ORACLE

TDC SUMMIT SÃO PAULO

IA e Dados Sensíveis

O desafio de trabalhar com dados pessoais ou sensíveis e inteligência artificial

March 26, 27 9:00 a.m. - 7:00 p.m. Centro de Convenções Rebouças

- 27 anos de experiência em TI
- MBA em Arquitetura de Soluções pela FIAP
- Bacharel em Ciência da Computação

Desde criança fascinado por tecnologia, inovação e astronomia!!!

in https://www.linkedin.com/in/rui-romanini-89410133/

Rui Romanini

Oracle do Brasil **Solution Engineer**

Agenda

- 1. Dados Sensíveis e IA
- 2. Dados Sintéticos
- 3. Interpretabilidade de modelos

Dados sensíveis e IA

Technology for business transformation

Sobre dados pessoais e dados sensíveis

TDC SUMMIT SÃO PAULO Technology for business transformation

Teste de Software

LGPD / Privacidade de Dados

Sobre dados pessoais e dados sensíveis

De acordo com a LGPD, dado pessoal é a informação relacionada à pessoa natural identificada — tais como nome, sobrenome, RG e CPF — ou identificável, como no caso dos dados de geolocalização (GPS), endereço IP, identificação de dispositivo etc.

Dado pessoal sensível: dado pessoal sobre origem racial ou étnica, convicção religiosa, opinião política, filiação a sindicato ou à organização de caráter religioso, filosófico ou político, dado referente à saúde ou à vida sexual, dado genético ou biométrico.

https://www.planalto.gov.br/ccivil 03/ ato2015-2018/2018/lei/L13709compilado.htm

Sobre dados pessoais e dados sensíveis

GDPR

- Al Act
- Aprovação 13/03/2024
- Policiamento Preditivo
- Captação de imagens da internet para treinamento
- Identificação de emoção em locais públicos

No Brasil...

- Projeto de lei n°2338
- Aplicações na área de saúde
- Capacidade de individamento
- Veiculos autonomos

https://www25.senado.leg.br/web/atividade/materias/-/materia/157233

https://www.estadao.com.br/brasil/macaco-eletrico/europa-regulamenta-a-ia-protegendo-a-sociedade-e-sem-ameacar-a-inovacao/

Sobre dados pessoais e dados sensíveis

Data Privacy

Disciplina dedicada a manter os dados seguros contra acessos impróprios, roubo ou perda.

Habilidade de uma pessoa determinar quando, como e qual tipo de dado pessoal pode ser compartilhado.

Como se relacionam com Machine Learning?

OCI Guardian Al

Biblioteca Pyt

Dado um mod ou não parte

Utiliza se o m

https://medium.com/@ruiromanini/um-overview-sobre-data-privacy-oracle-guardian-ai-e-oci-language-pii-

unto faz

Dados Sintéticos

Technology for business transformation

Dados Sintéticos

- Synthetic Data é o dado gerado por meio de algoritmos e cujas características estatísticas se aproximam do dado original.

Tendências

Tendências

SMOTE

Smote permite balancear um dataset por meio de oversampling

SMOTE

Over-sample using SMOTE.

SMOTENC

Over-sample using SMOTE for continuous and categorical features.

SMOTEN

Over-sample using the SMOTE variant specifically for categorical features only. **SVMSMOTE**

Over-sample using SVM-SMOTE variant.

BorderlineSMOTE

Over-sample using Borderline-SMOTE variant.

https://blogs.oracle.com/ai-and-datascience/post/how-to-handle-imbalanced-data-an-overview

SDV

O Synthetic Data Vault Project foi criado inicialmente no MIT's Data to Al Lab em 2016.

Depois de 4 anos de pesquisa e envolvimento com a industria, foi criada a <u>DataCebo</u> em

Generative Adversarial Networks

- Uma rede nouval cora dodos sintáticos a nartir do um input alcatário (Conorator). Estas dodos antão são submetido sintético é dos como Fake

Real

Noise (z)

Real/Fake

agation

Interpretabilidade de Modelos

Technology for business transformation

Interpretable Machine Learning

Conjunto de métodos utilizados para garantir que nosso modelo de ML seja: seguro, justo e confiável.

LGPD – Capitulo 3 Artigo 20

O titular dos dados tem direito a solicitar a revisão de decisões tomadas unicamente com base em tratamento automatizado de dados pessoais que afetem seus interesses, incluídas as decisões destinadas a definir o seu perfil pessoal, profissional, de consumo e de crédito ou os aspectos de sua personalidade.

Exemplos

Interpretability

Entrada e saída, causa e efeito... Consigo explicar seus mecanismos e a forma como ele produz uma saída?

Quais são os requerimentos do modelo? E suas restrições? Limites de confiança?

