Basics of Parameter Estimation in Probabilistic Models

Piyush Rai

Probabilistic Machine Learning (CS772A)

Aug 3, 2017

 \bullet Gives a principle way to model the $\underline{uncertainty}$ in data, parameters, and in future predictions

• Gives a principle way to model the <u>uncertainty</u> in data, parameters, and in future predictions

• Can construct latent variable models for data

• Gives a principle way to model the uncertainty in data, parameters, and in future predictions

- Can construct latent variable models for data
- Can construct complex models in "modular" fashion by combining simpler probabilistic models

• Gives a principle way to model the uncertainty in data, parameters, and in future predictions

- Can construct latent variable models for data
- Can construct complex models in "modular" fashion by combining simpler probabilistic models
- Probabilistic modeling gives us a "language" to do such things naturally

ullet Assume data $old X = \{old x_1, \dots, old x_N\}$ generated from a probabilistic model with unknown parameters heta

$$m{x}_1,\ldots,m{x}_N\sim p(m{x}| heta)$$

ullet Assume data $old X = \{old x_1, \dots, old x_N\}$ generated from a probabilistic model with unknown parameters heta

- Likelihood function $p(x|\theta)$ or the "observation model" specifies how data is generated
 - \bullet It is also the probability of the observed data, given θ

• Assume data $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ generated from a probabilistic model with unknown parameters θ $\mathbf{x}_1, \dots, \mathbf{x}_N \sim p(\mathbf{x}|\theta)$

- Likelihood function $p(x|\theta)$ or the "observation model" specifies how data is generated
 - \bullet It is also the probability of the observed data, given θ
- ullet Prior distribution p(heta) specifies how likely different parameter values are a priori
 - ullet As we'll see later, is also corresponds to imposing a "regularizer" over heta

• Assume data $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ generated from a probabilistic model with unknown parameters θ

- Likelihood function $p(x|\theta)$ or the "observation model" specifies how data is generated
 - \bullet It is also the probability of the observed data, given θ
- ullet Prior distribution p(heta) specifies how likely different parameter values are a priori
 - ullet As we'll see later, is also corresponds to imposing a "regularizer" over heta
- ullet Goal: To estimate the unknowns of the model (heta in this case), given the observed data ${f X}$

ullet Assume data $old X = \{old x_1, \dots, old x_N\}$ generated from a probabilistic model with unknown parameters heta

- Likelihood function $p(x|\theta)$ or the "observation model" specifies how data is generated
 - \bullet It is also the probability of the observed data, given θ
- ullet Prior distribution p(heta) specifies how likely different parameter values are a priori
 - ullet As we'll see later, is also corresponds to imposing a "regularizer" over heta
- Goal: To estimate the unknowns of the model (θ in this case), given the observed data **X** (and use these estimates to make predictions about future data)

Can use the Bayes rule to compute the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

Can use the Bayes rule to compute the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

ullet This is known as Bayesian inference. The posterior also captures the uncertainty in heta

• Can use the Bayes rule to compute the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- ullet This is known as Bayesian inference. The posterior also captures the uncertainty in heta
- The marginal likelihood: $p(X) = \int p(X|\theta)p(\theta)d\theta$

Can use the Bayes rule to compute the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- ullet This is known as Bayesian inference. The posterior also captures the uncertainty in heta
- The marginal likelihood: $p(X) = \int p(X|\theta)p(\theta)d\theta$
 - Hard-to-compute in general but very useful (e.g., for model-selection, hyperparam. estimation, etc.)

