CS 2110 - Lab 03

Digital Logic, Combinational Logic

Wednesday, May 25, 2022

Lab Assignment: Canvas Quiz

- 1. Go to Quizzes on Canvas
- 2. Select Lab 03, password: CMOS
- 3. Get 100% to get attendance!
 - a) Unlimited attempts
 - b) Collaboration is allowed!
 - c) Ask your TAs for help:)

Homework 1

- Released!
- Due Thursday, June 2nd at 11:59 PM (standard 24 hr grace period)
- Files available on Canvas
- Submit on Gradescope
 - Double check that your grade on Gradescope is your desired grade!

Homework 2

- Released this Friday, May 27th
- Due Monday, June 6th at 11:59 PM
- Files available on Canvas
- Submit on Gradescope (unlimited submissions)

Today's Topics

- Transistors and CMOS Design
- Logic Conversions
- Decoders and Multiplexers
- IEEE 754

Exhaustive truth tables with Drake

Logical Operations

How can we implement these different operations in hardware?

AND Gate

INPUT		OUTPUT
Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

INPUT		OUTPUT
Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

NOR Gate

IN	PUT	OUTPUT
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Exclusive OR Gate

INPUT		OUTPUT	
Α	В	С	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Transistors

Transistors are digital "switches" and are the magical building blocks of all gates.

Open
No current can
flow through
switch

Closed Current can flow through the switch

Beautiful game btw

Transistors

Parts of a MOS transistor:

- Gate
- Source
- Drain

Types of MOS transistors:

- P-type
- N-type

Complementary MOS ("CMOS") design: combining PMOS and NMOS transistors to make more complicated circuits

P-type Transistors

- Connected to Power
 - P-type transistorsCANNOT propagatea strong "0" signal
- "Normally closed"

N-type Transistors

- Connected to GrouNd
 - N-type transistors
 CANNOT propagate
 a strong "1" signal
- "Normally open"

N-Type vs P-Type Comparison

- They have the opposite effect; notice the bubble!
- Check the direction of the arrows we always point from source (input) to drain (output)
- In CMOS design, connecting multiple P-type in series implies we will connect some complementary N-type transistors in parallel, and vice versa

Transistors

- What transistor is in this circuit?
- Figure c) is shorthand for b)

Logic Gates

- Abstraction for representing groups of transistors
- Perform basic binary operations
- Basic building blocks of circuits
- Wires connect inputs and outputs

A basic circuit looks like...

- An Input
- An Output
- Some binary operations

What would Y equal if A, B, and C are all 1?

This is on your attendance quiz!

Logic Conversion

- From Truth Tables
- From Boolean Expressions
- From Circuits

Decimal System: 1+1=2 Binary System: 1+1=10 Boolean Algebra: 1+1=1

Non-Programmers:

Converting a Truth Table to Sum of Products

А	В	С	Func(A,B,C)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Create a term for each case that results in 1
 - Each term is an AND
- OR all the terms together
- Func(A,B,C) = A'B'C' + A'BC' + AB'C' + ABC' + ABC

Converting Truth Table to Sum of Products Circuit

Α	В	С	Func(A,B,C)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

We can build out a bunch of AND gates to represent every line in the table and use an OR gate to get the correct output.

$$Func(A,B,C) = A'B'C' + A'BC' + AB'C' + ABC' + ABC$$

Converting Boolean Expression: A | (B & ~C)

А	В	С	Func(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Fill out the first 3 columns of the table and plug the inputs into the expression.

To build the circuit, you can draw each of the gates from the expression and connect the pins

Converting from a Circuit

From a circuit, we can easily get the expression by looking at the gates:

This is on your attendance quiz!

We can use the same steps from the previous slide to build the truth table from the expression

Α	В	С	Func(A,B,C)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

DeMorgan's Law

$$(\text{not A and not B}) = \text{not (A or B)}$$

$$\overline{A} \cdot \overline{B} = \overline{A + B}$$

(not A or not B) = not (A and B)

$$\overline{A} + \overline{B} = \overline{A \cdot B}$$

Conte Bubble Theorem

- Switch AND & OR
- Bubble → No Bubble
- No Bubble → Bubble
- They are equivalent!

$$C \longrightarrow Y = C \longrightarrow Y$$

Decoders

- Sets <u>exactly one</u> output based on which of the input bits are set
- If there are *n* input bits then there are 2ⁿ outputs. (Why?)

Multiplexer (mux)

- Selects between inputs using a selector
- If there are 2^n inputs, then there are n selector bits
- There is always just one output

Demultiplexer (demux)

- Sends the input across exactly one of the output lines
- Other outputs remain zero
- If there are 2^n outputs, then there are n selector bits
- There is always just one input

IEEE 754 Floating Point Numbers

Single Precision
IEEE 754 Floating-Point Standard

Exponent

- Unsigned 8-bit integer, minus 127
- What is the range of the exponent?
 - Normal numbers have a range from -126 to +127.
 - Exponents -127 and +128
 are reserved for special cases.

Single Precision
IEEE 754 Floating-Point Standard

Mantissa

- 23-bit fractional part of a number
- In the form 1.M; the 1 is implied and not stored

Single Precision
IEEE 754 Floating-Point Standard

Conversion Practice

• What is the decimal representation of the following IEEE-754 floating point number?

How to compare?

- Treat like a signed, 32 bit whole number
- Go bitwise
- This is why the signed exponent is not defined using 2s complement—it allows us to compare bitwise, rather than having to do a 2's complement comparison on the exponent portion

011011000 10100001000000000101000
001011000 10100001000000000101000

IEEE 754 Edge Cases

Formula: $(-1)^S * 1.M * 2^(E-127)$

	E== 0	0 <e<255< th=""><th>E==255</th></e<255<>	E==255
M==0	0	Powers of 2	infinity
M!=0	Non- normalized	Regular numbers	NaN

Non-normalized formula: $(-1)^S * 0.M * 2^(-126)$ note: 0.M and $2^(-126)$ instead of 1.M and $2^(-127)$

Conversion Practice

- Interpret the following hexadecimal value as floating point using the IEEE-754 standard.
- . x419B0000

Conversion Practice

- Convert the following **floating point** value to Binary and Hexadecimal using the **IEEE-754** standard.
- . 13.25