Sparse Inverse Problems with Gamma Hyperpriors

Hwanwoo Kim

University of Chicago

Joint work with S.Agrawal, D.Sanz-Alonso, A.Strang

2022 SIAM Mathematics of Data Science

September 29, 2022

Problem Setup

Given data y of the form

$$y = \mathcal{G}(u) + \eta, \quad \eta \sim \mathcal{N}(0, \Gamma),$$

where $\mathcal{G}: \mathbb{R}^d \to \mathbb{R}^n$ and $\Gamma \in \mathbb{R}^{n \times n}$ are known,

- ullet Point estimation of u under sparsity assumption?
- Uncertainty quantification of u?

Outline

- Hierarchical Bayesian Model
- Iterative Alternating Scheme (IAS)
- Variational Iterative Alternating Scheme (VIAS)
- ℓ_1 -regularized Iterative Ensemble Kalman Filter (ℓ_1 -IEKF)
- Numerical Examples

Hierarchical Bayesian Model

- Data generating model (Likelihood) $\implies y|u \sim \mathcal{N}(\mathcal{G}(u), \Gamma)$
- Bayesian framework $\implies u|\theta \sim \mathcal{N}(0, D_{\theta}), \ D_{\theta} = \mathsf{diag}(\theta)$
- Hierarchical setup $\implies \theta_i \sim \mathsf{Gamma}(\alpha, \beta), \ 1 \leq i \leq d$
- Ultimate objective: Posterior distribution $p(u, \theta|y)$

Posterior Distribution

$$p(u,\theta|y) = \frac{p(y|u,\theta)p(u|\theta)p(\theta)}{p(y)} \propto \exp\left(-J(u,\theta)\right),$$
 where
$$J(u,\theta) := \underbrace{\frac{1}{2}\|y-\mathcal{G}(u)\|_{\Gamma}^2 + \frac{1}{2}\|u\|_{D_{\theta}}^2 + \sum_{i=1}^d \left[\frac{\theta_i}{\alpha_i} - \left(\beta - \frac{3}{2}\right)\log\frac{\theta_i}{\alpha_i}\right]}_{(b)}.$$

Iterative Alternating Scheme (IAS)

When G(u) is linear, i.e., G(u) = Au for some matrix A,

- **1** Initialize θ^0 , k=0.
- 2 Iterate until convergence:
 - Main parameter update:

$$\begin{split} u^{k+1} &= \arg\min_{u} J(u, \theta^{k}) \\ &= \arg\min_{u} \frac{1}{2} \|y - Au\|_{\Gamma}^{2} + \frac{1}{2} \|u\|_{D_{\theta}^{k}}^{2} \\ &= (A^{\top} \Gamma^{-1} A + D_{\theta^{k}}^{-1})^{-1} A^{\top} \Gamma^{-1} y. \end{split}$$

Wariance parameter(regularization) update:

$$\begin{split} \theta^{k+1} &= \arg\min_{\theta} J(u^{k+1}, \theta) \\ &= \alpha \bigg(\frac{\tilde{\beta}}{2} + \sqrt{\frac{\tilde{\beta}^2}{4} + \frac{(u_i^{k+1})^2}{2\alpha_i}} \ \bigg), \quad \tilde{\beta} = \beta - 3/2. \end{split}$$

More details in [Calvetti et al., 2019].

Mean-Field Variation Inference

- Can we approximate $p(u, \theta|y)$ with other probability distributions? \implies Mean-Field Variation Inference [Blei et al., 2017]
- Mean-Field Family:

$$\mathcal{D} := \left\{ q(z) : q(u, \theta) = q(u)q(\theta), \quad q(\theta) = \prod_{i=1}^{d} q(\theta_i) \right\}.$$

• Find a distribution $q^* \in \mathcal{D}$ closest to $p(u, \theta|y)$. \implies Kullback-Leibler Divergence

$$\begin{aligned} \mathsf{KL}(q(\cdot)||p(\cdot|y)) &\coloneqq \int q(z) \log \frac{q(z)}{p(z|y)} dz \\ &= \log p(y) - \underbrace{\int q(z) \log \frac{p(z,y)}{q(z)} dz}_{=:\mathsf{ELBO}(q)} \end{aligned}$$

