Capitulo 5 - LA CAPA DE RED

La capa 2 solo lleva paquetes de un enlace a otro, la 3 lleva de un destino a un origen aunque esten en diferentes redes; por esto mismo deberia necesitar atravesar muchos enrutadores intermedios

Esta capa necesita conocer:

- La topologia para conocer las rutas disponibles para llegar a su destino
- El trafico para no sobrecargar las rutas y subutlizar otras

Aspectos de diseño de la capa de red

- La capa de red ofrece el sevicio a la capa de transporte de dar un esquema de direccionamiento uniforma para LANs, MANs y WANs
- Dos tipos de servicio:
 - Sin conexion:
 - Los paquete se llaman datagramas y se enrutan de forma independiente
 - Tiene un Algoritmo de Enrutamiento
 - Con conexion
 - Se fija un camino virtual entre enrutadores finales y los paquetes pasan por este camino. Los recursos fisicos de los CVs no son dedicados

Algoritmos de enrutamiento

- El algoritmo de enrutamiento es el encargado construir y actualizar periodicamente las tablas de enrutamiento
- La capa de red tiene dos funciones principales
 - Enrutar con el algoritmo de enrutamiento
 - Reenviar: es la accion de buscar en la tabla de enrutamiento la linea linea de salida para un paquete (IP)
- Con datagramas la desicion de enrutamiento es para cada paquete y con CV la desicion se toma al establecer el CV y todos los paquetes pasan por la misma

• Propiedades:

- Exacto el paquete alcanza los destinos deseados y no otros
- o Sencillo Trabaja usando el minimo de recursos y en forma rapida
- Robusto Soporta fallas de host, ruteadores y lineas de comunicacion
- o Estable Determina las rutas de forma definitiva para cada topologia
- Equitativo Todos los sistemas conectados a la red deben poder enviar datos
- o Optimizacion Menor retardo y uso maximo del canal

• Clases principales del algoritmo

 Adaptativo o Dinamico - Las tablas varian dinamicamente segun las variaciones en la topologia y trafico

- Tipos
 - Enrutamiento por vector distancia
 - Cada router tiene un vector con la mejor distancia a cada destino y la linea de salida para llegar ahi

o Inconveniente del algoritmo: Lentitud

• Enrutamiento por estado del enlace

Pasos:

- Descubrir las direcciones de sus vecinos
 - Se envia un paquete HELLO por cada linea a sus enrutadores vecinos
 - El vecino responde con su nombre que debe ser unico globalmente
- Medir el retardo a cada uno de sus vecinos
 - Se determina el retardo enviando un mensajeecho request y esperando un mensaje echo replay, mensajes usados en Ping
- Construir un paquete con esta información
 - El paquete tiene la identidad del emisor el numero de secuencia y la edad
 - Se generan periódicamente o cuando ocurro una caida o reactivación

Α		В		С			D		E		F	
Sec.		Sec.		Sec.			Sec.		Sec.		Sec.	
Edad		Edad		Edad		Edad		Edad		Edad		
В	4	Α	4	В	2		С	3	Α	5	В	6
Е	5	С	2	D	3		F	7	С	1	D	7
		F	6	Ε	1				F	8	Е	8

- Compartir/Distribuir este paquete con todos los demás enrutadores
 - Los routers usan estos paquetes para construir la topologia de la red
 - Routers podrian estar usando versiones diferentes de la topologia
 - Cada router registra el enrutador origen y la secuencia; en caso de ser duplicado se descarta
 - Problema 1: El numero de secuencia vuelve a 0, solucion: usar secuencia de 32 bits, enviando uno por segundo toma 136 añoas hasta que sea 0
 - Problema 2: Si el router falla el secuencial vuelve a 0
 y con este numero se rechaza el paquete
 - Problema 3: Si se daña un bit de 000000100 y se vuelve 100000100 todos los paquetes enviados despues de 4 seran tomados como obsoletos y por lo tanto rechazados
 - Solucion: La edad del paquete incia en 60 y disminuye en 1 cada seg y cuando es 0 se descarta la informacion de dicho enrutador
- Calcular la ruta más corta a cada router o nuevas rutas
 - Cuando se tienen todos los paquetes y se construye el grafo se usa dijkstra para calcular la ruta mas corta

- No adaptativo o estaticos- Las tablas se derminan a priori y no se adaptan a las variaciones en la topologia o trafico
 - Tipos:
 - Ruta mas corta
 - Se arma un grafo de la subred y la distancia mas corta es la que indica el grafo donde hay menor saltos o menor distancia geografica.
 - Esta ruta se determina con dijkstra algoritmo en el cuaderno
 - Inundacion
 - Cada paquete que llega se envia por todas las lineas menos por la que llego
 - Para evitar paquetes repetidos se inserta un contador si este
 llega a cero el paquete se descarta
 - Una variacion es la inundacion selectiva donde el paquete se envia por todas las salidas que se supone apuntan a la direccion correcta

PRINCIPIO DE OPTIMIZACION: Si el router J está en la ruta óptima de los routers I al K, entonces la ruta óptima de J a K también está en la misma ruta

