

Precision 500 mA regulators

Datasheet - production data

Features

- Output current to 0.5 A
- Output voltages of 5; 6; 8; 9; 10; 12; 15; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- Output voltage tolerance: 2 % (AB and AC versions) or 4 % (C version)
- Guaranteed in extended temperature range

Description

The L78M series of three-terminal positive regulators is available in TO-220, TO-220FP, DPAK and IPAK packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, resulting it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Contents L78M

Contents

1	Diagran	n	3
2		figuration	
3		ım ratings	
4		cuits	
5	Electric	7	
6		performance	
7		tions information	
	7.1	Design considerations	
8	Packag	e information	28
	8.1	TO-220 (single gauge) package information	29
	8.2	TO-220 (dual gauge) package information	31
	8.3	TO-220FP package information	33
	8.4	DPAK (TO-252) type A package information	35
	8.5	DPAK (TO-252) type I package information	38
	8.6	DPAK packing information	41
	8.7	IPAK package information	43
9	Orderin	g information	45
10	Revisio	n history	46

L78M Diagram

1 Diagram

Figure 1: Block diagram

Pin configuration L78M

2 Pin configuration

Figure 2: Pin connections (top view)

Figure 3: Schematic diagram

57

L78M Maximum ratings

3 Maximum ratings

Table 1: Absolute maximum ratings

Symbol	Parameter		Value	Unit
M	DC inquit valtage	for $V_0 = 5$ to 18 V	35	V
Vı	DC input voltage	for V _O = 20, 24 V	40	V
lo	Output current	Internally limited	mA	
P _D	Power dissipation	Power dissipation		
T_{STG}	Storage temperature range		- 65 to 150	°C
	for L78MxxAC		0 to 125	
TOP	Operating junction temperature range	for L78MxxAB	-40 to 125	°C
		for L78MxxC	0 to 150	

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal data

Symb	Parameter	TO-220	TO-220FP	DPAK	IPAK	Unit
R _{thJC}	Thermal resistance junction-case	5	5	8	8	°C/W
RthJA	Thermal resistance junction-ambient	50	60	100	100	°C/W

Figure 4: Application circuit

Test circuits L78M

4 Test circuits

Figure 5: DC parameter

Figure 6: Load regulation

Figure 7: Ripple rejection

5 Electrical characteristics

Refer to the test circuits, T_J = 25 °C, V_I = 10 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF unless otherwise specified.

Table 3: Electrical characteristics of L78M05C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		4.8	5	5.2	V
Vo	Output voltage	Io = 5 to 350 mA, V _I = 7 to 20 V	4.75	5	5.25	V
4)/-	Line regulation	V _I = 7 to 25 V, I _O = 200 mA			100	m)/
ΔVo		$V_1 = 8 \text{ to } 25 \text{ V}, I_0 = 200 \text{ mA}$			50	mV
437		Io = 5 to 500 mA, T _J = 25 °C			100	\/
ΔVo	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			50	mV
I _d	Quiescent current				6	mA
4.1		Io = 5 to 350 mA			0.5	Λ
ΔI_d	Quiescent current change	$I_0 = 200 \text{ mA}, V_1 = 8 \text{ to } 25 \text{ V}$			0.8	mA
ΔVο/ΔΤ	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz, I _O = 300 mA	62			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		40		μV
Vd	Dropout voltage			2		V
Isc	Short circuit current	V _I = 35 V		300		mA

