

## 서울시 주택 밀집 지역의 거점형 분리 배출 시설 입지 제안

8팀 마주연 신보람 신해빈 정유정



#### 목차



01 분석 배경

02 데이터 소개

03 분석 방법

04 결론

# 01 분석배경

### **01** 분석 배경

서울시 주택 밀집 지역 쓰레기 현황



서울시 아파트를 제외한 주택은 생활폐기물 배출 장소가 정해져 있지 않음



심각한 쓰레기 무단 배출 초래



출처: <u>"분리수거요? 양심을 지키고 싶어도 지킬 수 없는 환경이 문제죠" (skyedaily.com)</u> 기사 사진

### **01** 분석 배경

분석 주제: 서울시 주택 밀집 지역의 거점형 분리 배출 시설 입지 제안

주택의 위치를 고려하여 거점형 분리 배출 시설을 설치하면 쓰레기 무단 배출량이 감소하지 않을까?



### **01** 분석 배경

해외 사례 : 체코

코로나19 이후 쓰레기 배출량이 증가했지만 "분리수거 컨테이너" 를 설치한 후 분리수거율 73%로 전년 대비 증가하였다.



2020년 기준 55만 8000개



주택 당 도보 2분 거리 (90m)



평균 112명 당 하나의 시설

높은 접근성

- 생활폐기물 발생량
- 서울 열린데이터 광장에서 제공하는 「서울시 생활폐기물 발생량 및 처리현황 통계」
- 2020년 서울시 자치구별 생활폐기물 발생량 데이터 이용



#### 주택 수

- 서울 열린데이터 광장에서 제공하는 「서울시 주택종류별 주택(구별) 통계」
- 2020년 서울시 자치구별 단독주택+연립주택+다세대주택 수 데이터 이용



- 1인가구 평균 배달일수
- 서울 열린데이터 광장에서 제공하는 「서울 시민생활 데이터」

#### 서울 시민생활 데이터란?

서울시와 SK텔레콤이 공공빅데이터와 통신데이터 가명결합을 통해 추정한 서울 행정동단위 성, 연령별 1인가구와 서울시민의 생활특성 정보

- 2022년 서울시 자치구별 월평균 배달 사용일수 데이터 이용

월평균 배달 사용일수 = 최근 3개월 총 배달 서비스 사용일수 / 3개월 (해당 날짜의 사용여부는 서비스의 접속 여부로 판단)

- 1인가구수
- 서울 열린데이터 광장에서 제공하는 「서울시 가구원수별 가구수(구별) 통계」
- 2020년 서울시 자치구별 1인가구수 데이터 이용



#### 주민등록인구수

- 서울 열린데이터 광장에서 제공하는 「서울시 주민등록인구(월별\_구별) 통계」
- 2020년 서울시 자치구별 주민등록인구수 데이터 이용
- 통계청의 「통계정보보고서」에서 '가구수 데이터가 2020년 11월 1일 기준'이라는 내용을 바탕으로 주민등록인구수 데이터도 2020년 10월 자료 이용



#### 1인가구 비율

- 1인가구수 데이터와 주민등록인구수 데이터를 이용하여 1인가구 비율 계산
- 1인가구 비율 = 1인가구수 / 거주인구수

| 지역  | 1인가구수                | 거주인구수   | 1인가구 비율  |
|-----|----------------------|---------|----------|
| 종로구 | 25,983 <sub>13</sub> | 159,424 | 0.162980 |
| 중구  | 22,818               | 135,053 | 0.168956 |
| 용산구 | 36,881               | 245,009 | 0.150529 |
| 성동구 | 42,585               | 30,2134 | 0.140947 |
| 광진구 | 62,301               | 361,551 | 0.172316 |

#### 최종 데이터셋

- 서울시 자치구별 쓰레기 발생량, 주택수, 1인가구 평균 배달일수, 1인가구 비율

| 지역  | 쓰레기 발생량 | 주택수      | 1인가구 평균 배달일수 | 1인가구 비율  |
|-----|---------|----------|--------------|----------|
| 종로구 | 264.2   | 30,259   | 12.687895    | 0.162980 |
| 중구  | 357.5   | 1415,263 | 13.326083    | 0.168956 |
| 용산구 | 301.2   | 36,157   | 12.914051    | 0.150529 |
| 성동구 | 301.2   | 22,673   | 12.816761    | 0.140947 |
| 광진구 | 343.1   | 56,244   | 14.356042    | 0.172316 |

