

64Mb Synchronous DRAM based on 1M x 4Bank x16 I/O

Document Title 4Bank x 1M x 16bits Synchronous DRAM

Revision History

Revision No.	History	Draft Date	Remark
0.1	Initial Draft	Jan. 2007	Preliminary
1.0	Final Version	Apr. 2007	

DESCRIPTION

The Hynix HY57V641620F(L/S)TP series is a 67,108,864bit CMOS Synchronous DRAM, ideally suited for the memory applications which require wide data I/O and high bandwidth. HY57V641620F(L/S)TP is organized as 4banks of 1,048,576x16.

HY57V641620F(L/S)TP is offering fully synchronous operation referenced to a positive edge of the clock. All inputs and outputs are synchronized with the rising edge of the clock input. The data paths are internally pipelined to achieve very high bandwidth. All input and output voltage levels are compatible with LVTTL.

Programmable options include the length of pipeline (Read latency of 2 or 3), the number of consecutive read or write cycles initiated by a single control command (Burst length of 1,2,4,8 or full page), and the burst count sequence(sequential or interleave). A burst of read or write cycles in progress can be terminated by a burst terminate command or can be interrupted and replaced by a new burst read or write command on any cycle. (This pipelined design is not restricted by a '2N' rule)

FEATURES

- Voltage: VDD, VDDQ 3.3V supply voltage
- All device pins are compatible with LVTTL interface
- 54 Pin TSOPII (Lead or Lead Free Package)
- All inputs and outputs referenced to positive edge of system clock
- Data mask function by UDQM, LDQM
- Internal four banks operation

- · Auto refresh and self refresh
- 4096 Refresh cycles / 64ms
- · Programmable Burst Length and Burst Type
 - 1, 2, 4, 8 or full page for Sequential Burst
 - 1, 2, 4 or 8 for Interleave Burst
- Programmable CAS Latency; 2, 3 Clocks
- Burst Read Single Write operation

ORDERING INFORMATION

Part Number	Clock Frequency	Organization	Interface	Operation Temp.	Package	
HY57V641620F(L/S)TP-5	200MHz					
HY57V641620F(L/S)TP-6	166MHz			0°C to 70		
HY57V641620F(L/S)TP-7	143MHz					
HY57V641620F(L/S)TP-H	133MHz	4Banks x	I VTTI		54 Pin TSOP	
HY57V641620F(L/S)TP-5I	200MHz	1Mbits x16	LVIIL		(Lead Free)	
HY57V641620F(L/S)TP-6I	166MHz			-40°C to 85		
HY57V641620F(L/S)TP-7I	143MHz			-40°C 10 85		
HY57V641620F(L/S)TP-HI	133MHz				1	

Note: 1. HY57V641620FTP Series: Normal power 2. HY57V641620FLTP Series: Low power 3. HY57V641620FSTP Series: Super Low power

PIN ASSIGNMENTS

PIN DESCRIPTION

SYMBOL	TYPE	DESCRIPTION
CLK	Clock	The system clock input. All other inputs are registered to the SDRAM on the rising edge of CLK
CKE	Clock Enable	Controls internal clock signal and when deactivated, the SDRAM will be one of the states among power down, suspend or self refresh
CS	Chip Select	Enables or disables all inputs except CLK, CKE, UDQM and LDQM
BAO, BA1	Bank Address	Selects bank to be activated during RAS activity Selects bank to be read/written during CAS activity
A0 ~ A11	Address	Row Address: RA0 ~ RA11, Column Address: CA0 ~ CA7 Auto-precharge flag: A10
RAS, CAS, WE	Row Address Strobe, Column Address Strobe, Write Enable	RAS, CAS and WE define the operation Refer function truth table for details
UDQM, LDQM	Data Input/Output Mask	Controls output buffers in read mode and masks input data in write mode
DQ0 ~ DQ15	Data Input / Output	Multiplexed data input / output pin
VDD / VSS	Power Supply / Ground	Power supply for internal circuits and input buffers
VDDQ / VSSQ	Data Output Power / Ground	Power supply for output buffers
NC	No Connection	No connection

