HIGH-VOLTAGE MIXED-SIGNAL IC

WF8101

All-in-one driver w/ Timing Controller for White/Black Dot-Matrix ESL

Preliminary Specifications IC Version: c_A
Datasheet Revision: 0.1 March 31, 2017

Table of Content

INTRODUCTION	3
MAIN APPLICATIONS	3
FEATURE HIGHLIGHTS	3
BLOCK DIAGRAM	4
ORDERING INFORMATION	5
PIN DESCRIPTION	
COMMAND TABLE	
COMMAND DESCRIPTION	
HOST INTERFACES	29
POWER MANAGEMENT	31
OTP ADDRESS MAPPING	35
TEMPERATURE RANGE	36
HARDWARE LUT SETTING	38
COMMAND DEFAULT SETTING	39
LUT FORMAT IN OTP	40
DEEP SLEEP MODE	41
PANEL BREAK CHECK	42
CASCADE APPLICATION CIRCUIT	43
APPLICATION CIRCUIT	44
ABSOLUTE MAXIMUM RATINGS	45
DC CHARACTERISTICS	46
AC CHARACTERISTICS	47
PHYSICAL DIMENSIONS	49
ALIGNMENT MARK INFORMATION	50
PAD COORDINATES	51
TRAY INFORMATION	56
REVISION HISTORY	57

WF8101

All-in-one driver IC with Timing Controller for White/Black Dot-Matrix ESL

INTRODUCTION

The WF8101 is an all-in-one driver with timing controller for ESL. Its output is of 1-bit white/black resolution per pixel. The timing controller provides control signals for source driver and gate driver.

The DC-DC controller allows it to generate the source output voltage VDH/VDL (±2.4V~±11.0V). The chip also includes an output buffer for the supply of the COM electrode (DC-VCOM). The system is configurable through a 3-wire/4-wire (SPI) serial interface.

MAIN APPLICATIONS

Cards

FEATURE HIGHLIGHTS

- System-on-chip (SOC)
- Resolution
 - Up to 80(source)x160(gate) resolution + 1 border + 1 VCOM
 - 2-bit white/black
- Memory: 80 x 160 x 2 bits SRAM
- Cascade: 2 or more chips cascade mode

- MCU I/F: 3-wire/4-wire SPI
- On-Chip Thermal Sensor range: -25°C ~ 50°C
 - Deviation: ± 2°C / 8-bit status
- LPD: Low power detection (VDD<2.5V)
- OSC / PLL: On-chip RC oscillator
- VCOM: DC-VCOM, -0.1V ~ -3.0V (step 0.05V)
- Charge Pump and Regulator:
 - (1) VGH: +11V ~ +16V (programmable, step 1V)
 - (2) VGL: -11V ~ -16V (programmable, step 1V)
 - (3) VDH: +2.4V ~ +11.0V (programmable, step 0.2V)
 - (4) VDL: -2.4V ~ -11.0V (programmable, step 0.2V)
- Waveform HW LUT
- OTP for LUTs and settings
- Power Supply: 2.3V ~ 3.6V
- Die size: 3500uM x 2700uM
- Pad Pitch: 30uM
- Package: (TBD)

Remark: Contact WF for a visual inspection document (03-DOC-093).

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Description
WF8101cHAA-U0X1-3	180uM double-faced 3" tray

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, WF has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their application in which the die is to be used. WF assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER

WF believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by WF for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of WF. WF's terms and conditions of sale apply at all times.

PIN DESCRIPTION

Type: I: Input, O: Output, I/O: Input/Output, PWR: Power, C: Capacitor pin

Pin (Pad) Name	Pin Count	Туре	Description
			Power Supply Pins
VDD	5	PWR	Digital power
VDDA	2	PWR	Analog power
VDDIO	2	PWR	IO power
VPP	2	PWR	OTP program power
GND	5	PWR	Digital Ground
GNDA	2	PWR	Analog Ground
VDM	8	PWR	Analog Ground.
			LDO Pins
VDDD	1	PWR	Digital power input (1.8V)
VDDDO	1	PWR	Digital power output (1.8V)
VDH	2	I/O	Positive source driver Voltage (+2.4V ~ +11V)
VDL	2	I/O	Negative source driver voltage (-2.4V ~ -11V)
		Co	ONTROL INTERFACE PINS
			Bus Selection. Select 3-wire / 4-wire SPI interface
BS	1	I	L: 4-wire interface. H: 3-wire interface.
			Global reset pin. Low: active.
DOT 11			When RST_N becomes low, driver will reset. All registers will reset to
RST_N	1	(Pull-up)	default value. All driver functions will be disabled.
			Source/Gate/Border/VCOM will be released to floating. The minimal width of RST_N=low is 100uS.
			Cascade setting pin.
MS	1	I	L: Slave chip.
			H: Master chip.
		1/0	Clock input/output pin. Leave it open if not used.
CL	1	I/O	Master: Clock output. Slave: Clock input.
CDEIO	1	I/O	Cascade pin. Leave it open if not used.
CDAIO	1	1/0	Cascade pin. Leave it open if not used.
027 110		"3	Driver busy flag.
BUSY_N	1	0	L: Driver is Busy.
			H: Host side can send command/data to driver.
		MC	U INTERFACE (SPI) PINS
CSB	1	I	Serial communication chip select.
SDA	1	I/O	Serial communication data input/output
SCL	1	I	Serial communication clock input.
			Command/Data input.
DC	1	I	L: command
			H: data
			Connect to GND if BS=High.

Pin (Pad) Name	Pin Count	Туре	Description
			CHARGE PUMP PINS
C1P, C1N	2, 2	PWR	Capacitor connecting pins on the positive/negative side
C2P, C2N	2, 2		
C3P, C3N	2, 2		
C4P, C4N	2, 2		
C5P, C5N	2, 2		
C6P, C6N	2, 2		
VCOMH	2	PWR	Positive pumping voltage for internal use
VCOML	2	PWR	Negative pumping voltage for internal use
VGH	4	PWR	Positive gate driver voltage (+11V ~ +16V)
VGL	4	PWR	Negative gate driver voltage (-11V ~ -16V)
			OUTPUT PINS
S0~S79	90	0	Source driver output signals.
(S<0>~S<79>)	80	0	
G0~G159	160	0	Gate driver output signals.
(G<0>~G<159>)	160	0	
VCOM	4	0	VCOM output.
VBD			Border output pins.
(Border<1>, Border<2>)	1, 1	0	
			CHECK PANEL PINS
CHKGI	1	l (Pull-down)	Check panel break input. Leave open if it is not used.
CHKGO	1	0	Check panel break output. Leave open if it is not used.
			RESERVED PINS
TEST2	1	0	Leave open.
TEST3~TEST5	1x3	I	Leave open.
DUMMY	12	-	Leave open.

COMMAND TABLE

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		Default
		W	0	0	0	0	0	0	0	0	0		00н
1.	PSR	W	1	#	#	#	#	#	#	#	#	RES[1:0], REG[1:0], UD, SHL, SHD_N, RST_N	0Fн
		W	0	0	0	0	0	0	0	0	1		01н
		W	1	•	-	•	•	•	-	#	#	VDS_EN, VDG_EN	03н
2.	PWR	W	1	-	-	-	-	-	#	#	#	VDG_LVL[2:0]	00н
		W	1	-	-	#	#	#	#	#	#	VDH_LVL[5:0]	26н
		W	1	-	-	#	#	#	#	#	#	VDL_LVL[5:0]	26н
3.	POF	W	0	0	0	0	0	0	0	1	0		02 н
1	PFS	W	0	0	0	0	0	0	0	1	1		03н
т.	110	W	1	-	-	#	#	-	-	-	-	T_OFF[1:0]	00н
5.	PON	W	0	0	0	0	0	0	1	0	0		04н
6.	PMES	W	0	0	0	0	0	0	1	0	1		05н
7.	CPSET	W	0	0	0	0	0	0	1	1	0		06н
۲.	OI OLI	W	1	-	-	#	#	#	#	#	#	CPINT[1:0], CPS[1:0], CPFRQ[1:0]	3Fн
g	DSLP	W	0	0	0	0	0	0	1	1	1		07н
0.	DOLI	W		#	#	#	#	#	#	#	#	Check code = А5н	А5н
		W	0	0	0	0	1	0	0	0	0		10н
9.	DTM1	W	1	#	#	#	#	#	#	#	#	Pixel(1)Pixel(8)	00н
3.	BTWIT	W	1							•••		~	00н
		W	1	#	#	#	#	#	#	#	#	Pixel(N-7)Pixel(N)	00н
10	DSP	W	0	0	0	0	1	0	0	0	1		11н
		R	1	#	-	-	-	-	-	-	-	Data_flag	00н
11.	DRF	W	0	0	0	0	1	0	0	1	0		12 H
		W	0	0	0	0	1	0	0	1	1		13н
12	DTM2	W	1	#	#	#	#	#	#	#	#	Pixel(1)Pixel(8)	00н
12.	DTWZ	W	1									~	00н
		W	1	#	#	#	#	#	#	#	#	Pixel(N-7)Pixel(N)	00н
13	AUTO	W	0	0	0	0	1	0	1	1	1		17 H
13.	AUTO	W	1	#	#	#	#	#	#	#	#	Check code = A5H / A7H	00н
		W	0	0	0	1	0	1	0	1	0		2A H
14.	LUTOPT	W	1	#	#	#	#	#	#	#	#	EOPT, STAGE_XON[6:0]	00н
		W	1	-	-	-	#	-	-	#	#	SEL2030, SEL05[1:0]	00н
15	PLL	W	0	0	0	1	1	0	0	0	0		30 H
10.		W	1	-	-	#	#	#	#	#	#	FR[5:0]	13н
16	TSC	W	0	0	1	0	0	0	0	0	0		40 H
10.	100	R	1	#	#	#	#	#	#	#	#	TS[7:0]	00н
17	TSE	W	0	0	1	0	0	0	0	0	1		41 H
		W	1	0	-	-	-	#	#	#	#	TO[3:0]	00н
18	PBC	W	0	0	1	0	0	0	1	0	0		44н
10.	. 50	R	1	#	#	#	#	#	#	#	#	PSTA	00н
10	CDI	W	0	0	1	0	1	0	0	0	0		50 н
19.	001	W	1	#	#	#	#	-	#	#	#	VBD[1:0], DDX[1:0], CDI[2:0]	D2н

