

Attributbasierte Verschlüsselung mittels Gittermethoden

Kathlén Kohn

Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn

1. März 2013

Inhaltsverzeichnis

Begriffe

Verschlüsselungsverfahren

Learning with Errors

Ausblick

Fuzzy Identitätsbasierte Verschlüsselung

(1,1,0,1,...)

(**1**,0,0,**1**,...)

Fuzzy Identitätsbasierte Verschlüsselung

Gespeicherte Aufnahme: (1,1,0,1,...) Aktuelle Aufnahme: (1,0,0,1,...)

- Nutzer:
 - ▶ hat Identität $id^{(N)} \in \{0, 1\}^{I}$
 - erhält geheimen Schlüssel zu id^(N)

- Nutzer:
 - ▶ hat Identität $id^{(N)} \in \{0, 1\}^{I}$
 - erhält geheimen Schlüssel zu id^(N)
- Datei:
 - ▶ hat Identität $id^{(D)} \in \{0, 1\}^I$
 - wird unter id^(D) verschlüsselt

- Nutzer:
 - ▶ hat Identität $id^{(N)} \in \{0, 1\}^I$
 - ► erhält geheimen Schlüssel zu id^(N)
- Datei:
 - ▶ hat Identität $id^{(D)} \in \{0, 1\}^I$
 - ▶ wird unter id^(D) verschlüsselt
- ▶ Grenzwert $k \in \mathbb{N}, k \leq I$

- Nutzer:
 - ▶ hat Identität $id^{(N)} \in \{0, 1\}^{I}$
 - ► erhält geheimen Schlüssel zu id^(N)
- Datei:
 - ▶ hat Identität $id^{(D)} \in \{0, 1\}^I$
 - wird unter id^(D) verschlüsselt
- ▶ Grenzwert $k \in \mathbb{N}, k \leq I$
- Nutzer kann Datei entschlüsseln

$$\Leftrightarrow \left|\left\{j \in \{1, \dots, I\} \mid \mathsf{id}_j^{(N)} = \mathsf{id}_j^{(D)} = 1\right\}\right| \geq k$$

k aus n Geheimnisteilung

k aus n Geheimnisteilung

▶ Geheimnis *G* auf *n* Teilnehmer aufteilen

k aus n Geheimnisteilung

- Geheimnis G auf n Teilnehmer aufteilen
- ▶ k Teilnehmer (oder mehr) können G rekonstruieren

k aus n Geheimnisteilung

- Geheimnis G auf n Teilnehmer aufteilen
- ▶ k Teilnehmer (oder mehr) können G rekonstruieren
- Weniger als k Teilnehmer nicht

Verschlüsselung mittels Gittermethoden

Verschlüsselung mittels Gittermethoden

Definition

Sei $B \in \mathbb{R}^{m \times n}$ mit $\mathsf{rk}(B) = n$. Dann ist $\{Bz \mid z \in \mathbb{Z}^n\}$ ein Gitter mit Basis B.

Verschlüsselung mittels Gittermethoden

Definition

Sei $B \in \mathbb{R}^{m \times n}$ mit rk(B) = n. Dann ist $\{Bz \mid z \in \mathbb{Z}^n\}$ ein Gitter mit Basis B.

Shortest Vector Problem: Finde kürzesten Gittervektor ungleich Null.

Verschlüsselung mittels Gittermethoden

Definition

Sei $B \in \mathbb{R}^{m \times n}$ mit $\mathsf{rk}(B) = n$. Dann ist $\{Bz \mid z \in \mathbb{Z}^n\}$ ein Gitter mit Basis B.

Lemma

Sei $q \in \mathbb{N}$ Primzahl, $A \in \mathbb{Z}_q^{n \times m}$. Dann ist $\Lambda(A) := \{e \in \mathbb{Z}^m \mid Ae = 0\}$ ein Gitter.

