Chapter 1

Tutorial 1

Problem 1 Let $\mathbb R$ denote the set of real numbers. Put $\mathbb H:=\mathbb R\cdot 1\oplus \mathbb R\cdot i\oplus \mathbb R\cdot j\oplus \mathbb R\cdot k$ where $i^2=j^2=-1$, ij=-ji=k. Show that $\mathbb H$ is a division ring

Solution: Any element $p \in \mathbb{H}$, $p \neq 0$ can be written as p = a + bi + cj + dk. Now If we take $q = \frac{1}{a^2 + b^2 + c^2 + d^2}(a - bi - cj - dk)$ then

$$pq = \frac{(a^2 + b^2 + c^2 + d^2) + (ab - cd + cd - ab)i + (ac - ac + bd - bd)j + (ad - ad - ac + ac)k}{a^2 + b^2 + c^2 + d^2} = 1$$

Hence for any nonzero element in bbH there exists an multiplicative inverse of that element. Hence nonzero elements of \mathbb{H} are units. Hence \mathbb{H} is a division ring.

Problem 2

Problem 3

Solution: Let f(x), g(x) elements of R[X]. Suppose

 $f(x) = \sum_{i=0}^{n} a_i x^i, \quad g(x) = \sum_{i=0}^{m} b_i x^i$

where $a_n \neq 0$ and $b_m \neq 0$. Hence

$$f(x)g(x) = cx^{n+m} + \dots + a_0b_0$$

where $a_n b_n = c$. Since R[X] is an integral domain $c \neq 0$. Hence for any two elements $f, g \in R[X]$

$$\deg(fg) = \deg(f) + \deg(g)$$

Any unit in R is also an unit of R[X]. Hence $U(R) \subseteq U(R[X])$. Now Let f be an unit in R[X]. Suppose f' is the multiplicative inverse of f. If $\deg(f(x)) \ge 1$ then

$$0 = \deg(1) = \deg(ff') = \deg(f) + \deg(f') \ge 1$$

Hence All the units in R[X] are constant polynomials which are also units in R. Hence $U(R[X]) \subseteq U(R)$. Therefore U(R) = U(R[X])

Problem 4

Solution:

$$(2x+1)^2 = 4x^2 + 4x + 1 = 1$$

Hence (2x+1) is an unit of $\mathbb{Z}/4\mathbb{Z}[X]$ but it is not in $\mathbb{Z}/4\mathbb{Z}$

Problem 5

Solution: Consider the surjective group homomorphism $\varphi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. Then the kernel of the homomorphism is $n\mathbb{Z}$. Hence by the correspondence theorem the set of ideals of \mathbb{Z} containing $n\mathbb{Z}$ is isomorphic to the set of ideals of $\mathbb{Z}/n\mathbb{Z}$

Now the ideals containg $n\mathbb{Z}$ in \mathbb{Z} are the ideals of the form $d\mathbb{Z}$ where $d \mid n$. Hence

Problem 6

Problem 7

Solution: Let R is the commutative ring. Suppose R is integral domain. Now

$$ab = ac \implies a(b-c) = 0 \implies b-c = 0 \implies b = c$$

Now suppose $ab=ac \implies b=c$. Suppose R is not an integral domain. Then there exists at least one element $x \in R$ such that x is an zero divisor. Let xy=0. Now zb=zc does not imply b=c because b can be equal to y and c can be equal to 0. Hence contradiction. There does not exists any zero divisors in R. Hence R is an integral domain.

Problem 8

Solution: For left zero divisor $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. No nonzero element exists such that it becomes a right zero divisor

Problem 9

Solution:

(a) Given that $(a,b) \sim (c,d)$ iff ad = bc. Let $(a,b) \in S(R)$. Then $(a,b) \sim (a,b)$ iff ab = ba. Given that R is a commutative ring. Hence ab = ba. Therefore $(a,b) \sim (a,b)$.

