Instalações Elétricas

Dimensionamento de Circuitos Elétricos

Objetivos

- Suportar
 - Limite de Temperatura
 - Limite de Queda de tensão
 - Sobrecarga (Dispositivos de Proteção)
 - Curto-circuito (tempo limitado)

Critérios

- 1. Capacidade de Corrente
- 2. Limite de Queda de Tensão
- Adota-se o maior valor como resultado.
- Condutores padronizados comercialmente (seção maior ou igual à calculada)

Critérios

Capacidade de Corrente

- Neutro e PE são determinados em função das fases
- Roteiro
 - a) Tipo de Isolação
 - b) Maneira de Instalar
 - c) Corrente Nominal ou Corrente de Projeto
 - d) Número de Condutores Carregados
 - e) Bitola do Condutor para Temperatura Ambiente de 30°C ou para Temperatura de solo de 20°C
 - f) Fatores de Correção para o Dimensionamento de Cabos

• Tipo de Isolação

 Determina temperatura máxima em regime contínuo, sobrecarga e curto-circuito.

Tabela 7.1 - Temperaturas Características dos Condutores. Fonte: Tabela 35 da NBR-5410.

Tipo de Isolação	Temperatura Máxima para Serviço Contínuo (condutor) - °C	Temperatura Limite de Sobrecarga (condutor) - °C	Temperatura Limite de Curto-Circuito (condutor) - °C
Policloreto de vinila (PVC) até 300 mm²	70	100	160
Policloreto de vinila (PVC) maior que 300 mm²	70	100	140
Borracha etileno-propileno (EPR)	90	130	250
Polietileno reticulado (XLPE)	90	130	250

- Maneira de Instalar
 - Influencia na capacidade de troca térmica
 - Para um circuito com diferentes maneiras de instalar considerar a mais desfavorável.
 - Para trechos verticais há o risco de aumento de temperatura no topo
 Tabela 7.2 Tipos de Linhas Elétricas.
 Fonte: Tabela 33 da NBR-5410.

	Condutores isolados ou cabos unipo-	
Face interna	lares em eletroduto de seção circular embutido em parede termicamente isolante ² .	A1
Face Interna	Cabo multipolar em eletroduto de se- ção circular embutido em parede termi- camente isolante ² .	A2
	Condutores isolados ou cabos unipo- lares em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do eletroduto.	B1
	Face	Face Interna Cabo multipolar em eletroduto de seção circular embutido em parede termicamente isolante ² . Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do

• Corrente Nominal ou Corrente de Projeto (Ip)

Circuitos Monofásicos (fase e neutro)

$$I_{p} = \frac{P_{n}}{v \cdot Cos\phi \cdot \eta}$$

 I_p : Corrente de projeto do circuito, em ampéres (A)

P_n: Potência nominal do circuito, em watts

v: Tensão entre fase e neutro, em volts

Cosq: Fator de potência

η: Rendimento, isto é, a relação entre a potência de saída Ps (η = Ps / Pe) e a potência de entrada Pe de um equipamento.

• Corrente Nominal ou Corrente de Projeto (Ip)

Circuitos Trifásicos (3F e N)

$$I_{p} = \frac{P_{n}}{3 \cdot v \cdot Cos\phi \cdot \eta}$$

Circuitos Trifásicos Equilibrados (3F)

$$I_{p} = \frac{P_{n}}{\sqrt{3 \cdot V} \cdot Cos\phi \cdot \eta}$$

V: Tensão entre fases, em volts.

Circuitos Bifásicos (2F)

$$I_{p} = \frac{P_{n}}{V \cdot Cos\phi \cdot \eta}$$

- Número de condutores carregados.
 - Os que são efetivamente percorrido por corrente (só fase e neutro,
 PE não)
 - Trifásico com neutro: 4 ou 3 (circuito equilibrado)
 - Trifásico sem neutro: 3
 - Bifásico a 3 condutores: 3
 - Bifásico a 2 condutores: 2
 - Monofásico a 3 condutores: 3
 - Monofásico a 2 condutores: 2

- Bitola do Condutor para Temperatura Ambiente de 30°C ou para Temperatura de solo de 20°C
 - Tendo definido os itens anteriores:
 - a)Tipo de Isolação
 - b)Maneira de Instalar
 - c)Corrente Nominal ou Corrente de Projeto
 - d)Número de Condutores Carregados

Tabela 7.3 - Capacidade de Condução de Corrente, em Ampéres, para Maneiras de Instalar (Métodos de referência) A1, A2, B1, B2, C e D da Tabela 7.2. Fonte: Tabela 36 da NBR-5410.

				Métod	los de re	ferência	indicado	s na tabe	ela 7.2				
Secções	A	1	A	2	Е	31	В	2	(С	I)	
nominais mm ²	Número de condutores carregados												
mm	2	3	2	3	2	3	2	3	2	3	2	3	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
					(Cobre							
0,5	7	7	7	7	9	8	9	8	10	9	12	10	
0,75	9	9	9	9	11	10	11	10	13	11	15	12	
1	11	10	11	10	14	12	13	12	15	14	18	15	
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18	
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24	
4	26	24	25	23	32	28	30	27	36	32	38	31	

Exemplos

1 - Dimensionar os condutores para um circuito terminal (F-F) de um chuveiro elétrico, dados Pn = 4500 W; V = 220 V; condutores de isolação PVC; eletroduto de PVC embutido em alvenaria; temperatura ambiente de 30°C.

Figura 7.1 - Circuito Terminal de Chuveiro Elétrico.

