Memory Unit

Functional Units:

- Input Unit
- Memory Unit
- Arithmetic and Logic Unit (ALU)
- Output Unit
- Control Unit

Computer Memory

- Number & character operands, as well as instructions are stored in the memory of the computer
- Stored program concept
- CPU executes the instructions for which the instructions and operands have to come from memory unit
- Operations which involve memory:
 - Instruction fetch
 - · Memory read
 - Memory operand fetch and store
 - Memory read
 - Memory write
- Instructions involving memory access:
 - LOAD and STORE instructions

Memory Read and Write Operation

Read

- Processor loads the address of memory location into MAR
- Set the R/\overline{W} line to 1
- Memory responds by placing the data from address location onto data line
- Confirm the action by asserting MFC (memory function complete) signal
- Upon receiving MFC signal, processor loads the data on data line into MDR

Memory Read and Write Operation

Write

- Processor loads the address of memory location into MAR
- Processor loads data into MDR
- Set the R/W line to 0 to indicate write operation
- Processor places the data in MDR onto dataline
- Data on data line is written into memory location
- Memory confirms the action by asserting MFC

Memory Latency and Memory Organization

- Latency: Time to access the first of the sequence of memory words
- What is involved in determining the latency of the memory operation?
 - Processor issues the logical address to memory unit
 - The logical address need to be converted into physical address
- Memory unit is called random access memory (RAM)
 - Any location can be accessed for read/write operation independent of the location's address
- Memory unit is organised in hierarchical manner

Memory Hierarchy

- Processor processes instructions and data faster than it can be fetched from memory unit
- Memory access time is the bottleneck
- One way to reduce memory access time is to use faster memory
 - A small and faster memory bridge the gap between processor and main memory

Memory Performance Parameters

Memory Access Time:

- Time interval between initiation of one operation and completion of that operation
- Example: Time between assertion of Read signal and MFC signal

Memory Cycle Time:

- Minimum time delay between the initiation of two successive memory operations
- Time delay between start of a read/write operation to start of next memory operation
- Memory cycle time is usually slightly larger than access time

Internal Organization of Memory

- The memory is organised such that a group of n-bits can be stored or retrieved in a single basic operation
- Each group of n-bits is referred as one memory word
- Accessing the memory to store or retrieve information require address for each location
- Possible number of address locations are decided by the number of address lines in the processor
- For k-address lines, there will be 2^k locations, each of n-bit memory word
- 2^k addresses constitute address space of computer
- Example: Let k=10 and n=32
 - Number of locations: 2¹⁰
 - Size of the memory: $2^{10} \times 2^{5}$ bits = 2^{15} bits = 2^{12} Bytes = 4 KB

Memory Content Example

1024 memory locations: 1x0 bit address

Memory address

16 bit data

Binary	decimal	Memory contest
0000000000	0	10110101010111101
0000000001	1	1010101110001001
0000000010	2	0000110101000110
	• •	• • •
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	11011111000100101

Semiconductor Memories

- Two basic ways of designing memory
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)
- Static RAM:
 - Built using metal-oxide semiconductor (MOS) transistors
 - MOS transistors acts as switch
 - +5 v (when Gate input is 1): Transistor conducts: ON state
 - 0 v (when Gate input is 0): Transistor does not conducts:
 OFF state

Static RAM Cell

- Two inverters are cross connected to form latch
- Inverters are connected to 2 transistors which act as switches
- Switches are opened or closed under the control of word line
- This circuit retain the state (bit) as long as power is applied (Static Memory)

Static RAM Cell - Read

- Two inverters are cross connected to form latch
- Inverters are connected to 2 transistors which act as switches
- Switches are opened or closed under the control of word line
- This circuit retain the state (bit) as long as power is applied (Static Memory)

Static RAM Cell - Write

- Inverters are connected to 2 transistors which act as switches
- Two inverters are cross connected to form latch
- Switches are opened or closed under the control of word line
- This circuit retain the state (bit) as long as power is applied (Static Memory)

CMOS Static RAM Cell

- This circuit retain the state (bit) as long as power is applied (Static Memory)
- Continuous power is needed for a cell to retain the state

