Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr Asp
755 760 765

Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr Ser
770 775 780

Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu
785 790 795 800

Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His His
805 810 815

Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile Pro
820 825 830

Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp
835 840 845

D1D Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu Leu
850 855 860

Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala
865 870 875 880

Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys
885 890 895

Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu
900 905 910

Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe
915 920 925

Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser
930 935 940

Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe
945 950 955 960

Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly
965 970 975

Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn
980 985 990

Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Leu Gln
995 1000 1005

Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln
1010 1015 1020

Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala

1025	1030	1035	1040
Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser Leu			
1045		1050	1055
Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln Trp			
1060		1065	1070
Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val Thr			
1075	1080	1085	
Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln Leu Ser			
1090	1095	1100	
Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala Ala Ala Asn			
1105	1110	1115	1120
Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp			
1125		1130	

<210> 3
 <211> 1031
 <212> PRT
 <213> Euplotes aediculatus

D/D

<400> 3			
Met Glu Val Asp Val Asp Asn Gln Ala Asp Asn His Gly Ile His Ser			
1	5	10	15
Ala Leu Lys Thr Cys Glu Glu Ile Lys Glu Ala Lys Thr Leu Tyr Ser			
20	25	30	
Trp Ile Gln Lys Val Ile Arg Cys Arg Asn Gln Ser Gln Ser His Tyr			
35	40	45	
Lys Asp Leu Glu Asp Ile Lys Ile Phe Ala Gln Thr Asn Ile Val Ala			
50	55	60	
Thr Pro Arg Asp Tyr Asn Glu Glu Asp Phe Lys Val Ile Ala Arg Lys			
65	70	75	80
Glu Val Phe Ser Thr Gly Leu Met Ile Glu Leu Ile Asp Lys Cys Leu			
85	90	95	
Val Glu Leu Leu Ser Ser Asp Val Ser Asp Arg Gln Lys Leu Gln			
100	105	110	
Cys Phe Gly Phe Gln Leu Lys Gly Asn Gln Leu Ala Lys Thr His Leu			
115	120	125	
Leu Thr Ala Leu Ser Thr Gln Lys Gln Tyr Phe Phe Gln Asp Glu Trp			
130	135	140	
Asn Gln Val Arg Ala Met Ile Gly Asn Glu Leu Phe Arg His Leu Tyr			
145	150	155	160
Thr Lys Tyr Leu Ile Phe Gln Arg Thr Ser Glu Gly Thr Leu Val Gln			

165	170	175
Phe Cys Gly Asn Asn Val Phe Asp His Leu Lys Val Asn Asp Lys Phe 180	185	190
Asp Lys Lys Gln Lys Gly Gly Ala Ala Asp Met Asn Glu Pro Arg Cys 195	200	205
Cys Ser Thr Cys Lys Tyr Asn Val Lys Asn Glu Lys Asp His Phe Leu 210	215	220
Asn Asn Ile Asn Val Pro Asn Trp Asn Asn Met Lys Ser Arg Thr Arg 225	230	235
Ile Phe Tyr Cys Thr His Phe Asn Arg Asn Asn Gln Phe Phe Lys Lys 245	250	255
His Glu Phe Val Ser Asn Lys Asn Asn Ile Ser Ala Met Asp Arg Ala 260	265	270
Gln Thr Ile Phe Thr Asn Ile Phe Arg Phe Asn Arg Ile Arg Lys Lys 275	280	285
<i>D10</i>		
Leu Lys Asp Lys Val Ile Glu Lys Ile Ala Tyr Met Leu Glu Lys Val 290	295	300
Lys Asp Phe Asn Phe Asn Tyr Tyr Leu Thr Lys Ser Cys Pro Leu Pro 305	310	315
Glu Asn Trp Arg Glu Arg Lys Gln Lys Ile Glu Asn Leu Ile Asn Lys 325	330	335
Thr Arg Glu Glu Lys Ser Lys Tyr Tyr Glu Glu Leu Phe Ser Tyr Thr 340	345	350
Thr Asp Asn Lys Cys Val Thr Gln Phe Ile Asn Glu Phe Phe Tyr Asn 355	360	365
Ile Leu Pro Lys Asp Phe Leu Thr Gly Arg Asn Arg Lys Asn Phe Gln 370	375	380
Lys Lys Val Lys Lys Tyr Val Glu Leu Asn Lys His Glu Leu Ile His 385	390	395
Lys Asn Leu Leu Glu Lys Ile Asn Thr Arg Glu Ile Ser Trp Met 405	410	415
Gln Val Glu Thr Ser Ala Lys His Phe Tyr Tyr Phe Asp His Glu Asn 420	425	430
Ile Tyr Val Leu Trp Lys Leu Leu Arg Trp Ile Phe Glu Asp Leu Val 435	440	445
Val Ser Leu Ile Arg Cys Phe Phe Tyr Val Thr Glu Gln Gln Lys Ser 450	455	460
Tyr Ser Lys Thr Tyr Tyr Arg Lys Asn Ile Trp Asp Val Ile Met 465	470	475
		480

Lys Met Ser Ile Ala Asp Leu Lys Lys Glu Thr Leu Ala Glu Val Gln
485 490 495

Glu Lys Glu Val Glu Glu Trp Lys Lys Ser Leu Gly Phe Ala Pro Gly
500 505 510

Lys Leu Arg Leu Ile Pro Lys Lys Thr Thr Phe Arg Pro Ile Met Thr
515 520 525

Phe Asn Lys Lys Ile Val Asn Ser Asp Arg Lys Thr Thr Lys Leu Thr
530 535 540

Thr Asn Thr Lys Leu Leu Asn Ser His Leu Met Leu Lys Thr Leu Lys
545 550 555 560

Asn Arg Met Phe Lys Asp Pro Phe Gly Phe Ala Val Phe Asn Tyr Asp
565 570 575

Asp Val Met Lys Lys Tyr Glu Glu Phe Val Cys Lys Trp Lys Gln Val
580 585 590

Gly Gln Pro Lys Leu Phe Phe Ala Thr Met Asp Ile Glu Lys Cys Tyr
595 600 605

D/0

Asp Ser Val Asn Arg Glu Lys Leu Ser Thr Phe Leu Lys Thr Thr Lys
610 615 620

Leu Leu Ser Ser Asp Phe Trp Ile Met Thr Ala Gln Ile Leu Lys Arg
625 630 635 640

Lys Asn Asn Ile Val Ile Asp Ser Lys Asn Phe Arg Lys Lys Glu Met
645 650 655

Lys Asp Tyr Phe Arg Gln Lys Phe Gln Lys Ile Ala Leu Glu Gly Gly
660 665 670

Gln Tyr Pro Thr Leu Phe Ser Val Leu Glu Asn Glu Gln Asn Asp Leu
675 680 685

Asn Ala Lys Lys Thr Leu Ile Val Glu Ala Lys Gln Arg Asn Tyr Phe
690 695 700

Lys Lys Asp Asn Leu Leu Gln Pro Val Ile Asn Ile Cys Gln Tyr Asn
705 710 715 720

Tyr Ile Asn Phe Asn Gly Lys Phe Tyr Lys Gln Thr Lys Gly Ile Pro
725 730 735

Gln Gly Leu Cys Val Ser Ser Ile Leu Ser Ser Phe Tyr Tyr Ala Thr
740 745 750

Leu Glu Glu Ser Ser Leu Gly Phe Leu Arg Asp Glu Ser Met Asn Pro
755 760 765

Glu Asn Pro Asn Val Asn Leu Leu Met Arg Leu Thr Asp Asp Tyr Leu
770 775 780

Leu Ile Thr Thr Gln Glu Asn Asn Ala Val Leu Phe Ile Glu Lys Leu
785 790 795 800

Ile Asn Val Ser Arg Glu Asn Gly Phe Lys Phe Asn Met Lys Lys Leu
805 810 815

Gln Thr Ser Phe Pro Leu Ser Pro Ser Lys Phe Ala Lys Tyr Gly Met
820 825 830

Asp Ser Val Glu Glu Gln Asn Ile Val Gln Asp Tyr Cys Asp Trp Ile
835 840 845

Gly Ile Ser Ile Asp Met Lys Thr Leu Ala Leu Met Pro Asn Ile Asn
850 855 860

Leu Arg Ile Glu Gly Ile Leu Cys Thr Leu Asn Leu Asn Met Gln Thr
865 870 875 880

Lys Lys Ala Ser Met Trp Leu Lys Lys Leu Lys Ser Phe Leu Met
885 890 895

Asn Asn Ile Thr His Tyr Phe Arg Lys Thr Ile Thr Thr Glu Asp Phe
900 905 910

D10
Ala Asn Lys Thr Leu Asn Lys Leu Phe Ile Ser Gly Gly Tyr Lys Tyr
915 920 925

Met Gln Cys Ala Lys Glu Tyr Lys Asp His Phe Lys Lys Asn Leu Ala
930 935 940

Met Ser Ser Met Ile Asp Leu Glu Val Ser Lys Ile Ile Tyr Ser Val
945 950 955 960

Thr Arg Ala Phe Phe Lys Tyr Leu Val Cys Asn Ile Lys Asp Thr Ile
965 970 975

Phe Gly Glu Glu His Tyr Pro Asp Phe Phe Leu Ser Thr Leu Lys His
980 985 990

Phe Ile Glu Ile Phe Ser Thr Lys Lys Tyr Ile Phe Asn Arg Val Cys
995 1000 1005

Met Ile Leu Lys Ala Lys Glu Ala Lys Leu Lys Ser Asp Gln Cys Gln
1010 1015 1020

Ser Leu Ile Gln Tyr Asp Ala
1025 1030

<210> 4
<211> 1104
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 4
Arg Arg Leu Gly Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro
1 5 10 15

Ala Ala Phe Arg Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp
20 25 30

Asp Ala Arg Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys
35 40 45

Leu Lys Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly
50 55 60

Ala Lys Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg
65 70 75 80

Gly Gly Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro
85 90 95

Asn Thr Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu
100 105 110

Leu Arg Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys
115 120 125

Ala Leu Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly
130 135 140

D/D
Pro Pro Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro
145 150 155 160

His Ala Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn
165 170 175

His Ser Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly
180 185 190

Ala Arg Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys
195 200 205

Arg Pro Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly
210 215 220

Gln Gly Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg
225 230 235 240

Gly Phe Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser
245 250 255

Leu Glu Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly
260 265 270

Arg Gln His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro
275 280 285

Trp Asp Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu
290 295 300

Tyr Ser Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser
305 310 315 320

Ser Leu Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile

325	330	335
Phe Leu Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro 340	345	350
Arg Leu Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu 355	360	365
Leu Gly Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His 370	375	380
Cys Pro Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg 385	390	395
Glu Lys Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp 405	410	415
Pro Arg Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln 420	425	430
Val Tyr Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly 435	440	445
Leu Trp Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys 450	455	460
D/D Lys Phe Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu 465	470	475
Thr Trp Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro 485	490	495
Gly Val Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile 500	505	510
Leu Ala Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu 515	520	525
Leu Arg Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg 530	535	540
Leu Phe Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly 545	550	555
Ile Arg Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala 565	570	575
Glu Val Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg 580	585	590
Leu Arg Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met 595	600	605
Asp Tyr Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu 610	615	620
Arg Leu Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu 625	630	635
		640

Arg Ala Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp
 645 650 655
 Asp Ile His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln
 660 665 670
 Asp Pro Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala
 675 680 685
 Tyr Asp Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile
 690 695 700
 Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln
 705 710 715 720
 Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser
 725 730 735
 Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu
 740 745 750
 Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser
 755 760 765
D10
 Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe
 770 775 780
 Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys
 785 790 795 800
 Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu
 805 810 815
 Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp
 820 825 830
 Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His
 835 840 845
 Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro
 850 855 860
 Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro
 865 870 875 880
 Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala
 885 890 895
 His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu
 900 905 910
 Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala
 915 920 925
 Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg
 930 935 940

Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp
945 950 955 960

Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile
965 970 975

Leu Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro
980 985 990

Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile
995 1000 1005

Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala
1010 1015 1020

Gly Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu
1025 1030 1035 1040

Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg
1045 1050 1055

His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln
1060 1065 1070

Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu
1075 1080 1085

DIO
Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp
1090 1095 1100

<210> 5
<211> 884
<212> PRT
<213> Homo sapiens

<400> 5
Met Lys Ile Leu Phe Glu Phe Ile Gln Asp Lys Leu Asp Ile Asp Leu
1 5 10 15

Gln Thr Asn Ser Thr Tyr Lys Glu Asn Leu Lys Cys Gly His Phe Asn
20 25 30

Gly Leu Asp Glu Ile Leu Thr Thr Cys Phe Ala Leu Pro Asn Ser Arg
35 40 45

Lys Ile Ala Leu Pro Cys Leu Pro Gly Asp Leu Ser His Lys Ala Val
50 55 60

Ile Asp His Cys Ile Ile Tyr Leu Leu Thr Gly Glu Leu Tyr Asn Asn
65 70 75 80

Val Leu Thr Phe Gly Tyr Lys Ile Ala Arg Asn Glu Asp Val Asn Asn
85 90 95

Ser Leu Phe Cys His Ser Ala Asn Val Asn Val Thr Leu Leu Lys Gly
100 105 110

Ala Ala Trp Lys Met Phe His Ser Leu Val Gly Thr Tyr Ala Phe Val
115 120 125

Asp Leu Leu Ile Asn Tyr Thr Val Ile Gln Phe Asn Gly Gln Phe Phe
130 135 140

Thr Gln Ile Val Gly Asn Arg Cys Asn Glu Pro His Leu Pro Pro Lys
145 150 155 160

Trp Val Gln Arg Ser Ser Ser Ser Ala Thr Ala Ala Gln Ile Lys
165 170 175

Gln Leu Thr Glu Pro Val Thr Asn Lys Gln Phe Leu His Lys Leu Asn
180 185 190

Ile Asn Ser Ser Ser Phe Phe Pro Tyr Ser Lys Ile Leu Pro Ser Ser
195 200 205

Ser Ser Ile Lys Lys Leu Thr Asp Leu Arg Glu Ala Ile Phe Pro Thr
210 215 220

D/D

Asn Leu Val Lys Ile Pro Gln Arg Leu Lys Val Arg Ile Asn Leu Thr
225 230 235 240

Leu Gln Lys Leu Leu Lys Arg His Lys Arg Leu Asn Tyr Val Ser Ile
245 250 255

Leu Asn Ser Ile Cys Pro Pro Leu Glu Gly Thr Val Leu Asp Leu Ser
260 265 270

His Leu Ser Arg Gln Ser Pro Lys Glu Arg Val Leu Lys Phe Ile Ile
275 280 285

Val Ile Leu Gln Lys Leu Leu Pro Gln Glu Met Phe Gly Ser Lys Lys
290 295 300

Asn Lys Gly Lys Ile Ile Lys Asn Leu Asn Leu Leu Ser Leu Pro
305 310 315 320

Leu Asn Gly Tyr Leu Pro Phe Asp Ser Leu Leu Lys Lys Leu Arg Leu
325 330 335

Lys Asp Phe Arg Trp Leu Phe Ile Ser Asp Ile Trp Phe Thr Lys His
340 345 350

Asn Phe Glu Asn Leu Asn Gln Leu Ala Ile Cys Phe Ile Ser Trp Leu
355 360 365

Phe Arg Gln Leu Ile Pro Lys Ile Ile Gln Thr Phe Phe Tyr Cys Thr
370 375 380

Glu Ile Ser Ser Thr Val Thr Ile Val Tyr Phe Arg His Asp Thr Trp
385 390 395 400

Asn Lys Leu Ile Thr Pro Phe Ile Val Glu Tyr Phe Lys Thr Tyr Leu

405 410 415

Val Glu Asn Asn Val Cys Arg Asn His Asn Ser Tyr Thr Leu Ser Asn
420 425 430

Phe Asn His Ser Lys Met Arg Ile Ile Pro Lys Lys Ser Asn Asn Glu
435 440 445

Phe Arg Ile Ile Ala Ile Pro Cys Arg Gly Ala Asp Glu Glu Glu Phe
450 455 460

Thr Ile Tyr Lys Glu Asn His Lys Asn Ala Ile Gln Pro Thr Gln Lys
465 470 475 480

Ile Leu Glu Tyr Leu Arg Asn Lys Arg Pro Thr Ser Phe Thr Lys Ile
485 490 495

Tyr Ser Pro Thr Gln Ile Ala Asp Arg Ile Lys Glu Phe Lys Gln Arg
500 505 510

Leu Leu Lys Lys Phe Asn Asn Val Leu Pro Glu Leu Tyr Phe Met Lys
515 520 525

Phe Asp Val Lys Ser Cys Tyr Asp Ser Ile Pro Arg Met Glu Cys Met
530 535 540

D10
Arg Ile Leu Lys Asp Ala Leu Lys Asn Glu Asn Gly Phe Phe Val Arg
545 550 555 560

Ser Gln Tyr Phe Phe Asn Thr Asn Thr Gly Val Leu Lys Leu Phe Asn
565 570 575

Val Val Asn Ala Ser Arg Val Pro Lys Pro Tyr Glu Leu Tyr Ile Asp
580 585 590

Asn Val Arg Thr Val His Leu Ser Asn Gln Asp Val Ile Asn Val Val
595 600 605

Glu Met Glu Ile Phe Lys Thr Ala Leu Trp Val Glu Asp Lys Cys Tyr
610 615 620

Ile Arg Glu Asp Gly Leu Phe Gln Gly Ser Ser Leu Ser Ala Pro Ile
625 630 635 640

Val Asp Leu Val Tyr Asp Asp Leu Leu Glu Phe Tyr Ser Glu Phe Lys
645 650 655

Ala Ser Pro Ser Gln Asp Thr Leu Ile Leu Lys Leu Ala Asp Asp Phe
660 665 670

Leu Ile Ile Ser Thr Asp Gln Gln Gln Val Ile Asn Ile Lys Lys Leu
675 680 685

Ala Met Gly Gly Phe Gln Lys Tyr Asn Ala Lys Ala Asn Arg Asp Lys
690 695 700

Ile Leu Ala Val Ser Ser Gln Ser Asp Asp Asp Thr Val Ile Gln Phe
705 710 715 720

Cys Ala Met His Ile Phe Val Lys Glu Leu Glu Val Trp Lys His Ser
725 730 735

Ser Thr Met Asn Asn Phe His Ile Arg Ser Lys Ser Ser Lys Gly Ile
740 745 750

Phe Arg Ser Leu Ile Ala Leu Phe Asn Thr Arg Ile Ser Tyr Lys Thr
755 760 765

Ile Asp Thr Asn Leu Asn Ser Thr Asn Thr Val Leu Met Gln Ile Asp
770 775 780

His Val Val Lys Asn Ile Ser Glu Cys Tyr Lys Ser Ala Phe Lys Asp
785 790 795 800

Leu Ser Ile Asn Val Thr Gln Asn Met Gln Phe His Ser Phe Leu Gln
805 810 815

Arg Ile Ile Glu Met Thr Val Ser Gly Cys Pro Ile Thr Lys Cys Asp
820 825 830

Pro Leu Ile Glu Tyr Glu Val Arg Phe Thr Ile Leu Asn Gly Phe Leu
835 840 845

Glu Ser Leu Ser Ser Asn Thr Ser Lys Phe Lys Asp Asn Ile Ile Leu
850 855 860

Leu Arg Lys Glu Ile Gln His Leu Gln Ala Tyr Ile Tyr Ile Tyr Ile
865 870 875 880

His Ile Val Asn

>D10
<210> 6
<211> 13
<212> DNA
<213> Homo sapiens

<220>
<221> intron
<222> (8)..(13)
<223> First six bases of Y intron

<400> 6
ccaggtggc ctc 13

<210> 7
<211> 14
<212> DNA
<213> Homo sapiens

<220>
<221> intron
<222> (1)..(7)
<223> Last seven bases of intron Y

<400> 7
gcaggtgtcc tgcc 14

<210> 8
<211> 14
<212> DNA
<213> Homo sapiens

<220>
<221> intron
<222> (8)..(14)
<223> First 7 bases of Intron 1

<400> 8
aaagagggtg gctg 14

<210> 9
<211> 14
<212> DNA
<213> Homo sapiens

<220>
<221> intron
<222> (1)..(7)
<223> Last 7 bases of Intron 1

D10
<400> 9
aacagaagcc gagc 14

<210> 10
<211> 14
<212> DNA
<213> Homo sapiens

<220>
<221> intron
<222> (8)..(14)
<223> First 7 bases of Intron Alpha

<400> 10
tgtcaagggtg gatg 14

<210> 11
<211> 14
<212> DNA
<213> Homo sapiens

<220>
<221> intron
<222> (1)..(7)
<223> Last 7 bases of Intron Alpha

<400> 11
cccccaggac aggc 14

<210> 12
<211> 14
<212> DNA

<213> Homo sapiens

<220>

<221> intron

<222> (8)..(14)

<223> First 7 bases of Intron Beta

<400> 12
gagccacgtc tcta 14

<210> 13

<211> 14

<212> DNA

<213> Homo sapiens

<220>

<221> intron

<222> (1)..(7)

<223> Last 7 bases of Intron Beta

<400> 13
ggggcaagtc ctac 14

<210> 14

<211> 14

<212> DNA

D/D <213> Homo sapiens

<220>

<221> intron

<222> (8)..(14)

<223> First 7 base of Intron 2

<400> 14
actccaggta agcg 14

<210> 15

<211> 14

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (1)..(7)

<223> Wherein N is any nucleotide

<220>

<221> intron

<222> (1)..(7)

<223> Last 7 bases of Intron 2

<400> 15
nnnnnnnctta tgcc 14

<210> 16

<211> 173

<212> DNA

<213> Homo sapiens

>10
<220>
<221> intron
<222> (8)..(166)
<223> Full Sequence of Intron 3

<400> 16
aacgcagccg aagaaaacat ttctgtcgtg actcctgcgg tgcttgggtc gggacagcca 60
gagatggagc caccggcgac accgtcgggt gtgggcagct ttccgggtgc tcctggagg 120
ggagtgggc tggcctgtg actcctcagc ctctgtttc ccccaggat gtc 173

<210> 17
<211> 46
<212> PRT
<213> Homo sapiens

<400> 17
Thr Ala Ala Glu Glu Asn Ile Leu Val Val Thr Pro Ala Val Leu Gly
1 5 10 15
Ser Gly Gln Pro Glu Met Glu Pro Pro Arg Arg Pro Ser Gly Val Gly
20 25 30
Ser Phe Pro Val Ser Pro Gly Arg Gly Val Gly Leu Gly Leu
35 40 45

<210> 18
<211> 104
<212> DNA
<213> Homo sapiens

<220>
<223> Intron Y

<400> 18
ggcctccccg gggtcggcgt ccggctgggg ttgagggcgg ccggggggaa ccagcgacat 60
gcggagagca gcgcaggcga ctcagggcgc ttcccccga ggtg 104

<210> 19
<211> 34
<212> PRT
<213> Homo sapiens

<220>
<223> Reding Frame One of Intron Y

<400> 19
Gly Leu Pro Gly Val Gly Val Arg Leu Gly Leu Arg Ala Ala Gly Gly
1 5 10 15
Asn Gln Arg His Ala Glu Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro
20 25 30
Arg Arg

<210> 20
<211> 10
<212> PRT
<213> Homo sapiens

<220>
<223> Reading Frame Two of Intron Y before termination Codon

<400> 20
Ala Ser Pro Gly Ser Ala Ser Gly Trp Gly
1 5 10

<210> 21
<211> 23
<212> PRT
<213> Homo sapiens

<220>
<223> Reading Frame Two of Intron Y after termination Codon

D10
<400> 21
Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15
Gln Gly Ala Ser Pro Ala Gly
20

<210> 22
<211> 34
<212> PRT
<213> Homo sapiens

<220>
<223> Reading Frame Three of Intron Y

<400> 22
Pro Pro Arg Gly Arg Arg Pro Ala Gly Val Glu Gly Gly Arg Gly Glu
1 5 10 15
Pro Ala Thr Cys Gly Glu Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro
20 25 30
Gln Val

<210> 23
<211> 38
<212> DNA
<213> Homo sapiens

<220>
<223> Intron 1

<400> 23
gtggctgtgc tttggtttaa cttcctttt aaccagaa
<210> 24
<211> 13
<212> PRT
<213> Homo sapiens

<220>
<223> Intron 1 Translation

<400> 24
Val Ala Val Leu Trp Phe Asn Phe Leu Phe Asn Gln Lys
1 5 10

38

<210> 25
<211> 36
<212> DNA
<213> Homo sapiens

<220>
<223> Intron Alpha

D10 <400> 25
gtggatgtga cggcgcgta cgacaccatc ccccaag
<210> 26
<211> 12
<212> PRT
<213> Homo sapiens

36

<220>
<223> Intron Alpha Translation

<400> 26
Val Asp Val Thr Gly Ala Tyr Asp Thr Ile Pro Gln
1 5 10

<210> 27
<211> 182
<212> DNA
<213> Homo sapiens

<220>

<223> Intron Beta

<400> 27
gtctctacct tgacagacct ccagccgtac atgcgacagt tcgtggctca cctgcaggag 60
accagccgc tgagggatgc cgtcgtcatc gagcagagct cctccctgaa tgaggccagc 120
agtggctct tcgacgtctt cctacgcttc atgtgccacc acggccgtgcg catcaggggc 180
aa
182
<210> 28
<211> 61
<212> PRT
<213> Homo sapiens

<220>

<223> Intron Beta Translation

<400> 28

Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala
1 5 10 15

His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln
20 25 30

Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu
35 40 45

Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys
50 55 60

<210> 29

<211> 226

<212> DNA

<213> Homo sapiens

D10
<220>

<223> Intron 2

<400> 29

gtgagcgcac ctggccggaa gtggagcctg tgcccgctg gggcaggtgc tgctgcagg 60
ccgttgcgtc caccctctgtc tccgtgtgg gcaggcgact gccaatccc aagggtcaga 120
tgccacaggg tgccctctgtc cccatctggg gctgagcaca aatgcatctt tctgtggag 180
tgagggtgcc tcacaacggg agcagtttc tgtgtatattt tggtaa 226

<210> 30

<211> 159

<212> DNA

<213> Homo sapiens

<220>

<223> Intron 3

<400> 30

ccgaagaaaa catttctgtc gtgactcctg cggtgcttgg gtcgggacag ccagagatgg 60
agccaccccg cagaccgtcg ggtgtggca gcttccggt gtctcctggg aggggagttg 120
ggctgggcct gtgactcctc agcctctgtt ttcccccag 159

<210> 31

<211> 44

<212> PRT

<213> Homo sapiens

<220>

<223> Intron 3 Translation

<400> 31

Ala Glu Glu Asn Ile Ser Val Val Thr Pro Ala Val Leu Gly Ser Gly
1 5 10 15

Gln Pro Glu Met Glu Pro Pro Arg Arg Pro Ser Gly Val Gly Ser Phe

20

25

30

Pro Val Ser Pro Gly Arg Gly Val Gly Leu Gly Leu
35
40

<210> 32
<211> 262
<212> DNA
<213> Homo sapiens

<220>
<223> Intron X. Complete length unknown

<400> 32
gacagtccacc aggggggttg accgcggac tggcggtccc cagggttgcac tataggacca 60
ggtgtccagg tggcctgcaa gtagagggc ttcagaggc gtctggctgg catgggtgga 120
cgtggccccg ggcattggct tctgcgtgtc ctgcgtggg tgccctgagc cttcaactgag 180
tcgggtgggg cttgtggctt cccgtgagct tcccccctagt ctgttgcgtc gctgagcaag 240
cctcctgagg ggctcttat tg 262

D10
<210> 33
<211> 218
<212> DNA
<213> Homo sapiens

<220>
<223> Partial Sequence of Genomic Intron (approximately
2.7 kb)

<400> 33
gtggctgtgc ttgggttaa cttccctttt aaccagaagt gcgtttgagc cccacatttg 60
gtatcagctt agatgaaggg cccggaggag gggcacggg acacagccag ggccatggca 120
cgccgccccac ccatttgc gcacagttagt gtggccgagg tgccggtgcc tccagaaaag 180
cagcgtgggg gtgttaggggg agtccctggg gcagggac 218

<210> 34
<211> 2031
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1767)..(1769)
<223> Wherein N is A, C, G or T

<220>
<223> N-Terminal Truncated Telomerase

<400> 34
atgccgcgcg ctcccgctg ccgagccgtg cgcccccgtc tgccgcggcca ctaccgcgag 60
gtgctgcgcg tggccacgtt cgtgcggcgc ctggggccccc aaggctggcg gctgggtcag 120
cgccgggacc cggcgctt cccgcgcgtg gtggcccaat gcttgggtgtc cgtccctgg 180
gacgcacggc cggcccccgc cggccctcc ttccgcagg tgcctgtcct gaaggagctg 240
gtggcccgag tgctgcagag gctgtgcgag cggccgcga agaacgtgtc ggccttcggc 300
ttcgcgtgc tggacggggc cccgcggggc ccccccggagg cttcaccac cagcgtgcgc 360
agtcacactgc ccaacacggc gaccgacgc ctgcggggg gggggcggt ggggctgtc 420
ctgcgcgcg tgggcgacga cgtgcgtgtt cacctgcgtg caccgtgcgc gctttgtc 480

