June 6, 2015

Stephanie Lund (2555914) Aljoscha Dietrich(2557976)

Exercise 1

By solving the two constraints $|H_c(j0.2\pi)| \ge 0.89125$ and $|H_c(j0.3\pi)| \le 0.17783$, we get:

$$N = 6$$

$$\omega_c = 0.70474$$

The graph of the magnitude of the frequency response $|H_c(j\omega)|$ is then:

Frequency

Exercise 2

2.1

- a) The minimum sampling frequency is 10kHz, so $T = \frac{1}{f_s} \ge \frac{1}{10,000}$.
- b) $2\pi f = \frac{\pi/8}{T}$. Solve for f to get 625kHz.
- c) Solve the above equation using $T = \frac{1}{20,000}$ to get f = 1250kHz.

2.2

In all cases, upsampling by 3 and then downsampling by 3 doesn't change the signal. After applying the low-pass filter to cut off all frequencies above $\frac{\pi}{3}$, (a) and (c) remain unchanged, as their frequencies are below the cutoff, but (b) will be changed, since the frequency is above the cutoff.

Exercise 3

The code is located in the file ex-3.m. The settings chosen for the low-pass filter were a Butterworth filter with N=10 and $\omega_c=0.02$ radians.

Bonus

 T_1 and T_2 are equivalent if N and M are relatively prime, or if N=M.