Fields and Galois Theory

J. S. Milne

January 2, 2022

Contents

1	Basic Definitions and Results		
	1.1	The characteristic of a field	1
	1.2	Factoring polynomials	2
	1.3	Extensions	4
	1.4	The subring generated by a subset	4
	1.5	The subfield generated by a subset	5
	1.6	Construction of some extensions	5
	1.7	Stem fields	6
	1.8	Algebraic and transcendental elements	7
	1.9	Algebraically closed fields	8

1 Basic Definitions and Results

1.1 The characteristic of a field

Given a field *F* and consider a map

$$\mathbb{Z} \to F, \quad n \mapsto n \cdot 1_F$$

If the kernel of the map is $\neq (0)$, so that $n \cdot 1_F = 0$ for some $n \neq 0$. The smallest positive such n will be a prime p (otherwise $(m \cdot n) \cdot 1_F = (m \cdot 1_F) \cdot (n \cdot 1_F) = 0$ there will be two nonzero elements in F whose product is zero, but a field is an integral domain) and p generates the kernel. Thus the map $n \mapsto n \cdot 1_F : \mathbb{Z} \to F$ defines an isomorphism from $\mathbb{Z}/p\mathbb{Z}$ onto the subring

$$\{m\cdot 1_F\mid m\in\mathbb{Z}\}$$

of F. In this case, F contains a copy of \mathbb{F}_p

A field isomorphic to one of the fields \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_5 , ..., \mathbb{Q} is called a **prime** field. Every field contains exactly one prime field (as a subfield)

A commutative ring R is said to have **characteristic** p (resp. 0) if it contains a prime field (as a subring) of characteristic p (resp. 0). Then the prime field is unique and, by definition, contains 1_R . Thus if R has characteristic $p \neq 0$, then $1_R + \dots + 1_R = 0$ (p terms)

Let *R* be a nonzero commutative ring. If *R* has characteristic $p \neq 0$, then

$$pa := \underbrace{a + \dots + a}_{p \text{ terms}} = \underbrace{(1_R + \dots + 1_R)}_{p \text{ terms}} a = 0a = 0$$

for all $a \in R$. Conversely, if pa = 0 for all $a \in R$, then R has characteristic p Let R be a nonzero commutative ring. The usual proof by induction shows that the binomial theorem

$$(a+b)^m = a^m + \binom{m}{1} a^{m-1} b + \binom{m}{2} a^{m-2} b^2 + \dots + b^m$$

holds in R. If p is prime, then it divides

$$\binom{p}{r} := \frac{p!}{r!(p-r)!}$$

for all r with $1 \le r \le p-1$. Therefore, when R has characteristic p

$$(a+b)^p = a^p + b^p$$
 for all $a, b \in R$

and so the map $a\mapsto a^p:R\to R$ is a homomorphism of rings (even of \mathbb{F}_p -algebras). It is called the **Frobenius endomorphsim** of R. The map $a\mapsto a^{p^n}:R\to R$, $n\ge 1$, is hte composite of n copies of the Frobenius endomorphsim, and so it also is a homomorphism. Therefore

$$(a_1, \dots, a_m)^{p^n} = a_1^{p^n} + \dots + a_m^{p^n}$$

for all $a_i \in R$.

When F is a field, the Frobenius endomorphsim is injective

1.2 Factoring polynomials

Proposition 1.1. *Let* $r \in \mathbb{Q}$ *be a root of a polynomial*

$$a_mX^m+a_{m-1}X^{m-1}+\cdots+a_0,\quad a_i\in\mathbb{Z}$$

and write r = c/d, $c, d \in \mathbb{Z}$, $\gcd(c, d) = 1$. Then $c \mid a_0$ and $d \mid a_m$

Proof.

$$a_m c^m + a_{m-1} c^{m-1} d + \dots + a_0 d^m = 0$$

 $d \mid a_m c^m$ and therefore $d \mid a_m$. Similarly $c \mid a_0$

Example 1.1. The polynomial $f(X) = X^3 - 3X - 1$ is irreducible in $\mathbb{Q}[X]$ because its only possible roots are ± 1 and $f(1) \neq 0 \neq f(-1)$

