

Calculating the Training Speed of an LLM Transformer Model in FLOPs

Estimating the number of floating-point operations (FLOPs) required to train a Transformer-based Large Language Model (LLM) is crucial for understanding the computational resources needed. This guide provides a detailed walkthrough on how to calculate the FLOPs for training the example model previously discussed.

Table of Contents

- Calculating the Training Speed of an LLM Transformer Model in FLOPs
 - Table of Contents
 - Introduction
 - Why FLOPs Matter
 - Components Contributing to FLOPs
 - FLOPs Calculation per Component
 - Notation
 - Embedding Layer
 - Multi-Head Attention
 - Steps:
 - Calculations:
 - Feed-Forward Network
 - Layer Normalization
 - Activation Functions
 - Total FLOPs per Forward and Backward Pass
 - **■** Forward Pass
 - Backward Pass
 - Total FLOPs per Training Step
 - Example Calculation
 - Given

- Calculating FLOPs for One Layer
 - Embedding Layer FLOPs
 - Multi-Head Attention FLOPs
 - Feed-Forward Network FLOPs
 - Layer Normalization FLOPs
 - Total FLOPs per Layer
- Total FLOPs for All Layers
- Total FLOPs for Forward and Backward Pass
- Additional Considerations
- Conclusion
- References

Introduction

When training a neural network, especially large models like Transformers, it's important to estimate the computational cost. The number of floating-point operations (FLOPs) gives a hardware-agnostic measure of computational complexity.

Why FLOPs Matter

- **Resource Planning**: Helps in selecting appropriate hardware.
- Performance Benchmarking: Allows comparison between different models.
- **Energy Consumption Estimation**: Higher FLOPs often mean more energy usage.
- Optimization: Identifying bottlenecks to improve efficiency.

Components Contributing to FLOPs

The FLOPs count comes from:

- 1. Embedding Layer
- 2. Multi-Head Attention (MHA)
- 3. Feed-Forward Network (FFN)
- 4. Layer Normalization
- 5. Activation Functions

FLOPs Calculation per Component

Notation

- Batch Size: ${\cal B}$
- Sequence Length: L
- Model Dimension: $d_{
 m model}$
- Feed-Forward Dimension: $d_{
 m ff}$
- Number of Heads: h
- Number of Layers: ${\cal N}$

Embedding Layer

- Operation: Lookup + Addition
- FLOPs per Token:
 - Token Embedding: None (lookup operation)
 - Positional Embedding: None (lookup operation)
 - \circ Addition of embeddings: $d_{
 m model}$ FLOPs per token
- Total FLOPs:
 - $\circ \;\; ext{Embedding Addition FLOPs} = B imes L imes d_{ ext{model}}$

Multi-Head Attention

Steps:

1. Linear Projections: Query (Q), Key (K), Value (V)

2. Scaled Dot-Product Attention

- Compute attention scores
- Apply softmax
- Compute attention output

3. Output Projection

Calculations:

- 1. Linear Projections (Q, K, V)
 - FLOPs per Projection:
 - $\circ \ \ 2 imes B imes L imes d_{ ext{model}} imes d_{ ext{model}}$
 - Factor of 2 accounts for multiply and add operations in matrix multiplication.
 - Total for Q, K, V:

$$\circ~3 imes2 imes B imes L imes d_{
m model}^2$$

- 2. Attention Scores
 - Compute Scores:
 - $\circ B \times h \times L \times L \times \frac{d_k}{h}$
 - \circ Since $d_{
 m k}=rac{d_{
 m model}}{h}$, this simplifies.
 - FLOPs

$$lacksquare 2 imes B imes h imes L^2 imes rac{d_{
m model}}{h} = 2 imes B imes L^2 imes d_{
m model}$$

- 3. Softmax
 - FLOPs:
 - Exponentials and Divisions: Approximately 5 FLOPs per element.
 - Total FLOPs:

$$lacksquare 5 imes B imes h imes L^2$$

- 4. Weighted Sum
 - FLOPs:

$$\circ \ \ 2 imes B imes h imes L^2 imes rac{d_{ ext{model}}}{h} = 2 imes B imes L^2 imes d_{ ext{model}}$$

- 5. Output Projection
 - FLOPs:

$$\circ \ \ 2 imes B imes L imes d_{
m model}^2$$

Feed-Forward Network

Consists of two linear transformations with an activation function in between.

