3) Experiment Randomization and Design

Vitor Kamada

January 2018

1 / 11

Randomized Experiments vs Observational Studies

Cochran (1972, 2015): "randomized experiments as settings where the the assignment mechanism does not depend on characteristics of the units, either observed or unobserved, and the researcher has control over the assignments".

(Rosenbaum, 1995; Imbens and Rubin, 2015): In observational studies, the researcher does not have control over the assignment mechanism, and the assignment mechanism may depend on observed and or unobserved characteristics of the units in the study".

Athey & Imbens (2016): Experimental Lalonde Data

Covariate	Treated	Controls	Difference	s.e.	exact p-value
African-American	0.84	0.83	0.02	(0.04)	0.700
Hispanic	0.06	0.11	-0.05	(0.03)	0.089
age	25.8	25.0	0.8	(0.7)	0.268
education	10.3	10.1	0.3	(0.2)	0.139
married	0.19	0.15	0.045	(0.04)	0.368
no-degree	0.71	0.84	-0.13	(0.04)	0.002
earnings 1974	2.10	2.11	-0.01	(0.50)	0.983
unemployed 1974	0.71	0.75	-0.04	(0.04)	0.329
earnings 1974	1.53	1.27	0.27	(0.31)	0.387
unemployed 1975	0.60	0.69	-0.09	(0.05)	0.069

Stitch a Collar: Standard vs Ergonomic Workplace

Stitch <-

 $\label{lem:condition} read.table \mbox{("http://www.stat.umn.edu/\simgary/book/fcdae.data/exmpl2.1", header=TRUE)}$

Stitch\$d <- Stitch\$std - Stitch\$ergo summary(Stitch\$d)

Statistic	N	Mean	St. Dev.	Min	Max
std	30	4.956	0.488	4.360	6.390
ergo	30	4.781	0.482	3.870	5.590
d	30	0.175	0.645	-1.080	1.750

Bezjak and Knez (1995)

hist(Stitch\$d, freq=FALSE, col="red")

Histogram of Stitch\$d

5 / 11

January 2018

boxplot(G1, G2, G3)

d <- Stitch\$std - Stitch\$ergo

G1 <- d[1:10]

G2 <- d[11:20]

G3 <- d[21:30]

Paired T-Test

$$H_0: \mu = 0 \text{ vs } H_A: \mu > 0$$

$$t = \frac{\bar{d}}{s/\sqrt{n}}$$

$$s = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (d_i - \overline{d})^2$$

Vitor Kamada ECO 7100 Econometrics I January 2018 7 / 11

Result: Paired T-Test

t.test(d,alt="great")
$$t = 1.49, \, df = 29, \, p\text{-value} = 0.0735$$

$$t.test(G1,alt="great") \\ t = 0.92514, \, df = 9, \, p\text{-value} = 0.1895$$

$$t.test(G2,alt="great") \\ t = 1.8305, \, df = 9, \, p\text{-value} = 0.05021$$

$$t.test(G3,alt="great") \\ t = 0.10466, \, df = 9, \, p\text{-value} = 0.4595$$

Vitor Kamada ECO 7100 Econometrics I January 2018

8 / 11

Hunt (1973): Experiment

Absorption of Phosphorus by Rumex Acetosa

15 Days				28 Days			
4.3	4.6	4.8	5.4	5.3	5.7	6.0	6.3

Two-Sample t-Test

$$H_0: \mu_1 = \mu_2 \text{ vs } H_A: \mu_1 < \mu_2$$

$$t = \frac{\bar{y}_{1\bullet} - \bar{y}_{2\bullet}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$s_p = \sqrt{\frac{\sum\limits_{i=1}^{n_1} (y_{1i} - \bar{y}_{1\bullet})^2 + \sum\limits_{i=1}^{n_2} (y_{2i} - \bar{y}_{2\bullet})^2}{n_1 + n_2 - 2}}$$

January 2018

t.test(Data\$y~Data\$days, var.equal=TRUE, alternative="less")

$$t = -3.3273$$
, $df = 6$, p-value = 0.00793

$$t = \frac{\bar{y}_{1\bullet} - \bar{y}_{2\bullet}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$\frac{4.775 - 5.825}{.446\sqrt{\frac{1}{4} + \frac{1}{4}}} = -3.33$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ りへの

Vitor Kamada ECO 7100 Econometrics I January 2018 11 / 11