SIDDARTH ACHAR

Email: ska31@pitt.edu

linkedin: linkedin.com/in/siddarthachar Website: siddarthachar.netlify.app/ Cell Phone: +1 (412) 708-6630

Education

University of Pittsburgh, Pittsburgh, PA Ph.D. in Computational Modeling and Simulation

Carnegie Mellon University, Pittsburgh, PA Master of Science in Chemical Engineering

R.V. College of Engineering (RVCE), Bangalore, India Bachelor of Engineering in Chemical Engineering

GPA: 3.80/4.00 Aug 2018 – Dec 2019

GPA: 3.77/4.00

Jan 2020 - present

GPA: 9.15/10.00 Aug 2014 - May 2018

Acemedic Research Expericence

Anhydrous Proton Transport on Graphene-based Materials using Deep Learning

Dec 2020 - present

University of Pittsburgh (with Dr. Karl Johnson, Dr. Linfeng Zhang, Dr. Leonardo Bernasconi) github.com/siddarthachar/protonConduction_graphanol

- Designed a graphane-based material for proton conduction using machine learning (ML) potentials with active deep learning (DL) using the Deep Potential Molecular Dynamics (DeePMD) package.
- Combined quantum mechanics (QM) methods (DFT) with active learning to explore more than 1 million configurations.
- Developed a proton conduction rate equation to specifically study proton hopping.
- Demonstrated that this ML forcefield is capable of understanding charge distribution and simulate proton hopping for multi-protonated systems using LAMMPS for system sizes with more than 10,000 atoms.

Efficiently Trained Deep Learning Potential for Graphane

Jan 2020 - May 2021

University of Pittsburgh (with Dr. Karl Johnson, Dr. Linfeng Zhang)

- Generated efficient training data pool of atomic frames using ab-initio molecular dynamics (AIMD) for graphane.
- Designed a neural network using DeePMD to construct a highly accurate DL forcefield for graphane.
- Demonstrated the validity and generality of the DL forcefield by comparing physical properties like stress-strain relations, phonon density of states, thermal fluctuation etc. on LAMMPS with density functional theory (DFT) results.

Study of Ne diffusion in UiO-66 with the first deep learning forcefield for MOFs

May 2020 – Jan 2021

University of Pittsburgh (with Dr. Karl Johnson, Dr. Linfeng Zhang, Dr. Leonardo Bernasconi, J. Wardzala)

- Constructed the second neural network forcefield for a metal-organic framework (MOF), UiO-66.
- Developed a unique method to combine DL potentials with classical potentials to compute the diffusion of guest atoms into the MOF in LAMMPS.
- Demonstrated that the ML forcefield is efficient and accurate for the MOF as compared to QM data and experiments.

DeepCDP: Deep Learning Charge Density Prediction

Sept 2020 - present

University of Pittsburgh (with Dr. Karl Johnson, Dr. Leonardo Bernasconi) github.com/siddarthachar/deepcdp

- Built a python package called DeepCDP, which is a framework to build and use ML models for electron density predictions.
- Used the Smooth Overlap of Atomic Positions (SOAP) descriptor technique to generate local atomic environment of grid points in three-dimensional space using QM data.
- Achieved a prediction accuracy of near 100% on test case for complex materials with linear scaling.
- Demonstrated the implementation of DeepCDP for system sizes as large as 10,000 atoms using parallelization.
- Working on integrating this model with LAMMPS for on-the-fly electron density prediction from classical MD as part of the Deepmodeling package (https://github.com/deepmodeling)

Calculation of Degree of Rate control for multistep reactions at steady and unsteady state

May 2019 - Dec 2019

Carnegie Mellon University (with Dr. John Kitchin, Yilin Yang)

Crafted four methods to calculate degree of rate control (DRC) for multi-step catalytic reactions.

- Demonstrated the use of automatic differentiation (AD) tools on python to solve complex rate equations.
- Programmed a python-based used-interface (UI) to automatically calculate steady and unsteady DRCs for any catalytic reaction as per user's input.