D10

ctgggtggctc ccagctgcgc ctaccagggtg tgccggccgc cgctgtacca gtcggcgct 540
gccactcagg cccggccccc gccacacgct agtggacccc gaaggcgct gggatgcgaa 600
cgggccttgg accatagcgt cagggaggcc ggggtcccccc tgggcctgcc agccccgggt 660
gcgaggaggc gcggggggcag tgccagccga agtctgcccgt tgcccaagag gcccaggcg 720
ggcgctggcc ctgagccgga gcggacgccc gtggggcagg ggtcctggc ccacccggc 780
aggacgcgtg gaccgagtga ccgtggttc tggatgggtg cacctgccag acccgccgaa 840
gaagccacct cttggaggg tgccgtctct ggacacgcgc actcccaccc atccgtggc 900
cgccagcacc acgcgggccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960
tgtccccgg tggatgcgca gaccaagcac ttccctact cctcaggcga caaggagcag 1020
ctgcggccct ctttcctact cagctctcg aggcccagcc tgactggcgc tcggaggctc 1080
gtggagacca tcttcctggg ttccagccc tgatggccag ggactccccg caggttgccc 1140
cgccctgcccc agcgtactg gcaaattgcgg cccctgtttc tggagctgct tgggaaccac 1200
gcgcagtgc cttacgggt gctccctaag accaactgcg cgctgcgagc tgcggcacc 1260
ccagcagccg gtgtctgtgc ccgggagaag ccccagggtc ctgtggcgc ccccgaggag 1320
gaggacacag acccccgtcg cctggcag ctgctccgc accacacgcg cccctggcag 1380
gtgtacggct tggatggcc ctgcctgcg cggctggcgc ccccaggcct ctggggctcc 1440
aggcacaacg aacgcgcctt ctcagaaac accaagaagt tcatctccct ggggaagcat 1500
gccaagctct cgctgcagga gctgacgtgg aagatgagcg tgcgggactg cgcttggctg 1560
cgaggagcc cagggttgg ctgtgttccg gcccgcagagc accgtctgcg tgaggagatc 1620
ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagctgct caggtctttc 1680
tttatgtca cggagaccac gtttcaaaaag aacaggctct ttttctaccg gaagagtgtc 1740
tggagcaagt tgcaaagcat tggatnnng acagtcacca ggggggttga ccccccggact 1800
gggcgtcccc agggttact ataggaccag gtgtccaggt gcccgtcaag tagaggggt 1860
ctcagaggcg tctggctggc atgggtggac gtggcccccgg gcatggcctt ctgcgtgtgc 1920
tggcggtggg gcccgtgagcc ctcaactgagt cggtgggggc ttgtggcttc ccgtgagctt 1980
ccccctagtc tggatgtctgg ctgagcaagc ctccctgaggg gctctctatt g 2031

<210> 35

<211> 588

<212> PRT

<213> Homo sapiens

<220>

<223> Protein Predicted by SEQ ID NO:34

<400> 35

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro
100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr

115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val
 130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
 145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
 165 170 175

Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
 180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
 195 200 205

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
 210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg
 225 230 235 240

Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
 245 250 255

D10
 Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
 260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
 275 280 285

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
 290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
 305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
 325 330 335

Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
 340 345 350

Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
 355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
 370 375 380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
 385 390 395 400

Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
 405 410 415

Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
 420 425 430

Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu
 435 440 445
 Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
 450 455 460
 Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
 465 470 475 480
 Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
 485 490 495
 Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
 500 505 510
 Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
 515 520 525
 Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
 530 535 540
 Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
 545 550 555 560
 D10
 Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
 565 570 575
 Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly
 580 585

<210> 36

<211> 2041

<212> DNA

<213> Homo sapiens

<220>

<223> Truncated Protein 1; Intron 1 Addition

<400> 36

```

atgccgcgctg ctcccccgtc ccggagccgtc cgctccctgc tgcgcaagcca ctaccgcgag 60
gtgctgcgcg tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtgcag 120
cgccggggacc cggccggctt ccgcgcgcgt gtggcccaagt gcctgggtg cgtgcctgg 180
gacgcacggc cgccccccgc cgccccccctcc ttccggccagg tgtcctgcct gaaggagctg 240
gtggcccgag tgctgcagag gctgtgcgag cgccggcgcga agaacgtgt ggccttcggc 300
ttcgcgctgc tggacggggc ccgcggggc ccccccggg ctttacccac cagcgtgcgc 360
agctacactgc ccaacacggt gaccgacgca ctgcgggggca gccccgggt ggggctgctg 420
ctgcgcgcg tgggcacgca cgtgctgtt caccctgtgg cacgctgcgc gcttttgtg 480
ctgggtggctc ccagctgcgc ctaccaggtg tgccggccgc cgctgtacca gtcggcgct 540
gccactcagg cccggccccc gccacacgct agtgaccccc gaaggcgtct gggatgcgaa 600
cgggccttgg accatagcgt cagggagggc ggggtcccccc tgggcctgcc agccccgggt 660
gcgaggaggc gcggggggcag tgccagccgaa agtctggcg tggccaaagag gcccaggcgt 720
ggcgctgccc ctgagccgga gccgaccccc gttgggcagg ggtcctggc ccacccgggc 780
aggacgcgtg gaccgagtga ccgtggttc tgggtgggtg caccctggcag acccgccgaa 840
gaagccacct ctttggaggg tgcgctctt ggcacgcgc actcccccccc atccgtggc 900
cgccagcacc acggggcccc cccatccaca tcggggccac cagtccttg ggacacgcct 960
tgtccccgg tgcgcccga gaccaagcac ttccctact cctcaggcga caaggagcag 1020

```

ctgcggccct ctttcctact cagctctctg aggccccagcc tgactggcgc tcggaggc 1080
gtggagacca tctttctggg ttccaggccc tgatgccag ggactccccg caggttgc 1140
cgccctgcccc agcgctactg gcaaatgcgg cccctgttc tggagctgct tggaaaccac 1200
gcmcagtgc cctacgggtt gtcctctaag acgcactgccc cgctgcgagc tgcggtcacc 1260
ccagcagccg gtgtctgtgc cgggagaag ccccagggtt ctgtggcggc ccccgaggag 1320
gaggacacag accccccgtcg cctgggtcag ctgctccgccc agcacagcag cccctggcag 1380
gtgtacggct tcgtgcggc ctgcctgcgc cgctgggtgc ccccaaggcct ctggggctcc 1440
aggcacaacg aacgcgcctt ctcaggaac accaagaagt tcatctccct ggggaagcat 1500
gccaagctct cgctgcagga gctgacgtgg aagatgagcg tgcggactg cgcttggctg 1560
cgccaggagcc cagggggttg ctgtgtccg gccgcagagc accgtctgcg tgaggagatc 1620
ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagctgct caggtcttc 1680
tttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagagtgtc 1740
tggagcaagt tgcaaagcat tggaatcaga cagcacttga agagggtgca gctgcgggag 1800
ctgtcggaaag cagaggtcag gcagcatcgg gaagccaggc ccgcctgtct gacgtccaga 1860
ctccgccttca tccccaaagcc tgacgggctg cgcccgattt tgaacatgga ctacgtcgtg 1920
ggagccagaa cgttccgcag agaaaagagg gtggctgtgc tttggttaa cttccctttt 1980
aaccagaagc cgagcgtctc acctcgaggg tgaaggact gttcagcgtg ctcaactacg 2040
a 2041

<210> 37
<211> 670
<212> PRT
<213> Homo sapiens

D10
<220>
<223> Truncated Protein 1; Encoded by SEQ ID NO:36

<400> 37

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Pro Pro
100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val
130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175

Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg
225 230 235 240

Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255

Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285

D10

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335

Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350

Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
370 375 380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
385 390 395 400

Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
405 410 415

Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
420 425 430

Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu
435 440 445

Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
450 455 460

Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser

465 470 475 480
 Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
 485 490 495
 Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
 500 505 510
 Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
 515 520 525
 Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
 530 535 540
 Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
 545 550 555 560
 Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
 565 570 575
 Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
 580 585 590
 Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
 595 600 605
 His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
 610 615 620
 Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
 625 630 635 640
 Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Val Ala Val Leu Trp Phe
 645 650 655
 Thr Phe Leu Phe Asn Gln Lys Pro Ser Val Ser Phe Arg Gly
 660 665 670

>210> 38

<211> 2541

<212> DNA

<213> Homo sapiens

<220>

<223> Truncated Protein 2; Alpha Intron Addition

<400> 38

```

atgccgcgcg ctccccgctg ccgagccgtg cgctccctgc tgccgcggcca ctaccgcgag 60
gtgctgcccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtgcag 120
cgcggggacc cggcggttt ccgcgcgcgtg gtggccactg gcctgggttg cgtgcctgg 180
gacgcacggc cgccccccgc cgcccccctcc ttccgcccagg tgccctgcct gaaggagctg 240
gtggcccggag tgctgcagag gctgtgcag cgcggcgcga agaacgtgct ggccttcggc 300
ttcgcgcgtgc tggacggggc ccgcgggggc ccccccggagg ccttcaccac cagcgtgcgc 360
agctacctgc ccaacacggt gaccgacgca ctgcggggga gcggggcggt ggggctgctg 420
ctgcgcgcgc tgggcgacga cgtgctgggt cacctgctgg caccgctgcgc gctctttgtg 480
ctggtgtgctc ccagctgcgc ctaccaggtg tgcggggccgc cgctgtacca gctcggcgct 540
gccactcagg cccggccccc gccacacgct agtggacccc gaaggcgctc gggatgcgaa 600

```

D10

cgggcctgga accatagcgta cagggaggcc ggggtcccccc tgggcctgcc agccccgggt 660
gcgaggaggc gcggggggcag tgccagccga agtctgccgt tgcccaagag gcccaggcgt 720
ggcgctgccc ctgagccgga gcggacgccc gtgggcagg ggtcctggc ccacccggc 780
aggacgcgtg gaccgagtga ccgtggttc tgtgtgggt cacctgcag accccggaa 840
gaagccacct ctttgaggg tgccgtctct ggacacgcgc actcccaccc atccgtggc 900
cgccagcacc acggggccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960
tgtccccccg tgcacccgaa gaccaagcac ttccctact cctcaggcga caaggagcag 1020
ctgcggccct ccttcctact cagctctcg aggcccagcc tgactggcgc tcggaggc 1080
gtggagacca tcttctggg ttccaggccc tgatgcccgg gggactcccg cagggtgcc 1140
cgccctgcccc agcgctactg gcaaattgcgg cccctgttcc tgagactgtc tgggaaccac 1200
gcccggcact cctacgggt gtcctcaag acgcactgccc cgctgcgagc tgccgtcacc 1260
ccagcagccg gtgtctgtc cccggagaag ccccaggcgt ctgtggcgc ccccgaggag 1320
gaggacacag accccccgtcg cctgggtcag ctgcctccgc accacacgcg cccctggcag 1380
gtgtacggct tcgtgcggc ctgcctgcgc cggctggc ccccaggcgt ctggggctcc 1440
aggcacaacg aacgcgcctt cctcaggaa accaagaagt tcatctccct ggggaagcat 1500
gccaagctt cgctcaggaa gctgacgtgg aagatgagcg tgccggactg cgcttggctg 1560
cgccaggagcc cagggttgg ctgtgttccg gccgcagagc accgtctgcg tgaggagatc 1620
ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagactgtc caggtcttc 1680
tttatgtca cggagaccac gtttcaaaag aacaggctt ttttctaccg gaagagtg 1740
tggagcaagt tgcaaaagcat tggaaatcaga cagcaactga agagggtgca gtcgcggag 1800
ctgtcggaag cagaggtagc gcagcatcgg gaagccaggc cccgcctgtc gacgtccaga 1860
ctccgccttca tccccaaagcc tgacgggctg cggccgattt tgaacatgga ctacgtcgt 1920
ggagccagaa cgtttccgcag agaaaagagg gccgagcg tcacctcgag ggtgaaggca 1980
ctgttcagcg tgctcaacta cgagcggcgc cggcgcggc gcctctggg cgctctgtg 2040
ctgggcctgg acgatatcca cagggcctgg cgcaccttcg tgctgcgtgt gcgggcccag 2100
gaccgcgcgc ctgagctgtt ctttgtcaag gtggatgtga cggcgcgtt cgcacccatc 2160
ccccaggaca ggctcacggaa ggtcatcgcc agcatcatca aaccccgaaa cacgtactgc 2220
gtgcgtcggt atgcgtgtt ccagaaggcc gccatgggc acgtccgcaa ggccttcaag 2280
agccacgtcc tacgtccagt gccagggtt cccgcaggc tccatcttc ccacgtgtc 2340
ctgcagcctg tgctacggcg acatggagaa caagctgtt gggggattt ggcgggacgg 2400
gctgcctctg cgttgggtgg atgatttctt gttggtgaca ctcacctca cccacgcgaa 2460
aaccttcctc aggaccctgg tccgaggtgt ccctgagttt ggctgcgtgg tgaacttg 2520
gaagacagtg gtgaacttcc c 2541

<210> 39

<211> 807

<212> PRT

<213> Homo sapiens

<220>

<223> Truncated Protein 2; Encoded by SEQ ID NO:38

<400> 39

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro
100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val
130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175

Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205

D10

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg
225 230 235 240

Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255

Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335

Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350

Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
370 375 380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His

385 390 395 400
Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
405 410 415
Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
420 425 430
Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu
435 440 445
Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
450 455 460
Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
465 470 475 480
Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
485 490 495
Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
500 505 510
D10
Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
515 520 525
Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
530 535 540
Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
545 550 555 560
Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
565 570 575
Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
580 585 590
Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
595 600 605
His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
610 615 620
Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
625 630 635 640
Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
645 650 655
Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
660 665 670
Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
675 680 685
Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro
690 695 700

Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile
 705 710 715 720
 Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln
 725 730 735
 Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His
 740 745 750
 Gly His Val Arg Lys Ala Phe Lys Ser His Val Leu Arg Pro Val Pro
 755 760 765
 Gly Asp Pro Ala Gly Leu His Pro Leu His Ala Ala Leu Gln Pro Val
 770 775 780
 Leu Arg Arg His Gly Glu Gln Ala Val Cys Gly Asp Ser Ala Gly Arg
 785 790 795 800
 Ala Ala Pro Ala Phe Val Gly
 805

D10

<210> 40
 <211> 3396
 <212> DNA
 <213> Homo sapiens

 <220>
 <223> Reference Telomerase; with Intron Alpha and Beta

<400> 40
 atgccgcgctg ctcggccgtg ccggagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60
 gtgctgccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtgcag 120
 cgcggggacc cggccggctt ccgcgcgcgt gtggcccagt gcctggtgtg cgtgccttgg 180
 gacgcacgcgc cgccccccgc cgccccctcc ttccgcagg tgcctgcct gaaggagctg 240
 gtggcccggag tgctgcagag gctgtgcagag cgccggcgca agaacgtgtc ggccttcggc 300
 ttcgcgtgc tggacggggc ccgcgggggc ccccccggagg cttcaccac cagcgtgcgc 360
 agctacctgc ccaacacggc gaccgacgca ctgcggggga gcggggcggt ggggctgctg 420
 ttgcgcgcgc tgggcgacga cgtgctgtt cactgtgtt caccgtgcgc gctctttgtg 480
 ctggtggtc ccagctgcgc ctaccagggt tgccggccgc cgctgtacca gctcgccgct 540
 gccactcagg cccggccccc gccacacgcgt agtggacccc gaaggcgtct gggatgcgaa 600
 cggggcttgg accatagcgt caggggaggcc ggggtccccc tgggcctgccc agccccgggt 660
 gcgaggaggc gcggggggcag tgccagccga agtctgcgt tgcccaagag gcccaggcgt 720
 ggcgcgtgccc ctgagccgga gcggacgccc gttgggcagg ggtcctggc ccacccgggc 780
 aggacgcgtg gaccgagtga ccgtggttt tgggtgggtt cacctgccc accccggcggaa 840
 gaagccacct ctggggaggc tgccgtctt ggacacgcgc actccccccc atccgtggc 900
 cgccagcacc acgcggggccccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960
 tgtccccccg tgtacgcgcg gaccaagcac ttccctact cctcaggcga caaggagcag 1020
 ctgcggccct ctttctact cagctcttg aggcccagcc tgactggcgc tcggaggctc 1080
 gtggagacca tctttctggg ttccaggccc tggatgcag ggactccccg caggttgccc 1140
 cgcctgcccc agcgtactg gcaaattgcgg cccctgttcc tggagctgtc tggaaaccac 1200
 ggcgcgtgccc cctacggggt gctccctcaag acgcactgccc cgctgcgcgc tgccgtcacc 1260
 ccagcagccg gtgtctgtgc ccgggagaag ccccaaggct ctgtggcggc ccccgaggag 1320
 gaggacacag acccccgtag cctggtgccag ctgcctccgc agcacagcag cccctggcag 1380
 gtgtacggct tcgtgcgggc ctgcctgcgc cggctgggtgc ccccaaggct ctggggctcc 1440
 aggccacaacg aaccccgctt cctcaggaac accaagaagt tcatactccct ggggaagcat 1500
 gccaagctct cgctgcagga gctgacgtgg aagatgagcgc tgccgggctg cgcttggctc 1560

D10

cgccaggagcc cagggttgg ctgtgtccg gccgcagagc accgtctgcg tgaggagatc 1620
 ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagctgct caggtcttc 1680
 ttttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagagtgtc 1740
 tggagcaagt tgcaaagcat tggaatcaga cagcacttga agagggtgca gctgcggag 1800
 ctgtcggaaag cagaggtcag gcagcatcg ggagccaggc ccgcctgct gacgtccaga 1860
 ctccgcttca tccccaaagcc tgacgggctg cgccgattt tgaacatgga ctacgtcgtg 1920
 ggagccagaa cgttccgcag agaaaagagg gccgagcgtc tcacctcgag ggtgaaggca 1980
 ctgttcagcg tgctcaacta cgagcgggccc cgccgcgggccc gcctctggg cgcctctgtg 2040
 ctgggcctgg acgatatcca cagggcctgg cgacacccctcg tgctgcgtgt gcggggccag 2100
 gacccgcccctc ctgagctgta ctttgtcaag gtggatgtga cgggcgcgt aacacccatc 2160
 ccccaggacca ggctcacgga ggtcatcgcc agatcatca aaccccaagaa cacgtactgc 2220
 gtgcgtcggt atgcccgtgtt ccagaaggcc gcccattggc acgtccgcaa ggccttcaag 2280
 agccacgtct ctacccgtac agacccctcg ccgtacatgc gacagttcggt ggctcacctg 2340
 caggagacca gccccctgag ggatgcgcgc gtcatcgagc agagctccctc cctgaatgag 2400
 gccagcagtgc cccttcgtcg cgtcttcata cgcttcatgt gccaccacgc cgtgcgcac 2460
 aggggcaagt cctaegtcgat tgccaggggg atccccctgg gctccatcct ctccacgcgtg 2520
 ctctgcagcc tggctacgg cgacatggag aacaagctgt ttgcggggat tcggcgggac 2580
 gggctgctcc tgcgtttgtt ggatgatttc ttgttggta cacctcacct caccacacgc 2640
 aaaaccttcc tcaggaccct ggtccgaggt gtccctgagt atggctgcgt ggtgaacttg 2700
 cggaaagacag tggtaactt ccctgttagaa gacgaggccc tgggtggcac ggctttgtt 2760
 cagatgccgg cccacggcct attccccctgg tgccgcctgc tgctggatac ccggaccctg 2820
 gaggtgcaga ggcactactc cagctatgcc cggacccctca tcagagccag tctcacccctc 2880
 aaccgcggct tcaaggctgg gaggaacatg cgtcgcaaac tctttgggtt ctgcggcgtg 2940
 aagtgtcaca gcctgtttct ggatttgcag gtgaacagcc tccagacggt gtgcaccaac 3000
 atctacaaga tcctcctgct gcaggcgtac aggtttcagc catgtgtgct gcagctccca 3060
 tttcatcagc aagtttggaa gaaccccaaca ttttcctgc gcgtcatctc tgacacggcc 3120
 tccctctgct actccatcct gaaagccaaag aacgcaggga tgtcgtcggt ggccaagggc 3180
 gccgcgggccc ctctgcctc cgaggccgtg cagttggctgt gccaccaagc attcctgctc 3240
 aagctgactc gacaccgtgt cacctacgtg ccactccctgg ggtcactcag gacagcccaag 3300
 acgcagctga gtcggaagct cccggggacg acgctgactg ccctggaggc cgcagccaaac 3360
 ccggcactgc cctcagactt caagaccatc ctggac 3396

<210> 41
 <211> 3069
 <212> DNA
 <213> Homo sapiens

<220>
 <223> Truncated Protein 3; with Introns Alpha, Beta and
 2

<400> 41
 atgcgcgcgc ctcccccgtg ccgagccgtg cgctccctgc tgccgcagcc ctaccgcgag 60
 gtgctgcgc tggcacgtt cgtgcggcgc ctggggccccc agggctggcg gctggcgag 120
 cgcggggacc cggcggttt ccgcgcgtg gtggcccaagt gcctgggtgt cgtgcctgg 180
 gacgcacggc cgcggccgc cgcggccctcc ttccgcagg tgccctgcct gaaggagctg 240
 gtggcccgag tgctgcagag gctgtgcgag cggcgccgcga agaacgtgt ggccttcggc 300
 ttgcgcgtgc tggacggggc cgcggggggc ccccccggagg cttcaccac cagcgtgcgc 360
 agctacctgc ccaacacggt gaccgacgca ctgcggggga gcggggcggt ggggctgctg 420
 ctgcgcgcgc tggcgacga cgtgctgtt cacctgctgg cacgctgcgc gctttgtg 480
 ctggtggtctc ccagctgcgc ctaccagggtg tgccggccgc cgctgtacca gtcggcgct 540
 gccactcagg cccggccccc gcccacacgt agtggacccc gaaggcgct gggatgcgaa 600
 cggggcttggaa accatagcgt cagggaggcc ggggtccccc tgggcctgcc agccccgggt 660
 gcgaggaggc gcggggccag tgccagccga agtctggcgat tgcccaagag gcccaggcg 720
 ggcgcgtgccc ctgagccgga gcggacccccc gttggcagg ggtccctggc ccacccgggc 780
 aggacgcgtg gaccgagtga ccgtggttt tggatgtgtt cacctgcccag acccgccgaa 840
 gaagccaccc ttttgaggg tgccctctc ggcacgcgc actccaccc atccgtgggc 900
 cgcgcaccc acgcggggccc cccatccaca tcgcggccac cagtcctcg ggacacgcct 960

D10

tgtccccgg tgcacgccc gaccaagcac ttccctact cctcaggcga caaggagcag 1020
ctcgccct ctttcctact cagctctcg aggcccagcc tgactggcgc tcggaggc 1080
gtggagacca tctttctggg ttccaggccc tgatgccag ggactccccg caggttgc 1140
cgccctgcccc aqcgctactg gcaaattgcgg cccctgttgc tggagctgt tggaaaccac 1200
gcccagtgc cctacgggt gctcctaag acgcactgccc cgctgcgagc tgccgtcacc 1260
ccagcagccg gtgtctgtc ccgggagaag ccccagggt ctgtggcggc ccccgaggag 1320
gaggacacag acccccgtcg cctgggtcag ctgcctccgc acgacagcag cccctggcag 1380
gtgtacgct tcgtgcggc ctgcctgcgc cgctgggtgc ccccaaggct ctggggctcc 1440
aggcacaacg aaccccgctt ctcagaac accaagaagt tcatctccct ggggaagcat 1500
gccaagctct cgctgcagga gctgacgtgg aagatgagcg tgccggactg cgcttggctg 1560
cgccaggagcc caggggttgg ctgtgtccg gccgcagagc accgtctgcg tgaggagatc 1620
ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagctgtc caggtcttc 1680
tttatgtca cggagaccac gttcaaaag aacaggctt ttttctaccg gaagagtgtc 1740
tggagcaagt tgcaaagcat tggaaatcaga cagcaacttga agagggtgca gtcgcggag 1800
ctgtcggaaag cagaggttag gcagcatcgg gaagccaggc ccgcctctgt gacgtccaga 1860
ctccgcctta tccccaaagcc tgacgggctg cggccgattt tgaacatgga ctacgtcgtg 1920
ggagccagaa cggtccgcag agaaaagagg gccgagcgtc tcacctcgag ggtgaaggca 1980
ctgttcagcg tgctcaacta cgagcggcgc cggcgcggcc gcctcttgcc cgcctctgtg 2040
ctgggcctgg acgatatcca cagggcctgg cgacacccctcg tgctgcgtgt gcgggcccag 2100
gaccgcgcgc ctgagctgtc ctttgtcaag gtggatgtga cgggcgcgtt cgacaccatc 2160
ccccaggaca ggctcacggc ggtcatcgcc agcatcatca aaccccaagaa cacgtactgc 2220
gtgcgtcggt atgcccgtgtt ccagaaggcc gcccattggc acgtccgcaa ggccttcaag 2280
agccacgtct ctacccgtac agaccccttgcg ccgtacatgc gacagttcg ggtcacctg 2340
caggagacca gcccgtcgag ggatgcccgtc gtcatcgagc agagctcctc cctgaatgag 2400
gccagcagtgc gcctcttcga cgtcttccta cgcttcatgt gccaccacgc cgtgcgcattc 2460
aggggcaagt cctacgtcca gtgccagggg atcccgcagg gtcctatcct ctccacgctg 2520
ctctgcagcc tgtgtacgg cgacatggag aacaagctgt ttgcggggat tcggcgggac 2580
gggctgctcc tgcgtttggg ggatgatttc ttgttggtga cacccacccgtc caccacgcg 2640
aaaaccttcc tcaggaccct ggtccgaggt gtcctgtactt atggctgcgt ggtgaacttg 2700
cggaagacag tggtaactt ccctgttagaa gacgaggccc tgggtggcac ggctttgtt 2760
cagatgcggg cccacggcc attccctgg tggccctgc tgctggatac ccggaccctg 2820
gaggtgcaga ggcactactc caggtgagcg cacttggccg gaagtggagc ctgtgcggc 2880
ctggggcagg tgctgtcga gggccgttgc gtccacccct gtcctcggtt ggggcaggcg 2940
actgccaatc ccaaagggtc agatgccaca gggtgccct cgtcccatct ggggctgagc 3000
acaatgcataatccat ctttctgtgg gagtgagggtt ggttcacaaac gggagcagtt ttctgtgcta 3060
ttttggtaa 3069

<210> 42
<211> 948
<212> PRT
<213> Homo sapiens

<220>
<223> Truncated Protein 3; Encoded by SEQ ID NO:41

<400> 42
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro
100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val
130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175

D10
Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg
225 230 235 240

Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255

Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335

Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350

Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln

370

375

380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
 385 390 395 400

Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
 405 410 415

Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
 420 425 430

Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu
 435 440 445

Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
 450 455 460

Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
 465 470 475 480

Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
 485 490 495

D10
 Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
 500 505 510

Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
 515 520 525

Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
 530 535 540

Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
 545 550 555 560

Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
 565 570 575

Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
 580 585 590

Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
 595 600 605

His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
 610 615 620

Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
 625 630 635 640

Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
 645 650 655

Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
 660 665 670

Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
 675 680 685

Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro
690 695 700

Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile
705 710 715 720

Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln
725 730 735

Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His
740 745 750

Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr Asp
755 760 765

Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr Ser
770 775 780

Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu
785 790 795 800

D10
Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His His
805 810 815

Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile Pro
820 825 830

Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp
835 840 845

Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu Leu
850 855 860

Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala
865 870 875 880

Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys
885 890 895

Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu
900 905 910

Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe
915 920 925

Pro Trp Cys Gly Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser
930 935 940

