# PATENT ABSTRACTS OF JAPAN

Reference 5

(11)Publication number:

2001-206727

(43)Date of publication of application: 31.07.2001

(51)Int.Cl.

C03B 33/03

B26D 3/08

B26D 5/08

(22)Date of filing:

(21)Application number: 2000-012079 20.01.2000

(71)Applicant:

(72)Inventor:

ASAHI GLASS CO LTD

SAITO ISAO TAKATSUJI HIDEO

(54) METHOD FOR WORKING GLASS SHEET AND DEVICE THEREFORE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for working a glass sheet which is capable of putting a cutting line for well cracking of the glass sheet and a device therefor.

SOLUTION: A servo motor 62 having high responsiveness as a pressuring force imparting means to impart pressurizing force to a cutter 12 is used and cutting pressure is controlled by controlling the torque of this servo motor 62 by a controller 90, by which the cutting line 18 is put to the glass sheet



# (19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-206727

(P2001-206727A) (43)公開日 平成13年7月31日(2001.7.31)

| (51) Int.Cl.7 | 徽別配号 | F I           | テーマコート*(参考) |
|---------------|------|---------------|-------------|
| C 0 3 B 33/03 |      | C 0 3 B 33/03 | 3 C 0 2 4   |
| B 2 6 D 3/08  |      | B 2 6 D 3/08  | Z 4G015     |
| 5/08          |      | 5/08          | Z           |

## 審査請求 未請求 請求項の数6 OL (全 7 頁)

| (21)出願番号 | 特職2000-12079(P2000-12079) | (71)出順人 000000044            |              |
|----------|---------------------------|------------------------------|--------------|
|          |                           | 旭硝子株式会社                      | _            |
| (22)出顧日  | 平成12年1月20日(2000.1.20)     | 東京都千代田区有楽町一丁目12番1            | 亏            |
|          |                           | (72)発明者 斎藤 擹                 |              |
|          |                           | 神奈川県愛甲郡愛川町角田字小沢上             | 原426         |
|          |                           | 番1 旭硝子株式会社内                  |              |
|          |                           | (72)発明者 高辻 秀雄                |              |
|          |                           | 神奈川県愛甲郡愛川町角田字小沢上             | <b>E</b> 426 |
|          |                           | 番1 加硝子株式会社内                  |              |
|          |                           | (74)代理人 100083116            |              |
|          |                           |                              |              |
|          |                           | 弁理士 松浦 憲三                    |              |
|          |                           | Fターム(参考) 30024 BB00          |              |
|          |                           | 4Q015 FA03 FB01 FC02 FC11 FC | 714          |
|          |                           |                              |              |

## (54) 【発明の名称】 ガラス板の加工方法及びその装置

## (57)【要約】

【課題】ガラス板を良好に折り割りするための切線を入 れることができるガラス板の加工方法及びその装置を提

【解決手段】本発明は、カッター12に押圧力を与える 押圧力付与手段として応答性の高いサーボモータ62を 使用し、このサーボモータ62を制御装置90によって トルク制御することにより切圧を制御してガラス板14 に切線18を入れる。



【特許請求の範囲】

【請求項1】 ガラス板にカッターで所望の形状の切線 を入れるガラス板の加工方法において、

前記カッターに押圧力を発生させるサーボモータと該サ ーボモータをトルク制御する制御手段とを備え、該制御 手段によってサーボモータをトルク制御することによ り、カッターのガラス板に対する切圧を制御してガラス 板に切線を入れることを特徴とするガラス板の加工方 法。

【請求項2】 前記制御手段は、前記サーボモータの回 10 転位置又は回転速度を検出し、該検出した回転位置又は 回転速度が所定の閾値を超えると、サーボモータの制御 をトルク制御から速度制御に切り換えて、前記カッター を前記ガラス板から退避移動させることを特徴とする請 求項1に記載のガラス板の加工方法。

【請求項3】 前記制御手段は、前記切線の曲率半径の 大きな曲線又は直線部の切圧よりもコーナ部の切圧を高 く制御することを特徴とする請求項1に記載のガラス板 の加工方法。

