PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		
	١	(11) International Publication Number: WO 97/08
C07C 45/50, 67/347, 69/716, B01J 31/28	A1	(43) International Publication Date: 6 March 1997 (06.0
 21) International Application Number: PCT/U 22) International Filing Date: 15 August 1996 	JS96/133 5 (15.08.9	BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
30) Priority Data: 08/519,836 25 August 1995 (25.08.95) ī	Published With international search report.
71) Applicants: E.I. DU PONT DE NEMOURS AND C [US/US]; 1007 Market Street, Wilmington, DE 1 DSM N.V. [NL/NL]; Het Overloon 1, NL-6411 (NL).	9898 (U	
72) Inventors: BURKE, Patrick, Michael; 4613 Talley Wilmington, DE 19803-4815 (US). GELLING, Maaslaan 62, NL-6163 KL Geleen (NL). OHenk; Burg Eussenstraat 46, NL-6181 BR STOTH, Imre; Henri Hermanslaan 48, NL-6162 (NL).	Onko, Ja EVERIN Stein (NI	
74) Agent: DEITCH, Gerald, E.; E.I. du Pont de Ne Company, Legal Patent Records Center, 1007 Ma Wilmington, DE 19898 (US).	mours a rket Stre	

(54) Title: HYDROFORMYLATION PROCESS

(57) Abstract

A hydroformylation process for the production of linear aldehydes of an olefin, with hydrogen and carbon monoxide in a solvent containing a catalyst having a platinum component, a bidentate diaryl phosphine component where the bridging group is ferrocenyl, and an acid promotor component.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	ТJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

TITLE

Hydroformylation Process

5 Field of the Invention

This invention relates to the hydroformylation of olefins to form the corresponding linear aldehyde.

10 Background of the Invention

15

Botteghi et al. in <u>Journal of Organometallic</u> Chemistry 417 (1991) C41-C45 in an article titled "Hydroformylation of olefins catalyzed by alkene complexes of platinum(0)" disclose hydroformylation using a bidentate phosphino compound, a platinum catalyst, and an acid promoter in an organic solvent. This article notes: "..., internal double bonds are rather unreactive as shown by the hydroformylation of cyclohexene...."

U.S. Patent 4,528,278 to Hsu describes a hydroformylation catalyst comprising a platinum compound, a ferrocene derived ligand and a Group IV metal halide.

An object of the present invention is to 25 provide a process for the hydroformylation of olefins to form linear products.

Summary of the Invention

The present invention is a process for the
preparation of linear aldehyde which comprises
contacting an olefin, hydrogen and carbon monoxide in a
solvent containing a dissolved catalyst comprising (a)
a platinum compound free of anionic halide, (b) a
bidentate diaryl phosphine ligand having the formula
Ar2P-Q-Ar2P where Q is a ferrocenyl group and each Ar
group has 6 to 15 carbon atoms, (c) an acid promoter
selected from (1) sulfonic acids having a pKa in water
of less than -3, (2) tetrafluoroboric acid, (3) a

fluorine substituted aryl boronic acid of the formula: [HZ]+[B(Ph)4]- where Z is an oxygen containing Lewis base and Ph is a fluorine or trifluoromethyl substituted phenyl group, and (4) hexafluorophosphoric acid and where the ratio (c) to (a) is in the range 0.5/1 to 3/1, and where the ratio of (b) to (a) is in the range 1.0/1 to 1.5/1.

Preferably, the olefin contains 4 to 10 carbon atoms.

The process may effectively be carried out at a temperature in the range of 80 to 120°C and the carbon monoxide partial pressure and hydrogen partial pressure is in the range of 200 to 2000 pounds per square inch.

The present invention is also a composition comprising solvent containing a dissolved catalyst comprising, (a) a platinum compound free of anionic halide, (b) a bidentate diaryl phosphine ligand having the formula Ar₂P-Q-PAr₂ where Q is a ferrocenyl group and each Ar group has 6 to 15 carbon atoms, and (c) an acid promoter selected from (1) sulfonic acids having a pKa in water of less than -3, (2) tetrafluoroboric acid, (3) a fluorine substituted aryl boronic acid and hexafluorophosphoric acid; and where the ratio (c) to (a) is in the range 0.5/1 to 3/1, and where the ratio of (b) to (a) is in the range 1.0/1 to 1.5/1.

