

AU OPTRONICS CORPORATION

Product Specification

17.0" WXGA Color TFT-LCD Module

Model Name: M170XW01 V.2

Approved by	Prepared by
CC Chiw	Gary Chen

DDBU Marketing Division / AU Optronics corporation

Customer	Checked & Approved by

Ver0.5 1/26

17.0" WXGA Color TFT-LCD Module Model Name: M170XW01 V.2

(♠) Preliminary Specifications() Final Specifications

Note: This Specification is subject to change without notice.

Ver0.5 2/26

Contents

1.0 Handling Precautions	6
2.0 General Description	7
2.1 Display Characteristics	7
2.2 Optical Characteristics	
3.0 Functional Block Diagram	11
4.0 Absolute Maximum Ratings	12
5.0 Electrical characteristics	
5.1 TFT LCD Module	13
5.1.1 Power Specification	
5.1.2 Signal Electrical Characteristics	
5.2 Backlight Unit	
6.0 Signal Characteristic	
6.1 Pixel Format Image	
6.2 The input data format	16
6.3 Signal Description	17
6.4 Interface Timings	18
6.4.1 Timing Characteristics	
6.4.2 Timing diagram	
6.5 Power ON/OFF Sequence	20
7.0 Connector & Pin Assignment	
7.1 TFT LCD Module	
7.2 Backlight Unit	21
8.0 Vibration, Shock, and Drop	22
8.1 Vibration & Shock	
8.2 Drop test	22
9.0 Environment	22
9.1 Temperature and Humidity	22
9.1.1 Operating Conditions	22
9.1.2 Shipping Conditions	
9.2 Atmospheric Pressure	
9.3Thermal Shock	
10.0 Reliability	
10.1 Failure Criteria	
10.2 Failure Rate	
10.2.1 Usage	23

11.0 Safety	23
11.1 Sharp Edge Requirements	23
11.2 Materials	24
11.2.1 Toxicity	24
11.2.2 Flammability	24
11.3 Capacitors	
12.0 Other requirement	24
12.1 National Test Lab Requirement	24
12.2 Label	24
13.0 Mechanical Characteristics	25

Record of Revision

Product Specification

Versi	ion and Date	Page	Old description	New Description	Remark
0.1	2004/03/26	All	First Edition for Customer	All	
0.2	2004/05/24	13	IDD (Typ= TBD, Max= TBD)	IDD (Typ= 950, Max= 1200 mA)	Update
		13	Irush= (Max= TBD)	Irush= (Max= 3.0 A)	Update
		13	PDD (Typ= TBD, Max= TBD)	PDD (Typ= 4.75, Max= 6.6 W)	Update
		18	Data CLK(Min= 35, Max= 83MHz) H-Period (Min= 1320 Tclk) V-Period (Max= 823 Th) Frame Rate (Max= 80Hz)	Data CLK(Min= 45, Max= 81MHz) H-Period (Min= 1330 Tclk) V-Period (Max= 860 Th) Frame Rate (Max= 75Hz)	Update
		20	Power ON/OFF Sequence T1 (Min= NA); T6 (Min= NA)	Power ON/OFF Sequence T1 (Min=0.5 ms); T6 (Min=0.5 ms)	Update
0.3	2004/05/27	15	LTCFL (Min= 30,000 Hours) (Typ= NA)	LTCFL (Min= 25,000 Hours) (Typ= 35,000 Hours)	Update
0.4	2004/07/02	15	LTCFL (Min= 30,000 Hours) (Typ= NA)	LTCFL (Min= 25,000 Hours) (Typ= 35,000 Hours)	Update
0.5	2004/07/29	08	Brightness uniformity Min= 75%, Typ= 80%	Brightness uniformity Min= 70%, Typ= 75%	Update

Ver0.5 5/26

1.0 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL reflector edge. Instead, press at the far ends of the CCFL reflector edge softly. Otherwise the TFT module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT module.
- 11) After installation of the TFT module into an enclosure (Desktop monitor Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT module from outside. Otherwise the TFT module may be damaged.