Refer to the test circuits, V_I = 10 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 4: Electrical characteristics of L78M05A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	4.9	5	5.1	V
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 7 \text{ to } 20 \text{ V}$	4.8	5	5.2	V
۸۱/۵	Line regulation	$V_I = 7 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, T_J = 25 \text{ °C}$			100	~^\/
ΔVo		$V_{I} = 8 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25 \text{ °C}$			50	mV
4)/	Lood regulation	Io = 5 to 500 mA, T _J = 25 °C			100	m\/
ΔV_{O}	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			50	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
4.1	Quiescent current change	Io = 5 to 350 mA			0.5	A
ΔI_d		Io = 200 mA, V _I = 8 to 25 V			8.0	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	$V_{I} = 8 \text{ to } 18 \text{ V}, f = 120 \text{ Hz}, I_{O} = 300 \text{ mA},$ $T_{J} = 25^{\circ}\text{C}$	62			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		40		μV
Vd	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	T _J = 25 °C, V _I = 35 V		300		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 11 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 5: Electrical characteristics of L78M06C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		5.75	6	6.25	V
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 8 \text{ to } 21 \text{ V}$	5.7	6	6.3	V
437	Line regulation	$V_1 = 8 \text{ to } 25 \text{ V}, I_0 = 200 \text{ mA}$			100	m)/
ΔVo		$V_1 = 9 \text{ to } 25 \text{ V}, I_0 = 200 \text{ mA}$			50	mV
4)/	Load regulation	Io = 5 to 500 mA, T _J = 25 °C			120	mV
ΔV_{O}		Io = 5 to 200 mA, T _J = 25 °C			60	IIIV
I _d	Quiescent current				6	mA
4.1	0:	Io = 5 to 350 mA			0.5	A
ΔI_d	Quiescent current change	$I_0 = 200 \text{ mA}, V_1 = 9 \text{ to } 25 \text{ V}$			8.0	mA
$\Delta V_O/\Delta T$	Output voltage drift	$I_{O} = 5 \text{ mA}, T_{J} = 0 \text{ to } 125 \text{ °C}$		-0.5		mV/°C
SVR	Supply voltage rejection	$V_1 = 9 \text{ to } 19 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA}$	59			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		45		μV
Vd	Dropout voltage			2		V
Isc	Short circuit current	V _I = 35 V		270		mA

Refer to the test circuits, V_I = 11 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 6: Electrical characteristics of L78M06A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	5.88	6	6.12	V
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 8 \text{ to } 21 \text{ V}$	5.75	6	6.3	V
D\/-	Line regulation	$V_{I} = 8 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25 \text{ °C}$			100	\/
DVo		$V_I = 9 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, T_J = 25 \text{ °C}$			30	mV
4)/	Lood regulation	Io = 5 to 500 mA, T _J = 25 °C			120	m\/
ΔV_{O}	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			60	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
4.1	Quiescent current change	Io = 5 to 350 mA			0.5	A
ΔI_d		Io = 200 mA, V _I = 9 to 25 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	$V_1 = 9 \text{ to } 19 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA},$ $T_J = 25 ^{\circ}\text{C}$	59			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		45		μV
Vd	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	T _J = 25 °C, V _I = 35 V		270		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 14 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 7: Electrical characteristics of L78M08C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		7.7	8	8.3	V
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 10.5 \text{ to } 23 \text{ V}$	7.6	8	8.4	V
41/	Line regulation	V _I = 10.5 to 25 V, I _O = 200 mA			100	\/
ΔVo		V _I = 11 to 25 V, I _O = 200 mA			50	mV
4)/	Load regulation	Io = 5 to 500 mA, T _J = 25 °C			160	m\/
ΔV _O		Io = 5 to 200 mA, T _J = 25 °C			80	mV
I _d	Quiescent current				6	mA
4.1	0:	Io = 5 to 350 mA			0.5	A
ΔI_d	Quiescent current change	$I_0 = 200 \text{ mA}, V_1 = 10.5 \text{ to } 25 \text{ V}$			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_{\rm O}$ = 5 mA, $T_{\rm J}$ = 0 to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	$V_1 = 11.5 \text{ to } 21.5 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA}$	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		52		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		250		mA

