Math 255A Lecture 9 Notes

Daniel Raban

October 17, 2018

1 Applications of Baire's Theorem I: The Open Mapping Theorem

1.1 The open mapping theorem

Banach used Baire's theorem to prove a number of striking results in functional analysis. Recall Baire's theorem.

Theorem 1.1 (Baire category). Let E be a complete metric space, and let $(F_n)_{n\in\mathbb{N}}$ be closed in E containing no interior points. Then the union $\bigcup_{n=1}^{\infty} F_n$ has no interior points either. Moreover, $E \neq \bigcup_{n=1}^{\infty} F_n$.

Definition 1.1. We say that $A \subseteq E$ is **of the first category** (or **meager**) if there exists a sequence F_n of closed sets without interior points such that $A \subseteq \bigcup_{n=1}^{\infty} F_n$.

Theorem 1.2 (Banach, open mapping theorem). Let F_1, F_2 be Fréchet spaces, and let $T: F_1 \to F_2$ be linear continuous. Then either $\operatorname{im}(T) \subseteq F_2$ is of the first category, or else $\operatorname{im}(T) = F_2$ and the mapping T is open.

Proof. Let U be an open neighborhood of 0 in F_1 . We claim that $\overline{T(U)}$ contains a neighborhood of 0 in F_2 , provided im(T) is not of the first category. Let V be a balanced neighborhood of 0 in F_1 such that $V+V\subseteq U$. Then V is absorbing (for $x\in F_1$, $\lambda x\in V$ for sufficiently small $|\lambda|$). So $F_1=\bigcup_{n=1}^\infty nV$ means that $\underline{\mathrm{im}}(T)=\bigcup_{n=1}^\infty T(nV)\subseteq\bigcup_{n=1}^\infty \overline{T(nV)}$. Since $\underline{\mathrm{im}}(T)$ is not of the first category, for some $n, \overline{T(nV)}=nT(V)$ has an interior point. Then $\overline{T(V)}$ has an interior point. So there exists $y\in F_2$ and a neighborhood W of 0 in F_2 such that $\{y\}+W\subseteq \overline{T(V)}$. Then $y\in \overline{T(V)}$. V=-V since V is balanced, so $-y\in \overline{T(V)}$. So $W\subseteq \overline{T(V)}+\{-y\}\subseteq (\overline{T(V)}-\overline{T(V)})=\overline{T(V)}-\overline{T(V)}$. We get $W\subseteq \overline{T(V+V)}\subseteq \overline{T(U)}$, as claimed.

Let d_{F_1} be a translation invariant metric on F_1 generating the topology on F_1 , and define d_{F_2} similarly. Thus, for any r > 0, there exists $\rho > 0$ such that $B_{F_2}(0,\rho) \subseteq T(B_{F_1}(0,r))$. The metrics $d_{F_1}.d_{F_2}$ are translation invariant, so for any r > 0, there exists a $\rho > 0$ such that for any $x \in F_1$, $B_{F_2}(Tx,\rho) \subseteq \overline{T(B_{F_1}(x,r))}$. Let r > 0 be arbitrary and let $r_n = r/2^n$

for $n \in N$. We get the corresponding ρ_n sequence such that $B_{F_2}(Tx, \rho_n) \subseteq \overline{T(B_{F_1}(x, r_n))}$ for all $x \in F_1$. We can arrange so that $\rho_n \downarrow 0$.

Let $y \in B_{F_2}(Tx, \rho_0)$. We shall show that there is an $x' \in F_1$ such that $d_{F_1}(x, x') \le 2r$ and y = Tx'. Let $x_1 \in \overline{B_{F_1}(x, r_0)}$ be such that $d_{F_2}(y, Tx_1) < \rho_1 \iff y \in B_{F_2}(Tx_1, \rho_1) \subseteq \overline{T(B_{F_1}(x_1, r_1))}$. Let $x_2 \in B_{F_1}(x_1, r_1)$ be such that $d_{F_2}(y, Tx_2) < \rho_2$. Then $y \in B_{f_2}(Tx_2, \rho_2) \subseteq \overline{T(B_{F_1}(x_2, r_2))}$. Continuing in this fashion, we get a sequence (x_n) in F_1 such that $x_{n+1} \in \overline{T(B_{F_1}(x_n, r_n))}$. Then (x_n) is a Cauchy sequence in F_1 , and $d_{F_2}(y, Tx_n) < \rho_n \to 0$. We get $x_n \to x' \in F_1$, where $d_{F_1}(x, x') \le 2r$, and, since T is continuous, $Tx_n \to Tx'$. So y = Tx'.

So we get that for all r > 0, there exists $\rho > 0$ such that $B_{F_2}(Tx, \rho) \subseteq T(B_{F_1}(x, 2r))$. Hence, $\operatorname{im}(T) = F_2$, and T is open.

Corollary 1.1. Let $T: F_1 \to F_2$ be an injective, linear, continuous map between Frèchet spaces. Then either the range of T is of the first category, or $im(T) = F_2$, and T is a homeomorphism.

1.2 Application of the open mapping theorem to partial differential equations

Let $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$, where $D^{\alpha} = D_{x_1}^{\alpha_1} \cdots D_{x_n}^{\alpha_n}$ and $D_{x_j} = (1/i)\partial_{x_j}$ be a partial differentiation operator (on \mathbb{R}^n) with constant coefficients $a_{\alpha} \in \mathbb{C}$. Assume that for some open set $\Omega \subseteq \mathbb{R}^n$, every solution $u \in C^m(\Omega)$ of Pu = 0 is in fact in $C^{m+1}(\Omega)$ (e.g. $P = \Delta$, the Laplacian). Then we have $\operatorname{Im}(\zeta) \to \infty$ if $\zeta \to \infty$ on the suface in \mathbb{C}^n given by $0 = P(\zeta) = \sum_{|\alpha| \leq m} a_{\alpha} \zeta^{\alpha}$. We will do this in detail next time.