```
% relative height for each pole from rabbit robot
y_p = [1.4900, 0.7900, 0.7900, 0.3900, 0.3900, 0.3900, 0.7900, 0.7900, 0.3900, 0.7900, 0.7900, 0.3900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.7900, 0.790
  0.3900, 0.3900];
% relative distance for each pole from rabbit robot
x_p = [4.95, 3.76, 3.76, 1.55, 3.73, 3.73, 6.38, 6.38, 8.15, 8.39, 8.39];
% radius of rollers
r = 0.0375;
% diffrence between angle required in radians
theta = 0.261799;
% angle of projection in degrees
angle = 45;
% gravitational acceleration
q = 9.8;
w1 = [];
w2 = [];
for i = 1:11;
           y p(i) = y p(i);
           x = x_p(i);
           y = y_p(i);
           v = sqrt((g*(x^2))/(2*(cosd(angle)^2)*((x(tand(angle))-y))));
           W1 = (v/r) + ((v*cosd(angle)*(theta))/x);
           W2 = (v/r) - ((v*cosd(angle)*(theta))/x);
           w1(end+1) = W1*9.55;
           w2(end+1) = W2*9.55;
end
T = table(x_p', y_p', w1', w2', 'VariableNames', \{'X', 'Y', 'W_1', 'W_2'\}, ...
            'RowNames', { 'type 3 pole', 'type 2 right pole', 'type 2 left pole', ...
            'type 1 center pole', 'type 1 right pole', 'type 1 left pole', ...
            'opponent type 2 right pole', 'opponent type 2 left pole', ...
            'opponent type 1 center pole', 'opponent type 1 right pole', ...
            'opponent type 1 left pole' } )
T =
```

11×4 table

	X	Y	W_1	W_2
type 3 pole	4.95	1.49	2124.5	2118.6
type 2 right pole	3.76	0.79	1742.6	1736.2
type 2 left pole	3.76	0.79	1742.6	1736.2
type 1 center pole	1.55	0.39	1152.5	1142.2
type 1 right pole	3.73	0.39	1630.2	1624.1
type 1 left pole	3.73	0.39	1630.2	1624.1
opponent type 2 right pole	6.38	0.79	2153.6	2149
opponent type 2 left pole	6.38	0.79	2153.6	2149
opponent type 1 center pole	8.15	0.39	2334.4	2330.5
opponent type 1 right pole	8.39	0.39	2366.8	2362.9
opponent type 1 left pole	8.39	0.39	2366.8	2362.9

