УДК 537.622; 538.915

#### Н. В. САВЧЕНКО, Г. Е. ГРЕЧНЕВ, И. В. СВЕЧКАРЕВ

# АНИЗОТРОПИЯ g-ФАКТОРОВ ЭЛЕКТРОНОВ ПРОВОДИМОСТИ В ОЦК ПЕРЕХОДНЫХ МЕТАЛЛАХ ВАНАДИИ, НИОБИИ И ТАНТАЛЕ

В рамках RLMTO формализма теоретически исследовано зеемановское расщепление для электронов проводимости в переходных d-металлах — ванадии, ниобии и тантале. Приведены результаты расчета и усреднения g-факторов, анализа их устойчивости к вариациям заполнения зон, расчета усиления зеемановского расщепления уровней межэлектронным взаимодействием. Установлено анизотропное поведение орбитальных g-факторов на дырочном октаэдрическом листе O2 поверхности Ферми второй зоны. Расчетные данные сопоставлены с экспериментом и с результатами других авторов. Сформулированы некоторые общие закономерности поведения g-факторов для всех переходных d-металлов кубической структуры.

#### Введение

При наличии спин-орбитального взаимодействия (СОВ) зеемановское расщепление зонных электронных состояний в магнитном поле и соответствующие локальные значения g-факторов  $g_i^n(\mathbf{k})$  на изоэнергетических поверхностях проявляют существенную зависимость от волнового вектора k, номера зоны i и направления магнитного поля, задаваемого ортом  $\hat{\mathbf{n}}$ . Орбитальные g-факторы  $g^c$ , полученные усреднением локальных g-факторов по экстремальным орбитам на поверхности Ферми (ПФ), сохраняют значительную анизотропию даже в кубических металлах. Примером могут служить результаты расчета д-факторов для ОЦК переходных металлов группы хрома [1] или ГЦК переходных металлов группы платины [2-4]. Орбитальные g-факторы могут быть исследованы с помощью квантовых осцилляционных эффектов в магнитном поле, в частности эффекта де Хааза — ван Альфена (дХвА), в котором они определяют амплитуду осцилляций намагниченности благодаря зеемановскому расщеплению уровней Ландау. При этом наряду с проверкой правильности учета релятивистских эффектов в электронном спектре можно получить полезные сведения о межэлектронном взаимодействии, усиливающем зеемановское расщепление уровней.

Усредненный по ПФ и изотропный в кубических металлах g-фактор  $\langle g \rangle$  задает частоту парамагнитного резонанса электронов проводимости. Для его расчета используют, как правило, некоторые интегральные методы, не требующие определения локальных характеристик. Полученные таким путем оценки величины  $\langle g \rangle$  для металлов группы ванадия обнаруживают заметное отклонение g-фактора от его значения для свободных электронов  $g_0 = 2,0023$  (1,7 — в Nb [ $^6$ ], 1,5 — в Та [ $^6$ ]), что свидетельствует о возможности заметной анизотропии локальных и орбитальных g-факторов и у этой группы ОЦК переходных металлов.

Цель данной работы — определить закономерности поведения анизотропии орбитальных *g*-факторов в металлах группы ванадия, необходимые для проведения целенаправленных экспериментальных исследований эффектов спин-орбитального и электрон-электронного взаимодействий в переходных металлах. В разделе 1 представлен соответствующий теоретический формализм, в разделе 2 приведены результаты расчета и усреднения *g*-факторов, анализа их устойчивости к вариациям параметров зонной структуры и расчета усиления зеемановского расщепления уровней межэлектронным взаимодействием. Раздел 3 содержит сопоставление расчетных данных с экспериментом и с результатами других авторов. В заключительном разделе сформулированы некоторые общие закономерности поведения *g*-факторов для всех переходных *d*-металлов кубической структуры.

## 1. g-факторы в рамках RLMTO формализма

Для вычисления локального g-фактора электронов проводимости в переходных металлах  $g_j^n(\mathbf{k})$ , определяемого через расщепление энергетического уровня j-й зоны  $E_j(\mathbf{k})$  в магнитном поле, направленном по орту  $\mathbf{n}$ , можно использовать выражение [6]

$$(g_j^n(\mathbf{k})/2)^2 = |\langle j, \mathbf{k}, + | \mu^n | j, \mathbf{k}, + \rangle_{\mathcal{Q}}|^2 + |\langle j, \mathbf{k}, + | \mu^n | j, \mathbf{k}, - \rangle_{\mathcal{Q}}|^2, \quad (1)$$

$$\mu^n = (\hat{\mathbf{L}} + \hat{\mathbf{\sigma}}) \hat{\mathbf{n}}$$

в приближении сильной связи. Здесь  $|j, \mathbf{k}, \pm\rangle$  — сопряженная по времени пара блоховских состояний j-й зоны для заданного квазиимпульса  $\mathbf{k}$ ;  $\mathbf{L}$  — оператор услового момента;  $\sigma_i$  — матрицы Паули;  $\langle \ldots \rangle_2$  — ингеграл по элементарной ячейке. Для вычисления интегралов  $\langle n, \mathbf{k}, \mathbf{v} | \mu^n | n, \mathbf{k}, \mathbf{v}' \rangle_2$  были использованы волновые функции релятивистского LMTO метода  $[^{7,8}]$ . Явные формулы для расчета  $g_i^n(\mathbf{k})$  через так называемые «lm-характеры» волновой функции RLMTO метода представлены в  $[^2]$ . «lm-характеры» получались путем решения обобщенной матричной задачи на собственные значения с гамильтонианом  $H_{\rm LMTO}+H_{\rm SO}$ . Релятивистские эффекты учитывались в рамках формализма Паули в скалярно-релятивистском гамильтониане  $H_{\rm LMTO}$  и в операторе COB  $H_{\rm SO}$  в соответствии с  $[^{8,9}]$ .

Потенциальные параметры и параметры СОВ, необходимые для построения матрицы гамильтониана  $H_{\rm LMTO}+H_{\rm SO}$ , получены путем самосогласованного расчета зонной структуры металлов методом LMTO [8]. Расчет проводился на сетке из 285 точек в неприводимой части зоны Бриллюэна с учетом s, p, d, f-орбиталей. Обменно-корреляционные эффекты учитывавались в локальном приближении теории функционала электронной плотности [10].

