Data Processing

```
In [230... # importing necessary modules
import pandas as pd
import numpy as np

In [231... # TODO: please enter your data file (e.g. "features.csv") path here
df = pd.read_csv("group9_man_2.txt")
# You can also use a full path like below
#df = pd.read_csv("C:/Users/userName/Documents/Python/Coursework_co

In [232... display(df)
```

	depArr	distance	angle_error	distance_long	operation_mode	angl
0	0	1061.560659	2	756.386082	5	
1	0	1949.339075	2	866.249197	6	
2	0	918.853912	0	623.358156	5	
3	0	2081.118511	0	1417.437268	5	
4	1	1606.841859	0	849.617019	5	
•••						
1697	0	1612.045476	0	1169.957521	5	
1698	0	2812.914269	0	1417.437268	5	
1699	0	1721.316289	0	1180.036591	6	
1700	0	1525.520928	2	629.022977	6	

1074.081608

5

1702 rows × 37 columns

0 1725.009843

1701

```
In [233... # deleting columns with NaN
    df = df.drop('isSnow', axis=1)
    df = df.drop('isFog', axis=1)
    df = df.drop('isHail', axis=1)
    df = df.drop('budget', axis=1)
```

about:srcdoc Page 1 of 17

	depArr	distance	angle_error	distance_long	operation_mode	angl
C	0	1061.560659	2	756.386082	5	
•	1 0	1949.339075	2	866.249197	6	
2	0	918.853912	0	623.358156	5	
3	0	2081.118511	0	1417.437268	5	
4	1 1	1606.841859	0	849.617019	5	
••	•	•••	•••	•••		
1697	7 0	1612.045476	0	1169.957521	5	
1698	0	2812.914269	0	1417.437268	5	
1699	0	1721.316289	0	1180.036591	6	
1700	0	1525.520928	2	629.022977	6	
170	1 0	1725.009843	4	1074.081608	5	

1702 rows × 33 columns

```
In [234... # deleting columns with NaN - ONLY for MAN and ZRH, skip for HKG
    df = df.drop('flightNumber', axis=1)
    df = df.drop('airline', axis=1)
    df = df.drop('aircraftModel', axis=1)
    display(df)
```

		depArr	distance	angle_error	distance_long	operation_mode	angl
	0	0	1061.560659	2	756.386082	5	
	1	0	1949.339075	2	866.249197	6	
	2	0	918.853912	0	623.358156	5	
	3	0	2081.118511	18511 0	1417.437268	5	
	4	1	1606.841859	0	849.617019	5	
	•••		•••				
16	97	0	1612.045476	0	1169.957521	5	
16	98	0	2812.914269	0	1417.437268	5	
16	99	0	1721.316289	0	1180.036591	6	
17	00	0	1525.520928	2	629.022977	6	
17	01	0	1725.009843	4	1074.081608	5	

1702 rows × 30 columns

```
In [235... # last column (taxi time) is not included — it is the output
```

about:srcdoc Page 2 of 17

```
features = list(df)
print(features)
features = features[:29]
print(features)
```

['depArr', 'distance', 'angle_error', 'distance_long', 'operation_mo de', 'angle_sum', 'QDepDep', 'QDepArr', 'QArrDep', 'QArrArr', 'NDepD ep', 'NDepArr', 'NArrDep', 'NArrArr', 'Pressure', 'VisibilityInMeter s', 'TemperatureInCelsius', 'WindSpeedInMPS', 'isRain', 'isDrizzle', 'isMist', 'isHaze', 'aircraft_weight', 'AvgSpdLast5Dep', 'AvgSpdLast5Arr', 'AvgSpdLast5', 'AvgSpdLast10Dep', 'AvgSpdLast10Arr', 'AvgSpdLast10', 'TaxiTime']
['depArr', 'distance', 'angle_error', 'distance_long', 'operation_mo

