CAPITOLO 2.

SICUREZZA E PRESTAZIONI ATTESE

2.1. PRINCIPI FONDAMENTALI

Le opere e le componenti strutturali devono essere progettate, eseguite, collaudate e soggette a manutenzione in modo tale da consentirne la prevista utilizzazione, in forma economicamente sostenibile e con il livello di sicurezza previsto dalle presenti norme

La sicurezza e le prestazioni di un'opera o di una parte di essa devono essere valutate in relazione agli stati limite che si possono verificare durante la vita nominale di progetto, di cui al § 2.4. Si definisce stato limite una condizione superata la quale l'opera non soddisfa più le esigenze elencate nelle presenti norme.

In particolare, secondo quanto stabilito nei capitoli specifici, le opere e le varie tipologie strutturali devono possedere i seguenti requisiti:

- sicurezza nei confronti di stati limite ultimi (SLU): capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possano compromettere l'incolumità delle persone oppure comportare la perdita di beni, oppure provocare gravi danni ambientali e sociali, oppure mettere fuori servizio l'opera;
- sicurezza nei confronti di stati limite di esercizio (SLE): capacità di garantire le prestazioni previste per le condizioni di esercizio;
- sicurezza antincendio: capacità di garantire le prestazioni strutturali previste in caso d'incendio, per un periodo richiesto;
- durabilità: capacità della costruzione di mantenere, nell'arco della vita nominale di progetto, i livelli prestazionali per i quali è stata progettata, tenuto conto delle caratteristiche ambientali in cui si trova e del livello previsto di manutenzione;
- robustezza: capacità di evitare danni sproporzionati rispetto all'entità di possibili cause innescanti eccezionali quali esplosioni e urti.

Il superamento di uno stato limite ultimo ha carattere irreversibile

Il superamento di uno stato limite di esercizio può avere carattere reversibile o irreversibile.

Per le opere esistenti è possibile fare riferimento a livelli di sicurezza diversi da quelli delle nuove opere ed è anche possibile considerare solo gli stati limite ultimi. Maggiori dettagli sono dati al Capitolo 8.

I materiali ed i prodotti, per poter essere utilizzati nelle opere previste dalle presenti norme, devono essere sottoposti a procedure e prove sperimentali di accettazione. Le prove e le procedure di accettazione sono definite nelle parti specifiche delle presenti norme riguardanti i materiali.

La fornitura di componenti, sistemi o prodotti, impiegati per fini strutturali, deve essere accompagnata da un manuale di installazione e di manutenzione da allegare alla documentazione dell'opera. I componenti, i sistemi e i prodotti edili od impiantistici, non facenti parte del complesso strutturale, ma che svolgono funzione statica autonoma, devono essere progettati ed installati nel rispetto dei livelli di sicurezza e delle prestazioni di seguito prescritti.

Le azioni da prendere in conto devono essere assunte in accordo con quanto stabilito nei relativi capitoli delle presenti norme. In mancanza di specifiche indicazioni, si dovrà fare ricorso ad opportune indagini, eventualmente anche sperimentali, o a documenti, normativi e non, di comprovata validità.

2.2. REQUISITI DELLE OPERE STRUTTURALI

2.2.1. STATI LIMITE ULTIMI (SLU)

I principali Stati Limite Ultimi sono elencati nel seguito:

- a) perdita di equilibrio della struttura o di una sua parte, considerati come corpi rigidi;
- b) spostamenti o deformazioni eccessive;
- c) raggiungimento della massima capacità di parti di strutture, collegamenti, fondazioni;
- d) raggiungimento della massima capacità della struttura nel suo insieme;
- e) raggiungimento di una condizione di cinematismo irreversibile;
- f) raggiungimento di meccanismi di collasso nei terreni;
- g) rottura di membrature e collegamenti per fatica;
- h) rottura di membrature e collegamenti per altri effetti dipendenti dal tempo;
- i) instabilità di parti della struttura o del suo insieme;

Altri stati limite ultimi sono considerati in relazione alle specificità delle singole opere; in presenza di azioni sismiche, gli Stati Limite Ultimi comprendono gli Stati Limite di salvaguardia della Vita (SLV) e gli Stati Limite di prevenzione del Collasso (SLC), come precisato nel § 3.2.1.

