ePaddocks™ -- Boorowa Demo Product

Last modified by Franz Waldner on 5/08/2020

Data licence and access rights

See the Data Licensing document for the full terms and conditions.

Background

- 1. CSIRO is the owner of the Data.
- 2. The Recipient has requested access to the Data and CSIRO has agreed to provide access to the Data on the terms set out in this Agreement.

Permitted use

- 1. The Data may only be used for the Recipient's internal purposes, which excludes using ePaddocks data for developing a competitive product.
- 2. The Data cannot be distributed or sub-licensed to partners or other third party organisations without the expressed written consent of CSIRO.
- 3. The Recipient may visually display paddock boundaries and agricultural classifications contained within the Data to its customers via its own proprietary software platform.
- 4. Any personal information provided with the Data will comply with the requirements of the Privacy Act 1988 (Cth).

Summary

ePaddocks™ retrieves paddock boundaries across the grain zone using deep-learning and image segmentation. The deep-learning model is applied to all the cloud-free Sentinel-2 images available for a season and its predictions are averaged across acquisition dates. The product has thus a resolution of 10-m. For storage and ease-of-use purposes, boundaries have been simplified with a tolerance of 10 m. For more details about the methods, refer to Waldner and Diakogiannis (2020) and Diakogiannis *et al.* (2020).

Spatial and Temporal extents

Item	Detail
Spatial resolution (metres)	10 (simplified with a 10 m tolerance)
Spatial coverage (metres)	1500031,-3872514:1536973,- 3849544
Feature count	2,881
Temporal resolution	2019
Temporal coverage	April-November
Sentinel-2	Sentinel-2A/B Multispectral Imager

Item	Detail
Spatial representation type	Polygons
Spatial reference system	Australian Albers. EPSG:3577

Attributes

Attribute	Туре	Detail
raster_val	Integer 64	Unique field identifier
sem_unc	Real	Semantic uncertainty. Characterises the algorithm confidence to detect a paddock.

Attribute	Туре	Detail
ins_unc	Real	Instance uncertainty. Characterises the algorithm confidence to delineate an individual paddock.
area_ha	Real	Area of the paddock (in hectares) before simplification.

Point of contact

Item	Detail
Name	Alexander Bunday
Organisation	CSIRO, BD&C
Email	alexander.bunday@csiro.au
Role	Product Manager
Address	Synergy building, Black Mountain, ACT 2601
Telephone	+61 2 6218 3701

Credit

- Commonwealth Scientific and Industrial Research Organisation
 ESA Copernicus Sentinel Program

References

Item	Detail
Publication	Waldner, F., & Diakogiannis, F. I. (2020). Deep learning on edge: extracting field boundaries from satellite images with a convolutional neural network. <i>Remote Sensing of Environment</i> , 245, 111741.
Publication	Diakogiannis, F. I., Waldner, F., Caccetta, P., & Wu, C. (2020). Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data. <i>ISPRS Journal of Photogrammetry and Remote Sensing</i> 162, 94-114.