

Tensor Relational Algebra for Distributed Machine Learning System Design

Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, Chris Jermaine

Current ML System

Systems like TensorFlow and PyTorch include:

- A front-end:
 - An API for specifying the model;
 - An automatic differentiation engine.
- A back-end:
 - A compute engine responsibly for (parallel/distributed) execution of SGD optimization;
 - Common parallel strategies include: data parallelism;
 pipeline parallelism and operation partitioning.

What is the Problem?

- Current ML runtime is optimized for particular device(s) and computation paradigms, without careful consideration for distribution.
- Database systems are very successful for declarative parallel/distributed processing.
- However, database is built on set theory which is not appropriate for ML computation.
- Our goal is to bridge this gap!

Run it in a Relational Style

- Encode each computation to a group of relational operations, e.g., join, selection, and aggregation;
- Encode the whole computation flow graph into a query plan;
- Let the system automate the optimization in a distributed runtime.

Matrix Multiplication Example

Let us take matrix multiply in FC as an example: Assume two matrices are stored as blocks in two relations;

How the System Executes the plan?

Given 3 worker nodes;

The system can determine to broadcast **X** and partition **W**:

How the System Executes the plan?

The system will do local join and apply multiplication on blocks:

How the System Executes the plan?

The system will do aggregation: local aggregation and apply addition on blocks:

What Should Be the Right Abstractions?

- Answer three fundamental questions:
 - What should be the right formalization for express distributed ML computations?
 - **→** Tensor Relational Algebra (TRA).
 - What is the right abstraction to implement such formalization, especially for a distributed runtime?
 - **→** Implementation Abstraction (IA).
 - What are the unique optimizations we can adopt for this implementation abstraction?
 - **→** A rule based relational optimizer.

Tensor Relational Algebra (TRA)

- A tensor relation includes tuples of <key, array>.
- Support UDF-style operations: Aggregate Σ ; Join \bowtie ; ReKey; Filter σ ; Transform λ ; Tile; Concat.
- This abstraction is expressive enough to represent any tensor manipulation allowed by Einstein Notation.

TRA — Operations

- <u>Join</u>: $\bowtie: \left((\mathbb{Z}^*)^g \times (\mathbb{Z}^*)^g \times \left(T^{(r_l, b_l)} \times T^{(r_r, b_r)} \to T^{(r_o, b_o)} \right) \right) \to \left(R^{(k, r, b)} \to R^{(g, r, b)} \right)$
- Aggregation: $\Sigma: \left((\mathbb{Z}^*)^g \times \left(T^{(r,b)} \times T^{(r,b)} \to T^{(r,b)} \right) \right) \to \left(R^{(k,r,b)} \to R^{(g,r,b)} \right)$
- **Rekey**: Rekey: $((\mathbb{Z}^*)^{k_i} \to (\mathbb{Z}^*)^{k_o}) \to (R^{(k_i,r,b)} \to R^{(k_o,r,b)})$
- Transform: $\lambda : \left(T^{(r_i, b_i)} \to T^{(r_o, b_o)} \right) \to \left(R^{(k, r_i, b_i)} \to R^{(k, r_o, b_o)} \right)$
- <u>Filter</u>: $\sigma: \left((\mathbb{Z}^*)^k \to \{ \text{true}, \text{false} \} \right) \to \left(R^{(k,r,b)} \to R^{(k,r,b)} \right)$
- <u>Tile</u>: Tile: $(\mathbb{Z}^* \times \mathbb{Z}^*) \to \left(R^{(k,r,b)} \to R^{(k+1,r,b')}\right)$
- **Concat**: Concat: $(\mathbb{Z}^* \times \mathbb{Z}^*) \to \left(R^{(k,r,b)} \to R^{(k-1,r,b')}\right)$

Implementation Abstraction (IA)

- TRA can formalize ML operations, but is not sufficient to specify different distributed implementations.
- IA is to bridge this gap.
- A physical tensor relation includes tuples of (key, array, site):
- Extend the TRA to operations preferred in Distributed runtimes.

