

Definition 5.5.1. A partition of a closed interval [a, b] is a finite subset P of [a, b] which includes a and b. We will usually number the elements of P in an increasing manner so that $P = \{x_0, x_1, \ldots, x_n\}$ where

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

The mesh of this partition P is

$$|P| = \max\{(x_i - x_{i-1}) : i = 1, 2, \dots, n\}.$$

If $f:[a,b]\to\mathbb{R}$ is a bounded function, then the *upper sum* of f for partition P is

$$U(f,P) = \sum_{i=1}^{n} \sup\{f(x) : x \in [x_{i-1}, x_i]\}(x_i - x_{i-1}).$$

The lower sum of f for partition P is

$$L(f, P) = \sum_{i=1}^{n} \inf\{f(x) : x \in [x_{i-1}, x_i]\}(x_i - x_{i-1}).$$

$$P = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}.$$

Next, we let $\Delta x_i = x_i - x_{i-1}$. Finally, for any i = 1, 2, ..., n, let

$$m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$$
 and $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}.$

We will refer to this notation as the *standard notation* for partitions. With the standard notation,

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i$$
 and $U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i$.

Lemma 5.5.7. Suppose that $f:[a,b] \to \mathbb{R}$ is a bounded function and P is a partition of [a,b]. Further suppose that $M \in \mathbb{R}$ so that $|f(x)| \leq M$ for all $x \in [a,b]$. Then

$$-M(b-a) \le L(f,P) \le U(f,P) \le M(b-a).$$

Lemma 5.5.7. Suppose that $f:[a,b] \to \mathbb{R}$ is a bounded function and P is a partition of [a,b]. Further suppose that $M \in \mathbb{R}$ so that $|f(x)| \leq M$ for all $x \in [a,b]$. Then

$$-M(b-a) \le L(f,P) \le U(f,P) \le M(b-a).$$

Lemma 5.5.8. (Partition Refinement Lemma) If $P \subseteq Q$ are partitions of [a,b] and $f:[a,b] \to \mathbb{R}$ is bounded then

$$L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P).$$

Lemma 5.5.7. Suppose that $f:[a,b] \to \mathbb{R}$ is a bounded function and P is a partition of [a,b]. Further suppose that $M \in \mathbb{R}$ so that $|f(x)| \leq M$ for all $x \in [a,b]$. Then

$$-M(b-a) \le L(f,P) \le U(f,P) \le M(b-a).$$

Lemma 5.5.8. (Partition Refinement Lemma) If $P \subseteq Q$ are partitions of [a,b] and $f:[a,b] \to \mathbb{R}$ is bounded then

$$L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P).$$

Theorem 5.5.9. Suppose that P and Q are partitions of [a,b] and that $f:[a,b] \to \mathbb{R}$ is bounded. Then $L(f,P) \leq U(f,Q)$.

Definition 5.6.1. Suppose that $f:[a,b] \to \mathbb{R}$ is bounded. The *upper integral* of f over [a,b] is

$$\overline{\int_a^b} f = \inf\{U(f,P): P \text{ is a partition of } [a,b]\}.$$

The lower integral of f over [a, b] is

$$\underline{\int_a^b} f = \sup\{L(f,P): P \text{ is a partition of } [a,b]\}.$$

Definition 5.6.1. Suppose that $f:[a,b] \to \mathbb{R}$ is bounded. The *upper integral* of f over [a,b] is

$$\overline{\int_a^b} f = \inf\{U(f, P) : P \text{ is a partition of } [a, b]\}.$$

The lower integral of f over [a, b] is

$$\int_{a_{-}}^{b} f = \sup\{L(f, P) : P \text{ is a partition of } [a, b]\}.$$

Theorem 5.6.2. Suppose that P and Q are partitions of [a,b] and that $f:[a,b] \to \mathbb{R}$ is bounded. Let $M \in \mathbb{R}$ so that $|f(x)| \leq M$ for all $x \in [a,b]$. Then

$$-M(b-a) \leq L(f,P) \leq \underline{\int_a^b} f \leq \overline{\int_a^b} f \leq U(f,Q) \leq M(b-a).$$

Definition 5.6.3. Suppose that $f:[a,b]\to\mathbb{R}$ is bounded. If

$$\underline{\int_a^b} f = \overline{\int_a^b} f$$

then f is integrable on [a, b]. The integral of f over [a, b] is

$$\int_{a}^{b} f = \int_{a}^{b} f = \overline{\int_{a}^{b}} f.$$

Theorem 5.7.3. Suppose that $f:[a,b] \to \mathbb{R}$ is integrable and that $R \in \mathbb{R}$ so that $L(f,P) \leq R \leq U(f,P)$ for all partitions P of [a,b]. Then $\int_a^b f = R$.

