

Low cost, low power, input/output rail-to-rail operational amplifiers

Maturity status link					
LMV321					
LMV324					
LMV358					

Related products						
LMV321L, LMV324L, LMV358L	For newer technological version					
TSV851, TSV852, TSV854	For enhanced performances					

Features

- Operating range from V_{CC} = 2.7 to 6 V
- Rail-to-rail input and output
- Extended V_{icm} (V_{DD} 0.2 V to V_{CC} + 0.2 V)
- Low supply current (145 μA)
- Gain bandwidth product (1 MHz)
- ESD tolerance (2 kV)

Applications

- · Battery powered electronic equipment
- Personal medical care (glucose meters)
- Laptops

Description

The LMV321/LMV324/LMV358 family (single, dual, and quad) answers the need for low cost, general-purpose operational amplifiers. They operate with voltages as low as 2.7 V and feature both input and output rail-to-rail, 145 μ A consumption current, and 1 MHz gain bandwidth product (GBP).

With such a low consumption and a sufficient GBP for many applications, these op amps are well suited for any kind of battery supplied and portable equipment application.

The LMV321 device is housed in the space-saving 5-pin SOT23-5 package, which simplifies board design. The SOT23-5 has two pinning configurations to answer all application requirements.

Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit		
V _{CC}	Supply voltage (1)	7			
V _{id}	Differential input voltage (2)		±1	V	
V _{in}	Input voltage	V _{DD} - 0.3 to V _{CC} + 0.3	-		
T _{oper}	Operating free air temperature range	-40 to 125			
T _{stg}	Storage temperature		-65 to 150	°C	
Tj	Maximum junction temperature	Maximum junction temperature			
	Thermal resistance junction-to-ambient (3)	SOT23-5	250		
		SO8	125		
R_{thja}		TSSOP8	120		
		SO14	103		
		TSSOP14	100	°C/W	
		SOT23-5	81	C/VV	
		SO8	40		
R_{thjc}	Thermal resistance junction-to-case ⁽³⁾	TSSOP8	37		
		SO14	31		
		TSSOP14	32		
	HBM: human body model (4)		2	kV	
ESD	MM: machine model (5)	200	V		
	CDM: charged device model (6)	1.5	kV		
	Lead temperature (soldering, 10 s)	250	°C		
	Output short-circuit duration		See (7)		

- 1. All voltage values, except differential voltage are with respect to network terminal.
- 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. If $V_{id} > \pm 1 \ V$, the maximum input current must not exceed $\pm 1 \ mA$. In this case ($V_{id} > \pm 1 \ V$), an input series resistor must be added to limit input current.
- 3. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. All values are typical.
- 4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. No value specified for CDM on SOT23-5 package. The value is given for SO8 and TSSOP packages.
- Short-circuits from the output to V_{CC} can cause excessive heating. The maximum output current is approximately 48 mA, independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

DS4539 - Rev 10 page 2/17

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage 2.7 to 6		
V _{icm}	Common mode input voltage range (1)	V _{DD} - 0.2 to V _{CC} + 0.2	V
V _{icm}	Common mode input voltage range (2)	V _{DD} to V _{CC}	
T _{oper}	Operating free air temperature range	-40 to 125	°C

^{1.} At 25 °C, for 2.7 \leq V_{CC} \leq 6 V, V_{icm} is extended to V_{DD} - 0.2 V, V_{CC} + 0.2 V.

DS4539 - Rev 10 page 3/17

^{2.} In full temperature range, both rails can be reached when V_{CC} does not exceed 5.5 V.

