Linear Algebra Tutorial 10

2023.12.12

mid-term

mid-term

- a). (5 points) Which of the following sets are vector spaces? ()
 - (A) $\{(a,b)\in\mathbb{R}^2:\ b=2a+3\}\subseteq\mathbb{R}^2$, with the usual "+" and "\\" as in \mathbb{R}^2 .
 - (B) $\{\mathbf{v} \in \mathbb{R}^3 : ||\mathbf{v}|| = 1\} \subseteq \mathbb{R}^3$, with the usual "+" and "\cdot" as in \mathbb{R}^3 .
 - (C) {All polynomials in P₂ that are divisible by x − 2}, with the usual "+" and "·" as in P₂.
 - (D) The set \mathbb{R}^2 , with addition and scalar multiplication given by: for $\mathbf{x}=(x_1,x_2)$, $\mathbf{y}=(y_1,y_2)$, and $k\in\mathbb{R}$, $\mathbf{x}+\mathbf{y}:=(x_1+2y_1,\,x_2+3y_2)$, $k\mathbf{x}:=(kx_1,kx_2)$.

mid-term

THEOREM 4.2.1 If W is a set of one or more vectors in a vector space V, then W is a subspace of V if and only if the following conditions are satisfied.

- (a) If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u} + \mathbf{v}$ is in W.
- (b) If k is a scalar and \mathbf{u} is a vector in W, then $k\mathbf{u}$ is in W.

V is vectoe space

$$egin{aligned} ullet & x+(-x)=0 \ & -x=(-x_1,-x_2) \ & x+(-x)=(x_1-2x_1,x_2-3x_2)
eq 0 \end{aligned}$$

linearty 线性

 $T:U \to V$ linear transform: 线性变换

- additivity 可加性 $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$
- homogeneity 齐次性 $T(k\mathbf{x}) = kT(\mathbf{x})$

T 可看作是一个函数f, 所做的操作是将 \mathbf{x} 映射到 $T(\mathbf{x}), (\mathbf{x} \to A\mathbf{x})$

Matrix transformation

- mutiplication of matrix and vector is a linear transformation
- $A = [T] = [T(\mathbf{e}_1), T(\mathbf{e}_2), \cdots, T(\mathbf{e}_n)]$ A: the standard matrix of T

复合函数(composition) f(g(x)) 也可写作 $(f \circ g)(x)$ 同理: $(T_2 \circ T_1)(\mathbf{x}) = [T_2][T_1](\mathbf{x})$

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or *image*, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

- image 像 ⇔ range 值域
- mapping 映射

- domain 定义域 {Adams, Chou, Goodfriend, Rodriguez, Stevens}
- codomain 陪域 A, B, C, D, F
- range 值域 A, B, C, F
- 定义域是映射的集合, 值域是被映射到的集合, 陪域是可被映射到的集合 值域是陪域的子集

• kernel 核

$$Ker(T) = \{\mathbf{x} \in V | T(\mathbf{x}) = \mathbf{0}\}$$

 $Ker(T) \Leftrightarrow Null(A)$

• range 值域

$$RAN(T) = \{ \mathbf{y} \in W | \mathbf{y} = T(\mathbf{x}), \mathbf{x} \in V \}$$

 $RAN(T) \Leftrightarrow Col(A)$

- injective(one-to-one) 单射(一一映射) $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
 - 只有一一映射才存在逆映射(反函数)
- surjective(onto) 满射 $orall y \in Y, \exists x \in X, s.\ t.\ f(x) = y$
- bijective 双射 injective + surjective

Matrix transformation

https://www.bilibili.com/video/BV1ys411472E? p=4&vd_source=6b1c6ae9b58bc4261b8429b79364410d

• method : 推出(x,y,z)变换后的坐标(x',y',z')即可得到变换矩阵

affine transformation 仿射变换

仿射变换: 平行不变性

homography projective transformation(单应性变换)

• 想要任意变换(正方形变为任意四边形)

$$H = K_2 R_2 (I - rac{1}{d} (-R_1^{-1} t_1 + R_2^{-1} t_2) n^T R_1) R_1^T K_1^{-1}$$

Reflection on \mathbb{R}^2

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Reflection about the <i>x</i> -axis $T(x, y) = (x, -y)$	$T(\mathbf{x})$ (x, y) $(x, -y)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, -1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the y-axis T(x, y) = (-x, y)	$(-x, y) \xrightarrow{y} (x, y)$ $T(\mathbf{x}) \qquad \mathbf{x}$	$T(\mathbf{e}_1) = T(1, 0) = (-1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x, y) = (y, x)	y = x (y, x) x (x, y)	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reflection on \mathbb{R}^3

