Slabá a silná indukce Princip dobrého uspořádání Rekursivní algoritmy Shrnutí přednášky

Principy indukce a rekursivní algoritmy

Místností rozměru n budeme rozumět šachovnici rozměru $2^n \times 2^n$, ze které je jedno (libovolné) pole vyjmuto. Toto je příklad místnosti rozměru 3:

Slabá a silná indukce Princip dobrého uspořádání Rekursivní algoritmy Shrnutí přednášky

Příklad (pokrač.)

Trimino je parketa následujícího tvaru:

Dokažte indukcí:

Každou místnost rozměrů $n \geq 1$ lze vyparketovat triminy.

P(n) =počet parket k vyparketování místnosti rozměru n

$$P(1) = 1.$$

2
$$P(n+1) = 1 + 4 \cdot P(n), n \ge 1.$$

Tomu se říká rekurentní rovnice.

Jak vyjádřit hodnoty P(n) explicitně?

Řešení (jisté třídy) rekurentních rovnic — příští přednáška.

Princip slabé indukce

Ať V je nějaká vlastnost přirozených čísel. K tomu, abychom mohli usoudit, že všechna přirozená čísla $n \geq n_0$ mají vlastnost V, stačí ukázat dvě věci:

- Základní krok: číslo n₀ má vlastnost V.
- 2 Indukční krok: číslo n+1 má vlastnost V, pokud předpokládáme, že číslo n má vlastnost V.

Analogie s rekursivním algoritmem

Všechny úlohy rozměru $n \ge n_0$ jsou zpracovány, pokud:

- Základní krok: úloha rozměru n₀ je zpracována nerekursivně.
- **2** Rekursivní volání: úloha rozměru n+1 je zpracována, pokud po dekompozici je zpracována úloha rozměru n.

Posloupnost $\{F(n)\}_{n=1}^{\infty}$ Fibonacciho čísel je definována rekurentně takto:

$$F(1) = 1$$
, $F(2) = 1$, $F(n+2) = F(n) + F(n+1)$, pro $n \ge 1$.

Dokažte, že pro každé $n \ge 2$ platí rovnost

$$F(n)^2 - F(n-1) \cdot F(n+1) = (-1)^{n-1}.$$

Řešení: indukce podle n.

4 Základní krok: platí rovnost pro n = 2?

$$F(2)^2 - F(1) \cdot F(3) = (-1)^{2-1}$$
 Platí to?

Především: F(2) = 1, F(1) = 1 a F(3) = F(1) + F(2) = 2. Potom

$$F(2)^2 - F(1) \cdot F(3) = 1 - 1 \cdot 2 = -1 = (-1)^1 = (-1)^{2-1},$$

a to jsme chtěli.

② Indukční krok: máme pevné $n \ge 2$ a chceme dokázat rovnost:

$$F(n+1)^2 - F((n+1)-1) \cdot F((n+1)+1) = (-1)^{(n+1)-1}$$
.

Snaha o dekomposici:

$$F(n+1)^{2} - F((n+1) - 1) \cdot F((n+1) + 1) =$$

$$F(n+1)^{2} - F(n) \cdot F(n+2) =$$

$$F(n+1)^{2} - F(n) \cdot (F(n) + F(n+1)) =$$

$$F(n+1)^{2} - F(n) \cdot F(n) - F(n) \cdot F(n+1) =$$

$$F(n+1)^{2} - F(n)^{2} - F(n) \cdot F(n+1) =$$

$$F(n+1)^{2} - F(n)^{2} - F(n) \cdot F(n+1) =$$

$$F(n+1)^{2} - F(n)^{2} + F(n-1) \cdot F(n+1) -$$

$$-F(n-1) \cdot F(n+1) - F(n) \cdot F(n+1)$$

Dekomponovali jsme: objevili jsme levou stranu úlohy rozměru n.

Můžeme zformulovat indukční předpoklad:

pro pevné $n \ge 2$ platí rovnost

$$F(n)^2 - F(n-1) \cdot F(n+1) = (-1)^{n-1}$$
.

Takže použitím indukčního předpokladu:

$$F(n+1)^{2} - F(n)^{2} + F(n-1) \cdot F(n+1) +$$

$$-F(n-1) \cdot F(n+1) - F(n) \cdot F(n+1) =$$

$$F(n+1)^{2} - (-1)^{n-1} - F(n-1) \cdot F(n+1) - F(n) \cdot F(n+1) =$$

$$F(n+1)^{2} - (-1)^{n-1} - F(n+1) \cdot (F(n-1) + F(n)) =$$

$$F(n+1)^{2} - (-1)^{n-1} - F(n+1)^{2} =$$

$$-(-1)^{n-1} =$$

$$(-1)^{n}.$$

Dokázali jsme rovnost

$$F(n+1)^2 - F((n+1)-1) \cdot F((n+1)+1) = (-1)^{(n+1)-1}$$
.

