Stereo

What can be done with stereo vision?

Autonomous driving

SLAM- robot navigation

References

- http://szeliski.org/Book/
- http://www.cs.cornell.edu/courses/cs5670/2019sp/lectures/lectures.html
- http://www.cs.cmu.edu/~16385/

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

Structure from motion

- Structure from motion (SfM) is the process of estimating the 3-D structure of a scene from a set of 2-D images. SfM is used in many applications, such as 3-D scanning and augmented reality.
 - [Mathworks]
- SfM is also known as **3D reconstruction**.

• Stereo vision is a subcategory of SfM in which we are dealing only with 2

images.

Structure and motion

	Structure (3D model of world)	Motion (6 DOFs of cameras)	Measurements
Pose Estimation (camera pose estimation)	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D correspondences
3D reconstruction/ SfM/ stereo vision	estimate	estimate	2D to 2D correspondences + triangulation

Structure and motion

- So essentially one can say that "structure from motion" is the wrong name...
 - Structure and motion is more precise, but nobody will understand what are you talking about.
- In this class we will learn about 3D reconstruction from two cameras (and triangulation as a sub topic).

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

- **Epipolar geometry** is the geometry of stereo vision. When two cameras view a 3D scene from two distinct positions, there are a number of geometric relations between the 3D points and their projections onto the 2D images that lead to constraints between the image points.
 - [Wikipedia]

Epipolar geometry - The triangulation problem

- Given:
 - two 2D points in the **normalized image coordinate system** (x, x') in two different images (I, I') that describes the same point p in 3D space.
 - Rotation and translation between the two cameras.
- Find *p*.

Normalized image coordinate system: $x = K^{-1} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

• We can trace lines from the **camera center** of each image, through the given 2D point to the 3D point p.

• Baseline is a vector that represent the translation between two cameras

- **Epipole** *e*: projection of *o'* onto *I*.
 - The place of camera o' in image I.

• **Epipolar plane**: the plane that is constructed from the 3 points (p, o, o').

• Epipolar line: intersection of Epipolar plane and image plane.

Epipolar constraint

- The epipolar constraint: a point x in image I is mapped onto an epipolar line l' in image I'.
 - This happens since we don't know \boldsymbol{p} in advance.

Note: all epipolar lines pass through the epipole.

Where is the epipole in this images?

• Where is the epipole in this images? The epipole doesn't have to be inside the image!

Where is the epipole in this image?

• Where is the epipole in this image? The epipolar lines doesn't converge since the baseline (translation) is parallel to the image plane!

• Even if the image plane \boldsymbol{I} was infinite, you can't see the place of \boldsymbol{o}' .

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

Recall: Dot Product

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

dot product of two orthogonal vectors is zero

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

Recall: Cross Product

$$oldsymbol{a} imesoldsymbol{b}=\left[egin{array}{c} a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{array}
ight]$$

Can also be written as a matrix multiplication

$$m{a} imes m{b} = [m{a}]_{ imes} m{b} = \left[egin{array}{ccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight] \left[egin{array}{ccc} b_1 \ b_2 \ b_3 \end{array}
ight]$$

Skew symmetric

Let's define the o system as world coordinate system.

$$\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t})$$

^{*}t here is c from camera calibration class

These three vectors are coplanar $\,m{x},m{t},m{x}'$ $\,m{x}^{ op}(m{t} imesm{x})=?$

These three vectors are coplanar $\,m{x},m{t},m{x}'$ $\,m{x}^{ op}(m{t} imesm{x})=0$

These three vectors are coplanar $\,m{x},m{t},m{x}'\,$ $(m{x}-m{t})^{ op}(m{t} imesm{x})=?$

These three vectors are coplanar $\,m{x},m{t},m{x}'$

$$(\boldsymbol{x} - \boldsymbol{t})^{\top} (\boldsymbol{t} \times \boldsymbol{x}) = 0$$

rigid motion

coplanarity

$$R^{T} = R^{-1} (\mathbf{x} - \mathbf{t}) \qquad (\mathbf{x} - \mathbf{t})^{\top} (\mathbf{t} \times \mathbf{x}) = 0$$

$$R^{T} \mathbf{x}' = \mathbf{x} - \mathbf{t}$$

$$\mathbf{x'}^{T} R = (\mathbf{x} - \mathbf{t})^{T}$$

$$(\boldsymbol{x}'^{\top}\mathbf{R})(\boldsymbol{t}\times\boldsymbol{x})=0$$

rigid motion

coplanarity

$$R^{T} = R^{-1} (\mathbf{x} - \mathbf{t}) \qquad (\mathbf{x} - \mathbf{t})^{\top} (\mathbf{t} \times \mathbf{x}) = 0$$

$$R^{T} \mathbf{x}' = \mathbf{x} - \mathbf{t}$$

$$\mathbf{x'}^{T} R = (\mathbf{x} - \mathbf{t})^{T}$$

$$(\mathbf{x}'^{\mathsf{T}}\mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$
$$(\mathbf{x}'^{\mathsf{T}}\mathbf{R})([\mathbf{t}]_{x}\mathbf{x}) = 0$$

