Kolmogorov Complexity 101

Note: actually this slides has only 7 pages

$$H = \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = 1$$
 bit.

$$H = \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = 1$$
 bit.

How much information does War and Peace have?

$$H = \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = 1$$
 bit.

How much information does War and Peace have?

Novel:
$$\Omega \to [0, 1], \Omega = 2^{L^*}, L = \{a, b, \dots\}$$
?

$$H = \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = 1$$
 bit.

How much information does War and Peace have?

Novel:
$$\Omega \to [0, 1], \Omega = 2^{L^*}, L = \{a, b, \dots\}$$
?

possibly by a Write: $(L^n, L) \rightarrow [0, 1]$?

$$H = \frac{1}{2}\log 2 + \frac{1}{2}\log 2 = 1$$
 bit.

How much information does War and Peace have?

Novel:
$$\Omega \to [0, 1], \Omega = 2^{L^*}, L = \{a, b, \dots\}$$
?

possibly by a Write:
$$(L^n, L) \rightarrow [0, 1]$$
?

More reasonable: the complexity of (information in) $x \in S$ is its *shortest description*.

shortest description of $x \in S$

shortest description of $x \in S$

ightarrow shortest description of n(x) where $n:S
ightarrow\mathbb{N}$ is a unique coding

shortest description of $x \in S$

ightarrow shortest description of n(x) where $n:S
ightarrow\mathbb{N}$ is a unique coding

ightarrow shortest program to produce n(x) where \dots

shortest description of $x \in S$

- \rightarrow shortest description of n(x) where $n{:}\,S\,{\to}\,\mathbb{N}$ is a unique coding
- ightarrow shortest program to produce n(x) where ...

wait!

shortest description of $x \in S$

- \rightarrow shortest description of n(x) where $n: S \rightarrow \mathbb{N}$ is a unique coding
- \rightarrow shortest program to produce n(x) where ...

wait!

shortest program in which PL?

No one wants to write numeric computing in ... any language other than FORTRAN.

— Sussman, father of Scheme, in a talk whose title I can't recall.

shortest description of $x \in S$

- \rightarrow shortest description of n(x) where $n: S \rightarrow \mathbb{N}$ is a unique coding
- \rightarrow shortest program to produce n(x) where ...

wait!

shortest program in which PL?

No one wants to write numeric computing in ... any language other than FORTRAN.

— Sussman, father of Scheme, in a talk whose title I can't recall.

or in fancy jargons: shortest input in which Turing machine? can we make a best choice?

shortest description of $x \in S$

- \rightarrow shortest description of n(x) where $n: S \rightarrow \mathbb{N}$ is a unique coding
- \rightarrow shortest program to produce n(x) where ...

wait!

shortest program in which PL?

No one wants to write numeric computing in ... any language other than FORTRAN.

— Sussman, father of Scheme, in a talk whose title I can't recall.

or in fancy jargons: shortest input in which Turing machine? can we make a best choice?

Yes.

Theorem 1. There is a Turing machine T_0 which, for any other Turing machine T, there exists a constant c such that, for any $n \in \mathbb{N}$, the shortest program to output n (encoded as binary strings) for T_0 is at most c longer than that of T.

Theorem 2. There is a Turing machine T_0 which, for any other Turing machine T, there exists a constant c such that, for any $n \in \mathbb{N}$, the shortest program to output n (encoded as binary strings) for T_0 is at most c longer than that of T.

In short: there is a Turing machine that's as good as any other (within constant difference).

Idea: interpreter, or universal machine if you like it.

Theorem 3. There is a Turing machine T_0 which, for any other Turing machine T, there exists a constant c such that, for any $n \in \mathbb{N}$, the shortest program to output n (encoded as binary strings) for T_0 is at most c longer than that of T.

In short: there is a Turing machine that's as good as any other (within constant difference).

Idea: interpreter, or universal machine if you like it.

So we can just define C(x) being the shortest program according to T_0 .

Theorem 4. There is a Turing machine T_0 which, for any other Turing machine T, there exists a constant c such that, for any $n \in \mathbb{N}$, the shortest program to output n (encoded as binary strings) for T_0 is at most c longer than that of T.

