数学准备知识

- 一、标量场和矢量场
- 二、标量场的梯度
- 三、矢量场的通量和散度 高斯公式(散度定理)
- 四、矢量场的环量和旋度 斯托克斯公式
- 五、两个零恒等式 以及 亥姆霍茲定理

基础: 矢量运算

> 矢量和标量(Vector and Scalar)

标量:只有大小没有方向的量 T,V

矢量: 既有大小又有方向的量 $E = a_R E_R$ $\vec{A} = \vec{a}_A A$

> 矢量的加/减法

> 矢量的乘法

点乘(点积):
$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta_{AB}$$

叉乘(叉积):
$$\mathbf{A} \times \mathbf{B} = \mathbf{a}_{\mathbf{n}} |AB \sin \theta_{AB}|$$

标量三重积:

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

$$\mathbf{A} \cdot (\mathbf{C} \times \mathbf{B}) = \mathbf{B} \cdot (\mathbf{A} \times \mathbf{C}) = \mathbf{C} \cdot (\mathbf{B} \times \mathbf{A}) = -\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$$

矢量三重积:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

("Back-Cab"法则)

矢量分析

- 一、标量场和矢量场
- 1、标量场:在空间各点存在着一个标量,它的数值是空间位置的函数

$$\Phi = \Phi(x, y, z)$$

$$\mathbb{A}$$

$$\mathbb{A}$$

$$\mathbb{B}$$

等值面: $\Phi(x, y, z) = 常量$

例:电场中的等势面。

2、矢量场:在空间各点存在着一个矢量,它的大小和方向是空间 位置的函数

$$\vec{A} = \vec{A}(x, y, z)$$

$$\begin{cases} A_x = A_x(x, y, z) \\ A_y = A_y(x, y, z) \\ A_z = A_z(x, y, z) \end{cases}$$
 能场

场线: 有方向的曲线,切线与该点 \bar{A} 方向相同,线的密度 正比于 \bar{A} 的大小

例:电场线

二、标量场的梯度

梯度:空间位置函数的变化率

$$\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial z}$$
 (分三个坐标的变化率)

$$\frac{\partial \Phi}{\partial l} = \lim_{\Delta l \to 0} \frac{\Delta \Phi}{\Delta l}$$
 : 标量场在P点沿 $\Delta \bar{l}$ 方向的**方向微商**

 $\Delta \vec{n}$: P点处等值面的法线

 Δn 很小: Φ 和 $\Phi + \Delta \Phi$ 等值面平行

P点处沿 Δn 方向的<mark>方向微商最大</mark>

$$\frac{\partial \Phi}{\partial n} = \lim_{\Delta n \to 0} \frac{\Delta \Phi}{\Delta n}$$

标量场的梯度:沿方向微商最大的方向(即等值面法线方向), 数值等于最大的方向微商。

直角坐标:
$$grad\Phi = \nabla \Phi = \frac{\partial \Phi}{\partial x}\vec{i} + \frac{\partial \Phi}{\partial y}\vec{j} + \frac{\partial \Phi}{\partial z}\vec{k}$$

标量场的梯度为矢量,例: 电场中电势<math>U为标量场

电场强度: $\vec{E} = -gradU$

直角坐标中:

梯度算子 (纳布拉算子)
$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

$$\nabla U = \frac{\partial U}{\partial x}\vec{i} + \frac{\partial U}{\partial y}\vec{j} + \frac{\partial U}{\partial z}\vec{k}$$

三、矢量场的通量和散度。高斯公式

(1) 通量定义
$$\Phi_A = \iint_{(S)} \vec{A} \cdot d\vec{S} = \iint_{(S)} A \cdot dS \cos \theta$$

$$\Phi_A = \bigoplus_{(S)} \vec{A} \cdot d\vec{S}$$

(取闭合曲面S的外法线方向为正)

(2) 散度

$$\nabla \cdot \vec{A} = \lim_{\Delta V \to 0} \frac{\Phi_A}{\Delta V} = \lim_{\Delta V \to 0} \frac{\oiint_{(S)} \vec{A} \cdot d\vec{S}}{\Delta V}$$
 标量

直角坐标中:

纳布拉算子 (梯度算子)
$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

$$\begin{aligned} div\vec{A} &= \nabla \cdot \vec{A} = (\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}) \cdot (A_x\vec{i} + A_y\vec{j} + A_z\vec{k}) \\ &= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} & \text{ 矢量场各分量分别沿各自} \\ & \hat{D} \end{aligned}$$

