COMPUTING CUP-PRODUCTS IN INTEGER COHOMOLOGY OF HILBERT SCHEMES OF POINTS ON K3 SURFACES

SIMON KAPFER

ABSTRACT. We study the images of cup products in integer cohomology of the Hilbert scheme of n points on a K3 surface.

1. Preliminaries

Definition 1.1. Let n be a natural number. A partition of n is a sequence $\lambda =$ $(\lambda_1 \ge \ldots \ge \lambda_k > 0)$ of natural numbers such that $\sum_i \lambda_i = n$. It is convenient to write $\lambda = (1^{m_1}, 2^{m_2}, \ldots)$ as a sequence of multiplicities. We define the weight $\|\lambda\| :=$ $\sum m_i i = n$ and the length $|\lambda| := \sum_i m_i = k$. We also define $z_{\lambda} := \prod_i i^{m_i} m_i$.

Definition 1.2. Let S be a projective K3 surface. We fix integral bases 1 of $H^0(S,\mathbb{Z})$, x of $H^4(X,\mathbb{Z})$ and $\alpha_1,\ldots,\alpha_{22}$ of $H^2(S,\mathbb{Z})$. The cup product induces a symmetric bilinear form B_{H^2} on $H^2(X,\mathbb{Z})$. Written as a symmetric matrix with respect to this basis, \mathcal{B}_{H^2} looks like

$$B_{H^2} = \left(egin{array}{cccc} U & & & & & \\ & U & & & & \\ & & U & & & \\ & & & E & \\ & & & E \end{array}
ight),$$

where U stands for the intersection matrix of the hyperbolic lattice and E stands for the negative matrix of the E_8 lattice, i.e.

$$U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 \end{pmatrix}.$$

We may extend B_{H^2} to a symmetric non-degenerate bilinear form on $H^*(S,\mathbb{Z})$ by setting B(1,1) = 0, $B(1,\alpha_i) = 0$, B(1,x) = 1, B(x,x) = 0.

Definition 1.3. B induces a form $B \otimes B$ on $\operatorname{Sym}^2 H^*(S, \mathbb{Z})$. So the cup-product

$$\mu: \operatorname{Sym}^2 H^*(S, \mathbb{Z}) \longrightarrow H^*(S, \mathbb{Z})$$

has an adjoint comultiplication Δ that is coassociative, given by:

$$\Delta: H^*(S, \mathbb{Z}) \longrightarrow \operatorname{Sym}^2 H^*(S, \mathbb{Z}), \quad \Delta = (B \otimes B)^{-1} \mu^T B$$

Date: September 8, 2014.

1

The image of 1 under the composite map $\mu(\Delta(1)) = B(\Delta(1), \Delta(1)) = 24x$, denoted by e is called the Euler Class.

We denote by $S^{[n]}$ the Hilbert scheme of n points on S, *i.e.* the classifying space of all zero-dimensional closed subschemes of length n, which is smooth. A classical result by Nakajima gives an explicit description of $H^*(S^{[n]}, \mathbb{Q})$ in terms of creation operators $\mathfrak{q}_l(\beta)$, $\beta \in H^*(S, \mathbb{Q})$, acting on the direct sum $\bigoplus_n H^*(S^{[n]}, \mathbb{Q})$. An integral basis for $H^*(S^{[n]}, \mathbb{Z})$ in terms of Nakajima's operators was given by Qin–Wang:

Theorem 1.4. [6, Thm. 5.4.] *The classes*

$$\frac{1}{z_{\lambda}}\mathfrak{q}_{\lambda}(1)\mathfrak{q}_{\mu}(x)\mathfrak{m}_{\nu^{1},\alpha_{1}}\dots\mathfrak{m}_{\nu^{22},\alpha_{22}}|0\rangle,\quad \|\lambda\|+\|\mu\|+\sum_{i=1}^{22}\|\nu^{i}\|=n$$

form an integral basis for $H^*(S^{[n]}, \mathbb{Z})$. Here, λ , μ , ν^i are partitions. The symbol \mathfrak{q} stands for Nakajima's creation operator. The relation of $\mathfrak{m}_{\nu,\alpha}$ to $\mathfrak{q}_{\tilde{\nu}}(\alpha)$ is the same as the monomial symmetric functions m_{ν} to the power sum symmetric functions $p_{\tilde{\nu}}$.

