Euler Tours

October 2, 2024

- A trail in a graph which contains all its edges is called an Eulerian trail.
- 2 A closed Eulerian trial is called an Eulerian Tour.
- A graph is called an Eulerian graph if it contains a Eulerian tour.
- An Eulerian graph is necessarily connected.
- If *G* is Eulerian then one can choose an Eulerian trail starting and ending from any given vertex.

- A trail in a graph which contains all its edges is called an Eulerian trail.
- 2 A closed Eulerian trial is called an Eulerian Tour.
- A graph is called an Eulerian graph if it contains a Eulerian tour.
- An Eulerian graph is necessarily connected.
- If *G* is Eulerian then one can choose an Eulerian trail starting and ending from any given vertex.

- A trail in a graph which contains all its edges is called an Eulerian trail.
- 2 A closed Eulerian trial is called an Eulerian Tour.
- A graph is called an Eulerian graph if it contains a Eulerian tour.
- An Eulerian graph is necessarily connected.
- If *G* is Eulerian then one can choose an Eulerian trail starting and ending from any given vertex.

- A trail in a graph which contains all its edges is called an Eulerian trail.
- 2 A closed Eulerian trial is called an Eulerian Tour.
- A graph is called an Eulerian graph if it contains a Eulerian tour.
- An Eulerian graph is necessarily connected.
- If *G* is Eulerian then one can choose an Eulerian trail starting and ending from any given vertex.

- A trail in a graph which contains all its edges is called an Eulerian trail.
- 2 A closed Eulerian trial is called an Eulerian Tour.
- A graph is called an Eulerian graph if it contains a Eulerian tour.
- An Eulerian graph is necessarily connected.
- If *G* is Eulerian then one can choose an Eulerian trail starting and ending from any given vertex.

Example

Example of Euler Graph

Example

Non-Eulerian Graph

Theorem

Theorem

A connected graph G is Eulerian iff every vertex has even degree.

Proof.

- " \Rightarrow " Assume G is Eulerian. We show that every vertex has even degree.
 - Let $W = (v_0, e_1, v_1, e_2, v_2, \dots, v_{t-1}, e_t, v_t (= v_0))$ be an Euler tour in G.
 - If v_i is an internal vertex $(\neq v_0)$ of W appearing k times, then $deg_G(v_i) = 2k$.
 - If v_0 appears r times internally, then $deg_G(v_i) = 2r + 2$.

- By induction on number of edges m.
- 2 Base Case : $m \le 2$: Easy verification.
- Assume true for all $m \le k 1$.
- Consider a graph G with k edges.
- 5 x any vertex of G.
- y, z- vertices (need not be distinct) adjacent to x.
- Delete edges xy and xz and add a new edge yz.
- The new graph H has $\leq m-1$ edges and its every vertex has even degree.
- H may be connected or disconnected.

- By induction on number of edges m.
- **2** Base Case : $m \le 2$: Easy verification.
- 3 Assume true for all $m \le k 1$.
- 4 Consider a graph *G* with *k* edges.
- 5 x any vertex of G.
- y, z- vertices (need not be distinct) adjacent to x.
- Delete edges xy and xz and add a new edge yz.
- The new graph H has $\leq m-1$ edges and its every vertex has even degree.
- M may be connected or disconnected.

- By induction on number of edges m.
- **2** Base Case : $m \le 2$: Easy verification.
- 3 Assume true for all $m \le k 1$.
- Consider a graph G with k edges.
- 5 x any vertex of G.
- y, z- vertices (need not be distinct) adjacent to x.
- Delete edges xy and xz and add a new edge yz.
- The new graph H has $\leq m-1$ edges and its every vertex has even degree.
- M may be connected or disconnected.

- By induction on number of edges m.
- **2** Base Case : $m \le 2$: Easy verification.
- 3 Assume true for all $m \le k 1$.
- Consider a graph G with k edges.
- 5 x any vertex of G.
- y, z- vertices (need not be distinct) adjacent to x.
- Delete edges xy and xz and add a new edge yz.
- The new graph H has $\leq m-1$ edges and its every vertex has even degree.
- M may be connected or disconnected.

- By induction on number of edges m.
- **2** Base Case : $m \le 2$: Easy verification.
- 3 Assume true for all $m \le k 1$.
- Consider a graph G with k edges.
- 5 x any vertex of G.
- $\mathbf{6}$ y, z- vertices (need not be distinct) adjacent to x.
- Delete edges xy and xz and add a new edge yz.
- The new graph H has $\leq m-1$ edges and its every vertex has even degree.
- M may be connected or disconnected.

- By induction on number of edges m.
- **2** Base Case : $m \le 2$: Easy verification.
- 3 Assume true for all $m \le k 1$.
- Consider a graph G with k edges.
- 5 x any vertex of G.
- $\mathbf{6}$ y, z- vertices (need not be distinct) adjacent to x.
- Delete edges xy and xz and add a new edge yz.
- The new graph H has $\leq m-1$ edges and its every vertex has even degree.
- M may be connected or disconnected.

- By induction on number of edges m.
- **2** Base Case : $m \le 2$: Easy verification.
- 3 Assume true for all $m \le k 1$.
- Consider a graph G with k edges.
- 5 x any vertex of G.
- $\mathbf{6}$ y, z- vertices (need not be distinct) adjacent to x.
- Delete edges xy and xz and add a new edge yz.
- The new graph H has $\leq m-1$ edges and its every vertex has even degree.
- M may be connected or disconnected.

- By induction on number of edges m.
- **2** Base Case : $m \le 2$: Easy verification.
- 3 Assume true for all $m \le k 1$.
- Consider a graph G with k edges.
- 5 x any vertex of G.
- $\mathbf{6}$ y, z- vertices (need not be distinct) adjacent to x.
- Delete edges xy and xz and add a new edge yz.
- The new graph H has $\leq m-1$ edges and its every vertex has even degree.
- H may be connected or disconnected.

We consider two cases.

Case 1: H is connected.

