Problem Statement

In the telecom industry, customers are able to choose from multiple service providers and actively switch from one operator to another. In this highly competitive market, the telecommunications industry experiences an average of 15-25% annual churn rate. Given the fact that it costs 5-10 times more to acquire a new customer than to retain an existing one

Business Objective

•The Business objective here is to reduce customer churn, Retain high profitable customer and to identify which customers are at high risk of churn so that corrective action can be taken place

Understanding and Defining Churn

- Postpaid churn In the postpaid model, when customers want to switch to another operator, they usually inform the existing operator to terminate the services, and you directly know that this is an instance of churn.
- Prepaid Churn In Prepaid Churn Customers who want to switch to another network can simply stop using the services without any notice, and it is hard to know whether someone has actually churned or is simply not using the services temporarily (e.g. someone may be on a trip abroad for a month or two and then intend to resume using the services again).

Types of Churn

• Revenue Based Churn - Customers who have not utilised any revenue-generating facilities such as mobile internet, outgoing calls, SMS etc. over a given period of time. One could also use aggregate metrics such as 'customers who have generated less than INR 4 per month in total/average/median revenue.

The main shortcoming of this definition is that there are customers who only receive calls/SMSes from their wage-earning counterparts, i.e. they don't generate revenue but use the services. For example, many users in rural areas only receive calls from their wage-earning siblings in urban areas.

• **Usage based Churn** - Customers who have not done any usage, either incoming or outgoing - in terms of calls, internet etc. over a period of time.

A potential shortcoming of this definition is that when the customer has stopped using the services for a while, it may be too late to take any corrective actions to retain them. For e.g., if you define churn based on a 'two-months zero usage' period, predicting churn could be useless since by that time the customer would have already switched to another operator.

* In this project we will be targeting on Usage Based Churn.

High Value Churn:

In the **Indian and Southeast Asian markets**, approximately **80%** of revenue comes from the top **20%** of customers (called high-value customers). Thus, if we can reduce the churn of high-value customers, we will be able to reduce significant revenue leakage.

Understanding Data

Understanding the business objective and the data

The dataset contains customer-level information for a span of four consecutive months - June, July, August and September. The months are encoded as 6, 7, 8 and 9, respectively.

The **business objective** is to predict the churn in the last (i.e. the ninth) month using the data (features) from the first three months. To do this task well, understanding the typical customer behaviour during churn will be helpful.

There are three phases of the customer lifecycle:-

Good Phase - In this phase, the customer is happy with the service and behaves as usual.

Action Phase - The customer experience starts to sore in this phase, for e.g. he/she gets a compelling offer from a competitor, faces unjust charges, becomes unhappy with service quality etc. The corrective action has to taken in this phase only

Churn Phase - In this phase, the customer is said to have churned

Importing Data and checking type of data

- Importing the data set and checking the data shape: Data shape was found (99999, 226)
- Importing the description of the data

Descriptive analysis of the dataset
inp0.describe()

	mobile_number	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8	arpu_9	onnet_mou_6	on
count	9.999900e+04	99999.0	98981.0	98981.0	98981.0	99999.000000	99999.000000	99999.000000	99999.000000	96062.000000	96
mean	7.001207e+09	109.0	0.0	0.0	0.0	282.987358	278.536648	279.154731	261.645069	132.395875	
std	6.956694e+05	0.0	0.0	0.0	0.0	328.439770	338.156291	344.474791	341.998630	297.207406	
min	7.000000e+09	109.0	0.0	0.0	0.0	-2258.709000	-2014.045000	-945.808000	-1899.505000	0.000000	
25%	7.000606e+09	109.0	0.0	0.0	0.0	93.411500	86.980500	84.126000	62.685000	7.380000	
50%	7.001205e+09	109.0	0.0	0.0	0.0	197.704000	191.640000	192.080000	176.849000	34.310000	
75%	7.001812e+09	109.0	0.0	0.0	0.0	371.060000	365.344500	369.370500	353.466500	118.740000	
max	7.002411e+09	109.0	0.0	0.0	0.0	27731.088000	35145.834000	33543.624000	38805.617000	7376.710000	8
4											•

Checking the type of data by having checking info of the data type.

