Homework 04

Spencer Pease

4/27/2020

Questions

Q1

Q1.a

We can generally define the posterior distribution as the product of a likelihood and prior function:

$$\begin{aligned} & \text{posterior} \propto \text{likelihood} \times \text{prior} \\ & P(\theta \mid X = x) \propto P(X = x \mid \theta) \times P(\theta) \end{aligned}$$

where, given the parameters of the problem, the likelihood takes the form of a binomial distribution, and the prior probability follows a uniform distribution (or, a beta distribution with $\alpha = \beta = 1$):

$$X \mid \theta \sim \text{Binomial}(X, \theta)$$
$$\theta \sim \text{Beta}(1, 1)$$

We can define our binomial as the function $f_{bin}(k, n, p)$, where this describes getting exactly k successes in n trials, each with a probability p of occurring.

$$f_{bin}(k,n,p) = f_{bin}(k,n,\theta) = P(X=k \mid \theta;n) = {n \choose k} \theta^k (1-\theta)^{n-k}$$

Since the prior, θ , is a beta distribution, it acts as a conjugate prior for the binomial likelihood function. From this, we know that the posterior distribution will also be a beta distribution in the form:

$$f_{post}(\theta, k, \alpha, \beta) = P(\theta \mid X = k; \alpha, \beta) = \text{Beta}(\alpha + k, n - k + \beta)$$

From the problem, we know k = 43 divorces occurred over the period 2005-2015 from a sample of n = 112 married people in 2005. This leads us to our final analytic posterior distribution:

$$\begin{split} P(\theta \mid X = k; \alpha, \beta, n) &= \text{Beta}(\alpha + k, n - k + \beta) \\ P(\theta \mid X = 43; 1, 1, 112) &= \text{Beta}(1 + 43, 112 - 43 + 1) \\ &= \text{Beta}(44, 70) \end{split}$$

Q1.b

From our analytic posterior distribution of θ , we simulate a new sample of 1,000 people. From this sample, we can get a 95% Bayesian confidence interval for θ by pulling the 2.5th and 97.5th percentile of the data.

Table 1: Posterior distribution summary

Mean	Median	95% Low	95% High
0.385	0.383	0.301	0.476

Q1.c

With the new sample from our posterior, we can plot a nonparametric density estimate for our posterior. The true distribution is also included for reference. Both density curves use a Gaussian kernel.

Probability of Divorce by 2015, Given Marriage in 2005

Posterior density estimate (Gaussian kernel)

Q2

In this scenario, we take both our likelihood and prior distributions to be normal:

$$X \mid \theta \propto N(\theta, \sigma^2)$$
$$\theta \propto N(\mu, \tau^2)$$

where we are given $\mu = 10$, $\tau = 3$, and $\sigma = 4$.

Since the normal distribution is a conjugate prior with itself, we know that the form of the the posterior distribution must be:

$$\begin{split} P(X=x;\mu,\tau,\sigma) &= N\left(\frac{\tau^2}{\sigma^2+\tau^2}x + \frac{\sigma^2}{\sigma^2+\tau^2}\mu, \frac{\sigma^2\tau^2}{\sigma^2+\tau^2}\right) \\ P(X=9.46;10,3,4) &= N\left(\frac{3^2}{4^2+3^2}9.46 + \frac{4^2}{4^2+3^2}(10), \frac{4^23^2}{4^2+3^2}\right) \\ &= N\left(\frac{9}{25}9.46 + \frac{160}{25}, \frac{144}{25}\right) \\ &= N(9.81,5.76) \end{split}$$

with x = 9.46, our observed mean.

We can draw 1,000 new values from this posterior distribution to get a new sample. From this sample, we can get a 95% Bayesian confidence interval for θ by pulling the 2.5th and 97.5th percentile of the data.

