Fiche d'entraînement : suites arithmétiques et problèmes

Exercice 1:

William participe à une course organisée par une association récoltant des fonds pour la recherche médicale. Les amis de William verseront $20 \in$ à l'association, auxquels s'ajouteront $5 \in$ pour chaque kilomètre que William aura parcouru lors de la course.

On note u_0 la somme initiale versée par les amis de William à l'association et, pour tout $n \in \mathbb{N}^*$, u_n est la somme versée si William réussit à parcourir n kilomètres.

- 1) Déterminer les valeurs de u_0 , u_1 et u_2 .
- **2)** Exprimer u_{n+1} en fonction de u_n .
- **3)** En déduire la nature de la suite (u_n) .
- **4)** Exprimer u_n en fonction de n.
- 5) Calculer u_{12} et interpréter le résultat dans le contexte de l'exercice.
- 6) Déterminer le nombre minimum de kilomètres que William devra parcourir s'il veut récolter la somme de 120 €.

Exercice 2:

Un arbre grandit de 4 cm chaque mois. Le 1^{er} janvier 2 019, il mesure 470 cm. On note u_n la hauteur en centimètres de l'arbre, n mois **après** le 1^{er} janvier 2 019. On a donc $u_0 = 470$.

- 1) Exprimer u_{n+1} en fonction de u_n .
- **2)** En déduire la nature de la suite (u_n) .
- **3)** Exprimer u_n en fonction de n.
- 4) Déterminer la hauteur de l'arbre au mois de juin 2019.
- 5) Déterminer à partir de quel mois la hauteur de l'arbre dépassera 5 m.

Exercice 3:

Pour isoler une maison du bruit, on installe de fines plaques d'isolation sonore. Chaque plaque permet de baisser l'intensité sonore de 3 décibels. Avant l'installation des plaques, on constate que le niveau sonore dû aux bruits de la rue est de 84 décibels.

On note u_n le niveau sonore, en décibels, constaté à l'intérieur de la maison après la pose de n plaques isolantes.

- 1) Déterminer u_0 , u_1 et u_2 .
- **2)** Exprimer u_{n+1} en fonction de u_n .
- 3) En déduire la nature de la suite (u_n) .
- **4)** Exprimer u_n en fonction de n.
- 5) Déterminer u_5 et interpréter le résultat dans le contexte de l'exercice.
- 6) On voudrait un niveau sonore inférieur à 40 décibels. Déterminer le nombre de plaques nécessaires afin d'atteindre cet objectif.

Solutions

Exercice 1:

1)
$$u_0 = 20$$
, $u_1 = 20 + 5 = 25$, $u_2 = 20 + 2 \times 5 = 30$

2)
$$u_{n+1} = u_n + 5$$

3) (u_n) est une suite arithmétique car, pour passer d'un terme au suivant, on ajoute toujours le même nombre : 5 (raison de la suite).

4)
$$u_n = u_0 + n \times r = 20 + n \times 5$$

5)
$$u_{12} = u_0 + 12 \times r = 20 + 12 \times 5 = 80$$
.
S'il parcourt 12 km, il récoltera 80 € pour l'association.

6) Il faut résoudre $u_n \ge 120$, c'est-à-dire $20 + n \times 5 \ge 120$. On obtient donc $n \times 5 \ge 120 - 20$ donc $n \times 5 \ge 100$ donc $n \ge \frac{100}{5} = 20$. Il devra donc parcourir au moins 20 km pour récolter $120! \in \mathbb{R}$.

Exercice 2:

1)
$$u_{n+1} = u_n + 4$$

2) (u_n) est une suite arithmétique car, pour passer d'un terme au suivant, on ajoute toujours le même nombre : 4 (raison de la suite).

3)
$$u_n = u_0 + n \times r = 470 + n \times 4$$

- 4) le mois de juin 2 019 correspond à n=5. On calculer donc $u_5=u_0+5\times r=470+5\times 4=490$. Au mois de juin, l'arbre mesure 490 cm.
- 5) Il faut résoudre $u_n > 500$ c'est-à-dire $470 + n \times 4 > 500$. On obtient donc $n \times 4 > 500 - 470$ donc $n \times 4 > 30$ donc $n > \frac{30}{4} = 7,5$. Donc c'est à partir du 8^{ème} mois, c'est-à-dire au mois septembre 2 019 que l'arbre dépassera 5 m.

Exercice 3:

1)
$$u_0 = 84$$
, $u_1 = 84 - 3 = 81$, $u_2 = 84 - 2 \times 3 = 78$

2)
$$u_{n+1} = u_n - 3$$

3) (u_n) est une suite arithmétique car, pour passer d'un terme au suivant, on ajoute toujours le même nombre : -3 (raison de la suite).

4)
$$u_n = u_0 = n \times r = 84 + n \times (-3) = 84 - 3n$$

5)
$$u_5 = u_0 + 5 \times r = 84 + 5 \times (-3) = 69$$
.
Après avoir posé 5 plaques isolantes, l'intensité sonore sera de 69 décibels.

6) Il faut résoudre $u_n < 40$, c'est-à-dire 84 - 3n < 40.

On obtient donc -3n < 40 - 84 donc -3n < -44 donc $n > \frac{-44}{-3} \approx 14,67$.

Il faudra donc au minimum 15 plaques pour obtenir une intensité sonore inférieure à 40 décibels.