WO9933932

Publication Title:

INVERT EMULSION DRILLING FLUID CONTAINING MIXTURES OF SECONDARY ESTERS OBTAINED BY CONVERSION OF OLEFINS, AND PREPARATION THEREOF

Abstract:

< 1220 td class="tab_inner_rt"> Abstract of WO9933932

Preparation of invert drilling muds containing a mixture of secondary esters, the process involving the addition of one or more C1-C5 carboxylic acids and one or more C3-C22 olefins in the presence of an acid catalyst. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	<u> </u>	(11) International Publication Number: WO 99/33932
C09K 7/06, 7/02, 7/00, C07C 67/04	A1	
		(43) International Publication Date: 8 July 1999 (08.07.99)
(21) International Application Number: PCT/US (22) International Filing Date: 9 December 1998 ((30) Priority Data: 09/000,988 30 December 1997 (30.12.9) (71) Applicant: CHEVRON CHEMICAL COMPAN [US/US]; 555 Market Street, San Francisco, C (US).	09.12.9 7) (IY LI	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
(72) Inventor: GEE, Jeffery, C.; 2062 Fir Springs, Kingv 77339 (US).	vood, T	Published With international search report.
(74) Agents: HAYMOND, W., Bradley et al.; Chevron Cor Law Dept., P.O. Box 7141, San Francisco, CA 945 (US).		
(54) Title: INVERT EMULSION DRILLING FLUID CONVERSION OF OLEFINS, AND PREPARE		AINING MIXTURES OF SECONDARY ESTERS OBTAINED BY N THEREOF
(57) Abstract		
		secondary esters, the process involving the addition of one or more C_1 - C_5 of an acid catalyst.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ΑZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	lceland	MW	Malawi	US	United States of America	
CA	Canada	ľT	ltaly	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

Invert emulsion drilling fluid containing mixtures of secondary esters 1 obtained by conversion of olefins, and preparation thereof. 2 3 FIELD OF THE INVENTION 4 5 6 The invention relates to a process for combining an olefin and a carboxylic acid to produce a mixture containing secondary esters; the mixture of esters 7 8 produced by the process and the use of the mixture of esters. 9 10 BACKGROUND OF THE INVENTION 11 12 It is known that carboxylic acids can be added to olefins to produce 13 secondary esters (meaning an ester in which the carbon on the alkyl chain to 14 which the carboxylate moiety is attached is a secondary carbon, i.e., one that 15 is covalently bound to two other carbon atoms, rather than a primary or 16 tertiary carbon, which are covalently bound to one or three carbon atoms, 17 respectively). These methods generally involve reaction of a low molecular 18 weight olefin with a high molecular weight carboxylic acid to produce 19 secondary esters. 20 21 Catalysts known to be effective in such esterification reactions can be in the 22 form of metallosilicates, especially aluminum silicates (such as zeolites or 23 zeolite mordenites) having exchangeable cations and hydrogen 24 ion-exchanged, layered clays. For esterification reactions, these catalysts are 25 often used with a strong acid added to them. 26 27 With hydrogen jon-exchanged, layered clays, it is also known that if the 28 exchangeable cation in the layered clay is a metal cation, there is no need for 29 strong acids to be added to the catalyst. The absence of strong acids renders 30 the clays less corrosive and more readily separable from the reaction mixture.

30

31

1 Stabilized pillared interlayered clay in which the pillars are formed after 2 exchanging the natural cations of the clay with more suitable cations are 3 known to be effective for catalyzing the esterification reaction of olefins and 4 carboxylic acids. 5 6 It is also known that monocarboxylic acid methyl esters can be used as the 7 continuous phase or part of the continuous phase in invert drilling muds. 8 9 The present invention relates to an esterification reaction of olefins and carboxylic acids which results in a significant decrease in oligomerization and 10 11 utilizes a catalyst which is relatively easy to prepare and is relatively long-12 lasting in its effectiveness. The present invention also relates to the product 13 of this esterification reaction which can be used as a component of a drilling 14 fluid. 15 16 SUMMARY OF THE INVENTION 17 18 An object of the present invention is to provide an invert emulsion drilling fluid 19 comprising: 20 21 a continuous phase comprising a mixture of secondary esters selected (a) 22 from the group consisting of propylcarboxylates, butylcarboxylates, 23 pentylcarboxylates, hexylcarboxylates, heptylcarboxylates, 24 octylcarboxylates, nonylcarboxylates, decylcarboxylates, 25 undecylcarboxylates, dodecylcarboxylates, tridecylcarboxylates, 26 tetradecylcarboxylates, pentadecylcarboxylates, hexadecylcarboxylates, 27 heptadecylcarboxylates, octadecylcarboxylates, nonadecylcarboxylates. 28 eicosylcarboxylates, uneicocarboxylates, doeicosylcarboxylates and

isomers and mixtures thereof, wherein the secondary esters each have

a carboxylate moiety with from one to five carbon atoms;

