S2000 Single-Chip Microcomputer Family

AMI's S2000 family of single-chip microcomputers offers a wide range of capability to the user seeking flexible, adaptable system(s) at low cost. The S2000 family provides the ideal solution to appliance and industrial/ process-control applications. With versatile keyboardoriented inputs, and outputs which can drive either LED or fluorescent displays directly, the S2000 family is designed specifically to minimize system parts count and cost.

Table I. S2000 Family Features

	\$2000	S2150	\$2200	\$2400
ROM (x8)	1K	1.5K	2K	4K
RAM (x4)	64	80	128	128
Interrupts	_	_	3	3
A/D CONV (8 Channel)	_	_ '	8-Bit	8-Bit
Counter/Timer	÷50/÷60	÷50/÷60	8-Bit	8-Bit
Max Subroutine Levels	3	3	5	5
Instructions	51	51	59	59
Cycle Time (µs)	4.5	4.5	4.5	4.5
High Voltage (Fluorescent Display Drive Version)	S2000A	S2150A	S2200A	S2400 <i>F</i>

The S2000 family provides the advantages of compa architecture to low cost, minimum-parts-count display keyboard oriented control systems.

CONNICTED Features

4V - S2150

S20	000/2150 Features
	1024 x 8 Program ROM On-Chip; Externally Expandable to 8192 x 8 — S2000
	1536 x 8 Program ROM On-Chip; Externally Expandable to 8192 x 8 — S2150
	64 x 4 Scratchpad RAM On Chip - S2000
	80 x 4 Scratchpad RAM On-Chip — S2150
	13 Outputs and Inputs, Plus 8 Bi-Directional Three-State Lines
	Touch Control [™] Capacitive Touchplate Interface
	Seconds Timer for Both 60Hz and 50Hz Lines
	7-Segment Decoder and LED Display Drivers On Chip
	Single 9.0 Volt Supply
	Fast $4.5\mu s$ Execution Cycle
	Three-Level Subroutine Stack
	TTL-Compatible Outputs
	Reset, Test, and Single Step Modes
	Access to All Internal Registers and Memory for Debug and Test
	Crystal Input for Accurate Clocking - S2150

□ Low Power RAM Retention, 20µA/Bit Typ @

S2000A/2150A Vacuum Fluorescent Display

The S2000A/2150A are identical to the S2000/2150 but provide high voltage fluorescent display capability. The output buffer drive (VDD) is changed to a vacuum fluorescent drive (VFD) and typically tied to 32 volts. The D_0 through D_7 and A_0 through A_4 are changed from LED drivers (nominal 5 volts) to vacuum fluorescent drivers (nominal 26 volts).

S2200/2400 Features

The S2200/2400 provide a quantum jump in chip features beyond the S2000. In addition to all the features the S2000 offers, the S2200 gives the added flexibility of interrupts and the sophistication of an onchip A/D or D/A converter capable of multiplexing 8 channels of analog data making it suitable for a wide range of applications.

□ 2048 x 8 Program ROM On Chip Expandable

	to 8192 x 8 — S2200
	4096 x 8 Program ROM On-Chip; Externally Expandable to 8192 x 8 — S2400
	128 x 4 Scratchpad RAM On Chip
	RAM Save Power Down Mode (Mask Option)
di <u>ni</u>	I WA TO ACT
	System with Provision for Software Interrupt
	Programmable 8-Bit Timer/Event Counter On Chip
	13 Outputs, 9 Inputs, Plus 8 Bi-Directional Three-State Lines
	Touch Control™ Capacitive Switch Interface
	7-Segment Display Decoders and LED Drivers
	TTL-Compatible Outputs
	Single + 9V Power Supply
	4.5μs Cycle Time
	59 Instructions - 52 Single Byte and Single Cycle
	3-Level Subroutine Stack
	'2-Level Interrupt Stack
	Built-In Production Test Mode
	Single-Step Capability
	Power-Fail Detect, RAM Keep-Alive and Power-On Reset Circuitry
	8-Bit A/D Converter (Up to 8 Channels)
	D/A Converter Capability (Mask Option)
	Up to 256 General Purpose Flags
	6 Special Flags
	Table Look-Up Capability

