The Complex *p*-Adic Numbers

Luke Saharia, Durham University

February 7th, 2024

- Introduction
- Norms and Completeness
- 3 The *p*-Adic Completion of \mathbb{Q}
- 4 Unramified Extensions of \mathbb{Q}_p
- 6 Krasner's Lemma
- 6 Algebraic Closure and its Completion
- Conclusion and Further Study

- Introduction
- 2 Norms and Completeness
- 3 The p-Adic Completion of Q
- 4 Unramified Extensions of \mathbb{Q}_p
- 5 Krasner's Lemma
- 6 Algebraic Closure and its Completion
- 7 Conclusion and Further Study

Important Note

For the entirety of this presentation, p will be a prime number.

Introduction

- Introduction
- Norms and Completeness
- 3 The p-Adic Completion of Q
- 4 Unramified Extensions of \mathbb{Q}_p
- 5 Krasner's Lemma
- 6 Algebraic Closure and its Completion
- Conclusion and Further Study

Field Norms

Definition (Norm on a field)

For F a field, a function $\|\cdot\|: F \to \mathbb{R}_{\geq 0}$ is called a field norm if the following are satisfied for all $x, y \in F$:

$$\bullet \|x\| = 0 \iff x = 0$$

(Positive-definiteness)

•
$$||xy|| = ||x|| \cdot ||y||$$

(Multiplicativity)

•
$$||x + y|| \le ||x|| + ||y||$$

(Triangle Inequality)

We call a field with a norm a normed field.

Example

The absolute value with the rational numbers, $(\mathbb{Q}, |\cdot|)$, is a normed field.

Cauchy Sequences and Completeness

Theorem

The completion of a normed field is itself a normed field, with continuous extensions of the field operations, +, \times and the norm, $\|\cdot\|$.

p-Adic Norm

For any $x \in \mathbb{Q}^x$ we can uniquely write it as

$$x = p^n \frac{a}{b}$$
, where $a, b \in \mathbb{Z}$ and $p \nmid a$ or b

Definition (p-Adic Norm)

For any $x\in\mathbb{Q}^x$, $x=p^n\frac{a}{b}$, we define the p-adic norm of x to be $|x|_p\coloneqq\frac{1}{p^n}$. For x=0, we define $|0|_p=0$.

The p-adic norm satisfies the following:

- $|x|_p = 0 \iff x = 0$ (Positive-definiteness)
 - $|xy|_p = |x|_p \cdot |y|_p$ (Multiplicativity)
 - $|x + y|_p \le \max(|x|_p, |y|_p) \le |x|_p + |y|_p$ (Strong Triangle Inequality)

Examples

$$|27|_3 = \frac{1}{27}, \quad |9|_7 = 1, \quad \left|\frac{17\times3}{8}\right|_2 = 8, \quad \left|\frac{17\times3}{8}\right|_{17} = \frac{1}{17}, \quad |p!|_p = \frac{1}{p}$$

- Introduction
- 2 Norms and Completeness
- 4 Unramified Extensions of \mathbb{Q}_p
- 5 Krasner's Lemma
- 6 Algebraic Closure and its Completion
- Conclusion and Further Study

\mathbb{Q} is Not 7-Adically Complete

We can construct a sequence of rational numbers $(x_n)_{n\in\mathbb{N}}$ satisfying:

1.
$$x_n^2 + 3 \equiv 0 \mod 7^n$$

2.
$$x_{n+1} \equiv x_n \mod 7^n$$

The sequence is Cauchy with respect to $|\cdot|_7$. Let

$$\ell := \lim_{n \to \infty} x_n,$$

then
$$\ell^2 = -3$$
, so $\ell \notin \mathbb{Q}$.

The p-Adic Completion of $\mathbb Q$

Definition

The *p*-adic completion of \mathbb{Q} is the *p*-adic numbers, denoted \mathbb{Q}_p .

Lemma (*p*-adic expansion)

There is a **unique** p-adic expansion of $x \in \mathbb{Q}_p$:

$$x = \sum_{k=m}^{\infty} a_k p^k,$$

for some $m \in \mathbb{Z}$ and the $a'_k s$ taken from a certain set of "digits".

Teichmüller Representatives

Definition (Teichmüller Representatives)

The Teichmüller representatives in \mathbb{Q}_p are 0 and the (p-1)th roots of unity in \mathbb{Z}_p . They all satisfy

$$x^{p} - x = 0.$$

Remark

The Teichmüller representatives form a complete set of residues modulo p.

- Introduction
- 2 Norms and Completeness
- 3 The p-Adic Completion of Q
- 4 Unramified Extensions of \mathbb{Q}_p
- 5 Krasner's Lemma
- 6 Algebraic Closure and its Completion
- Conclusion and Further Study

The Ring of Integers and Residue Field

Lemma

Finite extensions K of \mathbb{Q}_p are complete fields and $|\cdot|_p$ uniquely extends to K.