시각화

- seaborn 라이브러리의 barplot 함수 이용하여 막대 그래프 시각화

```
import seaborn as sns
plt.figure(figsize = (10,4))
plt.title("지역별 쓰레기 발생량", fontsize = 20)
sns.set_theme(style="whitegrid")
sns.barplot(data=df3, x='지역', y='쓰레기발생량', palette='RdYIGn')
plt.xticks(rotation=45)
plt.rc('axes', labelsize=15) # x,y축 label 폰트 크기
plt.rc('xtick', labelsize=13) # x축 눈금 폰트 크기
plt.show()
```

- folium 라이브러리의 choropleth 이용하여 지도 시각화

```
import folium
import requests
import json
# 서울 행정구역 json raw파일(githubcontent)
r = requests.get('https://raw.githubusercontent.com/southkorea/seoul-maps/master/kostat/2013/json/seoul_municipalities_geo_simple.json')
c = r.content
seoul_geo = json.loads(c)
m = folium.Map(location=[37.559819, 126.963895], zoom_start=11, tiles='cartodbpositron')
folium.GeoJson(seoul_geo, name='지역').add_to(m)
m.choropleth(geo_data=seoul_geo,
            data=df3.
            columns=['지역', '쓰레기발생량'],
            fill_color='YlOrRd',
            fill_opacity=0.5,
            line_opacity=0.2,
            key_on='feature.properties.name',
            Tegend_name="자치구별 쓰레기 배출량"
```

#### 시각화





#### 시각화





은평구, 송파구, 강서구, 관악구가 주택이 가장 많았으며, 중구가 가장 적었음

#### 시각화





모든 자치구의 1인가구 평균 배달일수가 약 13일로 큰 편차를 보이지 않음

#### 시각화





# 03 분석방법

## 03 분석 방법 | 구별점수 산정

변수 별 등급 산정

# 구간 10개로 나누기 df['쓰레기발생량\_그룹'] = pd.cut(df['쓰레기발생량'], bins = 10, labels = list(range(1,11,1)))

- 각 변수들을 동일한 10개의 간격으로 나누어 그룹화

| 지역  | 쓰레기발생량 |   | 쓰레기발생량_그룹 | 주택수_그룹          | 1인가구 평균 배달일수_그룹 | 1인가구 비율_그룹 |
|-----|--------|---|-----------|-----------------|-----------------|------------|
| 종로구 | 264.2  |   | 1         | 3               | 4               | 5          |
| 중구  | 357.5  | : | 3         | <sup>21</sup> 1 | 6               | 5          |
| 용산구 | 301.2  |   | 2         | 3               | 5               | 4          |
| 관악구 | 401.6  |   | 4         | 8               | 10              | 10         |
| 성동구 | 301.2  |   | 2         | 1               | 5               | 4          |

### 03 분석방법 | 구별점수산정

#### 자치구 별 점수 산정

- 변수별로 나눈 그룹을 모두 더해 <u>자치구별 점수 산정</u>
- 점수가 높을 수록 거점형 분리 배출 시설의 필요성이 높은 자치구



| 지역  | 쓰레기발생량_그룹 | 주택수_그룹 | 1인가구 평균 배달일수_그룹 | 1인가구 비율_그룹 | 점수 |
|-----|-----------|--------|-----------------|------------|----|
| 종로구 | 1         | 3      | 4               | 5          | 13 |
| 중구  | 3         | 1      | 6               | 5          | 15 |
| 용산구 | 2         | 3      | 5               | 4          | 14 |
| 관악구 | 4         | 8      | 10              | 10         | 32 |
| 성동구 | 2         | 1      | 5               | 4          | 12 |

