基于深度学习查询基数估计

孙佶

查询基数

•对于任意 行数就是

旬结果的

工号	姓名	年龄	部门		部门	负责人	电话
002	李四	21	1	-	1	李磊	135-xxxx-xxxx
003	王二	23	2	>	2	韩梅梅	180-xxxx-xxxx

σ{age>20}

		l .		
工号	姓名	年龄	部门	
001	张三	18	1	
002	李四	21	1	
003	王二	23	2	

基数估计的意义

1. How Good Are Query Optimizers, Really?, Viktor etc., VLDB2015

传统基数估计方法

- •基于统计直方图的估计(Database Profile)
 - 均匀性和独立性假设导致低估
 - 获得精确分布不现实

- •基于采样的估计(Sampling Techniques)
 - •有限的采样
 - 多表连接快速退化

一种基于索引的基数估计

Cardinality Estimation Done Right: Index-Based Join Sampling, Viktor etc., CIDR'17

基于深度学习的基数估计

• 多集合卷积网络

SELECT * FROM A,B,C WHERE A.pk = B.fk1 and B.fk2 = C.pk and A.Attr > 10;

Table Set = {A,B,C}

Join Set = {A.pk-B.fk1, B.fk2-C.pk}

Predicate Set = {A.Attr > 10}

基于深度学习的基数估计

•输入向量表示

```
Table set { [0 1 0 1 ... 0 ], [ 0 0 1 0 ... 1 ] }
             table id
                                   samples
Join set { [ 0 0 1 0 ] }
              join id
Predicate set { [ 1 0 0 0 0 1 0 0 0.72 ], [ 0 0 0 1 0 0 1 0 0.14 ] }
                  column id
                                  value
                                                   operator id
```

训练集生成方法

- Random Select TableNum
- Random Select One Table as start point
- Count ← 0 repeat until count >= TableNum
 - Random Select One Table Joinable with selected one
- For Each Selected Tables:
 - Random Select PredNum
 - Random PredNum Columns
 - Random Select Operator {>,=,<} For Each Column
 - Random Select One Literal Value From Table For Each Column

•测试数据集

number of joins	0	1	2	3	4	overall
synthetic	1636	1407	1957	0	0	5000
scale	100	100	100	100	100	500
JOB-light	0	3	32	23	12	70

• 合成数据集上的测试

• 合成数据集上的测试

	median	90th	95th	99th	max	mean
PostgreSQL	1.69	9.57	23.9	465	373901	154
Random Samp.	1.89	19.2	53.4	587	272501	125
IB Join Samp.	1.09	9.93	33.2	295	272514	118
MSCN (ours)	1.19	3.50	7.22	34.9	735	2.88

• 合成数据集上0-Tuple测试

	median	90th	95th	99th	max	mean
PostgreSQL	4.78	62.8	107	1141	21522	133
Random Samp.	9.13	80.1	173	993	19009	147
MSCN	3.17	17.2	28.8	55.5	96.2	7.20

• 合成数据集上有无Sample的测试

• 在比例数据集上泛化到更多连接表

• 在JOB数据集上的测试

	median	90th	95th	99th	max	mean
PostgreSQL	7.93	164	1104	2912	3477	174
Random Samp.	11.5	198	4073	22748	23992	1046
IB Join Samp.	1.59	150	3198	14309	15775	590
MSCN	3.56	31.5	77.6	415	676	27.5

•我的数据集

实验总结

Positive

- 效果优于单纯采样算法和Postgres中的估计算法。
- 具有一定的泛化能力

Negative

- 多表泛化能力不理想。
- JOB数据上效果不理想。
- 0-Tuple问题不能完全解决。
- 不支持字符串Like查询。

方案尝试

- •使用一维卷积神经网络训练,获得原始数据表高维信息以解决单纯Sample导致的0-Tuple问题,提高多表泛化能力。
- 寻找字符串类型数据的编码方式使其支持字符串查询。
- 探究模型有效的原因(学到了什么),寻找最佳的训练集生成方式,使用更少的训练集获得更好的效果。