Prof. Francesco Bergadano

Dipartimento di Informatica Università di Torino

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Cifrari simmetrici 'moderni'

- Macchine a rotori
- Feistel cipher
- DES (Data Encryption Standard)
- Nuovi cifrari e AES (Advanced Encryption Standard)

Cifrari simmetrici 'moderni'

- Basati sull'uso del calcolatore
- Combinano permutazioni e sostituzioni
- Prevedono numerose 'fasi' (round)

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Macchine a rotori

- Ognuno dei K rotori individua una sostituzione monoalfabetica
- Ogni rotore 'girando' porta ad una diversa sostituzione, ripetendosi dopo N volte
- Otteniamo così N^K sostituzioni monoalfabetiche
- Per ogni carattere del testo cambia la sostituzione monoalfabetica utilizzata

Prof. Francesco Bergadano

Dipartimento di Informatica Università di Torino

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Cifrari simmetrici 'moderni'

- Macchine a rotori
- Feistel cipher
- DES (Data Encryption Standard)
- Nuovi cifrari e AES (Advanced Encryption Standard)

Cifrari simmetrici 'moderni'

- Basati sull'uso del calcolatore
- Combinano permutazioni e sostituzioni
- Prevedono numerose 'fasi' (round)

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Macchine a rotori

- Ognuno dei K rotori individua una sostituzione monoalfabetica
- Ogni rotore 'girando' porta ad una diversa sostituzione, ripetendosi dopo N volte
- Otteniamo così N^K sostituzioni monoalfabetiche
- Per ogni carattere del testo cambia la sostituzione monoalfabetica utilizzata

Prof. Francesco Bergadano

Dipartimento di Informatica Università di Torino

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Cifrari simmetrici 'moderni'

- Macchine a rotori
- Feistel cipher
- DES (Data Encryption Standard)
- Nuovi cifrari e AES (Advanced Encryption Standard)

Cifrari simmetrici 'moderni'

- Basati sull'uso del calcolatore
- Combinano permutazioni e sostituzioni
- Prevedono numerose 'fasi' (round)

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Macchine a rotori

- Ognuno dei K rotori individua una sostituzione monoalfabetica
- Ogni rotore 'girando' porta ad una diversa sostituzione, ripetendosi dopo N volte
- Otteniamo così N^K sostituzioni monoalfabetiche
- Per ogni carattere del testo cambia la sostituzione monoalfabetica utilizzata

Prof. Francesco Bergadano

Dipartimento di Informatica Università di Torino

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Cifrari simmetrici 'moderni'

- Macchine a rotori
- Feistel cipher
- DES (Data Encryption Standard)
- Nuovi cifrari e AES (Advanced Encryption Standard)

Cifrari simmetrici 'moderni'

- Basati sull'uso del calcolatore
- Combinano permutazioni e sostituzioni
- Prevedono numerose 'fasi' (round)

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Macchine a rotori

- Ognuno dei K rotori individua una sostituzione monoalfabetica
- Ogni rotore 'girando' porta ad una diversa sostituzione, ripetendosi dopo N volte
- Otteniamo così N^K sostituzioni monoalfabetiche
- Per ogni carattere del testo cambia la sostituzione monoalfabetica utilizzata

Macchine a rotori

Dè cifrato con H

ΑX A G B W ВН CZCIDA DJ

Dè cifrato con G

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Data Encryption Standard

- Pubblicato nel 1977
- Cifrario simmetrico più usato fino al 2002
- Sostituito da AES
- Basato su concetto di "diffusione" e "confusione"

Sicurezza di Reti e Calcolatori - Prof. Bergadano

DES è un cifrario simmetrico

Macchine a rotori

Dè cifrato con H

ΑX A G B W ВН CZCIDA DJ

Dè cifrato con G

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Data Encryption Standard

- Pubblicato nel 1977
- Cifrario simmetrico più usato fino al 2002
- Sostituito da AES
- Basato su concetto di "diffusione" e "confusione"

Sicurezza di Reti e Calcolatori - Prof. Bergadano

DES è un cifrario simmetrico

Macchine a rotori

Dè cifrato con H

ΑX A G B W ВН CZCIDA DJ

Dè cifrato con G

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Data Encryption Standard

- Pubblicato nel 1977
- Cifrario simmetrico più usato fino al 2002
- Sostituito da AES
- Basato su concetto di "diffusione" e "confusione"

Sicurezza di Reti e Calcolatori - Prof. Bergadano

DES è un cifrario simmetrico

Macchine a rotori

Dè cifrato con H

ΑX A G B W ВН CZCIDA DJ

Dè cifrato con G

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Data Encryption Standard

- Pubblicato nel 1977
- Cifrario simmetrico più usato fino al 2002
- Sostituito da AES
- Basato su concetto di "diffusione" e "confusione"

