IEOR E4650 Business Analytics

Session 14: Sports Analytics

Spring 2018

Copyright © 2018

Prof. Adam Elmachtoub

Sports Analytics Opportunities

Professional sports teams now use analytics to drive decisions about nearly every aspect of the game

- Performance evaluation: players and teams
 - Building a team
 - Contract negotiations
 - Fantasy sports and sports betting
 - Injury prevention
 - Identifying at-risk players in pro drafts
- Training and practice
 - Identify strengths and weaknesses
 - Identify best drills and practice techniques
- Strategy
 - Game film analysis
 - Lineups, match-ups, play calling
 - Defensive alignment in baseball; pitch selection

- Bean bag toss competition
- Identifying skill versus luck
- Shrinkage estimators
- Predicting sports outcomes with optimization

Session 14-3

Bean Bag Toss: Rules

- A game is 4 tosses
- Scoring of tosses
 - Miss board: score = 0
 - Land on board: score = 1
 - Through the hole: score = 3
 - Mercy Rule: You get 1 point free if you did not make any good tosses
- Winner: team with the highest score (average score per player) after 2 games

Bean Bag Toss: Instructions

Teams

- There are four teams: Target, Nomis, Pandora and Tahoe
- Teams are formed based on alphabetical order (last name): see board
- We will proceed in two rounds
 - round 1
 - round 2
- During each round, organize tosses as follows:
 - Each team member makes four consecutive tosses, alternating with opposite team
 - Captain (first name in team) records scores on sheet
 - Turn in sheet to IT Czar

Session 14-5

Predicting Bean Bag Toss Performance

Class poll:

The "game 2 versus game 1" regression line has a slope

- (A) ≥ 1.4
- (B) 1.2
- (C) 1
- (D) 0.8
- (E) ≤ 0.6

Session 14-7

Skill Versus Luck

Luck-Skill Continuum

Where would you place these games on the luck-skill continuum?

More skill means more predictability

- Past performance is a good predictor of future performance
- A better player/team is more likely to beat a worse player/team
- Past better-than-average performance predicts future better-than-average performance

Session 14-9

Skill Versus Luck Equation

performance = skill + luck

Simple idea: skill and luck contribute to performance (success)

Observations:

- Skill is expected to be stable over appropriate time frames
- Luck is unpredictable

Consequence?

Predicting Game 2 Performance from Game 1 Performance

Mean reversion: why should predictions of game 2 scores shrink toward the mean?

$$performance (score) = skill + luck$$

A game 1 score of 8 could happen with

- (a) Skill = 10, luck = -2, or (b) skill = 6, luck = +2
- (b) is more likely than (a) ⇒ mean reversion!

Session 14-11

Shrinkage Estimators

Shrinkage Estimators and Mean Reversion

Shrinkage estimator of game 2:

Game 2 prediction =
$$c \times$$
 (Game 1 score) + $(1 - c) \times$ (Game 1 average)

Shrinkage coefficient c

- Weight on the past outcome in the prediction
- The prediction shrinks from the past outcome to the population average

Session 14-13

Connecting Shrinkage to Mean Reversion

Mean reversion

- Above average game 1 scores tend to decrease; below average tend to increase
- Below average game 1 score tend to increase
- Regression slope will be less than 1
 - Slope close to zero: mostly luck
 - Slope close to one: mostly skill
- Fact: regression slope \approx optimal shrinkage coefficient c^* since both measure mean reversion (see the appendix for details)

Performance of the Shrinkage Estimator: RMSE

Game 1 avg	c	RMSE
4.0	0.5	2.18

			Shrinkage	Prediction
Player	Game 1	Game 2	estimator	error
1	5	7	4.5	-2.5
2	10	6	7.0	1.0
:	:	:	:	:
n	1	4	2.5	-1.5

- Game 1 avg: =AVERAGE(Game 1 column)
- Shrinkage coefficient (weight on game 1 score): c
- Shrinkage estimator: =c*(Game 1 score) + (1-c)*(Game 1 avg)
- Prediction error: (Shrinkage estimator) (Game 2 score)

