# CSDL-T-1276

# CACHE ANALYSIS IN A MULTIPROCESS ENVIRONMENT USING EXECUTION DRIVEN SIMULATION

by John Hamilton Fraser III August 1996

Master of Science Thesis Northeastern University

Approved for prefer received Distribution United States

19970117 134



# REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden, estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| 1. AGENCY USE ONLY (Leave blank)                   | 2. REPORT DATE                              | 3. REPORT TYPE AND DA                   | TES COVERED                   |
|----------------------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------|
|                                                    | 9 Jan 97                                    |                                         |                               |
| 4. TITLE AND SUBTITLE                              |                                             | , -                                     | 5. FUNDING NUMBERS            |
| Cache Analysis In A Multiproce                     | ess Environment Using Executi               | ion Driven Simulation                   |                               |
| 6. AUTHOR(S)                                       |                                             |                                         | -                             |
| John Hamilton Fraser III                           |                                             |                                         | 1                             |
| John Hammon Lines II                               |                                             |                                         |                               |
| 7. PERFORMING ORGANIZATION NAME(S)                 | AND ADDRESS(ES)                             |                                         | 8. PERFORMING ORGANIZATION    |
| Northeastern University                            |                                             |                                         | REPORT NUMBER                 |
|                                                    |                                             |                                         | 96-121                        |
| 9. SPONSORING/MONITORING AGENCY NA                 | AME(S) AND ADDRESS(ES)                      |                                         | 10. SPONSORING/MONITORING     |
| DEPARTMENT OF THE AIR                              | FORCE                                       |                                         | AGENCY REPORT NUMBER          |
| AFIT/CI                                            |                                             |                                         | 1                             |
| 2950 P STREET                                      |                                             |                                         | 1                             |
| WPAFB OH 45433-7765                                |                                             |                                         | 1                             |
| 11. SUPPLEMENTARY NOTES                            |                                             |                                         | 1                             |
|                                                    |                                             |                                         | T 201 - ELAVBIRIUVIOU AANE    |
| 12a. DISTRIBUTION AVAILABILITY STATEM<br>Unlimited | ΛENT                                        |                                         | 12b. DISTRIBUTION CODE        |
| Unlimited                                          |                                             |                                         | 1                             |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
| 13. ABSTRACT (Maximum 200 words)                   |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
|                                                    |                                             |                                         |                               |
| 14. SUBJECT TERMS                                  |                                             |                                         | 15. NUMBER OF PAGES           |
|                                                    |                                             |                                         | 181                           |
|                                                    |                                             |                                         | 16. PRICE CODE                |
|                                                    |                                             |                                         |                               |
| 17. SECURITY CLASSIFICATION OF REPORT              | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT | DN 20. LIMITATION OF ABSTRACT |
|                                                    |                                             |                                         |                               |

# Cache Analysis in a Multiprocess Environment Using Execution Driven Simulation

A Thesis Presented By

# John Hamilton Fraser III

to

The Department of Electrical Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in the field of

Electrical Engineering (Computer Engineering Concentration)

Northeastern University Boston, Massachusetts

August 30, 1996

#### Abstract

Cache memory is commonly used to bridge the gap between microprocessor and memory speeds. A wide variety of cache designs are possible, so some method is required to evaluate the benefits and costs of the various alternatives. Trace driven simulation is commonly used by the computer architecture community to analyze potential designs. Traces of benchmark execution are applied to a model of the design under study. Most of today's computer systems have been optimized based on results of these studies.

One important aspect that is frequently ignored in trace driven studies is the effect of the operating system and multiprogramming on cache performance; most traces consist only of a single program's execution. It has been acknowledged in the past that this overhead introduces interference which limits the benefits of new designs, but evaluations using multiprogrammed traces have been neglected due to the lack of readily available tools that can capture such traces.

In this research we describe a new tracing system that allows the capture of both operating system and multiprogrammed execution data. Cache performance is studied using multiprogrammed traces of the SPEC benchmarks. We study the effects of considering multiple tasks on the cache miss rate. The performance variation is primarily due to the presence of context switches. In an attempt to extend this work, we develop an analytical model that is used to synthetically incorporate context switches into a single process' trace.

We have found that the operating system introduces a small but persistent overhead to cache performance. Additional processes have an even greater impact, which increases as the level of multi-tasking increases. Spatial locality is not significantly affected by these conditions, but the temporal locality of a program is substantially reduced by the presence of context switches.

# Contents

| 1 | Intr | roducti | 101  | 1    |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 1  |
|---|------|---------|------|------|------|------|------|-----|-----|-----|-----|-----|----|----|-----|---|---|---|---|---|---|---|-------|---|---|-----|---|---|---|---|-------|---|---|---|---|---|---|----|
| 2 | Bac  | kgrour  | nd   |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 3  |
|   | 2.1  | Cache   | P    | erfo | orn  | nan  | ıce  |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 3  |
|   | 2.2  | Cache   | A    | nal  | ysi  | s    |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   | • | 7  |
|   |      | 2.2.1   | N    | [et  | hod  | ds . |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 7  |
|   |      | 2.2.2   | I    | ssu  | es   |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 9  |
|   | 2.3  | Currer  |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 13 |
| 3 | ልጥ   | OM Ov   | 370  | -1/i | O.11 | ,    |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 15 |
| U |      | Genera  |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 15 |
|   | 3.2  | Opera   |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 17 |
|   | 3.2  | 3.2.1   |      | et   | -    |      |      |     | _   |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 17 |
|   |      |         |      |      | -    |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 18 |
|   |      | 3.2.2   |      | , ro | _    |      |      | _   |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   |    |
|   |      | 3.2.3   |      | xec  |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 20 |
|   | 3.3  | Proble  |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 20 |
|   |      | 3.3.1   |      | TC   |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 20 |
|   |      | 3.3.2   |      | Cerr |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 21 |
|   |      | 3.3.3   |      | rog  | ,    |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 22 |
|   |      | 3.3.4   | F    | xec  | cut  | ion  | S    | pe  | ed  |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 23 |
|   |      | 3.3.5   | F    | le-e | nt   | ran  | ıce  |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 25 |
|   |      | 3.3.6   | F    | lefe | rer  | ıce  | St   | tre | am: | ı A | Lce | cui | ra | су |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 26 |
|   |      | 3.3.7   | F    | ort  | ab   | ilit | y    |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     | • |   |   |   |       |   |   | • |   |   |   | 27 |
| 4 | Test | t Meth  | ho   | dol  | റമ   | v    |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 28 |
| - | 4.1  | Cache   |      |      | _    |      |      |     |     | _   |     | _   | _  |    |     |   |   |   |   |   |   |   |       |   |   |     | _ |   | _ |   |       |   |   | _ |   |   |   | 28 |
|   | 4.2  | Verific |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 33 |
|   | 4.3  | Simula  |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 36 |
|   | 4.0  | 4.3.1   |      | lat  |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 36 |
|   |      | 4.3.1   |      | est. |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 37 |
|   |      | 1.0.2   | -    | CSU  |      | 110  | .111 | -   | 13  | •   | •   | •   | •  | •  | • • | • | • | • | • | • | • | • | <br>• | • | • | • • | • | • | • | • | <br>• | • | • | • | • | • | • | ٠. |
| 5 |      | ulation |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 41 |
|   | 5.1  | Cache   |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 41 |
|   | 5.2  | Impac   |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 45 |
|   | 5.3  | Proces  |      |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 47 |
|   | 5.4  | Impac   | ct c | n (  | Cad  | che  | P    | erf | ori | ma  | ane | ce  |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 58 |
|   | 5.5  | Summ    | nar  | у    |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 59 |
|   | 5.6  | Future  | e V  | Vor  | k    |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   | • | 69 |
| 6 | Con  | text S  | w    | itcl | h P  | νſο  | de   | el  |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 70 |
| _ | 6.1  | Theory  |      |      |      |      |      |     |     |     | _   |     |    |    |     |   | _ |   |   |   |   |   | <br>  | _ |   |     |   |   |   |   | <br>_ |   |   |   |   |   | _ | 70 |
|   | 6.2  | Develo  | •    |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 72 |
|   | 6.3  | Impler  | -    |      |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 73 |
|   | 0.0  | 6.3.1   |      | rec  |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 73 |
|   |      |         |      | •    | -    | -    |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   | 76 |
|   |      | 6.3.2   |      | mp   |      |      |      |     |     |     |     |     |    |    |     |   |   |   |   |   |   |   |       |   |   |     |   |   |   |   |       |   |   |   |   |   |   |    |
|   | 6.4  | Testin  | ıg   |      |      |      |      | •   |     | •   | •   | •   | •  |    |     |   | ٠ | • | • | • | • |   |       | ٠ | ٠ |     | • | • | • |   | <br>• | • | • | • |   | • | • | 80 |

| 7            | Model Evaluation 7.1 Individual Results for n=1 7.2 Individual Results for n=2 7.3 Interference Comparison 7.4 Summary 7.5 Future Work | <br><br>. 81<br>. 81<br>. 89 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 8            | Conclusions                                                                                                                            | 93                           |
| 9            | Contributions of this Thesis                                                                                                           | 94                           |
| 10           | Acknowledgments                                                                                                                        | 96                           |
| 11           | Bibliography                                                                                                                           | 97                           |
| $\mathbf{A}$ | Program Source Code                                                                                                                    | 101                          |
|              | A.1 Input Format                                                                                                                       | <br>. 102                    |
|              | A.2 Output Format                                                                                                                      | <br>. 103                    |
|              | A.3 Cache Model Library                                                                                                                | <br>. 107                    |
|              | A.4 Kernel Instrumentation File                                                                                                        |                              |
|              | A.5 Kernel Analysis File                                                                                                               | <br>. 111                    |
|              | A.6 Program Instrumentation File                                                                                                       |                              |
|              | A.7 Program Analysis File                                                                                                              | <br>. 119                    |
|              | A.8 Sample Tool Description File                                                                                                       | <br>. 130                    |
|              | A.9 Model Library                                                                                                                      | <br>. 131                    |
|              | A.10 Model Analysis File                                                                                                               | <br>. 133                    |
| В            | Tables of Simulation Results                                                                                                           | 144                          |
|              | B.1 Compress Alone                                                                                                                     | <br>. 144                    |
|              | B.2 GCC Alone                                                                                                                          |                              |
|              | B.3 Espresso Alone                                                                                                                     |                              |
|              | B.4 Alvinn Alone                                                                                                                       |                              |
|              | B.5 Compress w/ Operating System                                                                                                       |                              |
|              | B.6 GCC w/ Operating System                                                                                                            |                              |
|              | B.7 Espresso w/ Operating System                                                                                                       |                              |
|              | B.8 Alvinn w/ Operating System                                                                                                         |                              |
|              | B.9 Compress and GCC w/ Operating System                                                                                               |                              |
|              | B.10 Compress and Espresso w/ Operating System                                                                                         |                              |
|              | B.11 GCC and Espresso w/ Operating System                                                                                              |                              |
|              | B.12 Compress w/ Model, n=1                                                                                                            |                              |
|              | B.13 GCC w/ Model, n=1                                                                                                                 |                              |
|              | B.14 Espresso w/ Model, n=1                                                                                                            |                              |
|              | B.15 Alvinn w/ Model, n=1                                                                                                              |                              |
|              | B.16 Compress w/ Model, n=2                                                                                                            |                              |
|              | B.17 GCC w/ Model, n=2                                                                                                                 |                              |
|              | B.18 Espresso w/ Model, n=2                                                                                                            | <br>. 146                    |

# List of Figures

| 1  | Program Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 |
| 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 |
| 4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
| 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
| 6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 |
| 7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 |
| 8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 |
| 9  | 1 1000bb 2 dtd 1010101101 111111 111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51 |
| 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 |
| 12 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53 |
| 13 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54 |
| 14 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 |
| 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56 |
| 16 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56 |
| 17 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56 |
| 18 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66 |
| 19 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 |
| 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 |
| 21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 |
| 22 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 |
| 23 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 |
| 24 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31 |
| 25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32 |
| 26 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33 |
| 27 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 |
| 28 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 |
| 29 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 |
| 30 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 |
| 31 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 |
| 32 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 |
| 33 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71 |
| 34 | z o p = 0 = 1 = 6 - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75 |
| 35 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76 |
| 36 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78 |
| 37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78 |
| 38 | Model Results for Compress; n=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32 |
| 39 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33 |
| 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 |
| 41 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 |
| 42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 |
| 43 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 |
| 44 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 |
| 45 | - Production and - Prod | 90 |
| 46 | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90 |
| 47 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90 |
| 48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90 |
| 49 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91 |

| 50         | Percent Self Overwritten for GCC; n=2                            | 91  |
|------------|------------------------------------------------------------------|-----|
| 51         | Percent Self Overwritten for Espresso; n=2                       | 91  |
|            |                                                                  |     |
| <b>-</b> . | 0.771.1                                                          |     |
| List       | of Tables                                                        |     |
|            |                                                                  |     |
| 1          | Simulated Cache Parameters                                       | 40  |
| 2          | Benchmark References                                             | 41  |
| 3          | Benchmark with Operating System References                       | 42  |
| 4          | Concurrent Benchmarks with Operating System References           | 45  |
| 5          | System Overhead Comparison                                       | 45  |
| 6          | Compress Alone                                                   | 147 |
| 7          | GCC Alone                                                        | 148 |
| 8          | Espresso Alone                                                   | 149 |
| 9          | Alvinn Alone                                                     | 150 |
| 10         | Compress w/ Operating System, Compress Data                      | 151 |
| 11         | Compress w/ Operating System, Operating System Data              | 152 |
| 12         | Compress w/ Operating System, Combined Data                      | 153 |
| 13         | GCC w/ Operating System, GCC Data                                | 154 |
| 14         | GCC w/ Operating System, Operating System Data                   | 155 |
| 15         | GCC w/ Operating System, Combined Data                           | 156 |
| 16         | Espresso w/ Operating System, Espresso Data                      | 157 |
| 17         |                                                                  | 158 |
| 18         | Espresso w/ Operating System, Operating System Data              | 159 |
| 19         | Espresso w/ Operating System, Combined Data                      |     |
|            | Alvinn w/ Operating System, Alvinn Data                          | 160 |
| 20         | Alvinn w/ Operating System, Operating System Data                | 161 |
| 21         | Alvinn w/ Operating System, Combined Data                        | 162 |
| 22         | Compress and GCC w/ Operating System, Compress Data              | 163 |
| 23         | Compress and GCC w/ Operating System, GCC Data                   | 164 |
| 24         | Compress and GCC w/ Operating System, Operating System Data      | 165 |
| 25         | Compress and GCC w/ Operating System, Combined Data              | 166 |
| 26         | Compress and Espresso w/ Operating System, Compress Data         | 167 |
| 27         | Compress and Espresso w/ Operating System, Espresso Data         | 168 |
| 28         | Compress and Espresso w/ Operating System, Operating System Data | 169 |
| 29         | Compress and Espresso w/ Operating System, Combined Data         | 170 |
| 30         | GCC and Espresso w/ Operating System, GCC Data                   | 171 |
| 31         |                                                                  | 172 |
| 32         | . ,                                                              | 173 |
| 33         | GCC and Espresso w/ Operating System, Combined Data              | 174 |
| 34         | Compress w/ Model, n=1                                           | 175 |
| 35         | GCC w/ Model, n=1                                                | 176 |
| 36         |                                                                  | 177 |
| 37         | ,                                                                | 178 |
| 38         | • , ,                                                            | 179 |
| 39         | •                                                                | 180 |
| 40         | Espresso w/ Model, n=2                                           | 181 |
|            |                                                                  |     |

# 1 Introduction

The technological improvements in processor technology are far outstripping the advances made in memory circuit design. As processors execute faster and faster, the latency experienced when accessing memory becomes a major limitation. Faster memory is available, but at greater cost. An economical balance between performance and price is achieved through the use of memory caches. The main memory is implemented using less expensive but slow technologies such as SRAM, making a large memory feasible. A much smaller memory cache is constructed of faster (and more expensive) memory circuits, such as DRAM, to be used as a buffer between the main memory and the processor. Sections of the data stored in main memory are copied into the cache, allowing it to be accessed much more quickly. Which sections of memory are copied into the cache, and how the information is maintained, is a function of the design of the cache [22, 36, 52].

A cache is effective in reducing the average memory access time because of certain properties found in software. The collection of instruction and data addresses used by a program over some time interval is referred to as its working set [3] or footprint [56]. The working set may change as the program executes, but it generally exhibits two properties:

- 1. spatial locality, and
- 2. temporal locality.

Spatial locality refers to the property that addresses tend to cluster together in space. References may be sequential or in some other way structured, denoting a high degree of spatial locality. Similarly, temporal locality refers to the property that addresses tend to cluster together in time. Addresses in the working set may be used repeatedly during their lifetime, denoting a high degree of temporal locality.

These two properties allow caches to improve memory system performance. A memory reference which is not in the cache causes a cache *miss*. The data at the referenced location and some number of its adjoining locations is brought into the cache. Due to locality, it is likely that either the same location (temporal), or nearby locations (spatial), will be referenced in the near future. When these references occur, they are already present in the cache and a cache *hit* ensues. On a hit, the data can be very rapidly supplied to the processor, much faster than an access to the main memory. The improvement provided by a cache becomes a function of how often a hit occurs

and how fast the addressed data can be provided to the processor, balanced by the delay introduced when servicing a cache miss.

The critical nature of caches has led to extensive study of various designs, configurations, and enhancements, all oriented towards increasing cache performance. There are diverse methods available to assess the alternatives, ranging from prototyping to simulation. Regardless of the method, the accuracy of the evaluation is paramount. The criteria used to justify any evaluation must accurately reflect the environment to which the cache will be subjected, otherwise any conclusions are questionable.

One of the major shortcomings of the most common evaluation methods is that the effect of the operating system and multiple user processes being executed are neglected. The methods are simpler, but ignore a major aspect of the computer's architecture. Several past efforts have shown the related impact is significant enough to warrant inspection [1, 2, 8, 11, 12, 41], and is certainly a more realistic representation of the execution environment. The drawback is the difficulty of incorporating these considerations into the evaluation. There is generally some overhead required, in time and/or resources, to perform such complex tests.

The research described here focused on developing a tool to capture multiprocess state information and perform subsequent evaluations, exploring its capabilities with studies in both detailed cache simulations and testing an analytical model. This thesis is organized as follows. In section 2 cache performance and evaluation methods are reviewed. Section 3 describes the analysis tool ATOM, and how it can be used specifically on the operating system and in a multi-process environment. Section 4 discusses the methodology followed in this research and outlines the tests performed. Section 5 reviews the results of simulations performed in the multi-process environment. In section 6 an analytical model is presented that can be used to simplify simulations with minimal loss of accuracy, which is tested in section 7. Section 8 concludes the work, with a summary of its contributions in section 9. Last are section 10, the acknowledgments and section 11, the bibliography. Two appendices are attached, A, copies of the programs used in this research, and B, tables of all simulation results.

# 2 Background

# 2.1 Cache Performance

Cache performance encompasses a variety of issues. At the most basic level, the performance of a cache can be defined by its miss rate (or ratio), the percentage of references applied to the cache whose data was not already present in the cache. Alternatively the hit rate, which is the percentage already present, may be referred to. The two values represent equivalent information, since the miss rate equals one minus the hit rate and vice versa. Depending on the system and evaluation performed, however, this metric may be an oversimplification. The goal of the cache is to improve the average memory access time, which is a function of more than just the miss rate. It is entirely possible for a cache to have a low miss rate, but due to other consideration have a long access time thus limiting its usefulness. Hence many evaluations are based not on miss rates, but rather refer to the cache latency [7, 8, 41, 47]. The drawback is that to perform an evaluation of that magnitude is much more difficult and requires modeling a greater portion of the system under test, so focusing simply on miss rates is frequently used anyway.

Regardless of the standard used, the cache miss rate is important, as the average access time does depend on this value. To understand the significance of the miss rate, it is important to understand the various sources of misses. A program generates a stream of memory references as it executes, which are applied to the cache. Cache misses are caused when an address in the reference stream is not present in the cache. This can occur for basically three reasons [3, 55]:

Start Up The first form of miss is caused the first time that a particular address is referenced in the stream. Since it has not been referenced before, there is no expectation that that memory location would have been copied into the cache. Such misses are encountered primarily when a program begins executing and all references are new, also called the warm up phase of the cache. The size of the cache and the program both contribute to the length of this phase. As the working set changes, additional start up misses are encountered as new locations are referenced.

Though a certain address may not have been previously referenced, it is still possible that its data is already in the cache. When data is copied from memory to the cache, it is moved in quantities called blocks. A block is usually larger than a single memory access, so a single miss fetches more data than is required for a single access. If a location is referenced that resides in

a block already fetched, it will hit, even though that particular address may be new. This is only effective for memory references that are primarily sequential, such as instruction fetches, in which case a large block size is beneficial. Footprints with less locality, such as data loads and stores, can actually have the reverse effect as large blocks bring in excess data which is never used.

Another technique to prevent start up misses is the use of prefetching [14, 15, 52]. This is essentially an attempt to predict what locations will be referenced in the near future, and fetch them into the cache before they are requested. The method of prediction can be hardware or software based, and must be accurate for prefetching to be effective. If data is falsely predicted and fetched into the cache, it may overwrite "live" data (live meaning that it is still part of the current working set), causing cache pollution. Additional enhancements such as a pre fetch buffer filter or victim cache can be used to limit this impact [22]. Using prefetching can improve miss rates, however it also increases the traffic between the cache and memory. An accurate evaluation cannot consider only miss rates with this technique, otherwise its drawbacks will be obscured.

Capacity The second form of miss is due to the finite cache size. A large program cannot possibly fit its entire working set into a small cache. As various parts of the working set are used, they will overwrite other live data. The obvious solution is to use a larger cache, but at additional expense. Another potential solution is to analyze the locations used in the working set. The references may cluster around certain blocks while others are unused. Changing the mapping of addresses to cache lines (or indices) may allow the references to be better distributed across all cache lines [7]. This technique is also an effective counter for the next type of miss, which together with capacity misses are sometimes referred to as intrinsic interference.

Conflict The third form of miss is due to conflict between two references. If two addresses in the working set map to the same cache line, each time they are referenced a cache miss may result (depending on the actual pattern of references). Again, altering the mapping algorithm may reduce the amount of conflict in a given reference stream by spreading out clumps. Another option is to use an associative cache [22, 52]. In this form of cache, each cache line (sometimes called set) can maintain multiple blocks, so multiple locations can map to the same line without conflict. The number of blocks held in each line is referred to as the set size or associativity

of that cache, and can vary from 1 to the maximum possible given the available chip area. This type of cache can be pictured as a two dimensional array of blocks, with the vertical dimension the number of lines and the horizontal the associativity. The bounding cases are a direct mapped cache with an associativity of one, and a fully associative cache with only one line. The drawback is that for a finite cache area, increasing the associativity decreases the number of cache lines, so each line in the cache has more locations mapped to it and a corresponding heavier load. Also, associative caches are frequently slower, which should be a factor in comprehensive evaluations.

These three categories comprise the basic types of misses found in a process' reference stream. They must be considered in even a minimal performance measurement, although there are other cache components that may improve memory system performance without affecting the miss rate.

Other cache enhancements which do not directly affect miss rates are usually related to access times. Techniques such as using a Translation Lookaside Buffer (TLB) [49] can perform cache lookups and virtual address conversions in parallel. Other methods include using hierarchies of caches, such as a small direct mapped cache on chip and a second level larger cache, possibly associative, off chip. Using combinations of caches can potentially improve the performance more than a single highly complex cache [52]. In some instances an entire cache is not added, but various buffers or filters are accommodated, such as the prefetch buffer or victim cache [7].

The cache performance will depend on many characteristics of the cache. Some of the most basic are its size and structure, and the method it uses to resolve both hits and misses for each reference type (instruction fetch, data read, and data write). Performance enhancing mechanisms may also be included, each addressing various deficiencies. Studies have shown that multiple mechanisms in concert are generally the most effective [47]. The wide variety of cache designs makes the ability to evaluate various options paramount, and there are concerns that have yet to be addressed which further complicate analysis.

So far in this discussion, caches have been considered in an idealized environment. Modern computers do not simply execute a single program continuously until its completion. The operating system generates its own references as system calls are requested. The operating system also generates references for processes such as interrupt services and other management tasks, which are performed periodically. Even more complex is a multiprocess environment, with multiple programs or threads being executed. In a multitasking system there are several processes or tasks all vying

for system resources, one of which is memory. In a uniprocessor system, control is accomplished by time sharing. The various tasks are executed for finite intervals and then execution is switched to another process — called a context switch. As each task is scheduled and executed, it generates its own reference stream with unique characteristics. The individual streams are interleaved by the context switches to yield an aggregate reference stream which impinges on the cache [19, 31, 56].

This introduces a new mechanism causing a fourth and final type of miss, transient cache misses. When a process is swapped out during a context switch, the process or processes that execute until the original process is returned will overwrite its cache data. This data may still have been live, so the overwrites may cause additional cache misses once the original process is restored. This is referred to as extrinsic interference [2], as opposed to the intrinsic interference discussed above, and can be thought of as a reload period after each context switch as evicted data is returned to the cache [56]. The impact of extrinsic interference will magnify with increased multiprogramming as the duration of each swap is extended, although this can be partially negated by stabilizing the time quantum that each process executes.

Some designs call for the cache to be totally flushed (invalidated) at each context switch automatically. This might be appropriate for a control mechanism such as the cache type structure used to implement a TLB, but in an instruction or data cache it is quite likely that some of the live data from a process would still be resident when that process returns to execution. By maintaining the cache data for as long as possible, the extrinsic interference is kept to a minimum; although this does require additional overhead to monitor the owner of each line of cache data, and complicates analysis [22].

Other architecture issues can further complicate performance consideration. A multiprocessor system is similar to what has already been discussed, but more complicated. Not only are multiple reference streams being generated, they are generated simultaneously and possibly applied to multiple caches. Each processor may maintain its own memory structure or they may share a common structure. This raises the issue of cache coherency, or the property that data stored in memory is properly maintained in each location it is represented. If multiple processes share memory but have their own caches, care must be taken to monitor when data is in multiple caches (shared) so that if the data is modified, it is modified in all caches. Various policies can be used when data is stored to the cache, such as write through, meaning data is written to memory as soon as it is written to cache, or write back, meaning the data is not written to memory until it

is evicted from the cache. Each has various advantages and disadvantages, and in turn affects the policy used to maintain coherence [15, 29]. There are a variety of other technical issues as well, such as communication and synchronization, making this a very complex design. Even more radical departures from the traditional von Neumann architecture, to a dataflow architecture for example, cause even greater difficulties in defining evaluation criteria [30].

# 2.2 Cache Analysis

### 2.2.1 Methods

There are a variety of methods available to evaluate cache performance. General reviews are presented in [1, 11, 13, 60]. The techniques can be broken down into various categories:

Analytical Models The most abstract form of analysis is based on a theoretical prediction derived from the test system's characteristics and assumptions of how it is loaded. Developing a model of the system under test requires certain assumptions which may oversimplify aspects of cache design, neglect relevant characteristics of the input, or may not be sufficiently verified to warrant their use. The accuracy of the evaluation is limited by the accuracy of the theoretical model, and unfortunately, the more accurate and comprehensive the model, the more difficult it is to solve [3]. Some models are based on abstract parameters with little relation to the actual system [31], and others may require considerable test program characterization; to the point that other methods would be equally suitable [56]. The most successful models tend to focus on very limited aspects of memory system performance to reduce their scope [28, 55].

Hardware Evaluation The antithesis of theoretical analysis is hardware evaluation. In this method, the test system is implemented and inserted into some platform. Its performance can then be monitored directly as the platform is operated. The actual analysis is quite quick, as the processing is conducted at the same speed as the platform, however the test system must be constructed, which may be a slow and expensive process. The other disadvantage is that to test a variety of alternative designs, each alternative must be constructed. This limits the flexibility and can be even more costly. Rapid prototyping can make this method more attractive, and some examples have been found in [11, 24]. Using techniques of hardware emulation can also be more efficient, although they are slower [40].

Trace Based Simulation By far the most common form of analysis is trace driven simulation. A trace of program references is generated and applied to a model of the system being tested. The model is simulated in software, and can be as complex as accuracy dictates. A software model is very flexible, but simulations are slower to compute. Also, the traces must somehow be stored, which requires a great deal of memory, although they can be reused. The trace can be as complex as desired, and there are a variety of methods that can be used to generate it:

Synthetic Generation Workloads can be created for system test through the use of synthetic generators. No programs need be executed, reference streams are simply generated randomly. Some control is provided through defining random variables and their distributions, establishing the desired characteristics of the workload. Since it is artificially generated, however, its accuracy is highly suspect. Various examples of this technique can be found in [35, 46, 57, 58].

System Emulation Another alternative which does not require program execution uses system emulation. A test program is required, but it is fed into an instruction set simulator which generates reference stream data. This pseudo execution of programs is very slow, though, and is rarely used [60].

Hardware Capture The last two methods monitor the execution of a test program on some platform, capturing the reference stream as the program executes. In hardware capture, the platform is modified so that as it executes the test code, the references generated are collected and stored. It is easy to capture a wide variety of references in the trace working at this level, but this technique suffers from the disadvantage of requiring unique hardware and/or costly modification. The two most common forms of hardware capture have been accomplished by modifying the microcode of the CPU [1, 2], or by using test probes inserted into the system to electrically read the system status [11, 60]. The first can only be used with certain architectures, however, and the latter is limited by the external visibility of data (for instance, an on chip cache could not be monitored). Once each reference is captured, there are a variety of ways to record it, such as storing it in a buffer and occasionally writing the buffer to a file. The method must be able to record data as fast as the system generates it, which may be a significant limitation. Despite the disadvantages, this method is frequently used in certain situations where other methods may not be feasible, such as very complex architectures [5, 59].

Software Capture The most common form of trace generation is by software capture. Instead of modifying the testbed, the software can be altered so that information about the program's execution is recorded. Again, the trace is generally stored in a buffer until it can be written out to a file, although there are alternatives. Software capture is more flexible than hardware based methods, as the information that is collected can be easily updated as evaluation needs change, but capturing all aspects of the reference stream (such as the operating system) can be difficult. Capture can be based on snooping programs [50], interrupt generation [32], or by explicitly modifying the test code. This modification can occur during compilation [7, 8, 25, 43, 45] or can be applied to an existing executable [11, 12, 13, 54].

Extensions There are also various extensions that can be used with the above techniques to improve their efficiency. For instance, one major drawback of trace based simulation is the storage space required for the traces. To compensate, it is possible to have the analysis program executing concurrently with the trace generation, so that no long term storage is required; one example is [8]. This does preclude reuse, however. Other techniques include sampling traces to reduce their length, although this may affect their accuracy depending on what assumptions are made in the sampling process [1, 2, 6, 33, 61]. It is also possible to simply compress the trace file, but this is only a short term solution. Other extensions include using various processing algorithms such as stack based processing to simplify simulation [48, 64], or reducing processing time with parallel computation [42, 43, 63]. Analytical models can be used in conjunction with program traces to simplify simulation and provide evaluation over a variety of system characteristics with a single execution [3].

# 2.2.2 Issues

The evaluation method used must accurately reflect the type of workload that would be present in a real system. This is particularly a concern when analytical models are used, as programs may not be executed at all, so a statistical approach is common [57, 58]. For hardware measurement and trace based simulation, this problem is addressed by selecting appropriate programs to be executed in the evaluation. Specific programs known as benchmarks are used as accepted standards for testing [34, 45, 49]. There are differences in workloads depending on the type of programs being considered, whether they are technical or commercial applications [37], so generally multiple test

programs are used to ensure the evaluation is comprehensive. The better test programs will have a large and complex footprint to exercise the cache fully, although this can make standardization more difficult and analysis slower.

Once a workload is identified, how it is represented and used in the analysis can vary. If a program is executed or traced, there are a variety of concerns that must be addressed for the evaluation to have much confidence [1, 11, 13, 60]:

Reference Scope The simplest forms of references to monitor are from a single process [7, 25, 45, 61, 62], but though they are easy to capture they are also not particularly a realistic reflection of cache loading. Even in this basic form, care must be taken to ensure that shared libraries and other common structures are captured. A more realistic reference stream includes additional processes, and if possible, the operating system. Hardware evaluation of a cache and hardware based trace capture for simulation do allow capture of all references, but as mentioned before they have other drawbacks. It may be difficult to identify the source of particular references, too, making analysis more difficult. Through the use of comprehensive software capture mechanisms, it is possible to capture traces with multiple processes [8, 41]. In its most complex form, this mechanism can also be used to capture traces that include the operating system [1, 2], however a thorough understanding of the test system is necessary for proper implementation. Such references are more difficult to capture, and present a new problem in processing. The multiprocess environment is non-deterministic, the reference stream can vary even for execution of the same test programs as scheduling and interrupts change the execution pattern. For a truly accurate comparison, all tests must be performed from a single stored trace, or they must all be performed concurrently from the stream as it is generated and processed [8].

Reference Length Another accuracy problem with reference streams are their length. As caches increase in size, more references are required to fully exercise them. A large cache can contain a large footprint, so a long program is needed to generate such a footprint. This is particularly relevant for RISC machines, which will have significantly longer traces for a given program because of the increased number of instructions. Current practices call for on the order of 100 million to 10 billion references to be an adequate [8]. Hardware evaluation places no constraint on program execution, but traced based methods may be limited. Early tracing mechanisms

could not generate long enough traces, so shorter traces were stitched together [1, 2]. In other cases, single process traces were interleaved to approximate a multiprocess environment [56]. Recently, more robust methods have become available so that such artificial measures are not required [13, 20]. Long traces are difficult to manage because of the storage space they require. Analysis can be conducted on the fly so the traces are used as they are generated [8], or the traces can be sampled to reduce their length [3].

Platform Impact The operating system and compiler used affect cache performance. The relative location of a program's instructions and data will affect the amount of conflict since those locations determine which cache line each will be mapped to. Other considerations such as data alignment, prefetch/flush commands, and program scheduling will also affect the reference stream. The compiler generates code optimized for a certain physical memory system, so may not be ideal for the test memory systems being considered. For the purposes of most evaluations, this effect is considered to be equivalent across all designs, and can be ignored, particularly by using the least optimized code possible [69].

The memory system used on the platform will also affect the evaluations performed with it. The size of the memory can produce page faults and other activities, which in turn generates additional overhead references that would not have occurred in the modeled system. Other systems may dynamically schedule activities based on the system state, which may include memory system performance, so ordering of events may be subtly altered.

In certain architectures, the scheduling of references is linked directly to the memory system performance. For instance, one possible method to hide the cache latency is to generate a context switch on any cache miss. For this to be viable, the overhead of performing a context switch must be less than the latency to service a cache miss. If this is the case, the cache performance then plays a major role in defining the reference stream. One solution used in [38] is to not only simulate the cache, but the pipeline and instruction set as well. The test program executable file is fed into the simulation which executes it "virtually". Such a simulation is very comprehensive but also quite complex. Parallel systems present a similar problem. References may be generated for one system and a variety of memory configurations can be tested, but any changes to the architecture of the underlying system may totally invalidate the accuracy of the reference stream. Also, multiple reference streams are being

generated simultaneously, either being applied to the same cache or multiple caches that must remain consistent. Generally, such complex architectures dictate certain types of evaluation methods, using either synthetic [46] or hardware monitored traces [59] for analysis. Another option is to capture robust traces with more information than just simple addresses so that the execution stream can be re-created for a variety of systems [26, 32].

Reference Mapping When a reference is applied to the cache, it is mapped onto a cache line. A simple hashing of the address bits may be used, or a more complex algorithm, possibly including other information such as the process identifier [52]. The algorithm can vary with the system and depending on how addresses are collected it may be relevant. Depending on the capture method, the addresses generated may also be virtual or physical. Virtual addresses may be used to model caches, however this is a simplification. The actual memory system must at some point convert all addresses to physical form. This conversion affects how lines are mapped from memory to the cache, so it is relevant to cache performance. Unfortunately, converting to physical addresses is a very complex task that requires considerably more system state information than is provided by a basic reference trace. Since the placement of programs in memory affects their mapping into the cache, the loading of programs into memory is also relevant, although this is usually controlled by the operating system.

There are additional concerns relevant to particular methods. If traces are captured, care must be taken so that the act of tracing does not affect the trace generated. Hardware capture methods tend to be non-intrusive, but have other drawbacks. Software based methods in particular are very intrusive since they modify the test programs, and certain measures must be taken to compensate [1, 11, 13, 60]:

Address Skewing The code added to a test program will change the various address used for both instruction fetches and data accesses. If the addresses during execution are used directly for the analysis, the results will be skewed. Instead, the addresses must be calculated based on what the reference position would have been without tracing. This is normally handled by the trace generation software, and can be transparent to the simulation model.

Processing Skewing The additional code inserted into a program can also cause the processing characteristics of the test program to be skewed. The added code may make additional calls to system resources or generate additional interrupts. The capture mechanism should ideally

identify the source of references so they can be discarded if not generated by the original test program, although this is difficult when the operating system is considered.

**Program Size** Since program size is increased, certain aspects of execution will be changed such as paging. The larger programs will occupy more memory and hence require greater system overhead to manage.

Program Speed The program speed is related to the program's size. The additional code introduced into programs can easily slow down their execution by an order of magnitude [8]. The more processing introduced by tracing, the greater the slow down will be. This affects the accuracy of traces in two ways. Longer programs will have a disproportionate number of realtime interrupts during their execution. Some form of scaling must be used so the frequency of this type of interrupt is reduced within the trace. Neglecting to perform the service routine is possible, however may affect system performance. The longer programs will also have a disproportionate number of context switches as the additional code can both cause switches as well as slow down the original program so that less is accomplished during the maximum execution interval allowed by the scheduler.

Once such concerns are addressed for a given evaluation methodology, an analysis can be performed with a great deal of confidence in its results.

#### 2.3 Current Work

As early as the late 1980's, the impact of the operating system and additional processes was recognized as a concern in memory system performance [1, 2, 3]. More recent work has consistently validated the supposition that this impact was significant enough to warrant further study, and should be included in any comprehensive memory system evaluation [5, 11, 12, 13, 41, 59]. More importantly, as computing capability increased, it has become possible to capture longer and more complete traces directly, without using such patch work measures as described before.

Much of the recent work has revolved around trace driven simulation with software capture methods. Many studies still consider cache performance, although others are becoming more focused, looking at specific areas such as the effect different operating system structures can have on memory system performance [11, 12]. Some of the methods used are either proprietary [37], or especially designed for a certain application [62]. Some generic tools have been generated, such as Epoxie,

which rewrites assembly code to generate address traces [11, 12, 13].

Another such tool is ATOM, very similar to those found in [11, 12, 13, 37]. Developed by DEC's Western Research Laboratory, ATOM is a general purpose program analysis tool that can be customized to perform a wide variety of different evaluations. Until recently, ATOM focused on only the single process environment, but in its latest versions, it now has the capability to capture traces that include the operating system as well as multiple user programs. This research has revolved around refining this capability and demonstrating its applicability to cache analysis.

# 3 ATOM Overview

# 3.1 General Use

ATOM (Analysis Tools with OM) [51] is not a specific application; rather it is a toolset that can be used to produce custom analysis tools. It provides the framework to generate program traces during execution and pass the trace data to analysis routines through a procedure call interface. The analysis or simulation program is actually incorporated into the test program, so as the test program is executed, so is the tool. This procedure is commonly referred to as execution driven simulation, effectively combining the act of tracing and analysis. Tracing of this type alleviates the need for trace storage, as well as the difficulties of synchronizing a separate analysis program with the test programs.

The analysis performed can vary a great deal due to the flexibility provided by ATOM. Tracing is performed on selected events such as program start/stop, basic block boundaries, memory reads and writes, instructions, or procedures. Certain types of a given event can be selected (i.e., a certain procedure call), or all instances of an event (i.e., every instruction). The trace capture is inserted as a function call to an analysis routine, so that when a particular event occurs during execution, information about that event is passed to the analysis routine where the event data is recorded, processed, or in some other way used to perform the desired evaluation.

Given this type of framework, tools are quite easy to generate. For a simple cache simulator with a single process, the test program is instrumented at every instruction fetch and at every data load or store. The memory location referenced by each instruction is passed to the analysis routines corresponding to that reference type. Within the analysis routine, the cache simulation is performed, so that when the test program concludes, the simulation is completed.

The specific form of analysis to be "instrumented" into the test program is incorporated at link time by ATOM using two files:

- 1. the *instrumentation file*, which instructs ATOM which events to trace on and what event information to pass to the analysis routines, and
- 2. the analysis file, which defines the various analysis routines and any other subsidiary functions required.

It is a very simple process to use. The test program is compiled, and then used as input to

the ATOM program with the following example command line:

%atom program.rr inst.c anal.c -o program.trace

The program is then executed and the desired analysis specified by inst.c and anal.c is performed. This is a very simple example. There are various control flags that ATOM accepts, these are described in both the on-line documentation and the program manuals.

For simplicity it is also possible to define tools for ATOM. A tool description file is created which specifies which instrumentation and analysis files to use, as well as the various flags to pass to ATOM. The programs are instrumented with a tool by using the command line:

%atom program.rr -tool eval -o program.trace

In addition to simplifying the command line, defining a custom tool also allows additional control flags to be used. The basic ATOM command line does not accept loader flags, for example, so the flags necessary to include shared libraries such as math.h (-1m) cannot be used. This would normally prevent analysis routines from accessing such basic functions, which is obviously an inconvenience. By defining a tool, it is also possible to define additional flags and at which stage of instrumentation they should be used - allowing the use of shared libraries and other linker/loader flags.

With the flexibility provided, ATOM is a versatile tool, but accuracy is still a potential problem. Another strong point for ATOM is its robustness. In the cache example above, one major concern is the fact that by adding additional code to the program, the reference stream becomes skewed by the additional instructions. This is automatically compensated for by ATOM during instrumentation, so that the addresses passed to the analysis routines are those of the memory references without tracing.

Another area ATOM excels in is its care with shared libraries. Many simulations totally neglect shared libraries, which may be a significant portion of the code depending on the application. Programs can be compiled with the non\_shared option, or ATOM can instrument the shared libraries as well. To be even more exact, an instrumented and non-instrumented copy of the shared library routines are produced. This way if the instrumented program calls a shared library, the instrumented version of the library is used. If the analysis routine calls the same library function, the non-instrumented version is used so that the analysis is not corrupted.

Until recently, ATOM was not capable of tracing the operating system, and was not partic-

ularly suitable for tracing multiple test programs. The latest version of ATOM, however, does allow instrumentation of the operating system. The initial tests of this facility were performed by Eustace and Chen in [20], but some aspects were not particularly well addressed. The primary focus of this research has been to further test and build on their work [24].

# 3.2 Operating System Implementation

With the latest version of ATOM, it is now possible to instrument and study the operating system, specifically the OSF kernel. It is treated much as any program would be, albeit a very large and complex one. Because of the unique nature of the operating system, there are certain measures which must be taken that are not required for a normal program. Part of the mechanism used to study the kernel is also used to capture traces with multiple user processes as well.

# 3.2.1 Set Up

To use ATOM with the operating system, some modifications are usually required to the test platform. More memory may be needed to execute the larger programs, 128MB is recommended by DEC. The larger programs will also require more swap space (256MB recommended), a larger user file space, and an expanded root partition (up to 60MB depending on the application). ATOM version 2.20 or later must be installed, with the WRL enhancement kit. Both are available from DEC via anonymous FTP.

Changes are necessary to allow the kernel to be instrumented. The makefile, normally in the /usr/sys directory, must be modified and the kernel remade. The two modifications required are:

- The LDFLAG line must have the -ncr flag removed. This flag removes the compact relocation records, and is not compatible with ATOM.
- 2. The ALPHA\_TEXTBASE must be increased to account for the larger kernel size. This value represents the amount of space in memory allocated for the kernel text, usually set at h230000. Instrumentation increases the size of the kernel so this value must be increased accordingly. The required increase will vary, so occasionally the kernel must be generated twice. First a rough estimate of the necessary increase is used to make a kernel which is instrumented. The nm -B command can then be used to calculate the actual value needed. If it is too small, the

kernel will crash, and if it is too large, memory may be wasted. For the work performed here, a value of h2C00000 was used.

Once the makefile has been altered, a new kernel is created by the sequence of commands:

#make clean

#make depend

#make

These commands must be executed as root; using the sudo utility is not possible as the kernel will not be made correctly. During testing it was useful to have multiple kernels available with different ALPHA\_TEXTBASE values as needs changed. If multiple kernels are made, it is necessary to rename the existing kernels before a new one is created as all existing files of the form vmunix\*.\* are erased during the make process. The new kernels are then instrumentable as any other program.

## 3.2.2 Programming

The act of instrumentation inserts function calls into the test program. These functions are executed as each event is reached during program execution, performing the desired analysis. For a cache simulator, those events are instruction fetches, data reads, and data writes. At each memory reference, the address referenced is passed to the analysis function for processing in the cache model. Additional functions are used at program start and end to initialize the simulation parameters and report the simulations results. The various functions and the instrumentation are defined in the two ATOM files mentioned previously for both the kernel and test programs.

To incorporate the operating system into the analysis, it is necessary for the operating system and test program to share data. The cache state must be accessible to both programs, as well as other counters and synchronization flags. This sharing can be accomplished via the /dev/kmem or /dev/mmap utilities. The shared data is local to the kernel. When the test program begins, either of the utilities is used to map the shared data into the test program's address space, where it can be accessed via a pointer. Now the two processes have a common data structure that is the core of the simulation. To use these utilities, there are two requirements. First, the test programs must be run as root to access the /dev/ files. Second, two copies of the kernel must be created. One is the executable which is actually loaded, the other is a debug version which contains the symbol table information necessary to perform the mapping. The debug version stays in the same directory as

the test programs.

The ability to share data is the also key to capturing traces from multiple processes. As described above, data is captured from two processes, the kernel and the user program. As will be seen, the same technique can be used to increase the number of processes being captured. The example above uses shared cache state data, but any set of data may be shared to provide the desired capture information.

The instrumentation and analysis files are not substantially different for the kernel and user programs. For the kernel, a test must be used to ensure that certain procedures are not instrumented (see below). For the test program, the shared data must be mapped at program start and the data recorded at program end. Otherwise, the analysis functions may be more or less the same. For the cache simulator, a process identification value is passed with the address so that the sending process is recognizable.

Figure 1 shows logically how the original code and analysis routines work together to perform the desired analysis, in this case the cache simulator.



Figure 1: Program Block Diagram

#### 3.2.3 Execution

Once the required files are written, the implementation is not substantially different from that of any other test program. The two instrumented versions of the kernel are produced with two slightly different command lines. For the executable:

%atom vmunix kern.inst.c kern.anal.c -Xkernel -Xgprog -o vmunix.trace and for the debug version:

%atom vmunix kern.inst.c kern.anal.c -Xkernel -g -o vmunix.debug

The various test programs are also instrumented as described above. The executable version of the kernel is moved to root, and the system is restarted with the #shutdown -h now command. Using boot -fl i, the system is restarted and the instrumented kernel is specified and loaded. The testbed is frequently shutdown, so it was helpful to have a dedicated system for this research so that other work was not interrupted. Once the kernel is running at the desired execution level, the test programs are then executed normally, performing the analysis. It is recommended that a batch file be used to run test programs to simplify testing.

### 3.3 Problem Areas

# 3.3.1 ATOM Limitations

Certain characteristics of ATOM define limitations on the instrumentation which can be used within the Unix kernel.

- Since it is the operating system, tracing cannot be based on the program end event.
- Certain kernel procedures cannot be instrumented. These are the locore, lockprim, and spl libraries, which account for only 132 out of 10,678 kernel procedures so the error induced should be negligible.
- Floating point numbers cannot be used within the kernel.
- The ATOM model used when simulating dynamic memory allocation is not accurate within the kernel, so analysis of this aspect of program execution is suspect.
- No system call interfaces can be used within the kernel.

Most of these limitations are not particularly significant, although the last is inconvenient. Without system calls, file IO is not possible, which precludes using a file to set evaluation parameters. This makes it very difficult to dynamically define analysis parameters, so in many cases the programs and operating system must be re-instrumented for each desired evaluation (i.e. a separate run for each cache configuration). Many other shared library routines, such as mathematical functions, are also unavailable. As future versions of ATOM are released, hopefully some of these shortcomings will be addressed.

#### 3.3.2 Kernel Limitations

Working with the kernel also entails certain problems, especially for a programmer unfamiliar with the operating system environment. The kernel is difficult to manipulate, requiring special access privileges. The critical nature of the program requires careful handling, although based on previous work, instrumentation errors will not damage the system — a kernel improperly instrumented will usually not even boot. The primary difficulty of working with an operating system is the difficulty in debugging. Most debugging tools cannot be used to debug a kernel, and many of the error messages generated are cryptic. Initial testing of instrumentation code should be done on generic user programs, and only when working on that level should it be attempted on the kernel. This provides better checking, and a much faster debug and test cycle. Working with the kernel is a slow process. Making a new kernel takes up to 8 minutes, and each instrumentation can take as much, if not more, time. Even assuming a new kernel is not required, to test a kernel usually takes about 20–30 minutes (as compared to the almost instantaneous results from a simple user program). Even with debugging on a user program, many problems will only appear in the kernel, so in general, development is very slow. Some of this may have been due to system limitations, but only a minor improvement should be expected with better resources.

There were three obscure errors found regularly during kernel testing:

- 1. KSP INVAL
- 2. bootstrap address collision: image loading aborted
- 3. trap: invalid memory access from kernel mode

The first error can occur when the kernel is loaded or during execution. This is roughly equivalent to a segmentation violation which is normally caused by a misuse of pointers. This error may

also be caused by running out of memory, if there is not enough stack or heap for the kernel to execute. The second message always appears during kernel loading. This is caused by an incorrect ALPHA\_TEXTBASE assigned in the makefile. The nm -B command should be used to determine the correct value and the kernel remade. The final error always occurs during test program execution. This was an intermittent error and the cause was never found, even after conferring with DEC. The error always occurred in the kernel's thread\_preempt routine which suggests it is related to interrupts and/or context switching. The error was linked to the size of the test programs being executed. A single large program could cause the error (such as Xlisp), or combinations of smaller programs (such as Alvinn with any other program, or Compress, GCC, and Espresso all together). Since it occurred with only one test program running, it cannot be caused by having two or more test programs sharing the kernel's data structure. The memory of the testbed was increased from 64 to 160MB with no effect. The hardclock scaling (see below) was reduced to its minimum value of 50% with no effect. To isolate the problem it will be necessary to complete an examination of the kernel which is beyond the scope of this work. The most likely cause is the threaded execution of the kernel and the lack of firm control within the analysis routines; although it is possible that the hardclock scaling is the culprit.

# 3.3.3 Program Size

One common problem with any software-based tracing method is the increase in program size. Since the program is instrumented with not only tracing information, but also analysis functions, this is a greater concern when ATOM is used. The normal OSF kernel is about 8-9MB. If the same kernel is instrumented with a function call at every instruction, and an additional call at every data read or write, the kernel will grow to 92.7MB and require an ALPHA\_TEXTBASE of about h5A00000. A kernel this size could not even be loaded on the test machine. By instrumenting groups of instructions (and still each data reference), the kernel is only about 46MB with an ALPHA\_TEXTBASE of h2C00000, which is executable. Instrumenting just instruction or data accesses will reduce the size by about half. It is important to note that the size of the instrumented kernel is primarily a function of the degree of instrumentation, not analysis. Changing the amount of analysis processing only varied the size of the kernel by about 4MB.

Besides the strain on the system from working with such a large kernel, it also raises an accuracy issue. The kernel used in our tests left only 15MB of memory available for test programs,

yet this is supposed to be simulating a system with about 50MB of free memory. The situation is even worse when the fact that each test program is also instrumented and significantly larger than normal is considered. Such large programs require more paging, which in turn skews the amount of overhead each program requires. For more accurate results, the amount of memory should be increased proportionately.

## 3.3.4 Execution Speed

Execution speed becomes critical when considering the instrumented kernel. The inclusion of tracing can reduce the execution speed of a program by an order of magnitude [8], more so with the additional processing. A slowdown of this magnitude may not be tolerated by the operating system. At some point, the kernel becomes so slow that it cannot function correctly. Interrupts and service requests may be generated faster than they can be serviced, effectively hanging the system during boot up. This can also be seen during test program execution if too many processes are executed — the kernel simply thrashes and the system stalls. Even assuming the operating system does work, basic tasks can take an inordinate amount of time. Booting a kernel with a basic cache simulator in multi-user mode and logging on took over an hour in one test. Several methods have been explored to accelerate the kernel and counter this problem.

The first is to use a different programming style for the kernel analysis routines. Only the bare minimum code necessary to perform the desired task is used. No additional function calls are made beyond the initial call to the analysis routine, eliminating extra switching. Any additional computation is incorporated into the primary function, even if this requires duplicating code. Loops should be used sparingly and the iterations minimized, and any other time consuming operations should be optimized. Minimizing data storage may help, but is not a primary factor. These techniques will definitely speed execution, particularly eliminating function calls, so even though some of these changes introduce poor programming practice from a software engineering standpoint, they need to be used.

If the kernel boots, but is too slow to execute the test programs in a multi-user environment, the first solution is to reduce the number of additional processes the kernel may be executing. Programs being run by other users or not part of the test should be eliminated. Other background processes associated with the operating system can also be killed. In multi-user mode, there are additional background processes executing, such as LAT, cron, network software, and printer daemons.

Many of these are not necessary for the tests and can be removed — the fewer processes running the faster the kernel will be.

If the kernel is still to slow, or will not boot in multi-user mode, it is possible to run the programs in single user mode. This effectively eliminates all extraneous processes and dedicates the system to the instrumented test programs. When the system boots to the first # prompt, do not start the higher execution level (the command is ^D). The local disks can be mounted using #mount -at ufs so that the test programs can be accessed (assuming they are on a local disk). The simulations can then be executed normally. If multiple test programs are desired, they can be run concurrently by using background mode (&) for each. Using single user mode is significantly faster, and can be considered an advantage or disadvantage. It is true that most of the processes that would be executing in a "real" environment are absent, lessening the accuracy, however it also lets the analysis focus on the operating system overhead associated with a particular program without all the other extraneous references. The use of single user mode will depend on both the constraints of the kernel and the desired evaluation. Single user mode may also limit the choice of test programs. Some programs, such as SC in the SPEC benchmark suite, require specific interfaces which may not be available and so cannot be executed.

If the kernel is so slow that it cannot even be booted, it may be necessary to disregard some of the real-time interrupts that are stalling the system. The main interrupt of concern is the system call to the hardclock. The number of the hardclock calls which are performed can be scaled by using assembly code [10]. This allows a certain percentage of the interrupts to be ignored. This has by far the most significant impact on kernel speed, and should be sufficient to allow most programs to execute.

The speed factor also raises a question of accuracy. Any event that is based on an absolute timing mechanism (such as real time interrupts) will not be affected by instrumentation. That means that as an instrumented program executes, it sees a disproportionate number of these events during its execution. The hardclock scaling mentioned above will partially resolve this issue, but it has not been fully verified. Another accuracy factor is the number of context switches. If a system uses a maximum execution interval, the frequency of context switches seen by an instrumented test program will also be out of proportion. One measure used in [8] is to increase the maximum execution interval defined by the task scheduler.

#### 3.3.5 Re-entrance

One of the most complex, and possibly significant, aspects of working with the kernel is its multi-threaded nature. System calls, interrupt service routines, and other overhead functions are all separate processes to be executed by the processor. They may be executed at any time during program or analysis execution. This causes a problem of guaranteeing the integrity of the analysis data. For example, during execution of the test program, the analysis routine is called. While the analysis routine is still processing that particular event, an interrupt occurs. The interrupt will supersede the analysis routine and the interrupt service routine will be executed. The service routine is part of the kernel, and is also instrumented. Therefore, as the service routine executes, it also generates events and calls to the analysis routines, before the prior analysis routine call has completed. Since all analysis routines access a common data structure, the actual state of the data becomes non-determinate and the evaluation results inaccurate. Consider an analysis routine which is interrupted in the middle of incrementing a counter. The counter is loaded and incremented, but has yet to be stored. The second execution of the analysis routine also increments the counter, so it loads, increments, and stores the data. The problem is, the value the second routine loaded was incorrect, since the first routine never had a chance to store the new value of the counter. When the first routine does return to execution, it then writes the value of the counter, which eliminates any changes to the counter that occurred during the interruption. Analysis functions must be designed explicitly to handle such concerns, called re-entrant, since they can effectively be "entered" multiple times without loss of integrity.

Further data thrashing is possible during a context switch. At a context switch, the current state of the processor is saved so that when that process returns to execution, it is started from the point where it was swapped out. This current status is usually represented by data such as the registers and allocation tables. In a threaded program, however, there may be data that is visible to all processes and not stored at the context switch. If this data is relevant to the state of a particular process, it must be explicitly defined as such. For instance, one process sets a variable in the global data. This data is carried over a context switch and is now visible to the next process, where it may or may not affect its execution. If the communication is intentional, care must be used so that a context switch performed in the act of setting the variable will not disrupt the execution. For this reason, the scope of data should be kept as local as possible, and any global data must be protected.

Re-entrance is normally achieved through synchronization. Each time a particular function is entered, it must determine if it is unique or if there are other instances of that function in mid execution. This is accomplished by a semaphore or other form of signal which is visible to all instances of every function. Such global data can be used to coordinate the activities of each function, the actual implementation depending on the desired effect. For the synchronization to be effective, it must be an atomic operation. The two acts of checking the semaphore and setting it if it is not already set cannot be interrupted, otherwise synchronization may be lost. For example, a process checks the signal and determines that it is the first instance of that analysis function. Before it can set the signal, however, an interrupt occurs and the function called again. This instance also checks the signal and determines that it is the first, conflicting with the legitimate first instance. Normal instructions do not provide this capability, as an interrupt may quite easily occur between testing and changing a variable. Instead, particular commands must be used, which will depend on the platform used.

The task of making analysis routines re-entrant is further complicated by the fact that the analysis routines are being executed within the kernel. There are many libraries of thread control and synchronization routines such as pthreads.h, semaphore.h, signal.h, and others, but these are mostly services provided by the kernel, not available within the kernel. To make the analysis routines fully re-entrant, it will be necessary to incorporate the same synchronization used within the kernel, which is not well documented.

In some cases the error introduced by data corruption is small enough that it can be tolerated. In other cases, contrived re-entrance can be incorporated with basic programming to insure some protection. For a detailed analysis of a multithreaded program such as the operating system, however, full re-entrance will be required. This problem has not been addressed before, and will require substantial investigation before it is adequately resolved.

#### 3.3.6 Reference Stream Accuracy

The threaded nature of the operating system also raises accuracy concerns. Through testing, it has been determined that there is no duplication of kernel software similar to that used for shared libraries in single process simulation. This means that if the analysis routine in the test program makes a system call or instigates an interrupt, then the instrumented kernel service routine is executed. This in turn generates additional references for the simulation which would not have been

generated in the untraced version of the program. This is a significant concern, particularly if the execution of the operating system is to be analyzed in detail. Since all real-time interrupt routines are instrumented, they generate additional references as well since there is proportionately more interrupts per program execution time. To counter this, there must be an explicit mechanism to determine the cause of the operating system references and disregard the additional references — possibly something to incorporate as an aspect of the re-entrance mechanism.

# 3.3.7 Portability

The final area of concern is ATOM's portability. One criticism of many of the past methods was their lack of portability. Some are custom tools, and many were tied to a specific architecture or program. It is unfortunate that ATOM is no exception. ATOM has only been implemented for the DEC Alpha workstations and the operating system aspect can only be used with DEC OSF/1. The one advantage ATOM does have is its flexibility. Since it is a generic framework based on software, that framework can be reconstructed for other platforms or operating systems. The tools already created can then be used to compare results across systems. Because of this it is hoped that one day ATOM will be available for other systems, which is entirely possible.

# 4 Test Methodology

# 4.1 Cache Model

Fundamentally, a cache is simply a device used to store subsets of a large data pool for quick access. This type of structure may be found in a TLB [49], memory mapping tables [52], or within an instruction pipeline [27]. The most common form, and that which is modeled here, is a memory cache used to improve average memory access times by storing data mapped in from main memory. The design and execution of such caches have been rigorously studied, and are described in a variety of sources [22, 36, 52].

The goal for this research was to develop a flexible cache simulator that incorporates reference streams from multiple processes, including the operating system. This was built on the framework outlined in the previous section, using a common data structure in the kernel's address space to provide synchronization and store the cache state. The test program mapped this structure into the program's address space by accessing the /dev/mem facility, so all test programs must be executed as root (moot point in single user mode). To perform a single process simulation for comparison, the code was slightly modified so that the cache data was local to the test program, external communication and synchronization were no longer necessary. The code used is provided in appendix A, but a summary of the most significant characteristics is provided below.

The default ATOM tools only incorporate one test program and the operating system. By using the same technique, however, it is possible to extend a simulation to an arbitrary number of programs. Each program simply maps the same kernel data structure into its space via a pointer so each process now has access to the same common memory structure. In this way, simulations can be conducted with multiple test programs with the operating system.

For simplicity, the various analysis files were implemented as custom ATOM tools. This allowed the use of shared library functions such as math.h within the analysis functions, as well as simplified the act of instrumenting each test program. The tools defined for this research are:

kexe This specified the kernel instrumentation and analysis programs with the ATOM flags necessary to produce an executable version of the kernel.

kdbg Kdbg also specified the kernel instrumentation and analysis programs, but with the ATOM flags required to produce the debug version of the kernel used to map memory addresses.

user# The final tool was used for the test programs. The # symbol represents a digit, 1, 2, or 3, which identifies which test program is being instrumented. The only difference is the process identification number assigned.

The program captures both instruction and data references to be able to model both split and unified instruction and data caches. This is relatively simple for a RISC architecture; each instruction generates one instruction reference, and all data references are one of two possibilities, a data load or data store. Instrumenting every instruction generates too large a kernel to be executed on our system. Instead, instructions are instrumented within basic blocks in groups of 8 or less. This both decreases the size of the programs, and speeds their execution. The processing routine is passed the initial address and the number of instructions that follow to simplify processing. With this information, the addresses of each instruction can be recreated and processed. It is also possible to only instrument each basic block, but grouping instructions presents a problem. To simulate a unified cache, the interleaving of instruction and data references in the same stream is required. If instructions are instrumented in groups, the actual interleaving cannot be reconstructed. Data references could be out of place by as many references as the number of instructions grouped together. For this reason, instructions should be instrumented individually if possible. Using smaller blocks of instructions minimizes this error, and also allows another simplification in processing. If the groups of instructions are smaller than the cache block size, then only one reference need be processed for the entire group and the reference counter incremented by the group size. A small margin or error is introduced because of the assumption that instructions are aligned along blocks, but this will be minimal as block size increases. This was used in the simulator, limiting the minimum cache block size to 32 bytes given a 4 byte instruction.

Each reference is applied to its appropriate cache according to the cache's characteristics.

The caches themselves are defined by 4 or 7 parameters, depending on cache type:

Type Either split, containing separate instruction and data caches (type = 1), or unified, having a single cache for both types of references (type = 0).

Cache Size The cache size in number of bytes. The size is specified as an area, so that the number of cache lines in a given cache is determined by:

cache size
block size \* associativity

Cache size is specified independently for each section of a split cache, as are the last two parameters.

Block size The size in bytes of a cache block, which is the unit of transfer between the cache and memory.

Associativity The number of blocks per cache line.

For most simulations of this type, such parameters must be statically defined during compilation, which makes repeated tests with a range of parameters difficult. This is because the kernel cannot access file IO so simulation data cannot be loaded when the program starts. This program instead defines maximum parameters during compilation and memory is allocated for a worst case condition. When the operating system is started, the simulation also starts but with a flag so that all references are discarded. When the first test program is executed, it loads the desired cache parameters from a file and stores them into the cache structure, thereby allowing dynamic definition of simulation parameters. Once this is completed, reference capture is enabled and the simulation commences. This also speeds up the operating system when a simulation is not actually being performed, since after all test programs have completed the flag is restored and the simulation portion disabled.

Other cache characteristics are constant. These are programmed into the simulation and cannot be modified without code changes:

- The various threads encompassing the kernel are treated collectively as a single process.
- Caches are virtually addressed. A process identifier is associated with each cache block to identify its owning process, so cache flushes on context switches are not necessary. This neglects aliases, or multiple virtual addresses to the same physical location, but the effect of such shared data should be minimal given the test programs used. If multiple threads of a single process such as the kernel are to be considered, however, this cannot be ignored. Using virtual addresses drastically simplifies the simulation, since no translation to physical addresses is necessary, but it does have a drawback. The virtual addresses for a program will depend on the system executing it and how it has been mapped from memory. This mapping may be optimized for a particular memory system or the current execution environment, and so skew the results of a simulation of a different system on the same addresses. This must be accepted unless the virtual/physical mapping is also considered in the model, which is not a simple task.

Since the effect will be consistent across all programs and caches in the simulation, its impact is ignored.

- No prefetching (also called demand fetching) is incorporated into the simulation. This is
  not particularly realistic, since pre-fetching is a simple but powerful enhancement to cache
  performance, but for an initial test of the simulation capability, it becomes an unnecessary
  complication.
- All references are assumed to be the same size, accessing a single byte. This is acceptable
  assuming that any words addressed do not cross cache block boundaries.
- Mapping of addresses to cache lines is by a simple masking of the low order address bits. This
  is the most simple and common form, although other hashing algorithms are possible.
- An allocate on write policy is used, so data writes are treated the same as reads. This is generally the most pessimistic write policy, as opposed to its opposite, no fetch on write, in which a data write miss is ignored by the cache and sent directly to memory [29]. Write back versus write through considerations are ignored, as the model does not consider traffic to main memory.
- Set associative caches use a least recently used (LRU) replacement algorithm.

Cache performance is recorded as reference and miss totals for each type of reference. Totals are generated separately for each process for each cache. Values are reported at the end of the simulation; for multiple processes at the end of each process. Process overwrite data is also captured, in the form of the total number of overwrites by each process over each of the other processes. This is accumulated by incrementing a particular counter identifying the previous and present owning process for each cache block overwritten. Cache performance information for the operating system is only captured during the execution of test programs. References before or after the program are ignored.

One concern was that in a multiprocess environment, execution is non-deterministic. Because of this, multiple executions cannot be used to evaluate multiple caches, as there will be differences between each execution. To counter this, multiple caches with varying characteristics are simulated during a single execution. This way, cache performance can be compared across equivalent loading. It does slow down execution, but accomplishes more with one run.

Another concern was the threaded characteristics of the operating system analysis, some form of re-entrance was required. To address this, a flag is set upon entry to the ATOM analysis routines. The flag is a global variable visible to all of the executing processes, so can be used for synchronization. If an analysis routine encounters the flag already set on entry, it immediately exits, maintaining data integrity. By assuming that the reference which called the analysis routine was in some way instigated by another analysis routine, this also prevents interrupts generated by the analysis routine from contributing to the simulation reference stream. It does cause any other interrupts which occur during analysis processing to be neglected as well. While this may seem like a disadvantage, such real-time interrupts are normally skewed by the slowed processing, so neglecting a portion of them is actually beneficial. This implementation is not ideal, because the flag is not set or cleared as an atomic operation. The majority of signaling and synchronization protocols available in programming are actually services provided by the kernel, and therefore not available to code that is executing within the kernel. If an interrupt occurs in the process of checking or setting the flag, the execution is undetermined. This was particularly a problem during context switches, so another mechanism was added. Not only do the analysis routines check the signaling flag, but they also check to see if a context switch has occurred. If a context switch has occurred, the flag is automatically reset. This is obviously a very improvised strategy and has much room for improvement, but it was effective in regulating the reference stream enough to allow reasonably accurate simulations.

Other aspects of the code were dictated by the use of ATOM. As mentioned in the previous section, all processing was kept to a minimum. Loops were used sparingly, and no function calls beyond the original analysis routine were used. This is not particularly good software engineering practice, but necessary. The hardclock scaling mentioned was also incorporated, with a 90% reduction in the number of hardclock calls. Even with these measures, the instrumented operating system was slow enough that it was also necessary to perform all simulations in single user mode. Multiple processes could still be used by executing them in background mode.

The program developed is a very comprehensive and flexible simulator with a great deal of potential, but it does have some problems discovered in hindsight that should be addressed in future work.

Program size is still a concern; more memory is definitely needed to reduce paging for more
accurate simulations. Increasing memory should also improve execution times.

- Program speed is also still a concern. Ideally, the scheduler should have been modified so
  that instrumented programs use a longer maximum execution interval to accommodate their
  decreased speed as done in [8].
- The block replacement data showing process overwrites is not distinguished by reference types.
   This is an oversight and limits the potential usefulness of the data, as it is impossible to determine the contribution of each type of reference to the amount of interference.
- Using virtual addressing is simplistic and raises other issues. Physical based addressing should be used if possible.
- The impact of the existing memory system and architecture are not considered, simply assumed
  to be consistent and neglected.
- The methods used to correct timing problems, such as scaling hardclock interrupts and ignoring
  interrupts during analysis, are not verified. An extensive analysis should be conducted to
  demonstrate or refute their effectiveness.
- The synchronization used is very fragile. Ideally the synchronization method used within the kernel should be studied and incorporated so that the analysis code is truly re-entrant. This is particularly necessary for more reliable analysis of threaded programs.

Even with these potential problem areas, however, the program was capable of performing most of the desired simulations, and provided an adequate validation of the multi-process capability of ATOM.

## 4.2 Verification

To have any confidence in the results of a simulation, the simulator must first be verified to ensure that it does indeed produce accurate results. The developmental nature of this project precluded a direct comparison with other equivalent work. Default tools are provided with ATOM which can incorporate the operating system, but do not have the flexibility to verify the range of cache types that will be simulated. Other tools are not readily available to generate comparable simulations. Instead, a multi step approach was used to demonstrate the program's correctness.

The first concern was the ability of the program to accurately capture the address traces.

This was accomplished by writing a second ATOM based application that simply captured traces

without performing any other processing. The references it captured were compared to those captured by the simulator, which were identical. The second ATOM tool was simple enough that it could be verified by inspection, so if it does not capture the address traces correctly then any flaw is within the ATOM framework and cannot be addressed here.

The next aspect to be verified was the processing of the reference stream. The program was slightly modified so that as each reference was processed, it was also stored to file. A trace file was generated for the following four benchmarks:

- Compress
- Ear
- Espresso
- SC

for the three caches shown:

- Unified 8192 byte 2 way associative cache with 64 byte blocks
- Split 2048 byte fully associative caches with 32 byte blocks
- Split 4096 byte direct mapped caches with 32 byte blocks

The trace file was then used as input to the DineroIII cache simulator to test the cache processing.

DineroIII and simulation results were identical for all 12 cases.

A further test was used to ensure the simulation program executed correctly. The results of single process simulations were compared to the results of benchmark cache analysis in other papers [25, 45]. The cache performance was roughly the same in that the same general behavior patterns were present, however there were some differences. This is primarily due to differences in the inputs used; in some cases alternate or combinations of inputs different than those used here were simulated by the previous research. Their results were also generated from optimized code which disregarded shared library references. For our tests, code was not optimized and all references are captured, so the difference is to be expected.

The final concern regarding the simulator was its repeatability. Given the threaded environment, results could vary within a single execution. Given the non-deterministic environment, results could also vary over multiple executions so an experiment was conducted to determine the extent of

the possible variation. The same three caches mentioned above were simulated for Compress, Ear, and Espresso 5 times each in succession. Each simulation modeled ten identical caches. The first results showed that not only did performance vary, but so did the reference load. Each successive execution of the same program after the initial execution had a reduced number of references from the kernel. Upon reflection, we realized that this was due to the overhead required for the first execution of loading the program into memory. All following executions had reduced operating system overhead since the test program was already in memory, as can be seen in Figure 2.



Figure 2: Operating System Instruction Fetches Over Repeated Program Execution

To eliminate this factor, the tests were repeated without having each program executed sequentially. The variation was reduced, but not eliminated. For complete accuracy, the system was rebooted between all later simulations. The second set of results highlighted another problem. In the output file, the operating system references varied even through the process of recording the results to file. Figure 3 shows the number of kernel instruction references for ten identical caches from the same simulation. The increasing number of references for the later caches suggests the point made in the previous section, that in the operating system environment, ATOM does not correctly distinguish between calls to common code made from the test and analysis sections of the program.

The variation within a single simulation was also due to the threaded nature of the analysis, so the pseudo re-entrance measures discussed above were then incorporated into the program. They eliminated the majority of the operating system references generated by the simulation routines, as well as prevented most of the data thrashing. The simulations were again repeated, although only for the Espresso benchmark and only for 2 split caches, fully associative and direct mapped. These



Figure 3: Operating System Instruction Fetches Within Same Program Execution

results showed no variation at all within a single execution, and only a minor variation of .01 to .1 in the cache miss rates between different executions. Prior to these measures being taken, the worst variation was substantially less than was expected, however using a single user mode for execution limits the number of extraneous processes and greatly reduces the non-determinism of execution. With the additional precautions, we are confident in the accuracy of the simulation results.

