Reliable Two-Dimensional Graphing Methods for Mathematical Formulae with Two Free Variables

Jeff Tupper
Dynamic Graphics Project
University of Toronto

An Equation of a Circle

Example Inequality

 $888\sin(2x+y)\sin(2x-y)\sin(x+2y)\sin(x-2y) > y-x$

Example Equation

$$\sin \sqrt{|x^2\sin x + y^2\cos x|} + \sin x = \cos \sqrt{|x^2\cos y + y^2\sin y|} + \cos y$$

Example Inequality

$$1.9\cos 69\theta + 2\left[\frac{27r}{\pi}\right] < \frac{2}{\pi} \operatorname{mod}(r,\pi) + \sin(\theta + \pi\left[\frac{r}{\pi}\right]) - 1$$

$$r < 3\pi$$

Example Equation

$$k = \left\lfloor \frac{|x|}{4} \right\rfloor + 3m$$

$$j = \left\lfloor \frac{k}{2\pi} \operatorname{anglemod}(x,4) - 2, \operatorname{mod}(y,4) - 2 \right\rfloor \left\lfloor \operatorname{mod}(x,4) - 2 - d \cos \frac{2\pi j}{k} \right\rfloor \left\lfloor \operatorname{mod}(x,4) - 2 - d \sin \frac{2\pi j}{k} \right\rfloor = \left\lfloor \operatorname{mod}(x,4) - 2 \right\rfloor + \left\lfloor \operatorname{mod}(y,4) - 2 \right\rfloor + \left\lfloor \operatorname{mod$$

Example Inequality

 $|\cos 4\cos \sin x + y, x + \sin y|$ - $\cos 4\sin x + x, y + \sin x$

י פול בייים ביים בייים ב

Example Equation

$$\sin 2^{\parallel y_{\parallel}} x \pm \frac{\pi}{4} (y - \parallel y_{\parallel}) - \frac{\pi}{2} = 0$$

Example Inequality

simin[x[siny-cosx]] < coscos[y[cosx-siny]]

Example Inequality

$$\sin(\min([x+y]\sin(y-x],[y-x]\sin(x+y]))$$

$$)+\frac{1}{6400000}[8x^2+4(y-3)^2]+\frac{1}{15}[6-y]$$

Isn't this already solved?

There are many utilities for doing this:

- Computer Algebra Systems
 - Mathematica, Maple, ...
- Graphing Calculators
 - Hewlett-Packard, Texas Instruments, ...
- Graphing Software
 - Curvus Pro, IAsolve, GraphingCalculator, ...

Correct Graph of Cosx

Floating-Point Arithmetic

 Many graphing programs use floatingpoint arithmetic to evaluate formulae

Floating-point arithmetic is not exact

 $1.000 \div 3.000 \rightarrow 0.3333$

 $0.3333 \times 3.000 \rightarrow 0.9999$

Correct Graph of $y=(2^{55}+2+\sin x-2^{55})-\sin x$

Connect-the-Dots Graphing

Problems:

- Not all dots should be connected
- Dots may be far from the curve

Connect-the-Dots Graphing

Fundamental Problem:

We haven't defined the graph's semantics

Graph Semantics

A pixel is:

Yellow ⇔ Solution Exists

Black ⇔ No Solution Exists

Example Equation

Example Inequality

$$\sin 30 \sqrt{\left|\sin \frac{x-4}{3}\right|^2 + \left|\cos \frac{y+6}{3}\right|^2} +$$

$$\sin 20 \sqrt{\left(\sin \frac{x-3}{2}\right)^2 + \left(\cos \frac{y+5}{2}\right)^2} > 0$$

Example Inequality

$$||gcd(x,y)|| + |gcd(x)|| ||gcd(x)|| ||gcd($$

Unfortunate Reality

 This naïve goal is impossible since graphing, as formalized, is not computable

A pixel is:

Reliable Graphing

We now have a well-defined problem

• But how do we evaluate formulae?

Formula Evaluation

 Use interval arithmetic to evaluate formulae

 Interval arithmetic provides guaranteed bounds on accuracy

Interval Arithmetic

 Compute using lower and upper bounds

Interval Comparisons

$$x+y^2 \in [2.13,2.15]$$
2.13 2.14 2.15 2.16 2.17 2.18
 $y \in [2.16,2.18]$

Is
$$x+y^2 < y$$
? Yes.

Interval Comparisons

$$x+y^2 \in [2.13,2.16]$$
2.13 2.14 2.15 2.16 2.17 2.18
 $y \in [2.15,2.18]$

Is
$$x+y^2 < y$$
? Maybe.

Domain Tracking X

Is
$$\sqrt{x} < y$$
 ? Yes.

