Return the maximum amount of split balanced strings.
Example 1:
Input:
RLRRLLRLRL
Output:
4
Explanation: s can be split into "RL", "RRLL", "RL", "RL", each substring contains same number of 'L' and 'R'.
Example 2:
Input:
RLLLLRRRLR
Output:
3
Explanation: s can be split into "RL", "LLLRRR", "LR", each substring contains same number of 'L' and 'R'.
Example 3:
Input:
LLLLRRRR
Output:
1
Explanation: s can be split into "LLLLRRRRR".
Constraints:
1 <= s.length <= 1000
s[i] is either 'L' or 'R'.
s is a balanced string.
Program:
def BalancedStrings(s,l=0,r=0,count=0):

1. Balanced strings are those that have an equal quantity of 'L' and 'R' characters.

Given a balanced string s, split it in the maximum amount of balanced strings.

for i in s: if i=='L': 1 + = 1elif i=='R': r+=1if I==r: count + = 1

return count

	Test	Expected	Got	
~	<pre>print(BalancedStrings('RLRRLLRLRL'))</pre>	4	4	~
~	<pre>print(BalancedStrings('RLLLLRRRLR'))</pre>	3	3	~
Ť	ed all tests!	3	3	•

- 2. You are given an $m \times n$ integer matrix matrix with the following two properties:
 - Each row is sorted in non-decreasing order.
 - The first integer of each row is greater than the last integer of the previous row.

Given an integer target, return True if target is in matrix or False otherwise.

You must write a solution in $O(\log(m * n))$ time complexity.

Example 1:

1	3	5	7
10	11	16	20
23	30	34	60

Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
Output: True

Example 2:

1	3	5	7
10	11	16	20
23	30	34	60

Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13

Output: False

Program:

def searchMatrix(matrix:list[list[int]], target: int) -> bool:

for i in range(len(matrix)):

for j in range(len(matrix)):

if matrix[i][j]==target:

return True

return False

	Test	Expected	Got	
*	print(searchMatrix([[1,3,5,7],[10,11,16,20],[23,30,34,60]], 13))	False	False	~
*	print(searchMatrix([[1,3,5,7],[10,11,16,20],[23,30,34,60]], 3))	True	True	~
Passe	ed all tests! ✔			

3. An list contains N numbers and you want to determine whether two of the numbers sum to a given number K. For example, if the input is 8, 4, 1, 6 and K is 10, the answer is yes (4 and 6). A number may be used twice.

Input Format

The first line contains a single integer n, the length of list

The second line contains n space-separated integers, list[i].

The third line contains integer k.

Output Format

Print Yes or No.

Sample Input

```
7
0\,1\,2\,4\,6\,5\,3
```

Sample Output

```
Yes
Program:
a=int(input())
p=input()
b=list(map(int,p.split()))
count=0
c=int(input())
for i in range(len(b)):
  for j in range(i+1,len(b)):
     if (b[i]+b[j]) = = c:
        print("Yes")
```

count=1

break

if count==1:

break

if count==0:

print("No")

	Input	Expected	Got	
~	5 8 9 12 15 3 11	Yes	Yes	~
~	6 2 9 21 32 43 43 1 4	No	No	*
~	6 13 42 31 4 8 9 17	Yes	Yes	*

4. Given an array nums containing n distinct numbers in the range [0, n], return the only number in the range that is missing from the array.

Example 1:

Input: nums = [3,0,1]

Output: 2

Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3].

2 is the missing number in the range since it does not appear in nums.

Example 2:

Input: nums = [0,1]

Output: 2

Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2].

2 is the missing number in the range since it does not appear in nums.

Example 3:

Input: nums = [9,6,4,2,3,5,7,0,1]

Output: 8

Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9].

8 is the missing number in the range since it does not appear in nums.

program:

def missingNumber(n):

```
count=0
flag=0
p=len(n)-1
for i in range(p):
  count+=1
  if count not in n:
     flag=1
  if flag = 1:
     break
if flag = = 1:
  return count
else:
  return n[p]+1
                           Expected Got
```


5. Given an array of integers nums which is sorted in ascending order, and an integer target, write a function to search target in nums. If target exists, then return its index. Otherwise, return -1.

You must write an algorithm with O(log n) runtime complexity.

Example 1:

Input: nums = [-1,0,3,5,9,12], target = 9

Output: 4

Explanation: 9 exists in nums and its index is 4

Example 2:

```
Input: nums = [-1,0,3,5,9,12], target = 2
Output: -1
Explanation: 2 does not exist in nums so return -1
```

Constraints:

```
• 1 <= nums.length <= 10<sup>4</sup>
• -104 < nums[i], target < 104
• All the integers in nums are unique.
```

• nums is sorted in ascending order.

```
Programdef search(num: list[int], target: int) -> int:
```

```
count=0
flag=0
for i in range(len(num)):
  if num[i]==target:
     count=i
     flag=1
     break
if flag = 1:
  return count
else:
  return -1
```

	Test	Expected	Got	
~	<pre>print(missingNumber([3,0,1]))</pre>	2	2	~
~	<pre>print(missingNumber([0,1]))</pre>	2	2	~
~	print(missingNumber([9,6,4,2,3,5,7,0,1]))	8	8	~

Passed all tests! 🗸

6. Write a Python program for binary search.

For example:

Input	Result
1,2,3,5,8 6	False
3,5,9,45,42 42	True

```
Program:
```

```
a=list(map(int,input().split(',')))
b=int(input())
c=0
flag=0
d=len(a)
a.sort()
while c<d:
  p=(c+d)//2
  if a[p] == b:
    print("True")
    flag=1
     break
  elif b<a[p]:
    d=p
  else:
    c=p+1
```

if flag==0:

print("False")

	Input	Expected	Got	
~	1,2,3,5,8	False	False	*
~	3,5,9,45,42 42	True	True	*
~	52,45,89,43,11 11	True	True	*
isse	ed all tests! 🗸			

7. Given an list, find peak element in it. A peak element is an element that is greater than its neighbors.

An element a[i] is a peak element if

 $A[i-1] \le A[i] \ge a[i+1]$ for middle elements. $[0 \le i \le n-1]$

 $A[i-1] \le A[i]$ for last element [i=n-1]

A[i] > = A[i+1] for first element [i=0]

Input Format

The first line contains a single integer n, the length of A. The second line contains n space-separated integers, A[i].

Output Format

Print peak numbers separated by space.

Sample Input

5

891026

Sample Output

10 6

Program:

a=int(input())

b=list(map(int,input().split()))

c=[]

```
d=len(b)-1
if a > 1:
  if b[0]>b[1]:
     c.append(b[0])
  if b[d]>b[d-1]:
     c.append(b[d])
for i in range(1,d-1):
  m=i-1
  n=i+1
  if b[i]>b[m] and b[i]>b[n]:
     c.append(b[i])
c.sort(reverse=True)
print(*c)
     Input
                  Expected Got
                  15 10 9 6 15 10 9 6
     15 7 10 8 9 4 6
```

Input Expected Got

7
15 7 10 8 9 4 6 15 10 9 6 15 10 9 6

4
12 8 12 8

Passed all tests!

Fraction of the property of the

8. Two string values S1, S2 are passed as the input. The program must print first N characters present in S1 which are also present in S2.

Input Format:

The first line contains S1.
The second line contains S2.
The third line contains N.

Output Format:

Example Input/Output 1:

Input:
abcbde
cdefghbb
3

Output:

bcd

Note:

b occurs twice in common but must be printed only once.

Program:

a=input()

 $9. \, String \, should \, contain \, only \, the \, words \, are \, not \, palindrome.$

Sample Input 1

Passed all tests! 🗸

b=input()

Malayalam is my mother tongue

Sample Output 1

is my mother tongue

program:

w=input().split(' ')

u=""

```
for i in w:

i=i.lower()

if i!=i[::-1]:

u+=i+" "

print(u)
```

	Input	Expected	Got	
~	Malayalam is my mother tongue	is my mother tongue	is my mother tongue	~
Pass	sed all tests! 🗸			

10. Given two Strings s1 and s2, remove all the characters from s1 which is present in s2.

Constraints

1<= string length <= 200

Sample Input 1

experience enc

Sample Output 1

xpri

program:

a=input()

b=input()

c=""

for i in a:

if i not in b:

c+=i

print(c)