## 4.3 Simulations

#### 4.3.1 Platform Information

The described tests were performed on a DEC Alpha 3000 model 300, a RISC based AXP architecture. The root partition had to be expanded to 85MB to accommodate the larger kernels used, which could contain up to a 48MB test kernel in addition to the normal root residents. The swap space was originally 195MB which proved to be insufficient to instrument large programs. A second local disk was added increasing the swap space to 323MB. The usr partition was 694MB which was generally adequate although more space was useful at some points. The added disk included a 1090MB scratch directory which proved to be invaluable in storing results, traces, kernels, and other files. The critical factor was memory. The system only had 64MB of main memory, so during simulations only about 15MB of memory was available for test programs. For future efforts, the memory must be increased to improve simulation performance and accuracy.

The operating system used was DEC OSF/1 version 3.2A Unix kernel. Newer versions are available however this version was sufficient for these tests. The ATOM tool used was version 2.20. It is also being continuously updated; research was begun with version 2.13, although the system was

upgraded to version 2.20 before simulations were performed. Each new version of ATOM usually addresses shortcomings of past versions, particularly in terms of intrusiveness, and refines the newer capabilities, such as instrumenting the kernel, so the most current version available should be used for future work. The test programs used are from the SPEC 92 benchmark suite. These programs tend to focus on technical, as opposed to commercial, applications. They are more computation intensive than other potential test programs, but are also readily available and a standard test tool.

## 4.3.2 Test Parameters

Simulations were performed capturing cache miss rates for program execution alone, programs with the operating system, and multiple programs executed concurrently. The four benchmarks used for these simulations were [74]:

Compress The compress benchmark is the same program as the Unix compress utility. It is a

CPU intensive integer benchmark which compresses an input file using the Lempel-Ziv data
compression algorithm. It has a greater IO content than the other benchmarks, so is more
sensitive to the system and execution environment. Due to its nature, the program has a
repetitive instruction reference stream with a drastically less localized data reference stream.

A 1MB input file in was used with the following command line:

which causes the utility to route the compressed data to stdout instead of back to the original file, where it is discarded. This was done so that the execution of the benchmark did not affect the input program, which was useful during repeated executions. As part of the benchmark suite, the test calls for multiple iterations of compress, but for our tests only a single execution is performed to reduce simulation time. The goal of this research is not to benchmark the system used, so the full tests were not required.

GCC GCC is the GNU C compiler, and is the most complex benchmark used. As a compiler, the parsing, organization, and optimization performed produce a highly irregular reference stream. Some IO is performed, as well as a variety of other system calls, and the execution depends heavily on the system used. The compiler was executed by:

which caused it to optimize the source code and suppress any output. Again, the benchmark suite called for compilation of multiple programs, however only the single input stmt.i was used for simplicity. One note regarding the instrumentation of gcc, it does require certain ATOM flags the other three benchmarks do not. The ATOM command line to be used with gcc is:

%atom gcc.rr -tool user1 -heapbase 50000 -32addr

These are required for ATOM to correctly instrument gcc, as the compiler uses a wider range of the address space and a larger heap segment of memory.

Espresso Espresso is a tool for generating and optimizating Programmable Logic Arrays. Its primary task is minimizing Boolean functions, so also has a repetitive instruction stream with a more localized data stream than compress. It uses very few operating system services, and is a small program (before tracing), so normally requires little paging. The benchmark was used with the tial.in input file with suppressed output as shown below:

#espresso tial.in > /dev/null

As the other programs, the actual benchmark entails multiple input files, but only this one was used for testing.

Alvinn Alvinn stands for Autonomous Land Vehicle in a Neural Network, and represents a neural network control system capable of taking data from a video camera and laser range finder and generating control data for an automated vehicle. The benchmark is a single precision floating point program which trains the network through backpropagation over 200 input epochs. It performs minimal IO, although does use the floating point unit extensively. It is repetitive, although with a much more complex structure than Compress. The command line used was simply:

#backprop > /dev/null

which activates the training model with the input files h\_o\_w.txt, i\_h\_w.txt, in\_pats.txt, and out\_pats.txt residing in the test directory. The results of the training for each epoch are the only output, which is discarded.

Each simulation was performed as described in the previous sections using an input file of 40 caches of various configurations. Table 1 assigns a number to each cache which is used for later identification, and shows the different characteristics of each. Only lower associativities are used to minimize the amount of looping in processing. Other characteristics are arbitrary selections over a general range, with a limit of 512 lines per cache to minimize storage. The results of these simulations are discussed in the next section.

|    |      | Unified or Instruction |            | Data  |            |            |       |
|----|------|------------------------|------------|-------|------------|------------|-------|
| ID | Type | Cache Size             | Block Size | Assoc | Cache Size | Block Size | Assoc |
| 0  | 0    | 8,192                  | 64         | 2     | NA         | NA         | NA    |
| 1  | 0    | 16,384                 | 64         | 2     | NA         | NA         | NA    |
| 2  | 0    | 32,768                 | 64         | 2     | NA         | NA         | NA    |
| 3  | 0    | 65,536                 | 64         | 2     | NA         | NA         | NA    |
| 4  | 1    | 4,096                  | 32         | 1     | 4,096      | 32         | 1     |
| 5  | 1    | 4,096                  | 32         | 2     | 4,096      | 32         | 2     |
| 6  | 1    | 4,096                  | 32         | 4     | 4,096      | 32         | 4     |
| 7  | 1    | 4,096                  | 64         | 1     | 4,096      | 64         | 1     |
| 8  | 1    | 4,096                  | 64         | 2     | 4,096      | 64         | 2     |
| 9  | 1    | 4,096                  | 64         | 4     | 4,096      | 64         | 4     |
| 10 | 1    | 4,096                  | 128        | 1     | 4,096      | 128        | 1     |
| 11 | 1    | 4,096                  | 128        | 2     | 4,096      | 128        | 2     |
| 12 | 1    | 4,096                  | 128        | 4     | 4,096      | 128        | 4     |
| 13 | 1    | 8,192                  | 32         | 1     | 8,192      | 32         | 1     |
| 14 | 1    | 8,192                  | 32         | 2     | 8,192      | 32         | 2     |
| 15 | 1    | 8,192                  | 32         | 4     | 8,192      | 32         | 4     |
| 16 | 1    | 8,192                  | 64         | 1     | 8,192      | 64         | 1     |
| 17 | 1    | 8,192                  | 64         | 2     | 8,192      | 64         | 2     |
| 18 | 1    | 8,192                  | 64         | 4     | 8,192      | 64         | 4     |
| 19 | 1    | 8,192                  | 128        | 1     | 8,192      | 128        | 1     |
| 20 | 1    | 8,192                  | 128        | 2     | 8,192      | 128        | 2     |
| 21 | 1    | 8,192                  | 128        | 4     | 8,192      | 128        | 4     |
| 22 | 1    | 16,384                 | 32         | 1     | 16,384     | 32         | 1     |
| 23 | 1    | 16,384                 | 32         | 2     | 16,384     | 32         | 2     |
| 24 | 1    | 16,384                 | 32         | 4     | 16,384     | 32         | 4     |
| 25 | 1    | 16,384                 | 64         | 1     | 16,384     | 64         | 1     |
| 26 | 1    | 16,384                 | 64         | 2     | 16,384     | 64         | 2     |
| 27 | 1    | 16,384                 | 64         | 4     | 16,384     | 64         | 4     |
| 28 | 1    | 16,384                 | 128        | 1     | 16,384     | 128        | 1     |
| 29 | 1    | 16,384                 | 128        | 2     | 16,384     | 128        | 2     |
| 30 | 1    | 16,384                 | 128        | 4     | 16,384     | 128        | 4     |
| 31 | 1    | 32,768                 | 64         | 1     | 32,768     | 64         | 1     |
| 32 | 1    | 32,768                 | 64         | 2     | 32,768     | 64         | 2     |
| 33 | 1    | 32,768                 | 64         | 4     | 32,768     | 64         | 4     |
| 34 | 1    | 32,768                 | 128        | 1     | 32,768     | 128        | 1     |
| 35 | 1    | 32,768                 | 128        | 2     | 32,768     | 128        | 2     |
| 36 | 1    | 32,768                 | 128        | 4     | 32,768     | 128        | 4     |
| 37 | 1    | 32,768                 | 256        | 1     | 32,768     | 256        | 1     |
| 38 | 1    | 32,768                 | 256        | 2     | 32,768     | 256        | 2     |
| 39 | 1    | 32,768                 | 256        | 4     | 32,768     | 256        | 4     |

Table 1: Simulated Cache Parameters

# 5 Simulation Results

Simulations of caches with varying types, cache sizes, associativities, and block sizes as described in Table 1, were performed with the 4 benchmarks. The data generated by the simulations has been analyzed by focusing on various aspects of the cache behavior. These are the change in cache workload, the change in cache performance for a specific process, the interference generated between the processes, and the net change in cache performance over all processes. Other areas of possible exploration include studying performance differences between data reads and writes, and a detailed characterization of the operating system performance. In some instances only a portion of the available data is shown in figures. Tables of all results are provided in appendix B.

#### 5.1 Cache Workload

Before looking at the cache performance, it is important to understand how introducing the operating system and additional processes affect the memory reference stream. The first set of simulations establish a baseline by recording the cache's performance for each benchmark alone. The frequency of each type of reference is presented in Table 2.

| Benchmark | Instruction Fetches | Data Reads    | Data Writes | Total Data    | Total References |
|-----------|---------------------|---------------|-------------|---------------|------------------|
| Compress  | 87,045,943          | 22,412,017    | 8,521,660   | 30,933,677    | 117,979,620      |
| GCC       | 160,240,141         | 50,197,329    | 19,074,844  | 69,272,173    | 229,512,314      |
| Espresso  | 977,787,923         | 225,779,346   | 59,867,420  | 285,646,766   | 1,263,434,689    |
| Alvinn    | 5,233,222,111       | 1,415,013,652 | 487,428,474 | 1,902,442,126 | 7,135,664,237    |

Table 2: Benchmark References

The second set of simulations used the same benchmarks, but included the operating system. The frequency of each type of reference is shown in Table 3 for each process. There is some variation in the number of references for each benchmark due to execution differences, but it is minimal. Hello World was used for some of the basic program testing, and is included as a curiosity. For the other benchmarks, the operating system overhead was generally small, less than 15% of the total number of references. For a small program such as Hello World, however, the operating system overhead becomes the dominant source of memory references, totally overshadowing the program.

The amount of overhead introduced by the operating system is smaller than expected. This is because the tests were performed in single user mode, and a majority of the operating system routines were not being executed. In this context, processes such as network and printer controllers,

and the variety of other background system processes are considered to be part of the 'operating system'. One test using ps in multi-user mode showed over 40 different processes being executed, only one of which was actually a user program. For these system processes to be included, they must also be instrumented. During the simulations performed, the operating system references are generally just the overhead required by the test programs.

| Benchmark   | Instruction Fetches | Data Reads    | Data Writes | Total Data    | Total References |
|-------------|---------------------|---------------|-------------|---------------|------------------|
| Hello World | 1,247               | 207           | 135         | 342           | 1,589            |
| OS          | 337491              | 84,403        | 51,332      | 135,735       | 473,226          |
| Total       | 338,738             | 84,610        | 51,467      | 136,077       | 474,815          |
| Compress    | 87,045,969          | 22,412,010    | 8,521,661   | 30,933,671    | 117,979,640      |
| OS          | 5,567,602           | 1,518,924     | 802,242     | 2,321,166     | 7,888,768        |
| Total       | 92,613,571          | 23,930,934    | 9,323,903   | 33,254,837    | 125,868,408      |
| GCC         | 160,240,175         | 50,197,333    | 19,074,845  | 69,272,178    | 229,512,353      |
| os          | 18,705,569          | 5,130,601     | 2,613,506   | 7,744,107     | 26,449,676       |
| Total       | 178,945,744         | 55,327,934    | 21,688,351  | 77,016,285    | 255,962,029      |
| Espresso    | 977,787,899         | 225,779,331   | 59,867,421  | 285,646,752   | 1,263,434,651    |
| OS          | 29,093,428          | 9,107,479     | 3,585,537   | 12,693,016    | 41,786,444       |
| Total       | 1,006,881,327       | 234,886,810   | 63,452,958  | 298,339,768   | 1,305,221,095    |
| Alvinn      | 5,233,222,045       | 1,415,013,630 | 487,428,474 | 1,902,442,104 | 7,135,664,149    |
| os          | 197,365,478         | 60,413,211    | 25,986,851  | 86,400,062    | 283,765,540      |
| Total       | 5,430,587,523       | 1,475,426,841 | 513,415,325 | 1,988,842,166 | 7,419,429,689    |

Table 3: Benchmark with Operating System References

The operating system overhead will vary depending on the nature of the program, but for these benchmarks it remains fairly consistent. The percent of the total references which are generated by the kernel is shown in Figure 4, which ranges between 2.89 to 12.05 percent. This can also be viewed as the percent increase in number of references as seen in Figure 5, which has a similar range. For the benchmarks used, the program references still dominate. The benchmarks which require minimal resources and I/O (Espresso and Alvinn) are the least affected by the addition of the operating system. Compress is also fairly simple, but requires a larger amount of I/O, hence its greater overhead. A complex program such as the GCC compiler is affected the most. The amount of overhead found in these results is less than that found in past studies [1, 2]. Agarwal found the operating system could increase the number of instructions by 5-75%, but this is also for an older, CISC, architecture. Both studies did show that complex programs, such as compilers, are the most affected.

Figure 6 shows the relative distribution of each reference type within the workload for both the program and its operating system overhead. Both the program and operating system references have about the same distribution, with roughly 70% instruction fetches. This is consistent with



Figure 4: Percent of Total References From Operating System



Figure 5: Percent Increase in Number of References by Including Operating System



Figure 6: Distribution of Reference Types

[8]. The small proportion of data writes explains the seemingly larger change seen in the previous two figures — there are relatively fewer data writes so a smaller change generates a larger percent difference.

The final set of simulations was performed executing two benchmarks concurrently, capturing references from each and the operating system. Results were logged after each test program completed. The first report contains the information of interest, the cache performance with two competing user programs. The second report includes the period of time after the first process had completed, so only a single user process was executing during part of its tracing period. Since this analysis focuses on the effects of multiple processes, the second report has been discarded. For this reason, the data shown in Table 4 omits a portion of the execution of the longer process in each case. Any future references to these simulations also refer specifically to the cache performance at the end of the first program.

One fact that is not visible from this table is that when both programs have completed, the cumulative operating system overhead (measured in number of references) is greater than the sum of the overhead for each program individually, as shown in Table 5. If the number of operating system references generated when the benchmarks are executed separately are added (the first column), this value is less than the number of operating system references generated when the same two benchmarks are executed concurrently (the second column). This highlights the increased operating system activity required to switch between multiple processes, roughly a 20-40% increase.

| Benchmarks | Instruction Fetches | Data Reads  | Data Writes | Total Data  | Total References |
|------------|---------------------|-------------|-------------|-------------|------------------|
| Compress   | 87,045,885          | 22,411,994  | 8,521,651   | 30,933,645  | 117,979,530      |
| GCC        | 68,021,687          | 21,218,807  | 8,094,452   | 29,313,259  | 97,334,946       |
| os         | 28,102,411          | 7,468,658   | 4,160,003   | 11,628,661  | 39,731,072       |
| Total      | 183,169,983         | 51,099,459  | 20,776,106  | 71,875,565  | 255,045,548      |
| Compress   | 87,045,885          | 22,411,994  | 8,521,651   | 30,933,645  | 117,979,530      |
| Espresso   | 99,475,944          | 24,280,822  | 4,659,787   | 28,940,609  | 128,416,553      |
| OS         | 15,541,809          | 4,310,868   | 2,247,254   | 6,558,122   | 22,099,931       |
| Total      | 202,063,638         | 51,003,684  | 15,428,692  | 66,432,376  | 268,496,014      |
| GCC        | 160,240,175         | 50,197,333  | 19,074,845  | 69,272,178  | 229,512,353      |
| Espresso   | 224,015,827         | 51,131,704  | 12,097,918  | 63,229,622  | 287,245,449      |
| os         | 39,004,710          | 10,758,087  | 5,592,574   | 16,350,661  | 55,355,371       |
| Total      | 423,260,712         | 112,087,124 | 36,765,337  | 148,852,461 | 572,113,173      |

Table 4: Concurrent Benchmarks with Operating System References

| Benchmarks        | Sum of Individual Overheads | Concurrent Overhead |
|-------------------|-----------------------------|---------------------|
| Compress/GCC      | 34,338,444                  | 47,433,154          |
| Compress/Espresso | 49,675,212                  | 59,365,363          |
| GCC/Espresso      | 68,236,120                  | 89,030,467          |

Table 5: System Overhead Comparison

A problem arose when certain programs (or combinations of programs) were traced, generating the trap: invalid memory access error mentioned previously. It is somehow related to the size or length of the test programs. Benchmarks such as Xlisp (9,561,089,165 references) and Ear (17,375,158,291 references) would crash the platform if simulated with the operating system. Similarly, executing any of the three smaller benchmarks concurrently with Alvinn would crash the system, as well as any three programs in combination. While this problem limited the scope of the simulations, correcting it was beyond the purview of this research.

## 5.2 Impact on Process Performance

The simplest way to visualize the impact of the operating system and additional processes is to measure their effect on the cache performance for a particular program's reference stream. Figures 7 through 14 show the cache miss rates for benchmark references only, for each of the 4 benchmarks. The baseline is the result from the single process cache simulation. The other sets of results are essentially the same reference stream but with transient misses. Any performance changes are due strictly to these transient effects.

The single process results exhibit normal cache behavior. As expected, increasing cache size decreases miss rate. A larger cache can contain more, if not all, of a programs working set,

thus reducing capacity misses. Also, a larger cache will have fewer locations assigned to each line, potentially reducing conflict misses. Increasing associativity also decreases miss rates, although with diminishing returns; the improvement from A=2 to A=4 is less than the improvement from A=1 to A=2. Associativity can reduce conflict misses by allowing a line to maintain more than one block at a time, but the benefits are limited by the number of references to any one line. Since the caches use a constant area, increasing the associativity decreases the number of possible indices, thus increasing the stress on a single index. For this reason, in some instances increasing associativity can increase the miss rate (e.g. Alvinn). Increasing the block size increases the amount of memory fetched on each miss. This is generally beneficial for instruction references which exhibit spatial locality, but the reverse may be true for data references. Depending on the benchmark, data miss rates can either increase (e.g. Compress) or decrease (e.g. Espresso) as block size increases, but this trend is also related to associativity and other factors. Increasing block size also decreases the number of cache indices, so again the load on each line is increased potentially negating any benefits. These results are comparable to those found in [25, 45, 56].

Comparing the single process results with the other simulations, these trends are not generally affected. In most cases, the results follow the same patterns but with a noticeable increase in cache miss rates. The amount of increase may vary by cache or remain relatively constant, depending on the characteristics of the particular benchmark being considered. This increase is the error in assuming that cache behavior can be defined by a single process simulation, and shows the difference between a single program's cache performance when it is considered alone versus when it is considered in a multiprocess simulation. As can be seen, the impact of the operating system is much smaller than that of an additional process. This is logical, considering the operating system normally executes for shorter durations as it services system calls and interrupts. The impact of additional processes is generally most pronounced in those caches that already exhibit poor performance, although this does depend on the benchmark.

It is also interesting to consider the distribution of misses. Figures 7 through 13 show the percent of misses that were from instruction references. It is interesting to note that although instructions make up the majority of references, they are usually in the minority of misses — as expected due to their increased locality. For programs such as Compress or Alvinn with a great deal of spatial locality in their instructions but not data, the loss of locality due to transient interference is visible in the increased proportion of instruction misses found in the simulations which included

the operating system and additional processes. Other programs such as Espresso may be affected either way, although data misses still predominate. A more complex program such as GCC has much less locality in its reference stream, as can be seen by the fact that instructions account for as much as 65% of its misses. Hence when the additional processes are considered, it is possible for data cache hit rates to be affected more and the ratio to go down.

### 5.3 Process Interference

Another way to visualize the impact of the additional references is to analyze the proportion of intrinsic versus extrinsic interference seen by the various test programs. The percentage of misses attributed to intrinsic interference can be approximated by the percent of misses where the reference overwrote a block containing information from the same program. The alternative is for the reference to miss and overwrite another program's data, highlighting extrinsic interference. A certain number of references will miss and overwrite invalid data at start up, but these are finite (based on cache size), and will not significantly affect the percentage. The self overwrite percentage is shown for each cache for the 4 benchmarks in Figures 19 through 22. When a block is overwritten no test is performed to see if the evicted data is live, nor is there a check of the new data to determine if it has been accessed before, so these figures are not exactly intrinsic interference, but should be comparable.

The most basic simulation with a single benchmark as input will have 100% of its misses due to internal considerations, by definition. When the operating system is added, roughly 10-20% of the misses are external overwrites, due to the impact of the OS references. Adding an additional process to the simulation increases the external impact to 40-70%, depending on the cache and particular program. It is unfortunate that it was not possible to perform simulations with a greater multitasking level so that a trend might be visible.

Smaller caches are affected more by extrinsic interference as expected, as are caches with lower associativities. As each process is executed, its references are loaded into the cache. A smaller cache may be totally overwritten by the new data, while a larger cache may be able to retain a portion of the previous program's working set. Program characteristics such as the amount of system overhead, as well as working set size and fluctuation, affect the amount of interference, but are more difficult to quantify without an extensive trace analysis.



Figure 7: Process Instruction Reference Miss Rates For Compress



Figure 8: Process Data Reference Miss Rates For Compress



Figure 9: Process Instruction Reference Miss Rates For GCC



Figure 10: Process Data Reference Miss Rates For GCC



Figure 11: Process Instruction Reference Miss Rates For Espresso



Figure 12: Process Data Reference Miss Rates For Espresso



Figure 13: Process Instruction Reference Miss Rates For Alvinn



Figure 14: Process Data Reference Miss Rates For Alvinn



Figure 15: Percent Misses From Instructions, Compress



Figure 16: Percent Misses From Instructions, GCC



Figure 17: Percent Misses From Instructions, Espresso



Figure 18: Percent Misses From Instructions, Alvinn



Figure 22: Percent Self Overwritten for Alvinn

## 5.4 Impact on Cache Performance

So far this analysis has focused on the cache performance within the context of a single program. The impact of the operating system and additional processes is also a factor when the aggregate cache performance is considered, encompassing all references from the trace. These results are shown in Figures 23 through 30, which are organized identically to the ones before. The single process simulations for each benchmark are again used as a baseline, with the total cache performance plotted for each simulation that involved that benchmark. Results from simulations with multiple processes are shown in multiple figures, but because all references are considered, the net cache performance is the same regardless of which process is used as the perspective.

The total miss rate is essentially a weighted average of the miss rates of the component processes, as shown below:

$$M = \frac{\sum m_p}{\sum r_p} \tag{1}$$

where M is the total miss rate,  $m_p$  is the number of misses for each process, and  $r_p$  is the number of references for each process. Because it is a weighted average, the behavior of the total miss rate may be dominated by the miss rate behavior of one of the component processes. A process may dominate the average because of the number of references it generates, such as the combination of a benchmark and its respective operating system overhead (which has fewer references). A process may also dominate the average because of its performance. For example, Compress suffers from particularly poor data cache performance, so any simulation involving Compress will have the average data cache performance dominated by Compress' characteristics. On the contrary, Compress also has the lowest instruction cache miss rates, so the average instruction cache performance is dominated by whatever process is executed with Compress. The dominant process will define the gross performance characteristics of the overall cache behavior. For instance, the miss rate fluctuations as a certain parameter varies, such as cache size.

The impact of each benchmark can be seen by its contribution to the total miss rate, but the impact of the operating system is not as visible. Figures 31 and 32 show the percent of misses that are due to kernel references for instructions and data respectively. As can be seen, the impact to the data cache is much more consistent than that to the instruction cache. The instruction impact varies significantly depending on the benchmark in question and the demands it places on the operating system. Cache design parameters can also be a factor, as the larger caches have a larger portion of

the misses due to the kernel. This is logical as the programs with their larger footprints can take advantage of the larger caches, while the operating system with its shorter execution intervals may never leave the cache warm up phase.

## 5.5 Summary

Based on the evidence shown here, a few generalizations can be made about the observed cache performance.

- Both operating system and additional user processes will significantly affect cache performance,
   with the user programs generating the largest impact.
- For a given process, the performance is always degraded due to the external interference, although if the net performance over multiple processes is considered it may be better than the performance for just one of the component processes due to averaging.
- The primary source of this performance degradation is in the loss of temporal locality. The
  interference between the various processes does not affect each process' spatial locality, but
  with frequent interruptions in process execution there is a loss of temporal locality across each
  interruption.
- The worst degradation is in caches which already suffered from poor performance.
- The amount of degradation and any patterns it follows depends greatly on the specific processes
  involved, and the effects observed can vary greatly. This is due to the differences in program
  behavior such as system demands (system calls, interrupts) and footprint (size, length, working
  set).
- The overall cache performance is an average of the performance of the component processes.
   The individual process performance characteristics are interrelated, so are difficult to determine independently.

This is contrary to some of the initial assumptions made in [1, 2, 3], which have since been discarded. These results are more comparable to those found in [11, 12, 13].



Figure 23: Instruction Cache Miss Rates With Compress



Figure 24: Data Cache Miss Rates With Compress



Figure 25: Instruction Cache Miss Rates With GCC



Figure 26: Data Cache Miss Rates With GCC



Figure 27: Instruction Cache Miss Rates With Espresso



Figure 28: Data Cache Miss Rates With Espresso



Figure 29: Instruction Cache Miss Rates With Alvinn



Figure 30: Data Cache Miss Rates With Alvinn



Figure 31: Percent Instruction Misses From Kernel



## 5.6 Future Work

With the simulations already performed, there is still a considerable amount of data analysis that could be performed, as more specific aspects of cache performance are considered. Also, a number of improvements to the simulation program were outlined in section 4, which should ideally be included before any future work is performed with this tool. The most fundamental change should be towards modeling more of the memory system, to include such aspects as traffic to memory, physical address mapping, write policies, and cache service times. Other additions can be readily made to the cache simulator to study specific aspects of cache design, such as alternative replacement algorithms in associative caches, different address hashing algorithms, or pre-fetching possibilities.

Other more substantial changes could be made to generate different forms of performance data. One area is analyzing sampled cache performance, looking at cache performance over shorter time periods to study the effects of short term working set changes. Another area is tracing the operating system in particular, capturing data from the various kernel threads separately, as well as determining the source of system calls. Another possibility is to provide a more detailed reference record so that reference gap information is available to study interference patterns in more detail. On the most generic level, such a tool can also be used to generate traces for other work. Finally, this research will provide the background necessary for continued study of the operating system through the development of new ATOM tools.

# 6 Context Switch Model

# 6.1 Theory

With ATOM, it is now possible to generate simulations with a broader scope than just a single process. As a commercially available tool with a great deal of flexibility, ATOM is simpler to use than past methods, but it still requires a significant amount of additional time and resources to perform the cache analysis. An improvement would be to approximate the accuracy of a comprehensive simulation without the additional effort. One possible method is to develop a synthetic model which would generate complex traces without the execution of programs. Such a technique would exercise the entire cache like a real environment, but is difficult to verify and is beyond the scope of this work.

A simpler method is to study a single, more focused, aspect of cache performance. Here we only consider the performance of a single process, but in the context of a multi-process environment, similar to that considered by Agarwal in [3]. Instead of an entire synthetic workload, an analytical model can be used in conjunction with a single process trace. In this way, the cache behavior of a single process can be predicted more accurately with only a simple simulation. The model is responsible for injecting the desired multi-process characteristics into the simulation, which can be achieved through a statistical approach.

The simulation of a single process will identify its own characteristics, and the introduction of the statistical model will incorporate the transient effects of a complex environment. This can be achieved by analyzing the effect of the operating system and additional processes on a single process, and mimicking this in the simulation program. As will be seen, this is essentially modeling context switch characteristics in the cache [31, 41, 56]. Though it will not be as accurate as the full simulation, it will be faster and much easier to execute. For an approximate result, it is much more efficient.

From the perspective of a single process, it is the sole user of the cache at any given point in time (assuming a uniprocessor environment). However, the time the process is actually being executed is not continuous for its entire lifetime. The process is instead broken up into shorter continuous segments separated by context switches. Between these segments, operating system routines or other processes are being executed, which can overwrite some or all of the process' cache blocks. Assuming all the various processes are independent, these interruptions are transparent to

any single process and each process is not "aware" of the other processes being executed. Here the term interruption is used to denote the time from when a given program is switched out of execution to the point it is returned to execution. The net effect to the cache is that from a specific program's perspective, it is executed continuously, but at certain times during its execution some or all of its cache blocks are overwritten or invalidated. Figure 33 shows the difference between this perspective and the actual environment, showing a basic time space diagram of process execution. This would be the condition in a multitasked uniprocessor where each thread or program is considered to be a unique process with a unique reference stream.



Figure 33: Time Space Diagram of Process Execution

This would suggest that by modeling context switches, the gap between single and multiple process simulations can be bridged. There are basically two fundamental questions that must be addressed by such a statistical model:

- 1. how often the execution of a program is interrupted by a context switch, and
- 2. what is the impact to the cache state caused by this interruption.

These questions are not easily answered. Timing of context switches can depend on many variables including the physical system state, how the system is loaded, and characteristics of the programs. Similarly, the impact will depend on the state of program execution, the amount of live data present in the cache, and the amount of overlap, if any, between the working sets of the various programs. The model will depend heavily on the particular system involved, and must be developed with both the

hardware, operating system, and test programs in mind. Once these factors are understood, they can be incorporated into the simulation program so that simulations would theoretically provide results comparable to the program being executed in a realistic environment [23].

## 6.2 Development

The first step in developing the model is to ensure that it is applicable to our test system [17, 39, 65, 69]. Our Alpha based system meets the criteria described above. It is a single processor machine running OSF, which can execute multiple processes on a timesharing basis. Instructions and data can be shared between processes, but their dependence can be minimized by choosing appropriate test programs. The impact of the test platform on the traces is assumed to be consistent across all simulations and is ignored. The references generated are 64 bit virtual addresses in a continuous address space, so no adaptation of the simulation model is necessary.

Understanding the operating system is the most important aspect of developing the model [4, 9, 18, 70, 72, 71]. The operating system both generates its own set of references, as well as controls the scheduling of the other reference streams. The OSF/1 operating system is a threaded collection of processes which includes system calls, interrupt handlers, and other overhead management/control routines. These can be modeled simply as a collection of additional processes of varying length that are executed at random intervals. The processes are switched in and out of execution just like the test programs. The priority of these processes would require that they occur at any time, preempting the execution of the test process. The various threads that make up the kernel are not independent, and may share substantial amounts of data. By considering the threads of the kernel collectively as the operating system overhead, as was done in the earlier simulations, the model can neglect this shared data with minimal loss of accuracy. The remaining issue is the degree of data sharing between the program and the operating system, which is difficult to pinpoint. For the purpose of this model, this dependence is assumed to be minimal and is neglected, which is a reasonable assumption for the choice of benchmarks. Any simulation of threaded programs or other programs which use substantial cross process communication cannot use these simplifying assumptions.

Given that this type of model is applicable to the simulations already performed, our next task is to analyze the system and program characteristics to define the model's structure. A context switch mechanism must be introduced into the simulation, and the effects of each interruption in execution incorporated appropriately.

# 6.3 Implementation

One of the most basic forms of modeling multiprocessing is to totally flush the cache at regular intervals, modeling the effect of context switches between processes executing in a round robin fashion [3, 21, 56]. This is realistic for a virtually addressed cache without process identifiers, and a reasonable approximation for a small cache when a context switch will probably overwrite all data, but not appropriate for larger caches when data survival is likely. A more accurate and versatile model is necessary, but will be more complex.

For a model to be effective, however, it cannot be so complex that direct simulation becomes a better alternative. If a detailed description of the test program is required just to develop the model, then simulation may be just as effective. It is also important that the model directly relates to the system it represents. In [31], a very comprehensive model is developed. Unfortunately, it requires a thorough analysis of the program trace to define the model parameters, thus limiting its usefulness. Also, it fails to consider some very basic variations in cache architecture. A balance is necessary, the model must be complex enough to be accurate, but based on basic properties of the system and programs that are easily observed. With this in mind, the model can be developed by answering the two questions mentioned above.

## 6.3.1 Frequency

The answer to the first question is based on the execution interval of a program, or how long it is executed before a context switch occurs. This is heavily dependent on how execution is scheduled, which is controlled by the operating system [19]. A process is executed until it either is switched voluntarily (i.e., while it waits for some system resource, or requests a system call), it is preempted by a higher priority process (i.e., an interrupt service routine), or it is switched involuntarily for another user process (i.e., the end of a fixed time allocation is encountered). The initial priority of a process depends on its type (system versus user) and its requirements (interactive versus compute intensive). The priority can degrade while the process is being executed and is promoted while it is stalled, which prevents a single process from dominating the system resources. In a fixed priority scheme, processes of equal priority are processed according to a policy, either first in first out (the program executes until completion) or round robin (programs are switched after a fixed interval, taking turns) [16, 71]. The time sharing in OSF/1 is on a thread basis, however the

test programs are all single threaded, and the various threads of the operating system are considered as a conglomerate from the cache's perspective.

For the model, we use a basic scheme based on this information. We assume that all operating system level processes have a higher priority than any test program process, so they can interrupt test program execution at any time. These processes will include both interrupt service routines and system calls. All test programs run at the same priority, with a round robin scheduling. For a single program, this defines the characteristics of its execution interval. The interval has some maximum value where a context switch is automatic, but up to that point there is some probability that a switch will occur earlier due to either an interrupt, system call, or stall waiting for resources. Based on results from previous studies [8, 31, 41], this probability follows an exponential distribution. Most processes execute for a short interval; with an exponential reduction so very few processes consume the maximum interval — showing that context switches are a regular occurrence. With round robin scheduling, the number of test programs considered in the model does not affect the execution interval.

To incorporate this fact into the model, a random variable R is defined representing the execution interval length in number of references r with an exponential probability density function. A distribution of this kind has the form [53]:

$$f(r) = \frac{1}{\mu} e^{\frac{-r}{\mu}} \tag{2}$$

where  $\mu$  is a constant which defines the shape of the curve and its expected value. The probability that any given reference interval R will be r references or less is defined by:

$$P[R \le r] = \int_{-\infty}^{r} f(r)dr = 1 - e^{\frac{-r}{\mu}}$$
 (3)

If we assume that an interval will be as long as possible, then this can be used as the probability that a given execution interval R is r references long, expressed as:

$$p = 1 - e^{\frac{-\tau}{\mu}} \tag{4}$$

This function could be incorporated into the program by determining the probability of a given interval as that reference is reached. A random number in [0..1] is then generated at each reference to determine if a switch is necessary. A better solution is to invert the equation to yield:

$$r = -\mu \ln(1 - p) \tag{5}$$

Thus generating a random number in [0..1] will generate an appropriate execution interval length r (rounded to an integer value), as shown in Figure 34.



Figure 34: Execution Interval Given Some Probability [0..1]

The remaining unknown is  $\mu$ , which can be determined by defining the desired maximum execution interval. In [8, 41] this was 400,000 traced instructions, or 25,000 untraced, although these values based on a system that is no longer contemporary. If we assume that each program executes for a maximum 10 ms time slice on a system with a 20 ns cycle and average of 2 cycles used per instruction [71], this generates a maximum interval of 250,000 references:

$$\frac{\left(10e - 3 \frac{seconds}{interval}\right)}{\left(2 \frac{cycles}{instruction}\right)\left(20e - 9 \frac{seconds}{cycle}\right)} = 250,000 \frac{instructions}{interval}$$
(6)

At this point, the probability of a context switch defined above should approach 1, or

$$\lim_{T \to T_{max}} e^{\frac{-\tau}{\mu}} = 0 \tag{7}$$

Obviously this cannot be exact, but selecting a  $\mu$  of  $\frac{r_{max}}{5}$  or 50000, is accurate to 0.006738 which is sufficient for this application. Since the exponential function cannot define the maximum value, an explicit limit is set on the function, so that the final definition of each execution interval is given by:

$$r = \min(-50000 \ln(1-p), 250000) \tag{8}$$

which is the function used to generate Figure 34.

Incorporating this into software, at program start and after every context switch, a random value is generated in [0..1]. This is applied to the above function to determine the execution interval. A counter is maintained of the number of instruction references since the last context switch, and when these two values are equal, the switch impact model discussed below is performed. The actual distribution generated by the random function is shown in Figure 35, showing the probability of a

specific interval determined by the number of intervals out of 250,000,000 generated. The probability of any particular interval is low, but the cumulative probability of a context switch as the interval increases to its maximum value approaches 1 as expected. The spike at 250000 references is due to the limit in the function, and is negligible in the cumulative distribution.



Figure 35: Actual Distribution of Random Execution Intervals

#### 6.3.2 Impact

The second question addresses the likelihood that data in the cache is overwritten by the processes executed during the interruption. As stated before, simply invalidating the entire cache is not a realistic model. Instead, the model must take into account the footprints of all processes executed during the interruption to determine what portion of the cache is overwritten. This is addressed by both Agarwal [3] and Thiebaut and Stone [56]. Both models attempt to evaluate all aspects of the cache analytically. By using simulations, much of the model can be discarded. Instead, only the relevant function regarding the probability of cache line replacement is used. Both papers use identical functions to determine the probability that a program's working set will have a certain number of unique references to a given cache line. The derivation of this function is quite lengthy, for more information please consult either paper. It is based on the binomial probability that any given cache reference will be assigned to a certain cache line.

The calculation is a function of the number of cache lines N, the cache associativity A, and the footprint F of the interruption, defined as the number of unique blocks referenced by the program in the interval under consideration. The probability that a given cache line will contain i references from a certain footprint is defined as:

if 0 < i < A:

$$p_{i} = \left(\frac{F!}{i!(F-i)!}\right) \left(\frac{1}{N}\right)^{i} \left(1 - \frac{1}{N}\right)^{F-i}$$

$$\text{if } i = A :$$

$$(9)$$

$$p_A = \sum_{j=A}^{F} \left(\frac{F!}{j!(F-j)!}\right) \left(\frac{1}{N}\right)^j \left(1 - \frac{1}{N}\right)^{F-j} \tag{10}$$

The second term is not readily computable, so for simplicity it can also be calculated as:

if 
$$i = A$$
:

$$p_A = 1 - \sum_{j=0}^{A-1} \left(\frac{F!}{j!(F-j)!}\right) \left(\frac{1}{N}\right)^j \left(1 - \frac{1}{N}\right)^{F-j} \tag{11}$$

The probability that a certain number of blocks will be used on any given line directly determines the probable number of blocks that must be evicted from that line during the interruption.

Unfortunately, this function cannot be inverted to give a direct calculation of the number of blocks overwritten in each line based on a single variable in [0..1]. Instead, a random probability p is generated for each line in each cache and the following algorithm is used to iterate over all values of a in the range [0..A-1] to determine the number of overwrites to be performed on that line:

if 
$$p > \sum_{i=0}^{a} p_i$$
, then  $a + 1$  overwrites are performed (12)

Based on [56], the overwrites caused by this function follow a roughly normal distribution. Figures 36 and 37 show the probability of n overwrites per line, P(n), for a context switch with interruption footprints of 100 and 1000 respectively. Various associativities and their possible replacements are shown, with the replacement probability plotted against the number of lines in the cache — showing the decreasing likelihood of replacement as cache size increases or footprint size decreases.

Certain assumptions apply to the formulas provided in the papers. These equations assume that a program's footprint is uniformly distributed over the cache. The locality in reference streams would suggest that this is not true, which was supported by the results in both papers. Using other mapping algorithms (hashing), it may be possible to get a more uniform distribution, but this technique was not used. Finally, shared references between programs are neglected. As discussed before, given the test programs used and the way the kernel is considered, this is a reasonable assumptions. To analyze a threaded program, or one with a substantial shared component (such as a database), such an assumption is not valid.



Figure 36: Probability of Cache Blocks Being Overwritten; F=100



Figure 37: Probability of Cache Blocks Being Overwritten; F=1000

Other assumptions made in the papers are no longer relevant. The use of LRU replacement is assumed in the analytical model, but incorporated explicitly in simulation. The LRU blocks are selected for overwrite, but other selection methods are possible. Also, other considerations such as which cache lines present at a context switch will be referenced after the interruption period do not have to be modeled, since they are determined by the simulation.

The remaining problem is determining the footprint of the interruption. The footprint depends on the process being considered, its state of execution, and the line size of the cache, so is very difficult to characterize. In [3, 56] detailed analyses of program traces were used to determine this value. This is not compatible with our goal of minimal analysis in developing the model, so a different, more improvised, approach is used. Based on the footprint values used in other work [3, 56], a reasonable (though less accurate) range can be achieved using:

$$F_i = \frac{r_{int}}{50 * B} \tag{13}$$

$$F_d = \frac{r_{int}}{50} \tag{14}$$

which gives the instruction footprint as 2% of the execution interval of the interruption  $(r_{int})$  divided by the block size (B) in words (or in bytes divided by 4), and the data footprint is simply 2% of the execution interval. This is obviously an overly simplified approach to characterizing the footprint, but adequate for an initial review. For a unified cache, the two footprints are simply summed, which is correct assuming independence of instruction and data references (no self modifying code). For a range of intervals [0..250,000], this produces a footprint range of [0..5625] for the caches simulated.

The execution interval of the interruption is computed as

$$r_{int} = n * -\mu \ln(1-p) \tag{15}$$

where n is the number of additional processes being executed according to the model and p is a random value in [0..1] as used before. This is consistent with the round robin scheduling, as the number of processes being executed determines the length of interruption. One problem is that the models used in both [3, 56] neglect the operating system. For simplicity, the operating system is modeled as just another process: to simulate a process with the operating system, n = 1; with the operating system and one other process, n = 2; and so on. This may be pessimistic, as one might expect that system calls and interrupt service routines to be shorter than user programs, however the distribution of execution intervals is weighted towards shorter intervals, which is consistent with frequent interruptions.

The impact is applied in software every time a context switch is indicated. The length of the interruption is computed, which in turn defines the footprint for the various unified, instruction, and data caches. This is used to calculate the probability that a given number of cache blocks are overwritten for each cache line in each different cache configuration. Then for each cache line a random number in [0..1] is generated and compared to the probability to determine how many blocks on that line (up to the set size) are invalidated.

## 6.4 Testing

The mechanism described above was incorporated into the same program used for the single processes simulations described in section 5. The additional code is also included in appendix A. Again a tool was defined to instrument the test programs (called mod) so shared library functions could be used in analysis. Simulations with the model were performed using the same 40 caches on all four benchmarks for n = 1, modeling the program with the operating system. Simulations were also performed for n = 2 for Compress, GCC, and Espresso, to compare the model results to simulations of two concurrent processes with the operating system. All simulations were performed on the same Alpha system as before. The results of the model simulations are reviewed in the next section, and compared with their equivalent "real" simulations.

## 7 Model Evaluation

## 7.1 Individual Results for n=1

The accuracy of the context switch model can be seen in its ability to predict cache miss rates commensurate with those generated from an equivalent "real" simulation. The first test case was for n=1, modeling the test program with one additional process, the operating system, which was performed for Compress, GCC, Espresso, and Alvinn. The results of these simulations are plotted against the corresponding real simulation of each program with the operating system, shown in Figures 38 to 41.

As can be seen, the model generally provides an adequate mechanism for predicting the interference caused by operating system overhead. There are some variations over the results, although certain instances such as Alvinn data references are quite accurate. Such variations are to be expected given the assumptions that were used to generate the model. The only significant fluctuations occur for Compress, which is logical considering that benchmark interacts substantially more with the operating system than the others.

#### 7.2 Individual Results for n=2

A better test of the model is for n=2, modeling the effects of the operating system and an additional process on the performance of the test program. Simulations were performed for Compress, GCC, and Espresso; Alvinn was neglected since no corresponding real simulation could be performed. These results are shown in Figures 42 to 44.

These results show the weakness of the model. In almost every case, the model predictions are more optimistic than the real data. Also, the model does not account for differences in program behavior, so while there are two sets of real data from two alternative second programs, the model only predicts a single result. Based on this, the model does not accurately predict the amount of interference generated from multitasking. The error in the model should also be more pronounced as the level of multitasking is increased, but no simulations could be performed with 3 test programs or more to verify this.

## 7.3 Interference Comparison

The primary source of error in the model is apparent in the interference plots. These are equivalent to the interference figures of the previous results, showing what percentage of cache misses



Figure 38: Model Results for Compress; n=1



Figure 39: Model Results for GCC; n=1



Figure 40: Model Results for Espresso; n=1



Figure 41: Model Results for Alvinn; n=1



Figure 42: Model Results for Compress; n=2



Figure 43: Model Results for GCC; n=2



Figure 44: Model Results for Espresso; n=2

overwrote a process' own data (≈ intrinsic interference), as opposed to overwriting another processes data (≈ extrinsic interference). These plots are shown for each of the seven test cases in Figures 45 through 51.

As can be seen, the model underestimates the amount of extrinsic interference present in a multitasked situation. With a second program in the model, the primary source of interference is still intrinsic, as seen by the percentage of self overwrites, which, based on the previous results, is inaccurate. The only instances the model is even remotely correct is for the largest caches for GCC and Espresso.

Given the fact that the operating system is modeled fairly accurately, but the impact for other programs is not, the most likely source of error is in the impact to the cache at each context switch. The switch frequency is assumed to be more accurate. This is also supported by the assumptions used to develop the model. The most likely source of error is the footprint characterization. Using a simple function of the interruption interval is obviously an oversimplification. A more accurate model could be developed by using a more flexible model of footprint size and composition based on program features.

## 7.4 Summary

Based on the above results, the model described in section 6 does not adequately introduce the impact of context switches into a single process simulation. The interference generated approaches the level caused by the operating system, but is not significant enough to represent additional user programs. Given the assumptions used to develop the model, the most likely source of error is in the realization of context switch impact, in particular the computation of the program footprint. The method used was overly simplified, especially the relationship between block size and program footprint.

The difficulty of developing an accurate context switch model highlights the complexity of the cache environment. Cache performance is an intricate subject, and some aspects are not well understood. Analytical models can facilitate evaluation, but at the expense of accuracy. Any model will have to find a balance between these two goals. The requirement for accuracy reaffirms the need for analysis tools as described earlier, despite their own limitations.



Figure 45: Percent Self Overwritten for Compress; n=1



Figure 46: Percent Self Overwritten for GCC; n=1



Figure 47: Percent Self Overwritten for Espresso; n=1



Figure 48: Percent Self Overwritten for Alvinn; n=1



Figure 49: Percent Self Overwritten for Compress; n=2



Figure 50: Percent Self Overwritten for GCC; n=2



Figure 51: Percent Self Overwritten for Espresso; n=2

## 7.5 Future Work

While the model was not particularly successful in predicting interference, it does provide a theoretical foundation for further exploration. As discussed above, the primary limitation is the simplistic treatment of process footprints. Were this to be resolved and the footprints consider both the program in question and the cache block size, the model should perform much better.

Other potential improvements are a more detailed characterization of the operating system, to include its various composite threads. Also, the footprint of the operating system processes must be considered differently than user programs, due to their unique nature. The execution interval function can also be improved, by including specific program characteristics such as the frequency of system calls and interrupts generated by that particular program. Finally, additional aspects of the various existing analytical models can be incorporated to further simplify the simulations. A better understanding of the execution environment will allow more realistic assumptions to be used in that case.

# 8 Conclusions

The primary thrust of this research was the development and refinement of the ATOM based simulation capability for a complex workload. This was accomplished through the development of a very flexible and robust analysis program. This program is based on standard simulation tools, but incorporates novel techniques to allow a more comprehensive analysis. Partially based on the current work of others, many of these techniques still required extensive test and adaptation before their performance was adequate. Other areas, such as re-entrant analysis, were totally original. Several avenues of future work have also been highlighted, based on developing this work into an even more mature tool.

The cache simulations were performed as a demonstration of the overall potential of the simulation capability, as well as reinforcing assumptions about cache performance with operating system overhead and in the multiprocess environment. The context switch model attempted to combine both empirical and theoretical understanding of caches, and the testing portrayed a specific application of the ATOM tools created. These results were generally consistent with past endeavors, although highlighted some possible deficiencies in current methods and assumptions. The execution environment is quite complex, and aspects of its behavior are not particularly well understood. The ATOM tool promises to be a very effective and flexible tool for robust computer architecture analysis, however further work is necessary to fully realize its potential.

In the final analysis, the consideration of cache miss rates must be weighed with the impact of those miss rates on overall memory system performance. The actual goal of a cache is to improve memory access times. A cache with a very low miss rate but with a slow access time is just as much a problem as a cache with a high miss rate but very fast access time. Traffic between the various levels of the memory hierarchy will also play a factor, as the time to service a miss is also important. Other factors such as the area and power required for the cache must also be considered for an accurate appraisal of the cost and benefits of incorporating a certain cache design into a system. This work has been the first step towards such appraisals which include a comprehensive workload.

# 9 Contributions of this Thesis

- The majority of the work described in this thesis has revolved around developing the ATOM tracing capability for the operating system and multiple user programs. Previous work in this particular area is almost non-existent. ATOM itself is a well defined tool, but this type of implementation has not been studied before. A general method to instrument the kernel is outlined by Eustace and Chen in [20], but not well explored. Their material was used as a foundation, but expanded upon to develop the next generation of tools. The testing and refinement performed over the past year have made advances in several areas:
  - The cache simulation tools developed are much more comprehensive than any existing
     ATOM programs, providing more flexibility and detailed results.
  - The techniques proposed by Eustace and Chen have been extended to include not only the operating system but multiple user programs.
  - The issue of re-entrant analysis functions was explored for the first time. This will play a critical role in the exploration of certain applications such as the operating system.
  - Other limitations associated with using ATOM on the kernel are now more fully understood. Some were addressed in this work, while others will require further study to be completely resolved.
- The cache simulations served as a validation of the tools developed. The results confirmed the
  necessity for this type of work, revealing the significance of multiprogramming in workloads.
   The data gathered has affirmed theories about cache performance, and can be used to design
  more efficient memory caches.
- The context switch model attempts to combine both theoretical and empirical cache studies in an effort to achieve a balance between simplicity and accuracy. It is an extension of the basic cache model which synthetically generates the impact of multiprogramming. While not entirely successful, the testing does highlight gaps in current understanding of cache performance in a complex environment. This will serve as a background for more appropriate models, which should successfully reduce simulation processing.
- The most significant aspects of this thesis are the potential contributions to future work. With the capability developed here, a wide variety of additional cache studies are possible. With

some relatively minor modification, the tools developed can be adapted to a wide variety of program analyses. Most importantly, this work will provide the foundation to allow these studies to include the operating system, a subject that has not be well addressed in the past.

# 10 Acknowledgments

I would like to first thank my advisor, David Kaeli, for his guidance and motivation in completing this project. I would also like to thank Bradley Chen, Alan Eustace, and Greg Lueck for their considerable assistance in working with ATOM, and Liz Stewart for administration of the testbed system. Finally, I would like to thank Kristi Forbes for her invaluable moral support.

This thesis was funded by The Charles Stark Draper Laboratory through a Draper Fellowship under IR&D number 713, Fault Tolerant Computing. Publication of this thesis does not constitute approval by Draper of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas. The author assigns his copyright of this thesis to The Charles Stark Draper Laboratory, Inc., Cambridge Massachusetts. Permission is hereby granted by The Charles Stark Draper Laboratory, Inc., to Northeastern University to reproduce any or all of this thesis.

# 11 Bibliography

# References

- [1] A. Agarwal, Analysis of Cache Performance for Operating Systems and Multiprogramming, Kluwer, 1989.
- [2] A. Agarwal, J. Hennessey, and M. Horowitz, "Cache performance of Operating System and Multiprogramming Workloads", ACM Transactions on Computer Systems, Vol. 6 No. 4, Nov 88, pp. 393-431.
- [3] A. Agarwal, M. Horowitz, and J. Hennessey, "An Analytical Cache Model", ACM Transactions on Computer Systems, Vol. 7 No. 2, May 89, pp. 184-215.
- [4] E. Appleton, "DEC OSF/1: A Taste for Business", The DEC Professional, Vol. 13 No. 1, Jan 94, pp. 40-44.
- [5] P. Argade, D. Charles, and C. Taylor, "A Technique for Monitoring Run Time Dynamics of an Operating System and a Microprocessor Executing User Applications", ACM SIGPLAN Notices, Vol. 29 No. 11, Nov 94, pp. 122-131.
- [6] D. Bernstein, S. Gal, and M. Rodeh, "Mathematical Analysis of Statistical Sampling for Estimating Computer Cache Performance", Communications In Statistics, Vol. 12 No. 1, 1996, pp. 67-75.
- [7] B. Bershad and B. Chen, "Avoiding Conflict Misses Dynamically in Large Direct Mapped Caches", ACM SIGPLAN Notices, Vol. 29 No. 11, Nov 94, pp. 158-170.
- [8] A. Borg, R. Kessler, and D. Wall, "Generation and Analysis of Very Long Address Traces", Computer Architecture News, Vol. 18 No. 2, Jun 90, pp. 270-279.
- [9] P. Bourne, "UNIX: More on DEC OSF/1 Migration", The DEC Professional, Vol. 13 No. 1, Jan 94, pp. 49-50.
- [10] B. Chen, Assembly code provided in personal correspondence via email, Apr 12, 1996.
- [11] B. Chen, The Impact of Software Structure and Policy on CPU and Memory System Performance, PhD Thesis Carnegie Mellon # CMU-CS-94-145, 1994.
- [12] B. Chen and B. Bershad, "The Impact of Operating System Structure on Memory System Performance", Operating Systems Review, Vol. 27 No. 5, Dec 93, pp.120-133.
- [13] B. Chen, D. Wall, and A. Borg, "Software Methods for System Address Tracing: Implementation and Validation", DEC WRL Research Report 94/6, 1994.
- [14] T. Chen and J. Baer, "A Performance Study of Software and Hardware Data Prefetching Schemes", Computer Architecture News, Vol. 22 No. 2, Jun 94, pp. 223-232.
- [15] F. Dahlgren, M. Dubois, and P. Stenstrom, "Combined Performance Gains of Simple Cache Extensions", Computer Architecture News, Vol. 22 No. 2, Jun 94, pp. 187-197.
- [16] J. Denham, P. Long, and J. Woodward, "DEC OSF/1 Version 3.0 Symmetric Multiprocessing Implementation", Digital Technical Journal, Vol. 6 No. 3, Sum 94, pp. 29-43.
- [17] T. Dutton, D. Eiref, H. Kurth, J. Reisert, and R. Stewart, "The Design of the DEC 3000 AXP Systems, Two High Performance Workstations", Digital Technical Journal, Vol. 4 No. 4, 92 spec, pp. 67-81.

- [18] J. Dwyer and J. Richman, "OSF/1", UNIX Review, Vol. 10 No. 4, Apr 92, pp. 29-47.
- [19] H. El-Rewini, H. Ali and T. Lewis, "Task Scheduling in Multiprocessing Systems", Computer, Vol. 28 No. 12, Dec 95, pp. 27-37.
- [20] A. Eustace and B. Chen, "ATOM Kernel Instrumentation Guide Version 0.4", unpublished, Sep 1995.
- [21] M. Evers, P. Chang, and Y. Patt, "Using Hybrid Predictors to Improve Branch Prediction Accuracy in the Presence of Context Switches", Computer Architecture News, Vol. 24 No. 2, Jun 96, pp. 3-11.
- [22] J. Feldman and C. Retter, Computer Architecture: A Designers Text Based on a Generic RISC, McGraw Hill, 1994.
- [23] J. Fraser, "Simple Modeling of Multiprocess Effects in Cache Simulations", unpublished, 1995.
- [24] J. Fraser and D. Kaeli, "Operating System Impact on Cache Performance", unpublished, 1996.
- [25] J. Gee, M. Hill, D. Pnevmatikatos, and A. Smith, "Cache Performance of the SPEC92 Benchmark Suite", IEEE Micro, Vol. 13 No. 4, Aug 93, pp. 17-27.
- [26] M. Holliday and C. Ellis, "Accuracy of memory Reference Traces of Parallel Computations in Trace Driven Simulation", *IEEE Transactions on Parallel and Distributed Systems*, Vol. 3 No. 1, Jan 92, pp. 97-109.
- [27] G. Intrater and I. Spillinger, "Performance Evaluation of a Decoded Instruction Cache for Variable Instruction Length Computer", IEEE Transactions on Computers, Vol. 43 No. 10, Oct 94, pp. 1140-1150.
- [28] Q. Jin and Y Sugasawa, "Representation and Analysis of Behavior for Multiprocess Systems by Using Stochastic Petri Nets", Mathematical and Computer Modeling, Vol. 22 No. 10-12, Nov-Dec 95, pp. 109-118.
- [29] N. Jouppi, "Cache Write Policies and Performance", Computer Architecture News, Vol. 21 No. 2, Jun 93, pp. 191-201.
- [30] K. Kavi, A Hurson, P. Patadia, E. Abraham, and P. Shanmugam, "Design of Cache Memories for Multithreaded Dataflow Architecture", Computer Architecture News, Vol. 23 No. 2, May 95, pp. 253-264.
- [31] M. Kobayashi, "A Cache Multitasking Model", Performance Evaluation Review, Vol. 20 No. 2, Nov 92, pp. 27-37.
- [32] J. Kuntz, "Performance Evaluation of Cache Architectures in Tightly Coupled Multiprocessor Systems", Future Generations Computer Systems, Vol. 10 No. 1, Oct 94, pp. 15-27.
- [33] S. Laha, J. Patel, and R. Iyer, "Accurate Low-Cost Methods for Performance Evaluation of Cache memory Systems", *IEEE Transactions on Computers*, Vol. 37 No. 11, Nov 88, pp. 1325-1335.
- [34] A. Lebeck and D. Wood, "Cache Profiling and the SPEC Benchmarks: A Case Study", Computer, Vol. 27 No. 10, Oct 94, pp. 15-26.
- [35] S. Mahmud, "Comments on 'Synthetic Traces for Trace Driven Simulation of Cache Memories"', IEEE Transactions on Computers, Vol. 43 No. 1, Jan 94, pp. 125-126.
- [36] M. Markowitz, "Cache Design", EDN, Vol. 36 No. 9, Apr 91, pp. 136-148.

- [37] A. Maynard, C. Donnelly, and B. Olszewski, "Contrasting Characteristics and Cache Performance of Technical and Multi-User Commercial Workloads", ACM SIGPLAN Notices, Vol. 29 No. 11, Nov 94, pp. 145-156.
- [38] D. McCrackin and S. Srinivasan, "Trace Driven Pipeline and Cache Simulation of Multithreaded Computers", Simulation, Vol. 63 No. 2, Aug 94, pp. 75-82.
- [39] E. McLellan, "The Alpha AXP Architecture and 21064 Processor", IEEE Micro, Vol. 13 No. 3, Jun 93, pp. 36-47.
- [40] E. McRae, "Benchmarking Real Time Operating Systems", Dr Dobbs Journal, Vol. 21 No. 5, May 96, pp. 48-58.
- [41] J. Mogul and A. Borg, "The Effect of Context Switches on Cache Performance", ACM SIG-PLAN Notices, Vol. 26 No. 4, Apr 91, pp. 75-84.
- [42] D. Nicol and E. Carr, "Empirical Study of Parallel Trace Driven LRU Cache Simulators", Simulation Digest, Vol. 25 No. 1, Jul 95, pp. 166-169.
- [43] D. Nicol, A. Greenberg, and B. Lubachevsky, "Massively Parallel Algorithms for Trace Driven Cache Simulations", IEEE Transactions on Parallel and Distributed Systems, Vol. 5 No. 8, Aug 94, pp. 849-858.
- [44] S. Oualline, Practical C Programming, O'Reilly and Associates, 1991.
- [45] D. Pnevmatikatos and M. Hill, "Cache Performance of the Integer SPEC Benchmarks on a RISC", Computer Architecture News, Vol. 18 No. 2, Jun 1990, pp. 53-68.
- [46] C. Prete, G. Prina, and L. Ricciardi, "A Trace Driven Simulator for Performance Evaluation of Cache Based Multiprocessor Systems", *IEEE Transactions on Parallel and Distributed Systems*, Vol. 6 No. 9, Sep 95, pp. 915-929.
- [47] S. Przybylski, M. Horowitz, and J. Hennessey, "Performance Tradeoffs in Cache Design", Computer Architecture News, Vol. 16 No. 3, Jun 88, pp. 290-298.
- [48] R. Quong, "Expected I Cache Miss Rates via the Gap Model", Computer Architecture News, Vol. 22 No. 2, Apr 94, pp. 372-383.
- [49] R. Saavedra and A. Smith, "Measuring Cache and TLB Performance and Their Effect on Benchmark Runtimes", IEEE Transactions on Computers, Vol. 22 No. 10, Oct 95, pp. 1223-1235.
- [50] D. Spinellis, "Trace: A Tools for Logging Operating System Call Transactions", Operating System Review, Vol. 28 no 4, Oct 94, pp. 56-62.
- [51] A. Srivastava and A. Eustace, "ATOM: A System for Building Customized Program Analysis Tools", ACM SIGPLAN Notices, Vol. 29 No. 6, Jun 94, pp. 196-205.
- [52] W. Stallings, Computer Organization and Architecture: Principles of Structure and Function, Macmillan, 1990.
- [53] H. Stark and J. Woods, Probability, Random Processes, and Estimation Theory for Engineers, Prentice Hall, 1994
- [54] C. Stunkel and K. Fuchs, "TRAPEDS: Producing Traces for Multicomputers Via Execution Driven Simulation", Performance Evaluation Review, Vol. 17 No. 1, May 89, pp. 70-78.

- [55] O. Temam, C. Fricker, and W. Jalby, "Cache Interference Phenomena", Performance Evaluation Review, Vol. 22 No. 1, May 94, pp. 261-271.
- [56] D. Thiebaut and H. Stone, "Footprints in the Cache", ACM Transactions on Computer Systems, Vol. 5 No. 4, Nov 87, pp. 305-329.
- [57] D. Thiebaut, J. Wolf, and H. Stone, "Synthetic Traces for Trace Driven Simulation of Cache Memories", IEEE Transactions on Computers, Vol. 41 No. 4, Apr 92, pp. 388-410.
- [58] D. Thiebaut, J. Wolf, and H. Stone, "Corrigendum to 'Synthetic Traces for Trace Driven Simulation of Cache Memories", IEEE Transactions on Computers, Vol. 42 No. 5, May 93, pp. 635-636.
- [59] J. Torrellas, A. Gupta, and J. Hennessy, "Characterizing the Caching and Synchronization Performance of a Multiprocessor Operating System", ACM SIGPLAN Notices, Vol. 27 No. 9, Sep 92, pp. 162-174.
- [60] R. Uhlig and T. Mudge, "Trace Driven Memory Simulation: A Survey", unpublished, 1996.
- [61] W. Wang and J. Baer, "Efficient Trace Driven Simulation Methods for Cache Performance Analysis", ACM Transactions on Computer Systems, Vol. 9 No. 3, Aug 91, pp. 27-36.
- [62] D. Whalley, "Fast Instruction Cache Performance Evaluation Using Compile Time Analysis", Performance Evaluation Review, Vol. 20 No. 1, Jun 92, pp. 13-22.
- [63] Y. Wong and S Hwang, "Prediction of Memory Consumption in Conservative Parallel Simulation", Simulation Digest, Vol. 25 No. 1, Jul 95, pp. 199-202.
- [64] E. Wu, Y. Hsu, and Y. Liu, "Efficient Stack Simulation for Set Associative Virtual Address Caches With Real Tags", *IEEE Transactions on Computers*, Vol. 44 No. 5, May 95, pp. 719-723.
- [65] Alpha AXP Architecture Handbook, Digital Equipment Corporation, 1994.
- [66] ATOM Reference Manual, Digital Equipment Corporation, 1993.
- [67] ATOM User Manual, Digital Equipment Corporation, 1994.
- [68] ATOM User Manual, Digital Equipment Corporation, 1995.
- [69] DEC 3000 Model 300 Series AXP Hardware Reference Guide, Digital Equipment Corporation, 1994.
- [70] DEC OSF/1 Installation Guide, Digital Equipment Corporation, 1994.
- [71] DEC OSF/1 Guide To Real-time Programming, Digital Equipment Corporation, 1994.
- [72] DEC OSF/1 Technical Overview, Digital Equipment Corporation, 1994.
- [73] Program Analysis Using Atom Tools, Digital Equipment Corporation, 1996.
- [74] On line documentation (SPEC92, ATOM, Dinero).

# A Program Source Code

Programs are based primarily on the structure developed in [20] and past work from [23, 24]. Other sources for information include [44, 66, 67, 68, 73, 74]. The input and output file formats are shown first with short examples, followed by the various files and programs used. They are provided as a reference for future efforts as well as to help understanding of the material:

- 1. Input Format and Example
- 2. Output Format and Example
- 3. Cache Model Library
- 4. Kernel Instrumentation File
- 5. Kernel Analysis File
- 6. Program Instrumentation File
- 7. Program Analysis File
- 8. Sample Tool Description File
- 9. Context Switch Model Library
- 10. Model Analysis File

#### A.1 Input Format

The input file must be called cache. in and has the format:

- (simulation name)
- (number of processes in simulation)
- (name of each process (n-1 names, process 0 is assumed to be the OS)

:

- (number of caches in simulation)
- (cache definitions)

:

Names can contain up to 80 characters. Cache definitions consist of two lines. The first is a 0 or 1 denoting the cache type. The second contains the cache parameters in the forms shown below based on cache type:

Unified(0) (U cache size) (U block size) (U associativity)

Split(1) (I cache size) (I block size) (I associativity) (D cache size) (D block size) (D associativity)

An short example input file is shown below:

```
multi process test
3
cc1 -0 -quiet stmt.i -o stmt
espresso tial.in > /dev/null
3
0
16384 64 2
1
16384 128 4 16384 128 4
1
32768 256 1 32768 256 1
```

#### A.2 Output Format

The simulation results were dumped to a file called cache.out. The output format has a banner page followed by a page of results for each cache. Results are recorded at the end of each program in the simulation, however the second set of data was removed from the example for brevity. The format is self evident from the example shown below. In hindsight, the output file should have used a format directly readable by a spreadsheet program. The format below is easy to understand, however it also requires manual entry of data into spreadsheets for analysis.

```
SIMULATION: multi process test
Number Tasks = 3
     #0: kernel
     #1: cc1 -O -quiet stmt.i -o stmt
     #2: espresso tial.in > /dev/null
Number Caches = 3
     (type, icsize, ilsize, iassoc, dcsize, dlsize, dassoc)
            16384
     #0: 0
                   64
                           16384
     #1: 1
            16384
                  128
                                 128
            32768
                   256
                           32768
                                 256
     #2: 1
DATA AT END OF PROCESS 1
simulation: multi process test
          (data at end of process 1)
CACHE # 0
cache type: 0 (0=unified, 1=split)
icache size: 16384
icache line size: 64
icache associativity: 2
    ******
    Process #0
                               2739339 Perc 7.023098
       Inst
               39004710 Miss
                               3071643 Perc 18.786048
       Data
               16350661 Miss
        read
               10758087 Miss
                               2366717 Perc 21.999422
        writ
                5592574 Miss
                               704926 Perc 12.604679
               55355371 Miss
                               5810982 Perc 10.497594
       TOTAL
        Interferance (number times process 0 overwrote:)
                          2614797
            Process 0 =
            Process 1 =
                          2207422
```

```
Process 2 = 988510
Process 3 = 253
             (process 3 is invalid data)
     ******
     Process #1
        Inst
              160240175 Miss
                                5166542 Perc 3.224249
                                4512864 Perc 6.514685
        Data
                69272178 Miss
                                3475694 Perc 6.924061
         read 50197333 Miss
         writ
                19074845 Miss
                                1037170 Perc 5.437371
        TOTAL 229512353 Miss 9679406 Perc 4.217379
         Interferance (number times process 1 overwrote:)
             Process 0 = 2175838
             Process 1 =
                           4910549
             Process 2 =
                           2287801
             Process 3 =
             (process 3 is invalid data)
     *****
    Process #2
        Inst
              224015943 Miss
                                1813316 Perc 0.809458
        Data
                63229661 Miss
                                3257726 Perc 5.152212
         read
              51131731 Miss
                                2778587 Perc 5.434174
                12097930 Miss
         writ
                                 479139 Perc 3.960504
        TOTAL 287245604 Miss 5071042 Perc 1.765403
         Interferance (number times process 2 overwrote:)
             Process 0 = 1020129
                           2561443
             Process 1 =
             Process 2 = 1489470
             Process 3 =
             (process 3 is invalid data)
    ******
    TOTAL FOR CACHE
                                9719197 Perc 2.296267
        Inst 423260828 Miss
        Data 148852500 Miss 10842233 Perc 7.283877
        read 112087151 Miss 8620998 Perc 7.691335
                                 2221235 Perc 6.041654
        writ
               36765349 Miss
        TOTAL
                572113328 Miss 20561430 Perc 3.593944
simulation: multi process test
         (data at end of process 1)
 ______
CACHE # 1
cache type: 1 (0=unified, 1=split)
icache size: 16384
icache line size: 128
icache associativity: 4
dcache size: 16384
dcache line size: 128
dcache associativity: 4
    ******
    Process #0
       Inst 39028217 Miss 1297351 Perc 3.324136
Data 16360315 Miss 2091714 Perc 12.785292
```

```
10764480 Miss
                               1706268 Perc 15.850910
        read
                5595835 Miss 385446 rero 3859065 Perc 6.118712
        writ
                55388532 Miss
       TOTAL
        Interferance (number times process 0 overwrote:)
                          1358317
            Process 0 =
            Process 1 =
                          1358773
                           671722
            Process 2 =
            Process 3 =
            (process 3 is invalid data)
    *****
    Process #1
                               2378836 Perc 1.484544
       Inst
              160240175 Miss
              69272178 Miss
       Data
                               2370733 Perc 3.422345
        read 50197333 Miss
                               1965331 Perc 3.915210
                                405402 Perc 2.125323
               19074845 Miss
        writ
               229512353 Miss 4749569 Perc 2.069418
       TOTAL
        Interferance (number times process 1 overwrote:)
            Process 0 = 1356440
            Process 1 =
                          2358083
                          1945071
            Process 2 =
            Process 3 =
            (process 3 is invalid data)
    ******
    Process #2
       Inst 224033574 Miss
                                652803 Perc 0.291386
                               1542671 Perc 2.439576
              63235212 Miss
       Data
        read 51136035 Miss
                               1321124 Perc 2.583548
                                221547 Perc 1.831091
               12099177 Miss
        writ
               287268786 Miss
                                2195474 Perc 0.764258
       TOTAL
        Interferance (number times process 2 overwrote:)
                           674120
            Process 0 =
            Process 1 =
                           993262
                         488640
            Process 2 =
                                0
            Process 3 =
            (process 3 is invalid data)
    ******
    TOTAL FOR CACHE
                               4328990 Perc 1.022672
       Inst 423301966 Miss
       Data 148867705 Miss
                               6005118 Perc 4.033862
        read 112097848 Miss
                               4992723 Perc 4.453897
        writ
               36769857 Miss
                               1012395 Perc 2.753329
       TOTAL
               572169671 Miss 10334108 Perc 1.806126
simulation: multi process test
         (data at end of process 1)
_____
CACHE # 2
cache type: 1 (0=unified, 1=split)
icache size: 32768
icache line size: 256
icache associativity: 1
dcache size: 32768
```

```
dcache line size: 256
 dcache associativity: 1
     *******
     Process #0
         Inst
                  39100207 Miss
                                   877237 Perc 2.243561
         Data
                 16384285 Miss
                                  2191363 Perc 13.374786
                10780440 Miss
                                  1793502 Perc 16.636631
         read
         writ
                  5603845 Miss
                                   397861 Perc 7.099786
         TOTAL.
                  55484492 Miss
                                   3068600 Perc 5.530554
          Interferance (number times process 0 overwrote:)
              Process 0 =
                             1704283
              Process 1 =
                               946851
              Process 2 =
                              417213
              Process 3 =
                                 253
             (process 3 is invalid data)
     *****
     Process #1
        Inst
               160240175 Miss
                                  1414353 Perc 0.882646
        Data
                69272178 Miss
                                  2717362 Perc 3.922732
                 50197333 Miss
         read
                                 2261685 Perc 4.505588
         writ
                 19074845 Miss
                                   455677 Perc 2.388890
        TOTAL.
                229512353 Miss
                                  4131715 Perc 1.800215
         Interferance (number times process 1 overwrote:)
              Process 0 =
                             942089
              Process 1 =
                             2260273
              Process 2 =
                              929350
              Process 3 =
                                   3
             (process 3 is invalid data)
     *****
    Process #2
                224033574 Miss
        Inst
                                  435774 Perc 0.194513
        Data
                63235212 Miss
                                   2459827 Perc 3.889964
                51136035 Miss
         read
                                  2205351 Perc 4.312714
         writ
                 12099177 Miss
                                   254476 Perc 2.103250
        TOTAL
                287268786 Miss
                                 2895601 Perc 1.007976
         Interferance (number times process 2 overwrote:)
             Process 0 = 422012
             Process 1 =
                              924590
             Process 2 =
                           1548999
             Process 3 =
             (process 3 is invalid data)
    ******
    TOTAL FOR CACHE
        Inst
                423373956 Miss
                                  2727364 Perc 0.644197
        Data
                148891675 Miss
                                  7368552 Perc 4.948935
              112113808 Miss
         read
                                  6260538 Perc 5.584092
         writ
                36777867 Miss
                                  1108014 Perc 3.012720
        TOTAL
                572265631 Miss
                                 10095916 Perc 1.764201
DATA AT END OF PROCESS 2
(format repeats for data at end of second process)
```

### A.3 Cache Model Library

The following file, cache.h, was used as a definition/procedure library for the basic cache simulator:

```
/* CACHE.H */
/* CACHE SIMULATION LIBRARY */
/* JOHN FRASER */
/* SIMULATION CHARACTERISTICS */
/* MAXIMUM NUMBER OF CACHES IN SIMULATION */
#define MAXCACHES 40
/* MAXIMUM NUMBER OF PROCESSES IN SIMULATION */
#define MAXTASKS 4
/* MAXIMUM NUMBER OF LINES (CSIZE/(BSIZE*ASSOC)) IN CACHES */
#define MAXLINE 512
/* MAXIMUM ASSOCIATIVITY OF CACHES */
#define MAXASSOC 4
/* CACHE PARAMETERS */
typedef struct
  }
  /* CACHE TYPE (O=UNIFIED, 1=SPLIT) */
  int type;
  /* CACHE SIZE FOR EACH SECTION (O=UNIFIED/INST, 1=DATA) */
  int csize[2];
  /* BLOCK SIZE FOR EACH SECTION */
  int bsize[2];
  /* ASSOCIATIVITY FOR EACH SECTION */
  int assoc[2];
  /* BIT SHIFT USED TO ISOLATE TAG FROM ADDRESS */
  int tshift[2];
  /* BIT SHIFT USED TO ISOLATE LINE FROM ADDRESS */
  int lshift[2];
  /* BIT MASK USED TO ISOLATE LINE FROM ADDRESS */
  int lmask[2];
 } param;
/* CACHE BLOCK STORAGE */
typedef struct
 -{
  /* BLOCK TAG */
  long tag;
  /* BLOCK 'USE BITS' FOR ASSOCIATIVE CACHES */
 unsigned long use;
  /* BLOCK OWNER PROCESS */
  int task;
 } block;
/* CACHE PERFORMANCE STATISTICS */
typedef struct
  {
```

```
/* NUMBER OF INSTRUCTION FETCHES */
  unsigned long instcnt;
  /* NUMBER OF DATA LOADS */
  unsigned long readont;
  /* NUMBER OF DATA STORES */
  unsigned long writcht;
  /* NUMBER OF OVERWRITES OVER EACH PROCESS */
  /* NUMTASKS+1 = INVALID DATA */
  unsigned long interfere[MAXTASKS+1];
  /* NUMBER OF INSTRUCTION FETCH MISSES */
  unsigned long instmisscnt;
  /* NUMBER OF DATA LOAD MISSES */
  unsigned long readmisscnt;
  /* NUMBER OF DATA STORE MISSES */
  unsigned long writmisscnt;
  } stats;
/* STRING DEFINITION */
typedef char string[80];
/* SHARED ATOM DATA */
typedef struct
  {
  /* NUMBER OF CACHES IN USE */
  int numcaches;
  /* NUMBER OF CACHES IN SIMULAITON */
  int actcaches;
  /* NUMBER OF PROCESSES IN SIMULATION */
  int numtasks;
  /* NUMBER OF PROCESSES CURRENTLY EXECUTING */
  int count:
  /* PID OF CURRENT PROCESS */
  int curtask;
  /* PROCESS NAMES */
  string name [MAXTASKS];
  /* CACHE PARAMTERS */
 param para[MAXCACHES];
  /* CACHE STATE (BLOCK INFORMATION) */
 block data[MAXCACHES][2][MAXLINE][MAXASSOC];
  /* PERFORMANCE STATISTICS */
  stats stat[MAXCACHES][MAXTASKS];
  } datablock;
/* INTEGER LOG2 FUNCTION */
int mylog2(int num)
 {
 if (num < 2)
   return(0);
  else
   return(1 + mylog2(num/2));
```

#### A.4 Kernel Instrumentation File

The kernel instrumentation file kern.inst.c is responsible for adding the calls to the analysis routines at the appropriate points. A call to the initialization function is made when the program is initially loaded, and thereafter at each data reference and sets of instructions, calls are made to the various analysis routines. A call is inserted at the start of each hardclock interrupt service routine for scaling purposes. Note the test to check for the kernel procedures which cannot be instrumented.

```
/* KERN.INST.C */
/* KERNEL INSTRUMENTATION FILE */
/* JOHN FRASER */
#include <string.h>
#include <cmplrs/atom.inst.h>
/* DEFINE PROCESS ID */
#define PROCNUM O
/* TEST FOR ROUTINES WHICH CANNOT BE TRACED */
int CanInstrument(Proc *p)
  const char* name = ProcFileName(p);
  return(strcmp("../../../src/kernel/arch/alpha/locore.s",name)!=0 &&
         strcmp("../../../src/kernel/arch/alpha/lockprim.s",name)!=0 &&
         strcmp("../../../src/kernel/arch/alpha/spl.s",name)!=0);
  }
/* INSTRUMENT:
                                              */
        ALL DATA REFERENCES AND
                                              */
/*
        SETS OF 8 INSTRUCTIONS OR LESS
                                              */
/*
        (WITHIN SAME BASIC BLOCK)
                                              */
/* ANALYSIS ROUTINES:
        INSTRUCTION FETCH(ADDRESS, PID, NUMBER) */
/*
        DATA LOAD(ADDRESS, PID)
                                              */
/*
                                              */
        DATA STORE (ADDRESS, PID)
unsigned InstrumentAll(int argc, char** argv)
  Obj* o;
  Proc* p;
  Block* b;
  Inst* i:
  /* ADD PROCEDURE PROTOTYPES */
  AddCallProto("initcache()");
  AddCallProto("instref(REGV, int, int)");
  AddCallProto("readref(VALUE, int)");
  AddCallProto("writref(VALUE, int)");
  AddCallProto("skipcall(REGV, REGV)");
  /* ADD INITIALIZATION CALL */
  AddCallProgram(ProgramBefore, "initcache");
  /* ITERATE THROUGH ORIGINAL CODE ADDING REFERENCE CALLS */
  o = GetFirstObj();
  if (BuildObj(o)) return 1;
```

```
p = GetNamedProc("hardclock");
/* ADD CALL FOR HARDCLOCK SCALING */
AddCallProc(p, ProcBefore, "skipcall", REG_SP, REG_RA);
for (p=GetFirstObjProc(o); p!=NULL; p=GetNextProc(p))
  if (CanInstrument(p))
    -
    for (b=GetFirstBlock(p); b!=NULL; b=GetNextBlock(b))
      -{
      long pcEnd = InstPC(GetLastInst(b));
      int count = 0;
      for (i=GetFirstInst(b); i!=NULL; i=GetNextInst(i))
        /* INSTRUCTION FETCH */
        if ((count & 7) == 0)
          {
          int instRem = ((pcEnd-InstPC(i))/4)+1;
          int instrLine = (instRem > 8) ? 8 : instRem;
          AddCallInst(i,InstBefore, "instref", REG_PC, PROCNUM, instrLine);
          }
        count++;
        /* DATA LOAD */
        if (IsInstType(i, InstTypeLoad))
          AddCallInst(i, InstBefore, "readref", EffAddrValue, PROCNUM);
        /* DATA STORE */
        if (IsInstType(i, InstTypeStore))
          AddCallInst(i, InstBefore, "writref", EffAddrValue, PROCNUM);
     }
   }
 }
WriteObj(o);
return(0);
```

#### A.5 Kernel Analysis File

The kernel analysis file kern.anal.c defines the analysis routines called in the instrumentation file, and any other utility functions/procedures. There are 4 analysis routines to consider:

- Initialization The initialization routine is responsible for establishing the basic simulation parameters when the kernel is loaded. The simulator is essentially put into a paused simulation state (0 caches) so that it is not actively capturing and processing references until a test program is started.
- Hardclock Scaling This procedure will discard a certain number of hardclock interrupts controlled by a scaling factor.
- Instruction Fetch Routine The instruction fetch routine is responsible for servicing instruction fetches in the reference stream. It processes each set of references in the cache based on the sets starting address, the number of instructions in the set, and the PID of the sending process. Using a PID allows the same code to be used for each process's analysis routines as well as maintaining cache coherency.
- Data Load Routine The data load routine is responsible for servicing the data loads in the reference stream. It is almost identical to the previous routine except for the necessity of determining which cache to access depending on a split or unified model, and the fact that it services only a single reference at a time.
- Data Store Routine The analysis routine for data stores, it is almost identical to the data load routine except for incrementing different counters.

