

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

REVISED VERSION

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
16 September 1999 (16.09.1999)

PCT

(10) International Publication Number
WO 1999/046281 A2

(51) International Patent Classification ⁵ :	C07H 21/00,	60/082,569	21 April 1998 (21.04.1998)	US
	C12N 15/63, C07K 14/47, 16/68	60/082,568	21 April 1998 (21.04.1998)	US
(21) International Application Number:	PCT/US1999/005028	60/082,700	22 April 1998 (22.04.1998)	US
		60/082,804	22 April 1998 (22.04.1998)	US
(22) International Filing Date:	8 March 1999 (08.03.1999)	60/082,767	23 April 1998 (23.04.1998)	US
		60/082,796	23 April 1998 (23.04.1998)	US
(25) Filing Language:	English	60/083,336	27 April 1998 (27.04.1998)	US
(26) Publication Language:	English	60/083,322	28 April 1998 (28.04.1998)	US
		60/083,392	29 April 1998 (29.04.1998)	US
(30) Priority Data:		60/083,499	29 April 1998 (29.04.1998)	US
60/077,450	10 March 1998 (10.03.1998) US	60/083,545	29 April 1998 (29.04.1998)	US
60/077,632	11 March 1998 (11.03.1998) US	60/083,554	29 April 1998 (29.04.1998)	US
60/077,641	11 March 1998 (11.03.1998) US	60/083,495	29 April 1998 (29.04.1998)	US
60/077,649	11 March 1998 (11.03.1998) US	60/083,558	29 April 1998 (29.04.1998)	US
60/077,791	12 March 1998 (12.03.1998) US	60/083,496	29 April 1998 (29.04.1998)	US
60/078,004	13 March 1998 (13.03.1998) US	60/083,559	29 April 1998 (29.04.1998)	US
09/040,220	17 March 1998 (17.03.1998) US	60/083,500	29 April 1998 (29.04.1998)	US
60/078,886	20 March 1998 (20.03.1998) US	60/083,742	30 April 1998 (30.04.1998)	US
60/078,910	20 March 1998 (20.03.1998) US	60/084,366	5 May 1998 (05.05.1998)	US
60/078,939	20 March 1998 (20.03.1998) US	60/084,441	6 May 1998 (06.05.1998)	US
60/078,936	20 March 1998 (20.03.1998) US	60/084,414	6 May 1998 (06.05.1998)	US
60/079,294	25 March 1998 (25.03.1998) US	60/084,640	7 May 1998 (07.05.1998)	US
60/079,656	26 March 1998 (26.03.1998) US	60/084,639	7 May 1998 (07.05.1998)	US
60/079,728	27 March 1998 (27.03.1998) US	60/084,637	7 May 1998 (07.05.1998)	US
60/079,786	27 March 1998 (27.03.1998) US	60/084,643	7 May 1998 (07.05.1998)	US
60/079,664	27 March 1998 (27.03.1998) US	60/084,598	7 May 1998 (07.05.1998)	US
60/079,689	27 March 1998 (27.03.1998) US	60/084,600	7 May 1998 (07.05.1998)	US
60/079,663	27 March 1998 (27.03.1998) US	60/084,627	7 May 1998 (07.05.1998)	US
60/079,923	30 March 1998 (30.03.1998) US	60/085,339	13 May 1998 (13.05.1998)	US
60/079,920	30 March 1998 (30.03.1998) US	60/085,338	13 May 1998 (13.05.1998)	US
60/080,105	31 March 1998 (31.03.1998) US	60/085,323	13 May 1998 (13.05.1998)	US
60/080,165	31 March 1998 (31.03.1998) US	60/085,573	15 May 1998 (15.05.1998)	US
60/080,194	31 March 1998 (31.03.1998) US	60/085,697	15 May 1998 (15.05.1998)	US
60/080,107	31 March 1998 (31.03.1998) US	60/085,580	15 May 1998 (15.05.1998)	US
60/080,333	1 April 1998 (01.04.1998) US	60/085,579	15 May 1998 (15.05.1998)	US
60/080,327	1 April 1998 (01.04.1998) US	60/085,704	15 May 1998 (15.05.1998)	US
60/080,334	1 April 1998 (01.04.1998) US	60/085,582	15 May 1998 (15.05.1998)	US
60/080,328	1 April 1998 (01.04.1998) US	60/085,689	15 May 1998 (15.05.1998)	US
60/081,071	8 April 1998 (08.04.1998) US	60/085,700	15 May 1998 (15.05.1998)	US
60/081,070	8 April 1998 (08.04.1998) US	60/086,023	18 May 1998 (18.05.1998)	US
60/081,049	8 April 1998 (08.04.1998) US	60/086,486	22 May 1998 (22.05.1998)	US
60/081,195	9 April 1998 (09.04.1998) US	60/086,414	22 May 1998 (22.05.1998)	US
60/081,203	9 April 1998 (09.04.1998) US	60/086,392	22 May 1998 (22.05.1998)	US
60/081,229	9 April 1998 (09.04.1998) US	60/086,430	22 May 1998 (22.05.1998)	US
60/081,838	15 April 1998 (15.04.1998) US	60/087,208	28 May 1998 (28.05.1998)	US
60/081,955	15 April 1998 (15.04.1998) US	60/087,098	28 May 1998 (28.05.1998)	US
60/081,952	15 April 1998 (15.04.1998) US	60/087,106	28 May 1998 (28.05.1998)	US
60/081,817	15 April 1998 (15.04.1998) US			

