

LiDAR

Light Detection and Ranging

LiDAR - Light Detection and Ranging

How does it work

- Light Amplification by Stimulated Emission of Radiation
- distance is measured by time it takes for the signal to travel to the object, to be reflected and received at the receiver

Prinzip

- optisches Verfahren über Aussendung von LASER-Impulsen (Light Amplification by Stimulated Emission of Radiation)
- Abstandsbestimmung über Laufzeitmessung zurückgeworfener Signale

$$l = \frac{c \cdot \triangle t}{2 \cdot n} \approx \frac{c \cdot \triangle t}{2}$$

l: Entfernung in Metern

c: Lichtgeschwindigkeit (ca. 299792458 $\frac{m}{s}$)

 $\triangle t$: Laufzeit in Sekunden

n: Brechzahl (für Luft auf Meeresniveau ca. 1.00029)

Einsatzmöglichkeiten

- Objekterkennung
- Kartografierung / Lokalisierung
- Messung allgmeiner physikalischer Eigenschaften u.a.:
 - Druck
 - Temperatur
 - Feuchte
 - Gaskonzentration
 - Windrichtung
 - Geschwindigkeit

Technische Umsetzungen

- Velodyne HDL-64e auf dem "Made In Germany"

Technische Umsetzungen - Velodyne HDL-64e

- 64 vertikal versetzte Laserstrahlen
- 26,8° vertikales Sichtfeld
- 360° horizontal durch Rotation mit 300 rpm (5 Hz) bis 1200 rpm (20 Hz)
- Messungen pro Sekunde: 1,3 Mio.
- Reichweite 0,9m bis zu 120m

Technische Umsetzungen - Velodyne HDL-64e

Technische Umsetzungen - Ibeo LUX

Technische Umsetzungen - Ibeo LUX

- 4 vertikal versetzte Laserstrahlen die über einen rotierenden Spiegel ausgesendet werden (12,5 Hz)
- 3,2° vertikales und 110° horizontales Sichtfeld
- Reichweite 0,3m bis zu 200m

Technische Umsetzungen - Ibeo LUX

- 6 Ibeo LUX im "Made In Germany" verbaut, für 360° horizontale Abdeckung

Technische Umsetzungen - RPLIDAR

- RPLIDAR A1 und A2 auf unseren autonomen Modellautos

Technische Umsetzungen - RPLIDAR

- RPLIDAR A1 und A2 auf unseren autonomen Modellautos

Technische Umsetzungen - RPLIDAR

- RPLIDAR A1:

- 1 dimensionales vertikales
 Sichtfeld (1 Laserstrahl)
- 360° horizontales Sichtfeld durch Rotation (bis zu 10Hz)
- Messungen pro Sekunde: 2000
- Reichweite 0,15m bis 6m

RPLIDAR A2:

- 1 dimensionales vertikales Sichtfeld (1 Laserstrahl)
- 360° horizontales Sichtfeld durch Rotation (bis zu 15Hz)
- Messungen pro Sekunde: 4000
- Reichweite 0,15m bis 8m

Technische Umsetzungen - Ausblick

- Solid State LiDAR
 - keine mechanische Strahlablenkung
 - https://www.youtube.com/watch?v=h7nHfaY6He0

LiDAR - Anwendungen

- Objekterkennung und -tracking
 - https://www.youtube.com/watch?v=R1SkT95yHf0&t=120s

LiDAR - Anwendungen

- Lokalisierung

Weitere Einsatzgebiete

LiDAR - Problemstellungen

- Reflektierte Laserstrahlen haben je nach Material unterschiedliche Intensität
- Starke Absorption z.B. matte dunkle Materialien
- Starke Lichtdurchlässigkeit z.B. Glas

LiDAR - Problemstellungen

LiDAR - Problemstellungen

- Zeitlicher Versatz der Messung bei Bewegung

