Assignment5

Anna Riley

2023-11-09

Question 1

The infmort data set from the package faraway gives the infant mortality rate for a variety of countries. The information is relatively out of date (from 1970s?), but will be fun to graph. Visualize the data using by creating scatter plots of mortality vs income while faceting using region and setting color by oil export status. Utilize a \log_{10} transformation for both mortality and income axes. This can be done either by doing the transformation inside the aes() command or by utilizing the scale_x_log10() or scale_y_log10() layers. The critical difference is if the scales are on the original vs log transformed scale. Experiment with both and see which you prefer. a) The rownames() of the table gives the country names and you should create a new column that contains the country names. *rownames

```
infmort2 <- infmort %>%
  mutate(rownames = rownames(infmort))
head(infmort2)
```

```
##
                          region income mortality
                                                               oil
## Australia
                            Asia
                                   3426
                                              26.7 no oil exports
## Austria
                          Europe
                                   3350
                                              23.7 no oil exports
## Belgium
                          Europe
                                   3346
                                              17.0 no oil exports
## Canada
                        Americas
                                   4751
                                              16.8 no oil exports
## Denmark
                          Europe
                                   5029
                                              13.5 no oil exports
## Finland
                          Europe
                                   3312
                                              10.1 no oil exports
##
                                   rownames
## Australia
                        Australia
                        Austria
```

Austria Austria
Belgium Belgium
Canada Canada
Denmark Denmark
Finland Finland

b) Create scatter plots with the `log10()` transformation inside the `aes()` command.

```
ggplot(infmort2, aes(x = mortality, y = income, color = oil)) +
  geom_point() +
  facet_wrap( ~ region)
```

Warning: Removed 4 rows containing missing values (`geom_point()`).

c) Create the scatter plots using the `scale_x_log10()` and `scale_y_log10()`. Set the major and minor breaks to be useful and aesthetically pleasing. Comment on which version you find easier to read.

```
ggplot(data = infmort2, aes(x = mortality, y = income, color = oil)) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10() +
  facet_wrap(~ region)
```

Warning: Removed 4 rows containing missing values (`geom_point()`).

d) The package `ggrepel` contains functions `geom_text_repel()` and `geom_label_repel()` that mimic the basic `geom_text()` and `geom_label()` functions in `ggplot2`, but work to make sure the labels don't overlap. Select 10-15 countries to label and do so using the `geom_text_repel()` function.

```
ggplot(data = infmort2, aes(x = mortality, y = income, color = oil)) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10() +
  facet_wrap(~ region) +
  geom_text_repel(aes(label = infmort2$rownames), color = 'black')
```

- ## Warning: Removed 4 rows containing missing values (`geom_point()`).
- ## Warning: Removed 4 rows containing missing values (`geom_text_repel()`).
- ## Warning: ggrepel: 31 unlabeled data points (too many overlaps). Consider
- ## increasing max.overlaps
- ## Warning: ggrepel: 19 unlabeled data points (too many overlaps). Consider
- ## increasing max.overlaps
- ## Warning: ggrepel: 15 unlabeled data points (too many overlaps). Consider
- ## increasing max.overlaps
- ## Warning: ggrepel: 17 unlabeled data points (too many overlaps). Consider
- ## increasing max.overlaps

Question 2

Using the datasets::trees data, complete the following: a) Create a regression model for y =Volume as a function of x =Height.

```
trees <- datasets::trees
model <- lm(Volume ~ Height, data = trees)</pre>
trees2 <- trees %>%
 mutate(fit = fitted(model))
head(trees2)
     Girth Height Volume
##
                               fit
## 1
       8.3
               70
                    10.3 20.91087
## 2
       8.6
               65
                    10.3 13.19412
                    10.2 10.10742
## 3
       8.8
               63
     10.5
               72
                    16.4 23.99757
## 4
## 5
     10.7
               81
                    18.8 37.88772
                    19.7 40.97442
## 6
     10.8
               83
b) Using the `summary` command, get the y-intercept and slope of the
    regression line.
```

```
summary(model)
```

Call:

```
## lm(formula = Volume ~ Height, data = trees)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
## -21.274 -9.894 -2.894 12.068
                                    29.852
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -87.1236
                           29.2731 -2.976 0.005835 **
                            0.3839
                                   4.021 0.000378 ***
## Height
                 1.5433
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 13.4 on 29 degrees of freedom
## Multiple R-squared: 0.3579, Adjusted R-squared: 0.3358
## F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
c) Using `ggplot2`, create a scatter plot of Volume vs Height.
ggplot(data = trees2, aes(x = Height, y = Volume)) +
  geom_point()
  80 -
  60 -
Nolume 40 -
```

d) Create a nice white filled rectangle to add text information to using by adding the following annotation layer.

70

20 -

Height

80

...

e) Add some annotation text to write the equation of the line $\hat{y}_i = -87.12 + 1.54 * x_i$ in the text area.

f) Add annotation to add $R^2 = 0.358$

g) Add the regression line in red. The most convenient layer function to uses is `geom_abline()`. It appears that the `annotate` doesn't work with `geom_abline()` so you'll have to call it directly.

