FOWERED BY Dialog

ELECTROPHOTOGRAPHIC SENSITIVE BODY

Publication Number: 63-175860 (JP 63175860 A), July 20, 1988

Inventors:

- AKASAKI YUTAKA
- SATO KATSUHIRO
- TANAKA HIROYUKI
- NUKADA KATSUMI
- SUDO HIDEMI

Applicants

• FUJI XEROX CO LTD (A Japanese Company or Corporation), JP (Japan)

Application Number: 62-006048 (JP 876048), January 16, 1987

International Class (IPC Edition 4):

• G03G-005/06

JAPIO Class:

- 29.4 (PRECISION INSTRUMENTS--- Business Machines)
- 14.1 (ORGANIC CHEMISTRY--- Organic Compounds)

JAPIO Keywords:

- R043 (CHEMISTRY--- Photoconductive Plastics)
- R125 (CHEMISTRY--- Polycarbonate Resins)

Abstract:

PURPOSE: To improve the electrophotographic characteristics of the titled body by incorporating a specific diphenyldicyanoethylene derivative to an electric charge transfer layer.

CONSTITUTION: The titled body comprises an electric charge generating layer and the electric charge transfer layer provided on a conductive supporting body. In the formula R(sub 1) is hydrogen atom, nitro or alkoxycarbonyl group, R (sub 2) is alkyl, alkoxy, nitro, cyano or alkoxy carbonyl group, R(sub 3) is hydrogen or halogen atom, alkoxy carbonyl or nitro group, R(sub 4) is hydrogen or halogen atom, alkyl, cyano, nitro, alkoxy carbonyl, a substituted or an unsubstituted phenyl or a substituted or an unsubstituted 4-phenyl phenyl group. Said diphenyl dicyanoethylene derivative has an electron transferring property more than equivalent to that of 2,4,7-trinitrofluorenone (TNF). Accordingly, the positive charge electron photographic sensitive body in which said derivative is used to the electron transfer agent of the charge transfer layer has the excellent electrophotographic characteristics. (From: *Patent Abstracts of Japan*, Section: P, Section No. 792, Vol. 12, No. 453, Pg. 54, November 29, 1988)

JAPIC

© 2002 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 2558960

http://toolkit.dialog.com/intranet/cgi/present?STYLE=1360084482&PRESENT=DB=347,AN=2558960,... 11/26/2002

⑫ 公 開 特 許 公 報 (A)

昭63 - 175860

@Int.Cl.4

識別記号

厅内整理番号

匈公開 昭和63年(1988) 7月20日

G 03 G 5/06

7381-2H

審査請求 未請求 発明の数 1 (全8頁)

匈発明の名称 電子写真感光体

②特 願 昭62-6048

20出 願 昭62(1987)1月16日

⑫発 明 者 赤 崎 豊

神奈川県南足柄市竹松1600番地 富士ゼロツクス株式会社

竹松事業所内

砂発 明 者 佐 藤 克 洋

神奈川県南足柄市竹松1600番地 富士ゼロツクス株式会社

竹松事業所内

砂発 明 者 田 中 浩 之

神奈川県南足柄市竹松1600番地 富士ゼロックス株式会社

竹松事業所内

東京都港区赤坂3丁目3番5号

①出 顋 人 富士ゼロックス株式会

社

②代 理 人 弁理士 渡 部 剛

最終頁に続く

明細鸖

発明の名称 電子写真感光体

2. 特許請求の範囲

(1) 導電性支持体上に電荷発生層と電荷輸送層とよりなる感光層を有する電子写真感光体において、該電荷輸送層が下記一般式(I)で示されるジフェニルジシアノエチレン誘導体を含有することを特徴とする電子写真感光体。

(式中、R₁ は水素原子、ニトロ基又はアルコキシカルボニル基を表わし、R₂ はアルキル基、アルコキシ基、ニトロ基、シアノ基又はアルコキシカルボニル基を表わし、R₃ は水素原子、アルコキシカルボニル基、ハロゲン原子、又はニトロ基

を表わし、R4 は水素原子、アルキル基、シアノ 基、ニトロ基、ハロゲン原子、アルコキシカルボ ニル基、置換又は非置換フェニル基又は置換又は 非置換4-フェニルフェニル基を表わす。)

3. 発明の詳細な説明

産業上の利用分野

本発明は、電荷発生層と電荷輸送層とを有する 電子写真感光体に関する。

従来の技術

従来、有機光導電体を用いた電子写真感光体は、無公害、高生産性、低コスト等の利点があるため、種々研究されており、感光体に増感剤としてほう 素化合物を用いたものも知られている(例えば、 特別昭54-30834号公報参照)。

