Homework 1

Walker Bagley

January 27, 2023

Section 0

- 3. $\{m \in \mathbb{Z} | mn = 60 \text{ for some } n \in \mathbb{Z}\}\$ = $\{-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -10, 10, -12, 12, -15, 15, -20, 20, -30, 30, -60, 60\}\$
- 5. $\{n \in \mathbb{Z}^+ | n \text{ is a large number}\}$ This set is not well defined because it is unclear what defines a large number.
- 7. $\{n \in \mathbb{Z} | 39 < n^3 < 57\}$ $= \varnothing$
- 11. $\{a, b, c\} \times \{1, 2, c\}$ = $\{(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)\}$
- 12. $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$
 - (a) $\{(1,4),(2,4),(3,6)\}$ is a function
 - (b) $\{(1,4),(2,6),(3,4)\}$ is a function
 - (c) $\{(1,6),(1,2),(1,4)\}$ is not a function
 - (d) $\{(2,2),(1,6),(3,4)\}$ is a function that is one to one and onto
 - (e) $\{(1,6),(2,6),(3,6)\}$ is a function
 - (f) $\{(1,2),(2,6),(2,4)\}$ is not a function

15. Prove that for $S = \{x \in \mathbb{R} | 0 < x < 1\}, |S| = |\mathbb{R}|$

Proof.

Consider a function $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$ s.t. $f(x)=\tan x$, which maps $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ one to one onto \mathbb{R}

We know $\tan x$ has an inverse $\arctan x$, so f must be a bijection and therefore $\left|\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\right|=|\mathbb{R}|$

Let's define $g:(0,1)\to\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ by $g(x)=\pi x-\frac{\pi}{2}$, which is one to one

Then, we can say that g^{-1} is defined by $x = \frac{g(x) + \frac{\pi}{2}}{\pi}$

This makes g a bijection and therefore $|(0,1)| = \left|\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\right|$

By composing f and g and then using transitivity, we know that $|S| = |\mathbb{R}|$

- 16. (a) $\mathscr{P}(\varnothing) = \{\varnothing\}$
 - (b) $\mathscr{P}(\{a\}) = \{\emptyset, \{a\}\}\$
 - (c) $\mathscr{P}(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}\$
 - (d) $\mathscr{P}(\{a,b,c\}) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,b,c\}\}\}$
- 17. For some finite set A s.t. |A| = s, $|\mathscr{P}(A)| = 2^s$

Proof.

Base case:
$$|A|=0$$
. Then $A=\varnothing$ and $\mathscr{P}(A)=\{\varnothing\}$. Then $|\mathscr{P}(A)|=1=2^0$

Assume that for some A s.t.
$$|A| = s$$
, $|\mathscr{P}(A)| = 2^s$

WTS that for
$$|A| = s + 1$$
, $|\mathscr{P}(A)| = 2^{s+1}$

When adding an element to A, $\mathscr{P}(A_{s+1})$ contains all elements of $\mathscr{P}(A_s)$

It also contains
$$\mathscr{P}(A_s) \bigcup \{a_{s+1}\}\$$

This means that
$$\mathscr{P}(A_{s+1}) = 2 * |\mathscr{P}(A_s)|$$

Substituting the inductive hypothesis, $\mathscr{P}(A_{s+1}) = 2 * 2^s = 2^{s+1}$

25. Given a set with 3 elements $A = \{a, b, c\}$, there are 5 partitions as follows:

- $\{\{a,b,c\},\varnothing\}$
- $\{\{a,b\},\{c\}\}$
- $\{\{a\}, \{b, c\}\}$
- $\{\{a,c\},\{b\}\}$
- $\{\{a\}, \{b\}, \{c\}\}$
- 28. To illustrate why the relation \mathcal{R} corresponding to a partition of S satisfies the reflexive condition, we need only observe that if x is in a cell, it must then be in the same cell as itself, meaning $x \sim x$.

To illustrate why the relation \mathcal{R} corresponding to a partition of S satisfies the transitive condition, we need only observe that if x, y are in the same cell $(x \sim y)$, and y, z are in the same cell $(y \sim z)$, then x, z must be in the same cell, meaning $x \sim z$.

31. $x \sim y$ in R if |x| = |y| is an equivalence relation because the reflexive, symmetric and transitive properties hold.