{Continued on next page}

(54) Title: NOVEL POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

(57) Abstract:

WO 1999/046281 A2

60/094,651 30 July 1998 (30.07.1998) US
 60/100,038 11 September 1998 (11.09.1998) US SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN,
 YU, ZW.

(71) Applicant (*for all designated States except US*): GENENTECH, INC. [US/US]; One DNA Way, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): WOOD, William, I. [US/US]; 35 South Down Court, Hillsborough, CA 94010 (US). GODDARD, Audrey [CA/US]; 110 Congo Street, San Francisco, CA 94131 (US). GURNEY, Austin [US/US]; 1 Debbie Lane, Belmont, CA 94002 (US). YUAN, Jean [US/US]; 176 West 37th Avenue, San Mateo, CA 94403 (US). BAKER, Kevin, P. [GB/US]; 1115 South Grant Street, San Mateo, CA 94402 (US). CHEN, Jian [US/US]; 12 York Drive, Princeton, NJ 08540 (US).

(74) Agents: KRESNAK, Mark, T. et al.; Genentech Inc., 1 DNA Way, South San Francisco CA 94080-4990 (US).

(81) Designated States (*national*): AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— *with declaration under Article 17(2)(a); without abstract;
 title not checked by the International Searching Authority*

(48) Date of publication of this revised version: 27 May 2004

(15) Information about Corrections:

see PCT Gazette No. 22/2004 of 27 May 2004, Section II

Previous Correction:

see PCT Gazette No. 46/1999 of 18 November 1999, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

mammalian organism. Some of the most important oxidoreductases include, for example, lyases, lactases, cholesterol oxidases, and the like. These enzymes play roles in such essential processes as digestion, signal transduction, maintenance of ionic homeostasis, and the like. As such, given that oxidoreductase enzymes find various essential uses in the mammalian organism, there is a substantial interest in identifying novel oxidoreductase enzyme homologs. We herein describe the identification and characterization of a novel 5 polypeptide having homology to oxidoreductases, designated herein as PRO324.

20. **PRO351**

Prostasin is a novel human serine proteinase purified from human seminal fluid. Immunohistochemical localization reveals that prostasin is present in epithelial cells and ducts of the prostate gland. The cDNA for 10 prostasin has been cloned and characterized. Southern blot analysis, following a reverse transcription polymerase chain reaction, indicates that prostasin mRNA is expressed in prostate, liver, salivary gland, kidney, lung, pancreas, colon, bronchus, renal proximal tubular cells, and prostate carcinoma LNCaP cells. Cellular localization of prostasin mRNA was identified within epithelial cells of the human prostate gland by in situ hybridization histochemistry. [See for example, Yu et al., *J Biol Chem.* (1994) 269(29):18843-18848, and Yu 15 et al., *J Biol Chem.* (1994) 270(22):13483-13489].

Thus, prostasin, and molecules related thereto are of interest, particularly for the study, diagnosis and treatment of medical conditions involving the prostate. Prostasin and related molecules are further described in Yu et al., *Genomics* (1996) 32(3):334-340. We herein describe the identification and characterization of novel polypeptides having homology to prostasin, designated herein as PRO351 polypeptides.

