Analyze of Schwarz algorithms for idealized ocean-atmosphere coupling

Tutor : Éric Blayo et Florian Lemarié

Sophie THERY

21/11/2017

General framework: ocean-atmosphere coupling

Physical phenomena governed by the ocean atmosphere interactions:

- climate
- El Niño
- tropical cyclones

Motivations

The current methods of oceans-atmospheres coupling are unsatisfactory :

- Asynchrone coupling
 - Balance of the flows average on every window of time
 - problem of synchronisation

Motivations

The current methods of oceans-atmospheres coupling are unsatisfactory :

- Asynchrone coupling
- Synchrone coupling
 - ▶ lot of communication ⇒ inefficient implementation
 - problems of physical validity

Proposed solutions: Schwarz algorithms

Proof of concept: Simulation of the tropical cyclone Erica (2003):

ROMS : Oceanic model

(Shchepetkin-McWilliams, 2005)

WRF : Atmospheric model

(Skamarock-Klemp, 2007)

Impact

 \Rightarrow Reduction of the uncertainty on the trajectory and the intensity of the cyclone.

Lemarié et al. 2014

Aim of the internship: Study of the convergence of the Schwarz algorithms on simplified ocean-atmosphere coupling

- Présentation du sujet
 - Modelling of the ocean atmosphere interaction
 - Schwarz algorithms
 - Description of the method: example without Coriolis effect
 - With Coriolis effect
- The instationary case
 - Convergence factor in the instationary case
 - Constant diffusion coefficients
 - Linear diffusion coefficients
 - Numerical results and optimisation
- What remains to be done
 - Phd

Navier-Stokes equations

- Navier-Stokes equations
- Dominant physics : vertical axis (1d)

- Navier-Stokes equations
- Dominant physics : vertical axis (1d)
- Dominant terms

$$\begin{cases} \partial_t u - f v + \partial_z (w u) = \nu \partial_{zz}^2 u \\ \partial_t v + f u + \partial_z (w v) = \nu \partial_{zz}^2 v \end{cases}$$

- \blacktriangleright (u, v, w) : speed
- ▶ z : altitude
- $\triangleright \nu$: mollecular diffusion
- f : Coriolis frequency

Simplified ocean atmosphere coupling model Small-scale turbulence parametrisation

Simplified ocean atmosphere coupling model

Small-scale turbulence parametrisation

⇒ Reynolds average

$$\begin{cases} \partial_t u - f v - \partial_z (D(z) \partial_z u) = F^u \\ \partial_t v + f u - \partial_z (D(z) \partial_z v) = F^v \end{cases}$$

with D(z) = az + b > 0,

Our model of study

Atmosphère

$$\begin{aligned} \mathcal{F}2(u_2) &= 0 \text{ in } \Omega_2 \\ \mathcal{G}_2(u_1) &= 0 \text{ on } \partial\Omega_2 \backslash \partial\Omega_1 \\ \mathcal{B}_2(\ u_2|_{\Gamma},\ u_1|_{\Gamma}) &= 0 \\ \hline \mathcal{B}_1(\ u_1|_{\Gamma},\ u_2|_{\Gamma}) &= 0 \end{aligned}$$

$$\mathcal{B}_1(\ u_1|_{\Gamma},\ u_2|_{\Gamma}) &= 0$$

$$\mathcal{G}_1(u_1) &= 0 \text{ on } \partial\Omega_1 \backslash \partial\Omega_2 \\ \mathcal{F}_1(u_1) &= 0 \text{ in } \Omega_1 \end{aligned}$$

Océan

Sur $\Omega_2 \times [0, T]$:

$$\begin{cases} \partial_t u_2 - fv_2 - \partial_z (D_2(z)\partial_z u_2) = F_2^u \\ \partial_t v_2 + fu_2 - \partial_z (D_2(z)\partial_z v_2) = F_2^v \end{cases}$$

