03-02 Systèmes de recommandation II

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE ET SERVICES AUX ENTREPRISES

Sommaire

- 1. Recommandations basées sur le contenu
- 2. Filtrage collaboratif
- 3. Lectures et références

Sommaire

- 1. Recommandations basées sur le contenu
- 2. Filtrage collaboratif
- 3. Lectures et références

On suppose que chaque série est représentée par un vecteur "profile" x

	Alice (1)	Bob (2)	Mike (3)	Alex (4)	x_1 (crime)	x_2 (horreur)
Money Heist $x^{(1)}$	5	5	1	?		
Mindhunter $x^{(2)}$	4	5	?	0		
The Walking Dead $x^{(3)}$	1	?	5	4		
The Haunting of Hill House $x^{(4)}$?	2	4	5		
Ash vs Evil Dead $x^{(5)}$?	0	5	?		

On suppose que chaque série est représentée par un vecteur "profile" x

	Alice (1)	Bob (2)	Mike (3)	Alex (4)	x_1 (crime)	x_2 (horreur)
Money Heist $x^{(1)}$	5	5	1	?	0.90	0
Mindhunter $x^{(2)}$	4	5	?	0	0.95	0.2
The Walking Dead $x^{(3)}$	1	?	5	4	0	0.80
The Haunting of Hill House $x^{(4)}$?	2	4	5	0.05	0.99
Ash vs Evil Dead $x^{(5)}$?	0	5	?	0	0.85

$$oldsymbol{x}^{(3)} = egin{bmatrix} 1 \ 0 \ 0.80 \end{bmatrix}
ightarrow x_o = 1$$

$$n = 2$$

■ Prédiction de la note d'une série *j* par l'utilisateur *i*

	Bob (2)	x_1 (crime)	x_2 (horreur)	
Money Heist $x^{(1)}$	5	0.90	0	
Mindhunter $x^{(2)}$	5	0.95	0.2	
The Walking Dead $x^{(3)}$?	0	0.80	,
The Haunting of Hill House $x^{(4)}$	2	0.05	0.99	•
Ash vs Evil Dead $x^{(5)}$	0	0	0.85	

Pour prédire la note que donnerait Bob à "The Walking Dead", il faut apprendre un vecteur "profile utilisateur"

■ Prédiction de la note d'une série *j* par l'utilisateur *i*

	Bob (2) $\theta^{(2)}$	x_1 (crime)	x_2 (horreur)	$ heta^{(2)} = \left[egin{array}{c} 0 \ 5 \end{array} ight]$	$oldsymbol{x}^{(3)} = \left[egin{array}{c} 1 \ 0 \end{array} ight]$
Money Heist $x^{(1)}$	5	0.90	0	$\begin{bmatrix} 0 \\ 0.1 \end{bmatrix}$	$\begin{bmatrix} 0.80 \end{bmatrix}$
Mindhunter $x^{(2)}$	5	0.95	0.2		
The Walking Dead $x^{(3)}$?	0	0.80		$\times 1 + 5 \times 0 + 0.1 \times 0.8$
The Haunting of Hill House $x^{(4)}$	2	0.05	0.99	=0.0	8
Ash vs Evil Dead $x^{(5)}$	0	0	0.85		

Pour chaque utilisateur j, on apprend un vecteur de paramètres $\theta^{(j)} \in \mathbb{R}^{n+1}$

lacktriangle Prédiction de la note d'une série j par l'utilisateur i

Pour chaque utilisateur j, on apprend un vecteur de paramètres $\theta^{(j)} \in \mathbb{R}^{n+1}$

Considérons les notes suivantes. Quelle pourrait être une valeur de $\theta^{(3)}$?

	Alice (1)	Bob (2)	Mike (3)	Alex (4)	x_1 (crime)	x_2 (horreur)
Money Heist $x^{(1)}$	5	5	1	?	1	0
Mindhunter $x^{(2)}$	4	5	?	0	1	0
The Walking Dead $x^{(3)}$	1	?	5	4	0	1
The Haunting of Hill House $x^{(4)}$?	2	5	5	0	1
Ash vs Evil Dead $x^{(5)}$?	0	5	?	0	1

Réponse: par exemple
$$heta^{(3)} = egin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix}$$

- $r^{(i,j)} = 1$ si l'utilisateur j a noté la série i, $r^{(i,j)} = 0$ sinon
- $y^{(i,j)}$ = note donnée par l'utilisateur j sur la série i (si et seulement si $r^{(i,j)}$ = 1)
- $\theta^{(j)}$ = vecteur de paramètres / profile de l'utilisateur j ($\theta^{(j)} \in \mathbb{R}^{n+1}$)
- $x^{(j)}$ = vecteur "profile" de la série i
- Prédiction $(\theta^{(i)})^T x^{(i)}$ pour la série i de l'utilisateur j
- ullet $s^{(j)}$ représente le nombre de séries notées par l'utilisateur j
- \rightarrow Comment apprendre $\theta^{(j)}$?