Operator	Illustration	Images of e_1 , e_2 , e_3	Standard Matrix
Reflection about the xy-plane $T(x, y, z) = (x, y, -z)$	(x, y, z) $(x, y, -z)$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz-plane T(x, y, z) = (x, -y, z)	$(x, -y, z)$ $T(\mathbf{x})$ \mathbf{x} y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
Reflection about the yz-plane T(x, y, z) = (-x, y, z)	$T(\mathbf{x}) = \begin{pmatrix} (-x, y, z) \\ (x, y, z) \end{pmatrix}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

orthogonal projection on \mathbb{R}^2

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Orthogonal projection onto the <i>x</i> -axis $T(x, y) = (x, 0)$	\mathbf{x} (x, y) $(x, 0)$ x $T(\mathbf{x})$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection onto the y-axis $T(x, y) = (0, y)$	$(0, y)$ $T(\mathbf{x})$ \mathbf{x} (x, y)	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

projection operation : the rank of the matrix is not full \Rightarrow dimension reduction

orthogonal projection on \mathbb{R}^3

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Orthogonal projection onto the xy-plane T(x, y, z) = (x, y, 0)	x (x, y, z) y $(x, y, 0)$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the xz -plane T(x, y, z) = (x, 0, z)	(x, 0, z) $T(x)$ x (x, y, z) y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the yz-plane T(x, y, z) = (0, y, z)	$T(\mathbf{x})$ $T($	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

rotation on \mathbb{R}^2

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	(w_1, w_2) θ (x, y)	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

- for the rotation matrix R , $R^T = R^{-1}$, i.e. $RR^T = I$ (orthogonal matrix)
- without scaling, i.e. $\left|R\right|=1$
- the rotation is counterclockwise 默认是逆时针旋转了heta

rotation on \mathbb{R}^3

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x -axis through an angle θ	X X	$w_1 = x$ $w_2 = y \cos \theta - z \sin \theta$ $w_3 = y \sin \theta + z \cos \theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x y y	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$
Counterclockwise rotation about the positive z -axis through an angle θ	x w y	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

Euler angle

rotation clockwise around x axis **pitch** (α) , around y axis **roll** (β) , around z axis **yaw** (γ)

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

注意变换的顺序, 从右往左

若改变旋转的顺序,则变换矩阵也要改变(结果不同)

Dilations(拉伸) and Contractions(收缩) on \mathbb{R}^2

Operator	Illustration $T(x, y) = (kx, ky)$	Effect on the Unit Square	Standard Matrix
Contraction with factor k in R^2 $(0 \le k < 1)$	$T(\mathbf{x})$ (kx, ky) x	(0,1) $(0,k)$ $(k,0)$	$\lceil k 0 \rceil$
Dilation with factor k in R^2 $(k > 1)$	y $T(\mathbf{x})$ (kx, ky) \mathbf{x} (x, y)	$(0,1)$ $(0,k)$ $\uparrow \uparrow$ $(k,0)$	$\begin{bmatrix} 0 & k \end{bmatrix}$

Dilations(拉伸) and Contractions(收缩) on \mathbb{R}^3

Operator	Illustration $T(x, y, z) = (kx, ky, kz)$	Standard Matrix
Contraction with factor k in R^3 $(0 \le k < 1)$	$T(\mathbf{x}) = \begin{pmatrix} x & (x, y, z) \\ (kx, ky, kz) \end{pmatrix}$	$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \end{bmatrix}$
Dilation with factor k in R^3 $(k > 1)$	$T(\mathbf{x}) = \begin{pmatrix} x & (kx, ky, kz) \\ T(\mathbf{x}) & \\ x &$	

Expansions(拉伸) and Compressions(压缩)

Operator	Illustration $T(x, y) = (kx, y)$	Effect on the Unit Square	Standard Matrix
Compression in the x -direction with factor k in R^2 $(0 \le k < 1)$	$T(\mathbf{x})$ $T(\mathbf{x})$ $T(\mathbf{x})$ $T(\mathbf{x})$	(0, 1) $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$	$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$
Expansion in the x -direction with factor k in R^2 $(k > 1)$	(x, y) (kx, y) $T(x)$	(0, 1) $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$	[0 1]
Compression in the y-direction with factor k in R^2 $(0 \le k < 1)$	(x, y) (x, ky) $T(x)$	$(0,1)$ $(0,k)$ \downarrow \downarrow $(1,0)$	$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$
Expansion in the y-direction with factor k in R^2 $(k > 1)$	$T(\mathbf{x})$ (x, ky) (x, y)	$(0,1)$ $(0,k)$ $\uparrow \uparrow$ $(1,0)$	[0 k]

shear 推移

Operator	Effect on the Unit Square	Standard Matrix
Shear in the x -direction by a factor k in R^2 $T(x, y) = (x + ky, y)$	$(0,1) \begin{picture}(0,1) \clip & (k,1) \$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
Shear in the y-direction by a factor k in R^2 $T(x, y) = (x, y + kx)$	$(0,1) \begin{picture}(0,1) \line(0,1) \line(1,k) \line(1,k) \line(k > 0) \end{picture} (0,1) \begin{picture}(0,1) \line(1,k) \line(k < 0) \end{picture}$	$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$