Predicting Employee Attrition

Jyoti Kumari, Sarah Lee, Hrishi Salitri, Vannie Sung, Milan Vaghani

Agenda

Problem Introduction

Exploratory Analysis

Modeling

Attrition insight

Companies need to understand employee attrition

High Cost

Productivity loss

Company culture

Employee Attrition Dataset

~ 70,000 rows of data
 23 predictor variables
 Target variable: Attrition
 52% Stayed

Demographic

 Job
 Satisfaction
 Work-Life
 Balance

Work Flexibility

Performance

Exploratory Data Analysis(EDA)

Age vs Attrition

- Older employees stay longer compared to younger employees who leave.
- Older workers seek stability, resulting in longer company tenure.

Years at Company vs Attrition

- Employees with higher tenure tend to stay
- As these employees are invested in the company's growth and have ESOPs they tend to stay

Education Level vs. Attrition

- More education led to more loyalty
- Employees with a bachelor's degree exhibit the highest attrition rate

Marital Status vs. Attrition

- 'Single' tends to leave company frequently
- 'Married' tends to look for more stability, hence more likely to stay

Promotion vs. Attrition

- No big impact until a certain threshold
- 75% of employees that stayed had at least 3 promotions.

 Companies offering more flexible workfrom-home arrangements have lower attrition rates

Job Level vs. Attrition

 Higher up an employee was at the company, the less likely he or she are to leave

Model#1: Naïve Bayes

Variable Binning for Analysis:

- Continuous variables (Age, Monthly Income, Distance from Home, Company Tenure) were binned into 5 quantiles.
- Years at Company was binned into specific intervals to capture key career stages and tenure-related trends.

Model Performance:

Accuracy: 75%

Model #2: KNN

	Accuracy
Initial model	67.3%
Cross Validation	71.4%
Selected Features	71.8%

Important features

- Job level
- Age

Optimal Number of Neighbors

- K=95 for initial cross validation
- K=50 for selected features

Model 3: Random Forests

Number of Trees Selection

- Used error vs number of trees plot to determine optimal tree count to
- The error stabilizes starting with 1000 trees
- The selected tree count is 1500, which balances accuracy and computational efficiency

Number of Features

- Used error vs number of features plot to determine optimal feature value
- Selected 8 features to be sampled in random forest calculation

Model 4: Random Forests

Feature Importance

- As per Random Forest variable importance plot the top features were as same as expected in EDA:
 - Age
 - Years at Company
 - Job Level
 - Marital Status

Baseline Accuracy	52.81%
Model Accuracy	75.2%
Precision	76%
Recall	76%

Model 5: Boosting

- Marital Status, Job Level,
 Work Environment
- Important predictors not consistent

Accuracy	75.7%
Precision	76.5%
Recall	76.8%

Best Predictors of Attrition

Partial Dependence

Thank You!

