Analysis Plan for Project 2

1. Data Cleaning and Preprocessing

- (1) **load and label the training data**: create 'neighborhood' and 'id' columns to identify the records.
- (2) **Combined Variables:** Exterior and LotInfo are concatenated (e.g., "Inside;Reg;6120;51"). Split these into separate variables (LotInfo splits to LotLocation, LotShape, LotArea, LotFrontage; Exterior splits to Exterior1st, ExterQual, ExterCond).
- (3) one-hot encoding for categorical features by 'pd.get_dummies'
- (4) **Feature Alignment:** Since feature sets differ slightly across neighborhoods, align three datasets to a common set of features.
- (5) **Missing Values:** use median imputation for numeric variables, mode for categorical to handle missing values.

2. Feature Engineering

Use linear regression to identify the in-significant variables. Analysis the Correlation matrix to remove multicollinear variables. Feature importance from tree-based models.

3. Dimension Reduction

explore PCA (Principal Component Analysis) if feature space becomes large and models suffer from overfitting or high variance. PCA may be applied after one-hot encoding and standardization.

4. Model Selection and Evaluation

plan to explore and compare the following models:

Model	
Linear Regression	Baseline model;
Ridge & Lasso	To handle multicollinearity and regularization
Random Forest	Handles non-linearities well, feature importance
XGBoost	Strong performance with boosting and fine-tuning
K-Nearest Neighbors	Simple, distance-based, sensitive to scaling

Models will be trained and tuned using 10-fold cross-validation within training dataset.