1 a weight material; and (b) 2 3 (c) water. 4 5 Still another object of the present invention is to provide a method of making 6 secondary esters comprising combining carboxylic acids having from one to 7 five carbon atoms or isomers or mixtures thereof with olefins selected from 8 the group consisting of propene, butene, pentene, hexene, heptene, octene, 9 nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, 10 hexadecene, heptadecene, octadecene, nonadecene, eicosene, uneicosene, 11 doeicosene and isomers and mixtures thereof in the presence of an acid 12 catalyst. 13 14 Yet another object of the present invention is to provide a method of using a 15 mixture of secondary esters as the continuous phase or part of the 16 continuous phase of an invert drilling fluid, the mixture being produced by a 17 method comprising the step of combining carboxylic acids having from one to 18 five carbon atoms or isomers or mixtures thereof with olefins selected from 19 the group consisting of propene, butene, pentene, hexene, heptene, octene, 20 nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, 21 hexadecene, heptadecene, octadecene, nonadecene, eicosene, uneicosene, 22 doeicosene and isomers and mixtures thereof in the presence of an acid 23 catalyst to make secondary esters. 24 Still another object of the present invention is to provide a method of using a 25 mixture of secondary esters as an additive to water based drilling muds, the 26 mixture being produced by a method comprising the step of combining 27 carboxylic acids having from one to five carbon atoms or isomers or mixtures 28 thereof with olefins selected from the group consisting of propene, butene, 29 pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, 30 tridecene, tetradecene, pentadecene, hexadecene, heptadecene,

octadecene, nonadecene, eicosene, uneicosene, doeicosene and isomers

1 and mixtures thereof in the presence of an acid catalyst to make secondary 2 esters. 3 4 **DESCRIPTION OF THE DRAWINGS** 5 6 Figure 1 is a diagram of a continuous unit used to produce mixtures of 7 secondary esters. 8 9 Figure 2 is a GC/FID chromatogram for a product mixture obtained from the 10 unit when the unit was operating at about 0.65 WHSV and 140°C as 11 described in Example 2. 12 13 Figure 3 is a GC/FID chromatogram for a product mixture obtained in a batch 14 reactor when the reactor was operating for about 5 hours at 120°C as 15 described in Example 3. 16 17 **DETAILED DESCRIPTION OF THE INVENTION** 18 19 This invention relates to the use of an acid catalyst, preferably a dry 20 (extremely low moisture) acid washed natural clay, to catalyze the addition of 21 a C₁-C₅ carboxylic acid to an olefin. The process can utilize one acid or a 22 mixture of acids, and it can utilize one olefin or a mixture of olefins. The 23 process can proceed in batch or continuous mode and operates at 60-300°C. 24 In a continuous mode, the flow rate is generally 0.1-5 WHSV. Some of the 25 most surprising attributes of this invention are (1) that the catalyst must be 26 nearly free of water in order for the esterification reaction to proceed; and 27 (2) that olefin oligomerization is almost eliminated, as long as the 28 concentration of carboxylic acid in the feedstock mixture is kept above about 29 3 wt. %. 30

WO 99/33932

1	As a hydrophobic synthetic fluid with a pour point below -10°C, a flash point
2	above about 120°C, and a molecular weight near that of a C_{14} - C_{20}
3	hydrocarbon, these synthetic mixtures would function well as the continuous
4	phase or part of the continuous phase of an invert mud. Because these
5	mixtures are mixtures of esters rather than hydrocarbons, they would
6	biodegrade more rapidly than do synthetic hydrocarbons.
7	
8	Another advantage that this invention gives over esters currently used in the
9	drilling industry is that from it can be produced a suitable ester mixture having
10	a lower viscosity than esters currently in use. Currently used esters derive
11	from natural fatty acids, which are typically C_{12} or heavier acids. When
12	combined with a branched C_8 or heavier alcohol, which is the conventional
13	practice used to get an ester with a sufficiently low pour point, the resulting
14	ester is more viscous than the ones that can be achieved with the present
15	invention.
16	
17	The following non-limiting examples show various aspects of various
18	embodiments of the present invention.
19	
20	<u>EXAMPLES</u>
21	
22	Example 1
23	Synthesis of C ₁₄ Propionates with F-25
24	
25	F-25 (Engelhard) was dried in a vacuum oven overnight at about 200°C to
26	remove water. The dried clay granules were packed into a fixed bed, and a
27	mixture that was 50 mole % propionic acid and 50 mole % commercial
28	1-tetradecene was passed over the bed at a temperature of 140°C and a flow
29	rate of 0.5 WHSV. By GC/FID analysis, the effluent contained about 20%
30	secondary esters, about 10% propionic acid, about 70% C_{14} olefins, and less
31	than 1% C ₁₄ oligomers. The single most abundant ester in the mixture was

