N-1759

September 1986

By Robert N. Murtha

Sponsored By Department of Defense Explosives Safety Board

NCEL Technical Note

BLAST DESIGN PROCEDURE FOR FLAT SLAB STRUCTURES

ABSTRACT A general step-by-step procedure was developed for designing flat slab structures to resist dynamic blast loads. The procedure is consistent with the Navy's current blast-resistant design manual NAVFAC P-397 and is based on an equivalent single-degree-of-freedom (SDOF) model of a flat slab. The distribution of reinforcement throughout the slab is based on the elastic distribution of design moments outlined by the American Concrete Institute (ACI). The step-by-step procedure is easily adapted to flat slabs of any configuration and considers both flexural and shear behavior.

DTIC FILE COPY

AD-A174

NAVAL CIVIL ENGINEERING LABORATORY PORT HUENEME. CALIFORNIA 93043

Approved for public release; distribution is unlimited.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AD-A174256

BEROOT DOCUMENTATION		READ INSTRUCTIONS
REPORT DOCUMENTATION		BEFORE COMPLETING FORM
TN-1759	DN387274	3 RECIPIENT'S CATALOG NUMBER
	DN307274	
4. TITLE (and Subtrite)		5 TYPE OF REPORT & PERIOD COVERED
BLAST DESIGN PROCEDURE FOR		Final; Jan 1983 – Sep 1984
FLAT SLAB STRUCTURES		6 PERFORMING ORG REPORT NUMBER
		8 CONTRACT OR GRANT NUMBER(1)
7 AUTHOR(s,		6 CONTRACT OR GHANT NUMBER(3)
Robert N. Murtha		
L		
9 PERFORMING ORGANIZATION NAME AND ADDRESS		10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
NAVAL CIVIL ENGINEERING LABORATORY Port Hueneme, California 93043-5003		
Fort Ruelleine, Camornia 93043-300,	,	51-112
11 CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Department of Defense Explosives Safety Board		September 1986
Alexandria, Virginia 22331		13 NUMBER OF PAGES
14 MONITORING AGENCY NAME & ADDRESSIN dillere	nt from Controlling Office)	15 SECURITY CLASS (of this report)
		Unclassified
		150 DECLASSIFICATION DOWNGRADING SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report)		<u> </u>
Approved for pul	olic release; distribut	ion unlimited
,	, , , , , , , , , , , , , , , , , , , ,	
17 DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)
18 SUPPLEMENTARY NOTES		······································
19 KEY WORDS (Continue on reverse side if necessary a	md identify by block number)	,
Blast design, flat slab structures, explo	sives satety	
20 ABSTRACT (Continue on reverse side II necessary as	nd identify by block number)	
A general step-by-step procedure was developed for designing flat slab structures to		
resist dynamic blast loads. The procedure is consistent with the Navy's current blast-resistant		
design manual NAVFAC P-397 and is based on an equivalent single-degree-of-freedom (SDOF)		
model of a flat slab. The distribution		
elastic distribution of design moments outlined by the American Concrete Institute (ACI).		
The step-by-step procedure is easily.	apted to flat slabs of	f any configuration and considers
both flexural and shear behavior.		
DD FORM 1473 EDITION OF 1 NOV 55 IS OBSO		Unclassified

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) Library Card Naval Civil Engineering Laboratory BLAST DESIGN PROCEDURE FOR FLAT SLAB STRUCTURES (Final), by Robert N. Murtha TN-1759 187 pp illus Unclassified September 1986 1. Blast design 2. Flat slab structures I. 51-112 A general step-by-step procedure was developed for designing flat slab structures to resist dynamic blast loads. The procedure is consistent with the Navy's current blast-resistant design manual NAVFAC P-397 and is based on an equivalent single-degree-of-freedom (SDOF) model of a flat slab. The distribution of reinforcement throughout the slab is based on the elastic distribution of design moments outlined by the American Concrete Institute (ACI). The stepby-step procedure is easily adapted to flat slabs of any configuration and considers both flexural and shear behavior.

CONTENTS

	Page
INTRODUCTION	1
BACKGROUND	1
SCOPE AND APPROACH	2
DESCRIPTION OF FLAT SLAB	3
EQUIVALENT SDOF MODEL	4
Ultimate Unit Flexural Resistance	6
Equivalent Elastic Unit Stiffness	10 12
milective unit mass	12
PANEL DEFINITION	15
DESIGN CRITERIA	16
Ultimate Unit Moment Capacity	16
Ultimate Shear Strength	17
Allowable Deflections	19
WALL DESIGN	20
COLUMN DESIGN	20
DETAILING OF REINFORCEMENT	21
DESIGN PROCEDURE	22
EXAMPLE PROBLEM	27
DISCUSSION	56
REFERENCES	57
APPENDIXES	
A - ACI Elastic Distribution of Reinforcement	A-1 B-1 C-1 D-1

INTRODUCTION

Many explosive storage magazines with flat slab roofs, such as the Navy Type IIB magazine, are in use by the Navy, but at the relatively large, nonstandard magazine separation distances required by NAVSEA OP-5 (Ref 1). Since box-type flat slab roof magazines are popular with operations personnel, many new magazines will be of this design. In order to reduce the land requirements, these new magazines will be designed to withstand the larger blast loads associated with the shorter standard magazine separation distances in Reference 1. However, the Navy's current blast-resistant design manual, NAVFAC P-397 (Ref 2), does not contain a design procedure for flat slabs. Therefore, the objective of this report was to develop and document the procedures for designing flat slab structures to resist dynamic blast loads. The work discussed in this report was sponsored by the Department of Defense Explosives Safety Board and is part of the Naval Civil Engineering Laboratory's explosives safety program supporting ordnance logistics to the Fleet.

BACKGROUND

NAVFAC P-397 presents methods of design for protective construction used in facilities for the storage of explosive materials. The primary objectives of this manual were to establish design procedures and construction techniques whereby propagation of explosions or mass detonations would be prevented and protection for personnel and valuable equipment would be provided. The objectives are based upon the results of numerous full- and small-scale structural response and explosive effects tests. Questions about the safety of the older Type IIB design and uncertainties in the design of a new Type A magazine resulted in the tests of 1/2-scale models of these magazines in ESKIMO VI (Ref 3 and 4). The results of ESKIMO VI and tests at U.S. Army Waterways Experiment Station (Ref 5)

clearly demonstrated that the existing (pre-1980) design procedure for flat slab roofs provided an excessive margin of safety against failure from design blast loads. A preliminary blast design procedure, using test results and analysis methods, was developed in 1981 by NCEL for safe and efficient flat slab structures (Ref 6). This procedure was expanded by Ammann and Whitney Consulting Engineers (Ref 7) to include requirements on the design of columns, column capitals, drop panels, elastic distribution of reinforcement, and the calculation of stiffness and deflection. The procedure was then used by Ammann and Whitney in the design of a typical flat slab box magazine with two interior circular columns and continuous exterior walls.

SCOPE AND APPROACH

The primary purpose of this study was to develop and document a general design procedure for flat slab structures subjected to blast loads. Eventually this procedure would be implemented into NAVFAC P-397. The structures were to be limited to single-story, box-type configurations with continuous exterior walls. There was to be no limit on the number of continuous spans in any direction, but each panel had to be rectangular and have its ratio of longer to shorter span not greater that 2.0.

The analysis portion of the design would use the same basic theory, most of the same notation, and many of the same equations that were used in NAVFAC P-397. Thus, a working knowledge of P-397 would be very important in understanding the design procedures to be outlined in this report. An equivalent elastic-plastic, single-degree-of-freedom (SDOF) model of the flat slab would form the basis of the design. Its ultimate flexural resistance would be determined from "yield-line" theory using a collapse mechanism similar to that found by tests. Response of the system could then be found using equations and charts in NAVFAC P-397 for idealized impulse or triangular loads, or with numerical integration of the equations of motion for more complicated loading functions. Since the prediction of the response of reinforced-concrete structures to dynamic loads is relatively inexact, simplifying assumptions were to

be made, when appropriate, to facilitate the design process. Results of two-way and flat slab tests were to be used to establish flexural failure criteria that would limit the maximum deflection and support rotation of the structure. Sufficient shear capacity must then be provided to preclude premature shear failure and allow development of the flexural capacity of the flat slab.

An important aspect of the design was the use of the ACI (Ref 8) published elastic factored moment distribution for initial selection of the reinforcement throughout the flat slab. Yield-line theory allows freedom in the choice of the reinforcement arrangement; however, an elastic distribution is recommended for several reasons:

- The design is more economical.
- Better service load behavior is obtained in regards to cracking, especially when the design blast loads are relatively low in relation to the service loads.
- Moment distribution required to achieve the design configuration is minimized.
- With the required concentration of the reinforcement in the column strips, the possibility of failure by localized yield patterns is remote.

A detailed discussion of this elastic distribution is contained in Appendix A.

DESCRIPTION OF FLAT SLAB

In reinforced-concrete buildings, slabs are used to provide flat, useful surfaces. A reinforced-concrete slab is a broad, flat plate, usually horizontal, with top and bottom surfaces parallel or nearly so. By definition, a flat slab structure consists of a slab built monolithically with columns and supported directly by these columns without

the aid of beams and girders. The flat slab system analyzed in this report has continuous monolithic exterior walls. When the ratio, β , of the long span, L, to the the short span, S, as shown in Figure 1(a), is less than 2, the deflected surface becomes one of double curvature. roof load is then carried in both directions to the four supporting columns of the panel. The column tends to punch upward through the slab, and the inclined cracking arising from the punching shear must be prevented. Thus, it is common to enlarge the top of the column in the shape of an inverted frustum, known as the column "capital." Further shear (inclined cracking) resistance may be obtained by thickening the slab in the vicinity of the column; this thickened portion is known as the "drop panel" or simply the "drop" (see Figure 1(b)). The columns and column capitals may be either round or square in cross section, but round column capitals are preferred to avoid shear stress concentrations. However, for calculational purposes, the circular capital is sometimes converted to an equivalent square capital via the following equality:

$$\frac{\pi d^2}{4} = c^2$$

where: d = capital diameter (in.)
c = equivalent square length (in.)

Therefore,

were more exercise assessment and the contract of the contract

$$c = \sqrt{\frac{\pi}{4}} d = 0.89 d$$
 (1)

EQUIVALENT SDOF MODEL

As stated earlier, the design method is based on the elasticplastic analysis of a single-degree-of-freedom (SDOF) representation of the flat slab. The following SDOF parameters are required to fully describe the flat slab behavior:

- Ultimate unit flexural resistance, r_u, (psi) of the actual system.
- ullet Equivalent unit stiffness, $\mathbf{K}_{\mathbf{E}}$, (psi/in.) of the actual system.
- Effective unit masses, m_{ef}, (lb-sec²/in.³) of the equivalent SDOF system in the elastic range and in the plastic range.

The effective natural period of vibration of the SDOF system is then given by:

$$T_{n} = 2\pi \sqrt{\frac{m_{ef}}{K_{E}}}$$
 (2)

Structures designed for high pressure loads at short scaled distances, such as storage magazines, will generally be sensitive to impulse loading. The maximum response, X_m , of structural elements that are sensitive to just the impulse loading (area under the pressure-time load history) and that are allowed large deflections (maximum support rotations, θ_m , greater than 5 deg) can be determined from the impulse loading, i_b , the effective unit mass, m_{ef} , in the plastic range, and the ultimate unit resistance, r_{ii} . That is,

$$X_{m} = \frac{i_{b}^{2}}{2 m_{ef} r_{u}}$$
 (3)

where: $X_m = maximum transient deflection (in.)$

At allowable support rotations less than 5 degrees and for pressuresensitive structures, the elasto-plastic portion of the resistance deflection curve must also be determined and used in the response calculations. Response of the structure can be found using charts in P-397 for idealized impulse or triangular loads, or with numerical integration of the equations of motion for more complicated loading functions.

Ultimate Unit Flexural Resistance

The ultimate unit flexural resistance is the static uniform pressure load, r_u (psi), that the structural element can sustain during plastic yielding of the collapse mechanism. This resistance is assumed to remain essentially constant over a wide range of deflection (θ_m < 12 deg). The r_u value defines the plastic portion of the resistance deflection curve (see Figure 2). A conservative lower bound can be determined using yield-line procedures (Ref 9 and 10).

The ultimate uniform resistance is a function of the amount and distribution of the reinforcement (i.e., moment capacities of the slab strips), the geometry of the slab, and the support conditions. A yield-line analysis can be used to determine $\mathbf{r}_{\mathbf{u}}$ in terms of these parameters. Since in-plane compression forces and membrane tensile forces are not considered, the ultimate resistance determined from a yield-line analysis will generally be lower than the actual resistance.

Yield-line analysis is an ultimate load determination method in which a flexural element is assumed to fail along lines that form a valid failure mechanism. The first step is to assume a yield-line pattern consistent with the stated conditions. The pattern will contain one or more unknown dimensions that locate the positions of the yield lines. Sectors between yield lines are assumed to rotate rigidly, and ultimate resisting moments are assumed to develop along the full length of all yield lines. Either equilibrium or energy (virtual work) methods can be used to find the critical collapse mechanism and associated minimum r value. Though P-397 uses the equilibrium method, the complexity of reinforcement in most flat slabs makes the energy method a better choice for flat slab design.

Figure 3 shows examples of failure mechanisms found by test and analysis to apply to flat slabs. In order to calculate the ultimate unit resistance, equations for the internal work, E, and external work, W, are written in terms of r_u , the moment capacities of the sections, and the geometry of the structure and failure mechanism. The expression for external work is then set equal to that for internal work, and the resulting equation is solved for the minimum value of r_u and the associated geometry of the failure mechanism.

The external work done by r_{ii} on rotating sector i is:

$$W_{i} = r_{u} A_{i} \Delta_{i}$$
 (4)

where: $A_i = \text{area of sector i (in.}^2)$

 Δ_{i} = deflection of the c.g. of sector i (in.)

The total external work is the sum of the work done on each sector:

$$W = \sum W_i = \sum r_u A_i \Delta_i$$
 (5)

For illustration, see Figure 4 which shows a quarter section of the flat slab given in Figure 3(a). The external work on sector B is the sum of the work done on the rectangular portion and the work done on the triangular portion. That is,

$$W_{B} = r_{u} \left[\left(S - y - \frac{c}{2} \right) x \frac{\Delta}{2} + x \frac{y}{2} \left(\frac{\Delta}{3} \right) \right]$$

$$= r_{u} x \Delta \left(\frac{S}{2} - \frac{y}{3} - \frac{c}{4} \right)$$
(6)

where: L = long span length (in.)

S = short span length (in.)

x,y = distances to yield lines (in.)

 Δ = maximum deflection of the sector (in.)

The internal work, E, done by the actions at the yield lines is due only to the bending moments as the support reactions do not undergo any displacement and the work done by the shear forces is zero when summed over the entire slab. The internal work, \mathbf{E}_{ij} , for each yield line is the rotational energy done by moment \mathbf{M}_n rotating through θ_n . That is,

$$E_{ij} = M_n \theta_n = m_n \theta_n \ell_n \tag{7}$$

where: $M_n = moment capacity along yield line (in.-lb)$

 m_n = unit moment capacity along yield line (in.-lb/in.)

 θ_n = rotation about yield line (radian)

 ℓ_n = length of yield line (in.)

The total internal work is the sum of the rotational energies for all yield lines:

$$E = \sum_{i,j} = \sum_{n} m_{n} \theta_{n} \ell_{n}$$
 (8)

As stated earlier, the flat slab design is based on the ACI elastic distribution of reinforcement. This distribution recognizes three orthogonal bands (i.e., column, middle, exterior), each containing different levels of reinforcement. Thus, it is more convenient to write the internal work in terms of moments (M $_{\rm x}$, M $_{\rm y}$) and rotations ($\theta_{\rm x}$, $\theta_{\rm y}$) in the principal reinforcement directions x and y. That is,

$$E_{ij} = M_{x} \theta_{x} + M_{v} \theta_{v}$$
 (9)

or

$$E_{ij} = {\sf m}_{x} s_{y} \theta_{x} + {\sf m}_{y} s_{x} \theta_{y} \tag{10}$$

where: m_x,m_y = ultimate unit moment capacities in the x and y directions (in.-lb/in.)

 s_y, s_x = lengths of the yield line in the y and x directions over which m_x and m_y apply (in.)

 θ_{x}, θ_{y} = relative rotations about the yield lines in the x and y directions

As an example, consider the structure in Figure 4 with rotating sectors A through D, areas 1 to 9 of equal moment capacities (in bands of width s defined by dashed lines) and geometry defined by L, S, c, x, and y. The internal work along yield line AB (yield line between sectors A and B) is

$$E_{AB} = \left[m_{9x} \left(s_{ey} - \frac{c}{2} \right) \theta_B + m_{5x} \left(y + \frac{c}{2} - s_{ey} \right) \theta_B \right] + \left[m_{9y} \left(s_{ex} - \frac{c}{2} \right) \theta_D + m_{5y} \left(x + \frac{c}{2} - s_{ex} \right) \theta_D \right]$$
(11)

where: m_{9x} = unit moment capacity in x direction in area 9 m_{5x} = unit moment capacity in x direction in area 5 m_{9y} = unit moment capacity in y direction in area 9 m_{5y} = unit moment capacity in y direction in area 5

Substituting $\theta_B = \Delta/x$ and $\theta_D = \Delta/y$

$$E_{AB} = \frac{\Delta}{x} \left[m_{9x} \left(s_{ey} - \frac{c}{2} \right) + m_{5x} \left(x + \frac{c}{2} - s_{ey} \right) \right] + \frac{\Delta}{y} \left[m_{9y} \left(s_{ex} - \frac{c}{2} \right) + m_{5y} \left(x + \frac{c}{2} - s_{ex} \right) \right]$$

$$(12)$$

Likewise, along line BD:

CONTRACTOR CONTRACTOR CONTRACTOR

$$E_{BD} = \left[m_{2x} \frac{s_{cy}}{2} + m_{5x} \left(s - \frac{s_{cy}}{2} - \frac{c}{2} - y \right) \right] \left(\theta_A + \theta_B \right)$$
 (13)

Substituting $\theta_A = \Delta/(L - x - c)$ and $\theta_B = \Delta/x$

$$E_{BD} = \left[m_{2x} \frac{s_{cy}}{2} + m_{5x} \left(s - \frac{s_{cy}}{2} - \frac{c}{2} - y \right) \right] \left(\frac{\Delta}{L - x - c} + \frac{\Delta}{x} \right)$$
(14)

The external work on all sectors and internal work on all positive and negative yield lines are determined and summed. An equation for $\boldsymbol{r}_{\boldsymbol{u}}$ is written from:

$$W = E$$

$$x \Delta \left(\frac{S}{2} - \frac{y}{3} - \frac{c}{4}\right) r_{u} + \cdots = m_{9x} \left(s_{ey} - \frac{c}{2}\right) \frac{\Delta}{x} + \cdots$$
(15)

$$r_{u} = \frac{m_{9x} \left(s_{ey} - \frac{c}{2}\right) / x + \cdots}{x \left(\frac{S}{2} - \frac{y}{3} - \frac{c}{4}\right) + \cdots}$$
(16)

Variables x and y are varied independently until r_u is minimized. This minimum solution provides the failure mechanism and the value of the ultimate resistance, r_u . A rapid determination of the solution can be obtained using a programmable electronic calculator. A trial and error procedure to solve for the minimum value of the resistance function, r_u , can be accomplished as follows:

- Start with both crack lines located close to the centerline of the middle strip.
- Move one crack line, holding the other constant, in the direction which minimizes the resistance function until r begins to increase.
- Hold the first crack line constant, and vary the second crack line in the minimum direction until r₁₁ also begins to increase.
- Once this minimum point is achieved, shift each crack line to either side of the minimum location to check that a further refined shifting of the crack line is not necessary to minimize the resistance function.

It should be noted that if the crack line should shift out of the middle strip, a new resistance function equation must be written and the procedure then repeated. Appendix B contains detailed information on the determination of the ultimate unit flexural resistance for a flat slab.

Equivalent Elastic Unit Stiffness

The elastic deflections for several points of an interior panel of a flat slab are given by the general equation

$$X = C \left[r_u L^4 (1 - v^2) \right] / E_c I_a$$
 (17)

where: C = constant varying with panel aspect ratio L/S, the ratio of support size c to the span length L, and the location within the panel.

 E_c = modulus of elasticity of concrete = $w^{1.5}$ 33 $\sqrt{f_c}$ (psi)

w = unit weight of concrete (lb/ft³)

 f_c' = static ultimate compressive strength of concrete (psi)

 I_a = average of gross and cracked moments of inertia

= $(I_g + I_c)/2$ (in.⁴/in.)

I moment of inertia of gross concrete section

= $(1/12)(t_{avg})^3$ (in. 4 /in.)

 I_{c} = moment of inertia of cracked concrete section

= $5.5 p_{avg} (d_{avg})^3 (in.^4/in.)$

t ave = average slab thickness within panel (in.)

p_{avg} = average steel reinforcement ratio within panel

d_{ave} = average effective depth within panel (in.)

v = Poisson's ratio of concrete

Values of the constant C are based on a finite difference method (Ref 11) and are given in Table 1 for the center of the panel and the midpoints of the long and short sides. The deflection for the center of the interior panel is determined by using C_C in the above expression. For the corner, long and short side panels (Figure 1), no simplified solutions for the center deflections are currently available. Generally, the deflections for the side panels will be smaller than the deflection of the interior panel because of the restraining effect of the exterior walls. These deflections can be approximated by using the following expressions:

Long Side Panel
$$C = C_C - \frac{C_S}{2}$$
 (18)

Short Side Panel
$$C = C_C - \frac{C_L}{2}$$
 (19)

where the values of C_C , C_S , and C_I are those for the interior panel.

When the maximum allowable deflection of the panel is small (allowable support rotation < 1 deg), the dynamic response of the system will be more sensitive to the elastic stiffness, and it will be necessary to obtain a better value of the elastic deflections by using another procedure such as the equivalent frame method of Reference 12.

The equivalent elastic unit stiffness of a flat slab panel is given by:

$$K_E = r_u/X_E = \frac{E_c I_a}{C L^4 (1 - v^2)}$$
 (20)

Because of the complexity of the behavior, the elastic-plastic transition range will be ignored. That is, no method will be given to determine the stiffness within this range. All dynamic response calculations will use the previously given elastic stiffness and deflection relationships rather than an "effective" bilinear resistance function based on the actual non-bilinear function (e.g., fixed-fixed beam representation).

Effective Unit Mass

The mass of an equivalent SDOF system is not the actual mass of the structure since movement of all elements of the mass is not equal. The actual mass of the structure must be replaced by an effective mass, m_{ef}, the mass of the equivalent single-degree-of-freedom system. The value of the effective mass is dependent upon the deflected shape of the structural member, varying with the type of spanning, end conditions, etc., and therefore is different in the elastic, elasto-plastic, and plastic ranges of behavior. The effective unit mass of the equivalent system is related to the unit mass of the actual system by:

$$m_{ef} = K_{LM} m \tag{21}$$

where: m_{ef} = effective unit mass (lb-sec²/in.³) m = actual unit mass (lb-sec²/in.³) K_{IM} = load-mass factor

For a flat slab without drop panels, the actual unit mass equals:

For a flat slab with drop panels, the actual unit mass must be obtained from this expression:

toh = thickness of soil overburden (in.)

$$m = M_{T}/A_{T}$$
where: $M_{T} = \text{total mass (slab + soil overburden} + \text{drop panel) (lb-sec}^{2}/\text{in.)}$

$$A_{T} = \text{total slab area (in.}^{2})$$

Note that these quantities represent that portion of the structure which rotates (deflects). Therefore, the mass/area inside of the equivalent square capital and outside of the perimeter yield line (wall haunch) are excluded from the calculations.

No data are currently available to determine the load-mass factor, K_{LM} , in the elastic range of behavior. Reference 13 gives a value of 0.64 for a typical interior panel on point supports with L/S = 1. This value is reasonably close to the elastic value (0.61) for a square fixed-ended panel. It is therefore recommended that the following equation for K_{LM} listed in Table 6-1 of Reference 2 for two-way elements with all supports fixed be used for the appropriate L/S ratio for all panels:

$$K_{LM} = 0.61 + 0.16 \left(\frac{L}{S} - 1\right) \qquad 1 \le L/S \le 2$$
 (24)

The load-mass factor in the plastic range is determined using a procedure outlined in Section 6.6 of Reference 2. The procedure uses the equation of angular motion for sections rotating about supports as its basis. This linkage motion results from an assumption of zero moment or curvature changes between plastic hinges under increasing deflection. In Figure 5, a portion of a two-way element bounded by the support and the yield line is shown. The load-mass factor, K_{LM}, for this sector is:

$$K_{LM} = \frac{I_m}{c L_1 M}$$
 (25)

where: I_{m} = mass moment of inertia about the axis of rotation AB (lb-in.-sec²)

c = distance from the resultant applied load F to the axis
 of rotation AB (in.)

 L_1 = total length of sector normal to axis of rotation AB (in.)

M = total mass of sector (lb-sec²/in.)

When an element (such as a flat slab with drop panels and soil cover) is composed of several sectors, each sector must be considered separately, and the contributions then summed to determine the load-mass factor for the entire element. That is,

$$K_{LM} = \frac{\Sigma(I_m/c L_1)}{\Sigma M}$$
 (26)

For elements of constant depth and therefore of constant unit mass (such as a flat slab without drop panels but with uniform soil cover), the load-mass factor equals:

$$K_{LM} = \frac{\Sigma(I/c L_1)}{\Sigma A}$$
 (27)

where: I = area moment of inertia about the axis of rotation (in. 4)

A = total area of sector (in. 2)

The plastic load-mass factors for typical cross sections (rectangle, triangle) are shown in Figure 6. Appendix C contains detailed information on the determination of both the actual unit mass, m, and the plastic load-mass factor, K_{LM} , for flat slabs.

PANEL DEFINITION

The development of the blast design procedure for flat slab structures led to the recognition of the following four panel types:

- 1. Corner panel, C
- 2. Long side panel (panel side common to exterior short side), LS
- 3. Short side panel (panel side common to exterior long side), SS
- 4. Interior panel, I

These panels are depicted in Figure 1a for a portion of a typical flat slab structure. It is possible to define any arbitrarily configured flat slab structure as a combination of these four panel types. Because of symmetry, the design/analysis can be simplified if the side and interior panels are further divided into subpanels. Figure 7 shows the make-up of five different flat slab configurations. Each of the divided subpanels is equal for the flat slabs shown in Figures 7a through 7d. However, for the 3x4 flat slab (Figure 7e), the distribution of the reinforcement necessitates an A and B subpanel designation for the interior and long side panels. That is, LS/A and LS/B are not identical (different moment distribution and dimensions). By using symmetry in the design procedure, the flat slab can be reduced to a quarter of the

total slab. In this report the lower right quadrant is used. Figure 8 shows the symmetric quadrants for the five flat slab configurations of Figure 7.