• Can use the Bayes rule to compute the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- ullet This is known as Bayesian inference. The posterior also captures the uncertainty in heta
- The marginal likelihood: $p(X) = \int p(X|\theta)p(\theta)d\theta$
 - Hard-to-compute in general but very useful (e.g., for model-selection, hyperparam. estimation, etc.)
- In general, inferring the posterior $p(\theta|\mathbf{X})$ is a hard problem (because $p(\mathbf{X})$ can be intractable)

• Can use the Bayes rule to compute the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- ullet This is known as Bayesian inference. The posterior also captures the uncertainty in heta
- The marginal likelihood: $p(X) = \int p(X|\theta)p(\theta)d\theta$
 - Hard-to-compute in general but very useful (e.g., for model-selection, hyperparam. estimation, etc.)
- In general, inferring the posterior $p(\theta|\mathbf{X})$ is a hard problem (because $p(\mathbf{X})$ can be intractable)
- Note: It's easy if the likelihood and prior are "conjugate" to each other (we will see it later)

• Point estimation is a computationally cheaper alternative to full Bayesian inference

- Point estimation is a computationally cheaper alternative to full Bayesian inference
- Recall the definition of the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- Point estimation is a computationally cheaper alternative to full Bayesian inference
- Recall the definition of the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

• Point Estimation finds the **single "best" estimate** of the parameters via optimization.

- Point estimation is a computationally cheaper alternative to full Bayesian inference
- Recall the definition of the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- Point Estimation finds the single "best" estimate of the parameters via optimization. E.g.,
 - Maximum likelihood estimation (MLE)

$$\hat{\theta} = \arg\max_{\theta} \log p(\mathbf{X}|\theta)$$

- Point estimation is a computationally cheaper alternative to full Bayesian inference
- Recall the definition of the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- Point Estimation finds the single "best" estimate of the parameters via optimization. E.g.,
 - Maximum likelihood estimation (MLE)

$$\hat{ heta} = rg \max_{ heta} \log p(\mathbf{X}| heta)$$

Maximum-a-Posteriori (MAP) estimation

$$\hat{\theta} = \arg\max_{\theta} \log p(\theta|\mathbf{X})$$

- Point estimation is a computationally cheaper alternative to full Bayesian inference
- Recall the definition of the posterior distribution over parameters

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

- Point Estimation finds the single "best" estimate of the parameters via optimization. E.g.,
 - Maximum likelihood estimation (MLE)

$$\hat{\theta} = \arg\max_{\theta} \log p(\mathbf{X}|\theta)$$

Maximum-a-Posteriori (MAP) estimation

$$\hat{\theta} = \arg\max_{\theta} \log p(\theta|\mathbf{X})$$

• .. and some other methods such as "method of moments"

• MLE finds the parameter θ that maximizes the (log-) likelihood $p(\mathbf{X}|\theta)$

$$\mathcal{L}(\theta) = \log p(\mathbf{X}|\theta) = \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

• MLE finds the parameter θ that maximizes the (log-) likelihood $p(\mathbf{X}|\theta)$

$$\mathcal{L}(\theta) = \log p(\mathbf{X}|\theta) = \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

ullet If the observations are i.i.d., $p(m{x}_1,\ldots,m{x}_N\mid heta)=\prod_{n=1}^N p(m{x}_n| heta)$

• MLE finds the parameter θ that maximizes the (log-) likelihood $p(\mathbf{X}|\theta)$

$$\mathcal{L}(\theta) = \log p(\mathbf{X}|\theta) = \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

- If the observations are i.i.d., $p(x_1, ..., x_N \mid \theta) = \prod_{n=1}^N p(x_n \mid \theta)$
- Maximum Likelihood parameter estimation

$$\left| \hat{ heta}_{MLE} = rg \max_{ heta} \mathcal{L}(heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(m{x}_n | heta)
ight|$$

• MLE finds the parameter θ that maximizes the (log-) likelihood $p(\mathbf{X}|\theta)$

$$\mathcal{L}(\theta) = \log p(\mathbf{X}|\theta) = \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

- If the observations are i.i.d., $p(x_1, ..., x_N \mid \theta) = \prod_{n=1}^N p(x_n \mid \theta)$
- Maximum Likelihood parameter estimation

$$\hat{ heta}_{MLE} = rg \max_{ heta} \mathcal{L}(heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(m{x}_n | heta)$$

• MLE finds the parameter θ that maximizes the (log-) likelihood $p(\mathbf{X}|\theta)$

$$\mathcal{L}(\theta) = \log p(\mathbf{X}|\theta) = \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

