## Fonctions exponentielles de base a

**Propriété.** Fonction exponentielle de base a > 0.

Pour tout  $x \in \mathbb{R}$ , on note  $a^x = f(x)$ 

Sa représentation graphique varie selon que a < 1 ou a > 1



**Propriété**. La fonction  $a^x$  est  $\begin{cases} \text{strictement croissante} & \text{si a} > 1 \\ \text{strictement décroissante} & \text{si a} < 1 \end{cases}$ 

**Propriété**. La fonction k  $a^x$  a le <u>même</u> sens de variation si le nombre k > 0

**Exemple.**  $x \mapsto 7 \times 0.5^x$  est décroissante car a = 0.5 < 1 et k = 7 > 0

**Propriété**. La fonction k  $a^x$  a un sens de variation contraire si le nombre k < 0

**Exemple.**  $x \mapsto -0.3 \times 4^x$  est décroissante car a = 4 > 1 mais k = -0.3 < 0

**Propriétés.**  $a^{x+y} = a^x \times a^y$   $a^{x-y} = \frac{a^x}{a^y}$   $(a^x)^y = a^{xy}$   $a^{-x} = \frac{1}{a^x}$   $a^0 = 1$   $a^1 = a$   $a^{-1} = \frac{1}{a}$ 

**Exemples**.  $2^3 \times 2^4 = 2^{3+4} = 2^7 = 128$   $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$   $(2^{1,5})^4 = 2^{1,5 \times 4} = 2^6 = 64$ 

**Propriété**. Si  $a^x = a^y$  alors x = y.

**Exemple.** Résoudre  $3^x = 3^{2x+5}$ . Alors x = 2x + 5 donc -x = 5 donc x = -5.

**Définition**. Lors de n évolutions successives à des taux  $t_1, t_2, ..., t_n$  entre une valeur  $V_0$  et une valeur  $V_n$ , on appelle **taux d'évolution moyen** le taux noté  $t_M$  qu'il faut appliquer n fois successivement à la valeur  $V_0$  pour obtenir la valeur  $V_n$ .



$$\begin{split} V_1 &= V_0 \times (1+t_1) & V_2 &= V_0 (1+t_1) (1+t_2) \ \dots \\ & V_n = V_0 (1+t_1) (1+t_2) \dots (1+t_n) \\ \text{Le taux moyen doit v\'erifier} : & V_n &= V_0 (1+t_M) (1+t_M) \dots (1+t_M) = V_0 (1+t_M)^n \\ \text{On a donc } & (1+t_M)^n &= (1+t_1) (1+t_2) \dots (1+t_n) \end{split}$$

$$\mathbf{t}_{\mathbf{M}} = ((1+t_1)(1+t_2)...(1+t_n))^{\frac{1}{n}} - 1$$