20

21. **PRO352**

Butyrophilin is a milk glycoprotein that constitutes more than 40% of the total protein associated with the fat globule membrane in mammalian milk. Expression of butyrophilin mRNA has been shown to correlate with the onset of milk fat production toward the end pregnancy and is maintained throughout lactation. 25 Butyrophilin has been identified in bovine, murine and human (see Taylor et al., *Biochim. Biophys. Acta* 1306:1-4 (1996), Ishii et al., *Biochim. Biophys. Acta* 1245:285-292 (1995), Mather et al., *J. Dairy Sci.* 76:3832-3850 (1993) and Banghart et al., *J. Biol. Chem.* 273:4171-4179 (1998)) and is a type I transmembrane protein that is incorporated into the fat globulin membrane. It has been suggested that butyrophilin may play a role as the principle scaffold for the assembly of a complex with xanthine dehydrogenase/oxidase and other 30 proteins that function in the budding and release of milk-fat globules from the apical surface during lactation (Banghart et al., *supra*).

Given that butyrophilin plays an obviously important role in mammalian milk production, there is substantial interest in identifying novel butyrophilin homologs. We herein describe the identification and characterization of a novel polypeptide having homology to butyrophilin, designated herein as PRO352.

35

ID NO:84 shown in Figure 32.

Figure 34 shows a nucleotide sequence (SEQ ID NO:89) of a native sequence PRO700 cDNA, wherein SEQ ID NO:89 is a clone designated herein as "UNQ364" and/or "DNA46776-1284".

Figure 35 shows the amino acid sequence (SEQ ID NO:90) derived from the coding sequence of SEQ ID NO:89 shown in Figure 34.

5 Figure 36 shows a nucleotide sequence (SEQ ID NO:96) of a native sequence PRO702 cDNA, wherein SEQ ID NO:96 is a clone designated herein as "UNQ366" and/or "DNA50980-1286".

Figure 37 shows the amino acid sequence (SEQ ID NO:97) derived from the coding sequence of SEQ ID NO:96 shown in Figure 36.

10 Figure 38 shows a nucleotide sequence (SEQ ID NO:101) of a native sequence PRO703 cDNA, wherein SEQ ID NO:101 is a clone designated herein as "UNQ367" and/or "DNA50913-1287".

Figure 39 shows the amino acid sequence (SEQ ID NO:102) derived from the coding sequence of SEQ ID NO:101 shown in Figure 38.

Figure 40 shows a nucleotide sequence (SEQ ID NO:108) of a native sequence PRO705 cDNA, wherein SEQ ID NO:108 is a clone designated herein as "UNQ369" and/or "DNA50914-1289".

15 Figure 41 shows the amino acid sequence (SEQ ID NO:109) derived from the coding sequence of SEQ ID NO:108 shown in Figure 40.

Figures 42A-B show a nucleotide sequence (SEQ ID NO:113) of a native sequence PRO708 cDNA, wherein SEQ ID NO:113 is a clone designated herein as "UNQ372" and/or "DNA48296-1292".

20 Figure 43 shows the amino acid sequence (SEQ ID NO:114) derived from the coding sequence of SEQ ID NO:113 shown in Figures 42A-B.

Figure 44 shows a nucleotide sequence (SEQ ID NO:118) of a native sequence PRO320 cDNA, wherein SEQ ID NO:118 is a clone designated herein as "UNQ281" and/or "DNA32284-1307".

Figure 45 shows the amino acid sequence (SEQ ID NO:119) derived from the coding sequence of SEQ ID NO:118 shown in Figure 44.

25 Figure 46 shows a nucleotide sequence (SEQ ID NO:123) of a native sequence PRO324 cDNA, wherein SEQ ID NO:123 is a clone designated herein as "UNQ285" and/or "DNA36343-1310".

Figure 47 shows the amino acid sequence (SEQ ID NO:124) derived from the coding sequence of SEQ ID NO:123 shown in Figure 46.

30 Figure 48 shows a nucleotide sequence (SEQ ID NO:131) of a native sequence PRO351 cDNA, wherein SEQ ID NO:131 is a clone designated herein as "UNQ308" and/or "DNA40571-1315".

Figure 49 shows the amino acid sequence (SEQ ID NO:132) derived from the coding sequence of SEQ ID NO:131 shown in Figure 48.

Figure 50 shows a nucleotide sequence (SEQ ID NO:136) of a native sequence PRO352 cDNA, wherein SEQ ID NO:136 is a clone designated herein as "UNQ309" and/or "DNA41386-1316".

35 Figure 51 shows the amino acid sequence (SEQ ID NO:137) derived from the coding sequence of SEQ ID NO:136 shown in Figure 50.