Suitable solvents include acetonitrile, adiponitrile, methylglutaronitrile, dimethyladipate, valerolactone, methylisobutylketone, methylene chloride, sulfones, such as sulfolane, mixtures of one of the above nitriles and toluene, and homogenous mixtures of the above nitriles and water. When the process of the present invention is operated in a continuous manner, the product will be removed from the solvent and the solvent recycled, and gradually the composition of the solvent will change as more an more by-products of the reaction remain in the recycled solvent.

30

35

One of the preferred bidentate diaryl phosphine ligand having the formula $Ar_2P-Q-PAr_2$ is 1,1'bis(diphenylphosphino)ferrocene.

One of the preferred acid promoters is trifluoromethanesulfonic acid.

<u>Detailed Description</u>

Suitable olefins for hydroformylation into linear aldelydes include: (1) pentenoic acid esters

10 such as 2- and 3-pentenoic acid esters where the non-pentenoic acid portion is from a hydrocarbon alcohol. The hydrocarbon alcohol may be saturated or unsaturated, aliphatic or aromatic; but usually will have from 1 to 8 carbon atoms, (2) 2 and 3-pentenoitriles, (3) 2-, and 3-pentenoic acids, and (4) hydrocarbon olefins such as 4-octene, 2-butene, and 2-hexene.

The organic solvent for use in the process should dissolve the platinum catalyst compound, the 20 compound to be hydroformylated, the bidentate diarylphosphine ligand, the acid promoter, and the product. Stated another way, the solvent should provide a homogenous reaction mixture. Suitable solvents include acetonitrile, adiponitrile, 25 methylglutaronitrile, dimethyladipate, caprolactone, dichloromethane, 2-butanone, propylenecarbonate, valerolactone, methylisobutylketone, methylene chloride, mixtures of one of the above nitriles and toluene, homogenous mixtures of the above nitriles and water, and sulfones, such as sulfolane. When the 30 process of the present invention is operated in a continuous manner, the product will be removed from the solvent and the solvent recycled, and gradually the composition of the solvent will change as more an more by-products of the reaction remain in the recycled 35 solvent.

The platinum component of the catalyst must be free of anionic halide, but may contain covalent

halide, e.g., fluorinated beta-diketonate.

Platinum(II) beta-diketones, platinum (II) carboxylates, and platinum complexes such as Pt(cyclooctadiene)2 may be the platinum catalyst component.

The acid promoter component of the catalyst is selected from (1) sulfonic acids having a pKa in water of less than -3, (2) tetrafluoroboric acid, (3) a fluorine substituted aryl boronic acid and hexafluorophosphoric acid. Trifluoromethanesulfonic acid is one of the preferred acid. Some acids of the formula: HB(Ar)₄, specifically [(3,5-(CF₃)₂C₆H₃)₄B]-[H(OET)₂)]+ are also quite effective. (This is the etherate solvate of the free acid). See: Brookhart, M.; Grant, B.; and Volpe, Jr., A. F. Organometallics, 1992, 11, 3920.

The bidentate diaryl phosphine ligand having the formula $Ar_2P-Q-PAr_2$ where Q a ferrocenyl group and each of the Ar groups contain 6 to 15 carbon atoms include such compounds as:

- 1,1-Bis(diphenylphosphino)ferrocene;
 1,1'Bis(di-m-fluorophenylphosphino)ferrocene;
 1,1'Bis(di-p-methylphenylphosphino)ferrocene;
 1,1'Bis(diphenylphosphino)3,3'(trimethylsilyl)ferrocene;
- 25 1,1'Bis(di-p-trifluoromethylphenylphosphino)ferrocene; and, 1,1'Bis(di-
 - 3,5 (bis (triflouromethyl) phenylphosphino) ferrocene.

The present invention is a process for the preparation of linear aldehyde which comprises

30 contacting an olefin, hydrogen and carbon monoxide in a solvent containing a dissolved catalyst comprising (a) a platinum compound free of anionic halide, (b) a bidentate diaryl phosphine ligand having the formula Ar2P-Q-Ar2P where Q is a ferrocenyl group and each Ar group has 6 to 15 carbon atoms, (c) an acid promoter selected from (1) sulfonic acids having a pKa in water of less than -3, (2) tetrafluoroboric acid, (3) a fluorine substituted aryl boronic acid and

hexafluorophosphoric acid and where the ratio (c) to (a) is in the range 0.5/1 to 3/1, and where the ratio of (b) to (a) is in the range 1.0/1 to 1.5/1.