- If the observations are i.i.d., $p(x_1, \ldots, x_N \mid \theta) = \prod_{n=1}^N p(x_n \mid \theta)$
- Maximum Likelihood parameter estimation

$$egin{aligned} \hat{ heta}_{MLE} = rg \max_{ heta} \mathcal{L}(heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(oldsymbol{x}_n | heta) \end{aligned}$$

• Note: MLE is "consistent", i.e., as $N \longrightarrow \infty$, $\hat{\theta}$ converges to the true θ (will see it later)

ullet MAP estimation finds the parameter heta that maximizes the (log-) posterior probability $p(heta|\mathbf{X})$

$$\mathcal{L}(heta) = \log p(heta|\mathbf{X}) = \log rac{p(\mathbf{X}| heta)p(heta)}{p(\mathbf{X})}$$

• MAP estimation finds the parameter θ that maximizes the (log-) posterior probability $p(\theta|\mathbf{X})$

$$\mathcal{L}(heta) = \log p(heta|\mathbf{X}) = \log rac{p(\mathbf{X}| heta)p(heta)}{p(\mathbf{X})}$$

ullet Again assuming i.i.d. observations, and noting that $p(\mathbf{X})$ is independent of heta

$$egin{aligned} \hat{ heta}_{MAP} &= rg \max_{ heta} \mathcal{L}(heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(oldsymbol{x}_n | heta) + \log p(heta) \end{aligned}$$

• MAP estimation finds the parameter θ that maximizes the (log-) posterior probability $p(\theta|\mathbf{X})$

$$\mathcal{L}(\theta) = \log p(\theta|\mathbf{X}) = \log \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

ullet Again assuming i.i.d. observations, and noting that $p(\mathbf{X})$ is independent of heta

$$\hat{ heta}_{MAP} = rg \max_{ heta} \mathcal{L}(heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(m{x}_n | heta) + \log p(heta)$$

• MAP estimation finds the parameter θ that maximizes the (log-) posterior probability $p(\theta|\mathbf{X})$

$$\mathcal{L}(\theta) = \log p(\theta|\mathbf{X}) = \log \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

• Again assuming i.i.d. observations, and noting that p(X) is independent of θ

$$egin{aligned} \hat{ heta}_{MAP} = rg \max_{ heta} \mathcal{L}(heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(oldsymbol{x}_n | heta) + \log p(heta) \end{aligned}$$

• Note: When the prior is uniform, MAP and MLE solutions are identical

• MAP estimation finds the parameter θ that maximizes the (log-) posterior probability $p(\theta|\mathbf{X})$

$$\mathcal{L}(\theta) = \log p(\theta|\mathbf{X}) = \log \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

• Again assuming i.i.d. observations, and noting that p(X) is independent of θ

$$\hat{ heta}_{MAP} = rg \max_{ heta} \mathcal{L}(heta) = rg \max_{ heta} \sum_{n=1}^{N} \log p(m{x}_n | heta) + \log p(heta)$$

- Note: When the prior is uniform, MAP and MLE solutions are identical
- Despite using the prior, MAP is NOT considered a Bayesian approach (still gives a point estimate)

• Recall the maximum Likelihood parameter estimation procedure

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$$

• Recall the maximum Likelihood parameter estimation procedure

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$$

We can also think of it as minimizing the negative log-likelihood (NLL)

$$\hat{ heta}_{ extit{MLE}} = rg\min_{ heta} extit{NLL}(heta)$$

where $NLL(\theta) = -\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$ is called the negative log-likelihood

• Recall the maximum Likelihood parameter estimation procedure

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$$

• We can also think of it as minimizing the negative log-likelihood (NLL)

$$\hat{ heta}_{ extit{MLE}} = rg\min_{ heta} extit{NLL}(heta)$$

where $NLL(\theta) = -\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$ is called the negative log-likelihood

• Likewise, MAP parameter estimation can be shown to have the following form

$$\hat{\theta}_{MAP} = \arg\min_{\theta} NLL(\theta) - \log p(\theta)$$

• Recall the maximum Likelihood parameter estimation procedure

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$$

• We can also think of it as minimizing the negative log-likelihood (NLL)

$$oxed{\hat{ heta}_{ extit{MLE}} = rg\min_{ heta} extit{NLL}(heta)}$$

where $NLL(\theta) = -\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$ is called the negative log-likelihood

