Richiami matematici

Corso di Fondamenti di Informatica - modulo 1 Corso di Laurea in Informatica Università di Roma "Tor Vergata"

a.a. 2020-2021

Giorgio Gambosi

Insiemi di particolare interesse

simbolo	descrizione
N	naturali
N ⁺	naturali positivi
Z	interi
\mathbb{Z}^+	interi positivi (coincide con N^+)
\mathbb{Z}^{-}	interi negativi
O.	razionali
\square	razionali positivi
O _	razionali negativi
R	reali
\mathbb{R}^+	reali positivi
R ⁻	reali negativi

Sintassi del calcolo proposizionale

- Insieme non vuoto di elementi denominati simboli proposizionali $A = \{A, B, C, \ldots\}$.
- Costanti proposizionali \top e \bot . Per contrapposizione, i simboli proposizionali sono anche denominati variabili proposizionali.
- Connettivi logici \neg , \lor e \land .
- Separatori '(' e ')'.

Proposizioni

- se a è una variabile o costante proposizionale allora a è una proposizione;
- se α è una proposizione allora $(\neg \alpha)$ è una proposizione;
- se α e β sono proposizioni allora $(\alpha \vee \beta)$ e $(\alpha \wedge \beta)$ sono proposizioni;
- tutte le proposizioni sono ottenute mediante le regole descritte.

Esempi di proposizioni e non

- $((\neg \bot) \lor ((A \lor B) \land C))$ è una proposizione.
- $A \lor B$ non è una proposizione

• $(A \wedge B)A \top B$ non è una proposizione

Semantica del calcolo proposizionale

- Dominio: insieme $\mathcal{B} = \{0,1\}$, in cui 0 è associato al valore di verità falso e 1 al valore vero
- Insieme di operatori $\mathcal{O}=\{o_\neg,o_\lor,o_\land\}$, contiene un elemento per ciascuno dei connettivi logici del calcolo proposizionale

Negazione logica (not)

$$o_{\neg}: \mathcal{B} \mapsto \mathcal{B}$$
, tale che $o_{\neg}(0) = 1$ e $o_{\neg}(1) = 0$

$$\begin{array}{c|cc} a & \neg a \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$

Congiunzione logica (and)

$$o_{\wedge}:\mathcal{B}\times\mathcal{B}\mapsto\mathcal{B}$$

Definito dalla seguente tabella di verità

a	b	$a \wedge b$
0	0	0
0	1	0
1	0	0
1	1	1

Disgiunzione logica (or)

$$o_{\vee}: \mathcal{B} \times \mathcal{B} \mapsto \mathcal{B}$$

Definito dalla seguente tabella di verità

a	b	$a \lor b$
0	0	0
0	1	1
1	0	1
1	1	1

Assegnazione booleana $\mathcal V$

Funzione $\mathcal{V}: \mathcal{A} \mapsto \mathcal{B}$: un'assegnazione booleana alle variabili proposizionali altro non è che una associazione di valori di verità alle variabili stesse.

2

Valutazione booleana

Prop insieme delle proposizioni, $\mathcal V$ assegnazione booleana su $\mathcal A$.

- se $A \in \mathcal{A}$, $\mathcal{I}_{\mathcal{V}}(A) = \mathcal{V}(A)$
- $\mathcal{I}_{\mathcal{V}}(\top) = 1$
- $\mathcal{I}_{\mathcal{V}}(\perp) = 0$
- se $\alpha \in \mathsf{Prop}$, $\mathcal{I}_{\mathcal{V}}(\neg \alpha) = o_{\neg}(\mathcal{I}_{\mathcal{V}}(\alpha))$
- se $\alpha, \beta \in \text{Prop}$, $\mathcal{I}_{\mathcal{V}}(\alpha \vee \beta) = o_{\vee}(\mathcal{I}_{\mathcal{V}}(\alpha), \mathcal{I}_{\mathcal{V}}(\beta))$
- se $\alpha, \beta \in \text{Prop}$, $\mathcal{I}_{\mathcal{V}}(\alpha \wedge \beta) = o_{\wedge}(\mathcal{I}_{\mathcal{V}}(\alpha), \mathcal{I}_{\mathcal{V}}(\beta))$

Soddisfacibilità

Una formula proposizionale α viene detta:

• soddisfatta da una valutazione booleana $\mathcal{I}_{\mathcal{V}}$ se $\mathcal{I}_{\mathcal{V}}(\alpha)=1$.