rigid motion

coplanarity

$$R^{T} = R^{-1} (\mathbf{x} - \mathbf{t}) \qquad (\mathbf{x} - \mathbf{t})^{\top} (\mathbf{t} \times \mathbf{x}) = 0$$

$$R^{T} x' = \mathbf{x} - \mathbf{t}$$

$$x'^{T} R = (\mathbf{x} - \mathbf{t})^{T}$$

$$(\mathbf{x}'^{\mathsf{T}}\mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$
$$(\mathbf{x}'^{\mathsf{T}}\mathbf{R})([\mathbf{t}]_{x}\mathbf{x}) = 0$$
$$\mathbf{x}'^{\mathsf{T}}(\mathbf{R}[\mathbf{t}]_{x})\mathbf{x} = 0$$

Building the essential matrix

rigid motion

coplanarity

$$R^{T} = R^{-1} (\mathbf{x} - \mathbf{t}) \qquad (\mathbf{x} - \mathbf{t})^{\top} (\mathbf{t} \times \mathbf{x}) = 0$$

$$R^{T} \mathbf{x}' = \mathbf{x} - \mathbf{t}$$

$$\mathbf{x'}^{T} R = (\mathbf{x} - \mathbf{t})^{T}$$

$$(\mathbf{x}'^{\mathsf{T}}\mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$
$$(\mathbf{x}'^{\mathsf{T}}\mathbf{R})([\mathbf{t}]_{x}\mathbf{x}) = 0$$
$$\mathbf{x}'^{\mathsf{T}}(\mathbf{R}[\mathbf{t}]_{x})\mathbf{x} = 0$$

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Building the essential matrix

rigid motion

coplanarity

$$R^{T} = R^{-1} \begin{pmatrix} \mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t}) & (\mathbf{x} - \mathbf{t})^{\top}(\mathbf{t} \times \mathbf{x}) = 0 \\ R^{T} \mathbf{x}' = \mathbf{x} - \mathbf{t} \\ {\mathbf{x}'}^{T} R = (\mathbf{x} - \mathbf{t})^{T} \end{pmatrix}$$

$$(\mathbf{x}'^{\mathsf{T}}\mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$
$$(\mathbf{x}'^{\mathsf{T}}\mathbf{R})([\mathbf{t}]_{x}\mathbf{x}) = 0$$
$$\mathbf{x}'^{\mathsf{T}}(\mathbf{R}[\mathbf{t}]_{x})\mathbf{x} = 0$$

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Essential Matrix $E = R[t]_x$

properties of the E matrix

(points in normalized image coordinates)

Essential matrix definition

$$x'^T E x = 0$$

Epipolar lines equation

Recall this version of line equation:

$$ax + by + c = 0$$

For homogenous vector
$$x=\begin{bmatrix}x\\y\\1\end{bmatrix}$$
 and $l=\begin{bmatrix}a\\b\\c\end{bmatrix}$:
$$x^Tl=l^Tx=0$$

Epipolar lines equation

- $x'^T E x = x'^T l' = 0$ E x = l' is the epipolar line in I' corresponding to x.
- $x'^T E x = l^T x = 0$ $(x'^T E)^T = l^{T^T} = l$ is the epipolar line in I corresponding to x'. \boldsymbol{x}

properties of the E matrix

(points in normalized image coordinates)

Essential matrix definition

$$x'^T E x = 0$$

Ex = l' is the epipolar line in I'corresponding to x

Epipolar lines $(x'^T E)^T = l^{T^T} = l$ is the epipolar line in I corresponding to x'.

- Full proof for the epipolar lines can be found here:
 - http://www.cs.cornell.edu/courses/cs4670/2015sp/lectures/lec21 stereo web. pdf

Epipolar lines equation

• $e'^T l' = 0 \quad \forall x \text{ s.t. } Ex = l'$, meaning:

$$e^{\prime T}E=0$$

• $l^T e = 0$ $\forall x'$ s.t. $x'^T E = l^T$ meaning:

properties of the E matrix

(points in normalized image coordinates)

Essential matrix definition

$$x'^T E x = 0$$

Ex = l' is the epipolar line in I'

Epipolar lines corresponding to x $(x'^T E)^T = l^{T^T} = l \text{ is the epipolar line in}$ I corresponding to x'.

$$e^{\prime T}E = 0$$
 $Ee = 0$

$$Ee = 0$$

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

Fundamental matrix

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**

(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}'} = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$

Fundamental matrix

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in

normalized coordinates

(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}}' = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$

Writing out the epipolar constraint in terms of image coordinates

$$\mathbf{x}'^{\top} \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1} \mathbf{x} = 0$$

 $\mathbf{x}'^{\top} (\mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}) \mathbf{x} = 0$
 $\mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0$

Essential Matrix $F = K'^{-T}EK^{-1}$

properties of the F matrix

• All of the below functions works with \mathbf{F} and un-normalized points the same!