• Likewise, MAP parameter estimation can be shown to have the following form

$$\hat{\theta}_{MAP} = \arg\min_{\theta} NLL(\theta) - \log p(\theta)$$

• Note that NLL is like a loss function and $-\log p(\theta)$ is like a regularizer on θ

Point Estimation (MLE/MAP) vs Loss Function Minimization

Recall the maximum Likelihood parameter estimation procedure

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$$

• We can also think of it as minimizing the negative log-likelihood (NLL)

$$egin{aligned} \hat{ heta}_{ extit{MLE}} = rg\min_{ heta} extit{NLL}(heta) \end{aligned}$$

where $NLL(\theta) = -\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta)$ is called the negative log-likelihood

Likewise, MAP parameter estimation can be shown to have the following form

$$\hat{ heta}_{MAP} = rg \min_{ heta} extit{NLL}(heta) - \log p(heta)$$

- Note that NLL is like a loss function and $-\log p(\theta)$ is like a regularizer on θ
- Thus MLE is like empirical loss/risk minization (ERM) and MAP is like regularized ERM

- ullet Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- The n^{th} outcome x_n is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$
- ullet Taking derivative of the log-likelihood w.r.t. heta, and setting it to zero gives

$$\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} \mathbf{x}_n}{N}$$

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$
- ullet Taking derivative of the log-likelihood w.r.t. heta, and setting it to zero gives

$$\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} \mathbf{x}_n}{N}$$

• $\hat{\theta}_{MLE}$ in this example is simply the fraction of heads!

- ullet Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$
- ullet Taking derivative of the log-likelihood w.r.t. heta, and setting it to zero gives

$$\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} \mathbf{x}_n}{N}$$

- ullet $\hat{ heta}_{MLE}$ in this example is simply the fraction of heads!
- MLE doesn't have a way to express our prior belief about θ . Can be problematic especially when the number of observations is very small (e.g., suppose very few or zero heads when N is small).

• MAP estimation can incorporate a prior $p(\theta)$ on θ

- MAP estimation can incorporate a prior $p(\theta)$ on θ
- ullet Since $heta\in(0,1)$, one possibility can be to assume a Beta prior

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

- MAP estimation can incorporate a prior $p(\theta)$ on θ
- Since $\theta \in (0,1)$, one possibility can be to assume a Beta prior

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

ullet α, eta are called hyperparameters of the prior (these can have intuitive meaning; we'll see shortly)

- MAP estimation can incorporate a prior $p(\theta)$ on θ
- ullet Since $heta\in(0,1)$, one possibility can be to assume a Beta prior

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

ullet α, eta are called hyperparameters of the prior (these can have intuitive meaning; we'll see shortly)

• Note that each likelihood term is still a Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$

• The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t. θ , the log posterior probability:

$$\sum_{n=1}^{N} \{ x_n \log \theta + (1 - x_n) \log (1 - \theta) \} + (\alpha - 1) \log \theta + (\beta - 1) \log (1 - \theta)$$

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- ullet Ignoring the constants w.r.t. heta, the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t. θ , the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

• Note: For $\alpha=1, \beta=1$, i.e., $p(\theta)=\mathsf{Beta}(1,1)$ (equivalent to a <u>uniform prior</u>), $\hat{\theta}_{MAP}=\hat{\theta}_{MLE}$

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t. θ , the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

- Note: For $\alpha=1, \beta=1$, i.e., $p(\theta)=\mathsf{Beta}(1,1)$ (equivalent to a <u>uniform prior</u>), $\hat{\theta}_{MAP}=\hat{\theta}_{MLE}$
- What hyperparameters represent intuitively? Hyperparameters of the prior (in this case α , β) can often be thought of as "pseudo-observations".

