Mathematics I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

August 24, 2024

Lecture 9

Infinite series

Infinite Series:

• An infinite series is the sum of an infinite sequence $\{a_n\}$ of numbers:

$$a_1+a_2+a_3+\cdots$$

Infinite Series:

• An infinite series is the sum of an infinite sequence $\{a_n\}$ of numbers:

$$a_1+a_2+a_3+\cdots$$

 In this section we want to understand the meaning of such an infinite sum and to develop methods to calculate it.

Infinite Series:

• An infinite series is the sum of an infinite sequence $\{a_n\}$ of numbers:

$$a_1 + a_2 + a_3 + \cdots$$

- In this section we want to understand the meaning of such an infinite sum and to develop methods to calculate it.
- In order to give meaning for the infinite sum, we just consider the sum of the first n terms

$$s_n = a_1 + a_2 + \cdots + a_n = \sum_{k=0}^n a_k.$$

Infinite Series

We define the infinite sum by

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = \lim_{n \to \infty} s_n$$

whenever the later limit exists.

Infinite Series

We define the infinite sum by

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = \lim_{n \to \infty} s_n$$

whenever the later limit exists.

• For example consider the series $\sum_{k=1}^{\infty} 1/2^{k-1}$.

Infinite Series

We define the infinite sum by

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = \lim_{n \to \infty} s_n$$

whenever the later limit exists.

- For example consider the series $\sum_{k=1}^{\infty} 1/2^{k-1}$.
- $s_n = \sum_{k=1}^{n} 1/2^{k-1} = 2 \frac{1}{2^{n-1}}$, therefore we can say that

$$\sum_{k=1}^{\infty} 1/2^{k-1} = \lim_{n \to \infty} \left(2 - \frac{1}{2^{n-1}} \right) = 2$$

• Given a sequence of numbers $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$
.

is called an **infinite series**. The number a_n is called nth term of the series.

• Given a sequence of numbers $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$
.

is called an **infinite series**. The number a_n is called nth term of the series.

• The sequence $\{s_n\}$ defined by

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \cdots + a_n$$

is called the sequence of partial sums of the series and s_n is called *n*th partial sum.

Convergence and divergence of series:

Convergence and divergence of series:

• If the sequence $\{s_n\}$ of partial sums converges to a limit L, we say the series converges and its **sum** is L. In this case we also write

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = L = \lim_{n \to \infty} s_n.$$

Convergence and divergence of series:

• If the sequence $\{s_n\}$ of partial sums converges to a limit L, we say the series converges and its **sum** is L. In this case we also write

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots = L = \lim_{n \to \infty} s_n.$$

• If the sequence $\{s_n\}$ of partial sums does not converge, we say the the series **diverges**.

Geometric Series: Geometric series are series of the form (for $a, r \in \mathbb{R}$)

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$$

Geometric Series: Geometric series are series of the form (for $a, r \in \mathbb{R}$)

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$$

Theorem 0.1.

If |r| < 1 then the above geometric series converges and

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}.$$

if $|r| \geq 1$, the series diverges.

Theorem 0.2 (The *n*-th term test).

If the series $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

Theorem 0.2 (The *n*-th term test).

If the series $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

Examples:

(a).
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 10}}$$
. (b).
$$\sum_{n=1}^{\infty} \cos n\pi$$
.
(c).
$$\sum_{n=2}^{\infty} \frac{1}{4^n}$$
. (d).
$$\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)}\right)$$
.

Part (a): Consider the *n*-th term $a_n = \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+10}}$ which converges to 1 not equal to 0, hence by the *n*-th term test the series diverges.

Part (a): Consider the *n*-th term $a_n = \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+10}}$ which converges to 1 not equal to 0, hence by the *n*-th term test the series diverges.

Part (b): Here $a_n = \cos n\pi = (-1)^n$ which is not a convergent sequence by the above theorem the series is divergent.

Part (a): Consider the *n*-th term $a_n = \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+10}}$ which converges to 1 not equal to 0, hence by the *n*-th term test the series diverges.

Part (b): Here $a_n = \cos n\pi = (-1)^n$ which is not a convergent sequence by the above theorem the series is divergent.

Part (c): Given series is geometric series with common ration r=1/4 whose modulus value is less then 1, hence the series converges.

Part (a): Consider the *n*-th term $a_n = \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+10}}$ which converges to 1 not equal to 0, hence by the *n*-th term test the series diverges.

Part (b): Here $a_n = \cos n\pi = (-1)^n$ which is not a convergent sequence by the above theorem the series is divergent.

Part (c): Given series is geometric series with common ration r=1/4 whose modulus value is less then 1, hence the series converges.

Part (d): $a_n = \left(\frac{1}{n(n+1)}\right) = \frac{1}{n} - \frac{1}{n+1}$, $s_n = 1 - \frac{1}{n+1}$ converges to 1 hence the series is convergent.