■ By induction hypothesis, H contains an Eulerian tour.

$$W = (v_0, e_1, v_1, e_2, v_2, \cdots, y, f = yz, z, \cdots, v_0)$$

2 Then, by replacing edge f with yx, x, xz in W we get,

$$W^* = (v_0, e_1, v_1, e_2, v_2, \dots, y, yx, x, xz, z, \dots, v_0)$$

 W^* an Euler tour in G.

We consider two cases.

Case 1: H is connected.

By induction hypothesis, H contains an Eulerian tour.

$$W = (v_0, e_1, v_1, e_2, v_2, \cdots, y, f = yz, z, \cdots, v_0)$$

2 Then, by replacing edge f with yx, x, xz in W we get,

$$W^* = (v_0, e_1, v_1, e_2, v_2, \cdots y, yx, x, xz, z, \cdots, v_0)$$

 W^* an Euler tour in G.

We consider two cases.

Case 1: H is connected.

By induction hypothesis, H contains an Eulerian tour.

$$W = (v_0, e_1, v_1, e_2, v_2, \cdots, y, f = yz, z, \cdots, v_0)$$

2 Then, by replacing edge f with yx, x, xz in W we get,

$$W^* = (v_0, e_1, v_1, e_2, v_2, \cdots y, yx, x, xz, z, \cdots, v_0)$$

 \mathbf{W}^* an Euler tour in G.

- Let C and D be two components of H such that $x \in C$ and edge $f = yz \in D$.
- $|E(C)| \le m-1 \text{ and } |E(D)| \le m-1.$
- 3 By induction, C and D contain Euler tours.
- $W_1 = (x, \dots, x) \text{ in } C.$
- 5 $W_2 = (v_0, e_1, v_1, e_2, v_2, \dots, v_n, f, z, \dots, v_0)$ in D.
- Then, $W^* = (v_0, e_1, v_1, e_2, v_2, \dots, y, yx, W_1, xz, z, \dots, v_0)$ is an Eulerian tour in G.

- Let C and D be two components of H such that $x \in C$ and edge $f = yz \in D$.
- $|E(C)| \le m-1 \text{ and } |E(D)| \le m-1.$
- By induction, C and D contain Euler tours.
- $W_1 = (x, \dots, x) \text{ in } C.$
- 5 $W_2 = (v_0, e_1, v_1, e_2, v_2, \dots, v_n, f, z, \dots, v_0)$ in D.
- Then, $W^* = (v_0, e_1, v_1, e_2, v_2, \dots, y, yx, W_1, xz, z, \dots, v_0)$ is an Eulerian tour in G.

- Let C and D be two components of H such that $x \in C$ and edge $f = yz \in D$.
- $|E(C)| \le m-1 \text{ and } |E(D)| \le m-1.$
- By induction, C and D contain Euler tours.
- $W_1 = (x, \dots, x) \text{ in } C.$
- 5 $W_2 = (v_0, e_1, v_1, e_2, v_2, \dots, v_n, f, z, \dots, v_0)$ in D.
- Then, $W^* = (v_0, e_1, v_1, e_2, v_2, \dots, y, yx, W_1, xz, z, \dots, v_0)$ is an Eulerian tour in G.

- Let C and D be two components of H such that $x \in C$ and edge $f = yz \in D$.
- $|E(C)| \le m-1 \text{ and } |E(D)| \le m-1.$
- 3 By induction, C and D contain Euler tours.
- $W_1 = (x, \dots, x) \text{ in } C.$
- 5 $W_2 = (v_0, e_1, v_1, e_2, v_2, \cdots y, f, z, \cdots, v_0)$ in D.
- Then, $W^* = (v_0, e_1, v_1, e_2, v_2, \dots, y, yx, W_1, xz, z, \dots, v_0)$ is an Eulerian tour in G.

- Let C and D be two components of H such that $x \in C$ and edge $f = yz \in D$.
- $|E(C)| \le m-1 \text{ and } |E(D)| \le m-1.$
- 3 By induction, C and D contain Euler tours.
- $W_1 = (x, \dots, x) \text{ in } C.$
- 5 $W_2 = (v_0, e_1, v_1, e_2, v_2, \dots, v_n, f, z, \dots, v_0)$ in D.
- Then, $W^* = (v_0, e_1, v_1, e_2, v_2, \dots, y, yx, W_1, xz, z, \dots, v_0)$ is an Eulerian tour in G.

- Let C and D be two components of H such that $x \in C$ and edge $f = yz \in D$.
- $|E(C)| \le m-1 \text{ and } |E(D)| \le m-1.$
- 3 By induction, C and D contain Euler tours.
- $W_1 = (x, \dots, x) \text{ in } C.$
- 5 $W_2 = (v_0, e_1, v_1, e_2, v_2, \cdots y, f, z, \cdots, v_0)$ in D.
- Then, $W^* = (v_0, e_1, v_1, e_2, v_2, \dots, y, yx, W_1, xz, z, \dots, v_0)$ is an Eulerian tour in G.

- Let C and D be two components of H such that $x \in C$ and edge $f = yz \in D$.
- $|E(C)| \le m-1 \text{ and } |E(D)| \le m-1.$
- 3 By induction, C and D contain Euler tours.
- $W_1 = (x, \dots, x) \text{ in } C.$
- 5 $W_2 = (v_0, e_1, v_1, e_2, v_2, \cdots y, f, z, \cdots, v_0)$ in D.
- Then, $W^* = (v_0, e_1, v_1, e_2, v_2, \dots, y, yx, W_1, xz, z, \dots, v_0)$ is an Eulerian tour in G.

Hamilton Graphs

Motivation: TSP

Travelling salesman Problem

Given *n* cities and distance between any two cities, a traveling salesman wishes to start from one of these cities, visits each city exactly once and comes back to the starting point. Design an algorithm to find a shortest route.

Hamilton Graphs

Motivation: TSP

Graph theoretical model of TSP

Given a weighted graph *G* on *n* vertices, design an algorithm to find a cycle with minimum weight containing all the vertices of *G*.

