### Differentiation

# Partial Differentiation - concept & operations (편미분 개념 및 연산)

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

### Course Overview

| Topic                            | Contents                                                                                                                          |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 01. Orientation                  | Course introduction, motivations, final objectives                                                                                |
| 오리엔테이션                           | 과정 소개, 동기부여, 최종 목표                                                                                                                |
| 02. Learning in deeplearning     | How does the deeplearing learns knowledge from data                                                                               |
| 딥러닝 학습                           | 어떻게 딥러닝은 데이터로부터 지식을 배우는가?                                                                                                         |
| 03. Principle of differentiation | Basics of differentiation (concepts, notation, operations)                                                                        |
| 미분의 원리                           | 미분 기본지식 (개념, 표기, 연산)                                                                                                              |
| 04. Partial differentiation      | Concept & operation of partial differenciation                                                                                    |
| 편미분                              | 편미분 개념, 연산                                                                                                                        |
| 05. Gradient descent             | Concept, interpretation and learning in gradient descent                                                                          |
| 경사 하강법                           | 경사하강 알고리즘 개념, 해석 및 학습                                                                                                             |
| 06. Chain rule                   | Concept & operation of chain rule                                                                                                 |
| 연쇄법칙                             | 연쇄법칙 개념 및 연산                                                                                                                      |
| 07. Matrix differentiation       | Partial differentiation in linear system                                                                                          |
| 행렬미분                             | 선형시스템에서의 편미분                                                                                                                      |
| 08. Back propagation             | The mechanism of back propagation                                                                                                 |
| 역전파 학습                           | 역전파 학습의 작동 방법                                                                                                                     |
| 09. Gradient vanishing<br>기울기 소실 | Quick overview on activation function, cause root of<br>gradient vanishing and its counter-measure<br>활성함수 간단 소개, 기울기 소실 근본원인과 대책 |

# Recap: 미분!!! 딥러닝 어디에 사용하는가?



# 함수 입력에 따른 분류

| 구분<br> | 일변수 함수                    | 다변수 함수                                   |
|--------|---------------------------|------------------------------------------|
| 개념     | 입력 변수가 1개                 | 입력 변수가 2개 이상                             |
| 예시     | $y = f(x) = x^2 - 2x + 1$ | $z = f(x, y) = \frac{3y}{x^2 + y^2 + 1}$ |
| 시각화    | -<br>-<br>-<br>어떻가        | 저점<br>'<br>'<br>'<br>'                   |

## 편미분 등장, 그리고 읽는 방법

$$y = f(x)$$
 일변수 함수

$$z = f(x, y)$$
 다변수 함수

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x)}{h}$$

미분 대상이 되는 변수만 고려, 나머지 변수는 상수 취급

$$\partial x$$
: "파셜(partial)  $x$ " 라고 읽음 "라운드(round)  $x$ " 라고도 읽음

$$\frac{dy}{dx}$$
 Derivative with respect to  $x$  of  $y$   $(y = x)$  에 대하여 미분)   
또는  $y$  over  $x$  (디 $x$ 분에 디 $y$ )

$$\frac{\partial y}{\partial x}$$
 Partial derivative with respect to  $x$  of  $y$   $(y = x)$  에 대하여 편미분)

### 편미분의 직관적 이해와 표현

#### 편미분:

타겟(변수)이 여러 개인 경우 다른 모든 놈들은 고정하고, 한 놈(하나의 변수)만 변화 시키는 작업



### 표현 방법 (모두 맞음)

$$y$$
는고정하고, $x$ 만변화  $\frac{\partial f(x,y)}{\partial x}$  또는  $\frac{\partial f}{\partial x}(x,y)$  또는  $f_x'(x,y)$  또는  $f_x(x,y)$  또는  $f_y(x,y)$ 

### Example

자료출처: https://hyperskill.org/leam/step/13758

한번 읽어보세요. 제가 강력히 추천하는 블로그입니다 ^^.

$$f(x,y) = \frac{7xy}{e^{x^2 + y^2}}$$

, where  $f \colon \mathbb{R}^2 \to \mathbb{R}$ 

Let 
$$z = f(x, y)$$









모든 y에 대한 변화는?

모든 *x*에 대한 변화는?

## Toy Examples

Toy #1



$$z = f(x, y) = x^3 + xy - y$$

$$\frac{\partial f(x,y)}{\partial x} = 3x^2 + y$$

$$\frac{\partial f(x,y)}{\partial y} = x - 1$$

Toy #2



$$z = f(x, y) = \frac{7xy}{e^{x^2 + y^2}}$$

$$\frac{\partial f(x,y)}{\partial x} = -\frac{7y(2x^2 - 1)}{e^{x^2 + y^2}}$$

$$\frac{\partial f(x,y)}{\partial y} = -\frac{7x(2y^2 - 1)}{e^{x^2 + y^2}}$$

## Toy Practices: 손으로 계산 맛보기 (Note: 머리 아프면 건너뛰어도 됨 ^^.)

$$z = f(x,y) = \frac{7xy}{e^{x^2+y^2}} = 7xy \times e^{(x^2+y^2)^{-1}} = 7xy \times e^{(-x^2-y^2)} = 7xy \times e^{-x^2} \times e^{-y^2}$$
  $= (7ye^{-y^2}x) \times (e^{-x^2}) \times ($ 

$$g'(x) = 7ye^{-y^{2}}$$

$$\frac{\partial f(x,y)}{\partial x} = 7ye^{-y^{2}}e^{-x^{2}} + 7ye^{-y^{2}}xe^{-x^{2}}(-2x)$$

$$h(x) = e^{-x^{2}} \qquad f(x) = g \circ h(x) = g(h(x))$$

$$= e^{k(x)}$$

$$= e^{k(x)}$$

$$h'(x) = (e^{k(x)}) \cdot k'(x) \qquad f'(x) = g'(h(x)) \cdot h'(x)$$

$$h'(x) = e^{-x^{2}} \cdot (-2x) = -2x \quad e^{-x^{2}}$$

$$\frac{\partial f(x,y)}{\partial x} = 7ye^{-y^{2}}e^{-x^{2}} + 7ye^{-y^{2}}xe^{-x^{2}}(-2x)$$

$$= 7ye^{-y^{2}}e^{-x^{2}} - 2x^{2}7ye^{-y^{2}}e^{-x^{2}}$$

$$= \frac{7y - 2x^{2}7y}{e^{x^{2}+y^{2}}}$$

$$= -\frac{7y(2x^{2} - 1)}{e^{x^{2}+y^{2}}}$$

### 변수가 겁나게 많은 경우





수고하셨습니다 ..^^..