Logica e Inteligencia Artificial

Ulises Jeremias Cornejo Fandos, ¹ Lucas Di Cunzolo, ² and Federico Ramón Gasquez³

¹13566/7, Licenciatura en Informatica, Facultad de Informatica, UNLP

compiled: October 16, 2018

1. Ejercicio 1

Sean A, B y C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L de los siguientes teoremas. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i.
$$\vdash_L ((\neg A \to A) \to A)$$

Así pues, $(\neg A \to A) \vdash_L A$.

 $\therefore \vdash_L ((\neg A \to A) \to A)$, por el Teorema de Deducción.

ii.
$$\vdash_L (\neg \neg B \to B)$$

Para este caso se escribe a continuación la demostración en L.

(1)
$$((B \to ((B \to B) \to B)) \to (B \to B)) \to (B \to B))$$
 (L_2)
(2) $(B \to ((B \to B) \to B))$ (L_1)
(3) $((B \to (B \to B)) \to (B \to B))$ $(1), (2)MP$
(4) $(B \to (B \to B))$ (L_1)
(5) $(B \to B)$ $(3), (4)MP$
(6) $(\neg \neg B \to B)$

iii.
$$\vdash_L ((A \to B) \to (\neg B \to \neg A))$$

El enunciado tiene la forma sintáctica del axioma L_3 . Luego, alcanza con instanciar una única vez el axioma para dar una demostración sintáctica del teorema.

²13572/5, Licenciatura en Informatica, Facultad de Informatica, UNLP

³13598/6, Licenciatura en Informatica, Facultad de Informatica, UNLP

2. Ejercicio 2

Sean A, B y C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L para la siguiente deducción. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i.
$$\{((A \to B) \to C), B\} \vdash_L (A \to C)$$

(1)
$$((A \to B) \to C)$$
 hipótesis

$$(2)$$
 B $hipótesis$

$$A hipótesis$$

3. Ejercicio 3

Sea $\Gamma = \{A_1, \ldots, A_n\}$, n > 0, un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \vdash_L A$. ¿Es cierto que si Γ es satisfactible entonces $\vdash_L A$?. Fundar.

El enunciado es falso. Sabemos a partir del mismo que Γ es un conjunto de fbfs tal que $\Gamma \vdash_L A$. Luego, que Γ sea satisfactible, no nos dice nada respecto de A. Es decir, que A podría ser tranquilamente una contingencia deducible a partir de Γ , y en ese caso no sería válido decir que $\vdash_L A$ para cualquier A.

Por ejemplo, nosotros podríamos tener el siguiente conjunto de fbfs, $\Gamma = \{C, B, C \to A\}$. Luego, A es una contingencia deducible a partir de Γ , pero no necesariamente se cumple que $\vdash_L A$.

4. Ejercicio 4

Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \vdash_L A$. ¿Es cierto que para todo Γ_i tal que $\Gamma_i \subset \Gamma$, $\Gamma_i \vdash_L A$?. Fundar.

El enunciado es falso. Supongamos un conjunto de fbfs $\Gamma = \{C, B, C \to A\}$, luego sabemos que, siendo $\{C, C \to A\} \subset \Gamma$, podemos afirmar que se puede deducir A a partir de ambos, es decir, que $\{C, C \to A\} \vdash_L A$.

Sin embargo, no podemos afirmar lo mismo de $\{B\}$, incluso cuando $\{B\} \subset \Gamma$. Es decir, no se cumple que $\{B\} \vdash_L A$. Por lo tanto es falso.

5. Ejercicio 5

Sean Γ y Γ_0 conjuntos de fbfs del C. de Enunciados. ¿Es cierto que para todo Γ existe algún $\Gamma_0 \subseteq \Gamma$ tal que si $\Gamma \vdash_L A$ entonces $\Gamma_0 \vdash_L A$?. Fundar. Nota: relacionar con ejercicio 10.

Sabemos a partir del enunciado que, $\Gamma \vdash_L A$. Luego, podemos afirmar que existe un $\Gamma_0 \subseteq \Gamma$ tal que $\Gamma_0 \vdash_L A$, y es por ejemplo, cuando $\Gamma_0 = \Gamma$.

Luego, podemos afirmar que dado una Γ_0 que cumpla la condición establecida, $Con_L(\Gamma_0) = Con_L(\Gamma)$.

6. Ejercicio 9

¿Es posible que para algún Γ dado, en algún sistema formal F, $Con_F(\Gamma)$ sea infinito?. Ejemplificar.

Si, esto puedo darse cuando el conjunto de enunciados Γ permite deducir una contradicción. Luego, Γ podría deducir cualquier fbf del sistema formal F y podría darse entonces que $Con_F(\Gamma)$ sea infinito. Un ejemplo de esto es el propuesto en el ejercicio 10.

7. Ejercicio 10

Sea $\Gamma = \{r, \neg s, s \vee \neg r\}$. Calcular $Con_L(\Gamma)$

Sabemos por definición que $Con_L(\Gamma) = \{A/\Gamma \vdash_L A\}$, es decir, $Con_L(\Gamma) = \{A/\{r, \neg s, s \lor \neg r\} \vdash_L A\}$.

Podemos demostrar facilmente que a partir de dicho conjunto Γ se puede llegar a una contradicción. Luego, sabemos que a partir de Γ se puede deducir cualquier cosa. Finalmente, $Con_L(\Gamma)$ es el conjunto de todas las fbfs de L.