# Lecture 2 Data Representation

**CPS310** 

**Computer Organization II** 

**WINTER 2022** 

© Dr. A. Sadeghian

The copyright to this original work is held by Dr. Sadeghian and students registered in CPS310 can use this material for the purposes of this course but no other use is permitted, and there can be no sale or transfer or use of the work for any other purpose without explicit permission of Dr. Sadeghian.

## Sign & Magnitude

The leftmost bit (MSB) is the sign (0 = positive, 1 = negative) and the remaining bits are the magnitude

#### Example:

$$+25_{10} = 00011001)_{2}$$

$$-25_{10} = 10011001)_2$$

$$+12_{10} = 0000 1100)_{2}$$
  
 $-12_{10} = 1111 0011)_{2}$ 

Two representations for zero:

$$+0 = 00000000_2$$
,  $-0 = 10000000_2$ 

Largest number is +127, smallest number is -127<sub>10</sub>, using an 8-bit representation

#### 1's Complement

The leftmost bit (MSB) is the sign (0 = positive, 1 = negative). Negative form of a number is obtained by complementing each bit (from 0 to 1 or from 1 to 0)

This goes both ways, converting between positive and negative numbers

#### **Example:**

$$+25_{10} = 0001 1001)_{2}$$

$$-25_{10} = 1110 0110)_2$$

$$+12_{10} = 0000 1100)_2$$
  
 $-12_{10} = 1111 0011)_2$ 

Two representations for zero:  $+0 = 00000000_2$ ,  $-0 = 111111111_2$ 

Largest number is  $+127_{10}$ , smallest number is  $-127_{10}$ , using an 8-bit representation

## 2's Complement

The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a number is obtained by adding 1 to the one's complement negative

This goes both ways, converting between positive and negative numbers

Example (recall that  $-25_{10}$  in one's complement is  $1110\ 0110)_2$ :

```
+25_{10} = 0001 1001)_{2}
-25_{10} = 1110 0111)_{2}
+12_{10} = 0000 1100)_{2}
-12_{10} = 1111 0100)_{2}
```

One representation for zero:  $+0 = 00000000_2$ ,  $-0 = 00000000_2$ 

Largest number is  $+127_{10}$ , smallest number is  $-128_{10}$ , using an 8-bit representation

## **Excess (Biased)**

 Positive and negative representations of a number are obtained by adding <u>a bias</u> to the number

- Example:
- Excess-3, add 3 to the number
- Excess-127, add 127 to the number

#### **Excess-Bias**

The effect is that numerically smaller numbers have smaller bit patterns, simplifying comparisons for floating point exponents (see next table)

#### **Example:**

Excess-128 [2<sup>7</sup>] adds 128 to the 2's complement rep, ignoring any carry out of the most significant bit:

```
• +12_{10} = 1000 \ 1100_2
```

•  $-12_{10} = 01110100_2$ 

```
      +12:
      0000 1100
      -12:
      1111 0100

      128:
      1000 0000
      128:
      1000 0000

      1000 1100
      (1) 0111 0100
```

- One representation for zero:  $+0 = 10000000_2$ ,  $-0 = 10000000_2$
- Largest number is  $+127_{10}$ , smallest number is  $-128_{10}$ , using an 8-bit representation

# **3-Bit Signed Integer Representations**

| Decimal | <u>Unsigned</u> | Sign-Mag. | 1's Comp. | 2's Comp. | Excess 4 |
|---------|-----------------|-----------|-----------|-----------|----------|
| 7       | 111             | -         | -         | _         | -        |
| 6       | 110             | -         | -         | -         | -        |
| 5       | 101             | -         | -         | _         | _        |
| 4       | 100             | -         | -         | -         | -        |
| 3       | 011             | 011       | 011       | 011       | 111      |
| 2       | 010             | 010       | 010       | 010       | 110      |
| 1       | 001             | 001       | 001       | 001       | 101      |
| +0      | 000             | 000       | 000       | 000       | 100      |
| -0      | -               | 100       | 111       | 000       | 100      |
| -1      | -               | 101       | 110       | 111       | 011      |
| -2      | -               | 110       | 101       | 110       | 010      |
| -3      | -               | 111       | 100       | 101       | 001      |
| -4      | _               | _         | _         | 100       | 000      |

