TP Méthode approchées UMIN215

Bruno Y., Chlöé T., Julien D. et Rémi F.

13 avril 2015

Partie Théorique

Exercice 1 - Sur le problème de la couverture sommet minimale : trois approches différentes

1. a) On a:

$$x_i = \begin{cases} 0 & \text{si } x_i \notin S \\ 1 & \text{si } x_i \in S \end{cases}$$

On peut donc déduire que le (PL) donne bien une solution optimale. z compte bien le nombre de sommets dans S. Si $(v_r, v_s) \in E$, on a x_r et x_s qui valent 1 : il faut qu'il y ait au moins un sommet couvre l'arête.

- b) On ne peut pas avoir $x_s + x_r = 1$ car v_r et v_s peuvent tout deux appartenir à S.
- c) Soit une solution optimale, alors elle respecte les contraintes du (PL) et correspond à un z minimum : elle correspond donc à une solution du (PL).
- d) Supposons qu'il existe $(v_r,v_s)\in E$ tel que $x_r<\frac{1}{2}$ et $x_s<\frac{1}{2}$, alors on aurait $x_r+x_s<1$, ce qui viole une contrainte. Donc $x_r\geq\frac{1}{2}$ ou $x_s\geq\frac{1}{2}$.
- e) Soit I une instance quel conque, alors on a $\rho=\frac{\max(A(I))}{Opt(I)}.$ Par ailleurs, on sait que :

$$Opt(I) = S_{ILP}(I) \tag{1}$$

$$S_{LP}(I) \le S_{ILP}(I) \tag{2}$$

On peut déduire de (2) que $\frac{1}{S_{LP}(I)} \ge \frac{1}{S_{ILP}(I)}$. Donc on arrive à l'inéquation suivante : $\frac{A(I)}{S_{LP}(I)} \ge \frac{A(I)}{Opt(I)}$. Notons que A(I) est la solution obtenue en arrondissant la solution de $S_{LP}(I)$.

On peut remarquer que puisqu'il existe i tel que $x_i \ge \frac{1}{2}$, donc $2x_i \ge 1$. On peut donc écrire :

$$A(I) = \sum_{i, x_i \ge \frac{1}{2}} 1 \le \sum_{i \in S^*} 2x_i \le 2 \sum_{i=1}^n x_i = 2Opt(I).$$
 (3)

On déduit finalement que $\frac{A(I)}{Opt(I)}=2$ et $\rho=\frac{max(A(I))}{Opt(I)}\leq 2$ Montrons que $\rho=2$ en considérons le cas suivant :

FIGURE 1 – Résultat donné par l'Algorithme 1 pour le problème Vertex cover.

On peut remarquer qu'ici, A(I) = 4 alors que Opt(I) = 2.

FIGURE 2 – Résultat optimal pour le problème Vertex cover.

On peut donc finalement conclure que $\rho = \frac{\max(A(I))}{OptI} = 2$.

f) i) Pour obtenir notre nouvel programme linéaire (PL'), il suffit simplement d'introduire les poids $w_i \in \mathbf{N}^*, i \in \{1, \dots, n\}$ et de poser $z = \sum_{j=1}^n w_i x_i$.

$$PL' \begin{cases} \min z = \sum_{j=1}^{n} w_i x_i \\ x_r + x_s \ge 1, \forall \{v_r, v_s\} \in E \\ x_j \in \{0, 1\}, j \in \{1, \dots, n\} \end{cases}$$

- ii) On peut remplacer le programme linéaire en nombre entiers (PL') par un autre utilisant une matrice A. Pour un graphe G=(V,E), la matrice A utilisé dans le programme linéaire en nombres entiers possède les caractéristiques suivantes :
 - $A \ge 2 * |E|$ lignes et |V| colonnes.
 - Chaque ligne apparaît deux fois dans la matrice.
 - La matrice A est constituée uniquement de 1 et il n'y a que deux 1 par ligne.

$$PL' \begin{cases} \min z = \sum_{j=1}^{n} w_i x_i \\ A * \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \ge \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \\ x_j \in \{0, 1\}, j \in \{1, \dots, n\} \end{cases}$$

- iii) A terminer..
- 2. a) Dans les pires des cas, les deux sommets de chaque arêtes sont pris : $A(I) \geq 2 * m$ avec m = |E|. De plus, il y a toujours, au moins un sommet par arête dans la solution optimale : $Opt(I) \geq n$. On peut donc écrire que $\frac{1}{Opt(I)} \leq n$ et donc que $\frac{A(I)}{Opt(I)} \leq 2$.
 - b) Considérons le graphe suivant :

FIGURE 3 – Exemple d'instance pour lequel l'Algorithme 2 atteint la borne de deux.

