Układy cyfrowe i systemy wbudowane

Sprawozdanie z laboratorium

Data	Tytuł zajęć	Uczestnicy
11.10.2017 13:00	Implementacja prostych układów logicznych	Iwo Bujkiewicz (226203) Adrian Wąż (226042)

Zadania

Na zajęciach należało zaprojektować następujące układy logiczne, przeprowadzić symulację ich działania oraz zaprogramować mikroukład CPLD z ich użyciem.

- 1. Dwuwejściowa bramka logiczna
- 2. Układ realizujący zminimalizowaną funkcję logiczną $G(w,x,y,z) = \prod (1,2,4,9,11,12,14)$
- 3. Translator 4-bitowego kodu +3 na kod naturalny binarny

Kolejne etapy realizacji

Bramka logiczna

Bramka logiczna miała być prostym testem sposobu implementacji układów logicznych w laboratorium. Nie wymagała dodatkowych kroków wstępnych. Do realizacji wybrano bramkę NAND.

Symulacja działania bramki przebiegła pomyślnie.

Mikroukład CPLD zaprogramowany bramką logiczną działał zgodnie z oczekiwaniami. Wejścia i wyjścia wyprowadzono na porty mikroukładu zgodnie z poniższą tabelą.

Nazwa portu	Węzeł
К0	NAND_IN1
K1	NAND_IN2
LED7	NAND_OUT

Funkcja $G(w,x,y,z) = \prod (1,2,4,9,11,12,14)$

Notacja Π () oznacza definicję maxtermów, tj. kombinacji wejściowych, dla których funkcja daje wartość 0. W tym przypadku przekłada się to na następującą tabelę prawdy.

wxyz	G(w,x,y,z)
0000	1
0 0 0 1	0
0010	0
0 0 1 1	1
0100	0
0 1 0 1	1
0110	1
0111	1
1000	1
1 0 0 1	0
1010	1
1011	0
1100	0
1101	1
1110	0
1111	1

Funkcję G(w,x,y,z) zminimalizowano używając siatki Karnaugh'a.

wx \ yz	00	01	11	10
00	1	0	1	0
01	0	1	1	1
11	0	1	1	0
10	1	0	0	1

Efektem minimalizacji była postać funkcji:

$$G(w,x,y,z) = (x \vee y \vee \neg z) \wedge (w \vee x \vee \neg y \vee z) \wedge (\neg x \vee y \vee z) \wedge (\neg w \vee x \vee \neg z) \wedge (\neg w \vee \neg x \vee z)$$

Symulacja układu wykazała błędy, ponieważ podczas tworzenia schematu układu do dwóch bramek OR omyłkowo podłączono niewłaściwy sygnał wejściowy (y zamiast z).

										8	833.333 ns
Name	Value	0 ns	100 ns	200 ns	300 ns	400 ns	500 ns	600 ns	700 ns	800 ns	
LL func_in_w LL func_in_x LL func_in_y LL func_in_z	0										
In func_in_x	0										
le func_in_y	0										
le func_in_z	0										
func_out	1										

Programowanie na mikroukładzie CPLD przebiegło bez zarzutu. Wejścia i wyjścia wyprowadzono na porty mikroukładu zgodnie z poniższą tabelą.

Nazwa portu	Węzeł
К0	FUNC_IN_Z
K1	FUNC_IN_Y
K2	FUNC_IN_X
КЗ	FUNC_IN_W
LED7	FUNC_OUT

Translator kodu

Translator miał za zadanie konwertować 4-bitowy kod z obciążeniem (+3) na 4-bitowy kod naturalny binarny. Sposób konwersji przedstawia poniższa tabela prawdy, gdzie X jest reprezentacją +3, a Y jest reprezentacją NB.

x3 x2 x1 x0	y3 y2 y1 y0
0000	1 1 0 1
0 0 0 1	1110
0010	1111
0011	0000
0 1 0 0	0 0 0 1
0 1 0 1	0010
0 1 1 0	0 0 1 1
0111	0100
1000	0 1 0 1
1 0 0 1	0110
1010	0 1 1 1
1011	1 0 0 0
1 1 0 0	1 0 0 1
1101	1010
1110	1011
1111	1 1 0 0

Dla każdej z osobna cyfry binarnej reprezentacji Y zminimalizowano funkcję logiczną z pomocą siatki Karnaugh'a.

x3x2 \ x1x0	00	01	11	10
00	1	1	0	1
01	0	0	0	0
11	1	1	1	1
10	0	0	1	0

 $y3 = (x3 \wedge x2) \vee (\neg x3 \wedge \neg x2 \wedge \neg x1) \vee (\neg x3 \wedge \neg x2 \wedge \neg x0) \vee (x3 \wedge x1 \wedge x0)$

x3x2 \ x1x0	00	01	11	10
00	1	1	0	1
01	0	0	1	0
11	0	0	1	0
10	1	1	0	1

 $y2 = (\neg x2 \wedge \neg x1) \vee (\neg x2 \wedge \neg x0) \vee (x2 \wedge x1 \wedge x0)$

x3x2 \ x1x0	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

 $y1 = x1 \leq x0$

x3x2 \ x1x0	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

Schemat układu przyjął postać:

Symulacja translatora przebiegła pomyślnie.

Programowanie na mikroukładzie CPLD przebiegło bez zarzutu. Wejścia i wyjścia wyprowadzono na porty mikroukładu zgodnie z poniższą tabelą.

Nazwa portu	Węzeł
К0	PLUS3_IN0
K1	PLUS3_IN1
K2	PLUS3_IN2
К3	PLUS3_IN3
LED0	NB_OUT0
LED1	NB_OUT1
LED2	NB_OUT2
LED3	NB_OUT3