CS 294-8

Principles of Fault Tolerant Computing Kathy Yelick

http://www.cs.berkeley.edu/~yelick/294

CS294, Yelick Introduction, p1

Today's Agenda

- Motivation and trends
- Examples of failures
- Background in reliability computing
- Course Overview
- Administrivia

CS294, Yelick Introduction, p2

Ubiquitous Computing

- Computing everywhere:
 - Desktop, Laptop, Palmtop, Cars, Cellphones
- Input devices everywhere:
 - Sensors, cameras, microphones
- Connectivity everywhere:
 - Rapid growth of bandwidth in the interior of the net
 - Broadband to the home and office
 - Wireless technologies such as CMDA, Satelite, laser
- Increased reliance on computers is inevitable
- Computer systems will become invisible only when they are reliable

CS294, Yelick Introduction, p3

The "Post-PC" Era

PostPC Era Divides built on two technologies:

- 1) Mobile Consumer Electronic Devices
 - e.g., successor to PDA, Cell phone, wearable computers
- 2) Infrastructure to Support such Devices
 - e.g., successor to Big Fat Web Servers,
 Databases

CS294, Yelick Introduction, p5

The problem space: big data

- Big demand for enormous amounts of data
 - today: enterprise and internet applications
 - online applications: e-commerce, mail, web, archives
 enterprise decision-support, data mining databases
 - future: richer data and more of it
 - \bullet computational & storage back-ends for mobile devices
 - more multimedia content
 - more use of historical data to provide better services
- Two key application domains:
 - storage: public, private, and institutional data
 - search: building static indexes, dynamic discovery

CS294, Yelick Introduction, p.

Application: Tornado Response

- CAPS at University of Oklahoma
- Currently 12 radars in Oklahoma area
 - Improve warning time: saved 800 lives?
- Two problems:
 - Real-time computation and response
 - Some local to one radar
 - Better algorithms involve coordination
 - Archival of data for experimentation and long term analyses ("data mining")
 - Petabytes per year

CS294, Yelick Introduction, p7

Application: Smart Buildings

- Buildings adapt to occupants and save energy
 - Save \$55 billion in the U.S.
 - Reduce carbon emissions by 35 million metric tons
- Sensors with wireless connections
- Integrated with server to record history information and do prediction

CS294, Yelick Introduction, p8

Application: Earthquakes

- Reduce the risk and improve response to earthquakes
- Use millions of MEMS sensors in buildings, ground, bridges, etc.
- Front-end processing in sensor
- Tied to backend data bases and computational models
- Building will "self-diagnose" after an earthquake.

CS294, Yelick Introduction, p9

Application: Transportation

- Traveler information service
 - Limited for exists in Europe
 - Prototype from Path project in LA
- "Mine" sensor data from roads to predict travel times
- Traffic manage apply controls (traffic ramp meters) in real time
- Improve long term highway planning

CS294, Yelick Introduction, p10

Summary of Post-PC Era

- Computing and data in the extremes: tiny devices and enormous "utilitystyle" servers
- Applications entertainment and business will continue
- New applications that make computing transparent in the environment require reliability

CS294, Yelick Introduction, p1

Today's Agenda

- Motivation and trends
- Examples of failures
- Background in reliability computing
- Course Overview
- Administrivia

CS294, Yelick Introduction, p

eBay Crash

- · eBay: giant internet auction house
 - A top 10 internet business
 - Market value of \$22 billion
 - 3.8 million users as of March 1999
 - Bidding allowed 24x7
- June 6, 1999
 - eBay system is unavailable for 22 hours with problems ongoing for several days
 - Stock drops by 6.5%, \$3-5 billion lost revenues
 - Problems blamed on Sun server software · Similar to EECS server downtime?
- · Shorter downtimes common

Introduction, p13

EECS Servers Crash

- Department servers are offline for 3-7 days
 - Cause is disk failure coupled with incompatible RAID software
- · Power failure also resulted in lost data in a separate event
 - UPS not purchased due to staff turnover

CS294. Yelick Introduction, p14

Ariane 5 Rocket Crash

- Ariane 5 and its payload destroyed about 40 seconds after liftoff
- · Error due to software bug:
 - Conversion of floating point to 16-bit int
 - Out of range error generated but not handled
- Testing of full system under actual conditions not done due to budget limits
- · Estimated cost: 120 million DM

CS294 Yelick Introduction, p15 Risks Digest

The Therac-25 Failure

- · Therac-25 is a linear accelerator used for radiation therapy
- More dependent on software for safety than predecessors (Therac-20, Therac-6)
- Machine reliably treated thousands of patients, but occasionally there were serious accidents, involving major injuries and 1 death.
- · Software problems:
 - No locks on shared variables (race conditions).
 - Timing sensitivity in user interface.
- Wrap-around on counters.

CS294, Yelick Introduction, p16 Fox and Dill, 1999

Tele Denmark

- Tele Denmark Internet, ISP
- August 31, 1999
 - Internet service down for 3 hours
 - Truck drove into the power supply cabinet at Tele Denmark
 - Where were the UPSs?
 - Old ones had been disconnected for upgrade
 - · New ones were on the truck!