Table 2: Posterior distribution summary

Mean	Median	95% Low	95% High
9.617	9.72	-0.803	20.439

Again, we can compare the posterior kernel density estimate of the new draws to the true distribution (with a Gaussian kernel):

Mean Study Time

Posterior density estimate (Gaussian kernel)

Appendix

```
# Load libraries
library(ggplot2)
library(tibble)
library(tidyr)
# Helper functions
post_draws_density <- function(data, ...) {</pre>
 ggplot(data, aes(...)) +
   geom_density() +
   theme_bw() +
   theme(
     text = element_text(family = "serif"),
     legend.position = "bottom"
   ) +
   labs(
     subtitle = paste0("Posterior density estimate (Gaussian kernel)"),
     y = "Density",
     color = "Type"
}
# Control randomness
set.seed(9876)
# Question 1 -----
prior_a <- 1
prior_b <- 1</pre>
n_married <- 112
divorced_n_obs <- 43</pre>
# Question 1a -----
divorced_posterior <- function(n) {</pre>
 rbeta(n, prior_a + divorced_n_obs, n_married - divorced_n_obs + prior_b)
}
# Question 1b ------
divorced_n_sims <- 1000
## NOTE: Not the way to do this, but still useful reference
# divorced_prob_obs <- divorced_n_obs / n_married</pre>
```

```
# divorced_dist <- function(n, p) rbinom(n, n_married, p)</pre>
# divorced_prior_dist <- function(n) rbeta(n, 1, 1)
# divorced_prob_draws <- divorced_prior_dist(divorced_n_sims)</pre>
# divorced_dist_draws <- divorced_dist(divorced_n_sims, divorced_prob_draws)
# divorced_post_dist <- divorced_prob_draws[divorced_dist_draws == divorced_n_obs]
divorced_posterior_draws <- divorced_posterior(divorced_n_sims)</pre>
divorced_post_tbl <- tibble(</pre>
 Mean = mean(divorced_posterior_draws),
  Median = quantile(divorced posterior draws, .5),
  '95% Low' = quantile(divorced_posterior_draws, .025),
  `95% High` = quantile(divorced_posterior_draws, .975)
knitr::kable(
  divorced_post_tbl,
  booktabs = TRUE,
 digits = 3,
  caption = "Posterior distribution summary"
# Question 1c -----
divorced_true_post <- tibble(</pre>
 value = qbeta(seq(0, 1, .001), 44, 77),
  type = "True Distribution"
divorced_est_post <- tibble(</pre>
 value = divorced_posterior_draws,
  type = "Estimate"
divorced_post_compare_tbl <- dplyr::bind_rows(</pre>
  divorced_true_post, divorced_est_post
divorced_post_plot <-
  post_draws_density(divorced_post_compare_tbl, x = value, color = type) +
  labs(
   title = "Probability of Divorce by 2015, Given Marriage in 2005",
    x = "Probability of Divorce"
  )
divorced_post_plot
study_obs <- c(
```

```
2.1, 9.8, 13.9, 11.3, 8.9, 15.7, 16.4, 4.5, 8.9, 11.9, 12.5, 11.1, 11.6,
 14.5, 9.6, 7.4, 3.3, 9.1, 9.4, 6.0, 7.4, 8.5, 1.6, 11.4, 9.7
study_obs_mean <- mean(study_obs)</pre>
study_true_sd <- 4
study_prior_mean <- 10
study_prior_sd <- 3
study_post_mean <- `+`(
  study_prior_sd^2 / (study_true_sd^2 + study_prior_sd^2) * study_obs_mean,
  study_true_sd^2 / (study_true_sd^2 + study_prior_sd^2) * study_prior_mean
study_post_sd <- study_true_sd^2 * study_prior_sd^2 / (study_true_sd^2 + study_prior_sd^2)
study_posterior <- function(n) rnorm(n, study_post_mean, study_post_sd)
study_n_sims <- 1000
study_posterior_draws <- study_posterior(study_n_sims)</pre>
study_post_tbl <- tibble(</pre>
 Mean = mean(study_posterior_draws),
  Median = quantile(study posterior draws, .5),
  '95% Low' = quantile(study_posterior_draws, .025),
  '95% High' = quantile(study_posterior_draws, .975)
knitr::kable(
  study_post_tbl,
  booktabs = TRUE,
  digits = 3,
  caption = "Posterior distribution summary"
study_true_post <- tibble(</pre>
  value = qnorm(seq(0, 1, .001), study_post_mean, study_post_sd),
  type = "True Distribution"
study_est_post <- tibble(</pre>
 value = study_posterior_draws,
  type = "Estimate"
study_post_compare_tbl <- dplyr::bind_rows(</pre>
  study_true_post, study_est_post
```

```
divorced_post_plot <-
   post_draws_density(study_post_compare_tbl, x = value, color = type) +
   labs(
      title = "Mean Study Time",
      x = "Mean Study Time (hours)"
   )

divorced_post_plot</pre>
```