Sur $\Omega_1 \times [0, T]$:

$$\begin{cases} \partial_t u_1 - fv_1 - \partial_z (D_1(z)\partial_z u_1) = F_1^u \\ \partial_t v_1 + fu_1 - \partial_z (D_1(z)\partial_z v_1) = F_1^v \end{cases}$$

- + initial conditions
- + outside conditions
- + interfaces conditions

Our model of study

Atmosphère

$$\begin{aligned} \mathcal{F}2(u_2) &= 0 \text{ in } \Omega_2 \\ \mathcal{G}_2(u_1) &= 0 \text{ on } \partial\Omega_2 \backslash \partial\Omega_1 \end{aligned}$$

$$\mathcal{B}_2(u_2|_{\Gamma}, u_1|_{\Gamma}) &= 0$$

$$\mathcal{B}_1(u_1|_{\Gamma}, u_2|_{\Gamma}) &= 0$$

$$\mathcal{G}_1(u_1) &= 0 \text{ on } \partial\Omega_1 \backslash \partial\Omega_2$$

$$\mathcal{F}_1(u_1) &= 0 \text{ in } \Omega_1$$

Océan

Sur $\Omega_2 \times [0, T]$:

$$\begin{cases} \partial_t u_2 - fv_2 - \partial_z (D_2(z)\partial_z u_2) = F_2^u \\ \partial_t v_2 + fu_2 - \partial_z (D_2(z)\partial_z v_2) = F_2^v \end{cases}$$

Sur $\Omega_1 \times [0,\, \mathcal{T}]$:

$$\begin{cases} \partial_t u_1 - fv_1 - \partial_z (D_1(z)\partial_z u_1) = F_1^u \\ \partial_t v_1 + fu_1 - \partial_z (D_1(z)\partial_z v_1) = F_1^v \end{cases}$$

- + initial conditions
- + outside conditions
- + interfaces conditions
- \Rightarrow complexe values U = u + iv

$$\begin{cases} & \operatorname{Sur} \ \Omega_1 \times [0,T]: \\ & \partial_t U_1 + i f U_1 - \partial_z (D_1(z) \partial_z U_1) = \tilde{F}_1 \\ & \operatorname{Sur} \ \Omega_2 \times [0,T]: \\ & \partial_t U_2 + i f U_2 - \partial_z (D_2(z) \partial_z U_2) = \tilde{F}_2 \\ & + \operatorname{Conditions initiales} \\ & + \operatorname{Conditions au limites extérieurs} \\ & + \operatorname{Conditions d'interfaces} \end{cases}$$

Théorie de couche limite :

$$D_j(z) = a_j z + b_j > 0$$

Schwarz algorithms

Algorithm 1 Schwarz algorithms

Require:
$$u_2^0$$
 sur Γ

$$n = 0$$

while non convergence ou $n < n_{max}$ **do**

solve

$$\begin{cases} \mathcal{L}_1 u_1^n = f_1 & \text{sur } \Omega_1, \\ \mathcal{G}_1 u_1^n = g_1 & \text{sur } \partial \Omega_1^{ext}, \\ \mathcal{B}_1 u_1^n = \mathcal{B}_1 u_2^{n-1} & \text{sur } \Gamma. \end{cases}$$

then solve

$$\begin{cases} \mathcal{L}_2 u_2^n = f_2 & \text{sur } \Omega_2, \\ \mathcal{G}_2 u_2^n = g_2 & \text{sur } \partial \Omega_2^{ext}, \\ \mathcal{B}_2 u_2^n = \mathcal{B}_2 u_1^n & \text{sur } \Gamma. \end{cases}$$

end while

State of the art

		Coefficients de diffusion constants	Coefficients de diffusion affines
	Sans effet de Coriolis	Lions J.L : On the Schwarz . A variant for nonoverlapping	Alternating method. III subdomains (1990)
Statio- nnaire	Avec effet de Coriolis	Lions: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains (1990)	
Instatio	Sans effet de Coriolis	Martin, V. Schwarz Waveform Relaxation Methods for oceanographic equations (2003) Bennequin D, Gander M.J, Halpern L: Optimized Schwarz Waveform Relaxation Methods for Convection Reaction Diffusion Problems (2004)	Lemarié, F.:Toward an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficient. (2013)
	Avec effet de Coriolis	Gander M.L Optimized schwarz methods for model problems with continuously variablecoefficients (2016)	

Aim of the internship: Study of the convergence of the Schwarz algorithms on simplified ocean-atmosphere coupling

We focus on two questions

- How the coriolis effect impact the convergence of the algorithm ?
- How "freeze" the diffusion coefficient by a constant impact the convergence ?