The similarities between each routine would suggest that the common aspects be defined in a separate function which is called by each analysis routine, but this increases the processing latency by an unacceptable degree. The data used by these routines is defined in the library file and is implemented as global variables.

```
/* KERN.ANAL.C */
/* KERNEL ANALYSIS FILE */
/* JOHN FRASER */
/* HARDCLOCK SCALING VALUE */
#define SCALE 3
#include "cache.h"
#include <stdio.h>
#include <c_asm.h>
/* SHARED CACHE DATA */
datablock satom;
/* HARDCLOCK SCALING DATA */
int clockscale = 1;
int clockcount = 0;
/* INITIALIZE BASIC PARAMETERS */
/* SIMULATION (CAPTURE) DISABLED */
void initcache()
  {
  satom.numcaches = 0;
```

```
satom.actcaches = 0;
  satom.numtasks = 0;
  satom.curtask = 0;
  satom.count = 0;
  clockscale = SCALE;
  clockcount = 0;
  return;
/* HARDCLOCK SCALING */
void skipcall(unsigned long sp, unsigned long ra)
  clockcount++;
  if (clockcount >= clockscale)
    clockcount = 0;
    return;
    }
  asm("mov %a0, %sp",sp);
  asm("mov %a1, %ra",ra);
  asm("ret %zero, (%ra)");
  return;
  }
/* SCALING EMERGENCY */
void KernelPanic()
  £
  clockscale = 1;
  return;
  }
/* INSTRUCTION REFERENCE ROUTINE */
void instref(long addr, int proc, int count)
  {
  int x, leastx;
  unsigned long leastused;
  long aline, atag;
  int cnum, hit;
  /* PAUSE CAPTURE (RE-ENTRANCE) */
  int tempnumcaches = satom.numcaches;
  satom.numcaches = 0;
  /* PROCESS REFERENCES IN EACH CACHE */
  for (cnum=0; cnum<tempnumcaches; cnum++)</pre>
    int assoc = (satom.para[cnum]).assoc[0];
    /* UPDATE STATISTICS */
    ((satom.stat[cnum][proc]).instcnt) += count;
    /* PARSE ADDRESS */
    aline = (addr & (satom.para[cnum]).lmask[0]) >>
                    (satom.para[cnum]).lshift[0];
    atag = addr >> (satom.para[cnum]).tshift[0];
```

```
/* UPDATE 'USE BITS' AND CHECK FOR HIT */
   hit = 0;
   for (x=0; x<assoc; x++)
     ((satom.data[cnum][0][aline][x]).use)++;
     if (((satom.data[cnum][0][aline][x]).tag == atag) &&
          ((satom.data[cnum][0][aline][x]).task == proc))
        (satom.data[cnum][0][aline][x]).use = 0;
       hit = 1;
       }
   /* IF NO HIT, FIND LRU BLOCK TO EVICT */
   if (hit == 0)
     /* FIND LRU */
     leastused = 0;
     for (x=0; x<assoc; x++)
       if (((satom.data[cnum][0][aline][x]).use >= leastused) ||
            ((satom.data[cnum][0][aline][x]).task ==
                                               satom.numtasks))
         leastused = (satom.data[cnum][0][aline][x]).use;
         leastx = x;
        if ((satom.data[cnum][0][aline][x]).task ==
                                              satom.numtasks)
         x = assoc;
      /* UPDATE STATISTICS */
      ((satom.stat[cnum][proc]).instmisscnt)++;
      ((satom.stat[cnum][proc]).interfere[
       (satom.data[cnum][0][aline][leastx]).task])++;
      /* UPDATE CACHE DATA */
      (satom.data[cnum][0][aline][leastx]).tag = atag;
      (satom.data[cnum][0][aline][leastx]).use = 0;
      (satom.data[cnum][0][aline][leastx]).task = proc;
     }
  /* RESUME CAPTURE */
  satom.numcaches = tempnumcaches;
 return;
  }
/* DATA LOAD ROUTINE */
void readref(long addr, int proc)
  {
  int index;
  int x, leastx;
 unsigned long leastused;
```

```
long aline, atag;
int cnum, hit;
/* PAUSE CAPTURE (RE-ENTRANCE) */
int tempnumcaches = satom.numcaches;
satom.numcaches = 0;
/* PROCESS REFERENCE IN EACH CACHE */
for (cnum=0; cnum<tempnumcaches; cnum++)</pre>
 int type = (satom.para[cnum]).type;
 int assoc = (satom.para[cnum]).assoc[type];
 /* UPDATE STATISTICS */
 ((satom.stat[cnum][proc]).readcnt)++;
 /* PARSE ADDRESS */
 aline = (addr & (satom.para[cnum]).lmask[type]) >>
                  (satom.para[cnum]).lshift[type];
 atag = addr >> (satom.para[cnum]).tshift[type];
 /* UPDATE 'USE BITS' AND CHECK FOR HIT */
 hit = 0:
 for (x=0; x<assoc; x++)
   {
   ((satom.data[cnum][type][aline][x]).use)++;
   if (((satom.data[cnum][type][aline][x]).tag == atag) &&
       ((satom.data[cnum][type][aline][x]).task == proc))
     (satom.data[cnum][type][aline][x]).use = 0;
     hit = 1:
     }
 /* IF NO HIT, FIND LRU BLOCK TO EVICT */
 if (hit == 0)
   {
   /* FIND LRU */
   leastused = 0;
   for (x=0; x<assoc; x++)
     if (((satom.data[cnum][type][aline][x]).use >= leastused) ||
         ((satom.data[cnum][type][aline][x]).task ==
                                                satom.numtasks))
       leastused = (satom.data[cnum][type][aline][x]).use;
       leastx = x:
     if ((satom.data[cnum][type][aline][x]).task ==
                                               satom.numtasks)
       x = assoc;
     }
   /* UPDATE STATISTICS */
   ((satom.stat[cnum][proc]).readmisscnt)++;
   ((satom.stat[cnum][proc]).interfere[
    (satom.data[cnum][type][aline][leastx]).task])++;
   /* UPDATE CACHE DATA */
```

```
(satom.data[cnum][type][aline][leastx]).tag = atag;
      (satom.data[cnum][type][aline][leastx]).use = 0;
      (satom.data[cnum][type][aline][leastx]).task = proc;
    7
  /* RESUME CAPTURE */
  satom.numcaches = tempnumcaches;
 return;
 }
/* DATA STORE ROUTINE */
void writref(long addr, int proc)
 int index;
  int x, leastx;
  unsigned long leastused;
  long aline, atag;
  int cnum, hit;
  /* PAUSE CAPTURE (RE-ENTRANCE) */
  int tempnumcaches = satom.numcaches;
  satom.numcaches = 0:
  /* PROCESS REFERENCE IN EACH CACHE */
  for (cnum=0; cnum<tempnumcaches; cnum++)</pre>
    int type = (satom.para[cnum]).type;
    int assoc = (satom.para[cnum]).assoc[type];
    /* UPDATE STATISTICS */
    ((satom.stat[cnum][proc]).writcnt)++;
    /* PARSE ADDRESS */
    aline = (addr & (satom.para[cnum]).lmask[type]) >>
                    (satom.para[cnum]).lshift[type];
    atag = addr >> (satom.para[cnum]).tshift[type];
    /* UPDATE 'USE BITS' AND CHECK FOR HIT */
    hit = 0:
    for (x=0; x<assoc; x++)
      ((satom.data[cnum][type][aline][x]).use)++;
      if (((satom.data[cnum][type][aline][x]).tag == atag) &&
          ((satom.data[cnum][type][aline][x]).task == proc))
        (satom.data[cnum][type][aline][x]).use = 0;
        hit = 1;
        }
    /* IF NO HIT, FIND LRU BLOCK TO EVICT */
    if (hit == 0)
      /* FIND LRU */
      leastused = 0;
      for (x=0; x<assoc; x++)
        {
```

```
if (((satom.data[cnum][type][aline][x]).use >= leastused) ||
          ((satom.data[cnum][type][aline][x]).task == satom.numtasks))
        {
        leastused = (satom.data[cnum][type][aline][x]).use;
        leastx = x;
        }
      if ((satom.data[cnum][type][aline][x]).task == satom.numtasks)
    /* UPDATE STATISTICS */
    ((satom.stat[cnum][proc]).writmisscnt)++;
    ((satom.stat[cnum][proc]).interfere[
     (satom.data[cnum][type][aline][leastx]).task])++;
    /* UPDATE CACHE DATA */
    (satom.data[cnum][type][aline][leastx]).tag = atag;
    (satom.data[cnum][type][aline][leastx]).use = 0;
    (satom.data[cnum][type][aline][leastx]).task = proc;
    }
/* RESUME CAPTURE */
satom.numcaches = tempnumcaches;
return;
```

## A.6 Program Instrumentation File

The program instrumentation file prog.inst.c is not substantially different from the kernel version. The primary change is the removal of the test for specific procedures which cannot be instrumented. The other alteration is the inclusion of a procedure at program end to write the simulations results to file. If multiple test programs are used, each uses a different instrumentation file with a unique process identifier assigned in the #define statement.

```
/* PROG.INST.C */
/* PROGRAM INSTRUMENTATION FILE */
/* JOHN FRASER */
#include <string.h>
#include <cmplrs/atom.inst.h>
/* DEFINE PROCESS ID */
#define PROCNUM 1
/* INSTRUMENT:
                                              */
/*
        ALL DATA REFERENCES AND
                                              */
        SETS OF 8 INSTRUCTIONS OR LESS
/*
                                              */
/*
        (WITHIN SAME BASIC BLOCK)
                                              */
                                              */
/* ANALYSIS ROUTINES
        INSTRUCTION FETCH(ADDRESS, PID, NUMBER) */
/*
/*
        DATA LOAD(ADDRESS, PID)
                                              */
/*
        DATA STORE(ADDRESS, PID)
                                              */
unsigned InstrumentAll(int argc, char** argv)
  Obj* o;
  Proc* p;
  Block* b;
  Inst* i;
  /* ADD PROCEDURE PROTOTYPES */
  AddCallProto("initcache(int)");
  AddCallProto("instref(REGV, int, int)");
  AddCallProto("readref(VALUE, int)");
  AddCallProto("writref(VALUE, int)");
  AddCallProto("printres(int)");
  /* ADD INITIALIZATION CALL */
  AddCallProgram(ProgramBefore, "initcache", PROCNUM);
  /* ADD RESULTS OUTPUT CALL */
  AddCallProgram(ProgramAfter, "printres", PROCNUM);
  /* ITERATE THROUGH ORIGINAL CODE ADDING REFERENCE CALLS */
  o = GetFirstObj();
  if (BuildObj(o)) return 1;
  for (p=GetFirstObjProc(o); p!=NULL; p=GetNextProc(p))
    for (b=GetFirstBlock(p); b!=NULL; b=GetNextBlock(b))
      {
      long pcEnd = InstPC(GetLastInst(b));
      int count = 0;
      for (i=GetFirstInst(b); i!=NULL; i=GetNextInst(i))
```

```
{
      if ((count & 7) == 0)
        {
        int instRem = ((pcEnd-InstPC(i))/4)+1;
        int instrLine = (instRem > 8) ? 8 : instRem;
        AddCallInst(i,InstBefore, "instref", REG_PC, PROCNUM, instrLine);
        }
      count++;
      if (IsInstType(i, InstTypeLoad))
        AddCallInst(i, InstBefore, "readref", EffAddrValue, PROCNUM);
      if (IsInstType(i, InstTypeStore))
       AddCallInst(i, InstBefore, "writref", EffAddrValue, PROCNUM);
   }
 }
WriteObj(o);
return(0);
}
```

## A.7 Program Analysis File

The program analysis file prog.anal.c is almost identical to the kernel version, except for the initialization and conclusion routines. The reference processing routines perform the same function, the other two are described below:

Initialization The initialization routine is much more complex than its kernel equivalent. First it must map the shared data into the program's address space via the /dev/mmap utility. If the test program is the first to be executed for that simulation, it also reads the simulation data from the input file, initializes the cache data, and enables the simulation.

Conclusion The final routine is not present in the kernel because it is executed at program completion. It is responsible for writing the simulation results to the output file.

```
/* PROG.ANAL.C */
/* PROGRAM ANALYSIS FILE */
/* JOHN FRASER */
#include <stdio.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <fcntl.h>
#include <mach/machine/vm_param.h>
#include "cache.h"
/* /DEV/MMAP DEFINITIONS */
#define k2phys(addr) (((long)(addr)) & Oxffffffff)
#define SM_MODE (MAP_FILE|MAP_VARIABLE|MAP_SHARED)
#define SM_PROT (PROT_READ|PROT_WRITE)
/* SHARED CACHE DATA POINTER */
datablock* psatom;
/* ADDRESS MAPPING FUNCTIONS */
void FatalError(char* string)
  fprintf(stderr,"ucache: %s\n",string);
  exit(1);
long GetAddress(char* vmunixDebug, char* symbol)
  long addr;
  char command[200];
  int fields;
  FILE* file;
  sprintf(command,"nm -B %s | grep ' %s$",vmunixDebug,symbol);
  file = popen(command, "r");
  if (file==NULL)
    fprintf(stderr, "Open failed: %s\n", command);
```

```
exit(1):
  fields = fscanf(file, "0x%lx", &addr);
  if (fields!=1) FatalError("Get address failed");
  pclose(file);
  return addr;
/* INITIALIZATION ROUTINE */
void initcache(int proc)
 /* GET POINTER TO SHARED DATA IN KERNEL */
 caddr_t sm_addr;
 size_t length;
 off_t sm_physbase, sm_pgoff;
 unsigned long kbase = GetAddress("vmunix.debug", "satom");
 int fd = open("/dev/mem", O_RDWR, 0);
 if (fd<0) FatalError("Unable to open /dev/mem\n");
 sm_physbase = k2phys(alpha_trunc_page(kbase));
 sm_pgoff = kbase & (ALPHA_PGBYTES-1);
 length = alpha_round_page(sm_pgoff + sizeof(datablock));
 sm_addr = mmap(NULL, length, SM_PROT, SM_MODE, fd, sm_physbase);
 if (sm_addr == (caddr_t)-1) FatalError("mmap failed\n");
 psatom = (datablock*) ((long)sm_addr | (long)sm_pgoff);
 /* INCREMENT PROCESS COUNTER */
 psatom->count++;
 /* IF FIRST PROCESS, INITIALIZE CACHE DATA */
 if (proc == 1)
   {
   int tempnumcaches, tempnumtasks;
   int x,a,b,c,d;
   FILE *input, *output;
   /* LOAD BASIC CHARACTERISTICS FROM FILE */
   input = fopen("cache.in","r");
   fgets(psatom->name[0], 79, input);
   fscanf(input,"%d\n",&tempnumtasks);
   for (x=1; x<tempnumtasks; x++)
     fgets(psatom->name[x], 79, input);
   fscanf(input,"%d\n",&tempnumcaches);
   for (x=0; x<tempnumcaches; x++)</pre>
     fscanf(input, "%d\n", &(psatom->para[x]).type);
     if ((psatom->para[x]).type == 0)
       fscanf(input, "%d %d %d\n", &(psatom->para[x]).csize[0],
                                    %(psatom->para[x]).lsize[0],
                                    &(psatom->para[x]).assoc[0]);
     else
       fscanf(input,"%d %d %d %d %d %d \n", &(psatom->para[x]).csize[0],
                                            &(psatom->para[x]).lsize[0],
                                            &(psatom->para[x]).assoc[0],
                                            &(psatom->para[x]).csize[1],
```

```
&(psatom->para[x]).lsize[1],
                                        &(psatom->para[x]).assoc[1]);
  }
/* SET ADDRESS HASHING PARAMETERS */
for (a=0; a<tempnumcaches; a++)</pre>
  for (b=0; b<((psatom->para[a]).type + 1); b++)
    (psatom->para[a]).tshift[b] = mylog2((psatom->para[a]).csize[b]/
                                         (psatom->para[a]).assoc[b]);
    (psatom->para[a]).lshift[b] = mylog2( (psatom->para[a]).lsize[b] );
    (psatom->para[a]).lmask[b] = ((psatom->para[a]).csize[b]/
                                  (psatom->para[a]).assoc[b])-1;
    }
/* INITIALIZE CACHE STORAGE */
for (a=0; a<tempnumcaches; a++)</pre>
  for (b=0; b<((psatom->para[a]).type + 1); b++)
    for (c=0; c<((psatom->para[a]).csize[b]/
                ((psatom->para[a]).lsize[b]*
                 (psatom->para[a]).assoc[b])); c++)
      for (d=0; d<(psatom->para[a]).assoc[b];d++)
        (psatom->data[a][b][c][d]).use = 0;
        (psatom->data[a][b][c][d]).task = tempnumtasks;
/* INITIALIZE CACHE STATISTICS */
for (a=0: a<tempnumcaches; a++)</pre>
  for (b=0; b <tempnumtasks; b++)
    (psatom->stat[a][b]).instcnt = 0;
    (psatom->stat[a][b]).readcnt = 0;
    (psatom->stat[a][b]).writcnt = 0;
    (psatom->stat[a][b]).instmisscnt = 0;
    (psatom->stat[a][b]).readmisscnt = 0;
    (psatom->stat[a][b]).writmisscnt = 0;
    for (c=0; c <= tempnumtasks; c++)</pre>
      (psatom->stat[a][b]).interfere[c] = 0;
/* LOG SIMULATION DATA TO OUTPUT FILE */
output = fopen("cache.out","w");
fprintf(output,"\n\n\n\n\n\n\n\n");
fprintf(output,"<><><><><><>\><>\\n");
fprintf(output, "SIMULATION: %s", psatom->name[0]);
fprintf(output,"<><><><><><><><>\\n");
fprintf(output,"\n\n\n");
fprintf(output,"Number Tasks = %d\n\n",tempnumtasks);
fprintf(output,"
                       #0: kernel\n\n");
for (x=1; x<tempnumtasks; x++)</pre>
                         #%d: %s\n",x,psatom->name[x]);
  fprintf(output,"
fprintf(output,"\n\n\n");
fprintf(output,"Number Caches = %d\n",tempnumcaches);
fprintf(output,"
                  (type, icsize, ilsize, iassoc,
```

```
dcsize, dlsize, dassoc)\n\n");
    for (x=0; x<tempnumcaches; x++)</pre>
      fprintf(output,"
                              #%d: %1d %7d %5d %3d",x,
                                              (psatom->para[x]).type,
                                              (psatom->para[x]).csize[0],
                                              (psatom->para[x]).lsize[0],
                                              (psatom->para[x]).assoc[0]);
      if ((psatom->para[x]).type == 1)
        fprintf(output," %7d %5d %3d",(psatom->para[x]).csize[1],
                                       (psatom->para[x]).lsize[1],
                                       (psatom->para[x]).assoc[1]);
      fprintf(output,"\n\n");
    fprintf(output,"\f");
    fclose(output);
    /* START CAPTURE & SIMULATION */
    psatom->numtasks = tempnumtasks;
    psatom->numcaches = tempnumcaches;
    psatom->actcaches = tempnumcaches;
   psatom->curtask = -1;
  return;
/* INSTRUCTION REFERENCE ROUTINE */
void instref(long addr, int proc, int count)
 {
 int x, leastx;
 unsigned long leastused;
 long aline, atag;
 int cnum, hit;
 /* PAUSE CAPTURE (RE-ENTRANCE) */
 int tempnumcaches = psatom->numcaches;
 psatom->numcaches = 0;
 /* RE-ESTABLISH AFTER CONTEXT SWTICH (RE-ENTRANCE) */
 if (psatom->curtask != proc)
   tempnumcaches = psatom->actcaches;
   psatom->curtask = proc;
 /* PROCESS REFERENCES IN EACH CACHE */
 for (cnum=0; cnum<tempnumcaches; cnum++)</pre>
   {
   int assoc = (psatom->para[cnum]).assoc[0];
   /* UPDATE STATISTICS */
   ((psatom->stat[cnum][proc]).instcnt) += count;
   /* PARSE ADDRESS */
   aline = (addr & (psatom->para[cnum]).lmask[0]) >>
                    (psatom->para[cnum]).lshift[0];
```

```
atag = addr >> (psatom->para[cnum]).tshift[0];
   /* UPDATE 'USE BITS' AND CHECK FOR HIT */
   hit = 0;
   for (x=0; x<assoc; x++)
     ((psatom->data[cnum][0][aline][x]).use)++;
     if (((psatom->data[cnum][0][aline][x]).tag == atag) &&
         ((psatom->data[cnum][0][aline][x]).task == proc))
       (psatom->data[cnum][0][aline][x]).use = 0;
       hit = 1;
     }
   /* IF NOT HIT, FIND LRU BLOCK TO EVICT */
   if (hit == 0)
     /* FIND LRU */
     leastused = 0;
     for (x=0; x<assoc; x++)</pre>
       if (((psatom->data[cnum][0][aline][x]).use >= leastused) ||
            ((psatom->data[cnum][0][aline][x]).task ==
                                                 psatom->numtasks))
         leastused = (psatom->data[cnum][0][aline][x]).use;
         leastx = x;
       if ((psatom->data[cnum][0][aline][x]).task ==
                                                psatom->numtasks)
         x = assoc;
       7
     /* UPDATE STATISTICS */
      ((psatom->stat[cnum][proc]).instmisscnt)++;
      ((psatom->stat[cnum][proc]).interfere[
      (psatom->data[cnum][0][aline][leastx]).task])++;
      /* UPDATE CACHE DATA */
      (psatom->data[cnum][0][aline][leastx]).tag = atag;
      (psatom->data[cnum][0][aline][leastx]).use = 0;
      (psatom->data[cnum][0][aline][leastx]).task = proc;
  /* RESUME CAPTURE */
 psatom->numcaches = tempnumcaches;
 return;
/* DATA LOAD ROUTINE */
void readref(long addr, int proc)
 {
  int index;
  int x, leastx;
```

```
unsigned long leastused;
long aline, atag;
int cnum, hit;
/* PAUSE CAPTURE (RE-ENTRANCE) */
int tempnumcaches = psatom->numcaches;
psatom->numcaches = 0;
/* RE-ESTABLISH AFTER CONTEXT SWITCH (RE-ENTRANCE) */
if (psatom->curtask != proc)
 tempnumcaches = psatom->actcaches;
 psatom->curtask = proc;
/* PROCESS REFERENCE IN EACH CACHE */
for (cnum=0; cnum<tempnumcaches; cnum++)</pre>
 {
 int type = (psatom->para[cnum]).type;
 int assoc = (psatom->para[cnum]).assoc[type];
 /* UPDATE STATISTICS */
 ((psatom->stat[cnum][proc]).readcnt)++;
 /* PARSE ADDRESS */
 aline = (addr & (psatom->para[cnum]).lmask[type]) >>
                  (psatom->para[cnum]).lshift[type];
 atag = addr >> (psatom->para[cnum]).tshift[type];
 /* UPDATE 'USE BITS' AND CHECK FOR HIT */
 hit = 0;
 for (x=0; x<assoc; x++)
   {
   ((psatom->data[cnum][type][aline][x]).use)++;
   if (((psatom->data[cnum][type][aline][x]).tag == atag) &&
       ((psatom->data[cnum][type][aline][x]).task == proc))
     (psatom->data[cnum][type][aline][x]).use = 0;
     hit = 1;
     }
   }
 /* IF NO HIT, FIND LRU BLOCK TO EVICT */
 if (hit == 0)
   {
   /* FIND LRU */
   leastused = 0:
   for (x=0; x<assoc; x++)
     }
     if (((psatom->data[cnum][type][aline][x]).use >= leastused) ||
         ((psatom->data[cnum][type][aline][x]).task ==
                                                  psatom->numtasks))
       leastused = (psatom->data[cnum][type][aline][x]).use;
       leastx = x;
     if ((psatom->data[cnum][type][aline][x]).task ==
                                                 psatom->numtasks)
```

```
x = assoc;
      /* UPDATE STATISTICS */
      ((psatom->stat[cnum][proc]).readmisscnt)++;
      ((psatom->stat[cnum][proc]).interfere[
       (psatom->data[cnum][type][aline][leastx]).task])++;
      /* UPDATE CACHE DATA */
      (psatom->data[cnum][type][aline][leastx]).tag = atag;
      (psatom->data[cnum][type][aline][leastx]).use = 0;
      (psatom->data[cnum][type][aline][leastx]).task = proc;
    }
  /* RESUME CAPTURE */
  psatom->numcaches = tempnumcaches;
  return:
  }
/* DATA STORE ROUTINE */
void writref(long addr, int proc)
  int index;
  int x, leastx;
  unsigned long leastused;
  long aline, atag;
  int cnum, hit;
  /* PAUSE CAPTURE (RE-ENTRANCE) */
  int tempnumcaches = psatom->numcaches;
  psatom->numcaches = 0;
  /* RE-ESTABLISH AFTER CONTEXT SWTICH (RE-ENTRANCE) */
  if (psatom->curtask != proc)
    tempnumcaches = psatom->actcaches;
    psatom->curtask = proc;
  /* PROCESS REFERENCE IN EACH CACHE */
  for (cnum=0; cnum<tempnumcaches; cnum++)</pre>
    int type = (psatom->para[cnum]).type;
    int assoc = (psatom->para[cnum]).assoc[type];
    /* UPDATE STATISTICS */
    ((psatom->stat[cnum][proc]).writcnt)++;
    /* PARSE ADDRESS */
    aline = (addr & (psatom->para[cnum]).lmask[type]) >>
                    (psatom->para[cnum]).lshift[type];
    atag = addr >> (psatom->para[cnum]).tshift[type];
    /* UPDATE 'USE BITS' AND CHECK FOR HIT */
    hit = 0:
    for (x=0; x<assoc; x++)</pre>
      ((psatom->data[cnum][type][aline][x]).use)++;
      if (((psatom->data[cnum][type][aline][x]).tag == atag) &&
```

```
((psatom->data[cnum][type][aline][x]).task == proc))
        (psatom->data[cnum][type][aline][x]).use = 0;
        hit = 1;
        }
      }
    /* IF NOT HIT, FIND LRU BLOCK TO EVICT */
    if (hit == 0)
      /* FIND LRU */
      leastused = 0;
      for (x=0; x<assoc; x++)
        {
        if (((psatom->data[cnum][type][aline][x]).use >= leastused) ||
            ((psatom->data[cnum][type][aline][x]).task ==
                                                     psatom->numtasks))
          leastused = (psatom->data[cnum][type][aline][x]).use;
          leastx = x;
          }
        if ((psatom->data[cnum][type][aline][x]).task ==
                                                    psatom->numtasks)
          x = assoc;
        }
      /* UPDATE STATISTICS */
      ((psatom->stat[cnum][proc]).writmisscnt)++;
      ((psatom->stat[cnum][proc]).interfere[
       (psatom->data[cnum][type][aline][leastx]).task])++;
      /* UPDATE CACHE DATA */
      (psatom->data[cnum][type][aline][leastx]).tag = atag;
      (psatom->data[cnum][type][aline][leastx]).use = 0;
      (psatom->data[cnum][type][aline][leastx]).task = proc;
    7-
  /* RESUME CAPTURE */
  psatom->numcaches = tempnumcaches;
  return;
  }
/* STORE RESULTS ROUTINE */
void printres(int proc)
  ₹
  int c,x,y;
  stats total;
  FILE* file;
  /* PAUSE CAPTURE */
  int tempnumcaches = psatom->actcaches;
  psatom->numcaches = 0;
  /* OPEN FILE FOR OUTPUT */
  file = fopen("cache.out", "a");
  fprintf(file,"DATA AT END OF PROCESS %d\n",proc);
```

```
fprintf(file,"<><><><><><><><><><><><><><><>\\n");
/* PRINT DATA FOR EACH CACHE */
for (c=0; c<tempnumcaches; c++)</pre>
  fprintf(file, "simulation: %s
                                         (data at end of process %d)\n",
                                                 psatom->name[0],proc);
  fprintf(file,"-----
                                           ----\n");
  fprintf(file,"CACHE # %d\n", c);
  fprintf(file, "cache type: %d (0=unified, 1=split)\n",
                                           (psatom->para[c]).type);
  fprintf(file,"icache size: %d\n",(psatom->para[c]).csize[0]);
  fprintf(file,"icache line size: %d\n",(psatom->para[c]).lsize[0]);
  fprintf(file, "icache associativity: %d\n",
                                       (psatom->para[c]).assoc[0]);
  if ((psatom->para[c]).type == 1)
   {
   fprintf(file,"dcache size: %d\n",(psatom->para[c]).csize[1]);
    fprintf(file,"dcache line size: %d\n",(psatom->para[c]).lsize[1]);
   fprintf(file,"dcache associativity: %d\n",
                                         (psatom->para[c]).assoc[1]);
  total.instcnt = 0;
  total.readcnt = 0;
  total.writcnt = 0;
  total.instmisscnt = 0;
  total.readmisscnt = 0;
  total.writmisscnt = 0;
  /* PRINT PROCESS CACHE PERFORMANCE *./
  for (y=0; y < psatom->numtasks; y++)
   {
    int z:
    total.instcnt = total.instcnt + (psatom->stat[c][y]).instcnt;
    total.readcnt = total.readcnt + (psatom->stat[c][y]).readcnt;
    total.writcnt = total.writcnt + (psatom->stat[c][y]).writcnt;
    total.instmisscnt = total.instmisscnt +
                       (psatom->stat[c][y]).instmisscnt;
    total.readmisscnt = total.readmisscnt +
                       (psatom->stat[c][y]).readmisscnt;
    total.writmisscnt = total.writmisscnt +
                       (psatom->stat[c][y]).writmisscnt;
                      *******\n");
    fprintf(file,"
                      Process #%d\n", y);
    fprintf(file,"
    fprintf(file,"
                          Inst %12lu ", (psatom->stat[c][y]).instcnt);
    fprintf(file,"Miss %12lu ", (psatom->stat[c][y]).instmisscnt);
    if ((psatom->stat[c][y]).instcnt != 0)
      fprintf(file, "Perc %.61f", 100.0 *
                                (psatom->stat[c][y]).instmisscnt /
                                (psatom->stat[c][y]).instcnt);
    fprintf(file,"\n
                            Data %12lu ", (psatom->stat[c][y]).readcnt +
                                           (psatom->stat[c][y]).writcnt);
    fprintf(file, "Miss %12lu ", (psatom->stat[c][y]).readmisscnt +
```

```
(psatom->stat[c][y]).writmisscnt);
  if (((psatom->stat[c][y]).readcnt+(psatom->stat[c][y]).writcnt) != 0)
    fprintf(file, "Perc %.61f", 100.0 *
                                ((psatom->stat[c][y]).readmisscnt +
                                 (psatom->stat[c][y]).writmisscnt) /
                                ((psatom->stat[c][y]).readcnt +
                                 (psatom->stat[c][y]).writcnt));
                            read %12lu ",
  fprintf(file,"\n
                                (psatom->stat[c][y]).readcnt);
  fprintf(file,"Miss %12lu ", (psatom->stat[c][y]).readmisscnt);
  if ((psatom->stat[c][y]).readcnt != 0)
    fprintf(file, "Perc %.61f", 100.0 *
                                (psatom->stat[c][y]).readmisscnt /
                                (psatom->stat[c][y]).readcnt);
  fprintf(file,"\n
                            writ %12lu ", (psatom->stat[c][y]).writcnt);
  fprintf(file, "Miss %12lu ", (psatom->stat[c][y]).writmisscnt);
  if ((psatom->stat[c][y]).writcnt != 0)
    fprintf(file,"Perc %.61f", 100.0 *
                                (psatom->stat[c][y]).writmisscnt /
                               (psatom->stat[c][y]).writcnt);
  fprintf(file,"\n
                           TOTAL %12lu ", (psatom->stat[c][y]).instcnt +
                                           (psatom->stat[c][y]).readcnt +
                                           (psatom->stat[c][y]).writcnt);
  fprintf(file, "Miss %12lu ", (psatom->stat[c][y]).instmisscnt +
                              (psatom->stat[c][y]).readmisscnt +
                              (psatom->stat[c][y]).writmisscnt);
  if (((psatom->stat[c][y]).instcnt +
       (psatom->stat[c][y]).readcnt +
       (psatom->stat[c][y]).writcnt) != 0)
    fprintf(file,"Perc %.6lf", 100.0 *
                               ((psatom->stat[c][y]).instmisscnt +
                                (psatom->stat[c][y]).readmisscnt +
                                (psatom->stat[c][y]).writmisscnt) /
                               ((psatom->stat[c][y]).instcnt +
                                (psatom->stat[c][y]).readcnt +
                                (psatom->stat[c][y]).writcnt));
  fprintf(file,"\n
                            Int (times process %d overwrote:)\n", y);
  for (z=0; z <= psatom->numtasks; z++)
    fprintf(file,"
                                 Process d = 12\ln n, z,
                                (psatom->stat[c][y]).interfere[z]);
  fprintf(file,"
                              (process %d is invalid data)\n",
                                                 psatom->numtasks);
/* PRINT TOTAL CACHE PERFORMANCE */
fprintf(file,"
                  ******************\n");
fprintf(file,"
                  TOTAL FOR CACHE\n");
fprintf(file,"
                      Inst %12lu ", total.instcnt);
fprintf(file,"Miss %12lu ", total.instmisscnt);
if (total.instcnt != 0)
 fprintf(file,"Perc %.6lf", 100.0 * total.instmisscnt /
                                     total.instcnt);
```

```
fprintf(file,"\n
                          Data %12lu ", total.readcnt +
                                          total.writcnt);
 fprintf(file,"Miss %12lu ", total.readmisscnt + total.writmisscnt);
 if ((total.readcnt + total.writcnt) != 0)
   fprintf(file,"Perc %.6lf", 100.0 *
                               (total.readmisscnt + total.writmisscnt)/
                               (total.readcnt + total.writcnt));
 fprintf(file,"\n
                            read %12lu ", total.readcnt);
 fprintf(file, "Miss %12lu ", total.readmisscnt);
 if (total.readcnt != 0)
   fprintf(file,"Perc %.61f", 100.0 * total.readmisscnt /
                                       total.readcnt);
                           writ %12lu ", total.writcnt);
 fprintf(file,"\n
 fprintf(file,"Miss %12lu ", total.writmisscnt);
 if (total.writcnt != 0)
   fprintf(file,"Perc %.61f", 100.0 * total.writmisscnt /
                                       total.writcnt);
                          TOTAL %12lu ", total.instcnt +
 fprintf(file,"\n
                                          total.readcnt +
                                          total.writcnt):
 fprintf(file,"Miss %12lu ", total.instmisscnt +
                              total.readmisscnt +
                              total.writmisscnt);
  if ((total.instcnt + total.readcnt + total.writcnt) != 0)
    fprintf(file, "Perc %.61f", 100.0 *
                               (total.instmisscnt +
                                total.readmisscnt +
                                total.writmisscnt) /
                               (total.instcnt +
                                total.readcnt +
                                total.writcnt));
  fprintf(file,"\n");
 fprintf(file,"\f");
 7
fclose(file);
/* IF LAST PROCESS, SHUT DOWN SIMULATION */
psatom->count--;
if (psatom->count > 0)
 psatom->numcaches = tempnumcaches;
 psatom->curtask = proc;
return;
}
```

# A.8 Sample Tool Description File

To create an ATOM tool, a tool description file must be created which defines the various tool characteristics such as the files to incorporate and control flags to use. An example is shown below, which is the tool used to create the executable version of the kernel kexe.desc. For more information, please refer to the ATOM source documents.

INST\_FILE

kern.inst.c

ANAL\_FILE

kern.anal.c

ANAL\_LDFLAGS

-non\_shared

ATOM\_REQ

-Xkernel -Xgprog

ATOM\_DEF

-o vmunix.cache

Another tool example is the one used for the context switch model, mod.desc, which shows the -lm flag required to use functions from the libm.a library.

INST\_FILE

prog.inst.c

ANAL\_FILE

model.anal.c

ANAL\_LDFLAGS

-lm

# A.9 Model Library

The following file, model.h, was used as a procedure library for the context switch model implementation. It is used in conjunction with the cache model library.

```
/* MODEL.H */
/* CONTEXT SWTICH MODEL LIBRARY */
/* JOHN FRASER */
#include <stdlib.h>
#include <math.h>
/* COMPUTE RANDOM EXECUTION INTERVAL */
long compint()
  {
  long temp = random();
  temp = (long)trunc(-50000.0*log(1.0-(random()/(pow(2.0,31.0)-1.0))));
  /* INTERVAL CAP */
  if (temp > 250000)
    return(250000);
  else
    return(temp);
/* COMPUTE FACTORIAL FUNCTION */
double myfact(long x)
  {
  if (x == 0)
    return(1.0);
    return((double) x * myfact(x-1));
/* COMPUTE COMBINATORIAL FUNCTION */
double mycomb(long F, long i)
  {
  long x;
  double temp3 = 1.0/myfact(i);
  /* CANT USE STANDARD FACTORIAL EXPRESSION => OVERFLOW ERROR */
  for (x=F; x>F-i; x--)
    temp3 = temp3 * x;
  return(temp3);
  }
/* COMPUTE BLOCK OVERWRITE PROBABILITY */
double calcprob(long F, int C, int B, int A, int i)
  {
  int x;
  double temp2 = 0.0;
  int N = C/(B*A);
  if (i < A)
    }
```

```
double a,b,c;
    a = (double)(mycomb(F,i));
    b = (double)(pow((1.0/(double)N),(double)i));
    /* UNDERFLOW TEST FOR LAST TERM */
    if ((F-i)*log(1.0-(1.0/(double)N)) < -600.0)
      c = 0;
    else
      c = (double)pow((1.0-(1.0/(double)N)),((double)(F-i)));
    return(a*b*c);
    }
  else
    for (x=0; x < A; x++)
      temp2 = temp2 + ((double)(mycomb(F,x)) *
                            (pow((1.0/N),x)) *
                            (pow((1.0-(1.0/N)),(F-x))));
    return(1.0 - temp2);
  }
/* COMPUTE INSTRUCTION FOOTPRINT */
long ifoot(long R, int B)
  return((long)trunc(R/(50.0*B)));
  }
/* COMPUTE DATA FOOTPRINT */
long dfoot(long R)
  {
 return((long)trunc(R/50.0));
```

# A.10 Model Analysis File

The files used to test the context switch model were very similar to those used in the first set of simulations. The program instrumentation file was identical, and the analysis file model.anal.c was generally the same, although with the addition of the model code as shown. Since the model was tested with a single process trace, the re-entrance mechanisms were not required.

```
/* MODEL.ANAL.C */
/* PROGRAM ANALYSIS FILE */
/* W/ CONTEXT SWITCH MODEL */
/* JOHN FRASER */
#include <stdio.h>
#include "cache.h"
#include "model.h"
/* CACHE DATA */
datablock satom;
datablock* psatom;
/* MODEL DATA */
unsigned long switchnext;
unsigned long switchcnt;
unsigned long switchrec;
/* INITIALIZATION ROUTINE */
void initcache(int proc)
  /* SET POINTER TO CACHE DATA */
  psatom = &satom;
  /* INITIALIZE BASIC DATA */
  psatom->count = 0;
  psatom->numcaches = 0;
  psatom->numtasks = 0;
  /* INITIALIZE SWITCH MODEL */
  switchcnt = 0;
  switchrec = 0;
  switchnext = compint();
  /* IF FIRST PROCESS, INITIALIZE CACHE DATA */
  psatom->count++;
  if (psatom->count == 1)
    ₹
    int tempnumcaches, tempnumtasks;
    int x,a,b,c,d;
    FILE *input, *output;
    /* LOAD BASIC CHARACTERISTICS FROM FILE */
    input = fopen("cache.in", "r");
    fgets(psatom->name[0], 79, input);
    fscanf(input,"%d\n",&tempnumtasks);
    for (x=1; x<tempnumtasks; x++)</pre>
      fgets(psatom->name[x], 79, input);
    fscanf(input,"%d\n",&tempnumcaches);
```

```
for (x=0; x<tempnumcaches; x++)</pre>
  fscanf(input, "%d\n", &(psatom->para[x]).type);
  if ((psatom->para[x]).type == 0)
    fscanf(input, "%d %d %d\n", &(psatom->para[x]).csize[0],
                                 &(psatom->para[x]).bsize[0],
                                 &(psatom->para[x]).assoc[0]);
  else
    fscanf(input,"%d %d %d %d %d %d \n", &(psatom->para[x]).csize[0],
                                          &(psatom->para[x]).bsize[0],
                                          &(psatom->para[x]).assoc[0],
                                          &(psatom->para[x]).csize[1],
                                          &(psatom->para[x]).bsize[1],
                                          &(psatom->para[x]).assoc[1]);
  }
/* SET ADDRESS HASHING PARAMETERS */
for (a=0; a<tempnumcaches; a++)</pre>
  for (b=0; b<((psatom->para[a]).type + 1); b++)
    (psatom->para[a]).tshift[b] = mylog2((psatom->para[a]).csize[b]/
                                           (psatom->para[a]).assoc[b]);
    (psatom->para[a]).lshift[b] = mylog2((psatom->para[a]).bsize[b]);
    (psatom->para[a]).lmask[b] = ((psatom->para[a]).csize[b]/
                                   (psatom->para[a]).assoc[b])-1;
    }
/* INITIALIZE CACHE STORAGE */
for (a=0; a<tempnumcaches; a++)</pre>
  for (b=0; b<((psatom->para[a]).type + 1); b++)
    for (c=0; c<((psatom->para[a]).csize[b] /
                 ((psatom->para[a]).bsize[b] *
                  (psatom->para[a]).assoc[b])); c++)
      for (d=0; d<(psatom->para[a]).assoc[b];d++)
        (psatom->data[a][b][c][d]).use = 0;
        (psatom->data[a][b][c][d]).task = tempnumtasks;
/* INITIALIZE CACHE STATISTICS */
for (a=0; a<tempnumcaches; a++)</pre>
  for (b=0; b <tempnumtasks; b++)</pre>
    (psatom->stat[a][b]).instcnt = 0;
    (psatom->stat[a][b]).readcnt = 0;
    (psatom->stat[a][b]).writcnt = 0;
    (psatom->stat[a][b]).instmisscnt = 0;
    (psatom->stat[a][b]).readmisscnt = 0;
    (psatom->stat[a][b]).writmisscnt = 0;
    for (c=0; c <= tempnumtasks; c++)</pre>
      (psatom->stat[a][b]).interfere[c] = 0;
/* LOG SIMULATION DATA TO OUTPUT FILE */
output = fopen("cache.out","w");
```

```
fprintf(output,"\n\n\n\n\n\n\n\n\n");
   fprintf(output,"<><><><><><><><>\</>\n");
   fprintf(output, "SIMULATION (single): %s",psatom->name[0]);
   fprintf(output,"<><><><><><><><>\</>\\n");
   fprintf(output,"\n\n\n\n");
   fprintf(output,"Number Tasks = %d\n\n",tempnumtasks);
   for (x=1; x<tempnumtasks; x++)</pre>
                            #%d: %s\n",x,psatom->name[x]);
     fprintf(output,"
   fprintf(output,"\n\n\n\n");
   fprintf(output, "Number Caches = %d\n", tempnumcaches);
   fprintf(output,"
                          (type, icsize, ibsize, iassoc,
                                 dcsize, dbsize, dassoc)\n\n");
   for (x=0; x<tempnumcaches; x++)</pre>
     fprintf(output,"
                            #%d: %1d %7d %5d %3d",x,
                                             (psatom->para[x]).type,
                                             (psatom->para[x]).csize[0],
                                             (psatom->para[x]).bsize[0],
                                             (psatom->para[x]).assoc[0]);
     if ((psatom->para[x]).type == 1)
       fprintf(output," %7d %5d %3d",(psatom->para[x]).csize[1],
                                     (psatom->para[x]).bsize[1],
                                     (psatom->para[x]).assoc[1]);
     fprintf(output,"\n\n");
   fprintf(output,"\f");
   fclose(output);
   /* START SIMULATION */
   psatom->numtasks = tempnumtasks;
   psatom->numcaches = tempnumcaches;
   }
  return;
/* INSTRUCTION REFERENCE ROUTINE */
void instref(long addr, int proc, int count)
  int x, leastx;
  unsigned long leastused;
  long aline, atag;
  int cnum, hit;
  /* PROCESS REFERENCES IN EACH CACHE */
  for (cnum=0; cnum < psatom->numcaches; cnum++)
   int assoc = (psatom->para[cnum]).assoc[0];
   /* UPDATE STATISTICS */
    ((psatom->stat[cnum][proc]).instcnt) += count;
    /* PARSE ADDRESS */
   aline = (addr & (psatom->para[cnum]).lmask[0]) >>
                    (psatom->para[cnum]).lshift[0];
```

```
atag = addr >> (psatom->para[cnum]).tshift[0];
  /* UPDATE 'USE BITS' AND CHECK FOR HIT */
  hit = 0:
  for (x=0; x<assoc; x++)
    ((psatom->data[cnum][0][aline][x]).use)++;
    if (((psatom->data[cnum][0][aline][x]).tag == atag) &&
        ((psatom->data[cnum][0][aline][x]).task == proc))
      (psatom->data[cnum][0][aline][x]).use = 0;
      hit = 1:
  /* IF NO HIT, FIND LRU BLOCK TO EVICT */
  if (hit == 0)
    /* FIND LRU */
    leastused = 0;
    for (x=0; x<assoc; x++)
      {
      if (((psatom->data[cnum][0][aline][x]).use >= leastused) ||
          ((psatom->data[cnum][0][aline][x]).task ==
                                                psatom->numtasks))
        leastused = (psatom->data[cnum][0][aline][x]).use;
        leastx = x;
        }
      if ((psatom->data[cnum][0][aline][x]).task ==
                                               psatom->numtasks)
        x = assoc;
      }
    /* UPDATE STATISTICS */
    ((psatom->stat[cnum][proc]).instmisscnt)++;
    ((psatom->stat[cnum][proc]).interfere[
     (psatom->data[cnum][0][aline][leastx]).task])++;
    /* UPDATE CACHE DATA */
    (psatom->data[cnum][0][aline][leastx]).tag = atag;
    (psatom->data[cnum][0][aline][leastx]).use = 0;
    (psatom->data[cnum][0][aline][leastx]).task = proc;
/* INCREMENT SWTICH COUNTER */
switchcnt += count;
/* CHECK FOR CONTEXT SWTICH AND PERFORM */
if (switchcnt >= switchnext)
 unsigned long intercnt;
 long foot;
 int sec;
 double prob, prbcnt;
 /* COMPUTE INTERRUPTION INTERVAL */
```

```
intercnt = (psatom->numtasks-1) * compint();
/* APPLY IMPACT TO EACH CACHE */
for (cnum=0; cnum < psatom->numcaches; cnum++)
 £
 /* APPLY IMPACT TO EACH SECTION (INST/DATA) */
 for (sec=0; sec<=(psatom->para[cnum]).type; sec++)
   Ł
   /* COMPUTE FOOTPRINT FOR EACH SECTION */
   if (sec==0)
      foot = ifoot(intercnt, ((psatom->para[cnum]).bsize[sec] / 4));
      if ((psatom->para[cnum]).type == 0)
       foot = foot + dfoot(intercnt);
    else
      foot = dfoot(intercnt);
    /* ITERATE THROUGH EACH LINE OVERWRITING RANDOM BLOCK(S) */
   for (aline=0; aline < (psatom->para[cnum]).csize[sec] /
                          ((psatom->para[cnum]).bsize[sec] *
                           (psatom->para[cnum]).assoc[sec]); aline++)
      /* GENERATE LINE'S PROBABILITY */
     prob = (double)random()/(pow(2.0,31.0)-1.0);
      /* COMPUTE PROBABILITY OF FIRST OVERWRITE */
     prbcnt = calcprob(foot,
                        (psatom->para[cnum]).csize[sec],
                        (psatom->para[cnum]).bsize[sec],
                        (psatom->para[cnum]).assoc[sec],
                        0);
      /* ITERATE UNTIL ALL OVERWRITTEN OR PROBABILITY FAILS */
      for (hit=0; ((hit < (psatom->para[cnum]).assoc[sec]) &&
                   (prob > prbcnt)); hit++)
        /* COMPUTE PROBABILITY OF NEXT OVERWRITE */
        if (hit < ((psatom->para[cnum]).assoc[sec] - 1))
          prbcnt += calcprob(foot,
                             (psatom->para[cnum]).csize[sec],
                             (psatom->para[cnum]).bsize[sec],
                             (psatom->para[cnum]).assoc[sec],
                             hit+1);
        /* FIND LRU BLOCK TO EVICT */
        leastused = 0;
        for (x=0; x < (psatom->para[cnum]).assoc[sec]; x++)
          /* UPDATE 'USE BITS' */
          (psatom->data[cnum][sec][aline][x]).use++;
          if ((psatom->data[cnum][sec][aline][x]).use >= leastused)
            leastused = (psatom->data[cnum][sec][aline][x]).use;
            leastx = x;
            }
```

```
}
            /* UPDATE CACHE DATA */
            (psatom->data[cnum][sec][aline][leastx]).use = 0;
            (psatom->data[cnum][sec][aline][leastx]).task =
                         (psatom->numtasks - 1);
        }
      }
    /* RESET FOR NEXT INTERVAL */
    switchrec++:
    switchcnt = 0;
    switchnext = compint();
 return;
  }
/* DATA LOAD ROUTINE */
void readref(long addr, int proc)
  int index;
  int x, leastx;
 unsigned long leastused;
  long aline, atag;
  int cnum, hit;
  /* PROCESS REFERENCE IN EACH CACHE */
  for (cnum=0; cnum<psatom->numcaches; cnum++)
    int type = (psatom->para[cnum]).type;
    int assoc = (psatom->para[cnum]).assoc[type];
    /* UPDATE STATISTICS */
    ((psatom->stat[cnum][proc]).readcnt)++;
    /* PARSE ADDRESS */
    aline = (addr & (psatom->para[cnum]).lmask[type]) >>
                    (psatom->para[cnum]).lshift[type];
   atag = addr >> (psatom->para[cnum]).tshift[type];
   /* UPDATE 'USE BITS' AND CHECK FOR HIT */
   hit = 0;
   for (x=0; x<assoc; x++)</pre>
     ((psatom->data[cnum][type][aline][x]).use)++;
     if (((psatom->data[cnum][type][aline][x]).tag == atag) &&
          ((psatom->data[cnum][type][aline][x]).task == proc))
       (psatom->data[cnum][type][aline][x]).use = 0;
       hit = 1;
     }
   /* IF NO HIT, FIND LRU BLOCK TO EVICT */
   if (hit == 0)
     }
```

```
/* FIND LRU */
     leastused = 0;
     for (x=0; x<assoc; x++)
        if (((psatom->data[cnum][type][aline][x]).use >= leastused) ||
            ((psatom->data[cnum][type][aline][x]).task ==
                                                     psatom->numtasks))
         leastused = (psatom->data[cnum][type][aline][x]).use;
         leastx = x;
         }
        if ((psatom->data[cnum][type][aline][x]).task ==
                                                    psatom->numtasks)
         x = assoc;
        }
      /* UPDATE STATISTICS */
      ((psatom->stat[cnum][proc]).readmisscnt)++;
      ((psatom->stat[cnum][proc]).interfere[
       (psatom->data[cnum][type][aline][leastx]).task])++;
      /* UPDATE CACHE DATA */
      (psatom->data[cnum][type][aline][leastx]).tag = atag;
      (psatom->data[cnum][type][aline][leastx]).use = 0;
      (psatom->data[cnum][type][aline][leastx]).task = proc;
   7
 return;
/* DATA STORE ROUTINE */
void writref(long addr, int proc)
 int index;
 int x, leastx;
 unsigned long leastused;
 long aline, atag;
  int cnum, hit;
  /* PROCESS REFERENCE IN EACH CACHE */
 for (cnum=0; cnum<psatom->numcaches; cnum++)
   {
   int type = (psatom->para[cnum]).type;
    int assoc = (psatom->para[cnum]).assoc[type];
    /* UPDATE STATISTICS */
    ((psatom->stat[cnum][proc]).writcnt)++;
    /* PARSE ADDRESS */
    aline = (addr & (psatom->para[cnum]).lmask[type]) >>
                    (psatom->para[cnum]).lshift[type];
   atag = addr >> (psatom->para[cnum]).tshift[type];
    /* UPDATE 'USE BITS' AND CHECK FOR HIT */
   hit = 0;
    for (x=0; x<assoc; x++)</pre>
     {
```

```
((psatom->data[cnum][type][aline][x]).use)++;
      if (((psatom->data[cnum][type][aline][x]).tag == atag) &&
          ((psatom->data[cnum][type][aline][x]).task == proc))
        (psatom->data[cnum][type][aline][x]).use = 0;
       hit = 1:
     }
    /* IF NO HIT, FIND LRU BLOCK TO EVICT */
    if (hit == 0)
     {
     /* FIND LRU BLOCK */
     leastused = 0:
     for (x=0; x<assoc; x++)
       {
       if (((psatom->data[cnum][type][aline][x]).use >= leastused) |
           ((psatom->data[cnum][type][aline][x]).task ==
                                                  psatom->numtasks))
         leastused = (psatom->data[cnum][type][aline][x]).use;
         leastx = x;
       if ((psatom->data[cnum][type][aline][x]).task ==
                                                 psatom->numtasks)
         x = assoc;
      /* UPDATE STATISTICS */
      ((psatom->stat[cnum][proc]).writmisscnt)++;
      ((psatom->stat[cnum][proc]).interfere[
      (psatom->data[cnum][type][aline][leastx]).task])++;
     /* UPDATE */
      (psatom->data[cnum][type][aline][leastx]).tag = atag;
      (psatom->data[cnum][type][aline][leastx]).use = 0;
      (psatom->data[cnum][type][aline][leastx]).task = proc;
   }
 return;
/* STORE RESULTS ROUTINE */
void printres(int proc)
  int c,x,y;
 stats total;
 FILE* file;
 file = fopen("cache.out","a");
 fprintf(file,"DATA AT END OF PROCESS %d\n",proc);
 for (c=0; c<psatom->numcaches; c++)
   /* PRINT CACHE DATA */
```

```
(data at end of process %d)\n",
fprintf(file,"simulation: %s
                                             psatom->name[0],proc);
fprintf(file,"total context switches modeled: %lu\n",switchrec);
fprintf(file,"----\n");
fprintf(file,"CACHE # %d\n", c);
fprintf(file,"cache type: %d (0=unified, 1=split)\n",
                                         (psatom->para[c]).type);
fprintf(file,"icache size: %d\n",(psatom->para[c]).csize[0]);
fprintf(file,"icache line size: %d\n",(psatom->para[c]).bsize[0]);
fprintf(file,"icache associativity: %d\n",
                                     (psatom->para[c]).assoc[0]);
if ((psatom->para[c]).type == 1)
 fprintf(file,"dcache size: %d\n",(psatom->para[c]).csize[1]);
  fprintf(file, "dcache line size: %d\n", (psatom->para[c]).bsize[1]);
 fprintf(file, "dcache associativity: %d\n",
                                       (psatom->para[c]).assoc[1]);
 }
total.instcnt = 0;
total.readcnt = 0;
total.writcnt = 0;
total.instmisscnt = 0;
total.readmisscnt = 0;
total.writmisscnt = 0;
/* PRINT PROCESS CACHE PERFORMANCE */
for (y=0; y < psatom->numtasks; y++)
 {
  int z;
  total.instcnt = total.instcnt + (psatom->stat[c][y]).instcnt;
 total.readcnt = total.readcnt + (psatom->stat[c][y]).readcnt;
 total.writcnt = total.writcnt + (psatom->stat[c][y]).writcnt;
  total.instmisscnt = total.instmisscnt +
                      (psatom->stat[c][y]).instmisscnt;
 total.readmisscnt = total.readmisscnt +
                     (psatom->stat[c][y]).readmisscnt;
 total.writmisscnt = total.writmisscnt +
                     (psatom->stat[c][y]).writmisscnt;
 fprintf(file,"
                    *******\n");
                    Process #%d\n", y);
 fprintf(file,"
 fprintf(file,"
                        Inst %12lu ",(psatom->stat[c][y]).instcnt);
  fprintf(file,"Miss %12lu ", (psatom->stat[c][y]).instmisscnt);
  if ((psatom->stat[c][y]).instcnt != 0)
   fprintf(file, "Perc %.61f", 100.0*
                              (psatom->stat[c][y]).instmisscnt /
                              (psatom->stat[c][y]).instcnt);
  fprintf(file,"\n
                          Data %121u ",
                              (psatom->stat[c][y]).readcnt +
                              (psatom->stat[c][y]).writcnt);
  fprintf(file, "Miss %12lu ", (psatom->stat[c][y]).readmisscnt +
                              (psatom->stat[c][y]).writmisscnt);
  if (((psatom->stat[c][y]).readcnt +
```

```
(psatom->stat[c][y]).writcnt) != 0)
    fprintf(file, "Perc %.61f", 100.0 *
                                ((psatom->stat[c][y]).readmisscnt +
                                 (psatom->stat[c][y]).writmisscnt) /
                                ((psatom->stat[c][y]).readcnt +
                                 (psatom->stat[c][y]).writcnt));
  fprintf(file,"\n
                            read %12lu ".
                                (psatom->stat[c][y]).readcnt);
  fprintf(file,"Miss %12lu ", (psatom->stat[c][y]).readmisscnt);
  if ((psatom->stat[c][y]).readcnt != 0)
    fprintf(file,"Perc %.6lf", 100.0 *
                                (psatom->stat[c][y]).readmisscnt /
                                (psatom->stat[c][v]).readcnt);
  fprintf(file,"\n
                            writ %121u ",
                                (psatom->stat[c][y]).writcnt);
  fprintf(file, "Miss %12lu ", (psatom->stat[c][y]).writmisscnt);
  if ((psatom->stat[c][y]).writcnt != 0)
    fprintf(file,"Perc %.6lf", 100.0 *
                                (psatom->stat[c][y]).writmisscnt /
                                (psatom->stat[c][y]).writcnt);
  fprintf(file,"\n
                           TOTAL %12lu ",
                               (psatom->stat[c][y]).instcnt +
                               (psatom->stat[c][y]).readcnt +
                               (psatom->stat[c][y]).writcnt);
  fprintf(file,"Miss %12lu ", (psatom->stat[c][y]).instmisscnt +
                              (psatom->stat[c][y]).readmisscnt +
                              (psatom->stat[c][y]).writmisscnt);
  if (((psatom->stat[c][y]).instcnt +
       (psatom->stat[c][y]).readcnt +
       (psatom->stat[c][y]).writcnt) != 0)
    fprintf(file, "Perc %.61f", 100.0 *
                               ((psatom->stat[c][y]).instmisscnt +
                                (psatom->stat[c][y]).readmisscnt +
                                (psatom->stat[c][y]).writmisscnt) /
                               ((psatom->stat[c][y]).instcnt +
                                (psatom->stat[c][y]).readcnt +
                                (psatom->stat[c][y]).writcnt));
  fprintf(file,"\n
                          Int (times process %d overwrote:)\n", y);
  for (z=0; z <= psatom->numtasks; z++)
    fprintf(file,"
                                 Process %d = %12lu\n", z,
                                (psatom->stat[c][y]).interfere[z]);
  fprintf(file,"
                              (process %d is invalid data)\n",
                                                 psatom->numtasks);
/* PRINT TOTAL CACHE PERFORMANCE */
fprintf(file,"
                   fprintf(file,"
                   TOTAL FOR CACHE\n");
fprintf(file,"
                      Inst %12lu ", total.instcnt);
fprintf(file, "Miss %12lu ", total.instmisscnt);
if (total.instcnt != 0)
  fprintf(file, "Perc %.61f", 100.0 * total.instmisscnt /
```

```
total.instcnt);
  fprintf(file,"\n
                    Data %12lu ", total.readcnt +
                                          total.writcnt);
  fprintf(file,"Miss %12lu ", total.readmisscnt + total.writmisscnt);
  if ((total.readcnt + total.writcnt) != 0)
    fprintf(file,"Perc %.6lf", 100.0 *
                               (total.readmisscnt + total.writmisscnt)/
                               (total.readcnt + total.writcnt));
  fprintf(file,"\n
                            read %12lu ", total.readcnt);
  fprintf(file, "Miss %12lu ", total.readmisscnt);
  if (total.readcnt != 0)
    fprintf(file,"Perc %.6lf", 100.0 * total.readmisscnt /
                                       total.readcnt):
                            writ %12lu ", total.writcnt);
  fprintf(file,"\n
  fprintf(file,"Miss %12lu ", total.writmisscnt);
  if (total.writcnt != 0)
    fprintf(file,"Perc %.6lf", 100.0 * total.writmisscnt /
                                       total.writcnt);
  fprintf(file,"\n
                           TOTAL %12lu ", total.instcnt +
                                          total.readcnt +
                                          total.writcnt);
  fprintf(file,"Miss %12lu ", total.instmisscnt +
                              total.readmisscnt +
                              total.writmisscnt):
  if ((total.instcnt + total.readcnt + total.writcnt) != 0)
    fprintf(file, "Perc %.6lf", 100.0 * (total.instmisscnt +
                                        total.readmisscnt +
                                        total.writmisscnt) /
                                       (total.instcnt +
                                        total.readcnt +
                                        total.writcnt));
  fprintf(file,"\n");
  fprintf(file,"\f");
  }
fclose(file);
/* IF LAST PROCESS, SHUT DOWN SIMULATION */
psatom->count--;
if (psatom->count == 0)
  psatom->numcaches = 0;
  psatom->numtasks = 0;
  }
return;
```

## B Tables of Simulation Results

Key to data tables:

Miss Data

- Inst = instruction fetch misses
- Read = data read misses
- Write = data write misses
- Data = total data read and write misses
- Total = total misses
- % = miss rate

Interference Data (Int(#))

- Process 0 is the kernel, except for simulations with the context switch model where process 0 is the test program.
- Additional process' numbers are shown in the same order as the tables.
- The extra process is for cases where invalid data is overwritten (at simulation start).