# ASCII <u>Character</u> Code - American Standard Code for Information Interchange

- ASCII is a 7-bit code, commonly stored in 8bit bytes
- "A" is at  $41_{16}$ . To convert upper case letters to lower case letters, add  $20_{16}$ . Thus "a" is at  $41_{16}$  +  $20_{16}$  =  $61_{16}$
- The character "5" at position 35<sub>16</sub> is different than the number 5. To convert characternumbers into numbernumbers, subtract 30<sub>16</sub>: 35<sub>16</sub> 30<sub>16</sub> = 5

| 00 NUL | 10 DLE | 20 | SP | 30 | 0 | 40 | (a) | 50 | P | 60 | ` | 70 | р            |
|--------|--------|----|----|----|---|----|-----|----|---|----|---|----|--------------|
| 01 SOH | 11 DC1 | 21 | !  | 31 | 1 | 41 | A   | 51 | Q | 61 | a | 71 | q            |
| 02 STX | 12 DC2 | 22 | "  | 32 | 2 | 42 | В   | 52 | R | 62 | b | 72 | r            |
| 03 ETX | 13 DC3 | 23 | #  | 33 | 3 | 43 | C   | 53 | S | 63 | c | 73 | s            |
| 04 EOT | 14 DC4 | 24 | \$ | 34 | 4 | 44 | D   | 54 | T | 64 | d | 74 | t            |
| 05 ENQ | 15 NAK | 25 | %  | 35 | 5 | 45 | E   | 55 | U | 65 | e | 75 | u            |
| 06 ACK | 16 SYN | 26 | &  | 36 | 6 | 46 | F   | 56 | V | 66 | f | 76 | $\mathbf{v}$ |
| 07 BEL | 17 ETB | 27 | '  | 37 | 7 | 47 | G   | 57 | W | 67 | g | 77 | w            |
| 08 BS  | 18 CAN | 28 | (  | 38 | 8 | 48 | Н   | 58 | X | 68 | h | 78 | X            |
| 09 HT  | 19 EM  | 29 | )  | 39 | 9 | 49 | I   | 59 | Y | 69 | i | 79 | У            |
| 0A LF  | 1A SUB | 2A | *  | 3A | : | 4A | J   | 5A | Z | 6A | j | 7A | Z            |
| 0B VT  | 1B ESC | 2B | +  | 3B | ; | 4B | K   | 5B | [ | 6B | k | 7B | {            |
| 0C FF  | 1C FS  | 2C | ,  | 3C | < | 4C | L   | 5C | \ | 6C | 1 | 7C |              |
| 0D CR  | 1D GS  | 2D | -  | 3D | = | 4D | M   | 5D | ] | 6D | m | 7D | }            |
| 0E SO  | 1E RS  | 2E |    | 3E | > | 4E | N   | 5E | ^ | 6E | n | 7E | ~            |
| 0F SI  | 1F US  | 2F | /  | 3F | ? | 4F | O   | 5F | _ | 6F | o | 7F | DEL          |

| NILII      | Nr11                | EE  | Form food                 | CAN | Canaal           |
|------------|---------------------|-----|---------------------------|-----|------------------|
| NUL        |                     | FF  | Form feed                 | CAN | Cancel           |
| SOH        | Start of heading    | CR  | Carriage return           | EM  | End of medium    |
| STX        | Start of text       | SO  | Shift out                 | SUB | Substitute       |
| ETX        | End of text         | SI  | Shift in                  | ESC | Escape           |
| EOT        | End of transmission | DLE | Data link escape          | FS  | File separator   |
| <b>ENQ</b> | Enquiry             | DC1 | Device control 1          | GS  | Group separator  |
| ACK        | Acknowledge         | DC2 | Device control 2          | RS  | Record separator |
| BEL        | Bell                | DC3 | Device control 3          | US  | Unit separator   |
| BS         | Backspace           | DC4 | Device control 4          | SP  | Space            |
| HT         | Horizontal tab      | NAK | Negative acknowledge      | DEL | Delete           |
| LF         | Line feed           | SYN | Synchronous idle          |     |                  |
| VT         | Vertical tab        | ETB | End of transmission block |     |                  |

