

Procesarea Imaginilor

Curs 9:

Zgomotul în imagini. Modelarea şi eliminarea zgomotului

Definiţia zgomotului

Zgomot := Orice proces (n) care afectează imaginea (f) şi nu face parte din scenă (semnalul iniţial - s):

$$f(i,j) = s(i,j) + n(i,j)$$
 (modelul zgomotului aditiv)

Cauze:

- Natura discretă a radiaţiei
- Sensibilitatea detectorului (sensibilitate variabilă a elementelor din senzorul CCD/CMOS ⇒ fixed pattern noise (dark current noise (DCN) & photon response nonuniformity (PhRNU))
- 3. Zgomot electric
- 4. Erori de transmisie a datelor
- 5. Turbulenţe atmosferice
- 6. Rezoluţia senzorului (cuantizarea spaţială)
- 7. Digitizarea semnalului video (cuantizarea nivelelor de culoare / intensitate)

Surse de zgomot

- s(i,j) semnalul iniţial, lumina reflectată de pe obiect
- f(i,j) semnalul (imaginea digitală) memorat în sistemul de calcul
- n(i,j) zgomot, procese care se interpun între s şi f (1...7)
- 1 Natura discretă a radiației
- 2 Sensibilitatea variabilă a elementelor (pixelilor) senzorului
- 3 Zgomotul electric
- 4 Erori de transmisie a datelor

- 5 Turbulenţe atmosferice
- 6 Rezoluţia senzorului (erori de cuantizare spaţială)
- 7 Rezoluţia convertorului A/D (erori de cuantizare a semnalului analogic)

Zgomotul cauzat de pierderea datelor

"Data dropout noise"

- Cauza: biţi pierduţi sau alteraţi pe canalele de transmisie
- De obicei apare ca "zăpadă" pe imagine
- Zgomot ce afectează de obicei imaginile preluate din satelit
- Acest zgomot nu este corelat cu datele din imagine
- Acest zgomot poate fi eliminat fără degradarea imaginii dacă el afectează sub 1.5% din pixeli

1 in 100 bits

1 in 20 bits

Zgomot Salt &Pepper (sare şi piper)

Caz particular al zgomotului cauzat de pierderea datelor, cauzat de:

- funcţionarea proastă a celulelor din senzorii camerelor
- greşeli ale locaţiilor de memorie
- erori de sincronizare în procesul de digitizare
- erori (pierderi de biţi) pe canalul de comunicaţie în cazul transmisiilor imaginilor (ex: transmisii prin satelit în condiţii atmosferice proaste).

Model

$$FDP_{Sare\&\,piper} = \begin{cases} A & pentru\ g = a\ ("piper") \\ B & pentru\ g = b\ ("sare") \end{cases}$$

În modelul de zgomot de tip *salt & pepper* există doar două valori posibile, a şi b. Din aceasta cauză se mai numeşte şi zgomot de tip impuls (speckle). Probabilitatea de apariţie a fiecăruia este mai mică de 0.1; La valori mai mari decat acestea, zgomotul va domina imaginea. Pentru o imagine de 8 biţi, valoare de intensitate tipică pentru *zgomotul pepper* este ≈ 0, şi pentru *zgomotul salt* este ≈ 255.

Zgomot Salt &Pepper (sare şi piper)

Imaginea originală

Imagine cu zgomot A = 0.005, B = 0.005

Eliminarea zgomotului Sare și Piper

Se utilizează filtrul Median

Gradul de filtrare este controlat prin dimensiunea filtrului

Filtru median 3x3

Filtru median 15x15

Zgomotul cu model fix ("fixed pattern noise")

Cauze

- Celulele individuale ale senzorilor de imagine (CCD sau CMOS) au sensibilitate diferită, rezultând tensiune de ieşire diferită pentru aceeaşi cantitate de lumină captată.
- Sensibilitatea diferită este cauzată de imperfecțiuni ale procesului de fabricație.
- · Acest zgomot se poate corecta prin calibrarea fiecărui pixel al senzorului.

Zgomot FPN tipic, amplificat pentru vizibilitate (în realitate, diferenţa între minim şi maxim este de 5 nivele de gri

- Se fac măsurători în mai multe condiţii de iluminare, şi se calculează un profil de senzitivitate pentru fiecare pixel.
- Corecţia FPN este necesară pentru aplicaţii unde răspunsul trebuie să fie foarte precis, cum ar fi aplicaţiile astronomice.