Domain Tracking well-defined: yes 0.00 2.00 3.00 well-defined: ye 1.00 0.00 2.00 -1.00 well-defined: maybe Maybe. Isv

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

- Begin with a solid red display
- Keep a list of uncertain regions
- Evaluate uncertain regions, coloring and subdividing as appropriate

Pixel Boundaries

 True pixel boundaries may not be floating-point numbers

Example Inequality

Example Inequality

$$\frac{3}{4} \cdot \frac{1}{15} \sqrt{(x+4)^2 + (y-3)^2} \qquad \text{if} \qquad (x+1)^2 + (y-1)^2 < 25$$

$$\cos 4 8x + \cos 9(x-\sqrt{3}y) + \cos 9(x+\sqrt{3}y) + 3 < 6$$

$$0.65 + \frac{1}{\pi} \operatorname{Arctan6} \left[\sqrt{\frac{(x-1)^2}{30} + \frac{(y+1)^2}{9}} - 1 \right] \qquad \text{if} \qquad (x+1)^2 + (y-1)^2 > 25$$

Correct Graph of y = Arctan(tan(x))

Correct Graph of y = Arctan(tan(x))

Interval Arithmetic

Interval Sets

Correct Graph of y = Arctan(tan(x))

Continuity Tracking

Continuity Tracking

well-defined: yes continuous: maybe

Finding Solutions on Curves y continuous: yes

Arctantanx continuous: yes

Finding Solutions on Curves y continuous: yes

Arctantanx continuous: yes

Correct Graph of y = Arctan(tan(x))

Example Equation

|xcosx+ysiny|=xcosy-ysinx

Example Inequality

mol

365 if
$$30 \text{max} Y - \frac{1}{10} | X - \frac{1}{2} | Y - \frac{1}{10} - \frac{1}{4} | 4$$

941 if
$$30 \text{max} Y - \frac{9}{10} | X - \frac{1}{2} | Y - \frac{9}{10} - \frac{1}{4} | 4$$

927 if
$$30 \text{max} X - \frac{4}{5} | Y - \frac{7}{10} + X - \frac{4}{5} | \frac{1}{8} | 4$$

881 if
$$30 \text{max} X - \frac{1}{5} |Y - \frac{7}{10}| + X - \frac{1}{5} | \frac{1}{8} | 4$$

325 if
$$30 \text{max} X - \frac{1}{5} | Y - \frac{3}{10} + X - \frac{1}{5} | \frac{1}{8} | 4$$

1019 if
$$30 \text{max} X - \frac{4}{5} | Y - \frac{3}{10} + X - \frac{4}{5} | \frac{1}{8} |$$

$$X = mo(x,0.8+0.1)$$

$$Y = mo(y,1)$$

$$0.8 - logy = x < 0$$

$$- \| \operatorname{mod}_{\overline{10^{0.1.250}}}, 10 \|$$
(2)

SCGRAPE TO 2001 EXPLORE INTERACTION

 ≥ 1

Example Inequality

mol

365 if
$$30 \text{max} Y - \frac{1}{10} | X - \frac{1}{2} | Y - \frac{1}{10} - \frac{1}{4} | 4$$

941 if
$$30 \text{max} Y - \frac{9}{10} | X - \frac{1}{2} | Y - \frac{9}{10} - \frac{1}{4} | 4$$

927 if
$$30 \text{max} X - \frac{4}{5} | Y - \frac{7}{10} + X - \frac{4}{5} | \frac{1}{8} | 4$$

881 if
$$30 \text{max} X - \frac{1}{5} |Y - \frac{7}{10}| + X - \frac{1}{5} | \frac{1}{8} | 4$$

325 if
$$30 \text{max} X - \frac{1}{5} | Y - \frac{3}{10} + X - \frac{1}{5} | \frac{1}{8} | 4$$

1019 if
$$30 \text{max} X - \frac{4}{5} | Y - \frac{3}{10} + X - \frac{4}{5} | \frac{1}{8} |$$

$$X = mo(x,0.8+0.1)$$

$$Y = mo(y,1)$$

$$0.8 - logy = x < 0$$

$$- \| \operatorname{mod}_{\overline{10^{0.1.250}}}, 10 \|$$
(2)

SCGRAPE TO 2001 EXPLORE INTERACTION

 ≥ 1

Conclusion

- Most graphing programs are not reliable
 - Reliable graphing programs do exist (GrafEq)
- Red pixels are useful
- Be careful when using interval arithmetic
 - Keeping track of the mathematical properties of evaluated formulae is possible and useful

Future Work

- Use other colors besides red
 - Display topological information
- Tackle a larger class of formulae
 - integration, differentiation, iteration, ...
- Animation
 - visualize role of parameters
- 3D

Acknowledgements

I would like to thank:

- Alain Fournier;
- my supervisor, Eugene Fiume;
- John Hughes and the other paper reviewers, for their helpful comments.

Contact Information

Jeff Tupper:

- mooncake@dgp.toronto.edu
- www.dgp.toronto.edu/~mooncake

GrafEq:

- www.peda.com/grafeq
- Creative Applications Lab 1PM-2PM Today

Example Inequality

$$sin(5(sinx-siny)) > \sqrt{sinx+siny}$$

Example Equation

modsinx,cosy)=modsiny,cosx)

Correct Graph of y=Arctan(tan(x))