FIGURE 50

CGGGCCGCCCGGCCCCATTGGGCCGGGCCTCGCTGGCGCGACTGAGCCAGGCTGG
 GCGCGTCCCTGAGTCCCAGAGTCGGCGGGCGCAGGGCAGCCTCACACGGGAG
 CCCAGCTGTCAAGCCGCCTCACAGGAAGATGCTGTGCGAGCCCTGGCATGGGTGT
 GCATGTGGGTGCAGCCCTGGGAGCACTGTGGTTCTGCCTCACAGGAGCCCTGGAGGTCCAGG
 TCCCTGAAGACCCAGTGGTGGCACTGGTGGCACCGATGCCACCCGTGCTGCTCCTCTCC
 CCTGAGCCTGGCTTCAGCCTGGCACAGCTCAACCTCATCTGGCAGCTGACAGATAACAAACA
 GCTGGTGCACAGCTTGCTGAGGCCAGGACCAGGGCAGCGCTATGCCAACCGCACGGCCC
 TCTTCCCGGACCTGCTGGCACAGGGCAACGCATCCCTGAGGCTGAGCGCTGCGTGTGGCG
 GACGAGGGCAGCTCACCTGCTCGAGCATCCGGATTTCGGCAGCGCTGCCGTAGCCT
 GCAGGTGGCCGCTCCCTACTCGAAGCCAGCATGACCCCTGGAGCCAACAAGGACCTGCGGC
 CAGGGGACACGGTGACCATCACGTGCTCCAGCTACCAGGGCTACCCCTGAGGCTGAGGTGTTTC
 TGGCAGGGATGGGAGGGTGTGCCCCCTGACTGGCAACGTGACCACGTGAGATGGCCAACGA
 GCAGGGCTTGTGTTGATGTGCACAGCGTCTGGGGTGGCTGGGTGCAATGGCACCTACA
 GCTGCCTGGTGCACACCCGTGCTGCAGCAGGATGCGCACRGCTCTGTCAACCATCACAGGG
 CAGCCTATGACATTCCCCCAGAGGCCCTGTGGGTGACCGTGGGCTGTCGTCTGTCTCAT
 TGCACTGCTGGTGGCCCTGGCTTCTGCTGGAGAAAGATCAAACAGAGCTGTGAGGAGG
 AGAATGCAGGAGCTGAGGACCAGGATGGGGAGGGAGAAGGCTCCAAGACAGCCCTGAGCCT
 CTGAAACACTCTGACAGCAAAGAAGATGATGGACAAGAAATAGCCTGACCATGAGGACCAGG
 GAGCTGCTACCCCTCCCTACAGCTCCTACCCCTCTGGCTGCAATGGGCTGCACTGTGAGCCC
 TGCCCCAACAGATGCATCTGCTCTGACAGGTGGCTCCCTCCAAAGGATGCGATACAC
 AGACCACTGTGCAGCCTTATTCTCAATGGACATGATTCCAAGTCATCCTGCTGCCCTTT
 TTCTTATAGACACAATGAACAGACCACCCACAACCTTAGTTCTTAAGTCATCCTGCCCTGCT
 GCCTTATTCACAGTACATACATTCTTAGGGACACAGTACACTGACCACATCACCACCCCTC
 TTCTCCAGTGTGCGTGGACCATCTGGCTGCCCTTTCTCCAAAGATGCAATATTCAAGA
 CTGACTGACCCCTGCCATTTCACCAAAAGACACGATGCATAGTCACCCGGCTGTTTC
 TCCAATGGCGGTGATACACTAGTGATCATGTTCAAGCCCTGCTTCCACCTGCATAGAATCTTT
 TCTTCTCAGACAGGGACAGTGCGGCCCTAACATCTCCTGGAGTCTAGAAGCTGTTCTTCC
 CCCTCCTCCCTGCCCAAGTGAAGACAGGGCAGGGCAGGAATGCTTGGGACACCG
 AGGGGACTGCCCAAGGGGACACCATGGTGCTATTCTGGGGCTGGGGCAGTCTTCC
 TTGCGCTCTGGCCAGCTCCTGGCTCTGGTAGAGTGAGACTCAGACGTTCTGATGCCCTCG
 GATGTCATCTCTCCCTGCCCAAGGAATGGAAGATGTGAGGACTTCTAATTAAATGTGGGAC
 TCGGAGGGATTTGTAACAGGGTATATTGGGAAAATAAATGTCTTGTAAAAAAA
 AAAAAAAA