Zgomotul cu model fix ("fixed pattern noise")

Zgomot cu model fix datorat unor procese de scanare

(b) Typical image

Zgomotul cu model fix ("fixed pattern noise")

Zgomot cu model fix datorat unor procese de scanare

- Zgomotul este repetitiv, cu perioada dată de lăţimea senzorului
- Prin analiza proiecţiei imaginii, se poate determina perioada

$$p(j) = \sum_{i=0}^{N-1} f(i, j)$$

Se poate analiza zgomotul ca o deviere faţă de o liniaritate locală:

Zgomot uniform

- Model teoretic, simplu de generat
- Folosit la degradarea imaginilor pentru evaluarea algoritmilor de restaurare (deoarece oferă un model de zgomot neutru)

Nivele de zri

Model

Probabilitate

$$FDP_{Uniform} = \begin{cases} \frac{1}{b-a} &, a \leq g \leq b \\ 0 &, alt fel \end{cases}$$

1 /(b-a) —

Zgomot uniform

Media: $\mu = (a+b)/2$

Varianţa: $\sigma^2 = (b-a)^2/12$

Cu distribuția uniformă, valorile nivelelor de gri ale zgomotelor sunt distribuite întrun domeniu specific, care poate fi întreg domeniul (0 - 255 pentru 8 biți), sau o porțiune mai mică din acest domeniu [a ... b].

Zgomot uniform

IMAGE PROCESSING

Technical University of Cluj Napoca Computer Science Department

Zgomotul din procesul de detecţie

- "Detector noise", "Shot noise"
- Zgomot intrinsec procesului de măsură, ce nu are legătură cu sistemul de captare a imaginii.
- Toate sistemele de captare a imaginii numără de fapt particule, electroni sau fotoni, care sunt supuse legilor fizice şi statistice
- Pentru o sursă cu strălucirea medie $\langle \mu \rangle$ valoarea aşteptată este:

$$\langle f \rangle = \Delta t \langle \mu \rangle$$

• O singură observație va fi o variabilă aleatoare din distribuția de probabilitate:

$$p(f)=rac{\langle f
angle^f\exp(-\langle f
angle)}{f!}$$

PDF a unei distribuții Poisson cu $\langle f \rangle = 4$

Zgomotul din procesul de detecţie

Atunci când sunt puţini fotoni per pixel, zgomotul domină.

• În imaginile astronomice se pot întâlni şi cazuri cu 0.1 fotoni/pixel.

Aproximarea Gaussiană

• Distribuţia Poisson este dificil de utilizat. Pentru valori aşteptate mari, această distribuţie se poate aproxima printr-un Gaussian de medie u şi varianţă $\sigma^2 = 2u$

$$p(n) = \frac{u^n \exp(-u)}{n!} \to \frac{1}{(2\pi u)^{1/2}} \exp\left(\frac{-(n-u)^2}{2u}\right)$$

- Pentru u>20, această aproximare are o eroare mai mică de 1%
- Astfel, pentru o medie $\langle f \rangle$ se aproximează p(f) prin:

$$p(f) = \frac{1}{(2\pi\langle f \rangle)^{1/2}} \exp\left(\frac{-(f - \langle f \rangle)^2}{2\langle f \rangle}\right)$$

• Dacă privim valoarea măsurată f ca fiind supusă unui zgomot aditiv $f = \langle f \rangle + n$ unde n este zgomotul (de medie zero), avem PDF a zgomotului :

$$p(n) = \frac{1}{(2\pi\langle f \rangle)^{1/2}} \exp\left(\frac{-n^2}{2\langle f \rangle}\right)$$

 Acest zgomot este dependent de semnalul f, (Signal Dependent Additive Noise), şi este dificil de procesat.

Zgomot Gaussian

- Folosit pentru modelarea proceselor naturale care introduc zgomote (ex: zgomotul electric din timpul procesului de achiziţie, sau natura radiaţiei)
- Zgomot aditiv independent de semnal (asumpţie validă pentru imagini cu contrast mic)

Model

$$FDP_{Gaussian} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(g-\mu)^2}{2\sigma^2}}$$

unde:

g = nivel de gri;

 μ = media zgomotului;

 σ = deviația standard a zgomotului;

Eliminarea zgomotului Gaussian

Nucleu de convoluţie pentru eliminarea zgomotului Gaussian

$$G(x,y) = G(x) * G(y)$$

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Proiectarea unui nucleu de convolutie Gaussian pentru restaurarea imaginilor corupte de zgomot gausian cu deviație standard σ și dimensiune w:

Eliminarea zgomotului Gaussian

Exemplu Matlab

```
function [G]=qaussian(siqma);
 w=round(6*siqma);
 x0=floor(\omega/2)+1;
 y0=x0;
  sigma2=2*sigma*sigma;
  for x=1:w
∃ for y=1:₩
    G(x,y)=1/(pi*sigma2)*exp(-((x-x0)*(x-x0)+(y-y0)*(y-y0))/sigma2);
   end
  end
 [X,Y] = meshqrid(1:.1:w,1:.1:w);
 Z = interp2(G, X, Y, 'cubic');
  x=1:0.1:5
 y=1:0.1:5;
  surf(x,y,Z);
 \sigma = 0.8 \Rightarrow w = 5
G =
```

```
0.0005
              0.0050
                         0.0109
                                   0.0050
                                              0.0005
    0.0050
              0.0521
                         0.1139
                                   0.0521
                                              0.0050
    0.0109
              0.1139
                         0.2487
                                   0.1139
                                              0.0109
    0.0050
              0.0521
                         0.1139
                                   0.0521
                                              0.0050
    0.0005
              0.0050
                         0.0109
                                   0.0050
                                              0.0005
>> sum(sum(G))
ans =
    0.9982
```


