REMARKS

In the Official Action mailed 23 August 2007, the Examiner reviewed claims 1-4, 6-11, 13-18 and 20-30. The Examiner has rejected claims 23, 24, 26, 27, 29 and 30 under 35 U.S.C. §112, second paragraph; and has rejected claims 1-4, 6-11, 13-18 and 20-30 under 35 U.S.C. §103(a).

Applicant cancels independent claims 1, 8 and 15, and adds new claims 31-39, including independent claims 31, 34 and 37 to replace canceled independent claims 1, 8, and 15.

Amendments to all the pending dependent claims except 3, 10 and 17, are made as a consequence of the new independent claims. Also, applicant cancels claims 22-30. Claims 2-4, 6, 7, 9-11, 13, 14, 16-18, 20-21 and 31-39 are now pending.

The rejections are respectfully traversed below and reconsideration is requested.

Rejection of Claims 23, 24, 26, 27, 29 and 30 under 35 U.S.C. §112, second paragraph

The Examiner has rejected claims 23, 24, 26, 27, 29 and 30 under 35 U.S.C. §112, second paragraph. Such claims are canceled.

Rejection of Claims 1-4, 6-11, 13-18 and 20-30 under 35 U.S.C. §103(a)

The Examiner has rejected claims 1-4, 6-11, 13-18 and 20-30 under 35 U.S.C. §103(a) as being unpatentable over Perlman (US 6,363,480), and further in view of Kelly (US 5,636,280).

As mentioned above, independent claims 1, 8 and 15 have been replaced by claims 31, 34 and 37 respectively. Applicant requests reconsideration in view of the remarks submitted 23 October 2007, which are incorporated by reference herein. In addition, substantial clarifying amendments have been entered.

Support for New Claims 31-39

Support in the specification for new claims 31-39 is found in Figures 1, 2, and 3, and in the specification. Copies of such claims with parenthetical references to support in the specification follow:

31. (new) A method for mutual authentication in communications between first and second stations, comprising:

generating and storing a set of ephemeral session keys at the first station, ephemeral session keys in the set being associated with respective session key initiation intervals, and being discarded at a time later than expiration of the respective session key initiation intervals; (SRKs, Fig. 1)

in response to a request (3005, Fig. 3) to initiate a communication session received by the first station during a particular session key initiation interval, selecting the associated session key (SRKi, Fig. 3);

sending a message carrying said associated session key to the second station (3006, Fig. 3), and receiving a response from the second station including a digital identifier (host ID or user name), which is the digital identifier being information shared between the first station and the second station, or between the first station and a user at the second station, the digital identifier being encrypted using said associated session key to verify receipt of the session key by the second station and to identify the second station or the user of the second station (3007, 3008, Fig. 3);

generating and storing, in the first station, a set of intermediate data keys, the set of intermediate data keys including intermediate data key (i), for i = 1 to at least n, and being discarded at a time later than expiration of the particular session key initiation interval; (DRK1 to DRKn, Fig. 2)

executing a first set of exchanges (3009-3013, Fig. 3) including one or more exchanges with the second station, after verifying in said first station receipt of the session key by the second station by decrypting the digital identifier using the associated session key at the first station and positively matching the decrypted digital identifier against an existing entry in a stored list of authorized users, the first set of exchanges including

sending a message to the second station carrying intermediate data key (i) from said set of intermediate data keys encrypted using the associated session key for a first exchange in first set of exchanges and using the intermediate data key (i-1) for subsequent exchanges in the first set of exchanges,

receiving a response from the second station including a hashed version of intermediate data key (i) encrypted using intermediate data key (i), and decrypting the hashed version of the intermediate data key (i), calculating a hashed version of intermediate data key (i) at the first station, and matching the

calculated hashed version and the received hashed version of intermediate data key (i) to verify receipt by the second station of intermediate data key (i);

executing a second set of exchanges for mutual authentication after verifying in said first station receipt of the intermediate data key (n-1) by the second station, including