DESIGN CRITERIA

Ultimate Unit Moment Capacity

The ultimate unit moment capacity of structural sections is based on the ultimate strength design methods of the ACI Building Code (Ref 8) with the strength reduction factor, ϕ , omitted as in Reference 2. For structures that undergo support rotations less than 2 degrees, the static unit moment resistance, m_u , of a Type I cross section (where the cover over the reinforcement on both surfaces remains intact) may be used:

$$m_{u} = \frac{A_{s} f_{s}}{b} (d - a/2)$$
 (28)

where: A_s = area of tension reinforcement within the width b (in.²)

f = static design stress for reinforcement (psi)

a = depth of equivalent rectangular stress block (in.)

= $A_s f_s/0.85 b f'_c$

b = width of compression face (in.)

d = distance from extreme compression fiber to centroid of tension reinforcement (in.)

 f_c' = static ultimate compressive strength of concrete (psi)

For structures that undergo rotations greater than 2 degrees, the static unit moment capacity of a Type II or Type III cross section may be used:

$$m_{u} = \frac{A_{s} f_{s} d_{c}}{b} \qquad A_{s} \leq A'_{s}$$
 (29)

where: A's = area of compression reinforcement (in.²)

d = distance between centroids of the compression and the tension reinforcement (in.)

The static design stress, f_s , can be approximated (as in Ref 2) with a weighted average of the yield strength, f_y , and ultimate strength, f_u , depending on the amount of deflection or rotation of the element (see Table 2).

The dynamic moment capacity of the reinforced-concrete sections is determined from the above equations by substituting the <u>dynamic</u> design stress for the reinforcement, f_{ds} , for f_{s} , and the dynamic ultimate compressive strength of concrete, f'_{dc} , for f'_{c} , as applicable, where

$$f'_{dc} = (DIF) f'_{c}$$
 (30)

$$f_{ds} = (DIF) f_{s}$$
 (31)

Dynamic increase factors, DIF, for concrete and reinforcing steel are reproduced from Reference 2 in Table 3. It is recommended that no dynamic stress increases be considered when determining shear or bond capacities.

Ultimate Shear Strength

The shear resistance must be sufficient to develop fully the flexural capacity of the slab at large rotations and deflections. The conservative approach in the evaluation of the ultimate resistance (neglecting in-plane compression and membrane tensile forces) requires a conservative evaluation of the shear capacity.

Therefore, the following recommended equations for calculating the shear capacity are significantly lower than those given in Reference 8. In general, shear reinforcement of the slab is to be avoided. The use of a thicker slab is a less costly alternative.

The nominal beam shear strength, \mathbf{v}_{C} , (psi) at a distance d from the face of the wall support is:

$$v_c = 1.9 \sqrt{f_c'} + 2,500 \text{ p} \le 2.28 \sqrt{f_c'}$$
where $p = A_s/b d_c$ (32)

The above expression for the maximum value of \mathbf{v}_{C} corresponds to a 20 percent increase in the 1.9 factor. This value of 2.28 is used, rather than the 3.5 factor of the ACI Building Code (ACI Section 11.3.2.1), in order to provide a lower bound on the test data used in developing this equation. Beam shears should also be checked at the column capitals and at the drop panels in both the longitudinal and transverse directions.

The shear strength of the slab around the column in two-way action must also be checked. In two-way action, potential diagonal cracking may occur along a truncated cone or pyramid around the column. Thus, the critical section is located so its periphery, b_o, is at a distance equal to one-half of the effective depth through the drop from the periphery of the column capital, and also at a distance equal to one-half of the effective depth outside of the drop from the periphery of the drop. Where no drop is used, of course, there would be only one critical section for two-way action. The nominal punching shear strength at these locations is:

$$v_{c} = 4.0 \sqrt{f_{c}^{\dagger}}$$
 (34)

This is identical to the ACI recommended value (ACI Section 11.11.2).

Design of all cross sections subject to shear shall be based on ACI equation 11-1:

$$V_{u} \leq \phi V_{c} \tag{35}$$

where $V_{\rm u}$ is the factored shear force at the sections considered, $V_{\rm C}$ is the nominal shear strength provided by the concrete, and ϕ is the ACI strength reduction factor for shear (ϕ = 0.85). The ϕ factor is maintained to ensure against a premature failure due to shear which would substantially reduce the overall blast resistant capacity of the slab. Calculation of the factored shear force at any section should be made using the tributary area, A, (in.2) defined by the yield lines and the critical shear section. That is:

$$V_{ij} = r_{ij} A \tag{36}$$

The nominal shear strength is given by these equations:

$$V_c = v_c b_w d$$
 (Beam shear) (37)

$$V_c = v_c b_0 d$$
 (Punching shear) (38)

where: b_{ij} = critical section length on which shear stress acts (in.)

b_o = perimeter of critical section for slabs (in.)

d = depth of section (in.)

The critical locations for the shear analysis are shown in Figure 9 for a quarter panel of a flat slab with central column (Figure 3a).

Allowable Deflections

Reference 14 recommended a 12-degree maximum support rotation for laterally unrestrained two-way slabs with L/S ratios less than 2. The static flat slab test in Reference 5 also showed that 12-degree rotations can be attained while maintaining the ultimate resistance. Based on the above, the rotation corresponding to the deflection at incipient failure is 12 degrees. The ultimate deflection is therefore:

$$X_{m} = L_{min} \tan 12^{\circ} = 0.2 L_{min}$$
 (39)

where L_{\min} is the shortest sector length rotating through 12 degrees. The maximum allowable deflections permitted in the design of a structure vary according to the protection category required. The following maximum values of the support rotation angle, θ , were recommended in Reference 7:

- Personnel shelter $\theta = 2$ degrees
- Equipment shelter $\theta = 5$ degrees
- Explosives magazine $\theta = 8$ degrees

These values are also listed in Table 4.

WALL DESIGN

It was shown in the ESKIMO test series that 12-inch concrete sidewalls and backwalls, reinforced to retain the earth backfill, are adequate to resist blast loads at standard magazine separation distances. Therefore, if these minimums are maintained, these walls need not be checked for blast loads.

COLUMN DESIGN

The columns are designed to resist the axial load and unbalanced moment resulting from the flat slab blast loads and the structure dead load. The columns are designed in accordance with the criteria presented in the ACI Code, Reference 8. Slenderness effects must be included, if applicable, and it is assumed that there is no sidesway since such motion is prevented by the rigidity of the roof slab as a diaphragm and the end shear walls. Fixity at the base of the column is determined from the relative stiffnesses of the column and column footing.

Design of the column shall be based on the ACI equation:

$$P_{u} \leq \phi P_{n} \tag{40}$$

where P_u is the factored axial load at given eccentricity, P_n is the nominal axial load strength at given eccentricity, and ϕ is the ACI strength reduction factor for axial compression (ϕ varies from 0.70 to 0.90).

The axial load and moment at the top of the column (the critical section is at the bottom of the capital) are obtained from the flat slab shear forces acting on the perimeter of the column capital plus the load on the tributary area of the equivalent square capital. The dynamic load is essentially applied instantaneously to the column and remains constant for a duration of t_m (time of maximum response for flat slab obtained from the flat slab analysis). The column can then be idealized as an EL-PL SDOF system with an allowable maximum ductility, X_m/X_E , of 3.0.

でいたから 自分のからのは なんかんがん

Useful design procedures and design charts are presented in ACI publication SP-17A (Ref 15). Appendix D contains detailed information on the design of a column.

DETAILING OF REINFORCEMENT

Proper detailing of the reinforcement is required to ensure adequate structural behavior (see Figure 10). A portion of both the top and bottom reinforcement must be continuous across the roof, adequately anchored and spliced, if necessary. Splice locations should be staggered, preferably on opposite sides of the columns and at opposite ends of the slab spans. Splices should always be located in regions of low stress and the number of splices minimized by using the longest rebar possible. All splices of adjacent parallel bars must be staggered to prevent the formation of a local plane of weakness. Added rebar, such as that at the columns, should be discontinued at staggered locations also.

Additional reinforcement at the following two critical locations will also assist in maintaining the integrity of the structure:

- Provide haunches and diagonal bars at the intersection of the exterior wall and roof slab.
- Provide radial diagonal bars enclosed in hoops at the surface of the column capitals.

To ensure proper structural behavior under dynamic loads and also to minimize excessive deformations under conventional loads, the minimum area of flexural reinforcement on each face should be at least equal to that specified in Reference 8 (ACI 7.12.2) for shrinkage and temperature reinforcement. That is,

Minimum $A_s = 0.0010$ b t each face (Grade 40 or 50)

Minimum $A_{c} = 0.0009$ b t each face (Grade 60)

DESIGN PROCEDURE

A summary of the flat slab design procedure is provided here.

Problem: Design a flat slab subjected to a given blast loading

Required Information:

Slab geometry (number of spans, overall dimensions)

Pressure time loading

Material properties

- Concrete
- Soil overburden
- Steel reinforcement

Design criteria

- Minimum static design stress (Table 2)
- Dynamic increase factors (Table 3)
- Deflection failure criteria (Table 4)
- Strength reduction factors

Assumptions:

Capital size

Depth of overburden

Wall/slab thickness ratio

Solution:

- Step 1: Distribute the moments in the slab based on elastic response using the direct-design method outlined in ACI 318-77. (See Appendix A for detailed discussion.)
- Step 2: Determine yield-line locations and ultimate resistance relationship using energy principles. (See Appendix B for a detailed discussion.)
- Step 3: Establish maximum allowable displacement based on failure deflection criteria.

$$X_{m} = L_{min} \tan \theta_{m}$$

Step 4: Assume trial slab thickness based on minimum ACI criteria.

$$t_{\min} \geq \frac{L}{60} \left(1 + \frac{1}{\beta} \right) \tag{41}$$

- Step 5: Perform dynamic analysis on SDOF representation of the slab.
 - a. Determine SDOF parameters.

Elastic stiffness (Assume $I_c = 0$)

$$K_{E} = \frac{E_{c} I_{a}}{C L^{4} (1 - v^{2})}$$

Elastic load-mass factor

$$K_{LM} = 0.61 + 0.16 \left(\frac{L}{S} - 1\right)$$

Plastic load-mass factor

$$K_{LM} = \frac{I_{M}}{c L_{1} M}$$

Actual unit mass

$$m = \rho_{ob} t_{ob} + \rho_{slab} t_{slab}$$

Natural time period (elastic range)

$$T_{n} = 2\pi \sqrt{\frac{K_{LM} m}{K_{E}}}$$

b. Check loading for definition of impulse.

$$\frac{t_d}{T_p} < 0.2 \tag{42}$$

c. Determine required dynamic ultimate unit resistance for impulse sensitive structure using $\mathbf{m}_{\mathbf{ef}}$ for the plastic range.

$$r_{ud} = \frac{i_b^2}{2 m_{ef} X_m}$$

d. Determine dead load.

$$r_{d1} = g m ag{43}$$

e. Determine the equivalent static required ultimate unit resistance of the slab necessary to flexurally resist both the dead load and the dynamic loading (i.e., must adjust rud).

$$r_{uf} = \frac{r_{ud}}{DIF} + r_{d1} \tag{44}$$

f. Determine the actual dynamic flexural ultimate unit resistance of the slab. Use Equation 45 to determine the factored shear force for shear design calculations (ACI 11-1).

$$r_{ijv} = DIF(r_{ijf}) \tag{45}$$

g. Determine time to reach maximum response.

$$t_{m} = \frac{i_{b}}{r_{ud}} \tag{46}$$

- Step 6: Modify slab thickness or steel percentage based upon required ACI minimum steel percentage.
 - a. Determine required moment capacity and steel percentage at minimum moment section. That is,

$$m_e = f(r_{uf})$$
 $m_{req} = f(m_e)$
 $(A_s)_{req} = f(m_{req})$
 $p_{req} = f(A_s)_{req}$

b. Compare with ACI minimum value, p_{min} , in both L and S directions (ACI 7.12.2).

Increase slab thickness. Return to Step 5.

or
Go to Step 12.

If possible, decrease slab thickness.
(t must be equal to or greater than t min.)
Return to Step 5.

Otherwise,

Must use
$$p_{min}$$
 at all locations where $p_{req} < p_{min}$. Go to Step 7.

- Step 7: Revise distribution of moments at all locations where $p_{req} < p_{min}$.
- Step 8: Re-determine yield-line locations and value of ultimate resistance for a given slab geometry using energy principles.
- Step 9: Re-establish maximum allowable deflection.
- Step 10: Perform another dynamic analysis on SDOF representation of slab.
- Step 11: Re-check minimum steel percentages.

a. Determine required moment capacity and steel percentage at minimum moment section.

$$m_e = f(r_{uf})$$
 $m_{req} = f(m_e)$
 $(A_s)_{req} = f(m_{req})$
 $p_{req} = f(A_s)_{req}$

b. Compare with ACI minimum value.

If
$$p_{req} \ge p_{min}$$
 { Go to Step 12.

Step 12: Check beam shear at walls (within slab).

If
$$V_u > \phi V_c$$
 {Increase slab thickness. Return to Step 5.
If $V_u \le \phi V_c$ {Go to Step 13.

Step 13: Check punching shear at column capital (within slab).

If
$$V_u > \phi V_c$$
 {Go to Step 14.
If $V_u \leq \phi V_c$ {Go to Step 17.

Step 14: Design drop panel for punching shear; select dimensions and thickness of drop panel.

If
$$V_u \leq \phi V_c$$
 {Go to Step 15.

The following ACI requirements are applicable:

13.4.7.1: Drop panel shall extend in each direction from center-line of support a distance not less that 1/6 the span length measured from center-to-center of supports in that direction. Therefore,

$$L_{dp} \geq \frac{L}{3}$$

$$S_{dp} \geq \frac{S}{3}$$

13.4.7.2: Projection of drop panel below the slab shall be at least 1/4 the slab thickness beyond the drops. Therefore,

$$t_{dp} \geq \frac{t_{slab}}{4}$$

13.4.7.3: In computing required slab reinforcement, the thickness of drop panel below the slab shall not be assumed greater that 1/4 the distance from edge of drop panel to edge of column or column capital. Therefore,

$$t_{dp} < \frac{s_{dp} - d}{8}$$
 where: $d = capital diameter$

When determining the steel area required for negative moment in a column strip with a drop panel, the smaller of the actual column strip width or the drop panel width is used. Therefore, it is recommended that the width of the drop panel be set equal to or greater than the column strip width. That is,

$$L_{dp} \geq s_{cx}$$

Step 15: Check punching shear at edge of drop panel (within slab).

Increase drop panel dimensions. Return to Step 15. or Increase slab thickness. Return to Step 5. If
$$V_u \le \phi \ V_c$$
 Go to Step 16.

Step 16: Check longitudinal and transverse beam shear at drop panel edge (within slab). (Unit width b = 1 ft)

Increase drop panel dimensions. Return to Step 16.

If
$$V_u > \phi V_c$$

Increase slab thickness. Return to Step 5.

If $V_u \leq \phi V_c$

Go to Step 17.

Step 17: Check longitudinal and transverse beam shear at column capital (within drop panel). (Unit width b = 1 ft)

If
$$V_u > \phi V_c$$

 { Increase drop panel thickness. Return to Step 17.
 If $V_u \leq \phi V_c$ { Go to Step 18.

Step 18: Final design of slab.

- a. Include drop panel mass in dynamic SDOF analysis if applicable.
- b. Determine unit moments and steel areas.
- c. Check all initial design assumptions (e.g., α_t , α_H).

Step 19: Design column.

Step 20: End.

The flow chart for the above design procedure is depicted in Table 5. Because of the potential number of iterations necessary in the design of the drop panel (size/thickness), the drop panel mass was not included in the SDOF dynamic analysis until the very end (Step 18). However, it is not necessary to redo all of the shear calculations with this new lower ultimate resistance value.

EXAMPLE PROBLEM

Problem: Design a flat slab for an explosives magazine subjected to a blast load

Required Information:

Slab geometry (see Figure 11)

3 x 4 flat slab

L = 300 in.

S = 240 in.

 $H_{\omega} = 120 \text{ in.}$

Loading

Triangular blast load

Peak pressure, B = 250 psi

Duration, $t_d = 8 \text{ msec}$

Impulse, $i_b = 1,000 \text{ psi-msec}$

Material properties

Concrete (slab, drop panel, capital, column)

$$\rho = 0.000217 \text{ lb-sec}^2/\text{in.}^4$$

$$\gamma = 145 \text{ pcf}$$

$$f_{c}' = 4,000 \text{ psi}$$

$$E_c = (145)^{1.5} (33) \sqrt{4000} = 3.64 \times 10^6 \text{ psi}$$

$$v = 0.17$$

• Overburden

$$\rho = 0.000150 \text{ lb-sec}^2/\text{in.}^4$$

$$\gamma = 100 \text{ pcf}$$

• Reinforcement (Grade 60)

$$f_y = 60,000 \text{ psi}$$

Design criteria

• Minimum static design stress (see Table 2)

$$f_s = 1/2 (f_y + f_u) = 75,000 psi$$

• Dynamic increase factors (see Table 3)

• Allowable support rotation (see Table 4)

$$\theta_{m}$$
 = 8 degrees (for explosives magazine)

Assumptions:

Capital size

Let
$$\alpha_{\text{cap}} = 0.20$$

 $d = \alpha_{\text{cap}} L = (0.20)(300) = 60 \text{ in. (diameter of capital)}$
 $c = 0.89 d = (0.89)(60) = 53.4 \text{ in. (equivalent square capital)}$

Depth of overburden

Let
$$t_{ob} = 12$$
 in.

Wall/slab thickness ratio

Let
$$\alpha_t = 1.0$$

where $\alpha_t = t_{wS}/t_{slab}$; t_{wL}/t_{slab}

Solution:

- Step 1: Distribute moments according to Appendix A. The distribution is shown in Figure 12 (reproduction of Figure A-9). The values of the unit moment coefficients are listed in Table 6 (reproduction of Table A-7).
- Step 2: Yield-line analysis according to Appendix B. The yield-line mechanism is shown in Figure 13 (reproduction of Figure B-2). The results of the analysis are listed in Table 7 (reproduction of Table B-11). That is,

$$\alpha_{ru} = 10.102$$
 $x' = 0.40$
 $y' = 0.30$
 $z' = 0.311$

Now, by definition:

$$(r_u)_{\min} = \alpha_{ru} \frac{m_e}{L^2}$$

Therefore,

$$(r_u)_{min} = 10.102 \frac{m_e}{(300)^2} = 0.0001122 m_e$$

Step 3: The calculated span lengths for the yield-line mechanism are listed in Table 8. The minimum span length, L_{\min} , equals 90.0 in. Therefore,

$$X_{m} = L_{min} \tan \theta_{m} = 90.0 \tan 8^{\circ} = 12.65 in.$$

Step 4: Assume trial slab thickness.

$$t_{min} \ge \frac{L}{60} \left(1 + \frac{1}{\beta} \right) = \frac{300}{60} \left(1 + \frac{1}{1.25} \right) = 9.0 in.$$

- Step 5: Perform dynamic analysis on SDOF representation of the slab.
 - Determine SDOF parameters.

Elastic stiffness

$$K_E = \frac{E_c I_a}{C L^4 (1 - v^2)}$$

where:

$$I_a = \frac{1}{2}I_g = \frac{1}{2}\left[\frac{(9)^3}{12}\right] = 30.4 \text{ in.}^4/\text{in.}$$
(Approximation $I_c = 0$)

$$C = C_C - \frac{C_L}{2} = 0.00189 - \frac{0.00155}{2} = 0.00112$$

(See Table 1)

Because the minimum span length is in the short side panel, use Equation 19. Therefore,

$$K_E = \frac{(3.64 \times 10^6)(30.4)}{(0.00112)(300)^4 (1 - 0.17^2)} = 12.6 \text{ psi/in}.$$

Elastic load-mass factor

$$K_{IM} = 0.61 + 0.16 (1.25 - 1) = 0.65$$

Plastic load-mass factor

$$K_{LM} = 0.689$$
 (from Appendix C)

Actual unit mass

$$m = \rho_{ob} t_{ob} + \rho_{slab} t_{slab}$$

$$= (0.00015)(12) + (0.000217)(9)$$

$$= 0.00375 \text{ lb-sec}^2/\text{in.}^3 \text{ or } 3.750 \text{ lb-msec}^2/\text{in.}^3$$

Natural period

$$T_n = 2 \pi \sqrt{\frac{K_{LM} m}{K_E}} = 2 \pi \sqrt{\frac{(0.65)(3,750)}{12.6}} = 87.4 \text{ msec}$$

b. Check loading for definition of impulse.

$$\frac{c_{\rm d}}{T_{\rm n}} = \frac{8}{87.4} = 0.09 \le 0.2$$

Therefore, loading is impulsive.

c. Determine required dynamic ultimate unit resistance for impulse sensitive structure.

$$r_{ud} = \frac{i_b^2}{2 m_{ef} X_m} = \frac{(1,000)^2}{(2)(0.689)(3,750)(12.65)} = 15.3 psi$$

d. Determine dead load.

$$r_{d1} = g m = (386.4)(0.00375) = 1.45 psi$$

 Determine equivalent static required ultimate unit flexural resistance.

$$r_{uf} = \frac{r_{ud}}{DIF} + r_{d1} = \frac{15.30}{1.20} + 1.45 = 14.20 \text{ psi}$$

f. Determine dynamic unit resistance for shear calculations.

$$r_{uv} = (DIF) (r_{uf}) = (1.20) (14.20) = 17.04 psi$$

g. Determine time to reach maximum response.

$$t_{\rm m} = \frac{i_{\rm b}}{r_{\rm ud}} = \frac{1,000}{15.30} = 65.4 \text{ msec}$$

Step 6: Check minimum steel percentage.

a. Determine required static moment capacity and steel percentage at minimum moment section in both direction L and S.

From Step 2:

$$(r_u)_{min} = 0.0001122 m_e$$

where:
$$r_{uf} = (r_u)_{min}$$

Therefore,

$$m_e = \frac{r_{uf}}{0.0001122} = \frac{14.20}{0.0001122} = 126,560 in.-lb/in.$$

From Table 6:

S-direction

$$m_{req} = m_5 = 0.087 m_e$$

 $m_5 = (0.087)(126,560) = 11,010 in.-lb/in.$

L-direction

$$m_{req} = m_{14} = 0.179 m_e$$

$$m_{14} = (0.179)(126,560) = 22,655 in.-lb/in.$$

Determine $(A_s)_{req}$ for these two locations; use f_s :

S-direction

$$m_n = (A_s)_{req} f_s d_{cS}$$

L-direction

$$m_n = (A_s)_{req} f_s d_{cL}$$

Since the largest unit moments occur in the L-direction, place the reinforcement for these moments nearest the top/bottom surfaces (see Figure 2b). According to ACI 7.7.1:

STATE OF THE STATE STATES STATES STATES STATES STATES STATES STATES

Therefore,

$$(A_s)_{req} = 0.0549 \text{ in.}^2/\text{in.}$$

$$p_{req} = \frac{(A_s)_{req}}{b d_r} = \frac{0.0549}{(1)(5.5)} = 0.0100$$

b. Compare with ACI minimum value (p_{\min}) .

For equal top/bottom reinforced slab:

$$(A_s)_{min} = 0.009 \text{ b t}_{slab}$$

$$(A_s)_{min} = (0.0009)(1)(9) = 0.0081 \text{ in.}^2/\text{in.}$$

$$p_{min} = \frac{(A_s)_{min}}{\text{b d}} = \frac{0.0081}{(1)(5.5)} = 0.0015$$

Therefore,

Go to Step 12.

Step 12: Check shear at support (see Figure 14).

a. Shear at Location #1 (d_{cL} from wall haunch sector (B)):

Critical shear width,

$$b_{w} = 2 S - \frac{c}{2} - \frac{d_{cL}}{x} y$$

$$= (2)(240) - \frac{53.4}{2} - \frac{5.5}{120} (90)$$

$$= 449.2 in.$$

Tributary area,

$$A = \left[\frac{b_w + \left(2 \text{ S} - \frac{c}{2} - y\right)}{2}\right] (x - d_{cL})$$

$$= \left[\frac{449.2 + (480 - 26.7 - 90)}{2}\right] (120 - 5.5)$$

$$= 46,516 \text{ in.}^2$$

Factored shear force,

$$V_u = r_{uv} A$$

$$= (17.04)(46,516)$$

$$= 792,630 lb$$

Nominal shear strength at wall provided by concrete,

$$V_{c} = v_{c} b_{w} d_{cL}$$

$$= (144.2)(449.2)(5.5)$$

= 356,261 lb

Therefore,

$$V_u > \phi V_c$$

792,630 > (0.85)(356,261)

792,630 > 302,821

b. Shear at Location #2 (d_{cS} from wal' haunch of Sector \overline{A}):

Critical shear width,

$$b_{w} = 1.5 L - \frac{c}{2} - \frac{d_{cS}}{y} x$$

=
$$(1.5)(300) - \frac{53.4}{2} - \frac{4}{90}$$
 (120)
= 418.0 in.

Tributary area,

$$A = \left[\frac{b_w + (1.5 L - \frac{c}{2} - x)}{2}\right] (y - d_{cS})$$

$$= \left[\frac{418 + (450 - 26.7 - 120)}{2}\right] (90 - 4)$$

$$= 31,016 in.^2$$

Factored shear force,

$$V_u = r_{uv} A$$

$$= (17.04)(31,016)$$

$$= 528,510 lb$$

Nominal shear strength at wall provided by concrete,

$$V_{c} = v_{c} b_{w} d_{cS}$$
where: $m_{1} = 0.168 m_{e} = (0.168)(126,560) = 21,260 in.-lb/in.$

$$A_{s} = \frac{m_{1}}{f_{s} d_{cS}} = \frac{21,260}{(75,000)(4)} = 0.0709 in.^{2}/in.$$

$$p = \frac{A_{s}}{b d_{cS}} = \frac{0.0709}{(1)(4)} = 0.0177$$

$$v_{c} = 1.9 \sqrt{4,000} + 2,500(0.0177) \le 2.28 \sqrt{4,000}$$

$$= 164.4 psi \le 144.2 psi$$

$$Therefore, v_{c} = 144.2 psi$$

$$V_{c} = v_{c} b_{w} d_{cS}$$

= (144.2)(418)(4)

= 241,102 lb

Therefore,

$$V_u > \phi V_c$$

528,510 > (0.85)(241,102)

528,510 > 204,937

Increase slab thickness. Let $t_{slab} = 16$ in. Return to Step 5.

- Step 5: Perform dynamic analysis on SDOF representation of the slab.
 - a. Determine SDOF parameters.

