درس مهندسی نرمافزار پیشرفته

فصل چهاردهم

شبكههاي پتري

دكتر فريدون شمس

اهداف جلسه

- مفاهیم شبکههای پتری
- کاربردهای شبکههای پتری
- آشنایی با عناصر شبکه پتری
 - خصوصیات شبکههای پتری
- آشنایی با انواع شبکههای پتری
- کاربرد شبکههای پتری در مهندسی نرمافزار

مدلسازي رفتار سيستم

- برای نمایش رفتار سیستم از مجموعـهای از مـدلهـا و ابزارهـا استفاده میشود
 - روش مدلسازی تاثیر مستقیمی بر **ارزیابی مدل** دارد
 - هر چه مدل دارای عناصر بیشتری باشد، ارزیابی دشوار تر میشود
- در صورتی که مدل از پشتوانه ریاضی برخوردار باشد، ارزیابی ساده تـر خواهد شد

مدلسازی رفتار سیستم (۱دامه)

- سه روش برای مدلسازی رفتار وجود دارد
- نمودار حالت (Statechart) و نمودارهای ■
- (State Transition Diagram) نمودار انتقال حالت
 - شبکههای پتری (Petri Net)

_نمودار انتقال حالت

- در این روش سیستم توسط مجموعهای از حالات نـشان داده میشود که رویدادهای خارجی سبب حرکت روی حالات میشوند
- با توجه به اینکه اغلب سیستمها دارای حالات مختلف هـستند، نمودار انتقال حالت بزرگ و پیچیده خواهد شد
 - این نمودار دارای دو عنصر حالت و انتقال است

نمودار انتقال حالت (۱۵۱مه)

نمودار انتقال حالت (۱۵۱مه)

- مشكلات نمودار انتقال حالت
- وقتی تعداد حالات و رویدادها افزایش یابد، پیچیدگی به صورت تصاعدی افزایش می یابد
 - ابهام در نمودار سبب افزایش پیچیدگی و تضعیف ارزیابی میشود
- با توجه به عدم وجود پشتوانه ریاضی توانایی ارزیابی کامل نمودار
 وجود ندارد

شبکه پتری

- با وجود نقاط ضعف و مشکلات روشهای مدلسازی رفتار در ارزیابی، استفاده از شبکههای پتری بسیار مورد توجه قرار گرفته است
- شبکه پتری، مبتنی بر نظریه گراف بوده و با استفاده از قواعدی منطقی جریان فعالیتها در سیستم را نمایش میدهد
- چارچوب ریاضی شبکه پتری سبب می شود تا توانایی تحلیل، تایید صحت و ارزیابی مدلها را داشته باشد

شبکه پتری (ادامه)

- شبکه پتری قادر به توصیف سیستمهایی است که شامل مجموعهای از رخدادهای گسسته و پراکنده هستند، از جمله
 - همزمانی و تعارض
 - ترتیبها، شاخههای شرطی و چرخهها
 - همگامسازی (Synchronization)
 - اشتراک منابع محدود و انحصار متقابل
 - الگوهای مخابراتی، کنترلی و جریانهای اطلاعاتی

تاریخچه شبکه پتری

- رساله دکترای آقای کارل آدام پتری برای نمایش ارتباط علت و معلول (Cause and Effect) در آلمان در سال ۱۹۶۲
 - بسط تئوری در دانشگاه *MIT* در دهه ۱۹۷۰
 - کنفرانس پترینت و روشهای مرتبط در سال ۱۹۷۵
 - افزوده شدن زمان قطعی (deterministic time)
 - افزوده شدن زمان تصادفی (stochastic time)
 - (Colored Petri Net) شبکه پتری رنگی ■

عناصر شبكه يترى

- هر مدل شبکه پتری با استفاده از سه عنصر مدل میشود
 - مكان (Place): حالت سيستم را نشان مىدهند
- انتقال (Transition): رویدادهایی را که سبب تغییر حالت سیستم میشوند را نشان میدهند
 - کمان (Arc): ارتباط بین حالات را نشان میدهند
- در هنگام نمایش اجرای شبکه پتری از نشانه (Token) برای بیان وضعیت فعلی شبکه پتری استفاده می شود
 - نشانهها در مکانها قرار می گیرند

عناصر شبکه پتری (ادامه)

تعریف شبکه پتری

- یک شبکه پتری مجموعهایست از (P,T,I,O,M) که
 - P: مجموعه مکانها
 - T: مجموعه انتقالات
 - I: مجموعه ورودیها
 - O: مجموعه خروجیها
 - M: مجموعه حركات

تعریف شبکه پتری (۱دامه)

■ کمان ورودی به کمانی گفته می شود که از مکان به یـک انتقـال وارد می شود و نشان دهندهٔ شرطی است که باید بر آورده شود تا رویداد اتفاق بیفتد