## **B.1** Compress Alone

Compress data: Table 6

B.2 GCC Alone

GCC data: Table 7

**B.3** Espresso Alone

Espresso data: Table 8

B.4 Alvinn Alone

Alvinn data: Table 9

B.5 Compress w/ Operating System

Compress data: Table 10
Operating System data: Table 11
Combined data: Table 12

B.6 GCC w/ Operating System

GCC data: Table 13
Operating System data: Table 14
Combined data: Table 15

| B.7         | Espresso w/ Operating System                                        |                                              |
|-------------|---------------------------------------------------------------------|----------------------------------------------|
|             | Espresso data: Operating System data: Combined data:                | Table 16<br>Table 17<br>Table 18             |
| B.8         | Alvinn w/ Operating System                                          |                                              |
|             | Alvinn data: Operating System data: Combined data:                  | Table 19<br>Table 20<br>Table 21             |
| B.9         | Compress and GCC w/ Operating System                                |                                              |
|             | Compress data: GCC data: Operating System data: Combined data:      | Table 22<br>Table 23<br>Table 24<br>Table 25 |
| B.10        | Compress and Espresso w/ Operating Sys                              | tem                                          |
|             | Compress data: Espresso data: Operating System data: Combined data: | Table 26<br>Table 27<br>Table 28<br>Table 29 |
| B.11        | GCC and Espresso w/ Operating System                                |                                              |
|             | GCC data: Espresso data: Operating System data: Combined data:      | Table 30<br>Table 31<br>Table 32<br>Table 33 |
| B.12        | Compress w/ Model, n=1                                              |                                              |
|             | Compress data:                                                      | Table 34                                     |
| B.13        | GCC w/ Model, n=1                                                   |                                              |
|             | GCC data:                                                           | Table 35                                     |
| <b>B.14</b> | Espresso w/ Model, n=1                                              |                                              |
|             | Espresso data:                                                      | Table 36                                     |
| <b>B.15</b> | Alvinn w/ Model, n=1                                                |                                              |
|             | Alvinn data:                                                        | Table 37                                     |
| B.16        | Compress w/ Model, n=2                                              |                                              |
|             | Compress data:                                                      | Table 38                                     |
| B.17        | GCC w/ Model, n=2                                                   |                                              |
|             | GCC data:                                                           | Table 39                                     |

## B.18 Espresso w/ Model, n=2

Espresso data:

Table 40

Table 6: Compress Alone

|                              |                |            |                 |        |        |         | _               |         | _      |         |        |        |        |
|------------------------------|----------------|------------|-----------------|--------|--------|---------|-----------------|---------|--------|---------|--------|--------|--------|
| Total Instruction References | References     | 87045943   | 3               |        |        |         |                 |         |        |         |        |        |        |
| Data Reads                   |                | 22412017   | 1               |        |        |         |                 |         |        |         |        |        |        |
| Data writes                  |                | 8521660    | 00              |        |        |         |                 |         |        |         |        |        |        |
| Total Data References        | ences          | 30933677   | 12              |        |        |         |                 | :       |        |         |        |        |        |
| Total References             |                | 117979620  | 0;              |        |        |         |                 |         |        |         |        |        |        |
| Miss Statistics:             |                |            |                 |        |        |         |                 |         |        |         |        |        |        |
| Cache Inst                   | %              | Read       | %               | Write  | %      | Data    | %               | Total   | %      | int(0)  | Int(1) | int(2) | int(3) |
| 0 54                         | 548488 0.6301  |            | 3969460 17.7113 | 78951  | 0.9265 | 4048411 | 13.0874         | 4596899 | 3.8964 | 4596771 | 128    |        |        |
|                              | 135306 0.1554  |            | 3576626 15.9585 | 47558  | 0.5581 | 3624184 | 3624184 11.7160 | 3759490 | 3.1866 | 3759234 | 256    |        |        |
|                              | 64726 0.0744   | 14 3247221 | 14.4887         | 39424  | 0.4626 | 3286645 | 10.6248         | 3351371 | 2.8406 | 3350859 | 512    |        |        |
|                              | 9242 0.0106    |            | 9259900 13.0729 | 18561  | 0.2178 | 2948461 | 9.5316          | 2957703 | 2.5070 | 2957191 | 512    |        |        |
| 4 150                        | 1506638 1.7309 |            | 1424039 19.7396 | 195294 | 2.2917 | 4619333 | 14.9330         | 6125971 | 5.1924 | 6125720 | 251    |        |        |
| 5                            |                | •          | 3985445 17.7826 | 98415  |        | 4083860 | 4083860 13.2020 | 4085188 |        | 4084932 | 256    |        |        |
|                              |                |            | 3858349 17.2155 | 78860  |        | 3937209 | 12.7279         | 3937726 | 3.3376 | 3937470 | 256    |        |        |
|                              |                | 7          | 1740845 21.1531 | 264522 | 3.1041 | 5005367 | 16.1810         | 6009947 | 5.0941 | 6009820 | 127    |        |        |
| 8                            | 924 0.0011     |            | 4337294 19.3525 | 129378 | 1.5182 | 4466672 | 14.4395         | 4467596 |        | 4467468 | 128    |        |        |
|                              | 368 0.0004     | _          | 4027651 17.9709 | 75480  | 0.8857 | 4103131 | 13.2643         | 4103499 | 3.4781 | 4103371 | 128    |        |        |
| 100                          |                | 39 5615207 | 7 25.0544       | 318116 | 3.7330 | 5933323 | 19.1808         | 6937722 | 5.8804 | 6937658 | 4      |        |        |
|                              |                |            | 96 22.2849      | 177969 | 2.0884 | 5172465 | 5172465 16.7211 | 5173629 | 4.3852 | 5173565 | 64     |        |        |
| 12                           | 369 0.0004     | _          | 4355536 19,4339 | 114656 | 1.3455 | 4470192 | 4470192 14.4509 | 4470561 | 3.7893 | 4470497 | 49     |        |        |
| 13                           | 933 0.0011     |            | 3953631 17.6407 | 134243 | 1.5753 | 4087874 | 4087874 13.2150 | 4088807 | 3.4657 | 4088330 | 477    |        |        |
| 14                           | 665 0.0008     |            | 3659598 16,3287 | 77320  | 0.9073 | 3736918 | 3736918 12.0804 | 3737583 | 3.1680 | 3737090 | 493    |        |        |
| 15                           | ì              |            |                 | 70934  | 0.8324 | 3667452 | 3667452 11.8559 | 3667883 |        | 3667374 | 609    |        |        |
| 16                           |                |            | 36 18.6247      | 153044 |        | 4327210 | 4327210 13.9887 | 4327962 | 3.6684 | 4327716 | 246    |        |        |
| 17                           |                |            |                 | 60460  | 0.7095 | 3844712 | 3844712 12.4289 | 3845250 | 3.2592 | 3844999 | 251    |        |        |
| 18                           |                |            | 8 16.5756       | 43175  | 0.5067 | 3758093 | 3758093 12.1489 | 3758374 |        | 3758118 | 256    |        |        |
| 19                           |                | •          | 3 20.0963       | 181579 |        | 4685572 | 4685572 15.1472 | 4686080 |        | 4685953 | 127    |        |        |
| 20                           |                |            | 4025134 17.9597 | 75802  |        | 4100936 | 4100936 13.2572 | 4101398 |        | 4101271 | 127    |        |        |
| 21                           |                |            | 3897335 17.3895 | 43030  |        | 3940365 | 3940365 12.7381 | 3940540 |        | 3940412 | 128    |        |        |
| 22                           | 655 0.0008     |            | 3593087 16.0320 | 99735  |        | 3692822 | 3692822 11.9379 | 3693477 | 3.1306 | 3692647 | 830    |        |        |
| 23                           |                |            | 3392960 15.1390 | 71452  | 0.8385 | 3464412 | 3464412 11.1995 | 3464831 | _      | 2463962 | 869    |        |        |
| 24                           |                |            | 3352182 14.9571 | 69680  | - 1    | 3421862 | 3421862 11.0619 | 3422282 |        | 3421402 | 880    |        |        |
| 25                           | 500 0.0006     |            | 3753498 16.7477 | 90768  | 1.0651 | 3844266 | 3844266 12.4274 | 3844766 | 3.2588 | 3844329 | 437    |        |        |
| 26                           |                |            | 3505179 15.6397 | 41908  | 0.4918 | 3547087 | 3547087 11.4667 | 3547350 |        | 3546889 | 461    |        |        |
| 27                           | - 1            |            | 3459600 15,4364 | 36153  |        | 3495753 | 3495753 11.3008 | 3496017 | i      | 3495549 | 468    |        |        |
| 28                           |                |            | 3994077 17.8211 | 93747  | 1.1001 | 4087824 | 4087824 13.2148 | 4088107 | 3.4651 | 4087878 | 229    |        |        |
| 59                           |                |            | 3635400 16.2208 | 34495  | 0.4048 | 3669895 | 3669895 11.8638 | 3670055 | 3.1108 | 3669814 | 241    |        |        |
| 30                           | 164 0.0002     |            | 3572923 15.9420 | 22919  | 0.2689 | 3595842 | 3595842 11.6244 | 3596006 | 3.0480 | 3595762 | 244    |        |        |
| 31                           | 499 0.0006     |            | 3336377 14.8866 | 63903  | 0.7499 | 3400280 | 3400280 10.9922 | 3400779 | 2.8825 | 3400013 | 992    |        |        |
| 32                           | 262 0.0003     | 03 3200179 | 14.2789         | 36587  | 0.4293 | 3236766 | 3236766 10.4636 | 3237028 | 2.7437 | 3236258 | 770    |        |        |
| 33                           | 262 0.0003     |            | 3163806 14.1166 | 34970  | 0.4104 | 3198776 | 3198776 10.3408 | 3199038 | 2.7115 | 3198264 | 774    |        |        |
| 34                           | 279 0.0003     |            | 3479719 15.5261 | 57598  | 0.6759 | 3537317 | 3537317 11.4352 | 3537596 | 2.9985 | 3537189 | 407    |        |        |
| 35                           | 157 0.0002     |            | 3319045 14.8092 | 21947  | 0.2575 | 3340992 | 3340992 10.8005 | 3341149 |        | 3340740 | 409    |        |        |
| 36                           |                |            | 13 14.6203      | 18121  | 0.2126 | 3294834 | 3294834 10.6513 | 3294991 | 2.7928 | 3294578 | 413    |        |        |
| 37                           |                |            | 3642992 16.2546 | 80614  | 0.9460 | 3723606 | 3723606 12.0374 | 3723824 | 3.1563 | 3723606 | 218    |        |        |
| 38                           | 96 0.0001      |            | 3431770 15.3122 | 23850  | 0 2799 | 3455620 | 3455620 11 1711 | 3455716 | 2 9291 | SAKKAGE | 000    |        |        |
|                              |                |            |                 |        | 1      | 2000    | 20000           | 0100110 |        | 2000    | 220    |        |        |

Table 7: GCC Alone

| Reference Statistics:        | cs:           |           |         |         |        |         | -       |          |        |          |        |        |        |
|------------------------------|---------------|-----------|---------|---------|--------|---------|---------|----------|--------|----------|--------|--------|--------|
| Total Instruction References | eferences     | 160240141 |         |         |        |         |         |          |        |          |        |        |        |
| Data Reads                   |               | 50197329  |         |         |        |         |         |          |        |          | 1,00   |        |        |
| Data writes                  |               | 19074844  |         |         |        |         |         |          |        |          |        |        |        |
| Total Data References        | ces           | 69272173  |         |         |        |         |         |          |        |          |        |        |        |
| Total References             |               | 229512314 |         |         |        |         |         |          |        |          |        |        |        |
| Miss Statistics:             |               |           |         |         |        |         |         |          |        |          |        |        |        |
|                              | _             | Read      | %       | Write   | %      | Data    | %       | Total    | %      | int(0)   | int(1) | int(2) | int(3) |
| 0 5634791                    | 791 3.5165    | 3899643   | 7.7686  | 1124204 | 5.8936 | 5023847 | 7.2523  | 10658638 | 4.6440 | 10658510 | 128    | /=/    | (2)    |
|                              |               |           | 4.5702  | 625965  | 3.2816 | 2920095 | 4.2154  | 6387677  | 2.7832 | 6387421  | 256    |        |        |
|                              | 638 1.1312    | 1199783   | 2.3901  | 292406  | 1.5329 | 1492189 | 2.1541  | 3304827  | 1.4399 | 3304315  | 512    |        |        |
|                              | _!            |           | 1.1367  | 93526   | 0.4903 | 664109  | 0.9587  | 1362581  | 0.5937 | 1362069  | 512    |        |        |
|                              |               |           | 10.0976 | 1850587 | 9.7017 | 6919319 | 9.9886  | 14871454 | 6.4796 | 14871198 | 256    |        |        |
| 5 7609862                    |               |           |         | 1246657 | 6.5356 | 4630737 | 6.6848  | 12240599 | 5.3333 | 12240343 | 256    |        | -      |
|                              | $\perp$       |           |         | 1082598 | 5.6755 | 3914090 | 5.6503  | 11389252 | 4.9624 | 11388996 | 256    |        |        |
|                              |               |           | -1      | 1688672 | 8.8529 | 7478711 | 10.7961 | 13458875 | 5.8641 | 13458747 | 128    |        |        |
| 8 5825266                    |               |           | _       | 1005669 | 5.2722 | 4766268 | 6.8805  | 10591534 | 4.6148 | 10591406 | 128    |        |        |
|                              |               |           |         | 858898  | 4.5028 | 3935303 | 5.6809  | 9641112  | 4.2007 | 9640984  | 128    |        |        |
| Ĺ                            | _             |           |         | 1671740 | 8.7641 | 8554933 | 12.3497 | 13042395 | 5.6827 | 13042331 | 28     |        |        |
|                              | _             | ,         |         | 913221  | 4.7876 | 5396442 | 7.7902  | 9781995  | 4.2621 | 9781931  | 28     |        |        |
|                              | _             |           |         | 745730  | 3.9095 | 4229024 | 6.1049  | 8504388  | 3.7054 | 8504324  | 28     |        |        |
|                              |               |           |         | 1191492 | 6.2464 | 4350955 | 6.2810  | 9617944  | 4.1906 | 9617432  | 512    |        |        |
|                              |               |           | _ 1     | 777475  | 4.0759 | 2753904 | 3.9755  | 7427743  | 3.2363 | 7427231  | 512    |        |        |
|                              |               | Ì         | [       | 638520  | 3.3474 | 2166779 | 3.1279  | 6540021  | 2.8495 | 6239509  | 512    |        | -      |
|                              |               |           |         | 1083978 | 5.6828 | 4668249 | 6.7390  | 8782265  | 3.8265 | 8782009  | 256    |        |        |
|                              | _             |           | ᆚ       | 591549  | 3.1012 | 2773373 | 4.0036  | 6540632  | 2.8498 | 6540376  | 256    |        |        |
|                              | _             |           |         | 443952  | 2.3274 | 2081375 | 3.0046  | 5682522  | 2.4759 | 5682266  | 256    |        |        |
|                              |               | 4211466   | _L      | 1025053 | 5.3738 | 5236519 | 7.5593  | 8461744  | 3.6868 | 8461616  | 128    |        |        |
|                              | 1             | 2449200   |         | 513529  | 2.6922 | 2962729 | 4.2769  | 5984439  | 2.6075 | 5984311  | 128    |        |        |
|                              | ⅃.            |           |         | 350334  | 1.8366 | 2267280 | 3.2730  | 5221684  | 2.2751 | 5221556  | 128    |        |        |
| 22 3405512                   |               |           |         | 616452  | 3.2318 | 2462735 | 3.5552  | 5868247  | 2.5568 | 5867223  | 1024   |        |        |
| İ                            |               |           |         | 411736  | 2.1585 | 1493860 | 2.1565  | 3830178  | 1.6688 | 3829154  | 1024   |        |        |
|                              |               |           | . 1     | 370338  | 1.9415 | 1221136 | 1.7628  | 3049042  | 1.3285 | 3048018  | 1024   |        |        |
|                              |               |           | . [     | 511914  | 2.6837 | 2461074 | 3.5528  | 5168831  | 2.2521 | 5168319  | 512    |        |        |
|                              | $\perp$       |           |         | 290744  | 1.5242 | 1368003 | 1.9748  | 3305998  | 1.4404 | 3305486  | 512    |        |        |
|                              |               |           | . !     | 235986  | 1.2372 | 1045177 | 1.5088  | 2653369  | 1.1561 | 2652857  | 512    |        |        |
| -                            |               |           | _1      | 473562  | 2.4827 | 2684583 | 3.8754  | 4848067  | 2.1123 | 4847811  | 256    |        |        |
|                              | _1            |           |         | 229876  | 1.2051 | 1432273 | 2.0676  | 3102499  | 1.3518 | 3102243  | 256    |        |        |
|                              |               |           | - 1     | 171024  | 0.8966 | 1010548 | 1.4588  | 2506928  | 1.0923 | 2506672  | 256    |        |        |
| 31 1333373                   |               |           | - 1     | 299395  | 1.5696 | 1408998 | 2.0340  | 2742371  | 1.1949 | 2741347  | 1024   |        |        |
|                              |               |           | - 1     | 117426  | 0.6156 | 604084  | 0.8720  | 1561835  | 0.6805 | 1560811  | 1024   |        |        |
|                              |               |           |         | 82256   | 0.4312 | 456216  | 0.6586  | 1101616  | 0.4800 | 1100592  | 1024   |        |        |
|                              |               |           | [       | 279605  | 1.4658 | 1514344 | 2.1861  | 2579102  | 1.1237 | 2578590  | 512    |        |        |
| 35 789890                    | _ 1           | -         |         | 92268   |        | 587490  | 0.8481  | 1377380  | 0.6001 | 1376868  | 512    |        |        |
|                              |               |           | - 1     | 60173   | 0.3155 | 410514  | 0.5926  | 983779   | 0.4286 | 983267   | 512    |        |        |
|                              | -             |           |         | 311513  | 1.6331 | 1806221 | 2.6074  | 2698530  | 1.1758 | 2698274  | 256    |        |        |
| 38 663                       |               |           |         | 82571   | 0.4329 | 668392  | 0.9649  | 1332387  | 0.5805 | 1332131  | 256    |        |        |
|                              | 523915 0.3270 | 371607    | 0.7403  | 51510   | 0.2700 | 423117  | 0.6108  | 947032   | 0.4126 | 946776   | 256    |        |        |
|                              |               |           |         |         |        |         |         |          | 1      |          |        |        |        |

Table 8: Espresso Alone

|                             |        |            | -       |         |        |          |         |          |        |          | •      |        |        |
|-----------------------------|--------|------------|---------|---------|--------|----------|---------|----------|--------|----------|--------|--------|--------|
| otal Instruction Hererences | secue  | 8/1/8/853  |         |         |        |          |         |          |        |          |        |        |        |
| Data Reads                  |        | 225779346  |         |         |        |          |         |          |        |          |        |        |        |
| Data writes                 |        | 59867420   |         |         |        |          |         |          |        |          |        |        |        |
| Total Data References       | 8      | 285646766  |         |         |        |          |         |          |        |          |        |        |        |
| Total References            |        | 1263434689 |         |         |        |          |         |          |        |          |        |        |        |
| Miss Statistics:            |        |            |         |         |        |          |         |          |        |          |        |        |        |
| lust                        |        | Read       | %       | Write   | %      | Data     | %       | Total    | %      | int(0)   | int(1) | int(2) | int(3) |
| 8828519                     | 0.9029 | 11703074   | 5.1834  | 2373219 | 3.9641 | 14076293 | 4.9279  | 22904812 | 1.8129 | 22904684 | 128    |        |        |
| 4865847                     | 0.4976 | 6069567    | 2.6883  | 1490980 | 2,4905 | 7560547  | 2.6468  | 12426394 | 0.9835 | 12426138 | 256    |        |        |
| 2220854                     | 0.2271 | 2579074    | 1.1423  | 879209  | 1,4686 | 3458283  | 1.2107  | 5679137  | 0.4495 | 5678625  | 512    |        |        |
| 377680                      | 0.0386 | 660418     | 0.2925  | 148988  | 0.2489 | 809406   | 0.2834  | 1187086  | 0.0940 | 1186574  | 512    |        |        |
| 14693581                    | 1.5027 | 23118162   | 10.2393 | 3936506 | 6.5754 | 27054668 | 9.4714  | 41748249 | 3.3043 | 41747993 | 256    |        |        |
| 9252564                     | 0.9463 | 15990947   | 7.0826  | 2836005 | 4.7371 | 18826952 | 6.5910  | 28079516 | 2.2225 | 28079260 | 256    |        |        |
| 8053922                     | 0.8237 | 13308022   | 5.8943  | 2723865 | 4.5498 | 16031887 | 5.6125  | 24085809 | 1.9064 | 24085553 | 256    |        |        |
| 10452313                    | 1.0690 | 23397494   | 10.3630 | 3415200 | 5.7046 | 26812694 | 9.3867  | 37265007 | 2.9495 | 37264879 | 128    |        |        |
| 6526085                     | 0.6674 | 14083232   | 6.2376  | 2256025 | 3.7684 | 16339257 | 5.7201  | 22865342 | 1.8098 | 22865214 | 128    |        |        |
| 5649109                     | 0.5777 | 11217249   | 4.9682  | 2129752 | 3.5574 | 13347001 | 4.6726  | 18996110 | 1.5035 | 18995982 | 128    |        |        |
| 8490767                     | 0.8684 | 27228681   | 12.0599 | 3403098 | 5.6844 | 30631779 | 10.7237 | 39122546 | 3.0965 | 39122482 | 8      |        |        |
| 5102567                     | 0.5218 | 15491933   | 6.8615  | 2033721 | 3.3970 | 17525654 | 6.1354  | 22628221 | 1.7910 | 22628157 | \$     |        |        |
| 4629917                     | 0.4735 | 12549858   | 5.5585  | 1834442 | 3.0642 | 14384300 | 5.0357  | 19014217 | 1.5050 | 19014153 | 2      |        |        |
| 9658262                     | 0.9878 | 15250352   | 6.7545  | 2634907 | 4.4012 | 17885259 | 6.2613  | 27543521 | 2.1801 | 27543009 | 512    |        |        |
| 4163585                     | 0.4258 | 8917113    | 3.9495  | 1934506 | 3.2313 | 10851619 | 3.7990  | 15015204 | 1.1884 | 15014692 | 512    |        |        |
| 1928044                     | 0.1972 | 8115711    | 3.5945  | 1599530 | 2.6718 | 9715241  | 3.4011  | 11643285 |        | 11642773 | 512    |        |        |
| 7148710                     | 0.7311 | 14689495   | 6.5061  | 2154180 | 3.5983 | 16843675 | 2.8967  | 23992385 | 1.8990 | 23992129 | 256    |        |        |
| 3010235                     |        |            | 3.0858  | 1421812 | 2.3749 | 8388844  | 2.9368  | 11399079 | 0.9022 | 11398823 | 256    |        |        |
| 1379080                     |        |            | 2.5018  | 1091308 | 1.8229 | 6739747  | 2.3595  | 8118827  |        | 8118571  | 256    |        |        |
| 5920445                     |        | _          | 7.2738  | 2042168 | 3.4112 | 18464984 | 6.4643  | 24385429 | 1.9301 | 24385301 | 128    |        |        |
| 2521273                     |        |            | 2.9795  | 1215816 | 2.0308 | 7942842  | 2.7807  | 10464115 |        | 10463987 | 128    |        |        |
| 1279054                     | _      | 5032940    | 2.2291  | 861735  | 1,4394 | 5894675  | 2.0636  | 7173729  |        | 7173601  | 128    |        |        |
| 3221746                     | _      |            | 3.6059  | 1770436 | 2.9573 | 9911797  | 3.4699  | 13133543 |        | 13132523 | 1020   |        |        |
| 871639                      | 0.0891 | (,)        | 1.4453  | 1118778 | 1.8688 | 4381994  | 1.5341  | 5253633  |        | 5252609  | 1024   |        |        |
| 238537                      |        | 2263067    | 1.0023  | 923179  | 1.5420 | 3186246  | 1.1154  | 3424783  |        | 3423759  | 1024   |        |        |
| 2089245                     | 0.2137 | 7785487    | 3,4483  | 1382636 | 2.3095 | 9168123  | 3.2096  | 11257368 | 0.8910 | 11256857 | 511    |        |        |
| 578122                      | 0.0591 | 2792241    | 1.2367  | 772999  | 1.2912 | 3565240  | 1.2481  | 4143362  |        | 4142850  | 512    |        |        |
| 181469                      | 0.0186 | 1655168    | 0.7331  | 568692  | 0.9499 | 2223860  | 0.7785  | 2405329  | 0.1904 | 2404817  | 512    |        |        |
| 1454824                     | 0.1488 | 8755641    | 3.8780  | 1301227 | 2.1735 | 10056868 | 3.5207  | 11511692 | 0.9111 | 11511436 | 256    |        |        |
| 390129                      | 0.0399 | 2792620    | 1.2369  | 614879  | 1.0271 | 3407499  | 1.1929  | 3797628  | 9006.0 | 3797372  | 256    |        |        |
| 169147                      | 0.0173 | 1405648    | 0.6226  | 393630  | 0.6575 | 1799278  | 0.6299  | 1968425  | 0.1558 | 1968169  | 256    |        |        |
| 174801                      | 0.0179 | 3530287    | 1.5636  | 608814  | 1.0169 | 4139101  | 1.4490  | 4313902  | 0.3414 | 4312895  | 1007   |        |        |
| 73537                       | _      |            | 0.4686  | 328197  | 0.5482 | 1386278  | 0.4853  | 1459815  |        | 1458794  | 1021   |        |        |
| 11858                       | 0.0012 | 269080     | 0.1192  | 162279  | 0.2711 | 431359   | 0.1510  | 443217   | 0.0351 | 442193   | 1024   |        |        |
| 132836                      | 0.0136 | 3882047    | 1.7194  | 531877  | 0.8884 | 4413924  | 1.5452  | 4546760  | 0.3599 | 4546251  | 509    |        |        |
| 59872                       | 0.0061 | 1125507    | 0.4985  | 263212  | 0.4397 | 1388719  | 0.4862  | 1448591  | 0.1147 | 1448079  | 512    |        |        |
| 15465                       | 0.0016 | 262666     | 0.1163  | 115398  | 0.1928 | 378064   | 0.1324  | 393529   | 0.0311 | 393017   | 512    |        |        |
| 122332                      | 0.0125 | 5096588    | 2.2573  | 644486  | 1.0765 | 5741074  | 2.0099  | 5863406  | 0.4641 | 5863150  | 256    |        |        |
| 51647                       | 0.0053 | 1849075    | 0.8190  | 250909  | 0.4191 | 2099984  | 0.7352  | 2151631  | 0.1703 | 2151375  | 256    |        |        |
|                             |        |            |         |         |        |          | -       |          |        |          |        |        |        |

Table 9: Alvinn Alone

|             |                              |         |            |         |         | -      |           | -        |           |        |           |        |        |        |
|-------------|------------------------------|---------|------------|---------|---------|--------|-----------|----------|-----------|--------|-----------|--------|--------|--------|
| otal Ins    | Total Instruction References | ences   | 5233222111 |         |         |        |           |          |           |        |           |        | -      |        |
| Data Reads  | ads                          |         | 1415013652 |         |         |        |           |          |           |        |           |        |        |        |
| Data writes | tes                          |         | 487428474  |         |         |        |           |          |           |        |           |        |        |        |
| otal Da     | Total Data References        | 00      | 1902442126 |         |         |        |           |          |           |        |           |        |        |        |
| otal Re     | Total References             |         | 7135664237 |         |         |        |           |          |           |        |           |        |        |        |
| Iss St      | Miss Statistics:             |         |            |         |         |        |           |          |           |        |           |        |        |        |
| Cache       | lust                         | %       | Read       | %       | Write   | %      | Data      | %        | Total     | %      | int(0)    | int(1) | int(2) | int(3) |
| 0           | 11005331                     | 0.2103  | 54138053   | 3.8260  | 1174196 | 0.2409 | 55312249  | 2.9074   | 66317580  | 0.9294 | 66317452  | 128    | /=/    | 2      |
| -           | 6022427                      | 0.1151  | 34388743   | 2.4303  | 618355  | 0.1269 | 35007098  | 1.8401   | 41029525  | 0.5750 | 41029269  | 256    |        |        |
| 7           | 1208323                      |         | 30807454   | 2.1772  | 155641  | 0.0319 | 30963095  | 1.6275   | 32171418  | 0.4509 | 32170906  | 512    |        |        |
| ၉           | 302266                       | 0.0058  | 15165827   | 1.0718  | 66787   | 0.0137 | 15232614  | 0.8007   | 15534880  | 0.2177 | 15534368  | 512    |        |        |
| 4           | 13058392                     |         | 144132672  | 10.1860 | 1941066 | 0.3982 | 146073738 | L        | 159132130 | 2 2301 | 159131874 | 256    |        |        |
| 2           | 12949146                     |         |            | 8.6859  | 1226573 | 0.2516 | 124133112 | <u> </u> | 137082258 | 1.9211 | 137082002 | 256    |        |        |
| 9           | 14135066                     |         |            | 8.2601  | 1345725 | 0.2761 | 118227645 | _        | 132362711 | 1.8549 | 132362455 | 256    |        |        |
| 7           | 9786658                      | _       |            |         | 1962273 | 0.4026 | 117362479 | 6.1690   | 127149137 | 1.7819 | 127149009 | 128    |        |        |
| 8           | 9973793                      | _       |            |         | 1088521 | 0.2233 | 73125510  | 3.8438   | 83099303  | 1.1646 | 83099175  | 128    |        |        |
| 6           | 10288822                     | 0.1966  |            |         | 946660  | 0.1942 | 66833796  | 3.5131   | 77122618  | 1.0808 | 77122490  | 128    |        |        |
| 2           | 7000911                      | 0.1338  |            |         | 2153297 | 0.4418 | 131888043 | 6.9326   | 13888854  | 1.9464 | 138888890 | 2      |        |        |
| = 5         | 6825446                      | 0.1304  |            | $\perp$ | 1215446 | 0.2494 | 54185406  |          | 61010852  | 0.8550 |           | 28     |        |        |
| 72          | 6901854                      | 0.1319  | $\perp$    |         | 782898  | 0.1606 | 49179477  | _        | 56081331  | 0.7859 | 56081267  | 2      |        |        |
| 2           | 6062348                      | 0.1541  | 105356026  |         | 1313935 | 0.2696 | 106669961 | _        | 114732309 | 1.6079 | 114731798 | 511    |        |        |
| 4 1         | 7078832                      | _       |            |         | 1122743 | 0.2303 | 89990913  |          | 97069745  | 1.3603 |           | 512    |        |        |
| 0 4         | 3205578                      | 0.0624  | 100813045  |         | 878793  | 0.1803 | 101691838 |          | 104957416 | 1.4709 | 104956904 | 512    |        |        |
| 1 0         | 0190223                      |         | CE07C10/   | - 1     | 11/2519 | 0.2406 | 77325154  | -        | 83515379  | 1.1704 | 83515123  | 256    |        |        |
| - 4         | 6191430                      | 0.1183  | 49112663   |         | 794038  | 0.1629 | 49906701  | _        | 56098131  | 0.7862 |           | 256    |        |        |
| 2 0         | 7620400                      |         | 92145274   | - 1     | 930128  | 0.1293 | 55//2/32  |          | 60865931  | 0.8530 |           | 256    |        |        |
| 200         | 4787400                      | 0.000   | $\perp$    |         | 1438910 | 0.2952 | 78188879  | $\perp$  | 82817279  | 1.1606 | 82817151  | 128    |        |        |
| 3 50        | 4552006                      | ᆚ       | -          | - 1     | 945155  | 0.1939 | 32008443  |          | 36795543  | 0.5157 | 36795415  | 128    |        |        |
| 200         | 4000000                      | 1       |            | - 1     | 501501  | 0.1029 | 34154327  | 1        | 38707423  | 0.5425 | 38707295  | 128    |        |        |
| 3 66        | 200041300                    |         | 01394/00   |         | 699/9/  | 0.15/5 | 82162375  | 1        | 87309735  | 1.2236 | 87308803  | 932    |        |        |
| 3 5         | 706445                       | $\perp$ |            | - 1     | 422837  | 0.0867 | 62207576  |          | 65034222  | 0.9114 | 65033243  | 626    |        |        |
| 1 10        | 730113                       |         |            |         | 196052  | 0.0402 | 61025225  | _        | 61821340  | 0.8664 | 61820341  | 666    |        |        |
| 2 80        | 28710137                     | 0.0000  | 50/020//   | - 1     | /50200  | 0.1539 | 51452277  | 2.7045   | 55670434  | 0.7802 | 55669950  | 484    |        |        |
| 27          | 531347                       | 0.00    | 30734036   | Ł       | 438421  | 0.0899 | 32187961  | _        | 35059058  | 0.4913 | 35058557  | 501    |        |        |
| 2 80        | 210258                       | 1       | 30734020   | 2.1/20  | 118628  | 0.0244 | 30852854  | 4        | 31384201  | 0.4398 | 31383694  | 202    |        |        |
| 3 6         | 3102300                      | $\perp$ | 42148644   |         | 105/388 | - 1    | 43206032  | _        | 46308620  | 0.6490 | 46308373  | 247    |        |        |
| 8 6         | 4400550                      | 1       |            |         | 339889  | i      | 17308129  | _        | 19579558  | 0.2744 | 19579306  | 252    |        |        |
| 3 5         | 1406556                      |         |            |         | 69568   | - 1    | 16059057  |          | 17467615  | 0.2448 | 17467359  | 256    |        |        |
| 2 6         | 1477563                      |         |            | _l_     | 529506  | 0.1086 | 39061218  |          | 40538781  | 0.5681 | 40537925  | 856    |        |        |
| 300         | 101007                       | 1       |            |         | 144186  | 0.0296 | 30546369  |          | 30779536  |        | 30778661  | 875    |        |        |
| 200         | 451                          | -1-     | Ö          |         | 99439   | 0.0204 | 30130605  |          | 30131056  | 0.4223 | 30130139  | 917    |        |        |
| \$          | 11/5119                      | _ i     |            | [       | 698739  | 0.1434 | 27397412  |          | 28572531  | 0.4004 | 28572082  | 449    |        |        |
| 32          | 569059                       |         | İ          |         | 86501   | 0.0177 | 15587859  | 0.8194   | 16156918  | 0.2264 | 16156459  | 459    |        |        |
| 36          | 274                          |         |            | _ [     | 52846   | 0.0108 | 15129363  | 0.7953   | 15129637  | 0.2120 | 15129154  | 483    |        |        |
| 37          | 890481                       |         | 8          | [       | 946894  | 0.1943 | 34937611  | 1.8365   | 35828092  | 0.5021 | 35827854  | 238    |        |        |
| 88          | 697880                       | 0.0133  |            |         | 86084   | 0.0177 | 8490268   |          | 9188148   | 0.1288 | 9187906   | 242    |        |        |
| 30          | 300                          |         | 1000000    | 01110   | 141701  |        |           |          |           |        |           |        |        |        |

Table 10: Compress w/ Operating System, Compress Data

| otal Inch        | Total Instruction References | phone  | A7045969  |                 |        |        |                 |                 |         | _        |        |         |        |        |
|------------------|------------------------------|--------|-----------|-----------------|--------|--------|-----------------|-----------------|---------|----------|--------|---------|--------|--------|
| Data Boade       | 90                           | 2      | 22412010  |                 |        |        |                 |                 |         |          |        |         |        |        |
| Data writes      | S                            |        | 8521661   |                 |        |        |                 |                 |         |          |        |         |        |        |
| otal Date        | Total Data References        |        | 30933671  |                 |        |        |                 |                 |         |          |        |         |        |        |
| Total References | erences                      |        | 117979640 |                 |        |        |                 |                 |         |          |        |         |        |        |
| Miss Statistics  | listics:                     |        |           |                 |        |        |                 |                 |         |          |        |         |        |        |
| Cache            | Inst                         | %      | Read      | %               | Write  | %      | Data            | %               | Total   | %        | int(0) | Int(1)  | int(2) | int(3) |
| 0                | 1025051                      | 1.1776 | 4546006   | 20.2838         | 132145 | 1.5507 | 4678151         | 15.1232         | 5703202 | 4.8341   | 537959 | 5165239 | 4      |        |
| -                | 623679                       | 0.7165 | 4142362   | 18.4828         | 77742  | 0.9123 | 4220104         | 13.6424         | 4843783 | 4.1056   | 446116 | 4397663 | 4      |        |
| 2                | 67593                        | 0.0777 | 3301508   | 14.7310         | 41380  | 0.4856 | 3342888         | 10.8066         | 3410481 | 2.8907   | 308475 | 3102002 | 4      |        |
| က                | 10311                        | 0.0118 | 2995041   | 13,3636         | 21010  | 0.2465 | 3016051         | 9.7501          | 3026362 | 2.5652   | 251970 | 2774388 | 4      |        |
| 4                | 1595489                      | 1.8329 | 4971786   | 22.1836         | 220431 | 2.5867 | 5192217         | 16.7850         | 6787706 | 5.7533   | 458148 | 6329552 | 9      |        |
| 2                | 99364                        | 0.1142 | 4172066   | 18.6153         | 116601 | 1.3683 | 4288667         | 13.8641         | 4388031 | 3.7193   | 467269 | 3920756 | 9      |        |
| 9                | 30419                        |        | 3923112   | 17.5045         | 83315  | 0.9777 | 4006427         | 12.9517         | 4036846 | 3.4216   | 411901 | 3624939 | ဖ      |        |
| 7                | 1070135                      | 1.2294 | 5441962   | 24.2815         | 464169 | 5.4469 | 5906131         | 19.0929         | 6976266 | 5.9131   | 379254 | 6597008 | 4      |        |
| 8                | 70127                        | 90800  | 5011443   | 22.3605         | 202187 | 2.3726 | 5213630         | 16.8542         | 5283757 | 4.4785   | 414062 | 4869691 | 4      |        |
| o                | 26051                        | 0.0299 | 4203069   | 4203069 18.7536 | 113691 | 1.3341 | 4316760         | 13.9549         | 4342811 | 3.6810   | 382464 | 3960343 | 4      |        |
| 10               | 1057406                      | 1.2148 | 7712673   | 34.4131         | 555842 | 6.5227 | 8268515         | 26.7298         | 9325921 | 7.9047   | 291315 | 9034602 | 4      |        |
| 11               | 75586                        | 0.0868 | 6203676   | 27.6801         | 327130 | 3.8388 | 6530806         | 6530806 21.1123 | 6606392 | 5.5996   | 338682 | 6267706 | 4      |        |
| 12               | 39921                        | 0.0459 | 4743503   | 21.1650         | 241717 | 2.8365 | 4985220         | 16.1158         | 5025141 | 4.2593   | 344276 | 4680861 | 4      |        |
| 13               | 82225                        | 0.0945 | 4510650   | 20.1260         | 155451 | 1.8242 | 4666101         | 4666101 15.0842 | 4748326 | 4.0247   | 391799 | 4356521 | 9      |        |
| 14               | 46508                        | 0.0534 | 3733556   | 16.6587         | 85694  | 1.0056 | 3819250         | 12.3466         | 3865758 | 3.2766   | 345536 | 3520216 | 9      |        |
| 15               | 9551                         | 0.0110 | 3641835   | 3641835 16.2495 | 72630  | 0.8523 | 3714465         | 3714465 12.0078 | 3724016 | 3,1565   | 317865 | 3406145 | 9      |        |
| 16               | 58771                        | 0.0675 | 4919384   | 21.9498         | 376754 | 4.4211 | 5296138         | 17.1209         | 5354909 | 4.5388   | 340015 | 5014890 | 4      |        |
| 17               | 42505                        | 0.0488 | 3912600   | 17.4576         | 113525 | 1.3322 | 4026125         | 4026125 13.0153 | 4068630 | 3.4486   | 352098 | 3716528 | 4      |        |
| 18               | 7201                         |        | 3809735   |                 | 53960  | 0.6332 | 3863695         | 12.4903         | 3870896 |          | 337018 | 3533874 | 4      |        |
| 19               | 56619                        |        |           |                 | 424659 | 4.9833 | 7121914         | 23.0232         | 7178533 | $\Box$   | 318023 | 6860506 | 4      |        |
| 20               | 39634                        | _ ĺ    |           |                 | 181126 | - 1    | 4804243         |                 | 4843877 | $ \bot $ | 331979 | 4511894 | 4      |        |
| 21               | 5104                         | - 1    | 4163923   |                 | 94288  | - 1    | 4258211         |                 | 4263315 |          | 347857 | 3915454 | 4      |        |
| 22               | 7184                         |        | 3633167   |                 | 100813 | 1.1830 | 3733980         | 12.0709         | 3741164 |          | 271575 | 3469681 | 8      |        |
| 23               | 6999                         |        | 3446798   |                 | 76131  |        | 3522929         | 11.3887         | 3529592 |          | 256957 | 3272629 | . 6    |        |
| 54               | 5935                         | - 1    | 3386659   |                 | 20396  | i      | 3457055         |                 | 3462990 |          | 227529 | 3235455 | 9      |        |
| 52               | 5150                         |        | 3790361   | -               | 90849  | 1.0661 | 3881210         | 12.5469         | 3886360 |          | 263802 | 3622554 | 4      |        |
| 56               | 4799                         | - 1    | 3585067   | 15.9962         | 69536  | 0.8160 | 3654603         | 11.8143         | 3659402 | 3.1017   | 268627 | 3390771 | 4      |        |
| 27               | 4816                         |        | 3491876   | 15.5804         | 38491  | 0.4517 | 3530367         | 11.4127         | 3535183 |          | 251259 | 3283920 | 4      |        |
| 28               | 3665                         | j      | 4043477   | 18.0416         | 125958 | 1.4781 | 4169435         | 13.4786         | 4173100 | 3.5371   | 283279 | 3889817 | 4      |        |
| 59               | 3875                         |        | 3777649   | 3777649 16.8555 | 92228  | ]      | 3873224         | 12.5211         | 3877099 |          | 288856 | 3588239 | 4      |        |
| 30               | 4116                         |        | 3647456   | 3647456 16.2746 | 33567  | _      | 3681023         | 11.8997         | 3685139 |          | 304770 | 3380365 | 4      |        |
| 31               | 3953                         |        | 3369811   | 3369811 15.0357 | 64261  | 0.7541 | 3434072         | 11.1014         | 3438025 | 2.9141   | 211503 | 3226513 | 6      |        |
| 32               | 2464                         | 0.0028 | 3233512   | 3233512 14.4276 | 37792  | 0.4435 | 3271304         | 10.5752         | 3273768 | 2.7749   | 191745 | 3082016 | 7      |        |
| 33               | 1713                         |        | 3199548   | 14.2760         | 35698  | 0.4189 | 3235246         | 10.4587         | 3236959 | 2.7437   | 179581 | 3057374 | 4      |        |
| ष्ठ              | 2860                         | 0.0033 | 3524497   | 15.7259         | 72172  | 0.8469 | 3596669         | 3596669 11.6270 | 3599529 | 3.0510   | 232591 | 3366934 | 4      |        |
| 32               | 1811                         | 0.0021 |           | 3356383 14.9758 | 27483  |        | 3383866         | 3383866 10.9391 | 3385677 | 2.8697   | 231177 | 3154496 | 4      |        |
| 36               | 1356                         |        |           | 3317306 14.8015 | 21238  | 0.2492 | 3338544         | 10.7926         | 3339900 | 2.8309   | 227402 | 3112494 | 4      |        |
| 37               | 2117                         |        |           | 3684337 16.4391 | 83660  | 0.9817 | 3767997         | 12.1809         | 3770114 | 3.1956   | 232668 | 3537442 | 4      |        |
| 38               | 1472                         | 0.0017 |           | 3467971 15.4737 | 28443  | 0.3338 | 3496414 11.3029 | 11 3000         | 3497886 | 2 0648   | 050704 | 2044404 | -      |        |
|                  |                              |        |           |                 | 1      | ı      |                 | 0700            | 0001010 |          | 10/007 | 3241101 | 4      |        |

Table 11: Compress w/ Operating System, Operating System Data

| lotal instruction References | erences  | 5557500        |        |         |        |                |         |         |        |        | - Annual Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t |       |
|------------------------------|----------|----------------|--------|---------|--------|----------------|---------|---------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                              |          | 2001000        |        |         |        |                |         |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Data Reads                   |          | 1518924        |        |         |        |                |         |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Data writes                  |          | 802242         |        |         |        |                |         |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Total Data References        | es       | 2321166        |        |         |        |                |         |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Total References             |          | 7888768        |        |         |        |                |         |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Miss Statistics:             |          |                |        |         |        |                |         |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Cache Inst                   | %        | Read %         | Write  | %       | Data   | %              | Total   | %       | int(o) | int/1) | int/o/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/10 |
| 0 405077                     | 7 7.2756 | 442622 29.1405 | 93040  | =       | 535662 | 535662 23 0773 | 940739  | 1       | 402680 | E0700E | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)   |
| 1 312348                     | 8 5.6101 | 337407 22.2136 | 76603  |         | 414010 | 414010 17 8363 | 72635B  |         | 080000 | 327333 | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 2 206867                     | 7 3.7155 | 202735 13,3473 | 59230  | 1       | 261065 | 261065 11 2850 | Account |         | 200000 | 4400/0 | 707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              |          | 165278 10 8813 | 26172  |         | 201903 | 00200          | 400032  | 0.9430  | 160013 | 308311 | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | $\perp$  | 403250 22 4002 | 440460 |         | 104102 |                |         |         | 78379  | 251744 | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | $\perp$  | 455550 52.4602 | 148408 | -       | 642819 | 27.6938        |         |         | 541979 | 458101 | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | 1        | 46/3/6 30.7/03 | 146837 |         | 614215 | 614215 26.4615 | 968351  |         | 500868 | 467233 | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | +        | 460057 30.2883 | 146567 |         | 606624 | 26.1345        | 896982  | 11.3704 | 484864 | 411868 | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | _        | 531977 35.0233 | 102472 | 12.7732 | 634449 | 634449 27.3332 | 891586  | 11.3020 | 512236 | 379226 | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              |          | 459508 30.2522 | 97131  | 12.1074 | 556639 | 556639 23.9810 | 809910  |         | 395749 | 414037 | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              |          | 454015 29.8906 | 96921  | 12.0813 | 550936 | 550936 23.7353 | 760664  | 9.6424  | 378098 | 382442 | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | 6 3.5286 | 565678 37.2420 | 100294 | 12,5017 | 665972 | 665972 28 6913 | 862428  | 1       | 571062 | 204206 | 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              |          | 457075 30.0920 | 81094  |         | 538169 | 538169 23.1853 | 758418  |         | 410686 | 238672 | 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | _        | 451543 29.7278 | 80279  | 10.0068 | 531822 | 22.9118        | 720694  | 9 1357  | 376368 | 244066 | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              |          | 416370 27.4122 | 130866 |         | 547236 | 547236 23.5759 | 818777  | 10 3790 | 426603 | 201660 | 00 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 14 211089                    | 9 3.7914 | 358928 23.6304 | 122246 |         | 481174 | 481174 20 7298 | 692263  | A 7753  | 246308 | 001000 | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 15 177930                    | 0 3.1958 | 339954 22.3812 | 122259 |         | 462213 | 462213 19 9130 | 640143  | 8 114E  | 224065 | 011110 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 16 194474                    | 3.4930   | 477050 31.4071 | 89596  | 11.1682 | 566646 | 566646 24 4121 | 761120  | 06/81   | 25,000 | 2////5 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | 5 2.8266 | 379047 24.9550 | 82758  | 10.3158 | 461805 | 461805 19.8954 | 619180  | 7 8480  | 266877 | 262064 | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | - 1      | 376366 24.7785 | 81642  |         | 458008 | 458008 19.7318 | 587765  | 7 4507  | 250536 | 336077 | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | - 1      | 478023 31.4712 | 86839  | 10.8245 | 564862 | 564862 24,3353 | 721641  | 9 1477  | 403510 | 318007 | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | _        | 400732 26.3826 | 69131  | 8.6172  | 469863 | 20.2425        | 591732  | 7 5009  | 259644 | 331064 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | 2 1.7703 | 392650 25.8505 | 68234  | 8,5054  | 460884 | 460884 19 8557 | 559446  | 7 0017  | 211480 | 247640 | +21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 22 145989                    | 9 2.6221 | 301130 19.8252 | 110704 | 1       | 411834 | 411834 17.7425 | 557823  | 7 0711  | 285503 | 071014 | 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                              | _        | 264957 17.4437 | 101996 |         | 366953 | 366953 15,8090 | 492463  | 6 2426  | 234839 | 256606 | 0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                              | _        | 223478 14.7129 | 97270  | 12.1248 | 320748 | 13.8184        | 434222  | 1       | 206021 | 227183 | 9101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                              | _        | 310966 20.4728 | 74069  | 9.2328  | 385035 | 385035 16.5880 | 488740  | ı       | 224585 | 263647 | 809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | - 1      | 293582 19.3283 | 68380  | 8.5236  | 361962 | 361962 15.5940 | 453846  | 5.7531  | 184853 | SERARE | 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 27 83808                     | - 1      | 263797 17.3674 | 62629  | 8.1807  | 329426 | 329426 14.1923 | 413234  | 5.2383  | 161602 | 251124 | 50g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | i        | 340717 22.4315 | 62125  | 7.7439  | 402842 | 402842 17.3552 | 481777  | 6.1071  | 198301 | 283224 | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | - 1      | 339906 22.3781 | 57262  | - (     | 397168 | 397168 17.1107 | 466869  | 5.9181  | 177808 | 288809 | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | - 1      | 322741 21.2480 | 55665  | 6.9387  | 378406 | 378406 16.3024 | 442635  | 5.6110  | 137647 | 304736 | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              |          | 238917 15.7294 | 63877  | 7.9623  | 302794 | 13.0449        | 371087  | 4.7040  | 158977 | 211095 | 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                              |          | 185372 12.2042 | 55064  | 6.8638  | 240436 | 10.3584        | 296097  | 3.7534  | 103734 | 191346 | 1017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                              |          | 168891 11.1191 | 51506  | 6.4203  | 220397 | 9.4951         | 268221  | 3,4000  | 88022  | 179179 | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                              |          | 276257 18.1877 | 52241  | 6.5119  | 328498 | 328498 14.1523 | 379437  | 4.8098  | 156510 | 232419 | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | - (      | 230417 15.1698 | 44929  | 5.6004  | 275346 | 275346 11.8624 | 318257  | 4.0343  | 86733  | 231016 | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | - 1      | 226637 14.9209 | 42020  | 5.2378  | 268657 | 11.5742        | 305686  | 3 8750  | 77933  | 227245 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                              | 9 0.7445 | 307787 20.2635 | 41599  | 5.1853  | 349386 | 349386 15.0522 | 390835  | 4 9543  | 157082 | 232601 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 38 34515                     | i        | 285045 18.7662 | 36495  | 1       | 321540 | 321540 13 8525 | 356055  | 4 5134  | 90000  | 205001 | 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 39                           | 111111   |                |        |         |        |                |         |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

Table 12: Compress w/ Operating System, Combined Data

| Reference Statistics:        | ::       |                 |            |        |                 |         |          |        |        |        |        |        |
|------------------------------|----------|-----------------|------------|--------|-----------------|---------|----------|--------|--------|--------|--------|--------|
| Total Instruction References | rences   | 92613571        |            |        |                 |         |          |        |        |        |        |        |
| Data Reads                   |          | 23930934        |            |        |                 |         |          |        |        |        |        |        |
| Data writes                  |          | 9323903         |            |        |                 |         |          |        |        |        |        |        |
| Total Data References        | S        | 33254837        |            |        |                 |         |          |        |        |        |        |        |
| Total References             |          | 125868408       |            |        |                 |         |          |        |        |        |        |        |
| Miss Statistics:             |          |                 |            |        |                 |         |          |        |        |        |        |        |
| Cache                        | %        | Read %          | Write      | %      | Data            | %       | Total    | %      | int(0) | int(1) | int(2) | int(3) |
| 0 1430128                    | 1.5442   | 4988628 20.8459 | 459 225185 | 2.4151 | 5213813         | 15.6784 | 6643941  | 5.2785 |        |        |        |        |
|                              |          | 4479769 18.7196 | 196 154345 | 1.6554 | 4634114 13.9352 | 13.9352 | 5570141  | 4.4254 |        |        |        |        |
| 2 274460                     | 0.2963   | 3504243 14.6432 | 432 100610 | 1.0791 | 3604853 10.8401 | 10.8401 | 3879313  | 3.0820 |        |        |        |        |
| 3 139491                     |          |                 | 060 57183  | 0.6133 | 3217502         | 9.6753  | 3356993  | 2.6671 |        |        |        |        |
| _                            | 2.1088   | 5465136 22.8371 | 371 369900 | 3.9672 | 5835036         | 17.5464 | 7788036  | 6.1874 |        |        |        |        |
|                              |          |                 | 868 263438 |        | 4902882 14.7434 | 14.7434 | 5356382  | 4.2555 |        |        |        |        |
|                              |          |                 | 159 229882 |        | 4613051         | 13.8718 | 4933828  | 3.9198 |        |        |        |        |
|                              | - 1      |                 | 633 566641 | _      | 6540580         | 19.6681 | 7867852  | 6.2509 |        |        |        |        |
|                              |          |                 |            |        | 5770269         | 17.3517 | 6093667  | 4.8413 |        |        |        |        |
|                              |          |                 | 605 210612 | 2.2588 | 4867696 14.6376 | 14.6376 | 5103475  | 4.0546 |        |        |        |        |
| -                            |          | 8278351 34.5927 | 927 656136 | 7.0371 | 8934487 26.8667 | 26.8667 | 10188349 | 8.0944 |        |        |        |        |
|                              |          | 6660751 27.8332 | 332 408224 | 4.3783 | 7068975 21.2570 | 21.2570 | 7364810  | 5.8512 |        |        |        |        |
| 12 228793                    | _        | 5195046         | 321996     | 3.4534 | 5517042 16.5902 | 16.5902 | 5745835  | 4.5650 |        |        |        |        |
|                              | _        |                 |            | 3.0708 | 5213337 15.6769 | 15.6769 | 5567103  | 4.4230 |        |        |        |        |
|                              | _        | 4092484 17.1012 | 012 207940 |        | 4300424 12.9317 | 12.9317 | 4558021  | 3.6213 |        |        |        |        |
|                              |          | 3981789 16.6387 | 387 194889 | 2.0902 | 4176678 12.5596 | 12.5596 | 4364159  | 3.4672 |        |        |        |        |
|                              | _        | 5396434 22.5500 | 500 466350 |        | 5862784 17.6299 | 17.6299 | 6116029  | 4.8591 |        |        |        |        |
|                              |          |                 | 335 196283 |        | 4487930 13.4956 | 13.4956 | 4687810  | 3.7244 |        |        |        |        |
|                              |          | 4186101         |            |        | 4321703 12.9957 | 12.9957 | 4458661  | 3.5423 |        |        |        |        |
|                              |          |                 |            | _      | 7686776 23.1148 | 23.1148 | 7900174  | 6.2765 |        |        |        |        |
| 20 161503                    | _        |                 |            | _      | 5274106 15.8597 | 15.8597 | 5435609  | 4.3185 |        |        |        |        |
|                              | _        |                 |            | _      | 4719095 14.1907 | 14.1907 | 4822761  | 3.8316 |        |        |        |        |
|                              | _        | 3934297 16.4402 | 402 211517 | 2.2685 | 4145814 12.4668 | 12.4668 | 4298987  | 3.4155 |        |        |        |        |
|                              | _        | 3711755 15.5103 | 103 178127 | _      | 3889882 11.6972 | 11.6972 | 4022055  | 3.1954 |        |        |        |        |
|                              | _        | 3610137 15.0857 |            | _      | 3777803 11.3602 | 11.3602 | 3897212  | 3.0963 |        |        |        |        |
|                              |          | 4101327 17.1382 | 382 164918 | 1.7688 | 4266245 12.8289 | 12.8289 | 4375100  | 3.4759 |        |        |        |        |
|                              | - 1      | 3878649 16.2077 |            |        | 4016565 12.0781 | 12.0781 | 4113248  |        |        |        |        |        |
| -                            |          | 3755673 15.6938 |            |        |                 | 11.6067 | 3948417  | 3.1369 |        |        |        |        |
|                              |          | 4384194 18.3202 |            |        | 4572277         |         | 4654877  | 3.6982 |        |        |        |        |
|                              | - 1      | 4117555 17.2060 |            | -      | 4270392         | 12.8414 | 4343968  | 3.4512 |        |        |        |        |
|                              |          | 3970197 16.5902 |            | i      | 4059429 12.2070 | 12.2070 | 4127774  |        |        |        |        |        |
|                              | 9 0.0780 | 3608728 15.0798 | 798 128138 | 1.3743 | 3736866         | 11.2371 | 3809112  | 3.0263 |        |        |        |        |
|                              | _        |                 | 865 92856  | 0.9959 | 3511740 10.5601 | 10.5601 | 3569865  | 2.8362 |        |        |        |        |
| 33 49537                     | 7 0.0535 | 3368439 14.0757 | 757 87204  | 0.9353 | 3455643         | 10.3914 | 3505180  | 2.7848 |        |        |        |        |
| 34 53799                     | 0.0581   | 3800754 15.8822 | 822 124413 |        | 3925167         | 11.8033 | 3978966  | 3.1612 |        |        |        |        |
|                              | 0.0483   | 3586800 14,9881 | 881 72412  | 0.7766 | 3659212         | 11,0035 | 3703934  | 2.9427 |        |        |        |        |
|                              |          | 3543943 14,8090 | 090 63258  | 0.6784 | 3607201         | 10.8471 | 3645586  | 2.8963 |        |        |        |        |
|                              |          | 3992124 16.6819 | 819 125259 | 1.3434 | 4117383 12.3813 | 12.3813 | 4160949  | 3,3058 |        |        |        | :      |
| 38 35987                     |          | 3753016 15.6827 |            | 0.6965 | 3817954 11.4809 | 11.4809 | 3853941  | 3.0619 |        |        |        |        |
| 39 31284                     | 0.0338   | 3702521 15.4717 | 717 54683  | 0.5865 | 3757204 11.2982 | 11.2982 | 3788488  | 3.0099 |        |        |        |        |
|                              |          |                 |            |        |                 |         |          |        |        |        |        |        |

Table 13: GCC w/ Operating System, GCC Data

| Poforon                 | Reference Statistics.        |         |           | -       |         |         |         |         |          |        |         |          |        |       |
|-------------------------|------------------------------|---------|-----------|---------|---------|---------|---------|---------|----------|--------|---------|----------|--------|-------|
| Total Inst              | Total Instruction References | ences   | 160240175 |         |         |         |         |         |          |        |         |          |        |       |
| Data Reads              | spi                          |         | 50197333  |         |         |         |         |         |          |        |         |          |        |       |
| Data writes             | es                           |         | 19074845  |         |         |         |         |         |          |        |         |          |        |       |
| Total Dat               | Total Data References        | "       | 69272178  |         |         |         |         |         |          |        |         |          |        |       |
| <b>Total References</b> | erences                      |         | 229512353 |         |         |         |         |         |          |        |         |          |        |       |
| Miss Statistics:        | tistics:                     |         |           |         |         |         |         |         |          |        |         |          |        |       |
| Cache                   | Inst                         | %       | Read      | %       | Write   | %       | Data    | %       | Total    | %      | int(0)  | int(1)   | int(2) | intra |
| 0                       | 5930477                      | _       | 4052214   | 8.0726  | 1185136 | 9       | 5237350 | 7.5605  | 11167827 | 4.8659 | 1289475 | 9878349  | (5)    | (c)   |
| -                       | 3822004                      |         | 2571230   | 5.1222  | 720183  | 3.7756  | 3291413 | 4.7514  | 7113417  | 3.0994 | 1012010 | 6101401  | 0 00   |       |
| 7                       | 2113535                      | _       | 1395532   | 2.7801  | 346031  | 1.8141  | 1741563 | 2.5141  | 3855098  | 1.6797 | 609264  | 3245831  | 0      |       |
| ဇ                       | 859011                       |         | 715612    | 1.4256  | 115348  | 0.6047  | 830960  | 1.1996  | 1689971  | 0.7363 | 362672  | 1327298  | 0 0    |       |
| 4                       | 8256812                      |         | 5126873   | 10.2134 | 1911328 | 10.0201 | 7038201 | 10.1602 | 15295013 | 6.6641 | 1487260 | 13807749 | 2      |       |
| 2                       | 7936576                      |         |           | 7.2868  | 1359035 | 7.1247  | 5016804 | 7.2422  | 12953380 | 5.6439 | 1551400 | 11401976 | 4      |       |
| 9                       | 7795851                      | _       | !         | 6.2771  | 1180574 | 6.1892  | 4331507 | 6.2529  | 12127358 | 5.2840 | 1560222 | 10567132 | 4      |       |
| 7                       | 6192677                      | 3.8646  |           | 11.5964 | 1702487 | 8.9253  | 7523571 | 10.8609 | 13716248 | 5.9763 | 1167505 | 12548740 | · m    |       |
| 80                      | 6030794                      | 3.7636  | 3975395   | 7.9195  | 1111031 |         | 5086426 | 7.3427  | 11117220 | 4.8438 | 1291563 | 9825654  | 0      |       |
| 6                       | 5910602                      |         |           | 6.7756  | 943898  | _       | 4345057 | 6.2724  | 10255659 | 4.4685 | 1321784 | 8933872  | 6      |       |
| 9                       | 4637520                      |         | _ [       | 13.7814 | 1651305 |         | 8569224 | 12.3704 | 13206744 | 5.7543 | 892643  | 12314098 | e e    |       |
| =                       | 4519059                      | 2.8202  | 4616766   | 9.1972  | 1018907 | 5.3416  | 5635673 | 8.1356  | 10154732 | 4.4245 | 1011166 | 9143563  | c      |       |
| 12                      | 4401698                      | _       | 3762245   | 7.4949  | 815985  | _       | 4578230 | 0609'9  | 8979928  | 3.9126 | 1119597 | 7860328  | o c    |       |
| 5                       | 5606294                      |         | 3489105   | 6.9508  | 1325313 | 6.9480  | 4814418 | 6.9500  | 10420712 | 4.5404 | 1175931 | 9244777  | 0 4    |       |
| 14                      | 5029798                      | _       | 2168464   | 4.3199  | 837043  | 4.3882  | 3005507 | 4.3387  | 8035305  | 3.5010 | 1064529 | 6970772  |        |       |
| 15                      | 4750077                      |         | 1753549   | 3.4933  | 697878  | 3.6586  | 2451427 | 3.5388  | 7201504  | 3.1377 | 965750  | 6235750  | 7      |       |
| 16                      | 4351960                      |         | 3834987   | 7.6398  | 1142031 | 5.9871  | 4977018 | 7.1847  | 9328978  | 4.0647 | 955489  | 8373486  | · C    |       |
| 14                      | 3997278                      |         | 2343766   | 4.6691  | 634558  |         | 2978324 | 4.2995  | 6975602  | 3.0393 | 984131  | 5991468  | 0      |       |
| 18                      | 3858935                      |         | 1894655   | 3.7744  | 505538  |         | 2400193 | 3.4649  | 6259128  | 2.7271 | 952200  | 5306925  | m      |       |
| 19                      | 3398843                      | $\perp$ | 4546950   | 9.0582  | 1092878 |         | 5639828 | 8.1415  | 9038671  | 3.9382 | 838561  | 8200107  | 0      |       |
| 2                       | 3182775                      |         | 2617399   | 5.2142  | 557327  |         | 3174726 | 4.5830  | 6357501  | 2.7700 | 924426  | 5433072  | e      |       |
| 21                      | 3134727                      | $\perp$ | 2211580   | 4.4058  | 430779  | _1      | 2642359 | 3.8145  | 5777086  | 2.5171 | 988080  | 4789003  | e      |       |
| 22                      | 3711553                      |         | 2079376   | 4.1424  | 700333  |         | 2779709 | 4.0127  | 6491262  | 2.8283 | 896069  | 5595187  | 9      |       |
| 63                      | 2632041                      | 1.6426  | 1273761   | 2.5375  | 487227  | _       | 1760988 | 2.5421  | 4393029  | 1.9141 | 669575  | 3723450  | 4      |       |
| 47                      | 21/6012                      |         | 988193    | 1.9686  | 435087  |         | 1423280 | 2.0546  | 3532995  | 1.5393 | 517052  | 3015939  | 4      |       |
| S S                     | 2933355                      |         | 2260666   | 4.5036  | 608653  | 1       | 2869319 | 4.1421  | 5802674  | 2.5283 | 757813  | 5044858  | 8      |       |
| 07                      | 2162131                      | 1.3493  | 1300811   | 2.5914  | 353783  |         | 1654594 | 2.3885  | 3816725  | 1.6630 | 615412  | 3201310  | n      |       |
| /7                      | 1849125                      | 0461.1  | 974296    | 1.9409  | 284265  |         | 1258561 | 1.8168  | 3107686  | 1.3540 | 493709  | 2613974  | က      |       |
| 200                     | 233/6/6                      | 1.4589  | 2609680   | 5.1988  | 562915  | $\perp$ | 3172595 | 4.5799  | 5510271  | 2.4009 | 716434  | 4793834  | 8      |       |
| 2 2                     | 1844020                      | 1.1508  | 1490190   | 2.9687  | 292088  | 1       | 1782278 | 2.5729  | 3626298  | 1.5800 | 622311  | 3003984  | 8      |       |
| 5                       | 169/12/                      | 1.0591  | 1088659   | 2.1688  | 220885  |         | 1309544 | 1.8904  | 3006671  | 1.3100 | 596125  | 2410543  | 6      |       |
| 3                       | 1520994                      | 0.9492  |           | 2.4529  | 332304  |         | 1563611 | 2.2572  | 3084605  | 1.3440 | 548709  | 2535884  | 12     |       |
| 35                      | 11183/4                      | 0.6979  |           | 1.2178  | 147792  |         | 759073  | 1.0958  | 1877447  | 0.8180 | 356033  | 1521408  | 9      |       |
| 33                      | 758014                       | 0.4730  | 471089    | 0.9385  | 112037  | _       | 583126  | 0.8418  | 1341140  | 0.5843 | 256632  | 1084505  | 0      |       |
| 3                       | 1208988                      | - 1     | 1379626   | 2.7484  | 302024  | 1.5834  | 1681650 | 2.4276  | 2890638  | 1.2595 | 505048  | 2385587  | 0      |       |
| 35                      | 928693                       | - 1     | 662791    | 1.3204  | 118571  | 0.6216  | 781362  | 1.1280  | 1710055  | 0.7451 | 354779  | 1355273  | 0      |       |
| 36                      | 679583                       | - 1     | 491159.   | 0.9785  | 90694   | 0.4755  | 581853  | 0.8400  | 1261436  | 0.5496 | 254029  | 1007404  | 0      |       |
| 3/                      | 1006019                      |         | 1650462   | 3.2879  | 331914  |         | 1982376 | 2.8617  | 2988395  | 1.3021 | 475721  | 2512671  | e      |       |
| 88                      | 776098                       |         | 801293    | 1,5963  | 109206  | 0.5725  | 910499  | 1.3144  | 1686597  | 0.7349 | 406270  | 1280324  | 0      |       |
| 33                      | 623706                       | 0.3892  | 593204    | 1.1817  | 84226   | 0.4416  | 677430  | 0.9779  | 1301136  | 0.5669 | 327276  | 973857   | e      |       |
|                         |                              |         |           |         |         |         |         |         |          |        |         |          |        |       |

Table 14: GCC w/ Operating System, Operating System Data

| 187             | 705569  |       | _        |                |         |                 |         |                 |         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|---------|-------|----------|----------------|---------|-----------------|---------|-----------------|---------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5130601         |         |       |          |                |         |                 |         |                 |         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2613506         |         |       |          |                |         |                 |         |                 |         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7744107         |         |       |          |                |         |                 |         |                 |         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26449676        |         |       | _        |                |         |                 |         |                 |         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |         |       |          |                |         |                 |         |                 |         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Read            | %       | Write |          | %              | Data    | %               | Total   | %               | int(0)  | int(1)  | int(2)     | int(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1305087 25.4373 | 25.43   |       | _        | 11.4279        | 1603755 | 20.7094         | 3167450 | 11.9754         | 1877866 | 1289459 | 125        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 950376 18.5237  | 18.52   |       | 228719   | 8.7514         | 1179095 | 15.2257         | 2440564 | 9.2272          | 1428319 | 1011992 | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 565185 11.0160  | 11.01   |       | 150281   | 5.7502         | 715466  | 9.2388          | 1636199 | 6.1861          | 1026454 | 609236  | 609        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 378429          | 7.3759  |       | 76164    | 2.9142         | 454593  | 5.8702          | 930020  | 3.5162          | 566859  | 362652  | 509        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1358536         | 26.4791 |       | 417673 1 | 15.9813        | 1776209 | 22.9363         | 4025852 | 15.2208         | 2538367 | 1487233 | 252        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1211623 23.6156 | 33.61   |       | 391479 1 | 14.9791        | 1603102 | 20.7009         | 3811689 | 14.4111         | 2260062 | 1551375 | 252        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1205169 23.4898 | 3.48    |       | 383152 1 | 14.6605        | 1588321 | 20.5101         | 3817809 | 14.4342         | 2257362 | 1560195 | 252        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1498433 29.2058 | 9.20    |       | 307981 1 | 11.7842        | 1806414 | 1806414 23.3263 | 3373069 | 12.7528         | 2205451 | 1167493 | 125        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1262423 24.6058 | 4.60    |       | 5544     | 275544 10.5431 | 1537967 | 19.8598         | 3096683 | 3096683 11.7078 | 1805008 | 1291550 | 125        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1238467 24.1388 | 4.      |       | 3649     | 269649 10.3175 | 1508116 | 19.4744         | 3070570 | 3070570 11.6091 | 1748678 | 1321767 | 125        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1625907 31,6904 | 9       |       | 299528   | 11.4608        | 1925435 | 24.8632         | 3067115 | 11,5960         | 2174415 | 892639  | 61         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1314548 25.6217 | 9       |       | 236133   | 9.0351         | 1550681 |                 |         | 10.1723         | L       | 1011162 | 61         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1285204 25 0515 | Š       |       | 1        | 8 5703         | 1500280 | 10 4804         |         |                 | L       | 1110502 | 61         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1055232 20 5674 | 9       |       | 3326     | 329326 12 6009 | 1384558 |                 |         |                 |         | 1175802 | ROR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 1       |       | 976791   | 10 5881        | 1103722 |                 |         |                 |         | 1064484 | FOR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 698692 13 6181  | 9       |       | 1033     | 264933 10 1371 | 963625  |                 |         |                 |         | 965707  | 508<br>508 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1210514 23 5940 | , K     |       | 230222   | 0 1533         | 1449736 |                 | 2779517 | 1.              |         | 95546B  | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 902120 17 5831  | Ň       |       | 202929   | 7.7646         | 1105049 |                 | 2328059 |                 | L       | 984102  | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 838998 16,3528  | n       |       | 193503   | 7.4040         | 1032501 |                 | 2225108 |                 |         | 952181  | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1277557 24.9007 | ŏ       |       | 227816   | 8.7169         | 1505373 |                 | 2475894 | L               | L       | 838552  | 125        | A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O |
| 1059232 20.6454 | 9.      |       | 171530   | 6.5632         | 1230762 | 15.8929         | 2143725 | 8.1049          | 1219186 | 924414  | 125        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 999887 19,4887  | 4.      |       | 172015   | 6.5818         | 1171902 | 15.1328         | 2071717 | 7.8327          | 1083521 | 988071  | 125        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 721889 14.0703  | 4.0     |       | 238250   | 9.1161         | 960139  | 12.3983         | 2485063 | 9.3954          | 1588025 | 896020  | 1018       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 524038 10.2140  | 0.2     |       | 199563   | 7.6358         | 723601  | 9.3439          | 2039727 | 7.7117          | 1369184 | 669523  | 1020       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 385567 7.5150   | 7.5     |       | 176854   | 6.7669         | 562421  | 7.2626          | 1739150 | 6.5753          | 1221133 | 516997  | 1020       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 741561: 14,4537 | 14.4    |       | 172649   | 0909.9         | 914210  | 11.8052         |         | 7.5098          | 1228020 | 757784  | 509        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 575839 11.2236  | 1.2     |       | 145355   | 5.5617         | 721194  | 9.3128          | 1649212 | 6.2353          | 1033322 | 615381  | 509        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 441008          | 8.5956  |       | 123685   | 4.7325         | 564693  | 7.2919          | 1400804 | 5.2961          | 906618  | 493677  | 509        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 810257          | 15.7926 |       | 144278   | 5.5205         | 954535  | 12.3260         | 1745218 | 6.5983          | 1028546 | 716419  | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 718984          | 14.0136 |       | 115549   | 4.4212         | 834533  | 10.7764         | 1525120 | 5.7661          | 902573  | 622294  | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 624259 12.1674  | 12.16   |       | 100299   | 3.8377         | 724558  | 9,3562          | 1355019 | 5.1230          | 758657  | 596109  | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 530467 10,3393  | 10.33   |       | 136898   | 5.2381         | 667365  | 8.6177          | 1462693 | 5.5301          | 913012  | 548669  | 1012       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 304534          | 5.9356  |       | 92843    | 3.5524         | 397377  | 5.1313          | 1081708 | 4.0897          | 724693  | 355997  | 1018       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 229632          | 4.4757  |       | 80049    | 3.0629         | 309681  | 3.9989          | 920986  | 3,4820          | 663370  | 256595  | 1021       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 594961          | 11.5963 |       | 113509   | 4.3432         | 708470  | 9.1485          | 1293339 | 4.8898          | 787803  | 505027  | 509        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 353350          | 6.8871  |       | 68628    | 2.6259         | 421978  | 5.4490          | 929098  | 3.5127          | 573829  | 354760  | 509        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 281629          | 5.4892  |       | 57743    | 2.2094         | 339372  | 4.3823          | 780366  | 2.9504          |         | 254008  | 509        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 684496          | 13.3414 |       | 102910   | 3.9376         | 787406  | 10.1678         | 1236764 | 4.6759          | 760801  | 475710  | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 532251          | 10.3740 |       | 00000    | 0 0000         | 504117  | L               | 710017  | L               |         | CHORON  | 010        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |         |       | 000      | 2.30/2         | 211100  | 20.70.          |         | 4080.5          | 100/1/0 | 400000  | 207        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 15: GCC w/ Operating System, Combined Data

| Reference        | Reference Statistics:        |         |                  |         |         |         |          | -       |          |        |        |        |        |        |
|------------------|------------------------------|---------|------------------|---------|---------|---------|----------|---------|----------|--------|--------|--------|--------|--------|
| Total Instru     | Total Instruction References | ences   | 178945744        |         |         |         |          |         |          |        |        |        |        |        |
| Data Reads       | S                            |         | 55327934         |         |         |         |          |         |          |        |        |        |        |        |
| Data writes      |                              |         | 21688351         |         |         |         |          |         |          |        |        |        |        |        |
| Total Data       | Total Data References        | (0)     | 77016285         |         |         |         |          |         |          |        |        |        |        |        |
| Total References | ences                        |         | 255962029        |         |         |         |          |         |          |        |        |        |        |        |
| Miss Statistics: | stics:                       |         |                  |         |         |         |          |         |          |        |        |        |        |        |
| Cache            | Inst                         |         | Read             | %       | Write   | %       | Data     | %       | Total    | %      | int(0) | int(1) | int(2) | int(3) |
| 0                | 7494172                      |         | 5357301          | 9.6828  | 1483804 | 6.8415  | 6841105  | 8.8827  | 14335277 | 5.6005 |        |        | (=)    | (0)    |
| -                | 5083473                      |         | 3521606          | 6.3650  | 948902  | 4.3752  | 4470508  | 5.8046  | 9553981  | 3.7326 |        |        |        |        |
| 2                | 3034268                      |         | 1960717          | 3.5438  | 496312  | 2.2884  | 2457029  | 3.1903  | 5491297  | 2.1454 |        |        |        |        |
| 6                | 1334438                      |         | 1094041          | 1.9774  | 191512  | 0.8830  | 1285553  | 1.6692  | 2619991  | 1.0236 |        |        |        |        |
| 4                | 10506455                     | _       | 6485409: 11,7218 | 11.7218 | 2329001 | 10.7385 | 8814410  | 11.4449 | 19320865 | 7.5483 |        |        |        |        |
| 2                | 10145163                     | _       | 4869392          | 8.8010  | 1750514 | 8.0712  | 6619906  | 8.5955  | 16765069 | 6.5498 |        |        |        |        |
| 9                | 10025339                     |         |                  | 7.8732  | 1563726 | 7.2100  | 5919828  | 7.6865  | 15945167 | 6.2295 |        |        |        |        |
| 7                | 7759332                      |         | - 1              | 13,2293 | 2010468 | 9.2698  | 9329985  | 12.1143 | 17089317 | 6.6765 |        |        |        |        |
| 8                | 7589510                      |         | 5237818          | 9.4669  | 1386575 | 6.3932  | 6624393  | 8.6013  | 14213903 | 5.5531 |        |        |        |        |
| 6                | 7473056                      | 4.1762  | 4639626          | 8.3857  | 1213547 | 5.5954  | 5853173  | 7.5999  | 13326229 | 5.2063 |        |        |        |        |
| 2                | 2779200                      | 3.2296  | 8543826 15.4422  | 15.4422 | 1950833 | 8.9948  | 10494659 | 13.6265 | 16273859 | 6.3579 |        |        |        |        |
| = !              | 5658924                      | 3.1624  | 5931314 10.7203  | 10.7203 | 1255040 | 5.7867  | 7186354  | 9.3310  | 12845278 | 5.0184 |        |        |        |        |
| 12               | 5542514                      | 3.0973  | 5047539          | 9.1229  | 1039971 | 4.7951  | 6087510  | 7.9042  | 11630024 | 4.5437 |        |        |        |        |
| 13               | 7503293                      | 4.1931  | 4544337          | 8.2135  | 1654639 | 7.6292  | 6198976  | 8.0489  | 13702269 | 5.3532 |        |        |        |        |
| 14               | 6751677                      | 3.7730  | 2995465          | 5.4140  | 1113764 | 5.1353  | 4109229  | 5.3355  | 10860906 | 4.2432 |        |        |        |        |
| 15               | 6400965                      | 3.5770  | 2452241          | 4.4322  | 962811  | 4.4393  | 3415052  | 4.4342  | 9816017  | 3.8350 |        |        |        |        |
| 9 !              | 5681/41                      |         | 5045501          | 9.1193  | 1381253 | 6.3686  | 6426754  | 8.3447  | 12108495 | 4.7306 |        |        |        |        |
| 2 9              | 5220288                      |         | 3245886          | 5.8666  | 837487  | 3.8615  | 4083373  | 5.3020  | 9303661  | 3.6348 |        |        |        |        |
| 9 9              | 5051542                      |         | !                | 4.9408  | 699041  | 3.2231  | 3432694  | 4.4571  | 8484236  | 3.3146 |        |        |        |        |
| 2 6              | 4369364                      | _1      | . !              | 10.5272 | 1320694 | 6.0894  | 7145201  | 9.2775  | 11514565 | 4.4985 |        |        |        |        |
| 2 2              | 4095/38                      |         | 36/6631          | 6.6452  | 728857  | 3.3606  | 4405488  | 5.7202  | 8501226  | 3.3213 |        |        |        |        |
| 120              | 4034542                      | 2.2546  | 3211467          | 5.8044  | 602794  | 2.7793  | 3814261  | 4.9525  | 7848803  | 3.0664 |        |        |        |        |
| 77 6             | 5236477                      | 2.9263  | 2801265          | 5.0630  | 938583  | 4.3276  | 3739848  | 4.8559  | 8976325  | 3.5069 |        |        |        |        |
| 57               | 3948167                      | 2.2063  | 1/9//99          | 3.2494  | 686790  | 3.1666  | 2484589  | 3.2261  | 6432756  | 2.5132 |        |        |        |        |
| 50               | 3200444                      | 1.8366  | 13/3/60          | 2.4829  | 611941  | 2.8215  | 1985701  | 2.5783  | 5272145  | 2.0597 |        |        |        |        |
| C) c             | 4005458                      |         | 3002227          | 5.4262  | 781302  | 3.6024  | 3783529  | 4.9126  | 7788987  | 3.0430 |        |        |        |        |
| 200              | 3030149                      | $\perp$ | 18/6650          | 3.3919  | 499138  | 2.3014  | 2375788  | 3.0848  | 5465937  | 2.1354 |        |        |        |        |
| /7               | 2000230                      |         | 1415304          | 2.5580  | 407950  | 1.8810  | 1823254  | 2.3674  | 4508490  | 1.7614 |        |        |        |        |
| 0 00             | 3120339                      | 7407    | 341993/          | 6.1812  | 707193  | 3.2607  | 4127130  | 5.3588  | 7255489  | 2.8346 |        |        |        |        |
| 800              | 2534607                      | 1.4164  | 47,5077          | 3.9929  | 407637  | 1.8795  | 2616811  | 3.3977  | 5151418  | 2.0126 |        |        |        |        |
| 200              | 232/288                      | 1.300/  | 1/12918          | 3.0959  | 321184  | 1.4809  | 2034102  | 2.6411  | 4361690  | 1.7040 |        |        |        |        |
| 5 8              | 2316322                      | 1.2944  | 1761774          | 3.1842  | 469202  | 2.1634  | 2230976  | 2.8968  | 4547298  | 1.7766 |        |        |        |        |
| 35               | 1802/05                      | 1.0074  | 915815           | 1.6552  | 240635  | 1.1095  | 1156450  | 1.5016  | 2959155  | 1.1561 |        |        |        |        |
| 33               | 1369319                      | 0.7652  | 700721           | 1.2665  | 192086  | 0.8857  | 892807   | 1.1592  | 2262126  | 0.8838 |        |        |        |        |
| 3                | 1/93857                      | 1.0025  | 1974587          | 3.5689  | 415533  | 1.9159  | 2390120  | 3.1034  | 4183977  | 1.6346 |        |        |        |        |
| 35               | 1435813                      | 0.8024  | 1016141          | 1.8366  | 187199  | 0.8631  | 1203340  | 1.5624  | 2639153  | 1.0311 |        |        |        |        |
| 36               | 1120577                      | 0.6262  | 772788           | 1.3967  | 148437  | 0.6844  | 921225   | 1.1961  | 2041802  | 0.7977 |        |        |        |        |
| 37               | 1455377                      | 0.8133  | 2334958          | 4.2202  | 434824  | 2.0049  | 2769782  | 3.5964  | 4225159  | 1.6507 |        |        |        |        |
| 38               | 1160198                      | 0.6484  | 1333544          | 2.4103  | 171072  | 0.7888  | 1504616  | 1.9536  | 2664814  | 1.0411 |        |        |        |        |
| 66               | 92/966                       | 0.5347  | 1017693          | 1.8394  | 134306  | 0.6193  | 1151999  | 1.4958  | 2108755  | 0.8239 |        |        |        |        |
|                  |                              |         |                  |         |         |         |          |         |          |        |        |        |        |        |

