PATENT ABSTRACTS OF JAPAN

(11) Publication number:

07-190072

(43) Date of publication of application: 28.07.1995

(51)Int.CI.

F16C 33/64 C21D 6/00

(21)Application number: 05-353236

(71)Applicant: NTN CORP

(22)Date of filing:

27.12.1993

(72)Inventor: TSUSHIMA MASAYUKI

MAEDA KIKUO

(54) METHOD FOR THERMALLY TREATING ROLLING BEARING

PURPOSE: To extend the fatigue life to foreign matter included

(57) Abstract:

lubrication by forming a race from an alloy steel containing C, Si, Cr, Mn in specified weight ratios, hardening and tempering it at specified temperatures after carbonitriding treatment to make the residual austenite on the surface layer part to a specified %. CONSTITUTION: At least a race is formed of an alloy steel containing 0.8-1.2%, by weight, of C, 0.4-1.0% of SiO, 0.2-1.2% of Cr, and 0.8-1.5% of Mn, hardened at 830-870° C after carbonitriding treatment, and tempered to 160-190° C to make the residual austenite on the surface layer part to 25-50%. When a bearing material is molded from this alloy steel and carbonitrided, the austenite undeformed by hardening is present in the surface layer part more than in the core part since the nitrogen content in the surface layer part is increased to reduce the Ms point lower than in the core part. Since the nitrogen is therefore rich in the surface layer part to enhance the hardening starting temperature, the residual austenite in the surface laver part can be enhanced to 25% or more. Thus, the rolling fatigue life under foreign matter included lubricating oil environment can be improved.

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平7-190072

(43)公開日 平成7年(1995)7月28日

(51) Int.Cl.⁶

識別記号 庁内整理番号 FΙ

技術表示箇所

F16C 33/64

C21D 6/00 101 F 9269-4K

審査請求 未請求 請求項の数3 FD (全 7 頁)

(21)出願書号

特層平5-353236

(22)出願日

平成5年(1993)12月27日

(71)出版人 000102692

エヌティエヌ株式会社

大阪府大阪市西区京町場1丁目3番17号

(72)発明者 対馬 全之

三重県桑名市川岸町414の15

(72) 発明者 前田 喜久男

三重県員弁郡大安町平塚974

(74)代理人 弁理士 松野 英彦

(54) 【発明の名称】 転がり軸受の熱処理方法

(57)【要約】

【目的】 自動車のトランスミッションに使用される転 がり軸受等、異物が混入した潤滑条件下で使用される様 な転がり軸受には、高炭素軸受鋼の軸受転走面に存在す る残留オーステナイトが、転がり疲労寿命に有効であ る。本発明は、表層部の残留オーステナイトを高く且つ 安定化させて、異物混入潤滑に対する疲労寿命を長期化 させる為の熱処理方法を提供することを目的とする。

【構成】 転がり軸受の少なくとも軌道輪を、高Si・ 高Mnの高炭素低合金鋼で形成し、830~870℃の 浸炭窒化し且つ100℃程度に焼入れした後、160~ 190℃に焼戻して、表層部の残留オーステナイトを2 5~50%に調節する。

【特許請求の範囲】

【請求項1】 軌道輪及び転動体から成る転がり軸受の 熱処理方法において、

1

少なくとも軌道輪を、重量比にして、С0.8~1.2 %、SiO. 4~1. 0%、CrO. 2~1. 2%及び MnO. 8~1. 5%を含有する合金鋼により形成し、 浸炭窒化処理した後830~870℃から焼入れし、1 60~190℃の温度範囲に焼戻しして、表層部の残留 オーステナイトを25~50%としたことを特徴とする 転がり軸受の熱処理方法。

【請求項2】 上記合金鋼がMo0. 3%以下を含有す る請求項1記載の転がり軸受の熱処理方法。

【請求項3】 焼入れ中の300℃から150℃までの 温度範囲の冷却能Hを0.2 cm 以下とした請求項1 記載の転がり軸受の熱処理方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、軽量且つ長寿命な、特 に、潤滑油中異物混入下で使用される自動車などのトラ ンスミッション用の転がり軸受の熱処理方法に関する。 [0002]

