Winkelberechnungen - Grundwissen

1 Winkel zwischen zwei Vektoren – Skalarprodukt

1.1 Das Skalarprodukt für Spezialfälle: Orthogonale und parallele Vektoren

Sie haben bereits die Koordinatenform des Skalarprodukts kennengelernt. Im IR³ lautet sie:

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Man kann das Skalarprodukt für ein **Orthogonalitätskriterium** verwenden:

Zwei Vektoren $\vec{a} \neq \vec{o}$ und $\vec{b} \neq \vec{o}$ sind genau dann zueinander **orthogonal**, wenn $\vec{a} \cdot \vec{b} = 0$.

Weiterhin haben Sie gelernt, den **Betrag eines Vektors im IR³** zu berechnen:

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Berechnet man nun das **Skalarprodukt eines Vektors mit sich selbst**, so erkennt man, dass es dem Produkt des Betrags mit sich selbst entspricht:

$$\vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2 = |\vec{a}|^2$$

Daraus lässt sich eine einfache Rechenregel für das **Skalarprodukt zweier zueinander paralleler und** in die gleiche Richtung zeigender Vektoren \vec{a} und $\vec{b} = r \cdot \vec{a}$ ($r \in IR^+$) ableiten:

$$\vec{a} \cdot \vec{b} = \vec{a} \cdot r \cdot \vec{a} = r \cdot \vec{a} \cdot \vec{a} = r \cdot |\vec{a}| \cdot |\vec{a}| = |\vec{a}| \cdot r \cdot |\vec{a}| = |\vec{a}| \cdot |\vec{b}|$$
, in Worten:

Das **Skalarprodukt** zweier zueinander **paralleler** und in die gleiche Richtung zeigender Vektoren ist gleich dem Produkt ihrer Beträge.

1.2 Das Skalarprodukt für beliebige Winkel

Zeichnet man zu einem gemeinsamen Anfangspunkt Pfeile zweier Vektoren \vec{a} und \vec{b} , die nicht zueinander parallel sind, so entstehen zwei Winkel. Den kleineren dieser Winkel bezeichnet man als den **Winkel zwischen den Vektoren** \vec{a} und \vec{b} . Die Größe dieses Winkels kann man mittels des Skalarproduktes bestimmen.

Dazu zerlegt man den Vektor \vec{b} in einen zum Vektor \vec{a} parallelen Anteil \vec{b}_{II} und einen zu \vec{a} orthogonalen Anteil \vec{b}_{\perp} .

Also ist
$$\vec{\alpha} \cdot \vec{b} = \vec{\alpha} \cdot (\vec{b}_{||} + \vec{b}_{\perp}) = \vec{\alpha} \cdot \vec{b}_{||} + \vec{\alpha} \cdot \vec{b}_{\perp}$$

Wegen $\vec{a} \perp \vec{b}_{\perp}$ ist $\vec{a} \cdot \vec{b}_{\perp} = 0$ und wegen $\vec{a} \parallel \vec{b}_{\parallel}$ ist $\vec{a} \cdot \vec{b}_{\parallel} = |\vec{a}| \cdot |\vec{b}_{\parallel}|$.

Damit folgt $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}_{II}|$.

In Worten formuliert bedeutet das, dass für das Skalarprodukt nur der zu \ddot{a} parallele Anteil von \ddot{b} relevant ist.

$$\text{Da } \cos\alpha = \frac{\left|\vec{b}_{II}\right|}{\left|\vec{b}\right|} \text{ bzw. } \left|\vec{b}_{II}\right| = \left|\vec{b}\right| \cdot \cos\alpha \text{ , erhält man insgesamt } \vec{a} \cdot \vec{b} = \left|\vec{a}\right| \cdot \left|\vec{b}_{II}\right| = \left|\vec{a}\right| \cdot \left|\vec{b}\right| \cdot \cos\alpha \text{ .}$$

Analytische-Geometrie-Projekt 2018

Winkelberechnungen – Grundwissen

Ist der Winkel zwischen a und b größer als 90°, so erhält man aus analogen Überlegungen

$$\begin{split} \vec{a} \cdot \vec{b} &= - |\vec{a}| \cdot |\vec{b}| \cdot \cos(180^\circ - \alpha) \text{ und wegen } \cos(180^\circ - \alpha) = -\cos\alpha \\ \text{ebenfalls } \vec{a} \cdot \vec{b} &= |\vec{a}| \cdot |\vec{b}| \cdot \cos\alpha \; . \end{split}$$

Insgesamt ergibt sich aus diesen Überlegungen folgender Zusammenhang:

Satz:

Für den Winkel α zwischen den Vektoren \vec{a} und \vec{b} gilt:

$$\vec{a} \cdot \vec{b} = \left| \vec{a} \right| \cdot \left| \vec{b} \right| \cdot \cos \alpha \quad \text{bzw.} \quad \cos \alpha = \frac{\vec{a} \cdot \vec{b}}{\left| \vec{a} \right| \cdot \left| \vec{b} \right|} \quad \text{mit} \quad 0^{\circ} \leq \alpha \leq 180^{\circ} \ .$$

Anmerkung:

Man bezeichnet den Anteil \vec{b}_{II} auch als **senkrechte Projektion** des Vektors \vec{b} auf den Vektor \vec{a} , da man ihn sich als Schattenwurf von \vec{b} auf \vec{a} senkrechtem Lichteinfall vorstellen kann.

