

Git Workflows

James M. Willenbring
Sandia National Laboratories

Jared O'Neal Argonne National Laboratory

Better Scientific Software Tutorial ECP 4th Annual Meeting, Houston, Texas

See slide 2 for license details

License, Citation and Acknowledgements

License and Citation

- This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> (CC BY 4.0).
- The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, James M. Willenbring, Better Scientific Software tutorial, in Exascale Computing Project Fourth Annual Meeting, Houston, Texas. DOI: 10.6084/m9.figshare.11786868
- Individual modules may be cited as Module Authors, Module Title, in Better Scientific Software Tutorial...

Acknowledgements

- Anshu Dubey, Klaus Weide, Saurabh Chawdhary, Carlo Graziani, and Iulian Grindeanu
- This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.
- This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND NO SAND2017-5474 PE
- This work was performed in part at the Argonne National Laboratory, which is managed managed by UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

Goals

Development teams would like to use version control to collaborate productively and ensure correct code

- Understand challenges related to parallel code development via distributed version control
- Understand extra dimensions of distributed version control & how to use them
 - Local vs. remote repositories
 - Branches
 - Issues, Pull Requests, & Code Reviews (Previous talk)
- Exposure to workflows of different complexity
- What to think about when evaluating different workflows
- Motivate continuous integration

Distributed Version Control System (DVCS)

Two developers collaborating via Git

- Local copies of master branch synched to origin
- Each develops on local copy of master branch
- All copies of master immediately diverge
- How to integrate work on origin?

DVCS Race Condition

Integration of independent work occurs when local repos interact with remote repo

- Alice pushes her local commits to remote repo first
- No integration conflicts
- No risk
- Alice's local repo identical to remote repo

Bob's Local Repository

Integration Conflicts Happen

Bob's push to remote repo is rejected

- Alice updated code in commit D
- Bob updated same code in commit E
- Alice and Bob need to study conflict and decide on resolution at pull (time-consuming)
- Possibility of introducing bug on master branch (risky)

loops.cpp (commit C)

```
36
37 // TODO: Code very important loop here ASAP
38
39
40 ...
41
42
43 // TODO: Code other very important loop here ASAP
```

loops.cpp (commit D)

Alice's Local Repository

Bob's Local Repository

loops.cpp (commit E)

Our First Workflow

This process of collaborating via Git is called the Centralized Workflow

- See <u>Atlassian/BitBucket</u> for more information
- "Simple" to learn and "easy" to use
- Leverages local vs. remote repo dimension
 - Integration in local repo when local repos interact with remote repo
- What if you have many team members?
- What if developers only push once a month?
 - Lengthy development efforts without integrating
 - Occasional contributors
- What if team members works on different parts of the code?
- Working directly on master

Branches

Branches are independent lines of development

- Use branches to protect master branch
- Feature branches
 - Organize a new feature as a sequence of related commits in a branch
- Branches are usually combined or merged
- Develop on a branch, test on the branch, and merge into master
- Integration occurs at merge commits

Control Branch Complexity

Workflow policy is needed

- Descriptive names or linked to issue tracking system
- Where do branches start and end?
- Can multiple people work on one branch?

Feature Branches

Extend Centralized Workflow

- Remote repo has commits A & B
- Bob pulls remote to synchronize local repo to remote
- Bob creates local feature branch based on commit B
- Commit C pushed to remote repo
- Alice pulls remote to synchronize local repo to remote
- Alice creates local feature branch based on commit C
- Both develop independently on local feature branches

Alice's Local Repository

Bob's Local Repository

Feature Branch Divergence

Alice integrates first without issue

- Alice does fast-forward merge to local master
- Alice deletes local feature branch
- Alice pushes master to remote
- Meanwhile, Bob pulls master from remote and finds Alice's changes
- Merge conflict between commits D and E

