First thoughts on high-intensity K_S experiment

KAON 2022, September 9th–13th, Osaka, Japan Speaker: Radoslav Marchevski

High-intensity K_S/K_L experiment

- A golden opportunity to get η cleanly, with less than 1% error
- A possibility in the long-term that should not be overlooked
- Interference mesurement is the main motivation: [PRL 119 201802(2017), JHEP 07 (2021) 103]
 - Challenges on intensity, detector performance, background suppression
- A high-intensity kaon factory that could address the interference requires a much more generic machine
- Rewrite the PDG for K_S and K_L decays

Outline

- How to address the $K_S K_L \rightarrow \mu^+ \mu^-$ interference experimentally?
- High-intensity K_S/K_L experiment
 - Thoughts on experimental design
 - Toy MC simulation: signal yield and background contamination
 - Detector challenges
- Areas for future studies
- Conclusions

Experimental considerations: $K \rightarrow \mu^{+}\mu^{-}$ interference

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}t} \propto \mathrm{f}(t) = \mathrm{C_L} \, \mathrm{e}^{-\Gamma_\mathrm{L} t} + \mathrm{C_S} \, \mathrm{e}^{-\Gamma_\mathrm{S} t} + 2 [\mathrm{C_{sin}} \mathrm{sin}(\Delta \mathrm{m}t) + \mathrm{C_{cos}} \, \mathrm{cos}(\Delta \mathrm{m}t)] \, \mathrm{e}^{-\Gamma t}$$

$$C_{int}^2 = C_{sin}^2 (D, \varphi_0) + C_{cos}^2 (D, \varphi_0)$$
Pure K^0 beam $\mathrm{C_{int}} \sim 12 \, \%$

$$D = \frac{N_{K^0} - N_{\overline{K}^0}}{N_{K^0} + N_{\overline{K}^0}}$$

- Asymmetric K^0 and $\overline{K^0}$ beam required: **fixed-target experiment at the SPS?**
 - QCD production with a $K^0 \overline{K^0}$ asymmetry (D ~ 0.3 for NA48)
 - Dilution must be measured precisely (~ 1% precision or better) with $K \to \pi\pi$ decays
- At least $O(10^{14})$ K decays needed for a few % measurement (depends on φ_0) talk

Thoughts on experimental design

- Similar setup to NA62 but switch to neutral beamline: 6xNA62 intensity $\rightarrow 10^{19}$ POT/year
- Beam much closer to the detectors: **high event rate**
- First few meters after the target will be needed for collimation
 - Large incident angle → soft kaon momentum spectrum → 30-40% geometrical acceptance

Simulation: Kaon momentum spectrum

- Beam simulation: 400 GeV/c protons on a beryllium target producing K_L
 - $\frac{d^2N}{dpd\theta} = BX \frac{(1-X)^A (1+5e^{-DX})}{(1+(p\theta)^2/c)^4}$ with $X = \frac{p}{E_0}$
 - A, B, C and D taken for 400 mm beryllium target

Ref: M. van Dijk and M. Rosenthal

Simulation: Fiducial volume

- Only the first 6 K_S lifetimes produced (1% of K_L will decay in this region)
- FV starts after the collimator ~ **6.5 m** from the target (might be optimistic)
- Detailed simulation of the beam line required

Simulation: Signal mass resolution

- Smearing applied based on the NA62 spectrometer momentum and angular resolution
- Signal region used: 0.492 0.504 GeV/c² (signal efficiency ~ 99%)

Simulation: Signal after geometrical selection

- Signal efficiency ~ 15% (DAQ+Trigger+Detector efficiency (a la NA62)+full selection)
 - Geometrical acceptance ~ 40%
- Statistics in the plots correspond to ~2 years of operation (10¹⁹ POT/year), 12mrad incident angle, 1mrad collimator opening, and $\varphi_0 = 0$ strong phase

Signal yield for 10¹⁹ POT/year

- Yield for interference events can't reliably be computed
 - Depends heavily on the beam setup (incident angle + collimation) and the strong phase ϕ_0
- A particular experimental setup and φ_0 chosen
 - Expected number of interference decays in 0-6 τ_S ~ 500 2000 events/year (no selection)
 - Signal efficiency ~ 15 % → 75 300 events/year (after full selection)
 - Work on the signal extraction is needed to translate the expected statistics to sensitivity
 - Optimization of the beam line essential to determine if the sensitivity will be sufficient

Signal yield for 10¹⁹ POT/year

- The fiducial volume for other decay channels is larger than the first $6\tau_{KS}$ (FV ~ 60m)
- Large number of K_S , K_I , Λ decays in the FV
 - $K_L \sim 4x10^{13}$ decays/year
 - $K_S \sim 3x10^{13}$ decays/year
 - $\Lambda \sim 1 \times 10^{13}$ decays/year
- O(10¹⁴) K_S/K_L decays can be collected over 5 years of data-taking
 - Opportunities to measure and search for very rare K_L decays $(K_L \to \pi^0 l^+ l^-, K_L \to \mu e)$

