Amirkabir University of Technology (AUT) Tehran, Iran Lab Database, Computer Engineering Department Tina Gholami (9531307) Report 1

Part 1) MSSMS ER model report:

After opening up a new project on MSSMS (name: Lab_ass_1) and connecting to server to the database, the entities (tables) and their relations should be designed according to the lab description file. Towards that end, first, the entities are made according to the ER diagram on page 16 of the lab description file.

Next, their relations (many-to-one, one-to-one, and one-to-many) with their according foreign keys are specified, according to page 6 of the lab description file.

Here are the tables in detail:

1) Table STUDENT:

DESKTOP-GE1910B\s_1 - dbo.STUDENT		DESKTOP-GEI9I0B\s_1 - dbo.STUDENT → ×	
	Column Name	Data Type	Allow Nulls
8	student_id	int	
	student_name	varchar(50)	✓
	student_address	varchar(50)	✓
	seat no	int	

DESKTOP-GEI9I0B\s_1 - dbo.STUDENT + X DESKTOP-GEI9I0B\s_					
	student_id	student_name	student_	address	seat_no
	1	Sherlock	London		3
	2	Leo	Oregon		4

2) Table SEAT:

DE	SKTOP-GEI9I0B\Sass_1 - dbo.SEAT	DESKTOP-GEI9I0B\Sass_1 - dbo.SE	AT ₽ X
	Column Name	Data Type	Allow Nulls
8	seat_no	int	
	seat_position	int	✓

DESKTOP-GEI9I0B\Sass_1 - dbo.SEA					X
	seat_no	seat_position			
	3	1			
	4	2			

3) Table COURSE:

DESKTOP-GEI9I0B\ss_1 - dbo.COURSE DESKTOP-GEI9I0B\ss_1 - dbo.COURSE DESKTOP-GEI9I0B\ss_1 - dbo.COURSE			
	Column Name	Data Type	Allow Nulls
P	course_number	int	
	course_name	varchar(50)	\checkmark
	instructor_no	int	

DESKTOP-GEI9I0B\ss_1 - dbo.COURSE → ×					
	course_number	course_name	instructor_no		
	1	string theory	3		
	2	Al	4		

4) Relation Takes:

DESKTOP-GEI9I0B\Sass_1 - dbo.takes		DESKTOP-GEI9I0B\Sass_1 - dbo.tal	kes ⊅ X
Column Name		Data Type Allow N	
P	student_id	int	
P	course_number	int	

DESKTOP-GEI9I0B\Sass_1 - dbo.takes → ×					
	student_id course_number				
	1 2				
	2	2			

5) Table INSTRUCTOR:

DESKTOP-GEI9I0B\ dbo.INSTRUCTOR DESKTOP-GEI9I0B\ dbo.INSTRUCTOR ⊅ X			
	Column Name	Data Type	Allow Nulls
8	instructor_no	int	
	instructor_name	varchar(50)	\checkmark
	instructor_faculty	varchar(50)	✓

DESI	DESKTOP-GEI9I0B\ dbo.INSTRUCTOR ≠ X DESKTOP-GE					
	instructor_no	instructor_name	instructor_faculty			
	3	Einstein	physics			
	4	Andrew NG	CS			

6) Table CLASS:

DE	SKTOP-GEI9I0B\Sass_1 - dbo.CLASS	DESKTOP-GEI9I0B\Sass_1 - dbo.CLASS + ×		
	Column Name	Data Type	Allow Nulls	
8	course_number	int		
8	section_number	int		
	num_registered	int	\checkmark	
	class_date_time	datetime	\checkmark	

DES	DESKTOP-GEI9I0B\Sass_1 - dbo.CLASS + X					
	course_number	section_number	num_registered	class_date_time		
	1	4	30	2021-01-03 13:00:00.000		
	2	5	40	2021-01-03 15:00:00.000		

7) Table SECTION:

DE	SKTOP-GEI9I0B\Ss_1 - dbo.SECTION	DESKTOP-GEI9I0B\Ss_1 - dbo.SECTION → ×	
	Column Name	Data Type	Allow Nulls
ß	section_number	int	
	professor_id	int	

DESKTOP-GEI9I0B\Ss_1 - dbo.SECTION → X DESK			
	section_number	professor_id	
	4	3	
	5	4	

8) Table PROFESSOR:

DE	DESKTOP-GEI9I0B\ dbo.PROFESSOR			
	Column Name	Data Type	Allow Nulls	
ß	professor_id	int		
	professor_name	varchar(50)	✓	
	professor faculty	varchar(50)	~	

DESKTOP-GEI9I0B\ dbo.PROFESSOR → X DESKTOP-GEI9I0B\				
	professor_id	professor_name	professor_faculty	
	3	Shahriari	ce	
	4	Bagheri	ce	

Now, to see the foreign keys and relations in more detail:

1) fills: (one-to-one relation)

2) takes: (many-to-many relation)

Primary key table:

INSTRUCTOR

instructor_no

Foreign key table:

COURSE

instructor_no

4) has: (one-to-many relation)

6) teaches: (many-to-one relation)

Part 2) Describe two different files with the extensions .mdf and .ldf in the data base:

.mdf: The file where data in the database is stored.

.ldf: The file where transactions and logs in the database is kept.

Every database in SQL Server stores at lease tow files with the extensions .mdf and .ldf where the former is for storing the data (data file), and the latter is for saving the logs (log file).

The data file contains information such as the tables, relations, indexes, procedures, and views. Common extension for these files are .mdf and also .ndf

On the other hand, log files contain information that help recover transactions. Common extension for these files are .ldf

The path where these two files are being stored on my PC (and usually other PCs too) is:

C:\Program Files\Microsoft SQL Server\MSSQL15.SQLEXPRESS\MSSQL\DATA

Part 3) Describe different data.

Before inserting data in the database, its type should have been specified in the tables (relations). That is because when the data is being inserted in the memory, both the database and the operating system need to know how much memory should be dedicated to each data instance. And if the inserted data type violates the pre-specified data type, then the database server will probably give errors.

فضاى لازم	محدوده قابل قبول	نوع داده
۸ بایت	از منفی دو به توان ۶۳ تا دو به توان ۶۳ منهای یک	bigint
۴ بایت	از منفی دو به توان ۳۱ تا دو به توان ۳۱ منهای یک	Int
۲ بایت	از ۳۲۷۶۸ تا ۳۲۷۶۷	Smallint
۱ بایت	از صفر تا ۲۵۵	tinyint

D .		$\boldsymbol{\alpha}$	•
I)ata	Type	Cateo	ories
Dutu	I y p c	Cutos	,orres.

Data types in SQL Server are organized into the following categories:

Exact numerics Unicode character strings

Approximate numerics Binary strings

Date and time Other data types

Character strings

In SQL Server, based on their storage characteristics, some data types are designated as belonging to the following groups:

- Large value data types: varchar(max), and nvarchar(max)
- Large object data types: text, ntext, image, varbinary(max), and xml

Exact numerics

bigint numeric

bit smallint

decimal smallmoney

int tinyint

money

Approximate numerics

nchar

ntext

float real Date and time datetimeoffset date datetime2 smalldatetime datetime time **Character strings** char varchar text **Unicode character strings**

nvarchar

Binary strings

binary varbinary

image

Other data types

cursor rowversion

hierarchyid uniqueidentifier

sql_variant xml

Spatial Geometry Types Spatial Geography Types

table

Here were the different data and their types accepted by SQL.