#### PROBABILIDADE II

Precipitação máxima esperada na cidade de Lavras-MG via distribuição generalizada de valores extremos

Lucas Pereira Belo Jonas Firmiano da Silva Rodrigo da Cruz Nunes

15 de agosto de 2025

#### Estatística de ordem

#### Definição

Sejam  $X_1, X_2, \ldots, X_n$  uma amostra aleatória de tamanho n de uma função de distribuição acumulada  $F(\cdot)$ . Então  $Y_1 \leq Y_2 \leq \cdots \leq Y_n$ , em que os  $Y_i$  são os  $X_i$  organizados em ordem de magnitudes crescentes, são definidos como as **estatísticas de ordem** correspondentes à amostra aleatória  $X_1, \ldots, X_n$  (MOOD *et al.*, 1974).

## Máximos e mínimos

#### Definição

 Y<sub>1</sub> é a primeira estatística de ordem e representa o valor mínimo da amostra aleatória.

$$Y_1 = \min\{X_1, X_2, \dots, X_n\}$$

 Y<sub>n</sub> é a n-ésima estatística de ordem e representa o valor máximo da amostra aleatória.

$$Y_n = \max\{X_1, X_2, \dots, X_n\}$$



# Qual a distribuição de $Y_n$ ?

# Distribuição de $Y_n$

## Exemplo

Imagine que o nosso experimento consiste em lançar um dado comum de seis faces 3 vezes.

Neste cenário, cada  $X_i$  representa o resultado de *um único lançamento* do dado. Como vamos lançar o dado 3 vezes (n = 3), teremos três variáveis aleatórias:

- $X_1$ : O resultado do **primeiro** lançamento.
- $X_2$ : O resultado do **segundo** lançamento.
- X<sub>3</sub>: O resultado do **terceiro** lançamento.

# Distribuição de $Y_n$

## Exemplo

Você lança os dados e obtém a sequência: **4, 1, 5**. Neste caso, teríamos:  $x_1 = 4$ ,  $x_2 = 1$  e  $x_3 = 5$ .

As estatísticas de ordem,  $y_i$ , são os mesmos valores da nossa amostra, mas **colocados em ordem crescente**. Usando o mesmo resultado do exemplo acima (4, 1, 5):

- $y_1$ : O menor valor que obtivemos.  $y_1 = \min\{4, 1, 5\} = \mathbf{1}$ .
- $y_2$ : O valor do **meio**.  $y_2 = 4$ .
- $y_3$ : O **maior** valor que obtivemos.  $y_3 = \max\{4, 1, 5\} = 5$ .

# A distribuição de $X_i$ vs. a distribuição de $Y_n$

## Exemplo

A probabilidade de cada resultado para um único lançamento de um dado justo é uma distribuição uniforme discreta:

- $P(X_i = 1) = 1/6$
- $P(X_i = 2) = 1/6$
- ..
- $P(X_i = 6) = 1/6$

# **Qual a distribuição de** $Y_n$ ? (o máximo de 3 lançamentos)

## Exemplo

- Qual a probabilidade do máximo ser 1? Para que o valor máximo dos três lançamentos seja 1, você precisa tirar obrigatoriamente a sequência (1,1,1).
- **Qual a probabilidade do máximo ser 6?** Para que o valor máximo seja 6, basta que *pelo menos um* dos dados seja 6. Existem muito mais combinações que resultam em um máximo de 6 (por exemplo, (6,1,2), (3,6,4), (6,6,1), etc.).

# **Qual a distribuição de** $Y_n$ ? (o máximo de 3 lançamentos)

## Exemplo

• A probabilidade do máximo ser 1 é:

$$P(Y_3 = 1) = P(X_1 = 1; X_2 = 1; X_3 = 1) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{216}$$

 Para calcular a probabilidade do máximo ser 6, usamos o evento complementar. A probabilidade do máximo ser menor ou igual a 5 (Y<sub>3</sub> ≤ 5) ocorre se, e somente se, todos os três lançamentos forem menores ou iguais a 5.

$$P(Y_3 \le 5) = P(X_1 \le 5; X_2 \le 5; X_3 \le 5) = \left(\frac{5}{6}\right)^3 = \frac{125}{216}.$$