تعریف شبکه پتری (ادامه)

حرکت در شبکه پتری برداری است به اندازه تعداد نشانهها $(m_1 \ m_2 \ ... \ m_P)$; $P = \# \ of \ Places$

■ وقتی مکان ورودی به یک انتقال به اندازه مورد نیاز نـشانه داشـته باشد، آن انتقال فعال است باشد، آن انتقال فعال است

■ وقتی انتقالی فعال باشد، مـی توانـد شـلیک شـود (رویـداد اتفـاق میافتد)که در اینصورت یک نشانه از هر مکان ورودی کـم شـده و یک نشانه به مکان خروجی افزوده میشود

تعریف شبکه پتری (۱دامه)

$$P = \{p_1^{} \, p_2^{} \, p_3^{} \, p_4^{} \, p_5^{} \}$$

$$T = \{t_1 \ t_2 \ t_3 \ t_4 \ t_5 \ \}$$

$$I(t_1) = \{p_1\}$$
 $O(t_1) = \{p_2 p_3\}$

$$I(t_2) = \{p_2\}$$
 $O(t_2) = \{p_4\}$

$$I(t_{_{\footnotesize 3}})=\{p_{_{\footnotesize 3}}\} \hspace{1cm} \mathrm{O}(t_{_{\footnotesize 3}})=\{p_{_{\footnotesize 5}}\}$$

$$I(t_4) = \{p_4\}$$
 $O(t_4) = \{p_2\}$

$$I(t_5) = \{p_4 p_5\} \quad O(t_5) = \{p_1\}$$

$$M_1 = (1, 0, 0, 0, 0)$$

نكات ضمني تعريف

- شلیک شدن به صورت اتوماتیک انجام می شود
 - پس از فعال شدن انتقال
- ممکن است که چند انتقال فعال شوند، اما در هر زمان تنها یک شلیک انجام میشود
 - شبکه ایستا است
 - حالت شبکه با توزیع نشانهها در مکانها نمایش داده میشود
 - حرکت نشانهها و شلیک شدن سبب ایجاد حالتهای مختلف میشوند

نكات ضمنى تعريف (ادامه)

- liela حالات
- حالت اولیه (Initial State): توزیع اولیه نشانهها
- حالت قابل دستیابی (Reachable State): حالت قابل دستیابی از حالت اولیه
- حالت نهایی (Final State): حالتی که هیچ انتقالی فعال نباشد (حالت مرده)
- حالت خانه (Home State): حالتی که همـواره امکـان بازگـشت بـه آن وجود داشته باشد
 - از هر حالتی قابل دستیابی است

نمونه ساختارهای شبکه پتری

■ توالی رویدادها/عملیات

■ اجرای همزمان

نمونه ساختارهای شبکه پتری (۱دامه)

- رویدادهای غیرقطعی
- بسته به شرایط یکی از مسیرها انتخاب میشود

نمونه ساختارهای شبکه پتری (۱دامه)

هماهنگسازی

نمونه ساختارهای شبکه پتری (۱دامه)

■ هماهنگسازی و همروندی

نمونه مدلسازی رفتار با شبکه پتری

■ تولیدکننده – مصرفکننده

توليدكننده

مصرفكننده

نمونه مدلسازی رفتار با شبکه پتری

- ماشین فروشنده نوشابه
- دو نوع نوشابه ۱۵۰۰ و ۲۰۰۰ ریالی موجود است
- فقط سکههای ۵۰۰ و ۱۰۰۰ ریالی پذیرفته میشود
 - سکه پس داده نمیشود!

نمونه مدلسازی رفتار با شبکه پتری (۱دامه)

■ نمودار انتقال حالت

نمونه مدلسازی رفتار با شبکه پتری (۱دامه)

■ شبکه پتری

نمونه مدلسازی رفتار با شبکه پتری (۱دامه)

خصوصیات رفتاری شبکههای پتری

- خصوصیاتی که به حالت اولیه بستگی دارند
 - Reachability •
 - آیا همه حالتها اجرا میشوند؟
- حالت M_n قابل دستیابی از حالت M_0 است، اگر ترتیبی از شلیک هایی وجود داشته باشد که از M_0 شروع شده و به M_n برسد
- وجود حالتهای غیرقابل دستیابی نشان میدهد کـه قـسمتهـایی از مسئله بهدرستی درک و مدلسازی نشده است

Boundedness and Safeness

- در صورتیکه تعداد نشانهها در هر مکان قابل دستیابی از حالت اولیه، از
 تعداد خاصی کمتر باشد به آن شبکه گراندار گویند
 - ای شبکه $k ext{-}bounded$ ویند K باشد به آن شبکه $k ext{-}bounded$ ویند
 - شبکه (Safe) را شبکه مطمئن (Safe) گویند
- در صورتیکه شبکه مطمئن میباشد می توان اطمینان حاصل کرد که با هر ترتیبی از شلیکها، سر ریز در ثبّاتها و بافرها به وجود نمی آید