Необходимые для нахождения наблюдаемых величин  $\langle g \rangle$  и  $g^c$  характеристики энергетического спектра электронов, в частности плотность состояний N (E), фермиевская энергия  $E_F$ , координаты поверхности Ферми и ее экстремальных орбит в  $\mathbf{k}$ -пространстве, фермиевские скорости и циклотронные массы определялись методом RLMTO аналогично [2]. Интегралы по зоне Бриллюэна вычислялись методом тетраэдров с квадратичной интерполяцией [11].

Величина  $\langle g \rangle$ , измеряемая в электронном парамагнитном резонансе, получается усреднением локального g-фактора по всей  $\Pi\Phi$ :

$$\langle g \rangle = \sum_{j} \int g_{j}^{n}(\mathbf{k}) \, \delta(E_{F} - E_{j}(\mathbf{k})) \, d\mathbf{k} / \sum_{j} \int \delta(E_{F} - E_{j}(\mathbf{k})) \, d\mathbf{k}. \tag{2}$$

Орбитальный g-фактор  $g_i^c$  является результатом усреднения  $g_i^n(\mathbf{k})$  по траектории, соответствующей экстремальному сечению  $\Pi\Phi$  j-й зоны (экстремальной орбите):

$$g_{j}^{c} = \oint \frac{g_{j}^{n}(\mathbf{k}) d\mathbf{k}_{t}}{v_{\perp}(\mathbf{k})} / \oint \frac{1}{v_{\perp}(\mathbf{k})} d\mathbf{k}_{t}, \tag{3}$$

где  $v_{\perp}(\mathbf{k})$  — компонента фермиевской скорости, нормальная к направлению магнитного поля. Орбитальные g-факторы входят в выражение Лифшица — Косевича для амплитуды r-й гармоники осцилляций намагниченности в эффекте де Хааза — ван Альфена [ $^{12}$ ,  $^{13}$ ] через спиновый множитель

$$\cos\left(\pi r \mathcal{S} g^c m_c/2\right),\tag{4}$$

где  $m_c$  — отношение зонной циклотронной массы к массе свободного электрона; S — стонеровский фактор усиления за счет межэлектронных взаимодействий. Эффект дХвА позволяет изучать анизотропию g-фактора для различных орбит на данном листе, а также для различных листов ПФ при наличии сведений о зонных циклотронных массах. Поскольку полученные из эксперимента массы в свою очередь усилены электрон-фононным взаимодей-

ствием, предпочтительнее пользоваться в (4) данными их теоретического расчета.

При анализе эффекта дXвA необходимо учитывать перенормировку  $g^c$  в (4) обменно-корреляционным взаимодействием электронов, т. е. наличие фактора Стонера S, который оценивается из других экспериментов с большой погрешностью. В принципе можно получить непосредственно усиленное зеемановское расщепление зонных состояний путем самосогласованного расчета спин-поляризованного спектра в магнитном поле H при учете всех видов взаимодействия, используя, например, локальное приближение теории функционала спиновой плотности [ $^{10}$ ]. Релятивистские эффекты, особенно СОВ, делают эту процедуру весьма сложной, и соответствующие попытки расчета магнитных свойств пока не привели к согласию с экспериментом [ $^{14}$ ].

Если ограничиться скалярно-релятивистским приближением, пренебрегая спин-орбитальным взаимодействием (при этом задача расчета спин-поляризованной зонной структуры сводится к отдельным уравнениям для каждого направления спина,  $g \simeq g_0$ ), можно рычислить усредненный по поверхности Ферми фактор S из результирующей линейной спиновой намагниченности m [15, 16]:

$$dm/dH = S\mu_B^2 N(E_F). \tag{5}$$

Здесь  $\mu_B$ — магнетон Бора;  $S=(1-IN\ (E_F))^{-1};\ I$ — параметр обменно-корреляционного взаимодействия, или эффективный обменный интеграл. Такие расчеты были проведены в настоящей работе для V, Nb и Та с использованием LMTO-формализма [9, 15]. Полученные величины могут быть приняты и в качестве усиления орбитальных g-факторов [13], хотя в действительности не исключена его анизотропия.

## 2. Результаты расчетов и их обсуждение

К настоящему времени установлено, что  $\Pi\Phi$  ванадия [17, 18], ниобия [19, 20] и тантала [20] топологически подобны и состоят из [21]:

— замкнутой дырочной области O2, центрированной в точке  $\Gamma$  зоны Бриллюэна;

— многосвязной сетки дырочных трубок J3 вдоль линий  $\Gamma - \Delta - H$  (направления (100)) — так называемых «игрушечных джунглей» — с узлами, центрированными в точках  $\Gamma$  и H;

— эллипсоидальных дырочных карманов E3, центрированных в точках N.

(Цифра в обозначении листа ПФ указывает номер энергетической зоны.)

В табл. 1 представлены результаты расчета величин (g) и  $(g)_i$  (локальных g-факторов, усредненных по листам ПФ для отдельной i-й зоны). Последние дают представление о роли различных листов поверхности Ферми в формировании результирующего значения (g). Основной вклад в плотность состояний на уровне Ферми у металлов группы ванадия дает третья энергетическая зона, поэтому величина (g) близка к  $(g)_8$ . Сдвиг g-фактора  $\Delta g = (g)_i - g_0$  отрицательный,  $|\Delta g|$  уменьшается с увеличением номера зоны и возрастает с увеличением атомного номера элемента (табл. 1).