# **Extended Binary Coded Decimal Interchange Code**

# EBCDIC Character Code

EBCDIC is an 8-bit code.

| STX | Start of text    | RS | Reader Stop     |
|-----|------------------|----|-----------------|
| DLE | Data Link Escape | PF | Punch Off       |
| BS  | Backspace        | DS | Digit Select    |
| ACK | Acknowledge      | PN | Punch On        |
| SOH | Start of Heading | SM | Set Mode        |
| ENQ | Enquiry          | LC | Lower Case      |
| ESC | Escape           | CC | Cursor Control  |
| BYP | Bypass           | CR | Carriage Return |
| CAN | Cancel           | EM | End of Medium   |
| RES | Restore          | FF | Form Feed       |
| SI  | Shift In         | TM | Tape Mark       |
| SO  | Shift Out        | UC | Upper Case      |
| DEL | Delete           | FS | Field Separator |
| SUB | Substitute       | HT | Horizontal Tab  |
| NL  | New Line         | VT | Vertical Tab    |
| LF  | Line Feed        | UC | Upper Case      |
|     |                  |    |                 |

| 00 NUL    | 20 DS  | 40 SP | 60 – | 80   | A0   | C0 { | E0 \ |
|-----------|--------|-------|------|------|------|------|------|
| 01 SOH    | 21 SOS | 41    | 61 / | 81 a | A1 ~ | C1 A | E1   |
| 02 STX    | 22 FS  | 42    | 62   | 82 b | A2 s | C2 B | E2 S |
| 03 ETX    | 23     | 43    | 63   | 83 c | A3 t | C3 C | E3 T |
| 04 PF     | 24 BYP | 44    | 64   | 84 d | A4 u | C4 D | E4 U |
| 05 HT     | 25 LF  | 45    | 65   | 85 e | A5 v | C5 E | E5 V |
| 06 LC     | 26 ETB | 46    | 66   | 86 f | A6 w | C6 F | E6 W |
| 07 DEL    | 27 ESC | 47    | 67   | 87 g | A7 x | C7 G | E7 X |
| 08        | 28     | 48    | 68   | 88 h | A8 y | C8 H | E8 Y |
| 09        | 29     | 49    | 69   | 89 i | A9 z | C9 I | E9 Z |
| 0A SMM    | 2A SM  | 4A ¢  | 6A ' | 8A   | AA   | CA   | EA   |
| 0B VT     | 2B CU2 | 4B    | 6B , | 8B   | AB   | CB   | EB   |
| 0C FF     | 2C     | 4C <  | 6C % | 8C   | AC   | CC   | EC   |
| 0D CR     | 2D ENQ | 4D (  | 6D _ | 8D   | AD   | CD   | ED   |
| 0E SO     | 2E ACK | 4E +  | 6E > | 8E   | AE   | CE   | EE   |
| 0F SI     | 2F BEL | 4F    | 6F ? | 8F   | AF   | CF   | EF   |
| 10 DLE    | 30     | 50 &  | 70   | 90   | B0   | D0 } | F0 0 |
| 11 DC1    | 31     | 51    | 71   | 91 j | B1   | D1 J | F1 1 |
| 12 DC2    | 32 SYN | 52    | 72   | 92 k | B2   | D2 K | F2 2 |
| 13 TM     | 33     | 53    | 73   | 93 1 | B3   | D3 L | F3 3 |
| 14 RES    | 34 PN  | 54    | 74   | 94 m | B4   | D4 M | F4 4 |
| 15 NL     | 35 RS  | 55    | 75   | 95 n | B5   | D5 N | F5 5 |
| 16 BS     | 36 UC  | 56    | 76   | 96 o | B6   | D6 O | F6 6 |
| ប្រ 17 IL | 37 EOT | 57    | 77   | 97 p | B7   | D7 P | F7 7 |
| 18 CAN    | 38     | 58    | 78   | 98 q | B8   | D8 Q | F8 8 |
| 19 EM     | 39     | 59    | 79   | 99 r | B9   | D9 R | F9 9 |
| I 1A CC   | 3A     | 5A !  | 7A : | 9A   | BA   | DA   | FA   |
| B CUI     | 3B CU3 | 5B \$ | 7B # | 9B   | BB   | DB   | FB   |
| 1C IFS    | 3C DC4 | 5C ·  | 7C @ | 9C   | BC   | DC   | FC   |
| 1D IGS    | 3D NAK | 5D )  | 7D ' | 9D   | BD   | DD   | FD   |
| 1E IRS    | 3E     | 5E ;  | 7E = | 9E   | BE   | DE   | FE   |
| 1F IUS    | 3F SUB | 5F ¬  | 7F " | 9F   | BF   | DF   | FF   |