In order to be most effective the ratio acid
promoter to platinum compound should be is in the range
0.5/1 to 3/1, and the ratio of bidentate diaryl
phosphine ligand to platinum compound should be in the
range 1.0/1 to 1.5/1. The platinum component should be
in the reaction mixture to the extent of 500 to 5000
parts per million parts of the reaction mixture. The
usual amount of platinum component will be about 2000
parts per million parts of reaction mixture.

The process can be operated at a temperature range of 70 to 120°C, preferably at a temperature in the range of 90° - 110°C.

EXAMPLES

Example 1

15

20

25

30

35

Hydroformylation of Hexene-2 with Pt(AcAc)₂ + DPPF + Trifluoromethanesulfonic Acid, also called Triflic Acid in 4/1 Toluene-acetonitrile Solvent

A 25 ml glass lined shaker tube was charged with 5 ml of a solution containing 0.42 g (5 mmole) 2-hexene, 19.6 mg (0.05 mmole) platinum acetylacetonate (Pt(AcAc)₂), 6.0 mg (0.04 mmoles) triflic acid and 50 mg tetradecane (internal GC standard) in a solvent consisting of 4 parts by weight of toluene to 1 part by weight of acetonitrile. To this solution was added 35 mg (0.0625 mmole) of 1,1'Bis(diphenylphosphino) ferrocene (DPPF).

The shaker tube was freed from air by purging first with 100 psi nitrogen (twice) and then with 1:1 $\rm CO/H_2$ (twice). The tube was then pressurized to 700 psi $\rm CO/H_2$ and heated 100°C over 20 minutes. The pressure was then adjusted with 1:1 $\rm CO/H_2$ to 1000 psi at 100°C. The temperature was maintained at 100°C with shaker agitation for 6 hours. The heat was shut off,

and the shaker tube was allowed to cool to 25-35°C. The excess $\rm CO/H_2$ was vented, and the product was analyzed on a capillary GC column. The results are summarized in Table 1.

5

		Mole %	<u>Selectivities</u>
	Recovered Mixed Hexenes	50.6	
	Products		
	Heptanal	20.7	88.5
10	2-Methylhexanal	1.7	7.2
	2-Methylpentanal	0.3	1.3
	Hexane	0.7	2.3
	Linearity	91.3%	

15

20

25

30

35

The results demonstrate the very high selectivity to the linear product, from an internal olefin using the above platinum catalyst. Thus, the selectivity to the desired product, heptanal is >88% at 23% conversion to aldehydes and the linearity (100* Heptanal/(all aldehydes)) is 91.3%.

Note: Selectivity to a product is defined here as: 100*(Moles Product)/Sum of (moles of all products detected by the GC analysis).

In the following examples, the products were analyzed in the same way but the results are expressed in summary form as combined conversion of the olefin and its double bond isomers ("Conv"), selectivity to linear aldehyde ("Sel"), and linearity ("Lin").

Examples 2-7

Hydroformylation of Hexene-1 and Hexene-2 with DPPF Ligand and Various Acid Promoters

The experiment in Example 1 was repeated except that the acid promoter and the hexene isomer were varied and where indicated, the solvent also

contained water (50 or 100 equivalents per Pt). The results are shown in Table 1.

TABLE 1

5

				Water		Sel to	
	$\underline{\mathbf{E}}\mathbf{x}$	<u>Olefin</u>	<u>Acid</u>	<u>Eq/Pt</u>	Conv	<u>Hp-al</u>	<u>Lin</u>
	2	Hexene-2	\mathtt{HBF}_4	50	33.8	90.5	91.5
	3	Hexene-2	Triflic	50	29.0	85.1	86.6
10	4	Hexene-2	HPF ₆	50	28.6	88.7	89.8
	5	Hexene-1	$\mathtt{HBF_4}$	50	75.5	93.5	94.8
	6	Hexene-1	HPF ₆	50	67.4	93.4	94.8
	7	Hexene-1	PFOSA (5/Pt)	0	58.9	82.2	85.2

15

PFOSA = Perfluoro-octanesulfonic acid

The above results demonstrate that high yields of linear aldehyde can be obtained with different strong acid promoters and with both internal and terminal olefins.

