Corrigé du contrôle continu du 3 mars 2025

- 1. Soient $n \in \mathbb{N}^*$ et $f : \mathbb{R}^n \to \mathbb{C}$ une fonction appartenant à $L^1(\mathbb{R}^n)$.
 - (a) Donner la définition de la transformée de Fourier \widehat{f} de f. La fonction $\widehat{f}: \mathbb{R}^n \to \mathbb{C}$ est définie par $\widehat{f}(\xi) := \int_{\mathbb{R}} e^{-ix\cdot\xi} f(x) \, dx$ pour tout $\xi \in \mathbb{R}$.
 - (b) Donner quelques propriétés de la fonction \widehat{f} (on ne demande aucune justification). La fonction \widehat{f} est continue sur \mathbb{R}^n , bornée par $||f||_1$ et tend vers 0 quand $||\xi|| \to +\infty$.
 - (c) Montrer que si f est paire (resp. impaire), alors \hat{f} l'est aussi. Si f(-x) = f(x) (resp. f(-x) = -f(x)) pour (presque) tout $x \in \mathbb{R}$, alors

$$\forall \xi \in \mathbb{R}, \quad \widehat{f}(-\xi) = \int_{\mathbb{R}} e^{ix\cdot\xi} f(x) \, dx = \int_{\mathbb{R}} e^{-iy\cdot\xi} f(-y) \, dy$$
$$= \int_{\mathbb{R}} e^{-iy\cdot\xi} f(y) \, dy = \widehat{f}(\xi)$$
$$(resp. = -\int_{\mathbb{R}} e^{-iy\cdot\xi} f(y) \, dy = -\widehat{f}(\xi)),$$

donc \hat{f} est bien paire (resp. impaire).

- 2. Dans cette question, f est une fonction appartenant à $L^1(\mathbb{R})$.
 - (a) Montrer que si $xf: x \mapsto x f(x) \in L^1(\mathbb{R})$, alors $\widehat{f} \in \mathcal{C}^1(\mathbb{R})$ et $\widehat{xf} = i (\widehat{f})'$.

Soit $h:(x,\xi)\in\mathbb{R}^2\mapsto e^{-ix\xi}f(x)$. Alors:

- pour tout $\xi \in \mathbb{R}$, $x \mapsto h(x,\xi) \in L^1(\mathbb{R})$ (car $|h(x,\xi)| = |f(x)|$ et $f \in L^1(\mathbb{R})$),
- pour tout $x \in \mathbb{R}$, $\xi \mapsto h(x,\xi)$ est de classe $C^1(\mathbb{R})$ et pour tout $\xi \in \mathbb{R}$,

$$\left|\frac{\partial h}{\partial \xi}(x,\xi) = -ix\,e^{-ix\xi}f(x)\right| \ = \ |xf(x)| \quad ne \ d\acute{e}pend \ pas \ de \ \xi \in \mathbb{R} \ et \ xf \in L^1(\mathbb{R}).$$

Il découle du théorème de dérivation sous le signe intégral que $\hat{f}: \xi \mapsto \int_{\mathbb{R}} h(x,\xi) dx$ est de classe $\mathcal{C}^1(\mathbb{R})$ et que pour tout $\xi \in \mathbb{R}$,

$$\widehat{xf}(\xi) = \int_{\mathbb{R}} x e^{-ix\xi} f(x) dx = i \int_{\mathbb{R}} -ix e^{-ix\xi} f(x) dx = i \int_{\mathbb{R}} \frac{\partial h}{\partial \xi} (x, \xi) dx = i (\widehat{f})'(\xi).$$

(b) Montrer que si $\xi \widehat{f} \in L^1(\mathbb{R})$, alors f admet un représentant de classe $\mathcal{C}^1(\mathbb{R})$. On commencera par montrer que l'on a $\widehat{f} \in L^1(\mathbb{R})$.

D'abord, $\widehat{f} \in L^1(\mathbb{R})$ car $\|\widehat{f}\|_{\infty} \leq \|f\|_1$ et donc, comme de plus $\xi \widehat{f} \in L^1(\mathbb{R})$,

$$\int_{\mathbb{R}} |\widehat{f}(\xi)| \, d\xi \; = \; \int_{]-1,1[} |\widehat{f}(\xi)| \, d\xi \; + \; \int_{]-1,1[^c} |\widehat{f}(\xi)| \, d\xi \; \leq \; 2\|f\|_1 \; + \; \int_{]-1,1[^c} |\xi| |\widehat{f}(\xi)| \, d\xi \; < \; +\infty \, .$$

D'après la formule d'inversion de Fourier, f(x) est presque partout égale à $\frac{1}{2\pi}(\widehat{\widehat{f}})(-x)$

(donc f admet un représentant continu puisque, \widehat{f} étant dans $L^1(\mathbb{R})$, sa transformée de Fourier est continue). Comme de plus $\xi \widehat{f} \in L^1(\mathbb{R})$, il découle de la question précédente (appliquée à \widehat{f} !) que $\widehat{\widehat{f}}$ est de classe $C^1(\mathbb{R})$, et donc que f admet un représentant de classe $C^1(\mathbb{R})$ (i.e. que le représentant continu de f, unique, est de classe $C^1(\mathbb{R})$).