- $r^{(i,j)} = 1$ si l'utilisateur j a noté la série i, $r^{(i,j)} = 0$ sinon
- $y^{(i,j)}$ = note donnée par l'utilisateur j sur la série i (si et seulement si $r^{(i,j)}$ = 1)
- $\theta^{(j)}$ = vecteur de paramètres de l'utilisateur j ($\theta^{(j)} \in \mathbb{R}^{n+1}$)
- $x^{(i)}$ = vecteur de fe**Par régression linéaire simple!**
- Prédiction $(\theta^{(i)})^T x^{(i)}$ pour la série i de l'utilisateur j
- lacksquare $s^{(j)}$ représente le nombre de séries notées par l'utilisateur j
- lacksquare ightarrow Comment apprendre $oldsymbol{ heta}^{(j)}$?

Pour apprendre $\theta^{(j)}$:

$$J(heta^{(j)}) = rac{1}{2 imes N} \sum_{i:r^{(i,j)}=1}^{s^{(j)}} ((heta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + rac{\lambda}{2 imes N} \sum_{k=1}^n (heta^{(j)}_k)^2 \ rac{1}{2 imes N} \prod_{ heta^{(j)}} J(heta^{(j)})$$

Pour apprendre $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$:

Comme en régression linéaire simple, nous utilisons la descente de gradient

Répéter jusqu'à convergence { $\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r^{(i,j)}=1}^{s^{(j)}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \times x_k^{(i)} \qquad (k = 0)$ $\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left[\sum_{i:r^{(i,j)}=1}^{s^{(j)}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \times x_k^{(i)} + \lambda \theta_k^{(j)} \right] \quad (k \neq 0)$ }

Avantages

- Pas besoin des données des autres utilisateurs
- Capable de recommander les utilisateurs aux goût uniques
- Capable de recommander des nouveaux produits ou des produits impopulaires
- Modèle interprétable, car nous avons les vecteurs "profile"

Inconvénients

- Nécessite le vecteur "profile" qui peut être très difficile d'obtenir (ex. Musique, films, ...)
- N'exploite pas les notation des autres utilisateurs
- Problème du démarrage à froid (sera adressé par la normalisation par la moyenne)
- Ne fonctionne que pour un seul type de produit

Sommaire

- 1. Recommandations basées sur le contenu
- 2. Filtrage collaboratif
- 3. Lectures et références

■ La recommandation basée sur le contenu suppose un **vecteur "profile"** x

	Alice (1)	Bob (2)	Mike (3)	Alex (4)	x_1 (crime)	x_2 (horreur)
Money Heist	5	5	1	?	0.90	0
Mindhunter	4	5	?	0	0.95	0.2
The Walking Dead	1	?	5	4	0	0.80
The Haunting of Hill House	?	2	4	5	0.05	0.99
Ash vs Evil Dead	?	0	5	?	0	0.85

■ La réalité est toute autre!

	Alice (1)	Bob (2)	Mike (3)	Alex (4)	x_1 (crime)	x_2 (horreur)
Money Heist	5	5	1	?	?	?
Mindhunter	4	5	?	0	?	?
The Walking Dead	1	?	5	4	?	?
The Haunting of Hill House	?	2	4	5	?	?
Ash vs Evil Dead	?	0	5	?	?	?

■ La réalité est toute autre!

	Alice $\theta^{(1)}$	Bob $ heta^{(2)}$	Mike $\theta^{(3)}$	Alex $\theta^{(4)}$	x_1	x_2
$x^{(1)}$	5	5	1	?	?	?
$x^{(2)}$	4	5	?	0	?	?
<i>x</i> ⁽³⁾	1	?	5	4	?	?
$x^{(4)}$?	2	4	5	?	?
$_{\mathcal{X}}$ (5)	?	0	5	?	?	?

Supposons:
$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$$
 $\theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$ $\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$ $\theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$

 $x^{(3)}$ tel que $(\theta^{(1)})^{\mathsf{T}}x^{(3)}\approx 1$, $(\theta$ $(3)^{\mathsf{T}} x^{(3)} \approx 5 \text{ et } (\theta^{(4)})^{\mathsf{T}} x^{(3)} \approx 4$

La réalité est toute autre!

