

第七八章回溯与分支限界法作业

- 回溯法和分支限界法的状态空间生成方式有何不同?简述两种方法的基本思想。
- 状态空间生成方式
 - •回溯法: 当前的E-结点R 一旦生成一个新的儿子结点C, 这个C结点就变成一个新的E-结点, 当检测完了子树C后, R结点就再次成为E-结点, 生成下一个儿子结点。
 - •分支-限界方法:当前结点一旦成为**E**-结点,就一直处理到变成死结点为止。其生成的儿子结点加入到活结点表中,然后再从活结点表中选择下一个新的**E**-结点。

●回溯法:

•回溯法从根结点出发,按深度优先策略搜索解空间树。判断E-结点是否包含问题的解。如果不包含,则跳过以该结点为根的子树,逐层向其祖先结点回溯。否则就进入该子树,继续按深度优先的策略进行搜索。

•分支限界法:

●分支限界法从根结点出发,生成当前E-结点全部儿子之后,再选择新的活结点成为E-结点,重复上述过程。为提高算法效率,会使用限界函数和成本估计函数等进行剪枝。

- •回溯法的效率估计问题
- (1) 考虑每一行每一列各不相同,求6皇后问题静态的状态空间树的结点总数;
- (2) 按图1所示,采用蒙特卡罗方法估计不受限结点数(即实际扩展的结点数);
- (3) 根据(2)的结果和(1)比较, 计算回溯算法的不受限结点数占结点总数的比例。

图 1. 6 皇后问题的一个状态

•第(1)问:

$$1+6+(6\times5)+(6\times5\times4)+(6\times5\times4\times3)+(6\times5\times4\times3\times2)+(6\times5\times4\times3\times2\times1)$$

=1957

•第(2)问:

分析得到每行不受限结点个数(6,3,2,2,1)

$$1+6+(6\times3)+(6\times3\times2)+(6\times3\times2\times2)+(6\times3\times2\times2\times1)=205$$

•第(3)问:

205/1957=10.5%

•子集和问题:

- (1) 画出定长元组(n-元组)表示下, n=4时子集和问题的状态空间树, 状态结点按深度优先顺序编号。
- (2)给出n-元组表示下,子集和问题的限界函数(剪枝的条件)。
- (3) 对于W=(2,5,3,10) 和M=15的问题实例,在1)的基础上,利用2)的限界函数, 画出回溯法剪枝后的状态空间树,状态结点序号同1)。

(1) 画出定长元组 (n-元组)表示下, n=4时子集和问题的状态空间树, 状态结点按深度优先顺序编号。

(2) 给出n-元组表示下,子集和问题的限界函数(剪枝的条件)。 答:将W(i)按非降次序排列

• 限界函数B_k(X(1),...,X(k))=true, 当且仅当:

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M \quad \exists \quad \sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

结点编号	S	r	W(i+1)	B值
2	2	18	3	Т
3	5	15	5	Т
4	10	10	10	F
7	5	10	10	Т
8(答案)	15	0	0	Т
9	5	0	0	F
10	2	15	5	Т
11	7	10	10	F
14	2	10	10	F
17	0	18	3	Т
18	3	15	5	Т
19	8	10	10	F
22	3	10	10	F
25	0	15	5	Т
26	5	10	10	
27(答案)	15	0	0	

3) n-元组表达下, 对于W=(2,5,3,10) 和M=15的问题实例, 按照数值从小到达排序为W=(2,3,5,10)

28	5	MIN 0	0	F
29	0	10	10	

•下图是15谜问题

- (1) 判定图中初始状态是否能达到目标状态? (需要计算过程)
- (2) 设ĉ(X)=f(X)+ĝ(X)。f(X)=根到结点X的路径长度, ĝ(X)=不在其目标位置的非空白牌数目,用LC检索法,画出从初始状态到达目标状态的状态空间树,并标出树中每个状态节点的ĉ值。

1	2		4
5	6	ന	8
9	10	7	11
13	14	15	12

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

初始状态

目标状态

定理: 当且仅当 Σ LESS (i)+X是偶数时,目标状态可由此初始状态到达。

LESS (i)是使牌j<牌i, 且POSITION(j)> POSITION(i)的j的数目.

如果空格在图的阴影位置中的某一格处,则令X=1;否则X=0。

1	2		4
5	6	ന	8
9	10	7	11
13	14	15	12

初始状态

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

目标状态

答: 1) 求LESS(i), 得到∑Less(i)=22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LESS 0 0 0 1 1 1 0 1 1 0 0 1 1 1 13

2) 对照空格位, X=0, 则∑Less(i)+0=22, 为偶数。

因此,目标状态可达。

- •给定带期限的作业调度问题:
 - •n=5, (p1,d1,t1)=(6,3,2), (p2,d2,t2)=(3,1,1), (p3,d3,t3)=(4,3,2), (p4,d4,t4)=(8,2,1), (p5,d5,t5)=(5,3,1)。假定问题采用不定长元组表示。
 - •(1) 请给出n=5的静态树, 状态结点采用层次遍历编号。
 - •(2) 请给出ĉ(X)和u(X)的定义。
 - •(3) 分别画出FIFOBB算法和LCBB算法生成的动态树,并标出对应最优解的答案结点和给出罚款数。

