(a)
$$R = \frac{V}{I} = \frac{438 \,\text{mV}}{2.58 \,\text{A}} = \frac{0.438 \,\text{V}}{2.58 \,\text{A}} = 0.170 \,\text{Cs}$$

(b) New current doubles $I'=2\times2.58 \ (A)=5.16 \ (A)$ Resistance Temains the same R'=R=0.17(R)

(c)
$$R = \int \frac{L}{A}$$

 $R'' = \int \frac{(4.6 L)}{(4.6)^2 A} = \frac{1}{4.6} \int \frac{L}{A} = 0.217 R$
 $= 0.217 \times (0.170 R) = 0.037 (R)$

Problem 2

7-3.12
$$P=IV$$
 $I=\frac{P}{V}=\frac{1400W}{120V}=11.7$ (A)
 $P=\frac{V^2}{R}$ $R=\frac{V^2}{P}=\frac{(120)^2}{1400}=10.3$ (R)

Problem 3

- 7-3.13 (a) Use $\mathcal{P} = (\Delta V)^2/R$, so $R = (\Delta V)^2/\mathcal{P}$. For home use, $\Delta V = 120$ V, so $R_{120\text{V}} = 240~\Omega$. For car use, $\Delta V = 12$ V, so $R_{12\text{V}} = 2.4~\Omega$.
 - (b) The resistance of the bulb for home use is higher.

Problem 4

$$P = \frac{V^{2}}{R} \qquad R = \frac{V^{2}}{P} = \frac{(120)^{2}}{|400} = 10.3(R)$$

$$I = \frac{V}{R} = \frac{120}{10.3} = 11.7(A)$$

$$Work \qquad W = P \cdot \Delta t = (1400 \text{ W}) \cdot (2h)$$

$$= 1.4 \text{ kW} \cdot 2h$$

$$= 2.8 (\text{kW} \cdot \text{h}) \cdot (8.9 \text{ cents/kW} \cdot \text{h})$$

$$= 27.7 \text{ cents}$$

Problem 5

Solution:

Known quantities:

Battery nominal rate of 100 A-h.

Find:

- a) Charge potentially derived from the battery
- b) Electrons contained in that charge.

Assumptions:

Battery fully charged.

Analysis:

a)
$$100A \times 1hr = \left(100 \frac{C}{s}\right) \left(1hr\right) \left(3600 \frac{s}{hr}\right) = 360000 C$$

b) charge on electron:
$$-1.602 \times 10^{-19} C$$

no. of electrons =
$$\frac{360 \times 10^{3} C}{1.602 \times 10^{-19} C} = 224.7 \times 10^{22}$$