### 

```
#1. 관악구 주택 현황 데이터 전처리
# 시군구, 법정동명, 본번, 부번 열 생성
df = pd.read_csv('./data/raw/서울특별시 관악구_법정동 주택현황_20221121.csv', encoding='cp949')
df1 = df.query("주용도 in ['단독주택','공동주택']")
df1 = df1[['시군구','법정동명','본번','부번']]
df1 = df1.drop_duplicates() # 중복행 제거
#2. 관악구 아파트 위치 데이터 전처리
# 시군구, 법정동명, 본번, 부번 열 생성
df2 = pd.read_csv('./data/raw/관악구 아파트.csv', encoding='utf-8')
df2['시군구'] = [i.split()[0] +' '+ i.split()[1] for i in df2['지번 주소']]
df2['법정동명'] = [i.split()[2] for i in df2['지번 주소']]
df2['본번부번'] = [i.split()[3] for i in df2['지번 주소']]
df2['본번'] = [i.split('-')[0] for i in df2['본번부번']]
aa = [i.split('-') for i in df2['본번부번<sup>2</sup>]]
i = []
for i in aa:
   if len(i)==1:
      i.append('0')
   j.append(i)
df2['부번']=[i[1] for i in j]
#3. 관악구 주택 데이터에서 아파트 필터링
df3 = pd.concat([df1, df2[['시군구','법정동명','본번','부번']]], axis=0)
df4 = df3.drop_duplicates()
|df4.to_csv('./주택데이터정리.csv', encoding='cp949', index=False)
```

## 03 분석 방법 | 관악구 주택 위치 데이터 추출

#### 관악구 주택 현황 데이터

- 공공데이터 포털에서 제공하는 「서울특별시 관악구\_법정동 주택현황」
- 2022년 관악구 주택 주소(시군구, 법정동명, 본번, 부번), 주용도 데이터 이용
- 주용도가 공동주택, 단독주택인 데이터만 활용

| 시군구       | 법정동명 | 본번   | 부번  | 주용도  |
|-----------|------|------|-----|------|
| 서울특별시 관악구 | 봉천동  | 942  | 7   | 단독주택 |
| 서울특별시 관악구 | 봉천동  | 100  | 172 | 단독주택 |
|           |      |      |     |      |
| 서울특별시 관악구 | 봉천동  | 1588 | 21  | 공동주택 |
| 서울특별시 관악구 | 신림동  | 1426 | 10  | 공동주택 |

# 03 분석 방법 | 관악구 주택 위치 데이터 추출

#### 관악구 아파트 위치 데이터 추출

- 공동주택에는 아파트도 포함 → <u>아파트 필터링 필요</u>
- 도로명 주소 사이트 크롤링을 통해 284개의 관악구 아파트 주소 추출 후 제거

| 지번 주소                        | 본번   | 부번 |
|------------------------------|------|----|
| 서울특별시 관악구 봉천동 1701 건영아파트(6차) | 1701 | 0  |
| 서울특별시 관악구 봉천동 1000 현대아파트     | 1000 | 0  |
| 서울특별시 관악구 신림동 1709 양씨아파트     | 1709 | 0  |
| 서울특별시 관악구 신림동 746-43 건영아파트   | 746  | 43 |
| 서울특별시 관악구 신림동 1700 라이프아파트    | 1700 | 0  |

## 03 분석 방법 | 관악구 주택 위치 데이터 추출

#### 최종 데이터셋

- 23,454 행의 관악구 주택 위치 데이터

| 시군구       | 법정동명      | 본번   | 부번  |
|-----------|-----------|------|-----|
| 서울특별시 관악구 | 봉천동       | 942  | 7   |
| 서울특별시 관악구 | 봉천동<br>26 | 100  | 172 |
|           | •••       |      |     |
| 서울특별시 관악구 | 봉천동       | 100  | 519 |
| 서울특별시 관악구 | 봉천동       | 1728 | 0   |

## 03 분석 방법 | Geocoding

주소 앞 부분에 추가할 문자열

#### Geocoding Tool을 활용한 주택 위도, 경도 데이터 추출

| _시군구                 | 법정동명 | 본번   | 부번  |  |  |
|----------------------|------|------|-----|--|--|
| 서울특별시 관악구            | 봉천동  | 942  | 7   |  |  |
| 서울특별시 관악구            | 봉천동  | 100  | 172 |  |  |
| 서울특별시 관악구            | 봉천동  | 1609 | 20  |  |  |
| 서울특별시 관악구            | 신림동  | 593  | 0   |  |  |
| 서울특별시 관악구            | 봉천동  | 1688 | 112 |  |  |
| 서울특별시 관악구            | 신림동  | 1450 | 8   |  |  |
| - 주소칼럼 선택 - 27       |      |      |     |  |  |
| 주소 문자열 생성에 사용할 칼럼 개수 |      |      |     |  |  |
|                      |      |      |     |  |  |

