Fisica 2 (Teoria dei Circuiti)

Esperienza 3 (tutto il contenuto e' da modificare)

Studenti: Angelo Perotti, Mattia Zagatti, Mattia Dolci

1 Introduzione

In questa esperienza viene analizzato il comportamento del circuito passa banda RLC, osservando il suo andamento prima nel dominio della frequenza attraverso lo sviluppo dei diagrammi di Bode e poi in quello del tempo.

2 Materiale utilizzato

- Componenti elettronici: resistori $(1 k\Omega, 10 k\Omega)$, capacitori (1 nF, 10 nF, 100 nF), decade di induttanze, breadboard.
- Strumenti di misura: generatore di forme d'onda, oscilloscopio
- Cavi: cavi bnc, cavi banana-banana, cavi jumper.

3 Circuito utilizzato

4 Esercizio 1

In questo esercizio lo scopo è quello di analizzare il circuito nel dominio della frequenza, realizzando i relativi diagrammi di Bode del modulo e della fase al variare della resistenza presente nel circuito. Esso è alimentato da un segnale sinusoidale di ampiezza picco-picco pari a 5 V e offset 0 V, ottenuto mediante un generatore di segnali collegato opportunamente alla breadboard mediante gli appositi doppietti. Gli altri componenti sono un resistore di valore 10 k Ω nel primo caso e 1 k Ω nel secondo, un condensatore di 10 nF e un induttore di 500 mH. Questo valore di induttanza è stato introdotto all'interno del circuito non attraverso il classico bipolo ma con una decade di induttanza, regolando la manopola relativa all'ordine di grandezza appropriato.

4.1 R= $10k\Omega$

I diagrammi di Bode (Figura 1) sono stati realizzati utilizzando i dati raccolti in laboratorio (Figura 2), facendo attenzione allo sfasamento tra i due segnali ed effettuando la seguente conversione:

$$\Delta \varnothing[rad] = \frac{\Delta t}{T} \cdot 2\pi$$

Come è possibile notare, i risultati ottenuti sono coerenti con il comportamento passa-banda del circuito, secondo il quale si ha un guadagno massimo($G = \frac{A_{out}}{A_{in}}$) in corrispondenza della frequenza di risonanza, mentre il segnale di uscita viene particolarmente attenuato a frequenze maggiori rispetto a 10 f_0 e inferiori rispetto a 0.1 f_0 .

Utilizzando un valore di R pari a $10 \text{ k}\Omega$, le misure sono state effettuate variando il valore di frequenza del segnale in ingresso da un minimo di 1 Hz a un massimo di 10 kHz.

Figure 1: Diagrammi di bode

f	Δ	A_{ing}	A_{usc}
1Hz	84°	5V	$4 \mathrm{mV}$
1,15KHz	$45,3^{\circ}$	5V	3,34V
2Hz	92°	5V	$6,25 \mathrm{mV}$
4,5V	47°	5V	3,38V
5Hz	91,4°	5V	$15,73 \mathrm{mV}$
10Hz	89,8°	5V	$30,4 \mathrm{mV}$
20Hz	89°	5V	$60,55 \mathrm{mV}$
50Hz	87°	5V	152mv
100Hz	86°	5V	$304,2 \mathrm{mV}$
200Hz	81°	5V	602,5 mV
500Hz	70°	5V	1,5V
1KHz	51°	5V	2,93V
2KHz	9,8°	5V	4,69V
2,25Khz	0°	5V	4,77V
5Khz	-53,4°	5V	3,07V
10Khz	-77°	5V	1,5V
50KHz	-	5V	-

Figure 2: RLC con resistenza $10 \mathrm{k}\Omega$

1 1 1

4.2 R= $1k\Omega$

f	Δ	A_{ing}	A_{usc}
1Hz	-	5V	-
2Hz	-	5V	-
2,03Hz	45°	5V	2,4V
2,48Hz	46°	5V	2,37V
5Hz	-	5V	-
10Hz	88°	5V	3,3 mV
20Hz	89°	5V	$6.3 \mathrm{mV}$
50Hz	90°	5V	15,3mv
100Hz	89°	5V	$36,6 \mathrm{mV}$
200Hz	88°	5V	61mV
500Hz	$86,7^{\circ}$	5V	161mV
1KHz	83°	5V	373 mV
2KHz	$49,7^{\circ}$	5V	2,23V
5Khz	-85°	5V	$383 \mathrm{mV}$
10Khz	-88,6°	5V	$155 \mathrm{mV}$
50KHz	-	5V	-

Figure 3: RLC con resistenza $1k\Omega$

Oltre a queste 13 misure, vengono considerate altre tre frequenze: i due valori corrispondente ad un guadagno di -3 dB rispetto al suo massimo e la frequenza di risonanza. Le prime sono state ottenute calcolando il guadagno a -3 dB, ottenuto considerando il valore massimo di ampiezza del segnale di uscita misurato ai capi del resistore (4.77 V) diviso la radice di 2:

$$A_{\epsilon dB} = \frac{A_{max}}{\sqrt{2}} = \frac{4,77V}{\sqrt{2}} = 3,37V$$

Successivamente, si regola la frequenza dal generatore di segnali fino a quando non si ottiene un valore di tensione paragonabile, in questo caso f1 = 1.15 kHz e f2 = 4.5 kHz. Per quanto riguarda la frequenza di risonanza, essa è stata ricavata considerando prima il valore della pulsazione in questione e poi dividendo per 2π :

$$\omega_0 = \frac{1}{\sqrt{LC}} = 14142 \frac{rad}{s}$$
$$f_0 = \frac{\omega_o}{2\pi} = 2.25kHz$$

Per misurare l'ampiezza e lo sfasamento sull'oscilloscopio sono stati utilizzati gli appositi cursori, variando opportunamente la scala dei tempi e dell'ampiezza.

