Is Plausibility All You Need?

Modeling Semantic Plausibility and Beyond

Chih-Yi Lin, Quy Nguyen & Wen Wen

Overview

- 1. Machine Learning Approaches
 - o Random Forest
 - Decision Tree
- 2. BERT-based models
 - RoBERTa Fine-tuning vs. Prompt-learning
- 3. Generative approach with LLMs
 - Fine-tuning Llama 2 with QLoRa
- 4. Model Comparison
- 5. Conclusion

Machine Learning Approaches

Methods

- Random Forest + Sentence embedding (+ Hyper parameters tuning)
- Decision Tree + Bag of words (+ Hyper parameters tuning)

PAP

ADEPT

[modifier, noun]

PEP+Landmark Annotations

Experimental Results

	P/	\ P	PI	PEP		PEP+ Landmark		ADEPT	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	
RF	0.722	0.555	0.629	0.629	0.746	0.746	0.694	0.614	
RF+ Tuning	0.713	0.510	0.557	0.557	0.759	0.759	0.706	0.595	
DT	0.708	0.497	0.577	0.578	0.779	0.778	0.703	0.547	
DT+ Tuning	0.708	0.497	0.681	0.492	0.769	0.769	0.700	0.582	

Average (

	Table 2: The 2nd Time										
	P	PAP		PEP		PEP+ Landmark		ADEPT			
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC			
RF	0.685	0.514	0.573	0.573	0.746	0.746	0.694	0.601			
RF+ Tuning	0.727	0.529	0.593	0.593	0.759	0.759	0.702	0.596			
DT	0.708	0.497	0.577	0.578	0.779	0.778	0.703	0.547			
DT+ Tuning	0.713	0.500	0.681	0.492	0.762	0.762	0.700	0.582			

•	
- 1	_
	_
,	

		Ta	ble 3: T	he 3rd	Гime			
	PAP		PEP		PEP+ Landmark		ADEPT	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC
RF	0.699	0.580	0.603	0.644	0.746	0.746	0.690	0.622
RF+ Tuning	0.699	0.634	0.619	0.672	0.759	0.759	0.710	0.577
DT	0.708	0.497	0.577	0.578	0.765	0.765	0.703	0.547
DT+ Tuning	0.704	0.494	0.676	0.488	0.772	0.772	0.700	0.582

	PAP		PEP		PEP+ Landmark		\mathbf{ADEPT}	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC
$\overline{ m RF}$	0.702	0.550	0.602	0.615	0.746	0.746	0.693	0.612
RF+ Tuning	0.713	0.558	0.590	0.607	0.759	0.759	0.706	0.589
DT	0.708	0.497	0.577	0.578	0.774	0.774	0.703	0.547
DT+ Tuning	0.708	0.497	0.679	0.491	0.768	0.768	0.700	0.582

Experimental Results

Average s	score
-----------	-------

	PAP		PI	PEP		PEP+ Landmark		ADEPT	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	
RF	0.702	0.550	0.602	0.615	0.746	0.746	0.693	0.612	
RF+ Tuning	0.713	0.558	0.590	0.607	0.759	0.759	0.706	0.589	
DT	0.708	0.497	0.577	0.578	0.774	0.774	0.703	0.547	
DT+ Tuning	0.708	0.497	0.679	0.491	0.768	0.768	0.700	0.582	

- **PEP: Greatly improved** after combining landmark annotation
- **Generally, slightly improved** after tuning hyper parameters
 - **But**, there is a case that after tuning, the score actually **dropped...**
- High Acc score but low Auc score.

Result analysis

- But, there is a case that after tuning, the score actually **dropped...**

2		P	EP Perf	ormance	e				
	PEI	PEP(1)		PEP(2)		PEP(3)		PEP(Average)	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	
RF	0.629	0.629	0.573	0.573	0.603	0.644	0.602	0.615	
RF+ Tuning	0.557	0.557	0.593	0.593	0.619	0.672	0.590	0.607	
DT	0.577	0.578	0.577	0.578	0.577	0.578	0.577	0.578	
DT+ Tuning	0.681	0.492	0.681	0.492	0.676	0.488	0.679	0.491	

A substantial decrease outweighed two minor upticks.

- → Increase the number of runs and calculate the average.
- → Exclude the highest and lowest values, then calculate the average.

Result analysis

- PAP: High Acc score but low Auc score.

ROC curve of PAP data in RF model. Accuracy: 0.713 AUC: 0.587

An imbalanced dataset appears to be more plausible.

The model might be biased towards predicting the majority class, leading to a high accuracy.

→ Adjust class weights during model training to give more importance to the minority class.