On a donc $E' = (\{a, b\}, \{a, d\}, \{b, c\}, \{c, d\}).$

étape	E'	arête sélectionné	С
1	$\{ \{a,b\}, \{a,d\}, \{b,c\}, \{c,d\} \}$	$\{a,b\}$	{ {a,b} }
2	{ {c,d} }	$\{c,d\}$	{ {a,b}, {c,d} }
3	Ø	Ø	{ {a,b}, {c,d} }

On à ici A(I)=4 alors que Opt(I)=2 donc $rho=\frac{max(A(I))}{Opt(I)}=2$.

c) On commence par prendre les $\frac{k!}{k}$ sommets de degrés k (les triangles), puis les $\frac{k!}{k-1}$ sommets de degrés k-1, etc.. On va donc prendre en tout $k! \sum_{i=0}^k \frac{1}{k-i} = k! \sum_{i=1}^k \frac{1}{i} = k! * H_k$, avec H_k la k-ième somme partielle de la série harmonique. L'optimal est de prendre que les k! sommets de degrés k (les carrés). On a donc pour un k fixé, $\frac{A(I)}{Opt(I)} = H_k$. Or si $k \to \infty$, H_k diverge et tend vers ∞ .

Exercice 2 - Sur le problème du couplage maximum de poids maximum : un début d'étude polyédrale sur le problème de couplage

Dans cet exercice, nous travaillerons sur un graphe G = (V, E) avec |V| = n et |E| = m. Chaque arête $(i, j) \in E$ possède un poids que l'on not $w_{i,j}$.

1. On peut considérer le (PL) suivant afin de modéliser le problème :

$$PL \begin{cases} \max z = \sum_{(i,j) \in E} w_{i,j} x_{i,j} \\ \forall i \in \{1, \dots, n\}, \sum_{j \in V(i)} x_{i,j} \le 1 \\ x_j \in \{0, 1\} \end{cases}$$

2. Considérons que le graphe de la figure 2 est le suivant :

FIGURE 4 – Graphe représentant la figure 2.

Les équations des contraintes sont donc les suivantes :

$$\begin{cases} x_{a,b} + x_{a,c} \le 1 \\ x_{a,c} + x_{b,c} \le 1 \\ x_{a,b} + x_{b,c} \le 1 \end{cases}$$

- 3. Une solution optimale du programme linéaire en nombre entiers est z=1 avec $x_{a,b}=1, x_{b,c}=0$ et $x_{a,c}=0$.
- 4. Une solution pour le même programme relaxé est $z = \frac{3}{2}$ avec $x_{a,b} = \frac{1}{2}$, $x_{b,c} = \frac{1}{2}$ et $x_{a,c} = \frac{1}{2}$.
- 5. La formulation est mauvaise puisqu'avec une solution de LP, on ne peut pas retrouver une solution de ILP.

- 6. Pour la figure 2, $\frac{|S|-1}{2}=1$. On rajoute donc la contrainte suivante : $\sum_{(i,j)\in E} x_{i,j} \leq 1$. On remarque qu'avec cette contrainte, $z(ILP)=z(LP)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$. Cette solution ne peut être le résultat du PL car ce n'est pas un point extrême, puisqu'il est combinaison linéaire des solutions (1,0,0),(0,1,0) et (0,0,1).
- 7. a) Pour la première figure, les solutions admissibles sont $x_e=x_f=1$; $x_e=1$ et $x_f=0$; $x_e=0$ et $x_f=1$; $x_e=x_f=0$

Le polytope associé est défini par les points (0,0), (0,1), (1,0) et (1,1).

Pour la deuxième figure, les différentes combinaisons possibles sont : $x_e=0, x_f=0, x_g=0$; $x_e=0, x_f=0, x_g=1$; $x_e=0, x_f=1, x_g=0$; $x_e=1, x_f=1, x_g=0$ et $x_e=1, x_f=0, x_g=0$. Le polytope associé est une pyramide définie par une base carré ((0,0,0),(0,1,0),(1,0,0) et (1,1,0).) et un sommet ((0,0,1)).

Le cas du triangle les combinaisons possibles sont : $x_e = 0$, $x_f = 0$, $x_g = 0$; $x_e = 0$, $x_f = 0$, $x_g = 1$; $x_e = 0$, $x_f = 1$, $x_g = 0$ et $x_e = 1$, $x_f = 0$, $x_g = 0$. Le polytope associé est une pyramide définie par une base triangulaire ((0,0,0), (0,1,0) et (1,0,0)) et un sommet ((0,0,1)).

