Machine learning Assignment 2 Aakanksha Darekar 202200733 A1 09

Q. Build a simple linear regression model using the given data- set (Auto.csv). Perform a linear regression with mpg as the response and all other variables as the features.


```
print(model.summary())
# (b) Plot residual plot
residuals = model.resid
sns.residplot(x=model.fittedvalues, y=residuals, lowess=True)
plt.xlabel('Fitted values')
plt.ylabel('Residuals')
plt.title('Residual Plot')
plt.show()
# (c) Plot scatter plot showing the fitted line
plt.scatter(y, model.fittedvalues)
plt.plot(y, y, color='red') # Line showing the perfect fit
plt.xlabel('Actual mpg')
plt.ylabel('Fitted mpg')
plt.title('Actual vs Fitted mpg')
plt.show()
```

(a) Print model summary and

```
OLS Regression Results
Dep. Variable:
                                       R-squared:
                                  mpg
                                                                         0.821
Model:
                                  OLS
                                       Adj. R-squared:
                                                                         0.818
Method:
                       Least Squares
                                        F-statistic:
                                                                         252.4
                                        Prob (F-statistic):
Date:
                    Wed, 22 Jan 2025
                                                                     2.04e-139
                                        Log-Likelihood:
Time:
                             15:49:32
                                                                        -1023.5
No. Observations:
                                  392
                                        AIC:
                                                                          2063.
Df Residuals:
                                  384
                                        BIC:
                                                                          2095.
Df Model:
Covariance Type:
```

========	:=======	:========	:======	========	:=======	=======	
	coef	std err	t	P> t	[0.025	0.975]	
	47 2404	4 644	2 707	0.000	26.250	0.007	
const	-17.2184	4.644	-3.707	0.000	-26.350	-8.087	
cylinders	-0.4934	0.323	-1.526	0.128	-1.129	0.142	
displacement	0.0199	0.008	2.647	0.008	0.005	0.035	
horsepower	-0.0170	0.014	-1.230	0.220	-0.044	0.010	
weight	-0.0065	0.001	-9.929	0.000	-0.008	-0.005	
acceleration	0.0806	0.099	0.815	0.415	-0.114	0.275	
model_year	0.7508	0.051	14.729	0.000	0.651	0.851	
origin	1.4261	0.278	5.127	0.000	0.879	1.973	
========	========	=========		=======	=======	======	
Omnibus:		31.906	Durbin-Watson:			1.309	
Prob(Omnibus): 0.000		0.000	Jarque-Bera (JB):			53.100	
Skew:		0.529	Prob(JB):			2.95e-12	
Kurtosis:		4.460	Cond. No.			8.59e+04	
==========	========		=======	======	======	=======	

(b) Plot residual plot

(c) Plot scatter plot showing the fitted line

