Stwierdzenie 1. X_k jest \mathcal{F}_k -adaptowalny, τ moment zatrzymania, wtedy X_{τ} jest \mathcal{F}_{τ} -mierzalne na $\{\tau < \infty\}$.

Twierdzenie 2 (Doob optional sampling). $(X_n, \mathcal{F}_n)_{n\geqslant 0}$ (nad, pod)martyngał, $\tau_1 \leqslant \tau_2 \leqslant N < \infty$ dwa momenty zatrzymania. Wtedy $(X_{\tau_i}, \mathcal{F}_{\tau_i})$ jest (nad, pod)martyngałem, tzn. $\mathbb{E}(X_{\tau_2}|\mathcal{F}_{\tau_1})(\leqslant, \geqslant) = X_{\tau_1}$ p.n. W szczególności $\mathbb{E}X_{\tau_2}(\leqslant, \geqslant) = \mathbb{E}X_{\tau_1}$.

Uwaga 3. Założenie $\tau_2 \leq N < \infty$ jest kluczowe!

Twierdzenie 4 (tożsamość Walda). $X_1, X_2, \ldots iid$, $\mathbb{E}|X_1| < \infty$, $S_0 = 0$, $S_n = X_1 + \ldots + X_n$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, τ moment zatrzymania względem \mathcal{F}_n taki, że $\mathbb{E}\tau < \infty$. Wtedy $\mathbb{E}S_{\tau} = \mathbb{E}\tau \mathbb{E}X_1$.

Fakt 5. S_n jak wyżej, $a \in \mathbb{Z}$, $\tau_a = \inf\{n : S_n = a\}$. Wówczas $\tau_a < \infty$ p.n., czyli symetryczne błądzenie losowe na \mathbb{Z} z prawdopodobieństwem 1 odwiedza każdy punkt \mathbb{Z} .

Twierdzenie 6 (o zbieżności p.n. dla martyngałów). $(X_n, \mathcal{F}_n)_{n\geqslant 0}$ nadmartyngał taki, że $\sup_n \mathbb{E} X_n^- < \infty$. Wówczas $X = \lim_{n\to\infty} X_n$ istnieje p.n. oraz $\mathbb{E} |X| < \infty$.

Poniższe służą dowodowi twierdzenia.

Fakt 7. (x_n) ciąg, wtedy lim x_n istnieje w szerszym sensie (tzn. być może jest nieskończona) wtw, gdy $\forall_{a < b, a, b \in \mathbb{Q}} U_a^b((x_n)) < \infty$, gdzie U_a^b to liczba przejść w górę przez przedział [a, b] dla ciągu (x_n) .

Lemat 8. $(X_n)_{n=0}^m$ nadmartyngał, $U_a^b(m)$ liczba przejść przez [a,b] dla (X_n) do chwili m. Wtedy $\mathbb{E} U_a^b(m) \leqslant \frac{1}{b-a} \mathbb{E} (X_m-a)^- \leqslant \frac{1}{b-a} (\mathbb{E} X_m^- + a^+)$

Fakt 9. Dla nadmartyngału $(X_n)_{n\geqslant 0}$ NWSR:

- $\sup_n \mathbb{E}|X_n| < \infty$,
- $\sup_n \mathbb{E} X_n^- < \infty$,
- $\lim_n \mathbb{E} X_n^- < \infty$.