NLP - Deception Detection [End Sem Presentation]

NLP_grp43

Harsh Rajput - 2022201

Krishna Shukla - 2022254

Varun Kumar - 2022563

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Introduction

- Strategy game Diplomacy involves negotiation, alliances, and betrayal.
- Goal: Classify in-game messages as truthful or deceptive.
- Importance: Helps analyze player behavior and improve AI strategies.
- Approach: Build an NLP model with enhanced feature engineering and modeling techniques for better accuracy.

Literature Review

- Deception in Diplomacy (Peskov et al.)
 - Dataset: 17,289 annotated messages from 12 games.
 - Dual-annotation: Sender's intent vs. receiver's perception.
 - Key Insight: Deception blends truth and lies to build trust.
 - ML models using **linguistic cues**, **context**, and **power dynamics** matched human-level performance.
- Political Agreement & Disagreement (Davoodi et al.)
 - Dataset: State bills + legislature, district & donor data.
 - Task: Predict voting outcomes using bill text & context.
 - Model: Shared relational embeddings.
 - Highlight: **Contextual info** boosts accuracy in political alignment prediction.

Dataset

- Source: 17,289 annotated messages from 12 online Diplomacy games (Peskov et al.)
- Game Context: WWI-era strategy game where players form/break alliances; success depends on negotiation & deception (no randomness).
- Annotations:
 - Sender Label: Actual intent (truthful/deceptive)
 - Receiver Label: Perceived truthfulness (true/false/NA)
- Data Split: 9 games (train), 1 (validation), 2 (test)
- Message Fields:
 - Sender, Receiver, Message Text
 - Labels: sender_labels, receiver_labels
 - Metadata: Game ID, Year, Season, Message Index, Game Score, Score Delta

Methodology

- Approach: Supervised learning to classify messages as truthful or deceptive
- **Pipeline**: Language Representation → Classification Model

1. Feature Representations (Encoders):

- RoBERTa Robust transformer, strong NLP performance
- **BERT** Contextualized embeddings from bidirectional transformers
- MiniLM Lightweight transformer, fast & efficient
- GloVe Static word embeddings (mean of token vectors)

For transformers: used [CLS] token embedding

2. Classification Models:

- Logistic Regression Simple, interpretable baseline
- **SVM** Effective in high-dimensional settings
- Random Forest Captures nonlinear patterns via ensemble trees
- **MLP** Neural network for complex relationships

Evaluation Metric

The primary evaluation metric for this task is accuracy, which measures the proportion of correctly classified messages.

$$Accuracy = \frac{Correctly \ classified \ messages}{Total \ messages}$$

To address the issue of class imbalance, we use the macro- averaged F1 score as a more reliable metric, particularly for evaluating the detection of ACTUAL_LIE.

$$F1_{\text{macro}} = \frac{1}{2} \left(F1_{\text{truth}} + F1_{\text{lic}} \right)$$

Results

Model	Log. Reg.	RF	SVM	MLP
RoBERTa	48.5	52.5	48.5	54.4
BERT	55.6	52.0	51.0	51.0
MiniLM	48.5	52.5	48.5	48.5
GloVe	48.5	48.5	48.5	48.5

Learning & Conclusion

- **Real-World NLP Exposure**: Tackled strategic deception in human communication using complex, annotated game dialog.
- Handling Dialog Data: Learned to preprocess and structure annotated datasets capturing both sender and receiver perspectives.
- Class Imbalance: Addressed skewed data distribution; used macro F1 and adjusted training strategies for fair evaluation.
- Model Experimentation: Explored traditional (GloVe) and transformer-based (BERT, RoBERTa, MiniLM) embeddings.
- Classifier Insights: Compared Logistic Regression, SVMs, Random Forests, and MLPs across different embeddings.
- **Evaluation & Fairness**: Gained experience in designing robust experiments and interpreting model performance in sensitive NLP tasks.

Thank You