EE360T/382V Software Testing

khurshid@ece.utexas.edu

February 15, 2020

Overview

Now - Logic coverage

Last time - Graph coverage for designs and specs

Next time - Continue with logic coverage

EE360T/382V Software Testing

khurshid@ece.utexas.edu

Chapter 3*: Logic Coverage

^{*}Introduction to Software Testing by Ammann and Offutt

Criteria based on structures

The textbook focuses on four kinds of structures to define criteria:

- Graphs
 - E.g., control-flow graphs (CFGs)
- Logical expressions
 - E.g., if-conditions
- Input domain characterization
 - E.g., sorted array
- Syntactic structures
 - E.g., mutation

3.1 Overview: logical expressions

Predicate – expression that evaluates to a boolean value, e.g., " $((a > b) \mid \mid C) \&\& p(x)$ "

- May contain variables (boolean or non-boolean) and methods
- Internal structure defined by logical operators, e.g., "!", "&&", "||"

Clause – predicate that contains no logical operator, e.g., "a > b", "C", and "p(x)"

Logical expressions come from various sources, e.g., program source-code

3.2 Logic expression coverage criteria

- *P* set of predicates
- C set of clauses in predicates in P

C3.12 Predicate coverage (PC) – for each $p \in P$, TR contains two requirements:

- p evaluates to true; and
- p evaluated to false

C3.13 Clause coverage (CC) -- for each $c \in C$, TR contains two requirements:

- c evaluates to true; and
- c evaluated to false

PC and CC relation

Consider the predicate " $((a > b) \mid \mid C) \&\& p(x)$ "

Predicate coverage satisfied by two tests:

- 1. a = 5, b = 4, C = true, p(x) = true
- 2. a = 5, b = 4, C = true, p(x) = false
- The two tests do not satisfy clause coverage

Clause coverage satisfied by two tests:

- 1. a = 5, b = 5, C = false, p(x) = true
- 2. a = 5, b = 4, C = true, p(x) = false
- The two tests do not satisfy predicate coverage!

PC does **not** subsume CC and CC does **not** subsume PC

Combinatorial coverage

 C_p – set of clauses in predicate p

C3.14 Combinatorial coverage (CoC) – for each $p \in P$, TR has test requirements for the clauses in C_p to evaluate to each possible combination of truth values

Also called multiple condition coverage

Example: "!a || b"

а	b	!a b
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

Predicate with n clauses has 2^n possible assignments Often impractical for predicates with > a few clauses

Determination

Motivation – need criteria that capture the effect of each clause using a reasonable number of tests

 Would like to exercise conditions where flipping a clause flips the predicate

Major clause – clause c_i that is our focus

Minor clause – clause c_j where $j \neq i$

D3.42 Determination – major clause c_i determines predicate p if the minor clauses have values so that changing the truth value of c_i changes the value of p

Active clause coverage

D3.43 Active clause coverage $(ACC)^*$ – TR has two requirements for each active clause $c_i \in C_p$ for each $p \in P$: c_i evaluates to true; and c_i evaluates to false

Example – consider predicate $p = a \mid \mid b$

- a determines p iff b is false; likewise for b
- 4 requirements:

•
$$c_i = a$$
: { $a = T, b = f$ >, $a = F, b = f$ > }

•
$$c_i = b$$
: { $\langle a = f, b = T \rangle$, $\langle a = f, b = F \rangle$ }

• 2 of these are identical, so 3 in total

Key question in ACC – do minor clauses have constant values when major clause c_i is and when c_i is false?

