

Eksamen

29.05.2024

REA3046 Kjemi 2

Nynorsk

Eksamensinf	ormasjon
Eksamenstid	Eksamen varer i 5 timar. Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast inn seinast etter 5 timar. Du kan begynne å løyse oppgåvene i del 2 når som helst, men du kan ikkje bruke hjelpemiddel før etter 2 timar – etter at du har levert svara for del 1.
Tillatne hjelpemiddel under eksamen	Del 1: skrivesaker, passar, linjal og vinkelmålar Del 2: Alle hjelpemiddel er tillatne, bortsett frå ope internett og andre verktøy som kan brukast til kommunikasjon. Når du bruker nettbaserte hjelpemiddel under eksamen, har du ikkje lov til å kommunisere med andre. Samskriving, chat og andre måtar å utveksle informasjon med andre på er ikkje tillatne. Du kan ikkje bruke automatisk tekstgenerator som chatbot eller tilsvarande teknologi.
Bruk av kjelder	Dersom du bruker kjelder i svaret ditt, skal du alltid føre dei opp på ein slik måte at lesaren kan finne fram til dei. Du skal føre opp forfattar og fullstendig tittel på både lærebøker og annan litteratur. Dersom du bruker utskrifter eller sitat frå internett, skal du føre opp nøyaktig nettadresse og nedlastingsdato.
Vedlegg	1 Tabellar og formlar i kjemi – REA3046 Kjemi 2 2 Eige svarark for oppgåve 1 og 2
Vedlegg som skal leverast inn	Vedlegg 2: Eige svarark for oppgåve 1 og 2 finn du bakarst i oppgåvesettet.
Informasjon om oppgåve 1 og oppgåve 2	Oppgåve 1 har 12 fleirvalsoppgåver med fire svaralternativ: A, B, C og D. Det er berre eitt rett svaralternativ for kvar fleirvalsoppgåve. Oppgåve 2 har åtte påstandar med svaralternativa rett og feil. Blankt svar på oppgåve 1 og 2 er likeverdig med feil svar. Dersom du er i tvil, bør du derfor skrive det svaret du meiner er mest korrekt. Du kan berre svare med eitt svaralternativ. Skriv svara for oppgåve 1 og 2 på eige svarark i vedlegg 2, som ligg heilt til sist i oppgåvesettet. Svararket skal rivast laus frå oppgåvesettet og leverast inn. Du skal altså ikkje levere inn sjølve eksamensoppgåva med oppgåveteksten.
Informasjon om vurderinga	Karakteren ved sluttvurderinga blir fastsett etter ei heilskapleg vurdering av eksamenssvaret. Dei to delane av svaret, del 1 og del 2, blir vurderte under eitt. Sjå eksamensrettleiinga med vurderingskriterium til sentralt gitt skriftleg eksamen. Eksamensrettleiinga finn du på nettsidene til Utdanningsdirektoratet.

Eksamen REA3046 Side 2 av 56

Vurdering og vekting	Del 1 tel omtrent 40 prosent, og del 2 tel omtrent 60 prosent av heile settet. Vektinga tilsvarer omtrent tidsbruken.
	På del 1 er forventa tidsbruk på oppgåve 1, 2 og 3 til saman 1 time og på oppgåve 4 og 5 til saman 1 time.
	Vektinga på del 2 er fordelt omtrent likt på oppgåve 6, 7, 8 og 9, omtrent 45 minutt per oppgåve. Deloppgåvene på oppgåve 6, 7 og 8 blir vekta omtrent likt.
	Alle oppgåvene med unntak av oppgåve 1 og 2 vil krevje grunngiving av svaret.
	Nokre oppgåver vil kunne løysast på ulike måtar, sidan du sjølv vel kva problemstillingar du vil drøfte. Dette gjeld særleg oppgåve 9. Ulike tilnærmingar kan derfor gi like høg måloppnåing.
	Sjå eksamensrettleiinga på nettsidene til Utdanningsdirektoratet.
Kjelder	Sjå kjeldeliste på side 51.
	Andre grafar, bilete og figurar: Utdanningsdirektoratet.

Eksamen REA3046 Side 3 av 56

Del 1

Skriv svara for oppgåve 1 og 2 på eige svarskjema i vedlegg 2.

(Du skal altså ikkje levere inn sjølve eksamensoppgåva med oppgåveteksten.)

Oppgåve 1 Fleirvalsoppgåver

a) Syrer og basar

Kva er den korresponderande basen til natriumdihydrogenfosfat, NaH₂PO₄?

- A H₃PO₄
- B H_2PO_4
- C HPO₄2-
- D PO₄3-

b) Syrer og basar

Ei basisk løysning med pH på omtrent 9 blei laga ved å løyse 1 mol av eit salt i 1 liter vatn.

Kva for eit salt blei løyst i vatn?

- A NaHSO₄
- B NaCH₃COO
- C NaOH
- D NaCl

c) Buffer

Kva kombinasjon av stoff løyste i vatn kan gi ein buffer?

- A NaOH og HNO₃
- B NaOH og NaNO₃
- C NaOH og NaNO₂
- D NaOH og NH₄Cl

Eksamen REA3046 Side 4 av 56

d) Redoksreaksjonar

Kva for ein redoksreaksjon er spontan?

- A $Sn^{2+} + Zn \rightarrow Sn + Zn^{2+}$
- B $2Na^+ + Fe \rightarrow 2Na + Fe^{2+}$
- C $2Ag + Ni^{2+} \rightarrow 2Ag^{+} + Ni$
- D $Cu + Zn^{2+} \rightarrow Cu^{2+} + Zn$

e) Redoksreaksjonar

Cellediagrammet til ei galvanisk celle er

$$Cu(s)|Cu^{2+}(aq)||Ag^{+}(aq)|Ag(s).$$

Kva for ein påstand om cella er rett?

- A Batterikapasiteten blir påverka av massen til sølvelektroden.
- B Når cella leverer straum, skjer reaksjonen $Cu^{2+}(aq) + 2Ag(s) \rightarrow Cu(s) + 2Ag^{+}(aq)$
- C Cellespenninga er ca. 0,46 V.
- D Ei saltbru som inneheld glukose, C₆H₁₂O₆, vil fungere godt.

f) Oksidasjonstal

Jernion, Fe²⁺, og cyanid, CN⁻, kan danne eit kompleksion i vatn:

$$Fe^{2+}(aq) + 6CN^{-}(aq) = [Fe(CN)_6]^{4-}(aq)$$

Kva er oksidasjonstalet til jern i [Fe(CN)₆]⁴⁻?

- A +II
- B +III
- C +V
- D +VI

Eksamen REA3046 Side 5 av 56

Figur 1. Reaksjonsmekanisme

Ta utgangspunkt i reaksjonsmekanismen i figur 1. Kva påstand er rett?

- A Reaksjonen er ein addisjonsreaksjon.
- B I- overfører eit elektronpar til klor slik at det blir danna Cl-.
- C I⁻ fungerer her som ein elektrofil.
- D Elektronparet i C-Cl-bindinga blir overført til klor slik at det blir danna Cl-.

h) Biologiske makromolekyl

Mjølkesyre, vist i figur 2, kan brukast som monomer til å lage ein bioplastpolymer.

Figur 2. Mjølkesyre

Kva for ein påstand om polymeren er rett?

- A Det vil bli danna ein addisjonspolymer med sidegrupper av metyl (-CH₃).
- B Det vil bli danna ein addisjonspolymer med sidegrupper av hydroksyl (-OH).
- C Det vil bli danna ein kondensasjonspolymer med sidegrupper av metyl (-CH₃).
- D Det vil bli danna ein kondensasjonspolymer med sidegrupper av hydroksyl (-OH).

Eksamen REA3046 Side 6 av 56

i) Biologiske makromolekyl

Figur 3 nedanfor viser spaltinga av laktose til galaktose og glukose.

Figur 3

Kva for ein påstand er rett om laktase i denne spaltinga?

- A Laktase er eit enzym som aukar aktiveringsenergien i hydrolysen av laktose.
- B Laktase er eit enzym som bind galaktose og glukose saman til laktose i ein kondensasjonsreaksjon.
- C Laktase fungerer som ein katalysator i hydrolysen av laktose.
- D Laktase fungerer som ein katalysator i spaltinga av alle disakkarid.

j) Likevekt

Vi har denne reversible reaksjonen:

$$CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g)$$

Tabellen nedanfor viser konsentrasjonane ved start og fire alternativ for konsentrasjonane ved likevekt.

Kva for ei av radene A-D i tabellen viser riktige uttrykk for konsentrasjonane ved likevekt?

	[CH ₄]	[H ₂ S]	[CS ₂]	[H ₂]
Konsentrasjonar ved start (mol/L)	2,0	1,0	0,0	0,0
Svaralternativ:				
А	2,0 - x	1,0 - 2x	Х	4x
В	2,0 - 2x	1,0 - 2x	2x	4 <i>x</i>
С	2,0 - 2x	1,0 - x	Х	2x
D	2,0 - x	1,0 - x	Х	2x

Eksamen REA3046 Side 7 av 56

k) Løysingsevne

Kva for eit av desse salta er minst løyseleg i vatn?

- A kalsiumnitrat, Ca(NO₃)₂
- B bly(II)karbonat, PbCO₃
- C natriumkarbonat, Na₂CO₃
- D kvikksølv(I)karbonat, Hg₂CO₃

I) Uvisse og feilkjelder

Konsentrasjonen til ei saltsyreløysning, HCl(aq), blei bestemd ved tre parallelle titreringar med ei løysning av natriumhydroksid, NaOH(aq). I ettertid viste det seg at konsentrasjonen av NaOH(aq) var lågare enn oppgitt.

Vurder om desse påstandane er rette:

- i) Dette er eit døme på ein tilfeldig feil.
- ii) Den berekna konsentrasjonen av HCl(aq) blei for høg.

Kva for nokre av påstandane rette?

- A berre i
- B berre ii
- C begge to er rette
- D ingen er rette

Eksamen REA3046 Side 8 av 56

Oppgåve 2 Rett/feil-oppgåver

a) Redoksreaksjonar

Saltet nikkel(II)jodid, Nil₂(s), blei løyst i eit kar med reint vatn. To elektrodar av grafitt blei kopla til ei justerbar spenningskjelde, slik figur 4 viser. Spenninga blei auka til denne reaksjonen byrja:

$$NiI_2(aq) \rightarrow Ni(s) + I_2(s)$$

Figur 4. Elektrolyse av Nil₂ med to elektrodar av grafitt, C(s), kopla til ei justerbar spenningskjelde.

Vurder om kvar av påstandane er rett eller feil, og kryss av på svararket.

- I Det blir danna nikkelmetall ved den positive elektroden.
- II Elektrolysen krev ei spenning på minst 0,80 V.
- III For å danne 60 g nikkel trengst det ca. 2,0 mol elektron.
- IV I elektrolysen blir jodid, I-, redusert.

Eksamen REA3046 Side 9 av 56

Figur 5 viser ein syntese i to trinn.

Figur 5. Syntese av 2-klorbutan til butan-2-ol

Vurder om kvar av påstandane er rett eller feil, og kryss av på svararket.

- I Trinn 1 er ein addisjonsreaksjon.
- II Reaksjonen i trinn 2 kan gi to ulike produkt og dermed redusere utbyttet i syntesen.
- III Destillasjon kan brukast til å fjerne restar av vatn i reaksjonsblandinga etter trinn 2.
- IV Produktet etter trinn 2 kan oksiderast til eit keton.

Eksamen REA3046 Side 10 av 56

For å danne butanon frå 1-klorbutan skjer det ein syntese i tre trinn, som vist i figur 6. I løpet av syntesen skjer det ein oksidasjon, eliminasjon og addisjon. Du skal sortere desse i rett rekkefølgje.

Figur 6. Syntese av butanon

- skriv reaksjonstypane for reaksjon 1, 2 og 3
- teikn strukturformlane til stoffa A og B

Eksamen REA3046 Side 11 av 56

Huda vår har ein naturleg pH på cirka 5,5. Dei reingjerande ingrediensane i såpe og sjampo er ofte basiske stoff, så for å gi produkta den ønskte pH-en tilset ein ofte sitronsyre eller natriumsalt av sitronsyre, sjå tabell 1.

Tabell 1. Strukturformlane for sitronsyre og natriumsalt av sitronsyre

A Trinatriumsitrat	B Natriumdihydrogensitrat
3 Na ⁺ -O OH OOH OO	Na ⁺ HO OH OOH OOH OOH
C Dinatriumhydrogensitrat	D Sitronsyre
2 Na ⁺ HO O-	но ОН ОН

- a) Vurder om alle stoffa i tabellen ovanfor kan bli brukte for å senke pH-verdien i ei såpeblanding.
- b) Du har laga ein buffer ved å blande 1 mol dinatriumhydrogensitrat (C) med 1,5 mol trinatriumsitrat (A) og fortynna med vatn til 1,0 L. Så tilset du 0,7 mol NaOH(s).

Vurder om du framleis er innanfor bufferområdet.

c) Figur 7 viser to titrerkurver, ei for sitronsyre titrert med natriumhydroksid, NaOH(aq), og ei for fosforsyre, H₃PO₄, titrert med NaOH(aq). Begge syrene har konsentrasjonen 0,1 mol/L og volum 25,0 mL. I motsetnad til fosforsyre har sitronsyre ein gradvis auke frå pH 2 til pH 8.

Forklar kort kvifor det er ein slik skilnad.

Eksamen REA3046 Side 12 av 56

Figur 7. Titrerkurver for 25,0 mL 0,1 mol/L sitronsyre (stipla, blå) og 25,0 mL 0,1 mol/L fosforsyre (heiltrekt, raud)

a) Figur 8 viser eit peptid. Kva aminosyrer består peptidet av?

Figur 8. Strukturformelen til eit peptid

b) Forklår korleis ein sekundærstruktur kan oppstå i eit polypeptid.

Eksamen REA3046 Side 13 av 56

Del 2

Oppgåve 6

Sinkoksid, ZnO, blir danna når sinksulfid ZnS reagerer med oksygen, O2:

$$2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$$

Når 2 mol sinksulfid reagerer med 3 mol oksygengass er entalpiendringa, ∆H, lik −883 kJ.

- a) Bruk termodynamiske data frå vedlegget til å:
 - vise at entropiendringa, ΔS, er −147 J/K når 2 mol sinkoksid reagerer
 - undersøke om reaksjonen skjer spontant ved 25 °C.

Svoveldioksid, SO₂, reagerer vidare i ein ny behaldar:

$$SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$$

Likevektskonstanten K for denne reaksjonen ved ein bestemt temperatur er 7,2.

I behaldaren er det

0,20 mol/L SO₂

0,75 mol/L NO₂

1,3 mol/L SO₃

1,7 mol/L NO

- b) Vis at det ikkje er likevekt i behaldaren. Kva veg vil likevekta bli forskoven?
- c) Etter ein stund oppnår systemet likevekt. Kva er konsentrasjonen av NO i behaldaren no?

Eksamen REA3046 Side 14 av 56

Tabellen viser tre sambindingar som ein finn i somme planter. Sambinding C kan syntetiserast frå B.