Asp Tyr Ser Arg
945

<210> 43
<211> 3362
<212> DNA
<213> Homo sapiens

<220>

<223> Altered C-terminus Protein; with Intron Alpha,
Beta and 3

<400> 43

D/D
atgcgcgcg ctccccgtg ccgagccgtg cgctccctgc tgccgaccca ctaccgcgag 60
gtgtccgc tggcacgtt cgtgcgcgc ctggggccccc agggctggcg gctggtgca 120
cgcggggacc cggcggttt cgcgcgtg gtggcccaagt gcctggtgtg cgtccctgg 180
gacgcacggc cgccccccgc cgccccctcc ttccgcccagg tgcctgcct gaaggagctg 240
gtggcccgag tgctgcagag gctgtgcag cgcggcgca agaacgtgt ggccttcggc 300
ttcgctgc tggacggggc cgcggggc ccccccggagg cttcaccac cagcgtgcgc 360
agctacctgc ccaacacggt gaccgacgcga ctgcggggga gcggggcggt ggggctgctg 420
ctgcgcgcg tggcgcacga cgtgctgggt cacctgtgtt caccgtgcgc gctctttgtg 480
ctggggctc ccagctgcgc ctaccagggtg tgcggggccgc cgctgtacca gctcggcgct 540
gccactcagg cccggccccc gccacacgct agtggacccc gaaggcgct gggatgcgaa 600
cgggcctgga accatacggt cagggaggcc ggggtcccccc tgggcctgccc agccccgggt 660
gcgaggagggc gcgggggcag tgccagccga agtctgcctg tggccaaagag gcccaggcg 720
ggcgtgccc ctgagccgga gccgacgccc gttgggcagg ggtcctggc ccacccggc 780
aggacgcgtg gaccgagtga ccgtggtttgc tgggtgggtg caccgtccag accccggcga 840
gaagccaccc ttttggaggg tgccgtcttgc ggcacgcgc actccaccc atccgtggc 900
cgccagcacc acgcgggccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960
tgtccccccgg tgtacgcga gaccaagcac ttccctact cctcaggcgca caaggagcag 1020
ctgcggccct ctttccact cagctctgttgc aggcccagcc tgactggcgcc tcggaggctc 1080
gtggagacca ttttctggg ttccaggccc tggatgcag ggactccccgg cagggtgccc 1140
cgccctgcccc agcgctactg gcaaattgcgg cccctgtttc tggagctgt tgggaaccac 1200
gcmcagtgcc cctacggggt gctcctcaag acgcactgccc cgctgcgagc tgccgtcacc 1260
ccagcagccg gtgtctgtgc ccgggagaag ccccaaggct ctgtggcgcc ccccgaggag 1320
gaggacacag accccccgtcg cctggtgcaag ctgcctccgc accacacgcg cccctggcag 1380
gtgtacggct tcgtgcgggc ctgcctgcgc cggctgggtc ccccaaggct ctggggctcc 1440
aggcacaacg aacgcgcctt ctcaggaaac accaagaagt tcatctccct ggggaagcat 1500
gccaagctct cgctgcagga gctgacgtgg aagatgagcg tgccggactg cgcttggctg 1560
cgccaggagcc caggggttgg ctgtgttccg gccgcagagc accgtctgcg tgaggagatc 1620
ctggccaagt tcctgcactg gctgatgagt gttacgtcg tcgagctgt caggtcttgc 1680
tttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagagtgtc 1740
tggagcaagt tgcaaaagcat tggaaatcaga cagcacttgc aaggggtgca gtcggggag 1800
ctgtcggaag cagagggtcg gcatcgccgg gaagccaggc ccccccgtct gacgtccaga 1860
ctccgcgttca tccccaaagcc tgacgggctg cggccgattt tgaacatggc ctacgtcg 1920
ggagccagaa cgttccgcag agaaaagagg gccgagcgcc tcacctcgag ggtgaaggca 1980
ctgttcagcg tgctcaacta cgagcgggccc cggcgccccccgcgcctctgtg 2040
ctgggcctgg acgatatcca cagggcttgc cgcacccatcg tgctgcgtgt gggggccca 2100
gaccgcggcc ctgagctgtt ctttgcgttgc ggtatgcgttgc cggcgccgttgcgacaccatc 2160
ccccaggaca ggctcacggc ggtcatcgcc agcatcatca aaccccaagaa cacgtactgc 2220
gtgcgtcggt atgcgtgttgc cagaaggccc gccatgggc acgtccgcaaa ggccttcaag 2280
agccacgtct ctacccatcg acgatccatcg ccgtacatgc gacagttgttgc ggccttcaag 2340
caggagacca gcccgttag ggtatgcgttgc gtcatcgatgc agagctctc cctgaatgttgc 2400
gccagcgtg gccttcgttca cgttcgttgc cgttcgttgc gtcacccacgc cgtgcgcac 2460
aggggcaagt cctacgttca gtcggccaggatccgcagg gtcacccatcg gtcacccatcg 2520
ctctgcagcc tggctacgg cgcacatggg aacaagctgttgc gtcacccatcg gtcacccatcg 2580
gggctgttcc tgcgttgcgttgc ggtatgttgc ttgttgcgttgc caccctcacct caccacacgc 2640
aaaacccatcc tcagaccctt ggtccgttgc gtcacccatcg atggctgttgc ggtgaacttgc 2700
cggaagacag tggtaactt ccctgttagaa gacggggccc tgggtggcacttgc ggcctttgtt 2760
cagatgcggg cccacggccat ttttgcgttgc tgccgcgttgc tgctggataccgc 2820
gaggtgcaga ggcactactc cgcacccatcg cggacccatcg tcaagacccatcg tccacccatcg 2880
aaccgcggcc tcaaggctgg gaggaacatcg cgtgcacccatcg tccacccatcg tccacccatcg 2940
aagtgtcaca gcctgttttgc ggtatgttgc gtcacccatcg atggctgttgc ggtgaacttgc 3000
atctacaaga tccttcgttgc gcaaggccgttgc aggtttgcgttgc catgtgttgc gtcacccatcg 3060
tttcatcagc aagtttggaa gaaacccacatcg ttttgcgttgc gtcacccatcg tcaacacggcc 3120
tccctctgttgc actccatcg gaaagccaaac aacgcacccatcg aagaaaacat ttctgttgcgttgc 3180

actcctgcgg tgcttgggtc gggacagcca gagatggagc caccggcag accgtcggt 3240
gtgggcagct ttccgggtgc tcctgggagg ggagttgggc tgggcctgtg actcctcagc 3300
ctctgtttc ccccaggat gtcgctgggg gcgaaggcg ccgccccccc tctgccctcc 3360
ga 3362

<210> 44
<211> 1096
<212> PRT
<213> Homo sapiens

<220>
<223> Altered C-terminus Protein; Encoded by SEQ ID
NO:43

<400> 44
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

D10
Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Pro Pro
100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Arg Arg Val
130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175

Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg

240

235

230

225

Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255

Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335

Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350

D10 Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
370 375 380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
385 390 395 400

Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
405 410 415

Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
420 425 430

Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu
435 440 445

Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
450 455 460

Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
465 470 475 480

Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Phe Ile Ser
485 490 495

Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
500 505 510

Ser Val Arg Asp Cys Ala Trp Leu Arg Ser Pro Gly Val Gly Cys
515 520 525

Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
530 535 540

Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
545 550 555 560

Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
565 570 575

Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
580 585 590

Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
595 600 605

His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
610 615 620

Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
625 630 635 640

Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
645 650 655

Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
660 665 670

D10

Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
675 680 685

Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro
690 695 700

Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile
705 710 715 720

Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln
725 730 735

Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His
740 745 750

Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr Asp
755 760 765

Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr Ser
770 775 780

Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu
785 790 795 800

Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His His
805 810 815

Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile Pro
820 825 830

Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp
835 840 845

Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu Leu
 850 855 860

Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala
 865 870 875 880

Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys
 885 890 895

Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu
 900 905 910

Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe
 915 920 925

Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser
 930 935 940

Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe
 945 950 955 960

Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly
 965 970 975

~~D10~~ Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn
 980 985 990

Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Leu Gln
 995 1000 1005

Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln
 1010 1015 1020

Val Trp Lys Asn Pro Thr Phe Leu Arg Val Ile Ser Asp Thr Ala
 1025 1030 1035 1040

Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Glu Glu Asn
 1045 1050 1055

Ile Leu Val Val Thr Pro Ala Val Leu Gly Ser Gly Gln Pro Glu Met
 1060 1065 1070

Glu Pro Pro Arg Arg Pro Ser Gly Val Gly Ser Phe Pro Val Ser Pro
 1075 1080 1085

Gly Arg Gly Val Gly Leu Gly Leu
 1090 1095

<210> 45
 <211> 3918
 <212> DNA
 <213> Homo sapiens

<220>
 <223> Protein that lacks Motif A; with Intron Beta
 <400> 45

D10

atgcgcgcgc ctccccgctg ccgagccgtg cgctccctgc tgccgcagcca ctaccgcag 60
gtgctgcgc tggccacgtt cgtgcggcgc ctggggccccc agggctggcg gctgggtcgag 120
cgcggggacc cggcggttt ccgcgcgtg gtggcccaagt gcctgtgtg cgtgccttgg 180
gacgcacggc cgcggggccgc cgccccctcc ttccgcagg tgcttcgtt gaaggagctg 240
gtggcccgag tgctgcagag gctgtgcag cgcggcgcga agaacgtgt ggccttcggc 300
ttcgcgctgc tggacggggc ccgcggggc ccccccggg cttcaccac cagcgtgcgc 360
agctacctgc ccaacacgtt gaccgacgca ctgcggggga gcggggcgtg ggggctgtcg 420
ctgcgcgcg tggcgacga cgtgtggtt caactgtgg cacgtgcgc gctcttgc 480
ctggtggtc ccagctgcgc ctaccagggtg tgccggcgc cgctgtacca gctcggtcg 540
gccactcagg cccggccccc gccacacgtt agtggacccc gaaggcgtct gggatgcgaa 600
cgggcctgga accatagctt cagggaggcc ggggtcccccc tgggcctgccc agccccgggt 660
gcgaggaggc gcgggggcag tgccagccga agtctgcgt tgcccaagag gcccaggcgt 720
ggcgctgccc ctgagccggc gcggacgccc gttgggcagg gtcctggc ccacccgggc 780
aggacgcgtg gaccgagtga cctgtggttc tggatgggtt cacctgccc accccgccc 840
gaagccaccc ctgggagggg tgctctctt ggcacgcgc actcccaccc atccgtggc 900
cgccagcacc acggggggcc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960
tgtcccccg tgcacgcga gaccaaggac ttctctact cctcaggcga caaggagcag 1020
ctgcggccct ctttctact cagctctgtt aggcccagcc tgactggcgc tcggaggctc 1080
gtggagacca tctttctggg ttccaggccc tggatgcccag ggactccccg caggttgccc 1140
cgccctgcccc agcgtactg gcaaattgcgg cccctgtttc tggagctgt tgggaaccac 1200
gcgcagtgcc cctacggggt gtcctcaag acgcactgca cgctgcgagc tgccgtcacc 1260
ccagcagccg gtgtctgtgc cccggagaag ccccaaggct ctgtggcgc ccccgaggag 1320
gaggacacag acccccgctg cctggtgccag ctgtccgc accacacgcag cccctggcag 1380
gtgtacggc tcgtgcgggc ctgcctgcgc cggctggcgc ccccaaggcct ctggggctcc 1440
aggcacaacg aacggccgtt ctcaggaaac accaagaagt tcatctccct ggggaaggcat 1500
gccaagctt cgctgcagga gtcacgtgg aagatgagcg tgccggactg cgcttggctg 1560
cgcaggagcc cagggttgg ctgtgttccg gcccagcagc accgtctgc tgaggagatc 1620
ctggccaagt tcctgcactg gtcgtatgtt gtcgtacgtcg tcgagctgt caggtctttc 1680
ttttatgtca cggagaccac gtttcaaaag aacaggctt ttttctaccg gaagagtgtc 1740
tggagcaagt tgcaaaagcat tggaaatcaga cagcacttga agagggtgca gtcggggag 1800
ctgtcggaag cagaggttagtgc gcaagcatcg gaaagccaggc ccgcctgtt gacgtccaga 1860
ctccgcttca tccccaaagcc tgacgggctg cggccgattt tgaacatggc ctacgtcg 1920
ggagccagaa cgtttccgcag agaaaagagg gcccagcgtc tcacccctcgag ggtgaaggca 1980
ctgttcagcg tgctcaacta cgagcgggcg cggcccccgg gcctctggg cgcctctgtg 2040
ctgggcctgg acgatatcca cagggttccg cgacacccgt tgctgcgtt gcccccccaag 2100
gaccggccgc ctgagctgtt ctttgtcaag gacaggctca cggaggcat cggccagcatc 2160
atcaaaccctt agaacacgtt ctgcgtgcgt cggatgtccg tggtccagaa gcccgcctt 2220
gggcacgtcc gcaaggccctt caagagccac gtctctactt tgacagacct ccagccgtac 2280
atgcgacagt tgcgtggctca cctgcaggag accagccgcg tgaggatgc cgtcgatc 2340
gagcagagct ctccttgaa tgaggccagc agtggccctt tcgacgtctt ctcacgttcc 2400
atgtgccacc acgcgtgcgc catcaggggc aagtctacg tccagtgcca ggggatcccg 2460
cagggttccca tcctctccac gtcgtctgc agctgtgtt acggcgacat ggagaacaag 2520
ctgtttgggg ggattcggcg ggacgggctg ctctgtgtt tggatggatga ttcttgggtt 2580
gtgacacctc acctcaccctt cgcggaaaacc ttccctcaggc ccctggccg aggtgtccct 2640
gagttatggct gctgtgttca cttgcggaa acagtgggtga acttccctgt agaagacgag 2700
gcccctgggtt gcacggcttt tggatggatga cccggccacgc gcctatccc ctggtgccggc 2760
ctgctgttgg atacccggac cttggagggtt cagagcgact actccagcta tgcccgac 2820
tccatcagag ccagtctcac ttcaaccgc ggctcaagg ctggaggaa catgcgtcgc 2880
aaactctttt gggatgttgcg gctgaagtgt cacacgttgc ttctggattt gcaggtgaac 2940
agcctccaga cgggtgtgcac caacatctac aagatcttcc tgctgcaggc gtacagggtt 3000
cagcgtgtt tgctgcagct cccatccat cagaaggat tggaaaggccc cacatccctt 3060
ctgcgcgtca tctctgtacac ggcctccctc tgctacttca tcctgaaagc caagaacgc 3120
gggatgtcgcc tggggggccaa gggccggcc ggcctctgc cttccggaggc cgtgcagtgg 3180
ctgtgccacc aaggattccct gtcgttgcgtt actcgacacc gtgtcaccta cgtgcccactc 3240
ctgggggtcac tcaggacacgc ccagacgcag ctgagtcggc agtcccccgg gacgacgcgtg 3300
actgccttgg aggccgcgc caacccggca ctgcctcttca acttcaagac catcctggac 3360
tgcgtggccac cggccacag ccaggccggag agcagacacc agcagccctg tcacgcccggg 3420
ctctacgtcc caggagggggaa gggccggcc acacccaggc cgcaccgc gggagtcgtga 3480

ggcctgagtg agtgttggc cgaggcctgc atgtccggct gaaggctgag tgcggctg 3540
aggcctgagc gagtgtccag ccaaggcgtg agtgtccagc acacctgccg tcttcacttc 3600
cccacaggct ggcgctcgcc tccaccaggccag gcccagctt tcctcaccag gagccccgt 3660
tccactcccc acataggaat agtccatccc cagattcgcc attgtcacc cctcgccctg 3720
ccctccttgc cttccaccc ccaccatcca ggtggagacc ctgagaagga ccctgggagc 3780
tctggaaatt tggagtgacc aaaggtgtgc cctgtacaca ggcgaggacc ctgcacctgg 3840
atgggggtcc ctgtgggtca aattgggggg aggtgctgtg ggagtaaat actgaatata 3900
tgagttttc agtttga 3918

<210> 46

<211> 1120

<212> PRT

<213> Homo sapiens

<220>

<223> Protein that lacks Motif A; Encoded by SEQ ID
NO:45

<400> 46

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

D10
Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro
100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Arg Arg Val
130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175

Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg
225 230 235 240

Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255

Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335

D/① Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350

Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
370 375 380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
385 390 395 400

Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
405 410 415

Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
420 425 430

Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu
435 440 445

Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
450 455 460

Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
465 470 475 480

Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
485 490 495

Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
500 505 510

Ser Val Arg (Asp) Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys

515

520

525

Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
 530 535 540

Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
 545 550 555 560

Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
 565 570 575

Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
 580 585 590

Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
 595 600 605

His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
 610 615 620

Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
 625 630 635 640

D/D
 Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
 645 650 655

Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
 660 665 670

Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
 675 680 685

Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro
 690 695 700

Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala Ser Ile
 705 710 715 720

Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln
 725 730 735

Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser
 740 745 750

Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu
 755 760 765

Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser
 770 775 780

Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe
 785 790 795 800

Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys
 805 810 815

Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu
 820 825 830

Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp
835 840 845

Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His
850 855 860

Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro
865 870 875 880

Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro
885 890 895

Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala
900 905 910

His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu
915 920 925

Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala
930 935 940

Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg
945 950 955 960

Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp
965 970 975

Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile
980 985 990

Leu Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro
995 1000 1005

Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile
1010 1015 1020

Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala
1025 1030 1035 1040

Gly Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu
1045 1050 1055

Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg
1060 1065 1070

His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln
1075 1080 1085

Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu
1090 1095 1100

Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp
1105 1110 1115 1120

<210> 47
<211> 3033
<212> DNA
<213> Homo sapiens

<220>

<223> Truncated Protein that lacks Motif A; with Introns
Beta and 2

<400> 47

D10
atgcgcgcgc ctcccccgtg ccgagccgtg cgctccctgc tgcgcaagcca ctaccgcgag 60
gtgctccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtgcag 120
cgcgccccacc cggcggttt cgcgcgcgtg gtggcccaagt gcctgggtg cgtccctgg 180
gacgcacggc cgccccccgc cgccccctcc ttccgcccagg tgtccctgcct gaaggagctg 240
gtggcccgag tgctgcagag gctgtgcgag cgccggcgca agaacgtgt ggccttcggc 300
ttcgctgc tggacggggc cgcgggggc ccccccggagg cttcaccac cagcgtgcgc 360
agctacgtc ccaacacggc gacgcacgtc ctgcggggga gcggggcggt ggggctgtg 420
ctgcgcgcg tggcgcacga cgtgctggt cacctgtctgg cacgctgcgc gctctttgtg 480
ctggtggtc ccagctgcgc ctaccaggta tgccggccgc cgctgtacca gctcgccgt 540
gccactcagg cccggccccc gccacacgtc agtggacccc gaaggcgtct gggatgcgaa 600
cgggccttga accatagcgt caggaggcc ggggtcccccc tgggccttgc agccccgggt 660
gcgaggagggc gcggggggcag tgccagccga agtctgcgt tgcccaagag gcccaggcgt 720
ggcgctggcc ctgagccgga gcggacgccc gttgggcagg ggtcctggc ccacccgggc 780
aggacgcgtg gaccgagtga ccgtggttt tggatgggtt cacctgccc accccggcga 840
gaagccaccc tttggaggg tgccgtctct ggacacgcgc actcccaccc atccgtggc 900
cgccagcacc acggggccccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960
tgtccccgg tgtacgcga gaccaaggcac ttctctact cctcaggcga caaggagcag 1020
ctgcggccct ccttctact cagctctctg aggcccagcc tgactggcgc tcggaggctc 1080
gtggagacca tctttctggg ttccaggccc tggatgccc ggactcccc caggttgcac 1140
cgccgtcccc agcgtactg gcaaattgcgg cccctgttcc tggagctgt tggaaaccac 1200
gcccgtgtcc cctacggggt gtcctcaag acgcactgca cgctgcgagc tgccgtcacc 1260
ccagcaggcc gtgtctgtc cggggagaag cccagggtt ctgtggggc ccccgaggag 1320
gaggacacag acccccggtc cttggtgccag ctgtccgc accacagcag cccctggcag 1380
gtgtacggcgtc tgcgtggggc ctgcctgcgc cggctggtgc cccaggcct ctggggctcc 1440
aggcacaacg aacgcgcgtt cctcaggaa accaagaagt tcatactccct gggaaagcat 1500
gccaagctc cgctgcagga gtcgacgtgg aagatgagc tgccggactg cgcttggctg 1560
cgccaggagcc caggggttgg ctgtgttccg gcccagagc accgtctgcg tgaggagatc 1620
ctggccaagt tcctgcactg gtcgtatgatgt gtgtacgtcg tcgagctgt caggtcttc 1680
tttatgtca cggagaccac gtttcaaaag aacaggctt ttttctaccg gaagagtgtc 1740
tggagcaagt tgcaaaagcat tggaatcaga cagcaattga agagggtgca gctgcgggag 1800
ctgtcggaag cagaggttag cgcacatcgg gaagccaggc cgcctctgtc gacgtccaga 1860
ctccgcttca tccccaaagcc tgacgggtc cggccgattt tgaacatgga ctacgtcg 1920
ggagccagaa cgttccgcag agaaaagagg gcccggcgtc tcacctcgag ggtgaaggca 1980
ctgttcagcg tgctcaacta cgacggccgc cggccccccg gcctcctggg cgccctgtg 2040
ctgggcctgg acgatatcca cagggcctgg cgcacattcg tgctgcgtgt gcggggccag 2100
gaccgcgcgc ctgagctgtc ttgtcaag gacaggctca cggaggcatc cgccagcatc 2160
atcaaaccac agaacacgtc ctgcgtcggt cggatgcgc tggccatggaa ggccgcctt 2220
gggcacgtcc gcaaggccctt caagagccac gtctctactc tgacagaccc ccaagccgtac 2280
atgcgacagt tcgtggctca cctgcaggag accagccgc tgagggatgc cgtcgtcatc 2340
gagcagagct cctccctgaa tgaggccagc agtggcttct tcgacgtctt cctacgcttc 2400
atgtgccacc acggccgtcg catcaggggc aagtcctacg tccagtgcgc gggatcccc 2460
cagggctcca tcctctccac gtcgtctgc agcctgtgt acggcgacat ggagaacaag 2520
ctgtttgggg ggattcggcg ggacgggtcg ctccgtcggt tggatggatga tttttgtt 2580
gtgacaccc acctcaccac cgcggaaaacc ttccctcaggaa ccctgggtcc aggtgtccct 2640
gagttatggct gcgtgggtgaa cttgcggaa acagtgggtga acttccctgt agaagacgag 2700
gccctgggtg gcacggctt tgccatggatc ccggccccacg gccttattccc ctggtgccgc 2760
ctgctgtgg ataccggac cctggagggtg cagacgtacttcc cttccaggatc agcgcaccc 2820

gcccggaaatgc gagccctgtgc ccggctgggg caggtgctgc tgcaggccc ttgcgtccac 2880
ctctgttcc gtgtggggca ggcgactgcc aatcccaaag ggtcagatgc cacagggtgc 2940
ccctcggtccc atctggggct gaggcacaat gcatcttct gtgggagtga ggggtgcctca 3000
caacgggagc agtttctgt gctattttgg taa 3033

<210> 48
<211> 936
<212> PRT
<213> Homo sapiens

<220>
<223> Truncated Protein that lacks Motif A; Encoded by
SEQ ID NO:47

<400> 48
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu
65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val
85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro
100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val
130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175

Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg

225 230 235 240
Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255
Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270
Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285
Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300
Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320
Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335
Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350
D10
Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365
Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
370 375 380
Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
385 390 395 400
Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
405 410 415
Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
420 425 430
Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu
435 440 445
Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
450 455 460
Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
465 470 475 480
Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
485 490 495
Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
500 505 510
Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
515 520 525
Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
530 535 540

Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
545 550 555 560

Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
565 570 575

Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
580 585 590

Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
595 600 605

His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
610 615 620

Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
625 630 635 640

Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
645 650 655

DID Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
660 665 670

Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
675 680 685

Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro
690 695 700

Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala Ser Ile
705 710 715 720

Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln
725 730 735

Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser
740 745 750

Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu
755 760 765

Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser
770 775 780

Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe
785 790 795 800

Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys
805 810 815

Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu
820 825 830

Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp
835 840 845

Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His
850 855 860

Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro
865 870 875 880

Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro
885 890 895

Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala
900 905 910

His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu
915 920 925

Glu Val Gln Ser Asp Tyr Ser Arg
930 935

<210> 49
<211> 3326
<212> DNA
<213> Homo sapiens

D1D
<220>
<223> Protein Lacking Motif A and Altered C-Terminus;
with Introns Beta and 3

<400> 49
atgccgcgctg ctcggccgtg ccgagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60
gtgctgccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtgcag 120
cgccgggacc cggccggctt cgcgcgcgtg gtggcccagt gcctgggtgt cgtgcctgg 180
gacgcacggc cgccccccgc cgccccctcc ttccgcagg tgtcctgcct gaaggagctg 240
gtggcccgag tgctgcagag gctgtgcgag cgccggcgcga agaacgtgt ggccttcggc 300
ttcgcgctgc tggacggggc cgcgggggc ccccccgggg cttcaccac cagcgtgcgc 360
agctacactgc ccaacacggc gaccgacgca ctgcggggga gcggggcggt ggggctgtg 420
ctgcgcgcgc tggggcgcga cgtgcgtgtt cacctgcgtg cacgctgcgc gcttttgt 480
ctggtggtc tcagctgcgc ctaccagggtg tgccggccgc cgctgtacca gctcggcgct 540
gccactcagg cccggccccc gccacacgct agtggacccc gaaggcgct gggatgcgaa 600
cgggccttga accatagcgt cagggaggcc ggggtccccc tgggcctgcg agccccgggt 660
gcgaggaggc gcggggggcag tgccagccga agtctgcgt tgcccaagag gcccaggcg 720
ggcgcgtgcc ctgagccgga gcggacgccc gttgggcagg gtcctgggc ccacccgggc 780
aggacgcgtg gaccgagtga ccgtggttc tgggtgggtg cacctgcac accccgcgaa 840
gaagccacct ctgggagggg tgctctctgc ggcacgcgc actcccaccc atccgtggc 900
cgccagcacc acggggcccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960
tgtccccccg tgtacgcgcg gaccaagcac ttccctact cctcaggcgca caaggagcag 1020
ctgcggccct ctttctact cagctctctg agggccagcc tgactggcg tcggaggctc 1080
gtggagacca tctttctggg ttccaggccc tggatgcag ggactcccc caggttgc 1140
cgccctgcccc agcgtactg gcaaattgcgg cccctgttgc tggagctgt tggaaccac 1200
gcmcagtgcc cctacggggt gtcctcaag acgcactgcc cgctgcgagc tgcgggtcacc 1260
ccagcagccg gtgtctgtgc ccgggagaag ccccaaggct ctgtggcgcc ccccgaggag 1320
gaggacacag acccccgtcg cttgggtgcag ctgcgtccgc acgcacgcag cccctggcag 1380
gtgtacggct tcgtgcgggc ctgcctgcgc cggctgggtgc ccccaaggct ctggggctcc 1440
aggcacaacg aaccccgtt cctcaggaaac accaagaagt tcacccct ggggaagcat 1500
gccaagctct cgctgcagga gctgacgtgg aagatgagcg tgccggactg cgcttggctg 1560
cgccaggagcc caggggttgg ctgtgttccg gcccagagc accgtctgcg tgaggagatc 1620
ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagctgt cagggtcttc 1680
tttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagagtgtc 1740

tggagcaagt tgcaaagcat tggaatcaga cagcaattga agagggtgca gctgcgggag 1800
 ctgtcgaaag cagaggtcag gcagcatcgga gaagccaggc ccgcctgct gacgtccaga 1860
 ctccgcttca tccccaaagcc tgacgggctg cgccgattt gtaacatgga ctacgtcgtg 1920
 ggagccagaa cgttccgcag agaaaagagg gccgagcgtc tcacctcgag ggtgaaggca 1980
 ctgttcagcg tgctcaacta cgagcggcg cgccgcggc gcctctggg cgcctctgtg 2040
 ctgggcctgg acgatatcca cagggcctgg cgcaccttcg tgctcgatgt gcggggcccag 2100
 gaccgcgcgc ctgagctgta cttgtcaag gacaggctca cggaggtcat cgccagcatc 2160
 atcaaacccc agaacacgta ctgcgtcggt cggtatgccc tggccagaa gcggcccat 2220
 gggcacgtcc gcaaggcctt caagagccac gtctctaccc tgacagaccc cagccgtac 2280
 atgcgacagt tcgtggctca cctgcaggag accagccgc tgaggatgc cgtcgatcatc 2340
 gagcagagct cttccctgaa tgaggccagc agtgccctt tcgacgtctt cttacgcttc 2400
 atgtgccacc acggcgtcgc catcaggggc aagtccatc tccagtgcca gggatcccg 2460
 cagggctcca tcctctccac gctgtctgc agctgtgt acggccacat ggagaacaag 2520
 ctgttgcgg ggattcggcg ggacgggctg ctccctgcgtt tggatggatga ttcttgcgtt 2580
 gtgacaccc acctcacca cgcgaaaaacc ttccctcagga ccctggcccg aggtgtccct 2640
 gagtatggct gctgtggtaa cttgcggaa acagtggta acttccctgt agaagacgag 2700
 gcccctgggt gcacggctt tggatggatgc cccatccacg gcctattccc ctgggtgcggc 2760
 ctgctgctgg atacccggac cctggagggtg cagagcgtacttccagcta tgcccgacc 2820
 tccatcagag ccagtctcac cttcaaccgc ggcttcaagg ctgggaggaa catgcgtcgc 2880
 aaactcttg gggcttgcg gctgaagtgt cacagcctgt ttctggattt gcaggtgaac 2940
 agcctccaga cgggtgtgcac caacatctac aagatcctcc tgctgcaggc gtacaggttt 3000
 cacgcgttg tgctgcagct cccatccat cagcaagttt ggaagaaccc cacattttc 3060
 ctgcgcgtca tctctgacac ggcctccctc tgctactcca tcctgaaagg caagaacgca 3120
 gccgaagaaa acatttctgt cgtgactcct ggggtgtctt ggtcgggaca gccagagatg 3180
 gagccacccc gcagaccgtc ggggtgtgggc agctttccgg tgtctcctgg gagggggagtt 3240
 gggctgggccc tgtgactcct cagcctctgt ttcccccag ggtatgtcgct gggggccaaag 3300
 ggcgcgcgc gccctctgccc ctccgaa 3326

D18
 <210> 50
 <211> 1084
 <212> PRT
 <213> Homo sapiens

<220>

<223> Protein Lacking Motif A and Altered C-Terminus;
Encoded by SEQ ID NO:49

<400> 50

Met	Pro	Arg	Ala	Pro	Arg	Cys	Arg	Ala	Val	Arg	Ser	Leu	Leu	Arg	Ser
1									10					15	

His	Tyr	Arg	Glu	VaL	Leu	Pro	Leu	Ala	Thr	Phe	Val	Arg	Arg	Leu	Gly
				20					25				30		