☐ S2200A/2400A Vacuum Fluorescent Dis

Capability

S2000 Family

	S2000	S2000A	S2150	S2150A	S2200	S2200A	S2400	S2400A
Product Characteristics						_		
ROM (Bytes)	1K	1K	1.5K	1.5K	2K	2K	4K	4K
RAM (Nibbles)	64	64	80	80	128	128	128	128
A/D Converter (8-Bit)	_	_	_	_	YES	YES	YES	YES
Timer	50/60Hz	50/60Hz	50/60Hz	50/60Hz	PROG 8BIT	PROG 8BIT	PROG 8BIT	PROG 8BIT
Interrupts		_	_		3	3	3	3
Power Fail Detect	_	_	_	_	YES	YES	YES	YES
High Voltage Outputs	_	YES	_	YES	_	YES	_	YES
Crystal Clock Option	_	_	YES	YES	YES	YES	YES	YES
TouchControl Inputs	YES	YES	YES	YES	YES	YES	YES	YES
Levels of Subroutine	3	3	3	3	5	5	5	5
# of Flags	2	2	2	2	262	262	262	262
Power-Down RAM Option		_	YES	YES	YES	YES	YES	YES
D/A Converter Option	_	_		_	YES	YES	YES	YES
Zero — Crossing Detect	YES	YES	YES	YES	YES	YES	YES	YES
Cycle Time (µsec)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Instructions — Total	51	51	51	51	59	59	59	59
Single Cycle & Byte	49	49	49	49	52	52	52	52
Development Support								
Microcomputer Development Center	YES	YES	YES	YES	YES	YES	YES	YES
Logic Analyzer Hardware Emulator	YES #2150	YES #2150A	YES #2150	YES #2150A	YES #2400	YES #2400A	YES #2400	YES - #2400A

S2000 Family Support

The S2000 single-chip microcomputer family, unlike many microprocessors, does not leave the designer or industrial OEM unsupported. The S2000 Family features a proven array of development aids:

Microcomputer Development Center (MDC) — AMI's MDC is a fully equipped, dual-floppy disk-based microcomputer development facility, complete with FDOS-II Floppy-Disk-Operating and File Management System. Controlled from its CRT terminal, MDC provides instant access to program and data files resident on removable diskettes.

Development Software — The MDC's software includes self-diagnostics and a comprehensive Text Editor and PROM programmer package that support S2000 software development. In addition, S2000 software includes a MACRO Assembler, Loader, and Instruction Simulator.

Cross-Assemblers editor and simulator debug — Available on a major timesharing service.

Logic Analylzer — The MDC-140 Logic Analyzer is an advanced debug tool connected as a peripheral device of the AMI Microcomputer Development Center (MDC). Features include:

- -Captures 1024 Events of 40 Parallel Inputs
- -Captures Data Under Control of Programmable Start on Data Content
- -Delay of -1024 to +64K Clock Periods
- Setup and Display of Captured Data Under Control of MDC Software
- Display Format is User-Definable; Captured Data Can Be Displayed in a Mix of Hex, Octal, Binary, ASCII and Special Formats for Support of S6800, S6820, S2000, 8080, etc.
- -Four Clock Sources
- -Input Voltage Range = -15 to +15 volts
- -Adjustable Input Thresholds
- -Data-Dependent Output for Triggering an Oscilloscope

SES-2150(A)/SES-2400(A) — The SES-2150/2400 Emulator boards are pin-for-pin substitutes for S2000 microcomputer family chips. The Emulator Boards use conventional UV erasable PROMs for program storage.

In addition, a specialized module is used to provide emulation of the S2150A/S2400A high voltage vacuum fluorescent display drivers.

Customer Assistance — AMI's S2000 Family Applications Engineering Staff is readily available for consultation regarding any aspects of S2000 Family usage. The AMI staff is also available to discuss any special modifications to the S2000 for high volume applications.

S2000 Family Instruction Set Summary

The S2000 and S2150 contain 51 instructions, all single byte, with 49 that are single cycle. The S2200 and S2400 contain 59 instructions, of which 52 are single cycle and single byte.

Nearly all S2000/2150 instructions are common to the entire family, which allows the programmer to develop software expertise and easily move up the S2000 product line.