【請求項4】 ガラス板が載置されるテーブルと、 該テーブルに截置された前記ガラス板に対して走行移動 され、ガラス板に所望の加工形状の切線を入れるカッタ

−Ł. 該カッターを前記ガラス板に押し付ける押圧力をカッタ 一に与えるサーボモータと、

該サーボモータをトルク制御することにより、カッター のガラス板に対する切圧を制御する制御手段と、 を備えたことを特徴とするガラス板の加工装置。

【請求項5】 前記制御手段は、前記サーボモータの回 転位置又は回転速度を検出し、該検出した回転位置又は 30 回転速度が所定の閾値を超えると、サーボモータの制御 をトルク制御から速度制御に切り換えて、前記カッター を前記ガラス板から退避移動させることを特徴とする請 求項4に記載のガラス板の加工装置。

【請求項6】 前記制御手段は、前記切線の直線部の切 圧よりもコーナ部の切圧を高く制御することを特徴とす る請求項4に記載のガラス板の加工装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ガラス板から自動 40 車用各種ガラス製品を切り出すために、ガラス板に切線 を入れるガラス板の加工方法及びその装置に関する。 [0002]

【従来の技術】ガラス板から自動車用各種ガラス製品を 切り出す場合には、まず、ガラス板を切りステージのテ ーブルに裁鑽し、次に、カッターを走行移動させてガラ ス板にガラス製品の形状に沿った切線を入れる。次い で、切線が入れられたガラス板を折りステージに搬送 し、折りステージのプレスヘッドでガラス板を押圧する ことにより、切線に沿ってガラス板を折り割りする。こ 50 一ボモータをトルク制御することにより、カッターのガ

れによって、ガラス板から所望の形状のガラス製品を切 り出すことができる。

【0003】ところで、カッターによる切線加工工程で は、カッターをガラス板に押し付ける押圧力をカッター に与えることにより、カッターからガラス板に所定の切 圧をかけた状態で切線を入れる。また、カッターの走行 速度は、切線の曲率半径の大きな曲線又は直線部では速 くコーナ部では遅くなるように制御されているため、カ ッターの走行速度と切線の切り深さとの関係等により、 切圧は、曲率半径の大きな曲線又は直線部では低くコー ナ部では高くなるように制御されている。

【0004】従来では、カッターに押圧力を与える手段 としてエアシリンダ装置が使用され、このエアシリンダ を電磁弁で減圧制御したりエアサーボ制御したりして切 圧を制御していた。

[0005]

【発明が解決しようとする課題】しかしながら、エアシ リンダ装置でカッターに押圧力を与える前記従来の加工 装置は、エアシリンダ装置の特性である応答性が低いと 20 いう問題によって、以下述べる欠点があった。

[0006]まず、切圧を高精度に制御することができ ないという欠点である。この欠点によって、切線の切り 深さが一定にならず、ガラス板を良好に折り割りするこ とが困難であった。

【0007】次に、切線加工終了したカッターを、ガラ ス板の端部から引き抜いて折り割り用の切線をガラス板 の端部まで引き延ばす際に、カッターがガラス板の端部 から落下してテーブルに衝突し、カッターが破損すると いう欠点である。応答性が高ければ、カッターがテープ ルに衝突するまえに、カッターをテーブルから退避移動 させることができるが、応答性の低いエアシリンダ装置 ではそれが困難であった。このような欠点によって、従 来の加工装置は、折り割り用の切線をガラス板の端部ま で引き延ばすことができず、折り割り用の切線をガラス 板の端部の手前まで入れた状態でガラス板を折り割りし ているので、ガラス板を良好に折り割りすることができ なかった。

【0008】本発明はこのような事情に鑑みてなされた もので、カッターに押圧力を与える押圧力付与手段とし て応答性の高い手段を使用することにより、ガラス板を 良好に折り割りするための切線を入れることができるガ ラス板の加工方法及びその装置を提供することを目的と する。

[0009]