2.2.2. STATI LIMITE DI ESERCIZIO (SLE)

I principali Stati Limite di Esercizio sono elencati nel seguito:

 a) danneggiamenti locali (ad es. eccessiva fessurazione del calcestruzzo) che possano ridurre la durabilità della struttura, la sua efficienza o il suo aspetto;

- b) spostamenti e deformazioni che possano limitare l'uso della costruzione, la sua efficienza e il suo aspetto;
- c) spostamenti e deformazioni che possano compromettere l'efficienza e l'aspetto di elementi non strutturali, impianti, macchinari:
- d) vibrazioni che possano compromettere l'uso della costruzione;
- e) danni per fatica che possano compromettere la durabilità;
- f) corrosione e/o degrado dei materiali in funzione del tempo e dell'ambiente di esposizione che possano compromettere la durabilità.

Altri stati limite sono considerati in relazione alle specificità delle singole opere; in presenza di azioni sismiche, gli Stati Limite di Esercizio comprendono gli Stati Limite di Operatività (SLO) e gli Stati Limite di Danno (SLD), come precisato nel § 3.2.1.

2.2.3. SICUREZZA ANTINCENDIO

Quando necessario, i rischi derivanti dagli incendi devono essere limitati progettando e realizzando le costruzioni in modo tale da garantire la resistenza e la stabilità degli elementi portanti, nonché da limitare la propagazione del fuoco e dei fumi.

2.2.4. DURABILITA'

Un adeguato livello di durabilità può essere garantito progettando la costruzione, e la specifica manutenzione, in modo tale che il degrado della struttura, che si dovesse verificare durante la sua vita nominale di progetto, non riduca le prestazioni della costruzione al di sotto del livello previsto.

Tale requisito può essere soddisfatto attraverso l'adozione di appropriati provvedimenti stabiliti tenendo conto delle previste condizioni ambientali e di manutenzione ed in base alle peculiarità del singolo progetto, tra cui:

- a) scelta opportuna dei materiali;
- b) dimensionamento opportuno delle strutture;
- c) scelta opportuna dei dettagli costruttivi;
- d) adozione di tipologie costruttive e strutturali che consentano, ove possibile, l'ispezionabilità delle parti strutturali;
- e) pianificazione di misure di protezione e manutenzione; oppure, quando queste non siano previste o possibili, progettazione rivolta a garantire che il deterioramento della costruzione o dei materiali che la compongono non ne causi il collasso;
- f) impiego di prodotti e componenti chiaramente identificati in termini di caratteristiche meccanico-fisico-chimiche, indispensabili alla valutazione della sicurezza, e dotati di idonea qualificazione, così come specificato al Capitolo 11;
- g) applicazione di sostanze o ricoprimenti protettivi dei materiali, soprattutto nei punti non più visibili o difficilmente ispezionabili ad opera completata;
- h) adozione di sistemi di controllo, passivi o attivi, adatti alle azioni e ai fenomeni ai quali l'opera può essere sottoposta.

Le condizioni ambientali devono essere identificate in fase di progetto in modo da valutarne la rilevanza nei confronti della durabilità.

2.2.5. ROBUSTEZZA

Un adeguato livello di robustezza, in relazione all'uso previsto della costruzione ed alle conseguenze di un suo eventuale collasso, può essere garantito facendo ricorso ad una o più tra le seguenti strategie di progettazione:

- a) progettazione della struttura in grado di resistere ad azioni eccezionali di carattere convenzionale, combinando valori nominali delle azioni eccezionali alle altre azioni esplicite di progetto;
- b) prevenzione degli effetti indotti dalle azioni eccezionali alle quali la struttura può essere soggetta o riduzione della loro intensità;
- c) adozione di una forma e tipologia strutturale poco sensibile alle azioni eccezionali considerate;
- d) adozione di una forma e tipologia strutturale tale da tollerare il danneggiamento localizzato causato da un'azione di carattere eccezionale:
- e) realizzazione di strutture quanto più ridondanti, resistenti e/o duttili è possibile;
- f) adozione di sistemi di controllo, passivi o attivi, adatti alle azioni e ai fenomeni ai quali l'opera può essere sottoposta.

