# Лабораторна робота №5

# Використання інтерфейсів. Об'єкти. Введення інформації з текстових файлів за допомогою класу Scanner

**Мета роботи:** навчитися використовувати інтерфейси у мові Java. Ознайомитись з основами файлового введення-виведення.

#### Порядок виконання роботи

- 1. У середовищі IntelliJ IDEA створити новий проект, що містить один головний клас Main.
- 2. Створити інтерфейс, що містить описання методів для введення масивів з файлів за зразком:

```
package lab5.io;
import java.io.File;

public interface DoubleArrayReader {
    double[] readOneDimensionalArray(File file);
    double[] readOneDimensionalArray(String fileName);

    double[][] readTwoDimensionalArray(File file);
    double[][] readTwoDimensionalArray(String fileName);
}
```

3. Створити інтерфейс, що містить описання методів опрацювання масивів згідно пунктів завдання.

```
package lab5.logic;

public interface ArrayProcessor {
    double calculate(double[] array);
    double calculate(double[][] array);
    void processArray(double[] array);
    void processArray(double[][] array);
}
```

- 4. Додати до проекту два нових класи, що реалізують описані інтерфейси, виконуючи завдання 5.1 та 5.2.
- 5. Створити тестові класи з методами для тестування методів класів з п.4.

## Короткі теоретичні відомості

Інтерфейси - це спеціальні конструкції, які тільки оголошують набір певних дій без коду, що описує, що саме треба робити в оголошених методах (див. п.2 та п.3) Але навіщо турбуватися про створення інтерфейсів без тексту програми? Причина в тому, що інтерфейс, який створено одного разу, може використовуватися в багатьох класах. Наприклад, коли інші класи (або сама віртуальна машина JVM) бачать, що клас MyDoubleArrayReader реалізує інтерфейс DoubleArrayReader, вони знають, що в цьому класі точно є два методи readOneDimensionalArray(...) з різними типами параметрів та два методи readTwoDimensionalArray () також з різними типами параметрів. Це може бути зроблено за допомогою оголошення таких класів, що реалізують вказані інтерфейси:

Треба зауважити, що, починаючи з Java 8

```
public class Lab5ArrayReader implements DoubleArrayReader {
   // ......
   // ......
}
```

Клас Scanner зі стандартної бібліотеки може використовуватись для зчитування даних не лише зі стандартного пристрою введення, а й з файлу. Якщо об'єкт класу Scanner створюється конструктором new Scanner(System.in), він буде виконувати зчитування зі стандартного введення. Для введення з файлу треба скористатись конструктором класу Scanner, якому передається об'єкт класу File, наприклад, так: new Scanner(new File(filename));

Оскільки операції файлового введення-виведення можуть завершитись аварійно, мова програмування Java вимагає, аби всі вони були розміщені у «захищеному» блоці try-catch, як у наступному прикладі:

```
public double[] readOneDimensionalArray(String fileName) {
    try (Scanner in = new Scanner(new File(fileName))) {
        int n = in.nextInt();
        double[] arr = new double[n];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = in.nextDouble();
        }
        return arr;
    } catch (IOException ex) {
        System.err.println("Error reading file");
        return null;
    }
}</pre>
```

### Варіанти завдань

**Завдання 5.1.** У створеному класі розробити метод, що зчитує дані з текстового файлу, та метод, що опрацьовує масив згідно завдання варіанту.

У всіх варіантах дано текстовий файл lab51.txt, який містить дані для розміщення у масиві, та складається з двох рядків.

Перший рядок містить одне число – кількість чисел у другому рядку. Другий рядок містить дійсні числа відокремлені пропусками – елементи масиву. (Файл підготувати самостійно. Кількість елементів у другому рядку файлу не менше 30).

| Варіант | Завдання                                                                                         |
|---------|--------------------------------------------------------------------------------------------------|
| 1       | Знайти суму елементів масиву                                                                     |
| 2       | Знайти добуток елементів масиву                                                                  |
| 3       | Знайти суму квадратів елементів масиву                                                           |
| 4       | Знайти модуль суми та квадратний корінь добутку елементів масиву                                 |
| 5       | Знайти останній додатний елемент масиву                                                          |
| 6       | Знайти найменше значення серед елементів масиву                                                  |
| 7       | Знайти найменше значення серед елементів масиву з парними номерами                               |
| 8       | Знайти найбільший елемент масиву з непарним номером                                              |
| 9       | Знайти суму найбільшого та найменшого елементів масиву                                           |
| 10      | Знайти різницю першого та останнього додатних елементів масиву                                   |
| 11      | Знайти суму елементів масиву з непарними номерами                                                |
| 12      | Знайти суму від'ємних елементів масиву                                                           |
| 13      | Знайти модуль різниці найбільшого від'ємного елемента з непарним номером та найменшого додатного |
| 14      | Знайти суму елементів, ціла частина яких кратна 3                                                |
| 15      | Знайти суму елементів масиву між першим та останнім від'ємними                                   |
| 16      | Знайти середнє арифметичне від'ємних елементів масиву                                            |
| 17      | Знайти суму першого від'ємного та останнього додатного елементів масиву                          |
| 18      | Знайти добуток всіх від'ємних елементів масиву                                                   |
| 19      | Знайти суму квадратів всіх елементів масиву                                                      |
| 20      | Знайти середнє арифметичне квадратів тих елементів масиву, які не дорівнюють нулю                |

Завдання 5.2. У створеному класі розробити метод, що зчитує з текстового файлу (використовувати файл lab52.txt) елементи двовимірного масиву цілих чисел розміром NxN елементів та метод, який опрацьовує масив згідно варіанту. Примітка. Перший рядок файлу містить одне ціле число N. Наступні N рядків містять по N дійсних чисел – елементи заданого масиву. Файл можна отримати у викладача, або завантажити з сайту http://www.berkut.mk.ua у розділі "Технологии ООП 2021" або за прямим посиланням lab52.txt.

#### Варіант 1

Знайти суму елементів заштрихованої частини



#### Варіант 2

Знайти значення найбільшого елемента заштрихованої частини



Знайти суму додатних елементів заштрихованої частини



#### Варіант 4

Знайти значення найменшого додатного елемента заштрихованої частини



# Варіант 5

Знайти суму від'ємних елементів заштрихованої частини



Знайти значення найбільшого від'ємного елемента заштрихованої частини



#### Варіант 7

Знайти суму елементів заштрихованої частини, які за модулем менші 100



## Варіант 8

Знайти значення найбільшого від'ємного елемента заштрихованої частини



Знайти середнє арифметичне від'ємних елементів та заштрихованої частини



Варіант 10

Знайти суму елементів заштрихованої частини, які кратні 3



# Варіант 11

Знайти суму найбільшого та найменшого елементів заштрихованої частини



У заштрихованій частині знайти середнє арифметичне елементів, що відрізняються від найменшого елемента не більше ніж на 10%



#### Варіант 13

Знайти суму елементів заштрихованої частини, що відрізняються від найменшого елемента не більше ніж на 10%



#### Варіант 14

У заштрихованій частині знайти середнє арифметичне елементів, що відрізняються від найбільшого елемента не більше ніж на 10%



Знайти суму найбільшого та найменшого елементів у заштрихованій частині



Варіант 16

Знайти середнє арифметичне елементів заштрихованої частини



## Варіант 17

Обчислити середнє арифметичне від'ємних елементів заштрихованої частини



Обчислити середнє арифметичне додатних елементів заштрихованої частини



#### Варіант 19

Знайти суму від'ємних елементів заштрихованої частини



# Варіант 20

Знайти суму квадратів елементів заштрихованої частини