Eliminarea zgomotului Gaussian

Filtrare în domeniul spaţial (cu nuclee de convoluţie)

$$I_D(x, y) = G(x, y) * I_S(x, y)$$

sau

$$I_D(x, y) = (G(x) * G(y)) * I_S(x, y) = G(x) * (G(y) * I_S(x, y))$$

$$G(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-x_0)^2}{2\sigma^2}}$$

$$G(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(y-y_0)^2}{2\sigma^2}}$$

Eliminarea zgomotului Gaussian - exemplu

Imaginea originală, S

Imagine cu zgomot, I = S + N(Gaussian, Sigma=10)

Eliminarea zgomotului Gaussian - exemplu

Nucleu Gaussian, *G*

Imagine filtrată, F = I * G

Zgomotul Gaussian în domeniul frecvenţelor

Zgomotul este aditiv, iar transformata Fourier este liniară, deci:

$$F(k, l) = S(k, l) + N(k, l)$$

S – semnalul, concentrat în general în zonele de frecvență redusă

N – zgomotul, constant pentru toate frecvenţele spaţiale

Zgomotul are efect mai puternic asupra frecvenţelor spaţiale mari:

Noisy Image

Low-pass filtered

Fourier Transform

Fourier Transform

of Cluj Napoca

IMAGE PROCESSING

Determinarea prezentei zgomotului in imagine

Raportul semnal zgomot (Signal to Noise Ratio - SNR)

Modelul zgomotului aditiv:

$$f(i,j) = s(i,j) + n(i,j)$$

n – medie zero $(\langle n(i,j) \rangle = 0)$ şi independent de semnal $(\langle s(i,j)n(i,j) \rangle = 0)$ \Rightarrow

$$\langle s(i,j)\rangle = \langle f(i,j)\rangle = \mu$$

$$\sigma_f^2 = \sigma_s^2 + \sigma_n^2$$

⇒ Zgomotul afecteaza deviaţia standard (varianţa) dar nu afectează media imaginii

$$SNR = \frac{\sigma_s}{\sigma_n} = \sqrt{\frac{\sigma_f^2}{\sigma_n^2} - 1}$$

SNR > 20 Little visible noise $SNR \approx 10$ Some noise visibile $SNR \approx 4$ Noise clearly visible $SNR \approx 2$ Image severly degraded $SNR \approx 1$ Is there an image?

SNR – Exemple:

SNR = 1

SNR = 4

SNR = 2

SNR = 8

Calculul raportului semnal zgomot (SNR)

Dintr-o singură imagine

- 1. Se calculează $\sigma_{
 m f}$ pe toată imaginea
- 2. Se selectează o regiune cu intensitate uniformă σ_s =0 (ex: zona de cer, apă, un perete uniform etc. și se calculează σ_f = σ_n

$$SNR = \frac{\sigma_s}{\sigma_n} = \sqrt{\frac{\sigma_f^2}{\sigma_n^2} - 1}$$

Calculul raportului semnal zgomot (SNR)

Din două imagini succesive (în timp) ale aceleiaşi scene:

$$f(i,j) = s(i,j) + n(i,j)$$

$$g(i,j) = s(i,j) + m(i,j)$$

- n şi m au aceeaşi FDP: au aceeaşi medie (0) şi deviaţie standard
- $n \neq m$ sunt necorelate (independente) de semnal: $(\langle s(i,j)n(i,j)\rangle = 0$, $\langle s(i,j)m(i,j)\rangle = 0$)

$$r = \frac{\langle (f - \langle f \rangle)(g - \langle g \rangle) \rangle}{\sqrt{\langle (f - \langle f \rangle)^{2} \rangle \langle (g - \langle g \rangle)^{2} \rangle}}$$

$$r = \frac{\langle fg - \langle f \rangle \langle g \rangle}{\sqrt{\langle (f - \langle f \rangle)^{2} \rangle \langle (g - \langle g \rangle)^{2} \rangle}}$$

Corelaţia normalizată dintre f și g

$$r = \frac{\sigma_s^2}{\sigma_s^2 + \sigma_n^2} \qquad SNR = \sqrt{\frac{r}{1 - r}}$$

[1] Noise in images, Lecture notes on Digital Image Analysis, Applied Optics Group, Department of Physics, University of Edinburgh.

https://www2.ph.ed.ac.uk/~wjh/teaching/dia/noise.shtml