Tabell 2. Plantesambindingar og tabellverdiar

Sambinding A	Sambinding B	Sambinding C	
Kumarin	Scopoletin	Scoparon	
	HO		
$C_9H_6O_2$	C ₁₀ H ₈ O ₄	C ₁₁ H ₁₀ O ₄	
M _m = 146,14 g/mol	$M_m = 192,16 \text{ g/mol}$	$M_{\rm m}$ = 206,197 g/mol	

- a) Kva type reaksjon skjer når sambindinga B reagerer med metanol?
- b) Syntesen starta med 64 g av sambinding B og eit overskot av metanol. Utbyttet i reaksjonen var 48 %. Kor mange gram av sambinding C blei danna?

Ei blanding av dei tre sambindingane i tabell 2 blei separerte med tynnsjiktkromatografi, sjå figur 9. Det er brukt ein polar stasjonær fase og ein upolar mobil fase.

c)

- Finn ut kva for ei av sambindingane som har lågast retardasjonsfaktor, R_F, sjå figur 9.
- Teikn ei skisse av korleis tynnsjiktplata ville ha sett ut dersom ein i staden hadde brukt ein upolar stasjonær fase og ein polar mobil fase.

- l sambinding B
- II sambinding C
- III sambinding A

Figur 9. Tynnsjiktplate

Eksamen REA3046 Side 15 av 56

Ein klasse fekk i oppgåve å finne masseprosenten til mangan, Mn(s), i ei legering. Dei fekk også opplyst at av metalla i legeringa var det berre mangan som ville reagere med saltsyre, HCl(aq), og at det ville bli danna ein gass når mangan reagerte med saltsyre.

Figur 10. Oppsamling av gassbobler i målesylinder

Ei gruppe elever løyste oppgåva slik:

- 1 Dei vog opp små bitar av legeringa, til saman 1,376 g.
- 2 Dei målte opp 100 mL 3,0 mol/L HCl(aq) med ein målesylinder.
- 3 Dei tømde HCI-løysninga over i eit begerglas og la bitane i løysninga.
- 4 Dei samla opp gassbobler frå reaksjonen i ein 100-mL-målesylinder fylt med vatn og snudd opp ned, som vist i figur 10.

Då boblinga stoppa, hadde dei samla opp 72 mL gass.

a) Ta utgangspunkt i halvreaksjonar frå spenningsrekka. Skriv ei balansert reaksjonslikning for reaksjonen mellom saltsyre og mangan.

Det molare volumet til ein gass ved romtemperatur er 24,5 L/mol.

- b) Bruk dataa som elevane fann, til å finne masseprosenten av mangan i legeringa (dersom du manglar svar frå oppgåve 8a, kan du rekne at molforholdet mellom mangan og gass er 1 : 1).
- c) Diskuter kva for ei feilkjelde som vil ha størst påverknad på resultatet, og foreslå <u>éi</u> forbetring av gjennomføringa.

Eksamen REA3046 Side 16 av 56

Utslepp av fosforhaldig avløpsvatn frå landbruk og hushald til innsjøar og fjordar kan føre til dårleg vasskvalitet. Det er derfor eit krav om reinsing av slikt avløpsvatn. I Noreg blir i snitt 66 % av fosforet fjerna, og i 2020 var det totale utsleppet av fosfor etter reinsing 1480 tonn. [1]

Fosfor i ulike fosfatsambindingar er både eit viktig næringsstoff for planter og ein avgrensa ressurs. Avfallet frå reinseprosessen bør derfor attvinnast og brukast som gjødsel og til jordforbetring i landbruket.

Kjemisk reinsing

I mange reinseanlegg blir fosforsambindingar fjerna ved kjemisk reinsing. Avløpsvatnet blir tilsett lettløyseleg aluminiumsulfat, $Al_2(SO_4)_3$, og fosfor blir felt ut i form av fosfat, PO_4^{3-} . Avløpsvatnet er svakt surt, og mykje av fosforet finst som dihydrogenfosfat, $H_2PO_4^{-}$ (aq). Derfor blir avløpsvatnet tilsett natriumhydroksid, NaOH, til pH cirka 12 før ein tilset aluminiumsulfat. Natriumhydroksid, NaOH, blir framstilt i stor skala ved elektrolyse av ei vassløysning av natriumklorid, NaCl.

For å få felt ut ei tilstrekkeleg mengd fosfat frå avløpsvatnet må ein i praksis bruke minst dobbel stoffmengd aluminium i forhold til fosfat. Det er fordi iona av aluminium også bind seg til mellom anna OH⁻. Saltet aluminiumoksid, Al(OH)₃, har lågast løysingsevne ved pH 5,7–6,7 og løyser seg både i sure og basiske løysningar. Ved høg pH innstiller denne likevekta seg:

$$Al(OH)_3(s) + OH^-(aq) \rightleftharpoons Al(OH)_4^-(aq)$$

Før det reinsa vatnet blir sleppt ut, må pH-en regulerast ned. [2]

Biologisk reinsing

Det har nyleg blitt utvikla ein ny reinseprosess der fosforsambindingar blir reinsa ved hjelp av fosforetande bakteriar. Bakteriane veks på små plastbitar som avløpsvatnet blir ført gjennom. På plastbitane dannar det seg ein fosforhaldig biofilm som etter kvart losnar og blir ein del av avløpsslammet. Fosforet blir attvunne frå slammet som struvitt. Struvitt er ein krystall som består av ammonium, magnesium og fosfat, $NH_4MgPO_4 \cdot 6H_2O$. Ein fordel med denne reinseprosessen er at ein reduserer bruken av kjemikaliar kraftig. I tillegg kan fosforet som blir attvunne gjennom denne prosessen, lettare takast opp av plantene enn fosfor som blir felt ut ved kjemisk reinsing. [3]

Skriv ein kjemifagleg tekst som tek utgangspunkt i fjerning av fosfor frå avløpsvatn. Du skal bruke kjemikompetansen din til å gjere greie for og drøfte eitt eller fleire av punkta nedanfor:

- fellingsreaksjonar i den kjemiske reinseprosessen
- behovet for pH-regulering i den kjemiske reinseprosessen
- kjemikaliemengda i reinseprosessane med bakgrunn i prinsippa for grøn kjemi
- samanlikne reinseprosessane med bakgrunn i prinsippa for grøn kjemi

Svaret ditt bør innehalde reaksjonslikningar, utrekningar eller figurar der det er relevant. Svaret bør vere på omtrent 250 ord.

Fksamen RFA3046 Side 17 av 56

Bokmål

Eksamensinf	ormasjon
Eksamenstid	Eksamen varer i 5 timer. Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Du kan begynne å løse oppgavene i del 2 når som helst, men du kan ikke bruke hjelpemidler før etter 2 timer – etter at du har levert svarene for del 1.
Tillatte hjelpemidler under eksamen	Del 1: skrivesaker, passer, linjal og vinkelmåler Del 2: Alle hjelpemidler er tillatt, bortsett fra åpent internett og andre verktøy som kan brukes til kommunikasjon. Når du bruker nettbaserte hjelpemidler under eksamen, har du ikke lov til å kommunisere med andre. Samskriving, chat og andre måter å utveksle informasjon med andre på er ikke tillatt. Du kan ikke bruke automatisk tekstgenerator som chatbot eller tilsvarende teknologi.
Bruk av kilder	Dersom du bruker kilder i svaret ditt, skal du alltid føre dem opp på en slik måte at leseren kan finne fram til dem. Du skal føre opp forfatter og fullstendig tittel på både lærebøker og annen litteratur. Dersom du bruker utskrifter eller sitat fra internett, skal du føre opp nøyaktig nettadresse og nedlastingsdato.
Vedlegg	1 Tabeller og formler i kjemi – REA3046 Kjemi 2 2 Eget svarark for oppgave 1 og 2
Vedlegg som skal leveres inn	Vedlegg 2: Eget svarark for oppgave 1 og 2 finner du bakerst i oppgavesettet.
Informasjon om oppgave 1 og oppgave 2	Oppgave 1 har 12 flervalgsoppgaver med fire svaralternativ: A, B, C og D. Det er bare ett riktig svaralternativ for hver flervalgsoppgave. Oppgave 2 har åtte påstander med svaralternativene rett og feil. Blankt svar på oppgave 1 og 2 er likeverdig med feil svar. Dersom du er i tvil, bør du derfor skrive det svaret du mener er mest korrekt. Du kan bare svare med ett svaralternativ. Skriv svarene for oppgave 1 og 2 på eget svarark i vedlegg 2, som ligger helt til sist i oppgavesettet. Svararket skal rives løs fra oppgavesettet og leveres inn. Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.
Informasjon om vurderingen	Karakteren ved sluttvurderingen blir fastsatt etter en helhetlig vurdering av besvarelsen. De to delene av svaret, del 1 og del 2, blir vurdert under ett. Se eksamensveiledningen med vurderingskriterier til sentralt gitt skriftlig eksamen. Eksamensveiledningen finner du på Utdanningsdirektoratets nettsider.

Eksamen REA3046 Side 18 av 56

Vurdering og vekting	Del 1 teller omtrent 40 prosent, og del 2 teller omtrent 60 prosent av hele settet. Vektingen tilsvarer omtrent tidsbruken.
	På del 1 er forventet tidsbruk på oppgave 1, 2 og 3 til sammen 1 time og på oppgave 4 og 5 til sammen 1 time.
	Vektingen på del 2 er fordelt omtrent likt på oppgave 6, 7, 8 og 9, omtrent 45 minutter per oppgave. Deloppgavene på oppgave 6, 7 og 8 vektes omtrent likt.
	Alle oppgaver med unntak av oppgave 1 og 2 vil kreve begrunnelse av svaret.
	Noen oppgaver vil kunne løses på ulike måter, siden du selv velger hvilke problemstillinger du vil drøfte. Dette gjelder særlig oppgave 9. Ulike tilnærminger kan derfor gi like høy måloppnåelse.
	Se eksamensveiledningen på Utdanningsdirektoratets nettsider.
Kilder	Se kildeliste på side 51.
	Andre grafer, bilder og figurer: Utdanningsdirektoratet.

Eksamen REA3046 Side 19 av 56

Del 1

Skriv svarene for oppgave 1 og 2 på eget svarskjema i vedlegg 2.

(Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

Oppgave 1 Flervalgsoppgaver

a) Syrer og baser

Hva er den korresponderende basen til natriumdihydrogenfosfat, NaH₂PO₄?

- A H₃PO₄
- B H_2PO_4
- C HPO₄²⁻
- D PO₄3-

b) Syrer og baser

En basisk løsning med pH på omtrent 9 ble laget ved å løse 1 mol av et salt i 1 liter vann.

Hvilket salt ble løst i vann?

- A NaHSO₄
- B NaCH₃COO
- C NaOH
- D NaCl

c) Buffer

Hvilken kombinasjon av stoffer løst i vann kan gi en buffer?

- A NaOH og HNO₃
- B NaOH og NaNO₃
- C NaOH og NaNO₂
- D NaOH og NH₄Cl

Eksamen REA3046 Side 20 av 56

d) Redoksreaksjoner

Hvilken redoksreaksjon er spontan?

- A $Sn^{2+} + Zn \rightarrow Sn + Zn^{2+}$
- B $2Na^+ + Fe \rightarrow 2Na + Fe^{2+}$
- C $2Ag + Ni^{2+} \rightarrow 2Ag^{+} + Ni$
- D $Cu + Zn^{2+} \rightarrow Cu^{2+} + Zn$

e) Redoksreaksjoner

Cellediagrammet til en galvanisk celle er

$$Cu(s)|Cu^{2+}(aq)||Ag^{+}(aq)|Ag(s).$$

Hvilken påstand om cellen er riktig?

- A Batterikapasiteten påvirkes av massen til sølvelektroden.
- B Når cellen leverer strøm, skjer reaksjonen $Cu^{2+}(aq) + 2Ag(s) \rightarrow Cu(s) + 2Ag^{+}(aq)$
- C Cellespenningen er ca. 0,46 V.
- D En saltbro som inneholder glukose, C₆H₁₂O₆, vil fungere godt.

f) Oksidasjonstall

Jernioner, Fe²⁺, og cyanid, CN⁻, kan danne et kompleksion i vann:

$$Fe^{2+}(aq) + 6CN^{-}(aq) \Leftrightarrow [Fe(CN)_6]^{4-}(aq)$$

Hva er oksidasjonstallet til jern i [Fe(CN)₆]⁴⁻?

- A +II
- B +III
- C +V
- D +VI

Eksamen REA3046 Side 21 av 56

g) Organisk kjemi

Figur 1. Reaksjonsmekanisme

Ta utgangspunkt i reaksjonsmekanismen i figur 1. Hvilken påstand er riktig?

- A Reaksjonen er en addisjonsreaksjon.
- B I- overfører et elektronpar til klor slik at det dannes Cl-.
- C I⁻ fungerer her som en elektrofil.
- D Elektronparet i C-Cl-bindingen overføres til klor slik at det dannes Cl-.

h) Biologiske makromolekyl

Melkesyre, vist i figur 2, kan brukes som monomer til å lage en bioplastpolymer.

Figur 2. Melkesyre

Hvilken påstand om polymeren er riktig?

- A Det vil dannes en addisjonspolymer med sidegrupper av metyl (-CH₃).
- B Det vil dannes en addisjonspolymer med sidegrupper av hydroksyl (-OH).
- C Det vil dannes en kondensasjonspolymer med sidegrupper av metyl (-CH₃).
- D Det vil dannes en kondensasjonspolymer med sidegrupper av hydroksyl (-OH).

Eksamen REA3046 Side 22 av 56

i) Biologiske makromolekyl

Figur 3 nedenfor viser spaltingen av laktose til galaktose og glukose.

Figur 3

Hvilken påstand er riktig om laktase i denne spaltingen?

- A Laktase er et enzym som øker aktiveringsenergien i hydrolysen av laktose.
- B Laktase er et enzym som binder galaktose og glukose sammen til laktose i en kondensasjonsreaksjon.
- C Laktase fungerer som en katalysator i hydrolysen av laktose.
- D Laktase fungerer som en katalysator i spaltingen av alle disakkarid.

i) Likevekt

Vi har denne reversible reaksjonen:

$$CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g)$$

Tabellen nedenfor viser konsentrasjonene ved start og fire alternativer for konsentrasjonene ved likevekt.

Hvilken av radene A-D i tabellen viser riktige uttrykk for konsentrasjonene ved likevekt?

	[CH ₄]	[H ₂ S]	[CS ₂]	[H ₂]
Konsentrasjoner ved start (mol/L)	2,0	1,0	0,0	0,0
Svaralternativer:				
A	2,0 - x	1,0 - 2x	Х	4 <i>x</i>
В	2,0 - 2x	1,0 - 2x	2x	4 <i>x</i>
С	2,0 - 2x	1,0 - x	Х	2x
D	2,0 - x	1,0 - x	Х	2 <i>x</i>

Eksamen REA3046 Side 23 av 56

k) Løselighet

Hvilket av følgende salter er minst løselig i vann?