Refer to the test circuits, V_I = 14 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 8: Electrical characteristics of L78M08A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	7.84	8	8.16	V
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 10.5 \text{ to } 23 \text{ V}$	7.7	8	8.3	V
A\/-	Line regulation	$V_I = 10.5$ to 25 V, $I_O = 200$ mA, $T_J = 25$ °C			100	m\/
ΔVo		$V_I = 11$ to 25 V, $I_O = 200$ mA, $T_J = 25$ °C			30	mV
417	Load regulation	I _O = 5 to 500 mA, T _J = 25 °C			160	m\/
ΔV_{O}	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			80	mV
I_d	Quiescent current	T _J = 25 °C			6	mA
4.1	Quiescent current change	Io = 5 to 350 mA			0.5	A
ΔI_d		$I_0 = 200 \text{ mA}, V_1 = 10.5 \text{ to } 25 \text{ V}$			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_0 = 5 \text{ mA}$		-0.5		mV/°C
SVR	Supply voltage rejection	$V_{I} = 11.5 \text{ to } 21.5 \text{ V}, f = 120 \text{ Hz } I_{O} = 300 \text{ mA}, \\ T_{J} = 25 ^{\circ}\text{C}$	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		52		μV
V_d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	$T_J = 25 ^{\circ}\text{C}, \ V_I = 35 \text{V}$		250		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 15 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 9: Electrical characteristics of L78M09C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		8.65	9	9.35	V
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 11.5 \text{ to } 24 \text{ V}$	8.55	9	9.45	V
437	Line regulation	V _I = 11.5 to 25 V, I _O = 200 mA			100	\/
ΔVo		$V_1 = 12 \text{ to } 25 \text{ V}, I_0 = 200 \text{ mA}$			50	mV
4)/	Lood regulation	Io = 5 to 500 mA, T _J = 25 °C			180	m\/
ΔV_{O}	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			90	mV
I _d	Quiescent current				6	mA
41	0:	Io = 5 to 350 mA			0.5	A
ΔI_d	Quiescent current change	Io = 200 mA, V _I = 11.5 to 25 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	$I_0 = 5 \text{ mA}, T_J = 0 \text{ to } 125 \text{ °C}$		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 12.5 to 23 V, f = 120 Hz, I _O = 300 mA	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		58		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		250		mA

Refer to the test circuits, V_I = 15 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 10: Electrical characteristics of L78M09A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	8.82	9	9.18	V
Vo	Output voltage	I_0 = 5 to 350 mA, V_I = 11.5 to 24 V	8.64	9	9.36	V
۸۷/۵	Line regulation	$V_{I}=11.5$ to 25 V, $I_{O}=200$ mA, $T_{J}=25\ ^{\circ}C$			100	m)/
ΔVo		V_I = 12 to 25 V, I_O = 200 mA, T_J = 25 °C			30	mV
437	Lood vo sulption	I_0 = 5 to 500 mA, T_J = 25 °C			180	\ <i>(</i>
ΔV_{O}	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			90	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
4.1	Quiescent current change	Io = 5 to 350 mA			0.5	A
ΔI_d		I _O = 200 mA, V _I = 11.5 to 25 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_0 = 5 \text{ mA}$		-0.5		mV/°C
SVR	Supply voltage rejection	V_{I} = 12.5 to 23 V, f = 120 Hz, I_{O} = 300 mA, T_{J} = 25 °C	56			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T_J = 25 °C		52		μV
V _d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	$V_I = 35 \text{ V}, T_J = 25 \text{ °C}$		250		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, V_I = 16 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF , T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 11: Electrical characteristics of L78M10A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	9.8	10	10.2	V
Vo	Output voltage	$I_0 = 5$ to 350 mA, $V_1 = 12.5$ to 25 V	9.6	10	10.4	V
437	Line regulation	V_{I} = 12.5 to 30 V, I_{O} = 200 mA, T_{J} = 25 °C			100	\/
ΔVo		V_I = 13 to 30 V, I_O = 200 mA, T_J = 25 °C			30	mV
437	Lood ve suleties	I_0 = 5 to 500 mA, T_J = 25 °C			200	\/
ΔV_{O}	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			100	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
4.1	Quiescent current change	Io = 5 to 350 mA			0.5	A
ΔI_d		I _O = 200 mA, V _I = 12.5 to 30 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	$I_0 = 5 \text{ mA}$		-0.5		mV/°C
SVR	Supply voltage rejection	V_{I} = 13.5 to 24 V, f = 120 Hz, I_{O} = 300 mA, T_{J} = 25 °C	56			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		64		μV
Vd	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		245		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 19 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF unless otherwise specified.