Theorem 5.7.3. Suppose that $f:[a,b] \to \mathbb{R}$ is integrable and that $R \in \mathbb{R}$ so that $L(f,P) \leq R \leq U(f,P)$ for all partitions P of [a,b]. Then $\int_a^b f = R$.

Theorem 5.7.4. Suppose that $f:[a,b] \to \mathbb{R}$ is bounded and that $R \in \mathbb{R}$. If for every $\epsilon > 0$ there is a partition P of [a,b] so that $U(f,P) - L(f,P) < \epsilon$ and $L(f,P) \le R \le U(f,P)$, then f is integrable on [a,b] and $\int_a^b f = R$.

Theorem 5.7.3. Suppose that $f:[a,b] \to \mathbb{R}$ is integrable and that $R \in \mathbb{R}$ so that $L(f,P) \leq R \leq U(f,P)$ for all partitions P of [a,b]. Then $\int_a^b f = R$.

Theorem 5.7.4. Suppose that $f:[a,b] \to \mathbb{R}$ is bounded and that $R \in \mathbb{R}$. If for every $\epsilon > 0$ there is a partition P of [a,b] so that $U(f,P) - L(f,P) < \epsilon$ and $L(f,P) \le R \le U(f,P)$, then f is integrable on [a,b] and $\int_a^b f = R$.

Theorem 5.7.6. If $f : [a, b] \to \mathbb{R}$ is bounded and monotonic, then f is integrable.

Theorem 5.7.3. Suppose that $f:[a,b] \to \mathbb{R}$ is integrable and that $R \in \mathbb{R}$ so that $L(f,P) \leq R \leq U(f,P)$ for all partitions P of [a,b]. Then $\int_a^b f = R$.

Theorem 5.7.4. Suppose that $f:[a,b] \to \mathbb{R}$ is bounded and that $R \in \mathbb{R}$. If for every $\epsilon > 0$ there is a partition P of [a,b] so that $U(f,P) - L(f,P) < \epsilon$ and $L(f,P) \le R \le U(f,P)$, then f is integrable on [a,b] and $\int_a^b f = R$.

Theorem 5.7.6. If $f : [a, b] \to \mathbb{R}$ is bounded and monotonic, then f is integrable.

Theorem 5.7.7. If $f:[a,b] \to \mathbb{R}$ is continuous, then f is integrable.

Theorem 5.7.8. Suppose that $f:[a,b] \to \mathbb{R}$ is integrable and $a \le u < v \le b$.

Then f is integrable on [u, v].

Theorem 5.7.8. Suppose that $f : [a, b] \to \mathbb{R}$ is integrable and a < u < v < b.

Then f is integrable on [u, v].

Theorem 5.7.9. Suppose that $f:[a,c] \to \mathbb{R}$ is bounded and a < b < c. If f is integrable on [a,b] and on [b,c], then f is integrable on [a,c]. Moreover, $\int_a^c f = \int_a^b f + \int_b^c f$.

Theorem 5.7.8. Suppose that $f : [a, b] \to \mathbb{R}$ is integrable and a < u < v < b.

Then f is integrable on [u, v].

Theorem 5.7.9. Suppose that $f:[a,c] \to \mathbb{R}$ is bounded and a < b < c. If f is integrable on [a,b] and on [b,c], then f is integrable on [a,c]. Moreover, $\int_a^c f = \int_a^b f + \int_b^c f$.

Theorem 5.7.10. Suppose that $f, g : [a, b] \to \mathbb{R}$ are bounded. If f(x) = g(x) for all $x \in [a, b)$ and if f is integrable on [a, b], then g is integrable on [a, b] and $\int_a^b f = \int_a^b g$.

Theorem 5.7.8. Suppose that $f : [a, b] \to \mathbb{R}$ is integrable and a < u < v < b.

Then f is integrable on [u, v].

