

High frequency capacitor ignition source for IC engine esp fluid combustion turbine

Publication number: DE19609475

Publication date: 1997-09-18

Inventor: HUNCK WOLFGANG H DIPL ING (DE)

Applicant: HUNCK WOLFGANG H DIPL ING (DE)

Classification:

- **International:** *F02P3/08; F02P15/04; F02P15/10; F02P3/00;*
F02P15/00; (IPC1-7): F02P3/06

- **European:** F02P3/08D6B; F02P15/04; F02P15/10

Application number: DE19961009475 19960311

Priority number(s): DE19961009475 19960311

[Report a data error here](#)

Abstract of DE19609475

The ignition source has a capacitor discharge oscillation circuit system or coupled capacitor discharge oscillation circuit system which causes a plasma energy ignition discharge in a combustion chamber. The capacitor discharge oscillation circuit system can be a series oscillation circuit whose coil body inductance can be varied. The inductance of the coil can be regulated and/or controlled.

Data supplied from the esp@cenet database - Worldwide

AC

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 196 09 475 A 1

⑯ Int. Cl. 6:
F02 P 3/06

⑯ Aktenzeichen: 196 09 475.6
⑯ Anmeldetag: 11. 3. 96
⑯ Offenlegungstag: 18. 9. 97

453

DE 196 09 475 A 1

⑯ Anmelder:

Hunck, Wolfgang H., Dipl.-Ing., 47533 Kleye, DE

⑯ Erfinder:

gleich Anmelder

Der Inhalt dieser Schrift weicht von den am Anmeldetag eingereichten Unterlagen ab

⑯ Frequent oder hochfrequente Kondensatorzündquelle und Zündverfahren für Verbrennungskraftmaschinen
insbesondere Turbinen

DE 196 09 475 A 1

DE 196 09 475 A1

1

Beschreibung

Die Neuerung beschreibt ein Verfahren zur elektromagnetisch oder elektrostatisch aktivierten Zündung mit Hilfe von wechselräufigen Molekülresonanzfrequenzen in Verbrennungskraftmaschinen.

Verbrennungskraftmaschinen haben mit Hilfe einer aktivierten Zündung unter Zuhilfenahme von wechselräufigen Molekülresonanzfrequenzen einen höheren Nutzleistungsfaktor und bessere Schadstoffemissionsgrenzwerte.

Der mechanische Wirkungsgrad bei der Verbrennung steigt und der Kraftstoffverbrauch verringert sich.

Zu den Verbrennungskraftmaschinen zählen Dieselmotoren, Ottomotoren, Gasmotoren und Gas- und Fluidverbrennungsturbinen.

Die Schadstoffemissionswerte sind deshalb so niedrig, weil nach unseren Forschungsergebnissen bei der Verbrennung des Kraftstoffgemisches mit der Luft (ca. 21% Sauerstoff) Wasser eine katalytische Wirkung bei der Sauerstoffoxidationsreaktiven Redoxreaktion aufweist, und zwar in der Art, daß die Dissoziation des Wassers und die physikalische Bindung des Wassers an Sauerstoff die Aufenthaltswahrscheinlichkeit des Sauerstoffes in der Luft in dem zu verbrennenden Kraftstoffgemisch stark steigert, wobei die Reaktionsgeschwindigkeit des Abbrandes steigt, und die unvollständigen Abbrandreaktionen sinken.

Dadurch verschiebt sich der mechanische Nutzleistungsfaktor nach vorne, da bei niedrigerer Redoxreaktionsgeschwindigkeit der Druck per Zeiteinheit steigt, und gleichzeitig die thermisch äquivalente Energieabgabe per Zeiteinheit an die Umgebungswandungen sinkt.

Je feiner die Kraftstoff-Wasser-Emulsion ist, desto besser ist der homogene Verbrennungsverlauf der Verbrennungskraftmaschine.

Dieser katalytische Redoxreaktionseffekt mit Hilfe einer aktivierten Zündung mit Hilfe von wechselräufigen Molekülresonanzfrequenzen funktioniert auch sehr gut bei Kraftstoffemulsionsgemischen mit Wasser oder Alkoholabbindungen.

Je einfacher die Oxidationsstufen im Bindungsequivalent dargestellt werden können, desto besser sind die Aussichten für eine homogene Redoxreaktion in der ersten Oxidationsstufe, und damit eine größere Toleranzbreite der Verfahrensanwendung in der herkömmlichen Abbrandtechnologie von Verbrennungskraftmaschinen.

