Statistique Descriptive

3^{ème} Chapitre: Les caractéristiques de tendance centrale ou de position.

Suite (3^{ème} partie)

Exercice d'application

Dans une entreprise, la répartition des individus par âge et sexe est consignée dans le tableau suivant:

Age(ans)	н	F
[20;25[29	38
[25;30[48	57
[30;35[36	42
[35;40[45	39
[40;45[49	41
[45;50[32	30
[50;55[37	18
[55;60[28	20

- **1-** Calculer la moyenne d'âge par sexe.
- 2- Calculer la moyenne d'âge de la population totale.

Age(ans)	н	F	Ci	nihci	nifci	
[20;25[29	38	22,5	652,5	855	
[25;30[48	57	27,5	1320	1567,5	
[30;35[36	42	32,5	1170	1365	
[35;40[45	39	37,5	1687,5	1462,5	
[40;45[49	41	42,5	2082,5	1742,5	
[45;50[32	30	47,5	1520	1425	
[50;55[37	18	52,5	1942,5	945	
[55;60[28	20	57,5	1610	1150	
Σ	304	285		11985	10512,5	
				m_h	39,42	
				m_f	36,89	
				·	22497,5	589
				m,	38,20	

II. La moyenne

5.La moyenne quadratique simple :

Définition:

La moyenne quadratique simple de *n*-nombres réels, notée "Q" correspond à la moyenne arithmétique de leurs carrés, c-à-d

$$Q = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

Exemple : Considère la série $\{3, 4, 7, 9, 11, 13, 17, 19\}$. la moyenne quadratique est :

$$Q = \sqrt{\frac{3^2 + 4^2 + 7^2 + 9^2 + 11^2 + 13^2 + 17^2 + 19^2}{8}} = 11,699$$

La médiane

Définition:

La médiane, notée Me, est la valeur de la variable statistique qui partage la population en deux effectifs égaux.

Remarque importante :

- -La médiane ne s'applique que lorsque les observations sont
 ordonnées : ordre croissant ou décroissant.
- -Le calcul de la médiane ne concerne que les variables mesurées sur une échelle ⇒ variables qualitatives.

1.Calcul de médiane pour des données non réparties en classes :

Pour calculer la Médiane, on commence par ordonner les valeurs prises par la variable statistique *X* .

On note $X_{(1)}$ la première valeur, $X_{(2)}$ la deuxième valeur, ..., $X_{(n)}$ la plus grande valeur. On a donc :

$$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$$

On distingue deux cas:

$$Me = \begin{cases} X_{(\frac{n+1}{2})} & \text{si n est impair,} \\ X_{(\frac{n}{2})} + X_{(\frac{n}{2})+1} \\ 2 & \text{si n est pair.} \end{cases}$$

Exemples de données non réparties en classes :

Premier Cas "n" est impair : la série observée : {3 2 1 0 0 1 2}

Le nombre d'observations c'est n = 7

Après rangement on obtient {0 0 1 1 2 2 3} Donc

$$Me = 1$$

Deuxième Cas "n" est pair : la série observée : {0 1 2 1

2 4 0 3} Le nombre d'observations c'est n = 8

Après rangement on obtient {0 0 1 **1 2** 2 3 4} La médiane de cette série se trouve entre 1 et 2.

On calcul la moyenne arithmétique de ces deux valeurs :

$$Me = \frac{1+2}{2} = 1.5$$

Exemples d'une variable discrète :

Dans le cas d'une variable discrète, la détermination de la médiane se fait directement à l'aide des effectifs cumulés croissants.

Nombre d'enfants	effectif	Effectif cumulé croissant
0	20	20
1	16	36
2	10	46
3	5	51
4	0	51

La médiane est la modalité "1 enfant"