System verified by the errors

• On each area:

$$\begin{cases}
-\partial_z(D_j(z)\partial_z u_j^n(z)) = F_j^u & \text{on } \Omega_j \\
u_j^n(H_j) = G_j \\
\mathcal{B}_j u_j^n(0) = \mathcal{B}_j u_k^{n-1}(0)
\end{cases}$$

System verified by the errors

On each area:

$$\begin{cases}
-\partial_z(D_j(z)\partial_z u_j^n(z)) = F_j^u & \text{on } \Omega_j \\
u_j^n(H_j) = G_j \\
\mathcal{B}_j u_j^n(0) = \mathcal{B}_j u_k^{n-1}(0)
\end{cases}$$

System verified by the errors :

$$e_j^n(z) = u_j^n(z) - u_j^*(z)$$

$$\begin{cases}
-\partial_z(D_j(z)\partial_z e_j^n(z)) = 0 & \text{sur } \Omega_j \\
e_j^n 1(H_j) = 0 \\
\mathcal{B}_j e_i^n(0) = \mathcal{B}_j e_k^{n-1}(0)
\end{cases}$$

Definition of the convergence factor:

$$\rho = \frac{||e_j^n||}{||e_j^{n-1}||}$$

Definition of the convergence factor:

$$\rho = \frac{||e_j^n||}{||e_j^{n-1}||}$$

Study of the convergence :

- \bullet If $\rho < 1$ then the algorithm converge.
- If $\rho \geq 1$ then the algorithm do not converge.

Definition of the convergence factor:

$$\rho = \frac{||e_j^n||}{||e_j^{n-1}||}$$

Study of the convergence :

- If $\rho < 1$ then the algorithm converge.
- If $\rho \geq 1$ then the algorithm do not converge.

Method for the stationary case :

ullet Solve probleme without interface conditions \Rightarrow $e_j^n(z) = C_j^n \; ilde{e}_j(z)$

Definition of the convergence factor:

$$\rho = \frac{||e_j^n||}{||e_j^{n-1}||}$$

Study of the convergence:

- If $\rho < 1$ then the algorithm converge.
- If $\rho \geq 1$ then the algorithm do not converge.

Method for the stationary case :

- Solve probleme without interface conditions $\Rightarrow e_j^n(z) = C_j^n \ \tilde{e}_j(z)$
- Convergence factor: $\rho = \left| \frac{C_j^n}{C_i^{n-1}} \right|$

Where C_i^n is determined by the interface conditions.

Dirichlet-Neumann conditions

Dirichlet-Neumann interface conditions : exemple without Coriolis effect

$$\begin{cases}
-\partial_{z}(D_{j}(z)\partial_{z}e_{1}^{n}(z)) &= 0 \\
& \text{sur }]H_{1}, 0[\\
e_{1}^{n}(H_{1}) &= 0 \\
e_{1}^{n}(0) &= e_{2}^{n-1}(0) \end{cases}$$

$$\begin{cases}
-\partial_{z}(D_{j}(z)\partial_{z}e_{2}^{n}(z)) &= 0 \\
& \text{sur }]0, H_{2}[\\
e_{2}^{n}(H_{2}) &= 0 \\
D_{2}(0)\partial_{z}e_{2}^{n}(0) &= D_{1}(0)\partial_{z}e_{1}^{n}(0)
\end{cases}$$

$$ho_{0,DN} = rac{\int_{\Omega_2} (D_2(z))^{-1} dz}{\int_{\Omega_1} (D_1(z))^{-1} dz}$$

$$\rho_{0,DN} = \frac{\int_{\Omega_2} (D_2(z))^{-1} dz}{\int_{\Omega_1} (D_1(z))^{-1} dz}$$

