MITx - Foundation of Modern Finance 2 (Formulas)

Exam: Ans 2 dec - Unit - Delete EXCEL perm - GOAL seek

Forward, sport-rate: $m{f}_t = rac{B_t}{B_{t-1}} - \mathbf{1} = rac{(1+r_t)^t}{(1+r_{t-1})^{t-1}} - \mathbf{1}$; B-discount bond

EH: spot = predicted rate: $E_o[\widetilde{r_1}(t)] = f_{t+1}$

Fwd w/ cont': $PV_0(F_t) = F_t * e^{-r_f T} = PV_0(\widetilde{S_T}) = S_0 * e^{-yT}$

→ Fwd\$: $F_T = S_0 * e^{(r_f - y)T}$; **Dis**: $F_T = (1 + r_f - y) * S_0$

Ft (C1) in x-change for 1-C2: $F_t = X_0 * e^{(r_1 - r_2)T}$

Commodity price: $H_t = F_t = S_0 * e^{(r-\hat{y})T}$

Net conv. yield: $\hat{y} = y - c$; $c = storage \ cost$

Interest rate swap (fixed rate) $r_s = c$

$$\boldsymbol{r}_{s} = \Sigma w_{t} f_{t} = \Sigma \left(\frac{B_{t}}{\Sigma B_{u}}\right) f_{t} = \frac{1 - B_{t}}{\Sigma B_{u}} = \boldsymbol{c}; w_{t} = \frac{float}{fix} = \frac{B_{t}}{\Sigma B_{u}}$$

Call, long (BUY) payoff: $CF_t = \max[0, S_T - K]$

Put, short (SELL) payoff: $CF_t = \max[0, K - S_T]$

Put-call parity (PCP) (EU): C + BK = P + S; $B = 1/(1 + r_f)^T$

Bull spread Straddle

Binomial Risk Neutral Probability (always discount by Rf)

$$q_u = \frac{(1+r_f)-d}{u-d} = q; q_d = 1-q = \frac{u-(1+r_f)}{u-d};$$

$$C_0 = \frac{q_u C_u + q_d C_d}{1 + r_f} = \frac{E^Q[C_T]}{\left(1 + r_e\right)^T}; E^Q: expect \ under \ Q^{Prob}$$

State price: $\phi_u = \frac{q}{1+r}$; $\phi_d = \frac{1-q}{1+r}$; $\phi_{uu} = \phi_u \phi_u$; $\phi_{ud} = \phi_u \phi_d$; ...

American option pricing (APT model), option value:

$$P_t = \max\left\{Payoff_t, \frac{1}{1+r_f}E_t^Q[P_{t+1}]\right\}; continuous\ value + 1$$

BSM Black Scholes Merton:
$$oldsymbol{\mathcal{C}}_0 = oldsymbol{\mathcal{S}}_0 N(x) - K e^{-rT} Nig(x - \sigma \sqrt{T}ig)$$

where:
$$x = \frac{1}{\sigma \sqrt{T}} \ln \left(\frac{S_0}{\kappa e^{-rT}} \right) + \frac{1}{2} \sigma \sqrt{T}$$
; $N(.)$: norm. S. dist(1, true)

w/ PCP:
$$P_0 = -S_0(1 - N(x)) + Ke^{-rT}(1 - N(x - \sigma\sqrt{T}))$$

Portfolio **replica**:
$$\begin{cases} \delta(uS_o) + b(1 + r_f) = C_u \\ \delta(dS_o) + b(1 + r_f) = C_d \end{cases}$$

Port with Rf asset: $\widetilde{r_p} = (1 - x)r_f + x\widetilde{r_q}$; $Var(r_p) = \sigma_p^2 = x^2\sigma_q^2$

Sharpe ratio: $SR = rac{r_p - r_f}{\sigma_p}$;SR=slope of CAL, higher=better

SRmax = SR(T)= same with all given Rp regardless of with or w/o Rf

Tangency (only risky assets): $w'\bar{x} = \Sigma w_i \bar{x}_i$; $w'_T i = 1$; $sol\ for\ min\Sigma \Sigma w_i w_j \sigma_{ij}$ with define $r_{p(T)} = \Sigma w_i r_i$ then:

$$W_T = \frac{1}{x^{-1}\Sigma^{-1}i}\Sigma^{-1}\bar{x} = \lambda\Sigma^{-1}\bar{x}; where: \lambda = 1/(\bar{x}'\Sigma^{-1}i)$$