Alice's Local Repository

Bob's Local Repository

Feature Race Condition

Integration occurs on Bob's local repo

- Bob laments not having fast-forward merge
- Bob **rebases** local feature branch to latest commit on master
 - E based off of commit B
 - E' based off of Alice's commit I
 - E' is E integrated with commits C, D, F, G, I
- Merge conflict resolved by Bob & Alice on Bob's local branch when converting commit E into E'
- Can test on feature branch and merge easily and cleanly

Alice's Local Repository

Bob's Local Repository

Feature Branches Summary

- Multiple, parallel lines of development possible on single local repo
- Easily maintain local master up-to-date and useable
- Integration with rebase on local repo is safe and can be aborted
- Testing before updating local and remote master branches
- Rebase is advanced Git command
 - Rebase can cause complications and should be <u>used carefully</u>.
- Hide actual workflow
 - History in repo does not represent actual development history
 - Less communication
 - Fewer back-ups using remote repo
- Does it scale with team size? What if team integrates frequently?
- Commits on master can be broken
- See <u>Atlassian/BitBucket</u> for a richer Feature Branch Workflow

More Branches

Branches with infinite lifetime

- Base off of master branch
- Exist in all copies of a repository
- Each provides a distinct environment
 - Development vs. pre-production

Current Trilinos Workflow

Test-driven workflow

- Feature branches start and end with develop
- All changes to develop must come from GitHub pull requests
- Feature branches are merged into develop only after passing pull request test suite
- Change sets from develop are tested daily for integration into master

Workflow designed so that

- All commits in master are in develop
- Merge conflicts exposed when integrating into develop
- Merge conflicts never occur when promoting to master

Git Flow

- Full-featured workflow
- Increased complexity
- Designed for SW with official releases
- Feature branches based off of develop
- Git extensions to enforce policy
- How are develop and master synchronized?
- Where do merge conflicts occur and how are they resolved?

GitHub Flow

http://scottchacon.com/2011/08/31/github-flow.html

- Published as viable alternative to Git Flow
- No structured release schedule
- Continuous deployment & continuous integration allows for simpler workflow

Main Ideas

- 1. All commits in master are deployable
- 2. Base feature branches off of master
- 3. Push local repository to remote constantly
- 4. Open Pull Requests early to start dialogue
- 5. Merge into master after Pull Request review

GitLab Flow

https://docs.gitlab.com/ee/workflow/gitlab_flow.html

- Published as viable alternative to Git Flow & GitHub Flow
- Semi-structured release schedule
- Workflow that simplifies difficulties and common failures in synchronizing infinite lifetime branches

Main Ideas

- Master branch is staging area
- Mature code in master flows downstream into pre-production & production infinite lifetime branches
- Allow for release branches with downstream flow
 - Fixes made upstream & merged into master.
 - Fixes cherry picked into release branch

Considerations for Choosing a Git Workflow

Want to establish a clear set of polices that

- results in correct code on a particular branch (usually master),
- ensures that a team can develop in parallel and communicate well,
- minimizes difficulties associated with parallel and distributed work, and
- minimizes overhead associated with learning, following, and enforcing policies.

Adopt what is good for your team

- Consider team culture and project challenges
- Assess what is and isn't feasible/acceptable
- Start with simplest and add complexity where and when necessary

Agenda

Time	Module	Topic	Speaker
2:30pm-2:35pm	00	Introduction	David E. Bernholdt, ORNL
2:35pm-3:00pm	01	Overview of Best Practices in HPC Software Development	David E. Bernholdt, ORNL
3:00pm-3:30pm	02	Agile Methodologies and Useful GitHub Tools	Jim Willenbring, SNL
3:30pm-4:00pm		Break	
4:00pm-4:30pm	03	Improving Reproducibility through Better Software Practices	David E. Bernholdt, ORNL
4:30pm-5:15pm	04	Software Design and Testing	Anshu Dubey, ANL
5:15pm-5:45pm	05	Git Workflows	Jim Willenbring, SNL
5:45pm-6:00pm	06	Continuous Integration	David E. Bernholdt, ORNL