 $\bf 2$ - Dimensionar os condutores para um circuito alimentador trifásico equilibrado de um quadro de distribuição de uma instalação de iluminação industrial, dados Pn = 36.000 W (iluminação fluorescente); V = 220 V; Cos ϕ = 0,90; η = 0,92; condutores com isolação de polietileno reticulado; condutores unipolares instalados em canaleta fechada, embutida no piso, temperatura ambiente de 30°C.

Figura 7.2 - Alimentador de Quadro Terminal.

- Fatores de correção
 - Temperatura: ambientes diferentes de 30°C e de solos diferentes de 20°C

Tabela 7.7 - Fatores de Correção (FCT) para Temperaturas Ambientes Diferentes de 30°C para Cabos Não Enterrados e de 20°C (Temperatura do Solo) para Cabos Enterrados. Fonte: Tabela 40 da NBR-5410.

		Isolaç	ão			
Temperatura °C	PVC	EPR ou XLPE	PVC	EPR ou XLPE		
	Ar	mbiente	do Solo			
10	1,22	1,15	1,10	1,07		
15	1,17	1,12	1,05	1,04		
20	1,12	1,08	1,00	1,00		
25	1,06	1,04	0,95	0,96		
30	1,00	1,00	0,89	0,93		
35	0,94	0,96	0,84	0,89		
40	0,87	0,91	0,77	0,85		
45	0,79	0,87	0,71	0,80		
50	0,71	0,82	0,63	0,76		
55	0,61	0,76	0,55	0,71		
60	0,50	0,71	0,45	0,65		
65	-	0,65	-	0,60		
70	-	0,58		0,53		
75	-	0,50	-	0,46		
80	-	0,41	-	0,38		

- Fatores de correção
 - Agrupamento:
 vários circuitos no
 mesmo eletroduto,
 calha, bandeja, etc.

Tabela 7.8 - Fatores de Correção aplicáveis a condutores agrupados em feixe (em linhas abertas ou fechadas) e a condutores agrupados num mesmo plano, em camada única.

Fonte: Tabela 42 da NBR-5410.

	Forma de agru-			Núme	ero de	circui	tos ou	ı de ca	abos n	nultipo	olares			Tabelas dos	
Ref.	pamento dos condutores	1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥ 20	métodos de referência	
1	Em feixe: ao ar livre ou sobre superfície; embu- tidos; em conduto fechado	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	36 a 39 (métodos A a F)	
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou pra- teleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70		36 a 37 (método C)			
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62		0,	61			
4	Camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72		0,	72		38 a 39	
5	Camada única sobre leito suporte etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78		0,78			(métodos E e F)	

Notas

- 1 Esses fatores são aplicáveis a grupos homogêneos de cabos uniformemente carregados.
- 2 Quando a distância horizontal entre cabos adjacentes for superior ao dobro de seu diâmetro externo, não é necessário aplicar nenhum fator de redução.
- 3 O número de circuitos ou de cabos com o qual se consulta a tabela refere-se:
 - à quantidade de grupos de dois ou três condutores isolados ou cabos unipolares, cada grupo constituido um circuito (supondo-se um só condutor por fase, isto é, sem consutores em paralelo) e/ou
 - à quantidade de cabos multipolares que compõem o agrupamento, qualquer que seja essa composição (só condutores isolados, só cabos unipolares, só cabos multipolares ou qualquer combinação).
- 4 Se o agrupamento for constituído, ao mesmo tempo, de cabos bipolares e tripolares, deve-se considerar o número total de cabos como sendo o número de circuitos e, de posse do fator de agrupamento resultante, a determinação das capacidades de condução de corrente, nas tabelas 36 a 39 deve ser então efetuada:
 - na coluna de dois condutos carregados para os cabos bipolares; e
 - na coluna de três condutores carregados para os cabos tripolares.
- 5 Um agrupamento com N condutores isolados, ou N cabos unipolares, pode ser considerado composto tanto de N/2 circuitos com dois condutores carregados quanto de N/3 circuitos com três condutores carregados.
- 6 Os valores indicados são médios para a faixca usual de seções nominais com dispersão geralmente inferior a 5%.

- Fatores de correção
 - Agrupamento: vários circuitos no mesmo eletroduto, calha, bandeja, etc.

Tabela 7.9 - Fatores de correção aplicáveis a agrupamentos consistindo em mais de uma camada de condutores Métodos de referência C (Tabelas 7.3 e 7.4), E e F (Tabelas 7.5 e 7.6).

		Quantidade (de circuitos t	rifásicos ou de	cabos multipo	lares por camada
		2	3	4 ou 5	6a8	9 e mais
	2	0,68	0,62	0,60	0,58	0,56
[3	0,62	0,57	0,55	0,53	0,51
Quantidade de camadas	4 ou 5	0,60	0,55	0,52	0,51	0,49
de camadas -	6 a 8	0,58	0,53	0,51	0,49	0,48
	9 e mais	0,56	0,51	0,49	0,48	0,46

Notas

- 1 Os valores são válidos independentemente da disposição da camada, se horizontal ou vertical.
- 2 Sobre condutores em uma única camada, ver Tabela 7.8 (linhas 2 a 5).
- 3 Se forem necessários valores mais precisos, deve-se recorrer à ABNT NBR 11301.

- Fatores de correção
 - Resistividade térmica do solo.

Tabela 7.12 - Fatores de Correção para linhas subterrâneas em solo com resistividade térmica diferente de 2,5 k.m/W. Fonte: Tabela 41 da NBR-5410.

