

Classes de complexidade				
Classe N	otação	Exemplo		
constante	O(1)	Retornar o primeiro elemento de um v	etoi	
logaritmica	O(log n)	Busca binária em vetor ordenado		
linear	O(n)	Busca linear em um vetor		
N log N	O(nlogn)	Ordenação por combinação		
quadrático	$O(n^2)$	Ordenação por seleção		
cúbico	$O(n^3)$	Algoritmos convencionais para		
		multiplicação de vetores		
exponencial	$O(2^n)$	Torre de Hanói		
$O(1) < O(\log n) < O(n) < O(n * \log n) < O(n^2) < O(n^3) < O(2^n)$				
	(© André de Carvalho - ICMC/USP	5	

Casos melhor, pior e médio

Para entradas de todo tamanho:

Pior caso
Caso médio
Melhor caso

Melhor caso

André de Carvalho - ICMC/USP

10

9 10

Notação assintótica

- Regra simples: remover termos de ordem mais baixa e constantes
 - 50*n l*og*n é* O(*n* log *n*)
 - 7*n* 3 é O(*n*)
 - $-8n^2 \log n + 5n^2 + n \in O(n^2 \log n)$

© André de Carvalho - ICMC/USP

.

13 14

Não existe apenas Big O

- Big O
 - Define limite superior (upper bound) rígido
- Little o
- Define limite superior (upper bound) flexível
- Big Ω (ômega)
- Little ω (ômega)
- Big Θ (theta)
- Little θ (theta)

© André de Carvalho - ICMC/USP

Não existe apenas Big O

- Vale para O,o,Ω,ω,Θ,θ
- Definido para funções de números naturais
 - E.g.: $f(n) = O(n^2)$
 - Descreve como f(n) cresce em comparação com n²
- Define um conjunto de funções
 - Usado para comparar limite(s) de 2 funções
- Descreve diferentes relações de taxa de crescimento entre
 - Uma função definidora e um conjunto definido de funções

© André de Carvalho - ICMC/USP

15

16

Além do Big O

- Big-Omega: limite inferior (lower bound)
 - Dadas duas funções f(n) e g(n), dizemos que f(n) é Ω (g(n)) se g(n) é O(f(n))
 - Existe uma constante real c > 0 e um inteiro constante $n_0 \ge 1$, tal que $f(n) \ge c.g(n)$ for $n \ge n_0$
 - Tradução: quando o tamanho dos dados n é grande o suficiente, haverá uma função c.g(n) que é menor do que f(n)

© André de Carvalho - ICMC/USP

Além de Big O

- Definição de Big-Omega permite afirmar assintoticamente que:
 - Uma função é maior ou igual que outra até um fator constante
 - A maior função que é um limite inferior é definida por g(n)

Verdade	Melhor	
$3n + 3 = \Omega(1)$	Ω (n)	
$n^2 + n^3 = \Omega(n)$	Ω (n ³)	

© André de Carvalho - ICMC/USP

18

21 22

Complexidade computacional
 Ordenação com recursão
 Ordenação por seleção não é eficiente para vetores grandes
 Complexidade: O(N²)
 O mesmo vale para outros algoritmos de ordenação que processam os elementos em ordem linear
 Mas sabemos que: N² > (N/2)² + (N/2)²
 Solução: aplicar estratégias de divisão e conquista

27 28

Ordenação por combinação

- Nome original: merge sort
- Algoritmo
 - Checa se a lista está vazia ou tem apenas um elemento (caso simples da recursão)
 - Senão, divide a lista ao meio em duas sublistas
 - Ordena cada sub-lista recursivamente
 - Combina os dois sub-listas de volta à lista original

© André de Carvalho - ICMC/USP

Ordenação por combinação

- Caso simples
 - Lista com 0 ou 1 elementos
- Parte recursiva
 - Divide lista ao meio em duas sub-listas
 - Re-arranja os elementos de cada sub-lista
 - Combina as sub-listas

© André de Carvalho - ICMC/USP

31

32

33 34

39 40

Exemplo de Indução

Provar usando indução matemática que:

$$n + n-1 + n-2 + ... + 3 + 2 + 1 = \frac{n(n+1)}{2}$$

© André de Carvalho - ICMC/USP

43 44

Indução matemática

 Caso indutivo: assumir que igualdade é verdadeira para n

$$n+1+(n+n-1+...+1) = n+1+\frac{n(n+1)}{2}$$

= $\frac{n^2+3n+2}{2}$

 $=\frac{(n+1)((n+1)+1)}{2}$

1 - 1x(1+1)/2 = 1

© André de Carvalho - ICMC/USP

Conclusão

- Análise de algoritmos
- Medidas de complexidade
- Algoritmos de Ordenação
 - Seleção, Combinação e Inserção
 - Complexidade

© André de Carvalho - ICMC/USP

45

46

Classes de complexidade

- Quanto maior o crescimento do tempo, mais complexo é o algoritmo
- Algoritmos cujo tempo independe do número de exemplos tem complexidade constante
 - Algoritmo constante tem complexidade O(1)
- Quando o tempo aumenta linearmente com o número de exemplos, a complexidade é linear
 - Algoritmos linear tem complexidade O(n)
 - Quando o tempo aumenta mais rapidamente, complexidade é não linear

© André de Carvalho - ICMC/USP

-

Classes de complexidade

- Algoritmos polinomiais
 - São executados em um tempo n^k para alguma constante K
 - Algoritmos de complexidade constante, linear, quadrática, cúbica, etc.
- Os piores algoritmos são os de complexidade exponencial
 - Ex.: complexidade O(2ⁿ)

André de Carvalho - ICMC/USP

lho - ICMC/LISP

47

Complexidade de espaço

- O espaço necessário por um programa é a soma de:
 - Requisitos de espaço fixo que não dependem do tamanho de entradas ou saídas
 - Requisitos de espaço variável que dependem do número, tamanho e valores de entradas e caídas
 - Nem todo o espaço necessário pode ser usado a qualquer momento

© André de Carvalho - ICMC/USP

50