1	2-tetradecyl propionate, followed by 3-tetradecyl propionate, followed by
2	4-tetradecyl propionate, followed by 5-, 6- and 7-tetradecyl propionate. The
3	C ₁₄ olefins in the effluent were about 70% linear internal olefins and about
4	30% alpha olefins. The unreacted acid and olefins were separated from the
5	esters by distillation and were suitable for recycling.
6	
7	Example 2
8	Synthesis of C ₁₄ Propionates with F-25
9	
10	F-25 (Engelhard) was dried and packed into a fixed bed as in Example 1. A
11	mixture that was 50 mole % propionic acid and 50 mole % commercial
12	1-tetradecene was passed over the bed at a temperature of 140°C and a flow
13	rate of 0.65 WHSV. The chromatogram of Figure 2 shows the peaks for
14	residual propionic acid and tetradecenes remaining as well as the peaks for
15	the secondary esters formed from tetradecenes and propionic acid formed.
16	By GC/FID analysis, the effluent contained about 9% propionic acid, about
17	73% tetradecenes, and about 15% secondary esters. Of particular note is the
18	nearly complete absence of peaks for olefin dimers, which, by GC/FID, make
19	up only about 1.8% of the product mixture.
20	
21	Example 3
22	Treatment of 1-Dodecene over Filtrol 105
23	
24	As a comparison to the results of Example 2, Filtrol 105 (Engelhard) was
25	dried as in Examples 1 and 2, then added to a batch reactor. A sample of
26	1-dodecene was stirred and heated over the catalyst at 120°C for about
27	5 hours. By GC/FID analysis, the effluent contained about 34% C ₁₂ olefin
28	monomer, 46% dimer and 20% trimer. In comparing these results with
29	Examples 1 and 2, it can be seen that the presence of propionic acid,
30	especially in an amount greater than about 3% propionic acid in the feed

WO 99/33932

27

28

29

1	stream, clearly keeps the level of dimer below 5%. The chromatogram of
2	Figure 3 shows the peaks for the C_{12} oligomers.
3	
4	Example 4
5	Stopping Oligomerization Reaction with Propionic Acid
6	
7	About 598 g of a mixture that was 67 mole % 1-tetradecene and 33 mole %
8	propionic acid was heated and stirred at 140°C in a batch reactor with 50 g of
9	dry F-25 (Engelhard). After 6.5 hours, the level of secondary esters peaked
10	at about 20% by GC/FID, and olefin oligomers accounted for 3% of the
11	reaction mixture. Instead of remaining steady, the ester level then began to
12	decline, and there was a rapid increase in the amount of olefin oligomer. For
13	the first seven hours of reaction, the propionic acid was >3% (by GC/FID) of
14	the reaction mixture. Once the propionic acid dropped to <3% (by GC/FID) of
15	the reaction mixture, the level of olefin oligomer began to increase rapidly.
40	Formula F
16	Example 5
17	C ₁₄ Propionates Evaluated as Base Fluid for Invert Drilling Emulsion
18	
19	The suitability of the C ₁₄ propionates for use in invert drilling fluids was
20	evaluated. The invert emulsion was prepared by combining most of the
21	components with the base fluid and mixing for 30 minutes at 120°F using a
22	Gifford Wood homogenizer. The ingredients were added in the order listed in
23	the table below, but the last three were not added during the 30-minute
24	homogenizer cycle. First, the slurry from the homogenizer was transferred to
25	a dispersator, and then the barite, drilling solids, and CaCl ₂ were added, and
26	the mixture was stirred for 30 minutes. Rheological properties of the resulting

drilling fluid were determined at 120°F, before and after hot-rolling the

emulsion for 16 hours at 150°F.

