

Taller: derivada de una función como un límite y el problema de la recta tangente

Presentado por:

JOHN VAYRO SANCHEZ CRISTIAN DANILO QUIROZ ALEJANDRO MORENO

Docente:

(FRANKLIN FERRARO GOMEZ)

INSTITUCIÓN UNIVERSITARIA PASCUAL BRAVO TECNOLOGIA DESARROLLO DE SOFTWARE MEDELLÍN 2025

Taller: derivada de una función como un límite

y el problema de la recta tangente

1. Halla la recta tangente a la curva en el punto indicado en los ejercicios propuestos a continuación.

Ejercicio	Ejercicio
1. $y = 9 - x^2$; P (2,5)	2. $y = \sqrt{4 - x}$; P (-5,3)
3. $y = x^2 + 4$; P (-1,5)	4. $y = 2x - x^3$; P (-2,4)
5. $y = 2x^2 + 4x$; P (-2,0)	6. $y = \frac{4}{x^2}$; P (2,1)
7. $y = x^2 - 6X + 9$; P (3,0)	8. $y = -\frac{8}{\sqrt{x}}$; P (4,-4)
9. $y = x^3 + 3$; P (1,4)	10. $y = x^2 + 1$; P (0,1)
11. $y = 1 - x^3$; P (2,-7)	12. $y = x^2 + 1$;P (-1,2)

Acreditados en Alta Calidad

2. Determina las derivadas de las siguientes funciones utilizando la definición de límites.

Ejercicio	Ejercicio
1. f(x) = 3x	2. f(x) = 5x - 5
$3. f(x) = 3x^2 - 4$	$4. \ f(x) = 8 - x^2$
$5. \ f(x) = 8 - x^3$	$6. f(y) = y^2 - 5y$
$7. \ f(x) = \frac{8}{x-2}$	$8. f(x) = \frac{2}{\sqrt{x}}$
$9. \ f(x) = \frac{1}{x^2} - x$	$10. f(x) = t^3 + t$
$11. f(x) = 3x^2 + 3x$	$12.f(x) = 5x^3 - 3x^2 + 5x$

SOLUCION

A continuación, pantallazos de los 10 ejercicios escogidos para la entrega grupal.:

	Y
6- 4- 1x2 +4x 9	P (-2,0)
1. Venticai si el punto p	atenece at a coma
N = 2(-2)2+4(-2)	P(-2, 0)
Y= 2(4)-8 Y= 8-8	1=0 Pertenece a la
2. Encontrar la derivada	
$\frac{d}{dx}(2x^2) = 2 \cdot 2x^{2-1} = 2$	×
$\frac{d}{dx}(4x) = 4 \cdot x^{1-1} = 4$	x° = 4.1 = 4
dy = 4x+4	
$m = \frac{dy}{dx} \times = -2$	+4 DEncontrav la pendiente de la tangente.
m=-8+4	
4. 4-41=m(x-x1)	
y-0 = -4 (x- (-2))	
7 = -4 (x+2)	-> R//

11. y=1-x3, P(2,	ANATANT PARTITION
1. Ven hear si partenece	
y=1-(2)3	P(2,-7)
4=-4	· y=-7 Perlenece a la cura.
2- Encontrar la derivada	blower bloom
d (1)=0 dx	
$\frac{d}{dx}(-x^3) = -3x^{3-1} = -3x$.2
$\frac{dy}{dx} = 0 - 3x^2 = -3x^2$	
3. Encontrar la pendiente	de la tangente.
$m = \frac{dy}{dx} \times = 2 = -3(2)$	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
m = -3(4) $m = -12$	
4.	111111111111111111111111111111111111111
$\frac{1}{12} = \frac{12(x-2)}{12}$	1740 000
Y= -12x+24-7 Y= -12x+7	-> 21

Determinar las denvadas utilizando la definició	-
F'(x) = 1 m F(x+h)-F(x)	
1. $f(x+h) = 3(x+h)^2-4$ $(x+h)^2 = x^2+2xh+h^2$	
$F(x+h)=3(x^2+2xh+h^2)-4$	
$F(x+h) = 3x^2 + 6xh + 3h^2 - 4$	
$F(x+h)-F(x)=(3x^2+6xh+3h^2-4)-(3x^2-4)$ $=3x^2+6xh+3h^2-4-3x^2+4$	12
$= 6 \times h + 3h^2$	
3. $F(x+h)-F(x) - M(6x+3h) = 6x+3h$	10
$4. \qquad \qquad$	1
$F'(x) = \lim_{h \to 0} (6x+3h)$ F'(x) = 6x+3.(0)	1
F(X)=6x.	1

Taller 1. Derivada de una función (CETA) como un límite y el problema de La recta tangente.

