Information Security

Eom, Hyeonsang (엄현상)

Department of Computer Science & Engineering Seoul National University (SNU)

2022.5.17

❖서울대학교 우리은행 교육과정 핀테크 산업 응용 2차시 강의 파트 Ⅱ

Motivating Example: Secure Information Transfer

- How Can User A Send Information Securely to User B?
 - What Does This Mean?

Outline

Security Techniques

- Basic Security Concepts
- Cryptography Basics
- Digital Signature
- Digital Envelope
- Certificate
- Illustration: Public Key Infrastructure
- Security Convergent Network World
- Summary

Basic Security Concepts

- Identification (against All Entities)
 - Process of Recognizing a Particular Individual Using Presented Information
- Authentication (against a Previously Identified Entity)
 - Process of Verifying Certain Information
- Authorization
 - Process of Determining What You Are Allowed to Do
- Integrity
 - Process of Ensuring That Information Is Unchanged
- Confidentiality
 - Keeping Information Secret
- Non-Repudiation
 - Not Being Able to Deny Something

Cryptography Basics

Definition

Science of Applying Mathematics to Increase Security

Symmetric Cryptographic Algorithms

- Taking Clear Text as Input Outputting the Cipher Text Using a Symmetric Key, and Reversing This Process
 - DES (Data Encryption Standard)
 - 3-DES
 - RC2, RC5, RC6
 - Rijndael(or AES, Advanced Encryption Standard)

Asymmetric Cryptographic Algorithms

- Taking Clear Text as Input Outputting the Cipher Text Using a Public/Private Key, and Reversing this Process Using the Matching Private/Public (Respectively) Key
 - DH (Diffie-Hellman)
 - RSA (Rivest, Shamir, and Adleman at MIT)
 - ECC (Elliptic Curve Cryptography)

PKI (Public Key Infrastructure): the Public/Private Key-Based Encryption Framework That Permits Deploying Security Services

Cryptography Basics (Cont'd)

S. Burnett and S. Paine, RSA Security's Official Guide to Cryptography, Osborne/McGraw-Hill, March 2001

Cryptography Basics (Cont'd)

Symmetric vs Asymmetric Cryptographic Algorithms

- Advantages of Asymmetric Algorithms
 - · Superior key management and scaling
 - Unnecessary prior relationship
 - Private-key-holder only operations (as a basis for digital signatures and non-repudiation)
- Disadvantages of Asymmetric Algorithms
 - Possibly 10 to 100 times slower execution
 - Expansion of the cipertext

Cryptography Basics (Cont'd)

Hash Algorithms

- Definition
 - Taking a chunk of data and compressing it into a digest (or fingerprint) of the data
- Examples
 - MD2 (128-bit digest; best for 8-bit processors)
 - MD5 (128-bit digest; best for 32-bit processors)
 - SHA-1 (160-bit digest; best for high-end processors)
- Properties
 - No backward recovery
 - No information about the initial clear text
 - No backward creation/discovery

Digital Signature

Data Encrypted with a Private Key

2022.5.17

- Technique for Authentication and Non-Repudiation
 - If a public key properly decrypts data, then it must have been encrypted with the private key

S. Burnett and S. Paine, RSA Security's Official Guide to Cryptography, Osborne/McGraw-Hill, March 2001

Digital Envelope

Encryption That Uses Both Symmetric Key and Public Key

- Symmetric Key
 - To encrypt/decrypt messages
 - Symmetric algorithms: e.g., DES, 3-DES, RC4, etc.
- Public Key

2022.5.17

10

© Copyright 2022, SNU, All Rights Reserved.

Digital Envelope (Cont'd)

- Overcoming Performance Problem for Public Key Cryptosystems
 - Efficiency Achieved Due to Protection of Only Key with Public Key

Certificate

Notarized Association between the Particular User with the **Particular Public Key** Mom's secret Name, address, peppermint organization stick pie Owner's public key recipe Do We Need Time? Certificate EnDigested validity dates Certificate Certifying authority's digital signature 2022.5.17 © Copyright 2022, SNU, All Rights Reserved. 12

S. Burnett and S. Paine, RSA Security's Official Guide to Cryptography, Osborne/McGraw-Hill, March 2001

X.509 Certificate

X.509 Specification

Information Contained in a Certificate, and Its Format

Components

- Version
 - Indicator of Version 1,2, or 3
- Serial Number
 - Unique Identifying Number for This Certificate
- Signature
 - Algorithm Identifier of the Digital Signature Algorithm
- Issuer
 - X.500 Name of the Issuing CA
- Validity
 - Start and Expiration Dates and Times of the Certificate
- Subject
 - X.500 Name of the Holder of the Private Key (Subscriber)
- Subject Public-Key Information
 - Value of the Public-Key for the Subject Together with an Identifier of the Algorithm with Which This Public-Key to Be Used

Security Holes in PKI

- Fabricated Identification Card
- Illegal Copy of Certificate
- Hacking Program
 - E.g. Key Logger Program
 - Hacker can get id/password, account no, security card no, and password for encrypting private key
 - Hacker can disguise himself/herself as a user

The Main Reasons for These Security Holes Are Unsafe Storage, Operating System, and Character-Based Protection Mechanism.

Security-Enabled Storage Medium, OS Security Patch, and Biometrics

Certificate Chain

- X.509 Standard Model for Setting Up a Hierarchy of CAs
 - In Large Organizations, It May Be Appropriate to Delegate the Responsibility for Issuing Certificates to Several Different Certificate Authorities
- Ordered List of Certificates Containing an End-User or Subscriber Certificate and Its Certificate Authority Certificates
 - Each Certificate Is Followed by the Certificate of Its Issuer
 - Each Certificate Contains the Name (DN) of That Certificate's Issuer
 - Same as the subject name of the next certificate in the chain
 - Each Certificate Is Signed with the Private Key of Its Issuer
 - Signature verifiable with the public key in the issuer's certificate, which is the next certificate in the chain

Certificate Chain Example

Illustration: Public Key Infrastructure

Applying DRM to Protect Content

Distributing DRM Protected Content

- Content Issuer's Encrypting the Content and Packaging in DRM Content Format
- Rights Issuer's Assigning Permissions and Constraints for Content
- User's Receiving Content and Rights
- User's Sending the Protected Content to a Friend with OMA DRM Enabled Devices
- Friend's Purchasing the Permission to Consume the Content

Example of OMA DRM Deployment

Security - Convergent Network World

Summary

Security Techniques

- Basic Security Concepts
 - Authentication
 - Integrity
 - Confidentiality
 - Non-Repudiation
- Cryptography Basics
 - Symmetric vs Asymmetric Cryptographic Algorithms
- Digital Signature
- Digital Envelope
- Certificate
- Illustration: Public Key Infrastructure
- Security Convergent Network World

Security
Everywhere!

References

[Burnetto1] S. Burnett and S. Paine, *RSA Security's Official Guide to Cryptography*, Osborne/McGraw-Hill March 2001

[Nasho1] A. Nash, et al., PKI: Implementing and Managing E-Security, Osborne/McGraw-Hill, March2001

[OMA] Open Mobile Alliance, www.openmobilealliance.org

2022.5.17

Thank You!

Eom, Hyeonsang (엄현상)

hseom@snu.ac.kr Department of Computer Science & Engineering Seoul National University