集合論ゼミ 2013年01月22日

石井大海

早稲田大学基幹理工学部 数学科三年

2013年01月22日

定義と幾つかの自明な命題

Def. 5.9

- 関係 R が B 上整礎関係である $\stackrel{\text{def}}{\Longleftrightarrow} R|B$ が整列関係である.
- ullet $\langle B,R
 angle$ が整礎構造 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ $\langle R,B
 angle$ は構造で,R は B 上整礎.

Prop. 5.10

$$R$$
 が A 上整礎 \Leftrightarrow
$$\begin{cases} 0 \neq y \subseteq A \text{ if } R\text{-極小元を持つ} \\ (\forall x \in A) \{x \in A \mid y \mid R \mid x \} \text{ if $x \in A$} \end{cases}$$

Prop. 5.11

R が A 上整礎 , $B \subseteq A \Rightarrow R$ は B 上整礎 .

整礎関係に関する rank

整礎関係に対する rank を定義する.極小元に対しては rank 0 , そこから順に辿って $1,2,\ldots$ と続いていく感じ.

Def. 5.12 (整礎関係に関する rank; Zermelo 1935)

R: 整礎関係 とする.このとき,V 上の函数 ρ_R を次のように定める.

$$\rho_R(x) = \sup^+ \left\{ \rho_R(y) \mid y R x \right\} \tag{1}$$

右辺の集合 $\{ \rho_R(y) \mid y \ R \ x \}$ は R の left-narrowness より集合となり , $\rho_R(x)$ が順序数となることは整礎帰納法により簡単に示せる .

整礎関係の性質Ⅰ

Prop. 5.13

R が整礎関係のとき,以下が成立する.

$$x R y \to \rho_R(x) < \rho_R(y) \tag{2}$$

Proof.

$$x R y \ \, \text{LU} \ \, \rho_R(x) < \sup^+ \{ \, \rho_R(x) \, | \, x R y \, \} = \rho_R(y)$$

集合論ゼミ 2013 年 01 月 22 日 - 順序と整礎性 - 整礎関係 - 整礎関係の性質

とあるが,明らかに(2) を満たす函数は一意ではない.物によっては,おそらく(1) を指しているものであると考える.

整礎関係の性質 ||

Exercise 5.14

- $oldsymbol{0}$ R: well-founded のとき x R^* $y o
 ho_R(x) <
 ho_R(y)$
- $m{n}$ R: left-narrow, H: $V \to \mathrm{On}$ かつ H, R が (2) を満たす \Rightarrow R は well-founded
- **m** *R* が整礎 ⇒ *R**も整礎
- ▼ 関係 R は高々一つの rank 函数を持つ.

関係 R , 函数 $H:V \to \mathrm{On}$ が $\frac{(2)}{(1)}$ を満たすとき , H を R の rank 函数 と云う . (v) より , これは $\{H(x) \mid x R y\}$ が集合で $H(x) = \sup^+ \{H(x) \mid x R y\}$ となるときと同値 .

整礎関係の性質 III

(i) の証明.

 $x R^* y$ とすると, x から y への R-鎖が存在する. そのそれぞれ について 5.13 を繰り返し適用し, 推移律を用いれば良い.

(ii) の証明.

 $u \neq 0$ とする . $H[u] \subseteq On$ は空ではないので , < に関する最小元 が存在する . そこで , $\alpha = \min H[u]$ として ,

$$v = \{ x \in u \mid H(x) = \alpha \}$$

とおくと,取り方から $v \neq 0$.実はこの元が u の R-極小元となっている. $x_0 \in v$ とし, $(\exists y \in u)y \ R \ x_0$ だったとする.すると,(2) より $H[u] \ni H(y) < H(x_0) = \alpha$ となり, α の H[u] 上の最小性に矛盾する.よって R は整礎関係となる.

整礎関係の性質 IV

(iii) の証明.

(ii) を用いる、そこで,H として ρ_R を取る、すると (i) より

$$x R^* y \rightarrow H(x) = \rho_R(x) < \rho_R(y) = H(y)$$

となる.よって, R* も整礎関係であることがわかる.