2 Electrical characteristics

Table 3. Electrical characteristics at V_{CC} = 2.7 V, V_{DD} = 0 V, C_L and R_L connected to $V_{CC}/2$, T_{amb} = 25 °C (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V	land offer the alterna	$V_{icm} = V_{out} = V_{CC}/2$		0.1	3	
V _{io}	Input offset voltage	$T_{min} \le T_{amb} \le T_{max}$			6	- mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	land offer at a second	V _{icm} = V _{out} = V _{CC} /2 (1)		1	9	
l _{io}	Input offset current	$T_{min} \le T_{amb} \le T_{max}$			25	
	land bin on the	$V_{icm} = V_{out} = V_{CC}/2^{(1)}$		10	50	- nA
l _{ib}	Input bias current	$T_{min} \le T_{amb} \le T_{max}$			85	-
CMR	Common mode rejection ratio	0 ≤ V _{icm} ≤ V _{CC}	55	85		
SVR	Supply voltage rejection ratio	V _{icm} = V _{CC} /2	70	80		dB
٨	I	V_{out} = 0.5 V to 2.2 V, R_L = 10 k Ω	80	100		
A_{vd}	Large signal voltage gain	V_{out} = 0.5 V to 2.2 V, R_L = 2 k Ω	70	88		
		V_{id} = 100 mV, $T_{min} \le T_{amb} \le T_{max}$, R_L = 10 k Ω	2.6	2.65		
V _{OH}	High level output voltage	$V_{id} = 100 \text{ mV}, T_{min} \le T_{amb} \le T_{max},$ $R_L = 2 \text{ k}\Omega$	2.55	2.6		V
.,		V_{id} = -100 mV, $T_{min} \le T_{amb} \le T_{max}$, R_L = 10 k Ω		15	90	
V _{OL}	Low level output voltage	V_{id} = -100 mV, $T_{min} \le T_{amb} \le T_{max}$, R_L = 2 k Ω		50	100	mV
		Output source current, V_{id} = 100 mV, V_{O} = V_{DD}	5	46		
I _o	Output current	Output sink current, $V_{id} = -100 \text{ mV}$, $V_O = V_{CC}$	5	46		mA
	Supply current (per	V _{out} = V _{CC} /2, A _{VCL} = 1, no load		145	200	
I _{CC}	amplifier)	$T_{min} \le T_{amb} \le T_{max}$			230	μA
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ f = 100 kHz		1		MHz
SR	Slew rate	R _L = 600 Ω, C _L = 100 pF, A _V = 1		0.35		V/µs
φm	Phase margin	R _L = 600 Ω, C _L = 100 pF		44		Degrees
en	Input voltage noise			40		nV/√ Hz
THD	Total harmonic distortion			0.01		%

^{1.} Maximum values include unavoidable inaccuracies of the industrial tests.

DS4539 - Rev 10 page 4/17

Table 4. Electrical characteristics at V_{CC} = 5 V, V_{DD} = 0 V, C_L and R_L connected to $V_{CC}/2$, T_{amb} = 25 °C (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V	land offer the site of	V _{icm} = V _{out} = V _{CC} /2		0.1	3	
V_{io}	Input offset voltage	$T_{min} \le T_{amb} \le T_{max}$			6	- mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	I _{io} Input offset current	$V_{icm} = V_{out} = V_{CC}/2$ (1)		1	9	
lio		$T_{min} \le T_{amb} \le T_{max}$			25	
		$V_{icm} = V_{out} = V_{CC}/2$ (1)		16	63	- nA
I _{ib}	Input bias current	$T_{min} \le T_{amb} \le T_{max}$			95	-
CMR	Common mode rejection ratio	0 ≤ V _{icm} ≤ V _{CC}	65	95		
SVR	Supply voltage rejection ratio	V _{icm} = V _{CC} /2	70	90		I.D.
^		$V_{out} = 0.5 \text{ V to } 4.5 \text{ V}, R_L = 10 \text{ k}\Omega$	85	97		dB
A_{vd}	Large signal voltage gain	V_{out} = 0.5 V to 4.5 V, R_L = 2 k Ω	77	93		
.,		V_{id} = 100 mV, $T_{min} \le T_{amb} \le T_{max}$, R_L = 10 k Ω	4.85	4.95		.,
V _{OH}	High level output voltage	V_{id} = 100 mV, $T_{min} \le T_{amb} \le T_{max}$, R_L = 2 k Ω	4.8	4.91		V
.,,		V_{id} = -100 mV, $T_{min} \le T_{amb} \le T_{max}$, R_L = 10 k Ω		40	180	.,
V _{OL}	Low level output voltage	V_{id} = -100 mV, $T_{min} \le T_{amb} \le T_{max}$, R_L = 2 k Ω		80	200	mV
	Out of a second	Output source current, V _{id} = 100 mV, V _O = V _{DD}	7	48		
l _o	Output current	Output sink current, V_{id} = -100 mV, $V_O = V_{CC}$	7	48		mA
	0 1 (/ "")	V _{out} = V _{CC} /2, A _{VCL} = 1, no load		162	220	
I _{CC}	Supply current (per amplifier)	$T_{min} \le T_{amb} \le T_{max}$			250	μΑ
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$		1.3		MHz
GBP	Gairi bandwidiii product	f = 100 kHz		1.5		IVITIZ
SR	Slew rate	$R_L = 600 \Omega$, $C_L = 100 pF$, $A_V = 1$		0.45		V/µs
фm	Phase margin	R _L = 600 Ω, C _L = 100 pF		48		Degrees
en	Input voltage noise			40		nV/√ Hz
THD	Total harmonic distortion			0.01		%