- A kalsiumnitrat, Ca(NO₃)₂
- B bly(II)karbonat, PbCO₃
- C natriumkarbonat, Na₂CO₃
- D kvikksølv(I)karbonat, Hg₂CO₃

Usikkerhet og feilkilder

Konsentrasjonen til en saltsyreløsning, HCl(aq), ble bestemt ved tre parallelle titreringer med en løsning av natriumhydroksid, NaOH(aq). I ettertid viste det seg at konsentrasjonen av NaOH(aq) var lavere enn oppgitt.

Vurder om disse påstandene er riktige:

- i) Dette er et eksempel på en tilfeldig feil.
- ii) Den beregnede konsentrasjonen av HCl(aq) ble for høy.

Hvilke av påstandene er riktige?

- A bare i
- B bare ii
- C begge to er riktige
- D ingen er riktige

Eksamen REA3046 Side 24 av 56

Oppgave 2 Rett/feil-oppgaver

a) Redoksreaksjoner

Saltet nikkel(II)jodid, Nil₂(s), ble løst i et kar med rent vann. To elektroder av grafitt ble koblet til en justerbar spenningskilde, slik figur 4 viser. Spenningen ble økt til denne reaksjonen begynte:

Figur 4. Elektrolyse av Nil₂ med to elektroder av grafitt, C(s), koblet til justerbar spenningskilde.

Vurder om hver av påstandene er rett eller feil, og kryss av på svararket.

I Det dannes nikkelmetall ved den positive elektroden.

II Elektrolysen krever en spenning på minst 0,80 V.

III For å danne 60 g nikkel trengs det ca. 2,0 mol elektroner.

IV I elektrolysen blir jodid, I⁻, redusert.

Eksamen REA3046 Side 25 av 56

Figur 5 viser en syntese i to trinn.

Figur 5. Syntese av 2-klorbutan til butan-2-ol

Vurder om hver av påstandene er rett eller feil, og kryss av på svararket.

- I Trinn 1 er en addisjonsreaksjon.
- II Reaksjonen i trinn 2 kan gi to ulike produkter og dermed redusere utbyttet i syntesen.
- III Destillasjon kan brukes til å fjerne rester av vann i reaksjonsblandingen etter trinn 2.
- IV Produktet etter trinn 2 kan oksideres til et keton.

Eksamen REA3046 Side 26 av 56

For å danne butanon fra 1-klorbutan skjer det en syntese i tre trinn, som vist i figur 6. I løpet av syntesen skjer det en oksidasjon, eliminasjon og addisjon. Du skal sortere disse i riktig rekkefølge.

Figur 6. Syntese av butanon

- skriv reaksjonstypene for reaksjon 1, 2 og 3
- tegn strukturformlene til stoff A og B

Eksamen REA3046 Side 27 av 56

Huden vår har en naturlig pH på cirka 5,5. De rengjørende ingrediensene i såpe og sjampo er ofte basiske stoffer, så for å gi produktene ønsket pH tilsetter man ofte sitronsyre eller natriumsalter av sitronsyre, se tabell 1.

Tabell 1. Strukturformlene for sitronsyre og natriumsalter av sitronsyre

A Trinatriumsitrat	B Natriumdihydrogensitrat
3 Na ⁺ O	Na ⁺ HO OH
C Dinatriumhydrogensitrat	D Sitronsyre
2 Na ⁺ HO O O O O O O O O O O O O O O O O O O	ОНООНООН

- a) Vurder om alle stoffene i tabellen ovenfor kan brukes til å senke pH-verdien i en såpeblanding.
- b) Du har laget en buffer ved å blande 1 mol dinatriumhydrogensitrat (C) med 1,5 mol trinatriumsitrat (A) og fortynnet med vann til 1,0 L. Så tilsetter du 0,7 mol NaOH(s).

Vurder om du fortsatt er innenfor bufferområdet.

c) Figur 7 viser to titrerkurver, en for sitronsyre titrert med natriumhydroksid, NaOH(aq), og en for fosforsyre, H₃PO₄, titrert med NaOH(aq). Begge syrene har konsentrasjonen 0,1 mol/L og volum 25,0 mL. I motsetning til fosforsyre har sitronsyre en gradvis økning fra pH 2 til pH 8.

Forklar kort hvorfor det er en slik forskjell.

Eksamen REA3046 Side 28 av 56

Figur 7. Titrerkurver for 25,0 mL 0,1 mol/L sitronsyre (stiplet, blå) og 25,0 mL 0,1 mol/L fosforsyre (heltrukken, rød)

a) Figur 8 viser et peptid. Hvilke aminosyrer består peptidet av?

Figur 8. Strukturformelen til et peptid

b) Forklar hvordan en sekundærstruktur kan oppstå i et polypeptid.

Eksamen REA3046 Side 29 av 56

Del 2

Oppgave 6

Sinkoksid, ZnO, blir dannet når sinksulfid ZnS reagerer med oksygen, O2:

$$2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$$

Når 2 mol sinksulfid reagerer med 3 mol oksygengass er entalpiendringen, ∆H, lik −883 kJ.

- a) Bruk termodynamiske data fra vedlegget til å:
 - vise at entropiendringen, ΔS, er −147 J/K når 2,0 mol sinkoksid reagerer
 - undersøke om reaksjonen skjer spontant ved 25 °C

Svoveldioksid, SO₂, reagerer videre i en ny beholder:

$$SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$$

Likevektskonstanten K for denne reaksjonen ved en bestemt temperatur er 7,2.

I beholderen er det

0,20 mol/L SO₂

0,75 mol/L NO₂

1,3 mol/L SO₃

1,7 mol/L NO

- b) Vis at det ikke er likevekt i beholderen. Hvilken vei vil likevekten forskyves?
- c) Etter en stund oppnår systemet likevekt. Hva er konsentrasjonen av NO i beholderen nå?

Eksamen REA3046 Side 30 av 56

Tabellen viser tre forbindelser som man finner i noen planter. Forbindelse C kan syntetiseres fra B.

Tabell 2. Planteforbindelser og tabellverdier

Forbindelse A	Forbindelse A Forbindelse B		
Kumarin	Scopoletin	Scoparon	
	HOOOO		
C ₉ H ₆ O ₂	C ₁₀ H ₈ O ₄	C ₁₁ H ₁₀ O ₄	
M _m = 146,14 g/mol	$M_{\rm m}$ = 192,16 g/mol	$M_m = 206,197 \text{ g/mol}$	

- a) Hvilken type reaksjon skjer når forbindelse B reagerer med metanol?
- b) Syntesen startet med 64 g av forbindelse B og et overskudd av metanol. Utbyttet i reaksjonen var 48 %. Hvor mange gram av forbindelse C ble dannet?

En blanding av de tre forbindelsene i tabell 2 ble separert med tynnsjiktkromatografi, se figur 9. Det er benyttet en polar stasjonær fase og en upolar mobil fase.

c)

- Finn ut hvilken av forbindelsene som har lavest retardasjonsfaktor, R_F, se figur 9.
- Tegn en skisse av hvordan tynnsjiktplaten ville ha sett ut dersom man i stedet hadde benyttet en upolar stasjonær fase og en polar mobil fase.

- forbindelse B
- II forbindelse C
- III forbindelse A

Figur 9. Tynnsjiktplate

Eksamen REA3046 Side 31 av 56

En klasse fikk i oppgave å finne masseprosenten til mangan, Mn(s), i en legering. De fikk også opplyst at av metallene i legeringen var det bare mangan som ville reagere med saltsyre, HCl(aq), og at det ville bli dannet en gass når mangan reagerte med saltsyre.

Figur 10. Oppsamling av gassbobler i målesylinder

En gruppe elever løste oppgaven slik:

- 1 De veide opp små biter av legeringen, til sammen 1,376 g.
- 2 De målte opp 100 mL 3,0 mol/L HCl(ag) med en målesylinder.
- 3 De tømte HCl-løsningen over i et begerglass og la bitene i løsningen.
- 4 De samlet opp gassbobler fra reaksjonen i en 100-mL-målesylinder fylt med vann og snudd opp ned, som vist i figur 10.

Da boblingen stoppet, hadde de samlet opp 72 mL gass.

a) Ta utgangspunkt i halvreaksjoner fra spenningsrekka. Skriv en balansert reaksjonsligning for reaksjonen mellom saltsyre og mangan.

Det molare volumet til en gass ved romtemperatur er 24,5 L/mol.

- b) Bruk dataene som elevene fant, til å finne masseprosenten av mangan i legeringen. (dersom du mangler svar fra oppgave 8a, kan du anta at molforholdet mellom mangan og gass er 1:1)
- c) Diskuter hvilken feilkilde som vil ha størst påvirkning på resultatet, og foreslå <u>én</u> forbedring av gjennomføringen.

Eksamen REA3046 Side 32 av 56

Utslipp av fosforholdig avløpsvann fra landbruk og husholdninger til innsjøer og fjorder kan føre til dårlig vannkvalitet. Det er derfor et krav om rensing av slikt avløpsvann. I Norge fjernes i snitt 66 % av fosforet, og i 2020 var det totale utslippet av fosfor etter rensing 1480 tonn. [1]

Fosfor i ulike fosfatforbindelser er både et viktig næringsstoff for planter og en begrenset ressurs. Avfallet fra renseprosessen bør derfor gjenvinnes og brukes som gjødsel og til jordforbedring i landbruket.

Kjemisk rensing

I mange renseanlegg fjernes fosforforbindelser ved kjemisk rensing. Avløpsvannet tilsettes lettløselig aluminiumsulfat, $Al_2(SO_4)_3$, og fosfor blir felt ut i form av fosfat, PO_4^{3-} . Avløpsvannet er svakt surt, og mye av fosforet finnes som dihydrogenfosfat, $H_2PO_4^{-}$ (aq). Derfor tilsettes avløpsvannet natriumhydroksid, NaOH, til pH cirka 12 før man tilsetter aluminiumsulfat. Natriumhydroksid, NaOH, framstilles i stor skala ved elektrolyse av en vannløsning av natriumklorid, NaCl.

For å få felt ut tilstrekkelig mengde fosfat fra avløpsvannet må man i praksis bruke minst dobbel stoffmengde aluminium i forhold til fosfat. Det er fordi ionene av aluminium også binder seg til blant annet OH⁻. Saltet aluminiumoksid, Al(OH)₃, har lavest løselighet ved pH 5,7–6,7 og løses både i sure og basiske løsninger. Ved høy pH innstiller denne likevekten seg:

$$Al(OH)_3(s) + OH^-(aq) \rightleftharpoons [Al(OH)_4]^-(aq)$$

Før det rensede vannet slippes ut, må pH-en reguleres ned. [2]

Biologisk rensning

Det er nylig blitt utviklet en ny renseprosess der fosforforbindelser blir renset ved hjelp av fosforspisende bakterier. Bakteriene vokser på små plastbiter som avløpsvannet føres gjennom. På plastbitene danner det seg en fosforholdig biofilm som etter hvert løsner og blir en del av avløpsslammet. Fosforet gjenvinnes fra slammet som struvitt. Struvitt er en krystall bestående av ammonium, magnesium og fosfat, NH₄MgPO₄· 6H₂O. En fordel med denne renseprosessen er at man reduserer bruken av kjemikalier kraftig. I tillegg kan fosforet som gjenvinnes gjennom denne prosessen, lettere tas opp av plantene enn fosfor som felles ut ved kjemisk rensing. [3]

Skriv en kjemifaglig tekst som tar utgangspunkt i fjerning av fosfor fra avløpsvann. Du skal bruke kjemikompetansen din til å gjøre rede for og drøfte ett eller flere av punktene nedenfor:

- fellingsreaksjoner i den kjemiske renseprosessen
- behovet for pH-regulering i den kjemiske renseprosessen
- kjemikaliemengden i renseprosessene med bakgrunn i prinsippene for grønn kjemi
- sammenligne renseprosessene med bakgrunn i prinsippene for grønn kjemi

Svaret ditt bør inneholde reaksjonsligninger, utregninger eller figurer der det er relevant. Svaret bør være på omtrent 250 ord.

Eksamen REA3046 Side 33 av 56

Tabeller og formler i REA3046 Kjemi 2

Dette vedlegget kan brukes under både del 1 og del 2 av eksamen.

Innhold

Standard reduksjonspotensial ved 25 °C.	35
Konstanter og formler	36
Syrekonstanter (K₃) i vannløsning ved 25 °C	37
Basekonstanter (K_b) i vannløsning ved 25 °C	38
Syre-base-indikatorer	39
Sammensatte ioner, navn og formel	39
Massetetthet og konsentrasjon til noen væsker	40
Stabile isotoper for noen grunnstoffer	40
Løselighetstabell for salter i vann ved 25 °C	41
Løselighetsprodukt (Ksp) for salt i vann ved 25 °C	42
a-AMINOSYRER VED pH = 7,4	43
Termodynamiske data ved 25 °C	45
Organiske forbindelser	46
Grunnstoffenes periodesystem	50
Svar oppgave 1 del 1	55
Svar oppgave 2 del 1	55
Tips til deg som akkurat har fått eksamensoppgåva:	56
Tips til deg som akkurat har fått eksamensoppgaven:	56

Standard reduksjonspotensial ved 25 °C.