(1) 请给出n=5的静态树, 状态结点采用层次遍历编号。

(2) 请给出ĉ(X)和u(X)的定义。

•设Sx是根结点到达结点X时选中的作业集合, m=max{i|i∈S_X},

$$\begin{array}{c} \bullet \hat{\mathbf{c}}(\mathbf{X}) = \sum_{\substack{i < m \\ i \notin S_X}} \mathbf{p}_i \end{array}$$

$$u(X)=\sum_{i \notin S_X} p_i$$

• U 整棵树中C(T) 上界(当前找到的最小罚款值)

结点	â/ V)	(V)	
编号	ĉ(X)	u(X)	7
2	0	20	U=20
3	6	23	
4	9	22	
5	13	18	U=18
6	21	21	
7	0	17	U=17
8			
9	7	12	U=12
10	15	15	
11	6	19	
12	10	15	
13	18	18	
14	9	14	
15	17	17	

(p1,d1,t1)=(6,3,2), (p2,d2,t2)=(3,1,1), (p3,d3,t3)=(4,3,2), (p4,d4,t4)=(8,2,1), (p5,d5,t5)=(5,3,1)

(3) FIFOBB算法生成的动态树。蓝色表示ĉ(X) ≥ U 舍弃

结点		
编号	ĉ(X)	u(X)

7/110 J	() ()	9. (2.1)
17		
18		
19		
22		
23		
24		
25	10	10
26		

U=10

(p1,d1,t1)=(6,3,2), (p2,d2,t2)=(3,1,1), (p3,d3,t3)=(4,3,2), (p4,d4,t4)=(8,2,1), (p5,d5,t5)=(5,3,1)

(3) FIFOBB算法生成的动态树。

蓝色表示**ĉ(X) ≥ U** 舍弃

灰色表示B函数剪枝, 对应方形结点

一共23个结点,最优解的答案结点25,最小罚款数10。

E 结点	结点 编号	ĉ(X)	u(X)
1	2	0	20
	3	6	23
	4	9	22
	5	13	18
	6	21	21
2	7	0	17
	8		
	9	7	12
	10	15	15
7	17		
	18		
	19		
3	11	6	19
	12	10	15

U=18

U=17

U=12

(3) LCBB算法生成的动态树。 蓝色表示ĉ(X) ≥ U 舍弃 灰色表示B函数剪枝,对应方形结点

E 结点	结点 编号	ĉ(X)	u(X)
	13	18	18
11	23		
	24		
9	22		
4	14	9	14
	15	17	17
14	26		
12	25	10	10

U=10

(p1,d1,t1)=(6,3,2), (p2,d2,t2)=(3,1,1), (p3,d3,t3)=(4,3,2), (p4,d4,t4)=(8,2,1), (p5,d5,t5)=(5,3,1)

(3) LCBB算法生成的动态树。

蓝色表示**ĉ(X) ≥ U** 舍弃

灰色表示B函数剪枝, 对应方形结点

一共23个结点,最优解的答案结点25,最小罚款数10。

- •分配问题:设有n件工作分配给n个人,工作i分配给第j个人所需的费用为c(i,j)。已知二维数组c(n,n),现在请设计一个最佳工作分配方案,使总费用达到最小。
 - (1) 确定问题的元组表达形式、显式约束条件和隐式约束条件
 - (2) 给出n=4的解空间树
 - (3) 设计算法,给出问题的最优解和最佳工作分配方案。

- 分析:已知n件工作分配给n个人,每个人都会分配到一件工作。
- (1) 表达式分析:将c(n,n)想像成棋盘,则问题类似于于n-皇后问题。
- (2) 算法分析: 求最优解问题适合采用分支限界法求解。
 - (1) 确定问题的元组表达形式、显式约束条件和隐式约束条件
 - •n元组 $(x_1, ..., x_n)$,表示作业i分配给第 x_i 个人
 - 显式约束条件: 1 ≤ x_i ≤n
 - ·隐式约束条件: xi各不相同
 - •目标函数:min∑c(i, x_i),i=1,..,n
 - (2) 给出n=4的解空间树

基于分支限界法考虑问题

(3) 设计算法,给出问题的最优解和最佳工作分配方案。

设计思想参考,设 x_1, \ldots, x_k 是根到X的路径:

- •1) 成本上界U
 - •初值:从作业1到作业n, 贪心法获得的可行解
 - •修改: 当前若X是可行解,且成本值小于U,则赋值给U。
- •2) 成本下界ĉ(X)=f(X)+ĝ(X)
 - $\bullet f(X) = \sum_{1 \le i \le l} c(i, x_i)$
 - •ĝ(X)=∑min{c(i,j)},即工作k+1到工作n中最小成本之和。
 k<i≤n
 1≤j≤n
- •3) 基于FIFO-分支限界法或LC-分支限界法实现
 - 当 c(X)>U时, X 含弃

问题举例: n=4, 作业成本如下图表格所示。

•U初值: 5+2+3+4=14, 见表格中红色数字。

●每行最小值: c(1,3),c(2,1),c(3,3),c(4,4)