Для объяснения отмеченных тенденций в поведении g-фактора d-электронов можно воспользоваться выражением, следующим из невырожденной геории возмущений [ $^{22}$ ]:

$$[g_{j}^{n}(\mathbf{k})/2]^{2} = 1 + \xi_{d} \sum_{i \neq j} \frac{|\widehat{\mathbf{n}}(j, \mathbf{k} | \mathbf{L} | i, \mathbf{k})|^{2}}{E_{j}(\mathbf{k}) - E_{l}(\mathbf{k})} + \dots,$$
 (6)

при условии для параметра СОВ  $\xi_d \ll E_i | (\mathbf{k}) - E_i(\mathbf{k}) |$  (использование (6) для численных оценок затруднено присутствием зонных волновых функций  $|i, \mathbf{k}\rangle$ ). Из (6) вытекает  $i^{2}$ ,  $i^{2}$ ,  $i^{2}$ , что для фиксированной полосы выше-

Таблица I Усредненный g-фактор электронов проводимости по всей ПФ и по ее листам, плотность электронных состояний  $N\left(E_{F}\right)$  и фактор Стонера в ванадии, ниобии и тантале

| Металл           | (g)                                                    | Номер<br>зоны | Листы ПФ     | (g);         | Плотность<br>состояний,<br>(атом • Ридб)— | s                                                       |
|------------------|--------------------------------------------------------|---------------|--------------|--------------|-------------------------------------------|---------------------------------------------------------|
| 23∨              | 1,95<br>1,92 [ <sup>6</sup> ]                          | 2 3           | O2<br>J3, E3 | 1,88<br>1,97 | 4,90<br>22,44<br>27,34                    | 2,90<br>2,34 [16]<br>2,2 [26]<br>2,73 ]27]<br>2,74 [28] |
| 41Nb             | 1,87<br>2,00 [ <sup>6</sup> ]<br>1,68 [ <sup>5</sup> ] | 2 3           | O2<br>J3, E3 | 1,54<br>1,92 | 2,77<br>18,28<br>21,05                    | 1,79<br>1,72 [ <sup>16</sup> ]                          |
| <sup>73</sup> Ta | 1,68<br>1,47 [ <sup>6</sup> ]<br>1,58 [ <sup>5</sup> ] | 2 3           | O2<br>J3, E3 | 1,34<br>1,75 | 3,15<br>16,89<br>20,04                    | 1,72                                                    |



Рис. 1. Зависимость орбитальных g-факторов  $g^c$ , произведения  $m_c g^c$  на листах O2, E3 и J3 ПФ в ванадии, ниобии и тантале от направления магнитного поля. Лист E3 пентрирован в точке  $\pi/a$  (1, 1, 0), a J3 — в  $\pi/a$  (0, 0, 2).

лежащие зоны дают отрицательный вклад в сдвиг  $\Delta g$ , тогда как нижележащие — положительный. Следовательно, для двух смежных зон j и j+1 при переходе от j-й к (j+1)-й соответствующий вклад в сдвиг  $\Delta g$  меняется от отрицательного к положительному, в то время как знаки вкладов всех остальных зон остаются неизменными. Это качественно объясняет установ-

ленный рост значений  $g_i$  с увеличением номера зоны для рассматриваемых металлов (см. табл. 1). Наконец, последнее из перечисленных свойств  $|\Delta g|$  объясняется возрастанием  $\xi_d$  в (6) с увеличением атомного номера.

Орбитальные д-факторы рассчитывались для центральных сечений ПФ на листах *O*2, *E*3 (для определенности выбран эллипсоид E3, центрированный в точке N с координатами  $\pi/a$  (1, 1, 0)), и на узле H листа J3 с экстремальными орбитами, охватывающими точку  $\pi/a$  (0, 0, 2). Последние существуют в ограниченном интервале углов вблизи направления [111]. Проведен также расчет для минимального сечения трубок листа Ј3.

В табл. 2 представлены расчетные орбитальные g-факторы  $g^c$ , циклотронные массы  $m_c$  и входящие в (4) произведения  $m_c g^c$  на всех экспериментально наблюдаемых экстремальных сечениях ПФ металлов группы ванадия при ориентации поля вдоль



Puc. 2. Зависимость циклотронных масс  $m_c$ , площади экстремального сечения  $S_{\rm extr}$  (в ат. ед.) на листах O2, E3 и J3 ПФ в ванадии, ниобии и тантале от направления магнитного поля. Лист E3 центрирован в точке  $\pi/a$  (1, 1, 0), а J3 — в  $\pi/a$  (0, 0, 2).

основных кристаллографических направлений. Эти расчеты были сделаны как с подгонкой площадей экстремальных сечений  $S_{\rm extr}$  под экспериментальные значения из эффекта дХвА [17, 19, 20] путем сдвига энергии Ферми, так и без нее (полученные путем подгонки результаты отмечены звездочкой в табл. 2).

Видно, что для всех листов ПФ подгонка площади экстремального сечения почти не сказывается на величине  $g^c$  (хотя, например, для тантала требуются сдвиги энергии Ферми, достигающие 20 мРидб). Более критичными к сдвигам энергии Ферми оказываются величины циклотронных масс  $m_c$ . Именно за их счет изменения произведения  $m_c g^c$  при подгонке сечений могут составлять десятки процентов.

На рис. 1 и 2 показаны угловые зависимости орбитальных g-факторов  $g^c$ , произведения  $m_c g^c$ , циклотронных масс  $m_c$  и площадей экстремальных се-

Таблица 2

Расчетные орбитальные g-факторы  $g^c$ , циклотронные массы  $m_c$ , площади экстремальных сечений  $S_{\rm extr}$  (в ат. ед.) и произведения  $m_c g^c$  для ряда характерных орбит (определяются координатами центра и ортом  $\hat{n}$ ) на  $J3,\ E3$  и O2 листах  $\Pi\Phi$  в ванадии, ниобии и тантале

