Binary Math, Two's Complement and Logic Gates

CS 240 - The University of Illinois
Wade Fagen-Ulmschneider
January 25, 2022

Binary Addition

0b 010011+0b 001001

0b 0011+0b 0111

Negative Numbers

0b 010011-0b 001001

0b 0011-0b 0111

0b 0011 \Rightarrow 0011 -0b <u>0111</u> \Rightarrow + <u>1111</u> \Rightarrow 10010

Two's Complement

Two's Complement

Big Idea: Represent numbers signed numbers in binary in a way that:

Two's Complement

Method:

-17 =

-4 =

-1 =

-<u>18</u>

18

-<u>42</u>

-42

- <u>32</u>

Overflow Detection

-31

- <u>42</u>

Towards Multiplication

 $10 \times 2 =$

 $10 \times 4 =$

 $10 \times 9 =$

Left Shift:

Right Shift:

AND, &

$$A = 1100$$

$$B = & 1010$$

$$A = 1100$$

$$B = 1010$$

$$A = 1100$$

$$B = ^{1010}$$

$$A = 1100$$
 $! A =$

_		11001	1
	•	11001	

A = 110011

A = 101 $B = ^{010}$

Functionally Complete Gate?

A	В	A&B	A B	A^B	
0	0	0	0	0	
0	1	0	1	1	
1	0	0	1	1	
1	1	1	1	0	

CMOS NOR Gates

High-Voltage Types (20-Volt Rating)

Quad 2 Input - CD4001B Dual 4 Input - CD4002B Triple 3 Input - CD4025B

■ CD4001B, CD4002B, and CD4025B NOR gates provide the system designer with direct implementation of the NOR function and supplement the existing family of CMOS gates. All inputs and outouts are buffered

The CD4001B, CD4002B, and CD4025B types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes). and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

STATIC FLECTRICAL CHARACTERISTICS

- 05 5

- 0.15 15 - 0.5 5

0,10 10

0.10 10

0,15 15

0,18 18

Quiescent Devic

IDD Max Output Low

In Min

Output Voltage

VOL Max.

Output Voltage

VON Min.

nput High Voltage

CD4001B, CD4002B, CD4025B Types

- Propagation delay time = 60 ns (typ.) at
- CL = 50 pF, VDD = 10 V Buffered inputs and outputs
- # Standardized symmetrical output characteristic 100% tested for maximum quiescent current at 20 V
- = 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 µA at 18 V
- over full package-temperature range; 100 nA at 18 V and 25°C ■ Noise margin (over full package temperature
 - 1 V at VDD = 5 V
 - 2 V at VDD = 10 V 2.5 V at VDD = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"

LIMITS AT INDICATED TEMPERATURES (°C) (V) (V) (V) -55 -40 +85 +125 Min. Typ. Max. - 0,5 5 0.25 0.25 7.5 7.5 - 0.01 0.25

0.01 0.5

0 0.05

110-5 10.1 µA

- 0,10 10 0.5 0.5 15 15

 u.s
 to
 6.064
 0.61
 0.42
 0.36
 0.51
 1

 0.5
 0.10
 10
 16
 15
 1.1
 0.9
 1.3
 2.6

 1.5
 0.15
 15
 4.2
 4
 2.8
 2.4
 3.4
 0.8

 4.6
 0.5
 5
 -0.64
 -0.01
 -0.42
 -0.36
 -0.51
 -1

 2.5
 0.5
 5
 -2
 1.8
 -1.3
 -1.15
 -1.6
 -3.2

 9.5
 0.10
 10
 -1.6
 -1.5
 -1.1
 -0.9
 -1.3
 -2.6

13.5 0.15 15 -4.2 -4 -2.8 -2.4 -3.4 -6.8 -

4.95

0.05

14.95

Conviols in 2003 Texas Instruments Incorporated

3-3

CMOS NOR Gates

High-Voltage Types (20-Volt Rating)

Quad 2 Input - CD4001B Dual 4 Input - CD4002B Triple 3 Input - CD4025B

■ CD4001B, CD4002B, and CD4025B NOR gates provide the system designer with direct implementation of the NOR function and supplement the existing family of CMOS gates. All inputs and outouts are buffered

The CD4001B, CD4002B, and CD4025B types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M. MT. M96, and NSR suffixes). and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

STATIC ELECTRICAL CHARACTERISTICS

- 05 5

0,10 10

0.10 10

0,15 15

0,18 18

0.15 15

CHARACTER

Quiescent Devic

IDD Max Output Low (Sink) Currer IOL Min.

Output Voltage

VOL Max.

Output Voltage

VON Min.

nput High Voltage

CD4001B, CD4002B, CD4025B Types

- Propagation delay time = 60 ns (typ.) at CL = 50 pF, VDD = 10 V
- Buffered inputs and outputs Standardized symmetrical output characteristic 100% tested for maximum quiescent current at 20 V
- = 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 µA at 18 V
- over full package-temperature range; 100 nA at 18 V and 25°C

LIMITS AT INDICATED TEMPERATURES (°C)

 VO (V)
 V_{IN} (V)
 V_O (V)
 -55
 -40
 +85
 +125
 Min.
 Typ.
 Max.

