圏論の技法 非公式誤植表1

compiled on 2019 年 12 月 8 日 2

大体は読みましたが、一部めんどうになって読んでいない箇所があります.詳しく言えば、第 1章、第 2章の 2.3 節以前、第 4章の補題 4.2.21、系 4.2.22、補題 4.2.23、第 6章の系 6.2.16、第 7章の系 7.1.12 と第 7.3.2 小節以降、は読んでません.これらの箇所以外の誤植表です.表でページ番号のマスがオレンジになっているところは、気をつけるべき誤植と感じたところです.

第1章 圏論の基本事項

第2章 関手と圏同値

2.4 圏の局所化

p	位置	誤	正
113	14 行目	射 $f/s = [f, W, s] \in \mathscr{C}_S(X, Y)$ に対し	射 $(f/s) = [f, W, s] \in \mathscr{C}_S(X, Y)$ に対し

第3章 加法圏

p	位置	誤	正
124	19 行目	$(f,g)\mapsto g\circ f$	$(g,f)\mapsto g\circ f$
140	16 行目	$F(Y)$ $F(\iota_1) \uparrow \qquad \text{id}$ $F(Y \oplus Y) \xrightarrow{F(\nabla)} F(Y)$ $F(\iota_2) \downarrow \qquad \text{id}$ $F(Y)$	$F(Y)$ $F(\iota_1) \downarrow \qquad \qquad id$ $F(Y \oplus Y) \xrightarrow{F(\nabla)} F(Y)$ $F(\iota_2) \uparrow \qquad \qquad id$ $F(Y)$
154	7 行目	℃ には定義 3.1.1 の意味での	\mathscr{C}_{S} には定義 $3.1.1$ の意味での
168	7 行目	$K' \xrightarrow{b} B$ $A \xrightarrow{f} B$ $A' \xrightarrow{b} B'$	$K' \xrightarrow{b} B$ $A \xrightarrow{f} B$ $A' \xrightarrow{f'} B'$
174	11 行目	$0 \to \operatorname{Ker} e \xrightarrow{i} A \xrightarrow{q} \operatorname{Ker}(\operatorname{id}_X - e) \to 0$	$0 \to \operatorname{Ker} e \xrightarrow{i} A \xrightarrow{q} \operatorname{Ker}(\operatorname{id}_{\mathbf{A}} - e) \to 0$
184	18,19 行目	$\mathscr{C}(X^{\bullet},Y^{\bullet})$	$C(\mathscr{C})(X^{\bullet},Y^{\bullet})$
188	4 行目	$C(\mathscr{C})(F(X),F(Y))$	$C(\mathcal{D})(F(X), F(Y))$

 $^{^1}$ 中岡宏行、『圏論の技法 アーベル圏と三角圏でのホモロジー代数』(日本評論社)、 2016/1/20 発行 第 1 版第 2 刷

 $^{^2}$ 何かあれば Twitter: https://twitter.com/paper3510mm までお願いします.

第4章 アーベル圏

p	位置	誤	正
258	13 行目	$\operatorname{Cok}(Q_S(f)) = (Q_S(c), C)$	$\operatorname{Cok}(Q_S(f)) = (C, Q_S(c))$
261	16,19 行目	$f\in\mathscr{C}(X,Y)$	$f \in \mathscr{A}(X,Y)$
261	20 行目	$\overline{f} \in \mathscr{C}(\operatorname{Cok} s, Y)$	$\overline{f} \in \mathscr{A}(\operatorname{Cok} s, Y)$
270	13 行目	$f \in K^*(\mathscr{A})(X,Y)$	$f \in C^*(\mathscr{A})(X,Y)$
278	18 行目	集合 I	集合 <mark>J</mark>
287	7行目	$ \coprod_{\lambda \in \Lambda} H^{i}(X_{\lambda}) \xrightarrow{H^{i}(\coprod_{\lambda \in \Lambda} f_{\lambda})} \coprod_{\lambda \in \Lambda} H^{i}(Y_{\lambda}) \cong \downarrow \qquad \qquad \downarrow \cong H^{i}(\coprod_{\lambda \in \Lambda} X_{\lambda}) \xrightarrow{H^{i}(f)} H^{i}(\coprod_{\lambda \in \Lambda} Y_{\lambda}) $	
298	11 行目	任意の $k\in\mathbb{N}$ に対して	(1) 任意の $k \in \mathbb{N}$ に対して
299	5-6 行目	ℓ をこれら有限個の j すべてより 大きくなるようにとれば	$\ell \geq k$ をこれら有限個の j すべてより 大きくなるようにとれば

