

# Chapter 4

# **Channel Coding and Error Control**

#### **Outline**

- Introduction
- Block Codes
- Cyclic Codes
- CRC (Cyclic Redundancy Check)
- Convolutional Codes
- Interleaving
- Information Capacity Theorem
- Turbo Codes
- ARQ (Automatic Repeat Request)
  - Stop-and-wait ARQ
  - Go-back-N ARQ
  - Selective-repeat ARQ



### Introduction





# Forward Error Correction (FEC)

- The key idea of FEC is to transmit enough redundant data to allow receiver to recover from errors all by itself. No sender retransmission required
- A simple redundancy is to attach a parity bit
   1010110 0
- The major categories of FEC codes are
  - Block codes
  - Cyclic codes
  - Reed-Solomon codes (Not covered here)
  - Convolutional codes, and
  - Turbo codes, etc.

- Information is divided into blocks of length *k*
- r parity bits or check bits are added to each block (total length n = k + r)
- Code rate R = k/n
- Decoder looks for codeword closest to received vector (code vector + error vector)
- Tradeoffs between
  - Efficiency
  - Reliability
  - Encoding/Decoding complexity
- Modulo 2 Addition

throw this away

# Linear Block Codes: Example

**Example:** Find linear block code encoder G if code generator polynomial  $g(x)=1+x+x^3$  for a (7, 4) code; n= Total number of bits = 7, k = Number of information bits = 4, r = Number of parity bits = n - k = 3

$$p_1 = \text{Re} \left[ \frac{x^3}{x^3 + x + 1} \right] = 1 + x \rightarrow [110]$$

$$x^{3} + x + 1 \qquad \sqrt{x^{3}}$$

$$x^{3} + x + 1$$
Coefficients of  $x^{0}x^{1}x^{2}$   $x + 1$ 

$$110$$

$$p_4 = \text{Re}\left[\frac{x^6}{x^3 + x + 1}\right] = 1 + x^2 \rightarrow [101]$$

$$x^{3} + x + 1$$

$$x^{3} + x + 1$$

$$x^{6}$$

$$x^{6} + x^{4} + x^{3}$$

$$x^{4} + x^{3}$$

$$x^{4} + x^{2} + x$$

$$x^{3} + x^{2} + x$$

$$x^{3} + x^{2} + x$$

$$x^{3} + x + 1$$

$$x^{4} + x^{2} + x$$

$$x^{4} + x^{4} + x$$

Coefficients of  $x^0x^1x^2$ 

101

# Linear Block Codes: Example

**Example:** Find linear block code encoder G if code generator polynomial  $g(x)=1+x+x^3$  for a (7, 4) code; n= Total number of bits = 7, k= Number of information bits = 4, r= Number of parity bits = n-k=3

$$p_1 = \text{Re}\left[\frac{x^3}{x^3 + x + 1}\right] = 1 + x \rightarrow [110]$$

$$p_2 = \text{Re}\left[\frac{x^4}{x^3 + x + 1}\right] = x + x^2 \rightarrow [011]$$

$$p_3 = \text{Re}\left[\frac{x^5}{x^3 + x + 1}\right] = 1 + x + x^2 \rightarrow [111]$$

$$p_4 = \text{Re}\left[\frac{x^6}{x^3 + x + 1}\right] = 1 + x^2 \rightarrow [101]$$

$$G = \begin{bmatrix} 1000 & | & 110 \\ 0100 & | & 011 \\ 0010 & | & 111 \\ 0001 & | & 101 \end{bmatrix} = [I \mid P]$$

I is the identity matrix P is the parity matrix

# Linear Block Codes: Example

The Generator Polynomial can be used to determine the Generator Matrix G that allows determination of parity bits for a given data bits of m by multiplying as follows:



Can be done for other combination of data bits, giving the code word **c** 

Other combinations of **m** can be used to determine all other possible code words (generator polynomial  $g(x)=1+x+x^3$ )



k- data and r = n-k redundant bits

$$\begin{cases} c_{1} = m_{1} \\ c_{2} = m_{2} \\ \dots \\ c_{k} = m_{k} \end{cases}$$

$$\begin{cases} c_{k+1} = m_{1} p_{1(k+1)} \oplus m_{2} p_{2(k+1)} \oplus \dots \oplus m_{k} p_{k(k+1)} \\ \dots \\ c_{n} = m_{1} p_{1n} \oplus m_{2} p_{2n} \oplus \dots \oplus m_{k} p_{kn} \end{cases}$$