(points in un-normalized image coordinates)

Fundamental matrix definition $\chi'^T F \chi = 0$

- Fx = l' is the epipolar line in I'
- Epipolar lines corresponding to x $(x'^T F)^T = l^{T^T} = l \text{ is the epipolar line in}$ I corresponding to x'.

Epipoles

$$e^{\prime T}F = 0$$
 $Fe = 0$

$$Fe = 0$$

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

Estimating F

- If we don't know K₁, K₂, R, or t, can we estimate F for two images?
- Yes, given enough correspondences

Estimating F – 8-point algorithm

The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0$$

for any pair of matches x and x' in two images.

• Let
$$\mathbf{x} = (u, v, 1)^{\mathsf{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$,
$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$$

each match gives a linear equation

$$uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

8-point algorithm

• Like with homographies, instead of solving $\mathbf{Af} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{Af}\|_{1}$ least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

8-point algorithm – Problem?

- F should have rank 2
- To enforce that **F** is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to the rank constraint.

• This is achieved by SVD. Let $\mathbf{F} = \mathbf{U}\Sigma\mathbf{V}^{\mathrm{T}}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F'} = \mathbf{U} \mathbf{\Sigma'} \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise.
 - Solutions: (all out of scope)
 - normalized 8 points algorithm.
 - 7 points algorithm.
 - Finding K,K' with single camera intrinsics calibration and then search for E (only 5 DOFs instead of 8/7).

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

Structure and motion

	Structure (3D model of world)	Motion (6 DOFs of cameras)	Measurements
Pose Estimation (camera pose estimation)	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D correspondences
3D reconstruction	estimate	Estimated!	2D to 2D correspondences + triangulation

We've found the motion, let's find the structure – back to triangulation problem!

Left image

Right image

Left image

Right image

1. Select point in one image

Left image

Right image

- 1. Select point in one image
- 2. Form epipolar line for that point in second image

Right image

Left image

- 1. Select point in one image
- 2. Form epipolar line for that point in second image
- 3. Find matching point along line (how?)

Z = 10m

Left image

Right image

- 1. Select point in one image
- 2. Form epipolar line for that point in second image
- 3. Find matching point along line (how?)
- 4. Perform triangulation (how?)

Stereo image rectification

- Out of scope...
- Let's say the images comes rectified (as in the yellow samples).

Original stereo pair

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

Objects that are close move more or less?

- The amount of horizontal movement is inversely proportional to the distance from the camera.
- The amount of horizontal movement == disparity.
- Distance from the camera == depth (or Z).

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

Stereo Block Matching

- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Normalized cross-correlation

Effect of window size

W = 3

W = 20

Effect of window size

W = 20

Smaller window

- + More detail
- More noise

Larger window

- + Smoother disparity maps
- Less detail
- Fails near boundaries

When will stereo block matching fail?

When will stereo block matching fail?

Block matching

Ground truth

What are some problems with the result?

How can we improve depth estimation?

How can we improve depth estimation?

Too many discontinuities.
We expect disparity values to change slowly.

Let's make an assumption:

depth should change smoothly

Energy Minimization

What defines a good stereo correspondence?

1. Match quality

Want each pixel to find a good match in the other image

2. Smoothness

 If two pixels are adjacent, they should (usually) move about the same amount energy function (for one pixel)

$$E(d) = E_d(d) + \lambda E_s(d)$$
data term smoothness term

Want each pixel to find a good match in the other image (block matching result)

Adjacent pixels should (usually) move about the same amount (smoothness function)

$$E(d) = E_d(d) + \lambda E_s(d)$$

$$E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

SSD distance between windows centered at I(x, y) and J(x+d(x,y), y)

$$E(d) = E_d(d) + \lambda E_s(d)$$

$$E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

SSD distance between windows centered at I(x, y) and J(x+d(x,y), y)

$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$
 smoothness term $(p,q) \in \mathcal{E}$: set of neighboring pixels

$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$
 smoothness term
$$(p,q) \in \mathcal{E}$$

$$V(d_p,d_q) = |d_p - d_q| \label{eq:Vdp}$$
 L_1 distance

$$V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$$
"Potts model"

Dynamic Programming

One possible solution...

$$E(d) = E_d(d) + \lambda E_s(d)$$

Can minimize this independently per scanline using dynamic programming (DP)

D(x,y,d): minimum cost of solution such that d(x,y) = d

$$D(x, y, d) = C(x, y, d) + \min_{d'} \{D(x - 1, y, d') + \lambda |d - d'|\}$$

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Contents

- structure from motion
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Camera rectification
- Triangulation
- Stereo matching
- Other 3D sensors

- LIDAR, which stands for Light Detection and Ranging (or light radar), is a remote sensing method that uses light in the form of a pulsed laser to measure ranges.
- Most known: velodyne projector.

Structured light

- Coded light
- Realsense SR305
- https://www.youtube.com/watch?v=PluL7WTlKrM

- Light Coding
- Used in Kinect v1- Kinect for xbox 360.
- Iphone x front camera

