## Nějaká další fakta

**Věta** ("O třech limitách", též "O dvou policajtech"). Nechť tři funkce f, g, h splňují  $f(x) \leq g(x) \leq h(x)$  pro všechna x z nějakého prstencového okolí bodu  $c \in \mathbb{R}^*$ . Dále nechť f a h mají v c vlastní limitu A. Pak i g má v c limitu A.

Z aplikací a obrázků bude snad dobře "vidět", proč tato věta platí; prostřední funkce je "sevřena" těmi krajními, takže nemá jinou možnost, než mít v c tutéž limitu:

**Úloha 1.** Dokažte, že

$$\lim_{x \to \infty} \frac{x}{x + \sin x} = 1.$$

*Řešení*. Pro všechna reálná x platí  $-1 \le \sin x \le 1$ , proto pro x > 1 platí

$$\frac{x}{x+1} \le \frac{x}{x+\sin x} \le \frac{x}{x-1}.$$

Jelikož

$$\lim_{x\to\infty}\frac{x}{x+1}=\lim_{x\to\infty}\frac{x}{x-1}=1,$$

je také

$$\lim_{x \to \infty} \frac{x}{x + \sin x} = 1.$$



**Úloha 2.** Dokažte, že

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0.$$

*Řešení.* Pro všechna  $x \neq 0$  platí  $-1 \leq \sin \frac{1}{x} \leq 1$ , proto pro  $x \neq 0$  rovněž platí

$$-|x| \le x \sin \frac{1}{x} \le |x|.$$

Jelikož

$$\lim_{x \to 0} (-|x|) = \lim_{x \to 0} |x| = 0,$$

je také

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0.$$



Konečně se dostáváme k naší oblíbené limitě!

Úloha 3. Dokažte, že

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

 $\check{R}e\check{s}en\acute{i}.$  Z hodiny víme, že  $\sin x \leq x$  pro  $x \geq 0,$  což se nahlédne z definice sinu pomocí jednotkové kružnice:



Pro  $x \leq 0$ na<br/>opak dostaneme  $\sin x \geq x,$ ovšem obě tyto nerovnosti přejdou po podělen<br/>íxve

$$\frac{\sin x}{x} \le 1$$

pro  $x \neq 0$  (v té záporné se otočilo znaménko).

V druhém kroce nahlédneme, že pro  $x \in (0; \pi/2)$  ještě platí tg $x \geq x$ ; opět budeme

postupovat přes jednotkovou kružnici, ale teď to bude lehce zajímavější:



Délka oblouku, což je x, je menší než délka modré lomené čáry (která je tečná k oblouku v krajních bodech). Úsečka odpovídající tgx je ovšem ještě delší – "horní" usek je přepona v pravoúhlém trojúhelníku, zatímco modrý segment je pouze odvěsnou.

Pro  $x \in (\pi/2;0)$  máme opět opačnou nerovnost t<br/>g $x \leq x;$ každopádně po vydělení xzískáváme

$$\frac{\operatorname{tg} x}{x} \ge 1$$

což si po přenásobení  $\cos x$  (který je kladný na intervalu  $(-\pi/2,\pi/2)$ ) ještě změníme na

$$\frac{\sin x}{x} \ge \cos x$$

pro  $x \in (-\pi/2, \pi/2), x \neq 0$  (což se dá říct i jako  $x \in P(0; \pi/2)$ ).

Vidíme tedy, že pro  $x \in P(0; \pi/2)$  máme

$$\cos x \le \frac{\sin x}{x} \le 1$$

a jelikož

$$\lim_{x\to 0}\cos x=\lim_{x\to 0}1=1,$$

je také