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t. θ , the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

- Note: For $\alpha=1, \beta=1$, i.e., $p(\theta)=\mathsf{Beta}(1,1)$ (equivalent to a <u>uniform prior</u>), $\hat{\theta}_{MAP}=\hat{\theta}_{MLE}$
- What hyperparameters represent intuitively? Hyperparameters of the prior (in this case α , β) can often be thought of as "pseudo-observations".
 - ullet $\alpha-1$, eta-1 are the expected numbers of heads and tails, respectively, before seeing any data

• Becomes harder if there are latent variables in the model

Becomes harder if there are latent variables in the model

 \bullet Reason: Computing $\log p(\textbf{\textit{x}}|\theta) = \log \sum_{\textbf{\textit{z}}} p(\textbf{\textit{x}},\textbf{\textit{z}}|\theta)$ is hard

Becomes harder if there are latent variables in the model

- Reason: Computing $\log p(\mathbf{x}|\theta) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\theta)$ is hard
- Doing parameter estimation in such cases requires using methods such as expectation-maximization (EM), MCMC, or variational methods

Becomes harder if there are latent variables in the model

- Reason: Computing $\log p(\mathbf{x}|\theta) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\theta)$ is hard
- Doing parameter estimation in such cases requires using methods such as expectation-maximization (EM), MCMC, or variational methods
- More on this when we will look at latent variable models

- ullet MLE and MAP only provide us with a best "point estimate" of heta
- MLE does not incorporate any prior knowledge about parameters
- MAP does incorporate prior knowledge but still only gives a point estimate

- ullet MLE and MAP only provide us with a best "point estimate" of heta
- MLE does not incorporate any prior knowledge about parameters
- MAP does incorporate prior knowledge but still only gives a point estimate

 \bullet Point estimate doesn't capture the uncertainty about the parameter θ

- ullet MLE and MAP only provide us with a best "point estimate" of heta
- MLE does not incorporate any prior knowledge about parameters
- MAP does incorporate prior knowledge but still only gives a point estimate

- ullet Point estimate doesn't capture the uncertainty about the parameter heta
- The full posterior distribution $p(\theta|\mathbf{X})$, although harder to estimate, gives a more complete picture

- ullet MLE and MAP only provide us with a best "point estimate" of heta
- MLE does not incorporate any prior knowledge about parameters
- MAP does incorporate prior knowledge but still only gives a point estimate

- ullet Point estimate doesn't capture the uncertainty about the parameter heta
- The full posterior distribution $p(\theta|\mathbf{X})$, although harder to estimate, gives a more complete picture
- In some cases, however, we can analytically compute the full posterior (e.g., when the prior distribution is "conjugate" to the likelihood distribution)

- ullet MLE and MAP only provide us with a best "point estimate" of heta
- MLE does not incorporate any prior knowledge about parameters
- MAP does incorporate prior knowledge but still only gives a point estimate

- ullet Point estimate doesn't capture the uncertainty about the parameter heta
- The full posterior distribution $p(\theta|\mathbf{X})$, although harder to estimate, gives a more complete picture
- In some cases, however, we can analytically compute the full posterior (e.g., when the prior distribution is "conjugate" to the likelihood distribution)
- In other cases, it can be approximated via **approximate Bayesian inference** methods such as MCMC and variational inference (more on this later during the semester)

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- The prior $p(\theta)$ was Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha 1} (1 \theta)^{\beta 1}$

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- The prior $p(\theta)$ was Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned}
ho(heta|\mathbf{X}) & \propto & \prod_{n=1}^N
ho(\mathbf{x}_n| heta)
ho(heta) \ & \propto & heta^{lpha + \sum_{n=1}^N \mathbf{x}_n - 1} (1- heta)^{eta + N - \sum_{n=1}^N \mathbf{x}_n - 1} \end{aligned}$$

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- The prior $p(\theta)$ was Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{align} p(heta|\mathbf{X}) & \propto & \prod_{n=1}^N p(\mathbf{x}_n| heta) rac{p(heta)}{p(heta)} \ & \propto & heta^{lpha + \sum_{n=1}^N \mathbf{x}_n - 1} (1- heta)^{eta + N - \sum_{n=1}^N \mathbf{x}_n - 1} \end{aligned}$$