Resistividade térmica k.m/W	1	1,5	2	3
Fator de Correção	1,18	1,1	1,05	0,96

Notas

- 1 Os fatores de correção dados são valores médicos para as seções nominais abrangidas nas Tabelas 36 e 37, com uma dispersão geralmente inferior a 5%.
- 2 Os fatores de correção são aplicáveis a cabos em eletrodutos enterrados a uma pronfudidade de até 0,8 m.
- 3 Os fatores de correção para cabos diretamente enterrados são mais elevados para resistividades térmicas inferiores a 2,5 k.m/W e podem ser calculados pelos métodos indicados na ABNT NBR 11301.

• Corrente corrigida (I'_p)

$$I'_{p} = \frac{Ip}{Produto dos Fatores de Correção}$$

Exemplos

1 - Consideremos, agora, que o circuito terminal do chuveiro do exemplo 1 do item "e" anterior esteja instalado em um eletroduto, no qual, em certo trecho, também estejam mais três circuitos monofásicos (F-N). Determine a nova bitola do condutor do circuito que alimenta o chuveiro.

Figura 7.4 - Circuitos Terminais de Iluminação e Tomadas.

2 - Tomemos, agora, o circuito alimentador do exemplo 2 do item "e" anterior. Consideremos que a temperatura ambiente seja de 35°C e que na mesma calha estejam passando outros circuitos, conforme indica a figura seguinte. Determine a nova seção do alimentador do exemplo anterior.

Figura 7.5 - Circuitos Alimentadores e Terminais.

Instalações Elétricas

- Funções do Eletroduto:
 - Proteção mecânica dos condutores
 - Proteção contra ataques do meio ambiente
 - Proteção do ambiente contra superaquecimento e arcos voltaicos
 - Propiciar envoltório aterrado (eletrodutos metálicos)

• Tipos

- Material
 - Não metálicos: PVC, plástico com fibra de vidro, polipropileno, polietileno de alta densidade e fibrocimento;
 - Metálicos: aço carbono galvanizado ou esmaltado, alumínio e flexíveis de cobre espiralado.
- Flexibilidade
 - Rígidos ou Flexíveis
- Conexão
 - Roscáveis ou Soldáveis
- Espessura da parede
 - Leve, Semipesado e Pesado

- PVC rígido roscável é o mais utilizado em instalações prediais
- A fixação dos eletrodutos às caixas de passagem e de ligação dos aparelhos se dá por meio de buchas e arruelas.
- Em instalações aparentes, são utilizadas braçadeiras, espaçadas conforme as distâncias máximas estabelecidas na NBR-5410 para perfeita ancoragem.

Figura 8.1 - Detalhe do Eletroduto e Luva de PVC Rígido Roscável.

- Os eletrodutos podem conter mais de um circuito, quando
 - Três condições simultâneas:
 - Pertencem a mesma instalação
 - Seções nominais estejam entre três valores sucessivos
 - Mesma temperatura máxima para serviço contínuo
 - No caso de circuitos e de comando e/ou sinalização de um mesmo equipamento
 - Aceita-se somente condutor nu o condutor destinado a aterramento

- Taxa máxima de ocupação
 - 53% no caso um condutor ou cabo
 - 31% no caso de dois condutores ou cabos
 - 40% no caso de três ou demais condutores ou cabos

Roteiro

- Determinar a seção total ocupada pelos condutores
- Determinar o diâmetro externo nominal do eletroduto

Tabela 8.1 - Dimensões Totais dos Condutores Isolados. (1): Fio / Cabo Cortesia: Pirelli S.A.

6 ~	Pirastic A	Antiflam	Pirasticflex	Antiflam
Seção Nominal (mm²)	Diâmetro Externo (1)	Área Total (mm²)	Diâmetro Externo (mm)	Área Total (mm²)
1,5	2,8 / 3,0	6,2 / 7,1	3,0	7,1
2,5	3,4/3,7	9,01 / 10,7	3,6	10,2
4	3,9 / 4,2	11,9 / 13,8	4,2	13,8
6	4,4 / 4,8	15,2 / 18,1	4,7	17,3
10	5,6 / 5,9	24,6 / 27,3	6,1	29,2
16	6,5 / 6,9	33,2 / 37,4	7,8	47,8
25	8,5	56,7	9,6	72,4
35	9,5	71,0	10,9	93,3
50	11,0	95	13,2	136,8
70	13,0	133	15,0	176,7
95	15,0	177	-	-
120	16,5	214	-	-
150	18,0	254	-	-
185	20,0	314	-	-
240	23,0	415	-	-

Tabela 8.2 - Eletrodutos de PVC Rígido Roscável - Classe A (NBR 6150).

Referência de Rosca	Diâmetro nominal (mm)	Diâmetro externo (mm)	Diâmetro interno (mm)	Espessura (mm)	Área total aprox. (mm²)	Área útil 1 cabo (53%)	Área útil 2 cabos (31%)	Área útil ≥ 3 cabos (40%)
3/8"	16	16,7	12,7	2,0	126,7	67,1	39,3	50,7
1/2"	20	21,1	16,1	2,5	203,6	107,9	63,1	81,4
3/4"	25	26,2	21,0	2,6	346,4	183,6	107,4	138,6
1"	32	33,2	26,8	3,2	564,1	299,0	174,9	225,6
1.1/4"	40	42,2	35,0	3,6	962,1	509,9	298,3	384,8
1.1/2"	50	47,8	39,8	4,0	1244,1	659,4	385,7	497,6
2"	60	59,4	50,2	4,6	1979,2	1049,0	613,6	791,7
2.1/2"	75	75,1	64,1	5,5	3227	1710,3	1000,4	1290,8
3"	85	88,0	75,6	6,2	4488,8	2379,1	1391,5	1795,5

Tabela 8.3 - Eletrodutos Rígidos de Aço Carbono Roscável - Leve I (NBR 6150).