Pro	Gln	Gly	Trp	Arg	Leu	Val	Gln	Arg	Gly	Asp	Pro	Ala	Ala	Phe	Arg
					35			40					45		

Ala	Leu	Val	Ala	Gln	Cys	Leu	Val	Cys	Val	Pro	Trp	Asp	Ala	Arg	Pro
						50		55				60			

Pro	Pro	Ala	Ala	Pro	Ser	Phe	Arg	Gln	Val	Ser	Cys	Leu	Lys	Glu	Leu
					65				70		75		80		

Val	Ala	Arg	Val	Leu	Gln	Arg	Leu	Cys	Glu	Arg	Gly	Ala	Lys	Asn	Val
					85				90				95		

Leu	Ala	Phe	Gly	Phe	Ala	Leu	Leu	Asp	Gly	Ala	Arg	Gly	Gly	Pro	Pro
					100			105				110			

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr
115 120 125

Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val
130 135 140

Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val
145 150 155 160

Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr
165 170 175

Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly
180 185 190

Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg
195 200 205

Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg
210 215 220

Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg
225 230 235 240

D1D

Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp
245 250 255

Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val
260 265 270

Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala
275 280 285

Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His
290 295 300

Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro
305 310 315 320

Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly
325 330 335

Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro
340 345 350

Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser
355 360 365

Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln
370 375 380

Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His
385 390 395 400

Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg
405 410 415

Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln
 420 425 430

 Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu
 435 440 445

 Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
 450 455 460

 Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
 465 470 475 480

 Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
 485 490 495

 Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
 500 505 510

 Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
 515 520 525

 Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe
 530 535 540

D/D

 Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe
 545 550 555 560

 Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
 565 570 575

 Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
 580 585 590

 Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
 595 600 605

 His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
 610 615 620

 Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
 625 630 635 640

 Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
 645 650 655

 Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
 660 665 670

 Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
 675 680 685

 Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro
 690 695 700

 Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala Ser Ile
 705 710 715 720

 Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln

725

730

735

Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser
 740 745 750

Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu
 755 760 765

Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser
 770 775 780

Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe
 785 790 795 800

Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys
 805 810 815

Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu
 820 825 830

Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp
 835 840 845

D10
 Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His
 850 855 860

Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro
 865 870 875 880

Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro
 885 890 895

Val Glu Asp Glu Ala Leu Gly Thr Ala Phe Val Gln Met Pro Ala
 900 905 910

His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu
 915 920 925

Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala
 930 935 940

Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg
 945 950 955 960

Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp
 965 970 975

Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile
 980 985 990

Leu Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro
 995 1000 1005

Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile
 1010 1015 1020

Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala
 1025 1030 1035 1040

Glu Glu Glu Asn Ile Leu Val Val Thr Pro Ala Val Leu Gly Ser Gly
1045 1050 1055

Gln Pro Glu Met Glu Pro Pro Arg Arg Pro Ser Gly Val Gly Ser Phe
1060 1065 1070

Pro Val Ser Pro Gly Arg Gly Val Gly Leu Gly Leu
1075 1080

<210> 51
<211> 2135
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1871)..(1873)
<223> Wherein N is A, C, G or T

<220>
<223> N-Terminal Truncated Telomerase (ver. 2); with
Intron Y

D10
<400> 51
atgccgcgctg ctcccccgtg ccgagccgtg cgctccctgc tgcgca gcca ctaccgcgag 60
gtgctgccgc tggcacgtt cgtgcggcgc ctggggcccc agggctggcg gctggtcag 120
cgcgccggacc cggccgctt ccgcgcgtg gtggcccagt gcctgggtg cgtgcctgg 180
gacgcacggc cgccccccgc cgccccctcc ttccgcagg tgggcctccc cggggctggc 240
gtccggctgg gggttaggggc ggcggggggg aaccagcgac atgcggagag cagcgcaggc 300
gactcagggc gctttccctg caggtgttccct gcctgaagga gctggtgcc cgagtgtgc 360
agaggctgtg cgagcgcggc gcgaagaacg tgcgtgcctt cggcttcgcg ctgctggacg 420
gggccccggg gggccccccc gagggccttca ccaccagcgt ggcgcgtac ctgcccaca 480
cggtgaccga cgcactgcgg gggagcgggg cgtgggggct gctgctgcgc cgcgtggcg 540
acgacgtgt gttcacctg ctggcacgtt gcgcgcctt tgcgtgggt gctcccaact 600
gcgcctacca ggtgtgcggg cgcgcgtgtt accagctcg gctgcactt caggccccggc 660
ccccgcacca cgctagtggc ccccgaaaggc gtctggatg cgaacggggc tggaaaccata 720
gcgtcaggga ggcgggggtc cccctggcc tgcagcccc gggtgcgagg aggccggggg 780
gcagtgcacag ccgaagtctg ccgttgcaca agaggcccag gcgtggcgct gcccctgagc 840
cgagcggac gcccgtggg caggggtctt gggccaccc gggcaggacg cgtggaccga 900
gtgaccgtgg ttctgtgtg gtgtcacctg ccagacccgc cgaagaagcc acctctttgg 960
agggtgcgt ctctggcacg cgccactccc accatccgt gggccgcac caccacgcgg 1020
gcgcgcgcac cacatcgccg ccaccacgtc cctggacac gcctgtccc cccgtgtacg 1080
ccgagaccaa gcacttcctc tactcctcag gcgacaagga gcagctgcgg ccctccttcc 1140
tactcagctc tctgaggccc agcctgactg gcgcctggag gctcgtggag accatcttc 1200
tgggtccag gcccgttat ccaggactc cccgcagggtt gccccgcctg ccccaagcgct 1260
actggcaaat gcccgcctg ttctggagc tgcttggaa ccacgcgcac tgcccctacg 1320
gggtgctcct caagacgcac tgcccgtgc gagctgcgtt caccgcac gcccgtgtct 1380
gtgccccgggaa gaagccccag ggctctgtgg cggccccccga ggaggaggac acagaccccc 1440
gtgcgcctgtt gcagctgtc cgccagcaca gcagccccgt gcagggtgtac ggcttcgtgc 1500
gggcctgcct gcccggctg gtgcggccag gcctctgggg ctccaggac aacgaacgcc 1560
gcttcctcag gaacaccaag aagttcatct ccctggggaa gcatgcacag ctctcgctgc 1620
aggagctgac gtggaaatgt agcgtgcggg actgcgcctt gctgcgcagg agccccagggg 1680
ttggctgtgt tccggccgca gagcaggctc tgctgtgagga gatcctggcc aagttcctgc 1740
actggctgat gagtgtgtac gtcgtgcagc tgctcagggtc ttcttttat gtcacggaga 1800
ccacgtttca aaagaacagg ctcttttct accggaaagag tgtctggagc aagttgcaaa 1860
gcattggaat nnngacagtc accagggggg ttgaccgcgc gactggcggt ccccaagggtt 1920

gactata tagga ccagggtgtcc aggtgccctg caagtagagg ggcttcaga ggcgtctggc 1980
tggcatgggt ggacgtggcc cccggcatgg cttctgcgt gtgctgcgt gggtgccctg 2040
agccctca ct gatcggtgg gggcttggg cttccctgta gcttccccct agtctgttgt 2100
ctggctgagc aagcctcctg aggggctctc tattg 2135

<210> 52
<211> 622
<212> PRT
<213> Homo sapiens

<220>
<223> N-Terminal Truncated Telomerase (ver.2); encoded
by SEQ ID NO:51 and ORF1 of Intron Y

<400> 52
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

D10
Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
65 70 75 80

Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
85 90 95

Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser

225 230 235 240
Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255
Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270
Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285
Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300
Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320
Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335
His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350
D10
Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365
Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380
Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400
Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415
Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430
Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445
Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460
Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
465 470 475 480
Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495
Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510
Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525
Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly
610 615 620

<210> 53

<211> 84

<212> PRT

<213> Homo sapiens

<220>

D10
<223> Splicing Variant of Human Telomerase encoded by
Intron Y, ORF2, before the termination codon.
SEQ ID NOS: 51,55,59,63,67,71,75,79,83 encode this
fragment

<400> 53

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ala Ser Pro Gly Ser Ala
65 70 75 80

Ser Gly Trp Gly

<210> 54

<211> 537

<212> PRT

<213> Homo sapiens

<220>

<223> N-Terminal Truncated Telomerase (ver. 2); encoded
by SEQ ID NO:51, with Y intron, ORF2, after the
termination codon

<400> 54

Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg
20 25 30

Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
35 40 45

Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Pro Pro Glu Ala Phe
50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val Gly Asp Asp
85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
100 105 110

D10

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
130 135 140

Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
145 150 155 160

Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
165 170 175

Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro
210 215 220

Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
275 280 285

Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
305 310 315 320

Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys
340 345 350

Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
355 360 365

Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
370 375 380

Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
420 425 430

D/0
Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
450 455 460

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
465 470 475 480

Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe Leu His Trp
485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
500 505 510

Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
515 520 525

Val Trp Ser Lys Leu Gln Ser Ile Gly
530 535

<210> 55

<211> 2145

<212> DNA

<213> Homo sapiens

<220>

<223> Truncated Protein 1 (ver.2); with Introns Y and 1

<400> 55

atgccgcgcg ctccccgctg ccgagccgtg cgctccctgc tgcgacgcca ctaccgcgag 60
gtgctgccc tggcacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtgcag 120
cgcggggacc cggcggttt ccgcgcgtg gtggccagt gcctgggtg cgtgccctgg 180

D10

gacgcacggc cgccccccgc cgccccctcc ttccgccagg tgggcctccc cggggtcggc 240
gtccggctgg ggttggggc ggccgggggg aaccagcgac atgcggagag cagcgcaggc 300
gactcagggc gctcccccg caggtgtcct gcctgaagga gctggggcc cagtgctgc 360
agaggctgtg cgagcgccgc gcgaagaacg tgctggcctt cggcttcgcg ctgctggacg 420
gggcccgcgg gggccccccc gaggccttca ccaccagcgat ggcagctac ctgcccaca 480
cggtgaccga cgcaactgcgg gggagcgggg cgtggggct gctgctgcgc cgcgtggcg 540
acgacgtgtc gtgtcacctg ctggcacgt ggcgcctt tggctgggtg gctcccagct 600
gcgcctacca ggtgtcgccc cggccgtgt accagctcg cgcgtccact caggccccggc 660
ccccgcacaca cgcttagtgg ccccgaaaggc gtctggatg cgaacgggc tggaaaccata 720
gcgtcagggc ggccggggtc cccctggcc tgccagcccc gggtgcgagg aggcgcgggg 780
gcagtgcctag ccgaagtctg ccgttgccta agaggcccag gcgtgcgt gcccctgagc 840
cggagcgac gcccgttggg caggggtctt gggccaccc gggcaggacg cgtggaccga 900
gtgaccgtgg ttctgtgtg gtgtcacctg ccagaccgc cgaagaagcc acctctttgg 960
agggtgcgtc ctctggcact cgcactccc acccatccgt gggccgcag caccacgcgg 1020
gccccccatc cacatcgccg ccaccacgtc cctggacac gccttgtccc cgggtgtacg 1080
ccgagaccaa gcacttcctc tactcctcag gcgacaaggc gcagctgcgg ccctccttcc 1140
tactcagctc tctgaggccc agcctgactg ggcgtcgagg gctcgtggag accatcttc 1200
tgggttccag gccctggatg ccagggactc cccgcagggtt gcccgcctg ccccagcgct 1260
actggcaaat gcggccctgt ttctggagc tgcttggaa ccacgcgcag tgccccctacg 1320
gggtgctctt caagacgcac tgcccgtc gagctgcggt caccggcaca gccgggtgtct 1380
gtgcccggga gaagccccag ggctctgtgg cggcccccga ggaggaggac acagaccccc 1440
gtcgccctgtt gcagctgctc cgcgcgcaca gcagccccgt gcaggtgtac ggcttcgtgc 1500
gggcctgcct ggcgcggctg gtggcccccag gcctctgggg ctccaggcaca aacgaacgcc 1560
gcttcctcag gaacaccaag aagttcatct ccctggggaa gcatgccaag ctctcgctgc 1620
aggagctgac gtggaaagatg agcgtgcggg actgcgttgc gctgcgcagg agcccagggg 1680
ttggctgtgt tccggccgca gggccgcgcac tgctgtggag gatcctggcc aagttcctgc 1740
actggctgtat gagggtgtac gtgtcgagc tgctcagggtc ttcttttat gtacggaga 1800
ccacgtttca aaagaacagg ctctttctt accggaaagag tgtctggagc aagttgaaaa 1860
gcatttggaaat cagacagcac ttgaagaggg tgccgtgcg ggagctgtcg gaagcagagg 1920
tcaggcagca tcgggaagcc aggccccccc tgctgacgtc cagactccgc ttcatcccc 1980
agcctgacgg gctgcggccg attgtgaaca tggactacgt cgtggagcc agaacgtttc 2040
gcagagaaaa gaggtggct gtgtttgtt ttaacttcct tttaaccag aagccgagcg 2100
tctcacctcg agggtgaagg cactgttgc cgtgtcaac tacga 2145

<210> 56

<211> 704

<212> PRT

<213> Homo sapiens

<220>

<223> Truncated Protein 1 (ver.2); encoded by SEQ ID
NO:55, with Y Intron ORF1

<400> 56

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
65 70 75 80

Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
85 90 95

Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
 385 390 395 400
 Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
 405 410 415
 Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
 420 425 430
 Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
 435 440 445
 Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
 450 455 460
 Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
 465 470 475 480
 Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
 485 490 495
 Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
 500 505 510
D10
 Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
 515 520 525
 Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
 530 535 540
 Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
 545 550 555 560
 Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
 565 570 575
 Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
 580 585 590
 Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
 595 600 605
 Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
 610 615 620
 Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
 625 630 635 640
 Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
 645 650 655
 Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
 660 665 670
 Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Val Ala Val Leu
 675 680 685
 Trp Phe Thr Phe Leu Phe Asn Gln Lys Pro Ser Val Ser Phe Arg Gly

690

695

700

<210> 57
<211> 619
<212> PRT
<213> Homo sapiens

<220>
<223> Truncated Protein 1 (ver.2): encoded by SEQ ID NO:55, with Intron Y ORF2 after the termination codon

<400> 57
Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg
20 25 30

D/D
Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
35 40 45

Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Pro Pro Glu Ala Phe
50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val Gly Asp Asp
85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
100 105 110

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
130 135 140

Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
145 150 155 160

Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
165 170 175

Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro
210 215 220

Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
275 280 285

Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
305 310 315 320

Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys
340 345 350

D/D
Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
355 360 365

Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
370 375 380

Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
420 425 430

Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
450 455 460

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
465 470 475 480

Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe Leu His Trp
485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
500 505 510

Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
515 520 525

Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His Leu Lys Arg
530 535 540

Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln His Arg Glu
545 550 555 560

Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile Pro Lys Pro
565 570 575

Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val Gly Ala Arg
580 585 590

Thr Phe Arg Arg Glu Lys Arg Val Ala Val Leu Trp Phe Thr Phe Leu
595 600 605

Phe Asn Gln Lys Pro Ser Val Ser Phe Arg Gly
610 615

D10
<210> 58
<211> 704
<212> PRT
<213> Homo sapiens

<220>
<223> Truncated Protein 1 (ver.2); encoded by SEQ ID
NO:55, with Intron Y ORF3

<400> 58
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

D10

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

D/D Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Val Ala Val Leu
675 680 685

Trp Phe Thr Phe Leu Phe Asn Gln Lys Pro Ser Val Ser Phe Arg Gly
690 695 700

<210> 59
<211> 2645
<212> DNA
<213> Homo sapiens

<220>
<223> Truncated Protein 2 (ver.2); with Intron Y and Alpha

D10

<400> 59

atgccgcgcg ctccccgtc ccgagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60
gtgctgccgc tggccacgtt cgtcgccgc ctggggcccc agggctggcg gctggtcag 120
cgcggggacc cggcggttt ccgcgcgtg gtggcccagt gcctgggtg cgtccctgg 180
gacgcacggc cgccccccgc cgccccctcc ttccgcagg tggcctccc cggggtcggc 240
gtccggctgg ggttgagggc ggccgggggg aaccagcgac atgcgagag cagcgcaggc 300
gactcagggc gcttccccc caggtgtcct gcctgaagga gctggggcc cgagtgcgtc 360
agaggctgtg cgagcgcggc gcgaagaacg tgctggcctt cggctcgcg ctgctggacg 420
gggcccgcgg gggccccccc gaggccttca ccaccagcg ggcgcgtac ctgcccaca 480
cggtgacccga cgcaactgcgg gggagcgggg cgtgggggt gctgcgcgc cgctggggc 540
acgacgtgt gttcacctg ctggcacgt gcgcgtctt tgtgcgttg gctccagct 600
gcccctacca ggtgtgcggg cggccgtgt accagctcg cgcgtccact caggccccgc 660
ccccgcacaca cgcttagtgg ccccgaaaggc gtcggatg cgaacgggc tggaaaccata 720
gcgtcaggga ggccggggtc cccctggcc tggcagccc ggtgcgagg aggccgggg 780
gcagtgcctag ccgaagtctg ccgttgcaca agaggcccag gcgtggcgt gcccctgagc 840
cggagcggac gcccgttggg caggggtctt gggcccaccc gggcaggacg cgtggaccga 900
gtgaccgtgg ttctgtgtg gtgtcacctg ccagaccgc cgaagaagcc acctctttg 960
agggtgcgt ctctggcacg cgcactccc accatccgt gggccgcag caccacgcgg 1020
gccccccatc cacatcgcgg ccaccacgtc cctggacac gcctgtccc cccgtgtacg 1080
ccgagaccaa gcacttcctc tactcctcag gcgacaaggc gcagctgcgg ccctccttcc 1140
taactcagctc tctgaggccc agcctgactg gcgcgtggag gtcgtggag accatcttc 1200
tgggttccag gccctggatg ccagggactc cccgcagggtt gcccgcctg cccagcgt 1260
actggcaaat gcccgcctgt ttctggagc tgcttggaa ccacgcgcag tgcccctacg 1320
gggtgctct caagacgcac tgcccgtc gagctgcggt caccgcac gccgggtgtct 1380
gtgccccggga gaagccccag ggctctgtgg cggcccccga ggaggaggac acagaccccc 1440
gtgcctgtt gcagctgctc cgccagcaca gcagccccgt gcaggtgtac ggcttcgtgc 1500
gggcctgctc ggcgcggctg gtgccccag gcctctgggg ctccaggcac aacgaacgcc 1560
gcttcctcag gaacaccaag aagttcatct ccctgggaa gcatgccaag ctctcgctgc 1620
aggagctgac gtggaaagatg agcgtgcggg actgcgttgc gtcgcgcagg agcccagggg 1680
ttggctgtgt tccggccgca gagcaccgtc tgcgtgagga gatcctggcc aagttcctgc 1740
actggctgat gagtgtgtac gtcgtcgagc tgctcagggtc ttcttttat gtcacggaga 1800
ccacgtttca aaagaacacagg ctcttttctt accggaagag tgcgtggagc aagttgaaaa 1860
gcatttggaaat cagacagcac ttgaagaggg tgcagctgctc ggagctgtcg gaagcagagg 1920
tcaggcagca tcgggaagcc agggccgcctc tgctgacgtc cagactccgc ttcatcccc 1980
agcctgacgg gtcgcggccg attgtgaaca tggactacgt cgtggagcc agaacgttcc 2040
gcagagaaaa gagggccgag cgtctcacct cgagggtgaa ggcactgttc agcgtgctca 2100
actacgagcg ggcgcggcgc cccggccctc tgggcgcctc tgtgcgtggc ctggacgata 2160
tccacagggc ctggcgccacc ttctgtgtc gtgtgcgggc ccaggaccgc cccgcctgagc 2220
tgtactttgt caaggtggat gtgacggcg cgtacgacac catccccag gacaggctca 2280
cgagggcat cgcacgcac atcaaacccc agaacacgta ctgcgtgcgt cggtatgccc 2340
tggtccagaa ggccgcctt gggcacgtcc gcaaggccctt caagagccac gtcctacgtc 2400
cagtgcctagg ggatcccgca gggctccatc ctctccacgc tgctctgcag cctgtgtac 2460
ggcgcacatgg agaacaagct gtttgcgggg attcggcgaaa acgggtgtct cctgcgtttg 2520
gtggatgatt tcttgcgtt gacacccctac ctcacccacg cggaaacctt ctcaggacc 2580
ctggtccgag gtgtccctga gtatggctgc gtggtaact tgcggaagac agtggtaac 2640
ttccc 2645

<210> 60

<211> 841

<212> PRT

<213> Homo sapiens

<220>

<223> Truncated Protein 2 (ver.2); encoded by SEQ ID
NO:59, with Intron Y ORF1

<400> 60

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser

1

5

10

15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
65 70 75 80

Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
85 90 95

Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

D/D Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

D10

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp
740 745 750

Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys
755 760 765

D10
Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala
770 775 780

Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Leu Arg Pro
785 790 795 800

Val Pro Gly Asp Pro Ala Gly Leu His Pro Leu His Ala Ala Leu Gln
805 810 815

Pro Val Leu Arg Arg His Gly Glu Gln Ala Val Cys Gly Asp Ser Ala
820 825 830

Gly Arg Ala Ala Pro Ala Phe Val Gly
835 840

<210> 61
<211> 756
<212> PRT
<213> Homo sapiens

<220>
<223> Truncated Protein 2 (ver.2); encoded by SEQ ID
NO:59 with Intron Y ORF2 after the termination
codon

<400> 61
Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg

20

25

30

Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
 35 40 45

Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro Glu Ala Phe
 50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
 65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Arg Arg Val Gly Asp Asp
 85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
 100 105 110

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
 115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
 130 135 140

Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
 145 150 155 160

D10
 Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
 165 170 175

Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
 180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
 195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro
 210 215 220

Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
 225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
 245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
 260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
 275 280 285

Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
 290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
 305 310 315 320

Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
 325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys
340 345 350

Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
355 360 365

Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
370 375 380

Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
420 425 430

Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
450 455 460

D/D

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
465 470 475 480

Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe Leu His Trp
485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
500 505 510

Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
515 520 525

Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His Leu Lys Arg
530 535 540

Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln His Arg Glu
545 550 555 560

Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile Pro Lys Pro
565 570 575

Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val Gly Ala Arg
580 585 590

Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser Arg Val Lys
595 600 605

Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg Pro Gly Leu
610 615 620

Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg Ala Trp Arg
625 630 635 640

Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro Glu Leu Tyr
645 650 655

Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile Pro Gln Asp
660 665 670

Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln Asn Thr Tyr
675 680 685

Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His Gly His Val
690 695 700

Arg Lys Ala Phe Lys Ser His Val Leu Arg Pro Val Pro Gly Asp Pro
705 710 715 720

Ala Gly Leu His Pro Leu His Ala Ala Leu Gln Pro Val Leu Arg Arg
725 730 735

His Gly Glu Gln Ala Val Cys Gly Asp Ser Ala Gly Arg Ala Ala Pro
740 745 750

D10
Ala Phe Val Gly
755

<210> 62
<211> 841
<212> PRT
<213> Homo sapiens

<220>
<223> Truncated Protein 2 (ver.2); encoded by SEQ ID NO:
59 with Intron Y ORF3

<400> 62
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

D10 Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Leu Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

D10
Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp

740

745

750

Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys
755 760 765

Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala
770 775 780

Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Leu Arg Pro
785 790 795 800

Val Pro Gly Asp Pro Ala Gly Leu His Pro Leu His Ala Ala Leu Gln
805 810 815

Pro Val Leu Arg Arg His Gly Glu Gln Ala Val Cys Gly Asp Ser Ala
820 825 830

Gly Arg Ala Ala Pro Ala Phe Val Gly
835 840

<210> 63

<211> 3500

<212> DNA

<213> Homo sapiens

D10
<220>

<223> Reference Protein (ver.2); with Introns Y, Alpha
and Beta

<400> 63

atgccgcgctg ccccccgctg ccgagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60
gtgctgccgc tggcacgtt cgtgcggcgc ctggggccccc agggctggcg gctgggtgcag 120
cgcggggacc cggcggttt ccgcgcgtg gtggcccagt gcctgggtgt cgtgccttgg 180
gacgcacgc cgcggggccgc cggcccttcc ttccgcagg tgggcctccc cggggtcggc 240
gtccggctgg gggtgagggc ggccgggggg aaccagcgac atgcggagag cagcgcaggc 300
gactcagggc gcttccccc caggtgtccct gcctgaagga gctggtgcc cgagtgtctgc 360
agaggctgtg cgagcgcggc gcgaagaacg tgctggcctt cggcttcgcg ctgctggacg 420
gggcccgcgg gggcccccggc gaggccttca ccaccagcgt ggcgcagctac ctgccaaca 480
cggtgaccga cgcactgcgg gggagcgggg cgtggggct gctgttgcgc cgcgtggcgc 540
acgacgtgtc gttcacctg ctggcacgtc gcgcgtctt tgtgttgtg gctcccaact 600
gcgcctacca ggtgtgcggg cgcgcgtgt accagctcg cgcgcact caggcccggc 660
ccccgcacaca cgctagtggc ccccgaaaggc gtctggatg cgaacgggccc tggaaaccata 720
gcgtcaggga ggcgggggtc cccctggccc tgccagcccc ggtgcgagg aggccggggg 780
gcagtgcacag ccgaagtctg ccgttgcaca agaggcccag gcgtggcgt gcccctgagc 840
cggagcggac gcccgttggg caggggtctt gggcccaccc gggcaggacg cgtggaccga 900
gtgaccgtgg ttctgtgtg gtgtcacctg ccagaccgc cgaagaagcc accttttgg 960
agggtgcgt ctctggcacg cgcactcccc acccatccgt gggccgcac caccacgcgg 1020
gccccccatc cacatgcgg ccaccacgtc cctggacac gcctgtccc cccgtgtacg 1080
ccgagaccaa gcacttcctc tactcctcag gcgcacaaggc gcagctgcgg ccctccttcc 1140
tactcagctc tctgaggccc agcctgactg gcgcctggag gtcgtggag accattttc 1200
tgggtccag gccctggatg ccagggactc cccgcagggtt gccccgcctg ccccaagcgct 1260
actggcaaat gcggccctg ttctgtgtg tgcttggaa ccacgcgcag tgccccctacg 1320
gggtgctctt caagacgcac tgcccgcgtc gagctgcgtt caccggacg gccgggtgtct 1380
gtgcccggga gaagccccag ggctctgtgg cggggcccgaa ggaggaggac acagaccccc 1440
gtgcgcctgtt gcagctgtc cgcgcaca gcagccccctg gcaggtgtac ggcttcgtgc 1500
gggcctgcct ggcgcggctg gtgccccccag gcctctgggg ctccaggcaca aacgaacgc 1560
gttcctcag gaacaccaag aagttcatct ccctggggaa gcatgccaag ctctcgctgc 1620

aggagctgac gtggaaagatg agcgtgcggg gctgcgctt gctgcgcagg agcccagggg 1680
 ttggctgtgt tccggccgca gaggaccgtc tgctgtggaa gatcctggcc aagttcctgc 1740
 actggctgat gagtggtgtac gtcgtcgagc tgctcagggtc tttcttttat gtcacggaga 1800
 ccacgtttca aaagaacagg ctcttttct accggaagag tgtctggagc aagttgcaa 1860
 gcatttggaa cagacacgac ttgaagaggg tgctgtgcgg ggagctgtcg gaagcagagg 1920
 tcaggcagca tcgggaagcc aggccccccc tgctgacgtc cagactccgc ttcatcccc 1980
 agcctgacgg gctgcggccg attgtgaaca tggactacgt cgtggagcc agaacgttcc 2040
 gcagagaaaa gaggcccgag cgtctcacct cgagggtgaa ggcactgttc agcgtgctca 2100
 actacgagcg ggcgcggcgc cccggccccc tgggcgcctc tggctgggc ctggacgata 2160
 tccacaggcctc ctggcgccacc ttctgtgtc tggtgcggcc ccaggaccgg ccgcctgagc 2220
 tgtactttgt caaggtggat gtgacggcg cgtacgacac catccccca gacaggctca 2280
 cggagggtcat cgccagcatc atcaaaccctt agaacacgta ctgcgtgcgt cggatgcgg 2340
 tggtccagaa ggccggccat gggcacgtcc gcaaggccctt caagagccac gtctctac 2400
 tgacagaccc ccagccgtac atgcacagt tggctgtca cctgcaggag accagccgc 2460
 tgaggatgc cgtcgtcatc gaggcagact cctccctgaa tgaggccagc agtggcctct 2520
 tcgacgttcc cttaacgttcc atgtgccacc acggcggtcg catcaggggc aagtccctac 2580
 tccagtgcctt gggatcccggggctcca tcctctccac gctgctctgc agcctgtgct 2640
 acggcgacat ggagaacaag ctgtttgcgg ggattcggcg ggacgggctg ctccgtcgtt 2700
 tggtggatga ttcttggatgtgacacccctt acctcaccctt cgcgaaaacc ttccctcagga 2760
 ccctggtccg aggtgtccctt gaggatggctt gctgtgtgaa cttgcggaa acagtggta 2820
 acttccctgtt agaagacgag gcccgggtt gcaacggctt tggtcagatg cggcccccac 2880
 gcctattccc ctgggtgcggc ctgctgttcc atacccggac cctggaggtg cagagcgact 2940
 actccagcta tgcccgacc tccatcagag ccagtctcac cttcaaccgc ggcttcaagg 3000
 ctgggaggaa catgcgtcgc aaactctttt ggggttgcg gctgaagtgt cacagcctgt 3060
 ttctggattt gcaggtaac agcctccaga cgggtgtcac caacatctac aagatccccc 3120
 tgctgcaggc gtacagggtt cacgcacatg tggctgttcc cccatttcat cagcaagtt 3180
 ggaagaacccc cacattttc ctgcgtcgtca tctctgacac ggcctccctc tgctactcca 3240
 tcctgaaagc caagaacgcg gggatgtcgc tggggggccaa gggcgccgc ggcctctgc 3300
 cctccgaggc cgtgcagttt ctgtgccacc aagcatttctt gctcaagctg actcgacacc 3360
 gtgtcaccta cgtgccactc ctgggttccat tcaggacagc ccagacgcag ctgagtcgaa 3420
 agctcccggg gacgacgtg actgccttggcaggccgcagc caacccggca ctgccttcag 3480
 acttcaagac catcctggac 3500

