Preclass assignment for March 25

We will review a some points about primitive roots, quadratic residues, and the Legendre symbol from before break, then finish those sections.

Degenerie Symoot from vejore vreum, men jamen valose seculoris.								
Question 1 For a prime p, a primitive root there exists modulo p.								
Multiple Choice:								
(a) Always ✓								
(b) Sometimes								
(c) Never								
Question 2 If $n = pq$ where p and q are distinct primes, then there exists a primitive root modulo n . Multiple Choice:								
(a) Always								
(b) Sometimes ✓								
(c) Never								
Question 3 If $n = 2^k$ and $k \ge 3$, then there exists a primitive root modulo n .								
Multiple Choice:								
(a) Always								
(b) Sometimes								
(c) Never ✓								

Learning outcomes: Author(s):

Question 4 If n = km where k and m are relatively prime and greater than 2, then there exists a primitive root modulo n.

Multiple Choice:

- (a) Always
- (b) Sometimes
- (c) Never ✓

Question 5 There exists primitive roots modulo n when for n =

Select All Correct Answers:

- (a) 1 ✓
- (b) p a prime ✓
- (c) 4 ✓
- (d) 2^m for $m \ge 3$
- (e) p^m for p an odd prime \checkmark
- (f) $2p^m$ for p an odd prime \checkmark
- (g) n a composite number with at least two distinct odd prime factors

Question 6 Let p > 2 be a prime, and let a be an integer between 0 and p-1.

- If a is a quadratic residue modulo p, then $a^{\frac{p-1}{2}} = \boxed{1}$.
- If a is a quadratic nonresidue modulo p, then $a^{\frac{p-1}{2}} = \boxed{-1}$
- Otherwise, $a^{\frac{p-1}{2}} = \boxed{0}$.

Question 7 Euler's identity: Let p > 2 be a prime, and let a be an integer. Then $\left(\begin{array}{c} a \\ \hline p \end{array} \right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

Theorem 1. Let p > 2 be prime.

- If $p \equiv 1 \pmod{4}$, then -1 is a quadratic residue modulo p.
- If $p \equiv 3 \pmod{4}$, then -1 is a quadratic nonresidue modulo p.

Proof For an arbitrary prime p > 2, Euler's identity tells us that $\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Note that, we have that $\left(\frac{-1}{p}\right)$ is either +1 or -1 by definition, and $(-1)^{\frac{p-1}{2}}$ is also either +1 or -1. Since $1 \not\equiv -1 \pmod{p}$, the two sides of the congruence are actually equal. That is, $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$.

The completion of the proof involves applying the answer to the preclass assignment, and the proof is on homework 9.

Question 8 Let p > 2 be prime, and let a and b be integers between 1 and p-1.

• If ab is a quadratic residue, then

Select All Correct Answers:

- (a) a and b are both quadratic residues \checkmark
- (b) a and b are both quadratic nonresidues \checkmark
- (c) One of a and b is a quadratic residue and the other is a quadratic nonresidue
- If ab is a quadratic nonresidue, then

Select All Correct Answers:

- (a) a and b are both quadratic residues \checkmark
- (b) a and b are both quadratic nonresidues \checkmark
- (c) One of a and b is a quadratic residue and the other is a quadratic nonresidue

Quadratic reciprocity

We are going to explore the relationship between $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$. Let's look at an example:

Question 9 We want to know if 3 is a quadratic residue modulo 107. It would be a lot easier to check if 107 is a quadratic residue modulo 3. We know that $107 \equiv \boxed{2} \pmod{3}$, so $\left(\frac{107}{3}\right) = \boxed{-1}$. It would be nice if this also gave us $\left(\frac{3}{107}\right)$.

Question 10 Another example: Find $\left(\frac{p}{5}\right)$ and $\left(\frac{5}{p}\right)$.

p	3	5	7	11	13
$\left(\frac{p}{5}\right)$	-1	0	-1	1	$\begin{bmatrix} -1 \end{bmatrix}$
$\left(\frac{5}{p}\right)$	-1	0	-1	1	-1

Question 11 Another example: Find $\left(\frac{p}{7}\right)$ and $\left(\frac{7}{p}\right)$.

p	3	5	7	11	13
$\left(\frac{p}{7}\right)$	-1	-1	0	1	-1
$\left(\frac{7}{p}\right)$	1	-1	0	-1	-1

This gives some evidence for our theorem:

Theorem 2. Let p and q be odd primes with $p \neq q$.

• if
$$p \equiv 1 \pmod{4}$$
 or $q \equiv 1 \pmod{4}$, then $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$

• if
$$p \equiv q \equiv 3 \pmod{4}$$
, then $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$

Our goal for Friday is to prove this.