FUNCTIONAL BLOCK DIAGRAM

1Mbit x 4banks x 16 I/O Synchronous DRAM

BASIC FUNCTIONAL DESCRIPTION

Mode Register

A6	A 5	A4	CAS Latency
0	0	0	Reserved
0	0	1	Reserved
0	1	0	2
0	1	1	3
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

A2	A1	AO	Burst I	Length
AZ	AI	AU	A3 = 0	A3=1
0	0	0	1	1
0	0	1	2	2
0	1	0	4	4
0	1	1	8	8
1	0	0	Reserved	Reserved
1	0	1	Reserved	Reserved
1	1	0	Reserved	Reserved
1	1	1	Full Page	Reserved

ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Rating	Unit
Ambient Temperature	TA	0 ~ 70 (Commercial part)	°C
Ambient remperature	TA .	-40 ~ 85 (Industrial part)	°C
Storage Temperature	TSTG	-55 ~ 125	οС
Voltage on Any Pin relative to VSS	VIN, VOUT	-1.0 ~ 4.6	V
Voltage on VDD supply relative to VSS	VDD, VDDQ	-1.0 ~ 4.6	V
Short Circuit Output Current	Ios	50	mA
Power Dissipation	PD	1	W
Soldering Temperature · Time	TSOLDER	260 · 10	°C · Sec

DC OPERATING CONDITION (TA= 0 to 70°C / -40 to 85°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Power Supply Voltage	VDD, VDDQ	3.0	3.3	3.6	V	1
Input High Voltage	VIH	2.0	3.0	VDDQ + 0.3	V	1, 2
Input Low Voltage	VIL	-0.3	-	0.8	V	1, 3

Note: 1. All voltages are referenced to VSS = 0V

- 2. VIH(max) is acceptable 5.6V AC pulse width with <=3ns of duration.
- 3. VIL(min) is acceptable -2.0V AC pulse width with <=3ns of duration.

AC OPERATING TEST CONDITION (TA= 0 to 70°C / -40 to 85°C, VDD=3.3±0.3V, VSS=0V)

Parameter	Symbol	Value	Unit	Note
AC Input High/Low Level Voltage	VIH / VIL	2.4 / 0.4	V	
Input Timing Measurement Reference Level Voltage	Vtrip	1.4	V	
Input Rise/Fall Time	tR / tF	1	ns	
Output Timing Measurement Reference Level Voltage	Voutref	1.4	V	
Output Load Capacitance for Access Time Measurement	CL	30	pF	1

Note: 1.

CAPACITANCE (f=1MHz, VDD=3.3V)

Parameter	Pin	Symbol	Min	Max	Unit
	CLK	CI1	2.0	4.0	pF
Input capacitance	AO ~ A11, BAO, BA1, CKE, CS, RAS, CAS, WE, LDQM, UDQM	CI2	2.5	5.0	pF
Data input / output capacitance	DQ0 ~ DQ15	CI/O	3.0	5.5	pF

DC CHARACTERRISTICS I (TA= 0 to 70°C / -40 to 85°C)

Parameter	Symbol	Min	Max	Unit	Note
Input Leakage Current	ILI	-1	1	uA	1
Output Leakage Current	ILO	-1	1	uA	2
Output High Voltage	VOH	2.4	-	V	IOH = -4mA
Output Low Voltage	VOL	-	0.4	V	IOL = +4mA

Note: 1. VIN = 0 to 3.3V, All other balls are not tested under VIN = 0V

^{2.} DOUT is disabled, VOUT=0 to 3.6

DC CHARACTERISTICS II (TA= 0 to 70°C / -40 to 85°C)

