Experiment 7 Adwait Naravane 19MS151

March 10, 2022

Aim

Study of operational Amplifier (OP-AMP) as inverting and non-inverting amplifier and its various applications.

Results

OP-AMP as an inverting amplifier

The inverting amplifier produces an output which is out of phase by 180. The output pulse therefore will have an opposite sign that of the input.

Input Voltage (V_{in})	0.5	1	1.5	1.75	2
Output Voltage (V_{out})	4.987	9.99	14.99	17.49	19.99
Measured Gain (V_o/V_{in})	9.974	9.99	9.993	9.994	9.995
Average gain			9.9893		
Theoretical gain (R_f/R_i)			10		
for $R_f = 22\Omega \& R_i = 2.2\Omega$					

Input Voltage (V_{in})	0.5	1	2	3	4
Output Voltage (V_{out}) Measured Gain (V_o/V_{in}) Average gain Theoretical gain (R_f/R_i) for $R_f = 2.2\Omega \& R_i = 1\Omega$	1.097 2.194		4.397 2.1985 2.1975 2.2	6.597 2.199	8.797 2.19925
Output Voltage (V_{out}) Measured Gain (V_o/V_{in}) Average gain Theoretical gain (R_f/R_i) for $R_f = 2.2\Omega$ & $R_i = 2\Omega$	0.547 1.094	1.098 1.098		3.298 1.0993	4.398 1.0995
Output Voltage (V_{out}) Measured Gain (V_o/V_{in}) Average gain Theoretical gain (R_f/R_i) for $R_f = 10\Omega \& R_i = 2\Omega$	2.266 4.532	4.539 4.539			

OP-AMP as a non-inverting amplifier

$V_{in}(V)$	1	1.5	3	6
$V_{out}(V)$	3.003	4.503	9.003	18
Measured $Gain(V_0/V_i)$	3.003	3.002	3.001	3
Average gain			3.0015	
Theo. Gain		3		
for $R_f = 2k\Omega \& R_i = 1k\Omega$				
$V_{out}(V)$	4.004	6.004	12	20.6
Measured $Gain(V_0/V_i)$	4.004	4.0027	4	3.435
Average gain			3.8604	
Theo. Gain		4		
for $R_f = 3k\Omega \& R_i = 1k\Omega$				
$V_{out}(V)$	2.503	3.753	7.503	15
Measured $Gain(V_0/V_i)$	2.503	2.502	2.501	2.5
Average gain			2.5015	
Theo. Gain		2.5		
for $R_f = 3k\Omega \& R_i = 2k\Omega$				
$V_{in}(V)$	0.5	1	1.5	1.8
$V_{out}(V)$	5.511	11.01	16.51	19.81
Measured $Gain(V_0/V_i)$	11.022	2 11.01	11.007	11.006
Average gain			11.012	
Theo. Gain		11		
for $R_f = 10k\Omega \& R_i = 1k\Omega$				

Inverting OP-Amp is an operational amplifier circuit, its output voltage is in phase with the input.

OP-AMP as an adder

$V_1(V)$	$V_2(V)$	$V_3(V)$	Measured V_{out}	Theo. $V_o(V_1 + V_2 + V_3)$
1	1	1	2.996	3
1	1	2	3.996	4
3	1	2	5.996	6
3	4	2	8.996	9
3	4	5	12	12
4	4	5	13	13
4	6	5	15	15
0.5	0.6	0.1	1.196	1.2
1.2	0.6	0.2	1.996	2
1	0.6	0.2	1.796	1.8

The output from this circuit is the sum of its input voltages applied at the inverting terminal.

OP-AMP as a subtractor

$V_1(V)$	$V_2(V)$	Measured V_o	Theo $V_o = V_2 - V_1$
1	1	0.00198	0
1	2	1.002	1
3	1	1.998	2
3	4	1.002	1
2	4	2.002	2
1	6	5.002	5
0.5	0.6	0.102	0.1
20	10	10	10
1	10	9.002	9

This circuit gives an output which is equal to the difference in the input voltages applied at the non-inverting and inverting terminals respectively.

OP-AMP as a unit gain buffer

V_{in}	V_{out}	Measured gain	Average gain	Theo. Gain $(1 + R_f/R_i)$
1	1.001	1.001		
1.5	1.501	1.001	1.0006	
2	2.001	1.0005		1
5	5.001	1.0002		

A unit gain amplifier is an electronic amplifier circuit that does not amplify the input voltage. It has a gain of 1, therefore the output is same as the input signal.