

Analytic Geometry 4.1

Theorem

圆锥曲线的统一定义:平面内与一定点(焦点)和一条定直线(准线)的距离比为常数 e(离心率)的点的轨迹称为圆锥曲线。

当 0 < e < 1 时为椭圆; 当 e = 1 时为抛物线; 当 e > 1 时为双曲线。

椭圆的重要公式

标准椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的重要公式:

1. **离心率:** $e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}$,其中 $c^2 = a^2 - b^2$

2. 焦点坐标: $F_1(-c,0)$, $F_2(c,0)$

3. 准线方程: $x = \pm \frac{a^2}{c}$

4. 焦点弦长公式:过焦点的弦长 $|AB|=rac{2b^2}{a}\cdotrac{1}{1-e^2\cos^2{ heta}}$

5. **切线方程:** 椭圆上点 (x_0,y_0) 处的切线方程为 $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$

特别提醒: 椭圆的离心率越小, 椭圆越接近圆形

例题: 椭圆的焦点弦性质

题目: 已知椭圆 $C: \frac{x^2}{9} + \frac{y^2}{5} = 1$,F 为其右焦点,直线 l 过点 F 且倾斜角为 60° ,求直线 l 与椭圆 C 的交点弦长。

解题分析:

Step 1: 确定椭圆参数

• $a^2 = 9$, $b^2 = 5$, a = 3, $b = \sqrt{5}$

• $c^2 = a^2 - b^2 = 9 - 5 = 4$, 故 c = 2

• 右焦点 F(2,0), 离心率 $e=\frac{2}{3}$

Step 2: 求直线方程

• 直线 l 的斜率为 $k = \tan 60^{\circ} = \sqrt{3}$

• 直线方程: $y = \sqrt{3}(x-2)$

化简得: $8x^2 - 18x + 9 =$

Step 4: 计算弦长由韦达定理: $x_1+x_2=\frac{9}{4}$, $x_1x_2=\frac{9}{8}$ 弦长 $|AB|=\sqrt{1+k^2}\cdot|x_1-x_2|=2\sqrt{(x_1+x_2)^2-4x_1x_2}=2\sqrt{\frac{81}{16}-\frac{9}{2}}=\frac{3}{2}$

答案: $\frac{3}{2}$

Exercise 4.1

已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (其中 a > b > 0) 的离心率为 $\frac{\sqrt{3}}{2}$,且过点 (2,1)。

- (1) 求椭圆的标准方程;
- (2) 设直线 l:y=kx+m 与椭圆相交于 A、B 两点,若 A、B 关于直线 y=2x 对称,求直线 l的方程。

解题思路: Solution Strategy

- 1. **第一问**: 利用离心率公式 $e = \frac{c}{a}$ 和椭圆过定点条件建立方程组
- 2. 第二问: 利用对称性质,若两点关于直线对称,则:
 - 连线中点在对称轴上
 - 连线斜率与对称轴斜率乘积为 -1

Detailed Calculation 具体计算:

第一问: 由 $e = \frac{\sqrt{3}}{2}$,得 $\frac{c}{a} = \frac{\sqrt{3}}{2}$,即 $c^2 = \frac{3a^2}{4}$ 。

由 $c^2 = a^2 - b^2$,得 $b^2 = a^2 - c^2 = \frac{a^2}{4}$ 。

椭圆过点 (2,1),代入得: $\frac{4}{a^2} + \frac{1}{b^2} = 1$

将 $b^2 = \frac{a^2}{4}$ 代入: $\frac{4}{a^2} + \frac{4}{a^2} = 1$

解得 $a^2 = 8$, $b^2 = 2$ 。

椭圆方程: $\frac{x^2}{8} + \frac{y^2}{2} = 1$

第二问: 设 $A(x_1,y_1)$, $B(x_2,y_2)$, 中点 $M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$ 。 由对称性质:

> 中点在对称轴上: $\frac{y_1+y_2}{2}=2\cdot\frac{x_1+x_2}{2}$ (1)

斜率关系:
$$k \cdot 2 = -1$$
即 $k = -\frac{1}{2}$ (2)

联立椭圆方程与直线方程,利用韦达定理可得:

$$y = -\frac{1}{2}x + 1$$

⚠ Note

解题要点:

- 对称问题的核心在于利用对称轴的性质
- 椭圆离心率 $e = \frac{c}{a}$ 是连接 $a \cdot b \cdot c$ 的桥梁
- 联立方程时要注意判别式 $\Delta > 0$ 的条件

图 1: Figure 4.1 - Ellipse and Symmetric Line 图 4.1 - 椭圆与对称直线

4

Extension

拓展思考:

- 1. 一般化问题: 若椭圆上两点关于直线 y = kx + c 对称,如何求解?
- 2. 双曲线情形: 类似问题在双曲线中如何处理?