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		Default
20	LPD	W	0	0	1	0	1	0	0	0	1		51 H
20.	LPD	R	1	•	•	•	-	•	•	•	#	LPD	01н
21	TCON	W	0	0	1	1	0	0	0	0	0		60н
۷۱.	TCON	W	1	#	#	#	#	#	#	#	#	S2G[3:0], G2S[3:0]	22н
		W	0	0	1	1	0	0	0	0	1		61н
22. TRES		W	1	•	#	#	#	#	0	0	0	HRES[6:3]	00н
		W	1	#	#	#	#	#	#	#	#	VRES[7:0]	00н
		W	0	0	1	1	0	0	1	0	1		65 н
23.	GSST	W	1	-	#	#	#	#	0	0	0	HST[6:3]	00н
		W	1	#	#	#	#	#	#	#	#	VST[7:0]	00н
		W	0	0	1	1	1	0	0	0	0		70 H
24.	REV	R	1	#	#	#	#	#	#	#	#	LUT_REV0[7:0]	FFH
		R	1	#	#	#	#	#	#	#	#	LUT_REV1[7:0]	FFH
		W	0	0	1	1	1	0	0	0	1		71н
25.	FLG	R	1	#	#	-	-	#	#	#	#	CPOK, PTL_flag, data_flag, PON, POF, BUSY_N	02н
		W	0	0	1	1	1	0	0	1	0		72 H
26.	CRC	R	1	#	#	#	#	#	#	#	#	CRC_MSB[7:0]	FFH
20. CRC		R	1	#	#	#	#	#	#	#	#	CRC_LSB[7:0]	FFH
27	AMV	W	0	1	0	0	0	0	0	0	0		80н
21.	AIVIV	W	1	-	•	#	#	#	#	#	#	AMVT[1:0], XON, AMVS, AMV, AMVE	10н
20	VV	W	0	1	0	0	0	0	0	0	1		81н
20.	VV	R	1	•	-	#	#	#	#	#	#	VV[5:0]	00н
20	VDCS	W	0	1	0	0	0	0	0	1	0		82 H
29.	VDC3	W	1	-		#	#	#	#	#	#	VDCS[5:0]	00н

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		Default
		W	0	1	0	0	1	0	0	0	0		90н
		W	1	-	#	#	#	#	0	0	0	HRST[6:3]	00н
20	30. PTL	W	1	•	#	#	#	#	1	1	1	HRED[6:3]	07н
30.		W	1	#	#	#	#	#	#	#	#	VRST[7:0]	00н
		W	1	#	#	#	#	#	#	#	#	VRED[7:0]	00н
		W	1	-	-	-	-	-	-	-	#	PTL_SCAN	01н
31.	PIN	W	0	1	0	0	1	0	0	0	1		91н
32.	POUT	W	0	1	0	0	1	0	0	1	0		92 H
33	PGM	W	0	1	0	1	0	0	0	0	0		А0н
33.	1 GIVI	W	1	•	-	-	-	-	#	#	#	RGSET[2:0]	04н
34.	APG	W	0	1	0	1	0	0	0	0	1		А1н
		W	0	1	0	1	0	0	0	1	0		А2н
		R	1	#	#	#	#	#	#	#	#	Dummy	
35.	ROTP	R	1	#	#	#	#	#	#	#	#	Data of Address = 0	
		R	1	:	:	:	:	:	:	:	:	:	
		R	1	#	#	#	#	#	#	#	#	Data of Address = n	
36	CCSET	W	0	1	1	1	0	0	0	0	0		Е0н
30.	CCOLI	W	1	-	-	-	-	-	/-	#	#	TSFIX, CCEN	00н
37	PWS	W	0	1	1	1	0	0	0	1	1		Е3н
37.	1 443	W	1	#	#	#	#	#	#	#	#	BD_W[3:0], SD_W[3:0]	33н
38	LVSEL	W	0	1	1	1	0	0	1	0	0		Е4н
50.	LVOEL	W	1	•	-	-	-	-	-	#	#	LVD_SEL[1:0]	03н
30	TSSET	W	0	1	1	1	0	0	1	0	1		Е5н
39.	TOOLI	W	1	#	#	#	#	#	#	#	#	TS_SET[7:0]	00н

Note: (1) All other register addresses are invalid or reserved by WF, and should NOT be used.

- (2) Any bits shown here as 0 must be written with a 0. All unused bits should also be set to zero. Device malfunction may occur if this is not done.
- (3) Commands are processed on the 'stop' condition of the interface.
- (4) Registers marked 'W/R' can be read, but the contents are written when the SPI command completes so the contents can be read and altered. The user can subsequently write the register to restore the contents following an SPI read.

COMMAND DESCRIPTION

W/R: 0: Write Cycle / 1: Read Cycle C/D: 0: Command / 1: Data D7-D0: -: Don't Care

(1) PSR (R00H)

	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Γ.	Daniel Cattian Danielana	W	0	0	0	0	0	0	0	0	0	00н
ľ	Panel Setting Registers	W	1	RES	[1:0]	REG	6[1:0]	UD	SHL	SHD_N	RST_N	0Fн

RES[1:0]: Resolution Setting

00b: 80 x 160 (source x gate) (Default)

01b: 80 x 128 (source x gate) 10b: 64 x 128 (source x gate) 11b: 64 x 96 (source x gate)

Minimum active GD is always G0 regardless of <UD> (R00H).

Minimum active SD is always S0 regardless of <SHL> (R00H).

REG[1:0]: LUT select

00b: LUT from HW (**Default**) 01b: LUT from OTP.

10b: LUT from registers.
11b: LUT from registers.

UD: Gate Scan Direction

0: Scan down. First line = $Gn-1 \rightarrow Gn-2 \rightarrow \cdots \rightarrow G1 \rightarrow G0$.

1: Scan up. First line = $G0 \rightarrow G1 \rightarrow \cdots \rightarrow Gn-2 \rightarrow Gn-1$. (**Default**)

SHL: Source Shift Direction

0: Shift left. First data = $Sn-1 \rightarrow Sn-2 \rightarrow \cdots \rightarrow S1 \rightarrow S0$.

1: Shift right. (**Default**) First data = $S0 \rightarrow S1 \rightarrow \cdots \rightarrow Sn-2 \rightarrow Sn-1$

SHD_N: Charge pump Switch

0: Charge pump OFF

1: Charge pump ON (Default)

When SHD_N becomes LOW, charge pump will be turned OFF, register and SRAM data will keep until VDD OFF. And Source/Gate/Border/VCOM will be released to floating.

RST_N: Soft Reset

0: Reset. Charge pump OFF, Register data are set to their default values, all drivers will be reset, and all functions will be disabled. Source/Gate/Border/VCOM will be released to floating.

1: No effect. (Default)

(2) PWR (R01H)

Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
	W	0	0	0	0	0	0	0	0	1	01н	
	W	1	-	-	-	-	-	-	VDS_EN	VDG_EN	03н	
Power Setting	W	1	-	-	-	-	-	V	DG_LVL[2:0	0]	00н	
	W	1	-	-	VDH_LVL[5:0]						26н	
	W	1	-	-		VDL_LVL[5:0]						

VDS_EN: Source Power Selection

0: External source power from VDH/VDL pins

1 Internal voltage generation circuit for both VDH/VDL (Default)

VDG_EN: Gate Power Selection

0: External gate power from VGH/VGL pins

1: Internal voltage generation circuit for both VGH/VGL (Default)

VDG_LVL[2:0]: VGH / VGL Voltage Level selection

VGHL_LV	VGHL Voltage Level
000 (Default)	VGH=16V, VGL= -16V
001	VGH=15V, VGL= -15V
010	VGH=14V, VGL= -14V
011	VGH=13V, VGL= -13V
100	VGH=12V, VGL= -12V
101	VGH=11V, VGL= -11V
others	VGH=11V, VGL= -11V

VDH_LVL[5:0]: Internal VDH power selection.(Default value: 100110b)

VDH	Voltage	VDH	Voltage	VDH	Voltage	VDH	Voltage
000000	2.4 V	001100	4.8 V	011000	7.2 V	100100	9.6 V
000001	2.6 V	001101	5.0 V	011001	7.4 V	100101	9.8 V
000010	2.8 V	001110	5.2 V	011010	7.6 V	100110	10.0V
000011	3.0 V	001111	5.4 V	011011	7.8 V	100111	10.2 V
000100	3.2 V	010000	5.6 V	011100	8.0 V	101000	10.4 V
000101	3.4 V	010001	5.8 V	011101	8.2V	101001	10.6 V
000110	3.6 V	010010	6.0 V	011110	8.4 V	101010	10.8 V
000111	3.8 V	010011	6.2 V	011111	8.6 V	101011	11.0 V
001000	4.0 V	010100	6.4 V	100000	8.8 V	(others)	11.0 V
001001	4.2 V	010101	6.6 V	100001	9.0 V		
001010	4.4 V	010110	6.8 V	100010	9.2 V		
001011	4.6 V	010111	7.0 V	100011	9.4 V		

VDL_LVL[5:0]: Internal VDL power selection.(Default value: 100110b)

VDL	Voltage	VDL	Voltage	VDL	Voltage	VDL	Voltage
000000	-2.4 V	001100	-4.8 V	011000	-7.2 V	100100	-9.6 V
000001	-2.6 V	001101	-5.0 V	011001	-7.4 V	100101	-9.8 V
000010	-2.8 V	001110	-5.2 V	011010	-7.6 V	100110	-10.0 V
000011	-3.0 V	001111	-5.4 V	011011	-7.8 V	100111	-10.2 V
000100	-3.2 V	010000	-5.6 V	011100	-8.0 V	101000	-10.4 V
000101	-3.4 V	010001	-5.8 V	011101	-8.2 V	101001	-10.6 V
000110	-3.6 V	010010	-6.0 V	011110	-8.4 V	101010	-10.8 V
000111	-3.8 V	010011	-6.2 V	011111	-8.6 V	101011	-11.0 V
001000	-4.0 V	010100	-6.4 V	100000	-8.8 V	(others)	-11.0 V
001001	-4.2 V	010101	-6.6 V	100001	-9.0 V		
001010	-4.4 V	010110	-6.8 V	100010	-9.2 V		
001011	-4.6 V	010111	-7.0 V	100011	-9.4 V		

11b: 4 frame

All-in-one Driver w/ Timing Controller for White/Black Dot-Matrix ESL

(3) POF (R02H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power Off	W	0	0	0	0	0	0	0	1	0	02н

After the Power OFF command, the driver will be powered OFF. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn off booster, controller, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD turned OFF or Deep Sleep Mode. Source/Gate/Border/VCOM will be released to floating.