Portanto, a probabilidade do máximo ser exatamente 6 é:

$$P(Y_3 = 6) = 1 - P(Y_3 \le 5) = 1 - \frac{125}{216} = \frac{91}{216}$$

# Qual a distribuição de $Y_n$ e $Y_1$ ?

#### **Teorema**

Sejam  $Y_1 \leq Y_2 \leq \cdots \leq Y_n$  as estatísticas de ordem de uma função de distribuição acumulada  $F(\cdot)$ . As funções de distribuição acumulada para a maior e a menor estatística de ordem são, respectivamente: (MOOD; GRAYBILL; BOES, 1974)

$$F_{Y_n}(y) = \sum_{j=n}^n \binom{n}{j} [F(y)]^j [1 - F(y)]^{n-j} = [F(y)]^n.$$

е

$$F_{Y_1}(y) = \sum_{j=1}^n \binom{n}{j} [F(y)]^j [1 - F(y)]^{n-j} = 1 - [1 - F(y)]^n.$$

## O teorema de tipos extremais

Também conhecido como teorema de Fisher-Tippett-Gnedenko

#### Distribuição assintótica

A questão fundamental: Qual é a distribuição do valor máximo de uma amostra,  $Y_n = \max\{X_1, \dots, X_n\}$ , quando o tamanho da amostra  $n \to \infty$ ?

## Teorema central do limite (TCL)

Para a média amostral  $\bar{X}_n$ , o TCL evita a convergência degenerada para  $\mu$  através de uma normalização linear (desde que certas condições sejam atendidas):

$$\frac{\bar{X}_n - \mathbf{b_n}}{\mathbf{a_n}} = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} N(0, 1)$$

#### Distribuição assintótica

De forma análoga, buscamos sequências de constantes de normalização,  $a_n > 0$  e  $b_n$ , tais que:

$$\frac{Y_n-\mathbf{b_n}}{\mathbf{a_n}} \stackrel{d}{\to} G(x),$$

em que G(x) é uma distribuição **não-degenerada**.



## O teorema de tipos extremais

#### Teorema

Se existem sequências de constantes de normalização  $a_n>0$  e  $b_n$  tais que, para  $n\to\infty$ , a distribuição do máximo normalizado  $Y_n$  converge para uma distribuição não-degenerada G(x):

$$\Pr\left\{\frac{Y_n-b_n}{a_n}\leq x\right\}\to G(x)$$

Então, G(x) deve pertencer a uma das três famílias de distribuições a seguir:

**!: Gumbel:** 
$$G(x) = \exp\{-\exp(-x)\}$$
  $-\infty < x < \infty$ ;

II: Fréchet: 
$$G(x) = \begin{cases} 0 & x \leq 0 \\ \exp(-x^{-\alpha}) & x > 0, \alpha > 0; \end{cases}$$

III: Weibull: 
$$G(x) = \begin{cases} \exp\{-(-x)^{\alpha}\} & x < 0, \alpha > 0 \\ 1 & x \ge 0. \end{cases}$$

# A distribuição generalizada de valores extremos (GEV)

## Definição

A Distribuição Generalizada de Valor Extremo (GEV) unifica os três tipos (Gumbel, Fréchet e Weibull) em uma única família. Sua função de distribuição acumulada é dada por:

• Para  $\xi \neq 0$ :

$$G(x; \mu, \sigma, \xi) = \exp \left\{ -\left[1 + \xi \left(\frac{x - \mu}{\sigma}\right)\right]_{+}^{-1/\xi} \right\}$$

• Para  $\xi = 0$ :

$$G(x; \mu, \sigma) = \exp\left\{-\exp\left(-\frac{x-\mu}{\sigma}\right)\right\}$$

em que  $\mu$ ,  $\sigma$ ,  $\xi$  são os parâmetros de localização, escala e forma respectivamente.

## Parâmetros da GEV

O valor do parâmetro de forma,  $\xi$ , determina a qual das três distribuições de valor extremo a GEV corresponde:

- $\xi = 0$ : Corresponde ao **Tipo I (Gumbel)**.
- $\xi > 0$ : Corresponde ao **Tipo II (Fréchet)**.
- $\xi$  < 0: Corresponde ao **Tipo III (Weibull)**.