1. Halla la recta tempente a la curva en el pundo indicado

(9) $y = x^3 + 3$; P(1,4)

· Pasol Verifica que el punto pertenece a la curva. Y= x3+3

Para saber si el punto pertenece a la curva, sustituimos X=1 en la ecuación de la curva y vemos si obtenemos y=4, si el resultado es diferente entonces el punto dado no pertenece a la curva dada

· Paso 2 Devivar la función: Devivarnos termino a

· La derivada de x3 es: $\frac{\partial}{\partial x}(x^3) = \frac{3 \cdot x^{3-1} = 3 \cdot x^2 = 3x^2}{17/05/2025}$ 15:05

esto se debe a que no hay cambio en el valor de la función a medida que x varía.

Derivada:
$$\frac{\partial y}{\partial x} = \frac{3x^2}{}$$

Significa que la pendiente de la curva en cualquier punto X esté da da por 3X2

· Paso 3. Se evalua la deriva da en X=1

$$\frac{\partial y}{\partial x}\Big|_{x=1} = 3(1)^2 = 3$$

Es decir, la pendiente de la recta tangente en X=1 es 3.

· Paso 4: Usa la formula de la recta

Teniendo: m=3 (x1, 41) = (1,4)

Reemplacemos

$$4 = 4 = 3 (x-1)$$

 $4 - 4 = 3x - 3$
 $4 = 3x + 1$

La secta tongente a la cusua y=x3+3 en el punto (1,4) es c y= 3x+1

2. Determina las derivados de las funciones utilizando la definición de límites 2. F(x) = 5x -5 ·Paso 1 Sustituimos la función usando la definición por límites F(x) = lim F(x+h)-F(x) Primero calcularos & (X #h) f'(x+h) = 5(x+h)-5=5x+5h-5 Ahoro reemplatamos en la depinición $f'(x) \lim_{h \to 0} \frac{(5x+5h-5)-(5x-5)}{h}$ · Paso 2 simplificamos la expresión del numera dor (5x+5h-5)-(5x-5) = 5x+5h-5-5x+5=51 es decir, p'(x) = lim sh Pass 3 Simplificamos La fracción Sh = 5 (siempre que h = 0) Paso 4. Aplicamos al Umite. $f'(x) = \lim_{h \to 0} = 5$ f'(x) = 5

Utilizando La definición de l'inites. 10. $f(x) = t^3 + t$ Definición de la derivado: $F'(t) = \lim_{h \to 0} F(t+h) - F(t)$ · Pasol Calcular & (t+h) $r(t+h) = (t+h)^3 + (t+h)$ Desarrollamos (t+h)3 usando binamio de Newton (t+h)3 = t5+3t2h+3+h2+h3 Entonces, p(t+h)=t3+3t2h+3th2+h3+t+h · Paro 2 Reemplatamos en la fórmula de la derivada. f'(t) = Lim f(th) - f(t) = Cim t3+3t2h+3the+h3+t+h)-(+2+t) · Paso 3 Cancelo mos terminos comunes: t3-t3=0, t-t=0 Oceda: 3t2h + 3th2 + h3 +h La expresión queda: f'(t) lim 3t2h+3th2+h3+h www.ceta.org.co

• Paso 4 Factorizonos el numerador

= $\lim_{h\to 0} \frac{h(3t^2+3th+h^2+1)}{h}$ Simplificanos h= $\lim_{h\to 0} (3t^2+3th+h^2+1)$ • Paso 5 Apricanos el límite

Cuando $h\to 0$ Los terminos (on h desaparecen $f'(t) = 3t^2+1$ Resultado: $f'(t) = 3t^2+1$

y = x2 + 4, P (-1,5) Fex = x2+4 => F(x)=2x - Colcular la pendiente en X= F(-1)=2(-1)=-2 La prodiente de la recta - Ecuación de la reda tangente y-7(-1)=F'(-1) (x-(-1)) y-5=-2 (x+1) y = -2x + 3ecoación de la recta to

For the services For 1: Calcular F (y+h) F(y+h)=Ly+h)^2-5(y+h) F(y+h)=y^2+2yh+h^2-5y-5h
= Sustituimos en la Formula del limite • F (y+h) - F(y) = [y2+2yh+h2-5y-5h]-[y=5x]
$S_{implificamos} = \frac{2yh + h^2 - 5h}{h} = \frac{h(2y+h-5)}{h}$ $= 2y + h - 5$
Calcularios el limite cuando h + 0: lin (2y+h-5) = 2y-5 h+0 Presultado:
F'(y) = 2y-5

