Applications to the haplace termsform

Deprentation of the original. 2(4), \$14) , \$ (4)) -- one originals L[2(4))(p) = F(p)

$$= \begin{cases} 2[f'(h)](p) = pf(p) - f(0) \\ 2[f''(h)](p) = p^2 f(p) - pf(0) - f'(0) \end{cases}$$

- solving ordinary differential equation

we removed DF to algebraic equations for the surknown four time (FG))

we solve algebraic equations for the unknown four time (FG))

we me jointal faction expansion to express the unknown function

we have fourtal faction expansion to express the unknown function

· use use Inverse Laflace Transform to obtain the outton to the original fellow

Etwisiffer tholones with methods littleseffer

$$|x''(+) - 5x'(+) + 6x(+) = 0$$

Z[x(4)](p)=X(p) 25x"(*)]<p) - 52[x'(+)](p) + 62[x(+)](p) = 0

$$\chi(x'(4)(4) = p\chi(4) - \chi(6) = \chi\chi(4) - 1$$

$$\mathcal{L}\left[\chi^{\bullet}(+)\right](y) = p^{2}\chi(p) - p \underbrace{\chi(0)}_{n} - \underbrace{\chi'(0)}_{n} = p^{2}\chi(p) - p + 1$$

$$g^{2}X(p)-g+1-5(gX(p)-1)+6X(g)=0$$

$$X(y) \cdot (p^2 - 5p + 6) = p - 6 \Rightarrow X(p) = \frac{p - 6}{p^2 - 5p + 6} \Rightarrow X(y) = \frac{p - 6}{(p - 2)(p - 3)}$$

$$\chi(p) = \frac{p-6}{(p-2)(p-3)} = \frac{A}{(p-3)} + \frac{B}{(p-3)} = \frac{A}{(p-3)} =$$

=>
$$x(t) = \mathcal{L}^{-1} \left[\frac{4}{p-2} \right] - \mathcal{L}^{-1} \left[\frac{3}{b-3} \right] = x(t) = 4e^{-3}e^{3t}$$

2)
$$x^{(1)}(+) + x(+) = 2 \text{ and } \int_{\mathbb{R}^{2}} x^{(0)} = -1$$

$$\frac{2(x^{(1)})(y)}{2(x^{(0)})(y)} + 2(x^{(0)})(y) = 2(x^{(0)}) + 2(y)$$

$$y^{2}(x^{(0)})(y) = x^{(0)} + x^{(0)} + x^{(0)} = 2 \frac{p}{p^{2}-1}$$

$$x^{(1)} \cdot (y^{2}-1) = \frac{2p}{p^{2}-1} - 1 \qquad |x^{(1)}| = 2 \frac{p}{p^{2}-1}$$

$$-x^{(1)} \cdot 2(y^{2}-1) = \frac{2p}{p^{2}-1} - 1 \qquad |x^{(1)}| = 2(y^{2}-1) = -1$$

$$-x^{(1)} \cdot 2(y^{2}-1) = -1 \qquad |x^{(1)}| = 2(y^{2}-1) = -1$$

$$\frac{2p}{(p^{2}-1)^{2}} = (-1) \frac{1}{(p^{2}-1)^{2}} - 2(-1) \frac{1}{(p^{2}-1)^{2}} = 2(-1) \frac{1}{(p^{2}-1)^{2}} = 2(-1) \frac{1}{(p^{2}-1)^{2}} = 2(-1) \frac{1}{(p^{2}-1)^{2}} = \frac{1}{2} + 5 \sin t$$

Figure 2 \quad \text{Partial 2} \quad \text{Product 1} \quad \text{Product

Frankla:
$$f(p) = \frac{p}{(p^2 + n)^2}$$

$$2^{-1} \left(\frac{p}{(p^2 + n)^2} \right) = \frac{1}{2} f \delta \dot{\delta} h t$$

Solution:
$$\mathcal{L}^{-1}\left[\frac{p}{p^{2}+1}\right] = \mathcal{L}^{-1}\left[-\frac{1}{2}\left(\frac{1}{p^{2}+1}\right)^{1}\right] = \frac{1}{2}\mathcal{L}^{-1}\left[(-1)\cdot\left(\frac{1}{p^{2}+1}\right)^{1}\right] = \frac{1}{2}\mathcal{L}^{-1}\left[(-1)\cdot\left(\frac{1}{p^{2}+1}\right)^{2}\right] = \frac{1}{2}\mathcal{L}^{-1}\left[\frac{1}{p^{2}+1}\right]^{2}$$

$$= \frac{1}{2}\mathcal{L}^{-1}\left[\frac{1}{p^{2}+1}\right]^{2}$$

System of differential equations with constant coefficients
$$\begin{cases} x'(t) = 3x(t) - y(t) & x(0) = 1 \\ y'(t) = -9x(t) + 3y(t) & y'(0) = 0 \end{cases}$$

$$\frac{\partial}{\partial x} \left(y'(t) \right) \left(y \right) = \frac{\partial}{\partial x} \left(x(t) \right) \left(y \right) + \frac{\partial}{\partial x} \left(y(t) \right) \left(y \right) \right) \\
= \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial x} \left(y \right) - \frac{\partial}{\partial x} \left(y \right) + \frac{\partial}$$

$$\frac{1}{\sqrt{p}} = \frac{-g}{p(p-6)} = -g \frac{1}{p(p-6)} = \frac{-g}{-6} \cdot \frac{p-6}{p-6} = \frac{3}{2} \left(\frac{1}{p} - \frac{1}{p-6}\right)$$

$$= \frac{3}{2} \left(\frac{1}{p} - \frac{1}{p-6}\right)$$

Trigged equations

Sundution of nightals f(t),g(t) originals

The function $f(t)g(t-\delta)d\delta$ is called the consolution of the functions $f(t)g(t) = f(t)g(t-\delta)d\delta$ Ind $f(t)g(t)=f(t)g(t)d\delta$ $f(t)g(t)=f(t)g(t)d\delta$ $f(t)g(t)=f(t)g(t)d\delta$

14

Fixed-differential equations

5) $y'(t) + \int u \cdot y(t-u) du = t$ $y'(t) = \int u \cdot y(t-u) du = t$

$$\frac{1}{6^{2}-1} = \frac{1}{6^{2}-1} = \frac{1}{6^{2}-$$

New Section 1 Page 5

$$=) \times (p) = \frac{1}{2p} + \frac{3}{p-1} / Q^{+}$$

$$=) \times (+) = \frac{1}{2} + \frac{3}{2} \cos 2t$$

$$7) \int_{(x < 0)} \times (+) + 3 \times (+) + 2 \times (+) = e^{-t} / Q$$

$$= \int_{(x < 0)} \times (+) + 3 \times (+) + 2 \times (+) = e^{-t} / Q$$

$$= \int_{(x < 0)} \times (+) + 3 \times (+) + 2 \times (+) = e^{-t} / Q$$

$$= \int_{(x < 0)} \times (+) \times (+) + 2 \times (+) = e^{-t} / Q$$

$$= \int_{(x < 0)} \times (+) \times (+) + 2 \times (+) = e^{-t} / Q$$

$$= \int_{(x < 0)} \times (+) \times (+) + 2 \times (+) +$$