Subjectul D. OPTICĂ

Nr. item	Soluţie/Rezolvare
II.a.	
	$\frac{1}{f} = \frac{1}{x_2} - \frac{1}{x_1}$ $\beta = \frac{x_2}{x_1} = -2$
	$\beta = \frac{x_2}{x_1} = -2$
	Rezultat final: $f = 20cm$
b.	
	f =
	$f = \frac{1}{(n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$
	Dacă $R_1 \to \infty$ atunci $R_2 = -f(n-1)$
	Rezultat final $ R_2 = 10cm$
C.	
	$f' = \frac{1}{\left(\frac{n}{n_a} - 1\right)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$ Rezultat final: $f' = 80cm$
d.	
	1_1 1
	$\overline{f'} - \overline{x'_2} - \overline{x_1}$
	$x_2' = -48cm$
	$\frac{1}{f'} = \frac{1}{x'_2} - \frac{1}{x_1}$ $x_2' = -48cm$ $\frac{y'_2}{y_1} = \frac{x'_2}{x_1}$
	$\frac{1}{y_1} = \frac{1}{x_1}$
	Rezultat final $y'_2 = 8cm$