ところが、有機光導電体のうち、可視光を吸収 して電荷を発生する物質は、電荷保持力に乏しく、 逆に、電荷保持力が良好で、成膜性に優れた物質 は、一般に可視光による光導電性がほとんど無い という欠点がある。この問題を解決するために、

感光材を可視光を吸収して電荷を発生する電荷発 生剤と、その電荷の輸送を行う電荷輸送材料とに 機能分離した層構成を有する積層型の感光層とす ることが行われている。そして、電荷発生剤及び 電子輸送削については、数多くのものが提案され ており、電荷輸送剤としては、アミン化合物、ヒ ドラゾン化合物、ピラゾリン化合物、オキサゾー ル化合物、オキサジアゾール化合物、スチルベン 化合物、カルバゾール化合物等が知られている。 発明が解決しようとする問題点

ところで、機能分離型の電子写真感光体におい ては、コロトロンにおけるオゾンの発生防止、現 像におけるトナーの帯電制御等の点から、正帯電 型の方が望ましい。ところが、正帯電型として用 いる場合、電子輸送剤が正孔輸送性のものの場合、 電荷発生層を上層とする必要があるが、電荷発生 成するに至った。 層はその性質上、薄膜化させるのが通常であり、 感光体としての機械的特性を満足させるには不充 分である。又、負帯電で用いるための複写機側の 工夫も必要である。そこで比較的膜厚の電荷輸送

圏を上層として正帯電性の感光体を得たいという 要望も一方にあり、そのためには、電荷輸送層に おいて、充分に有効な電子輸送剤を用いることが 必要である。しかしながら、従来提案されている 電子輸送剤で充分有効なものは知られていない。

本発明は、従来の上記のような問題点に鑑みて なされたものである。

したがって、本発明の目的は、優れた電子写真 特性を有する正帯電用の積層型電子写真感光体を 提供することにある。

問題点を解決するための手段

本発明者等は、研究の結果、一群のジフェニル ジシアノエチレン誘導体を電荷輸送剤として用い ると、良好な電子写真特性を示す正帯電性電子写 真感光体が得られることを見出だし、本発明を完

本発明の電子写真感光体は、導電性支持体上に、 電荷発生層及び電荷輸送層を有するものであり、 そして、電荷輸送體が下記一般式(I)で示され るジフェニルジシアノエチレン誘導体を含有する

ことを特徴とする。

$$\begin{array}{c|c}
R_1 & CN & CN \\
R_2 & R_3 \\
R_4 & CI \end{array}$$

(式中、R₁ は水素原子、ニトロ基又はアルコキ シカルポニル基を表わし、Rっはアルキル基、ア ルコキシ基、ニトロ基、シアノ基又はアルコキシ カルポニル基を表わし、R₃ は水素原子、アルコ キシカルボニル基、ハロゲン原子、又はニトロ基 を表わし、Raは水素原子、アルキル基、シアノ 基、ニトロ基、ハロゲン原子、アルコキシカルポ ニル基、置換又は非置換フェニル基又は置換又は 非置換4-フェニルフェニル基を表わす。)

本発明において用いられる上記一般式で示され る化合物としては、例えば、次のものが例示され Ş٠

特開昭63-175860(3)

(48)

これらの化合物は、例えば、相当するベンソフェノン誘導体をマロンニトリルと、溶媒中で、所望により触媒の存在下、50℃乃至溶媒の沸点迄での温度で縮合反応させることによって合成することができる。この反応は、カルボニル基と活性メチレンとの脱水縮合反応であり、Knoevernage!反応として知られている。(実験化学講座 第18巻「有機化合物の反応Ⅱ(中)」(日本化学会編、1958年、丸善発行)参照)

本発明の電子写真感光体において、導電性支持体としては、例えば、金鳳パイプ、金鳳板、金鳳 シート、金属笛、導電処理を施した高分子フィルム、A I 等の金鳳の蒸着層を設けた高分子フィルム、S D O 2 等の金鳳酸化物第4級アンモニウム塩等により被覆された高分子フィルム又は紙等が用いられる。

導電性支持体上に形成される電荷発生層は、例えば、電荷発生剤を導電性支持体上に蒸替して得られたものでもよく、又、電荷発生剤と結替樹脂とを主成分とする塗布液を塗布することによって

形成されたものでもよい。

電荷発生剤及び結替樹脂としては、公知のものは、公知のものはは、なる。例えばものできるとの例えば機・ボリピニルカルバール等の有機・ファン類、ピニルカルスアン系の有機・ファン類、ピニルカルスアン系の有機・ファン類、ピールのでき、スス・制脂・ボリステル、ピールのでは、セルロース類、ボリエッド樹脂等が使用できる。