(iv) の証明.

x の R に関する整礎帰納法で示す.帰納法の仮定は, $orall y(y\,R\,x
ightarrow
ho_S(y) \le
ho_R(y))$ である.よって,

$$\rho_{S}(x) = \sup_{y \in x}^{+} \rho_{S}(y) \le \sup_{y \in x}^{+} \rho_{R}(y) = \rho_{R}(x)$$

整礎関係の性質 V

(v) の証明.

(1) は 5.13 より (2) を満たす.よって, (ii) より R は整礎関係となる.よって,整礎帰納法より \sup^+ による定義が一意的に定まることが判る.

Proof.

誘導に従ってやってみようとしたが余り上手く行かなかったのと, 今後便利なので,次の補題を介して証明することにする. ■

Lemma.

 $A: R^{-1}$ -closed, R: well-founded

 $\Rightarrow \alpha \in \rho_R[A] \land \beta < \alpha \rightarrow \beta \in \rho_R[A]$

整礎関係の性質 VI

補題の証明.

 α に関する順序数の帰納法で示す . $\alpha=0$ のときは自明 .

- $\frac{\alpha=\beta+1}{\alpha+1}$ のとき $\frac{\alpha}{\alpha+1}$. $\rho_R(x)=\beta+1$ 、 $\gamma<\beta+1$ とする . $\alpha+1=\sup^+\left\{ \left. \rho_R(y) \mid y\,R\,x \right. \right\}$ なので , 命題 3.33 より β は 右辺の集合の最大値となり , A は R^{-1} -closed であるから , $\beta\in\rho_R[A]$ である . $\gamma\leq\beta$ とする . 上の議論より $\gamma=\beta$ のと きは OK . $\gamma\in\beta$ とすると , 帰納法の仮定より $\gamma\in\rho_R[A]$ と なる . よって $\alpha=\beta+1$ の時も OK .
- α が極限順序数のとき . $\alpha=\sup^+\{\rho_R(y)\mid y\,R\,x\}$ が極限順序数であることから,右辺の集合には最大元が存在しない.よって,任意の $\beta<\alpha$ に対して, $\beta<\rho_R(y)<\alpha$ となるような $y\in A$ が存在することがわかる.よって, $\rho_R(y)$ に関して帰納法の仮定が使えて, $\beta\in\rho_R[A]$ となる.

整礎関係の性質 VII

(vi) の証明.

上の命題を用いれば,あっと云う間に終わる. $\rho_R[A] \subseteq \mathrm{On}$ であり,補題より特にこれは On の始断面である. On の始断面は全体か特定の順序数のどちらかであるので,これで命題が示された.

6. 整礎集合

 \in^{-1} -closed な集合を推移的集合と呼んだことに注意.

Def. 6.1 (推移閉包)

A の \in $^{-1}$ -閉包を A の推移閉包と呼び , $\mathrm{Tc}(A)$ で表す .

$$\mathrm{Tc}(A) := A \cup (\in^{-1})^*[A]$$

Cor. 6.2

- ① 任意のクラス A について, $\mathrm{Tc}(A)$ は A を含む最小の推移的 クラス.特に集合 x について $\mathrm{Tc}(x)$ は集合.

Proof.

- 🕦 定理 4.20 及び 4.33 より明らか ($::\epsilon^{-1}$ は right-narrow).
- \bigcap $B \subseteq \mathrm{Tc}(A)$ より, A は B を含む推移的集合.よって $\mathrm{Tc}(B)$ の最小性から $Tc(B) \subset Tc(A)$.
- $m \times \in Tc(A)$ とすると, Tc(A) が推移的であることから $x \subseteq \mathrm{Tc}(A)$ となるので, (ii) から $\mathrm{Tc}(x) \subseteq \mathrm{Tc}(A)$. よって $A \cup \bigcup_{x \in A} \mathrm{Tc}(x) \subseteq \mathrm{Tc}(A)$.
 - 逆向きの包含関係を示すには $,\;(i)$ より $A\cup\;\cup\;\mathrm{Tc}(x)$ が推
 - 移的であることが云えれば十分である.
 - $z \in y \in A \cup \cup_{\cdot} \mathrm{Tc}(x)$ とする . $y \in A$ のとき . $z \in y$ より
 - $z \in \mathrm{Tc}(y)$. $y \in \bigcup_{x \in A} \mathrm{Tc}(x)$ とすると,
 - $(\exists x \in A)z \in y \in \mathrm{Tc}(x)$ となり, $\mathrm{Tc}(x)$ の推移性から $z \in \mathrm{Tc}(x) \subseteq \ \cup \ \mathrm{Tc}(x)$ となる.よって示された.

