

مدارهاي منطقي

دانشكده مهندسي كامپيوتر

اساتید: دکتر مهدی صدیقی، دکتر مرتضی صاحبالزمانی تدریسیاران: رضا آدینه پور، مرتضی عادلخانی

دانشگاه صنعتی امیرکبیر

پاسخنامه: مدار های ترتیبی و FSM

تمرين پنجم

(1

سوالات اصلي:

مدار شکل زیر را درنظر بگیرید. جدول مشخصه آن را رسم کنید و معادلات مشخصه را برای هریک از خروجی های مدار به دست آورید.

R	Н	Q⁺	P ⁺
0	0	P'	1
0	1	نوساني	نوساني
1	0	1	0
1	1	1	Q'

$$Q^+ = R + H'P'$$

$$P^+ = R' + HQ'$$

پاسخ

(٢

در شکل زیر را درنظر بگیرید و معادلات خروجی و حالت فلیپ فلاپ ها را به دست آورید.

$$J_2 = x \oplus y_1$$

$$K_2 = (x \oplus y_1)'$$

$$K_1 = x'y_2$$

$$J_1 = xy_2$$

$$y_1(t+1) = J_1 y_1'(t) + K_1' y_1(t)$$

= $x y_1'(t) y_2(t) + x y_1(t) + y_1(t) y_2'(t)$

$$y_{2}(t+1) = J_{2}y'_{2}(t) + K'_{2}y_{2}(t)$$

$$= xy'_{1}(t)y_{2}(t) + x'y_{1}(t)y_{2}(t)$$

$$+ (x \oplus y_{1}(t))'y_{2}(t)$$

۳) معادله مشخصه خروجی نسبت به ورودی را برای مدار زیر بهدست آورید.

CLK	Input	Q_{t+1}
0	Х	Qt
1	1	Qt
1	0	0′₊

$$Q_{t+1}$$
 = Input × Q_t + Q'_t

(4

در مدار شکل زیر، اگر در پالس ساعت اول، خروجی فلیپ فلاپ ها به صورت ABC=000 باشد، در پالس ساعت چهارم (سه کلاک بعد)، خروجی های ABC را تعیین کنید.

	حالت قبلی		حالت جدید		
A	В	С	A	В	С
0	0	0	0	1	0
0	1	0	0	0	1
0	0	1	1	1	0

اپيز ١٤٠٣

مدار ترتیبی سنکرونی دارای دو فلیپ فلاپ JK به نامهای A و B است. اگر معادلات ورودی فلیپفلاپها به صورت زیر باشد، مدار و دیاگرام حالت این مدار را رسم کنید.

$$J_A = Bx'$$
, $K_A = Bx$
 $J_B = x$, $K_B = Ax$

در شکل زیر، دیاگرام حالت یک مدار که دارای ورودی نک بیتی و خروجی دو بیتی است رسم شده است:

(الف) نوع این ماشین حالت را تعیین کنید.

(ب) با در نظر گرفتن جدول زیر، جدول حالت این مدار را رسم کنید.

State	Encoding				
Name	S_2	S_1	S_0		
init	1	1	1		
mid	1	0	0		
zero	0	0	0		
one	0	0	1		
two	0	1	0		

الف

میلے

۵ پاییز ۱۴۰۳

								ب)
S_2	S_1	S_0	input	S_2^+	S_1^+	S ₀ ⁺	O_1	O_2
1	1	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	1
1	0	0	0	0	0	1	0	1
1	0	0	1	0	1	0	1	1
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	1	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1
0	1	0	0	1	1	1	0	0
0	1	0	1	0	1	0	1	1

مسئله ۱۳.۳۰ و ۱۳.۲۰ از کتاب Roth

٩

سوال ۱۳.۲۰)

Consider the circuit shown.

(a) Construct a transition table and state graph for the following circuit. Is the circuit a Mealy or Moore circuit? Does the circuit have any unused states? Assume 00 is the initial state.

$$J_{1} = ((XQ'_{2})'(X'Q_{2})')' = XQ'_{2} + X'Q_{2}$$

$$K_{1} = ((X'^{Q_{2}})')' = X'Q_{2}$$

$$Q^{+} = K'_{1}Q_{1} + J_{1}Q'_{1}$$

$$Q^{+} = X'Q_{2}Q_{1} + XQ'_{2}Q'_{1} + X'Q_{2}Q'_{1}$$

$$J_2 = (X' + Q_1)' = XQ_1' K_2 = (X' + Q_1)' = XQ_1'$$

$$= XQ_1'$$

$$= XQ_1'$$

$$Z = (Q_1' + Q_2')' = Q_1Q_2$$

X	Q_1	Q_2	Q_1^+	Q_2^+	Z
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	0	0	0

ع پاییز ۱۴۰۳

1	1	0	1	0	0
1	1	1	1	1	1

(b) Draw a timing diagram for the input sequence X = 01100.

(c) What is the output sequence for the input sequence?

$$Z = 001101$$

سوال ۱۳.۳۰)

(a) For the following sequential circuit, write the next-state equations for flip-flops A and B.

```
\begin{split} R &= X_2 \left( X_1' + B \right) \\ S &= X_2' \left( X_1' + B \right) \\ A^+ &= A \left[ \left( X_2 \right) \left( X_1' + B \right) \right]' + X_2' \left( X_1' + B' \right) \\ &= A \left( X_2' + X_1 B' \right) + X_2' X_1' + X_2' B' \\ A^+ &= A X_2' + A X_1 B' + X_2' X_1' + X_2' B' \\ \end{split}
T &= X_1' B A + X_1' B' A' \\ B^+ &= B T' + B' T \\ &= B \left( X_1' B A + X_1' B' A' \right)' B' \left( X_1' B A + X_1' B' A' \right)' \\ &= B \left[ \left( X_1' B A \right)' \left( X_1' B' A' \right)' \right] + X_1' B' A' \\ &= B \left[ \left( X_1 + B' + A' \right) \left( X_1 + B + A \right) \right] + X_1' B' A' \\ &= \left( B X_1 + B A \right)' \left( X_1 + B + A \right) + X_1' B' A' \\ &= B X_1 + B X_1 + B X_1 A + B A' X_1 + B A' + X_1' B' A' \\ &= X_1 B \left( 1 + 1 + A + A' \right) + A' \left( B + X_1' B \right) \\ &= X_1 B + A' B + X_1' A' \end{split}
```

(b) Using these equations, find the transition table and draw the state graph.

State	Present State	** ~			Z_1Z_2				
State					$X_1X_2=$				
	AB	00	01	10	11	00	01	10	11
S_{0}								00	
$S_{_{1}}$								11	
S_2	10							01	
S_3	11	10	00	11	01	00	00	00	00

سوالات امتيازي

با رسم شکل موج، حداکثر فرکانس کاری مدار زیر را با درنظر گرفتن مفروضات زیر بهدست آورید.

Flip-Flop propagation delay = 5 ns

Hold time = 3ns

Setup time = 3ns

OR propagation delay = 2ns

$$frequency = \frac{1}{T}$$

For a flip-flop to flip-flop, the minimum time domain is equal to t_{cq} + t_{setup} + t_{pd} .

 $Minimum_T = t_{cq} + t_{setup} + t_{pd} = 5 + 3 + 2 = 10ns = frequency = 100 MHz$

ڀاييز ۱۴۰۳

٨

١

۹ پاییز ۱۴۰۳