Table 16: Espresso w/ Operating System, Espresso Data

|                              |            |             |                       |                  |                  | ) int(3) |          | 2        | 2       | 4       | 7        | 7        | 7        | വ        | 2        | 5        | 4        | 4        | 4        | 7        | 7         | - 10     | 2        | 2        | 4        | 4        | 4       | 6        | 8       | 6       | 0 1      | מע                                     | 4        | 4       | 4       | 6       | 7       | 7      | 5       | 4       | 4      | 4       | 4       |
|------------------------------|------------|-------------|-----------------------|------------------|------------------|----------|----------|----------|---------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|---------|----------|---------|---------|----------|----------------------------------------|----------|---------|---------|---------|---------|--------|---------|---------|--------|---------|---------|
|                              |            |             |                       |                  |                  | int(2)   | 0.1      |          | 21      |         |          |          |          | _        |          |          |          |          |          |          |           |          |          | _        |          |          |         |          |         |         |          | \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |          |         | _       | 01      |         |        | "       |         | •      |         |         |
|                              |            |             |                       |                  |                  | Int(1)   | 21308442 | 12371347 | 6010712 | 1597529 | 40018097 | 26875756 | 22718756 | 35729093 | 21809337 | 17321340 | 37931081 | 21906794 | 17112779 | 27582427 | 119034006 | 24394855 | 11342823 | 8322093  | 24844667 | 10264319 | 6907488 | 14067735 | 5894979 | 4065520 | 12534055 | 2992                                   | 12903929 | 4421810 | 2359353 | 4879822 | 2235781 | 678323 | 5262616 | 2180068 | 669729 | 6780669 | 2732429 |
|                              |            |             |                       |                  |                  | int(0)   | 3817682  | 2173271  | 1054237 | 508482  | 4085718  | 4380885  | 4230257  | 3319712  | 3842762  | 3873572  | 2594963  | 3166669  | 3626193  | 2695683  | 1018670   | 2267929  | 2316051  | 2064016  | 2077491  | 2276886  | 2523066 | 1768802  | 1197903 | 702820  | 1552607  | 754453                                 | 1541546  | 1233405 | 1025880 | 1081226 | 616444  | 226490 | 1041888 | 652221  | 280526 | 1011811 | 767670  |
|                              |            |             |                       |                  |                  | %        | 1.9887   | 1.1512   | 0.5592  | 0.1667  | 3.4908   | 2.4739   | 2.1330   | 3.0907   | 2.0303   | 1.6776   | 3.2076   | 1.9845   | 1.6415   | 2.3965   | 1 0010    | 2,1103   | 1.0811   | 0.8221   | 2.1309   | 0.9926   | 0.7464  | 1.2535   | 0.5614  | 0.3774  | 1.1150   | 0.4750                                 | 1.1433   | 0.4476  | 0.2679  | 0.4718  | 0.2258  | 0.0716 | 0.4990  | 0.2242  | 0.0752 | 0.6168  | 0.2770  |
|                              |            |             |                       |                  |                  | Total    | 25126129 | 14544623 | 7064954 | 2106015 | 44103822 | 31256648 | 26949020 | 39048810 | 25652104 | 21194917 | 40526048 | 25073467 | 20738976 | 302/811/ | 13784214  | 26662789 | 13658879 | 10386114 | 26922162 | 12541209 | 9430558 | 15836546 | 7092890 | 4768349 | 14086667 | 3751818                                | 1445479  | 5655219 | 3385237 | 5961057 | 2852232 | 904820 | 6304509 | 2832293 | 950259 | 7792484 | 3500103 |
|                              |            |             |                       |                  |                  | %        | 5.4461   | 3.2349   | 1.6612  | 0.5304  | 9.9249   | 7.2289   | 6.0957   | 9.7325   | 6.3709   | 5.1111   | 11.0064  | 9692.9   | 5.4235   | 6.9552   | 3 8476    | 6.6305   | 3.5030   | 2.8967   | 7.1840   | 3.3126   | 2.6103  | 4.2593   | 2.0426  | 1.4920  | 4.0809   | 11754                                  | 4.4465   | 1.7419  | 1.0615  | 1.9475  | 0.9206  | 0.2985 | 2.1075  | 0.9331  | 0.3142 | 2.6357  | 1.1658  |
|                              |            |             |                       |                  |                  | Data     | 15556687 | 9240445  | 4745068 | 1515041 | 28350115 | 20649221 | 17412120 | 27800439 | 18198409 | 14599686 | 31439435 | 19337190 | 15492065 | 1986/391 | 10990522  | 18939790 | 10006113 | 8274321  | 20520955 | 9462378  | 7456136 | 12166615 | 5834695 | 4261728 | 11050818 | 3357620                                | 12701191 | 4975775 | 3032098 | 5562862 | 2629747 | 852717 | 6019874 | 2665463 | 897592 | 7528883 | 3330015 |
|                              |            |             |                       |                  |                  | %        | 4.3607   | 2.9758   | 1.9817  | 0.4374  | 7.0312   | 5.4224   | 5.0106   | 6.1438   | 4.3555   | 3.8914   | 5.9783   | 3.8152   | 3.3053   | 5.2018   | 3.0593    | 4.4447   | 2.8908   | 2.2494   | 4.1469   | 2.4137   | 1.8413  | 3.8742   | 2.3758  | 1.8537  | 4 0044   | 1 2489                                 | 3.0971   | 1.4482  | 0.9589  | 1.4501  | 1.1025  | 0.4674 | 1.3799  | 0.8726  | 0.3758 | 1.6073  | 0.8761  |
|                              |            |             |                       |                  |                  | Write    | 2610631  | 1781552  | 1186363 | 261853  | 4209396  | 3246266  | 2999708  | 3678136  | 2607510  | 2329653  | 3579030  | 2284046  | 1978815  | 3114155  | 1831506   | 2660925  | 1730636  | 1346647  | 2482666  | 1445044  | 1102316 | 2319410  | 1422312 | 1109763 | 100000   | 747705                                 | 1854144  | 867005  | 574069  | 868144  | 620059  | 279850 | 826110  | 522381  | 224966 | 962236  | 524484  |
|                              |            |             |                       |                  |                  | %        | 5.7339   | 3,3036   | 1.5762  | 0.5550  | 10.6922  | 7.7079   | 6.3834   | 10.6840  | 6.9054   | 5.4345   | 12.3397  | 7.5530   | 5.9852   | 4 4040   | 4.4048    | 7.2101   | 3.6653   | 3.0683   | 7.9893   | 3.5510   | 2.8142  | 4.3614   | 1.9543  | 1.3960  | 4.2/31   | 1.1560                                 | 4.8043   | 1.8198  | 1.0887  | 2.0793  | 0.8724  | 0.2537 | 2.3004  | 0.9492  | 0.2979 | 2.9084  | 1.2426  |
| 977787899                    | 225779331  | 59867421    | 285646752             | 1263434651       |                  | Read     | 12946056 | 7458893  | 3558705 | 1253188 | 140719   | 17402955 |          |          | 15590899 | 270033   | - 1      | 17053144 | 13513250 | 10/53236 | 9159016   | 16278865 | 8275477  | 6927674  | 18038289 | 8017334  | 6353820 | 9847205  | 4412383 | 3151965 | 9022200  | 2609915                                | 10847047 | 4108770 | 2458029 | 4694718 | 1969718 | 572867 | 5193764 | 2143082 | 672626 | 6566647 | 2805531 |
| seous                        |            |             |                       |                  |                  | %        | 0.9787   | 0.5425   | 0.2373  | 0.0604  | 1.6112   | 1.0848   | 0.9754   | 1.1504   | 0.7623   | 0.6745   | 0.9293   | 0.5867   | 0.5366   | 1.0047   | 0.2857    | 0.7898   | 0.3736   | 0.2160   | 0.6547   | 0.3149   | 0.2019  | 0.3753   | 0.1287  | 9100.0  | 0.0040   | 0.0403                                 | 0.1784   | 0.0695  | 0.0361  | 0.0407  | 0.0228  | 0.0053 | 0.0291  | 0.0171  | 0.0054 | 0.0270  | 0.0174  |
| Total Instruction References | spt        | se          | Total Data References | Total References | Miss Statistics: | Inst     | 9569442  | 5304178  | 2319886 | 590974  | 15753707 | 10607427 | 9536900  | 11248371 | 7453695  | 6595231  | 9086613  | 5736277  | 5246911  | E0466E0  | 2793692   | 7722999  | 3652766  | 2111793  | 6401207  | 3078831  | 1974422 | 3669931  | 1258195 | 506621  | 2423043  | 394198                                 | 1744288  | 679444  | 353139  | 398195  | 222485  | 52103  | 284635  | 166830  | 52667  | 263601  | 170088  |
| tal Inst                     | Data Reads | Data writes | tal Da                | ital Rel         | ss Sta           | Cache    | 0        | -        | 2       | ဇ       | 4        | 2        | 9        | 7        | 8        | o !      | 0        | =        | 2 5      | 2 2      | 1 15      | 16       | 17       | 18       | 6        | 20       | 21      | 22       | 23      | 47      | 67       | 27                                     | 28       | 53      | 30      | 31      | 32      | 33     | ह       | 35      | 36     | 37      | 38      |

Table 17: Espresso w/ Operating System, Operating System Data

| Reference Statistics:        | lcs:         |          |         |        |                |                 |                 |                 |         |         |         |        |        |
|------------------------------|--------------|----------|---------|--------|----------------|-----------------|-----------------|-----------------|---------|---------|---------|--------|--------|
| Total Instruction References | eferences    | 29093428 |         |        |                |                 |                 |                 |         |         |         |        |        |
| Data Reads                   |              | 9107479  |         |        |                |                 |                 |                 |         |         |         |        |        |
| Data writes                  |              | 3585537  |         |        |                |                 |                 |                 |         |         |         |        |        |
| Total Data References        | nces         | 12693016 |         |        |                |                 |                 |                 |         |         |         |        |        |
| Total References             |              | 41786444 |         |        |                |                 |                 |                 |         |         |         |        |        |
| Miss Statistics:             |              |          |         |        |                |                 |                 |                 |         |         |         |        |        |
|                              |              | -        | %       | Write  | %              | Data            | %               | Total           | %       | int(0)  | int(1)  | int(2) | int(3) |
| 0 2266718                    |              |          | 1.1448  | 392197 | 10.9383        | 3228707         | 25.4369         | 5495425         | 13.1512 | 1677662 | 3817640 | 123    |        |
|                              |              | 1543092  | 16.9431 | 327692 |                | 1870784         | 14.7387         | 3151500         | 7.5419  | 978029  | 2173220 | 251    |        |
| 2 585                        | _            | 616465   | 6.7688  | 278932 | 7.7794         | 895397          | 7.0542          | 1481092         | 3.5444  | 426422  | 1054163 | 202    |        |
|                              |              | 401079   | 4.4038  | 166002 | 4.6298         | 567081          | 4.4677          | 751850          | 1.7993  | 242957  | 508385  | 508    |        |
|                              | 526 7.8764   | 2872197  | 31.5367 | 611117 | 17.0439        | 3483314         | 1               | 5774840         | -       | 1688931 | 4085660 | 249    |        |
|                              |              |          | 9.7279  | 560701 | 15.6379        | 3268162         | 25.7477         | 5715919 13.6789 | 13.6789 | 1334850 | 4380820 | 249    |        |
|                              | 794 8.1833   |          | 0.3828  | 510100 | 14.2266        | 3277210         | 25.8190         | 5658004 13.5403 | 13.5403 | 1427563 | 4230192 | 249    |        |
|                              | _            |          | 8.4353  | 461322 |                | 3961806         | 31.2125         | 5667095 13.5620 | 13.5620 | 2347296 | 3319676 | 123    |        |
|                              |              | 3019789  | 3.1572  | 421151 |                | 3440940         | 27.1089         | 5327941         | 12.7504 | 1485101 | 3842717 | 123    |        |
|                              | _            |          | 32.6901 | 395698 |                | 3372944 26.5732 | 26.5732         | 5249106 12,5617 | 12.5617 | 1375458 | 3873525 | 123    |        |
|                              | _            | 4148213  | 5.5473  | 578053 | 16.1218        | 4726266 37.2352 | 37.2352         | 6079160 14.5482 | 14.5482 | 3484155 | 2594945 | 09     |        |
|                              | _            | 3325923  | 36.5186 | 439048 | 12.2450        | 3764971 29.6618 | 29.6618         | 5292807 12.6663 | 12.6663 | 2126101 | 3166646 | 09     |        |
|                              | _            | 3402292  | 37.3571 | 413955 | 413955 11.5451 | 3816247 30.0657 | 30.0657         | 5361298         | 12.8302 | 1735070 | 3626168 | 09     |        |
|                              | _            |          | 3.1603  | 527410 | 527410 14.7094 | 2636730 20.7731 | 20.7731         | 4036102         | 9.6589  | 1340014 | 2695583 | 505    |        |
|                              | _            |          | 7.6971  | 371824 | 371824 10.3701 | 1983580 15.6273 | 15.6273         | 3131165         | 7.4933  | 787629  | 2343031 | 505    |        |
|                              | _            |          | 4.5679  | 296752 |                | 1623517 12.7906 | 12.7906         | 2638681         | 6.3147  | 719572  | 1918604 | 505    |        |
|                              |              |          | 0.5108  | 403381 | -              | 3182144 25.0700 | 25.0700         | 4236492         | 10.1384 | 1968362 | 2267879 | 251    |        |
|                              | _            |          | 0.2958  | 320615 |                | 2169053         | 2169053 17.0886 | 3056767         | 7.3152  | 740516  | 2316000 | 251    |        |
|                              | 4            | 1714211  | 8.8220  | 267809 | $\rightarrow$  | 1982020 15.6150 | 15.6150         | 2858645         | 6.8411  | 794429  | 2063965 | 251    |        |
|                              |              | 3057520  | 33.5715 | 500076 |                | 3557596 28.0280 | 28.0280         | 4419127         | 10.5755 | 2341535 | 2077468 | 124    |        |
|                              | _            |          | 6.9079  | 337074 | _1             | 2787702 21.9625 | 21.9625         | 3542434         | 8,4775  | 1265454 | 2276856 | 124    |        |
|                              |              | 2489201  | 7.3314  | 305893 |                | 2795094 22.0207 | 22.0207         | 3623978         | 8.6726  | 1100822 | 2523032 | 124    |        |
| 22 830                       | _            | 1276991  | 14.0213 | 448007 | $\Box$         | 1724998 13.5901 | 13.5901         | 2555440         | 6.1155  | 785901  | 1768524 | 1015   |        |
|                              |              | 885869   | 9.7268  | 276123 |                | 1161992         | _1              | 1732520         | 4.1461  | 533841  | 1197663 | 1016   |        |
|                              | 4            | 542059   | 5.9518  | 158140 | _1             | 700199          | 5.5164          | 1112456         | 2.6622  | 408778  | 702663  | 1015   |        |
| 25 614                       |              | 1277627  | 14.0283 | 350210 |                | 1627837         | -               | 2241988         | 5.3653  | 688984  | 1552497 | 507    |        |
|                              |              | 976416   | 10.7210 | 263573 | 1              | 1239989         |                 | 1696759         | 4.0605  | 501592  | 1194660 | 202    |        |
|                              | 4            | 694627   | 7.6270  | 143389 |                | 838016          |                 | 1143372         | 2.7362  | 388476  | 754389  | 507    |        |
|                              | 1            |          | 16.0743 | 350860 | _              | 1814824         | 14.2978         | 2308883         | 5.5254  | 767123  | 1541508 | 252    |        |
| 29 3/5                       | 1            |          | 5.2548  | 284380 | 7.9313         | 1673708 13.1861 | 13.1861         | 2049488         | 4.9047  | 815874  | 1233362 | 252    |        |
|                              |              |          | 2.4386  | 168923 | 4.7112         | 1301767         | 7               | 1547451         | 3.7032  | 521355  | 1025844 | 252    |        |
|                              | _            | 935544   | 0.2723  | 295691 |                | 1231235         | - 1             | 1633047         | 3.9081  | 551136  | 1080896 | 1015   |        |
|                              | _            | 406406   | 4.4623  | 222706 | _              | 629112          |                 | 871193          | 2.0849  | 254013  | 616163  | 1017   |        |
|                              | _            | 225160   | 2.4723  | 76892  |                | 302052          | 2.3797          | 425291          | 1.0178  | 198046  | 226228  | 1017   |        |
|                              | 1            | 1136616  | 12.4800 | 296991 | 8.2830         | 1433607         | 11.2945         | 1717455         | .4.1101 | 675185  | 1041763 | 507    |        |
|                              | _            | 473331   | 5.1972  | 251637 | 7.0181         | 724968          | 5.7116          | 904028          | 2.1634  | 251409  | 652111  | 508    |        |
|                              | _            | 289524   | 3.1790  | 96182  | - 1            | 385706          | 3,0387          | 484917          | 1.1605  | 203974  | 280435  | 508    |        |
|                              |              | 1422437  | 15.6183 | 255729 | - 1            | 1678166         | 13.2212         | 1926816         | 4.6111  | 914797  | 1011767 | 252    |        |
| 38 172                       | 4            | 925889   | 10.1662 | 224144 |                | 1150033         |                 | 1322648         | 3.1653  | 554758  | 767638  | 252    |        |
|                              | 89232 0.3067 | 568138   | 6.2381  | 115729 | 3.2277         | 683867          | 5.3877          | 773099          | 1.8501  | 345026  | 427821  | 252    | -      |
|                              |              |          |         |        |                |                 |                 |                 |         |         |         |        |        |

Table 18: Espresso w/ Operating System, Combined Data

|                  |                              | -      |            |         | 1       |        | 4        |         |          |        |        |        |        |        |
|------------------|------------------------------|--------|------------|---------|---------|--------|----------|---------|----------|--------|--------|--------|--------|--------|
| Total Instr      | Total Instruction References | ences  | 1006881327 |         |         |        |          |         |          |        |        |        |        |        |
| Data Reads       | ş                            |        | 234886810  |         |         |        |          |         |          |        |        |        |        |        |
| Data writes      | s                            |        | 63452958   |         |         |        |          |         |          |        |        |        |        |        |
| Total Data       | Total Data References        |        | 298339768  |         |         |        |          |         |          |        |        |        |        |        |
| Total References | rences                       |        | 1305221095 |         |         |        |          |         |          |        |        |        |        |        |
| Miss Statistics: | stics:                       |        |            |         |         |        |          |         |          |        |        |        |        |        |
| Cache            | Inst                         | %      | Read       | %       | Write   | %      | Data     | %       | Total    | %      | int(0) | int(1) | int(2) | int(3) |
| 0                | 11836160                     | 1.1755 | 15782566   | 6.7192  | 3002828 | 4.7324 | 18785394 | 6.2966  | 30621554 | 2.3461 |        |        |        |        |
| -                | 6584894                      | 0.6540 |            | 3.8325  | 2109244 | 3.3241 | 11111229 | 3.7244  | 17696123 | 1.3558 |        |        |        |        |
| 2                | 2905581                      | 0.2886 | 4          | 1.7775  | 1465295 | 2.3093 | 5640465  | 1.8906  | 8546046  | 0.6548 |        |        |        |        |
| 3                | 775743                       | 0.0770 | 1654267    | 0.7043  | 427855  | 0.6743 | 2082122  | 0.6979  | 2857865  | 0.2190 |        |        |        |        |
| 4                | 18045233                     | 1.7922 | 27012916   | 11.5004 | 4820513 | 7.5970 | 31833429 | 10.6702 | 49878662 | 3.8215 |        |        |        |        |
| 2                | 13055184                     | 1.2966 | 20110416   | 8.5617  | 3806967 | 5.9997 | 23917383 | 8.0168  | 36972567 | 2.8327 |        |        |        |        |
| 9                | 11917694                     | 1.1836 |            | 7.3140  | 3509808 | 5.5314 | 20689330 | 6.9348  | 32607024 | 2.4982 |        |        |        |        |
| 7                | 12953660                     | 1,2865 |            | 11.7600 | 4139458 | 6.5237 | 31762245 | 10.6463 | 44715905 | 3.4259 |        |        |        |        |
| 8                | 9340696                      | 0.9277 |            | 7.9233  | 3028661 | 4.7731 | 21639349 | 7.2533  | 30980045 | 2.3735 |        |        |        |        |
| 6                | 8471393                      | 0.8413 |            | 6.4913  | 2725351 | 4.2951 | 17972630 | 6.0242  | 26444023 | 2.0260 |        |        |        |        |
| 9                | 10439507                     | 1.0368 |            |         | 4157083 | 6.5514 | 36165701 | 12.1223 | 46605208 | 3.5707 |        |        |        |        |
| =                | 7264113                      | 0.7214 |            | 8.6761  | 2723094 | 4.2915 | 23102161 | 7.7436  | 30366274 | 2.3265 |        |        |        |        |
| 12               | 6791962                      | 0.6746 |            | 7.2016  | 2392770 | 3.7709 | 19308312 | 6.4719  | 26100274 | 1.9997 |        |        |        |        |
| 13               | 11810098                     | 1.1729 |            | 8.0305  | 3641565 | 5.7390 | 22504121 | 7.5431  | 34314219 | 2.6290 |        |        |        |        |
| 14               | 6164237                      |        |            | 4.9972  | 2606285 | 4.1074 | 14344053 | 4.8080  | 20508290 | 1,5713 |        |        |        |        |
| 15               | 3808856                      |        | 10485781   | 4.4642  | 2128258 | 3.3541 | 12614039 | 4.2281  | 16422895 | 1.2582 |        |        |        |        |
| 16               | 8777347                      | 0.8717 | 19057628   | 8.1135  | 3064306 | 4.8293 | 22121934 | 7.4150  | 30899281 | 2.3674 |        |        |        |        |
| 17               | 4540480                      | 0.4509 |            | 4.3101  | 2051251 | 3.2327 | 12175166 | 4.0810  | 16715646 | 1.2807 |        |        |        |        |
| 18               | 2988418                      | 0.2968 |            | 3.6792  | 1614456 | 2.5443 | 10256341 | 3.4378  | 13244759 | 1.0148 |        |        |        |        |
| 19               | 7262738                      | 0.7213 |            | 8.9813  | 2982742 | 4.7007 | 24078551 | 8.0708  | 31341289 | 2.4012 |        |        |        |        |
| 50               | 3833563                      | 0.3807 | _          | 4.4566  | 1782118 | 2.8086 | 12250080 | 4.1061  | 16083643 |        |        |        |        |        |
| 21               | 2803306                      | 0.2784 | ~          | 3.7648  | 1408209 | 2.2193 | 10251230 |         | 13054536 | 1.0002 |        |        |        |        |
| 22               | 4500373                      | 0.4470 |            | 4.7360  | 2767417 | 4.3614 | 13891613 |         | 18391986 |        |        |        |        |        |
| 23               | 1828723                      |        |            | 2.2557  | 1698435 | 2.6767 | 6996687  | 2.3452  | 8825410  |        |        |        |        |        |
| 24               | 918878                       |        |            | 1.5727  | 1267903 | 1.9982 | 4961927  | 1.6632  | 5880805  | 0.4506 |        |        |        |        |
| 25               | 3044000                      | 0.3023 |            | 4.6532  | 2354828 | 3.7111 | 13284655 | 4.4529  | 16328655 |        |        |        |        |        |
| 56               | 1349573                      | 0.1340 |            | 2.1350  | 1343612 | 2.1175 | 6358441  | 2.1313  | 7708014  | 0.5906 |        |        |        |        |
| 27               | 699554                       | 0.0695 |            | 1.4069  | 891094  | 1.4043 | 4195636  | 1.4063  | 4895190  |        |        |        |        |        |
| 28               | 2238347                      | 0.2223 |            |         | 2205004 | 3.4750 | 14516015 | 4.8656  | 16754362 | 1.2836 |        |        |        |        |
| 53               | 1055224                      | 0.1048 |            |         | 1151385 | 1.8145 | 6649483  |         | 7704707  |        |        |        |        |        |
| 30               | 598823                       | 0.0595 |            | 1.5288  | 742992  | 1.1709 | 4333865  | 1       |          |        |        |        |        |        |
| 31               | 800007                       | 0.0795 |            | 2.3970  | 1163835 | 1.8342 | 6794097  | _       |          |        |        |        |        |        |
| 32               | 464566                       | 0.0461 | .,         | 1.0116  | 882735  | 1.3912 | 3258859  | 1.0923  | 3723425  | 0.2853 |        |        |        |        |
| 33               | 175342                       | 0.0174 |            | 0.3397  | 356742  | 0.5622 | 1154769  |         | 1330111  | 0.1019 |        |        |        |        |
| 용                | 568483                       | 0.0565 |            |         | 1123101 | 1.7700 | 7453481  | 2.4983  | 8021964  | 0.6146 |        |        |        |        |
| 32               | 345890                       | 0.0344 |            | 1.1139  | 774018  | 1.2198 | 3390431  | 1.1364  | 3736321  | 0.2863 |        |        |        |        |
| 36               | 151878                       | 0.0151 |            | 0.4096  | 321148  | 0.5061 | 1283298  | 0.4301  | 1435176  | 0.1100 |        |        |        |        |
| 37               | 512251                       | 0.0509 |            |         | 1217965 | 1.9195 | 9207049  | - 1     | 9719300  |        |        |        |        |        |
| 38               | 342703                       | 0.0340 | 6          |         | 748628  | 1.1798 | 4480048  | 1       | 4822751  |        | -      |        |        |        |
| 20               | 148200                       | 0.0117 | 1509227    | 0.6425  | 333886  | 0.5262 | 1843113  | 0.6178  | 1001/12  | 0 1526 |        |        |        |        |

Table 19: Alvinn w/ Operating System, Alvinn Data

| struction Helerers<br>sads<br>ites<br>ites<br>ites<br>eferences<br>eferences<br>attistics:<br>inst | ses    | 5233222045 |         |         |        |           |        |           |        |          |           |        |        |
|----------------------------------------------------------------------------------------------------|--------|------------|---------|---------|--------|-----------|--------|-----------|--------|----------|-----------|--------|--------|
|                                                                                                    |        |            |         | 1       |        |           | -      |           |        |          |           |        | -      |
| 1 1 1 1 1                                                                                          |        | 1415013630 |         |         |        |           |        |           |        |          |           |        |        |
|                                                                                                    |        | 487428474  |         |         |        |           |        |           |        |          |           |        |        |
| 716                                                                                                |        | 1902442104 |         |         |        |           | -      |           |        |          |           |        |        |
| 7917                                                                                               |        | 7135664149 |         |         |        |           |        |           |        |          |           |        |        |
| inst<br>11777917                                                                                   |        |            |         |         |        |           |        |           |        |          |           |        |        |
| 11777917                                                                                           | %      | Read       | %       | Write   | %      | Data      | %      | Total     | %      | int(0)   | int(1)    | int(2) | int(3) |
|                                                                                                    | 0.2251 | 62467434   | 4.4146  | 1108083 | 0.2273 | 63575517  | 3.3418 | 75353434  | 1.0560 | 24787556 | 50565874  | 4      |        |
| 6578977                                                                                            | 0.1257 |            | 2.9944  | 797167  | 0.1635 | 43168509  | 2.2691 | 49747486  | 0.6972 | 13896363 | 35851119  | 4      |        |
| 1924125                                                                                            | 0.0368 |            | 2.4083  | 435766  | 0.0894 | 34513250  | 1.8142 | 36437375  | 0.5106 | 6207819  | 30229552  | 4      |        |
| 725741                                                                                             | 0.0139 |            | 1.1405  | 199569  | 0.0409 | 16337980  | 0.8588 | 17063721  | 0.2391 | 2674896  | 14388822  | 8      |        |
|                                                                                                    | 0.2843 |            | 10.3299 | 2185383 | 0.4483 | 148355456 | 7.7982 | 163233817 | 2.2876 | 22531639 | 140702172 | 9      |        |
| 14513801                                                                                           | 0.2773 | 123772438  | 8.7471  | 1162620 | 0.2385 | 124935058 | 6.5671 | 139448859 | 1.9543 | 23385504 | 116063349 | 9      |        |
| 14843070                                                                                           | 0.2836 |            | 8.2824  | 1107420 | 0.2272 | 118304736 | 6.2186 | 133147806 | 1.8659 | 21158637 | 111989163 | 9      |        |
| 11171914                                                                                           | 0.2135 |            | 8.3346  | 2430479 | 0.4986 | 120365678 | 6.3269 | 131537592 | 1.8434 | 17634903 | 113902685 | 4      |        |
|                                                                                                    | 0.2095 | 73735639   | 5.2109  | 1235948 | 0.2536 | 74971587  | 3.9408 | 85933584  | 1.2043 | 19632409 | 66301171  | 4      |        |
| 10737140                                                                                           | 0.2052 | 67         | 4.7506  | 833766  | 0.1711 | 68054834  | 3.5772 | 78791974  | 1.1042 | 18150035 | 60641935  | 4      |        |
| 8489032                                                                                            | 0.1622 |            | 9.3449  | 2794657 | 0.5733 | 135026924 | 7.0976 | 143515956 | 2.0112 | 13359982 | 130155971 | 8      |        |
| 7653268                                                                                            | 0.1462 |            | 3.9186  | 1201134 | 0.2464 | 56649929  | 2.9777 | 64303197  | 0.9012 | 15097123 | 49206071  | 8      |        |
| 7271857                                                                                            | 0.1390 | 50151550   | 3.5442  | 1056811 | 0.2168 | 51208361  | 2.6917 | 58480218  | 0.8195 | 16739279 | 41740936  | e      |        |
| 9680485                                                                                            | 0.1850 | 110011838  | 7.7746  | 1500417 | 0.3078 | 111512255 | 5.8615 | 121192740 | 1.6984 | 17432768 | 103759966 | 9      |        |
| 7859999                                                                                            | 0.1502 | 29202026   | 6.8565  | 943596  | 0.1936 | 97964163  | 5.1494 | 105824162 | 1.4830 | 15629299 | 90194857  | 9      |        |
| 4494747                                                                                            | 0.0859 |            | 7.6468  | 886558  | 0.1819 | 109089211 | 5.7342 | 113583958 | 1.5918 | 12606336 | 100977616 | 9      |        |
| 7234715                                                                                            | 0.1382 | 80266622   | 5.6725  | 1685488 | 0.3458 | 81952110  | 4.3077 | 89186825  | 1.2499 | 13721219 | 75465602  | 4      |        |
| 6748159                                                                                            | 0.1289 | i          | 3.9137  | 812097  | 0.1666 | 56191850  | 2.9537 | 62940009  | 0.8820 | 13962924 | 48977081  | 4      |        |
| 5876298                                                                                            | 0.1123 |            | 4.2488  | 659410  | 0.1353 | 60780599  | 3.1949 | 66656897  | 0.9341 | 11563076 | 55093817  | 4      |        |
| 5562092                                                                                            | 0.1063 | 81058358   | - 1     | 1758443 | 0.3608 | 82816801  | 4.3532 | 88378893  | 1.2386 | 11522410 | 76856480  | 9      |        |
| 5186282                                                                                            | 0.0991 | 35669431   | - 1     | 686790  | 0.1409 | 36356221  | 1.9110 | 41542503  | 0.5822 | 12386569 | 29155931  | 8      |        |
| 5019936                                                                                            | 0.0959 | 37390873   |         | 581716  | 0.1193 | 37972589  | 1.9960 | 42992525  | 0.6025 | 11878686 | 31113836  | 3      |        |
| _                                                                                                  | 0.1279 | 85109423   | - 1     | 1266602 | 0.2599 | 86376025  | 4.5403 | 93071089  | 1.3043 | 12406282 | 80664799  | 8      |        |
| 3300869                                                                                            | 0.0631 | 67410120   | - 1     | 646562  | 0.1326 | 68056682  | 3.5773 | 71357551  | 1.0000 | 8232595  | 63124950  | 9      |        |
| 1069862                                                                                            | 0.0204 | 63641732   | - 1     | 412744  | 0.0847 | 64054476  | 3.3670 | 65124338  | 0.9127 | 4441509  | 60682823  | 9      |        |
| 5215696                                                                                            | 0.0997 | 53909781   | - 1     | 1416145 | 0.2905 | 55325926  | 2.9082 | 60541622  | 0.8484 | 10102977 | 50438641  | 4      |        |
| 3261854                                                                                            | 0.0623 | 36387738   | - 1     | 607147  | 0.1246 | 36994885  | 1.9446 | 40256739  | 0.5642 | 7583898  | 32672837  | 4      |        |
| 1047012                                                                                            | 0.0200 | 34017385   | - 1     | 371287  | 0.0762 | 34388672  | 1.8076 | 35435684  | 0.4966 | 4156254  | 31279426  | 4      |        |
| 3986302                                                                                            | 0.0762 | 45432561   | 3.2108  | 1569047 | 0.3219 | 47001608  | 2.4706 | 50987910  | 0.7146 | 8990014  | 41997893  | 3      |        |
| 2542594                                                                                            | 0.0486 | 21084869   | 1.4901  | 497351  | 0.1020 | 21582220  | 1.1344 | 24124814  | 0.3381 | 6888218  | 17236593  | 3      |        |
| 1709106                                                                                            | 0.0327 |            | 1.3891  | 392097  | 0.0804 | 20047925  | 1.0538 | 21757031  | 0.3049 | 5185574  | 16571454  | 3      |        |
| 2467927                                                                                            | 0.0472 |            | 2.8582  | 854394  | 0.1753 | 41297637  | 2.1708 | 43765564  | 0.6133 | 6673606  | 37091941  | 17     |        |
| 537486                                                                                             | 0.0103 | 32125862   | 2.2704  | 411882  | 0.0845 | 32537744  | 1.7103 | 33075230  | 0.4635 | 3213824  | 29861401  | 5      |        |
| 20180                                                                                              | 0.0004 | 30338985   | 2.1441  | 173243  | 0.0355 | 30512225  | 1.6038 | 30532405  | 0.4279 | 1407103  | 29125298  | 4      |        |
| 2052415                                                                                            | 0.0392 | 28461976   | 2.0114  | 811917  | 0.1666 | 29273893  | 1.5388 | 31326308  | 0.4390 | 5929902  | 25396402  | 4      |        |
| 784018                                                                                             | 0.0150 | 17141520   | 1.2114  | 445411  | 0.0914 | 17586931  | 0.9244 | 18370949  | 0.2575 | 2901456  | 15469490  | 8      |        |
| 140147                                                                                             | 0.0027 | 15773499   | 1.1147  | 245530  | 0.0504 | 16019029  | 0.8420 | 16159176  | 0.2265 | 1471488  | 14687685  | 3      |        |
| 1544996                                                                                            | 0.0295 |            | 2.5315  | 1064827 | 0.2185 | 36885882  | 1.9389 | 38430878  | 0.5386 | 5140263  | 33290612  | 3      |        |
| 38 867060                                                                                          | 0.0166 | -          | 0.7327  | 457435  | 0.0938 | 10824788  | 0.5690 | 11691848  | 0.1639 | 3328570  | 8363275   | 3      |        |
| 203514                                                                                             | 0.0039 | 8813128    | 0.6228  | 259603  | 0.0533 | 9072731   | 0.4769 | 9276245   | 0.1300 | 1922891  | 7353351   | 3      |        |

Table 20: Alvinn w/ Operating System, Operating System Data

| neteretice organismos.       |                 | -      | -                |         |         |         |                  | ~       |                  | _       | -        |          |        |        |
|------------------------------|-----------------|--------|------------------|---------|---------|---------|------------------|---------|------------------|---------|----------|----------|--------|--------|
| Total Instruction References | References      |        | 197365478        |         |         |         |                  |         |                  |         |          |          |        |        |
| Data Reads                   |                 |        | 60413211         |         |         |         |                  |         |                  |         |          |          |        |        |
| Data writes                  |                 |        | 25986851         |         |         |         |                  |         |                  |         |          |          |        |        |
| Total Data References        | rences          |        | 86400062         |         |         |         |                  |         |                  |         |          |          |        |        |
| Total References             | S               | CA     | 283765540        |         |         |         |                  |         |                  |         |          |          |        |        |
| Miss Statistics:             |                 |        |                  |         |         |         |                  |         |                  |         |          |          |        |        |
| Cache Inst                   | %               |        | Read             | %       | Write   | %       | Data             | %       | Total            | %       | int(0)   | int(1)   | int(2) | int(3) |
| 0 147                        | 14733992 7.4653 | 653    | 17111983         | 28.3249 | 2467419 | 9.4949  | 19579402         | 22.6613 | 34313394         | 12.0922 | 9525760  | 24787510 | 124    |        |
| 1 79                         | 7955988 4.0311  | 311    | 9511514 15.7441  | 15.7441 | 1506417 | 5.7968  | 11017931         | 12.7522 | 18973919         | 6.6865  | 5077360  | 13896307 | 252    |        |
| 2 36                         | 3629964 1.8392  | 392    | 3615836          | 5.9852  | 818052  | 3.1479  | 4433888          | 5.1318  | 8063852          | 2.8417  | 1855597  | 6207747  | 508    |        |
|                              | 1352554 0.6853  | 853    | 1923959          | 3.1847  | 259683  | 0.9993  | 2183642          | 2.5274  | 3536196          | 1.2462  | 860876   | 2674811  | 209    |        |
|                              | 6066645 3.0738  | 738    | 21068805         | 34.8745 | 5049067 | 19.4293 | 26117872         | 30.2290 | 32184517         | 11.3419 | 9652687  | 22531580 | 250    |        |
|                              | 5027332 2.5472  | 472    | 19994443 33.0961 | 33.0961 | 4642568 | 17.8651 | 24637011 28.5150 | 28.5150 | 29664343         | 10.4538 | 6278659  | 23385434 | 250    |        |
|                              | 3384002 1.71    | 1.7146 | 19299145         | 31.9452 | 4462279 | 17.1713 | 23761424         |         | 27145426         | 9.5661  | 5986612  | 21158564 | 250    |        |
| 7 52                         | 5239231 2.6546  | 546    |                  | 39.4742 | 3671018 | 14.1264 | 27518652         | 31.8503 | 32757883 11.5440 | 11.5440 | 15122893 | 17634866 | 124    |        |
| 8 46                         | 4643111 2.35    | 2.3525 | 20191087         | 33.4216 | 3236386 | 12.4539 | 23427473         | 27.1151 | 28070584         | 9.8922  | 8438096  | 19632364 | 124    |        |
| 9 29                         | 2939946 1.4896  | 968    | 19254334         | 31.8711 | 3159903 | 12.1596 | 22414237         | 25.9424 | 25354183         | 8.9349  | 7204076  | 18149983 | 124    |        |
| 10 52                        | 5265285 2.66    | 2.6678 | 27647107         | 45.7633 | 3935017 | 15.1423 | 31582124         | 36.5534 | 36847409         | 12.9852 | 23487388 | 13359960 | 61     |        |
| 11 41                        | 4184315 2.1201  | 201    | 22136601 36.6420 | 36.6420 | 2868716 | 11.0391 | 25005317         | 28.9413 | 29189632         | 10.2865 | 14092472 | 15097099 | 19     |        |
|                              | 3301257 1.6727  | 727    | 22629919         | 37.4586 | 2749314 | 10.5796 | 25379233         |         | 28680490         | 10.1071 | 11941180 | 16739249 | 19     |        |
| 13 32                        | 3297438 1.6707  | 707    | 16767809         | 27.7552 | 3580919 | 13.7797 | 20348728         | 23.5518 | 23646166         | 8.3330  | 6212976  | 17432684 | 909    |        |
| 14 20                        | 2009299 1.0181  | 181    | 13487383         | 22.3252 | 3075514 | 11.8349 | 16562897         | 19.1700 | 18572196         | 6.5449  | 2942471  | 15629219 | 909    |        |
| 15 17                        | 1767644 0.8956  | 926    | 10949622         | 18.1245 | 2667886 | 10.2663 | 13617508 15.7610 | 15.7610 | 15385152         | 5.4218  | 2778395  | 12606251 | 909    |        |
|                              | 2383453 1.20    | 1.2076 | 19885407         | 32.9157 | 2558116 | 9.8439  | 22443523         | 25.9763 | 24826976         | 8.7491  | 11105554 | 13721170 | 252    |        |
| 17 16                        | 1603663 0.8125  | 125    | 13387377         | 22.1597 | 2255217 | 8.6783  | 15642594         | 18,1048 | 17246257         | 9//0.9  | 3283133  | 13962872 | 252    |        |
| 18 15                        |                 | 931    | 11752256 19.4531 | 19.4531 | 1905488 | 7.3325  | 13657744         | 15.8076 | 15223047         |         | 3659777  | 1156018  | 252    |        |
|                              | 1976369 1.0014  | 014    | 20791098 34.4148 | 34.4148 | 2648988 | 10.1936 | 23440086 27.1297 | 27.1297 | 25416455         | 8.9569  | 13893950 | 11522380 | 125    |        |
|                              |                 | 0.6633 | 16511427         | 27.3308 | 1666971 | 6.4147  | 18178398 21.0398 | 21.0398 | 19487618         |         | 7100955  | 12386538 | 125    |        |
|                              | 1298598 0.65    | 0.6580 | 15693384 25.9767 | 25.9767 | 1507333 | 5.8004  | 17200717         | 19.9082 | 18499315         | 6.5192  | 6620544  | 11878646 | 125    |        |
| 22 25                        |                 | 101    | 10587061 17.5244 | 17.5244 | 2446141 | 9.4130  | 13033202 15.0847 | 15.0847 | 15618932         |         | 3211826  | 12406090 | 1016   |        |
|                              | _               | 187    | 7521837 12.4506  | 12.4506 | 1654138 | 6.3653  | 9175975          | _1      | 10002394         |         | 1768930  | 8232446  | 1018   |        |
|                              |                 | 0.2870 | 3989905          |         | 1026095 | 3.9485  | 5016000          |         | 5582490          |         | 1140075  | 4441397  | 1018   |        |
|                              | 1836614 0.93    | 9026.0 | 9761843          | 16.1585 | 1814493 | 6.9824  | 11576336         | 13.3985 | 13412950         |         | 3309544  | 10102898 | 508    |        |
|                              | _               | 0.3788 |                  | 7       | 1245750 | 4.7938  | 8950102          | _       | 9697791          |         | 2113454  | 7583829  | 508    |        |
|                              | 564687 0.2861   | 861    | 4194660          | 6.9433  | 791513  | 3.0458  | 4986173          | 5.7710  | 5550860          | 1.9561  | 1394163  | 4156189  | 508    |        |
| •                            | 529552 0.77     | 0.7750 | 10302378         | 17.0532 | 1334490 | 5.1353  | 11636868         | 13.4686 | 13166420         | 4.6399  | 4176193  | 8989974  | 253    |        |
|                              | 624136 0.3162   | 162    | 9957029 16,4815  | 16.4815 | 807181  | 3.1061  | 10764210         | 12.4586 | 11388346         | 4.0133  | 4499917  | 6888176  | 253    |        |
|                              | 522451 0.2647   | 647    | 6878876 11.3864  | 11.3864 | 446648  | 1.7187  | 7325524          | 8.4786  | 7847975          | 2.7657  | 2662190  | 5185532  | 253    |        |
|                              | 1452006 0.7357  | 357    | 6871424 11.3740  | 11.3740 | 1235969 | 4.7561  | 8107393          | 9.3835  | 9559399          | 3.3688  | 2885035  | 6673357  | 1007   |        |
|                              | 351236 0.17     | 0.1780 | 3045084          | 5.0404  | 614984  | 2.3665  | 3660068          | 4.2362  | 4011304          | 1.4136  | 796646   | 2312639  | 1019   |        |
| 33                           | 82589 0.0       | 0.0418 | 1395305          | 2.3096  | 297155  | 1.1435  | 1692460          | 1.9589  | 1775049          | 0.6255  | 367079   | 1406950  | 1020   |        |
|                              | 1241556 0.6291  | 1591   | 7733697          | 12.8013 | 918076  | 3.5328  | 8651773          | 7       | 9893329          | 3.4864  | 3963011  | 5929810  | 508    |        |
|                              | 287963 0.14     | 0.1459 | 3116622          | 5.1588  | 412029  | 1,5855  | 3528651          | 4.0841  | 3816614          | 1.3450  | 914720   | 2901385  | 509    |        |
| 36 1                         | 105590 0.0      | 0.0535 | 1817606          | 3.0086  | 187240  | 0.7205  | 2004846          | 2.3204  | 2110436          | 0.7437  | 638498   | 1471429  | 509    |        |
|                              | 978247 0.4957   | 1957   | 9773521          | 16.1778 | 799544  | 3.0767  | 10573065         | 12.2373 | 11551312         | 4.0707  | 6410831  | 5140228  | 253    |        |
|                              | 299892 0.1      | 0.1519 | 5876335          | 9.7269  | 351855  | 13540   | 6228190          | 7 2085  | 6528082          | 23005   | 3199290  | 3328539  | 253    |        |
|                              |                 |        |                  |         |         | 2000    | 00100            |         | 00000            |         | *****    | 200000   |        |        |

Table 21: Alvinn w/ Operating System, Combined Data

| Reference Statistics:        | :So       |            |         |         |        |           |        |           |        |        |        |        |        |
|------------------------------|-----------|------------|---------|---------|--------|-----------|--------|-----------|--------|--------|--------|--------|--------|
| Total Instruction References | erences   | 5430587523 |         |         |        |           |        |           |        |        |        |        |        |
| Data Reads                   |           | 1475426841 |         |         |        |           |        |           |        |        |        |        |        |
| Data writes                  |           | 513415325  |         |         |        |           |        |           |        |        |        |        |        |
| Total Data References        | seo       | 1988842166 |         |         |        |           |        |           |        |        |        |        |        |
| Total References             |           | 7419429689 |         |         |        |           |        |           |        |        |        |        |        |
| Miss Statistics:             |           |            |         |         |        |           |        |           |        |        |        |        |        |
|                              | _         |            |         | Write   | %      | Data      | %      | Total     | %      | int(0) | int(1) | int(2) | int/31 |
| 0 26511909                   | _         |            | ı       | 3575502 | 0.6964 | 83154919  | 4.1811 | 109666828 | 1.4781 |        |        | (2)    | (6)    |
|                              | _         |            |         | 2303584 | 0.4487 | 54186440  | 2.7245 | 68721405  | 0.9262 |        |        |        |        |
|                              | _         |            | - !     | 1253818 | 0.2442 | 38947138  | 1.9583 | 44501227  | 0.5998 |        |        |        |        |
| 3 2078295                    | $\perp$   |            |         | 459252  | 0.0895 | 18521622  | 0.9313 | 20599917  | 0.2776 |        |        |        |        |
|                              |           |            | 11.3349 | 7234450 | 1.4091 | 174473328 | 8.7726 | 195418334 | 2.6339 |        |        |        |        |
| 5 19541133                   |           |            | - 1     | 5805188 | 1.1307 | 149572069 | 7.5206 | 169113202 | 2.2793 |        |        |        |        |
|                              | _1        | _          | 9.2513  | 5569699 | 1.0848 | 142066160 | 7.1432 | 160293232 | 2.1605 |        |        |        |        |
|                              |           |            | Ī       | 6101497 | 1.1884 | 147884330 | 7.4357 | 164295475 | 2.2144 |        |        |        |        |
| 8 15605108                   |           |            |         | 4472334 | 0.8711 | 98399060  | 4.9476 | 114004168 | 1.5366 |        |        |        |        |
|                              |           |            |         | 3993669 | 0.7779 | 90469071  | 4.5488 | 104146157 | 1.4037 |        |        |        |        |
|                              | 1         |            | -       | 6729674 | 1.3108 | 166609048 | 8.3772 | 180363365 | 2.4310 |        |        |        |        |
|                              | 1         |            | _ 1     | 4069850 | 0.7927 | 81655246  | 4.1057 | 93492829  | 1.2601 |        |        |        |        |
|                              | _         | _          | _       | 3806125 | 0.7413 | 76587594  | 3.8509 | 87160708  | 1.1748 |        |        |        |        |
| 13 12977923                  |           | _          | 8.5927  | 5081336 | 0.9897 | 131860983 | 6.6300 | 144838906 | 1.9522 |        |        |        |        |
|                              | _         | 1          |         | 4019110 | 0.7828 | 114527060 | 5.7585 | 124396358 | 1.6766 |        |        |        |        |
| 1                            | _         | 1          |         | 3554444 | 0.6923 | 122706719 | 6.1698 | 128969110 | 1.7383 |        |        |        |        |
|                              |           |            | - 1     | 4243604 | 0.8265 | 104395633 | 5.2491 | 114013801 | 1.5367 |        |        |        |        |
|                              | 1         |            | _ 1     | 3067314 | 0.5974 | 71834444  | 3.6119 | 80186266  | 1.0808 |        |        |        |        |
|                              | 4         | _          |         | 2564898 | 0.4996 | 74438343  | 3.7428 | 81879944  | 1.1036 |        |        |        |        |
|                              | 1         | 1          |         | 4407431 | 0.8585 | 106256887 | 5.3427 | 113795348 | 1.5337 |        |        |        |        |
|                              | _         | 1          | - 1     | 2353761 | 0.4585 | 54534619  | 2.7420 | 61030121  | 0.8226 |        |        |        |        |
| 20 6318534                   | $\perp$   | 53084257   |         | 2089049 | 0.4069 | 55173306  | 2.7741 | 61491840  | 0.8288 |        |        |        |        |
|                              | $\perp$   |            |         | 3712743 | 0.7231 | 99409227  | 4.9983 | 108690021 | 1.4649 |        |        |        |        |
|                              | 1         |            | - 1     | 2300700 | 0.4481 | 77232657  | 3.8833 | 81359945  | 1.0966 |        |        |        |        |
|                              |           |            | - 1     | 1438839 | 0.2802 | 69070476  | 3.4729 | 70706828  | 0.9530 |        |        |        |        |
|                              |           |            | - 1     | 3230638 | 0.6292 | 66902262  | 3.3639 | 73954572  | 0.9968 |        |        |        |        |
|                              |           | _          |         | 1852897 | 0.3609 | 45944987  | 2.3101 | 49954530  | 0.6733 |        |        |        |        |
|                              | _         | 38212045   |         | 1162800 | 0.2265 | 39374845  | 1.9798 | 40986544  | 0.5524 |        |        |        |        |
|                              | $\perp$   | 1          | - 1     | 2903537 | 0.5655 | 58638476  | 2.9484 | 64154330  | 0.8647 |        |        |        |        |
| 29 3166/30                   |           |            | - 1     | 1304532 | 0.2541 | 32346430  | 1.6264 | 35513160  | 0.4787 |        |        |        |        |
|                              |           | _          |         | 838745  | 0.1634 | 27373449  | 1.3764 | 29605006  | 0.3990 |        |        |        |        |
|                              | _1        | 47314667   | - 1     | 2090363 | 0.4071 | 49405030  | 2.4841 | 53324963  | 0.7187 |        |        |        |        |
| 32 888722                    |           |            | - !     | 1026866 | 0.2000 | 36197812  | 1.8200 | 37086534  | 0.4999 |        |        |        |        |
|                              | _         |            | - 1     | 470398  | 0.0916 | 32204685  | 1.6193 | 32307454  | 0.4354 |        |        |        |        |
|                              | 4         | 36195673   | - 1     | 1729993 | 0.3370 | 37925666  | 1.9069 | 41219637  | 0.5556 |        |        |        |        |
|                              | 1         |            | 1.3730  | 857440  | 0.1670 | 21115582  | 1.0617 | 22187563  | 0.2990 |        |        |        |        |
| 36 245737                    |           |            | 1.1923  | 432770  | 0.0843 | 18023875  | 0.9062 | 18269612  | 0.2462 |        |        |        |        |
|                              |           |            |         | 1864371 | 0.3631 | 47458947  | 2.3863 | 49982190  | 0.6737 |        |        |        |        |
| 38 1166952                   | _         | 16243688   | - 1     | 809290  | 0.1576 | 17052978  | 0.8574 | 18219930  | 0.2456 |        |        |        |        |
| 38 332482                    | 82 0.0061 | ╛          | 0.8150  | 401044  | 0.0781 | 12426505  | 0.6248 | 12758987  | 0.1720 |        |        |        |        |
|                              |           |            |         |         |        |           |        |           |        |        |        |        |        |

Table 22: Compress and GCC w/ Operating System, Compress Data

| Total Instruc<br>Data Reads<br>Data writes<br>Total Data F | Total Instruction References | ences  | 87045885  |                 |        |        |                 |         |         |        |         |         |         |        |
|------------------------------------------------------------|------------------------------|--------|-----------|-----------------|--------|--------|-----------------|---------|---------|--------|---------|---------|---------|--------|
| Data Re<br>Data wri<br>Total De                            |                              |        |           | -               |        |        |                 |         |         |        | •       |         |         |        |
| Data wri<br>Total De<br>Total Re                           | ads                          |        | 22411994  | _               |        |        |                 |         |         |        |         |         |         |        |
| Total De                                                   | tes                          |        | 8521651   |                 |        |        |                 |         |         |        |         |         |         |        |
| Total Re                                                   | Total Data References        |        | 30933645  |                 |        |        |                 |         |         |        |         |         |         |        |
|                                                            | Total References             |        | 117979530 |                 |        |        |                 |         |         |        |         |         |         |        |
| MISS St                                                    | Miss Statistics:             |        |           |                 |        |        |                 |         |         |        |         |         |         |        |
| Cache                                                      | lust                         | %      | Read      | %               | Write  | %      | Data            | %       | Total   | %      | int(0)  | int(1)  | int(2)  | int(3) |
| 0                                                          | 1498727                      | 1.7218 | 5111048   | 5111048 22.8050 | 219067 | 2.5707 | 5330115         | 17.2308 | 6828842 | 5.7882 | 2990684 | 3401796 | 3359028 | 4      |
| -                                                          | 945225                       | 1.0859 | 4617692   | 4617692 20.6037 | 141510 | 1.6606 | 4759202         | 15,3852 | 5704427 | 4.8351 | 947086  | 2751523 | 2266786 | 4      |
| 2                                                          | 224332                       | 0.2577 | 3703986   | 3703986 16.5268 | 71570  | 0.8399 | 3775556         | 12.2053 | 3999888 | 3.3903 | 782543  | 1841532 | 1652508 | 4      |
| က                                                          | 56335                        | 0.0647 | 3355032   | 3355032 14.9698 | 39180  | 0.4598 | 3394212         | 10.9726 | 3450547 | 2.9247 | 623233  | 1869438 | 927566  | 4      |
| 4                                                          | 2321467                      | 2.6669 | 5476227   | 24.4344         | 282158 | 3.3111 | 5758385         | 18.6153 | 8079852 | 6.8485 | 971277  | 4858237 | 3791656 | 9      |
| 2                                                          | 822066                       | 1.1382 | 4717087   | 4717087 21.0472 | 184074 | 2.1601 | 4901161         | 15.8441 | 5891939 | 4.9940 | 1033675 | 2309277 | 2404433 | 9      |
| 9                                                          | 829248                       | 0.9527 | 4494945   | 494945 20.0560  | 151323 | 1.7757 | 4646268         | 15.0201 | 5475516 | 4.6411 | 1030056 | 1853536 | 2339753 | 9      |
| 7                                                          | 1531662                      | 1.7596 | 5842933   | 5842933 26.0706 | 519792 | 6.0997 | 6362725         | 20.5689 | 7894387 | 6.6913 | 741802  | 5381938 | 4739872 | 4      |
| æ                                                          | 673638                       | 0.7739 | 5451247   | 5451247 24.3229 | 284766 | 3.3417 | 5736013         | 18.5430 | 6409651 | 5.4329 | 1355069 | 3448973 | 2245936 | 4      |
| 6                                                          | 620694                       | 0.7131 | 4785458   | 4785458 21.3522 | 214598 | 2.5183 | 5000056         | 16.1638 | 5620750 | 4.7642 | 2434743 | 2383567 | 2460653 | 4      |
| ၀                                                          | 1315094                      | 1.5108 | 7985939   | 7985939 35.6324 | 606797 | 7.1207 | 8592736         | 27.7780 | 9907830 | 8.3979 | 523800  | 8125374 | 4198423 | 4      |
| 1                                                          | 482512                       | 0.5543 | 6511508   | 6511508 29.0537 | 401943 | 4.7167 | 6913451         | 22.3493 | 7395963 | 6.2689 | 2652859 | 5291458 | 4906594 | 4      |
| 12                                                         | 450616                       | 0.5177 | 5164297   | 5164297 23.0426 | 328713 | 3.8574 | 5493010         | 17.7574 | 5943626 | 5.0378 | 1197389 | 3714170 | 1621100 | 4      |
| 13                                                         | 741824                       | 0.8522 |           | 4910633 21.9107 | 202880 | 2.3808 | 5113513 16.5306 | 16.5306 | 5855337 | 4.9630 | 940786  | 3044327 | 1870218 | 9      |
| 14                                                         | 492359                       |        |           | 4102808 18.3063 | 118938 | 1.3957 | 4221746 13.6477 | 13.6477 | 4714105 | 3.9957 | 884151  | 2176337 | 1970561 | 9      |
| 15                                                         | 275731                       | 1      |           | 3959052 17.6649 | 91365  | 1.0722 | 4050417         | 13.0939 | 4326148 | 3.6669 | 823013  | 2104759 | 881733  | 9      |
| 16                                                         | 501909                       |        |           | 5264529 23,4898 | 422086 | 4.9531 | 5686615         | 18,3833 | 6188524 | 5.2454 | 789453  | 3778741 | 2418292 | 4      |
| 17                                                         | 392486                       | - 1    |           | 4294334 19.1609 | 167562 | 1.9663 | 4461896 14.4241 | 14.4241 | 4854382 | 4.1146 | 834351  | 2357218 | 2230475 | 4      |
| 18                                                         | 266031                       | - 1    |           | 4199640 18.7384 | 107409 | 1.2604 | 4307049         | 13.9235 | 4573080 | 3.8762 | 824533  | 2099500 | 1649043 | 4      |
| 6                                                          | 356651                       | - 1    | 6977312   | 6977312 31.1320 | 473195 | 5.5529 | 7450507         | 24.0854 | 7807158 | 6.6174 | 680895  | 5788349 | 694447  | 4      |
| 8                                                          | 328810                       | - 1    | 4977349   | 4977349 22.2084 | 248266 | 2.9134 | 5225615         | 16.8930 | 5554425 | 4.7080 | 714505  | 3285748 | 753481  | 4      |
| 2                                                          | 252261                       | - 1    |           | 4569806 20,3900 | 171217 | 2.0092 | 4741023         | 15.3264 | 4993284 | 4.2323 | 786706  | 2512091 | 1694483 | 4      |
| 22                                                         | 268272                       | - 1    |           | 3924079 17.5088 | 128609 | 1.5092 | 4052688         | 13.1012 | 4320960 | 3.6625 | 608108  | 2371899 | 1340946 | 7      |
| R                                                          | 190444                       | - 1    |           | 3730004 16.6429 | 90613  | 1.0633 | 3820617         | 12.3510 | 4011061 | 3.3998 | 714080  | 2231979 | 1064996 | 9      |
| 54                                                         | 60562                        | 0.0696 | İ         | 16.0757         | 74627  | 0.8757 | 3677505         | 11.8884 | 3738067 | 3.1684 | 657301  | 2261915 | 818844  | 7      |
| 52                                                         | 198900                       | 0.2285 |           | 4076345 18.1882 | 134426 | 1.5775 | 4210771         | 13.6123 | 4409671 | 3.7377 | 596722  | 2560321 | 1252623 | 5      |
| 92                                                         | 160089                       | 0.1839 | 3878708   | 3878708 17.3064 | 102744 | 1.2057 | 3981452         | 12.8709 | 4141541 | 3.5104 | 705643  | 2317764 | 1118130 | 4      |
| 27                                                         | 65057                        | 0.0747 | 3715160   | 16.5767         | 56035  | 0.6576 | 3771195         | 12.1912 | 3836252 | 3.2516 | 675955  | 2259529 | 1035444 | 4      |
| 28                                                         | 143016                       | 0.1643 | 4325929   | 4325929 19.3018 | 182247 | 2.1386 | 4508176 14.5737 | 14.5737 | 4651192 | 3.9424 | 582741  | 2888221 | 1180226 | 4      |
| 53                                                         | 136950                       | 0.1573 | 4097636   | 4097636 18.2832 | 148564 | 1.7434 | 4246200         | 13.7268 | 4383150 | 3.7152 | 693288  | 2480213 | 1107306 | 4      |
| 8                                                          | 80953                        | 0.0930 | 3929986   | 3929986 17.5352 | 75500  | 0.8860 | 4005486         | 12.9486 | 4086439 | 3.4637 | 723844  | 2228626 | 1424921 | 4      |
| 3                                                          | 111829                       | 0.1285 | 3607865   | 16.0979         | 74686  | 0.8764 | 3682551         | 11.9047 | 3794380 | 3.2161 | 506201  | 2399075 | 660688  | 2      |
| 32                                                         | 37061                        | 0.0426 | 3441580   | 3441580 15.3560 | 48013  | 0.5634 | 3489593 11.2809 | 11.2809 | 3526654 | 2.9892 | 534499  | 2308126 | 1598864 | 5      |
| 89                                                         | 16448                        | 0.0189 | 3397851   | 15,1609         | 40936  | 0.4804 | 3438787         | 11.1167 | 3455235 | 2.9287 | 514763  | 2375915 | 564552  | 5      |
| ਲ                                                          | 82342                        |        | 3753468   | 16.7476         | 91129  | 1.0694 | 3844597         | 12.4285 | 3926939 | 3.3285 | 502981  | 2544547 | 879407  | 4      |
| 35                                                         | 29719                        |        | 3576087   | 3576087 15.9561 | 57466  | 0.6744 | 3633553         | 11.7463 | 3663272 | 3.1050 | 569025  | 2329191 | 1723267 | 4      |
| 98                                                         | 17018                        | 1      | 3530748   | 15.7538         | 37072  | 0.4350 | 3567820 11.5338 | 11.5338 | 3584838 | 3.0385 | 567282  | 2365119 | 1463365 | 4      |
| 37                                                         | 56842                        | 0.0653 | 3923724   | 17.5073         | 107499 | 1.2615 | 4031223         | 13.0318 | 4088065 | 3.4651 | 490762  | 2709049 | 888250  | 4      |
| 38                                                         | 22294                        | 0.0256 | 3700435   | 3700435 16.5110 | 65792  | 0.7721 | 3766227 12.1752 | 12.1752 | 3788521 | 3.2112 | 598070  | 2309659 | 880788  | 4      |
| 39                                                         | 16515                        | 0.0190 | 3660335   | 3660335 16.3320 | 48826  | 0.5730 | 3709161 11.9907 | 11.9907 | 3725676 | 3.1579 | 637518  | 2236267 | 851887  | 4      |