整礎集合とその性質Ⅰ

Def. 6.3 (整礎集合)

 $\operatorname{Wf} := \{ x \mid \in \mathfrak{m} \operatorname{Tc}(x)$ 上整礎 $\}$. Wf の元を整礎集合と云う .

Th. 6.4

Wf は, ∈ がその上で整礎関係となる最大の推移的クラスである.

Wf が推移的であること.

 $x \in y \in \mathrm{Wf}$ とする. $y \in \mathrm{Wf}$ より $\mathrm{Tc}(y)$ 上 \in が整礎関係となる. $x \in y \subseteq \mathrm{Tc}(y)$ より $x \subseteq \mathrm{Tc}(y)$ であり,15(ii) より $\mathrm{Tc}(x) \subseteq \mathrm{Tc}(y)$.今, $\mathrm{Tc}(y)$ 上 \in は整礎なので,5.11 より $\mathrm{Tc}(y)$ 上でも整礎.よって $y \in \mathrm{Wf}$.

整礎集合とその性質 ||

∈ が Wf 上整礎であること.

 $0 \neq u \subseteq \mathrm{Wf}$ として,u が \in -極小元を持つことを見る. $x \in u$ を とり, $x \cap u = 0$ なら x が極小元となるので OK. $x \cap u \neq 0$ とすると,x は整礎的集合なので \in は $\mathrm{Tc}(x)$ 上整礎.よってその空でない部分集合 $\mathrm{Tc}(x) \cap u$ には \in -極小元 z が存在する.明らかに,これは u の \in -極小元でもある.

Wf が最大であること.

C を \in が整礎関係となる推移的クラスとする $.x \in C$ について \in が $\mathrm{Tc}(x)$ 上の整礎関係となることを示せれば $C \subseteq \mathrm{Wf}$ が云える $.x \in C$ とすると ,C の推移性より $x \subseteq C$ であり $,C = \mathrm{Tc}(C)$ だから $\mathrm{Tc}(x) \subseteq C$ となる . 今 $,\in$ は C 上整礎関係なので , その部分集合 $\mathrm{Tc}(x)$ 上でも整礎関係となり , 従って $x \in \mathrm{Wf}$ となる .

Wf の性質 I

Prop. 6.5

- 2 $x \in Wf \land y \subseteq x \rightarrow y \in Wf$
- 3 $x \in \mathrm{Wf} \to \cup x \in \mathrm{Wf} \land \mathfrak{P}(x) \in \mathrm{Wf}$
- \bullet On \subseteq Wf

(1),(2)の証明.

- (1) の証明 $.x \subseteq Wf$ とすると , (ii) および 6.4 より $Tc(x) \supseteq Wf$. Wf 上 \in は整礎なので , Tc(x) 上でも整礎 . よって $x \in Wf$.
- (2) の証明. y ⊆ x ∈ Wf とする. すると Tc(y) ⊆ Tc(x). よって Tc(y) 上 ∈ は整礎関係となり, y ∈ Tc となる.

Wf の性質Ⅱ

(3) の証明.

 $x \in \mathrm{Wf}$ とする.このとき $\mathrm{Tc}(x)$ 上 \in は整礎. $y \in x \in \mathrm{Wf}$ とすると,Wf が推移的クラスであることから $y \in \mathrm{Wf}$.よって $y \subseteq \mathrm{Wf}$.よって $\cup x \subseteq \mathrm{Wf}$.(1) より $\cup x \in \mathrm{Wf}$.次に, $y \subseteq x \in \mathrm{Wf}$ とする.このとき $y \subseteq \mathrm{Wf}$ となるので $y \in \mathrm{Wf}$.よって $\mathfrak{P}(x) \subseteq \mathrm{Wf}$ であり,従って $\mathfrak{P}(x) \in \mathrm{Wf}$.

(4) の証明.

