UAV Route Planning Strategies for Efficient Coverage Search in Complex Environments

Gabriel Rovesti

Exam of 19th September 2024

Prof. Claudio Enrico Palazzi

Wireless Networks for Mobile Applications

2023-2024

Table of contents

- 1. Introduction
- 2. Overview of approaches
- 3. Classical approaches
- 4. Probabilistic methods
- 5. Nature-inspired algorithms
- 6. Multi-UAV coordination
- 7. Environment-specific approaches
- 8. Military applications

- 9. Military applications
- 10. Comparison of approaches
- 11. Future challenges and research directions
- 12. Conclusions

UAV Route Planning

Reference: https://www.sciencedirect.com/science/article/pii/S0140366419308539

Overview of approaches

- Classical algorithms
- Probabilistic methods
- Nature-inspired algorithms
- Multi-UAV coordination
- Environment-specific approaches
- Military applications

Classical approaches

- Dijkstra's Algorithm
- A* Algorithm
- Bellman-Ford Algorithm
- Floyd-Warshall Algorithm

$$A[i][j] = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Reference: <u>Multiple UAVs path planning</u> algorithms: a comparative study (Paper 1)

Classical approaches

Fig. 5 Computation efficiency of search algorithms

Fig. 6 Astar versus Dijkstra search

Reference: <u>Multiple UAVs path planning</u> algorithms: a comparative study (Paper 1)

Probabilistic methods

- Probabilistic Roadmap Method (PRM)
 - Efficient for high-dimensional configuration spaces
 - Two phases: learning phase and query phase
 - Handles complex 3D environments effectively
- Key features
 - Random sampling of configuration space
 - Creation of roadmap for path planning
 - Efficient for large/complex environments

Reference:

https://www.sciencedirect.com/science/article/pii/S0140366419308539

Probabilistic methods

- Enhancements for UAV Applications
 - Octree-based environment representation
 - Safety-aware sampling
 - Bounding box array for focused sampling
 - Connectivity evaluation for feasible paths
- Advantages
 - Handles obstacle avoidance well
 - Computationally efficient for large environments
 - Adaptable to different types of environments

Fig. 1 The occupied voxels and free voxels are extracted from 3D data during octree building

Reference: <u>Path Planning in Complex 3D</u>
<u>Environments Using a Probabilistic Roadmap</u>
<u>Method</u> – (Paper 2)

Nature-inspired algorithms

Multi-UAV coordination

Environment-specific approaches

Military applications

Comparison of approaches

Future challenges and research directions

Conclusions