Beispiel 1.1: Winkelberechnung

Gegeben sind die Punkte A(1|-1|-5), B(3|2|-4) und C(5|-1|-2). Bestimmen Sie jeweils die Größe des Winkels zwischen den Vektoren AB und AC bzw. BA

und AC.

Lösung:
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
; $\overrightarrow{BA} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$; $|\overrightarrow{AB}| = |\overrightarrow{BA}| = \sqrt{14}$; $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$; $|\overrightarrow{AC}| = 5$

 α : Winkel zwischen \overrightarrow{AB} und \overrightarrow{AC} .

β: Winkel zwischen BA und AC

$$\cos(\alpha) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{AC}|} = \frac{8+0+3}{\sqrt{14} \cdot 5} = \frac{11}{5\sqrt{14}}; \ \alpha \approx 54,0$$

$$\cos\left(\alpha\right) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left|\overrightarrow{AB}\right| \cdot \left|\overrightarrow{AC}\right|} = \frac{8 + 0 + 3}{\sqrt{14} \cdot 5} = \frac{11}{5\sqrt{14}}; \ \alpha \approx 54,0^{\circ} \qquad \cos\left(\beta\right) = \frac{\overrightarrow{BA} \cdot \overrightarrow{AC}}{\left|\overrightarrow{BA}\right| \cdot \left|\overrightarrow{AC}\right|} = \frac{-8 + 0 - 3}{\sqrt{14} \cdot 5} = \frac{-11}{5\sqrt{14}}; \ \beta \approx 126,0^{\circ}$$

Beispiel 1.2: Winkelberechnung mit dem Casio 991 DE-X:

Es sind die beiden Vektoren
$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ gegeben

Du wechselst zuerst mit [MENU][5] in den Vektormodus. Nun wählst du [1], um den Vektor \vec{a} zu definieren

Da es sich um einen dreidimensionalen Vektor handelt, tippst du eine 3 ein.

Nun gibst du die einzelnen Einträge ein und schließt die Eingabe jeweils mit [=] ab.

Um den zweiten Vektor einzugeben, tippst du zuerst [OPTN], und wählst dann Vek. definieren aus.

Durch tippen von [2] wählst du VctB aus, um \vec{b} zu defi-

Als nächstes musst du nun [AC] drücken, um zum Vektorberechnungsbildschirm zu gelangen.

Du rufst den Winkelbefehl auf mit [OPTN], [▼] und Winkel.

Nun kannst du den ersten Vektor mit [OPTN] und dann

Nun gibst du die beiden Vektoren ein, getrennt durch § [:].

Der Winkel wird angezeigt. Es ist also $\alpha \approx 118,56^{\circ}$.

1:VetAns 2:Skalar 3:Winkel Skalarprodukt 4:Einheitsvektor

definieren bearbeiten 4:VctB 6:VctD

Winkelberechnungen – Grundwissen

Schnittwinkel bei Geraden und Ebenen 2

Schnittwinkel Gerade - Gerade

Wenn zwei Geraden sich schneiden, entstehen vier Winkel, je zwei der Größe α ($\alpha \le 90^{\circ}$) und je zwei der Größe 180° - α (Fig. 1). Unter dem Schnittwinkel zweier Geraden versteht man den Winkel, der kleiner oder gleich 90° ist. Sind \vec{v} und \vec{v} Richtungsvektoren der Geraden, dann kann

man den Schnittwinkel α der Geraden mit der Formel $\cos(\alpha) = \frac{|\vec{u} \cdot \vec{v}|}{|\vec{u}| \cdot |\vec{v}|}$ berechnen.

Die Betragsstriche im Zähler der Formeln sichern, dass $cos(\alpha) \ge 0$ und damit $0^{\circ} \le \alpha \le 90^{\circ}$

Schnittwinkel Ebene - Ebene

Unter dem Schnittwinkel α zweier Ebenen E₁ und E₂ versteht man den Schnittwinkel zweier Geraden g und h, die in E₁ bzw. E₂ liegen und orthogonal zur Schnittgeraden s der beiden Ebenen sind (Fig. 2). Dieser Winkel ist gleich dem Winkel zwischen den Normalenvektoren nit und $\overrightarrow{n_2}$ der Ebenen E_1 und E_2 in Fig. 3. Deshalb kann man den Schnittwinkel α der Ebenen E_1 und E_2 mit der Formel $\cos(\alpha) = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$ berechnen.