| Лист ПФ<br>Центр п/а | Номер<br>зоны | Орбита $\hat{m{n}}$     | Металл                  | S <sub>extr</sub>                                                                                                                                                       | gc                                                                                   | m <sub>C</sub>                                                                                              | mc <b>g</b> c                                                                                               |
|----------------------|---------------|-------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 0, 0, 1              | 3             | [160]                   | V<br>Nb<br>Ta           | 0,120<br>0,078*<br>0,070<br>0,038*<br>0,088<br>0,078*                                                                                                                   | 1,95<br>1,93<br>1,86<br>1,80<br>1,54<br>1,52                                         | -1,30<br>-0,93<br>-0,77<br>-0,47<br>-0,75<br>-0,67                                                          | -2,54<br>-1,80<br>-1,44<br>-0,85<br>-1,16<br>-1,03                                                          |
| J3<br>0, 0, 2        | 3             | [ 111]                  | Nb<br>Ta                | 0,519*<br>0,553*                                                                                                                                                        | 1,88<br>1,64                                                                         | -1,43<br>-1,90                                                                                              | 2,70<br>3,11                                                                                                |
| E3<br>1, 1, 0        | 3             | [111]                   | V Nb Ta V Nb Ta V Nb Ta | 0,212<br>0,141*<br>0,225<br>0,176*<br>0,170<br>0,122*<br>0,194<br>0,134*<br>0,226<br>0,181*<br>0,181<br>0,132*<br>0,222<br>0,149*<br>0,273<br>0,213*<br>0,235<br>0,162* | 1,97 1,98 1,93 1,94 1,79 1,83 1,98 1,98 1,96 1,88 1,91 1,99 1,99 1,98 1,98 1,91 1,99 | -1,74 -0,83 -0,99 -0,67 -0,83 -0,55 -0,92 -0,69 -0,80 -0,61 -0,69 -0,53 -1,07 -0,81 -0,88 -0,73 -0,90 -0,70 | -3,43 -1,63 -1,93 -1,30 -1,49 -1,01 -1,82 -1,38 -1,56 -1,19 -1,31 -1,02 -2,14 -1,62 -1,75 -1,46 -1,71 -1,36 |
| O2<br>0, 0, 0        | 2             | [001]<br>[111]<br>[110] | Nb                      | 0,219<br>0,279*<br>0,087<br>0,135*<br>0,158<br>0,209*                                                                                                                   | 1,78<br>1,77<br>1,84<br>1,91<br>1,43<br>1,63                                         | -2,44<br>-2,14<br>-1,29<br>-1,38<br>-1,90<br>-1,79                                                          | -4,36<br>-3,79<br>-2,37<br>-2,64<br>-2,71<br>-2,93                                                          |

Примечание. Знаком «\*» отмечены случаи подгонки Sextr под экспериментальные значения из эффекта дХвА сдвигом энергии Ферми.

чений  $S_{\rm extr}$  на листах O2, E3 и J3  $\Pi\Phi$  ванадия, ниобия и тантала. Поскольку для согласования расчетных и экспериментальных значений  $S_{\text{extr}}$ при различных направлениях магнитного поля требуются разные значения сдвига энергии Ферми, подгонка этих площадей не проводилась, а использовались характеристики экстремальных сечений и энергия Ферми, полученные непосредственно из самосогласованных расчетов электронной струк-

Для листов ЕЗ и ЈЗ характерны плавные угловые зависимости всех перечисленных выше параметров. Неглубокий минимум  $g^c$  у Nb вблизи направления [111] на этих листах сглаживается, а сама величина gc приближается к  $g_0$  (рис. 1) при переходе к V, т. е. при уменьшении СОВ (см. (6)). Такой вид угловых зависимостей ge является отражением плавных изменений локальных характеристик на этих листах  $\Pi\Phi$  (или на избранных участках этих листов, как в случае J3).

На рис. 3 показано поведение рассчитанных локальных характеристик для волновых векторов к на неприводимых частях экстремальных орбит на листах J3 ( $\hat{\mathbf{n}}$  || [111]) и E3 ( $\hat{\mathbf{n}}$  || [001]) ПФ тантала: локального g-фактора  $g_3^n(\mathbf{k}_F)$ , энергетического спектра  $E_I$  ( $\mathbf{k}$ ) и локальной парциальной плотности волновой функции электрона проводимости  $\rho_{I=1,2,3}$ . Из рис. З и формулы (6) можно заключить, что модуляция  $g_3^n$  ( $\mathbf{k}_F$ ) вдоль орбит  $E_3(\mathbf{k}_F) = E_F$  относительно слаба и вызвана в основном сближением энергий третьей и четвертой зон (воздействие нижних зон, по-видимому, взаимно компенсируется), которое сопровождается изменением степени гибридизации состояний, т. е. соотношения компонент локальной парциальной плотности волновой функции. Аналогичная корреляция локальных характеристик наблюдается в ванадии и ниобии.



Рис. 3. Угловая зависимость мокального g-фактора  $g_3^n$ , энергетического спектра  $E_j$  (в Ридб) ( $j=1,\ 2,\ 3,\ 4$ ), локальной парциальной плотности волновой функции  $p_l$  электрона проводимости ( $\epsilon p$ »-,  $\epsilon d$ »-и  $\epsilon f$ »- состояния) для симметричной части экстремальной орбиты на J3 и E3 листах ПФ в Та:  $J3-\hat{\mathbf{n}}\parallel[111]$ , центр —  $(0,\ 0,\ 2)\pi/a;\ E3$ — $(\hat{\mathbf{n}}\parallel[001],\ центр$ —  $(1,\ 1,0)\pi/a$ .

Совсем другая ситуация имеет место для O2 листа. В отличие от плавной угловой зависимости  $S_{\rm extr}$ , на этой замкнутой поверхности орбитальные характеристики  $g^c$ ,  $m_c$  и  $m_c g^c$  в рассматриваемых металлах имеют существенно анизотропное поведение. Орбитальный g-фактор проявляет довольно глубокий минимум в направлении [110], заметный даже у наиболее легкого ванадия, а также в направлении, составляющем угол  $15-20^\circ$  с осью [001] в плоскости ( $1\overline{10}$ ] (рис. 1). Такая значительная анизотропия  $g^c$  является свидетельством очень сильных угловых зависимостей соответствующих локальных характеристик на экстремальных орбитах.

Для иллюстрации на рис. 4 представлен аналогичный рис. 3 набор рассчитанных локальных характеристик для двух экстремальных орбит ( $\hat{\mathbf{n}}$  || [110] и  $\hat{\mathbf{n}}$  || [001]) на листе O2 ПФ тантала. (В этом случае волновые векторы орбит удовлетворяют соотношению  $E_2(\mathbf{k}_F) = E_F$ .) Однако энергии Ферми для указанных орбит сдвинуты относительно расчетного значения на разные величины — 11 и 7 мРидб соответственно — для согласования площадей экстремальных сечений с экспериментом.

Из рис. 4 видно, что величина и поведение орбитального g-фактора определяются в основном наличием резких и глубоких минимумов  $g_2^n(\mathbf{k})$ . Вблизи точек минимума  $g_2^n(\mathbf{k})$  становятся малыми также фермиевские скорости, что, согласно (3), приводит к увеличению вклада этих участков в величину  $g^c$ . Минимумам  $g_2^n(\mathbf{k})$  соответствуют также особенности в соотношении компонент локальной парциальной плотности волновой функции, хотя в целом степень гибридизации невелика, и волновая функция сохраняет преимущественный d-характер.