Now let $(a,b), (c,d) \in S(R)$ and $(a,b) \sim (c,d) \iff ad = bc$. Now $(c,d) \sim (a,b)$ if cb = da. Now we know R is a commutative ring. Hence ad = da and bc = cb. Therefore

$$ad = bc \iff da = cb \iff (c,d) \sim (a,b)$$

Again suppose $(a,b),(c,d),(e,f) \in S(R)$ and $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Therefore ad = bc and cf = de. Now $(a,b) \sim (e,f)$ if af = be. Now multiplying both sides of ad = bc by f from right and both sides of cf = de by b from left we get

$$adf = bcf$$
 $bcf = bde \iff adf = bde \iff afd - bed = 0 \iff (af - be)d = 0$

Since R is an integral domain and $f \neq 0$ we have $af - be = 0 \iff af = be$

(b) Let $\overline{(a,b)} = \overline{(a',b')}$ and $\overline{(c,d)} = \overline{(c',d')}$. Hence $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ therefore ab' = a'band cd' = c'd. Now

$$\overline{(a,b)} + \overline{(c,d)} = \overline{(ad+bc,bd)} \qquad \overline{(a',b')} + \overline{(c',d')} = \overline{(a'd'+b'c',b'd')}$$

Now $\overline{(ad + bc, bd)} = \overline{(a'd' + b'c', b'd')}$ iff (ad + bc, bd) = (a'd' + b'c', b'd') if (ad + bc)b'd' = (a'd' + b'c')bd. Now since R is integral doamin R is commutative hence

$$(ad + bc)b'd' - (a'd' + b'c')bd = adb'd' + bcb'd' - a'd'bd - b'c'bd = ab'dd' - a'bdd' + bb'cd' - bb'c'd = 0$$

Therefore (ad + bc)b'd' = (a'd' + b'c')bd. Hence $\overline{(ad + bc, bd)} = \overline{(a'd' + b'c', b'd')}$

Now

$$\overline{(a,b)} \circ \overline{(c,d)} = \overline{(ac,bd)} \qquad \overline{(a',b')} \circ \overline{(c',d')} = \overline{(a'c',b'd')}$$

Now $\overline{(ac,bd)} = \overline{(a'c',b'd')} \iff (ac,bd) \sim (a'c',b'd')$ if acb'd' = bda'c'. Now

$$acb'd' - bda'c' = acb'd' - a'bcd' + a'bcd' - bda'c' = cd'(ab' - a'b) + a'b(cd' - c'd) = 0$$

Hence acb'd' = bda'c'. Therefore (ac, bd) = (a'c', b'd')

Therefore the sum and the product operations are well-defined

Problem 10

Solution: Let $\frac{a}{b}$, $\frac{c}{d} \in R$. Hence $\frac{-c}{d} \in R$. Now

$$\frac{a}{b} + \frac{-c}{d} = \frac{ad - cb}{bd} = \frac{a}{b} + \frac{-c}{d}$$

Now since $p \nmid b$ and $p \nmid d$ then $p \nmid bd$. Hence $\frac{ad-cb}{bd} \in R$. Hence (R,+) is an additic abelian group.

Now let $\frac{a}{b}, \frac{c}{d} \in R$. Then

$$\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$$

Now as $p \nmid b$ and $p \nmid d$ we have $p \nmid bd$. Therefore $\frac{ac}{bd} \in R$. Hence R is closed under multiplication. Let $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in R$. Now

$$\frac{a}{b}\left(\frac{c}{d}\frac{e}{f}\right) = \frac{a}{b}\frac{ce}{df} = \frac{ace}{bdf} = \frac{ac}{bd}\frac{e}{f} = \left(\frac{a}{b}\frac{c}{d}\right)\frac{e}{f}$$

Hence multiplication is associative.