- soddisfacibile se è soddisfatta da almeno una valutazione booleana
- tautologia se è soddisfatta da ogni valutazione booleana
- contraddizione se non è soddisfatta da nessuna valutazione booleana

Implicazione

$$o_{
ightarrow}: \mathcal{B} imes \mathcal{B} \mapsto \mathcal{B}$$

Definito dalla seguente tabella di verità

a	b	$a \to b$
0	0	1
0	1	1
1	0	0
1	1	1

 $a \rightarrow b$ equivalente a $\neg a \lor b$

Equivalenza

$$o_{\leftrightarrow}: \dot{\mathcal{B}} \times \mathcal{B} \mapsto \mathcal{B}$$

Definito dalla seguente tabella di verità

a	b	$a \leftrightarrow b$
0	0	1
0	1	0
1	0	0
1	1	1

 $a \leftrightarrow b$ equivalente a $(a \leftrightarrow b) \land (b \leftrightarrow a)$

Operatori k-ari

Dato k, esistono 2^{2^k} operatori differenti $\mathcal{B}^k \mapsto \mathcal{B}$.

Se
$$k=2$$
:

a	b	zero	and (∧)	n-implicazione (eg)	operando-1	n-implicato (←)	operando-2	ex-or (⊕)	or (V)	nor (Ÿ)	equivalenza (↔)	n-operando-2	implicato (←)	n-operando-1	implicazione (→)	nand (六)	oun	
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	

Completezza di $\{\neg, \lor, \land\}$

Ogni operatore binario è equivalente ad una opportuna composizione degli operatori $\{\neg, \lor, \land\}$

Proprietà degli operatori 1

idempotenza	$\begin{array}{ccc} \alpha \wedge \alpha & \equiv & \alpha \\ \alpha \vee \alpha & \equiv & \alpha \end{array}$
associatività	$\begin{array}{ccc} \alpha \wedge (\beta \wedge \gamma) & \equiv & (\alpha \wedge \beta) \wedge \gamma \\ \alpha \vee (\beta \vee \gamma) & \equiv & (\alpha \vee \beta) \vee \gamma \\ \alpha \leftrightarrow (\beta \leftrightarrow \gamma) & \equiv & (\alpha \leftrightarrow \beta) \leftrightarrow \gamma \end{array}$
commutatività	$\begin{array}{ccc} \alpha \wedge \beta & \equiv & \beta \wedge \alpha \\ \alpha \vee \beta & \equiv & \beta \vee \alpha \\ \alpha \leftrightarrow \beta & \equiv & \beta \leftrightarrow \alpha \end{array}$
distributività	$\begin{array}{ccc} \alpha \wedge (\beta \vee \gamma) & \equiv & (\alpha \wedge \beta) \vee (\alpha \wedge \gamma) \\ \alpha \vee (\beta \wedge \gamma) & \equiv & (\alpha \vee \beta) \wedge (\alpha \vee \gamma) \end{array}$

Proprietà degli operatori 2

assorbimento	$\begin{array}{ccc} \alpha \wedge (\alpha \vee \beta) & \equiv & \alpha \\ \alpha \vee (\alpha \wedge \beta) & \equiv & \alpha \end{array}$
doppia negazione	$\neg \neg \alpha \equiv \alpha$
leggi di De Morgan	$ \neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta $ $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta $
terzo escluso	$\alpha \vee \neg \alpha \equiv \top$
contrapposizione	$\alpha \to \beta \equiv \neg \beta \to \neg \alpha$
contraddizione	$\alpha \wedge \neg \alpha \equiv \bot$

Quantificatori

Calcolo dei predicati

- quantificatore universale, indicato con il simbolo \forall $\forall x P(x)$, P è vero per qualunque valore di x
- quantificatore esistenziale, indicato con il simbolo \exists $\exists x P(x), P$ è vero per almeno un valore di x

Relazioni

• Prodotto cartesiano di A e B, denotato con $C=A\times B$

$$C = \{ \langle x, y \rangle \mid x \in A \land y \in B \},\$$

• A^n indica il prodotto cartesiano di A con se stesso, ripetuto n volte

$$\underbrace{A \times \cdots \times A}_{n \text{ volte}}.$$

• Relazione n-aria R su A_1,A_2,\ldots,A_n è un sottoinsieme del prodotto cartesiano $A_1\times\cdots\times A_n$

$$R \subseteq A_1 \times \cdots \times A_n$$
.