Elastic stiffness

$$I_a = \frac{1}{2} \left[\frac{(16)^3}{12} \right] = 170.7 \text{ in.}^4/\text{in.}$$
 $C = 0.00112$

$$K_{E} = \frac{(3.64 \times 10^{6})(170.7)}{(0.00112)(300)^{4} (1 - 0.17^{2})}$$
$$= 70.5 \text{ psi/in.}$$

Elastic load-mass factor

$$K_{LM} = 0.65$$

Plastic load-mass factor

$$K_{T,M} = 0.689$$

Actual unit mass

$$m = (0.00015)(12) + (0.000217)(16)$$
$$= 0.00527 \text{ lb-sec}^2/\text{in.}^3 \text{ or } 5,272 \text{ lb-msec}^2/\text{in.}^3$$

Natural period

$$T_n = 2\pi \sqrt{\frac{(0.65)(5,272)}{70.5}} = 43.8 \text{ msec}$$

b. Check loading for definition of impulse.

$$\frac{t_{d}}{T_{p}} = \frac{8}{43.8} = 0.18 < 0.2$$

Therefore, loading is impulsive.

$$r_{ud} = \frac{(1,000)^2}{(2)(0.689)(5,272)(12.65)} = 10.88 \text{ psi}$$

d.

$$r_{d1} = (386.4)(0.00527) = 2.04 \text{ psi}$$

e.

$$r_{uf} = \frac{10.88}{1.20} + 2.04 = 11.11 \text{ psi}$$

f.

$$r_{uv} = (1.20)(11.11) = 13.33 \text{ psi}$$

g.

$$t_{\rm m} = \frac{1,000}{10.88} = 91.9 \, \rm msec$$

Step 6: Check minimum steel percentage.

a. Determine preq

$$m_e = \frac{r_{uf}}{0.0001122} = \frac{11.11}{0.0001122} = 99,020 in.-lb/in.$$

$$d_{cL} = t_{slab} - 2\frac{3}{4} - d_{L} = 16 - 2\frac{3}{4} - \frac{6}{8}$$

= 12.5 in.

$$d_{cS} = t_{slab} - 2\frac{3}{4} - 2 d_{L} - d_{S} = 16 - 2\frac{3}{4} - 2\left(\frac{6}{8}\right) - \frac{6}{8}$$

= 11.0 in.

S-direction (m_5)

$$m_{req} = m_5 = 0.087 m_e = (0.087)(99,020)$$

= 8,615 in.-lb/in.

$$(A_s)_{req} = \frac{m_{req}}{f_s d_{cS}} = \frac{8,615}{(75,000)(11)} = 0.01044 in.^2/in.$$

$$p_{req} = \frac{(A_s)_{req}}{b d_{cs}} = \frac{0.01044}{(1)(11)} = 0.000949$$

$$m_{req} = m_{14} = 0.179 m_{e} = (0.179)(99,020)$$

= 17,725 in.-lb/in.

$$(A_s)_{req} = \frac{m_{req}}{f_s d_{cL}} = \frac{17,725}{(75,000)(12.5)} = 0.0189 in.^2/in.$$

$$p_{req} = \frac{(A_s)_{req}}{b d_{cL}} = \frac{0.0189}{(1)(12.5)} = 0.001513$$

b. Compare with ACI minimum value.

$$(A_s)_{min} = 0.0009 \text{ b } t_{slab}$$

= $(0.0009)(1)(16) = 0.0144 \text{ in.}^2/\text{in.}$

L-direction

$$p_{min} = \frac{(A_s)_{min}}{b d_{cL}} = \frac{0.0144}{(1)(12.5)} = 0.00115$$

S-direction

$$p_{\min} = \frac{(A_s)_{\min}}{b \ d_{cS}} = \frac{0.0144}{(1)(11)} = 0.00131$$

Therefore,

$$p_{req}$$
 < p_{min} For S-direction only Go to Step 7.

Step 7: Revise distribution of moments at all locations where p (for S-direction only) according to Appendix B. That is, $^{\circ}$ min

$$(\alpha_{um})_{min} = \frac{p_{min} b d_{cS}^{2} f_{s}}{m_{e}}$$

$$= \frac{(0.00131)(1)(11)^{2} (75,000)}{99,020}$$

$$= 0.120$$
(Eq. B-14)

Minimum unit moment coefficient in the S-direction equals 0.120. Table 6 shows that α for m_2 , m_3 , m_4 , and m_5 must all be increased to 0.120.

Step 8: Re-determine yield-line locations and value of ultimate resistance according to Appendix B. The results of the analysis are listed in Table 9 (reproduction of Table B-14). That is,

$$\alpha_{ru} = 10.363$$
 $x' = 0.40$
 $y' = 0.30$
 $z' = 0.311$

By definition:

$$(r_u)_{min} = \alpha_{ru} \frac{m_e}{L^2}$$

= 10.363 $\frac{m_e}{(300)} = 0.0001151 m_e$

Step 9: Since x', y', and z' did not change, X_m remains the same. Therefore,

$$X_{m} = 12.65 \text{ in.}$$

Step 10: Perform dynamic analysis. Since $\mathbf{X}_{\mathbf{m}}$ did not change, the previous dynamic analysis is still valid. That is,

- Step 11: Recheck minimum steel percentages.
 - a. Determine preq

$$m_e = \frac{r_{uf}}{0.0001151} = \frac{11.11}{0.0001151} = 96,525 in.-lb/in.$$

S-direction
$$(m_2, m_3, m_4, m_5)$$

$$m_{req} = 0.120 m_e = (0.120) (96,525) = 11,583 in.-lb/in.$$

$$(A_s)_{req} = \frac{m_{req}}{f_s d_{cS}} = \frac{11,583}{(75,000)(11)} = 0.01404 in.^2/in.$$

$$p_{req} = \frac{(A_s)_{req}}{b d_{cs}} = \frac{0.01404}{(1)(11)} = 0.00128$$

L-direction (m₁₄)

$$m_{req} = 0.179 m_e = (0.179)(96,525) = 17,278 in.-lb/in.$$

$$(A_s)_{req} = \frac{m_{req}}{f_s d_{cL}} = \frac{17,278}{(75,000)(12.5)} = 0.01843 in.^2/in.$$

$$p_{req} = \frac{(A_s)_{req}}{b \ d_{cL}} = \frac{0.01843}{(1)(12.5)} = 0.001474$$

b. Compare with ACI minimum value

L-direction

$$p_{\min} = 0.00115$$

S-direction

$$p_{\min} = 0.00131$$

Therefore,

$$p_{req} < p_{min}$$
 For S-direction only.

However, these values are close enough. Go to Step 12.

Step 12: Check shear at support.

a. Shear at Location #1 (d_{cL} from wall haunch of Sector (B)):

Critical shear width,

$$b_w = 2(240) - \frac{53.4}{2} - \frac{12.5}{120} (90) = 443.9 in.$$

Tributary area,

$$A = \left[\frac{443.9 + (480 - 26.7 - 90)}{2} \right] (120 - 12.5)$$

$$= 43,387 \text{ in.}^2$$

Factored shear force,

$$V_{ij} = (13.33)(43,387) = 578,349$$

Nominal shear strength at wall provided by concrete,

where:

$$m_{10} = 0.314 m_e = (0.314)(96,525) = 30,309 in.-lb/in.$$

$$A_s = \frac{m_{10}}{f_s d_{cL}} = \frac{30,309}{(75,000)(12.5)} = 0.0323 in.^2/in.$$

$$p = \frac{A_s}{b d_{cl}} = \frac{0.0323}{(1)(12.5)} = 0.00259$$

$$v_c = 1.9 \sqrt{4,000} + 2,500(0.00259) \le 2.28 \sqrt{4,000}$$

Therefore, $v_c = 126.6 \text{ psi}$

$$V_{c} = (126.6)(443.9)(12.5) = 702,652 \text{ lb}$$

Therefore,

$$v_u < \phi v_c$$

b. Shear at Location #2 (d_{cS} from wall haunch of Sector \overline{A}):
Critical shear width,

$$b_w = (1.5)(300) - 26.7 - \frac{11}{90}(120) = 408.6 in.$$

Tributary area,

$$A = \left[\frac{408.6 + (450 - 26.7 - 120)}{2} \right] (90 - 11)$$
$$= 28,120 \text{ in.}^2$$

Factored shear force,

$$V_{u} = (13.33)(28,120) = 374,840 \text{ lb}$$

Nominal shear strength at wall provided by concrete,

where:

$$m_1 = 0.168 m_e = (0.168)(96,525) = 16,216 in.-lb/in.$$
 $A_s = \frac{m_1}{f_s d_{cS}} = \frac{16,216}{(75,000)(11)} = 0.0197 in.^2/in.$
 $p = \frac{A_s}{b d_{cS}} = \frac{0.0197}{(1)(11)} = 0.00179$
 $v_c = 1.9 \sqrt{4,000} + 2,500(0.00179) \le 2.28 \sqrt{4,000}$
 $= 124.6 psi \le 144.2 psi$

Therefore, $v_c = 124.6 \text{ psi}$

$$V_{c} = (124.6)(408.6)(11) = 560,214 lb$$

Therefore,

$$V_u < \phi V_c$$

 $374,840 < (0.85)(560,214)$
 $374,840 < 476,182$

Go to Step 13.

Step 13: Check punching shear at column capital. The critical column for punching shear is the top column which has the largest tributary area (see Figure 15, Location #1).

Critical shear width,

$$b_o = \pi \left[\frac{d}{2} + \frac{1}{2} (d_c)_{avg} \right]$$

where:
$$d_{cL} = 12.5 \text{ in.}$$

$$d_{cS} = 11.0 \text{ in.}$$

$$(d_{c})_{avg} = 11.75 \text{ in.}$$

$$\frac{1}{2} (d_{c})_{avg} = 5.875 \text{ in.}$$

 $b_0 = \pi(30 + 5.875) = 112.7 in.$

Tributary area,

$$A = \left(\frac{S}{2}\right) \left(1.5L - \frac{c}{2} - x\right) - \frac{\pi}{2} \left[\frac{d}{2} + \frac{1}{2} \left(d_{c}\right)_{avg}\right]^{2}$$
$$= (120)(303.3) - \frac{\pi}{2} (35.875)^{2} = 34,375 \text{ in.}^{2}$$

Factored shear force,

$$V_{\rm u} = r_{\rm uv} A$$

$$= (13.33)(34,375) = 458,220 \text{ lb}$$

Nominal shear strength provided by concrete,

$$V_c = v_c b_o (d_c)_{avg}$$

where: $v_c = 4 \sqrt{f_c'} = 4 \sqrt{4,000} = 253 \text{ psi}$
 $V_c = (253)(112.7)(11.75) = 335,005 \text{ lb}$

Therefore,

$$V_u > \phi V_c$$
 $458,220 > (0.85)(335,005)$
 $458,220 > 284,755$

Go to Step 14.

Step 14: Design drop panel for punching shear. Select trial drop panel dimensions.

$$L_{dp} = s_{cx} = \frac{S}{2} = \frac{240}{2} = 120 \text{ in.}$$

$$S_{dp} = S_{cy} = \frac{S}{2} = \frac{240}{2} = 120 \text{ in.}$$

$$t_{dp} = \frac{t_{slab}}{4} = \frac{16}{4} = 4 \text{ in.}$$

Critical shear width,

$$b_{o} = \pi \left[\frac{d}{2} + \frac{1}{2} (d_{c})_{avg} \right]$$
where: $(d_{cL})_{drop} = d_{cL} + t_{dp} = 12.5 + 4 = 16.5 in.$

$$(d_{cS})_{drop} = d_{cS} + t_{dp} = 11.0 + 4 = 15.0 in.$$

$$(d_{c})_{avg} = 15.75 in.$$

$$\frac{1}{2} (d_{c})_{avg} = 7.875 in.$$

 $b_o = \pi(30 + 7.875) = 119.0 in.$

Tributary area,

$$A = \left(\frac{S}{2}\right) \left(1.5L - \frac{c}{2} - x\right) - \frac{\pi}{2} \left[\frac{d}{2} + \frac{1}{2} \left(d_{c}\right)_{avg}\right]^{2}$$
$$= (120)(303.3) - \frac{\pi}{2} \left(37.875\right)^{2} = 34,145 \text{ in.}^{2}$$

Factored shear force,

$$V_u = r_{uv} A$$

= (13.33)(34,145) = 455,155 1b

Nominal shear strength provided by concrete,

$$V_c = v_c b_o (d_c)_{avg}$$

where: $v_c = 253 psi$
 $V_c = (253)(119.0)(15.75) = 474,185 lb$

Therefore,

$$V_u > \phi V_c$$
 $455,155 > (0.85)(747,185)$
 $455,155 > 403,057$

Increase t_{dp} . Let $t_{dp} = 6$ in. and repeat Step 13. Critical shear width,

where:
$$(d_{cL})_{drop} = 12.5 + 6 = 18.5 \text{ in.}$$

 $(d_{cS})_{drop} = 11.0 + 6 = 17.0 \text{ in.}$
 $(d_{c})_{avg} = 17.75 \text{ in.}$
 $\frac{1}{2}(d_{c})_{avg} = 8.875 \text{ in.}$

$$b_0 = \pi(30 + 8.875) = 122.1 in.$$

Tributary area,

A =
$$(120)(303.3) - \frac{\pi}{2}(38.875)^2 = 34,020 \text{ in.}^2$$

Factored shear force,

$$V_{u} = (13.33)(34,020) = 453,485 \text{ 1b}$$

Nominal shear strength provided by concrete,

$$V_c = (253)(122.1)(17.75) = 548,320 \text{ lb}$$

Therefore,

$$V_u < \phi V_c$$
453,485 < (0.85)(548,320)
453,485 < 466,070

Go to Step 15.

Step 15: Check punching shear at edge of drop panel (see Figure 15, Location #2).

Critical shear width,

$$b_o = L_{dp} + S_{dp} + 2 (d_c)_{avg}$$

where: $d_{cL} = 12.5 in.$
 $d_{cS} = 11.0 in.$
 $(d_c)_{avg} = 11.75 in.$

$$b_0 = 120 + 120 + 2(11.75) = 263.5$$

Tributary area,

$$A = \left(\frac{S}{2}\right) \left(1.5L - \frac{c}{2} - x\right) - \left[L_{dp} + (d_c)_{avg}\right] \left[\frac{S_{dp} + (d_c)_{avg}}{2}\right]$$
$$= (120)(303.3) - (131.75)(65.875) = 27,715 \text{ in.}^2$$

Factored shear force,

$$V_u = r_{uv} A$$

= (13.33)(27,715) = 369,440 lb

Nominal shear strength provided by concrete,

$$V_c = v_c b_o (d_c)_{avg}$$

where: $v_c = 253 \text{ psi}$
 $V_c = (253)(263.5)(11.75) = 783,319 \text{ lb}$

Therefore,

$$V_u < \phi V_c$$

369,440 < (0.85)(783,319)
369,440 < 665,822

Go to Step 16. Shear reinforcement is not required.

- Step 16: Check longitudinal (L-direction) and transverse (S-direction) beam shear at drop panel edge (see Figure 16). Let b = 1 in. (unit width)
 - a. Location #1 (d_{cL} from edge).

Tributary area,

$$A = b_0 \left(L - \frac{c}{2} - x - \frac{L_{dp}}{2} - d_{cL} \right)$$

$$= (1.0)(300 - 26.7 - 120 - 60 - 12.5) = 80.8 in.2$$

Factored shear force,

$$V_u = r_{uv} A$$

= (13.33)(80.8) = 1,077 lb

Nominal shear strength at drop panel provided by concrete (see Figure 12 and Table 6),

$$V_{c} = v_{c} b_{o} d_{cL}$$

$$where: v_{c} = 1.9 \sqrt{f_{c}^{'}} + 2,500 p \leq 2.28 \sqrt{f_{c}^{'}}$$

$$m_{n} = \alpha_{um} m_{e}$$

$$m_{avg} = \alpha_{avg} m_{e} = \frac{\alpha_{15} + \alpha_{11}}{2} m_{e}$$

$$= \frac{0.349 + 0.233}{2} (96,525)$$

$$= 28,090 in.-lb/in.$$

$$(A_{s})_{avg} = \frac{m_{avg}}{f_{s} d_{cL}} = \frac{28,090}{(75,000)(12.5)}$$

$$= 0.0300 in.^{2}/in.$$

$$p_{avg} = \frac{(A_{s})_{avg}}{b d_{cL}} = \frac{0.0300}{(1)(12.5)} = 0.00240$$

$$v_{c} = 1.9 \sqrt{4,000} + 2,500(0.00240) \leq 2.28 \sqrt{4,000}$$

$$= 126.2 psi \leq 144.2 psi$$

$$V_c = (126.2)(1)(12.5) = 1,578 \text{ lb}$$

Therefore,

$$V_u < \phi V_c$$
1,077 < (0.85)(1,578)
1,077 < 1,341

b. Location #2 (d_{cS} from edge).

Tributary area,

$$A = b_o \left(\frac{S}{2} - \frac{S_{dp}}{2} - d_{cS} \right)$$
$$= (1.0) \left(\frac{240}{2} - \frac{120}{2} - 11 \right) = 49 \text{ in.}^2$$

Factored shear force,

$$V_u = r_{uv} A$$

= (13.33)(49) = 653 lb

Nominal shear strength at drop panel provided by concrete,

$$V_c = v_c b_o d_{cS}$$

where:
$$m_{avg} = \alpha_{avg} m_e = \frac{\alpha_9 + \alpha_5}{2} m_e$$

= $\frac{0.191 + 0.120}{2} (96,525)$
= 15,010 in.-lb/in.

$$(A_s)_{avg} = \frac{m_{avg}}{f_s d_{cS}} = \frac{(15,010)}{(75,000(11))} = 0.0182 \text{ in.}^2/\text{in.}$$

$$p_{avg} = \frac{(A_s)_{avg}}{b d_{cS}} = \frac{0.0182}{(1)(11)} = 0.00165$$

$$v_c = 1.9 \sqrt{4,000} + 2,500(1.00165) \le 2.28 \sqrt{4,000}$$

= 124.3 psi < 144.2 psi

$$V_c = (124.3)(1)(11) = 1,367 \text{ lb}$$

Therefore,

$$V_{u} < \phi V_{c}$$
653 < (0.85)(1,367)
653 < 1,162

Because the strips in the transverse direction are shorter, the shear in the longitudinal direction is critical, and there is no need to check shear in the transverse direction.

Go to Step 17.

- Step 17: Check longitudinal (L-direction) and transverse (S-direction) beam shear at column capital. (See Figure 17.) Let $b_0 = 1$ in.
 - a. Location #1 (d_{cl.} from equivalent square capital).

Tributary area,

A =
$$b_0 \left[L - \frac{c}{2} - x - \frac{c}{2} - (d_{cL})_{avg} \right]$$

where: $(d_{cL})_{avg} = \frac{d_{cL} + (d_{cL})_{drop}}{2}$
 $= \frac{12.5 + 18.5}{2} = 15.5 \text{ in.}$
A = $(1.0)(300 - 26.7 - 120 - 26.7 - 15.5)$
= 111.1 in.²

Factored shear force,

$$V_u = r_{uv} A$$

= (13.33)(112.1) = 1,481 lb

Nominal shear strength at column capital provided by concrete,

$$V_c = v_c b_o (d_{cL})_{avg}$$

where: $m_{avg} = \alpha_{avg} m_e = \frac{\alpha_{16} + \alpha_{12}}{2} m_e$
 $= \frac{0.689 + 0.230}{2} (96,525)$
 $= 44,353 in.-1b/in.$

$$(A_s)_{avg} = \frac{{}^{m}avg}{f_s (d_{cL})_{avg}} = \frac{44,353}{(75,000)(15.5)}$$

= 0.0382 in.2/in.

$$p_{avg} = \frac{(A_s)_{avg}}{b (d_{cL})_{avg}} = \frac{0.0382}{(1)(15.5)} = 0.00246$$

$$v_c = 1.9 \sqrt{4,000} + 2,500(0.00246) < 2.28 \sqrt{4,000}$$

= 126.3 psi < 144.2 psi

Therefore, $v_c = 126.3 \text{ psi}$

$$V_c = (126.3)(1)(15.5) = 1,958 \text{ lb}$$

Therefore,

$$V_u < \phi V_c$$
1,481 < (0.85)(1,958)
1,481 < 1,664

b. Location #2 (d_{cS} from equivalent square capital).

Tributary area,

A =
$$b_o \left[\frac{S}{2} - \frac{c}{2} - (d_{cS})_{avg} \right]$$

where: $(d_{cS})_{avg} = \frac{d_{cS} + (d_{cS})_{drop}}{2}$
= $\frac{11 + 17}{2} = 14.0 \text{ in.}$

$$A = (1.0)(120 - 26.7 - 14.0) = 79.3 in.^{2}$$

Factored shear force,

$$V_u = r_{uv} A$$

= (13.33)(79.3) = 1,057 lb

Nominal shear strength at column capital provided by concrete,

$$V_c = v_c b_o (d_{cS})_{avg}$$

where:
$$m_{avg} = \alpha_{avg} m_e = \frac{\alpha_7 + \alpha_3}{2} m_e$$

$$= \frac{0.496 + 0.120}{2} (96,525)$$

$$= 29,730 \text{ in.-lb/in.}$$

$$(A_s)_{avg} = \frac{m_{avg}}{f_s (d_{cS})_{avg}} = \frac{29,730}{(75,000)(14.0)}$$

$$= 0.0283 \text{ in.}^2/\text{in.}$$

$$p_{avg} = \frac{(A_s)_{avg}}{b (d_{cS})_{avg}} = \frac{0.0283}{(1)(14.0)} = 0.00202$$

$$v_c = 1.9 \sqrt{4,000} + 2,500(0.00202) < 2.28 \sqrt{4,000}$$

$$= 125.2 \text{ psi } \leq 144.2 \text{ psi}$$

$$V_c = (125.2)(1)(14.0) = 1,753 \text{ lb}$$
refore,

Therefore,

$$V_u < \phi V_c$$
1,057 < (0.85)(1,753)
1,057 < 1,490

Go to Step 18.

Step 18: Final design of slab.

Include drop panel mass in dynamic SDOF analysis.

Plastic load-mass factor (from Appendix C),

$$K_{LM} = 0.689$$

Actual unit mass (from Appendix C),

$$m = \rho_{ob} t_{ob} + \rho_{slab} t_{slab} + \rho_{dp} t_{dp} \left(\frac{A_{dp}}{A_{T}}\right)$$
$$= (0.00015)(12) + (0.000217)(16)$$

+
$$(0.000217)(6) \frac{0.1925 L^2}{2.0845 L^2}$$

= $0.00539 \text{ lb-sec}^2/\text{in.}^3$ or $5,392 \text{ lb-msec}^2/\text{in.}^3$

(Note: An increase of 120 lb-msec²/in.³)

Dynamic SDOF analysis,

$$r_{ud} = \frac{(1,000)^2}{(2)(0.689)(5,392)(12.65)} = 10.64 \text{ psi}$$

$$r_{dl} = (386.4)(0.005392) = 2.08 \text{ psi}$$

$$r_{uf} = \frac{10.64}{1.20} + 2.08 = 10.95 \text{ psi}$$

$$r_{uv} = (1.20)(10.95) = 13.14 \text{ psi}$$

$$t_{m} = \frac{1,000}{10.64} = 94.0 \text{ msec}$$

b. Determine unit moments and steel areas.

$$m_e = \frac{r_{uf}}{0.0001151} = \frac{10.95}{0.0001151} = 95,135 \text{ in.-lb/in.}$$
 (From Step 8)
where: $m_n = \alpha_{um} m_e$
 $A_s = m_n/f_s d_c$
 $p = A_s/b d_c$

These design quantities are calculated for the entire flat slab and are listed in Table 10. The reinforcement shown in Figures 18 and 19 was then selected to satisfy these quantities. The last three columns of Table 10 reflect these selections.

c. Check initial design assumptions.

The final check of the design involves the validation of Equation 3 using the actual slab properties within the short side panel. This panel has nine unique locations (directly related to the ACI assignment of reinforcement) where the slab properties (i.e., thickness, effective depth, reinforcement ratio) differ. Because these properties also differ in the two directions, there would be a total of 18 values which must be used in determining the average value for each short side panel parameter. The following equations were derived for the 3 x 4 slab shown in Figure 12:

$$t_{avg} = \frac{7}{9} t_{slab} + \frac{2}{9} (t_{slab} + t_{dp})$$

$$d_{avg} = \frac{7}{18} (d_{cS} + d_{cL})_{slab} + \frac{2}{18} (d_{cS} + d_{cL})_{drop}$$

$$p_{avg} = (3p_1 + p_2 + p_3 + 2p_6 + 2p_7 + 2p_{12} + p_{14} + 2p_{16} + p_{18} + 3p_{19})/18$$

Substitution of the values listed in Table 10 yields the following average properties:

$$t_{avg} = \frac{7}{9}(16) + \frac{2}{9}(16 + 6) = 17.3 \text{ in.}$$

$$d_{avg} = \frac{7}{18}(11.0 + 12.5) + \frac{2}{18}(17.0 + 18.5) = 13.1 \text{ in.}$$

$$p_{avg} = [3(0.00176) + 0.00125 + 0.00125 + 2(0.00269) + 2(0.00218) + 2(0.00186) + 0.00146 + 2(0.00255) + 0.00207 + 3(0.00125)]/18$$

$$= 0.00187$$

Elastic stiffness,

$$I_g = \frac{1}{12} (17.3)^3 = 431.5 \text{ in.}^4/\text{in.}$$

$$I_c = (5.5)(0.00187)(13.1)^3 = 23.1 \text{ in.}^4/\text{in.}$$

$$I_a = \frac{431.5 + 23.1}{2} = 227.3 \text{ in.}^4/\text{in.}$$

Therefore,

$$K_E = \frac{(3.64 \times 10^6)(227.3)}{(0.00112)(300)^4 (1 - 0.17^2)} = 93.9 \text{ psi/in}.$$

Natural period,

$$T_n = 2 \pi \sqrt{\frac{(0.65)(5,392)}{93.9}} = 38.4 \text{ msec}$$

$$\frac{t_{\rm d}}{T_{\rm n}} = \frac{8}{38.4} = 0.21 \cong 0.20$$

Therefore, loading is impulsive.

For illustrative purposes a dynamic analysis based on elastic-plastic response charts (Ref 16) for triangular loads will be shown.

Given:

$$X_E = \frac{r_{ud}}{K_E} = \frac{10.64}{93.9} = 0.113 \text{ in.}$$

$$\frac{B}{r_{ud}} = \frac{250}{10.64} = 23.5$$

$$\frac{t_d}{T_p} = \frac{8}{38.4} = 0.21$$

Solution:

$$\frac{X_{m}}{X_{E}} = 110$$
 Therefore, $X_{m} = 12.4 \text{ in.}$
$$\frac{t_{m}}{T_{n}} = 2.4$$
 Therefore, $t_{m} = 92.2 \text{ msec}$

These values compare very favorably with the previously determined values. It should be emphasized that the actual ductility of the flat slab will be less than shown above (μ = 100). This is a result of neglecting the elastic-plastic portion of the resistance function in arriving at the stiffness value.

Step 19: Design Column.

The determination of the design load, P_u , and eccentricity, e, for the lower column is shown in Appendix D. That is,

$$P_{u} = 918,945 \text{ lb}$$
 $e = 1.0 \text{ in.}$

The design procedure can be obtained from a reinforced concrete design text book. It will not be illustrated in this report.

Step 20: End.

