Homework Assignment N°4

BML36 Thibault Douzon Rajavarman Mathivanan

September 26th, 2018

Contents

1	Exercise 1: Decision Trees																								
	1.1	Part	a																						
	1.2	Part	b																						
	1.3	Part	$^{\mathrm{c}}$																						
							_					_		_			_								
2	Exercise 2:Classification of 3 class confusion matrix 2.1 Part a																								
	2.1	Part	\mathbf{a}																						
	2.2	Part	b																						
	2.3	Part	$^{\mathrm{c}}$																						

1 Exercise 1: Decision Trees

1.1 Part a

a 0.51996

b entropy of the dataset: 0.991

Feature a_1	+	-	p_+	p_{-}	entropy
T	3	1	$\frac{3}{4}$	$\frac{1}{4}$	0.811
F	1	4	$\frac{1}{5}$	$\frac{4}{5}$	0.722

new entropy for a_1 : $0.811 \times \frac{4}{9} + 0.722 \times \frac{5}{9} = 0.762$ information gain of al = 0.229

Feature a_2	+	-	p_+	<i>p</i> _	entropy
T	2	3	$\frac{2}{5}$	$\frac{3}{5}$	0.971
F	2	2	$\frac{2}{4}$	$\frac{2}{4}$	1

new entropy for a_2 : $0.971 \times \frac{5}{9} + 1 \times \frac{4}{9} = 0.762$ information gain of $a_2 = 0.007$

Entropy for 1.5 split is: 0.8483857803777466, information gain: 0.14269027946047563 Entropy for 2.5 split is: 0.8483857803777466, information gain: 0.14269027946047563 Entropy for 3.5 split is: 0.9885107724710845, information gain: 0.002565287367137681 Entropy for 4.5 split is: 0.9182958340544896, information gain: 0.07278022578373267 Entropy for 5.5 split is: 0.9838614413637048, information gain: 0.007214618474517431 Entropy for 6.5 split is: 0.9727652780181631, information gain: 0.018310781820059074 Entropy for 7.5 split is: 0.88888888888888, information gain: 0.10218717094933338 Entropy for 8.5 split is: 0.9910760598382223, information gain: $-1.1102230246251565e^{-16}$

d best split is a1 (information gain is 0.229)

e Error rate:

$$\operatorname{error}(t) = 1 - \max_{i} [p(i|t)]$$

a1:

error on T node: 1 - 3/4 error on F node: 1 - 4/5

global classification error on a1 split: (1 - 3/4) * 4/9 + (1 - 4/5) * 5/9 = 2/9

a2:

error on T node: 1 - 3/5 error on F node: 1 - 2/4

global classification error on a1 split: (1 - 3/5) * 5/9 + (1 - 2/4) * 4/9 = 4/9

Best split is the one with fewer global classification error -> a1

\mathbf{f} Gini:

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

a1:

Gini on node T: $1 - ((3/4)^2 + (1/4)^2) = 0.375$

Gini on node F: $1 - ((4/5)^2 + (1/5)^2) = 0.320$

Global Gini on a1 = 0.375 * 4/9 + 0.320 * 5/9 = 0.344

a2:

Gini on node T: $1 - ((3/5)^2 + (2/5)^2) = 0.480$

Gini on node F: $1 - ((2/4)^2 + (2/4)^2) = 0.5$

Global Gini on a1 = 0.480 * 5/9 + 0.5 * 4/9 = 0.489

Best split is the one with fewer Gini index -> a1

1.2 Part b

Feature a_1	low	high	p_{low}	$p_{ m high}$	Gini
bad	1	3	$\frac{1}{4}$	$\frac{3}{4}$	0.375
average	3	2	$\frac{3}{5}$	$\frac{2}{5}$	0.480
good	3	1	$\frac{3}{4}$	$\frac{1}{4}$	0.375

Overall Gini average index for the split is: 5/20*0.375+8/20*0.480+7/20*0.375 = 0.417

1.3 Part c

confidense interval = [0.8191; 0.9082]

Exercise 2:Classification of 3 class confusion matrix

2.1 Part a

The accuracy of the classifier
$$\text{Accuracy} = \frac{sumofalltrue positive}{sumofallthe results} = \frac{110 + 130 + 120}{110 + 8 + 7 + 16 + 130 + 10 + 26 + 5 + 120} = 0.8333(83.3\%)$$

2.2 Part b

The precision for class C2 Precision C2 =
$$\frac{truepositive of C2}{sum of all predicted positive of C2}$$
 = $\frac{130}{130+8+5}$ = 0.909(90.9%)

2.3Part c

The precision for class C3 Recall C3 =
$$\frac{Truepositive}{TotalActualPositive}$$
 = $\frac{5}{26+5+120}$ = 0.033(3.3%)