Schnittwinkel Gerade - Ebene

Fällt man von jedem Punkt einer Geraden g das Lot auf die Ebene E, so erhält man in E eine Gerade g'. Unter dem Schnittwinkel α der Geraden g und der Ebene E versteht man den Winkel zwischen den Geraden g und g' (Fig. 4). Der Winkel β zwischen dem Normalenvektor \overrightarrow{n} der Ebene E und dem Richtungsvektor u der Geraden g in Fig. 5 ergänzt den Schnittwinkel α zu 90°.

Daher kann man den Schnittwinkel α direkt mit der Formel $\sin(\alpha) = \frac{|\vec{u} \cdot \vec{n}|}{|\vec{u}| \cdot |\vec{n}|}$ berechnen.

Es ist $\cos(\beta) = \frac{|\vec{u} \cdot \vec{n}|}{|\vec{u}| \cdot |\vec{n}|}$ Wegen $\beta = 90^{\circ} - \alpha$ und $cos(90^{\circ} - \alpha) = sin(\alpha)$ erhält man: $\sin(\alpha) = \frac{|\vec{u} \cdot \vec{n}|}{|\vec{u}| \cdot |\vec{n}|}$

Satz: Schnittwinkel bei sich schneidenden Geraden und Ebenen Haben die Geraden g_1 und g_2 die Richtungsvektoren $\overrightarrow{u_1}$ und $\overrightarrow{u_2}$ und die Ebenen E_1 und E_2 die Normalenvektoren $\overrightarrow{n_1}$ und $\overrightarrow{n_2}$, so gilt für den **Schnittwinkel** α

$$\cos(\alpha) = \frac{|\overrightarrow{u_1} \cdot \overrightarrow{u_2}|}{|\overrightarrow{u_1}| \cdot |\overrightarrow{u_2}|}, \quad 0^{\circ} \le \alpha \le 90^{\circ}$$

$$\cos(\alpha) = \frac{\left|\overrightarrow{n_1} \cdot \overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right| \cdot \left|\overrightarrow{n_2}\right|}, \quad 0^{\circ} \le \alpha \le 90^{\circ}$$

- der Geraden
$$g_1$$
 und der Ebene E_1 : $\sin(\alpha) = \frac{|\overrightarrow{u_1} \cdot \overrightarrow{n_1}|}{|\overrightarrow{u_1}| \cdot |\overrightarrow{n_1}|}$, $0^{\circ} \le \alpha \le 90^{\circ}$

Analytische-Geometrie-Projekt 2018

Beispiel 2.1: Winkelberechnungen bei Geraden und Ebenen

Gegeben sind die sich schneidenden Geraden g:
$$\vec{x} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
 und h: $\vec{x} = \begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ sowie die Ebenen E₁: $2x_1 + x_2 - x_3 = 12$ und E₂: $\left[\vec{x} - \begin{pmatrix} 1 \\ 5 \\ 5 \end{pmatrix}\right] \cdot \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} = 0$.

Bestimmen Sie die Größe des Schnittwinkels

a) der Geraden g und h, b) der Ebenen E_1 und E_2 , c) der Geraden g und der Ebene E_1 .

Lösung: a)
$$\cos(\alpha) = \frac{\begin{pmatrix} 1\\3\\2 \end{pmatrix} \cdot \begin{pmatrix} -2\\1\\1 \end{pmatrix}}{\sqrt{1^2 + 3^2 + 2^2} \cdot \sqrt{(-2)^2 + 1^2 + 1^2}} = \frac{3}{\sqrt{14} \cdot \sqrt{6}}$$
. Somit ist $\alpha \approx 70.9^\circ$.

Der Schnittwinkel beträgt 70,9°.

b)
$$\cos(\alpha) = \frac{\left| \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} \right|}{\sqrt{2^2 + 1^2 + (-1)^2} \cdot \sqrt{(-3)^2 + 1^2 + 1^2}} = \frac{6}{\sqrt{6} \cdot \sqrt{11}}$$
. Somit ist $\alpha \approx 42,4^\circ$.

Der Schnittwinkel beträgt 42,4°.

c)
$$\sin(\alpha) = \frac{\begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{vmatrix}}{\sqrt{1^2 + 3^2 + 2^2} \cdot \sqrt{2^2 + 1^2 + (-1)^2}} = \frac{3}{\sqrt{14} \cdot \sqrt{6}}$$
. Somit ist $\alpha \approx 19,1^\circ$.

Der Schnittwinkel beträgt 19.1°.

Links zum Thema Skalarprodukt:

- Herleitung ähnlich zu 1.2 als Video, dazu Erklärungen zum Skalarprodukt in der Physik: http://www.youtube.com/watch?v=uhwW7HiPp U
- Der umgekehrte Weg: Herleitung der Koordinatenform des Skalarprodukts aus seinen Eigenschaften, dazu ebenfalls Erklärungen zum Skalarprodukt in der Physik: http://www.youtube.com/watch?v=tKVeHS5XDe8
- Alle Herleitungen und Erklärungen noch einmal zum Nachlesen, dazu über die Schulmathematik hinausgehende Erläuterungen:

http://de.wikipedia.org/wiki/Skalarprodukt