# EE223 Analog Integrated Circuits Fall 2018

Lecture 3: Review of Basics2

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

#### **HW #1**

All homework problems should be done individually and submitted by 6PM on the due date.

Submission: Email to <a href="mailto:sang-soo.lee@sjsu.edu">sang-soo.lee@sjsu.edu</a>

File name convention: EE223HW#1\_your\_name

- HW#1 Cadence exercise → Due: Sept 12, Wed 6PM
- HW#2 Single Stage Amplifier
- HW#3 Beta Multiplier with Startup circuit
- HW#4 OTA
- HW#5 Two stage opamp

## **Analog Design Philosophy 1**

- Never rely on absolute accuracy
  - R variation ~ ±20%, C variation ~ ±10%
  - Always use relative accuracy, typically 0.1 ~ 2%
- Always use the same W and L, same orientation for accurate matching
  - Do not vary W to control current value
  - Do not run the metal line over matched transistor pairs
  - Do not use minimum L for matched transistors
  - Use higher L/W ratio (preferably 10 or larger) for matched resistors
  - Try to use unit resistor with same W and L for resistors need matching
- Watch out for IR drop as current flows
  - For biasing, use current distribution rather than voltage distribution
- Watch out for nonlinearity due to body effect in Source Follower
- Avoid excess bandwidth and watch out for flicker noise
- Avoid a loop in cascode bias circuit. Check start up condition

## **Analog Design Philosophy 2**

- In N-well CMOS process, tie the bulk of the PMOS differential pair to its own well if at all possible
- Make sure that all the transistors are in Saturation unless they are designed for linear operation
- Use differential circuit architecture as much as possible
- For 10-bit accuracy
  - Amplifier requires 7 time constants to settle
  - Unity gain frequency (GBW) of the amplifier should be more than 1.1 times the signal frequency of operation
- Simulate over PVT (corner and worst cases), and understand the weak point in the circuit
- Amplifier stability check
  - Make sure to check both phase and gain margins
  - Use transient simulation to verify ac stability
- Implement register programmability if unsure about process variations
- Make sure that the logic level is well defined for digital circuits used in analog blocks

## **Chip Design Hierarchy**

- System design define spec
- Building Block define block spec
- Circuit design
- Device/Components modeling & design
  - Resistors
  - Capacitors
  - > PN Diodes
  - Transistors : Bipolar (NPN & PNP) CMOS (NMOS & PMOS)

#### **Circuit Design Consideration**

#### Performance

- Small-signal response
  - Gain, bandwidth
- Large-signal response
  - Settling time, delay
- Sensitivity over PVT (process, voltage supply, temperature)
- Stability

#### Basic design tasks

- AC circuit: signal path
- DC circuit: Biasing
- General design approach
  - Generally designed from output to input

# **Two-Stage OPAMP**



## **Abstraction Levels in Circuit Design**



#### **Device Types**

- □ Active
  - MOS Transistors
  - Bipolar Transistors
  - Diodes
- Passive
  - Resistors
  - Capacitors
  - Inductors
- Interconnect

#### **Resistors**





## **Capacitors**





#### **Inductors**



- Inductors are generally very large
  - A typical inductor area (100μm x 100μm)
- Essential component in RF circuits

#### Interconnect



1 µm



90nm

45nm

#### Interconnect

Loose pitch + thick metal on upper layers

- High speed global wires
- · Low resistance power grid

Tight pitch on lower layers

 Maximum density for local interconnects

[Bohr ISSCC 2009]



Pitch (nm)

M8 810

M7 560

M6 360

M5 280

M4 240

M3 160

M2 160

M1 160

45nm

#### **Periodic Table of the Elements**



15

## pn Junction



Figure 2.16 pn junction.

## pn Junction



## pn Junction in Reverse Bias



Figure 2.24 Reduction of junction capacitance with reverse bias.

## **Junction Capacitance in Reverse Bias**

$$C_{j} = \frac{C_{j0}}{\sqrt{1 - \frac{V_{R}}{V_{0}}}}$$

Figure 2.25 Junction capacitance under reverse bias.