- A path (cycle) in a graph containing all its vertices is called a Hamilton path (respectively Hamilton cycle).
- A graph is called a Hamilton graph or Hamiltonian if it contains a Hamilton cycle.
- A graph is Hamiltonian iff its underlying simple graph is Hamilton. Hence, the study of Hamilton graphs is limited to simple graphs.

- A path (cycle) in a graph containing all its vertices is called a Hamilton path (respectively Hamilton cycle).
- 2 A graph is called a Hamilton graph or Hamiltonian if it contains a Hamilton cycle.
- A graph is Hamiltonian iff its underlying simple graph is Hamilton. Hence, the study of Hamilton graphs is limited to simple graphs.

- A path (cycle) in a graph containing all its vertices is called a Hamilton path (respectively Hamilton cycle).
- 2 A graph is called a Hamilton graph or Hamiltonian if it contains a Hamilton cycle.
- A graph is Hamiltonian iff its underlying simple graph is Hamilton. Hence, the study of Hamilton graphs is limited to simple graphs.

Example

Hamilton Graphs

Hamilton problems(Open)

- Find necessary and sufficient conditions for a graph to be Hamiltonian.
- Design a polynomial-time algorithm to generate a Hamilton cycle in a given graph G or declare that G has no Hamilton cycle.

Hamilton Graphs

Hamilton problems(Open)

- Find necessary and sufficient conditions for a graph to be Hamiltonian.
- Design a polynomial-time algorithm to generate a Hamilton cycle in a given graph G or declare that G has no Hamilton cycle.

Necessary conditions and sufficient conditions

Theorem

(Necessary condition). If G is Hamiltonian, then

$$\omega(G-S) \leq |S|$$
 for every $S \subseteq V(G)$

Proof.

Two way counting technique

Necessary conditions and sufficient conditions

Theorem

(Necessary condition). If G is Hamiltonian, then

$$\omega(G-S) \leq |S|$$
 for every $S \subseteq V(G)$

Proof.

Two way counting technique

- Let C be a Hamilton cycle in G and let $S \subseteq V(G)$ and |S| = s.
- 2 Consider the set of edges $F \subseteq E(C)$ with one end in S and another end in G S.
- \blacksquare Every vertex in G is incident with two edges of C.

- Let C be a Hamilton cycle in G and let $S \subseteq V(G)$ and |S| = s.
- 2 Consider the set of edges $F \subseteq E(C)$ with one end in S and another end in G S.
- 3 Every vertex in *G* is incident with two edges of *C*.

- Let C be a Hamilton cycle in G and let $S \subseteq V(G)$ and |S| = s.
- 2 Consider the set of edges $F \subseteq E(C)$ with one end in S and another end in G S.
- \blacksquare Every vertex in G is incident with two edges of C.

- Let C be a Hamilton cycle in G and let $S \subseteq V(G)$ and |S| = s.
- 2 Consider the set of edges $F \subseteq E(C)$ with one end in S and another end in G S.
- \blacksquare Every vertex in G is incident with two edges of C.

- Therefore, every vertex in S is incident with at most two edges of F.
- $|F| \leq 2s = 2|S|$.
- Also, every component of G S is incident with at least two edges of F.
- 4 Hence, $|F| \geq 2\omega(G-S)$.
- 5 $\omega(G-S) \leq \frac{|F|}{2} \leq |S|$.
- $\delta \implies \omega(G-S) \leq |S| \text{ for all } S \subseteq V(G)$

- Therefore, every vertex in S is incident with at most two edges of F.
- Also, every component of G S is incident with at least two edges of F.
- 4 Hence, $|F| \geq 2\omega(G S)$.
- $\delta \implies \omega(G-S) \leq |S| \text{ for all } S \subseteq V(G)$

- Therefore, every vertex in S is incident with at most two edges of F.
- Also, every component of G S is incident with at least two edges of F.
- 4 Hence, $|F| \geq 2\omega(G-S)$.
- 5 $\omega(G-S) \le \frac{|F|}{2} \le |S|$.
- $\delta \implies \omega(G-S) \leq |S| \text{ for all } S \subseteq V(G)$

- Therefore, every vertex in S is incident with at most two edges of F.
- $|F| \leq 2s = 2|S|$.
- Also, every component of G S is incident with at least two edges of F.
- 5 $\omega(G-S) \le \frac{|F|}{2} \le |S|$.
- $\delta \implies \omega(G-S) \leq |S| \text{ for all } S \subseteq V(G)$

- Therefore, every vertex in S is incident with at most two edges of F.
- $|F| \leq 2s = 2|S|$.
- Also, every component of G S is incident with at least two edges of F.
- 5 $\omega(G-S) \leq \frac{|F|}{2} \leq |S|$.
- ω(G S) ≤ |S| for all S ⊆ V(G)

- Therefore, every vertex in S is incident with at most two edges of F.
- Also, every component of G S is incident with at least two edges of F.
- 5 $\omega(G-S) \leq \frac{|F|}{2} \leq |S|$.
- $\delta \implies \omega(G-S) \leq |S| \text{ for all } S \subseteq V(G)$

Example

One can use previous theorem to show that a given graph is Not Hamiltonian.

For $S = \{c, d\}$, G - S has three components.

Example

One can use previous theorem to show that a given graph is Not Hamiltonian.

For $S = \{c, d\}$, G - S has three components.

Example

One can use previous theorem to show that a given graph is Not Hamiltonian.

For $S = \{c, d\}$, G - S has three components.

Example-Petersen Graph

Previous result is not applicable to all graphs.

Figure: Petersen Graph

For any $S \subseteq V(G)$, $\omega(G - S) \le |S|$. But G is not Hamiltonian.

Example-Petersen Graph

Previous result is not applicable to all graphs.

Figure: Petersen Graph

For any $S \subseteq V(G)$, $\omega(G - S) \le |S|$. But G is not Hamiltonian.

Example-Petersen Graph

Previous result is not applicable to all graphs.

