Predicting the Probability of Winning Basketball Games Using Differential Equations

By: Riley Morgan

Coach: Dr. Vinodh Chellamuthu

Outline

- Background
- Goals
- Assumptions
- Variables & Parameters

- Equations/Model
- Results
- Next Steps
- Works Cited

Background

- The use of sports analytics has become increasingly important for coaches and teams to gain a competitive edge.
- Traditional statistical methods such as regression analysis have been used to analyze game data, but they have limitations in predicting game outcomes.
- The development of mathematical models using differential equations can provide more accurate probability estimates for a team's chances of winning a game.

Goal

Goal

- Identify valuable parameters to determine win probability.
- Create a set of differential equations to track changes in efficiencies during basketball games.
- Generate a time dependent equation that measures the win probability based on the efficiencies calculated above.

Assumptions

- Each game does not go into overtime (40 minute games).
- Point differential, offensive efficiency, and defensive efficiency are the only components that contribute to win probability.
- Offensive and defensive efficiencies are based only on shooting percentage, assists, turnovers, steals, and rebounds.

Parameters

Parameter	Definition	Value
as(t)	Assist rate at time t	[0, 1]
s(t)	Shooting percentage at time t	[0, 1]
tn(t)	Turnover rate at time t	[0, 1]
dr(t)	Defensive rebounding rate at time t	[0, 1]
or(t)	Offensive rebounding rate at time t	[0, 1]
st(t)	Steal rate at time t	[0, 1]
w	Natural return to average	0.3
pw(t)	Point weight at time t	[0, 1]
ow(t)	Offensive efficiency weight at time t	[0, 0.5]
dw(t)	Defensive efficiency weight at time t	[0, 0.5]

Variables

Variable	Definition	
oe _a	Offensive efficiency of team A	
oe _b	Offensive efficiency of team B	
oed	Offensive efficiency difference	
de _a	Defensive efficiency of team A	
de _b	Defensive efficiency of team B	
ded	Defensive efficiency difference	
sc _a	Score of team A	
sc _b	Score of team B	
scd	Score difference	
wp(t)	Probability of winning at time t	

Equations

$$\frac{doea}{dt} = (s_a(t) + as_a(t) + or_a(t) - tn_a(t))*oea - (\frac{oea - 1.15}{0.2})*weight$$

$$\frac{doeb}{dt} = (s_b(t) + as_b(t) + or_b(t) - tn_b(t))*oeb - (\frac{oeb - 1.15}{0.2})*weight$$

$$\frac{ddea}{dt} = ((1 - s_b(t)) + st_a(t) + dr_a(t) + tn_b(t))*dea - (\frac{dea - 1.15}{0.2})*weight$$

$$\frac{ddeb}{dt} = ((1 - s_a(t)) + st_b(t) + dr_b(t) + tn_a(t))*deb - (\frac{deb - 1.15}{0.2})*weight$$

$$wp(t) = pw(t)*scd(t) + ow(t)*oed(t) + dw(t)*ded$$

Win Probability Equation

$$wp(t) = pw(t)*scd(t) + ow(t)*oed(t) + dw(t)*ded$$

Game Time

VS

Game 1

	UTU	SUU
Initial Win Percentage	50%	50%
Initial Offensive Efficiency	1.15	1.15
Initial Defensive Efficiency	1.15	1.15
Initial Score	0	0

Results

Game 2

	UTU	SUU
Initial Win Percentage	50%	50%
Initial Offensive Efficiency	1.25	1.18
Initial Defensive Efficiency	1.30	1.25
Initial Score	0	0

Results

ScoreBoard

VS

1

Game 3

	UTU	SUU
Initial Win Percentage	60%	40%
Initial Offensive Efficiency	1.4	1.1
Initial Defensive Efficiency	1.35	1.27
Initial Score	0	0

Results

Winner!!

Next Steps

- Add additional variables that would impact win percentage.
- Create weighted changes to variables based on historical data.
- Test different weights to find optimal weight distribution that maximizes accuracy.
- Connect to basketball data via API and run simulations on real time data.

Works Cited

- [1] https://digitalcommons.bryant.edu/cgi/viewcontent.cgi?article=1000&context=honors_data_science
- [2] https://thepowerrank.com/cbb-analytics/
- [3] https://www.quora.com/How-does-ESPN-com-calculate-the-win-percentage-on-its-gamecasts
- [4] https://www.whiteballanalytics.com/win-probability-model
- [5] https://www.kaggle.com/competitions/mens-machine-learning-competition-2019/code

Thank You!