Data Cleaning

- Checking the missing values and dropping the missing values of data.
- After cleaning of the data the shape of the variable is (99999, 153)

High Value Customers

High-value customers are those who have recharged with an amount more than or equal to X, where X is the 70th percentile of the average recharge amount in the first two months (the good phase).

	# Once checking the dataset inpO.head()													
Out[172]:		arpu_6	arpu_7	arpu_8	arpu_9	onnet_mou_6	onnet_mou_7	onnet_mou_8	onnet_mou_9	offnet_mou_6	offnet_mou_7	offnet_mou_8	offnet_mou_9	roai
	0	197.385	214.816	213.803	21.100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	1	34.047	355.074	268.321	86.285	24.11	78.68	7.68	18.34	15.74	99.84	304.76	53.76	
	2	167.690	189.058	210.226	290.714	11.54	55.24	37.26	74.81	143.33	220.59	208.36	118.91	
	3	221.338	251.102	508.054	389.500	99.91	54.39	310.98	241.71	123.31	109.01	71.68	113.54	
	4	261.636	309.876	238.174	163.426	50.31	149.44	83.89	58.78	76.96	91.88	124.26	45.81	
	4													-
	<pre>inp0["Average_Amount"]=(inp0["total_rech_amt_6"]+inp0["total_rech_amt_7"])/2 inp0["Average_Amount"].quantile([0.7])</pre>													
[n [174]:	in	p0["Aver	age_Amo	unt"].q	uantile		_ , , ,		Jame_7])/2					•
In [174]: Out[174]:	0.		3.5			([0.7])	_ , , ,		Jame_7])//2					>
Out[174]:	0. Na	7 368 me: Aver	3.5 rage_Amo	unt, dt	ype: flo	([0.7]) Dat64 Litering out				amount more	≥ than 368.5			•

After same checking the shape of the data: shape comes out to be (30011, 152)

- Deriving feature Engineering by taking the average of good Phase and Later checking the shape (30011, 80).
- Checking the head:

-			ng the no l().rese	ew df t_index()							
:	i	index	arpu_8	onnet_mou_8	offnet_mou_8	roam_ic_mou_8	roam_og_mou_8	loc_og_t2t_mou_8	loc_og_t2m_mou_8	loc_og_t2f_mou_8	loc_og_t2c_mou_8
	0	7	3171.480	52.29	325.91	31.64	38.06	40.28	162.28	53.23	0.00
	1	8	137.362	35.08	136.48	0.00	0.00	12.49	50.54	0.00	7.15
	2	13	593.260	534.24	482.46	72.11	1.44	36.01	294.46	23.51	0.49
	3	16	187.894	70.61	162.76	0.00	0.00	67.38	128.28	10.26	0.00
	4	17	25.499	7.79	5.54	4.81	13.34	0.00	0.00	0.00	0.00
4											>

Doing the EDA analysis

So here we can observe that the outlier present in data. Now Changing the quantile range to 90% to cap the outlier

arpu_8 arpu_Goods_phase_Avg

count	30011.000000	30011.000000
mean	486.823367	545.980785
std	277.996871	205.787143
min	-945.808000	-749.783000
25%	289.609500	381.272250
50%	452.091000	485.602500
75%	671.150000	674.492000
max	985.202000	949.430500

Dropping the Outliers: final shape comes out to be (30011, 63).

Two outliers present in lower side in IQR range. Caping them to 1 Percentile.

Bivariate Analysis

Insights:

Here we can observe that the customer having recharge amount less than 50 in action phase are more liley to churn Also those who have recharge amount more than 150 in goods phase are generting most of the revenue and having very less churn rate.

We can observe here that customer whose number of call less than 200 are most likey to churn

Here we can observe that the customer having Incoming calls less than 75 and outgoing call less than 200 are more likely to churn

Insights:

From the graph we can observe that the customer who recharge amount is less than 100 and having local outgoing calls minutes less than 200 are more likely to churn .