 $lpha\in\mathrm{On}\stackrel{\mathrm{def}}{\Longleftrightarrow}lpha$ は推移的で \in により整列 であった.整列関係は整礎関係でもあり, $lpha=\mathrm{Tc}(lpha)$ 上 \in は整礎となるので,従って $lpha\in\mathrm{Wf}$.よって $\mathrm{On}\subset\mathrm{Wf}$.

整礎集合の rank とその性質

Def. 6.6

整礎集合 $x \in \mathrm{Wf}$ の rank $\rho(x)$ とは , $\in |\mathrm{Wf}$ -rank のこと . 即ち ,

$$\rho(x) = \rho_{\in |Wf}(x).$$

 $\rho(x)$ が常に順序数となることは容易に確かめられる.

Cor. 6.7

$$x \in \mathrm{Wf} \to \rho(x) = \sup^+ \{ \rho(y) \mid y \in x \}$$
. $\sharp \pi$, $y \in \mathrm{Wf} \land x \in y \to x \in \mathrm{Wf} \land \rho(x) < \rho(y)$

Prop. 6.8

任意の順序数 α に対し , $\rho(\alpha)=\alpha$

6.8 の証明.

ここで,

$$\alpha$$
 に関する

$$\alpha$$
 に関する

 α に関する順序数の帰納法で示す. 帰納法の仮定は,

$$lpha$$
 に関する $lacktriangle$

よって示された.

 $(\forall \beta < \alpha) \rho(\beta) = \beta.$

 $\rho(\alpha) = \sup^{+} \{ \rho(\beta) \mid \beta \in \alpha \} = \sup^{+} \{ \beta \mid \beta \in \alpha \} = \sup^{+} \alpha = \alpha$

演習問題 |

Exercise 6.9

- ① x: 推移的整礎集合 $\Rightarrow \rho(x) = \{ \rho(y) \mid y \in x \}$ 即ち, x は $\rho(x)$ 未満の各ランクの元を持つ.
- $2 x \in \mathrm{Wf} \to \forall z (x \in z \to (\exists y \in z)(y \cap z = 0))$

(1) の証明.

x は推移的集合であるから,特に \in $^{-1}$ -closed である.よって, $\rho[x] = \{ \rho(y) \mid y \in x \}$ は 5.14 (vi) の補題より,On と一致するか順序数である.今,x は集合なので, $\rho[x] \in \text{On}$. ρ は \in の rank なので, $(\forall y \in x)\rho(y) < \rho(x)$. \dots $\rho[x] \subseteq \rho(x)$.また, $\rho(y) < \rho[x]$ なので, $\rho[x]$ は x の狭義上界.よって, $\rho(x)$ が x の最小狭義上界であることから, $\rho(x) = \rho[x]$.よって $\rho[x] = \rho(x)$.

演習問題 ||

(2) の \rightarrow 方向.

 $x \in \mathrm{Wf}, x \in \mathbb{Z}$ とする. すると $\mathrm{Wf} \cap \mathbb{Z} \neq 0$ は Wf の部分集合であるので, \in -極小元を取ることが出来る. これが $y \cap \mathbb{Z} = 0$ を満たすことは容易に判る.

(2) の ← 方向.

右辺の対偶を取ると, $\forall z((\forall y\in z)(y\cap z\neq 0)\to x\notin z)$. そこで,特に $z=\mathrm{Tc}(\{x\})\setminus\mathrm{Wf}$ と置く. $x\in\mathrm{Tc}(\{x\})$ より $x\notin z$ が云えれば $x\in\mathrm{Wf}$ が云える. z=0 ならばよい.そこで $z\neq 0$ として, $y\in z$ を取る.特に $y\notin\mathrm{Wf}$ より $\mathrm{Tc}(y)$ には \in -極小元が存在しない:

$$(\forall u \in \mathrm{Tc}(y))(\exists v \in \mathrm{Tc}(y))v \in u$$

特に $y \subseteq \operatorname{Tc}(y)$ より $u \in y$ にとれば, $(\forall u \in y)(\exists v \in \operatorname{Tc}(y))v \in u$. もし v が整礎集合なら, $\operatorname{Tc}(y)$ の \in -極小元が取れることになるので $v \notin \operatorname{Wf}$. よって $v \in z$ であり, $(\forall u \in y)(\exists v \in z)v \in u$ となる.よって $y \cap z \neq 0$. $y \in z$ は任意であったから,仮定より $x \notin z$ となる.

