| Total No.                              | of Questions : 8]                                                           | SEAT No. :                                          |
|----------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|
| P758                                   | 253                                                                         |                                                     |
| 1700                                   |                                                                             | [Total No. of Pages : 2                             |
| [5870] - 1062                          |                                                                             |                                                     |
| T.E. (E & TC)                          |                                                                             |                                                     |
| ELECTROMAGNETIC FIELD THEORY           |                                                                             |                                                     |
| (2019 Pattern) (Semester - I) (304182) |                                                                             |                                                     |
| Time . 21                              |                                                                             |                                                     |
| Time: 2½ Instruction                   | ns to the cardidates:                                                       | [Max. Marks: 70                                     |
| 1)                                     | Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or                            | 0.8.                                                |
| 2)                                     | Near diagrams must be drawn wherever necessar                               |                                                     |
| 3)                                     | Figures to the right indicate full marks.                                   |                                                     |
| <i>4</i> )                             | Assume suitable data, if necessary.                                         |                                                     |
| 5)                                     | Use of logarithmic tables slide rule, mollier cha                           | rts, electronic pocket calculator                   |
|                                        | and steam tables is allowed.                                                | Š                                                   |
|                                        |                                                                             | No.                                                 |
| <b>Q</b> 1) a)                         | Derive the boundary condition between tw                                    | perfect dielectric. [10]                            |
| b)                                     | Electric field intensity $\overline{E} = 60\overline{ax} + 20\overline{ay}$ | $-30\overline{az}$ V/m at a point on the            |
|                                        | interface between air and a conducting su                                   | urface. Find $\bar{D}$ & $\rho$ at that             |
|                                        | point.                                                                      | [8]                                                 |
|                                        | OR                                                                          |                                                     |
| <b>Q2</b> ) a)                         | The two concentric spherical shells having                                  | g inner radius is 0.1m and its                      |
|                                        | potential is 0 Volts. The outer radius is 0.2m and its potential is 100     |                                                     |
|                                        | Volts. The medium between them is a free                                    | space. Find $\overline{E}$ and $\overline{D}$ using |
|                                        | spherical coordinate system.                                                |                                                     |
| b)                                     | Derive Poisson's and Laplace equation.                                      | [8]                                                 |
| O(3)                                   | Dariva on avaragion for magnetic vec                                        | tor notantial in the region                         |
| <b>Q</b> 3) a)                         | Derive an expression for magnetic vec                                       | tor potential in the region                         |

surrounding an infinitely long straight current carrying conductor along z-direction. [9]

Explain motional e.m.f. and transformer e.m. b)

[8]

OR

In free space  $\overline{E} = 20\cos(wt - 50x)\overline{a}_y$ Calculate current density and **Q4**) a) magnetic field intensity. [9] Write Maxwell's equation in differential and integral form for good

b) conductor. [8]

*P.T.O.* 

- Derive electromagnetic wave equation E & H in phasor form. **Q5**) a)
  - A uniform plane wave is travelling at a velocity of  $3.5 \times 10^5$  m/s having b) wavelength 0.35mm in a non-magnetic good conductor. Find the frequency of wave and the conductivity of a medium. [9]

OR

- What is polarization of uniform plane wave? Explain the different types **Q6**) a) of polarization.
  - Find the reflected and transmitted electric and magnetic field intensity at b) the interface between  $\varepsilon_r = 8.5, \mu_r = 1, \sigma = 0, E_i = 1.5V$  and in free space. [9]
- Write the primary and secondary parameters of transmission line and **Q7**) a) derive the relationship between  $Z_0$  in terms of primary constant.
  - A line has zero dissipation has R =  $0.006\Omega/m$ ,  $L = \frac{2.5\mu H}{m}$ , =  $4.45\mu F/m$ ,. If the line is operated at 10MHz. Calculate characteristics impedance, propagation constant, Velocity of propagation, and wavelength. [8]

- The characteristic impedance of a high frequency line is  $100\Omega$ . It is **Q8**) a) terminated in an impedance of  $100 + j100 \Omega$ . Using smith chart find the impedance at 0.125 wavelength away from the load end.
  - Derive the relationship between standing wave ratio and reflection b) coefficient.