Variational Iterative Alternating Scheme (VIAS)

- Initialize $q^0(u)$, k=0.
- 2 Iterate:
 - Update

$$q^{k+1}(\theta) = \arg\max_{q(\theta)} \mathsf{ELBO}\big(q^k(u)q(\theta)\big)$$

Update

$$q^{k+1}(u) = \arg\max_{q(u)} \mathsf{ELBO}\big(q(u)q^{k+1}(\theta)\big)$$

VIAS: $q(\theta)$ update

With
$$q^{k+1}(\theta)=\prod_{i=1}^d q^{k+1}(\theta_i)$$
, one can derive
$$q^{k+1}(\theta_i)=\mathrm{GIG}(b,r_i^k,s),$$

$$b=2\beta,\ s=\alpha-0.5,\ r_i^k=(m_i^k)^2+C_{ii}^k,$$

where

$$m_i^k = \mathbb{E}_{q^k(u)}[u_i], \quad C_{ii}^k = \mathsf{Var}_{q^k(u)}[u_i].$$

VIAS: q(u) update

One can obtain

$$q^{k+1}(u) = \mathcal{N}(m^{k+1}, C^{k+1})$$

with

$$m^{k+1} = (A^{\top} \Gamma^{-1} A + L)^{-1} A^{\top} \Gamma^{-1} y,$$

$$C^{k+1} = (A^{\top} \Gamma^{-1} A + L)^{-1},$$

where $L=\operatorname{diag}\Bigl(\mathbb{E}_{q^{k+1}(heta)}\Bigl[rac{1}{ heta}\Bigr]\Bigr)$ whose ith diagonal component is given by

$$L_{ii} = \frac{K_{s-1}\left(\sqrt{r_i^{k+1}b}\right)}{K_s\left(\sqrt{r_i^{k+1}b}\right)} \cdot \sqrt{\frac{b}{r_i^{k+1}}}$$

VIAS: Convergence and Initialization

- ELBO(q) = ELBO(m, C, r).
- ELBO(m, C, r) is not convex.
- In general, VIAS can only guarantee convergence to a local maximum.
- Due to multiple local maxima, choosing C^0 with small condition number is recommended.
- Hyperparameters α, β can be chosen to maximize ELBO : Only need ballpark values.
- More details in [Agrawal et al., 2022].

Iterative Ensemble Kalman Filter (IEKF)

- IEKF is a sequential nonlinear optimization method.
- Introduce an initial ensemble (a set of particles).
- Particles are roughly updated according to a trajectory of Gauss-Newton iterates.
- After sufficient number of iterations, particles will be centered around the optimum.
- The sample mean of these particles will be our solution.

ℓ_1 -regularized IEKF

• In the main parameter update step:

$$\arg\min_{u} \frac{1}{2} \|y - \mathcal{G}(u)\|_{\Gamma}^{2} + \frac{1}{2} \|u\|_{D_{\theta}^{k}}^{2},$$

employ IEKF, an ensemble-based nonlinear optimization method.

- Combined with the variance parameter update, one can promote sparse structure in the solution: ℓ_1 -regularized version of IEKF.
- \bullet Stronger $\ell_{p<1}\text{-regularization}$ is possible with a generalized gamma hyperprior.
- Utilize particles to build approximate credible intervals.
- More details in [Kim et al., 2022].

Learning parameters for Lorenz 63 model I

Consider the Lorenz-63 system:

$$\begin{aligned} \frac{dx}{dt} &= \sigma(y-x), \\ \frac{dy}{dt} &= x(\rho-z) - y, \\ \frac{dz}{dt} &= xy - \zeta z, \end{aligned}$$

with the classical parameter values $\sigma = 10, \rho = 28, \zeta = 8/3$.