Sicurezza di Reti e Calcolatori - Prof. Bergadano

DES è un cifrario simmetrico

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Caratteristiche di DES

- Chiavi di 56 bit
- 16 passi ('rounds')
- Efficiente
- Unici attacchi noti di tipo 'forza bruta'

Feistel Cipher - esercizio

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Schema Generale del DES

Testo in chiaro di 64 bit
(Plaintext o Cleartext)

DES

DES

Testo cifrato di 64 bit (<u>Ciphertext</u>)

9

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Caratteristiche di DES

- Chiavi di 56 bit
- 16 passi ('rounds')
- Efficiente
- Unici attacchi noti di tipo 'forza bruta'

Feistel Cipher - esercizio

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Schema Generale del DES

Testo in chiaro di 64 bit
(Plaintext o Cleartext)

DES

DES

Testo cifrato di 64 bit (<u>Ciphertext</u>)

9

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Caratteristiche di DES

- Chiavi di 56 bit
- 16 passi ('rounds')
- Efficiente
- Unici attacchi noti di tipo 'forza bruta'

Feistel Cipher - esercizio

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Schema Generale del DES

Testo in chiaro di 64 bit
(Plaintext o Cleartext)

DES

Chiave DES di 56 bit
(solitamente estesa a 64 bit con bit di parità)

Testo cifrato di 64 bit (Ciphertext)

Sicurezza di Reti e Calcolatori - Prof. Bergadano

9

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Caratteristiche di DES

- Chiavi di 56 bit
- 16 passi ('rounds')
- Efficiente
- Unici attacchi noti di tipo 'forza bruta'

Feistel Cipher - esercizio

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Schema Generale del DES

Testo in chiaro di 64 bit
(Plaintext o Cleartext)

DES

Chiave DES di 56 bit
(solitamente estesa a 64 bit con bit di parità)

Testo cifrato di 64 bit (Ciphertext)

Sicurezza di Reti e Calcolatori - Prof. Bergadano

9

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

<K1, K2, ..., K16> = key schedule

(si può calcolare a partire dalla chiave simmetrica originaria K)

13

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

<K1, K2, ..., K16> = key schedule

(si può calcolare a partire dalla chiave simmetrica originaria K)

13

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

<K1, K2, ..., K16> = key schedule

(si può calcolare a partire dalla chiave simmetrica originaria K)

13

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

<K1, K2, ..., K16> = key schedule

(si può calcolare a partire dalla chiave simmetrica originaria K)

13

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

18

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

18

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

18

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

18

Sicurezza di Reti e Calcolatori - Prof. Bergadano

24

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

24

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

24

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

24

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Sicurezza di Reti e Calcolatori - Prof. Bergadano

$$D(E(M)) = M$$

Sicurezza di Reti e Calcolatori - Prof. Bergadano

25

Sicurezza di Reti e Calcolatori - Prof. Bergadano

26

arezza ai Ren e Catebiatori - 110j. Dergaaano

Feistel Cipher

Sia E = encryption

$$D(E(M)) = M$$

Sicurezza di Reti e Calcolatori - Prof. Bergadano

25

Sicurezza di Reti e Calcolatori - Prof. Bergadano

26

arezza ai Ren e Catebiatori - 110j. Dergaaano

Feistel Cipher

Sia E = encryption

$$D(E(M)) = M$$

Sicurezza di Reti e Calcolatori - Prof. Bergadano

25

Sicurezza di Reti e Calcolatori - Prof. Bergadano

26

arezza ai Ren e Catebiatori - 110j. Dergaaano

Feistel Cipher

Sia E = encryption

$$D(E(M)) = M$$

Sicurezza di Reti e Calcolatori - Prof. Bergadano

25

Sicurezza di Reti e Calcolatori - Prof. Bergadano

26

arezza ai Ren e Catebiatori - 110j. Dergaaano

Feistel Cipher

Sia E = encryption

Ciphertext

Sia D = decryption

D(L1,R1) = L0,R0 =(R1 XOR F(k1,L1)), L1

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Feistel Cipher

Sicurezza di Reti e Calcolatori - Prof. Bergadano

DES Challenge

RSA security, nel 1997, offre 10.000 \$ a chi avesse decifrato un testo ottenuto cifrando con DES una frase segreta («strong crypto makes the world a better place»).

Rocke Verser vince dopo **5 mesi** avendo pubblicato su Internet un programma capace di distribuire le possibili chiavi e di far fare una ricerca esaustiva sui calcolatori di privati (10.000 \$ divisi 60%/40% con l'utilizzatore che aveva trovato la chiave).