Register Instructions

S2000/2150	S2200/2400	
LAI X	LAI X	$X \rightarrow ACC$, $0 \le X \le 15$; (In S2000/2150 Select I and K Inputs also)
LAB	LAB	$BL \rightarrow ACC$
LAE	LAE	$E \rightarrow ACC$
XAB	XAB	BL ACC
XABU	XABU	BU-ACC, (IN S2150, BITS 2, 1, AND 0; IN OTHERS, BITS 1 AND 0 ONLY)
XAE	XAE	ACC↔E
LBE Y	LBE Y	$Y \rightarrow BU, E \rightarrow BL, 0 \le Y \le 3$
LBZ Y	LBZ Y	$Y \rightarrow BU$, $0 \rightarrow BL$, $0 \le Y \le 3$
LBF Y		$Y \rightarrow BU$, $15 \rightarrow BL$, $0 \le Y \le 3$
LBEP Y		$Y \rightarrow BU, E + 1 \rightarrow BL, 0 \le Y \le 3$
	SRB	1→BA
	RRB	0→BA
	LMDI X +	$X(6) \rightarrow BA, X(5-4) \rightarrow BU, X(3-0) \rightarrow BL$
	RAR	$ACC(I) \rightarrow ACC(I-1)$, $ACC(0) \rightarrow CARRY$, $CARRY \rightarrow ACC(3)$
	XAK	KSRACC
	LANG	$ACC \rightarrow AR (3-0), RAM \rightarrow AR(7-4)$
	LNMA	$ACC \rightarrow NR(3-0)$, RAM $\rightarrow NR$ (7 – 4), THEN $NR \rightarrow BIN$
	MOD	ACC-MOD(3-0), RAM-MOD(7-4)
	RBIN	BIN(3 - 0) - ACC: BIN'? - 4) - RAM

RAM Instructions

S2000/2150	S2200/2400	
LAM Y*	LAM Y*	$RAM \rightarrow ACC$, $BU \oplus Y \rightarrow BU$
XC Y*	XC Y*	$RAM \rightarrow ACC$, $BU \oplus Y \rightarrow BU$
XCI Y*	XCI Y*	ACC \rightarrow RAM, BL + 1 \rightarrow BL, BU \oplus Y \rightarrow BU SKIP IF BL = 0 (AFTER INCREMENT)
XCD Y*	XCD Y*	ACC \rightarrow RAM, BL $-1\rightarrow$ BL, BU \oplus Y \rightarrow BU SKIP IF BL $=0$ (BEFORE DECREMENT)
STM Z	STM Z	$1 \rightarrow RAM BIT Z, 0 \le Z \le 3$
RSM Z	RSM Z	$0 \rightarrow RAM BIT Z, 0 \le Z \le 3$
	LMA	ACC→RAM
	STMI Z +	$1\rightarrow$ RAM BIT Z, $0\leq$ Z \leq 255, (RAM BANK 1)
	RSMI Z +	$0\rightarrow RAM BIT Z$, $0\leq Z\leq 255$, (RAM BANK 1)

Input/Output Instructions

S2000/2150	S2200/2400	
INP	IND	$D3-D0 \rightarrow ACC, D7-D4 \rightarrow RAM$
OUT	OUT	ACC→D3-D0, RAM→D7-D4 (NOT LATCHED)
DISN	DISN	ACC→SEGMENT DECODER→DISPLAY LATCH→D6-D0,
		CARRY-DISPLAY LATCH-D7
DISB	DISB	ACC→DISPLAY LATCH→D3-D0, RAM→DISPLAY LATCH→D7-D4
MVS	MVS	A-LINE MASTER STROBE LATCH→A LINES
PSH	PSH	PRESET HIGH [BL]—MASTER STROBE LATCH
PSL	PSL	PRESET LOW [BL]-MASTER STROBE LATCH
EUR		(EUROPEAN) SET 50/60Hz AND DISPLAY LATCH POLARITY
DOI.	INK	K3-K0-ACC, K7-K4-RAM

⁺⁸ bits in the second byte of an instruction.

^{*}Assembled code contains complement of those arguments (the assembler does it automatically).

