3000788 Intro to Comp Molec Biol

Lecture 2: Sequence alignment

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- What is sequence alignment?
- Why do we perform sequence alignment?
- Strategies/algorithms for sequence alignment

Global and local sequence alignments

Local Alignment

Global Alignment

J. Mol. Biol. (1990) 215, 403-410

Basic Local Alignment Search Tool

Stephen F. Altschul¹, Warren Gish¹, Webb Miller² Eugene W. Myers³ and David J. Lipman¹

¹National Center for Biotechnology Information National Library of Medicine, National Institutes of Health Bethesda, MD 20894, U.S.A.

²Department of Computer Science The Pennsylvania State University, University Park, PA 16802, U.S.A.

> ³Department of Computer Science University of Arizona, Tucson, AZ 85721, U.S.A.

(Received 26 February 1990; accepted 15 May 1990)

An early day of sequence alignment

- Found new cell extracts with interesting functions
- Cloned the genes, but which are responsible for the functions?
- Check the DNA sequences against known genes with validated functional experiments
 - Infer function
 - Infer taxonomy

Implications of sequence homology

Evolution occurs at the sequence level

Histone H1 (residues 120-180)

https://en.wikipedia.org/wiki/Homology_(biology)

- Evolutionarily-related genes/proteins have similar sequences
- Evolutionarily-related genes/proteins tend to have similar functions
- Hence, genes/proteins with similar sequences may have similar functions, and may come from closely related organisms

Evolution tolerates conservation of function/structure

Ferguson et al. J General Virology, 94: 2070-2081 (2013)

- Sequences can change if the function and structure remain intact
- Hence, proteins with similar sequences may adopt similar 3D structure, down to the specific domains

Molecular probe design

http://www.sigmaaldrich.com/technical-documents/articles/biology/crispr-cas9-genome-editing.html

- Sequence alignment confirm the specificity of your probes
 - Against targets and potential off-targets

Sequence alignment predicts many things

- Infer evolutionary relationship across species
 - Many-to-many alignment between gene lists
- Identify the species of origin for a sequence
 - One-to-many alignment against a reference databa
 - Host vs pathogen
- Predict function and structure
 - Partial similarity is good enough
 - Locate conserved functional domain / motif

https://sites.google.com/site/jkim339n/part2a

Check the specificity of designed probes

Sequence alignment strategies

Starting from exact match (seed / word)

- . . TTACGATAAGC**ATTTTCATAATA**CGACGTCA . .
- ..AACCGACGT**ATTTTCATAATA**GCATAGCAT..

- **ATTTTCATAATA** pattern appears in both sequences
- Do you think the best alignment **must** have this at the center? Why?
 - ATTTTCATAATA
 -ATTTTCATAATA....

How long of a match can be expected?

- Input sequence length = 300
- Expected 95% similarity (genome re-sequencing)
- How many matches and mismatches to expect? 285 and 15
 - We can expect to see at least (285/16) 18 matches in a row

MM. MEM. MEM. MEM. MM

NCBI's MEGABLAST searches for a run of 28 matches

Dynamic programming

- There is a pile of 20 rocks.
- Two players take turns by removing 1 or 2 rocks from the pile. Whoever removes the last rock(s) win.
- Who is the winner?

Dynamic programming

- How many ways to travel from A to B using only **right** and **up**?
 - (7 choose 3) = 35 ways

1	4	10	20	35
1	3	6	10	15
1	2	3	4	5
1	1	1	1	1

Dynamic programming

- How many ways to travel from A to B using only **right** and **up**?
 - Without running into aliens

	3	6	10	18
1	3	3	4	8
1	2		1	4
1	1	1	1	1

Global sequence alignment

Match : 1 ____ Mismatch : -1 ___ GAP : -2 ___

Seq1: ATGCT

1 111

Seq2: A-GCT

Local sequence alignment = reset when score <0

		Α	T	G	С	Т
	0	0	0	0	0	0
Α	0	1	0	0	0	0
G	0	0	0	1	0	0
С	0	0	0	0	2	0
L	0	0	0	0	0	3

Match : 1 ____ Mismatch : -1 ___ GAP : -2 ___

Seq1: ATGCT

Seq2: AGCT

 Starting over is better than negative score

Dynamic programming for sequence alignment

- The best alignment for TTCATA vs TGCTCGTA
 - T/T with the best alignment for TCATA vs GCTCGTA
 - T/- with the best alignment for TCATA vs TGCTCGTA
 - /T with the best alignment for TTCATA vs GCTCGTA
- Different score for each possibility
 - Match
 - Mismatch
 - Gap

