Predictive Analytics & Business Forecasting

REGRESSION #1:

REGRESSION #2

Dependent Variable: SALES Method: Least Squares Date: 03/24/24 Time: 11:53

Sample: 1.75

Included observations: 75

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PRICE ADVERT	118.9136 -7.907854 1.862584	6.351638 1.095993 0.683195	18.72172 -7.215241 2.726283	0.0000 0.0000 0.0080
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.448258 0.432932 4.886124 1718.943 -223.8695 29.24786 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	77.37467 6.488537 6.049854 6.142553 6.086868 2.183037

REGRESSION #3:

■ Equation: UNTITLED	Workfile: AND	YS BURGE	R HEAVE	N_MID	TERM_	c <u>lox</u>
View Proc Object Print	Name Freeze	Estimate	Forecast	Stats	Resids	
Dependent Variable: SA Method: Least Squares Date: 03/24/24 Time: 1 Sample: 1 75 Included observations:	1:48					
Variable	Coefficient	Std. Ei	ror t	-Statis	tic	Prob.
C PRICE ADVERT ADVERT_SQRD	109.7190 -7.640000 12.15124 -2.767963	6.7990 1.0459 3.5561 0.9408)39 -7 64 3	6.137 .3044 .4169 .9426	42 50	0.0000 0.0000 0.0011 0.0044
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.508235 0.487456 4.645283 1532.084 -219.5540 24.45932 0.000000	Mean de S.D. dep Akaike ir Schwarz Hannan- Durbin-V	endent v Ifo criteri criterion Quinn cr	ar on iter.	6.4 5.9 6.0 6.0	.37467 488537 961440 085039 010792 043061

When we compare the different regressions, we can see that the adjusted R-squared value increases as we add each additional independent variable. In regression #1, it was 0.382963. In regression #2, the R-squared value increased to 0.432932. In regression #3, the R-squared value increased again to 0.487456. This increase in value tells us that the additional independent variables are justified – they improve how on how much the variance in the data can be explained.

Looking at the Akaike info criterion, we can still support the claim that the addition of independent variables is justified. This statistical measure considers both the goodness of fit of the model and the complexity, while also taking overfitting into account. When we compare the AIC values, we can see that it decreases each time we add another independent variable. This means it improves the goodness of fit without overly increasing complexity.

HYPOTHESIS TESTING:

Regression #1: Assuming $\alpha = 0.05$

 H_0 : $\beta_1 = 0$ H_a : $\beta_1 \neq 0$

SUMMARY OUTPUT								
Regression S	tatistics							
Multiple R	0.62554053							
R Square	0.391300955							
Adjusted R Square	0.382962612							
Standard Error	5.096857529							
Observations	75							
ANOVA				_				
	df	SS	MS	F	Significance F			
Regression	1	1219.09103	1219.09103	46.92790295	1.97078E-09			
Residual	73	1896.390837	25.97795667					
Total	74	3115.481867						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	121.9001736	6.526290698	18.67832421	1.5876E-29	108.893295	134.9070522	108.893295	134.9070522
price	-7.829073515	1.142864644	-6.850394365	1.97078E-09	-10.10679947	-5.551347565	-10.10679947	-5.551347565

Significance F-value = 1.97078E-09 < 0.05, therefore **reject H**₀

P-value (price) = 1.97078E-09 < 0.05, therefore **reject H**₀

Regression #2: Assuming $\alpha = 0.05$

 H_0 : $\beta_1 = \beta_2 = 0$

 H_a : At least one beta-coefficient $\neq 0$

SUMMARY OUTPUT								
Regression S	tatistics							
Multiple R	0.669520547							
R Square	0.448257762							
Adjusted R Square	0.432931589							
Standard Error	4.886123971							
Observations	75							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	1396.53893	698.2694649	29.24785948	5.04086E-10			
Residual	72	1718.942937	23.87420746					
Total	74	3115.481867						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	118.9136104	6.351637506	18.72172495	2.21429E-29	106.2518524	131.5753684	106.2518524	131.5753684
price	-7.907854327	1.095993022	-7.215241491	4.424E-10	-10.09267649	-5.723032168	-10.09267649	-5.723032168
advert	1.862584271	0.683195474	2.726283095	0.008038182	0.500658985	3.224509557	0.500658985	3.224509557