Notation 1.5. To enumerate the basis of $H^*(S^{[n]}, \mathbb{Z})$, we introduce the following abbreviation:

$$1^{\lambda}\alpha_1^{\nu_1}\dots\alpha_{22}^{\nu_{22}}x^{\mu}:=\frac{1}{z_{\tilde{\lambda}}}\mathfrak{q}_{\tilde{\lambda}}(1)\mathfrak{q}_{\mu}(x)\mathfrak{m}_{\nu^1,\alpha_1}\dots\mathfrak{m}_{\nu^{22},\alpha_{22}}|0\rangle$$

where the partition $\tilde{\lambda}$ is built from λ by appending sufficiently many Ones, such that $\|\tilde{\lambda}\| + \|\mu\| + \sum \|\nu^i\| = n$.

The ring structure of $H^*(S^{[n]}, \mathbb{Q})$ has been studied in [2], where an explicit algebraic model is constructed, which we recall briefly:

Definition 1.6. [2, Sect. 2] Let π be a permutation of n letters, written as a sum of disjoint cycles. To each cycle we may associate an element of $A := H^*(S, \mathbb{Q})$. This defines an element in $A^{\otimes m}$, m being the number of cycles. So these mappings span a vector space over \mathbb{Q} . The space obtained by taking the direct sum over all $\pi \in S_n$ will be denoted by $A\{S_n\}$.

To define a ring structure, take two permutations π, τ , together with mappings. The result of the multiplication will be the permutation $\pi\tau$, together with a mapping of cycles. Now, look first at the orbit space of the group of permutations $\langle \pi, \tau \rangle$, generated by π and τ . For each cycle of π, τ contained in one orbit B of $\langle \pi, \tau \rangle$, multiply with the associated element of A. Also multiply with a certain power of the Euler class e^g . Afterwards, apply the comultiplication Δ repeatedly on the product to get a mapping from the cycles of $\pi\tau$ contained in B to A. Here the "graph defect" g is defined as follows: Let u, v, w be the number of cycles contained in B of π , τ , $\pi\tau$, respectively. Then $g:=\frac{1}{2}\left(|B|+2-u-v-w\right)$. Now follow this procedure for each orbit B.

The symmetric group S_n acts on $A\{S_n\}$ by conjugation. This action preserves the ring structure. Therefore the space of invariants $A^{[n]} := (A\{S_n\})^{S_n}$ becomes a subring. The main theorem of Lehn and Sorger can now be stated:

Theorem 1.7. [2, Thm. 3.2.] The following map is an isomorphism of rings:

$$H^*(S^{[n]}, \mathbb{Q}) \longrightarrow A^{[n]}$$

$$\mathfrak{q}_{n_1}(\beta_1) \dots \mathfrak{q}_{n_k}(\beta_k)|0\rangle \longmapsto \sum_{\sigma \in S_n} \sigma a \sigma^{-1}$$

with $n_1+\ldots+n_k=n$ and $a\in A\{S_n\}$ corresponds to an arbitrary permutation with kcycles of lengths n_1, \ldots, n_k that are associated to the classes $\beta_1, \ldots, \beta_k \in H^*(S, \mathbb{Q})$, respectively.

Since $H^{\text{odd}}(S^{[n]}, \mathbb{Z}) = 0$ and $H^{\text{even}}(S^{[n]}, \mathbb{Z})$ is torsion-free by [3], we can apply these results to $H^*(S^{[n]}, \mathbb{Z})$ to determine the multiplicative structure of cohomology with integer coefficients.