Theorem 5.7.9. Suppose that $f:[a,c] \to \mathbb{R}$ is bounded and a < b < c. If f is integrable on [a,b] and on [b,c], then f is integrable on [a,c]. Moreover, $\int_a^c f = \int_a^b f + \int_b^c f$.

Theorem 5.7.10. Suppose that $f, g : [a, b] \to \mathbb{R}$ are bounded. If f(x) = g(x) for all $x \in [a, b)$ and if f is integrable on [a, b], then g is integrable on [a, b] and $\int_a^b f = \int_a^b g$.

Theorem 5.7.11. If $f:[a,b] \to \mathbb{R}$ is piecewise integrable on [a,b], then f is integrable [a,b].

Theorem 5.8.2. Suppose that $f, g : [a, b] \to \mathbb{R}$ are integrable. Then f + g and f - g are integrable on [a, b] and

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g \text{ and } \int_{a}^{b} (f-g) = \int_{a}^{b} f - \int_{a}^{b} g.$$

Theorem 5.8.2. Suppose that $f, g : [a, b] \to \mathbb{R}$ are integrable. Then f + g and f - g are integrable on [a, b] and

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g \text{ and } \int_{a}^{b} (f-g) = \int_{a}^{b} f - \int_{a}^{b} g.$$

Lemma 5.8.3. If $f:[a,b] \to \mathbb{R}$ is integrable and $k \in \mathbb{R}$, so that $k \leq f(x)$ for all $a \in [a,b]$, then $k(b-a) \leq \int_a^b f$.

Theorem 5.8.2. Suppose that $f, g : [a, b] \to \mathbb{R}$ are integrable. Then f + g and f - g are integrable on [a, b] and

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g \text{ and } \int_{a}^{b} (f-g) = \int_{a}^{b} f - \int_{a}^{b} g.$$

Lemma 5.8.3. If $f:[a,b] \to \mathbb{R}$ is integrable and $k \in \mathbb{R}$, so that $k \leq f(x)$ for all $a \in [a,b]$, then $k(b-a) \leq \int_a^b f$.

Theorem 5.8.4. Suppose that $f, g : [a, b] \to \mathbb{R}$ are integrable and that $f(x) \leq g(x)$ for all $x \in [a, b]$. Then $\int_a^b f \leq \int_a^b g$.

Theorem 5.8.2. Suppose that $f, g : [a, b] \to \mathbb{R}$ are integrable. Then f + g and f - g are integrable on [a, b] and

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g \text{ and } \int_{a}^{b} (f-g) = \int_{a}^{b} f - \int_{a}^{b} g.$$

Lemma 5.8.3. If $f:[a,b] \to \mathbb{R}$ is integrable and $k \in \mathbb{R}$, so that $k \leq f(x)$ for all $a \in [a,b]$, then $k(b-a) \leq \int_a^b f$.

Theorem 5.8.4. Suppose that $f, g : [a, b] \to \mathbb{R}$ are integrable and that $f(x) \leq g(x)$ for all $x \in [a, b]$. Then $\int_a^b f \leq \int_a^b g$.

Theorem 5.8.5. If $f:[a,b] \to \mathbb{R}$ is integrable then |f| is integrable on [a,b] and $\left| \int_a^b f \right| \le \int_a^b |f|$.

Definition 5.9.1. If f is a function defined at a real number a, then

$$\int_{a}^{a} f = 0.$$

Suppose that a < b in \mathbb{R} and that $f : [a, b] \to \mathbb{R}$ is integrable. Then

$$\int_{b}^{a} f = -\int_{a}^{b} f.$$

Theorem 5.9.2. Suppose that f is integrable on an interval containing

a, b, and c. Then
$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$
.

Theorem 5.9.4. (Fundamental Theorem of Calculus) Suppose that $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). If f' is integrable on [a,b], then

$$\int_a^b f' = f(b) - f(a).$$

Theorem 5.9.6. (Fundamental Theorem of Calculus) Suppose that $f:[a,b] \to \mathbb{R}$ is integrable on [a,b] and that $F:[a,b] \to \mathbb{R}$ is defined by

$$F(x) = \int_{a}^{x} f.$$

Then F is continuous on [a,b]. If f is continuous at $z \in (a,b)$, then F is differentiable at z and F'(z) = f(z).