- ▶ I: Länge von Identitäten
- k: Zur Entschlüsselung notwendige Anzahl an Übereinstimmungen

- ▶ /: Länge von Identitäten
- k: Zur Entschlüsselung notwendige Anzahl an Übereinstimmungen
- 1. Setup:

- /: Länge von Identitäten
- k: Zur Entschlüsselung notwendige Anzahl an Übereinstimmungen
- 1. Setup:
 - ▶ Öffentlich: $u \in \mathbb{Z}_q^n$, $A_1, \ldots, A_l \in \mathbb{Z}_q^{n \times m}$

- I: Länge von Identitäten
- k: Zur Entschlüsselung notwendige Anzahl an Übereinstimmungen

1. Setup:

- ▶ Öffentlich: $u \in \mathbb{Z}_q^n$, $A_1, \ldots, A_l \in \mathbb{Z}_q^{n \times m}$
- ► Geheimer Hauptschlüssel: "kurze" Gitterbasen zu Λ(A₁),..., Λ(A_I)

I: Länge, k: #Übereinstimmungen 1. Setup: u, $\Lambda(A_1)$,..., $\Lambda(A_l)$

2. Geheimer Schlüssel zu id $\in \{0, 1\}^{I}$:

I: Länge, k: #Übereinstimmungen 1. Setup: u, $\Lambda(A_1)$,..., $\Lambda(A_l)$

2. Geheimer Schlüssel zu id $\in \{0,1\}^{l}$: Erstelle $e_{j} \in \mathbb{Z}^{m}$: id = (1, 0, 0, 1, ...) $\downarrow \qquad \downarrow$ e_{1}

I: Länge, k: #Übereinstimmungen 1. Setup: u, $\Lambda(A_1)$,..., $\Lambda(A_l)$

2. Geheimer Schlüssel zu id $\in \{0,1\}^{I}$: Erstelle $e_{j} \in \mathbb{Z}^{m}$: id = (1, 0, 0, 1, ...) $\downarrow \qquad \downarrow$

Für alle k-elementigen Teilmengen S der e_j : $\sum_{j \in S} z_j A_j e_j = u$

I: Länge, k: #Übereinstimmungen 1. Setup: u, $\Lambda(A_1)$,..., $\Lambda(A_l)$

- 2. Geheimer Schlüssel zu id $\in \{0,1\}^{I}$: Erstelle $e_{j} \in \mathbb{Z}^{m}$: id = (1, 0, 0, 1, ...) $\downarrow \qquad \downarrow$
 - Für alle k-elementigen Teilmengen S der e_j : $\sum_{j \in S} z_j A_j e_j = u$
 - ▶ Weniger als k Vektoren ei reichen für obige Summe nicht aus

I: Länge, k: #Übereinstimmungen 1. Setup: u, $\Lambda(A_1)$,..., $\Lambda(A_l)$

2. Geheimer Schlüssel zu id $\in \{0,1\}^{I}$: Erstelle $e_{j} \in \mathbb{Z}^{m}$: id = (1, 0, 0, 1, ...)

- Für alle k-elementigen Teilmengen S der e_j : $\sum_{j \in S} z_j A_j e_j = u$
- ▶ Weniger als k Vektoren ei reichen für obige Summe nicht aus
- ▶ ||e_i|| nicht zu groß

I: Länge, k: #Übereinstimmungen

1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$

2. Geheimer Schlüssel zu id: $\sum z_i A_i e_i = u$, $||e_i||$ klein

3. Verschlüsselung von $b \in \{0, 1\}$ unter id $' \in \{0, 1\}^{I}$:

/: Länge, k: #Übereinstimmungen

- 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
- 2. Geheimer Schlüssel zu id: $\sum z_i A_i e_i = u$, $\|e_i\|$ klein
- 3. Verschlüsselung von $b \in \{0, 1\}$ unter id $' \in \{0, 1\}^{I}$:
 - $s \in \mathbb{Z}_q^n$ zufällig gleichverteilt
 - $c := b | \frac{q}{2} | + u^T s$