In short: there is a Turing machine that's as good as any other (within constant difference).

Idea: interpreter, or universal machine if you like it.

So we can just define C(x) being the shortest program according to T_0 .

Note: for different universal machines the definition only varies by a constant, if the ordering of Turing machines is fixed. But it's also true for two effective enumerations.

Theorem 5. There is a Turing machine T_0 which, for any other Turing machine T, there exists a constant c such that, for any $n \in \mathbb{N}$, the shortest program to output n (encoded as binary strings) for T_0 is at most c longer than that of T.

In short: there is a Turing machine that's as good as any other (within constant difference).

Idea: interpreter, or universal machine if you like it.

So we can just define C(x) being the shortest program according to T_0 .

Note: for different universal machines the definition only varies by a constant, if the ordering of Turing machines is fixed. But it's also true for two effective enumerations.

We can similarly define C(x, y), C(x|y) (the latter is interesting).

 $C(x) \leqslant l(x) + O(1), x \in \mathbb{N}$ where l(x) is the length of the binary representation of x.

 $C(x) \leq l(x) + O(1), x \in \mathbb{N}$ where l(x) is the length of the binary representation of x.

 $C(x|y) \leqslant C(x) + O(1).$

 $C(x) \leq l(x) + O(1), x \in \mathbb{N}$ where l(x) is the length of the binary representation of x.

$$C(x|y) \leqslant C(x) + O(1).$$

Some interesting miserable facts:

 $C(x) \leq l(x) + O(1), x \in \mathbb{N}$ where l(x) is the length of the binary representation of x.

$$C(x|y) \leqslant C(x) + O(1).$$

Some interesting miserable facts:

$$C(x, y) \nleq C(x) + C(y) + O(1).$$

 $C(x) \leq l(x) + O(1), x \in \mathbb{N}$ where l(x) is the length of the binary representation of x.

$$C(x|y) \leqslant C(x) + O(1).$$

Some interesting miserable facts:

$$C(x,y) \nleq C(x) + C(y) + O(1).$$

$$\exists s,t,C(s+t)\ll C(s).$$

 $C(x) \leq l(x) + O(1), x \in \mathbb{N}$ where l(x) is the length of the binary representation of x.

$$C(x|y) \leqslant C(x) + O(1).$$

Some interesting miserable facts:

$$C(x,y) \nleq C(x) + C(y) + O(1).$$

$$\exists s, t, C(s+t) \ll C(s).$$

They can be derived from

Theorem 12. in a set S of size n, there are at least $m(1-2^{-c})+1$ elements satisfying $C(x) \geqslant \log m - c$.

Proof. count the number of programs shorter than $\log m - c$.

Yes, you can work this out at ten, but sometimes important facts are simple.

Back to information theory

$$\sum_{x} p(x) C(x) \leqslant \sum_{x} -p(x) \log p(x) + c_{p}.$$

In fact, this is derived from $\sum_x p(x) \ K(x) \leqslant \sum_x -p(x) \log p(x) + c_p$. K is a little different from C and prefix-free.

Back to information theory

$$\sum_{x} p(x) C(x) \leqslant \sum_{x} -p(x) \log p(x) + c_{p}.$$

In fact, this is derived from $\sum_x p(x) \ K(x) \leqslant \sum_x -p(x) \log p(x) + c_p$. K is a little different from C and prefix-free.

We can define I(x;y) = C(y) - C(y|x) like we did before, but ...

Back to information theory

$$\sum_{x} p(x) C(x) \leqslant \sum_{x} -p(x) \log p(x) + c_{p}.$$

In fact, this is derived from $\sum_x p(x) \, K(x) \leqslant \sum_x -p(x) \log p(x) + c_p$. K is a little different from C and prefix-free.

We can define I(x;y) = C(y) - C(y|x) like we did before, but ...

Theorem 19. $C(x,y) = C(x) + C(y|x) + O(\log C(x,y))$. i.e., $C(x) + C(y|x) - c_1 \log C(x,y) \le C(x,y) \le C(x) + C(y|x) + c_2 \log C(x,y)$.

Corollary 20. $|I(x;y) - I(y;x)| = O(\log C(x,y)).$

In other words, I is not symmetric.