- depends on D_i on all the area.
- $D_j(z)$ is not necessary constant.

$$\rho_{0,DN} = \frac{\int_{\Omega_2} (D_2(z))^{-1} dz}{\int_{\Omega_1} (D_1(z))^{-1} dz}$$

- depends on D_i on all the area.
- $D_i(z)$ is not necessary constant.
- particular case :

$$D_j(z) = constant$$

$$\rho_{0,DN}^{cst} = \frac{H_2 D_1}{H_1 D_2}$$

$$D_j(z) = a_j z + b_j$$
:

$$\rho_{0,DN}^{var} = \frac{a_1}{a_2} \frac{\ln(1 + H_2 \frac{a_2}{b_2})}{\ln(1 + H_1 \frac{a_1}{b_1})}$$

Study of the convergence with Coriolis effect

		Coefficients de diffusion constants	Coefficients de diffusion affines
	Sans effet de Coriolis	Lions J.L : On the Schwarz . A variant for nonoverlapping	Alternating method. III subdomains (1990)
Statio- nnaire	Avec effet de Coriolis	Lions: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains (1990)	
Instatio	Sans effet de Coriolis	Martin, V. Schwarz Waveform Relaxation Methods for oceanographic equations (2003) Bennequin D, Gander M.J, Halpern L: Optimized Schwarz Waveform Relaxation Methods for Convection Reaction Diffusion Problems (2004)	Lemarié, F.: Toward an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficient. (2013)
	Avec effet de Coriolis	Gander M.L Optimized schwarz methods for model problems with continuously variablecoefficients (2016)	

With Coriolis effect

System to solve :

$$\begin{cases} ife_1^n(z) - \partial_z(D_1(z)\partial_z e_1^n(z)) &= 0 & \text{sur }]H_1, 0[\\ e_1^n(H_1) &= 0 \\ e_1^n(0) &= e_2^{n-1}(0) \end{cases}$$

$$\begin{cases} ife_2^n(z) - \partial_z(D_2(z)\partial_z e_2^n(z)) &= 0 & \text{sur }]0, H_2[\\ e_2^n(H_2) &= 0 \\ D_2(0)\partial_z e_2^n(0) &= D_1(0)\partial_z e_1^n(0) \end{cases}$$

- with $D_j = \text{constant} \Rightarrow \text{well known solutions}$
- with $D_j = a_j z + b_j > 0$

With Coriolis effect

System to solve :

$$\begin{cases} ife_1^n(z) - \partial_z(D_1(z)\partial_z e_1^n(z)) &= 0 & \text{sur }]H_1, 0[\\ e_1^n(H_1) &= 0 \\ e_1^n(0) &= e_2^{n-1}(0) \end{cases}$$

$$\begin{cases} ife_2^n(z) - \partial_z(D_2(z)\partial_z e_2^n(z)) &= 0 & \text{sur }]0, H_2[\\ e_2^n(H_2) &= 0 \\ D_2(0)\partial_z e_2^n(0) &= D_1(0)\partial_z e_1^n(0) \end{cases}$$

- with $D_i = \text{constant} \Rightarrow \text{well known solutions}$
- with $D_i = a_i z + b_i > 0$

Bessel's equation

$$z\partial_{zz}^2 u + (2\alpha - 2\beta\nu + 1)z\partial_z u + (\beta^2\gamma^2z^{2\beta} + \alpha(\alpha - 2\beta\nu))u = 0$$

• $D_j = \text{constant}$:

$$ho_{DN}^{cst} = \sqrt{rac{D_1}{D_2}} \left| rac{ anh(H_2 \lambda_2)}{ anh(H_1 \lambda_1)}
ight|$$

with
$$\lambda_j = \sqrt{i \frac{f}{D_j}}$$
 and $f \neq 0$.