S2000/S2150 and S2200/S2400 Instruction Set Summary

Program Control Instructions

S2000/2150	S2200/2400	
PP X*	PP X*	IF PREVIOUS INSTRUCTION = PP, X → PPR (0 ≤ X ≤ 15)
JMP X	JMP X	IF PREVIOUS INSTRUCTION = PP, $X \rightarrow PBR$ $(0 \le X \le 7)$ JUMP TO LOCATION X, $X \rightarrow LR$ $(0 \le X \le 15)$
JMS X	JMS X	EXCEPT IF PREVIOUS INSTRUCTION = PP JUMP TO SUBROUTINE AT X, LR + 1 - L STACK, PR - P STACK,
RT	RT	X-LR, 15-PR EXCEPT IF PREVIOUS INSTRUCTION = PP L STACK-LR, P STACK-PR
RTS NOP	RTS NOP	L STACK-LR, P STACK-PR, SKIP INSTR. NO OPERATION
)	RTI TLU	RETURN FROM INTERRUPT, RESTORE REGISTERS IF PREVIOUS INSTRUCTION WAS A PP, DO A TABLE LOOK-UP SEQUENCE: PC+1-STACK
		RAM \rightarrow PC(3 = 0), ACC \rightarrow PC(7 = 4), PPR(3 = 2) \rightarrow PC(9 = 8) ROM(7 = 4) \rightarrow RAM, ROM(3 = 0) \rightarrow ACC STACK \rightarrow PC.
=		IF PREVIOUS INSTRUCTION WAS NOT A PP, DO AN INDEXED SUBROUTINE CALL: PC+1-STACK RAM-PC(3-0), ACC-PC(7-4)

Skip Instructions (Skip 1 Non-PP Instruction) (RAM = Memory at BU,BL)

S2000/2150	S2200/2400	
SZM Z SZK SBE SAM SZI SOS TF1 TF2	SZC SZM Z SZK SBE SAM SZMI Z + SKFL X +	SKIP IF CARRY = 0 SKIP IF RAM BIT $Z = 0$, $0 \le Z \le 3$ SKIP IF K BIT(S) = 0, (BIT(S) IN LAST LAI) SKIP IF BL = E SKIP IF ACC = RAM SKIP IF I BIT(S) = 0, (BIT(S) IN LAST LAI) SKIP IF SF = 1, 0—SF. (SF = 'SECONDS' FLAG OUTPUT OF $\div 50/\div 60$ COUNTER) SKIP IF FLAG 1 = 1 SKIP IF FLAG 2 = 1 SKIP IF RAM BIT = 0, (IN RAM BANK 1) $0 \le Z \le 255$ SKIP IF FLAG = 1

Arithmetic and Logical Instructions

S2000/2150	S2200/2400	
ADCS ADIS X ADD AND	ADCS ADIS X ADD	RAM + ACC + CARRY → ACC + C, SKIP IF SUM ≤ 15 X + ACC → ACC, SKIP IF SUM ≤ 15, CARRY UNALTERED ACC + RAM → ACC, CARRY UNALTERED
XOR STC RSC	AND XOR STC RSC	ACC & RAM - ACC ACC # RAM - ACC 1 - CARRY 0 - CARRY
CMA SF1 RF1	CMA	15 - ACC - ACC (LOGICAL 1's COMPLEMENT ACC) 1-FLAG 1 0-FLAG 1
SF2 RF2	GT1 G T1	1-FLAG 2 0-FLAG 2
	SFLG X + RFLG X +	$ \begin{array}{c c} 1 \rightarrow FLAG X \\ 0 \rightarrow FLAG X \end{array} $

⁺⁸ bits in the second byte of an instruction.

^{*}Assembled code contains complement of those arguments (assembler does it for you).

