Holden Herrell IST687 HW4

```
#Step 1
#1.
printVecinfo<-function(vec){</pre>
#2.a.
mean <-mean (vec)
#2.b.
median <-median (vec)
#2.c.
min<-min(vec)
max<-max(vec)</pre>
#2.d.
stdDev<-sd(vec)
#2.e.
quantile05<-quantile(vec,.05)
quantile95<-quantile(vec,.95)</pre>
#2.f.
skewness<-skewness(vec)</pre>
#1.cont'd
result <-(c(mean, median, min, max, stdDev, quantile05, quantile95, skewness))
names(result)<-(c("mean", "median", "min", "max", "stdDev", "5% quant", "95% quant", "skewness"))</pre>
return(result)
}
#3.
vec<-c(1,2,3,4,5,6,7,8,9,10,50)
printVecinfo(vec)
##
                                                 stdDev 5% quant 95% quant skewness
                 median
        mean
                               min
                                          max
    9.545455 6.000000 1.000000 50.000000 13.721251 1.500000 30.000000 2.620396
#Step 2
#4.
marblecolors<-c("Red", "Blue")</pre>
jar<-rep(marblecolors,50)</pre>
#5.
sum(jar=="Red")
## [1] 50
```

```
sampleQuestion6<-sample(jar, 10, replace=TRUE)</pre>
sampleQuestion6
   [1] "Blue" "Blue" "Blue" "Blue" "Red" "Red" "Blue" "Red" "Blue" "Red"
sum(sampleQuestion6=="Red")
## [1] 4
percent(sum(sampleQuestion6=="Red")/10)
## [1] 40.00%
#7.
sampleQuestion7<-replicate(20, sum(sample(jar, 10, replace=TRUE)=="Red"))</pre>
sampleQuestion7
   [1] 6 6 4 3 6 8 6 2 6 7 6 7 5 1 7 8 8 7 5 2
printVecinfo(sampleQuestion7)
##
                  median
                                min
                                                   stdDev
                                                            5% quant 95% quant
                                                                                  skewness
         mean
   5.5000000 6.0000000 1.0000000 8.0000000 2.0900768 1.9500000 8.0000000 -0.7984204
hist(sampleQuestion7)
```

Histogram of sampleQuestion7


```
#8.
sampleQuestion8<-replicate(20, sum(sample(jar, 100, replace=TRUE)=="Red"))
sampleQuestion8

## [1] 40 53 52 48 42 50 48 48 44 57 56 48 46 50 45 53 46 52 41 56

printVecinfo(sampleQuestion8)

## mean median min max stdDev 5% quant 95% quant skewness
## 48.75000000 48.00000000 40.00000000 57.00000000 4.97229165 40.95000000 56.05000000 -0.04233302

hist(sampleQuestion8)
```

Histogram of sampleQuestion8

50.1800000 50.0000000 39.0000000 62.0000000 4.8832428 42.0000000 58.0500000 0.1069369

```
#9.
sampleQuestion9<-replicate(100, sum(sample(jar, 100, replace=TRUE)=="Red"))
sampleQuestion9

## [1] 54 50 52 48 40 59 50 41 54 45 53 53 47 46 62 61 43 50 48 59 52 61 49 53 45 46 52 49 50 49 58

## [32] 49 56 52 58 52 49 53 56 45 48 47 46 54 54 49 58 45 44 50 45 45 55 53 48 58 50 42 51 51 46 51

## [63] 54 49 45 51 50 48 45 57 53 42 39 49 56 53 46 49 57 43 46 49 44 48 55 49 50 53 53 55 47 52 53

## [94] 48 52 49 51 52 47 40

printVecinfo(sampleQuestion9)

## mean median min max stdDev 5% quant 95% quant skewness
```

Histogram of sampleQuestion9


```
#Step 3
#10.
tempAir<-airquality
tempAir</pre>
```

##		Ozone	Solar.R	Wind	Temp	${\tt Month}$	Day
##	1	41	190	7.4	67	5	1
##	2	36	118	8.0	72	5	2
##	3	12	149	12.6	74	5	3
##	4	18	313	11.5	62	5	4
##	5	NA	NA	14.3	56	5	5
##	6	28	NA	14.9	66	5	6