# Unicode <a href="#">Character</a> Code

• Unicode is a 16-bit code.

|                                                   | 0000 NUL  | 0020     | SP | 0040     | (a)    | 0060              | ,            | 0080  | Ctrl   | 00A0      | NBS             | 00C0   | À        | 00E0       | à      |
|---------------------------------------------------|-----------|----------|----|----------|--------|-------------------|--------------|-------|--------|-----------|-----------------|--------|----------|------------|--------|
|                                                   | 0001 SOH  | 0021     | !  | 0041     | A      | 0061              | a            | 0081  | Ctrl   | 00A1      | i               | 00C1   | Á        | 00E1       | á      |
|                                                   | 0002 STX  | 0022     | "  | 0042     | В      | 0062              | b            | 0082  | Ctrl   | 00A2      | ¢               | 00C2   | Â        | 00E2       | â      |
|                                                   | 0003 ETX  | 0023     | #  | 0043     | C      | 0063              | c            | 0083  | Ctrl   | 00A3      | £               | 00C3   | Ã        | 00E3       | ã      |
|                                                   | 0004 EOT  | 0024     | \$ | 0044     | D      | 0064              | d            | 0084  | Ctrl   | 00A4      | n               | 00C4   | Ä        | 00E4       | ä      |
|                                                   | 0005 ENQ  | 0025     | %  | 0045     | E      | 0065              | e            | 0085  | Ctrl   | 00A5      | ¥               | 00C5   | Å        | 00E5       | å      |
|                                                   | 0006 ACK  | 0026     | &  | 0046     | F      | 0066              | f            | 0086  | Ctrl   | 00A6      | !               | 00C6   | Æ        | 00E6       | æ      |
|                                                   | 0007 BEL  | 0027     | •  | 0047     | G      | 0067              | g            | 0087  | Ctrl   | 00A7      | §               | 00C7   | Ç        | 00E7       | ç      |
|                                                   | 0008 BS   | 0028     | (  | 0048     | H      | 0068              | h            | 0088  | Ctrl   | 00A8      |                 | 00C8   | È        | 00E8       | è      |
|                                                   | 0009 HT   | 0029     | )  | 0049     | I      | 0069              | i            | 0089  | Ctrl   | 00A9      | ©               | 00C9   | É        | 00E9       | é      |
|                                                   | 000A LF   | 002A     | *  | 004A     | J      | 006A              | j            | 008A  | Ctrl   | 00AA      | a               | 00CA   | Ê        | 00EA       | ê      |
|                                                   | 000B VT   | 002B     | +  | 004B     | K      | 006B              | k            | 008B  | Ctrl   | 00AB      | **              | 00CB   | Ë        | 00EB       | ë      |
|                                                   | 000C FF   | 002C     | ,  | 004C     | L      | 006C              | 1            | 008C  | Ctrl   | 00AC      | $\neg$          | 00CC   | Ì        | 00EC       | ì      |
|                                                   | 000D CR   | 002D     | -  | 004D     | M      | 006D              | m            | 008D  | Ctrl   | 00AD      | _               | 00CD   | Í        | 00ED       | í      |
|                                                   | 000E SO   | 002E     |    | 004E     | N      | 006E              | n            | 008E  | Ctrl   | 00AE      | ®               | 00CE   | Î        | 00EE       | î      |
|                                                   | 000F SI   | 002F     | /  | 004F     | O      | 006F              | o            | 008F  | Ctrl   | 00AF      | -               | 00CF   | Ϊ        | 00EF       | ï      |
|                                                   | 0010 DLE  | 0030     | 0  | 0050     | P      | 0070              | p            | 0090  | Ctrl   | 00B0      | ۰               | 00D0   | Ð        | 00F0       | 1      |
|                                                   | 0011 DC1  | 0031     | 1  | 0051     | Q      | 0071              | q            | 0091  | Ctrl   | 00B1      | ±               | 00D1   | Ñ        | 00F1       | ñ      |
|                                                   | 0012 DC2  | 0032     | 2  |          | R      | 0072              | r            | 0092  | Ctrl   | 00B2      | 2               | 00D2   | Ò        | 00F2       | ò      |
|                                                   | 0013 DC3  | 0033     | 3  | 0053     | S      | 0073              | s            | 0093  | Ctrl   | 00B3      | 3               | 00D3   | Ó        | 00F3       | ó      |
