
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2010; month=4; day=15; hr=13; min=10; sec=12; ms=469;]

Validated By CRFValidator v 1.0.3

Application No: 10532681 Version No: 2.0

Input Set:

Output Set:

Started: 2010-04-07 18:29:50.513

Finished: 2010-04-07 18:29:53.866

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 353 ms

Total Warnings: 22

Total Errors: 0

No. of SeqIDs Defined: 23

Actual SeqID Count: 23

Error code		Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	402	Undefined organism found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	402	Undefined organism found in <213> in SEQ ID (11)
W	402	Undefined organism found in <213> in SEQ ID (12)
W	402	Undefined organism found in <213> in SEQ ID (13)
W	402	Undefined organism found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)
W	213	Artificial or Unknown found in <213> in SEQ ID (19)
W	213	Artificial or Unknown found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2010-04-07 18:29:50.513

Finished: 2010-04-07 18:29:53.866

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 353 ms

Total Warnings: 22

Total Errors: 0

No. of SeqIDs Defined: 23

Actual SeqID Count: 23

Error code		Error Description									
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(22)

SEQUENCE LISTING

<110>	LUKYANOV, SERGEY A SHAGIN, DMITRY A YANUSHEVICH, YURY G												
<120>	FLUORESCENT PROTEINS AND CHROMOPROTEINS FROM NON-AEQUOREA HYDROZOA SPECIES AND METHODS FOR USING SAME												
<130>	U 015745-9												
<140>	10532681												
-11													
<160>	23												
<170>	PatentIn version 3.4												
<210>	1												
<211>	784												
<212>	DNA												
	Phialidium sp.												
<400>	1												
gaactga	ataa aagaaatcat catcatgtct agtggagcac tgttgttcca cggaaagatc	60											
ccatato	gttg ttgagatgga gggaaatgtt gatggacaca cattctccat tagaggtaaa	120											
ggttato	ggag atgcaagtgt tggtaaagtt gatgcccaat tcatctgcac aactggagat	180											
gtaccaç	yttc catggtcaac tttagtaaca acacttactt atggtgcaca atgcttcgcc	240											
aaatato	ggtc cagaattaaa ggatttctac aagagttgca tgcctgaagg ctatgtgcag	300											
gagcgta	acaa tcacatttga aggggacgga gtatttaaaa ctcgcgctga agttacattt	360											
gaaaacq	ggat ctgtttataa ccgagtcaaa cttaatggac aaggatttaa gaaagacgga	420											
catgtgo	cttg gaaagaatct tgaattcaat ttcacacctc attgtcttta catttgggga	480											
gatcago	gcta atcatggttt gaagtctgct ttcaaaatta tgcatgagat tactggatca	540											
aaagaaq	gact tcattgttgc agaccacacc caaatgaaca cacccattgg tggtggacca	600											
gtccato	gtcc ctgaatacca tcatataaca taccatgtca ctctcagcaa agatgttact	660											
gatcaca	aggg ataacatgag cttggttgaa accgtacggg ctgtggattg cagaaaaaca	720											
tatcttt	caaa ttgtaaattt atttgtagtt gaaaaccttt tgtcacgata tataccttta	780											
ttat		784											

<210> 2 <211> 234 <212> PRT

<213> Phialidium sp.

Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 1 5 10 15

Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys 20 25 30

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu 50 55 60

Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp 70 75 80

Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile 85 90 95

Thr Phe Glu Gly Asp Gly Val Phe Lys Thr Arg Ala Glu Val Thr Phe 100 105 110

Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe 115 120 125

Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr 130 135 140

Ser Ala Phe Lys Ile Met His Glu Ile Thr Gly Ser Lys Glu Asp Phe 165 170 175

Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
180 185 190

Val His Val Pro Glu Tyr His His Ile Thr Tyr His Val Thr Leu Ser 195 200 205

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Val Glu Thr Val 210 215 220

<210> 3 <211> 705

<212> DNA

<213> Artificial sequence

<220>

<223> phiYFP-Y1 mutant of the phiYFP

<400> 3

atgcctagtg gagcactgtt gttccacgga aagatcccat atgttgttga gatggaggga 60 aatgttgatg gacacacatt ctccattaga ggtaaaggtt atggagatgc aagtgttggt 120 aaagttgatg cccaattcat ctgcacaact ggagatgtac cagttccatg gtcaacttta 180 gtaacaacac ttacttatgg tgcacaatgc ttcgccaaat atggtccaga attaaaggat 240 300 ttctacaaga gttgcatgcc tgaaggctat gtgcaggagc gtacaatcac atttgaaggg gacggagtat ttaaaactcg cgctgaagtt acatttgaaa acggatctgt ttataaccga 360 gtcaaactta atggacaagg atttaagaaa gacggacatg tgcttggaaa gaatcttgaa 420 ttcaatttca cacctcattg tctttacatt tggggagatc aggctaatca tggtttgaag 480 tctgctttca aaattatgca tgagattact ggatcaaaag gagacttcat tgttgcagac 540 600 cacacccaaa tgaacacacc cattggtggt ggaccagtcc atgtccctga ataccatcat 660 atgacatacc atgtcactct cagcaaagat gttactgatc acagggataa catgagcttg 705 gttgaaaccg tacgggctgt ggattgcaga aaaacatatc tttaa

<210> 4

<211> 234

<212> PRT

<213> Artificial sequence

<220>

<223> phiYFP-Y1 mutant of the phiYFP

<400> 4

Met Pro Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 1 5 10 15

Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys
20 25 30

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys 35 40 45

Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu 50 55 60

Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp 65 70 75 80

Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile 85 90 95

Thr Phe Glu Gly Asp Gly Val Phe Lys Thr Arg Ala Glu Val Thr Phe 100 105 110

Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe 115 120 125

Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr 130 135 140

Ser Ala Phe Lys Ile Met His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 170 175

Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
180 185 190

Val His Val Pro Glu Tyr His His Met Thr Tyr His Val Thr Leu Ser 195 200 205

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Val Glu Thr Val 210 215 220

Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 225

<210> 5

<211> 705

<212> DNA

<213> Artificial sequence

<400> 5 60 atgcctagtg gagcactgtt gttccacgga aagatcccat atgttgttga gatggaggga aatgttgatg gacacacatt ctccattaga ggtaaaggtt atggagatgc aagtgttggt 120 aaagttgatg cccaattcat ctgcacaact ggagatgtac cagttccatg gtcaacttta 180 gtaacaacac ttacttatgg tgcacaatgc ttcgccaaat atggtccaga attaaaggat 240 ttctacaaga gttgcatgcc tgaaggctat gtgcaggagc gtacaatcac atttgaaggg 300 gacggaaact ttaaaactcg cgctgaagtt acatttgaaa acggatctgt ttataaccga 360 420 gtcaaactta atggacaagg atttaagaaa gacggacatg tgcttggaaa gaatcttgaa 480 ttcaatttca cacctcattg tctttacatt tggggagatc aggctaatca tggtttgaag tctgctttca aaattcgcca tgagattact ggatcaaaag gagacttcat tgttgcagac 540 600 cacacccaaa tgaacacacc cattggtggt ggaccagtcc atgtccctga aaaccatcat atgagctacc atgtcaagct cagcaaagat gttactgatc acagggataa catgagcttg 660 705 aaggaaaccg tacgggctgt ggattgcaga aaaacatatc tttaa

<210> 6

<211> 234

<212> PRT

<213> Artificial sequence

<220>

<223> phiYFP-M0 mutant of the phiYFP

<400> 6

Met Pro Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 1 5 10 15

Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys 20 25 30

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys 35 40 45

Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu 50 55 60

Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp

70 75 80

Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile 85 90 95

Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe 100 105 110

Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe 115 120 125

Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr 130 135 140

Ser Ala Phe Lys Ile Arg His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 170 175

Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
180 185 190

Val His Val Pro Glu Asn His His Met Ser Tyr His Val Lys Leu Ser 195 200 205

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val 210 215 220

Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 225 230

<210> 7

65

<211> 705

<212> DNA

<213> Artificial sequence

<220>

<223> phiYFP-M1 mutant of the phiYFP

<400> 7

atgtctagtg gagcactgtt gttccacgga aagatcccat atgttgttga gatggaggga 60
aatgttgatg gacacacatt ctccattaga ggtaaaggtt atggagatgc aagtgttggt 120
aaagttgatg cccaattcat ctgcacaact ggagatgtac cagttccatg gtcaacttta 180

gtaacaacac	ttacttatgg	tgcacaatgc	ttcgccaaat	atggtccaga	attaaaggat	240
ttctacaaga	gttgcatgcc	tgatggctat	gtgcaggagc	gtacaatcac	atttgaaggg	300
gacggaaact	ttaaaactcg	cgctgaagtt	acatttgaaa	acggatctgt	ttataaccga	360
gtcaaactta	atggacaagg	atttaagaaa	gacggacatg	tgcttggaaa	gaatcttgaa	420
ttcaatttca	cacctcattg	tctttacatt	tggggagatc	aggctaatca	tggtttgaag	480
tctgctttca	aaatttgcca	tgagattact	ggatcaaaag	gagacttcat	tgttgcagac	540
cacacccaaa	tgaacacacc	cattggtggt	ggaccagtcc	atgtccctga	ataccatcat	600
atgagctacc	atgtcaagct	cagcaaagat	gttactgatc	acagggataa	catgagcttg	660
aaggaaaccg	tacgggctgt	ggattgcaga	aaaacatatc	tttaa		705