Proposition 1.2 (Gauss's Lemma). Let $f(X) \in \mathbb{Z}[X]$. If f(X) factors nontrivially in $\mathbb{Q}[X]$, then it factors nontrivially in $\mathbb{Z}[X]$

Proof. Let $f = gh \in \mathbb{Q}[X]$ with g, h nonconstant. For suitable integers m and $n, g_1 := mg$ and $h_1 := nh$ have coefficients in \mathbb{Z} , so we have a factorization

$$mnf = g_1 \cdot h_1$$

in $\mathbb{Z}[X]$. If a prime p divides mn, then looking modulo p, we obtain

$$0 = \overline{g_1} \cdot \overline{h_1} \in \mathbb{F}_n[X]$$

Since $\mathbb{F}_p[X]$ is an integral domain, this implies that p divides all the coefficients of at least one of the polynomials g_1,h_1 , say g_1 , so that $g_1=pg_2$ for some $g_2\in\mathbb{Z}[X]$. Thus we have a factoriztion

$$(mn/p)f = g_2 \cdot h_1 \in \mathbb{Z}[X]$$

Continuing in this fashion, we eventually remove all the prime factors of mn.

Proposition 1.3. *If* $f \in \mathbb{Z}[X]$ *is monic, then every monic factor of* f *in* $\mathbb{Q}[X]$ *lies in* $\mathbb{Z}[X]$

Proof. Let g be a monic factor of f in $\mathbb{Q}[X]$, so that f=gh with $h\in\mathbb{Q}[X]$ also monic. Let m,n be the positive integers with the fewest prime factors s.t. $mg, nh\in\mathbb{Z}[X]$. As in the proof of Gauss's Lemma, if a prime p divides mn, then it divides all the coefficients of at least one of the polynomials mg, nh, say mg, in which case it divides m because g is monic. Now $\frac{m}{p}g\in\mathbb{Z}[X]$ which contradicts the definition of m.

Proposition 1.4 (Eisenstein's Criterion). *Let*

$$f=a_mX^m+\cdots+a_0,\quad a_i\in\mathbb{Z}$$

suppose that there is a prime p s.t.

- 1. $p \nmid a_m$
- 2. $p \mid a_i \text{ for } i = 0, \dots, m-1$
- 3. $p^2 \nmid a_0$

Then f is irreducible in $\mathbb{Q}[X]$

Proof. If f(X) factors nontrivially in $\mathbb{Q}[X]$, then it factors nontrivially in $\mathbb{Z}[X]$, say

$$a_m X^m + \dots + a_0 = (b_r X^r + \dots + b_0)(c_s X^s + \dots + c_0)$$

where $b_i,c_i\in\mathbb{Z}$. Since p, but not p^2 , divides $a_0=b_0c_0$, p must divide exactly one of b_0,c_0 , say b_0 . Now from the equation

$$a_1 = b_0 c_1 + b_1 c_0$$

we see that $p \mid b_1$, and from the equation

$$a_2 = b_0 c_2 + b_1 c_1 + b_2 c_0$$

that $p \mid b_2$. By continuing in this way, we find that p divides b_0, b_1, \dots, b_r , which contradicts the condition that p does not divide a_m

1.3 Extensions

Let F be a field. A field containing F is called an **extension** of F. In other words, an extension is an F-algebra whose underlying ring is a field. An extension E of F is, in particular, an F-vector space, whose dimension is called the **degree** of E over F. It is denoted by [E:F]. An extension is **finite** if its degree is finite.

When E and E' are extensions of F, an F-homomorphism $E \to E'$ is a homomorphism $\varphi: E \to E'$ s.t. $\varphi(c) = c$ for all $c \in F$

Proposition 1.5 (Multiplicity of degrees). *Consider fields* $L \supset E \supset F$. *Then* L/F *is of finite degree iff* L/E *and* E/F *are both of finite degree, in which case*

$$[L:F] = [L:E][E:F]$$

1.4 The subring generated by a subset

Let F be a subfield of a field E and let S be a subset of E. The intersection of all the subrings of E containing F and S is obviously the smallest subring of E containing both F and S. We call it the subring of E **generated by** F **and** S (**generated over** F **by** S), and we denote it by F[S].