Relazione d'ordine

Una relazione $R \subseteq A^2$ si dice relazione d'ordine se per ogni $x,y,z \in A$ valgono le seguenti proprietà

- 1. $\langle x, x \rangle \in R$ (riflessività),
- 2. $\langle x,y \rangle \in R \land \langle y,x \rangle \in R \iff x=y \text{ (antisimmetria),}$
- $\textbf{3. } \langle x,y\rangle \in R \wedge \langle y,z\rangle \in R \iff \langle x,z\rangle \in R \text{ (transitività)}.$

Relazione d'equivalenza

Una relazione $R \subseteq A^2$ si dice relazione d'equivalenza se, per ogni $x, y, z \in A$, valgono le seguenti proprietà

- 1. $\langle x, x \rangle \in R$ (riflessività),
- 2. $\langle x, y \rangle \in R \iff \langle y, x \rangle \in R$ (simmetria),
- 3. $\langle x,y \rangle \in R \land \langle y,z \rangle \in R \iff \langle x,z \rangle \in R$ (transitività).

Relazione d'equivalenza

- Un insieme A su cui sia definita una relazione d'equivalenza R si può partizionare in sottoinsiemi, detti classi d'equivalenza, ciascuno dei quali è un sottoinsieme massimale che contiene solo elementi tra loro equivalenti.
- Dati un insieme A ed una relazione d'equivalenza R su A^2 , l'insieme delle classi d'equivalenza di A rispetto a R è detto insieme quoziente A/R.
- I suoi elementi vengono denotati con [a], dove $a \in A$ è un "rappresentante" della classe d'equivalenza: [a] indica cioè l'insieme degli elementi equivalenti ad a.

Operazioni tra relazioni

- Unione: $R_1 \cup R_2 = \{\langle x, y \rangle \mid \langle x, y \rangle \in R_1 \lor \langle x, y \rangle \in R_2$
- Intersezione: $R_1 \cup R_2 = \{\langle x, y \rangle \mid \langle x, y \rangle \in R_1 \land \langle x, y \rangle \in R_2$
- Complementazione: $\overline{R} = \{\langle x, y \rangle \mid \langle x, y \rangle \notin R\}$
- Chiusura transitiva:

$$R^+ = \{ \langle x, y \rangle \mid \exists y_1, \dots, y_n \in A, n \ge 2, y_1 = x, y_n = y, \\ \langle y_i, y_{i+1} \rangle \in R, i = 1, \dots, n-1 \}$$

• Chiusura transitiva e riflessiva: $R^* = R^+ \cup \{\langle x, x \rangle \mid x \in A\}$

Funzioni

 $R\subseteq X_1\times\ldots\times X_n$ ($n\ge 2$) è una relazione funzionale tra una (n-1)-pla di elementi e l'n-esimo elemento, se $\forall \langle x_1,\ldots,x_{n-1}\rangle\in X_1\times\ldots\times X_{n-1}$ esiste al pi๠un elemento $x_n\in X_n$ tale che $\langle x_1,\ldots,x_n\rangle\in R$

$$f: X_1 \times \cdots \times X_{n-1} \mapsto X_n$$
.

$$f(x_1,\ldots,x_{n-1})=x_n.$$

Funzioni

- $X_1 \times \cdots \times X_{n-1}$, dominio della funzione, dom(f)
- X_n , codominio cod(f)
- dominio di definizione:

$$\mathsf{def}(f) = \left\{ \langle x_1, \dots, x_{n-1} \rangle \in \mathsf{dom}(f) \mid \\ \exists x_n \in \mathsf{cod}(f) : f(x_1, \dots, x_{n-1}) = x_n \right\}$$

• immagine imm(f):

$$\operatorname{imm}(f) = \left\{ x_n \in \operatorname{cod}(f) \mid \\ \exists \langle x_1, \dots, x_{n-1} \rangle \in \operatorname{dom}(f) : f(x_1, \dots, x_{n-1}) = x_n \right\}$$

Funzioni

- f totale se def(f) = dom(f), parziale altrimenti
- f surjettiva se imm(f) = cod(f)
- f iniettiva o uno-ad-uno (1:1) se

$$\forall \langle x'_1, \dots, x'_{n-1} \rangle, \langle x''_1, \dots, x''_{n-1} \rangle \in X_1 \times \dots \times X_{n-1},$$

$$\langle x'_1, \dots, x'_{n-1} \rangle \neq \langle x''_1, \dots, x''_{n-1} \rangle \Longleftrightarrow$$

$$f(x'_1, \dots, x'_{n-1}) \neq f(x''_1, \dots, x''_{n-1})$$

• f biiettiva se suriettiva e iniettiva

Pigeonhole principle

Dati due insiemi finiti A e B, tali che

$$0 < |B| < |A|$$
,

non esiste alcuna funzione iniettiva totale $f:A\mapsto B$

Strutture algebriche

Dato un insieme non vuoto $S \subseteq U$, si definisce operazione binaria \circ su S una funzione $\circ : S \times S \mapsto U$.