【課題を解決するための手段】本発明は、前記目的を達 成するために、ガラス板にカッターで所望の形状の切線 を入れるガラス板の加工方法において、前記カッターに 押圧力を発生させるサーボモータと該サーボモータをト ルク制御する制御手段とを備え、該制御手段によってサ ラス板に対する切圧を制御してガラス板に切線を入れる ことを特徴とする。

【0010】また、本発明は、前記目的を達成するため に、ガラス板が載置されるテーブルと、該テーブルに載 置された前記ガラス板に対して走行移動され、ガラス板 に所望の加工形状の切線を入れるカッターと、該カッタ ーを前記ガラス板に押し付ける押圧力をカッターに与え るサーボモータと、該サーボモータをトルク制御するこ とにより、カッターのガラス板に対する切圧を制御する 制御手段と、を備えたことを特徴とする。

【0011】本発明によれば、カッターに押圧力を与え る押圧力付与手段として応答性の高いサーボモータを使 用し、このサーボモータを制御手段によってトルク制御 することにより切圧を制御してガラス板に切線を入れ る。これにより、切線の切圧を高精度に制御することが できるので、切線の切り深さが一定になり、ガラス板を 良好に折り割りすることができる。

【0012】また、本発明によれば、前配制御手段で検 出しているサーボモータの回転位置又は回転速度が所定 の閾値を超えると、制御手段はサーボモータの制御をト 20 ルク制御から速度制御に切り換えて、カッターをガラス 板から退避移動させる。この関値を、カッターがガラス 板の端部から落下したことを示す値に設定すれば、カッ ターがテーブルに衝突するまえに、カッターをテーブル から退避移動させることができる。これにより、カッタ 一を保護することができるとともに、折り割り用の切線 をガラス板の端部まで引き延ばすことができるので、ガ ラス板を良好に折り割りすることができる。

【0013】更に、本発明によれば、前記制御手段は、 前記切線の曲率半径の大きな曲線又は直線部の切圧を低 30 く制御するとともに切線のコーナ部の切圧を高く制御す る。これにより、切線の切り深さが一定になり、ガラス 板を良好に折り割りすることができる。

### [0014]

[発明の実施の形態] 以下添付図面に従って本発明に係 るガラス板の加工方法及びその装置の好ましい実施の形 態について説明する。

【0015】図1に示すガラス板の加工装置10は、カ ッター12をX-Y方向に走行移動させて、ガラス板1 4に自動車用ガラス16の形状に沿った切線18を入れ る装置である。この装置本体20には、ガラス板14が 載置されるテーブル22が設けられる。テーブル22に は、テーブル22に載置されたガラス板14を吸着保持 する吸着パッド24が設けられ、吸着パッド24によっ てガラス板14がテーブル22上において所定の位置に 位置決めされる。この状態でカッター12が予め設定さ れた走行軌跡に沿って走行移動され、ガラス板14に切 線18が入れられる。切線18が入れられたガラス板1 4は、後工程の折りステージに搬送され、ここで切線1

から自動車用ガラス16が切り出される。

【0016】装置本体20の両側面には、図1上でX方 向に長手方向を有するスリット26、26が図2の如く 形成され、これらのスリット26、26の底部にはガイ ドレール28、28が平行に敷設されている。これらの ガイドレール28、28には、ガイドブロック30、3 Oを介してX軸移動枠体32がX方向に移動自在に支持 される。

【0017】X軸移動枠体32は矩形状の枠体であり、 その下端部の両側に前述したガイドプロック30、30 10 が固定されている。また、X軸移動枠体32の下部に は、プラケット34を介してサーポモータ36が固定さ れている。サーボモータ36の回転輸38にはプーリ4 0が固定され、このブーリ40はベルト42を介してプ -リ44に連結されている。また、プーリ44には、ボ ールナット46がプーリ44と同軸上に固定されてお り、ボールナット46はボールねじ48に螺合されてい る。ボールねじ48は、不図示の支持部材を介して装置 本体20に図1上X方向に支持されている。したがっ て、図2のサーボモータ36が駆動されると、その動力 がベルト42を介してボールナット46に伝達され、ボ ールナット46がボールねじ48に沿って移動すること により、それに追従してX軸移動枠体32がサーボモー タ36と共にボールねじ48に沿ってX方向に移動す る。これにより、X軸移動枠体32にY軸ガイド50を 介して取り付けられたカッター 1 2 が、X方向に移動す

