

Heterogeneous Systems and Multi-Paradigm Modeling

ModHel'X

Cécile Hardebolle, Frédéric Boulanger, Idir Ait Sadoune

Who are we?

- Supélec = leading engineering school ("Grande Ecole")
 in information sciences and energy
 - Degree courses: 460 students graduating each year (engineering diploma)
 - Continuing education
 - Research & development: Supélec Systems Science (E3S)
 (automatic control, signal processing, radio communications, electromagnetism, power systems, computer science)
- Department of Computer Science = research & education department
 - Personalization: adaptive hypermedia, guided web queries (4 + 4 PhD students)
 - Optimization of high-performance networks (2 + 2 PhD students)
 - Modeling techniques for heterogeneous systems (6 + 4 PhD students)

Questions

1 What is heterogeneity?

Heterogeneity at the system level

Heterogeneity at the model level

- ► Combination of components of different natures (signal processing, electronics, control...)
 - Composition of models
- Several abstraction levels
 - Refinement of models
- Orthogonal points of view
 - Models of functional and extra-functional properties/behavior

- Different activities and goals during a project
 - Models for different kind of analysis

Heterogeneity in ModHel'X

- ▶ Focus on the heterogeneity of the components of a system:
 - ▶ Heterogeneous components → heterogeneous design paradigms
 - ► Interaction among components + environment → model composition

The problem we try to address =

How to compose models that are written using different modeling languages in order to be able to reason globally on a system under design?

Experimental platform = ModHel'X

The power window example

Questions

- 1 What is heterogeneity?
- 2 How to represent a modeling paradigm in a form that is "composable"?

Model of Computation

- ▶ Represents the semantics of a modeling language
- Provides the rules for interpreting a model

Model = structure + MoC

- The structure of a model is a set of interconnected blocks (black boxes)
- ▶ A MoC is used to provide an interpretation (semantics) of that structure

MoCs currently available in ModHel'X

- Discrete Events (DE)
 - Exchange of events \(\forall \) value, date \(\rightarrow \)
 - ➤ Network messages
- Synchronous Data Flow (SDF)
 - Flows of sampled data
 - Multi sample rate
 - ➤ Simulink block diagrams
- ▶ Timed Finite State Machines (TFSM) [+ FSM + *Charts]
 - ▶ Timed transitions: "after(T)"
 - ➤ very simplified UML's Stateflow
- Petrinets

The power window example (again)

Questions

- What is heterogeneity?
- 2 How to represent a modeling paradigm in a form that is "composable"?
- 3 How to compose models that use different modeling paradigms?

Composition of heterogeneous models

Extract of the model of the window: up mode with up endstop detection

Composition of heterogeneous models

- "Interface blocks" are used to embed a model into a block
 - → Support for heterogeneity through hierarchy

What is adaptation?

- Adaptation of data
 - Forms
 - Values
- Adaptation of control flow
 - "Moments" at which "things" happen

Window (InterfaceBlock)

WCmd

- Adaptation of time notions
 - Time scales
 - Time forms (seconds, revolutions, centimeters...)

WEnd

Outline

- What is heterogeneity?
- 2 How to represent a modeling paradigm in a form that is "composable"?
- 3 How to compose models that use different modeling paradigms?
- 4 What is the benefit of modeling the adaptation explicitly and apart from the models?

The window model in PtolemyII

Model of the window in "open loop": up mode with up endstop detection

SDFPlotter

10

The window model in PtolemyII

- Default adaptation:
 - ▶ The SDF model reacts only when events are processed in DE
 - ▶ DE events are produced in the DE model each time the SDF model reacts
- Changing the adaptation means modifying one of the two models

Adapted model in PtolemyII

Questions

- What is heterogeneity?
- 2 How to represent a modeling paradigm in a form that is "composable"?
- 3 How to compose models that use different modeling paradigms?
- 4 What is the benefit of modeling the adaptation explicitly and apart from the models?

Key points

Our approach:

- Models of Computation (MoCs) for representing the semantics of design paradigms
- Semantic adaptation for composing heterogeneous models using hierarchy

Goals of ModHel'X:

- Extensible set of MoCs
- Explicit, customizable and modular semantic adaptation between hierarchical models

Current research directions

Modeling MoCs

- ► Imperative form ⇒ execution
- ▶ Declarative form ⇒ verification & validation
- Variants of a MoC? Reusability of (parts of) a model of a MoC?

Modeling Semantic Adaptation

- CCSL constraints to describe adaptation of time and control
- Language to describe adaptation of data
- Patterns of adaptation
- Multi-view modeling
- Heterogeneous model testing