• From simple inspection, note that the posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N - \sum_{n=1}^{N} \mathbf{x}_n)$

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- The prior $p(\theta)$ was Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned} p(heta|\mathbf{X}) & \propto & \prod_{n=1}^N p(\mathbf{x}_n| heta) p(heta) \ & \propto & heta^{lpha + \sum_{n=1}^N \mathbf{x}_n - 1} (1- heta)^{eta + N - \sum_{n=1}^N \mathbf{x}_n - 1} \end{aligned}$$

- From simple inspection, note that the posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N \sum_{n=1}^{N} \mathbf{x}_n)$
- Here, finding the posterior boiled down to simply "multipy, add stuff, and identify the distribution"

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- The prior $p(\theta)$ was Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned} p(heta|\mathbf{X}) & \propto & \prod_{n=1}^N p(\mathbf{x}_n| heta) p(heta) \ & \propto & heta^{lpha + \sum_{n=1}^N \mathbf{x}_n - 1} (1- heta)^{eta + N - \sum_{n=1}^N \mathbf{x}_n - 1} \end{aligned}$$

- From simple inspection, note that the posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N \sum_{n=1}^{N} \mathbf{x}_n)$
- Here, finding the posterior boiled down to simply "multipy, add stuff, and identify the distribution"
- Note: Can verify (exercise) that the normalization constant $=\frac{\Gamma(\alpha+\sum_{n=1}^{N}\mathbf{x}_n)\Gamma(\beta+N-\sum_{n=1}^{N}\mathbf{x}_n)}{\Gamma(\alpha+\beta+N)}$
 - ullet To verify, make use of the fact that $\int p(\theta|\mathbf{X})d\theta=1$

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- The prior $p(\theta)$ was Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$p(\theta|\mathbf{X}) \propto \prod_{n=1}^{N} p(\mathbf{x}_n|\theta) p(\theta)$$

 $\propto \theta^{\alpha + \sum_{n=1}^{N} \mathbf{x}_n - 1} (1-\theta)^{\beta + N - \sum_{n=1}^{N} \mathbf{x}_n - 1}$

- From simple inspection, note that the posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N \sum_{n=1}^{N} \mathbf{x}_n)$
- Here, finding the posterior boiled down to simply "multipy, add stuff, and identify the distribution"
- Note: Can verify (exercise) that the normalization constant $=\frac{\Gamma(\alpha+\sum_{n=1}^{N}\mathbf{x}_n)\Gamma(\beta+N-\sum_{n=1}^{N}\mathbf{x}_n)}{\Gamma(\alpha+\beta+N)}$
 - ullet To verify, make use of the fact that $\int p(heta|\mathbf{X})d heta=1$
- Here, the posterior has the same form as the prior (both Beta): property of conjugate priors.

Conjugate Priors

- Many pairs of distributions are conjugate to each other. E.g.,
 - Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior
 - Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
 - ullet Multinomial (likelihood) + Dirichlet (prior) \Rightarrow Dirichlet posterior
 - ullet Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior
 - ullet Gaussian (likelihood) + Gaussian (prior) \Rightarrow Gaussian posterior
 - and many other such pairs ..

Conjugate Priors

- Many pairs of distributions are conjugate to each other. E.g.,
 - Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior
 - Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
 - Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior
 - Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior
 - Gaussian (likelihood) + Gaussian (prior) \Rightarrow Gaussian posterior
 - and many other such pairs ..
- Easy to identify if two distributions are conjugate to each other: their functional forms are similar
 - E.g., recall the forms of Bernoulli and Beta

Bernoulli
$$\propto \theta^{x} (1-\theta)^{1-x}$$
, Beta $\propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

Conjugate Priors

- Many pairs of distributions are conjugate to each other. E.g.,
 - Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior
 - Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
 - Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior
 - Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior
 - Gaussian (likelihood) + Gaussian (prior) \Rightarrow Gaussian posterior
 - and many other such pairs ..
- Easy to identify if two distributions are conjugate to each other: their functional forms are similar
 - E.g., recall the forms of Bernoulli and Beta

$$\mathsf{Bernoulli} \propto \theta^{\mathsf{x}} (1-\theta)^{1-\mathsf{x}}, \quad \mathsf{Beta} \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