['depArr', 'distance', 'angle_error', 'distance_long', 'operation_mo de', 'angle_sum', 'QDepDep', 'QDepArr', 'QArrDep', 'QArrArr', 'NDepD ep', 'NDepArr', 'NArrDep', 'NArrArr', 'Pressure', 'VisibilityInMeter s', 'TemperatureInCelsius', 'WindSpeedInMPS', 'isRain', 'isDrizzle', 'isMist', 'isHaze', 'aircraft_weight', 'AvgSpdLast5Dep', 'AvgSpdLast5Arr', 'AvgSpdLast5', 'AvgSpdLast10Dep', 'AvgSpdLast10Arr', 'AvgSpdLast10']

Principal Components Analysis (PCA)

- PCA does a projection from the N-dimensional space to K-dimensional space
- It represents the data as accurately as possible in the lower-dimensional space
- PCA seeks a projection that preserves as much information in the data as possible

```
In [236... from sklearn.preprocessing import StandardScaler

# Separating out the features
x = df.loc[:, features].values

# normalising the features
x = StandardScaler().fit_transform(x)

#print(x)

np.mean(x),np.std(x) # just checking the normalisation process
```

Out[236... (-5.412781487211752e-17, 1.0)

Information Loss in PCA

Below cell runs PCA on our dataset.

- principalComponents keeps the projected data onto PCs
- explainedVars shows variances: PC1 accounts for 21% of variance, PC2

about:srcdoc Page 3 of 17

0.08

1.0

4.0

10%, etc...; so the information loss can be calculated using these

```
variances.
In [237... | from sklearn.decomposition import PCA
          pca = PCA(n_components=4)
          principalComponents = pca.fit_transform(x)
          explainedVars = pca.explained_variance_ratio_
          print(explainedVars)
          sum = 0
          for i in explainedVars:
              sum = sum + i
          print(sum)
         [0.17406435 0.10397262 0.07429985 0.06760695]
         0.4199437762197633
In [238... explained_variance_ratio = pca.explained_variance_ratio_
          import matplotlib.pyplot as plt
          # Step 3: Plot scree plot
          plt.figure(figsize=(10, 6))
          plt.plot(np.arange(1, len(explained_variance_ratio) + 1), explained
          plt.xlabel('Number of Components')
          plt.ylabel('Explained Variance Ratio')
          plt.title('Scree Plot')
          plt.grid(True)
          plt.show()
                                             Scree Plot
          0.16
        Explained Variance Ratio
0.1.0
0.10
```

```
In [239... principalDf = pd.DataFrame(data = principalComponents
                       , columns = ['principal component 1', 'principal compo
In [240... | finalDf = pd.concat([principalDf, df[['TaxiTime']]], axis = 1)
```

2.5

Number of Components

3.0

2.0

1.5

about:srcdoc Page 4 of 17

```
In [241... training = df.sample(frac = 0.75)
testing = df.drop(training.index)
```

