

## Homework 2

This homework assignment aims to build a linear model to describe the trend of height increase for the United Kingdom between 1900 and 1980.

Please complete this notebook and submit it to Blackboard as a PDF file before Wednesday, March 2nd at 11:59PM.

1. Extract the average height values for **United Kingdom** between 1900 and 1980 from the dataset used in Week 2 notebook.

```
1 import pandas as pd
2
3 raw_data = pd.read_csv("average-height-of-men-for-selected-countries.csv", sep=',')
4 raw data
```

|      | Entity      | Code | Year | Human Height (University of Tuebingen (2015)) |
|------|-------------|------|------|-----------------------------------------------|
| 0    | Afghanistan | AFG  | 1870 | 168.4                                         |
| 1    | Afghanistan | AFG  | 1880 | 165.7                                         |
| 2    | Afghanistan | AFG  | 1930 | 166.8                                         |
| 3    | Albania     | ALB  | 1880 | 170.1                                         |
| 4    | Albania     | ALB  | 1890 | 169.8                                         |
|      |             |      |      |                                               |
| 1245 | Zimbabwe    | ZWE  | 1900 | 167.6                                         |
| 1246 | Zimbabwe    | ZWE  | 1950 | 171.0                                         |
| 1247 | Zimbabwe    | ZWE  | 1960 | 171.1                                         |
| 1248 | Zimbabwe    | ZWE  | 1970 | 171.3                                         |
| 1249 | Zimbabwe    | ZWE  | 1980 | 171.0                                         |
|      |             |      |      |                                               |

1250 rows × 4 columns

<sup>1</sup> raw\_UK = raw\_data[raw\_data.Entity == 'United Kingdom']

<sup>2</sup> raw\_UK

| 1176 | United Kingdom | GBR | 1810 | 169.7 |
|------|----------------|-----|------|-------|
| 1177 | United Kingdom | GBR | 1820 | 169.1 |
| 1178 | United Kingdom | GBR | 1830 | 166.7 |
| 1179 | United Kingdom | GBR | 1840 | 166.5 |
| 1180 | United Kingdom | GBR | 1850 | 165.6 |
| 1181 | United Kingdom | GBR | 1860 | 166.6 |
| 1182 | United Kingdom | GBR | 1870 | 167.2 |
| 1183 | United Kingdom | GBR | 1880 | 168.0 |
| 1184 | United Kingdom | GBR | 1890 | 167.4 |
| 1185 | United Kingdom | GBR | 1900 | 169.4 |
| 1186 | United Kingdom | GBR | 1910 | 170.9 |
| 1187 | United Kingdom | GBR | 1920 | 171.0 |
| 1188 | United Kingdom | GBR | 1930 | 173.9 |
| 1189 | United Kingdom | GBR | 1940 | 174.9 |
| 1190 | United Kingdom | GBR | 1950 | 176.0 |
| 1191 | United Kingdom | GBR | 1960 | 176.9 |
| 1192 | United Kingdom | GBR | 1970 | 177.1 |
| 1193 | United Kingdom | GBR | 1980 | 176.8 |
|      |                |     |      |       |

 $<sup>1 \</sup> UK\_1900 = raw\_UK[raw\_UK.Year >= 1900]$ 

Entity Code Year Human Height (University of Tuebingen (2015))

1185 United Kingdom GBR 1900

169.4

<sup>2</sup> UK\_1900

• The value of b should make the line close to the data points.

```
1193 United Kingdom GBR 1980
```

176.8

```
from sklearn.linear model import LinearRegression
    from matplotlib import pyplot as plt
 2
 3
    import numpy as np
 4
 5
    model = LinearRegression()
    model.fit(raw_data[['Year']], raw_data[['Human Height (University of Tuebingen (2015))']
 6
    m = model.coef [0,0]
 7
    b = model.intercept [0]
 8
    x = np.array([raw_data.Year.min(), raw_data.Year.max()])
10
    height = m * x + b
    height
11
    array([163.47798227, 170.57544096])
 1
```

1

1

1

1

1

3. Display the model line together with the data points.

```
plt.scatter(raw_data['Year'], raw_data['Human Height (University of Tuebingen (2015))'])
plt.plot(x, height, 'r-')
plt.show()
```



4. Compute the mean square error of this model.