【0018】Y軸ガイド50は、X軸移動枠体32の上 梁部32AにY方向に設けられている。Y軸ガイド50 の内部には、図示しないボールねじ装置のボールねじが Y方向に配設され、このボールねじは、上梁部32Aに 固定されたサーボモータ52の回転軸54に連結されて いる。また、前記ポールねじには、スライダ56に設け られた不図示のボールナットが螺合され、また、スライ ダ56はY軸ガイド50にY方向にスライド自在に支持 されている。このスライダ56にカッター12を有する カッター装置58が設けられている。これにより、サー ボモータ52が駆動されると、スライダ56がボールね じ装置の送り作用によってY方向に移動するので、カッ ター12がY方向に移動する。したがって、上記2台の サーボモータ36、52で構成されるカッター走行装置 を制御することにより、カッター12の走行軌跡を制御 することができる。よって、カッター12でガラス板1 4に所望の加工形状の切線18を入れることができる。 【0019】カッター装置58は図3、図4に示すよう にカッター支持部材60、サーボモータ62、及びラッ クアンドピニオン機構6 4等から構成される。カッター 支持部材60は、カッター12をピン66を介して回転 自在に支持するホルダ68を有し、このホルダ68は、 8に沿って折り割りされる。これにより、ガラス板14 50 ヘッド70の下部に軸受72を介して回動自在に支持さ ダ56に上下方向に固定された図4のガイドレール78 にガイドブロック80を介して上下移動自在に支持され

ている。

【0020】ガイド部材76の図3上左側面には、ラッ クアンドピニオン機構64のラック82が上下方向に配 設され、このラック82にピニオン84が噛合されてい る。ピニオン84は、図4の如くサーボモータ62の駆 動軸86に固定されている。したがって、サーボモータ 10 62によってピニオン84が図3上時計回り方向に回転 されると、カッター支持部材60がガイドレール78に ガイドされて下降移動する。これにより、カッター12 がガラス板14に当接する。そして、サーボモータ62 のトルクを、図5のサーボドライバアンプ88を介して 制御装置(制御手段に相当)90で制御すると、カッタ -12のガラス板14に対する押圧力が設定される。こ れにより、カッター12の切圧が設定される。また、サ ーポモータ62によってピニオン84が図3上反時計回 り方向に回転されると、カッター支持部材60がガイド 20 レール78にガイドされて上昇移動する。これにより、 カッター12がガラス板14から退避移動する。

【0021】ところで、図5に示した制御装置90に は、サーボモータ62に加えられる電流値を示す信号 (即ち、サーボモータ62のトルクを示す信号) が電流 検出器91から加えられるとともに、サーボモータ62 の回転位置又は回転速度を示すパルス信号がパルスジェ ネレータ92から加えられている。制御装置90は、パ ルスジェネレータ92からのパルス信号をカウントする ことにより、サーボモータ62の回転位置を検出するこ とができ、また、所定時間内に加えられるパルス信号を カウントすることにより、サーボモータ62の回転速度 を検出することができる。また、制御装置90は、電流 検出器91からのトルクを示す信号、又はパルスジェネ レータ92からのパルス信号に基づいて、サーボモータ 62をトルク制御するためのトルク指令信号、又は速度 制御するための速度指令信号をサーボドライバアンプ8 8に出力する。

【0022】サーボドライパアンプ88は、前記指令信号に基づいてサーボモータ62をトルク制御、又は速度 40割御する。

【0023】制御装置9の記憶部には、図6に示すカッター走行速度に対応するモータ電流域が予め記憶されている。これにより、制御整置90は、キーボード等の外部入力手段やカッター走行速度が入力されると、そのカッター走行速度に対応する電流値となるトルク指令信号をサーボドライバアンプ88に出力する。図6のグラフによれば、カッター走行速度が大きくなるに従ってモータ電