CARLES SECTION CONTRACTOR CONTRAC

DISCUSSION

A general step-by-step design procedure for flat slab structures subjected to blast loads was presented. This procedure is totally consistent with the philosophy of the Navy's current blast-resistance design manual, NAVFAC P-397. However, because this manual is periodically reviewed and updated, values of the following design parameters may be affected by future P-397 revisions:

- \bullet Allowable rotations and deflections, θ_m and X_m
- Design stresses, f_s
- Dynamic increase factors, DIF
- Strength reduction factors, Φ

By dividing a flat slab into four distinct panel types (i.e., corner, interior, exterior short side, and exterior long side), the design procedure is applicable to flat slabs of any configuration (as defined by interior column arrangement and spacing). The establishment of a "step-by-step" process provides efficient execution of the design and also allows designers to more easily understand the complex structural behavior and interaction.

As a result of parameter studies, values for the following design parameters were established:

- Location of positive yield line between interior columns
- ullet Plastic load-mass factor, $K_{T,M}$

The yield-line analyses contained in Appendix B indicate that these positive yield lines can be located midway between the columns. Appendix C shows that K_{LM} is very insensitive to slab configuration and yield-line pattern. In fact, K_{LM} varied between 0.679 and 0.689 for a wide choice of configurations and assumed patterns.

REFERENCES

- 1. Naval Sea Systems Command, NAVSEA OP-5: Ammunition and Explosives Ashore, vol I, change 12, Washington D.C., Oct 1984.
- 2. Naval Facilities Engineering Command, NAVFAC P-397, Army TM-5-1300, and Air Force AFM 88-22: Sturctures to resist the effects of accidental explosions, Washington D.C., Jun 1969.
- 3. Civil Engineering Laboratory. Technical Memorandum 51-80-06: The ESKIMO VI test plan, by J.E. Tancreto and P.E. Tafoya. Port Hueneme, Calif., Apr 1980.
- 4. Naval Civil Engineering Laboratory. Technical Report R-889: ESKIMO VI test results, by P.E. Tafoya. Port Hueneme, Calif., Nov 1981.
- 5. U.S. Army Engineer Waterways Experiment Station. Technical Report N-72-10: Design and testing of a blast-resistant reinforced concrete slab system, by M.E. Criswell. Vicksburg, Miss., Nov 1972.
- 6. Naval Civil Engineering Laboratory. Technical Memorandum M-51-81-15: Preliminary design procedure for flat slab structures subjected to blast loads, by J.E. Tancreto. Port Hueneme, Calif., Sep 1981.
- 7. Civil Engineering Laboratory. Contract Report No. N62472-76-C-1148: Design of flat slabs subjected to blast loads. Ammann & Whitney Consulting Engineers, New York, N.Y.
- 8. American Concrete Institute. Building code requirements for reinforced concrete (ACI 318-77), Detroit, Michigan, 1977.
- 9. L.L. Jones and R.H. Wood. Yield line analysis of slabs. New York, N.Y., American Elsevier Publishing Co. Inc., 1967.
- 10. R. Park and W.L. Gamble. Reinforced concrete slabs. New York, N.Y., John Wiley and Sons, 1979.

- 11. M. Vanderbilt, M. Sozen, and C. Seiss. "Deflection of multiple-panel reinforced concrete floor slabs," in Proceedings of the American Society of Civil Engineers, Journal of the Structural Division, Aug 1965.
- 12. D.E. Branson. Deformation of concrete structures. New York, N.Y., McGraw-Hill International Book Co., 1977.
- 13. Department of the Army. Technical Manual 5-856-4: Design of structures to resist the effects of atomic weapons. Washington D.C., 1957.
- 14. Civil Engineering Laboratory. Design criteria for deflection capacity of conventionally reinforced concrete slabs, by J. Tancreto. Port Hueneme, Calif., 1980. (Internal Working Paper)
- 15. American Concrete Institute, Design Handbook, Volume 2 Columns, Publication SP-17A, Detroit, Mich., 1978.
- 16. Naval Civil Engineering Laboratory. Technical Note N-1669: Charts for predicting response of a simple spring-mass system to bilinear blast loads, by J.S. Hopkins. Port Hueneme, Calif., Jun 1983.
- 17. R.H. Wood. Plastic and elastic design of slabs and plates. New York, N.Y., Ronald Press Co., 1961.
- 18. Department of the Army. Technical Manual 5-856-3: Design of structures to resist the effects of atomic weapons. Washington, D.C., 1957.

では、これのからの関係などなどが関係などのの関係を対象

Table 1. Deflection Coefficients for Interior Panels

T (.)	Deflect	ion Coeffic	ients for c	/L of -					
L/s	0.0	0.1 0.2		0.3*					
	Center	of Interior	Panel, C _C						
1.00 1.25 1.67 2.50	0.00581 0.00420 0.00327 0.00284	0.00441 0.00301 0.00234 0.00204	0.00289 0.00189 0.00143 0.00120	0.00200 0.00120 0.00080 0.00065					
Midspan of Long Side, $^{ m C}_{ m L}$									
1.00 1.25 1.67 2.50	0.00435 0.00378 0.00321 0.00284	0.00304 0.00262 0.00228 0.00204	0.00173 0.00155 0.00137 0.00120	0.00100 0.00085 0.00075 0.00065					
	Midspan of Short Side, C _S								
1.00 1.25 1.67 2.50	0.00435 0.00230 0.00099 0.00031	0.00304 0.00131 0.00040 0.00004	0.00100 0.00020 0.00005						

*Values are extrapolated.

Table 2. Minimum Static Design Stress*

Maximum Support Rotation Angle, $\theta_{\rm m}$	Static Design Stress, f _s
0° < θ _m < 2°	f _y
2° < θ _m < 5°	$f_y + \frac{f_u - f_y}{4}$
5° < θ _m < 12°	$\frac{f_y + f_u}{2}$

^{*}From Section 5-6 of Reference 2.

Table 3. Dynamic Increase Factors (DIF)*

		DIFs for
Stresses	High Pressure Range	Intermediate and Low Pressure Range
Reinforcing Steel		
Bending Shear	1.20 1.00	1.10 1.00
Concrete		
Compression Diagonal Tension Direct Shear Bond	1.25 1.00	1.25 1.00 1.10 1.00

^{*}Table 5-3 of Reference 2

Table 4. Allowable Support Rotations

Protection Category	Allowable Support Rotation, the description of the
Personnel Shelter	2
Equipment Shelter	5
Explosives Magazine	8

Table 5. Flow chart of design procedure for flat slab.

Table 6. Values of Unit Moment Coefficients (β = 1.25; $\alpha_{\rm cap} = 0.20; \ t_{\rm wS}/t_{\rm slab} = t_{\rm wL}/t_{\rm slab} = 1.00; \\ H_{\rm w}/S = 0.5)$

Unit Moment, m	Unit Moment Coefficient, α	Adjusted Positive Unit Moment Coefficient, ork um
m ₁	0.168	
m ₂	0.114	
m ₃	0.111	
m ₄	0.105	
m ₅	0.090	0.087
m ₆	0.257	
m ₇	0.496	
m ₈	0.472	
m ₉	0.203	0.191
m ₁₀	0.314	
m ₁₁	0.233	
^m 12	0.230	
m ₁₃	0.220	
^m 14	0.189	0.179
^m 15	0.349	
^m 16	0.689	
^m 17	0.660	
^m 18	0.284	0.255
^m 19	minimum	

Note: $m_n = \alpha_{um} m_e$

 $m_e = w L^2/8$

Table 7. Ultimate Resistance Calculations

х'	у'	z'	Coefficient of Internal Work,*	Coefficient of External Work,**	Coefficient of Ultimate Resistance,*** α ru
	0.20	0.311	12.457	1.184	10.520
	0.25	0.311	12.047	1.174	10.263
0.35	0.30	0.311	11.836	1.164	10.172
	0.35	0.311	11.781	1.153	10.215
	0.40	0.311	11.898	1.143	10.409
	0.20	0.311	12.291	1.174	10.472
	0.25	0.311	11.871	1.164	10.203
0.40	0.30	0.311	11.649	1.153	10.102
	0.35	0.311	11.582	1.143	10.134
	0.40	0.311	11.683	1.133	10.315
	0.20	0.311	12.260	1.163	10.538
	0.25	0.311	11.829	1.153	10.259
0.45	0.30	0.311	11.595	1.143	10.146
	0.35	0.311	11.514	1.133	10.167
	0.40	0.311	11.599	1.122	10.335

*From Table B-10.

☆☆From Table B-9.

$$\alpha_{\text{ru}} = \frac{\alpha_{\text{IW}}}{\alpha_{\text{EW}}} = \frac{r_{\text{u}}}{m_{\text{e}}/L^2}$$

Table 8. Span Lengths

Angle of Support Rotation	Span Direction	Expression	Length (in.)
$\theta_{\mathbf{A}}$	Long	(L - c)/2	123.3
θ _B	Long	L - c - x	126.6
θс	Long	x	120.0
ө _р	Short	у	90.0
$\theta_{\mathbf{E}}$	Short	S - c - y	96.6
$\theta_{\mathbf{F}}$	Short	z	93.3
$\theta_{\mathbf{G}}$	Short	S - c - z	93.3

Note: 300 in. L

240 in. S

53.4 in. C 120 in.

90 in. 93.3 in.

Table 9. Ultimate Resistance Calculations for

$$(\alpha_{um})_{min} = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0.120$$

x'	у'	z¹	Coefficient of Internal Work,* ^α IW	Coefficient of External Work,** *********************************	Coefficient of Ultimate Resistance,*** α ru
	0.20	0.311	12.784	1.184	10.797
	0.25	0.311	12.371	1.174	10.537
0.35	0.30	0.311	12.159	1.164	10.446
	0.35	0.311	12.106	1.153	10.500
	0.40	0.311	12.228	1.143	10.698
	0.20	0.311	12.594	1.174	10.727
	0.25	0.311	12.172	1.164	10.457
0.40	0.30	0.311	11.949	1.153	10.363
	0.35	0.311	11.884	1.143	10.397
	0.40	0.311	11.989	1.133	10.582
	0.20	0.311	12.541	1.163	10.783
	0.25	0.311	12.107	1.153	10.500
0.45	0.30	0.311	11.872	1.143	10.387
	0.35	0.311	11.793	1.133	10.409
	0.40	0.311	11.881	1.122	10.589

*From Table B-13.

**From Table B-9.

$$\alpha_{\rm ru} = \frac{\alpha_{\rm IW}}{\alpha_{\rm EW}} = \frac{r_{\rm u}}{m_{\rm e}/L^2}$$

Table 10. Unit Moments and Reinforcement

SCOOLS COCCOOL SCOOLS SCOOL

			[m = 95,]	135 in1b/in.	$ m_e = 95,135 \text{ inlb/in.}; f_s = 75,000 psi]$	0 psi)			
——— E		Effective		Required Reinforcement	red	Reinforcement	Selected Reinforcement	nforcement	
Value, ff D	-	Depth,		Area, ††† As	+++	Percentage, 1111	Bar Size at Spacing	«	Strip
(inlb/in.) (in.)	in.)	(in.)		(in. ² /in.)	(in. ² /ft)		(in.)	(in. ² /ft)	
0.168 15,985 11.0		11.0		0.0194	0.233	0.00176	#4 @ 10 #4 @ 14 #4 @ 35	0.240	column middle wall
0.120 11,415 11.0		11.0		0.0138	0.166	0.00125	#4 @ 14	0.171	middle
0.120 11,415 11.0		11.0		0.0138	0.166	0.00125	#4 @ 14	0.171	middle
0.120 11,415 11.0		11.0		0.0138	0.166	0.00125	#4 @ 14	0.171	middle
0.120 11,415 11.0		11.0		0.0138	0.166	0.00125	#4 @ 14	0.171	middle
0.257 24,450 11.0		11.0		0.0296	0.355	0.00269	#4 @ 10 #4 @ 20	0.360	column
0.496 47,185 17.0		17.0		0.0370	0.444	0.00218	#4 @ S	0.480	column
0.472 44,905 17.0		17.0		0.0352	0.422	0.00207	#4 @ 5	0.480	column
0.191 18,170 11.0		11.0	—	0.0220	0.264	0.00200	#4 @ 10	0.240	column

(Continued)

Table 10. Continued

	Strip		column middle	wall	middle	middle		middle	column	column		column	wall
nforcement	4	(in. ² /ft)	0.377	0.343	0.300	0.300		0.300	0.463	0.548		0.377	0.171
Selected Rei	Selected Reinforcement Bar Size at Spacing (in.2/ft)		#6 @ 14 #4 @ 8	b on	8 0 7#	8 9 7#		8 Ø 7#	#6 @ 14 #4 @ 28	#6 @ 14 #4 @ 14		#6 @ 14	#4 @ 14
Reinforcement Percentage,†††† P		0.00255		0.00189	0.00186	0.00178	0.00146	0.00283	0.00255	0.00245	0.00207	0.00125	
red	Required Reinforcement Area, ††† A (in. ² /in.) (in. ² /ft)		0.383		0.283	0.280	0.269	0.218	0.425	0.566	0.544	0.311	0.166
Requi			0.0319		0.0236	0.0233	0.0223	0.0182	0.0354	0.0472	0.0453	0.0259	0.0138
Effective	Depth,	(in.)	12.5		12.5	12.5	12.5	12.5	12.5	18.5	18.5	12.5	11.0
Unit Moment	Value, †† m	(inlb/in.)	29,870		22,165	21,880	20,930	17,030	33,200	65,550	62,790	24,260	11,415
;	Unit Moment Coefficient, ^O um		0.314		0.233	0.230	0.220	0.179	0.349	0.689	0.660	0.255	0.120
Unit	Moment Parameter,†	E	m 10		e 11	m 12	m ₁₃	14 14	m ₁₅	n 16	m ₁₇	m [*] 18	19

 $\uparrow \uparrow \uparrow \uparrow \uparrow p = A_s/b d_c \quad (b = 1 in.)$ $\dagger\dagger\dagger_{s}^{\dagger} (in.^{2}/in.) = m_{o}/f_{c} d_{c}$ † An asterisk denotes adjusted value.

Figure 1. Typical flat slab structure.

(a) SDOF flexural structural element.

(b) Reinforced-concrete, Section A-A.

(c) Resistance-deflection function.

Figure 2. SDOF resistance-deflection function.

--- Positive yield line (valley)
---- Negative yield line (ridge)

(a) Flat slab with one column.

(b) Flat slab with two columns.

Figure 3. Possible flat slab yield-line mechanisms.

Figure 4. Yield line mechanism for one-quarter panel of flat slab with one central column.

Figure 5. Determination of load-mass factor in the plastic range.

$$L_1 = d$$

$$\downarrow L_1 = d$$

$$\downarrow L_1 = \frac{b d^3/3}{\left(\frac{d}{2}\right)(d)} = \frac{b}{3}bd$$
(a) Rectangle.

(b) Triangle rotating about side.

$$L_{1} = d$$

$$c = \frac{2}{3} d$$

$$\frac{1}{cL_{1}} = \frac{b d^{3}/4}{\left(\frac{2d}{3}\right)(d)} = \frac{3}{8} b d$$

(c) Triangle rotating about corner.

Figure 6. Expressions for I/cL_1 for typical sections.

Figure 7. Flat slab configurations.

Corner = 4 Long side = 4 Short side = 4 Interior = 4

Corner Long side = 8 Short side = 4 Interior = 8

Figure 7. (continued)

Figure 8. Symmetric flat slab quadrants.

Location no. 1: $\frac{(d_c)_{avg}}{2}$ from circular column capital Location no. 2: $\frac{(d_c)_{avg}}{2}$ from rectangular drop panel

(a) Punching shear.

Figure 9. Critical shear locations for one-quarter panel of flat slab with central column.

(b) Beam shear.

Figure 9. (continued)

Figure 10. Typical reinforcement details.

Figure 11. 3 x 4 flat slab configuration.

Figure 12. Unit moment distribution for 3 x 4 flat slab.

Figure 13. Yield-line mechanism for a 3 x 4 flat slab.

Figure 14. Critical locations for beam shear at support for 3 \times 4 flat slab.

Figure 15. Critical locations for punching slear for a 3 \times 4 flat slab.

Figure 16. Critical locations for beam shear at drop panel edge for a 3×4 flat slab.

Figure 17. Critical locations for beam shear at column capital for a 3 x 4 flat slab.

esceptial scopping contests control cessors

Figure 18. Reinforcement for 3 x 4 flat slab in S-direction.

Figure 19. Reinforcement for flat slab in L-direction.

Appendix A

ACI ELASTIC DISTRIBUTION OF REINFORCEMENT

INTRODUCTION

In general, yield-line theory allows freedom in the choice of reinforcement arrangements. For the design of flat slabs, however, it is recommended that an elastic distribution of the reinforcement be used. Several reasons may be cited (Ref 10 and 17):

- The design is more economical.
- Better service load behavior is obtained in regards to cracking, especially when the design blast loads are relatively low in relation to the service loads.
- Moment distribution required to achieve the design configuration is minimized.
- With the required concentration of reinforcement in the column strips, the possibility of failure by localized yield patterns is remote.

DIRECT DESIGN METHOD

The determination of the elastic distribution of moments follows the ACI procedures outlined in Chapter 13 of Reference 8. The ACI Code recommends two methods for the design of two-way slab systems; they are the direct-design method and the equivalent-frame method. In this study the direct-design method will be adopted. In the direct-design method, the distribution (between positive and negative moment zones) of the total static design moment in each direction may be made according to a

set of coefficients prescribed in the ACI Code. As applied to flat slabs, this method may be used under the following limitations on continuity, dimensions, and live-load-to-dead-load ratios:

- There must be a minimum of three continuous spans in each direction.
- The panels must be rectangular, each having the ratio of longer to shorter spans not greater than 2.0.
- The successive span lengths in each direction must not differ by more than one-third of the longer span.
- Columns may not be offset more than 10% of the span in the direction of the offset.
- The live load must not exceed three times the dead load.

The basic ACI approach used in the design of flat slabs involves the consideration of rigid frames taken separately in the longitudinal and the transverse directions. When a typical horizontal span in a rigid frame is subjected to a total design load of wL $_2$ per foot, as shown in Figure A-1(a), equilibrium requires that the sum of the absolute average value of the negative moments at the center of supports and the positive moment at midspan be equal to wL $_2$ L $_1^2$ /8 where L $_1$ is the span length between centerlines of supports; thus

$$M_{pos} + \frac{1}{2} (M_{ni} + M_{nj}) = \frac{1}{8} w L_2 L_1^2$$
 (A-1)

While the maximum envelope value at midspan can be used directly in design, the value at the centerline of supports can be used only as a basis for obtaining the reduced value at the face of the supports, at which location the slab thickness is investigated and reinforcement

designed. In the direct-design method, the reacting shears are assumed to act on the clear span at the face of the supports, as shown in Figure A-1(b). Thus, Equation A-1 becomes:

$$M_{pos} + \frac{1}{2} (M_{ni} + M_{nj}) = \frac{1}{8} w L_2 L_n^2 = M_0$$
 (A-2)

where L_n is the clear span, and M_{ni} and M_{nj} are the negative moments at the face of the supports. Thus, the ACI Code uses the total static design moment, M_O , which is then distributed using coefficients between M_{DOS} at midspan and M_{ni} and M_{nj} at the face of the supports. The total static design moment, M_O , is further differentiated in this report as the moments M_{OL} and M_{OS} acting in the long and short directions, respectively.

In the direct-design method, design moment curves in the direction of the span length are nominally defined for regular situations. Referring to Figure A-2(a), L_1 and L_2 are the centerline spans in the longitudinal and transverse directions, while L_n is the clear span in the longitudinal direction. The total static moment in the longitudinal direction has been defined by Equation A-2. In the direct-design method, the design curves, as shown in Figure A-2(c), may be "directly used for design" for the exterior and interior spans. By incorporating these design curves into the blast design methodology, the L_n values (for a given direction) for the interior and exterior spans must then be equal.

These moment values are for the entire width (sum of two half panel widths in the transverse direction, for an interior column line) of the equivalent rigid frame. Each of these moments is to be divided between a column strip and two half middle strips as defined in Figure A-3. For the typical flat slab with continuous exterior walls and L/S ≥ 1 , the column strips are S/2 in width in each direction with the middle strips forming the remaining portion of each panel. For flat slabs without beams, the quantity $\alpha_1(L_2/L_1)$ equals zero. According to the ACI Code, the negative moment at the interior supports is distributed 75% to the column strip and 25% to the middle strip (ACI-13.6.4.1), while the positive moment is distributed 60% to the column strip and 40% to the

middle strip (ACI-13.6.4.4). When the exterior support consists of a wall extending for a distance greater than three-fourths of the transverse width, the exterior negative moment is to be uniformly distributed over the transverse width (ACI-13.6.4.3).

The rules governing the elastic distribution of moments throughout a flat slab have now been completely defined. All these rules are contained in Table A-1, which shows the calculations employed in determining the entire set of possible unit moments, \mathbf{m}_n . Figure A-4 shows the location of these unit moments for three flat slab configurations. These configurations were selected because they illustrate the full spectrum of ACI unit moment distribution. Distributions for other configurations are easily obtained from these figures. All the distributions as shown are symmetric in both directions. The proposed design methodology is limited to this condition.

In Figure A-4(a) and (b) along the first rows of interior columns (in either direction), two values of the negative unit moment acting in the other direction are shown. One value represents a distribution from the interior span, while the other value represents a distribution from the end span. In all cases the value printed nearest the exterior wall is associated with the end span distribution. According to ACI convention, the larger of the two negative factored moments shall be used. However, ACI allows a reduction in the adjacent positive moment so as to maintain the total panel moment (ACI 13.6.7). For example, if m_7 is greater than m_8 , then m_7 is used as the negative moment capacity at the column, and m_9 is decreased. In Figure A-4(a) and (b), this reduction is $(m_7 - m_8)/2$ and $m_7 - m_8$, respectively. Note that in Figure A-4(c) there is no interior span and, therefore, all the unit moments are based on the end span distribution.

ABSOLUTE VALUES OF UNIT MOMENTS

Expressions for the unit moments listed in Table A-l are of a general nature and involve the following parameters.

- L = long span measured center-to-center of supporting
 columns*
- S = short span measured center-to-center of supporting
 columns*
- α'_{ecS} = coefficient of flexural stiffness of exterior wall and slab in the short span direction
- α'_{ecL} = coefficient of flexural stiffness of exterior wall and slab in the long span direction
- M_{OS} = total factored static moment in the short direction
- M_{OL} = total factored static moment in the long direction

To define these unit moments further, it is necessary to introduce these two design parameters:

$$\beta$$
 = span ratio (L/S)

$$\alpha_{cap} = capital ratio (d/L)$$

where d = diameter of capital. By definition,

$$M_0 = \frac{w L_2 L_n^2}{8} \tag{A-3}$$

For the short side moment, M_{OS} :

$$L_2 = L$$

$$L_n = S - c = S - 0.89 d = \frac{L}{\beta} - 0.89 \alpha_{cap} L = L \left(\frac{1}{\beta} - 0.89 \alpha_{cap}\right)$$

^{*}For exterior spans these quantities have no direct physical correspondence. That is, it is the clear span, L, in the interior and exterior spans that are equal.

where c = equivalent square capital length = 0.89 d. For the long side moment, M_{OI} :

$$L_2 = S = \frac{L}{\beta}$$
 $L_n = L - c = L - 0.89 d = L - 0.89 \alpha_{cap} L = L (1 - 0.89 \alpha_{cap})$

Substitution into Equation A-3:

$$M_{OS} = \frac{w L \left[L \left(\frac{1}{\beta} - 0.89 \alpha_{cap}\right)^{2}}{8} = \frac{w L^{3} \left(\frac{1}{\beta} - 0.89 \alpha_{cap}\right)^{2}}{8}$$
 (A-4)

$$M_{OL} = \frac{w \frac{L}{\beta} \left[L (1 - 0.89 \alpha_{cap}) \right]^{2}}{8} = \frac{w L^{3} (1 - 0.89 \alpha_{cap})^{2}}{8 B}$$
 (A-5)

To simplify the design process, NCEL recommends the following substitution:

$$m_{e} = \frac{w L^{2}}{8}$$
 (A-6)

Therefore,

$$M_{OS} = (\frac{1}{\beta} - 0.89 \alpha_{cap})^2 L m_e = \alpha_{OS} L m_e$$
 (A-7)

$$M_{OL} = \frac{(1 - 0.89 \,\alpha_{cap})^2}{8} \,L_{m_e} = \alpha_{OL} \,L_{m_e}$$
 (A-8)

where:

$$\alpha_{OS} = (\frac{1}{\beta} - 0.89 \ \alpha_{cap})^2$$
 (A-9)

$$\alpha_{\rm OL} = \frac{(1 - 0.89 \, \alpha_{\rm cap})^2}{\beta}$$
 (A-10)

Through direct substitution of the expressions in Equations A-6, A-7, and A-8, it is now possible to reduce the unit moment expressions found in Table A-1 to functions solely of α'_{ecS} , α'_{ecL} , α'_{OS} , α'_{OL} , β , and m_{ecS} . Let:

$$m_{n} = \alpha_{um} m_{e} \tag{A-11}$$

where $\alpha_{um}=$ unit moment coefficients. The unit moment coefficients for the flat slab are listed in Table A-2. Values of the panel moment coefficients (α_{OS} and α_{OL}) are listed in Tables A-3 and A-4 for typical values of β and α_{cap} . These values are also plotted in Figures A-5 and A-6.

Two additional design parameters are required to fully describe α'_{ecS} and α'_{ecL} . These parameters are:

 α_t = wall thickness ratio $(t_{wL}/t_{slab} \text{ or } t_{wS}/t_{slab})$

 $\alpha_{\rm H}$ = wall height ratio (H_w/S)

where: t_{slab} = slab thickness

 t_{wL} = long side wall thickness*

 t_{wS} = short side wall thickness*

By definition,

THE PERSONAL PROPERTY FOR STREET STREETS STREETS STREETS STREETS STREETS STREETS STREET

$$\alpha'_{ecS} = \frac{1}{1 + \frac{1}{\alpha_{ecS}}}$$
 (A-12)

$$\alpha'_{ecL} = \frac{1}{1 + \frac{1}{\alpha_{ecL}}} \tag{A-13}$$

^{*}In this symmetric analysis, the sidewall thicknesses are considered equal as are the backwall and headwall thicknesses. However, for typical box-shaped ammunition storage magazines, the headwall will be thicker than the backwall. For these cases NCEL recommends maintaining symmetry by using the backwall thickness in all calculations involving the moment distribution. This results in lower negative moments calculated at the headwall, but greater positive moments between the headwall and the column line.

where:
$$\alpha_{ecS} = \frac{t_{wS}^3 S}{t_{slab}^3 H_w}$$
(A-14)

$$\alpha_{ecL} = \frac{t_{wL}^3 L}{t_{slab}^3 H_w}$$
 (A-15)

Therefore,

$$\alpha'_{ecS} = \frac{1}{t_{slab}^3 \frac{H_w}{w}}$$

$$1 + \frac{t_{slab}^3 \frac{H_w}{w}}{t_{wS}^3 s}$$
(A-16)

$$\alpha'_{ecL} = \frac{1}{t_{slab}^3 \frac{H_w}{t_{wI}^3 \beta S}}$$

$$(A-17)$$

Tables A-5 and A-6 list values of α'_{ecS} and α'_{ecL} for typical values of β , t_{wS}/t_{slab} , t_{wL}/t_{slab} , t_{w}/s , and t_{w}/s . These values are also plotted in Figures A-7 and A-8.