Component	Amount
C ₁₄ Propionates	200.55 ml
Water	37.1 ml
Organoclay Viscosifier	3.0 g
Emulsion stabilizer	8.0 g
Emulsifier	4.0 g
Lime	3.0 g
Fluid loss additive	10.0 g
Rheological Modifier	0.5 g
Barite	334.0 g
Simulated drill solids	20.0 g
CaCl ₂	13.1 g

2 The drilling fluid showed the following rheological results at 120°F:

Parameter	Before hot rolling	After hot rolling
Fann Dial Reading @ 600 rpm	81	89
Fann Dial Reading @ 300 rpm	49	54
Fann Dial Reading @ 200 rpm	37	41
Fann Dial Reading @ 100 rpm	25	28
Fann Dial Reading @ 6 rpm	11	11
Fann Dial Reading @ 3 rpm	10	10
Plastic Viscosity @ 120°F, cps	32	35
Yield Point, lb/100 sq ft	17	19
10 s gel strength, lb/100 sq ft	16	16
10 m gel strength, lb/100 sq ft	22	27
Electrical stability @ 120°F	1328	1416
Oil mud alkalinity (Pom)	1.485	
Excess lime, lb/bbl	1.93	
HTHP filtrate @ 300°F, 500 psi		3.6

Parameter	Before hot rolling	After hot rolling
Water, ml		0.0
Cake thickness, HTHP, 32 nd		2

2

Values of some physical properties of the C₁₄ propionates were:

3

kinematic viscosity @ 40°C	4.25 cSt
kinematic viscosity @ 100°C	1.56 cSt
flash point (°C)	156
pour point (°C)	-29
specific gravity @ 60°F	0.86

4

5

Example 6 Mysid Shrimp Toxicity Test

7

6

8 Additionally, the toxicity to mysid shrimp of the drilling fluid of Example 4 was 9 evaluated according to the US EPA protocol in Appendix 3 of "Effluent Limitation Guidelines and New Source Performance Standards: Drilling 10 11 Fluids Toxicity Test," Federal Register Vol. 50, No. 165, 34631-34636. For 12 cuttings discharge, the drilling fluid must show an LC₅₀ toward mysid shrimp 13 of at least 30,000 ppm. The drilling fluid prepared using the C₁₄ propionates had an LC₅₀ of ≥1,000,000 ppm, indicating the C₁₄ propionates make an 14 15 extremely low toxicity drilling fluid.

16

17 <u>Example 7</u> 18 <u>Synthesis of C₁₂ propionates with Dried F-25</u>

19 20

21

22

A mixture that was 50 mole % propionic acid and 50 mole % commercial 1-dodecene was passed over the same dried F-25 (Engelhard) catalyst as described in Examples 1 and 2. The flow rate was 0.35 WHSV, and the

25

26

1	temperature v	vas 140°C. By GC/FID analysis, the e	effluent contained about	
2	20% secondary esters, about 10% propionic acid, about 70% C ₁₂ olefins, and			
3	less than 1%	C ₁₂ oligomers. The single most abun	dant ester in the mixture	
4	was 2-dodecy	rl propionate, followed by 3-dodecyl p	ropionate, followed by	
5	4-dodecyl pro	pionate, followed by 5 & 6-dodecyl pr	opionate. The unreacted	
6	acid and olefi	ns were separated from the esters by	distillation and were	
7	suitable for re	cycle.		
8				
9	Values of son	ne physical properties of the C_{12} propi	onates were:	
10				
		kinematic viscosity @ 40°C	3.05 cSt	
		kinematic viscosity @ 100°C	1.22 cSt	
		flash point (°C)	138	
		pour point (°C)	-62	
		specific gravity @ 60°F	0.86	
11				
12		Example 8		
13		Synthesis of C ₁₂ Propionates with A	mberlyst 15	
14				
15	A mixture cor	ntaining 15 g propionic acid, 40 g 1-tet	radecene, and 15 g of	
16	Amberlyst 15	(Rohm and Haas) was stirred and he	ated to 140°C. Within	
17	30 minutes, ti	he mixture contained 20% tetradecyl	propionates and <1% olefin	
18	oligomers by	GC/FID. With additional reaction time	e, the oligomer content	
19	increased, an	d the ester level decreased.		
20				
21		Example 9		
22		Synthesis of C ₁₂ Propionates with A	mberlyst 15	
23				