ッター走行速度が大きくなるに従って、サーボモータ6 2のトルクが小さくなるように、即ち、カッター12の ガラス様14に対する切圧が小さくなるように設定され ている。このようにカッター走行速度と切圧とを設定す ることによって、直線部及びコーナ部を有する切線18 は、折り割りに適した切機となる。

【○ 0 2 5 ] 図 5 の制質核費 9 の紀紀館には、サーボ モータ 6 2 の削減をトルク削弱から速度削削に切り換え るためのサーボモータ 6 2 の回転位置又は回転速度( 値)が予め記憶されている。この回転位置又は回転速度 は、カッター 1 2 がガラス板 1 4 の増弱から落下さ とと、カッター 1 2 がガラス板 1 4 の増弱から落下さ ると、サーボモータ 6 2 が速度制御に切り換えられて、 カッター 2 がガラス板 1 4 から選進移動され、初期位 間に賃借する。

【0026】次に、前記の如く構成されたカッター装置 058の作用について説明する。

300/JARA ユギリの原加 国際的に関係されて、図7 (A)の知く切譲18の動態を複雑配とコナ部に対した機能の分割動脈1~5~Rを作成する。そして、これちの分割動脈1~5~Rの配標部に配催させる。これに、り、制動能図のは、カッチエ持接機から出力されるカッター走行位質情報に基づいて、分割前脈1~nに対応したモータ電流艦(図7(C))となるトルク指令信号を、サーボドライバアング88に出力する。

【0028】図7 (B) によれば、直線部の分割軌跡 1、3、5はカッター速度が定識に脱さされ、コーナ部 の分割動態と、4 については、由申半径の小さい分割軌跡 4 が曲率半径の大きい分割軌跡 2 よりも低速に脱定されている。よって、サーボドライパアン78 8 からサーボークな 2 に出力される電磁磁は、図7 (C) の如く分割軌跡 1、3、5では一定値に脱定され、分割軌跡 4 公割削跡 2 からに RD できる。 なお、これらの値は自在に変更できる。

ーホトライバアン/86 km ロリタ 。 BOOシノント は れば、カッター走行速度が大きくなるに従ってモータ電 液値が低くなるように設定されている。したがって、カ 50 一走行装置を駆動して、カッター12を切線加工開始位 置の上方に位置させる。次に、制御装置90でサーボモ -タ62を速度制御して、カッター12を下降移動させ る。カッター12の下降移動量は、パルスジェネレータ 9 2から出力されるパルス信号に基づいて検出されてお り、その下降移動量が予め設定された下降移動量に到達 した時に、制御装置90は、カッター12がガラス板1 4に当接したと判断し、サーボモータ62を停止する。 【0030】次に、制御装置90でサーボモータ62を トルク制御して、カッター12のガラス板14に対する 切圧を設定する。そして、カッター走行装置を駆動して 10 カッター12を切線18の軌跡に沿って移動させるとと もに、カッター走行装置からのカッター位置情報に基づ いて制御装置90が、その走行位置(分割軌跡1~n) に対応する電流値となるトルク指令信号をサーボドライ バアンプ88に出力する。これにより、カッター12か らガラス板14に最適な切圧がかけられて、ガラス板1 4に切線18が入れられる。

【0031】このように、本実施の形態では、カッター 12に押圧力を与える押圧力付与手段として、エアシリ ンダ装置よりも応答性の高いサーボモータ62を使用し 20 ができる。 たので、切線18の切圧を高精度に制御することができ る。よって、切線18全体が折り割りに適した切線とな るので、ガラス板14を良好に折り割りすることができ