Referência de Rosca	Diâmetro nominal (mm)	Diâmetro externo (mm)	Diâmetro interno (mm)	Espessura (mm)	Área total aprox. (mm²)	Área útil 1 cabo (53 %)	Área útil 2 cabos (31%)	Área útil ≥ 3 cabos (40%)
3/8"	16	16,7	12,7	2,0	126,7	67,1	39,3	50,7
1/2"	20	21,1	16,1	2,5	203,6	107,9	63,1	81,4
3/4"	25	26,2	21,0	2,6	346,4	183,6	107,4	138,6
1"	32	33,2	26,8	3,2	564,1	299,0	174,9	225,6
1.1/4"	40	42,2	35,0	3,6	962,1	509,9	298,3	384,8
1.1/2"	50	47,8	39,8	4,0	1244,1	659,4	385,7	497,6
2"	60	59,4	50,2	4,6	1979,2	1049,0	613,6	791,7
2.1/2"	75	75,1	64,1	5,5	3227	1710,3	1000,4	1290,8
3"	85	88,0	75,6	6,2	4488,8	2379,1	1391,5	1795,5

Roteiro

 Caso os condutores tenham seções nominais iguais, pode-se encontrar o diâmetro externo nominal do eletroduto diretamente tabelas.

Tabela 8.4 - Ocupação Máxima dos Eletrodutos de PVC por Condutores de mesma Bitola (Fios ou Cabos Unipolares 450 / 750 V BWF Antichama).

Seção			Númer	o de Co	ndutore	s no Ele	troduto					
Nominal	2	3	4	5	6	7	8	9	10			
(mm ²)	Tamanho Nominal do Eletroduto											
1,5	16	16	16	16	16	16	20	20	20			
2,5	16	16	16	20	20	20	20	25	25			
4	16	16	20	20	20	25	25	25	25			
6	16	20	20	25	25	25	25	32	32			
10	20	20	25	25	32	32	32	40	40			
16	20	25	25	32	32	40	40	40	40			
25	25	32	32	40	40	40	50	50	50			
35	25	32	40	40	50	50	50	50	60			
50	32	40	40	50	50	60	60	60	75			
70	40	40	50	50	60	60	75	75	75			
95	40	50	60	60	75	75	75	85	85			
120	50	50	60	75	75	75	85	85	-			
150	50	60	75	75	85	85		-	-			
185	50	75	75	85	85		_	-	-			

Tabela 8.5 - Ocupação Máxima dos Eletrodutos de Aço por Condutores de mesma Bitola (Fios ou Cabos Unipolares 450/750 V BWF Antichama).

Seção			Númer	o de Co	ndutore	s no Ele	troduto					
Nominal	2	3	4	5	6	7	8	9	10			
(mm ²)	Tamanho Nominal do Eletroduto											
1,5	15	15	15	15	15	15	20	20	20			
2,5	15	15	15	20	20	20	20	25	25			
4	15	15	20	20	20	25	25	25	25			
6	15	20	20	25	25	25	25	31	31			
10	20	20	25	25	31	31	31	31	41			
16	20	25	25	31	31	41	41	41	41			
25	25	31	31	41	41	41	47	47	47			
35	25	31	41	41	41	47	59	59	59			
50	31	41	41	47	59	59	59	75	75			
70	41	41	47	59	59	59	75	75	75			
95	41	47	59	59	75	75	75	88	88			
120	41	59	59	75	75	75	88	88	88			
150	47	59	75	75	88	88	100	100	100			
185	59	75	75	88	88	100	100	113	113			
240	59	75	88	100	100	113	113	-	-			

Exemplo

Dimensionar o trecho de eletroduto de PVC rígido roscável, mostrado na Figura 8.3, no qual devem ser instalados os seguintes circuitos:

- Circuito 1: 2 # 4 mm² T 4 mm²;
- Circuito 2: 3 # 6 mm² (6 mm²) T 6 mm²;
- Circuito 3: #2,5 mm² (2,5 mm²).

Figura 8.3 - Trecho de Eletroduto entre Duas Caixas de Passagem.

Caixas de Derivação

- As caixas têm as funções:
 - Abrigar emendas de condutores e equipamentos (interruptores e tomadas).
 - Limitar comprimento dos eletrodutos.
 - Limitar o número de curvas.
- Devem ser empregadas caixas de derivação:
 - Em todos pontos de entrada e saída da tubulação (exceto transição linha aberta para linha em eletroduto, neste caso deve ser rematado com bucha)
 - Em todos os pontos de emenda ou derivação de condutores.
 - Para dividir o comprimento da tubulação nos limites da norma.

Caixas de Derivação

- NBR 5410 estabelece:
 - Trechos de eletrodutos retilíneos e contínuos: Limite de 15m.
 - Trechos com curvas: O limite de 15m deve ser diminuído de 3m para curva de 90º (no máximo 3 curvas).
- Quando não é possível dividir a tubulação com caixas de derivação para se atingir os limites estabelecidos:
 - Para cada 6m, ou fração, acima da distância limite, deve ser usado eletroduto nominal imediatamente superior ao que seria empregado normalmente.

Caixas de Derivação

Exemplo

Dimensionar o eletroduto para o trecho de tubulação mostrado na Figura 8.4, entre duas caixas CP-1 e CP-2, no qual não há possibilidade de instalação de caixas intermediárias. Os circuitos que o eletroduto deve conter são os seguintes:

Circuito 1: 3 # 25 mm² (25 mm²) T 16 mm²;

Circuito 2: 3 # 50 mm² (25 mm²) T 25 mm²;

Circuito 3: 3 # 35 mm² T 16 mm².