Examples 8-10 M4P Hydroformylation

Hydroformylation of Methyl-4-Pentenoate (M4P)

25 with Pt(AcAc)₂ + DPPF + Acid

The experiment in Example 1 was repeated except that the Hexene-2 was replaced with an equivalent amount of methyl-4-pentenoate (M4P). The results are shown in Table 2.

30

TABLE 2

						Sel to	
	Ex	<u>Olefin</u>	Acid	Water	Conv	M5FV	Lin
35	8	M4P	$\mathtt{HBF_4}$	50	89.3	92.5	93.8
	9	M4P	Triflic	50	85.9	89.7	93.1
	10	M4P	HPF6	50	88.8	92.4	93.3

The above results demonstrate that high yields can be obtained with this catalyst system with a terminal functional olefin.

5 Example 11

M3P Hydroformylation with $Pt(AcAc)_2 + Triflic$ Acid in Acetonitrile Solvent

A 25 ml glass lined shaker tube was charged with 5 ml of an acetonitrile solution containing 3.42 g (30 mmole) methyl-3-pentenoate, 19.6 mg (0.05 mmole) Platinum acetylacetonate (Pt(AcAc)₂) and 50 mg tetradecane (internal GC standard). To this solution was added 28 mg (0.05 mmole) of 1,1'-Bis(diphenylphosphino)ferrocene and 6 mg (0.04 mmoles) of triflic acid. The solution was allowed to stand in a nitrogen atmosphere for 18 hours before commensing the hydroformylation.

The shaker tube was freed from air by filling first with 100 psi nitrogen (twice) and then with 1:1

20 CO/H₂ (twice). The tube was then pressurized to 700 psi CO/H₂ and heated 100°C over 20 minutes. The pressure was then adjusted with 1:1 CO/H₂ to 1000 psi at 100°C. The temperature was maintained at 100°C with shaker agitation for 6 hours. The heat was shut off, and the shaker tube was allowed to cool to 25-35°C. The excess CO/H₂ was vented, and the product was analyzed for methyl esters and formylvalerates on a capillary GC column. The results are summarized in Table 3.

30

35

Examples 12-17

M3P Hydroformylation with $Pt(AcAc)_2$ + Triflic Acid + DPPF or Various Substituted DPPF Ligands in Acetonitrile Solvent

The experiment in Example 11 was repeated, except that the ligand was varied to include 1,1'-Bis(diphenylphosphino)ferrocenes substituted on both the phenyl rings and the ferrocenyl moiety. The ratio

of ligand to Pt and of triflic acid to Pt and the temperature were also varied. The results are shown in Table 3.

5 TABLE 3

			Lig/	Trif/			Sel to		
	$\mathbf{E}\mathbf{x}$	Ligand	<u>Pt</u>	Pt_	<u>Temp</u>	$\underline{\mathtt{Conv}}$	M5FV	<u>Lin</u>	Aldol
	11	DPPF	1.00	0.8	100	69.1	81.1	91.9	7.1
10	12	Ligand A	1.0	0.8	100	64.4	65.9	90.7	19.5
	13	Ligand B	1.0	0.8	100	24.8	64.5	81.2	2.4
	14	Ligand C	1.0	0.8	100	50.2	75.3	89.2	7.8
	15	DPPF	0.75	1.2	105	31.4	59.1	77.9	13.2
	16	DPPF	1.5	1.0	115	53.3	79.3	92.2	1.5
15	17	DPPF	1.5	0.7	95	27.7	87.3	91.4	0.0

DPPF = 1,1'-Bis(diphenylphosphino)ferrocene
Ligand A = 1,1'-Bis(di-m-

fluorophenylphosphino) ferrocene

Ligand B = 1,1'-Bis(di-p-tolylphosphino)ferrocene
Ligand C = 1,1'-Bis(diphenylphosphino)-3,3'bis(trimethylsilyl)ferrocene

These ligands have the following structural formulas:

The results show that an internal functional olefin (M3P) can be hydroformylated with high selectivity to the linear aldehyde with an acid promoted Pt catalyst and DPPF or its substituted derivatives.

