# Phase transitions in Generalized Linear Models

Cargèse summer school

August 22, 2018

#### Léo Miolane

with Jean Barbier, Florent Krzakala, Nicolas Macris & Lenka Zdeborová











### Generalized Linear Models

#### Definition

#### Statistical model

▶ One observes for  $1 \le \mu \le m$ 

$$Y_{\mu} \sim P_{\text{out}} \left( \cdot \mid \langle \mathbf{\Phi}_{\mu}, \mathbf{X}^* \rangle \right)$$

- ▶  $\mathbf{X}^* \in \mathbb{R}^n$ : signal vector of dimension n.
- $lackbox{\Phi}_1,\ldots,lackbox{\Phi}_m\in\mathbb{R}^n$ : measurement vectors.
- $ightharpoonup P_{\text{out}}$ : transition kernel.

**Goal:** recover  $X^*$  from Y (and  $\Phi$ ).

### Generalized Linear Models

#### Definition

#### Statistical model

▶ One observes for  $1 \le \mu \le m$ 

$$Y_{\mu} \sim P_{\text{out}} \left( \cdot \mid \langle \mathbf{\Phi}_{\mu}, \mathbf{X}^* \rangle \right)$$

- ▶  $\mathbf{X}^* \in \mathbb{R}^n$ : signal vector of dimension n.
- $lackbox{\Phi}_1,\ldots,lackbox{\Phi}_m\in\mathbb{R}^n$ : measurement vectors.
- $ightharpoonup P_{\text{out}}$ : transition kernel.

# **Goal:** recover $X^*$ from Y (and $\Phi$ ).

- ▶ When is it information-theoretically possible?
- ► When is it computationally tractable?

# Examples

#### Some interesting particular cases

Linear model:

$$\mathbf{Y} = \mathbf{\Phi} \mathbf{X}^*$$

► Phase retrieval:

$$\mathbf{Y}=\left|\mathbf{\Phi}\mathbf{X}^{*}\right|$$

► 1-bit CS ("Planted" perceptron):

$$\mathbf{Y} = \mathsf{sign} ig( \mathbf{\Phi} \mathbf{X}^* ig)$$

# **Examples**

#### Some interesting particular cases

► Linear model:

$$\mathbf{Y} = \mathbf{\Phi} \mathbf{X}^* + \mathsf{Noise}$$

Phase retrieval:

$$\mathbf{Y} = \left| \mathbf{\Phi} \mathbf{X}^* \right| + \mathsf{Noise}$$

► 1-bit CS ("Planted" perceptron):

$$\mathbf{Y} = \mathsf{sign} \big( \mathbf{\Phi} \mathbf{X}^* + \mathsf{Noise} \big)$$

# **Examples**

### Some interesting particular cases

► Linear model:

$$Y = \Phi X^* + Noise$$

► 1-bit CS ("Planted" perceptron):

▶ Phase retrieval:

$$\mathbf{Y} = \mathsf{sign} ig( \mathbf{\Phi} \mathbf{X}^* + \mathsf{Noise} ig)$$

$$\mathbf{Y} = \left| \mathbf{\Phi} \mathbf{X}^* \right| + \mathsf{Noise}$$

► Logistic model:

$$Y_{\mu} = \begin{cases} +1 & \text{with probability} \quad \frac{1}{1 + \exp(-\lambda \langle \mathbf{\Phi}_{\mu}, \mathbf{X}^{*} \rangle)} \\ \\ -1 & \text{with probability} \quad \frac{1}{1 + \exp(\lambda \langle \mathbf{\Phi}_{\mu}, \mathbf{X}^{*} \rangle)} \end{cases}$$

$$\mathbf{Y} \sim P_{\mathrm{out}} \Big( \cdot \ \Big| \mathbf{\Phi} \mathbf{X}^* \Big)$$

- $\qquad \text{Asymptotic regime: } n \to \infty, \quad m/n \to \alpha > 0.$
- $\mathbf{X}^* = (X_1^*, \dots, X_n^*) \overset{\text{i.i.d.}}{\sim} P_0, \qquad \mathbb{E}_{P_0} X^2 = \rho.$

$$\mathbf{Y} \sim P_{\mathrm{out}} \Big( \cdot \ \Big| \ \mathbf{\Phi} \mathbf{X}^* \Big)$$

- ► Asymptotic regime:  $n \to \infty$ ,  $m/n \to \alpha > 0$ .

