Series

Question 1 2013 BC Q90

Which of the following statements are true about the series $\sum_{n=2}^{\infty} a_n$, where $a_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$?

- I. The series is alternating.
- II. $|a_{n+1}| \le |a_n|$ for all $n \ge 2$
- III. $\lim_{n\to\infty} a_n = 0$
- (A) None
- (B) I only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

Question 2 2014 BC Q6

The infinite series $\sum_{k=1}^{\infty} a_k$ has *n*th partial sum $S_n = (-1)^{n+1}$ for $n \ge 1$. What is the sum of the series $\sum_{k=1}^{\infty} a_k$?

- (A) -1
- (B) 0
- (C) $\frac{1}{2}$
- (D) 1
- (E) The series diverges.

Question 3 2014 BC Q10

What is the sum of the series $\sum_{n=1}^{\infty} \frac{(-2)^n}{e^{n+1}}?$

(A)
$$\frac{-2}{e^2 - 2e}$$

(A)
$$\frac{-2}{e^2 - 2e}$$
 (B) $\frac{-2}{e^2 + 2e}$ (C) $\frac{-2}{e + 2}$ (D) $\frac{e}{e + 2}$ (E) The series diverges.

(C)
$$\frac{-2}{e+2}$$

(D)
$$\frac{e}{e+2}$$

Question 4 2014 BC Q24

Which of the following series converge?

I.
$$1 + (-1) + 1 + \dots + (-1)^{n-1} + \dots$$

II.
$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} + \dots$$

III.
$$1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}} + \dots$$

- (A) I only
- (B) II only
- (C) III only
- (D) II and III only
- (E) I, II, and III

Question 5 2014 Q87

If $0 < b_n < a_n$ for $n \ge 1$, which of the following must be true?

(A) If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} b_n$ converges.

(B) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n \to \infty} b_n = 0$.

(C) If
$$\sum_{n=1}^{\infty} b_n$$
 diverges, then $\lim_{n \to \infty} a_n = 0$.

(D) If
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

(E) If
$$\sum_{n=1}^{\infty} b_n$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Question 6 2015 BC Q10

Which of the following series converges?

- $(A) \sum_{n=1}^{\infty} \frac{3n}{n+2}$
- $(B) \sum_{n=1}^{\infty} \frac{3n}{n^2 + 2}$
- (C) $\sum_{n=1}^{\infty} \frac{3n}{n^2 + 2n}$
- (D) $\sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 2n}$
- (E) $\sum_{n=1}^{\infty} \frac{3n^2}{n^4 + 2n}$

Question 7 2015 BC Q79

The function f has derivatives of all orders for all real numbers with f(0) = 3, f'(0) = -4, f''(0) = 2, and f'''(0) = 1. Let g be the function given by $g(x) = \int_0^x f(t) dt$. What is the third-degree Taylor polynomial for g about x = 0?

(A)
$$-4x + 2x^2 + \frac{1}{3}x^3$$

(B)
$$-4x + x^2 + \frac{1}{6}x^3$$

(C)
$$3x - 2x^2 + \frac{1}{3}x^3$$

(D)
$$3x - 2x^2 + \frac{2}{3}x^3$$

(E)
$$3 - 4x + x^2 + \frac{1}{6}x^3$$

The infinite series $\sum_{k=1}^{\infty} a_k$ has *n*th partial sum $S_n = \frac{n}{3n+1}$ for $n \ge 1$. What is the sum of the series $\sum_{k=1}^{\infty} a_k$?

- (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) 1 (D) $\frac{3}{2}$ (E) The series diverges.

Question 9 2016 BC Q14

The figure above shows the graph of a function f. Which of the following could be the second-degree Taylor polynomial for f about x = 2?

(A)
$$2 - x - x^2$$

(B)
$$2 + x - x^2$$

(C)
$$2-(x-2)+(x-2)^2$$

(D)
$$2 + (x-2) - (x-2)^2$$

(E)
$$2 + (x-2) + (x-2)^2$$

Question 10 2016 BC Q18

Let P be the second-degree Taylor polynomial for e^{-2x} about x = 3. What is the slope of the line tangent to the graph of P at x = 3?

(A)
$$-2e^{-6}$$

(B)
$$e^{-6}$$

(C)
$$2e^{-6}$$

(D)
$$4e^{-6}$$

(A)
$$-2e^{-6}$$
 (B) e^{-6} (C) $2e^{-6}$ (D) $4e^{-6}$ (E) $10e^{-6}$

Question 11 2016 BC Q24

Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{3^n}$$

III.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III

Question 12 2016 BC Q92

Let f be a positive, continuous, decreasing function. If $\int_{1}^{\infty} f(x) dx = 5$, which of the following statements about the series $\sum_{n=1}^{\infty} f(n)$ must be true?

$$(A) \sum_{n=1}^{\infty} f(n) = 0$$

(B)
$$\sum_{n=1}^{\infty} f(n)$$
 converges, and $\sum_{n=1}^{\infty} f(n) < 5$.

(C)
$$\sum_{n=1}^{\infty} f(n) = 5$$

(D)
$$\sum_{n=1}^{\infty} f(n)$$
 converges, and $\sum_{n=1}^{\infty} f(n) > 5$.

(E)
$$\sum_{n=1}^{\infty} f(n)$$
 diverges.

Question 13 2017 BC Q5

To what number does the series $\sum_{k=0}^{\infty} \left(\frac{-e}{\pi}\right)^k$ converge?

- (A) 0

- (B) $\frac{-e}{\pi + e}$ (C) $\frac{\pi}{\pi + e}$ (D) The series does not converge.

Question 14 2016 BC Q21

The power series $\sum_{n=1}^{\infty} \frac{(x-5)^n}{2^n n^2}$ has radius of convergence 2. At which of the following values of x can the alternating series test be used with this series to verify convergence at x?

- (A) 6
- (B) 4
- (C) 2
- (D) 0
- (E) -1

Question 15 2017 BC Q29

Which of the following is a power series expansion of $\frac{e^x + e^{-x}}{2}$?

(A)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

(B)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

(C)
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

(D)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

Question 16 2014 BC FR Q6

The Taylor series for a function f about x = 1 is given by $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n} (x-1)^n$ and converges to f(x) for |x-1| < R, where R is the radius of convergence of the Taylor series.

- (a) Find the value of R.
- (b) Find the first three nonzero terms and the general term of the Taylor series for f', the derivative of f, about x = 1.
- (c) The Taylor series for f' about x = 1, found in part (b), is a geometric series. Find the function f' to which the series converges for |x 1| < R. Use this function to determine f for |x 1| < R.

Question 17 2013 BC FR Q6

A function f has derivatives of all orders at x = 0. Let $P_n(x)$ denote the nth-degree Taylor polynomial for f about x = 0.

- (a) It is known that f(0) = -4 and that $P_1(\frac{1}{2}) = -3$. Show that f'(0) = 2.
- (b) It is known that $f''(0) = -\frac{2}{3}$ and $f'''(0) = \frac{1}{3}$. Find $P_3(x)$.
- (c) The function h has first derivative given by h'(x) = f(2x). It is known that h(0) = 7. Find the third-degree Taylor polynomial for h about x = 0.

Question 18 2012 BC FR Q6

The function g has derivatives of all orders, and the Maclaurin series for g is

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+3} = \frac{x}{3} - \frac{x^3}{5} + \frac{x^5}{7} - \cdots$$

- (a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
- (b) The Maclaurin series for g evaluated at $x = \frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0. The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.
- (c) Write the first three nonzero terms and the general term of the Maclaurin series for g'(x).