Secoda sfida DES (1998) vinta in **39 gg**. Nel 1998 la Electronic Frontier Foundation sviluppa un HW DES Cracker, che viola DES in 5 giorni.

AES

- Necessità di chiavi più lunghe (128 bit)
- Riferimento a macchine a 64 bit
- Robustezza rispetto ad attacchi lineari e differenziali

30

31

Ciphertext

Sia D = decryption

D(L1,R1) = L0,R0 =(R1 XOR F(k1,L1)), L1

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Feistel Cipher

Sicurezza di Reti e Calcolatori - Prof. Bergadano

DES Challenge

RSA security, nel 1997, offre 10.000 \$ a chi avesse decifrato un testo ottenuto cifrando con DES una frase segreta («strong crypto makes the world a better place»).

Rocke Verser vince dopo **5 mesi** avendo pubblicato su Internet un programma capace di distribuire le possibili chiavi e di far fare una ricerca esaustiva sui calcolatori di privati (10.000 \$ divisi 60%/40% con l'utilizzatore che aveva trovato la chiave).

Secoda sfida DES (1998) vinta in **39 gg**. Nel 1998 la Electronic Frontier Foundation sviluppa un HW DES Cracker, che viola DES in 5 giorni.

AES

- Necessità di chiavi più lunghe (128 bit)
- Riferimento a macchine a 64 bit
- Robustezza rispetto ad attacchi lineari e differenziali

30

31

Ciphertext

Sia D = decryption

D(L1,R1) = L0,R0 =(R1 XOR F(k1,L1)), L1

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Feistel Cipher

Sicurezza di Reti e Calcolatori - Prof. Bergadano

DES Challenge

RSA security, nel 1997, offre 10.000 \$ a chi avesse decifrato un testo ottenuto cifrando con DES una frase segreta («strong crypto makes the world a better place»).

Rocke Verser vince dopo **5 mesi** avendo pubblicato su Internet un programma capace di distribuire le possibili chiavi e di far fare una ricerca esaustiva sui calcolatori di privati (10.000 \$ divisi 60%/40% con l'utilizzatore che aveva trovato la chiave).

Secoda sfida DES (1998) vinta in **39 gg**. Nel 1998 la Electronic Frontier Foundation sviluppa un HW DES Cracker, che viola DES in 5 giorni.

AES

- Necessità di chiavi più lunghe (128 bit)
- Riferimento a macchine a 64 bit
- Robustezza rispetto ad attacchi lineari e differenziali

30

31

Ciphertext

Sia D = decryption

D(L1,R1) = L0,R0 =(R1 XOR F(k1,L1)), L1

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Feistel Cipher

Sicurezza di Reti e Calcolatori - Prof. Bergadano

DES Challenge

RSA security, nel 1997, offre 10.000 \$ a chi avesse decifrato un testo ottenuto cifrando con DES una frase segreta («strong crypto makes the world a better place»).

Rocke Verser vince dopo **5 mesi** avendo pubblicato su Internet un programma capace di distribuire le possibili chiavi e di far fare una ricerca esaustiva sui calcolatori di privati (10.000 \$ divisi 60%/40% con l'utilizzatore che aveva trovato la chiave).

Secoda sfida DES (1998) vinta in **39 gg**. Nel 1998 la Electronic Frontier Foundation sviluppa un HW DES Cracker, che viola DES in 5 giorni.

AES

- Necessità di chiavi più lunghe (128 bit)
- Riferimento a macchine a 64 bit
- Robustezza rispetto ad attacchi lineari e differenziali

30

31

Schema Generale di AES

Testo in chiaro di 128 bit oppure di 192 bit oppure di 256 bit

AES

Chiave AES di 128 bit oppure di 192 bit oppure di 256 bit

AES

Testo cifrato di 128 bit (Ciphertext)

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Caratteristiche di AES

http://csrc.nist.gov/CryptoToolkit/aes/

- Chiavi di 128/192/256 bit, blocco di 128
- Da 10 a 14 passi ('rounds')
- Efficiente

33

• Unici attacchi noti di tipo 'forza bruta'

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Schema Generale di AES

Testo in chiaro di 128 bit oppure di 192 bit oppure di 256 bit

AES

Chiave AES di 128 bit oppure di 192 bit oppure di 256 bit

AES

Testo cifrato di 128 bit (Ciphertext)

Sicurezza di Reti e Calcolatori - Prof. Bergadano

Caratteristiche di AES

http://csrc.nist.gov/CryptoToolkit/aes/

- Chiavi di 128/192/256 bit, blocco di 128
- Da 10 a 14 passi ('rounds')
- Efficiente

33

• Unici attacchi noti di tipo 'forza bruta'

Sicurezza di Reti e Calcolatori - Prof. Bergadano