(4) PFS (R03H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power OFF Sequence	W	0	0	0	0	0	0	0	1	1	03н
	W	1	-	-	T_OF	F[1:0]			-	-	00н

10b: 3 frames

T_VDS_OFF[1:0]: Source to gate power off interval time.

VDH/VDL

VGH/VGL

00b: 1 frame (Default)

SPI POF

Internal_VSYNC

BUSY_N

Source/Gate/VBD/VCOM

Based on previous condition: 0V or floatings

01b: 2 frames

(5) PON (R04H)											
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power ON	W	0	0	0	0	0	0	1	0	0	04н

After the Power ON command, the driver will be powered ON. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn on booster, controller, regulators, and temperature sensor will be activated for one-time sensing before enabling booster. When all voltages are ready, the BUSY_N signal will return to high.

(6) PMES (R05H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power ON Measure	W	0	0	0	0	0	0	1	0	1	05н

This command enables the internal bandgap, which will be cleared by the next POF.

(7) CPSET (R06H)

	Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
I	Charge Pump Setting	W	0	0	0	0	0	0	1	1	0	06н
		W	1	-	-	CPIN	T[1:0]	CPS	[1:0]	CPFR	Q[1:0]	3Fн

CPINT[1:0]: Charge pump time internal

00b: 20mS 01b: 30mS 10b: 40mS **11b: 50mS (Default)**

CPS[1:0]: Charge pump driving strength

00b: Strength 1 01b: Strength 2 10b: Strength 3 11b: Strength 4 (Default)

CPFRQ[1:0]: Charge pump frequency setting

00b: 1 KHz 01b: 2 KHz 10b: 4 KHz 11b: 8 KHz (Default)

(8) DSLP (R07H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Deep Sleep	W	0	0	0	0	0	0	1	1	1	07н
	W	1	1	0	1	0	0	1	0	1	A5⊦

After this command is transmitted, the chip will enter Deep Sleep Mode to save power. Deep Sleep Mode will return to Standby Mode by hardware reset. The only one parameter is a check code, the command will be executed if check code = 0xA5.

(9) DTM1 (R10H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Data Transmission 1	W	0	0	0	0	1	0	0	0	0	10н
	W	1	Pixel(1)	Pixel(2)	Pixel(3)	Pixel(4)	Pixel(5)	Pixel(6)	Pixel(7)	Pixel(8)	00н
	W	1				,		•••			00н
	W	1			1				Pixel(N-1)	Pixel(N)	00н

This command starts transmitting "OLD" data and write them into SRAM.

In Program mode, this command writes "OTP" data to SRAM for programming.

(10) DSP (R11H)

_												_
	Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	Data Stop	W	0	0	0	0	1	0	0	0	1	11н
	Dala Slop	R	1	Data_flag	-	-	-	-	-	-	-	00н

Check the completeness of data. If data is complete, start to refresh display.

Data_flag: Data flag of receiving user data.

0: Driver didn't receive all the data. (Default)

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After "Data Start" (R10h) or "Data Stop" (R11h) commands and when data_flag=1, the refreshing of panel starts and BUSY_N signal will become "0".

(11) DRF (R12H)

Acti	on V	N/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Data Re	fresh	W	0	0	0	0	1	0	0	1	0	12⊦

While user sends this command, the driver will refresh display according to SRAM data and LUT.

After the Display Refresh command, BUSY N signal will become "0" and the refreshing of panel starts.

The waiting interval form BUSY_N falling to the first FLG command must be longer than 200uS.

(12) DTM2 (R13H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Data Transmission 2	W	0	0	0	0	1	0	0	1	1	13н
	W	1	Pixel(1)	Pixel(2)	Pixel(3)	Pixel(4)	Pixel(5)	Pixel(6)	Pixel(7)	Pixel(8)	00н
	W	1	•••	•••	•••	•••		•••	•••		00н
	W	1			•••		1		Pixel(N-1)	Pixel(N)	00н

This command starts transmitting "NEW" data and write them into SRAM.

(13) AUTO (R17H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Auto Sequence	W	0	0	0	0	1	0	1	1	1	17н
	W	1				Check code	= A5h / A7h	1			-

The command can enable the internal sequence to execute several commands continuously. The successive execution can minimize idle time to aviod unnecessary power consumption and reduce the complexity of the host's control procedure. The sequence contains several operations, including PON, DRF, POF, and DSLP.

 $AUTO(0x17) + Code(0xA5) = (PON \rightarrow DRF \rightarrow POF)$

 $AUTO(0x17) + Code(0xA7) = (PON \rightarrow DRF \rightarrow POF \rightarrow DSLP)$

(14) LUTOPT (R2AH)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
LUT Option	W	0	0	0	1	0	1	0	1	0	2Ан
	W	1	EOPT			STA	AGE_XON[3:0]			00н
	W	1	-	-	-	SEL2030	-	-	SEL0	5[1:0]	00н

This command sets XON and the options of LUT.

EOPT: LUT sequence option

STAGE_XON[6:0]:

All Gate ON (Each bit controls one stage, STAGE_XON [0] for stage-1, STAGE_XON [1] for stage-2)

000 0000b: no All-Gate-ON

000 0001b: Stage-1 All-Gate-ON

000 0011b: Stage-1 and Stage-2 All-Gate-ON

: :

SEL2030: Selection of LUT of 20°C ~ 30°C

0: 4.8s 1: 8s

SEL05[1:0]: Selection of LUT of 0° C ~ 5° C

00b: 10s 01b: 13.2s 1xb: 15s

(15) PLL (R30H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
DLI	W	0	0	0	1	1	0	0	0	0	30н
PLL	W	1	-	-			FR[5:0]			13н

The command controls the clock frequency.

The structure supports the following frame rates:

FR[5:0]	Frame Rate						
000000	2.5 Hz	001100	32.5 Hz	011000	62.5 Hz	100100	92.5 Hz
000001	5.0 Hz	001101	35.0 Hz	011001	65.0 Hz	100101	95.0 Hz
000010	7.5 Hz	001110	37.5 Hz	011010	67.5 Hz	100110	97.5 Hz
000011	10.0 Hz	001111	40.0 Hz	011011	70.0 Hz	100111	100.0 Hz
000100	12.5 Hz	010000	42.5 Hz	011100	72.5 Hz	others	100.0 Hz
000101	15.0 Hz	010001	45.0 Hz	011101	75.0 Hz		
000110	17.5 Hz	010010	47.5 Hz	011110	77.5 Hz		
000111	20.0 Hz	010011	50.0 Hz	011111	80.0 Hz		
001000	22.5 Hz	010100	52.5 Hz	100000	82.5 Hz		
001001	25.0 Hz	010101	55.0 Hz	100001	85.0 Hz		
001010	27.5 Hz	010110	57.5 Hz	100010	87.5 Hz		
001011	30.0 Hz	010111	60.0 Hz	100011	90.0 Hz		

(16) TSC (R40H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Temperature Sensor	W	0	0	1	0	0	0	0	0	0	40н
Command	R	1				TS[7:0]				00н

This command enables internal or external temperature sensor, and reads the result.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

TS[7:0]	Temperature (°C)			
1110_0111	-25			
1110_1000	-24			
1110_1001	-23			
1110_1010	-22			
1110_1011	-21			
1110_1100	-20			
1110_1101	-19			
1110_1110	-18			
1110_1111	-17			
1111_0000	-16			
1111_0001	-15			
1111_0010	-14			
1111_0011	-13			
1111_0100	-12			
1111_0101	-11			
1111_0110	-10			
1111_0111	-9			
1111_1000	-8 -7			
1111_1001	-7			
1111_1010	-6			
1111_1011	-5			
1111_1100	-5 -4 -3 -2			
1111_1101	-3			
1111_1110	-2			
1111_1111	-1			

TS[7:0]	Temperature(°C)				
0000_0000	0				
0000_0001	1				
0000_0010	2				
0000_0011	3				
0000_0100	4				
0000_0101	5				
0000_0110	6				
0000_0111	7				
0000_1000	8				
0000_1001	9				
0000_1010	10				
0000_1011	11				
0000_1100	12				
0000_1101	13				
0000_1110	14				
0000_1111	15				
0001_0000	16				
0001_0001	17				
0001_0010	18				
0001_0011	19				
0001_0100	20				
0001_0101	21				
0001_0110	22				
0001_0111	23				
0001_1000	24				

TS[7:0]	Temperature(°C)
0001_1001	25
0001_1010	26
0001_1011	27
0001_1100	28
0001_1101	29
0001_1110	30
0001_1111	31
0010_0000	32
0010_0001	33
0010_0010	34
0010_0011	35
0010_0100	36
0010_0101	37
0010_0110	38
0010_0111	39
0010_1000	40
0010_1001	41
0010_1010	42
0010_1011	43
0010_1100	44
0010_1101	45
0010_1110	46
0010_1111	47
0011_0000	48
0011_0001	49

(17) TSE (R41H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Temperature Sensor	W	0	0	1	0	0	0	0	0	1	41н
Selection	W	1	0	-	-	-		TO	[3:0]		00н

This command selects temperature option.

TO[3:0]: Temperature offset.

TO[3:0]	Calculation
0000 b	+0 (Default)
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7

TO[3:0]	Calculation				
1000	-8				
1001	-7				
1010	-6				
1011	-5				
1100	-4				
1101	-3				
1110	-2				
1111	-1				

(18) PBC (R44H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Dan al Draak Chaak	W	0	0	1	0	0	0	1	0	0	44H
Panel Break Check	R	1	0	-		-	-4	2	-	PSTA	00н

This command is used to enable panel check, and to disable after reading result.

PSTA: 0: Panel check fail (panel broken)

1: Panel check pass

(19) CDI (R50H)

Action		W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
VCOM and D	ata	W	0	0	1	0	1	0	0	0	0	50н
Interval Sett	ing	W	1	VBD	[1:0]	DDX	([1:0]	-		CDI[2:0]		D2H

This command indicates the interval of VCOM and data output. When setting the vertical back porch, the total blanking will be kept (10 Hsync).

VBD[1:0]: Border LUT selection.