^{1.} Maximum values include unavoidable inaccuracies of the industrial tests.

DS4539 - Rev 10 page 5/17

Figure 1. Supply current/amplifier vs. supply voltage

Figure 2. Input bias current vs. temperature (V_{CC} = 3 V, V_{icm} = 1.5 V)

Figure 3. Input bias current vs. temperature (V_{CC} = 5 V, V_{icm} = 2.5 V)

Figure 4. Common mode rejection vs. temperature $(V_{CC} = 3 V)$

Figure 5. Common mode rejection vs. temperature $(V_{CC} = 5 V)$

Figure 6. Supply voltage rejection vs. temperature $(V_{CC} = 5 \text{ V}, V_{icm} = 2.5 \text{ V})$

DS4539 - Rev 10 page 6/17

Figure 7. Open loop gain vs. temperature (V_{CC} = 3 V, R_L = 10 k Ω , R_L = 2 k Ω)

Figure 8. Open loop gain vs. temperature (V_{CC} = 5 V, R_L = 10 k Ω , R_L = 2 k Ω)

Figure 9. Supply voltage rejection vs. temperature (V_{CC} = 3 V, V_{icm} = 1.5 V)

Figure 10. Output current vs. output voltage ($V_{CC} = 3 \text{ V}$, $V_{id} = 0.1 \text{ V}$, $V_{icm} = 1.5 \text{ V}$)

Figure 11. Output current vs. output voltage ($V_{CC} = 5 \text{ V}$, $V_{id} = 0.1 \text{ V}$, $V_{icm} = 2.5 \text{ V}$)

Figure 12. Noise versus frequency

DS4539 - Rev 10 page 7/17

Figure 13. LMV358IYPT Input offset voltage vs. temperature at 5 V supply voltage

DS4539 - Rev 10 page 8/17

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS4539 - Rev 10 page 9/17

3.1 SOT23-5 package information

Figure 14. SOT23-5 package outline

Table 5. SOT23-5 mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.014	0.016	0.020	
С	0.09	0.15	0.20	0.004	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
E	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.014	0.024	
K	0 degrees		10 degrees	0 degrees		10 degrees	

DS4539 - Rev 10 page 10/17

3.2 SO8 package information

Figure 15. SO8 package outline

Table 6. SO8 package mechanical data

	Dimensions						
Ref.		Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
С	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Е	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
L1		1.04			0.040		
k	0°		8°	0°		8°	
ccc			0.10			0.004	

