Network Security II IP and TCP

CSE 565 - Fall 2025 Computer Security

Hongxin Hu (hongxinh@buffalo.edu)

Updates

- Project 2 SQL Injection Attack
 - Deadline: Thursday, October 7
- Assignment 2
 - Deadline: Tuesday, October 9
- Midterm Exam
 - Thursday, October 16

Midterm Exam

- Question 1: True/False questions. (10 points)
- Question 2: Multiple-choice questions. (20 points)
- Question 3: Short Answer questions. (50 points)
- Question 4: Lab 1 question. (10 points)
- Question 5: Lab 2 questions. (10 points)

Updates

- Survey 1 Large Language Model Security
 - Deadline:
 - Thursday, October 23, 2024

Updates

Survey Papers

- Structure
 - Title
 - Abstract
 - Introduction
 - Main Techniques
 - Issues and Problems
 - Future Trends
 - Reference (less than 10)
- Page limit
 - 3-4 pages excluding references
- Please use the following IEEE paper template to prepare your survey paper:
 - https://www.ieee.org/conferences/publishing/templates.html

Internet Communication

Internet Protocol (IP)

Connectionless

- Each packet is transported independently from other packets
- Unreliable
 - Delivery on a best effort basis
 - No acknowledgments

- Packets may be lost, reordered, corrupted, or duplicated
- IP packets
 - Encapsulate TCP and UDP packets
 - Encapsulated into link-layer frames

Data link frame

IP packet

TCP or UDP packet

IP Addresses and Packets

- IP addresses
 - IPv4: 32-bit addresses
 - IPv6: 128-bit addresses
- Address subdivided into network, subnet, and host
 - E.g., 128.148.32.110
- Broadcast addresses
 - E.g., 128.148.32.255
- Private networks
 - not routed outside of a LAN
 - -10.0.0.0/8
 - **–** 172.16.0.0/12
 - **-** 192.168.0.0/16

- IP header includes
 - Source address
 - Destination address
 - Packet length (up to 64KB)
 - Time to live (up to 255)
 - Hop limit
 - IP protocol version
 - Fragmentation information
 - Transport layer protocol information (e.g., TCP)

IP Routing

- A router bridges two or more networks
 - Operates at the network layer
 - Drop: if the packet is expired
 - Deliver: on one of the LANs connected
 - Forward: on different LANs
 - Maintains tables to forward packets to the appropriate network
 - Forwarding decisions based solely on the destination address
- Routing table
 - Maps ranges of addresses to LANs or other gateway routers

Routing on the Internet

Internet Routes

- Internet Control Message Protocol (ICMP)
 - Used for network testing and debugging
 - Simple messages encapsulated in single IP packets
 - Echo request (sender); echo response (reciever)
 - Considered a network layer protocol
- Tools based on ICMP
 - Ping: sends series of echo request messages and provides statistics on roundtrip times and packet loss
 - Traceroute: sends series ICMP packets with increasing TTL value to discover routes

ICMP Attacks

- Ping of death
 - ICMP specifies messages must fit a single IP packet (64KB)
 - Send a ping packet that exceeds maximum size using IP fragmentation
 - Reassembled packet caused several operating systems to crash due to a buffer overflow
- Ping Flood
 - Send a massive amounts of echo requests to a single victim server
- Smurf
 - Ping a broadcast address using a spoofed source address

Smurf Attack

 Use a misconfigured network to amplify traffic intended to overwhelm the bandwidth of a target

IP Vulnerabilities

- Unencrypted transmission
 - Eavesdropping possible at any intermediate host during routing
- No source authentication
 - Sender can spoof source address, making it difficult to trace packet back to attacker
- No integrity checking
 - Entire packet, header and payload, can be modified while route to destination, enabling content forgeries, redirections, and man-in-the-middle attacks
- No bandwidth constraints
 - Large number of packets can be injected into network to launch a denial-ofservice attack
 - Broadcast addresses provide additional leverage

Figure 5.4: Some network-based attacks.

Denial of Service Attack

- Send large number of packets to host providing service
 - Slows down or crashes host
 - Often executed by botnet
- Attack propagation
 - Starts at zombies
 - Travels through tree of internet routers rooted
 - Ends at victim
- IP source spoofing
 - Hides attacker
 - Scatters return traffic from victim

Source:

M.T. Goodrich, Probabalistic Packet
Marking for Large-Scale IP Traceback,
IEEE/ACM Transactions on Networking
16:1, 2008.