Die Mercedes-Benz Firmengruppe und die Volkswagengruppe haben in ihren Forschungs- und Entwicklungsabteilungen mit der Wasserinjektion in dem Verbrennungsraum von Verbrennungskraftmaschinen experimentiert, um den Wirkungsgrad der Maschinen zu erhöhen und die Schadstoffemission in die Umwelt zu senken. Dabei waren alle Ergebnisse dieser Forschungs- und Entwicklungsarbeiten in dem Bereich als eher negativ zu bewerten, und zwar nach dem derzeitigen Stand unserer Untersuchungen deshalb, weil sich in der Reaktionsabbrandphase Aufenthaltswahrscheinlichkeitsräume aus verdampften Gaspartikeln gebildet haben, an deren Grenzen die Gemischräume reagierten, verdampftes Wasser den Reaktionsraum schmälerte und sekundärphysikalische Effekte den Gasabbrand verzögerten. Somit wurde der Wirkungsgrad, für den der katalytische Effekt sorgt, stark gemindert.

Ein amerikanischer Unternehmer kam auf die Idee, ein Naphtha-Wasser-Emulgationsgemisch im Mischungsverhältnis von 1:1, welches mit chemischen

2

Bindemitteln stabil gehalten wurde, in einem Dieselmotor zu verbrennen. Dabei ergaben sich andersartige und unvorhergesehene technische Fakten:

5 1. Der Wirkungsgrad der Verbrennung stieg an und der Schadstoff-Emissionswert sank sehr stark.
2. Der Kraftstoffverbrauch verringerte sich.

Dieses Kraftstoffgemisch wird in den USA von 50.000 10 LKW seit über einem Jahr getestet und hat bis jetzt sehr gute Emulgationen von Brennstoffen mit Wasser in Verbindung mit chemischen Emulgatoren für Verbrennungskraftmaschinen ermöglicht, und stellt als solches somit keine Neuerung in diesem Marktsegment dar.

Unsere eigenen Forschungsergebnisse besagen, das ein Emulgationsgemisch von Brennstoff und Wasser von 40 Sekunden bis über eine Minute bei sehr feiner Emulgation stabil ist. Damit sind die Voraussetzungen für ein Vorschaltgerät erfüllt, welches ohne chemische Emulgatoren in der Kraftstoffzuführung zur Verbrennungskraftmaschine auskommt, denn die Emulsion wird schneller verbrannt, als sie zerfällt.

Wir fanden weiterhin heraus, daß je feiner die Emulsion ist, desto besser der homogen verlaufende Reaktionsabbrand des Gemisches unter Zuhilfenahme einer aktivierten Zündung von wechselräufigen Molekülresonanzfrequenzen in der Verbrennungskraftmaschine ist. Ebenso fanden wir heraus, das bei unterschiedlichen Drehmomentverteilungen auf eine bestimmte Umdrehungszahl bezogen, das Emulgationsverhältnis zwischen Wasser und Kraftstoff eine große Wirkung auf den Wirkungsgrad und auf die Gegenmomententwicklung hat. Diese Forschungsergebnisse geben die Verwendung der Ultraschalltechnik für die Emulgation, bei dem derzeitigen Stand der Technik zwingend vor, da die statistische Tröpfchengröße des Emulgationsgemisches homogen einheitlich groß sein muß, um eine optimale Verbrennungskatalyse hervorzurufen.

Dieses hat zur Folge, das bei einer optimalen Verbrennungsnutzung des Kraftstoffes das Emulgationsverhältnis regeldynamisch verändert werden muß.

Da besonders bei Kraftstoffen mit hoher Flammmtemperatur und/oder niedrigem Verdampfungsgrad auf die richtige statistische Konstellation der Aufenthaltswahrscheinlichkeiten der chemisch reaktiven Moleküle an den Begrenzungsoberflächen zum Kraftstoffgemisch ankommt, um eine Oxidationsreaktion zu starten, bei der eine Verdampfungsreaktion durch die freiwerdende thermodynamisch aktive Energie "Oxidationswärme" des Brennstofftröpfchens bewirkt wird, bei der die Tröpfchenoberfläche noch weiter ansteigt, bis eine statistisch hoch verstärkte Einzelmolekül-Reaktion mit dem Sauerstoff der Luft abläuft. Die Emulgation von Wasser in gewissen Masseanteilen mit dem Brennstoff, bewirkt 45 mit zwei Effekten eine verstärkte Oxidationsreaktion im Verbrennungsablauf mit dem Sauerstoff der Luft:

Die Verdampfungstemperatur bei den entstehenden physikalischen Vorbedingungen ist im allgemeinen niedriger als die des Brennstoffes und bewirkt zusammen mit der katalytischen Oxidationsvermittlungsfähigkeit des Wassers durch Dissoziation und polare Ionenzusammenbindungenfelder eine hohe Verstärkung des Verdampfungsgrades und der statistischen Oxidationsreaktionswahrscheinlichkeiten eines Oxidationsabbrandes mit dem Sauerstoff der Luft.

