Home Compiler Automata AWS IoT Computer Fundamentals Control System Java HTML CSS

Conversion from NFA to DFA

In this section, we will discuss the method of converting NFA to its equivalent DFA. In NFA, when a specific input is given to the current state, the machine goes to multiple states. It can have zero, one or more than one move on a given input symbol. On the other hand, in DFA, when a specific input is given to the current state, the machine goes to only one state. DFA has only one move on a given input symbol.

Let, $M = (Q, \sum, \delta, q0, F)$ is an NFA which accepts the language L(M). There should be equivalent DFA denoted by $M' = (Q', \sum', q0', \delta', F')$ such that L(M) = L(M').

Steps for converting NFA to DFA:

Step 1: Initially Q' = ϕ

Step 2: Add q0 of NFA to Q'. Then find the transitions from this start state.

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is not in Q', then add it to Q'.

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA)

Example 1:

Convert the given NFA to DFA.

Solution: For the given transition diagram we will first construct the transition table.

State	0	1
→q0	q0	q1
q1	{q1, q2}	q1

Now we will obtain δ' transition for state q0.

```
\delta'([q0], 0) = [q0]
\delta'([q0], 1) = [q1]
```

The δ' transition for state q1 is obtained as:

```
\delta'([q1], 0) = [q1, q2] (new state generated) \delta'([q1], 1) = [q1]
```

The δ' transition for state q2 is obtained as:

```
\delta'([q2], 0) = [q2]
\delta'([q2], 1) = [q1, q2]
```

Now we will obtain δ' transition on [q1, q2].

```
\delta'([q1, q2], 0) = \delta(q1, 0) \cup \delta(q2, 0)
= \{q1, q2\} \cup \{q2\}
= [q1, q2]
\delta'([q1, q2], 1) = \delta(q1, 1) \cup \delta(q2, 1)
= \{q1\} \cup \{q1, q2\}
= \{q1, q2\}
= [q1, q2]
```

The state [q1, q2] is the final state as well because it contains a final state q2. The transition table for the constructed DFA will be:

State	0	1
→[q0]	[q0]	[q1]
[q1]	[q1, q2]	[q1]
*[q2]	[q2]	[q1, q2]

|--|

The Transition diagram will be:

The state q2 can be eliminated because q2 is an unreachable state.

Example 2:

Convert the given NFA to DFA.

Solution: For the given transition diagram we will first construct the transition table.

State	0	1
→q0	{q0, q1}	{q1}
*q1	ф	{q0, q1}

Now we will obtain δ' transition for state q0.

```
\delta'([q0], 0) = \{q0, q1\}
= [q0, q1] \qquad (new \text{ state generated})
\delta'([q0], 1) = \{q1\} = [q1]
```

The δ ' transition for state q1 is obtained as:

```
\delta'([q1], \frac{0}{0}) = \phi

\delta'([q1], \frac{1}{0}) = [q0, q1]
```

Now we will obtain δ' transition on [q0, q1].

```
\delta'([q0, q1], 0) = \delta(q0, 0) \cup \delta(q1, 0)
= \{q0, q1\} \cup \phi
= \{q0, q1\}
= [q0, q1]
```

Similarly,

```
\delta'([q0, q1], 1) = \delta(q0, 1) \cup \delta(q1, 1)
= \{q1\} \cup \{q0, q1\}
= \{q0, q1\}
= [q0, q1]
```

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state becomes a final state. Hence in the DFA, final states are [q1] and [q0, q1]. Therefore set of final states $F = \{[q1], [q0, q1]\}$.

The transition table for the constructed DFA will be:

State	0	1
→[q0]	[q0, q1]	[q1]
*[q1]	ф	[q0, q1]
*[q0, q1]	[q0, q1]	[q0, q1]

The Transition diagram will be:

Even we can change the name of the states of DFA.

Suppose

$$A = [q0]$$
 $B = [q1]$
 $C = [q0, q1]$

With these new names the DFA will be as follows:

 $\leftarrow \text{Prev}$

 $Next \rightarrow$

SYoutube For Videos Join Our Youtube Channel: Join Now

Feedback

• Send your Feedback to feedback@javatpoint.com

Help Others, Please Share

Learn Latest Tutorials

Preparation

Interview
Questions
Interview Questions

Company
Interview
Questions
Company Questions

Trending Technologies

Hadoop tutorial

Git Tutorial

B.Tech / MCA

Compiler Design	Computer Organization and Architecture Computer Organization	Discrete Mathematics Tutorial Discrete Mathematics	Ethical Hacking Tutorial Ethical Hacking	Computer Graphics Tutorial Computer Graphics
Software Engineering Tutorial Software Engineering	html tutorial Web Technology	Cyber Security tutorial Cyber Security	Automata Tutorial Automata	C Language tutorial C Programming
C++ tutorial	⊋ Java tutorial Java	.Net Framework tutorial .Net	Python tutorial Python	List of Programs Programs
Control Systems tutorial Control System	Data Mining Tutorial Data Mining	Data Warehouse Tutorial Data Warehouse		