Table 12: Electrical characteristics of L78M12C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		11.5	12	12.5	V
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 14.5 \text{ to } 27 \text{ V}$	11.4	12	12.6	V
41/-	Line regulation	$V_1 = 14.5 \text{ to } 30 \text{ V}, I_0 = 200 \text{ mA}$			100	m\/
ΔVo	Line regulation	V _I = 16 to 30 V, I _O = 200 mA			50	mV
41/	Load regulation	Io = 5 to 500 mA, T _J = 25 °C			240	m\/
ΔVo	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			120	mV
I _d	Quiescent current				6	mA
A.1	Quiaccent current change	Io = 5 to 350 mA			0.5	A
ΔI_d	Quiescent current change	I _O = 200 mA, V _I = 14.5 to 30 V			0.8 mA	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-1		mV/°C
SVR	Supply voltage rejection	$V_1 = 15 \text{ to } 25 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA}$	55			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		75		μV
Vd	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

16/47

Refer to the test circuits, V_I = 19 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF , T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 13: Electrical characteristics of L78M12A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	11.75	12	12.25	V
Vo	Output voltage	$I_0 = 5$ to 350 mA, $V_1 = 14.5$ to 27 V	11.5	12	12.5	V
4)/-	Line regulation	V_{I} = 14.5 to 30 V, I_{O} = 200 mA, T_{J} = 25 °C			100	m)/
ΔVo	Line regulation	$V_I = 16$ to 30 V, $I_O = 200$ mA, $T_J = 25$ °C			30	mV
4)/	Lood regulation	I_{O} = 5 to 500 mA, T_{J} = 25 °C			240	m)/
ΔV_{O}	Load regulation	I_{O} = 5 to 200 mA, T_{J} = 25 °C			120	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
4.1	Ouissant surrent shangs	I _O = 5 to 350 mA			0.5	A
ΔI_d	Quiescent current change	$I_0 = 200 \text{ mA}, V_1 = 14.5 \text{ to } 30 \text{ V}$			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	$I_O = 5 \text{ mA}$		-1		mV/°C
SVR	Supply voltage rejection	$V_1 = 15 \text{ to } 25 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA},$ $T_J = 25 ^{\circ}\text{C}$	55			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_J = 25$ °C		75		μV
Vd	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		240		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 23 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF unless otherwise specified.

Table 14: Electrical characteristics of L78M15C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		14.4	15	15.6	٧
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 17.5 \text{ to } 30 \text{ V}$	14.25	15	15.75	\
A)/-	Line regulation	$V_1 = 17.5 \text{ to } 30 \text{ V}, I_0 = 200 \text{ mA}$			100	.,
ΔVo	Line regulation	$V_1 = 20 \text{ to } 30 \text{ V}, I_0 = 200 \text{ mA}$			50	mV
4)/	Load regulation	I _O = 5 to 500 mA, T _J = 25 °C			300	m) /
ΔVo	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			150	mV
I _d	Quiescent current				6	mA
4.1	Quiescent current	Io = 5 to 350 mA			0.5	A
ΔI_d	change	$I_0 = 200 \text{ mA}, V_1 = 17.5 \text{ to } 30 \text{ V}$			8.0	mA
$\Delta V_O/\Delta T$	Output voltage drift	I_{O} = 5 mA, T_{J} = 0 to 125 °C		-1		mV/°C
SVR	Supply voltage rejection	$V_1 = 18.5 \text{ to } 28.5 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA}$	54			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		90		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Refer to the test circuits, V_I = 23 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF , T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 15: Electrical characteristics of L78M15A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	T _J = 25 °C	14.7	15	15.3	V	
Vo	Output voltage	$I_0 = 5$ to 350 mA, $V_1 = 17.5$ to 30 V	14.4	15	15.6	V	
437	Line ve avdetie a	V_{I} = 17.5 to 30 V, I_{O} = 200 mA, T_{J} = 25 °C			100	>/	
ΔVo	Line regulation	$V_I = 20$ to 30 V, $I_O = 200$ mA, $T_J = 25$ °C			30	mV	
41/	Load regulation	I_{O} = 5 to 500 mA, T_{J} = 25 °C			300	m)/	
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			150	mV	
I _d	Quiescent current	T _J = 25 °C			6	mA	
4.1	Ovices and assessed about a	I _O = 5 to 350 mA			0.5	Λ	
ΔI_d	Quiescent current change	I _O = 200 mA, V _I = 17.5 to 30 V			0.8	mA	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5 \text{ mA}$		-1		mV/°C	
SVR	Supply voltage rejection	$V_{I} = 18.5 \text{ to } 28.5 \text{ V}, f = 120 \text{ Hz}, I_{O} = 300 \text{ mA},$ $T_{J} = 25 ^{\circ}\text{C}$	54			dB	
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		90		μV	
Vd	Dropout voltage	T _J = 25 °C		2		V	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C	_	240		mA	
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA	