Conhecimento Cientifico Confiança, segurança Ética

Explainability

Contempla o conceito de interpretabilidade, mas exige uma série de técnicas para acessar os mecanismos internos do modelo.

Como explico em termos humanos:

- Hiperparâmetros
- Minimização de erros no modelo
- Reproduzibilidade do resultado

Comparando alguns modelos...

White	Model Class	Properties that Increase Interpretability					Task		Performance Rank	
Box?		P Expl.	Linear	Monotone	Non-Interactive	Regul.	Regr.	Classif.	Regr.	Classif.
4	Linear Regression						4	×	6	
4	Regularized Regression						1	4	7	
1	Logistic Regression						×	1		ţ
1	Gaussian Naïve Bayes						×	1		
1	Polynomial Regression				0		1	1	2	
1	RuleFit						1	1	8	
1	Decision Tree						1	1	5	
1	k-Nearest Neighbors						1	1	9	(
×	Random Forest			•			4	4	3	
×	Gradient Boosted Trees						1	4		
×	Multi-layer Perceptron						1	4	1	

	White Box	Glass Box	Black Box
Interpretability	High	Mid-High	Low
Predictive Performance	Mid	High	High
Execution Speed Performance	High	Low	Mid

Mais dimensões...Mais overfitting Alta dimensionalidade Navalha de Occam

Global and Single Interpretation

Global Interpretation

Conseguimos explicar como o modelo faz suas predições

- a) Global holistic

Podemos compreender o modelo inteiro. Ex: regressão linear

- b) Global modular

Podemos compreender parte do modelo.Por exemplo com Feature Importance.

Local Interpretation

Podemos explicar como uma única predição foi feita

^{*} https://www.researchgate.net/figure/Left-local-interpretation-right-knowledge-distillation-15 fig2 331794108

Sobre o AutoMLx

Pacote Python que automaticamente cria, otimiza e explica modelos de machine learning.

Configurando o Explainer

Para uma tomada de decisão, obter a previsão não é suficiente. Começamos com uma pergunta: Quais features são mais relevantes para esta previsão.

MLExplainer

explain_model()

to_dataframe()

show_in_notebook()

* Considera cada feature independente uma da outra

PFI – Permutation Feature Importance

TDC SUMMIT SÃO PAULO Technology for business transformation

Este método mede o aumento no erro da predição desde que os valores de uma feature passem por shuffling. Se a feature tem relação com a variável target, o shuffling deve aumentar o erro

Model Agnostic / Assume independência entre variáveis

est1 = pickle.l	<pre>pad(gzip.open('oracle_automl_1.pklz', 'rb'))</pre>
explainer = aut	oml.MLExplainer(est1, X_train, y_train, target_names=["<=50K", ">50K"], task="classification",)

Partial Dependence Plots (PDPs)

Trata se de um método de interpretação global que pode demonstrar visualmente a natureza do impacto de uma feature no target

- Assume independência entre variáveis
- Histograma no topo demonstra a distribuição

Shapley Values

Uma predição pode ser explicada assumindo que cada feature é um jogador em um game aonde o pagamento é a predição. Trata-se de uma técnica de coalitional game theory cujo objetivo é mostrar como distribuir este pagamento justamente entre as features.

- Para cada uma das coalizões ao lado, computamos o preço previsto do apartamento com e sem o valor da feature e pegamos a diferença para ter a contribuição marginal.
- O Shapley value é a média ponderada das contribuições marginais.

SHapley Additive exPlanations (SHAP) (Model)

Implementação Python do método Shapley

- Execução em tempo exponencial no que diz respeito ao número de features

Local Interpretable Model-agnostic Explanations (LIME)

Treina surrogate models para explicar uma única predição. Para isso faz uso do modelo original (black box) e um conjunto de dados alterado, próximo ao ponto que queremos explicar (chamado neighborhood)

- A grande cruz vermelha é a instância a ser explicada (X)
- Simulamos instâncias próximas de X e atribuímos peso conforme a distÂncia
- Obtemos previsões a partir do modelo original
- Aprendemos um modelo linear para estes valores
- A explanação não é confiável globalmente, mas é confiável nas proximidades de X

Local Interpretable Model-agnostic Explanations (LIME)

A implementação em AutoMLx faz uso do método explain_prediction, com o explainer configurado para o tipo "surrogate".

Sugestões Leitura

Experimente o poder da IA gratuitamente na nuvem

Conheça os recursos de IA e ML da Oracle Cloud com o Modo Gratuito.

São US\$ 500 em créditos para você usar durante 30 dias – uma condição EXCLUSIVA para visitantes do TDC Summit São Paulo!

ORACLE DevLive São Paulo

Junte-se a nós em São Paulo para criar novas possibilidades com dados e IA

03 de abril de 2024 World Trade Center São Paulo

Inscreva-se já! oracle.com/devlive-sao-paulo/

ORACLE

Thank you!