Figure: Petersen Graph

For any $S \subseteq V(G)$, $\omega(G - S) \le |S|$. But G is not Hamiltonian.

Maximal Non-Hamiltonian

Definition

A graph *G* is called maximal non-Hamiltonian if it satisfies the following.

- G is non-Hamiltonian.
- 2 G + uv is Hamiltonian for every pair of non-adjacent vertices u and v.

Maximal Non-Hamiltonian

Definition

A graph *G* is called maximal non-Hamiltonian if it satisfies the following.

- ☐ G is non-Hamiltonian.
- **2** G + uv is Hamiltonian for every pair of non-adjacent vertices u and v.

Maximal Non-Hamiltonian

Definition

A graph *G* is called maximal non-Hamiltonian if it satisfies the following.

- ☐ G is non-Hamiltonian.
- **2** G + uv is Hamiltonian for every pair of non-adjacent vertices u and v.

Theorem

If G is a simple graph with $n (\geq 3)$ vertices and $\delta(G) \geq \frac{n}{2}$ then G is Hamiltonian.

- Proof by Contradiction.
- **2** Let *G* be such that, *G* is maximal non-Hamiltonian and $\delta(G) \geq \frac{n}{2}$.
- G is not complete as $n \ge 3$.
- Choose $u, v \in V(G)$ and u and v are non-adjacent.
- G + uv is Hamiltonian.
- **6** Every Hamilton cycle of G + uv contains the edge uv.
- **Z** Let $P: u = v_1 v_2 \cdots v_n = v$ be a Hamilton Path in G.

Theorem

If G is a simple graph with $n (\geq 3)$ vertices and $\delta(G) \geq \frac{n}{2}$ then G is Hamiltonian.

- Proof by Contradiction.
- 2 Let *G* be such that, *G* is maximal non-Hamiltonian and $\delta(G) \ge \frac{n}{2}$.
- 3 *G* is not complete as $n \ge 3$.
- Choose $u, v \in V(G)$ and u and v are non-adjacent.
- G + uv is Hamiltonian.
- **6** Every Hamilton cycle of G + uv contains the edge uv.
- Let $P: u = v_1 v_2 \cdots v_n = v$ be a Hamilton Path in G.

Theorem

If G is a simple graph with $n (\geq 3)$ vertices and $\delta(G) \geq \frac{n}{2}$ then G is Hamiltonian.

- Proof by Contradiction.
- **2** Let *G* be such that, *G* is maximal non-Hamiltonian and $\delta(G) \geq \frac{n}{2}$.
- G is not complete as $n \ge 3$.
- Choose $u, v \in V(G)$ and u and v are non-adjacent.
- G + uv is Hamiltonian.
- **6** Every Hamilton cycle of G + uv contains the edge uv.
- Let $P: u = v_1 v_2 \cdots v_n = v$ be a Hamilton Path in G.

Theorem

If G is a simple graph with $n (\geq 3)$ vertices and $\delta(G) \geq \frac{n}{2}$ then G is Hamiltonian.

- Proof by Contradiction.
- **2** Let *G* be such that, *G* is maximal non-Hamiltonian and $\delta(G) \geq \frac{n}{2}$.
- **3** *G* is not complete as $n \ge 3$.
- Choose $u, v \in V(G)$ and u and v are non-adjacent.
- G + uv is Hamiltonian.
- **6** Every Hamilton cycle of G + uv contains the edge uv.
- Let $P: u = v_1 v_2 \cdots v_n = v$ be a Hamilton Path in G.

Theorem

If G is a simple graph with $n (\geq 3)$ vertices and $\delta(G) \geq \frac{n}{2}$ then G is Hamiltonian.

- Proof by Contradiction.
- **2** Let *G* be such that, *G* is maximal non-Hamiltonian and $\delta(G) \geq \frac{n}{2}$.
- **3** *G* is not complete as $n \ge 3$.
- 4 Choose $u, v \in V(G)$ and u and v are non-adjacent.
- G + uv is Hamiltonian.
- **6** Every Hamilton cycle of G + uv contains the edge uv.
- Let $P: u = v_1 v_2 \cdots v_n = v$ be a Hamilton Path in G.

Theorem

If G is a simple graph with $n (\geq 3)$ vertices and $\delta(G) \geq \frac{n}{2}$ then G is Hamiltonian.

- Proof by Contradiction.
- **2** Let *G* be such that, *G* is maximal non-Hamiltonian and $\delta(G) \geq \frac{n}{2}$.
- **3** *G* is not complete as $n \ge 3$.
- 4 Choose $u, v \in V(G)$ and u and v are non-adjacent.
- $\mathbf{5}$ $\mathbf{G} + \mathbf{u}\mathbf{v}$ is Hamiltonian.
- **6** Every Hamilton cycle of G + uv contains the edge uv.
- Let $P: u = v_1 v_2 \cdots v_n = v$ be a Hamilton Path in G.

Theorem

If G is a simple graph with $n (\geq 3)$ vertices and $\delta(G) \geq \frac{n}{2}$ then G is Hamiltonian.

- Proof by Contradiction.
- **2** Let *G* be such that, *G* is maximal non-Hamiltonian and $\delta(G) \geq \frac{n}{2}$.
- **3** *G* is not complete as $n \ge 3$.
- 4 Choose $u, v \in V(G)$ and u and v are non-adjacent.
- $\mathbf{5}$ $\mathbf{G} + \mathbf{u}\mathbf{v}$ is Hamiltonian.
- **6** Every Hamilton cycle of G + uv contains the edge uv.
- Z Let $P: u = v_1 v_2 \cdots v_n = v$ be a Hamilton Path in G.

Theorem

If G is a simple graph with $n (\geq 3)$ vertices and $\delta(G) \geq \frac{n}{2}$ then G is Hamiltonian.