DDX[1:0]: Data polarity

Bata polarity									
DDX[1:0]	Data {NEW, OLD}	LUT							
	00	LUTW							
00	01	LUTVV							
00	10	LUTD							
	11	LUTB							
	00	LUTB							
01	01	LUIB							
(default)	10	LUTW							
	11	LOTVV							
	00	GND							
10	01	LUTW							
10	10	LUTB							
	11	GND							
	00	GND							
11	01	LUTB							
''	10	LUTW							
	11	GND							

DDX[0]	VBD[1:0]	LUT
	00	VCOM
0	01	LUTW
U	10	LUTB
	11	Floating
	00	Floating
1	01	LUTB
(default)	10	LUTW
	11 (default)	VCOM

CDI[2:0]: VCOM to Data Interval. Interval time setting between VCOM and driver data. Default: 5 Hsync.

CDI[2:0]	Interval
000	7 hsync
001	6 hsync
010	5 hsync (default)
011	4 hsync
100	3 hsync
101	2 hsync
110	2 hsync
111	2 hsync

(20) LPD (R51H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Low Power Detect	W	0	0	1	0	1	0	0	0	1	51ı
Low Power Detect	R	1	-	-	-	-		_	-	LPD	01

This command indicates the input power condition. Host can read this flag to learn the battery condition.

LPD: Internal Low Power Detection Flag

0: Low power input (VDD<2.5V, selection by LVD_SEL[1:0] in command LVSEL)

1: Normal status (default)

(21) TCON (R60H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Timing Control	W	0	0	1	1	0	0	0	0	0	60н
	W	1		S2G	[3:0]		G2S[3:0]				

This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

S2G[3:0] or G2S[3:0]	Period
0000 b	4
0001	8
0010	12 (Default)
0011	16
0100	20
0101	24
0110	28
0111	32

S2G[3:0] or G2S[3:0]	Period
1000 b	36
1001	40
1010	44
1011	48
1100	52
1101	56
1110	60
1111	64

Unit = 2 uS.

(22) TRES (R61H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	W	0	0	1	1	0	0	0	0	1	61н
Set Resolution	W	1	-		HRE	S[6:3]		0	0	0	00н
	W	1				VRE	S[7:0]				00н

HRES[6:3]: Horizontal Resolution (HRES[2:0] is forced to '0')

VRES[7:0]: Vertical Resolution

Active channel calculation (assuming HST[6:0]=0, VST[7:0]=0):

Source: First active source = S0

Last active source = HRES[6:3]*8 - 1

Gate: First active gate = G0

Last active gate = VRES[7:0] - 1

Example: For 64(source) x 128(gate), assuming HST[7:0]=0, VST[8:0]=0, then

Source: First active source = S0

Last active source = S63 (Because HRES[6:3]*8 – 1 = 8*8 - 1 = 63)

Gate: First active gate = G0

Last active gate = G127 (Because VRES[7:0] -1 = 128 - 1= 127)

(23) GSST (R65H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	W	0	0	1	1	0	0	1	0	1	65н
Gate / Source Start position	W	1	-		HST	[6:3]		0	0	0	00н
position	W	1				VST	[7:0]				00н

This command defines resolution start gate/source position.

HST[7:3]: Horizontal Display Start Position (Source)

VST[7:0]: Vertical Display Start Position (Gate)

Example: For 64(Source) x 128(Gate), assuming HST[6:3] = 1 and VST[7:0] = 16, then

Source: First active source = S8 (Because HST[6:0] = HST[6:3]*8 = 1*8 = 8)

Last active source = S71 (Because HST[6:0] + HRES[8:0] - 1 = 8 + 64 - 1 = 71)

Gate: First active gate = G16 (Because VST[7:0] = 16)

Last active gate = G143 (Because VST[7:0] + VRES[7:0] - 1 = 16 + 128 - 1 = 143)

(24) REV (R70H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	W	0	0	1	1	1	0	0	0	0	70н
Read IC Revision	R	1				LUT_R	EV0[7:0]				FFH
	R	1				LUT_R	EV1[7:0]				FFH

This command reads the version of the IC.

(25) FLG (R71H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Read Flags	W	0	0	1	1	1	0	0	0	1	71н
Redu Flays	R	1	CPOK	PTL_flag	-	-	data_flag	PON	POF	BUSY_N	02н

This command reads the IC status.

CPOK: Charge pump status

PTL_FLAG: Partial display status (high: partial mode)

data_flag: Driver has already received all the one frame data

PON: Power ON status
POF: Power OFF status

BUSY_N: Driver busy status (low active)

(26) CRC (R72H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
	R	0	0	1	1	1	0	0	1	0	72н	
Cyclic redundancy check	R	1				CRC_N	ISB[7:0]				FFH	
CHECK	R	1	CRC_LSB[7:0]									

This command reads Cyclic redundancy check (CRC) result.

The calculation only incudes image data (DTM1 & DTM2), and don't containt DTM1(R10h) & DTM2(R13h).

Polynomial = $x^{16} + x^{12} + x^5 + 1$, initial vaulte: 16'hFFFF

The result will be reset after this command.

CRC_MSB[7:0]: Most significant bits of CRC result

CRC_LSB[7:0]: Lease significant bits of CRC result

(27) AMV (R80H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Auto Measure VCOM	W	0	1	0	0	0	0	0	0	0	80н
	W	1	-	-	AMV	T[1:0]	XON	AMVS	AMV	AMVE	10н

This command reads the IC status.

AMVT[1:0]: Auto Measure VCOM Time

00b: 3s **01b: 5s (default)**

10b: 8s 11b: 10s

XON: All Gate ON of AMV

0: Gate normally scan during Auto Measure VCOM period. (default)

1: All Gate ON during Auto Measure VCOM period.

AMVS: Source output of AMV

0: Source output 0V during Auto Measure VCOM period. (default)

1: Source output VDHR during Auto Measure VCOM period.

AMV: Analog signal

0: Get VCOM value with the VV command (R81h) (default)

1: Get VCOM value in analog signal. (External analog to digital converter)

AMVE: Auto Measure VCOM Enable (/Disable)

0: No effect (default)

1: Trigger auto VCOM sensing.

(28) VV (R81H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
VCOM Value	W	0	1	0	0	0	0	0	0	1	81н
VCOIVI Value	R	1	-	-			VV[5:0]			00н

This command gets the VCOM value.

VV[5:0]: VCOM Value Output

VV [5:0]	VCOM Voltage (V)	VV [5:0]	VCOM Voltage (V)	VV [5:0]	VCOM Voltage (V)
00 0000b	-0.10	01 0100b	-1.10	10 1000b	-2.10
00 0001b	-0.15	01 0101b	-1.15	10 1001b	-2.15
00 0010b	-0.20	01 0110b	-1.20	10 1010b	-2.20
00 0011b	-0.25	01 0111b	-1.25	10 1011b	-2.25
00 0100b	-0.30	01 1000b	-1.30	10 1100b	-2.30
00 0101b	-0.35	01 1001b	-1.35	10 1101b	-2.35
00 0110b	-0.40	01 1010b	-1.40	10 1110b	-2.40
00 0111b	-0.45	01 1011b	-1.45	10 1111b	-2.45
00 1000b	-0.50	01 1100b	-1.50	11 0000b	-2.50
00 1001b	-0.55	01 1101b	-1.55	11 0001b	-2.55
00 1010b	-0.60	01 1110b	-1.60	11 0010b	-2.60
00 1011b	-0.65	01 1111b	-1.65	11 0011b	-2.65
00 1100b	-0.70	10 0000b	-1.70	11 0100b	-2.70
00 1101b	-0.75	10 0001b	-1.75	11 0101b	-2.75
00 1110b	-0.80	10 0010b	-1.80	11 0110b	-2.80
00 1111b	-0.85	10 0011b	-1.85	11 0111b	-2.85
01 0000b	-0.90	10 0100b	-1.90	11 1000b	-2.90
01 0001b	-0.95	10 0101b	-1.95	11 1001b	-2.95
01 0010b	-1.00	10 0110b	-2.00	11 1010b	-3.00
01 0011b	-1.05	10 0111b	-2.05	11 1011b	-3.05

(29) VDCS (R82H)

											_
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1
Vcom DC Setting	W	0	1	0	0	0	0	0	1	0	82н
vcom DC Setting	W	1	-	-			VDC	S[5:0]			00н

This command sets VCOM_DC value. **VDCS[5:0]:** VCOM_DC Setting

VDCS [5:0]	VCOM Voltage (V)	VDCS [5:0]	VCOM Voltage (V)	VDCS [5:0]	VCOM Voltage (V)
00 0000b	-0.10	01 0100b	-1.10	10 1000b	-2.10
00 0001b	-0.15	01 0101b	-1.15	10 1001b	-2.15
00 0010b	-0.20	01 0110b	-1.20	10 1010b	-2.20
00 0011b	-0.25	01 0111b	-1.25	10 1011b	-2.25
00 0100b	-0.30	01 1000b	-1.30	10 1100b	-2.30
00 0101b	-0.35	01 1001b	-1.35	10 1101b	-2.35
00 0110b	-0.40	01 1010b	-1.40	10 1110b	-2.40
00 0111b	-0.45	01 1011b	-1.45	10 1111b	-2.45
00 1000b	-0.50	01 1100b	-1.50	11 0000b	-2.50
00 1001b	-0.55	01 1101b	-1.55	11 0001b	-2.55
00 1010b	-0.60	01 1110b	-1.60	11 0010b	-2.60
00 1011b	-0.65	01 1111b	-1.65	11 0011b	-2.65
00 1100b	-0.70	10 0000b	-1.70	11 0100b	-2.70
00 1101b	-0.75	10 0001b	-1.75	11 0101b	-2.75
00 1110b	-0.80	10 0010b	-1.80	11 0110b	-2.80
00 1111b	-0.85	10 0011b	-1.85	11 0111b	-2.85
01 0000b	-0.90	10 0100b	-1.90	11 1000b	-2.90
01 0001b	-0.95	10 0101b	-1.95	11 1001b	-2.95
01 0010b	-1.00	10 0110b	-2.00	11 1010b	-3.00
01 0011b	-1.05	10 0111b	-2.05	others	-3.00

(30) PTL (R90H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
	W	0	1	0	0	1	0	0	0	0	90н	
	W	1	-		HRS	T[6:3]		0	0	0	00н	
Set Partial Window	W	1	-		HRE	D[6:3]	1	1	1	07н		
	W	1				VRS ⁻	Γ[7:0]				00н	
	W	1		VRED[7:0] 00i								
	W	1	-	PTL_SCAN							01н	

This command sets partial window.

