GLM

Generalized Linear Models

Methods Seminar - Kai

19.04.2023

Introduction/ Overview

- What is a Generalized Linear Model (GLM)?
 - What is an Ordinary Linear Model (LM)
 - How do we relax a LM to a GLM?
- When do we use GLMs?
 - Overview
 - 3 Examples

This presentation is based on the textbook *Regression - Models, Methods and Applications by Fahrmeir, Kneib, Lang and Marx (2013), ISBN 978-3-642-34332-2* incl. direct citations. The textbook can be downloaded as PDF from the SUB. The presentation also contains materials from the lecture *GLM by Prof. Thomas Kneib*.

The Ordinary Linear Model (LM) Ch. 3 in Fahrmeir et al.

LM: Properties

$$y = \beta_0 + \beta_1 * x_1 + \dots + \beta_k * x_k + \varepsilon$$

- Modelling the relationship between y and $x1, \ldots x_k$
- Parameters $\beta_1 \dots \beta_k$ are unknown and need to be estimated
- ullet The relationship is not exact, as it is affected by random noise arepsilon

Following fundamental assumptions

- 1. The functional relationship between y and $x_1 \dots x_k$ is **linear**
- 2. The error ε is additive

Ordinary Least Squares (OLS) estimation method

The model can be rewritten as a linear combination

$$\mathsf{y} = \mathsf{X}eta + arepsilon$$

We seek for the vector of parameters β that **minimizes the errors** in vector ε . **y** is the vector with observations of the dependent variable, **X** the matrix with observations of the covariates (design matrix).

If we add *further assumptions*, the vector β is straightforwardly solvable/ estiamable.

- 3. The errors are in mean (expectation) 0 (unbiasedness)
- 4. constant error variance σ^2 across observations (homoscedastic and uncorrelated errors) $Cov(\varepsilon) = E(\varepsilon \varepsilon') = \sigma^2 \mathbf{I}$
- 5. ε **x** are (stochastically) **independent**

By the way: Gaussian distribution of the errors is not an assumption - it will (only) become relevant for confidence interval calculation and statistical testing.

Ordinary Least Squares (OLS) estimation method

• The unknown regression coefficients β are estimated by minimizing the sum of the squared deviations. The squared deviations are:

$$LS(\beta) = \sum_{i=1}^{n} \varepsilon_i = \varepsilon' \varepsilon = \sum_{i=1}^{n} (y_i - \mathbf{x}_i' * \beta)^2$$

It can be rearranged to (page 105 in Fahrmeir et al.):

$$= (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
$$= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$$

Ordinary Least Squares (OLS) estimation method

which can be derived to:

$$\frac{\partial LS(\beta)}{\partial \beta} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\beta$$

We therefore obtain the least squares estimator $\hat{\beta}$ by setting the eq. to zero or equivalently by solving the so-called normal equations:

$$\mathbf{X}'\mathbf{X}\hat{oldsymbol{eta}}=\mathbf{X}'\mathbf{y}$$
 $\hat{oldsymbol{eta}}=(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$

The principle of Maximum Likelihood

The principle of Maximum Likelihood

- Alternative philosophy of estimating functional relationships
- Seeking the set of parameters that most probably describe the observations = maximum plausibility
- How likely is it that the observations are described by a functional relationship?
- We need a function that describes the likelihood density of the regression function
- The estimate becomes also a random quantity
- This likelihood function is a density distribution function, ML therefore does not work without distributional assumptions!
- The likelihood function is maximized by calculating the 1st and 2nd derivative and setting the first derivative to zero

Estimating LM with ML

Estimating LM with ML

• Assuming normally distributed errors, the observations can be described by the density: $\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$. We obtain the likelihood function:

$$L(eta,\sigma^2) = rac{1}{(2\pi\sigma^2)^{n/2}} exp\left(-rac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}eta)'(\mathbf{y}-\mathbf{X}eta)
ight)$$

- and the log likelihood function

$$I(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2}log(2\pi) - \frac{n}{2}log(2\sigma^2) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

When maximizing the log-likelihood with respect to β , we can ignore the first two terms because they are independent of β . Maximizing the rest is equivalent to minimizing $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$, which is the least squares criterion.

Numerical example that OLS is eqivalent to ML

On the example on an arithmetic mean

Numerical example that OLS is eqivalent to ML

Numerical example that OLS is eqivalent to ML

```
optimize(f = L,
  interval = c(0, 100), maximum = TRUE
## $maximum
  [1] 50.16894
##
## $objective
## [1] -303.6817
mean(dat)
## [1] 50.16894
```

Generalized Linear Models Ch. 5 in Fahrmeir et al.