(3) (数学)高斯公式

对于图a, 各量关系:

$$V_1 + V_2 = V$$

$$V_1 + V_2 = V$$
 $S_1' + S_2' = S$

$$S_1 = S_1' + D$$

$$S_1 = S_1' + D$$
 $S_2 = S_2' + D$

矢量 \vec{A} 对闭合面**S**的通量 $\phi_{\Lambda} = \phi_{\Lambda 1} + \phi_{\Lambda 2}$

$$\Phi_{A_1} = \iint_{(S_1)} \vec{A} \cdot d\vec{S}_1 = \iint_{(S_1')} \vec{A} \cdot d\vec{S}_1 + \iint_{(D)} \vec{A} \cdot d\vec{S}_1$$

$$\Phi_{A_2} = \bigoplus_{(S_2)} \vec{A} \cdot d\vec{S}_2 = \iint_{(S_2')} \vec{A} \cdot d\vec{S}_2 + \iint_{(D)} \vec{A} \cdot d\vec{S}_2$$

$$\mathbf{a}$$
 \mathbf{b} 图 $\mathbf{B} - 3$ 高斯定理的证明
$$\mathbf{E} \quad \iint \vec{A} \cdot d\vec{S}_1 = -\iint \vec{A} \cdot d\vec{S}_2$$

$$\Phi_{A_1} + \Phi_{A_2} = \iint\limits_{(S_1')} \vec{A} \cdot d\vec{S}_1 + \iint\limits_{(S_2')} \vec{A} \cdot d\vec{S}_2 = \iint\limits_{(S)} \vec{A} \cdot d\vec{S} = \Phi_A$$

如图**b**,把**V**分割成很多的单元: $\Phi_A = \sum_{A_i}^n \Phi_{A_i}$

当
$$\Delta V \to 0$$
 时:
$$\iint_{(S_i)} \vec{A} \cdot d\vec{S}_i$$

$$\therefore \Phi_{A_i} = \iint_{(S_i)} \vec{A} \cdot d\vec{S}_i = (\nabla \cdot \vec{A})_i \Delta V_i$$

$$\Phi_A = \iint_{(S)} \vec{A} \cdot d\vec{S} = \sum_{i=1}^n \Phi_{A_i} = \sum_{i=1}^n \left[(\nabla \cdot \vec{A})_i \Delta V_i \right]$$

$$\Phi_A = \iiint_{(V)} \nabla \cdot \vec{A} dV = \bigoplus_{(S)} \vec{A} \cdot d\vec{S}$$

$$\vec{A} \cdot d\vec{S} = \iiint_{(V)} \nabla \cdot \vec{A} dV$$

$$\vec{A} \cdot d\vec{S} = \iiint_{(V)} \nabla \cdot \vec{A} dV$$

矢量场通过任意闭合曲面S的通量等于它的散度在其所包围的体积V内的积分。

四、矢量场的环量和旋度 斯托克斯公式

(1) 环量 $\vec{A} \cdot d\vec{l} = Adl \cos \theta$

$$\Gamma_{A} = \oint_{(L)} \vec{A} \cdot d\vec{l}$$
 环路积分方向给定(右手法则)

(2) 旋度

 \bar{n} : 右旋半径法线方向

$$(\nabla \times \vec{A})_n = (rot\vec{A})_n = (curl\vec{A})_n = \lim_{\Delta S \to 0} \frac{\Gamma_A}{\Delta S} = \lim_{\Delta S \to 0} \frac{\oint \vec{A} \cdot d\vec{l}}{\Delta S}$$

坐标表达式:

$$\nabla \times \vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$

$$= (\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z})\vec{i} + (\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x})\vec{j} + (\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y})\vec{k}$$

(3) 斯托克斯公式

$$\Gamma_{L_{1}} = \oint \vec{A} \cdot d\vec{l} = \int_{(L_{1})} \vec{A} \cdot d\vec{l} + \int_{N}^{M} \vec{A} \cdot d\vec{l}$$

$$\Gamma_{L_{2}} = \oint \vec{A} \cdot d\vec{l} = \int_{(L_{2})} \vec{A} \cdot d\vec{l} + \int_{N}^{M} \vec{A} \cdot d\vec{l}$$

$$\Gamma_{L_{2}} = \int_{(L_{2})} \vec{A} \cdot d\vec{l} = \int_{(L_{2})} \vec{A} \cdot d\vec{l} + \int_{N}^{M} \vec{A} \cdot d\vec{l} = \Gamma$$

$$\Gamma_{L_{1}} + \Gamma_{L_{2}} = \int_{(L_{1}^{'})} \vec{A} \cdot d\vec{l} + \int_{(L_{2}^{'})} \vec{A} \cdot d\vec{l} = \Gamma_{L}$$

$$\Gamma_{L} = \sum_{i=1}^{n} \Gamma_{L_{i}} = \sum_{i=1}^{n} (\nabla \times \vec{A})_{i} \Delta \vec{S}_{i} = \iint_{(S)} (\nabla \times \vec{A}) \cdot d\vec{S}$$

$$\Gamma_{L} = \oint \vec{A} \cdot d\vec{l} = \iint_{(S)} (\nabla \times \vec{A}) \cdot d\vec{S}$$