Halvreaksjon				
oksidert form	+ ne ⁻	→	redusert form	<i>E</i> ° målt i V
F ₂	+ 2e ⁻	→	2F ⁻	2,87
O ₃ + 2H ⁺	+ 2e ⁻	→	O ₂ +H ₂ O	2,08
S ₂ O ₈ ²⁻	+ 2e-	→	2SO ₄ ²⁻	2,01
H ₂ O ₂ + 2H ⁺	+ 2e ⁻	→	2H ₂ O	1,78
Ce ⁴⁺	+ e ⁻	→	Ce ³⁺	1,72
PbO ₂ + SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	PbSO ₄ + 2H ₂ O	1,69
MnO ₄ ⁻ +4H ⁺	+ 3e ⁻	→	MnO ₂ +2H ₂ O	1,68
2HClO + 2H ⁺	+2e ⁻	→	Cl ₂ + 2H ₂ O	1,61
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	→	Mn ²⁺ + 4H ₂ O	1,51
BrO ₃ - + 6H+	+ 6e ⁻	→	Br⁻ + 3H ₂ O	1,42
Au ³⁺	+ 3e ⁻	→	Au	1,40
Cl ₂	+ 2e ⁻	→	2Cl ⁻	1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	1,36
O ₂ + 4H ⁺	+ 4e ⁻	→	2H ₂ O	1,23
MnO ₂ + 4H ⁺	+ 2e ⁻	→	Mn ²⁺ + 2H ₂ O	1,22
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	→	I ₂ + 6H ₂ O	1,20
Pt ²⁺	+ 2e ⁻	→	Pt	1,18
Br ₂	+ 2e ⁻	→	2 Br ⁻	1,09
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	→	NO + 2H ₂ O	0,96
2Hg ²⁺	+ 2e ⁻	→	Hg ₂ ²⁺	0,92
Cu ²⁺ + I ⁻	+ e ⁻	→	Cul(s)	0,86
Hg ²⁺	+ 2e ⁻	→	Hg	0,85
CIO ⁻ + H ₂ O	+ 2e ⁻	→	Cl ⁻ + 2OH ⁻	0,84
Hg ₂ ²⁺	+ 2e ⁻	→	2Hg	0,80
Ag ⁺	+ e ⁻	→	Ag	0,80
Fe ³⁺	+ e ⁻	→	Fe ²⁺	0,77
O ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ O ₂	0,70
l ₂	+ 2e ⁻	→	21-	0,54
Cu⁺	+ e ⁻	→	Cu	0,52
H ₂ SO ₃ + 4H ⁺	+ 4e ⁻	→	S + 3H ₂ O	0,45
O ₂ + 2H ₂ O	+ 4e ⁻	→	40H ⁻	0,40
Ag ₂ O + H ₂ O	+ 2e ⁻	→	2Ag + 2OH ⁻	0,34

Eksamen REA3046 Side 35 av 56

oksidert form	+ ne-	→	redusert form	Eº målt i V
Cu ²⁺	+ 2e ⁻	→	Cu	0,34
SO ₄ ²⁻ + 10H ⁺	+ 8e ⁻	→	H ₂ S(aq) + 4H ₂ O	0,30
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	H ₂ SO ₃ + H ₂ O	0,17
Cu ²⁺	+ e ⁻	→	Cu⁺	0,16
Sn ⁴⁺	+ 2e ⁻	→	Sn ²⁺	0,15
S + 2H+	+ 2e ⁻	→	H ₂ S(aq)	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	→	2S ₂ O ₃ ²⁻	0,08
2H⁺	+ 2e ⁻	→	H ₂	0,00
Fe ³⁺	+ 3e ⁻	→	Fe	-0,04
Pb ²⁺	+ 2e ⁻	→	Pb	-0,13
Sn ²⁺	+ 2e ⁻	→	Sn	-0,14
Ni ²⁺	+ 2e ⁻	→	Ni	-0,26
PbSO ₄	+ 2e ⁻	→	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	→	Cd	-0,40
Cr ³⁺	+ e ⁻	→	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	→	Fe	-0,45
S	+ 2e ⁻	→	S ²⁻	-0,48
2CO ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ C ₂ O ₄	-0,49
Zn ²⁺	+ 2e ⁻	→	Zn	-0,76
2H ₂ O	+ 2e ⁻	→	H ₂ + 2OH ⁻	-0,83
Mn ²⁺	+ 2e ⁻	→	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	→	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	→	Al	-1,66
Mg ²⁺	+ 2e ⁻	→	Mg	-2,37
Na ⁺	+ e ⁻	→	Na	-2,71
Ca ²⁺	+ 2e ⁻	→	Ca	-2,87
K ⁺	+ e ⁻	→	К	-2,93
Li ⁺	+ e ⁻	→	Li	-3,04

Konstanter og formler

Avogadros tall: $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$

Molvolumet av en gass: $V_m = 22.4 \text{ L/mol ved } 0 \,^{\circ}\text{C og } 1 \text{ atm,}$

24,5 L/mol ved 25 $^{\circ}$ C og 1 atm

Faradays konstant: F = 96485 C/mol

Universell gasskonstant: $R = 8.31 \text{ J/(mol \cdot K)}$

Sammenheng ΔG^o og K: $\Delta G^o = -R \cdot T \cdot \ln K$, der K er likevektskonstanten

Sammenheng ΔG og E^o : $\Delta G = -n \cdot F \cdot E^o$, der E^o er standard cellepotensialet

Eksamen REA3046 Side 36 av 56

Syrekonstanter (K_a) i vannløsning ved 25 °C.

Navn	Formel	Ка	p <i>K</i> a
Acetylsalisylsyre	C ₈ H ₇ O ₂ COOH	3,3 · 10-4	3,48
Ammoniumion	NH4 ⁺	5,6 · 10 ⁻¹⁰	9,25
Askorbinsyre	C ₆ H ₈ O ₆	9,1 · 10 ⁻⁵	4,04
Hydrogenaskorbation	C ₆ H ₇ O ₆ ⁻	2,0 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,3 · 10 ⁻⁵	4,20
Benzylsyre (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	4,9 · 10 ⁻⁵	4,31
Borsyre	B(OH)₃	5,4 · 10 ⁻¹⁰	9,27
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,83
Eplesyre (malinsyre)	HOOCCH₂CH(OH)COOH	4,0 · 10-4	3,40
Hydrogenmalation	HOOCCH₂CH(OH)COO⁻	7,8 · 10 ⁻⁶	5,11
Etansyre (eddiksyre)	CH₃COOH	1,8 · 10-5	4,76
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	9,99
Fosforsyre	H ₃ PO ₄	6,9 · 10 ⁻³	2,16
Dihydrogenfosfation	H ₂ PO ₄ ⁻	6,2 · 10 ⁻⁸	7,21
Hydrogenfosfation	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,32
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfittion	H ₂ PO ₃ ⁻	2,0 · 10 ⁻⁷	6,70
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,1 · 10-3	2,94
Hydrogenftalation	C ₆ H ₄ (COOH)COO ⁻	3,7 · 10 ⁻⁶	5,43
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,21
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,20
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,62
Hydrogensulfation	HSO ₄ ⁻	1,0 · 10-2	1,99
Hydrogensulfid	H ₂ S	8,9 · 10 ⁻⁸	7,05
Hydrogensulfidion	HS ⁻	1,0 · 10 ⁻¹⁹	19
Hypoklorsyre (underklorsyrling)	HCIO	4,0 · 10 ⁻⁸	7,40
Karbonsyre	H ₂ CO ₃	4,5 · 10 ⁻⁷	6,35
Hydrogenkarbonation	HCO ₃ ⁻	4,7 · 10 ⁻¹¹	10,33
Klorsyrling	HCIO ₂	1,1 · 10 ⁻²	1,94
Kromsyre	H ₂ CrO ₄	1,8 · 10 ⁻¹	0,74

Eksamen REA3046 Side 37 av 56

Navn	Formel	Ka	p <i>K</i> a
Hydrogenkromation	HCrO ₄ ⁻	3,2 · 10 ⁻⁷	6,49
Maleinsyre (<i>cis</i> -butendisyre)	HOOCCH=CHCOOH	1,2 · 10 ⁻²	1,92
Hydrogenmaleation	HOOCCH=CHCOO-	5,9 · 10 ⁻⁷	6,23
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,86
Metansyre (maursyre)	нсоон	1,8 · 10 ⁻⁴	3,75
Oksalsyre	(COOH) ₂	5,6 · 10 ⁻²	1,25
Hydrogenoksalation	(COOH)COO-	1,5 · 10 ⁻⁴	3,81
Propansyre	CH₃CH₂COOH	1,3 · 10 ⁻⁵	4,87
Salisylsyre (2-hydroksybenzosyre)	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	2,98
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,25
Sitronsyre	C ₃ H ₄ (OH)(COOH) ₃	7,4 · 10 ⁻⁴	3,13
Dihydrogensitration	C ₃ H ₄ (OH)(COOH) ₂ COO ⁻	1,7 · 10 ⁻⁵	4,76
Hydrogensitration	C ₃ H ₄ (OH)(COOH)(COO ⁻) ₂	4,0 · 10 ⁻⁷	6,40
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,85
Hydrogensulfittion	HSO₃ ⁻	6,3 · 10 ⁻⁸	7,2
Vinsyre (2,3-dihydroksybutandisyre, <i>L</i> -tartarsyre)	(CH(OH)COOH) ₂	1,0 · 10 ⁻³	2,98
Hydrogentartration	HOOC(CH(OH)) ₂ COO ⁻	4,6 · 10 ⁻⁵	4,34

Basekonstanter (K_b) i vannløsning ved 25 °C.

Navn	Formel	Кь	p <i>K</i> ₅
Acetation	CH₃COO ⁻	5,8 · 10 ⁻¹⁰	9,24
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,75
Metylamin	CH ₃ NH ₂	4,6 · 10 ⁻⁴	3,34
Dimetylamin	(CH₃)₂NH	5,4 · 10 ⁻⁴	3,27
Trimetylamin	(CH₃)₃N	6,3 · 10 ⁻⁵	4,20
Etylamin	CH ₃ CH ₂ NH ₂	4,5 · 10 ⁻⁴	3,35
Dietylamin	(C ₂ H ₅) ₂ NH	6,9 · 10 ⁻⁴	3,16
Trietylamin	(C ₂ H ₅) ₃ N	5,6 · 10 ⁻⁴	3,25
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,4 · 10 ⁻¹⁰	9,13
Pyridin	C ₅ H ₅ N	1,7 · 10 ⁻⁹	8,77
Hydrogenkarbonation	HCO₃ ⁻	2,0 · 10 ⁻⁸	7,65
Karbonation	CO ₃ ²⁻	2,1 · 10 ⁻⁴	3,67

Eksamen REA3046 Side 38 av 56

Syre-base-indikatorer

Indikator	Fargeforandring	pH- omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rosa	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

Sammensatte ioner, navn og formel

Navn	Formel	Navn	Formel
acetat, etanat	CH₃COO ⁻	jodat	IO ₃ -
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	CIO ₃ -
arsenitt	AsO ₃ ³⁻	kloritt	CIO ₂ -
borat	BO ₃ ³⁻	nitrat	NO ₃
bromat	BrO₃⁻	nitritt	NO ₂
fosfat	PO ₄ ³⁻	perklorat	ClO ₄
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻
hypokloritt	CIO ⁻	sulfitt	SO ₃ ²⁻

Eksamen REA3046 Side 39 av 56

Massetetthet og konsentrasjon til noen væsker

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	Massetetthet $(\frac{g}{mL})$	Konsentrasjon $\left(\frac{\text{mol}}{\text{L}}\right)$
Saltsyre	HCI	37	1,18	12,0
Svovelsyre	H ₂ SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H ₂ O	100	1,00	55,56

Stabile isotoper for noen grunnstoffer

Grunnstoff	Isotop	Relativ	Grunnstoff	Isotop	Relativ
		forekomst (%)			forekomst (%)
		i jordskorpen			i jordskorpen
Hydrogen	¹ H	99,985	Silisium	²⁸ Si	92,23
	² H	0,015		²⁹ Si	4,67
Karbon	¹² C	98,89		³⁰ Si	3,10
	¹³ C	1,11	Svovel	³² S	95,02
Nitrogen	¹⁴ N	99,634		³³ S	0,75
	¹⁵ N	0,366		³⁴ S	4,21
Oksygen	¹⁶ O	99,762		³⁶ S	0,02
	¹⁷ O	0,038	Klor	³⁵ Cl	75,77
	¹⁸ O	0,200		³⁷ Cl	24,23
			Brom	⁷⁹ Br	50,69
				⁸¹ Br	49,31

Eksamen REA3046 Side 40 av 56

Løselighetstabell for salter i vann ved 25 °C

	Br ⁻	Cl ⁻	CO ₃ ²⁻	CrO ₄ ²⁻	I -	O ²⁻	OH-	S ²⁻	SO ₄ ²⁻
Ag⁺	U	U	U	U	U	U	-	U	T
	gulhvitt	hvitt	gult	rødt	lysgult	svart		svart	hvitt
Al ³⁺	R	R	-	-	R	U	U	R	R
	hvitt	hvitt			lysgult	hvitt	hvitt	hvitt	hvitt
Ba ²⁺	L	L	U	U	L	R	L	Т	U
	hvitt	hvitt	hvitt	gult	lysgult	hvitt	hvitt	hvitt	hvitt
Ca ²⁺	L	L	U	Т	L	Т	U	Т	T
	hvitt	hvitt	hvitt	gult	hvitt	hvitt	hvitt	hvitt	hvitt
Cu ²⁺	L	L	U*	U	-	U	U	U	L
	grønt	grønt	grønt	gulbrunt		svart	blått	svart	blått
Fe ²⁺	L	L	U	U	L	U	U	U	L
	gulgrønt	grønt	grått	brunt	grått	svart	grønt	svart	grønt
Fe³+	R	R	-	U	-	U	U	U	L
	brunt	brunt		gult		rødbrun	brunt	svart	brunt
Hg ₂ ²⁺	U	U	U	U	U	-	R	-	U
	hvitt	hvitt	gul	rød	grønn		svart		gulhvitt
Hg ²⁺	Т	L	-	U	U	U	U	U	R
	hvitt	hvitt		rød	rødt	rødt	hvitt	svart	hvitt
Mg ²⁺	L	L	U	L	L	U	U	R	L
	hvitt	hvitt	hvitt	gult	hvitt	hvitt	hvitt	hvitt	hvitt
Ni ²⁺	L	L	U	U	L	U	U	U	L
	gulbrun	grønt	grønt	rødbrunt	svart	svart	grønt	svart	grønt
Pb ²⁺	Т	Т	U	U	U	U	U	U	U
	hvitt	hvitt	hvitt	gult	gult	gult	hvitt	svart	hvitt
Sn ²⁺	R	R	U	-	R	U	U	U	R
	hvitt	hvitt	hvitt		gulrød	hvit	hvitt	brunt	hvitt
Sn ⁴⁺	R	R	-	L	R	U	U	U	R
	hvitt	hvitt		gulbrunt	gulrød	hvitt	hvitt	svart	hvitt
Zn ²⁺	L	L	U	U	L	U	U	U	L
	hvitt	hvitt	hvitt	gult	hvitt	hvitt	hvitt	hvitt	hvitt

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

U* = det dannes et uløselig blandingssalt av CuCO₃ og Cu(OH)₂.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

- = Ukjent forbindelse, eller forbindelsen dannes ikke ved utfelling.

R = reagerer med vann.

