# Compositional Imprecise Probability

Jack Liell-Cock <sup>1</sup> Sam Staton <sup>1</sup>

<sup>1</sup>University of Oxford

S-REPLS 15 18th July, 2024

### **Preprint**



#### Overview

#### This work:

- Give a fully compositional account of Bernoulli uncertainty with Knightian uncertainty
- Using a graded perspective and named Knightian choices
- **Theorem 1:** This gives a refined bound on uncertainty
- Theorem 2: It is maximal among compositional accounts

#### Overview

#### This work:

- Give a fully compositional account of Bernoulli uncertainty with Knightian uncertainty
- Using a graded perspective and named Knightian choices
- **Theorem 1:** This gives a refined bound on uncertainty
- Theorem 2: It is maximal among compositional accounts

#### Not this work:

- There is a broader interest in combining non-determinism and probability [Dash and Staton 2021; Dash and Staton 2020; Dahlqvist et al. 2018; Keimel et al. 2017; Dash 2024; Kozen et al. 2023; Varacca et al. 2006; Jacobs 2021]
- Our focus is in the setting of imprecise probability

#### Contents

- 1 Imprecise Probability
- 2 Desiderata
- 3 The Problem
- 4 The Solution: Named Knightian Choices
- 6 Results

### Outline

- Imprecise Probability
- 2 Desiderata
- 3 The Problem
- 4 The Solution: Named Knightian Choices
- 6 Results

# Imprecise Probability

- Probability = point in simplex
- Imprecise probability = convex set of points



# A First Language

Our prototype language for imprecise probability is a *first-order functional* language without recursion. We have:

- If/then/else statements;
- Sequencing with immutable variable assignment;
- Two commands returning booleans:
  - bernoulli: a fair Bernoulli choice;
  - knight: a Knightian choice.

# Examples

```
z \leftarrow \textit{bernoulli}; if z then return g else return b
```

```
g b
```

```
x \leftarrow \textit{knight}; z \leftarrow \textit{bernoulli};
if z then (if x then return r else return g)
else (if x then return r else return b)
```



```
x \leftarrow \textit{knight}; y \leftarrow \textit{knight}; z \leftarrow \textit{bernoulli};
if z then (if x then return r else return g)
else (if y then return r else return b)
```



### Outline

- Imprecise Probability
- 2 Desiderata
- 3 The Problem
- 4 The Solution: Named Knightian Choices
- 6 Results

#### Desiderata

#### Desideratum (1)

The language should be commutative:

$$x \leftarrow t$$
;  $y \leftarrow u$ ;  $v = y \leftarrow u$ ;  $x \leftarrow t$ ;  $v$ 

for  $x \notin fv(u)$  and  $y \notin fv(t)$ ; and affine:

$$x \leftarrow t ; u = u$$

for  $x \notin fv(u)$ .







#### Desiderata

#### Desideratum (2)

for  $x \notin fv(b)$ .

Standard equational reasoning about if/then/else should apply:

if b then 
$$(x \leftarrow t ; u)$$
 else  $(x \leftarrow t ; v)$ 

$$=$$

 $x \leftarrow t$ ; if b then u else v

### Outline

- Imprecise Probability
- 2 Desiderata
- 3 The Problem
- 4 The Solution: Named Knightian Choices
- 6 Results

### The Problem: CP doesn't work [Mio et al. 2020]

# **bernoulli** interpreted as $\left\{ \begin{pmatrix} 0.5\\0.5 \end{pmatrix} \right\}$





$$f(x,y) = \text{if } x \text{ then (if } y \text{ then return } r \text{ else return } g)$$
  
else (if  $y \text{ then return } r \text{ else return } b)$ 

*knight* interpreted as  $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ 





#### The Problem

**Theorem:** Any semantic model that satisfies our desiderata cannot distinguish the following convex sets of distributions.





```
z \leftarrow \textit{bernoulli};
if z then (if x \leftarrow \textit{knight}; x then return r else return g)
else (if x \leftarrow \textit{knight}; x then return r else return b)
```

### Outline

- Imprecise Probability
- 2 Desiderata
- 3 The Problem
- 4 The Solution: Named Knightian Choices
- 6 Results

```
z \leftarrow \textit{bernoulli}; if z then (if x \leftarrow \textit{knight}(a_1); x then return r else return g) else (if x \leftarrow \textit{knight}(a_1); x then return r else return p)
```



```
z \leftarrow \textit{bernoulli}; if z then (if x \leftarrow \textit{knight}(a_1); x then return r else return g) else (if x \leftarrow \textit{knight}(a_2); x then return r else return b)
```



