Лабораторная работа №7

Математические основы защиты информации и информационной безопасности

Леонтьева К. А., НПМмд-02-23

5 ноября 2023

Российский университет дружбы народов

Москва, Россия

Цель лабораторной работы

1) Реализовать на языке программирования р-метод Полларда для дискретного логарифмирования

Обозначим $F_p=Z/pZ$, p - простое целое число и назовем конечным полем из p элементов. Задача дискретного логарифмирования в конечном поле F_p формулируется так: для данных целых чисел a и b,a>1,b>p, найти логарифм - такое целое число x, что $a^x\equiv b (mod\ p)$ (если такое число существует). По аналогии с вещественными числами используется обозначение $x=log_ab$.

Теоретическое введение

Безопасность соответствующих криптосистем основана на том, что зная числа a,x,p вычислить $a^x (mod\ p)$ легко, а решить задачу дискретного логарифмирования трудно. Рассмотрим **p-метод** Полларда, который можно применить и для задач дискретного логарифмирования. При этом случайное отображение f должно обладать не только сжимающими свойствами, но и вычислимостью логарифма (логарифм числа f(c) можно выразить через неизвестный логарифм x и $log_a f(c)$). Для дискретного логарифмирования в качестве случайного отображения f чаще всего используются ветвящиеся отображения, например:

$$f(c) = \begin{cases} ac & \text{при } c < \frac{p}{2} \\ bc & \text{при } c > \frac{p}{2} \end{cases}$$

При
$$c<\frac{p}{2}$$
: $log_af(c)=log_ac+1$, при $c>\frac{p}{2}$: $log_af(c)=log_ac+x$.

Ход выполнения лабораторной работы

• Реализуем р-метод Полларда для дискретного логарифмирования

```
import numpy as np
import math
a = 10
b = 64
p = 107
def f(x, u, v):
   if x < r:
        return (a * x) % p, u + 1, v
   if x >= r:
        return (b * x) % p, u, v + 1
def r(a,p):
   r = 1
   while (a**r - 1) % p != 0:
        r = r + 1
   return r
u = 2
v = 2
r = r(a, p)
c = (a**u * b**v) % p
d = c
```

Figure 1: Рис.1: p-метод Полларда для дискретного логарифмирования

```
u c = u
u d = u
v c = v
v d = v
print(' c', ' | ', 'log_a(c)', ' | ', ' d', ' | ', 'log_a(d)')
print('-----
print('c =', c, ' | ', u_c, '+', v_c, 'x', ' | ', 'd =', d, ' | ', u_d, '+', v_d, 'x')
c. uc. vc = f(c. uc. vc)
d, u_d, v_d = f(f(d, u_d, v_d)[0], f(d, u_d, v_d)[1], f(d, u_d, v_d)[2])
print('c =', c, ' | ', u_c, '+', v_c, 'x', ' | ', 'd =', d, ' | ', u_d, '+', v_d, 'x')
while c % p != d % p:
   c. uc. vc = f(c. uc. vc)
   d. u d. v d = f(f(d, u d, v d)[0], f(d, u d, v d)[1], f(d, u d, v d)[2])
  print('c =', c, ' | ', u c, '+', v c, 'x', ' | ', 'd =', d, ' | ', u d, '+', v d, 'x')
x = 1
while (u c + v c * x) % r != (u d + v d * x) % r:
   x = x + 1
print(' ')
print('Показатель x = ', x)
```

Figure 2: Рис.2: р-метод Полларда для дискретного логарифмирования

Ход выполнения лабораторной работы

c	log_a(c)	d	log_a(d)
c = 4	2 + 2 x	d = 4	2 + 2 x
c = 40	3 + 2 x	d = 79	4 + 2 x
c = 79	4 + 2 x	d = 56	5 + 3 x
c = 27	4 + 3 x	d = 75	5 + 5 x
c = 56	5 + 3 x	d = 3	5 + 7 x
c = 53	5 + 4 x	d = 86	7 + 7 x
c = 75	5 + 5 x	d = 42	8 + 8 x
c = 92	5 + 6 x	d = 23	9 + 9 x
c = 3	5 + 7 x	d = 53	11 + 9 x
c = 30	6 + 7 x	d = 92	11 + 11 x
c = 86	7 + 7 x	d = 30	12 + 12 x
c = 47	7 + 8 x	d = 47	13 + 13 x
Показатель х = 20			

Figure 3: Рис.3: р-метод Полларда для дискретного логарифмирования

Вывод

• В ходе выполнения данной лабораторной работы был реализован р-метод Полларда для дискретного логарифмирования