<< 문제지에 풀이와 답을 작성하여 제출하십시오. >>

0000 년 00 학기 00 고사		과	물리학 19장	학 과	학년	감 독	
출 제	공동 출제	목		학 번		교수	
편 집	송 현 석	명	기출문제 답안지	성 명		확 인	
시험일시 0000. 00. 00			0		0	점 수	

[주의 사항] 1. 계산기는 사용할 수 없습니다.

2. 단위가 필요한 답에는 반드시 SI 체계로 단위를 표기하시오.

[2007년 2학기 중간고사 10번]

1. 자기장의 단위 테슬라(T)를 기본 단위의 조합으로 표현하시오.

$$\begin{split} F_B &= qvB\sin\theta \quad \Rightarrow \quad B = \frac{F_B}{qv\sin\theta} \\ & \left[\frac{N}{C \cdot m/s} = \frac{kg \cdot m/s^2}{A \cdot m} = \frac{kg}{A \cdot s^2} \right] \\ & \left(-\frac{kg}{A \cdot s^2} \right) \end{split}$$

[2012년 2학기 중간고사 9번] - 예제 19.2, 연습문제 19.4 참고 [2009년 2학기 중간고사 11번]

2. 균일한 전기장 E와 균일한 자기장 B가 서로 수직 방향으로 존재하는 공간에 전하량의 크기가 e인 전자가 전기장과 자기장에 수직인 방향으로 진입하였다. 전자가 아무런 힘을 받지 않고 등속으로 움직인다고 할 때, 전자의 속력을 구하여라.

$$\begin{cases} F_E = qE \\ F_B = qvB \end{cases} \Rightarrow qE = qvB \Rightarrow v = \frac{E}{B}$$

$$(v = \frac{E}{B})$$

[2010년 2학기 중간고사 8번] - 예제 19.3, 연습문제 19.16 참고

3. 전하량이 q인 점전하가 북쪽으로 속도 v로 운동하다가 균일한 자기장 영역으로 들어가 반원 궤도를 그리면서 동쪽으로 d만큼 떨어진 곳에 도달하였다. 자기장의 크기는 B이고 방향을 지면에 수직인 방향이다. 이때, 이 입자의 질량을 q, v, B, d로 나타내어라.

$$F_B = F_c \implies qvB = m\frac{v^2}{r}$$

$$\Rightarrow m = \frac{Bqr}{v} = \frac{Bq(d/2)}{v} = \frac{Bqd}{2v}$$
 ($m = \frac{Bqd}{2v}$)

[2011년 2학기 중간고사 9번] - 예제 19.3, 연습문제 19.16 참고 [2008년 2학기 중간고사 9번]

4. 질량이 m 이고 전하량이 q 인 어떤 점전하가 자기장의 크기가 B 인 영역에서 원운동을 하고 있다. 이 전하의 1초당 회전수를 $m,\ q,\ B$ 를 이용하여 나타내어라.

$$\begin{split} F_B &= F_c \quad \Rightarrow \quad qv \\ B &= m \frac{v^2}{R} \quad \Rightarrow \quad R = \frac{mv}{qB} \\ \\ &\Rightarrow \quad T = \frac{2\pi R}{v} = \frac{2\pi}{v} \left(\frac{mv}{qB}\right) = \frac{2\pi m}{qB} \\ \\ &\Rightarrow \quad f = \frac{1}{T} = \frac{qB}{2\pi m} \end{split}$$

$$(f = \frac{qB}{2\pi m})$$

[2012년 2학기 중간고사 10번] - 예제 19.3, 연습문제 19.9 참고 [2007년 2학기 중간고사 11번]

5. 질량이 m이고 전하량이 q인 입자가 전위차 V에 의하여 정지 상태에서 가속된 후 자기장의 크기가 B로 일정한 공간에 자기장에 수직인 방향으로 입사하였다. V이 입자는 자기장에 의하여 속도에 수직한 방향으로 편향되어 원운동을 하게 된다. 이 때, 원운동의 반지름을 구하여라.

$$\begin{cases} \Delta K = W & \Rightarrow \quad \frac{1}{2} m v^2 = qV \qquad \Rightarrow \quad v^2 = \frac{2qV}{m} \\ F_B = F_c & \Rightarrow \quad q v B = m \frac{v^2}{R} \qquad \Rightarrow \quad v^2 = \frac{R^2 q^2 B^2}{m^2} \end{cases}$$

$$\Rightarrow \quad \frac{2qV}{m} = \frac{R^2 q^2 B^2}{m^2} \quad \Rightarrow \quad R^2 = \frac{2mV}{qB^2} \quad \Rightarrow \quad R = \sqrt{\frac{2mV}{qB^2}}$$

$$(R = \sqrt{\frac{2mV}{aB^2}})$$

[2013년 2학기 중간고사 9번] - 예제 19.4. 연습문제 19.13 참고

6. 단위길이당 질량이 λ 인 직선 도선에 전류 I가 흐르고 있다. 이 도선이 지면과 나란하게 공중에 떠 있기 위한 자기장의 세기를 구하여라. 단, 자기장의 방향은 직선 도선 및 중력의 방향과 수직하다. 또한 중력가속도의 크기는 g이다.

$$F_B = F_g \quad \Rightarrow \quad IlB = mg \quad \Rightarrow \quad B = \frac{mg}{Il} = \frac{(m/l)g}{I} = \frac{\lambda g}{I}$$
 ($B = \frac{\lambda g}{I}$)

<뒷 면에 주관식 문제 있음.>

[주의 사항] 주관식 문제는 상세한 풀이과정이 없으면 영점처리 됩니다.

