Vector Derivatives

Vectors

We can write partial derivatives in a more concise and elegant manner as follows

For a function $f: \mathbb{R}^n \to \mathbb{R}$ with value f(x) for the vector $x \in \mathbb{R}^n$, we put:

$$abla f = rac{\partial f}{\partial x}$$

If f is an affine map then it is given by $f(x) = r + x \cdot c = r + c^T x = r + x^T c$ and we have:

$$rac{\partial f}{\partial x} =
abla f(x) = c$$

On the other hand, suppose $f:R^n\to R$ is quadratic function of the form $f(x)=x^TMx$ with $M\in R^{n\times n}$ and symmetric $M^T=M$. Then we have:

$$\frac{\partial f}{\partial x} = \nabla f(x) = 2Mx$$

Linear Regression

p = Number of features

n = Number of data Points

Create these matrices:

$$y = egin{bmatrix} y_1 \ y_2 \ \dots \ y_n \end{bmatrix}$$

$$eta = egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ \dots \ eta_p \end{bmatrix}$$

$$X = egin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \ 1 & x_{21} & x_{22} & \dots & x_{2p} \ 1 & \dots & \dots & \dots & \dots \ \dots & \dots & \dots & \dots \ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$$

Calculate β

$$\beta = (X^T X)^{-1} X^T y$$