

User segmentation

Ken Schröder data scientist (product)

User segmentation

Start the project
Dataset
Clustering

K-Means

Synthetic example
The algorithm
Challenges

Business value

Communication Long run value

PCA

User segmentation Starting up the project

- Aim: Identify groups of users
- Non data-driven attempts
- Data driven approach

User segmentation Getting the data

- User based
- Everything derived from event data
- 12 week interval
- Subscribed users only

User segmentation Got the data, what's next?

- Clustering!
- Which method to use?
- Dive into K-Means

User segmentation

Start the project
Dataset
Clustering

K-Means

Synthetic example
The algorithm
Challenges

Business value

Communication Long run value

PCA

Clustering Challenges

- More than 2 dimensions
- Variable 1 in (0, 1)Variable 2 in (0, infinity)
- How many clusters to identify?
- Duplicate information in dataset

Clustering More than 2 dimensions

- Two dimensions:
 - $a = (a_1, a_2)$, and
 - $b = (b_1, b_2)$
 - distance $(a, b) = \sqrt{(a_1 b_1)^2 + (a_2 b_2)^2}$
- Three dimensions:
 - $a = (a_1, a_2, a_3)$
 - $b = (b_1, b_2, b_3)$
 - $distance(a, b) = \sqrt{(a_1 b_1)^2 + (a_2 b_2)^2 + (a_3 b_3)^2}$
- · n dimensions:
 - $a = (a_1, a_2, \dots, a_n)$, and
 - $b = (b_1, b_2, \dots, b_n)$
 - distance $(a, b) = \sqrt{\sum_{i_1} [x_i y_i]^2}$

ClusteringScaling

- What if we treat all distance the same?
- Need the same scale
- Common standardisation:
 - Deduct average
 - Divide by standard deviation

Clustering K Determining K

- Business aspect:
 - Interpretability: Centroids as real users
 - Simple

- Clustering quality metrics:
 - Similarity within cluster
 - Differences between cluster
 - E.g. silhouette score

Beware of effects of changing K, even by one

User segmentation

Start the project
Dataset
Clustering

K-Means

Synthetic example
The algorithm
Challenges

Business value

Communication Long run value

PCA

Business value Communication

- Centroid = average value of all its members
- I have 100+ variables!
- Find distinctive and interpretable dimensions
- Create a story, name clusters

Business value Long run value (1/3)

- Should we retrain model?
- New clusters each iteration?
- User groups may become inconsistent

Business value Long run value (2/3)

- Train K-Means once
- Pickle files
- Use pre-trained model for new data

Business value Long run value (3/3)

- Job running that collects data weekly
- Extract and transform
- Save intermediate data in database
- Query into relevant data structure
- Apply pre-trained models & add to database tables

User segmentation

Start the project
Dataset
Clustering

K-Means

Synthetic example
The algorithm
Challenges

Business value

Communication Long run value

PCA

76 7 M

Principal component analysis

- High dimensionality
 - Distances become indistinguishable
 - Poor discrimination between the nearest and furthest neighbor
- Correlation
 - Same information, measured multiple times
 - Will dominate distance measure

76 7 M

Principal component analysis

- Use mathematical concepts like eigenvalues and eigenvectors
- Result is a rearrangement of the axes
- Linear transformation of the data
- Axes represent principal components

76 7 M

Principal component analysis Challenges

- How many principal components?
- How to interpret resulting clusters?

Thank you!

+Babbel