Scoring of sequence alignment

Nucleotide alignment scores

Ref: ACCGTATCG

11 1111

Query: AC---ATCG

Score =
$$+1+1-1-1-1+1+1+1+1=+3$$

Score =
$$+2+2-5-2-2+2+2+2+2=+1$$

- Gap cost models
 - Constant = Same penalty regardless of length
 - Linear = Penalty x Length
 - Affine = Existence + (Extension x Length)

Interpretation of match/mismatch scores

- Match / Mismatch = +1/-2
 - A mismatch followed by two matches = no score gain
 - Get hits with **high similarity**
 - Re-sequencing, closely related species
- Match / Mismatch = +2 / -3
 - A mismatch followed by two matches +1 score
 - Get hits with intermediate similarity
 - More distance species

Interpretation of gap scores

- Constant = An insertion/deletion can be of any length
- Linear = Long indel is less likely than short indel
- Affine = Existence + (Extension x Length)
 - Combination of constant and linear

Basic Local Alignment Search Tool: BLAST

NCBI's nucleotide BLAST interface

Nucleotide BLAST algorithm

- MEGABLAST: word size = 28, match/mismatch = +1/-2, linear gap
- BLASTN: word size = 11, match/mismatch score = +2/-3, affine gap

MEGABLAST vs BLASTN

BLASTN = lots of intermediate-identity hits

BLAST result

Query coverage = % of input sequence used

Identity = % of identity in the aligned region

E value = expected number of hits with the same or higher score by chance

Typical cutoff is 1e-5

Understanding E value

- Given an input sequence of length N and a reference sequence of length M
- E value for a hit with score S is proportional to $N \times M \times e^{-\lambda S}$

E value as Poisson distribution

- Event of interest = hits with score > S on the sequence of length N
- Expected number of events = E value
- Probability of observing k hits with score $>S = \frac{E^k e^{-E}}{k!}$

Low complexity region

CCCGCGCCCCGGCGCCCCGATGCAACTAGC

- Probability of getting a hit with score >S depends on the nucleotide composition (easier with only C and G)
- BLAST withholds these regions from score calculation

Protein sequence alignment

Amino acid side chains

https://www.technologynetworks.com/applied-sciences/articles/essential-amino-acids-chart-abbreviations-and-structure-324357

Similar side chains are tolerated by evolution

- D, E have -COOH groups
- K, R have charged -NH₂ groups
- A, V, I, L are small hydrocarbon
- F, Y, W have benzene rings
- Alignment score must reflect these

Block Substitution Matrix (BLOSUM)

Point Accepted Mutation (PAM)

Mimic one step of evolution

Point Accepted Mutation (PAM)

Extrapolate evolution via multiplication

PAM vs BLOSUM

PAM	BLOSUM			
PAM100	BLOSUM90			
PAM120	BLOSUM80			
PAM160	BLOSUM60			
PAM200	BLOSUM52			
PAM250	BLOSUM45			

Data from https://en.wikipedia.org/wiki/BLOSUM

BLOSUM for low identity, PAM for high identity

Protein BLAST algorithms

- BLASTP assumes that all amino acid residues are the same
- But each protein domain & motif evolve differently
 - Unknown pattern: PSI-BLAST
 - Known pattern: PHI-BLAST

Pattern hit initiated (PHI-BLAST)

x = any amino acid [LIVMF] -G-E-x-[GAS] - [LIVM] -x (5,11) -R-[STAQ] L, I, V, M, or Fany sequences of 5-11 amino acids

- Combine regular BLASTP with user-specified pattern
- Hits must be similar to the input sequence AND match the pattern
- Search for known protein domain

Position-specific scoring matrix (PSSM)

www.nemates.org/uky/520/Lecture/Lect6/BIO520_2010_Lect6.pp

weblogo.berkelev.edu

- Different scoring for each position in the motif/domain
- How do we know?

Position-specific iteratred (PSI-BLAST)

