一、实验目的.

孝握简单明序电路的分析,设计,例试方法.

二、玄经品件和设备

双J-K触发器:74LS107

双D触发器:74L574

四三编入与门:74LS切

TEC8数字电路交经系统

TBS1102B-EDU双跨方波器.

三. 实验内容.

1.双D柏成的二进制计数器: 辖设计程件, 将Go,Q,,Q,Q,复位; 由时钟端CLK输入平脉冲 记录输出状态;由时钟编CLK输入连旋脉冲,况测输出波形,

小状态转移表

,	1	1901.					N 4	1 2
CK	Q3	kin a	1	a,	(R3	Q2	Q nti	Os.
0	9	O	0	0	D	0	0	
1	0	0	0		0	0		D,
2	Ö	0	ſ	0	D	0	1	1
3	0	0	J	(0	,	0	0
4	0	1	0	0	0	1	ь	1
	0	1	O	1	O	ſ	1	0
5 b	0	1	1	0	O	1	1	- (
7	0	1	1	J	1	0	0	0
8	1	0	0	ס	1	0	0	, 1
9	1	0	O	1	l l	Ö	- 1	0
10	li	0	1	0	1	0	l	1
11	1	0	- 1	(1	- Į	0	0
			0	0	ı		0	1
12	1.	i	0	ĭ	1	1	1	0
13	Ľ.	i	- (0	1	1	1	J
14	1!	ί	í	Ĭ	0	0	0	0
15	1	Ò	Ö	0	D	O	0	1

(4)输出波形图。	
CK	
Q	
α,	
Q_{λ}	
Q3:	
31页页页页页计成计数类场准。	and the second s

2. 屏当于通制计数器: 接设计接线.特G。. Q、Q、Q、Q、复位;由时卸编 CLK编入单脉冲,记录输出状态;由时卸编CLK输入追该脉冲, 观测输出波形.

山状态轺移表.

CLK	K ₃	Q2	Q,	Q_{o}	地制致.
Ū	o	0	0	Ø	O
1	O	0	0	1	l.,
٠, ٢	0	0	1	0	2
3	0	0	1	1	3
4	V	1	0	Ò	4
2	0	(0	1	5
Ь	0	- (1	0	6
7	Ü	1	1	1	7
X	1	0	b	0	8
9	l	U	0	1	9
10	0	0	0	0	0

(3)思考起:同步进制计数器的设计方案。

3. 氟循环等存器.

小用双D自由发器74LS74构成一个4位自循环存存器。方法及第1级的 Q编转第2级的D编,依此类推,最后第4级的Q编转第13Q 的D编。竹D触发器的CLK结连接在一起,然后接触冲 羽钟

山杨凤双双湖西,再将凤墨、接角脉冲转钮,观察并记录

见。见见以的值

3)状态转锋:

(3)分科:

- ①考K·为的电平, K·为高年, 四个新灯都亮,为 0000
 - ②若K, 三, K, 20 LED 指对点,为0001,但无法循环
 - ③考K,=1, K,=1,正常循环、

四、实验系统

- 1、本次实验提升]我对明白电路的理解,尤其是计数器的部分 在查阅资料的过程中,更是如深了对计数器知识点的印象。 除此之外,还了解了其他进制的计数器的工作原理,
- 2.学习诉讼器的保存(save)功能,收款颇名且国为完分地预习,实验过程较为限到,没有出现严重卡克的情况.