In questo caso vengono ripetute le misure precedenti modificando il valore di R, andando perciò a variare il valore di tensione massima e di conseguenza le frequenze corrispondenti ad un valore di ampiezza inferiore di 3 dB rispetto a quello massimo, mentre la frequenza di risonanza rimane invariata in quanto i valori di capacità e induttanza sono invariati. Le misure a 1 e 2 Hz non sono state effettuate in quando il segnale di uscita in quel punto era molto attenuato e non era quindi osservabile all'oscilloscopio.

$$A_{3dB} = \frac{3.37V}{\sqrt{2}} = 2.38V$$

Figure 4: Diagrammi di Bode

Rispetto al caso precedente si nota come i valori di tensione misurati non rispecchiano perfettamente quelli attesi, in particolar modo il valore massimo del segnale in uscita (3.37 V) è decisamente inferiore rispetto a quello misurato con $R=10~k\omega$ (4.77 V), e di conseguenza anche i valori relativi allo sfasamento. Ciò è causato dal fatto che, avendo in questo caso un valore di resistenza più basso, esso è paragonabile al valore della resistenza parassita presente in serie all'induttore a causa del suo comportamento reale:

Per stimare il suo valore, si considera un guadagno unitario del circuito ponendo a 0 i valori di capacità e di induttanza in modo da ottenere come unico elemento la serie tra il resistore R e la resistenza parassita Rl. Così facendo è possibile trovare il valore di tensione ai capi di Rl attraverso la legge di Kirchhoff delle maglie e successivamente la resistenza mediante la legge di Ohm (Vin = 5V, Vout = 3.37 V):

$$V_{Rl} = V_{\rm in} - V_{\rm out} = (5 - 3.37)V = 1.63V$$

$$I = \frac{V_{\rm out}}{R} = 3.37mA$$

$$Rl = \frac{V_{\rm Rl}}{I} = 484\Omega$$

In questa esperienza dunque è stato appreso il concetto di resistenza parassita, che oltre a caratterizzare strumenti come oscilloscopi e multimetri, è caratteristica di qualsiasi oggetto presente nella realtà in quanto essi non rispettano le caratteristiche ideali secondo le quali solo i resistori offrono un valore di resistenza nel circuito.

5 Esercizio 2

Il secondo esercizio richiedeva di verificare il funzionamento del circuito RLC utilizzando come ingresso una forma d'onda quadra di frequenza 10Hz e tensione picco=picco di $V_{\rm in}^{\rm pp}=2.5V$, con offset $V_{\rm in}^{\rm of}=1.25V$, con varie combinazioni di R, L e C.

La risposta del circuito dipende dalla frequenza naturale del sistema, ossia la frequenza alla quale il circuito tenderebbe a oscillare se fosse lasciato libero, senza influenze esterne. Questa frequenza dipende dai valori di LL (induttore) e CC (condensatore) secondo la relazione:

$$f_0 = \frac{1}{(2\pi\sqrt{LC})}$$

A questa frequenza, l'energia si scambia tra l'induttore (energia magnetica) e il condensatore (energia elettrica). Il valore di R, invece, introduce uno smorzamento che influisce sull'ampiezza delle oscillazioni nel tempo e modifica leggermente la frequenza effettiva delle oscillazioni, chiamata frequenza di oscillazione smorzata (f_d). Il comportamento del circuito varia quindi come segue:

- Per valori crescenti di L: un induttore più grande rallenta gli scambi energetici, riducendo la frequenza naturale f_0 . Questo rende il circuito più lento a rispondere, con oscillazioni che avvengono a frequenze più basse.
- Per valori crescenti di C: un condensatore più grande consente di accumulare più carica, riducendo anch'esso la frequenza naturale f_0 . Un CC elevato rende il circuito più dominato dalla reattanza capacitiva.

• Per valori crescenti di R: il valore della resistenza determina il grado di smorzamento del sistema. Se R è basso, il circuito risponde in modo oscillatorio (regime sotto-smorzato), con oscillazioni persistenti ma a poco a poco attenuate. Al contrario, se R è alto, il circuito diventa sovra-smorzato e la risposta non mostra oscillazioni ma solo un lento ritorno all'equilibrio.

In generale, il circuito RLC serie può essere visto come un sistema in grado di oscillare con caratteristiche determinate da L e C, mentre R controlla l'attenuazione e la durata delle oscillazioni. Quando la resistenza è moderata, il circuito è **sotto-smorzato**, e le oscillazioni si verificano a una frequenza ω_d data da:

$$\omega_d = \sqrt{\frac{1}{LC} - \frac{R}{LC})^2}$$

La frequenza smorzata $f_d = \omega_d/(2\pi)$ è leggermente inferiore a quella naturale f_0 , ma per valori di R non troppo elevati, questa differenza è trascurabile.