Ver0.5 6/26

2.0 General Description

This specification applies to the 17.0 inch Color TFT/LCD Module M170XW01 V.2. This module is designed for a display unit of personal computer. The display supports the WXGA (1280(H) x 768(V)) screen format and 16.2M colors (RGB 6-bits + FRC data). All input signals are 1 Channel LVDS interface compatible. This module does not contain an inverter card for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 °C condition:

ITEMS	Unit	SPECIFICATIONS				
Screen Diagonal	[mm]	432(17.0" Wide)				
Active Area	[mm]	370.56 (H) x 222.34(V)				
Pixels H x V		1280(x3) x 768				
Pixel Pitch	[mm]	0.2895 (per one	triad) x 0.289)5		
Pixel Arrangement		R.G.B. Vertical	Stripe			
Display Mode		Normally Black				
White Luminance	[cd/m ²]	450 (Typ, Cente	er @ Lamp= 1	1.0mA)		
Contrast Ratio		800 : 1				
Optical Response Time (Gray to Gray)	[msec]	16 (Typ)				
Nominal Input Voltage VDD	[Volt]	+5.0 V				
Power Consumption	[Watt]	TBD W(Typ)				
(VDD line + CCFL line)		(PDD=TBD W,	PCFL=TBD W	/ @Lamp=11.0	OmA)	
Weight	[Grams]	2000 (Typ)				
			Min.	Тур.	Max.	
Physical Size	[mm]	Horizatal(H)	403.5	404.0	404.5	
i ilysicai Size	[""""]	Vertical(V)	248.0	248.5	249.0	
		Depth(D)	16.8	17.3	17.8	
Electrical Interface		1 Channel LVD	S			
Support Color		16.2M colors (F	RGB 6-bit + FR	RC data)		
Surface treatment		Glare type, hard coating (2H)				
Temperature Range						
Operating	[°C]	0 to +50				
Storage (Shipping)	[°C]	-20 to +60				

Ver0.5 7/26

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C:

Item	Unit	Conditions	Min.	Тур.	Max.	Note	
		Horizontal (Right)	75	85	-		
Viouing Anglo	[dograo]	CR = 10 (Left)	75	85	-		
Viewing Angle	[degree]	Vertical (Up)	75	85	-		
		CR = 10 (Down)	75	85	-		
Contrast ratio		Normal Direction	600	800	-		
		Rasing Time	-	15	25		
Description Times	[1	Falling Time	-	10	15	Note 4	
Response Time	[msec]	Raising + Falling	-	25	40	Note 1	
		Gray to Gray	-	16	-		
		Red x	0.61	0.64	0.67		
		Red y	0.31	0.34	0.37		
Color / Chromaticity		Green x	0.26	0.29	0.32		
Coordinates (CIE)		Green y	0.58	0.61	0.64		
		Blue x	0.11	0.14	0.17		
		Blue y	0.04	0.07	0.10		
Color Coordinates (CIE)		White x	0.28	0.31	0.34		
White		White y	0.30	0.33	0.36		
White Luminance @ CCFL 11.0mA (Center)	[cd/m ²]		400	450	-		
Luminance Uniformity	[%]		70	75		Note 2	
Crosstalk (in 75Hz)	[%]		-	-	1.5	Note 3	
Flicker	dB		-	-	-20	Note 4	

Equipment: Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (PR 880, BM-5A / BM7)

Aperture 1° with 100cm VD or 2° with 50cm viewing distance

Test Point Center (VESA point 9)

Environment < 1 lux

Ver0.5 8/26

Note 1: The Definition of Response time

The output signals of photodetector are measured when the input signals are changed from "Black" to "White" (rising time), and from "White" to "Black "(falling time), respectively. The response time is interval between the 10% and 90% of amplitudes.

