Homework 4

June 22, 2016

Problem 1.

For some $n \times n$ matrix **A** let $REF_{\star}(\mathbf{A})$ denote the Row Echelon Form matrix obtained by performing a sequence of row linear combination operations on matrix **A**. Show that

$$\det\left(\mathbf{A}\right) = \det\left\{ \operatorname{REF}_{\star}\left(\mathbf{A}\right)^{\top} \right\}$$

Problem 2.

a) Assuming that a_{12} , a_{23} and a_{31} are non-zero parameters express the matrix

$$\left(\begin{array}{ccc}
0 & a_{12} & 0 \\
0 & 0 & a_{23} \\
a_{31} & 0 & 0
\end{array}\right)$$

as a sum of 3 outer products.

b) Show that any $n \times n$ matrix must have rank less or equal to n.

Problem 3.

a) Describe how to obtain the $n \times n$ elementary matrices associated with each of the column operations bellow

$$C_i \leftrightarrow C_j,$$

$$k C_i \to C_i,$$

$$k C_i + C_j \to C_j.$$

b) Show that if an $n \times n$ matrix **B** is obtained from **A** via the column operation

 $k C_i + C_j \rightarrow C_j$ then

1

Problem 4.

Show that for any $n \times 1$ matrix **A** and any $1 \times n$ matrix **B** we have

$$\det\left(\mathbf{A}\cdot\mathbf{B}\right) = 0$$

Problem 5.

Express the inverse of the matrix

as product of elementary matrices. It suffices for this problem to exhibits the elementary matrix factors of \mathbf{A}^{-1} in the order in which they are meant to be multiplied.