Assignment 2: ECC

[112006234] [Justin Thiadi 程煒財]

Question 2(a):

For $x \in F^4$, show that y = Ax is the same as the encoded result using the set method.

We know that:

- a_1, a_2, a_3, a_4 is the original message
- b₅, b₆, b₇ is the area to fill in bits to indicate that each circle has even no. of 1s

The idea is that we have a 4-bits original message (a_1, a_2, a_3, a_4) , and we want to encode them into a seven-bit string by appending them with 3 extra parity bits (b_5, b_6, b_7) . Thus it'll become $a_1a_2a_3a_4b_5b_6b_7$

Notice that:

When even the following will be 0	When odd the following will be 1
$b_5 + a_1 + a_2 + a_3$	$b_5 + a_1 + a_2 + a_3$

Matrix Multiplication

When

y = Ax, where $x \in F^4$

$$y = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 1 & 1 \end{bmatrix} egin{bmatrix} a_1 \ a_2 \ a_3 \ a_4 \end{bmatrix}$$

Since we are considering binary addition, then the 5th to 7th row of the matrix will each be

• 0 when there are even no. of 1s

$b_6 + a_1 + a_2 + a_4$	$b_6 + a_1 + a_2 + a_4$
$b_7 + a_1 + a_3 + a_4$	$b_7 + a_1 + a_3 + a_4$

Therefore,

value of b5:

, 411410 01 00 .	
when area is even	when area is odd
0 when $a_1 + a_2 + a_3 =$ even no. of 1s	0 when $a_1 + a_2 + a_3 =$ odd no. of 1s
1 when $a_1 + a_2 + a_3 = $ odd no. of 1s	1 when $a_1 + a_2 + a_3 =$ even no. of 1s

Thus,

 b_5 can be written as a linear combination of a_1 , a_2 , and a_3 which satisfy $b_5 = (a_1 + a_2 + a_3)$ mod2

Following the logic from above, b₆ can be written as a linear combination of a₁, a₂, and a₄ which satisfy

 $\mathbf{b}_6 = (\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_4) \bmod 2$

 b_7 can be written as a linear combination of a_1 , a_3 , and a_4 which satisfy

 $\mathbf{b}_7 = (\mathbf{a}_1 + \mathbf{a}_3 + \mathbf{a}_4) \bmod 2$

• 1 when there are odd no. of 1s Let the 5th to 7th row be b₅, b₆, b₇ respectively, it can thus be written as

$$\mathbf{b}_5 = (\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3) \mod 2$$

 $\mathbf{b}_6 = (\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_4) \mod 2$
 $\mathbf{b}_7 = (\mathbf{a}_1 + \mathbf{a}_3 + \mathbf{a}_4) \mod 2$

Therefore, by comparing both result, it can be seen that the result y = Ax is the same as the encoded result using the set method

Question 3(a):

(20%) Suppose the null space of A^T is span (h_1, h_2, \ldots, h_k) and let matrix

$$H = \begin{bmatrix} h_1^T \\ h_2^T \\ \vdots \\ h_k^T \end{bmatrix}.$$

Show that the encoded message y does not have any single bit error if and only if Hy = 0. A single bit error of y is $y + e_i$, where e_i is the i-th column vector of an identity matrix I.

Given that:

- Null space of A^{T} is spanned by $\{h_1, h_2, ..., h_k\}$ where $\{h_1, h_2, ..., h_k\}$ are column vectors
- Matrix $H = \begin{bmatrix} h_1^T \\ h_2^T \\ \vdots \\ h_k^T \end{bmatrix}$ where **each of the rows** of matrix H is in the null space of A^T . Since A^T

is spanned by $\{h_1, h_2, ..., h_k\}$, so h_k^T is basically h_k in the form of row vectors

