

CSCI 4360/6360 Data Science II

Transformers

Ninghao Liu

Assistant Professor School of Computing University of Georgia

Where we left off

Self-Attention:

- Words attend to themselves.
- A word plays the role of query, key, and value simultaneously.

All words attend to all words in previous layer; most arrows here are omitted

Where we left off

Self-attention:

the basis of the method.

Position representations:

 Specify the sequence order, since self-attention is an unordered function of its inputs.

Nonlinearities:

- At the output of the self-attention block
- Frequently implemented as a simple feedforward network.

Masking:

- In order to parallelize operations while not looking at the future.
- Keeps information about the future from "leaking" to the past.

Key points

 Originally, an Encoder-Decoder architecture

- Self-Attention Block
 - Self-attention mechanism
 - Position embeddings
 - Nonlinearity in FF layers
 - Masking (optional)

What is "Multi-Head Attention"?

What is this?

What is "Norm"

What is "Multi-Head Attention"?

What is this?

What is "Norm"

- Multi-Head Self-Attention
 - "Self-Attention" + "Multi-Head"

Recall the Self-Attention Hypothetical Example

I went to Stanford CS 224n and learned

Single-Head Self-Attention

- Let's look at how key-query-value attention is computed, in matrices.
 - Let $X = [x_1; ...; x_n] \in \mathbb{R}^{n \times d}$ be the concatenation of input vectors.
 - First, note that $XK \in \mathbb{R}^{n \times d}$, $XQ \in \mathbb{R}^{n \times d}$, $XV \in \mathbb{R}^{n \times d}$.
 - The output is defined as output = softmax $(XQ(XK)^{\top})XV \in \mathbb{R}^{n \times d}$.

First, take the query-key dot products in one matrix multiplication: $XQ(XK)^{T}$

Next, softmax, and compute the weighted average with another matrix multiplication.

- What if we want to look in multiple places in the sentence at once?
 - For word i, self-attention "looks" where $x_i^T Q^T K x_j$ is high, but maybe we want to focus on different j for different reasons?
- We'll define multiple attention "heads" through multiple Q,K,V matrices
- Let, Q_ℓ , K_ℓ , $V_\ell \in \mathbb{R}^{d \times \frac{d}{h}}$, where h is the number of attention heads, and ℓ ranges from 1 to h.
- Each attention head performs attention independently:
 - output_{\ell} = softmax $(XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}) * XV_{\ell}$, where output_{\ell} $\in \mathbb{R}^{d/h}$
- Then the outputs of all the heads are combined!
 - output = [output₁; ...; output_h]Y, where $Y \in \mathbb{R}^{d \times d}$
- Each head gets to "look" at different things, and construct value vectors differently.

- Even though we compute h many attention heads, it's not really more costly.
 - We compute $XQ \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times d/h}$. (Likewise for XK, XV.)
 - Then we transpose to $\mathbb{R}^{h \times n \times d/h}$; now the head axis is like a batch axis.
 - Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot products in one matrix multiplication: $XQ(XK)^{T}$

 $= XQK^{T}X^{T}$ $= XQK^{T}X^{T}$ $\in \mathbb{R}^{3 \times n \times n}$ $= XQK^{T}X^{T}$ = P = P = P = P = P = P = P = P = P = P = P

mix

Next, softmax, and compute the weighted average with another matrix multiplication.

Scaled Dot Product

- "Scaled Dot Product" attention aids in training.
- When dimensionality d becomes large, dot products between vectors tend to become large.
 - Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we've seen:

$$\operatorname{output}_{\ell} = \operatorname{softmax}(XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}) * XV_{\ell}$$

• We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (The dimensionality divided by the number of heads.)

output_{$$\ell$$} = softmax $\left(\frac{XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}}{\sqrt{d/h}}\right) * XV_{\ell}$

What is "Multi-Head Attention"?

What is this? -

What is "Norm"

Residual Connection

- Residual connections are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where i represents the layer)

$$X^{(i-1)}$$
 — Layer $X^{(i)}$

• We let $X^{(i)} = X^{(i-1)} + \text{Layer}(X^{(i-1)})$ (so we only have to learn "the residual" from the previous layer)

- Gradient is great through the residual connection; it's 1!
- Bias towards the identity function!

[Loss landscape visualization, Li et al., 2018, on a ResNet]

- What is "Multi-Head Attention"?
- What is this?
- What is "Norm"

Layer Normalization

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation within each layer.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{j=1}^{d} x_j$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

Key points

Encoder - Decoder architecture

 But! the encoder and decoder can be used separately!

No Masking!

- Each Block consists of:
 - Self-attention
 - Add & Norm
 - Feed-Forward
 - Add & Norm

A Transformer Encoder is great when:

- You aren't trying to generate text autoregressively (there's no masking in the encoder so each position index can see the whole sequence,);
- Famous examples: BERT, RoBERTa.

Transformer Encoder

Decoder is very similar to Encoder.

- To build an autoregressive language model, one uses a Transformer Decoder.
- Using future masking at each application of self-attention.

Famous example: GPT-2, GPT-3, BLOOM.

Transformer Decoder

When to use the whole Encoder - Decoder architecture?

- When we'd like bidirectional context on something (e.g., article summarization, translation)
- Such an architecture has been found to provide better performance than decoder-only models