D1 D <210> 64

<211> 1165

<212> PRT

<213> Homo sapiens

<220>

<223> Reference Protein (ver.2); encoded by SEQ ID NO:63
with Intron Y ORF1

<400> 64

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
65 70 75 80

Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
85 90 95

Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

D18
Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu

385	390	395	400
Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu			
405		410	415
Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly			
420		425	430
Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro			
435		440	445
Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys			
450		455	460
Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg			
465		470	475
Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr			
485		490	495
Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp			
500		505	510
Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe			
515		520	525
Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp			
530		535	540
Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val			
545		550	555
Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala			
565		570	575
Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg			
580		585	590
Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe			
595		600	605
Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg			
610		615	620
Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val			
625		630	635
Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg			
645		650	655
Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr			
660		665	670
Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu			
675		680	685
Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala			
690		695	700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp
740 745 750

Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys
755 760 765

Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala
770 775 780

Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu
785 790 795 800

Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu
805 810 815

Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu
820 825 830

D10 Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys
835 840 845

His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly
850 855 860

Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr
865 870 875 880

Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu
885 890 895

Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr
900 905 910

His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr
915 920 925

Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu
930 935 940

Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly
945 950 955 960

Leu Phe Pro Trp Cys Gly Leu Leu Asp Thr Arg Thr Leu Glu Val
965 970 975

Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu
980 985 990

Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu
995 1000 1005

Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln
1010 1015 1020

Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu
1025 1030 1035 1040

Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His
1045 1050 1055

Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp
1060 1065 1070

Thr Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser
1075 1080 1085

Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln
1090 1095 1100

Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val
1105 1110 1115 1120

Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln Leu
1125 1130 1135

D/0
Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala Ala Ala
1140 1145 1150

Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp
1155 1160 1165

<210> 65

<211> 1081

<212> PRT

<213> Homo sapiens

<220>

<223> Reference Protein (ver.2); encoded by SEQ ID NO:63
with Intron Y ORF2 after the termination codon

<400> 65

Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg
20 25 30

Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
35 40 45

Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro Glu Ala Phe
50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Arg Arg Val Gly Asp Asp
85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
100 105 110

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
130 135 140

Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
145 150 155 160

Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
165 170 175

Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro
210 215 220

D18
Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
275 280 285

Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
305 310 315 320

Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys
340 345 350

Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
355 360 365

Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
370 375 380

Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
420 425 430

Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
450 455 460

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
465 470 475 480

Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe Leu His Trp
485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
500 505 510

Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
515 520 525

D10 Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His Leu Lys Arg
530 535 540

Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln His Arg Glu
545 550 555 560

Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile Pro Lys Pro
565 570 575

Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val Gly Ala Arg
580 585 590

Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser Arg Val Lys
595 600 605

Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg Pro Gly Leu
610 615 620

Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg Ala Trp Arg
625 630 635 640

Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro Glu Leu Tyr
645 650 655

Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile Pro Gln Asp
660 665 670

Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln Asn Thr Tyr
675 680 685

Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His Gly His Val
690 695 700

Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr Asp Leu Gln Pro

705 710 715 720
 Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr Ser Pro Leu Arg
 725 730 735
 Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu Ala Ser Ser
 740 745 750
 Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His His Ala Val Arg
 755 760 765
 Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile Pro Gln Gly Ser
 770 775 780
 Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp Met Glu Asn
 785 790 795 800
 Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu Leu Arg Leu Val
 805 810 815
 Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala Lys Thr Phe
 820 825 830
D10
 Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys Val Val Asn
 835 840 845
 Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu Ala Leu Gly
 850 855 860
 Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro Trp Cys
 865 870 875 880
 Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser Asp Tyr Ser
 885 890 895
 Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe Asn Arg Gly
 900 905 910
 Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly Val Leu Arg
 915 920 925
 Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn Ser Leu Gln
 930 935 940
 Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Leu Gln Ala Tyr Arg
 945 950 955 960
 Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln Val Trp Lys
 965 970 975
 Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala Ser Leu Cys
 980 985 990
 Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser Leu Gly Ala Lys
 995 1000 1005
 Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln Trp Leu Cys His
 1010 1015 1020

Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val Thr Tyr Val Pro
1025 1030 1035 1040

Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln Leu Ser Arg Lys Leu
1045 1050 1055

Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala Ala Asn Pro Ala Leu
1060 1065 1070

Pro Ser Asp Phe Lys Thr Ile Leu Asp
1075 1080

<210> 66

<211> 1165

<212> PRT

<213> Homo sapiens

<220>

<223> Reference Protein (ver.2); encoded by SEQ ID NO:63
with Intron Y ORF3

<400> 66

D) D Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu

180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

D/O

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

D10
Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp
740 745 750

Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys
755 760 765

Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala
770 775 780

Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu
785 790 795 800

Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu
 805 810 815

Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu
 820 825 830

Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys
 835 840 845

His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly
 850 855 860

Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr
 865 870 875 880

Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu
 885 890 895

Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr
 900 905 910

His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr
 915 920 925

D/0
 Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu
 930 935 940

Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly
 945 950 955 960

Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val
 965 970 975

Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu
 980 985 990

Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu
 995 1000 1005

Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln
 1010 1015 1020

Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu
 1025 1030 1035 1040

Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His
 1045 1050 1055

Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp
 1060 1065 1070

Thr Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser
 1075 1080 1085

Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln
 1090 1095 1100

Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val

1105

1110

1115

1120

Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln Leu
1125 1130 1135

Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala Ala Ala
1140 1145 1150

Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp
1155 1160 1165

<210> 67

<211> 3173

<212> DNA

<213> Homo sapiens

<220>

<223> Truncated Protein (ver.2); with Introns Y, Alpha,
Beta and 2

<400> 67

D/8
atgccgcgctg ctcggccgtg ccggagccgtg cgctccctgc tgcgcaagcca ctaccgcgag 60
gtgtcgtccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtgcag 120
cgccggggacc cggccggctt cgcgcgcgtg gtggcccagt gcctgggtgt cgtgcctgg 180
gacgcacggc cgcggcccccgc cgcggccctcc ttccgcagg tgggcctccc cggggtcggc 240
gtccggctgg gtttggggc ggccgggggg aaccagcgac atgcggagag cagcgcagggc 300
gactcaggcgc gcttccccc caggtgtccct gcctgaagga gctggtgcc cgagtgtgc 360
agaggctgtg cgagcgcggc gcgaagaacg tgctggcctt cggcttcgcg ctgctggacg 420
gggcccgcgg gggccccccc gaggccttca ccaccagcgt ggcagctac ctgccaaca 480
cggtgaccga cgcactgcgg gggagcgggg cgtggggct gctgtgcgc cgcgtggcg 540
acgacgtgt gttcacctg ctggcagcgt gcgcgcgtt tgtgtgggt gctccagct 600
gcgcctacca ggtgtgcggg cgcgcgtgt accagctcgg cgctgccact caggcccggc 660
ccccgcacca cgcctgttgc cccgcggcgt gtctggatg cgaacggggcc tggaaaccata 720
gcgtcaggga ggcggggc cccctggcc tgccagcccc ggtgtcgagg aggccgcggg 780
gcagtgcaccc cgcggccatc cccgcggcc agaggcccg cgcgtggcgct gcccctgagc 840
cgagcggac gcccgtggg caggggcttgc gggccaccc gggcaggacg cgtggaccga 900
gtgaccgtgg tttctgtgtg gtgtcacctg ccagacccgc cgaagaagcc acctcttgg 960
agggtgcgtt ctctggcaccg cgcactccc acccatccgt gggccgcac caccacgcgg 1020
gcggccatc cacatcgccg ccaccacgtc cctgggacac gccttgtccc cccgtgtacg 1080
ccgagaccaa gcaccccttc tactcctcag gcgacaagga gcagctgcgg ccctccttcc 1140
tactcagctc tctgaggccc agcctgactg gcgcctggag gctcgtggag accatcttc 1200
tgggttccag gcccggatg ccaggactc cccgcagggtt gccccgcctg ccccgacgt 1260
actggcaaat gcggccctg tttctggagc tgcttggaa ccacgcgcag tgcccctacg 1320
gggtgctcct caagacgcac tgccgcgtc gagctgcgtt caccgcac gcccgtgtct 1380
gtgcccggga gaagccccag ggctctgtgg cggcccccga ggaggaggac acagaccccc 1440
gtgcgcgtgt gcagctgtc cgcgcacaca gcagccccctg gcaggtgtac gggttcgtgc 1500
gggcctgcct gcgcggctg gtggcccg cgcctgggg ctccaggac aacgaacgcc 1560
gcctcctcag gaacaccaag aagttcatct ccctggggaa gcatgccaag ctctcgctgc 1620
aggagctgac gtggaaatg agcgtgcggg actgcgttgc gctgcgcagg agcccagggg 1680
ttggctgtgt tccggccgca gagcaccgtc tgctgtggaa gatecctggcc aagttcctgc 1740
actggctgat gagtgtgtac gtcgtcgagc tgctcaggc tttcttttat gtcacggaga 1800
ccacgtttca aaagaacagg ctcttttct accggaaagag tgtctggagc aagttgcaaa 1860
gcatttggaaat cagacacgcac ttgaagaggg tgcagctgcg ggagctgtcg gaagcagagg 1920
tcaggcagca tcgggaagcc agggccccc tgctgacgtc cagactccgc ttcatcccc 1980
agcctgacgg gctgcggccg attgtgaaca tggactacgt cgtggagcc agaacgttcc 2040
gcagagaaaaa gagggccgag cgtctcacct cgagggtgaa ggcactgttc agcgtgctca 2100
actacgagcg ggcgcggcgc cccggccccc tggcgccctc tgcgtggc 2160

tccacagggc ctggcgacc ttcgtgtgc gtgtgcgggc ccaggacccg ccgcctgagc 2220
tgtactttgt caaggtggat gtgacgggcg cgtacgacac catccccag gacaggctca 2280
cggaggtcat cgccagcatc atcaaaccac agaacacgtt ctgcgtgcgt cggtatgcgg 2340
tggtccagaa ggccgcccattt gggcacgtcc gcaaggcctt caagagccac gtctctactt 2400
tgacagacctt ccagccgtac atgcacagt tcgtggctca cctgcaggag accagccgc 2460
tgagggatgc cgtcgtcattt gaggcagactt cctccctgaa tgagggccagc agtggcctct 2520
tcgacgtctt cttacgctt atgtgccacc acgcccgtgc catcaggggc aagtcttacg 2580
tccagtgcctt ggggatcccg cagggctcca ttctctccac gctgcgtctgc agcctgtgt 2640
acggcgacat ggagaacaag ctgtttgcgg ggattcggcg ggacggctg ctctgcgtt 2700
tggtggatga tttttgttgcgtt gtgacacccatc acctcaccatc cgcgaaaacc ttcttcagga 2760
ccctggcccg aggtgtccctt gaggatggctt gcgtgggtgaa cttgcggaaag acagtggta 2820
acttccctgtt agaagacgag gcccctgggtt gcacggctt tgttcagatg ccggcccaacg 2880
gcctattttccctt ctggtgcggc ctgcgtctgg ataccggac cctggagggtt cagagcgact 2940
actccagggtt agcgcacccatc gcccggaaatg gaggcctgtgc ccggctgggg caggtgtctc 3000
tgcagggcccg ttgcgtccatc ctctgccttgcgtt gttgtggggca ggcgactgccc aatccaaag 3060
ggtcagatgc cacagggtgc ccctcgatccatc atctggggctt gaggcacaat gcatcttct 3120
gtgggagtgatgc gggtgcctca caacgggagc agtttctgtt gctatatttgg taa 3173

<210> 68
<211> 982
<212> PRT
<213> Homo sapiens

D10
<220>
<223> Truncated Protein 3 (ver.2); encoded by SEQ ID
NO:67 with Intron Y ORF1

<400> 68
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
65 70 75 80

Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
85 90 95

Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

D10
Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg

465 470 475 480
Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495
Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510
Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525
Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540
Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560
Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575
Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590
D10
Ser Phe Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605
Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620
Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640
Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655
Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670
Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685
Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700
Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720
His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735
Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp
740 745 750
Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys
755 760 765
Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala
770 775 780

Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu
 785 790 795 800

 Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu
 805 810 815

 Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu
 820 825 830

 Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys
 835 840 845

 His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly
 850 855 860

 Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr
 865 870 875 880

 Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu
 885 890 895

D1D Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr
 900 905 910

 His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr
 915 920 925

 Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu
 930 935 940

 Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly
 945 950 955 960

 Leu Phe Pro Trp Cys Gly Leu Leu Asp Thr Arg Thr Leu Glu Val
 965 970 975

 Gln Ser Asp Tyr Ser Arg
 980

<210> 69
 <211> 897
 <212> PRT
 <213> Homo sapiens

<220>
 <223> Truncated Protein 3 (ver.2); encoded by SEQ ID
 NO:67 with Intron Y ORF2 after the termination
 codon

<400> 69
 Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
 1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg
 20 25 30

Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
35 40 45

Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro Glu Ala Phe
50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val Gly Asp Asp
85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
100 105 110

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
130 135 140

D10 Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
145 150 155 160

Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
165 170 175

Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro
210 215 220

Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
275 280 285

Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
305 310 315 320

Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys

340

345

350

Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
355 360 365

Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
370 375 380

Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
420 425 430

Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
450 455 460

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
465 470 475 480

Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe Leu His Trp
485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
500 505 510

Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
515 520 525

Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His Leu Lys Arg
530 535 540

Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln His Arg Glu
545 550 555 560

Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile Pro Lys Pro
565 570 575

Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val Gly Ala Arg
580 585 590

Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser Arg Val Lys
595 600 605

Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg Pro Gly Leu
610 615 620

Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg Ala Trp Arg
625 630 635 640

Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro Glu Leu Tyr
645 650 655

100

Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile Pro Gln Asp
660 665 670

Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln Asn Thr Tyr
675 680 685

Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His Gly His Val
690 695 700

Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr Asp Leu Gln Pro
705 710 715 720

Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr Ser Pro Leu Arg
725 730 735

Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu Ala Ser Ser
740 745 750

Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His His Ala Val Arg
755 760 765

Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile Pro Gln Gly Ser
770 775 780

Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp Met Glu Asn
785 790 795 800

Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu Leu Arg Leu Val
805 810 815

Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala Lys Thr Phe
820 825 830

Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys Val Val Asn
835 840 845

Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu Ala Leu Gly
850 855 860

Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro Trp Cys
865 870 875 880

Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser Asp Tyr Ser
885 890 895

D10
Arg

<210> 70
<211> 982
<212> PRT
<213> Homo sapiens

<220>
<223> Truncated Protein 3 (Ver.2); encoded by SEQ ID
NO:67 with Intron Y ORF3

<400> 70

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

D10

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

D10 Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

D10
Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp
740 745 750

Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys
755 760 765

Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala
770 775 780

Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu
785 790 795 800

Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu
805 810 815

Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu
820 825 830

Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys
835 840 845

His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly
850 855 860

Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr
865 870 875 880

Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu
885 890 895

Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr
900 905 910

His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr

915

920

925

Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu
930 935 940

Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly
945 950 955 960

Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val
965 970 975

Gln Ser Asp Tyr Ser Arg
980

```
<210> 71  
<211> 3466  
<212> DNA  
<213> Homo sapiens
```

<220>
<223> Altered C-Terminus Protein (ver.2); with Introns
Y, Alpha, Beta and 3

<400> 71
atgcgcgcgc ctcggccgtg ccggccgtg cgctccctgc tgccgcagcca ctaccgcgag 60
gtgctgccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctggcgcag 120
cgcggggacc cggcggttt ccgcgegtg gtggcccagt gcctgggtgtg cgtgcctgg 180
gacgcacggc cgccccccgc cgcggccctcc ttccgcagg tgggcctccc cggggtcggc 240
gtccggctgg ggttgaggdc ggccgggggg aaccagcgcac atgcggagag cagcgcaggc 300
gactcagggc gctcccccg caggtgtcct gcctgaagga gctggggcc cagagtgcgc 360
agaggctgtg cgagcgcggc gegaagaacg tgctggcctt cggcttcgcg ctgctggacg 420
gggcccgcgg gggcccccgg gaggccctca ccaccagcgt ggcgcactac ctgcccaca 480
cggtgacccg cgcactgcgg gggagccggg cgtgggggct gctgcgcgc cgcgtggggc 540
acgacgtgt ggtcacctg ctggcacgct ggcgcgttctt tgtctgggtg gctcccagct 600
gcgcctacca ggtgtcgggg cccgcgtgt accagctcgg cgctgccact caggcccggc 660
ccccgcacca cgctagtgga ccccgaaaggc gtctggatg cgaacgggcc tggaaaccata 720
gcgtcaggga ggccggggtc cccctggcc tgccagcccc gggtgcgagg aggccggggg 780
gcagtgcag cccaaagtctg ccgttggccca agaggcccag gcgtggcgc gcccctgagc 840
cgagcgcgac gcccgttggg gtgaccgtgg tttctgtgtg agggtgcgt ctctggcacf gccccccatc cacatcgccg 900
ccgagaccaa gcacttcctc tactcagtc tctgaggccc tgggttcag gccctggatg actggcaat gcgccccctg ggggtctctt caagacgcac 960
tactcagtc tctgaggccc tgggttcag gccctggatg actggcaat gcgccccctg ggggtctctt caagacgcac 1020
tactcagtc tctgaggccc tgggttcag gccctggatg actggcaat gcgccccctg ggggtctctt caagacgcac 1080
tactcagtc tctgaggccc tgggttcag gccctggatg actggcaat gcgccccctg ggggtctctt caagacgcac 1140
tgggttcag gccctggatg actggcaat gcgccccctg ggggtctctt caagacgcac 1200
actggcaat gcgccccctg tttctggagc tgcttggaa ccacgcgcag tgcccctacg 1260
gggtgtctctt caagacgcac tgcccgtgc gagctgcggt caccgcgcac gcccgtgtct 1320
gtgcccggga gaagccccag ggctctgtgg cggccccccga ggaggaggac acagaccccc 1380
gtcgcttgtt gcagctgctc cgcgcgcgcac gcaagccccctg gcaggtgtac ggcttcgtgc 1440
gggcctgtctt ggcggcgtg gtggcccccag gcctctgggg ctccaggac aacgaacgcc 1500
gtcttctctag gaacaccaag aagttcatct ccctggggaa gcatgccaag ctctcgctgc 1560
aggagctgac gtggaaagatg agcgtgcggg actgcgcctt gctgcgcagg agcccagggg 1620
ttggctgtgt tccggccgc gggcctgtctt gggcctgtctt gatcctggcc aagttctgc 1680
actggctgtat gagtgtgtac gtcgtgcgac tgctcaggac tttctttat gtcacggaga 1740
ccacgtttca aaagaacagg ctcttttctt accggaaagag tggctggagc aagttcaaa 1800
ycatttggaaat cagacacgcac ttgaagaggg tgcagctgcg ggagctgtcg gaagcagagg 1860
caggcagca tcgggaagcc aggccccccc tgctgacgtc caqactccqc ttcatccccca 1920
caggcagca tcgggaagcc aggccccccc tgctgacgtc caqactccqc ttcatccccca 1980

agcctgacgg gctgcggccg attgtgaaca tggactaacgt cgtggagcc agaacgttcc 2040
gcagagaaaa gagggcccgag cgtctcacct cgagggtgaa ggcactgttc agcgtgctca 2100
actacgagcg ggccgcggcgc cccggcctcc tgggcgcctc tgtgctggc ctggacata 2160
tccacagggc ctggcgcacc ttctgtgtc gtgtgcggc ccaggacccg cccgctgagc 2220
tgtactttgt caaggtggat gtgacggcg cgtacgacac catccccag gacaggctca 2280
cgagggtcat cgccagcatc atcaaaccac agaacacgta ctgcgtgcgt cggtatgcgc 2340
tggtccagaa ggccgcccatt gggcacgtcc gcaaggcctt caagagccac gtctctacact 2400
tgacagacact ccagccgtac atgcgacagt tcgtggctca cctgcaggag accagcccc 2460
tgagggtatgc cgtcgtcatc gaggcagact cctccctgaa tgaggccagc agtggcctct 2520
tcgacgtctt cctacgcttc atgtgccacc acggcgtcg catcaggggc aagtcttaacg 2580
tccagtgcctt gggatcccc cagggctcca tcctctccac gctgctctgc agcctgtgt 2640
acggcgacat ggagaacaag ctgttgcgg ggattcggcg ggacgggctg ctccgtcgtt 2700
tggtggatga ttcttgcgg gtgacaccc acctcacca cgcgaaaacc ttccctcagaa 2760
ccctggtccg aggtgtccctt gaggatggct gctgtgtgaa cttgcggaaag acagtggta 2820
acttccctgt agaagacgag gcccctgggt gcacggctt tggtcagatg ccggccccacg 2880
gcctattccc ctggtgcggc ctgctgtgg atacccggac cctggagggtg cagagcgact 2940
actccagcta tgcccgacc tccatcagag ccagtctcac cttcaaccgc gccttcaagg 3000
ctgggaggaa catcggtcgc aaactctttt gggcttgcg gctgaagtgt cacagcctgt 3060
ttctggattt gcagggtgaac agcctccaga cgggtgtgcac caacatctac aagatcttcc 3120
tgctgcaggc gtacagggtt cacgcatgtg tgctgcagct cccatttcat cagcaagtt 3180
ggaagaaccc cacattttt ctcgcgtca tctctgacac ggcctccctc tgctactcca 3240
tcctgaaagc caagaacgca gccgaagaaa acatttctgt cgtgactcct gcggtgctt 3300
ggtcgggaca gccagagatg gagccacccccc gcagaccgtc ggggtggc agctttccgg 3360
tgtctctgg gaggggagtt gggctggcc tgtgactcct cagcctctgt ttccccccag 3420
99atgtcgct gggggccaag ggccgcggccg gcctctgccc ctccga 3466

DN <210> 72

<211> 1130

<212> PRT

<213> Homo sapiens

<220>

<223> Altered C-Terminus Protein (ver.2); encoded by SEQ
ID NO:71 with Intron Y ORF1

<400> 72

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
65 70 75 80

Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
85 90 95

Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys

115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

D10 Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

D18

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp
740 745 750

Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys
755 760 765

Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala
770 775 780

Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu
785 790 795 800

Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu
805 810 815

Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu
820 825 830

Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys
835 840 845

His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly
850 855 860

Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr
865 870 875 880

D10
Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu
885 890 895

Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr
900 905 910

His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr
915 920 925

Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu
930 935 940

Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly
945 950 955 960

Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val
965 970 975

Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu
980 985 990

Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu
995 1000 1005

Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln
1010 1015 1020

Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu
1025 1030 1035 1040

Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His

1045

1050

1055

Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp
1060 1065 1070

Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Glu Glu
1075 1080 1085

Glu Asn Ile Leu Val Val Thr Pro Ala Val Leu Gly Ser Gly Gln Pro
1090 1095 1100

Glu Met Glu Pro Pro Arg Arg Pro Ser Gly Val Gly Ser Phe Pro Val
1105 1110 1115 1120

Ser Pro Gly Arg Gly Val Gly Leu Gly Leu
1125 1130

<210> 73

<211> 1045

<212> PRT

<213> Homo sapiens

<220>

D/D
<223> Altered C-Terminus Protein (ver.2); encoded by SEQ
ID NO:71 with Intron Y ORF2 after the termination
codon

<400> 73

Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg
20 25 30

Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
35 40 45

Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro Glu Ala Phe
50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val Gly Asp Asp
85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
100 105 110

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
130 135 140

Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
145 150 155 160

Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
165 170 175

Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro
210 215 220

Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
275 280 285

D10
Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
305 310 315 320

Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys
340 345 350

Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
355 360 365

Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
370 375 380

Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
420 425 430

Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
450 455 460

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
465 470 475 480

Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe Leu His Trp
485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
500 505 510

Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
515 520 525

Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His Leu Lys Arg
530 535 540

Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln His Arg Glu
545 550 555 560

Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile Pro Lys Pro
565 570 575

Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val Gly Ala Arg
580 585 590

Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser Arg Val Lys
595 600 605

D10
Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg Pro Gly Leu
610 615 620

Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg Ala Trp Arg
625 630 635 640

Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro Glu Leu Tyr
645 650 655

Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile Pro Gln Asp
660 665 670

Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln Asn Thr Tyr
675 680 685

Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His Gly His Val
690 695 700

Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr Asp Leu Gln Pro
705 710 715 720

Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr Ser Pro Leu Arg
725 730 735

Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu Ala Ser Ser
740 745 750

Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His His Ala Val Arg
755 760 765

Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile Pro Gln Gly Ser

770

775

780

Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp Met Glu Asn
 785 790 795 800

Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu Leu Arg Leu Val
 805 810 815

Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala Lys Thr Phe
 820 825 830

Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys Val Val Asn
 835 840 845

Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu Ala Leu Gly
 850 855 860

Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro Trp Cys
 865 870 875 880

Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser Asp Tyr Ser
 885 890 895

Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe Asn Arg Gly
 900 905 910

D10

Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly Val Leu Arg
 915 920 925

Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn Ser Leu Gln
 930 935 940

Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Leu Gln Ala Tyr Arg
 945 950 955 960

Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln Val Trp Lys
 965 970 975

Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala Ser Leu Cys
 980 985 990

Tyr Ser Ile Leu Lys Ala Lys Asn Ala Glu Glu Asn Ile Leu Val
 995 1000 1005

Val Thr Pro Ala Val Leu Gly Ser Gly Gln Pro Glu Met Glu Pro Pro
 1010 1015 1020

Arg Arg Pro Ser Gly Val Gly Ser Phe Pro Val Ser Pro Gly Arg Gly
 1025 1030 1035 1040

Val Gly Leu Gly Leu
 1045

<210> 74

<211> 1130

<212> PRT

<213> Homo sapiens

<220>

<223> Altered C-Terminus Protein (ver.2); encoded by SEQ
ID NO:71 with Intron Y ORF3

<400> 74

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

D10
Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly

275

280

285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
 290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
 305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
 325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
 340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
 355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
 370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
 385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
 405 410 415

D10 Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
 420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
 435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
 450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg
 465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
 485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
 500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
 515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
 530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
 545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
 565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
 580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

D10
Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp
740 745 750

Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys
755 760 765

Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala
770 775 780

Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu
785 790 795 800

Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu
805 810 815

Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu
820 825 830

Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys
835 840 845

His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly
850 855 860

Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr
865 870 875 880

Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu
885 890 895

Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr
900 905 910

His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr
915 920 925

Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu
930 935 940

Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly
945 950 955 960

Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val
965 970 975

Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu
980 985 990

Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu
995 1000 1005

Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln
1010 1015 1020

D10 Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu
1025 1030 1035 1040

Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His
1045 1050 1055

Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp
1060 1065 1070

Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Glu Glu
1075 1080 1085

Glu Asn Ile Leu Val Val Thr Pro Ala Val Leu Gly Ser Gly Gln Pro
1090 1095 1100

Glu Met Glu Pro Pro Arg Arg Pro Ser Gly Val Gly Ser Phe Pro Val
1105 1110 1115 1120

Ser Pro Gly Arg Gly Val Gly Leu Gly Leu
1125 1130

<210> 75

<211> 4022

<212> DNA

<213> Homo sapiens

<220>

<223> Protein Lacking Motif A (ver.2); with Introns Y
and Beta

<400> 75

atgccgcgcg ctccccgtg ccgagccgtg cgctccctgc tgcgcagcca ctaccgcgag 60
gtgctgccgc tggccacgtt cgtgcggcgc ctggggccccc agggctggcg gctggtgca 120