PIN NO.	NAME	DESCRIPTION
1	v_{ss}	Most negative power-supply input. Typically grounded.
29	$ m v_{GG}$	Most positive power-supply input. Typically + 9V.
12	V _{DD} (S2000) V _{FD} (S2000A)	Power supply input for all output buffers. Typically tied to V_{GG} or to a $+5V$ supply. Power supply input for HV drive. Typically $+32V$
$\begin{array}{c} 4 - 2, \\ 40 - 36 \end{array}$	D0 - D7	D Lines for input and output. Output during instructions OUT, DISN, DISB. Input during INP. Float at reset time or after an MVS instruction; or if RUN pin is low; or after a PSL with BL = 14. Display Latch outputs (DISN, DISB) can be inverted using EUR.
20 - 13 11 - 7	A0 - A12	A Lines for addressing and control. Changed by MVS as set up by PSH/PSL. When external program ROM is used, these lines output the contents of the Program Counter during the first half of each instruction cycle.
5	ROMS	ROM source control. Tied to a logic 1 or 0 to indicate internal ROM only, or internal plus external. Tied to SYNC to override Bank 0 with an external program, and to inverted SYNC to verify internal ROM contents.
6	EXT	Active-low strobe output for D Lines. Generated by an OUT instruction during time T7.*
35 =	SYNC	Synchronization output for external devices or for external ROM control. Continuous square wave, low in T1 and T3, high in T5 and T7.* $f_{CLK} + f_{SYNC} = 4$ for S2000, 8 for S2150.
34	RUN	Run/Wait control for prototyping and single-step testing. Logic 1 to run, logic 0 to wait with D Lines floating.
22	POR	Power-On-Reset. Needs only an external capacitor, typically .05 microfarad. A pulup to V_{GG} (15 μ A nominal) is provided internally.
23	CLK	On-chip oscillator connection. Runs at $\sim 850 kHz$ when connected to V_{SS} through 47pf and to V_{GG} through 30k Ω on the S2000. Crystal control possible; consult AM
21	STATUS	Monitors internal status for special designs. Logic 1 vs. logic 0 indicates: (during T1)* D Lines floating or not floating; (T3) BL equal or not equal to 13 for multiple control; (T5) Carry is 1 or 0; (T7) Next instruction will or won't be skipped. On the S2150 a mask option allows use as a crystal oscillator pin.
24	KREF	K Lines voltage comparator reference input. Typically + 3.0V, supplied by an external resistor divider.
30 - 3	K1, K2 K4, K8	K Lines, tested by SZK instruction. Any combination of these lines, selected by the last executed LAI instruction, are gated into the signal input of the voltage comparator. Unselected K Lines are discharged to $V_{\rm SS}$, at $160\mu\rm A$ typical.
25 — 2	I1, I2, I4, I8	I Lines, with internal pull-ups of $100\mu A$ nominal. Any combination of these lines, selected by the last executed LAI instruction (S2000, S2150), are gated into a common node tested by the SZI instruction. I8 also clocks a seconds timer whose output is tested using SOS.

^{*}T1 is the first quarter-cycle following the falling edge of the SYNC output, T3 is the second, T5 is the third, and T7 is the fourth.

S2000/2150

Absolute Maximum Ratings (All voltages measured with respect to $V_{\rm SS}$)

Storage Temperature	-55°C to +125°C
Operating Temperature	\dots 0°C to + 70°C
Operating Temperature (special request)	. $-40^{\circ}\text{C to} + 85^{\circ}\text{C}$
Maximum Positive Voltage	+ 18V
Maximum Negative Voltage	– 0.3V
Maximum Output Currents (See	
I _{DD} Supply Current (depends on output loads)	
Total Average Power Dissipation	$\dots + 700 \text{mW}$

S2000/2150

Electrical Characteristics

 $(V_{SS} = 0V, V_{GG} = +7.5V \text{ to } +10.0V, V_{DD} = 5V^*, T_A = 0^{\circ}C \text{ to } +70^{\circ}C, f_{SYNC} = 125kHz \text{ to } 225kHz)$

	Parameter	Min.	Тур.	Max.	Units	Conditions
INPUTS	K ₁ thru K ₈					$2.8 < K_{REF} < 3.2V$
	Low Level	0		$K_{REF} - 0.5$	V	
	High Level	$K_{REF} + 0.5$		V_{GG}	V	
INPUTS	I ₁ thru I ₈ , POR				1 1	(Note 1)
	Schmitt-trigger	: 		,	l i	
	Low Level	0		1.7	V	
	High Level	5.3		V_{GG}	V	
INPUTS	ROMs, RUN					
	Low Level	0		0.8	v	
	High Level	3.5		V_{GG}		
INPUTS	D ₀ thru D ₇					
1111 012	Low Level	0		0.8	v	
	High Level - Program	5.0		$ v_{GG}$	v	
	High Level — Data	3.5		V_{GG}	V	
OUTPUTS	A ₀ thru A ₃					
	High Level	3.5		*V _{DD}	V	$I = -5mA^{**}$
	Low Level	0		0.8	V	$I= +25mA^{\bullet\bullet}$
OUTPUTS	A ₄ thru A ₁₂					
	\overline{EXT} , SYNC, & S					
	High Level	3.5	-	$+v_{ m DD}$	V	$I=-5mA^{\bullet\bullet}$
	Low Level	0		0.6	V	$I = +5mA^{**}$
OUTPUTS	D ₀ thru D ₇					
	High Level	3.5		*V _{DD}	V	$I = -5mA^{**}$
	Low Level	0		1.0	V	$I = +12mA^{**}$
${ m I}_{ m GG}$	Supply Current		28	50	mA	
Δ RAM	RAM "Keep Alive"		20		μA/Bit	$V_{RAM} = 4.0V$
			30		μA/Bit	$V_{RAM} = 9.0V$

NOTE 1: There is an internal pull-up of $100\mu A$ nominal ($15\mu A$ nominal on \overline{POR}) from each of these inputs to V_{GG} .