Liveness •

- در صورتی شبکه پتری زنده (Live) است که بتوان هر حالت را با
 ترتیبی از شلیکهای مناسب فعال نمود
 - زندهبودن شبکه پتری معادل بدون بنبست بودن است
- ullet مـرده، $= L_0$ مـرده، شبکههای پتری دارای سطوح مختلف زنده بودن هستند $= L_0$ مـرده، $= L_1$ ، $= L_2$ ، $= L_2$ ، $= L_2$ ، $= L_2$ ، $= L_3$ ، $= L_2$ ، $= L_3$ ، $= L_4$ ، $= L_3$ ، $= L_4$ ، $= L_5$ ، =

Reversibility •

- \mathbf{M}_0 یک شبکه پتری معکوس پذیر است اگر برای هر حالت \mathbf{M}_n که از \mathbf{M}_0 قابل دستیابی است، \mathbf{M}_0 نیز از \mathbf{M}_n قابل دستیابی است، \mathbf{M}_0 نیز از \mathbf{M}_0
- M حالت خانه ($Home\ State$) است اگر برای هر حالت M در صورتی M حالت M از M قابل دستیابی باشد

Persistence •

■ یک شبکه پتری ماندگار است اگر در هـر انتقـال دوتـایی، شـلیک شدن یکی سبب غیرفعال شدن دیگری نشود

Fairness •

- آیا چرخه بینهایت در شبکه وجود دارد؟
- هر انتقال سرانجام شلیک میشود و انتقالی وجود نـدارد کـه شـلیک
 نشود
- Bounded-Fairness: اگر تعداد دفعاتی که یک انتقال می تواند شـلیک شود در حالیکه انتقال دیگر شلیک نشده باشد، محدود باشد
- *Unbounded-Fairness: اگر تعداد دفعاتی کـه یـک انتقـال مـی توانـد* شلیک شود در حالیکه انتقال دیگر شلیک نشده باشد، نامحدود باشد

زیرنوعهای شبکه پتری

- Ordinary PNs
- State machine
- Marked graph
- Free-choice
- Extended free-choice
- Asymmetric choice (or simple)

زيرنوعهاي شبكه پتري (ادامه)

شبکههای پتری رنگی

- این نوع شبکهها امکان مدلسازی دقیقتر و جزئی را از فرآیندهای غیرهمزمان پیچیده میدهند
- نشانه ها می توانند با هم متفاوت باشند، بطوریکه به هـر نـشانه خصوصیتی بنام رنگ اضافه می شود
- کمانها می توانند شامل عبارات ریاضی باشند که از ترکیب مجموعههای رنگ و متغیرهای مربوط به آنها تشکیل می شوند

شبکههای پتری رنگی (ادامه)

- گارد (Guard)، یک عبارت بولی است که به یک انتقال منتسب می شود و شرایطی برای فعال شدن کمان ورودی ایجاد می نماید
- در شبکه پتری رنگی هر یک از مکانها، کمانها و انتقالات می توانند بسته به رنگی که دارند، دارای گارد مخصوص به خود باشند

شبکههای پتری رنگی (ادامه)

■ وقتی حاصل گارد «درست» باشد، عملیات انجام میشود

نمونه شبکه پتری رنگی

زمان در شبکه پتری

- می توان به هر نشانه، مقداری زمانی منتسب کرد، که به این مقدار زمانی زمانمهر (Timestamp) گفته می شود
- زمانمهر بیانگر اولین زمانی است که پس از برآورده شدن ورودیها، نشانه می تواند شلیک شود
- وقتی انتقال در حالت آماده است که زمان نشانههای مکانهای ورودی انتقال کوچکتر و یا مساوی با زمان فعلی باشند و وقتی این زمان بیشتر باشد، شلیک انجام میشود

زمان در شبکه پتری (۱دامه)

- شبکههای پتری تصادفی (stochastic) گونه خاصی از شبکههای پتری زمانی هستند که زمان آنها یک متغیر تصادفی است
- نسخههای متفاوتی از شبکههای پتری تصادفی وجود دارند که برای مدلسازی در تئوری صفها (Queue Theory) مورد استفاده قرار می گیرند