We can also observe that the customer who has recharge amount less than 100 in good phase might doing recharge less than 50 in action phase are more likely that they have found some alternate option and those customer are more likely to churn.

Multivariate Analysis:

Insights:

Here we can observe that some variable his highly correlated with the others variable means the multicollinearity present in data.

Checking Data Imbalance: The data is highly skewed towards zero's

- · So here we can observe that the data is high imbalance
- . To handle the imbalance we will use SMOTE technique in modelling phase

Model Building: Logistic Regression: Model 1 summary:

No. Observations:

38385

0.067 -21.523 0.000 -1.581 -1.317

0.093 12.397 0.000 0.973 1.338

17.662 0.000

churn

vol_2g_mb_8 -1.4494

1.1105

arpu_Goods_phase_Avg 1.5331

loc_ic_t2m_mou_Goods_phase_Avg

total_rech_num_Goods_phase_Avg 1.1553

Generalized Linear Model Regression Results

Dep. Variable:

Model:	GLM	D	f Residua	als:	38369		
Model Family:	Binomial		Df Mod	del:	15		
Link Function:	Logit		Sca	ale:	1.0000		
Method:	IRLS	Log	-Likeliho	od: -	15176.		
Date:	Tue, 09 May 2023		Devian	ice:	30352.		
Time:	10:41:22	Pe	earson cl	hi 2: 4.6	64e+04		
No. Iterations:	6	Pseudo	R-squ. (C	S):	0.4487		
Covariance Type:	nonrobust						
		coef	std err	,	z P> z	[0.025	0.975]
	const	1.3488	0.050	27.22		1.252	1.446
	onnet mou 8			16.08			3.210
	loc_og_t2t_mou_8	-1.7132	0.106	-16.143	3 0.000	-1.921	-1.505
	std_og_t2t_mou_8	-2.7803	0.173	-16.079	0.000	-3.119	-2.441
	std_og_mou_8	1.9542	0.176	11.10	0.000	1.609	2.299
	total_og_mou_8	-3.2227	0.201	-16.052	0.000	-3.616	-2.829
	loc_ic_t2m_mou_8	-2.7910	0.120	-23.32	0.000	-3.026	-2.557
	loc_ic_t2f_mou_8	-0.9367	0.073	-12.76	0.000	-1.080	-0.793
	total_rech_num_8	-3.5347	0.107	-33.15	4 0.000	-3.744	-3.326
	total_rech_amt_8	1.8223	0.122	14.95	0.000	1.583	2.061
	max_rech_amt_8	-1.2025	0.080	-15.06	0.000	-1.359	-1.046
la	st_day_rch_amt_8	-2.4284	0.066	-36.73	0.000	-2.558	-2.299

0.087

0.094

Checking VIF factor of Model 1:

	Feature	VIF
5	total_og_mou_8	12.11
1	onnet_mou_8	11.92
3	std_og_t2t_mou_8	11.77
0	const	11.61
4	std_og_mou_8	10.42
9	total_rech_amt_8	7.19
6	loc_ic_t2m_mou_8	4.16
8	total_rech_num_8	3.87
10	max_rech_amt_8	3.49
2	loc_og_t2t_mou_8	3.44
14	loc_ic_t2m_mou_Goods_phase_Avg	2.56
15	total_rech_num_Goods_phase_Avg	2.20
11	last_day_rch_amt_8	2.05
13	arpu_Goods_phase_Avg	1.63
7	loc_ic_t2f_mou_8	1.50
12	vol_2g_mb_8	1.17

Insights:- So here we can observe in model 1 we have total_og_mou_8 variable having VIF value more than 5 so now dropping the total_og_mou_8 variable to remove the multicollinearity.