Return: $r_p = r_f + \sum w_i (r_i - r_f) = (1 - \sum w_i)r_f + \sum w_i r_i$

Marginal contribution & return to risk ratio (RRR) (asset i to port p)

$$\frac{\delta r_p}{\delta w_i} = r_i - r_f; \frac{\delta \sigma_p^2}{\delta w_i} = 2\Sigma w_j \sigma_{ij} = 2Cov(r_i, r_p); \frac{\delta \sigma_p}{\delta w_i} = \frac{Cov(r_i, r_p)}{\sigma_p} = \frac{\sigma_{ip}}{\sigma_p};$$

$$RRR_{ip} = \frac{r_i - r_f}{(\sigma_{in}/\sigma_p)} = (\frac{\delta r_p}{\delta w_i}) / (\frac{\delta \sigma_p}{\delta w_i}); \quad \textbf{Optimal } T_{port} : RRR_{iT} = SR_T = \frac{r_T - r_f}{\sigma_T}$$

Regression: $r_i - r_f = \alpha_i + \beta_i (r_T - r_f) + \bar{\epsilon}_i$; where: $\beta_i = \sigma_{iT} / \sigma_T^2$

$$RRR_{iT} = \frac{r_i - r_f}{\beta_i \sigma_T} = \frac{r_T - r_f}{\sigma_T} \rightarrow \alpha_i = 0$$
: optimal T : $RRR_i = RRR_j = SR_M$

CAPM:
$$r_i = r_f + \beta_i (r_M - r_f)$$
; where: $\beta_{iM} = \frac{\sigma_{iM}}{\sigma_M^2}$; $\sigma_{iM} = Cov(r_i, r_M)$

APT: (No arbitrage): RPremium = $\pi = \widetilde{r_p} - r_{free} = \sum_{i=1}^k \lambda_i b_{p,i}$: Factor Risk premium = price of risk= λ (linear) = same $\forall p$; ::: Risk Premium = Price of Risk x Quantity of Risk (factor loading β)

Single factor: $\tilde{r}_i = \bar{r}_i + \tilde{b}_i \tilde{f} + \tilde{\epsilon}_i : Cov(\tilde{r}_i, \tilde{r}_i) = b_i b_i \sigma_f^2$

SecurityML = $f(\beta, return)$; **CapitalML** = $f(\sigma, return)$

Alpha choice: $r_i = r_f + \alpha_i + \beta_i (r_M - r_f) + \epsilon_i$; where: $SR_T = \sqrt{(SR_M^2 + SR_P^2)}$; $SR_p = \frac{\alpha_i}{\sigma_{\epsilon_i}}$; with the tangency port consist of:

$$w_M = \lambda \frac{r_M - r_f}{\sigma_M^2}; w_P = \lambda \frac{(r_P - r_f)}{\sigma_p^2} = \lambda \frac{\alpha_i}{\sigma_{\epsilon_i}^2}; \beta_P = \frac{Cov(r_P, r_M)}{Var(r_M)} = \frac{\rho_{P,M} \sigma_P}{\sigma_M}$$

APT for well-divert, COC: $E_P = r_f + \Sigma \lambda_i \beta_{P,i}$

If Risk = totally idiosync + diversifiable $\leftrightarrow r_{\pi} = 0 \; (no \; premium) = COC$

 $\pi_{default}(\mathbf{DP}) = Promised_{YTM}(No\ Default) - Expected_{YTM}(prob)$

 $\pi_{risk}(\mathbf{RP}) = Expected_{YTM} - Free_{YTM};$

 $B_{PromisedYield}$: $y = \frac{\overline{y} + p\lambda}{1 - p\lambda}$, $\lambda = loss\ rate$: $p = default\ probability$

MM1 with tax (X=terminal CF; delta =tax on debt int; pi=tax on equity; t=CIT):

$$V_L = V_U + PVTS - PVDC = \frac{(1-\tau)}{1+r_A}X + \tau\left(\frac{r_DD}{1+r_D}\right) - PVDC = APV$$

$$V_L = V_U + PVTS = (1 - \pi_E)(1 - \tau)PV(X) + [(1 - \delta_D) - (1 - \pi_E)(1 - \tau)]PV(r_D D)$$

