## 1 Nonsmooth Convex Optimization

We are interested in unconstrained minimization of convex, possibly nondifferentiable,  $f: \mathbb{R}^n \to \mathbb{R}$ 

$$minimize_{x \in \mathbb{R}^n} f(x)$$

given first order oracle

## 1.1 Subgradient Method

Given bounded subgradient  $||g^k|| \leq G$  and bounded domain  $||x^0 - x^*|| \leq R$ , subgradient method is in a sense optimal as it achieves the lower bound  $\mathcal{O}(\frac{1}{\epsilon^2})$  for this problem class. Subgradient method iteratively updates as follows

$$x^{k+1} = x^k - \alpha_k q^k$$

where  $g^k \in \partial f(x^k)$  is any subgradient of f. First order optimality condition is now  $0 \in \partial f(x^*)$ , which is impossible to test for nontrivial function f. Therefore, using  $||g^k|| \le \epsilon$  is not informative and subgradient method does not really have a stopping criterion.

## 1.1.1 Solving Support Vector Machine w/ Subgradient Method

We are given data  $\mathcal{D} = \{(x_i, y_i) \mid x_i \in \mathbb{R}^n \ y_i \in \{\pm 1\}\}$ , support vector machine is supervised learning model that tries to find  $w \in \mathbb{R}^n$  and  $b \in \mathbb{R}$  such that the empirical risk and regularizer on w is minimized

minimize<sub>w,b</sub> 
$$\frac{1}{2} \|w\|_2^2 + \lambda \sum_{i=1}^m \max \left[0, 1 - y_i(w^T x_i + b)\right]$$
 (:=  $f(w, b)$ )

Support vector machines can be solved using subgradient method. We first find a subgradient of f

$$g_w^k = w^k - \lambda \sum_{i \in [m]: y_i(w^T x_i + b) < 1} y_i x_i$$
$$g_b = -\lambda \sum_{i \in [m]: y_i(w^T x_i + b) < 1} y_i$$

where we haved picked  $0 \in \partial(\max 0, 1 - y_i(w^T x_i + b))$  when  $y_i(w^T x_i + b) = 1$ , the only case where the max term is non-differentiable. When tested on the Iris dataset, subgradient method worked!

