Domieszka to substancja dodawana podczas wykonywania mieszanki betonowej, w małych ilościach (nie więcej niż 5%) w stosunku do masy cementu, w celu modyfikacji właściwości mieszanki betonowej i/lub stwardniałego betonu. Najczęściej stosowane domieszki wymieniono na rys.1. Przydatność domieszek do betonu ustala się zgodnie z normą PN-EN 934-2+A1:2012 "Domieszki do betonu, zaprawy i zaczynu – Część 2: Domieszki do betonu".

Rys. 1. Domieszki do betonu wg PN-EN 934-2

Domieszki do betonu klasyfikuje się ze względu na skutki modyfikacji właściwości betonu (tabela 1), przy czym decydujący jest główny kierunek działania. W przypadku, gdy domieszka modyfikuje więcej niż jedną właściwość, jest traktowana jako kompleksowa (wielofunkcyjna).

Tabela 1. Domieszki do betonu – charakterystyka, działanie, zastosowanie

Rodzaj domieszki	Charakterystyka	Efekty działania	Przeznaczenie
Plastyfikatory	domieszki zmniejszające ilość wody o ok. 5-12%	 zwiększenie ciekłości mieszanki (stałe w/c) wzrost wytrzymałości na ściskanie (stała kon- systencja) 	 beton towarowy beton posadzkowy produkcja kostki brukowej beton drogowy (wałowany)
Superplastyfikatory	 domieszki zmniejszające ilość wody o ok. 12-40% i więcej, zależnie od rodza- ju bazy chemicznej najefektywniej działają domieszki polimerowe 	 znaczna redukcja ilości wody zarobowej zwiększenie wytrzymałości na ściskanie ograniczenie ilości cementu w składzie obniżenie porowatości poprawa trwałości 	 beton towarowy prefabrykacja drobno- i wielkowymiarowa beton samozagęszczalny fibrobeton beton natryskowy
Napowietrzające	domieszki umożliwiające wprowadzenie określonej ilości równomiernie roz- mieszczonych pęcherzy- ków powietrza	 poprawa mrozoodporności obniżenie wytrzymałości na ściskanie (zwiększenie napowietrzenia o 1%, spadek wytrzymałości ok. 5MPa) 	 beton w klasach ekspozycji XF2÷XF4 beton hydrotechniczny beton mostowy beton drogowy nawierzchniowy
Zwiększające więźliwość wody	domieszki ograniczające samoczynne wydziela- nie wody z mieszanki betonowej	 zwiększenie spoistości mieszanki betonowej ograniczenie bleedingu poprawa trwałości war- stwy wierzchniej 	 beton układany pod wodą produkcja kostki bruko- wej beton posadzkowy
Przyspieszające wiązanie	domieszki skracające czas przechodzenia mieszanki ze stanu plastycznego w sztywny	 skrócenie czasu wiązania szybszy przyrost wytrzymałości wczesnej podwyższone ciepłohydratacji pogorszenie urabialności 	 prefabrykacja drobno- i wielkogabarytowa betonowanie w warun- kach zimowych beton natryskowy
Przyspieszające twardnienie	domieszki przyspiesza- jące narastanie wytrzy- małości	 szybszy przyrost wytrzy- małości wczesnej podwyższone ciepło hydratacji pogorszenie urabialności 	 prefabrykacja drobno- i wielkogabarytowa beton wodoszczelny beton natryskowy
Opóźniające wiązanie	domieszki wydłużające czas przechodzenia mie- szanki ze stanu plastycz- nego w sztywny	 wydłużenie czasu wiązania utrzymanie konsystencji w dłuższym okresie czasu obniżenie ciepła hydratacji obniżenie wytrzymałości w początkowym okresie 	 betonowanie ciągłe betonowanie w podwyż- szonych temperaturach daleki transport mieszan- ki betonowej beton architektoniczny
Uszczelniające	domieszki zmniejszające absorpcję kapilarną betonu	uszczelnienie betonupoprawa trwałościprzeciwdziałanie podcią- ganiu kapilarnemu	 beton wodoszczelny beton w klasach ekspozycji XA, XD, XS
Kompleksowe	domieszki łączące kilka efektów działania	opóźniająco-upłynniającenapowietrzająco-upłyn- niające	 zależnie od efektów działania

Najpowszechniej w technologii betonu stosuje się domieszki redukujące ilość wody - plastyfikatory i superplastyfikatory. Głównym celem ich stosowania jest zapewnienie odpowiedniej konsystencji mieszanki betonowej bez konieczności zwiększania zawartości wody, co mogłoby skutkować obniżeniem wytrzymałości betonu (rys. 2), a także jego trwałości.

