COMP S264F Discrete Mathematics Tutorial 5: Set Theory (2) – Suggested Solution

Question 1. There are many possible combinations. Here are some suggestions.

- (a) $A = \{1\}$ $B = \{2\}$
 - $C = \{1, 2\}$
- (b) $A = \{1\}$
 - $B = \{2\}$
 - $C = \{3\}$
- (c) $A = \{1\}$
 - $B = \{2\}$
 - $C = \{1, 2\}$
- (d) $A = \{1, 2, 3\}$
 - $B = \{1, 2\}$
 - $C = \{2, 3\}$

Question 2.

(a) $A \cap (B - A) = A \cap (B \cap \overline{A})$ = $A \cap \overline{A} \cap B$ = $\varnothing \cap B$

(b) $A \cap \overline{(A \cap B)} = A \cap (\overline{A} \cup \overline{B})$ (by De Morgan's law) $= (A \cap \overline{A}) \cup (A \cap \overline{B})$ (by distributive law) $= \varnothing \cup (A \cap \overline{B})$

 $=A\cap \overline{B}$

(c) $(A - \overline{B}) \cup (A - \overline{C}) = (A \cap B) \cup (A \cap C)$ = $A \cap (B \cup C)$ (by distributive law)

(d) $(\overline{A} - B) \cap \overline{(A \cup \overline{C})} = (\overline{A} \cap \overline{B}) \cap \overline{(A \cup \overline{C})}$ $= (\overline{A} \cap \overline{B}) \cap (\overline{A} \cap C)$ (by De Morgan's law) $= \overline{A} \cap \overline{A} \cap \overline{B} \cap C$ $= \overline{A} \cap \overline{B} \cap C$

Question 3.

(a)
$$A \times A = \{(1,1), (1,2) , (2,1), (2,2)\}$$

Thus, $|A \times A| = 4$.

(b)
$$A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}$$

Thus, $|A \times B| = 6$.

(c)
$$B \times A = \{(x,1), (x,2) , (y,1), (y,2) , (z,1), (z,2)\}$$

Thus, $|B \times A| = 6$.

(d)
$$B \times B = \{(x, x), (x, y), (x, z), (y, x), (y, y), (y, z), (z, x), (z, y), (z, z)\}$$

Thus, $|B \times B| = 9$.

Question 4.

(a)
$$P(A) = \{ \emptyset, \{a\}, \{\emptyset\}, \{a,\emptyset\} \}$$

(b) (i) True (v) False (ix) True (xiii) False

(ii) False (vi) True (xiv) True

(iii) False (vii) True (xi) True (xv) True

(iv) False (viii) False (xii) True (xvi) True

Question 5.

(a) Assume $A \subseteq B$. Then, $x \in A \cap C \implies x \in A \text{ and } x \in C$

$$\Rightarrow x \in A \text{ and } x \in C$$

$$\Rightarrow x \in B \text{ and } x \in C \qquad (\text{as } A \subseteq B)$$

$$\Rightarrow x \in B \cap C$$

Thus, $A \cap C \subseteq B \cap C$.

(b) Assume $P(A) \subseteq P(B)$.

By definition, $A \in P(A)$.

Since $P(A) \subseteq P(B)$, we have $A \in P(B)$, which implies $A \subseteq B$.

(c) Assume $A \cap B = A \cap C$ and $A \cup B = A \cup C$.

By the above Venn diagram, we can deduce that $X = [(A \cup X) - A] \cup (A \cap X)$ for any set X. This can be formally proven, as follows:

$$[(A \cup X) - A] \cup (A \cap X) = [(A \cup X) \cap \overline{A}] \cup (A \cap X)$$

$$= [(A \cap \overline{A}) \cup (X \cap \overline{A})] \cup (A \cap X) \qquad \text{(by distributive law)}$$

$$= [\varnothing \cup (X \cap \overline{A})] \cup (A \cap X)$$

$$= (X \cap \overline{A}) \cup (A \cap X)$$

$$=X\cap(\overline{A}\cup A)$$
 (by distributive law)

$$=X\cap U=X.$$

Therefore, $B = [(A \cup B) - A] \cup (A \cap B)$ = $[(A \cup C) - A] \cup (A \cap C)$ (by assumptions) = C.

- (d) We need to prove the biconditional statement in both directions.
 - (i) We first prove that $A \subseteq C$ and $B \subseteq C \implies A \cup B \subseteq C$.

Assume $A \subseteq C$ and $B \subseteq C$.

If
$$x \in A \cup B$$
, then $x \in A$ or $x \in B \implies x \in C$ or $x \in C$ (as $A \subseteq C$ and $B \subseteq C$) $\implies x \in C$

Thus, $A \cup B \subseteq C$.

Hence, $A \subseteq C$ and $B \subseteq C \implies A \cup B \subseteq C$ follows.

(ii) Next, we prove that $A \cup B \subseteq C \implies A \subseteq C$ and $B \subseteq C$.

Assume $A \cup B \subseteq C$. We consider prove the following two cases.

Case 1: $A \cup B \subseteq C \implies A \subseteq C$.

If $x \in A$, then $x \in A \cup B \implies x \in C$ (as $A \cup B \subseteq C$).

Thus, $A \subseteq C$.

Case 2: $A \cup B \subseteq C \implies B \subseteq C$.

Similarly, if $x \in B$, then $x \in A \cup B \implies x \in C$ (as $A \cup B \subseteq C$).

Thus, $B \subseteq C$.

To sum up, $A \cup B \subseteq C \implies A \subseteq C$ and $B \subseteq C$ follow.

Therefore, the bidirectional statement follows.