Cardinality and Countability

Section 1.1: Countable Sets

Definition (Denumerable Set). A set S is denumerable if there exists a function $f: S \to \mathbb{N}$ with f a bijection. We also say S is countably infinite.

Definition (Countable Set). We say S is countable if S is either finite or denumerable.

Theorem (Countability of Unions). *If* A *and* B *are countable sets, then* $A \cup B$ *is countable.*

Theorem (Countability of Subsets). *If* $A \subseteq B$, *then if* B *is countable, then* A *is countable.*

Theorem (Union of Finite Sets). *If* A *and* B *are finite, then* $A \cup B$ *is finite.*

Proof. If A is finite and |B| has one element, then we show that $A \cup B$ is finite (with two cases).

Afterward, for |B| > 1, we use induction on |B|.

Definition (Finite Set). A set A is finite if there exists a bijection $f: S \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N} = \{0, 1, ...\}$.

We write |A| = n.

Theorem (Disjoint Union of Countable Sets). *If* A *is denumerable,* B *is finite, and* $A \cap B = \emptyset$ *, then* $A \cup B$ *is denumerable.*

Proof. There exists a bijection $f : A \to \mathbb{N}$ (since A is denumerable), and a bijection $g : B \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ (since B is finite).

We create a new bijection $h : A \cup B \rightarrow \mathbb{N}$ by:

$$h(x) = \begin{cases} g(x) - 1 & x \in B \\ f(x) + n & x \in A \end{cases}.$$

Since $A \cap B = \emptyset$, we know that h is well-defined.

Now, we must show that h is a bijection.

Suppose h(x) = h(y).

Case 1: If $x, y \in B$, then h(x) = g(x) - 1, and h(y) = g(y) - 1, meaning g(x) - 1 = g(y) - 1, meaning g(x) = g(y). Since g is a bijection, x = y.

Case 2: If $x, y \in A$, a similar argument yields that x = y

Case 3: Without loss of generality, let $x \in A$ and $y \in B$. If $x \in A$, then h(x) = f(x) + n and h(y) = g(y) - 1. Thus, f(x) + n = g(y) - 1. However, since $f(x) + n \ge n$ and $0 \le g(y) - 1 \le n - 1$. Thus, we get that $0 \le n \le n - 1$, which is a contradiction.

Thus, we have shown that h is injective.

Theorem (Cartesian Product of Natural Numbers). $\mathbb{N} \times \mathbb{N}$ is denumerable.

Proof. We consider $\mathbb{N} \times \mathbb{N}$ as

$$\mathbb{N} \times \mathbb{N} = \mathbb{N} \times \{0\} \cup \mathbb{N} \times \{1\} \cup \cdots$$

Then, we can find an (informal) bijection as follows:

$$\mathbb{N} \times \{0\} : (0,0)^{-0} (1,0)^{-2} (2,0)^{-5} (3,0)^{-9} \cdots$$
 $\mathbb{N} \times \{1\} : (0,1)^{-1} (1,1)^{-4} (2,1)^{-8} (3,1) \cdots$
 $\mathbb{N} \times \{2\} : (0,2)^{-3} (1,2)^{-7} (2,2) (3,2) \cdots$
 $\mathbb{N} \times \{3\} : (0,3)^{-6} (1,3) (2,3) (3,3) \cdots$
 $\vdots \vdots \vdots \vdots \vdots \vdots \cdots$

We can also find a bijection $P : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, with

$$P(x,y) = \frac{(x+y)(x+y+1)}{2} + x$$

A fun challenge is to prove that P is a bijection.

Theorem (Countability of the Rationals). \mathbb{Q} *is denumerable.*

Theorem (Countability of the Integers). *The set* \mathbb{Z} *is denumerable.*

Proof. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined by

$$f(x) = \begin{cases} 2x & x \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

Definition (Cardinality). We say two sets, A and B, have the same cardinality if there exists a bijection $f: A \to B$.

Theorem (Finite Subset Cardinality). *If* $m, n \in \mathbb{N}$ *and* $m \neq n$, *then* $\{1, 2, ..., m\}$ *and* $\{1, 2, ..., n\}$ *do not have the same cardinality.*

Theorem (Infinitude of the Natural Numbers). N is not finite.

Example. If $A \subseteq B$ and |A| = |B|, then both A and B are infinite.

In order to prove this, we need to show that every injection from a finite set to itself is a bijection.