Darameter	Parameter Symbol Test Condition						Speed		Note
rai ailletei	Symbol	rest condition		5	6	7	Н	Unit	Note
Operating Current	IDD1	Burst length=1, One bank acti tRC ≥ tRC(min), IOL=0mA	ve	120	110	100	100	mA	1
Precharge Standby Cur- rent	IDD2P	CKE ≤ VIL(max), tCK = 15ns				2		mA	
in Power Down Mode	IDD2PS	$CKE \leq VIL(max)$, $tCK = \infty$			2	2		mA	
Precharge Standby Current in Non Power Down	IDD2N	CKE \geq VIH(min), $\overline{\text{CS}} \geq$ VIH(min) Input signals are changed one 2clks. All other pins \geq VDD-0.2V or \leq	time during		1	8		mA	
Mode	IDD2NS	$CKE \ge VIH(min)$, $tCK = \infty$ Input signals are stable.		1	5				
Active Standby Current	IDD3P	$CKE \le VIL(max)$, $tCK = 15ns$	3				mA		
in Power Down Mode	IDD3PS	$CKE \leq VIL(max)$, $tCK = \infty$	3						
Active Standby Current in Non Power Down Mode	IDD3N	CKE \geq VIH(min), $\overline{\text{CS}} \geq$ VIH(min) Input signals are changed one 2clks. All other pins \geq VDD-0.2V or \leq		4	0		mA		
Mode	IDD3NS	$CKE \ge VIH(min)$, $tCK = \infty$ Input signals are stable.			3	5			
Burst Mode Operating Current	IDD4	tCK ≥ tCK(min), IOL=0mA All banks active		120	110	100	100	mA	1
Auto Refresh Current	IDD5	tRC ≥ tRC(min), All banks activ	170	160	150	150	mA	2	
			Normal	1		mA	•		
Self Refresh Current	IDD6	CKE ≤ 0.2V	Low power	400			uA	3	
			Super Low power	300			uA	3, 4	

 $\textbf{Note:} \ 1. \ \textbf{IDD1} \ and \ \textbf{IDD4} \ depen\underline{d \ on} \ output \ loading \ and \ cycle \ rates. \ Specified \ values \ are \ measured \ with \ the \ output \ open$

3. HY57V641620FTP Series: Normal Power HY57V641620FLTP Series: Low Power HY57V641620FSTP Series: Super Low Power

^{2.} Min. of tRRC (Refresh RAS cycle time) is shown at AC CHARACTERISTICS II

AC CHARACTERISTICS I (AC operating conditions unless otherwise noted)

Parameter		Symbol	į	5	6	5	-	7	ŀ	1	Unit	Note
r di di iliotoi		Symbol	Min	Max	Min	Max	Min	Max	Min	Max		Note
System Clock Cycle Time	CL = 3	tCK3	5.0	1000	6.0	1000	7.0	1000	7.5	1000	ns	
	CL = 2	tCK2	10	1000	10	1000	10	1000	10	1000	ns	
Clock High Pulse Width		tCHW	1.75	-	2.0	-	2.0	-	2.5	-	ns	1
Clock Low Pulse Width		tCLW	1.75	-	2.0	-	2.0	-	2.5	-	ns	1
Access Time From Clock	CL = 3	tAC3	-	4.5	-	5.4	-	5.4	ı	5.4	ns	2
Access Time From Clock	CL = 2	tAC2	-	6.0	-	6.0	-	6.0	-	6.0	ns	2
Data-out Hold Time		tOH	2.0	-	2.0	-	2.5	-	2.5	-	ns	
Data-Input Setup Time		tDS	1.5	-	1.5	-	1.5	-	1.5	-	ns	1
Data-Input Hold Time		tDH	0.8	-	0.8	-	0.8	-	0.8	-	ns	1
Address Setup Time		tAS	1.5	-	1.5	-	1.5	-	1.5	-	ns	1
Address Hold Time		tAH	0.8	-	0.8	-	0.8	-	0.8	-	ns	1
CKE Setup Time		tCKS	1.5	-	1.5	-	1.5	-	1.5	-	ns	1
CKE Hold Time		tCKH	0.8	-	0.8	-	0.8	-	0.8	-	ns	1
Command Setup Time		tCS	1.5	-	1.5	-	1.5	-	1.5	-	ns	1
Command Hold Time		tCH	0.8	-	0.8	-	0.8	-	0.8	-	ns	1
CLK to Data Output in Low-Z Time		tOLZ	1.0	-	1.0	-	1.5	-	1.5	-	ns	
CLK to Data Output	CL = 3	tOHZ3	-	4.5	-	5.4	-	5.4	-	5.4	ns	
in High-Z Time	CL = 2	tOHZ2	-	6.0	-	6.0	-	6.0	i	6.0	ns	

Note: 1. Assume tR / tF (input rise and fall time) is 1ns. If tR & tF > 1ns, then [(tR+tF)/2-1]ns should be added to the parameter.

