Algebra Winter Notes

by Camila Restrepo

Last updated January 16, 2024

1	Introduction to Groups	2
2	Cyclic Subgroups	8

 $\it Note:$ Theorem numbers come from the order they are presented in lecture, and do not correspond to any textbook or written course material.

Week 1

Introduction to Groups

Definition of a group:

A **group** G is a nonempty set together with a multiplication $G \times G \to G$ satisfying

- 1. $(ab)c = a(bc) \forall a, b, c \in G$, (Associativity)
- 2. there exists $e \in G$ such that $ea = ae = a \forall a \in G$, (Identity)
- 3. and for every $a \in G$ there exists $b \in G$ such that ab = ba = e. (Inverse)

Example of a group:

Let $\mathbb{R}^{\times} = \mathbb{R}^{\dagger} = \{a \in \mathbb{R} : a \neq 0\}$ together with multiplication on \mathbb{R} .

Associativity is immediate.

The identity is $1 \in \mathbb{R}^{\times}$.

For every $a \in \mathbb{R}^{\times}$, $\frac{1}{a} \in \mathbb{R}$ and $a(\frac{1}{a}) = \frac{1}{a}(a) = 1$.

So \mathbb{R}^{\times} is a group.

Remark: When we need to highlight the group multiplication we write a group as a pair of the set and the multiplication, e.g., $(\mathbb{R}, +), (\mathbb{R}, \cdot)$. From now on, G is **always** a group.

Theorem 1.1

There is a unique identity element in G.

Theorem 1.2 Cancellation

Suppose ba = ca for $a, b, c \in G$. Then b = c

Proof. Let $d \in G$ be an inverse for a, i.e. da = ad = e. Multiplying on the right by d, we obtain

$$(ba)d = (ca)d \implies b(ad) = c(ad)$$

 $\implies be = ce$
 $\implies b = c.$

Theorem 1.3 Uniqueness of Inverses

For every $a \in G$ there is a unique element $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = e$.

Proof. Suppose $a \in G$ and $b, b' \in G$ are inverses of a, then

$$ba = e = b'a \implies b = b'$$

(by theorem 1.2) \Box

Example of inverses in different groups:

- 1. For $b \in \mathbb{R}^{\times}$, $b^{-1} = \frac{1}{4}$.
 - 2. For $b \in \mathbb{R}$ under addition $b^{-1} = -b$.
 - 3. For $b \in \mathbb{Z}_n$, $b^{-1} = n b$.

Example of groups using a field F:

- 1. (F, +) is a group (Imitate $(\mathbb{R}, +)$).
- 2. (F^{\times}, \cdot) where $F^{\times} = F^{\dagger} = \{a \in F : a \neq 0\}$ is a group. In particular, if p is a prime number, then $\mathbb{Z}_p^{\times} = \{1, \dots, p-1\}$ is a group.
- 3. The set of $m \times n$ matrices with entries in F, $M_{mn}(F)$ is a group under addition. When n = 1, $M_{m1}(F) = F^m$.
- 4. The set of invertible $m \times n$ matrices with entries in F, $GL(n, F) = \{A \in M_{mn}(F) : \det(A) \neq 0\}$ together with matrix multiplication is called (rank n) **general linear group** (over F). The identity matrix $I \in GL(n, F)$ is the identity. $\det(A) \neq 0 \implies \exists A^{-1} \in GL(n, F)$ such that $AA^{-1} = A^{-1}A = I$.

Example of the symmetries of the equilateral triangle:

Let $\sigma =$ flip through the vertical axis. Let $\rho =$ rotation by $\frac{2\pi}{3}$. We can compose two symmetries, e.g., $\sigma \rho = \sigma \cdot \rho$.

We can show that the symmetries given by σ and ρ under composition are $\{e, \rho, \rho^2, \sigma, \sigma\rho, \sigma\rho^2\}$ where e = doing nothing.

We call this set D_3 . It forms a group under composition. Clearly $\rho^3 = \rho\rho\rho = e$, $\sigma^2 = \sigma\sigma = e$, and $\sigma\rho\sigma = \rho^2 = \rho^{-1}$.

Definition of a dihedral group:

The **dihedral group** of order 2n is defined by

$$D_n = \left\{ e, \rho, \dots, \rho^{n-1}, \sigma, \sigma\rho, \dots, \sigma\rho^{n-1} \right\}$$

where $p^n=e,\ \sigma^2=e,$ and $\sigma\rho\sigma=\rho^{-1}.$ This is a group with the multiplication given by $\sigma\rho\sigma=\rho^{-1}.$

Remark: D_n is the group of symmetries of a regular n-gon.

Definition of an Abelian Group:

A group G is abelian (commutative) if ab = ba for all $a, b \in G$

Example of classifying groups:

- 1. (F, +) where F is a field is Abelian.
 - 2. (F^{\times}, \cdot) where F is a field is Abelian.
 - 3. $(M_{mn}(F), +)$ is Abelian.
 - 4. $(GL(n,F),\cdot)$ is not Abelian.
 - 5. D_n is not Abelian.