HRST[6:3]: Horizontal start channel bank. (value 0h~9h)

HRED[6:3]: Horizontal end channel bank. (value 0h~9h). HRED must be greater than HRST.

VRST[7:0]: Vertical start line. (value 00h~9Fh)

VRED[7:0]: Vertical end line. (value 00h~9Fh). VRED must be greater than VRST.

PTL_SCAN: 0: Gates scan only inside of the partial window.

1: Gates scan both inside and outside of the partial window. (default)

(31) PIN (R91H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Partial In	W	0	1	0	0	1	0	0	0	1	91н

This command makes the display enter partial mode.

(32) POUT (R92H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Partial Out	W	0	1	0	0	1	0	0	1	0	92н

This command makes the display exit partial mode and enter normal mode.

(33) PROGRAM MODE (PGM) (RA0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enter Program Mode	W	0	1	0	1	0	0	0	0	0	A0H
Enter Program Wode	W	1	0	0	0	0	0	F	RGSET[2:0)]	04н

After this command is issued, the chip would enter the program mode.

After the programming procedure completed, a hardware reset is necessary for leaving program mode.

RGSET[2:0]: OTP program/read address range selection.

RGSET[2:0]	OTP Program / Read Range
010	0x000 ~ 0x3FF
011	0x400 ~ 0x7FF
100 (default)	0x00C ~ 0x01F
101	0x40C ~ 0x41F
others	0x000 ~ 0x7FF

(34) ACTIVE PROGRAM (APG) (RA1H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Active Program OTP	W	0	1	0	1	0	0	0	0	1	A1

After this command is transmitted, the programming state machine would be activated.

The BUSY_N flag would fall to 0 until the programming is completed.

(35) READ OTP DATA (ROTP) (RA2H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0				
	W	0	1	0	1	0	0	0	1	0	A2h			
	R	1				Dur	nmy]			
	R	1		The data of address 0x000 in the OTP										
Read OTP data for check	R	1		The data of address 0x000 in the OTP The data of address 0x001 in the OTP										
	R	1				_]			
	R	1			The dat	a of addres	ss (n-1) in	the OTP]			
	R	1			The da	ta of addre	ess (n) in tl	he OTP]			

The command is used for reading the content of OTP for checking the data of programming.

The value of (n) is depending on the amount of programmed data, the max address = 0x7FF.

The sequence of programming OTP.

(36) CASCADE SETTING (CCSET) (RE0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Cascade Option	W	0	1	1	1	0	0	0	0	0	EOr
	W	1	-	-	-	-	-	-	TSFIX	CCEN	00h

This command is used for cascade.

CCEN: Output clock enable/disable.

0: Output 0V at CL pin. (default)
1: Output clock at CL pin for slave chip.

TSFIX: Let the value of slave's temperature is same as the master's.

0: Temperature value is defined by internal temperature sensor / external LM75. (default)

1: Temperature value is defined by TS_SET[7:0] registers.

(37) Power Saving (PWS) (RE3H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power Saving for VCOM &	W	0	1	1	1	0	0	0	1	1	E3h
Source	W	1		VCOM	_W[3:0]			SD_\	N[3:0]		33h

This command is set for saving power during refreshing period. If the output voltage of VCOM / Source is from negative to positive or from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two parameters.

VCOM_W[3:0]: VCOM power saving width (unit = line period)

SD_W[3:0]: Source power saving width (unit = 2 uS)

(38) LPD VOLTAGE SELECT (LVSEL)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Coloot LDD Voltage	W	0	1	1	1	0	0	1	0	1	E4h
Select LPD Voltage	W	1	-	-	-	-	-	-	LVD_S	EL[1:0]	03h

LVD_SEL[1:0]: Low Power Voltage selection

LVD_SEL[1:0]	LPD voltage threshold
00	< 2.2 V
01	< 2.3 V
10	< 2.4 V
11	< 2.5 V (Default)

(39) FORCE TEMPERATURE (TSSET) (RE5H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Force Temperature Value for	W	0	1	1	1	0	0	1_	0	1	E5h
Cascade	W	1				TS_SE	T[7:0]				00h

This command is used for cascade to fix the temperature value of master and slave chip.

HOST INTERFACES

WF8101 provides 3-wire/4-wire serial interface for command and display data transferred from the MCU. The serial interface supports 8-bit mode. Data can be input/output by clocks while the chip is active (CSB =LOW). While input, data are written in order from MSB at the clock rising edge. When too many parameters are input, the chip accepts only defined parameters, and ignores undefined ones.

BS	Interface	CSB	DC	SCL	SDA
High	3-wire SPI	Available	Fix to GND	Available	Available
Low	4-wire SPI	Available	Available	Available	Available

3-wire SPI format

Data / Command is recognized with the first bit transferred. Data are transferred in the unit of 9 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 9 bits. (The serial counter is reset at the rising edge of the CSB signal.)

Figure: 3-wire SPI write operation

The MSB bit of data will be output at SDA pin after the 1st SCL falling edge, if the 1st input data at SDA is high. Only in the case of OTP data read, the 1st packet of output data are dummy data.

Figure: 3-wire SPI read operation

4 wire SPI format

Data / Command is recognized with DC pin. Data are transferred in the unit of 8 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 8 bits. (The serial counter is reset at the rising edge of the CSB signal.)

Figure: 4-wire SPI write operation

The MSB bit of data will be output at SDA pin after the CSB falling edge, if DC pin is High. Only in the case of OTP data read, the 1st packet of output data are dummy data.

Figure: 4-wire SPI read operation

POWER MANAGEMENT

Power ON/OFF Sequence

- 1. Temperature sensor will be activated automatically for one-time sensing before enabling booster.
- 2. After refreshing display, VCOM will be set to floating automatically.
- 3. After RST_N rising, the waiting time for internal initial processing, greater than 1mS, is necessary. Any commands transmitted to chip during this time will be ignored.

Data Transmission Waveform

Example 1: After 3 cases, the driver will send 2 frame VCOM and data to 0 V.

- 1. All 7 LUT stages complete.
- 2. meet the stage whose Times to Repeat =0
- 3. meet the stage whose all Number of Frames =0

Example2: While level selection in LUT is "1111_111b", the driver will stop immediately.

Display Refresh Waveform

Example 1: After three cases, the driver will send 2 frames VCOM and data to 0 V.

- 1. All 7 LUT stages complete.
- 2. meet the stage whose Times to Repeat = 0
- 3. meet the stage whose all Number of Frames = 0

Example2: While level selection in LUT is "1111_111b", the driver will stop immediately.

BUSY N Signal

Commands, except reading command, are restricted by refreshing display (DRF / DSP) as listed in the table below.

BUSY_N is used to represent the status of internal action. Commands activating internal operation or calculation will cause BUSY_N falling to LOW. After actions completed, BUSY_N will return to HIGH.

Command	Refresh Restriction	BUSY_N flag
PSR	X	No action
PWR	X	No action
POF	X	Flag
PFS	X	No action
PON	X	Flag
PMES	X	Flag
CPSET	X	No action
DSLP	X	Flag
AUTO	X	Flag
DTM1	X	No action
DSP	X	Flag
DRF	X	Flag
DTM2	X	No action
LUTW	X	No action
LUTB	X	No action
LUTOPT	X	No action
PLL	X	No action
TSC	X	Flag
TSE	X	No action
PBC	X	No action
CDI	X	No action
LPD	X	Flag
TCON	X	No action
TRES	X	No action
GSST	X	No action
REV	V	No action
FLG	V	No action
AMV	X	Flag
VV	V	No action
VDCS	X	No action
PTL	X	No action
PTIN	X	No action
PTOUT	X	No action
PGM	X	No action
APG	X	Flag
ROTP	X	No action
CCSET	X	No action
PWS	X	No action
LVSEL	X	No action
TSSET	X	No action

V: Accepted, X: Ignored

OTP ADDRESS MAPPING

The size of the internal One Time Programmable (OTP) memory is 2K bytes, and the address is from 0x000 to 0x7FF. The unprogrammed bit is logic 1. Only the bit at logic 1 can be programmed to logic 0, but the bit at logic 0 can <u>NOT</u> be converted to logic 1.

There are 2 areas (0x3F0~0x3FF, 0x7F0~0x7FF) are reserved for WF only. Write all 0xFF of data to skip the 2 areas. The recommended voltage of VPP during programming is 7.75V. In the other condition except for programming, let VPP floating or be connected to GND. The maximum current of VPP during programming is 5mA.

There are 2 banks in the internal OTP, and each bank has 1K bytes storage memory. The formats of each bank are the same, and the selection of bank is controlled by Check Code (0x000 and 0x400). The 2 banks are used for two times programming.

Bank0 Bank1 Address Content Address Content 0x000 Check Code (0xA5) 0x400 Check Code (0xA5) 0x001 LUT Version 0 0x401 LUT Version 0 0x002 LUT Version 1 0x402 LUT Version 1 0x003 Temperature Boundary 0 (TB0) 0x403 Temperature Boundary 0 (TB0) 0x004 Temperature Boundary 1 (TB1) 0x404 Temperature Boundary 1 (TB1) 0x005 Temperature Boundary 2 (TB2) 0x405 Temperature Boundary 2 (TB2) 0x006 Temperature Boundary 3 (TB3) 0x406 Temperature Boundary 3 (TB3) 0x007 Temperature Boundary 4 (TB4) 0x407 Temperature Boundary 4 (TB4) 0x008 Temperature Boundary 5 (TB5) 0x408 Temperature Boundary 5 (TB5) 0x009 Temperature Boundary 6 (TB6) 0x409 Temperature Boundary 6 (TB6) 0x00A Temperature Boundary 7 (TB7) 0x40A Temperature Boundary 7 (TB7) 0x00B Temperature Boundary 8 (TB8) 0x40B Temperature Boundary 8 (TB8) 0x00C ~ 0x010 HW LUT Setting 0 (Note 1) 0x40C ~ 0x410 HW LUT Setting 1 (Note 1) 0x011 ~ 0x01F Command Default Setting (Note 2) $0x411 \sim 0x41F$ Command Default Setting (Note 2) $0x020 \sim 0x02F$ $0x420 \sim 0x42F$ User Define Space User Define Space $0x030 \sim 0x08F$ TR0 (Note 3) 0x430 ~ 0x48F TR0 (Note 3) 0x090 ~ 0x0EF TR1 (Note 3) 0x490 ~ 0x4EF TR1 (Note 3) 0x0F0 ~ 0x14F TR2 (Note 3) $0x4F0 \sim 0x54F$ TR2 (Note 3) 0x150 ~ 0x1AF TR3 (Note 3) 0x550 ~ 0x5AF TR3 (Note 3) 0x1B0 ~ 0x20F TR4 (Note 3) 0x5B0 ~ 0x60F TR4 (Note 3) 0x210 ~ 0x26F TR5 (Note 3) 0x610 ~ 0x66F TR5 (Note 3) 0x270 ~ 0x2CF TR6 (Note 3) 0x670 ~ 0x6CF TR6 (Note 3) 0x2D0 ~ 0x32F TR7 (Note 3) 0x6D0 ~ 0x72F TR7 (Note 3) 0x330 ~ 0x38F TR8 (Note 3) $0x730 \sim 0x78F$ TR8 (Note 3) 0x390 ~ 0x3EF TR9 (Note 3) $0x790 \sim 0x7EF$ TR9 (Note 3) 0x3F0 ~ 0x3FF Reserved $0x7F0 \sim 0x7FF$ Reserved

Table 1: OTP Address Map

Note:

- (1) See section "HARDWARE LUT SETTING" for more detail.
- (2) See section "COMMAND DEFAULT SETTING" for more detail.
- (3) See section "LUT FORMAT IN OTP" for more detail.