Figura 8.4 - Trecho de Eletroduto com Curvas entre Duas Caixas.

Instalações Elétricas

Dispositivos de Proteção contra Sobrecorrentes

Prescrições da NBR 5410

- Visando a segurança:
 - Proteção contra choques elétricos
 - Proteção contra efeitos térmicos
 - Proteção contra sobrecorrentes
 - Proteção contra correntes de falta
 - Proteção contra sobretensões

- Dispositivos de Manobra ou comando
 - Destinados a ligar e desligar em condições normais
 - Exemplos: contatores, chaves faca e botoeiras
- Dispositivos de Proteção contra sobrecorrentes
 - Estabelecer, conduzir e interromper correntes em condições normais e em condições anormais, limitando ocorrência em módulo e tempo de duração (curto-circuito ou correntes de sobrecarga)
 - Exemplos: disjuntores, fusíveis e relés térmicos.

• Corrente nominal (In):

 Valor eficaz que o dispositivo é capaz de conduzir indefinidamente, sem que a temperatura exceda os limites especificados.

• Sobrecorrente

 Valores que excedem a corrente nominal, por solicitação do circuito (sobrecarga) ou por falta elétrica (curto-circuito).

Sobrecarga

- Solicitações dos equipamentos acima da capacidade nominal
- Em geral, no máximo, dez vezes a corrente nominal.

• Correntes de Curto-Circuito

- Provenientes de defeitos graves (falha na isolação para o Terra, para o neutro ou fases distintas)
- Normalmente superiores a 1000%, podendo chegar a 10000% de In

Características dos Dispositivos de Proteção

- Classificação quanto ao Tipo de Proteção
 - Contra curto-circuito (fusíveis e disjuntores magnéticos)
 - Contra sobrecarga (relés térmicos ou bimetálicos)
 - Contra curto-circuito e sobrecarga (disjuntores termomagnéticos)
 - Contra choque elétricos e risco de incêndio (disjuntores diferenciais residuais)
 - Contra sobre tensões (para-raios, relés de sobretensões)
- Classificação quanto ao número de pólos
 - Monopolares
 - Bipolares
 - Tripolares

Dispositivos de Proteção contra Sobrecorrentes

Disjuntores

Curva de Atuação Tempo x Corrente

Figura 9.3 - Curva de Atuação de um Disjuntor 3VE6 (Cortesia Siemens S.A.).

Curva de Atuação Tempo x Corrente

- Curva do disjuntor:
 - Trecho "a" é refente a atuação da lâmina bimetálica.
 - Trecho "n" é referente ao relé eletromagnético.
- Através da curva pode-se determinar o dispositivo e o seu tempo de atuação.

Disjuntores

- Disjuntores Termomagnéticos em Caixa Moldada são os dispositivos de proteção com maior utilização em instalações prediais de baixa tensão.
- Os disjuntores de construção mais elaborada permitem ajuste dos disparadores eletromagnéticos e térmicos.
- Para especificação de um disjuntor termomagnético:
 - Número de polos;
 - Tensão nominal (V);
 - Frequência (Hz)
 - Capacidade de ruptura (kA)
 - Corrente nominal (A)
 - Faixa de ajuste do disparador magnético (caso opcional)
 - Faixa de ajuste do disparador térmico (caso opcional)

Capacidade de Interrupção

• Maior valor de corrente de curto-circuito que é capaz de interromper, sem soldar os contatos ou explodir.

- Proteção contra sobrecargas
 - $-I_BI_NI_N$
 - $I_2 1,45 . I_Z$

I_B = Corrente de projeto do circuito;

I_Z= Capacidade de condução de corrente de condutores;

I_N= Corrente nominal do dispositivo de proteção;

I₂=Corrente que assegura a atuação do dispositivo de proteção;

Figura 9.10 - Condições de Proteção contra Sobrecargas (NBR-5410/90).

Tabela 9.1 - Tempos e Correntes Convencionais de Atuação (I_2) para Disjuntores Termomagnéticos (NBR 5361).

Corrente Nominal (I _N)	Corrente Conv. de não Atuação	Corrente Conv. de Atuação (I ₂)	Tempo Convencional (h)	Temp. Ambiente de Referência		
l _N ≤50 A	1,05	1,35	1	25°C		
I _N >50 A	1,05	1,35	2	25°C		

- Proteção contra os Curtos-Circuitos
 - a) O dispositivo de proteção deve ter a capacidade de ruptura compatível com a corrente de curto-circuito presumida no ponto de sua instalação.

$$I_R \ge I_{CS}$$

b)O dispositivo de proteção deve ser rápido do suficiente para que a temperatura dos condutores não ultrapassem a temperatura limite

$$T_{dd} \le t$$

Para curtos simétricos, ou assimétricos com duração inferior a cinco segundos, o tempo limite de atuação da proteção pode ser calculado por:

$$t = \frac{K^2 S^2}{I_{CS}^2}$$

$$t = \frac{K^2 S^2}{I_{CS}^2}$$

I_R = corrente de ruptura do dispositivo de proteção;

 I_{CS} = corrente de curto-circuito presumida no ponto da instalação do dispositivo;

T_{dd} = tempo de disparo do dispositivo de proteção, em segundos;

S = seção do condutor, em mm²;

K = constante relacionada ao material do condutor e da isolação do condutor, conforme a NBR 5410;

• K =

- 115 para condutores de cobre com isolação de PVC, para seções nominais até 300 mm², ou 103 para seções superiores;
- a) 143 para condutores de cobre com isolação de EPR ou XLPE;
- 76 para condutores de alumínio com isolação de PVC, para seções nominais até 300 mm², ou 68 para seções superiores;
- a) 94 para condutores de alumínio com isolação de EPR ou XLPE.