## **PN Junction Energy Band Diagram**



$$V_{bi} = \frac{E_{fn} - E_{fp}}{q} = \frac{kT}{q} \cdot \ln \frac{N_A N_D}{n_i^2}$$

#### **Diode I/V Characteristics**



Figure 2.31 I/V characteristic of a pn junction.

#### **Diodes**



Typical values:

 $P^{+}=10^{17}-10^{19}$  acceptors /cm<sup>3</sup>

 $P=10^{15}-10^{17}$  acceptors /cm<sup>3</sup>

 $N=10^{16}-10^{18} \text{ donors/cm}^3$ 

 $N^{+}=10^{17}-10^{19} \text{ donors/cm}^{3}$ 

Metal  $\rightarrow$  5x10<sup>22</sup> electrons/cm<sup>3</sup>



## **Bipolar Transistors**





#### **MOS Transistor Symbol**

#### NMOS cross-section



NMOS symbol



(a) NMOS device with body tied to ground.



(c) Bipolar-derived NMOS symbol with body tied to ground.



(e) NMOS symbol where the arrow indicates the p-substrate to n-channel diode.



PMOS symbol

(b) PMOS device with body tied to VDD.



(d) Bipolar-derived PMOS symbol with body tied to VDD.



(f) PMOS symbol where the arrow indicates the n-well to p-channel diode.

#### **NMOS Structure**



Figure 5.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically  $L=0.03~\mu \text{m}$  to  $1~\mu \text{m}$ ,  $W=0.05~\mu \text{m}$  to  $100~\mu \text{m}$ , and the thickness of the oxide layer  $(t_{ox})$  is in the range of 1 to 10 nm.

#### **NMOS**





n+ Source

p- substrate n+ Drain

## **MOSFET Analogy**

- A MOSFET transistor is nothing more than a voltage controlled switch!
- A transistor is just like a light switch on a wall, except that a voltage is used to turn the switch on and off instead of a lever.
- A good analogy to a transistor is two lakes connected by a canal.



- The "flood gate" regulates the flow of water between the two lakes (source and drain).
- A real transistor switches the flow of electric current on and off instead of water.

#### **MOSFET Operation**

 Current (water) will not flow from an n-type reservoir to a p-type region because it would have to flow uphill.



- Only way we can get water from one n-type reservoir to another is by way of a n-type channel.
- By using a capacitor and applying a positive voltage to that capacitor, we can change the apparent conductivity of the channel from p to n and turn the transistor on.
- In reality, the drain is usually at a lower elevation than the source so the water will flow downhill to the drain.

## **MOSFET Operation**

- A MOS transistor is nothing more than a voltage-controlled switch.
- A MOS transistor is really just a capacitor with two extra terminals.



## NMOS I<sub>d</sub>-V<sub>ds</sub> Characteristics



Figure 5.7 The drain current  $i_D$  versus the drain-to-source voltage  $v_{DS}$  for an enhancement-type NMOS transistor operated with  $v_{QS} = V_L + V_{QV}$ .

$$i_D = k_n' \left(\frac{W}{L}\right) \left[ (v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right] \qquad \qquad i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) (v_{GS} - V_t)^2$$

#### **NMOS I-V Characteristics**



Figure 5.13 The  $i_D - v_{DS}$  characteristics for an enhancement-type NMOS transistor.

#### **Channel Length Modulation**



Figure 6.25 Variation of  $I_D$  in saturation region.

$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS}) \qquad r_O = \frac{\Delta V_{DS}}{\Delta I_D}$$

#### **Channel Length Modulation**

$$r_O = \frac{\Delta V_{DS}}{\Delta I_D}$$



Figure 6.26 Channel-length modulation.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

#### **MOS Transconductance in Saturation**

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

$$g_{m} = \mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{TH})$$

$$g_{m} = \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}}$$

$$g_{m} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

$$g_m = \frac{2I_D}{V_{GS} - V_{TH}}$$

#### **Body Effect**



Figure 6.28 Body effect.

$$V_{TH} = V_{TH0} + \gamma (\sqrt{|2\phi_F + V_{SB}|} - \sqrt{|2\phi_F|})$$

$$\gamma = \sqrt{2q\epsilon_{si}N_{sub}}/C_{ox}$$