Table 23: Compress and GCC w/ Operating System, GCC Data

| Referen          | Reference Statistics:        |         |                 |         |         |         |         |                 |         |        |         |         |         |        |
|------------------|------------------------------|---------|-----------------|---------|---------|---------|---------|-----------------|---------|--------|---------|---------|---------|--------|
| Total Ins        | Total Instruction References | ences   | 68021687        |         |         |         |         |                 |         |        |         |         |         |        |
| Data Reads       | ads                          |         | 21218807        |         |         |         |         |                 |         |        |         |         |         |        |
| Data writes      | es                           |         | 8094452         |         |         |         |         |                 |         |        |         |         |         |        |
| Total Da         | Total Data References        |         | 29313259        |         |         |         |         |                 |         |        |         |         |         |        |
| Total Re         | Total References             |         | 97334946        |         |         |         |         |                 |         |        |         |         |         |        |
| Miss Statistics: | itistics:                    |         |                 |         |         |         |         |                 |         |        |         |         |         |        |
| Cache            | Inst                         | %       | Read            | %       | Write   | %       | Data    | %               | Total   | %      | int(0)  | int(1)  | int(2)  | int(3) |
| 0                | 3296083                      |         |                 | 11.5920 | 723132  | 8.9337  | 3182812 | 10.8579         | 6478895 | 6.6563 | 1028483 | 2883072 | 2924672 | 0      |
| -                | 2599743                      |         | 1787496         | 8.4241  | 497655  | 6.1481  | 2285151 | 7.7956          | 4884894 | 5.0186 | 1233408 | 2131364 | 1951283 | 0      |
| 7                | 1770928                      |         | 1138682         | 5.3664  | 302147  | 3.7328  | 1440829 | 4.9153          | 3211757 | 3.2997 | 626709  | 1245364 | 1197420 | 0      |
| က                | 942943                       |         | 761075          |         | 145878  | 1.8022  | 906953  | 3.0940          | 1849896 | 1.9005 | 370904  | 931808  | 547184  | 0      |
| 4                | 4122896                      |         | 3081905         |         | 1145900 | 14.1566 | 4227805 | 14.4228         | 8350701 | 8.5793 | 1260398 | 4669629 | 4813698 | 0      |
| വ                | 4105985                      |         | 2607875         | 12.2904 |         | 12.1723 | 3593157 | 12.2578         | 7699142 | 7.9099 | 1390621 | 1635722 | 3721478 | 0      |
| 9                | 4066501                      | 5.9782  | 2510744 11.8326 | 11.8326 | 941974  | 11.6373 | 3452718 | 3452718 11.7787 | 7519219 | 7.7251 | 1453780 | 2635897 | 3429542 | 0      |
| 7                | 3051967                      |         | 3263379 15.3797 | 15.3797 |         | 11.7317 | 4212999 | 4212999 14.3723 | 7264966 | 7.4639 | 3074513 | 4339113 | 4513198 | 0      |
| 80               | 3042002                      |         | 2603518 12.2699 | 12.2699 | 758076  |         | 3361594 | 3361594 11.4678 | 6403596 | 6.5789 | 1060566 | 2186502 | 3182425 | 0      |
| o                | 3000475                      |         | 2441452 11.5061 | 11.5061 | 711702  | 8.7925  | 3153154 | 3153154 10.7568 | 6153629 | 6.3221 | 1066864 | 2392483 | 2694282 | 0      |
| 9                | 2254331                      |         | 3580808 16.8756 | 16.8756 | 842419  | 10.4074 | 4423227 | 4423227 15.0895 | 6677558 | 6.8604 | 722055  | 4551380 | 4684193 | 0      |
| =                | 2227303                      |         | 2701492 12.7316 | 12.7316 | 616988  | 7.6224  | 3318480 | 3318480 11.3207 | 5545783 | 5.6976 | 804760  | 1532627 | 3208396 | 0      |
| 12               | 2172123                      |         | 2343990 11.0468 | 11.0468 | 539195  | 6.6613  | 2883185 | 9.8358          | 5055308 | 5.1937 | 869941  | 2362408 | 2548206 | 0      |
| 13               | 3019182                      |         | 2345948 11,0560 | 11.0560 | 867221  | 10.7138 | 3213169 | 10.9615         | 6232351 | 6.4030 | 1072934 | 1888358 | 3271059 | 0      |
| 4                | 2782569                      |         | 1859600         | 8.7639  | 678210  | 8.3787  | 2537810 | 8.6575          | 5320379 | 5.4661 | 1117905 | 1663299 | 2539175 | 0      |
| 5                | 2748894                      |         | 1699195         | 8.0080  | 616873  | 7.6209  | 2316068 | 7.9011          | 5064962 | 5.2036 | 1136406 | 1903892 | 2531096 | 0      |
| 16               | 2303255                      |         | 2454529         | 11.5677 | 717515  | 8.8643  | 3172044 | 10.8212         | 5475299 | 5.6252 | 865327  | 2116430 | 2972214 | 0      |
| 11               | 2140311                      |         | 1966915         | !       | 555454  | 6.8622  | 2522369 |                 | 4662680 | 4.7903 | 919720  | 1681856 | 2061104 | 0      |
| 8                | 2145056                      |         | 1870759         |         | 525646  | 6.4939  | 2396405 | 8.1752          | 4541461 | 4.6658 | 953056  | 1666212 | 1922193 | 0      |
| 9                | 1755107                      | _       | 2683167         | -       | 627119  | 7.7475  | 3310286 | 11.2928         | 5065393 | 5.2041 | 2395163 | 2755438 | 2999482 | 0      |
| ຂ                | 1648949                      |         | 2012736         |         | 448882  | 5.5456  | 2461618 |                 | 4110567 | 4.2231 | 1394966 | 1569750 | 1774823 | 0      |
| 72               | 1667577                      | _       | 1920310         |         | 422896  | 5.2245  | 2343206 |                 | 4010783 | 4.1206 | 1070674 | 1721568 | 1503880 | 0      |
| 22               | 2087836                      |         | 1569687         |         | 561304  | 6.9344  | 2130991 |                 | 4218827 | 4.3343 | 834523  | 1348692 | 2035612 | 0      |
| 23               | 1641342                      |         | 1233972         |         | 450730  | 5.5684  | 1684702 |                 | 3326044 | 3.4171 | 745690  | 1065662 | 1514692 | 0      |
| 24               | 1367769                      |         | 1033688         |         | 376112  | 4.6465  | 1409800 |                 | 2777569 | 2.8536 | 611991  | 818260  | 1347318 | 0      |
| 52               | 1625495                      |         | 1673006         |         | 462669  | 5.7159  | 2135675 | 1               | 3761170 | 3.8642 | 683684  | 1261991 | 1815495 | 0      |
| 56               | 1322614                      | _       | 1352598         |         | 367772  | 4.5435  | 1720370 | _               | 3042984 | 3.1263 | 650922  | 1124145 | 1267917 | 0      |
| /7               | 11//414                      | _       | 1190642         | _1      | 313719  | $\perp$ | 1504361 | _               | 2681775 | 2.7552 | 587366  | 902114  | 1192295 | 0      |
| 28               | 12/5/52                      | _       | 1848471         |         | 403700  | _       | 2252171 |                 | 3527923 | 3.6245 | 600138  | 1607075 | 1741760 | 0      |
| 87               | 1080111                      | 1       | 1518438         |         | 315306  | _       | 1833744 |                 | 2913855 | 2.9936 | 588300  | 1195514 | 1109104 | 0      |
| 8                | 1022734                      | _       | 1406373         | j       | 289120  |         | 1695493 | 5.7840          | 2718227 | 2.7927 | 580149  | 1145049 | 993029  | 0      |
| 3                | 943226                       | $\perp$ | 1107279         | _       | 312804  | 3.8644  | 1420083 | 4.8445          | 2363309 | 2.4280 | 502693  | 893760  | 966856  | 0      |
| 35               | 712934                       |         | 799519          |         | 211800  | 2.6166  | 1011319 | 3.4500          | 1724253 | 1.7715 | 351881  | 686665  | 685707  | 0      |
| 83               |                              | _       | 683195          | - 1     | 184557  | 2.2800  | 867752  | 2.9603          | 1378772 | 1.4165 | 279199  | 565539  | 534034  | 0      |
| ह्र              |                              | _       | 1232346         | - 1     | 269928  |         | 1502274 | 5.1249          | 2243765 | 2.3052 | 446326  | 884330  | 913109  | 0      |
| 32               |                              |         | 942106          |         | 180063  | 2.2245  | 1122169 | 3.8282          | 1710645 | 1.7575 | 340286  | 771941  | 598418  | 0      |
| 36               |                              | _       | 844133          | . 1     | 159716  | _       | 1003849 |                 | 1461599 | 1.5016 | 296742  | 653623  | 511234  | 0      |
| 37               |                              | _       | 1386455         |         | 276242  |         | 1662697 |                 | 2268133 | 2.3302 | 407800  | 892105  | 968228  | 0      |
| 38               |                              |         | 1106104         |         | 177910  |         | 1284014 | 4.3803          | 1779032 | 1.8277 | 352377  | 886270  | 540385  | 0      |
| 36               | 420627                       | 0.6184  | 1074871         | 5.0657  | 169522  | 2.0943  | 1244393 | 4.2452          | 1665020 | 1.7106 | 327173  | 854522  | 483325  | 0      |

Table 24: Compress and GCC w/ Operating System, Operating System Data

| Total References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Referen   | Reference Statistics: |         |          |         |        |         |         |         |         |         |         |        |         |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|---------|----------|---------|--------|---------|---------|---------|---------|---------|---------|--------|---------|--------|
| Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Victoberia   Vic | Total In: | struction Refer       | rences  | 28102411 |         |        |         |         |         |         |         |         |        |         |        |
| 11622661   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   1852261   185 | Data Re   | ads                   |         | 7468658  |         |        |         |         |         |         |         |         |        |         |        |
| Wildle   % Wildle   % Didd   % Total   % Total   % Didd   Data wr   | ites                  |         | 4160003  |         |        |         |         |         |         |         |         |        |         |        |
| 9.5         98771072         WHIE         %         Deal         %         Total         %         Int(1)         Int(2)         Int(1)         Int(2)         Int(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total De  | ata References        |         | 11628661 |         |        |         |         |         |         |         |         |        |         |        |
| 9%         Read         %         Wille         %         Date         %         Total         %         Int(0)         Int(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Re  | erences               |         | 39731072 |         |        |         |         |         |         |         |         |        |         |        |
| 1944602   98.000   1982284   26.5464   19.6462   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.6469   19.64 | MISS St   | atistics:             |         |          |         |        |         |         |         |         |         |         |        |         |        |
| 194606   8.6 1500   988284   26.566   566031   126269   225217   126401   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296   2008296    | Cache     | Inst                  | %       | Read     | %       | Write  | %       | Data    | %       | Total   | %       | int(0)  | int(1) | int(2)  | int(3) |
| 1966-206   4.650   1.950-14.1 (2.76)   2.026-41   3-945-20   1.306-41   3-945-20   2.026-44   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-945-20   3-9 | 0         | 2346796               |         | 1982824  | 26.5486 | 569333 |         | 2552157 | 21.9471 | 4898953 | 12.3303 | 2945432 | 901293 | 1052104 | 124    |
| 1862/18   1962/29   1096/29   1962/21   29.777   1962/29   19.7728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.4728   19.47 | -         | 1914805               |         | 1550741  | 20.7633 | 467924 |         | 2018665 |         | 3933470 | 9.9002  | 2085936 | 919618 | 927664  | 252    |
| 2221/7061         77,7556         77,456         77,456         77,456         77,456         77,457         77,457         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,475         77,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2         | 1386288               |         | 1082465  | 14,4934 | 345335 |         | 1427800 |         | 2814088 | 7.0828  | 1404586 | 770674 | 638320  | 508    |
| 3227040 1 14626 194422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3         | 785675                |         | 774395   | 10.3686 | 202941 | 4.8784  | 92226   |         | 1763011 | 4.4374  | 738329  | 649223 | 374951  | 508    |
| 218225201 (11.264.2)         19.04224 (2.5.6.710.2)         7.0404.3 (8.7.70.2)         27.02650 (2.6.94.6.4)         14.085.3         30.00224 (2.6.97.9.2)         14.085.3         14.085.3         30.00224 (2.6.97.9.2)         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         14.085.3         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4         | 3221708               |         | 2194271  |         | 829816 |         | 3024087 |         | 6245795 |         | 4014003 | 945006 | 1286536 | 250    |
| 27574426         8 140024         2 277709         9 140024         9 277709         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024         9 140024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2         | 3163371               |         | 1994223  | 26.7012 | 768434 |         | 2762657 | 23.7573 | 5926028 | 14.9153 | 3501622 | 995605 | 1428551 | 250    |
| 2265310         6.0600         2.277803         6.1148         2.477803         6.4148         2.498481         6.42814         6.4148         2.498481         6.44814         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.4148         6.5248         1.1448         6.5248         1.1448         6.5248         1.1448         6.5248         1.1448         6.6148         7.4449         1.1448         6.6148         6.4448         1.1448         6.5248         7.4449         1.1448         6.5248         7.4449         1.1448         6.5248         7.0448         6.6148         6.2444         7.0448         6.6148         6.6148         7.0448         6.6148         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         6.6148         7.0448         7.0448         7.0448         7.0448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9         | 3193637               |         | 1940224  | 25.9782 | 760303 |         | 2700527 | 23.2230 | 5894164 |         | 3410221 | 986064 | 1497629 | 250    |
| 2265270         6.0144         19.256280         2.0144         19.25680         2.01456         1.02.0568         2.01456         1.02.0588         2.01456         1.02.0588         2.01456         1.02.0588         2.02.058         1.00.0588         2.02.058         1.00.0588         2.02.058         1.00.0588         2.02.058         1.00.0588         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058         2.00.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7         | 2279492               |         | 2271720  | 30.4167 | 626733 | 15.0657 | 2898453 | 24.9251 | 5177945 | 13.0325 | 3475542 | 721143 | 981136  | 124    |
| 2265519 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770 (2000)         190,770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80        | 2252370               |         | 1972668  | 26.4126 | 548318 | 13.1807 | 2520986 | 21.6791 | 4773356 | 12.0142 | 2879271 | 800072 | 1093889 | 124    |
| (65207)         5.9554         2.32570         5.5544         2.32570         5.908         7.1140         5.55447         7.3221         6.80731         1.406         7.24456         7.1140         7.24456         7.24456         7.24456         7.24456         7.24450         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24456         7.24443         7.24443         7.24443         7.24444         7.24444         7.24444         7.24444         7.24444         7.24444         7.24444         7.24444         7.24444         7.24444         7.244444         7.244444         7.244444         7.244444         7.244444         7.244444         7.244444         7.244444         7.244444         7.244444         7.244444         7.2444444         7.2444444         7.244444444         7.24444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6         |                       |         | 1904701  | 25.5026 | 533695 |         | 2438396 | 20.9688 | 4703706 | 11.8389 | 2745405 | 844691 | 1113486 | 124    |
| (662297)         5.05         1800406         5.5 162         444320         16.05         2.2262674         1.0.2705         2.626675         5.7 1800         6.1722         5.7 1800         6.1722         6.276894         6.1722         6.27687         4.44320         1.0.2705         2.2266497         9.200         2.226274         1.0.2705         2.2266497         9.200         2.226274         1.0.2705         2.2266497         9.000         1.0.2705         2.2266497         9.000         1.0.2705         2.2266497         9.000         1.0.2705         2.2266497         9.000         1.0.2705         2.2266497         9.000         1.0.2705         2.2266497         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 우         |                       | _       | 2325787  | 31.1406 | 555447 | 13.3521 | 2881234 | 24.7770 | 4554853 | 11.4642 | 3308977 | 511151 | 734665  | 9      |
| 1662297         5.9151         1868147         25.0265         4.13627         2.4450         21.2264         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.9491         3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ξ         |                       |         | 1980406  | 26.5162 | 444320 | 10.6808 | 2424726 | 20.8513 | 4083744 | 10.2785 | 2693052 | 571880 | 818752  | 09     |
| 2646675         9.4167         1774284         22.3.7564         700216         6.8021         2.44500         12.37584         3107461         92.6477         10.00791           22.372856         4.4366         16.82786         2.046407         1.47530         2556197         1127314         1127314           2.372856         4.4366         16.82786         1.62707         1.20440         6.7066         1.47630         2529809         82.907         1135194           2.192856         6.7066         1.454613         19.4762         2.046060         20.64541         17.066         2299809         82.907         1135194           1.883075         6.7066         1.454613         19.4466         2.06647         1.454618         10.8944         2.056481         10.66647         16.8967         17.2001         82.6607         11.27314         10.8966         1.45867         19.66647         1.45867         19.66647         18.6668         17.8960         19.66647         18.6668         19.66647         18.6668         19.66647         18.6668         19.66647         18.6668         19.66647         18.6668         19.66647         18.6668         19.66647         18.6668         19.66647         18.6668         19.66647         18.6668         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12        |                       |         | 1869147  | 25.0265 | 413527 | 9.9405  | 2282674 | 19.6297 | 3944971 | 9.9292  | 2466649 | 592292 | 885970  | 9      |
| 21825264         6.4436         1682786         20.9243         6.22288         14.9750         16.2286         2299809         87.4442         1127314           2192395         7.8005         11454613         18.4762         611808         47.0681         2.066041         17.7001         4289061         10.7208         2.299809         829307         1135194           1683037         6.7006         1152077         21.0480         455315         10.6894         20.25822         17.4818         18.6827         20.0480         455315         10.6930         17.24181         18.69303         20.0480         46.5315         10.6930         22.21564         19.6926         10.106         18.00598         86.00589         10.106         18.00598         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10.00589         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13        |                       |         | 1774284  | 23.7564 | 700216 |         | 2474500 | 21.2793 | 5121375 | 12.8901 | 3107461 | 922617 | 1090791 | 506    |
| 2182955         7 80006         1454616         18,4762         611800         14,7069         2066421         17,7701         4269047         10,7263         2263216         772013         662607           1883037         6,1706         1886186         25,256         52,016         1,00547         21,0050         1,00547         21,00594         20,005484         17,005         26,2216         77,2013         93,660           1664525         5,8875         1,0066         20,3392         44,558         10,639         1961647         16,889         3,1016         1838515         807363         3,7002           1604036         1,006         20,3392         44,558         10,634         13,642         3,1016         18,88515         80,007         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005         10,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14        |                       |         | 1562768  | 20.9243 | 622838 |         | 2185606 | 18.7950 | 4558460 |         | 2556197 | 874443 | 1127314 | 506    |
| 1883037         6 7006         1888878         2.5.550         5.20172         12.5441         2.406050         2.686623         2.68421         772013         882607           1673416         6.1708         1672677         16.8867         452416         10.6894         2024408         7.4161         3765623         36.86343         86.863         370052         16.8660         24.862         10.6894         86.863         36.8642         36.868         36.8662         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866         36.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15        |                       |         | 1454613  | 19.4762 | 611808 | 14.7069 | 2066421 | 17.7701 | 4259416 |         | 2299809 | 823907 | 1135194 | 506    |
| 1744161         6.1709         1572077         21.04400         455415         10.6894         2025492         17.4861         3789653         9.4828         2005494         615302         970022           1664532         5.8875         1619066         24.3821         16.6891         36.616182         9.1016         1636516         6097863         970022           1605432         4.45814         10.6830         4.45814         10.8584         18.66478         8.2009         1825454         609868         772109           1365232         4.7160         1623656         21.7382         37307         8.600177         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470         781470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16        |                       | 6.7006  | 1885878  | 25.2506 | 520172 | 12.5041 | 2406050 | 20.6907 | 4289087 | 10.7953 | 2634215 | 772013 | 882607  | 252    |
| 1654535         58875         1519065         20.3392         442582         10.6390         1961647         16.8891         361016         1838515         680388         772909           1400935         4.9861         1654038         1966650         17.0324         370529         370547         668638         727909           1362323         4.9861         1624565         2.17382         37107         8.64472         16.0506         3148705         7.9250         1576634         689933         77817           1282233         4.5627         1526430         20.4372         16.0404         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356         17.0356 <td>17</td> <td></td> <td></td> <td>1572077</td> <td>21.0490</td> <td>453415</td> <td>10.8994</td> <td>2025492</td> <td>17.4181</td> <td>3759653</td> <td>9.4628</td> <td>2005494</td> <td>815303</td> <td>938604</td> <td>252</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17        |                       |         | 1572077  | 21.0490 | 453415 | 10.8994 | 2025492 | 17.4181 | 3759653 | 9.4628  | 2005494 | 815303 | 938604  | 252    |
| 1400935         4.9851         166660         24.9991         454014         10.9354         2231564         19.9642         372A99         9.3892         2224478         669368         727909           1326322         4.7160         1622565         21.7382         357107         8.5843         176054         8.5847         16.0566         3148705         176624         6.98833         75926           1908098         6.7898         137560         18.4190         596045         14.2280         1971685         16.9565         387979         9.7651         249678         600177         841861           1698768         6.7898         137920         18.0401         456646         10.9771         14.0556         330943         8.3069         1840212         74556         184081         74566         19771         186086         18.0401         456646         10.9771         14.04664         13.7992         330943         8.0665         18.0402         18.04084         8.9866         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0408         18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18        |                       |         | 1519065  | 20.3392 | 442582 | 10.6390 | 1961647 | 16.8691 | 3616182 | 9.1016  | 1838515 | 807363 | 970052  | 252    |
| 1325522         4.7160         162555         21.7382         35170         8.5643         1990662         17.036         3105894         8.3209         1825454         689833         784142           1282233         4.562         152650         20.4378         340042         1.741         1866472         16.0566         3146705         7.5560         157661         17.6530         7.55626         12.3873         7.55626         15.2807         14.5280         18.0464         14.3280         197165         1.3782         3300433         8.3069         18.6073         7.55626         17.5366         7.5367         16.0800         1.5782         1.56646         10.3771         140566         12.3021         2.87626         7.2394         160653         7.55626         1.5367         16.0800         1.57640         1.58646         10.3771         140566         12.3021         2.87626         1.23677         1.58680         1.58646         10.3771         140566         1.23021         1.23677         1.58680         1.58646         10.3771         140684         1.58646         1.3771         140684         1.58671         1.58680         1.58646         1.5871         1.58680         1.58646         1.5871         1.58680         1.58666         1.5867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19        |                       | _       | 1866650  | 24.9931 | 454914 | 10.9354 | 2321564 | 19.9642 | 3722499 | 9.3692  | 2324478 | 669988 | 727909  | 124    |
| 1282233         4.5627         1526430         20.4378         340042         8.1741         1666472         16.0506         3148705         7.9250         1576634         756926         812231           16980808         6.7389         1375650         18.4190         596045         14.3280         1971635         16.6155         37.851         24.88738         600177         841861           1695780         6.0342         11055471         14.9025         19.7161         13.2021         2876295         7.234         1606537         657761         610980           1368708         4.8704         1418567         13.30401         456646         10.3787         140556         12.234         1606537         65761         610980           1368708         4.8704         1418567         18.3936         431756         10.3787         146187         2294         16.917         2294         65648         15.817         128870         6.9504         1404694         69568         65686           1025560         3.667         146839         8.1201         12.467         276476         6.9504         140469         69568         65686           1025560         3.667         146848         18.2230         12.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20        | 1325322               |         | 1623555  | 21.7382 | 357107 | 8.5843  | 1980662 | 17.0326 | 3305984 | 8.3209  | 1825454 | 698933 | 781473  | 124    |
| 1908098         6.7896         1375550         18.4190         596045         14.3280         1971695         16.9555         3879793         9.7651         2436738         600177         841861           1465726         6.0342         1105547         14.6025         45917         11.3900         1604664         13.792         3300433         8.3069         184022         712366         6.0080           146572         6.0342         11.60254         14.6025         6.6440         10.9771         1402056         12.3021         2876295         657761         6.0980           1368708         4.8704         47.8764         16.9328         6.9664         10.9771         1402052         7.2394         6.9504         1404684         6.99288         6.56686           1076492         3.8307         146182         18.6986         15.2374         1404694         6.9504         1404684         6.99288         6.56886           1076492         3.8307         146182         18.6980         18.2207         13.460         2761476         6.9504         1404684         6.99288         6.56886           102950         3.8637         1461892         8.6980         15.2024         1496861         1.2327         11.466193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21        |                       | _       | 1526430  | 20.4378 | 340042 |         | 1866472 |         | 3148705 | 7.9250  | 1576634 | 759626 | 812321  | 124    |
| 1695769         6.0342         1105547         14.8025         49917         11.9980         1604644         13.7992         3300433         8.3069         1840212         713266         74537           1445729         5.1445         97320         13.0401         456646         10.9771         1403056         12.3021         2876295         7.2394         160637         657761         610380           1388708         4.8767         166639         13.2467         1404694         65958         656686         65686         12.2234         2497914         6.2877         17366         65686         65686         65686         65686         65686         65686         65686         65686         65686         65686         658776         676947         65686         65686         65886         17201         171466         6.5604         1746694         65958         65686         65886         17147         676759         668686         66886         181000         17146694         62958         656868         66886         17142         172234         2497914         62871         172468         658716         67978         66878         172426         62649         174286         628716         65058         66848         6581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22        |                       | _       | 1375650  | 18.4190 | 596045 |         | 1971695 |         | 3879793 | 9.7651  | 2436738 | 600177 | 841861  | 1017   |
| 1445729         5.1445         973920         13.0401         456646         10.9771         1430566         12.3021         2876295         7.234         160653         657761         610900           1388708         4.8704         14.8667         18.9326         14.8040         13.460         276147         6.9564         1404694         699588         65868           1028275         3.8367         16.623         15.6231         361862         8.6286         1.2224         248791         6.2674         1404694         69588         65868           107692         3.8367         16.623         3.2786         8.1201         1421422         12.2224         248781         6.2674         669588         65968           1029580         3.327         1461182         19.5642         340823         1811005         15.2234         248781         6.2871         6.2877         605928           96556         3.327         16.1889         27636         6.2432         1486193         12.2884         6.2864         10.74069         59176         59178         243262         6.2666         10.6765         59178         59179         605928         60548         6.2648         10.2696         10.2696         10.2696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23        |                       | _       | 1105547  | 14.8025 | 499117 |         | 1604664 |         | 3300433 | 8.3069  | 1840212 | 713266 | 745937  | 1018   |
| 138B708         4,8704         1418567         18,936         4,31756         10,3787         1850323         15,9117         3219031         8,1020         1938411         587295         692618           1202775         4,3867         1166639         15,6231         36162         8,686         152304         276476         6,9504         1404694         699586         656666           1029580         16,6824         3,8306         16,5242         349923         84,092         1811005         12,234         2497686         6,2643         161605         162666         59127         605928         656666         591127         605928         656666         591127         605928         656666         591127         605928         656666         591127         605928         656668         591127         605928         656668         591127         605928         656408         65244         1552043         12,28046         6,2696         10,0404         6,2696         10,0404         6,2696         10,0404         6,0405         10,0404         6,0405         10,0404         10,0406         11,0406         10,0406         10,0406         11,0406         10,0406         10,0406         10,0406         10,0406         10,0406         10,0406 <td>24</td> <td></td> <td><math>\perp</math></td> <td>973920</td> <td>13.0401</td> <td>456646</td> <td></td> <td>1430566</td> <td></td> <td>2876295</td> <td>7.2394</td> <td>1606537</td> <td>657761</td> <td>610980</td> <td>1017</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24        |                       | $\perp$ | 973920   | 13.0401 | 456646 |         | 1430566 |         | 2876295 | 7.2394  | 1606537 | 657761 | 610980  | 1017   |
| 1222775         4.3867         1166839         15.6231         361862         86986         1528701         13.1460         2761476         6.9564         6.9958         65686           1076492         3.8306         1063826         14.5090         337786         8.1201         1421422         12.2224         2497914         6.2407         6.76947         605928           1076492         3.8306         10.56182         340823         8.4092         11411005         15.536         2840586         1.62636         566148         555102           93655         3.327         1268396         16.1989         27636         6.432         1486183         12.8076         2432621         1.206758         561546         591127           851957         3.0366         1108793         14.8459         380555         9.1480         14.89348         12.8076         2432621         6.1227         1422865         50164         50101           943273         3.3566         1108793         14.8459         380555         9.1480         1072286         9.2211         1849627         4.6554         962381         53166         50101           777341         2.7661         7.9663         8.7946         1072286         9.2211 </td <td>25</td> <td></td> <td>_</td> <td>1418567</td> <td>18.9936</td> <td>431756</td> <td></td> <td>1850323</td> <td></td> <td>3219031</td> <td>8.1020</td> <td>1938411</td> <td>587295</td> <td>692818</td> <td>202</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25        |                       | _       | 1418567  | 18.9936 | 431756 |         | 1850323 |         | 3219031 | 8.1020  | 1938411 | 587295 | 692818  | 202    |
| 1076492         38.06         10.06642         14.5090         337796         8 1.201         1421422         12.2334         2497914         6.2871         1234078         674613         588715           1028580         3.6637         16.6628         349823         8.4092         1811005         15.576         2840585         7.1495         165745         676947         605928           905558         3.3327         1263986         16.2039         276356         6.6432         1486193         12.7804         238860         1206759         66488         591127           851957         3.0346         1208986         16.5239         246805         6.432         1486193         12.7804         238860         17266         591127           851957         3.0346         10.27806         9.2211         1849627         6.6356         50146         51786         50146         50146         51786         52014         51786         50146         50146         51786         51786         50146         50146         51786         51762         54654         50146         501628         5211         148962         114654         56463         56463         58696         56463         56463         586463         586463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56        |                       | _       | 1166839  |         | 361862 | _1      | 1528701 |         | 2761476 | 6.9504  | 1404694 | 699588 | 656686  | 508    |
| 1029560         36637         1461182         19.5642         349823         8.4092         1811005         15.5736         2840586         7.1495         1657456         576947         605928           908556         3.3327         1263986         16.9239         2840657         6.843         1552043         13.3467         2488601         6.2636         1206759         686486         595102           908556         3.3327         1263986         16.9432         1480         148040         12.33816         5.849         1024005         712766         591127           943275         3.3666         10.07893         14.8499         14809348         12.8076         24.2876         5.07181         507181         507181           777341         2.7661         790038         10.5780         285248         6.7848         1072286         9.2211         1849627         4.6554         962381         531863         354364           707908         2.7661         16.9899         2.45766         5.9076         910394         7.8289         1605284         4.0404         810440         513780         290041           707908         2.5100         116339         15.5763         3.06375         7.3648         148974<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27        |                       | _       | 1083626  |         | 337796 |         | 1421422 |         | 2497914 | 6.2871  | 1234078 | 674613 | 588715  | 508    |
| 936556         3 3227         1263986         16 9239         288057         6 9244         1552043         13.3467         2488601         6 2636         1206759         686488         595102           9451967         3.0316         1209837         16.1989         276356         6.4432         1486193         12.7864         2338150         5.8849         1024005         71276         591127           943273         3.3566         1100793         14.8459         27486         14807         1486348         1.227         142286         501546         507191           777341         2.7667         790903         1.5763         2.82248         5.7848         1.02394         4.0404         810440         513780         280041           707908         2.7577         6.64638         8.8990         2.4576         5.9076         910394         7.17622         5.4809         1227909         498063         451142           550236         2.6190         2.2570         9.5570         110658         9.5510         170089         1227909         498063         297826           552479         1.6899         1.6899         2.6250         1.10658         9.5510         170089         1.227909         498063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28        |                       |         | 1461182  |         | 349823 | _       | 1811005 |         | 2840585 | 7.1495  | 1657458 | 576947 | 605928  | 252    |
| 851957         3.0316         1209837         16.1989         276356         6.6432         1486193         12.7804         2338150         5.8849         1034005         712766         591127           943273         3.3566         1108793         14.8459         380555         9.1480         1489348         12.8076         2432621         6.1227         1422865         501546         507191           777341         2.7661         780038         10.5780         242786         9.2211         1849627         4.6554         962381         531863         354344           707908         2.4727         664638         8.8990         245756         5.076         910394         7.8089         1277622         5.4809         1227909         498063         45142           504278         2.427         1110658         9.5510         1700893         12810         79176         562142         347067           554279         1.8694         1.8694         1.8628         1.6288         1.5369         1.5286         3837         659135         56095         29782           554279         1.8686         2.2217         1.4627         1.5286         3.837         659135         566095         29782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29        |                       |         |          |         | 288057 | 6.9244  | 1552043 |         | 2488601 | 6.2636  | 1206759 | 686488 | 595102  | 252    |
| 943273         3.3566         1108793         14.8459         380555         9.1480         1489348         12.8076         2432621         6.1227         1422865         501546         507191           777341         2.7661         790038         10.5780         2.82248         6.7846         1072266         9.2211         1849627         4.6554         962381         531863         354364           694886         2.4727         664638         8.8990         24576         910394         7.8289         1605280         4.0404         610440         513780         280041           590235         2.5100         1163339         15.5763         2.25709         5.4257         1110658         9.5510         1700893         4.2810         791176         562142         247067           552427         1.869         2.25709         5.4257         1110658         9.5510         1700893         4.2810         791176         562142         247067           564227         2.0078         12.286         15.510         12.2868         15.39404         13.2380         2103631         5.2947         1204886         486911         411562           564227         2.0078         12.8463         15.2864         15.2846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | စ္တ       |                       | _       |          | !       | 276356 |         | 1486193 |         | 2338150 | 5.8849  | 1034005 | 712766 | 591127  | 252    |
| 777341         2.7661         790038         10.5780         282248         6.7848         6.72286         9.2211         1849627         4.6554         962381         531863         354364           694886         2.4777         664638         8.8990         24576         5.9076         910394         7.8289         1605280         4.0404         610440         513780         280041           707908         2.5190         1163339         15.5763         3.06375         7.3648         1469714         12.6387         2.177622         5.4809         1227909         4.98063         4.51142           52547         1.6899         7.25709         5.4257         1110658         9.5510         1700893         4.2810         7.91176         5.97626         2.97605           52547         1.6899         7.8208         15.39404         13.2380         12.2381         1.204866         486911         411562           54427         2.00764         4.5208         15.39404         13.2380         2103631         5.2947         1204866         486911         411562           54427         2.00784         4.5008         15.39404         13.2380         2103631         5.2947         1204866         486911         4115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31        | 943273                |         | 1108793  |         | 380555 |         | 1489348 |         | 2432621 | 6.1227  | 1422865 | 501546 | 507191  | 1019   |
| 694886         2.4727         664638         8.8990         245756         5.9076         910394         7.8289         1605280         4.0404         810440         513780         280041           707908         2.5190         1163339         15.5763         306375         7.3648         1469714         12.6387         2177622         5.4809         1227909         498063         451142           580235         2.1003         684949         11.8488         225709         5.4257         1110658         9.5510         170083         4.2810         781176         562142         347067           52547         1.6899         200547         4.8208         998056         1539404         13.2380         2103631         5.2947         1204866         466911         411562           544237         2.0078         2.2865         1539404         13.2880         2103631         5.2947         1204866         466911         411562           469834         1.6505         1034358         19.8460         4.5303         1222818         10.5166         16.5846         593578         634867         634867         329729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32        |                       |         | 790038   | ١, ١    | 282248 |         | 1072286 |         | 1849627 | 4.6554  | 962381  | 531863 | 354364  | 1019   |
| 707908         2.5190         1163339         15.5763         306375         7.3648         1469714         12.6387         2177622         5.4809         1227909         498063           590235         2.1003         8849491 11.8488         225709         5,4257         1110658         9,5510         170683         4.2810         79176         562142           562427         1.6899         797538         10.6785         200547         4.8208         568095         6.5947         150488         46691           562427         1.0078         1.77762         2.6160         2.26160         2.53404         13.2036         15.2947         120488         46691           468834         1.6505         1.03493         1.88460         4.5303         1222818         10.5156         1686652         5.2947         120488         592591           414239         1.4740         970269         12.9912         173936         4.1812         1144207         9.8395         155846         593576         633676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33        |                       | _       | 664638   |         | 245756 |         | 910394  |         | 1605280 | 4.0404  | 810440  | 513780 | 280041  | 1019   |
| 590235         2.1003         864949   11.8486         2.25709   5.4257         5.4257   110656   9.5510         110656   9.5510   1700893         4.2810   791176   562142   156085   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.0768   10.076                                                                            | ष्ठ       |                       |         | 1163339  | 15.5763 | 306375 |         | 1469714 |         | 2177622 | 5.4809  | 1227909 | 498063 | 451142  | 508    |
| 526479         1.8699         797538         10.6763         200547         4.8208         998085         8.5830         1523564         3.8347         659135         566095         56096           564227         2.0078         1277802         17.1089         261602         6.2865         1539404         13.2360         2103631         5.2947         1204886         486911           463834         1.6505         1034356         13.8493         188460         4.5303         1222818         10.5156         1686652         4.2452         736025         592591           414239         1.4740         970269         12.9912         173938         4.1812         1144207         9.8395         1558446         3.9225         593576         634887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35        |                       |         | 884949   | 11.8488 | 225709 |         | 1110658 |         | 1700893 | 4.2810  | 791176  | 562142 | 347067  | 508    |
| 564227         2.0078         1277802         17.1089         261602         6.2865         1539404         13.2360         2103631         5.2947         1204886         466911           463834         1.6505         1034356         13.8493         188460         4.5303         1222818         10.5156         1686652         4.2452         736025         592591           414239         1.4740         970269         12.9912         173938         4.1812         1144207         9.8395         1558446         3.9225         593578         634887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36        |                       |         | 797538   | 10.6785 | 200547 | _       | 998085  |         | 1523564 | 3.8347  | 659135  | 566095 | 297826  | 508    |
| 463834         1,6505         1034356         13.8493         188460         4.5303         1222818         10.5156         1686652         4.2452         736025         592591           414239         1,4740         970269         12.9912         173938         4.1812         1144207         9.8395         1558446         3.9225         593576         634887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37        |                       | 2.0078  | 1277802  | 17.1089 | 261602 |         | 1539404 |         | 2103631 | 5.2947  | 1204886 | 486911 | 411582  | 252    |
| 414239         1,4740         970269         12.9912         173938         4,1812         1144207         9.8395         1558446         3.9225         593576         634887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38        |                       |         | 1034358  | 13.8493 | 188460 |         | 1222818 |         | 1686652 |         | 736025  | 592591 | 357754  | 252    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33        |                       | _       | 970269   | 12.9912 | 173938 | _       | 1144207 | _       | 1558446 |         | 593578  | 634887 | 329729  | 252    |

Table 25: Compress and GCC w/ Operating System, Combined Data

| Total Instruction References           Data Writes           Total Belerences           Miss Statistics:           Cache         Inst         %           Cache         Inst         Inst           Cache         Inst         Inst           Cache         Inst         Inst           Cache         Inst | % % % % % % % % % % % % % % % % % % % | 163169963<br>51099459<br>20776106<br>71875665<br>255045548<br>9553552 18.6960<br>7955929 15.5959<br>4890502 21.0421<br>9319185 18.237<br>8945913 17.5069<br>11378032 22.2664<br>10027433 18.6234<br>9131611 17.8703<br>13892534 27.1872<br>11193406 21.3051<br>9377434 18.3513<br>9030865 17.6731<br>7525176 14.7265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %<br>18.6960<br>15.5695<br>11.5953<br>11.5953<br>17.6069<br>22.2664<br>19.6234<br>17.8703<br>17.8703<br>17.8703<br>17.8703<br>17.8703<br>17.8703<br>17.8703<br>17.8703 |                                                                                                                 | %<br>%<br>7.2753<br>5.3287<br>1.34610<br>1.34610<br>9.3270<br>8.9218<br>10.0892<br>7.0586<br>7.0430     | Data % 11065084 15.3948 9063018 12.6093 6644185 9.2440 52786501 7.8.1011 | %       |          |        |        |        |        | in(3)  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------|----------|--------|--------|--------|--------|--------|
| Data Meries           Total References           Miss Statistics:           Cache         7141606           1         5459775           2         338154           3         1784953           4         96607134           6         8089386           7         6863121           8         5968017           9         588477           10         524304           11         428503           12         428503           13         640768           16         468820           17         4266957           18         406562           19         330306           20         330308           20         330308                                                                                                                                                                                                                                                                                                                                                                         |                                       | 51099459 20776106 71875565 255045548 Read 9553552 7955920 10752403 9319185 11378032 110027433 9131611 13892534 11137434 9030865 9377434 9030865 7525176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>%<br>18.6960<br>15.5695<br>11.5953<br>17.5069<br>22.2664<br>17.8703<br>27.1872<br>27.1872<br>17.8703<br>17.8703                                                   | 5251<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>16                                       | % % % % % % % % % % % % % % % % % % %                                                                   | Data<br>11065084<br>9063018<br>6644185<br>5278501                        | %       |          |        |        |        |        | in(3)  |
| Total Data References     Total Data References     Miss Statistics:     Cache                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 20776106<br>71875565<br>255045548<br>Read<br>9553552<br>7955929<br>6925133<br>10752403<br>913185<br>11378032<br>10027433<br>913161<br>11378032<br>10027433<br>913161<br>11378032<br>10027433<br>913161<br>113892534<br>11189065<br>9377434<br>9030865<br>7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %<br>%<br>18.6960<br>11.5953<br>11.5953<br>11.5953<br>11.6953<br>17.5069<br>17.8703<br>17.8703<br>17.8703<br>17.8703<br>17.8703<br>17.8703                             | 0052<br>0052<br>0052<br>0052<br>0052<br>0052<br>0052<br>0052                                                    | % % % % 7.2763 7.2763 7.3267 3.4610 1.8675 10.8676 9.3270 9.3270 10.0892 7.0586 7.0430                  | Data<br>11065084<br>9063018<br>6644185<br>5278501                        | %       |          |        |        |        |        | inf(3) |
| Total Data References  Miss Statistics: Cache 10 7141606 11 5459776 2 3381546 3 1784956 3 1784956 4 9666071 5 6 8631212 6 8089364 6 8089364 6 8089364 11 436837 12 4285037 11 4286967 11 4266820 11 4266967 11 4266967 11 4266967 11 4266967 11 4266967 11 4266967 11 4266967 11 4266967 11 4266967 12 4269304 13 6477762 14 56477762 16 4666622 19 3303096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 71875565 255045548 Read 955352 7955929 7955929 10752403 9319185 8945913 11378032 10027433 9131611 113892534 111939065 9377434 9030865 7525176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %<br>18.6960<br>15.5695<br>11.5953<br>9.5706<br>9.5706<br>17.6069<br>17.6703<br>17.8703<br>17.8703<br>17.8703<br>17.8703<br>17.8703                                    | 5532<br>0089<br>999<br>999<br>6600<br>6600<br>6603<br>663<br>6435<br>435                                        | %<br>7.2753<br>7.2753<br>3.4610<br>1.8675<br>10.8676<br>9.3270<br>8.9218<br>10.0892<br>7.0586<br>7.0489 | Data<br>11065084<br>9063018<br>6644185<br>5278501                        | %       |          |        |        |        |        | int(3) |
| Miss Statistics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 255045548  Read 955352 7355262 7355329 10052403 9319185 8945918 11078032 11027433 9131611 13892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 1113892534 111389265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %<br>18.6960<br>11.5953<br>11.5953<br>9.5706<br>9.5706<br>18.2373<br>17.8703<br>17.8703<br>17.8703<br>17.8703<br>17.8703                                               | 0652<br>0652<br>074<br>074<br>074<br>074<br>074<br>074<br>074<br>074<br>074<br>074                              | % % % 7.2753 8.3287 3.4616 1.8676 10.8676 9.3270 8.9218 10.0892 7.0586 7.02489                          | Data<br>11065084<br>9063018<br>6644185<br>5278501                        | %       |          |        |        |        |        | int(3) |
| Miss Statistics:           Cache         Inst           0         7141606           1         5459778           2         3381546           3         1784955           4         966071           5         826013           6         808936           7         6863121           8         5986475           9         5886476           10         524304           11         436883           12         428503           13         640788           16         468820           17         426683           18         405622           19         351268           20         330306           21         320207           22         330306                                                                                                                                                                                                                                                                                                                                            |                                       | Read<br>9553552<br>7955929<br>6925133<br>4890502<br>10752403<br>9319185<br>8945913<br>10027433<br>9131611<br>1138032<br>1103406<br>9377434<br>11193406<br>7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %<br>8.6550<br>11.5953<br>11.5953<br>9.5706<br>21.0421<br>18.2373<br>11.5069<br>22.2669<br>12.2669<br>17.6731<br>17.6731                                               | 532<br>0089<br>0052<br>9999<br>874<br>790<br>600<br>600<br>663<br>663<br>435                                    | % 7.2753 7.2753 7.2753 3.4610 1.8676 9.3270 8.9218 10.0892 7.0586 7.0273                                | Data<br>11065084<br>9063018<br>6644185<br>5278501<br>13010277            | %       |          |        |        |        |        | int(3) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | Read   9553552   7955929   6925133   4890502   10752403   9319185   8945913   11378032   11022433   9131611   13892534   11193406   9377434   9030865   7525176   7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % % % % % % % % % % % % % % % % % % %                                                                                                                                  | 532<br>0089<br>0052<br>9999<br>874<br>874<br>160<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600 | % 7.2753 7.2753 7.2753 6.3287 1.8676 10.8676 9.3270 8.9218 10.0892 7.6586 7.0430                        | Data<br>11065084<br>9063018<br>6644185<br>5278501<br>13010277            | %       | •        |        |        |        |        | int(3) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 9553552<br>7955929<br>10752403<br>10752403<br>9319185<br>9319185<br>11378032<br>10027433<br>10027433<br>113892534<br>11193406<br>9377434<br>9377434<br>11193406<br>11193406<br>9377434<br>7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.6960<br>15.5695<br>11.5953<br>11.5953<br>17.5069<br>22.2664<br>17.8703<br>27.1872<br>27.1872<br>27.1872<br>17.8703<br>17.8703<br>17.8703                            |                                                                                                                 | 5.3287<br>3.4610<br>1.8675<br>10.8676<br>9.3270<br>10.0892<br>7.0589<br>7.0589<br>7.0589<br>7.0573      | 11065084<br>9063018<br>6644185<br>5278501<br>13010277                    |         | Total    | %      | int(0) | int(1) | int(2) |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 7955929 1 6225133 1 6225133 1 6225133 1 6225133 1 6225133 1 6225133 1 6225133 1 6225133 1 6225133 1 6225134 1 6225136 1 6225136 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 6225176 1 622517 | 15.5695<br>11.5953<br>11.5953<br>12.0421<br>17.5069<br>22.2664<br>17.8703<br>27.1872<br>27.1872<br>27.1872<br>17.8703<br>17.8703                                       |                                                                                                                 | 5.3287<br>3.4610<br>1.8675<br>10.8676<br>9.3270<br>8.9218<br>10.0892<br>7.6586<br>7.0273<br>7.6586      | 9063018<br>6644185<br>5278501<br>13010277                                | 15.3948 | 18206690 | 7.1386 | 7-1    |        | /=     | 724    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 8925133<br>4890502<br>10752403<br>9319186<br>11378032<br>10027433<br>11892534<br>111893406<br>9377434<br>9030865<br>7525176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5953<br>9.5706<br>21.0421<br>18.2373<br>17.5069<br>22.2664<br>17.8703<br>27.1872<br>27.1872<br>27.1872<br>27.1872<br>17.8731                                        |                                                                                                                 | 3.4610<br>1.8675<br>10.8676<br>9.3270<br>8.9218<br>10.0892<br>7.6586<br>7.0273<br>7.0489                |                                                                          | 12.6093 | 14522791 | 5.6942 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 4890502<br>9319185<br>9319185<br>845913<br>11378032<br>10027433<br>9131611<br>1193406<br>9377434<br>9030865<br>7525176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.5706<br>21.0421<br>18.2373<br>17.5069<br>22.2664<br>19.6234<br>17.8703<br>27.1872<br>27.1872<br>21.9051<br>118.3513                                                  |                                                                                                                 | 1.8675<br>10.8676<br>9.3270<br>10.0892<br>7.6586<br>7.0273<br>7.0273<br>7.0489                          | _                                                                        | 9.2440  | 10025733 | 3.9310 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 10752403<br>9319185<br>8945913<br>11378032<br>10027433<br>971434<br>11193406<br>9377434<br>9377434<br>11193406<br>7377434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0421<br>18.2373<br>17.5069<br>22.2664<br>19.6234<br>17.8703<br>27.1872<br>21.9051<br>118.3513                                                                       |                                                                                                                 | 10.8676<br>9.3270<br>8.9218<br>10.0892<br>7.6586<br>7.0273<br>9.6489<br>7.0430                          | _                                                                        | 7.3439  | 7063454  | 2.7695 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 9319185<br>8945913<br>11378032<br>10027433<br>9131611<br>13892534<br>11193406<br>9377434<br>9030865<br>7712860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.5069<br>17.5069<br>19.6234<br>17.8703<br>27.1872<br>21.9051<br>18.3513                                                                                              |                                                                                                                 | 9.3270<br>8.9218<br>10.0892<br>7.6586<br>7.0273<br>9.6489<br>7.0430                                     |                                                                          | 18.1011 | 22676348 | 8.8911 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 11378032<br>10027433<br>9131611<br>13892534<br>11193406<br>9377434<br>9030865<br>7525176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.5069<br>22.2664<br>19.6234<br>17.8703<br>27.1872<br>27.19051<br>18.3513                                                                                             |                                                                                                                 | 8.9218<br>10.0892<br>7.6586<br>7.0273<br>9.6489<br>7.0430                                               | 11256975                                                                 | 15.6618 | 19517109 | 7.6524 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 11378032 2<br>10027433 1<br>9131611 13892534 1<br>11193406 2<br>9377434 2<br>9030865 7525176 7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.2664<br>19.6234<br>17.8703<br>27.1872<br>21.9051<br>18.3513                                                                                                         |                                                                                                                 | 7.6586<br>7.0273<br>9.6489<br>7.0430                                                                    | 10799513                                                                 | 15.0253 | 18888899 | 7.4061 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 10027433<br>9131611<br>13892534<br>11193406<br>9377434<br>9030865<br>7525176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.8703<br>27.1872<br>27.1872<br>21.9051<br>18.3513                                                                                                                    | 1591160<br>1459995<br>2004663<br>1463251<br>1281435                                                             | 7.6586<br>7.0273<br>9.6489<br>7.0430                                                                    | 13474177 18.7465                                                         | 18.7465 | 20337298 | 7.9740 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 9131611<br>13892534<br>11193406<br>9377434<br>9030865<br>7525176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.8703<br>27.1872<br>21.9051<br>18.3513                                                                                                                               | 1459995<br>2004663<br>1463251<br>1281435                                                                        | 7.0273<br>9.6489<br>7.0430                                                                              | 11618593 16.1649                                                         | 16,1649 | 17586603 | 6.8955 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 13892534<br>11193406<br>9377434<br>9030865<br>7525176<br>7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.1872<br>21.9051<br>18.3513<br>17.6731                                                                                                                               | 2004663<br>1463251<br>1281435                                                                                   | 9.6489                                                                                                  | 10591606 14.7360                                                         | 14.7360 | 16478085 | 6.4608 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 9377434<br>9377434<br>9030865<br>7525176<br>7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.9051<br>18.3513<br>17.6731                                                                                                                                          | 1463251<br>1281435                                                                                              | 7.0430                                                                                                  | 15897197 22.1177                                                         | 22.1177 | 21140241 | 8.2888 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 9377434<br>9030865<br>7525176<br>7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.3513                                                                                                                                                                | 1281435                                                                                                         |                                                                                                         | 12656657 17.6091                                                         | 17.6091 | 17025490 | 6.6755 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 7525176<br>7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.6731                                                                                                                                                                |                                                                                                                 | 6.1678                                                                                                  | 10658869 14.8296                                                         | 14.8296 | 14943905 | 5.8593 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 7525176 7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                      | 1770317                                                                                                         | 8.5209                                                                                                  | 10801182 15.0276                                                         | 15.0276 | 17209063 | 6.7474 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 7112860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.7265                                                                                                                                                                | 1419986                                                                                                         | 6.8347                                                                                                  | 8945162 12,4453                                                          | 12,4453 | 14592944 | 5.7217 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.9196                                                                                                                                                                | 1320046                                                                                                         | 6.3537                                                                                                  | 8432906 11.7326                                                          | 11.7326 | 13650526 | 5.3522 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 9604936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9604936 18.7966                                                                                                                                                        | 1659773                                                                                                         | 7.9889                                                                                                  | 11264709 15.6725                                                         | 15.6725 | 15952910 | 6.2549 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 7833326 15.3296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.3296                                                                                                                                                                | 1176431                                                                                                         | 5.6624                                                                                                  |                                                                          | 12.5352 | 13276715 | 5.2056 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 7589464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.8523                                                                                                                                                                | 1075637                                                                                                         | 5.1773                                                                                                  |                                                                          | 12.0557 | 12730723 | 4.9915 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                     | 11527129 22.5582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.5582                                                                                                                                                                | 1555228                                                                                                         | 7.4857                                                                                                  |                                                                          | 18.2014 | 16595050 | 6.5067 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                     | 8613640 16.8566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.8566                                                                                                                                                                | 1054255                                                                                                         | 5.0744                                                                                                  | 9667895                                                                  | 13.4509 | 12970976 | 5.0857 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 8016546 15.6881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.6881                                                                                                                                                                | 934155                                                                                                          | 4.4963                                                                                                  |                                                                          | 12.4531 | 12152772 | 4.7649 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                     | 6869416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.4432                                                                                                                                                                | 1285958                                                                                                         | 6.1896                                                                                                  |                                                                          | 11.3465 | 12419580 | 4.8696 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 6069523 11.8779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.8779                                                                                                                                                                | 1040460                                                                                                         | 5.0080                                                                                                  | 7109983                                                                  | 9.8921  | 10637538 | 4.1708 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 5610486 10.9795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.9795                                                                                                                                                                | 907385                                                                                                          | 4.3674                                                                                                  | _                                                                        | 9.0683  | 9391931  | 3.6825 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                     | 7167918 14.0274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.0274                                                                                                                                                                | 1028851                                                                                                         | 4.9521                                                                                                  |                                                                          | 11.4041 | 11389872 | 4.4658 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 6398145 12.5210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.5210                                                                                                                                                                | 832378                                                                                                          | 4.0064                                                                                                  |                                                                          | 10.0598 | 9946001  | 3.8997 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 5989428 11.7211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7211                                                                                                                                                                | 707550                                                                                                          | 3.4056                                                                                                  | 8269699                                                                  | 9.3175  | 9015941  | 3.5350 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 7635582 14.9426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.9426                                                                                                                                                                | 935770                                                                                                          | 4.5041                                                                                                  | 8571352                                                                  | 11.9253 | 11019700 | 4.3207 |        |        |        |        |
| 29 2153619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.4641                                                                                                                                                                | 751927                                                                                                          | 3.6192                                                                                                  | _                                                                        | 10.6183 | 9785606  | 3.8368 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.8107                                                                                                                                                                | 640976                                                                                                          | 3.0852                                                                                                  | 7187172                                                                  | 9.9995  | 9142816  | 3.5848 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.3973                                                                                                                                                                | 768045                                                                                                          | 3.6968                                                                                                  | 6591982                                                                  | 9.1714  | 8590310  | 3.3681 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 5031137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.8458                                                                                                                                                                 | 542061                                                                                                          | 2.6091                                                                                                  | 5573198                                                                  | 7.7540  | 7100534  | 2.7840 |        |        |        |        |
| 33 1222354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\perp$                               | 4745684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.2872                                                                                                                                                                 | 471249                                                                                                          | 2.2682                                                                                                  | 5216933                                                                  | 7.2583  | 6439287  | 2.5248 |        |        |        | -      |
| İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                     | 6149153 12.0337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.0337                                                                                                                                                                | 667432                                                                                                          | 3.2125                                                                                                  | 6816585                                                                  | 9.4839  | 8348326  | 3.2733 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 5403142 10.5738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5738                                                                                                                                                                | 463238                                                                                                          | 2.2297                                                                                                  | 5866380                                                                  | 8.1619  | 7074810  | 2.7739 |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 5172419 10.1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.1223                                                                                                                                                                | 397335                                                                                                          | 1.9125                                                                                                  | 5569754                                                                  | 7.7492  | 6570001  | 2.5760 |        |        |        |        |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 6587981 12.8925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.8925                                                                                                                                                                | 645343                                                                                                          | 3.1062                                                                                                  | 7233324                                                                  | 10.0637 | 8459829  | 3.3170 |        |        |        |        |
| 38 981146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                     | 5840897 11.4304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4304                                                                                                                                                                | 432162                                                                                                          | 2.0801                                                                                                  | 6273059                                                                  | 8.7277  | 7254205  | 2.8443 |        |        |        |        |
| 39 851381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4648                                | 5705475 11.1654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.1654                                                                                                                                                                | 392286                                                                                                          | 1.8882                                                                                                  | 6097761                                                                  | 8.4838  | 6949142  | 2.7247 |        |        |        |        |

Table 26: Compress and Espresso w/ Operating System, Compress Data

| Total Instruc<br>Data Reads<br>Data writes<br>Total Data F | Total Instruction References | saces  | 2002FOLO  | _               |        |        |                 |                 |         |        |         |         |         |        |
|------------------------------------------------------------|------------------------------|--------|-----------|-----------------|--------|--------|-----------------|-----------------|---------|--------|---------|---------|---------|--------|
| Data Rea<br>Data writ                                      | -                            |        | 6/045885  |                 |        | 1      |                 |                 |         | 7      |         |         |         |        |
| Data writ                                                  | sp                           |        | 22411994  |                 |        |        |                 |                 |         |        |         |         |         |        |
| Total Dat                                                  | es                           |        | 8521651   |                 |        |        |                 |                 |         |        |         | -       |         |        |
|                                                            | Total Data References        |        | 30933645  |                 |        |        |                 |                 |         |        |         |         |         |        |
| Total References                                           | erences                      |        | 117979530 |                 |        |        |                 |                 |         |        |         |         |         |        |
| Miss Statistics:                                           | tistics:                     |        |           |                 |        |        |                 |                 |         |        |         |         |         |        |
| Cache                                                      | Inst                         | %      | Read      | %               | Write  | %      | Data            | %               | Total   | %      | int(0)  | int(1)  | int(2)  | int(3) |
| 0                                                          | 1249023                      | 1.4349 | 4875818   | 21.7554         | 172163 | 2.0203 | 5047981         | 16.3187         | 6297004 | 5.3374 | 883351  | 4034776 | 1378873 | 4      |
| 1                                                          | 741902                       | 0.8523 | 4377883   | 1377883 19.5337 | 98848  | 1.1600 | 4476731         | 14.4720         | 5218633 | 4.4233 | 838125  | 3380432 | 1000072 | 4      |
| 2                                                          | 117209                       | 0.1347 | 3518959   | 3518959 15.7012 | 48755  | 0.5721 | 3567714         | 11,5334         | 3684923 | 3.1234 | 628861  | 2333977 | 722081  | 4      |
| 6                                                          | 16120                        | 0.0185 | 3189503   | 3189503 14.2312 | 26317  | 0.3088 | 3215820 10.3959 | 10.3959         | 3231940 | 2.7394 | 514123  | 2296081 | 421732  | 4      |
| 4                                                          | 1849816                      | 2.1251 | 5340555   | 5340555 23.8290 | 256805 | 3.0136 | 5597360 18.0947 | 18.0947         | 7447176 | 6.3123 | 783065  | 5098571 | 4512527 | 9      |
| 22                                                         | 401699                       | 0.4615 | 4548709   | 20.2959         | 153069 | 1.7962 | 4701778 15.1996 | 15.1996         | 5103477 | 4.3257 | 843730  | 2632417 | 2446822 | 9      |
| 9                                                          | 201315                       | 0.2313 | 4261903   | 1261903 19.0162 | 114732 | 1.3464 | 4376635 14.1485 | 14.1485         | 4577950 | 3.8803 | 773060  | 2253301 | 2253172 | 9      |
| 7                                                          | 1250653                      | 1.4368 | 5737477   | 5737477 25.6000 | 496822 | 5.8301 | 6234299 20.1538 | 20.1538         | 7484952 | 6.3443 | 2877211 | 5651216 | 5448885 | 4      |
| 80                                                         | 289833                       | 0.3330 | 5318351   | 5318351 23.7299 | 250565 | 2.9403 | 5568916 18.0028 | 18.0028         | 5858749 | 4.9659 | 2525379 | 3792984 | 1311480 | 4      |
| 6                                                          | 172813                       | 0.1985 | 4592674   | 1592674 20.4920 | 175143 | 2.0553 | 4767817 15.4130 | 15.4130         | 4940630 | 4.1877 | 733622  | 2800032 | 2545557 | 4      |
| 9                                                          | 1174475                      | 1.3493 | 7923558   | 7923558 35.3541 | 588258 | 6.9031 | 8511816         | 27.5164         | 9686291 | 8.2101 | 6822276 | 8333952 | 6102541 | 4      |
| =                                                          | 274821                       | 0.3157 | 6436516   | 5436516 28.7191 | 377823 | 4.4337 | 6814339         | 22.0289         | 7089160 | 6.0088 | 3228447 | 5515239 | 3284533 | 4      |
| 12                                                         | 182258                       | 0.2094 | 5079384   | 22.6637         | 308791 | 3.6236 | 5388175 17.4185 | 17.4185         | 5570433 | 4.7215 | 571101  | 3946244 | 3658545 | 4      |
| 13                                                         | 287388                       | 0.3302 | 4774522   | 1774522 21.3034 | 178018 | 2.0890 | 4952540 16,0102 | 16.0102         | 5239928 | 4.4414 | 709318  | 3226647 | 1303957 | 9      |
| 14                                                         | 180081                       | 0.2069 | 3964947   | 3964947 17.6912 | 06866  | 1.1722 | 4064837         | 4064837 13.1405 | 4244918 | 3.5980 | 651288  | 2384590 | 1209034 | 9      |
| 15                                                         | 44307                        | 0.0509 | 3834975   | 3834975 17.1113 | 69062  | 0.9279 | 3914044 12.6530 | 12.6530         | 3958351 | 3.3551 | 610058  | 2305047 | 1043240 | 9      |
| 16                                                         | 206954                       | 0.2378 | 5140078   | 5140078 22.9345 | 399427 | 4.6872 | 5539505 17.9077 | 17.9077         | 5746459 | 4.8707 | 656058  | 4073328 | 3150908 | 4      |
| 17                                                         | 156957                       | 0.1803 | 4149660   | 4149660 18.5154 | 136988 | 1.6075 | 4286648 13.8576 | 13.8576         | 4443605 | 3.7664 | 2583623 | 2725389 | 1044366 | 4      |
| 18                                                         | 48353                        | 0.0555 | 4029441   | 4029441 17.9789 | 74146  | 0.8701 |                 |                 | 4151940 | 3.5192 | 656982  | 2518396 | 976558  | 4      |
| 19                                                         | 178766                       | 0.2054 | 6878721   | 30.6921         | 451106 | 5.2936 | 7329827         | 23.6953         | 7508593 | 6.3643 | 617205  | 6083762 | 3814355 | 4      |
| 20                                                         | 156924                       | 0.1803 | 4835808   | 4835808 21.5769 | 212715 | 2.4962 | 5048523 16.3205 | 16.3205         | 5205447 | 4.4122 | 623073  | 3661100 | 921270  | 4      |
| 21                                                         | 56163                        |        | 4397479   | 4397479 19.6211 | 127933 | 1.5013 | 4525412         | 14.6294         | 4581575 | 3.8834 | 680949  | 2961225 | 990581  | 4      |
| 22                                                         | 61813                        | 0.0710 | 3843685   | 3843685 17.1501 | 111179 | 1.3047 | 3954864         | 3954864 12.7850 | 4016677 | 3.4046 | 448678  | 2525508 | 1042485 | 9      |
| 23                                                         | 41613                        | 0.0478 | 3627375   | 3627375 16.1850 | 81617  | 0.9578 | 3708992         | 11.9902         | 3750605 | 3,1790 | 477003  | 2332664 | 2168708 | 9      |
| 24                                                         | 11933                        | 0.0137 | 3543961   | 3543961 15.8128 | 71530  | 0.8394 | 3615491 11.6879 | 11.6879         | 3627424 | 3.0746 | 449532  | 2353971 | 823915  | 9      |
| 25                                                         | 54146                        | 0.0622 | **        | 3973988 17.7315 | 105314 | 1.2358 | 4079302         | 13.1873         | 4133448 | 3.5035 | 469757  | 2837914 | 1808941 | 4      |
| 56                                                         | 29388                        | - 1    |           | 3749168 16.7284 | 81168  | 0.9525 | 3830336 12.3824 | 12.3824         | 3859724 | 3.2715 | 525276  | 2585590 | 748854  | 4      |
| 27                                                         | 13744                        | - 1    | 3627558   | 3627558 16.1858 | 43176  | 0.5067 | 3670734         | 3670734 11.8665 | 3684478 | 3.1230 | 513538  | 2510736 | 660200  | 4      |
| 28                                                         | 32859                        | - 1    | 4198818   | 4198818 18.7347 | 147222 | 1.7276 | 4346040 14.0496 | 14.0496         | 4378899 |        | 494696  | 3219192 | 665007  | 4      |
| 53                                                         | 26069                        | 0.0299 | 3937632   | 3937632 17.5693 | 114428 | 1.3428 | 4052060         | 4052060 13.0992 | 4078129 | 3.4566 | 563142  | 2843748 | 671235  | 4      |
| 30                                                         | 16373                        | 0.0188 | 3782336   | 16.8764         | 44857  | 0.5264 | 3827193 12.3723 | 12.3723         | 3843566 | 3.2578 | 594011  | 2623105 | 626446  | 4      |
| 31                                                         | 41623                        | 0.0478 | 3553160   | 3553160 15.8538 | 71584  | 0.8400 | 3624744         | 11.7178         | 3666367 | 3.1076 | 387856  | 2636434 | 642073  | 4      |
| 32                                                         | 5874                         | 0.0067 | 3371037   | 3371037 15.0412 | 41371  | 0.4855 | 3412408         | 3412408 11.0314 | 3418282 | 2.8974 | 390488  | 2488808 | 538981  | 2      |
| 33                                                         | 3714                         | 0.0043 | 3334909   | 3334909 14.8800 | 36893  | 0.4329 | 3371802         | 10.9001         | 3375516 | 2.8611 | 361123  | 2518790 | 495599  | 4      |
| 용                                                          | 22731                        | 0.0261 | 3679179   | 3679179 16.4161 | 80412  | 0.9436 | 3759591 12.1537 | 12.1537         | 3782322 | 3.2059 | 416368  | 2834225 | 531725  | 4      |
| 32                                                         | 3963                         |        | 3475737   | 3475737 15.5084 | 33515  | 0.3933 | 3509252         | 3509252 11.3445 | 3513215 | 2.9778 | 445681  | 2613314 | 454216  | 4      |
| 98                                                         | 3011                         | 0.0035 | 3433628   | 3433628 15.3205 | 24092  | 0.2827 | 3457720         | 11.1779         | 3460731 | 2.9333 | 441366  | 2619103 | 400258  | 4      |
| 37                                                         | 20201                        | - 1    | 3833700   | 3833700 17.1056 | 93217  | 1.0939 | 3926917         | 3926917 12.6946 | 3947118 | 3.3456 | 427638  | 3029862 | 489614  | 4      |
| 38                                                         | 3082                         | 0.0035 | 3589189   | 3589189 16.0146 | 39686  | 0.4657 | 3628875         | 3628875 11.7312 | 3631957 | 3.0785 | 500643  | 2683794 | 1597469 | 4      |
| 39                                                         | 3210                         | 0.0037 | 3534656   | 3534656 15.7713 | 25632  | 0.3008 | 3560288         | 3560288 11.5094 | 3563498 | 3.0204 | 533372  | 2618974 | 411148  | 4      |

Table 27: Compress and Espresso w/ Operating System, Espresso Data

| Reference Statistics:        | atistics:  |        |           |         |        |        |         |        |         |        |         |         |         |        |
|------------------------------|------------|--------|-----------|---------|--------|--------|---------|--------|---------|--------|---------|---------|---------|--------|
| Total Instruction References | on Referen | seo    | 99475944  |         |        |        |         |        |         |        |         |         |         |        |
| Data Reads                   |            |        | 24280822  |         |        |        |         |        |         |        |         |         |         |        |
| Data writes                  |            |        | 4659787   |         |        |        |         |        |         |        |         |         |         |        |
| Total Data References        | ferences   |        | 28940609  |         |        |        |         |        |         |        |         |         |         |        |
| Total References             | ces        |        | 128416553 |         |        |        |         |        |         |        |         |         |         |        |
| tatist                       | SS:        |        |           |         |        |        |         |        |         |        |         |         |         |        |
|                              |            | %      | Read      | %       | Write  | %      | Data    | %      | Total   | %      | int(0)  | int(1)  | int(2)  | int(3) |
| 0                            |            | 0.9403 | 1633589   | 6.7279  | 151318 | 3.2473 | 1784907 | 6.1675 | 2720251 | 2.1183 | 407172  | 1372386 | 940693  | 0      |
| -                            | _          | 0.6971 | 1235501   | 5.0884  | 108165 | 2.3212 | 1343666 | 4.6428 | 2037096 | 1.5863 | 323283  | 997695  | 716118  | 0      |
| 2                            | 346611     | 0.3484 | 774431    | 3.1895  | 83916  | 1.8009 | 858347  | 2,9659 | 1204958 | 0.9383 | 200210  | 721268  | 274474  |        |
|                              |            | 0.1960 | 413495    | 1.7030  | 40145  | 0.8615 | 453640  | _      | 648595  | 0.5051 | 103260  | 422215  | 103100  | 0      |
|                              |            | 1.7639 | 2803359   | 11.5456 | 237876 | 5.1049 | 3041235 | 1      | 4795882 | 3 7346 | 1720322 | 1604038 | 2744011 |        |
| 5                            |            | 0.7271 | 2254691   | 9.2859  | 210905 | 4.5261 | 2465596 | 1-     | 318881  | 2 4832 | 565472  | 1610610 | 1000000 | 0      |
| 9                            |            | 0.6945 | 2193038   | 9.0320  | 205265 | 4.4050 | 2398303 | 8.2870 | 3089210 | 2 4056 | 601744  | 1587510 | 680000  | 0      |
|                              | _          | 1.2831 | 2506861   | 10.3244 | 197672 | 4.2421 | 2704533 | 9.3451 | 3980864 | 3.1000 | 350139  | 1903977 | 2450787 |        |
|                              | _ [        | 0.5152 | 1808852   | 7.4497  | 162506 | 3.4874 | 1971358 | 6.8117 | 2483817 | 1.9342 | 399146  | 1324436 | 760235  |        |
|                              | _          | 0.4816 | - 1       | 6.9410  | 154974 | 3,3258 | 1840296 | 6.3589 | 2319356 | 1.8061 | 403651  | 1312312 | 513952  |        |
|                              | -          | 1.0647 |           | 10.9185 | 184055 | 3.9499 | 2835154 | 9.7965 | 3894280 | 3.0325 | 242949  | 2741426 | 2802143 | 0      |
|                              | _          | 0.4058 | 1594340   | 6.5663  | 130100 | 2.7920 | 1724440 | 5.9585 | 2128087 | 1.6572 | 827396  | 921486  | 836099  | 0      |
|                              | _          | 0.3738 | 1405400   | 5.7881  | 117740 | 2.5267 | 1523140 | 5.2630 | 1894994 | 1.4757 | 331357  | 594073  | 515091  | 0      |
|                              | _          | 1.4499 | 2261220   | 9.3128  | 182263 | 3.9114 | 2443483 | 8.4431 | 3885789 | 3.0259 | 376369  | 1298958 | 2210462 | 0      |
|                              | _          | 0.4325 | 1780515   | 7.3330  | 161543 | 3.4667 | 1942058 | 6.7105 | 2372267 | 1.8473 | 444211  | 1203443 | 724613  | 0      |
|                              | _          | 0.3440 | 1690616   | 6.9628  | 152118 | 3.2645 | 1842734 | 6.3673 | 2184952 | 1.7015 | 428014  | 1042176 | 714762  | C      |
|                              |            | 1.0705 | 1911840   | 7.8739  | 149935 | 3.2176 | 2061775 | 7.1242 | 3126669 | 2.4348 | 266713  | 1012400 | 1847556 | 0      |
|                              |            | 0.3130 | 1364899   | 5.6213  | 128020 | 2.7473 | 1492919 | 5.1586 | 1804271 | 1,4050 |         | 1040354 | 428305  | 0      |
|                              | 4          | 0.2537 | 1295229   | 5.3344  | 120189 | 2.5793 | 1415418 | 4.8908 | 1667753 | 1.2987 | 341173  | 972229  | 354351  | 0      |
| 2 6                          | 902485     | 0.9072 | 1915923   | 7.8907  | 133351 | 2.8617 | 2049274 | 7.0810 | 2951759 | 2.2986 | 202617  | 803868  | 1945274 | 0      |
|                              |            | 0.2056 | 1163319   | 4.7911  | 103842 | 2.2285 | 1267161 | 4.3785 | 1531376 | 1.1925 | 257615  | 512589  | 355838  | 0      |
| 17                           | _          | 0.2710 | 1096330   | 4.5152  | 95221  | 2.0435 | 1191551 | 4.1172 | 1401454 | 1.0913 | 264634  | 936310  | 200510  | 0      |
| 220                          |            | 0.3309 | 1/06/9/   | 7.0294  | 150441 | 3.2285 | 1857238 | _      | 2186407 | 1.7026 | 264653  | 1039342 | 882412  | 0      |
| 200                          | $\perp$    | 0.1019 | 1336970   | 5.5145  | 116238 | 2.4945 | 1455208 | _      | 1616238 | 1.2586 | 288418  | 937609  | 390219  | 0      |
| 200                          | _          | 200    | 1700100   | 5.2436  | 106320 | 2.2816 | 1380958 | 4.7717 | 1499584 | 1.1677 | 230875  | 391556  | 446659  | 0      |
| 96                           | 445650     | 0.2443 | 1403438   | 5.7800  | 124172 | 2.6648 | 1527610 | 5.2784 | 1770817 | 1.3790 | 206902  | 823217  | 740698  | 0      |
| 200                          | 4          | 2000   | 99/555    | 4.1084  | 91465  | 1.9629 | 1089020 | 3.7629 | 1204672 | 0.9381 | 225416  | 747453  | 231803  | 0      |
| 90                           |            | 4000   | 904006    | 3.7231  | 83013  | 1.7815 | 987019  | 3.4105 | 1079943 | 0.8410 | 191780  | 660343  | 227820  | 0      |
| 200                          | _          | 000.0  | 010010    | 2,4330  | 108152 | 2.3210 | 1427530 | 4.9326 | 1607384 | 1.2517 | 169482  | 662757  | 775145  | 0      |
| 200                          |            | 0.0330 | 040552    | 3.4018  | /4631  | 1.6016 | 915183  | 3.1623 | 1014148 | 0.7897 | 184754  | 669141  | 160253  | 0      |
| 200                          |            | 2/00/0 | 86/5//    | 3.1867  | 69/38  | -1     | 843496  | 2.9146 | 930279  | 0.7244 | 180267  | 207881  | 124833  | 0      |
| - 6                          |            | 0.1242 | 938463    | 3.8650  | 86705  |        | 1025168 | 3.5423 | 1148748 | 0.8945 | 122672  | 641568  | 384508  | 0      |
| 200                          | - 1        | 0.000  | 689103    | 2.8381  | 67758  | 1.4541 | 756861  | 2.6152 | 807097  | 0.6285 | 117753  | 538819  | 150525  | 0      |
| 33                           |            | 0.0201 | 616656    | 2.5397  | 54932  | - 1.   | 671588  |        | 691623  | 0.5386 | 95049   | 495201  | 101373  | 0      |
| 45                           |            | 0.0906 | 829877    | 3.4178  | 74155  | - 1    | 904032  | 3.1237 | 994117  | 0.7741 | 101030  | 531059  | 362028  | 0      |
| 32                           | - 1        | 0.0379 | 566669    | 2.3338  | 54576  |        | 621245  | 2.1466 | 658898  | 0.5131 | 104103  | 454366  | 100429  | 0      |
| 30                           | 1          | 10.0   | 489106    | 2.0144  | 44868  | 0.9629 | 533974  | 1.8451 | 552987  | 0.4306 | 87246   | 400702  | 62039   | 0      |
| 37                           |            | 0.0918 | 848865    | 3.4960  | 75427  | 1.6187 | 924292  |        | 1015601 | 0.7909 | 92579   | 488952  | 434070  | 0      |
| 9                            | 20760      | 0.0350 | 566280    | 2.3322  | 48662  | 1.0443 | 614942  |        | 649729  | 0.5060 | 100907  | 447535  | 101287  | 0      |
| 60                           |            | 8020.0 | 400804    | 2.0053  | 413/1  | 0.8878 | 528275  | 1.8254 | 549023  | 0.4275 | 87768   | 412080  | 49175   | 0      |

