Name: _____

Question 1. (20 = 7 + 7 + 6 points). Consider a standard deck of 52 cards.

- (a) How many different five-card hands are possible?
- (b) Of all the possible hands, how many are a full house? (Two cards of one face value, and three of another).
- (c) How many of the hands have only one suit?

Solution. (a) The number of hands is the number of subsets of five cards, which is

(b) The number of ways to have a full house with two kings and three queens is $\binom{4}{2} \cdot \binom{4}{3} = 24$. We can choose one of thirteen face values for the pair and one of the remaining twelve for the triplet. The total number of ways to have a full house is therefore

$$24 \cdot 13 \cdot 12 = 3,744.$$

(c) The number of hands with five hearts is $\binom{13}{5} = 1,287$. There are four different suits, hence the number of hands with five cards all the same suit is 5,148.

Name: _____

Question 2. (20 points). How many solutions are there to the equation

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 29,$$

where each x_i is an integer larger than -1?

Solution. The number of solutions is the same as the number of ways to write

$$y_1 + y_2 + y_3 + y_4 + y_5 + y_6 = 29,$$

where each y_i is a non-negative integer. Using five dividers for the twenty-nine copies of 1, we get

$$\begin{pmatrix} 34 \\ 5 \end{pmatrix} = \frac{34!}{29!5!}$$

$$= \frac{34 \cdot 33 \cdot 32 \cdot 31 \cdot 30}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}$$

$$= 34 \cdot 33 \cdot 8 \cdot 31$$

$$= 278,256$$

different sequences, each corresponding to a different way of writing 29.

Name:

Question 3. (20 = 10 + 10 points). Prove or Disprove that the following are equivalence relations.

- (a) Let $x, y \in \mathbb{R}$. We say $x \sim y$ if $x \leq y$.
- (b) Let $x, y \in \mathbb{R}$. We say $x \sim y$ if $\lfloor x \rfloor = \lfloor y \rfloor$.
- **Solution.** (a) The less than relation is not an equivalence relation because it is not symmetric: $1 \le 2$ but not $2 \le 1$.
- (b) The floor function is an equivalence relation because it is reflexive, symmetric, and transitive. All three properties are easy to check, since $\lfloor x \rfloor$ is an integer and the set of integers under equality is symmetric, transitive, and reflexive.

Name: _____

Question 4. (20 points). Show that if p is a positive prime number then $\binom{p}{r}$ is an integer multiple of p for every integer 0 < r < p.

Solution. Recall that

$$\begin{pmatrix} p \\ r \end{pmatrix} = p \cdot \frac{(p-1) \cdot \ldots \cdot (p-r+1)}{1 \cdot \ldots \cdot r}.$$

We know that $\binom{p}{r}$ is an integer, but none of the integers 1 to r in the denominator divides p. So they divide the product of the other integers in the numerator, that is,

$$\frac{(p-1)\cdot(p-2)\cdot\ldots\cdot(p-r+1)}{1\cdot2\cdot\ldots\cdot r}$$

is an integer. It follows that $\binom{p}{r}$ is an integer multiple of p.

Name:

Question 5. (20 points). Find the greatest common divisor of 55 and 89 as well as the multiplicative inverse of 55 modulo 89.

Solution. We run the extended gcd algorithm for j=144 and k=233.

j	k	q	r	g	\boldsymbol{x}	y
55	89	1	34	1	34	-21
34	55	1	21	1	-21	13
21	34	1	13	1	13	- 8
13	21	1	8	1	- 8	5
8	13	1	5	1	5	- 3
5	8	1	3	1	- 3	2
3	5	1	2	1	2	- 1
2	3	1	1	1	- 1	1
1	2	2	0	1	1	0

We see that gcd(55, 89) = 1. The multiplicative inverse of 55 modulo 89 is $x \mod 89 = 34$.