Session 14-15

Optimal Shrinkage Coefficient c Minimizes RMSE

Game 2 prediction = $c \times$ (Game 1 score) + $(1 - c) \times$ (Game 1 average)

Interpreting the optimal shrinkage coefficient c^{st}

- c^* close to one
 - Mostly skill: game 1 outcomes are good predictors of game 2 outcomes
 - Little mean reversion of scores
- c^* close to zero
 - Mostly luck: game 1 outcomes are poor predictors of game 2 outcomes
 - Significant mean reversion of scores

Baseball Analytics: From Shrinkage Estimators to Moneyball

Session 14-17

Sports Analytics Opportunities

Professional sports teams now use analytics to drive decisions about nearly every aspect of the game

Miguel Cabrera

Value of a player

- Better hitters help teams score more runs
- Teams that score more runs win more games

Session 14-19

Connecting Runs to Wins: Pythagorean Win Rate

 $\begin{aligned} \text{Pythagorean win rate} &= \\ \frac{\text{Runs scored}^{1.83}}{\left(\text{Runs scored}^{1.83} + \text{Runs allowed}^{1.83}\right)} \end{aligned}$

Bill James' original formula had an exponent of 2. He later refined it to 1.83.

Example: 2012 NY Yankees

RS = 804, RA = 668,

Pythagorean win rate = 0.584, actual win rate = 0.586

Pythagorean wins:

 $162 \times 0.584 = 94.6$ wins;

actual wins: 95

Predicted 2012 BA = $c \times$ (Observed 2011 BA) + $(1-c) \times$ (2011 Average BA) $c^* = \text{0.4 minimizes RMSE prediction error across players}$

Session 14-21

Skill: Year-to-Year Persistence

0.350

Which stat indicates the most persistent?

- BA: batting average (hits / at-bats)
- OPS: on-base plus slugging
 - On-base: (hits + walks) / (plate appear)
 - Slugging: total bases / at-bats
- 9 SO: strikeout rate (strikeouts / AB)

Performance Measures: What is a Good Stat?

Session 14-23

Predictive: Correlated with Runs

5.5

 $\mathsf{Hitting} \implies \mathsf{Runs} \implies \mathsf{Wins}$

Which is a better stat: BA, OPS, or SO?

Moneyball, p.128: OPS "was a much better indicator than any other offensive statistic of the number of runs a team would score . . . The one attribute most critical to the success of a baseball team was an attribute they could afford to buy."

See: "The Sabermetric Revolution" (posted)

Session 14-25

Moneyball: Bill James, Billy Beane and Brad Pitt

Bill James

- Father of modern baseball analytics (Sabermetrics)
- With Red Sox since 2003: Boston won World Series in 2004, 2007 and 2013
- 60 Minutes video: http: //cbsn.ws/wGuOBb

Billy Beane

- General manager, Oakland Athletics
- 2002, Oakland payroll: \$41M; Texas payroll: \$107M
- Oakland: 103 wins (64%);
 Texas: 72 wins (44%)
- Billy Beane interview: http://bit.ly/1biBahq

Brad Pitt

- Played Billy Beane in the movie Moneyball
- Moneyball video: http:

//bit.ly/y1dQ13

Other Applications of Shrinkage Estimators:

Predicting Future Stock β

Session 14-27

Predicting Winning Margins in Football Games

Week	Day	Date		Winner/tie		Loser/tie	PtsW	PtsL
11	Thu	November 14	boxscore	<u>Indianapolis Colts</u>	@	Tennessee Titans	30	27
11	Sun	November 17	<u>boxscore</u>	Seattle Seahawks		Minnesota Vikings	41	20
11	Sun	November 17	<u>boxscore</u>	Denver Broncos		Kansas City Chiefs	27	17
11	Sun	November 17	<u>boxscore</u>	Tampa Bay Buccaneers		Atlanta Falcons	41	28
11	Sun	November 17	<u>boxscore</u>	Oakland Raiders	@	Houston Texans	28	23
11	Sun	November 17	<u>boxscore</u>	New Orleans Saints		San Francisco 49ers	23	20
11	Sun	November 17	<u>boxscore</u>	New York Giants		Green Bay Packers	27	13
11	Sun	November 17	boxscore	<u>Pittsburgh Steelers</u>		Detroit Lions	37	27
11	Sun	November 17	<u>boxscore</u>	<u>Arizona Cardinals</u>	@	Jacksonville Jaquars	27	14
11	Sun	November 17	<u>boxscore</u>	<u>Miami Dolphins</u>		San Diego Chargers	20	16
11	Sun	November 17	<u>boxscore</u>	Chicago Bears		Baltimore Ravens	23	20
11	Sun	November 17	<u>boxscore</u>	<u>Cincinnati Bengals</u>		Cleveland Browns	41	20
11	Sun	November 17	boxscore	Buffalo Bills	1	New York Jets	37	14