【0032】一方、切線18の加工が終了すると、図8 の如く切線終了位置 P からカッター 1 2 をガラス板 1 4 の端部14A方向に走行させて、折り割り用の切線19 を入れる。この時、応答性の悪いエアシリンダ装置を使 用した従来の加工装置では、カッターがガラス板14の 端部14Aから落下しても、カッターがテーブルに衝突 30 するまえにカッターを上昇させることができない。とこ ろが、応答性のよいサーボモータ62を使用した本実施 の形態では、カッター12がガラス板14の端部14A から落下しても、カッター12がテーブル22に衝突す るまえに、カッター12をテーブル22から上昇移動さ せることができる。これにより、カッター12を破損さ せることなく、折り割り用の切線19をガラス板14の 端部まで引き延ばすことができるので、ガラス板14を 良好に折り割りすることができる。

について説明したが、これに限らず、他のガラス製品の 加工にも適用することができる。

[0034]

【発明の効果】以上説明したように、本発明に係るガラ ス板の加工方法及び装置によれば、カッターに押圧力を 与える押圧力付与手段として応答性の高いサーボモータ を使用し、サーボモータを制御手段によってトルク制御 することにより切圧を制御してガラス板に切線を入れる ので、切圧を高精度に制御することができる。よって、 折り割りに適した切線となり、ガラス板を良好に折り割 りすることができる。

【0035】また、本発明によれば、カッターがガラス 板の端部から落下すると、カッターがテーブルに衝突す るまえにカッターをテーブルから退避移動させることが できるので、切線をガラス板の端部まで引き延ばすこと が可能になり、ガラス板を良好に折り割りすることがで

【0036】更に、本発明によれば、制御手段は切線の 曲率半径の大きな曲線又は直線部の切圧を低く制御する とともに切線のコーナ部の切圧を高く制御するので、折 り割りに適した切線となり、ガラス板を良好に折ること

【図面の簡単な説明】

【図1】本発明の実施の形態に係るガラス板の加工装置 の斜視図

【図2】図1の2-2線に沿う断面図

【図3】図1の加工装置に設けられたカッター装置の拡 大図

【図4】図3の4-4線から見た矢視図

【図5】図3に示したカッター装置のサーボ制御系を示 すブロック図

【図6】カッター走行速度とモータ電流値との関係を示 す説明図 【図7】切線に対応したカッター走行速度とモータ電流

値との関係を示す説明図 【図8】折り割り用の切線をガラス板の端部まで引き延 ばした説明図

【符号の説明】

10…ガラス板の加工装置、12…カッター、14…ガ ラス板、18…切線、22…テーブル、32…X軸移動 枠体、58…カッター装置、60…カッター支持部材、 【0033】本実施の形態では、自動車用ガラスの加工 40 62…サーボモータ、64…ラックアンドピニオン機 構、88…サーボドライパアンプ、90…制御装置(制 御手段に相当)







```
【公報種別】特許法第17条の2の規定による補正の掲載
【部門区分】第3部門第1区分
[発行日] 平成17年10月6日(2005.10.6)
【公開番号】特開2001-206727(P2001-206727A)
【公開日】平成13年7月31日(2001.7.31)
【出願番号】特願2000-12079(P2000-12079)
[国際特許分類第7版]
 C O 3 B 33/03
 B 2 6 D 3/08
 B 2 6 D
        5/08
[FI]
 C O 3 B 33/03
 B 2 6 D 3/08
                  Z
 B 2 6 D
       5/08
【手続補正書】
[提出日] 平成17年5月19日(2005.5.19)
【手締補正1】
【補正対象書類名】明細書
【補正対象項目名】請求項3
【補正方法】変更
【補正の内容】
【請求項3】
前記制御手段は、前記切線の曲率半径の大きな曲線又は直線部の切圧よりもコーナ部の
切圧を高く制御することを特徴とする請求項 1 <u>または 2</u> に記載のガラス板の加工方法。
【手続補正2】
【補正対象書類名】明細書
[補正対象項目名]請求項6
【補正方法】変更
【補正の内容】
【請求項6】
前記制御手段は、前記切線の直線部の切圧よりもコーナ部の切圧を高く制御することを
```

特徴とする請求項4または5に記載のガラス板の加工装置。