EQUATION SHEET

First-Order RL or RC Circuit Step Response

$$v_{C}(t) \text{ or } i_{L}(t) = (IV - FV)e^{-t/\tau} + FV, t \ge 0$$

Second-Order Differential Equation

Nonhomogeneous	Homogeneous
$\frac{d^2y_p(x)}{dx^2} + 2\zeta\omega_o \frac{dy_p(x)}{dx} + \omega_o^2y_p(x) = g(x)$	$\frac{d^2y_n(x)}{dx^2} + 2\zeta\omega_o \frac{dy_n(x)}{dx} + \omega_o^2y_n(x) = 0$

General Forms of Particular Responses

deneral Porms of Particular Responses		
g(x)	Form of y _P (x)	
1 (any constant)	A	
5x+7	Ax+B	
3x ² -2	Ax²+Bx+C	
x ³ -x+1	Ax ³ +Bx ² +Cx+D Acos(4x)+Bsin(4x)	
sin(4x)		
cos(4x)	Acos(4x)+Bsin(4x)	
e ^{5x}	Ae ^{5x}	

Series RLC ODE

$$\frac{d^2v_{CN}(t)}{dt^2} + \frac{R_T}{L}\frac{dv_{CN}(t)}{dt} + \frac{1}{LC}v_{CN}(t) = \frac{v_T(t)}{LC}$$

$$\zeta = \frac{R_T}{2}\sqrt{\frac{C}{L}} \qquad \omega_o = \frac{1}{\sqrt{LC}}$$

Parallel RLC ODE

$$\frac{d^2 i_{LN}(t)}{dt^2} + \frac{1}{R_T C} \frac{d i_{LN}(t)}{dt} + \frac{1}{LC} i_{LN}(t) = \frac{i_N(t)}{LC}$$

$$\zeta = \frac{1}{2R_T} \sqrt{\frac{L}{C}} \quad \omega_o = \frac{1}{\sqrt{LC}}$$

General Roots of Characteristic Equation and Natural Response

$$s_{1,2} = \omega_0(-\zeta \pm \sqrt{\zeta^2 - 1})$$
 $y_N(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}, t \ge 0$

Case A

$$s_{1,2} = -\alpha_1, -\alpha_2$$
 $y_N(t) = K_1 e^{-\alpha_1 t} + K_2 e^{-\alpha_2 t}, t \ge 0$

Case B

$$s_{1,2} = -\alpha$$

$$y_N(t) = K_1 e^{-\alpha t} + K_2 t e^{-\alpha t}, t \ge 0$$

Case C

$$s_{1,2} = -\alpha \pm j\beta \qquad \qquad y_N(t) = K_1 e^{-\alpha t} \cos(\beta t) + K_2 e^{-\alpha t} \sin(\beta t), t \ge 0$$

$$\alpha = \zeta \omega_0 \text{ and } \beta = \omega_d = \omega_0 \sqrt{1 - \zeta^2}$$

Some ways to represent the characteristic equation of second-order circuits

$s^{2} + 2\zeta \omega_{0} s + \omega_{0}^{2} = 0$	$(s + \alpha)^2 + \beta^2 = 0$	$(s - p_1)(s - p_2) = 0$

How to determine parameters from a response plot

$$\omega_d = \beta = 2\pi \frac{1}{T} \qquad \delta = \ln \left(\frac{y_1 - y_\infty}{y_2 - y_\infty} \right) \qquad \zeta = \frac{1}{\sqrt{1 + \frac{4\pi^2}{\delta^2}}}$$

Initial and Final Value Theorems

ling f(t) ling = F(-)	1: ((1) 1: [(-)
$\lim f(t) = \lim sF(s)$	$\lim f(t) = \lim sF(s)$
$t \rightarrow 0$ $s \rightarrow \infty$	t→∞ s→0