- For the importance of features we look at pca.components_
- columns correspond to PCs, rows to variables
- we look at the 1st row and find the largest absolute value
- this is our most important variable
- then we look for the 2nd largest, etc.
- in this example the most important are in this order: Feature0, Feature6, Feature12, . . .

```
In [242... print(abs( pca.components_ ))
        [[0.36373574 0.19584838 0.21051795 0.19788233 0.03571642 0.22327699
          0.34625256 0.19673622 0.19321789 0.15214337 0.38214584 0.07944627
          0.28954599 0.15457105 0.06280553 0.02078432 0.02496306 0.07999708
          0.02534315 0.00057688 0.0102151 0.01949352 0.09458835 0.1390369
          0.13522969 0.22981675 0.15164174 0.16134781 0.23376851]
         [0.12423443 0.20833118 0.08967209 0.24297786 0.19167926 0.10509305
          0.11319259 0.24486045 0.08692247 0.06829474 0.07760752 0.21043604
          0.15404243 0.04335524 0.02427645 0.07217049 0.08498551 0.10009777
          0.00834403 0.00715484 0.04704655 0.09595523 0.10131395 0.27816437
          0.28529504 0.37736228 0.27328051 0.29257965 0.39886467]
         [0.20473357 0.29527391 0.0430445 0.128998
                                                     0.22263877 0.26808963
          0.03506548 0.02186396 0.06577993 0.36400426 0.10853302 0.0077549
          0.01032312 0.34691576 0.23374057 0.23626129 0.27496756 0.12768184
          0.23468081 0.00458989 0.08134564 0.11610397 0.19103251 0.25935341
          0.03335666 0.00822687 0.27674479 0.02893768 0.01460936]
         [0.15958998 0.2950811 0.03458344 0.22386293 0.08859876 0.19942891
          0.03053034 0.00848499 0.39783372 0.29782813 0.04413203 0.06519223
          0.41763972 0.39923628 0.08351168 0.17019371 0.04863688 0.01608759
          0.13002883 0.071242
                               0.18276044 0.13235487 0.04428282]]
In [243...] threshold = 0.02
         for component in range(4):
             component loadings = abs(pca.components [component])
             features to drop = [features[i] for i in range(len(features)) i
             features_to_drop = [feature for feature in features_to_drop if
             df = df.drop(features_to_drop, axis=1)
             print("Features dropped for component", component+1, ":", featu
         print("\nUpdated DataFrame:")
         display(df)
        Features dropped for component 1 : ['isDrizzle', 'isMist', 'isHaze']
        Features dropped for component 2 : ['isRain']
        Features dropped for component 3: ['NDepArr', 'NArrDep', 'AvgSpdLas
        t5', 'AvgSpdLast10']
        Features dropped for component 4 : ['QDepArr', 'WindSpeedInMPS']
```

about:srcdoc Page 5 of 17

Updated DataFrame:

		depArr	distance	angle_error	distance_long	operation_mode	angl
	0	0	1061.560659	2	756.386082	5	
	1	0	1949.339075	2	866.249197	6	
	2	0	918.853912	0	623.358156	5	
	3	0	2081.118511	0	1417.437268	5	
	4	1	1606.841859	0	849.617019	5	
	•••	•••	•••		•••		
10	697	0	1612.045476	0	1169.957521	5	
16	698	0	2812.914269	0	1417.437268	5	
16	699	0	1721.316289	0	1180.036591	6	
1	700	0	1525.520928	2	629.022977	6	
17	701	0	1725.009843	4	1074.081608	5	

1702 rows × 20 columns

```
In []:
In [244... finalDf.to_csv("data_airport.csv", header=False, index=False)
          trainDf = finalDf[:int(76*len(finalDf)/100)]
          testDf = finalDf[int(76*len(finalDf)/100):]
          print(trainDf)
          print(testDf)
               principal component 1 principal component 2 principal compon
        ent 3 \
                           -0.240190
                                                    0.384616
                                                                             0.3
        71833
                            0.425526
                                                    3.331509
                                                                           -0.3
        10274
                           -0.522303
                                                   -0.364934
                                                                           -1.1
        2
        48108
        3
                           -1.697518
                                                   -1.906344
                                                                           -0.5
        99323
                                                                           -0.6
                            2.370078
                                                   -1.213871
        17265
         . . .
                                  . . .
                                                          . . .
                                                                             1.2
        1288
                           -3.950525
                                                    0.224036
        46278
        1289
                           -3.887851
                                                    1.673694
                                                                            0.9
        72885
        1290
                            0.195024
                                                    4.835288
                                                                           -0.7
        11195
                           -3.337933
                                                    0.566413
                                                                            2.4
        1291
        18709
                                                                           -1.2
                           -0.650621
                                                    0.743081
        1292
        84055
```