##	7	23	299	8.6	65	5	7
##	8	19		13.8	59	5	8
##	9	8		20.1	61	5	9
##	10	NA		8.6	69	5	10
##	11	7	NA	6.9	74	5	11
##	12	16	256	9.7	69	5	12
##	13	11	290	9.2	66	5	13
##	14	14	274	10.9	68	5	14
##	15	18	65	13.2	58	5	15
##	16	14	334	11.5	64	5	16
##	17	34	307	12.0	66	5	17
##	18	6	78	18.4	57	5	18
##	19	30	322	11.5	68	5	19
##	20	11	44	9.7	62	5	20
##	21	1	8		59	5	21
##	22	11	320	16.6	73	5	22
##	23	4	25	9.7	61	5	23
##	24	32		12.0	61	5	24
##	25	NA		16.6	57	5	25
##	26	NA	266	14.9	58	5	26
##	27	NA	NA	8.0	57	5	27
##	28	23	13	12.0	67	5	28
##	29	45	252	14.9	81	5	29
	30	115	223		79	5	30
##		37	279		76	5	31
##	32	NA	286		78	6	1
##	33	NA	287	9.7	74	6	2
	34	NA		16.1	67	6	3
	35	NA		9.2	84	6	4
	36	NA		8.6	85	6	5
	37	NA		14.3	79	6	6
	38	29		9.7	82	6	7
	39	NA		6.9	87	6	8
	40	71		13.8	90	6	9
##		39		11.5	87	6	10
	42	NA		10.9	93	6	11
	43	NA		9.2	92	6	12
	44	23		8.0	82	6	13
	45	NA		13.8	80	6	14
	46	NA O1		11.5	79	6	15
##	47	21	191	14.9	77	6	16

##	48	37	284	20.7	72	6	17
##	49	20	37	9.2	65	6	18
##		12	120	11.5	73	6	19
	51	13	137	10.3	76	6	20
##		NA	150	6.3	77	6	21
	53	NA	59	1.7	76	6	22
	54	NA	91	4.6	76	6	23
	55	NA	250	6.3	76	6	24
	56	NA	135	8.0	75	6	25
##	57	NA	127	8.0	78	6	26
##	58	NA	47	10.3	73	6	27
##	59	NA	98	11.5	80	6	28
##	60	NA	31	14.9	77	6	29
##	61	NA	138	8.0	83	6	30
##	62	135	269	4.1	84	7	1
##	63	49	248	9.2	85	7	2
##	64	32	236	9.2	81	7	3
##	65	NA	101	10.9	84	7	4
##	66	64	175	4.6	83	7	5
##	67	40	314	10.9	83	7	6
##	68	77	276	5.1	88	7	7
##	69	97	267	6.3	92	7	8
##	70	97	272	5.7	92	7	9
##	71	85	175	7.4	89	7	10
##	72	NA	139	8.6	82	7	11
##	73	10		14.3	73	7	12
##	74	27	175	14.9	81	7	13
##	75	NA	291	14.9	91	7	14
	76	7	48	14.3	80	7	15
##	77	48		6.9	81	7	16
##	78	35		10.3	82	7	17
##	79	61	285	6.3	84	7	18
	80	79	187	5.1	87	7	19
##		63	220	11.5	85	7	20
	82	16 NA	7	6.9	74	7	21
	83	NA NA	258	9.7	81	7	22
	84	NA 80	295	11.5	82 86	7	23
	85	80	294 223	8.6 8.0	86 85	7 7	24 25
##	86 87	108	81		85 82	7 7	
## ##	87 88	20 52	82	8.6 12.0	82 86	7 7	26 27
##	00	52	02	12.0	00	1	21