IA Operations

- Assign tuple to site:
 - **Broadcast**: BROADCAST : $\mathcal{R}^{(k,r,b,s)} \to \mathcal{R}^{(k,r,b,s)}$, after this we will have ALL (R) = true
 - Shuffle: SHUFFLE: $2^{\{1...k\}} \to \left(\mathscr{R}^{(k,r,b,s)} \to \mathscr{R}^{(k,r,b,s)} \right)$, after this we will have $PART_D(R) = true$
- local operations:
 - <u>Local Join</u>: \bowtie^L : $\left((\mathbb{Z}^*)^g \times (\mathbb{Z}^*)^g \times \left(T^{(r_l, b_l)} \times T^{(r_r, b_r)} \to T^{(r_o, b_o)} \right) \right) \to \left(\mathscr{R}^{(k_l, r_l, b_l, s)} \times \mathscr{R}^{(k_r, r_r, b_r, s)} \to \mathscr{R}^{(k_l + k_r g, r_o, b_o, s)} \right)$
 - <u>Local Aggregate</u>: $\Sigma^L : \left((\mathbb{Z}^*)^k \times \left(T^{(r,b)} \times T^{(r,b)} \to T^{(r,b)} \right) \right) \to \left(\mathscr{R}^{(k_l,r_l,b_l,s)} \times \mathscr{R}^{(k_r,r_r,b_r,s)} \to \mathscr{R}^{(k_l+k_r-g,r_o,b_o,s)} \right)$
 - <u>Local filter</u>: $\sigma^L : \left((\mathbb{Z}^*)^g \to \{ \text{true}, \text{false} \} \right) \to \left(\mathscr{R}^{(k,r,b,s)} \to \mathscr{R}^{(k,r,b,s)} \right)$
 - <u>Local map</u>: $\lambda^{L}: \left(\left((\mathbb{Z}^{*})^{k_{i}} \rightarrow \left((\mathbb{Z}^{*})^{k_{o}}\right)^{m}\right) \times \left(T^{(r_{i},b_{i})} \rightarrow \left(T^{(r_{o},b_{o})}\right)^{m}\right)\right) \rightarrow \left(\mathcal{R}^{(k_{i},r_{i},b_{i},s)} \rightarrow \mathcal{R}^{(k_{o},r_{o},b_{o},s)}\right)$

Optimization — Equivalence

- Equivalence of IA expressions: Equivalent input physical tensor relations leads to equivalent output physical tensor relations.
- Simple equivalence rules:
 - Kernel function composition;
 - Equivalent partitioning.
- Domain specific equivalence rules:
 - E.g., different IA representations for distributed matrix multiplication.

Optimization — Equivalence

- Domain specific equivalence rules for matrix multiplication.
- Target TRA: $\Sigma_{(\langle 0,2\rangle, \text{matAdd})} \left(\bowtie_{(\langle 1\rangle, \langle 0\rangle, \text{matMul})} (R_X, R_Y) \right)$
- IA can provide implementations for:
 - Broadcast based matrix multiplication (BMM).
 - Cross product based matrix multiplication (CPMM).
 - Replication based matrix multiplication (RMM).

Optimization — Cost Model

- A cost model to consider network traffic.
- In contrast to the classic query optimization (where estimating selectivity is usually difficult) — the continuity constraints make this free.
- Give input tensor relation(s), the output tensor relation's frontier (for the key) and bound (for the array) can be estimated.
- For a tensor relation R, suppose f is the estimated floating numbers in R, s is the number of sites, then:
 - Broadcast has a cost of $f \times s$;
 - Shuffle has a cost of s.

Experiments

• Aims:

- Can the proposed optimization generate efficient plan(s) for a particular task over a particular dataset?
- Can the end-to-end performance be competitive to the STOA HPC or ML systems?