第5章 完全圏と安定圏

p	位置	誤	正
313	8 行目	$t \circ \xi = x''^i x'^i = \mathrm{id}$	$t \circ \xi = x''^i \circ x'^i = \mathrm{id}$
317	3 行目	$s \in C(\mathscr{A})(A,I)$	$s \in C(\mathcal{E})(A, I)$
322	16 行目	ただし, $\gamma^{-1} = 0, \delta^{-1} = 0$ とする	ただし, $C^{-1}=X^0, \gamma^{-1}=\mathrm{id}_{X^0}, \delta^{-1}=0$ とする
323	14 行目	複体 $J = \{J^i, d_J^i\}_{i \in \mathbb{Z}} \in K^+(\mathcal{J})$	複体 $J = \{J^i, d^i_J\}_{i \in \mathbb{Z}} \in C^+(\mathcal{J})$
326	5 行目	であって $I_A\in\mathcal{I}$ を満たすもの	であって $I_A \in {\color{red} {f I}_{\mathscr C}}$ を満たすもの
327	6-7 行目	$\underline{s}_A \circ \underline{s}'_A = \mathrm{id}_{A'}, \underline{s}'_A \circ \underline{s}_A = \mathrm{id}_A$	$\underline{s}_A \circ \underline{s}_A' = \mathrm{id}_{\Sigma'A}, \underline{s}_A' \circ \underline{s}_A = \mathrm{id}_{\Sigma A}$
328	8 行目	$0 \longrightarrow \Omega B \longrightarrow I_{\Omega B} \longrightarrow \Sigma \Omega B \longrightarrow 0$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $0 \longrightarrow \Sigma B \longrightarrow P_B \longrightarrow B \longrightarrow 0$	$0 \longrightarrow \Omega B \longrightarrow I_{\Omega B} \longrightarrow \Sigma \Omega B \longrightarrow 0$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $0 \longrightarrow \Omega B \longrightarrow P_B \longrightarrow B \longrightarrow 0$
328	15 行目	$I\in \mathscr{F}$ を満たす	$I\in\mathcal{I}_{\mathscr{F}}=\mathcal{P}_{\mathscr{F}}$ を満たす
329	19 行目	X を $\mathscr C$ における任意の複体とする	$X \in C^*(\mathscr{C})$ とする