• $D_j = \text{constant}$:

$$ho_{DN}^{cst} = \sqrt{rac{D_1}{D_2}} \left| rac{ anh(H_2 \lambda_2)}{ anh(H_1 \lambda_1)}
ight|$$

with
$$\lambda_j = \sqrt{i \frac{f}{D_j}}$$
 and $f \neq 0$.

• $D_j = a_j z + b_j$:

$$\rho_{DN}^{var} = \sqrt{\frac{D_1(0)}{D_2(0)}} \left| \frac{I_0(\mu_2(H_2))K_0(\mu_2(0)) - K_0(\mu_2(H_2))I_0(\mu_2(0))}{I_0(\mu_1(H_1))K_0(\mu_1(0)) - K_0(\mu_1(H_1))I_0(\mu_1(0))} \right| \\
\times \left| \frac{I_0(\mu_1(H_1))K_1(\mu_1(0)) + K_0(\mu_1(H_1))I_1(\mu_1(0))}{I_0(\mu_2(H_2))K_1(\mu_2(0)) + K_0(\mu_2(H_2))I_1(\mu_2(0))} \right|$$

with
$$\mu_j(z) = 2\sqrt{\frac{if}{a_j}\left(z + \frac{b_j}{a_j}\right)}$$

Summary of the stationary case

		Coefficients de diffusion constants	Coefficients de diffusion affines
Statio- nnaire	Sans effet de Coriolis	Lions J.L : On the Schwarz . A variant for nonoverlapping	Alternating method. III mains (1990)
	Avec effet de Coriolis	Lions: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains (1990)	
Instatio -nnaire	Sans effet de Coriolis	Martin, V. Schwarz Waveform Relaxation Methods for oceanographic equations (2003) Bennequin D, Gander M.J, Halpern L: Optimized Schwarz Waveform Relaxation Methods for Convection Reaction Diffusion Problems (2004)	Lemarié, F:Toward an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficient. (2013)
	Avec effet de Coriolis	Gander M.L Optimized schwarz methods for model problems with continuously variablecoefficients (2016)	

Plan

- Présentation du sujet
- The instationary case
 - Convergence factor in the instationary case
 - Constant diffusion coefficients
 - Linear diffusion coefficients
 - Numerical results and optimisation
- What remains to be done

Study of the convergence in the instationary case

$$\begin{cases} \partial_t e_j^n(t,z) + \textit{if} e_j^n(t,z) - \partial_z (D(z) \partial_z e_j^n(t,z)) &= 0 & \text{sur }]0, T[\times \Omega_j \\ e_j^n(t,H_j) &= 0 & \text{sur }]0, T[\\ \mathcal{B} e_j^n(t,0) &= \mathcal{B} e_k^n(0) & \text{sur }]0, T[\\ e_j^n(0,z) &= 0 & \text{sur } \Omega_j \end{cases}$$

Study of the convergence in the instationary case

$$\begin{cases} \partial_t e_j^n(t,z) + \mathit{if} e_j^n(t,z) - \partial_z (D(z) \partial_z e_j^n(t,z)) &= 0 & \text{sur }]0, T[\times \Omega_j \\ e_j^n(t,H_j) &= 0 & \text{sur }]0, T[\\ \mathcal{B} e_j^n(t,0) &= \mathcal{B} e_k^n(0) & \text{sur }]0, T[\\ e_j^n(0,z) &= 0 & \text{sur } \Omega_j \end{cases}$$

Fourier transform on the time

$$\hat{u}(\omega,z) = \int_{-\infty}^{\infty} u(t,z)e^{-i\omega t}dt$$
, with $\omega \in \mathbb{R}$

Study of the convergence in the instationary case

$$\left\{ \begin{array}{ll} \partial_t e_j^n(t,z) + \mathit{if} e_j^n(t,z) - \partial_z (D(z) \partial_z e_j^n(t,z)) &= 0 & \text{sur }]0, \, T[\times \Omega_j \\ e_j^n(t,H_j) &= 0 & \text{sur }]0, \, T[\\ \mathcal{B} e_j^n(t,0) &= \mathcal{B} e_k^n(0) & \text{sur }]0, \, T[\\ e_j^n(0,z) &= 0 & \text{sur } \Omega_j \end{array} \right.$$