相关定理:

- 焦点弦性质: 过焦点的弦具有特殊的调和性质
- 切线方程: 椭圆上一点的切线方程为 $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$

∞ Infinite Series 5.2

数列与级数的重要公式

递推数列与无穷级数的核心公式:

1. 等差数列:
$$a_n = a_1 + (n-1)d$$
, $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n[2a_1 + (n-1)d]}{2}$

2. 等比数列:
$$a_n = a_1 \cdot q^{n-1}$$
, $S_n = \begin{cases} na_1 & 若q = 1 \\ \frac{a_1(1-q^n)}{1-q} & 若q \neq 1 \end{cases}$

3. 无穷等比级数:
$$\sum_{n=1}^{\infty} a_1 q^{n-1} = \frac{a_1}{1-q}$$
 (当 $|q| < 1$ 时收敛)

4. 调和级数:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 发散, 但 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

5. **递推关系变换:** 对于
$$a_{n+1} = f(a_n)$$
 型递推, 常用换元法:

• 取倒数:
$$b_n = \frac{1}{a_n}$$

• 线性变换:
$$b_n = a_n + c$$
 或 $b_n = ka_n$

技巧提示: 遇到分式递推时, 优先考虑取倒数变换

Exercise 5.1

设数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = \frac{2a_n}{a_n + 2}$ $(n \ge 1)$ 。

- (1) 证明: $\frac{1}{a_n}$ 是等差数列;
- (2) 求数列 $\{a_n\}$ 的通项公式;
- (3) 求 $\sum_{n=1}^{\infty} a_n$ 的值。

例题: 无穷级数的收敛性判断

题目: 判断级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2+1}$ 的收敛性,并求其近似值(精确到小数点后 3 位)。

解题过程:

 $Step\ 1$: 判断收敛性这是一个交错级数,形式为 $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$,其中 $u_n = \frac{1}{n^2+1}$ 。 检验 Leibniz 判别法条件:

- $u_n > 0$ 对所有 $n \ge 1$ 成立
- $u_{n+1} < u_n$: $\frac{1}{(n+1)^2+1} < \frac{1}{n^2+1}$ \overrightarrow{D}
- $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n^2+1} = 0$

 $Step\ 2$: 绝对收敛性判断 $\sum_{n=1}^{\infty}|u_n|=\sum_{n=1}^{\infty}\frac{1}{n^2+1}$

由于 $\frac{1}{n^2+1}<\frac{1}{n^2}$ 且 $\sum_{n=1}^{\infty}\frac{1}{n^2}$ 收敛,故原级数绝对收敛。 $Step\ 3$: 近似计算计算前 10 项和: $S_{10}=\sum_{n=1}^{10}\frac{(-1)^{n+1}}{n^2+1}\approx 0.915$

结论: 0.915

Analysis

Analysis Method 分析方法:

这是典型的递推数列问题,关键在于找到合适的变换使得新数列具有简单的递推关系。

第一问:对递推关系取倒数:

$$\frac{1}{a_{n+1}} = \frac{a_n + 2}{2a_n} = \frac{1}{2} + \frac{1}{a_n}$$

设 $b_n = \frac{1}{a_n}$,则 $b_{n+1} = b_n + \frac{1}{2}$, $b_1 = 1$ 。

显然 $\{b_n\}$ 是首项为 1,公差为 $\frac{1}{2}$ 的等差数列。

第二问:

$$b_n = 1 + (n-1) \cdot \frac{1}{2} = \frac{n+1}{2}$$

因此:

$$a_n = \frac{1}{b_n} = \frac{2}{n+1}$$

第三问:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2}{n+1} = 2\sum_{n=2}^{\infty} \frac{1}{n}$$

由于调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,所以原级数发散。

答案:

⚠ Note

解题关键点:

- 递推数列问题优先考虑变量替换
- 取倒数是处理分式递推的常用技巧
- 判断级数收敛性要结合具体的判别法