

Tópicos de Matemática II – 2018- 2019 1º Teste – Tópicos de resolução

Exercício 1

a) $u_1 = -5$; $u_2 = \frac{5}{2}$; $u_3 = -\frac{5}{3}$; $u_4 = \frac{5}{4}$. Como, por exemplo, $u_1 < u_2$ e $u_2 > u_3$, a sucessão não é monótona.

b)
$$u_n = \begin{cases} \frac{5}{n} & \text{se } n \text{ \'e par} \\ -\frac{5}{n} & \text{se } n \text{ \'e \'impar} \end{cases}$$

$$\bullet \quad \lim_{n} \frac{5}{n} = \frac{5}{(+\infty)} = 0$$

$$\bullet \quad \lim_{n} \left(-\frac{5}{n} \right) = \frac{-5}{(+\infty)} = 0$$

Logo, $(u_n)_n$ é convergente, pois tende para um número real (zero).

c) $(u_n)_n$ é convergente e qualquer sucessão convergente é, necessariamente, uma sucessão limitada. Logo, $(u_n)_n$ é uma sucessão limitada.

Nota:
$$-5 \le u_n \le \frac{5}{2}$$
, $\forall n \in IN$.

Exercício 2

$$v_{n+1} - v_n = \frac{2(n+1)}{n+1+3} - \frac{2n}{n+3} = \frac{2n+2}{n+4} - \frac{2n}{n+3} = \frac{2n^2 + 2n + 6n + 6 - 2n^2 - 8n}{(n+3)(n+4)} = \frac{6}{(n+3)(n+4)} > 0, \forall n \in \mathbb{N}$$

Logo, $(v_n)_n$ é monótona (estritamente) crescente.

Exercício 3

a)
$$\lim_{n} \frac{2n}{\sqrt{n^2 \left(1 + \frac{1}{n^2}\right)}} = \lim_{n} \frac{2n}{n\sqrt{1 + \frac{1}{n^2}}} = \lim_{n} \frac{2}{\sqrt{1 + \frac{1}{n^2}}} = \frac{2}{\sqrt{1 + 0}} = 2$$

b)
$$\lim_{n} \frac{\left(\sqrt{n+10} - \sqrt{n}\right)\left(\sqrt{n+10} + \sqrt{n}\right)}{\sqrt{n+10} + \sqrt{n}} = \lim_{n} \frac{n+10-n}{\sqrt{n+10} + \sqrt{n}} = \lim_{n} \frac{10}{\sqrt{n+10} + \sqrt{n}} = \frac{10}{(+\infty)} = 0$$

c)
$$\left[\lim_{n} \left(1 + \frac{10}{n}\right)^{n}\right]^{\frac{1}{2}} = \left(e^{10}\right)^{\frac{1}{2}} = e^{5}$$

Exercício 4

$$D_f = \big\{ x \in IR \colon x + 5 \ge 0 \, \land \, x \ne 0 \big\} = \big[-5, +\infty \big[\setminus \big\{ 0 \big\} \big]$$

Exercício 5

a) Abcissa do vértice: $-\frac{b}{2a} = -\frac{2}{2\left(-\frac{1}{2}\right)} = 2$; ordenada do vértice: $f\left(2\right) = -\frac{1}{2} \times 4 + 4 = 2$.

Coordenadas do vértice: (2,2); equação do eixo de simetria da parábola: x=2.

b)
$$f(x) < 0 \Leftrightarrow -\frac{1}{2}x^2 + 2x < 0 \Leftrightarrow -x^2 + 4x < 0$$

Cálculo auxiliar: $-x^2 + 4x = 0 \Leftrightarrow x(-x+4) = 0 \Leftrightarrow x = 0 \lor x = 4$

Logo:
$$f(x) < 0 \Leftrightarrow x \in]-\infty, 0[\cup]4, +\infty[$$

Exercício 6

a)

	1	0	-7	-6
-1		-1	1	6
	1	-1	-6	0 = Resto

Logo:
$$p(x) = [x - (-1)](x^2 - x - 6) = (x + 1)(x^2 - x - 6)$$

b) Cálculo auxiliar:
$$x^2 - x - 6 = 0 \Leftrightarrow x = \frac{1 \pm 5}{2} \Leftrightarrow x = -2 \lor x = 3$$

x	$-\infty$	-2		-1		3	$+\infty$
x+1	_	_	_	0	+	+	+
$x^2 - x - 6$	+	0	_	_	_	0	+
p(x)	_	0	+	0	_	0	+

C.S. =
$$]-\infty, -2] \cup [-1,3]$$

Exercício 7

b)
$$D'_f = [-4,0[\cup\{2\}]$$
.

c) A afirmação é falsa, pois existem objetos diferentes com a mesma imagem; por exemplo g(2)=g(3)=2.