1 Grundlagen

Linearisierung um Arbeitspunkt:

$$x_a(t) = x_{a,AP} + \Delta x_a(t) \approx x_{a,AP} + \sum \left(\frac{\partial f}{\partial x_{ei,Ap}} \cdot \Delta x_{ei}(t)\right)$$

Kräftegleichungen:

Federkraft: $F_F = k_F \cdot x$

Dampfkraft: $F_D = k_D \cdot v = k_D \cdot \dot{x}$ Trägheitskraft: $F_{Tr} = m \cdot a = m \cdot \ddot{x}$ Erdanziehungskraft: $F_G = m \cdot g$

Moment Gleichungen:

Widerstandsmoment: $M_w = k_D \cdot \omega$ Trägheitsmoment: $M_{TR} = \mathbf{J} \cdot \dot{\omega}$

Spannungsgleichung:

$$U = L \cdot \frac{di}{dt} + i \cdot R + \frac{1}{C} \cdot \int i$$

Für kleine Winkel α gilt: $\sin(\alpha) = \alpha$ Rotation in Flüssigkeit:

$$M = M_{\texttt{Träg}} + M_{\texttt{Brems}} = J \cdot \dot{\omega} + k_{\texttt{Flüssigkeit}} \cdot \omega$$

Partialbruchzerlegung (siehe Papula s.157ff)

2 Systemtechnik

2.1 Modellbildung

Hinweise zum aufstellen der Differentialgleichung eines Systems:

- 1. Bestimmung der Ein- und Ausgangsgrößen
- 2. Suche nach dem beschreibenden Gleichgewicht
- 3. In der Gleichung dürfen nur Konstanten, sowie die Ein- und Ausgangsgrößen in beliebiger Ableitung vorkommen
- Andere Variablen müssen durch erlaubte Größen ersetzt werden (Dazu können i.a. physikalische Gleichungen benutzt werden)

2.2 Signalflussplan/Blockschaltbild

Erzeugung des Signalflussplans aus der Zugehörigen DGL.

- 1. für technische Realisierung gilt: m < n;
- 2. DGL. nach höchster Ableitung der Ausgangsgröße auflösen
- 3. höchste Ableitung der Ausgangsgröße geht auf den Eingang des ersten Integrators (Laplace-Trans ersetzt das Integrieren mit einer Division mit "s")

Erzeugung des Signalflussplans eines Systems mit der DGL.:

$$a_n \overset{(n)}{x}_a + \dots + a_2 \ddot{x}_a + a_1 \dot{x}_a + a_0 x_a$$
$$= b_n \overset{(n)}{x}_e + \dots + b_2 \ddot{x} + b_1 \dot{x}_e + b_0 x_e$$

Signalflussplan kann allgemein gezeichnet werden:

2.3 Stabilität

BIBO-Stabilität (Bounded Input/ Bounded Output-> begrenzt):

ein dynamisches System ist stabil, wenn gilt: für ein begrenztes x_e gibt es immer ein begrenztes x_a

2.4 Ortskurven und Frequenzkennlinien

Ortskurvendarstellung:

Für wachsendes ω werden die komplexen Werte $F(j\omega)$ in die komplexe F-Ebene eingetragen und zur Ortskurve verbunden

Jeder Ortskurvenpunkt kann jetzt als Zeiger gedeutet werden.

Bodediagramm Darstellung:

Der Amplitudengang $A(\omega)$ wird in doppelt-logarithmischer Darstellung aufgetragen,

der Phasengang y(ω)) halblogarithmisch. Gemeinsame Abszisse ist ω .

Bei diesem Beispiel (PT1-Glied) ist deutlich der Tiefpass-Charakter zu erkennen.

Verkettete Funktionen im Bodediagramm resultieren als Produkt der Einzelübertragungsfunktionen.

D.h. Verstärkung wird multipliziert und Phasenverschiebung addiert.

Das heißt: Sowohl Phasengang (halblogarithmische Darstellung) und Amplitudengang (logarithmische Darstellung) werden graphisch addiert!

2.5 F(s) in Pol- und Nullstellenform

Zähler- und Nennerpolynom von F(s) besitzt Nullstellen. Diese sind von a_v und b_u abhängig.

Nullstellen des Zählers sind Nullstellen von F(s)

Nullstellen des Nenners sind Polstellen von F(s)

Wenn Pole $s_p v$ und Nullstellen $s_n u$ bekannt, kann man F(s) mit dem Faktor Q in faktorisierter Form darstellen.

$$F(s) = Q \cdot \frac{\prod_{\mu=1}^{m} (s - s_{N\mu})}{\prod_{\nu=1}^{n} (s - s_{P\nu})} \quad \text{mit } Q = \frac{b_m}{a_n}$$

Die Stabilität von F(s) kann anhand der Lage der Pole $s_p v$ in der s-Ebene beurteilt werden.

F(s) ist stabil, wenn alle Pole $s_p v$ in der linken s-Halbebene liegen.

Instabile Pole in der Rechten Halbebene lassen sich nicht durch Reihenschaltung mit entsprechender Nullstelle kompensieren!

Bedeutung Polstelle:

Pole bewirken ein zeitverzögertes Verhalten. Je weiter links sie sich befinden, desto schneller ist der Einschwingvorgang.

 \Rightarrow Wenn Pole deutlich weiter links liegen als andere andere, kann man sie ohne großen Fehler vernachlässigen.

Bedeutung Nullstelle:

NS bewirken ein differenzierendes Verhalten (Beschleunigung des Systems) Einfluss weit links in der s-Ebene kann häufig vernachlässigt werden.

2.6 Signalflussplan Algebra

Kettenstruktur:

$$\begin{array}{c|c} X_{\mathbf{e}}(\mathbf{s}) & X_{\mathbf{a}1} & (\mathbf{s}) = X_{\mathbf{e}2} & (\mathbf{s}) \\ \hline F_{\mathbf{1}}(\mathbf{s}) & & & \\ \end{array} \begin{array}{c|c} X_{\mathbf{a}} & (\mathbf{s}) = F_{\mathbf{2}}(\mathbf{s}) \cdot F_{\mathbf{1}}(\mathbf{s}) \cdot X_{\mathbf{e}}(\mathbf{s}) \\ \hline F_{\mathbf{P}_{\mathbf{n}:\mathbf{h}_{\mathbf{e}}}}(\mathbf{s}) = F_{\mathbf{1}}(\mathbf{s}) \cdot F_{\mathbf{2}}(\mathbf{s}) \end{array}$$

Parallelstruktur:

Kreisstruktur:

Verschieben einer Additionsstelle:

Verschieben einer Verzweigung:

3 Zusammenwirken mehrerer Systeme

3.1 Regelkreis

Anforderungen:

- Stabilität: Regelkreis muss stabiles Verhalten zeigen (gilt auch für instabile Systeme)
- Gutes Führungsverhalten: Die Differenz zw. Sollwert w(t) und Istwert x(t) muss schnell klein werden.
- Gutes Störverhalten: Einfluss von Störgrößen soll vermindert werden.

Grundstruktur des einschleifigen Regelkreises:

Regler	$F_R(s)$	Regelstrecke $F_{S}(s)$	bleibende Regeldifferenz e (oder x_d)	
			für $x_e = a \cdot \sigma(t)$ (Sprung) mit Rückführverstärkung K_r	für $x_e = a \cdot t$ (Rampe) mit Einheitsrückführung
P (D)	K_{P}		$a\frac{1}{1+K_P\cdot K_S\cdot K_r}$	∞
I	$\frac{K_I}{s}$	P-Verhalten (P, PT1, PT2,)	0	$a\frac{1}{K_I \cdot K_S}$
PI (D)	$K_P + \frac{K_I}{s}$	$F_s(s) = K_s \frac{(1 +s)}{(1 +s)}$	0	$a\frac{1}{K_I \cdot K_S}$
J ²	$\frac{K_I}{s^2}$		0	0
P (D)	K_{P}	<i>I</i> -Verhalten	0	$a\frac{1}{K_P \cdot K_S}$
I	$\frac{K_I}{s}$	$(I, PI, ITI,)$ $F_S(s) = K_S \frac{(1 +s)}{\underline{s}(1 +s)}$	0	0
PI (D)	$K_P + \frac{K_I}{s}$	<u>s</u> (1+s)	0	0

3.2 Wurzelortskurven (WOK)-Verfahren

Regler
funktion F_R in Reglerverstärkung und Reglerdynamik aufspalten:
 $F_R = K \cdot F_R'$

Dabei ist $F_o = F_R \cdot F_S \cdot F_r$ die Übertragungsfunktion des offenen Regelkreises. F_o kann auch in faktorisierter Form angegeben werden:

$$F_w(s) = F_R(s) \cdot F_S(s) \cdot F_r(s)$$

$$= K \cdot F_R'(s) \cdot F_S(s) \cdot F_r(s)$$

$$= K \cdot Q \cdot \frac{\prod_{u=1}^m (s - s_{\text{Nou}})}{\prod_{v=1}^n (s - s_{\text{pov}})}$$

