

HPC APPS CONTAINERS ON NVIDIA GPU CLOUD

RAPID CONTAINER ADDITION

RAPID USER ADOPTION

NVIDIA GPU CLOUD FOR HPC VISUALIZATION

ParaView with **NVIDIA IndeX**

ParaView with **NVIDIA OptiX**

ParaView with

VMD

NVIDIA Holodeck

IndeX

NEW CONTAINERS

CONTAINERS DRAMATICALLY SIMPLIFY APPLICATION DEPLOYMENTS

Container Simplicity

HPC VISUALIZATION CONTAINERS ON NGC

CONTAINERS IN A DISTRIBUTED ENVIRONMENT

WORKFLOW FOR HPC VIS CONTAINERS

SERVER CONTAINER (EGL)

Pull container

docker pull nvcr.io/nvidia-hpcvis/paraview-optix:egl-17.11.13-beta

Launch Container

docker run --runtime=nvidia -p 11111:11111 --rm -it \
nvcr.io/nvidia-hpcvis/paraview-optix:egl-17.11.13-beta sh -c pvserver

Considerations: file system mount points, ports

WORKFLOW FOR HPC VIS CONTAINERS

CLIENT CONTAINER (GLX)

Pull container

docker pull nvcr.io/nvidia-hpcvis/paraview-optix:glx-17.11.13-beta

Grant access to X

```
XSOCK=/tmp/.X11-unix; XAUTH=/tmp/.docker.xauth;
touch /tmp/.docker.xauth;
xauth nlist :0 | sed -e 's/^..../ffff/' | xauth -f /tmp/.docker.xauth nmerge -
```

Launch Container

```
docker run --rm -it --runtime=nvidia \
-v /tmp/.X11-unix:/tmp/.X11-unix -v /tmp/.docker.xauth:/tmp/.docker.xauth \
-e XAUTHORITY=/tmp/.docker.xauth -e DISPLAY=:0 \
nvcr.io/nvidia-hpcvis/paraview-optix:glx-17.11.13-beta \
sh -c paraview\ --server-url=cs://your.server.address:11111
```

PARAVIEW WITH NVIDIA OPTIX

GPU RAYTRACING IN PARAVIEW

Based on VTK/OptiX backend

Seamless integration into ParaView

PARAVIEW WITH NVIDIA INDEX

PARALLEL VOLUME RENDERING

Large-scale Volumetric Rendering
Seamless integration with ParaView
Single node support packaged
Contact us for multi-node support

PARAVIEW WITH NVIDIA HOLODECK

HIGH END RASTERIZATION

Target: outreach, education

Advanced shaders, highly responsive interface

Seamless integration into ParaView workflow

Environment known to artists

OptiX for Visualization

VTK, ParaView

VMD

Sight (ORNL)

NVIDIA OptiX applications:

- IndeX unstructured volumes
- GVDB
- optixParticleVolumes

Works on Power9/Volta

OptiX Denoiser in ParaView

NEW IN INDEX 2.0

- User-programmable kernel interface (ex: single scattering)
 - Unstructured (tet mesh) volumes using OptiX

Support for NVLink/DGX via DICE

UFUK TURUNCOGLU, ISTANBUL TECHNICAL UNIVERSITY