Goal

- Predict margin of victory in football games
- Objective: minimize RMSE of prediction error

Data

- Winning margin in past games
 - Game 1: Indianapolis beat Tennessee by 3 points
 - Game 2: Seattle beat Minnesota by 21 points
 - Source: Pro-football-reference.com (http://bit.ly/17pgCWz)

						RMSE	10.2
	Home	Away	Home	Away	Margin		Error
	team	team	team	team	$(Home\ -$		$(Pred\ -$
Game	number	number	score	score	Away)	Prediction	actual)
1	1	3	17	7	10	4	-6
2	2	6	10	24	-14	-12	2
3	4	5	12	10	2	3	1
<u>:</u>	:	:	:	:	:	:	:

 $MARGIN = HOME_TEAM_RATING - AWAY_TEAM_RATING + error$

Main idea: assign each team a rating

- Teams with higher ratings score more points
- Predicted margin: difference in the ratings of the two teams
- Use optimization to find ratings that minimize prediction error
- Decision variables: team ratings
- Objective: minimize RMSE prediction error

Team number	Team rating
1	10
2	-4
3	6
4	-5
5	-8
6	8
:	:

Session 14-29

Excel Solver and 2014 Results

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N
1	nfl_predict	tion.xlsm												
2														
3	3 Number of games in training set		256			RMSE	Average							
4		Numbe	er of games	in test set	11			13.3	72%					
5		To	otal numbe	r of games	267								Sum	0.00
6	Training se	et												
7		home	away	home	away				correct				Team	
8	game #	team	team	score	score	margin	predict	error	pred?		Team name		number	Rating
9	1	21	20	36	16	20	1.2	-18.8	1		Dallas Cowboys		1	5.4
10	2	8	22	37	34	3	-1.0	-4.0	0		New England Patriots		2	10.9
11	3	24	18	10	26	-16	17.5	33.5	0		Denv	er Broncos	3	9.6
12	4	19	30	30	27	3	6.1	3.1	1		San Fran	cisco 49ers	4	-1.0
13	5	13	32	19	14	5	4.0	-1.0	1		Arizon	a Cardinals	5	2.0
14	6	25	2	33	20	13	-8.4	-21.4	0		Washington Redskins		6	-8.7
15	7	26	12	6	34	-28	0.8	28.8	0		Chicago Bears		7	-6.7
16	8	3	23	31	24	7	5.1	-1.9	1		Atla	nta Falcons	8	-3.8
17	9	11	27	14	20	-6	-6.7	-0.7	1		Hous	ston Texans	9	1.7
18	10	14	28	34	17	17	14.4	-2.6	1		D	etroit Lions	10	2.1

Prediction results for 2014 (see nfl_prediction_2014.xlsm)

- Decision variables: ratings in N7:N38 (one for each of 32 teams)
- Constraint: N3 (sum of ratings) equal to zero, i.e., an "average" team will have a zero rating
- Objective: minimize RMSE in cell H3
- Result: RMSE of 13.3 (average prediction error of 13.3 points)
- Win-loss predicted correctly in 72% of games

