Philosophical Cogic Problem Set 5

la Prove by induct

Consider arbitrary Pe moder M= <0,1>

Prove by induction that for all fc-uff ϕ , if valicable assignments g and h for M agree on the free variables in ϕ , then $Vmg(\phi) = Vm, h$ (ϕ) .

Base care

consider arbitrary PC-uff & such that each complexity, i.e. number of connectives $C(\phi)=0$. Then ϕ is a basic uff π ai... an. $|\pi|_{m,g}=1$ $(\pi)=|\pi|_{m,n}$. $|a|_{m,g}=1$ (a) if a is a constant, g(a) if a is a unitable $\frac{\pi}{2}$ ais free each of di,..., an is free in ϕ , so $\frac{\pi}{2}$ and for each of these, if it is a variable, g(a)=h(a), so $\frac{\pi}{2}$ and $\frac{\pi}{2}$ $\frac{\pi}{2}$

Induction Hypothesis Given n, for all m < n, if for all ϕ such that $C(\phi) = m$, if g and h egree on free variables in ϕ , then $Vm_{\mathcal{G}}(\phi) = Vm_{\mathcal{G}}(\phi)$.

Induction Step

Consider arbitrary PC-uff & such that cop)=n.

Then & = ~* 4, 4-> k or 404.

Suppose $\phi = -4$. Then $Vm,g(\phi) = 1$ iff $Vm,g(\psi) = 0$ iff by 1H, given that all free variables in ϕ our free in ϕ so g and in aprec on free variables in ψ . $Vm,g(\psi) = 0$ iff $Vm,g(\psi)$

suppose $\phi = \psi \rightarrow k$. Then $V_{m,g}(\phi) = 1$ iff $V_{m,g}(\psi) = 0$ or $V_{m,g}(k) = 1$ iff by the given that all free variables in ψ are free in and all free variables in k are free variables in ϕ , and that ϕ ((4), ϕ (k) < 1, ϕ (m, ϕ (v) = 0 or ϕ (k) = 1 iff ϕ (m, ϕ (v) = 1, so ϕ (v) = ϕ (v)

By cases, for ϕ such that $c(\phi) = 0$, if g and h agree on the free variables in ϕ , then $Vm_{i,j}(\phi) = Vm_{i,j}(\phi)$.

By induction, for all PC-US P, if g and h offer on the free variables, then VMg(4) = VM, h(4).

ii Prove the given claim by trong induction over the complexity (CO) of b.

Base Ease.