• The uncoded k data bits be represented by the **m** vector:

$$\mathbf{m} = (m_1, m_2, ..., m_k)$$

The corresponding codeword be represented by the *n*-bit **c** vector:

$$\mathbf{c} = (c_1, c_2, ..., c_k, c_{k+1}, ..., c_{n-1}, c_n)$$

 Each parity bit consists of weighted modulo 2 sum of the data bits represented by ⊕ symbol for Exclusive OR or modulo 2 addition

Linear Block Code

The block length C of the Linear Block Code is

$$C = mG$$

where m is the information code word block length, G is the generator matrix from a given generator polynomial g(x):

$$\mathbf{G} = [\mathbf{I}_{k} / \mathbf{P}]_{k \times n}$$
where  $P_{i} = \text{Remainder of } [x^{n-k+i-l}/g(x)] \text{ i.e.,}$ 

$$c_{p}(x) = rem \left[ \frac{m(x)x^{n-k}}{g(x)} \right]$$
or  $i=1,2,\ldots,k$  and  $\mathbf{I}$  is unit or identity matrix

for i=1, 2, ..., k, and **I** is unit or identity matrix

• At the receiving end, with the error polynomial e(r), the  $s(x) = rem \left| \frac{c(x) + e(x)}{\sigma(x)} \right|$ syndrome s(x) becomes:

If there is no error, s(x)=0

**Example:** Find linear block code encoder **G** if code generator polynomial g(x) with k data bits, and r parity bits = n - k

$$G = [I \mid P] = \begin{bmatrix} 10 \cdots 0P^{1} \\ 01 \cdots 0P^{2} \\ 00 \cdots 1P^{k} \end{bmatrix}$$
where
$$P^{i} = \text{Re mainder of } \left[ \frac{x^{n-k+i-1}}{g(x)} \right], \text{ for } i = 1, 2, \dots, k$$

where
$$P^{i} = \text{Re mainder of } \left[ \frac{x^{n-k+i-1}}{g(x)} \right], \text{ for } i = 1, 2, \dots, k$$



**Example:** The parity matrix P(k by n-k matrix) is given by:

$$P = \begin{bmatrix} p_{11}p_{12} \cdots p_{1(n-k)} \\ p_{21}p_{22} \cdots p_{2(n-k)} \\ \cdots \\ p_{k1}p_{k1} \cdots p_{k(n-k)} \end{bmatrix} = \begin{bmatrix} P^1 \\ P^2 \\ \cdots \\ P^k \end{bmatrix}$$

where
$$P^{i} = \text{Re mainder of } \left[ \frac{x^{n-k+i-1}}{g(x)} \right], \text{ for } i = 1, 2, \dots, k$$

### **Block Codes: Linear Block Codes**



Operations of the generator matrix and the parity check matrix

■ Consider a (7, 4) linear block code, given by **G** as

$$G = \begin{bmatrix} 1000 & | & 111 \\ 0100 & | & 110 \\ 0010 & | & 101 \\ 0001 & | & 011 \end{bmatrix} = \begin{bmatrix} I_k P \end{bmatrix}_{kxn} \qquad H^T = \begin{bmatrix} P \\ I_{n-k} \end{bmatrix} = \begin{bmatrix} 1110 & | & 100 \\ 1101 & | & 010 \\ 1011 & | & 001 \end{bmatrix}^T$$

For convenience, the code vector is expressed as

$$c = [m|c_p]$$
 Where  $c_p = mPis$  an  $(n-k)$ -bit parity check vector

# **Block Codes: Linear Block Codes**

Define matrix 
$$\mathbf{H}^{T}$$
 as  $\mathbf{H}^{T} = \begin{bmatrix} P \\ I_{n-k} \end{bmatrix}$ 

Received code vector  $\mathbf{x} = \mathbf{c} \oplus \mathbf{e}$ , here **e** is an error vector, the matrix **H**<sup>T</sup> has the property

$$cH^{T} = \left[ m \middle| c_{p} \right] \left[ \begin{matrix} P \\ I_{n-k} \end{matrix} \right]$$
$$= mP \oplus c_{p} = c_{p} \oplus c_{p} = 0$$

The transpose of matrix  $\mathbf{H}^{T}$  is

$$\mathbf{H}^{\mathrm{T}} = \left[\mathbf{P}^{\mathrm{T}}\mathbf{I}_{n-k}\right]$$

 $\mathbf{H}^{\mathrm{T}} = \begin{bmatrix} \mathbf{P}^{\mathrm{T}} \mathbf{I}_{n-k} \end{bmatrix}$  Where  $\mathbf{I}_{n-k}$  is a *n-k* by *n-k* unit matrix and  $\mathbf{P}^{\mathrm{T}}$  is the transpose of parity matrix  $\mathbf{P}$ .