Für eine Polstele, muss der Nenner von ${\cal F}_w(s)$ Null werden:

$$\frac{F_R(s) \cdot F_S(s)}{1 + F_o(s)} \Rightarrow 1 + F_o(s) \stackrel{!}{=} 0$$

Daraus folgt:

$$\Rightarrow 1 + K \cdot Q \cdot \frac{\prod_{M=1}^{m} (s - s_{\text{Nou}})}{\prod_{v=1}^{n} (s - s_{\text{por}})}$$
$$\Rightarrow \frac{\prod_{v=1}^{n} (s - s_{\text{pov}})}{\prod_{u=1}^{m} (s - s_{\text{Nou}})} \stackrel{!}{=} -K \cdot Q$$

 $Entspricht: \underbrace{ \begin{array}{c} Summe \ des \ Abstands \ aller \ Polstellen \ zum \ gesuchtem \ Punkt} \\ Summe \ des \ Abstands \ aller \ Nullstellen \ zum \ gesuchtem \ Punkt} \end{array}}$

3.3 Konstruktion der WOK

- 1. Alle n Äste der WOK beginnen mit K=0 in den n Polen s_nov des offenen Regelkreises.
- 2. m Äste der WOK enden für K $\rightarrow \pm \infty$
- 3. n
 -m Äste der WOK enden für K $\rightarrow \pm \infty$ im Unendlichen
- 4. Die n-m ins Unendliche strebende Äste der WOK haben Asymptoten,
die
 - a) im Wurzelschwerpunkt

$$S_w = \frac{\sum_{v=1}^{n} s_{pov} - \sum_{u=1}^{m} s_{Nop}}{n - m}$$

beginnen und die dabei b) mit der reellen Achse die Winkel

$$\varphi_k = \frac{(2k-1)\cdot 180^\circ}{n-m}$$
 für KQ > 0 bzw. mit k = 1,2,3,...,n-m

- 5. Die Punkte der WOk liegen entweder auf der reelen Achse, oder symmetrisch zur reelen Achse
- 6. Ein Punkt s
 auf der reellen Achse ist dann ein Punkt der WOK, wenn sich bei KQ > 0 (KQ<0) rechts von ihm eine ungerade (gerade) Anzahl von Polen s_{pov} und (+) Nullstellen s_{Nov} befindet.

Achtung: WOK ist nicht anwendbar, wenn es sich um nicht rationale Übertragungsfunktionen handelt.

(z.B. Regelkreis mit Totzeitverhalten!)

3.4 Nyquist Kriterium

Frequenzgangfunktion des offenen Regelkreises:

$$F_o(j\omega) = F_r(j\omega) \cdot F_R(j\omega) \cdot F_S(j\omega)$$

Ausgangssignal:

$$x_a(t) = -F_r(j\omega) \cdot F_R(j\omega) \cdot F_S(j\omega) \cdot x_{e0} sin(\omega t)$$
$$= -F_0(j\omega) \cdot x_e(t)$$

Regler und seine Parameter werden so gewählt, dass $\omega = \omega_{krit}$ gilt:

$$-F_0(j\omega_{krit}) = 1 \text{ oder } F_0(j\omega_{krit}) = -1 \text{ (Schwingbedingung)}$$

Die Schwingbedingung ist erfüllt, wenn die Ortskurve von $F_1(j\omega)$ durch den kritischen Punkt $(P_{krit}=-2+j0)$ der komplexen F_0 -Ebene geht.

An diesem Punkt kann man ω_{krit} ablesen (damit kann der Regelkreis Dauerschwingungen ausführen).

Für größere ω ist das System instabil, für kleinere stabil.

Falls F(s) des offenen Kreises keine Pole in der rechten Halbebene hat und nur max. 2 im Ursprung der s-Ebene, ist der Regelkreis stabil, wenn der kritische Punkt von ω immer links von s = -1 + 0j liegt.

