Elektroanalytické (elektrochemické) metódy

- sú založené na meraní *elektrochemickej (elektrickej) veličiny* vyjadrujúcej kvantitu alebo kvalitu sledovanej látky (E, I-intenzita prúdu, Q-náboj, G-vodivosť, t)
- delia sa na:
 - metódy spojené s elektródovou reakciou prebiehajúcou na rozhraní elektródaroztok
 - $Ox + ne^- = Red$
 - potenciometria, polarografia, ampérometria
 - metódy založené na migrácii a elektrickej vodivosti
 - nedochádza k elektrochemickej reakcii
 - konduktometria
- d'alšie delenie:
 - separačné
 - oddeľovanie látok elektrickým prúdom
 - elektrometrické
 - meranie elektrických vlastností

Elektródový potenciál, galvanický článok, Nernstova rovnica

- galvanický článok
 - zariadenie umožňujúce premenu chemickej energie na elektrickú
 - $\Delta G = n.F.E$
 - G Gibbsova voľná energia
 - n počet vymenených elektrónov
 - E elektródový potenciál
 - základy teórie galvanických článkov položil Nernst
 - elektromotorické napätie článku
 - $EMN = E_r E_l$ (potenciál pravej potenciál ľavej elektródy)
 - Nernstova rovnica
 - $E = E^0 + \frac{R.T}{n.F} \ln a$
 - o E^0 štandardný potenciál elektródy (pri 101 325 Pa, 25°C, a=1)
 - \circ R plynová konštanta (8,314 J.K⁻¹.mol⁻¹)
 - o F Faradayova konštanta (9650 J.V⁻¹.mol⁻¹)
 - o n počet vymenených elektrónov
 - hodnoty E⁰ sú tabuľkovo spracované a usporiadané do radu napätí:
 - o alkalické kovy záporné hodnoty
 - ušľachtilé kovy kladné hodnoty
 - o galvanickom článku hovoríme, ak je elektrochemický článok zdrojom napätia v dôsledku spontánnych dejov prebiehajúcich na elektródach

• <u>elektrolytický článok</u>

 elektrochemický článok, v ktorom dochádza k elektrolýze v dôsledku účinku vonkajšieho zdroja napätia

Druhy elektród

- I.druhu indikačné (merné)
 - zaznamenávajú zmenu koncentrácie sledovanej látky v roztoku
 - kovové, redox, iónselektívne (membránové) ISE, vodíková elektróda
- o II.druhu referenčné
 - majú konštantnú hodnotu potenciálu, ktorá nezávisí od zloženia roztoku
 - vodíková, kalomelová, argentchloridová, merkurosulfátová
- o podľa účasti elektród na elektrochemickej reakcii
 - inertné (redox, Au, Pt)
 - reaktívne (kovové)
- o podľa mechanizmu vzniku elektródového potenciálu:
 - redox
 - membránové

Elektródy I.druhu

redox elektródy

- tvorené ušľachtilým kovom (Pt, Au), ktorý je ponorený do roztoku, ktorý obsahuje oxidovanú aj redukovanú formu daného analytu
- o sprostredkúvajú výmenu elektrónov, ale samotné elektródy sa nezúčastňujú reakcie

ISE elektródy

- elektródový potenciál vzniká na membráne, ktorá je selektívne priepustná pre isté ióny
- o sklená elektróda selektívna voči H⁺ iónom

katiónové elektródy

- o ustálenie rovnováhy medzi atómami kovu a jeho katiónmi
- o kov ponorený do roztoku svojich solí
- o napr. Cu/Cu²⁺, Zn/Zn²⁺
- $\circ M^{n+} + ne^- = M$
 - $E_{M^{n+}} = E^0 + \frac{R.T}{n.F} \ln a_{M^{n+}}$

aniónové elektródy

- o rovnováha medzi atómami nekovu a jeho aniónmi
- o napr. iódová (I₂/l¯), chlórová (Cl₂/Cl¯), kyslíková
- $\circ \quad A + ne^- = A^{n-}$
 - $E_A = E^0 \frac{R.T}{n.F} \ln a_{A^{n-1}}$

