# Códigos de Linha

- ← Transmissão dos dígitos binários através do canal.
- ← Estuda a melhor forma para a transmissão dos símbolos "binários" através do canal de transmissão.



### Critérios para a escolha de um código de linha

# **Gonteúdo de temporização adequado**

- ∠ facilidade de obtenção do sinal de sincronismo (taxa de bits ou de símbolos),
- ∠ sincronismo entre receptor e transmissor.

#### **S**Nível CC nulo

∠ necessidade de alimentação cc para os regeneradores ao longo do canal.

# Espectro densidade de potência adequado

- ∠ concentrado em torno de f<sub>b</sub>/2, ( obtenção do sinal de relógio ).
- ∠ baixa concentração de energia nas freqüências baixas.
  ( o canal reforça as freqüências baixas )

#### **Redundância**

- ∠ capacidade de detecção de erros,
- ∠ monitoramento de erros.

# Transparência

∠ evitar fluxos longos de "0" ou de "1".



### 1. Códigos de Nível

- ← Utiliza dois níveis de tensão para codificar os dígitos binários.
- **← Tipos: Unipolar ou ON-OFF**

#### **Polar**







0V ☑ " 0 "

Potência média: 12.5 w

-----

**Polar NRZ: 2.5V ☑ "1"** 

-2.5V ☑ " 0 "

Potência média: 6.25 w



# **←** Espectro densidade de potência

Pulso retangular 
$$|G(f)|^2 = \tau^2 sinc^2(\tau f)$$

:

Unipolar NRZ 
$$S(f) = \frac{a^2}{4T} |G(f)|^2 + \frac{a^2}{4} \delta(f)$$

• Polar NRZ 
$$S(f) = \frac{a^2}{T} |G(f)|^2$$



#### **Problemas**

- ← Para um fluxo longo de " 0 " ou " 1 " :
  - ☑ poucas transições (problemas com temporização),
  - ☑ Nível cc que varia com os padrões do código,
- densidade espectral de potência concentrada em baixas freqüências,
- não há possibilidade de monitoramento de erros.



# 2. Código Bipolar (AMI : alternate mark inversion)

- ← Energia cc nula.
- Utiliza três níveis de tensão:

☑ "0": ☑ 0V

☑ "1": ☑ tensão positiva ou negativa alternadamente



- ← Este código contém redundâncias:
  - ✓ monitoramento de erros através das violações na regra AMI.
- ← Uso: T1 24 canais.

$$S(f) = \frac{a^2}{2T} |G(f)|^2 (1 - \cos 2\pi f T)$$





### 3. Código Binário com substituição de N zeros (BnZS)

- Limitação do código AMI: dependência da mínima densidade de pulsos para manter sinal de temporização (relógio).
  - ☑ Uma seqüência longa de zeros consecutivos causa 'jitter' ou perda de sincronismo.
  - ☑ Conseqüência: aumento na taxa de erros.
- Solução: desenvolvimento de códigos que limitam o número de zeros consecutivos de uma seqüência: Códigos BnZS.

# Idéia básica para este tipo de código:

- ☑ Uma seqüência com N zeros é substituída por uma seqüência especial.
- ☑ Estas seqüências contêm alguns pulsos que violam a regra AMI.
- Vantagem aumento na densidade dos pulsos quando ocorrer seqüências
  - longas de zeros.
- ← Desvantagem: prejuízo na detecção de erros.



a. Código B3ZS: Seqüências de 3 zeros consecutivos são substituídas como abaixo:



# ← Observações:

- ☑ Ocorre um número par de pulsos bipolares entre violações somente se houver erros na linha ☑ monitoramento de erros.
- ☑ Aplicação: sistema T1.

# **Exemplo:**

 ☑ Observe que existem duas seqüências possíveis, dependendo do número de pulsos desde a última violação.

# b. Códigos B6ZS e B8ZS:

☑ As regras para substituição são mostradas abaixo

|      | Polaridade do pulso precedente | Substituição |                         |
|------|--------------------------------|--------------|-------------------------|
| B6ZS | -                              | 0-+0+-       | <b>→</b> T2 (96 canais) |
| DUZS | +                              | 0 + - 0 - +  |                         |
| B8ZS | -                              | 000-+0+-     |                         |
|      | +                              | 000+-0-+     |                         |

### c. Código HDB3 - (high density bipolar)

- ← O algoritmo de codificação é semelhante ao do código B3ZS.
  - ☑ Uma seqüência com 4 zeros consecutivos é substituída por:
  - ☑ 000 V ou B 00 V
- ← As regras de substituição são mostradas abaixo:

| Polaridade<br>do pulso | Número de pulsos "1"<br>desde a última violação |         |  |  |
|------------------------|-------------------------------------------------|---------|--|--|
| precedente             | impar                                           | par     |  |  |
| -                      | 000-                                            | +00+    |  |  |
| +                      | 000+                                            | - 0 0 - |  |  |

PCM (32 canais)



# 4. Código Ternário

← Mapeia 4 bits em 3 dígitos ternários.

