Extension of the Vander awarde Argument.

(7)

Recall the matrix side of the original system we're dealing with:

\[\begin{align*}
 & \b

$$D_{k}^{m} = \begin{cases} d_{0}^{n} & k_{0} & k_{0}^{m} & k_{0}^{m} & k_{0}^{m} \\ d_{0}^{m} & k_{0}^{m} & k_{0}^{m} & k_{0}^{m} \end{cases}$$

$$k = 0, ..., m-1$$

$$k = 0, ..., m-1$$

Now, define $\frac{1}{n} = \frac{1}{n} = \frac{$

and consider the product en 9%.

Since the Ctos)th entry of end & is given by the now of end times sth column of \$ E, we have FER-1(=1) 2 & J (S-1) (18) n-1-3 $\frac{1}{n} \left[E_{n-1}(\lambda) + E_{n-1}(\lambda) \right] = \sum_{n=1}^{n} (\lambda^{2} \lambda) \lambda^{2(n+1)} + \sum_{n=1}^{$ $= \frac{1}{n} \sum_{j=0}^{n-1} P_{j}^{(s+1)} \frac{d^{n-1}(n-1)}{d^{n-1}(n-1)} + \underbrace{E_{n-1}(d_{j}) E_{n-1}(-d_{j})}_{1} d^{n-1}(-d_{j}) d^{n-1}(-d_{j})$ $+ \underbrace{E_{n-1}(d_{j}^{n-1})}_{1} \underbrace{E_{n-1}(d_{j}) E_{n-1}(-d_{j}^{n-1})}_{1} d^{n-1}(-d_{j}^{n-1}) d^{n-1}(-d_{j}^{n-1})$ = 1 5 9 (s-1) (12)^n-15 [++ 2 n-++1+1 + ... + 2(n-1)(1+1+ n-b)] = 9 (12) (11)^n=t if 1= b-1, sum = n if 1 = 6-1, sum = 0. Thus, the (t,s)-th entry of en six is f(f-1) (s-1) (i)) +, which is exactly the Ct, o) -th entry of FE. Thus, en 9 = FE, for o= t,..., m, & k = 0,..., m=1. Now, defining $D_{k}^{2} = \begin{bmatrix} \frac{1}{2} & E_{r}(-1) \sum_{j=0}^{r-1} & d_{j}^{2} & e_{r}(-1) e_{r}(-1) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{2} & \frac{1}{2}$ 2 arguing in a similar way as above, we obtain that er Dr. = Dr, for r=1,..., m, & k=0,..., m-1. Remark: Observe how similar \$k, Dk are to matrices Br in the original system. We only had to take care of Em, Er to make the system work.

Applying the identity-like diagonal block motrix to the column vector, and taking the transpose out in the main motrix yields:

1 36	^ 6 6	9 fm - I	0	o o o	0	Tet PTa)
Do				0	1	et 3+10)
\$3	a = 0			0	0	et frex)
Do		Dny 0	- I		0	ez 92 (2)
,		0 0		10	n 6	,
3 m-1		3 m-1 C) 6	· · · J	0	em-z PM-1(1)
Do	. 4 9	D m-1 0	0	100-I	0	en gana (1)
35	0	₹ m-1 6	0	• • • 0	I	em-, FR()
Do	9 6 0	Dmy (0 0	0000	-]	engm(x)

Therefore we have arrived at the desired, simplified system.