Eksamen REA3046 Side 41 av 56

Løselighetsprodukt (Ksp) for salt i vann ved 25 °C

Navn	Kjemisk formel	K _{sp}	Navn	Kjemisk formel	K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹	Kopper(II)sulfid	CuS	8 · 10 ⁻³⁷
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷	Kvikksølv(I)bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³
Bariumkarbonat	BaCO₃	2,58 · 10 ⁻⁹	Kvikksølv(I)jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰	Kvikksølv(I)karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³	Kvikksølv(I)klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷	Kvikksølv(II)bromid	HgBr ₂	6,2 · 10 ⁻²⁰
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰	Kvikksølv(II)jodid	Hgl ₂	2,9 · 10 ⁻²⁹
Bly(II)bromid	PbBr ₂	6,60 · 10 ⁻⁶	Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴
Bly(II)hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰	Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10-24
Bly(II)jodid	Pbl ₂	9,80 · 10 ⁻⁹	Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²
Bly(II)karbonat	PbCO₃	7,40 · 10 ⁻¹⁴	Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶
Bly(II)klorid	PbCl ₂	1,70 · 10 ⁻⁵	Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶
Bly(II)oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹	Mangan(II)karbonat	MnCO ₃	2,24 · 10 ⁻¹¹
Bly(II)sulfat	PbSO ₄	2,53 · 10 ⁻⁸	Mangan(II)oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷
Bly(II)sulfid	PbS	3 · 10 ⁻²⁸	Nikkel(II)fosfat	Ni ₃ (PO ₄) ₂	4,74 · 10 ⁻³²
Jern(II)fluorid	FeF ₂	2,36 · 10 ⁻⁶	Nikkel(II)hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶
Jern(II)hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷	Nikkel(II)karbonat	NiCO ₃	1,42 · 10 ⁻⁷
Jern(II)karbonat	FeCO ₃	3,13 · 10 ⁻¹¹	Nikkel(II)sulfid	NiS	2 · 10 ⁻¹⁹
Jern(II)sulfid	FeS	8 · 10 ⁻¹⁹	Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷
Jern(III)fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶	Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰
Jern(III)hydroksid	Fe(OH) ₃	2,79 · 10 ⁻³⁹	Sinksulfid	ZnS	2 · 10 ⁻²⁴
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹	Sølv(I)acetat	AgCH₃COO	1,94 · 10 ⁻³
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³	Sølv(I)bromid	AgBr	5,35 · 10 ⁻¹³
Kalsiumhydroksid	Ca(OH) ₂	5,02 · 10 ⁻⁶	Sølv(I)cyanid	AgCN	5,97 · 10 ⁻¹⁷
Kalsiumkarbonat	CaCO₃	3,36 · 10 ⁻⁹	Sølv(I)jodid	AgI	8,52 · 10 ⁻¹⁷
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸	Sølv(I)karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹	Sølv(I)klorid	AgCl	1,77 · 10 ⁻¹⁰
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵	Sølv(I)kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²
Kobolt(II)hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵	Sølv(I)oksalat	Ag ₂ C ₂ O ₄	5,40 · 10 ⁻¹²
Kopper(I)bromid	CuBr	6,27 · 10 ⁻⁹	Sølv(I)sulfat	Ag ₂ SO ₄	1,20 · 10 ⁻⁵
Kopper(I)klorid	CuCl	1,72 · 10 ⁻⁷	Sølv (I) sulfid	Ag ₂ S	8 · 10 ⁻⁵¹
Kopper(I)oksid	Cu ₂ O	2 · 10 ⁻¹⁵	Tinn(II)hydroksid	Sn(OH)₂	5,45 · 10 ⁻²⁷
Kopper(I)jodid	Cul	1,27 · 10 ⁻¹²			
Kopper(II)fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷			
Kopper(II)hydroksid	Cu(OH) ₂	2,20 · 10 ⁻²⁰			
Kopper(II)oksalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰			

Eksamen REA3046 Side 42 av 56

a-AMINOSYRER VED pH = 7,4.

Vanlig navn	KEK VED pri – 7,4.	Vanlia nava	
Forkortelse pH ved isoelektrisk punkt	Strukturformel	Forkortelse pH ved isoelektrisk punkt	Strukturformel
Alanin Ala 6,0	O	Arginin Arg 10,8	$\begin{array}{c} O \\ & \bigoplus \\ H_{3}N \\ \hline \\ CH \\ CH_{2} \\ & CH_{2} \\ & CH_{2} \\ & - \\ & CH_{2} \\ & - \\ &$
Asparagin Asn 5,4	$\begin{array}{c c} O & & & & \\ H_3N & & & & \\ CH_2 & & & \\ CH_2 & & & \\ C & & & \\ NH_2 & & & \\ \end{array}$	Aspartat (Asparagin- syre) Asp 2,8	O
Cystein Cys 5,1	O ⊖ H ₃ N ← CH − C ← O CH ₂ SH	Fenylalanin Phe 5,5	$\begin{array}{c c} & \bigcirc & \bigcirc \\ & \square & \square & \bigcirc \\ & \square & \square & \square & \square \end{array}$
Glutamin Gln 5,7	$\begin{array}{c} O \\ & \\ & \\ \\ & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Glutamat (Glutamin- syre) Glu 3,2	O
Glysin Gly 6,0	O ⊖ H ₃ N [⊕] —CH—C—O 	Serin Ser 5,7	O ⊖ H ₃ N ← CH ← C ← O CH ₂ OH

Eksamen REA3046 Side 43 av 56

Vanlig navn		Vanlig navn	
Forkortelse pH ved isoelektrisk punkt	Strukturformel	Forkortelse pH ved isoelektrisk punkt	Strukturformel
Isoleucin Ile 6,0	O H ₃ N ⊕ CH − C − O CH − CH ₃ CH ₂ CH ₃	Leucin Leu 6,0	O H ₃ N ⊕ CH − C − O CH ₂ CH − CH ₃ CH ₃
Lysin Lys 9,7	O	Metionin Met 5,7	O
Prolin Pro 6,3	$\bigcup_{\substack{\bullet \\ C \\ H_2N}} \bigoplus_{\bullet}$	Histidin His 7,6	$ \begin{array}{c c} O & \bigoplus \\ H_3N & \bigoplus \\ CH_2 & \bigoplus \\ N & \longrightarrow \\ NH \end{array} $
Treonin Thr 5,6	O H ₃ N ⊕ CH — C — O CH — OH CH ₃	Tryptofan Trp 5,9	H_3N CH CH CH_2 CH_2
Tyrosin Tyr 5,7	H_3N CH_2 CH_2 OH OH	Valin Val 6,0	$ \begin{array}{c} & \circ \\ & \parallel & \ominus \\ & \downarrow & \ominus \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow &$

Eksamen REA3046 Side 44 av 56

Termodynamiske data ved 25 °C.

Stoff	Dannelsesentalpi Δ <i>H</i> _f (kJ/mol)	Entropi S (J/(mol·K))
CH ₄ (g) metan	-74,6	186,3
C ₂ H ₂ (g) etyn	227,4	200,9
C ₂ H ₆ (g) etan	-84,0	229,2
C ₂ H ₅ OH (I) etanol	-277,6	160,7
C ₂ H ₅ OH (g) etanol	-234,8	281,6
C₃H ₈ (g) propan	-103,9	270,3
C₃H ₆ O (I) propanon	-248,4	199,8
C ₃ H ₇ OH (I) propan-1-ol	-302,6	193,6
C ₃ H ₇ OH (g) propan-1-ol	-255,1	322,6
C ₃ H ₇ OH (I) propan-2-ol	-272,6	181,1
C ₄ H ₁₀ (g) butan	-125,7	310
C ₆ H ₁₄ (I) heksan	-198,7	295
C ₆ H ₁₂ (I) sykloheksan	-156,4	204
C ₆ H ₅ OH (s) fenol	-165,1	144
C ₆ H ₁₂ O ₆ (s) glukose	-1273	209
$C_{12}H_{22}O_{11}$ (s) sukrose	-2226	
Al (s)	0	28,3
Al ₂ O ₃ (s)	-1676	50,9
Br ₂ (I)	0	152,2
Br ₂ (g)	30,9	245,5
C (s) grafitt	0	5,74
C (s) diamant	1,9	2,38
CaCO ₃ (s)	-1206,9	92,9
CaO (s)	-635,1	39,8
Cl ₂ (g)	0	223,1
CO (g)	-110,5	197,7
CO ₂ (g)	-393,5	213,8
Cu (s)	0	33,1
CuO (s)	-157,3	42,6
Cu ₂ S (s)	-79,5	120,9
Fe (s)	0	27,3
H ₂ (g)	0	130,7
HCl (g)	-92,3	186,9
HCN (g)	135,1	201,8
HI (g)	25,9	206,3
H ₂ O (g)	-241,8	188,8
H ₂ O (I)	-285,8	70,0
HNO ₃ (aq)	-207,4	146,4
HNO ₃ (I)	-174,1	155,6
H ₂ S (g)	-20,2	122
I ₂ (s)	0	116,1
Mg (s)	0	32,7
MgO (s)	-601,2	26,9
Na (s)	0	51,4
NaCl (s)	-411,1	72,1
NaOH (s)	-425,6	64,4
	0	191,6
N ₂ (g)	U	131,0

Eksamen REA3046 Side 45 av 56

Stoff	Dannelsesentalpi ΔH _f (kJ/mol)	Entropi S (J/(mol·K))
NH ₃ (g)	-46,1	192,8
NH ₄ Cl (s)	-314,4	94,6
NO (g)	90,3	210,8
NO ₂ (g)	33,2	240,1
N_2O_5 (g)	11	346
O ₂ (g)	0	205,2
0 ₃ (g)	143	238,8
P ₄ (s)	0	41,1
P ₄ O ₁₀ (s)	-2984	229
Pb (s)	0	64,8
Pb (I)	4,77	72,8
PbCl ₂ (s)	-359,4	136,0
S (s) rombisk	0	31,9
Sn (s) hvitt	0	51,2
Sn (s) grått	-2,03	44,1
SO ₂ (g)	-296,8	248,1
SO₃ (g)	-396	256,7
Zn (s)	0	41,6
ZnO (s)	-348,0	43,9
ZnS (s)	-203	57,7

Organiske forbindelser

Kp = kokepunkt,°C

Smp = smeltepunkt,°C

HYDROKARBONER, METTEDE (alkaner)								
Navn	Formel	Smp	Кр	Diverse				
Metan	CH ₄	-182	-161					
Etan	C ₂ H ₆	-183	-89					
Propan	C ₃ H ₈	-188	-42					
Butan	C ₄ H ₁₀	-138	-0,5					
Pentan	C ₅ H ₁₂	-130	36					
Heksan	C ₆ H ₁₄	-95	69					
Heptan	C ₇ H ₁₆	-91	98					
Oktan	C ₈ H ₁₈	-57	126					
Nonan	C ₉ H ₂₀	-53	151					
Dekan	C ₁₀ H ₂₂	-30	174					
Syklopropan	C ₃ H ₆	-128	-33					
Syklobutan	C ₄ H ₈	-91	13					
Syklopentan	C ₅ H ₁₀	-93	49					
Sykloheksan	C ₆ H ₁₂	7	81					
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan				
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan				
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan				
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan				
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan				

Eksamen REA3046 Side 46 av 56

HYDROKARBONER, UMETTEDE, alkener								
Navn	Formel	Smp	Кр	Diverse				
Eten	C ₂ H ₄	-169	-104	Etylen				
Propen	C₃H ₆	-185	-48	Propylen				
But-1-en	C ₄ H ₈	-185	-6					
cis-But-2-en	C ₄ H ₈	-139	4					
trans-But-2-en	C ₄ H ₈	-106	1					
Pent-1-en	C ₅ H ₁₀	-165	30					
cis-Pent-2-en	C ₅ H ₁₀	-151	37					
trans-Pent-2-en	C ₅ H ₁₀	-140	36					
Heks-1-en	C ₆ H ₁₂	-140	63					
cis-Heks-2-en	C ₆ H ₁₂	-141	69					
trans-Heks-2-en	C ₆ H ₁₂	-133	68					
cis-Heks-3-en	C ₆ H ₁₂	-138	66					
trans-Heks-3-en	C ₆ H ₁₂	-115	67					
Sykloheksen	C ₆ H ₁₀	-104	83					
1,3-Butadien	C ₄ H ₆	-109	4					
2-metyl-1,3-butadien	C₅H ₈	-146	34	Isopren				
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5					
	HYDROKA	RBONER, U	METTEDE, a	alkyner				
Navn	Formel	Smp	Кр	Diverse				
Etyn	C ₂ H ₂	-81	-85	Acetylen				
Propyn	C ₃ H ₄	-103	-23	Metylacetylen				
But-1-yn	C ₄ H ₆	-126	8					
But-2-yn	C ₄ H ₆	-32	27					
	AROM	ATISKE HYD	ROKARBO	NER				
Navn	Formel	Smp	Кр	Diverse				
Benzen	C ₆ H ₆	5	80					
Metylbenzen	C ₇ H ₈	-95	111					
Etylbenzen, fenyletan	C ₈ H ₁₀	-95	136					
Fenyleten	C ₈ H ₈	-31	145	Styren, vinylbenzen				
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl				
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH				
		ALKOHO	DLER					
Navn	Formel	Smp	Кр	Diverse				
Metanol	CH₃OH	-98	65	Tresprit				
Etanol	C₂H ₆ O	-114	78					
Propan-1-ol	C₃H ₈ O	-124	97	<i>n</i> -propanol				
Propan-2-ol	C₃H ₈ O	-88	82	Isopropanol				
Butan-1-ol	C ₄ H ₁₀ O	-89	118	n-Butanol				
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol				
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	108	Isobutanol				
2-Metylpropan-2-ol	C ₄ H ₁₀ O	26	82	<i>tert</i> -Butanol				
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	n-Pentanol, amylalkohol				
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol				

Eksamen REA3046 Side 47 av 56

Pentan-3-ol C.H1+2O -69 116 Dietylkarbinol	Navn	Formel	Smp	Кр	Diverse					
Heksan-1-ol C ₆ H ₁₄ O -47 158 Kapronalkohol, n-heksanol Heksan-2-ol C ₆ H ₁₄ O 140 140 Heksan-3-ol C ₆ H ₁₄ O 135	Pentan-3-ol		•	•	Dietylkarbinol					
Heksan-2-ol CdH±0 140 Heksan-3-ol CdH±0 135 Sykloheksanol CdH±0 26 161 Etan-1,2-diol CdH±0 18 290 Glyserol, inngår i fettarten triglyserid KARBONYLFORBINDELSER Navn Formel Smp Kp Diverse Metanal CdH±0 -92 -19 Formaldehyd Etanal CdH±0 -123 20 Acetaldehyd Fenylmetanal CdH±0 -57 179 Benzaldehyd Propanal CdH±0 -57 179 Benzaldehyd Propanal CdH±0 -57 179 Benzaldehyd Propanal CdH±0 -55 65 Aceton Butanal CdH±0 -95 56 Aceton Butanon CdH±0 -95 56 Aceton Butanon CdH±0 -87 80 Metylisopropyliketon Pentan-2-on CdH±00 -87 102 Metylisopropylike					<u> </u>					
Heksan-3-ol C ₆ H ₁₄ C C ₇ H ₁₄ C C										
Sykloheksanol C ₆ H ₁₂ C0 26 161 Etan-1,2-diol C ₃ H ₁₀ O ₂ -13 197 Etylenglykol Propan-1,2,3-triol C ₃ H ₁₀ O ₂ 18 290 Glyserol, inngår i fettarten triglyserid KARBONYLFORBINDELSER Nam Formel Smp Kp Diverse Metanal CH ₂ O -92 -19 Formaldehyd Etanal CH ₂ O -57 179 Benzaldehyd Propanal CH ₆ O -55 65 Butanal CH ₆ O -55 65 Butanal CH ₆ O -97 75 Propanan CH ₆ O -95 56 Aceton Butanon CH ₆ O -95 56 Aceton Butanon CH ₆ O -97 75 Aceton Butanon CH ₆ O -97 77 102 Metylicypropyliketon Pentan-3-on CH ₆ O -77 102 Metylicypropyliketon Pentan-3-on CH ₆ O <td></td> <td></td> <td></td> <td></td> <td></td>										
Etan-1,2-diol C.Hi₀O₂ -1.3 197 Etylenglykol Propan-1,2,3-triol C.SHi₀O₃ 18 290 Glyserol, inngår i fettarten triglyserid Navn Formel Smp Kp Diverse Metanal C.H₂O -92 -19 Formaldehyd Etanal C.H₂O -57 179 Benzaldehyd Propanal C.H₂O -57 179 Benzaldehyd Propanal C.H₂O -80 48 Propionaldehyd 2-Metylpropanal C.H₂O -65 65 Butanal C.H₂O -97 75 Propanon C.H₂O -95 56 Aceton Butanon C.H₂O -93 94 Metyletylketon 3-Metylbutan-2-on C.H₂OO -39 102 Dietylketon Pentan-3-on C.SH₂OO -39 102 Dietylketon ORGANISKE SYRER Navn Formel Smp Kp Diverse Metansyre			26							
Propan-1,2,3-triol CsHaOs 18 290 Glyserol, inngår i fettarten triglyserid KARBONYLFORBINDELSER Navn Formel Smp Kp Diverse Metanal CH₂O -92 -19 Formaldehyd Etanal C₂H₀O -123 20 Acetaldehyd Fenylmetanal C₂H₀O -57 179 Benzaldehyd Propanal C₂H₀O -80 48 Propionaldehyd 2-Metylpropanal C₂H₀O -95 56 Aceton Butanal C₂H₀O -95 56 Aceton Butanon C₂H₀O -95 56 Aceton Butanon C₂H₀O -93 94 Metylerylketon 3-Metylbutan-2-on C₂H₀O -77 102 Metylproppylketon Dentan-3-on C₂H₀O -77 102 Metylproppylketon New Pothan-2-on C₃H₀O -77 102 Metylprophylketon Dev Pothan-2-on C₃H₀O			_	-	Ftylenglykol					
Navn Formel Smp Kp Diverse Etanal C.94ω0 -92 -19 Formaldehyd Etanal C.94ω0 -123 20 Acetaldehyd Fenylmetanal C.94ω0 -57 179 Benzaldehyd Propanal C.3H₀O -80 48 Propionaldehyd 2-Metylpropanal C.3H₀O -65 65 Butanal C.2H₀O -97 75 Propanon C.3H₀O -95 56 Aceton Butanon C.8H₀O -95 56 Aceton Butanon C.8H₀O -93 94 Metyletylketon 3-Metylbutan-2-on C.9H₀O -93 94 Metylspropylketon Pentan-3-on C.9H₀O -39 102 Dietylketon ORGANISKE SYRER Navn Formel Smp Kp Diverse Metansyre Cht2O2 8 101 Maursyre, pK₂ = 3,75 Etansyre Cht2O2	·									
Navn Formel Smp Kp Diverse Metanal CH2O -92 -19 Formaldehyd Etanal C2H4O -123 20 Acetaldehyd Fenylmetanal C,7H ₆ O -57 179 Benzaldehyd Propanal C3H ₆ O -80 48 Propionaldehyd 2-Metylpropanal C4H ₆ O -65 65 Butanal C4H ₆ O -97 75 Propanon C3H ₆ O -95 56 Aceton Butanol C4H ₆ O -97 75 Aceton Butanon C3H ₆ O -93 94 Metylprophylketon 3-Metylibutan-2-on C ₅ H ₁₆ O -73 102 Metylpropylketon Pentan-3-on C ₅ H ₁₆ O -77 102 Metylpropylketon OFGANISKE SYRER Navn Formel Smp Kp Diverse Netansyre CH-16O 8 101 Maursyre, pK ₂ = 3,75 Etansyre CH-	Propan-1,2,3-triol			L						
Metanal CH₂O -92 -19 Formaldehyd Etanal C₂H₄O -123 20 Acetaldehyd Fenylmetanal C₂H₄O -57 179 Benzaldehyd Propanal C₃H₄O -80 48 Propionaldehyd 2-Metylpropanal C₃H₄O -65 65 Butanal C₄H₄O -97 75 Propanon C₃H₄O -95 56 Aceton Butanon C₄H₄O -87 80 Metyletylketon 3-Metylbutan-2-on C₃H₄O -93 94 Metylgropylketon Pentan-3-on C₃H₄O -77 102 Metylgropylketon ORGANISKE SYRER Navn Formel Smp Mp Diverse Metansyre Ch²O² 8 101 Maursyre, pʎ₃ = 3,75 Etansyre C₂H₄O² 17 118 Eddiksyre, pʎ₃ = 4,87 Propansyre C₃H₄O² -21 141 Propionsyre, pʎ₃ = 4,87 2-Hydroksypropansyre </td <td colspan="10"></td>										
Etanal C₂H₄O -123 20 Acetaldehyd Fenylmetanal C₂H₄O -57 179 Benzaldehyd Propanal C₃H₄O -80 48 Propionaldehyd 2-Metylpropanal C₃H₄O -95 65 Butanal C₃H₄O -97 75 Propanon C₃H₄O -95 56 Aceton Butanon C₃H₄O -95 56 Aceton Butanon C₃H₃O -87 80 Metyletylketon 3-Metylbutan-2-on C₃H₃O -93 94 Metylpropylketon Pentan-3-on C₃H₃O -77 102 Metylpropylketon ORGANISKE SYRER Navn Formle Smp Kp Diverse Metansyre CH₂O2 8 101 Maursyre, pK₀ = 3,75 Etansyre CH₂O2 8 101 Maursyre, pK₀ = 4,87 Propansyre C₃H₀O2 -21 141 Propionsyre, pK₀ = 4,83 2-Hydroksypropansyre	-		•	•						
Fenylmetanal C7H6O -57 179 Benzaldehyd Propanal C3H6O -80 48 Propionaldehyd 2-Metylpropanal C4H8O -65 65 Butanal C4H8O -97 75 Propanon C3H6O -95 56 Aceton Butanon C4H8O -87 80 Metyletylketon 3-Metylbutan-2-on C5H10O -93 94 Metylspropylketon Pentan-2-on C5H10O -77 102 Metylspropylketon Pentan-3-on C5H10O -39 102 Dietylketon Dietylketon Proteinsyre C8H0O2 -71 102 Metylspropylketon Pentan-3-on C5H10O -39 102 Dietylketon Dietylketon Pentan-3-on C5H10O -39 102 Dietylketon Dietylseton Pentan-3-on Formel Smp Kp			_		•					
Propanal C ₃ H ₆ O -80 48 Propionaldehyd 2-Metylpropanal C ₄ H ₈ O -65 65 Butanal C ₄ H ₈ O -97 75 Propanon C ₃ H ₆ O -95 56 Aceton Butanon C ₄ H ₈ O -93 94 Metyletylketon 3-Metylbutan-2-on C ₅ H ₁₀ O -77 102 Metylpropylketon Pentan-3-on C ₅ H ₁₀ O -39 102 Dietylketon ORGANISKE SYRER Navn Formel Smp Kp Diverse Metansyre CH ₂ O ₂ 8 101 Maursyre, pK ₅ = 3,75 Etansyre CH ₂ O ₂ 8 101 Maursyre, pK ₅ = 3,75 Etansyre C ₂ H ₄ O ₂ 17 118 Eddiksyre, pK ₅ = 4,76 Propansyre C ₃ H ₆ O ₂ -21 141 Propionsyre, pK ₆ = 4,87 2-Hydroksypropansyre C ₃ H ₆ O ₃ 122 Melkesyre, pK ₆ = 3,86 3-Hydroksypropansyre C ₃ H ₆ O ₃ <td< td=""><td></td><td></td><td></td><td></td><td><u>'</u></td></td<>					<u>'</u>					
2-Metylpropanal C₄H ₈ O -65 65 Butanal C₄H ₈ O -97 75 Propanon C₃H ₈ O -95 56 Aceton Butanon C₃H ₈ O -87 80 Metyletylketon 3-Metylbutan-2-on C₃H ₁₀ O -93 94 Metylpropylketon Pentan-2-on C₃H ₁₀ O -77 102 Metylpropylketon ORGANISKE SYRER ORGANISKE SYRER Metansyre Metansyre CH ₂ O ₂ 8 101 Maursyre, pK₃ = 3,75 Etansyre CH ₂ O ₂ 17 118 Eddiksyre, pK₃ = 4,76 Propansyre C₃H ₆ O ₂ -21 141 Propionsyre, pK₃ = 4,87 2-Metylpropansyre C₃H ₆ O ₂ -21 141 Propionsyre, pK₃ = 4,87 2-Hydroksypropansyre C₃H ₆ O ₃ 122 Melkesyre, pK₃ = 3,86 3-Hydroksypropansyre C₃H ₆ O ₃ 122 Melkesyre, pK₃ = 4,83 Butansyre C₃H ₆ O ₃ 124 Melkesyre, pK₃ = 4,84 <td></td> <td></td> <td></td> <td></td> <td><u>'</u></td>					<u>'</u>					
Butanal C₄H₀O -97 75 Propanon C₃H₀O -95 56 Aceton Butanon C₄H₀O -87 80 Metyletylketon 3-Metylbutan-2-on C₅H₁₀O -93 94 Metylpropylketon Pentan-2-on C₅H₁₀O -77 102 Metylpropylketon ORGANISKE SYRER Nam Kp Diverse Metansyre CH₂O₂ 8 101 Maursyre, pʎ₂ = 3,75 Etansyre CH₂O₂ 8 101 Maursyre, pʎ₂ = 4,76 Propansyre C₃H₀O₂ 17 118 Eddiksyre, pʎ₂ = 4,87 2-Metylpropansyre C₃H₀O₂ -21 141 Propionsyre, pʎ₃ = 4,84 2-Hydroksypropansyre C₃H₀O₂ -46 154 pʎ₃ = 4,84 2-Hydroksypropansyre C₃H₀O₃ 122 Melkesyre, pʎ₃ = 3,86 Butansyre C₃H₀O₂ -5 164 Smørsyre, pʎ₃ = 4,83 Pentansyre C₃H₀O₂ -5 164 Smørsyre, pʎ₃ = 4,83	•				Propionaldenyd					
Propanon C₃H₀O -95 56 Aceton Butanon C₄H₀O -87 80 Metyletylketon 3-Metylbutan-2-on C₅H₁₀O -93 94 Metylpropylketon Pentan-2-on C₅H₁₀O -77 102 Metylpropylketon ORGANISKE SYRER Navn Formel Smp Kp Diverse Metansyre CH₂O₂ 8 101 Maursyre, pʎ₃ = 3,75 Etansyre C₂H₄O₂ 17 118 Eddiksyre, pʎ₃ = 4,76 Propansyre C₃H₀O₂ -21 141 Propinsyre, pʎ₃ = 4,87 2-Metylpropansyre C₃H₀O₂ -21 141 Propinsyre, pʎ₃ = 4,87 2-Hydroksypropansyre C₃H₀O₃ 122 Melkesyre, pʎ₃ = 3,86 3-Hydroksypropansyre C₃H₀O₃ 122 Melkesyre, pʎ₃ = 3,86 Butansyre C₄H₃O₂ -5 164 Smørsyre, pʎ₃ = 4,83 Pentansyre C₃H₃O₃O₂ -34 186 Valeriansyre, pʎ₃ = 4,83 Propandisyre C										
Butanon CaH ₈ O -87 80 Metyletylketon 3-Metylbutan-2-on C ₅ H ₁₀ O -93 94 Metylpropylketon Pentan-2-on C ₅ H ₁₀ O -77 102 Metylpropylketon ORGANISKE SYRER Navn Formel Smp Kp Diverse Metansyre CH ₂ O ₂ 8 101 Maursyre, pK₃ = 3,75 Etansyre C ₂ H ₄ O ₂ 17 118 Eddiksyre, pK₃ = 4,76 Propansyre C ₃ H ₆ O ₂ -21 141 Propionsyre, pK₃ = 4,87 2-Metylpropansyre C ₄ H ₆ O ₂ -46 154 pK₃ = 4,84 2-Hydroksypropansyre C ₃ H ₆ O ₃ 122 Melkesyre, pK₃ = 3,86 3-Hydroksypropansyre C ₃ H ₆ O ₃ Dekomponerer ved oppvarming, pK₃ = 4,51 Butansyre C ₄ H ₆ O ₂ -5 164 Smørsyre, pK₃ = 4,83 Pentansyre C ₄ H ₆ O ₂ -5 164 Smørsyre, pK₃ = 4,83 Propandisyre C ₃ H ₆ O ₂ -34 186 Valeriansyre, pK₃ = 4,83 <td></td> <td></td> <td></td> <td></td> <td></td>										
3-Metylbutan-2-on C ₅ H ₁₀ O -93 94 Metylisopropylketon Pentan-2-on C ₅ H ₁₀ O -77 102 Metylpropylketon Pentan-3-on C ₅ H ₁₀ O -39 102 Dietylketon ORGANISKE SYRER Navn Formel Smp Kp Diverse Metansyre CH ₂ O ₂ 8 101 Maursyre, pK _a = 3,75 Etansyre C ₂ H ₄ O ₂ 17 118 Eddiksyre, pK _a = 4,76 Propansyre C ₃ H ₆ O ₂ -21 141 Propionsyre, pK _a = 4,87 2-Metylpropansyre C ₄ H ₈ O ₂ -46 154 pK _a = 4,84 2-Hydroksypropansyre C ₃ H ₆ O ₃ 122 Melkesyre, pK _a = 3,86 3-Hydroksypropansyre C ₃ H ₆ O ₃ 122 Melkesyre, pK _a = 3,86 Butansyre C ₄ H ₈ O ₂ -5 164 Smørsyre, pK _a = 4,83 Pentansyre C ₅ H ₁₀ O ₂ -34 186 Valeriansyre, pK _a = 4,83 Etandisyre C ₅ H ₁₀ O ₂ -34 186 Valeriansyre, pK _a	Propanon									
Pentan-2-on C ₅ H ₁₀ O -77 102 Metylpropylketon Pentan-3-on C ₅ H ₁₀ O -39 102 Dietylketon ORGANISKE SYRER Navn Formel Smp Kp Diverse Metansyre CH ₂ O ₂ 8 101 Maursyre, pK₂ = 3,75 Etansyre C ₂ H ₄ O ₂ 17 118 Eddiksyre, pK₂ = 4,76 Propansyre C ₃ H ₆ O ₂ -21 141 Propinsyre, pK₂ = 4,87 2-Metylpropansyre C ₄ H ₈ O ₂ -46 154 pK₂ = 4,84 2-Hydroksypropansyre C ₃ H ₆ O ₃ 122 Melkesyre, pK₃ = 3,86 3-Hydroksypropansyre C ₃ H ₆ O ₃ 122 Melkesyre, pK₃ = 4,83 Pentansyre C ₃ H ₆ O ₃ Dekomponerer ved oppvarming, pK₃ = 4,51 Butansyre C ₄ H ₈ O ₂ -5 164 Smørsyre, pK₃ = 4,83 Pentansyre C ₅ H ₁₀ O ₂ -34 186 Valeriansyre, pK₃ = 4,83 Propandisyre C ₂ H ₁₀ O ₂ Malonsyre, pK₃ = 4,83 Head of the property of the property of the propert			-87		<u> </u>					
CsH₁₀O -39 102 Dietylketon ORGANISKE SYRER Navn Formel Smp Kp Diverse Metansyre CH₂O₂ 8 101 Maursyre, pK₀ = 3,75 Etansyre C₂H₄O₂ 17 118 Eddiksyre, pK₀ = 4,87 Propansyre C₃H₀O₂ -21 141 Propionsyre, pK₀ = 4,87 2-Metylpropansyre C₃H₀O₂ -46 154 pK₀ = 4,84 2-Hydroksypropansyre C₃H₀O₃ 122 Melkesyre, pK₀ = 3,86 3-Hydroksypropansyre C₃H₀O₃ Dekomponerer ved oppvarming, pK₀ = 4,51 Butansyre C₄H₀O₂ -5 164 Smørsyre, pK₀ = 4,83 Pentansyre C₃H₁₀O₂ -34 186 Valeriansyre, pK₃ = 4,83 Etandisyre C₂H₂O₄ Oksalsyre, pK₃1 = 1,25, pK₀₂ = 3,81 Propandisyre C₃H₄O₂ Malonsyre, pK₃1 = 1,25, pK₀₂ = 5,70 Askorbinsyre C₃H₃O₂ 190-192 pK₃1 = 4,17, pK₃₂ = 11,6 Benzosyre C₁H₀O₂ -51 213 Benzylacetat, lukter pære og jordbæ	-				<u> </u>					
Navn Formel Formel Smp Kp Diverse Metansyre CH2O2 8 101 Maursyre, pKa = 3,75 Etansyre C2H4O2 17 118 Eddiksyre, pKa = 4,76 Propansyre C3H6O2 -21 141 Propionsyre, pKa = 4,87 2-Metylpropansyre C4H8O2 -46 154 pKa = 4,84 2-Hydroksypropansyre C3H6O3 122 Melkesyre, pKa = 3,86 3-Hydroksypropansyre C3H6O3 Dekomponerer ved oppvarming, pKa = 4,51 Butansyre C3H6O3 Dekomponerer ved oppvarming, pKa = 4,51 Butansyre C4H8O2 -5 164 Smørsyre, pKa = 4,83 Pentansyre C5H10O2 -34 186 Valeriansyre, pKa = 4,83 Propandisyre C3H2O4 Oksalsyre, pKa = 1,25, pKa = 3,81 Propandisyre C3H4O4 Malonsyre, pKa = 1,25, pKa = 3,81 Askorbinsyre C6H8O6 190-192 pKa = 4,83 Benzosyre C7H6O2 122 250 ESTERE Navn Formel	Pentan-2-on	C ₅ H ₁₀ O	-77	102						
Navn Formel Smp Kp Diverse Metansyre CH2O2 8 101 Maursyre, pK₀ = 3,75 Etansyre C2H4O2 17 118 Eddiksyre, pK₀ = 4,76 Propansyre C3H6O2 -21 141 Propionsyre, pK₀ = 4,87 2-Metylpropansyre C4H8O2 -46 154 pk₀ = 4,84 2-Hydroksypropansyre C3H6O3 122 Melkesyre, pK₀ = 3,86 3-Hydroksypropansyre C3H6O3 126 Smørsyre, pK₀ = 4,83 4-Hydroksypropansyre C4H8O2 -5 164 Smørsyre, pK₃ = 4,83 Betandisyre C5H10O2 -34 186 Valeriansyre, pK₃ = 4,83 Propandisyre C3H40O4 Malonsyre, pK₃ = 1,25, pK₃ = 2,85, pK₃ = 2,85, pK₃ = 2,85, pK₃ = 2,85, pK₃	Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon					
Metansyre CH2O2 8 101 Maursyre, pK₀ = 3,75 Etansyre C2H4O2 17 118 Eddiksyre, pK₀ = 4,76 Propansyre C3H6O2 -21 141 Propionsyre, pK₀ = 4,87 2-Metylpropansyre C4H8O2 -46 154 pK₀ = 4,84 2-Hydroksypropansyre C3H6O3 122 Melkesyre, pK₀ = 3,86 3-Hydroksypropansyre C3H6O3 Dekomponerer ved oppvarming, pK₀ = 4,51 Butansyre C4H8O2 -5 164 Smørsyre, pK₀ = 4,83 Pentansyre C5H10O2 -34 186 Valeriansyre, pK₀ = 4,83 Etandisyre C2H2O4 Oksalsyre, pK₀ = 1,25, pK₀ = 3,81 Propandisyre C3H4O4 Malonsyre, pK₀ = 1,25, pK₀ = 3,81 Propandisyre C6H8O6 190-192 pK₀ = 1,25, pK₀ = 2,85,			ORGANISK	E SYRER						
Etansyre C₂H₄O₂ 17 118 Eddiksyre, pK₃ = 4,76 Propansyre C₃H₀O₂ -21 141 Propionsyre, pK₃ = 4,87 2-Metylpropansyre C₄H₃O₂ -46 154 pK₃ = 4,84 2-Hydroksypropansyre C₃H₀O₃ 122 Melkesyre, pK₃ = 3,86 3-Hydroksypropansyre C₃H₀O₃ Dekomponerer ved oppvarming, pK₃ = 4,51 Butansyre C₃H₀O₂ -5 164 Smørsyre, pK₃ = 4,83 Pentansyre C₅H₁₀O₂ -34 186 Valeriansyre, pK₃ = 4,83 Etandisyre C₂H₂O₄ Oksalsyre, pK₃ = 1,25, pK₃₂ = 3,81 Propandisyre C₃H₄O₄ Malonsyre, pK₃₁ = 1,25, pK₃₂ = 5,70 Askorbinsyre C₆H₂O₆ 190-192 pK₃₁ = 4,17, pK₃₂ = 11,6 Benzosyre C₂H₀O₂ 122 250 ESTERE Navn Formel Smp Kp Diverse Benzyletanat C₃H₁₀O₂ -51 213 Benzylacetat, lukter pære og jordbær Butylbutanat C₃H₁₀O₂ -98 121 Lukter banan, ananas og jordbær<	Navn	Formel	Smp	Кр	Diverse					
Propansyre C₃H₀O₂ -21 141 Propionsyre, pK₀ = 4,87 2-Metylpropansyre C₄H₀O₂ -46 154 pK₀ = 4,84 2-Hydroksypropansyre C₃H₀O₃ 122 Melkesyre, pK₀ = 3,86 3-Hydroksypropansyre C₃H₀O₃ Dekomponerer ved oppvarming, pK₀ = 4,51 Butansyre C₄H₀O₂ -5 164 Smørsyre, pK₀ = 4,83 Pentansyre C₃H₁oO₂ -34 186 Valeriansyre, pK₀ = 4,83 Etandisyre C₂H₂O₄ Oksalsyre, pK₀ = 4,83 Propandisyre C₃H₄O₄ Malonsyre, pK₀ = 1,25, pK₀ = 3,81 Propandisyre C₃H₄O₄ Malonsyre, pK₀ = 1,25, pK₀ = 3,81 Propandisyre C₃H₄O₄ Malonsyre, pK₀ = 1,25, pK₀ = 3,81 Propandisyre C₃H₀O₂ 190-192 pK₀ = 4,83 Personation Polone Polone pK₀ = 1,25, pK₀ = 2,85, pK₀ = 2,85, pK₀ = 2,85 Propandisyre C₃H₀O₂ 122 250 pK₀ = 4,83 Propandisyre C₃H₀O₂ 122 250 pS Benzosyre C₃H₀O₂ -51 213	Metansyre	CH ₂ O ₂	8	101	Maursyre, $pK_a = 3,75$					
2-Metylpropansyre C ₄ H ₈ O ₂ -46 154 pK _a = 4,84 2-Hydroksypropansyre C ₃ H ₆ O ₃ 122 Melkesyre, pK _a = 3,86 3-Hydroksypropansyre C ₃ H ₆ O ₃ Dekomponerer ved oppvarming, pK _a = 4,51 Butansyre C ₄ H ₈ O ₂ -5 164 Smørsyre, pK _a = 4,83 Pentansyre C ₅ H ₁₀ O ₂ -34 186 Valeriansyre, pK _a = 4,83 Etandisyre C ₂ H ₂ O ₄ Oksalsyre, pK _{a1} = 1,25, pK _{a2} = 3,81 Propandisyre C ₃ H ₄ O ₄ Malonsyre, pK _{a1} = 1,25, pK _{a2} = 5,70 Askorbinsyre C ₆ H ₈ O ₆ 190-192 pK _{a1} = 4,17, pK _{a2} = 11,6 Benzosyre C ₇ H ₆ O ₂ 122 250 ESTERE Navn Formel Smp Kp Diverse Benzyletanat C ₉ H ₁₀ O ₂ -51 213 Benzylacetat, lukter pære og jordbær Butylbutanat C ₈ H ₁₆ O ₂ -92 166 Lukter ananas Etylbutanat C ₆ H ₁₂ O ₂ -98 121 Lukter banan, ananas og jordbær Etyletanat <td< td=""><td>Etansyre</td><td>C₂H₄O₂</td><td>17</td><td>118</td><td>Eddiksyre, p$K_a = 4,76$</td></td<>	Etansyre	C ₂ H ₄ O ₂	17	118	Eddiksyre, p $K_a = 4,76$					
2-Hydroksypropansyre C ₃ H ₆ O ₃ 122 Melkesyre, pK _a = 3,86 3-Hydroksypropansyre C ₃ H ₆ O ₃ Dekomponerer ved oppvarming, pK _a = 4,51 Butansyre C ₄ H ₈ O ₂ -5 164 Smørsyre, pK _a = 4,83 Pentansyre C ₅ H ₁₀ O ₂ -34 186 Valeriansyre, pK _a = 4,83 Etandisyre C ₂ H ₂ O ₄ Oksalsyre, pK _{a1} = 1,25, pK _{a2} = 3,81 Propandisyre C ₃ H ₄ O ₄ Malonsyre, pK _{a1} = 1,25, pK _{a2} = 5,70 Askorbinsyre C ₆ H ₈ O ₆ 190-192 pK _{a1} = 4,17, pK _{a2} = 11,6 Benzosyre C ₇ H ₆ O ₂ 122 250 ESTERE Navn Formel Smp Kp Diverse Benzyletanat C ₉ H ₁₀ O ₂ -51 213 Benzylacetat, lukter pære og jordbær Butylbutanat C ₈ H ₁₆ O ₂ -92 166 Lukter ananas Etylbutanat C ₆ H ₁₂ O ₂ -98 121 Lukter banan, ananas og jordbær Etyletanat C ₄ H ₈ O ₂ -84 77 Etylacetat, løsemiddel Etylheptanat	Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, $pK_a = 4,87$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Metylpropansyre	C ₄ H ₈ O ₂	-46	154	pK _a = 4,84					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Melkesyre, $pK_a = 3,86$					
Butansyre $C_4H_8O_2$ -5 164 Smørsyre, p $K_a = 4,83$ Pentansyre $C_5H_{10}O_2$ -34 186 Valeriansyre, p $K_a = 4,83$ Etandisyre $C_2H_2O_4$ Oksalsyre, p $K_{a1} = 1,25$, p $K_{a2} = 3,81$ Propandisyre $C_3H_4O_4$ Malonsyre, p $K_{a1} = 2,85$, p $K_{a2} = 5,70$ Askorbinsyre $C_6H_8O_6$ 190-192 p $K_{a1} = 4,17$, p $K_{a2} = 11,6$ Benzosyre $C_7H_6O_2$ 122 250 ESTERE Navn Formel Smp Kp Diverse Benzyletanat $C_9H_{10}O_2$ -51 213 Benzylacetat, lukter pære og jordbær Butylbutanat $C_8H_{16}O_2$ -92 166 Lukter ananas Etylbutanat $C_6H_{12}O_2$ -98 121 Lukter banan, ananas og jordbær Etyletanat $C_9H_{18}O_2$ -84 77 Etylacetat, løsemiddel Etylheptanat $C_9H_{18}O_2$ -66 187 Lukter aprikos og kirsebær	3-Hydroksypropansyre	C ₃ H ₆ O ₃								
Pentansyre $C_5H_{10}O_2$ -34 186 Valeriansyre, $pK_a = 4,83$ Etandisyre $C_2H_2O_4$ Oksalsyre, $pK_{a1} = 1,25$, $pK_{a2} = 3,81$ Propandisyre $C_3H_4O_4$ Malonsyre, $pK_{a1} = 2,85$, $pK_{a2} = 5,70$ Askorbinsyre $C_6H_8O_6$ 190-192 $pK_{a1} = 4,17$, $pK_{a2} = 11,6$ Benzosyre $C_7H_6O_2$ 122 250 ESTERE Navn Formel Smp Kp Diverse Benzyletanat $C_9H_{10}O_2$ -51 213 Benzylacetat, lukter pære og jordbær Butylbutanat $C_8H_{16}O_2$ -92 166 Lukter ananas Etylbutanat $C_6H_{12}O_2$ -98 121 Lukter banan, ananas og jordbær Etyletanat $C_4H_8O_2$ -84 77 Etylacetat, løsemiddel Etylheptanat $C_9H_{18}O_2$ -66 187 Lukter aprikos og kirsebær	Butansvre	C ₄ H ₉ O ₂	-5	164	·					
Etandisyre $C_2H_2O_4$ Oksalsyre, $pK_{a1} = 1,25$, $pK_{a2} = 3,81$ Propandisyre $C_3H_4O_4$ Malonsyre, $pK_{a1} = 2,85$, $pK_{a2} = 5,70$ Askorbinsyre $C_6H_8O_6$ $190-192$ $pK_{a1} = 4,17$, $pK_{a2} = 11,6$ Benzosyre $C_7H_6O_2$ 122 250 ESTERENavnFormelSmpKpDiverseBenzyletanat $C_9H_{10}O_2$ -51 213 Benzylacetat, lukter pære og jordbærButylbutanat $C_8H_{16}O_2$ -92 166 Lukter ananasEtylbutanat $C_6H_{12}O_2$ -98 121 Lukter banan, ananas og jordbærEtyletanat $C_4H_8O_2$ -84 77 Etylacetat, løsemiddelEtylheptanat $C_9H_{18}O_2$ -66 187 Lukter aprikos og kirsebær										
Propandisyre $C_3H_4O_4$ Malonsyre, $pK_{a1} = 2,85$, $pK_{a2} = 5,70$ Askorbinsyre $C_6H_8O_6$ $190-192$ $pK_{a1} = 4,17$, $pK_{a2} = 11,6$ Benzosyre $C_7H_6O_2$ 122 250 ESTERENavnFormelSmpKpDiverseBenzyletanat $C_9H_{10}O_2$ -51 213 Benzylacetat, lukter pære og jordbærButylbutanat $C_8H_{16}O_2$ -92 166 Lukter ananasEtylbutanat $C_6H_{12}O_2$ -98 121 Lukter banan, ananas og jordbærEtyletanat $C_4H_8O_2$ -84 77 Etylacetat, løsemiddelEtylheptanat $C_9H_{18}O_2$ -66 187 Lukter aprikos og kirsebær	· · · · · · · · · · · · · · · · · · ·	_	34	100	<u> </u>					
Askorbinsyre $C_{6}H_{8}O_{6}$ 190-192 $pK_{a1}=4,17, pK_{a2}=11,6$ Benzosyre $C_{7}H_{6}O_{2}$ 122 250 ESTERE Navn Formel Smp Kp Diverse Benzyletanat $C_{9}H_{10}O_{2}$ -51 213 Benzylacetat, lukter pære og jordbær Butylbutanat $C_{8}H_{16}O_{2}$ -92 166 Lukter ananas Etylbutanat $C_{6}H_{12}O_{2}$ -98 121 Lukter banan, ananas og jordbær Etyletanat $C_{4}H_{8}O_{2}$ -84 77 Etylacetat, løsemiddel Etylheptanat $C_{9}H_{18}O_{2}$ -66 187 Lukter aprikos og kirsebær	•									
Benzosyre C ₇ H ₆ O ₂ 122 250 ESTERE Navn Formel Smp Kp Diverse Benzyletanat C ₉ H ₁₀ O ₂ -51 213 Benzylacetat, lukter pære og jordbær Butylbutanat C ₈ H ₁₆ O ₂ -92 166 Lukter ananas Etylbutanat C ₆ H ₁₂ O ₂ -98 121 Lukter banan, ananas og jordbær Etyletanat C ₄ H ₈ O ₂ -84 77 Etylacetat, løsemiddel Etylheptanat C ₉ H ₁₈ O ₂ -66 187 Lukter aprikos og kirsebær	· · · · · ·		190-192		· · · · ·					
ESTERENavnFormelSmpKpDiverseBenzyletanatC9H10O2-51213Benzylacetat, lukter pære og jordbærButylbutanatC8H16O2-92166Lukter ananasEtylbutanatC6H12O2-98121Lukter banan, ananas og jordbærEtyletanatC4H8O2-8477Etylacetat, løsemiddelEtylheptanatC9H18O2-66187Lukter aprikos og kirsebær				250	phal = 4,17, phaz = 11,0					
NavnFormelSmpKpDiverseBenzyletanat $C_9H_{10}O_2$ -51213Benzylacetat, lukter pære og jordbærButylbutanat $C_8H_{16}O_2$ -92166Lukter ananasEtylbutanat $C_6H_{12}O_2$ -98121Lukter banan, ananas og jordbærEtyletanat $C_4H_8O_2$ -8477Etylacetat, løsemiddelEtylheptanat $C_9H_{18}O_2$ -66187Lukter aprikos og kirsebær	Delizosyre	C/116O2								
Benzyletanat C9H10O2 -51 213 Benzylacetat, lukter pære og jordbær Butylbutanat C8H16O2 -92 166 Lukter ananas Etylbutanat C6H12O2 -98 121 Lukter banan, ananas og jordbær Etyletanat C4H8O2 -84 77 Etylacetat, løsemiddel Etylheptanat C9H18O2 -66 187 Lukter aprikos og kirsebær	Navn	Formel	ı	1	Diverse					
Butylbutanat C ₈ H ₁₆ O ₂ -92 166 Lukter ananas Etylbutanat C ₆ H ₁₂ O ₂ -98 121 Lukter banan, ananas og jordbær Etyletanat C ₄ H ₈ O ₂ -84 77 Etylacetat, løsemiddel Etylheptanat C ₉ H ₁₈ O ₂ -66 187 Lukter aprikos og kirsebær			-	-						
EtylbutanatC6H12O2-98121Lukter banan, ananas og jordbærEtyletanatC4H8O2-8477Etylacetat, løsemiddelEtylheptanatC9H18O2-66187Lukter aprikos og kirsebær	Benzyletanat	C9111002	31	213						
Etyletanat C ₄ H ₈ O ₂ -84 77 Etylacetat, løsemiddel Etylheptanat C ₉ H ₁₈ O ₂ -66 187 Lukter aprikos og kirsebær	Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas					
Etylheptanat C ₉ H ₁₈ O ₂ -66 187 Lukter aprikos og kirsebær	Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær					
Etylheptanat C ₉ H ₁₈ O ₂ -66 187 Lukter aprikos og kirsebær	Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel					
	-		-66	187	•					
	· · ·	C ₃ H ₆ O ₂	-80	54	·					

