Goal - Category G. Top.

- Classical Theorems
- Presheaves on Orba.

PART I GTop.

Notation: GTop = cat of G-spaces and G-maps.

- Like in classical htpy theory, we assume all spaces are CGWH, i.e.
 compactly generated and weak Hansdorff.
- G is assumed to be a compact Lie gp or finice gps.

Def A left G-space is a space X W a cts map $G \times X \longrightarrow X$

 $(g, \pi) \mapsto g \cdot \pi$

s.t. $g_1(g_1x) = (g_1g_2)x$. $g_1(g_1x) = g_1(g_1x)$

A right G-space is a left G-space w/ action by $g \cdot \pi = \pi g^{-1}$.

A G-map $f: X \longrightarrow Y$ is a cts map s.t. $f(g\pi) = g \cdot f(x)$, for all $g \in G$.

e.g. 1) $X \times Y$, G acts on it by $g(x,y) = (g \cdot x \cdot g \cdot y)$

2) Map $(X,Y) =: Y^X$. Gacts on it by $(g \cdot f)(x) = g \cdot f(g^{-1}\pi)$.

```
3) GTop (X, Y) = (Map(X, Y))^G, G - fixed points of the mapping space.

=: <math>Map_G(X, Y).
```

Cantion! Mapa = set of morphisms in GTop. Map = an obj in GTop.

Prop ($GTop \, , \, \times \, , \, \{*\}$) is a corresion closed category.

Pf. Suffice to find an internal hom , i.e. a functor F in $GTop \, s.t.$ F: $GTop^{op} \times GTop \longrightarrow GTop \, s.t. \ \forall \ X \in GTop \, , \ there exist a adjoint pair <math>((-) \otimes X) + (F(X, -)) : GTop \longrightarrow GTop$.

This leads to the following proposition:

Prop $Map_{G}(X \times Y, Z) \cong Map_{G}(X, Map(Y, Z)).$ Prop $Map_{G}(X \times Y, Z) \cong Map(X, Map(Y, Z))$ Prop $Map_{G}(X \times Y, Z) \cong Map(X, Map(Y, Z))$

Def Pointed G-spaces GTop $_*$ consists of - Based G-spaces : (X,*). $X \in G$ Top. $* \in X$, and * is G-fixed.

- Bosed G-maps: $f:(X,*) \longrightarrow (Y,*')$, f(*) = *'.

Prop $Map_{*,G}(X \wedge Y, Z) \cong Map_{*,G}(X, Map(Y, Z)).$

FACT Pair of adjunctions: GTop Tonger

Forger

Def A G-CW complex X consists of the following data: 1) G-spaces indexed by $n: X^n$, s.t. $X^o = \coprod_i G_{H_i}$ 'omits' where HCG is a closed subgp. 2) Attaching maps: X^{n+1} obtained from X^n by attaching G - (n+1) - cells G/H: × Dn+1 via the map $G/H_i \times S^n \xrightarrow{\phi_{i,n}} X^n$ subject to $\coprod_{i \in I} G_{Hi} \times S^n \xrightarrow{\phi_n} \chi^n$ $\coprod_{i \in I} \mathcal{G}_{H_i} \times \mathcal{D}^{n+1} \longrightarrow X^{n+1}$ Obs Regard "orbits" as points!

eg. 1) $G = C_2$, $C_2 = \{1, r\}$, where r = reflectionNow G has 2 "orbits" C_2/C_2 . $C_2/\{1\}$. So 0 - cells: $C_2/(C_2 \times \{0\})$. $C_2/(C_2 \times \{1\})$ 1 - cells: $C_2/\{\{1\}\} \times D^1$. $C_2/\{\{1\}\} \times D^1$ but $C_2/\{\{1\}\} \times D^1$ $C_2/\{\{1\}\} \times D^1$ $C_2/\{\{1\}\} \times D^1$