2.2.6. VERIFICHE

Le opere strutturali devono essere verificate, salvo diversa indicazione riportata nelle specifiche parti delle presenti norme:

- a) per gli stati limite ultimi che possono presentarsi;
- b) per gli stati limite di esercizio definiti in relazione alle prestazioni attese;
- c) quando necessario, nei confronti degli effetti derivanti dalle azioni termiche connesse con lo sviluppo di un incendio.

Le verifiche delle opere strutturali devono essere contenute nei documenti di progetto, con riferimento alle prescritte caratteristiche meccaniche dei materiali e alla caratterizzazione geotecnica del terreno, dedotta – ove specificato dalle presenti norme - in base a specifiche indagini. Laddove necessario, la struttura deve essere verificata nelle fasi intermedie, tenuto conto del processo costruttivo previsto; le verifiche per queste situazioni transitorie sono generalmente condotte nei confronti dei soli stati limite ultimi.

Per le opere per le quali nel corso dei lavori si manifestino situazioni significativamente difformi da quelle di progetto occorre effettuare le relative necessarie verifiche.

2.3. VALUTAZIONE DELLA SICUREZZA

Nel seguito sono riportati i criteri del metodo semiprobabilistico agli stati limite basato sull'impiego dei coefficienti parziali, applicabili nella generalità dei casi; tale metodo è detto di primo livello. Per opere di particolare importanza si possono adottare metodi di livello superiore, tratti da documentazione tecnica di comprovata validità di cui al Capitolo 12.

Nel metodo agli stati limite, la sicurezza strutturale nei confronti degli stati limite ultimi deve essere verificata confrontando la capacità di progetto R_d , in termini di resistenza, duttilità e/o spostamento della struttura o della membratura strutturale, funzione delle caratteristiche meccaniche dei materiali che la compongono (X_d) e dei valori nominali delle grandezze geometriche interessate (a_d), con il corrispondente valore di progetto della domanda E_d , funzione dei valori di progetto delle azioni (F_d) e dei valori nominali delle grandezze geometriche della struttura interessate.

La verifica della sicurezza nei riguardi degli stati limite ultimi (SLU) è espressa dall'equazione formale:

$$R_d \ge E_d$$
 [2.2.1

Il valore di progetto della resistenza di un dato materiale X_d è, a sua volta, funzione del valore caratteristico della resistenza, definito come frattile 5 % della distribuzione statistica della grandezza, attraverso l'espressione: $X_d = X_k/\gamma_M$, essendo γ_M il fattore parziale associato alla resistenza del materiale.

Il valore di progetto di ciascuna delle azioni agenti sulla struttura F_d è ottenuto dal suo valore caratteristico F_k , inteso come frattile 95% della distribuzione statistica o come valore caratterizzato da un assegnato periodo di ritorno, attraverso l'espressione: $F_d = \gamma_F F_k$ essendo γ_F il fattore parziale relativo alle azioni. Nel caso di concomitanza di più azioni variabili di origine diversa si definisce un valore di combinazione $\psi_0 \in F_k$, ove $\psi_0 \le 1$ è un opportuno coefficiente di combinazione, che tiene conto della ridotta probabilità che più azioni di diversa origine si realizzino simultaneamente con il loro valore caratteristico.

Per grandezze caratterizzate da distribuzioni con coefficienti di variazione minori di 0,10, oppure per grandezze che non riguardino univocamente resistenze o azioni, si possono considerare i valori nominali, coincidenti con i valori medi.

I valori caratteristici dei parametri fisico-meccanici dei materiali sono definiti nel Capitolo 11. Per la sicurezza delle opere e dei sistemi geotecnici, i valori caratteristici dei parametri fisico-meccanici dei terreni sono definiti nel § 6.2.2.