Fourier transform on the time

$$\hat{u}(\omega,z)=\int_{-\infty}^{\infty}u(t,z)\mathrm{e}^{-i\omega t}dt$$
, with $\omega\in\mathbb{R}$

$$\begin{cases} i(f+\omega)\hat{\mathbf{e}}_{j}^{n}(\omega,z) - \partial_{z}(D(z)\partial_{z}\hat{\mathbf{e}}_{j}^{n}(\omega,z)) &= 0 \\ \hat{\mathbf{e}}_{j}^{n}(\omega,H_{j}) &= 0 \\ \mathcal{B}\hat{\mathbf{e}}_{j}^{n}(\omega,0) &= \mathcal{B}_{j}\hat{\mathbf{e}}_{k}^{n}(\omega,0) \end{cases}$$

 \Rightarrow Stationary case equations with $f \rightarrow f + \omega$

Convergence factor in instationary case with Coriolis effect, with Dirichlet-Neumann conditions:

If
$$ho_{0,DN}^{\mathit{var}} \geq \sqrt{rac{b_1}{b_2}}$$

Facteur de convergence pour le cas instationnaire, des coefficients affines et conditions de Dirichlet-Neumann

If
$$\rho_{0,DN}^{var} \le \sqrt{\frac{b_1}{b_2}}$$

Convergence factor in instationary case with Coriolis effect, with Dirichlet-Neumann conditions:

If
$$ho_{0,DN}^{\mathit{var}} \geq \sqrt{rac{b_1}{b_2}}$$

◆ロト 4周ト 4 重ト 4 重ト 重 めなべ

21/11/2017

Convergence factor in instationary case with Coriolis effect, with Dirichlet-Neumann conditions:

If
$$\rho_{0,DN}^{var} \leq \sqrt{\frac{b_1}{b_2}}$$

			Coefficients de diffusion constants	Coefficients de diffusion affines	
		Sans effet de Coriolis	Lions J.L : On the Schwarz . A variant for nonoverlapping	Alternating method. III	
	Statio- nnaire	Avec effet de Coriolis	Lions: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains (1990)		
	Instatio -nnaire	Sans effet de Coriolis	Martin, V. Schwarz Waveform Relaxation Methods for oceanographic equations (2003) Bennequin D, Gander M.J, Halpern L: Optimized Schwarz Waveform Relaxation Methods for Convection Reaction Diffusion Problems (2004)	Len Cié, F.: Toward an Optimized Gobal-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficient. (2013)	
		Avec effet de Coriolis	Gander M.L Optimized schwarz methods for model problems with continuously variablecoefficients (2016)		

Questions:

ullet approximations linear diffusion coefficient o constant diffusion coefficients ?

Questions:

ullet approximations linear diffusion coefficient o constant diffusion coefficients ?

Elements of answer in the report :

- ▶ convergence ↔ no convergence
- typical values for ocean-atmosphere coupling : results are close.

Questions:

ullet approximations linear diffusion coefficient o constant diffusion coefficients ?

Elements of answer in the report:

- ightharpoonup convergence \leftrightarrow no convergence
- typical values for ocean-atmosphere coupling: results are close.
- Interpretation of the disymmetry of the convergence factor following the sign of f ?

Elements of answer in the report:

Comparison between theoretical et numerical results.

Questions:

 approximations linear diffusion coefficient → constant diffusion coefficients ?

Elements of answer in the report :

- ightharpoonup convergence \leftrightarrow no convergence
- typical values for ocean-atmosphere coupling : results are close.
- Interpretation of the disymmetry of the convergence factor following the sign of f?

Elements of answer in the report:

Comparison between theoretical et numerical results.

• How can we optimize the convergence ?

Numerical results

- No disymetries between f < 0 et f > 0.
- When $\omega << |f|$ or $\omega >> |f|$ theoretical results and numerical results are consistant.
- When $\omega \approx |f|$: dispersion of the numerical results.