電荷発生層の膜厚は、0.05~10 μ 程度に設定される。

電荷発生層の上には電荷輸送圏が形成される。 この電荷輸送圏は、上記ジフェニルジシアノエチ レン誘導体と結着樹脂とより構成されるものであって、ジフェニルジシアノエチレン誘導体、結着 樹脂及び適当な溶媒を主成分とする塗布液を、ア プリケータ、バーコータ、ディップコータ等によ

電性支持体の上に、障壁圏を設けてもよい。障壁層は、導電性支持体からの不必要な電荷の注入を阻止するために有効であり、 画質を向上させる作用がある。障壁圏を構成する材料としては、 酸化アルミニウム等の金属酸化物あるいはアクリル樹脂、 フェノール樹脂、 ポリエステル樹脂、 ポリウレタン等があげられる。

実施例

以下、本発明本発明において用いる上記化合物 の合成例及び本発明の実施例を示す。

合成例1 例示化合物(8)の合成

4ーニトロペンゾイルクロライド12.5 g と塩化アルミニウム9gを塩化メチレン100ペル との溶液にピフェニル5.2 g を塩化メチレン20ペに溶かした溶液をゆっくりと溶液合物で移了後、室温で8時間徴拌した。反応混合物を水に投入した後、水酸化ナトリウム水溶液を加えて酸クロライドを除いた。次いで、塩化メチロン層を分離し、よく水洗いした後、乾燥し、溶解を固去した。得られた残渣を塩化メチレンーエタ

り、電荷発生層上に塗布することによって形成される。この場合、ジフェニルジシアノエチレン誘導体と結着樹脂との混合比は、1:20~20: 1 程度に設定される。又、電荷輸送層の膜厚は、 2~100μ程度に設定される。

なお、本発明の電子写真感光体においては、導

ノールから再結晶して、4-二トロー4´ーフェ ニルベンゾフェノン7.5*9*を得た。

mp. 166~167℃

マススペクトル M⁺ 303

元素分析 C H N

計算值 75.24 4.32 4.62

実測値 75.13 4.15 4.43

 $I R 1650 cm^{-1} (C=0)$

次に、得られた4ーニトロー4・一フェニルベンソフェノン 6・4 g とマロンニトリル 2・5 gをピリジン 100 m 中で、窒素気流 下、4 時間 退流した。その後、ピリジンを減圧 留去し、税 適を塩化メチレンに溶解し、希塩酸、続いて水でよく洗浄した後、乾燥し、塩化メチレンを減圧 留去した。残適をメタノールから再結晶して、例示化合物(8)5・9 g を得た。

mp. 169~171℃ マススペクトル M⁺ 351 元素分析 С H N

計算値 75.21 3.73 11.96

実測値 75.40 3.52 11.80

IR 2224 cm -1 (-CN)

合成例 2 例示化合物 (44)の合成

ベンソフェノンテトラカルボン酸ジ無水物

10gをメタノール 70㎡中に懸濁させ、濃硫酸1㎡を加え、80時間退流した。その後、

150㎡の水に注ぎ、炭酸ナトリウムを加え、塩 基性にし、塩化メチレンで抽出した。塩化メチレン暦をよく水洗した後、乾燥し、塩化メチレンを 留去した。残渣をよく乾燥した後、ピリジン 100㎡に溶かし、マロンニトリル 2.89を 加え、窒素気流下4時間退流した。ピリジンを減 圧留去し、残渣を塩化メチレンに溶かし、希塩酸、

元素分析 C H N

計算值 69.82 3.30 15.27

続いて水でよく洗浄した。次いで、無水硫酸ナト

実測値 70.07 3.27 15.21

IR 2228_{cm} - 1 (KBr)

合成例4 例示化合物(2)の合成

2-ニトロペンゾフェノン 13.5 g、マロノニトリル 7.9 g及びピリジン 100 wを用いる以外は、合成例3におけると同様に処理して例示化合物(2)を得た。

mp. 114~115.5°C

マススペクトル M+ 275

元素分析 C H N

(エタノールから)

計算値 69.82 3.30 15.27

実 測値 70.14 3.13 15.28

IR 2224 cm⁻¹ (KBr)