Predicting patients with First-Episode Psychosis using sleep spindle from Electroencephalography (EEG) data

Jan 2019 - May 2019

Carnegie Mellon University (with Dr. John Kitchin), University of Pittsburgh Medical Centre (UPMC)

- Predicted patient's chances as first-episode psychosis (FEP) or healthy-control (HC) with spindle properties from EEG data with logistic regression.
- Performed feature engineering by clustering the human brain into five different sections to increase prediction accuracy.
- Attained an accuracy of 85% by improving the model with cross-validation and hyperparameter optimization.

Development of Graphene Based Post-Combustion CO2 Capture System

Jan 2018 - May 2018

R.V. College of Engineering (with Dr. Basavaraja R.J.)

- Synthesized lab scale graphene through Hummer's process reducing the production cost by about 30%.
- Devised an experimental plan and selected characterization techniques to test the adsorption capacity of the synthesized graphene.
- Fabricated an adsorption column with an augmented fluid jacket. Adsorption and desorption studies were performed for CO₂ and N₂ to find out the feasibility of graphene as a reusable CO₂ adsorbent. Filed an Indian Patent on the work.

Professional Experience

Computational Material Scientist Intern, Western Digital., San Jose, CA

May 2021-Aug 2021

- Developed several Moment Tensor Potentials using ridge regression that captured inter-diffusion of Ti-Ge₂₀Se₈₀.
- Deployed Moment Tensor-drive active learning scheme to generate high temperature training data for bulk crystals that captured one-element and two-element Ti-Ge-Se interactions using QuantumATK package.
- Demonstrated the quality of the potential by comparing equation of state, elastic properties, relaxation trajectories.
- Achieved a speedup of more than 5000 using this potential as compared to DFT methods to simulate Ti-Ge₂₀Se₈₀.

Research Intern, Innovative Nano Materials (INM) Pvt. Ltd., Bangalore, India

Jan 2017 - Dec 2017

- Synthesized a coating using MgF₂- TiO₂ composites using sol-gel techniques that increases the transmission of light through solar glass panels by 2%.
- Gained professional lab experience with sol-gels preparation and optical parameter characterization techniques.

Summer Research Fellow, Saha Institute of Nuclear Physics, Kolkata, India

May 2017 - July 2017

- Prepared an instrumentation report on the improvement of Secondary Ion Mass Spectroscopy (SIMS)
- Performed research studies on materials to find the elemental composition using SIMS.

Publications (with hyperlinks)

- 7. **Achar, S.** K., Zhang, L., & Johnson, J. K. (2021). Efficiently Trained Deep Learning Potential for Graphane. The Journal of Physical Chemistry C, 125(27), 14874-14882 (Link)
- 6. **Achar, S. K.**, Wardzala, J., Bernasconi, L., Zhang, L., & Johnson, J. K. (2022). A Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66±. Journal of Chemical Theory and Computation (Submitted, under review)
- 5. Yang, Y., **Achar, S. K,** & Kitchin, J. (2021). Evaluation of the Degree of Rate Control via Automatic Differentiation. AIChE journal (Submitted, under review) (Link)
- 4. **Achar, S. K.**, Stewart, D. & Schneider, J. (2022). Using machine learning empirical potentials to investigate interdiffusion at metal-chalcogenide alloy interfaces. (Paper in preparation)
- 3. **Achar, S. K.,** Madathil, A. P., S., Naveen C, Gosh, B., & Phani, A R (2018). Thickness Dependent Optical Properties of Sol-gel based MgF2 TiO2 Thin Films. Journal Article Mechanics, Materials Science & Engineering (Link).
- 2. Gupta, S., Bonageri, S., **Achar, S. K.,** & Menon, A. (2018). Synthesis of porous graphene powder through improved Hummers' method. In AIP Conference Proceedings (Vol. 1966, No. 1, p. 020014). AIP Publishing LLC (Link).
- 1. Madathil, A. P., **Achar, S. K.**, Moses, V., Meda, U. S., Chetan, N., Vidya, C., ... & Sarode, M. (2020). Use of Keratin Present in Chicken feather as a Hydrogen Storage Material: A Review. International Journal of Engineering Materials and Manufacture, 5(4), 148-155 (Link).

