Teorija Grafova - Osnovni Pojmovi

1 Osnovni Pojmovi

1.1 Graf

Definicija 1. Graf G je uređeni par (V, E) gdje je V neprazan skup vrhova (čvorova), a E skup bridova, pri čemu je svaki brid povezan s dva vrha (ne nužno različita).

1.2 Jednostavni Graf

Definicija 2. Graf koji nema petlji ni višestrukih bridova nazivamo jednostavnim grafom. To znači da između dva vrha može postojati najviše jedan brid.

Slika 1: Primjer jednostavnog grafa

1.3 Izomorfni Graf i Izomorfizam

Definicija 3. Dva grafa $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ su izomorfni ako postoji bijekcija $f: V_1 \to V_2$ koja čuva susjednost vrhova. Takvu bijekciju f nazivamo izomorfizmom.

Slika 2: Primjer izomorfnih grafova

1.4 Vrh Incidentan s Bridom

Definicija 4. Kažemo da je vrh v incidentan s bridom e ako je v jedan od krajeva brida e. U tom slučaju kažemo i da brid e sadrži vrh v.

Vrh v je incidentan s bridom e

Slika 3: Primjer incidentnosti vrha i brida

1.5 Stupanj Vrha

Definicija 5. Stupanj vrha v, označen s deg(v), je broj bridova koji su incidentni s vrhom v.

1.6 Izolirani Vrh

Definicija 6. Vrh stupnja 0 nazivamo izoliranim vrhom.

1.7 Krajnji Vrh

Definicija 7. Vrh stupnja 1 nazivamo krajnjim vrhom ili listom.

1.8 Rukovanje

Teorem 8 (Teorem rukovanja). *U svakom grafu je zbroj stupnjeva svih vrhova jednak dvostrukom broju bridova:*

$$\sum_{v \in V} deg(v) = 2|E|$$

1.9 Regularan Graf

Definicija 9. Graf je k-regularan ako su svi vrhovi stupnja k. Broj k nazivamo stupnjem regularnosti.

Slika 4: Primjer 3-regularnog grafa

1.10 Podgraf

Definicija 10. GrafH=(W,F)je podgraf grafaG=(V,E)ako je $W\subseteq V$ i $F\subseteq E.$

2 Reprezentacije Grafa

2.1 Matrica Susjedstva

Definicija 11. Za graf G s n vrhova, matrica susjedstva $A = [a_{ij}]$ je $n \times n$ matrica gdje je:

$$a_{ij} = \begin{cases} 1 & \text{ako su vrhovi } i \text{ i } j \text{ susjedni} \\ 0 & \text{inače} \end{cases}$$

2.2 Matrica Incidencije

Definicija 12. Za graf G s n vrhova i m bridova, matrica incidencije $B = [b_{ij}]$ je $n \times m$ matrica gdje je:

$$b_{ij} = \begin{cases} 1 & \text{ako je vrh } i \text{ incidentan s bridom } j \\ 0 & \text{inače} \end{cases}$$

2.3 Dirichletov Princip

Teorem 13 (Dirichletov princip). Ako n predmeta rasporedimo u m kutija gdje je n > m, tada barem jedna kutija mora sadržavati više od jednog predmeta.

Primjer 1. U kontekstu teorije grafova, ako graf ima više bridova nego što je moguće u jednostavnom grafu s n vrhova, tada mora postojati višestruki brid.

2.4 Komplement Grafa

Definicija 14. Komplement grafa G, označen s \overline{G} , je graf na istom skupu vrhova kao G gdje su dva vrha susjedna u \overline{G} ako i samo ako nisu susjedna u G.

Slika 5: Graf i njegov komplement

3 Šetnje i Putevi

3.1 Ciklus

Definicija 15. Ciklus je zatvorena staza u kojoj se nijedan vrh (osim početnog/završnog) ne ponavlja.

3.2 Šetnja, Staza i Put

Definicija 16. • Šetnja je niz naizmjenice vrhova i bridova $v_0, e_1, v_1, e_2, ..., e_k, v_k$.

- Staza je šetnja u kojoj se nijedan brid ne ponavlja.
- Put je staza u kojoj se nijedan vrh ne ponavlja.

Slika 6: Usporedba šetnje, staze i puta u grafu

4 Povezanost

4.1 Povezan Graf

Definicija 17. Graf je povezan ako između svaka dva vrha postoji put. U suprotnom je nepovezan.

4.2 Komponente Povezanosti

Definicija 18. Komponente povezanosti grafa su njegovi maksimalni povezani podgrafovi.

Teorem 19. Za jednostavan graf s n vrhova i više od $\frac{(n-1)(n-2)}{2}$ bridova vrijedi da je povezan.

4.3 Separirajući Skup

Definicija 20. Separirajući skup grafa G je skup vrhova čijim uklanjanjem graf postaje nepovezan.

Slika 7: Primjer separirajućeg skupa (crveni vrh)

4.4 Rastavljajući Skup

Definicija 21. Rastavljajući skup grafa G je skup bridova čijim uklanjanjem graf postaje nepovezan. U slučaju kada se radi o jednom bridu, nazivamo ga rastavljajućim bridom ili mostom.

Slika 8: Primjer rastavljajućeg brida (označen crvenom bojom)

4.5 Most

Definicija 22. Most je brid čijim uklanjanjem graf postaje nepovezan. Drugim riječima, most je separirajući skup koji se sastoji od samo jednog brida.

