Углы

- 1. Человеческий глаз имеет разрешение примерно 1'. Определите минимальный размер кратера на Луне, который человек может увидеть без использования специальных оптических приборов.
- 2. Определите размер солнечного пятна, находящегося недалеко от центра диска Солнца, если оно видно с Земли под углом 4"
- 3. Решите предыдущую задачу (найдите наибольший из размеров пятна), если угловое расстояние от пятна до центра составляет x.
- 4. Определите максимальное угловое расстояние между Солнцем и Землёй для наблюдателя в системе Проксима Центавра: расстояние до системы составляет 4.2 световых года.
- 5. Для тех же наблюдателей в системе Проксима Центавра наблюдаемое минимальное угловое расстояние Солнцем и Землёй на 30% меньше максимального. Определите модуль их эклиптической широты.

Сферка

- 6. Звезда Капелла (α Aur, прямое восхождение $\alpha = 5^h 16^m 41^s$, склонение $\delta = 46^\circ 00'$) кульминирует строго в зените. Определите высоты обеих кульминаций для звезды Мерак (β UMa, $\delta = 56^\circ 17'$) в этом же месте наблюдения.
- 7. Верхняя кульминимация звезды Вега (α Lyr, склонение δ = 38°47′) происходит на высоте 83°18′. Определите широту места наблюдения. Определите высоту нижней кульминации.
- 8. Нижняя кульминация звезды совпадает с горизонтом, а верхняя кульминация с зенитом. Определите широту места наблюдения и склонение звезды.
- 9. Определите склонение звезды, которая в Долгопрудном ($\varphi_1 = 55^{\circ}56'$) и во Владивостоке ($\varphi_2 = 43^{\circ}11'$) кульминирует на одно и той же высоте.
- 10. Определите широты мест наблюдения, где звезда Фомальгаут ($\delta = -29^{\circ}37'$) является невосходящей. Рефракцией пренебречь.

Звездные величины

11. Экзопланета может быть обнаружена транзитным методом (изменение яркости звезды в моменты прохождения планеты по диску звезды), если диск планеты

- перекроет 1% поверхности звезды. Определите, насколько изменяется звездная величина звезды в такие моменты?
- 12. Определите звездные величины компонент A и B звезды α Cen, если суммарная звездная величина (-0.27^m) , а соотношение светимостей компонент 3.47.
- 13. Определите видимую звездную величину компонентов тройной звезды, если ее суммарный блеск равен 3.7^m , второй компонент ярче третьего в 2.8 раза, а первый ярче третьего на 3.32^m .
- 14. Шаровое скопление содержит 10^6 звезд звездной величины 22^m и 10000 сверхгигантов со звездной величиной 17^m . Сможем ли мы увидеть это шаровое скопление глазом?
- 15. При фотографировании звездного неба с большой выдержкой неподвижным фотоаппаратом изображения звезд на снимке получаются в виде дуг различной длины. Изображение какой звезды на таком снимке будет ярче α Овна ($m=2.0^m$, $\delta=23.5^\circ$) или β Малой Медведицы ($m=2.1^m$, $\delta=74^\circ$)? Поглощением света в атмосфере пренебречь.

Телескопы

- 16. Чему равно равнозрачковое увеличение телескопа с диаметром объектива 120 мм?
- 17. Рассчитайте разрешающую способность наблюдений с оптическим телескопом с диаметром объектива 200 мм. Увеличение равнозрачковое. Среднюю длину волны оптического диапазона принять равной 550 нм.
- 18. Чему равен диаметр объектива телескопа, если его относительное отверстие 1: 15, а фокусное расстояние равно 3 м?
- 19. Звезды какой звездной величины можно наблюдать в телескоп с диаметром объектива 10 см?
- 20. Небольшое рассеянное скопление состоит из 50 одинаковых звезд и имеет общий блеск 6^m . Какой должен быть диаметр объектива телескопа, чтобы в него можно было увидеть отдельные звезды скопления?