Background from kaon decays

	Effective BR	Suppression mechanism	
$K^0 \rightarrow \mu^+ \mu^-$ (Signal)	~3x10 ⁻¹⁰		
$K_S \to \pi^+ \pi^-$	0.7	PID, Kinematics (wrong mass assignment)	
$K_S \rightarrow \pi^+ \pi^- (\rightarrow \mu^+ \mu^-)$	1x10 ⁻⁴	Probability for $2x \pi \to \mu$ decays, Kinematics (P_{miss} , Vertex reconstruction, Position at primary target)	
$K_L \rightarrow \mu^+ \mu^- \gamma$	3.6x10 ⁻⁷	Branching ratio, Missing momentum, Photon rejection	
Accidental muon pairs	-	Kinematic rejection, timing	

- $K^0 \to \mu^+ \mu^-$ signal signature: two muons with invariant mass $M_{\mu\mu}$, peaking at the neutral kaon mass
- Complementary challenges as for the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ measurement:
 - Strong PID, Kinematic, and Photon rejection

Background: Non-gaussian kinematic tails

- Kinematic boundary for both backgrounds far from signal region (at least 10 sigma)
- Smearing as for the gaussian + non-gaussian tails from $K^+ \to \pi^+ \pi^+ \pi^-$ in NA62 data
- Expected kinematic tails at the level of ~ 10⁻⁵

Background contamination

	Effective BR	Suppression mechanism	Expected S/B
$K_S \to \pi^+ \pi^-$	0.7	PID, Kinematics (wrong mass assignment)	~10
$K_S \rightarrow \pi^+ \pi^- (\rightarrow \mu^+ \mu^-)$	1x10-4	Probability for $2x \pi \to \mu$ decays, Kinematics (P_{miss} , Vertex reconstruction, Position at primary target)	~2
$K_L \rightarrow \mu^+ \mu^- \gamma$	3.6x10 ⁻⁷	Branching ratio, Missing momentum, Photon rejection	?
Accidental muon pairs	-	Kinematic rejection, timing	?

- Work required to estimate the contribution of radiative decays and accidentals
- Accidental background will be an issue (heavily dependent on the beam line)

Rate of charged particles

- Primary source of charged particles: K_S and Λ decays
 - Large integrated rates ~ **1GHz** (total surface ~ 3.7 m²)
 - *Non-uniform rate*: hot spots can reach ~ 0.7 1 MHz/cm²

Rate of charged particles

- Affordable rates but technically challenging
- High granularity + different technology as a function of radius
- Interface between different detector materials
- Solid state detectors might be the solution
- Similar to the solutions required for detectors at the HL-LHC

Areas for future study: analysis and simulations

• More serious feasibility study needed to address the $K_S - K_L \rightarrow \mu^+ \mu^-$ interference

• <u>Important questions:</u>

- Can we collect O(10³) interference events in few years of operation
- Background studies (accidentals and $K_L \rightarrow \mu^+ \mu^- \gamma$ background)
- Impact of background contamination and fit procedure on the extraction of η
- How is the sensitivity dependent on the strong phase

Areas for future study: beyond $K \rightarrow \mu^+ \mu^-$

- Large statistics of rare processes will be available
- O(10¹⁴) K_S/K_L decays will allow studies of $K_L \to \pi^0 l^+ l^-$ and $K_L \to e\mu$ decays
 - Translates to ~ 50 (25) $K_L \rightarrow \pi^0 e^+ e^- (K_L \rightarrow \pi^0 \mu^+ \mu^-)$ events/year
- $O(10^{13}) \Lambda$ decays
- Sensitivity studies for a wide range of rare processes must be performed
- New ideas for observables are welcome
- Understand better the experimental requirements for a broad program!

Areas for future study: beam and detector

- Beam line for a future high-intensity K_S experiment
 - Different options must be studied (muon rate, collimation, target, ...)

- Tracking and calorimetry at the GHz regime: dedicated R&D program required
 - High-granularity detectors with O(100ps) time resolution
 - High detection efficiency > 95%
 - Hybrid technology (different techniques as a function of R)
 - Calorimetry essential for $K_L \rightarrow \pi^0 l^+ l^-$
 - Excellent momentum and energy resolution
 - Readout challenges

Conclusions

- Opportunity to obtain a clean determination of η from kaon physics
- Interesting prospects to measure $K_S K_L \rightarrow \mu^+ \mu^-$ interference at CERN in the future
- A high-intensity neutral kaon beam will allow a very broad physics program
 - Opportunity to rewrite the PDG for K_S and K_L decays
 - Sensitivity to broad range of NP scenarios
- Huge technical challenges: require O(10) years of development
 - Synergies with detector technology for HL-LHC
- High-intensity kaon experiments, HIKE, at CERN after LS3
 - This implies kaon physics remains in ECN3