CMOS Static RAM Cell

- This circuit retain the state (bit) as long as power is applied (Static Memory)
- Continuous power is needed for a cell to retain the state

CMOS Static RAM Cell - Read

- This circuit retain the state (bit) as long as power is applied (Static Memory)
- Continuous power is needed for a cell to retain the state

CMOS Static RAM Cell - Write

- This circuit retain the state (bit) as long as power is applied (Static Memory)
- Continuous power is needed for a cell to retain the state

CMOS Static RAM Cell: Illustration

- Access time is less i.e. faster memory
- Low power consumption
- Uses 6 transistors: Costly
- Used in applications where speed is critical concern: Cache

Dynamic RAM (DRAM) Cell

- Less expensive and simpler cell
- Information is stored in the form of a charge on a capacitor (C)
 - Charge in capacitor is stored only for short time
 - However, a cell is required to store information for a much longer time
- To retain information for longer time, content of capacitor mush be periodically refreshed

- Low speed as refresh needed
- Only 1 transistor is used
- Used to build main memory

Memory Content Example

1024 memory locations: 10 bit address

16 bit data

Binary	decimal	Memory contest
0000000000	0	10110101010111101
0000000001	1	1010101110001001
000000010	2	0000110101000110
	•	•
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110

Memory address

1111111111

Fig. 7-3 Content of a 1024×16 Memory

1023

1101111000100101

Internal Organization of SRAM Chip

• SRAM cell (block diagram):

- Memory cells are usually organised in the form of an array
- At each memory location, n SRAM cells are placed next to each other to form n-bit memory word
- Example: 4-bit memory word

Internal Organization of $2^k \times n$ SRAM Chip

Illustration: 16 x 4 bit Memory Chip

- 1-dimensional address decoding:
 - Example: Design of 64b memory chip
 - Number of address line be : 4
 - Address decoder configuration : 4-to-2⁴

Illustration: 512 x 8 bit Memory Chip

- 1-dimensional address decoding:
 - Example:

Memory chip organization: 512 x 8

Memory Size: 512B

Number of address line be: 9

Address decoder configuration : 9-to-29

Coincident Decoding

Regular decoding is costly:

A decoder with k inputs and 2^k outputs requires 2^k AND gates with k inputs per gate.

Total number of gates can be reduced by using two-dimensional decoding:

Basic idea: arrange memory cells in a (as close as possible to) square configuration.

Use two k/2 input decoders instead of one k input decoder

Two-Dimensional Decoding

Instead of using a single 10 x 1024 decoder we use two 5x32 decoders.

Fig. 7-7 Two-Dimensional Decoding Structure for a 1K-Word Memory

Two-Dimensional Decoding

Needs 64 5-input AND gates instead of 1024 10-input gates.

- k-address line is divided into k/2 row address and k/2 column address
- Now, memory chip is considered as 2^{k/2} x 2^{k/2} memory cell array
- Example: Design of 16 x 4 bit memory chip
 - Number of address lines: 4
 - Number of row address lines: 2

- k-address line is divided into k/2 row address and k/2 column address
- Now, memory chip is considered as 2^{k/2} x 2^{k/2} memory cell array
- Example: Design of 16 x 4 bit memory chip
 - Number of address lines: 4
 - Number of row address lines: 2

Organization of 2^k x n SRAM Chip

Organization of 2^k x n SRAM Chip

 The number of cell array depends on the width of the memory chip (word length) expected

Illustration: Design of 1MB SRAM Chip

- Capacity of memory: 1 MB
- Word length: 8 bits
- Memory organization: 1M x 8

Illustration: Design of 1MB SRAM Chip

- Capacity of memory: 1 MB (2²⁰ B = 2²³ b)
- Word length: 8 bits
- Number of row address: 11
- Number of column address: 20-11 = 9

Static RAM Module

- Byte Addressable Memory
- Illustration:
 - Task: Design SRAM with capacity 8MB (2²³ B)
 - Requirements:
 - Memory organization depends on the word size and word size decides the width of the data bus
 - Let word size be 32 bit (4 B)
 - Now, memory organization: 2M x 32 bit
 - Memory should be byte addressable
 - Let the organization of cell array to incorporate byte addressability be 1M x 8 bit
 - Organization include:
 - 2 rows of chips, each of size 1M x 8 bit
 - Each row contain 4 chips
 - Number of address lines: 23(2²³ B)