Teoricamente, a convergência para a GEV ocorre com a normalização:

$$\frac{Y_n-b_n}{a_n}\stackrel{d}{\to} G(\mu,\sigma,\xi)$$

No entanto, pode-se mostrar que as constantes de normalização  $a_n$  e  $b_n$  são "absorvidas" pelos parâmetros de escala e localização, resultando em:

$$Y_n \xrightarrow{d} G(\mu^*, \sigma^*, \xi).$$



# Estimação dos parâmetros da GEV

#### Estimação

- **1** Utilizamos a função de verossimilhança  $L(\mu, \sigma, \xi; \mathbf{x}) = L(\mu, \sigma, \xi; x_1, \cdots, x_n);$
- Determinamos a função de log-verossimilhança (função suporte) da GEV;
- **③** Procuramos as estimativas de  $\mu$ ,  $\sigma$ ,  $\xi$  que maximizam a função suporte.

#### Métodos numéricos

- Newton-Raphson (NEWTON, 1711; NEWTON, 1774; RAPHSON, 1690);
- Gradiente decrescente (CAUCHY et al., 1847);

#### Níveis de Retorno

#### Exemplos

O foco não está nas estimativas dos parâmetros da distribuição GEV em si, mas na aplicação do modelo ajustado para prever quantidades de interesse prático. Por exemplo:

- Qual deve ser a altura ideal de um muro de contenção para suportar a maré mais alta esperada a cada cem anos;
- Qual é a maior velocidade do vento esperada em um intervalo de cinquenta anos, a fim de projetar estruturas capazes de resistir a esse tipo de evento extremo.

#### Definição

Essas quantidades são conhecidas, no contexto da teoria dos valores extremos, como níveis de retorno.

## LAVRAS-MG



Figura: Imagem da cidade de Lavras.

# Por que escolhemos Lavras?

#### Razões para a escolha

- Destaque na agricultura: Forte presença no cultivo de café, soja, milho e feijão;
- Pecuária leiteira: Reconhecida por um dos melhores rebanhos de gado leiteiro do estado;
- Agricultura familiar: Importante setor de produção local;
- Condições climáticas favoráveis: Clima propício para atividades agrícolas e estudos;
- Projetos de extensão da UFLA: Apoio e desenvolvimento de iniciativas na agricultura e pecuária.

# Produção em larga escala: Café e Leite



Figura: Fazenda Faria



Figura: Fazenda Palmital

## Agricultura familiar

É um pilar essencial na produção de alimentos, com atuação destacada em duas frentes:

- A participação em chamadas públicas para a merenda escolar por meio do PNAE, garantindo alimentos frescos e de qualidade para os estudantes;
- Comercialização direta de seus produtos ao consumidor, fortalecendo a economia local.

## Principais produtos da agricultura familiar.

Segundo Lage(2019), esses são os principais produtos da agricultura familiar:

- Leite (30%);
- Hortaliças (13%);
- Café (12%);
- Milho (12%);
- Ovo caipira (7%);
- Queijo (5%);
- Gado para corte (4%);
- Frutas (4%);
- Feijão (4%).

# Por que o estudo sobre precipitação em Lavras?

#### Eventos recentes e impactos

- Transtornos significativos (Início de 2025): Apesar do histórico de poucas enchentes, Lavras enfrentou sérios problemas devido a fortes chuvas.
- Impactos noticiados (G1 Sul de Minas, 2025):
  - Ruas alagadas.
  - Residências parcialmente submersas.
  - Quedas de pontes.
  - Interrupção no fornecimento de energia elétrica.

#### Fatores agravantes

- Crescimento urbano desordenado: Contribui para a vulnerabilidade da cidade.
- Mudanças climáticas constantes: Aumentam a frequência e intensidade dos eventos extremos.

## Fontes e período dos dados

## Origem e abrangência dos dados

- Fontes principais:
  - Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP) do INMET.
  - Informações complementares do trabalho de Beijo et al. (2005).
- Tipo de informação: Registros diários de precipitação pluvial (mm).
- Local de coleta: Cidade de Lavras.
- Período abrangido: 01/01/1961 a 02/05/2025.

# Organização dos dados de precipitação

#### Processamento das máximas anuais

- Os dados foram agrupados anualmente:
  - Grupos de 365 dias para anos comuns.
  - Grupos de 366 dias para anos bissextos.
- Dentro de cada grupo, foram extraídas as maiores precipitações diárias observadas;
- Isso resultou em um conjunto de dados com 65 observações das precipitações máximas anuais.