60 Damit kommt es bei der Verbrennung von Kohlenwasserstoffen mit Wasser nicht mehr zur Entstehung zweier Oxidationsstufen während der Verbrennung,

DE 196 09 475 A1

3

d. h. es kommt kaum noch zur CO-Bildung und ebenso kaum noch zur Bildung von Rußpartikeln.

Damit ist auch die Verbrennung von langkettigen oder komplexkettigen Kohlenwasserstoffen in der ersten Oxidationsstufe realisierbar.

DIE VORTEILE

Die Vorteile des Gerätes sind:

1. Die Nachrüstbarkeit in alle bestehenden Fahrzeugsysteme wie Otto- und Dieselfahrzeuge ist ohne Eingriff in den Motor möglich, und damit kann die strengere Abgasverordnung auch für bestehende alte Fahrzeuge ohne hohe Umrüstkosten erfüllt werden.
2. Das System ist durch einfache Technologie kostengünstig.
3. Hausfeuerungsanlagen werden durch dieses System durch noch niedrigere Abgasemissionswerte genauso attraktiv wie atmosphärische Brennerysteme mit Gasbetrieb, und haben einen stabilen Reaktionsabbrand.
4. Einfache technologische Spezialisierbarkeit und regeldynamische Anpassungsfähigkeit durch Elektronik, und damit kein hoher Teuerungsfaktor für technologisch spezialisierte Anpassungen.
5. Gute mechanische Kombinierbarkeit und Einbindbarkeit in Verbindung mit anderen Funktionsystemen, wie Einspritzpumpen, Ventilen, u.ä. (Emulgationseinspritzpumpe, Ventilemulgator als eine konstruktive Einheit).

Das Unternehmen teddy technics fand weiterhin heraus, daß, je feiner die Ultraschalltröpfchenemischung zwischen Verbrennungskraftstoff und Wasser ist, desto besser ist der homogen verlaufende Reaktionsabbrand des Gemisches in der Verbrennungskraftmaschine, genau parallel zur chemischen Emulgationsverteilung. Ebenso fanden wir heraus, daß bei unterschiedlichen Drehmomentverteilungen auf eine bestimmte Umdrehungszahl bezogen, das Emulgationsverhältnis zwischen Wasser und Kraftstoff eine große Wirkung auf den Wirkungsgrad und auf die Gegenmomentenentwicklung hat. Diese Forschungsergebnisse geben die Verwendung der Ultraschalltechnik für die Emulgation, bei dem derzeitigen Stand der Technik, zwingend vor, da die statistische Tröpfchengröße des Emulgationsgemisches homogen einheitlich groß sein muß, um eine optimale Verbrennungskatalyse hervorzurufen.

Dieses hat zur Folge, daß bei einer optimalen Verbrennungsnutzung des Kraftstoffes das Emulgationsverhältnis regeldynamisch verändert werden muß. Diese Ergebnisse besagen, daß eine chemische Emulgationsgemischaufbereitung durch Reaktionszusätze möglich wäre, aber technisch einen höheren Aufwand darstellt, als es die Ultraschallemulgation ist.

Es kommt es bei der Verbrennung von Kohlenwasserstoffen, speziell der hochfrequenzindikativen Verbrennung mit Wasser, nicht mehr zur Entstehung zweier Oxidationsstufen während der Verbrennung, d. h. es kommt fast nicht mehr zur CO-Bildung und zur Bildung von Rußpartikeln.

Damit ist auch die Verbrennung von langkettigen oder komplexkettigen Kohlenwasserstoffen in der ersten Oxidationsstufe als realisierbar anzusehen.

Damit lassen sich die Anforderungen an das zu entwickelnde System wie folgt definieren:

4

KONSTRUKTIVER AUFBAU

Die Emulgationsanordnung wird mit einem Ultraschallmulgator bei einer Frequenz von 20 KHz realisiert, wobei eine möglichst kleine Tröpfchengröße, im Verhältnis zum technologischen Aufwand erreicht wird. Der Ultraschallmulgator kann technisch zwei Voraussetzungen erfüllen:

10. 1. Ultraschallvorschaltmulgator für gegebene umzurüstende Systeme.
2. Ultraschalleinspritzvorrichtung mit Kraftstoff-Wasser-Emulgationskanal.

15 Bei der zweiten Anordnung, bzw. einem Nachrüstsatz für Verbrennungskraftmaschinen würde bei Einspritzmotoren die Einspritzpumpe entfallen.

VERBESSERUNGEN DIESES VERFAHRENS

20 Für die technologische Spezialisierbarkeit der Emulgationseinrichtung kann man elektronisch über eine Steuerung die physikalischen Verbrennungswertparameter über die Mischungsverhältnisänderung verändern.