##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	1
##	94	9	24	13.8	81	8	2
##	95	16	77	7.4	82	8	3
##	96	78	NA	6.9	86	8	4
##	97	35	NA	7.4	85	8	5
##	98	66	NA	4.6	87	8	6
##	99	122	255	4.0	89	8	7
##	100	89	229	10.3	90	8	8
##	101	110	207	8.0	90	8	9
##	102	NA	222	8.6	92	8	10
##	103	NA	137	11.5	86	8	11
##	104	44	192	11.5	86	8	12
##	105	28	273	11.5	82	8	13
##	106	65	157	9.7	80	8	14
##	107	NA	64	11.5	79	8	15
##	108	22	71	10.3	77	8	16
##	109	59	51	6.3	79	8	17
##	110	23	115	7.4	76	8	18
##	111	31	244	10.9	78	8	19
##	112	44	190	10.3	78	8	20
##	113	21	259	15.5	77	8	21
##	114	9	36	14.3	72	8	22
##	115	NA	255	12.6	75	8	23
##	116	45	212	9.7	79	8	24
##	117	168	238	3.4	81	8	25
##	118	73	215	8.0	86	8	26
##	119	NA	153	5.7	88	8	27
##	120	76	203	9.7	97	8	28
##	121	118	225	2.3	94	8	29
##	122	84	237	6.3	96	8	30
##	123	85	188	6.3	94	8	31
##	124	96	167	6.9	91	9	1
##	125	78	197	5.1	92	9	2
##	126	73	183	2.8	93	9	3
##	127	91	189	4.6	93	9	4
##	128	47	95	7.4	87	9	5
##	129	32	92	15.5	84	9	6

```
252 10.9
                                    7
## 130
         20
                           80
                                 9
## 131
                220 10.3
                           78
                                 9
                                     8
         23
## 132
                230 10.9
                           75
                                 9
                                     9
         21
## 133
                           73
                                 9 10
                259 9.7
         24
## 134
                236 14.9
                                 9 11
         44
                           81
## 135
                259 15.5
                           76
                                 9 12
         21
## 136
                238 6.3
                                 9 13
         28
                           77
## 137
          9
                 24 10.9
                          71
                                 9 14
## 138
                112 11.5
                                 9 15
                           71
         13
                237 6.9
## 139
         46
                           78
                                 9 16
## 140
                224 13.8
                                 9 17
         18
                           67
## 141
                 27 10.3
         13
                           76
                                 9 18
## 142
                238 10.3
                           68
                                 9 19
         24
## 143
                201 8.0
                                 9 20
         16
                           82
## 144
                238 12.6
                                 9 21
                           64
         13
## 145
                 14 9.2
                                 9 22
         23
                           71
## 146
                                 9 23
         36
                139 10.3
                           81
## 147
          7
                 49 10.3
                                 9 24
                           69
## 148
                                 9 25
                 20 16.6
                           63
         14
## 149
                193 6.9
                                 9 26
                           70
         30
## 150
                145 13.2
                          77
                                 9 27
         NA
## 151
                191 14.3
                          75
                                 9 28
         14
## 152
         18
                131 8.0
                           76
                                 9 29
## 153
         20
                223 11.5
                           68
                                 9 30
```

#11.

CleanTempAir<-na.omit(tempAir)</pre>

 ${\tt CleanTempAir}$

##		Ozone	Solar.R	Wind	Temp	${\tt Month}$	Day
##	1	41	190	7.4	67	5	1
##	2	36	118	8.0	72	5	2
##	3	12	149	12.6	74	5	3
##	4	18	313	11.5	62	5	4
##	7	23	299	8.6	65	5	7
##	8	19	99	13.8	59	5	8
##	9	8	19	20.1	61	5	9
##	12	16	256	9.7	69	5	12
##	13	11	290	9.2	66	5	13
##	14	14	274	10.9	68	5	14
##	15	18	65	13.2	58	5	15
##	16	14	334	11.5	64	5	16

##	17	34	307	12.0	66	5	17
##	18	6	78	18.4	57	5	18
##	19	30	322	11.5	68	5	19
##	20	11	44	9.7	62	5	20
##	21	1	8	9.7	59	5	21
##	22	11	320	16.6	73	5	22
##	23	4	25	9.7	61	5	23
##	24	32	92	12.0	61	5	24
##	28	23	13	12.0	67	5	28
##	29	45	252	14.9	81	5	29
##	30	115	223	5.7	79	5	30
##	31	37	279	7.4	76	5	31
##	38	29	127	9.7	82	6	7
##	40	71	291	13.8	90	6	9
##	41	39	323	11.5	87	6	10
##	44	23	148	8.0	82	6	13
##	47	21	191	14.9	77	6	16
##	48	37	284	20.7	72	6	17
##	49	20	37	9.2	65	6	18
##	50	12	120	11.5	73	6	19
##	51	13	137	10.3	76	6	20
##	62	135	269	4.1	84	7	1
##	63	49	248	9.2	85	7	2
##	64	32	236	9.2	81	7	3
##	66	64	175	4.6	83	7	5
##	67	40	314	10.9	83	7	6
##	68	77	276	5.1	88	7	7
##	69	97	267	6.3	92	7	8
##	70	97	272	5.7	92	7	9
##	71	85	175	7.4	89	7	10
##	73	10	264	14.3	73	7	12
##	74	27	175	14.9	81	7	13
##	76	7	48	14.3	80	7	15
##	77	48	260	6.9	81	7	16
##	78	35	274	10.3	82	7	17
##	79	61	285	6.3	84	7	18
##	80	79	187	5.1	87	7	19
##	81	63	220	11.5	85	7	20
##	82	16	7	6.9	74	7	21
##	85	80	294	8.6	86	7	24
##	86	108	223	8.0	85	7	25