More on conjugate priors when we will look at exponental family distributions

Posterior Evolution with Observed Data

• Assume starting with a uniform prior (equivalent to Beta(1,1)) in the coin-toss example and observing a sequence of heads and tails

- The posterior distribution for the coin-toss example $p(\theta|\mathbf{X}) = \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$ where
 - N₁: number of observed heads
 - $N_0 = N N_1$: number of observed tails

- The posterior distribution for the coin-toss example $p(\theta|\mathbf{X}) = \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$ where
 - N₁: number of observed heads
 - $N_0 = N N_1$: number of observed tails
- ullet The posterior summarizes everything about heta. In particular,
 - Mean of this Beta posterior: $\mathbb{E}[\theta|\mathbf{X}]=\frac{\alpha+N_1}{\alpha+N_1+\beta+N_0}=\frac{\alpha+N_1}{\alpha+\beta+N}$
 - Variance of this posterior: $var[\theta|\mathbf{X}] = \frac{(\alpha+N_1)(\beta+N_0)}{(\alpha+N_1+\beta+N_0)^2(\alpha+N_1+\beta+N_0+1)}$

- The posterior distribution for the coin-toss example $p(\theta|\mathbf{X}) = \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$ where
 - N₁: number of observed heads
 - $N_0 = N N_1$: number of observed tails
- ullet The posterior summarizes everything about heta. In particular,
 - Mean of this Beta posterior: $\mathbb{E}[\theta|\mathbf{X}]=\frac{\alpha+N_1}{\alpha+N_1+\beta+N_0}=\frac{\alpha+N_1}{\alpha+\beta+N}$
 - Variance of this posterior: $var[\theta|\mathbf{X}] = \frac{(\alpha+N_1)(\beta+N_0)}{(\alpha+N_1+\beta+N_0)^2(\alpha+N_1+\beta+N_0+1)}$
- Mode of this Beta posterior (MAP estimate): $\theta_{MAP} = \frac{\alpha + N_1 1}{\alpha + N_1 1 + \beta + N_0 1} = \frac{\alpha + N_1 1}{\alpha + \beta + N_0 2}$

- The posterior distribution for the coin-toss example $p(\theta|\mathbf{X}) = \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$ where
 - N₁: number of observed heads
 - $N_0 = N N_1$: number of observed tails
- ullet The posterior summarizes everything about heta. In particular,
 - Mean of this Beta posterior: $\mathbb{E}[\theta|\mathbf{X}] = \frac{\alpha + N_1}{\alpha + N_1 + \beta + N_0} = \frac{\alpha + N_1}{\alpha + \beta + N}$
 - Variance of this posterior: $var[\theta|\mathbf{X}] = \frac{(\alpha+N_1)(\beta+N_0)}{(\alpha+N_1+\beta+N_0)^2(\alpha+N_1+\beta+N_0+1)}$
- Mode of this Beta posterior (MAP estimate): $\theta_{MAP} = \frac{\alpha + N_1 1}{\alpha + N_1 1 + \beta + N_0 1} = \frac{\alpha + N_1 1}{\alpha + \beta + N_0 2}$
- MLE is the same as MAP with uniform or Beta (α, β) prior with $\alpha = \beta = 1$: $\theta_{MLE} = \frac{N_1}{N}$