^{2.} Access time to be measured with input signals of 1V/ns edge rate, from 0.8V to 0.2V. If tR > 1ns, then (tR/2-0.5)ns should be added to the parameter.

AC CHARACTERISTICS II (AC operating conditions unless otherwise noted)

Parameter		Symbol	5		6		7		Н		Unit	Note
			Min	Max	Min	Max	Min	Max	Min	Max		Note
RAS Cycle Time	Operation	tRC	55	-	60	-	63	-	63	-	ns	
RAS Cycle Time	Auto Refresh	tRRC	55	-	60	-	63	-	63	-	ns	
RAS to CAS Delay		tRCD	15	-	18	=	20	-	20	-	ns	
RAS Active Time		tRAS	38.7	100K	42	100K	42	100K	42	120K	ns	
RAS Precharge Time		tRP	15	-	18	-	20	-	20	-	ns	
RAS to RAS Bank Active Delay		tRRD	10	-	12	-	14	-	15	-	ns	
CAS to CAS Delay		tCCD	1	-	1	-	1	-	1	-	CLK	
Write Command to Data-In Delay		tWTL	0	-	0	-	0	-	0	-	CLK	
Data-in to Precharge Command		tDPL	2	-	2	-	2	-	2	-	CLK	
Data-In to Active Command		tDAL	tDPL + tRP									
DQM to Data-Out Hi-Z		tDQZ	2	-	2	-	2	-	2	-	CLK	
DQM to Data-In Mask		tDQM	0	-	0	-	0	-	0	-	CLK	
MRS to New Command		tMRD	2	-	2	-	2	-	2	-	CLK	
Precharge to Data Output High-Z	CL = 3	tPROZ3	3	-	3	-	3	-	3	-	CLK	
	CL = 2	tPROZ2	2	-	2	-	2	-	2	-	CLK	
Power Down Exit Time		tDPE	1	-	1	-	1	-	1	-	CLK	
Self Refresh Exit Time		tSRE	1	-	1	-	1	-	1	-	CLK	1
Refresh Time		tREF	-	64	-	64	-	64	-	64	ms	

 $\textbf{Note:} \ \textbf{1. A new command can be given } \ \textbf{tRRC after self refresh exit}.$

COMMAND TRUTH TABLE

Command		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	ADDR	A10/AP	ВА	Note	
Mode Register Set		Н	Х	L	L	L	L	Х					
No Operation		Н	Х	Н	Х	Х	Χ	Х	X				
			^	L	Н	Н	Н	^		^			
Bank Active		Н	Х	L	L	Н	Н	Х	RA V		V		
Read with Autopre- charge		Н	Х	L	Н	L	Н	Х		L H			
									CA		V		
Write		Н	Х	L	Н	L	L	Х	CA	L	V		
Write with charge	•									Н			
Precharge All Banks										Н	Χ		
Precharge Bank	selected	Н	Х	L	L	Н	L	Х	Х	L	V		
Burst Stop		Н	Х	L	Н	Н	L	Х					
DQM		Н	X					V	Х				
Auto Refresh		Н	Н	L	L	L	Н	Х					
Burst-Read-Single- WRITE		Н	Х	L	L	L	L	Х	A9 ball High (Other balls OP code)			MRS Mode	
Self Refresh ¹	Entry	Н	L	Ш	L	L	Н	Х					
	Exit	L	Н	Н	Х	Χ	Χ	Х					
				L	Н	Н	Н						
Precharge power down	Entry	Н	L	Н	Х	Х	Χ	Х					
			_	L	Н	Н	Н						
	Exit	L	Н	Н	Х	Х	Х	Х					
				L	Н	Н	Н	^					
Clock Suspend	Entry	Н	L	Н	Х	Х	Х	Х					
			_	L	V	V	V						
	Exit	L	Н)	<		Х					

PACKAGE INFORMATION

400mil 54pin Thin Small Outline Package