Prop. 6.10 (Mirimanoff 1917)

 $\{x \in \mathrm{Wf} \mid \rho(x) < \alpha\}$ は集合.

Proof.

 $S_{\alpha} := \{ x \in \mathrm{Wf} \mid \rho(x) < \alpha \}$ とおき , S_{α} が集合であることを α に関する帰納法で示す , $\alpha = 0$ のときは自明 .

• $\alpha=\beta+1$ のとき $.S_{\beta}$ が集合であるとする . 今 ,

$$S_{\beta+1} = \{ x \in \text{Wf} \mid \rho(x) < \beta+1 \} = \{ x \in \text{Wf} \mid \rho(x) \le \beta \}$$

$$x \in y \in S_{\beta+1}$$
 とすると,6.7 より $x \in \mathrm{Wf} \wedge \rho(x) < \rho(y)$.
よって $x \in S_{\beta}$ となるので, $y \subseteq S_{\beta}$.従って $y \in \mathfrak{P}(S_{\beta})$ となるので, $S_{\beta+1} \subseteq \mathfrak{P}(S_{\beta})$.以上から,部分集合公理および冪集合公理より $S_{\beta+1}$ も集合.

続き.

•
$$\beta = \lambda$$
 (極限順序数)のこさ、このこさ、

 $S_{\lambda} = \{ x \in \mathrm{Wf} \mid \rho(x) < \lambda \}$

 $\beta < \lambda$

従って S_{λ} も集合となる.

•
$$\beta = \lambda$$
 (極限順序数)のとき.このとき,

 $= \bigcup \{x \in \mathrm{Wf} \mid \rho(x) < \beta \} = \bigcup S_{\beta}$

帰納法の仮定より各 S_{β} は集合であり, λ も集合であるので,

 $\beta < \lambda$

$R(\alpha)$ とその性質

Def. 6.11

On 上の函数 R を次により定義する.

$$R(\alpha) = \{ x \in \text{Wf} \mid \rho(x) < \alpha \}$$

(右辺は 6.10 より集合となる)

Prop. 6.12

- R(α) は推移的集合.
- \mathfrak{m} Wf = $\bigcup_{\alpha \in \Omega_n} R(\alpha)$
- \oplus $x \subseteq R(\alpha) \leftrightarrow x \in \mathrm{Wf} \land \rho(x) \le \alpha$
- $R(\alpha) = \cup_{\beta < \alpha} \mathfrak{P}(R(\beta))$
- $\alpha < \beta \rightarrow R(\alpha) \subseteq R(\beta)$
- $\mathfrak{m} R(\alpha+1) = \mathfrak{P}(R(\alpha))$
- $m \alpha : 極限順序数 \rightarrow R(\alpha) = \cup_{\beta < \alpha} R(\beta)$

(i) の証明 .
$$x \in R(\alpha)$$
 とする . $\rho(x) < \alpha \land \text{Wf}$ となるので , 6.7 より $\rho(y) < \rho(x) < \alpha$ かつ $y \in \text{Wf}$. よって $u \in R(\alpha)$.

より $\rho(y) < \rho(x) < \alpha$ かつ $y \in \text{Wf}$. よって $u \in R(\alpha)$.

(ii) の証明 $.x \in Wf$ について $\rho(x) \in On$ より $\rho(x) < \rho(x) + 1$ と なるので, $x \in R(\rho(x) + 1)$. よって $\mathrm{Wf} \subseteq \bigcup_{\alpha \in \mathrm{On}} R(\alpha)$. 逆向き の包含関係は明らか.

 $x \in \mathrm{Wf}, \rho(x) \leq \alpha$ とする. $y \in x$ とすると, 6.7 より $y \in \mathrm{Wf}$ か

(iii) \mathfrak{O} (\leftarrow).

(iii)
$$\mathfrak{O}$$
 (\rightarrow).

 $x \subseteq R(\alpha)$ とする.このとき $x \subseteq R(\subseteq) \subseteq \mathrm{Wf}$ より $x \in Wf$ であ

る.よって, $y \in X$ とすれば $\rho(y) < \rho(x)$ で $y \in Wf$ となる.今 $x \subseteq R(\alpha)$ だから $\rho(y) < \alpha \cdot \alpha \notin R(\alpha)$ に注意すれば , これは α が $\rho[x]$ の狭義上界であると云うことである.他方, $\rho(x) = \sup^+ \rho[x]$ であるから , $\rho(x) \le \alpha$ となる .