A mixture containing 15 g propionic acid, 40 g 1-tetradecene, and 15 g of

hour, the mixture contained 31% tetradecyl propionates and <1% olefin

Amberlyst 15 (Rohm and Haas) was stirred and heated to 120°C. Within one

1	oligomers by GC/FID. With additional reaction time, the oligomer content
2	increased, and the ester level decreased.
3	
4	Example 10
5	Synthesis of C ₁₂ Propionates with Amberlyst 15
6	
7	A mixture containing 15 g propionic acid, 40 g 1-tetradecene, and 15 g of
8	Amberlyst 15 (Rhom and Haas) was stirred and heated to 100°C. Within
9	1.5 hours, the mixture contained 39% tetradecyl propionates and <1% olefin
10	oligomers by GC/FID. With additional reaction time, the oligomer content
11	increased, and the ester level decreased.
12	
13	Example 11
14	Synthesis of C ₁₂ Propionates with Amberlyst 15
15	
16	A mixture containing 15 g propionic acid, 40 g 1-tetradecene, and 15 g of
17	Amberlyst 15 (Rohm and Haas) was stirred and heated to 80°C. Within
18	8 hours, the mixture contained 45% tetradecyl propionates and <1% olefin
19	oligomers by GC/FID. With additional reaction time, the oligomer content
20	increased, and the ester level decreased.
21	
22	Example 12
23	Synthesis of C ₁₂ Propionates with Undried F-25
24	
25	A mixture containing 8.1 g 1-decene (1 eq), 17.5 g propionic acid (4 eq), and
26	4.72 g commercial F-25 clay (Engelhard) was stirred and heated to 120°C.
27	(The clay had not been oven dried after purchase.) The mixture refluxed and
28	would not heat above 120°C. After 5 days, the mixture contained 6.5% esters
29	by GC/FID. Then the condenser was removed, and vapor was allowed to
30	leave the reaction vessel. Within 2 hours, the temperature had reached

140°C, and the mixture had reached 11% esters. About 12 hours later, the

2	ester level was 23%.
3	Example 13
4	Synthesis of C ₁₄ Propionates with Dried F-25
5	
6	A mixture containing 30.0 g 1-tetradecene (1 eq), 34.0 g propionic acid (3 eq)
7	and 10.1 g of F-25 clay (Engelhard) (dried 24 hours in vacuum oven at
8	200°C) was stirred and heated to 140°C. The mixture showed no signs of
9	refluxing and easily reached 140°C. Within 20 hours, the mixture contained
10	35% esters by GC/FID. The ester level remained at this level, even after
11	stirring another 24 hours at the reaction temperature.
12	
13	Example 14
14	Synthesis of C ₁₄ Propionates with Undried F-62
15	
16	A mixture containing 20.0 g 1-tetradecene (1 eq), 7.58 g propionic acid (1 eq)
17	and 5.0 g F-62 extrudate (Engelhard) was stirred and heated to 120°C. The
18	mixture refluxed and showed only traces of ester by GC/FID, even after
19	20 hours of heating.
20	
21	Example 15
22	Synthesis of C ₁₄ Propionates with Dried F-62
23	
24	A mixture containing 40.0 g 1-tetradecene (1 eq), 15.1 g propionic acid (1 eq)
25	and 16.3 g F-62 extrudate (Engelhard) (which had heated in a vacuum oven
26	at 200°C for 20 hours) was stirred and heated to 140°C. After 19 hours, the
27	mixture contained 31% esters by GC/FID. Additional reaction time did not
28	increase the amount of ester in the mixture.
29	

1	Example 16
2	Synthesis of C ₁₄ Propionates from Isomerized C ₁₄ and Dried Filtrol 105
3	
4	A mixture containing 30 g (1 eq) tetradecenes (obtained by thorough double
5	bond isomerization of 1-tetradecene), 34 g (3 eq) propionic acid, and 10 g dry
6	Filtrol 105 clay (Engelhard) (which had heated in a vacuum oven at 200°C for
7	20 hours) was stirred and heated to 140°C. After 31 hours, the mixture
8	contained 23% esters by GC/FID. The product esters from this process were
9	the same ones obtained when 1-tetradecene was the starting olefin, but the
10	distribution of propionate isomers was different for this mixture than for those
11	obtained when 1-tetradecene was the starting olefin. There was about as
12	much 7-tetradecyl propionate as 2-tetradecyl propionate in this mixture,
13	showing a much more evenly distributed attachment position for the
14	propionate group in this mixture than for the mixture obtained using
15	1-tetradecene as the starting olefin.
16	
17	Example 17
18	Synthesis of C ₁₈ Propionates Using Dried F-25
19	
20	A mixture containing 664 g (1 eq) 1-octadecene, 195 g (1 eq) propionic acid,
21	and 51 g dry F-25 (Engelhard) (which had heated in a vacuum oven at 200°C
22	for 20 hours) was stirred and heated to 140°C. After 6 hours, the mixture
23	contained 19% secondary esters by GC/FID.
24	· · · · · · · · · · · · · · · · · · ·
25	Example 18
26	C ₁₂ Propionates Evaluated as Base Fluid for Invert Drilling Emulsion
27	
28	A mud formulated using a mixture of dodecyl propionates as the base fluid
29	had this composition:
30	

