I NUMERI NATURALI E IL PRINCIPIO DI INDUZIONE

La terna di Peano

Sia $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ l'insieme dei numeri naturali. Attraverso i postulati di Peano andremo a definire \mathbb{N} .

La definizione formale di \mathbb{N} è la seguente:

Terna di Peano

L'insieme dei numeri naturali è costituito da una terna $(\mathbb{N}, 0, \sigma)$ dove:

- 1. N è un insieme non vuoto;
- 2. $\mathbf{0}$ è un elemento di \mathbb{N} ;
- 3. $\sigma: \mathbb{N} \to \mathbb{N}$ è un'applicazione verificante i tre assiomi, detti assiomi di Peano:
 - (P_1) σ è iniettiva;
 - (P_2) $0 \notin Im(\sigma)$;
 - (P_3) Per ogni $U\subseteq \mathbb{N}$ tale che $f(x)=egin{cases} (a) & 0\in U, \ (b) & \sigma(U)\in U, \end{cases}$ risulta $U=\mathbb{N}.$

L'applicazione σ è detta applicazione del successivo, per cui dato un elemento $n \in \mathbb{N}$, l'elemento $\sigma(n)$ viene definito successivo di n. Il terzo assioma di Peano (P_3) è detto principio di **induzione matematica**.

Si può dimostrare che se $(\mathbb{A}, 0, \sigma)$ e $(\mathbb{A}', 0', \sigma')$ sono due terne che verificano i postulati precedenti, allora sono sostanzialmente identiche. Per cui, se una tale terna di Peano $P = (\mathbb{N}, 0, \sigma)$ esiste ed è unica, è detta **insieme dei numeri naturali**.

Ciò che si deve **postulare** (accettare senza dimostrazione) è l'esistenza di un insieme N verificante gli assiomi di Peano.

Le Operazioni

Viene definita **operazione binaria** in un insieme S un'applicazione da $S \times S$ in S, ossia una legge che associa ad oqni coppia di elementi di S un ben determinato elemento di S.

Esempio di operazione binaria:

L'unione tra sottoinsiemi di un insieme X è un'operazione binaria definita in $\mathcal{P}(X)$:

$$U: \mathcal{P}(x) \times \mathcal{P}(x) \longrightarrow \mathcal{P}(x)$$

 $(A, B) \longmapsto A \cup B$

Anche l'addizione tra interi è un'operazione binaria, definita in \mathbb{Z} :

$$egin{aligned} +: \mathbb{Z} imes \mathbb{Z} & \longrightarrow \mathbb{Z} \ (a,b) & \longmapsto a+b \end{aligned}$$

Il risultato dell'operazione di addizione, ossia l'elemento $a+b\in\mathbb{Z}$, prende il nome di somma di a e b.

Somma

Si definisce somma di due numeri naturali n e m il numero naturale n+m dove

$$n+m \stackrel{def}{=} egin{cases} \underbrace{\sigma(\sigma(\ldots\sigma(x)))}_{ ext{m volte}} & ext{se } m>0 \ n & ext{se } m=0 \end{cases}$$

Da questa definizione risulta $\sigma(n) = n + 1$ dove $1 = \sigma(0)$.

- (i) 0 + b = b
- (ii) $\sigma(a) + b = \sigma(a+b)$

Prodotto

Si definisce **prodotto** di due numeri naturali $n \in m$ il numero naturale $n \cdot m$ dove

$$n+m \stackrel{def}{=} egin{cases} \underbrace{n+n+\ldots+n}_{ ext{m volte}} & ext{se } m>0 \ 0 & ext{se } m=0 \end{cases}$$

Tali operazioni verificano tutte le proprietà dell'aritmetica che si studiano alle scuole elementari (commutatività, associatività di addizione e moltiplicazione, distributività, esistenza di un elemento neutro rispetto, etc.)

- (i) $0 \cdot b = 0 \quad \forall b \in \mathbb{N}$
- $(ii) \ \sigma(a) \cdot b = (a+1) \cdot b = a \cdot b + b$

Induzione

Il principio di induzione matematica afferma che se una proprietà P vale per 0 e se si può dimostrare che, ammesso che valga per il numero n, vale anche per n+1, allora P vale per qualunque numero n. Insiemisticamente valgono 2 proprietà:

- (i) $1 \in X$
- (ii) Per un generico $n \ge 1$: se $n \in X$ allora $n + 1 \in X$.

Allora è legittimo concludere che $\mathbb{N} \subseteq X$, ossia che X contiene tutti i numeri naturali.

Esempio

Proviamo a verificare che, $\forall n \geq 1$:

$$1+2+3+\ldots+(n-1)+n=rac{n(n+1)}{2}$$

• Verifichiamo quindi il caso base p_1 , ossia n=1

$$1=\frac{1(1+1)}{2}=\frac{2}{2}\quad \triangle$$

che risulta essere vero

- A questo punto, assumiamo per **ipotesi induttiva** che p_n sia vera.
- Impostiamo quindi il **passo induttivo**, ossia p_{n+1} :

$$1+2+3+\ldots+n+(n+1)=rac{(n+1)\cdot(n+1+1)}{2}$$

• Notiamo come il passo induttivo contenga al suo interno *l'ipotesi induttiva stessa*, che abbiamo affermato **essere vera:**

$$\underbrace{\frac{1+2+3+\ldots+n}_{\text{Ipotesi induttiva}}+(n+1)=\frac{(n+1)(n+1+1)}{2}}_{\text{Ipotesi induttiva}} \iff \frac{\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}}{\frac{n(n+1)+2(n+2)}{2}=\frac{(n+1)(n+2)}{2}} \iff \frac{(n+1)(n+2)}{2} = \frac{(n+1)(n+2)}{2} \qquad \Box$$

Anche il passo induttivo risulta essere vero, concludendo che la proposizione p_n sia valida $\forall n \geq 1$.

Un teorema equivalente a quello dell'induzione è il principio del buon ordinamento.

Principio del Buon Ordinamento

Il **principio del buon ordinamento** (o principio del valore minimo) afferma che ogni sottoinsieme non vuoto $T \subset \mathbb{N}$ contiene un elemento minimo, cioè esiste un elemento $t \in T | t \leq x \quad \forall x \in T$.

Dimostrazione

Consideriamo un insieme $X \subseteq \mathbb{N}$ che soddisfa le due proprietà: $(i): 1 \in X$ e (ii): per un generico $n \geq 1$, se $n \in X$ allora $n + 1 \in X$.

Supponiamo per assurdo che non valga la conclusione del Principio di Induzione, ossia supponiamo che non è vero che $\mathbb{N} \subseteq X$. Dunque l'insieme $A = (\mathbb{N} \setminus X)$ è un sottoinsieme nonvuoto di \mathbb{N} .

Per il Principio del Minimo Numero A contiene un minimo. Sia m il minimo di A. Si osserva che m non può essere 1, dato che $1 \in X$ e $m \notin X$. Dunque m > 1 e pertanto $m - 1 \ge 1$ (ossia è ancora un numero naturale). Inoltre dato che m è scelto come il minimo in \mathbb{N} ma non in X, necessariamente $m - 1 \in X$.

Ma X soddisfa la proprietà (ii) e dunque se $m-1 \in X$ allora $m \in X$. Abbiamo raggiunto una contraddizione: $m \in X$ e $m \notin X$.

Ricorsione

In una relazione ricorsiva il termine n-esimo dipenderà da un certo numero r di termini precedenti e da una funzione nota di n.

Anche se una relazione ricorsiva ci permette di trovare il valore del termine n-esimo a_n per ogni n, tuttavia è importante trovare una soluzione per una relazione ricorsiva, o una formula chiusa che esprima direttamente a_n in termini di un numero di operazioni ben note in n e non in termini dei precedenti elementi della successione.