【従来技術と解決課題】軸受材料としては、従来から、 髙炭素軸受鋼の焼入れ焼戻し材が、特に、清浄な潤滑条 件下では、良好な寿命が得られるので広く使用されてい る。しかしながら、自動車のトランスミッションに使用 される転がり軸受は、減速用歯車と同じ容器内で使用さ れるので、歯車の表面摩耗粉が、潤滑油中に懸濁して転 がり軸受の軌道輪と転動体との転走面に噛み込み、転走 面の剥離・摩耗を促進して、焼入れ焼戻し材では、一般 に転がり疲労寿命が不十分であった。

【0003】従来の高炭素軸受鋼の寿命を改善する方法 には、SUJ3鋼相当の高Si且つ高Mnの軸受鋼を高 温より焼入れして残留オーステナイトを増加させ、同時 に亀裂敏感生を抑制するため、焼入れ過程の冷却速度を 遅く制御する技術が知られている(特公昭62-294 87号公報)。また、表層部の窒化層を利用するもの に、米国特許3216869号に開示されたように、高 炭素クロム軸受鋼を窒化又は浸炭窒化処理をして、表層 部に窒素の付加に伴う残留オーステナイトを安定化させ て残留圧縮応力を形成し、同時に炭窒化物を析出せしめ 40 て高硬度として、耐熱性と転がり寿命を改善するものが ある。さらに、特開昭60-92463号公報に開示さ れたように、浸炭窒化後に200℃以上の高温焼戻しを して、芯部のオーステナイトを完全に分解し、寸法安定 性を改善した技術もある。

【0004】上記の髙温焼入れ処理や浸炭窒化処理をし た軸受鋼は、表層部に窒素富化に伴いオーステナイトが 残り、この残留オーステナイトが疲労寿命を改善する効 果を認められるが、上記のような、異物混入下の潤滑環 境で使用される転がり軸受の寿命改善に対しては、表層 50 やすく髙めることができる。この残留オーステナイトを

部の残留オーステナイトが不安定であって使用中に分解 し易いため、不十分であった。

【0005】本発明は、表層部の残留オーステナイトを 高くして、異物混入下の潤滑環境で使用される転がり軸 受の寿命を改善するための熱処理方法を提供しようとす るものである。

[0006]

【課題を解決するための手段】本発明の転がり軸受の熱 処理方法は、軌道輸及び転動体から成る転がり軸受の少 10 なくとも軌道輪を、重量比にして、С0.8~1.2 %、SiO. 4~1. 0%、CrO. 2~1. 2%及び MnO. 8~1. 5%を含有する合金鋼により形成し、 浸炭窒化処理した後、830~870℃の温度範囲から 焼入れすると共に、160~190℃の温度範囲に焼戻 しして、表層部の残留オーステナイトを25~50%と したことを特徴とするものである。

【0007】本発明の熱処理方法は、髙炭素合金鋼を浸 炭窒化し、髙温から焼入れして後、比較的低温で焼き戻 すことにより、表層部の残留オーステナイトを25~5 20 0%の範囲に高く保持して、潤滑中の異物に対して転が り疲労寿命を向上させるものである。

【0008】合金鋼の組成について、C0.8~1.2 %と高炭素にするのは、基本的に焼入れ焼戻しにより表 層部を硬化するためである。 CrO. 2~1. 2%とす るのは、СгО. 2%未満では、炭化物を形成せず、表 層の硬度が不足し、1.2%を越えると、炭化物が粗大 化して剥離起点となり、短寿命となり易いからである。 【0009】Siは、安定して表層の残留オーステナイ トを25%以上に高め、焼戻し軟化抵抗性を付与して、 耐熱性を確保するために O. 4%以上必要であるが、 S i 1%を越えると、浸炭窒化処理の過程で、表皮から表 層部への窒素・炭素の富化を阻害するからである。

【0010】Mnは、焼入れ性を確保して、芯部まで焼 入れするためであるが、本発明においては、焼入れ過程 及び焼戻し過程の残留オーステナイトを安定化させる元 素で表層部の残留オーステナイトを高める。多量のMn の添加は、冷間加工性の低下や焼き割れ・脆化の原因と なるので、Mn1. 5%を越えない範囲に増加する。

【0011】このような髙炭素合金鋼としては、SUJ 3鋼が使用できる。また、Moは、焼入れ性改善のため 0.3%まで適宜添加される。Moを添加した材料とし てSUJ5鋼が利用される。