 $\square$  2<sup>4</sup> = 16 combinações diferentes.

 $\square$  3<sup>3</sup> = 27 combinações diferentes.

# **←** Vantagens:

☑ Redução na largura de faixa.

☑ Forte conteúdo de temporização.

### ← Desvantagens:

☑ Requer "framing".

### ← Codificação:

☑ A coluna central é balanceada.

☑ As colunas laterais são escolhidas de pendendo da disparidade ( soma dos dígitos).

☑ Disparidade + ☑ modo - (vice ver.)

| Código 4B3T |        |             |        |  |  |
|-------------|--------|-------------|--------|--|--|
|             | Modo - |             | Modo + |  |  |
| 0000        |        |             | +++    |  |  |
| 0001        | 0      |             | ++0    |  |  |
| 0010        | - 0 -  |             | + 0 +  |  |  |
| 0011        | 0      |             | 0++    |  |  |
| 0100        | +      |             | ++-    |  |  |
| 0101        | -+-    |             | + - +  |  |  |
| 0110        | +      |             | -++    |  |  |
| 0111        | -00    |             | +00    |  |  |
| 1000        | 00-    |             | 00+    |  |  |
| 1001        | 00-    |             | 00+    |  |  |
| 1010        |        | 0 + -       |        |  |  |
| <i>1011</i> |        | 0 - +       |        |  |  |
| 1100        |        | +0-         |        |  |  |
| 1101        |        | <i>-0</i> + |        |  |  |
| 1110        |        | + - 0       |        |  |  |
| 1111        |        | - + 0       |        |  |  |

# 5. Código Manchester (biphase - diphase)



- Utiliza um ciclo da onda quadrada para codificar o "1" e fase oposta para o "0".
- ← Nível cc nulo.

- Existe sempre uma transição nos centros dos pulsos :
  - ☑ forte conteúdo de temporização
- Densidade espectral de potência concentrada em torno de 1/T:
  - ☑ Largura de faixa grande (2/T)
- ← Não apresenta redundâncias.
  - ☑ não há como detectar erros.
- ← Uso: Ethernet LAN (IEEE 802.3)

$$S(f) = a^2 T sinc^2 \left(\frac{fT}{2}\right) sin^2 \left(\frac{\pi fT}{2}\right)$$





### 6. Código Diferencial

Codifica o dígito "1" como uma mudança de estado e o "0" sem mudança

de estado.

☑ a informação está contida nas transições,

#### Vantagens:

- Insensível à inversão de fase,
- O decodificador não necessita de uma referência absoluta,

### **Desvantagens:**

- densidade espectral de potência concentrada em baixas frequências,
- dobra a probabilidade de erros.





# ← Obtenção do código:



$$d_k = b_k \oplus d_{k-1}$$

|           | Inicio     | mensagem |   |   |   |   |   |   |
|-----------|------------|----------|---|---|---|---|---|---|
| $b_k$     | 1 ( ref)   | 1        | 0 | 1 | 0 | 0 | 1 | 1 |
| $d_{k-1}$ | 0 (e. in.) | 1        | 0 | 0 | 1 | 1 | 1 | 0 |
| $d_k$     | 1          | 0        | 0 | 1 | 1 | 1 | 0 | 1 |

# ← Decodificação:

$$d_k \xrightarrow{T} d_{k,l}$$



Caso ocorrer inversão de fase

$$\overline{d}_k \oplus \overline{d}_{k-1} = b_k \oplus \overline{d}_{k-1} \oplus \overline{d}_{k-1} = b_k$$

pois: 
$$\overline{d}_k = \overline{b_k \oplus d_{k-1}} = b_k \oplus \overline{d}_{k-1}$$

### 7. Códigos Multiníveis

- Utiliza mais de dois níveis de tensão para a codificação dos dados digitais.
  - ☑ Exemplo para quatro níveis de tensão (agrupa de 2 em 2 dígitos binários) como mostra a figura abaixo:

#### Vantagens:

← compressão na banda de transmissão.

#### **Desvantagens:**

← detecção de quatro ou mais níveis de tensão.



# **Apêndice**



