

Computer Vision

Real-Time Monocular Depth Estimation in low resources devices.

Damiano Imola – 2109063 Prof: Irene Amerini

The Fail

- 1GHz single-core CPU
- 512MB RAM
- Mini HDMI® port
- Micro USB OTG port
- Micro USB power
- HAT-compatible 40-pin header
- Composite video and reset headers
- CSI camera connector (v1.3 only)

The Fail

camera stand

Original Raspberry Pi Zero W camera cover

The Fail

```
(cv venv) raspberry@raspberrypi:~/cv project $ pip install tensorflow
Looking in indexes: https://pypi.org/simple, https://www.piwheels.org/simple
(cv venv) raspberry@raspberrypi:~/cv project $ pip install onnxruntime
Looking in indexes: https://pypi.org/simple, https://www.piwheels.org/simple
(cv venv) raspberry@raspberrypi:~/cv project $ pip install tflite-runtime
Looking in indexes: https://pypi.org/simple, https://www.piwheels.org/simple
(cv venv) raspberry@raspberrypi:~/cv project $ pip install torch
Looking in indexes: https://pypi.org/simple, https://www.piwheels.org/simple
```


Computer Vision

MonoDeRT:

A novel light-weight Real-Time architecture for Monocular Depth Estimation.

Damiano Imola – 2109063 Prof: Irene Amerini

- 1. Introduction
- 2. Related works
- 3. Proposed methods
- 4. Dataset and metrics
- 5. Experimental results
- 6. Conclusion

1. Introduction

- 2. Related works
- 3. Proposed methods
- 4. Dataset and metrics
- 5. Experimental results
- 6. Conclusion

Introduction - The ill-posed problem

Introduction – The applications

Introduction – Challenges (1)

Introduction – Challenges (2)

Introduction – Challenges (3)

- 1. Introduction
- 2. Related works
- 3. Proposed methods
- 4. Dataset and metrics
- 5. Experimental results
- 6. Conclusion

Related works

μPyD-Net (MCUs)

Size: 32x32 then super resolution.

1 FPS with 512KB Ram

RT MonoDepth

MonoDepth2

Related works

• μPyD-Net (MCUs)

RT MonoDepth

MonoDepth2

Additional "-S" variant.

18.4&30.5 FPS on NVIDIA Jetson Nano

Related works

• μPyD-Net (MCUs)

RT MonoDepth

MonoDepth2

Leverages self-supervision
Developed new occlusion handling
method and Edge-Aware
Smoothness Loss.

(b) Pose network

- 1. Introduction
- 2. Related works
- 3. Proposed methods
- 4. Dataset and metrics
- 5. Experimental results
- 6. Conclusion

Proposed method: MonoDeRT

Down-/Up-sampling with interpolation

Original

nearest

- 1. Introduction
- 2. Related works
- 3. Proposed methods
- 4. Dataset and metrics
- 5. Experimental results
- 6. Conclusion

Dataset: NYU Depth Dataset V2

~408.000 total samples

Trained against ~50.000 samples

Losses

• SiLog (Scale-Invariant Logarithmic error)

Absolute scale of depth values can vary widely depending on the scene.

$$\operatorname{SiLog}(y, y^*) = \frac{1}{n} \sum_{i} d_i^2 + \frac{\lambda}{n} \left(\sum_{i} d_i \right)^2$$

$$d_i = \log(y_i) - \log(y_i^*)$$

BerHu (Reverse Huber)

• SSIM (Structural similarity index measure)

Losses

• SiLog (Scale-Invariant Logarithmic error)

• BerHu (Reverse Huber)

Particularly effective in managing outliers, which are common in depth estimation tasks.

BerHu(d) =
$$\begin{cases} |d| & \text{if } |d| \le c \\ \frac{d^2 + c^2}{2c} & \text{if } |d| > c \end{cases}$$

• SSIM (Structural similarity index measure)

Losses

• SiLog (Scale-Invariant Logarithmic error)

• BerHu (Reverse Huber)

SSIM
$$(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

• SSIM (Structural similarity index measure)

Measures the perceptual similarity between the predicted and ground truth depth maps. To make prediction aligned with human perception.

Metrics

$$RMSE(y, \hat{y}) = \sqrt{\frac{1}{n} \sum_{i} |y_{i} - \hat{y}_{i}|^{2}} \qquad MAE(y, \hat{y}) = \frac{1}{n} \sum_{i} |y_{i} - \hat{y}_{i}|$$

$$RMSE_{log}(y, \hat{y}) = \sqrt{\frac{1}{n} \sum_{i} |\log_{10}(y_{i}) - \log_{10}(\hat{y}_{i})|^{2}} \qquad MAE_{log}(y, \hat{y}) = \frac{1}{n} \sum_{i} |\log_{10}(y_{i}) - \log_{10}(\hat{y}_{i})|$$

$$SqRel(y, \hat{y}) = \frac{1}{n} \sum_{i} \frac{|y_{i} - \hat{y}_{i}|^{2}}{y_{i}} \qquad AbsRel(y, \hat{y}) = \frac{1}{n} \sum_{i} \frac{|y_{i} - \hat{y}_{i}|}{y_{i}}$$

$$\delta_j(y, \hat{y}) = \% \text{ of } y_i \text{ s.t. } \max\left(\frac{y_i}{\hat{y}_i}, \frac{\hat{y}_i}{y_i}\right) = \delta < thr, \quad i = 1, 2, 3 \quad thr = 1.25^i$$

- 1. Introduction
- 2. Related works
- 3. Proposed methods
- 4. Dataset and metrics
- 5. Experimental results
- 6. Conclusion

Training and validation metrics trend

Batch predictions – Train mode

Batch predictions – Eval mode

The lightweight model

Model	Checkpoint size	Model size	Quantized model size
MonoDeRT	21.97 MB	7.31 MB	1.89 MB
RT MonoDepth	67.74 MB	23.12 MB	
Unet (4 layers)	63.00 MB	21.50 MB	

- 1. Introduction
- 2. Related works
- 3. Proposed methods
- 4. Dataset and metrics
- 5. Experimental results
- 6. Conclusion

Conclusions

MonoDeRT is a lightweight pyramidal encoder decoder with residuals that performs prediction in real-time.

Due to its nature it's easy can be easily deployed in embedded devices.

Due to its simplicity improve the architecture is quite easy.

Conclusions

MonoDeRT is a lightweight pyramidal encoder decoder with residuals that performs prediction in real-time.

Due to its nature it's easy can be easily deployed in embedded devices.

Due to its simplicity improve the architecture is quite easy.

Conclusions

MonoDeRT is a lightweight pyramidal encoder decoder with residuals that performs prediction in real-time.

Due to its nature it's easy can be easily deployed in embedded devices.

Due to its simplicity improve the architecture is quite easy.

THANKS FOR WATCHING