(gilt immer wenn der offene Kreis stabil ist)

Zur Auswertung des Nyquist-Kriteriums im Bode Diagramm, spaltet man die Ortskurve nach Betrag $A = |F_0(jw)|$ und Phase $\varphi = F_0(jw)$

Falls die Bedingung nicht funktioniert, wird die allgemeine Formulierung verwendet:

Der geschlossene Regelkreis ist stabil, wenn der Fahrstrahl von $P_{krit} = -1$ +j0 zu $F_0(jw)$ für wachsendes ω von +0 bis + ∞ eine Winkeländerung $\overset{\omega=+\infty}{\omega=+0} \Delta \phi_{soll} = n_r \cdot 180^\circ + n_a \cdot 90^\circ$ erfährt.

 n_r : Anzahl der Pole rechts der imaginären Achse n_a : Anzahl der Pole auf der imaginären Achse

Phasenrad/Phasenreserve:

Aus Bodediagramm ablesen: Bei Verstärkung von 1, Winkeln von -180° nach oben rechnen

Für befriedigendes Verhalten bei Störungen gilt: $\varphi_R \geq 30^\circ$ Für gutes Verhalten (überschwingungsarm) gilt: $\varphi_R \approx 60^\circ$ Für gutes Verhalten (überschwingungsfrei) gilt: $\varphi_R \geq 80^\circ$

3.5 Einstellregler Ziegler/Nichols

3.5.1 Maßnahmen zur Verbesserung des Regelkreisverhaltens und Erweiterungen der Regelkreisstruktur

Störgrößenaufschaltung:

Falls Angriffsort einer Störgröße bekannt,kann man wie im Bild kompensieren.

Vorteil: einfacher Regler Entwurf, deutlich schnellere Ausregelung.

Vorsteuerung:

Geeignet, falls kein Kompromiss für gutes Stör und Folgeverhalten.

Regler ist auf gutes Störverhalten ausgelegt. Mit F_{Rv} wird ein schnelles Folgen auf Führungssignale w(t) erreicht.

Kaskadenregelung:

Ineinander geschachtelte Regelkreise (innere Regelkreise "schneller"). "Innere" Störungen können bereits innen ausgeregelt werden. Können von Innen nach Außen in Betrieb genommen werden.

4 Digitale Regler

4.1 Allgemeines

4.1.1 z-Transformation

Wert der bei $t = k \cdot T_A$ ausgegeben wird, wird bei $t = (k-1) \cdot T_A$ eingelesen. (Verzögerung um einen Abtastschritt):

	Kontinuierlich	Zeitdiskret
Zeitbereich	$x_a(t) = x_e(t - T_A)$	$x_{a, k} = x_{e, k-1}$
Dildharaiah	$X_a(s) = e^{-s \cdot TA} \cdot X_e(s)$	$X_a(z) = z^{-1} \cdot X_e(z)$
Bildbereich	(Laplace-Transformation)	(z-Transformation)

Bei der z-Transformation entspricht $e^{-s \cdot TA}$ der Laplace-Transformation dem Ausdruck z^{-1} . Bzw. z $\hat{=} e^{s \cdot TA}$ Transformation vom s-Bereich in den z-Bereich:

$$s \triangleq e^{s \cdot TA}$$

Vorwärts-Differenzen-quotient

$$s \triangleq \frac{z-1}{T_A}$$

 \Rightarrow Der digitale Regler kann folgend berechnet werden:

$$F(z) = F(z)|_{s = \frac{z-1}{T_A}}$$

Tustinsche Formel

$$s \triangleq \frac{2}{T_A} \cdot \frac{z-1}{z+1}$$

Rückwärts-Differenzen-quotient

Polfestlegung durch vollständige Zustandsrückführung

Durch die freie Wahl von K
 können alle n Pole des Systems beliebig platziert werden.

5.2 Programmtechnische Umsetzung

Zähler und Nenner der z-Übertragungsfunktion durch die höchste Potenz teilen

```
while(1)
{
    waitinterrupt();
    xout2 = xout1;
    xout1 = xout;
    xin2 = xin1;
    xin1 = xin;
    input(xin);
    xout = k*xout2 - j*xin1 + o*xout1;
    output(xa);
}
```

5 Systembeschreibung im Zustandsraum

5.1 Allgemein (Mehrgrößensystem MIMO)

$$\dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t) \quad x(0) = x_0$$
$$\vec{y}(t) = C\vec{x}(t) + D\vec{u}(t)$$

Abbildung 1: Signalflussplan

$$\dot{x}_1 = 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 1 \cdot u_1 + 0 \cdot u_2$$

$$\dot{x}_2 = K \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 0 \cdot u_1 + 0 \cdot u_2$$

$$\dot{x}_3 = 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + H \cdot J \cdot u_1 + J \cdot u_2$$

$$\dot{y}_1 = 0 \cdot x_1 + 1 + x_2 + 0 \cdot x_3 + 0 \cdot u_1 + 0 \cdot u_2$$

$$\dot{y}_2 = 0 \cdot x_1 + 0 \cdot x_2 + l \cdot x_3 + 0 \cdot u_1 + 0 \cdot u_2$$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ K & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & l \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ H \cdot J & J \end{bmatrix} D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$