Def. G = (V, E) - граф. $V = \{1, ..., n\}, |E| = m$. G - ламанов граф, если m = 2n - 3 и любому подмножеству из $k \ge 2$ вершин соответствует не более 2k - 3 ребер.

Def. Вложение G(P) графа G в $P=\{p_1,\ldots,p_n\}\subset\mathbb{R}^2$ - это отображение $i\mapsto p_i\in P$. Ребра ij отображаются в отрезки $p_ip_j\subset\mathbb{R}^2$.

Def. Вершина i вложения G(P) **отмечена**, если все смежные с ней ребра лежат (строго) по одну сторону от некоторой прямой, проходящей через p_i .

Def. Вложение G(P) непересекающееся, если никакие два отрезка $p_i p_j$ и $p_k p_l$, $i, j \notin \{k, l\}$ не пересекаются.

Def. G - **планарный**, если для него существует неперсекающееся вложение.

Def. Вершина простого многоугольника **выпукла**, если если ее внутренний угол строго между 0 и π .

Def. Вершина простого многоугольника **рефлекторна**, если если ее внутренний угол строго между π и 2π .

Def. Псевдо-треугольник - это простой многоугольник, у которого ровно три выпуклые вершины.

Def. Псевдо-триангуляция множества точек на плоскости - это непересекающееся вложение графа G(P) такое, что внешняя грань есть дополнение выпуклой оболочки точек множества, а внутренние грани - псевдо-треугольники.

Def. Отмеченная псевдо-триангуляция - это псевдо-триангуляция, в которой отмечены все вершины.

Theorem 0.1. (главная) Любой планарный ламанов граф может быть вложен как отмеченная псевдо-триангуляция.