I: Länge, k: #Übereinstimmungen

- 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
- 2. Geheimer Schlüssel zu id: $\sum z_i A_i e_i = u$, $||e_i||$ klein
- 3. Verschlüsselung von $b \in \{0, 1\}$ unter id $' \in \{0, 1\}'$:
 - $s \in \mathbb{Z}_q^n$ zufällig gleichverteilt
 - $c := b | \frac{q}{2} | + u^T s$

I: Länge, k: #Übereinstimmungen

- 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
- 2. Geheimer Schlüssel zu id: $\sum z_j A_j e_j = u$, $\|e_j\|$ klein
- 3. Verschlüsselung von *b* unter id': $c = b \left| \frac{q}{2} \right| + u^T s$, $c_i = A_i^T s$
- 4. Entschlüsselung mit Menge *S* von *k* Übereinstimmungen:

I: Länge, k: #Übereinstimmungen

- 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
- 2. Geheimer Schlüssel zu id: $\sum z_i A_i e_i = u$, $\|e_i\|$ klein
- 3. Verschlüsselung von *b* unter id': $c = b \left\lfloor \frac{q}{2} \right\rfloor + u^T s$, $c_i = A_i^T s$
- 4. Entschlüsselung mit Menge *S* von *k* Übereinstimmungen:

$$c - \sum_{j \in S} z_j e_j^T c_j = b \left\lfloor \frac{q}{2} \right\rfloor + u^T s - \sum_{j \in S} z_j e_j^T A_j^T s$$
$$= b \left\lfloor \frac{q}{2} \right\rfloor$$

- I: Länge, k: #Übereinstimmungen
 - 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
 - 2. Geheimer Schlüssel zu id: $\sum z_i A_i e_i = u$, $||e_i||$ klein
- 3. Verschlüsselung von $b \in \{0, 1\}$ unter id $' \in \{0, 1\}'$:
 - $s \in \mathbb{Z}_q^n$ zufällig gleichverteilt
 - $c := b \left| \frac{q}{2} \right| + u^T s$

I: Länge, k: #Übereinstimmungen

- 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
- 2. Geheimer Schlüssel zu id: $\sum z_i A_i e_i = u$, $||e_i||$ klein
- 3. Verschlüsselung von $b \in \{0, 1\}$ unter id $' \in \{0, 1\}'$:
 - $s \in \mathbb{Z}_q^n$ zufällig gleichverteilt
 - $c := b \left| \frac{q}{2} \right| + u^T s$

▶ id' =
$$\begin{pmatrix} 1 & 1 & 1 & 0 & 1 & \dots \end{pmatrix}$$

 $c_1 := A_1^T s \quad c_2 := A_2^T s \quad c_4 := A_4^T s$

Rekonstruktion von s soll schwierig sein!

I: Länge, k: #Übereinstimmungen

- 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
- 2. Geheimer Schlüssel zu id: $\sum z_i A_i e_i = u$, $||e_i||$ klein
- 3. Verschlüsselung von $b \in \{0, 1\}$ unter id $' \in \{0, 1\}^{I}$:
 - $s \in \mathbb{Z}_q^n$ zufällig gleichverteilt
 - $c := b | \frac{q}{2} | + u^T s + x$
 - $id' = b \lfloor \frac{1}{2} \rfloor + b d' =$

Rekonstruktion von s soll schwierig sein!

I: Länge, k: #Übereinstimmungen

- 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
- 2. Geheimer Schlüssel zu id: $\sum z_i A_i e_i = u$, $||e_i||$ klein
- 3. Verschlüsselung von *b* unter id': $c = b \lfloor \frac{q}{2} \rfloor + u^T s + x$, $c_i = A_i^T s + x_i$
- 4. Entschlüsselung mit Menge *S* von *k* Übereinstimmungen:

$$c - \sum_{j \in S} z_j e_j^T c_j = b \left\lfloor \frac{q}{2} \right\rfloor + u^T s + x - \sum_{j \in S} z_j e_j^T \left(A_j^T s + x_j \right)$$
$$= b \left\lfloor \frac{q}{2} \right\rfloor + x - \sum_{i \in S} z_i e_j^T x_i$$