Refer to the test circuits, T_J = 25 °C, V_I = 33 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF unless otherwise specified.

Table 16: Electrical characteristics of L78M24C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		23	24	25	٧
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 27 \text{ to } 38 \text{ V}$	22.8	24	25.2	V
41/-	Line regulation	V _I = 27 to 38 V, I _O = 200 mA			100	m\/
ΔVo	Line regulation	V _I = 28 to 38 V, I _O = 200 mA			50	mV
41/	Load regulation	Io = 5 to 500 mA, T _J = 25 °C			480	m\/
ΔVo	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			240	mV
I _d	Quiescent current				6	mA
41	Quiaccent current change	Io = 5 to 350 mA			0.5	A
ΔI_d	Quiescent current change	Io = 200 mA, V _I = 27 to 38 V			8.0	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-1.2		mV/°C
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz, I _O = 300 mA	50			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		170		μV
Vd	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Refer to the test circuits, V_I = 33 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF , T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 17: Electrical characteristics of L78M24A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	23.5	24	24.5	V
Vo	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 27 \text{ to } 38 \text{ V}$	23	24	25	V
417	Line very detion	$V_I = 27$ to 38 V, $I_O = 200$ mA, $T_J = 25$ °C			100	\ <i>/</i>
ΔVo	Line regulation	$V_{I} = 28 \text{ to } 38 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25 ^{\circ}\text{C}$			30	mV
417	Lood very detion	I _O = 5 to 500 mA, T _J = 25 °C			480	\ <i>/</i>
ΔV_{O}	Load regulation	Io = 5 to 200 mA, T _J = 25 °C			240	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
4.1	Outles continues above	I _O = 5 to 350 mA			0.5	Λ
ΔI_d	Quiescent current change	I _O = 200 mA, V _I = 27 to 38 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1.2		mV/°C
SVR	Supply voltage rejection	$V_{I} = 28 \text{ to } 38 \text{ V}, \text{ f} = 120 \text{ Hz}, \text{ I}_{O} = 300 \text{ mA}, \\ T_{J} = 25 \text{ °C}$	50			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		170		μV
Vd	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		240		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Typical performance L78M

6 Typical performance

L78M Typical performance

Figure 12: Supply voltage rejection vs frequency

SVR(dB)

80

40

V_I =8 to 18V

V_O =500mA

TJ = 25°C

V_O = 5V

AMG080320171823MT

I_d(mA)

I_L=20mA

V₀=5v

I_J=25°C

I_J=25°C

Figure 16: Quiescent current vs input voltage

10

15

20

25

 $V_1(V)$

AMG080320171827MT

7 **Applications information**

7.1 **Design considerations**

The L78M series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short-circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short-circuit as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 17: Fixed output regulator

Although no output capacitor is need for stability. Co improve transient response if present. C₁ is required if regulator is located an appreciable distance from power supply filter.