- Proof by Contradiction.
- **2** Let *G* be such that, *G* is maximal non-Hamiltonian and $\delta(G) \geq \frac{n}{2}$.
- **3** *G* is not complete as $n \ge 3$.
- 4 Choose $u, v \in V(G)$ and u and v are non-adjacent.
- $\mathbf{5}$ $\mathbf{G} + \mathbf{u}\mathbf{v}$ is Hamiltonian.
- **6** Every Hamilton cycle of G + uv contains the edge uv.
- Let $P: u = v_1 v_2 \cdots v_n = v$ be a Hamilton Path in G.

Proof.

Define

$$S = \{v_i : uv_{i+1} \in E(G)\}\$$

 $T = \{v_i : v_i v \in E(G)\}$

- 1 $V_n \notin S \cup T$.
- $|S \cup T| < n$
- $S \cap T = \emptyset$.

$$V_1 V_2 \cdots V_j V_n V_{n-1} \cdots V_{j+1} V_1$$

- 5 $deg(u) + deg(v) = |S| + |T| = |S \cup T| |S \cap T| < n$.
- 6 A contradiction since $\delta(G) \geq \frac{n}{2}$.

Proof.

Define

$$S = \{v_i : uv_{i+1} \in E(G)\}\$$

 $T = \{v_i : v_iv \in E(G)\}$

- 1 $V_n \notin S \cup T$.
- $|S \cup T| < n$
- $S \cap T = \emptyset$.
- If not, let $v_j \in S \cap T$, then

$$V_1 V_2 \cdots V_j V_n V_{n-1} \cdots V_{j+1} V_1$$

- 5 $deg(u) + deg(v) = |S| + |T| = |S \cup T| |S \cap T| < n$.
- **6** A contradiction since $\delta(G) \geq \frac{n}{2}$.

Proof.

Define

$$S = \{v_i : uv_{i+1} \in E(G)\}\$$

 $T = \{v_i : v_iv \in E(G)\}$

- $I v_n \notin S \cup T$.
- $|S \cup T| < n$
- $S \cap T = \emptyset$.
- If not, let $v_j \in S \cap T$, then

$$V_1 V_2 \cdots V_j V_n V_{n-1} \cdots V_{j+1} V_1$$

- 5 $deg(u) + deg(v) = |S| + |T| = |S \cup T| |S \cap T| < n$.
- δ A contradiction since δ(𝔞) ≥ $\frac{n}{2}$.

Proof.

Define

$$S = \{v_i : uv_{i+1} \in E(G)\}\$$

 $T = \{v_i : v_iv \in E(G)\}$

- 1 $v_n \notin S \cup T$.
- $|S \cup T| < n$
- $S \cap T = \emptyset$.
- If not, let $v_j \in S \cap T$, then

$$V_1 V_2 \cdots V_j V_n V_{n-1} \cdots V_{j+1} V_1$$

- 5 $deg(u) + deg(v) = |S| + |T| = |S \cup T| |S \cap T| < n$.
- δ A contradiction since δ(𝔞) ≥ $\frac{n}{2}$.

Proof.

Define

$$S = \{v_i : uv_{i+1} \in E(G)\}\ T = \{v_i : v_iv \in E(G)\}$$

- I $v_n \notin S \cup T$.
- $|S \cup T| < n$
- $S \cap T = \emptyset$.
- If not, let $v_j \in S \cap T$, then

$$V_1 V_2 \cdots V_j V_n V_{n-1} \cdots V_{j+1} V_1$$

- 5 $deg(u) + deg(v) = |S| + |T| = |S \cup T| |S \cap T| < n$.
- δ A contradiction since δ(𝔞) ≥ $\frac{n}{2}$.

Proof.

Define

$$S = \{v_i : uv_{i+1} \in E(G)\}\$$

 $T = \{v_i : v_iv \in E(G)\}\$

- I $v_n \notin S \cup T$.
- **2** $|S \cup T|$ < *n*
- $S \cap T = \emptyset$.
- **4** If not, let v_i ∈ $S \cap T$, then

$$v_1 v_2 \cdots v_j v_n v_{n-1} \cdots v_{j+1} v_1$$

- 5 $deg(u) + deg(v) = |S| + |T| = |S \cup T| |S \cap T| < n$.
- δ A contradiction since δ(𝔞) ≥ $\frac{n}{2}$.

Proof.

Define

$$S = \{v_i : uv_{i+1} \in E(G)\}\$$

 $T = \{v_i : v_iv \in E(G)\}$

- $I v_n \notin S \cup T$.
- **2** $|S \cup T|$ < *n*
- $S \cap T = \emptyset$.
- **4** If not, let v_i ∈ $S \cap T$, then

$$v_1 v_2 \cdots v_j v_n v_{n-1} \cdots v_{j+1} v_1$$

- 5 $deg(u) + deg(v) = |S| + |T| = |S \cup T| |S \cap T| < n$.
- **6** A contradiction since δ (*G*) ≥ $\frac{n}{2}$.

Proof.

Define

$$S = \{v_i : uv_{i+1} \in E(G)\}\ T = \{v_i : v_iv \in E(G)\}$$

- I $v_n \notin S \cup T$.
- **2** $|S \cup T|$ < *n*
- $S \cap T = \emptyset$.
- **4** If not, let v_i ∈ $S \cap T$, then

$$v_1 v_2 \cdots v_j v_n v_{n-1} \cdots v_{j+1} v_1$$

- 5 $deg(u) + deg(v) = |S| + |T| = |S \cup T| |S \cap T| < n$.
- **6** A contradiction since $\delta(G) \geq \frac{n}{2}$.

Ore's Theorem

Theorem

If a graph G on $n \ge 3$ is such that

$$deg(u) + deg(v) \ge n$$

for every pair of non-adjacent vertices u and v then G is Hamiltonian.

Note: We did not prove this in class. We only proved the consequence of it. (only the consequence in your text book:)).

Theorem

If a graph G on $n \ge 3$ is such that

$$deg(u) + deg(v) \ge n$$

for a pair of non-adjacent vertices u and v then G is Hamiltonian iff G + uv is Hamiltonian.

