Week 5 Lecture 1

Jared Brannan

September 29, 2021

1 Administrative drivel

- A few exams still need to be collected
- The first draft (polished!) is due Friday at Noon

2 More on Cells

- Parts of cells:
 - Membrane seperates in from out
 - Cytoplasm liquid inside the ceell
 - * bulk of the volume
 - Organelles membrane-bound structures inside the cell
 - * Mitochondria (all eukariotes have) double membrane bound
 - · thought to previously have been independent organisms
 - · traded some of its genetic material with the genetic material of the host
 - · reproduce independently of the cell
 - · called the endo-symbiot hypothesis
 - · Mitochondria are calleld the "powerhouse" of the cell
 - * Chloroplasts just in plant cells for photosynthesis double membrane bound
 - · Same sub items as mitochondria above, sans powerhouse
 - * there are other organelles that are similar to these
 - * organelles do work for the cell
- clicker q: What would the best transport mechanism be for moving a charged ions accross a membrane from high to low concentration? Facilitated diffusion. (not passive diffusion, since ions can't cross the membrane on their own)

2.1 Some organelles

- Nucleus
 - only in eukareotic cells
 - a prominant structure in the cell, one of the larger
 - primary function: house the DNA
 - parts: Nucleolus, Chromatin, Nuclear envelope, nuclear pore
 - membrane bound, has 2 membranes
 - surface covered in openings called nuclear pores that allow bigger things through

- * allows mRNA to get out
- * many other things can get through, but are beyond this course
- Transciption takes place inside, producing mRNA
- Nucleolus is involved in managing the chromosomes and DNA (unwinding, rewinding, transcription things, blah)
- Endoplasmic reticulum is attached to the outside (where the protiens are built)
- Chromotin:
 - * Is the DNA
 - * is an unwound chromosome
 - * DNA is wrapped around histones (proteins that give structure and organization to the chromosome)
 - * these bundles around the histones are called nucleosomes
 - * these are further wrapped into chromosomes
 - * the structure is so small that enzymes and other molecules cant get to the information to make mRNA without unwinding the DNA.
 - * this is outside the nucleolus
 - * DNA structure:
 - · DNA is a double-helix, but the two helices are separate molecules. These two helices are held together with hydrogen bonds
 - · one helice is used to make an mRNA during transcription, and the other is used for error correction.
- First step in synthesizing a protein:
 - * A section of DNA (i.e. a gene) is copied into a strand of mRNA
 - DNA unzipped
 - Commplementary copy made
 - DNA rezips
- Endopllasmic reticulum (ER)
 - This is the membrane system close to and connected to the nucleus
 - mRNA leaves the nucleus through a pore and into the ER
 - is continuous with the membrane of the nucleus
 - there is a rough and smooth ER
 - * the rough has ribosomes on it between layers
 - · ribosomes run the translation to build the polypeptites that will fold into proteins
 - · mRNA is read from one end to the other fand assembles the amino acid chain. (there's a start code and a stop code)
 - · reads a codon, grabs the amino acid and adds to the chain, then to the next codon, adds the amino acid, and so on.
 - · there are thousands, and each mRNA goes to exactly one ribosome
 - · made up of 80-90 protiens
 - the polypeptide is released in the inner layers of the endoplasmic reticulum, where it's transported to an end of the ER, where a little vesel is formed to be transported to the gulgi appearatus
 - * rough is directly connected to the nucleus and the smooth is connected to the rough
 - * smooth doesn't have any ribosomes, hence it is smooth
 - · doesn't recieve direct instruction from the nucleus
 - · produces fatty acids and steroids

- these are coded for indirectly (no genes)
- \cdot proteins that have been made in the rough ER come back from the gulgi aperatus to build fatty acids and steroids.
- hollow, with an internal space, and a space between layers
- 2 functions: smooth for lipids, rough for protiens
 - * the resultant molecules are retained or exocytoesd for use elsewhere
 - * protiens go to the Golgi aperatus where it's modified to become a functional protien (e.g. ends might be cut off)
 - * lipids are modified in the Golgi aperatus as well
- clicker Q: What do the blobs (green ribosomes) do? Translate mRNA sequence into a chain of amino acids