- $ightharpoonup \mathbb{E}\big[|Y_{\mu}|^{2+\epsilon}\big]$  remains bounded, for some  $\epsilon>0$ .

$$\mathbf{Y} \sim P_{\mathrm{out}} \Big( \cdot \ \Big| \ \mathbf{\Phi} \mathbf{X}^* \Big)$$

- ► Asymptotic regime:  $n \to \infty$ ,  $m/n \to \alpha > 0$ .
- $\mathbf{X}^* = (X_1^*, \dots, X_n^*) \overset{\text{i.i.d.}}{\sim} P_0, \qquad \mathbb{E}_{P_0} X^2 = \rho.$
- $ightharpoonup \mathbb{E}[|Y_{\mu}|^{2+\epsilon}]$  remains bounded, for some  $\epsilon > 0$ .
- ▶  $x \in \mathbb{R} \mapsto P_{\text{out}}(\cdot \mid x)$  is continuous almost everywhere.

$$\mathbf{Y} \sim P_{\mathrm{out}} \Big( \cdot \ \Big| \ \mathbf{\Phi} \mathbf{X}^* \Big)$$

- ► Asymptotic regime:  $n \to \infty$ ,  $m/n \to \alpha > 0$ .

- $ightharpoonup \mathbb{E} ig[ |Y_{\mu}|^{2+\epsilon} ig]$  remains bounded, for some  $\epsilon > 0$ .
- $ightharpoonup x \in \mathbb{R} \mapsto P_{\mathrm{out}}(\cdot \mid x)$  is continuous almost everywhere.
- ▶  $P_{\mathrm{out}}$  has to be "regularized" by some (small) Gaussian noise:  $\forall x \in \mathbb{R}$ , " $P_{\mathrm{out}}(\cdot \mid x) = \widetilde{P}_{\mathrm{out}}(\cdot \mid x) + \mathcal{N}(0, \sigma^2)$ ", where  $\sigma > 0$ .
- ▶ If  $P_{\text{out}}$  takes values in  $\mathbb{N}$ , no need for regularization ( $\sigma = 0$ ).

### Assumptions

$$\mathbf{Y} \sim P_{\mathrm{out}} \Big( \cdot \ \Big| \ \mathbf{\Phi} \mathbf{X}^* \Big)$$

- Asymptotic regime:  $n \to \infty$ ,  $m/n \to \alpha > 0$ .
- $\mathbf{X}^* = (X_1^*, \dots, X_n^*) \stackrel{\text{i.i.d.}}{\sim} P_0, \qquad \mathbb{E}_{P_0} X^2 = \rho.$
- $\bullet \ \, \left(\Phi_{i,j}\right) \text{ are independent, } \begin{cases} \mathbb{E}\Phi_{i,j} = 0 \\ \mathbb{E}\Phi_{i,j}^2 = 1/n \\ \sup_{i,j} \mathbb{E}|\Phi_{i,j}|^3 \text{ remains bounded.} \end{cases}$
- $ightharpoonup \mathbb{E}[|Y_{\mu}|^{2+\epsilon}]$  remains bounded, for some  $\epsilon > 0$ .
- ▶  $x \in \mathbb{R} \mapsto P_{\text{out}}(\cdot \mid x)$  is continuous almost everywhere.
- ▶  $P_{\mathrm{out}}$  has to be "regularized" by some (small) Gaussian noise:  $\forall x \in \mathbb{R}$ , " $P_{\mathrm{out}}(\cdot \mid x) = \widetilde{P}_{\mathrm{out}}(\cdot \mid x) + \mathcal{N}(0, \sigma^2)$ ", where  $\sigma > 0$ .
- ▶ If  $P_{\text{out}}$  takes values in  $\mathbb{N}$ , no need for regularization ( $\sigma = 0$ ).

The statistician knows the model, i.e.  $P_0$  and  $P_{\mathrm{out}}$ .