• $\hat{c}(X) = c(1,2)+c(2,3)+c(3,3)+c(4,4)=6+8+1+4=19>U$

根到X的成本

未来可能的最 小成本

初始状态

人员	1	2	3	4
工作1	9	6	5	7
2	2	4	8	6
3	7	3	1	9
4	8	7	8	4

- ●最大团问题:考虑无向图 G=<V, E>, 已知G的完全子图G'=<V', E'>, 有 V' ⊆V, E' ⊆E, G'中任意两个顶点之间都存在一条边相连。完全子图G'也称为G的团, 团的大小用所含的结点数表示。请给出G的一个最大团。提示:可转化为判定问题。
 - (1) 确定判定问题的元组表达形式、显式约束条件和隐式约束条件。
 - (2) 设G的顶点数为5, 判定是否存在大小为3的团, 请给出该规模的解空间树。
 - (3) 设计算法,给出问题的最大团和它的顶点集合。

方法1分析:问题转化为判定问题,即G中是否存在大小为m的团。

(1) 表达式分析: 类似于子集和问题或0/1背包问题, 判断是否能选出m个顶点。

(2) 算法分析:回溯法找到一个可行解。

(1) 确定判定问题的元组表达形式、显式约束条件和隐式约束条件。

•m元组(x₁,...,x_m), m表示团的大小

■ 显式约束条件: x_i∈{1,...,n}, 1..n对应G中的顶点

●隐式约束条件:任意两个x_i都不相同,且x_i之间都存在边相连, x_i≤x_{i+1},

1≤i<m

(2) 设G的顶点数为5, 判定是否存在大小为3的团, 请给出该规模的解空间树。

在静态树构造时考虑以下三个条件,使解空间个数为 C_n 个,当前规模为10个

- ●1) m元组(x₁, ..., x_m), x_i∈{1,...,n}, 1..n对应G中的顶点,i=1,..,m
- ●2) 任意两个x_i都不相同 构造办法:对于x_i=k,则x_{i+1}=k+1,...,n-(m-i)+1, i=0,...,m-1
- •3) x_i≤x_{i+1}, 1≤i<m

约束函数 B_i : 顶点 x_i 与 x_1 ,..., x_{i-1} 能成团,即有边相连

- i=1, 子结点取值到n-(m-i)+1=4
- i=2, 子结点取值到n-(m-i)+1=5

- (3) 设计算法,给出问题的最大团和它的顶点集合。
 - •基于回溯算法设计,详情略。
 - •对于n个顶点的图G,分析最坏情况下时间复杂度:
 - •1)解空间树叶结点个数: Cmn个m-元组
 - •2) B判断叶结点是否是可行解,即x_m与x₁,...,x_{m-1}是否成团: m-1
 - •3) 求最大团最多计算

方法2分析:也可以直接求最大团问题。

(1) 表达式分析: 类似于0/1背包问题。

(2) 算法分析: 利用分支限界法求最优解。

(1) 确定元组表达形式、显式约束条件和隐式约束条件。

•n元组(x₁, ..., x_n), n表示**G**中顶点个数

显式约束条件: x_i∈{0,1}, 1表示团选中顶点i, 否则舍弃。

●隐式约束条件:任意两个x_i=1对应的顶点i之间都存在边相连,1≤i≤n

约束函数B_i:新加入的结点i与之前结点能构成团,即有边相连

•(2) 设G的顶点数为5, 判定是否存在大小为3的团, 请给出该规模的解空间树

•叶节点共计32个。

解空间树2ⁿ个叶结点,判断每条路径的团O(n),最坏情况下算法时间复杂度O(n2ⁿ)

- ●设计思想参考,设x1,...,xk是根到X的路径:
- •1) 成本上界U
 - •初值: 0

•2) 成本上界函数 $\mathbf{u}(\mathbf{X})$ $\sum \mathbf{x}_{i}$, $\mathbf{i}=1,...,\mathbf{k}$ 表示选中的顶点个数

- $u(X) = -\sum x_i$, i = 1,...,k
- 当前若X是可行解,且-∑x_i<U, i=1,..,k,则赋值给U。
- •3) 成本下界ĉ(X)=f(X)+ĝ(X)
 - $f(X) = -\sum x_i$, i=1,...,k
 - •ĝ(X)= -(n-k), 最好情况下其余顶点都能加入到当前团中。
- •4) 约束函数B(X)
 - ●任意两个x_i=1对应的顶点i之间都存在边
- •5) 基于FIFO-分支限界法或LC-分支限界法实现
 - 当 c(X)>U时, X 舍弃

- ●问题举例:设当前n=10, k=5, U=-2
- 算法生成结点X, X表示路径(x₁,..., x₅)=(1,0,0,1,1)到
 达的状态结点
 - •1) 约束函数B(X)=T, 即当前顶点1,4,5能够构成一个 大小为3个团
 - •2) 计算ĉ(X)=-3-5=-8<U, 加入活结点表中
 - •3) 计算u(X)=-3<U,更新U为-3
 - •4) 生成下一个活结点或选择下一个E结点

本章结束