|                                                   | 0014 DC4  | 0034     | 4  | 0054     | T      | 0074              | t            | 0094  | Ctrl   | 00B4      | ,               | 00D4   | Ô        | 00F4       | ô      |
|                                                   | 0015 NAK  | 0035     | 5  | 0055     | U      | 0075              | u            | 0095  | Ctrl   | 00B5      | μ               | 00D5   | Õ        | 00F5       | õ      |
|                                                   | 0016 SYN  | 0036     | 6  | 0056     | V      | 0076              | $\mathbf{v}$ | 0096  | Ctrl   | 00B6      | ·¶              | 00D6   | Ö        | 00F6       | ö      |
|                                                   | 0017 ETB  | 0037     | 7  | 0057     | W      | 0077              | w            | 0097  | Ctrl   | 00B7      | ÷.              | 00D7   | ×        | 00F7       | ÷      |
|                                                   | 0018 CAN  | 0038     | 8  | 0058     | X      | 0078              | x            | 0098  | Ctrl   | 00B8      |                 | 00D8   | Ø        | 00F8       | ø      |
|                                                   | 0019 EM   | 0039     | 9  | 0059     | Y      | 0079              | У            | 0099  | Ctrl   | 00B9      | 1               | 00D9   | Ù        | 00F9       | ù      |
|                                                   | 001A SUB  | 003A     | :  | 005A     | Z      | 007A              | z            | 009A  | Ctrl   | 00BA      | 0               | 00DA   | Ú        | 00FA       | ú      |
|                                                   | 001B ESC  | 003B     | ;  | 005B     | ]      | 007B              | {            | 009B  | Ctrl   | 00BB      | <b>&gt;&gt;</b> | 00DB   | Û        | 00FB       | û      |
|                                                   | 001C FS   | 003C     | <  | 005C     | 1      | 007C              | Ì            | 009C  | Ctrl   | 00BC      | 1/4             | 00DC   | Ü        | 00FC       | ü      |
|                                                   | 001D GS   | 003D     | =  | 005D     | ]      | 007D              | }            | 009D  | Ctrl   | 00BD      | 1/2             | 00DD   | Ý        | 00FD       | Þ      |
|                                                   | 001E RS   | 003E     | >  | 005E     | ^      | 007E              | ~            | 009E  | Ctrl   | 00BE      | 3/4             | 00DE   | ý        | 00FE       | þ      |
|                                                   | 001F US   | 003F     | ?  | 005F     | _      | 007F              | DEL          | 009F  | Ctrl   | 00BF      | 7.              | 00DF   | 8        | 00FF       | ÿ      |
| ľ                                                 | NUL Null  | •        | SI | OH Start | ofh    | eading            |              |       | ANI (  | Cancel    |                 | SP     | ç,       | pace       |        |
|                                                   |           | of text  |    |          |        | ansmiss           | ion          |       |        | End of m  | adium           |        |          | elete      |        |
|                                                   |           |          |    |          |        |                   | 1011         |       |        | Substitut |                 | Ctr    |          | ontrol     |        |
| ETX End of text<br>ENQ Enquiry DC1 Device control |           |          |    |          |        |                   |              |       | Escape | .0        | FF              |        | orm feed |            |        |
|                                                   | ACK Ackno |          |    |          |        | ontrol 3          |              | FS    |        | File sepa | rator           | CR     |          | arriage re | aturn  |
| ĺ                                                 | BEL Bell  | owieuge  |    |          |        | ontrol 4          |              | G     |        | Group se  |                 |        |          | airrage re | Juili  |
| ĺ                                                 | BS Backs  | enace    |    | AK Nega  |        |                   | rledge       |       |        | Record s  |                 |        |          | hift in    |        |
|                                                   |           | ontal ta |    |          |        | acknow<br>king sp |              | U     |        | Unit sepa |                 | DL     |          | ata link e | escano |
|                                                   | LF Line 1 |          |    |          |        | ansmiss           |              |       |        | Synchron  |                 |        |          | ertical ta |        |
| ı.                                                | Li Line   | iccu     |    | D LIIU   | OI III | ansmiss           | 1011 01      | OCK S | 114 5  | ) y HCHIO | ious ic         | IIC VI | v        | citicai ta | U      |

