Statistik och Dataanalys I

Föreläsning 17 - Konfidensintervall för ett väntevärde

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Samplingfördelningen för ett medelvärde
- Konfidensintervall för ett väntevärde
- Centrala gränsvärdessatsen och stora talens lag

Samplingfördelning för \bar{X} - normalmodellen

- Modell för populationen: $X_1, X_2, ..., X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma)$.
- Vi skattar populationens väntevärde $\mu = E(X)$ med

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}.$$

Samplingfördelning \bar{X}

Om $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma)$, och σ känd

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

- Vi måste bevisa tre saker:
 - $ightharpoonup \bar{X}$ är normalfördelad.
 - \triangleright $E(\bar{X}) = \mu$
 - \triangleright $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

Samplingfördelning för \bar{X} - normalmodellen

Normalfördelning

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

är en **summa** av normalfördelade variabler, **skalad** med 1/n. F16: \bar{X} är normalfördelad.

lacksquare $ar{X}$ är väntevärdesriktig för μ

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \stackrel{\text{skalning}}{=} \frac{1}{n}E\left(\sum_{i=1}^{n}X_{i}\right) \stackrel{\text{summa}}{=} \frac{1}{n}\left(\sum_{i=1}^{n}E(X_{i})\right)$$

$$\stackrel{\text{modell}}{=} \frac{1}{n}\left(\sum_{i=1}^{n}\mu\right) \stackrel{\text{samma termer}}{=} \frac{1}{n}\left(n\mu\right) = \mu$$

■ Varians/Standardavvikelse

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \stackrel{\text{skalning}}{=} \left(\frac{1}{n}\right)^{2} Var\left(\sum_{i=1}^{n}X_{i}\right) \stackrel{\text{summa}}{=} \frac{1}{n^{2}} \left(\sum_{i=1}^{n}Var(X_{i})\right)$$

$$\stackrel{\text{modell}}{=} \frac{1}{n^{2}} \left(\sum_{i=1}^{n}\sigma^{2}\right) \stackrel{\text{samma termer}}{=} \frac{1}{n^{2}} \left(n\sigma^{2}\right) = \frac{\sigma^{2}}{n}$$

KI väntevärde - normalpopulation med känd varians

■ Eftersom $Var(\bar{X}) = \frac{\sigma^2}{n}$ så har vi alltså att

$$SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

Från samplingfördelningen $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ kan vi skapa ett konfidensintervall:

Antag: $X_1, X_2, \dots, X_n \stackrel{\textit{iid}}{\sim} \textit{N}(\mu, \sigma)$, σ känd

 $(1-\alpha)$ %-igt konfidensintervall för väntevärde μ

$$\bar{x} \pm \frac{z_{\alpha/2}}{2} \cdot SD(\bar{x})$$

$$SD(\bar{x}) = \frac{\sigma}{\sqrt{n}}$$

Normalpopulation med okänd varians

- Variansen i populationen, σ^2 , är oftast **okänd**.
- Vi kan skatta σ^2 med stickprovsvariansen

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

■ Varför n-1? För att s^2 är väntevärdesriktig för σ^2

$$E(s^2) = \sigma^2$$

lacksquare OM μ är känd kan vi skatta σ^2 väntevärdesriktigt med

$$\frac{\sum_{i=1}^{n}(x_i-\mu)^2}{n}$$

- Förlorar en frihetsgrad" när vi skattar μ med \bar{x} .
- SDM-boken (s. 538): stickprovet kommer ligga närmare \bar{x} än μ i genomsnitt. Avvikelserna $x_i \bar{x}$ blir för små i genomsnitt.

Okänd varians \Longrightarrow student-t fördelning

Om σ^2 är **känd**

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

och genom standardisering

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

Om okänd σ^2 skattas med s^2 är \bar{X} student-t fördelad:

$$T = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$$

- Alltså: när standardavvikelsen i populationen måste skattas får den standardiserade \bar{X} tyngre svansar.
- När σ är känd: **standardavvikelse** för \bar{X} : $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$
- När σ skattas: **standardfel** för \bar{X} : $SE(\bar{X}) = \frac{s}{\sqrt{n}}$

Student-*t* fördelning

K.I. väntevärde - normalpopulation, okänd varians

Antag: $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} N(0, \sigma)$, med σ okänd.