Figure: Theoretical and numerical convergence factor, f < 0

Figure: Theoretical and numerical convergence factor, f > 0

31 / 34

Numerical results

- No disymetries between f < 0 et f > 0.
- When $\omega << |f|$ or $\omega >> |f|$ theoretical results and numerical results are consistant.
- When $\omega \approx |f|$: dispersion of the numerical results.

Figure: Theoretical and numerical convergence factor, f < 0

Figure: Theoretical and numerical convergence factor, f > 0

Numerical results

- No disymetries between f < 0 et f > 0.
- When $\omega << |f|$ or $\omega >> |f|$ theoretical results and numerical results are consistant.
- When $\omega \approx |f|$: dispersion of the numerical results.

Figure: Theoretical and numerical convergence factor, f < 0

Figure: Theoretical and numerical convergence factor, f > 0

Optimisation

We can accelerate the convergence on the Schwarz algorithm by changing the interface conditions \Rightarrow coefficients de Robin:

Optimisation

We can accelerate the convergence on the Schwarz algorithm by changing the interface conditions \Rightarrow coefficients de Robin:

$$\begin{cases} \partial_t e_1^n(t,z) + i f e_1^n(t,z) - \partial_z(D_j(z) \partial_z e_1^n(t,z)) &= 0 \text{ sur }]H_1, 0[\times]0, T[\\ e_1^n(0,z)) &= 0 \text{ sur }]H_1, 0[\\ e_1^n(t,H_1) &= 0 \text{ sur }]0, T[\\ \partial_z e_1^n(t,0) + p_1 e_1^n(t,0) &= \partial_z e_2^n(t,0) + p_1 e_2^n(t,0) \end{cases}$$

$$\begin{cases} \partial_t e_2^n(t,z) + i f e_2^n(t,z) - \partial_z(D_j(z) \partial_z e_2^n(t,z)) &= 0 \text{ sur }]0, H_2[\times]0, T[\\ e_2^n(0,z)) &= 0 \text{ sur }]0, H_2[\\ e_2^n(t,H_2) &= 0 \text{ sur }]0, T[\\ \partial_z e_2^n(t,0) + p_2 e_2^n(t,0) &= \partial_z e_1^n(t,0) + p_2 e_1^n(t,0) \end{cases}$$

Optimisation

We can accelerate the convergence on the Schwarz algorithm by changing the interface conditions \Rightarrow coefficients de Robin:

$$\begin{cases} \partial_t e_1^n(t,z) + i f e_1^n(t,z) - \partial_z (D_j(z) \partial_z e_1^n(t,z)) &= 0 \text{ sur }]H_1, 0[\times]0, T[\\ e_1^n(0,z)) &= 0 \text{ sur }]H_1, 0[\\ e_1^n(t,H_1) &= 0 \text{ sur }]0, T[\\ \partial_z e_1^n(t,0) + p_1 e_1^n(t,0) &= \partial_z e_2^n(t,0) + p_1 e_2^n(t,0) \end{cases}$$

$$\begin{cases} \partial_t e_2^n(t,z) + i f e_2^n(t,z) - \partial_z (D_j(z) \partial_z e_2^n(t,z)) &= 0 \text{ sur }]0, H_2[\times]0, T[\\ e_2^n(0,z)) &= 0 \text{ sur }]0, H_2[\\ e_2^n(t,H_2) &= 0 \text{ sur }]0, T[\\ \partial_z e_2^n(t,0) + p_2 e_2^n(t,0) &= \partial_z e_1^n(t,0) + p_2 e_1^n(t,0) \end{cases}$$

- Easy to determinate in the stationary case.
- In the instationary case, a numerical method can calculate "good" Robin coefficients.
- Could we be help by the optimal coefficients from the stationary case to find better coefficient in the instationary case ?

During the Phd

- More realistic models.
 - ⇒ more complicated interface conditions.
- Link with Charles's thesis.
- Realistic applications in collaboration with climatologists

Thanks