3. Soit a > 0. On définit la fonction

$$g: x \in \mathbb{R} \longmapsto \frac{x}{x^2 + a^2}$$
.

(a) Montrer que $g \notin L^1(\mathbb{R})$ mais que $g \in L^2(\mathbb{R})$.

La fonction g est continue sur \mathbb{R} donc g et g^2 y sont intégrables sur tout compact. De plus, $|g(x)| \underset{x \to +\infty}{\sim} \frac{1}{x}$ et $x \mapsto \frac{1}{x}$ n'est pas intégrable au voisinage de $+\infty$. Il en découle que $g \notin L^1(\mathbb{R})$.

En revanche, comme $|g(x)|^2 \sim \frac{1}{|x| \to +\infty} \frac{1}{x^2}$ et $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage $de \pm \infty$, alors $g \in L^2(\mathbb{R})$.

(b) Soit $\xi \in \mathbb{R}$. En considérant la fonction méromorphe $z \mapsto \frac{z}{z^2 + a^2} e^{-iz\xi}$, montrer que pour tout R > a, on a

$$\int_{-R}^R e^{-ix\xi} g(x) \, dx \; + \; i \, \int_0^\pi \frac{R^2 \, e^{2i\theta}}{R^2 \, e^{2i\theta} + a^2} \, e^{-iRe^{i\theta}\xi} \, d\theta \; = \; i \, \pi \, e^{a \, \xi} \, .$$

Comme $z^2+a^2=(z-ia)(z+ia)$ et la fonction $z\in\mathbb{C}\mapsto ze^{-iz\xi}$ est holomorphe et ne s'annule pas en $\pm ia$, la fonction $z\mapsto \frac{z}{z^2+a^2}e^{-iz\xi}$ est méromorphe avec uniquement deux pôles, simples, en $\pm ia$. Son résidu en ia vaut donc

$$\operatorname{Res}(ia) = \lim_{z \to ia} (z - ia) \frac{z}{z^2 + a^2} e^{-iz\xi} = \lim_{z \to ia} \frac{z}{z + ia} e^{-iz\xi} = \frac{1}{2} e^{a\xi}.$$

Pour tout R > a, la formule des résidus appliquée à $z \mapsto \frac{z}{z^2+a^2}e^{-iz\xi}$ sur le demicercle supérieur de centre 0 de de rayon R du plan complexe conduit donc à

$$\int_{-R}^{R} e^{-ix\xi} g(x) \, dx + \int_{0}^{\pi} \frac{R \, e^{i\theta}}{R^2 \, e^{2i\theta} + a^2} \, e^{-iRe^{i\theta}\xi} \underbrace{iRe^{i\theta}}_{(R \, e^i \, \cdot)'(\theta)} d\theta \, = \, 2i\pi \, \mathrm{Res}(ia) \, = \, i \, \pi \, e^{a \, \xi} \, .$$

(c) Montrer que, pour tout $\xi < 0$, on a

$$\int_{-R}^{R} e^{-ix\xi} g(x) dx \underset{R \to +\infty}{\longrightarrow} i \pi e^{a\xi}.$$

D'après la question précédente, il suffit de montrer que

$$\int_0^\pi \frac{R^2\,e^{2i\theta}}{R^2\,e^{2i\theta}+a^2}\,e^{-iRe^{i\theta}\xi}\,d\theta \ \underset{R\to +\infty}{\longrightarrow} \ 0\,.$$

Cela se déduit du théorème de convergence dominée, qui s'applique car, pour tous R > a et $\theta \in [0, \pi]$,

$$\big| \frac{R^2 \, e^{2i\theta}}{R^2 \, e^{2i\theta} + a^2} \, e^{-iRe^{i\theta}\xi} \big| \ = \ \frac{R^2}{|R^2 \, e^{2i\theta} + a^2|} \, e^{R\xi \, \sin\theta} \ \le \ \frac{R^2}{R^2 - a^2} \, e^{R\xi \, \sin\theta}$$

et donc, puisque $\xi < 0$, on a bien la :

