Intervals, Transformations, and Slope Solution (version 61)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8,2) \cup (4,9)$
Negative	$(2,4) \cup (9,10)$
Increasing	$(-8, -1) \cup (3, 8)$
Decreasing	$(-1,3) \cup (8,10)$
Domain	(-8, 10)
Range	(-4,4)

Intervals, Transformations, and Slope Solution (version 61)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=82$ and $x_2=97$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 22 & 97 \\ 40 & 82 \\ 82 & 22 \\ 97 & 40 \\ \hline \end{array}$$

$$\frac{g(97) - g(82)}{97 - 82} = \frac{40 - 22}{97 - 82} = \frac{18}{15}$$

The greatest common factor of 18 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{6}{5}$$

2