 $^{{}^{\}bullet}V_{DD}$ may be connected to V_{GG} if single power supply operation is desired.

^{**}At V_{GG}≥8.5VDC

 $[\]Delta$ Available only on S2150/S2150A.

S2000A/S2150A

Preliminary Electrical Specifications

Absolute Maximum Ratings (All voltages measured with respect to V_{SS})

Storage Temperature	55°C to + 125°C
Operating Temperature	
Operating Temperature (special request)	-40° C to $+85^{\circ}$ C
Maximum Positive Voltage, V _{FD} , A ₀ -A ₄ , D ₀ -D ₇	
All other pins	
Maximum Negative Voltage, any pin	$\dots \dots $
Maximum Output Currents	
Source Current, any pin	10mA
Total Average Power Dissipation	$\dots \dots \dots + 700 mW$
Rate of Rise of V _{FD}	1.6V/msec.
Maximum Voltage at V _{FD} with respect to V _{GG}	+ 22V

S2000A/S2150A

Electrical Characteristics — Specifications noted only for parameters which change from the S2000/2150 to the S2000A/2150A.

 $(V_{SS} = 0V, V_{GG} = 7.5 \text{ to } 10.0V, V_{FD} = V_{GG} + 22V, T_A = 0^{\circ}\text{C to } + 70^{\circ}\text{C.} \text{ } f_{SYNC} = 125\text{kHz to } 225\text{kHz})$

	Parameter	Min.	Тур.	Max.	Units	Conditions
OUTPUTS	D ₀ thru D ₇ , A ₀ thru A ₄ High Level Low Level	- 3.5		0.6	mA V	$V_{OUT} = V_{FD} - 6V^{**}$ $I = 250\mu A^{**}$
OUTPUTS	A ₅ thru A ₁₂ , EXT, SYNC, & STATUS					
	High Level	3.5			v	$I = -5mA^{**}$
	Low Level			0.6	V	$I = +5mA^{**}$
I_{GG}	Supply Current		28	50	mA	No Loads

NOTE 1: The output buffers for lines $\rm A_{5}\text{-}A_{12}$ are supplied from $\rm V_{GG}.$

NOTE 3: When applying power, $V_{\rm FD}$ must rise with or after $V_{\rm GG}$ at a rate not to exceed 1.6V/msec.

NOTE 2: The high voltage parts, when biased with normal $V_{\rm FD}$, are not TTL-compatible; when using external program ROM, it is necessary to interpose buffers.

^{**}At $V_{GG} \ge 8.5 \text{VDC}$

S2200/2400 Block Diagram

For applications such as pulse width measurement, interval timing and event counting, the S2200/2400 has an 8-bit binary down-counter which counts 256 distinct states. The number of states (1 to 256) is controlled by the (Modulo-) N Register.

Another register, the MOD Register, controls the selection of inputs and outputs for the Programmable Counter/Timer, as well as the Display Latch output polarity and the voltage comparator's noninverting-input source.

S2200/2400 Preliminary Electrical Specifications

Absolute Maximum Ratings (All voltages measured with respect to $V_{\rm SS}$)

Storage Temperature	– 55°C to + 125°C
Operating Temperature	0°C to +70°C
Operating Temperature (special request)	$\dots -40^{\circ}$ C to $+85^{\circ}$ C
Maximum Positive Voltage	
Maximum Negative Voltage	-0.3V
Maximum Output Currents	(See Conditions p. 12)
IDD Supply Current (depends upon output loads)	$\dots + 75$ mA
Total Maximum Power Dissipation	

Electrical Characteristics

 $(V_{SS} = 0V, \ V_{GG} = +7.5V \ to \ +10.0V; \ V_{DD} = +5V^*, \ T_A = 0^{\circ}C \ to \ +70^{\circ}C, \ f_{SYNC} = 125kHz \ to \ 225kHz)$