TEMPERATURE RANGE

The temperature selection mechanism consists of a less-than-or-equal-to operator and 9 temperature boundary settings (TBx) to determine 10 temperature ranges. The sequence of mechanism is from TB0 to TB8, as shown below. If less than 10 tempeature ranges are used, the last TBx must be set to 0x7F to end the mechanism.

Procedure Order	Comparison Condition	Action & Segment Selection
1-0. Read 0x400	Content = 0xA5 ?	Yes: Jump to Procedure 2 (Bank1), No: Jump to Procedure 1-1
1-1, Read 0x000	Content = 0xA5 ?	Yes: Jump to Procedure 2 (Bank0), No: Stop Refresh
2. Read 0x003 / 0x403	Real Temperature ≦ TB0	Use TR0's table & setting, exit
3. Read 0x004 / 0x404	Real Temperature ≤ TB1	Use TR1's table & setting, exit
4. Read 0x005 / 0x405	Real Temperature ≤ TB2	Use TR2's table & setting, exit
5. Read 0x006 / 0x406	Real Temperature ≤ TB3	Use TR3's table & setting, exit
6. Read 0x007 / 0x407	Real Temperature ≤ TB4	Use TR4's table & setting, exit
7. Read 0x008 / 0x408	Real Temperature ≤ TB5	Use TR5's table & setting, exit
8. Read 0x009 / 0x409	Real Temperature ≤ TB6	Use TR6's table & setting, exit
9. Read 0x00A / 0x40A	Real Temperature ≤ TB7	Use TR7's table & setting, exit
10. Read 0x00B / 0x40B	Real Temperature ≤ TB8	Use TR8's table & setting, exit
11. Other	Real Temperature > TB8	Use TR9's table & setting, finish

Note: TRx's content is defined in "LUT FORMAT IN OTP" section.

Example:

If temperature = -20 °C, TR0 is selected.

If temperature = -10 °C, TR1 is selected.

If temperature = 0 °C, TR2 is selected.

If temperature = 20 °C, TR4 is selected.

If temperature = 40 °C, TR5 is selected.

If temperature > 40 °C, TR5 is selected.

OTP Address	Content	
003h	0xF1	(-15 °C)
004h	0xFB	(-5 °C)
005h	0x00	(0 °C)
006h	0x0A	(10 °C)
007h	0x1E	(30 °C)
008h	0x7F	-

Temperature Selection Mechanism

HARDWARE LUT SETTING

The block is used for VCOM_DC setting and hardware LUT seleticons (3 options in $0^{\circ}\text{C}\sim5^{\circ}\text{C}$, 2 options in $10^{\circ}\text{C}\sim20^{\circ}\text{C}$). The first byte is the enable key of this block. The settings are loaded to registers from OTP after reset.

Address	D7	D6	D5	D4	D3	D2	D1	D0	Command	Registers	Original
0x00C / 0x40C	#	#	#	#	#	#	#	#	Check Code	0xA5 (Enable Key)	
0x00D / 0x40D	-	-	#	#	#	#	#	#	VDC	VCOM_DC[5:0]	0x00
0x00E / 0x40E	-			#		_	#	#	LUTOPT2	SEL1020, SEL05[1:0]	0x00
0x00F / 0x40F	_					-				Reserved	0xFF
0x010 / 0x410	-	-		-	-	-		-		Reserved	0xFF

COMMAND DEFAULT SETTING

This function can modify the default value of command registers by the OTP content between address 0x011~0x01F (or 0x411~0x81F). The data of address 0x011 (or 0x411) is the enable key of the function. Changing default value function is used to reduce the initial code length executed by the microcontroller.

Address	D7	D6	D5	D4	D3	D2	D1	D0	Command	Registers	Original
0x011 / 0x411	#	#	#	#	#	#	#	#	Check Code	0xA5 (Enable Key)	
0x012 / 0x412	#	#	#		#	#			PSR	RES[1:0], REG, UD, SHL	0x0F
0x013 / 0x413	-	-	#	#	-	-		-	PFS	T_VDS_OF[1:0]	0x00
0x014 / 0x414	-	1	#	#	#	#	#	#	CPSET	CPINT[1:0], CPS[1:0], CPFRQ[1:0]	0x3F
0x015 / 0x415	-	1	-	1	#	#	#	#	TSE	TO[3:0]	0x00
0x016 / 0x416	#	#	#	#	-	#	#	#	CDI	VBD[1:0], DDX[1:0], CDI[2:0]	0xD2
0x017 / 0x417	#	#	#	#	#	#	#	#	TCON	S2G[3:0], G2S[3:0]	0x22
0x018 / 0x418	-	#	#	#	#	0	0	0	TRES	HRES[6:3]	0x00
0x019 / 0x419	#	#	#	#	#	#	#	#	IKES	VRES[7:0]	0x00
0x01A / 0x41A	-	#	#	#	#	0	0	0	GSST	HST[6:3]	0x00
0x01B / 0x41B	#	#	#	#	#	#	#	#	G331	VST[7:0]	0x00
0x01C / 0x41C		-				-	#		CCSET	TSFIX	0x00
0x01D / 0x41D	#	#	#	#	#	#	#	#	PWS	BD_W[3:0], SD_W[3:0]	0x33
0x01E / 0x41E		-				-	#	#	LVSEL	LVD_SEL[1:0]	0x03
0x01F / 0x41F	#	#	#	#	#	#	#	#	TSSET	TS_SET[7:0]	0x00

LUT FORMAT IN OTP

There are 10 TRs (temperature range) in each bank. Each TR has independent frame rate, voltage, EOPT/XON settings, LUTs and 6-byte reserved space. There are 7 stages in LUTW/LUTB, and each stage has 6-byte data. The settings will be loaded to register before display refreshing.

	Address	Content		
	0x030	PLL Control [5:0]		
	0x031	VG Voltage [2:0]		
	0x032	VDH Voltage [5:0]		
	0x033	VDL Voltage [5:0]		
TR0	0x034	VCOM_DC Voltage [7:0]		
	0x035	EOPT, XON [6:0]		
	0x036~0x05F	LUTW		
	0,000 0,001	(7 stages)		
	0x060~0x089	LUTB		
	0,000 0,009	(7 stages)		
	0x08A~0x08F	Reserved		

DEEP SLEEP MODE

After deep sleep command (R07H) is transmitted, WF8101 enters "Deep Sleep Mode", and leaves by RST_N falling. In "Deep Sleep Mode", the control signals are recommended tied to 0v to avoid IO leakage current. And the die must be keep away from light which causes photoelectric effect to make internal nodes unstable.

PANEL BREAK CHECK

The panel break check (PBC) function is accomplished by testing the connection of the ITO along panel edge. If the panel is broken, the loop ITO may be cut off. The connection check is judged by signal transmission from CHKGO to CHKGI.

Figure: Panel break check layout example

Figure: Panel Break Check (PBC) Sequence

CASCADE APPLICATION CIRCUIT

All commands sent to **Master** must be also sent to **Slave** except for data writing (DTM1 and DTM2). The display data must be separated to two parts, one is for **Master** and another is for **Slave**. They are transmitted to **Master** and **Slave** individually by using CSB1 and CSB2.

APPLICATION CIRCUIT

Recommended Device

1. Schottky Diode: Diodes SD101CWS

Recommended Resister

Item	Pins	Resistance	
Power-0	VDD, GND	< 5 Ω	
Power-1	VDDA, VDDIO, GNDA, VDM	< 10 Ω	
Charge Pump-0	C1P, C1N	< 5 Ω	
Charge Pump-1	CxP, CxN (x=2~6), VGH, VGL, VCOMH, VCOML	< 10 Ω	
Regulators	VDH, VDL, VCOM, VDDD, VDDDO	< 10 Ω	
Logics	MS, BS, CSB, SCL, SDA, etc.	< 50 Ω	
OTP	VPP	< 20 Ω	

ABSOLUTE MAXIMUM RATINGS

Signal	Item	Min	Max.	Unit	
VDD, VDDIO, VDDA	Logic Supply voltage	-0.3	+6.0	٧	
VPP	OTP programming voltage	-0.3	+8.0	٧	
VI	Digital input range	-0.3	VDDIO+0.3	٧	
VGH-VGL	Supply range	-	+32.0	V	
Source			L		
VDH	Analog supply voltage – positive	+	11	V	
VDL	Analog supply voltage negative	-11 V			
Gate					
VGH	Analog supply voltage – positive	-0.3	+16	V	
VGL	Analog supply voltage negative	-16	0.3	V	
Tstg	Storage temperature range	-55	+125	°C	

Warning:

If ICs are stressed beyond those listed above "absolute maximum ratings", they may be permanently destroyed. These are stress ratings only, and functional operation of the device at these or any other condition beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
VDDIO	IO supply voltage		2.3	3.3	3.6	V
VDD	Supply voltage		2.3	3.3	3.6	V
Vdda	DCDC driver supply voltage		2.3	3.3	3.6	V
VIL	LOW Level input voltage	Digital input pins	0	-	0.3xVDD	V
VIH	HIGH Level input voltage	Digital input pins	0.7xVDDIO	-	Vddio	V
Voн	HIGH Level output voltage	Digital input pins, Iон=400uA	VDDIO-0.4	-		V
Vol	LOW Level Output voltage	Digital input pins, lo∟=-400∪A	0		0.4	V
lin	Input leakage current	Digital input pins except pull-up, pull-down pin	-1	-	1	uA
Rın	Pull-up/down impedance			200		Κς
Тор	Operating temperature		-30		85	°C
dVGH	VGH Supply voltage dev		TBD	0	TBD	mV
VGH-VGL	Voltage Range of VGH - VGL		-		32	V
dVDH	Supply voltage dev		TBD	0	TBD	mV
dVDL	Supply voltage dev		TBD	0	TBD	mV
dVCOM	Supply voltage dev		TBD	0	TBD	mV
Ron	Driver Output Resistance	For source driver, Top=25°C, Vout = ±11V		TBD	TBD	K c
KON	Diver Output Nesistance	For gate driver, Top=25°C, Vout = ±16V		TBD	TBD	Κ ς

VDD=VDDA=VDDIO=3.0V, TOP=25.0 °C

Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Digital deep sleep current	VDDD OFF		TBD	TBD	uA
IVDD	Digital stand-by current	All stopped		TBD	TBD	uA
	Digital operating current				TBD	mA
	IO deep sleep current	VDDD OFF		TBD	TBD	uA
IVDDIO	IO stand-by current	Booster OFF		TBD	TBD	uA
	IO operating current	No load		-	TBD	mA
	DCDC deep sleep current	VDDD OFF		TBD	TBD	uA
	DCDC stand-by current	Booster OFF		TBD	TBD	uA
		Source output VDH/VDL,			TBD	
		Duty = 0.5, Period = us				
		VCOM DC			טפו	
IVDDA		No load				
	DCDC operating current	Source output VDH/VDL,				mA
		Duty = 0.5, Period = us,				
		VCOM DC		_	TBD	
		External cap: pF,				
		NMOS = pF				

AC CHARACTERISTICS

Figure: 3-wire Serial Interface Characteristics (Write mode)

Figure: 3-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{CSS}		Chip select setup time	60			ns
T _{CSH}	CSB	Chip select hold time	65			ns
T _{SCC}	СОВ	Chip select setup time	20			ns
T _{CHW}		Chip select setup time	40			ns
T _{SCYCW}		Serial clock cycle (Write)	100			ns
T _{SHW}		SCL "H" pulse width (Write)	35			ns
T _{SLW}	SCL	SCL "L" pulse width (Write)	35			ns
T _{SCYCR}	SOL	Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60			ns
T _{SLR}		SCL "L" pulse width (Read)	60			ns
T_{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
T _{ACC}	SDA	Access time			50	ns
Тон	(DOUT)	Output disable time	15			ns

Figure: 4-wire Serial Interface Characteristics (Write mode)

Figure: 4-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{CSS}		Chip select setup time	60			ns
T _{CSH}	CSB	Chip select hold time	65			ns
T _{SCC}	СОВ	Chip select setup time	20			ns
T _{CHW}		Chip select setup time	40			ns
T _{SCYCW}		Serial clock cycle (Write)	100			ns
T _{SHW}		SCL "H" pulse width (Write)	35			ns
T _{SLW}	SCL	SCL "L" pulse width (Write)	35			ns
T _{SCYCR}	SCL	Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60			ns
T _{SLR}		SCL "L" pulse width (Read)	60			ns
T _{DCS}	DC	DC setup time	30			ns
T _{DCH}	DC	DC hold time	30			ns
T _{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
T _{ACC}	SDA	Access time			50	ns
Тон	(DOUT)	Output disable time	15			ns

PHYSICAL DIMENSIONS

Die Information

Die Size: $(3530\mu M640\mu M) \times (2730\mu M640\mu M)$ Die Thickness: 180µM615µM $(D_{MAX}-D_{MIN})$ within die $\leq 2\mu M$ Die TTV: **Bump Height:** 15μΜ63μΜ $(H_{MAX}-H_{MIN})$ within die $\leq 2\mu M$ **Bump Size:** $17\mu Mx90\mu M \ 6 \ 2\mu M$ **Bump Pitch:** 30μΜ **Bump Space:** 13μΜ Hardness: 65Hv615Hv **Bump Shear:** / 5g/mil² 1530 uM² **Bump Area: Coordinate Origin:** Chip center Pad Reference: Pad center

ALIGNMENT MARK INFORMATION

Alignment Mark Location:

Alignment Mark in Detail:

Coordinates:

	Left	Mark	Right	Mark
Point	Х	Y	Х	Y
Center	-1535	-904	1535	-904
1	-1545	-874	1525	-874
2	-1525	-874	1545	-874
3	-1525	-894	1545	-894
4	-1505	-894	1565	-894
5	-1505	-914	1565	-914
6	-1525	-914	1545	-914
7	-1525	-934	1545	-934
8	-1545	-934	1525	-934
9	-1545	-914	1525	-914
10	-1565	-914	1505	-914
11	-1565	-894	1505	-894
12	-1545	-894	1525	-894
13	-1565	-874	1555	-874
14	-1555	-874	1565	-874
15	-1555	-884	1565	-884
16	-1565	-884	1555	-884

PAD COORDINATES

#	PAD	Х	Υ	W	Н
1	C1P	-1656	-1271	28	70
2	C1P	-1610	-1271	28	70
3	C1N	-1564	-1271	28	70
4	C1N	-1518	-1271	28	70
5	C2P	-1472	-1271	28	70
6	C2P	-1426	-1271	28	70
7	C2N	-1380	-1271	28	70
8	C2N	-1334	-1271	28	70
9	C3P	-1288	-1271	28	70
10	C3P	-1242	-1271	28	70
11	C3N	-1196	-1271	28	70
12	C3N	-1150	-1271	28	70
13	C4P	-1104	-1271	28	70
14	C4P	-1058	-1271	28	70
15	C4N	-1012	-1271	28	70
16	C4N	-966	-1271	28	70
17	C5P	-920	-1271	28	70
18	C5P	-874	-1271	28	70
19	C5N	-828	-1271	28	70
20	C5N	-782	-1271	28	70
21	C6P	-736	-1271	28	70
22	C6P	-690	-1271	28	70
23	C6N	-644	-1271	28	70
24	C6N	-598	-1271	28	70
25	VGL	-552	-1271	28	70
26	VGL	-506	-1271	28	70
27	VGL VGL	-460	-1271	28	70
28 29		-414 -368	-1271 -1271	28	70 70
	VGH			28	
30 31	VGH	-322	-1271	28	70 70
	VGH	-276	-1271	28	
32	VGH	-230	-1271	28	70
33	VDM	-184	-1271	28	70
34	VDM	-138	-1271	28	70
35	VDM	-92	-1271	28	70
36	VDM	-46	-1271	28	70
37	VDH	0	-1271	28	70
38	VDH	46	-1271	28	70
39	VDL	92	-1271	28	70
40	VDL	138	-1271	28	70
41	VDD	184	-1271	28	70
42	VDD	230	-1271	28	70
43	VDD	276	-1271	28	70
44	VDD	322	-1271	28	70
45	VDD	368	-1271	28	70
46	VDDDO	414	-1271	28	70
47	VDDD	460	-1271	28	70
48	GND	506	-1271	28	70
49	GND	552	-1271	28	70
50	GND	598	-1271	28	70
51	GND	644	-1271	28	70
52	GND	690	-1271	28	70
53	MS	736	-1271	28	70
54	VDDIO	782	-1271	28	70
55	VDDIO	828	-1271	28	70
56	BS	874	-1271	28	70
57	BUSY N	920	-1271	28	70
					_

#	PAD	Х	Υ	W	Н
58	RST N	966	-1271	28	70
59	DC	1012	-1271	28	70
60	CSB	1058	-1271	28	70
61	SCL	1104	-1271	28	70
62	SDA	1150	-1271	28	70
63	TEST5	1196	-1271	28	70
64	TEST4	1242	-1271	28	70
65	TEST2	1288	-1271	28	70
66	TEST3	1334	-1271	28	70
67	CHKGI	1380	-1271	28	70
68	CHKGO	1426	-1271	28	70
69	CDEIO	1472	-1271	28	70
70	CDAIO	1518	-1271	28	70
71	CL	1564	-1271	28	70
72	VDDA	1610	-1271	28	70
73	VDDA	1656	-1271	28	70
74	GNDA	1671	-1182	70	28
75	GNDA	1671	-1136	70	28
76	VPP	1671	-1090	70	28
77	VPP	1671	-1044	70	28
78	VDM	1671	-998	70	28
79	VDM	1671	-952	70	28
80	VCOM	1671	-906	70	28
81	VCOM	1671	-860	70	28
82	G<0>	1681	-796.147	90	17
83	G<2>	1681	-768.147	90	17
84	G<4>	1681	-740.147	90	17
85	G<6>	1681	-712.147	90	17
86	G<8>	1681	-684.147	90	17
87	G<10>	1681	-656.147	90	17
88	G<12>	1681	-628.147	90	17
89	G<14>	1681	-600.147	90	17
90	G<16>	1681	-572.147	90	17
91	G<18>	1681	-544.147	90	17
92	G<20>	1681	-516.147	90	17
93	G<22>	1681	-488.147	90	17
94	G<24>	1681	-460.147	90	17
95	G<26>	1681	-432.147	90	17
96	G<28>	1681	-404.147	90	17
97	G<30>	1681	-376.147	90	17
98	G<32>	1681	-348.147	90	17
99	G<34>	1681	-320.147	90	17
100	G<36>	1681	-292.147	90	17
101	G<38>	1681	-264.147	90	17
102	G<40>	1681	-236.147	90	17
103	G<42>	1681	-208.147	90	17
104	G<44>	1681	-180.147	90	17
105	G<46>	1681	-152.147	90	17
106	G<48>	1681	-124.147	90	17
107	G<50>	1681	-96.147	90	17
108	G<52>	1681	-68.147	90	17
109	G<54>	1681	-40.147	90	17
110	G<56>	1681	-12.147	90	17
111	G<58>	1681	15.853	90	17
112	G<60>	1681	43.853	90	17
113	G<62>	1681	71.853	90	17
114	G<64>	1681	99.853	90	17