- The posterior distribution for the coin-toss example $p(\theta|\mathbf{X}) = \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$ where
 - N₁: number of observed heads
 - $N_0 = N N_1$: number of observed tails
- ullet The posterior summarizes everything about heta. In particular,
 - Mean of this Beta posterior: $\mathbb{E}[\theta|\mathbf{X}] = \frac{\alpha + N_1}{\alpha + N_1 + \beta + N_0} = \frac{\alpha + N_1}{\alpha + \beta + N}$
 - Variance of this posterior: $var[\theta|\mathbf{X}] = \frac{(\alpha+N_1)(\beta+N_0)}{(\alpha+N_1+\beta+N_0)^2(\alpha+N_1+\beta+N_0+1)}$
- Mode of this Beta posterior (MAP estimate): $\theta_{MAP} = \frac{\alpha + N_1 1}{\alpha + N_1 1 + \beta + N_0 1} = \frac{\alpha + N_1 1}{\alpha + \beta + N_0 2}$
- MLE is the same as MAP with uniform or Beta (α, β) prior with $\alpha = \beta = 1$: $\theta_{MLE} = \frac{N_1}{N}$
- Note: Doing MAP $(\theta_{MAP} = \arg \max_{\theta} P(\theta | \mathbf{X}))$ and MLE $(\theta_{MLE} = \arg \max_{\theta} P(\mathbf{X} | \theta))$ directly will also give us the same answers as above. But we won't get the full posterior in these cases.

• How do we use the inferred posterior $P(\theta|\mathbf{X})$ over θ to predict something?

- How do we use the inferred posterior $P(\theta|\mathbf{X})$ over θ to predict something?
- Let's say we want to compute the probability that the next outcome will be a head

- How do we use the inferred posterior $P(\theta|\mathbf{X})$ over θ to predict something?
- Let's say we want to compute the probability that the next outcome will be a head
- We can do posterior averaging (averaging over all θ weighted by their posterior probabilities):

$$P(\mathbf{x}_{N+1}=1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1}=1|\theta)P(\theta|\mathbf{X})d\theta$$

- How do we use the inferred posterior $P(\theta|\mathbf{X})$ over θ to predict something?
- Let's say we want to compute the probability that the next outcome will be a head
- ullet We can do posterior averaging (averaging over all heta weighted by their posterior probabilities):

$$P(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)P(\theta|\mathbf{X})d\theta$$
$$= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$$

- How do we use the inferred posterior $P(\theta|\mathbf{X})$ over θ to predict something?
- Let's say we want to compute the probability that the next outcome will be a head
- We can do posterior averaging (averaging over all θ weighted by their posterior probabilities):

$$P(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)P(\theta|\mathbf{X})d\theta$$

$$= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$$

$$= \mathbb{E}[\theta|\mathbf{X}]$$

- How do we use the inferred posterior $P(\theta|\mathbf{X})$ over θ to predict something?
- Let's say we want to compute the probability that the next outcome will be a head
- ullet We can do posterior averaging (averaging over all heta weighted by their posterior probabilities):

$$P(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)P(\theta|\mathbf{X})d\theta$$

$$= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$$

$$= \mathbb{E}[\theta|\mathbf{X}]$$

$$= \frac{\alpha + N_1}{\alpha + \beta + N}$$

- How do we use the inferred posterior $P(\theta|\mathbf{X})$ over θ to predict something?
- Let's say we want to compute the probability that the next outcome will be a head
- We can do posterior averaging (averaging over all θ weighted by their posterior probabilities):

$$P(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)P(\theta|\mathbf{X})d\theta$$

$$= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$$

$$= \mathbb{E}[\theta|\mathbf{X}]$$

$$= \frac{\alpha + N_1}{\alpha + \beta + N}$$

• Therefore the posterior predictive distribution: $p(x_{N+1}|\mathbf{X}) = \text{Bernoulli}(x_{N+1} \mid \mathbb{E}[\theta|\mathbf{X}])$

- How do we use the inferred posterior $P(\theta|\mathbf{X})$ over θ to predict something?
- Let's say we want to compute the probability that the next outcome will be a head
- We can do posterior averaging (averaging over all θ weighted by their posterior probabilities):

$$P(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)P(\theta|\mathbf{X})d\theta$$

$$= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + N_1, \beta + N_0)$$

$$= \mathbb{E}[\theta|\mathbf{X}]$$

$$= \frac{\alpha + N_1}{\alpha + \beta + N}$$

- Therefore the posterior predictive distribution: $p(x_{N+1}|\mathbf{X}) = \mathsf{Bernoulli}(x_{N+1} \mid \mathbb{E}[\theta|\mathbf{X}])$
- Note that the predictive distribution doesn't depend on a single value of θ (θ_{MLE} or θ_{MAP})