- Let $u, v \in G$ be such that $deg_G(u) + deg_G(v) \ge n$.
- If $uv \in G$, then there is nothing to prove.
- 3 Assume thus that $uv \in G$.

Theorem

If a graph G on $n \ge 3$ is such that

$$deg(u) + deg(v) \ge n$$

for a pair of non-adjacent vertices u and v then G is Hamiltonian iff G + uv is Hamiltonian.

- Let $u, v \in G$ be such that $deg_G(u) + deg_G(v) \ge n$.
- If $uv \in G$, then there is nothing to prove.
- Assume thus that $uv \in G$.

Theorem

If a graph G on $n \ge 3$ is such that

$$deg(u) + deg(v) \ge n$$

for a pair of non-adjacent vertices u and v then G is Hamiltonian iff G + uv is Hamiltonian.

- Let $u, v \in G$ be such that $deg_G(u) + deg_G(v) \ge n$.
- If $uv \in G$, then there is nothing to prove.
- Assume thus that $uv \in G$.

Theorem

If a graph G on $n \ge 3$ is such that

$$deg(u) + deg(v) \ge n$$

for a pair of non-adjacent vertices u and v then G is Hamiltonian iff G + uv is Hamiltonian.

- Let $u, v \in G$ be such that $deg_G(u) + deg_G(v) \ge n$.
- If $uv \in G$, then there is nothing to prove.
- 3 Assume thus that $uv \in G$.

Theorem

If a graph G on $n \ge 3$ is such that

$$deg(u) + deg(v) \ge n$$

for a pair of non-adjacent vertices u and v then G is Hamiltonian iff G + uv is Hamiltonian.

- Let $u, v \in G$ be such that $deg_G(u) + deg_G(v) \ge n$.
- If $uv \in G$, then there is nothing to prove.
- 3 Assume thus that $uv \in G$.

- Given G is Hamiltonian.
- 2 G has a Hamilton cycle C (say)
- G is also a Hamilton cycle of G + uv.
- \longrightarrow G + uv is Hamiltonian.

- Given G is Hamiltonian.
- 2 G has a Hamilton cycle C (say)
- \mathcal{C} is also a Hamilton cycle of G + uv.
- \Rightarrow G + uv is Hamiltonian.

- Given G is Hamiltonian.
- **2** *G* has a Hamilton cycle *C* (say)
- \mathcal{C} is also a Hamilton cycle of G + uv.
- \longrightarrow G + uv is Hamiltonian.

- Given G is Hamiltonian.
- **2** *G* has a Hamilton cycle *C* (say)
- **3** C is also a Hamilton cycle of G + uv.
- \longrightarrow G + uv is Hamiltonian.

- **7** Given *G* is Hamiltonian. ■
- **2** *G* has a Hamilton cycle *C* (say)
- **3** *C* is also a Hamilton cycle of G + uv.
- \longrightarrow G + uv is Hamiltonian.

- **7** Given *G* is Hamiltonian. ■
- **2** *G* has a Hamilton cycle *C* (say)
- **3** *C* is also a Hamilton cycle of G + uv.
- \longrightarrow G + uv is Hamiltonian.

Suppose given that G + uv is Hamiltonian.

- Denote e = uv.
- G + e has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- 4 If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- 7 P is a Hamilton path of G.

Suppose given that G + uv is Hamiltonian. We show that G is Hamiltonian.

- 1 Denote e = uv.
- 2 G + e has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- 4 If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- 7 P is a Hamilton path of G.

Suppose given that G + uv is Hamiltonian. We show that G is Hamiltonian.

- **7** Denote e = uv.
- 2 G + e has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- 4 If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- 7 P is a Hamilton path of G.

Suppose given that G + uv is Hamiltonian.

- 1 Denote e = uv.
- $\mathbf{2}$ G + e has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- 4 If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- 7 P is a Hamilton path of G.

Suppose given that G + uv is Hamiltonian.

- 1 Denote e = uv.
- **2** G + e has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- 4 If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- 7 *P* is a Hamilton path of *G*.

Suppose given that G + uv is Hamiltonian.

- **1** Denote e = uv.
- $\mathbf{2} \ G + e$ has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- 7 *P* is a Hamilton path of *G*.

Suppose given that G + uv is Hamiltonian.

- 1 Denote e = uv.
- **2** G + e has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- 7 P is a Hamilton path of G.

Suppose given that G + uv is Hamiltonian.

- 1 Denote e = uv.
- $\mathbf{2}$ G + e has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- 4 If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- P is a Hamilton path of G.

Suppose given that G + uv is Hamiltonian.

- 1 Denote e = uv.
- **2** G + e has a Hamilton cycle C.
- If C do not contain e, then C is a Hamilton cycle of G.
- If C contains e.
- 5 Let $C = u = v_1 v_2 \cdots v_n = v u$.
- 6 Then for $P = u = v_1 v_2 \cdots v_n = v$, C = P + e.
- P is a Hamilton path of G.

- *u* and *v* not adjacent in *G*.
- 2 $deg_G(u) + deg_G(v) \ge n$.
- $\implies (n-1) deg_G(v) \leq deg_G(u) 1.$
- Atmost $deg_G(u) 1$ vertices other than v are not adjacent to v.
- **5** Let $S = \{v_{i-1} : uv_i \in E(G)\}$ in the Hamilton path P.
- 6 $v \notin S$ and $|S| = deg_G(u)$.
- 7 Therefore, at least one vertex say v_k of S is adjacent to v_n .

- u and v not adjacent in G.
- $\implies (n-1) deg_G(v) \leq deg_G(u) 1.$
- Atmost $deg_G(u) 1$ vertices other than v are not adjacent to v.
- **5** Let $S = \{v_{i-1} : uv_i \in E(G)\}$ in the Hamilton path P.
- 6 $v \notin S$ and $|S| = deg_G(u)$.
- 7 Therefore, at least one vertex say v_k of S is adjacent to v_n .