From LM to GLM

Why GLM?

- Linear models are well suited for regression analyses when the response variable is continuous and at least symmetrically distributed
- In some cases, an appropriate transformation is sufficient to ensure the assumptions (e.g. take logarithm or root of the response variable)
- However, in many applications the response is not a continuous variable, but e.g. rather binary, categorical, or a count variable
- Moreover, considerably skewed data as typical e.g. in a life span, the amount of damages, or income is not estimable with LM
- Typical problem in e.g. survey analysis

From LM to GLM

Within a broad framework, generalized linear models (GLMs) unify many regression approaches with response variables that do not necessarily follow a normal distribution.

- The assumption of linearity between the covariates and the response is relaxed
- The relationship must still be described by a linear predictor, but this linear predictor can be related with a monotonic transformation function, the **link function**
- We thus can relax the fundamental assumptions 1 and 2!

How is the Generalized Linear Model now connected with the ML philosophy?

- We can take any distribution function from the so called Exponential Family to define the likelihood function
- The likelihood function will be concave
- The solution will be unique
- A closed form solution often exists

Note that GLM (Generalised LM) is not to be confused with a General LM

Example 1: Count Data Regression

- Count data often have a non-symmetric (non-gaussian thus anyway) shape
- For example dbh frequencies in a forest stand
- dbh frequencies may depend on the trees' ages, stand density, ...
- An LM would, however, lead to unsatisfactory estimates
- Count data regression is a common strategy to overcome this issue
- link function is the log, also the ordinary linear function without a link function is common
- Distributional assumption is the Poisson distribution

Example 1: Count Data Regression - Estimation

$$L(\beta) = \frac{\lambda_i^{y_i} exp(-\lambda_i)}{y_i!}$$

$$I(\beta) = \sum_{i=1}^{n} (y_i log(\lambda_i) - \lambda_i)$$

with $log(\lambda_i) = \eta_i = \mathbf{x}_i \boldsymbol{\beta}$

Can be solved as (p. 296 in Fahrmeir et al.)

$$\sum_{i=1}^{n} \mathbf{x}_{i} (y_{i} - \lambda_{i})$$

 $\lambda_i = exp(\mathbf{x}_i \boldsymbol{\beta})$ leads to a nonlinear equation system. The solution must be calculated numerically.

Example 2: Log-linear Regression

- Consider an exponential functional relationship $y = x^b * \varepsilon$
- Distribution of the response is gaussian
- The link function is the inverse of the functional relationship, thus

$$\eta_i = log(\mathbf{x_i}\boldsymbol{eta})$$

Data Example

Data Example

Data Example

Example 2: Binary Regression (Logit Model)

- Consider a binary response (e.g. yes/ no, dead/ alive, ...)
- An ordinary LM is obviously not suitable

Example 2: Binary Regression (Logit Model)

Example 3: Binary Regression (Logit Model)

- The logit function meets our requirements: It is between 0 and 1 and and s-shaped (sigmoidal)
- Thus: link = logit $log(\frac{\eta}{1-\eta})$
- Distribution is usually the binomial distribution (but others are possible)

Example 3: Binary Regression (Logit Model)

Example 3: Binary Regression (Logit Model)

Model interpretation is straightforward

```
##
## Call:
## glm(formula = cbind(diseased, trees - diseased) ~ distance, family = binomial(link = "le
##
      data = forest.damage.dist)
##
## Deviance Residuals:
##
      Min 10 Median 30
                                        Max
## -2.5196 -0.5696 -0.1531 1.3874 2.2457
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -0.5778737 0.1040218 -5.555 2.77e-08 ***
## distance -0.0019428 0.0003488 -5.570 2.55e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Discussion recommended for binarial family taken to be 1)
```

Concluding remarks

Concluding remarks

- A model is generalized linear as long as it
 - contains a linear predictor,
 - the link function is a monotonous transformation, and
 - the distribution of the error is described by the Exponential Family.
- GLM is an alternative to nasty non-linear regressions.
- It is lean It requires low demands on calculation times and calculation resources.
- It opens all likelihood based inference methods (AIC, Likelihood Ratio, ...)
- Visualization, model interpretation, model comparison is straightforward.
- It also opens the other advantages of linear models. It can be connected with General Regression. Thus our assumptions 4 and 5 can also be relaxed.