Table 28: Compress and Espresso w/ Operating System, Operating System Data

| Total Instruction References Data Reads Data writes Total Data References Miss Statistics: Cache Inst | seuces   | 15541809        | _          |                |                 |                |                 |         |         |        |        |        |
|-------------------------------------------------------------------------------------------------------|----------|-----------------|------------|----------------|-----------------|----------------|-----------------|---------|---------|--------|--------|--------|
| Data Reads Data writes Total Data Reference Total References Miss Statistics:                         |          |                 |            |                |                 | +              |                 | -       |         | -      | 1      |        |
| Data writes Total Data Reference Total References Miss Statistics:                                    | 1        | 4310868         |            |                |                 |                |                 |         |         |        |        |        |
| Total Data Reference Total References Miss Statistics:                                                |          | 2247254         |            |                |                 |                |                 |         |         |        |        |        |
| Total References Miss Statistics:                                                                     | SS       | 6558122         |            |                |                 |                |                 |         |         |        |        |        |
| Miss Statistics:                                                                                      |          | 22099931        |            |                |                 |                |                 |         |         |        |        |        |
|                                                                                                       |          |                 |            |                |                 |                |                 |         |         |        |        |        |
|                                                                                                       | %        | Read %          | Write      | %              | Data            | %              | Total           | %       | int(0)  | int(1) | int(2) | int(3) |
| 0 1255752                                                                                             | 8.0798   | 1247680 28.9427 | 127 293096 | 13.0424        | 1540776         | 23.4942        | 2796528         | 12.6540 | 1505937 | 889817 | 400650 | 124    |
| 1 963360                                                                                              | 0 6.1985 | 930229 21.5787  | 787 249606 | 11.1072        | 1179835         | 17.9904        | 2143195         | 9.6977  | 981598  | 840476 | 320869 | 252    |
| 2 634857                                                                                              | 7 4.0848 | 624586 14,4886  | 386 204084 | 9.0815         | 828670 12.6358  | 12.6358        | 1463527         | 6.6223  | 625068  | 629606 | 208345 | 508    |
| 3 372165                                                                                              | 5 2.3946 | 451765 10.4797  | 797 126377 | 5.6236         | 578142          | 8.8157         | 950307          | 4.3000  | 332581  | 513546 | 103672 | 508    |
| 4 1410954                                                                                             | 4 9.0784 | 1401229 32.5046 | 346 451974 | 20.1123        |                 | 28.2581        | 3264157         | 14.7700 | 1988801 | 788811 | 486295 | 250    |
| 5 1422455                                                                                             | 5 9.1524 | 1309809 30,3839 | 339 423814 | 18.8592        | 1733623         | 26.4347        | 3156078         | 14.2809 | 1746702 | 851520 | 557606 | 250    |
| 6 1364589                                                                                             | 9 8.7801 | 1274236 29.5587 | 587 413885 | 18.4174        | 1688121         | 25.7409        | 3052710         | 13.8132 | 1677742 | 776542 | 598176 | 250    |
| 7 1014947                                                                                             | 7 6.5304 | 1476771 34.2569 | 569 329167 | 14.6475        | 1805938 27.5374 | 27.5374        | 2820885         | 12.7642 | 1821502 | 653780 | 345479 | 124    |
| 8 1029123                                                                                             | 3 6.6216 | 1302201 30.2074 | 774 289981 | 12.9038        | 1592182 24.2780 | 24.2780        | 2621305         | 11.8611 | 1487803 | 741307 | 392071 | 124    |
| 9 1014544                                                                                             | 4 6.5278 | 1264011 29.3215 |            | 281940 12.5460 | 1545951 23.5731 | 23.5731        | 2560495         | 11.5860 | 1423159 | 738825 | 398387 | 124    |
| 10 767231                                                                                             | 4.9366   | 1545298 35.8466 | 166 314726 | 14.0049        | 1860024 28.3621 | 28.3621        | 2627255 11.8881 | 11.8881 | 1884252 | 503157 | 239786 | 9      |
| 11 809662                                                                                             | 2 5.2096 | 1310684 30,4042 |            | 246726 10.9790 | 1557410 23.7478 | 23.7478        | 2367072 10.7108 | 10.7108 | 1514959 | 569723 | 282330 | 09     |
| 12 812093                                                                                             | 3 5.2252 | 1246720 28.9204 | 20432      | 10.2539        | 1477152 22.5240 | 22.5240        | 2289245 10.3586 | 10.3586 | 1386773 | 575651 | 326761 | 09     |
| 13 1050419                                                                                            |          | 1125472 26.1078 | 398219     | 17.7202        | 1523691 23.2336 | 23.2336        | 2574110 11.6476 | 11.6476 | 1488110 | 714270 | 371224 | 506    |
| 14 906107                                                                                             | 7 5.8301 | 999043 23.1750  | 750 364960 | 16.2403        | 1364003 20.7987 | 20.7987        | 2270110 10.2720 | 10.2720 | 1174275 | 656848 | 438481 | 506    |
| 15 730511                                                                                             | 4.7003   | 951138 22.0637  | 337 357857 | 15.9242        | 1308995 19,9599 | 19.9599        | 2039506         | 9.2286  | 1001098 | 611099 | 426803 | 506    |
| 16 759949                                                                                             | 4.8897   | 1225091 28,4187 | 187 282965 | 12.5916        | 1508056 22.9952 | 22.9952        | 2268005         | 10.2625 | 1345082 | 660719 | 261952 | 252    |
|                                                                                                       |          | 1018630 23.6293 | 293 247897 |                | 1266527 19.3123 | 19.3123        | 1951221         | 8.8291  | 941615  | 677846 | 331508 | 252    |
|                                                                                                       |          | 1011517 23.4643 |            | 10.8623        | 1255620 19.1460 | 19.1460        | 1857706         | 8.4059  | 859407  | 661299 | 336748 | 252    |
|                                                                                                       |          | 1227888 28.4835 |            | -              |                 | 22.7525        | 2073734         | 9.3834  | 1253836 | 620962 | 198812 | 124    |
|                                                                                                       |          | 1071009 24.8444 |            | _              | 1271989         | 19.3956        | 1809714         |         | 928955  | 626423 | 254212 | 124    |
|                                                                                                       |          |                 |            |                |                 | 18.6720        | 1726530         |         | 780889  | 684033 | 261484 | 124    |
| 22 643425                                                                                             |          |                 | 316 353470 | _              |                 | 18.5572        | 1860429         |         | 1146498 | 451615 | 261298 | 1018   |
|                                                                                                       | _        | 710948 16.4920  |            | 13.7769        | 1020550         | 15.5616        | 1564496         | 7.0792  | 798438  | 480163 | 284877 | 1018   |
|                                                                                                       |          |                 |            | $\rightarrow$  | 915847          | 13.9651        | 1345470         | 6.0881  | 664359  | 451282 | 228811 | 1018   |
| 25 458033                                                                                             |          | 900375 20.8862  | 862 246372 | _              | 1146747 17.4859 | 17.4859        | 1604780         | 1       | 927815  | 472231 | 204226 | 508    |
|                                                                                                       | _        | 755001 17.5139  |            |                | 968907          | 14.7742        | 1368519         |         | 617492  | 526628 | 223891 | 508    |
|                                                                                                       |          |                 | 268 203651 | _              | 903169 13.7718  | 13.77.18       | 1225554         | 5.5455  | 519874  | 513357 | 191815 | 508    |
|                                                                                                       |          |                 |            | _              | 1144958 17.4586 | 17.4586        | 1489141         | 6.7382  | 824801  | 496926 | 167162 | 252    |
| 29 304383                                                                                             | 3 1,9585 | 839558 19.4754  | 754 173995 | 7.7426         | 1013553         | 15.4549        | 1317936         | 5.9635  | 569871  | 565227 | 182586 | 252    |
|                                                                                                       |          | 807514 18.7321  | 321 165699 | _              | 973213          | 14.8398        | 1241914         | 5.6195  | 467462  | 595270 | 178930 | 252    |
| 31 279072                                                                                             | 1.7956   | 679361 15.7593  | 593 223279 | 9.9356         | 902640 13.7637  | 13.7637        | 1181712         | 5.3471  | 670621  | 388089 | 121982 | 1020   |
| 32 214631                                                                                             | 1.3810   | 501698 11.6380  | 380 180337 | 8.0248         | 682035 10.3999  | 10.3999        | 896666          | 4.0573  | 387812  | 390425 | 117410 | 1019   |
| 33 180799                                                                                             | 9 1.1633 | 428697 9.9446   | 146 159781 | 7.1101         | 588478          | 8.9733         | 769277          | 3.4809  | 312475  | 361313 | 94469  | 1020   |
| 34 205143                                                                                             | 3 1.3199 | 739903 17.1637  | 637 181623 | 8.0820         | 921526          | 14.0517        | 1126669         | 5.0981  | 608961  | 416937 | 100263 | 508    |
| 35 161124                                                                                             | 1.0367   | 571147: 13.2490 | 147141     | 6.5476         | 718288 10.9526  | 10.9526        | 879412          | 3.9793  | 329289  | 445460 | 104155 | 508    |
| 36 140927                                                                                             | 7 0.9068 | 524760 12.1730  | 730 132024 | 5.8749         | 656784          | 656784 10,0148 | 797711          | 3.6096  | 268748  | 440860 | 87595  | 508    |
| 37 168186                                                                                             | 6 1.0822 | 836537 19,4053  | 053 140753 | 6.2633         | 977290          | 977290 14.9020 | 1145476         | 5.1832  | 625095  | 428273 | 91856  | 252    |
| 38 130049                                                                                             | _        | 691857 16.0491  |            |                | 804853          | 804853 12.2726 | 934902          |         | 333171  | 500608 | 100871 | 252    |
| 39 116437                                                                                             | 7 0.7492 | 662684 15.3724  | 724 103300 | 4.5967         | 765984 11.6799  | 11.6799        | 882421          | 3.9929  | 261097  | 532430 | 88642  | 252    |

Table 29: Compress and Espresso w/ Operating System, Combined Data

| Referen     | Reference Statistics:        |        |                  |                 |         |        |                  |                 |          |        |        |        |        |        |
|-------------|------------------------------|--------|------------------|-----------------|---------|--------|------------------|-----------------|----------|--------|--------|--------|--------|--------|
| Total Ins   | Total Instruction References | secus  | 202063638        |                 |         |        |                  |                 |          |        |        |        |        |        |
| Data Reads  | ads                          |        | 51003684         |                 |         |        |                  |                 |          |        |        |        |        |        |
| Data writes | ites                         |        | 15428692         |                 |         |        |                  |                 |          |        |        |        |        |        |
| Total Da    | Total Data References        |        | 66432376         |                 |         |        |                  |                 |          |        |        |        |        |        |
| Total Re    | Total References             |        | 268496014        |                 |         |        |                  |                 |          |        |        |        |        |        |
| MISS St     | atist                        |        |                  |                 |         |        |                  |                 |          |        |        |        |        |        |
| Cache       |                              | %      |                  |                 | Write   | %      | Data             | %               | Total    | %      | int(0) | int(1) | int(2) | Int(3) |
| 5           | 3440119                      | 1./025 |                  |                 | 616577  | 3.9963 | 8373664          | 8373664 12.6048 | 11813783 | 4.4000 |        |        |        |        |
| - 0         | 2398692                      | 1.1871 |                  |                 | 456619  | 2.9595 | 7000232          | 7000232 10.5374 | 9398924  | 3.5006 |        |        |        |        |
| 7           | 1/98601                      | 0.543/ | 4917976          |                 | 336755  | 2.1827 | 5254731          | 7.9099          | 6353408  | 2.3663 |        |        |        |        |
| 20.         | 583240                       | 0.2886 | 4054763          |                 | 192839  | 1.2499 | 4247602          | 6:3338          | 4830842  | 1.7992 |        |        |        |        |
| 4 1         | 5015417                      | 2.4821 | 9545143          |                 | 946655  | 6.1357 | 10491798 15.7932 | 15.7932         | 15507215 | 5.7756 |        |        |        |        |
| 2           | 2547439                      | 1.2607 |                  |                 | 787788  | 5.1060 | 8900997          | 13,3986         | 11448436 | 4.2639 |        |        |        |        |
| 9 1         | 2256811                      | 1.1169 | 7729177          | 15.1542         | 733882  | 4.7566 | 8463059          | 8463059 12.7394 | 10719870 | 3.9926 |        |        |        |        |
| 7           | 3541931                      | 1.7529 | 9721109          | 9721109 19.0596 | 1023661 | 6.6348 | 10744770 16.1740 | 16.1740         | 14286701 | 5.3210 |        |        |        |        |
| ο σ         | 1831415                      | 0.9064 | 8429404          | 3429404 16.5270 | 703052  | 4.5568 | 9132456          | 9132456 13.7470 | 10963871 | 4.0834 |        |        |        |        |
| 2           | 1666417                      | 0.824/ | 7542007          | 542007 14.7872  | 612057  | 3.9670 | 8154064          |                 | 9820481  | 3.6576 |        |        |        |        |
| 2 ;         | 3000832                      | 1.4851 | 12119955 23.7629 | 23.7629         | 1087039 | 7.0456 | 13206994         | 19.8804         | 16207826 | 6.0365 |        |        |        |        |
| = 5         | 1488130                      | 0.7365 | 9341540          | 3341540 18.3154 | 754649  | 4.8912 | 10096189 15.1977 | 15.1977         | 11584319 | 4.3145 |        |        |        |        |
| 7 9         | 1366205                      | 0.6761 | 7731504          | 731504 15.1587  | 656963  | 4.2581 | 8388467 12.6271  | 12.6271         | 9754672  | 3.6331 |        |        |        |        |
| 2           | 2780113                      | 1.3759 |                  | 161214 16.0012  | 758500  | 4.9162 | 8919714          | 8919714 13.4268 | 11699827 | 4.3575 |        |        |        |        |
| 14          | 1516397                      | 0.7505 |                  | 3744505 13.2236 | 626393  | 4.0599 | 7370898          | 7370898 11.0953 | 8887295  | 3.3100 |        |        |        |        |
| c s         | 111/036                      | 0.5528 | 6476729          | 476729 12.6986  | 589044  | 3.8178 | 7065773          | 7065773 10.6360 | 8182809  | 3.0476 |        |        |        |        |
| 9 !         | 2031797                      | 1.0055 | 8277009          | 3277009 16.2283 | 832327  | 5.3947 | 9109336 13.7122  | 13.7122         | 11141133 | 4.1495 |        |        |        |        |
| 2 5         | 1153003                      | 0.5706 | 6233189          | 5533189 12.8092 | 512905  | 3.3244 | 7046094          | 7046094 10.6064 | 8199097  | 3.0537 |        |        |        |        |
| 2 9         | 902774                       | 0.4468 | 6336187 12.4230  | 12.4230         | 438438  | 2.8417 | 6774625 10.1978  | 10.1978         | 7677399  | 2.8594 |        |        |        |        |
| 200         | 1662851                      | 0.8229 | 10022532         | 0022532 19.6506 | 848703  | 5.5008 | 10871235 16.3644 | 16.3644         | 12534086 | 4.6683 |        |        |        |        |
| 3 2         | 958864                       | 0.4745 | 7070136          | 070136 13.8620  | 517537  | 3.3544 | 7587673          | 7587673 11.4216 | 8546537  | 3.1831 |        |        |        |        |
| 17          | 69083                        | 0.3801 | 6524741 12.7927  | 12.7927         | 416755  | 2.7012 | 6941496 10.4490  | 10.4490         | 7709559  | 2.8714 |        |        |        |        |
| 22          | 1034407                      | 0.5119 | 6414016 12.5756  | 12.5756         | 615090  | 3.9867 | 7029106          | - 1             | 8063513  | 3.0032 |        |        |        |        |
| 3 2         | 746589                       | 0.3695 | 5677293 11.1311  | 11.1311         | 507457  | 3.2890 | 6184750          |                 | 6931339  | 2.5815 |        |        |        |        |
| 47 5        | 560182                       | 0.2772 | 5444305 10.6743  | 10.6743         | 467991  | 3,0333 | 5912296          |                 | 6472478  | 2,4106 |        |        |        |        |
| S           | 755386                       | 0.3738 | 6277801 12.3085  | 12.3085         | 475858  | 3.0842 | 6753659          | 10.1662         | 7509045  | 2.7967 |        |        |        |        |
| 97          | 544652                       | 0.2695 | 5501724 10.7869  | 10.7869         | 386539  | 2.5053 | 5888263          |                 | 6432915  | 2.3959 |        |        |        |        |
| /7          | 429053                       | 0.2123 | 5231082 10.2563  | 10.2563         | 329840  | 2.1378 | 5560922          | !               | 5989975  | 2.2309 |        |        |        |        |
| 8           | 988966                       | 0.2756 | 6459321 12.6644  | 12.6644         | 459207  | 2.9763 | 6918528          | -               | 7475424  | 2.7842 |        |        |        |        |
| 2 6         | 429417                       | 0.2125 | 5617742 11.0144  | 11.0144         | 363054  | 2.3531 | 5980796          | 9.0028          | 6410213  | 2.3875 |        |        |        |        |
| 3           | 3/185/                       | 0.1840 | 5363608 10.5161  | 10.5161         | 280294  | 1.8167 | 5643902          |                 | 6015759  | 2.2405 |        |        |        |        |
| 5           | 444275                       | 0.2199 | 5170984 10.1385  | 10.1385         | 381568  | 2.4731 | 5552552          |                 | 5996827  | 2.2335 |        |        |        |        |
| 35          | 2/0/41                       | 0.1340 | 4561838          |                 | 289466  | 1.8762 | 4851304          | 7.3026          | 5122045  | 1.9077 |        |        |        |        |
| 88          | 204548                       | 0.1012 | 4380262          |                 | 251606  | 1.6308 | 4631868          | 6.9723          | 4836416  | 1.8013 |        |        |        |        |
| ষ্ট্ৰ :     | 317959                       | 0.1574 | 5248959          | -⊦              | 336190  | 2.1790 | 5585149          | 8.4073          | 5903108  | 2.1986 |        |        |        |        |
| 32          | 202740                       | 0.1003 | 4613553          | - 1             | 235232  | 1.5246 | 4848785          | 7.2988          | 5051525  | 1.8814 |        |        |        |        |
| 98          | 162951                       | 9080.0 | 4447494          |                 | 200984  | 1.3027 | 4648478          | 6.9973          | 4811429  | 1.7920 |        |        |        |        |
| 37          | 279696                       | 0.1384 | 5519102          | -1              | 309397  | 2.0053 | 5828499          | 8.7736          | 6108195  | 2.2750 |        |        |        |        |
| 88          | 167918                       | 0.0831 | 4847326          | 9.5039          | 201344  | 1.3050 | 5048670          | 7.5997          | 5216588  | 1.9429 |        |        |        |        |
| 33          | 140395                       | 0.0695 | 4684244          | 9.1841          | 170303  | 1.1038 | 4854547          | 7.3075          | 4994942  | 1.8603 |        |        |        |        |
|             |                              |        |                  |                 |         |        |                  |                 |          |        |        |        |        |        |

Table 30: GCC and Espresso w/ Operating System, GCC Data

| Heleren     | שבובובוב פומוופווכי          |        |                 |         |         |         |         |         |          |        |         |          |          |        |
|-------------|------------------------------|--------|-----------------|---------|---------|---------|---------|---------|----------|--------|---------|----------|----------|--------|
| Total Ins   | Total Instruction References | sacus  | 160240175       |         |         |         |         |         |          |        |         |          |          |        |
| Data Reads  | ads                          |        | 50197333        |         |         |         |         |         |          |        |         |          |          |        |
| Data writes | tes                          |        | 19074845        |         |         |         |         |         |          |        |         |          |          |        |
| Total Da    | Total Data References        |        | 69272178        |         |         |         |         |         |          |        |         |          |          |        |
| Total Re    | Total References             |        | 229512353       |         |         |         |         |         |          |        |         |          |          |        |
| Miss St     | Miss Statistics:             |        |                 |         |         |         |         |         |          |        |         |          |          |        |
| Cache       | Inst                         | %      | Read            | %       | Write   | %       | Data    | %       | Total    | %      | int(0)  | int(1)   | int(2)   | int(3) |
| 0           | 7022905                      | 4.3827 | 5032668 10.0258 | 10.0258 | 1551453 | 8.1335  | 6584121 | 9.5047  | 13607026 | 5.9287 | 2511865 | 7408525  | 2533612  | 6      |
| -           | 5166542                      | 3,2242 | 3475694         | 6.9241  | 1037170 | 5.4374  | 4512864 | 6.5147  | 9679406  | 4.2174 | 2175838 | 4910549  | 2287801  | 69     |
| 2           | 3190279                      | 1.9909 | 2074680         | 4.1330  | 576541  | 3.0225  | 2651221 | 3.8273  | 5841500  | 2.5452 | 2737510 | 296962   | 1464869  | 8      |
| က           | 1433315                      | 0.8945 | 1159066         | 2.3090  | 207366  | 1.0871  | 1366432 | 1.9726  | 2799747  | 1.2199 | 825411  | 1331072  | 643261   |        |
| 4           | 9475631                      | 5.9134 | 6473317         | 12.8957 | 2491250 | 13.0604 | 8964567 | 12.9411 | 18440198 | 8.0345 | 2877338 | 11072752 | 9371004  | 4      |
| 2           | 9277901                      | 5.7900 | 5229038 10,4170 | 10.4170 | 2039630 | 10.6928 | 7268668 | 10.4929 | 16546569 | 7.2094 | 5641373 | 8617694  | 7231324  | 4      |
| 9           | 9190519                      | 5,7355 | 4844234         | 9.6504  | 1891660 | 9.9170  | 6735894 | 9.7238  | 15926413 | 6.9392 | 3155554 | 7966591  | 7552231  | 4      |
| 7           | 6958037                      | 4.3423 | 6867432 13.6809 | 13.6809 | 2083536 | 10.9230 | 8950368 | 12.9214 | 15909005 | 6.9317 | 2265315 | 10503766 | 10321709 | 9      |
| 8           | 6829794                      | 4.2622 | 5202171         | 10.3634 | 1558541 | 8.1707  | 6760712 | 9.7596  | 13590506 | 5.9215 | 2624591 | 7506007  | 3601502  | င      |
| 6           | 6733382                      | 4.2021 | 4761685         | 9.4859  | 1422134 | 7.4555  | 6183819 | 8.9268  | 12917201 | 5.6281 | 2553600 | 6439078  | 6253971  | 8      |
| 10          | 5136311                      | 3.2054 | 7724428         | 15,3881 | 1909611 | 10.0111 | 9634039 | 13.9075 | 14770350 | 6.4355 | 1744863 | 10786685 | 9262897  | 8      |
| 11          | 5011960                      | 3,1278 | 5526317         | 11.0092 | 1304251 | 6.8375  | 6830568 | 9.8605  | 11842528 | 5.1599 | 4424804 | 7317319  | 6443208  | 3      |
| 12          |                              | 3.0528 | 4765139 9.4928  | 9.4928  | 1122489 | 5.8847  | 5887628 | 8.4993  | 10779471 | 4.6967 | 1961456 | 5869199  | 5641268  | ဗ      |
| 13          |                              | 4.3439 | 4661066         | 9.2855  | 1826651 | 9.5762  | 6487717 | 9.3655  | 13448453 | 5.8596 | 2433960 | 7542904  | 3471585  | 4      |
| 14          |                              | 4.0541 | 3458483         | 1       | 1334065 | 6.9938  | 4792548 | 6.9184  | 11288898 | 4.9186 | 2315589 | 5825460  | 3147845  | 4      |
| 15          |                              | 3.9394 | 3040529         | 6.0572  | 1162041 | 6.0920  | 4202570 | 6.0668  | 10515021 | 4.5815 | 2209900 | 5572267  | 3955965  | 4      |
| 16          |                              | 3.2915 | 4859655         | 9.6811  | 1516497 | 7.9502  | 6376152 | 9.2045  | 11650467 | 5.0762 | 2066456 | 7022047  | 6413363  | 3      |
| 17          |                              | 3.1029 | 3510089         | 6.9926  | 1022861 | 5.3624  | 4532950 | 6.5437  | 9505088  | 4.1414 | 2529407 | 4868903  | 2529294  | 3      |
| 18          |                              | 3.0679 | 3156951         | 6.2891  | 895204  | 4.6931  | 4052155 | 5.8496  | 8968139  | 3.9075 | 2113825 | 4526839  | 3310356  | င      |
| 19          |                              | 2.5188 | 5426495 10.8103 | 10.8103 | 1358867 | 7.1239  | 6785362 | 9.7952  | 10821487 | 4.7150 | 6460159 | 7052438  | 5010703  | 8      |
| 20          |                              | 2.3931 | 3651682         | 7.2747  | 834165  | 4.3731  | 4485847 | 6.4757  | 8320512  | 3.6253 | 1874326 | 4302716  | 3131335  | 3      |
| 21          | 3822074                      | 2.3852 | 3341470         | 6.6567  | 729425  | 3.8240  | 4070895 | 5.8767  | 7892969  | 3.4390 | 1988981 | 3730790  | 2173195  | 3      |
| 22          | 4878942                      | 3.0448 | 2980159         | 5.9369  | 1155613 | 6.0583  | 4135772 | 5.9703  | 9014714  | 3.9278 | 1730613 | 4722418  | 4231672  | 4      |
| 23          | 3754955                      | 2.3433 | 2109931         | 4.2033  | 856346  | 4.4894  | 2966277 | 4.2821  | 6721232  | 2.9285 | 1434504 | 3437830  | 2642828  | 4      |
| 24          | 3191678                      | 1.9918 | 1721462         | 3.4294  |         | 3.6774  | 2422923 | 3.4977  | 5614601  | 2.4463 | 1172257 | 3062532  | 1379808  | 4      |
| 25          | 3769986                      | 2.3527 | 3070222         | 6,1163  | 916648  | 4.8055  | 3986870 | 5.7554  | 7756856  | 3.3797 | 1487718 | 4346255  | 1922880  | 8      |
| 26          | 3011260                      | 1.8792 | 2132730         |         | 625881  | 3.2812  | 2758611 | 3.9823  | 5769871  | 2.5140 | 1360430 | 2936394  | 1473044  | 3      |
| 27          | 2725094                      | 1.7006 | 1757459         |         | 492300  | 2.5809  | 2249759 | 3.2477  | 4974853  | 2.1676 | 1210089 | 2663727  | 1101034  | 9      |
| 28          | 2977461                      | 1.8581 | 3364083         | 6.7017  | 779589  | 4.0870  | 4143672 | 5.9817  | 7121133  | 3.1027 | 1401971 | 4192005  | 1527154  | 3      |
| 29          | 2495651                      | 1.5574 | 2339369         | 4.6603  | 506137  | 2.6534  | 2845506 | 4.1077  | 5341157  | 2.3272 | 1703742 | 2678091  | 2482710  | 8      |
| 30          | ļ                            | 1.4845 | 1965331         | 3.9152  | 405402  | 2.1253  | 2370733 | 3.4223  | 4749569  | 2.0694 | 1356440 | 2358083  | 1945071  |        |
| 31          |                              | 1.3314 | 1841550         | 3.6686  | 518709  | 2.7193  | 2360259 | 3.4072  | 4493644  | 1.9579 | 1063946 | 2233732  | 1195963  | 8      |
| 32          |                              | 0.9981 | 1122347         | 2.2359  | 310135  | 1.6259  | 1432482 | 2.0679  | 3031785  | 1.3210 | 730972  | 1545309  | 755500   | 4      |
| 33          |                              | 0.7013 | 868273          | 1.7297  | 260236  | 1.3643  | 1128509 | 1.6291  | 2252202  | 0.9813 | 528335  | 1217204  | 506660   | 8      |
| 8           |                              | 1.0671 | 1972644         | 3.9298  | 445717  | 2.3367  | 2418361 | 3.4911  | 4128253  | 1.7987 | 997275  | 2118949  | 1012026  | 3      |
| 35          | 1347667                      | 0.8410 | 1196298         | 2.3832  | 242330  | 1.2704  | 1438628 | 2.0768  | 2786295  | 1.2140 | 745164  | 1359816  | 681311   | 4      |
| 36          |                              | 0.6464 | 944751          | 1.8821  | 201315  | 1.0554  | 1146066 | 1.6544  | 2181810  |        | 584995  | 1143659  | 453153   | 8      |
| 37          | 1414353                      | 0.8826 | 2261685         | 4.5056  | 455677  | 2.3889  | 2717362 | 3.9227  | 4131715  | 1.8002 | 942089  | 2260273  | 929350   | က      |
| 38          | 1160918                      | 0.7245 | 1423261         | 2.8353  | 228104  | 1 105B  | 1651365 | 23830   | 2812283  | 1 2253 | 740290  | 1257068  | 714500   | 8      |
|             |                              |        |                 |         |         | 200     |         | 200     | 1        |        |         |          |          |        |

Table 31: GCC and Espresso w/ Operating System, Espresso Data

| Reference Statistics:        | Statistics: |         |           |         |        |         |         |          |          |        |          |         |         |        |
|------------------------------|-------------|---------|-----------|---------|--------|---------|---------|----------|----------|--------|----------|---------|---------|--------|
| Total Instruction References | ction Refer | ences   | 224015827 |         |        |         |         |          |          |        |          |         |         |        |
| Data Reads                   |             |         | 51131704  |         |        |         |         |          |          |        |          |         |         |        |
| Data writes                  |             |         | 12097918  |         |        |         |         |          |          |        |          |         |         |        |
| Total Data References        | References  | (5)     | 63229622  |         |        |         |         |          |          |        |          |         |         |        |
| Total References             | seoue       |         | 287245449 |         |        |         |         |          |          |        |          |         |         |        |
| Miss Statistics:             | tlcs:       |         |           |         |        |         |         |          |          |        |          |         |         |        |
| Cache                        | Inst        | %       | Read      | %       | Write  | %       | Data    | %        | Total    | %      | int(0)   | inf(1)  | intro   | int(3) |
| 0                            | 2709193     |         | 3879065   | 7.5864  | 624033 | 5.1582  | 4503098 | 7.1218   | 7212291  | 2.5108 | 1226359  | 2782103 | 2334883 | 2      |
| -                            | 1813316     |         | 2778587   | 5.4342  | 479139 | 3.9605  | 3257726 | 5.1522   | 5071042  | 1.7654 | 1020129  | 2561443 | 1489470 |        |
| 2                            | 1004869     | 0.4486  | 1643684   | 3.2146  | 370371 | 3.0614  | 2014055 | 3.1853   | 3018924  | 1.0510 | 727587   | 1462206 | 829131  |        |
| 8                            | 423790      |         | 831036    | 1.6253  | 138992 | 1.1489  | 970028  | 1.5341   | 1393818  | 0.4852 | 367508   | 648089  | 378221  |        |
| 4                            | 4735427     | 2.1139  | 6457486   | 12.6291 | 958537 | 7.9232  | 7416023 | 11.7287  | 12151450 | 4.2303 | 4391713  | 5365049 | 6291654 |        |
| 2                            | 3774316     |         | 4984390   | 9.7481  | 854425 | 7.0626  | 5838815 | 9.2343   | 9613131  | 3.3467 | 4430451  | 4710541 | 3142740 | 0      |
| 9                            | 3300308     | $\perp$ | 4522650   | 8.8451  | 805050 | 6.6545  | 5327700 | 8.4260   | 8628608  | 3.0039 | 2098002  | 4737219 | 2145830 | 0      |
| ,                            | 3372989     | $\perp$ | 6259810   | 12.2425 | 781126 | 6.4567  | 7040936 | 11.1355  | 10413925 | 3.6254 | 1040400  | 6025826 | 6257434 | 0      |
| 8                            | 2573779     |         | 4327117   | 8.4627  | 637200 | 1       | 4964317 | 7.8513   | 7538096  | 2.6243 | 1245399  | 3000427 | 2746106 | 0      |
| 5 9                          | 2270950     | 1       | 3683056   | 1       | 587115 |         | 4270171 | 6.7534   | 6541121  | 2.2772 | 1307960  | 3850603 | 1374116 | 0      |
| 2;                           | 70077007    | $\perp$ | 7159570   | -1      | 726129 | 6.0021  | 7885699 | 12.47.15 | 10493330 | 3.6531 | 1036871  | 5943269 | 7554656 | 0      |
| = 5                          | 2007001     | ⊥       | 4412384   | 8.6295  | 5407/5 | 4.4700  | 4953169 | 7.8336   | 6810804  | 2.3711 | 3053778  | 2598170 | 3331386 | 0      |
| 77                           | 1698804     | _       | 3452622   | 6.7524  | 475182 | 3.9278  | 3927804 | 6.2120   | 5626608  | 1.9588 | 10222020 | 2919040 | 1685548 | 0      |
| 5 7                          | 3284627     | 7.6002  | 4/554/8   |         | 779813 | 6.4458  | 5535291 | 8.7543   | 9119918  | 3.1750 | 1165618  | 3456323 | 4497977 | 0      |
| ‡ t                          | 2450451     | ┸       | 3440878   | - 1     | 660503 | 5.4596  | 4101381 | 6.4865   | 6551832  | 2.2809 | 1319503  | 3124836 | 2107493 | 0      |
| 10                           | 3022116     | $\perp$ | 314/040   | - 1     | 615438 | 5.0871  | 3762478 | 5.9505   | 6817594  | 2,3734 | 1308227  | 2309108 | 1847149 | 0      |
| 0 1                          | 2033333     |         | 4353363   | 8.5140  | 602543 |         | 4955906 | 7.8379   | 7589505  | 2.6422 | 903109   | 2551165 | 4135231 | 0      |
| 2 9                          | 1719156     | $\perp$ | 2824684   | 5.5243  | 484103 | _1      | 3308787 | 5.2330   | 5027943  | 1.7504 | 1092781  | 2519996 | 1415166 | 0      |
| 0 0                          | 1534490     | 1       | 2591686   | 5.0686  | 447510 |         | 3039196 | 4.8066   | 4573686  | 1.5923 | 1119073  | 2304776 | 1149837 | 0      |
| 6                            | 2134566     |         | 4629463   | 9.0540  | 525893 |         | 5155356 | 8.1534   | 7289922  | 2.5379 | 3200611  | 3656088 | 4643782 | 0      |
| S S                          | 1381642     |         | 2644234   | 5.1714  | 393740 | 3.2546  | 3037974 | 4.8047   | 4419616  | 1.5386 | 875563   | 2124101 | 1419952 | 0      |
| 2 6                          | 121332/     | _       | 2356703   | 4.6091  | 352674 | 2.9152  | 2709377 | 4.2850   | 3922704  | 1,3656 | 971778   | 2132307 | 818619  | 0      |
| 77 6                         | 1/00841     | _       | 3189389   | 6.2376  | 656577 | 5.4272  | 3845966 | 6.0825   | 5546807  | 1.9310 | 981054   | 2549900 | 2077891 | 0      |
| 3 3                          | 1220111     | 4       | 21921/9   | 4.2873  | 512320 | 4.2348  | 2704499 | 4.2773   | 3930610  | 1.3684 | 915138   | 1842378 | 1173094 | 0      |
| 47                           | 217/08      | _       | 1908512   | 3./325  | 442834 | 3.6604  | 2351346 | 3.7187   | 3318561  | 1,1553 | 757512   | 1388299 | 1172750 | 0      |
| 07                           | 1978021     | 0.5400  | 2925510   | 5.7215  | 499946 | 4.1325  | 3425456 | 5.4175   | 4635217  | 1.6137 | 776435   | 1910807 | 1947975 | 0      |
| 200                          | 30/048      | _       | 1793422   | 3.5075  | 358141 | 2.9604  | 2151563 | 3.4028   | 3059212  | 1.0650 | 781982   | 1463542 | 813688  | 0      |
| 770                          | 140331      | 1       | 1409048   | 2.0742  | 280336 | 2.4004  | 1760044 | 2.7836   | 2508575  | 0.8733 | 677964   | 1107713 | 722898  | 0      |
| 07                           | 324139      |         | 3034738   | 5,9743  | 423464 | 3.5003  | 34/8222 | 5.5009   | 4402961  | 1.5328 | 636823   | 1515429 | 2250709 | 0      |
| 87                           | 730049      | ┸       | 1967/91   | 3.2/30  | 2/5992 | 2.2813  | 1949553 | 3.0833   | 2688202  | 0.9359 | 672199   | 1300558 | 715445  | 0      |
| 00 00                        | 652803      | $\perp$ | 1321124   | 2.5838  | 221547 | 1.8313  | 1542671 |          | 2195474  | 0.7643 | 674120   | 993262  | 488640  | 0      |
| 5                            | 635991      |         | 1791036   | 3.5028  | 309144 | 2.5553  | 2100180 |          | 2736171  | 0.9526 | 516578   | 1191734 | 1027859 | 0      |
| 35.0                         | 430855      |         | 1018370   | 1.9917  | 268467 | 2.2191  | 1286837 | 2.0352   | 1717692  | 0.5980 | 472044   | 758295  | 487353  | 0      |
| 3                            | 279258      | $\perp$ | 676764    | 1.3236  | 197510 |         | 874274  |          | 1153532  | 0.4016 | 330259   | 510966  | 312307  | 0      |
| 3 5                          | 512841      | 0.2289  | 1845139   | 3.6086  | 253346 |         | 2098485 |          | 2611326  | 0.9091 | 431732   | 1007362 | 1172232 | 0      |
| 32                           | 354767      |         | 1021966   | 1.9987  | 203020 |         | 1224986 | 1.9374   | 1579753  | 0.5500 | 443086   | 681871  | 454796  | 0      |
| 36                           | 251429      | _       | 632883    | 1       | 138431 | $\perp$ | 771314  | 1.2199   | 1022743  | 0.3561 | 321370   | 456978  | 244395  | 0      |
| 37                           | 435774      | _       | 2205351   | - 1     | 254476 |         | 2459827 |          | 2895601  | 1.0081 | 422012   | 924590  | 1548999 | 0      |
| 88 8                         | 329531      |         | 1189631   | 2.3266  | 185348 |         | 1374979 |          | 1704510  | 0.5934 | 451474   | 712621  | 540415  | 0      |
| 38                           | 252814      | 0.1129  | 736403    | 1.4402  | 121971 | 1.0082  | 858374  | 1.3576   | 1111188  | 0.3868 | 370143   | 503201  | 237844  | 0      |
|                              |             |         |           |         |        |         |         |          |          |        |          |         |         | l      |

Table 32: GCC and Espresso w/ Operating System, Operating System Data

| Referen     | Reference Statistics:        |         |                  |         |                |         |                 | -               |                 | -               |         |         |         |        |
|-------------|------------------------------|---------|------------------|---------|----------------|---------|-----------------|-----------------|-----------------|-----------------|---------|---------|---------|--------|
| Total In:   | Total Instruction References | nces    | 39004710         |         |                |         |                 |                 |                 |                 |         |         |         |        |
| Data Reads  | ads                          |         | 10758087         |         |                |         |                 |                 |                 |                 |         |         |         |        |
| Data writes | tes                          |         | 5592574          |         |                |         |                 |                 |                 |                 |         |         |         |        |
| Total De    | Total Data References        |         | 16350661         |         |                |         |                 |                 |                 |                 |         |         |         |        |
| Total Re    | Total References             |         | 55355371         |         |                |         |                 |                 |                 |                 |         |         |         |        |
| Miss St     | Miss Statistics:             |         |                  |         |                |         |                 |                 |                 |                 |         |         |         |        |
| Cache       | lust                         | %       | Read             | %       | Write          | %       | Data            | %               | Total           | %               | int(0)  | int(1)  | int(2)  | int(3) |
| 0           | 3509603                      | 8.9979  | 3187673 29.6305  | 9.6305  | 846382         | 15,1340 | 4034055 24.6721 | 24.6721         | 7543658         | 13.6277         | 3805303 | 2547478 | 1190752 | 125    |
| -           | 2739339                      | 7.0231  | 2366717 2        | 21.9994 | 704926         | 12.6047 | 3071643 18.7860 | 18.7860         | 5810982 10.4976 | 10.4976         | 2614797 | 2207422 | 988510  | 253    |
| 2           | 1840409                      | 4.7184  | 1524595 14,1716  | 4.1716  | 531326         | 9.5006  | 2055921         | 12.5739         | 3896330         | 7.0388          | 1761377 | 1409625 | 724819  | 509    |
| က           | 895415                       | 2.2957  | 996032           | 9.2584  | 300292         | 5,3695  | 1296324         | 7.9283          | 2191739         | 3,9594          | 998424  | 820571  | 372235  | 509    |
| 4           | 4695143                      | 12.0374 | 3401518 3        | 31.6182 | 1183144        | 21.1556 | 4584662         | 28.0396         | 9279805         | 16.7641         | 4996588 | 2913321 | 1369644 | 252    |
| 2           | 4717569                      | 12.0949 | 3158305 29,3575  | 9.3575  | 1146195        | 20.4949 | 4304500 26.3262 | 26.3262         | 9022069 16.2985 | 16.2985         | 4248544 | 3147977 | 1625296 | 252    |
| 9           | 4782410                      | 12.2611 | 3144080 29.2253  | 9.2253  | 1099195        | 19.6545 | 4243275         | 4243275 25.9517 | 9025685 16,3050 | 16.3050         | 4124353 | 3222608 | 1678472 | 252    |
| 7           | 3365821                      | 8.6293  | 3634518 3        | 33.7841 | 895716         | 16.0162 | 4530234         | 27.7067         | 7896055 14.2643 | 14.2643         | 4590232 | 2289144 | 1016554 | 125    |
| 8           | 3401375                      | 8.7204  | 3207439 2        | 29.8142 | 839955         | 15.0191 | 4047394 24.7537 | 24.7537         | 7448769 13.4563 | 13.4563         | 3720265 | 2537925 | 1190454 | 125    |
| O           | 3433106                      | 8.8018  | 3158451 2        | 29.3589 | 812531         | 14.5287 | 3970982 24.2864 | 24.2864         | 7404088 13.3756 | 13.3756         | 3533983 | 2627527 | 1242453 | 125    |
| 9           | 2504572                      | 6.4212  | 3813359 35,4464  | 5.4464  | 811076         | 14.5027 | 4624435         | 4624435 28.2829 | 7129007         | 12.8786         | 4665061 | 1764009 | 699876  | 61     |
| Ξ           | 2528832                      | 6.4834  | 3292318 30,6032  | 0.6032  | 692307         | 12.3790 | 3984625         | 3984625 24.3698 | 6513457 11.7666 | 11.7666         | 3730742 | 1927054 | 855600  | 61     |
| 12          | 2543206                      | 6.5203  | 3143645 29.2212  | 9.2212  | 647266 11.5737 | 11.5737 | 3790911         | 23.1851         | 6334117 11.4426 | 11.4426         | 3350592 | 1991238 | 992226  | 61     |
| 13          | 3760688                      | 9.6416  | 2627227 24.4209  | 4.4209  | 1012892        | 18,1114 | 3640119         | 22.2628         | 7400807         | 7400807 13.3696 | 3800953 | 2449208 | 1150138 | 508    |
| 14          |                              | 8.8442  | 2300208 21.3812  | 1.3812  |                | 15.7834 | 3182909         |                 | 6632579 11.9818 | 11.9818         | 2997192 | 2338589 | 1296290 | 508    |
| 15          |                              | 8.4798  | 2109710 19.6105  | 9.6105  | 852284         | 15.2396 | 2961994         | 2961994 18.1154 | 6269524         | 6269524 11.3260 | 2676593 | 2280532 | 1311891 | 508    |
| 16          |                              | 7.0071  | 2863824, 26,6202 | 6.6202  | 762393         | 13.6322 | 3626217         | 3626217 22.1778 | 6359300 11.4881 | 11.4881         | 3389583 | 2077251 | 892213  | 253    |
| 17          |                              | 6.6090  | 2392128 22.2356  | 2.2356  | 668887         | 11.9603 | 3061015         | 3061015 18.7210 | 5638825         | 5638825 10.1866 | 2454476 | 2116182 | 1067914 | 253    |
| 18          |                              | 6.5122  | 2314421 21.5133  | 1.5133  | 658843         | 11.7807 | 2973264         | 2973264 18.1844 | 5513345         | 9.9599          | 2280305 | 2136526 | 1096261 | 253    |
| 19          | 2053911                      | 5.2658  | 2937485 27,3049  | 7.3049  | 676443         | 12.0954 | 3613928         | 3613928 22.1026 | 5667839         |                 | 3140512 | 1831119 | 696083  | 125    |
| 20          | 2012465                      | 5.1595  | 2631868: 24,4641 | 4.4641  | 540825         | 9.6704  | 3172693         | 3172693 19.4041 | 5185158         |                 | 2435207 | 1893700 | 856126  | 125    |
| 21          | 2001120                      | 5.1305  | 2526561 23.4852  | 3.4852  | 534767         | 9.5621  | 3061328         | 3061328 18.7230 | 5062448         |                 | 2101632 | 2029877 | 930814  | 125    |
| 22          | 2875000                      | 7.3709  | 1927212 17.9141  | 7.9141  | 842576         | 15.0660 | 2769788         | 2769788 16.9399 | 5644788         |                 | 2994485 | 1742349 | 906934  | 1020   |
| 23          | 2355213                      | 6.0383  | 1422988 13.2271  | 3.2271  | 678604         | 12.1340 | 2101592         | 2101592 12.8533 | 4456805         | 8.0513          | 2106507 | 1440980 | 908298  | 1020   |
| 24          | 2045244                      | 5.2436  | 1166296, 10.8411 | 0.8411  | 540466         | 9.6640  | 1706762         | 1706762 10.4385 | 3752006         | - 1             | 1821578 | 1163737 | 765671  | 1020   |
| 25          | 2098237                      | 5.3794  | 1969995 18.3118  | 8.3118  | 632393         | 11.3077 | 2602388         | 2602388 15.9161 | 4700625         |                 | 2436130 | 1499772 | 764214  | 209    |
| 26          | 1762741                      | 4.5193  | 1507326 14.0111  | 4.0111  | 527617         | 9.4342  | 2034943         | 2034943 12,4456 | 3797684         |                 | 1654931 | 1369917 | 772327  | 509    |
| 27          | 1574483                      | 4.0366  | 1333988 12,3999  | 2.3999  | 435552         | 7.7880  | 1769540         | 1769540 10.8224 | 3344023         |                 | 1455471 | 1203412 | 684631  | 509    |
| 28          | 1605878                      | 4.1171  | 2087116 19.4004  | 9.4004  | 514052         | 9.1917  | 2601168         | 15.9086         | 4207046         |                 | 2168008 | 1413698 | 625087  | 253    |
| 59          | 1374381                      | 3.5236  | 1785043 1        | 16.5926 | 428949         | 7.6700  | 2213992         | 13.5407         | 3588373         | 6.4824          | 1561047 | 1362509 | 664564  | 253    |
| 8           | 1297351                      | 3.3261  | 1706268 1        | 15.8603 | 385446         | 6.8921  | 2091714         | 2091714 12.7928 | 3389065         | 6.1224          | 1358317 | 1358773 | 671722  | 253    |
| 31          | 1404643                      | 3.6012  | 1422825 1        | 13.2256 | 547241         | 9.7851  | 1970066         | 1970066 12.0488 | 3374709         | 6.0964          | 1793254 | 1068173 | 512261  | 1021   |
| 32          | 1118886                      | 2.8686  | 864790           | 8.0385  | 383814         | 6.8629  | 1248604         | 7.6364          | 2367490         | 4.2769          | 1163544 | 728180  | 474746  | 1020   |
| 33          | 924291                       | 2.3697  | 605362           | 5.6270  | 271797         | 4.8600  | 877159          | 5.3647          | 1801450         | 3.2543          | 941923  | 524032  | 334474  | 1021   |
| क्र         | 1075758                      | 2.7580  | 1535990 1        | 14.2775 | 447833         | 8.0076  | 1983823         | 12.1330         | 3059581         | 5.5272          | 1630122 | 1001939 | 427011  | 509    |
| 35          | 878543                       | 2.2524  | 979145           | 9.1015  | 327685         | 5.8593  | 1306830         | 7.9925          | 2185373         | 3.9479          | 996674  | 744608  | 443583  | 508    |
| 36          |                              | 1.8707  | 733830           | 6.8212  | 237469         | 4.2461  | 971299          | 5.9404          | 1700963         |                 | 794152  | 581174  | 325128  | 509    |
| 37          |                              | 2.2491  | 1793502 1        | 16.6712 | 397861         | 7.1141  | 2191363         | 13.4023         | 3068600         | 5.5435          | 1704283 | 946851  | 417213  | 253    |
| 38          |                              | 1.8746  | 1301099-12.0941  | 2.0941  | 292038         | 5.2219  | 1593137         | 9.7436          | 2324319         |                 | 1031922 | 842595  | 449549  | 253    |
|             |                              | -       |                  |         |                |         |                 |                 | -               |                 |         |         |         |        |

Table 33: GCC and Espresso w/ Operating System, Combined Data

| Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Hellerines   Table Helle | Reference  | Reference Statistics: |         |           |         |         |         |          |         |          |        |       |        |         |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|---------|-----------|---------|---------|---------|----------|---------|----------|--------|-------|--------|---------|--------|
| 112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112091124    112 | Total Inst | truction Refer        | ences   | 423260712 |         |         |         |          |         |          |        |       |        |         |        |
| 187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187  | Data Res   | spt                   |         | 112087124 |         |         |         |          |         |          |        |       |        |         |        |
| %         FARENGO-GEN         NATION         PARTICULAR         %         Total           701         31,286         FARENGO-GEN         Windle         %         Dail         96         Total           701         31,286         FARENGO-GEN         78,78         FARENGO-GEN         78,78         FINIO)         Ini(1)           701         31,286         FARENGO-GEN         78,981         222,125         6,0417         10,982         78,056         20,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78,056         10,098         78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Data writ  | es                    |         | 36765337  |         |         |         |          |         |          |        |       |        |         |        |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S | Total Da   | a References          | 50      | 148852461 |         |         |         |          |         |          |        |       |        |         |        |
| %         Feed         %         Wille         %         Date         %         Ini(1)           170         3.2866         120840         10.7846         8.2193         16121274         10.1866         22037         16121274         10.1866         22087         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Re   | erences               |         | 572113173 |         |         |         |          |         |          |        |       |        |         |        |
| 1324/1971   3.1.286   Read   8%   Wilte   8%   Data   8%   Total   8%   Total   18.24   Total   18.254   Total   Total   18.254   Total   18.254   Total   18.254   Total   18.254   Total   18.254   Total   18.254   Total   18.254   Total   18.254   Total   Total   Total   Total   Total   Total   18.254   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total    | MISS Sta   | itistics:             |         |           |         |         |         |          |         |          |        |       |        |         |        |
| 1341770   12.086   12.092890   10.7946   3021886   6.1017   10.1540   20.082977   4.9576   22.089   20.082690   2.082989   4.9776   4.02289   2.02681400   2.02899   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.0289   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2.02891   2 | Cache      | Inst                  | %       | Read      | %       | Write   | %       | Data     | %       | Total    | %      | intro | int(4) | int/o   | (0)441 |
| 97/9197         2.2663         6620999         7.6913         2.22125         6.0417         1.0942233         7.2839         7.2867         6.7787         6.7787         6.7787         6.7787         6.7787         6.7787         6.7787         6.7787         6.7787         6.7787         6.7787         6.6660         7.7867         6.0055         7.2868         4.6776         1.77897         6.17869         7.7867         6.0055         7.7867         6.0055         7.8867         7.8878         7.7867         6.0055         7.8867         7.8878         7.8878         7.8878         7.7867         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8878         7.8888         7.8878         7.8888         7.8878         7.8888         7.8888         7.8878         7.8888         7.8878         7.8888         7.7878         7.8888         7.7878         7.8888         7.7878         7.8888         7.7878         7.8888         7.7878         7.8888         7.7878         7.8888         7.7878         7.8888 <th< th=""><th>0</th><th>13241701</th><th>3.1285</th><th>12099406</th><th>10.7946</th><th>3021868</th><th>8.2193</th><th>15121274</th><th></th><th>28362975</th><th></th><th>(2)</th><th>(1)</th><th>(2)1111</th><th>(6)111</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0          | 13241701              | 3.1285  | 12099406  | 10.7946 | 3021868 | 8.2193  | 15121274 |         | 28362975 |        | (2)   | (1)    | (2)1111 | (6)111 |
| 2025557         1,4260         2642959         4,6776         1478238         4,0261         4,5153         4,5153         12756776         16603557         1,4260         17786776         675119         4,5153         1,2604         1,6971         6,6035304         1,6971         6,603         1,6971         6,603         1,6971         6,603         1,6971         6,603         1,6971         6,604         1,6971         6,603         1,6971         6,604         1,6975         3,614,769         1,6971         6,604         1,6975         3,614,769         1,6971         1,6971         6,604         1,6975         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,614,769         3,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -          | 9719197               | 2.2963  | 8650338   |         | 2221235 | 6.0417  | 10842233 |         | 20561430 | _      |       |        |         |        |
| 12762520         0.6603         2886134         2.6641         64660         1.7569         3632784         2.4406         6863304           18906201         4.4668         1.1762782         1.45711         466226         1.0404         3047183           17723020         1.4068         1.1929         4040250         1.0289         1.741198         1.6875         33580708           17723027         4.0811         1.2510964         11.618         375373         1.0289         30580708         33580708           12804644         3.2280         1.6761760         14.6542         376590         10.2849         16.6869         3251029         36510789           12804644         3.0280         1.680725         16.8811         3.0280         305868         3.2771         31806789         3251029         36510789         3251029         36510789         36517371         31806789         36510789         36517371         31806789         36607871         36607871         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         36607878         3660787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2          | 6035557               |         | 5242959   | _       | 1478238 | 4.0207  | 6721197  | 1_      | 12756754 | 2 220A |       |        |         |        |
| 12800201   4.4668   16322321   4.5711   4.632801   12.6014   20965222   14.0846   39677455   17.8969   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.89696   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17.8969   17 | ဇ          | 2752520               |         | 2986134   | _       | 646650  | 1.7589  | 3632784  | _       | 6385304  | 1 1161 |       |        |         |        |
| 17766766         4,1969         13731733         1,9296         4,040250         10,9890         17711963         1,16976         35161768           117766766         4,1960         11,1618         376936         10,2281         16,0586         9,0561         35161768           11273383         2,0360         16761760         11,1661         3760376         10,2281         15,0580         28687371           12604944         3,0250         12736727         11,3632         303568         1,2570         15,772423         10,5890         28687371           10248514         2,2365         11604012         10,3619         22614037         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1,474017         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4          | 18906201              |         | 16332321  |         | 4632931 | 12,6014 | 20965252 |         | 39871453 |        |       |        |         |        |
| 17278937         4 0.0811         12510964         11.618         3795905         10.327         16.500689         10.9551         3580706           12604944         3.0283         11.6032         14.5642         3705696         8.2570         15.772433         10.5860         385070           128049647         3.0283         11670312         10.3519         2.82170         15.772433         15.6800         28687371           128049644         3.0283         11670312         10.3519         2.82170         15.772433         16.6800         28687371           102404614         2.4213         16.680737         16.641         34845         16.971         14424972         3.6906         2868771           10286717         2.2206         11361406         10.1362         2244937         6.9141         15.66063         10.706461         15.70692         10.706461         10.706461         10.706461         10.706461         10.706601         10.706601         10.706601         10.706601         10.706601         10.706601         10.706601         10.706601         10.706601         10.706001         10.706601         10.706601         10.706601         10.706601         10.706601         10.706601         10.706001         10.706001         10.706601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9          | 17769786              |         | 13371733  | 11.9298 | 4040250 | 10.9893 | 17411983 | _       | 35181769 |        |       |        |         |        |
| 19896847   3.2360   16761760   14.9542   3760378   10.2291   13.7869   34219365   12.0253   12.37627   11.3822   30.3666   8.2577   14.47472   36.960   2857737   14.47472   2.3260   2857737   14.47472   2.3260   2857737   14.47472   2.3260   12.3260   2857737   14.47472   2.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12.3260   12 | 9          | 17273837              | 4.0811  | 12510964  | 11.1618 | 3795905 | 10.3247 | 16306869 |         | 33580706 | 5.8696 |       |        |         |        |
| 12004948         3.0253         12736727         11.3392         3035696         9.2570         15772423         10.5660         26577371           12437439         2.9366         16067757         16.3519         2.821780         7.6551         144172         16.566         2662410           12437439         2.9366         16667757         16.3519         16.3519         2.627333         6.9014         1576862         16.5680         2.666240           9398427         2.2205         13231029         11.8042         2.244937         6.1061         15606243         9.1408         2.2740196           14306051         3.3800         1261404         10.746         2.244937         6.1061         1560637         1.408869         8.257727         1.676869         1.408869         9.446         1.6969757         1.408969         8.267737         1.676869         1.66689         1.66689         1.66689         1.66689         1.66689178         1.66689178         1.66689178         1.66689178         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976         1.668976<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7          | 13696847              | _       | 16761760  |         | 3760378 |         | 20522138 | 13.7869 | 34218985 | 5.9812 |       |        |         |        |
| 10249143         2.9365         1   603192         1   603192         2   62110         1   603192         2   69610         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696240         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260         2   696260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Φ (        | 12804948              | 4       | 12736727  | 1       | 3035696 | 8.2570  | 15772423 | 10.5960 | 28577371 | 4.9951 |       |        |         |        |
| 9384514         2.4213         16697557         16.6811         3446816         9.3752         22144173         14.8766         32392687           9384427         2.2205         13231029         11.8042         2.24493         6.1041         15768362         0.5393         25167789           14306051         3.3800         12043771         10.7450         3619356         9.4045         15661727         10.5226         29699178           14206051         2.3800         12043771         10.7450         3619356         9.4045         156282         29699178           12296471         2.9286         9199569         8.2075         2.4625         7.826         12076837         7.345         2961761           16640897         2.5444         1.2076841         1.77858         2.75867         2.4441         10064616         6.7615         19055176           2280104         2.1849         8728601         7.7858         2.001557         5.4441         10064616         6.7616         19055178           2280104         2.1848         1.5823         2.561208         6.9664         1.76873         1.7186           2280104         2.7846         1.78673         1.86446         1.7487         2.7224         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50         | 1243/438              |         | 1603192   |         | 2821780 | 7.6751  | 14424972 |         | 26862410 | 4.6953 |       |        |         |        |
| 9388427         2.2205         13231029         11.8042         2557336         6.9014         1576836         10.5893         25166789           14306651         3.2206         13241029         11.8042         263733         6.9014         1506631         9.1408         2274196           14306651         3.3800         1204371         10.7465         2.844937         1.806634         9.1408         22741309           12996471         2.9268         9199569         8.2075         7.4025         268768         7.1528         1.907642         7.3409         2.9669178           12875097         2.946         8297279         7.4025         2681433         7.8874         14958276         7.3409         2.966178           92891055         2.1241         8063068         7.1936         2071567         6.6446         16.6461         6.7416         10907762         7.3409         2071786           92891055         2.1241         8063068         7.1336         207186         7.72264         10497         23779246           722870         1.7826         2.1249         1.7826         2.6446         1.75264         177236         2.7516         177236         2.7517         1.7666         2.77236         2.77236 <td>2</td> <td>10248514</td> <td></td> <td></td> <td>16.6811</td> <td>3446816</td> <td>9.3752</td> <td>22144173</td> <td></td> <td>32392687</td> <td>5.6619</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2          | 10248514              |         |           | 16.6811 | 3446816 | 9.3752  | 22144173 |         | 32392687 | 5.6619 |       |        |         |        |
| 9133853         2.1560         11051406         10.1362         2244937         6.1061         13606243         9.1408         22740196           14306051         3.3800         12043771         10.7450         3619366         3.8445         15663127         10.5226         29963178           12236471         2.9286         9.8075         2.877269         7.8260         12076838         3.1300         24473309           12236471         2.9286         9.8075         2.861203         7.8260         12076831         7.343         24473309           10640997         2.5141         12076842         10.745         2881435         7.826         10927762         7.345         20171865           9990555         2.1241         8063067         7.1936         2001557         2.7441         10064616         7.14660         1771865         20171865           9824762         1.9422         12993443         1.5850         1768730         4.8109         10664641         7.14660         17722861         7.14660         17722861         7.14660         1772286         20001557         7.2246         1772366         6.81661         7.1460         166866         4.3976         9841600         6.6116         1686160         7.2246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = :        | 9398427               | _       | 13231029  | 11.8042 | 2537333 | 6.9014  | 15768362 |         | 25166789 | 4.3989 |       |        |         |        |
| 13396051         33800         12043771         10.7450         3619356         9.8445         15663127         10.5226         29963178           12396471         2.9288         9195569         8.2075         2877269         7.8260         12076838         8.1133         2447309           16275097         2.5941         1207642         10.7455         2861433         7.8757         1.4056         7.3409         2596272           10640997         2.5141         1207642         10.7745         2861433         7.8374         14958275         7.0491         2569272           9269104         2.1899         8726901         7.7856         2715861         5.9162         10902762         7.345         2011786           8224402         1.8432         1293443         1.5923         2561203         6.964         1555464         10.4497         2377924           7228172         1.7073         8927784         7.9550         176866         7.2206         10.75166         7.2266         10.75166         7.2206         10.75166         7.2206         10.75166         7.2206         10.75166         7.2206         10.75166         7.2206         10.75166         7.2206         10.75166         7.2206         10.75166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12         | 9133853               |         | 11361406  | 10.1362 | 2244937 | 6.1061  | 13606343 | 1       | 22740196 | 3.9748 |       |        |         |        |
| 12396471         2,9286         9199569         8,2075         2,877269         7,625         12076836         8,1133         24473309           1267097         2,9346         8297273         7,4055         2629763         7,1528         10927042         7,3409         2590713           10640997         2,1544         12076842         10,7455         2614133         7,3405         10907755         10,0491         2590272           9268104         2,1899         8726801         7,7868         2175851         5,912         1090775         7,3245         2017186           92891055         2,1241         8063056         7,1936         201765         5,4441         10064616         6,7497         273071           722817         1,793         1,793         26120         6,964         1,655464         10,497         23779248           7006521         1,662         8224734         7,366         1,6873         4,8199         1064641         7,186         10,92706           70076521         1,707         8927434         7,3679         1,6873         1,7726         6,614         10,497         23779248           7007964         1,703         57250         1,77256         6,411         1,77229 <td>2</td> <td>14306051</td> <td>3.3800</td> <td>12043771</td> <td>10.7450</td> <td>3619356</td> <td>9.8445</td> <td>15663127</td> <td></td> <td>29969178</td> <td>5.2383</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2          | 14306051              | 3.3800  | 12043771  | 10.7450 | 3619356 | 9.8445  | 15663127 |         | 29969178 | 5.2383 |       |        |         |        |
| 126/5097         2,9946         8297279         7,4025         2629763         7,1526         10927042         7,3409         23602139           10640997         2,5141         1207482         10,7445         2861433         7,8374         1092704         7,3409         2569272           9269104         2,1899         8726901         7,7356         2,1856         1092704         7,340         2569272           8920555         1,2441         8063056         7,1356         2,011785         2,4441         10064615         6,764         10497         2377246           722872         1,7079         8927784         7,3560         1,788730         4,8109         1064616         6,714         1,7079           9454783         2,238         8066760         7,226         264766         7,220         1075162         7,222         200630           7036279         1,623         5,226         2,277         1,6673         7,067         1,6676         7,226         6,6476         7,220         1075162         7,222         200630           707784         1,672         4,276         1,227         2,048967         5,734         4,354         1,4666         1,522         1,00630         1,223         1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4          | 12396471              | 2.9288  | 9199569   | - 1     | 2877269 | 7.8260  | 12076838 |         | 24473309 | 4.2777 |       |        |         |        |
| 10640397         2.514         10706842         10.7745         2861433         7.8374         14956275         10.0491         2.5599272           9269104         2.1893         8726801         7.7868         2701585         5.9182         10902752         7.3245         20171866           8905055         1.2141         8063056         7.7866         1.768730         6.9644         1555464         10.4497         23779248           7228772         1.7079         8927784         7.3660         1.768730         4.8109         10696514         7.180         17925286           7036521         1.622         8224734         7.3378         1616866         4.3978         9841600         6.616         1696761         7.180           7036521         1.622         8224734         7.3378         1616866         4.3978         9841600         6.6116         1616847           7036521         1.6228         8204734         7.226         264766         7.220         9841600         6.6116         1678782           7036527         1.7333         5.72598         4.206270         4.279         164841         4.582         6.81077         16784         4.582         6.864         17.7258         5.216         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2          | 12675097              | 2.9946  | 8297279   |         | 2629763 | 7.1528  | 10927042 |         | 23602139 | 4.1254 |       |        |         |        |
| 92/20104         2.189         8726801         7.7868         2175851         5.9162         10902752         7.3245         2017186           8990555         2.1241         8063058         7.1936         2001557         5.4441         10064615         6.7615         19055170           8224602         1.3228         2.561203         6.9664         1.552464         10.4497         2377248           7228772         1.7079         8927784         7.326         2.661203         6.9664         1.55246         1.71867           7036521         1.6626         8224734         7.3378         1.616866         4.3978         984560         6.614         16876121           9454763         2.238         8096760         7.226         2.65476         7.220         1075156         7.229         2020630           703651         1.6723         5.72893         5.1077         204727         5.665         7.77236         5.215         15106647           6204137         1.4658         4.79627         7.1067         204727         5.6865         7.77236         5.215         15106647           707364         1.6723         4.767         1.0647         1.6666         7.2206         1.702536         1.702528<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 !        | 10640997              | 2.5141  | 12076842  |         | 2881433 | 7.8374  | 14958275 |         | 25599272 | 4.4745 |       |        |         |        |
| 0390250         2.1241         8068058         7.1936         2001557         5.4441         10064615         6.7615         19055170           0224002         1.3472         1.299343         1.5850         2.561203         6.9664         1.555466         10.4497         23779248           722602         1.2073         8.224734         7.3378         1.66866         4.3978         9841600         6.616         1675122           7036521         1.6625         8224734         7.3378         1.616866         4.3978         9841600         6.616         1675122           9454783         2.2338         8096760         7.2236         2654766         7.7206         6.616         1.7352         2206630           7077844         1.623         5.7250         1.772366         5.2215         16108647         6.626         7.772366         5.2215         16108647           7077844         1.6723         4.05209         5.1077         2047270         5.5731         10014714         6.626166         17025286         5.2266606           5604106         1.342         5.40807         7.1067         204807         1.717105         4.6704         10223062         6.8679         1702246           5608076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0        | 9269104               |         | 8726901   |         | 2175851 | 5.9182  | 10902752 |         | 20171856 | 3.5259 |       |        |         |        |
| 0524902         1,3432         12993443         11,5923         2561203         6,9664         15554646         10.4497         23779246           7228772         1,7079         8927734         7,3650         1768730         4,8109         1669614         7,1860         17925286           7026521         1,6625         8224734         7,2376         16,8166         7,220         1075156         6,5116         16,8161           9454783         2,2238         8096760         7,2236         2654766         7,220         1075156         5,2215         1510647           6204137         1,4658         4796270         4,2791         1684761         4,5825         6481031         4,354         12665168           7077964         1,6723         7,1067         204967         5,5731         10014714         6,727         1709286           5048108         1,1927         4,3476         15,11639         4,1116         694517         4,656         1262676           5048108         1,3476         1,067         2,041776         2,041776         4,6704         1022306         8,671           5048108         1,077         1,117105         4,6704         1022306         8,670         1,71710 <tr< td=""><td>0 0</td><td>9990222</td><td></td><td>8063058</td><td>- 1</td><td>2001557</td><td>5.4441</td><td>10064615</td><td>- 1</td><td>19055170</td><td>3.3307</td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0        | 9990222               |         | 8063058   | - 1     | 2001557 | 5.4441  | 10064615 | - 1     | 19055170 | 3.3307 |       |        |         |        |
| 7.2267/2         1.70 / 9         8927784         7.3650         1766730         4.8109         10696514         7.1860         17925266           7.036521         1.6625         8224734         7.3378         1616866         4.3978         9841600         6.6116         16878121           9464763         2.2338         8096760         7.2236         2.226476         7.2206         10751526         5.225         20206309           7366279         1.7333         5725096         5.107         2.645476         7.2206         1075166         5.225         1610847           6204137         1.4658         4.796270         7.1067         2.046867         5.5731         10014714         6.7279         1266560           7077964         1.6723         7.65672         7.1067         2.046867         5.5731         10014714         6.7279         1760647           56046165         1.3424         5433478         4.8475         1511634         3.316         577834         3.8226         1002745           5506076         1.3013         8505957         7.5807         1717105         4.6704         1022362         6.8679         1573140           40608681         1.0289         4.992723         4.6473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 00      | 8224602               |         | 12993443  |         | 2561203 | 6.9664  | 15554646 |         | 23779248 | 4.1564 |       |        |         |        |
| 9454781         7.3378         1616866         4.3978         9841600         6.6116         16876121           9454783         2.2338         8099670         7.2236         2654766         7.2206         10751526         7.2229         20206309           7365279         1.2333         8.099670         7.2236         2654766         7.2206         10751626         7.2229         20206309           7365279         1.6723         7.0677         2.2791         1.04771         4.686         6.2216         1.6164761         4.685         6.481031         4.3540         12685168           7077984         1.6723         7.96572         7.1067         2.048967         5.5731         10014714         6.7229         1709268           5601650         1.3424         5.43746         4.6475         1.511639         4.1116         6945117         4.6666         12626767           5604076         1.3228         4.6760         1.7117105         4.6704         1022062         6.8679         1573140           4608681         1.0689         5.597973         5.1727         1.11708         3.2941         7009051         4.7087         11617732           4228990         1.0228         5.56541         1.717108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 2        | 700000                | $\perp$ | 8927784   |         | 1768730 | 4.8109  | 10696514 |         | 17925286 | 3.1332 |       |        |         |        |
| 9494183         2.238         8099760         7.2296         2664766         7.2206         10751626         7.2229         2.020630           7336279         1.7333         5.72698         6.1077         204727         5.5665         777268         5.2215         1510647           6204137         1.4658         4.796570         4.7967         1.6047         1.62466         6.2215         1510647           7077964         1.6723         7.96572         7.1067         2.048967         5.5731         10014714         6.7279         1709269           5601650         1.3424         5.61095         4.0692         121624         3.3136         5.73943         3.8826         1262767           5608078         1.3027         4.661095         4.0692         121624         3.3136         5.73943         3.8826         10827451           460861         1.0899         5797973         5.1727         1211078         3.2941         7009051         4.7087         11617732           4228990         1.0228         4.992723         4.443         1717105         4.6704         1022306         6.8679         1573140           4174019         0.3862         505411         4.5103         1.375094         3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 6        | 126957                |         | 8224734   | _!      | 1616866 | 4.3978  | 9841600  |         | 16878121 | 2.9501 |       |        |         |        |
| 6204137         1,733         5,722098         5,1077         2047270         5,666         7772368         5,2216         15,106647           6204137         1,4658         4,796270         4,2791         1684761         4,5625         6481031         4,3540         12685168           7077984         1,6723         7,1067         2048047         1,51639         4,1116         694517         4,665         1708268           5681650         1,3424         5,61095         4,0692         1218248         3,3136         6778943         3,862         10627451           5608106         1,1927         4,561095         4,0692         1218248         3,3136         6778943         3,862         10627451           4600681         1,0013         8505957         7,580         177105         4,6704         10223062         6,667         1677140           4600681         1,0013         8505957         7,580         177105         3,294         7009051         4,7087         1161773           4144019         0,9662         5055411         4,5103         1375094         3,7402         600518         4,3207         1064624           2327242         0,5498         1,9185         729543         1,9643 <td>77 8</td> <td>9454/83</td> <td></td> <td>8096760</td> <td></td> <td>2654766</td> <td>7.2208</td> <td>10751526</td> <td></td> <td>20206309</td> <td>3.5319</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77 8       | 9454/83               |         | 8096760   |         | 2654766 | 7.2208  | 10751526 |         | 20206309 | 3.5319 |       |        |         |        |
| 0.204137         1.4868         4.78920         4.2781         1664761         4.5825         6481031         4.3540         1268166           7077964         1.6723         7965727         7.1067         2048967         5.5731         10014714         6.7279         1702268           56046160         1.3424         4.3476         1.504897         2.146248         3.3166         5779343         3.8626         1.2622467           5048108         1.3013         8505957         7.5807         1717105         4.6704         10223062         6.8679         1573140           4600861         1.0889         5.7837         5.127         1211076         3.2941         7.009051         4.7007         11617732           4728990         1.0228         4992723         4.4543         1012396         2.7537         6005118         4.0341         6.674         11617732           4174019         0.9862         5.055411         4.513         17623062         6.8679         177105         1.7607         11617732           2327242         0.5498         2.1503         1.9185         7.2544         1.9402         2.3201         10604524           22680491         0.7740         3005507         2.614 <t< td=""><td>3 2</td><td>/3362/9</td><td><math>\perp</math></td><td>5725098</td><td></td><td>2047270</td><td>5.5685</td><td>7772368</td><td>5.2215</td><td>15108647</td><td>2.6408</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 2        | /3362/9               | $\perp$ | 5725098   |         | 2047270 | 5.5685  | 7772368  | 5.2215  | 15108647 | 2.6408 |       |        |         |        |
| 707/384         1,6723         7,865727         7,1067         2048967         5,5731         10014714         6,7279         17092696           5681650         1,3424         5,48476         1,51639         4,1116         694517         4,6656         12626767           508100         1,1927         4,661095         4,6609         1,216248         3,3136         5,779343         3,8626         16226767           5508076         1,03013         8505957         7,586         1,71710         4,6704         10223062         6,8679         1,6713140           4328990         1,0228         4,992723         4,4543         1012395         2,7537         6005118         4,7087         1161773           4328990         1,0228         4,992723         4,4543         1012395         2,7537         6005118         4,033110         10504524           4,74019         0,9862         5,055411         4,5103         1375094         3,7402         6430505         4,3201         10604524           2,327242         0,5498         2,16539         1,9185         7,29543         1,9443         2,6677         7,116967           2,56037         0,6098         2,196399         1,9485         2,1026         3,1036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47 6       | 0204137               |         | 4796270   | - 1     | 1684761 | 4.5825  | 6481031  | 4.3540  | 12685168 | 2.2172 |       |        |         |        |
| 506 10 20 1 3 4 24         54 3 4 7 6 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 8        | 7077984               | ┸       | 7965727   |         | 2048987 | 5.5731  | 10014714 | 6.7279  | 17092698 | 2.9876 |       |        |         |        |
| 5040108         1.1324         4.561095         12.1624         3.3136         5779343         3.8256         10827451           5508078         1.3013         8.505957         7.5807         1717105         4.6704         1022362         6.8679         1573140           46080681         1.00899         5797973         4.4543         1012395         2.7537         6005118         4.7087         1161732           4774019         0.9862         5055411         4.5103         1375094         3.7402         6430505         4.3041         1064524           3149044         0.7440         3005507         2.6614         962416         2.6177         3967923         2.6657         7116867           2237242         0.5498         2.150399         1.9185         729543         1.9843         2.879942         1.9348         5207184           2580471         0.6749         1.4764         1.146896         3.1195         6500669         4.3672         9799160           2580471         0.6749         1.9643         2.1026         397044         2.6674         6551421           2016837         0.6746         6260538         5.5654         1.108014         3.017         3.9406         4.95621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 6        | 2001020               | $\perp$ | 5433478   |         | 1511639 | 4.1116  | 6945117  |         | 12626767 | 2.2070 |       |        |         |        |
| 3500076         1.3013         850595f.         7.5867         177106         46704         10223062         6.8679         1573140           4608681         1.0228         57973         5.1727         1211078         3.2941         7009051         4.7087         11617732           4328990         1.0228         4992723         4.5473         1071396         2.7537         6005118         4.0343         1034108           4174019         0.9862         5055411         4.5103         1075094         3.7422         6430505         4.3201         10604524           2227242         0.5498         2.150399         1.9185         729543         1.9643         2.867962         1.5046         5207184           2287242         0.5498         2.150399         1.9185         729543         1.9643         2.879942         1.9346         5207184           2287242         0.5498         2.1826         777035         2.8226         777035         2.8226         777035         2.8266         77718         650669         4.3672         9799160           2016837         0.4765         2.21464         2.6624         1.78035         2.1026         397044         2.6674         651421           2227364 <td>77 00</td> <td>5048108</td> <td></td> <td>4561095</td> <td></td> <td>1218248</td> <td>3.3136</td> <td>5779343</td> <td></td> <td>10827451</td> <td>1.8925</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77 00      | 5048108               |         | 4561095   |         | 1218248 | 3.3136  | 5779343  |         | 10827451 | 1.8925 |       |        |         |        |
| 4702681         1,089         5,1727         1211076         3,2941         7009051         4,7087         11617732           4728990         1,0228         4992723         4,4543         1012396         2,7537         6005118         4,0343         10334108           4174019         0,99662         5055411         4,5103         1375094         3,1740         64036507         2,6814         962416         2,6177         396792         2,667         116967           2327242         0,5498         2,15039         1,9165         729543         1,943         2,6779         1,9348         5,207184           2569377         0,6798         3,1916         729543         1,943         650669         4,3672         9799160           201859         1,9165         772954         1,943         5,6774         2,6774         2,6774         2,6774         2,6774         2,6774         2,6774         2,6674         2,6774         2,6674         2,6674         2,6674         2,6674         2,6674         2,6674         2,6674         2,6674         2,6774         2,6676         2,6674         2,6674         2,6674         2,6674         2,6674         2,6674         2,6674         2,6674         2,6674         2,6674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 6        | 9709066               |         | 8202957   |         | 1717105 | 4.6704  | 10223062 |         | 15731140 | 2.7497 |       |        |         |        |
| 4322890         1,0223         4,643         1012396         2,7537         6005118         4,0343         10334108           4174019         0,9862         5055411         4,5103         1375094         3,7402         6430505         4,3201         10604524           3149044         0,7440         3005507         2,6814         962416         2,6177         3967923         2,6657         7,116967           2227242         0,5498         2,150399         1,7764         1,78949         3,1195         6506069         1,3672         979160           2580977         0,6098         3197409         2,826         77215         1,570         2886679         1,3404         2,6674         651421           2727364         0,6444         6260538         5,584         1108014         3,017         7366552         4,9551         10059516           2221631         0,5249         3913991         3,4919         705490         1,9189         4619481         3,1034         6841112           1836392         0,4339         3071178         2,7400         537588         1,4622         3608766         2,4244         5445188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S C        | 4606681               | 1.0889  | 5797973   | - 1     | 1211078 | 3.2941  | 7009051  | 4.7087  | 11617732 | 2.0307 |       |        |         |        |
| 41/4019         0.3862         505541         4.5103         1375094         3.7402         6430505         4.3201         10604524           3149044         0.7402         3065507         2.6814         962416         2.6177         3967923         2.6657         7.116967           2227242         0.5498         2.150399         1.9185         7.29543         1.9843         2.87942         1.9348         5207184           25808491         0.7793         2.852773         4.7186         7.73035         2.1026         397044         2.6674         6551421           2016837         0.4765         2.311464         2.0622         577215         1.570         288657         1.9406         4905516           2727364         0.6444         6260538         5.584         1108014         3.0137         7366552         4.955         1005516           2221631         0.5249         3913991         3.4919         705490         1.9189         4619481         3.1034         681112           1836392         0.4339         3071176         2.7400         537588         1.4622         3608766         2.4244         5445188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 3        | 4326990               |         | 4992723   |         | 1012395 | 2.7537  | 6005118  | 4.0343  | 10334108 | 1.8063 |       |        |         |        |
| 3149044         0.7440         3005507         2.6114         962416         2.6177         3967923         2.6657         7116967           2327242         0.5498         2.150399         1.9165         722543         1.9443         2879942         1.9348         5207184           3284940         0.7793         5553773         4.7764         1.466896         3.1195         6500669         4.3672         9799160           2560977         0.6698         3197409         2.652         577215         1.5700         2886679         1.9406         4905616           2727364         0.6444         6260538         5.584         1108014         3.0137         7366552         4.9502         10095916           2221631         0.5249         3913991         3.4919         705490         1.9189         4619481         3.1034         681112           1836392         0.4339         3071176         2.7400         537588         1.4622         3608766         2.4244         5445158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 8        | 41/4019               | _       | 5055411   |         | 1375094 | 3.7402  | 6430505  |         | 10604524 | 1.8536 |       |        |         |        |
| 232.7342         0.5489         2150399         1.9185         729543         1.9843         2879942         1.9346         5207184           3298491         0.7793         5353773         4.7764         1146896         3.1195         6500669         4.3672         9799160           2580977         0.6098         3197409         2.8526         773035         2.1026         397044         2.6674         6551421           2016837         0.4765         2.311464         2.0622         577215         1.5700         2888679         1.9406         495651           2727364         0.6444         6260538         5.564         1108014         3.0137         7366552         4.9502         10095916           2221631         0.5249         3913991         3.4919         705490         1.9189         4619481         3.1034         6841112           1836392         0.4339         3071176         2.7400         537588         1.4622         3608766         2.4244         5445158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         | 3149044               | _       | 3005507   | -       | 962416  | 2.6177  | 3967923  |         | 7116967  | 1.2440 |       |        |         |        |
| 2280491         0.7793         5353778         4.7764         1146896         3.1195         6500669         4.3672         9799160           2560977         0.6098         3197409         2.8556         773035         2.1026         3970444         2.6674         6551421           2016837         0.4765         2.311464         2.0622         5.77215         1.5700         2888679         1.9406         4.9657           2227364         0.6444         6.260536         5.5654         1108014         3.037         7366552         4.9502         10095316           2221631         0.5249         3913991         3.4919         705490         1.9169         4619481         3.1034         6841112           1836392         0.4339         3071176         2.7400         537588         1.4622         3608766         2.4244         5445158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33         | 2327242               | $\perp$ | 2150399   | - 1     | 729543  | 1.9843  | 2879942  | 1.9348  | 5207184  | 0.9102 |       |        |         |        |
| 2580977         0.6098         3197409         2.652e         773035         2.102e         3970444         2.6674         6551421           2016837         0.4765         2311464         2.0622         577215         1.5700         2888679         1.940e         4905516           2727364         0.6444         6260538         5.5654         1108014         3.0137         7368552         4.9502         10095916           2221631         0.5249         3913991         3.4919         705490         1.9189         4619481         3.1034         6841112           1836392         0.4339         3071176         2.7400         537588         1.4622         3608766         2.4244         5445158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3          | 3298491               | 0.7793  | 5353773   | - 1     | 1146896 | 3.1195  | 6990099  |         | 9799160  | 1.7128 |       |        |         |        |
| 2016837         0.4765         2311464         2.0622         577215         1.5700         2888679         1.9406         4905516           2727364         0.6444         6260538         5.5854         1108014         3.0137         7368552         4.9502         10095916           2221631         0.5249         3913991         3.4919         705490         1.9189         4619481         3.1034         6841112           1836392         0.4339         3071178         2.7400         537598         1.4622         3608766         2.4244         5445158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32         | 2580977               | 0.6098  | 3197409   | . !     | 773035  | 2.1026  | 3970444  | 2.6674  | 6551421  | 1.1451 |       |        |         |        |
| 2727364         0.6444         6260538         5.854         1108014         3.0137         7368552         4.9502         10095916           2221631         0.5249         3913991         3.4919         705490         1.9189         4619481         3.1034         6841112           1836392         0.4339         3071176         2.7400         537598         1.4622         3608766         2.4244         5445158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36         | 2016837               | 0.4765  | 2311464   |         | 577215  | 1.5700  | 2888679  | 1.9406  | 4905516  | 0.8574 |       |        |         |        |
| 2221631         0.5249         3913991         3.4919         705490         1.9189         4619481         3.1034         6841112           1836392         0.4339         3071176         2.7400         537568         1.4622         3608766         2.4244         5445158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37         | 2727364               | 0.6444  | 6260538   |         | 1108014 | 3.0137  | 7368552  | 4.9502  | 10095916 | 1 7647 |       |        |         |        |
| 1836392 0.4339 3071178 2.7400 537588 1.4622 3608766 2.4244 5445158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88         | 2221631               | _       | 3913991   | Į.      | 705490  | 1.9189  | 4619481  | 3.1034  | 6841112  | 1.1958 |       |        |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38         | 1836392               | _       | 3071178   | !       | 537588  | 1.4622  | 3608766  | 2.4244  | 5445158  | 0 9518 |       |        |         |        |