- u and v not adjacent in G.
- $\implies (n-1)-deg_G(v)\leq deg_G(u)-1.$
- Atmost $deg_G(u) 1$ vertices other than v are not adjacent to v.
- **5** Let $S = \{v_{i-1} : uv_i \in E(G)\}$ in the Hamilton path P.
- 6 $v \notin S$ and $|S| = deg_G(u)$.
- Therefore, at least one vertex say v_k of S is adjacent to v_n .

- u and v not adjacent in G.
- $\implies (n-1)-deg_G(v)\leq deg_G(u)-1.$
- Atmost $deg_G(u) 1$ vertices other than v are not adjacent to v.
- **5** Let $S = \{v_{i-1} : uv_i \in E(G)\}$ in the Hamilton path P.
- 6 $v \notin S$ and $|S| = deg_G(u)$.
- 7 Therefore, at least one vertex say v_k of S is adjacent to v_n .

- u and v not adjacent in G.

- Atmost $deg_G(u) 1$ vertices other than v are not adjacent to v.
- **5** Let $S = \{v_{i-1} : uv_i \in E(G)\}$ in the Hamilton path P.
- 6 $v \notin S$ and $|S| = deg_G(u)$.
- Therefore, at least one vertex say v_k of S is adjacent to v_n .

- u and v not adjacent in G.
- $\implies (n-1)-deg_G(v)\leq deg_G(u)-1.$
- Atmost $deg_G(u) 1$ vertices other than v are not adjacent to v.
- **5** Let $S = \{v_{i-1} : uv_i \in E(G)\}$ in the Hamilton path P.
- $v \notin S$ and $|S| = deg_G(u)$.
- Therefore, at least one vertex say v_k of S is adjacent to v_n .

- u and v not adjacent in G.

- Atmost $deg_G(u) 1$ vertices other than v are not adjacent to v.
- **5** Let $S = \{v_{i-1} : uv_i \in E(G)\}$ in the Hamilton path P.
- $v \notin S$ and $|S| = deg_G(u)$.
- **Therefore**, at least one vertex say v_k of S is adjacent to v_n .

- By the previous claim, there exists v_k such that $e_1 = uv_{k+1}, e_2 = v_k v \in E(G)$.
- 2 Then, from the Hamilton path

$$P = u = v_1 - v - 2 - \cdots - v_k - v_{k+1} - \cdots - v_n = v$$

, we construct a Hamilton Cycle.

3 $C = u = v_1 - v_2 - \dots - v_k - v = v_n - v_{n-1} - \dots - v_{k+1} - v_1 = u$ is a Hamilton cycle in G.

- I By the previous claim, there exists v_k such that $e_1 = uv_{k+1}, e_2 = v_k v \in E(G)$.
- 2 Then, from the Hamilton path

$$P = u = v_1 - v - 2 - \cdots - v_k - v_{k+1} - \cdots - v_n = v$$

- , we construct a Hamilton Cycle.
- 3 $C = u = v_1 v_2 \dots v_k v = v_n v_{n-1} \dots v_{k+1} v_1 = u$ is a Hamilton cycle in G.

- I By the previous claim, there exists v_k such that $e_1 = uv_{k+1}, e_2 = v_k v \in E(G)$.
- 2 Then, from the Hamilton path

$$P = u = v_1 - v - 2 - \cdots - v_k - v_{k+1} - \cdots - v_n = v$$

, we construct a Hamilton Cycle.

 $C = u = v_1 - v_2 - \cdots - v_k - v = v_n - v_{n-1} - \cdots - v_{k+1} - v_1 = u$ is a Hamilton cycle in G.

Closure of a graph

Definition

For a graph G, define inductively a sequence G_0, G_1, \dots, G_k of graphs such that

$$G_0 = G$$
 and $G_{i+1} = G_i + uv$

where u and v are any vertices such that

- 1 $uv \notin G_i$ and
- **2** $deg_{G_i}(u) + deg_{G_i}(v) \ge n$.

- This procedure stops when no new edges can be added to G_k for some k, that is, in G_k , for all $u, v \in G$ either $uv \in G_k$ or $deg_{G_k}(u) + deg_{G_k}(v) < n$.
- **2** The result of this procedure is the closure of G, and it is denoted by $cl(G)(=G_k)$.
- In each step of the construction of cl(G) there are usually alternatives which edge uv is to be added to the graph, and therefore the above procedure is not deterministic.
- However, the final result cl(G) is independent of the choices.
- 5 Example

- This procedure stops when no new edges can be added to G_k for some k, that is, in G_k , for all $u, v \in G$ either $uv \in G_k$ or $deg_{G_k}(u) + deg_{G_k}(v) < n$.
- 2 The result of this procedure is the closure of G, and it is denoted by $cl(G)(=G_k)$.
- In each step of the construction of cl(G) there are usually alternatives which edge uv is to be added to the graph, and therefore the above procedure is not deterministic.
- However, the final result cl(G) is independent of the choices.
- 5 Example

- This procedure stops when no new edges can be added to G_k for some k, that is, in G_k , for all $u, v \in G$ either $uv \in G_k$ or $deg_{G_k}(u) + deg_{G_k}(v) < n$.
- 2 The result of this procedure is the closure of G, and it is denoted by $cl(G)(=G_k)$.
- In each step of the construction of cl(G) there are usually alternatives which edge uv is to be added to the graph, and therefore the above procedure is not deterministic.
- However, the final result cl(G) is independent of the choices.
- 5 Example

- This procedure stops when no new edges can be added to G_k for some k, that is, in G_k , for all $u, v \in G$ either $uv \in G_k$ or $deg_{G_k}(u) + deg_{G_k}(v) < n$.
- 2 The result of this procedure is the closure of G, and it is denoted by $cl(G)(=G_k)$.
- In each step of the construction of cl(G) there are usually alternatives which edge uv is to be added to the graph, and therefore the above procedure is not deterministic.
- 4 However, the final result cl(G) is independent of the choices.
- 5 Example

- This procedure stops when no new edges can be added to G_k for some k, that is, in G_k , for all $u, v \in G$ either $uv \in G_k$ or $deg_{G_k}(u) + deg_{G_k}(v) < n$.
- **2** The result of this procedure is the closure of G, and it is denoted by $cl(G)(=G_k)$.
- In each step of the construction of cl(G) there are usually alternatives which edge uv is to be added to the graph, and therefore the above procedure is not deterministic.
- 4 However, the final result cl(G) is independent of the choices.
- 5 Example

Well Defined

Lemma

The closure cl(G) is uniquely defined for all graphs G of order $n \ge 3$.