T A B L E 9-2 BASIC LAPLACE TRANSFORM PAIRS

Signal	Waveform $f(t)$	Transform F(s)	
Impulse	$\delta(t)$	1	
Step function	u(t)	$\frac{1}{s}$	
Ramp	tu(t)	$\frac{1}{s^2}$	
Exponential	$[e^{-\alpha t}]u(t)$	$\frac{1}{s+\alpha}$	
Damped ramp	$[te^{-\alpha t}]u(t)$	$\frac{1}{(s+\alpha)^2}$	
Sine	$[\sin \beta t]u(t)$	$\frac{\beta}{s^2 + \beta^2}$	
Cosine	$[\cos \beta t]u(t)$	$\frac{s}{s^2 + \beta^2}$	
Damped sine	$[e^{-\alpha t}\sin\beta t]u(t)$	$\frac{\beta}{\left(s+\alpha\right)^2+\beta^2}$	
Damped cosine	$[e^{-\alpha t}\cos\beta t]u(t)$	$\frac{\beta}{(s+\alpha)^2 + \beta^2}$ $\frac{(s+\alpha)}{(s+\alpha)^2 + \beta^2}$	

T A B L E 9-1 BASIC LAPLACE TRANSFORMATION PROPERTIES

Properties	TIME DOMAIN	Frequency Domain
Independent variable	t	S
Signal representation	f(t)	F(s)
Uniqueness	$\mathcal{L}^{-1}\{F(s)\}(=)[f(t)]u(t)$	$\mathcal{L}\{f(t)\} = F(s)$
Linearity	$Af_1(t) + Bf_2(t)$	$AF_1(s) + BF_2(s)$
Integration	$\int_0^t \! f(au) d au$	$\frac{F(s)}{s}$
Differentiation	$\frac{df(t)}{dt}$	sF(s) - f(0-)
	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0-) - f'(0-)$
	$\frac{d^3f(t)}{dt^3}$	$s^3F(s) - s^2f(0-) - sf'(0-) - f''(0-)$
s-Domain translation	$e^{-\alpha t}f(t)$	F(s+lpha)
t-Domain translation	f(t-a)u(t-a)	$e^{-as}F(s)$

Form of F(s)	Technique	Residues
real distinct roots	PFE	$k_i = (s - p_i)F(s) _{s = p_i}$
complex roots	determine residue k using PFE	$f(t) = 2 k e^{-\alpha t}\cos(\omega t + \angle k)$
real repeated roots	factor repeated root then PFE	$k_i = (s - p_i)F(s) _{s = p_i}$
improper function	long division then PFE	$k_i = (s - p_i)F(s) _{s = p_i}$

Device/Model	Resistance - R	Inductance - L	Capacitance - C
Units	ohms, Ω	Henrys, H	Farads, F
Circuit Symbol	i_R V_R $-$	+ V _L − ↑ i _L	+ V _C - C
Voltage Equation	$v_R = i_R R$	$v_L = L di_L/dt$	$v_C = v_C(0^+) + (1/C) \int_{0}^{\infty} i_C dt$
Current Equation	$i_R = v_R G = v_R / R$	$i_L = i_L(0^+) + (1/L) \int v_L dt$	$i_C = C dv_C/dt$
Power Equation	$p_R = i_R \times v_R$	$p_L = i_L \times v_L$	$p_C = i_C \times v_C$
Energy Equation	$w_R = \int p_R dt$	$w_L = \frac{1}{2} L i_L^2$	$w_C = \frac{1}{2} C v_C^2$
Energy Storage	None	Magnetic Field	Electric Field
Continuity Equation	N/A	$i_L(\tau^-) = i_L(\tau^+)$	$v_C(\tau^-) = v_C(\tau^+)$
Typical Range	$1~\mathrm{k}\Omega$ – $10~\mathrm{M}\Omega$	1 μH – 10 H	10 pF – 100 μF
Series	$R_{EQ} = R_1 + R_2 +$	L _{EQ} =L ₁ +L ₂ +	$C_{EQ} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \cdots}$
Parallel	$R_{EQ} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots}$	$L_{EQ} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \cdots}$	$C_{EQ} = C_1 + C_2 +$
Impedance	Z=R	Z=1/(jωC)	Z=jωL
Impedance @ ω=0 (dc)	R	behaves like a short	behaves like an open
Impedance @ ω=∞ (very high freq)	R	behaves like an open	behaves like a short