【0012】このような組成の合金鋼で軸受素材を成形 し、浸炭窒化すると表層部は窒素含有量が高くなり、表 層部のMs点が芯部に比較すると低下するので、これを 焼入れすると、未変態のオーステナイトが芯部よりも表 層部に多くなる。表層部に窒素が高く、焼入れ開始温度 (オーステナイト化温度)を830~870℃と高くす るので、表層部の残留オーステナイトを25%以上にた

安定に高くするには、焼入れ終端温度を100℃程度 に、好ましくは、90~120℃に高くする。この焼入 れ過程では、窒素富化された表層部のマルテンサイト変 態が内部より遅れて始まり、かつその変態量が内部より 少ないので、表層部には、残留圧縮応力が形成される。 【0013】焼入れ開始温度(オーステナイト化温度) が830~870℃と通常の焼入れ焼戻し鋼に比して髙 いので、本発明に使用する鋼は、焼入れに伴う亀裂敏感 値が大きくなる。このため、焼入れ過程の300~15 ンサイト変態過程の冷却速度を制御することが好まし いっ

3

【0014】浸炭窒化処理は、通常は浸炭性ないし還元 性ガス中にアンモニアを添加した髙温ガス中で浸炭窒化 するが、この場合には、830~870℃の温度範囲で 浸炭窒化をした後直ちに上記条件で油中焼入れする。

【0015】本発明の熱処理方法は、焼入れ後の焼戻し 温度を、160~190℃の比較的低温とし、焼戻し過 程での残留オーステナイトの分解を抑えて、表層部の残 留オーステナイトを25~50%の範囲とする。この範 20 ~177μm) 囲で残留オーステナイトが高くなる程、異物混入下での 潤滑条件で転がり疲労寿命を改善するが、他方、表面硬 さが低下して、耐摩耗性を低下させるので、表層部の残 留オーステナイトは25~30%の範囲が良い。これに*

*対して、芯部は、190℃以下の低温焼戻しであるか ら、通常は、残留オーステナイトが15~20%程度残 留している。

[0016]

【実施例】軸受に使用する鋼の組成と寿命及び表面残留 オーステナイト量の関係を調べた。表1と表2に示す組 成の鋼で、円錐ころ軸受(JIS型番30206)を作 製し、本発明の熱処理法として、浸炭窒化法は、NXガ スに容積比で10%のアンモニアガスを添加した連続炉 0℃の範囲の冷却能Hを0.2cm⁻¹以下とし、マルテ 10 で、850℃に150min加熱保持して浸炭窒化した 後直ちに、油温100℃の油中に急冷した。ついで、1 80℃×2hの焼戻しを行った。

> 【0017】また、転がり疲労寿命の試験条件は、次の 通りであった。

> 荷重Fr;17.64kN、 接触面圧 P max ; 2. 6GPa、回転速度;2000rpm、 ビン56油浴給油、計算寿命;169h(異物混入無し のとき)

混入異物;ガスアトマイズ粉(КНА30 粒径104

異物混入量;1g/1000cc油

[0018]

【表1】

調推	化学成分 (%)			10% 寿命	表層部		500 C1h	
- T- 1/2	С	Si	Ma	Cr	(p)	硬度Kv	オーステナイトス	保特後の表 層部硬さNv
A *	1.0	0.4	1.1	1.2	146.5	800	29.5	650
В	0.75	0.2	0.45	2.0	45.0	790	23.0	510
С	1.0	1.0	0.4	1.4	58.0	805	25.0	500

本発明の実施例

[0019]

※ ※【表2】

桐種		化学組刷	克 (%))	10% 寿命 (h)	表層部**		500 C1h
	С	Si	Мп	Сr		硬化源	オースサナイト%	保持後の表 層部硬さliv
D	1.0	0.25	0.4	1.5	43.6	0.35mm	27.5	590
E	1.0	1.1	0.4	1.4	58.1	0.3	25.0	530
F *	1.0	0.4	1.1	1.2	135.0	0.5	30.0	630

本発明の実施例 表層部の硬化深さ; 500℃焼戻し後の硬化深さの値である。

【0020】試験結果を表1と表2に示す。本発明に使 用した鋼の軸受は、異物混入潤滑下において長寿命を示 している。熱処理条件が同じでも、比較材に比べて、本 発明の鋼の表層部は、残留オーステナイトが多くなり、 500℃×1hの保持後の表面硬度がHv600以上あ り、硬化層深さも深くなっている。

【0021】浸炭窒化し焼戻した後の残留オーステナイ ト量と転がり疲労寿命(10%寿命時間)との関係を、 図1に示してあるが、この図から、表層部の残留オース テナイト量が25%以上とすることにより、転がり疲労 寿命が改善できることが判る。