Theorem 0.3 (Algebra of Series).

Let
$$\sum_{n=1}^{\infty} a_n = A$$
 and $\sum_{n=1}^{\infty} b_n = B$. Then

Theorem 0.3 (Algebra of Series).

Let
$$\sum_{n=1}^{\infty} a_n = A$$
 and $\sum_{n=1}^{\infty} b_n = B$. Then

Example: (a).
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{4^n}$$
; (b). $\sum_{n=1}^{\infty} \frac{5^n - 3^n}{4^n}$

Part (a):
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{4^n} = \sum_n (2/3)^n + (3/4)^n = \sum_n (2/3)^n + \sum_n (3/4)^n$$
. By geometric series test
$$\sum_n (2/3)^n \text{ and } \sum_n (3/4)^n \text{ are convergent so their sum is convergent by previous theorem.}$$

Part (a):
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{4^n} = \sum_{n} (2/3)^n + (3/4)^n = \sum_{n=1}^{\infty} (2/3)^n + \sum_{n=1}^{\infty} (3/4)^n$$
. By geometric series test
$$\sum_{n=1}^{\infty} (2/3)^n \text{ and } \sum_{n=1}^{\infty} (3/4)^n \text{ are convergent so their sum is convergent by previous theorem.}$$

Part (b): Since $\sum_{n=1}^{\infty} \frac{5^n}{4^n}$ is divergent and $\sum_{n=1}^{\infty} \frac{3^n}{4^n}$ is convergent, the given series is divergent.

<ロ > ← □ > ← □ > ← □ > ← □ = ・ の へ (で

Series of non-negative terms: $\sum a_n$ with $a_n \ge 0$.

$$\sum_{n=0}^{\infty} a_n \text{ with } a_n \geq 0.$$

Series of non-negative terms: $\sum_{n=1}^{\infty} a_n$ with $a_n \ge 0$.

Theorem 0.4.

A series $\sum_{n=1}^{\infty} a_n$ of non-negative terms converges if and only if the sequence $\{s_n\}$ of its partial sums are bounded from above.

Series of non-negative terms: $\sum_{n=1}^{\infty} a_n$ with $a_n \ge 0$.

Theorem 0.4.

A series $\sum_{n=1}^{\infty} a_n$ of non-negative terms converges if and only if the sequence $\{s_n\}$ of its partial sums are bounded from above.

Example:

• Is the series $\sum_{n=1}^{\infty} \frac{1}{n}$ (harmonic series) convergent?

What can you say about the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}?$$

What can you say about the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$? It is convergent which follows from the

following theorem.

Integral Test:

Theorem 0.5.

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f(x) is a positive, continuous, decreasing function of x for all $x \ge N$ (N is a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral

 $\int_{N}^{\infty} f(x) dx \text{ both converge or diverge.}$

(a). Find the values of p for which the following series converges

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

(a). Find the values of p for which the following series converges

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

Ans: The above series is convergent if and only if p > 1. Just apply integral test with the function $f(x) = 1/x^p$.

(a). Find the values of p for which the following series converges

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

Ans: The above series is convergent if and only if p > 1. Just apply integral test with the function $f(x) = 1/x^p$.

(b). Test the convergence of $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$?

(a). Find the values of p for which the following series converges

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

Ans: The above series is convergent if and only if p > 1. Just apply integral test with the function $f(x) = 1/x^p$.

(b). Test the convergence of $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$?

Ans: it is convergent. Just apply integral test with the function $f(x) = 1/(1+x^2)$.

Let $\sum a_n$, $\sum c_n$ and $\sum d_n$ be series with non-negative terms. Suppose that for some integer N

$$d_n \le a_n \le c_n$$
 for all $n > N$.

Let $\sum a_n$, $\sum c_n$ and $\sum d_n$ be series with non-negative terms. Suppose that for some integer N

• If $\sum c_n \frac{d_n \le a_n \le c_n}{converges}$, then $\sum a_n$ also converges.

Let $\sum a_n$, $\sum c_n$ and $\sum d_n$ be series with non-negative terms. Suppose that for some integer N

- If $\sum c_n \frac{d_n \le a_n \le c_n}{\text{converges}}$, then $\sum a_n$ also converges.
- If $\sum d_n$ diverges, then $\sum a_n$ also diverges.

Let $\sum a_n$, $\sum c_n$ and $\sum d_n$ be series with non-negative terms. Suppose that for some integer N

- If $\sum c_n \frac{d_n \le a_n \le c_n}{converges}$, then $\sum a_n$ also converges.
- If $\sum d_n$ diverges, then $\sum a_n$ also diverges.

Examples:

- (a) Test the convergence of $\sum_{n=1}^{\infty} \frac{5}{5n-1}$
- (b) Test the convergence of $\sum_{n=1}^{\infty} \frac{1}{n!}$