3 Boolean Algebra

Laws of Boolean Algebra

Law	AND	OR		
Identity	1 • A = A	0 + A = A		
Null	0 • A = 0	1 + A = 1		
Idempotent	A • A = A	A + A = A		
Complement	$A \bullet \overline{A} = 0$	$A + \overline{A} = 1$		
Commutative	$A \bullet B = B \bullet A$	A + B = B + A		
Associative	(A • B) • C = (A • C) • B	(A + B) + C = A + (B + C)		
Distributive	$A + (B \bullet C) = (A+B) \bullet (A+C)$	$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$		
Absorption	$A \bullet (A + B) = A$	$A + (A \bullet B) = A$		
DeMorgans	$\overline{A \bullet B} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A} \bullet \overline{B}$		
Double Complement	$\overline{\overline{A}} = A$			

Rules for K-maps (Karnaugh-maps)

- No group can contain zero
- Groups can't be diagonal
- Grouping in power of 2 (1,2,4,8...)
- Each group must be as large as possible
- Groups can overlap
- Each "1" must be part of one group
- Groups can wrap around the map (left & right)

Example of K-map

 $\overline{B}A\overline{C} + AB\overline{C} + ABC + \overline{A}BC + \overline{A}B\overline{C}$

		ВС			
		00	01	11	10
A	0	0	0	1	1
	1	1	0	1	1

 \rightarrow Simplified version: $\overline{B} + A\overline{C}$