# Adequação da base amostral para GEV

#### Recomendações e fundamentação

- A Organização Mundial de Meteorologia sugere análises com séries históricas de pelo menos 30 anos (BADDOUR; KONTONGOMDE, 2007).
- Cai e Hames (2011) indicam um mínimo de 40 observações para a validade das inferências estatísticas fundamentais da GEV.
- Roslan et al. (2020) consideram que o número mínimo de observações deve ser 50, pois isso:
  - Garante a normalidade assintótica dos estimadores de máxima verossimilhança.
  - Torna as estimativas dos níveis de retorno mais confiáveis.

## O presente estudo

 O presente estudo, com 65 observações, atende a todos esses requisitos mínimos sugeridos.

# Valores de precipitação máxima diária anual (mm) 1961-2025.

| 98,7 | 79,7  | 46,6  | 85,4  | 70,0  | 75,6  | 68,0  |
|------|-------|-------|-------|-------|-------|-------|
| 76,8 | 66,0  | 107,2 | 148,4 | 108,0 | 53,4  | 95,0  |
| 72,4 | 54,8  | 63,6  | 88,6  | 91,2  | 102,0 | 50,6  |
| 88,6 | 118,0 | 74,0  | 118,6 | 165,8 | 63,0  | 63,0  |
| 85,6 | 52,0  | 110,6 | 134,8 | 50,0  | 95,0  | 50,4  |
| 80,0 | 53,4  | 63,6  | 90,2  | 86,8  | 83,0  | 60,8  |
| 58,1 | 77,4  | 47,2  | 85,4  | 58,0  | 89,3  | 60,0  |
| 52,0 | 75,8  | 155,8 | 90,6  | 73,0  | 52,8  | 76,2  |
| 65,6 | 90,0  | 64,6  | 116,8 | 90,6  | 59,0  | 101,4 |
| 73,8 | 87,4  |       |       |       |       |       |

Valores em azul: 10 maiores precipitações

# Série temporal de máximas diárias anuais.



## Análise descritiva



## Resultados dos testes estatísticos

#### Teste de aleatoriedade

O teste de sequência não rejeitou a hipótese nula de que a sequência de dados é aleatória, com um valor-p = 0,0604.

## Teste de independência

O teste de Ljung-Box também não rejeitou a hipótese nula de independência dos dados, valor-p=0,6739 corroborando com os gráficos ACF e PACF da Figura 29.

#### Teste de estacionariedade

O teste de Dickey-Fuller rejeitou a hipótese nula de existência de raiz unitária, valor-p=0,01 indicando que a série é estacionária.

# Estimativas dos parâmetros do modelo GEV

#### Método de estimação

Estimativas dos parâmetros do modelo GEV foram obtidas pelo método da **máxima verossimilhança**, utilizando o algoritmo de **Newton-Raphson**.

#### Parâmetros estimados

Os parâmetros de locação  $(\mu)$ , escala  $(\alpha)$  e forma  $(\xi)$  foram estimados como:

- **Locação** ( $\hat{\mu}$ ): 68,7578 (com erro padrão de 2,6719)
- **Escala** (â): 18,2955 (com erro padrão de 2,0695)
- Forma  $(\hat{\xi})$ : 0,1071 (com erro padrão de 0,1209)

## Adequação a GEV

O teste de Kolmogorov-Smirnov não rejeitou a hipótese nula, com um valor-p = 0,6963 indicando adequação da GEV aos dados.

## Adequação do modelo



## Níveis de retorno e intervalos de confiança

## Estimativas e intervalos de confiança

Os níveis de retorno estimados pelo Método da Máxima Verossimilhança (EMV), juntamente com seus respectivos intervalos de confiança (IC), são apresentados a seguir:

- Para 210: 115,323 mm (IC: 103,6287; 137,334)
- Para 225: 138,546 mm (IC: 120,0185; 186,4295)
- Para 250: 157,358 mm (IC: 131,6001; 236,7152)
- Para 2100: 177,483 mm (IC: 142,5628; 302,3116)

## Implicações e monitoramento

Em média, espera-se um nível de precipitação diária de **115,323 mm em um período de 10 anos**. Para os períodos de retorno de 25 e 50 anos, os níveis estimados são de **138,546 mm** e **157,358 mm**, respectivamente.