Learning parameters for Lorenz 63 model II

Learning parameters for Lorenz 63 model III

Obtain synthetic data **x**, **y**, **z** from

$$\begin{split} \dot{\mathbf{x}} &= A\Phi_1 + \eta_1, \quad \Phi_1 = [-10, 10, 0, 0, 0, 0, 0, \dots, 0]^\top, \\ \dot{\mathbf{y}} &= A\Phi_2 + \eta_2, \quad \Phi_2 = [28, -1, 0, 0, -1, 0, 0, \dots, 0]^\top, \\ \dot{\mathbf{z}} &= A\Phi_3 + \eta_3, \quad \Phi_3 = [0, 0, -8/3, 0, 0, 0, 1, \dots, 0]^\top, \end{split}$$

where $\eta_i \sim \mathcal{N}(0, 0.3I_{2000})$ are independent.

- Goal: recover Φ_1, Φ_2, Φ_3 based on A, $\dot{\mathbf{x}}$, $\dot{\mathbf{y}}$, $\dot{\mathbf{z}}$.
- More detailed explanation on simulation setup: [Brunton et al., 2016]

Parameter Estimation: VIAS

Figure: Recovery of dictionary coefficients for x-trajectory (first column), y-trajectory (second column), and z-trajectory (third column) using IAS and VIAS. Top: two iterations. Bottom: five iterations.

Uncertainty Quantification of Trajectory: VIAS

Figure: True Lorenz-63 trajectory and VIAS estimation. Top: two VIAS iterations. Bottom: five VIAS iterations. Blue line is the true dynamics. Shaded regions are constructed from 2.5 and 97.5 credible levels of coefficients.

Nonlinear Example: First order PDE inversion I

Consider the following partial differential equation

$$\partial_{x_1} v - \partial_{x_2} v - u(x_1)v = 0,$$
 $(x_1, x_2) \in (0, 1) \times (0, 1),$ $v(x_1, 0) = \phi(x_1),$ $x_1 \in [0, 1].$

If \boldsymbol{u} is continuous and ϕ is continuously differentiable, then it admits the solution

$$v(x_1, x_2) = \phi(x_1 + x_2) \exp\left(\int_{x_1 + x_2}^{x_1} u(z)dz\right).$$

With $\phi(x) = \cos(x)$, the data y is obtained according to

$$y(x_1, x_2) = v(x_1, x_2) + \epsilon, \quad \epsilon \sim N(0, 0.1^2).$$

Nonlinear Example: first order PDE inversion II

Our goal is to recover the function u given the data y. We further assume that u admits a representation

$$u(x) = \sum_{j=1}^{30} u_j \sin(j\pi x) + \sum_{j=1}^{30} \tilde{u}_j \cos(j\pi x), \ x \in [0, 1],$$

with only three components of $\{u_j\}_{j=1}^{30}$ and $\{\tilde{u}_j\}_{j=1}^{30}$ are nonzero.

Nonlinear Example: first order PDE inversion III

Figure: Red: target function to recover. Blue: ℓ_1 -IEKF/IEKF-SL recovery. Left column: vanilla IEKF/IEKF-SL. Middle column: ℓ_1 -IEKF/IEKF-SL after one outer iteration. Right column: ℓ_1 -IEKF/IEKF-SL after three outer iterations. Shaded: 2.5/97.5 percentile of the recovery.

Summary

- Hierarchical Bayesian model with gamma hyperprior to induce sparse structure in parameter of interest.
- Under the linear model setting, we employed a variational inference technique to approximate posterior distribution of the target parameter.
- An coordinate ascent variational inference led to simple parameter update rules.
- Under the nonlinear model setting, we used iterative ensemble Kalman filter to solve for main parameter and build approximate credible intervals using particles.
- Reproducible codes available at: https://github.com/hwkim12

References

Agrawal, S., Kim, H., Sanz-Alonso, D., and Strang, A. (2022).

A variational inference approach to inverse problems with gamma hyperpriors. arXiv preprint arXiv:2111.13329,

to appear in SIAM/ASA Journal of Uncertainty Quantification.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017).

Variational inference: A review for statisticians.

Journal of the American statistical Association, 112(518):859–877.

Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

Proceedings of the national academy of sciences, 113(15):3932–3937.

Hierarchical bayesian models and sparsity: ℓ_2 -magic.

Inverse Problems, 35(3):035003.

Hierarchical ensemble kalman methods with sparsity-promoting generalized gamma hyperpriors.