##	87	20	81	8.6	82	7	26
##	88	52	82	12.0	86	7	27
##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	1
##	94	9	24	13.8	81	8	2
##	95	16	77	7.4	82	8	3
##	99	122	255	4.0	89	8	7
##	100	89	229	10.3	90	8	8
##	101	110	207	8.0	90	8	9
##	104	44	192	11.5	86	8	12
##	105	28	273	11.5	82	8	13
##	106	65	157	9.7	80	8	14
##	108	22	71	10.3	77	8	16
##	109	59	51	6.3	79	8	17
##	110	23	115	7.4	76	8	18
##	111	31	244	10.9	78	8	19
##	112	44	190	10.3	78	8	20
##	113	21	259	15.5	77	8	21
##	114	9	36	14.3	72	8	22
##	116	45	212	9.7	79	8	24
##	117	168	238	3.4	81	8	25
##	118	73	215	8.0	86	8	26
##	120	76	203	9.7	97	8	28
##	121	118	225	2.3	94	8	29
##	122	84	237	6.3	96	8	30
##	123	85	188	6.3	94	8	31
##	124	96	167	6.9	91	9	1
##	125	78	197	5.1	92	9	2
##	126	73	183	2.8	93	9	3
##	127	91	189	4.6	93	9	4
##	128	47	95	7.4	87	9	5
##	129	32	92	15.5	84	9	6
##	130	20	252	10.9	80	9	7
##	131	23	220	10.3	78	9	8
##	132	21	230	10.9	75	9	9
##	133	24	259	9.7	73	9	10
##	134	44	236	14.9	81	9	11
##	135	21	259	15.5	76	9	12

```
## 136
         28
                238 6.3
                           77
                                 9 13
## 137
                 24 10.9
                           71
                                 9 14
          9
## 138
                112 11.5
                           71
                                 9 15
         13
## 139
                237 6.9
                                 9 16
                           78
         46
## 140
                224 13.8
                                 9 17
         18
                           67
## 141
                 27 10.3
                                 9 18
         13
                           76
                238 10.3
## 142
         24
                           68
                                 9 19
## 143
                201 8.0
                                 9 20
         16
## 144
                238 12.6
                                 9 21
         13
                           64
## 145
         23
                 14 9.2
                           71
                                 9 22
## 146
                139 10.3
                                 9 23
         36
                           81
                 49 10.3
## 147
          7
                           69
                                 9 24
## 148
                 20 16.6
                                 9 25
         14
                           63
## 149
                193 6.9
                                 9 26
         30
                           70
                                 9 28
## 151
                191 14.3
                           75
         14
## 152
                131 8.0
                                 9 29
         18
                           76
## 153
         20
                223 11.5
                                 9 30
```

#12.

printVecinfo(CleanTempAir\$0zone)

```
## mean median min max stdDev 5% quant 95% quant skewness ## 42.099099 31.000000 1.000000 168.000000 33.275969 8.500000 109.000000 1.248104
```

hist(CleanTempAir\$0zone)

Histogram of CleanTempAir\$Ozone

printVecinfo(CleanTempAir\$Wind)

mean median min max stdDev 5% quant 95% quant skewness ## 9.9396396 9.7000000 2.3000000 20.7000000 3.5577132 4.6000000 15.5000000 0.4556414

hist(CleanTempAir\$Wind)

Histogram of CleanTempAir\$Wind

printVecinfo(CleanTempAir\$Temp)

mean median min max stdDev 5% quant 95% quant skewness ## 77.7927928 79.0000000 57.0000000 97.0000000 9.5299691 61.0000000 92.5000000 -0.2250959

hist(CleanTempAir\$Temp)

Histogram of CleanTempAir\$Temp