【0022】次に、軸受としてJIS型番6206と6 306とし、材料として、SUJ2鋼とSUJ3鋼を選 び、熱処理法として上記の浸炭窒化法と、比較例として 従来の標準処理である焼入れ焼戻し法とを比較した。比 50 較例の熱処理は、830℃× minのオーステナイ 5

minの焼戻しを行 ト化後油中焼入れし180℃× う方法であった。

【0023】転がり疲労寿命試験は、清浄油潤滑(荷重 12.25 k N) と異物混入油潤滑(荷重6.9 k N) での2水準に分けて行った。異物混入油潤滑の試験条件 は次の通り。

荷重Fr; 6.9kN、接触面圧Pmax; 3.2GP a、回転速度;2000rom 、潤滑:タービン56油浴* *給油、計算寿命;191h(異物混入無しのとき) 混入異物;ガスアトマイズ粉(KHA30,粒径104

 $\sim 177 \mu m$ 異物混入量;0. 4g/1000cc油

その結果を表3に纏めた。

[0024] 【表3】

軸受型番	類程	熱処理法	表層部 オーステナイト (X)	表層部 残留応力 (MPa)	10%寿命(h)		
					清浄油	異物混入	
6206	SUJ2	標準能入	10	-100	114	17	
	SUJ2	漫炭蜜化	2 7	-150	144	4 1	
	SUJ3	標準焼入	2 5	-100	3 3 2	3 8	
	SUJ3	浸炭窒化	2 8	-150	4 3 2	9 2	
6306	SUJ2	標準烧入	10	-100	3 3 7	3 7	

【0025】表3に示したように、本発明の浸炭窒化し の改善効果を発揮する。そして、同じ程度の荷重なら ば、従来の焼入れ焼戻し材のSUJ2の軸受に対して、 SUJ3に浸炭窒化処理を施すことにより、1ランク小 さい軸受を利用することが可能になり、軸受の小型軽量 化に有用となる。

【0026】表4には、浸炭窒化時間を変えて、その表※

※層部の浸炭窒化深さと10%寿命との関係を示したもの た軸受が、特に、異物混入下での潤滑条件で優れた寿命 20 であるが、850℃での浸炭窒化時間が同じ条件では、 SUJ2よりも本発明の実施例のSUJ3の方が浸炭窒 化深さが大きく、浸炭窒化時間を150minから60 minに短縮しても、寿命の低下は小さいことがわか る。

[0027]

【表4】

浸炭 窒間	浸炭窒(10%寿命 (h)				
等間 min)	(mm)		異物混入条	件(0.10mm)**	大荷重条件	(0.14mm) ** SUJ3	
	SUJ2	SUJ3	SUJ2	Sn13	SUJ2		
60	0.2	0.3	44.0	84.1	262	372	
120	0.25	0.4	102.0	84.7	107	475	
150	0.35	0.5	41.4	88.1	144	417	

500℃加熱保持後の硬化層源さをもって、浸炭窒化源さとした。 その条件での繰り返し剪断応力最大位置

【0028】以上のように、SUJ2鋼よりSi及びM nを高くして、浸炭窒化処理をして180℃の低温で焼 戻した鋼は、表層部の残留オーステナイトが高くなるか 40 ら、自動車のトランスミッション等の異物混入下の潤滑 環境では特に優れた長寿命を発揮する。これは、転走面 に噛み込んだ高硬度の異物は圧痕周辺での応力集中源と なるが、表層部の残留オーステナイトがこの応力集中を 塑性変形により緩和して、亀裂の発生を遅らせるからで ある。此の点から表層部の残留オーステナイトは25~ 50%の範囲では多いほど寿命の延長に有効である。

【0029】しかしながら、30%程度と同じ量のオー ステナイトを残留させた鋼であっても、 S U J 3 鋼と S U J 2 鋼とでは上述の如く、転がり疲労寿命に有意差が 50

生じている。この点について、本発明の実施例として上 記の条件で浸炭窒化して焼入れ後に低温焼戻しをしたS U J 3 鋼について、表層部の耐熱性を調べた。この試験 では、同じ熱処理条件で浸炭窒化処理をしたSUJ2鋼 の比較材と対比し、軸受運転中の表層部の昇温を考慮し て、試験焼戻しを行った。