## **Floating Point Numbers**

- Any floating point number can be shown using:
  - 1. Sign
  - 2. Exponent
  - 3. Significand (Mantissa)

For example:



2





1. Sign: +

2. Significand: **6.023** 

3. Exponent: **23** 



## **Floating Point Number**

#### RANGE:

Depends on the number of digits used for exponent and the base used (10, 2, ...)

#### **PRECISION:**

Depends on the number of digits used for the significand

#### Note:

Do not need to store decimal point as long as it is always in a fixed place



## **Floating Point Number Representation**

A floating point number can be represented in a number of different ways:

```
3584.1
```

 $3584.1 \times 10^{0}$ 

 $358.41 \times 10^{1}$ 

 $35.841 \times 10^2$ 

3.5841  $\times$  10<sup>3</sup>  $\leftarrow$  this is the normalized representation

How can we fix this?

Normalize it

## Normalization of a binary representation

- Move the radix point to the right of the leftmost non-zero digit
- Change the exponent accordingly

#### The Hidden Bit

 In binary representation, the leftmost bit of a normalized significand (mantissa) is always 1

So we really do not need to store this bit

Known as the hidden bit or hidden 1

## **Hidden Bit Example**

Example: a significand in the form of



is stored as

11010

## **IEEE-754 Standard for Floating Point Numbers**

#### **IEEE 754** Standard supports 2 formats:

- 1. Single precision (32 bits)
- 2. Double precision (64 bits)



# **Single Precision Floating Point Number**

32-bit representation

• Bit 31 (1 bit): Sign bit

• Bit 30-23 (8 bits): **Exponent** 

• Bit 22-0 (23 bits): **Fraction** 

• Exponent is represented in **EXCESS-127** 

## **Single Precision Floating Point Number**

• 0000 0000 and 1111 1111 have special meanings

- The most negative number should be (0000 0000), i.e., (-127),
- However, (0000 0000) has a special meaning
- Therefore, the most negative number is (-126)

- The most positive number is (1111 1111), i.e., (+128),
- However, (1111 1111) has a special meaning
- Therefore, the most positive number is (+127)

