2. Evalúe cada determinante:

(a)
$$\begin{vmatrix} 4 & 6 \\ 2 & 3 \end{vmatrix}$$
 (b) $\begin{vmatrix} 9 & -1 \\ 0 & 5 \end{vmatrix}$ (c) $\begin{vmatrix} 12 & 15 \\ -2 & -1 \end{vmatrix}$ (d) $\begin{vmatrix} 100 & 50 \\ 30 & -20 \end{vmatrix}$

		3	M 189	18	N N N N N N N N N N N N N N N N N N N	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ESTILO
Re	solución	de ejev	cicios -				303
	19 19		1 1 1 1 1 1 1 1 1 1 1	100001	0141	1 = 46	4 1 1
2: a)	2	3 - 1	2 - 12 = 0	0 0	-1 -45	11 = 46	- (*)
(c)	12 1		2 + 30 = 17	d) 100	50 3	2000 - 1500	= - 3500

6. Determine I₃ en el ejemplo 9-4.

$$2I_1 + 0.5I_2 + 1I_3 = 0$$

$$0.75I_1 + 0I_2 + 2I_3 = 1.5$$

$$3I_1 + 0.2I_2 + 0I_3 = -1$$

Resuelva las tres ecuaciones simultáneas del problema 7 con su calculadora.

$$2I_1 - 6I_2 + 10I_3 = 9$$

$$3I_1 + 7I_2 - 8I_3 = 3$$

$$10I_1 + 5I_2 - 12I_3 = 0$$

* 14. Determine la corriente a través de cada resistor mostrado en la figura 9-27.

18. Determine las corrientes de rama en la figura 9-28.

22. Determine la corriente a través de cada resistor en la figura 9-29.

22- Determine la corriente a traves de co				
	ida resistor			
• Ewaciones				
RATA+ R2(TA-IB) - 1,5V = 0	. 311 = 0			
R2(IB-IA) + R3 IB + R4(IB-IC)				
R4(IC-I8) + R5 IC + 1,5V - 3V =	0			
Reemplazamos los valores				
471A 4 101A - 1016 - 1,5V = C				
4,1 - 815,4 4 8156 + AIOL - 810L	IC + 3V	= 0		
471c - 4718 + 151c - 1,5	= 0			
		. 1186		
· Resolvemos las ecuaciones			= 15 / A	
57 IA - 40 IB = 1,5			= 15,6mA	
-10 IA + 4,7 IE - 4, 7 IC =	-3 12		= -61,3 ma	
- 4,718 + 19,7 Ic =	1,5	I	= 61.5 m	A
Corriente PA: 15,6 mA				
Corriente R2: 76,9mA				
Corriente R3 : -64,3 mA				
Chrane				
Convente R5: 64,5m4				

26. En la figura 9-32, use el método del voltaje en nodos para determinar el voltaje presente en el punto A con respecto a tierra.

*30. Determine el voltaje en los puntos A, B y C en la figura 9-34.

