[04] 1	a) x only if y How y				
	b) A unless not B 94 & then A				
	c) D whenever E I F the D				
	d) F is necessary for G. Fotter F				
	e) H is sufficient for J Htler J				
	2. Consider the proposition "All Computer Science students take Comp 232 and Comp 233." Let C(x) represent student x is in Computer Science, M(x) represents x takes Comp 232, S(x) represents x takes Comp 233. Domain is all students: a) Write the negation of the above proposition using symbols only \[\begin{align*}				
	Determine the truth value of each statement a a) $\exists x \exists y : [P(x,y) \land \neg P(y,x)].$ Thus				
	b) $\forall x \exists y : R(x,y)$.	$\begin{array}{c} x - 5y = xy \\ \Rightarrow x = xy + 5y \end{array}$			
	c) $\exists n \forall m : Q(m,n)$.	Now all non regative integers M = 0.			
		integers M = 0			

- [09] 4. Ali attends the concert but Ed does not. Ali does not attend or Jill does not attend implies Kelly does not attend. Kelly attends or Ed does not attend. It is not true that Ali and Jill attend..
 - Using the symbols A = Ali, E = Ed, J = Jill, K = Kelly symbolize the four given statements and simplify if possible.

b) Determine, if possible, who attended the concert and who did not attend the concert. Give the final answer in English but explain your reasoning using the symbols.

Ali Allends but Ed, Jul, Kelly do not Albrd

Determine whether the following statement is a tautology, contradiction or neither using logical equivalences without a truth table: $[\neg p \to (q \to r)] \to [q \to (p \lor r)]$

Implie, on terms OR DEF of tautology

[06] 6. For each statement in question 6 state whether it is True or False. If True prove by Contraposition, if False prove by showing a Counter example: $\forall x \in R \quad x^2 > x$ This statement is False PROOF: (Counter Example) Let X = 1 then x2= (1)2= 1 Algebra
At least when $x=\frac{1}{2}$ 3 MARKS => X2 > × 15 FALSE GED. b) Consider $P(n) = n^2 + 7$. $\forall n \in \mathbb{Z}$: If P(n) is odd then n is even. PROOF! FORM the Contrapositive: If risadd then P(n) is even Courtra position) Consider nodd. Defofood Julyer n= 2/2+1 where 12 EZ 5 MARKS => P(n)= 12+7 = (2h+1)2+7 => P(n)= 4h2+4h2+1+7 => P(n) = 4/2+4/48 > P(n) = 2 (2k+2k+4) Sure (2h2+2h+4) & Z ZIS closed for Add & mult. => P(n) is even DEF. of Even Since If needed then P(n) is even

15 a True statement

=) If P(n) isodd Hennis Even

15 also true

= contrapos.

[04] 7. The equation $9x^2 + y^2 = 8$ has no positive integer solutions. Give a proof by cases of this statement. Stels Reduce the fossible X, y troof: by Cases) 1) No reed to test regative x, y by given No need to check X=0, 4=0 by given Step 2 Case XZI AND YZI (X, y EZT) only I case X = 1 => 9 x2 = 9 Alq. 921=) 422.1 Alg. => 9x2+42 = 9+1=10 => Vx Vy × 21, y21: 9x2+42 ≥ 10 => Vx y x21, y21:7 (9x2+12 < 10) => = 3×3y, ×=1, y=1: (924,210) => 924,2=8 has No [05] 8. $\forall x \forall y \in R$: If x is irrational and y is rational then (x-y) is irrational. Give a proof by contradiction of this statement. Edler (x-y) is Itrational is T OR (x-y) is Irrational is F Listall bossbolities (Contradiction) STADE ASSUME (X-Y) IS ITTATEONED IS F Assume poss. yondowor => (x-y) is Rational => x-y = a where a, b & Z, b +0 Def of Rational > x = a+y AlgebRA Since y is Rational Given => y= f, where e, d = Z, d ≠0 Defot Batronel Now Substitute for y => X= &+= => x = ad +bc Comman DEN. Now (ad+bc), bd (Z Close for Add, Mult. in Z => XIS Rational DEF of Rational Contradicts the given

Slep3 => (x-y)15 IrrAtional

dry remaining

possibility.

[0 5] 9. Consider the following decision table whose input specifications are the Boolean variables
x, y, z. The Conjunction of the x, y, z values in each each row form value F for that row.

SPECIFICATIONS					
\boldsymbol{x}	y	z	F		
1	1	0	×42		
1	1	1	XYZ		
1	0	1	XJZ		
0	0	1	XYZ		

- a) Fill in the above blanks with the value of F in each row.
- b) Form the Boolean expression R which is the Disjunction of the above four F values

c) Simplify the answer for R using Boolean Algebra. Answer in terms of x, y, z

$$R = xy(z+z) + yz(x+x)$$

= xy(1) + yz(1)
 $R = xy + yz$

- d) Using the simplified version of R complete the following statement in English: R is true when \times is true and Y is true on Y is false and Z is true.
- [02] Bonus From the following approaches state all that are valid if you are asked to prove LHS \leftrightarrow RHS:
 - a) Prove: [LHS \rightarrow RHS] and [RHS \rightarrow LHS]
 - b) Prove: [LHS → RHS] and [¬RHS → ¬LHS] × (these are =) RHS → LHS missing
 - c) Prove: $[\neg LHS \rightarrow \neg RHS]$ and $[\neg RHS \rightarrow \neg LHS]$
 - d) Prove: [RHS → LHS] and [¬LHS → ¬RHS] × (these me =) LHS → PHS MISSING)

$$\frac{total}{40}$$
 $marks$