Очевидная корреляция особенностей  $g_2^n(\mathbf{k})$  и величины  $1/(E_F-E_3(\mathbf{k}))$  на экстремальных орбитах листа O2 (рис. 4) указывает на определяющую роль в формировании локального g-фактора энергетической щели между второй и третьей зонами. В отсутствие СОВ лист O2 контактирует в отдельных точках на плоскостях  $\{100\}$  и  $\{110\}$  с охватывающей его поверхностью — узлом  $\Gamma$  листа J3. Под воздействием СОВ вырожденные состояния расщепляются (кроме состояний на линии  $\Gamma - P$  зоны Бриллюэна ( $I^{20}$ ), но малость соответствующих им энергетических знаменателей в  $I_{20}$ 0 обеспечивает значительные сдвиги локального  $I_{20}$ 1 соизмеримые с  $I_{20}$ 2 (рис. 4).



Рис. 4. Угловая зависимость покального g-фактора  $g_2^n$ , энергетического спектра  $E_j$  (в Ридб) (j=1,2,3,4), локальной парциальной плотности волновой функции  $p_l$  электрона проводимости («p»-, «d»- и «f»-состояния) для симметричной части экстремальной орбиты на O2 листе  $\Pi\Phi$  в Та:  $a-\hat{\mathbf{n}}$  [110],  $\theta-\hat{\mathbf{n}}$  [001], центр—

Для корректного анализа g-фактора на листе O2 вместо (6) необходимо пользоваться вырожденной теорией возмущений, а для численных расчетов — более изощренными вычислительными методами и приемами. В используемой технике расчета определяется модуль  $g_j^n(\mathbf{k})$ , тогда как для приведенной на рис. 4 экстремальной орбиты ( $\mathbf{n} \parallel [110]$ ) вместо двух минимумов локального g-фактора вполне возможно изменение знака  $g_2^n(\mathbf{k})$  в промежутке между ними (с соответствующими последствиями для значений  $g^c$ ). Далее, надежность вычисленных значений  $g^c$  для орбит, включающих почти вырожденные состояния, существенно зависит от правильности учета малого спин-орбитального расщепления зон. Его независимую коррекцию трудно организовать в используемой жесткой схеме априорного расчета.

Хотя случаи вырождения зон требуют специального анализа g-факторов, мы все же приводим данные для листа O2 в надежде выявить и устранить связанные с вырождением неопределенности расчета, привлекая эксперимент. Вычисление g-фактора для экстремальных орбит на узле  $\Gamma$  листа J3 (в отличие от узла H, который не содержит вырожденных состояний) сопряжено с теми же проблемами, что и для листа O2, и по этой причине не проводилось.

Как было отмечено выше, для согласования расчетных площадей экстремальных сечений ПФ с данными эффекта дХвА в ряде случаев приходится смещать локальное положение уровня Ферми. В связи с этим была изучена устойчивость угловых зависимостей орбитальных характеристик к фиксированным сдвигам энергии Ферми относительно величины  $E_F$ , полученной из самосогласованного расчета электронной структуры. На рис. 5 показано изменение угловых зависимостей орбитальных g-факторов  $g^c$ , произведения  $m_c g^c$ , циклотронных масс  $m_c$  и площадей экстремальных сечений  $S_{\rm extr}$  на

E3, J3 и O2 листах  $\Pi\Phi$  в тантале при сдвиге значения энергии  $\Phi$ ерми на +20, -16 и -10 мРидб. Эти величины примерно соответствуют средним значениям сдвигов, совмещающих расчетные величины  $S_{\rm extr}$  на перечисленных листах  $\Pi\Phi$  с данными дХвА. По характеру поведения рассматриваемых свойств ванадий и ниобий мало отличаются от тантала.



Рис. 5. Изменение угловых зависимостей орбитальных g-факторов  $g^c$ , произведен ия  $m_c g^c$ , циклотронных масс  $m_c$  и площади экстремального сечения  $S_{\rm extr}$  (в ат. ед.) на E3, J3 и O2 листах  $\Pi\Phi$  в тантале при сдвиге значения энергии  $\Phi$ ерми на +20, -16, -10 мРидб от величины  $E_F^0$ , получаемой из самосогласованного расчета электронной структуры (- - - -  $E_F^0$  { +20, -16, -10}, - - -  $E_F^0$ ).

Наименьшему влиянию вариаций  $E_F$  подвержено поведение орбита льных g-факторов. Практически все угловые зависимости  $g^c$  смещаются параллельно начальному положению с небольшими деформациями в экстремумах. Хотя сама величина произведения  $m_c g^c$  очень чувствительна к сдвигам  $E_F$  (см. выше), вид его угловой зависимости также сохраняется как на листе E3, так и на листе O2. Судя по данным рис. 5, узел  $\Gamma$  листа J3 выделяется особо сложным поведением дифференциальных характеристик центральных сечений, и для него угловые зависимости  $m_c g^c$  больше, чем у других листов, видоизменяются при сдвиге  $E_F$ . Поскольку для различных направлений магнитного поля, как правило, требуются разные сдвиги энергии Ферми, вид интерполяционной угловой зависимости произведения  $m_c g^c$  также может заметно отличаться от априорного расчета. В **так**их случаях для прецизион-

ного анализа спинового множителя (4) в эффекте дХвА следует использовать более точные методы расчета параметров экстремальных орбит.

Заметим, что исключение f-компоненты из исходного базиса MT-орбиталей не привело к заметным изменениям  $\langle g \rangle$  (лишь у тантала оно достигло величины 0.04).

### 3. Сравнение расчетных д-факторов с экспериментом

Экспериментальные величины  $\langle g \rangle$  в металлах группы ванадия, определенные с помощью ЭПР на тонких пленках [ $^{23}$ ,  $^{24}$ ], оказываются одинаковыми в пределах погрешности измерений ( $^{2}$ ,00  $\pm$  0,04, 2,05  $\pm$  0,04 и 2,02  $\pm$  0,04 для ванадия, ниобия и тантала соответственно), что как будто противоречит результатам данного расчета. Однако найденная в тех же работах величина  $\langle g \rangle = 2,07 \pm 0,04$  для палладия тоже близка к перечисленным, но значительно отличается от полученного позже значения  $^{2}$ ,22  $\pm$  0,04 [ $^{25}$ ]. Поэтому существующие экспериментальные сведения о  $\langle g \rangle$ -факторах в металлах группы ванадия представляются недостаточно надежными для проведения каких-либо сравнений с расчетом.

