MTH 224, Spring 2024

Instructor: Bahman Angoshtari

Lecture 1

Section 1.1: sample space and events, set operations

1.1. Sample space and events

- An **experiment** is a process which results in an outcome that cannot be predicted in advance with certainty. The set of all possible outcomes of an experiment is called the **sample space**.
- Examples:
 - rolling a six-sided die: the sample space is $S = \{1, 2, 3, 4, 5, 6\}$.
 - tossing a coin: the sample space is $S = \{H, T\}$.
 - the result of this year's Super Bowl: What is the sample space?
 - weighing the contents of a box of cereal: The sample space is $S=(0,+\infty)$. More reasonably, S=(12,20) for a 16oz box.
 - the temperature tomorrow at noon in this classroom in degree Fahrenheit: The sample space is $S = (-459.67, +\infty)$.
- Any subset E of the sample space S is called an **event**. We say that **an event has occurred** if the outcome of the experiment is one of the outcomes in that event.
- Examples:
 - When rolling a six-sided die, getting an odd outcome is the event $A = \{1, 3, 5\}$.
 - Another event is getting an even outcome $B = \{1, 3, 5\}$.
 - Yet another event is getting 1, $C = \{1\}$.
 - Usually, we don't distinguish between one element events such as $\{1\}$ and the outcome 1.

1.2. Operations on events

- Events can be combined in various ways to yield new events. Such combination can easily be expressed using the basic set operations union, intersection, taking complement, and set difference.
- Let A and B be two sets. Recall from the set theory that:

Union:
$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$

Complement: $A^c = \{x : x \notin A\}$

Set difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B\} = A \cap B^c$

• Let E, F be events in a sample space S. Then:

$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Probabilistic Meaning	Example $S = \{1, \dots, 6\}$	Venn diagram
E is a subset of F $E \subset F$	If E occurs, then F occurs	$E = \{1\}$ $F = \{\text{an odd number}\}$	S F
E equals F $E = F$	E, F both occur, or both don't occur	$E = \{1, 3, 5\}$ $F = \{\text{an odd number}\}$	
intersection of E and F $E\cap F$	all outcomes that are both in E and in F , $E \cap F$ occurs if both E and F occur at the same time	$E = \{1, 4, 6\}$ $F = \{\text{an odd number}\}$ $E \cap F = \{1\}$	S F
$\begin{array}{c} \text{union of } E \text{ and } F \\ E \cup F \end{array}$	outcomes that either in E or in F (or both), $E \cup F$ occurs if E , or F , or both occur.	$E = \{1, 4, 6\}$ $F = \{\text{an odd number}\}$ $E \cup F = \{1, 3, 4, 5, 6\}$	S F
$E ext{ complement} \ E^c$	all outcomes not in E , E^c occurs if E doesn't	$E = \{\text{an even number}\}$ $F = \{\text{an odd number}\}$ $E = F^c, E^c = F$	S E
$E \text{ minus } F$ $E \backslash F = E \cap F^c$	all outcomes in E and not F . $E \backslash F$ occurs if E occurs and F doesn't	$E = \{1, 3, 4, 6\}$ $F = \{\text{an even number}\}$ $E \backslash F = \{1, 3\}$	S F

• Basic set rules:

- (1) Associative laws: $(E \cap F) \cap G = E \cap (F \cap G)$ and $(E \cup F) \cup G = E \cup (F \cup G)$ In particular, this means that $E \cap F \cap G$ (respectively $E \cup F \cup G$) is well defined since the order in which we take the intersection operations does not matter.
- (2) Distributive laws: $(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$ and $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$

(3) De Morgan's Laws: $(E \cap F)^c = E^c \cup F^c$ and $(E \cup F)^c = E^c \cap F^c$

• Showing the first De Morgan's Law by Venn diagram:

- To save space, we use the following notations for operations on multiple (possibly infinitely many) events:
 - Intersection: $\bigcap_{i=1}^n E_i = E_1 \cap E_2 \cap \cdots \cap E_n$. Meaning: $\bigcap_{i=1}^n E_i$ occurs if and only if all the events E_i occur.

- Union: $\bigcup_{i=1}^n E_i = E_1 \cup E_2 \cup \cdots \cup E_n$. Meaning: $\bigcup_{i=1}^n E_i$ occurs if and only if at least one of the events E_i occurs.

• We have the following generalizations of the De Morgan's laws:

$$-\left(\bigcap_{i=1}^{n} E_{i}\right)^{c} = \bigcup_{i=1}^{n} E_{i}^{c}$$
$$-\left(\bigcup_{i=1}^{n} E_{i}\right)^{c} = \bigcap_{i=1}^{n} E_{i}^{c}$$

- The events A and B are said to be **mutually exclusive** or **disjoint** if they have no outcomes in common. That is, if $A \cap B = \emptyset$.
 - Example: In rolling a 6-sided die, the event of getting an even outcome and the event of getting an odd outcome are disjoint.
- More generally, a collection of events A_1, A_2, \ldots, A_k are mutually exclusive (or disjoint) if no two of them have any outcomes in common, that is, if $A_i \cap A_j = \emptyset$ for all $i, j \in \{1, \ldots, k\}$ such that $i \neq j$.

3