# Information-theoretic study

The mutual information

Posterior distribution  $P(\mathbf{X}^*|\mathbf{Y}, \mathbf{\Phi})$ :

$$P(\mathbf{x}|\mathbf{Y}, \mathbf{\Phi}) = \frac{1}{\mathcal{Z}_n} P_0^{\otimes n}(\mathbf{x}) \prod_{\mu=1}^m P_{\text{out}}(Y_\mu | \langle \mathbf{\Phi}_{\mu}, \mathbf{x} \rangle)$$

where  $\mathcal{Z}_n$  is the appropriate normalization.

# Information-theoretic study

#### The mutual information

Posterior distribution  $P(\mathbf{X}^*|\mathbf{Y}, \mathbf{\Phi})$ :

$$P(\mathbf{x}|\mathbf{Y}, \mathbf{\Phi}) = \frac{1}{\mathcal{Z}_n} P_0^{\otimes n}(\mathbf{x}) \prod_{\mu=1}^m P_{\text{out}}(Y_\mu | \langle \mathbf{\Phi}_{\mu}, \mathbf{x} \rangle)$$

where  $\mathcal{Z}_n$  is the appropriate normalization. The free energy is

$$f_n = -\frac{1}{n} \mathbb{E} \log \mathcal{Z}_n = -\frac{1}{n} \mathbb{E} \left[ \log \int_{\mathbf{x} \in \mathbb{R}^n} dP_0^{\otimes n}(\mathbf{x}) \prod_{\mu=1}^m P_{\text{out}}(Y_\mu | \langle \mathbf{\Phi}_{\mu}, \mathbf{x} \rangle) \right]$$

# Information-theoretic study

#### The mutual information

Posterior distribution  $P(\mathbf{X}^*|\mathbf{Y}, \mathbf{\Phi})$ :

$$P(\mathbf{x}|\mathbf{Y}, \mathbf{\Phi}) = \frac{1}{\mathcal{Z}_n} P_0^{\otimes n}(\mathbf{x}) \prod_{\mu=1}^m P_{\text{out}}(Y_\mu | \langle \mathbf{\Phi}_{\mu}, \mathbf{x} \rangle)$$

where  $\mathcal{Z}_n$  is the appropriate normalization. The free energy is

$$f_n = -\frac{1}{n} \mathbb{E} \log \mathcal{Z}_n = -\frac{1}{n} \mathbb{E} \left[ \log \int_{\mathbf{x} \in \mathbb{R}^n} dP_0^{\otimes n}(\mathbf{x}) \prod_{\mu=1}^m P_{\text{out}}(Y_\mu | \langle \mathbf{\Phi}_{\mu}, \mathbf{x} \rangle) \right]$$

Equivalently, we are going to study the mutual information:

$$\frac{1}{n}I(\mathbf{X}^*;\mathbf{Y}|\mathbf{\Phi}) = f_n + \mathsf{Constant} + o_n(1) \,.$$

"Replica Symmetric" formula

#### **Theorem**

$$\frac{1}{n}I(\mathbf{X}^*;\mathbf{Y}|\mathbf{\Phi}) \xrightarrow[n\to\infty]{} \inf_{q\in[0,\rho]} \sup_{r\geq0} \left\{ I_{P_0}(r) + \alpha \mathcal{I}_{P_{\text{out}}}(q) - \frac{r}{2}(\rho-q) \right\}$$

"Replica Symmetric" formula

#### **Theorem**

$$\frac{1}{n} I(\mathbf{X}^*; \mathbf{Y} | \mathbf{\Phi}) \xrightarrow[n \to \infty]{} \inf_{q \in [0, \rho]} \sup_{r \ge 0} \left\{ I_{P_0}(r) + \alpha \mathcal{I}_{P_{\text{out}}}(q) - \frac{r}{2} (\rho - q) \right\}$$

#### **Example:** Linear regression

- $Y = \Phi X^* + \sigma Z.$
- ► "Tanaka formula", proved by Barbier et al., 2016 and Reeves and Pfister, 2016.