• Benchmarks:

- Distributed matrix multiplication (MM).
- Nearest Neighbor Search (NNS) in Riemannian metric space.
- Feed Forward Neural Network SGD iteration (FFNN).

Experimental Task — **FFNN**

- 2-layer FFNN for classification:
 - MiniBatch $(\mathbf{X} \in \mathbb{R}^{N \times D}, \mathbf{Y} \in \mathbb{R}^{N \times L})$,
 - Weight matrix of layer 1 $\mathbf{W}_1 \in \mathbb{R}^{D \times H}$,
 - Weight matrix of layer 2 $\mathbf{W}_2 \in \mathbb{R}^{H \times L}$;
- Settings:
 - Google speech recognition:

$$N = 10^4$$
, $D = 1600$, $L = 10$, $H = 10^5$, 1.5×10^5 , 2×10^5 ;

• Amazon 14k XML:

$$N = 10^3$$
, $D = 597540$, $L = 14588$, $H = 10^3$, 3×10^3 , 5×10^3 ;

- IA implementation:
 - TRA-DP, TRA-MP;
- Compared with:
 - TensorFlow(TF)/PyTorch data parallel implementation;
 - A careful HPC implementation based on ScaLapack;
 - Dask a popular distributed python analytic package.

Experimental Results — FFNN1

2-layer FFNN for Google Speech

	/			U		
Cluster		CPU			GPU	
Nodes	2	5	10	2	5	10
100k Neurons						
PyTorch-DP	11.16	6.15	4.75	0.99	1.19	1.27
TF-DP	11.93	7.32	5.51	0.87	1.13	1.17
ScaLAPACK	8.32	4.97	2.79	NA	NA	NA
Dask	62.57	56.57	49.63	NA	NA	NA
TRA-DP	11.62	6.51	5.20	1.49	1.59	1.63
TRA-MP	26.56	28.71	29.09	7.01	11.56	Fail
200k Neurons						
PyTorch-DP	17.25	11.94	9.30	Fail	2.09	2.42
TF-DP	21.36	13.21	11.21	1.52	2.12	2.46
ScaLAPACK	17.18	10.05	5.06	NA	NA	NA
Dask	136.66	112.72	104.01	NA	NA	NA
TRA-DP	17.89	12.51	9.69	1.49	1.59	1.63
TRA-MP	37.82	54.23	59.84	Fail	Fail	Fail

Predicted Cost

	TRA-DP	TRA-MP
100k Neurons	9.7x10 ⁸	1.0x10 ¹⁰
200k Neurons	1.9x10 ⁹	2.0x10 ¹⁰

Experimental Results — FFNN2

2-layer FFNN for Amazon-14k XML (seconds)

Cluster		CPU			GPU	
Nodes	2	5	10	2	5	10
	1k Neurons					
PyTorch-DP	9.74	10.29	10.34	2.67	3.76	4.20
TF-DP	Fail	Fail	Fail	Fail	Fail	Fail
ScaLAPCK	8.16	6.65	2.47	NA	NA	NA
Dask	45.40	42.15	29.34	NA	NA	NA
TRA-DP	12.50	14.29	15.68	4.67	4.69	4.73
TRA-MP	3.86	2.79	1.7	0.4	0.37	0.35
5k Neurons						
PyTorch-DP	34.05	46.53	50.17	Fail	Fail	Fail
TF-DP	Fail	Fail	Fail	Fail	Fail	Fail
ScaLAPACK	23.21	11.65	8.33	NA	NA	NA
Dask	246.56	143.86	127.26	NA	NA	NA
TRA-DP	44.12	68.54	75.15	Fail	Fail	Fail
TRA-MP	18.59	8.07	5.57	Fail	0.59	0.48

Predicted Cost

	TRA-DP	TRA-MP
1k Neurons	3.7x10 ⁹	1.0x10 ⁷
5k Neurons	1.8x10 ¹⁰	5.0x10 ⁷

Thank you!