Что касается других теоретических работ, то оценки величины  $(g^2)^{1/2}$  (1,92 для V, 2,00 для Nb и 1,47 для Ta) получены в [6] на основе двухпараметрического модельного гамильтониана и довольно грубы. В рамках более сложного формализма, но пригодного только для описания (g), в [5] найдено (g) = 1,68 (Nb) и (g) = 1,58 (Ta). Эти последние значения близки к полученным в данной работе (табл. 1).

Здесь же уместно обсудить фактор Стонера (см. табл. 1), для которого трудно получить независимое экспериментальное значение, особенно в рассматриваемой группе металлов с большой долей ванфлековского вклада в общий парамагнетизм, и сравнивать можно только результаты различных расчетов.

Заметное расхождение известных в литературе данных для фактора Стонера в V (от 2,2 [ $^{26}$ ] до 2,74 [ $^{27,~28}$ ]], табл. 1) связано главным образом с различием в плотности электронных состояний. Найденное и использованное в данной работе значение N ( $E_F$ ) = 27,3 состояний/атом · Ридб выше, чем в цитированных источниках, но близко к результатам самосогласованных ППВ расчетов (25—30 [ $^{29,~30,~31}$ ]). Соответственно выше оказалась и величина S=2,9. Полученное значение S=1,78 для Nb согласуется с данными [ $^{16}$ ]; результат для элемента с большим СОВ — тантала — наименее надежен и приведен в качестве оценки (табл. 1).

Орбитальный g-фактор содержится в эффекте дХвА в виде произведения  $Sg^rm_c$ , которое можно извлечь из (4) только с точностью до некоторого постоянного числа. Полученные в настоящей работе результаты для каждого из сомножителей позволяют снять (или, по крайней мере, существенно сузить) эту неоднозначность и уточнить относительные величины сомножителей при наличии достаточной экспериментальной информации. К сожалению, экспериментальные исследования проявлений орбитальных g-ф $\varepsilon$ кторов в эффекте дХвА для рассматриваемых металлов отсутствуют, за исключением случайных наблюдений так называемого «спинового нуля». Напомним, что «спиновый нуль» представляет собой гашение амплитуды эффекта дХвА, когда произведение  $rSg^cm_c$  в (4) равно целому нечетному числу.

Такое явление наблюдалось в ниобии на J3 листе для направления магнитного поля под углом 74,8° к оси [001] в плоскости ( $\overline{110}$ ) [ $^{32}$ ,  $^{33}$ ]. При расчете величины  $m_c g^c$  для этой орбиты площадь экстремального сечения была подогнана под экспериментальное значение путем сдвига энергии Ферми на 1,5 мРидб. Из набора значений фактора Стонера, при которых для найденного произведения  $m_c g^c \simeq 2,0$  в соответствии с (4) должен реализоваться «спиновый нуль», наиболее близким к расчетному значению 1,78 оказывается  $S \simeq 1,5$ . Исчезновение основной гармоники осцилляций в ванадии для листа E3 с координатами центра (1,1,0) $\pi/a$  при направлении магнитного

поля вблизи [100] также связывалось с проявлением «спинового нуля» [17]. Расчетной величине  $m_c g^c \simeq 1,5$  для этой орбиты соответствуют два ближайших к предсказанным в табл. 1 значения  $S (\simeq 2,0$  и  $\simeq 3,3)$ , из которых трудно сделать обоснованный выбор. Но даже такая степень согласия может считаться удовлетворительной, если иметь в виду ограниченную точность использованного метода для расчета параметров довольно критичных экстремальных орбит, возможную анизотропию величины фактора Стонера и то обстоятельство, что применимость самой концепции среднего поля при вычислении S переходных металлов оказывается под вопросом (см., например, [34, 35]).

Для более определенных суждений нужны и более детальные экспериментальные исследования зеемановского расщепления зонных электронных состояний для этих металлов с дополнением использованного формализма прецизионным описанием экстремальных орбит и циклотронных масс. Результаты проведенного в настоящей работе и других аналогичных по точности расчетов могут быть полезны для целенаправленной постановки экспе-

римента и предварительного анализа полученных данных.

#### Заключение

Представленные здесь и опубликованные в других работах  $[^{1, 2}]$  результаты расчета g-факторов электронов проводимости в рамках модифицированного релятивистского LMTO формализма позволяют сформулировать некоторые общие закономерности в отклонениях g-факторов от свободноэлектронного значения  $g_0$  для переходных металлов с кубической структурой.

- 1. Для величин  $\langle g \rangle$ , обобщенных в табл. 3, характерен рост сдвига  $|\Delta\langle g \rangle| = |\langle g \rangle g_0|$  при увеличении атомного номера Z металла в пределах одной группы, т. е. при переходе от 3d- к 5d-ряду. Этот рост связан с увеличением СОВ.
- 2. Знак сдвига ∆⟨g⟩ меняется с отрицательного в начале ряда на положительный в конце. Это обусловлено увеличением числа ветвей спектра, попадающих под уровень Ферми при заполнении d-зоны, что приводит, согласно (б), к росту положительных вкладов в g-фактор.
- 3. По той же причине у любого из рассмотренных металлов значения  $\langle g \rangle_i$  монотонно увеличиваются с ростом номера зоны.
- 4. Слвиги локальных g-факторов коррелируют с расстоянием до соседних энергетических зон и аномально велики для электронных состояний, близких к вырождению.