vodíková elektróda

- o primárna referenčná elektróda
- o dôležitá merná elektróda pre meranie pH v celom rozsahu 0 14
- o zloženie:
 - Pt pliešok pokrytý Pt-čerňou ponorený do roztoku HCl sýteného H₂(g)
- o v praxi sa veľmi nepoužíva, lebo je nebezpečná pri sýtení vodíkom
 - nahrádza sa referenčnou elektródou II.druhu
- o využíva sa pri stanovená pH štandardov tlmivých rozrokov
- $H_2 = 2H^+ + 2e^-$

$$\bullet \quad E = E^0 + \frac{R.T}{2.F} \ln \frac{a_{H^+}^2}{a_{H_2}} = E^0 + \frac{R.T}{F} \ln \frac{a_{H^+}}{\sqrt{p_{H_2}}} = E^0 + \frac{R.T}{F} \ln a_{H^+}$$

• $p_{H_2} = 1$ parciálny tlak (štandardný)

•
$$E = -0.059pH$$
 $pH = -\frac{E}{0.059}$

• sklená elektróda

- o používa sa na meranie pH v rozsahu 1 11 vo vodnom aj nevodnom prostredí
- o membránová elektróda, selektívna voči H⁺ iónom
- o vyrobená zo špeciálneho skla

•
$$E = \frac{R.T}{F} \ln a_{H_{vonk.}^+} - \frac{R.T}{F} \ln a_{H_{vnút.}^+}$$
 $E_{sklo}^0 = konšt.$

$$\bullet \quad E = E_{sklo}^0 + \frac{R.T}{F} \ln a_{H_{vonk}^+}$$

•
$$E = E_{sklo}^0 - 0.059pH$$

chinhydrónová elektróda

- redox elektróda, pre pH 1 8
- o tvorená Pt plieškom ponoreným do roztoku chinhydrónu
 - hydrochinón zme chinónu a hydrochinónu

•
$$E = E_{CHH}^0 + \frac{R.T}{2F} \ln \frac{a_{CH} \cdot a_{H^+}^2}{a_H} = E_{CHH}^0 + \frac{R.T}{F} \ln a_{H^+}$$

•
$$E = E_{CHH}^0 - 0.059pH$$

Elektródy II.druhu

- referenčné elektródy s konštantnou a reprodukovateľnou hodnotou potenciálu
 - o ich hodnota potenciálu nezávisí od koncentrácie iónov v roztoku

• kalomelová elektróda

- \circ $Hg/Hg_2Cl_2,KCl$
- tvorená kovom pokrytým svojou nerozpustnou soľou a ponoreným do roztoku so spoločným aniónom ako má daná soľ

$$OHg_2^{2+} + 2e^- = 2Hg$$

$$E = E^0 + \frac{R.T}{2F} \ln a_{Hg_2^{2+}} = E^0 + \frac{R.T}{2F} \ln K_S - \frac{R.T}{2F} \ln a_{Cl}^2$$

$$E = E^0 - \frac{R.T}{E} \ln a_{Cl}$$

• argentchloridová elektróda

- o tvorená *Ag/AgCl, KCl*
- merkurosulfátová elektróda
 - \circ $Hg/HgSO_4, K_2SO_4$
- na meranie rovnovážneho napätia článku sa využíva kompenzačná *Poggendorfova metóda*

Potenciometria

 elektrochemická metóda umožňujúca kvantitatívne stanovenie látky, ako aj rôznych fyzikálno-chemických konštánt (K_s, K_A, a) meraním napätia galvanického článku • umožňuje stanovenie koncentrácie iónov, meria rozdiel potenciálov medzi referenčnou a mernou elektródou

delenie:

- o priama
- nepriama (potenciometrická titrácia)

priama potenciometria

- o priame meranie elektródového potenciálu galvanického článku
- o umožňuje vypočítať koncentráciu iónov, priamo sa určí pH roztoku
- použije sa galvanický článok zložený z mernej a referenčnej elektródy (statické a prietokové meranie)
 - merná elektróda/merný roztok/referenčná elektróda
- o používajú sa pH/mV metre s číselnou stupnicou (digitálne)
 - použitie ISE elektródy, pH 0 14 (chyba 0,01pH) rozsah -1,9V +1,9V (chyba 1mV)
 - kalibrácia použitím tlmivých roztokov s konštantným pH

nepriama potenciometria

- o využíva sa na indikáciu ekvivalentného bodu
- sleduje sa zmena potenciálu vhodnej indikačnej elektródy od objemu pridávaného titračného činidla
 - objektívna indikácia ekvivalentného bodu, presnosť 0,1%
- o využíva sa pri všetkých druhoch titrácie vo vodnom aj nevodnom prostredí
- merná elektróda sa volí podľa iónu, ktorého koncentrácia sa v ekvivalentnom bode náhle mení (acidobázické titrácie – použitie pH elektród, redox titrácie – indiferentná elektróda (Pt))

Polarografia

- Jaroslav Heyrovský Nobelova cena
- elektrochemická metóda, ktorá zaznamenáva krivky závislosti intenzity prúdu I od napätia E privádzaného na sústavu zloženú z dokonale polarizovateľnej (Hg kvapkajúcej) elektródy a z nepolarizovateľnej elektródy (kalomelová) v sledovanom roztoku
 - dokonalá polarizovateľnosť
 - schopnosť elektródy meniť potenciál priamo úmerne s vkladaným napätím
 - $E_{ind} = U + E_{ref}$

depolarizátor

- látka podliehajúca elektrolýze (stanovovaná elektroaktívna látka) prostredníctvom elektrolytických procesov spôsobuje zníženie polarizovateľnosti katódy
- reaguje na kvapke pri určitom napätí

• polarizačná krivka (polarogram)

- grafické znázornenie závislosti elektrolytického prúdu I depolarizátora od potenciálu
 Hg elektródy (E)
- o má 3 časti:
 - oblasť chemickej polarizácie (1)
 - neprebieha elektrochemická redukcia

- charakterizovaná značným vzrastom prúdu
- vzniká ak potenciál vnútený na katódu prekročí rozkladný potenciál
- redukcia depolarizátora spôsobuje pretekanie prúdu obvodom
 - tento prúd prebieha, kým sa všetky elektrochemicky aktívne molekuly (ióny) v najbližšom okolí ortuťovej kvapkovej elektródy nezúčastnia elektrochemickej reakcie

oblasť koncentračnej polarizácie (3)

- na elektróde reaguje iba toľko molekúl, koľko ich pridifunduje z vnútra roztoku k elektróde. Tým vzniká oblasť limitného difúzneho prúdu - oblasť koncentračnej polarizácie.
- ak sú v analyzovanom roztoku ďalšie elektrochemicky aktívne látky s
 rozdielnymi rozkladnými potenciálmi, potom oblasť limitného prúdu
 je zároveň aj oblasťou chemickej polarizácie ďalšej látky a na krivke IE vznikajú nové vlny

polarografické prúdy

- o nabíjací (kapacitný) pri vzniku elektrickej dvojvrstvy
- o difúzny riadiacim stupňom je rýchlosť difúzie látky k povrchu elektródy
- o kinetický chemická reakcia prebiehajúca v tesnej blízkosti elektródy
- adsorpčný elektródová reakcia naadsorbovaného depolarizátora

• Ilkova rovnica pre stredný difúzny prúd

$$o \ \overline{I} = 0.627. n. F. D^{1/2}. m^{2/3}. t^{1/6}. (c - c_0)$$

- I stredná hodnota difúzneho prúdu
- n počet elektrónov vymenených pri elektródovom deji
- m prietoková rýchlosť ortuti
- D difúzny koeficient depolarizovaného iónu
- t doba kvapky
- c koncentrácia dpeolarizátora vo vnútri roztoku
- c₀ koncentrácia depolarizátora na povrchu kvapky

• stredný limitný difúzny prúd

$$\circ \quad \overline{I}_d = \kappa. c \qquad \qquad \kappa = 0.627. \, n. \, F. \, D^{1/2}. \, m^{2/3}. \, t^{1/6}$$

- o je priamo úmerný koncentrácii depolarizátora
- o závislosť potenciálu difúzneho prúdu od katodickej redukcie

$$\bullet \quad E = E^0 + \frac{R.T}{n.F} \ln \frac{c_0^{ox}}{c_0^{red}}$$