Roberta Fine-Tuning vs. Prompt-Learning: ADEPT

Fine-Tuning vs Prompt-Learning

- **Fine-Tuning:** adapt a pre-trained language model (PLM) on a specific task/dataset
- **Prompt-Learning**: provides PLM with additional context (e.g., instructions, examples) to guide its responses. Objectives:
 - **Reduce required data**: Enable models to adapt on another task with only a few examples (**few-shot learning**)
 - **More Parameter-efficient training**: only train the prompt parameters and keep the PLM frozen
- **RoBERTa-Base**: 125M parameters

Elements in Prompt-Learning (OpenPrompt API)

- **Template**: convert an input text into the instruction
 - Manual: Compared with the statement {"placeholder":"text_a"}, does
 {"placeholder":"text_b"} become more plausible or less plausible?
 {"mask"}.
 - Soft: {"placeholder":"text_a"} {"soft"} {"soft"} {"soft"}

 {"placeholder":"text_b"} {"soft"} {"soft"} {"soft"}

 {"soft"} {"soft"}.
 - {"soft"}: trainable
- **Verbalizer**: maps the original class labels to the words that we consider are valid predictions
 - o Manual: ['impossible'] -> ['impossible', 'no', 'incorrect']
 - Soft

Experimental Design of Prompt-Learning (ADEPT)

- **1. Zero-shot Inference**: Only tune the prompt parameters (soft tokens and verbalizer) while keep the PLM frozen
 - Preliminary result of four settings:

manual template + manual verbalizer

manual template + soft verbalizer

soft template + manual verbalizer

soft template + soft verbalizer

Trainable soft template and soft verbalizer are more **efficient** than manually defined ones

- 2. Few-shot Prompt Learning (10 epochs): tunes the prompt parameters and the PLM with 16 samples for each class
- **3. Full-data Prompt Learning** (3 epochs)

Experimental Results: Prompt-Learning vs. Fine-Tuning (ADEPT, 5 labels)

	Accuracy	AUC	Training Time
Zero-Shot Prompt Inference	0.1203		
Few-Shot Prompt-Learning	0.5676 (+0.4473)	0.6910	6 mins for 10 epochs
Full-Data Prompt-Learning	0.7066 (+0.139)	0.7059 (+0.0149)	36 mins for 3 epochs
Full-Data Fine-Tuning	*0.7295 (+0.0229)	0.7243 (+0.0184)	36 mins for 3 epochs

• Prompt-Learning: 👍 Full-data > 🤨 Few-shot > 😱 Zero-shot

- **Few-shot**: drastic improvement in accuracy compare to zero-shot, much faster to train than full-data » demonstrates the potential of data-efficient prompt-learning
- **Full-data**: best performance, but longer to train

• Fine-Tuning > Prompt-Learning

• *Fine-Tuning result outperforms the original paper (0.708)

Error Analysis

Most common error in both models: misclassify other examples as equally likely (class 2)
 align with label distribution (60%+ of examples belong to class 2 in the dataset)

Error Analysis

• Prompt-learning model **fails** to predict any examples from the classes **more likely** (3) and **necessarily true** (4) » least classes in the dataset (7%, 1% respectively)

Error Analysis

- Fine-Tuning model
 - o performs **better** on the classes **impossible** (o), **less likely** (1) and **more likely** (3)
 - also performs badly on **necessarily true** (4)

Large Language Model: PAP & PEP

Llama 2 TL;DR

- Open-source LLMs from Meta
- From 7 billion to 70 billion parameters
- Llama-2-Chat: optimized for dialogue
- Can improve the performance by fine-tuning it on a high-quality <u>conversational</u> dataset
- Google Colab Notebook
- 16 GB of VRAM: full fine-tuning is not possible, use parameter-efficient fine-tuning techniques <u>QLoRA</u>

Picture generated by DALL-E 3

Steps

- 1. Transform PAP and an augmented dataset called PAP-explainer
 - a. Choose a typical example of each abstractness combination (e.g. 'c-c-c') as seeding examples
 - b. Using Llama 2 to **generate explainer** for each combination
 - (1) cat eats strawberries: **Plausible** because strawberries are not toxic to cats and are generally considered safe. However, they are not a necessary part of a cat's diet.
 - (o) grape drinks church: *Implausible* because it is a nonsensical event.
 - c. **Generate explanation** for each training triplets
 - i. Use 2 seeding example's explainers as examples in **few-shot** prompting
 - ii. Use Llama 2 to **generate explanation** for PEP-**train** » PAP-explainer training set
- 2. **Fine-tuning** using QLoRA
 - a. Quantize Llama 2 to 4 bits and freezes the parameters
 - b. A small number of trainable Low-Rank Adapter layers. Only adapter parameters are updated during fine-tuning

Pictures generated by DALL-E 3

Experiment 1: Fine-tuning using PAP

Transform the dataset to fit the <u>training format</u> of the generative model, then <u>map</u> responses to labels

event	label	prompt/response	predict
group releases album	1	Human: Categorize the following events as plausible or implausible. You should only say either 'Plausible' or 'Implausible'. Event: group releases album Assistant: Plausible!!!	Plausible » 1
rich unfold interest	0	Human: Categorize the following events as plausible or implausible. You should only say either 'Plausible' or 'Implausible'. Event: rich unfold interest Assistant: Implausible X	Implausible » o