"Replica Symmetric" formula

#### Theorem

$$\frac{1}{n} I(\mathbf{X}^*; \mathbf{Y} | \mathbf{\Phi}) \xrightarrow[n \to \infty]{} \inf_{q \in [0, \rho]} \sup_{r \ge 0} \left\{ I_{P_0}(r) + \alpha \, \mathcal{I}_{P_{\text{out}}}(q) - \frac{r}{2} (\rho - q) \right\}$$

### **Example:** 'planted' perceptron.

- $\mathbf{Y} = \operatorname{sign}(\mathbf{\Phi}\mathbf{X}^*), \text{ where } X_1^*, \dots, X_n^* \overset{\text{i.i.d.}}{\sim} \mathcal{U}(+1, -1).$
- $\blacktriangleright \ S_n = \left\{ \mathbf{x} \left| \forall \mu, \, \mathsf{sign}(\mathbf{\Phi}_{\mu} \mathbf{x}) = Y_{\mu} \right. \right\}$
- $\blacktriangleright \frac{1}{n} I(\mathbf{X}^*; \mathbf{Y} | \mathbf{\Phi}) = \log 2 \frac{1}{n} \mathbb{E} \left[ \log \# S_n \right].$
- ► Formula obtained by Gardner and Derrida, 1989.

"Replica Symmetric" formula

#### **Theorem**

$$\frac{1}{n}I(\mathbf{X}^*;\mathbf{Y}|\mathbf{\Phi}) \xrightarrow[n\to\infty]{} \inf_{q\in[0,\rho]} \sup_{r\geq 0} \left\{ I_{P_0}(r) + \alpha \mathcal{I}_{P_{\text{out}}}(q) - \frac{r}{2}(\rho - q) \right\}$$

### **Example:** 'planted' perceptron.

- ►  $\mathbf{Y} = \operatorname{sign}(\mathbf{\Phi}\mathbf{X}^*)$ , where  $X_1^*, \dots, X_n^* \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(+1, -1)$ .

  - $ightharpoonup \frac{1}{n}I(\mathbf{X}^*;\mathbf{Y}|\mathbf{\Phi}) = \log 2 \frac{1}{n}\mathbb{E}[\log \#S_n].$
  - Formula obtained by Gardner and Derrida. 1989.



### Two scalar inference channels

### Explanation of the formula

$$\begin{split} \text{Recall: } \mathbf{Y} &\sim P_{\text{out}}\big(\cdot \mid \mathbf{\Phi} \mathbf{X}^*\big) \\ & \frac{1}{n} I(\mathbf{X}^*; \mathbf{Y} | \mathbf{\Phi}) \xrightarrow[n \to \infty]{} \inf_{q \in [0, \rho]} \sup_{r > 0} \Big\{ I_{P_0}(r) + \alpha \, \mathcal{I}_{P_{\text{out}}}(q) - \frac{r}{2} (\rho - q) \Big\} \end{split}$$

#### Additive Gaussian channel

$$I_{P_0}(r) = I(X^*; \sqrt{r}X^* + Z)$$

where  $X^* \sim P_0$  and  $Z \sim \mathcal{N}(0, 1)$ .

### Two scalar inference channels

### Explanation of the formula

Recall: 
$$\mathbf{Y} \sim P_{\mathrm{out}}(\cdot \mid \mathbf{\Phi} \mathbf{X}^*)$$

$$\frac{1}{n}I(\mathbf{X}^*; \mathbf{Y}|\mathbf{\Phi}) \xrightarrow[n \to \infty]{} \inf_{q \in [0, \rho]} \sup_{r > 0} \left\{ I_{P_0}(r) + \alpha \mathcal{I}_{P_{\text{out}}}(q) - \frac{r}{2}(\rho - q) \right\}$$

#### **Additive Gaussian channel**

$$I_{P_0}(r) = I(X^*; \sqrt{r}X^* + Z)$$

where  $X^* \sim P_0$  and  $Z \sim \mathcal{N}(0,1)$ .

#### Non-linear Gaussian retrieval

$$\mathcal{I}_{P_{\text{out}}}(q) = I(W^*; Y^{(q)}|V)$$

where  $V, W^* \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$  and

$$Y^{(q)} \sim P_{\text{out}} \left( \cdot \mid \sqrt{q}V + \sqrt{\rho - q}W^* \right)$$

# Proof technique

#### The interpolation method

In the spirit of Talagrand's interpolation scheme for the perceptron.