Note 2: Brightness uniformity of these 9 points is defined as below

Uniformity = $\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}}$

Ver0.5 9/26

Note 3: The Definition of Crosstalk

Unit: percentage of dimension of display area

0 gray level

I L_A - $L_{A'}$ I / L_A x 100%= 1.5% max., L_A and L_B are brightness at location A and B I L_B - $L_{B'}$ I / L_B x 100%= 1.5% max., $L_{A'}$ and $L_{B'}$ are brightness at location A' and B'

Note4: The Definition of Flicker

Test Paterm: Subchecker Pattern

Method: Record dBV & DC value with (WESTAR)TRD-100

Flicker (dB) =
$$20 \log \frac{AC \text{ Level(at 30 Hz)}}{DC \text{ Level}}$$

Ver0.5 10/26

3.0 Functional Block Diagram

The following diagram shows the functional block of the 17.0 inches wide Color TFT/LCD Module:

HIROSE DF14H-20P-1.25H

Mating Type: HIROSE DF14-20S-1.25C

BHSR-02VS-1

SM02B-BHSS-1-TB

Ver0.5 11/26

4.0 Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	VIN	-0.3	+5.5	[Volt]	Note 1,2

Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
CCFL Current	ICFL	-	12.0	[mA] rms	Note 1,2
CCFL Frequency	FCFL	40	80	[Hz]	Note 1,2

Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Humidity	HOP	8	95	[%RH]	
Storage Temperature	TST	-20	+60	[°C]	
Storage Humidity	HST	8	95	[%RH]	

Note 1: With in Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Relative Humidity %

Ver0.5 12/26

5.0 Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VDD	Logic/LCD Drive Voltage	4.5	5	5.5	[Volt]	±10%
IDD	VDD current	-	950	1200	[mA]	Vin=5V , All White Pattern, +30%, at 75Hz
Irush	LCD Inrush Current	-	-	3.0	[A]	Note
PDD	VDD Power	-	4.75	6.6	[Watt]	Vin=5V , All White Pattern, +30%, at 75Hz
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	

Product Specification

Note: Measurement conditions:

Vin rising time

Ver0.5 13/26

5.1.2 Signal Electrical Characteristics

Each signal characteristics are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VTH	Differential Input High			+100	[m\/]	VICM = 1.2V
VIII	Threshold	-	_	+100	[mV]	Note
VTL	Differential Input Low	-100			[m\/]	VICM = 1.2V
VIL	Threshold	-100	_	-	[mV]	Note
VID	Input Differential Voltage	100	400	600	[mV]	Note
VION	Differential Input Common	4.4		4.45	D. Cl	VTH/VTL = ±100MV
VICM	Mode Voltage	1.1	_	1.45	[V]	Note

Note: LVDS Signal Waveform

Ver0.5 14/26

5.2 Backlight Unit

Parameter guideline for CCFL Inverter

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
ISCFL	CCFL standard current	10.5	11.0	11.5	[mA] rms	(Ta=25°C) Note 1
IRCFL	CCFL operation range	5.5	11.0	12.0	[mA] rms	(Ta=25°C)
FCFL	CCFL Frequency	40	60	80	[KHz]	(Ta=25°C) Note 2
ViCFL (0°C)	CCFL Ignition Voltage (End of the lamp wire connector)	1650	-	-	[Volt] rms	(Ta=0°C)
ViCF (25°C)	CCFL Ignition Voltage (End of the lamp wire connector)	1250	-	-	[Volt] rms	(Ta=25°C)
VCFL	CCFL Operation Voltage	-	560 @11.0mA	680 @5.5mA	[Volt] rms	(Ta=25°C) Note 3
PCFL	CCFL Power consumption (for reference)	-	24.6	28	[Watt]	(Ta=25°C) Note 4
LTCFL	CCFL life Time	25,000	35,000	-	[Hour]	(Ta=25°C) <i>Note 5</i>

Note 1: CCFL standard current is measured at 25±2°C. The variance of the current is ±10%.