25 Der fertigungstechnologische Aufwand bei Ultraschall-Emulgator-Einspritzvorrichtungen sinkt mit der Maßnahme des Ersatzes der herkömmlichen Einspritzvorrichtung erheblich, und die Anpassung eines vorhandenen Systems mit dieser neuen Anforderungsumgebung wird maßgeblich vereinfacht.

FERTIGUNGSSPEZIALISIERUNG

30 Die Ultraschalltechnik wurde in dem vergangenen Jahr in unserem Hause derart verbessert, daß eine aufwendige formtechnische Optimierung der Wandler nach der Fertigung keine übergeordnete Rolle mehr spielt. Das heißt, daß eine Serienproduktion von Ultraschallmulgations- und Ultraschallinjektionsvorrichtungen damit erst möglich geworden ist.

DIE FERTIGUNGSSPEZIALISIERUNG IM EINZELNEN

Die Zündquelle

35 Die Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen im speziellen, zeichnet sich dadurch aus, daß sie mittels einer hochfrequenten Plasmaenergiezündentladung im Verbrennungsraum herbeigeführt wird.

40 Sie wird steuer- und regelbar derart geschaltet, daß Regelsysteme die elektrischen Zündparameter auf die katalytische Reaktionsbedingung optimieren können.

45 Das Zündplasma wird im Verbrennungsraum derart zum Schwingen angeregt, daß ein Schalldruck im Reaktionsgemisch entsteht, welches mit seinem Wellenfeld eine eigene Strömungscharakteristik im Reaktions-Dielektrikum aufbaut, damit Subminiatur-Partikel-Tröpfchen weiter geteilt werden können, und damit die reaktive Oberflächenaktivität steigt.

50 Die Lichtogenfrequenz des Zündplasmas ist so gewählt, oder mit einer Frequenz überlagert, daß sie im Hochfrequenzbereich einer elektromagnetischen Katalyse-Resonanzerscheinung von Wasser oder Sauerstoff liegt, damit begründet, daß die katalytische Anregungsaktivität die Reaktionszeit des Einzelmoleküls senkt und

DE 196 09 475 A1

5

damit die Abbrandreaktion des Gesamtsystems stark ansteigt.

Ebenfalls sind auch andersartige katalytische Substanzen im Motorraum denkbar, welche hochfrequent angeregt im Zündpunkt die Reaktions-Abbrandreaktion steigern, so daß auch n-zahlig miteinander verknüpfte Kondensator-Entladungs-Schwingkreissysteme n-1 Katalyseresonanzfrequenzen von n-zahligen Katalysezusatzstoffen im Reaktionsraum abdecken können.

Die Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen kann zum Beispiel derart konstruiert sein, daß eine der Kondensatorplatten des Kondensator-Entladungs-Schwingkreissystems aus einer druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode symmetrisch angeordnet gegenüber liegt, so daß die Gegenelektrode anstatt der handelsüblichen Zündkerze in das vorhandene Zündkerzen-Gewinde eingeschraubt werden kann.

Die Oberfläche

Die Gegenelektrode ist konstruktiv derart bestimmt, daß der elektrische Feldverlauf von der Formgebung der Oberflächen bestimmt wird und daß die Oberflächen mit einer elektrisch nicht leitenden oder teilweise leitenden Substanz ummantelt sind.

Die Gegenelektrode ist weiterhin konstruktiv derart bestimmt, daß die Oberflächen mit einer unterschiedlich potentialbehafteten Substanz ummantelt ist, so daß diese unterschiedlichste Polarisationscharakteristika auf der feldelektrisch wirksamen Oberfläche aufweist.

Weiterhin kann die die Oberflächen ummantelnde Substanz unterschiedlichste Polarisationscharakteristika in allen drei Dimensionsebenen aufweisen.

Weiterhin kann die die Oberflächen ummantelnde Substanz unterschiedlichste Leitungscharakteristika auf der feldelektrischen wirksamen Oberfläche aufweisen.

Weiterhin kann die die Oberflächen ummantelnde Substanz unterschiedlichste Potentialcharakteristika auf der feldelektrisch wirksamen Oberfläche aufweisen.

Weiterhin kann die die Oberflächen ummantelnde Substanz unterschiedlichsten Potentialcharakteristika in allen drei Dimensionsebenen der wirksamen Oberfläche aufweisen.

Die Gegenelektrode

Die Gegenelektrode ist derart bestimmt, daß sich zwischen den Oberflächen im elektrostatischen Feld eine Substanz befindet, welche ganz oder teilweise elektrisch leitfähig ist.

