Implementation and Evaluation of Network Anomaly Detection Algorithms

Modules

Control Unit

 The Control Unit centrally manages communication between the rest of the modules.

Traffic Capture Module

 The Traffic Capture Module captures traffic required for learning phase, and computes traffic statistics as required for the Learning Module.

Learning Module

 The LM computes the model probabilities which is later used by the Detection Module (DM) for classification of normal traffic/anomalous traffic.

Detection Module

• The Detection Module determines the state of the network (normal or abnormal) in real-time.

Mitigation Module

- The Mitigation Module
 - When attack flag is not set in any stream, it allows input traffic unaltered.
 - When attack flag is set in one or more streams, it filters traffic for the stream(s) on the basis of a white list of source IP's corresponding to the stream.

Modules

Algorithms

Deploy

- This module tests the input traffic and computes if a window is an attack window or not.
- Input: Stream S, filename, Abnormal Window Count (AWC)
- Output: State of the system and the window counts

Train Phase Functionality

- This procedure initiates training. It calls the training module that trains the NBC against the training dataset. It also calls the module that determines the threshold probability.
- Input: Window size N, number of bands K, group count, error proportion t and the filename containing the dataset.
- Output: Updated Stream S with learnt probabilities and threshold probability for stream.

Train

- This procedure trains the Naive Bayes
 Classifier using the TCP flags retrieved from the dataset.
- Input: Stream S, Flag Array TF, Window size for stream N, number of bands K.
- Output: Updated Stream S with learnt probabilities.

Determine Optimal Bands

- This procedure groups the events into bands.
 The band formation is based on the clustering algorithm.
- Input: Event array A, window size for stream N, number of bands K.
- Output: 2-dimensional array band, containing indices of per group elements in A.

Update Probabilities

- This procedure computes and updates the probability based on the events.
- Input: TCP Stream S, 2-D array band containing band indices of groups of A, number of bands K, Index of observable type L
- Output: Probabilities of all events updated into corresponding probability array W index in stream S

Determine Threshold Probability

- This module computes the threshold probability which will be used to classify if a particular window is either an attack window or not
- Input: Stream S, Window size for stream N, group count, flag array
- Output: Threshold probability Pt for S

Datasets used in the paper

DARPA

- Training data 70,603
 packets to port 23.
- Attack traffic ->

Packet Numbers	Nature of Attack
1-1046	SYN flooding
1047-2277	FIN/ACK flooding
2278-2543	SYN/ACK flooding
2544-2911	PSH/ACK flooding
2912-3629	SYN flooding
3630-4806	RST flooding
4807-6077	FIN/ACK flooding
6078-16115	SYN flooding
16116-22934	ACK flooding
22935-31864	PSH/ACK flooding
31865-42349	RST flooding
42350-97649	FIN/ACK flooding
97650-192549	SYN flooding
192550-545549	ACK flooding
545550-1158549	SYN flooding

Our datasets

- DARPA Train 219600 packets = 1999 Week
 1, Monday + Thursday (Dest-172.16.112.50:23)
- DARPA 1
 - No Attack 61400 packets 1999 Week 1,
 Wednesday (Dest-172.16.112.50:23)
 - Attack 74200 packets 1999 Week 1, Tuesday + attacks (Dest-172.16.112.50:23)

Our Datasets (contd.)

• DARPA 2

- No Attack 126400 packets 1999 Week 3,
 Tuesday + Wednesday (Dest-172.16.112.50:23)
- Attack 1164 packets 1999 Week 3, Friday + attacks (Dest-172.16.112.50:23)

DARPA 3

Attack – 244107 packets (39303 NA / 204804A) 1998 Week 3, Thursday (Dest-172.16.112.50 all ports)

Accuracy results (t = 0.08)

		Actual		Detected		Accuracy %
		Normal	Attack	Normal	Attack	
DARPA 1	No Attack file	614	0	614	0	100.00
	Attack File	371	371	377	365	98.38
DARPA 2	No Attack file	1264	0	1241	23	98.18
	Attack File	582	582	556	608	95.53
DARPA 3	Attack File	393	2048	656	1785	87.16
Thesis	Attack File	0	11594	6	11588	99.95

Accuracy results (t = 0.091)

		Actual		Detected		Accuracy %
		Normal	Attack	Normal	Attack	
DARPA 1	No Attack file	614	0	607	7	98.86
	Attack File	371	371	371	371	100.00
DARPA 2	No Attack file	1264	0	1210	54	95.73
	Attack File	582	582	550	614	94.50
DARPA 3	Attack File	393	2048	347	2094	88.30
Thesis	Attack File	0	11594	2	11592	99.98

Accuracy Comparison

Accuracy Comparison

Varying t

