DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE SEMESTER EXAMINATION.

Mechanical/ Electrical/ EXTC/ Chemical/ Petrochemical/ Computer/ IT/ Civil

Subject: Engineering Mathematics-I

Sem-I

Time: 03 Hrs. 04 MAY 2017

Max Marks: 70

INSTRUCTION TO STUDENTS

Solve SIX questions in all in the following manner:

- 1. Q. No. 1 is compulsory.
 - 2. Solve the remaining FIVE questions from Q. No. 2 to Q. No. 7.

Pick-up the correct answer of the choices given:

 $[2 \times 5=10 \text{ marks}]$

- a) If every minor of order r of a matrix A is zero, then the rank of A is
 - (i) Greater than r
- (ii) Equal to r
- (iii) Less than or equal to r
- (iv) none.

- b) If $\vec{r} := x \hat{\imath} + y \hat{\jmath} + z \hat{k}$, then $\nabla \times \vec{r}$ is equal to
- (iii) 1
- (iv) none.
- If $\sum u_n$ is convergent, then $\lim_{n\to\infty} u_n$ is equal to
 - (i) 0
- (ii) less than 1
- $(iii) \neq 0$
- (iv) none.

- d) If $\vec{F} := x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then $\nabla \cdot \vec{F}$ is equal to
 - (i) 3

- (ii) 0
- (iii) 1
- (iv) none.

- e) The value of $\int_0^1 \int_0^x \int_0^y x \, dx \, dy \, dz$ is equal to

- (iv) none.

(a) Use Gauss-Jordan method to find A^{-1} , where

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3 \end{bmatrix}.$$

[4 marks]

(b) Determine the rank of the matrix $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \end{bmatrix}$.

[4 marks]

(c) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 5 & 4 \\ -4 & 4 & 3 \end{bmatrix}$.

[4 marks]

(a) Find the nth order derivative of $y = \frac{1}{x^2 + a^2}$.

[4 marks]

(b) If $y = (x^2 - 1)^n$, prove that $(x^2 - 1)y_{n+2} + 2xy_{n+1} - n(n+1)y_n = 0$.

[4 marks]

(c) Use Taylor's series to prove that

$$tan^{-1}(x+h) = tan^{-1}x + (h\sin z) \cdot \frac{\sin z}{1} - (h\sin z)^2 \cdot \frac{\sin 2z}{2} + (h\sin z)^3 \cdot \frac{\sin 3z}{3} - \dots$$
where $z = cot^{-1}x$. [4 marks]

Q.4 (a) If a particle describes a curve $r = 2a \cos \theta$ with constant angular speed ω , find the radial and transverse components of velocity and acceleration.

[6 marks]

(b) If a particle moves in xy – plane with velocity \overrightarrow{v} , acceleration \overrightarrow{a} and ρ is the radius of curvature at a point P on the path of the motion, then show that $\rho|\overrightarrow{v}\times\overrightarrow{a}|=v^3$, where $|\overrightarrow{v}|=v$.

If
$$\overrightarrow{v} = a \, \hat{\imath} + b \, \hat{\jmath}$$
 and $\overrightarrow{a} = c \, \hat{\imath} + d \, \hat{\jmath}$, show that $\frac{(a^2 + b^2)^{3/2}}{ad - bc}$; $ad - bc \neq 0$.

[6 marks]

- Q.5 (a) Prove that the necessary and sufficient condition for the vector $\vec{F}(t)$ to have constant direction is $\vec{F}(t) \times \frac{d\vec{F}(t)}{dt} = 0$. [4 marks]
 - (b) Find the directional derivative of $\phi = xyz$ at the point (1, 1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$. [4 marks]
 - (c) Prove that $\nabla^2 e^r = e^r + \frac{4}{r} e^r$, where $r = |\vec{r}|$.

[4 marks]

Q.6 (a) By changing the order of integration, evaluate $I = \int_0^3 \int_{x^2}^9 x^3 e^{y^3} dx dy$.

[4 marks]

(b) Evaluate $\iint \frac{r \, dr \, d\theta}{\sqrt{a^2 + r^2}}$ over one loop of lemniscates $r^2 = a^2 \cos 2\theta$.

[4 marks]

(c) Evaluate $I = \int_0^a \int_0^{z^2} \int_0^{z^2 - x} xz \, dx \, dy \, dz$.

[4 marks]

Q.7 (a) Check the convergence of the series $\sum_{n=1}^{\infty} \frac{2n^3 + 5}{4n^5 + 1}$

[4 marks]

(b) Check the convergence of the series $\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2+1}$

[4 marks]

(c) Find the radius of convergence of the series: $\sum \frac{n!}{n^n} x^n$.

[4 marks]