- sending a first message carrying intermediate data key (n) encrypted using a hashed version of a first shared secret.
- receiving a response from the second station carrying a hashed version of intermediate data key (n) encrypted using a hashed version of the first shared secret, and decrypting the hashed version of the intermediate data key (n), calculating a hashed version of intermediate data key (n) at the first station, and matching the calculated hashed version and the decrypted hashed version of intermediate data key (n) to verify possession by the second station of the first shared secret (3014, Fig. 3);
- sending a second message carrying intermediate data key (n) encrypted using a hashed version of a second shared secret; and
- if the second station sends a response to the second message, carrying a hashed version of intermediate data key (n) encrypted using a hashed version of the second shared secret, after possession by the first station of the second shared secret is verified at the second station, the verifying being accomplished at the second station by decrypting the intermediate data key (n) from the second message using the hashed version of the second shared secret, calculating a hashed version of the intermediate data key (n), and matching the calculated hashed version and the decrypted hashed version of intermediate data key (n) to verify possession by the first station of the second shared secret (3015, Fig. 3), then
- receiving the response from the second station, and decrypting the hashed version of the intermediate data key (n) using the hashed version of the second shared secret, calculating a hashed version of intermediate data key (n) at the first station, and matching the calculated hashed version and the decrypted hashed version of intermediate data key (n) at the first station to verify mutual authentication of the first and second stations (3015, Fig. 3); and

if mutual authentication is verified at the first station, then sending a message indicating successful authentication (3016, Fig. 3).

- 1 32. (new) The method of claim 31, wherein said message indicating successful
- 2 authentication carries a signal encrypted using intermediate data key (n-1) or using another
- 3 prearranged one of said intermediate data keys (i) (3016, Fig. 3).
- 1 33. (new) The method of claim 31, including using intermediate data key (n) as a
- 2 symmetrical key to encrypt data during post-authentication in-communications between the first
- and second stations in the communication session (FSK, paragraph [0051]).
- 1 34.(new) A data processing apparatus, comprising:
- a processor associated with a first station, a communication interface adapted for
- 3 connection to a communication medium, and memory storing instructions for execution by the
- 4 data processor, the instructions including
- 5 logic to receive a request via the communication interface for initiation of a
- 6 communication session between a first station and a second station;
- 7 logic to provide for mutual authentication in communications between the first station
- 8 and a second station, comprising:
- 9 generating and storing a set of ephemeral session keys at the first station, ephemeral
- session keys in the set being associated with respective session key initiation intervals, and being
- discarded at a time later than expiration of the respective session key initiation intervals; (SRKs,
- 12 Fig. 1)
- in response to a request (3005, Fig. 3) to initiate a communication session received by the
- 14 first station during a particular session key initiation interval, selecting the associated session key
- 15 (SRKi, Fig. 3);
- sending a message carrying said associated session key to the second station (3006, Fig.
- 17 3), and receiving a response from the second station including a digital identifier (host ID or user
- name), which is the digital identifier being information shared between the first station and the
- second station, or between the first station and a user at the second station, the digital identifier
- being encrypted using said associated session key to verify receipt of the session key by the

21	second station and to identify the second station or the user of the second station (3007, 3008,
22	Fig. 3);
23	generating and storing, in the first station, a set of intermediate data keys, the set of
24	intermediate data keys including intermediate data key (i), for i = 1 to at least n, and being
25	discarded at a time later than expiration of the particular session key initiation interval; (DRK1 to
26	DRKn, Fig. 2)
27	executing a first set of exchanges (3009-3013, Fig. 3) including one or more exchanges
28	with the second station, after verifying in said first station receipt of the session key by the
29	second station by decrypting the digital identifier using the associated session key at the first
30	station and positively matching the decrypted digital identifier against an existing entry in a
31	stored list of authorized users, the first set of exchanges including
32	sending a message to the second station carrying intermediate data key (i) from said
33	set of intermediate data keys encrypted using the associated session key for a
34	first exchange in first set of exchanges and using the intermediate data key (i-
35	1) for subsequent exchanges in the first set of exchanges,
36	receiving a response from the second station including a hashed version of
37	intermediate data key (i) encrypted using intermediate data key (i), and
38	decrypting the hashed version of the intermediate data key (i), calculating a
39	hashed version of intermediate data key (i) at the first station, and matching the
40	calculated hashed version and the received hashed version of intermediate data
41	key (i) to verify receipt by the second station of intermediate data key (i);
42	executing a second set of exchanges for mutual authentication after verifying in said first
43	station receipt of the intermediate data key (n-1) by the second station, including
44	sending a first message carrying intermediate data key (n) encrypted using a hashed
45	version of a first shared secret,
46	receiving a response from the second station carrying a hashed version of intermediate
47	data key (n) encrypted using a hashed version of the first shared secret, and
48	decrypting the hashed version of the intermediate data key (n), calculating a
49	hashed version of intermediate data key (n) at the first station, and matching
50	the calculated hashed version and the decrypted hashed version of intermediate

