

INTRODUCTION

3

Developing the Project Plan

The Project Network

- A flow chart that graphically depicts the sequence, interdependencies, and start and finish times of the project job plan of activities that is the *critical path* through the network.
 - Provides the basis for scheduling labor and equipment.
 - · Enhances communication among project participants.
 - · Provides an estimate of the project's duration.
 - · Provides a basis for budgeting cash flow.
 - · Identifies activities that are critical.
 - Highlights activities that are "critical" and can not be delayed.
 - · Help managers get and stay on plan.

County Engineers Desig		
Description	Preceding Activity	Activity Time
Application approval	None	5
	Α	15
Traffic study	Α	10
Service availability check	Α	5
Staff report	B, C	15
Commission approval	B, C, D	10
Wait for construction	F	170
Occupancy	E, G	35
	Application approval Construction plans Traffic study Service availability check Staff report Commission approval Wait for construction	Application approval None Construction plans A Traffic study A Service availability check A Staff report B, C Commission approval B, C, D Wait for construction F

Constructing a Project Network

- 1. Terminology
 - Activity: an element of the project that requires time.
 - Merge Activity: an activity that has two or more preceding activities on which it depends.
 - Parallel (Concurrent)
 Activities: Activities that can occur independently and, if desired, not at the same time.

21

Constructing a Project Network (cont'd)

- 1. Terminology
 - □ **Path:** a sequence of connected, dependent activities.
 - □ **Critical path:** the longest path through the activity network that allows for the completion of all project-related activities. Delays on the critical path will delay completion of the entire project.

(Assumes that minimum of A + B > minimum of C in length of times to complete activities.)

Constructing a Project Network (cont'd)

- 1. Terminology
 - □ **Event:** a point in time when an activity is started or completed. It does not consume time.
- 2. Two Approaches
 - □ Activity-on-Node (AON)
 - Uses a node to depict an activity.
 - □ Activity-on-Arrow (AOA)
 - Uses an arrow to depict an activity.

2

Basic Rules to Follow in Developing Project Networks

- 1. Networks typically flow from left to right.
- 2. An activity cannot begin until all of its activities are complete.
- 3. Arrows indicate precedence and flow and can cross over each other.
- 4. Identify each activity with a unique number; this number must be greater than its predecessors.
- 5. Looping is not allowed.
- 6. Conditional statements are not allowed.
- 7. Use common start and stop nodes.

Network Computation Process

- Forward Pass—Earliest Times
 - □ How soon can the activity start? (early start—ES)
 - □ How soon can the activity finish? (early finish—EF)
 - □ How soon can the project finish? (expected time—ET)
- 2. Backward Pass—Latest Times
 - □ How late can the activity start? (late start—LS)
 - □ How late can the activity finish? (late finish—LF)
 - Which activities represent the critical path?
 - □ How long can it be delayed? (slack or float—SL)

KOLL BUSINESS CENTER County Engineers Design Department			
Activity	Description	Preceding Activity	Activity Time
А	Application approval	None	5
В	Construction plans	Α	15
С	Traffic study	Α	10
D	Service availability check	Α	5
E	Staff report	B, C	15
F	Commission approval	B, C, D	10
G	Wait for construction	F	170
Н	Occupancy	E, G	35

Forward Pass Computation

- 1. Add activity times along each path in the network (ES + Duration = EF).
- 2. Carry the early finish (EF) to the next activity where it becomes its early start (ES) *unless...*
- 3. The next succeeding activity is a merge activity, in which case the largest EF of all preceding activities is selected.

Backward Pass Computation

- Subtract activity times along each path in the network (LF Duration = LS).
- Carry the late start (LS) to the next activity where it becomes its late finish (LF) unless
- 3. The next succeeding activity is a burst activity, in which case the smallest LF of all preceding activities is selected.

Determining Slack (or Float)

- 1. Slack (or Float)
 - ☐ The amount of time an activity can be delayed after the start of a longer parallel activity or activities.
- Total slack
 - ☐ The amount of time an activity can be delayed without delaying the entire project.
- 3. The critical path is the network path(s) that has (have) the least slack in common.

Extended Network Techniques to Come Close to Reality

√1. Laddering

□ Activities are broken into segments so the following activity can begin sooner and not delay the work.

2. Lags

- ☐ The minimum amount of time a dependent activity must be delayed to begin or end.
 - Lengthy activities are broken down to reduce the delay in the start of successor activities.
 - Lags can be used to constrain finish-to-start, start-to-start, finish-to-finish, start-to-finish, or combination relationships.

Comparison of AON and AOA Methods

AON Method

Advantages

- 1. No dummy activities are used.
- 2. Events are not used.
- 3. AON is easy to draw if dependencies are not intense.
- 4. Activity emphasis is easily understood by first-level managers.
- 5. The CPM approach uses deterministic times to construct networks.

Disadvantages

- Path tracing by activity number is difficult. If the network is not available, computer outputs
 must list the predecessor and successor activities for each activity.
- 2. Network drawing and understanding are more difficult when dependencies are numerous.

AOA Method

Advantages

- 1. Path tracing is simplified by activity/event numbering scheme.
- 2. A0A is easier to draw if dependencies are intense.
- 3. Key events or milestones can easily be flagged.

Disadvantages

- 1. Use of dummy activities increases data requirements.
- Emphasis on events can detract from activities. Activity delays cause events and projects to be late.