Eksamen REA3046 Side 48 av 56

Navn	Formel	Smp	Кр	Diverse
Etylpentanat	C ₇ H ₁₄ O	-91	146	Lukter eple
Metylbutanat	C ₅ H ₁₀ O	-86	103	Lukter eple og ananas
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple
OI	RGANISKE	FORBINDEL	SER MED N	IITROGEN
Navn	Formel	Smp	Кр	Diverse
Metylamin	CH ₅ N	-94	-6	$pK_b = 3,34$
Dimetylamin	C ₂ H ₇ N	-92	7	$pK_b = 3,27$
Trimetylamin	C ₃ H ₉ N	-117	2,87	$pK_b = 4,20$
Etylamin	C_2H_7N	-81	17	$pK_b = 3,35$
Dietylamin	C ₄ H ₁₁ N	-28	312	$pK_b = 3,16$
0	RGANISKE	FORBINDEL	SER MED I	HALOGEN
Navn	Formel	Smp	Кр	Diverse
Klormetan	CH₃CI	-98	-24	Metylklorid
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt som løsemiddel
Triklormetan	CHCl₃	-63	61	Kloroform
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid
Kloreten	C ₂ H ₃ Cl	-154	-14	Vinylklorid,monomeren i polymeren PVC

Eksamen REA3046 Side 49 av 56

Grunnstoffenes periodesystem

Gruppe 1	Gruppe 2								•	•		Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
					Forklarii							13	14	15	10	17	
1 1,008						omnummer Atommasse	35 79,90	Fargekoder	Ikke-	-metall							2 4,003
H						Symbol	Br		Halv	metall							He
2,1 Hydrogen					Elektronegat	tivitetsverdi Navn	2,8 Brom		M	etall							- Helium
						114411			1410	ctan				1			
3 6,941	4 9,012				() betyr ma			Aggregat- tilstand	Fast	stoff B		5 10,81	6 12,01	7 14,01	8 16,00	9 19,00	10 20,18
Li	Be				isotopen * Lantanoi			ved 25 °C og 1 atm	Væsk	се Н		В	С	N	0	F	Ne
1,0 Litium	1,5 Beryl-				** Aktinoid			09 1 00	Gas	ss N	1	2,0 Bor	2,5 Karbon	3,0 Nitrogen	3,5 Oksygen	4,0 Fluor	- Neon
11	lium 12											13	14	15	16	17	18
22,99 Na	24,31 Mg											26,98 Al	28,09 Si	30,97 P	32,07 S	35,45 Cl	39,95 Ar
0,9	1,2	3	4	5	6	7	8	9	10	11	12	1,5	1,8	2,1	2,5	3,0	-
Natrium	Magne- sium	3	-		0	,	•		10	11	12	Alumini- um	Silisium	Fosfor	Svovel	Klor	Argon
19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,38	31 69,72	32 72,63	33 74,92	34 78,97	35 79,90	36 83,80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0,8 Kalium	1,0 Kalsium	1,3 Scan-	1,5 Titan	1,6 Vana-	1,6 Krom	1,5 Mangan	1,8 Jern	1,9 Kobolt	1,9 Nikkel	1,9 Kobber	1,6 Sink	1,6 Gallium	1,8 Germa-	2,0 Arsen	2,4 Selen	2,8 Brom	- Krypton
37	38	dium 39	40	dium 41	42	43	44	45	46	47	48	49	nium 50	51	52	53	54
85,47 Rb	87,62 Sr	88,91 Y	91,22 Zr	92,91 Nb	95,95 Mo	(98) Tc	101,07 Ru	102,91 Rh	106,42 Pd	107,87 Ag	112,41 Cd	114,82 In	118,71 Sn	121,76 Sb	127,60 Te	126,90 I	131,29 Xe
0,8	1,0	1,2	1,4	1,6	1,8	1,9	2,2	2,2	2,2	1,9	1,7	1,7	1,7	1,8	2,1	2,4	-
Rubidium	Stron- tium	Yttrium	Zirko- nium	Niob	Molyb- den	Techne- tium	Ruthe- nium	Rhodium	Palla- dium	Sølv	Kad- mium	Indium	Tinn	Antimon	Tellur	Jod	Xenon
55 132,91	56 137,33	57 138,91	72 178,49	73 180,95	74 183,84	75 186,21	76 190,23	77 192,22	78 195,08	79 196,97	80 200,59	81 204,38	82 207,2	83 208,98	84 (209)	85 (210)	86 (222)
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0,7 Cesium	0,9 Barium	1,1 Lantan*	1,3 Hafnium	1,5 Tantal	1,7 Wolfram	1,9 Rhenium	2,2 Osmium	2,2 Iridium	2,2 Platina	2,4 Gull	1,9 Kvikk-	1,8 Thallium	1,8 Bly	1,9 Vismut	2,0 Poloni-	2,3 Astat	- Radon
87	88	89	104	105	106	107	108	109	110	111	sølv 112	113	114	115	um 116	117	118
(223) Fr	(226) Ra	(227) AC	(267) Rf	(268) Db	(269) Sg	(270) Bh	(269) Hs	(277) Mt	(281) Ds	(282) Rg	(285) Cn	(286) Nh	(290) FI	(289) Mc	(293) Lv	(294) Ts	(294) Og
0,7	0,9	1,1	-	- Dub-	-	-	-	-	-	-	-	-	-	-	-	-	-
Francium	Radium	Actinium **	Ruther- fordium	nium	Sea- borgium	Bohrium	Hassium	Meit- nerium	Darm- stadtiu	Rønt- genium	Coper- nicium	Nihoniu m	Flero- vium	Moscovi um	Liver- morium	Tenness	Oganess on
									m								
		*	57 138,91	58 140,12	59 140,91	60 144,24	61 (145)	62 150,36	63 151,96	64 157,25	65 158,93	66 162,50	67 164,93	68 167,26	69 168,93	70 173,05	71 174,97
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			1,1 Lantan	1,1 Cerium	1,1 Praseo-	1,1 Neodym	1,1 Prome-	1,2 Sama-	1,2 Euro-	1,2 Gado-	1,1 Terbium	1,2 Dyspro-	1,2 Hol-	1,2 Erbium	1,3 Thulium	1,1 Ytter-	1,3 Lute-
		**	89	90	dym 91	92	thium 93	rium 94	pium 95	linium 96	97	sium 98	mium 99	100	101	bium 102	tium 103
			(227) Ac	232,04 Th	231,04 Pa	238,03 U	(237) Np	(244) Pu	(243) Am	(247) Cm	(247) Bk	(251) Cf	(252) Es	(257) Fm	(258) Md	(259) No	(266) Lr
			1,1	1,3	1,4	1,4	1,4	1,3	1,1	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3
			Actinium	Thorium	Protacti- nium	Uran	Neptu- nium	Pluto- nium	Ame- ricium	Curium	Berke- lium	Califor- nium	Einstein- ium	Fer- mium	Mende- levium	Nobel- ium	Lawren- cium

Eksamen REA3046 Side 50 av 56

Kilder

- De fleste opplysningene er hentet fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGAVE (2008–2009), ISBN 9781420066791
- Oppdateringer er gjort ut fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 96. UTGAVE (2015-2016): http://www.hbcpnetbase.com/ (sist besøkt 16.11.15) og CRC HANDBOOK OF CHEMISTRY and PHYSICS. 103.
 - UTGAVE(https://hbcp.chemnetbase.com/faces/contents/ContentsSearch.xhtml;jsessionid=57CCC8F DEC923F2DEE95CD0D134F8706) (sist besøkt 12.10.22)
- For ustabile radioaktive grunnstoffer ble periodesystemet til «Royal Society of Chemistry» brukt: http://www.rsc.org/periodic-table (sist besøkt 15.01.15)
- Gyldendals tabeller og formler i kjemi, Kjemi 1 og Kjemi 2, Gyldendal, ISBN: 978-82-05-39274-8
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.09.2013)
- Stabilitetskonstanter: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (sist besøkt 03.12.2013) og, http://www.cem.msu.edu/~cem333/EDTATable.html (sist besøkt 03.12.2013)
- Oppdatering gjort fra: https://webbook.nist.gov/chemistry/ (sist besøkt 3.01.2024)
- Oppdatering gjort fra: https://www.degruyter.com/document/doi/10.1515/pac-2019-0603/html (sist besøkt 3.01.2024)
- Oppdatering gjort fra: https://srdata.nist.gov/solubility/version_his.aspx (sist besøkt 3.01.2024)
- Figurene 4 og 10 er laget med BioRender.

Referanser til oppgave 9

- [1] Statistisk sentralbyrå, «Statistisk sentralbyrå (ssb),» 13. 10. 2021. [Internett]. Available: https://www.ssb.no/natur-og-miljo/vann-og-avlop/statistikk/utslipp-og-rensing-av-kommunalt-avlop/artikler/1-480-tonn-fosfor-fra-norsk-avlopssektor. [Funnet 2023].
- [2] H. Ratnaweera, «Fosforgjenvinning fra avløpsvann bør vi bygge om våre renseanlegg?,» i *Innlegg på fagtreff i Norsk vannforening*, 2013.
- [3] Hias, «Hias,» 2022. [Internett]. Available: https://www.hias.as/. [Funnet 2023].

Eksamen REA3046 Side 51 av 56

Blank side

Eksamen REA3046 Side 52 av 56

Blank side

Eksamen REA3046 Side 53 av 56

Blank side

Eksamen REA3046 Side 54 av 56

Kandidatnummer:	
Svarark nr 1 av totalt_	på del 1.
Svar oppgåve 1	oppgave 1 del 1

Oppgåve 1 / oppgave 1	Skriv eitt av svaralternativa A, B, C eller D her: / Skriv ett av svaralternativene A, B, C eller D her:
a)	
b)	
c)	
d)	
е)	
f)	
g)	
h)	
i)	
j)	
k)	
I)	

Svar oppgåve 2 /oppgave 2 del 1

Орр	gåve 2 / oppgave 2	Sett eitt kryss for re kvar påstandsoppe Sett ett kryss for re hver påstandsoppe	gåve: / ett eller feil ved
2a		Rett	Feil
	I		
	II		
	III		
	IV		
2b		Rett	Feil
	I		
	II		
	III		
	IV		

Vedlegg 2 skal leverast kl. 11.00 saman med svaret på oppgåve 3, 4 og 5. / Vedlegg 2 skal leveres kl. 11.00 sammen med svaret på oppgave 3, 4 og 5.

Eksamen REA3046 Side 55 av 56

Tips til deg som akkurat har fått eksamensoppgåva:

- Start med å lese oppgåveinstruksen godt.
- Hugs å føre opp kjeldene i svaret ditt dersom du bruker kjelder.
- Les gjennom det du har skrive, før du leverer.
- Bruk tida. Det er lurt å drikke og ete undervegs.

Lykke til!

Tips til deg som akkurat har fått eksamensoppgaven:

- Start med å lese oppgaveinstruksen godt.
- Husk å føre opp kildene i svaret ditt hvis du bruker kilder.
- Les gjennom det du har skrevet, før du leverer.
- Bruk tiden. Det er lurt å drikke og spise underveis.

Lykke til!