Вычисленные в рамках модифицированного релятивистского LMTO формализма значения величин  $\langle g \rangle$  и  $\langle g \rangle_j$  для ряда переходных и благородных металлов

Таблица 3

| VA                                | VIA                                         | m I | VIII                                               | 18                                    |                                  |            |
|-----------------------------------|---------------------------------------------|-----|----------------------------------------------------|---------------------------------------|----------------------------------|------------|
| 23<br>1, 95<br>2 1, 88<br>3 1, 97 | -Z<br>-Z<br>-Z<br>-J ⟨g⟩;                   |     |                                                    |                                       | 29 CU.<br>2,09                   | 3d         |
| 41 1,88 Nb<br>2 1,54<br>3 1,92    | 421, 96 Me<br>3 1, 90<br>4 1, 98<br>5 2, 20 |     | 45<br>2,05<br>3 1,35<br>4 1,97<br>5 2,04<br>6 2,24 | 45 2,14<br>4 1,37<br>5 2,15<br>6 2,25 | <sup>47</sup> 2,06 <sup>Ag</sup> | 4 ct       |
| 73 Ta<br>1,65<br>2 1,34<br>3 1,75 | 74, 78 <sup>W</sup><br>3 1, 55<br>4 1, 94   |     | 77<br>2.08<br>3 1,49<br>4 1,86<br>5 2,01<br>6 2,39 | 78 Pt<br>4 0.50<br>5 2.12<br>6 2,34   | <sup>79</sup> 2,29 <sup>Au</sup> | 5 <i>d</i> |
| 00                                | ΙK                                          |     | i                                                  | ruk                                   |                                  |            |

Примечание. Здесь Z — атомный номер.

- 5. Орбитальные g-факторы на листах  $\Pi\Phi$ , имеющих такие состояния, сохраняют значительную анизотропию в кубических металлах.
- 6. Чувствительность орбитальных g-факторов к исключению f-состояний и к вариациям уровня Ферми значительно ниже, чем других характеристик экстремальных орбит, поэтому для расчета  $g^c$  могут быть использованы менее прецизионные методы.

Разумное сочетание расчетов и эксперимента позволит в дальнейшем расширить знание о д-факторах и извлечь полезную информацию о взаимодействиях электронов в переходных металлах.

## N. V. SAVCHENKO, G. E. GRECHNEV, and I. V. SVECHKAREV ANISOTROPY OF CONDUCTION ELECTRON g-FACTORS IN BCC TRANSITION METALS — VANADIUM, NIOBIUM AND TANTALUM

The Zeeman splitting for conduction electrons in d-metals such as vanadium, niobium, tantalum is studied theoretically by the RLMTO method. The results are presented, which were obtained from calculation and averaging of g-factors, from the analysis of their stability against variations of the number of states and from calculation of the Zeeman level splitting enhancement due to the electron - electron interaction. The orbit-averaged g-factors are found to display the anisotropic behavior on a O2 sheet of the Fermi surface in these metals. The calculated results are compared with experimental one and those obtained by other authors. Common trends of the g-factor behaviour are formulated for all transition d-metals with cubic structure.

LIST OF SYMBOLS.  $g_i^n(\mathbf{k})$ , local g-factor for an electron in j-th band at the point k in the Brillouin zone;  $g^c$ , orbit-averaged gyromagnetic factor;  $\langle g \rangle$ , Fermi surface-averaged g-factor;  $m_c$ , cyclotron mass; H, magnetic field strength; n, magnetic field direction;  $E_j$ , energy of j-th band; S, enhancement factor;  $E_F$ , Fermi energy.

FIGURE CAPTIONS. Fig. 1. Angular dependence on the magnetic field direction of orbital g-factor  $g^c$  and  $m_c g^c$  on O2, E3 and J3 sheet of the Fermi surface in V, Nb and Ta. E3 sheet centered at  $\pi/a$  (1,1,0), J3 —  $\pi/a$  (0,0,2).

Fig. 2. Angular dependence on the magnetic field direction of cyclotron mass  $m_a$  and extremal cross-section  $S_{\rm extr}$  (in a. u.) on O2, E3 and J3 sheet of the Fermi surface in V, Nb, and Ta. E3 sheet centered at  $\pi/a$  (1, 1, 0), J3 —  $\pi/a$  (0, 0, 2).

Fig. 3. Angular dependence on symmetrical part of the extremal orbit for J3 and

E3 sheet of the Fermi surface local g-factor  $g_3^n$ , energy spectrum  $E_i$  (in Ry) (i = 1, 2, 3, 4), and local partial density p<sub>1</sub> of the conduction electron wave function (p»-, «d»- and «f»-states), in Ta:  $J3 - \hat{n}$  [111], center  $\pi/a$  (0, 0, 2);  $E3 - \hat{n}$  [001], center  $-\pi/a$  (1, 1, 0).

Fig. 4. Angular dependence on symmetrical part of the extremal orbit for O2 sheet of the Fermi surface local g-factor  $g_2^n$ , energy spectrum  $E_j$  (in Ry) (j=1, 2, 3, 4), and local partial density  $p_l$  of the conduction electron wave function («p»-, «d»- and «f»-states),

in Ta:  $a = \hat{n}$  | [110];  $\delta = \hat{n}$  | [001], center  $= \pi/a$  (0, 0, 0). Fig. 5. Variation of angular dependence on the magnetic field direction of orbital g-factor  $g^c$ ,  $m_c g^c$ , cyclotron mass  $m_c$  and extremal cross-section  $S_{\rm extr}$  (in a. u.) on O2, E3 and J3 sheets of the Fermi surface in Ta by +20,-16,-10 mRy shift of Fermi energy from  $E_F^0$  which are obtained from self-consistent electronic structure (---  $E_F^0$ 

1. Савченко Н. В., Гречнев Г. Е. Анизотропия g-факторов электронов проводимости в молибдене и вольфраме // ФНТ.— 1989.— 15, № 6.— С. 644—647.

2. Савченко Н. В., Гречнев Г. Е. g-факторы электронов проводимости некоторых ГЦК переходных металлов.— Харьков, 1989.— 45 с.— (АН УССР; Физ.-тех. ин-т низ. температур).— Рукопись деп. в ВИНИТИ 14.06.89, № 3956—В89.

3. Ohlsen H., Calais J. L. Effect of spin-orbit coupling on the conduction-electron Zeeman splitting in platinum-group metals // Phys. Rev. В.— 1987.— 35, № 15.— P. 7914—7991

- P. 7914—7921.
- Hjelm A., Nordborg L., Ohlsen H. Conduction electron g-factor on the X-pocket holes in iridium // Phys. Rev. B.— 1990.— 41, N 11.— P. 7446—7452.
   Schober C., Antonov V. N. The gyromagnetic factor of conduction electrons in noble and transition metals // Phys. status solidi (b).— 1987.—143, N 1.— P. K31—K35.
   MacDonald A. H. Transition-metal g-factor trends // J. Phys. F.— 1982.—12, N 12.— P. 2579—2589.