EXAMPLE PROBLEM

It is now possible to determine the unit moments for the 3×4 flat slab configuration shown in Figure 11. Let,

$$\beta = 1.25$$

$$\alpha_{cap} = 0.20$$

$$\frac{t_{wS}}{t_{slab}} = \frac{t_{wL}}{t_{slab}} = 1.00$$

$$\frac{H_{w}}{S} = 0.50$$

The following coefficients are obtained from Tables A-3, A-4, A-5, and A-6:

$$\alpha_{OS} = 0.387$$
 $\alpha_{OL} = 0.541$
 $\alpha'_{ecS} = 0.666$
 $\alpha'_{ecL} = 0.714$

Substitution of these quantities into the expressions found in Table A-2 yields the unit moment coefficients, $\alpha_{\rm um}$, listed in Table A-7. Their locations are shown in Figure A-9. The allowable ACI adjusted unit moment coefficients in the positive interior moment regions are also listed. For example,

$$\alpha_9^* = \alpha_9 - \frac{\alpha_7 - \alpha_8}{2} = 0.203 - \frac{0.496 - 0.472}{2} = 0.191$$

Table A-1. ACI Unit Moment Definitions

Moment Parameter, m	Span	Strip	Negative or Positive	Strip Width	Longitudinal Distribution Factor	Distribution Factor	lotal Positive/Negative Moment	Unit noment Expression, m
£	Short	mid/col/wall	Ne 88	J	0.65 a'cs	1.00	0.65 a'cs Mos	0.65 a'cSM _{OS} /L
m ₂	Short	Bid	Pos	L-(S/2)	0.63-0.28 a'cs	07.0	(0.252-0.112 a' _{ecS})M _{OS}	$(0.252-0.112 \text{ a'}_{ecs})H_{OS} (0.252-0.112 \text{ a'}_{ecs})H_{OS}/[L-(s/2)]$
#3	Short	bin	Neg	L-(S/2)	0.75-0.10 a'cs	0.25	(0.188-0.025 g' _{ecS})H _{OS}	$(0.188-0.025 \text{ a'}_{ecS})^{\text{M}}_{OS}/[\text{L-}(S/2)]$
7	Short	bie	Neg	L-(S/2)	0.65	0.25	0.163 M _{OS}	$0.163 \text{ M}_{0S}/\{L-(S/2)\}$
	Short	bia	Pos	L-(S/2)	50.0	07.0	0.14 M _{OS}	0.14 M _{OS} /[L-(S/2)]
9	Short	col	Pos	\$/2	0.63-0.28 a'cs	09.0	(0.378-0.168 o' _{ecS})M _{OS}	$(0.378-0.168 \text{ a'}_{ecS})\text{H}_{0S}/(S/2)$
r F	Short	col	Neg	8/2	0.75-0.10 a'ecs	0.75	(0.563-0.075 α'ecs)H _{0S}	$(0.563-0.075 \text{ a'}_{ecS})^{\text{M}}_{0S}/(S/2)$
8 E	Short	col	Neg	\$/2	0.65	0.75	0.488 M _{OS}	0.488 M _{0S} /(S/2)
6 E	Short	col	Pos	8/2	0.35	09.0	0.21 M _{0S}	0.21 H _{0S} /(S/2)
a 10	Long	mid/col/wall	Neg	S	0.65 gecL	1.00	0.65 a' GL MOL	0.65 a' cL MOL/S
11	Long	pin	Pos	8/2	0.63-0.28 g'cL	0.40	(0.252-0.112 o'ecL)M _{0L}	$(0.252-0.112 \text{ a'}_{ecL}) \text{H}_{0L}/(\text{S}/2)$
m ₁₂	Long	pim	Neg	\$/2	0.75-0.10 a'cL	0.25	(0.188-0.025 a'ecL)M _{OL}	$(0.188-0.025 \text{ a'}_{ecL}) \text{M}_{0L}/(\text{S/2})$
m ₁₃	Long	ptm	Neg	8/2	0.65	0.25	0.163 M _{OL}	0.163 M _{OL} /(S/2)
14 m	Long	bie	Pos	8/2	0.35	07.0	0.14 M _{OL}	$0.14 M_{0L}/(S/2)$
m ₁₅	Long	col	Pos	8/2	0.63-0.28 g'cL	09.0	(0.378-0.168 a'ecL)M _{0L}	$(0.378-0.168 \text{ a'}_{ecL})_{M_{0L}}/(S/2)$
m ₁₆	Long	col	Neg	8/2	0.75-0.10 g'cL	0.75	(0.563-0.075 a' _{ecL})M _{OL}	$(0.563-0.075 \text{ a'}_{ecL})\text{H}_{0L}/(\text{S}/2)$
m ₁₇	Long	col	Neg	8/2	0.65	0.75	0.488 M _{OL}	0.488 $M_{ m OL}/({ m S}/2)$
m ₁₈	Long	loo	Pos	s/2	0.35	09.0	0.21 M _{OL}	$0.21 M_{0L}/(S/2)$
6 1	Short/Long	wall	Pos/Neg	;	minimum	minimum	;	į

 $a'_{eCS} = 1/[1 + (1/a_{eCS})]$ $a'_{eCL} = 1/[1 + (1/a_{eCL})]$

 $\sigma_{\text{ecL}} = t_{\text{wL}}^3 L/t_{\text{slab}}^3 H_{\text{w}}$

A-10

Table A-2. Unit Moment Coefficients

Unit Moment, ^m n	Unit Moment Coefficient, $\alpha_{ m um}$
m ₁	0.65 α' ecS α _{OS}
m ₂	$(0.504-0.224 \alpha'_{ecS})\alpha_{OS} \beta/(2\beta-1)$
m ₃	$(0.376-0.05 \alpha'_{ecS})\alpha_{OS} \beta/(2\beta-1)$
m ₄	0.326 α_{OS} $\beta/(2\beta-1)$
^m 5	0.28 α _{OS} β/(2β-1)
m 6	(0.756-0.336 α' _{ecS})α _{OS} β
m ₇	(1.126-0.15 α' _{ecS})α _{OS} β
m ₈	0.976 α _{OS} β
m ₉	0.42 α _{OS} β
^m 10	0.65 α' _{ecL} α _{OL} β
m ₁₁	(0.504-0.224 α' _{ecL})α _{OL} β
m ₁₂	(0.376-0.05 α' _{ecL})α _{OL} β
^m 13	0.326 α _{OL} β
^m 14	0.28 α _{OL} β
^m 15	(0.756-0.336 α' _{ecL})α _{OL} β
^m 16	(1.126-0.15 α' _{ecL})α _{OL} β
m ₁₇	0.976 α _{OL} β
m ₁₈	0.42 α _{OL} β
^m 19	minimum
	<u></u>

Note: $\alpha_{um} = m_n/m_e$

Table A-3. Values of α_{OS}

Case No.	β	α _{cap}	α _{OS}
1	1.0	0.15 0.20 0.25	0.751 0.676 0.605
2	1.25	0.15 0.20 0.25	0.444 0.387 0.334
3	1.50	0.15 0.20 0.25	0.284 0.239 0.197
4	1.75	0.15 0.20 0.25	0.192 0.155 0.122
5	2.00	0.15 0.20 0.25	0.134 0.104 0.077

Note: $\alpha_{OS} = [(1/B) - 0.89 \alpha_{cap}]^2$

Table A-4. Values of α_{OL}

Case No.	β	αcap	αOL
1	1.0	0.15 0.20 0.25	0.751 0.676 0.605
2	1.25	0.15 0.20 0.25	0.601 0.541 0.484
3	1.50	0.15 0.20 0.25	0.501 0.451 0.403
4	1.75	0.15 0.20 0.25	0.429 0.386 0.345
5	2.00	0.15 0.20 0.25	0.375 0.338 0.302

Note: $\alpha_{OL} = (1 - 0.89 \alpha_{cap})^2/\beta$

Table A-5. Values of α'_{ecS}

H _J /S	α'_{ecS} for $t_{wS}/t_{slab} =$				
, 5	0.75	1.00	1.25	1.50	1.75
0.4	0.513	0.714	0.830	0.894	0.931
0.5	0.458	0.666	0.796	0.871	0.915
0.6	0.413	0.625	0.765	0.849	0.899

Note:
$$\alpha'_{ecS} = \frac{1}{1 + \frac{t_{slab}^3 H_w}{t_{ws}^3 s}}$$

soon services electrical basistant arrestors andresse establish establish

Table A-6. Values of α'_{ecL}

H _w /L	α'_{ecL} for $t_{wL}/t_{slab} =$				
	0.75	1.00	1.25	1.50	1.75
0.20	0.678	0.833	0.907	0.944	0.964
0.25	0.628	0.800	0.887	0.931	0.955
0.30	0.584	0.769	0.867	0.918	0.947
0.35	0.547	0.741	0.848	0.906	0.939
0.40	0.513	0.714	0.830	0.894	0.931
0.45	0.484	0.690	0.813	0.882	0.923
0.50	0.458	0.667	0.796	0.871	0.915
0.55	0.434	0.645	0.780	0.860	0.907
0.60	0.413	0.625	0.765	0.849	0.899

Note:
$$\alpha'_{ecL} = \frac{1}{1 + \frac{t_{slab}^3 H_w}{t_{wL}^3 L}}$$

Table A-7. Values of Unit Moment Coefficients $(\beta = 1.25; \; \alpha_{\rm cap} = 0.20; \; t_{\rm wS}/t_{\rm slab} = t_{\rm wL}/t_{\rm slab} = 1.00; \; H_{\rm w}/S = 0.5)$

Unit Moment, ^m n	Unit Moment Coefficient,	Adjusted Positive Unit Moment Coefficient,
m ₁	0.168	
m ₂	0.114	
m ₃	0.111	
m ₄	0.105	
^m 5	0.090	0.087
^m 6	0.257	
m ₇	0.496	
^m 8	0.472	
^m 9	0.203	0.191
^m 10	0.314	
m ₁₁	0.233	
m ₁₂	0.230	
m ₁₃	0.220	
^m 14	0.189	0.179
m ₁₅	0.349	
^m 16	0.689	
m ₁₇	0.660	
^m 18	0.284	0.255
m ₁₉	miniumum	

Note: $m_n = \alpha_{um} m_e$, $m_e = w L^2/8$

Figure A-1. Typical moment diagram of a horizontal span.

to faces of support.

centerline of supports.

(b) Equivalent rigid frame.

(c) Longitudinal design moment curve.

Figure A-2. Direct-design method: longitudinal distribution of moments.

Figure A-3. Definition of column and middle strips.

Strategy Section 275755

	01 _m	₽ 19	oı _w	m ₁₉	ot _w	m ₁₉	οι _ω	m ₁₉	οι _ш	a ₁₉	οι _ω	m ₁₉	οι _ω	m ₁₉	oım	e E
																1
	E I	m ₂		E E		m _S		E 4		m _S		4 20		m ₂		Ė
	}			EE		_				-		# E		E		
	61 _w		II _w	1	۶۱ _w	-	II _w	┢	۶۱ _س		II _w	╂	۶۱ _س	-	11 _w	1
	ة 61 _س	e 9	21 _m	m ₇	91 <u>w</u>	θш	۳۱ <u>۳</u> ۲۱ _س	8 E	91 _w	6 _m	<u> </u>	8 E	91 <u>u</u>	E &	ξι _ш	6
	1		<u></u>		<u> </u>		τ.α	 	21 <u>m</u>		210				<u> m</u>	+
	m ₁	m ₂		m ₃		m _S		€ •		m _S		# # # # # # # # # # # # # # # # # # #		m ₂		Ë
	61 _m		≯I _ш		81 ^m		۶I _ш	├	81 ^m	 	+1 _w	 	81 ^m	-	+ī _w	6
	E I	e e		E E 8		e 6		e E		e _m		# # E		E		٤
	6۱ _س		£1m		۲۱ _ш		٤١ _m	-	۷I _w	-	٤١m	-	۷۱ _w	-	٤١ _w	6
	_			wi 4		δ.		4		8		4100		2		
	E_	m ²		E E		m _S		E ₄		m _S		E E		m ₂		E
	61 _w		۲۱ _w	+	81 _m		۶t _w	-	81 _w		≯ī _w	ļ	81 ^m	-	۶ĭ _w	6
	E I	9 11		m ₇		e E		8 8		e B O		m 8 m 4		9 8		Ë
	61 _ш		ım 13	-	91 _w		zı _w	ļ. 	91 _ш		zım zım	ļ .	21 _w	<u> </u>	ει _ω Ζι _ω	6
	ΕĪ	m ₂		E E		s _m		E ₄		m _S		# E		m ₂		E
11111	61 _ш		II w		۶۱ _w		ιι _ω	ļ	۶۱ _w		ιι _ω	_	۶۱ _س		ιι _ω	6
	οι _ω	61 _m	01 _m	61 _m	ot _w	61 _m	ot _w	ш 19	01 _w	m19	oı _w	m ₁₉	οι _ա	m ₁₉	οι _ω	EO

Figure A-4(a). Flat slab: 4 x 4.

				//////	////////				
01m E	61 _ш	m ₁	e m	m19	m ₁	61 m ₁	m19	m ₁	E 10
m ₁₉		m ₂	^m 6		m ₂	m ₆		m ₂	m ₁
m10	m ₁₁		m ₁₃	m 14		m ₁₃	m ₁₁		m 10
m ₁₉	m ₁₅	m ₃ m ₄	m ₇ m ₈ 12 m ₈	m ₁₈	m ₃	12 E E E	m _{1.5}	m ₃ m ₄	01 E
m ₁₉		m ₅	m ₉		m ₅	m ₉		m ₅	m ₁
m10	m ₁₁		m ₁₂	E 41		m ₁₃	m 11		m ₁₀
m ₁₉	m ₁₅	m ₄ m ₃	m ₁ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m ₁₈	m ₄ m ₃	10 m ₈ m ₇ m ₁₀	m ₁₅	m ₄ m ₃	01 E
m ₁₉		m ₂	m ₆		m ₂	m ₆		m ₂	m ₁
m ₁₀	m ₁₁		m ₁₃	m ₁₄		m ₁₃	m 11		m ₁₀
m101m	п 19	m ₁	61 m ₁	m ₁₉	^m 1	61 m ₁	m ₁₉	m ₁	E 10 m

STOPPER CONTRACT SECRETARY SECRETARY SECRETARY

Figure A-4(b). Flat slab: 3×3 .

			ZZ				
01 E	m ₁₉	m ₁	m ₁₉	m ₁	m ₁₉	m ₁	01 E
m ₁₉		m ₂		m ₆		m ₂	m ₁₉
m ₁₀	m ₁₁		m12		€ 11		m ₁₀
m ₁₉		m ₃		m ₇		m ₃	m ₁₉
01 _m	m ₁₅		m ₁₆		m ₁₅		01 _m
m ₁₉	-	m ₂		m ₆		m ₂	m ₁₉
01 w	E 11		m ₁₂		m ₁₁		m ₁₀
01 E	61 E	m ₁	۳ ₁₉	m ₁	61 _m	m ₁	oI E

Figure A-4(c). Flat slab: 2 x 2.

Figure A-5. Values of α_{OS} .

Figure A-6. Values of $\alpha_{\mbox{OL}}$.

express cooperal languages perfector cooperas societas cooperas cooperas

Figure A-7. Values of α'_{ecS} .

Figure A-8. Values of α'_{ecL} .

Figure A-9. Unit moment distribution for 3 x 4 flat slab.

Appendix B

ULTIMATE UNIT FLEXURAL RESISTANCE FOR FLAT SLAB

INTRODUCTION

The ultimate unit flexural resistance is the static uniform pressure load, r_u (psi), that a structural element can sustain during plastic yielding of its collapse mechanism. The ultimate uniform resistance is a function of the amount and distribution of the reinforcement (i.e., moment capacity of the slab strips), the geometry of the slab, and the support conditions. A yield-line analysis is used to determine r_u in terms of these parameters.

Because of the complexity and wide choice of parameter values for flat slab structures, it becomes imperative to develop a general procedure for determining the ultimate resistance of any flat slab configuration. The key to this or any general procedure is in the development of a simple, but efficient, method that can be used for any flat slab. Basically one needs to set up the methodology of calculating both the internal and external work for any flat slab configuration (i.e., $1.0 < \beta < 2.0$; various number of spans in either direction; various wall/slab thickness ratios). In this report the calculations were programmed on an HP-41CV.

The procedure is illustrated for 3 x 4 flat slab structures (Figure 11) for which the ACI elastic unit moment distribution has been determined previously in Appendix A. The location and values of the unit moments are shown in Figure B-1 and Table B-1 (duplication of Figure A-9 and Table A-7). The assumed yield-line mechanism is shown in Figure B-2. The unknown distance quantities for this pattern are x, y, and z. The negative yield moment along the walls is assumed to occur at a distance of c/2 from the outer face of the wall (i.e., c/2 \approx wall thickness plus haunch width). This assumption satisfies the clear span equality criterion for interior and exterior spans mentioned in Appendix A

(i.e., $L_n = L - c$ or $L_n = S - c$).* The division of the symmetric one-quarter slab into panel types (i.e., interior, I; corner, C; long side, LS; and short side, SS) is shown in Figure B-3. These panels are further divided into rotating sectors (rectangles and quadralaterals) about supports for use in the calculation of external work (see Figure B-4).

EXTERNAL WORK

The external work done by r_{ij} on rotating sector i is:

$$W_{i} = r_{u} A_{i} \Delta_{i}$$
 (B-1)

where: $A_i = area of sector i$

 Δ_i = deflection of the center of gravity (c.g.) of sector i

 Δ = maximum deflection of the sector

Each quadralateral sector is further divided into rectangular and triangular sub-sectors. The values of A_i and Δ_i for all sub-sectors are listed in Table B-2. The total external work is the sum of the work done on each sector. That is,

$$W = \sum W_i = \sum r_u A_i \Delta_i$$
 (B-2)

The external work is determined separately for each panel type after making the following substitutions:

 $c = 0.89 \alpha_{cap} L$

^{*}If the wall thickness plus haunch width does not equal c/2, one must adjust the exterior span length accordingly. Thus, all the design assumptions remain unaffected.

Computer programs (Table B-3) were written for an HP-31CV to calculate the external work (r_u Δ L^2 is factored out). The parameters stored in the registers are shown in Table B-4. The five dimensionless input parameters for a given yield line analysis are stored in registers 00 through 04. The parameters stored in registers 05 through 20 are obtained from the initialization program INIT (Table B-5). The unit moment coefficients are stored in registers 21 through 39. The sum of the output from the external work programs is designated the coefficient of external work, α_{FW} . That is,

$$W = \alpha_{EW} r_u \Delta L^2$$
 (B-3)

INTERNAL WORK

The internal work, E_{ij} , for each yield line is the rotational energy done by moment M_n rotating through θ_n . That is:

$$E_{ij} = M_n \theta_n = m_n \theta_n \ell_n = m_x s_y \theta_x + m_y s_x \theta_y \qquad (B-4)$$

where: m_x , m_y = ultimate unit moment capacities in the x and y directions

 s_y , s_x = lengths of the yield line in the y and x directions over which m_x and m_y apply

 θ_x , θ_y = relative rotations about the yield lines in the x and y directions

Equations for the internal work are developed separately for each panel type. The equations are in general terms such that they can be employed in the design process of any flat slab configuration. Table B-6 was developed at NCEL from Figures B-1 and B-2 to show the parameters involved in the internal work calculations for all the yield lines occurring in each panel type. The absolute and dimensionless values of the lengths

and rotational angles are listed in Table B-7. Computer programs were written for an HP-31CV to calculate the internal work (m $_{\rm e}$ Δ is factored out) for each panel type. The necessary parameters stored in the calculator registers (obtained from program INIT) are listed in Table B-4. The internal work program listings are shown in Table B-8. The sum of the output from these programs is designated the coefficient of internal work, $\alpha_{\rm TW}$. That is,

$$E = \sum E_{i,j} = \sum m_n \theta_n \ell_n$$

Eventually

$$E = m_e \Delta \alpha_{IW}$$
 (B-5)

SOLUTION OF ENERGY EQUATION

The total external work for all panels is set equal to the total internal work:

$$W = E (B-6)$$

or

$$r_u L^2 \Delta \alpha_{EW} = m_e \Delta \alpha_{IW}$$
 (B-7)

Therefore,

$$r_{u} = \frac{m_{e} \Delta \alpha_{IW}}{L^{2} \Delta \alpha_{EW}} = \frac{m_{e} \alpha_{IW}}{L^{2} \alpha_{EW}} = \alpha_{ru} \frac{m_{e}}{L^{2}}$$
(B-8)

Usually, α_{cap} and β are given, and the solution involves varying x', y', and z' independently until $r_u/(m_e/L^2)$ is minimized. This minimum solution provides both the failure mechanism and the value of the ultimate resistance. To simplify and shorten this iterative procedure, the positive yield line (rst) between columns is initially located at the mid-point. That is, let:

$$z = \frac{1}{2} (S - c) \tag{B-9}$$

Substituting yields:

$$z = \frac{1}{2} \left(\frac{L}{\beta} - 0.89 \alpha_{\text{cap}} L \right)$$
 (B-10)

or

$$z' = \frac{1}{2} \left(\frac{1}{\beta} - 0.89 \, \alpha_{\text{cap}} \right)$$
 (B-11)

The iterative minimization solution process is then employed to determine the appropriate values of x' and y'. The process is then repeated for other values of z' until the $r_u/(m_e/L^2)$ expression is minimized. According to yield-line theory, the positive yield line (rst) will move towards the column with the smallest negative y-moment (m_y) capacity (either line vwx or opq).

EXAMPLE PROBLEM

Calculations were made in this section to determine the yield-line locations and the ultimate resistance expression for the 3 \times 4 flat slab. Equation B-11 was used to initially establish a value for z'. That is,

$$z' = \frac{1}{2} \left(\frac{1}{\beta} - 0.89 \ \alpha_{\text{cap}} \right) = \frac{1}{2} \left[\frac{1}{1.25} - (0.89)(0.20) \right] = 0.311$$

A number of calculations were then made for various values of x' and y'. These results are listed in Tables B-9, B-10, and B-11 and plotted in Figure B-5. The minimum solution is:

$$\alpha_{ru} = 10.102$$
 $x' = 0.40$
 $y' = 0.30$

Substituting into Equation B-8:

$$(r_u)_{min} = 10.102 \left(\frac{m_e}{L_2}\right)$$
 (B-12)

To obtain the actual minimum resistance, z' was then varied while keeping x' and y' fixed at 0.4 and 0.3, respectively. The external work coefficient, α_{EW} , is unaffected by a change in the z' value. Therefore, it remained fixed at 1.1531 (see Table B-9). The calculations for the internal work coefficient are listed in Table B-12. It was necessary to carry out the calculations to six significant figures in order to detect a change in the z' value associated with the minimum resistance. Therefore, for most flat slabs, a satisfactory value for z' can be obtained directly from Equation B-11. That is, it is not necessary to employ the iterization procedure for other values of z'.

This completes Step 2 of the Design Procedure (determination of ultimate resistance relationship). The actual required absolute value of $\mathbf{r}_{\mathbf{u}}$ is not obtained until Step 5 (dynamic SDOF analysis). Equation B-12 is then used to calculate an absolute value of $\mathbf{m}_{\mathbf{u}}$. That is,

$$m_e = \frac{r_u L^2}{\alpha_{ru}}$$
 (B-13)

The individual values of all the unit moments are then determined using Equation A-11 (i.e., $m_n = \alpha_{um} m_e$) in conjunction with the value of the unit moment coefficients (α_{um}) listed in Table B-1.

UNIT MOMENT READJUSTMENT

In Steps 6 and 11 of the Design Procedure, a check on the minimum steel percentage is made. In some cases (usually in middle bands), the required steel percentages are less than the specified ACI minimum (p_{\min}) , and these steel percentages must be increased. If so, then the original unit moment coefficients for these sections must also be increased. The following expression is the minimum unit moment coefficient that can occur:

$$(\alpha_{um})_{min} = \frac{p_{min} b d^2 f_s}{m_e}$$
(B-14)

This new value is then used in another yield-line analysis. Note that the values of the external work coefficients (see Table B-10) remain unchanged. Only the internal work calculations are affected.

As an example, suppose that m_2 , m_3 , m_4 , and m_5 were too low and had to be increased so that $\alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0.120$. If these new unit moment coefficients were introduced into the internal work calculations, the values in Tables B-14 and B-15 would result. As can be seen, the minimum resistance still occurs at x' = 0.4 and y' = 0.3. However, α_{ru} increases from 10.102 to 10.363. Since the absolute value of the required r_u remains unchanged, the required m_e value (calculated from Equation B-12) decreases from 0.0990 r_u L² to 0.0965 r_u L². This results in an overall 2.5 percent decrease in the absolute values of the unadjusted unit moments (i.e., m_1 , m_6 through m_{18}). Engineering intuition would have predicted this effect.

