

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 13: DAS PROZESSPROBLEM

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 30.01.2020

Algebraisches Pfadproblem

ABSTRAKTION: ALGEBRAISCHES PFADPROBLEM

- bisher: kürzeste Wege

 - ▶ Minimum min über alle Pfade
- jetzt: Verallgemeinerung
 - ▶ Pfadoperation ⊙ entlang der Pfade
 - ▶ Akkumulationsoperation ⊕
- ► **Ergebnis:** allgemeine algebraische Struktur Semiring $(S, \oplus, \odot, \mathbf{0}, \mathbf{1})$

	Werte S	\oplus	•	0	1
kürzeste Wegeproblem	$\mathbb{R}^{\infty}_{\geq 0}$	min	+	∞	0
Kapazitätsproblem	\mathbb{N}_{∞}	max	min	0	∞
Erreichbarkeitsproblem	$\{true,false\}$	V	\wedge	false	true
Zuverlässigkeitsproblem	[0,1]	max		0	1
Prozessproblem	$\mathcal{P}(\Sigma^*)$	U	0	Ø	$\{\varepsilon\}$

FLOYD-WARSHALL → AHO-HOPCRAFT-ULLMANN

modifizierte Adjazenzmatrix

$$mA_G = \begin{cases} A_G(u, v) & \text{wenn } u \neq v \\ A_G(u, v) \oplus \mathbf{1} & \text{wenn } u = v \end{cases}$$

- ► Initialisierung: $D_G^{(0)} = mA_G$
- Rekursion:

$$D_G^{(k+1)}(u,v) = D_G^{(k)}(u,v) \oplus \left(D_G^{(k)}(u,k+1) \odot (D_G^{(k)}(k+1,k+1))^* \odot D_G^{(k)}(k+1,v)\right)$$

vgl. dazu Floyd-Warshall:

$$D_G^{(k+1)}(u,v) = \min \left\{ D_G^{(k)}(u,v), D_G^{(k)}(u,k+1) + D_G^{(k)}(k+1,v) \right\}$$

AUFGABE 12.3

Teil (a):
$$(S, \oplus, \odot, \mathbf{0}, \mathbf{1}) = \\ (\mathcal{P}(\Sigma^*), \cup, \circ, \varnothing, \{\varepsilon\})$$

Update-Formel: $D_G^{(k+1)}(u, v)$

$$= D_G^{(k)}(u, v) \oplus \left(D_G^{(k)}(u, k+1) \odot (D_G^{(k)}(k+1, k+1))^* \odot D_G^{(k)}(k+1, v) \right)$$

$$= D_G^{(k)}(u, v) \cup \left(D_G^{(k)}(u, k+1) \circ (D_G^{(k)}(k+1, k+1))^* \circ D_G^{(k)}(k+1, v) \right)$$

$$= \text{ alt } \cup \left(\text{ Zeile } \circ \text{ (Diagonale})^* \circ \text{ Spalte } \right)$$

AUFGABE 12.3

Teil (b):
$$mA_G = D_G^{(0)} = \begin{pmatrix} \{\varepsilon, d\} & \{a\} & \varnothing \\ \varnothing & \{\varepsilon\} & \{b\} \\ \{c\} & \varnothing & \{\varepsilon\} \end{pmatrix}$$

Teil (c): $D_G^{(1)} = \begin{pmatrix} \{d\}^* & \{d\}^* \{a\} & \varnothing \\ \varnothing & \{\varepsilon\} & \{b\} \\ \{c\} \{d\}^* & \{c\} \{d\}^* \{a\} & \{\varepsilon\} \end{pmatrix}$

AUFGABE 12.3

Teil (d):

$$D_{G}^{(2)}(3,3) = D_{G}^{(1)}(3,3) \cup \left(D_{G}^{(1)}(3,2) \circ \left(D_{G}^{(1)}(2,2)\right)^{*} \circ D_{G}^{(1)}(2,3)\right)$$

$$= \{\varepsilon\} \cup \left(\{c\} \{d\}^{*} \{a\} \circ \{\varepsilon\}^{*} \circ \{b\}\right)$$

$$= \{\varepsilon\} \cup \left(\{c\} \{d\}^{*} \{ab\}\right)$$

$$D_{G}^{(3)}(3,3) = D_{G}^{(2)}(3,3) \cup \left(D_{G}^{(2)}(3,3) \circ \left(D_{G}^{(2)}(3,3)\right)^{*} \circ D_{G}^{(2)}(3,3)\right)$$

$$= D_{G}^{(2)}(3,3) \cup \left(D_{G}^{(2)}(3,3)\right)^{*}$$

$$= \left(D_{G}^{(2)}(3,3)\right)^{*}$$

$$= \left(\{\varepsilon\} \cup \{c\} \{d\}^{*} \{ab\}\right)^{*}$$

$$= \left(\{c\} \{d\}^{*} \{ab\}\right)^{*}$$

Übungsblatt 13

AUFGABE 1

Teil (a):

$$mA_G = \begin{pmatrix} \{\varepsilon\} & \{b\} & \{b\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \emptyset & \{\varepsilon\} \end{pmatrix}$$

Teil (b):

$$D_G^{(1)} = \begin{pmatrix} \{\varepsilon\} & \{b\} & \{b\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \{cb\} & \{cb,\varepsilon\} \end{pmatrix} \qquad D_G^{(2)} = \begin{pmatrix} \{\varepsilon\} & \{b\} & \{b,ba\} \\ \emptyset & \{\varepsilon\} & \{a\} \\ \{c\} & \{cb\} & \{cb,cba,\varepsilon\} \end{pmatrix}$$

AUFGABE 1

Teil (c):

$$D_{G}(3,1) = D_{G}^{(3)}(3,3)$$

$$= D_{G}^{(2)}(3,3) \cup \left\{ D_{G}^{(2)}(3,3) \cdot (D_{G}^{(2)}(3,3))^{*} \cdot D_{G}^{(2)}(3,1) \right\}$$

$$= \{c\} \cup \left\{ \{cb, cba, \varepsilon\} \cdot \{cb, cba, \varepsilon\}^{*} \cdot \{c\} \right\}$$

$$= \{cb, cba\}^{*} \cdot \{c\}$$

$$D_{G}(3,2) = D_{G}^{(2)}(3,2) \cup \left\{ D_{G}^{(2)}(3,3) \cdot (D_{G}^{(2)}(3,3))^{*} \cdot D_{G}^{(2)}(3,2) \right\}$$

$$= \{cb\} \cup \left\{ \{cb, cba, \varepsilon\} \cdot \{cb, cba, \varepsilon\}^{*} \cdot \{cb\} \right\}$$

$$= \{cb, cba\}^{*} \cdot \{cb\}$$

$$D_{G}(3,3) = D_{G}^{(2)}(3,3) \cup \left\{ D_{G}^{(2)}(3,3) \cdot (D_{G}^{(2)}(3,3))^{*} \cdot D_{G}^{(2)}(3,3) \right\}$$

$$= \{cb, cba, \varepsilon\} \cup \left\{ \{cb, cba, \varepsilon\} \cdot \{cb, cba, \varepsilon\}^{*} \cdot \{cb, cba, \varepsilon\} \right\}$$

$$= \{cb, cba\}^{*}$$

Teil (d): $D_G(3,3) = \{cb, cba, ba\}^* \rightsquigarrow (3,3,\{cb, cba, ba\}^*)$