Let $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in R$. Now

$$\frac{a}{b}\left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b}\frac{cf + ed}{df}$$

$$= \frac{a(cf + de)}{bdf}$$

$$= \frac{acf + ade}{bfd}$$

$$\frac{a}{b}\frac{c}{d} + \frac{a}{b}\frac{e}{f} = \frac{ac}{bd} + \frac{ae}{bf}$$

$$= \frac{acf + ade}{bdf}$$

Hence

$$\frac{a}{b}\left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b}\frac{c}{d} + \frac{a}{b}\frac{e}{f}$$

Hence elements in R follows distributive property. Therefore R is a ring

Problem 11

Solution: Given that for any element $a \in R$

$$a^2 = a$$

Now

$$2a = (a+a) = (a+a)^2 = a^2 + 2a + a^2 = a + 2a + a \iff a+a=0$$

Then

$$a + b = (a + b)^2 = a^1 + ab + ba + b^2 = a + ab + ba + b \iff ab + ba = 0 \iff ab = -ba \iff ab = ba$$

Therefore the ring is commutative

Problem 12

Solution: We have $0 \in Z(R)$ since $0 \cdot r = 0 = r \cdot 0$ for all $r \in R$; in particular, Z(R) is nonempty. Next, if $x, y \in Z(R)$ and $r \in R$, then

$$(x-y)r = xr - yr = rx - ry = r(x-y).$$

Hence $Z(R) \leq R$. Now xyr = xry = rxy, so that $xy \in Z(R)$ then by definition, Z(R) is a subring.

Problem 13

Solution: Same is P7

Problem 14

Solution: The ideal of a ring is a subgroup. Hence the ideal of \mathbb{Z} is a subgroup of Z. Now we know the only subgroup of \mathbb{Z} is $n\mathbb{Z}$ where $n \in \mathbb{Z}$. Hence the ideals of R of the form $n\mathbb{Z}$ where $n \in \mathbb{Z}$

Chapter 2

Tutorial 2

Problem 15

Solution:

(a) If $x \in IJ$, then $x = \sum a_i b_i$ where $a_i \in I$ and $b_i \in J$. Thus for any fixed i, we have that since $a_i \in I$, we have that $a_i b_i \in I$, and the same argument shows that $a_i b_i \in J$, thus $\sum a_i b_i \in I$ and $\sum a_i b_i \in J$, this means that $x = \sum a_i b_i \in I \cap J$, and thus $IJ \subseteq I \cap J$.

Now

$$I \cap J = (I \cap J)R$$

$$= (I \cap J)(I + J)$$

$$= (I \cap J)I + (I \cap J)J$$

$$\subset IJ + IJ = IJ$$

Hence $I \cap J = IJ$

(b) Since $1 \in R$ and I + J = R, $\exists x \in I$, $y \in J$ such that x + y = 1. Now consider the element bx + ay in R.

$$bx + ay - a = bx - ax = (b - a)x \in I$$
 $bx + ay - b = -by + ay = (a - b)y \in J$

(c) Consider the homomorphism $\varphi: R \to (R/I) \times (R/J)$ which maps any element $r \in R$ to (r+I, r+J). Now this homomorphism is injective becasue if not then suppose for $r, s \in R$, $r \neq s$ (r, I, r+J) = (s+I, s+J). Hence that means ((r-s)+I, (r-s)+J) = (I, J). Hence $r-s \in I, J$. Therefore $r-s \in I \cap J$. But $I \cap J = IJ$ and given that IJ = (0). Hence r-s = 0 But we assumed $r \neq s$. Hence contradiction. Therefore φ is injective.

Now φ is surjective. Because let (a+I,b+J) be any element of $(R/I)\times (R/J)$. Then by part (b) we have an element x in R such that $x-a\in I$ and $x-b\in J$. Hence $(x-a)+a=x\in a+I$ and $(x-b)+b=x\in b+J$. Therefore a+I=x+I and b+J=x+J. Hence (a+I,b+J)=(x+I,x+J). Now since $x\in R$. $\varphi(x)=(x+I,x+J)=(a+I,b+J)$. Hence φ is surjective.

Hence φ is isomorphism. Thereofer $R \cong (R/I) \times (R/J)$

Problem 16

Solution:

Problem 17	
Solution:	
	_
Problem 18	
Solution:	
Problem 19	
Solution:	
Problem 20	
Solution:	
Problem 21	
Solution:	
Problem 22	
Solution:	