Теория графов (раскраски)

Хроматическое число

Через $\chi(G)$ обозначим **хроматическое число** графа G - наименьшее натуральное число, для которого существует правильная раскраска графа G в такое количество цветов.

Лемма 1

Для любого графа G выполнено $\chi(G) \cdot \alpha(G) \geq v(G)$

Лемма 2

Пусть G – связный граф, $\Delta(G) \leq d$, причем хотя бы одна из вершин G имеет степень менее d. Тогда $\chi(G) \leq d$.

Лемма 3

Если G – двусвязный неполный графа с $\delta(G) \geq 3$. Тогда существуют такие вершины $a,b,c \in V(G)$, что ab, bc $\in E(G)$, ac $\notin E(G)$ и граф G-a-c связен.

Теорема Брукса

Пусть $d \geq 3$, а G связный граф отличный от $K_{d+1}, \Delta(G) \leq d$. Тогда $\chi(G) \leq d$.

Кликовое число граф G (обозначение: $\omega(G)$) – это количество вершин в наибольшей клике (то есть полном подграфе) этого графа.

Теорема 2

Для любого $k \in \mathbb{N}$ существует такой граф G без треугольников $\chi(G) = k$.

 $\chi_G(k)$ - многочлен с целыми коэффициентами степени
п, старший коэффициент равен 1, а второй числу ребер графа.

Лемма 4

$$\chi_{G-uv}(k) = \chi_{G}(k) + \chi_{G\cdot uv}(k).$$

Теорема 5

Пусть $G_1,...,G_n$ – все компоненты связности графа G. Тогда

$$\chi_G(k) = \prod_{i=1}^n \chi_{G_i}(k)$$

Теорема 6

Пусть G – связный граф с n блоками $B_1, ..., B_n$. Тогда

$$\chi_G(k) = \left(\frac{1}{k}\right)^{n-1} \cdot \prod_{i=1}^n \chi_{B_i}(k)$$

Раскраски ребер

Через $\chi'(G)$ обозначим хроматический индекс графа G – наименьшее натуральное число, для которого существует правильная раскраска ребер графа G в такое количнство цветов.

Лемма 5

Пусть G – связный граф, отличный от простого цикла нечетной длины. Тогда существует такая раскраска ребер G в два цвета, что в каждой вершине степени не менее двух представлены оба цвета.

Лемма 6

Пусть ρ – k-оптимальная расскраска ребер графа G. Предположим, что вершина w и цвета i и j такого, что в вершине w хотя бы два раза представлен цвет i и не представлен цвет j. Пусть $H=G\big(E_i\cup E_j\big)$, а H_w – компонента графа H, содержащая вершину w. Тогда H_w – простой цикл нечетной длины.

Торема Кенига

Пусть G – двудольный граф (возможно с кратными ребрами). Тогда $\chi'(G) = \Delta(G)$.

Теорема Гупта

Если граф G двудольный, то $\kappa'(G) = \delta(G)$.

Теорема Визинга

Пусть G – граф без кратный ребер. Тогда $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Дополнение

Для графа G и натурального числа d обозначим через G^d граф на вершинах из V(G), в котором вершины x и y смежны тогда и только тогда, когда $\mathrm{dist}_G(x,y) \leq d$.