L78M 0.33µF $0.1 \mu F$ $I_0 = V_{XX}/R_1 + I_d$ AMG080320171808MT

Figure 18: Constant current regulator

Figure 19: Circuit for increasing output voltage

Figure 20: Adjustable output regulator (7 to 30 V)

Figure 21: 0.5 to 10 V regulator

Figure 22: High current voltage regulator

Figure 23: High output current with short circuit protection

Figure 24: Tracking voltage regulator

Figure 25: High input voltage circuit

47/

Figure 26: Reducing power dissipation with dropping resistor

Figure 27: Power AM modulator (unity voltage gain, IO ≤ 0.5)

The circuit performs well up to 100 kHz.

₋ ν_ο L78M $V_O = V_{XX} (1+R_2/R_1) + V_{BE}$ Q1 BC153 AMG080320171818MT

Figure 28: Adjustable output voltage with temperature compensation

 Q_2 is connected as a diode in order to compensate the variation of the $Q_1\ V_{BE}$ with the temperature. C allows a slow rise time of the Vo.

Package information L78M

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

L78M Package information

8.1 TO-220 (single gauge) package information

Figure 29: TO-220 (single gauge) package outline

Table 18: TO-220 (single gauge) mechanical data

Dim	, ,	mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØР	3.75		3.85
Q	2.65		2.95

L78M Package information

8.2 TO-220 (dual gauge) package information

Figure 30: TO-220 (dual gauge) package outline

Table 19: TO-220 (dual gauge) mechanical data

L78M

	145:0 10: 10 220 (444:	99.,	
Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØΡ	3.75		3.85
Q	2.65		2.95

L78M Package information

8.3 TO-220FP package information

Figure 31: TO-220FP package outline

Table 20: TO-220FP package mechanical data

Di	mm				
Dim.	Min.	Тур.	Max.		
А	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
Е	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

L78M Package information

8.4 DPAK (TO-252) type A package information

Figure 32: DPAK (TO-252) type A package outline

Table 21: DPAK (TO-252) type A mechanical data

D.	mm				
Dim.	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1	4.95	5.10	5.25		
E	6.40		6.60		
E1	4.60	4.70	4.80		
е	2.16	2.28	2.40		
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)	2.60	2.80	3.00		
L2	0.65	0.80	0.95		
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Figure 33: DPAK (TO-252) type A recommended footprint (dimensions are in mm)

Package information L78M

8.5 DPAK (TO-252) type I package information

Figure 34: DPAK (TO-252) type I package outline

Table 22: DPAK (TO-252) type I mechanical data

Table 22: DPAK (TO-252) type I mechanical data				
Dim.	mm			
	Min.	Тур.	Max.	
Α	2.20	2.30	2.38	
A1	0.90	1.01	1.10	
A2	0.00	-	0.10	
b	0.77	-	0.89	
b1	0.76	0.81	0.86	
b2	0.77	-	1.10	
b3	5.23	5.33	5.43	
С	0.47	-	0.60	
c1	0.46	0.51	0.56	
c2	0.47	-	0.60	
D	6.00	6.10	6.20	
D1	5.25	5.40	5.60	
E	6.50	6.60	6.70	
E1	4.70	4.85	5.00	
е	2.286 BSC			
Н	9.80	10.10	10.40	
L	1.40	1.50	1.70	
L1	2.90 REF			
L2	0.90	-	1.25	
L3	0.51 BSC			
L4	0.60	0.80	1.00	
L5	0.90	-	1.50	
L6	1.80 BSC			
θ	0°	-	8°	
θ	5°	7°	9°	
Θ	5°	7°	9°	

8.6 DPAK packing information

Figure 36: DPAK tape

Package information L78M

Figure 37: DPAK reel

Table 23: DPAK tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty.		2500
P1	7.9	8.1	Bulk qty. 25		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3	_		

8.7 IPAK package information

Figure 38: IPAK package outline

Table 24: IPAK mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
Е	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

