

Intelligent Systems

Excersice 1- Organisation

Simon Reichhuber, Ingo Thomsen 11.11.2020

University of Kiel, Winter Term 2020

TABLE OF CONTENT

Intelligent Systems Group

INTELLIGENT SYSTEMS - LECTURE STAFF

Prof. Dr.-Ing. habil. Sven Tomforde (st@informatik.uni-kiel.de)

Ma. Sc. Simon Reichhuber (sir@informatik.uni-kiel.de)

Dipl.-Ing. Ingo Thomsen (int@informatik.uni-kiel.de)

INTELLIGENT SYSTEMS - COURSES

Courses during the winter term 2020/21:

- · Lecture "Intelligent Systems" (English)
- Lecture "Computational Intelligence" (German)
- Bachelor seminar "Selbst-organisierte Systeme"
- Master project "Intelligent Systems"
- Master seminar "Deep Learning" (in cooperation with mit Prof. Reinhard Koch)

INTELLIGENT SYSTEMS - GROUP

Internal

- Prof. Dr.-Ing. Sven Tomforde (head of working group)
- Claudia Seewald (secretary)
- · Simon Reichhuber, M. Sc. (research assistant)
- Dipl.-Ing. Ingo Thomsen (research assistant)
- Torge Storm (lab technician)

External

- Ghassan Al-Falouji (PhD student, OTH Regensburg)
- Michael Meyer (PhD student, Astyx GmbH)
- Martin Goller (PhD student, freelancer)
- Ferdinand von Tüllenburg (PhD student, Salzburg Research)

Exercise Organisation

EXERCISE STRUCTURE

- Teams of 3 (exception of 2-4 members possible)
- Confirm your participation by signing up the OLAT list until Sunday, November, 15th
- Three components:
 - 1. Three sets of online quizzes (have to be passed individually)
 - 2. Regular exercises (from week to week) ...
 - 3. ... alternating with the Timeseries Forecasting Task:
 - · Ongoing group challenge
 - · Three parts
 - Final group presentation tba

EXERCISE SESSION

- Wednesdays, 10:15 11:45
- Online on Zoom (no recording): https://uni-kiel.zoom.us/j/84515885442?pwd= b0Z1dGcwcHR0eEhyK3RtYVhPb2Nndz09
- Presentation and discussion about own solutions.
 Every group has to present at least once during the course.
- · Preliminary discussion of the next exercise sheet.
- · No submission required!
- Questions are very welcome online during exercise or offline via OpenOLAT.

ROADMAP

Exercise 1	Organisation & Python Intro	/	We, 11.11.2020, 10:15
Exercise 2	Design / Intro to FT		We, 18.11.2020, 10:15
FTI	FT I Preprocessing		Mo, 23.11.2020, 14:15
FTI	FT I Preprocessing Pres.		We, 25.11.2020, 10:15
Exercise 3	Preprocessing		We, 02.12.2020, 10:15
Exercise 4	Representation		We, 09.12.2020, 10:15
FTII	FT II Feature Selection		Mo, 14.12.2020, 14:15
FTII	FT II Feature Selection Pres.		We, 16.12.2020, 10:15
Exercise 5	Similarities / Segmentation		We, 06.01.2021, 10:15
Exercise 6	Clustering		We, 13.01.2021, 10:15
Exercise 8	Classification		We, 20.01.2021, 10:15
FT III	FT III Model Selection		We, 27.01.2021, 10:15
FT III	FT III Model Selection Pres.		We, 27.01.2021, 12:15
Exercise 9	Quantification/Eval.		We, 03.02.2021, 10:15
Exercise 10	RL / Quantification		We, 10.02.2021, 10:15

Table 1: Schedule of exercises incl. Forecasting Task (**FT**). The Quizzes are not scheduled yet, but will start in December.

Python Introduction and

Installation

- · High-level programming language
- · Object-oriented
- · Features simple syntax and readability
- · Dynamically, inheritance, strong typing
- · Large number of libraries available

ANACONDA & JUPYTER NOTEBOOK

Anaconda

- Anaconda is a toolkit for data science and machine learning in Python and R on a single machine.
- Roughly spoken: a distribution of hundreds of packages handled by the package manager Conda.
- Helps to manage various Python environments, like e. g. Jupyter Notebooks:
 - Easy coding and kernel availability within a browser
 - Python code can be enriched with . . .
 - · normal (possibly marked-up) text
 - · mathematical formulas
 - · other types of media (like pictures)
- · Will be installed through Anaconda installation

PYTHON TUTORIAL

- 1. Install Anaconda (→ Install_Anaconda_en.pdf)
- 2. Download also the file PythonTutorial.ipynb from OpenOlat
- 3. Start a Jupyter notebook in the shell with either of ...
 - *jupyter-notebook* (in the downloaded folder)
 - anaconda-navigator (→ Launch Jupyter Notebook)

Figure 1: https://xkcd.com/353/