Table B-1. Values of Unit Moment Coefficients $(\beta = 1.25; \alpha_{cap} = 0.20; t_{wS}/t_{slab} = t_{wL}/t_{slab} = 1.00; H_{w}/S = 0.5)$

Unit Moment, mn	Unit Moment Coefficient, ^Q um	Adjusted Positive Unit Moment Coefficient, (\alpha um)min
m ₁	0.168	
m ₂	0.114	
m ₃	0.111	
m ₄	0.105	
m ₅	0.090	0.087
m ₆	0.257	
m ₇	0.496	
m ₈	0.472	
m ₉	0.203	0.191
^m 10	0.314	
m ₁₁	0.233	
m ₁₂	0.230	
m ₁₃	0.220	
m ₁₄	0.189	0.179
m ₁₅	0.349	
^m 16	0.689	
m ₁₇	0.660	
m ₁₈	0.284	0.255
m ₁₉	miniumum	

Note: $m_n = \alpha_{um} m_e$, $m_e = w L^2/8$

Table B-2. External Work Parameters

				Sub-Sector	
Panel Tyme	Sector	Rectangular		Triangular	
od 61		Area, A _i	Deflection, $\Delta_{ ext{i}}$	Area, A _i	Deflection, $\Delta_{\mathbf{i}}$
	C-1	(c/2) (L - c - x)	(1/2) Δ	(1/2) (S - c - y) (L - c - x)	(2/3) Δ
Corner	C-2	[S - (c/2) - y] (x)	(1/2) ∆	(1/2) (y) (x)	(1/3) Δ
(c)	C-3	(c/2) (S - c - y)	(1/2) Δ	(1/2) (L - c - x) (S - c - y)	(2/3) ∆
	C-4	[L - (c/2) - x] (y)	(1/2) Δ	(1/2) (x) (y)	(1/3) Δ
Interior	I/A-1	(c/2) (z)	(1/2) Δ	(1/2) [(L/2) - (c/2)] (z)	(2/3) Δ
(I/A)	I/A-2	(c/2) [(L/2) - (c/2)]	(1/2) Δ	(1/2) (z) [(L/2) - (c/2)]	(2/3) Δ
Interior	I/B-1	(c/2) (S - c - z)	(1/2) Δ	(1/2) [(L/2) - (c/2)] (S - c - z)	(2/3) Δ
(I/B)	I/B-2	(c/2) [(L/2) - (c/2)]	(1/2) Δ	(1/2) (S - c - z) [(L/2) - (c/2)]	(2/3) △
	SS-1	(c/2) [(L/2) - (c/2)]	(1/2) Δ	(1/2) (S - c - y) [(L/2) - (c/2)]	(2/3) ∆
Short Side (SS)	SS-2	(c/2) (S - c - y)	(1/2) ∆	(1/2) [(L/2) - (c/2)] (S - c - y)	(2/3) ∆
	SS-3	(L/2) (y)	(1/2) Δ	-	!
2001	LS/A-1	(c/2) (z)	(1/2) ∆	(1/2) (L - c - x) (z)	(2/3) ∆
Side (15/A)	LS/A-2	(c/2) (L - c - x)	(1/2) Δ	(1/2) (z) $(L - c - x)$	(2/3) ∆
(v/cr)	LS/A-3	[z + (c/2)] (x)	(1/2) Δ		•
2001	LS/B-1	(c/2) (S - c - z)	(1/2) Δ	(1/2) (L - c - x) (S - c - z)	(2/3) ∆
Side	LS/B-2	(c/2) (L - c - x)	(1/2) Δ	(1/2) (S - c - z) (L - c - x)	(2/3) △
(4 (24)	LS/B-3	[S - (c/2) - z] (x)	(1/2) Δ		:

Table B-3. External Work Program Listings

a. Corner	r (C)	b. Interior (I/A)	c. <u>Interior (I/B)</u>
01*LBL "EC" 02 2 03 1/X 04 RCL 07 05 * 06 RCL 10 07 * 08 3 09 1/X 10 RCL 12 11 * 12 RCL 10 13 * 14 + 15 2 16 1/X 17 RCL 13 18 * 19 RCL 00 20 * 21 + 22 6 23 1/X 24 RCL 01 25 * 26 RCL 00 27 *	50 6 51 1/X 52 RCL 00 53 * 54 RCL 01 55 * 56 + 57 END	01*LBL "EIA" 02 2 03 1/X 04 RCL 07 05 * 06 RCL 02 07 * 08 2 09 ENTER† 10 3 11 / 12 RCL 20 13 * 14 RCL 02 15 * 16 + 17 2 18 1/X 19 RCL 07 20 * 21 RCL 20 22 * 23 + 24 END	O1*LBL "EIB" O2 2 O3 1/X O4 RCL 07 O5 * O6 RCL 14 O7 * O8 2 O9 ENTER† 10 3 11 / 12 RCL 20 13 * 14 RCL 14 15 * 16 + 17 2 18 1/X 19 RCL 07 20 * 21 RCL 20 22 * 23 + 24 END
27 * 28 + 29 2 30 1/X 31 RCL 07 32 * 33 RCL 12 34 * 35 + 36 3 37 1/X 38 RCL 10 39 * 40 RCL 12 41 * 42 + 43 2 44 1/X 45 RCL 11 46 *			
47 RCL 01 48 *			

49 +

Table B-3. Continued

STATES STATES STATES STATES

AND CONTRACTOR STATES OF THE PARTY OF THE PA

d. Short Side (SS)	e. Long Side (LS/A)	f. Long Side (LS/B)
01*LBL "ESS"	01*LBL "ELSA"	01*LBL "ELSB"
02 2	02 2	02 2
03 1/X	03 1/X	03 1/X
03 1/X 04 RCL 07	03 1/X 04 RCL 07	04 RCL 07
7F 3	A A . I.	05 *
06 RCL 20	06 RCL 20	06 RCL 14
07 *	07 *	07 *
08 2	08 2	08 2
09 ENTER↑	09 ENTER+	09 ENTER↑
10 3	10 3	10 3
11 /	11 /	11 /
12 RCL 12	12 RCL 10	12 RCL 10
13 *	13 ^	1.5 ^
14 RCL 20	14 RCL 02	14 RCL 14
15 *	15 *	15 *
16 +	16 +	16 +
17 2	17 2	17 2
18 1/X	18 1/X	18 1/X
18 1/X 19 RCL 07	19 RCL 07	19 RCL 07
20 *	20 *	20 *
21 RCL 12	21 RCL 10	21 RCL 10
22 *	22 *	22 *
23 +	23 +	23 +
24 2	24 2	24 2
25 1/X	25 1/X	25 1/X
26 2	26 RCL 18	26 RCL 15
27 /	27 *	27 *
28 RCL 01	28 RCL 00	28 RCL 00
29 *	29 *	29 *
30 +	30 +	30 +
31 END	31 END	31 END
		-

Table B-4. HP-31CV Storage for Flat Slab Yield-Line Analysis

a. Input Parameters

Absolute Value	Dimensionless Value	Register
x	x'	00
у	у'	01
z	z'	02
1/S	β	03
ď*	αсар	04

*c = 0.89 d

Table B-4. Continued

b. Calculated Parameters

Absolute Value	Dimensionless Value	Register
S	1/β	05
с	0.89 α cap	06
c/2	0.445 α cap	07
L-c	1 - 0.89 α _{cap}	08
S-c	(1/β) - 0.89 α _{cap}	09
L - с - х	$1 - 0.89 \alpha_{cap} - x'$	10
L - (c/2) - x	1 - 0.445 α _{cap} - x'	11
S - c - y	$(1/\beta) - 0.89 \alpha_{cap} - y'$	12
S - (c/2) - y	$(1/\beta) - 0.445 \alpha_{cap} - y'$	13
S - c - z	$(1/\beta) - 0.89 \alpha_{cap} - z'$	14
S - (c/2) - z	$(1/\beta) - 0.445 \alpha_{cap} - z'$	15
x + (c/2)	x' + 0.445 α cap	16
y + (c/2)	y' + 0.445 α cap	17
z + (c/2)	z' + 0.445 α cap	18
L - (S/2)	1 - (1/2β)	19
(L - c)/2	$(1 - 0.89 \alpha_{cap})/2$	20

Table B-4. Continued ${\tt c.} \quad {\tt Unit\ Moment\ Coefficients,\ } \alpha_{\tt um}$

Unit Moment, m	Register Number	Unit Moment, m	Register Number
m ₁	21	m ₁₁	31
^m 2	22	m ₁₂	32
m 3	23	^m 13	33
m ₄	24	m ₁₄	34
^m 5	25	^m 15	35
^m 6	26	^m 16	36
^m 7	27	^m 17	37
^m 8	28	^m 18	38
^m 9	29	^m 19	39
^m 10	30		

Note: $m_n = \alpha_{um} m_e$

Table B-5. Program to Initialize HP-31CV Storage Registers

01*LBL "INIT"	39	RCL	05
02 RCL 03		+	
03 1/X		RCL	
04 STO 05	42	- STO	
05 RCI. 04	43	STO	13
06 .89	44	RCL	09
07 *		RCL	02
08 STO 06	46		
09 RCL 06		STO	
10 2		RCL	
11 /		RCL	07
12 STO 07	50		
13 1	51	RCL	02
14 ENTER↑	52		
15 RCL 06		STO	
16 -	54	RCL	00
17 STO 08	55	RCL	07
18 RCL 05	56	+	
19 RCL 06	57	STO	16
20 -		RCL	
21 STO 09	59	RCL +	07
22 RCL 08	60	+	
23 RCL 00	61	STO	17
24 -	62	RCL	02
25 STO 10	63	RCL	07
26 RCL 07	64	+	
27 CHS	65	STO	18
28 1	66	1	
29 +	67	ENTE	R↑
30 RCL 00	68	ENTE RCL	05
31 -	69	2	
32 STO 11	70	/	
33 RCL 09	71	-	
34 RCL 01	72	STO	19
35 -		RCL	
36 STO 12	74		
37 RCL 07	75		
38 CHS		STO	20
		END	

sistem coopers timenen spreeze cetteres

Table B-6a. Internal Work Parameters, Corner

pui	Rotation	1	၁ _ဓ	,	96	•	о ₀		,	•	9
Exterior Wall Band	Length	•	s_{ey} - $(c/2)$	1	s_{ey} - (c/2)	1	s _{ex} - (c/2)		,	•	s (c/2)
	Unit Moment	1	m ₁₀		m 10		e 1	,		•	 E
	Rotation	e B) 0	$\theta_{\rm B} + \theta_{\rm C}$	₀	·	θ _D	$\theta_{\rm D} + \theta_{\rm E}$		9	6
Middle Band	Length	S - y = (c/2) - (c/2)	$y + (c/2) - s_{ey}$	$S - y - (s_{cy}/2) - (c/2)$	Smy	1	SmX	$L - x - (s_{cX}/2) - (c/2)$	•	$L - x - (s_{cx}/2) - (c/2)$	$x + (c/2) - s_{2}$
	Unit Moment	n ₁₁	11	 11	m ₁₀	,	€	1 2		m ₂	Ę
	Rotation	ө В	ı	$\theta_{B} + \theta_{C}$	9	9 8	θ	$\theta_D + \theta_E$	9	9	ı
Column Band	Length	$(s_{cy}/2) - (c/2)$	ı	$s_{\rm cy}/2$	$s_{\rm cy}/2$	c/2	s _{cx} /2	$s_{cx}/2$	c/2	$(s_{cx}/2) - (c/2)$	•
	Unit Moment	m ₁₇ /(m ₁₆))	m ₁₅	m ₁₀	(91 _m)/(1 _m]	9	m ₈ /(m ₇)	(Lm) 8 m)
7 0: 2	Line	if	fc	fm .	Cn	1.2	٥٥	ef	ū	if	fc
i d	Direction			*					>	_	

NOTE: The m which is circled is the largest, $m_n^{\dot{\gamma}}$ must be adjusted (decreased) accordingly.

Table B-6b. Internal Work Parameters, Interior (I/A)

_				_	\neg			
Sand	Rotation	1	,		1	•	•	ı
Exterior Wall Band	Length	• 	Í	ı	•	•	1	1
EX	Unit Moment	,		·	1	1	1	<u> </u>
	Rotation	1	٥	4	θ 4	•	ө Н	θ.
Middle Band	Length	•	(0)	$z + (c/z) - (s_{cy}/z)$	$z + (c/2) - (s_{cy}/2)$	•	s _{mx} /2	$\frac{s}{mx}/2$
	Unit	,		m ² , m	m ² ,		*E	₩. *\
	Rotation Moment	Œ	¥	θ	. ₀ 4	9.	e F	9
Column Band	Length	2/2	*/>	s/2	$(s_{cy}/2) - (c/2)$	c/2	$s_{cx}/2$	$(s_{cx}/2) - (c/2)$
	Unit Moment		(91 _m) /11 _m) %E	m_{17}/m_{16}	m ₈ /(m ₇)	*6°	m _k /(m ₇)
	Yield Line		2	jr	ro	do	LS	ួ
	Moment Direction			×			ý	

Table B-6c. Internal Work Parameters, Interior (I/B)

A COMPANY	, , , , , , , , , , , , , , , , , , ,	. '	Column Band			Middle Band		வ	Exterior Wall Band	and	
Direction	Line	Unit Moment	Length	Rotation	Unit Moment	Length	Rotation	Unit Moment	Length	Rotation	
	^2	m ₁₇ /(m ₁₆)	c/2	θ			•	•		•	
×	yr	⊞. 18	$^{\rm s}_{\rm cy}$ /2	θ A	m ² ,4	$S - z - (c/2) - (s_{cy}/2)$	θ A	,	ı	•	
	2	m17/m16	$(s_{cy}/2) - (c/2)$	θ	1,4 1,4	$S - z - (c/2) - (s_{Cy}/2)$	θ A	ı	•	1	
	3	8 E	c/2	96		•	-				
'n	S	₹6 E	s _{cx} /2	96	Ę	s _{mx} /2	9	•	ı	1	_
	2	8	$(s_{cx}/2) - (c/2)$	9	÷£	$s_{mx}/2$	ဗိ	ı	1	1	

Physical respected measures as becomes a describer measures.

Table B-6d. Internal Work Parameters, Short Side (SS)

MOM of the	Vield		Column Band			Middle Band		Ex	Exterior Wall Band	Band
Direction	Line	Unit Moment	Length	Rotation	Unit Moment	Length	Rotation	Unit Moment	Length	Rotation
L	**	m17/m16	c/2	θ θ	1	•				
×	8 p	(g1)/(m16)	$(s_{cy}/2) - (c/2)$	θ 4	m* ₁ 4	$S - y - (s_{cy}/2) - (c/2)$	θ	'	ı	•
	đj	m [∴] .	s _{cy} /2	θ	# ³ .	$S - y - (s_{cy}/2) - (c/2)$	θ A		ı	ı
	48	m ₈ /(m ₇)	c/2	Э _Ө	-	•	· •		: : : :	
>	de	9 8	s _{cx} /2	$\theta_{\rm D} + \theta_{\rm E}$	m ²	s _{mx} /2	$\theta_{\rm D} + \theta_{\rm E}$	1	•	ı
	aþ	m ₁	s _{cx} /2	$^{\mathrm{Q}}_{\mathrm{D}}$	m 1	s _{mx} /2	θ ^D		,	•
	9 8	m ₈ /(m ₇)	$(s_{cx}/2) - (c/2)$	θE	a 2	$s_{mx}/2$	$\theta_{ m E}$	•	ı	ı

Table B-6e. Internal Work Parameters, Long Side (LS/A)

3 3		Column Band			Middle Band		Ex	Exterior Wall Band	Band
	Unit Moment	Length	Rotation Unit Moment	Unit Moment	Length	Rotation Unit Moment	Unit	Length	Rotation
_	m17/ m16)	c/2	в Ө		•	,		1	
	m ₁₅	$s_{\rm cy}/2$	о _{е + 8} ,	m 11	$z + (c/2) - (s_{cy}/2)$	$\theta_{B} + \theta_{C}$	•	1	
	m 10	s _{cy} /2	ص ص	m ₁₀	$z + (c/2) - (s_{cy}/2)$	o O	ı	•	•
-	m ₁₇ / m ₁₆	$(s_{cy}/2) - (c/2)$	9 B	m 11	$z + (c/2) - (s_{cy}/2)$	θ B	ſ.	,	•
	m8/ (m)/8m	c/2	9,	•	•	•			
	ع 6	$s_{cx}/2$	9 म	#S	$L - x - (s_{cx}/2) - (c/2)$	$\theta_{\overline{\mathbf{F}}}$	ı		1
	$m_8/(m_7)$	$(s_{cx}/2) - (c/2)$	9 F	‡£	$L - x - (s_{cx}/2) - (c/2)$	θ.		•	•

Table B-6f. Internal Work Parameters, Long Side (LS/B)

	;		Column Band			Middle Band		G	Exterior Wall Band	land
Direction	Yield	Unit Moment	Length	Rotation	Unit Moment	Length	Rotation	Unit Moment	Length	Rotation
	, ex	m ₁₇ /(m ₁₆)	c/2	9 B	•	•	-	1	1	-
	b't) Sl	$s_{\rm cy}/2$	ο _B + θ _C	m ₁₁	$S - z - (c/2) - (s_{cy}/2)$	θ _B + θ _C	,	•	•
×	ם, ט	0 I e	$s_{\rm cy}/2$	စ္	m 10	$s - z - (c/2) - (s_{cy}/2)$	o _o	1	1	
	×	m ₁₇ /(m ₁₆)	$(s_{cy}/2) - (c/2)$	9 B	m ₁₁	$S - z + (c/2) - (s_{cy}/2)$	e _B	,	1	
	×	8	c/2	9		1	,	ı	. 1	1
۲,	st	- 60 -	s _{cx} /2	9	督	$L - x - (s_{cx}/2) - (c/2)$	90		1	•
	×	89 E	$(s_{cx}/2) - (c/2)$	90	ŧ۲	$L - x - (s_{cx}/2) - (c/2)$	90	•	•	•

Table B-7. Internal Work Parameters

Expression	Absolute Value	Dimensionless Value	Storage a Registers
θ	2Δ/(L - c)	$2/(1 - 0.89 \alpha_{\rm cap})$	1/ 20
9 B	$\Delta/(L-c-x)$	$1/(1 - 0.89 \alpha_{cap} - x')$	1/ (10)
၁	λ/x	1/x'	1/ @
o _D	Δ/y	1/y'	1/ (6)
e e	$\Delta/(S-c-y)$	$1/[(1/\beta) - 0.89 \alpha_{cap} - y']$	1/ (12)
θ.	Z/V	1/z'	1/ (2)
9	$\Delta/(S-c-z)$	$1/[(1/\beta) - 0.89 \alpha_{cap} - z']$	1/ [14]
c/2	c/2	0.445 α cap	(0)
$^{\rm s}_{\rm cy}$ /2	8/4	1/48	05 /4
$(s_{cy}/2) - (c/2)$	(S/4) - (c/2)	$(1/4\beta) - 0.445 \alpha_{cap}$	(0) - (1) (0)
Smy	8/2	1/28	(05)/2
$s_{my}/2$	8/4	1/48	05)/4
s _{ey} - (c/2)	(S/4) - (c/2)	$(1/4\beta) - 0.445 \alpha_{cap}$	(05/4) - 07
$s - (c/2) - y - (s_{cy}/2)$	S - (c/2) - y - (S/4)	$(1/\beta) - 0.445 \alpha_{cap} - y' - (1/4\beta)$	(13) - (65)/4)
$y + (c/2) - s_{ey}$	y + (c/2) - (S/4)	y' + 0.445 α_{cap} - (1/4 β)	(1) - ((05)/4)

(continued)

Table B-7. Continued

TO SEED OF THE PROPERTY SERVICES APPROXICE CARRESTS CONSTITUTE ASSESSED FOR THE PROPERTY OF TH

Expression	Absolute Value	Dimensionless Value	Storage Registers
s _{cx} /2	7/8	1/4β	(65) /4
$(s_{cx}/2) - (c/2)$	(S/4) - (c/2)	$(1/48) - 0.445 \alpha_{cap}$	(0) - (1)
XIII	L - (S/2)	1 - (1/28)	(1)
s _{mx} /2	[L - (S/2)]/2	$[1 - (1/2\beta)]/2$	19 /2
s_{ex} - (c/2)	(S/4) - (c/2)	$(1/4\beta) = 0.445 \alpha_{cap}$	(6) /4) - (0)
$L - (c/2) - x - (s_{cx}/2)$	L - (c/2) - x - (S/4)	$1 - 0.445 \alpha_{cap} - x' - (1/48)$	(1) - ((6)/4)
$x + (c/2) - s_{ex}$	x + (c/2) - (S/4)	$x' + 0.445 \alpha_{cap} - (1/4\beta)$	(16) - ((65)/4)
$z + (c/2) - (s_{Cy}/2)$	z + (c/2) - (S/4)	$z' + 0.445 \alpha_{cap} - (1/4\beta)$	(8) - (05/4)
$S - (c/2) - z - (s_{cy}/2)$	S - (c/2) - z - (S/4)	$(1/\beta) - 0.445 \alpha_{cap} - z' - (1/4\beta) \left (15) - (05) / 4 \right $	(15) - (65)/4)

^aCircled numbers are storage registers as identified on Table B-4.

Table B-8. Internal Work Program Listings

a. Corner (C)

01*LBL	"IC"	51	RCL	01	101	4	
02 RCL			1/X		102		
03 4			RCL		103		
04 /			1/X			RCL	10
05 RCL		55			105		
06 +			RCL	05	106		
07 RCL	05	57		V 3	107		
08 2		58				RCL	31
09 /		59			109		J 1
10 +			RCL	26	110		
11 RCL	07	61	*	20		RCL	13
12 2	07	62				RCL	
13 *			RCL	05	113		03
14 -		64		03	114		
15 RCL	01	65			115		
16 /	01		RCL	12		RCL	۸۸
17 RCL	21	67	/	12	117		00
17 KCL			RCL	27		RCL	31
19 RCL		69		21	119		J1
20 RCL		70			120		
20 KCL 21 4	03		RCL	05		RCL	17
22 /		72		03		RCL	
23 -		73			123		U.S
24 RCL	0.1			00	123		
25 /	01	75		UU		•	
26 RCL	22		RCL	20	125	RCL	^^
20 KCL 27 *	22	77		30			VV
28 +		78			127	/ RCL	21
29 RCL	11		RCL	ΛE	129		31
30 RCL		80		UO	130		
30 KCL 31 4	05						10
		81		00		RCL	
32 /			RCL	UU		1/X	
33 - 34 RCL	10	83		20		RCL	UU
	12		RCL	30		1/X	
35 /		85			135		۸.
36 2		86		0.5		RCL	05
37 *	00		RCL	05	137		
38 RCL	22	88			138		
39 *		89	-		139		٥.
40 +				07		RCL	35
41 RCL			-		141		
42 RCL	05		RCL	00	142		
43 4		93				RCL	05
44 /		94			144		
45 -	•	95			145		
46 RCL	01		RCL	30		RCL	10
47 /		97			147		
48 RCL	22	98				RCL	36
49 *			RCL		149		
50 +		100	RCL	05	150		
					151	END	

Table B-8. Continued

b.	Interi	ior (I/A)	c.	Interio	or (I/B)
	01*LBL	"IIA"		01*LBL '	'IIB"
	02 RCL	19		02 RCL :	19
	03 RCL	02		03 RCL :	14
	04 /			04 /	
	05 RCL	25		05 RCL 2	25
	06 *			06 ጵ	
	07 RCL	05		07 RCL 0	05
	08 4			08 4	
	09 /			09 /	
	10 RCL	02		10 RCL	14
	11 /			11 /	
	12 RCL	27		12 RCL 2	28
	13 *			13 *	
	14 +			14 +	
	15 RCL	05		15 RCL (05
	16 4			16 4	
	17 /	00		17 /	. ,
	18 RCL	02		18 RCL	14
	19 /	20		19 /	20
	20 RCL 21 *	29		20 RCL 2 21 *	29
	22 +			22 +	
	22 T 23 RCL	10		22 T 23 RCL	15
	24 RCL	16 05		24 RCL (
	25 4	03		25 4	J.)
	26 /			26 /	
	27 -			27 -	
	28 RCL	20		28 RCL 2	20
	29 /			29 /	
	30 2			30 2	
	31 *			31 *	
	32 RCL	34		32 RCL 3	34
	33 *			33 *	
	34 +			34 +	
	35 RCL	05		35 RCL (05
	36 4			36 4	
	37 /			37 /	
	38 RCL	20		38 RCL 2	20
	39 /			39 /	
	40 RCL	36		40 RCL :	36
	41 *			41 *	
	42 +			42 +	
	43 RCL	05		43 RCL	05
	44 4			44 4	
	45 /	20		45 /	20
	46 RCL	20		46 RCL	20
	47 / 48 RCL	20		47 / 48 RCL :	2 0
	48 RCL 49 *	30		48 KCL .	٥٥
	49 ^ 50 +			50 +	
	50 T			50 F 51 END	
	DI END			OI END	

Table B-8. Continued

d. Short Side (SS)

01*LBL "ISS"	50 *
02 .5	51 RCL 34
03 ENTER↑	52 *
04 RCL 01	53 +
05 /	54 RCL 05
06 RCL 21	55 4
07 *	56 /
08 RCL 01	57 RCL 20
09 1/X	58 /
10 RCL 12	59 RCL 36
11 1/X	60 *
12 2	61 +
13 *	62 RCL 05
14 T	63 4
15 KCL 19	64 /
10 ^	65 RCL 20
14 + 15 RCL 19 16 * 17 2 18 /	66 / 67 RCL 38 68 *
19 RCL 22	60 % 61 KCT 39
20 *	69 +
21 +	70 END
22 RCL 01	/O END
23 1/X	
24 RCL 12	
25 1/X	
26 +	
27 RCL 05	
28 *	
29 4	
30 /	
31 RCL 26	
32 *	
33 +	
34 RCL 05	
35 4	
36 / 37 RCL 12	
37 RCL 12	
38 /	
39 RCL 27	
40 *	
41 +	
42 RCL 13	
43 RCL 05	
44 4	
45 /	
46 -	
47 RCL 20	
48 /	
49 2	

Table B-8. Continued

е.	Long Side	(LS/A)	f.	Long Side	(LS/B)
01*LBL	"ILSA"	50 / 51 - 52 RCL 10 53 / 54 2 55 * 56 RCL 31 57 * 58 + 59 RCL 18 60 RCL 05 61 4 62 /	01*LBL	"ILSB"	50 /
02 RCL	11	51 -	02 RCL	11	51 -
03 RCL	05	52 RCL 10	03 RCL	05	52 RCL 10
04 4		53 /	04 4		53 /
05 /		54 2	05 /		54 2
06 -		55 *	06 -		55 *
07 RCL	02	56 RCL 31	07 RCL	14	56 RCL 31
08 /		57 *	08 /		57 *
09 2		58 +	09 2		58 +
10 *		59 RCL 18	10 *		59 RCL 18
11 RCL	25	60 RCL 05	11 RCL	25	60 RCL 05
12 *		61 4 62 / 63 -	12 *		61 4
13 RCL	05	62 /	13 RCL	05	62 /
14 4		63 -	14 4		63 -
15 /		64 RCL 00	15 /		64 RCL 00
16 RCL	02	65 /	16 RCL	14	65 /
17 /		66 RCL 31	17 /		66 RCL 31
18 RCL	27	62 / 63 - 64 RCL 00 65 / 66 RCL 31 67 * 68 + 69 RCL 10 70 1/X 71 RCL 00 72 1/X 73 + 74 RCL 05 75 * 76 4	18 RCL	28	67 *
19 *		68 +	19 *		68 +
20 +		69 RCL 10	20 +		69 RCL 10
21 RCL	05	70 1/X	21 RCL	05	70 1/X
22 4		71 RCL 00	22 4		71 RCL 00
23 /		72 1/X	23 /		72 1/X
24 RCL	02	73 +	24 RCL	14	73 +
25 /		74 RCL 05	25 /		74 RCL 05
26 RCL	29	75 *	26 RCL	29	75 *
27 *		75 * 76 4 77 / 78 RCL 35 79 * 80 +	27 *		76 4
28 +		77 /	28 +		77 /
29 RCL	05	78 RCL 35	29 RCL	05	78 RCL 35
30 4		79 *	30 4		79 *
/			- ,		
32 RCL	00	81 RCL 05	32 RCL	00	81 RCL 05
33 /		82 4	33 /		82 4
34 RCL	30	81 RCL 05 82 4 83 / 84 RCL 10 85 / 86 RCL 36	34 RCL	30	83 / 84 RCL 10 85 / 86 RCL 36
35 *		84 RCL 10	35 *		84 RCL 10
36 +		85 /	36 +		85 /
				10	OO MCD 30
38 RCL	05	87 *	38 RCL	05	87 *
39 4		88 +	39 4		88 +
40 /		89 END	40 /		89 END
41 -			41 -		
42 RCL	00		42 RCL	00	
43 /			43 /		
44 RCL	30		44 RCL	30	
45 *			45 *		
46 +			46 +	_	
47 RCL			47 RCL		
48 RCL	05		48 RCL	05	
49 4			49 4		

