Probability and Statistics: Lesson 1

Morgan McCarty

03 July 2023

1 General Overview

1.1 Definitions

Experiment: procedure with undetermined <u>outcomes</u> Sample Space: (S.S. or S) <u>set</u> of all possible outcomes

Set: a collection of things

Countable: can be put in one-to-one correspondence with the natural numbers (integers are countable)

<u>Discrete</u>: finite or countable

<u>Continuous</u>: uncountable (in opposition to discrete)

Universal Set: set of all possible outcomes equivalent to the sample space in a Probability experiment

1.2 Symbols

• \in : $x \in S$: x is an element of S

• \notin : $x \notin S$ x is not an element of S

1.3 Examples

- - Experiment: flip a coin
 - Sample Space: $\{H, T\}$ Sample Space is **finite**
- - Experiment: flip a coin until we get a tails
 - Sample Space: $\{T, HT, HHT, HHHT, \cdots\}$ Sample Space is **infinite**, but **countable**
- - Experiment: pick a number in the interval [0,1]
 - Sample Space: [0,1] or $\{x \in \mathbb{R} \mid 0 \le x \le 1\}$ Sample Space is **infinite**, and **not countable**

2 Events

2.1 Definitions

<u>Subset</u>: a set whose elements are all contained in another (super)set, additionally every set is a subset of itself and the empty set is a subset of every set

Event: a subset of the sample space

2.2 Symbols

- \subseteq : $A \subseteq B$: A is a subset of B
- \subset : $A \subset B$: A is a proper subset of B (at least one element of B is not in A)
- \emptyset : the empty set

2.3 Examples

- - Roll a six-sided die
 - $\begin{array}{l} -\ S = \{1,2,3,4,5,6\} \\ \text{Sample Space is finite} \end{array}$
 - Events:
 - * Event of rolling even numbers: $A = \{2, 4, 6\}$
 - * Event of rollng a "6": $B = \{6\}$
 - * Event of rollling a prime number: $C=\{2,3,5\}$
 - * Event of rolling a number 7 or greater: $D = \emptyset$