Table 34: Compress w/ Model, n=1

| Total Instruction References | ences   | 87045931  |        |        |        |         |         |         |         |         |        |        |        |
|------------------------------|---------|-----------|--------|--------|--------|---------|---------|---------|---------|---------|--------|--------|--------|
|                              |         | 22412018  |        |        |        |         |         |         |         |         |        |        |        |
|                              |         | 8521660   |        |        |        |         |         |         |         |         |        |        |        |
| Total Data References        | (0)     | 30933678  |        |        |        |         |         |         |         |         |        |        |        |
| Total References             |         | 117979609 |        |        |        |         |         |         |         |         |        |        |        |
| Miss Statistics:             |         |           |        |        |        |         |         |         |         |         |        |        |        |
| Inst                         | %       | Read      | %      | Write  | %      | Data    | %       | Total   | %       | int(0)  | int(1) | int(2) | int(3) |
| 569467                       | 0.0065  | 3998210   | 0.1784 | 86946  | 0.0102 | 4085156 | 0.1321  | 4654623 | 0.0395  | 4457571 | 196924 | 128    |        |
| 157381                       | 0.0018  | 3621969   | 0.1616 | 53021  | 0.0062 | 3674990 | 0.1188  | 3832371 | 0.0325  | 3485561 | 346565 | 245    |        |
| 84035                        | 0.0010  | 3329636   | 0.1486 | 42786  | 0.0050 | 3372422 | 0.1090  | 3456457 | 0.0293  | 2903944 | 552169 | 344    |        |
| 20263                        | 0.0002  | 3038734   | 0.1356 | 21938  | 0.0026 | 3060672 | 0.0989  | 3080935 | 0.0261  | 2538280 | 542440 | 215    |        |
| 1530237                      | 0.0176  | 4457145   | 0.1989 | 207537 | 0.0244 | 4664682 | 0.1508  | 6194919 | 0.0525  | 5981740 | 212932 | 247    |        |
| 27994                        | _       | 4020161   | 0.1794 | 105987 | 0.0124 | 4126148 | 0.1334  | 4154142 | $\perp$ | 3932367 | 221519 | 256    |        |
| 24653                        | 0.0003  | 3891334   | 0.1736 | 82660  | 0.0097 | 3973994 | 0.1285  | 3998647 | 0.0339  | 3774844 | 223547 | 256    |        |
| 1017717                      | 0.0117  | 4762344   | 0.2125 | 284577 | 0.0334 | 5046921 | 0.1632  | 6064638 | 0.0514  | 5947827 | 116686 | 125    |        |
| 16434                        | 0.0002  | 4400027   | 0.1963 | 214112 | 0.0251 | 4614139 | 0.1492  | 4630573 | 0.0392  | 4510723 | 119722 | 128    |        |
| 14464                        | 0.0002  | 4054418   | 0.1809 | 91096  | 0.0107 | 4145514 | 0.1340  | 4159978 | 0.0353  | 4040020 | 119830 | 128    |        |
| 1010974                      | 0.0116  | 5637202   | 0.2515 | 436775 | 0.0513 | 6073977 | 0.1964  | 7084951 | 0.0601  | 7023635 | 61253  | 63     |        |
| 10640                        | 0.0001  | 5077472   | 0.2266 | 349714 | 0.0410 | 5427186 | 0.1754  | 5437826 | 0.0461  | 5374382 | 63380  | 28     |        |
| 8924                         | 0.0001  | 4421267   | 0.1973 | 249059 | 0.0292 | 4670326 | 0.1510  | 4679250 | 0.0397  | 4616166 | 63020  | 22     |        |
| 20175                        | 0.0002  | 3999361   | 0.1784 | 140605 | 0.0165 | 4139966 | 0.1338  | 4160141 | 0.0353  | 3820698 | 339043 | 400    |        |
| 18056                        | 0.0002  | 3705809   | 0.1653 | 81937  | 9600'0 | 3787746 |         | 3805802 | 0.0323  | 3445856 | 359487 | 459    |        |
| 13876                        | 0.0002  | 3642737   | 0.1625 | 74791  | 0.0088 | 3717528 | 0.1202  | 3731404 | 0.0316  | 3361826 | 369092 | 486    |        |
| 11935                        | 0.0001  | 4205118   | 0.1876 | 165346 |        | 4370464 | 0.1413  | 4382399 |         | 4183986 | 198197 | 216    |        |
| 10877                        |         | 3815142   | 0.1702 | 68491  | 0.0080 | 3883633 | 0.1255  | 3894510 |         |         | 204779 | 242    |        |
| 8347                         | $\Box$  | 3748321   | - 1    | 53312  |        | 3801633 | $\perp$ | 3809980 |         |         | 206871 | 252    |        |
| 7377                         |         | 4530197   |        | 249636 | 0.0293 | 4779833 |         | 4787210 |         |         | 109106 | 114    |        |
| 7196                         | 0.0001  | 4047866   |        | 112256 |        | 4160122 |         | 4167318 |         |         | 110725 | 123    |        |
| 5331                         | 1       | 3925458   | - 1    | 79899  |        | 4005357 | 0.1295  | 4010688 | $\perp$ |         | 110569 | 128    |        |
| 13373                        |         | 3662772   | - 1    | 102819 | i      | 3765591 |         | 3778964 | _       | 3273369 | 505066 | 529    |        |
| 8895                         | $\perp$ | 3462931   | - 1    | 74732  | - 1    | 3537663 |         | 3546558 |         | 2993681 | 552286 | 591    |        |
| 6951                         |         | 3422228   | - 1    | 72636  | - 1    | 3494864 |         | 3501815 |         | 2919004 | 582197 | 614    |        |
| 7979                         |         | 3801405   | 0.1696 | 97760  |        | 3899165 | _       | 3907144 | _       | 3580761 | 326077 | 306    |        |
| 5301                         | _ 1     | 3552445   | 1      | 47334  | - 1    | 3599779 |         | 3605080 |         | 3258230 | 346501 | 349    |        |
| 4320                         |         | 3505378   | - 1    | 39829  |        | 3545207 | 0.1146  | 3549527 |         | 3190554 | 358605 | 368    |        |
| 4933                         |         | 4027535   |        | 131502 |        | 4159037 | _       | 4163970 |         | 3972352 | 191447 | 171    |        |
| 3366                         | 0.0000  | 3668285   | 0.1637 | 48399  | 0.0057 | 3716684 | _       | 3720050 |         | 3521742 | 198110 | 198    |        |
| 2858                         |         | 3604472   | 0.1608 | 30411  | 0.0036 | 3634883 | 0.1175  | 3637741 | _1      | 3435851 | 201676 | 214    |        |
| 5294                         | 0.0001  | 3419788   | 0.1526 | 66388  | 0.0078 | 3486176 | 0.1127  | 3491470 | 0.0296  | 2997172 | 493952 | 346    |        |
| 3147                         | 0.0000  | 3283297   | 0.1465 | 39910  | 0.0047 | 3323207 | 0.1074  | 3326354 | 0.0282  | 2783241 | 542730 | 383    |        |
| 2430                         | 0.0000  | 3245695   | 0.1448 | 37795  | 0.0044 | 3283490 | 0.1061  | 3285920 | 0.0279  | 2711954 | 573582 | 384    |        |
| 3260                         | 0.0000  | 3537187   | 0.1578 | 75921  | 0.0089 | 3613108 | 0.1168  | 3616368 | 0.0307  | 3295848 | 320318 | 202    |        |
| 2094                         | 0.0000  | 3374350   | 0.1506 | 28559  | 0.0034 | 3402909 | 0.1100  | 3405003 | 0.0289  | 3062767 | 342009 | 227    |        |
| 1628                         | 0.0000  | 3329522   | 0.1486 | 22173  | 0.0026 | 3351695 | 0.1084  | 3353323 | 0.0284  | 2998066 | 355022 | 235    |        |
| 2145                         | 0.0000  | 3677102   | 0.1641 | 82525  | 0.0097 | 3759627 | 0.1215  | 3761772 | 0.0319  | 3573411 | 188236 | 125    |        |
| 1297                         | 0.0000  | 3464412   | 0.1546 | 31646  | 1      | 3496058 | 0 1130  | 3497355 | 0.0296  | 3301958 | 195253 | 144    |        |
| -                            |         |           |        |        |        | 00000   |         | 1       |         | 2000    | 200    |        |        |

Table 35: GCC w/ Model, n=1

| otal Ins         | Total Instruction References | saoua   | 160239804 |         |         |        |         |         |          |        |          |         | -      | ĺ      |
|------------------|------------------------------|---------|-----------|---------|---------|--------|---------|---------|----------|--------|----------|---------|--------|--------|
| 0                |                              |         |           | •       |         |        |         |         |          |        |          |         |        |        |
| Data Heads       | spr                          |         | 50197289  |         |         |        |         |         |          |        |          |         |        |        |
| Data writes      | es                           |         | 19074844  |         |         |        |         |         |          |        |          |         |        |        |
| otal Da          | <b>Total Data References</b> |         | 69272133  |         |         |        |         |         |          |        |          |         |        |        |
| otal Re          | Total References             |         | 229511937 |         |         |        |         |         |          |        |          |         |        |        |
| Miss Statistics: | tistics:                     |         |           |         |         |        |         |         |          |        |          |         |        |        |
| Cache            | lnst                         | %       | Read      | %       | Write   | %      | Data    | %       | Total    | %      | int(o)   | int/1)  | int(2) | int/3) |
| 0                | 5705707                      | 3.5607  | 3807505   | 7.5851  | 1073419 | 5.6274 | 4880924 | 7.0460  | 10586631 | 4 6127 | 10227815 | 358758  | ""(c)  | (6)    |
| -                | 3664684                      | 2.2870  | 2332868   | 4.6474  | 668681  | 3.5056 | 3001549 | 4.3330  | 6666233  | 2 9045 | 6063821  | 602353  | 20 20  |        |
| 7                | 2101221                      | 1.3113  | 1387220   | 2.7635  | 374495  | 1.9633 | 1761715 | 2.5432  | 3862936  | 1.6831 | 3014928  | 847948  | 9      |        |
| 6                | 911192                       | 0.5686  | 763320    | 1.5206  | 139180  | 0.7297 | 902500  | 1.3028  | 1813692  | 0.7902 | 1140103  | 673546  | 43     |        |
| 4                | 8032276                      | 5.0127  | 4810068   | 9.5823  | 1812325 | 9.5011 | 6622393 | 9.5600  | 14654669 | 6.3851 | 14141175 | 513417  | 77     |        |
| C)               | 7692272                      | 4.8005  | 3407617   | 6.7884  | 1284806 | 6.7356 | 4692423 | 6.7739  | 12384695 | 5.3961 | 11829866 | 554741  | 88     |        |
| 9                | 7557503                      | 4.7164  | 2923067   | 5.8232  | 1131599 | 5.9324 | 4054666 | 5.8532  | 11612169 | 5.0595 | 11032173 | 579906  | 06     |        |
| 7                | 6018628                      | 3.7560  | 1         | 10.7232 | 1614482 | 8.4639 | 6997239 | 10.1011 | 13015867 | 5.6711 | 12740947 | 274868  | 52     |        |
| 8                | 5863721                      | 3.6593  |           | 7.2812  | 1018636 | 5.3402 | 4673606 | 6.7467  | 10537327 | 4.5912 | 10244733 | 292537  | 57     |        |
| 0                | 5744545                      | 3.5850  | 3112717   | 6.2010  | 882112  | 4.6245 | 3994829 | 5.7669  | 9739374  | 4.2435 |          | 302573  | 09     |        |
| 9                | 4505734                      | 2.8119  | - 1       | 12.6553 | 1613095 | 8.4567 | 7965726 | 11.4992 | 12471460 | 5,4339 | 12328296 | 143129  | 35     |        |
| Ξ                | 4403501                      | 2.7481  | 4221318   | 8.4095  | 946078  | 4.9598 | 5167396 | 7.4596  | 9570897  | 4.1701 | 9420430  | 150428  | 30     |        |
| 12               | 4293296                      | 2.6793  | 3451064   | 6.8750  | 763894  | 4.0047 | 4214958 | 6.0846  | 8508254  | 3.7071 | 8353539  | 154673  | 42     |        |
| 13               | 5384043                      | 3.3600  | 3222697   | 6.4201  | 1228250 | 6.4391 | 4450947 | 6.4253  | 9834990  | 4.2852 | 9102102  | 732799  | 89     |        |
| 4                | 4807419                      | 3.0001  | 2064370   | 4.1125  | 811684  | 4.2553 | 2876054 | 4.1518  | 7683473  | 3.3477 | 6863296  | 820082  | 20     |        |
| 15               | 4520533                      | 2.8211  | 1728499   | 3.4434  | 703005  | 3,6855 | 2431504 | 3.5101  | 6952037  | 3.0291 | 6081088  | 870857  | 92     |        |
| 9                | 4173039                      | 2.6042  | 3440024   | 6.8530  | 1039724 | 5.4508 | 4479748 | 6.4669  | 8652787  | 3.7701 | 8233857  | 418871  | 59     |        |
| 1                | 3833065                      | 2.3921  | 2136034   | 4.2553  | 585332  | - 1    | 2721366 | 3.9285  | 6554431  | 2.8558 | 6092548  | 461832  | 09     |        |
| 2 9              | 36/343/                      | 2.2925  |           | 3,4494  | 475062  | - 1    | 2206566 | 3.1854  | 5880003  | 2.5620 | 5394235  | 485708  | 09     |        |
| 2 8              | 3254077                      | 2.0308  |           | 7.9600  | 995051  | 5.2166 | 4990732 | 7.2045  | 8244809  | 3.5923 | 8014638  | 230132  | 39     |        |
| 3 2              | 3052717                      | 1.905.1 | 2301/12   | 4.5974  | 493996  | 2.5898 | 2801768 | 4.0446  | 5854485  | 2.5508 | 5604943  | 249500  | 42     |        |
| 7 8              | 2987903                      | 1.8646  | 1941179   | 3.8671  | 387231  | 2.0301 | 2328410 | 3.3613  | 5316313  | 2.3164 |          | 259384  | 44     |        |
| 7 8              | 3529819                      | 2.2028  | 2161430   | 4.3059  | 761631  | 3.9929 | 2923061 | 4.2197  | 6452880  | 2.8116 |          | 900408  | 167    |        |
| 3 2              | 2480047                      | 1.5477  | 1317053   | 2.6238  | 522367  | 2.7385 | 1839420 | 2.6554  | 4319467  | 1.8820 | 33007733 | 1011609 | 125    |        |
| 47               | 196/83/                      | 1.2405  |           | 2.3020  | 497457  | 2.6079 | 1653010 | 2.3863  | 3640847  | 1.5863 | 2567827  | 1072917 | 103    |        |
| 0 8              | 27/44/7                      | 1./315  |           | 4.3509  | 610182  | 3.1989 | 2794200 | 4.0337  | 5568677  | 2.4263 | 5009262  | 559320  | 95     |        |
| 2 10             | 2010113                      | 7967    | 1203406   | 2.3974  | 339410  | 1.7794 | 1542816 | 2.2272  | 3558929  | 1.5507 | 2932436  | 626410  | 83     |        |
| 200              | 1090325                      | 0.000   | 1012151   | 2.0163  | 299875  | 1.5721 | 1312026 | 1.8940  | 3007351  | 1.3103 | 2341609  | 665675  | 67     |        |
| 0 0              | 4744005                      | 02/20   | 2363610   | 4./086  | 528968  | 2.7731 | 2892578 | 4.1757  | 5091062  | 2.2182 | 4757721  | 333277  | 64     |        |
| 8                | 1711295                      | 0000    | 1228/23   | 2.44/8  | 250505  | 1.3133 | 1479228 | 2.1354  | 3190523  | 1.3901 | ļ        | 368415  | 56     |        |
| 3 3              | 1541622                      | 0.9622  | 925/64    | 1.9040  | 197414  | 1.0349 | 1153178 | 1.6647  | 2695000  | 1.1742 | 2304260  | 390695  | 45     |        |
| 5 8              | 1395316                      | 0.8708  | 1374273   | 2.7377  | 378564  | 1.9846 | 1752837 | 2.5304  | 3148153  | 1.3717 | 2515499  | 632393  | 261    |        |
| 35               | 1019655                      | 0.6363  | 782571    | 1.5590  | 218108  | 1.1434 | 1000679 | 1.4446  | 2020334  | 0.8803 | 1320029  | 700108  | 197    |        |
| 8                | 706148                       | 0.4407  | 677892    | 1.3505  | 190495  | 0.9987 | 868387  | 1.2536  | 1574535  | 0.6860 | 832998   | 738376  | 161    |        |
| 3                | 1099448                      | 0.6861  | 1442121   | 2.8729  | 309928  | 1.6248 | 1752049 | 2.5292  | 2851497  | 1.2424 | 2440408  | 410958  | 131    |        |
| 32               | 826481                       | 0.5158  | 714190    | 1.4228  | 150081  | 0.7868 | 864271  | 1.2476  | 1690752  | 0.7367 | 1232145  | 458505  | 102    |        |
| 36               | 609687                       | 0.3805  | 565058    | 1.1257  | 118669  | 0.6221 | 683727  | 0.9870  | 1293414  | 0.5635 | 805730   | 487589  | 95     |        |
| 37               | 911299                       | 0.5687  | 1646866   | 3.2808  | 322521  | 1.6908 | 1969387 | 2.8430  | 2880686  | 1.2551 | 2623500  | 257110  | 76     |        |
| 38               | 684771                       | 0.4273  | 715658    | 1.4257  | 121151  | 0.6351 | 836809  | 1.2080  | 1521580  | 0.6630 | 1235086  | 286526  | 69     |        |
| 33               | 546173                       | 0.3408  | 510729    | 1.0174  | 80979   | 0.4245 | 591708  | 0.8542  | 1137881  | 0 4058 | 000000   | 000000  |        |        |

Table 36: Espresso w/ Model, n=1

| 200000000000000000000000000000000000000 |                              |        |            |         |         |        | _        |         |          |        | -        |         |        |        |
|-----------------------------------------|------------------------------|--------|------------|---------|---------|--------|----------|---------|----------|--------|----------|---------|--------|--------|
| otal In:                                | Total Instruction References | seou   | 977787939  |         |         |        |          |         |          |        |          |         |        |        |
| Data Reads                              | ads                          |        | 225779348  |         |         |        |          |         |          |        |          |         |        |        |
| Data writes                             | rites                        |        | 59867420   |         |         |        |          |         |          |        |          |         |        |        |
| Total De                                | Total Data References        |        | 285646768  |         |         |        |          |         |          |        |          |         |        |        |
| Total Re                                | Total References             |        | 1263434707 |         |         |        |          |         |          |        |          |         |        |        |
| Miss St                                 | Miss Statistics:             |        |            |         |         |        |          |         |          |        |          |         |        |        |
| Cache                                   | lust                         | %      | Read       | %       | Write   | %      | Data     | %       | Total    | %      | int(0)   | Int(1)  | int(2) | int(3) |
| 0                                       | 8834314                      | 0.9035 | 12183514   | 5.3962  | 2237941 | 3.7382 | 14421455 | 5.0487  | 23255769 | 1.8407 | 21198414 | 2057227 | 128    |        |
| -                                       | 4976438                      | 0.5089 | 7129086    | 3.1575  | 1441650 | 2.4081 | 8570736  | 3.0005  | 13547174 | 1.0722 | 10396821 | 3150124 | 229    |        |
| 2                                       | 2601044                      | 0.2660 | 4152040    | 1.8390  | 1071504 | 1.7898 | 5223544  | 1.8287  | 7824588  | 0.6193 | 4235733  | 3588529 | 326    |        |
| 8                                       |                              | 0.1129 | 1932512    | 0.8559  | 434592  | 0.7259 | 2367104  | 0.8287  | 3470788  | 0.2747 | 1081386  | 2389154 | 248    |        |
| 4                                       | -                            | 1.5601 | 24436602   | 10.8232 | 4086649 | 6.8262 | 28523251 | 9.9855  | 43778041 | 3.4650 | 40924397 | 2853401 | 243    |        |
| 5                                       | 9911266                      | 1.0136 | 17133444   | 7.5886  | 3331877 | 5.5654 | 20465321 | 7.1646  | 30376587 | 2.4043 | 27242980 | 3133356 | 251    |        |
| 9                                       |                              | 0.8926 | 14070029   | 6.2318  | 2883891 | 4.8171 | 16953920 | 5.9353  | 25681975 | 2.0327 | 22395784 | 3285936 | 255    |        |
| 7                                       | 10737478                     | 1.0981 | 25232114   | 11.1756 | 3440440 | 5.7468 | 28672554 | 10.0378 | 39410032 | 3.1193 | 37868027 | 1541881 | 124    |        |
| 8                                       | 6844904                      | 0.7000 | 14971448   | 6.6310  | 2545640 | 4.2521 | 17517088 | 6,1324  | 24361992 | 1.9282 | 22693319 | 1668547 | 126    |        |
| 6                                       | 5966252                      | 0.6102 | 11703400   | 5.1836  | 2187945 | 3.6547 | 13891345 | 4.8631  | 19857597 | 1.5717 | 18122560 | 1734909 | 128    |        |
| 10                                      |                              | 0.8830 | 28947942   | 12.8213 | 3344187 | 5.5860 | 32292129 | 11.3049 | 40925876 | 3.2393 | 40103419 | 822393  | 2      |        |
| 11                                      |                              | 0.5371 | 16375637   |         | 2176648 | 3,6358 | 18552285 | 6.4948  | 23804309 | 1.8841 | 22927161 | 877084  | 64     |        |
| 12                                      |                              | 0.4892 | 12903669   |         | 1907117 | 3.1856 | 14810786 | 5,1850  | 19593870 | 1.5508 | 18688385 | 905421  | 64     |        |
| 13                                      |                              | 1.0626 | 16501205   | 7.3086  | 2856513 | 4.7714 | 19357718 | 6.7768  | 29747344 | 2.3545 | 25844954 | 3902015 | 375    |        |
| 14                                      |                              | 0.5179 | 10493998   | 1       | 2216826 | 3.7029 | 12710824 | 4.4498  | 17774552 | 1.4068 | 13404148 | 4369972 | 432    |        |
| 15                                      |                              | 0,3015 | 9778940    | 4.3312  | 2025194 | 3.3828 | 11804134 | 4.1324  | 14751699 | 1.1676 | 10136118 | 4615125 | 456    |        |
| 16                                      |                              | 0.7711 | 15346688   | 1       | 2172223 | 3.6284 | 17518911 | 6.1331  | 25058901 | 1.9834 | 22829745 | 2228944 | 212    |        |
| 17                                      | 3477980                      | 0.3557 | 7969160    | 3.5296  | 1535169 | 2.5643 | 9504329  | 3.3273  | 12982309 | 1.0275 | 10514555 | 2467514 | 240    |        |
| 18                                      | 1921913                      | 0.1966 | 6812966    | 3.0175  | 1360750 | 2.2729 | 8173716  | 2.8615  | 10095629 | 0.7991 | 7497404  | 2597977 | 248    |        |
| 19                                      | 6132676                      | 0.6272 | ľ          | 7.3136  | 1962082 | 3.2774 | 18474682 | 6.4677  | 24607358 | 1.9477 | 23359046 | 1248194 | 118    |        |
| 20                                      | 2775044                      | 0.2838 | 7424198    | 3.2883  | 1230087 | 2.0547 | 8654285  | 3.0297  | 11429329 | 0.9046 | 10056052 | 1373151 | 126    |        |
| 21                                      | 1580907                      | 0.1617 | 5780615    | 2.5603  | 1028316 | 1.7177 | 6808931  | 2.3837  | 8389838  | 0.6640 | 6957297  | 1432413 | 128    |        |
| 22                                      | 3915201                      | 0.4004 | 10456233   | 4.6312  | 2335829 | 3.9017 | 12792062 | 4.4783  | 16707263 | 1.3224 |          | 4257745 | 520    |        |
| 23                                      | 1650774                      | 0.1688 | 6105799    | 2.7043  | 1644481 | 2.7469 | 7750280  | 2.7132  | 9401054  | 0.7441 |          | 4968775 | 584    |        |
| 24                                      | 1050456                      | 0.1074 | 5255554    |         | 1439203 | 2.4040 | 6694757  | 2.3437  | 7745213  | 0.6130 |          | 5230733 | 623    |        |
| 25                                      | 2467169                      | 0.2523 | 9237184    | 4.0912  | 1700732 | 2.8408 | 10937916 | 3.8292  | 13405085 | 1.0610 |          | 2605164 | 308    |        |
| 26                                      | 1009354                      | 0.1032 | 4515069    |         | 1059097 | 1.7691 | 5574166  | 1.9514  | 6583520  | 0.5211 |          | 3036100 | 347    |        |
| 27                                      | 645984                       | 0.0661 | 3477377    | 1.5402  | 858201  | 1.4335 | 4335578  | 1.5178  | 4981562  | 0.3943 |          | 3216088 | 381    |        |
| 28                                      | 1672336                      | 0.1710 |            |         | 1463303 | 2.4442 | 11035465 | 3.8633  | 12707801 | 1.0058 |          | 1558218 | 189    |        |
| 29                                      | 9 651389                     | 0.0666 | 3775532    | 1.6722  | 756328  | 1.2633 | 4531860  | 1.5865  | 5183249  | 0.4103 |          |         | 207    |        |
| 30                                      | 443912                       | 0.0454 | 2479532    | 1.0982  | 543072  | 0.9071 | 3022604  | 1.0582  | 3466516  | 0.2744 | 1537449  | 1928837 | 230    |        |
| 31                                      | 468053                       | 0.0479 | 5918855    | 2.6215  | 1217044 | 2.0329 | 7135899  | 2.4982  | 7603952  | 0.6018 | 4938441  | 2665122 | 389    |        |
| 32                                      |                              | 0.0329 |            | 1.3333  | 784359  | 1.3102 | 3794568  | 1.3284  | 4116585  | 0.3258 | 1223084  | 2893061 | 440    |        |
| 33                                      |                              | 0.0213 |            | 1.0833  | 670585  | 1.1201 | 3116415  | 1.0910  | 3324588  | 0.2631 | 329944   | 2994176 | 468    |        |
| ষ্                                      |                              | 0.0313 |            | 2.5545  | 946635  | 1.5812 | 6714174  | 2.3505  | 7020222  | 0.5556 | 5298258  | 1721717 | 247    |        |
| 35                                      |                              | 0.0214 |            | 1.0444  | 531752  | 0.8882 | 2889792  | 1.0117  | 3098887  | 0.2453 | 1216734  | 1881874 | 279    |        |
| 36                                      |                              | 0.0138 |            | 0.7508  | 406161  | 0.6784 | 2101219  | 0.7356  | 2236121  |        |          |         | 305    |        |
| 37                                      | 7 225599                     | 0.0231 | 6691741    | 2.9638  | 919504  | 1.5359 | 7611245  | 2.6646  | 7836844  |        |          |         | 158    |        |
| 38                                      | 146256                       | 0.0450 | ACORORA    | 1 1932  | 416869  | 0.6963 | 2952893  | 1 0228  | 3099149  | 0 2453 | 1912655  | 1186321 | 173    |        |
|                                         |                              |        |            |         |         | 2      | 1001000  | 2000    | 0        |        |          |         |        |        |

Table 37: Alvinn w/ Model, n=1

| Reference Statistics:        | Statistics: |        |            |         |         |        |           |        |           |        |           |          |        |        |
|------------------------------|-------------|--------|------------|---------|---------|--------|-----------|--------|-----------|--------|-----------|----------|--------|--------|
| Total Instruction References | ction Refer | ences  | 5233222102 |         |         |        |           |        |           |        |           |          |        |        |
| Data Reads                   |             |        | 1415013649 |         |         |        |           |        |           |        |           |          |        |        |
| Data writes                  |             |        | 487428474  |         |         |        |           |        |           |        |           |          |        |        |
| Total Data References        | References  |        | 1902442123 |         |         |        |           |        |           |        |           |          |        |        |
| Total References             | secus       |        | 7135664225 |         |         |        |           |        |           |        |           |          | 1      |        |
| Miss Statistics:             | tics:       |        |            |         |         |        |           |        |           |        |           |          |        |        |
|                              | lust        | %      | Read       | %       | Write   | %      | Data      | %      | Total     | %      | Int(0)    | Int(1)   | int(2) | int(3) |
|                              | 11237903    | 0.2147 | 58421027   | 4.1287  | 1585800 | 0.3253 | 60006827  | 3.1542 | 71244730  | 0.9984 | 60126100  | 11118508 | 122    |        |
| -                            | 6312511     | 0.1206 |            | 2.8795  | 896409  | 0.1839 | 41641201  | 2.1888 | 47953712  | 0.6720 | 29872443  | 18081051 | 218    |        |
| N                            | 2367214     | 0.0452 |            | 2.5649  | 315136  | 0.0647 | 36609305  | 1.9243 | 38976519  | 0.5462 | 14633971  | 24342230 | 318    |        |
| ၉                            | 1197557     | 0.0229 |            |         | 169793  | 0.0348 | 18172206  | 0.9552 | 19369763  | 0.2715 | 3434711   | 15934820 | 232    |        |
| 4                            | 13944663    | 0.2665 |            | 10.3135 | 1979115 | 0.4060 | 147916650 | 7.7751 | 161861313 | 2.2683 | 149865865 | 11995234 | 214    |        |
| 2                            | 13818545    | 0.2641 |            | 8.7677  | 1227917 | 0.2519 | 125292550 | 6.5859 | 139111095 | 1.9495 | 126625540 | 12485317 | 238    |        |
|                              | 14951105    | 0.2857 | =          | 8.2772  | 1137898 | 0.2334 | 118261818 | 6.2163 | 133212923 | 1.8669 | 120557793 | 12654887 | 243    |        |
|                              | 10291152    | 0.1967 | 117155872  | 8.2795  | 2092895 | 0.4294 | 119248767 | 6.2682 | 129539919 | 1.8154 | 123122982 | 6416823  | 114    |        |
|                              | 10454930    | 0.1998 | 73426458   | 5.1891  | 1001613 | 0.2055 | 74428071  | 3.9122 | 84883001  | 1.1896 | 78268579  | 6614296  | 126    |        |
| 6                            | 10745337    | 0.2053 | 67182791   | 4.7479  | 894925  | 0.1836 | 68077716  | 3.5784 | 78823053  | 1.1046 | 72164728  | 6658198  | 127    |        |
| 10                           | 7333188     | 0.1401 | 131539713  | 9.2960  | 2792174 | 0.5728 | 134331887 | 7.0610 | 141665075 | 1.9853 | 138258290 | 3406723  | 62     |        |
| =                            | 7142304     | 0.1365 | -          | 3.7190  | 797224  | 0.1636 | 53422230  | 2.8081 | 60564534  | 0.8488 | 57081656  | 3482814  | 49     |        |
| 12                           | 7200712     | 0.1376 | -          | 3.4442  | 930341  | 0.1909 | 49666060  | 2.6106 | 56866772  | 0.7969 | 53380223  | 3486485  | 126    |        |
| 13                           | 8847677     | 0.1691 | 110654476  | 7.8200  | 1135875 | 0.2330 | 111790351 | 5.8761 | 120638028 | 1.6906 | 101071917 | 19565769 | 342    |        |
| 14                           | 7835423     | 0.1497 | 95142808   | 6.7238  | 976875  | 0.2004 | 96119683  | 5.0524 | 103955106 | 1.4568 | 83117198  | 20837538 | 370    |        |
| 15                           | 4060875     | 0.0776 | 104751442  | 7.4029  | 984567  | 0.2020 | 105736009 | 5.5579 | 109796884 | 1.5387 | 88479309  | 21317166 | 409    |        |
| 16                           | 6632758     | 0.1267 | 79984777   | - 1     | 1199122 | 0.2460 | 81183899  | 4.2674 | 87816657  | 1.2307 | 76981951  | 10834512 | 194    |        |
| 17                           | 6606221     | 0.1262 |            | - 1     | 796112  | 0.1633 | 53423993  | 2.8082 | 60030214  | 0.8413 | 48655165  | 11374841 | 208    |        |
| 18                           | 5508427     | 0.1053 |            | - 1     | 690106  | 0.1416 | 58046764  | 3.0512 | 63555191  | 0.8907 | 52008234  | 11546728 | 229    |        |
| 19                           | 4910290     | 0.0938 | 80184487   | - 1     | 1746703 | 0.3584 | 81931190  | 4.3066 | 86841480  | 1.2170 | 81025985  | 5815387  | 108    |        |
| 50                           | 5042229     | 0.0964 |            | ŀ       | 671245  | 0.1377 | 33532515  | 1.7626 | 38574744  | 0.5406 | 32536695  | 6037934  | 115    |        |
| 21                           | 4797972     | 0.0917 |            | - 1     | 516542  | 0.1060 | 35454309  | 1.8636 | 40252281  | 0.5641 | 34147897  | 6104259  | 125    |        |
| 22                           | 5796141     | 0.1108 |            |         | 810913  | 0.1664 | 89002676  | 4.6783 | 94798817  | 1.3285 | 65992898  | 28805474 | 445    |        |
| 23                           | 3432362     | 0.0656 |            | - 1     | 582386  | 0.1195 | 72562965  | 3.8142 | 75995327  | 1.0650 |           | 31262267 | 499    |        |
| 24                           | 1374033     | 0.0263 | 71363806   | - 1     | 394518  | 0.0809 | 71758324  | 3.7719 | 73132357  | 1.0249 | 40715479  | 32416358 | 520    |        |
| 25                           | 4576802     | 0.0875 | 54562939   | - 1     | 599491  | 0.1230 | 55162430  | 2.8996 | 59739232  | 0.8372 | 42992352  | 16746609 | 271    |        |
| 97                           | 3199050     | 0.0611 | $\perp$    | - 1     | 425751  | 0.0873 | 38269211  | 2.0116 | 41468261  | 0.5811 | 23490626  | 17977332 | 303    |        |
| 2/2                          | 862674      | 0.0165 |            |         | 283468  | 0.0582 | 37168400  | 1.9537 | 38031074  | 0.5330 |           | 18506006 | 318    |        |
| 87                           | 3325275     | 0.0635 | 44512996   | - 1     | 969053  | 0.1988 | 45482049  | 2.3907 | 48807324  | 0.6840 | 39584436  | 9222725  | 163    |        |
| 53                           | 2469942     | 0.0472 |            | - 1     | 385420  | 0.0791 | 21000395  | 1.1039 | 23470337  | 0.3289 | 13649773  | 9820384  | 180    |        |
| 90                           | 1599704     | 0.0306 |            |         | 205603  | 0.0422 | 19461036  | 1.0230 | 21060740  | 0.2951 | 11008776  | 10051776 | 188    |        |
| 31                           | 1752307     | 0.0335 | 42638700   |         | 447914  | 0.0919 | 43086614  | 2.2648 | 44838921  | 0.6284 | 22258474  | 22580109 | 338    |        |
| 32                           | 474244      | 0.0091 |            |         | 270932  | 0.0556 | 35887549  | 1.8864 | 36361793  | 0.5096 | 12498889  | 23862549 | 355    |        |
| 33                           | 216043      | 0.0041 |            | 2.4927  | 232540  | 0.0477 | 35504161  | 1.8662 | 35720204  | 0.5006 | 11300206  | 24419631 | 367    |        |
| 8                            | 1340261     | 0.0256 | 29395707   |         | 577715  | 0.1185 | 29973422  | 1.5755 | 31313683  | 0.4388 | 18548940  | 12764531 | 212    |        |
| 35                           | 709074      | 0.0135 | 18726638   | _ [     | 205511  | 0.0422 | 18932149  | 0.9951 | 19641223  | 0.2753 | 6108357   | 13532639 | 227    |        |
| 36                           | 126862      |        | 18441867   | - [     | 173413  | 0.0356 | 18615280  | 0.9785 | 18742142  | 0.2627 | 4889262   | 13852639 | 241    |        |
| 37                           | 998025      |        |            | - 1     | 750628  | 0.1540 | 36575334  | 1.9225 | 37573359  | 0.5266 | 30612516  | 6960711  | 132    |        |
| 38                           | 781205      | - 1    | -          |         | 154789  | 0.0318 | 10549214  | 0.5545 | 11330419  | 0.1588 | 3928174   | 7402100  | 145    |        |
| 66                           | 74918       | 0.0014 | 9802574    | 0.6928  | 127130  | 0.0261 | 9929704   | 0.5219 | 10004622  | 0.1402 | 2422673   | 7581796  | 153    |        |

Table 38: Compress w/ Model, n=2

| Hererence                    | Reference Statistics: |        | _               |         |        |        |                 |         |         |        |         |        |        |        |
|------------------------------|-----------------------|--------|-----------------|---------|--------|--------|-----------------|---------|---------|--------|---------|--------|--------|--------|
| Total Instruction References | tion Refer            | ences  | 87045931        |         |        |        |                 |         |         |        |         |        |        |        |
| Data Reads                   |                       |        | 22412018        |         |        |        |                 |         |         |        |         |        |        |        |
| Data writes                  |                       |        | 8521660         |         |        |        |                 |         |         |        |         |        |        |        |
| Total Data References        | <b>3eferences</b>     |        | 30933678        | _       |        |        |                 |         |         |        |         |        |        |        |
| Total References             | seoue                 |        | 117979609       |         |        |        |                 |         |         |        |         |        |        |        |
| MIss Statistics:             | tlcs:                 |        |                 |         |        |        |                 |         |         |        |         |        |        |        |
| Cache                        | Inst                  | %      | Read            | %       | Write  | %      | Data            | %       | Total   | %      | int(0)  | int(1) | int(2) | int(3) |
| 0                            | 570450                | 0.6553 | 3999671 17.8461 | 7.8461  | 87138  | 1.0225 | 4086809         | 13.2115 | 4657259 | 3.9475 | 4451154 |        | 205977 | 128    |
| -                            | 159654                | 0.1834 |                 | 16.1796 | 53406  | 0.6267 | 3679573 11.8950 | 11.8950 | 3839227 | 3.2541 | 3462532 |        | 376450 | 245    |
| 2                            | 87671                 | 0.1007 | 3341914 14      | 14.9113 | 43444  | 0.5098 | 3385358         | 10.9439 | 3473029 | 2.9438 | 2838971 |        | 633714 | 344    |
| Э                            | 22728                 | 0.0261 | 3054661 13      | 13.6296 | 22571  | 0.2649 | 3077232         | 9.9478  | 3099960 | 2.6275 | 2475426 |        | 624319 | 215    |
| 4                            | 1537370               | 1.7662 | 4459201 18      | 19.8965 | 207745 | 2.4378 | 4666946         | 15.0869 | 6204316 | 5.2588 | 5972103 |        | 231966 | 247    |
| 2                            | 37711                 |        |                 | 17.9460 | 106199 | 1.2462 | 4128264 13.3455 | 13.3455 | 4165975 | 3.5311 | 3924907 |        | 240812 | 256    |
| 9                            | 35799                 |        |                 | 17.3709 | 82893  | 0.9727 | 3976071         | 12.8535 | 4011870 | 3.4005 | 3768472 |        | 243142 | 256    |
| 7                            | 1021658               |        |                 | 21.2525 | 284662 | 3.3405 | 5047780 16.3181 | 16.3181 | 6069438 | 5.1445 | 5945117 |        | 124196 | 125    |
| 8                            | 21917                 |        | 4400605 18      | 19.6350 | 214197 | 2.5136 | 4614802         | 14.9184 | 4636719 |        | 4508742 |        | 127849 | 128    |
| 6                            | 20801                 | 0.0239 | 4055022 18,0931 | 8.0931  | 91182  | 1.0700 | 4146204 13.4035 | 13.4035 | 4167005 | 3.5320 | 4038549 |        | 128328 | 128    |
| 10                           | 1013030               | 1.1638 | 5637439  28     | 25.1536 | 436817 | 5.1260 | 6074256         | 19.6364 | 7087286 | 6.0072 | 7022694 |        | 64529  | 63     |
| =                            | 13731                 | 0.0158 | 5077672 22      | 22.6560 | 349745 | 4.1042 | 5427417         | 17.5453 | 5441148 | _      | 5373867 |        | 67217  | 8      |
| 12                           | 12571                 | 0.0144 | 4421441 18      | 19.7280 | 249082 | 2.9229 | 4670523         | 15.0985 | 4683094 | 3.9694 | 4615783 |        | 67247  | 8      |
| 13                           | 28728                 | 0.0330 | 4004567 1       | 17.8679 | 140960 | 1.6541 | 4145527         | 13.4013 | 4174255 | 3,5381 | 3791856 |        | 381999 | 400    |
| 14                           | 27785                 | 0.0319 | 3710631 16      | 16.5564 | 82349  | 0.9663 | 3792980 12.2617 | 12.2617 | 3820765 | 3.2385 | 3420120 |        | 400186 | 459    |
| 15                           | 24843                 | 0.0285 | 3647197 16      | 16.2734 | 75239  | 0.8829 | 3722436 12.0336 | 12.0336 | 3747279 | 3.1762 | 3338327 |        | 408466 | 486    |
| 16                           | 16837                 | 0.0193 | 4207062 18      | 18.7715 | 165552 | 1.9427 | 4372614 14.1354 | 14.1354 | 4389451 | 3.7205 | 4174716 |        | 214519 | 216    |
| 17                           | 16475                 | 0.0189 |                 | 17.0303 | 68715  | 0.8064 | 3885555 12.5609 | 12.5609 | 3902030 | 3.3074 | 3681971 |        | 219817 | 242    |
| 18                           | 14469                 | }      |                 | 16.7317 | 53524  | 0.6281 | 3803445 12.2955 | 12.2955 | 3817914 | 3.2361 | 3596305 |        | 221357 | 252    |
| 19                           | 10269                 | 1      |                 | 20.2161 | 249725 | 2.9305 | 4780563 15.4542 | 15.4542 | 4790832 | 4.0607 | 4675559 |        | 115159 | 114    |
| 20                           | 10547                 |        |                 | 18.0638 | 112347 | 1.3184 | 4160819 13.4508 | 13.4508 | 4171366 | 3.5357 | 4054605 |        | 116638 | 123    |
| 21                           | 8993                  |        |                 | 17.5174 | 79973  | 0.9385 | 4005966 12.9502 | 12.9502 | 4014959 | 3.4031 | 3898495 |        | 116336 | 128    |
| 22                           | 20219                 |        | 3675934 10      | 16.4016 | 103394 |        | 3779328 12.2175 | 12.2175 | 3799547 | 3.2205 | 3201153 |        | 597870 | 524    |
| 23                           | 15904                 | - 1    | 3474790 15.5041 | 5.5041  | 75436  | į      | 3550226 11.4769 | 11.4769 | 3566130 | 3.0227 | 2921959 |        | 643581 | 290    |
| 24                           | 13939                 | 1      |                 | 15.3197 | 73333  | 0.8605 | 3506780 11.3364 | 11.3364 | 3520719 | 2.9842 | 2848085 |        | 672020 | 614    |
| 25                           | 11889                 |        |                 | 16.9851 | 98101  | 1.1512 | 3904810 12.6232 | 12.6232 | 3916699 | 3.3198 | 3552561 |        | 363834 | 304    |
| 56                           | 9263                  |        | 3557135 1       | 15.8716 | 47755  | 0.5604 | 3604890 11.6536 | 11.6536 | 3614153 |        | 3232812 |        | 380993 | 348    |
| 27                           | 8361                  | 9600'0 |                 | 15.6597 | 40256  | 0.4724 | 3549914         | 11.4759 | 3558275 |        | 3167166 |        | 390741 | 368    |
| 28                           | 7188                  | - 1    | 4029414 1       | 17.9788 | 131678 | 1.5452 | 4161092         | 13.4517 | 4168280 | 3.5331 | 3963111 |        | 204998 | 171    |
| 59                           | 5764                  | _1     | 3669822 16.3743 | 6.3743  | 48620  | 0.5705 | 3718442         | 12.0207 | 3724206 | 3.1567 | 3514256 |        | 209752 | 198    |
| 30                           | 5361                  | - 1    | _               | 16.0891 | 30617  | 0.3593 | 3636506 11.7558 | 11.7558 | 3641867 |        | 3429492 |        | 212161 | 214    |
| 31                           | 8062                  |        | 3435077 1       | 15.3269 | 92699  | 0.7860 | 3502053         | 11.3212 | 3510115 | 2.9752 | 2927943 |        | 581837 | 335    |
| 35                           | 5327                  |        | 3296790 14.7099 | 4.7099  | 40603  | 0.4765 | 3337393         | 10.7889 | 3342720 | 2.8333 | 2713818 |        | 628523 | 379    |
| 33                           | 3935                  | - 1    | 3257788 14.5359 | 4.5359  | 38486  | 0.4516 | 3296274         | 10.6559 | 3300209 | _      | 2642638 |        | 657189 | 382    |
| क्ष                          | 4880                  | - 1    | 3543385 1       | 15.8102 | 76270  | 0.8950 | 3619655         | 11.7013 | 3624535 | 3.0722 | 3268293 |        | 356044 | 198    |
| 32                           | 3478                  | - 1    | 3379296 15.0781 | 5.0781  | 28944  | 0.3397 | 3408240         | 11.0179 | 3411718 | _      | 3037616 |        | 373875 | 227    |
| 36                           | 2583                  | - 1    |                 | 4.8756  | 22587  | 0.2651 | 3356513         | 10.8507 | 3359096 | 2.8472 | 2974677 |        | 384186 | 233    |
| 37                           | 3123                  | - 1    | 3679207 10      | 16.4162 | 82667  | 0.9701 | 3761874         | 12.1611 | 3764997 | 3.1912 | 3564514 |        | 200361 | 122    |
| 38                           | 2111                  |        | 3466061 15.4652 | 5.4652  | 31801  | 0.3732 | 3497862         | 11.3076 | 3499973 | 2.9666 | 3294350 |        | 205480 | 143    |
| 39                           | 1660                  | 0.0019 | 3410033 1       | 15.2152 | 17698  | 0.2077 | 3427731 11.0809 | 11.0809 | 3429391 | 2.9068 | 3220967 |        | 208276 | 148    |

Table 39: GCC w/ Model, n=2

|                       | יבובובונים כימוופונים.       |            | _       |         |        |          |         |          |        |          |        |         |        |
|-----------------------|------------------------------|------------|---------|---------|--------|----------|---------|----------|--------|----------|--------|---------|--------|
| al Instruction        | Total Instruction References | 977787939  |         |         |        |          |         |          |        |          |        |         |        |
| Data Reads            |                              | 225779348  |         |         |        |          |         |          |        |          |        |         |        |
| Data writes           |                              | 59867420   |         |         |        |          |         |          |        |          |        |         |        |
| Total Data References | erences                      | 285646768  |         |         |        |          |         |          |        |          |        |         |        |
| Total References      | es                           | 1263434707 |         |         |        |          |         |          |        |          |        |         |        |
| Miss Statistics       | ::                           |            |         |         |        |          |         |          |        |          |        |         |        |
| Cache Inst            | st %                         | Read       | %       | Write   | %      | Data     | %       | Total    | %      | (int(0)  | int(1) | int(2)  | int(3) |
| 0 88                  | 8847616 0.9049               |            | 5.4059  | 2240602 | 3.7426 | 14446038 | 5.0573  | 23293654 | 1.8437 | 21150667 | 7.     | 2142850 | 128    |
| 1 50                  | 5025237 0.5139               | 7218927    | 3.1973  | 1452993 | 2.4270 | 8671920  | 3.0359  | 13697157 | 1.0841 | 10308678 |        | 3388250 | 220    |
|                       | 2729928 0.2792               | 4373868    | 1.9372  | 1102462 | 1.8415 | 5476330  | 1.9172  | 8206258  | 0.6495 | 4131300  |        | 4074632 | 328    |
| 3 12                  | 1207257 0.1235               | 2102459    | 0.9312  | 460022  | 0.7684 | 2562481  | 0.8971  | 3769738  | 0.2984 | 1043624  |        | 2725866 | 248    |
| 4 154                 | 15413408 1.5764              | 24472149   | 10,8390 | 4093452 | 6.8375 | 28565601 | 10.0003 | 43979009 | 3 4809 | 40760522 |        | 3218244 | 243    |
| 5 100                 |                              |            | 7.6015  | 3336934 | 5.5739 | 20499464 | 7.1765  | 30573786 | 2.4199 |          |        | 3513251 | 251    |
| 1                     |                              |            | 6.2431  | 2888223 | 4.8244 | 16983939 | 5.9458  | 25858298 | 2.0467 | 22193519 |        | 3664524 | 255    |
|                       |                              |            | 11.1807 | 3442328 | 5.7499 | 28685981 | 10.0425 | 39507100 | 3.1270 | 37793297 |        | 1713679 | 124    |
|                       |                              |            | 6.6350  | 2546884 | 4.2542 | 17527358 | 6.1360  | 24453524 | 1.9355 | 22605422 |        | 1847976 | 126    |
|                       |                              |            | 5.1870  | 2188947 | 3.6563 | 13900052 | 4.8662  | 19939344 | 1.5782 | 18025760 |        | 1913456 | 128    |
|                       | _                            |            | •       | 3344592 | 5.5867 | 32296000 | 11,3063 | 40972897 | 3.2430 | 40063746 |        | 909087  | 2      |
|                       |                              |            |         | 2176894 | 3.6362 | 18555133 | 6.4958  | 23848070 | 1.8876 | 22880963 |        | 967043  | 2      |
| 12 48                 |                              |            |         | 1907368 | 3.1860 | 14813250 | 5.1859  | 19633529 | 1.5540 | 18638683 |        | 994782  | 2      |
|                       | _                            |            |         | 2878670 | 4.8084 | 19515792 | 6.8321  | 30201168 | 2.3904 | 25651103 |        | 4549697 | 368    |
|                       |                              | _          |         | 2235939 | 3.7348 | 12834642 | 4.4932  | 18248989 | 1.4444 | 13156604 |        | 5091955 | 430    |
|                       |                              |            |         | 2042341 | 3.4114 | 11911884 | 4.1701  | 15254396 | 1.2074 | 9869207  |        | 5384733 | 456    |
| 16 77                 | 4                            |            |         | 2179010 | 3.6397 | 17571169 | 6.1514  | 25272904 | 2.0003 | 22745326 |        | 2527368 | 210    |
|                       |                              |            |         | 1540633 | 2.5734 | 9544687  | 3.3414  | 13207734 | 1.0454 | 10406408 |        | 2801086 | 240    |
| 18 21                 | 1                            |            | _       | 1365447 | 2.2808 | 8208446  | 2.8736  | 10341494 | 0.8185 | 7381267  |        | 2959979 | 248    |
|                       | 1                            |            | _       | 1963797 | 3.2802 | 18490254 | 6.4731  | 24713561 | 1.9561 | 23316596 |        | 1396847 | 118    |
|                       | _                            |            | _       | 1231395 | 2.0569 | 8666525  | 3.0340  | 11543547 | 0.9137 | 10000023 |        | 1543398 | 126    |
|                       |                              | ľ          | 1       | 1029388 | 1.7194 | 6819149  | 2.3873  | 8514570  | 0.6739 | 6896588  |        | 1617854 | 128    |
| 77 47                 | 4286293 0.4384               |            | _       | 2388609 | 3.9898 | 13173010 | 4.6116  | 17459303 | 1.3819 | 12275038 |        | 5183771 | 494    |
|                       | $\perp$                      | 0462484    |         | 1699191 | 2.8383 | 8161675  | 2.8573  | 10268362 | 0.8127 | 4238284  |        | 6029520 | 558    |
|                       | 1                            |            | J.      | 1492337 | 2.4927 | 7081311  | 2.4790  | 8659460  | 0.6854 | 2295695  |        | 6363164 | 601    |
|                       | 4                            |            | l       | 1/18547 | 2.8706 | 11076689 | 3.8778  | 13750370 | 1.0883 | 10726913 |        | 3023154 | 303    |
|                       | 041704 0.0062                |            |         | 10/682/ | 1.7987 | 5715309  | 2.0008  | 6980328  | 0.5525 | 3467498  |        | 3512496 | 334    |
|                       | _                            |            |         | 8/4830  | 1.4613 | 4464621  | 1.5630  | 5406325  | 0.4279 | 1683180  |        | 3722772 | 373    |
|                       | _                            |            |         | 1468439 | 2.4528 | 11081731 | 3.8795  | 12877045 | 1.0192 | 11116485 |        | 1760373 | 187    |
| -                     |                              |            | _       | /61190  | _1     | 4576083  | 1.6020  | 5382099  | 0.4260 | 3333271  |        | 2048622 | 206    |
| 30                    | 1                            |            |         | 547548  | _1     | 3062554  | 1.0721  | 3683157  | 0.2915 | 1505508  |        | 2177421 | 228    |
|                       | _                            |            |         | 1258365 | 2.1019 | 7427447  | 2.6002  | 8091280  | 0.6404 | 4889018  |        | 3201889 | 373    |
| 35                    |                              |            |         | 826715  |        | 4108394  | 1.4383  | 4637998  | 0.3671 | 1171017  |        | 3466560 | 421    |
|                       | 1                            |            |         | 715789  |        | 3452637  | 1.2087  | 3870983  | 0.3064 | 286574   |        | 3583967 | 442    |
|                       | 4                            |            |         | 960636  | 1.6046 | 6824566  | 2.3892  | 7248843  | 0.5737 | 5276946  |        | 1971659 | 238    |
| 200                   | _                            |            |         | 545254  | 0.9108 | 3001464  | 1.0508  | 3335458  | 0.2640 | 1196300  |        | 2138886 | 272    |
|                       | 1                            |            | - 1     | 420545  | 0.7025 | 2218149  | 0.7765  | 2481351  | 0.1964 | 234619   |        | 2246438 | 294    |
|                       |                              |            | - 1     | 923919  | 1.5433 | 7650897  | _       | 7949669  | 0.6292 | 6742744  |        | 1206774 | 151    |
| 38                    | _                            |            |         | 421046  | 0.7033 | 2990203  | 1.0468  | 3215180  | 0.2545 | 1905639  |        | 1309371 | 170    |
|                       | 1/5120 00179                 | 1245630    | 0 5517  | 252832  | 0007   |          |         |          |        |          |        |         |        |

Table 40: Espresso w/ Model, n=2

| Reference Statistics:        | stlcs:         |            |        |         |        |          |         |          |        |          |        |         |        |
|------------------------------|----------------|------------|--------|---------|--------|----------|---------|----------|--------|----------|--------|---------|--------|
| Total Instruction References | References     | 977787939  |        |         |        |          |         |          |        |          |        |         |        |
| Data Reads                   |                | 225779348  |        |         |        |          |         |          |        |          |        |         |        |
| Data writes                  |                | 59867420   |        |         |        |          |         |          |        |          |        |         |        |
| Total Data References        | ences          | 285646768  |        |         |        |          |         |          |        |          |        |         | T      |
| <b>Total References</b>      | S              | 1263434707 |        |         |        |          |         |          |        |          |        |         |        |
| MISS Statistics:             |                |            |        |         |        |          |         |          |        |          |        |         |        |
|                              | $\Box$         |            | %      | Write   | %      | Data     | %       | Total    | %      | int(0)   | int(1) | int(2)  | int(3) |
| 0 884                        | _              | -          | 5.4059 | 2240602 | 3.7426 | 14446038 | 5.0573  | 23293654 | 1.8437 | 21150667 | , ,    | 2142859 | 128    |
|                              |                |            | 3.1973 | 1452993 | 2.4270 | 8671920  | 3.0359  | 13697157 | 1.0841 | 10308678 |        | 3388250 | 229    |
|                              | -              |            |        | 1102462 | 1.8415 | 5476330  | 1.9172  | 8206258  | 0.6495 | 4131300  |        | 4074632 | 326    |
| 3 120                        | _              |            | 1      | 460022  | _      | 2562481  | 0.8971  | 3769738  | 0.2984 | 1043624  |        | 2725866 | 248    |
|                              |                | Ň          | -      | 4093452 |        | 28565601 | 10.0003 | 43979009 | 3.4809 | 40760522 |        | 3218244 | 243    |
| 5 1007                       | _              |            |        | 3336934 |        | 20499464 | 7.1765  | 30573786 | 2.4199 | 27060284 |        | 3513251 | 251    |
|                              |                |            |        | 2888223 | _      | 16983939 | 5.9458  | 25858298 | 2.0467 | 22193519 |        | 3664524 | 255    |
|                              | _1             |            |        | 3442328 | _      | 28685981 | 10.0425 | 39507100 | 3.1270 | 37793297 |        | 1713679 | 124    |
|                              |                |            | 6,6350 | 2546884 | 4.2542 | 17527358 | 6.1360  | 24453524 | 1.9355 | 22605422 |        | 1847976 | 126    |
|                              | _              |            | 1_     | 2188947 | 3.6563 | 13900052 |         | 19939344 | 1.5782 | 18025760 |        | 1913456 | 128    |
|                              | 4              |            |        | 3344592 | _      | 32296000 | -       | 40972897 | 3.2430 | 40063746 |        | 909087  | 28     |
|                              | _              |            | _      | 2176894 | 3.6362 | 18555133 | 6.4958  | 23848070 | 1.8876 | 22880963 |        | 967043  | 28     |
|                              |                |            | 5.7161 | 1907368 |        | 14813250 | 5.1859  | 19633529 | 1.5540 | 18638683 |        | 994782  | 2      |
|                              | _              |            | 7.3688 | 2878670 |        | 19515792 | 6.8321  | 30201168 | 2.3904 | 25651103 |        | 4549697 | 368    |
|                              |                | _          | 4.6943 | 2235939 | _      | 12834642 | 4.4932  | 18248989 | 1.4444 | 13156604 |        | 5091955 | 430    |
|                              |                |            | 4.3713 | 2042341 | 3.4114 | 11911884 | 4.1701  | 15254396 | 1.2074 | 9869207  |        | 5384733 | 456    |
| 16 770                       | 4              | =          | 6.8173 | 2179010 |        | 17571169 | 6.1514  | 25272904 | 2.0003 | 22745326 |        | 2527368 | 210    |
|                              | _1             |            | 3.5451 | 1540633 | _      | 9544687  | 3.3414  | 13207734 | 1.0454 | 10406408 |        | 2801086 | 240    |
| 18 213                       | 4              |            | 3.0308 | 1365447 | 2.2808 | 8208446  | 2.8736  | 10341494 | 0.8185 | 7381267  |        | 2959979 | 248    |
|                              |                |            | 7.3197 | 1963797 |        | 18490254 | 6.4731  | 24713561 | 1.9561 | 23316596 |        | 1396847 | 118    |
|                              | -              |            | 3,2931 | 1231395 | _      | 8666525  | 3.0340  | 11543547 | 0.9137 | 10000023 |        | 1543398 | 126    |
|                              | _              |            | 2.5643 | 1029388 | 1.7194 | 6819149  | 2.3873  | 8514570  | 0.6739 | 6896588  |        | 1617854 | 128    |
| 22 428                       | _              |            | 4.7765 | 2388609 | 3.9898 | 13173010 | 4.6116  | 17459303 | 1.3819 | 12275038 |        | 5183771 | 494    |
|                              | _              |            | 2.8623 | 1699191 | 2.8383 | 8161675  | 2.8573  | 10268362 | 0.8127 | 4238284  |        | 6029520 | 558    |
|                              | 4              |            | 2.4754 | 1492337 | 2.4927 | 7081311  | 2.4790  | 8659460  | 0.6854 | 2295695  |        | 6363164 | 601    |
|                              | 26/3681 0.2/34 |            | 4.1448 | 1718547 | 2.8706 | 11076689 | 3.8778  | 13750370 | 1.0883 | 10726913 |        | 3023154 | 303    |
|                              | _              |            | 2.0544 | 1076827 | 1.7987 | 5715309  | 2.0008  | 6980328  | 0.5525 | 3467498  |        | 3512496 | 334    |
|                              | _              |            | 1.5900 | 874830  | 1.4613 | 4464621  | 1.5630  | 5406325  | 0.4279 | 1683180  |        | 3722772 | 373    |
|                              | _              |            | 4.2578 | 1468439 | 2.4528 | 11081731 | 3.8795  | 12877045 | 1.0192 | 11116485 |        | 1760373 | 187    |
| 62                           | _              |            | 1.6897 | 761190  | 1.2715 | 4576083  | 1.6020  | 5382099  | 0.4260 | 3333271  |        | 2048622 | 206    |
| :                            |                |            | 1.1139 | 547548  | 0.9146 | 3062554  | 1.0721  | 3683157  | 0.2915 | 1505508  |        | 2177421 | 228    |
|                              | _              |            | 2.7323 | 1258365 |        | 7427447  | 2.6002  | 8091280  | 0.6404 | 4889018  |        | 3201889 | 373    |
|                              | ┙              |            | 1.4535 | 826715  | . ]    | 4108394  | 1.4383  | 4637998  | 0.3671 | 1171017  |        | 3466560 | 421    |
| 33 41                        |                |            | 1.2122 | 715789  | 1.1956 | 3452637  | 1.2087  | 3870983  | 0.3064 | 286574   |        | 3583967 | 442    |
|                              | -              | 5863930    | 2.5972 | 960636  | 1.6046 | 6824566  | 2.3892  | 7248843  | 0.5737 | 5276946  |        | 1971659 | 238    |
|                              |                | 2456210    | 1.0879 | 545254  | 0.9108 | 3001464  | 1.0508  | 3335458  | 0.2640 | 1196300  |        | 2138886 | 272    |
|                              |                | 1797604    | 0.7962 | 420545  | 0.7025 | 2218149  | 0.7765  | 2481351  | 0.1964 | 234619   |        | 2246438 | 294    |
|                              | 1              | 6726978    | 2.9794 | 923919  | 1.5433 | 7650897  | 2.6784  | 7949669  | 0.6292 | 6742744  |        | 1206774 | 151    |
| 38 22                        |                | .,         | 1.1379 | 421046  | 0.7033 | 2990203  | 1.0468  | 3215180  | 0.2545 | 1905639  |        | 1309371 | 170    |
|                              | 1/21/20 0.01/9 | 1245630    | 0.5517 | 252832  | 0.4223 | 1498462  | 0.5246  | 1673582  | 0.1325 | 280027   |        | 1393372 | 183    |