 $\bar{0} = \{0\}$ and $\bar{a} = \{a, -a\}$ for any nonzero $a \in \mathbb{R}$

32. $x \sim y$ in R if $|x-y| \leq 3$ is not an equivalence relation because it does not satisfy the transitive property. Consider x = 4, y = 2, z = 0. $x \sim y$ and $y \sim z$, but |4 - 0| = 4 > 3, so $x \not\sim z$.

Section 1

3.
$$i^{23} = i^{4*5+3} = i^3 * i^{4*5} = i^3 * 1 = -1 * i = -i$$

7.
$$(2-3i)(4+i) + (6-5i) = (8-10i+3) + (6-5i) = 17-15i$$

11.
$$|6+4i| = \sqrt{6^2+4^2} = \sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$$

13.
$$|-1+i| = \sqrt{2}$$
 and $\theta = 3\pi/4$, so $-1+i = \sqrt{2}(\cos(3\pi/4) + i\sin(3\pi/4)) = \sqrt{2}(-\sqrt{2}/2 + i\sqrt{2}/2)$

19.
$$z^3 = -27i \Rightarrow |z|^3 = 27 \Rightarrow |z| = 3$$

3 solutions separated by $2\pi/3$

$$-27i \Rightarrow \theta = 3\pi/2$$
 so solution 1 is at $(3\pi/2)/3 = \pi/2$

solutions are at $\pi/2, 7\pi/6, 11\pi/6$ which equates to $i, \pm \sqrt{3}/2 - i/2$ on the unit circle

$$|z| = 3 \Rightarrow 3i, \pm 3\sqrt{3}/2 - i3/2$$

23.
$$8 +_{10} 6 = 4$$

29.
$$x +_{15} 7 = 3 \Rightarrow x = 11$$

33.
$$x +_{12} x = 2 \Rightarrow x = 1, 7$$

35.
$$\zeta^0 \leftrightarrow 0, \zeta^3 \leftrightarrow 7, \zeta^4 \leftrightarrow 4, \zeta^5 \leftrightarrow 1, \zeta^6 \leftrightarrow 6, \zeta^7 \leftrightarrow 3$$

37. Because with modular arithmetic in \mathbb{Z}_6 , ζ^n will always be even if $\zeta=4$, making an isomorphism impossible.

39.

$$\begin{split} z_1 &= |z_1|(\cos\theta_1 + i\sin\theta_1) \\ z_2 &= |z_2|(\cos\theta_2 + i\sin\theta_2) \\ z_1 z_2 &= |z_1||z_2|(\cos\theta_1 + i\sin\theta_1)(\cos\theta_2 + i\sin\theta_2) \\ z_1 z_2 &= |z_1||z_2|[(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 + \sin\theta_2\cos\theta_1)] \\ z_1 z_2 &= |z_1||z_2|(\cos(\theta_1 + \theta_2) + i(\sin(\theta_1 + \theta_2))) \end{split}$$

40. (a)

$$e^{i\theta} = \cos \theta + i \sin \theta$$

$$e^{3i\theta} = \cos 3\theta + i \sin 3\theta$$

$$(e^{i\theta})^3 = \cos 3\theta + i \sin 3\theta$$

$$(\cos \theta + i \sin \theta)^3 = \cos 3\theta + i \sin 3\theta$$

$$(\cos \theta + i \sin \theta)(\cos^2 \theta - \sin^2 \theta + 2i \sin \theta \cos \theta) = \cos 3\theta + i \sin 3\theta$$

$$\cos^3 \theta - 3\sin^2 \theta \cos \theta + 3i \sin \theta \cos^2 \theta - i \sin^3 \theta = \cos 3\theta + i \sin 3\theta$$

$$\cos^3 \theta - 3\cos \theta \sin^2 \theta = \cos 3\theta$$

(b)

$$\cos^{3}\theta - 3\cos\theta\sin^{2}\theta = \cos3\theta$$
$$1 - \cos^{2}\theta = \sin^{2}\theta$$
$$\cos^{3}\theta - 3\cos\theta(1 - \cos^{2}\theta) = \cos3\theta$$
$$\cos^{3}\theta - 3\cos\theta + 3\cos^{3}\theta = \cos3\theta$$
$$4\cos^{3}\theta - 3\cos\theta = \cos3\theta$$