Note 2: CCFL Frequency should be carefully determined to avoid interference between inverter and TFT LCD

Note 3: CCFL operation voltage is measured at 25±2°C.

Note 4: The variance of CCFL power consumption is ±10%. Calculator value for reference (ICFL×VCFL×4=PCFL).

Note 5: CCFL life time is determined as the time at which brightness of lamp is 50%. The typical life time of CCFL is on the condition at 11.0mA lamp current.

Ver0.5 15/26

6.0 Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1			2			1.	27	9	12	280)
1st Line	R	G	В	R	G	В		R	G	В	R	G	В
		-			-		-						
		-			-		-		-			-	
		-			-		- -		-				
		-			-		-		-			-	
		•							:			:	
		•			•		•		•			•	
		•							:			:	
		•			•		•		•			•	
768 Line	R	G	В	R	G	В		R	G	В	R	G	В

6.2 The input data format

R/G/B data 7: MSB, R/G/B data 0: LSB

Ver0.5 16/26

6.3 Signal Description

The module using one LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible.

PIN No.	SIGNAL NAME	DESCRIPTION
1	VCC	+5.0V Power Supply
2	VCC	+5.0V Power Supply
3	VSS	Power Ground
4	VSS	Power Ground
5	RxIN0-	Negative LVDS differential data input
6	RxIN0+	Positive LVDS differential data input
7	VSS	Power Ground
8	RxIN1-	Negative LVDS differential data input
9	RxIN1+	Positive LVDS differential data input
10	VSS	Power Ground
11	RxIN2-	Negative LVDS differential data input
12	RxIN2+	Positive LVDS differential data input
13	VSS	Power Ground
14	RxCLKIN-	Negative LVDS differential clock input
15	RxCLKIN+	Positive LVDS differential clock input
16	VSS	Power Ground
17	RxIN3-	Negative LVDS differential data input
18	RxIN3+	Positive LVDS differential data input
19	VSS	Power Ground
20	NC	No Connection (For AUO Test)

Note 1: All GND (ground) pins should be connected together and to VSS which should also be connected to the LCD's metal frame.

Note 2: All VCC (power input) pins should be connected together.

Ver0.5 17/26

Note 3: The drawing of connector.

6.4 Interface Timings

6.4.1 Timing Characteristics

Item		Symbol	Min	Тур	Max	Unit
Data CLK		Tclk	45	64	81	MHz
H-section	Period	Th	1330	1350	1440	Tclk
11-56011011	Display Area	Tdisp(h)	1280	1280	1280	Tclk
V-section	Period	Tv	777	790	860	Th
V-Section	Display Area	Tdisp(v)	768	768	768	Th
Fran	ne Rate	F	47	60	75	Hz

Note: DE mode only.

Ver0.5 18/26

6.4.2 Timing diagram

6.5 Power ON/OFF Sequence

Vin and lamp power on/off sequence are as follows. The timing parameters of interface signal are shown in the table below.

C. mah al		l lmi4		
Symbol	Min.	Тур.	Max.	Unit
T1	0.5	-	10	ms
T2	0.5	25	50	ms
Т3	200	-	-	ms
T4	200	-	-	ms
T5	0.5	16	50	ms
T6	0.5	-	10	ms
T7	1000	-	_	ms

Ver0.5 20/26

7.0 Connector & Pin Assignment

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	Interface Connector / Interface card		
Manufacturer	HIROSE or compatible		
Type Part Number	DF14H-20P-1.25H		
Mating Housing Part Number	DF14-20S-1.25C		

Pin No.	Signal Name	Pin No.	Signal Name
1	VCC, +5.0V	11	RxIN2-
2	VCC, +5.0V	12	RxIN2+
3	VSS	13	VSS
4	VSS	14	RxCLKIN-
5	RxIN0-	15	RxCLKIN+
6	RxIN0+	16	VSS
7	VSS	17	RxIN3-
8	RxIN1-	18	RxIN3+
9	RxIN1+	19	VSS
10	VSS	20	NC (FOR AUO TEST)