IP Traceback

- Problem
 - How to identify leaves
 of DoS propagation tree
- Issues
 - There are more than2M internet routers
 - Attacker can spoof source address
 - Attacker knows that traceback is being

performed

- Approaches
 - Filtering and tracing (immediate reaction)
 - Messaging (additional traffic)
 - Logging (additional storage)
 - Probabilistic marking

Internet Communication

Transmission Control Protocol

- TCP is a transport layer protocol guaranteeing reliable data transfer, inorder delivery of messages and the ability to distinguish data for multiple concurrent applications on the same host
 - Most popular application protocols, including WWW, FTP and SSH are built on top of TCP
- TCP takes a stream of 8-bit byte data, packages it into appropriately sized segment and calls on IP to transmit these packets
- Delivery order is maintained by marking each packet with a sequence number
- Every time TCP receives a packet, it sends out an ACK to indicate successful receipt of the packet.
- TCP generally checks data transmitted by comparing a checksum of the data with a checksum encoded in the packet

Ports

- TCP supports multiple concurrent applications on the same server
- Accomplishes this by having ports, 16 bit numbers identifying where data is directed
 - The TCP header includes space for both a source and a destination port,
 thus allowing TCP to route all data
 - In most cases, both TCP and UDP use the same port numbers for the same applications
 - Ports 0 through 1023 are reserved for use by known protocols.
 - Ports 1024 through 49151 are known as user ports, and should be used by most user programs for listening to connections and the like
 - Ports 49152 through 65535 are private ports used for dynamic allocation by socket libraries

TCP Packet Format

Bit Offset	0-3	4-7	8-15	16-18	19-31	
0	Source Port			Destination Port		
32	Sequence Number					
64	Acknowledgment Number					
96	Offset	Reserved	Flags	Windo	Window Size	
128	Checksum			Urgent Pointer		
160	Options					
>= 160	Payload					

Establishing TCP Connections

- TCP connections are established through a three way handshake.
 - The server generally has a passive listener, waiting for a connection request
 - The client requests a connection by sending out a SYN (synchronization) packet
 - The server responds by sending a SYN/ACK packet, indicating an acknowledgment for the connection

The client responds by sending a concluding ACK to the server thus

TCP Data Transfer and Teardown

10/14/2025 Networks: IP and TCP 23

DoS Attack: SYN Flood

- Typically DOS attack can be combined with other attack such as TCP hijacking
- Rely on sending TCP connection requests faster than the server can process them
 - Attacker creates a large number of packets with spoofed source addresses and setting the SYN flag on these
 - The server responds with a SYN/ACK for which it never gets a response (waits for about 3 minutes each)
 - Eventually the server stops accepting connection requests (full memory), thus triggering a denial of service.
 - Can be solved in multiple ways
 - One of the common way to do this is to use SYN cookies

DoS Attack: SYN Flood

- TCP SYN flooding attack exploits the fact that server waits for ACKs
 - attacker sends many SYN requests with spoofed source addresses
 - victim allocates resources for each request
 - connection requests exist until timeout
 - there is a fixed bound on half-open connections

DoS Attack: SYN Flood

- TCP SYN flooding attack (cont.)
 - o resources exhausted ⇒ legitimate requests rejected
 - the attack relies on the fact that many SYN-ACK packets will be unanswered
 - an existing host replies to a SYN-ACK packet with RST
 - many IP addresses are not in use
 - the attacker needs to keep sending new SYN packets to keep the table full
- Flooding attacks in general can use any type of packets.
 - e.g., ICMP flood, UDP flood, TCP SYN flood
- In any attack with spoofed addresses, it is hard to find attacker

DDoS Attacks

- In all of the above attacks, attacker needs to have substantial resources
 - thus attacks are more effective if carried out from many sources
 - they are called distributed DoS (DDoS) attacks
- DDoS attacks often use compromised computers (zombies)
 - attacker compromised machines and builds a botnet
 - attacker instructs the bots to attack the target machine
 - all communication is often encrypted, can be authenticated
 - zombie machines flood the victim
 - spoofing IP addresses is not necessary since it is hard to trace the attacker from the zombie machines

DDoS Attacks

DDoS attack illustrated

Defenses Against DoS Attacks

- A significant challenge in defending against DoS attacks is that spoofed addresses are used
- What can be done
 - ingress filtering
 - basic recommendation to check that packets coming from a network have source address within the network's range
 - ISPs are best suited to perform such filtering
 - despite its simplicity and effectiveness, this recommendation is not implemented by many ISPs

Defenses Against DoS Attacks

- DoS defenses (cont.)
 - SYN cookies
 - this technique is used to defend against TCP SYN floods
 - after receiving a SYN, information about it is not stored the server
 - instead it is encoded in the SYN-ACK packet
 - upon receiving ACK, server can reconstruct all information
 - disadvantages: increased server computation
 - blocking certain packets
 - many systems block ICMP echo requests from outside of network
 - often IP broadcasts are also blocked from outside