	Parameter	Min.	Тур.	Max.	Units	Conditions
INPUTS	K ₀ thru K ₇				V	For Touch-
:	Low Level	0		$ m K_{REF}-0.5$	V	Control and
	High Level	$K_{REF} + 0.5$		$ m v_{GG}$	V	Keyswitch
						Inputs
INPUT	K _{REF}	0		$2/3~{ m V_{GG}}$	V	
INPUTS	Ko thru K7					For A/D
	For A/D Conversion	0		2/3 V _{GG}	V	Conversion
	Logic Low Level			0.8	V	As Logic Input:
	Logic High Level	3.5			V	
	POR					
	Low Level (POR Reset)	0		1.0	v	
	High Level	$1/2 V_{GG}$		v_{GG}	v	
	Power Fail					
	— No Interrupt			v_{GG}	V	
	- Interrupt	$V_{GG} + 1$			V	
INPUTS	ROMs, RUN					(Note 1)
	Low Level	0		0.8	v	
	High Level	3.5		V_{GG}	V	
INPUTS	D ₀ thru D ₇					
	Low Level	0		0.8	V	
	High Level	4.5		V_{GG}	V	
OUTPUTS	A ₀ thru A ₃					
	High Level	3.5		*V _{DD}	V	$I = -5mA^{**}$
	Low Level	0		0.8	V	$I = +25mA^{**}$
OUTPUTS	A ₄ thru A ₁₂					
	EXT, SYNC, & S			4.55		
	High Level	3.5		*V _{DD}	V]	$I = -5mA^{**}$
	Low Level	0		0.6	v	$I = +5mA^{**}$
OUTPUTS	D ₀ thru D ₇	0.5	į	#177	v	$I = -5mA^{**}$
	High Level	3.5		*V _{DD}	V V	$I = -5mA^{**}$ $I = +12mA^{**}$
	Low Level	0		1.0	1	1 = + 12InA**
I_{GG}	Supply Current		28	50	mA	
T	RAM "Keep Alive"		20		μA/Bit	$V_{RAM} = 4.0V$
I _{RAM}	Current		20			KAM - 3.0 V

 $^{{}^{\}bullet}V_{DD}$ may be connected to V_{GG} if single power supply operation is desired.

MAt V_{GG} ≥ 8.5VDC

Note 1: There is an internal pullup of $100\mu A$ nominal from each of these inputs to V_{GG} .

S2200A/S2400A Preliminary Electrical Specifications

Absolute Maximum Ratings (All voltages measured with respect to $V_{\rm SS}$)

Storage Temperature	55°C + - 195°C
Operating Temperature	0004- 7000
Operating Temperature (special request)	
Maximum Positive Voltage, V _{FD} , A ₀ -A ₄ , D ₀ -D ₇	
All other pins	. 1977
Maximum Negative Voltage	0.27
maximum Output Currents	(See Conditions below)
Source Current, any pin	10m A
Total Average Power Dissipation	. 700mW
Rate of Rise of V _{FD}	1.6V/msec.

 $\begin{array}{ll} \textbf{Electrical Characteristics} & -\text{ Specifications noted only for parameters which change from the } S2200/2400 \text{ to the } S2200A/2400A & (V_{SS} = 0V, V_{GG} = 7.5 + 10.0V, V_{FD} = V_{GG} + 22V, T_{A} = 0 ^{\circ}\text{C to } + 70 ^{\circ}\text{C. } f_{SYNC} = 125 \text{kHz to } 225 \text{kHz}) \end{array}$

	Parameter	Min.	Typ.	Max.	Units	Conditions
OUTPUTS	D ₀ thru D ₇ , A ₀ thru A ₄ High Level Low Level	- 3.5		0.6	mA V	$V_{OUT} = V_{FD} - 6V^{**}$ $I = 250\mu A^{**}$
OUTPUTS	A ₅ thru A ₁₂ , EXT, SYNC, & STATUS					770
	High Level	3.5			v	$I = -5mA^{**}$
	Low Level		•	0.6	v	$I = +5mA^{**}$
I_{GG}	Supply Current		28	50	mA	No Loads

NOTE 1: The output buffers for lines $A_5 \cdot A_{12}$ are supplied from V_{GG} .

**At V_GG≥8.5VDC

NOTE 2: The high voltage parts, when biased with normal V_{FD} , are not TTL-compatible; when using external program ROM, it is necessary to interpose buffers.

NOTE 3: When applying power, $V_{\rm FD}$ must rise with or after $V_{\rm GG}$ at a rate not to exceed 1.6V/msec.

Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale. AMI makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with AMI for current information.