- ENRUTAMIENTO JERARQUICO
 - En redes grandes un router no puede tener información a todos los destinos, por lo que se usa el enrutamiento jerarquico
 - Los enrutadores se agrupan en regiones y los host de cada region conocen todos los destinos dentro de su regio y solo la salida a otras regiones mas no a todos los destinos de la region
- ENRUTAMIENTO POR DIFUSION
 - El envío simultáneo de un paquete a todos los hosts se llama difusión
 - Se envia el paquete a todos los destinos desperdiciando ancho de banda y requiriendo una lista a todos los destinos
 - Cada paquete contiene una lista con los destinos deseados el enrutador revisa los destinos y determina las lineas de salida necesarias y envia una copia del paquete a cada linea

ENRUTAMIENTO POR MULTIDIFUSION

- Creado por la necesidad de las aplicaciones de que algunos procesos separados trabajen en grupo
- Se necesita enviar mensajes a grupos claramente definidos, esto es multidifusion
- Los enrutadores deben saber a que grupo pertence que host y enviar listas actualizando esto periodicamente

ENRUTAMIENTO PARA HOSTS MIGRATORIOS Y AMBULANTES

- Migratorios: Se mueven de un luagar fijo a otro lugar fijo, tienen localidad base y direccion base permanente
 - Area: una LAN o WLAN
 - Agente Base: Registra host que pertenecen a su area base
 - Agente Foraneo: registra hosts migratorios que visitan el area base
- o Ambulantes: trabajan en movimiento

ENRUTAMIENTO REDES AD HOC

- Los host hacen funciones de enrutadores
- o Las rutas cambian todo el tiempo al igual que su topologia
- Las rutas se determinan solo cuando alquien quiere mandar un mensaje
- Si se desea un paquete se ve si se tiene el destino en su tabla, si no lo tiene difunde un paquete de solicitud de ruta a sus vecinos, estos vecinos a los suyos y asi sucesivamente hasta que llega al destino y este crea un paquete de solicitud de ruta alcanzada y se envia solo por el nodo del que vino la solicitud

Algoritmos de control de congestión

- Congestion es cuando hay demasiados paquetes en la subred y esta disminuye su desempeño
 - Motivos:
 - Muchos paquetes llegan pidiendo la misma linea de salifa
 - Memoria de almacenamiento insuficiente en ruteadores
- Se deben equilibrar memoria, procesadores y lineas de ancho de banda mejorar solo una parte no sirve

- Control de congestion: Procura que la subred sea capaz de transportar el trafico ofrecido
- La teorica de control dvidie las soluciones en 2:
 - De Ciclo abierto: se resuelven con un buen diseño
 - De Ciclo cerrado: Monitorear sistemas, informar a los lugares que puedan actuar y asi cuando se genera congestion los lugares actuan para corregir el problema
 - Retroalimentacion explicita: regresan paquetes desde el punto de congestion para informar al origen
 - Retroalimentacion implicita: deduce la congestion segun el tiempo para recibir ACKs
- Informar congestion: Si se envian paquetes indicando que hay congestion se genera mas congestion, otra manera es enviar paquetes de sondeo y cn esta info desviar el trafico fuera del area congestionada

Calidad de servicio QoS

Flujo: Conjunto de paquetes que van desde un origen a un destino

- REQUERIMIENTOS
 - Segun cada aplicacion de la red se requieren 4 parametros que caracterizan a un flujo y son:
 - Ancho de banda
 - Retardo
 - Variacion o fluctuación de un retardo
 - En video 1 o 2 sg da resultado horrible, en audio es audible
 - Perdida de paquetes o confiabilidad
 - Necesidad de un flujo sin perdidas ni errores
 - ACK
 - La suma de verificacion CheckSum en CRC

TECNICAS PARA ALCANZAR QoS:

- Sobreaprovisionamiento: Da suficiente capacidad de CPU, memoria y ancho de banda para que los paquetes fluyan con facilidad
- Almacenamiento en búfer: Los flujos se alamacenan en el bufer receptor antes de ser desplegados al usuario
- Modelado de tráfico: El cliente le informa al ISP el trafico que va a generar y el ISP indica si puede soportarlo, en caso de que sea afirmativo se establece la conexion
- Algoritmo de cubeta con goteo
 - Esta tecnica convierte un flujo desigual de paquetes de los procesos de usuairo dentro del host en un flujo continuo hacia la red
 - Se modelan rafagas y se reduce la congestion
 - Se recibe un flujo irregular y en ves de despacharlo directamente se lo almacena, para luego despacharlo de forma regular
- o Algoritmo de cubeta con tokens
 - En ocaciones es necesario permitir rafagas de trafico
 - ullet El balde contiene tokens generados a razon de δT , para transmitir un paquete se toma un token y se destruye, aqui se permite acumular n tokes hasta que se llene el balde y asi enviar una rafaga de n tokens
 - Una variante es que un token da derecho de transmitir n paquetes
- Reservación de recursos: Se reservar recursos de memoria, tiempo de CPU, bufer o bits de memoria, para esta reserva es necesario que todos los paquetes de un flujo sigan la misma ruta
- Control de admisión: El receptor analiza la solicitud de reservar capacidades para un flujo, y decide si lo soporta y lo admite caso contrario lo rechaza; el flujo puede solicitar reservar capacidades si esta modelado y sigue la misma ruta
- Enrutamiento proporcional: Cuando se encuentra la mejor ruta generalmente se envia todo el trafico por dicha ruta, para dar un mayor QoS se divide el trafico y se envia por diferentes rutas; se divide en fracciones iguales o en proporcion de la capacidad de los enlaces salientes

Calendarización de paquetes