about:srcdoc Page 6 of 17

0 1 2 3 4	-0.782291 1.405974	7.700000 7.687667 7.666667 7.666667	
1288 1289 1290 1291 1292	-1.011858		
		principal component 2	principal compon
ent 3 1293 81135	-2 . 925768	0.548938	0.5
1294	-1.788129	4.025801	0.3
64201 1295	-2.057763	5.576156	1.0
96002 1296	-2.965048	-1.227062	-0.5
93482 1297	-2.745493	-0.876397	0.1
20225			
1697	-1.544547	-0.575210	-0.9
55339 1698	-3.488093	-0.847298	1.2
95924 1699	-1.677710	-0.851297	-2.6
14895 1700	-2.509102	-1.295990	-0.5
09787 1701	-2.457001	0.858041	1.1
49787			
		TaxiTime	
1293	-1.142929	16.983333	
1294	-1.366367	16.973167	
1295 1296	-3.138806 0.528905	16.966667 16.939683	
1297	-0.045641	16.900467	
1607	0.062206	12 80222	
1697 1698	0.063396 -1.193735	13.083333 13.083333	
1699		13.079933	
1700	0.418439	13.066667	
1701	-0.593531	13.066667	

[409 rows x 5 columns]

In [229... import matplotlib.pyplot as plt

about:srcdoc Page 7 of 17

```
fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 2', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)
ax.scatter(finalDf.loc[:, 'principal component 1'], finalDf.loc[:,
```

Out[229... <matplotlib.collections.PathCollection at 0x7ff4b00e60b0>


```
import matplotlib.pyplot as plt

fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 2', fontsize = 15)
ax.set_ylabel('Principal Component 3', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)

ax.scatter(finalDf.loc[:, 'principal component 2'], finalDf.loc[:,
```

Out[212... <matplotlib.collections.PathCollection at 0x7ff4b0563b20>

about:srcdoc Page 8 of 17


```
import matplotlib.pyplot as plt

fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 3', fontsize = 15)
ax.set_ylabel('Principal Component 4', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)

ax.scatter(finalDf.loc[:, 'principal component 3'], finalDf.loc[:,
```

Out[213... <matplotlib.collections.PathCollection at 0x7ff4b0572d10>

about:srcdoc Page 9 of 17


```
import matplotlib.pyplot as plt

fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 4', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)

ax.scatter(finalDf.loc[:, 'principal component 1'], finalDf.loc[:,
```

Out[178... <matplotlib.collections.PathCollection at 0x7ff4b08cbca0>

about:srcdoc Page 10 of 17


```
import matplotlib.pyplot as plt

fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 3', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)

ax.scatter(finalDf.loc[:, 'principal component 1'], finalDf.loc[:,
```

Out[179... <matplotlib.collections.PathCollection at 0x7ff4b083afe0>

about:srcdoc Page 11 of 17

2 component PCA


```
finalDf.to_csv('data_airport.csv')
finalDf=finalDf.sample(frac=1).reset_index(drop=True)
trainDf=finalDf[:int(74*len(finalDf)/100)]
testDf=finalDf[int(74*len(finalDf)/100):]
print(trainDf)
print(testDf)

trainDf.to_csv('train_data.csv', header=False, index=False)
testDf.to_csv('test_data.csv', header=False, index=False)
```

	principal component 1	principal component 2	principal compon
ent 3 0 54450	-0.087371	2.331776	-1.8
1	1.984851	-1.877715	-1.4
71456 2 88868	-1.574539	-2.971624	-0.1
3	-0.125236	3.248088	-2.3
86443 4 30725	0.363486	-0.576551	-1.3

about:srcdoc Page 12 of 17

1254	-2.432492		-0.022045	0.8
30016 1255	0.158640		-0.449928	-0.9
17786 1256	-2.780052		2.703983	1.7
23938 1257	-0.686603		-0.310742	-0.0
01067 1258 93617	2.605377		-0.668304	0.7
0 1 2 3 4	-0.770610 0.078665 0.476201 1.519335	18.070300 5.200000 3.633333 14.304100 1.645017		
1254 1255 1256 1257 1258	0.304049 -0.436244 1.167431	7.304733 6.300000 15.133333 7.533333 5.982450		
	rows x 5 columns] principal component 1	principal	component 2	principal compon
ent 3 1259	2.111625		-0.356522	-0.0
42493 1260	2.839764		-1.177741	-0.4
72005 1261 85515	-2.713061		1.743582	1.2
1262 93635	1.455899		-2.800918	0.5
1263 78730	2.042387		-0.017388	-1.1
1697 69347	-0.001010		-0.163990	-0.9
1698 10836	1.177659		-0.594218	0.3
1699 27234	3.092960		1.444116	2.3
1700 66065	1.515547		-1.253086	0.3
1701 86405	-3.877109		0.108173	1.1
1259 1260 1261		4.841917 3.066667		