## 03 분석방법 | Geocoding

#### Geocoding Tool을 활용한 주택 위도, 경도 데이터 추출



| 입력주소                  | 경도         | 위도        |
|-----------------------|------------|-----------|
| 서울특별시 관악구 봉천동 942-7   | 126.940484 | 37.485186 |
| 서울특별시 관악구 봉천동 100-172 | 126.962042 | 37.481511 |
| 서울특별시 관악구 봉천동 1609-20 | 126.954527 | 37.477138 |
|                       | ••••       |           |
| 서울특별시 관악구 봉천동 100-519 | 126.959831 | 37.481907 |
| 서울특별시 관악구 봉천동 1728-0  | 126.961461 | 37.482597 |

# O3 분석방법 | Geocoding

#### 관악구 주택 데이터 시각화



sns.scatterplot(data=df, x='X', y='Y', hue='행정동') plt.xlabel('경도') plt.ylabel('위도')



아파트, 상업시설, 산지 등을 제외한 행정동 별 주택 분포도

#### K-means Clustering



- 데이터를 K개의 클러스터로 묶는 비지도 학습 알고리즘
- 군집 내 거리 최소화, 군집 간 거리 최대화 하는 방향으로 학습

K-means Clustering

K-means Clustering 알고리즘을 활용해 각 그룹의 중심을 도출해서 해당 장소에 거점형 분리배출 시설을 설치한다면?

31

- Q. 분리배출 시설 개수(K)는 어떻게 정하지?
- A. 모든 주택에서 반경 100M 이내에 분리배출 시설이 위치하도록 만들자! (해외 사례) 체코의 경우 도보 2분 거리 (90m) 에 거점형 분리수거장을 배치하여 접근성을 높임.
  - → k = 200 으로 설정

```
# 클러스터링
from sklearn.cluster import KMeans
k = 200
model = KMeans(n_clusters = k, random_state = 1234)
model.fit(df[['X','Y']])
df['cluster'] = model.fit_predict(df[['X','Y']])
df_center = pd.DataFrame(model.cluster_centers_)
# 지도 시각화
map = folium.Map(location=[df_center.loc[:,1].mean(),df_center.loc[:,0].mean()], zoom_start=11)
for n in df_center.index:
    location = [df_center.loc[n, 1], df_center.loc[n, 0]]
    folium.Marker(
        location = location,
    ).add_to(map)
for n in df_center.index:
    folium.Circle(
        location=[df_center.loc[n,1], df_center.loc[n,0]],
        #icon=folium.lcon(color='red',icon='ok')
        radius = 100
    ).add_to(map)
|map.save('./map_cluster_final.html')
```



- 관악구 주택 데이터를 200 개로 군집화
- 군집화된 그룹의 중심 좌표 도출
- 33 각 그룹의 중심 = 거점형 분리배출 시설
- 대부분의 주택이 분리 배출 시설 100M 반경 안에 포함됨







# 04 결론

### 04 ge

#### 예상 운영 시나리오

분리 수거장 설치 비용

수거 기간

운영 방식



☑ 생활쓰레기 배출

배출시간(※토요일 제竳)

• 주거지역 : 18:00부터 24:00까지

• 가로지역 : 22:00부터 익일 01:00까지

174,000 x 200 = 34,800,000

동일하게 유지 (월~금, 일)

관악구 전체 주택 순회



거점형 분리 배출 시설 설치된 200곳

### 04 <sub>결론</sub>

활용방안



RFID 기반 음식물/일반 쓰레기 종량제 기기 도입으로 쓰레기 발생 감량 효과



효율적인 분리수거 구역 분류로 인한 인력의 효율성 증대



분리수거 차량 최적 경로 고려 가능

### 04 <sub>결론</sub>

기대 효과

효율적인 분리수거장 위치로 인한 무단 투기 쓰레기양 감소

길거리에 쓰레기가 없어지므로 도시 미관 개선







출처: '수원시 단독주택 '쓰레기감량 클린마을' 큰 성과' 기사 사진 (https://cm.asiae.co.kr/article/2015110515165987937)



감사합니다:)