Proof.

Suppose there are two ways to close *G*, say

$$H = G + \{e_1, \dots, e_r\}$$
 and $H' = G + \{f_1, \dots, f_s\}$

where the edges are added in the given orders.

We show that

$$\{e_1,\cdots,e_r\}=\{f_1,\cdots,f_s\}$$

Well Defined

Lemma

The closure cl(G) is uniquely defined for all graphs G of order $n \ge 3$.

Proof.

Suppose there are two ways to close *G*, say

$$H = G + \{e_1, \dots, e_r\}$$
 and $H' = G + \{f_1, \dots, f_s\}$

where the edges are added in the given orders.

We show that

$$\{e_1,\cdots,e_r\}=\{f_1,\cdots,f_s\}$$

Well Defined

Lemma

The closure cl(G) is uniquely defined for all graphs G of order $n \ge 3$.

Proof.

Suppose there are two ways to close *G*, say

$$H = G + \{e_1, \dots, e_r\}$$
 and $H' = G + \{f_1, \dots, f_s\}$

where the edges are added in the given orders.

We show that

$$\{e_1,\cdots,e_r\}=\{f_1,\cdots,f_s\}$$

- Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- 13 Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- Now, $e_k \notin H_{k-1}$ we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \ge n,$$

- 5 $H_{k-1} \subseteq H'$ (Subgraph).
- $deg_{H'}(u) + deg_{H'}(v) > n$, which means that e = uv must
- 7 Therefore $H \subset H'$.
- Similarly we can show that $H \subset H'$.
- 9 Hence, H = H'.

- **1** Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- If Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- ✓ Now, $e_k \notin H_{k-1}$ we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \ge n,$$

- 5 $H_{k-1} \subseteq H'$ (Subgraph).
- **6** $deg_{H'}(u) + deg_{H'}(v) \ge n$, which means that e = uv must be in H'; a contradiction.
- 7 Therefore $H \subseteq H'$.
- Similarly we can show that $H \subseteq H'$.
- 9 Hence, H = H'.

- **1** Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- **3** Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- 4 Now, $e_k \notin H_{k-1}$ we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \ge n,$$

- $H_{k-1} ⊆ H'$ (Subgraph).
- **6** $deg_{H'}(u) + deg_{H'}(v) ≥ n$, which means that e = uv must be in H'; a contradiction.
- 7 Therefore $H \subseteq H'$
- Similarly we can show that $H \subseteq H'$.
- 9 Hence, H = H'.

- **1** Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- **3** Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- ✓ Now, $e_k \notin H_{k-1}$ we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \geq n,$$

- $H_{k-1} ⊆ H'$ (Subgraph).
- **6** $deg_{H'}(u) + deg_{H'}(v) ≥ n$, which means that e = uv must be in H'; a contradiction.
- 7 Therefore $H \subseteq H'$
- Similarly we can show that $H \subseteq H'$.
- 9 Hence, H = H'.

- **I** Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- **13** Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- **4** Now, e_k \notin H_{k-1} we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \geq n,$$

- **5** H_{k-1} ⊆ H' (Subgraph).
- **6** $deg_{H'}(u) + deg_{H'}(v) \ge n$, which means that e = uv must be in H'; a contradiction.
- 7 Therefore $H \subseteq H'$
- Similarly we can show that $H \subseteq H'$.
- 9 Hence, H = H'.

- **1** Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- **13** Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- **4** Now, $e_k \notin H_{k-1}$ we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \geq n,$$

- **6** $deg_{H'}(u) + deg_{H'}(v) ≥ n$, which means that e = uv must be in H'; a contradiction.
- 7 Therefore $H \subseteq H'$
- Similarly we can show that $H \subseteq H'$.
- 9 Hence, H = H'.

- **1** Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- **13** Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- **4** Now, $e_k \notin H_{k-1}$ we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \geq n,$$

- **6** $deg_{H'}(u) + deg_{H'}(v) ≥ n$, which means that e = uv must be in H'; a contradiction.
- **7** Therefore $H \subseteq H'$.
- Similarly we can show that $H \subseteq H'$.
- 9 Hence, H = H'.

- I Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- **3** Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- ✓ Now, $e_k \notin H_{k-1}$ we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \geq n,$$

- **6** $deg_{H'}(u) + deg_{H'}(v) ≥ n$, which means that e = uv must be in H'; a contradiction.
- **7** Therefore $H \subseteq H'$.
- Similarly we can show that $H \subseteq H'$.
- 9 Hence, H = H'.

- **1** Let $H_i = G + \{e_1, \dots, e_i\}$ and $H'_i = G + \{f_1, \dots, f_i\}$.
- 2 For the initial values, we have $G = H_0 = H'_0$.
- **3** Let $e_k = uv \in H_k$ be the first edge such that $e_k \notin H'$
- ✓ Now, $e_k \notin H_{k-1}$ we have

$$deg_{H_{k-1}}(u) + deg_{H_{k-1}}(v) \geq n,$$

- $H_{k-1} \subseteq H'$ (Subgraph).
- **6** $deg_{H'}(u) + deg_{H'}(v) ≥ n$, which means that e = uv must be in H'; a contradiction.
- **7** Therefore $H \subseteq H'$.
- 8 Similarly we can show that $H \subseteq H'$.
- 9 Hence, H = H'.

Theorem

Theorem

Let G be a graph such that $|V(G)| = n \ge 3$.

- G is Hamiltonian if and only if its closure cl(G) is Hamiltonian.
- 2 If cl(G) is a complete graph, then G is Hamiltonian.

Proof.

Exercise.

