Topics of the week

- 1. Determinant and its properties, definition via permutations, connection to matrix inverse, cofactors and the determinant, Cramer's rule
- 2. Complex numbers, calculations with complex numbers, conversion between Cartesian form and polar form, Euler's formula
- 3. Fundamental theorem of algebra, roots of polynomials
- 4. Complex-valued vectors and matrices
- 5. Eigenvalues and eigenvectors, definition and 2x2 examples

Determinant For a set of vectors a_1, \ldots, a_n , define the signed volume $V(a_1, \ldots, a_n)$:

- 1. $V(\alpha v, \dots) = \alpha V(v, \dots);$
- 2. V(a+b,...) = V(a,...) + V(b,...);
- 3. V(a, b, ...) = -V(b, a, ...);
- 4. $V(e_1, \ldots, e_n) = 1$.

Properties:

- 1. $\det AB = \det A \det B \iff \text{All spatial objects increase their volume by the factor of det;}$
- 2. A^{-1} exists \iff det $A \neq 0 \iff$ columns of A belong to a smaller-dimensional subspace;
- 3. $\det A = \det A^{\top}$;

Sign of permutation sgn σ is $(-1)^k$, where k is, equivalently:

- 1. The parity of the number of inversions in σ ;
- 2. The parity of the number of swaps needed to turn σ into identity;
- 3. The difference in parity between n and the number of cycles in cycle presentation of σ .

Leibniz formula We can explicitly write out the determinant as

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn} \sigma \prod_{i=1}^n A_{i\sigma_i}$$

Cofactor matrix of A is the matrix M s.t. M_{ij} is $(-1)^{i+j}$ times the determinant of the matrix that is obtained from A by removing its i-th row and j-th column.

Laplace expansion also called cofactor expansion:

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} M_{ij} = \sum_{i=1}^{n} (-1)^{i+j} A_{ij} M_{ij},$$

where M is the cofactor matrix. Example:

$$\begin{vmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{vmatrix} = A_{11} \begin{vmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{vmatrix} - A_{12} \begin{vmatrix} A_{21} & A_{23} \\ A_{31} & A_{33} \end{vmatrix} + A_{13} \begin{vmatrix} A_{21} & A_{22} \\ A_{31} & A_{32} \end{vmatrix}$$

Cramer's rule Consider Ax = b. We need to find x_1, \ldots, x_n s.t. $b = x_1v_1 + \cdots + x_nv_n$. Then,

$$x_i = \frac{V(v_1, \dots, v_{i-1}, b, v_{i+1}, \dots, v_n)}{V(v_1, \dots, v_{i-1}, v_i, v_{i+1}, \dots, v_n)}$$

In other words, $x_i = \frac{\det A_i}{\det A}$, where A_i replaces v_i with b

Adjugate matrix adj $A = M^{\top}$, where M is the co-factor matrix:

- 1. $A \operatorname{adj} A = \operatorname{adj} AA = I \operatorname{det} A;$
- 2. If A is invertible, $A^{-1} = \frac{\text{adj } A}{\det A}$.

Determinant in row operations When we do Gaussian elimination,

- 1. Multiplying a row by α also multiplies the determinant by α ;
- 2. Adding one row, multiplied by α , to another does **not** change the determinant;
- 3. Swapping two rows multiplies the determinant by -1.

Change of basis What happens to a matrix when we switch from e_1, \ldots, e_n to b_1, \ldots, b_n ? Consider v=x on the basis $E=(e_1,\ldots,e_n)$. We want to find y such that v=By, i.e. $y=B^{-1}x$. Then Ax becomes $B(B^{-1}ABy)$, that is, $A \mapsto B^{-1}AB$.

are matrices A and B s.t. $A = P^{-1}BP$. Similar matrices

Eigenbasis Some basis changes turn A into a nice form, e.g. $A \mapsto \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. A basis, in which A is diagonal is called an eigenbasis of A.

Eigenvector Any $v \neq 0$ s.t. $Av = \lambda v$ for some λ , called **eigenvalue**.

Correspondingly, eigenbasis is any basis formed by eigenvectors.

Criterion: λ is an eigenvalue \iff $(A - \lambda I)v = 0 \iff \det(A - \lambda I) = 0$.

Characteristic polynomial of the matrix A is $p(\lambda) = \det(A - \lambda I)$.

Characteristic polynomial doesn't change when the basis is changed! Each coefficient stays invariant under the change of the basis, in particular:

- 1. $[\lambda^0]p(\lambda) = \lambda_1 \dots \lambda_n = \det A$, the determinant of A;
- 2. $[\lambda^{n-1}]p(\lambda) = -(\lambda_1 + \dots + \lambda_n) = -(A_{11} + \dots + A_{nn}) = -\operatorname{tr} A$, the trace of A.

Complex numbers Are numbers of form $a + bi \in \mathbb{C}$, where $i^2 = -1$.

Algebraically closed field: Every polynomial can be factored in linear factors.

In-class exercises

1. For what values of $a, b, c \in \mathbb{R}$ is the determinant zero?

$$A = \begin{bmatrix} 0 & 1 & 0 & 4 & c \\ a & 5 & 0 & 4 & -1 \\ 2 & 1 & b & -1 & -3 \\ 0 & -2 & 0 & 1 & 0 \\ 0 & -4 & 0 & 3 & 1 \end{bmatrix}$$

2. Find the determinant by performing Gaussian elimination:

$$B = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 6 & 0 \\ -1 & -2 & 2 \end{bmatrix}$$

- 3. How to find adjugate matrix?
- 4. When n is odd, any $n \times n$ matrix has a real eigenvalue, why?
- 5. Example of a matrix that doesn't have eigenbasis.