		•	Taute p-7	. External	- 1	WOLK CAICUIALIONS IOF	I 3 X 4 FIAL SIAD	Coran	
					Paı	Panel Types			Total* External
×	>	N	Corner (C)	Interior (I/A)	Interior (I/B)	Short Side (SS)	Long Side (LS/A)	Long Side (LS/B)	Work Coefficient, °EW
	0.20	0.311	0.3414	0.1173	0.1173	0.2027	0.2027	0.2027	1.1841
	0.25	0.311	0.3346	0.1173	0.1173	0.1993	0.2027	0.2027	1.1739
0.35	0.30	0.311	0.3277	0.1173	0.1173	0.1958	0.2027	0.2027	1.1635
-	0.35	0.311	0.3209	0.1173	0.1173	0.1924	0.2027	0.2027	1.1533
	0.40	0.311	0.3140	0.1173	0.1173	0.1890	0.2027	0.2027	1.1430
	0.20	0.311	0.3362	0.1173	0.1173	0.2027	0.2001	0.2001	1.1737
	0.25	0.311	0.3294	0.1173	0.1173	0.1993	0.2001	0.2001	1.1635
07.0	0.30	0.311	0.3225	0.1173	0.1173	0.1958	0.2001	0.2001	1.1531
	0.35	0.311	0.3157	0.1173	0.1173	0.1924	0.2001	0.2001	1.1429
	0.40	0.311	0.3088	0.1173	0.1173	0.1890	0.2001	0.2001	1.1326
	0.20	0.311	0.3311	0.1173	0.1173	0.2027	0.1975	0.1975	1.1634
	0.25	0.311	0.3242	0.1173	0.1173	0.1993	0.1975	0.1975	1.1531
0.45	0.30	0.311	0.3174	0.1173	0.1173	0.1958	0.1975	0.1975	1.1428
	0.35	0.311	0.3105	0.1173	0.1173	0.1924	0.1975	0.1975	1.1325
	07.0	0.311	0.3037	0.1173	0.1173	0.1890	0.1975	0.1975	1.1223

 $r_{\rm u} L^2 \Delta$

Table B-10. Internal Work Calculations for 3 x 4 Flat Slab

					Pal	Panel Types			Total* Internal
×	,	N	Corner (C)	Interior (I/A)	Interior (I/B)	Short Side (SS)	Long Side (LS/A)	Long Side (LS/B)	Work Coefficient, ^α IW
	0.20	0.311	3.9594	1.2432	1.2278	2.0972	1.9725	1.9571	12.4572
	0.25	0.311	3.6928	1.2432	1.2278	1.9538	1.9725	1.9571	12.0472
0.35	0.30	0.311	3.5463	1.2432	1.2278	1.8886	1.9725	1.9571	11.8355
	0.35	0.311	3.4911	1.2432	1.2278	1.8893	1.9725	1.9571	11.7810
	07.0	0.311	3.5305	1.2432	1.2278	1.9665	1.9725	1.9571	11.8976
	0.20	0.311	3.8705	1.2432	1.2278	2.0972	1.9336	1.9182	12.2905
	0.25	0.311	3.5944	1.2432	1.2278	1.9538	1.9336	1.9182	11.8710
07.0	0.30	0.311	3.4373	1.2432	1.2278	1.8886	1.9336	1.9182	11.6487
	0.35	0.311	3.3697	1.2432	1.2278	1.8893	1.9336	1.9182	11.5818
	0.40	0.311	3.3938	1.2432	1.2278	1.9665	1.9336	1.9182	11.6831
!	0.20	0.311	3.8388	1.2432	1.2278	2.0972	1.9342	1.9188	12.2600
	0.25	0.311	3.5516	1.2432	1.2278	1.9538	1.9342	1.9188	11.8294
0.45	0.30	0.311	3.3823	1.2432	1.2278	1.8886	1.9342	1.9188	11.5949
	0.35	0.311	3.3008	1.2432	1.2278	1.8893	1.9342	1.9188	11.5141
	0.40	0.311	3.3081	1.2432	1.2278	1.9665	1.9342	1.9188	11.5986

 $\alpha_{\text{IW}} = \frac{E}{\alpha_{\text{O}}}$

Table B-11. Ultimate Resistance Calculations

х'	у'	z'	α _{IW} *	α _{EW}	άżż α ru
	0.20	0.311	12.457	1.184	10.520
	0.25	0.311	12.047	1.174	10.263
0.35	0.30	0.311	11.836	1.164	10.172
	0.35	0.311	11.781	1.153	10.215
	0.40	0.311	11.898	1.143	10.409
	0.20	0.311	12.291	1.174	10.472
	0.25	0.311	11.871	1.164	10.203
0.40	0.30	0.311	11.649	1.153	10.102
	0.35	0.311	11.582	1.143	10.134
	0.40	0.311	11.683	1.133	10.315
	0.20	0.311	12.260	1.163	10.538
	0.25	0.311	11.829	1.153	10.259
0.45	0.30	0.311	11.595	1.143	10.146
	0.35	0.311	11.514	1.133	10.167
	0.40	0.311	11.599	1.122	10.335

*From Table B-10.

*☆From Table B-9.

$$\alpha_{ru} = \frac{\alpha_{IW}}{\alpha_{EW}} = \frac{r_u}{m_e/L^2}$$

Table B-12. Internal Work Calculations for 3 x 4 Flat Slab for x' = 0.40 and y' = 0.30

(LS/A) 2.0354 1.9337	. 9 9 9 9	(1/B) (SS) 1.1664 1.8886 1.1830 1.8886 1.2009 1.8886 1.2278 1.8886
2.03	9 9 9 9	
1.93	9 9 9	
	9 9	
1.9252	98	
1.9336		
1.9341	98	1.2288 1.8886
1.9346	9	1.2299 1.8886
1.9544	92	1.2666 1.8886
1.9845	9	1.3217 1.8886
2.0646	9	1.5138 1.8886

 $^{*} \alpha_{IW} = \frac{E}{m_{\rho} \Delta}$

Table B-13. Internal Work Calculations for 3 x 4 Flat Slab for $(\alpha_{\rm um})_{\rm min}=\alpha_2=\alpha_3=\alpha_4=\alpha_5=0.120$

					Panel	nel Types			Total
×	, y	- 2	Corner (C)	Interior (I/A)	Interior (I/B)	Short Side (SS)	Long Side (LS/A)	Long Side (LS/B)	Work Coefficient,* \alpha_IW
	0.20	0.311	3.9877	1.3069	1.2915	2.1148	2.0491	2.0337	12.7837
	0.25	0.311	3.7188	1.3069	1.2915	1.9707	2.0491	2.0337	12.3707
0.35	0.30	0.311	3.5717	1.3069	1.2915	1.9058	2.0491	2.0337	12.1587
	0.35	0.311	3.5173	1.3069	1.2915	1.9077	2.0491	2.0337	12.1062
	07.0	0.311	3.5590	1.3069	1.2915	1.9873	2.0491	2.0337	12.2275
	0.20	0.311	3.8974	1.3069	1.2915	2.1148	1.9996	1.9842	12.5944
	0.25	0.311	3.6188	1.3069	1.2915	1.9707	1.9996	1.9842	12.1717
07.0	0.30	0.311	3.4609	1.3069	1.2915	1.9058	1.9996	1.9842	11.9489
	0.35	0.311	3.3937	1.3069	1.2915	1.9077	1.9996	1.9842	11.8836
	07.0	0.311	3.4196	1.3069	1.2915	1.9873	1.9996	1.9842	11.9891
	0.20	0.311	3.8642	1.3069	1.2915	2.1148	1.9896	1.9742	12.5412
	0.25	0.311	3.5744	1.3069	1.2915	1.9707	1.9896	1.9742	12.1073
0.45	0.30	0.311	3.4041	1.3069	1.2915	1.9058	1.9896	1.9742	11.8721
	0.35	0.311	3.3226	1.3069	1.2915	1.9077	1.9896	1.9742	11.7925
	0.40	0.311	3.3312	1.3069	1.2915	1.9873	1.9896	1.9742	11.8807

 $^{\circ} \alpha_{\text{IW}} = \frac{\pi}{\text{me}} \Delta$

Table B-14. Ultimate Resistance Calculations for $(\alpha_{um})_{min} = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0.120$

х'	у'	z'	Coefficient of Internal Work,*	Coefficient of External Work,** *** *** *** *** ***	Coefficient of Ultimate Resistance,*** α ru
	0.20	0.311	12.784	1.184	10.797
	0.25	0.311	12.371	1.174	10.537
0.35	0.30	0.311	12.159	1.164	10.446
	0.35	0.311	12.106	1.153	10.500
	0.40	0.311	12.228	1.143	10.698
	0.20	0.311	12.594	1.174	10.727
	0.25	0.311	12.172	1.164	10.457
0.40	0.30	0.311	11.949	1.153	10.363
	0.35	0.311	11.884	1.143	10.397
	0.40	0.311	11.989	1.133	10.582
	0.20	0.311	12.541	1.163	10.783
	0.25	0.311	12.107	1.153	10.500
0.45	0.30	0.311	11.872	1.143	10.387
	0.35	0.311	11.793	1.133	10.409
	0.40	0.311	11.881	1.122	10.589

*From Table B-13.

**From Table B-9.

$$\stackrel{*}{\sim} \alpha_{ru} = \frac{\alpha_{IW}}{\alpha_{EW}} = \frac{r_u}{m_e/L^2}$$

Figure B-1. Unit moment distribution for 3 x 4 flat slab.

presess received presents present property suggests property

Figure B-2. Yield-line mechanism for a 3 x 4 flat slab.

I = Interior
LS = Long side
SS = Short side
C = Corner

Figure B-3. Panel designations for 3×4 flat slab.

Figure B-4. Rotating sectors for internal work calculations for 3 x 4 flat slab.

Figure B-5. Minimum r_u curves (z' = 0.311).

Appendix C

EFFECTIVE UNIT MASS FOR FLAT SLAB

INTRODUCTION

The effective unit mass of a flat slab is given by:

$$\mathbf{m}_{\mathbf{ef}} = \mathbf{K}_{\mathbf{LM}} \mathbf{m} \tag{C-1}$$

where: $m = actual unit mass (lb-sec^2/in.^3)$

 $m_{ef} = effective unit mass (lb-sec^2/in.^3)$

 $K_{T,M}$ = load-mass factor

Because of the complexity and wide choice of parameter values for flat slab structures, it becomes imperative to develop a general procedure for determining the effective plastic unit mass for any flat slab configuration. Also, adding to the complexity is the possible presence of drop panels and soil cover. Both of these conditions are addressed in this Appendix. The key to this or any general procedure is in the development of a simple, but efficient, method which can be used for any flat slab. This Appendix contains the recommended procedure, which has been programmed on an HP-41CV.

The procedure is illustrated for the 3×4 flat slab structure (Figure 11) previously analyzed in Appendixes A and B. Parameter studies are also made for other configurations.

ACTUAL UNIT MASS

FAMILIAN STREET, STREE

For a flat slab without drop panels, the actual unit mass equals:

$$m = m_{slab} + m_{ob} = \rho_{slab} t_{slab} + \rho_{ob} t_{ob}$$
 (C-2)

where: m_{slab} = actual unit mass of slab m_{ob} = actual unit mass of soil overburden ρ_{slab} = mass density of slab t_{slab} = thickness of slab ρ_{ob} = mass density of soil overburden t_{ob} = thickness of soil overburden

For a flat slab with drop panels, the actual unit mass is obtained from this expression:

$$m = \frac{M_T}{A_T} \tag{C-3}$$

where: M_T = total mass (slab + soil overburden + drop panel) A_T = total slab area

Note that these quantities represent that portion of the structure which rotates (deflects). Therefore, the mass/area inside of the equivalent square capital and outside of the perimeter yield line (haunch) is excluded in the calculations. Now,

$$M_{T} = (m_{ob} + m_{slab}) A_{T} + m_{dp} A_{dp}$$
 (C-4)

or

$$M_{T} = \left(\rho_{ob} t_{ob} + \rho_{slab} t_{slab}\right) A_{T} + \rho_{dp} t_{dp} A_{dp}$$
 (C-5)

where: m_{dD} = actual unit mass of drop panel

A_{dp} = area of drop panel (minus area of capital)

 ρ_{dp} = mass density of drop panel

 t_{dp} = thickness of drop panel

Substituting Equation C-5 into Equation C-3 yields:

$$m = \rho_{ob} t_{ob} + \rho_{slab} t_{slab} + \rho_{dp} t_{dp} \frac{A_{dp}}{A_{T}}$$
 (C-6)

PLASTIC LOAD-MASS FACTOR

As shown in the main text, the plastic load-mass factor for flat slabs without drop panels and with or without a uniform soil overburden equals

$$K_{LM} = \frac{\sum \frac{I}{cL_1}}{\sum A}$$
 (C-7)

where, for each sector:

I = area moment of inertia about the axis of rotation

c = distance from the resultant applied load to the axis of rotation

 L_1 = total length of sector normal to axis of rotation

A = total area of sector

For a flat slab with drop panels and with or without soil overburden the load-mass factor equals:

$$K_{LM} = \frac{\sum \frac{I_m}{cL_1}}{\sum M}$$
 (C-8)

where: I_{m} = mass moment of inertia about the axis of rotation

M = total mass of sector

To determine the numerators of Equations C-7 and C-8, the flat slab is divided into the same rotating sectors used for the external work calculations. Figure C-1 is a reproduction of Figure B-4, which is for the 3 x 4 flat slab example. For a flat slab with drop panels, the additional rotating sectors are shown in Figure C-2 as the dotted areas. The numerator of Equation C-7 then becomes:

$$\sum \frac{I}{cL_1} {flat \choose slab} = \frac{I}{cL_1} (corner) + \frac{I}{cL_1} (interior) + \frac{I}{cL_1} {short \choose side}$$

$$+ \frac{I}{cL_1} {long \choose side}$$
(C-9)

The numerator of Equation C-8 becomes:

$$\sum \frac{I_{m}}{cL_{1}} {flat \choose slab} = \frac{I_{m}}{cL_{1}} (corner) + \frac{I_{m}}{cL_{1}} (interior) + \frac{I_{m}}{cL_{1}} {short \choose side}$$

$$+ \frac{I_{m}}{cL_{1}} {long \choose side}$$
(C-10)

Each of the four terms on the RHS of Equation C-10 contains mass contributions from the slab, soil overburden, and drop panel. If the drop panel contributions are separated, then Equation C-10 can be rewritten as:

$$\frac{I_{m}}{cL_{1}} \begin{pmatrix} flat \\ slab \end{pmatrix} = \left(\rho_{ob} t_{ob} + \rho_{slab} t_{slab} \right) \sum \frac{I}{cL_{1}} \begin{pmatrix} flat \\ slab \end{pmatrix} + \rho_{dp} t_{dp} \sum \frac{I}{cL_{1}} \begin{pmatrix} drop \\ panel \end{pmatrix}$$
(C-11)

Since $\Sigma I/cL_1$ (flat slab) was already calculated in Equation C-9, only the additional effects of the drop panel have to be considered. Therefore, the amount of calculations has been reduced.

To determine the denominators of Equations C-7 and C-8, it is not necessary to individually determine the area or mass of each rotating sector. Since the total area or mass is independent of the yield-line locations, it is easier to determine the total area or mass by using the overall slab dimension and then subtracting the area of the nonrotating column capitals and wall haunches. The total mass for a flat slab with drop panels is given by Equation C-5. That is,

$$M = (\rho_{ob} t_{ob} + \rho_{slab} t_{slab}) A_{T} + \rho_{dp} t_{dp} A_{dp}$$

Finally, after substituting Equations C-11 and C-5 into Equation C-8:

$$K_{LM} = \frac{(\rho_{ob} t_{ob} + \rho_{slab} t_{slab}) \sum \frac{I}{cL_1} {flat \choose slab} + \rho_{dp} t_{dp} \sum \frac{I}{cL_1} {drop \choose panel}}{(\rho_{ob} t_{ob} + \rho_{slab} t_{slab}) A_T + \rho_{dp} t_{dp} A_{dp}}$$

$$\dots \dots (C-12)$$

Figure C-3 shows the I/cL_1 values for triangular and rectangular rotating sectors. Each value consists of the quantity b d times coefficient α_{LM} , where b is the length of the sector side parallel to the axis of rotation, and d is the length of the sector side perpendicular to the axis of rotation. Therefore, the I/cL_1 values for any rotating quadralateral sector equals:

$$\frac{I}{cL_1} = d \left[\left(\alpha_{LM} b \right)_{rectangle} + \left(\alpha_{LM} b \right)_{triangle} \right]$$
 (C-13)

EXAMPLE PROBLEM

Calculations were made in this section to determine the effective plastic unit mass for the 3×4 flat slab structure (Figure 11). Both configurations with and without drop panels are considered.

The load-mass parameters for the flat slab without drop panels are listed in Table C-1. The I/cL_1 expressions are then listed in Table C-2. Programs were written for an HP-31CV to calculate these values for each panel type (corner, short side, interior, long side); these program listings are shown in Table C-3. These programs make use of some of the storage registers assigned earlier in the yield-line analysis; they are reproduced in Table C-4. The result of the yield-line analysis of Appendix B is as follows:

$$x' = 0.40$$

$$y' = 0.30$$

$$z' = 0.311$$

That is, according to Table B-11, the minimum ultimate resistance of the flat slab occurs for the above yield-line locations. Therefore, it is only necessary to calculate $K_{\mbox{LM}}$ for this yield-line pattern. The denominator (SA) of Equation C-7 is calculated as follows:

$$\Sigma A = (1.5L)(2S) - c^2 - \frac{1}{2}c^2 - \frac{c}{2}(2S) - \left(\frac{c}{2}\right)(1.5L) + \left(\frac{c}{2}\right)^2(C-14)$$

where:
$$S = \frac{L}{B} = \frac{L}{1.25}$$
 (C-15)

$$c = 0.89 \alpha_{cap} L = (0.89)(0.20) L = 0.178 L$$
 (C-16)

Substitution yields,

$$\Sigma A = 2.0845 L^2$$
 (C-17)

The calculated I/cL_1 values for the six panel types are listed in Table C-5. The total $\Sigma I/cL_1$ (flat slab) value equals 1.4352 L^2 . Therefore, substituting into Equation C-7 yields:

$$K_{LM} = \frac{1.4352 L^2}{2.0845 L^2} = 0.689$$

The actual unit mass is given by Equation C-2. Assume that the following conditions exist:

$$t_{slab}$$
 = 16 in.
 t_{ob} = 12 in. = 0.75 t_{slab}
 ρ_{slab} = 0.000217 lb-sec²/in.⁴
 ρ_{ob} = 0.000150 lb-sec²/in.⁴ = 0.69 ρ_{slab}

Substitution into Equation (C-2) yields:

$$m = (\rho_{slab})(t_{slab}) + (0.69 \rho_{slab})(0.75 t_{slab})$$

$$= 1.518 \rho_{slab} t_{slab}$$

$$= 0.00527 \text{ lb-sec}^2/\text{in.}^3$$

For the flat slab with drop panels (assume $L_{dp}=0.4~L$ and $S_{dp}=0.4~L$), Equation C-12 must be used to determine K_{LM} . The first terms of the numerator and denominator which represent the slab and overburden, only, are already known. That is,

$$\rho_{ob} t_{ob} + \rho_{slab} t_{slab} = 1.518 \rho_{slab} t_{slab}$$

$$A_{T} = \sum A = 2.0845 L^{2}$$

$$\frac{I}{cL_{1}} {flat \choose slab} = 1.4352 L^{2}$$

Table C-6 lists the parameters (d, b, α_{LM}) needed to determine the second terms (drop panel contribution). Because the drop panel is square (i.e., $L_{dp} = S_{dp}$), all 12 sectors are identical. Therefore,

$$\frac{I}{cL_{1}} \binom{drop}{panel} = 12 \left[\left(\frac{2}{3} \right) \left(\frac{c}{2} \right) \left(0.2 L - \frac{c}{2} \right) + \frac{3}{8} \left(0.2 L - \frac{c}{2} \right) \right] \\
= 12 \left[\left(\frac{2}{3} \right) \left(\frac{0.178 L}{2} \right) \left(0.2 L - \frac{0.178 L}{2} \right) + \frac{3}{8} \left(0.2 L - \frac{0.178 L}{2} \right) \right] \\
+ \frac{3}{8} \left(0.2 L - \frac{0.178 L}{2} \right) \left(0.2 L - \frac{0.178 L}{2} \right) \right] \\
= 0.1346 L^{2}$$

The drop panel area, A_{dp} , equals:

$$A_{dp} = 1.5 [(0.4 L)(0.4 L) - c^2] = 0.1925 L^2$$
 (C-19)

Substitution into Equation (C-12) yields:

$$K_{LM} = \frac{(1.518 \, \rho_{slab} \, t_{slab})(1.4352 \, L^2) + \rho_{dp} \, t_{dp}(0.1346 \, L^2)}{(1.518 \, \rho_{slab} \, t_{slab})(2.0845 \, L^2) + \rho_{dp} \, t_{dp}(0.1925 \, L^2)}$$

$$\dots (C-20)$$

Assume that the following conditions exist:

$$t_{slab} = 16 \text{ in.}$$
 $t_{dp} = 6 \text{ in.} = 0.375 t_{slab}$
 $\rho_{slab} = \rho_{dp} = 0.000217 \text{ lb-sec}^2/\text{in.}^4$

Substituting into Equation C-20 yields:

$$K_{LM} = \frac{[(1.518 \, \rho_{slab} \, t_{slab})(1.4352 \, L^2) + (\rho_{slab})(0.375 \, t_{slab})(0.1346 \, L^2)]}{[1.518 \, \rho_{slab} \, t_{slab})(2.0845 \, L^2) + (\rho_{slab})(0.375 \, t_{slab})(0.1925 \, L^2)]}$$

$$= \frac{2.229 \, \rho_{slab} \, t_{slab} \, L^2}{3.236 \, \rho_{slab} \, t_{slab} \, L^2} = 0.689$$

Thus, there is no change in the $K_{\underline{L}\underline{M}}$ value. The actual mass is given by Equation C-6. That is,

$$m = \rho_{ob} t_{ob} + \rho_{slab} t_{slab} + \rho_{dp} t_{dp} \frac{A_{dp}}{A_{T}}$$

Substituting yields:

m = 1.518
$$\rho_{slab} t_{slab} + (1.0 \rho_{slab})(0.375 t_{slab}) \left(\frac{0.1925 L^2}{2.0845 L^2}\right)$$

= 1.553 $\rho_{slab} t_{slab}$
= 0.00539 lb-sec²/in.³

Therefore, there is only a 2.3% increase in the unit mass because of the drop panels. For practical purposes this can be neglected during the design process.

PARAMETER STUDIES

For comparitive purposes, K_{LM} was calculated for the 15 iterative values of x' and y' employed in the yield-line analysis of Appendix B. These results, listed in Table C-5, indicate the relative insensitivity of K_{LM} to yield-line locations. That is, K_{LM} varies slightly from 0.679 to 0.698.

Another comparative sensitivity study was made for different values of β (i.e., 1.00 $\leq \beta \leq$ 2.00). The location of the yield lines were assumed as follows:

$$x' = 0.4$$

$$y' = 0.375/\beta$$

$$z' = \left(\frac{1}{\beta} - 0.89 \alpha_{cap}\right)/2$$

The calculated values of $K_{\mbox{LM}}$ for five β values are listed in Table C-7. These results again indicate the relative insensitivity of $K_{\mbox{LM}}$. That is, $K_{\mbox{LM}}$ varies from 0.682 to 0.691.

CONCLUSION

This Appendix outlines a procedure for determining the effective unit mass for flat slabs with and without drop panels. The plastic load-mass factor, K_{LM} , was shown to be unaffected by the introduction of normal sized drop panels. Therefore, Equation C-7 can be used for flat slabs with or without drop panels. The actual unit mass was shown to increase only slightly (2.3%) upon the introduction of normal sized drop panels. Therefore, Equation C-2 can be used to determine the actual unit mass for flat slabs with or without drop panels.

Table C-1. Load-Mass Parameters

D 3		,	Rectangle*	Triangle	
Panel	Sector	d	b	ъ	αLM
	C-1	L - c - x	c/2	S - c - у	3/8
Corner	C-2	x	S - (c/2) - y	у	1/4
(C)	C-3	S - c - y	c/2	L - c - х	3/8
	C-4	у	L - (c/2) - x	х	1/4
	I/A - 1	z	c/2	(L - c)/2	3/8
Interior	I/A - 2	(L - c)/2	c/2	z	3/8
(I/A;I/B)	I/B - 1	S - c - z	c/2	(L - c)/2	3/8
	I/B - 2	(L - c)/2	c/2	S - z - c	3/8
	SS - 1	(L - c)/2	c/2	S - с - у	3/8
Short Side (SS)	SS - 2	S - c - y	c/2	(L - c)/2	3/8
	SS - 3	у	L/2	-	-
	LS/A - 1	z	c/2	L - c - x	3/8
	LS/A - 2	L - c - x	c/2	z	3/8
Long Side	LS/A - 3	x	z + (c/2)	-	-
(LS/A;LS/B)	LS/B - 1	S - c - z	c/2	L - с - х	3/8
	LS/B - 2	L - c - x	c/2	S - z - c	3/8
	LS/B - 3	x	S - z - (c/2)	-	_

^{*}For rectangular sectors: $\alpha_{LM} = 2/3$.