# Proof technique

#### The interpolation method

In the spirit of Talagrand's interpolation scheme for the perceptron.

$$\begin{array}{c|c} & t = 0 & 0 < t < 1 & t = 1 \\ \hline \text{Substituting of States} & \mathbf{Y} \sim P_{\mathrm{out}}(\cdot | \mathbf{\Phi} \mathbf{X}^*) & \begin{cases} \mathbf{Y} \sim P_{\mathrm{out}}(\cdot | \mathbf{S}_t) \\ \mathbf{Y}' = \sqrt{rt} \mathbf{X}^* + \mathbf{Z} \end{cases} & \begin{cases} \mathbf{Y} \sim P_{\mathrm{out}}(\cdot | \sqrt{q} \mathbf{V} + \sqrt{\rho - q} \mathbf{W}^*) \\ \mathbf{Y}' = \sqrt{r} \mathbf{X}^* + \mathbf{Z} \end{cases} \\ \mathbf{S}_t = \sqrt{1 - t} \mathbf{\Phi} \mathbf{X}^* + \sqrt{t} \left( \sqrt{q} \mathbf{V} + \sqrt{\rho - q} \mathbf{W}^* \right) \\ \hline \\ \mathbf{I}_{P_0}(r) + \frac{m}{n} \mathcal{I}_{P_{\mathrm{out}}}(q) \end{aligned}$$

**Goal**: show that 
$$f'_n(t) \simeq \frac{r}{2}(\rho - q)$$
.

## Interpolation method

Derivative of the interpolating mutual information

## Interpolation method

### Derivative of the interpolating mutual information

► We have to show that the overlap

$$\frac{1}{n} \sum_{i=1}^{n} x_i^{(t)} X_i^*$$

concentrates around some value, and then choose  $\it q$  to be equal to this value.

## Interpolation method

### Derivative of the interpolating mutual information

► We have to show that the overlap

$$\frac{1}{n} \sum_{i=1}^{n} x_i^{(t)} X_i^*$$

concentrates around some value, and then choose  $\boldsymbol{q}$  to be equal to this value.

- ▶ In the case of Bayes-optimal inference problems this is true under mild assumptions: Montanari, 2008, Korada and Macris, 2010.
- More details about the techniques in Jean Barbier's talk on Saturday.

# Limit of the overlap

#### Minimal Mean Squared Error

#### Theorem

For almost all  $\alpha>0$ , the infimum of the "Mutual Information formula" admits a unique minimizer  $q_*(\alpha)$  and

$$\left|\frac{1}{n}\sum_{i=1}^n x_i X_i^*\right| \xrightarrow[n\to\infty]{} q_*(\alpha), \quad \text{in probability,}$$

where  $\mathbf{x} \sim P(\mathbf{X}^* = \cdot \mid \mathbf{\Phi}, \mathbf{Y})$  independently of everything else.

#### One deduces:

$$\mathrm{MMSE}_n(\alpha) := \frac{1}{n^2} \mathbb{E} \left\| \mathbf{X}^* \mathbf{X}^{*\intercal} - \mathbb{E} \left[ \mathbf{X}^* \mathbf{X}^{*\intercal} | \mathbf{\Phi}, \mathbf{Y} \right] \right\|^2 \xrightarrow[n \to \infty]{} \rho^2 - q_*(\alpha)^2$$

# Algorithmic analysis

### Generalized Approximate Message Passing (GAMP)

- Precursors in physics: Mezard, 1989, Kabashima, 2008.
- ▶ Generalization of AMP (Donoho et al., 2009) introduced by Rangan, 2011. Iterative algorithm: produces estimates  $\hat{\mathbf{x}}^0, \dots, \hat{\mathbf{x}}^t$ .

