Exercice 1. Théorie des graphes.

Q1. pas de boucles: $\forall x \in \neg R(x,x)$ mon-orienté: $\forall x \forall y \quad R(x,y) \longleftrightarrow R(y,x)$. (l'implication simple suffit).

D'où $Ah(Grapheo non-enientés simples) = { <math>\forall x \rightarrow R(x,x)$, $\forall x \forall y \quad R(x,y) \hookrightarrow R(y,x)$?

Q2. On pose J'= J qui est une théorie sur l'= L.

Q3. $\Psi_{n} = V_{x_{1}} ... V_{x_{m-1}} (R(a_{1}, x_{1}) \wedge R(x_{1}, x_{2}) \wedge ... \wedge R(x_{n_{1}} b))$

Q.L. Gui. On considère G=(V,E) décrèt ci-denous. Soit $N=\max\{n_1,...,n_k\}+1$.

 $a \quad x_2 \quad x_3 \quad x_0 \quad \lambda_r$

Il out commex, simple, mon-orienté et mon-viole.

Et, pour tout i e [1, k], i-l n'y

a pas de chemins de long

ne entre a et b dans 6.

Q5. Soit J2A une théorie des graphes connexes.

On pose J' := July ne N*7.

Toute partie jinnie de J'est satisficulale.

Par compacifé, on a que J'est satisficulale. Absurde con seul un graphe vide satisfait J'.

Exercice 2. Langage sans fonction. Q1. Pou récussence sur n, montions que. V21 ... Vxn 3 y2 ... 3 yk A[x1, ..., xn, y2, ..., y6] est un théorème sti elle est soutirfaile dans toute interprétation de rond au plus n+m. • Pour n =0, ∃y2 ··· ∃yk A[y2,...,yk] est un théorème soi VM modèle, ye, M, e = 4 de and & k par dénombrement. Don l'équivalence

Si en a un modèle de cond > m, en peut le décomposer en modèles

Q2. Dans d= 1c, ..., cm, f, = },

Dans le modité

M: 40,17, for= xen, C; = 0

la formule A est fourse.

Exercice 3. Denoité.
Q1. On a (Q, \angle) et (R, \angle) qui sont non-isomorphes. Q2 Soif $\psi:=\forall x$, $\exists y$ $\pi(x,y)$.
Dons (R, <), la formule l'est vérifiée Dans ([0,1], <) la formule l'ne l'est pas. D'où In'est pas complète.
23. Soit un modèle M. Soient x, y \(\ell \) (por A2).
Construisons pou récurrence des éléments de 01.
on commence over x, y pan Ay, et comme x < y, i(existe of to x < of x < of y pon Ay, x < of y
Si $v \in 1x, y, z^2$, alors pour A_2 et A_3 on a une abstraité. D'ai I n'admet pas de modèle $g:n:$.
$QL. T_1: (111, 4)$ $T_3: (111, 4)$
J _H (30, 2 3, 4)

Exercise 4. Modèle infini.
Gm pase Ψ _k = ∃x ₁ ∃x _k ¬6x ₁ = x ₂) ∧ ··· ∧ ¬(x _{k-1} = x _k).
Toute sous-théorie finic A de T'= TU } 4 lk eN } a un modèle (de coud > max } keN Up EA EN avec max ø = 0).
Pou compacité, T' admet un modèle. S'il est fini de condenal k , absure can $Q_k \in T'$. Il admet donc un modèle infini \mathcal{N}_{∞} .
La Phéonie Tadmet donc un modèle infini Mos.