

และต่างจาก Machine Learning, Deep Learning Model, และ Language Model อย่างไร

1. ปัญญาประดิษฐ์ (Artificial Intelligence)

AI คืออะไร?

คือการทำให้ "คอมพิวเตอร์" สามารถทำสิ่งที่โดยปกติ **ต้องใช้สติปัญญาของมนุษย์** เช่น

- การเรียนรู้ (Learning)
- การให้เหตุผล (Reasoning)
- การแก้ปัญหา (Problem Solving)
- การเข้าใจภาษา (Language)

• ตัวอย่างในชีวิตจริง

- รถยนต์ไร้คนขับ 🚗
- Chatbot และผู้ช่วยเสมือน เช่น Siri
- ระบบแนะนำสินค้าใน Shopee หรือ Netflix

• สรุปสั้น

Al คือการทำให้เครื่องจักร "คิดและเรียนรู้ได้" เหมือนมนุษย์ เป็นรากฐานของเทคโนโลยีสมัยใหม่ทุกวันนี้

2. Machine Learning (ML)

Machine Learning คืออะไร?

การทำให้คอมพิวเตอร์ "เรียนรู้จากข้อมูล" โดยไม่ต้องสั่งทุกขั้นตอน

ตัวอย่างที่เข้าใจง่าย

- ฝึกให้คอมพิวเตอร์จำแนก "อีเมลขยะ"
- สอนระบบให้แนะนำหนังที่เราชอบบน Netflix
- ใช้ข้อมูลเก่าเพื่อ "ทำนายยอดขายในอนาคต"

- ประเภทของ Machine Learning
 - 1. Supervised Learning มีคำตอบกำกับ (มี label)
 - 2. Unsupervised Learning ไม่มีคำตอบ ให้ค้นหารูปแบบเอง
 - 3. Reinforcement Learning เรียนรู้จากรางวัล/บทลงโทษ

• สรุปสั้น

ML คือสะพานเชื่อมระหว่าง "แนวคิดของ Al" กับ "การใช้งานจริงในชีวิตประจำวัน"

3. Deep Learning (DL)

Deep Learning คืออะไร?

คือการใช้ **โครงข่ายประสาทเทียม** (Neural Networks)

ที่เลียนแบบการทำงานของสมองมนุษย์

ตัวอย่างที่เห็นบ่อย

- การจำภาพแมว 😸 หรือสุนัข 🐶
- การรู้จำเสียงพูด (Siri, Google Voice)
- การทำนายราคาหุ้น 📈

ข้อจำกัดของ Deep Learning

- ทำได้ดีเฉพาะ "งานที่ฝึกมา"
- ไม่เข้าใจ "ความหมายของภาษา" จริง ๆ
- ต้องใช้ข้อมูลจำนวนมาก

Key Takeaway

Deep Learning คือรากฐานของ Al แต่ยัง "เข้าใจภาษา" ได้ไม่ดีพอ จึงต้องพัฒนาไปสู่ **LLM**

4. การทำงานของ Language Model

• หลักการพื้นฐาน

LLM เรียนรู้ **ความน่าจะเป็นของลำดับคำ** เพื่อ "ทำนายคำถัดไป" ในประโยค

ตัวอย่าง:

"ฉันกำลังเขียน ____"

→ "บทความ", "โปรแกรม", "จดหมาย"

- การแปลงข้อความเป็นตัวเลข
 - 1. Tokenization: แบ่งคำเป็นชิ้นเล็ก ๆ
 - "สวัสดีครับ" → ["สวั", "สดี", "ครับ"]
 - 2. Embeddings: แปลงแต่ละ token เป็นเวกเตอร์ตัวเลข
 - ทำให้โมเดล "เข้าใจความหมาย" ของคำได้

5. Large Language Model (LLM)

LLM คืออะไร?

โมเดล AI ที่ "เข้าใจและสร้างภาษาได้"

โดยใช้สถาปัตยกรรม Transformer

- ตัวอย่าง LLM ที่เรารู้จัก
 - ChatGPT
 - Google Bard (Gemini)
 - Claude (Anthropic)
 - LLaMA (Meta)

ความสามารถหลักของ LLM

- เขียนและสรุปข้อความ 🚄
- แปลภาษา 🥵
- ตอบคำถาม 💺
- สร้างโค้ด 💻

Key Point สำหรับนักเรียน ม.ปลาย

- LLM "อ่าน-เขียน-เข้าใจ" ภาษาเหมือนมนุษย์
- ใช้ "Prompt" บอกสิ่งที่ต้องการ
- ยืดหยุ่น ใช้ได้หลายงาน โดยไม่ต้องสร้างใหม่

6. LLM ต่างจาก Deep Learning Model อย่างไร

ประเด็น	Deep Learning ทั่วไป	LLM
ข้อมูลฝึก	ใช้ข้อมูลเฉพาะงาน	ใช้ข้อความมหาศาลหลายหัวข้อ
วัตถุประสงค์	งานเฉพาะ เช่น จำภาพ	งานด้านภาษาแบบทั่วไป
การเรียนรู้	เรียนรู้จากตัวอย่างแคบ ๆ	เข้าใจโครงสร้างและบริบทของภาษา
ความยืดหยุ่น	ต้องฝึกใหม่ถ้าเปลี่ยนงาน	ใช้ Prompt ได้หลายแบบ
ตัวอย่างโมเดล	ResNet, RNN, LSTM	GPT, LLaMA, PaLM

🞯 สรุปสุดท้าย

- Al → แนวคิดกว้าง "ให้เครื่องคิดได้"
- ML → ให้เครื่อง "เรียนรู้จากข้อมูล"
- DL → ใช้สมองจำลองเพื่อเรียนรู้ลึกขึ้น
- LLM → เข้าใจภาษาและสร้างประโยคใหม่ได้
- 🐆 นี่คือเหตุผลที่ ChatGPT สามารถ "สนทนา" กับเราได้เหมือนมนุษย์ 🐆