# Algorithmic analysis

### Generalized Approximate Message Passing (GAMP)

- ▶ Precursors in physics: Mezard, 1989, Kabashima, 2008.
- ► Generalization of AMP (Donoho et al., 2009) introduced by Rangan, 2011. Iterative algorithm: produces estimates  $\hat{\mathbf{x}}^0, \dots, \hat{\mathbf{x}}^t$ .
- ► Its performance can be rigorously tracked:

### State evolution, Javanmard and Montanari, 2013

$$\frac{1}{n^2} \mathbb{E} \left\| \mathbf{X}^* \mathbf{X}^{*\intercal} - \widehat{\mathbf{x}}^t \widehat{\mathbf{x}}^{t\intercal} \right\|^2 \xrightarrow[n \to \infty]{} \rho^2 - (q^t)^2$$

where  $q^t$  is given by the recursion  $(q^0 = 0)$ :

$$\begin{cases} q^{t+1} = \rho - 2I'_{P_0}(r^t) \\ r^t = -2\alpha \mathcal{I}'_{P_{\text{out}}}(q^t) \end{cases}$$

▶ GAMP converges to a stationary point  $(q^{\rm alg}, r^{\rm alg})$  of the MI formula and if  $q^{\rm alg} = q_*(\alpha)$ , then GAMP achieves the MMSE!

# Algorithmic analysis

### Generalized Approximate Message Passing (GAMP)

- ▶ Precursors in physics: Mezard, 1989, Kabashima, 2008.
- ► Generalization of AMP (Donoho et al., 2009) introduced by Rangan, 2011. Iterative algorithm: produces estimates  $\hat{\mathbf{x}}^0, \dots, \hat{\mathbf{x}}^t$ .
- ► Its performance can be rigorously tracked:

### State evolution, Javanmard and Montanari, 2013

$$\frac{1}{n^2} \mathbb{E} \left\| \mathbf{X}^* \mathbf{X}^{*\intercal} - \widehat{\mathbf{x}}^t \widehat{\mathbf{x}}^{t\intercal} \right\|^2 \xrightarrow[n \to \infty]{} \rho^2 - (q^t)^2$$

where  $q^t$  is given by the recursion  $(q^0 = 0)$ :

$$\begin{cases} q^{t+1} = \rho - 2I'_{P_0}(r^t) \\ r^t = -2\alpha \mathcal{I}'_{P_{\text{out}}}(q^t) \end{cases}$$

- ▶ GAMP converges to a stationary point  $(q^{\rm alg}, r^{\rm alg})$  of the MI formula and if  $q^{\rm alg} = q_*(\alpha)$ , then GAMP achieves the MMSE!
- ▶ Main belief: GAMP is optimal among all polynomial-time algorithms.

# Phase diagrams: warm-up

Linear model



Phase diagram from Krzakala et al., 2012

### ReLu channel



# Absolute value channel



# Symmetric door channel



# A learning problem

#### A different point of view

- ▶ The points  $\{(\Phi_1, Y_1), \dots, (\Phi_m, Y_m)\}$  can be seen as data generated by some relation  $\mathbf{Y} \sim P_{\mathrm{out}}(\cdot | \Phi \mathbf{X}^*)$ .
- ▶ **Question**: How difficult is it to learn this relation?

# A learning problem

### A different point of view

- ▶ The points  $\{(\Phi_1, Y_1), \dots, (\Phi_m, Y_m)\}$  can be seen as data generated by some relation  $\mathbf{Y} \sim P_{\mathrm{out}}(\cdot | \Phi \mathbf{X}^*)$ .
- ▶ Question: How difficult is it to learn this relation?
- ► What is the optimal generalization error

$$\mathcal{E}_n^{\text{gen}} = \min_{\widehat{\theta}} \mathbb{E} \Big[ \big( Y^{(\text{new})} - \widehat{\theta} (\mathbf{\Phi}^{(\text{new})}; \mathbf{Y}, \mathbf{\Phi}) \big)^2 \Big]$$

where  $Y^{(\mathrm{new})} \sim P_{\mathrm{out}} \big( \cdot \mid \langle \mathbf{\Phi}^{(\mathrm{new})}, \mathbf{X}^* \rangle \big)$  is a new sample.