Reader monad transformer of finite distributions monad

$$T_{2^A}(X) = [2^A \Rightarrow D(X)]$$

Reader monad transformer of finite distributions monad

$$T_{2^A}(X) = [2^A \Rightarrow D(X)]$$

• Bernoulli choices given by distributions

Reader monad transformer of finite distributions monad

$$T_{2^A}(X) = [2^A \Rightarrow D(X)]$$

- Bernoulli choices given by distributions
- Knightian choices given by reading

Reader monad transformer of finite distributions monad

$$T_{2^A}(X) = [2^A \Rightarrow D(X)]$$

- Bernoulli choices given by distributions
- Knightian choices given by reading
- We generalise the Knightian choices 2<sup>A</sup> to arbitrary sets B

$$T_B(X) = [B \Rightarrow D(X)]$$

Reader monad transformer of finite distributions monad

$$T_{2^A}(X) = [2^A \Rightarrow D(X)]$$

- Bernoulli choices given by distributions
- Knightian choices given by reading
- We generalise the Knightian choices 2<sup>A</sup> to arbitrary sets B

$$T_B(X) = [B \Rightarrow D(X)]$$

 Convex powerset recovered by pushing forward maximal convex distribution on B

$$\llbracket t \rrbracket_B = \{p \gg_{\equiv_D} t \mid p \in D(B)\} \in \mathrm{CP}(X).$$

Reader monad transformer of finite distributions monad

$$T_{2^A}(X) = [2^A \Rightarrow D(X)]$$

- Bernoulli choices given by distributions
- Knightian choices given by reading
- We generalise the Knightian choices 2<sup>A</sup> to arbitrary sets B

$$T_B(X) = [B \Rightarrow D(X)]$$

 Convex powerset recovered by pushing forward maximal convex distribution on B

$$\llbracket t \rrbracket_B = \{p \gg_{\equiv_D} t \mid p \in D(B)\} \in \mathrm{CP}(X).$$

• Naturual in surjections of *B* – consider a graded monad



# The graded monad

#### Definition

*T* is the Surj-graded version of:

$$T_A(X) = [A \Rightarrow D(X)]$$

T supports finite probability and finite non-determinism:

- **bernoulli**  $\in T_1(2)$  given by  $\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$
- *knight*  $\in T_2(2)$  given by  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Composition and monoidal structure in Kleisli category use independent non-deterministic branches:

$$[X \Rightarrow T_A(Y)] \times [Y \Rightarrow T_B(Z)] \to [X \Rightarrow T_{A \otimes B}(Z)]$$
$$[X \Rightarrow T_A(Y)] \times [X' \Rightarrow T_B(Y')] \to [X \times X' \Rightarrow T_{A \otimes B}(Y \otimes Y')]$$

### Outline

- Imprecise Probability
- 2 Desiderata
- 3 The Problem
- 4 The Solution: Named Knightian Choices
- 6 Results

### Threorem 1: Improved Bounds

$$\begin{array}{c}
\mathbf{r}: \\
g: \\
b: \\
\end{array}
\begin{pmatrix}
1 & 0 \\
0 & 0.5 \\
0 & 0.5
\end{pmatrix}
\qquad \longrightarrow$$

- There is a mapping from  $f: X \to T_A(Y)$  to  $R(f): X \to CP(Y)$
- This is an 'op-lax' functor,

$$R: Kl(T) \rightarrow Kl(CP)$$

 So composition in our framework gives tighter bounds on the Knightian uncertainty than composition in KI(CP)

$$R(g \circ f) \subseteq R(g) \circ R(f)$$



# Threorem 2: Maximality

- The language gives rise to a compositional theory of equality
- This equational theory is maximal
- We can add no further equations without
  - Compromising imprecise probability connection (equating different convex subsets); or
  - Compromising the compositional structure

#### Conclusion

#### This work:

- Using graded perspective and naming Knightian choices we give a fully compositional account of Bernoulli and Knightian uncertainty together
- Theorem 1: This gives a refined bound on uncertainty
- Theorem 2: It is maximal among compositional accounts

#### Future work:

- Iteration and infinite dimensional structures
- Function spaces via quasi-Borel spaces
- Implementation and approximation of bounds

### References I

- Dahlqvist, Fredrik, Louis Parlant, and Alexandra Silva (2018). "Layer by layer: composing monads". In: *Proc. ICTAC 2018*.
- Dash, Swaraj (2024). "A Monadic Theory of Point Processes". PhD thesis. University of Oxford.
- Dash, Swaraj and Sam Staton (2020). "A monad for probabilistic point processes". In: *Proc. ACT 2020*.
- (2021). "Monads for Measurable Queries in Probabilistic Databases". In: *Proc. MFPS 2021*.
- Jacobs, Bart (2021). "From multisets over distributions to distributions over multisets". In: *Proc. LICS 2021*.
- Keimel, Klaus and Gordon D. Plotkin (2017). "Mixed powerdomains for probability and nondeterminism". In: *Log. Methods Comput. Sci.* 13.
- Kozen, Dexter and Alexandra Silva (2023). *Multisets and Distributions*. arxiv:2301.10812.

#### References II



Mio, Matteo and Valeria Vignudelli (2020). "Monads and Quantitative Equational Theories for Nondeterminism and Probability". In: *Proc. CONCUR 2020*.



Varacca, D and G Winskel (2006). "Distributing probability over non-determinism". In: *Math. Structures Comput. Sci.*, pp. 87–113.