**H** is called parity check matrix. Compute syndrome as  $s = xH^T = (c \oplus e) \times H^T = cH^T \oplus eH^T = eH^T$ 



If **S** is **0** then message is correct else there are errors in it, from common known error patterns the correct message can be decoded.

• For the (7, 4) linear block code, given by  $\mathbf{G}$  as

$$G = \begin{bmatrix} 1000 & | & 111 \\ 0100 & | & 110 \\ 0010 & | & 101 \\ 0001 & | & 011 \end{bmatrix} \qquad H = \begin{bmatrix} 1110 & | & 100 \\ 1101 & | & 010 \\ 1011 & | & 001 \end{bmatrix}$$

For  $\mathbf{m} = [1\ 0\ 1\ 1]$  and  $\mathbf{c} = \mathbf{mG} = [1\ 0\ 1\ 1|\ 0\ 0\ 1]$ If there is no error, the received vector  $\mathbf{x} = \mathbf{c}$ , and  $\mathbf{s} = \mathbf{cH}^{\mathrm{T}} = [0,\ 0,\ 0]$ 



Let c suffer an error such that the received vector

```
x=c \oplus e
 =[1011001] \oplus [0010000]
 =[1001001]
                                   111
Then,
                                   110
                                   101
                                   011
Syndrome s = xH^{T} = [1001|001]
                                        = [101] = (eH^{T})
                                   100
                                         5<sup>th</sup> position
                                   010
                                   001
```

This indicates error position, giving the corrected vector as [1011001]



# Example 4.1 on Linear Block Code

- A generator matrix for a (6, 3) block code is given.
- Find its corresponding parity check matrix **H**?

The corresponding parity check matrix **H** can be calculated by

$$P = \begin{bmatrix} 1 & 01 \\ 0 & 11 \\ 1 & 10 \end{bmatrix}$$

 $P^T = \begin{bmatrix} 1 & 01 \\ 0 & 11 \\ 1 & 10 \end{bmatrix}$ 

Therefore, the transpose of parity matrix  $\mathbf{P}$  is

For  $\mathbf{m} = [1\ 0\ 1]$ , the code vector  $\mathbf{c}$  can be calculated by Equation (4.4)

$$H = [P^T I_{n-k}] = \begin{bmatrix} 101100 \\ 011010 \\ 110001 \end{bmatrix}$$



# **Cyclic Codes**

Input

It is a block code which uses a shift register to perform encoding and decoding the code word with *n* bits is expressed as:

$$c(x)=c_{n-1}x^{n-1}+c_{n-2}x^{n-2}....+c_1$$

where each coefficient  $c_i$  (i=n,n-1,...,2,1) is either a 1 or 0  $D_2,D_1$  - Registers

The code word can be expressed by the data polynomial m(x) and the check polynomial  $c_p(x)$  as

$$c(x) = m(x) x^{n-k} + c_p(x)$$

where  $c_p(x)$  = remainder from dividing m(x)  $x^{n-k}$  by generator g(x) if the received signal is c(x) + e(x) where e(x) is the error

To check if received signal is error free, the remainder from dividing c(x) + e(x) by g(x) is obtained (syndrome). If this is 0 then the received signal is considered error free else error pattern is detected from known error syndromes

Output C



# **Cyclic Code: Example**

**Example:** Find the code words c(x) if  $m(x) = x^2 + x + 1$  and  $g(x) = x^3 x^3 + x + 1$  for (7, 4) cyclic code

We have n = total number of bits = 7, k = number of information bits = 4, r = number of parity bits = n - k = 3

$$c_{p}(x) = rem \left[ \frac{m(x)x^{n-k}}{g(x)} \right]$$

$$= rem \left[ \frac{x^{5} + x^{4} + x^{3}}{x^{3} + x + 1} \right] = x$$

Then,

$$c(x) = m(x)x^{n-k} + c_p(x) = x^5 + x^4 + x^3 + x$$



# Cyclic Redundancy Check (CRC)

- Cyclic Redundancy Code (CRC) is an error-checking code
- The transmitter appends an extra *n*-bit sequence to every frame called Frame Check Sequence (FCS). The FCS holds redundant information about the frame that helps the receivers detect errors in the frame
- CRC is based on polynomial manipulation using modulo arithmetic. Blocks of input bit as coefficient-sets for polynomials is called message polynomial. Polynomial with constant coefficients is called the generator polynomial