- Domination par rapport à R: $comme \sin \theta \ge 0$ pour tout $\theta \in [0, \pi]$,

$$\big|\frac{R^2\,e^{2i\theta}}{R^2\,e^{2i\theta}+a^2}\,e^{-iRe^{i\theta}\xi}\big| \;\leq\; \frac{R^2}{R^2-a^2} \;\leq\; 2\in L^1[0,\pi] \;\; pour \; tout \; R>a \;\; assez \; grand \; (car \; \frac{R^2}{R^2-a^2} \underset{R\to +\infty}{\longrightarrow} 1),$$

- Convergence : $comme \sin > 0 \ sur \]0, \pi[, \ pour \ tout \ \theta \in]0, \pi[\ et \ donc \ p.p.,$

$$\big|\frac{R^2\,e^{2i\theta}}{R^2\,e^{2i\theta}+a^2}\,e^{-iRe^{i\theta}\xi}\big| \ \leq \ \frac{R^2}{R^2-a^2}\,e^{R\,\xi\,\sin\theta} \ \underset{R\to+\infty}{\longrightarrow} \ 0\,.$$

(d) En déduire que, pour tout $\xi \in \mathbb{R}$, on a

$$\int_{-R}^{R} e^{-ix\xi} g(x) dx \xrightarrow[R \to +\infty]{} -i \operatorname{signe}(\xi) \pi e^{-a|\xi|}, \text{ où } \operatorname{signe}(\xi) = \begin{cases} 1 & \text{si } \xi > 0, \\ 0 & \text{si } \xi = 0, \\ -1 & \text{si } \xi < 0. \end{cases}$$

Lorsque $\xi < 0$, le résultat a été démontré dans la question précédente. En remarquant de plus que $\xi \mapsto \int_{-R}^R e^{-ix\xi} g(x) dx$ est la transformée de Fourier de la fonction impaire $g\mathbf{1}_{[-R,R]} \in L^1(\mathbb{R})$, elle est également impaire (cf. question 1.(c)) et donc sa limite simple lorsque $R \to +\infty$ l'est aussi, d'où l'expression lorsque $\xi > 0$ et lorsque $\xi = 0$ (une fonction impaire est nulle en 0).

(e) Déterminer l'expression de la transformée de Fourier de g dans $L^2(\mathbb{R})$.

Comme $g \in L^2(\mathbb{R})$, la transformée de Fourier de g dans $L^2(\mathbb{R})$ est donnée d'après le cours par la limite dans $L^2(\mathbb{R})$ lorsque $R \to +\infty$ de $\xi \mapsto \int_{-R}^R e^{-ix\xi} g(x) dx$.

(En effet, $g\mathbf{1}_{[-R,R]}$ converge vers g dans $L^2(\mathbb{R})$ par convergence dominée, donc la transformée de Fourier de $g\mathbf{1}_{[-R,R]} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, à savoir $\xi \mapsto \int_{-R}^R e^{-ix\xi} g(x) \, dx$, converge vers \widehat{g} dans $L^2(\mathbb{R})$, par continuité de $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$.)

La convergence dans $L^2(\mathbb{R})$ impliquant la convergence presque partout d'une suite extraite, il existe une suite $(R_n)_{n\in\mathbb{N}}$ tendant vers $+\infty$ telle que $\int_{-R_n}^{R_n} e^{-ix\xi}g(x) dx$ converge vers $\widehat{g}(\xi)$ pour presque tout $\xi \in \mathbb{R}$. D'après la question précédente, il vient

$$\widehat{g} = (\xi \mapsto -i\operatorname{signe}(\xi) \pi e^{-a|\xi|})$$
 presque partout et donc dans $L^2(\mathbb{R})$.

Remarque. On peut se passer de l'argument du paragraphe précédent en utilisant le lemme de Fatou. Démontrons en effet le résultat suivant plus général : soient (X, \mathcal{M}, μ) un espace mesuré, $p \in [1, +\infty]$ et $(f_n)_{n \in \mathbb{N}}$ une suite de $L^p(X)$ convergeant presque partout vers $g: X \to \mathbb{C}$ et convergeant vers f dans $L^p(X)$. Alors f = g presque partout, i.e. $(f_n)_{n \in \mathbb{N}}$ converge vers g dans $L^p(X)$.

En effet:

- $-si p = +\infty$, c'est évident (pourquoi ?),
- sinon, le lemme de Fatou conduit à

$$\int_{X} |f - g|^{p} d\mu = \int_{X} \liminf_{n \to +\infty} |f - f_{n}|^{p} d\mu \le \liminf_{n \to +\infty} \int_{X} |f - f_{n}|^{p} d\mu = 0,$$

ce qui implique $|f - g|^p = 0$, et donc f = g, presque partout.

Attention : On notera bien que l'expression $\int_{\mathbb{R}} e^{-ix\xi} g(x) dx$ n'a pas de sens par la théorie de l'intégration de Lebesgue puisque $g \notin L^1(\mathbb{R})$!!