- A corrente de curto-circuito depende basicamente da impedância existente entre a fonte e o ponto de falta.
- Procedimento simplificado
 - Neste procedimento:
 - Desprezado o valor da impedância do sistema de energia da concessionária
 - Desprezada a impedância do transformador
 - Desprezada a impedância dos dispositivos de proteção
 - Desprezada a resistência de contato (em caso de curto-circuito)
 - Considerando curto-circuito trifásico (pior caso)
 - Desprezadas as contribuições de motores e geradores.

a - Cálculo da impedância até o ponto de falta

Resistência da linha:

$$R_L = (r \cdot L / N)$$

Impedância da linha:

$$X_L = (r \cdot L / N)$$

Resistência do transformador:

$$R_{\rm F} = (1000 \cdot Pcu) / (3 \cdot I^2N)$$

Impedância do transformador:

$$Z_{E} = (Z\% \cdot U^{2}c) / (100 \cdot P)$$

Reatância do transformador:

$$X_E = \sqrt{Z_E^2 - R_E^2}$$

Impedância de curto-circuito:

$$Zcc = \sqrt{(R_L + R_E)^2 + (X_L + X_E)^2}$$

Figura 9.11 - Curto-Circuito em um Alimentador Trifásico.

b - Corrente de curto-circuito presumida

$$Ics = (Uc) / (\sqrt{3}.Zcc)$$

c - Parâmetros de cálculo

 R_{I} = Resistência da linha a montante (m Ω);

 $r = Resistência específica da linha, conforme Tabela 9.3, (m<math>\Omega/m$);

L = Comprimento da linha a montante (entre a fonte e o ponto do curto-circuito) (m);

N = Número de condutores em paralelo em uma mesma fase;

 X_{I} = Retância da linha a montante (m Ω);

```
x = \text{Reatância específica da linha, conforme Tabela 9.3, }(m\Omega/m);
R_F = Resistência equivalente secundária do transformador (m<math>\Omega);
P_{cu} = Perdas no cobre (W), conforme Tabela 9.4;
I<sub>n</sub> = Corrente nominal do transfomador;
Z_{\rm F} = Impedância equivalente secundária do transformador (m\Omega);
U_c = Tensão de linha nominal (V);
Z% = Impedância percentual do transformador;
P = Potência nominal do transformador (kVA);
X_E = Reatância equivalente secundária do transformador (m\Omega);
Z_{cc} = Impedância total de curto-circuito (m\Omega);
I<sub>cc</sub> = Corrente de curto-circuito simétrica presumida (kA).
```

Tabela 9.3 - Impedância dos Condutores.

Seção nominal (mm²)	Resistência (mΩ/m)	Reatância (mΩ/m)	Seção nominal (mm²)	Resistência (mΩ/m)	Reatância (mΩ/m)
1	22,1	0,176	70	0,328	0,0965
1,5	14,8	0,168	95	0,236	0,0975
2,5	8,91	0,155	120	0,188	0,0939
4	5,57	0,143	150	0,153	0,0928
6 .	3,71	0,135	185	0,123	0,0908
10	2,24	0,119	240	0,0943	0,0902
16	1,41	0,112	300	0,0761	0,0895
25	0,880	0,106	400	0,0607	0,0876
35	0,841	0,101	500	0,0496	0,0867
50	0,473	0,101	630	0,0402	0,0865

Exemplo de Dimensionamento

Dimensionar o dispositivo de proteção para o circuito da Figura 9.14, a seguir, sabendo que ele é constituído de condutores unipolares de cobre com isolação de PVC, está instalado em eletroduto de PVC embutido em alvenaria e a corrente presumida de curto-circuito no ponto de instalação do referido dispositivo de proteção é 2,0 kA.

Figura 9.14 - Exemplo de Dimensionamento de Dispositivo de Proteção.

9.8 Informações Técnicas e Curvas Tempo x Corrente para o Dimensionamento de Disjuntores

As Figuras 9.15 e 9.16 apresentam características de disjuntores termomagnéticos.

Tibra Disjuntor termomagnético para uso geral com caixa em resina fenólica; câmara tratada com verniz "antidraking".

Supertibra 5 Disjuntor termomagnético de alto desempenho com caixa em resina poliéster e disperador magnético bobinado.

Esta útilma característica permite manter o limiar de atuação instantâneo em valores não superiores a 10 In.

Supertibra 12 Disjuntor termomagnético análogo ao Supertibra 5, porám com elevada capacidade de interrupção.

Tipo	Tibra			S	Supertibra			Supertibra			
Normas de referência	NB										
	110			110				110			
Tensão de funcionamento (V)			0		220				220		
			380			380			380		
						500			500		
Frequência (Hz)			50-60			50-60			50-60)	
Correntes nominais (A)		5-10-15-20-25-30-35-40-50-60-70-90-100									
Limiar de situação magnética		350-780A			5-10ln				5-101	n	
Número de polos		1	2	3	1	2	3	1	2	3.	
	110V	5			5			12.			
Capacidade da interrupção	220V	5	5	5	5	5	5	6	12	12.	
(kA)	380V			5			5			6.	
	500V						3			3.	