# **Example Single Precision**

```
+1.101 x 2<sup>5</sup>
```

Sign: +

Exponent: 5

Fraction: 101

Exponent in EXCESS-127: (127 + 5 = 132) 1000 0100

Sign Exponent Fraction

\_\_\_\_\_

0 1000 0100 101 0000 0000 0000 0000

## **Example Single Precision**

```
-1. 01011 x 2 <sup>126</sup>
```

Sign: -

Exponent: -126

Fraction: **01011** 

Exponent in EXCESS-127: (127 + (-126) = 1) 0000 0001

1 0000 0001 010 1100 0000 0000 0000 0000

## **Example Single Precision**

```
1.0 \times 2^{127}
```

Sign: +

Exponent: 127

Fraction: 0

Exponent in EXCESS-127: (127 + 127 = 254) 1111 1110

0 1111 1110 000 0000 0000 0000 0000 0000

#### How to show ZERO?

- Exponent: all zero
- Fraction: all zero

- Depending on the sign bit, it can be +0 or -0
- 1 0000 0000 000 0000 0000 0000 0000 (-0)

# How to show infinity?

- Infinity: overflow Division by zero
- Exponent: all one
- Fraction: all zero

- Depending on the sign bit, it can be  $+\infty$  or  $-\infty$

#### How to show NaN?

NaN: Not a Number – zero divided by zero

• Exponent: all one

• Fraction: non-zero value

• +NaN

## **Another Example**

```
+ 2 -128
```

Sign: 0

Exponent: -128

Fraction: 0

EXESS-127 rep: -128 + 127 = -1 (not valid)

# **Double Precision Floating Point Number**

• 64-bit representation

• Bit 63 (1 bit): Sign bit

• Bit 62-52 (11 bits): **Exponent** 

• Bit 51-0 (52 bits): **Fraction** 

• Exponent is represented in **EXCESS-1023** 

#### **Double Precision**

```
+ 2 -128
```

Sign: 0

Exponent: -128

Fraction: 0

Exponent in EXCESS-1023: (1023+(-128)= 895) 011 0111 1111

0 011 0111 1111

0000 ... 0000

52 bits

# **IEEE-754 Examples**

| Value                        |      | В             | Bit Pattern                          |
|------------------------------|------|---------------|--------------------------------------|
|                              | Sign | Exponent      | Fraction                             |
| (a) +1.101 ×                 | 25 0 | 1000 0100     | 101 0000 0000 0000 0000 0000         |
| (b) $-1.01011 \times 2^{-1}$ | 26 1 | 0000 0001     | 010 1100 0000 0000 0000 0000         |
| (c) $+1.0 \times 2^{1}$      | 27 0 | 1111 1110     | 000 0000 0000 0000 0000 0000         |
| (d) -                        | +0 0 | 0000 0000     | 000 0000 0000 0000 0000 0000         |
| (e) -                        | -0 1 | 0000 0000     | 000 0000 0000 0000 0000 0000         |
| (f) +                        | ∞ 0  | 1111 1111     | 000 0000 0000 0000 0000 0000         |
| (g) +2 <sup>-1</sup>         | 28 0 | 0000 0000     | 010 0000 0000 0000 0000 0000         |
| (h) +Na                      | N 0  | 1111 1111     | 011 0111 0000 0000 0000 0000         |
| (i) +2 <sup>-1</sup>         | 28 0 | 011 0111 1111 | $0000\ 0000\ 0000\ 0000\ 0000\ 0000$ |

#### Fraction Conversion – Decimal to Binary

#### Repetitive Multiplication

$$0.1 \quad 0 \quad 1 \quad 1)_2 = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$
$$= 0.5 + 0 + 0.125 + 0.0625 = 0.6875)_{10}$$

## **IEEE-754 Conversion From Decimal to Binary**

• Represent **-12.625**<sub>10</sub> in single precision IEEE-754 format

Step #1 — Convert to target base:

$$-12.625_{10} = -1100.101_{2}$$

Step #2 – Normalize:

$$-1100.101_2 = -1.100101_2 \times 2^3$$

## **IEEE-754 Conversion Example**

Step #3 - Fill in bit fields:

Sign: 1

Exponent: 3 + 127 = 130 **1000 0010** 

Fraction: **100101** 

1 1000 0010 1001 0100 0000 0000 0000 000

#### **Addition - review**

• 2 positive numbers

• 1 positive and 1 negative numbers

• 2 negative numbers



#### **Overflow**

Overflow: error has happened

#### When?

- Numbers are of the same sign but the result is of opposite sign
- If two numbers are of opposite sign the overflow would not occur