Examples 18-21

1-Hexene Hydroformylation in Sulfolane Solvent

The experiment in Example 1 was repeated except that the olefin was Hexene-1, the solvent was sulfolane and an external GC standard was used for the analysis. In some examples, water or acetonitrile was used as a co-promoter for the Pt catalyst. The results are shown in Table 4.

10

25

TABLE 4

		DPPF/	Trif/	Co-Pro			Sel to	
	Ex	_Pt_	Pt	moter	CP/Pt	Conv	M5FV	<u>Lin</u>
15	18	1.25	0.8	None		90.3	86.1	86.6
	19	1.25	0.8	Water	50	88.6	87.4	88.0
	20	1.25	0.8	CH3CN	50	93.1	91.3	91.8
	21	1.25	0.8	CH ₂ CN	400	92.1	92.1	92.6

20 CP/Pt = Co-promoter to platinum mole ratio

The results show that high rates and selectivities can be obtained in sulfolane solvent and that rates and selectivities can be further enhanced in the presence of water or acetonitrile.

Examples 22-27

3-Pentenoic Acid Hydroformylation

The experiment in Example 1 was repeated

30 except that the methyl-3-pentenoate was replaced with
an equivalent amount of 3-pentenoic acid, the platinum
source was Pt(AcAc)₂ and the water and acid promoter
were varied. The products were analyzed directly as
the formyl acids on a capillary GC column. The results
35 are summarized in Table 5.

TABLE 5

			Acid/			_		Sel to	
	$\mathbf{E}\mathbf{x}$	<u>Acid</u>	<u>Pt</u>	Ligand	<u> Pt</u>	<u> Pt</u>	Conv	<u> 5FVA</u>	<u>Lin</u>
5	22	Triflic	0.8	DPPF	1.25	50	83.3	85.1	91.0
	23	Triflic	1.0	DPPF	1.25	50	71.4	65.7	83.2
	24	Triflic	1.0	DPPF	1.25	0	66.3	49.5	72.7
	25	HBF ₄ (54% aq)		DPPF	1.25	50	69.1	81.9	90.7
10	26	HPF ₆ (60% aq)	1.0	DPPF	1.25	50	80.3	83.8	90.8
	27	PFOSA	5.0	DPPF	1.25	50	90.2	83.6	90.1

The results show that very high yield of 5formylvaleric acid can be obtained from 3-pentenoic
acid with the acid promoted platinum catalysts of this
invention. Further, it can be seen that yields are
improved by adding a small quantity of water (e.g.,
about 50 equivalents of water per equivalent of Pt).

20

25

Examples 28 3PN Hydroformylation

The experiment in Example 1 was repeated except that the M3P was replaced with 3-pentenenitrile (3PN), the mole ratio of water to Pt was 20. The products (formylvaleronitriles and valeronitrile) were analyzed directly by capillary GC. The results are summarized in Table 6.

TABLE 6

30

		Lig/		Sel to		
Ex	Ligand	<u>Pt</u>	Conv	<u> 5FVN</u> *	<u>Lin</u>	Acctg
28	DPPF	1.25	9.3	76.8	92.2	99

35 The results show that 3PN gives primarily linear product with this catalyst system.

^{*5}FVN = 5-formylvaleronitrile

What is Claimed is:

25

A process for the preparation of linear aldehyde which comprises contacting an olefin, hydrogen and carbon monoxide in a solvent containing a dissolved catalyst comprising (a) a platinum compound free of anionic halide, (b) a bidentate diaryl phosphine ligand having the formula Ar2P-Q-Ar2P where Q is a ferrocenyl group and each Ar group has 6 to 15 carbon atoms, (c) an acid promoter selected from (1) sulfonic acids having a pKa in water of less than -3, (2) 10 tetrafluoroboric acid, (3) a fluorine substituted aryl boronic acid of the formula: [HZ]+[B(Ph)4]- where Z is an oxygen containing Lewis base and Ph is a fluorine or trifluoromethyl substituted phenyl group, and (4) 15 hexafluorophosphoric acid and where the ratio (c) to (a) is in the range 0.5/1 to 3/1, and where the ratio of (b) to (a) is in the range 1.0/1 to 1.5/1.