# Cyclic Redundancy Check (CRC)

 Generator polynomial is divided into the message polynomial, giving quotient and remainder, the coefficients of the remainder form the bits of final CRC

#### Define:

Q – The original frame (k bits) to be transmitted

F – The resulting frame check sequence (FCS) of n-k bits to be added to Q (usually n = 8, 16, 32)

J – The cascading of Q and F

P – The predefined CRC generating polynomial

The main idea in CRC algorithm is that the FCS is generated so that *J* should be exactly divisible by P



# Cyclic Redundancy Check (CRC)

- The CRC creation process is defined as follows:
  - Get the block of raw message
  - $\triangleright$  Left shift the raw message by n bits and then divide it by p
  - Get the remainder R as FCS
  - Append the R to the raw message. The result J is the frame to be transmitted  $J=Q.x^{n-k}+F$
  - J should be exactly divisible by P
- Dividing  $Q.x^{n-k}$  by P gives  $Q.x^{n-k}/P = Q + R/P$ 
  - ▶ Where *R* is the reminder
  - >  $J=Q.x^{n-k}+R$ . This value of J should yield a zero reminder for J/P

# **Common CRC Codes**

| Code-parity check bits                                                     | Generator polynomial $g(x)$                     |
|----------------------------------------------------------------------------|-------------------------------------------------|
| CRC-12                                                                     | $x^{12} + x^{11} + x^3 + x^2 + x + 1$           |
| CRC-16                                                                     | $x^{16} + x^{15} + x^2 + 1$                     |
| CRC-CCITT (Comité Consultatif International Téléphonique et Télégraphique) | $x^{16} + x^{12} + x^5 + 1$                     |
| CRC-32                                                                     | $x^{32} + x^{26} + x^{23} + x^{22} + x^{16}$    |
|                                                                            | $+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ |

| Code      | Generator polynomial $g(x)$ | Parity check bits |
|-----------|-----------------------------|-------------------|
| CRC-12    | $x^{12}+x^{11}+x^3+x^2+x+1$ | 12                |
| CRC-16    | $x^{16}+x^{15}+x^2+1$       | 16                |
| CRC-CCITT | $x^{16}+x^{15}+x^5+1$       | 16                |



# Example 4.1 on Linear Block Code

- A generator matrix for a (6, 3) block code is given
- Find its code vector when message vector  $\mathbf{m} = [1 \ 0 \ 1]$ ?
- The code vector c for  $\mathbf{m} = [1 \ 0 \ 1]$  can be obtained by:

$$c = mG$$

$$= \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 100101 \\ 010011 \\ 001110 \end{bmatrix}$$

$$= \begin{bmatrix} 101011 \end{bmatrix}$$



#### **Convolutional Codes**

- Most widely used channel code
- Encoding of information stream rather than information blocks
- Decoding is mostly performed by the <u>Viterbi Algorithm</u> (not covered here)
- The constraint length K for a convolution code is defined as K=M+1 where M is the maximum number of stages in any shift register
- The code rate r is defined as r = k/n where k is the number of parallel information bits and n is the number of parallel output encoded bits at one time interval
- A convolution code encoder with n=2 and k=1 or code rate r=1/2 is shown next



#### Convolutional Codes: (n=2, k=1, M=2) Encoder



Initial value D1D2=00

Input x: 1 1 1 0 0 0 ...

Output  $y_1y_2$ : 11 01 10 01 11 00 ...

Input x: 1 0 1 0 0 0 ...

Output  $y_1y_2$ : 11 10 00 10 ...



# **State Diagram**



# **Tree Diagram**





#### **Trellis**





# Interleaving





# **Interleaving (Example)**





#### **Information Capacity Theorem (Shannon Limit)**

■ The information capacity (or channel capacity) C of a continuous channel with bandwidth B Hertz can be perturbed by additive Gaussian white noise of power spectral density  $N_0/2$ , provided bandwidth B satisfies

$$C = B \log_2 \left( 1 + \frac{P}{N_0 B} \right) \quad bits / \sec ond$$

where P is the average transmitted power  $P = E_b R_b$  (for an ideal system,  $R_b = C$ )