. Insights:- All the variable in Model 1 have P-value less than 0.05 which is good. Once check VIF for model 1 for checking multicollinearity in model 1

Model Building: Logistic Regression: Model 2 summary:

Generalized Linear Model Regression Results

churn	No. Observations:	38385
GLM	Df Residuals:	38370
Binomial	Df Model:	14
Logit	Scale:	1.0000
IRLS	Log-Likelihood:	-15323.
Tue, 09 May 2023	Deviance:	30646.
10:41:23	Pearson chi2:	4.47e+04
6	Pseudo R-squ. (CS):	0.4445
nonrobust		
	GLM Binomial Logit IRLS Tue, 09 May 2023 10:41:23	GLM Df Residuals: Binomial Df Model: Logit Scale: IRLS Log-Likelihood: Tue, 09 May 2023 Deviance: 10:41:23 Pearson chi2: 6 Pseudo R-squ. (C S):

	COCI	atu cii	_	1 - 121	[0.025	0.575]
const	1.3758	0.049	27.921	0.000	1.279	1.472
onnet_mou_8	1.9468	0.156	12.505	0.000	1.642	2.252
loc_og_t2t_mou_8	-2.3356	0.099	-23.618	0.000	-2.529	-2.142
std_og_t2t_mou_8	-1.9126	0.154	-12.391	0.000	-2.215	-1.610
std_og_mou_8	-0.5721	0.075	-7.599	0.000	-0.720	-0.425
loc_ic_t2m_mou_8	-3.3349	0.116	-28.750	0.000	-3.562	-3.108
loc_ic_t2f_mou_8	-1.0037	0.073	-13.750	0.000	-1.147	-0.861
total_rech_num_8	-3.4982	0.106	-32.951	0.000	-3.706	-3.290
total_rech_amt_8	1.4232	0.118	12.106	0.000	1.193	1.654
max_rech_amt_8	-1.0664	0.079	-13.535	0.000	-1.221	-0.912
last_day_rch_amt_8	-2.3917	0.065	-36.684	0.000	-2.519	-2.264
vol_2g_mb_8	-1.3820	0.066	-20.817	0.000	-1.512	-1.252
arpu_Goods_phase_Avg	1.4592	0.086	16.989	0.000	1.291	1.628
loc_ic_t2m_mou_Goods_phase_Avg	1.0795	0.094	11.521	0.000	0.896	1.263
total_rech_num_Goods_phase_Avg	1.1929	0.093	12.836	0.000	1.011	1.375

Checking VIF factor of Model 2:

	Feature	VIF
0	const	11.58
3	std_og_t2t_mou_8	10.73
1	onnet_mou_8	10.72
8	total_rech_amt_8	6.86
7	total_rech_num_8	3.87
5	loc_ic_t2m_mou_8	3.79
4	std_og_mou_8	3.47
9	max_rech_amt_8	3.45
2	loc_og_t2t_mou_8	3.18
13	loc_ic_t2m_mou_Goods_phase_Avg	2.56
14	total_rech_num_Goods_phase_Avg	2.20
10	last_day_rch_amt_8	2.05
12	arpu_Goods_phase_Avg	1.63
6	loc_ic_t2f_mou_8	1.49
11	vol_2g_mb_8	1.17

[•] Insights:- Here we can observe in Model 2 the std_og_t2t_mou_8 varible having VIF>5 so better is to drop this variable to reduce the multicollinearity.

. Insights:- All the variable in model 2 having P-value less than 0.05 which is good.

Model Building: Logistic Regression: Model 3 summary:

Checking VIF factor of Model 3:

Generalized Linear I	Model Regression Re	sults					
Dep. Variable:	churn	No. OI	servatio	ns:	38385		
Model:	GLM	D	f Residua	als:	38371		
Model Family:	Binomial		Df Mod	del:	13		
Link Function:	Logit		Sca	ale:	1.0000		
Method:	IRLS	Log	-Likeliho	od:	-15399.		
Date:	Tue, 09 May 2023		Devian	ice:	30798.		
Time:	10:41:23	Pe	earson cl	hi 2: 4.	35e+04		
No. Iterations:	6	Pseudo	R-squ. (C	(S):	0.4423		
Covariance Type:	nonrobust						
		coef	std err		z P> z	[0.025	0.975]
	const	1.3773	0.049	27.98		1.281	1.474
	onnet mou 8	0.1977	0.068	2.89	7 0.004	0.064	0.331
	loc og t2t mou 8	-1.6248	0.077	-21.05	5 0.000	-1.776	-1.474
	std_og_mou_8	-0.9864	0.068	-14.49	7 0.000	-1.120	-0.853
	loc_ic_t2m_mou_8	-3.5265	0.116	-30.53	1 0.000	-3.753	-3.300
	loc_ic_t2f_mou_8	-1.0346	0.073	-14.16	5 0.000	-1.178	-0.891
	total_rech_num_8	-3.4855	0.106	-32.97	6 0.000	-3.693	-3.278
	total_rech_amt_8	1.6537	0.116	14.27	3 0.000	1.427	1.881
	max_rech_amt_8	-1.1186	0.079	-14.24	5 0.000	-1.272	-0.965
la	st_day_rch_amt_8	-2.3818	0.065	-36.62	4 0.000	-2.509	-2.254
	vol_2g_mb_8	-1.3951	0.066	-21.11	4 0.000	-1.525	-1.266
arpu_	Goods_phase_Avg	1.4901	0.086	17.38	0.000	1.322	1.658
loc_ic_t2m_mou_	Goods_phase_Avg	1.0905	0.094	11.64	3 0.000	0.907	1.274
total_rech_num_	Goods_phase_Avg	1.1722	0.093	12.63	6 0.000	0.990	1.354

	Feature	VIF
0	const	11.58
7	total_rech_amt_8	6.74
6	total_rech_num_8	3.87
4	loc_ic_t2m_mou_8	3.73
8	max_rech_amt_8	3.45
3	std_og_mou_8	2.72
1	onnet_mou_8	2.58
12	loc_ic_t2m_mou_Goods_phase_Avg	2.56
13	total_rech_num_Goods_phase_Avg	2.20
9	last_day_rch_amt_8	2.05
2	loc_og_t2t_mou_8	2.03
11	arpu_Goods_phase_Avg	1.62
5	loc_ic_t2f_mou_8	1.49
10	vol_2g_mb_8	1.17

[.] Insights:- Here we can observe that all the variable in Model 3 having P-value less than 0.05 which is good.

[•] Insights:- Here in Model 4 we observe that the total_rech_amt_8 variable having VIF>5 so dropping these variable to reduce multcollinearity

Model Building: Logistic Regression: Model 4 summary:

Checking VIF factor of Model 4:

Generalized Linear N	Model Regression Re	sults					
Dep. Variable:	churn	No. Ol	servatio	ns:	38385		
Model:	GLM	D	f Residua	als:	38372		
Model Family:	Binomial		Df Mo	del:	12		
Link Function:	Logit		Sca	ale: 1	.0000		
Method:	IRLS	Log	-Likeliho	od: -1	5502.		
Date:	Tue, 09 May 2023		Devian	ce: 3	1003.		
Time:	10:41:24	Pe	earson cl	hi 2: 4.39	9e+04		
No. Iterations:	6	Pseudo	R-squ. (C	(S): 0	.4393		
Covariance Type:	nonrobust						
		coef	std err	Z	P> z	[0.025	0.975]
	const	1.1216	0.046	24.634	0.000	1.032	1.211
	onnet_mou_8	0.2316	0.068	3.385	0.001	0.098	0.366
	loc_og_t2t_mou_8	-1.5271	0.077	-19.929	0.000	-1.677	-1.377
	std_og_mou_8	-0.7962	0.067	-11.890	0.000	-0.927	-0.665
1	oc_ic_t2m_mou_8	-3.3757	0.114	-29.556	0.000	-3.600	-3.152
	loc_ic_t2f_mou_8	-1.0399	0.073	-14.266	0.000	-1.183	-0.897
	total_rech_num_8	-2.5985	0.084	-31.074	0.000	-2.762	-2.435
	max_rech_amt_8	-0.5308	0.067	-7.924	0.000	-0.662	-0.400
la	st_day_rch_amt_8	-2.0994	0.061	-34.291	0.000	-2.219	-1.979
	vol_2g_mb_8	-1.3922	0.066	-21.110	0.000	-1.521	-1.263
arpu_0	Goods_phase_Avg	2.0189	0.078	25.746	0.000	1.865	2.173
loc_ic_t2m_mou_0	Goods_phase_Avg	1.0017	0.093	10.824	0.000	0.820	1.183
total_rech_num_0	Goods_phase_Avg	0.9027	0.090	10.063	0.000	0.727	1.078

