3.2.1 Dynamics

3.2	.1 Dyna	amics	
	Lear	ning outcomes	Additional guidance
		ners should be able to demonstrate and ly their knowledge and understanding of:	
(a)	net f	orce = mass × acceleration; F = ma	Learners will also be expected to recall this equation. M1.1
(b)	the r	newton as the unit of force	
(c)	weig	ht of an object; <i>W</i> = <i>mg</i>	Learners will also be expected to recall this equation.
(d)	d) the terms tension, normal contact force, upthrust and friction		t
(e)	free-	body diagrams	
(f)	 one- and two-dimensional motion under constant force. 		
3.2	.2 Mot	ion with non-uniform acceleration	
	Lear	ning outcomes	Additional guidance
		ners should be able to demonstrate and ly their knowledge and understanding of:	
(a)	(a) drag as the frictional force experienced by an object travelling through a fluid		
(b)		ors affecting drag for an object travelling ugh air	HSW6
(c)		on of objects falling in a uniform tational field in the presence of drag	HSW9
(d)	(i)	terminal velocity	HSW1, 5
	(ii)	techniques and procedures used to determine terminal velocity in fluids.	PAG1 e.g. ball-bearing in a viscous liquid or cones ir air. HSW4 Investigating factors affecting terminal
			velocity.
	quilibr		Additional quidance
L	Learner	s should be able to demonstrate and	Additional guidance
		eir knowledge and understanding of:	
	moment of force		
	couple; torque of a couple		
	the principle of moments		
	centre of mass; centre of gravity; experimental determination of centre of gravity		
		um of an object under the action of nd torques	
		n for equilibrium of three coplanar riangle of forces.	M4.1, M4.2, M4.4
2.4 0	ensity	and pressure	
L	earning.	goutcomes	Additional guidance
		s should be able to demonstrate and neir knowledge and understanding of:	
d	lensity;	$ \rho = \frac{m}{V} $	M0.1, M4.3
р	oressure	e; $p = \frac{F}{A}$ for solids, liquids and gases	
		; upthrust on an object in a fluid; des' principle.	M2.1 HSW4, 7, 11

- (6) M Recall basic forces and draw free body force diagrams
 (7) S Recall and apply the equation for resultant force
 (8) C Find the acceleration of an object acted on by more than one force.

Forces and mass

STARTER: How many forces can you name?

Extension: What is a force? what can its do? How do we represent

them?

▼ Table 1 A summary of key forces

Force	Comment	Force diagram
weight	the gravitational force acting on an object through its centre of mass	toy car weight
friction	the force that arises when two surfaces rub against each other	motion of box friction box
drag	the resistive force on an object travelling through a fluid (e.g., air and water); the same as friction	motion shuttle cock
tension	the force within a stretched cable or rope	stretched rope tension
upthrust	an upward buoyancy force acting on an object when it is in a fluid	upthrust toy boat
norma contact force	a force arising when one object rests against another object	normal box contact force

- (6) M Recall basic forces and draw free body force diagrams
- (7) S Recall and apply the equation for resultant force
- (8) C Find the acceleration of an object acted on by more than one force.

Force and mass 0:02:52 Starter Compare and contrast mass and weight. ▲ Figure 1 One of the UK's three Add to your map after the video. Consider, standard kilograms, a 39.17 mm high cylinder of platinum-iridium alloy stored in a bell jar at the National Physical definitions, basic equations that relate them, units. Laboratory Weight Mass the grand k **Ex:** How could you change your weight without changing your mass? How could you change your mass without changing the number of particles that make up your body?

(6) M - Recall basic forces and draw free body force diagrams	(6) M -	Recall basic	forces and	draw free	body force	diagrams
---	---------	--------------	------------	-----------	------------	----------

(7) S - Recall and apply the equation for resultant force

(8) C - Find the acceleration of an object acted on by more than one force.

Elevator	examp	<u>le problem</u>

A 75kg man stands on a balance in an elevator. When the elevator begins to rise, the balance reads 100kg.

What is the acceleration of the person?

S

Answer

The balance is the reading of the normal contact force.

$$N_{UP} = mg + ma = 100 kg$$

$$N_{REST} = mg = 75 \text{ kg}$$

- (6) M Recall basic forces and draw free body force diagrams
- (7) S Recall and apply the equation for resultant force
- (8) C Find the acceleration of an object acted on by more than one force.

Forces and mass

Activity: Complete the worksheet questions.

Ex: Start from higher level.

Higher level

7 The diagram shows the horizontal forces acting on a motorbike and its rider travelling along a level road. The total mass of the rider and the motorbike is 160 kg. Determine the acceleration of the motorbike.

Extension

9 The diagram shows the horizontal forces acting on a 920 kg car.

The total forward force acting on the car is 400 N. The drag on the car depends on its speed ν and is given by the expression:

$$drag = 0.3v^2$$

- **a** At a particular instant the car is travelling at a speed of 20 m s⁻¹. Calculate:
 - i the net force on the car

[2]

[3]

ii the acceleration of the car.

[2]

b Explain why you cannot use

$$v = u + at$$

to determine the velocity of the car after a time t.

[1]

10 The diagram shows an 80 kg person in a lift.

The normal contact force acting on the person from the base of the lift is R. Determine the magnitude of R when the lift:

- a is travelling upwards at a constant velocity of 2.0 m s⁻¹
- **b** is accelerated upwards at 2.3 m s^{-2} .

[2] [3]

- (7) S Recall and apply the equation for resultant force
- (8) C Find the acceleration of an object acted on by more than one force.

Mini plenary

F=T-W T=F+W

A rocket of mass 12 000 kg accelerates vertically upwards from the surface of the Earth at 1.4 m s⁻².

.

- **A** 1.7 × 10⁴ N
- **B** 1.7 × 10⁵ N
- C 1.3 × 10⁵ N
- D 1.6 × 10⁵ N

0

Mini plenary

An object of mass 7.0 kg is pulled vertically upwards by a rope. The acceleration of the object is 2.0 m s^{-2} .

What is the tension in the rope?

- A. 14 N
- B. 55 N
- C. 69 N
- D. 83 N