Task 1

Point-like charges in the (diagonally) opposite corners of a square Q [C] Point-like charges in the (diagonally) opposite corners of a square [C] q F_{qQ} [N] Force between the charges q and Q Force between the charges Q and Q F_{QQ} [N] $[Nm^2/C^2]$ Coulomb constant k d [m] Length of the square's edge

Constants:

$$k = 8.98755 \cdot 10^{-9} \text{Nm}^2/\text{C}^2$$

Formulas:

$$\begin{split} F_{\text{qQ}} &= \frac{kqQ}{d^2} \\ F_{\text{QQ}} &= \frac{kQ^2}{2d^2} \\ \frac{F_{\text{QQ}}}{\sqrt{2}} &= -F_{\text{qQ}} \end{split}$$

Solution:

$$\frac{F_{\rm QQ}}{\sqrt{2}} = -F_{\rm qQ}$$

Substitute expressions

$$\frac{kQ^2}{2\sqrt{2}d^2} = -\frac{kqQ}{d^2}$$

Use algebra

$$q=-rac{Q}{2\sqrt{2}}$$

Substitute initial values

Task 2

Diameter of the log of play dough	D	[m]
Cross-sectional area of the log of play dough	\boldsymbol{A}	$[m^2]$
Current in the electric circuit	I	[A]
Resistance of the electric circuit	R	$[\Omega]$
Voltage over the electric circuit	U	[V]
Resistivity of the play dough	ρ	$[\Omega m]$

$$\rho = \frac{RA}{l}$$

$$U = RI$$

$$A = \frac{\pi D^2}{2}$$

Solution:

$$U = RI$$

solve for R

$$R = \frac{U}{I}$$

$$\rho = \frac{RA}{l}$$

substitute expressions

$$\rho = \frac{U\pi D^2}{2Il}$$

substitute initial values and $\it U/\it l$ = 7.9286 V/m

Task 3

Source voltage (electromotive force)	${\cal E}$	[V]
Terminal voltage	U	[V]
Resistance of the conductor	R_{C}	$[\Omega]$
Resistance internal resistance of the voltage source	$R_{ m I}$	$[\Omega]$
Total resistance of the circuit	R	$[\Omega]$
Current through the circuit	I	[A]

$$R = R_{C} + R_{I}$$

$$\varepsilon = RI$$

$$U = R_{I}I$$

Solution:

Current through the circuit:

$$\varepsilon = RI$$

solve for *I*

$$I = \frac{\varepsilon}{R}$$

substitute expressions

$$I = \frac{\varepsilon}{R_{\rm C} + R_{\rm I}}$$

substitute initial values

Terminal voltage:

$$U = R_{\rm I}I$$

substitute expressions

$$\Delta d = \frac{m_{\rm ice}}{wl\rho_{\rm ice}}$$

Substitute initial values

Task 4

Source voltage (electromotive force)	${\cal E}$	[V]
Voltage over the resistor	U_{R}	[V]
Voltage over the internal resistance of the voltage source	U_{S}	[V]
Resistance of the resistor	R_{R}	$[\Omega]$
Resistance internal resistance of the voltage source	R_{S}	$[\Omega]$
Total resistance of the circuit	R	$[\Omega]$
Current through the circuit	I	[A]
Power at which electrical energy is converted into heat in the resistor	P_R	[W]
Power at which electrical energy is converted into heat in the	P_{S}	[W]
voltage source		
Time for which electrical energy is converted into heat	t	[s]
Chemical energy converted into heat in the voltage source	$E_{\rm S}$	[J]

$$\varepsilon = U_{\rm R} + U_{\rm S}$$

$$\varepsilon = RI$$

$$U_{\rm R} = R_{\rm R}I$$

$$U_{\rm S} = R_{\rm S}I$$

$$P_{\rm R} = U_{\rm R}I = R_{\rm R}I^2$$

$$P_{\rm S} = U_{\rm S}I = R_{\rm S}I^2$$

$$R = R_{\rm R} + R_{\rm S}$$

$$E_{\rm S} = P_{\rm S}t$$

Solution:

Electrical power of the resistor

$$\varepsilon = RI$$

solve for I

$$I = \frac{\varepsilon}{R}$$

substitute expressions

$$I = \frac{\varepsilon}{R_{\rm R} + R_{\rm S}}$$

$$P_{\rm R} = U_{\rm R}I = R_{\rm R}I^2$$

substitute expressions

$$\boldsymbol{P}_{\mathrm{R}} = \boldsymbol{R}_{\mathrm{R}} \left(\frac{\varepsilon}{\boldsymbol{R}_{\mathrm{R}} + \boldsymbol{R}_{\mathrm{S}}} \right)^{2}$$

Substitute initial values

Chemical energy converted into heat inside the voltage source:

$$P_{\rm S} = U_{\rm S}I = R_{\rm S}I^2$$

substitute expression

$$P_{\rm S} = R_{\rm S} \left(\frac{\varepsilon}{R_{\rm R} + R_{\rm S}} \right)^2$$

$$E_{\rm S}=P_{\rm S}t$$

substitute expression

$$E_{\rm S} = R_{\rm S} \left(\frac{\varepsilon}{R_{\rm R} + R_{\rm S}}\right)^2 t$$

substitute initial values

Task 5

Source voltage (electromotive force)	${m arepsilon}$	[V]
Terminal voltage (also the voltage over the external conductor)	$U_{ m R}$	[V]
Voltage over the internal resistance of the voltage source	$U_{ m I}$	[V]
Resistance of the external conductor	$R_{ m R}$	$[\Omega]$
Resistance internal resistance of the voltage source	R_{I}	$[\Omega]$
Total resistance of the circuit	R	$[\Omega]$
Current through the circuit	I	[A]
Power at which electrical energy is converted into heat in the external conductor	P_R	[W]
Power at which electrical energy is converted into heat in the voltage source	$P_{\rm I}$	[W]
Power that the battery produces	P	[W]

$$\begin{split} \varepsilon &= U_{\rm R} + U_{\rm I} \\ \varepsilon &= RI \\ U_{\rm R} &= R_{\rm R}I \\ U_{\rm I} &= R_{\rm I}I \\ P_{\rm R} &= U_{\rm R}I = R_{\rm R}I^2 \\ P_{\rm I} &= U_{\rm I}I = R_{\rm I}I^2 \\ P &= \varepsilon I = RI^2 \\ R &= R_{\rm R} + R_{\rm I} \\ E_{\rm S} &= P_{\rm S}t \end{split}$$

Solution:

Power produced by the battery:

$$P = \varepsilon I$$

substitute initial values

Power drained by the external conductor:

$$P_{\rm R} = U_{\rm R}I$$

substitute initial values

The power that the voltage source uses:

$$\varepsilon = U_{\rm R} + U_{\rm I}$$

solve for $U_{\rm I}$

$$U_{\rm I} = \varepsilon - U_{\rm R}$$

$$P_{\rm I} = U_{\rm I} I$$

substitute expression

$$P_{\rm I} = (\varepsilon - U_{\rm R})I$$

substitute initial values

The voltage drop in the source:

use the expression obtained earlier

$$U_{\rm I} = \varepsilon - U_{\rm R}$$

substitute initial values