Illustration: 8MB Static RAM Module

Static RAM Module

4MB SRAM Module

Static RAM Module

- N: Capacity of SRAM
- n bits: Width of SRAM
- M: Capacity of one SRAM chip
- *m* bits: Width of one SRAM chip
- Number of rows of memory chips: N/M
- Number of chips in a row: n/m
- According to the number of rows of memory chips and number of chips in a row, Chip Select (CS) logic is designed
- Higher order bits in address select a row of memory chips
- Lower order bits in address select a byte in a word
- Size line in CS logic indicates how many bytes in a word need to be selected

Dynamic RAM (DRAM) Cell

- Less expensive and simpler cell
- Information is stored in the form of a charge on a capacitor (C)
 - Charge in capacitor is stored only for short time
 - However, a cell is required to store information for a much longer time
- To retain information for longer time, content of capacitor mush be periodically refreshed

- Low speed as refresh needed
- Only 1 transistor is used
- Used to build main memory

Dynamic RAM (DRAM) Chip Organization

- DRAM cells are also arranged in 2-diemsional array form
- Here also, row address lines are used to select row and column address lines are used to select column
- Two important factors influence the design of the DRAM chip are:
 - Number of input/output pins i.e. external pins
 - Need to refresh the cells
- Scheme for saving pins:
 - Row address and column address are transmitted over the same line one after the other
 - This is called time multiplexing
 - This is usually performed by a memory controller circuit
 - It generates the different control signals

Dynamic RAM (DRAM) Chip Organization

- Two additional control signals are needed to inform the chip when the row address and column address is valid on address line
 - Row address strobe (RAS):
 - Inform the chip when the row address is valid on address lines
 - Column address strobe (CAS):
 - Inform the chip when the row address is valid on address lines
 - Both RAS and CAS are usually active low

DRAM Chip Organization

DRAM Chip Organization

- During read or write operation, the row address is applied first
 - It is loaded into row address latch in response to RAS
 - Then read operation is initiated, in which all cells in a selected row are read and refreshed
- Shortly after row address is loaded, the column address is applied
 - It is loaded onto the column address latch under the control of CAS
- The information in the column address latch is decoded and appropriate n sense/write circuits are selected
- To ensure that the contents of DRAM are maintained, each row of cells must be accessed and refreshed periodically

DRAM Chip Organization

- Memory controller circuit provide the necessary signals CAS and RAS that governs timing
- These operations are directly synchronised with clock signal
- Such a DRAM chip is called Synchronous DRAM (SDRAM)

SDRAM Chip Organization

Fast Page Mode Feature of SDRAM

- Transfer capability of SDRAM
- Contents of all $2^{k/2}$ cells in a selected row are sensed in each on the n cell arrays
- Only n bits (one from each of the cells arrays) are placed in the data lines, D_{7-0}
- To access other bytes in the same row, without having to reselect the row, a latch is used at the output of the sense/write circuits in each column
- The row address will load the latches corresponding to all bits in the selected row
- Then different column address are applied to place the different bytes on data lines
- Transfer bytes in sequential order
- This arrangement allows transferring a block of data at much faster rate

Refresh Overhead in SDRAM

- All dynamic memories need to be refreshed
- In SDRAM typical period of refreshing all rows is
 64ms
- Each row is refreshed at least in 64ms
- Example:
 - Suppose a SDRAM chip has 8K (8192) rows
 - Number of clock cycles to access each row: 4 clock cycles
 - Number of clock cycles to refresh all rows:

```
8192 \times 4 = 32768 clock cycles
```

- Suppose clock rate is 133 MHz
- Times needed to refresh all rows:

```
32768/133 \times 10^6 = 246 \times 10^{-6} s = 0.246 ms
```

Refreshing overhead is 0.246ms out of 64ms

Double-Data-Rate SDRAM (DDR SDRAM)

- Faster version of SDRAM
- The standard SDRAM performs all actions on the raising edge of the clock cycle
- DDR SDRAM access the cell array in the same way, but transfers the data on both edges of the clock
- Hence, their bandwidth is essentially doubled for long burst transfers
- Bandwidth: The number of bits/bytes that can be transferred in one second