Indukční krok je u konce.

Podle slabého principu indukce je rovnost

$$F(n)^2 - F(n-1) \cdot F(n+1) = (-1)^{n-1}$$
.

dokázána pro všechna n > 2.

Co je špatně na následujícím důkazu?

- Je-li maximum dvou přirozených čísel 0, pak jsou si obě čísla rovna.
- 2 Předpokládejme, že je-li maximum dvou přirozených čísel *n*, pak jsou si rovna.

Vezměme nyní dvě přirozená čísla a, b taková, že jejich maximum je n+1. Pak maximum čísel a-1 a b-1 je n a podle předpokladu je a-1=b-1. Tudíž a=b.

Podle slabého principu indukce jsou si všechna přirozená čísla rovna.

Prvočíselný rozklad přirozeného čísla x je zápis

$$x=p_1^{n_1}\cdot p_2^{n_2}\cdot \cdot \cdot \cdot p_r^{n_r},$$

kde $r \ge 1$ je přirozené číslo, $p_1 < p_2 < \cdots < p_r$ jsou prvočísla a n_1, n_2, \ldots, n_r jsou kladná přirozená čísla.

Dokažte následující tvrzení:

Každé přirozené číslo $x \ge 2$ má prvočíselný rozklad.

Princip silné indukce

Ať V je nějaká vlastnost přirozených čísel. K tomu, abychom mohli usoudit, že všechna přirozená čísla $n \geq n_0$ mají vlastnost V, stačí ukázat dvě věci:

- **1** Základní krok: číslo n_0 má vlastnost V.
- ② Indukční krok: číslo n+1 má vlastnost V, pokud předpokládáme, že všechna přirozená čísla k, kde $n_0 \le k < n+1$, mají vlastnost V.

Analogie s rekursivním algoritmem

Úloha rozměru $n \ge n_0$ je zpracována, pokud:

- Základní krok: úloha rozměru n₀ je zpracována nerekursivně.
- **Rekursivní** volání: úloha rozměru n+1 je zpracována, pokud po dekompozici jsou zpracovány úlohy rozměru k, kde $n_0 < k < n+1$.

Věta

Princip silné indukce je logicky ekvivalentní principu slabé indukce.

Náznak důkazu:

- ⇒ Platí-li silný princip indukce, platí i slabý princip.
- Využívá faktu, že každá neprázdná konečná množina přirozených čísel má nejmenší prvek.

Princip dobrého uspořádání

Každá neprázdná podmnožina přirozených čísel má nejmenší prvek.

Věta

Princip dobrého uspořádání je logicky ekvivalentní principům indukce.

Důsledek

Přijmeme-li (kterýkoli) princip indukce, musíme přijmout princip dobrého uspořádání. A naopak: přijmeme-li princip dobrého uspořádání, musíme přijmout princip indukce.

Věta

Následující je ekvivalentní:

- 1 Princip dobrého uspořádání přirozených čísel.
- V přirozených číslech neexistuje klesající nekonečná posloupnost.

Důležité v teorii rekursivních algoritmů:

terminaci rekursivního algoritmu zaručí variant (= rozměr dat, který se zmenšuje, nelze však zmenšovat do nekonečna).

Parketující algoritmus

Variant je rozměr místnosti, kterou chceme vyparketovat.

Později

Důkladně prozkoumáme terminaci Eukleidova algoritmu. Nalezneme variant (zajistíme terminaci) a invariant (zajistíme parciální korektnost).

Obecně u rekursivních algoritmů

- Terminace: algoritmus ukončí výpočet pro jakákoli přípustná vstupní data.
- Pormule parciální korektnosti: tvrzení, které platí, pokud algoritmus svoji práci ukončí.

Collatzův problém

Otázka terminace následujícího algoritmu:

```
while x > 1 do
    if even(x) then x:=x/2 else x:=3*x+1 endif
endwhile
```

Neví se, zda pro každou přirozenou hodnotu x svou práci skončí či ne.

To znamená: neví se, jak vypadá variant.

Algoritmus se zastaví pro všechny počáteční hodnoty x menší nebo rovny číslu $3\cdot 2^{53}$ (stav z roku 1999).

Viz například

http://mathworld.wolfram.com/CollatzProblem.html

Formule parciální korektnosti jasná: pokud algoritmus skončí, je x=1.

- 1 Důkaz indukcí = rekursivní algoritmus.
- ② Úzká souvislost s rekurentními rovnicemi (časová náročnost, složitost rekursivního algoritmu).
- 9 Princip dobrého uspořádání a variant zaručí terminaci rekursivního algoritmu.
- Musterbeispiel na indukci neexistuje! Viz sbírka řešených příkladů.