	Alice $\theta^{(1)}$	Bob $ heta^{(2)}$	Mike $\theta^{(3)}$	Alex $\theta^{(4)}$	x_1	x_2	
x ⁽¹⁾	5	5	1	?	?	?	
$x^{(2)}$	4	5	?	0	?	?	
<i>x</i> (3)	1	?	5	4	?	?	ŀ
$x^{(4)}$?	2	4	5	?	?	
<i>x</i> (5)	?	0	5	?	?	?	

$$heta^{(1)} = egin{bmatrix} 0 \ 5 \ 0 \end{bmatrix}$$

$$heta^{(2)} = egin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$$

Supposons:
$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$$
 $\theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$ $\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$ $\theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$

$$heta^{(4)} = egin{bmatrix} 0 \ 0 \ 5 \end{bmatrix}$$

 $x^{(3)}$ tel que $(\theta^{(1)})^{\mathsf{T}}x^{(3)}\approx 1$, $(\theta$ $(3)^{T} x^{(3)} \approx 5 \text{ et } (\theta^{(4)})^{T} x^{(3)} \approx 4$

La réalité est toute autre!

	Alice $\theta^{(1)}$	Bob $\theta^{(2)}$	Mike $\theta^{(3)}$	Alex $\theta^{(4)}$	x_{1}	x_2
x ⁽¹⁾	5	5	1	?	?	?
$x^{(2)}$	4	5	?	0	?	?
$x^{(3)}$	1	?	5	4	0	0.80
$x^{(4)}$?	2	4	5	?	?
x (5)	?	0	5	?	?	* ?

$$heta^{(1)} = egin{bmatrix} 0 \ 5 \ 0 \end{bmatrix}$$

$$heta^{(2)} = egin{bmatrix} 0 \ 5 \ 0 \end{bmatrix}$$

Supposons:
$$heta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} \quad heta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} \quad heta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} \quad heta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

$$heta^{(4)} = egin{bmatrix} 0 \ 0 \ 5 \end{bmatrix}$$

$$x^{(3)}=\left[egin{array}{c}1\0\0.80\end{array}
ight]$$
 21

Considérons les notes suivantes et une feature unique x_1 .

	Utilisateur 1	Utilisateur 2	Utilisateur 3	x_1
Série 1	0	1.5	2.5	?

On suppose

- $heta^{(1)} = egin{bmatrix} 0 \ 0 \end{bmatrix} \qquad heta^{(2)} = egin{bmatrix} 0 \ 3 \end{bmatrix} \qquad heta^{(3)} = egin{bmatrix} 0 \ 5 \end{bmatrix}$

Quelle est une valeur possible de $x_1^{(1)}$?

Réponse: 0.5

• Considérons les notes suivantes et une feature unique x_1 .

On suppose Comment apprendre le vecteur x_1 ?

• Quelle est une valeur possible de $x_1^{(1)}$?

Réponse: 0.5

• Considérons les notes suivantes et une feature unique x_1 .

On suppose

• Quelle est une valeur possible de $x_1^{(1)}$?

Réponse: 0.5

Pour apprendre $x^{(i)}$, étant donné $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$:

$$J(x^{(i)}) = rac{1}{2} \sum_{j:r^{(i,j)}=1}^{n_u} ((heta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + rac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

■ Pour apprendre $x^{(1)}, x^{(2)}, ..., x^{(nm)}$, étant donné $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(nu)}$:

$$egin{aligned} J(x^{(1)},x^{(2)},\cdots,x^{(n_s)}) &= rac{1}{2}\sum_{i=1}^{n_s}\sum_{j:r^{(i,j)}=1} ((heta^{(j)})^Tx^{(i)} - y^{(i,j)})^2 \ + rac{\lambda}{2}\sum_{i=1}^{n_s}\sum_{k=1}^n (x_k^{(i)})^2 \ &dots \$$

Supposons que la descente de gradient soit utilisée pour minimiser:

$$J(x^{(1)},x^{(2)},\cdots,x^{(n_s)})=rac{1}{2}\sum_{i=1}^{n_s}\sum_{j:r^{(i,j)}=1}((heta^{(j)})^Tx^{(i)}-y^{(i,j)})^2 \ +rac{\lambda}{2}\sum_{i=1}^{n_s}\sum_{k=1}^n(x_k^{(i)})^2$$

■ Pour $k \neq 0$, quelle opération de mise à jour est correcte?

$$\mathsf{A.} \quad x_k^{(i)} := x_k^{(i)} + lpha \sum\limits_{j: r^{(i,j)} = 1} ((heta^{(j)})^T x^{(i)} - y^{(i,j)}) imes heta_k^{(j)}$$

$$\mathsf{B.} \quad x_k^{(i)} := x_k^{(i)} - lpha \sum\limits_{j: r^{(i,j)} = 1} ((heta^{(j)})^T x^{(i)} - y^{(i,j)}) imes heta_k^{(j)}$$

$$\mathsf{C.} \quad x_k^{(i)} := x_k^{(i)} + lpha \left[\sum\limits_{j:r^{(i,j)}=1} ((heta^{(j)})^T x^{(i)} - y^{(i,j)}) imes heta_k^{(j)} + \lambda x_k^{(i)}
ight]$$

$$\textbf{D.} \quad x_k^{(i)} := x_k^{(i)} - \alpha \left[\sum_{j: r^{(i,j)} = 1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \times \theta_k^{(j)} + \lambda x_k^{(i)} \right]$$

Réponse: D

Pour résumer ...