2014 Results Through Week 17 (before playoffs)

Team name	Rating	Team name
New England Patriots	10.9	Cincinnati Bengals
Denver Broncos	9.6	St. Louis Rams
Seattle Seahawks	9.5	San Francisco 49ers
Green Bay Packers	8.3	Minnesota Vikings
Kansas City Chiefs	5.6	New York Giants
Dallas Cowboys	5.4	New Orleans Saints
Buffalo Bills	4.9	Carolina Panthers
Baltimore Ravens	4.6	Atlanta Falcons
Indianapolis Colts	4.4	Cleveland Browns
Philadelphia Eagles	3.9	New York Jets
Miami Dolphins	2.6	Chicago Bears
Pittsburgh Steelers	2.2	Washington Redskins
Detroit Lions	2.1	Oakland Raiders
Arizona Cardinals	2.0	Tampa Bay Buccaneers
San Diego Chargers	1.9	Jacksonville Jaguars
Houston Texans	1.7	Tennessee Titans

(see nfl_prediction_2014.xlsm)

Session 14-31

2014 Playoff Predictions

 RMSE	Average
12.8	82%

Test set								
	home	away	home	away				correct
game #	team	team	score	score	margin	predict	error	pred?
257	Pittsburgh Steelers	Baltimore Ravens	17	30	-13	-2.4	10.6	1
258	Carolina Panthers	Arizona Cardinals	27	16	11	-5.0	-16.0	0
259	Dallas Cowboys	Detroit Lions	24	20	4	3.3	-0.7	1
260	Indianapolis Colts	Cincinnati Bengals	26	10	16	3.7	-12.3	1
261	New England Patriots	Baltimore Ravens	35	31	4	6.3	2.3	1
262	Seattle Seahawks	Carolina Panthers	31	17	14	12.6	-1.4	1
263	Green Bay Packers	Dallas Cowboys	26	21	5	2.9	-2.1	1
264	Denver Broncos	Indianapolis Colts	13	24	-11	5.1	16.1	0
265	Seattle Seahawks	Green Bay Packers	28	22	6	1.2	-4.8	1
266	New England Patriots	Indianapolis Colts	45	7	38	6.5	-31.5	1
267	New England Patriots	Seattle Seahawks	28	24	4	1.4	-2.6	1

 More sophisticated models might consider effect of additional variables, e.g.,

```
MARGIN = CONSTANT
+ HOME_TEAM_RATING - AWAY_TEAM_RATING
+ error
```

accounts for home field advantage.

- More sophisticated models might consider offense & defense separately (offense rating, defense rating)
- General technique can be used in many score-based sports (e.g., basketball, soccer, etc.)

Session 14-33

Wrap-Up

Challenge in practice: separate skill from luck

- What value will a player bring to a team?
- What bonus to give to an employee given her yearly performance?
- What fund to invest in given the past returns?

Want to reward (or invest) based on true performance (skill) not random performance (luck)

Shrinkage

- General principle of regression to the mean
- Almost always happens because of imperfect correlation between performances in different periods
- Key is to understand to what extent is "past performance an indicator of future performance"

Predicting outcomes via optimization

- Come up with simple scoring rules
- Define meaningful constraints and objective

Appendix: Regression Slope, Shrinkage and Correlation

Session 14-35

Regression Background

- Regression equation: Y = a + bX
- \bullet Fact: the regression line passes through $(\bar{X},\bar{Y}),$ i.e., $\bar{Y}=a+b\bar{X}$
- Subtracting and rearranging gives: $Y = \bar{Y} + b(X \bar{X})$

- Fact: the regression slope is $b = \text{Cov}(X, Y) / \text{Var}(X) = \rho(X, Y) \sigma(Y) / \sigma(X)$
- When there is no change in volatility of performance $(\sigma(Y) = \sigma(X))$: $b = \rho(X,Y)$, i.e., the slope of the regression line is the correlation of performance in the before and after periods

Regression Slope, Shrinkage and Correlation

- $\bullet \ \ \text{Regression equation:} \ Y = \bar{Y} + b(X \bar{X})$
- When there is no change in average performance $(\bar{Y} = \bar{X})$, re-arranging gives

$$Y = bX + (1 - b)\bar{X},$$

i.e., the slope of the regression line is the best shrinkage coefficient c^{\ast}

 $\bullet \ \ \text{When} \ \bar{Y} = \bar{X} \ \ \text{and} \ \ \sigma(Y) = \sigma(X) \colon$

$$b = c^* = \rho$$

i.e., the regression slope (b), the optimal shrinkage coefficient (c^*) and the correlation of before/after performance (ρ) are all identical!