Component	Amount
C ₁₂ Propionates	200.55 ml
Water	37.1 ml
Organoclay Viscosifier	3.0 g
Emulsion stabilizer	8.0 g
Emulsifier	4.0 g
Lime	3.0 g
Fluid loss additive	10.0 g
Rheological Modifier	0.5 g
Barite	334.0 g
Simulated drill solids	20.0 g
CaCl ₂	13.1 g

2 The drilling fluid showed the following rheological measurements at 120°F:

Parameter	Before hot rolling	After hot rolling
Mud density, lb/gal	14.5	
Fann Dial Reading @ 600 rpm	74	70
Fann Dial Reading @ 300 rpm	45	40
Fann Dial Reading @ 200 rpm	34	30
Fann Dial Reading @ 100 rpm	21	20
Fann Dial Reading @ 6 rpm	8	8
Fann Dial Reading @ 3 rpm	7	7
Plastic Viscosity @ 120°F, cps	29	30
Yield Point, lb/100 sq ft	16	10
10 s gel strength, lb/100 sq ft	11	10
10 m gel strength, lb/100 sq ft	13	13
Electrical stability @ 120°F	800	912
Oil mud alkalinity (Pom)	1.33	
Excess lime, lb/bbl	1.73	
HTHP filtrate @ 300°F, 500 psi		4.8
Water, ml		0.0
Cake thickness, HTHP, 32 nd		1

2 Before hot rolling, the mud also showed these properties at 35°F:

3

Parameter	Before hot rolling
Mud density, lb/gal	14.5
Fann Dial Reading @ 600 rpm	238
Fann Dial Reading @ 300 rpm	130
Fann Dial Reading @ 200 rpm	92
Fann Dial Reading @ 100 rpm	50
Fann Dial Reading @ 6 rpm	10
Fann Dial Reading @ 3 rpm	8
Plastic Viscosity @ 120°F, cps	108
Yield Point, lb/100 sq ft	22
10 s gel strength, lb/100 sq ft	14
10 m gel strength, lb/100 sq ft	26

4

5 In the mysid shrimp test, this mud showed an LC₅₀ of \geq 1,000,000 ppm SPP.

6

7 Values of some physical properties of the C₁₂ propionates were:

kinematic viscosity @ 40°C	3.05 cSt
kinematic viscosity @ 100°C	1.22 cSt
flash point (°C)	138
pour point (°C)	-62
specific gravity @ 60°F	0.86

8

9

Example 19

10 <u>C₁₂/C₁₄ Propionates Evaluated as Base Fluid for Invert Drilling Emulsion</u>

11

12 A mud formulated using a mixture of dodecyl propionates (50 wt. %) and

13 tetradecyl propionates (50 wt. %) as the base fluid had this composition:

Component	Amount
C ₁₂ /C ₁₄ Propionates (1:1)	200.55 ml
Water	37.1 ml
Organoclay Viscosifier	3.0 g
Emulsion stabilizer	8.0 g
Emulsifier	4.0 g
Lime	3.0 g
Fluid loss additive	10.0 g
Rheological Modifier	0.5 g
Barite	334.0 g
Simulated drill solids	20.0 g
CaCl ₂	13.1 g

2

3 The drilling fluid showed the following rheological measurements at 120°F:

Parameter	Before hot rolling	After hot rolling
Mud density, lb/gal	14.5	
Fann Dial Reading @ 600 rpm	74	79
Fann Dial Reading @ 300 rpm	45	46
Fann Dial Reading @ 200 rpm	34	34
Fann Dial Reading @ 100 rpm	21	22
Fann Dial Reading @ 6 rpm	8	8
Fann Dial Reading @ 3 rpm	7	7
Plastic Viscosity @ 120°F, cps	32	33
Yield Point, lb/100 sq ft	13	13
10 s gel strength, lb/100 sq ft	12	11
10 m gel strength, lb/100 sq ft	19	15
Electrical stability @ 120°F	1086	1097
Oil mud alkalinity (Pom)	1.59	
Excess lime, lb/bbl	2.07	
HTHP filtrate @ 300°F, 500 psi		4.2
Water, ml	a+00	0.0

Parameter	Before hot rolling	After hot rolling
Cake thickness, HTHP, 32 nd		1

Before hot rolling, the mud also showed these properties at 35°F:

3

2

Parameter	Before hot rolling
Mud density, lb/gal	14.5
Fann Dial Reading @ 600 rpm	262
Fann Dial Reading @ 300 rpm	142
Fann Dial Reading @ 200 rpm	100
Fann Dial Reading @ 100 rpm	56
Fann Dial Reading @ 6 rpm	10
Fann Dial Reading @ 3 rpm	8
Plastic Viscosity @ 120°F, cps	120
Yield Point, lb/100 sq ft	22
10 s gel strength, lb/100 sq ft	14
10 m gel strength, lb/100 sq ft	26

4

In the mysid shrimp test, this mud showed an LC₅₀ of \geq 1,000,000 ppm SPP.