L78M Ordering information

9 Ordering information

Table 25: Order code

Order codes					
TO-220 (single gauge)	TO-220 (dual gauge)	TO-220FP	DPAK	IPAK	Output voltages
L78M05ABV	L78M05ABV-DG		L78M05ABDT-TR		5 V
			L78M05ACDT-TR		
L78M05CV	L78M05CV-DG	L78M05CP	L78M05CDT-TR	L78M05CDT-1	5 V
			L78M06ABDT-TR		6 V
			L78M06CDT-TR		6 V
			L78M08ABDT-TR		8 V
L78M08CV	L78M08CV-DG		L78M08CDT-TR		8 V
			L78M09ABDT-TR		9 V
L78M09CV	L78M09CV-DG		L78M09CDT-TR		9 V
			L78M10ABDT-TR		10 V
			L78M12ABDT-TR		12 V
			L78M12ACDT-TR		12 V
L78M12CV	L78M12CV-DG		L78M12CDT-TR		12 V
L78M15ABV	L78M15ABV-DG		L78M15ABDT-TR		15 V
L78M15CV	L78M15CV-DG		L78M15CDT-TR		15 V
			L78M24ABDT-TR		24 V
			L78M24ACDT-TR		24 V
L78M24CV	L78M24CV-DG		L78M24CDT-TR		24 V

Revision history L78M

10 Revision history

Table 26: Document revision history

Date	Revision	Changes
21-Jun-2004	6	Document updating.
30-Aug-2006	7	Order codes updated.
29-Nov-2006	8	DPAK mechanical data updated and add footprint data.
06-Jun-2007	9	Order codes updated.
10-Dec-2007	10	Added Table 25.
19-Feb-2008	11	Modified: Table 25 on page 44.
15-Jul-2008	12	Modified: Table 25 on page 44 and Table 26 on page 45.
07-Apr-2009	13	Modified: Figure 9 on page 22 and Figure 15 on page 23.
14-Jun-2010	14	Added: Table 18 on page 26, Figure 29 on page 27, Figure 30 on page 28, Figure 31 and Figure 32 on page 29.
11-Nov-2010	15	Modified: R _{thJC} value for TO-220 Table 2 on page 5.
08-Feb-2012	16	Added: order codes L78M05CV-DG, L78M12CV-DG and L78M15CV-DG Table 25 on page 44.
09-Mar-2012	17	Added: order codes L78M08CV-DG and L78M09CV-DG Table 25 on page 44.
15-May-2012	18	Added: order codes L78M24CV-DG Table 25 on page 44.
19-Apr-2013	19	Removed: Available on request footnote 2 Table 25 on page 44.
04-Jun-2014	20	Part numbers L78MxxAB, L78MxxAC and L78MxxC changed to L78M. Updated the title and the features in cover page. Canceled Table 1.Device summary. Updated Section 3: Maximum ratings, Section 5: Electrical characteristics, Section 6: Typical performance and Section 8: Package mechanical data. Added Section 7: Applications information and Section 9: Packaging mechanical data. Minor text changes.
21-Mar-2017	21	Updated Section 8: "Package information" (DPAK package information changed from type F to type I). Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

L78M24ACDT L78M05ABDT L78M24ABDT L78M15ABDT L78M15ABV L78M09CV L78M15CV L78M12CV L78M24ABDT-TR L78M15CDT-TR L78M012CDT-TR L78M05CDT-TR L78M06CDT-TR L78M24CDT-TR L78M05ACDT-TR L78M06ABDT-TR L78M10ABDT-TR L78M05ABV L78M08CV L78M24CV L78M05CV L78M05CV L78M05CP L78M05CDT-1 L78M12ABDT-TR L78M15ABDT-TR L78M08ABDT-TR L78M09ABDT-TR L78M05ABDT-TR L78M12ACDT-TR L78M09CDT-TR L78M08CDT-TR L78M24ACDT-TR L78M15CV-DG L78M12CV-DG L78M15ABV-DG L78M08CV-DG L78M09CV-DG L78M08ABDT L78M10ABDT L78M06ABV L78M12ABDT L78M12ABDT L78M12ABDT-1 L78M08ABV L78M06ABDT L78M05ACDT