Definition of the group of units:

Let $n \ge 2$ and $U(n) = \{1 \le k \le n - 1 : \gcd(k, n) = 1\}$. U(n) is called the **group of units** of \mathbb{Z}_n

Recall Facts about $d = \gcd(a, b)$:.

- 1. $d \mid a$ and $d \mid b$, and d is the largest integer with this property
- 2. There exists $l, m \in \mathbb{Z}$ such that gcd(a, b) = la + mb
- 3. gcd(a, b) is the smallest positive \mathbb{Z} -linear combination of a and b.
- 4. If $f \mid a$ and $f \mid b$ then f divides $gcd(a,b) = la + mb \implies f \mid d$

Example of U(n) together with multiplication $\mod n$ is a group: Facts 2 and 3 tell us that $\gcd(k,n)=1 \iff \exists l,m\in\mathbb{Z} \text{ such that } lk+mn=1.$ So $U(2)=\{1\}$, $U(3)=\{1,2\}$, $U(4)=\{1,3\}$, $U(5)=\{1,2,3,4\}$, etc. So $U(p)=\{1,\ldots,p-1\}=\mathbb{Z}_p^{\times}$ where p is prime.

Definition of exponentiation:

Suppose $g \in G$.

1.
$$g^0 = e$$

2.
$$g^n = g \cdot \cdots \cdot g \ (n \text{ times})$$

3.
$$g^{-n} = (g^{-1})^n$$

Theorem 1.4 Socks and Shoes

Suppose $a, b \in G$. Then $(ab)^{-1} = b^{-1}a^{-1}$ (only relevant for non-abelian groups)

Proof.

$$(ab)(b^{-1}a^{-1}) = aea^{-1} = aa^{-1} = e$$

 $(b^{-1}a^{-1})(ab) = b^{-1}eb = b^{-1}b = e$

Definition of the order of a group and its elements:

The number of elements in G is called the **order** of G. Suppose $a \in G$. Then the **order of a** is the largest positive integer n such that $a^n = e$. If no such integer exists, we say a has **infinite order**. We denote the order of a by |a|.

Example of the order of $\{e\}$:

We know
$$|\{e\}| = 1$$
, and $e^1 = e \implies |e| = 1$

Example of the order of \mathbb{R}^{\times} :

 \mathbb{R}^{\times} is an infinite group so it has infinite order.

Obviously, |1| = 1.

$$|-1| = 2$$
 since $(-1)^2 = 1$ and $(-1)^1 \neq 1$.

All other real numbers in \mathbb{R}^{\times} have infinite order.

Example of the order of D_3 :

$$|D_3| = 6.$$

$$|\sigma| = 2, |\rho| = 3, |\rho^2| = 3, |\sigma\rho| = 2, |\sigma\rho^2| = 2.$$

Definition of a subgroup:

A **subgroup** of G is a subset $H \subseteq G$ which is a group under the same group multiplication as G.

Example of subgroups:

•

- 1. $\{\pm 1\} \subseteq \mathbb{R}^{\times}$ is a subgroup
- 2. $\mathbb{Z}_5\subseteq\mathbb{Z}$ is not a subgroup of \mathbb{Z} since they have different group multiplications

Theorem 1.5 2-step subgroup test

Suppose H is a non-empty subset of G. Then H is a subgroup of G if and only if:

- 1. $a, b \in H \implies ab \in H$ (closure under multiplication)
- 2. $a \in H \implies a^{-1} \in H$ (closure under inverse)

Theorem 1.6 1-test subgroup test

 $\emptyset \neq H \subseteq G$ is a subgroup $\iff a, b \in H \implies ab^{-1} \in H$

Proof. The forward direction is immediate.

" \Leftarrow " Suppose 1 and 2 hold. 1 tells us that the group multiplication on G restricts to a multiplication on H. The associativity of this multiplication on H is inherited from the associativity of the group multiplication on G.

By 1 and 2, for any $a \in H$, $a^{-1}inH$ and $e = aa^{-1} \in H$. Therefore $e \in H$.

Finally, 2 is the inverse axiom for H.

Example of showing subgroup-ness:

Let
$$\mu_4 = \{a \in \mathbb{C}^\times : a^4 = 1\} = \{1, -1, i, -i\}.$$

 $\mu_4 \neq \emptyset.$
 $a, b \in \mu_4 \implies (ab)^4 = a^4b^4 = (1)(1) = 1 \implies ab \in \mu_4$
 $a \in \mu_4 \implies (a^{-1})^4 = a^{-4} = (a^4)^{-1} = 1^{-1} = 1 \implies a^{-1} \in \mu_4$

Theorem 1.7 Finite subgroup test

Suppose $H \neq \emptyset$ is a finite subset $H \subseteq G$. Then H is a subgroup \iff $a, b \in H \implies ab \in H$.