6 7

5

Example 20 Synthesis of C₁₄ Propionates Using H₂SO₄

9 10

8

A mixture containing 20 g (1 eq) 1-tetradecene, 7.6 g (1 eq) propionic acid, and 0.62 g concentrated sulfuric acid was stirred and heated to 115°C. After 12 15 hours, the mixture contained 44 % secondary esters by GC/FID.

13

- 14 Although a few embodiments of the invention have been described in detail 15 above, it will be appreciated by those skilled in the art that various
- 16 modifications and alterations can be made to the particular embodiments

- 1 shown without materially departing from the novel teachings and advantages
- 2 of the invention. Accordingly, it is to be understood that all such modifications
- 3 and alterations are included within the spirit and scope of the invention as
- 4 defined by the following claims.

1	WHAT	IS CL	.aimed	IS:
---	------	-------	--------	-----

- 3 1. An invert emulsion drilling fluid comprising:
- 4 a continuous phase comprising a mixture of secondary esters (a) 5 selected from the group consisting of propylcarboxylates, butylcarboxylates, pentylcarboxylates, hexylcarboxylates, 6 7 heptylcarboxylates, octylcarboxylates, nonylcarboxylates, 8 decylcarboxylates, undecylcarboxylates, dodecylcarboxylates, 9 tridecylcarboxylates, tetradecylcarboxylates, 10 pentadecylcarboxylates, hexadecylcarboxylates, 11 heptadecylcarboxylates, octadecylcarboxylates, 12 nonadecylcarboxylates, eicosylcarboxylates, uneicocarboxylates, 13 doeicosylcarboxylates and isomers and mixtures thereof, wherein 14 the secondary esters each have a carboxylate moiety with from 15 one to five carbon atoms;
- 16 (b) a weight material; and
- 17 (c) water.
- The invert emulsion drilling fluid according to claim 1 wherein the kinematic viscosity of the secondary ester mixture is between 1 and 2 cSt when measured at 100°C, and wherein the pour point of the secondary ester mixture is below -10°C.
- The invert emulsion drilling fluid of claim 1 further comprising one or
 more additives selected from the group consisting of emulsifiers, wetting
 agents, viscosifiers, densifiers, and fluid-loss preventatives.

- 1 4. A method of making an invert emulsion drilling fluid comprising:
- 2 (a) combining carboxylic acids having from one to five carbon atoms 3 or isomers or mixtures thereof with olefins selected from the group 4 consisting of propene, butene, pentene, hexene, heptene, octene, 5 nonene, decene, undecene, dodecene, tridecene, tetradecene, 6 pentadecene, hexadecene, heptadecene, octadecene, 7 nonadecene, eicosene, uneicosene, doeicosene and isomers and 8 mixtures thereof in the presence of an acid catalyst to make 9 secondary esters; and
- 10 (b) combining the secondary esters of step (a) with water, a weight
 11 material and additives selected from the group consisting of
 12 emulsifiers, wetting agents, viscosifiers, densifiers, and fluid-loss
 13 preventatives.
- 14 5. The method according to claim 4 wherein step (a) is conducted at a temperature of from 60 to 300°C.
- 16 6. The method according to claim 4 wherein step (a) is conducted in a17 batch mode.
- 7. The method according to claim 4 wherein step (a) is conducted in acontinuous mode.
- 20 8. The method according to claim 7 wherein the flow rate is from 0.1 to 5 WHSV.
- The method according to claim 4 wherein the acid catalyst is an acidwashed natural clay.