Definition

Let K be a finite extension of \mathbb{Q}_p . Then

- $\mathcal{O}_K = \left\{ x \in K | |x|_p \le 1 \right\}$ is the **ring of integers** in K.
- $\mathfrak{m} = \left\{ x \in K | |x|_p < 1 \right\}$ is the unique maximal ideal in \mathcal{O}_K .
- $k = \mathcal{O}_K/\mathfrak{m}$ is the **residue field** of K.

Examples

Taking $K=\mathbb{Q}_p$ then: $\mathcal{O}_K=\mathbb{Z}_p,\,\mathfrak{m}=p\mathbb{Z}_p,\,k=\mathcal{O}_K/\mathfrak{m}=\mathbb{Z}_p/p\mathbb{Z}_p=\mathbb{F}_p.$

Unramified Extensions of \mathbb{Q}_p

Definition (Unramified Extension)

Let K/\mathbb{Q}_p be a finite extension, then k/\mathbb{F}_p is an extension of finite fields. We call K an **unramified** extension of \mathbb{Q}_p if $[K:\mathbb{Q}_p]=[k:\mathbb{F}_p]$.

Theorem (Classification of Unramified Extensions)

Let K/\mathbb{Q}_p be an unramified extension. Then $K=\mathbb{Q}_p(\zeta_n)$ for some n coprime to p and ζ_n a primitive nth root of unity.

Definition (Teichmüller Representatives in K/\mathbb{Q}_p)

For K a finite extension of \mathbb{Q}_p . The elements from $k = \mathcal{O}_K/\mathfrak{m}$ are in direct correspondence to the solutions of

$$x^q - x = 0$$
, where $q = |k| = p^n$.

These solutions are the Teichmüller representatives in K.

Elements in a Finite Unramified Extension of \mathbb{Q}_p

Theorem

For a finite unramified extension K of \mathbb{Q}_p , we can write any $x \in K$ uniquely as:

$$x = \sum_{k=m}^{\infty} a_k p^k,$$

for some $m \in \mathbb{Z}$ and where the a_k 's are Teichmüller representatives.

- Introduction
- 2 Norms and Completeness
- 3 The p-Adic Completion of Q
- 4 Unramified Extensions of \mathbb{Q}_p
- 6 Krasner's Lemma
- 6 Algebraic Closure and its Completion
- 7 Conclusion and Further Study

Krasner's Lemma

If $\alpha, \beta \in \overline{\mathbb{Q}}_p$ and β is chosen closer to α than any Galois conjugates of α , then

$$\mathbb{Q}_p(\alpha) \subset \mathbb{Q}_p(\beta).$$

Theorem ("Nearby" Polynomials Define the Same Extensions)

Let K/\mathbb{Q}_p be a finite extension. Let α have minimal polynomial $f(x) \in K[x]$. Then for monic $g(x) \in K[x]$ with "nearby" coefficients and β a root of g(x). Then

$$K(\alpha) = K(\beta).$$

Note: we can replace K with \mathbb{C}_{p} .

- Introduction
- 2 Norms and Completeness
- 3 The p-Adic Completion of Q
- 4 Unramified Extensions of \mathbb{Q}_p
- 5 Krasner's Lemma
- 6 Algebraic Closure and its Completion
- Conclusion and Further Study

The Algebraic Closure of \mathbb{Q}_p is Not Complete

$\mathsf{Theorem}$

 $\overline{\mathbb{Q}}_p$ is not complete.

Sketch of Proof

Consider the sequence

$$\beta_n = \sum_{i=0}^n \alpha_i p^{N_i}$$

with carefully chosen **Teichmüller representatives** α_n and increasing integers N_i .

We can make it so that the sequence has the property $\mathbb{Q}_p(\beta_n) \subset \mathbb{Q}_p(\beta)$, where $\beta := \sum_{i=0}^{\infty} \alpha_i p^{N_i}$.

The Completion of $\overline{\mathbb{Q}}_p$ is Algebraically Closed

Definition

We denote the completion of $\overline{\mathbb{Q}}_p$ as \mathbb{C}_p .

Theorem

 \mathbb{C}_p is algebraically closed, i.e. every non-constant polynomial in $\mathbb{C}_p[x]$ has a root in \mathbb{C}_p .

Sketch of Proof

Use:

- \bullet $\overline{\mathbb{Q}}_p$ is dense in \mathbb{C}_p
- ullet Any root of $g(x)\in\overline{\mathbb{Q}}_p[x]$ has all its roots in $\overline{\mathbb{Q}}_p$
- "Nearby" Polynomials Define the Same Extensions

- Introduction
- 2 Norms and Completeness
- 3 The p-Adic Completion of Q
- 4 Unramified Extensions of \mathbb{Q}_p
- 5 Krasner's Lemma
- 6 Algebraic Closure and its Completion
- Conclusion and Further Study

Conclusion and Further Study

- Transcendence Degree
- ullet $\mathbb{C}_p^{\mathsf{unram}}/\mathbb{Q}_p$ has transcendence degree $2^{\aleph_0}=|\mathbb{R}|.$
- \bullet $\mathbb{C}_p/\mathbb{C}_p^{\text{unram}}$ has transcendence degree 2^{\aleph_0} .

Any Questions?