CS294. Yelick Introduction, p17 Risks Digest & rec.hum

Lampson: Systems Challenges

- Systems that work
 - Meet their specs
 - Always available
 - Adapt to environment & evolve over time
 - Made from unreliable components
 - Grow without practical limit
- Credible simulations or analysis
- Writing good specs
- "Computer Systems Research: Past and Future" -Butler Lampson, Microsoft SOSP Keynote, Dec. 1999 Testing
- Performance
 - Understanding when it doesn't matter

CS294, Yelick

Hennessy: The "New World" Focus

- Availability
 - Both appliance & service
- Maintainability
 - Two functions:
 - · Enhancing availability by preventing failure
 - · Ease of SW and HW upgrades
- Scalability
 - Especially of service
- Cost

CS294. Yelick

- per device and per service transaction

Performance

"Back to the Future: Time to Return to Remains important
 But its not SPECint
 Longstanding Problems in Computer Systems?" -John Hennessy, Stanford FCRC Keynote, May 1999

Introduction, p19

CS294. Yelick

Introduction, p20

Today's Agenda

Background in reliable computing

Motivation and trends

Examples of failures

Course Overview

Administrivia

Aspects of Reliability

- · Safety: "First, do no harm"
- · Fault tolerance: faults should (at worst) result in graceful degradation
- · Predictability: behavior should be a function of inputs and environment; should be reproducible
- Timeliness: real-time constraints, Quality of Service (QoS) guarantees

CS294, Yelick Introduction, p21

Availability vs. Reliability

- Jim Gray's 85 paper (see class web page) distinguishes these
 - Reliability is measured by mean time between failures (MTBF)
 - Availability is a function of MTBF and mean time to recover (MTTR)

MTBF/(MTBF+MTTR)

- A system may have a high MTBF, but low availability

CS294, Yelick Introduction, p22

Fault Recovery

- How quickly is the fault detected?
- How soon can recovery begin?
 - Does is require human intervention
 - How is the sysadmin notified?
- · How long does recovery take?
 - Restore from backup?
 - Purchase new HW?

CS294, Yelick Introduction, p23

Two Keys to Availability

- Redundancy
 - "The one good idea"
 - May be in software, hardware, data structures (state), programmers, etc.
- Modularity
 - Reduce the size of the failure unit (FRU)
 - Change failure model from continuous to discrete
 - 90% of client machines available 90% time

Introduction, p24 CS294, Yelick

Causes of Faults: Tandem

- In Gray's '85 survey of Tandem customers
 - 30% were "infantile" failures
 - The rest were broken into (roughly):
 - Administration 42%
 - Software 25%
 - Hardware 18%
 - Environment (power, etc.) 14%
 - Unknown 3%

CS294, Yelick Introduction, p25

- Multiple crashes per problem
- Sysadmin Actions: set params, config, bad app install
- HW/OS 70% in '85 to 28% in '93. In '01, 10%?
 - Sysadmin increasingly important

Introduction. p26

The Fail-Fast Principle

- Reliable systems should be built from components that fail fast
 - No answer is better than the wrong answer
 - Improves latency of fault detection
 - Fault containment is better if modules stop

CS294, Yelick Introduction, p27

The Heisenbug Hypothesis

- · Software faults can be divided into
 - Bohrbugs easily reproduced
 - Hiesenbugs transient, hard to produce
- Conventional wisdom is that most bugs in running systems are Heisenbugs
 - Is this true? SW and HW? Open source too?
- HW redundancy (processor pairs) can help with Hiesenbugs

294, Yelick Introduction, p28

Today's Agenda

- Motivation and trends
- Examples of failures
- · Background in reliable computing
- Course Overview
- Administrivia

CS294, Yelick Introduction, p29

What is Fault Tolerance?

- A better title might have been "reliable" or "available" computing
- · We will be looking at:
 - The "classics" (Gray, Lamport, Birman,...) in distributed computing
 - Recent results (Coding-based replication, practical byzantine fault tolerance,...)
- Avoid overlap with 262AB (Coda and Bayou possible exceptions)
- Not software verification/quality: See Wolfgang Pree's course instead

CS294, Yelick Introduction, p30

What is Meant by "Principles"?

- We will study
 - Models of distributed systems and faults
 - Distributed algorithms
 - Reasoning techniques
- Things that every system designer should know, aside from the experience papers

CS294, Yelick Introduction, p31

Course Goals

- Prepare for research in reliability
 Put structure on past work
- I dentify major open problems and possible approaches
 - Can cheap hardware be used in place of expensive humans? Bugs? Maintenance?
 - What is the user's view? Are "weak" consistency models acceptable?
 - To what extent can self-monitoring, self-healing systems help?

CS294, Yelick Introduction, p32

Administrivia

- Class times:
 - Tuesday 3:30-5:00 here in 380
 - Thursday: seminar in 306 3:30-4:30
 - Except this week: Thursday 3:30 in 380
 - Thursday: discussion 4:30-5:30 in 380
- Work
 - Readings (some write-ups)
 - Read ISTORE paper for Thursday
 - Small homework assignments
 - Project: presentations/poster + paper

CS294, Yelick Introduction, p3

This Week

- Read I STORE paper for Thursday
- Homework 1 due next Tuesday:
 - Anatomy of a failure
- Read Grapevine and Porcupine papers for next Tuesday
- Read M. Baker paper for 9/7

CS294, Yelick Introduction, p34