Zwischen den Oberflächen im elektrostatischen Feld befindet sich eine Substanz, welche unterschiedlichste elektrische Leitungscharakteristika auf der feldelektrisch wirksamen Oberfläche aufweist, und welche unterschiedlichste elektrische Leitungscharakteristika in allen drei Dimensionsebenen aufweist.

Die Gegenelektrode ist weiterhin konstruktiv derart bestimmt, daß sich zwischen den Oberflächen im elektrostatischen Feld eine in einem elektrostatischen Feld ausdehbare Substanz befindet, oder die Oberflächen ganz oder teilweise ummantelt und die Gegenelektrode derart bestimmt ist, daß die feststoffartige im elektrischen Feld ausdehbare Substanz eine niedrigere Energiepotentialverteilung, welche physikalisch oder technisch bedingt sein kann, als Reaktionsplasma hat,

6

und sich die im elektrischen Feld ausdehbare Substanz durch eine Energiepotentialverteilung unterschiedlicher Potentialcharakteristik auf den feldelektrisch wirksamen Ebenen auszeichnet.

5 Die Gegenelektrode ist weiterhin derart bestimmt, daß die Oberflächen von sich aus aneinander annäherbar geartet gestaltet sind und sich die Oberflächen durch die entstehenden elektrischen Feldkräfte einander annähern können.

10

DAS PRODUKT UND SEIN MARKT

Wachstumsmarkt "Umwelt-Technologie"

15 Die weiterhin permanent zunehmende Bedeutung des Schutzes unserer Umwelt

Aufgrund des immer mehr steigenden Umweltbewußtseins und der sich auch damit verschärfenden Umweltverordnungen wird ein immer höher werdender Anspruch an die Abgas- und Verbrennungstechnologie gelegt.

Der Ultraschallemulgator für Ultraschallemulgierte Verbrennungs-Kraftstoffe mit Wasser erfüllt dahingehend zwei sehr wichtige Kriterien:

- Stark verbessertes Kohlenwasserstoff-Sauerstoff Reaktionsumsatzverhältnis mit stark eingeschränkten Reaktionssekundärumsätzen und niedrigeren Reaktionsumsatztemperaturen, welches niedrigere CO- und NO(x)-Ausstoß zur Folge hat.
- Durch die höher werdende Reaktionsgeschwindigkeit und dem sich damit verbesserten Energieumsatz in Richtung der mechanischen Energetik bei gleichzeitig verminderter thermischen Energieaufkommen durch die Kraftstoffverringerung bei Wasserbeimengung und damit im Druckaufkommen des Kolbenraumes ähnlich, aber gleichwertigen mechanischen Zeit-Druckverhaltens ist, — bei gleichzeitig gleichwertiger Motor-Kraftbeanspruchung über den Zeit-Leistungsbereich — der Kraftstoffverbrauch nicht unerheblich niedriger.

Die zukünftige Produkt-Palette

Aus diesen Folgerungen ergeben sich die Vermarktungsansätze für den Ultraschallemulgator für wasseremulgierte Kraftstoffe:

- Für Verbrennungskraftmaschinen im allgemeinen:
hier: Verbrennungskraftmaschinen z. B. in Landfahrzeugen; in anderen Anwendungskomponenten
— Nachfüt-Zünd-Vorsätze für Otto- und Dieselmotoren für derzeit in Betrieb befindliche Landfahrzeuge;
— Emulgatoren für Neuwagen und neu zu entwickelnde Fahrzeugtypen;
— Emulgator-Anwendungsmodifikationen in Verbindung mit anderen mechanischen Anwendungskomponenten wie beispielsweise Kraftstoffeinspritzpumpen für Turbinen mit Kreisprozeßumsatz, Otto- und Dieselmotoreinspritzeinheiten.
- Für Verbrennungskraftmaschinen der Binnenschiffahrt:
für langsam-, mittel- und schnelldrehende Schiffsmaschinen
— Nachfüt-Zünd-Vorsätze für Schwerölmotoren

DE 196 09 475 A1

7

8

im Binnen- und Seeschiffsbetrieb für derzeit in Betrieb befindliche Wasserfahrzeuge;

- Emulgatoren für Schiffs-Neubauten und neu zu entwickelnde Schiffsmotoren;
- Emulgator-Anwendungsmodifikationen in Verbindung mit anderen mechanischen Anwendungs-komponenten der Schiffsbetriebstechnik.

3. Für Antriebseinheiten der Luft- und Raumfahrt:

- Nachrüst-Zünd-Vorsätze für hochwertige Antriebseinheiten im Flugbetrieb für derzeit in Betrieb befindliche Flugzeuge;
- Emulgatoren für Flugzeug-Neubauten und neu zu entwickelnde Flugzeug- Antriebseinheiten;
- Emulgator-Anwendungsmodifikationen in Verbindung mit anderen mechanischen Anwendungs-komponenten der Flugbetriebstechnik.