- 1. First Linear Layer
 - FLOPs:

$$\circ \ \ 2 imes B imes L imes d_{ ext{model}} imes d_{ ext{ff}}$$

- 2. Activation Function
 - Assuming GELU Activation:
 - Approximately 8 FLOPs per element.
 - Total FLOPs:

$$\blacksquare$$
 8 × B × L × $d_{\rm ff}$

- 3. Second Linear Layer
 - FLOPs:

$$\circ \ \ 2 imes B imes L imes d_{
m ff} imes d_{
m model}$$

Layer Normalization

- FLOPs per Layer Norm:
 - \circ Mean Calculation: $B imes L imes d_{\mathrm{model}}$ (sum and division)
 - \circ Variance Calculation: $B imes L imes d_{
 m model}$ (subtract mean, square, sum, divide)
 - \circ Normalization: $B imes L imes d_{\mathrm{model}}$ (subtract mean, divide by std)
 - Total per Layer Norm:
 - lacksquare Approximately $5 imes B imes L imes d_{\mathrm{model}}$

Activation Functions

- **ReLU**: 1 FLOP per element
- **GELU**: Approximately 8 FLOPs per element

Total FLOPs per Forward and Backward Pass

Forward Pass

• Sum the FLOPs from all components for the forward pass.

Backward Pass

- The backward pass requires computing gradients, which often involves similar computations to the forward pass.
- Rule of Thumb: The backward pass takes approximately 2 to 3 times the FLOPs of the forward pass.
- For estimation, we'll assume the backward pass is 2 times the forward pass FLOPs.

Total FLOPs per Training Step

- Total FLOPs:
 - \circ FLOPs_{total} = FLOPs_{forward} + FLOPs_{backward}
 - \circ FLOPs_{backward} = $2 \times \text{FLOPs}_{\text{forward}}$
 - \circ Therefore, $FLOPs_{total} = 3 imes FLOPs_{forward}$

Example Calculation

Given

- Batch Size (B): Let's assume B=1 for simplicity.
- Sequence Length (L): 1,024
- Model Dimension ($d_{
 m model}$): 1,024
- Feed-Forward Dimension ($d_{
 m ff}$): 4,096
- **Number of Heads (***h***)**: 16
- Number of Layers (N): 24

Calculating FLOPs for One Layer

Embedding Layer FLOPs

- Total FLOPs:
 - $\circ~~B imes L imes d_{\mathrm{model}} = 1 imes 1,024 imes 1,024 = 1,048,576$ FLOPs

Multi-Head Attention FLOPs

1. Linear Projections (Q, K, V)

- $3 \times 2 \times B \times L \times d_{\mathrm{model}}^2$
- $6 \times 1 \times 1,024 \times (1,024)^2 = 6 \times 1,024 \times 1,048,576$
- **Result**: 6,442,450,944 FLOPs

2. Attention Scores

- $2 \times B \times L^2 \times d_{\text{model}}$
- $2 \times 1 \times (1,024)^2 \times 1,024 = 2 \times 1,048,576 \times 1,024$
- **Result**: 2,147,483,648 FLOPs

3. Softmax

- $5 \times B \times h \times L^2$
- $5 \times 1 \times 16 \times (1,024)^2 = 5 \times 16 \times 1,048,576$
- **Result**: 83, 886, 080 FLOPs

4. Weighted Sum

- Same as Attention Scores: $2,147,483,648 \; \mathrm{FLOPs}$

5. Output Projection

- $2 \times B \times L \times d_{\mathrm{model}}^2$
- $2 \times 1 \times 1,024 \times (1,024)^2 = 2,147,483,648$ FLOPs