Xo := 103 × C2/C2

```
0 - cells : Xo , X1
             1-cel: C2/513 × D1
            The attaching map is given by
                           C2/513 × 5° $00 X° = 5 C2/C2.
                          C_{2/_{513}} \times D' \longrightarrow X'
                   where \phi_0\left(\frac{C_2}{513}\times 503\right) = x_0
                         φο ( Cy/513 x 513) = x1
2) G = G_2 = \{1, s\}, s = notation by 180°.
                         C2/913 x D1 Again. S takes C2/C2 to C2/913
                C_{2/513} and C_{2/513} \times D^{1} to C_{2/C2} \times D^{1}
                                0-cell: C2/513
                                            1-cell: C2/913 × D'
     Attending map: C_2/\varsigma_{13} \times \varsigma^{\circ} \xrightarrow{\mathcal{P}_{\circ}} \chi^{\circ} = \varsigma C_2/\varsigma_{13}
                        C_{1}/_{13} \times D' \longrightarrow X'
                 where \phi_0\left(\frac{C_2}{513} \times 503\right) = \frac{C_2}{513} and we identify
                                C2/513 ~ C2/Cz.
```

r fixed xo. x1. but takes upper 2/513 x D' to lower

6/513 * D'. So we can identify them.

3) $G = C_2 = S1.r$, r = reflection. $X = S^n$.

Similar to (1). $n - cell : C_2/S_13 \times D^n$ $C_2/S_13 \times D^n$ Note two d - cells $C_2/C_2 \times D^d$

Attaching map: $C_{2/S_{13}} \times D^{n}$ $for each 0 \leq d \leq n.$ $C_{2/S_{13}} \times S^{n-1} \xrightarrow{p_{n-1}} x^{n-1}$

 $C_{2}/\varsigma_{13} \times D^{n} \longrightarrow X^{n}$ where $\phi_{n-1}(C_{2}/\varsigma_{13} \times S^{n-1}) = S^{n-1}$.

Def A G-homotopy between $f, g: X \rightarrow Y$ in GTop is a G-map $H: X \times I \rightarrow Y$ s.t. f = H(-, 0), g = H(-, 1) w/ trivial G-action. f is a G-homotopy equivalence if $\exists f^{-1}: Y \rightarrow X$ s.t. $f \circ g$, $g \circ f$ are homotopic to identity at corresponding targets.

Notation $[X, Y]_G =: htpy class of G-maps.$

Def Let $H \subset G$ be closed subgp. The H-equivariant htpy gps are $\pi_n^H(X) = \pi_0 Hom_G (G/H_+ \wedge S^n \cdot X) = \pi_n(X^H)$

Def A weak (htpy) equivolence is a G-map $f: X \to Y$ s.t. $f^H: X^H \longrightarrow Y^H \text{ is weak equivolence .} \forall H \subset G \text{ closed .}$

Prop Pair of adjoint functors:

$$(-)^{\text{triv}}: Top \xrightarrow{\perp} GTop$$

$$W \text{ trivial}$$

$$G \text{-action}$$

PART II Classical Theorems.

Now we assume all $X \in GTop$ are G - CW complexes.

Def let $\nu: C(a) \longrightarrow N$.

conjugacy classes of G.

Call $f: X \to Y$ is a ν -equivalence if $f^H: X^H \to Y^H$ is a ν -equivalence for all H (i.e. $\pi_n^H(f)$ is bijection when $n < \nu(H) - 1$; and surjection when $n = \nu(H)$.)

• Particularly if v = const, then this is the classical n - equivalence.

Thm (Homotopy extension & lifting property, aka. HELP)

Let $A \stackrel{i}{\hookrightarrow} X$ be a subcomplex. dim $X \leq \nu$. Let $f: Y \rightarrow Z$ be an ν -equivalence. Given $g: A \rightarrow Y$. $H: A \times I \rightarrow Z$.

h: $X \rightarrow Z$ w/ the following diagram commutes:

Then I g. H lifts g. H. respectively:

Prop Let $f: Y \longrightarrow Z$ be an ν -equivalence, and it includes $(X \in GTop)$ $f_*: [X.Y]_G \longrightarrow [X.Z]_G$

Then f_* is a bijection, if dim X < vSurjection, if dim X = v

<u>Con</u> (Whitehead)

Let $f: Y \to Z$ be an ν -equivalence, dim $Y, Z < \nu$, then f is a G-homotopy equivalence.

