Plots for the M_{ej} correlations

December 18, 2015

This document has the plots for the ejecta mass calculations using the measured NIR light curves of CSP-I objects. It also includes a short discussion of the distributions in the literature or from complementary methods.

- 56 Ni mass using Arnett's rule and t_0 using the Jeffrey 1999 formalism
- ⁵⁶Ni mass from the nebular phase line and the ejecta mass from Scalzo et al 2014 relation (using the stretch values)
- Calculated from Richard's MCMC

Procedure

In this section, I describe the procedure used for calculating the M_{Ni} and M_{ej} values. I follow the steps in Stritzinger et al. 2006, but I have written down each part of the analysis so that it can be checked.

- \bullet I use an R_V value for each SN (in this case 1.7) to calculate A_V from the measured colour excess.
- The magnitudes are converted to dereddened fluxes and a bolometric light curve is calculated.
- ⁵⁶Ni mass is calculated from the bolometric peak using Arnett's rule
- \bullet t_0 is calculated by fitting a $^56{\rm Co}$ deposition function to the bolometric light curve between +40 and $+100\,{\rm d}$
- M_{ej} is calculated as in Jeffrey 1999 using the same assumptions for v_e , q and κ_{γ} as in Stritzinger et al. 2006.

Nickel mass calculations

For plots in this document, the Ni masses were calculated in the 'conventional' method, using multi-band data to construct a bolometric light curve. The sample of SNe for this calculation includes objects with significant (E(B-V)).

Figure 1: Fitting the deposition curve to the bolometric light curve of SN 2005M

Figure 2: Using a variable rise time for the Nickel mass calculations, the relation between M_{ej} - ^{56}Ni mass

.1) reddening. For these objects, the Ni masses calculated from the bolometric light curve will be sensitive to the R_V value assumed.

The objects with a high 56 Ni mass are SN 2006et, SN 2007S, SN 2007le, SN 2008fp. These objects all have >0.25 mag of extinction. Comparing the 56 Ni mass from the second maximum to the estimate from the peak suggests that the $R_V=1.7$ fit is significantly better than $R_V=3.1$. The measured R_V values for these 4 SNe (from Burns et al. 2014 using maximum light photometry) is ~ 1.7 which agrees well with the inference from the 56 Ni mass. This may also be further proof that 91T-like objects occur in dustier environments.

Figure 3: Comparing the SNe in Figure ?? to the calculations by Richard