 $x \in \mathrm{Wf}$ とし, $\alpha = \rho(x)$ と置く.このとき, $\rho(x) \leq \alpha$ であるの で ,(iii) より $x \subseteq R(\alpha)$ は OK . 後は最小性を示せばよい .

(iv) の証明. $x \subseteq R(\beta)$ とすると $\rho(x) \le \beta \cdot y \in R(\alpha)$ を取ると, $\rho(y) < \alpha = \rho(x)$ であり $y \in \mathrm{Wf}$. よって推移律より $\rho(y) < \beta$ と なるので, $y \in R(\beta)$. よって $R(\alpha) \subseteq R(\beta)$.

(\subseteq) を示す $.x \in R(\alpha)$ とする . 即ち $,x \in \mathrm{Wf} \land \rho(x) < \alpha$ とする .

$$\overline{(x)}$$
 . $x \in R(\alpha)$ とする.即ち, $x \in \mathrm{Wf} \land \rho(x) < \alpha$ とする. $\overline{\rho(x)}$ だから,(iii) より $x \subseteq R(\rho(x))$.∴ $x \in \mathfrak{P}(R(\rho(x)))$.

 $\overline{\rho(x) \leq \rho(x)}$ だから, (iii) より $x \subseteq R(\rho(x))$. $x \in \mathfrak{P}(R(\rho(x)))$.

よって OK .
$$(\supseteq) \ \, \overline{c} \ \, \overline{c} \ \, \underline{c} \ \, \underline{c}$$

$$\rho(x) \leq \beta$$
 . $\beta < \alpha$ より $\rho(x) < \alpha$ となり , 促って $x \in R(\alpha)$. て示された .

(vi) の証明.

$$\alpha < \beta$$
 とする.

 $x \in R(\alpha) \leftrightarrow x \in Wf \land \rho(x) < \alpha \rightarrow x \in Wf \land \rho(x) < \beta \leftrightarrow x \in R(\beta)$

(vii) の証明.

$$x \in R(\alpha+1) \Leftrightarrow \rho(x) < \alpha+1$$

$$\in R(\alpha + 1)$$

よって示された.

$$\alpha + 1$$

$$(1 + 1)$$

 $\stackrel{\text{(iii)}}{\iff} x \subseteq R(\alpha)$

 $\Leftrightarrow x \in \mathfrak{P}(R(\alpha))$

Proof.

 α :極限順序数 とする .(v) より ,

$$R(\alpha) = \bigcup_{\beta < \alpha} \mathfrak{P}(R(\beta))$$

ここで , (vii) と , (vi) より $R(\beta) \subseteq R(\beta+1)$ であることから ,

$$R(\alpha) = \bigcup_{\beta < \alpha} R(\beta + 1) \supseteq \bigcup_{\beta < \alpha} R(\beta).$$

$$\alpha$$
 が極限順序数であることから, $\beta<\beta+1<\alpha$ であり, $x\in R(\beta+1)\subseteq\bigcup_{\beta<\alpha}R(\beta)$.よって示された.

整礎関係に関する長い議論の果てに , ρ と R の概念に到達した . しかし , 逆に Ω n 上の函数 R を (v) によって定義して , (ii) によって Wf を , (iv) によって ρ を定めることも出来る .

累積的な階層

 $R(\alpha)$ は具体的にどういうものなのだろうか?前の命題から,次のような生成段階であることがわかる.

- ♠ 始めは何もない状態 0 からスタートする.
- ② 前段までに作った集合全体に,その部分集合を継ぎ足すこれを繰り返して得られるのが $R(\alpha)$ であり,これにより Wf を全てカバーすることが出来る.これによって,次の三つを直接的に示すことが出来る.
 - $\mathbf{1} \times \notin X$
 - ② $x \in y_n \in y_{n-1} \in \cdots \in y_2 \in y_1 \in x$ なる列 y はない.
 - $3 \cdots \in y_{n+1} \in y_n \in \cdots \in y_2 \in y_1 \in x$ なる列 y もない.