2. Computational results

The algebra generated by classes of degree 2 is an interesting object to study. For cohomology with complex coefficients, Verbitsky has proven that the algebra generated by $H^2(X,\mathbb{C})$

Remark 2.1. Denote $h^k(S^{[n]})$ the rank of $H^k(S^{[n]}, \mathbb{Z})$. We have:

- $\begin{array}{l} \bullet \ h^2(S^{[n]})=23 \ {\rm for} \ n\geq 2. \\ \bullet \ h^4(S^{[n]})=276, \ 299, \ 300 \ {\rm for} \ n=2,3,\geq 4 \ {\rm resp.} \\ \bullet \ h^6(S^{[n]})=23, \ 2554, \ 2852, \ 2875, \ 2876 \ {\rm for} \ n=2,3,4,5,\geq 6 \ {\rm resp.} \end{array}$

We now give some results in low degrees, obtained by computing multiplication matrices with respect to the integral basis and a then reducing to Smith normal form (both done by a computer).

Proposition 2.2. Studying the image of $Sym^2 H^2$ in H^4 , we obtain:

$$\frac{H^4(S^{[2]}, \mathbb{Z})}{\operatorname{Sym}^2 H^2(S^{[2]}, \mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 23} \oplus \frac{\mathbb{Z}}{5\mathbb{Z}}$$

This was already known to Boissière, Nieper-Wißkirchen and Sarti, [?, Prop. 3].

$$\frac{H^4(S^{[3]},\mathbb{Z})}{\operatorname{Sym}^2 H^2(S^{[3]},\mathbb{Z})} \cong \frac{\mathbb{Z}}{3\mathbb{Z}} \oplus \mathbb{Z}^{\oplus 23}$$

The torsion part of the quotient is generated by the integral class $\frac{1}{3}\mathfrak{q}_{(3)}(1)|0\rangle$.

$$\frac{H^4(S^{[n]},\mathbb{Z})}{\operatorname{Sym}^2 H^2(S^{[n]},\mathbb{Z})} \cong \mathbb{Z}^{\oplus 24}, \quad \textit{for } n \geq 4.$$

This was already proven by Markman, [4, Thm. 1.10].

Proposition 2.3. Comparing $H^2(S^{[n]}, \mathbb{Z}) \cup H^4(S^{[n]}, \mathbb{Z})$ with $H^6(S^{[n]}, \mathbb{Z})$, we obtain:

(1)
$$\frac{H^6(S^{[2]}, \mathbb{Z})}{H^2(S^{[2]}, \mathbb{Z}) \cup H^4(S^{[2]}, \mathbb{Z})} = 0$$

(2)
$$\frac{H^6(S^{[3]}, \mathbb{Z})}{H^2(S^{[3]}, \mathbb{Z}) \cup H^4(S^{[3]}, \mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^{\oplus 12}$$

$$(3)\quad \frac{H^{6}(S^{[4]},\mathbb{Z})}{H^{2}(S^{[4]},\mathbb{Z})\cup H^{4}(S^{[4]},\mathbb{Z})}\cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 23}\oplus \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^{\oplus 12}$$

$$(4) \quad \frac{H^{6}(S^{[5]}, \mathbb{Z})}{H^{2}(S^{[5]}, \mathbb{Z}) \cup H^{4}(S^{[5]}, \mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 23} \oplus \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^{\oplus 12} \oplus \left(\frac{\mathbb{Z}}{5\mathbb{Z}}\right)^{\oplus 3}$$

$$(5) \quad \frac{H^6(S^{[n]}, \mathbb{Z})}{H^2(S^{[n]}, \mathbb{Z}) \cup H^4(S^{[n]}, \mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 22} \oplus \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^{\oplus 12} \oplus \left(\frac{\mathbb{Z}}{5\mathbb{Z}}\right)^{\oplus 2} \oplus \mathbb{Z}, \ n \geq 6.$$

