(proof of Sample Correlation limiting distribution) (X_i, Y_i) $\sim i^{i}d$ $(M, 6^2)$ for the sake of simplicity we passume that $E(X_{\lambda})=0$, $E(Y_{\lambda})=0$. $5x^2 = M_{xx} - M_x^2$, $5y^2 = M_{yy} - M_y^2$, $5xy = M_{2y} - M_2 M_y$ r = 5xy/5x5y asymptotic distribution of V. So define function gills > 1R3. which yields (5x,5x,5x) $\sqrt{n} \left(3 \begin{pmatrix} mx \\ my \\ my \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 6x^2 \\ 6x^2 \end{pmatrix} \right) \xrightarrow{d} N_3 \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \nabla g^T \ge \nabla g \right)$ which satisfy

$$\nabla \vartheta \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2\Delta & 0 - b \\ 0 & -2b - a \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -2\Delta & 0 - b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix}$$