Slika 9: Primjer mosta u grafu (označen crvenom bojom)

4.6 Bridna i Vršna Povezanost

Definicija 23 (Bridna povezanost). **Bridna povezanost** grafa G, označena s $\lambda(G)$, je najmanji broj bridova čijim uklanjanjem graf postaje nepovezan.

Definicija 24 (Vršna povezanost). Vršna povezanost grafa G, označena s $\kappa(G)$, je najmanji broj vrhova čijim uklanjanjem graf postaje nepovezan.

5 Bipartitni Grafovi

5.1 Bipartitan Graf

Definicija 25. Graf je bipartitan ako se njegov skup vrhova može particionirati u dva disjunktna skupa tako da svaki brid povezuje vrhove iz različitih skupova.

Teorem 26. Graf je bipartitan ako i samo ako su svi njegovi ciklusi parne duljine.

Vrhovi su obojani u dvije boje

Slika 10: Bipartitan graf s istaknutim particijama vrhova

6 Eulerovski Grafovi

6.1 Eulerovski Graf

Definicija 27. Graf je eulerovski ako sadrži zatvorenu stazu koja prolazi svakim bridom točno jedanput.

6.2 Vrste Eulerovskih Grafova

- Eulerovski graf: Sadrži zatvorenu eulerovsku stazu
- Skoro eulerovski graf: Sadrži otvorenu eulerovsku stazu
- Neeulerovski graf: Ne sadrži eulerovsku stazu

Teorem 28 (Euler, 1736). *Graf je eulerovski ako i samo ako je povezan i stupanj svakog vrha je paran.*

Korolar 29. Graf je skoro eulerovski ako i samo ako je povezan i ima točno dva vrha neparnog stupnja.

Slika 11: Primjeri eulerovskih, skoro eulerovskih i neeulerovskih grafova

Primjer 2 (Primjeri različitih tipova grafova).

6.3 Fleuryev Algoritam

Teorem 30 (Fleuryev algoritam). Za pronalaženje eulerovskog puta:

- 1. Počni od bilo kojeg vrha ako su svi vrhovi parnog stupnja
- 2. U svakom koraku odaberi brid koji nije most ako je moguće
- 3. Ukloni korišteni brid i nastavi dok ima bridova

7 Hamiltonovski Grafovi

7.1 Hamiltonovski Ciklus

Definicija 31. Ciklus koji prolazi kroz sve vrhove grafa točno jedanput nazivamo hamiltonovskim ciklusom. Graf koji sadrži hamiltonovski ciklus nazivamo hamiltonovskim grafom.

Teorem 32 (Dirac, 1952). Ako je G jednostavan graf s $n \geq 3$ vrhova i ako je stupanj svakog vrha barem $\frac{n}{2}$, tada je G hamiltonovski.

Teorem 33 (Ore, 1960). Ako je G jednostavan graf s $n \geq 3$ vrhova i ako za svaka dva nesusjedna vrha u, v vrijedi $deg(u) + deg(v) \geq n$, tada je G hamiltonovski.

Slika 12: Primjer hamiltonovskog grafa s istaknutim hamiltonovskim ciklusom (crveno)

8 Grafovi

8.1 Nul graf N_n

Broj vrhova: nBroj bridova: 0

•

Nul graf N_5

8.2 Potpuni graf K_n

Broj vrhova: nBroj bridova: $\frac{n(n-1)}{2}$ (n-1)-regularan: Da

Potpuni graf K_5

8.3 Ciklički graf C_n

Broj vrhova: nBroj bridova: n2-regularan: Da
Hamiltonovski: Da
Eulerovski: Da

Ciklički graf \mathcal{C}_8

8.4 Lanac P_n

Broj vrhova: nBroj bridova: n-1Bipartitan: Da

8.5 Kotač W_n

Broj vrhova: n

Broj bridova: 2n-2 Hamiltonovski: Da

Kotač W_7

8.6 Potpuni bipartitni graf $K_{m,n}$

Broj vrhova: m+nBroj bridova: $m \cdot n$

Potpuni bipartitni graf $K_{3,5}$

9 Zaključak

9.1 Temeljni Koncepti i Njihova Primjena

• Eulerovski grafovi:

- Karakterizacija preko parnosti stupnjeva vrhova
- Primjena u optimizaciji ruta (poštari, čišćenje ulica, prikupljanje otpada)
- Povijesni značaj problem königsberških mostova (1736.)

• Hamiltonovski grafovi:

- Problem trgovačkog putnika i njegova NP-težina
- Primjena u logistici i transportu
- Važnost Diracovog i Oreovog teorema za praktične primjene

9.2 Moderna Primjena

• Računalne mreže:

- Dizajn mrežnih topologija
- Optimizacija rutiranja paketa
- Analiza pouzdanosti mreže pomoću povezanosti

• Društvene mreže:

- Analiza povezanosti korisnika
- Identifikacija zajednica
- Širenje informacija i utjecaja

• Biološki sustavi:

- Modeliranje proteinske interakcije
- Analiza metaboličkih puteva
- Evolucijske mreže

9.3 Teorijska Važnost

- Povezanost teorije grafova s drugim matematičkim područjima
- Fundamentalna važnost za diskretnu matematiku
- Razvoj algoritamske teorije kroz probleme na grafovima

Primjer moderne mrežne strukture

Slika 13: Moderna primjena teorije grafova u analizi mreža