STAT3032S19 HW6

Mingming Xu 5/01/2019

Problem1 (a)

```
soi=read.table("SOIvalues.txt")
soits = ts(soi, frequency=12, start=c(1876,1), end = c(2019,3))
mean(soits)
```

[1] 0.0779523

var(soits)

y 109.5344

The estimated mean of this time series is 0.0779523 and the variance of this time series is 109.5344.

(b)

ts.plot(soits)

(c) This time series looks weakly stationary. Because this time series plot does not have obvious trend (up or down over time), seasonality or cycles. This time series fluctuates around 0 and the range of fluctuation is limited in this plot.

(d)

lag.plot(soits,lags = 1)

acf(soits)

у

acf(soits,plot = FALSE)

##
Autocorrelations of series 'soits', by lag
##

```
## 0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500
## 1.000 0.628 0.531 0.455 0.394 0.354 0.312 0.250 0.199 0.164
## 0.8333 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833
## 0.103 0.054 0.022 -0.028 -0.092 -0.112 -0.102 -0.101 -0.119 -0.135
## 1.6667 1.7500 1.8333 1.9167 2.0000 2.0833 2.1667 2.2500 2.3333 2.4167
## -0.121 -0.117 -0.110 -0.101 -0.130 -0.086 -0.078 -0.038 -0.019 -0.029
## 2.5000 2.5833 2.6667
## -0.040 -0.040 -0.042
The estimated autocorrelation at lag 1 is 0.628.
 (f)
#estimate of delta
#rho_1=phi_1=0.628
mean(soits)*(1-0.628)
## [1] 0.02899825
My estimate for \delta is 0.02899825.
 (g)
#estimate of sigma^2
#variance*(1-phi_1^2)
var(soits)*(1-0.628^2)
##
## y 66.33577
My estimate for \sigma^2 is 66.33577.
 (h)
arima(soits, order = c(1,0,0))
##
## Call:
## arima(x = soits, order = c(1, 0, 0))
## Coefficients:
##
             ar1
                  intercept
##
         0.6282
                     0.0762
## s.e. 0.0187
                     0.5275
##
## sigma^2 estimated as 66.26: log likelihood = -6043.86, aic = 12093.71
Based on the output, the estimated \mu is 0.0762, the estimated \phi_1 is 0.6282 and the estimated variance \sigma^2 is
66.26. So, my results is almost close to the what I answered for parts(f) and (g).
  (i) The fitted mode is \hat{y}_t = 0.0762 + 0.6282 * (y_{t-1} - 0.0762)
len=length(soits)
y_tmi1=soits[len]
0.0762+0.6282*(y_tmi1-0.0762)
## [1] -4.243429
The predicted value of the SOL level in April 2019 is -4.243429.
Problem 2
```

(a)

To prove Cov(a + V, b + W) = Cov(V, W): Cov(a + V, b + W) = E[(a + V)(b + W)] - E(a + V)E(b + W) = E[ab + aW + bV + VW] - (a + E(V))(b + E(W)) = ab + aE(W) + bE(v) + E(VW) - ab - aE(W) - bE(v) - E(V)E(W) = E(VW) - E(V)E(W) = Cov(V, W)

(b)

If
$$y_t = \sigma + \phi_1 y_{t-1} + w_t$$
 where $\phi \neq 0$, $\rho_h = Corr(y_t - \sigma, y_{t_h} - \sigma) = Cov(y_t - \sigma, y_{t-h} - \sigma)/(\sqrt{Var(y_t - \sigma)}\sqrt{Var(y_{t-h} - \sigma)})$

As in part(a), we let $y_t - \sigma$ as a + V, where $-\sigma$ as a and y_t as V, let $y_{t-h} - \sigma$ as b + W, whre $-\sigma$ as b and y_t as W. Then, $Cov(y_t - \sigma, y_{t-h} - \sigma) = Cov(-\sigma + y_t, -\sigma + y_{t_h}) = Cov(a + V, b + W) = Cov(V, W) = Cov(y_t, y_{t-h})$.

Also,
$$\sqrt{Var(y_t - \sigma)}\sqrt{Var(y_{t-h} - \sigma)} = \sqrt{Var(y_t)}\sqrt{Var(y_{t-h})}$$

$$\begin{aligned} & \text{Hence}, \rho_h = Corr(y_t - \sigma, y_{t-h} - \sigma) = Cov(y_t, y_{t-h} / (\sqrt{Var(y_t)} \sqrt{Var(y_{t-h})}) = Corr(y_t - \sigma, y_{t-h} - \sigma) \\ & \text{(c)No.} Corr(aV, bW) = E(aV * bW) - E(aV)E(bW) = abE(VW) - abE(V)E(W) = ab(E(VW) - E(V)E(W)) \\ & = abCov(V, W) \end{aligned}$$

(d)

$$\gamma_h = \phi_1 \gamma_{h-1} = \phi_1 \phi_1 \gamma_{h-2} = \phi_1 \phi_1 \phi_1 \gamma_{h-3} = \dots = \phi_1 * \dots * \gamma_0 = \phi_1^n * \gamma_0$$

(e)

 $\lim h \to \infty \rho_h = 0$ So, when h is so large, there is a so weak correlationship between y_t and y_{t-h} , which means that past information becomes negligible in Layman terms

Problem 3

(a)

```
gnp=scan(file = "gnp.csv",skip=1)
gnptimeseries =ts(gnp)
ts.plot(gnptimeseries)
```


Based on the plot, there is an increasing tendency implying this time series doesn't have stationarity.