- I: Länge, k: #Übereinstimmungen
 - 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
 - 2. Geheimer Schlüssel zu id: $\sum z_j A_j e_j = u$, $||e_j||$ klein
- 3. Verschlüsselung von $b \in \{0, 1\}$ unter id $' \in \{0, 1\}^{I}$:
 - $s \in \mathbb{Z}_q^n$ zufällig gleichverteilt

$$c := b^{\frac{1}{2}} |\frac{q}{2}| + u^{T} s + x$$

Rekonstruktion von s soll schwierig sein!

- I: Länge, k: #Übereinstimmungen
 - 1. Setup: u, $\Lambda(A_1)$, ..., $\Lambda(A_l)$
 - 2. Geheimer Schlüssel zu id: $\sum z_j A_j e_j = u$, $||e_j||$ klein
- 3. Verschlüsselung von $b \in \{0, 1\}$ unter id $' \in \{0, 1\}^{I}$:
 - $s \in \mathbb{Z}_q^n$ zufällig gleichverteilt

$$c := b | \frac{q}{2} | + u^T s + x$$

Rekonstruktion von s soll schwierig sein! Sei χ Verteilung auf \mathbb{Z}_q mit $x \sim \chi$, $x_i \sim \chi^m$.

Definition

Sei $s \in \mathbb{Z}_q^n$. Dann ist $\mathcal{A}_{s,\chi}$ Verteilung auf $\mathbb{Z}_q^n \times \mathbb{Z}_q$ mit Samples

der Form: $(a, a^T s + x)$

Definition

Sei $s \in \mathbb{Z}_q^n$. Dann ist $\mathcal{A}_{s,\chi}$ Verteilung auf $\mathbb{Z}_q^n \times \mathbb{Z}_q$ mit Samples

der Form:
$$(a, a^T s + x)$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Definition

Algorithmus \mathcal{B} löst Unterscheidungs-LWE_{a,v}, falls

$$\left| \mathsf{Pr}(\mathcal{B}(\mathcal{A}_{\mathcal{S},\chi}) = \mathsf{1}) - \mathsf{Pr}(\mathcal{B}(\mathcal{U}_{\mathbb{Z}_q^n imes \mathbb{Z}_q}) = \mathsf{1}) \right|$$

nicht vernachlässigbar ist mit $s \sim \mathcal{U}_{\mathbb{Z}_q^n}.$

- Nur Algorithmen mit (leicht sub-)exponentieller Laufzeit bekannt
- Wahrscheinlich keine Verbesserungen auf Quantencomputern

- Nur Algorithmen mit (leicht sub-)exponentieller Laufzeit bekannt
- Wahrscheinlich keine Verbesserungen auf Quantencomputern
- Entscheidungsvariante NP-vollständig

- Nur Algorithmen mit (leicht sub-)exponentieller Laufzeit bekannt
- Wahrscheinlich keine Verbesserungen auf Quantencomputern
- Entscheidungsvariante NP-vollständig
- ▶ Regev: Löst ein Polynomialzeitalgorithmus Unterscheidungs-LWE $_{q,\chi}$, so löst ein Quantenalgorithmus mit Laufzeit $q \cdot \text{poly}(n)$ die approximative Entscheidungsvariante des Shortest Vector Problem mit Approximationsfaktor $\tilde{O}(q\sqrt{n})$ auf Gittern im \mathbb{R}^n .

Ausblick

Ausblick

► Erreicht: Attributbasierte Verschlüsselung mittels Gittermethoden für Zugriffsrechte ohne "NOT"

Ausblick

- ► Erreicht: Attributbasierte Verschlüsselung mittels Gittermethoden für Zugriffsrechte ohne "NOT"
- Offen: Attributbasierte Verschlüsselung mittels Gittermethoden für allgemeine Zugriffsrechte