- 2. The process of claim 1 in which the olefin contains 4 to 10 carbon atoms.
- 3. The process of claim 1 in which the olefin is a methyl pentenoate and the linear aldehyde is methyl-5-formylvalerate.
 - 4. The process of claim 1 in which the solvent is selected from the group consisting of acetonitrile, adiponitrile, methylglutaronitrile, dimethyladipate, valerolactone, methylisobutylketone, methylene chloride, mixtures of one of the above nitriles and toluene, and mixtures of the above nitriles and water.
- 5. The process of claim 1 in which the temperature is in the range of 80 to 120°C and the carbon monoxide partial pressure is in the range of 250 to 3000 pounds per square inch.
- 6. A composition comprising solvent

 35 containing a dissolved catalyst comprising (a) a
 platinum compound free of anionic halide, (b) a
 bidentate diaryl phosphine ligand having the formula

 Ar₂P-Q-PAr₂ where Q is a ferrocenyl group and each Ar

group has 6 to 15 carbon atoms, and (c) an acid promoter selected from (1) sulfonic acids having a pKa in water of less than -3, (2) tetrafluoroboric acid, (3) a fluorine substituted aryl boronic acid of the formula: [HZ]+[B(Ph)4]- where Z is an oxygen containing Lewis base and Ph is a fluorine or trifluoromethyl substituted phenyl group, and (4) hexafluorophosphoric acid; and where the ratio (c) to (a) is in the range 0.5/1 to 3/1, and where the ratio of (b) to (a) is in the range 1.0/1 to 1.5/1.

7. The composition of claim 6 in which the solvent the selected from the group consisting of acetonitrile, adiponitrile, methylglutaronitrile, dimethyladipate, valerolactone, methylisobutylketone, methylene chloride, mixtures of one of the above nitriles and toluene, and mixtures of the above nitriles and water.

15

INTERNATIONAL SEARCH REPORT

L ational Application No
PCT/US 96/13352

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07C69	9/716 B01J31/28	
According t	o International Patent Classification (IPC) or to both national cla	assification and IPC	
	SEARCHED		
Minimum d IPC 6	locumentation searched (classification system followed by classifi CO7C BO1J	ication symbols)	
Documentat	tion searched other than minimum documentation to the extent th	hat such documents are included in the fields so	earched
Electronic d	lata base consulted during the international search (name of data	base and, where practical, search terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relevant to claim No.
Υ	EP 0 220 767 A (SHELL INT RESEATIONS 1987) see the whole document	ARCH) 6 May	1-5
Y	EP 0 529 698 A (SHELL INT RESEA March 1993 see the whole document	ARCH) 3	1-5
Y	EP 0 495 547 A (SHELL INT RESEATION 1992 see the whole document	ARCH) 22	1-5
Fur	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
-	ategories of cited documents: ment defining the general state of the art which is not	"T" later document published after the int or priority date and not in conflict w cited to understand the principle or t	ith the application but
consi "E" earlier	dered to be of particular relevance r document but published on or after the international state	invention "X" document of particular relevance; the	claimed invention
which citati "O" docur	nent which may throw doubts on priority claim(s) or h is cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means	"Y" document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious properties.	: claimed invention nventive step when the nore other such docu-
"P" docum	ment published prior to the international filing date but than the priority date claimed	in the art. "&" document member of the same pater	t family
	e actual completion of the international search 11 December 1996	Date of mailing of the international s	
ļ	i mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	,
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bonnevalle, E	

INTERNATIONAL SEARCH REPORT

Information on patent family members

L ational Application No PCT/US 96/13352

Patent do cited in sear		Publication date	Patent fam member(s		Publication date
EP-A-02	20767	96-05-87		2106038 4731487	16-05-87 15-03-88
EP-A-05	29698 6	93-03-93	CN-A- 1 DE-D- 69 ES-T- 2 JP-A- 5	2077007 1069960 9214572 2092627 5246916 5214220	01-03-93 17-03-93 21-11-96 01-12-96 24-09-93 25-05-93
EP-A-04	95547 2	22-07-92	CA-A- CN-A- DE-D- DE-T- DE-D- EP-A- ES-T- ES-T- JP-A- JP-A-	2059233 2059236 1063277 9204691 9204691 9210054 9495548 2088082 2077337 5058949 1334340 5210280	16-07-92 16-07-92 05-08-92 19-10-95 11-04-96 30-05-96 22-07-92 01-08-96 16-11-95 09-03-93 20-11-92