La capacità di garantire le prestazioni previste per le condizioni di esercizio (SLE) deve essere verificata confrontando il valore limite di progetto associato a ciascun aspetto di funzionalità esaminato (C_d), con il corrispondente valore di progetto dell'effetto delle azioni (E_d), attraverso la seguente espressione formale:

$$C_d \ge E_d$$
 [2.2.2]

2.4. VITA NOMINALE DI PROGETTO, CLASSI D'USO E PERIODO DI RIFERIMENTO

2.4.1. VITA NOMINALE DI PROGETTO

La vita nominale di progetto V_N di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I. Tali valori possono essere anche impiegati per definire le azioni dipendenti dal tempo.

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI	Valori minimi di V _N (anni)		
1	Costruzioni temporanee e provvisorie	10		
2	Costruzioni con livelli di prestazioni ordinari	50		
3	Costruzioni con livelli di prestazioni elevati	100		

Non sono da considerarsi temporanee le costruzioni o parti di esse che possono essere smantellate con l'intento di essere riutilizzate. Per un'opera di nuova realizzazione la cui fase di costruzione sia prevista in sede di progetto di durata pari a P_N , la vita nominale relativa a tale fase di costruzione, ai fini della valutazione delle azioni sismiche, dovrà essere assunta non inferiore a P_N e comunque non inferiore a 5 anni.

Le verifiche sismiche di opere di tipo 1 o in fase di costruzione possono omettersi quando il progetto preveda che tale condizione permanga per meno di 2 anni.

2.4.2. CLASSI D'USO

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

2.4.3. PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto V_N per il coefficiente d'uso C_U :

$$V_R = V_N \cdot C_U \tag{2.4.1}$$

Il valore del coefficiente d'uso C_U è definito, al variare della classe d'uso, come mostrato in Tab. 2.4.II.

Tab. 2.4.II – Valori del coefficiente d'uso C_{II}

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Per le costruzioni a servizio di attività a rischio di incidente rilevante si adotteranno valori di C_U anche superiori a 2, in relazione alle conseguenze sull'ambiente e sulla pubblica incolumità determinate dal raggiungimento degli stati limite.

2.5. AZIONI SULLE COSTRUZIONI

2.5.1. CLASSIFICAZIONE DELLE AZIONI

Si definisce azione ogni causa o insieme di cause capace di indurre stati limite in una struttura.

2.5.1.1 CLASSIFICAZIONE DELLE AZIONI IN BASE AL MODO DI ESPLICARSI

a) dirette:

forze concentrate, carichi distribuiti, fissi o mobili;

b) indirette:

spostamenti impressi, variazioni di temperatura e di umidità, ritiro, precompressione, cedimenti di vincoli, ecc.

- c) degrado:
 - endogeno: alterazione naturale del materiale di cui è composta l'opera strutturale;
 - esogeno: alterazione delle caratteristiche dei materiali costituenti l'opera strutturale, a seguito di agenti esterni.

2.5.1.2 CLASSIFICAZIONE DELLE AZIONI SECONDO LA RISPOSTA STRUTTURALE

- a) statiche: azioni applicate alla struttura che non provocano accelerazioni significative della stessa o di alcune sue parti;
- b) pseudo statiche: azioni dinamiche rappresentabili mediante un'azione statica equivalente;
- c) dinamiche: azioni che causano significative accelerazioni della struttura o dei suoi componenti.

2.5.1.3 CLASSIFICAZIONE DELLE AZIONI SECONDO LA VARIAZIONE DELLA LORO INTENSITÀ NEL TEMPO

a) permanenti (G): azioni che agiscono durante tutta la vita nominale di progetto della costruzione, la cui variazione di intensità nel tempo è molto lenta e di modesta entità:

- peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo) (G₁);
- peso proprio di tutti gli elementi non strutturali (G2);
- spostamenti e deformazioni impressi, incluso il ritiro;
- presollecitazione (P).
- b) variabili (Q): azioni che agiscono con valori istantanei che possono risultare sensibilmente diversi fra loro nel corso della vita nominale della struttura:
 - sovraccarichi;
 - azioni del vento;
 - azioni della neve;
 - azioni della temperatura.

Le azioni variabili sono dette di lunga durata se agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura. Sono dette di breve durata se agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura. A seconda del sito ove sorge la costruzione, una medesima azione climatica può essere di lunga o di breve durata.

- c) eccezionali (A): azioni che si verificano solo eccezionalmente nel corso della vita nominale della struttura;
 - incendi:
 - esplosioni;
 - urti ed impatti;
- d) sismiche (E): azioni derivanti dai terremoti.

Quando rilevante, nella valutazione dell'effetto delle azioni è necessario tenere conto del comportamento dipendente dal tempo dei materiali, come per la viscosità.

2.5.2. CARATTERIZZAZIONE DELLE AZIONI ELEMENTARI

Il valore di progetto di ciascuna delle azioni agenti sulla struttura F_d è ottenuto dal suo valore caratteristico F_k , come indicato nel \$2.3.

In accordo con le definizioni del $\S 2.3$, il valore caratteristico G_k di azioni permanenti caratterizzate da distribuzioni con coefficienti di variazione minori di 0.10 si può assumere coincidente con il valore medio.

Nel caso di azioni variabili caratterizzate da distribuzioni dei valori estremi dipendenti dal tempo, si assume come valore caratteristico quello caratterizzato da un assegnato periodo di ritorno. Per le azioni ambientali (neve, vento, temperatura) il periodo di ritorno è posto uguale a 50 anni, corrispondente ad una probabilità di eccedenza del 2% su base annua; per le azioni da traffico sui ponti stradali il periodo di ritorno è convenzionalmente assunto pari a 1000 anni. Nella definizione delle combinazioni delle azioni, i termini Q_{kj} rappresentano le azioni variabili di diversa natura che possono agire contemporaneamente: Q_{k1} rappresenta l'azione variabile di base e Q_{k2}, Q_{k3}, ... le azioni variabili d'accompagnamento, che possono agire contemporaneamente a quella di base.

Con riferimento alla durata relativa ai livelli di intensità di un'azione variabile, si definiscono:

- valore quasi permanente ψ_{2j} ·Q_{kj}: il valore istantaneo superato oltre il 50% del tempo nel periodo di riferimento. Indicativamente, esso può assumersi uguale alla media della distribuzione temporale dell'intensità;
- valore frequente ψ_{1j}·Q_{kj}: il valore superato per un periodo totale di tempo che rappresenti una piccola frazione del periodo di riferimento. Indicativamente, esso può assumersi uguale al frattile 95% della distribuzione temporale dell'intensità;
- valore di combinazione ψ_{0j} · Q_{kj} : il valore tale che la probabilità di superamento degli effetti causati dalla concomitanza con altre azioni sia circa la stessa di quella associata al valore caratteristico di una singola azione.

Nel caso in cui la caratterizzazione probabilistica dell'azione considerata non sia disponibile, ad essa può essere attribuito il valore nominale. Nel seguito sono indicati con pedice k i valori caratteristici; senza pedice k i valori nominali.

La Tab. 2.5.I riporta i coefficienti di combinazione da adottarsi per gli edifici civili e industriali di tipo corrente.

Tab. 2.5.I – Valori dei coefficienti di combinazione

Categoria/Azione variabile			ψ_{2j}
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6

Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3	
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0	
Categoria I – Coperture praticabili		da valutarsi caso per		
Categoria K – Coperture per usi speciali (impianti, eliporti,)		caso		
Vento	0,6	0,2	0,0	
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0	
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2	
Variazioni termiche	0,6	0,5	0,0	

2.5.3. **COMBINAZIONI DELLE AZIONI**

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.1]

- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.2]

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5]

Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.4]

- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.5]

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_{i} \psi_{2i} Q_{kj}$$
. [2.5.7]

Nelle combinazioni si intende che vengano omessi i carichi Q_{ki} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G₂.

Altre combinazioni sono da considerare in funzione di specifici aspetti (p. es. fatica, ecc.).

Nelle formule sopra riportate il simbolo "+" vuol dire "combinato con".

I valori dei coefficienti $\psi_{0j'}$ ψ_{1j} e ψ_{2j} sono dati nella Tab. 2.5.1 oppure nella Tab. 5.1.VI per i ponti stradali e nella Tab. 5.2.VII per i ponti ferroviari. I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qi} sono dati nel § 2.6.1.

2.6. **AZIONI NELLE VERIFICHE AGLI STATI LIMITE**

Le verifiche agli stati limite devono essere eseguite per tutte le più gravose condizioni di carico che possono agire sulla struttura, valutando gli effetti delle combinazioni definite nel § 2.5.3.

2.6.1. STATI LIMITE ULTIMI

Nelle verifiche agli stati limite ultimi si distinguono:

EQU - lo stato limite di equilibrio come corpo rigido:

STR - lo stato limite di resistenza della struttura compresi gli elementi di fondazione:

- lo stato limite di resistenza del terreno: GEO

Fatte salve tutte le prescrizioni fornite nei capitoli successivi delle presenti norme, la Tab. 2.6.I riporta i valori dei coefficienti parziali γ_F da assumersi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

Per le verifiche nei confronti dello stato limite ultimo di equilibrio come corpo rigido (EQU) si utilizzano i coefficienti γ_F riportati nella colonna EQU della Tabella 2.6.I.

Per la progettazione di componenti strutturali che non coinvolgano azioni di tipo geotecnico, le verifiche nei confronti degli stati limite ultimi strutturali (STR) si eseguono adottando i coefficienti γ_F riportati nella colonna A1 della Tabella 2.6.I.

Per la progettazione di elementi strutturali che coinvolgano azioni di tipo geotecnico (plinti, platee, pali, muri di sostegno, ...) le verifiche nei confronti degli stati limite ultimi strutturali (STR) e geotecnici (GEO) si eseguono adottando due possibili approcci progettuali, fra loro alternativi.

Nell'*Approccio* 1, le verifiche si conducono con due diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (γ_F), per la resistenza dei materiali (γ_M) e, eventualmente, per la resistenza globale del sistema (γ_R). Nella *Combinazione* 1 dell'*Approccio* 1, per le azioni si impiegano i coefficienti γ_F riportati nella colonna A1 della Tabella 2.6.I. Nella *Combinazione* 2 dell'*Approccio* 1, si impiegano invece i coefficienti γ_F riportati nella colonna A2. In tutti i casi, sia nei confronti del dimensionamento strutturale, sia per quello geotecnico, si deve utilizzare la combinazione più gravosa fra le due precedenti.

Nell'*Approccio* 2 si impiega un'unica combinazione dei gruppi di coefficienti parziali definiti per le Azioni (γ_F), per la resistenza dei materiali (γ_M) e, eventualmente, per la resistenza globale (γ_R). In tale approccio, per le azioni si impiegano i coefficienti γ_F riportati nella colonna A1.

I coefficienti $\gamma_M e \gamma_R$ sono definiti nei capitoli successivi.

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\scriptscriptstyle F}$			
Carichi permanenti G1	Favorevoli	γ_{G1}	0,9	1,0	1,0
	Sfavorevoli		1,1	1,3	1,0
Conichi monnon onti mon otmetternoli Cr(1)	Favorevoli	2/	0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	γ_{G2}	1,5	9 1,0 1 1,3 8 0,8 5 1,5 0 0,0	1,3
A · · · · · 127.0	Favorevoli	γ_{Qi}	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli		1,5	1,5	1,3

⁽¹⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Nella Tab. 2.6.I il significato dei simboli è il seguente:

 γ_{G1} coefficiente parziale dei carichi permanenti G_1 ;

 γ_{G2} coefficiente parziale dei carichi permanenti non strutturali G_2 ;

 γ_{Oi} coefficiente parziale delle azioni variabili Q.

Nel caso in cui l'azione sia costituita dalla spinta del terreno, per la scelta dei coefficienti parziali di sicurezza valgono le indicazioni riportate nel Capitolo 6.

Il coefficiente parziale della precompressione si assume pari a γ_P = 1,0.

Altri valori di coefficienti parziali sono riportati nei capitoli successivi con riferimento a particolari azioni specifiche.

2.6.2. STATI LIMITE DI ESERCIZIO

Le verifiche agli stati limite di esercizio riguardano le voci riportate al § 2.2.2.

Nel Capitolo 4, per le condizioni non sismiche, e nel Capitolo 7, per le condizioni sismiche, sono date specifiche indicazioni sulle verifiche in questione, con riferimento ai diversi materiali strutturali.