Figura 9.15 - Características dos Disjuntores Termomagnéticos, Linha Supertibra. (Cortesia Bticino).

Figura 9.16 - Curva Característica Tempo x Corrente dos Disjuntores Termomagnéticos, Linha Supertibra (Cortesia Bticino).

20

50

100 VIn

3 4 5 6 8 10

0,8 1

Instalações Elétricas

- Proteção contra choques elétricos e contra riscos de incêndio devido aos possíveis efeitos de circulação das correntes de fuga ou de falta para a Terra.
- O dispositivo DR atua sempre que o valor de I_{DR} ultrapassar um valor preestabelecido, I_{N} que é a corrente diferencial- residual nominal de atuação do dispositivo.

Figura 10.16 - Partes Principais de um Dispositivo DR.

Figura 10.19 - Funcionamento Elétrico de um Dispositivo DR (Cortesia: Bticino).

- Podem ser instalados dispositivos DR na proteção geral da instalação e/ou nas proteções individuais de circuitos terminais.
- Dependendo dos níveis de corrente de fuga do sistema à instalação, é preciso tomar cuidados especiais na sensibilidade dos dispositivos DR, pois principalmente se instalados na proteção geral, podem causar funcionamentos intempestivos da alimentação de toda a instalação.
- Quando tivermos dispositivos DR na proteção geral e nos circuitos terminais, deve ser feita uma coordenação buscando a seletividade de atuação. O dispositivo de maior sensibilidade de atuação (menor I N) deve ser instalado no circuito terminal e o de maior sensibilidade no circuito de distribuição, obedecidos os limites fixados em norma.

- Em instalações residenciais em locais molhados, em particular banheiros e piscinas, as tomadas de corrente devem ser instaladas obedecendo a distâncias mínimas e devem ser feitas ligações de equipotencialidade conforme definido na NBR 5410. Nos circuitos terminais dessas áreas, é recomendável a utilização de dispositivos diferenciais residuais de alta sensibilidade.
- Em nenhum caso, o condutor neutro deve ser interligado à Terra a jusante de um dispositivo diferencial residual.

Dados Técnicos		id 30/300 mA	id 500 mA	id 500 mA		
Normas de refere	ência	NBR 5361	NBR 8176 IEC 157-1	IEC 755		
Número de polo	s	2	3	4		
Tensão Nominal (V~)		110 220	220 380 500	220 380 500		
Frequência (Hz)		50/60	50/60	50/60		
Corrente Nomina	al IN (A)	15-20-25 30-35-40	63 100	63 100 125		
Atuação térmica		fixo	Regulável de 0,7 a 11 _N	Regulável de 0,7 a 1 I _N		
Faixa de atuação	magnética	5 a 10I _N	10 a 15 I _N	10 a 15 I _N		
Corrente Nominal diferencial (mA)		30/300	500	500		
Tempo de atuação difer.		≤ 0,03 s	≤ 0,04 s	≤ 0,04 s		
Capacidade de interrupção (kA)	110 V~ 220 V~ 380 V~ 500 V~	12 12	22 15 8	22 15 8		

Figura 10.22 - Dados Técnicos de Dispositivos DR do tipo Salvavita. Cortesia: Bticino.

Curva característica de atuação

I = Corrente real
In = Corrente nominal do disjuntor

Curva característica l²t/l_{cc}

Curva característica I2t/I_{CC}

 $I_{\rm cc} =$ Corrente simétrica presumida de curto-circuito (Valor eficaz em A)

1²t=energia específica passante (A²S) - Integral de Joule

Figura 10.23 - Curvas Características de Dispositivos DR do tipo Salvavita.

Cortesia: Bticino.

Projeto Elétrico I

Fornecimento de Energia: Padrão e Dimensionamento

Introdução

- Concessionárias estabelecem como a unidade consumidora será alimentada (através de normas técnicas).
- Geralmente se leva em consideração:
 - Potência instalada;
 - Demanda máxima prevista;
- Define-se será em:
 - Tensão primária
 - Tensão secundária (número de condutores)
- Para a EDP Ecelsa:
 - http://www.escelsa.com.br/energia/utilidades/norma_fornecimento/ /norma_fornecimento.asp

1. Consumidor

 Pessoa física ou jurídica que solicite o fornecimento, assumindo as obrigações decorrentes, segundo disposto nas normas e nos contratos.

2. Unidade Consumidora

 Instalações de um único consumidor, caracterizada pela entrega de energia em um só ponto e medição individualizada.

3. Entrada de Serviço

 Conjunto de equipamentos, condutores e acessórios entre o ponto de derivação e a medição e proteção.

Figura 6.2 - Entrada de Energia para Consumidor Individual em Baixa Tensão. Fonte: ND - 5.1 - Cemig

	LISTA DE MATERIAL			
Item	DESCRIÇÃO	UN	QU/	N7
1	TAMPÃO (POSTE AÇO)	pc.	01	01
2	ARMAÇÃO SECUNDÁRIA DE UM ESTRIBO	pç.	V	01
3	POSTE	pç.	01	01
4	ISOLADOR ROLDANA	pç.	V	01
5	BUCHAS E PORCAS ARRUELAS	pç.	02	03
6	CONDUTTOR DE COBRE ISOLADO	m.	V	V
7	CINTA	pç.	V	0
8	ELETRODUTO	pç.	٧	٧
9	CABEÇOTE OU CURVA 135°	pç.	02	0
10	ARAME DE AÇO GALVANIZADO Nº 14 BWG	g	500	50
11	DISJUNTOR TERMOMAGNÉTICO	pç.	V	V
12	CAINA PARA MEDIDOR E DISJUNTOR	pç.	01	0
13	CONDUTOR CABO DE AÇO	pç.	V	V
14	HASTE DE ATERRAMENTO	pç.	01	0
15	CURVA DE 90°	m.	04	02
16	HASTE Ø 16 x 150 P/ ARMAÇÃO SECUNDÁRIA	DK-	V	0
17	HASTE Ø 16 x 350 P/ ARMAÇÃO SECUNDÁRIA	pç.	V	-
18	TERMINAL P/ ATERRAMENTO CAIXA	pç.	01	0

Obs: V - quantidade variável em função do padrão e do tipo de ligação.