[•] Insights: Here in Model 4 all the variable having p-values less than 0.05, so now looking to VIF value

	Feature	VIF
0	const	10.28
4	loc_ic_t2m_mou_8	3.69
3	std_og_mou_8	2.59
1	onnet_mou_8	2.58
7	max_rech_amt_8	2.55
11	loc_ic_t2m_mou_Goods_phase_Avg	2.55
6	total_rech_num_8	2.52
12	total_rech_num_Goods_phase_Avg	2.13
2	loc_og_t2t_mou_8	2.00
8	last_day_rch_amt_8	1.87
5	loc_ic_t2f_mou_8	1.49
10	arpu_Goods_phase_Avg	1.36
9	vol_2g_mb_8	1.17

• So Now we have model 4 which have P-value less than 0.05 and VIF less than 5, So finalizing the model 4 as our final model.

Building Prediction:

	Churn	Churn_probaility		Churn	Churn_probaility	Churn_Predict
24443	0	0.038109	0	0	0.038109	0
42841	1	0.939149	1	1	0.939149	1
41118	1	0.800832	2	1	0.800832	1
2254	0	0.265182	3	0	0.265182	0
29470	0	0.798344	4	0	0.798344	1

Model Evaluation:

Model have 82.08 % accuracy, 80.93 % sensitivity, 83,24 % specificity, 16.75 % false positive rate, 82.82 %positive prediction value, 81.38 % negative prediction value.

Finding the Optimum cut off point:

Insights:- Area under curve is 0.90 which is very good.

Plot for accuracy, sensitivity and specificity for various Probabilities: From the curve, 0.5 is the optimum point to take it as a cutoff probability

So we have Scores on Train data, Accuracy Score- 82.08%, Sensitivity - 80.95%, Specificity- 83.24% Prediction on test data: We have Scores on Test data Accuracy Score- 82.28% Sensitivity - 80.95%

Specificity- 83.61%

Top 10 predictors

lr.params.sort_values(ascending=False)[0:11]

```
arpu_Goods_phase_Avg
                                  2.018857
                                 1.121627
const
loc_ic_t2m_mou_Goods_phase_Avg
                                 1.001658
total_rech_num_Goods_phase_Avg
                                 0.902676
onnet_mou_8
                                  0.231646
max_rech_amt_8
                                 -0.530813
std_og_mou_8
                                 -0.796151
loc_ic_t2f_mou_8
                                 -1.039935
vol_2g_mb_8
                                 -1.392162
loc_og_t2t_mou_8
                                 -1.527121
last_day_rch_amt_8
                                 -2.099426
dtype: float64
```

. So by using Logistic regression model we achieve accuracy score of 82.18% on test data and 82.08% on train data

Decision Tree : Building Prediction :

Classification	lassification report on train data					Classification report on test data				
	precision	recall	f1-score	support		precision	recall	f1-score	support	
0	0.98	0.94	0.96	19207	0	0.92	0.86	0.89	8211	
1	0.94	0.98	0.96	19178	1	0.87	0.93	0.90	8240	
accuracy			0.96	38385	accuracy			0.89	16451	
macro avg	0.96	0.96	0.96	38385	macro avg	0.89	0.89	0.89	16451	
weighted avg	0.96	0.96	0.96	38385	weighted avg	0.89	0.89	0.89	16451	

- · So we have accuracy score on Decision tree model
- · On Train data- 96%
- On Test data- 89%

Hyper Parameter Tuning:

Getting the GridSearch_CV best score
grid_search.best_score_

0.8781034316771651

Getting the best estimator which the grid search has found out
dt=grid_search.best_estimator_
dt

Building Predictions:

Classification report on test data precision recall f1-score support 0 0.90 0.88 0.89 8211 1 0.88 0.90 0.89 8240 0.89 16451 accuracy macro avg 0.89 0.89 0.89 16451 weighted avg 0.89 0.89 0.89 16451

- So we get accuracy score on Decision tree Hyper-paramater model

- On Train data- 92%
- On Test data- 88%
- So by using Decision Tree model we achieve accuracy score of 88% on test data and 92% on train data

Random Forest:

Classificatio	precision		f1-score	support	р	recision	recall	f1-score	support
	p. 202220			Duppo. c	0	0.95	0.94	0.95	8211
0	1.00	0.97	0.98	19207	1	0.95	0.95	0.95	8240
1	0.97	1.00	0.98	19178	accuracy			0.95	16451
					macro avg	0.95	0.95	0.95	16451
accuracy			0.98	38385	weighted avg	0.95	0.95	0.95	16451
macro avg	0.98	0.98	0.98	38385					
weighted avg	0.98	0.98	0.98	38385	So we have ac	ccuracy scor	e on Rando	m forest mod	del

- · So we have accuracy score on Random forest model
- On Train data- 98%
- · On Test data- 95%

So we have accuracy score on Random forest model

- On Train data- 98%
- On Test data- 95%

Hyper Parameter tuning:

Fitting 4 folds for each of 10 candidates, totalling 40 fits	Classification Report on Train data					
RandomizedSearchCV(cv=4,		precision		f1-score	support	
estimator=RandomForestClassifier(n jobs=-1, random state=42),						
n jobs=-1,	0	0.98	0.97	0.98	19207	
param_distributions={'max_depth': [5, 10, 20, 30, 40, 50,	1	0.97	0.98	0.98	19178	
100],	accupacy			0.98	38385	
'min_samples_leaf': [5, 10, 20, 50, 100,	accuracy					
250, 500],	macro avg	0.98	0.98	0.98	38385	
'n_estimators': [5, 10, 20, 50]},	weighted avg	0.98	0.98	0.98	38385	
scoring='accuracy', verbose=1)	-					

Classification report on test data								
	precision	recall	f1-score	support				
0	0.94	0.95	0.94	8211				
1	0.95	0.94	0.94	8240				
accuracy			0.94	16451				
macro avg	0.94	0.94	0.94	16451				
weighted avg	0.94	0.94	0.94	16451				

- . So we have accuracy score on Random forest model with Hyper-parameter tuning
- On Train data- 97%
- On Test data- 93%
- So by using Random Forest model we achieve accuracy score of 95% on test data and 98% on train data which is bit higher than what the Random forest Model afer Hyper-Parameter models gives.
- S0 Now finalizing Random Forest Model(without hyper-parameter tuning) as the final model.

Conclusion

- As per out Bussniess Problem we have to retain the high value customer and for that we need model having high Recall value i.e(True Positive rate) so
 we have build the multiple model to find out the best fit model having high accuracy and high recall rate
- We have compare various mode and found Random Forest model havig high accuracy rate of 95% (test data) and high recall rate of 94% and 95% respectively.

Classification	n Report on	Train dat		
	precision	recall	f1-score	support
9	1.00	0.97	0.98	19207
1	0.97	1.00	0.98	19178
accuracy			0.98	38385
macro avg	0.98	0.98	0.98	38385
weighted avg	0.98	0.98	0.98	38385
Classification	n report on	test data	1	
	precision	recall	f1-score	support
0	0.95	0.94	0.95	8211
1	0.95	0.95	0.95	8240
accuracy			0.95	16451
macro avg	0.95	0.95	0.95	16451
weighted avg	0.95	0.95	0.95	16451

Business recommendation:

- Insights
- The Company should take a look on customer those having rech amount less than 100 and simultaneously having local outgoing call less than 200 MOU
 are more likely that those customer are doing recharge less than 100 in next month (action phase) and simultaneously local outgoing call less than 100
 MOU are more likely to churn so the company should look at these customers and should provide discounts on recharge or provide some extra benefits
 on existing recharge or should launch new plans for those customers.
- . The company should focus on STD rate and due to high rate the customer may churn . So the company should provide discounts on STD calls .