[2014년 2학기 중간고사 주관식 3번] - 예제 19.1, 19.3 연습문제 19.17 참고 [주관식 1] [10점]

전하량 q, 질량 m인 점전하가 속도 v로 균일한 자기장 B에 수직으로 입사하면 원운동을 하게 된다. 그런데 전하를 아래 그림과 같이 $45\,^\circ$ 의 각도로 비스듬히 입사시키면 원운동을 하면서 +x 방향으로 진행하는 나선운동을 하게 된다.

이 경우 아래 물음에 답하시오.

(1) 나선운동의 반지름 R을 주어진 변수들 $(m,\ v,\ q,\ B)$ 로 나타내시오. [5점]

$$\begin{cases} F_B = qvB\sin\theta = qv_yB \\ F_c = m\frac{(v\sin\theta)^2}{R} = m\frac{v_y^2}{R} \end{cases} \Rightarrow F_B = F_c \Rightarrow qvB\sin\theta = m\frac{(v\sin\theta)^2}{R} \\ \Rightarrow R = \frac{mv\sin\theta}{qB} = \frac{mv\sin45^\circ}{qB} = \frac{mv}{\sqrt{2}qB} \end{cases} (R = \frac{mv}{\sqrt{2}qB})$$

(2) x축 주위를 한번 회전하는 동안 x축 방향으로 이동한 거리를 주어진 변수들 $(m,\ v,\ q,\ B)$ 로 나타내시오. [5점]

$$\begin{split} v_y &= v \sin \theta = \frac{2\pi R}{T} \quad \Rightarrow \quad T = \frac{2\pi R}{v_y} = \frac{2\pi R}{v \sin \theta} = \frac{2\pi R}{v \sin 45^\circ} = \frac{2\pi R}{v/\sqrt{2}} \\ &= \frac{2\sqrt{2}\pi}{v} \left(\frac{mv}{\sqrt{2}\,qB}\right) = \frac{2\pi m}{qB} \\ x &= x_0 + v_x t \quad \Rightarrow \quad \Delta x = x - x_0 = v_x \, T = v \cos \theta \left(\frac{2\pi m}{qB}\right) \\ &= v \cos 45^\circ \left(\frac{2\pi m}{qB}\right) = \frac{v}{\sqrt{2}} \left(\frac{2\pi m}{qB}\right) = \frac{\sqrt{2}\pi mv}{qB} \\ &(\Delta x = \frac{\sqrt{2}\pi mv}{qB}) \end{split}$$

[2013년 2학기 중간고사 주관식 3번] - 예제 19.3 연습문제 19.9 참고 [주관식 2] [15점]

아래 그림과 같이 질량이 m이고 전하량이 q인 입자가 전위차 V에 의하여 정지상태에서 가속된 후, 자기장의 크기가 B로 일정한 공간에 자기장에 수직인 방향으로 입사하였다. 이 입자는 자기장에 의하여 속도에 수직한 방향으로 편향되어반원 궤도를 그리면서 오른쪽으로 d만큼 떨어진 곳(A지점)에 도착하였다. 이 때, 다음 질문들에 대한 답을 $m,\ q,\ d,\ V$ 등을 이용하여 답하여라. 단, 전하량 q의 부호는 (+)이다.

(1) 입자가 자기장이 존재하는 영역으로 입사하는 순간의 속력 v를 구하여라 [5점]

$$\Delta K = W \quad \Rightarrow \quad \frac{1}{2} m v^2 = q V \quad \Rightarrow \quad v = \sqrt{\frac{2q V}{m}}$$
 ($v = \sqrt{\frac{2q V}{m}}$)

(2) 자기장 B의 크기와 방향을 구하여라. [5점]

(지면에서 나오는 방향이면 (+), 지면으로 들어가는 방향이면 (-)로 표시하라.)

$$\begin{cases} \Delta K = W & \Rightarrow \quad \frac{1}{2} m v^2 = qV \qquad \Rightarrow \quad v^2 = \frac{2qV}{m} \\ F_B = F_c & \Rightarrow \quad q v B = m \frac{v^2}{R} \qquad \Rightarrow \quad v^2 = \frac{R^2 q^2 B^2}{m^2} \end{cases}$$

$$\Rightarrow \quad \frac{2qV}{m} = \frac{R^2 q^2 B^2}{m^2} \qquad \Rightarrow \quad B^2 = \frac{2mV}{qR^2}$$

$$\Rightarrow \quad B = \sqrt{\frac{2mV}{qR^2}} = \sqrt{\frac{2mV}{q(d/2)^2}} = \sqrt{\frac{8mV}{qd^2}} \qquad \text{$$

(3) 입자가 자기장이 존재하는 영역에 입사한 이후 A 지점에 도달할 때까지의 시간을 구하여라. [5점]

$$\begin{split} v &= \frac{2\pi R}{T} \quad \Rightarrow \quad T = \frac{2\pi R}{v} = \frac{2\pi (d/2)}{\sqrt{\frac{2qV}{m}}} = \pi d\sqrt{\frac{m}{2qV}} \\ \\ \Rightarrow \quad t &= \frac{T}{2} = \frac{\pi d}{2}\sqrt{\frac{m}{2qV}} = \pi d\sqrt{\frac{m}{8qV}} \\ \\ & \qquad \qquad (t = \pi d\sqrt{\frac{m}{8qV}}) \end{split}$$