# Comparativo com estudos anteriores e implicações

#### Subestimação das estimativas anteriores

Ao comparar nossos resultados com os apresentados por Beijo *et al.* (2005), observa-se que as estimativas anteriores estavam **subestimadas**.

- Para um período de retorno de 10 anos (a partir de 2003), esperava-se uma precipitação máxima diária de 129 mm) (Beijo et al., 2005).
- Contudo, esse valor foi superado já em 2012, com um registro de 155,8 mm em apenas uma hora.
- De acordo com as estimativas de Beijo *et al.* (2005), um evento dessa magnitude era esperado apenas em um horizonte de **30 anos**.

## Implicações e relevância do estudo

## Por que isso importa?

A superação dos níveis de precipitação esperados em um período menor do que o previsto destaca a **urgência de atualizar e aprimorar** as estimativas de níveis de retorno.

Isso reforça a necessidade de:

- Revisão e adequação de planejamentos urbanos e infraestruturas hídricas.
- Monitoramento contínuo das condições climáticas e hidrológicas da região.
- Desenvolvimento de estratégias de gestão de riscos mais eficazes, especialmente para áreas de risco (alagamentos, deslizamentos, inundações).

# Conclusão: Desafios e próximos passos

## Principais pontos e implicações para Lavras

- A distribuição de Gumbel foi considerada adequada para modelar os dados de precipitação diária máxima em Lavras, alinhando-se a estudos anteriores (Beijo et al., 2005).
- As estimativas dos tempos de retorno e seus intervalos de confiança são ferramentas valiosas para decisões preventivas no município.
- Um evento extremo como o de 165,8 mm em 23 de dezembro de 1986 tem um tempo de retorno estimado em aproximadamente 25 anos, considerando o intervalo de confiança do modelo.
- Contudo, é crucial reconhecer a possível subestimação dessas estimativas devido aos efeitos das mudanças climáticas, conforme já apontado por Beijo et al. (2005).
- Essa observação reforça a necessidade **de estudos contínuos** sobre eventos extremos, com revisões periódicas das estimativas de precipitação e atualização constante dos modelos de predição.

## Referências bibliográficas

BEIJO, L. A.; MUNIZ, J. A.; NETO, P. C. Tempo de retorno das precipitações máximas em lavras (mg) pela distribuição de valores extremos do tipo i. Ciência e agrotecnologia, SciELO Brasil, v. 29, p. 657–667, 2005.

CAUCHY, A. et al. Méthode générale pour la résolution des systemes d'équations simultanées. Comp. Rend. Sci. Paris, v. 25, n. 1847, p. 536-538, 1847.

G1 – Sul de Minas. Chuva causa transtornos neste domingo no Sul de Minas. 2025. Acesso em: 22 jun. 2025. Disponível em: (https://gl.globo.com/mg/sul-de-minas/noticia/2025/01/26/chuva-causa-transtornos-neste-domingo-no-sul-de-minas.ghtml).

LAGE, B. G. P. Acesso e Inserção da Agricultura Familiar Camponesa de Lavras-MG em Mercados de Cadeias Curtas. Dissertação (Dissertação de Mestrado Profissional) — Universidade Federal de Lavras, Lavras, MG, 2019. Orientador(a): Thiago Rodrigo de Paula Assis; Coorientador(a): Nathalia de Fátima Joaquim.

MOOD, A. M.; GRAYBILL, F. A.; BOES, D. C. Introduction to the Theory of Statistics. 3rd. ed. [S.I.]: McGraw-Hill, 1974.

NEWTON, I. De analysi per aequationes numero terminorum infinitas. [S.l.: s.n.], 1711.

NEWTON, I. Methodus fluxionum et serierum infinitarum. **Opuscula mathematica, philosophica et philologica**, v. 1, p. 1774, 1774.

RAPHSON, J. Analysis Aequationum Universalis. 1690.

ROSLAN, R.; NA, C. S.; GABDA, D. Parameter estimations of the generalized extreme value distributions for small sample size. **Mathematics and Statistics**, v. 8, n. 2, p. 47–51, 2020.