 0,5
 5
 0.25
 0.25
 7.5
 7.5
 0.01
 0.25

13.5 0.15 15 -4.2 -4 -2.8 -2.4 -3.4 -6.8

4.95

0.05

14.95

- · Noise margin (over full package temperature
 - 1 V at VDD = 5 V
 - 2 V at VDD = 10 V 2.5 V at VDD = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"

0.01 0.5

Conviols in 2003 Texas Instruments Incorporated

3-3

110-5 10.1 µA

CMOS NOR Gates

High-Voltage Types (20-Volt Rating)

Quad 2 Input - CD4001B Dual 4 Input - CD4002B Triple 3 Input - CD4025B

■ CD4001B, CD4002B, and CD4025B NOR gates provide the system designer with direct implementation of the NOR function and supplement the existing family of CMOS gates. All inputs and outouts are buffered

The CD4001B, CD4002B, and CD4025B types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M. MT. M96, and NSR suffixes). and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

STATIC FLECTRICAL CHARACTERISTICS

- 05 5

- 0.15 15 - 0.5 5

1,9 - 10

0.5 - 5

0,10 10

0.10 10

0,15 15

0,18 18

CHARACTER

Quiescent Device

IDD Max

Output Low (Sink) Currer IOL Min.

Output Voltage

VOL Max.

Output Voltage

VON Min.

nput High

Voltage

CD4001B, CD4002B, CD4025B Types

■ Propagation delay time = 60 ns (typ.) at

- CL = 50 pF, VDD = 10 V
- Buffered inputs and outputs # Standardized symmetrical output characteristic
- = 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 µA at 18 V
- over full package-temperature range; 100 nA at 18 V and 25°C
- · Noise margin (over full package temperature

LIMITS AT INDICATED TEMPERATURES (°C)

(V) (V) (V) -55 -40 +85 +125 Min. Typ. Max. - 0,5 5 0.25 0.25 7.5 7.5 - 0.01 0.25

13.5 0.15 15 -4.2 -4 -2.8 -2.4 -3.4 -6.8 -

4.95

9.95

14.95

- 0,10 10 0.5 0.5 15 15

1 V at VDD = 5 V 2 V at VDD = 10 V 2.5 V at VDD = 15 V

100% tested for maximum quiescent current at 20 V

Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"

FUNCTIONAL DIAGRAM

Conviols in 2003 Texas Instruments Incorporated

3-3

110-5 10.1 µA

0.01 0.5

0 0.05

CMOS NOR Gates

High-Voltage Types (20-Volt Rating)

Quad 2 Input - CD4001B Dual 4 Input - CD4002B Triple 3 Input - CD4025B

■ CD4001B, CD4002B, and CD4025B NOR gates provide the system designer with direct implementation of the NOR function and supplement the existing family of CMOS gates. All inputs and outputs are buffered.

The CD4001B, CD4002B, and CD4025B types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes). and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONDITIONS		LIMITS AT INDICATED TEMPERATURES (°C)							ı	
ISTIC	Vo (V)	V _{IN}	V _{DD}	+25							ľ
				-55	-40	+85	+125	Min.	Typ.	Max.	1
Quiescent Device Current,	-	0,5	5	0.25	0.25	7.5	7.5	-	0.01	0.25	Γ
	-	0,10		0.5	0.5	15	15		0.01	0.5	1
IDD Max.	- 51	0,15	15	.1	1	30	30	-	0.01	1	1
	-	0,20	20	5	5	150	150	-	0.02	5	1
Output Low (Sink) Current IOL Min.	0,4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
	1.5	0,15	15	4.2	4	2.8	2.4	34	6.8	-	1
Output High (Source)	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	1
	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		1
Current, IOH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	-	0,5	5	0.06				-	0	0.05	Г
Voi Max.	-	0,10	10	0.05				-	0	0.05	1
AOF wax:	- 14	0,15	15	0.06				-	0	0.05	
Output Voltage: High-Level, VOH Min.		0,5	5	4.95			4.95	5	-	1	
	-	0,10	10	9.95				9.95	10		
	2 -	0,15	15	14.95				14.95	15	-	
Voltage, VIL Max.	0.5,4.5	-	5	1.5				-	-	1.5	
	1,9	-	10	3						3	
	1.5,13.5	-	15	4			-	-	4		
Input High Voltage, VIH Min.	0.5	-	5	3.5			3.5		-		
	1	-	10	7			7	-			
	1.5	-	15	11			11		-		
Input Current		0,18	18	:0.1	10.1	21	11	-	110-5	10.1	

CD4001B, CD4002B, CD4025B Types

- Propagation delay time = 60 ns (typ.) at C_L = 50 pF, V_{DD} = 10 V
- Buffered inputs and outputs
- Standardized symmetrical output characteristic 100% tested for maximum quiescent current at 20 V
- = 5-V, 10-V, and 15-V parametric ratings ■ Maximum input current of 1 µA at 18 V
- over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package temperature
 - 1 V at VDD = 5 V
 - 2 V at VDD = 10 V 2.5 V at VDD = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"

Copyright © 2003, Texas Instruments Incorporated

3-3

Binary Addition

Binary Addition

Half Adder:

A	В	A + B	SUM	CARRY

Half Adder Circuit Diagram

Binary Addition

Full Adder:

Full Adder Circuit Diagram

Full Adder Circuit Diagram

...or, with only "simple gates":

What more do we need?

Ripple Carry Adder (RCA)

Disadvantages