D10

cgccccggacc cggcggcttt ccgcgcgctg gtggcccaagt gcctgggttg cgtgccctgg 180
gacgcacggc cgccccccgc cgccccctcc ttccgcagg tgggcctccc cggggtcggc 240
gtccggctgg ggtttagggc ggccgggggg aaccagcgac atgcggagag cagcgcaggc 300
gactcaggcc gcttcccccg caggtgtcct gctgtggaa gctggggcc caggtgctgc 360
agaggctgtg cgagcgcggc gcgaagaacg tgcgtggctt cggcttcggc ctgctggacg 420
gggcccgcgg gggcccccggc gaggccttca ccaccagcg ggcagctac ctgcccaca 480
cggtgaccga cgcaactgcgg gggaggggg cgtggggct gctgtgcgc cgcgtggcg 540
acgacgtgt ggttacactg ctggcacgct gcgcgetctt tgtgtggtg gctcccaact 600
gcgcctacca ggtgtgcggg cgcgcgtgt accagctgg cgctgcact caggccggc 660
ccccgcacaca cgctagtggc ccccgaaggc gtcgtggatg cgaacggggc tggaaaccata 720
gcgtcaggga ggcgggggtc cccctggcc tgccagcccc ggtgtcgagg aggccgggg 780
gcagtgcacag cccaaggctg cgcgtggccca agaggcccaag gcgtggcgct gcccctgagc 840
cggagcggac gcccgttggg caggggtctt gggcccaccg gggcaggacg cgtggaccga 900
gtgaccgtgg ttctgtgtg gtgtacactg ccagaccgc cgaagaagcc acctctttgg 960
agggtgcgtc ctctggcacg cgcactccc acccatccgt gggccggcag caccacgcgg 1020
gccccccatc cacatcgccg ccaccacgtc cctggacac gccttgccc ccgggtgtacg 1080
ccgagaccaa gcacttcctc tactcctcag gcgacaaggaa gcagctgcgg ccctccttcc 1140
tactcagctc tctgaggccc agcctgactg gcgcgtggag gtcgtggag accatcttc 1200
tgggttccag gccctggatg ccaggactc cccgcagggtt gcccccctg ccccaacgcgt 1260
actggcaaat gcggccctgt tttctggagc tgcttggaa ccacgcgcag tgccccctacg 1320
gggtgtcttca caagacgcac tgcccgtc gagctgcggt caccggca gccgggtgtct 1380
gtgcccggga gaagccccag ggctctgtgg cggcccccga ggaggaggac acagacccccc 1440
gtcgctgtt gcagctgctc cgcacgcaca gcagccccgt gcaagggtac ggcctcgtgc 1500
gggcctgcct gcggccggctg gtgcggccag gcctctgggg ctccaggcac aacgaacgcc 1560
gcttcctcag gaacaccaag aagttcatct ccctggggaa gcatgccaag ctctcgctgc 1620
aggagctgac gtggaaagatg agcgtgcggg actgcgttt gtcgcgcagg agcccagggg 1680
ttggctgtgt tccggccgca ggcacccgtc tgctgagga gatcctggcc aagttcctgc 1740
actggctgtat gagtgtgtac gtcgtcgagc tgctcagggtc tttcttttat gtcacggaga 1800
ccacgtttca aaagaacagg ctcttttctt accggaaagag tgtctggagc aagttgaaaa 1860
gcatttggaaat cagacacgcac ttgaagaggg tgctgtgcg ggagctgtcg gaagcagagg 1920
tcaggcagca tcgggaagcc aggccccccc tgctgacgtc cagactccgc ttcatcccc 1980
agcctgacgg gctgcggccg attgtgaaca tggactacgt cgtggagcc agaacgttcc 2040
gcagagaaaa gagggccggag cgtctcacct cgagggtgaa ggcactgttc agcgtctca 2100
actacgagcg ggcgcggcgc cccggcttcc tgggcgcctc tgtgtggc ctggacgata 2160
tccacagggc ctggcgccacc ttctgtgtc tggtgcggg ccaggccccg cccgcctgagc 2220
tgtactttgtt caaggacagg ctcacggagg tcacgcctcag catcatcaaa ccccaagaaca 2280
cgtactgcgt gcgctggat gccgtggtcc agaaggccgc ccatgggcac gtccgcaagg 2340
ccttcagagag ccacgtctctt accttgacag acctccagcc gtacatgcga cagttcgtgg 2400
ctcacctgca ggagaccagc cgcgtgggg atgcccgtcgt catcgacgcag agctccccc 2460
tgaatgagggc cagcagtggc ctcttcgacg tcttcctacg cttcatgtgc caccacgcgg 2520
tgccgcacatc gggcaagtcc tacgtccagt gcoagggat cccgcagggc tccatctct 2580
ccacgctgtc ctgcagccctg tgctacggcg acatggagaa caagctgttt gggggattc 2640
ggcgggacgg gctgtccctg cgtttgggg atgatttctt gttggtgaca cctcaccta 2700
cccacgcgaa aaccccttc aggaccctgg tccgagggtt ccctgagat ggcgtcggtgg 2760
tgaacttgcg gaagacagtg gtgaacttcc ctgtagaaga cgaggccctg ggtggcacgg 2820
cttttgcctca gatgccggcc cacggccat tccctgggtg cggcctgtc ctggatacc 2880
ggaccctgga ggtgcagagc gactacttca gctatggcc gacccctcattc agagccagtc 2940
tcaccttcaa ccgcggcttc aaggctggg ggaacatgcg tcgcaactc ttgggggtct 3000
tgcggctgaa gtgtcacagc ctgtttctgg atttgcagggtt gaacgcctc cagacgggtgt 3060
gcaccaacat ctacaagatc ctccgtctc aggctgtacag gtttacgcgca tttgtgtctgc 3120
agctcccttattt tcacatcagaa gtttggaaaga accccacatt ttccctgcgc gtcacactctg 3180
acacggccctc cctctgtctac tccatccatc aagccaaagaa cgcaggatg tcgctggggg 3240
ccaaggccgc cggccggccct ctgcctcccg aggccgtgca gtggctgtgc caccaagcat 3300
tcctgctcaa gctgactcga caccgtgtca cctacgtgcc actccctgggg tcactcagga 3360
cagcccaaccc gcaactgtggt cggaaagctcc cggggacgcac gctgactgccc ctggaggccg 3420
cagccaaaccc ggcactgccc tcagacttca agaccatctt ggactgtatgg ccacccggccc 3480
acagccaggc cgagacgaga caccagcagc cctgtacgcg cgggctctac gtcccgaggga 3540
gggaggggcg gcccacaccc aggccgcac cgcgtggagctt gtcaggcttac 3600

tggccgaggc ctgcatgtcc ggctgaaggc tgagtgtccg gctgaggcct gagcgagtgt 3660
ccagccaagg gctgagtgtc cagcacacct gccgtctca cttccccaca ggctggcgct 3720
cggctccacc ccagggccag ctttcctca ccaggagccc ggcttccact ccccacatag 3780
aatatgtcca tccccagatt cgccattgtt caccctcgc cctgcctcc tttgccttc 3840
accccccacca tccaggtgga gaccctgaga aggaccctgg gagctctggg aatttggagt 3900
gacccaaaggt gtgccctgta cacaggcgag gaccctgcac ctggatgggg gtcctgtgg 3960
gtcaaattgg gggaggtgc tgtggagta aaatactgaa tatatgagtt tttcagttt 4020
ga 4022

<210> 76
<211> 1154
<212> PRT
<213> Homo sapiens

<220>
<223> Protein Lacking Motif A (ver.2); encoded by SEQ ID
NO:75 with Intron Y ORF1

<400> 76
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

D10 Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
65 70 75 80

Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
85 90 95

Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

D10

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe

515

520

525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
 530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
 545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
 565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
 580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe
 595 600 , 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
 610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
 625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
 645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
 660 665 670

D10
 Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
 675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
 690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
 705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
 725 730 735

Pro Pro Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala
 740 745 750

Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val
 755 760 765

Val Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His
 770 775 780

Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala
 785 790 795 800

His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln
 805 810 815

Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu
 820 825 830

Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val
835 840 845

Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys
850 855 860

Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg
865 870 875 880

Arg Asp Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr
885 890 895

Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly
900 905 910

Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn
915 920 925

Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met
930 935 940

Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg
945 950 955 960

Thr Leu Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile
965 970 975

D10

Arg Ala Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met
980 985 990

Arg Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe
995 1000 1005

Leu Asp Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr
1010 1015 1020

Lys Ile Leu Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln
1025 1030 1035 1040

Leu Pro Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg
1045 1050 1055

Val Ile Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys
1060 1065 1070

Asn Ala Gly Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro
1075 1080 1085

Ser Glu Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu
1090 1095 1100

Thr Arg His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr
1105 1110 1115 1120

Ala Gln Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala
1125 1130 1135

Leu Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile
1140 1145 1150

Leu Asp

<210> 77
<211> 1069
<212> PRT
<213> Homo sapiens

<220>
<223> Protein Lacking Motif A (ver.2); encoded by SEQ ID
NO:75 with Intron Y ORF2 after the termination
codon

<400> 77
Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg
20 25 30

Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
35 40 45

D/D
Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro Glu Ala Phe
50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val Gly Asp Asp
85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
100 105 110

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
130 135 140

Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
145 150 155 160

Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
165 170 175

Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro

210

215

220

Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
 225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
 245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
 260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
 275 280 285

Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
 290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
 305 310 315 320

Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
 325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys
 340 345 350

Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
 355 360 365

D/10
 Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
 370 375 380

Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
 385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
 405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
 420 425 430

Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
 435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
 450 455 460

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
 465 470 475 480

Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe Leu His Trp
 485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
 500 505 510

Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
 515 520 525

Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His Leu Lys Arg
530 535 540

Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln His Arg Glu
545 550 555 560

Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile Pro Lys Pro
565 570 575

Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val Gly Ala Arg
580 585 590

Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser Arg Val Lys
595 600 605

Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg Pro Gly Leu
610 615 620

Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg Ala Trp Arg
625 630 635 640

Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro Glu Leu Tyr
645 650 655

Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro
660 665 670

DD

Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala
675 680 685

His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr
690 695 700

Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr
705 710 715 720

Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn
725 730 735

Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His
740 745 750

His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile
755 760 765

Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly
770 775 780

Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu
785 790 795 800

Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His
805 810 815

Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly
820 825 830

Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp
835 840 845

Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu
850 855 860

Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln
865 870 875 880

Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr
885 890 895

Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe
900 905 910

Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val
915 920 925

Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Leu
930 935 940

Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln
945 950 955 960

Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr
965 970 975

D7D
Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser
980 985 990

Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln
995 1000 1005

Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val
1010 1015 1020

Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln Leu
1025 1030 1035 1040

Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala Ala Ala
1045 1050 1055

Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp
1060 1065

<210> 78

<211> 1154

<212> PRT

<213> Homo sapiens

<220>

<223> Protein Lacking Motif A (ver.2); encoded by SEQ ID
NO:75 with Intron Y ORF3

<400> 78

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

D10

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

D10

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val

625 630 635 640
Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655
Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670
Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685
Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700
Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720
His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735
Pro Pro Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala
740 745 750
Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val
755 760 765
D1D
Val Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His
770 775 780
Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala
785 790 795 800
His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln
805 810 815
Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu
820 825 830
Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val
835 840 845
Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys
850 855 860
Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg
865 870 875 880
Arg Asp Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr
885 890 895
Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly
900 905 910
Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn
915 920 925
Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met
930 935 940

Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg
945 950 955 960

Thr Leu Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile
965 970 975

Arg Ala Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met
980 985 990

Arg Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe
995 1000 1005

Leu Asp Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr
1010 1015 1020

Lys Ile Leu Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln
1025 1030 1035 1040

Leu Pro Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg
1045 1050 1055

Val Ile Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys
1060 1065 1070

D10
Asn Ala Gly Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro
1075 1080 1085

Ser Glu Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu
1090 1095 1100

Thr Arg His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr
1105 1110 1115 1120

Ala Gln Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala
1125 1130 1135

Leu Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile
1140 1145 1150

Leu Asp

<210> 79
<211> 3137
<212> DNA
<213> Homo sapiens

<220>
<223> Truncated Protein Lacking Motif A (ver.2); with
Introns Y, Beta and 2

<400> 79
atgccgcgctg ctcccccgtg ccgagccgtg cgctccctgc tgcgcagcca ctaccgcgag 60
gtgctgccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtcag 120
cgcggggacc cggcggcttt ccgcgcgcgtg gtggccagt gcctgggtg cgtgccctgg 180
gacgcacggc cgcggccccc cggccctcc ttccgcagg tgggcctccc cggggtcggc 240

D1 □

gtccggctgg gggtgagggc ggccgggggg aaccagcgac atgcggagag cagcgcaggg 300
gactcagggc gctcccccg caggtgcct gcctgaagga gctggggcc cgagtgcgc 360
agaggctgtg cgagcgccg gcgaagaacg tgctggcctt cggcttcgc ctgctggacg 420
gggcccgcgg gggccccccc gaggcctca ccaccagcg ggcgaactac ctgccaaca 480
cggtgaccga cgcaactgcgg gggagcgggg cgtggggct gctgcgcgc cgcgtggcg 540
acgacgtgt gttcacctg ctggcacgt gcgcgcctt tgtgcgtgt gctcccagct 600
gcgcctacca ggtgtgcggg cggccgtgt accagctgg cgctgccact caggcccggc 660
ccccgcacca cgcttagtggc ccccgaaggc gtctggatg cgaacggggc tggaaaccata 720
gcgtcaggga ggcggggc cccctggcc tgccagcccc gggtgcgagg aggccgggg 780
gcagtgcagg cggaaagtctg ccgttgcaca agaggccca gctggcgct gcccctgagc 840
cgagcgac gcccgttggg caggggtctt gggcccaccc gggcaggacg cgtggaccga 900
gtgaccgtgg ttctgtgtg gtgcacctg ccagaccgc cgaagaagcc accttttg 960
agggtgcgt ctctggcacg cggccactcc accatccgt gggccgcag caccacgcgg 1020
gccccccatc cacatcgccg ccaccacgtc cctgggacac gccttgcctt ccggtgtacg 1080
ccgagaccaa gcaacttcctc tactccctcag gcgacaagga gcagctgcgg cccttcatttcc 1140
tactcagtc tctgaggccc agcctgactg gcgcgtcgag gctcggtgg accatcttc 1200
tgggttccag gcccgttggatg ccaggactc cccgcagggtt gcccgcctg ccccaagcg 1260
actggcaaat gcgcccccctg ttctgtggac tgcttgggaa ccacgcgcag tgcccctacg 1320
gggtgcctt caagacgcac tgcccgtgc gagctgcggt caccggca gccgggtgtct 1380
gtgcccggga gaagccccag ggctctgtgg cggcccccga ggaggaggac acagacccc 1440
gtcgcttgcgt gcagctgcgc cggcagaca gcagccccgt gcaggtgtac ggcttcgtgc 1500
gggcctgcct gcccggctg gtgccccag gcctctgggg ctccaggac aacgaacgcc 1560
gcttcctcag gaacaccaag aagttcatct ccctgggaa gcatgccaag ctctcgctgc 1620
aggagctgac gtggaaagatg agcgtgcggg actgcgttt gctgcgcagg agcccaagg 1680
ttggctgtgt tccggccgca gacccgtc tgctgagga gatcctggcc aagttctgc 1740
actggctgat gagtgtgtac gtgcgtcggc tgctcagggtc ttcttttat gtcacggaga 1800
ccacgtttca aaagaacagg ctcttttct accggaaagag tgcgtggagc aagttgaaa 1860
gcatttggaaat cagacacgc cttgaagaggg tgctgctgcg ggagctgtcg gaagcagagg 1920
tcaggcagca tcgggaagcc agggccccc tgctgacgtc cagactccgc ttcatcccc 1980
agcctgacgg gctgcggccg attgtgaaca tggactacgt cgtggagcc agaacgttcc 2040
gcagagaaaa gaggcccgag cgtctcacct cgagggtgaa ggcactgttc agcgtgccta 2100
actacgagcg ggcgcggcgc cccggctcc tgggcgcctc tgtgcgtggc ctggacgata 2160
tccacagggc ctggcgcacc ttctgtgtc gtgtgcgggc ccaggacccg cccgcctgagc 2220
tgtactttgt caaggacagg ctcacggagg tcatcgccag catcataaa ccccaagaaca 2280
cgtactgcgt gcgtcggtat gccgtgttcc agaaggccgc ccatggcaca gtcggcaagg 2340
ccttcaagag ccacgtctct accttgacag acctccagcc gtacatgcga cagttcggt 2400
ctcacctgca ggagaccagg ccgtcgaggg atgccgtcgt catcgagcag agctccccc 2460
tgaatgagggc cagcagtggc ctttcgtacg tcttcctacg tttcatgtgc caccacgcgg 2520
tgcgcatcag gggcaagtcc tacgtccagt gccagggtat cccgcaggc tccatccct 2580
ccacgctgct ctgcagccctg tgctacggcg acatggagaa caagctttt gggggattc 2640
ggcgggacgg gctgcctctg cgtttgggg atgatttctt gttggtaaca cctcacctca 2700
cccacgcgaa aacccctctc aggaccctgg tccgagggtt ccctgagtat ggctgcgtgg 2760
tgaacttgcg gaagacagtg gtgaacttcc ctgtagaaga cgaggccctg ggtggcacgg 2820
cttttgttca gatgccggcc cacggccat tccctgggtg cggcctgcgt ctggataacc 2880
ggaccctgga ggtgcagagg gactactcca ggtgagcgc a cctggccgg a g t g g a g c c t 2940
gtgcccggct gggcagggtg ctgcgtcagg gccgttgcgt ccacctctgc tccctgtgg 3000
ggcagggcgcac tgccaatccc aaagggtcag atgccacagg gtgcccctcg tcccatctgg 3060
ggctgagcac aaatgcacatct ttctgtggga gtgagggtgc ctcacaacgg gaggcgtttt 3120
ctgtgctatt ttggtaa 3137

<210> 80
<211> 970
<212> PRT
<213> Homo sapiens

<220>
<223> Truncated Protein lacking Motif A (ver.2); encoded
by SEQ ID NO:79 with Intron Y ORF1

<400> 80
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15
His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30
Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45
Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60
Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
65 70 75 80
Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
85 90 95
Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
100 105 110
Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125
D10
Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140
Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160
Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175
Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190
Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205
Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220
Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240
Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255
Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270
Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285
Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
 305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
 325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
 340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
 355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
 370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
 385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
 405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
 420 425 430

~~D10~~ Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
 435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
 450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg
 465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
 485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
 500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
 515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
 530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
 545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
 565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
 580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
 595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

D10 Pro Pro Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala
740 745 750

Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val
755 760 765

Val Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His
770 775 780

Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala
785 790 795 800

His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln
805 810 815

Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu
820 825 830

Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val
835 840 845

Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys
850 855 860

Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg
865 870 875 880

Arg Asp Gly Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr
885 890 895

Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly
900 905 910

Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn

915

920

925

Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met
930 935 940

Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg
945 950 955 960

Thr Leu Glu Val Gln Ser Asp Tyr Ser Arg
965 970

<210> 81

<211> 885

<212> PRT

<213> Homo sapiens

<220>

<223> Truncated Protein lacking Motif A (ver.2); encoded
by SEQ ID NO:79 with Intron Y ORF2 after the
termination codon

<400> 81

D10
Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg
20 25 30

Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
35 40 45

Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Pro Pro Glu Ala Phe
50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val Gly Asp Asp
85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
100 105 110

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
130 135 140

Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
145 150 155 160

Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
165 170 175

Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro
210 215 220

Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
275 280 285

Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
305 310 315 320

D/C Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys
340 345 350

Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
355 360 365

Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
370 375 380

Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
420 425 430

Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
450 455 460

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
465 470 475 480

Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala Lys Phe Leu His Trp
485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
500 505 510

Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
515 520 525

Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His Leu Lys Arg
530 535 540

Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln His Arg Glu
545 550 555 560

Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile Pro Lys Pro
565 570 575

Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val Gly Ala Arg
580 585 590

Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser Arg Val Lys
595 600 605

Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg Pro Gly Leu
610 615 620

D/b Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg Ala Trp Arg
625 630 635 640

Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro Glu Leu Tyr
645 650 655

Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro
660 665 670

Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala
675 680 685

His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr
690 695 700

Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr
705 710 715 720

Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn
725 730 735

Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His
740 745 750

His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile
755 760 765

Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly
770 775 780

Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu
785 790 795 800

Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His

805

810

815

Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly
820 825 830

Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp
835 840 845

Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu
850 855 860

Phe Pro Trp Cys Gly Leu Leu Asp Thr Arg Thr Leu Glu Val Gln
865 870 875 880

Ser Asp Tyr Ser Arg
885

<210> 82

<211> 970

<212> PRT

<213> Homo sapiens

<220>

D10
<223> Truncated Protein lacking Motif A (ver.2); encoded
by SEQ ID NO:79 with Intron Y ORF3

<400> 82

Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

D/D Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg

465 470 475 480
Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
 485 490 495
Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
 500 505 510
Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
 515 520 525
Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
 530 535 540
Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
 545 550 555 560
Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
 565 570 575
Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
 580 585 590
Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
 595 600 605
D10
Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
 610 615 620
Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
 625 630 635 640
Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
 645 650 655
Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
 660 665 670
Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
 675 680 685
Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
 690 695 700
Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
 705 710 715 720
His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
 725 730 735
Pro Pro Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala
 740 745 750
Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val
 755 760 765
Val Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His
 770 775 780

Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala
785 790 795 800

His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln
805 810 815

Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu
820 825 830

Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val
835 840 845

Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys
850 855 860

Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg
865 870 875 880

Arg Asp Gly Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr
885 890 895

Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly
900 905 910

D10
Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn
915 920 925

Phe Pro Val Glu Asp Glu Ala Leu Gly Thr Ala Phe Val Gln Met
930 935 940

Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg
945 950 955 960

Thr Leu Glu Val Gln Ser Asp Tyr Ser Arg
965 970

<210> 83

<211> 3432

<212> DNA

<213> Homo sapiens

<220>

<223> Protein Lacking Motif A and Altered C-Terminus
(ver.2); with Intron Y, Beta and 3

<400> 83

atgccgcgcg ctccccgtc ccgagccgtg cgctccctgc tgccgcggcca ctaccgcgag 60
gtgctccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctgggtcag 120
cgcggggacc cggcggcttt cccgcgcgtg gtggcccagt gcctgggtg cgtgcctgg 180
gacgcacggc cgccccccgc cgccccctcc ttccgcagg tgggcctccc cggggtcggc 240
gtccggctgg gggtgagggc ggccgggggg aaccagcgc ac atgcggagag cagcgcaggc 300
gactcaggcc gcttccccc caggtgtcct gcctgaagga gctgggtggcc cgagtgctgc 360
agaggctgtg cggcgcggc gccaagaacg tgctggcctt cggcttcgcg ctgctggacg 420
gggccccggg gggccccccc gagggccttca ccaccagcgt gccgcagctac ctgccccaca 480
cggtgaccga cgcactgcgg gggagcgggg cgtggggct gctgctgcgc cgcgtggcgc 540
acgacgtgtc gttcacctg ctggcacgtc gccgcgttctt tggctggtg gctcccagct 600

D/0

gcgcctacca ggtgtgcggg ccggcgtgtt accagctgg cgctgccact caggcccggc 660
ccccgcaca cgttagtggc ccccgaaaggc gcttggatg cgaacggggcc tggaccata 720
gcgtcaggaa ggcggggtc cccctggcc tggcagcccc gggtgcgagg aggcgcgggg 780
gcagtgcac cccaaatctg cccgttggca agaggcccgg cgttggcgct gcccctgagc 840
cgagcggac gcccgttggg caggggtcct ggcccaccc gggcaggacg cgtggaccga 900
gtgaccgtgg ttctgtgtg gtgtcacctg ccagacccgg cgaagaagcc accttttg 960
agggtgcgt ctctggcacg cccactccc accatccgt gggcccccgg caccacgcgg 1020
gccccccatc cacatcgccg ccaccacgtc cctgggacac gccttgccttcc cccgtgtacg 1080
ccgagacaa gcacttcctc tactcctcag ggcacaaggaa gcagctgcgg ccctccttcc 1140
tactcagtc tctgaggccc agcctgactg ggcctcgagg gctctggag accatcttc 1200
tgggttccag gcctggatg ccaggactc cccgcagggtt gccccccctg ccccaacgcgt 1260
actggcaat ggcggccctg tttctggagc tgcttggaa ccacgcgcag tgccccctacg 1320
gggtgtctct caagacgcac tgcccgtc gagctgcggt caccggcga gccgggtgtct 1380
gtgcccggaa gaagccccag ggctctgtgg cggccccccga ggaggaggac acagacccccc 1440
gtcgccctgtt gcagctgctc cccgcggcaca gcagccccgtg gcaggtgtac gcttcgtgc 1500
gggcctgcgt ggcggggctg gtggcccccgg gcctctgggg ctccaggac aacgaacgc 1560
gttcctcag gaacaccaag aagttcatct ccctggggaa gcatgccaag ctctcgctc 1620
aggagctgac gtggaaagatg agcgtgcggg actgcgttgc gctgcgcagg agcccagggg 1680
ttggctgtgt tccggccgca gggcaccgtc tgctgtggaa gatccctggcc aagttcttc 1740
actggctgtat gagggtgtac gtcgtcgagc tgctcagggtc tttcttttat gtcacggaga 1800
ccacgtttca aaagaacagg ctcttttctt accggaaagag tgtctggagc aagttgcaaa 1860
gcatttggaaat cagacacgcac ttgaagaggg tgctgtgcg ggagctgtcg gaagcagagg 1920
tcaggcagca tcgggaagcc aggccggccc tgctgacgtc cagactccgc ttcatcccc 1980
gcgcctgacgg gtcggccgg attgtgaaca tggactacgt cgtggagcc agaacgttcc 2040
gcagagaaaa gaggggccgg cgttcacactt cgggggtgaa ggcactgttc agcgtgtca 2100
actacgagcg ggcggccggc cccggcctcc tggcgcctc tggctgggc ctggacgata 2160
tccacaggggc ctggcgcacc ttctgtgtc gtgtgcggg ccaggacccg cccgcctgagc 2220
tgtactttgtt caaggacagg ctcacggagg tcatcgccag catcatcaaa ccccaagaaca 2280
cgtaactgcgt ggcgtggat ggcgtggcc tggcggccgc ccatgggcac gtccgcaagg 2340
ccttcaagag ccacgtctctt accttgcacag acctccagcc gtacatgcga cagttctgg 2400
ctcacctgca ggagaccagg cccgtcgagg atgcccgtt catcgacgag agctccccc 2460
tgaatgagggc cagcagtggc ctcttcgacg tcttcctacg cttcatgtgc caccacgcgg 2520
tgcgcacatcag gggcaagtcc tacgtccagt gccaggggat cccgcaggcc tccatcctct 2580
ccacgctgtt ctgcagccctg tgctacggcg acatggagaa caagctgttt gcggggattc 2640
ggcgggacgg gctgtccctg cgtttgggtt atgattttt gttggtgaca cctcacctca 2700
cccacgcgaa aaccccttc aggaccctgg tccgagggtt ccctgagttt ggctgcgtgg 2760
tgaacttgcg gaagacagtg gtgaacttcc ctgtagaaga cgaggccctg ggtggcacgg 2820
cttttggttca gatgccggcc cacggccatat tccctgtgtt cggcctgtt ctggatacc 2880
ggaccctggaa ggtgcagacg gactactcca gctatgcgg gacccatc agagccagtc 2940
tcacccctcaa ccggccgttc aaggctgggaa ggaacatgcg tcgcaactc tttgggtct 3000
tgcggctgaa gtgtcacacgc ctgtttctgg atttgcaggat gaacagccctc cagacgggtt 3060
gcacccaacat ctacaagatc ctccctgttcc aggcgtacag gtttcaacgc tggctgtgc 3120
agctcccttattt tcacatcagca gtttggaaaga accccacatt tttccctgtgc gtcacatctctg 3180
acacggccctc cctctgttcc tccatccttca aagccaagaa cgcagccgaa gaaaacattt 3240
ctgtctgttcc tcctgtgggtt cttgggttcc gacagccaga gatggagccca cccgcagac 3300
cgtcgggtgtt gggcagctt ccgggttcc ctggggagggg agttgggtt ggcctgtgac 3360
tcctcagctt ctgtttccccc ccaggatgtt cgtggggggc caagggcgcc gccggccctc 3420
tgccctccga ga 3432

<210> 84

<211> 1122

<212> PRT

<213> Homo sapiens

<220>

<223> Protein Lacking Motif A and Altered C-Terminus
(ver.2); encoded by SEQ ID NO:83 with Intron Y
ORF1

<400> 84
 Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
 1 5 10 15
 His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
 20 25 30
 Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
 35 40 45
 Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
 50 55 60
 Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Gly Leu Pro Gly Val Gly
 65 70 75 80
 Val Arg Leu Gly Leu Arg Ala Ala Gly Gly Asn Gln Arg His Ala Glu
 85 90 95
 Ser Ser Ala Gly Asp Ser Gly Arg Phe Pro Arg Arg Ser Cys Leu Lys
 100 105 110
 Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
 115 120 125
D10
 Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
 130 135 140
 Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
 145 150 155 160
 Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
 165 170 175
 Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
 180 185 190
 Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
 195 200 205
 Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
 210 215 220
 Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
 225 230 235 240
 Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
 245 250 255
 Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
 260 265 270
 Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
 275 280 285
 Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
 290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

D10 Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620

Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640

Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655

Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670

Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685

Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700

Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720

His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735

Pro Pro Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala
740 745 750

Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val
755 760 765

P10

Val Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His
770 775 780

Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala
785 790 795 800

His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln
805 810 815

Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu
820 825 830

Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val
835 840 845

Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys
850 855 860

Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg
865 870 875 880

Arg Asp Gly Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr
885 890 895

Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly
900 905 910

Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn

915

920

925

Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met
930 935 940

Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg
945 950 955 960

Thr Leu Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile
965 970 975

Arg Ala Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met
980 985 990

Arg Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe
995 1000 1005

Leu Asp Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr
1010 1015 1020

Lys Ile Leu Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln
1025 1030 1035 1040

Leu Pro Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg
1045 1050 1055

Val Ile Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys
1060 1065 1070

D10
Asn Ala Glu Glu Glu Asn Ile Leu Val Val Thr Pro Ala Val Leu Gly
1075 1080 1085