 $E_b$  is the transmitted energy per bit

 $R_b$  is transmission rate







#### **Turbo Codes**

- A brief historic of turbo codes:
  - The turbo code concept was first introduced by C. Berrou in 1993. Today, Turbo Codes are considered as the most efficient coding schemes for FEC
- Scheme with known components (simple convolutional or block codes, interleaver, soft-decision decoder, etc.)
- Performance close to the Shannon Limit  $(E_b/N_0 = -1.6 \text{ db})$  if  $R_b \rightarrow 0$  at modest complexity!
- Turbo codes have been proposed for low-power applications such as deep-space and satellite communications, as well as for interference limited applications such as third generation cellular, personal communication services, ad hoc and sensor networks



#### **Turbo Codes: Encoder**



*x*: Information

 $y_i$ : Redundancy Information



#### **Turbo Codes: Decoder**



x': Decoded Information



# **Automatic Repeat Request (ARQ)**





# Stop-And-Wait ARQ (SAW ARQ)





ACK: Acknowledge

**NAK:** Negative ACK



# Stop-And-Wait ARQ (SAW ARQ)

Given n = number of bits in a block, k = number of information bits in a block, D = round trip delay,  $R_b =$  bit rate,  $P_b =$  BER of the channel, and  $P_{ACK} \approx (1 - P_b)^n$ 

#### Throughput:

$$S_{\text{SAW}} = (1/T_{\text{SAW}}) \cdot (k/n) = [(1 - P_b)^n / (1 + D * R_b/n)] * (k/n)$$

where  $T_{\text{SAW}}$  is the average transmission time in terms of a block duration

$$T_{\text{SAW}} = (1 + D R_b/n) P_{\text{ACK}} + 2 (1 + D R_b/n) P_{\text{ACK}} (1 - P_{\text{ACK}})$$

$$+ 3 (1 + D R_b/n) P_{\text{ACK}} (1 - P_{\text{ACK}})^2 + \dots$$

$$= (1 + D R_b/n) P_{\text{ACK}} \sum_{i=1}^{\infty} i (1 - P_{\text{ACK}})^{i-1}$$

$$= (1 + D R_b/n) P_{\text{ACK}} / [1 - (1 - P_{\text{ACK}})]^2$$

$$= (1 + D R_b/n) / P_{\text{ACK}}$$



# Go-Back-N ARQ (GBN ARQ)





# Go-Back-N ARQ (GBN ARQ)

#### Throughput

$$S_{\text{GBN}} = (1/T_{\text{GBN}}) (k/n)$$
  
=  $[(1 - P_b)^n / ((1 - P_b)^n + N (1 - (1 - P_b)^n))] (k/n)$ 

#### where

$$\begin{split} T_{\rm GBN} &= 1 \cdot P_{\rm ACK} + (N+1) \cdot P_{\rm ACK} \cdot (1 - P_{\rm ACK}) + 2 \cdot (N+1) \cdot P_{\rm ACK} \cdot \\ & (1 - P_{\rm ACK})^2 + \ldots \\ &= P_{\rm ACK} + P_{\rm ACK} \ \left[ (1 - P_{\rm ACK}) + (1 - P_{\rm ACK})^2 + (1 - P_{\rm ACK})^3 + \ldots \right] + \\ & P_{\rm ACK} \left[ N \ (1 - P_{\rm ACK}) + 2 \ N \ (1 - P_{\rm ACK})^2 + 3 \ N \ (1 - P_{\rm ACK})^3 + \ldots \right] \\ &= P_{\rm ACK} + P_{\rm ACK} \left[ (1 - P_{\rm ACK}) / \{1 - (1 - P_{\rm ACK})\} + N \ (1 - P_{\rm ACK}) / \{1 - (1 - P_{\rm ACK})\}^2 \right] \\ &= 1 + N(1 - P_{\rm ACK}) / P_{\rm ACK} \approx 1 + (N \ \left[ 1 - (1 - P_b)^n \right]) / (1 - P_b)^n \end{split}$$



### Selective-Repeat ARQ (SR ARQ)





# Selective-Repeat ARQ (SR ARQ)

#### Throughput

$$S_{SR} = (1/T_{SR}) * (k/n)$$
  
=  $(1 - P_b)^n * (k/n)$ 

#### where

$$T_{\rm SR} = 1 . P_{\rm ACK} + 2 P_{\rm ACK} (1 - P_{\rm ACK}) + 3 P_{\rm ACK} (1 - P_{\rm ACK})^2 + \dots$$

$$= P_{\rm ACK} \sum_{i=1}^{\infty} i (1 - P_{\rm ACK})^{i-1}$$

$$= P_{\rm ACK} / [1 - (1 - P_{\rm ACK})]^2$$

$$= 1/(1 - P_{\rm b})^n \quad \text{where } P_{\rm ACK} \approx (1 - P_{\rm b})^n$$