About Planar Graph

Planar Graph

- Euler's Equation
 - If a graph is planar,

$$V-E+F=1+C$$

- V = # vertices
- E = # edges
- F = # faces
- C = # components

$$-V = 4$$
, $E = 6$, $F = 4$, $C = 1$

•
$$4-6+4=2=1+1$$

They are all the same graph

• They are all K_i is a complete graph for i vertices

In a Topologist eye

G = {V, E}
 - V = {a, b, c, d}
 - E = { (a, b), (a, c), (a, d), (b, c), (b, d), (c, d) }

Topology cares about connectivity

Geometry vs Topology

Geometry

 deals with shapes and relative positions and sizes of figures, and properties of space such as curvature.

Topology

 studies the properties of space that are preserved under continuous deformations, this means stretching and bending but not cutting or gluing.

(Topology) Definition

• An <u>embedding</u> of an *abstract simplicial* complex is how you draw it out in a *d*-dimension space

 A graph is <u>planar</u> if there <u>exists</u> an embedding in a plane

Embedding

 A Straight line embedding is an embedding with all straight lines as edges

Planar Graph

- Topologyists say,
 - If there exists an embedding for a graph, it's planar
 - If a graph is planar, V E + F = 1 + C

- Geometrists say
 - If a graph is planar, how do I draw it on a plane?

Before drawing, let's prove this

 The average degree of a node in a planar graph is less than 6

- Assuming maximally connected
 - Namely, a planar graph with the max. no. of edges
 - This implies that every face is a triangle

Every node has a degree less than 6

- $\bullet \quad V E + F = 1 + C$
 - -C = 1
 - Every faces has 3 edges
 - 3F = 2E
- $V E + \frac{2E}{3} = 1$
- E = 3V 6
- Average degree = $\frac{2E}{V}$ < 6

Algorithm to draw a planar graph

- Assuming G is maximally connected
- Repeat while G has more then 3 vertices
 - There is a vertex u in G with degree k_u < 6
 - i.e. 3, 4, or 5
 - $G := G \{v\}$
 - If the degree of u is more than 3, add artificial edge in G such that G is maximally connected
 - Push u onto a stack S, together with
 - the k_u neighbors of u
 - the artificial edges added

Algorithm to draw a planar graph

- G has three vertices as a triangle, draw it anyway
- Repeat while S is not empty
 - Pop u from S
 - Remove the artificial edges added
 - Draw u into the
 - Triangle, or
 - Quadrilateral, or
 - Pentagon

Can we always insert u without intersection?

- Triangle
 - Trivial
- Quadrilateral
 - Draw u on the diagonal
- Pentagon
 - Proof?

Proof

We can always divide a pentagon into three triangles

Proof

 On one of the division line, you can project the other triangle onto it

Proof

 And you can add a new point on this area and connect all the vertices of the pentagon without crossing

Algorithm to draw a planar graph

- G has three vertices as a triangle, draw it anyway
- Repeat while S is not empty
 - Pop u from S
 - Remove the artificial edges added
 - Draw u into the
 - Triangle, or
 - Quadrilateral, or
 - Pentagon

- Remove A
 - Degree of A = 4
 - A's neighbor: B C D E
 - Add an artificial edge
 - E.g. C B

$A \rightarrow CDBE$
$B \rightarrow ADE$
$C \rightarrow ADE$
$D \rightarrow CEBA$
$E \rightarrow ABDC$

•	Stack	/	•
	Jlaci	•	•

Node	Neighbors	Artificial edge
Α	BCDE	СВ

- Remove B
 - Degree of B = 3
 - B's neighbor: C D E

$$B \rightarrow CDE$$
 $C \rightarrow BDE$
 $D \rightarrow CEB$
 $E \rightarrow BDC$

Stack:

Node	Neighbors	Artificial edge
В	CDE	
Α	BCDE	СВ

- Three vertices left
- Draw it anyway

- Pop B
 - B's neighbor: C D E

- Pop A
 - Remove artificial edge CB
 - A's neighbor: B C D E

But in general, not so good looking

Can I perform coloring as the same way?

- A vertex k-coloring on a graph colors the vertices with k different colors
 - And if two nodes share the same edge, the two nodes must have different colors

Algorithm to draw a planar graph

- Assuming G is maximally connected
- Repeat while G has more then 3 vertices
 - There is a vertex u in G with degree k_u < 6
 - i.e. 3, 4, or 5
 - $G := G \{v\}$
 - If the degree of u is more than 3, add artificial edge in G such that G is maximally connected
 - Push u onto a stack S, together with
 - the k_u neighbors of u
 - the artificial edges added

Algorithm to draw a planar graph

- G has three vertices as a triangle, draw it anyway
- Repeat while S is not empty
 - Pop u from S
 - Remove the artificial edges added
 - Draw u into the
 - Triangle, or
 - Quadrilateral, or
 - Pentagon
 - Just color u with a different color!

Puzzle for you

- How can we do a 5-coloring on a planar graph?
 - What happen if we are adding a vertex with 5 neighbors but all of the neighbors have different colors

About 4-coloring for Planar Graph

- Given a planar Graph
- Can you color each vertex with four colors only provided that each neighbor has a different color?

History

- 1852 when Francis Guthrie, while trying to color the map of counties of England. Conjecture appeared in a letter from Augustus De Morgan
- 'Proof' by Kempe in 1879, Tait in 1880
 - Incorrectness was pointed out by Heawood in 1890
 - Petersen in 1891
- Confirmed by Appel and Haken in 1976 (1476)
- Again by Robertson, Sanders, Seymour and Thomas (633)

A NEW PROOF OF THE FOUR-COLOUR THEOREM

NEIL ROBERTSON, DANIEL P. SANDERS, PAUL SEYMOUR, AND ROBIN THOMAS

(Communicated by Ronald Graham)

ABSTRACT. The four-colour theorem, that every loopless planar graph admits a vertex-colouring with at most four different colours, was proved in 1976 by Appel and Haken, using a computer. Here we announce another proof, still using a computer, but simpler than Appel and Haken's in several respects.

for two reasons:

- part of the A&H proof uses a computer, and cannot be verified by hand, and
- (ii) even the part of the proof that is supposed to be checked by hand is extraordinarily complicated and tedious, and as far as we know, no one has made a complete independent check of it.
- $c(u) \neq c(v)$ for every edge of G with ends u and v. This was conjectured by F. Guthrie in 1852, and remained open until a proof was found by Appel and Haken [3], [4], [5] in 1976.

Unfortunately, the proof by Appel and Haken (briefly, A&H) has not been fully accepted. There has remained a certain amount of doubt about its validity, basically for two reasons:

- (i) part of the A&H proof uses a computer, and cannot be verified by hand, and
- (ii) even the part of the proof that is supposed to be checked by hand is extraordinarily complicated and tedious, and as far as we know, no one has made a complete independent check of it.