BM 33L5039 RAM Module (1 GB, DDR2 RAM, 266 MHz, DIMM 184-pin)

Read-Only Memories (ROMs)

- SRAM and DRAM are volatile i.e. they loose the stored information if power is turned off
- Read-only memories are semiconductor, non-volatile memories
- Their normal operation involve only reading the stored data
- They are extensively used in embedded systems
- Different types of ROMs
 - Read Only Memory (ROM)
 - Programmable ROM (PROM)
 - Erasable, reprogrammable ROM (EPROM)
 - Electicrally erasable reprogrammable ROM (EEPROM)
 - Flash memory

Read-Only Memories (ROMs)

Memory Read and Write Operation

Read

- Processor loads the address of memory location into MAR
- Set the R/ $\overline{\mathbb{W}}$ line to 1
- Memory responds by placing the data from address location onto data line
- Confirm the action by asserting MFC (memory function complete) signal
- Upon receiving MFC signal, processor loads the data on data line into MDR

Memory Read and Write Operation

Read

- Processor loads the address of memory location into MAR
- Set the R/ $\overline{\mathbb{W}}$ line to 1
- Memory responds by placing the data from address location onto data line
- Confirm the action by asserting MFC (memory function complete) signal
- Upon receiving MFC signal, processor loads the data on data line into MDR

Cache Memory

- The cache memories are designed to exploit the locality of reference in the program
- Locality of reference:
 - Many instructions in localized areas of the program are executed repeatedly during some time period, and the remainder of the program is accessed relatively infrequently
- Different ways of locality of reference

1.Temporal locality:

Recently executed instruction/data is likely to be used again very soon

2. Spatial locality:

 Instructions in close proximity to a recently executed instruction/data (with respect to instruction address) are likely to be executed very soon

Use of a Cache Memory

- Unit of transfer between main memory and cache is block
 - A block is a set of fixed number of words in contiguous address locations
 - Cache block is also called as Cache line
- Mapping function: Correspondence between main memory blocks and those in the cache

Replacement Algorithm

- Read hit/Write hit [Cache hit]:
 - When processor issues read or write request, cache control circuit determines whether the requested word exits in cache
 - If it exists in cache, the read or write operation is performed on the appropriate cache location
 - This means, read hit or write hit is said to have occurred

Cache miss:

- If the desired word is not there in cache during read/write operation, then cache miss is said to have occurred
- During that time new block need to be brought into cache
- Cache control hardware decide which block to removed to create space for new block that contain referenced word when cache is full
- The collection of rules for making this decision constitutes the replacement algorithms

Read and Write Operations on Cache

- Read operation:
 - Handling read miss:
 - Approach 1:
 - The block of words that contains the requested word is copied into the cache
 - After entire block is loaded into cache, particular requested word is forwarded to processor
 - Approach 2: Load through or early restart
 - A word is sent to processor as soon as it is read from the main memory
 - At the same time, the block of words that contains the requested word is also copied into the cache
 - This approach reduces the processor waiting period, but with the expense of complex circuitry

Read and Write Operations on Cache

- Write operation:
 - Two techniques for write operation:
 - Write-through protocol
 - The cache location and main memory location are updated simultaneously
 - Write-back (copy-back) protocol
 - Update only the cache location and mark it as updated in a flag bit called dirty bit or modified bit
 - The main memory location is updated later when the block containing that modified word need to be removed from the cache
 - Handling write miss:
 - Write-through protocol:
 - The information is written directly into the main memory
 - Write-back (copy-back) protocol:
 - The block containing the addressed word is first brought into the cache
 - Then the desired word in the cache is overwritten with new information

Mapping Function

- Specifies where memory blocks are placed in the cache
- Cache and main memory are viewed as collection of fixed number of blocks
- Example: Consider a cache and main memory with 2K words and 64K words respectively and each blocks are of size 16 words
 - Block size: 16 words
 - Number of blocks in a cache, N = 2K/16 = 128
 - Number of blocks in main memory, M = 64K/16 = 4K = 4096
 - Addressable location in main memory: 2¹⁶

Mapping Function: Associative Mapping (Associative Mapped Cache)