 $(1-\alpha)$ %-igt konfidensintervall för väntevärde μ

$$\bar{x} \pm \frac{t_{\alpha/2, n-1} \cdot SE(\bar{x})}{SE(\bar{x})} = \frac{s}{\sqrt{n}}$$
$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Kritiskt värde $t_{\alpha/2,n-1}$ student-t med n-1 frihetsgrader.

Student-t tabell

Konfidensnivå:	80%	90%	95%	98%	99%
Tvåsidig sannolikhet:	0.200	0.100	0.050	0.020	0.010
Ensidig sannolikhet:	0.100	0.050	0.025	0.010	0.005
df					
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861

Bekämpningsmedel i odlad lax

- Datamaterial med gifter i 153 laxar vid 8 olika platser.
- Här: Bekämpningsmedel (Total.pestocide) i Eastern Canada med n = 24 laxar:

x=c(26.739, 24.799, 27.563, 21.511, 23.821, 23.311, 49.883, 42.352, 44.598, 31.353, 33.837, 33.915, 41.668, 42.383, 43.638, 39.768, 35.256, 36.270, 29.630, 31.266, 32.577, 33.056, 29.789, 27.737)

- Modell: $X_1, X_2, \dots, X_n \stackrel{\textit{iid}}{\sim} N(\mu, \sigma)$, och σ okänd.
- Normalfördelad population? Kolla stickprovet:

Svårt se med få observationer. Histogram ok. Inga outliers.

Bekämpningsmedel i odlad lax

95%-igt konfidensintervall för μ : (30.332, 36.811)

$$\bar{x} \pm t_{0.025,n-1} \frac{s}{\sqrt{n}}$$

$$33.572 \pm t_{0.025,23} \frac{7.671}{\sqrt{24}}$$

$$33.572 \pm 2.069 \frac{7.671}{\sqrt{24}}$$

 $t_{0.025,23} = 2.069$ från tabell, eller R: qt(0.975, df = 23).

Standardavvikelsen s beräknas i R som sd(x), eller för hand:

$$s^2 = \frac{\sum_{i=1} (x_i - \bar{x})^2}{n-1}$$

Statistik och Dataanalys I

Bekämpningsmedel i odlad lax

- **68%-igt konfidensintervall för** μ : (31.980, 35.163)
- **95%-igt konfidensintervall för** μ : (30.332, 36.811)
- **99%**-igt konfidensintervall för μ : (29.176, 37.968)
- \blacksquare Högre konfidens \Longrightarrow bredare intervall.
- 95%-iga konfidensintervall alla orter:

■ Se R-koden confidence_intervals_salmon.R på kurswebbsidan.

Konfidensintervall för väntevärde i R

KI väntevärde - normalpop, okänd varians, $n \ge 30$

Antag:
$$X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} N(0, \sigma)$$
, med σ okänd och $n \geq 30$.
 Approximativt $(1\text{-}\alpha)$ %-igt K.I. för väntevärde μ
$$\bar{x} \pm \frac{z_{\alpha/2} \cdot SE(\bar{x})}{SE(\bar{x})}$$

$$SE(\bar{x}) = \frac{s}{\sqrt{n}}$$

$$s^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$

Centrala gränsvärdessatsen

Om X_1, X_2, \ldots, X_n är oberoende från en population med godtycklig fördelning (med ändlig varians σ^2) så är

samplingfördelningen för medelvärdet approximativt normalfördelat i stora stickprov:

$$ar{X} \stackrel{\mathrm{approx}}{\sim} \mathrm{N}\Big(\mu, \frac{\sigma}{\sqrt{n}}\Big)$$
 för tillräckligt stort n

Tumregel: $n \ge 30$ är tillräckligt.

Centrala gränsvärdessatsen (CGS) - interaktivt

Stora talens lag

Om $X_1, X_2, ..., X_n$ är oberoende från en population med godtycklig fördelning (med ändligt väntevärde μ) så blir

samplingfördelningen för medelvärdet alltmer koncentrerad kring μ när stickprovsstorleken n ökar.

Stora talens lag - interaktivt

Konfidensintervall för μ - tre olika sitationer

Normalpopulation med känd varians σ^2

$$\bar{\mathbf{x}} \pm \mathbf{z}_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Normalpopulation med okänd varians skattad med s²

$$\bar{x} \pm t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}}$$

Godtycklig populationsmodell och $n \ge 30$ (CGS)

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$