BNU 2021 秋季学期近世代数期中考试

命题人:

整理人:Aut

一、读 $G = A_5, \tau = (12345).$

- (1) 证明 τ 与 τ^{-1} 共轭.
- (2) $\forall g \in G$, 判断 $g \ni g^{-1}$ 是否共轭, 并说明理由.

二、设 G 为域 F 上可逆上三角矩阵关于矩阵乘法构成的群, N 为域 F 上对角元为 1 的上三角矩阵的集合, K 为域 F 上对角矩阵的集合. 证明:

- (1) $N \leqslant G$, $K \leqslant G$;
- (2) $N \leq G$, $G/N \cong K$.

三、设 $n \in \{51, 52, 53, 54, 55, 56\}$. 证明: 不存在 n 阶非交换单群.

四、设 $N \subseteq G$ 是 G 的真正规子群, $Z = \{xN | x \in G\}$. 定义

$$\circ: \ G \times Z \longrightarrow Z$$
$$(g, xN) \longmapsto g(xN)g^{-1}$$

- (1) 证明 o 是不可迁的群作用;
- (2) 对于 $G = A_4, N = K_4, 求上述群作用的轨道个数.$

五、设 $|G| = p^2q$, p,q 为素数, $p^2 < q$ 且 G 的 Sylow p-子群 $P \subseteq G$, 证明 G 是交换群.

一、

设 $G = A_5, \tau = (12345).$

- (1) 证明 τ 与 τ^{-1} 共轭.
- (2) $\forall g \in G$, 判断 g 与 g^{-1} 是否共轭, 并说明理由.

证明. (1) 取 $\sigma = (15)(24) \in A_5$, 则 $\sigma \tau \sigma^{-1} = \sigma(12345)\sigma^{-1} = (54321) = \tau^{-1}$.

(2) 答案是肯定的. 考虑 g 的阶 o(g).

对于 o(g) = 1, 2, 均有 $ege^{-1} = g^{-1} = g$; 对于 o(g) = 3, 由 $n \ge 5$ 时任一 3-循环的共轭类由全体 3-循环组成知 $g \ni g^{-1}$ 共轭; 对于 o(g) = 5, 类似 (1) 也有 $g \ni g^{-1}$ 共轭.

断言: o(g) 只可能为 1,2,3,5.

考虑 g 分解为不相交循环 (长度 > 2) 的乘积. 若 g 只分解为 1 个循环, 则断言成立. 否则 g 至多分解为 2 个不相交循环的乘积, 此时 o(g)=2, 断言成立.

综上可知 $\forall g \in G, g 与 g^{-1}$ 共轭.

二

设 G 为域 F 上可逆上三角矩阵关于矩阵乘法构成的群, N 为域 F 上对角元为 1 的上三角矩阵的集合, K 为域 F 上对角矩阵的集合. 证明:

- (1) $N \leqslant G$, $K \leqslant G$;
- (2) $N \subseteq G$, $G/N \cong K$.

证明. (1) 按定义验证即可.

(2) 前者按定义验证即可,后者考虑满同态 $f:G \longrightarrow K, A=(a_{ij}) \longmapsto \operatorname{diag}(a_{11},\cdots,a_{nn})$. 易证 $\ker f=N$,由群同态基本定理即证.

三、

设 $n \in \{51, 52, 53, 54, 55, 56\}$. 证明: 不存在 n 阶非交换单群.

证明. $51 = 3 \times 17$, $52 = 4 \times 13$, $55 = 5 \times 11$, 由 np (n < p, (n, q) = 1) 阶群只有一个 q 阶群知其非单. 53 是素数, 素数阶群是循环群, 从而是交换的.

 $54 = 2 \times 27$, 由 2n(n) 奇数) 阶群有指数为 2 的正规子群知其非单.

对于 $56 = 2^3 \times 7$, 若 G 的 Sylow 7-子群不是正规子群, 那么 $n_7 = 8$, 设为 $\{P_1, P_2, \dots, P_8\}$,

由于 $P_i \cap P_j = \{e\}, \forall i \neq j$, 此时其余元素有 $56 - (7 - 1) \times 8 = 8$ 个, 它们组成 1 个 Sylow 2-子群, 它是正规的.

综上不存在 n 阶非交换单群 $(n \in \{51, 52, 53, 54, 55, 56\})$.

四、

设 N ⊆ G 是 G 的真正规子群, $Z = \{xN | x ∈ G\}$. 定义

$$\circ: \ G \times Z \longrightarrow Z$$
$$(g, xN) \longmapsto g(xN)g^{-1}$$

- (1) 证明。是不可迁的群作用;
- (2) 对于 $G = A_4$, $N = K_4$, 求上述群作用的轨道个数.
- 证明. (1) 按定义验证即可, 另外注意到 N 是不动点, 故不可迁.
 - (2) 因为 $[A_4:K_4]=3$, 我们断言 $Z=\{K_4,K_4(123),K_4(123)^{-1}\}$,

首先 $(123) \notin K_4$; 若 $K_4(123) = K_4(123)^{-1}$, 则 $(123)^2 \in K_4$, 即 $(132) \in K_4$, 矛盾!

又 K_4 是不动点, 故轨道个数只可能为 2 或 3. 假设轨道个数为 2, 那么 G 在 $\{K_4(123),K_4(123)^{-1}\}$ 上的作用是可迁的. 考虑稳定化子 $H=(A_4)_{K_4(123)}\leqslant A_4$, 则 |H|=6, 但 A_4 没有 6 阶子群, 矛盾!

所以轨道个数为 3. □

五、

设 $|G| = p^2 q$, p, q 为素数, $p^2 < q$ 且 G 的 Sylow p-子群 $P \subseteq G$, 证明 G 是交换群.

证明. (1) 由 Sylow 第三定理可知 $n_q=1$, 则 G 的 Sylow q-子群 $Q \subseteq G$, 又 $P \cap Q = \{e\}$, 则

$$|PQ| = \frac{|P||Q|}{|P \cap Q|} = p^2 q = |G|,$$

从而 PQ=G. 由于 P,Q 均为交换群, 考虑 $\forall a\in P,b\in Q$, 则 $aba^{-1}b^{-1}\in P\bigcap Q=\{e\}$, 即 ab=ba. 因此 G 是交换群.