矢量场在任意闭合回路L上的环量等于以它为边界的曲面S上旋度的积分。

图 B-5 斯托克斯定理的证明

矢量场的种类

(1) 有散场和无散场

 $\nabla \cdot \vec{B} = 0$ 矢量场的散度为0,则称此矢量场为无源场、无散场

 $\nabla \cdot \vec{B} \neq 0$ B为有源场、有散场

矢量场的旋度永远是无散的,即: $\nabla \cdot (\nabla \times \vec{A}) = 0$

 $\nabla \cdot \vec{B} = 0$ $\rightarrow \vec{B} = \nabla \times \vec{A}$ 无散场可表示为另一个矢量场的旋度

(2) 有旋场和无旋场

 $\nabla \times \vec{A} = 0$ 无旋场 (场线不闭合)

 $\nabla \times \bar{A} \neq 0$ 有旋场 (场线闭合)

任何标量场的梯度永远是无旋的,即 $\nabla \times (\nabla \Phi) = 0$

若一个矢量场是无旋的, 可表示成某个标量场的梯度

$$\nabla \times \vec{A} = 0$$

 $\vec{A} = \nabla \Phi$

• 标量场和矢量场的表征

形象描绘场分布的工具——场线

(1) 标量场: 等值线(面)

其方程为:

$$h(x, y, z) = const$$

■ 在某一高度上沿什么方向高度变化最快?

(2) 矢量场——场线(力线)

场线方程为:

$$\mathbf{A} \times d\mathbf{l} = 0$$

图 矢量线

- ◆ 场线某点处的切线方向代表该点处场的方向
- ◆ 场线的疏密程度代表该点处场的强度大小

五)两个零恒等式与亥姆霍兹定理

▶ 1. 任何标量场的梯度的旋度恒为零

$$\nabla \times (\nabla V) = 0$$

如果一个矢量的旋度为零,则该矢量可以表示为一个标量场的梯度。

2. 任何矢量场的旋度的散度恒为零:

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

如果一个矢量的散度为零,则该矢量可以表示为另一个矢量场的旋度。

> 亥姆霍兹定理(Helmholtz Theorem)

假如一个矢量场的散度和旋度处处给定(或给定边界条件),则这个矢量场就确定了,最多相差一个附加常矢量。

$$m{F} = m{F}_1 + m{F}_2$$

无旋场 无散场

$$\boldsymbol{F} = \nabla V + \nabla \times \boldsymbol{A}$$

附**1** 拉普拉斯算符 ∇^2

$$\nabla^2 = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\nabla^2 V = \nabla \cdot (\nabla V)$$

附2 几个矢量运算恒等式

$$\nabla \times (\nabla \times A) = \nabla(\nabla \cdot A) - \nabla^2 A$$

$$\nabla \cdot (A \times B) = B \cdot (\nabla \times A) - A \cdot (\nabla \times B)$$

$$\nabla \cdot (\phi A) = (\nabla \phi) \cdot A + \phi(\nabla \cdot A)$$

$$\nabla \times (\phi A) = (\nabla \phi) \times A + \phi(\nabla \times A)$$

附3 正交坐标系及其变换

1) 笛卡尔坐标系(直角坐标系)

在直角坐标系中,坐标变量为(x, y, z)

线元(微分长度):

$$d\mathbf{l} = \mathbf{a}_x dx + \mathbf{a}_y dy + \mathbf{a}_z dz$$

面元(微分面积):

$$d\mathbf{S}_{x} = \mathbf{a}_{x} dy dz$$

$$d\mathbf{S}_{y} = \mathbf{a}_{y} dx dz$$

$$d\mathbf{S}_z = \mathbf{a}_z dx dy$$

体元 (微分体积):

$$dV = dxdydz$$

2)圆柱坐标系

在圆柱坐标系中,坐标变量为 (r, φ, z)

线元:

$$d\mathbf{l} = \mathbf{a}_r dr + \mathbf{a}_{\varphi} r d\varphi + \mathbf{a}_z dz$$

面元: $d\mathbf{S}_r = \mathbf{a}_r r d\varphi dz$

 $d\mathbf{S}_{\varphi} = \mathbf{a}_{\varphi} dr dz$

 $d\mathbf{S}_z = \mathbf{a}_z r dr d\varphi$

体元: $dV = rdrd\varphi dz$

3) 球坐标系

在球坐标系中,坐标变量为 (R,θ,φ)

线元:

$$d\mathbf{l} = \mathbf{a}_R dR + \mathbf{a}_{\theta} R d\theta + \mathbf{a}_{\varphi} R \sin \theta d\varphi$$

面元: $d\mathbf{S}_{R} = \mathbf{a}_{R}R^{2} \sin\theta d\theta d\phi$ $d\mathbf{S}_{\theta} = \mathbf{a}_{\theta}R \sin\theta dR d\phi$ $d\mathbf{S}_{\varphi} = \mathbf{a}_{\varphi}R dR d\theta$

体元: $dV = R^2 \sin \theta dR d\theta d\varphi$

教材P6: 三种坐标系之间的相互转换