Table C-2. Expressions for $\frac{I}{cL_1}$

TO THE SERVICE PROPERTY STATES SERVICES SERVICES SERVICES SERVICES SERVICES

$\frac{1}{cL_1} = \sum_{d[(\alpha_{LM} b)_{rectangle} + (\alpha_{LM} b)_{triangle}]}$	$ (L-c-x) \left[\left(\frac{2}{3} \right) \left(\frac{c}{2} \right) + \left(\frac{3}{8} \right) (S-c-y) \right] + x \left[\left(\frac{2}{3} \right) (S-\frac{c}{2}-y) + \left(\frac{1}{4} \right) (y) \right] + (S-c-y) \left[\left(\frac{2}{3} \right) \left(\frac{c}{2} \right) + \left(\frac{3}{8} \right) (L-c-x) \right] + y \left[\left(\frac{2}{3} \right) \left(L-\frac{c}{2}-x \right) + \left(\frac{1}{4} \right) (x) \right] $	$z\left[\left(\frac{2}{3}\right)\left(\frac{c}{2}\right) + \left(\frac{3}{8}\right)\left(\frac{L-c}{2}\right)\right] + \left(\frac{L-c}{2}\right)\left[\left(\frac{2}{3}\right)\left(\frac{c}{2}\right) + \left(\frac{3}{8}\right)(z)\right]$	$ (S-c-z)\left[\left(\frac{2}{3}\right)\left(\frac{c}{2}\right) + \left(\frac{3}{8}\right)\left(\frac{L-c}{2}\right)\right] + \left(\frac{L-c}{2}\right)\left[\left(\frac{2}{3}\right)\left(\frac{c}{2}\right) + \left(\frac{3}{8}\right)(S-z-c)\right] $	$\left(\frac{L-c}{2}\right)\left[\left(\frac{2}{3}\right)\left(\frac{c}{2}\right) + \left(\frac{3}{8}\right)(S-c-y)\right] + (S-c-y)\left[\left(\frac{2}{3}\right)\left(\frac{c}{2}\right) + \left(\frac{3}{8}\right)\left(\frac{L-c}{2}\right) + y\left(\frac{2}{3}\right)\left(\frac{L}{2}\right)\right]$	$z\left[\left(\frac{2}{3}\right)\left(\frac{c}{2}\right) + \left(\frac{3}{8}\right)(L-c-x)\right] + (L-c-x)\left[\left(\frac{2}{3}\right)\left(\frac{c}{2}\right) + \left(\frac{3}{8}\right)(z)\right] + x\left[\left(\frac{2}{3}\right)\left(z + \frac{c}{2}\right)\right]$	$\left[(S-c-z) \left[\left(\frac{2}{3}\right) \left(\frac{c}{2}\right) + \left(\frac{3}{8}\right) (L-c-x) \right] + (L-c-x) \left[\left(\frac{2}{3}\right) \left(\frac{c}{2}\right) + \left(\frac{3}{8}\right) (S-z-c) \right] + x \left[\left(\frac{2}{3}\right) \left(S-z-\frac{c}{2}\right) \right]$
Panel Type	Corner	Interior	Interior	Short Side	Long Side	Long Side
	(C)	(I/A)	(I/B)	(SS)	(LS/A)	(LS/B)

Table C-3. Program Listings for I/cL_1 Calculations

a. Corner (C) b. Interior (I/A) c. Interior (I/B)

46 RCL 01 47 * 48 + 49 END

(continued)

Table C-3. Continued

d.	Short Side (SS)	e.	Long Side (LS/A)	f.	Long Side (LS/B)
	01*LBL "SS"		01*LBL "LSA"		01*LBL "LSB"
	02 RCL 06		02 RCL 06		02 RCL 06
	03 3		03 3		03 3
	03 3 04 / 05 RCL 12		04 /		04 /
	05 RCL 12		05 RCL 10		05 RCL 10
	06 3		06 3		06 3
	07 *		07 *		07 *
	08 8		08 8		08 8
	09 /		09 /		09 /
	10 +		10 +		10 +
	11 RCL 20		11 RCL 02		11 RCL 14
	12 *		12 *		12 *
	13 RCL 06		13 RCL 06		13 RCL 06
	14 3		14 3		14 3
	15 /		15 /		15 /
	16 RCL 20		16 RCL 02		16 RCL 14
	17 3		17 3		17 3
	18 *		18 *		18 *
	19 8		19 8		19 8
	20 /		20 /		20 /
	21 +		21 +		21 +
	22 RCL 12		22 RCL 10		22 RCL 10
	23 *		23 *		23 *
	24 +		24 +		24 +
	25 RCL 01		25 RCL 18		25 RCL 15
	26 3		26 2		26 2
	27 /		27 *		27 *
	28 +		28 3		28 3
	29 END		29 /		29 /
			30 RCL 00		30 RCL 00
			31 *		31 *
			32 +		32 +
			33 END		33 END

Table C-4. HP-31CV Storage for Flat Slab Yield-Line Analysis

a. Input Parameters

Absolute Value	Dimensionless Value	Register
×	x'	ōo
У	у'	01
z	z'	02
1/S	β	03
ď*	α cap	04

*c = 0.89 d

(continued)

Table C-4. Continued

b. Calculated Parameters

Absolute Value	Dimensionless Value	Register
S	1/β	05
с	0.89 α _{cap}	06
c/2	0.445 α _{cap}	07
L-c	1 - 0.89 α _{cap}	08
S-c	$(1/\beta) - 0.89 \alpha_{cap}$	09
L - с - х	1 - 0.89 α _{cap} - x'	10
L - (c/2) - x	1 - 0.445 α _{cap} - x'	11
S - c - y	$(1/\beta) - 0.89 \alpha_{cap} - y'$	12
S - (c/2) - y	(1/β) - 0.445 α _{cap} - y'	13
S - c - z	$(1/\beta) - 0.89 \alpha_{cap} - z'$	14
S - (c/2) - z	$(1/\beta) - 0.445 \alpha_{cap} - z'$	15
x + (c/2)	x' + 0.445 α cap	16
y + (c/2)	y' + 0.445 α _{cap}	17
z + (c/2)	z' + 0.445 α _{cap}	18
L - (S/2)	1 - (1/2β)	19
(L - c)/2	$(1 - 0.89 \alpha_{cap})/2$	20

Table C-5. Plastic Load-Mass Factor Calculations for 3 x 4 Flat Slab

$$[\beta = 1.25, \alpha_{cap} = 0.20, \Sigma A = 2.0845 L^2]$$

					Pa	Panel Types			Total	
×	, y	, 7	Corner (C)	Interior (I/A)	Interior (I/B)	Short Side (SS)	Long Side (LS/A)	Long Side (LS/B)	$\frac{1}{\text{cL}_1}$	K _{LM} *
L	0.20	0.311	0.4315	0.1387	0.1387	0.2462	0.2499	0.2499	1.4549	0.698
	0.25	0.311	0.4266	0.1387	0.1387	0.2445	0.2499	0.2499	1.4483	0.695
0.35	0.30	0.311	0.4217	0.1387	0.1387	0.2427	0.2499	0.2499	1.4416	0.692
	0.35	0.311	0.4168	0.1387	0.1387	0.2410	0.2499	0.2499	1.4350	0.688
	07.0	0.311	0.4119	0.1387	0.1387	0.2393	0.2499	0.2499	1.4284	0.685
	0.20	0.311	0.4280	0.1387	0.1387	0.2462	0.2486	0.2486	1.4488	0.695
	0.25	0.311	0.4229	0.1387	0.1387	0.2445	0.2486	0.2486	1.4420	0.692
0.40	0.30	0.311	0.4179	0.1387	0.1387	0.2427	0.2486	0.2486	1.4352	0.689
	0.35	0.311	0.4128	0.1387	0.1387	0.2410	0.2486	0.2486	1.4284	0.685
	0.40	0.311	0.4077	0.1387	0.1387	0.2393	0.2486	0.2486	1.4216	0.682
	0.20	0.311	0.4246	0.1387	0.1387	0.2462	0.2473	0.2473	1.4428	0.692
	0.25	0.311	0.4193	0.1387	0.1387	0.2445	0.2473	0.2473	1.4358	0.689
0.45	0.30	0.311	0.4140	0.1387	0.1387	0.2427	0.2473	0.2473	1.4287	0.685
	0.35	0.311	0.4087	0.1387	0.1387	0.2410	0.2473	0.2473	1.4217	0.682
	07.0	0.311	0.4034	0.1387	0.1387	0.2393	0.2473	0.2473	1.4147	0.679

$$K_{LM} = \frac{\sum_{cL_1}^{\frac{1}{cL_1}}}{\sum A}$$

Table C-6. Load-Mass Parameters for Drop Panel

Donal.	6	3	Rectangle*	Triangle	
Panel	Sector	d	Ъ	b	α _{LM}
Corner	C - 1	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
(C)	c - 3	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
	I/A - 1	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
Interior	I/A - 2	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
(I/A; I/B)	I/B - 1	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
	I/B - 2	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
Short Side	SS - 1	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
(SS)	SS - 2	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
	LS/A - 1	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
Inna Sida	LS/A - 2	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
Long Side (LS/A;	LS/B - 1	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8
LS/B)	LS/B - 2	0.2L - (c/2)	c/2	0.2L - (c/2)	3/8

*For rectangle: $\alpha_{LM} = 2/3$

Table C-7. Plastic Load-Mass Calculations for 3 x 4 Flat Slab

CONTRACTOR CONTRACTOR CONTRACTOR

 $[1.0 \le \beta \le 2.0]$

œ	×	->		Total		!	Panel Types	səd			Total I	K,*
.	•	^	,	A _T	Corner (C)	Interior (I/A)	Interior (I/B)	Short Side (SS)	Long Side (LS/A)	Long Side (LS/B)	$^{\mathrm{cL}_1}$	i
1.00	7.0	0.375	0.411	1.00 0.4 0.375 0.411 2.6489	0.5387	0.1755	0.1755	0.3137	0.3128	0.3128	1.8290	0.6905
1.25	7.0	0.300	0.311	1.25 0.4 0.300 0.311 2.0845	0.4179	0.1387	0.1387	0.2427	0.2486	0.2486	1.4352	0.6885
1.50	7.0	0.250	0.244	1.50 0.4 0.250 0.244 1.7080	0.3373	0.1142	0.1142	0.1954	0.2057	0.2057	1.1725	0.6865
1.75	7.0	0.214	0.197	1.75 0.4 0.214 0.197 1.4395	0.2798	0.0968	0.0968	0.1617	0.1753	0.1753	0.9857	0.6848
2.00	7.0	0.188	0.161	2.00 0.4 0.188 0.161 1.2379	0.2365	0.0836	0.0836	0.1363	0.1522	0.1522	0.8444	0.6821

$$* K_{LM} = \sum_{c} \frac{I}{c}$$

Figure C-1. Rotating sectors for load-mass factor calculations for 3 x 4 flat slab.

Figure C-2. Rotating sectors for load-mass factor calculations for 3×4 flat slab with drop panels.

(b) Triangle rotating about side.

THE PERSON NAMED IN PROPERTY OF PERSONS ASSESSED NAMED ASSESSED BEAUTY OF THE PERSONS ASSESSED FOR THE PERSONS ASSESSED F

(c) Triangle rotating about corner.

Figure C-3. Expressions for I/cL_1 for typical sections.

Appendix D

COLUMN DESIGN

INTRODUCTION

The columns are designed in accordance with the criteria presented in the ACI Code. They must be designed to resist the axial load and unbalanced moment resulting from the flat slab blast load and the structure dead load, P_{dl} . The axial load and moment at the top of the column (the critical section is at the bottom of the capital) are obtained from the flat slab shear forces, P_{i} , acting on the perimeter of the column capital plus the load, P_{cap} , on the equivalent square capital (Figure D-1).

The determination of these design loads are illustrated for the lower right-hand column of the 3 x 4 flat slab structure (Figure 11). The actual column design is not shown, but it can be obtained from any reinforced concrete design textbook.

CALCULATE TOTAL DYNAMIC COLUMN LOADS

The previously determined yield-line pattern for the flat slab is shown in Figure D-2 along with the loading parameters for the lower column. The required dynamic ultimate unit resistance, $r_{\rm ud}$, equals 10.72 psi. (See Step 18 of main text.) The column loads are determined as follows:

Capital:
$$P_{cap} = (53.3)(53.3)(10.72) = 30,450 \text{ lb}$$

Area 1: $P'_{1} = \frac{1}{2}(93.3)(123.3)(10.72) = 61,660 \text{ lb}$
 $P''_{1} = (93.3)(53.4)(10.72) = 53,410 \text{ lb}$
 $P'''_{1} = \frac{1}{2}(93.3)(126.6)(10.72) = 63,310 \text{ lb}$
 $P_{1} = \Sigma P_{1} = 178,380 \text{ lb}$

$$e_{1x}' = -26.7 - \frac{123.3}{3} = -67.8 \text{ in.}$$

$$e_{1x}'' = 0.0 \text{ in.}$$

$$e_{1x}''' = 26.7 + \frac{126.6}{3} = 68.9 \text{ in.}$$

$$e_{1x} = \frac{\sum P_1 e_{1x}}{\sum P_1} = [(61,660) (-67.8) + (53,410) (0) + (63,310) (68.9)]/178,380$$

$$= +1.02 \text{ in.}$$

$$e_{1y} = +26.7 \text{ in.}$$

$$\frac{\text{Area 2:}}{2} = \frac{1}{2} (123.3)(93.3)(10.72) = 61,660 \text{ lb}$$

$$P_2''' = (123.3)(53.4)(10.72) = 70,580 \text{ lb}$$

$$P_2'''' = \frac{1}{2} (123.3)(96.6)(10.72) = 63,840 \text{ lb}$$

$$P_2 = \sum P_2 = 196,080 \text{ lb}$$

$$e_{2y}'' = 26.7 + \frac{93.3}{3} = 57.8 \text{ in.}$$

$$e_{2y}''' = -26.7 - \frac{96.6}{3} = -58.9 \text{ in.}$$

$$e_{2y}'' = -26.7 - \frac{96.6}{3} = -58.9 \text{ in.}$$

$$e_{2y} = \frac{\sum P_2 e_{2y}}{\sum P_2} = [(61,660) (57.8) + (70,580) (0) + (63,840) (-58.9)]/196,080$$

$$= -1.00 \text{ in.}$$

$$e_{2x} = -26.7 \text{ in.}$$

$$\frac{\text{Area 3:}}{3} = \frac{1}{2} (126.6)(93.3)(10.72) = 63,310 \text{ lb}$$

$$P_3'''' = (126.6)(53.4)(10.72) = 72,470 \text{ lb}$$

$$P_{3}^{""} = \frac{1}{2}(126.6)(96.6)(10.72) = 65,550 \text{ lb}$$

$$P_{3} = \Sigma P_{3} = 201,330 \text{ lb}$$

$$e_{3y}^{"} = 57.8 \text{ in.}$$

$$e_{3y}^{"} = 0.0 \text{ in.}$$

$$e_{3y}^{"} = -58.9 \text{ in.}$$

$$e_{3y} = \frac{\Sigma P_{3} e_{3y}}{\Sigma P_{3}} = [(63,310)(57.8) + (72,470)(0) + (65,550)(-58.9)]/201,330$$

$$= -1.00 \text{ in.}$$

$$e_{3x} = 26.7 \text{ in.}$$

$$\frac{\text{Area 4}}{2}: P_{4}^{"} = \frac{1}{2}(96.6)(123.3)(10.72) = 63,840 \text{ lb}$$

$$P_{4}^{"} = (96.6)(53.4)(10.72) = 55,290 \text{ lb}$$

$$P_{4}^{"} = \Sigma P_{4} = 184,690 \text{ lb}$$

$$e_{4x}^{"} = -67.8 \text{ in.}$$

$$e_{4x}^{"} = 68.9 \text{ in.}$$

$$e_{4x}^{"} = 68.9 \text{ in.}$$

$$e_{4x}^{"} = 68.9 \text{ in.}$$

$$e_{4x} = -26.7 \text{ in.}$$

$$e_{4y}^{"} = -26.7 \text{ in.}$$

Design Loads:

This load is assumed to be a suddenly applied constant load with a limited duration equal to the time ($t_m = 93.3 \text{ msec}$) calculated for the slab to reach its maximum response (from Step 18).

CALCULATE NATURAL PERIOD

Column Mass

The mass of the column includes the column, capital, drop panel, and that portion of the roof slab and soil overburden within the boundaries of the drop panel; see Figure D-3. Therefore,

Column:
$$M = \left(\frac{\pi}{4}\right) (30)^2 (119)(0.000217) = 18.25 \text{ lb-sec}^2/\text{in.}$$

Capital: $M = \frac{1}{3} (15) \left[\left(\frac{\pi}{4}\right) (30)^2 + \left(\frac{\pi}{4}\right) (60)^2 + \left(\frac{\pi}{4}\right) (30)(60) \right] (0.000217)$
 $= 5.37 \text{ lb-sec}^2/\text{in.}$

Drop Panel:
$$M = (120)^2 (6)(0.000217) = 18.75 \text{ lb-sec}^2/\text{in}.$$

Roof Slab:
$$M = (120)^2 (16)(0.000217) = 50.00 \text{ lb-sec}^2/\text{in}.$$

Overburden:
$$M = (120)^2 (12)(0.000150) = 25.92 \text{ lb-sec}^2/\text{in}.$$

$$M_{Total} = 118.29 \text{ lb-sec}^2/\text{in}.$$

Column Stiffness (Axial)

$$K = \frac{E_c A}{L} = \frac{(3.64 \times 10^6) \left(\frac{\pi}{4}\right) (30)^2}{119} = 21.62 \times 10^6 \text{ lb/in.}$$
 (D-6)

Natural Period

$$T_{n} = 2\pi \sqrt{\frac{K_{LM} M}{K}}$$
 (D-7)

where K_{LM} = 1.0. Therefore,

$$T_n = 2\pi \sqrt{\frac{(1.0) (118.29)}{21.62 \times 10^6}} = 0.0147 \text{ sec}$$

ELASTIC-PLASTIC SDOF RESPONSE

The required dynamic strength of the column, P_d , (considering only the blast loading) is obtained from the SDOF maximum response chart, Figure 5.25, in Reference 18. That is, for an allowable design ductility, X_m/X_E , of 3.0:

$$\frac{t_{d}}{T_{n}} = \frac{93.3}{14.7} = 6.35 \longrightarrow C_{R} = 1.20$$

$$P_{d} = C_{R} P = (1.20) (790,930) = 949,120 \text{ lb}$$
(D-8)

This value is converted to an equivalent static column strength by dividing by DIF. That is,

$$P_{s} = \frac{P_{d}}{DIF}$$
 (D-9)

For concrete compression, DIF equals 1.25. Therefore,

$$P_s = \frac{949,120}{1.25} = 759,300 \text{ lb}$$

TOTAL COLUMN LOAD

The total factored axial load, P_u , consists of the previously determined equivalent static load, P_s , plus the structure dead load, P_{dl} , within the boundaries of the yield lines shown in Figure D-1. The dead load calculations are as follows:

Capital:
$$P = \frac{1}{3} (15) \left[\left(\frac{\pi}{4} \right) (30)^2 + \left(\frac{\pi}{4} \right) (60)^2 + \frac{\pi}{4} (30)(60) \right] \left(\frac{145}{1,728} \right) = 2,076 \text{ lb}$$

Drop Panel: P = $(120)^2$ (6) $\left(\frac{145}{1,728}\right)$ = 7,250 lb

Roof Slab: P =
$$(303.3)(243.3)(16)\left(\frac{145}{1,728}\right) = 99,074 \text{ lb}$$

Soil Overburden:
$$P = (303.3)(243.3)(12)\left(\frac{100}{1,728}\right) = 51,245 \text{ lb}$$

$$P_{d1} = \Sigma P = 159,645 lb$$

Therefore, the total factored axial load equals:

$$P_u = P_s + P_{d1} = 759,300 + 159,645 = 918,945 lb$$
 (D-10)

The design eccentricity remains at 1.0 in.

Figure D-1. Typical column loads.

Figure D-2. Column loads for 3 x 4 flat slab.

Figure D-3. Assumed column.

DISTRIBUTION LIST

AMMO HAZARDS REVIEW BD Chrmn, NAVSAFECEN (Code 43) Norfolk, VA ARMY - CERL CERL-ZN, Champaign, IL ARMY CORPS OF ENGINEERS Library, Seattle, WA ARMY ENG WATERWAYS EXP STA Library, Vicksburg MS; WES-SS (Kiger), Vicksburg, MS ARMY-BELVOIR R&D CTR STRBE-BLORE, Ft Belvoir, VA ARMY-DEPOT SYS COMMAND DRSDS-AI, Chambersburg, PA CBC Code 156, Port Hueneme, CA; Dir, CESO, Port Hueneme, CA; PWO (Code 80), Port Hueneme, CA CNO Code NOP-964, Washington, DC; Code OP 441F, Washington, DC COMFEWSG DET Security Off, Washington, DC COMNAVAIRSYSCOM Code PMA 258, Washington, DC DOD Explos Safety Brd (Lib), Washington, DC; Explos Safety Brd, Washington, DC DTIC Alexandria, VA DTNSRDC DET, Code 4120, Annapolis, MD GSA Code FAIA, Washington, DC LIBRARY OF CONGRESS Sci & Tech Div, Washington, DC MARINE CORPS HQTRS Code LFF-2, Washington DC NATL RESEARCH COUNCIL Naval Studies Board, Washington, DC NAVCOASTSYSCEN Tech Library, Panama City, FL NAVEODTECHCEN Tech Library, Indian Head, MD NAVFACENGCOM Code 03, Alexandria, VA; Code 03T (Essoglou), Alexandria, VA; Code 04M, Alexandria, VA: Code 09M124 (Tech Lib). Alexandria, VA: Code 100. Alexandria, VA: Code 1113, Alexandria, VA NAVFACENGCOM - CHES DIV. Code 101, Washington, DC; Code 102 (A Lee), Washington, DC; Code FPO-1PL, Washington, DC NAVFACENGCOM - LANT DIV. Code 1112, Norfolk, VA; Library, Norfolk, VA NAVFACENGCOM - NORTH DIV. Code ()4AL, Philadelphia, PA NAVFACENGCOM - PAC DIV. (Kyi) Code 101, Pearl Harbor, HI; Code 09P, Pearl Harbor, HI; Code 402, RDT&E, Pearl Harbor, HI; Library, Pearl Harbor, HI NAVFACENGCOM - SOUTH DIV. Code 09 (Watts) Charleston, SC; Code 1112, Charleston, SC; Code 406, Charleston, SC; Library, Charleston, SC NAVFACENGCOM - WEST DIV. Code 04B, San Bruno, CA; Code 04D1, San Bruno, CA; Library (Code 04A2.2), San Bruno, CA NAVOCEANSYSCEN Code 9642B (Bayside Library). San Diego, CA NAVSEASYSCOM Code 05G13, Washington, DC; Code 06H4, Washington, DC; Code 56W44, Washington, DC; Code 62C1, Washington, DC NAVSHIPYD Code 440, Portsmouth, NH NAVSUPSYSCOM Code XB1, Washington, DC NAVSURFWPNCEN Code E211 (C. Rouse), Dahlgren, VA; DET, PWO, White Oak, Silver Spring, MD; NAVWPNCEN Code 2636, China Lake, CA; Code 3276, China Lake, CA NAVWPNSTA Code 09, Concord, CA; Code 092, Concord CA; Engrg Div, PWD, Yorktown, VA; PWO, Charleston, SC; PWO, Seal Beach, CA NAVWPNSTA PWO, Yorktown, VA NAVWPNSTA Safety Br. Concord. CA; Security Mgr (Code 10B). Concord. CA; Supr Gen Engr., PWD, Seal Beach, CA NAVWPNSUPPCEN Code 09, Crane. IN COMDT COGARD Code 2511 (Civil Engrg), Washington, DC NTSB Chairman, Washington, DC PWC Code 101 (Library), Oakland, CA; Code 123-C, San Diego, CA; Code 420, Great Lakes, IL; Library (Code 134), Pearl Harbor, HI: Library, Guam, Mariana Islands; Library, Norfolk, VA; Library, Pensacola, FL: Library, Yokosuka JA; Tech Library, Subic Bay, RP COLORADO STATE UNIVERSITY CE Dept (W Charlie), Fort Collins, MD MIT Engrg Lib, Cambridge, MA; Lib, Tech Reports, Cambridge, MA PURDUE UNIVERSITY Engrg Lib, Lafayette, IN SOUTHWEST RSCH INST J Hokanson, San Antonio, TX UNIVERSITY OF DELAWARE CE Dept, Ocean Engrg (Dalrymple), Newark, DE UNIVERSITY OF ILLINOIS Library, Urbana, IL AMMAN & WHITNEY CONSULT ENGRS N Dobbs New York, NY ASSOC AMER RR Bur of Explosives (Miller) Washington, DC NUSC DET Library (Code 4533) Newport, RI MCDONNELL AIRCRAFT CO. Navy Tech Rep. St Louis, MO; R Carson, St. Louis, MO WOODWARD-CLYDE CONSULTANTS R Dominguez, Houston, TX

R.F. BESIER CE, Old Saybrook, CT

INSTRUCTIONS

The Naval Civil Engineering Laboratory has revised its primary distribution lists. The bottom of the mailing label has several numbers listed. These numbers correspond to numbers assigned to the list of Subject Categories. Numbers on the label corresponding to those on the list indicate the subject category and type of documents you are presently receiving. If you are satisfied, throw this card away (or file it for later reference).

If you want to change what you are presently receiving:

- Delete mark off number on bottom of label.
- Add circle number on list.
- Remove my name from all your lists check box on list.
- Change my address line out incorrect line and write in correction (ATTACH MAILING LABEL).
- Number of copies should be entered after the title of the subject categories you select.

Fold on line below and drop in the mail.

Note: Numbers on label but not listed on questionnaire are for NCEL use only, please ignore them.

Fold on line and staple

DEPARTMENT OF THE NAVY

NAVAL CIVIL ENGINEERING LABORATORY PORT HUENEME, CALIFORNIA 93043

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300
1 IND-NCEL-2700/4 (REV. 12-73)
0830-LL-L70-0044

POSTAGE AND FEES PAID DEPARTMENT OF THE NAVY DOD-316

Commanding Officer
Code L14
Naval Civil Engineering Laboratory
Port Hueneme, California 93043

DISTRIBUTION QUESTIONNAIRE

The Naval Civil Engineering Laboratory is revising its primary distribution lists.

SUBJECT CATEGORIES

- SHORE FACILITIES
- Construction methods and materials (including corrosion control, coatings)
- Waterfront structures (maintenance/deterioration control)
- **Utilities (including power conditioning)**
- Explosives safety
- Construction equipment and machinery
- Fire prevention and control
- Antenna technology
- Structural analysis and design (including numerical and computer techniques)
- 10 Protective construction (including hardened shelters, shock and vibration studies)
- 11 Soil/rock mechanics
- 13 BEQ
- 14 Airfields and pavements
- 15 ADVANCED BASE AND AMPHIBIOUS FACILITIES
- 16 Base facilities (including shelters, power generation, water supplies)
- 17 Expedient roads/airfields/bridges
- 18 Amphibious operations (including breakwaters, wave forces)
- 19 Over-the-Beach operations (including containerization, materiel transfer, lighterage and cranes)
- 20 POL storage, transfer and distribution
- 24 POLAR ENGINEERING
- 24 Same as Advanced Base and Amphibious Facilities, except limited to cold-region environments

- 28 ENERGY/POWER GENERATION
- 29 Thermal conservation (thermal engineering of buildings, HVAC systems, energy loss measurement, power generation)
- 30 Controls and electrical conservation (electrical systems, energy monitoring and control systems)
- 31 Fuel flexibility (liquid fuels, coal utilization, energy from solid waste)
- 32 Alternate energy source (geothermal power, photovoltaic power systems, solar systems, wind systems, energy storage
- 33 Site data and systems integration (energy resource data, energy consumption data, integrating energy systems)
- 34 ENVIRONMENTAL PROTECTION
- 35 Solid waste management
- 36 Hazardous/toxic materials management
- 37 Wastewater management and sanitary engineering
- 38 Oil pollution removal and recovery
- 39 Air pollution
- 40 Noise abatement
- 44 OCEAN ENGINEERING
- 45 Seafloor soils and foundations
- 46 Seafloor construction systems and operations (including diver and manipulator tools)
- 47 Undersea structures and materials
- 48 Anchors and moorings
- 49 Undersea power systems, electromechanical cables, and connectors
- 50 Pressure vessel facilities
- 51 Physical environment (including site surveying)
- 52 Ocean-based concrete structures
- 53 Hyperbaric chambers
- 54 Undersea cable dynamics

TYPES OF DOCUMENTS

- 85 Techdata Sheets 86 Technical Reports and Technical Notes
- 83 Table of Contents & Index to TDS

- 82 NCEL Guide & Updates
- [] None-
- 91 Physical Security
- remove my name