

D1EAD – Análise Estatística para Ciência de Dados 2021.1

Regressão Logística

Prof. Ricardo Sovat

sovat@ifsp.edu.br

Prof. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

Aula baseada no curso

Machine Learning do

prof. Andrew Ng

(Coursera)

dilit

Classificação Binária

Vestibular: Aprovado / Reprovado

E-mail: Spam / Não-spam

Tumor: Maligno / Benigno

Assinatura: Real / Falsa

Tipo de app: Gratuito / Pago

• • • •

Classificação Binária

Vestibular: Aprovado / Reprovado

E-mail: Spam / Não-spam

Tumor: Maligno / Benigno

Assinatura: Real / Falsa

Tipo de app: Gratuito / Pago

• • • •

Variáveis categóricas com apenas 2 valores

$$y \in \{0, 1\}$$

o: Classe Negativa

1: Classe Positiva

Regressão Linear

$$h_{\theta}(x) = \hat{y} = \theta_0 + \theta_1 * x_1 + \dots + \theta_n * x_n$$

$$h_{\theta}(x) = \hat{y} = \theta^T * x$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \qquad x = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$\theta^T = [\theta_0 \ \theta_1 \cdots \theta_n]$$

Em machine learning, vetores são comumente representados como vetores coluna.

Se
$$h_{\theta}(x) \geq 0.5$$
, classifique $\hat{y} = 1$

Se
$$h_{\theta(x)} < 0$$
, classifique $\hat{y} = 0$

Se
$$h_{\theta}(x) \geq 0$$
. 5, classifique $\hat{y} = 1$
Se $h_{\theta}(x) < 0$, classifique $\hat{y} = 0$

Se
$$h_{\theta}(x) \geq 0.5$$
, classifique $\hat{y} = 1$

Se
$$h_{\theta(x)} < 0$$
, classifique $\hat{y} = 0$

Aplicar uma Regressão Linear em problemas de classificação não parece ser uma boa ideia

Se
$$h_{\theta}(x) \geq 0.5$$
, classifique $\hat{y} = 1$

Se
$$h_{\theta}(\mathbf{x}) < \mathbf{0}$$
, classifique $\hat{y} = 0$

Modelo de Regressão Logística

$$\hat{p} = h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^T * x)}}$$

 $h_{\theta}(x)=$ Probabilidade estimada que a observação representada pelo vetor x, com os parâmetros θ , seja da **classe positiva** $(\widehat{y}=1)$

$$h_{\theta}(x) = P(y = 1|x; \theta)$$

Modelo de Regressão Logística

$$\hat{p} = h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^T * x)}}$$

 $h_{\theta}(x)=$ Probabilidade estimada que a observação representada pelo vetor x, com os parâmetros θ , seja da **classe positiva** $(\widehat{y}=\mathbf{1})$

$$h_{\theta}(x) = P(y = 1|x; \theta)$$

P.ex: Se

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tamaho \ do \end{bmatrix} \qquad h_{\theta}(x) = \mathbf{0}.\mathbf{7}$$

Classificação

$$\hat{y} = \begin{cases} 1 & se \ \hat{p} \ge 0.5 \\ 0 & se \ \hat{p} < 0.5 \end{cases}$$

Modelo de Regressão Logística

$$\hat{p} = h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^T * x)}}$$

 $h_{\theta}(x)=$ Probabilidade estimada que a observação representada pelo vetor x, com os parâmetros θ , seja da **classe positiva** $(\widehat{y}=1)$

$$h_{\theta}(x) = P(y = 1|x; \theta)$$

P.ex: Se

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tamaho \ do \end{bmatrix} \qquad h_{\theta}(x) = \mathbf{0}.\mathbf{7}$$

A chance do tumor ser maligno é de 70%

Modelo de Regressão Logística
$$\hat{p} = h_{\theta}(x) = \sigma(f_{\theta}(x)) = \sigma(\theta^{T} * x) = \frac{1}{1 + e^{-(\theta^{T} * x)}}$$

Modelo de Regressão Logística

$$\hat{p} = h_{\theta}(x) = \sigma(f_{\theta}(x)) = \sigma(\theta^T * x) = \frac{1}{1 + e^{-(\theta^T * x)}}$$

Modelo Linear

$$t = f_{\theta}(x) = \theta^T * x$$

Modelo de Regressão Logística

$$\hat{p} = h_{\theta}(x) = \sigma(f_{\theta}(x)) = \sigma(\theta^T * x) = \frac{1}{1 + e^{-(\theta^T * x)}}$$

Modelo Linear

$$t = f_{\theta}(x) = \theta^T * x$$

Função Logística (Sigmoide)

$$\hat{p} = \sigma(t) = \frac{1}{1 + e^{-t}}$$

Função Logística (Sigmoide)

Modelo de Regressão Logística

Função Logística (Sigmoide)

 $\sigma(t)$ retorna um número entre ${f 0}$ e ${f 1}$

 $\sigma(t) < 0.5$ quando t < 0

 $\sigma(t) \ge 0.5$ quando $t \ge 0$

O modelo de Regressão Logística prediz:

- classe 1 (positiva) se $(\theta^T * x) \ge 0$
- classe o (negativa): se $(\theta^T * x) < 0$