Rys. 2. Zasada działania domieszek redukujących ilość wody w mieszance betonowej

Wyróżnia się 3 zasadnicze efekty stosowania domieszek redukujących ilość wody (rys. 3):

- poprawa urabialności poprzez zwiększenie ciekłości mieszanki betonowej,
- zwiększenie wytrzymałości betonu poprzez zmniejszenie ilości wody zarobowej przy niezmienionej zawartości cementu,
- zmniejszenie ilości wydzielanego ciepła wskutek zmniejszenia zużycia cementu na projektowaną klasę wytrzymałości betonu.

Rys. 3. Główne efekty stosowania domieszek redukujących ilość wody w mieszance betonowej

Ważną grupę domieszek do betonu stanowią domieszki napowietrzające. Domieszki te tworzą i stabilizują w mieszance betonowej zamknięte pęcherzyki powietrza, które w stwardniałym betonie pozostają w postaci równomiernie rozmieszczonych mikroporów, przerywających ciągłość kapilar (rys. 4) oraz korzystnie kształtujących mrozoodporność betonu (zapobiegają rozsadzaniu betonu przez zamarzającą w porach kapilarnych wodę).

W technologii betonu coraz częściej stosowane są również inne rodzaje domieszek, zwykle o wąskim, specjalistycznym efekcie działania. Do tej grupy zalicza się, m.in. domieszki przeciwskurczowe, domieszki obniżające temperaturę zamarzania wody w betonie (potocznie nazywane przeciwmrozowymi), inhibitory korozji stali zbrojeniowej, domieszki zwiększające przyczepność betonu do stali zbrojeniowej.

Rys. 4. Schemat działania domieszek napowietrzających

STOSUJĄC DOMIESZKI CHEMICZNE NALEŻY KIEROWAĆ SIĘ NASTĘPUJĄCYMI ZASADAMI:

- ► CAŁKOWITA ILOŚĆ DOMIESZEK NIE POWINNA PRZEKRACZAĆ DOPUSZCZALNEJ ILOŚCI ZALECANEJ PRZEZ PRODUCENTA ORAZ NIE POWINNA BYĆ WIĘKSZA NIŻ 50 G/KG CEMENTU (5% MASY CEMENTU), CHYBA ŻE ZNANY JEST WPŁYW WIĘKSZEGO DOZOWANIA NA WŁAŚCIWOŚCI I TRWAŁOŚĆ BETONU,
- ► STOSOWANIE DOMIESZEK W ILOŚCIACH MNIEJSZYCH NIŻ 2 G/KG CEMENTU DOPUSZCZA SIĘ WYŁĄCZNIE W PRZYPADKU WCZEŚNIEJSZEGO ICH WYMIESZANIA Z CZĘŚCIĄ WODY ZAROBOWEJ,
- ► JEŻELI CAŁKOWITA ILOŚĆ DOMIESZEK PŁYNNYCH PRZEKRACZA 3 L/M³ BETONU WODĘWNICH ZAWARTĄ NALEŻY UWZGLĘDNIĆ PRZY OBLICZANIU WSPÓŁCZYNNIKA W/C,

► W PRZYPADKU STOSOWANIA WIĘCEJ NIŻ JEDNEJ DOMIESZKI NALEŻY SPRAWDZIĆ ICH WZAJEMNĄ KOMPATYBILNOŚĆ I EFEKTYWNOŚĆ DZIAŁANIA W UKŁADZIE Z CEMENTEM.

Skuteczność działania domieszek i uzyskanie kompatybilnego układu domieszka - cement (rys. 5.) jest podstawowym warunkiem osiągnięcia spodziewanych modyfikacji właściwości mieszanki betonowej i betonu. Efektywność działania i kompatybilność domieszek do betonu powinny być zawsze sprawdzone, już na etapie badań wstępnych.

Rys. 5. Kształtowanie kompatybilności układu domieszka - cement