合成例5 例示化合物(15)の合成

4-エチルー3^{*}.5^{*}-ジニトロペンソフェ ノン 13.5g、マロノニトリル 5.9g及 びピリジン 100wを用いる以外は、合成例3 リウムで乾燥し、塩化メチレンを滅圧留去した。 残渣をメタノールー塩化メチレンから再結晶し、 例示化合物(44)4.19を得た。

mp. 169~171°C

マススペクトル M + 462

元素分析 C H N

計算値 62.34 3.92 6.06

実測値 62.52 3.92 6.04

IR 2220 cm⁻¹, 1744 cm⁻¹, 1724 cm⁻¹

合成例3 例示化合物(1)の合成

市販の4~ニトロペンゾフェノン 10gとマロンニトリル 5.8gをピリジン 100㎡ で、窒素気流下、4時間遠流した。その後、ピリジンを減圧留去し、残渣を塩化メチレンに溶解し、希塩酸、続いて水でよく洗浄した後、乾燥し、塩化メチレンを減圧留去した。残渣をメタノールから再結晶して、例示化合物(1)を得た。

mp. 97.5~98.5°C

(メタノールから)

マススペクトル M + 275

におけると同様に処理して例示化合物(15)を得た。

mp. 181~183°C

(ヘキサン/CH,Cl,から)

マススペクトル M + 348

元素分析 C H N

計算值 62.07 3.47 16.09

実測値 62.23 3.31 15.98

IR 2232 cm -1 (KBr)

合成例6 例示化合物(18)の合成

3 ´ , 5 ´ ージニトロー4 ´ ーフェニルベンソフェノン 12g、マロノニトリル 4 . 6g及びピリジン 100 wを用いる以外は、合成例3におけると同様に処理して例示化合物(18)を得た。

mp. 213.5~215.5℃

(CH₂ Cl₂ /エタノールから)

マススペクトル M + 396

元素分析

C H N

計算值 66.68

66,68 3.05 14.14

実測値 66.67 2.89 13.95

IR 2228_{cm} -1 (KBr)

合成例7 例示化合物(47)の合成

3.3 - ジニトロベンソフェノン 109、マロノニトリル 4.4 g及びピリジン 100 wを用いる以外は、合成例3におけると同様に処理して例示化合物(47)を得た。

mp. 209~211°C

(CH, CI, から)

マススペクトル M⁺ 320

元素分析

C H I

計算値

60.01 2.52 17.49

実测值

60.19 2.35 17.58

IR 2228cm -1 (KBr)

前記例示した他の化合物も上記と同様にして合成できる。

実施例1

例示化合物(1)〇、5g及びピスフェノール

で+800V及び-800Vに帯電し、5 luxの 白色光を露光したところ、電位の減衰は見られな かった。

実施例2~6

例示化合物(1)を(2)、(8)、(18)、 (44)及び(47)に代えて、実施例1を同様 の組成の溶液を調液し、実施例1と同様にして電 子写真感光体を得た。実施例1と同様に評価を行ったところ、次の結果が得られた。

	化合物	dV ∕ dt				
実施例	No.	+800 V	-800 V			
2	(2)	90				
3	(8)	1205	_			
4	(18)	228				
5	(44)	78				
6	(47)	207				

比较例 2

化合物(1)を2.4.7ートリニトロフルオレノン(TNF)に代えて、実施例1と同様の組

Aポリカーボネート(マクロロン 5705) O. 75 g を増化メチレン 7 g に溶解して溶液①を得た。この溶液①を導電性基板上に設けられたTriーSe/ポリピニルカルバゾール(TriーSe 7 O w t %)からなる電荷発生層(2. 5 μ m)上に、湿潤時のギャップ 5 ๗の状態で強症が、8 O で 1 時間乾燥して、電子写真感光体を、静電複写紙試験装置(川口電機製作所 SP428)で+800V又はー800Vに帯電し、5 luxの白色光を露光して感度 d V / dt(初期減衰速度)を評価した。結果は、次の通りである。

dV/dt (初期減衰速度)

+800 V 509 V / sec

-800 Ⅴ 減衰しない

比較例1

実施例1において調整した溶液①を、導電性基板上に湿潤時のギャップ5 型の状態で塗布し、80℃で1時間乾燥して、感光体を得た。このものを静電複写紙試験装置(川口理研SP428)

帯電電位 +800 V -800 V dV ∕ dt 66 —

発明の効果

上記実施例及び比較例の比較からも明らかなように、本発明において用いる上記一般式(I)で示されるジフェニルジシアノエチレン誘導体は、従来比較的優れたものとして知られているTNFと同等以上の電子輸送性を示し、したがって、このものを、電荷輸送艦の電子輸送剤として用いた正帯電用の電子写真感光体は、優れた電子写真特性を示す。

特許出願人 富士ゼロックス株式会社 代理人 弁理士 腹部 剛

特開昭63-175860(8)

第1頁の続き								
⑫発	明	者	額	B	克	므	神奈川県南足柄市竹松1600番地	富士ゼロツクス株式会社
							竹松事葉所内	
砂発	明	者	須	腠	秀	美	神奈川県南足柄市竹松1600番地	富士ゼロツクス株式会社
							竹松事業所内	•

				•
			·	
				•
		,		