Conference Presentations

- 12. **S. Achar**, D. Stewart, J. Schneider, Using machine learning empirical potentials to investigate interdiffusion at metal-chalcogenide alloy interfaces. *Materials Research Society (MRS) Fall*, (2021), Boston, MA
- 11. D. Stewart, **S. Achar**, J. Schneider, Using machine learning empirical potentials to investigate interdiffusion at metal-chalcogenide alloy interfaces. *Intersect (2021)*, Barcelona, Spain
- 10. **S. Achar**, L. Zhang, L. Bernasconi, J. K. Johnson. Studying Anhydrous Proton Transport on Graphene-based Materials using Deep Learning Methods, *Psi-k ML-IP workshop*, (2021), (Virtual)
- 9. **S. Achar**, L. Zhang, L. Bernasconi, J. K. Johnson. Studying Anhydrous Proton Transport on Graphene-based Materials using Deep Learning Methods, *American Institute of Chemical Engineers (AIChE) Annual*, (2021), Boston, MA
- 8. **S.Achar**, J. Wardzala, L. Zhang, L. Bernasconi, J. K. Johnson. A Neural Network and Lennard-Jones Hybrid Forcefield to Study Diffusion of Neon in UiO-66, *Advancing Research Through Computing (ARC)*, (2021), Pittsburgh, PA
- 7. J. K. Johnson., **S. Achar**, Studying Anhydrous Proton Transport on Graphene-based Materials using Deep Learning Methods, *Ohio State University (Invited)*, (2021), Columbus, OH
- 6. **S. Achar**, L. Zhang, J K. Johnson. Towards a deep learning potential for anhydrous proton transport, *American Institute of Chemical Engineers (AIChE) Annual, (2020),* San Francisco, CA
- 5. **S. Achar**, L. Zhang, J K. Johnson. Towards a deep learning potential for anhydrous proton transport, *Pittsburgh Quantum Institute*, (2020) Pittsburgh, PA
- 4. **S. Achar**, J. R. Kitchin. Calculation of Degree of Rate control for multistep reactions at steady and unsteady state. *Pittsburgh-Cleveland Catalysis Society Conference*, (2019) Pittsburgh, PA
- 3. **S. Achar**, J. R. Kitchin. Calculation of Degree of Rate control for multistep reactions at steady and unsteady state. *41st Annual ChEGSA Symposium, Carnegie Mellon University*, (2019) Pittsburgh, PA
- 2. **S. Achar**, S. Gupta, S. Bonageri, B.R.J., Synthesis of porous graphene powder through improved Hummers' method. *American Institute of Physics (AIP) Conference*, (2018) Coimbatore, Tamil Nadu, India
- 1. **S. Achar**, A. PM, C.S. Naveen, B. Ghosh, A.R. Phani, Thickness dependent optical properties of TiO2-MgF2 nanocomposite thin films by using Envelope technique. *International Conference on Advances in Materials Science and Technology (2017)* VIT Vellore, Tamil Nadu, India

Patents

1. R J, Basavaraja, Gupta, Siddhant, **Achar, Siddarth,** Bonageri, Shrilakshmi, Menon, Atul. 2021. Fluid Jacketed Temperature Swing Adsorption System for Carbon Dioxide Capture Using Graphene. India. 202041024611, filed (June 11, 2020), and published (December 17, 2021)

Awards and Sponsors

- Winner 3rd place: SDLC Partners 2019 Hackathon, Pittsburgh. 2019
- Awarded Best Innovative Project in R.V. College of Engineering 2018, EDC Development. 2018
- Awarded Karnataka State Council for Science and Technology (State Government) sponsorship 2018
- Awarded Saha Institute of Nuclear Physics Summer Fellowship 2017

Leadership/Mentorship

- Mentorship: Two undergrad Pitt ChemE students during my PhD
- Social Chair ChEGSA, Carnegie Mellon University
- Head and Treasurer RVQuizCorp, R.V. College of Engineering

August 2020 - present

Jan 2019 – Dec 2019

Aug 2017 - May 2018

Skills

Programming Languages: Python (proficient), C++, R Programming, MATLAB Unix shell script, Git **Software for Computational Chemistry**: CP2K, VASP, LAMMPS, DeePMD, DPGEN, PyTorch, QuantumATK

Software: Aspen Plus, UniSim, COMSOL Multiphysics, GAMS

HPC related: MPI, OpenMP, pthreads, OpenACC