about:srcdoc Page 13 of 17

```
1262
                 -1.217892
                             7.413617
                 -1.017908
                             4.421433
1263
. . .
                  1.174551
                             5.122800
1697
1698
                 -0.765012 3.526267
1699
                 -2.587778
                            4.766667
1700
                 -0.930916 4.865867
1701
                 -1.014004 13.516667
```

[443 rows x 5 columns]

Another PCA Example: Breast Cancer

```
In [45]: from sklearn.datasets import load_breast_cancer
import pandas as pd
import numpy as np

breast = load_breast_cancer()
breast_data = breast.data
breast_labels = breast.target

labels = np.reshape(breast_labels,(569,1))

final_breast_data = np.concatenate([breast_data,labels],axis=1)

breast_dataset = pd.DataFrame(final_breast_data)

features = breast.feature_names
features_labels = np.append(features,'label')

breast_dataset.columns = features_labels
breast_dataset.head()
```

Out[45]:

		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414
	4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980

 $5 \text{ rows} \times 31 \text{ columns}$

```
In [46]: breast_dataset['label'].replace(0, 'Benign',inplace=True)
    breast_dataset['label'].replace(1, 'Malignant',inplace=True)
    breast_dataset.tail()
```

about:srcdoc Page 14 of 17

\sim			г	л	_	п.	
11	u	-		4	h	-	-
U	u	L.	L	7	U	Ш	

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mea concavi
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.2439
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.144(
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.092
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.3514
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.0000

5 rows × 31 columns

```
In [47]: from sklearn.preprocessing import StandardScaler

x = breast_dataset.loc[:, features].values
x = StandardScaler().fit_transform(x) # normalizing the features

feat_cols = ['feature' + str(i) for i in range(x.shape[1])]
normalised_breast = pd.DataFrame(x,columns=feat_cols)
normalised_breast.tail()
```

Out[47]:

:		feature0	feature1	feature2	feature3	feature4	feature5	feat
	564	2.110995	0.721473	2.060786	2.343856	1.041842	0.219060	1.94
	565	1.704854	2.085134	1.615931	1.723842	0.102458	-0.017833	0.69
	566	0.702284	2.045574	0.672676	0.577953	-0.840484	-0.038680	0.040
	567	1.838341	2.336457	1.982524	1.735218	1.525767	3.272144	3.29
	568	-1.808401	1.221792	-1.814389	-1.347789	-3.112085	-1.150752	-1.11

5 rows × 30 columns

```
In [48]: from sklearn.decomposition import PCA

pca_breast = PCA(n_components=2)
principalComponents_breast = pca_breast.fit_transform(x)

principal_breast_Df = pd.DataFrame(data = principalComponents_breas columns = ['principal component principal_breast_Df.tail()
```

about:srcdoc Page 15 of 17

Out[48]:		principal component 1	principal component 2
	564	6.439315	-3.576817
	565	3.793382	-3.584048
	566	1.256179	-1.902297
	567	10.374794	1.672010
	568	-5.475243	-0.670637

```
In [49]: print('Explained variation per principal component: {}'.format(pca_
```

Explained variation per principal component: [0.44272026 0.18971182]

From the above output, you can observe that the principal component 1 holds 44.2% of the information while the principal component 2 holds only 19% of the information. Also, the other point to note is that while projecting thirty-dimensional data to a two-dimensional data, 36.8% information was lost.

Let's plot the visualization of the 569 samples along the principal component - 1 and principal component - 2 axis. It should give you good insight into how your samples are distributed among the two classes.

<Figure size 640x480 with 0 Axes>

about:srcdoc Page 16 of 17

about:srcdoc Page 17 of 17