Un insieme non vuoto S si dice chiuso rispetto ad una operazione binaria \circ su S se imm $(\circ) \subseteq S$.

Strutture algebriche

Dato un insieme ${\cal S}$ chiuso rispetto ad un'operazione binaria \circ .

La coppia $\langle S, \circ \rangle$ viene denominata semigruppo se l'operazione binaria \circ soddisfa la proprietà associativa:

$$\forall x \forall y \forall z \in S \ (x \circ (y \circ z)) = (x \circ y) \circ z).$$

Se inoltre vale la proprietà commutativa:

$$\forall x \forall y \in S \ (x \circ y) = (y \circ x)$$

il semigruppo è detto commutativo.

La coppia $\langle N, + \rangle$, dove + è l'usuale operazione di somma, è un semigruppo commutativo, Strutture algebriche

La terna $\langle S, \circ, e \rangle$ viene detta monoide se $\langle S, \circ \rangle$ è un semigruppo, e se $e \in S$ è tale che:

$$\forall x \in S \ (e \circ x) = (x \circ e) = x$$

L'elemento e viene detto elemento neutro o unità del monoide. Se \circ è anche commutativa, il monoide viene detto commutativo.

Le terne $\langle \mathbf{N}, +, 0 \rangle$ e $\langle \mathbf{N}, *, 1 \rangle$, dove + e * sono le usuali operazioni di somma e prodotto, sono monoidi commutativi.

Strutture algebriche

Dati un insieme S ed una operazione associativa \circ , definiamo semigruppo libero sulla coppia $\langle S, \circ \rangle$ il semigruppo $\langle S^+, \circ^+ \rangle$, dove:

- 1. S^+ è l'insieme di tutte le espressioni $x=x_1\circ x_2\circ\ldots\circ x_n$, per ogni $n\geq 1$, con $x_1,\ldots,x_n\in S$;
- 2. l'operazione \circ^+ è definita nel modo seguente: se $x=x_1\circ\ldots\circ x_n$ e $y=y_1\circ\ldots\circ y_n$, allora $x\circ^+y=x_1\circ\ldots\circ x_n\circ y_1\circ\ldots\circ y_n$.

Strutture algebriche

Se estendiamo S^+ introducendo un elemento aggiuntivo ε , detto parola vuota, possiamo definire sull'insieme risultante $S^* = S^+ \cup \{\varepsilon\}$ l'operazione \circ^* , estensione di \circ^+ , tale che, $\forall x,y \in S^+$ $x \circ^* y = x \circ^+ y$ e $\forall x \in S^*$ ($\varepsilon \circ^* x = x \circ^* \varepsilon = x$).

La terna $\langle S^*, \circ^*, \varepsilon \rangle$ è allora un monoide e viene detto monoide libero.

Strutture algebriche

La terna $\langle S, \circ, e \rangle$ viene detta gruppo se $\langle S, \circ, e \rangle$ è un monoide ed inoltre l'operazione \circ ammette inverso, cioè se

$$\forall x \in S \ \exists y \in S \ (x \circ y) = (y \circ x) = e.$$

L'elemento y viene detto inverso di x, e si denota come x^{-1} .

Se il monoide $\langle S, \circ, e \rangle$ è commutativo il gruppo viene detto commutativo (o abeliano).

Le terne $\langle \mathbf{N}, +, 0 \rangle$ e $\langle \mathbf{N}, *, 1 \rangle$ non sono gruppi, in quanto l'insieme \mathbf{N} non è chiuso rispetto all'inverso di + e di *. Al contrario, le terne $\langle \mathbf{Z}, +, 0 \rangle$ e $\langle \mathbf{Q}, *, 1 \rangle$ sono gruppi abeliani.

Strutture algebriche

Dato un semigruppo $\langle S, \circ \rangle$, una congruenza \equiv è una relazione d'equivalenza su S che soddisfa la seguente proprietà:

$$\forall x, y \in S \ x \equiv y \Longleftrightarrow \forall z \in S \ \big((x \circ z \equiv y \circ z) \land (z \circ x \equiv z \circ y) \big).$$

La relazione d'equivalenza \equiv_k delle classi resto rispetto alla divisione per k è una congruenza rispetto al semigruppo commutativo $\langle \mathbf{N}, + \rangle$: infatti, se $n \equiv_k m$, abbiamo che $\forall l \ (n+l \equiv_k m+l)$ e, chiaramente, anche $l+n \equiv_k l+m$. Viceversa, se $\forall l \ (n+l \equiv_k m+l)$ allora abbiamo, nel caso particolare l=0, $n \equiv_k m$