1 2	10.	The method according to claim 9 wherein the acid catalyst is substantially free of water.
3 4 5	11.	The method according to claim 4 wherein the carboxylic acids are greater than 5 weight % of the combined olefins and carboxylic acids in step (a).
6	12.	An invert emulsion drilling fluid produced by the method of claim 4.
7 8 9	13.	A method of using a mixture of secondary esters as a continuous phase or part of a continuous phase of an invert drilling fluid comprising the steps of:
10 11 12 13 14 15 16 17		(a) combining carboxylic acids having from one to five carbon atoms or isomers or mixtures thereof with olefins selected from the group consisting of propene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uneicosene, doeicosene and isomers and mixtures thereof in the presence of an acid catalyst to make the mixture of secondary esters; and
18 19		(b) adding the mixture to an invert drilling mud as the continuous phase or part of the continuous phase of the invert drilling fluid.
20 21	14.	A method of using a mixture of secondary esters as an additive to water based drilling muds comprising the steps of:
22 23 24 25		(a) combining carboxylic acids having from one to five carbon atoms or isomers or mixtures thereof with olefins selected from the group consisting of propene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, tridecene, tetradecene,

1		pentadecene, hexadecene, heptadecene, octadecene,
2		nonadecene, eicosene, uneicosene, doeicosene and isomers and
3		mixtures thereof in the presence of an acid catalyst to make the
4		mixture of secondary esters; and
5	(h)	adding the mixture to a water based drilling mud

Int ... donal Application No PCT/US 98/26137

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C09K7/06 C09K CO9K7/02 C09K7/00 C07C67/04 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C09K C07C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Υ EP 0 561 608 A (THE LUBRIZOL CORP.) 1,3,4, 12,14 22 September 1993 see page 3, line 17 - line 56 see page 4, line 11 - line 16 see page 10, line 46 - page 12, line 21 see page 17, line 19 - line 40 EP 0 386 638 A (HENKEL) 12 September 1990 1,3,4, Υ 12,14 see page 3, 1ine 15 - line 6 see page 4, line 9 - line 16 Υ EP 0 031 687 A (BRITISH PETROLEUM CO LTD) 4-10 8 July 1981 see page 4, line 16 - page 5, line 31 -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. X Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the International search report 06/04/1999 23 March 1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Boulon, A Fax: (+31-70) 340-3016

Int .tional Application No PCT/US 98/26137

Category 3 Cit	FP 0 031	252 A (THE 1 July 198 4, line 22	ere appropriate, of t	ETRAL FUM	1965	Relevant to claim No.	
Y	EP 0 031 COMPANY) see page	252 A (THE 1 July 198 4, line 22	BRITISH P 1 - page 6,	ETROLEUM		4-10	
)	

information on patent family members

Int. .tional Application No
PCT/US 98/26137

		PCT/US 98/261		98/26137	
Patent document cited in search report		Publication date	Patent famil member(s)	y	Publication date
EP 561608	Α	22-09-1993	CA 20914 CN 10772 FI 9311 ZA 93018 AU 35222 BR 93008 MX 93014	293 A 348 A	01-02-1994 18-09-1993 13-10-1993 18-09-1993 06-10-1993 06-01-1994 25-01-1994 31-01-1994 03-01-1994
EP 386638	A	12-09-1990	AU 6249 AU 51823 CA 20476 DK 3866 WO 90106 EP 04621 IE 639 JP 28343 JP 45039	020 T 026 B 0390 A 038 T 082 A 060 A 031 B 065 T 049 B	13-09-1990 15-04-1993 25-06-1992 09-10-1990 09-09-1990 26-07-1993 20-09-1990 27-12-1991 28-06-1995 09-12-1998 16-07-1992 02-05-1994 07-06-1994
EP 31687	A	08-07-1981	AU 65794	580 B 781 A 540 A 5014 A 5252 A 5845 A 5815 B 514 T 515 T 560 B 519 A 565 A 506 A 508 A	05-12-1985 22-07-1981 26-04-1985 22-07-1981 27-09-1983 20-09-1983 01-07-1981 09-07-1981 09-07-1981 26-01-1989 22-10-1981 22-10-1981 12-10-1988 12-02-1985 16-04-1991 12-08-1986 20-05-1986 07-06-1988 28-07-1982
EP 31252	Α	01-07-1981	AU 65794	580 B 781 A 940 A 914 A 587 A 345 A 344 A 315 B 514 T	05-12-1985 22-07-1981 26-04-1985 22-07-1981 27-09-1983 20-09-1983 08-07-1981 09-07-1981 09-07-1981 26-01-1989 22-10-1981 12-10-1988

Information on patent family members

Int. Alonal Application No PCT/US 98/26137

Publication date	Patent family member(s)		Publication date
	US	4499319 A	12-02-1985
	US	5008465 A	16-04-1991
	US	4605806 A	12-08-1986
	US	4590294 A	20-05-1986
	US	4749808 A	07-06-1988
	ZA	8008016 A	28-07-1982
	ZA	8008018 A	28-07-1982
		us us us us us za	US 4499319 A US 5008465 A US 4605806 A US 4590294 A US 4749808 A ZA 8008016 A

Form PCT/ISA/210 (patent family annex) (July 1992)