Significance F-value = 5.04086E-10 < 0.05, therefore **reject H**₀

P-value (price) = 4.424E-10 < 0.05, therefore **reject H**₀

P-value (advert) = 0.008038182 < 0.05, therefore **reject H**₀

Regression #3: Assuming $\alpha = 0.05$

H₀: $\beta_1 = \beta_2 = \beta_3 = 0$

 H_a : At least one beta-coefficient $\neq 0$

SUMMARY OUTPUT								
Regression S	Statistics							
Multiple R	0.712906133							
R Square	0.508235155							
Adjusted R Square	0.487456358							
Standard Error	4.645283021							
Observations	75							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	1583.397408	527.799136	24.45931648	5.59996E-11			
Residual	71	1532.084459	21.57865435					
Total	74	3115.481867						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	109.719036	6.799045455	16.13741763	1.87037E-25	96.16212439	123.2759476	96.16212439	123.2759476
price	-7.640000035	1.045938884	-7.304442117	3.23648E-10	-9.725542935	-5.554457134	-9.725542935	-5.554457134
•			0.445050064	0.001051598	5.060446168	19.24202518	5.060446168	19.24202518
advert	12.15123567	3.556163941	3.416950364	0.001051598	5.000440108	15.24202310	5.000440106	13.24202310

Significance F-value = 5.59996E-11 < 0.05, therefore **reject H**₀

P-value (price) = 3.23648E-10 < 0.05, therefore **reject H**₀

P-value (advert) = 0.001051598 < 0.05, therefore **reject H**₀

P-value (advert sqrd) = 0.004392666 < 0.05, therefore **reject H**₀

In regression #1, the R-squared value was 0.391301. This means that approximately 39.13% of the variation in sales can be explained by a change in price. In regression #2, the R-squared value increased to 0.448258. Using this model, approximately 44.82% of the variation in sales can be explained by a change in both price and money put into advertising. In regression #3, the R-squared value increased again to 0.508235. Using this model, we can see that approximately 50.82% of the variation in the data can be explained by a change in price, money spent for advertising, and the squared value of advertising.

Do the signs of your regression coefficients make sense for each model?

Yes, we expected the coefficient for price to be negative. When the product becomes more expensive, there would be less people willing to purchase it. We expected the coefficient for advertising to be positive. Spreading awareness of the product would result in more purchases to be made. We expected the coefficient for advertising squared to be negative due to diminishing returns.

Interpret the regression slopes for price and advertising in model #2

For every \$1 that the price increases, you can expect to lose about \$7.91 in sales. For every \$1,000 spent on advertising, you can expect to generate about \$1,862 in new sales.

What was the rationale for including advertising squared in model #3?

In the second model, we failed to realize that after a while, advertising can only do so much to positively affect monthly sales. Advertising squared is included in the third model to account for diminishing returns. Because the rate at which sales increasing due to advertisements is decreasing, we expected the value of this slope to be negative.

CONFIDENCE INTERVALS:

Regression #1:

'iew Proc Object P Coefficient Confider	rint Name Freeze	Estimate For	ecast Stats Res	iids			
Date: 03/24/24 Tim Bample: 1 75 ncluded observation	ie: 19:12						
		90	% CI	959	% CI	999	6 CI
Variable	Coefficient	Low	High	Low	High	Low	High
С	118.9136	108.3299	129.4973	106.2519	131.5754	102.1081	135.719
PRICE	-7.907854	-9.734101	-6.081608	-10.09268	-5.723032	-10.80769	-5.00801
ADVERT	1.862584	0.724180	3.000989	0.500659	3.224510	0.054950	3.67021

We are 95% confident that for every \$1 increase in price, monthly sales will decrease between \$10.09 and \$5.72.

We are 95% confident that for every \$1,000 increase in advertisement spending, sales will increase between approximately \$500.65 and \$3,224.51.

Using the 95% confidence interval, we reject the null hypothesis for both independent variables. Zero doesn't fall within either of the confidence intervals given.

Regression #3:

