Lecture Summary: Basis for a Vector Space

Source: Lec32.pdf

Key Points

- Recap: Linear Dependence and Independence:
 - A set of vectors v_1, v_2, \ldots, v_n is **linearly dependent** if there exist scalars a_1, a_2, \ldots, a_n , not all zero, such that:

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0.$$

- A set is **linearly independent** if the only solution to the above equation is $a_1 = a_2 = \cdots = a_n = 0$.
- Span of a Set of Vectors:
 - The span of a set S is the set of all finite linear combinations of vectors in S:

$$\operatorname{span}(S) = \left\{ \sum_{i=1}^{n} a_i v_i \mid a_i \in \mathbb{R}, v_i \in S \right\}.$$

- The span of a set is a subspace of the vector space.
- Example: For $S = \{(1,0)\}$ in \mathbb{R}^2 , the span is the x-axis.
- Spanning Set:
 - A set S is a **spanning set** for a vector space V if span(S) = V.
 - Example: $\{(1,0),(0,1)\}$ is a spanning set for \mathbb{R}^2 .
- Basis:
 - A **basis** for a vector space V is a set of vectors that is:
 - 1. Spanning: $\operatorname{span}(B) = V$.
 - 2. **Linearly Independent:** No vector in B can be expressed as a linear combination of the others.
 - A basis is the optimal middle ground between having enough vectors to span V and avoiding redundancy by ensuring linear independence.
- Examples of a Basis:
 - The **standard basis** for \mathbb{R}^n is:

$$\epsilon = \{e_1, e_2, \dots, e_n\}, \quad e_i = (0, \dots, 0, 1, 0, \dots, 0),$$

where 1 is in the i-th position.

– Any vector $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ can be written as:

$$x_1e_1 + x_2e_2 + \dots + x_ne_n.$$

- Hence, ϵ is both spanning and linearly independent, making it a basis for \mathbb{R}^n .
- Constructing a Basis:
 - Start with an empty set and iteratively add vectors not in the span of the current set.
 - Example in \mathbb{R}^3 :
 - 1. Start with $S_0 = \emptyset$ (span is $\{(0,0,0)\}$).
 - 2. Append (0,2,1) to form S_1 (span is a line).
 - 3. Append (2,2,0) to form S_2 (span is a plane).
 - 4. Append (0,0,5) to form S_3 (span is all of \mathbb{R}^3).

Simplified Explanation

Example 1: Basis for \mathbb{R}^2

- $\{(1,0),(0,1)\}$ is a basis since:
 - 1. Any vector $(x, y) \in \mathbb{R}^2$ can be written as x(1, 0) + y(0, 1).
 - 2. The set is linearly independent since the only solution to:

$$a(1,0) + b(0,1) = (0,0)$$

is
$$a = b = 0$$
.

Example 2: Basis for \mathbb{R}^3

- $\{(1,0,0),(0,1,0),(0,0,1)\}$ is the standard basis.
- Any vector $(x, y, z) \in \mathbb{R}^3$ can be written as:

$$x(1,0,0) + y(0,1,0) + z(0,0,1).$$

Example 3: Constructing a Basis in \mathbb{R}^3 Start with an empty set:

- Add (3,0,0) (span is *x*-axis).
- Add (2,2,1) (span is a plane).
- Add (1,3,3) (span is all of \mathbb{R}^3).

This results in a basis for \mathbb{R}^3 .

Conclusion

In this lecture, we:

- Defined a basis as a linearly independent set that spans a vector space.
- Explored examples and constructed bases for \mathbb{R}^2 and \mathbb{R}^3 .
- Highlighted the importance of the basis in understanding vector spaces and performing computations.

A basis provides a minimal and complete representation of a vector space, making it an essential concept in linear algebra.