Treinamento e Função de Custo

Achar o vetor de parâmetros $\boldsymbol{\theta}$ de maneira que o modelo estime:

- probabilidades altas para instâncias positivas (y = 1);
- probabilidades baixas para instâncias negativas (y = 0)

Função de Custo

$$c(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{se } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{se } y = 0 \end{cases}$$

Modelo de Regressão Logística

Probabilidade Tumor ser Maligno

Probabilidade Tumor ser Maligno

 $\sigma(t)$ retorna um número entre ${f 0}$ e ${f 1}$

 $\sigma(t) < 0.5$ quando t < 0 (classe negativa)

 $h_{\theta}(x) = \sigma(\theta^T * x) = \sigma(\theta_0 + \theta_1 * x_1)$ $\sigma(t) \ge 0.5$ quando $t \ge 0$ (classe positiva)

$$\sigma(t) = 0.5$$
 quando $t = 0$

Probabilidade Tumor ser Maligno

 $\sigma(t)$ retorna um número entre ${f 0}$ e ${f 1}$

 $\sigma(t) < 0.5$ quando t < 0 (classe negativa)

 $h_{\theta}(x) = \sigma(\theta^T * x) = \sigma(\theta_0 + \theta_1 * x_1)$ $\sigma(t) \ge 0.5$ quando $t \ge 0$ (classe positiva)

 $\sigma(t) = 0.5$ quando t = 0

 $\sigma(t)$ retorna um número entre ${\bf 0}$ e ${\bf 1}$

 $\sigma(t) < 0.5$ quando t < 0 (classe negativa)

 $h_{\theta}(x) = \sigma(\theta^T * x) = \sigma(\theta_0 + \theta_1 * x_1)$ $\sigma(t) \ge 0.5$ quando $t \ge 0$ (classe positiva)

$$\sigma(t) = 0.5$$
 quando $t = 0$

Logo, o hiperplano $(\theta^T * x) = 0$

forma a decision boundary do classificador.

 $\sigma(t)$ retorna um número entre ${\bf 0}$ e ${\bf 1}$

 $\sigma(t) < 0.5$ quando t < 0 (classe negativa)

 $h_{\theta}(x) = \sigma(\theta^T * x) = \sigma(\theta_0 + \theta_1 * x_1)$ $\sigma(t) \ge 0.5$ quando $t \ge 0$ (classe positiva)

$$\sigma(t) = 0.5$$
 quando $t = 0$

Logo, o hiperplano $(\theta^T * x) = 0$

forma a decision boundary do classificador.

Suponha que o melhor vetor θ encontrado foi:

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix} \qquad x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \end{bmatrix}$$

Suponha que o melhor vetor θ encontrado foi:

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix} \qquad x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \end{bmatrix}$$

 $\sigma(t)$ retorna um número entre $\mathbf{0}$ e $\mathbf{1}$

 $\sigma(t) < 0.5$ quando t < 0 (classe negativa)

 $h_{\theta}(x) = \sigma(\theta^T * x) = \sigma(\theta_0 + \theta_1 * x_1)$ $\sigma(t) \ge 0.5$ quando $t \ge 0$ (classe positiva)

$$\sigma(t) = 0.5$$
 quando $t = 0$

Logo, o hiperplano $(\theta^T * x) = 0$ forma a **decision boundary** do **classificador**.

$$\begin{array}{rcl}
\theta^T * x & = & 0 \\
-4 + 1 * x_1 & = & 0 \\
\hline
x_1 & = & 4
\end{array}$$

decision boundary

$$h_{\theta}(x) = \sigma(\theta^T * x) = \sigma(\theta_0 + \theta_1 * x_1 + \theta_2 * x_2)$$

O hiperplano $(\theta^T * x) = 0$ forma a **decision boundary** do **classificador**.

$$h_{\theta}(x) = \sigma(\theta^T * x) = \sigma(\theta_0 + \theta_1 * x_1 + \theta_2 * x_2)$$

Suponha que o melhor vetor θ encontrado foi:

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \quad x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

O hiperplano $(\theta^T * x) = 0$ forma a **decision boundary** do **classificador**.

$$h_{\theta}(x) = \sigma(\theta^T * x) = \sigma(\theta_0 + \theta_1 * x_1 + \theta_2 * x_2)$$

Suponha que o melhor vetor θ encontrado foi:

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \quad x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

O hiperplano $(\theta^T * x) = 0$ forma a **decision boundary** do **classificador**.

$$\begin{array}{rcl}
\theta^T * x & = & 0 \\
-3 + 1 * x_1 + 1 * x_2 & = & 0 \\
x_1 + x_2 & = & 3
\end{array}$$

decision boundary

Suponha que o melhor vetor θ encontrado foi:

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \quad x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

O hiperplano $(\theta^T * x) = 0$ forma a **decision boundary** do **classificador**.

$$\begin{array}{rcl}
\theta^T * x & = & 0 \\
-3 + 1 * x_1 + 1 * x_2 & = & 0 \\
x_1 + x_2 & = & 3
\end{array}$$

decision boundary

D1EAD – Análise Estatística para Ciência de Dados 2021.1

Regressão Logística

Prof. Ricardo Sovat

sovat@ifsp.edu.br

Prof. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

Aula baseada no curso

Machine Learning do

prof. Andrew Ng

(Coursera)

dilit

