Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>11</u>

Виконав студент	<u>IП-13, Дем'янчук Олександр Петрович</u>
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
перевірні	(прізвише, ім'я, по батькові)

Київ 202 <u>1</u>

Лабораторна робота 2 Дослідження алгоритмів розгалуження

Мета — дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 11

Завдання

Задані дійсні числа х, у. Визначити, чи належить точка з координатами (х, у) заштрихованій частині площини:

1. Постановка задачі

Вводимо два числа x, y як абсцису та ординату точки. Визначимо, y яких площинах лежить точка відносно графіків y=x/2 і $(x-2)^2+y^2=4$

2. Математична модель

Побудуємо таблицю імен змінних:

Змінна	Tun	Ім'я	Призначення
Абсциса	Дійсний	X	Вхідні дані
Ордината	Дійсний	у	Вхідні дані
Корінь	Дійсний	$\operatorname{sqrt}(x^*(4-x))$	Проміжні дані
Відповідь	Строковий	ans	Вихідні дані

3 рівняння прямої отримуємо нерівність: у>х/2;

3 рівняння кола отримуємо нерівність $y \le sqrt(x^*(4-x))$

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо дію визначення положення точки відносно графіків функцій

Псевдокод

Крок 1

початок

введення х, у

знаходження точки відносно графіків функцій

виведення ans

кінець

Крок 2

початок

```
введення х, у
```

```
якщо y>x/2 \&\& y<=sqrt(x*(4-x))
```

то ans:="Точка належить заштрихованій частині площини"

інакше ans:="Точка не належить заштрихованій частині площини"

все якщо

виведення ans

кінець

Блок-схема

Тестування

Блок	Дія
	Початок
1	Введення х:=1, у:=1
2	1>1/2 && 1<=sqrt(1*(4-1))
3	ans:="Точка належить заштрихованій частині площини
	Кінець

Блок	Дія
	Початок
1	Введення х:=2, у:=3
2	3>2/2 && 3<=sqrt(2*(4-2))
3	ans:=Точка не належить заштрихованій частині площини
	Кінець

Висновок

На лабораторній роботі дослідив подання керувальної дії чергування у вигляді умовної та альтернативної форм та набув практичних навичок їх використання під час складання програмних специфікацій.