

Grain Boundary Pinning by YH₂ Particles in Magnesium Processed by Cryomilling and Spark Plasma Sintering

Heather Salvador, Christian Roach, Suveen Mathaudhu **UC** Riverside

MOTIVATION

- Magnesium has a high specific strength and is biocompatible making it attractive in light-weighting applications and medical implants.
- However, magnesium has a poor overall strength
- Metals can be strengthened by grain refinement -> increasing the number of barriers to block defect motion.
- But, magnesium grains tend to grow at low homologous temperatures.

METHODS

- Mg and YH₂ powders are cryomilled to mix, and refine grain structure and particle size.
- Spark plasma sintering (SPS) is used to sinter quickly.

RESULTS

- Grain size is compared at various sintering conditions
- Grains grew from ~1µm at 350°C to ~4µm at 425°C.
- In contrast, pure magnesium grains grew to ~27µm at 425°C.
- XRD analysis shows no contamination from cryomilling or SPS processing.
- TEM images show YH₂ particles at grain boundaries with the boundaries bowing around them.

DISCUSSION

- Keeping grain refinement (achieved in earlier processing steps) during sintering is difficult as grain growth in magnesium is prevalent even at room temperature, and has a recrystallization temperature ~420°C.
- The YH₂ particles exert a Zener pinning force on the grain boundaries acting as additional barriers for grain boundaries to bow around for continued growth.

FUTURE WORK

- Refining the YH₂ particle size and increasing the volume fraction to exert a higher Zener pinning force in order to maintain nanostructured magnesium.
- Analyze the plasticity mechanisms present in nanocrystalline magnesium.

RESEARCH

MOTIVATION FOR THIS WORK

High Specific Strength

505

344

310

8.00

4.51

2.70

1.74

SS 304

Titanium

6061-T6

Al Alloy

Mg Alloys

63.1

76

115

158

Specific Strength Commodity

(Crust / Ocean) [6] Crust: 4th/Ocean: 27th Crust: 9th/Ocean: 32nd Crust: 3rd/Ocean: 24th Crust: 6th/Ocean: 5th

Poor Strength

Grain Growth at Low Homologous **Temperatures**

METHODS

Pyrometer

Graphite Die

Cryomilling

Pulsed DC

Power Supply

Graphite Punch

Densification

Fast Sintering

Joule heating to sinter quickly, with a peak temperature hold time of only 5 minutes.

Sintered at

\$0.04

(Iron Ore)

\$4.13

\$1.15

\$2.15

Pure Mg

425°C

Mg-1YH₂ Sintered at 350°C

 $Mg-1YH_2$ Sintered at 375°C

 $Mg-1YH_2$ Sintered at 425°C

RESULTS

Grain Boundary Pinning

TEM-BF image showing YH₂ particles pinning grain boundaries, slowing grain growth

DISCUSSION

Grain size grows from ~1µm to ~3µm to ~4µm at sintering temperatures of 350°C, 375°C and 425°C respectively.

When comparing to pure magnesium sintered at 425°C which exhibits a grain size of ~28µm, the YH2 particles pin effectively.

XRD doesn't show evidence of any contaminants from

the processing conditions, and confirms that there is

TEM images show grain boundaries bending around YH₂ particles which is indicative of the Zener pinning effect.

little to no solid solutionizing of yttrium.

FUTURE WORK

Study plasticity mechanisms in stable, nanostructured magnesium.

Increase the Zener pinning

 Increased pinning particle volume fraction

REFERENCES

- [1] http://www.e-ande.com [2] www.totalmateria.com
- [3] https://investingnews.com/daily/resource-investing/critical-metals-investing/magnesium-investing/magnesium-the-other-bike-frame-metal/
- [4] http://asm.matweb.com/
- [5] https://www.usgs.gov/centers/nmic
- [6]_https://periodictable.com [7] J. Huot, Viktor Balema, "Mechanochemical effect of severe plastic deformations; metal alloys, hydrides and molecular solids", Material Matters (2012). [8] A. Chang et al., "Spark Plasma Sintering of Negative Temperature Coefficient Thermistor Ceramics", Sintering Techniques of Materials (2015).
- [9] H. Yu et al., "Hall-Petch relationship in Mg alloys: A review", Journal of Materials Science & Technology (2018).
- [11] ASM Handbook vol. 6A (2011) [12] https://en.wikipedia.org/wiki/Grain_boundary_strengthening
- [13] https://en.wikipedia.org/wiki/Zener_pinning [14] RF Cook, GM Pharr, "Indentation load-displacement behavior during conventional hardness testing", Journal of Hard Materials (1994).

Heather Salvador University of California, Riverside Email: hsalv001@ucr.edu Website: http://smathaudhu.com Twitter: @mathaudhulab