- Estimer $x^{(1)}$, $x^{(2)}$, ..., $x^{(nm)}$, étant donné $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$ et les notes
- Estimer $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$, étant donné $x^{(1)}$, $x^{(2)}$, ..., $x^{(nm)}$ et les notes

- Estimer $x^{(1)}$, $x^{(2)}$, ..., $x^{(nm)}$, étant donné $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$ et les notes
- Estimer $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$, étant donné $x^{(1)}$, $x^{(2)}$, ..., $x^{(nm)}$ et les notes
- Une possibilité est de partir de **suppositions sur** θ et d'estimer x, puis d'estimer θ , etc...

Supposition
$$\theta \rightarrow x \rightarrow \theta \rightarrow x \rightarrow \theta \rightarrow x \rightarrow ...$$

- L'algorithme converge magiquement ...
- ... mais il y a mieux!

Minimiser selon $x^{(1)}$, $x^{(2)}$, ..., $x^{(nm)}$ et $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$ simultanément!

$$J(x^{(1)}, x^{(2)}, \cdots, x^{(n_s)}, \theta^{(1)}, \theta^{(2)}, \cdots, \theta^{(n_u)}) = \underbrace{\frac{1}{2} \sum_{i=1}^{n_s} \sum_{(i,j): r^{(i,j)} = 1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2}_{=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_s} \sum_{k=1}^{n} (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2}_{=1}$$

Plus besoin de $x_0 \rightarrow \theta$ et $x \in \mathbb{R}^n$

Algorithme de filtrage collaboratif

- 1. Initialiser $x^{(1)}$, $x^{(2)}$, ..., $x^{(nm)}$ et $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$ avec des **faibles valeurs aléatoires**
- 2. Minimiser $J(x^{(1)}, x^{(2)}, ..., x^{(nm)}, \theta^{(1)}, \theta^{(2)}, ..., \theta^{(nu)})$ par l'algorithme de **descente du gradient**
- 3. Réaliser la **prédiction** $\theta^T x$ de la note pour un utilisateur de paramètres θ et une série de profile x

Descente de gradient: dérivées partielles

$$egin{aligned} x_k^{(i)} &:= x_k^{(i)} - lpha \left[\sum\limits_{j:r^{(i,j)}=1} ((heta^{(j)})^T x^{(i)} - y^{(i,j)}) imes heta_k^{(j)} + \lambda x_k^{(i)}
ight] \ heta_k^{(j)} &:= heta_k^{(j)} - lpha \left[\sum\limits_{i:r^{(i,j)}=1} ((heta^{(j)})^T x^{(i)} - y^{(i,j)}) imes x_k^{(i)} + \lambda heta_k^{(j)}
ight] \end{aligned}$$

Dans l'algorithme présenté précédemment, pourquoi est-il nécessaire d'initialiser $x^{(1)}$, $x^{(2)}$, ..., $x^{(nm)}$ et $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(nu)}$ avec des **faibles valeurs aléatoires ?**

 Réponse: il est important de briser la symétrie afin que l'algorithme puisse apprendre des paramètres différents les uns des autres (similaire à l'initialisation des réseaux de neurones)

Pouvez vous nommer quelques hyperparamètres propres à l'algorithme de filtrage collaboratif?

Réponse:

- $_{\circ}$ Learning rate α
- Nombre d'itérations de la descente de gradient
- Paramètres d'initialisation
- \circ Nombre de features n

Avantages

 Fonctionne pour n'importe quel type de produits

Inconvénients

- Parcimonie (matrice d'utilité creuse)
- Problème de la première note pour un nouveau produit ou sans notations
- Biais de popularité
- Problème du démarrage à froid (il faut un certain nombre d'utilisateurs)

Sommaire

- 1. Recommandations basées sur le contenu
- 2. Filtrage collaboratif
- 3. Lectures et références

Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman, Mining of Massive Datasets,
3rd edition

Références

[1] CS229: Machine Learning - Stanford University

[2] Mining of Massive Datasets, 3rd edition