Figura 6.3 - Padrão para Ligação de Consumidor Individual de BT com Entrada Aérea. Fonte: ND - 5.1 - Cemig

1. Ponto de Entrega

 É o ponto de conexão do sistema elétrico da distribuidora com a unidade consumidora (limite da via pública com a propriedade)

2. Ramal de Ligação

 Conjunto de Condutores e seus acessórios instalados entre o ponto de derivação e o ponto de entrega.

3. Ramal de Entrada

- Conjunto de eletrodutos, condutores elétricos e acessórios instalados entre o ponto de entrega e a medição e proteção,
- Figura 6.2

Circuito Alimentador

 Condutores isolados, instalados entre a proteção geral e o quadro de distribuição da unidade consumidora.

Limites de Fornecimento

- Até 75kW em tensão secundária (baixa tensão)
- Categorias e Limitações no Atendimento para a EDP Ecelsa:
 - "U": dois fios uma fase e neutro (monofásico);
 - até 09kW
 - "D": três fios duas fases e neutro (bifásico);
 - acima de 09kW até 15kW
 - "T": quatro fios três fases e neutro (trifásico);
 - acima de 15 kW até 75 kW
 - "UR": três fios duas fases e neutro (monofásico-rural).
 - rurais até 37,5 kW
- Atenção para motores, máquinas de solda e aparelhos de raio X.

Limites de Fornecimento

A - Dimensionamento de Unidades Consumidoras Categorias "U" e "D" supridas por redes trifásicas 127/220 [V]

Categoria de Atendimento	Proteção da Entrada Principal	-	o _o		réreo mm2)	de	Entro bre P	vC		D	Terr	a	I) Ivanizado)		Мо	tor		
		Carga Instalada [kW]	Tipo do Fomecimento	Medição	Ramal de Ligação Aéreo Multiplex Alumínio (mm2)	Fase (mm²)	Neutro (mm²)	Classe	Tipo de Caixa	Eletroduto de Entrada	Condutor Nu (Cu-mm2)	Eletroduto	Poste (daN) (Concreto / Aço Galvanizado)	Pontalete	Major Motor (CV)	Partida		
U 1	Disjuntor Unipolar de 50A	Até 5,00	1 Fase (Neutro)	Direta	16	10	10	2		- Desembo 1 PVC 32 mm ou Aço 25 mm				enas para bancas de similares	1	Direta		
U 2	Disjuntor Unipolar de 63A	5,001 a 9,00	1 Fase (Neutro)	Direta	16	16	16	2	P-980-009 - Desenho I		PVC 20 mm ou Aço 15 mm	Concreto duplo "T" 100 daN Aço Galvanizado Conf. Tabela 8	Conforme Tabela 8. Apenas para bancas de revistas e similares	1	Direta			
D 1	Disjuntor Bipolar de 40A	(*) Até 9,00	2 Fases (Neutro)	Direta	16	16	16	2	-00-086-d	P-980-009	P-980-009	32 mm		PVC 20 mm	Concreto du Aço Go Conf.			
D 2	Disjuntor Bipolar de 63A	9,001 a 15,00	2 Fases (Neutro)	Direta	16	16	16	2		PVC 40 mm ou Aço 32 mm				Não pemitido	3	Direta		

Ramal de Ligação (Aereo)

1. Fornecido e instalado pela Concessionária.

2. Deve:

- Entrar pela frente do terreno,
- Ficar livre de qualquer obstáculo,
- Ser perfeitamente visível,
- Não cruzar terrenos de terceiros,
- Não passar sobre área construída.
- 3. Distância máxima do vão livre aéreo de 30 metros.
- 4. Não pode ser facilmente alcançável de balcões, terraços, varandas, janelas, telhados, para isto:
 - Distância de pelo menos 1,20 m.

Ramal de Ligação

- 1. Distâncias mínimas, medidas na vertical, entre o condutor inferior e o solo:
 - 5,50 m no cruzamento de ruas e avenidas e entradas de garagens de veículos pesados;
 - 4,00 m nas entradas de garagens residenciais, (sem veículos pesados)
 - 3,50 m nos locais exclusivos a pedestres.
- 2. A separação dos cabos e fios de comunicação ou sinalização, de no mínimo a 0,60 m acima destes.
- 3. Devem ser respeitadas as posturas municipais, estaduais, federais e demais órgãos. (rodovias e ferrovias)

REFERÊNCIAS

- Manual Pirelli de Instalações Elétricas http://www.prysmian.com.br/export/sites/prysmianptBR/energy/pdfs/Manualinstalacao.pdf
- CAVALIN, Geraldo; CERVELIN, Severino. Instalações elétricas prediais: conforme norma NBR 5410:2004. 21. ed. rev. e atual. São Paulo: Érica, 2011. 422 p. ISBN 9788571945418 (broch.)
- FILHO, Domingos Leite Lima. Projetos de Instalações Elétricas Prediais. Editora Érica. 11ª Edição. 2007. ISBN:978-85-7194-417-6