4. Für Feuerungsanlagen:

- Industrieverbrennung von Giftstoffen in kontrollierten Temperatur-Reaktionsräumen;
- Abfallzusatzbefeuерung und der verbesserbaren thermischen Umsatzreaktionswahrscheinlichkeit;
- Kontrollierbare Katalysereaktionen bei Ionen-plasmen unter Wechselfeldanregung des Wasser-Emulgationsgemisches.

gnetisch aktivierte Zündung auf den beschriebenen Anwendungsfeldern "sehr erfolgsversprechend".

Sowohl der volkswirtschaftliche-, als auch der einzelne betriebswirtschaftliche Nutzen dieses Projektes ist bei der Vielzahl der Anwendungsspezifikationen und der breiten, anwendbaren Auffächerungen von Produkten in den beschriebenen Anwendungsspezialisierungen als "sehr hoch" anzusiedeln!

Patentansprüche

1. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den nachfolgenden Ansprüchen dadurch gekennzeichnet, daß mittels eines Kondensatorenentladungskreissystems, oder gekoppelte Kondensatorenentladungskreissysteme eine hochfrequente Plasmaenergiezündentladung im Verbrennungsraum herbeigeführt wird. Dabei kann das Kondensatorenentladungskreissystem beispielsweise einen Serienschwingkreis darstellen.

2. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß der, oder die Spulenkörper des Kondensatorenentladungskreissystems, oder der gekoppelten Kondensatorenentladungskreissysteme in ihrer Induktivität verändert werden können.

3. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß der, oder die Spulenkörper des Kondensatorenentladungskreissystems, oder der gekoppelten Kondensatorenentladungskreissysteme in ihrer Induktivität regelbar, und/oder gesteuert werden können.

4. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß das Kondensatorenentladungskreissystem, oder gekoppelte Kondensatorenentladungskreissysteme steuer- und regelbar derart geschaltet werden, daß Regelsysteme die elektrischen Zündparameter auf die katalytische Reaktionsbedingung optimieren können.

5. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß die Zündfrequenz des Zündplasmas derart gewählt oder überlagert ist, daß sie in einem Frequenzbereich liegt, in welchem das Zündplasma derart zum Schwingen angeregt wird, daß ein Schalldruck im Plasma entsteht, welcher mit seinem Wellenfeld eine eigene Strömungscharakteristik im Zündplasma aufbaut.

6. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß die Resonanzfrequenz des Kondensatorenentladungskreissystems, oder der gekoppelten Kondensatorenentladungskreissysteme derart gewählt oder überlagert ist, daß sie in einem Frequenzbereich liegt, welches das Plasma derart zum Schwingen anregt, das im Plasma selbst einen Schalldruck aufgebaut wird, der einem longitudinalen Wellenfeld gleicht.

Ein Beispiel:

Die Möglichkeiten einer gangbaren Alternative zum Dreiwegekatalysator

Inzwischen ist abzusehen, daß die Anwendung der wasseremulgierten Kohlenwasserstoffe in Ottomotoren zur Emissions-Reduzierung die durchaus bessere Alternative zum Dreiwegekatalysator sein wird.

(Zumal die mit dem Dreiwegekatalysator verbundenen, bekannten, -und bislang nicht bewältigten-, Nachteile, insbesondere des geregelten Katalysators ersatzlos wegfallen würden.)

Schon heute ist sicher, daß mit der von uns entwickelten Technologie bei Verwendung der wasseremulgierten Kohlenwasserstoffe z. B. in Ottomotoren in Verbindung mit einem un-geregelten Katalysator bessere Werte erzielt werden können, als es mit der herkömmlichen Motorentechnik in Verbindung mit einem Drei-Wege-Katalysator bislang möglich war.

Fazit

Diese Anforderungen erschließen unterschiedlichste Marktsegmente. Allein der Markt für Nachrüstvorsätze von wasseremulgierten Verbrennungskraftstoffen ist angesichts der sich fortlaufend verschärfenden Umwelt-normen, (so ist z. B. in der Kraftfahrzeugtechnik die schwierige Umweltbarkeit vieler älterer Fahrzeuge auf die herkömmliche Katalysatortechnik), im Gegensatz zu der verhältnismäßig einfachen Anwendung der von uns neu entwickelten Technik "sehr groß".