- Start from input sequences
- First BLASTP search

- Construct PSSM from hits
- Re-search using the PSSM
- Repeat

Using BLASTP to annotate protein function

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	hypothetical protein JCGZ_15894 [Jatropha curcas]	Jatropha curcas	1161	1161	99%	0.0	89.37%	689	KDP41487.1
$\overline{\mathbf{v}}$	NADPHcytochrome P450 reductase [Manihot esculenta]	Manihot esculenta	1159	1159	100%	0.0	86.98%	691	XP_021601058.2
	NADPHcytochrome P450 reductase [Manihot esculenta]	Manihot esculenta	1145	1145	100%	0.0	86.25%	690	XP_021601060.1
~	NADPHcytochrome P450 reductase-like [Hevea brasiliensis]	Hevea brasiliensis	1130	1130	99%	0.0	85.59%	689	XP_021642755.1
~	NADPHcytochrome P450 reductase [Ricinus communis]	Ricinus communis	1124	1124	99%	0.0	84.64%	692	XP_002514049.1
	LOW QUALITY PROTEIN: NADPHcytochrome P450 reductase-like [Hevea brasilien	. <u>Hevea brasiliensis</u>	1120	1120	100%	0.0	84.81%	698	XP_021660128.1
✓	hypothetical protein COLO4_35252 [Corchorus olitorius]	Corchorus olitorius	1111	1111	100%	0.0	82.08%	1505	OMO57587.1
~	Flavodoxin [Corchorus capsularis]	Corchorus capsularis	1093	1093	100%	0.0	82.08%	692	OMO50775.1
~	NADPHcytochrome P450 reductase-like [Hibiscus syriacus]	Hibiscus syriacus	1085	1085	100%	0.0	81.24%	693	XP_039050423.1
~	hypothetical protein CXB51_011412 [Gossypium anomalum]	Gossypium anomalum	1083	1083	100%	0.0	81.10%	694	KAG8494022.1
~	NADPH:cytochrome P450 reductase [Gossypium hirsutum]	Gossypium hirsutum	1083	1083	100%	0.0	81.24%	693	ACN54323.1
✓	NADPHcytochrome P450 reductase-like [Gossypium hirsutum]	Gossypium hirsutum	1083	1083	100%	0.0	81.10%	693	NP_001313876.2

- Suspected novel CYP reductase from an indigenous plant
 - >80% similarity to known and predicted CYP reductase class I

InterPro: Protein domain search

Use patterns from known protein functional domains

Mixed protein-nucleotide alignment

BLASTX and TBLASTN

- For coding DNA, alignment at protein level is more informative
 - Codon structure, not all amino acid change is equally likely
- **BLASTX** = align translated DNA to protein database
- **tBLASTN** = align protein to translated DNA database

Example use cases

BLASTX

- Get RNA sequence from RNA-seq
- Unsure which open reading frame is translated
- Does this RNA translate to a known protein?

tBLASTN

- Identified novel protein, with no similarity to protein database
- Is there a transcriptomics study that have identified the RNA of a related protein?

More advanced alignments

All-vs-all search for finding orthologs across genomes

- Evolutionarily related genes
 - Group 1 = {Mouse-a, Human-a}
 - Group 2 = {Mouse-b, Human-b}
- BLAST mouse to human
- BLAST human to mouse

- Reciprocal best hit:
 - Human-a is the best hit for Mouse-a
 - Mouse-a is the best hit for Human-a

https://sites.google.com/site/jkim339n/part2a

Multiple sequence alignment (MSA)

- Dynamic programming is not feasible. Too many ways of grouping sequences (on top of aligning positions).

Heuristic algorithms

 Greedy algorithm optimize the next step and/or the future steps

Randomized algorithm makes a lot of random decisions and keeps the best one found

Alignment output

Caballeronia_arvi Caballeronia_choica Caballeronia_arationis Caballeronia_telluris

Caballeronia_arvi Caballeronia_choica Caballeronia_arationis Caballeronia_telluris

ClustalW

```
>TRY2 RAT/24-239
  -----IVGGYTCOENSVPYOVSLNSGY------HFC
GGSLI-----RIQVRLGE-HNINVLEGN----
----EOFVNAAKIIKHPNFDRKT-L-----NNDIMLIKLS
SP--VKLNARVATVALPS---SCA---PAGTQCLISGWGN------TLSSGV----
-----ITDNMVCVGFL---
-EGG-KDSCQGDSGGPVVCNGE------LQGIVSWG-YGCALPDN---PGVYTKVCNY
VDWI-----
>016LB2 AEDAE/136-374
                ---ILNGIEADLEDFPYLGALALLDNYT----STVSYRC
GANLI-----SDR-FM-LTAAHCLFG------KQAIHVRMGTLSLTDNPDED-----
----APVIIGVERVFFHRNYTRRPIT------RNDIALIKLN
RT---VVEDFLIPVCLYT---EONDP-LPTVPLTIAGWGG-----NDSAS----
-----LMSSSLM-KASVT-TYERDECNSL---LAKKI-----VRLSNDOLCALGRSEF
NDGLRNDTCVGDSGGPLELSIGR - - - - RKYIVGLTSTG - IVCGNE - F - - - PSIYTRISOF
IDWI-----
                                Aligned FASTA
```

- Dashes "-" are added to indicate insertions/deletions
- All output sequences have the same length

Any question?

See you next time