DS4539 - Rev 10 page 11/17

3.3 TSSOP8 package information

Figure 16. TSSOP8 package outline

Table 7. TSSOP8 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
е		0.65			0.0256		
k	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1			0.039		
aaa			0.10			0.004	

DS4539 - Rev 10 page 12/17

3.4 SO14 package information

Figure 17. SO14 package outline

Table 8. SO14 package mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	1.35		1.75	0.05		0.068		
A1	0.10		0.25	0.004		0.009		
A2	1.10		1.65	0.04		0.06		
В	0.33		0.51	0.01		0.02		
С	0.19		0.25	0.007		0.009		
D	8.55		8.75	0.33		0.34		
E	3.80		4.0	0.15		0.15		
е		1.27			0.05			
Н	5.80		6.20	0.22		0.24		
h	0.25		0.50	0.009		0.02		
L	0.40		1.27	0.015		0.05		
k		8° (max.)						
ddd			0.10			0.004		

DS4539 - Rev 10 page 13/17

3.5 TSSOP14 package information

Figure 18. TSSOP14 package outline

Table 9. TSSOP14 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
k	0°		8°	0°		8°	
aaa			0.10			0.004	

DS4539 - Rev 10 page 14/17

4 Ordering information

Table 10. Order codes

Order code	Temperature range	Package	Packaging	Marking
LMV321ILT		SOT23-5		K177
LMV321RILT		30123-3		K176
LMV321IYLT (1)		COT22 E (automotivo grado)		K180
LMV321RIYLT (1)		SOT23-5 (automotive grade)		K185
LMV358IDT		SO8	_	LMV358
LMV358IYDT (1)	40 °C to 405 °C	SO8 (automotive grade)	Tone and real	LMV358IY
LMV358IPT	-40 °C to 125 °C	TSSOP8	Tape and reel	MV358
LMV358IYPT (1)		TSSOP8 (automotive grade)		K181Y
LMV324IDT		SO14	-	LMV324
LMV324IYDT (1)		SO14 (automotive grade)		V324Y
LMV324IPT		TSSOP14		MV324
LMV324IYPT (1)		TSSOP14 (automotive grade)		V324IY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent.

DS4539 - Rev 10 page 15/17

Revision history

Table 11. Document revision history

Date	Revision	Changes
1-Dec-2005	1	First release - Products in full production.
25-May-2007	2	Added automotive grade part numbers to order codes table. Moved order codes table to Section 4: "Ordering information".
20-Feb-2008	3	Added Figure 12: "Noise versus frequency".
		Updated presentation of package information.
		Corrected footnote for automotive grade part numbers in order codes table.
18-Jan-2010	4	Updated document format.
		Updated packages in Section 3: "Package information".
		Modified Note 1 and added Note 2 under Table 10: "Order codes".
	5	Updated Features (added SO8, TSSOP8, SO14, and TSSOP14 package).
05-Nov-2012		Updated titles of Figure 2 to Figure 11 (added conditions).
		Updated LMV321RIYLT order code in Table 10: "Order codes" (status qualified), removed LMV358IYD and LMV324IYD order codes from Table 10: "Order codes".
		Minor corrections throughout document.
16-Aug-2013	6	Updated Features
		Added Related products
		Table 3 and Table 4: replaced ΔV_{io} with $\Delta V_{io}/\Delta T$
		Table 6: updated minimum inches "k" value (0 instead of 1)
		Table 10: "Order codes": updated footnote associated with order code LMV358IYPT
05-Jun-2015	7	Updated Figure 11.
		TSSOP package information: updated "aaa" value
		Table 10: "Order codes": removed obsolete order codes LMV358ID and LMV324ID.
15-Oct-2015	8	Replaced Figure 12: "Noise versus frequency.
06-May-2019	9	Added Figure 13. LMV358IYPT Input offset voltage vs. temperature at 5 V supply voltage.
20-Sep-2021	10	Updated Section 3.4 SO14 package information.

DS4539 - Rev 10 page 16/17

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS4539 - Rev 10 page 17/17