Ser Gly Gln Pro Glu Met Glu Pro Pro Arg Arg Pro Ser Gly Val Gly
1090 1095 1100

Ser Phe Pro Val Ser Pro Gly Arg Gly Val Gly Leu Gly Leu Phe Ile
1105 1110 1115 1120

Gly Ala

<210> 85

<211> 1037

<212> PRT

<213> Homo sapiens

<220>

<223> Protein Lacking Motif A and Altered C-Terminus
(ver.2); encoded by SEQ ID NO:83 with Intron Y
ORF2 after the termination codon

<400> 85

Gly Arg Pro Gly Gly Thr Ser Asp Met Arg Arg Ala Ala Gln Ala Thr
1 5 10 15

Gln Gly Ala Ser Pro Ala Gly Ser Cys Leu Lys Glu Leu Val Ala Arg
20 25 30

Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe
35 40 45

Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro Glu Ala Phe
50 55 60

Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp Ala Leu
65 70 75 80

Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val Gly Asp Asp
85 90 95

Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val Ala
100 105 110

Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln Leu Gly
115 120 125

Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro Arg Arg
130 135 140

Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu Ala Gly
145 150 155 160

Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg Gly Gly Ser
165 170 175

D10
Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg Gly Ala Ala
180 185 190

Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly Ser Trp Ala His Pro
195 200 205

Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe Cys Val Val Ser Pro
210 215 220

Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly
225 230 235 240

Thr Arg His Ser His Pro Ser Val Gly Arg Gln His His Ala Gly Pro
245 250 255

Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr Pro Cys Pro Pro
260 265 270

Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu
275 280 285

Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu Thr
290 295 300

Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg Pro Trp
305 310 315 320

Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln Arg Tyr Trp
325 330 335

Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn His Ala Gln Cys
340 345 350

Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro Leu Arg Ala Ala Val
355 360 365

Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys Pro Gln Gly Ser Val
370 375 380

Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg Arg Leu Val Gln Leu
385 390 395 400

Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe Val Arg Ala
405 410 415

Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg His Asn
420 425 430

Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser Leu Gly Lys
435 440 445

His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met Ser Val Arg
450 455 460

Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys Val Pro Ala
465 470 475 480

D/0 Ala Glu His Arg Leu Arg Glu Ile Leu Ala Lys Phe Leu His Trp
485 490 495

Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg Ser Phe Phe Tyr Val
500 505 510

Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr Arg Lys Ser
515 520 525

Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His Leu Lys Arg
530 535 540

Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln His Arg Glu
545 550 555 560

Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile Pro Lys Pro
565 570 575

Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val Gly Ala Arg
580 585 590

Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser Arg Val Lys
595 600 605

Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg Pro Gly Leu
610 615 620

Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg Ala Trp Arg
625 630 635 640

Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro Pro Pro Glu Leu Tyr

645	650	655	
Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro			
660	665	670	
Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala			
675	680	685	
His Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr			
690	695	700	
Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr			
705	710	715	720
Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn			
725	730	735	
Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His			
740	745	750	
His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile			
755	760	765	
Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly			
770	775	780	
Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu			
785	790	795	800
Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His			
805	810	815	
Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly			
820	825	830	
Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp			
835	840	845	
Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu			
850	855	860	
Phe Pro Trp Cys Gly Leu Leu Asp Thr Arg Thr Leu Glu Val Gln			
865	870	875	880
Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr			
885	890	895	
Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe			
900	905	910	
Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val			
915	920	925	
Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Leu			
930	935	940	
Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln			
945	950	955	960

Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr
965 970 975

Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Glu Glu Glu
980 985 990

Asn Ile Leu Val Val Thr Pro Ala Val Leu Gly Ser Gly Gln Pro Glu
995 1000 1005

Met Glu Pro Pro Arg Arg Pro Ser Gly Val Gly Ser Phe Pro Val Ser
1010 1015 1020

Pro Gly Arg Gly Val Gly Leu Gly Leu Phe Ile Gly Ala
1025 1030 1035

<210> 86
<211> 1122
<212> PRT
<213> Homo sapiens

<220>
<223> Protein Lacking Motif A and Altered C-Terminus
(ver.2); encoded by SEQ ID NO:83 with Intron Y
ORF3

710
<400> 86
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro
195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg

465 470 475 480
Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495
Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510
Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525
Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540
Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560
Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575
Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590
Ser Phe Phe Tyr Val Thr Glu Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605
Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg
610 615 620
D10
Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val
625 630 635 640
Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg
645 650 655
Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr
660 665 670
Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu
675 680 685
Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala
690 695 700
Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile
705 710 715 720
His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg Ala Gln Asp Pro
725 730 735
Pro Pro Glu Leu Tyr Phe Val Lys Asp Arg Leu Thr Glu Val Ile Ala
740 745 750
Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val
755 760 765
Val Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His
770 775 780

Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala
 785 790 795 800
 His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln
 805 810 815
 Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu
 820 825 830
 Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val
 835 840 845
 Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys
 850 855 860
 Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg
 865 870 875 880
 Arg Asp Gly Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr
 885 890 895
 Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly
 900 905 910
 Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn
 915 920 925
D/D
 Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met
 930 935 940
 Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg
 945 950 955 960
 Thr Leu Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile
 965 970 975
 Arg Ala Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met
 980 985 990
 Arg Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe
 995 1000 1005
 Leu Asp Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr
 1010 1015 1020
 Lys Ile Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln
 1025 1030 1035 1040
 Leu Pro Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg
 1045 1050 1055
 Val Ile Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys
 1060 1065 1070
 Asn Ala Glu Glu Asn Ile Leu Val Val Thr Pro Ala Val Leu Gly
 1075 1080 1085

Ser Gly Gln Pro Glu Met Glu Pro Pro Arg Arg Pro Ser Gly Val Gly
1090 1095 1100

Ser Phe Pro Val Ser Pro Gly Arg Gly Val Gly Leu Gly Leu Phe Ile
1105 1110 1115 1120

Gly Ala

<210> 87
<211> 7615
<212> DNA
<213> Homo sapiens

<220>

<223> Human Telomerase Clone with Exon Beta Spliced Out

<400> 87

D1D
tcgacacctgca ggcatgcaag cttggcaactg gccgtcgaaa tacaacgtcg tgactggaa 60
aacccctggcg ttacccaact taatcgccctt gcagcacatc cccctttcgca cagctggcg 120
aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgccgacgcct gaatggcgaa 180
tggcgccctga tgcgttattt tctccttacg catctgtgcg gtatttcaca cccgcataat 240
tccctgtttt ggcgatgag agaagattt cagcctgata cagattaaat cagaacgcag 300
aagcggtctg ataaaaacaga atttgcctgg cggcagtagc gcgggtggcc cacctgacc 360
catgccgaac tcagaagtgaa acgcgcgtac cgccgatggc agtgtgggt ctccccatgc 420
gagagtaggg aactgcccagg catcaaataa aacgaaaggc tcagtcgaaa gactgggcct 480
ttcggtttat ctgtgttttgc tcggtaacg ctctcctgag taggacaat ccggccggag 540
cggttttgcggaa cggtgcgaag caacggcccg gaggggtggcg ggcaggacgc ccggccataaa 600
ctgcccaggca tcaaattaag cagaaggcca tcctgacggc tgccctttt gcgtttctac 660
aaactcttcc tgtcgctata tctacaagcc atccccccac agatacggta aactagcctc 720
gtttttgcatt cagggaaagca gggaaatttat ggtgcactct cagtcataatc tgctctgatg 780
ccgcatagtt aagccagccc cgacacccgc caacacccgc tgacgcgc ccgtgggttt 840
gtctgctccc ggcattccgt tacagacaag ctgtgaccgt ctccggagc tgcatgtgtc 900
agagggtttc accgtcatca ccgaaacgcg cgagacgaaa gggcctcgatg atacgcctat 960
ttttataggt taatgtcatg ataataatgg tttcttagac gtgagggttct gtacccgaca 1020
ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcgggaa gagagtcaat 1080
tcaggggttgtt gaatgtgaaa ccagtaacgt tatacgtatgt cgcaagatgt ggcgtgtct 1140
cttattcagac cggttccgcg gtggtaacc agggcagcca cggttctcgaaaacgcggg 1200
aaaaagtggaa agcggcgatg gcccggatgtca attacattcc caaccgcgt gcacaacaac 1260
tggcgccaa acagtgcgtt ctgattggcg ttgccacctc cagtcgtggcc ctgcacgcgc 1320
cgtcgcaaat tgtcgcggcg attaaatctc gcgcgcgtca actgggtggcc agcgtgggtgg 1380
tgtcgatggc agaacgaagc ggctgtcaag cctgtaaagc ggcgtgtgc aatcttctcg 1440
cgcaacgcgt cagtggtgtc atcattaact atccgcgttgc tgaccaggat gccattgtct 1500
tggaaagctgc ctgcactaat gttccggcg tatttcttgc tgctctgac cagacaccca 1560
tcaacagtat tatttctcc catgaagacg gtacgcgtact gggcgtggag catctgtcg 1620
cattgggtca ccagaaatc ggcgtgttag cggcccatc aagttctgtc tcggcgctgc 1680
tgcgtctggc tggctggcat aaatatctca ctgcataatc aattcagccg atagcggaaac 1740
ggaaaggcga ctggagtgtcc atgtccgggtt ttcaacaaac catgcataatc ctgaatgggg 1800
gcattcgatc cactgcgtat ctgggtgtcc acgtcgtat ggcgtggcc gcaatgcgcg 1860
ccattaccga gtccgggtcg cgcgtgttg cggatatctc ggttagttggaa tacgacgata 1920
ccgaagacag ctcatgttat atccgcgttgc taaccacat caaacaggat ttgcgttcgc 1980
tggggcaaac cagcggtggac cgcttgcgtc aactcttcgc aatgcgttgc gttcaaggcg 2040
atcagctgtt gcccgtctca ctgggtaaaa gaaaaaccac cctggcgccc aatacgcataa 2100
ccgcctctcc ccgcgcgttg gccgattcat taatgcgtat ggcacgcac gtttccgcac 2160
tggaaaggcgg gcagtgagcg caacgcatt aatgtaaatgtt agctcactca tttaggcaccc 2220
caggctttac actttatgttccgcacctgc aagaacctca cgtcagggtgg cactttcg 2280
ggaaatgtgc gcgaaacccc tatttgcatttacatccaaat tatgtatccg 2340

D10

ctcatgagac aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt 2400
attcaacatt tccgtgtcg ccttattccc tttttgcgg cattttgcct tcctgtttt 2460
gctcacccag aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg 2520
ggttacatcg agaactggat ctcaacacgca gtaagatcct tgagagttt cgccccgaag 2580
aacgtttcc aatgatgagc acttttaaag ttctgtatg tggcgcggta ttatcccgt 2640
ttgacgcccgg gcaagagcaa ctcggtcgcc gcatacacta ttctcagaat gacttggtt 2700
agtactcacc agtcacagaa aagcatctt a cgatggcat gacagtaaga gaattatgca 2760
gtgctgccat aaccatgagt gataacactg cgccaactt acttctgaca acgatcgagg 2820
gaccgaagga gctaaccgc ttttgcaca acatggggga tcatgtaact cgccttgatc 2880
gttggaaacc ggagctgaat gaagccatac caaacgacga gcgtgacacc acgatgcctg 2940
tagcaatggc aacaacgtt cgc当地actat taactggca actactact ctatctccc 3000
ggcaacaatt aatacgactgg atggaggcgg ataaagttgc aggaccactt ctgcgctcg 3060
ccctccggc tggctggttt attgctgata aatctggagc cggtgagcgt gggctcgc 3120
gtatcattgc agcactgggg ccagatggta agccctccc tatctgtt atctacacga 3180
cggggagtcgca ggcaactatg gatgaacgaa atagacagat cgctgagata ggtgcctcac 3240
tgattaagca ttggtaactg tcagaccaag ttactcata tatactttt tagtattaa 3300
aacttcattt ttaattttaa aggatctagg tgaagatcct ttttgataat ctcatgacca 3360
aaatcccttta acgtgagtt tcgttccact gagcgtcaga ccccgtagaa aagatcaag 3420
gatcttcttgc agatcccttt tttctgcgcg taatctgtg cttgcaaaca aaaaaccac 3480
cgctaccaggc ggtgtttgt ttgcggatc aagagctacc aactctttt ccgaaggtaa 3540
ctggcttcag cagagcgcag ataccaaata ctgtccttct agttagccg tagttaggc 3600
accacttcaa gaactctgtc gcaccgccta catacctcgc tctgctaatt ctgttaccag 3660
tggctgctgc cagtgccat aagtctgtc ttaccgggtt ggactcaaga cgatagttac 3720
cggataaggc gcagcggcgc ggctgaacgg ggggttcgtg cacacagccc agcttggagc 3780
gaacgaccta caccgaactg agataacctac agcgtgagca ttgagaaagc gccacgcttc 3840
ccgaaggggag aaaggcggac aggtatccgg taagcggcag ggtcggaaaca ggagagcgc 3900
cgagggagct tccaggggga aacgccttgtt atctttatag tcctgtcggg ttccgcacc 3960
tctgacttgc gctcgatt ttgtgatgtc cgtcaggggg gcccggatc tggaaaaacg 4020
ccagcaacgc ggcctttta cgggtcttgg cctttgtcgc gcctttgtc cacatgttct 4080
tccctgcgtt atccctgtat tctgtggata accgttattac cgccttgcg tgagctgata 4140
ccgctcgccg cagccgaacg accgagcgcgca gcgagtcgt gaggcggaa gcggaaagagc 4200
gccaataacg caaaccgcct ctccccgcg gttggccgat tcattaatgc agaattaatt 4260
ctcatgtttt acagtttac atcgactgca cggcgtacca atgcttctgg cgtcaggcag 4320
ccatcggaag ctgtggatg gctgtgcagg tcgttaatca ctgcataatt cgtgtcgctc 4380
aaggcgcact cccgttctgg ataatgttt ttgcggcgc acatataacgg ttctggcaaa 4440
tattctgaaa tgagctgtt acaattaatc atcggtcgat ataatgtgtg gaattgttag 4500
cggataacaa tttcacacag gaaacagcga tgaattcaga tctcaccatg aaggagctgg 4560
tggcccgagt gctgcagagg ctgtgcagc gcccggcggaa gaacgtgctg gccttcggct 4620
tcgcgtctgc ggacggggcc cggggggcc ccccccggc cttcaccacc agcgtgcgc 4680
gctacctgcc caacacgtg accgacgcac tgccccggag cggggcgtgg gggctgctgc 4740
tgcggcgctg gggcgcac gtcgtggttt acctgtggc acgctgcgc ctctttgtgc 4800
tggtgctcc cagctgcgc taccagggtt gcccggcggcc gctgtaccag ctcggcgctg 4860
ccactcaggc cccggcccccc caacacgcctt gtggaccccg aaggcgtctg ggatgcgaac 4920
gggcctggaa ccatacgctc aaggaggccg gggccccctt gggcctgcctt gccccgggtg 4980
cgaggaggcg cggggccagt cccaggccaa gtctggcggtt gcccggagg cccaggcgtg 5040
gcgcgtcccc ttgagccggag cggacggccg ttggggcagg gtcctggcc caccggggca 5100
ggacgcgtgg accgagtgc accgtgtac cgtggtttct gtgtgggtc acctgcaga cccggcgaag 5160
aagccacctc tttggagggt gcgctctgc gcaacgcgcctt ccccccacca tccgtggcc 5220
gccagcacca cgcggcccccc ccatccacat cggccgcacc acgtccctgg gacacgcctt 5280
gtcccccggt gtacggcgag accaagcact tcctctactc ctcaggcgc aaggagcagc 5340
tgcggcccccc cttctactc agctctgtc ggcccggccct gactggcgct cggaggcgtc 5400
tggagaccat cttctgggt tccaggccctt ggtgtccagg gactccccgc aggttggccc 5460
gcctgeccca gcgctactgg caaatgcggc ccctgtttctt ggagctgctt gggaaaccacg 5520
cgcagtcggcc ctacgggggtt ctcctcaaga cgcactgcgc gctgcgagct gcggtcacc 5580
cagcagccgg tgcgtgtgc cgggagaagc cccaggccctc tgcgtggcc cccggaggagg 5640
aggacacaga ccccccgtcgc ctgggtgcgc tgcgtccgc gacacgcgc cccctggcagg 5700
tgtacggctt cgtgcggggcc tgcctgcgc ggcgtgggtc cccaggccctc tggggctcca 5760
ggcacaacga acgcccgttc ctcaggaaca ccaagaagtt catctccctg gggaaagcatg 5820

ccaagcttc gctgcaggag ctgacgttga agatgagcgt gcgggactgc gcttggctgc 5880
 gcaggagccc aggggttgc ttgttccgg ccgcagagca ccgctcggt gaggagatcc 5940
 tggccaagtt cctgcactgg ctgatgagtgt tgtaacgtcggt cgagctgctc aggtctttct 6000
 tttatgtcac ggagaccacg tttcaaaaaga acaggctctt tttctaccgg aagagtgtct 6060
 ggagcaagtt gcaaaggcatt ggaatcagac agcacttgaa gagggtgcag ctgcgggagc 6120
 tgtcggaagc agaggtcagg cagcatcggg aagccaggcc cgccctgctg acgtccagac 6180
 tccgcttcat ccccaagcct gacgggctgc gcccattgtt gaacatggac tacgtcgtgg 6240
 gagccagaac gttccgcaga gaaaagaggg ccgagcgtct cacctcgagg gtgaaggcac 6300
 tggtcagcgt gctcaactac gaggccccgc ggcgcggc cctcctggc gcctctgtgc 6360
 tgggccttgcg ccatatccac agggccttgc gcacatttcgt gtcgtgtgc cgggcccagg 6420
 accccgccccc tgagctgtac tttgtcaagg tggatgtgac gggcgcgtac gacaccatcc 6480
 cccaggacag gctcacggag gtcacgcaca gcatcatcaa accccagaac acgtactgcg 6540
 tgcgtcggtt tgccgtggc cagaaggccg cccatggca cgtccgcag gccttcaaga 6600
 gccacgtcct acgtccagtg ccaggggatc ccgcagggtc ccattcttc cacgctgctc 6660
 tgcagcctgt gtcacggca catggagaac aagctgtttt cggggattcg gcgggacggg 6720
 ctgtctctgc gtttgggtt tgatttctt tgggtgacac ctcacccatcc cacgcgaaa 6780
 acttcctcag gacctggcc gaaatgttctt ggtatggct gcgtggtcaa ttgcggaaag 6840
 acagtggtga acttccctgt agaagacgaa gcccattggtgc acacggctt tggtagatg 6900
 cccggccacg gcctattccc ctggtgcggc ctgctgctgg ataccggac cctggaggtg 6960
 cagagcgtact actccagcta tgcccggacc tccatcagag ccagtctcac cttcaaccgc 7020
 ggcttcaagg ctgggaggaa catgcgtcgc aaactctttt gggcttgcg gctgaagtgt 7080
 cacagcctgt ttctggattt gcaggtgaac agcattccaga cggtgtgcac caacatctac 7140
 aagatctcc tgcgtcagggc gtacagggtt cacgcatagtg tgctgcagct cccatttcat 7200
 cagcaagtt ggaagaaccc cacatttttcc tgcgcgtca tctctgacac ggcctccctc 7260
 tgctactcca tcctgaaagc caagaacgc gccaagaaaa acatttctgt cgtgactcct 7320
 gcgggtcttgc ggtcggttgc gccagagatg gagccacccc gcagaccgtc ggggtgtggc 7380
 agcttccgg tgcgtcctgg gaggggagtt gggctggcc tgcgtacttgc cagcctctgt 7440
 tttccccccag ggtatgtcgct gggggccaaag ggcgcgcgc gcccctgtcc ctccgaggcc 7500
 gtgcagtggc tgcgtccacca agcattctgt ctcaagctga ctcgacaccg tgcacactac 7560
 gtgccactcc tgggtcaact caggacaggc aagtgtgggt ggaggccagt gcggg 7615

D/D

<210> 88
 <211> 7797
 <212> DNA
 <213> Homo sapiens

<220>
 <223> Human Telomerase Clone with Alternative C-terminus

<400> 88
 tcgacctgca ggcacgtcaag cttggcaactg gccgtcggtt tacaacgtcg tgactggaa 60
 aaccctggcg ttaccaact taatgcctt gcagcacatc ccccttcgc cagctggcg 120
 aatacgcaag aggcccgcac cgatgcctt tcccaacagt tgcgacgcgaatggcgaa 180
 tggcgcttgc tgccgtattt tctccttacg catctgtgcg gtatttcaca ccgcataaat 240
 tccctgtttt ggccgtatgg agaagattt cagcctgata cagattaaat cagaacgcag 300
 aagcggtctg ataaaacaga atttgcctgg cggcgtatgc gccgtggtcc cacctgaccc 360
 catgcgcacatc tcaaaatgtg aacgcgttag cgcgcgttgcgtt aatgtgggt ctccccatgc 420
 gagagtaggg aactgcgttgc catcaaaataa aacggaaaggc tcagtcgaaa gactgggcct 480
 ttcgttttat ctgttgcgttgc tccgtgcgttgc ctctccttgcg taggacaaat ccgcggggag 540
 cggatttggaa ctgtgcgttgc caacggcccg gaggggtggcg ggcaggacgc ccgcataaaa 600
 ctgcccaggca tcaaaatgtg cagaaggcca tcctgcgttgc tggcctttt gctgttgc 660
 aaactcttcc tgcgtcata tctacaaatgc atccccccatc agatacggtt aactgcctc 720
 gtttttgcgttgc tcaaaatgtg gggaaattttt ggtgcgttgc cgttgcgttgc tgcgttgc 780
 ccgcataatgg aagccacccgc cgcacccgc caacacccgc tgacgcgcgc tgacgggctt 840
 gtctgcgttgc ggcacccgcgt tacagacaaatgc ctgtgcgttgc ctccggggac tgcgttgc 900
 agaggttttc accgtcatca ccgaaacgcg cggacgcggaa gggcctcggttgc atacgcctat 960
 tttttaggttgc tgcgttgc tcaaaatgtg tttcttgcgttgc gtcgttgc tgcgttgc 1020
 ccatcgatgcgttgc tggcatgttgc ggcgcggaa gaggttgcgttgc tgcgttgc 1080

tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat gccgggtct 1140
cttatcagac cgttccgcgt gtggtaacc aggccagcca cgtttctgcg aaaacgcggg 1200
aaaaagtggaa agccgcgtg gcggagctga attacattcc caaccgcgtg gcacaacaac 1260
tggccggcaa acagtcgttgc ctgattggcg ttgccaccc cagtcgtggcc ctgcacgcgc 1320
cgtcgcaaat tgtcgcggcg attaaatctc gcgcgcgtca actgggtgcc agcgtggtgg 1380
tgtcgatggt agaacgaagc ggcgtcaag cctgtaaagc ggcgggtcac aatcttctcg 1440
cgcaacgcgt cagtggtgt atcattaact atccgcgtga tgaccaggat gccattgcgt 1500
tggaaagctgc ctgcactaat gttccggcgt tatttttgc tgcgtctgcac cagacaccca 1560
tcaacagttat tattttctcc catgaagacg gtacgcgact gggcgtggag catctggtcg 1620
cattgggtca ccagcaaattc gcgcgttag cggcccatt aagttctgtc tcggcgcgtc 1680
tgcgtctggc tggctggcat aaatatctca ctcgcataatca aattcagccg atagcggAAC 1740
gggaaggcga ctggagtgcg atgtccgggtt ttcaacaaac catgcacatg ctgaatgagg 1800
gcacgcgttcc cactgcgtg ctgggtgcgc acgatcagat ggcgcgtggc gcaatgcgcg 1860
ccattaccga gtccgggctg cgccgttgcgt cgatatctc ggtatggga tacgacgata 1920
ccgaagacag ctcatgttat atccgcgttgc taaccaccat caaacaggat ttgcgcgtc 1980
tggggcaaac cagcgtggac cgcttgcgc aactctctca gggccaggcg gtgaaggcga 2040
atcagctgtt gcccgtctca ctggtaaaaa gaaaaaccac cctggcgcggc aatacgcgg 2100
ccgcctctcc ccgcgcgttgc gccgattcat taatgcagct ggcacacag gtttcccgc 2160
tggaaagcgg gcagtgagcg caacgcatt aatgttaatgtt agtcactca tttaggcaccc 2220
caggcttac actttatgtc tccgacctgc aagaacctca cgtcaggtgg cacttttcgg 2280
ggaaatgtgc gcgaaacccc tatttgcata ttttctaaa tacattcaaa tatgtatccg 2340
ctcatgagac aataaccctg ataaatgttt caataatatt gaaaaaggaa gagttatgat 2400
attcaacatt tccgtgtcgc ccttattccc tttttgcgg cattttgcct tcctgtttt 2460
gctcacccag aaacgcgtgtt gaaagtaaaa gatgcgtgaag atcagttggg tgcacgcgtg 2520
ggttacatcg agaactggat ctcaacacgcg gtaagatcct tgagatttt cgccccgaag 2580
aacgttttcc aatgtatgagc acttttaaag ttctgcata tggcgcggta ttatcccgt 2640
ttgacgcggg gcaagagcaa ctgcgtcgcc gcatacacta ttctcagaat gacttgggt 2700
agtactcacc agtcacagaa aagcatcttta cgatggcat gacagtaaga gaattatgca 2760
gtgctgcat aaccatgagt gataacactg cgcccaactt acttctgaca acgatcgagg 2820
gaccgaagga gctaaccgcg ttttgcaca acatggggga tcatgtact cgccttgatc 2880
gttgggaacc ggagctgaat gaagccatac caaacgcacg gctgacacc acgatgcgt 2940
tagcaatggc aacaacgttg cgcaaaactat taactggcga actacttact ctagcttccc 3000
ggcaacaatt aatagactgg cccttccggc tggctggttt atggaggcgg ataaagttgc aggaccactt ctgcgtcg 3060
gtatcattgc agcactgggg ccagatggta agccctcccg taticgtatgtt atctacacga 3120
cggggagtcg gcaactatg gatgaacgaa atagacagat cgctgagata ggtgcctcac 3240
tgattaagca ttggtaactg tcagaccaag tttactcata tatactttat attgattttaa 3300
aacttcattt ttaatttaaa aggatctagg tgaagatcct ttttgcataat ctcacatgacca 3360
aaatccctta acgtgagttt tcgttccact gagcgtcaga ccccgtagaa aagatcaaag 3420
gatcttcttg agatcccttt tttctgcgcg taatctgcg tttgcacca aaaaaaccac 3480
cgctaccagc ggtgggttgc ttgcggatc aagagctacc aactctttt ccgaaggtaa 3540
ctggcttcag cagagcgcag ataccaataa ctgccttct atgttagccg tagttaggcc 3600
accacttcaa gaactctgttgc gacccgccta catacctgcg tctgctaattt ctgttaccag 3660
tggctgctgc cagttggcgat aagtcgtgtc ttaccgggtt ggactcaaga cgatagttac 3720
cggtataaggc gcagcggcgtg ggctgaacgg ggggttcgtg cacacagccc agcttggagc 3780
gaacgcacca caccgaactg agatacctac agcgtgagca ttgagaaagc gccacgcgtt 3840
ccgaaggggag aaaggcggac aggtatccgg taagcggcag gtcggaaaca ggagagcgc 3900
cgagggagct tccagggggaa aacgcctggt atctttatag tctgtcggtt ttcgcacc 3960
tctgacttgc ggcgtcgat ttgtgatgtc cgtcagggggg gcccggatca tggaaaaacg 4020
ccagcaacgc ggcctttta cgggttcgttgc cctttgtgt gcctttgtt cacatgtttt 4080
ttcctgcgtt atccctgtat tctgtggat accgttattac cgccttgag tgagctgata 4140
ccgctcgccg cagccgaacg accgagcgcg gcgagtcagt gagcggaggaa gccggaaagagc 4200
gcccaatacg caaaccgcct ctcggcgcgc gttggccgtat tcattaaatgc agaattaaatt 4260
ctcatgttttgc acagtttgc atcgactgc cggcgtacca atgttctgg cgtcaggcc 4320
ccatcggaaag ctgtggatgc gctgtgcagg tcgtaaatca ctgcataatt cgtgtcgctc 4380
aaggcgcact cccgttctgg ataatgtttt ttgcgcgcac atcataacgg ttctggcaaa 4440
tattctgaaa tgagctgttg acaattaatc atccgcgttgc ataatgtgtg gaattgtgag 4500
cggtataacaa ttccacacag gaaacagcgcg tgaattcaggat aaggagctgg 4560