Thm (CW approximation)

Let $X \in GTop$. Then $\exists G-CW$ complex X and a weak equivolence $X \longrightarrow X$. This $\widetilde{(-)}$ is functorial.

PART II Presheaves on Orba

Model Someture on atop (or atop.):

1. Weak equivolences:

 $f: X \to Y$ s.t. $f^H: X^H \longrightarrow Y^H$ is weak equivalence,

∀ H C G closed.

2. Fibrations:

 $f: X \to Y$ s.t. $f^H: X^H \longrightarrow Y^H$ is a fibraction.

∀ H C G closed.

3. Cofibrations:

 $f: X \longrightarrow Y$ s.t. it has left lifting property w.r.t. acyclic fibrations.

Def The orbit category Orba:

- drig: G/H. HCG closed subgp
- mor: G equivariant maps.

Notation P(Orba) = cat of preduces on Orba

FACT P(Orba) has model structure:

1. Weak equivalences:

 $\eta: F_1 \Rightarrow F_2$ s.t. $\gamma_{QH}: F_1(G/H) \rightarrow F_2(G/H)$ is a w.e.

2. Fibrations:

 $\eta: F_1 \Rightarrow F_2$ s.t. $\eta_{QH}: F_1(G/H) \rightarrow F_2(G/H)$ is a fibration.

3. Cofibrations:

 $\eta: F_1 \Rightarrow F_2$ s.t. it has left lifting property w.r.t. acyclic fibrations.

Thon (Elmendorf)

There's a Quillen equivalence

where $\Psi(F) = F(G/e)$, the action is determined by Ant(G) $\Phi(X) = L$, w/ $L(G/H) = X^H$.

Here XH has a natural Weyl gp action.

Application Eilenberg - MacLone G - spaces.

Bredon (co) homology theory.

Rk. Both model structures on P(Orba) & aTop are cofibrantly generated.

• More comments on base-change functor":

Let $f: H \longrightarrow K$ be a gp homomorphism for $H, K \subset G$ as closed subgps. Then there are pairs of adjunctions:

where $f_{!}(X) = K \times_{H} X$ $f_{*}(X) = (Map(K, X))^{H}$

e.g. 1) $K = \{e\}$, $f: G \longrightarrow \{e\}$, $f^* = (-)^{triv}$

$$\Rightarrow f_!(X) = * \times_G X = X/G$$

$$f_*(X) = Map(*.X) = X^{G}.$$

2) $f: H \hookrightarrow K$, then $f^* = Res_H$ restriction,

$$\Rightarrow f_{!}(X) = K \times_{H} X$$

$$f_{*}(X) = Map_{H}(K, X)$$

Modern viewpoint

Let BG = small category. G is the gp of interest.

mor = G, G acts on *

Then GTop = Fun (BG. Top), via the identification

functor category

```
X \leftrightarrow (F_X: BG \rightarrow T_{op}), F_X(*2G) = X^{G}
                                                    a - action
   Regard Bh as a small diagram, then
        X^G = \lim_{BG} \overline{F}_X. X_G = \operatorname{colim}_{BG} \overline{F}_X.
Rewrite the previous generalization as follows:
        For f: H -> K, H, K C G. closed.
        It corresponds to \widetilde{f}:BH\longrightarrow BK. Then
        Fun (BK, Top) + Fun (BH, Top)
             117
KTop + + Top
        \tilde{f}^{\times} has left (resp. right) adjoint, given by the left
        (resp. right) Kan extension. Namely.
               BH \xrightarrow{F} T_{op}
            \Rightarrow Lang F = f! F
       When K = ses, BK = *2. F: BH ->
             Lang F = colim BH F. Rang F = lim BH F.
```