- Grechnev G. E., Savchenko N. V., Svechkarev I. V., Lee M. J. G., Perz J. M. Conduction electron g-factors in the noble metals // Phys. Rev. B.— 1989.— 39, N 14.— P. 9865—9873.
- 8. Skriver H. L. The LMTO method.— Berlin: Springer Verlag, 1984.— 284 p. 9. Andersen O. K. Linear methods in band theory // Phys. Rev. B.— 1975.— 12, N 8.— P. 3060-3083.
- Barth U. von, Hedin L. A local exchange-correlation potential for the spin-polarized case. 1 // J. Phys. C.— 1972.— 5, N 13.— P. 1629—1642.
   Резер Б. И., Шайкина О. И. Реализация комбинированного тетраэдрического ме-
- тода численного интегрирования по зоне Бриллюэна. Свердловск, 1981. 41 с.

- (АН СССР; Ин-т физики металлов УНЦ). Рукопись деп. в ВИНИТИ 24.02.81,
- № 777 82 Деп.
  12. Лифшиц И. М., Косевич А. М. К теории магнитной восприимчивости металлов при низких температурах // ЖЭТФ.— 1955.— 29, вып. 6.— С. 730—742. 13. Шенберг Д. Магнитные осцилляции в металлах.— М.: Мир, 1986.— 687 с.

- 14. Schadler G., Albers R. C., Boring A. M., Weinberger P. Relativistic spin-polarized Schaller G., Albers R. C., Boring A. M., Wethberger P. Relativistic spin-polarized densities in a scattering-theory formulation: applications to the electronic structure of plutonium // Phys. Rev. B.— 1987.— 35, N 9.— P. 4324—4330.
   Andersen O. K., Madsen J., Poulsen U. K., Jepsen O., Kollar J. Magnetic ground state properties of transition metals // Physica B.— 1977.— 86—88.— P. 249—256.
   Moruzzi V. L., Janak J. F., Williams A. R. Calculated electronic properties of metals.— New York: Pergamon press, 1978.— 188 p.
   Parker R. D., Halloran M. H. Experimental study of the Fermi surface of vanadium // Phys. Rev. B.— 1974.— 9. N. 10 D. 4130—4137.

- Phys. Rev. B.— 1974.— 9, N 10.— P. 4130—4137.

  18. Pecora L. M., Ehrlich A. C., Manuel A. A., Singh A. K., Peter M., Singru R. M.
- Pecora L. M., Enruch A. C., Manuel A. A., Singh A. K., Peter M., Singru R. M. Momentum density of vanadium: A reconstruction from two-dimensional positron-annihilation data // Phys. Rev. B.— 1988.— 37, N 12.— P. 6772—6782.
   Crabtree G. W., Dye D. H., Karim D. P., Campbell S. A., Ketterson J. B. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb // Phys. Rev. B.— 1987.—35, N 4.— P. 1728—1741.
   Halloran M. H., Condon J. H., Graebner J. E., Kunzier J. E., Hsu F. S. L. Experimental study of the Fermi surface of niobium and tantalum // Phys. Rev. B.— 1970.—
   1, N 2.— P. 366—372.
   Karkharan A. Volla K. Economy of Control M. Accounted 1979.— 1979.—
- 21. Крэкнелл А., Уоне К. Поверхность Ферми. М.: Атомиздат, 1978. 350 с.
- 22. Koelling D. D., MacDonald A. H. Relativistic effects in solids // Proc. NATO ASI. On relativistic effects in atoms, molecules and solids.— New York; London, 1983.— P. 227-304.
- 23. Салихов С. Г. Резонансное поглощение в металлах на сантиметровых волнах // ДАН СССР.— 1953.— 93, № 2.— С. 241—244.
  24. Альтшулер С. А., Куренев В. Я., Салихов С. Г. Парамагнитное резонансное поглощение в металлах // ДАН СССР.— 1952.— 84, № 4.— С. 677—679.
  25. Monod P.// Physique Coll. C.— 1978.— 39, N 6.— P. 1472.

- 26. Jarlborg T. Q-dependent Stoner factors and reformulated spin-fluctuation enhancements: V and Pd // Solid State Communs.—1986.—57, N 8.— P. 683—686.
  27. Yasui M., Shimizu M. The orbital and spin-orbit magnetic susceptibilities in vana-
- dium // J. Magn. and Magn. Mater. 1986. 54, N 7, Pt 2. P. 989—990.

  28. Stenzel E., Winter H. The wave vector dependent dynamic spin susceptibilities of Pd and V and their contributions to the low temperature specific heat // J. Phys. F.— 1986.— 16, N 11.— P. 1789—1809.
- 29. Boer L. L., Papaconstantopoulos D. A., Kein B. M. Effect of self-consistences and exchange on the electronic structure of the transition metals V, Nb, and Ta // Phys. Rev. B.— 1977.— 15, N 8.— P. 3685—3693.
- 30. Papaconstantopoulos D. A., Anderson J. A., McCaffrey J. W. Self-consistent energy bands in vanadium at normal and reduced lattice spacings // Phys. Rev. B.— 1972.-
- 5, N 4.— P. 1214—1221.
  31. Bacalis N. C., Blathras K., Papaconstantopoulos D. A., Thomaides P. Various approximations made in augmented-plane-wave calculations // Phys. Rev. B.— 1985.— 32, N 8.— P. 4849—4856.
- 32. Karim D. P., Ketterson J. B., Crabtree G. W. A de Haas van Alphen study of niobium. Fermi surface, cyclotron effective masses, and magnetic breakdown effects //
- J. Low Temp. Phys. 1978. 30, N 3/4. P. 389 424.
   Scott G. B., Springford M. The Fermi surface in niobium // Proc. Roy. Soc. London A. 1970. 320, N 1540. P. 115—130.
   Панфилов А. С., Пушкарь Ю. Я., Свечкарев И. В. Влияние давления на обменно-
- усиленный зонный парамагнетизм сплавов палладия при низких температурах // ЖЭТФ.— 1989.— 95, вып. 2.— С. 751—759.

  35. Kaiser A. B., Oles A. M., Stollhof G. Volume dependence of Stoner parameter in transition metals // Phys. Scr.— 1988.— 32, N 6.— P. 935—939.

Физико-технический ин-т низких температур АН УССР, т. Харьков

Получено 21,12.90