کاربرد شبکه پتری در مهندسی نرمافزار

- برای ارزیابی محصولات مهندسی نرمافـزار ماننـد نمـودار مـورد کاربری، ترتیبی، فعالیت می توان از شبکههای پتری استفاده نمود
 - شبکه پتری می تواند برای اغلب نمودارهای UML بکار گرفته شود
- محصولات UML با اجرای الگوریتمهایی به شبکه پتری تبدیل میشوند
- خصوصیات کیفی کارایی و قابلیت اطمینان از جمله مهمترین خصوصیاتی هستند که با تبدیل نمودارها به شبکه پتری بهصورت کمی مورد ارزیابی قرار گیرند

کاربرد شبکه پتری ۰۰۰ (۱دامه)

- یافتههای پژوهشهایی که در زمینه تبدیل نمودارهای UML به شبکه پتری صورت گرفته است
- برای ارزیابی کارایی و قابلیت اطمینان، اطلاعات اضافی به توصیفات
 معماری اضافه میشود
 - روشهای کمی نتایج را به توصیفات معماری بازخورد میدهند
 - بیشتر روشها از سطح خودکارسازی بالایی برخوردار هستند
- بیشتر روشها اجتماع مدل نرمافزار با مدل شبکه پتری را در سطح
 متوسط انجام میدهند

تبدیل نمودار موارد کاربری

- تبدیل هر یک از موارد کاربری و عاملها
- هر کاربر و مورد کاربری به یک مکان نگاشت میشوند
 - ورودی هر مکان، انتقالی با یک گارد است
- گارد شرط مربوط به صدا زدن مورد کاربری توسط کاربر را نشان میدهد
 - یک انتقال برای برگشت نیز وجود دارد
- مکان مربوط به هر مورد کاربری با شبکه پتری حاصل از نمودار ترتیبی
 آن جایگزین میشود
 - این مکانها با دایره توپر نشان داده میشوند، تا از سایر مکانها مجزا شوند

تبدیل نمودار موارد کاربری (۱۵۱مه)

■ نمونه تبدیل مورد کاربری به شبکه پتری

تبدیل نمودار موارد کاربری (۱۵۱مه)

■ نمونه تبدیل رابطه Uses

تبدیل نمودار ترتیبی

- بهازای هر پیام موجود در نمودار ترتیبی، مولفههای فرستنده و
 گیرنده آن به یک زیرسیستم شبکه پتری تبدیل میشوند
 - تبدیل پیامهای ناهمگام
 - تبدیل پیامهای همگام
- شبکههای پتری حاصل، مطابق با ترتیب و ارتباط بین پیامها ادغام میشوند
- در نهایت برای شبکه پتری حاصل، نشانهگذاری اولیه انجام شود

■ ساختار ترتیب

■ ساختار انتخاب

■ ساختار توازی

■ ساختار تکرار

تبديل نمودار مولفه

- هر یک از مولفهها به صورت مجزا به شبکه پتری تبدیل می شوند
- شبکههای پتری حاصل مطابق با نوع ارتباط بین مولفهها با هـم ترکیب میشوند
 - رفتار هر مولفه با عبارت مسير (Path expression) نشان داده می شود
 - ترتیب میان عملیات یک مولفه
- فرض بر این است که کلیه عملیات انجام شده بوسیله هر مولفه، ترتیب فراخوانی آنها و دفعات اجرا و انتخاب این عملیات مشخص است
- در نهایت برای شبکه پتری حاصل، نشانه گذاری اولیه انجام شود

■ عملگرهای عبارت مسیر

ترتیب اجرای عملیات عملگر	6
انتخاب یک عمل از بین مجموعهای از عملیات	6
تکرار یک یا بیشتر عملیات و عملگر	+
تکرار صفر یا بیشتر عملیات و عملگر	*
اجرای موازی عملیات	
عملگر مورد نظر بر کل عملیات داخل پرانتز اعمال میشود	()

- نمونهای از نمودار مولفه پالایش شده با عبارات مسیر
 - رفتار مولفه به نمودار مولفه اضافه شده است

■ ساختار ترتیب (عملگر؛)

■ انتخاب (عملگر،)

■ ساختار موازی (عملگر ||)

■ ساختار تکرار (عملگر *)

مثال ATM

■ نمودار موارد کاربری

■ شبکه پتری معادل نمودار موارد کاربری

■ نمودار ترتیبی

■ شبکه پتری معادل نمودار ترتیبی

■ نمودار مولفه پالایش شده با عبارت مسیر

■ شبکه پتری معادل با نمودار مولفه

کاربرد شبکه پتری در مدلسازی فرآیند

- مزایای استفاده از شبکههای پتری در نمایش رفتار فرآیند
 - بیان صریح حالات و عملیات فرآیند
 - ارائه یک مدل اجرایی از فرآیند با استفاده از شبکه پتری
 - نمایش دقیق پیششرطها و پسشرطهای عملیات
 - مدلسازی ساده تر و دقیق تر
 - قابلیت ارزیابی و رفع مشکلات