(b)

gnpfd=diff(gnptimeseries,lag=1) ts.plot(gnpfd)

cause this time series fluctuates around 0 and the range of fluctuation is limited in this plot, there is the weak stationarity of the first difference of the quarterly GNP.

Be-

(c)
par(mfrow=c(1,2))
acf(gnpfd)
pacf(gnpfd)

Series gnpfd

Series gnpfd


```
par(mfrow=c(1,1))
```

Based on the ACF and PACF pots, we need to compare the AR(2) and MA(3)

```
arima(gnpfd,order=c(0,0,3))
```

```
##
## Call:
## arima(x = gnpfd, order = c(0, 0, 3))
##
## Coefficients:
##
                                 intercept
            ma1
                    ma2
         0.2978
                 0.2661
                         0.1370
                                   35.9984
##
                         0.0619
                                    4.3644
## s.e. 0.0660
                 0.0633
##
## sigma^2 estimated as 1471: log likelihood = -1124.72, aic = 2259.45
arima(gnpfd,order=c(2,0,0))
```

```
##
## Call:
## arima(x = gnpfd, order = c(2, 0, 0))
##
## Coefficients:
##
                         intercept
            ar1
                    ar2
         0.3136
                           36.0519
##
                 0.1931
## s.e. 0.0662 0.0663
                            5.1613
## sigma^2 estimated as 1457: log likelihood = -1123.67, aic = 2255.34
```

```
AR2mod=arima(gnpfd,order=c(2,0,0))
```

Because AR(2) model has a smaller AIC,AR(2) is the appropriate time series model for the first diffrence of the quarterly GNP data. And the fitted modle is \$

plot(AR2mod\$residuals)

The residuals look like white noise

(d)

```
n=length(gnptimeseries)
muhat=AR2mod$coef[3]
phihat1=AR2mod$coef[1]
phihat2=AR2mod$coef[2]
y_tminus1= gnptimeseries[n]
y_tminus2= gnptimeseries[n-1]
y_tminus3= gnptimeseries[n-2]
muhat+phihat1*(y_tminus1-y_tminus2-muhat)+phihat2*(y_tminus2-y_tminus3-muhat)+y_tminus1
```

```
## intercept
## 9529.198
```

The predict value of the GNP of the 4th quarter of 2002 is 9529.198.

Problem 4

- (a) C. y_t has a MA(2) model.
- (b) Mean: $E(y_t) = \mu$, and $\mu = 0$. Variance : $Var(y_t) = \sigma_w^2(1 + \phi_1^2 + \phi_2^2) = 0.01(1 + 0.025 + 0.04) = 0.01065$ (c) $\rho_5 = Corr(y_t, y_{t_5}) = 0$.It is MA(2) model. Hence, for a lag 5 of $\{y_t\}$, autocorrelation term is 0 because of 5>=2+1.

(d)

```
set.seed(3032)
#MA(2) model
y=arima.sim(n=1000, list(ma=c(-0.5, -0.2)), sd=sqrt(0.01))
acf(y)
```

Series y


```
acf(y,plot = F)
```

```
##
## Autocorrelations of series 'y', by lag
##
##
                      2
                             3
                                    4
                                            5
                                                   6
                                                          7
               1
    1.000 -0.331 -0.141 -0.017 0.015
                                       0.069 -0.076 -0.018
##
                                                             0.069 -0.009
                     12
                                                  16
##
              11
                            13
                                    14
                                           15
                                                         17
                                                                18
## -0.083 0.018
                 0.021 0.059 -0.016 -0.066
                                               0.000 0.012
                                                             0.031
##
       20
                     22
                            23
                                    24
                                           25
                                                  26
                                                         27
                                                                28
                                                                        29
## -0.012 0.006 -0.015 -0.001 0.012 -0.011 0.011 -0.017 -0.018 0.005
##
       30
   0.030
pacf(y,plot = F)
```

```
##
## Partial autocorrelations of series 'y', by lag
##
##
               2
                      3
                              4
                                     5
                                            6
                                                    7
                                                           8
        1
## -0.331 -0.281 -0.207 -0.145 -0.023 -0.090 -0.085
                                                      0.004 -0.002 -0.094
##
              12
                     13
                             14
                                    15
                                                          18
                                                                         20
       11
                                           16
                                                   17
## -0.062 -0.050
                  0.026
                          0.033 -0.028 -0.051 -0.053 -0.009
                                                              0.015
                                    25
                                                   27
                                                                 29
##
       21
              22
                     23
                             24
                                           26
                                                          28
                                                                         30
## 0.012 -0.009 0.000 0.012 -0.014 -0.007 -0.023 -0.032 -0.027 0.008
```

```
mean(y)
## [1] -0.0007444642
var(y)
```

[1] 0.01314148

(e)

Based on the generated data in Part (d), the estimated mean is -0.0007444642, estimated variance is 0.01314148, and estimated autocorrelation at lag 5 of $\{yt\}$ is 0.069. These estimated values are close to the theoretical values in Part (b) and (c).

(f)

```
arima(y, order = c(0,0,2))
```

```
##
## Call:
## arima(x = y, order = c(0, 0, 2))
##
## Coefficients:
##
             ma1
                      ma2
                           intercept
##
         -0.5390
                  -0.1862
                               -5e-04
          0.0311
                   0.0320
                                9e-04
## s.e.
## sigma^2 estimated as 0.009921: log likelihood = 887.29, aic = -1766.58
```

The fitted model is $\hat{y_t} = -5e - 04 + w_t - 0.5390w_{t-1} - 0.1862 * w_{t-2}$, and $hat\sigma_w^2 = 0.009921$. So, the estimated coefficient values are close to the theoretical values in the population model.