- \bigstar Prove if there's no single bit error in y, then Hy = 0
 - (1) Suppose no error in encoded message y, therefore it'll satisfy y = Ax and lies within the subspace that satisfies the null space condition below
 - (2) We know that each rows of the matrix H spans the null space of A^{T} , therefore **each** rows of matrix H have to satisfy $A^{T}h_{k}^{T} = 0$, or in other words, $A^{T}H^{T} = 0$ as the rows are stacked to form matrix H
 - (3) Transpose $A^{T}H^{T} = 0$ and we get $(A^{T}H^{T})^{T} = (0)^{T}$, which results in HA = 0
 - (4) Therefore from (1), it follows that H(Ax) = 0, and from (3), we know that HA = 0, thus HAHx = 0, then 0Hx = 0, proving that H(Ax) = 0.
 - (5) Notice that also from (1), if y has no single bit error, then it will satisfy y = Ax, so if there's no single bit error in y, then Hy = 0
- \star Prove if Hy = 0, then there's no single bit error in y
 - (1) Prove by contradiction. For the sake of contradiction, assume that Hy = 0 is true if there's no single bit error in y
 - (2) Suppose that y has a single bit error, it's given that $y = y' + e_i$ where y' is the original y with no single bit error and e_i is the ith column vector of an identity matrix I
 - (3) From (2), it will follow that $Hy = H(y' + e_i)$ = $Hy' + He_i$
 - (4) Since y' is from the original y, then from our assumption in (1), it will follow that $Hy = 0 + He_i$ = He_i
 - (5) $He_i \neq 0$, and for y to have no single bit error, Hy = 0 based on our assumption in (1). Since it contradicts our initial assumption, then if Hy = 0, then there's no single bit error in y

Since we have proven prove both directions of if and only if $(P \Rightarrow Q \text{ and } Q \Rightarrow P)$, therefore it is proven that y doesn't have any single bit error iff Hy = 0

Question 3(b):

(20%) Show that with single bit error, if $Hy = v \neq 0$, v must be a column vector of H. Suppose v is the i-th column vector of H, the i-th element of y has an error.

- (1) Consider matrix H is written in terms of its columns, where $H = \begin{bmatrix} h_1, h_2, ..., h_j, ..., h_n \end{bmatrix}$ where h_i is the ith column vector of matrix H and each column vector of H is unique and non-zero that corresponds to a specific position i in the 7-bit encoded message y
- (2) Let y be the received message with a single-bit error, which can be represented as $y = y' + e_i$ where y' is the original y with no single bit error and e_i is the ith column vector of an identity matrix I.
- (3) If there's a single bit error, $Hy = H(y' + e_i)$. Since y' is from the original y, then from our proof from 3(a), it will follow that $Hy = He_i$ and $He_i \neq 0$
- (4) Without loss of generality, let's consider the jth element of y has an error
 - (a) Matrix H is multiplied by e_i and e_i is zero everywhere except for the jth position, then

$$He_{j} = \begin{bmatrix} h_{1}, h_{2}, ..., h_{j}, ..., h_{n} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ . \\ . \\ 1 \\ . \\ . \\ . \end{bmatrix}$$

$$\downarrow j^{th} position$$

This will then result in the jth column vector of matrix H, which will be denoted as v, therefore v must be a column vector of matrix H, due to the nature of the elementary matrix

- (b) From (2), we know that with a single-bit error, $y = y' + e_j$. This means that the error position in y is determined by e_j . Then from (3), we know that $Hy = He_j$ and $He_j \neq 0$ where He_j is the jth column vector of matrix H based on (4(a)).
- (c) Thus, since $Hy = He_j = v$, v is the jth column vector of matrix H and the jth position of y has an error
- (5) Therefore, we can conclude that If $Hy = v \neq 0$, then v must be one of the columns of H, where there is a single-bit error at the position corresponding to that column.

Question 4(b):

(b) In this case, you will find out that all column vectors of H are different. What are the necessary conditions that make all column vectors of H different.

- Each column vector has to be unique as it represents the error pattern for a single-bit error in a specific position
- Each column vector in matrix *H* must be non-zero.
- It must be an $m \times n$ matrix where each of the column vectors is in the binary field.
 - o where $n \le 2^m 1$ since we want the column vectors to be unique and the number of possible unique binary vectors of length m is 2^m (as there are m positions in the vector and each position can be either 0 or 1) and it has to be non-zero.