MM2: Leverge with constant ratio $w_D \& w_E \& \tan r_{TS} = r_A$

$$WACC(r_A;COC) = w_D r_D + w_E r_E; r_E = r_A + \frac{D}{E}(r_A - r_D)$$

$$\boldsymbol{\beta}_{A} = w_{E}\beta_{E} + w_{D}\beta_{D} = \Sigma w_{i}\beta_{i}; \boldsymbol{\beta}_{E} = \beta_{A} + \frac{D}{F}(\beta_{A} - \beta_{D})$$

$$WACC_{-}\tau = r_L - w_D\tau r_D = (1 - \tau)w_Dr_D + w_Er_E = \left(\frac{D}{D + E}\right)r_D + \dots$$

$$V_L = E + D = V_U + PVTS = \sum_{S=1}^{\infty} \frac{(1-\tau)}{(1+\tau_A)^S} X_S + PVTS = APV$$

15.415.2x - MITx Foundation of Modern Finance 2 (Jan-Apr, 2022) ©Tran Hai Linh

NPV by WACC/tax:
$$V_L = \sum_{S=1}^{\infty} \frac{(1-\tau)}{(1+WACC)^S} X_S = APV; V_L^g = \frac{(1-\tau)EBIT}{WACC-g}$$

Ex-dividend = on/after trade **NO** more receive dividend

Cum-dividend = on/before trade **YES** to receive dividend

Hedging: $\Delta V_{hedged} = \Delta V_{original} + (HedgeRatio) * \Delta V_{hedging}$

Perfect hedge (no risk): $(1)Corr(\Delta V_{org}; \Delta V_{hedging}) = 1; (2)HR: appropriate – Bond use$ **Modified Duration**

Interest hedge: $V_P = \Sigma V_i = \Sigma n_i B_i$; $\Delta V_P \approx (-\Delta y)(\Sigma V_i M D_i)$

 $MD_P = \Sigma w_i MD_i$; **Hedge Ratio = Ori**ginal / **Hed**ge **Ins**trument

*** Previous FMF-1 ***

Stock Price: Discount factor = expected return E(r):

$$P_0 = \frac{D_1 + P_1}{1 + r_1} + \dots = \sum_{t=1}^{T} \frac{D_t}{(1 + r_t)^t} + \frac{P_T}{(1 + r_T)^T}$$

Gordon Model $\langle r=const;g< r:D_{t+1}=(1+g)D_t\rangle$; then DCF formula: ${m P_0}=rac{D_1}{r-g}$

Payout:
$$p = \frac{DPS}{EPS} = \frac{Dividend}{Earnings} \rightarrow DPS = p * EPS$$

Plow back ratio:
$$b = \frac{RE}{E} = 1 - p$$
; $g = ROE(1 - p)$

Book Value: $BVPS_{t+1} = BVPS_t + EPS_{t+1} \times b = BVPS_t + I_{t+1}$; $I_t = EPS_t \times b_t$; $EPS_{t+1} = EPS_t + ROI_t \times I_t$; **Growth** stocks = opportunity: NPV(opp) > 0:

$$P_0 = \frac{EPS_1}{r} + PVGO \; ; where: \frac{P}{E} = \frac{P_0}{EPS_1} \left(fwd \, \frac{P}{E} \right); PVGO = \frac{NPV_1}{r-g}$$

No growth \Leftrightarrow All by dividend: g = 0 & p = 1

Annuity w/ grow g (start @1: $CF_1 = A$; $CF_2 = A(1+g)...$)

$$PV(0) = A \times \begin{cases} \frac{1}{r - g} \left[1 - \left(\frac{1 + g}{1 + r} \right)^{T} \right], & \text{if } r \neq g \\ \frac{T}{1 + r} & \text{, if } r = g \end{cases}$$

Modified Duration: $MD = -\frac{1}{R}\frac{dB}{dy} = \frac{D}{1+y'}$

Discount bond, $B_t = (1+y)^{-t}$: $MD(Bt) = -\frac{1}{Bt} \frac{dB_t}{dy} = \frac{t}{1+y}$

Macaulay duration (weigted avg term to maurity) – D:

$$D = \sum_{t=1}^{T} \left[\frac{PV(CF_t)}{B} \right] t = \frac{1}{B} \sum_{t=1}^{T} \left[\frac{CF_t}{(1+v)^t} \right] t$$

Bond price: $(\Delta B) \approx [-MD \times (\Delta y) + CX \times (\Delta y)^2] \times B$; $B(P) = \sum_{t=1}^{T} \frac{CF_t}{(1+y)^t}$:

Bond Convexity: $CX = \frac{1}{2} \frac{1}{R} \frac{d^2B}{dv^2}$;

$$CX = \frac{1}{2} \frac{1}{B(1+y)^2} \sum_{t=1}^{T} \frac{CF_t}{(1+y)^t} t(t+1)$$

$$VAR = \sigma^2 = E[(\tilde{r} - \bar{r})^2]; \ \hat{\sigma}^2 = \frac{1}{T - 1} \sum_{t=1}^{T} (r_t - \hat{r})^2$$

Std Deviation (**Volatility, Risk**): $\sigma = \sqrt{VAR}$

Correlation (standardized) & Covariance:

$$Cov(\tilde{r}_i, \tilde{r}_j) = \sigma_{ij} = \frac{1}{T-1} \sum_{t=1}^{T} (r_{1,t} - \hat{r}_1)(r_{2,t} - \hat{r}_2)$$

$$Corr(\tilde{r}_i, \tilde{r}_j) = \rho_{ij} = \frac{Cov}{\sigma_i \sigma_j} = \frac{\sigma_{ij}}{\sigma_i \sigma_j} = \frac{E[(\tilde{r}_i - \bar{r}_i)(\tilde{r}_j - \bar{r}_j)]}{\sigma_i \sigma_j}$$

Portfolio Management: $\widetilde{r_p} = \overline{r_p} + \sum_1^N b_{p,k} f_k + \widetilde{\epsilon_p}$

$$E[r_p] = \overline{r_p} = \sum w_i \overline{r_i}; \ b_{p,k} = \sum w_i b_{ik}; \widetilde{\epsilon_p} = \sum w_i \epsilon_i;$$

$$\sigma_p^2 = Var[\tilde{r}_p] = \sum_{i=1}^n \sum_{i=1}^n w_i w_j \sigma_{ij} ; \sigma_{ii} = \sigma_i^2$$

$$Var(\widetilde{\epsilon_p}) = \Sigma w_i^2 Var(\widetilde{\epsilon_l});$$
risk-free: $r_p \notin f_p \leftrightarrow b_p$, $\epsilon_p = 0$

Portfolio return with risk-free assets:

$$\widetilde{r_p} = (1 - \Sigma w_i)r_f + \Sigma w_i \widetilde{r_i} = r_f + \Sigma w_i (\widetilde{r_i} - r_f)$$

Equally weighted portfolio of n-assets:

$$\sigma_{p}^{2} = \left(\frac{1}{n}\right) \left(\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}\right) + \left(\frac{n^{2} - n}{n^{2}}\right) \left(\frac{1}{n^{2} - n} \sum_{i=1}^{n} \sum_{j \neq i}^{n} \sigma_{ij}\right)$$

$$= \left(\frac{1}{n}\right) (average\ VARiance) + \left(1 - \frac{1}{n}\right) (average\ COVARiance)$$

Single factor: $\tilde{r}_i = \bar{r}_i + \tilde{b_i}\tilde{f} + \tilde{\epsilon_i} \ \, \therefore \ \, Cov \ \, \widetilde{(r_i,\tilde{r_j})} = b_ib_j\sigma_f^2$

Well-diversified portfolio: $Var\left(\tilde{\epsilon}_{p}\right)=0 : \widetilde{\epsilon_{p}}=E\left[\tilde{\epsilon}_{i}\right]=0 : Only Sys. f: \widetilde{r_{p}}=\overline{r_{p}}+\sum b_{i}f_{ik} : Cov\left(\tilde{\epsilon}_{i},\tilde{\epsilon}_{i}\right)=0, i \neq j$

$$Var[X] = Cov[X, X] = \sigma_X^2$$
; $Var(X + a) = Var(X)$; ***

X,Y uncorrelated: Cov(X,Y) = 0; E(X*Y) = E(X)*E(Y)

$$Var(aX) = a^2 Var(X); Var[\sum X_i] = \sum Var[X_i] + \sum_{i=1}^{N} \sum_{i=1}^{N} Cov[X_i, X_j]$$

$$Var[X_1 + X_2] = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2)$$

$$Cov(X,Y) = E[(X - \bar{X})(Y - \bar{Y})] = E(X * Y) - E(X) * E(Y)$$

$$Cov(aX + bY, cW + dV) = acCov(X, W) + \cdots$$

APT (util, factor structure, only for well-divert, multi idio factor)

CAPM (mean-var, not required, exact to all, market return)

Excel: solver (Goal-seek) for any equation