LEC19: Normalization & Orthogonal Projection

Ku-Jin Kim
School of Computer Science & Engineering
Kyungpook National University

Notice: This PPT slide was created by partially extracting & modifying notes from Edward Angel's Lecture Note for E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Contents

- View volume
- Projection Normalization
- Orthogonal projection

model-view, projection matrices in GLSL

```
uniform mat4 mat_model;  // model matrix
uniform mat4 mat_view;  // view matrix
uniform mat4 mat_projection;  // orthogonal or perspective projection matrix
in vec4 aPosition;
void main() {
    gl_Position = mat_projection * mat_view * mat_model * aPosition;
}
```

Projection Matrix (1)

- Perspective projection
 Parallel projection

Projectors pass through COP

Projectors are parallel with DOP

 Projection matrix is computed with the normalization of the view volume

Projection Matrix (2)

- Parallel projection
 - points are projected onto a view plane in a direction that is parallel to DOP (direction of projection)
 - Orthogonal projection
 - a case of parallel projection, where DOP is normal to the view plane

parallel projection

orthogonal projection

Projection Normalization (1)

- transform vertices in camera frame to fit inside the default view volume by using translation and scaling
- Convert all projections into orthogonal projection by distorting the objects
- Implement the orthogonal projection of distorted object (whose rendering result is identical to the desired projection of the original object)

Projection Normalization (2)

Projection Normalization (3)

- Most graphics systems use normalization
- Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
- This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping
- Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible
- Projection matrix: normalization + projection

Canonical View Volume

- (= default view volume)
- Cube with planes $x = \pm 1$, $y = \pm 1$, $z = \pm 1$ and center (0, 0, 0)

Clipping Process with Canonical View Volume

Projection Normalization Transformation

- In graphic pipeline
 - Normalization matrix for distortion
 - Simple orthogonal projection matrix

- By applying normalization matrix, we get canonical view volume
 - So, both perspective and orthogonal projections are supported by the same pipeline

Projection Matrix Construction Overview

OpenGL Orthogonal Viewing

- Deprecated gl function
 - glOrtho(left, right, bottom, top, near, far)
- We will construct
 - myOrtho(m_{ortho}, x_{min}, x_{max}, y_{min}, y_{max}, z_{min}, z_{max})
 - m_{ortho}: orthogonal projection matrix

Orthogonal Normalization

- myOrtho(m_{ortho}, x_{min}, x_{max}, y_{min}, y_{max}, z_{min}, z_{max})
- normalization ⇒ find transformation matrix to convert specified view volume to default

- Center of the view volume
 - $((x_{max}+x_{min})/2, (y_{max}+y_{min})/2, (z_{max}+z_{min})/2))$
- Length of the view volume
 - $X_{\text{max}} X_{\text{min}}$, $Y_{\text{max}} Y_{\text{min}}$, $Z_{\text{max}} Z_{\text{min}}$

Orthogonal Normalization Matrix (1)

Affine transformation for normalization

- For orthogonal normalization
 - Translation matrix: Move center to origin $T(-(x_{max}+x_{min})/2, -(y_{max}+y_{min})/2, -(z_{max}+z_{min})/2))$
 - Scale matrix: Scale to have edges of length 2 $S(2/(x_{max}-x_{min}), 2/(y_{max}-y_{min}), 2/(z_{max}-z_{min}))$

Orthogonal Normalization Matrix (2)

$$ST = \begin{bmatrix} \frac{2}{x_{max} - x_{min}} & 0 & 0 & 0\\ 0 & \frac{2}{y_{max} - y_{min}} & 0 & 0\\ 0 & 0 & \frac{2}{z_{max} - z_{min}} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{x_{max} + x_{min}}{2}\\ 0 & 1 & 0 & -\frac{y_{max} + y_{min}}{2}\\ 0 & 0 & 1 & -\frac{z_{max} + z_{min}}{2}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{x_{max} - x_{min}} & 0 & 0 & -\frac{x_{max} + x_{min}}{x_{max} - x_{min}} \\ 0 & \frac{2}{y_{max} - y_{min}} & 0 & -\frac{y_{max} + y_{min}}{y_{max} - y_{min}} \\ 0 & 0 & \overline{z_{max} - z_{min}} & -\frac{z_{max} + z_{min}}{z_{max} - z_{min}} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Default Orthogonal Projection (1)

- OpenGL default setting
 - orthogonal projection with identity projection matrix
 - view volume: $x = \pm 1$, $y = \pm 1$, $z = \pm 1$
 - Canonical view volume
 - view plane is z=0
- For a point (x, y, z) within the canonical view volume, its

projection is

$$x_p = x$$

$$y_p = y$$

$$z_p = 0$$

Default Orthogonal Projection (2)

- In homogeneous coordinates
 - $\mathbf{p}_p = M_{proj} \mathbf{p}$, where $\mathbf{p}_p = [x \ y \ 0 \ 1]^T$ and $\mathbf{p} = [x \ y \ z \ 1]^T$
- In practice, we can let $M_{proj} = I$ and set the z term to zero later.
- After orthogonal normalization, M_{proj} is applied as a default projection

$$\begin{bmatrix} x \\ y \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Orthogonal Projection Matrix

Hence, general orthogonal projection in 4D is

$$\mathbf{p}_{p} = M_{proj} S T \mathbf{p}$$

= $M_{proj} M_{ortho} \mathbf{p}$

$$= M_{proj} \begin{bmatrix} \frac{2}{x_{max} - x_{min}} & 0 & 0 & -\frac{x_{max} + x_{min}}{x_{max} - x_{min}} \\ 0 & \frac{2}{y_{max} - y_{min}} & 0 & -\frac{y_{max} + y_{min}}{x_{max} - x_{min}} \\ 0 & 0 & \frac{2}{z_{max} - z_{min}} & -\frac{y_{max} - y_{min}}{z_{max} - z_{min}} \end{bmatrix} \mathbf{r}$$

Orthogonal Projection Example (1)

- A cube
 - Center: (0, 0, 0), Length of all edges: 1
- LookAt (eye, at, up) :float eye[4] = {0.5, 0.3, 0.1, 1.0}, at[4] = {0.0, 0.0, 0.0, 1.0}, up[4] = {0.0, 1.0, 0.0, 0.0};

Default state (M_{ortho} is not applied in vertex shader)

Orthogonal Projection Example (2)

+1.2, -1.0, +1.0

Ex2) myOrtho (M_{ortho}, -1.5, +2.0, -1.2, Ex3) myOrtho (M_{ortho}, -0.8, +0.8, -0.6, +1.0, -0.0, +1.022

HW#19 Orthogonal Projection

- No submission
- Render the cube as in the right image.
- Cube information is given in the Lecture Note board.
- Use LookAt (eye, at, up) with float eye[4] = {0.5, 0.3, 0.1, 1.0}, at[4] = { 0.0, 0.0, 0.0, 1.0 }, up[4] = { 0.0, 1.0, 0.0, 0.0 };
- Construct myOrtho function and use it as: myOrtho (M_{ortho}, -1.5, +2.0, -1.2, +1.2, -1.0, +1.0)