第6章 三角圏

p	位置	誤	正
345	1 行目	$A[m] \xrightarrow{f} B[n] \xrightarrow{g} C[p] \xrightarrow{\phi_{(A,m)} \circ h} A[m+1]$	$A[m] \xrightarrow{f} B[n] \xrightarrow{g} C[p] \xrightarrow{\phi_{(A,m)} \circ h} A[m][1]$
357	16 行目	$\xrightarrow{H^{i}(g)} H^{i}(Z) \xrightarrow{H^{i+1}(f)} H^{i+1}(X) \to \cdots$	$\xrightarrow{H^{i}(g)} H^{i}(Z) \xrightarrow{H^{i}(h)} H^{i+1}(X) \to \cdots$
362	17-18 行目	$k \geq -i$ なる任意の k に対して	$i \geq -k$ なる任意の i に対して
367	13-14 行目	自然同型 ϕ'' : $(F' \circ F) \circ \Rightarrow [1] \circ (F' \circ F)$	自然同型 ϕ'' : $(F' \circ F) \circ [1] \Rightarrow [1] \circ (F' \circ F)$
378	14 行目	S をその積閉系とする	S を三角構造と両立する ${\mathscr T}$ の積閉系とする
382	16 行目	$C \xrightarrow{-y_C[-1]} Y_C[-1] \xrightarrow{x_C} X_C \to C[1]$	$C \xrightarrow{-y_C[-1]} Y_C[-1] \to X_C \xrightarrow{\boldsymbol{x}_C} C[1]$
388	16 行目	$=h'\circ a'\circ i+h'\circ g'\circ b=$	$=h'\circ a'\circ i+h'\circ g'\circ {\color{red}\ell}=$
394	19 行目	$\begin{bmatrix} 1 & 0 \\ 0 & m_X^{i+1} \end{bmatrix} : Y^i \oplus C_X^{i+1} \to Y^i \oplus X^{i+1}$	$\begin{bmatrix} 1 & 0 \\ 0 & m_X^{i+1} \end{bmatrix} : Y^{i+1} \oplus C_X^{i+1} \to Y^{i+1} \oplus X^{i+2}$
394	20 行目	また, (6.41) の右側の四角形	(注 1)
396	4-5 行目	$\mathscr{T} = K^*(\mathcal{I}) \cap K_{\mathrm{ac}}(\mathscr{F})$	(ただし * = { }) (注 2)
398	20 行目	$X^1 \in I \not D \check{\mathcal{A}}$	$X^1 \in \mathcal{I}$ ゆえ
398	21 行目	$\xrightarrow{F(g)} F(Z) \xrightarrow{F(h)} F(X)[1]$	$\xrightarrow{F(g)} F(Z) \xrightarrow{F(h)} F(X[1]) \cong F(X)[1]$

(注 1): 図式 (6.41) ではない.正しくは,前頁 (p.393) で現れた," e_f^{i+1} と c_f^{i+1} のファイバー積 Q^i "をとって得られる許容短完全列の射の図式のこと.なお,図式 (6.41) は p.398 で参照される.

(注 2): 命題 6.3.12 の証明において関手 F の稠密性 (=本質的全射性) を示すとき,"任意の $A \in \mathcal{F}$ に対して定義 5.2.10 のような分解が存在することから従う"と言っているが,定義 5.2.10 の分解は一般に有界とは限らず, $K^*(\mathcal{I}) \cap K_{\rm ac}(\mathcal{F})$ (* = ±, b) の対象になり得ない.よってこの命題は * = {} の場合にのみ成立する.読んだ範囲では,この命題を参照していない (はず) なので,これ以降に影響は及んでいないと思われる.