#	PAD	Х	Υ	W	Н
115	G<66>	1681	127.853	90	17
116	G<68>	1681	155.853	90	17
117	G<70>	1681	183.853	90	17
118	G<72>	1681	211.853	90	17
119	G<74>	1681	239.853	90	17
120	G<76>	1681	267.853	90	17
121	G<78>	1681	295.853	90	17
122	G<80>	1681	323.853	90	17
123	G<82>	1681	351.853	90	17
124	G<84>	1681	379.853	90	17
125	G<86>	1681	407.853	90	17
126	G<88>	1681	435.853	90	17
127	G<90>	1681	463.853	90	17
128	G<92>	1681	491.853	90	17
129	G<94>	1681	519.853	90	17
130	G<94>	1681	547.853	90	17
131	G<98>	1681	575.853	90	17
132	G<100>	1681	603.853	90	17
133	G<102>	1681	631.853	90	17
134	G<104>	1681	659.853	90	17
135	G<106>	1681	687.853	90	17
136	G<108>	1681	715.853	90	17
137	G<110>	1681	743.853	90	17
138	G<112>	1681	771.853	90	17
139	G<114>	1681	799.853	90	17
140	G<116>	1681	827.853	90	17
141	G<118>	1681	855.853	90	17
142	G<120>	1681	883.853	90	17
143	G<122>	1681	911.853	90	17
144	G<124>	1681	939.853	90	17
145	G<124>	1681		90	17
			967.853		
146	G<128>	1681	995.853	90	17
147	G<130>	1681	1023.853	90	17
148	G<132>	1681	1051.853	90	17
149	G<134>	1681	1079.853	90	17
150	DUMMY	1681	1107.853	90	17
151	DUMMY	1681	1135.853	90	17
152	DUMMY	1681	1163.853	90	17
153	DUMMY	1671	1281	17	90
154	G<136>	1643	1281	17	90
155	G<138>	1615	1281	17	90
156	G<140>	1587	1281	17	90
157	G<142>	1559	1281	17	90
158	G<144>	1531	1281	17	90
159	G<146>	1503	1281	17	90
160	G<148>	1475	1281	17	90
161	G<150>	1447	1281	17	90
162	G<150>	1419	1281	17	90
163	G<154>	1391	1281	17	90
164	G<156>	1363	1281	17	90
165	G<158>	1335	1281	17	90
166	DUMMY	1307	1281	17	90
167	DUMMY	1245	1281	17	90
168	Border<1>	1215	1281	17	90
169	S<0>	1185	1281	17	90
170	S<1>	1155	1281	17	90
171	S<2>	1125	1281	17	90
172	S<3>	1095	1281	17	90
173	S<4>	1065	1281	17	90
174	S<5>	1035	1281	17	90
•••	<u> </u>	. 555	0.	• • •	55

#	PAD	Х	Υ	W	Н
175	S<6>	1005	1281	17	90
176	S<7>	975	1281	17	90
177	S<8>	945	1281	17	90
178	S<9>	915	1281	17	90
179	S<10>	885	1281	17	90
180	S<11>	855	1281	17	90
181	S<12>	825	1281	17	90
182	S<13>	795	1281	17	90
183	S<14>	765	1281	17	90
184	S<15>	735	1281	17	90
185	S<16>	705	1281	17	90
186	S<17>	675	1281	17	90
187	S<18>	645	1281	17	90
188	S<19>	615	1281	17	90
189	S<20>	585	1281	17	90
190	S<21>	555	1281	17	90
191	S<22>	525	1281	17	90
192	S<23>	495	1281	17	90
193	S<24>	465	1281	17	90
194	S<25>	435	1281	17	90
195	S<26>	405	1281	17	90
196	S<27>	375	1281	17	90
197	S<28>	345	1281	17	90
198	S<29>	315	1281	17	90
199	S<30>	285	1281	17	90
200	S<31>	255	1281	17	90
201	S<32>	225	1281	17	90
202	S<33>	195	1281	17	90
203	S<34>	165	1281	17	90
204	S<35>	135	1281	17	90
205	S<36>	105	1281	17	90
206	S<37>	75	1281	17	90
207	S<38>	45	1281	17	90
208	S<39>	15	1281	17	90
209	S<40>	-15	1281	17	90
210	S<41>	-45	1281	17	90
211	S<42>	-75	1281	17	90
212	S<43>	-105	1281	17	90
213	S<44>	-135	1281	17	90
214	S<45>	-165	1281	17	90
215	S<46>	-195	1281	17	90
216	S<47>	-225	1281	17	90
217	S<48>	-255	1281	17	90
218	S<49>	-285	1281	17	90
219	S<50>	-315	1281	17	90
220	S<51>	-345	1281	17	90
221	S<52>	-375	1281	17	90
222	S<53>	-405	1281	17	90
223	S<54>	-435	1281	17	90
224	S<55>	-465	1281	17	90
225	S<56>	-495	1281	17	90
226	S<57>	-525	1281	17	90
227	S<58>	-555	1281	17	90
228	S<59>	-585	1281	17	90
229	S<60>	-615	1281	17	90
230	S<61>	-645	1281	17	90
231	S<62>	-675	1281	17	90
232	S<63>	-705	1281	17	90
233	S<64>	-735 -765	1281	17	90
234	S<65>	-765	1281	17	90

#	PAD	Х	Υ	W	Н
235	S<66>	-795	1281	17	90
236	S<67>	-825	1281	17	90
237	S<68>	-855	1281	17	90
238	S<69>	-885	1281	17	90
239	S<70>	-915	1281	17	90
240	S<71>	-945	1281	17	90
241	S<72>	-975	1281	17	90
242	S<73>	-1005	1281	17	90
243	S<74>	-1035	1281	17	90
244	S<75>	-1065	1281	17	90
245	S<76>	-1095	1281	17	90
246	S<77>	-1125	1281	17	90
247	S<78>	-1155	1281	17	90
248	S<79>	-1185	1281	17	90
249	Border<2>	-1215	1281	17	90
250	DUMMY	-1245	1281	17	90
251	DUMMY	-1307	1281	17	90
252	G<159>	-1335	1281	17	90
253	G<157>	-1363	1281	17	90
254	G<155>	-1391	1281	17	90
255	G<153>	-1419	1281	17	90
256	G<151>	-1447	1281	17	90
257	G<149>	-1475	1281	17	90
258	G<147>	-1503	1281	17	90
259	G<145>	-1531	1281	17	90
260	G<143>	-1559	1281	17	90
261	G<141>	-1587	1281	17	90
262	G<139>	-1615	1281	17	90
263	G<137>	-1643	1281	17	90
264	DUMMY	-1671	1281	17	90
265	DUMMY	-1681	1163.853	90	17
266	DUMMY	-1681	1135.853	90	17
267	DUMMY	-1681	1107.853	90	17
268	G<135>	-1681	1079.853	90	17
269	G<133>	-1681	1051.853	90	17
270	G<131>	-1681	1023.853	90	17
271	G<129>	-1681	995.853	90	17
272	G<127>	-1681	967.853	90	17
273	G<125>	-1681	939.853	90	17
274	G<123>	-1681	911.853	90	17
275	G<121>	-1681	883.853	90	17
276	G<119>	-1681	855.853	90	17
277	G<117>	-1681	827.853	90	17
278	G<115>	-1681	799.853	90	17
279	G<113>	-1681	771.853	90	17
280	G<111>	-1681	743.853	90	17
281	G<109>	-1681	715.853	90	17
282	G<107>	-1681	687.853	90	17
283	G<105>	-1681	659.853	90	17
284	G<103>	-1681	631.853	90	17
285	G<101>	-1681	603.853	90	17
286	G<99>	-1681	575.853	90	17
287	G<97>	-1681	547.853	90	17
288	G<95>	-1681	519.853	90	17
289	G<93>	-1681	491.853	90	17

#	PAD	Х	Υ	W	Н
290	G<91>	-1681	463.853	90	17
291	G<89>	-1681	435.853	90	17
292	G<87>	-1681	407.853	90	17
293	G<85>	-1681	379.853	90	17
294	G<83>	-1681	351.853	90	17
295	G<81>	-1681	323.853	90	17
296	G<79>	-1681	295.853	90	17
297	G<77>	-1681	267.853	90	17
298	G<75>	-1681	239.853	90	17
299	G<73>	-1681	211.853	90	17
300	G<71>	-1681	183.853	90	17
		-1681			
301	G<69>		155.853	90	17
302	G<67>	-1681	127.853	90	17
303	G<65>	-1681	99.853	90	17
304	G<63>	-1681	71.853	90	17
305	G<61>	-1681	43.853	90	17
306	G<59>	-1681	15.853	90	17
307	G<57>	-1681	-12.147	90	17
308	G<55>	-1681	-40.147	90	17
309	G<53>	-1681	-68.147	90	17
310	G<51>	-1681	-96.147	90	17
311	G<49>	-1681	-124.147	90	17
312	G<47>	-1681	-152.147	90	17
313	G<45>	-1681	-180.147	90	17
314	G<43>	-1681	-208.147	90	17
315	G<41>	-1681	-236.147	90	17
316	G<39>	-1681	-264.147	90	17
317	G<37>	-1681	-292.147	90	17
318	G<35>	-1681	-320.147	90	17
319	G<33>	-1681	-348.147	90	17
320	G<31>	-1681	-376.147	90	17
321	G<29>	-1681	-404.147	90	17
322	G<27>	-1681	-432.147	90	17
323	G<25>	-1681	-460.147	90	17
324	G<23>	-1681	-488.147	90	17
325	G<21>	-1681	-516.147	90	17
326	G<19>	-1681	-544.147	90	17
327	G<17>	-1681	-572.147	90	17
328	G<15>	-1681	-600.147	90	17
329	G<13>	-1681	-628.147	90	17
330	G<11>	-1681	-656.147	90	17
331	G<9>	-1681	-684.147	90	17
332	G<7>	-1681	-712.147	90	17
333	G<5>	-1681	-740.147	90	17
334	G<3>	-1681	-768.147	90	17
335	G<1>	-1681	-796.147	90	17
336	VCOM	-1671	-860	70	28
337	VCOM	-1671	-906	70	28
338	VDM	-1671	-952	70	28
339	VDM	-1671	-998	70	28
340	VCOMH	-1671	-1044	70	28
341	VCOMH	-1671	-1090	70	28
342	VCOML	-1671	-1136	70	28
343	VCOML	-1671	-1182	70	28
040	VOOIVIL	10/1	1102	, 0	20

I/O Pad Arrangement

TRAY INFORMATION

REVISION HISTORY

Revision	Contents	Date
	N/A	