Proof. " ⇒ " Follows from 2-step subgroup test.
" ⇐ " By the 2-step subgroup test it is enough to show that if $a,b \in H \Rightarrow ab \in H$ then $b \in H \Rightarrow b^{-1} \in H$ also holds. Suppose $a,b \in H \Rightarrow ab \in H$ (*). Suppose $e \neq b \in H$. Let's prove $b^{-1} \in H$ By (*), $b^2 = bb \in H$, and by induction, $b^n \in H$ for all $n \geq 1$. Since H is a finite set, $b^k = b^j$ for some $k > j \geq 1 \Rightarrow b^k b^{-j} = b^j b^{-k} = e \Rightarrow b^{k-j} = e$ for $k - j \geq 1$. So $b^{-1} = b^{k-j-1}$. k - j - 1 cannot be zero, since then b = e. So $k - j - 1 \geq 1$ and so $b^{-1} = b^{k-j-1} \in H$. If $b = e \in H$, then its inverse (itself) is obviously also in H.

Example of a finite subgroup:

Consider $\{1, i, -1, -i\} \subseteq \mathbb{C}^{\times}$. By the finite subgroup test, it suffices to show that $\{1, i, -1, -i\}$ is closed under multiplication to prove that it is a subgroup. This can be done by brute force.

Week 2

Cyclic Subgroups

Definition of a cyclic group:

A group G is called **cyclic** if there is an element $a \in G$ such that $G = \{a^j : j \in \mathbb{Z}\}$. a is called a **generator** of G. We indicate that G is a cyclic group generated by a with the notation $G = \langle a \rangle$.

Theorem 2.1

Suppose $a \in G$. Then $\langle a \rangle$ is a subgroup of G.

Proof. Suppose $a^m, a^n \in \langle a \rangle$ where $m, n \in \mathbb{Z}$. Then $a^m a^n = a^{m+n} \in \langle a \rangle$ since $m+n \in \mathbb{Z}$. Also $a^{-m} \in \langle a \rangle$ for all m since $-m \in \mathbb{Z}$, and $a^m a^{-m} = a^0 = e = a^0 = a^{-m} a^m$. By the 2-step subgroup test $\langle a \rangle$ is a subgroup.

Definition of a cyclic subgroup:

The subgroup $\langle a \rangle \subseteq G$ is called the **cyclic subgroup** generated by $a \in G$.

Example of generators:

Take $G = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ together with addition mod 6. $\mathbb{Z}_6 = <1>$ since $n(1)=n\mod 6$. Note that we also have $\mathbb{Z}_6 = <5>$.

Remark: In general, \mathbb{Z}_n is cyclic and generated by <-1>. All finite cyclic are isomorphic to Z_n for some n.

Remark: For $a \in G$, $< a > = < a^{-1} >$.

Example of the integers:

Take $G = \mathbb{Z}$.

$$\begin{array}{l} <1>=\{j1:j\in\mathbb{Z}\}=\mathbb{Z}.\\ <2>=\{j2:j\in\mathbb{Z}\}=\text{even numbers}\subset\mathbb{Z}.\\ =\{jm:j\in\mathbb{Z}\}=\text{integers divisible by }m\text{ for }m\neq0.\\ <0>=\{0\}. \end{array}$$

Remark: Infinite cyclic groups are all isomorphic to \mathbb{Z} .

Definition of the centre of a group:

The **centre** of G is the subset

$$Z(G) = \{x \in G : xa = ax \forall a \in G\}$$

i.e., the elements that commute with everything in G.

Theorem 2.2

Z(G) is a subgroup of G.

Proof. Suppose $x,y\in Z(G)$ and $a\in G$. Then (xy)a=x(ya)=xay=axy=a(xy). Therefore $xy\in Z(G)$. Moreover, $xa=ax\implies x^{-1}xa=x^{-1}ax\implies a=x^{-1}ax\implies ax^{-1}=x^{-1}axx^{-1}\implies ax^{-1}=x^{-1}a\implies x^{-1}\in Z(G)$. By the 2-step subgroup test, Z(G) is a subgroup of G.

Remark: 1. G is abelian $\iff Z(G) = G$

- 2. Z(G) is abelian (even when G is not)
- 3. $Z(D_3) = \{e\}$ (brute force)
- 4. $x \in Z(G) \iff xax^{-1} = a \text{ for all } a \in G \iff axa^{-1} = x \text{ for all } a \in G$

Example of a non-trivial center:

$$Z(GL(2,\mathbb{R})) = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{R}^{\times} \right\}$$

Definition of the centralizer:

Fix $b \in G$. The **centralizer** of b in G is

$$C_G(b) = C(b) = \{a \in G : ab = ba\}$$

= $\{a \in G : aba^{-1} = b\}$

Theorem 2.3

For any $b \in G$, $C_G(b)$ is a subgroup.

Proof. Subgroup test.

Example of:

1. $C_G(e) = G$

$$2. \ C_G(b) = G \iff b \in Z(G)$$