Total MHA FLOPs per Layer:

- Sum of the above: 6,442,450,944+2,147,483,648+83,886,080+2,147,483,648+2,147,483,648
- **Result**: 12,968,788,968 FLOPs

Feed-Forward Network FLOPs

1. First Linear Layer

- $2 \times B \times L \times d_{\text{model}} \times d_{\text{ff}}$
- $2 \times 1 \times 1,024 \times 1,024 \times 4,096 = 8,589,934,592$ FLOPs

2. **GELU Activation**

- $8 \times B \times L \times d_{\mathrm{ff}}$
- $8 \times 1 \times 1,024 \times 4,096 = 33,554,432 \; \text{FLOPs}$

3. Second Linear Layer

- $2 \times B \times L \times d_{\mathrm{ff}} \times d_{\mathrm{model}}$
- Same as the first linear layer: 8,589,934,592 FLOPs

Total FFN FLOPs per Layer:

- Sum of the above: 8,589,934,592+33,554,432+8,589,934,592
- **Result**: 17, 213, 423, 616 FLOPs

Layer Normalization FLOPs

- Assuming two Layer Norms per layer:
 - $\circ 2 \times 5 \times B \times L \times d_{\text{model}}$
 - $\circ~10 \times 1 \times 1,024 \times 1,024 = 10,485,760 \text{ FLOPs}$

Total FLOPs per Layer

- Sum:
 - \circ Embedding Layer: 1,048,576 (only once)
 - MHA: 12, 968, 788, 968
 - FFN: 17, 213, 423, 616
 - \circ Layer Norms: 10,485,760
 - **Total per Layer**: 30, 192, 698, 344 FLOPs

Total FLOPs for All Layers

- Total for All Layers:
 - $\circ \ \ N \times {\rm Total \ per \ Layer}$
 - $\circ \ \ 24 imes 30, 192, 698, 344 = 724, 624, 760, 256 \ \mathsf{FLOPs}$
- Add Embedding Layer FLOPs (only once):
 - \circ Total Forward FLOPs: $724,624,760,256+1,048,576 \approx 724,625,808,832$ FLOPs

Total FLOPs for Forward and Backward Pass

- Forward Pass FLOPs: $\approx 724,625,808,832$
- ullet Backward Pass FLOPs: $2 \times 724, 625, 808, 832 = 1, 449, 251, 617, 664$
- Total FLOPs per Training Step:
 - $\circ 724,625,808,832+1,449,251,617,664=2,173,877,426,496 \text{ FLOPs}$

Additional Considerations

1. Batch Size Impact:

- FLOPs scale linearly with batch size.
- For B=16, total FLOPs would be $16\times$ the calculated value.

2. Sequence Length Impact:

 FLOPs scale quadratically with sequence length in the attention mechanism.

3. Optimizations:

- **Sparse Attention**: Reduces FLOPs by focusing on local interactions.
- **Efficient Transformers**: Models designed to reduce computational complexity.

4. Hardware Efficiency:

- **Throughput**: Actual training speed depends on hardware (GPUs, TPUs) and their efficiency.
- **Parallelism**: Utilizing data and model parallelism can affect training speed.

Conclusion

Calculating the FLOPs required to train a Transformer-based LLM involves summing the operations from embeddings, multi-head attention, feed-forward networks, and other components. For the example model with B=1 and L=1,024:

• Total FLOPs per Training Step: Approximately 2.17 trillion FLOPs.

Understanding the computational requirements helps in selecting appropriate hardware and optimizing the training process.

References

• Vaswani, A., et al. (2017). "Attention is All You Need".

- Kaplan, J., et al. (2020). "Scaling Laws for Neural Language Models".
- Patterson, D., et al. (2021). "Carbon Emissions and Large Neural Network Training".
- Narang, S., et al. (2021). "Do Transformer Modifications Transfer Across Implementations and Applications?".

Note: These calculations provide estimates. Actual FLOPs may vary based on implementation details, optimizations, and hardware-specific operations.