Lemma 1.6. The ring F[S] consists of the elements of E that can be expressed as finite sums of the form

$$\sum a_{i_1\cdots i_n}\alpha_1^{i_1}\cdots\alpha_n^{i_n},\quad a_{i_1\cdots i_n}\in F,\quad \alpha_i\in S,\quad i_j\in \mathbb{N}$$

Lemma 1.7. Let R be an integral domain containing a subfield F (as a subring). If R is finite-dimensional when regarded as an F-vector space, then it is a field

Proof. Let $\alpha \in R$ be nonzero. The map $h: x \mapsto \alpha x$ is an injective linear map of finite-dimensional F-vector spaces, and is therefore surjective. In particular, there is an element $\beta \in R$ s.t. $\alpha \beta = 1$

 $\alpha x=\alpha y$, we need R to be integral domain to make x=y Also for $f\in R$, we need R to be a field to make $\alpha fx=f\alpha x$ Surjection is trivial

1.5 The subfield generated by a subset

The intersection of all the subfields of E containing F and S is the smallest subfield of E containing both F and S. We call it the subfield of E **generated** by F and S, and we denote it by F(S), it is the fraction field of F[S]

An extension E of F is **simple** if $E = F(\alpha)$ for some $\alpha \in E$

Let F and F' be subfields of a field E. The intersection of the subfields of E containing both F and F' is obviously the smallest subfield of E containing both F and F. We call it the **composite** of F and F' in E, and we denote it by $F \cdot F'$. It can also be described as the subfield of E generated over F by F', or the subfield generated over F' by F

$$F(F') = F \cdot F' = F'(F)$$

1.6 Construction of some extensions

Let $f(X) \in F(X)$ be a monic polynomial of degree m. Consider the quotient F[X]/(f(X)), and write x for the image of X in F[X]/(f(X)), i.e., x = X + (f(X))

1. The map

$$P(X) \mapsto P(x) : F[X] \to F[x]$$

is a homomorphism sending f(X) to 0, therefore f(x) = 0. F[x] = F[X]/(f) since for each $x^n = (X + (f(X))^n) = X^n + (f(X))$.

2. The division algorithm shows that every element $g \in F[X]/(f)$ is represented by a unique polynomial r of degree < m. Hence each element of F[x] can be expressed uniquely as a sum

$$a_0 + a_1 x + \dots + a_{m-1} x^{m-1}, \quad a_i \in F$$

3. Now assume that f(X) is irreducible. Then every nonzero $\alpha \in F[x]$ has an inverse, which can be found as follows. Use 2 to write $\alpha = g(x)$ with g(X) a polynomial of degree $\leq m-1$, and apply Euclid's algorithm in F[X] to find polynomials a(X) and b(X) s.t.

$$a(X)f(X) + b(X)g(X) = d(X)$$

with d(X) the gcd of f and g. In our case, d(X) is 1 because f(X) is irreducible and $\deg g(X) < \deg f(X)$. When we replace X with x, the equality becomes

$$b(x)g(x) = 1$$

Hence b(x) is the inverse of g(x)

We have proved the following statement

Proposition 1.8. For a monic irreducible polynomial f(X) of degree m in F[X]

$$F[x] := F[X]/(f(X))$$

is a field of degree m over F. Computations in F[x] come down to computations in F

Since F[x] is a field, F(x) = F[x]

Example 1.2. Let $f(X)=X^2+1\in\mathbb{R}[X]$. Then $\mathbb{R}[x]$ has elements $a+bx,a,b\in\mathbb{R}$

We usually write i for x and \mathbb{C} for $\mathbb{R}[x]$

1.7 Stem fields

Let f be a monic irreducible polynomial in F[X]. A pair (E,α) consisting of an extension E of F and an $\alpha \in E$ is called a **stem field for** f if $E = F[\alpha]$ and $f(\alpha) = 0$. For example, the pair (E,α) with E = F[X]/(f) = F[x] and $\alpha = x$.

Let (E,α) be a stem field, and consider the surjective homomorphism of F-algebras

$$g(X) \to g(\alpha) : F[X] \to E$$

Its kernel is generated by a nonzero monic polynomial, which divides f, and so must equal it. Therefore the homomorphism defines an F-isomorphism

$$x \mapsto \alpha : F[x] \to E, \quad F[x] = F[X]/(f)$$

In other words, the stem field (E,α) of f is F-isomorphic to the standard stem field (F[X]/(f),x). It follows that every element of a stem field (E,α) for f can be written uniquely in the form

$$a_0+a_1\alpha+\dots+a_{m-1}\alpha^{m-1},\quad a_i\in F,\quad m=\deg(f)$$

and that arithmetic in $F[\alpha]$ can be performed using the same rules in F[x].