- The 3-torsion part is generated by the 12 integral classes $\alpha_i^{(1,1,1)} \in H^6$, where i = 1, 2, 3, 4, 5, 6, 8, 9, 11, 16, 17, 19.
- The 2-torsion part is generated by the 22 integral classes $\alpha_i^{(1,1,1)} + \alpha_i^{(2,1)} + \alpha_i^{(3)} + 1^{(2)}\alpha_i^{(1,1)} + 1^{(3)}\alpha_i^{(1)}$, $i = 1, \ldots, 22$ and, in the cases n = 4, 5, by the integral class $1^{(4)} \in H^6$.
- The 5-torsion part is generated by the 2 integral classes $\alpha_i^{(1,1,1)} + 2\alpha_i^{(2,1)} + 3\alpha_i^{(3)} + 4 \cdot 1^{(2)}\alpha_i^{(1,1)} + 2 \cdot 1^{(2)}\alpha_i^{(2)} + 2 \cdot 1^{(3)}\alpha_i^{(1)} + 3 \cdot 1^{(2,2)}\alpha_i^{(1)}, \ i = 13,21$ and, in the case n = 5, by the integral class $3 \cdot 1^{(4)} + 3 \cdot 1^{(3,2)}$.
- The free summand is generated by the class $3 \cdot 1^{(4)} 12 \cdot 1^{(3,2)} + 10 \cdot 1^{(2,2,2)}$.

Proposition 2.4.

$$\frac{H^6(S^{[2]}, \mathbb{Z})}{\operatorname{Sym}^3 H^2(S^{[2]}, \mathbb{Z})} \cong \frac{\mathbb{Z}}{2\mathbb{Z}}$$

The quotient is generated by the integral class $1^{(2)}$.

$$\frac{H^{6}(S^{[3]}, \mathbb{Z})}{\operatorname{Sym}^{3} H^{2}(S^{[3]}, \mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 230} \oplus \left(\frac{\mathbb{Z}}{36\mathbb{Z}}\right)^{\oplus 22} \oplus \frac{\mathbb{Z}}{72\mathbb{Z}} \oplus \mathbb{Z}^{\oplus 507}$$

$$\frac{H^{6}(S^{[4]}, \mathbb{Z})}{\operatorname{Sym}^{3} H^{2}(S^{[4]}, \mathbb{Z})} \cong$$

$$\frac{H^{6}(S^{[5]}, \mathbb{Z})}{\operatorname{Sym}^{3} H^{2}(S^{[5]}, \mathbb{Z})} \cong$$

$$\frac{H^{6}(S^{[n]}, \mathbb{Z})}{\operatorname{Sym}^{3} H^{2}(S^{[n]}, \mathbb{Z})} \cong n \geq 6.$$

References

- S. Boissière, M. Nieper-Wißkirchen, and A. Sarti, Higher dimensional Enriques varieties and automorphisms of generalized kummer varieties, J. Math. Pures Appl. 95 (2011), 553–563.
- 2. M. Lehn and C. Sorger, The cup product of Hilbert schemes for K3 surfaces, Invent. Math. 152 (2003), no. 2, 305–329.
- E. Markman, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math. 208 (2007), no. 2, 622–646.
- E. Markman, Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a K3 surface, Internat. J. Math. 21 (2010), no. 2, 169–223.

- H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2) 145 (1997), no. 2, 379–388.
- Z. Qin and W. Wang, Integral operators and integral cohomology classes of Hilbert schemes, Math. Ann. 331 (2005), no. 3, 669–692.
- 7. M. Verbitsky, Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996), no. 4, 601–611.

Simon Kapfer, Lehrstuhl für Algebra und Zahlentheorie, Universitätsstrasse 14, D-86159 Augsburg

 $E\text{-}mail\ address: \verb|simon.kapfer@math.uni-augsburg.de|}$