МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИИСТ

Отчёт по лабораторной работе №4 по дисциплине «Метрология»

Студенты гр. 7301	 Литвинов К.Л.
	 Гарцев Е.А.
	 Бурков М.П.
Преподаватель	Варшавский И.Е.

Санкт-Петербург 2019

Обработка результатов однократных прямых измерений напряжений

Найдём относительную инструментальную погрешность

$$\delta U_1 = \left[c + d \left(\frac{U_N}{U} - 1 \right) \right]$$

$$\delta U_2 = \left[c + d \left(\frac{U_N}{U} - 1 \right) \right]$$

Находим абсолютную погрешность

$$\Delta U_1 = \frac{\delta U * U}{100 \%}$$

$$\Delta U_2 = \frac{\delta U * U}{100 \%}$$

Результаты измерений

$$U_1 = \ddot{\iota}$$

$$U_2 = \ddot{\iota}$$

Обработка результатов однократных косвенных измерений

Ток протекающий через резистор

$$I_1 = \frac{U_1}{R0}$$

$$I_2 = \frac{U_2}{R0}$$

Относительная погрешность

$$\delta I = \delta U_0 + \delta R 0$$

$$\delta I_1 = \delta U_1 + \delta R 0$$

$$\delta I_2 = \delta U_2 + \delta R 0$$

Абсолютная погрешность косвенных измерений тока

$$\Delta I = I * \delta I/100$$

$$\Delta I_1 = I * \delta I / 100$$

$$\Delta I_2 = I * \delta I / 100$$

Результат косвенных измерений тока

$$I_1 = \stackrel{"}{\iota}$$

$$I_2 = \mathcal{L}$$

Нахождение мощности

$$P_{m} = U * I$$

 $P_{m1} = U_{1} * I_{1}$
 $P_{m2} = U_{2} * I_{2}$

Относительная погрешность измерений мощности

$$\delta P_{m} = \delta U + \delta I$$

$$\delta P_{m1} = \delta U_{1} + \delta I_{1}$$

$$\delta P_{m2} = \delta U_{2} + \delta I_{2}$$

Абсолютная погрешность измерений мощности

$$\Delta P_{m} = \delta P_{M} * P_{M} / 100$$

$$\Delta P_{m1} = \delta P_{M1} * P_{M1} / 100$$

$$\Delta P_{m2} = \delta P_{M2} * P_{M2} / 100$$

Результат косвенных измерений мощности

$$P_{m1}$$
 P_{m2}

Обработка многократных измерений

Формулы расчёта:

Среднее арифметическое результатов наблюдений

$$\bar{U} = \frac{1}{n} \sum_{i=1}^{n} U_i = \mathcal{L}$$

Оценка дисперсии случайной погрешности измерений

$$S^{2}[U] = \frac{1}{n-1} \sum_{i=1}^{n} (U_{i} - \bar{U})^{2}$$

Оценка дисперсии погрешности результата измерения

$$S^{2}[\bar{U}] = \frac{S^{2}[U]}{n}$$

Доверительный интервал погрешности результата измерений при нормальном законе распределения

$$\Delta = t_p(f)S[\bar{U}] =$$

Номер Измерения	U_i, B	$ar{U}$, B	$ \begin{array}{c c} S^2[U], B^2 \\ S[U], B \end{array} $	$S^2[\bar{U}], B^2$ $S[\bar{U}], B$
1	1	7.5	17.5	1.25
2	2		4.183	1.118
3	3			
4	4			

5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12
13	13
14	14

Результат измерения напряжений

$$U = \bar{U} \pm t_p(f)S[\bar{U}]; P = \mathcal{L}$$

Обработка многократных косвенных измерений мощности

Формулы расчёта:

Среднее арифметическое результатов наблюдений

$$\bar{U} = \frac{1}{n} \sum_{i=1}^{n} U_i = \mathbf{i}$$

Оценка дисперсии случайной погрешности измерений

$$S^{2}[U] = \frac{1}{n-1} \sum_{i=1}^{n} (U_{i} - \bar{U})^{2}$$

Оценка дисперсии погрешности результата измерения

$$S^2[\bar{U}] = \frac{S^2[U]}{n}$$

Доверительный интервал погрешности результата измерений при нормальном законе распределения

$$\Delta = t_p(f)S[\bar{U}] =$$

Доверительный интервал погрешности результата измерений при нормальном законе распределения

$$\Delta = t_p(f)S[\bar{U}] = \mathcal{L}$$

Номер Измерения	U_i, B	$ar{U}$, B	$S^2[U], B^2$ S[U], B	$S^2[\bar{U}], B^2$ $S[\bar{U}], B$
1	1	7.5	17.5	1.25
2	2			

3	3	4.183	1.118
4	4		
5	5		
6	6		
7	7		
8	8		
9	9		
10	10		
11	11		
12	12		
13	13		
14	14	 	

Номер Измерения	U_i, B	$ar{U}$, B	$ \begin{array}{c c} S^2[U], B^2 \\ S[U], B \end{array} $	$S^2[\bar{U}], B^2$ $S[\bar{U}], B$
1	1	7.5	17.5	1.25
2	2		4.183	1.118
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			
9	9			
10	10			
11	11			
12	12			
13	13			
14	14			

Измерение мощности

$$\bar{P}_{m} = \bar{U}_{1}\bar{I}_{2} = \bar{U}_{1}\bar{U}_{2}/R_{0} = 0$$

Доверительный интервал

$$S^{2}[\bar{P_{M}}] = \frac{1}{R_{0}^{2}} \left[\left(\frac{d\bar{P_{m}}}{dU_{1}} \right)^{2} S^{2}[\bar{U}_{1}] + \left(\frac{d\bar{P_{m}}}{dU_{2}} \right)^{2} S^{2}[\bar{U}_{2}] \right] = \frac{1}{R_{0}^{2}} \left(\left(\frac{1}{R0} * \bar{U}_{2} \right)^{2} S^{2}[\bar{U}_{1}] + \left(\frac{1}{R0} * \bar{U}_{1} \right)^{2} S^{2}[\bar{U}_{2}] \right)$$

Результат измерения мощности

$$P_{mx} = \bar{P}_m \pm k_p(f)S[\bar{P}_m], P = \mathcal{L}$$

Число степеней свободы f=2n-2, доверительная вероятности P