1.8 Algebraic and transcendental elements

Let F be a field. An element α of an extension E of F defines a homomorphism

$$f(X) \mapsto f(\alpha) : F[X] \to E$$

There are two possibilities:

1. Kernel is (0), so that for $f \in F[X]$

$$f(\alpha) = 0 \Rightarrow f = 0(\text{in } F[X])$$

In this case we say that α **transcendental over** F. The homomorphism $X \mapsto \alpha$ is an isomorphism, and it extends to an isomorphism $F(X) \to F(\alpha)$

2. The kernel $\neq (0)$, so that $g(\alpha) = 0$ for some nonzero $g \in F[X]$. In this case, we say that α is **algebraic over** F. The polynomials g s.t. $g(\alpha) = 0$ form a nonzero ideal in F[X], which is generated by the monic polynomial f of least degree such $f(\alpha) = 0$. We call f the **minimal polynomial** of α over F.

Note that $F[X]/(f)\cong F[\alpha]$, since the first is a field, so is the second

Example 1.3. Let $\alpha \in \mathbb{C}$ be s.t. $\alpha^3 - 3\alpha - 1 = 0$. Then $X^3 - 3X - 1$ is monic, irreducible in $\mathbb{Q}[X]$ and has α as a root, and so it is the minimal polynomial of α over \mathbb{Q} . The set $\{1, \alpha, \alpha^2\}$ is a basis for $\mathbb{Q}[\alpha]$ over \mathbb{Q} .

An extension E of F is **algebraic** (E is **algebraic over** F) if all elements of E are algebraic over F; otherwise it is said to be **transcendental**

Proposition 1.9. Let $E \supset F$ be fields. If E/F is finite, then E is algebraic and finitely generated (as a field) over F; conversely if E is generated over F by a finite set of algebraic elements, then it is finite over F

Proof. ⇒. α of E is transcendental over F iff $1, \alpha, \alpha^2, ...$ are linearly independent over F iff $F(\alpha)$ is of infinite degree. Thus if E is finite over F, then every element of E is algebraic over F. If $E \neq F$, then we can pick $\alpha_1 \in E \setminus F$ and compare E and $F[\alpha_1]$. If $E \neq F[\alpha_1]$, then there exists an $\alpha_2 \in E \setminus F[\alpha_1]$, and so on. Since

$$[F[\alpha_1]:F]<[F[\alpha_1,\alpha_2]:F]<\dots<[E:F]$$

this process terminates with $E = F[\alpha_1, \dots, \alpha_n]$

1.9 Algebraically closed fields

Let F be a field. A polynomial is said to **split** in F[X] if it is a product of polynomials of degree at most 1 in F[X]

Proposition 1.10. *For a field* Ω *, TFAE*

- 1. Every nonconstant polynomial in $\Omega[X]$ splits in $\Omega[X]$
- 2. Every nonconstant polynomial in $\Omega[X]$ has at least one root in Ω
- 3. The irreducible polynomials in $\Omega[X]$ are those of degree 1
- 4. Every field of finite degree over Ω equals Ω

Definition 1.11. 1. A field Ω is **algebraically closed** if it satisfies the equivalent statements in Proposition 1.10

2. A field Ω is an **algebraic closure** of a subfield F if it is algebraically closed and algebraic over F

Proposition 1.12. *If* Ω *is algebraic over* F *and every polynomial* $f \in F[X]$ *splits in* $\Omega[X]$ *, then* Ω *is algebraically closed*

Proof. Let f be a nonconstant polynomial in $\Omega[X]$. We know (1.8) that f has a root α in some finite extension Ω' of Ω . Set

$$f=a_nX^n+\cdots+a_0,\quad a_i\in\Omega$$

and consider the fields

$$F\subset F[a_0,\dots,a_n]\subset F[a_0,\dots,a_n,\alpha]$$

Each extension generated by a finite set of algebraic elements, and hence is finite (\ref{finite}) Therefore α lies in a finite extension of F and so is algebraic over F