University of South Bohemia

Faculty of Science

Praktika IV

Comptnův rozptyl

Datum: 18.10.2023 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

- Na HPGe detektoru proměřte spektra γ -záření připravených radioizotopů
- Určete energie peaků plného pohlcení a energie jím příslušejících Comptnových hran
- Vypočtěte hybnosti odražených Comptnovkých elektronů a na grafech ukažte, zda se chovají dle klasické teorie nebo podle teorie relativity

2 Pomůcky

Zdroj gamma záření LABKIT-SR-Cs137, detektor Osprey, program ProSpect, Radiagem 2000, podložka s úhloměrem, ocelový kůl

3 Teorie

Comptnův rozptyl je, když se srazí foton s volným elektronem. Tímto foton předá nehybnému elektronu část svojí energie. Můžou se stát dvě věci. Energie fotonu se plně pohltí eletronem, takže předá elektronu všechnu svojí energii a zmizí. Toto se projeví ve spektru jako peak s maximální energií gamma E_{γ} , což je vlastně energie fotonu. Druhá věc, co se může stát je, že se foton odrazí o 180° a elektron získá maximální hybnost. Toto se projeví ve spektru jako comptona hrana T, což je energie předaná elektronu. Hybnost elektronu pak můžeme určit ze vztahu

$$pc = 2E_{\gamma} - T \tag{1}$$

- (2)
- (3)

4 Postup měření

5 Data

Figure 1: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 2: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 3: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 4: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole