

Dr. Ram Prasad K VisionCog R&D



#### **Machine Learning:**

An algorithmic way of making sense (learning) from data.

#### **Applications:**

- Spam filters (Classification)
- Predict height based on weight and age (*Regression*)
- Online recommendation systems (*Clustering*)
- Visualizing multidimensional data (*Dimensionality reduction*)





#### **Scikit Learn**

- Machine Learning library in **Python**
- Simple and efficient tools for data analysis
- Built on NumPy, SciPy, and matplotlib
- API is remarkably well designed













# Dependent and Independent variable

| Expression        | Independent | Dependent |
|-------------------|-------------|-----------|
| y = 3 + 2x        | x           | y         |
| $y = x^2 - 2x$    |             | y         |
| $z = 5x^2 + 8y^3$ | De y        | z         |

# **Regression:**

Modeling a relationship between *dependent* and *independent* variables for *prediction*.



Simple Linear Regression or Univariate Linear Regression

Only one independent variable

Multiple Linear Regression or Multivariate Linear Regression.

More than one independent variable



import numpy as np
np.random.seed(42)

X = 2 \* np.random.rand(100, 1)

y = 4 + 3 \* X + np.random.randn(100, 1)







import numpy as np
np.random.seed(42)

X = 2 \* np.random.rand(100, 1)

y = 4 + 3 \* X + np.random.randn(100.1)









import numpy as np
np.random.seed(42)

X = 2 \* np.random.rand(100, 1)

y = 4 + 3 \* X + np. random. randn(100, 1)

Now assume you don't know how y was calculated from X





Assume you now only have X and y.

Split the dataset into training and test set.

Now assume you don't know how y was calculated from X



from sklearn.model\_selection import train\_test\_split

```
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size = 0.20, random_state = 42)
```



























We can obtain here a **straight line** which passes close to as many points as possible.

What parameters are required to represent a straight line?

y-intercept slope

Equation of a straight line:

$$y = c + mx$$





#### Mathematical model for Simple Linear Regress





The line models the relationship between cake independent and dependent variable.



# **General/Multiple Linear Regression**

Linear Regression 
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$
 redicted value umber of features

 $\hat{y}$  is the predicted value

n is the number of features

 $x_i$  is the  $i^{th}$  feature value

 $heta_j$  is the  $f^{\prime\prime}$  model parameter

is the intercept (also called *bias* term)



# Vectorized general form

$$\hat{\mathbf{y}} = h_{\theta}(\mathbf{x}) = \theta^T \cdot \mathbf{x}$$

heta is the models  $\emph{parameter}$  vector

 $\theta_0$  is the bias/intercept

 $\theta_1, \theta_2, \dots, \theta_n$  are **coefficients** or feature weights.

 ${\bf x}$  is the **feature** vector  $x_0$  to  $x_n$  with  $x_0$  always 1

 $heta^T \cdot \mathbf{x}$  is the dot product of  $heta^T$  and  $\mathbf{x}$ 

 $h_{ heta}$  is the **hypothesis** function using model parameters heta



$$\hat{\mathbf{y}} = h_{\theta}(\mathbf{x}) = \theta^T \cdot \mathbf{x}$$

$$MSE(\mathbf{X}, h_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2}$$

# **Normal Equation**

To find the parameters, we have a closed-form solution:

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$

 $\hat{\theta}$  is the value of  $\theta$  that minimizes the cost function (least squares)

 $\mathbf{y}$  is the vector of target values







Mathematical model for Simple Linear Regress





The line models the relationship between cake independent and dependent variable.



```
import numpy as np
np.random.seed(42)

X = 2 * np.random.rand(100, 1)

y = 4 + 3 * X + np.random.randn(100, 1)

y = 4 + 3 * X + np.random.randn(100, 1)
```



from sklearn.model\_selection import train\_test\_split

```
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size = 0.20, random_state = 42)
```



```
from sklearn.linear model import LinearRegression
model = LinearRegression()
                  ept_) y = 4 + 3x + \varepsilony = 4.14 + 2.78x
model.fit(X train, y train)
print(model.intercept )
print(model.coef )
  [4.14291332]
  [[2.79932366]]
```



# **Evaluating the model**

#### **Testing error**

R<sup>2</sup> / Coefficient of determination / Goodness-of-fit

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$SS_{res} = \sum_{i}^{n} (y_i - f(x_i))^2$$
 sum of squares explained by model 
$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 sum of squares around the mean

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$



```
from sklearn.linear model import LinearRegression
model = LinearRegression()
model.fit(X train, y train)
                                       y = 4 + 3x + \varepsilony = 4.14 + 2.78x
print(model.intercept )
print(model.coef )
  [4.14291332]
  [[2.79932366]]
score = model(score(X test, y test)
print(score)
  0.8072059636181392
```



# MODEL EVALUATION USING CROSS-VALIDATION



#### **Cross-validation**

- Training dataset it further divided into training and validation.
- The validation splitting is based on the number of folds.
- k-Fold cross validation divides the training set it k equal blocks.
- In each round:
  - one of the block is used as validation set, and
  - the remaining is used as training set.





```
from sklearn.model selection import cross val score
scores CV = cross val score(model, X train, y train, cv=10)
print(scores CV)
  [0.88261122 0.83015975 0.5121498
   0.73759195 0.38341108 0.77308338
print(scores CV.mean())
 0.6502302819222789
print(scores CV.std(
 0.20799865939333332
```

Cross-validated model score: 0.65 +/- 0.21