7.2 Backlight Unit

Connector Name / Designation	Lamp Connector / Backlight lamp
Manufacturer	JST
Type Part Number	BHSR-02VS-1
Mating Type Part Number	SM02B-BHSS-1-TB

	Pin No.	Input	Color	Function
	1	Hot1	Pink	High Voltage
Upper	2	Cold1	White	Low Voltage
Opper	3	Hot2	Blue	High Voltage
	4	Cold2	Black	Low Voltage
	1	Hot1	Pink	High Voltage
Lower	2	Cold1	White	Low Voltage
Lower	3	Hot2	Blue High Voltage	
	4	Cold2	Black	Low Voltage

Ver0.5 21/26

8.0 Vibration, Shock, and Drop

8.1 Vibration & Shock

Vibration Test Spec:

Frequency: 10 - 200Hz

• Sweep: 30 Minutes each Axis (X, Y, Z)

Acceleration: 1.5G(10~200Hz P- P)

Test method:

Acceleration (G)	1.5		
Frequency (Hz)	10~200~10		
Active time (min)	30		

Shock Test Spec:

Acceleration (G) -a	50
Active time -b	20 ms
Wave form	Half-sin
Times	1

● Direction: ±X, ±Y, ±Z

8.2 Drop test

Package test: The drop height is 60cm.

9.0 Environment

The display module will meet the provision of this specification during operating condition or after storage or shipment condition specified below. Operation at 10% beyond the specified range will not cause physical damage to the unit.

9.1 Temperature and Humidity

9.1.1 Operating Conditions

The display module operates error free, when operated under the following conditions;

Temperature $0 \, ^{\circ}\text{C}$ to $50 \, ^{\circ}\text{C}$ Relative Humidity 8% to 95% Wet Bulb Temperature $39.0 \, ^{\circ}\text{C}$

9.1.2 Shipping Conditions

The display module operates error free, after the following conditions;

Temperature -20 °C to 60 °C
Relative Humidity 5% to 100%
Wet Bulb Temperature 39.0 °C

Ver0.5 22/26

9.2 Atmospheric Pressure

The display assembly is capable of being operated without affecting its operations over the pressure range as following specified;

	Pressure	Note
Maximum Pressure	1040hPa	(sea level)
Minimum Pressure	674hPa	(3048m)

9.3 Thermal Shock

The display module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again.

Thermal shock cycle -20 °C for 30min 60 °C for 30min

Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before powering on.

10.0 Reliability

This display module and the packaging of that will comply following standards.

10.1 Failure Criteria

The display assembly will be considered as failing unit when it no longer meets any of the requirements stated in this specification. Only as for maximum white luminance, following criteria is applicable.

Maximum white Luminance shall be 150cd/m² or more.

10.2 Failure Rate

The average failure rate of the display module (from first power-on cycle till 1,000 hours later) will not exceed 1.0%. The average failure rate of the display module from 1,000 hours until 16,000 hours will not exceed 0.7% per 1000 hours.

10.2.1 Usage

The assumed usage for the above criteria is:

- 220 power-on hours per month
- 500 power on/off cycles per month
- Maximum brightness setting
- Operation to be within office environment (25°C typical)

11.0 Safety

11.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

Ver0.5 23/26

11.2 Materials

11.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible ADT Toxicologist.

11.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

11.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

12.0 Other requirement

12.1 National Test Lab Requirement

The display module will satisfy all requirements for compliance to

UL 1950, First Edition CSA C22.2 No.950-M89 EEC 950

EN 60 950

U.S.A. Information Technology Equipment
Canada, Information Technology Equipment
International, Information Technology Equipment
International, Information Processing Equipment
(European Norm for IEC950)

12.2 Label

The label is on the panel as shown below:

Ver0.5 24/26

13.0 Mechanical Characteristics

Ver0.5 25/26

Ver0.5 26/26