Compte rendu du TP 1

Image originale

1. K-Mean

Illustration 1: Resultat du KMean avec des valeurs choisies arbitrairement

Illustration 2: K-Mean avec les valeurs moyennes des classes

2. K-Mean avec convergeance

Illustration 3: K-Mean avec une boucle de convergeance

3. K-Mean avec 256 couleurs

Illustration 4: K-Mean avec 256 valeurs aléatoires présentes dans l'image

Illustration 5: K-Mean256 avec une boucle de convergeance

Ici, l'utilisation de la boucle a permis d'éliminer les incohérences au niveau à la fois des zones de grande luminosité et des zones d'ombre.

En appliquant le PSNR, entre l'illustration 5 et l'originale, on trouve une valeur égale à 28,9437, ce qui est assez important, et compréhensible, au vu du changement de luminosité de l'image.

4. Palette

En prenant comme image de base l'illustration 5, ne comprenant pas plus de 256 couleurs, on va générer un fichier texte, dont chaque ligne correspond à une couleur, et une image en niveaux de gris, dont chaque niveau de gris correspond à une ligne du fichier texte. Pour éviter les duplications, ce fichier est généré à partir d'une map C++.

Lors de la recréation de l'image, on va chercher la ligne correspondant à la valeur de niveau de gris pour la décomposer en trois valeurs qui correspondent aux composantes RGB.

L'image recrée est identique à l'originale en 256 couleurs.