	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_{1}^{\#1}_{+}\alpha\beta$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{-}\alpha}^{\#1}$	$ au_1^{\#2}$
$_{1}^{#1}$ $+^{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\frac{#2}{1^+} + \alpha \beta$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$_{1}^{#1}+^{\alpha\beta}$	$\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1} + \alpha$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\sigma_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#_1} + ^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} +^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}ikt_2$	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\sharp_1}\dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	<u>2 i k t 3</u> 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
$\tau_0^{\#2}$	0	0	0	0
τ ^{#1} / ₀ +	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$ au_0^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

 $\omega_{2}^{\#1}{}_{\alpha\beta}\ f_{2}^{\#1}{}_{\alpha\beta}$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	£3	$i\sqrt{2}kt_3$	0	0
,	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ \dagger	$f_0^{\#2} +$	$\omega_{0^{\text{-}}}^{\#1} \dagger$

	#	1	1	3	3	3	2	2	21
Source collistiallits	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2 i k \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \sigma_{1+}^{\#2}\alpha\beta == 0$	$\sigma_{2^{-}}^{\#1}\alpha\beta\chi := 0$	$\tau_{2+}^{\#1\alpha\beta} == 0$	Total #:

	Massive particle				
?	Pole residue:	$-\frac{1}{r_2} > 0$			
$J^P = 0^-$	Polarisations:	1			
$\frac{1}{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$			
?	Spin:	0			
	Parity:	Odd			

?	Quadratic pole	2
$\stackrel{k^{\mu}}{\longrightarrow}$?	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$
?	Polarisations:	2

Unitarity conditions