# A learning problem

### A different point of view

- ▶ The points  $\{(\Phi_1, Y_1), \dots, (\Phi_m, Y_m)\}$  can be seen as data generated by some relation  $\mathbf{Y} \sim P_{\mathrm{out}}(\cdot | \mathbf{\Phi} \mathbf{X}^*)$ .
- ▶ Question: How difficult is it to learn this relation?
- ► What is the optimal generalization error

$$\mathcal{E}_n^{\text{gen}} = \min_{\widehat{\theta}} \mathbb{E} \Big[ \big( Y^{(\text{new})} - \widehat{\theta} (\mathbf{\Phi}^{(\text{new})}; \mathbf{Y}, \mathbf{\Phi}) \big)^2 \Big]$$

where  $Y^{(\mathrm{new})} \sim P_{\mathrm{out}} \big( \cdot \mid \langle \mathbf{\Phi}^{(\mathrm{new})}, \mathbf{X}^* \rangle \big)$  is a new sample.

#### **Theorem**

$$\mathcal{E}_n^{\mathrm{gen}} \xrightarrow[n \to \infty]{} E(q_*(\alpha))$$

where

$$E(q) = \mathbb{E}\left[\left(Y^{(q)} - \mathbb{E}[Y^{(q)}|V]\right)^2\right]$$

Recall the second scalar channel:  $Y^{(q)} \sim P_{\mathrm{out}}(\cdot \mid \sqrt{q}V + \sqrt{\rho - q}W)$ ,  $V, W \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0,1)$ .

# Classification: the perceptron

$$\mathbf{Y} = \text{sign}(\mathbf{\Phi}\mathbf{X}^*), \qquad P_0 = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_{+1}$$

Computed by Györgyi, 1990 and also Seung et al., 1992:



# Regression: phase retrieval

$$\mathbf{Y} = |\mathbf{\Phi} \mathbf{X}^*|, \qquad P_0 = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_{+1}$$



# Classification: the symmetric door



# Thank you for your attention.

Any questions?

### References I

- ▶ Barbier, Jean et al. (2016). "The mutual information in random linear estimation". In: arXiv preprint arXiv:1607.02335.
- ▶ Donoho, David L, Arian Maleki, and Andrea Montanari (2009). "Message-passing algorithms for compressed sensing". In: Proceedings of the National Academy of Sciences 106.45, pp. 18914–18919.
- ► Gardner, Elizabeth and Bernard Derrida (1989). "Three unfinished works on the optimal storage capacity of networks". In: *Journal of Physics A:*Mathematical and General 22.12, p. 1983.
- ► Györgyi, Géza (1990). "First-order transition to perfect generalization in a neural network with binary synapses". In: Physical Review A 41.12, p. 7097.
- ▶ Javanmard, Adel and Andrea Montanari (2013). "State evolution for general approximate message passing algorithms, with applications to spatial coupling". In: *Information and Inference*, iat004.
- ▶ Kabashima, Yoshiyuki (2008). "Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels". In: Journal of Physics: Conference Series. Vol. 95. 1. IOP Publishing, p. 012001.

### References II

- ▶ Korada, Satish Babu and Nicolas Macris (2010). "Tight bounds on the capacity of binary input random CDMA systems". In: *IEEE Transactions on Information Theory* 56.11, pp. 5590–5613.
- ► Krzakala, Florent et al. (2012). "Statistical-physics-based reconstruction in compressed sensing". In: *Physical Review X* 2.2, p. 021005.
- ► Mezard, Marc (1989). "The space of interactions in neural networks: Gardner's computation with the cavity method". In: Journal of Physics A: Mathematical and General 22.12, p. 2181.
- ▶ Montanari, Andrea (2008). "Estimating random variables from random sparse observations". In: European Transactions on Telecommunications 19.4, pp. 385–403.
- ▶ Rangan, Sundeep (2011). "Generalized approximate message passing for estimation with random linear mixing". In: *Information Theory Proceedings* (ISIT), 2011 IEEE International Symposium on. IEEE, pp. 2168–2172.
- ▶ Reeves, Galen and Henry D Pfister (2016). "The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact". In: *Information Theory (ISIT), 2016 IEEE International Symposium on.* IEEE, pp. 665–669.
- ► Seung, HS, Haim Sompolinsky, and Naftali Tishby (1992). "Statistical mechanics of learning from examples". In: *Physical review A* 45.8, p. 6056.