<210> 8

<211> 234

<212> PRT

<213> Artificial sequence

<220>

<223> phiYFP-M1 mutant of the phiYFP

<400> 8

Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 1 5 10 15

Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys 20 25 30

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys 35 40 45

Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu 50 55 60

Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp
65 70 75 80

Phe Tyr Lys Ser Cys Met Pro Asp Gly Tyr Val Gln Glu Arg Thr Ile 85 90 95

Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe 100 105 110

Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe 115 120 125

Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr 130 135 140

Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 170 175

Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro 180 185 190

Val His Val Pro Glu Tyr His His Met Ser Tyr His Val Lys Leu Ser 195 200 205

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val 210 215 220

Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 225 230

<210> 9

<211> 705

<212> DNA

<213> Artificial sequence

<220>

<223> humanized version of the phiYFP-M1

<400> 9

atgagcagcg gegecetget gttecacgge aagateceet acgtggtgga gatggaggge 60

aatgtggatg gecacacett cagcatecge ggcaaggget acggcgatge cagcgtggge 120

aaggtggatg cecagtteat etgeaceace ggcgatgtge eegtgeeetg gagcaeeetg 180

gtgaccacee tgacctacgg egeccagtge ttegecaagt acggeeeega getgaaggat 240

ttetacaaga getgeatgee egatggetae gtgeaggage geaceateae ettegagge 300

gatggcaatt teaagaeeeg egecgaggtg acettegaga atggeagegt gtacaatege 360

gtgaagetga atggeeagg etteaagaag gatggeeaeg tgetggeaa gaatetggag 420

tteaatttea eeeeeactg eetgtacate tggggegate aggeeaatea eggeetgaag 480

agc	gcctt	cca a	agato	ctgc	ca co	gagat	caco	c ggo	cagca	aagg	gcga	attt	cat o	cgtg	gccgat	540
caca	accca	aga t	gaat	cacco	CC Ca	atcgo	gcgg	c ggo	cccc	gtgc	acgt	gcc	cga (gtaco	caccac	600
atga	agcta	acc a	acgt	gaago	ct ga	agcaa	aggat	gto	gacco	gatc	acc	gcgat	caa t	tatga	agcctg	660
aag	gagad	ccg t	gege	cgcc	gt go	gatto	geeg	c aaq	gacct	cacc	tgt	ga				705
<210> 10 <211> 234 <212> PRT <213> Artificial sequence																
< 400		10			rsior	. 01		PILL		-						
			Gly	Ala 5	Leu	Leu	Phe	His	Gly 10	Lys	Ile	Pro	Tyr	Val 15	Val	
Glu	Met	Glu	Gly 20	Asn	Val	Asp	Gly	His 25	Thr	Phe	Ser	Ile	Arg 30	Gly	Lys	
Gly	Tyr	Gly 35	Asp	Ala	Ser	Val	Gly 40	Lys	Val	Asp	Ala	Gln 45	Phe	Ile	Cys	
Thr	Thr 50	Gly	Asp	Val	Pro	Val 55	Pro	Trp	Ser	Thr	Leu 60	Val	Thr	Thr	Leu	
Thr 65	Tyr	Gly	Ala	Gln	Cys 70	Phe	Ala	Lys	Tyr	Gly 75	Pro	Glu	Leu	Lys	Asp 80	
Phe	Tyr	Lys	Ser	Cys 85	Met	Pro	Asp	Gly	Tyr 90	Val	Gln	Glu	Arg	Thr 95	Ile	
Thr	Phe	Glu	Gly 100	Asp	Gly	Asn	Phe	Lys 105	Thr	Arg	Ala	Glu	Val 110	Thr	Phe	
Glu	Asn	Gly 115	Ser	Val	Tyr	Asn	Arg 120	Val	Lys	Leu	Asn	Gly 125	Gln	Gly	Phe	
Lys	Lys 130	Asp	Gly	His	Val	Leu 135	Gly	Lys	Asn	Leu	Glu 140	Phe	Asn	Phe	Thr	

Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys

145 150 155 160

Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 170 175

Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro 180 185 190

Val His Val Pro Glu Tyr His His Met Ser Tyr His Val Lys Leu Ser 195 200 205

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val 210 215 220

Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 225 230

<210> 11

<211> 1047

<212> DNA

<213> Anthomedusae species

<220>

<221> misc_feature

<223> hydromedusa 1 from sub-order Anthomedusae

<400> 11

cttttcttaa aaagaattca aaaaggacgg tttactagac atacttatac agctttactt 60 ataaaggaag aaatgaatgt gatgcgttac aacagaggat tctgcagagt tttgcaaaat ggtgtcaaaa atttacgttc tagaaattgc agtacggaag aaaaacccgt catacttggt 180 gcaatgacag aaacatttca gaaaaaattg ccatataagt tagaattgga tggagatgtt 240 gatgggcaaa catttaaggt tattggtgag ggcgttgggg atgcaaccac tggtgtaatt 300 360 gaaggaaaat atgtttgtac agaaggagaa gttcctattt catgggtttc gctcatcacc tcattaagtt atggtgcgaa atgttttgtt cgatatccaa atgaaataaa tgattttttc aaaagtactt ttccttctgg atatcatcaa gaaagaaaaa ttacatatga gaatgatggt 480 540 gttttagaaa cagcagctaa aattactatg gaaagtggtg caatagtgaa tagaataaat gtgaaaggca caggcttcga taaagatggt catgtatgcc aaaaaaatct tgaatcctcc 600 cctccttcga caacatatgt tgttcccgag ggagaaggta ttcgaatcat ctatagaaac 660 720 atctatccaa caaaagatgg tcactatgtt gttgccgaca cacagcaagt aaatcgacca

attagagcac	aaggaacatc	agctatccca	acatatcatc	acattaaatc	gaaagttgat	780
ctttcaacag	atccagaaga	aaataaagat	catattatca	tcaaagaaac	caactgcgca	840
tttgacgctg	atttttctta	agatttccga	tttgcatcaa	gattgaaaaa	ctaaataaag	900
ataggtaaaa	aaaatatgtc	tttgatgtta	catacagtat	tgatataagc	ttcaaagaaa	960
tatattttca	aataaacttt	ataaaattag	gaatctttga	atatataaac	taaacctttt	1020
atttgtagaa	taaaaataat	taaagac				1047

<210> 12

<211> 262

<212> PRT

<213> Anthomedusae species