【0030】図2は、浸炭窒化後180℃での低温焼戻 しをしたSUJ3鋼(図中a曲線)とSUJ2鋼(図中 b曲線)とを試験焼戻し温度200~300℃に加熱 (加熱時間2h) したときの表層部の残留オーステナイ トの変化を示すが、SUJ3鋼の方が220~300℃ での残留オーステナイトの分解が明らかに少ない。

【0031】図3は、これら試料の試験焼戻し後の表面

8

7

硬度と試験焼戻し温度200~300℃との関係を示すが、250℃までは両者に差異はなく、いずれもHRC60以上の高硬度となっている。試験焼戻し温度300℃ではSUJ2鋼の表層部がより軟化する。

【0032】図4は、試験温度に加熱したときのその温度での表層部の高温硬度の変化を示す。高温になる程表面硬度は低下するが、常温から300℃までの温度範囲ではSUJ3鋼とSUJ2鋼との間に殆ど硬度差がない。

【0033】図3と図4に示した表面硬度は、残留オー 10 ステナイトと焼戻しマルテンサイトとが混合した組織の 硬度であり、表面の残留オーステナイトが多い場合は、 測定硬度は低くなる。本実施例のSUJ3鋼は、残留オーステナイトが高温まで存在するため混合組織としての 硬度は、SUJ2鋼と同じ程度になったのである。

【0034】図5は、焼戻しマルテンサイトだけの硬度を推定するために、試片を各温度に加熱保持し、試片温度とマルテンサイト(211)面のX線半価幅との相関関係を示したもので、X線半価幅は200℃以上でSUJ3鋼がSUJ2鋼より高くなっている。即ち、本発明20の熱処理方法を実施したSUJ3鋼の焼戻しマルテンサイトは、同じく浸炭窒化したSUJ2鋼よりも200℃以上の高温で硬く、これが、本発明の熱処理方法が従来のSUJ2鋼よりも長寿命となる理由の一つである。

【0035】潤滑油中に異物が混入するような潤滑条件下では、転走面は発熱と塑性変形により疲労する。本発明の熱処理方法によれば、軸受の表層部は、高温でも残留オーステナイトが安定でマルテンサイトの硬度も高いので、軸受は、これらの原因による疲労は起こり難く長寿命になるのである。

【0036】寸法安定性については、表5には、表3に示した熱処理後の試験軸受について、120℃及び150℃に2500h保持したときの寸法変化率の測定結果を示した。本発明の浸炭窒化した試験軸受の寸法安定性は、120℃保持までは従来のSUJ2鋼の焼入れ焼戻し材と大差ないが、150℃の高温保持条件では、従来のSUJ2鋼の焼入れ焼戻し材よりも低下する。これは、芯部の残留オーステナイトの分解によるものである。

[0037]

材質と熱処理	寸法変化率 (×10 ⁻⁵)				
	120	℃保持	150	で保持	
SUJ2焼入れ	4	1		7 9	
SUJ2授炭窒化	4	0	1	0 4	
SUJ3焼入れ	3	4	1	5 0	
SUJ3浸炭窒化	4	0	1	6 3	

[0038]

【表5】

【発明の効果】本発明の転がり軸受の熱処理方法は、Silon Empty Em

【図面の簡単な説明】

【図1】浸炭窒化処理した鋼及び焼入れ焼戻しした鋼の 表層部残留オーステナイトと転がり疲労寿命との関係を 示す図。

【図2】浸炭窒化後180℃での低温焼戻しをしたSU J3鋼(図中a曲線)とSUJ2鋼(図中b曲線)とを 試験焼戻し温度200~300℃に加熱したときの表層 部の残留オーステナイトの変化を示す。

【図3】 浸炭窒化後180℃での低温焼戻しをしたSU J3鋼(図中a曲線)とSUJ2鋼(図中b曲線)の試 験焼戻し後の表面硬度と試験焼戻し温度(200~30 0℃)との関係を示す。

【図4】浸炭窒化後180℃での低温焼戻しをしたSUJ3鋼(図中a曲線)とSUJ2鋼(図中b曲線)の試験温度に加熱したときの表層部の高温硬度の変化を示す。

【図5】浸炭窒化後180℃での低温焼戻しをしたSU J3鋼(図中a曲線)とSUJ2鋼(図中b曲線)の試 片温度とマルテンサイト(211)面のX線半価幅との 40 相関関係を示した

*

