ENEL 434: Electronics 2 – 2008

Course Objective:

To study and analyse the circuits and devices used in radio-frequency communication systems.

Lectures: Wednesdays, 9:00am normally A309

Thursdays, 3:10pm normally E10

Instructors:

Prof. Peter Gough (Course Administrator)

(Room A306, Ext. 6297, email: peter.gough@canterbury.ac.nz)

Dr. Kim Eccleston

(Room A314, Ext. 7045, email: kim.eccleston@canterbury.ac.nz)

Office Hours: By appointment only.

Course Homepage: w:courses/ENEL434

Recommended Text: available from the bookstore.

• D. M. Pozar, *Microwave Engineering*, 3rd Ed., John Wiley, 2005.

ISBN: 0-471-44878-8

Coursework and Assessment:

Your final grade in this course is comprised of the following:

Description	Due Date	% of Total Grade	Associated Instructor(s)
Test 1	27th March	10%	PTG
Test 2	28 th May	10%	PTG
Assignment	16 th Oct.*	25%	KE
Final		55%	Both

^{*} Assignment involves design of a UHF amplifier and there are necessarily intermediate due dates for PCB layout and assembled circuit.

Date	Lect. No.	Title	Scope
		Lectures by Professor Peter Gough	
27 February 28 February	1 2	Course introduction Small Signal amplifiers	High frequency, narrow band
5 March 6 March	3 4	Biasing Tuned load amplifiers	Coupling, gain, ss amplifiersResonant loads, bandwidth, gain
12 March 13 March	5 6	Tuned load amplifiers con't Impedance matching	 Performance prediction & simulation Coupling into complex sources and loads
19 March 20 March	7 8	Parallel and series tuned circuits Transmission lines	Parallel/series transformationsCharacteristic impedance
26 March 27 March	9 10	Smith charts Test	High frequency design tool50 minutes. (Lectures 1 to 8)
2 April 3 April	11 12	S parameters UHF transistors END OF TERM 1	How to use them and what they mean.

		Lectures by Professor Peter Gough	
30 April	13	Complex impedance matching	With lumped components and transmission lines
1 May	14	Microstrip amplifier design	Single and double stub matching
7 May	15	Microstrip amplifier design con't	 Full amplifier design with biasing and stubs
8 May	16	Microstrip amplifier design con't	 Review of design techniques
14 May	17	Oscillators	Colpitts, Hartly, Phase shift
15 May	18	Colpitts design details	 Design walk through
21 May	19	Analogue filter design	 Filter characteristics
22 May	20	Butterworth, Chebeychev, Bessel	 Modern design (with mention of classical method)
28 May	21	Test	• 50 minutes (Lectures 9 to 18)
29 May	22	Frequency and impedance transforms	 LP prototype to LP, HP BP and BS
4 June	23	Active filter design	 MFB, VCVS
5 June	24	Active filters con't	 Realizations
		END OF TERM 2	

		Lectures by Dr Kim Eccleston	
16 July	25 26	Assignment introduction Assignment introduction	Overview of amplifier design
17 July	20	Assignment introduction	UHF circuit techniques
23 July	27	Assignment introduction	Microwave Office: circuit simulation tool
24 July	28	RF Receiver Architecture	 Image suppression and double conversion
20.1.1	20	A	0.00
30 July	29	Assignment introduction	Microwave Office: layout
31 July	30	RF Receiver architecture	 Homodyne and other receiver architectures
6 Aug	31	Noise in electronic circuits	 Review of random processes
7 Aug	32	Noise in electronic circuits	 Sources of noise
13 Aug	33	Noise in electronic circuits	Basic circuit analysis for noise
14 Aug	34	Noise in electronic circuits	 Low noise amplifiers
20 Aug	35	Noise in electronic circuits	 Specialised op-amps and instrument amplifiers
21 Aug	36	Noise in electronic circuits	 Specifying ADCs and noise control
		END OF TERM 3	

		Lectures by Dr Kim Eccleston	
10 Sept	37	Noise in RF circuits and systems	Noise descriptions for RF circuits
11 Sept	38	Noise in RF circuits and systems	Noise figure of a two-port network
17 Sept	39	Noise in RF circuits and systems	Noise figure of a multistage RF system
18 Sept	40	Noise in RF circuits and systems	RF LNA design example
24 Samt	41	Naise in DE singuite and acceptance	DE 1 1
24 Sept	41	Noise in RF circuits and systems	RF system design examples
25 Sept	42	Nonlinearity in RF circuits and systems	Non-linear phenomena
3 Oct	43	Nonlinearity in RF circuits and systems	Single tone excitation
4 Oct	44	Nonlinearity in RF circuits and systems	 Two-tome and multitone excitation
8 Oct	45	Nonlinearity in RF circuits and systems	Large signal and small signal excitation
9 Oct	46	Nonlinearity in RF circuits and systems	
9 001	40	Nonlinearity in Ki circuits and systems	RF power amplifier behaviours
15 Oct	47	Nonlinearity in RF circuits and systems	RF mixer behaviour
17 Oct	48	Nonlinearity in RF circuits and systems	 Examples
		END OF TERM 4	