CACC and RACC

C3.16 Correlated active clause coverage (CACC) – TR has two requirements for each major clause $c_i \in C_p$ for each $p \in P$: c_i evaluates to true; and c_i evaluates to false. The values chosen for minor clauses c_j ($j \neq i$) must cause p to be true for one value of c_i , and false for the other

C3.17 Restricted active clause coverage (RACC) – TR has two requirements for each major clause $c_i \in C_p$ for each $p \in P$: c_i evaluates to true; and c_i evaluates to false. The values chosen for minor clauses c_i ($j \neq i$) must be the same when c_i is true as when c_i is false

CACC and RACC Example

a determines the predicate " $a \&\& (b \mid \mid c)$ " when " $(b \mid \mid c)$ " is true

- <b = T, c = T>
- <b = T, c = F>
- <b = F, c = T>

CACC – pick one of { 1, 2, 3 } and one of { 5, 6, 7 }

9 choices

RACC – pick one of <1, 5>, <2, 6>, and <3, 7>

• 3 choices

Inactive clause coverage

Basis – check that changing a clause that should not affect the predicate does not, in fact, affect it

D3.44 Inactive clause coverage (*ICC*) – for each $p \in P$ and each major clause $c_i \in C_p$, choose minor clauses c_j ($j \neq i$) so that c_i does **not** determine p. *TR* has four test requirements for c_i :

- 1. c_i evaluates to true with p true;
- 2. c_i evaluates to false with p true;
- 3. c_i evaluates to true with p false; and
- 4. c_i evaluates to false with p false;

GICC and RICC

C 3.18 General inactive clause coverage (GICC) – ICC such that the values chosen for the minor clauses for a given major clause may vary among the four cases

C 3.19 Restricted inactive clause coverage (*RICC*) – *ICC* such that the values chosen for the minor clauses for a given major clause must be the same in cases (1) and (2), and also be the same in cases (3) and (4)

Subsumption

Making a clause determine a predicate

Let p be a predicate and c be a clause in p

Let $p_{c=true}$ be p with c set to true

Let $p_{c=false}$ be p with c set to false

Then, solutions to formula $p_{c=true} \oplus p_{c=false}$ give values for clauses $\neq c$ such that c determines p

• Each solution is assignment of values to clauses in $p_{c=true} \oplus p_{c=false}$ such that the formula is *true*

Example of making a clause active

$$p = a \mid \mid b$$

```
To make a active, solve p_a = p_{a=true} \oplus p_{a=false}
= (true \mid \mid b) \oplus (false \mid \mid b)
= true \oplus b
= !b
```

There is one solution to p_a , which is b = falseThus, setting b = false makes clause a active

By symmetry, $p_b = !a$

Another example

```
p = a \&\& b

To make a active, solve p_a = p_{a=true} \oplus p_{a=false}
= (true \&\& b) \oplus (false \&\& b)
= b \oplus false
= b
```

There is one solution to p_a , which is b = trueThus, setting b = true makes clause a active

By symmetry, $p_b = a$

An example with no constraint

$$p = a \Leftrightarrow b$$

To make a active, solve $p_a = p_{a=true} \oplus p_{a=false}$

= $(true \Leftrightarrow b) \oplus (false \Leftrightarrow b)$

 $=b\oplus!b$

= true

Any value of b is a solution

Thus, setting b to any value makes clause a active

By symmetry, $p_b = true$

A degenerate case

```
p = a \&\& b || a \&\& !b
To make b active, solve p_b = p_{b=true} \oplus p_{b=false}
= (a \&\& true | | a \&\& !true) \oplus (a \&\& false | | a \&\& !
false)
= (a | | false) \oplus (false | | a)
= a \oplus a
= false
```

There is no solution to p_b

Thus, there is no value for a that makes b active

An example with 3 clauses

$$p = a \&\& (b \mid \mid c)$$
To make a active, solve $p_a = p_{a=true} \oplus p_{a=false}$
 $= (true \&\& (b \mid \mid c)) \oplus (false \&\& (b \mid \mid c))$
 $= (b \mid \mid c) \oplus false$
 $= b \mid \mid c$

There are three distinct solutions to p_a :

•
$$<$$
b = T , c = T >, $<$ b = T , c = F >, and $<$ b = F , c = T >

Any of these three pairs makes clause a active

Exercise – make b active

?/!