51	data key (n) to verify possession by the second station of the first shared secre	et
52	(3014, Fig. 3);	
53	sending a second message carrying intermediate data key (n) encrypted using a hashe	d
54	version of a second shared secret; and	
55	if the second station sends a response to the second message, carrying a hashed	
56	version of intermediate data key (n) encrypted using a hashed version of the	
57	second shared secret, after possession by the first station of the second shared	
58	secret is verified at the second station, the verifying being accomplished at the)
59	second station by decrypting the intermediate data key (n) from the second	
60	message using the hashed version of the second shared secret, calculating a	
61	hashed version of the intermediate data key (n), and matching the calculated	
62	hashed version and the decrypted hashed version of intermediate data key (n)	
63	to verify possession by the first station of the second shared secret (3015, Fig.	
64	3), then	
65	receiving the response from the second station, and decrypting the hashed version of	
66	the intermediate data key (n) using the hashed version of the second shared	
67	secret, calculating a hashed version of intermediate data key (n) at the first	
68	station, and matching the calculated hashed version and the decrypted hashed	
69	version of intermediate data key (n) at the first station to verify mutual	
70	authentication of the first and second stations (3015, Fig. 3); and	
71	if mutual authentication is verified at the first station, then sending a message indicating	
72	successful authentication (3016, Fig. 3).	
1	35. (new) The apparatus of claim 34, wherein said message indicating successful	
2	authentication carries a signal encrypted using intermediate data key (n-1) or using another	
3	prearranged one of said intermediate data keys (i) (3016, Fig. 3).	
1	36. (new) The apparatus of claim 34, including using intermediate data key (n) as a	
2	symmetrical key to encrypt data during post-authentication communications between the first	
3	and second stations in the communication session (FSK, paragraph [0051]).	

1	37. (new) An article, comprising:
2	machine readable data storage medium having computer program instructions stored
3	therein for establishing a communication session on a communication medium between a first
4	data processing station and a second data processing station having access to the communication
5	medium, said instructions comprising
6	logic to receive a request via the communication interface for initiation of a
7	communication session between a first station and a second station;
8	logic to provide for mutual authentication in communications between the first station
9	and a second station, comprising:
10	generating and storing a set of ephemeral session keys at the first station, ephemeral
11	session keys in the set being associated with respective session key initiation intervals, and being
12	discarded at a time later than expiration of the respective session key initiation intervals; (SRKs,
13	Fig. 1)
14	in response to a request (3005, Fig. 3) to initiate a communication session received by the
15	first station during a particular session key initiation interval, selecting the associated session key
16	(SRKi, Fig. 3);
17	sending a message carrying said associated session key to the second station (3006, Fig.
18	3), and receiving a response from the second station including a digital identifier (host ID or user
19	name), which is the digital identifier being information shared between the first station and the
20	second station, or between the first station and a user at the second station, the digital identifier
21	being encrypted using said associated session key to verify receipt of the session key by the
22	second station and to identify the second station or the user of the second station (3007, 3008,
23	Fig. 3);
24	generating and storing, in the first station, a set of intermediate data keys, the set of
25	intermediate data keys including intermediate data key (i), for $i = 1$ to at least n, and being
26	discarded at a time later than expiration of the particular session key initiation interval; (DRK1 to
27	DRKn, Fig. 2)
28	executing a first set of exchanges (3009-3013, Fig. 3) including one or more exchanges
29	with the second station, after verifying in said first station receipt of the session key by the
30	second station by decrypting the digital identifier using the associated session key at the first
31	station and positively matching the decrypted digital identifier against an existing entry in a