D10

tggcccggagt gctgcagagg ctgtgcgagc gcggcgcgaa gaacgtgctg gccttcggct 4620
 tcgcgctgct ggacggggcc cgcgaaaaa ccccccggggc cttaccacc accgtgcgca 4680
 gctacctgcc caacacgggt accgacgcac tgccccggggc cttaccacc accgtgcgca 4740
 tgcggccgggt gggcgacac gtgctgggtt acctgtggc acgtgcgca 4800
 tggtggtctcc cagctgcgcc taccagggtt gccccggggc gctgtaccag ctcggcgctg 4860
 ccactcaggc cccggggggc ccacacgcta gtggaccccg aaggcgctcg gatgcgaa 4920
 gggcctggaa ccatacgctc agggaggccg gggccccct gggcctgcca gccccgggtg 4980
 cgaggaggcg cggggggcgtt gccagccgaa gtctgggtt gccccaaaggagg cccaggcgctg 5040
 ggcgtgcccc tgagccggag cggacggccg ttggcaggg gtcctggcc caccggggca 5100
 ggacgcgtgg accgagtgac cgtggtttct gtgtgggtc acctggcaga cccggccgaag 5160
 aagccaccc tttggagggt ggcgtctctg gacacgcgca ctccccccca tccgtggcc 5220
 gccagcacca cgcggggccc ccatccacat cgccggccacc acgtccctgg gacacgcctt 5280
 gtcggccgggt gtacggccgag accaagactt tcctctactc ctcaggcgac aaggaggcgc 5340
 tgcggccctc cttctactc agctctctg gggccagcct gactggcgct cggaggctcg 5400
 tggagaccat ctttctgggt tccaggccct ggtatggcagg gactccccgc aggttgcggcc 5460
 ggcgtggccca ggcgtactgg caaatggcgc ccctgtttct ggagctgctt gggaaaccacg 5520
 cgcagtgcggcc ctacgggggtg ctccctcaaga cgcactgcgc gctgcgagct gcggtcaccc 5580
 cagcagccgg tgtctgtgcc cgggagaagc cccaggggctc tgtggcggcc cccgaggagg 5640
 aggacacaga cccccgtcgc ctggtgcagc tgctccgcca gcacagcagc ccctggcagg 5700
 tgtacggctt cgtgcggggcc tgcctggcc ggcgtgggtc cccaggccctc tggggctcca 5760
 ggcacaacga acgcgcgttc ctcaggaaaca ccaagaagtt catctccctg gggaaagcatg 5820
 ccaagctctc gctgcaggag ctgacgttga agatgagcgt gcgggactgc gcttggctgc 5880
 gcaggagccc aggggttggc tgggttccgg ccgcagagca ccgtctgcgt gaggagatcc 5940
 tggccaagtt cctgcactgg ctgatgagtg tgtacgtcgt cgagctgcctc aggtctttct 6000
 tttatgtcac ggagaccacg tttcaaaaaca acaggctctt tttctaccgg aagagtgtct 6060
 ggagcaagtt gcaaaggcatt ggaatcagac agcacttgaa gagggtgcag ctgcgggagc 6120
 tgcgtggaaac agaggtcagg cagcatcggg aagccaggcc cgcctgcgt acgtccagac 6180
 tccgcttcat ccccaagcct gacgggctgc ggcgattgtt gaacatggac tacgtcggtt 6240
 gagccagaac gttccgcaga gaaaagaggg cgcgcgtct cacctcgagg gtgaaggcac 6300
 tggtcagcgt gctcaactac gacggggccg ggcggccccc ctcctggcc gcctctgtgc 6360
 tggggcttggaa cgtatatccac agggcctggc gcacccctgt gtcgtgtt cggggcccagg 6420
 accccggccccc tgagctgtac tttgtcaagg tggatgtgac gggcgctac gacaccatcc 6480
 cccaggacac gtcacggag gtcatcgcca gcatcatcaa accccagaac acgtactgcg 6540
 tgcgtggta tggcggttgc cagaaggccg cccatggca cgtccgcggc gccttcaga 6600
 gccacgtctc taccttgaca gacccatggc cgtacatgcg acagttcggt gtcacactgc 6660
 aggagaccac cccgctgagg gatgccgtcg tcatcgagca gagctccctc ctgaatgagg 6720
 ccagcagtgg cctttcgac gtcttcctac gtttgcgttgc ccaccacgccc gtgcgcata 6780
 gggggcaagtc ctacgtccag tggcggttgc tcccgccagg ctccatccct tccacgcgtc 6840
 tctgcagcct gtgtacggc gacatggaga acaagctgtt tgcgggatt cggggggacg 6900
 ggctgctctt ggcgtttgggt gatgatttt tggatgtgac accttcaccc accccacgcga 6960
 aaacttcctc aggacctggt ccgaagtgtc ctgagatgg ctgcgtgggt aacttgcgg 7020
 agacagtggt gaaactccct gtagaagacg aagccctggg tggcaccggc tttgttgcgg 7080
 tggcggttgc cggcctattc ccctgggtgc gcctgtgtt ggtatcccg accctggagg 7140
 tgcagagcga ctactccacg tatgccccggc ctcctccatcgat agccagtc accttcaccc 7200
 gcccgttcaa ggcgtggggggg aacatcggtc gcaaaacttcc tggggcttgc cggctgaagt 7260
 gtcacagcct gtttgcgttgc tggcggttgc acacccctca gacgggtgtc accaacatct 7320
 acaagatcct cctgtgcag gctgtacagg ttcacgcgtat tgcgtgcgt ctccatcc 7380
 atcagcaagt ttggaaagaaac cccacatcc ttgcgtgcgtt catctctgac acggccccc 7440
 tctgcgtactc catcttggaa gccaagaacg cagccggaa aacatccctt gtcgtgactc 7500
 ctgcgggtgtt tgggttgc gggccggggc tggagccacc cccggccggc tgggggtgtgg 7560
 gcaacccccc ggtgttgcctt gggggggggg ttgggttgcctt cctgtgactc ctcagccctt 7620
 gttttccccc agggatgtcg tggggggccca agggcgccgc cggccctctg ccctccggagg 7680
 ccgtgcagtg gctgtgcacca caagcattcc tgctcaagct gactcgacac cgtgtcaccc 7740
 acgtgcaccc ctcaggacac gcaagtgtgg gtcggggccca gtcgggggg 7797

<210> 89
 <211> 7688
 <212> DNA

<213> Homo sapiens

<220>

<223> Human Telomerase Clone with exon Alpha Spliced Out

<400> 89

tcgacacctgca ggcattgcaga cttggcactg gccgtcgaaa tacaacgtcg tgactggaa 60
aaccctggcg ttacccaact taatcgccct gcagcacatc ccccttcgc cagctggcgt 120
aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgccgcagcct gaatggcgaa 180
tggcgccctga tgcgttattt ttccttacg catctgtgcg gtatttcaca cccgataaat 240
tccctgtttt ggcggatgag agaagattt cagcctgata cagattaaat cagaacgcag 300
aagcggtctg ataaaaacaga atttgcctgg cggcagtagc gcgggtggcc cacctgaccc 360
catgccgaac tcagaagtga aacgcccgtag cgccgatggt agtgtgggt ctccccatgc 420
gagagtaggg aactgcccagg catcaaataa aacgaaaggc tcagtcgaaa gactgggcct 480
ttcggtttat ctgttggttg tcggtaacg ctctcctgag taggacaaat ccggccggag 540
cggttttggaa cggtcgaaag caacggcccg gagggtggcg ggcaggacgc cggccataaa 600
ctgcccaggca tcaaattaag cagaaggcca tcctgacggc tggcctttt gcgtttctac 660
aaactcttcc tgtcgctata tctacaagcc atccccccac agatacggta aactagcctc 720
gttttgcat cagggaaagca gggatttat ggtgcactct cagtacaatc tgctctgatg 780
ccgcatagtt aagccagccc cgacacccgc caacacccgc tgacgcgccc tgacgggcct 840
gtctgctccc ggcattccgt tacagacaag ctgtgaccgt ctccgggagc tgcatgtgtc 900
agagggtttt accgtcatca cggaaacgcg cgagacgaaa gggcctcgatg atacgcctat 960
ttttataggt taatgtcatg ataataatgg ttttttagac gtgagggttct gtacccgaca 1020
ccatcgaatg gtcaaaaacc ttgcggta tggcatgata ggcggccgaa gagagtcaat 1080
tcaggggtgtt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat gccgggtgtct 1140
cttatacagac cggttcccgc gtggtaacc aggcagcca cgttctcgatg aaaacgcggg 1200
aaaaagtgaa agcggcgatg gcgaggctga attacattcc caaccccgatg gcacaacaac 1260
tggcgcccaa acagtgcgtt ctgattggcg ttgccaccc cagtctggcc ctgcacgcgc 1320
cgtcgcaaat tgtcgccggc attaaatctc ggcggatca actgggtgcc agcgtgggtgg 1380
tgtcgatgtt agaacgaagc ggctcgaaag cctgtaaagc ggcgggtgcac aatctctcg 1440
cgcaacgcgt cagttggctg atcattaact atccgctggc tgaccaggat gccattgcgt 1500
tggaaagctgc ctgcactaat gttccggcgt tattttctgtc tgcgttgcac cagacacccca 1560
tcaacagttat tattttctcc catgaagacg gtacgcgact gggcgtggag catctgggtcg 1620
cattgggtca ccagcaaattc ggcgtttag cggggccatt aagttctgtc tcggcgccgc 1680
tgcgtctggc tggctggcat aaatatotca ctgcataatca aattcagccg atagcgaaac 1740
ggaaaggcga ctggagtgcg atgtccgggtt ttcaacaaac catgcaatgc ctgaatgggg 1800
gcattcggtcc cactgcgtt ctgggtggca acgtacatg ggcgtgggc gcaatgcgcgc 1860
ccattaccga gtccgggctg cgcgttgggt cggatatctc ggttagggaa tacgacgata 1920
ccgaagacag ctcatgttattt atccgcgtt taaccaccaat caaacaggat ttgcgttgc 1980
tggggcaaaac cagcgtggac cgcttgcgtc aactctctca gggccaggcg gtgaaggggca 2040
atcagctgtt gcccgtctca ctggtaaaaa gaaaaaccac cctggcgccc aatacgcataa 2100
ccgcctctcc ccgcgcgtt gccgattcat taatgcagct ggcacgcacg gtttcccgc 2160
tggaaaggcg gcaagtgcgca caacgcattt aatgtaaatgtt agtcactca ttaggcaccc 2220
caggctttac actttatgtt tccgacactgc aagaacactca cgtcaggtgg cacttttccg 2280
gaaatgtgc gcgaaacccc tattttgtta tttttctaaa tacattcaaa tatgtatccg 2340
ctcatgagac aataaccctgtt ataaatgtttt caataatattt gaaaaaggaa gagttatgagt 2400
attcaacattt tccgtgtcgc ctttatttttcc ttttttgcgg cattttgcct tcctgttttt 2460
gctcacccag aaacgcgtgtt gaaatggaaa gatgtgttgcg atcagggtgg tgcacgagtg 2520
gtttacatcg agaactggat ctcaacagcg gtaagatcct tgagatgttt cggccggaaag 2580
aacgtttttcc aatgtatgagc acttttaaag ttctgtatg tggcgccgtt ttatcccgtt 2640
ttgacgcgg gcaagagcaa ctgggtgcgc gcatacacta ttctcagaat gacttgggttg 2700
agtaactcacc agtcacagaa aagcatcttta cggatggcat gacagtaaga gaattatgca 2760
gtgtcgccat aaccatgtgtt gataacactg cggccaaactt acttctgaca acgatcgag 2820
gaccgaaggaa gctaaccgcgtt ttttgcaca acatggggga tcatgtact cgccttgatc 2880
gttgggaacc ggagctgaat gaagccatac caaacgcacga gcgtgacacc acgatgcctg 2940
tagcaatggc aacaacgttg cgcaaaactat taactggcgta actacttactt ctgttccc 3000
ggcaacaattt aatagactgg atggaggcgatg ataaagttgc aggaccactt ctgcgtcg 3060
cccttccggc tggctgggtttt attgctgata aatctggagc cgggtgacgtt ggggtctcg 3120

D¹⁰

D10

gtatcattgc agcaactgggg ccagatggta agccctcccg tatacgtagtt atctacacga 3180
cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata ggtgcctcac 3240
tgattaagca ttggtaactg tcagaccaag tttactcata tatactttag attgatttaa 3300
aacttcattt ttaatttaaa aggatctagg tgaagatcct ttttgcataat ctcatgacca 3360
aaatccctta acgtgagttt tcgttccact gagcgtcaga ccccgtagaa aagatcaaag 3420
gatcttcttg agatcctttt tttctgcgcg taatctgcgt cttgcacaca aaaaaaccac 3480
cgctaccagc ggtgggttgc ttgccggatc aagagctacc aactttttt cgcgaggtaa 3540
ctggcttcag cagagcgcag ataccaaata ctgtccttct agtgcgtccg tagtttagggc 3600
accacttcaa gaactctgtc gcacccgccta catacctcgc tctgctaatt ctgttaccag 3660
tggctgctgc cagtgccgt aagtgcgtc ttaccgggtt ggactcaaga cgatagttac 3720
cggataaggc gcagcggcgtc ggctgaacgg ggggttcgtc cacacagccc agcttggagc 3780
gaacgaccta caccgaactg agatacctac agcgtgagca ttgagaaaagc gccacgcctc 3840
ccgaaggggag aaaggcggac aggtatccgg taagcggcag ggtcggaaaca ggagagcgc 3900
cgagggagct tccagggggaa aacgccttgtt atctttatag tcctgtcggg tttcgccacc 3960
tctgacttgc gcgtcgattt ttgtgatgtc cgtaaggggg gcggagccta tggaaaaaacg 4020
ccagcaacgc ggcctttta cggttccgtt cctttgcgt gcctttgcgt cacaatgttct 4080
ttcctgcgtt atccccgtat tctgtggata accgtattac cgcctttgag tgagctgata 4140
ccgctcgccg cagccgaacg accgagcgcga gcgagtcgt gaggcaggaa gcggaaagagc 4200
gccaataacg caaacccgcct ctccccgcgc gttggccgtat tcattaatgc agaattaatt 4260
ctcatgtttt acagcttac ctcgttgcacca atgcgttgcgt cgctcaggcag 4320
ccatcggaag ctgtggatgtg accgttgcagg tcgttgcacca ctgcataatt cgtgtcgctc 4380
aaggcgcact cccgttctgg ataatgtttt ttgcgcgcac atcataacgg ttctggcaaa 4440
tattctgaaa tgagctgttgc acaattaatc atcggctcgat ataatgtgtg gaattgtgag 4500
cggataacaa tttcacacag gaaacagcga tgaattcaga tctcaccatg aaggagctgg 4560
tggcccgagt gctgcagagg ctgtgcgagc gggcgcgaa gaacgtgctg gccttcggct 4620
tcgcgctgtc ggacggggcc cggggggcc ccccccggc cttcaccacc agcgtgcgc 4680
gctacctgcc caacacgggtg accgacgcac tgccggggag cggggcgtgg gggctgctgc 4740
tgcgcgcgtt gggcgcacgc gtgtgggtt acctgtgtgc acgctgcgcg ctctttgtgc 4800
tggtggtccc cagctgcgc caccacgcgtt gtcgttgcgtt gtcgttgcgtc 4860
ccactcaggc cccggggccggc ccacacgcgtt gtggaccccg aaggcgtctg ggatgcgaac 4920
gggcctggaa ccatacggtc agggaggccg ggtcccccct gggcctgcacca gccccgggtg 4980
cgaggaggcg cggggcgagt gccagccgaa gtctgcgtt gcccaagagg cccaggcgtg 5040
gcgctgcccc tgagccggag cggaccccg ttgggcagggt gtcctggcc caccggggca 5100
ggacgcgtgg accgagtcac cgtggttct gtgtgggttc acctgcccaga cccgcgcgaag 5160
aagccaccc tttggagggt gcgctctctg gcaacgcgcac ccacacccca tccgtggggc 5220
gccagcacca cgcggggcccc ccatccacat cgcggccacc acgtccctgg gacacgcctt 5280
gtcccccggt gtacccgcgac accaagcact tcctctactc ctcaggcgcac aaggagcagc 5340
tgcggccctc cttctactc agtctctga gcccacgcct gactggcgt cggaggctcg 5400
tggagaccat ctttctgggt tccaggccct ggatgcgcagg gactccccgc aggttgcggc 5460
gcctgccccca ggcgtactgg caaatgcggc ccctgttct ggagctgctt gggaaaccacg 5520
cgcagtgcggc ctacgggggtg ctccctcaaga cgcactgcgc gtcgtcgaccc ggggtcacc 5580
cagcagccgg tgtctgtgc cgggagaagc cccagggtctc tggggcggcc cccgaggagg 5640
aggacacaga ccccgctgc ctgggtgcgc tgcgtccgcac gcacagcgc ccctggcagg 5700
tgtacggctt cgtgcggggcc tgcctgcgc ggtgggtgc cccaggcctc tggggctcca 5760
ggcacaacga acgcccgttc ctcaggaaaca ccaagaaggat catctccctg gggaaagcatg 5820
ccaagcttc gtcgcaggag ctgcgttgc acatgagcgt gggggactgc gcttggctgc 5880
gcaggagccc aggggttggc tgggttgcgg ccgcagagca cgcgtctgcgt gaggagatcc 5940
tggccaagggt cctgcactgg ctgtatgtgc tgcgttgcgt cgagctgc acgttcttct 6000
tttatgtcac ggagaccacg tttcaaaaga acaggctt tttctaccgg aagagtgtct 6060
ggagcaagggt gcaaaggcatt ggaatcagac agcaacttgc gagggtgcag ctgcgggagc 6120
tgtcggaaagc agagggtcagg cagcatcggt aagccaggcc cgcctgcgt acgtccagac 6180
tccgcttcat ccccaaggcct gacgggcgtc ggcggattgt gaacatggac tacgtcgtgg 6240
gagccagaaac gttccgcaga gaaaagaggg ccgagcgtct cacctcgagg gtgaaggcac 6300
tgttcagcgt gtcactac ggcggccgc ggcggccccc gctcctggc gcctctgtgc 6360
tgggcctggc cgtatccac agggcctgcgc gaccccttcgt gtcgtgtgc cggggccagg 6420
acccgcgcgc tgagctgtac tttgtcaagg acaggctc acagggtcattc ggcagcatca 6480
tcaaaccacag aacacgtact ggcgtgcgtc gtatgcgtg gtccagaagg ccccccattgg 6540
gcacgtccgc aaggccttca agagccacgt ctctacccgt acagacccatcc agccgtacat 6600

gcgacagttc gtggctcacc tgcaggagac cagcccgctg agggatgccg tcgtcatcg 6660
cgagagctcc tccctgaatg aggccagcag tggccttcc gacgttcc tacgcttc 6720
gtgccaccac gccgtgcga tcagggcaa gtcctacgtc cagtcccagg ggatcccga 6780
gggctccatc ctcttccacgc tgctctgcag cctgtctac ggcgacatgg agaacaaggt 6840
gtttgcgggg attcggcgaaa acgggctgtc cctgcgtttt gtggatgatt tcttgggt 6900
gacacccacac ctcacccacg cgaaaaacccctt cctcaggacc ctggcccgag gtgtccctga 6960
gtatggctgc gtggtaact tgcggaaagac agtgtgaac ttccctgttag aagacgaggc 7020
cctgggtggc acggctttt ttcagatgcc ggccccacggc ctatccccctt ggtgcggc 7080
gctgctggat accccggaccc tggaggtgcg gaggcactac tccagctatg cccggaccc 7140
catcagagcc agtctcacct tcaaccgcgg cttaaggctt gggaggaaca tgcgtcgcaa 7200
actctttggg gtcttgcggc tgaagtgtca cagcctgtttt ctggatttgc aggtgaacag 7260
cctccagacg gtgtgcacca acatctacaa gatccctcctg ctgcaggcgt acaggttca 7320
cgcatgtgtg ctgcagctcc catttcatca gcaagtttg aagaacccca catttttcc 7380
gcgcgtcatc tctgacacgg cctccctctg ctactccatc ctgaaagcca agaacgcagg 7440
gatgtcgctg gggggcaagg ggcgcgcgg ccctctgccc tccgaggccg tgcagtggct 7500
gtgccaccaa gcattcctgc tcaagctgac tcgacaccgt gtcacctacg tgccactct 7560
ggggtcactc aggacagccc agacgcagct gagtcggaag ctccgggga cgacgctgac 7620
tgccctggag gcccgcagcca accccggact gcccctcagac ttcaagacca tcctggactg 7680
atctagag 7688

<210> 90

<211> 8

<212> PRT

<213> Homo sapiens

<400> 90

Ala Val Arg Ile Arg Gly Lys Ser
1 5

D10 <210> 91

<211> 8

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Consensus P-loop
Motif Sequence found in large number of protein
families

<220>

<221> MOD_RES

<222> (2)..(5)

<223> Wherein Xaa is any residue

<400> 91

Ala Xaa Xaa Xaa Xaa Gly Lys Ser
1 5

<210> 92

<211> 17

<212> PRT

<213> Homo sapiens

<400> 92

Ser Gly Gln Pro Glu Met Glu Pro Pro Arg Arg Pro Ser Gly Cys Val
1 5 10 15

Gly

<210> 93
<211> 9
<212> PRT
<213> Unknown

<220>
<223> Description of Unknown Organism: Consensus c-Alb SH3 binding peptide

<220>
<221> MOD_RES
<222> (2)..(5)
<223> Wherein Xaa is any residue

<220>
<221> MOD_RES
<222> (7)..(8)
<223> Wherein Xaa is any residue

<400> 93
Pro Xaa Xaa Xaa Xaa Pro Xaa Xaa Pro
1 5

D10

<210> 94
<211> 17
<212> PRT
<213> Homo sapiens

<400> 94
His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp Thr
1 5 10 15

Pro

<210> 95
<211> 14
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism: General Target Sequence Recognized by Hairpin Ribozyme

<220>
<221> modified_base
<222> (1)..(3)
<223> Wherein N is G, U, C or A

<220>
<221> modified_base

<222> (5)
<223> Wherein N is G, U, C or A

<220>
<221> modified_base
<222> (9)..(14)
<223> Wherein N is G, U, C or A

<400> 95
nnnbngucnn nnnn

<210> 96
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Amplification
Primer Design Based on EST Sequence GenBank
Accession Number AA281296

<400> 96
aggagatctc gcgatgccgc gcgctc

<210> 97
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Amplification
Primer Design Based on EST Sequence GenBank
Accession Number AA281296

D10
<400> 97
tccacgcgtc ctgccccgggt g

<210> 98
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Amplification
Primer Design Based on EST Sequence GenBank
Accession Number AA281296

<400> 98
gctgggtgcag cgcgaaaaacc

<210> 99
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Amplification
Primer Design Based on EST Sequence GenBank

14

26

21

20

Accession Number AA281296

<400> 99
cacaagcttg aattcacatc tcaccatgaa ggagctggtg gccccgagt 48

<210> 100
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 100
ggcacgcaca ccaggcactg 20

<210> 101
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

D10
<400> 101
cctgcctgaa ggagctggtg 20

<210> 102
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 102
ggacacacctgg cggaaaggag 19

<210> 103
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 103
ccgagtgctg cagaggctgt 20

<210> 104

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 104
gaagccgaag gccagcacgt tctt

24

<210> 105
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 105
gtgcagctgc tccgccagca ca

22

<210> 106
<211> 24
<212> DNA
<213> Artificial Sequence

D1D
<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 106
gttcccaagc agctccagaa acag

24

<210> 107
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 107
ggcagtgcgt cttagggaggc a

21

<210> 108
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized

Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 108
cactggctga tgagtgtgta c 21

<210> 109
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 109
gacgtacaca ctcatcagcc ag 22

<210> 110
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

D/D <400> 110
ggtctttctt ttatgtcacg gag 23

<210> 111
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 111
cacttgaaga gggtgcaagct 20

<210> 112
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 112
gtctcacctc gaggggtgaag 20

<210> 113
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 113
ttcacccctcg aggtgagacg ct

<210> 114
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 114
tcgtagttga gcacgctgaa c

<210> 115
<211> 21
<212> DNA
<213> Artificial Sequence

D/D
<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 115
gcctgagctg tacttgtca a

<210> 116
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 116
ctgagctgta ctttgtcaag gaca

<210> 117
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

22

21

21

24

<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 117
gtacatgcga cagttcgtgg ctca

24

<210> 118
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 118
catgaaggcgt aggaagacgt cgaaga

26

<210> 119
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 119
cgcaaacagc ttgttctcca tgtc

24

<210> 120
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 120
ctatccccgg acctccatca ga

22

<210> 121
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 121
ctgatggagg tccgggcata g

21

D10

```
<210> 122
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
      Amplification Primer Design based on EST Sequence
      GenBank Accession Number AA281296

<400> 122
cctccgaggc cgtgcagt 18

<210> 123
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
      Amplification Primer Design based on EST Sequence
      GenBank Accession Number AA281296

<400> 123
cacctaagc tttcttagatc agtccaggat ggtcttgaag tca 43

<210> 124
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
      Amplification Primer Design based on EST Sequence
      GenBank Accession Number AA281296

<400> 124
ggaaggcaaa ggagggcagg gcga 24

<210> 125
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
      Amplification Primer Design based on EST Sequence
      GenBank Accession Number AA281296

<400> 125
cacgaattcg gatccaagct tttttttttt tttttttt 37

<210> 126
<211> 18
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 126
gggttgcgga ggggtggc

18

<210> 127
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 127
gcagtggtga gccgagtccct g

21

<210> 128
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 128
cgactttgga ggtgccttca

20

<210> 129
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 129
gctgggtgcag cgcggggacc

20

<210> 130
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 130

gaggtgcaga gcgactactc ca 22

<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 131
gtctcacctc gagggtaag 20

<210> 132
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 132
ggctgctcct gcgttggtg ga 22

D10
<210> 133
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 133
gccagagatg gagccaccc 19

<210> 134
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 134
gggtggctcc atctctggc 19

<210> 135
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 135
ccgcacgctc atcttccacg t

21

<210> 136
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 136
gcttggggat gaagcggtc

19

<210> 137
<211> 21
<212> DNA
<213> Artificial Sequence

D1△
<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 137
cgcctgagct gtactttgtc a

21

<210> 138
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 138
cacctaaggc tttcttagatc agctagcgcc ccagcccaac tccccct

46

<210> 139
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 139
gcagcacaca tgcgtgaaac ctgt

<210> 140
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 140
gtgtcagaga tgacgcgcag gaa

<210> 141
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

D10 <400> 141
acccacactt gcctgtcctg agt 23

<210> 142
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 142
actggatcct tgacaattaa tgcatacggt cgtataatgt gtggagggtt gcggagggtg 60
ggc 63

<210> 143
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 143
ctgtataacg actcaactata gggttgcgga gggtgtggc 38

<210> 144
<211> 73

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 144
cacctgcaga catgcgttcc gtcctcacgg actcatcagg ccagctggcg acgcatgtgt 60
gagccgagtc ctg 73

<210> 145
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 145
ggatccgccc cagagcaccg tctg 24

D/Δ
<210> 146
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 146
cgaagcttcc agtggggccgg catctgaac 29

<210> 147
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized Amplification Primer Design based on EST Sequence GenBank Accession Number AA281296

<400> 147
cgaagcttcc acaggccccag cccaaactcc 29

<210> 148
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized

Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 148
gcggatccag agccacgtcc tacgtc

26

<210> 149
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthesized
Amplification Primer Design based on EST Sequence
GenBank Accession Number AA281296

<400> 149
gcggatccgt tcagatgccg gccccac

26

<210> 150 ,
<211> 9
<212> PRT
<213> Homo sapiens

<400> 150
Pro Glu Met Glu Pro Pro Arg Arg Pro
1 5

D18

<210> 151
<211> 4
<212> PRT
<213> Homo sapiens

<400> 151
Ala Ala Glu His
1

<210> 152
<211> 6
<212> PRT
<213> Homo sapiens

<400> 152
Val Gln Met Pro Ala His
1 5

<210> 153
<211> 5
<212> PRT
<213> Homo sapiens

<400> 153
Val Gly Leu Gly Leu
1 5

<210> 154
<211> 4
<212> PRT
<213> Homo sapiens

<400> 154
Arg Ala Thr Ser
1

<210> 155
<211> 622
<212> PRT
<213> Homo sapiens

<220>
<223> N-Terminal Truncated Telomerase (ver.2); encoded
by SEQ ID NO:51, with Y Intron ORF3

<400> 155
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser
1 5 10 15

His Thr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly
20 25 30

D/0
Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg
35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro
50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Pro Pro Arg Gly Arg Arg
65 70 75 80

Pro Ala Gly Val Glu Gly Gly Arg Gly Glu Pro Ala Thr Cys Gly Glu
85 90 95

Gln Arg Arg Arg Leu Arg Ala Leu Pro Pro Gln Val Ser Cys Leu Lys
100 105 110

Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys
115 120 125

Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly
130 135 140

Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr
145 150 155 160

Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg
165 170 175

Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu
180 185 190

Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro

195 200 205

Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala
210 215 220

Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser
225 230 235 240

Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg
245 250 255

Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro
260 265 270

Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro Val Gly Gln Gly
275 280 285

Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser Asp Arg Gly Phe
290 295 300

Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala Thr Ser Leu Glu
305 310 315 320

Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser Val Gly Arg Gln
325 330 335

D10 His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro Arg Pro Trp Asp
340 345 350

Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser
355 360 365

Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu
370 375 380

Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu
385 390 395 400

Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu
405 410 415

Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly
420 425 430

Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro
435 440 445

Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys Ala Arg Glu Lys
450 455 460

Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Asp Thr Asp Pro Arg
465 470 475 480

Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr
485 490 495

Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp
500 505 510

Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe
515 520 525

Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp
530 535 540

Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val
545 550 555 560

DPO Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu Glu Ile Leu Ala
565 570 575

Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val Glu Leu Leu Arg
580 585 590

Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe
595 600 605

Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly
610 615 620