第7章 導来圏と導来関手

p	位置	誤	正
400	17 行目	$f\in\mathscr{C}(X,Y)$	$f \in \mathscr{T}(X,Y)$
409	16 行目	$\mathscr{T}^+ \subseteq D(\mathscr{A})$	$\mathcal{T}^+ \subseteq D(\mathscr{A})$
414	7 行目	$R^iF = H^i(F(I))$	$R^i F(A) = H^i(F(I))$
415	14 行目	$L_i F = H^{-i}(F(P))$	$L_i F(\mathbf{A}) = H^{-i}(F(P))$
418	9 行目	$\iota \colon \mathscr{A} \hookrightarrow D^+(\mathscr{A})$	$\iota \colon \mathscr{A} \hookrightarrow K^+(\mathscr{A})$
419	7 行目	自然変換 $\overline{\xi}$: L $F \Rightarrow G$ が	自然変換 $\overline{\xi}$: $G \Rightarrow \mathbb{L}F$ が
419	9 行目	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{matrix} G\circ Q_{\mathscr{E}} \\ \overline{\xi}\circ Q_{\mathscr{E}} \end{matrix} \longrightarrow \begin{matrix} \xi \\ & & & & & \\ \mathbb{L}F\circ Q_{\mathscr{E}} \end{matrix} \longrightarrow Q_{\mathscr{F}}\circ F$
421	21 行目	準逆 $j \colon D^+(\mathscr{E}) \to K^+(\mathscr{E})$	準逆 $j \colon D^+(\mathscr{E}) \to K^+(\mathcal{I}_{\mathscr{E}})$
423	11 行目	$K(\mathscr{A})$ における帰納系 $\{I_k,u_k\}$	$K(\mathscr{A})$ における <mark>射影系</mark> $\{I_k,u_k\}$
424	25-26 行目	同型で閉じた三角部分圏 $\mathcal{L}\subseteq K^\star(\mathscr{E})$ が	(注 1)
431	14 行目	$ au_A = heta_A$ が従う	$ au_A = \overline{ heta}_A$ が従う
433	17 行目	$\operatorname{Hom}_{B}^{\bullet}(P,-) \colon K(\operatorname{Mod} A) \to K(\operatorname{Mod} B)$	$\operatorname{Hom}_B^{\bullet}(P,-) \colon K(\operatorname{Mod} B) \to K(\operatorname{Mod} A)$
433	18 行目	$\mathbb{R}\operatorname{Hom}_B(P,-)\colon D(\operatorname{Mod} A)\to D(\operatorname{Mod} B)$	$\mathbb{R}\operatorname{Hom}_B(P,-)\colon D(\operatorname{Mod} B)\to D(\operatorname{Mod} A)$
437	3 行目	$D^b(\mathscr{A}) \hookrightarrow K^-(\mathscr{A})$	$D^b(\mathscr{A}) \hookrightarrow K^-(\mathcal{P}_{\mathscr{A}})$
439	19 行目	したがって (7.15) は分裂し, $X'^{i-1}\cong$	したがって (7.15) は分裂し, $X'^i \cong$
441	14-15 行目	主張 4.4.11 の証明中に示したことから	(注 2)
	行目		

(注 1): 三角部分圏 $\mathcal{L} \subseteq K^*(\mathscr{E})$ は同型で閉じている必要はない. 証明で必要なのは、命題 7.1.11 を適用する際に必要な、三角部分圏 $K^*_{\rm ac}(\mathscr{E}) \subseteq K^*(\mathscr{E})$ が同型で閉じるという事実である. 実際、続く定義 7.2.26 でこの補題を用いるとき、三角部分圏 $\mathcal{L} \subseteq K^*(\mathscr{E})$ は同型で閉じることを課していない.

(注 2): " $\operatorname{Proj} A$ のコンパクト対象が A 加群として有限生成となる" ことを用いる場面であるが,ここでは主張 4.4.11 の証明の議論を適用できない.主張 4.4.11 での議論では,P が $\operatorname{Mod} A$ の生成子であることを用いてしまっているからである.以下のように考えればよい.

 $P \in \text{Proj } A$ がコンパクト対象であるとする. Proj A において完全列

$$A^{\oplus I} \xrightarrow{f} P \to 0$$
 (I は集合)

を取ると、P が射影的であることから f は分裂エピ射になり、A 加群の準同型 $r\colon P\to A^{\oplus I}$

が存在して $f \circ r = id_P$ となる. P は Proj A のコンパクト対象であるから,

$$\operatorname{Hom}_A(P, A^{\oplus I}) \cong \operatorname{Hom}_A(P, A)^{\oplus I}$$

が成り立ち, r はこの全単射で $(P \xrightarrow{p_i} A^{\oplus I} \xrightarrow{p_i} A)_{i \in I}$ に対応する $(p_i$ は i 成分への射影). ここで加群の直和の構成から,

$$(P \xrightarrow{r} A^{\oplus I} \xrightarrow{p_i} A)_{i \in I} \in A^{\oplus J}$$

となる有限部分集合 $J \subseteq I$ が存在する. したがって r は $A^{\oplus J}$ を経由することがわかり,

$$A^{\oplus I} \xrightarrow{f} P$$

$$\uparrow \qquad \qquad \uparrow_{\mathrm{id}_P}$$

$$A^{\oplus J} \xleftarrow{r} P$$

が可換, つまり全射 $A^{\oplus J} oup P$ が存在する. よって P は A 加群として有限生成である. \square