Introdução à Modelagem Computacional MAC024

Luis Paulo S. Barra e Elson M. Toledo

Departamento de Mecânica Aplicada e Computacional - MAC Faculdade de Engenharia

Março 2012

Parte II

Conceitos Básicos

Introdução

Engenharia Computacional

Conceitos Básicos da Modelagem Computacional

Sistema

Modelo

Fig. 1.1 Car as a real system and as a model.

Modelagem e Modelos

Modelo Matemático/Computacional

Modelagem e Modelos

Modelo Matemático/Computacional

- Sistema;
- Questionamento a respeito do Sistema;
- Sentenças matemáticas que serão usadas para responder ao Questionamento.

Sistema

► Natural x Técnico

Sistema

- ► Natural x Técnico
- Determinístico x Estocástico

Sistema

- Natural x Técnico
- Determinístico x Estocástico
- Contínuo x Discreto (tempo)

Sistema

- Natural x Técnico
- Determinístico x Estocástico
- Contínuo x Discreto (tempo)

Questionamento

► Estacionário x Transiente

Sistema

- Natural x Técnico
- Determinístico x Estocástico
- Contínuo x Discreto (tempo)
- **.**..

- Estacionário x Transiente
- Distribuído x Concentrado (espaço)

Sistema

- Natural x Técnico
- Determinístico x Estocástico
- Contínuo x Discreto (tempo)

- Estacionário x Transiente
- Distribuído x Concentrado (espaço)
- ▶ Direto x Inverso

Sistema

- ► Natural x Técnico
- Determinístico x Estocástico
- Contínuo x Discreto (tempo)

- Estacionário x Transiente
- Distribuído x Concentrado (espaço)
- ▶ Direto x Inverso
- Pesquisa x Gerenciamento

Sistema

- Natural x Técnico
- Determinístico x Estocástico
- Contínuo x Discreto (tempo)
- **>** ...

- Estacionário x Transiente
- Distribuído x Concentrado (espaço)
- ▶ Direto x Inverso
- ► Pesquisa x Gerenciamento
- •

Classificações: Matemática Envolvida

► Linear x Não Linear

- ► Linear x Não Linear
- Analíticos x Numéricos

- ► Linear x Não Linear
- Analíticos x Numéricos
- Equações Algébricas

- ► Linear x Não Linear
- Analíticos x Numéricos
- Equações Algébricas
- Equações Diferenciais

- ► Linear x Não Linear
- Analíticos x Numéricos
- ► Equações Algébricas
- Equações Diferenciais
- Equações Integrais

Modelagem Computacional

Modelagem Computacional

Solução Aproximada do Modelo - Métodos Numéricos

► Erros de arredondamento (precisão finita);

Solução Aproximada do Modelo - Métodos Numéricos

- ► Erros de arredondamento (precisão finita);
- lacktriangle Erros de discretização (contínuo ightarrow discreto);

Solução Aproximada do Modelo - Métodos Numéricos

- Erros de arredondamento (precisão finita);
- ► Erros de discretização (contínuo → discreto);
- Eficiência computacional (resolver no tempo adequado).

Solução Aproximada do Modelo - Métodos Numéricos

- Erros de arredondamento (precisão finita);
- ► Erros de discretização (contínuo → discreto);
- Eficiência computacional (resolver no tempo adequado).

Implementação Computacional - Carpintaria de Software

Confiabilidade (verificação);

Solução Aproximada do Modelo - Métodos Numéricos

- ► Erros de arredondamento (precisão finita);
- ► Erros de discretização (contínuo → discreto);
- Eficiência computacional (resolver no tempo adequado).

Implementação Computacional - Carpintaria de Software

- Confiabilidade (verificação);
- Robustez (detecção de erros nos dados e situações anormais);

Solução Aproximada do Modelo - Métodos Numéricos

- Erros de arredondamento (precisão finita);
- ► Erros de discretização (contínuo → discreto);
- Eficiência computacional (resolver no tempo adequado).

Implementação Computacional - Carpintaria de Software

- Confiabilidade (verificação);
- Robustez (detecção de erros nos dados e situações anormais);
- Portabilidade (execução em diversas plataformas);

Solução Aproximada do Modelo - Métodos Numéricos

- Erros de arredondamento (precisão finita);
- ► Erros de discretização (contínuo → discreto);
- Eficiência computacional (resolver no tempo adequado).

Implementação Computacional - Carpintaria de Software

- Confiabilidade (verificação);
- Robustez (detecção de erros nos dados e situações anormais);
- Portabilidade (execução em diversas plataformas);
- Manutenção (documentação).

Ambiente Computacional

► Hardware

- ► Hardware
- ► Sistemas operacionais e linguagens

- Hardware
- ► Sistemas operacionais e linguagens
- Gerenciamento de dados

- Hardware
- Sistemas operacionais e linguagens
- Gerenciamento de dados
- Computação simbólica (desenvolvimento dos modelos)

- Hardware
- Sistemas operacionais e linguagens
- Gerenciamento de dados
- Computação simbólica (desenvolvimento dos modelos)
- ► Softwares comerciais (Modelagem Geométrica, Elementos Finitos, etc)

- Hardware
- Sistemas operacionais e linguagens
- Gerenciamento de dados
- Computação simbólica (desenvolvimento dos modelos)
- Softwares comerciais (Modelagem Geométrica, Elementos Finitos, etc)
- Visualização dos resultados (computação gráfica)