Defenses Against DoS Attacks

- DoS defenses (cont.)
 - limiting packet rates
 - certain types of packets such as ICMP are rather rare in normal network operation
 - limiting their rate can help mitigate attacks
 - packet marking
 - a router marks a small number of packets with its ID
 - for high volume traffic, packets will be marked by most servers on their path to the victim
 - path to the attacker can be reconstructed
 - effectiveness of this technique depends on its wide usage
 - general good security practices

TCP Session Hijacking

- A security attack over a protected network
- Attempt to take control of a network session
 - Sessions are server keeping state of a client's connection
 - Servers need to keep track of messages sent between client and the server and their respective actions
- Most networks follow the TCP/IP protocol
- IP Spoofing is one type of hijacking on large network

Figure 5.18: A TCP session hijacking attack.

IP Spoofing

- IP Spoofing is an attempt by an intruder to send packets from one IP address that appear to originate at another
- If the server thinks it is receiving messages from the real source after authenticating a session, it could inadvertently behave maliciously
- There are two basic forms of IP Spoofing
 - Blind Spoofing
 - Attack from any source
 - Non-Blind Spoofing
 - Attack from the same subnet

Packet Sniffers

- Packet sniffers "read" information traversing a network
 - Packet sniffers intercept network packets, possibly using ARP cache poisoning
 - Can be used as legitimate tools to analyze a network
 - Monitor network usage
 - Filter network traffic
 - Analyze network problems
 - Can also be used maliciously
 - Steal information (i.e. passwords, conversations, etc.)
 - Analyze network information to prepare an attack
- Packet sniffers can be either software or hardware based
 - Sniffers are dependent on network setup

Packet Sniffers - Wireshark

Figure 5.13: An example use of the Wireshark packet-sniffing tool. Here, the packet associated with an HTTP request to www.example.com has been captured and analyzed.

Detecting Sniffers

- Sniffers are almost always passive
 - They simply collect data
 - They do not attempt "entry" to "steal" data
- This can make them extremely hard to detect
 - Most detection methods require suspicion that sniffing is occurring
 - Then some sort of "ping" of the sniffer is necessary
 - It should be a broadcast that will cause a response only from a sniffer
 - Another solution on switched hubs is ARP watch
 - An ARP watch monitors the ARP cache for duplicate entries of a machine
 - If such duplicates appear, raise an alarm
 - Problem: false alarms
 - Specifically, DHCP networks can have multiple entires for a single machine
- To reduce the impact of packet sniffing, encryption mechanisms should be utilized in higher-level protocols to prevent attackers from recovering sensitive data

Stopping Packet Sniffing

- The best way is to encrypt packets securely
 - Sniffers can capture the packets, but they are meaningless
 - Capturing a packet is useless if it just reads as garbage
 - SSH is also a much more secure method of connection
 - Private/Public key pairs makes sniffing virtually useless
- On switched networks, almost all attacks will be via ARP spoofing
 - Add machines to a permanent store in the cache
 - This store cannot be modified via a broadcast reply
 - Thus, a sniffer cannot redirect an address to itself
- The best security is to not let them in the first place
 - Sniffers need to be on your subnet in a switched hub in the first place
 - Any solution for wireless networks?

User Datagram Protocol

- UDP is a stateless, unreliable datagram protocol built on top of IP, that is it lies on level 4
- It does not provide delivery guarantees, or acknowledgments, but is significantly faster
- Can however distinguish data for multiple concurrent applications on a single host.
- A lack of reliability implies applications using UDP must be ready to accept a fair amount of error packages and data loss.
 Some application level protocols such as <u>TFTP</u> build reliability on top of UDP.
 - Most applications used on UDP will suffer if they have reliability. VoIP,
 Streaming Video and Streaming Audio all use UDP.

Network Address Translation(NAT)

- Introduced in the early 90s to alleviate IPv4 address space congestion
- Relies on translating addresses in an internal network, to an external address that is used for communication to and from the outside world
 - NAT is usually implemented by placing a <u>router</u> in between the internal *private* network and the *public* network.
- Saves IP address space since not every terminal needs a globally unique IP address, only an organizationally unique one

Translation

Router has a pool of private addresses
 192.168.10.0/24

private realm global realm

s=192.168.10.237
d=128.148.36.11
s=128.148.36.11
d=192.168.10.237

192.168.10.237

NAT route

global realm

s=128.148.36.179
d=128.148.36.11
d=128.148.36.11
d=128.148.36.11
NAT route

Figure 5.17: An example home network setup using a NAT router.

Questions & Suggestions?