Experiment 2: Fine-tuning using PAP_Explainer

event	label	prompt/response	predict
group releases album	1	Human: Categorize the following events as plausible or implausible. Event: group releases album Assistant: Plausible because it is a common and typical event. Many groups and bands release albums all the time	Plausible » 1
rich unfold interest	0	Human: Categorize the following events as plausible or implausible. Event: rich unfold interest Assistant: Implausible because rich people may have a wide range of interests, but it is unlikely that their interests would "unfold" in the sense of becoming apparent or noticeable to others.	Implausible → o

Experiment 2: Error Analysis

event	label (anno.)	original label (corp.)	explainer
gravestone manages butterfly	1	pseudo-implau sible	Implausible because gravestones are for dead people and butterflies are living creatures. It is not possible for a gravestone to manage a butterfly. ✓
motorway forbids distribution	1	pseudo-implau sible	Implausible because motorways are not capable of forbidding anything, and they do not have the authority to enforce such a rule. Additionally, it would not be feasible or practical to distribute anything on a motorway.

[✓] Many '*Plausible*' triples are originally labelled as '*Implausible*' (*i.e. not attested in corpus*).

Experiment 2: Error Analysis

event	label (anno.)	original label (corp.)	explainer
law needs certificate	1	plausible	Implausible because laws do not typically need certificates. Laws are rules and regulations that are enforced by government agencies and are not typically associated with certificates. It is unlikely that a law would need a certificate.!?

^{!?} Wrong predictions, but reasonable reasoning.

Performance Analysis

	precision	recall	accuracy	auc
PAP	0.674	0.250	0.379	0.475
PAP-explainer	0.755	0.621	0.586	0.560
PEP (cross-domain test)	0.583	0.621	0.590	0.590

- High precision but low recall (most plausible triplets are predicted as implausible)
- Mapping function: Only when the first token of response is "Plausible" >>> predict Positive
- Exact match: event if generate <a>Plaus, <a>Plaus, <a>Plaus, <a>Ppredict <a>Negative class
- PAP-explainer shows **significant improvement** (+0.114 AUC compared PAP test)
- Cross-domain setting: Fine-tuning with PAP and **test on PEP** gives AUC of **0.590**

Model Comparison

Model Comparison

	PE	ĒΡ	PAP		ADEPT	
	Acc.	AUC	Acc.	AUC	Acc.	AUC
RF+SE	0.746	0.746	0.702	0.550	0.693	0.612
RF+SE-t	0.759	0.759	0.713	0.558	0.706	0.589
DT+BOW	0.774	0.774	0.708	0.497	0.703	0.547
DT+BOW-t	0.768	0.768	0.708	0.497	0.700	0.582
RoBERTa-Ft	0.798	0.865	0.724	0.538/ <u>0.560*</u>	0.7295	0.7243
RoBERTa-Pt	_	_	_	_	0.7066	0.7059
Llama-Ft	0.590	0.590	0.557	0.560	_	_

^{*}Note: distilled BERT gives significantly better AUC (0.560 vs 0.538) for PAP

Model Comparison

- PEP
 - RoBERTa fine-tuning >> ML > Llama cross domain

 - Llama performs reasonably well in cross domain setting
- ADEPT:
 - RoBERTa fine-tuning > RoBERTa prompt-tuning > ML
 - RoBERTa Prompt-Tuning Optimization
 - PROBERTa-base (125M) may be too small for tasks demanding a nuanced comprehension of context
 - Search for optimal hyperparameters and prompt templates
 - Soft template and soft verbalizer are lack of interpretability

- PAP
 - Llama PAP-explainer ~ ML ~ RoBERTa fine-tuning
 - modeling plausibility with reasonable explanations

Conclusion

- 1. Models may be biased towards predicting the **majority class**.
- 2. In general, **fine-tuning** a PLM outperforms the ML approach.
- 3. However, a Random Forest with hyperparameter tuning still performs reasonably well.

Reference

- RandomForestClassifier
- GridSearchCV
- Classification metrics
- <u>DecisionTreeClassifier</u>
- RobertaForSequenceClassification
- AdamW
- <u>OpenPrompt</u> API
- <u>Llama 2</u> is here get it on Hugging Face

Contribution of each member

Model	PEP	PAP	ADEPT
Machine Learning	Wen	Quy, Wen	Wen
RoBERTa Fine-tuning	Wen, Chih-Yi	Quy	Chih-Yi
RoBERTa Prompting	-	-	Chih-Yi
DistilledBERT Fine-tuning	-	Quy	_
Llama Fine-tuning	Quy	Quy	_