Aufgrund der "Einfachheit des Aufbaus", der Möglichkeit der "simplen Nachrüstung" und nicht zuletzt der Möglichkeit einer "kostengünstigen Produktion", sowie des nachfolgend wesentlich "kostenreduzierten Betriebes" insbesondere im Hinblick auf die wesentlich geringeren Treibstoff-Verbräuche, durch die Nutzung von Nachrüstvorsätzen als in sich geschlossene Komponente, sind die Aussichten für die Anwendung der elektromag-

DE 196 09 475 A1

9

7. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß die Lichtbogenfrequenz des Zündplasmas so gewählt, oder mit einer Frequenz überlagert ist, daß sie im Hochfrequenzbereich einer elektromagnetischen Katalyseresonanzerscheinung von Wasser oder Sauerstoff liegt.

5

8. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß die Resonanzfrequenzen von zwei, oder mehreren Kondensatorenentladungskoppelschwingkreissystemen so gewählt oder überlagert ist, daß beide Resonanzfrequenzen im Hochfrequenzbereich einer elektromagnetischen Katalyseresonanzerscheinung von Wasser oder Sauerstoff liegt, und eine Hochfrequenz derart gewählt ist, daß sie mit einer der Hochfrequenzen derart überlagert, daß die Überlagerungsfrequenz der beiden interferierenden Hochfrequenzen in den Bereich einer im Plasmfeld schalldruck erzeugenden Frequenz fällt.

10

9. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß auch n-zahlig miteinander verknüpft gekoppelte Kondensatorenentladungsschwingkreissysteme n minus 1 Katalyseresonanzfrequenzen von n-zahligen Katalysezusatzstoffen im Reaktionsraum abdecken können.

25

10. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß in den Kondensatorenentladungsschwingkreis als Spulenersatz ein Transistor gekoppelt wird, bei welchem die Sekundärwicklung noch als Spule fungiert, und bei der die Primärwicklung als Energie-Einkopplungs-, oder -auskopplungssystem für das Zündplasma genutzt wird.

35

11. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß über ein Spulenenergiekopplungssystem oder Kondensatorenenergiekopplungssystem Energie für das Zündplasma durch phasenversetzte elektromagnetische Schwingungskopplung auf der, oder den Resonanzfrequenzen, — beispielsweise über ein Schaltnetzteilsystem —, in das Zündplasma eingebracht wird.

45

12. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß über ein Spulenenergiekopplungssystem oder Kondensatorenenergiekopplungssystem Energie für das Zündplasma durch die Energie-Einkopplung, oder -auskopplung im Zündenergieleistungsanpassungsfall im Energiefeldbereich des Kennlinienfeldes der Entladungsfunktion des, oder der Kondensatorenentladungsschwingkreissystem (-s/-e), oder Kondensatorenentladungsschwingkreissysteme, — beispielsweise über ein Schaltnetzteil —, in das Zündplasma eingebracht wird.

55

13. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen da

10

durch gekennzeichnet, daß über ein Spulenenergiekopplungssystem oder Kondensatorenenergiekopplungssystem Energie für das Zündplasma über die Frequenzmodulations-Einkopplung oder -auskopplung in den Resonanzbereich des Kondensatorenentladungsschwingkreisbereich, — beispielsweise über ein Schaltnetzteil —, in das Zündplasma eingebracht wird.

14. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß einer der Kondensatorplatten des Kondensatorenentladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode symmetrisch angeordnet gegenüber liegt.

15. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenentladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode in den normalen Zündkerzenhalter eingeschraubt werden kann.

16. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß einer der Kondensatorplatten des Kondensatorenentladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß der elektrische Feldverlauf von der Formgebung der Oberflächen bestimmt wird.

17. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenentladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht und die Gegenelektrode derartig bestimmt ist, daß die Oberfläche mit einer elektrisch nicht leitenden Substanz ummantelt ist.

18. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenentladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht und die Gegenelektrode derartig bestimmt ist, daß die Oberfläche mit einer elektrisch nicht leitenden, aber polarisierbaren Substanz ummantelt ist.

19. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenentladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die Oberfläche mit einer

DE 196 09 475 A1

11

elektrisch teilweise leitenden Substanz ummantelt ist.

20. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode 5 derartig bestimmt ist, daß die Oberfläche mit einer elektrisch nicht leitenden, aber unterschiedlich potentialbehafteten Substanz ummantelt ist.

21. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode 10 derartig bestimmt ist, daß die die Oberfläche ummantelnde Substanz unterschiedlichste Polarisationscharakteristika auf der feldelektrisch wirksamen Oberfläche aufweist.

22. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode 15 derartig bestimmt ist, daß die die Oberfläche ummantelnde Substanz unterschiedlichste Polarisationscharakteristika auf der feldelektrisch wirksamen Oberfläche aufweist.

23. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode 20 derartig bestimmt ist, daß die die Oberfläche ummantelnde Substanz unterschiedlichste Polarisationscharakteristika in allen drei Dimensionsebenen der ummantelnden Substanz aufweist.

24. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode 25 derartig bestimmt ist, daß die die Oberfläche ummantelnde Substanz unterschiedlichste Leitungscharakteristika auf der feldelektrisch wirksamen Oberfläche aufweist.

25. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungs-

12

kraftmaschine besteht und die Gegenelektrode derartig bestimmt ist, daß die die Oberfläche ummantelnde Substanz unterschiedlichsten Potentialcharakteristika auf der feldelektrisch wirksamen Oberfläche aufweist.

26. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die die Oberfläche ummantelnde Substanz unterschiedlichste Potentialcharakteristika in allen drei Dimensionsebenen der ummantelnden Substanz aufweist.

27. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß sich zwischen den Oberflächen im elektrostatischen Feld eine Substanz befindet, welche ganz oder teilweise elektrisch leitfähig ist.

28. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß sich zwischen den Oberflächen im elektrostatischen Feld eine Substanz befindet, welche unterschiedlichste elektrische Leitungscharakteristika auf der feldelektrisch wirksamen Oberfläche aufweist.

29. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß sich zwischen den Oberflächen im elektrostatischen Feld eine Substanz befindet, welche unterschiedlichste elektrische Leitungscharakteristika in allen drei Dimensionsebenen aufweist.

30. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorentladungsschwingkreissystemes aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß sich zwischen den Oberflächen im elektrostatischen Feld eine in einem elektrostatischen Feld ausdehbare Substanz befindet, oder die Oberflächen ganz oder teilweise ummantelt.

DE 196 09 475 A1

13

31. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, im elektrischen Feld ausdehbare Substanz, eine niedrigere Energiepotentialverteilung, — welche physikalisch oder technisch bedingt sein kann, — hat, als das Reaktionsplasma. 5

32. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, im elektrischen Feld ausdehbare Substanz, sich durch eine Energiepotentialverteilung unterschiedlichster Potentialcharakteristik auf den feidelektrisch wirksamen Ebenen auszeichnet. 15

33. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, im elektrischen Feld ausdehbare Substanz, sich durch eine Energiepotentialverteilung unterschiedlichster Potentialcharakteristik innerhalb aller drei Dimensionsebenen auszeichnet. 20

34. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, im elektrischen Feld ausdehbare Substanz, sich durch eine Polarisationsverteilung unterschiedlichster Polarisationscharakteristik auf den feidelektrisch wirksamen Ebenen auszeichnet. 45

35. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, im elektrischen Feld ausdehbare Substanz sich durch eine Polarisationsverteilung unterschiedlichster Polarisationscharakteristik innerhalb aller drei Dimensionsebenen auszeichnet. 55

36. Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen da- 65

14

durch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, im elektrischen Feld ausdehbare Substanz, sich durch eine elektrische Leitfähigkeitsverteilung unterschiedlichster Leitfähigkeitscharakteristika auf den feidelektrisch wirksamen Ebenen auszeichnet. 37.

Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, im elektrischen Feld ausdehbare Substanz, sich durch eine elektrische Leitfähigkeitsverteilung unterschiedlichster Leitfähigkeitscharakteristika innerhalb aller drei Dimensionsebenen auszeichnet. 38.

Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, im elektrischen Feld ausdehbare Substanz, sich durch eine Ausdehnungsdynamik und Ausdehnungsverhalten unterschiedlichster Ausdehnungscharakteristik auf den feidelektrisch wirksamen Ebenen auszeichnet. 39.

Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die feststoffartige, sich in elektrischen Feld ausdehbare Substanz sich durch eine Ausdehnungsdynamik und Ausdehnungsverhalten unterschiedlichster Ausdehnungscharakteristik innerhalb der drei Dimensionsebenen auszeichnet. 40.

Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach den vorhergehenden, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß eine der Kondensatorplatten des Kondensatorenladungsschwingkreissystems aus der druckbelasteten Stirnfläche des Kolbens im Reaktionsraum der Verbrennungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, daß die Oberflächen von sich aus aneinander annäherbar geartet gestaltet sind. 41.

Kondensatorzündquelle im Verbrennungsraum von Verbrennungskraftmaschinen nach einem der vorrangingen, oder nachfolgenden Ansprüchen dadurch gekennzeichnet, daß einer der Kondensatorplatten des Kondensatorenladungsschwingkreissystems die druckbelastete Stirnfläche des Kolbens im Reaktionsraum der Verbren-

DE 196 09 475 A1

15

16

nungskraftmaschine besteht, und die Gegenelektrode derartig bestimmt ist, das sich die Oberflächen sich durch die entstehenden elektrischen Feldkräfte einander annähern können.

5

10

15

20

25

30

35

40

45

50

55

60

65