32	stored list of authorized users, the first set of exchanges including
33	sending a message to the second station carrying intermediate data key (i) from said
34	set of intermediate data keys encrypted using the associated session key for a
35	first exchange in first set of exchanges and using the intermediate data key (i-
36	1) for subsequent exchanges in the first set of exchanges,
37	receiving a response from the second station including a hashed version of
38	intermediate data key (i) encrypted using intermediate data key (i), and
39	decrypting the hashed version of the intermediate data key (i), calculating a
40	hashed version of intermediate data key (i) at the first station, and matching the
41	calculated hashed version and the received hashed version of intermediate data
42	key (i) to verify receipt by the second station of intermediate data key (i);
43	executing a second set of exchanges for mutual authentication after verifying in said first
14	station receipt of the intermediate data key (n-1) by the second station, including
45	sending a first message carrying intermediate data key (n) encrypted using a hashed
46	version of a first shared secret,
47	receiving a response from the second station carrying a hashed version of intermediate
48	data key (n) encrypted using a hashed version of the first shared secret, and
1 9	decrypting the hashed version of the intermediate data key (n), calculating a
50	hashed version of intermediate data key (n) at the first station, and matching
51	the calculated hashed version and the decrypted hashed version of intermediate
52	data key (n) to verify possession by the second station of the first shared secre
53	(3014, Fig. 3);
54	sending a second message carrying intermediate data key (n) encrypted using a hashed
55	version of a second shared secret; and
56	if the second station sends a response to the second message, carrying a hashed
57	version of intermediate data key (n) encrypted using a hashed version of the
58	second shared secret, after possession by the first station of the second shared
59	secret is verified at the second station, the verifying being accomplished at the
50	second station by decrypting the intermediate data key (n) from the second
51	message using the hashed version of the second shared secret, calculating a
52	hashed version of the intermediate data key (n), and matching the calculated

63	hashed version and the decrypted hashed version of intermediate data key (n)
64	to verify possession by the first station of the second shared secret (3015, Fig
65	3), then
66	receiving the response from the second station, and decrypting the hashed version of
67	the intermediate data key (n) using the hashed version of the second shared
68	secret, calculating a hashed version of intermediate data key (n) at the first
69	station, and matching the calculated hashed version and the decrypted hashed
70	version of intermediate data key (n) at the first station to verify mutual
71	authentication of the first and second stations (3015, Fig. 3); and
72	if mutual authentication is verified at the first station, then sending a message indicating
73	successful authentication (3016, Fig. 3).
1	38. (new) The apparatus of claim 37, wherein said message indicating successful
2	authentication carries a signal encrypted using intermediate data key (n-1) or using another
3	prearranged one of said intermediate data keys (i) (3016, Fig. 3).
1	39. (new) The apparatus of claim 37, including using intermediate data key (n) as a
2	symmetrical key to encrypt data during post-authentication communications between the first
3	and second stations in the communication session (FSK, paragraph [0051]).

///

CONCLUSION

It is respectfully submitted that this application is now in condition for allowance, and such action is requested.

The Commissioner is hereby authorized to charge any fee determined to be due in connection with this communication, or credit any overpayment, to our Deposit Account No. 50-0869 (AIDT 1005-1).

Respectfully submitted,

Dated: 11 February 2008 /Mark A. Haynes/

Mark A. Haynes, Reg. No. 30,846

HAYNES BEFFEL & WOLFELD LLP P.O. Box 366 Half Moon Bay, CA 94019 (650) 712-0340 phone (650) 712-0263 fax