

64-040 Modul IP7: Rechnerstrukturen

http://tams.informatik.uni-hamburg.de/ lectures/2011ws/vorlesung/rs Kapitel 8

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

卣

Wintersemester 2011/2012

Kapitel 8

Boole'sche Algebra

Grundbegriffe der Algebra Boole'sche Algebra

Wiederholung: Grundbegriffe der Algebra

- Mengen
- ► Relationen, Verknüpfungen
- ► Gruppe, Abel'sche Gruppe
- Körper, Ring
- Vektorraum
- usw.

Nutzen einer (abstrakten) Algebra?!

Analyse und Beschreibung von

- gemeinsamen, wichtigen Eigenschaften
- mathematischer Operationen
- mit vielfältigen Anwendungen

Spezifiziert durch

- ▶ die Art der Elemente (z.B. ganze Zahlen, Aussagen, usw.)
- die Verknüpfungen (z.B. Addition, Multiplikation)
- zentrale Elemente (z.B. Null-, Eins-, inverse Elemente)

Anwendungen: z.B. fehlerkorrigierende Codes auf CD/DVD

Boole'sche Algebra

- ► George Boole, 1850: Untersuchung von logischen Aussagen mit den Werten true (wahr) und false (falsch)
- ▶ Definition einer Algebra mit diesen Werten
- Vier grundlegende Funktionen:
 - ► NEGATION (NOT)
 - UND
 - ODER
 - XOR

Schreibweisen:
$$\neg a$$
, \overline{a} , $\sim a$

-"- $a \wedge b$, $a \& b$

-"- $a \vee b$, $a \mid b$

-"- $a \oplus b$, $a \cap b$

► Claude Shannon, 1937: Realisierung der Boole'schen Algebra mit Schaltfunktionen (binäre digitale Logik)

Grundverknüpfungen

- ▶ zwei Werte: wahr (true, 1) und falsch (false, 0)
- vier grundlegende Verknüpfungen:

NOT(x)

AND(x, y)

OR(x, y)

XOR(x,y)

▶ alle logischen Operationen lassen sich mit diesen Funktionen darstellen (vollständige Basismenge)

Grundverknüpfungen

- ▶ zwei Werte, {0, 1}
- ▶ insgesamt 4 Funktionen mit einer Variable $f_0(x) = 0$, $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \neg x$
- ▶ insgesamt 16 Funktionen zweier Variablen
- ightharpoonup allgemein 2^{2^n} Funktionen von *n* Variablen
- später noch viele Beispiele

Alle Funktionen von zwei Variablen

1	0	_	-	_				
y =	0	0	1	1	Bezeichnung	Notation	Alternativnotation	Java/C-Notation
	0	0	0	0	Nullfunktion	0		0
	0	0	0	1	AND	$x \cap y$		x&&y
	0	0	1	0	Inhibition	y > x		y>x
	0	0	1	1	Identität y	y		у
	0	1	0	0	Inhibition	x > y	11/2	x>y
	0	1	0	1	Identität x	x		x
	0	1	1	0	XOR	$x \oplus y$	$x \neq y$	x!=y
	0	1	1	1	OR	$x \cup y$		x y
	1	0	0	0	NOR	$\neg(x \cup y)$	111 < 18//	!(x y)
	1	0	0	1	Äquivalenz	$\neg(x \oplus y)$	x = y	x==y
	1	0	1	0	NICHT x	$\neg x$	x'	! x
	1	0	1	1	Implikation	$x \leq y$	$x \to y$	y>=x
	1	1	0	0	NICHT y	$\neg y$	y,	! y
	1	1	0	1	Implikation	$x \ge y$	$x \leftarrow y$	x>=y
	1	1	1	0	NAND	$\neg(x \cap y)$	11 24 131 1	! (x&&y)
	1	1	1	1	Einsfunktion	1		1

Boole'sche Algebra

- ▶ 6-Tupel $< \{0,1\}, \lor, \land, \neg, 0,1 >$ bildet eine Algebra
- ▶ {0,1} Menge mit zwei Elementen
- ▶ ∨ ist die "Addition"
- ► ∧ ist die "Multiplikation"
- ¬ ist das "Komplement" (nicht das Inverse!)
- 0 (false) ist das Nullelement der Addition
- ▶ 1 (true) ist das Einselement der Multiplikation

Rechenregeln: Ring / Algebra

Eigenschaft	Ring der ganzen Zahlen	Boole'sche Algebra
Kommutativ-	a+b=b+a	$a \lor b = b \lor a$
gesetz	$a \times b = b \times a$	$a \wedge b = b \wedge a$
Assoziativ-	(a+b)+c=a+(b+c)	$(a \lor b) \lor c = a \lor (b \lor c)$
gesetz	$(a \times b) \times c = a \times (b \times c)$	$(a \wedge b) \wedge c = a \wedge (b \wedge c)$
Distributiv-	$a \times (b+c) = (a \times b) + (a \times c)$	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
gesetz	///	
Identitäten	a+0=a	$a \lor 0 = a$
	$a \times 1 = a$	$a \wedge 1 = a$
Vernichtung	$a \times 0 = 0$	$a \wedge 0 = 0$
Auslöschung	-(-a) = a	$\neg(\neg a) = a$
Inverses	a+(-a)=0	

Rechenregeln: Ring / Algebra (cont.)

Eigenschaft	Ring der ganzen Zahlen	Boole'sche Algebra	
	Tring der ganzen Zamen		
Distributivgesetz	_	$a\lor(b\land c)=(a\lor b)\land(a\lor c)$	
Komplement	_	$a \lor \neg a = 1$	
	-	$a \wedge \neg a = 0$	
Idempotenz	_ /	$a \lor a = a$	
	- ///2	$a \wedge a = a$	
Absorption	- ///	$a \lor (a \land b) = a$	
	- ///~	$a \wedge (a \vee b) = a$	
De-Morgan Regeln	- // </td <td>$\neg(a \lor b) = \neg a \land \neg b$</td>	$\neg(a \lor b) = \neg a \land \neg b$	
	- // 7/8	$\neg(a \land b) = \neg a \lor \neg b$	

De-Morgan Regeln

- Ersetzen von UND durch ODER und umgekehrt ⇒ Austausch der Funktion
- 2. Invertieren aller Ein- und Ausgänge

Verwendung

- bei der Minimierung logischer Ausdrücke
- beim Entwurf von Schaltungen
- ▶ siehe Abschnitte: "Schaltfunktionen" und "Schaltnetze"

XOR: Exklusiv-Oder / Antivalenz

⇒ entweder a oder b (ausschließlich) a ungleich b

 $(\Rightarrow Antivalenz)$

- $ightharpoonup a \oplus b = (\neg a \wedge b) \vee (a \wedge \neg b)$ genau einer von den Termen a und b ist wahr
- $ightharpoonup a \oplus b = (a \lor b) \land \neg (a \land b)$ entweder a ist wahr, oder b ist wahr, aber nicht beide gleichzeitig
- $ightharpoonup a \oplus a = 0$