- b) Si $\lambda_1 M_1 + \lambda_2 M_2 + \lambda_3 M_3 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ $\lambda_1 (1, 0, 0) + \lambda_2 (0, 1, 0) + \lambda_3 (0, 0, 1) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ alors $\lambda_1 = \lambda_2 = \lambda_3 = \frac{1}{2}$ et donc $\sum_{i=1}^3 \lambda_i = \frac{3}{2} > 1$. Le point n'appartient donc pas au polytope.
- c) Soit un point x du polytope fractionnaire FM, alors $\exists \lambda_1, \ldots, \lambda_m, \exists M_1, \ldots M_m$ tel que $\sum_{i=1}^m \lambda_i = 1$ et $\sum_{i=1}^m \lambda_i M_i = x$. Un graphe biparti n'est composé que de cycles pairs. Soit une solution optimale de LP.

Considérons le cycle $(u_1, v_2, u_2, v_3, u_1)$.

On a forcément $x_{u_1,v_2} + x_{u_2,v_3} = x_{u_1,v_3} + x_{u_2,v_2}$ puisque l'on prend une arête sur deux le long du cycle. Donc on peut prendre $x'_{u_1,v_2} = x_{u_1,v_2} + x_{u_1,v_3}, x'_{u_2,v_3} = x_{u_2,v_3} + x_{u_2,v_2}$ et $x'_{u_2,v_2} = x'_{u_1,v_3} = 0$. On répétant cette opération, on "casse" tous les cycles tout en gardant la même valeur pour la fonction objectif.

Exercice 3 - Sur le problème de la coupe maximum

Exercice 4 - Sur le problème de Partition

Exercice 5 - Sur le problème du sac à dos simple

Exercice 6 - Programmation dynamique

Exercice 7 - Sur le produit matriciel

Exercice 8 - Résolution numérique

Exercice 9 - Seuil d'approximation pour le problème Bin Packing

Exercice 10 - Seuil d'approximation pour le problème de la coloration de sommets (reps. d'arêtes)

Exercice 11 - Comparaisons branch and bound and branch and cut

1. On peut tracer les droites correspondantes aux contraintes de PL_0 :

$$y_1 = 5 - \frac{3}{2}x$$

$$y_2 = \frac{17}{2} - \frac{2}{5}x$$

FIGURE 5 – Représentation des équations de PL_0 .

Le polytope associé aux équations de PL_0 est donc celui formé par les points : $P_0(0,0),\,P_1(0,\frac{17}{5}),\,P_2(\frac{16}{11},\frac{31}{11})$ et $P_3(\frac{10}{3},0)$

2. On peut tracer la fonction objective :

$$-y = -2x + k, k \in \mathbf{R}$$
 (rouge)

La solution optimale pour PL_0 est donc $x_1 = \frac{10}{3}$ et $x_2 = 0$ avec $z = \frac{20}{3}$.

3. On commence par reprendre le programme linéaire donné :

$$PL_0 \begin{cases} \max z(x_1, x_2) = 2x_1 + x_2 \\ 2x_1 + 5x_2 \le 17 \\ 3x_1 + 2x_2 \le 10 \\ x_1, x_2 \ge 0 \end{cases}$$

On ajoute les variables d'écarts x_3 et x_4 pour obtenir PL_1 :

$$PL_1 \begin{cases} \max z(x_1, x_2) = 2x_1 + x_2 \\ 2x_1 + 5x_2 + x_3 = 17 \\ 3x_1 + 2x_2 + x_4 = 10 \\ x_1, x_2 \ge 0 \end{cases}$$

On obtient donc le tableau initial:

			2	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	17	2	5	1	0
0	x_4	10	3	2	0	1
	z	0	-2	-1	0	0

La variable entrante est x_1 et la variable sortante est x_4 . Le tableau final est donc:

			2	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	$\frac{31}{3}$	0	$\frac{11}{3}$	1	$\frac{-2}{3}$
2	x_1	$\frac{10}{3}$	1	$\frac{2}{3}$	0	$\frac{1}{3}$
	z	$\frac{20}{3}$	0	$\frac{1}{3}$	0	$\frac{2}{3}$

La solution optimale est donc $x_1 = \frac{10}{3}$ et $x_2 = 0$ avec $z = \frac{20}{3}$

- 4. a) On effectue notre Branch and Bound dans l'ordre : x_1 puis x_2 . Puisque
 - dans la solution optimale du (PL), $x_1 = \frac{20}{3}$, on a $x_1 \le 3$ ou que $x_1 \ge 4$.

 Si l'on considère que $x_1 \le 3$, la solution optimale devient $z = \frac{13}{2}$ avec $x_1 = 3$ et $x_2 = \frac{1}{2}$. On a ensuite, $x_2 = 0$ ou $x_2 > 0$.
 - Si l'on considère que $x_2 = 0$, alors la solution optimale devient $z = 6 \text{ avec } x_1 = 3 \text{ et } x_2 = 0.$
 - Si l'on considère que $x_2\geq 1$, alors la solution optimale devient $z=\frac{19}{3}\approx 6.33$ avec $x_1=\frac{8}{3}$ et $x_2=1$. On ne développe pas plus cette branche puisque l'on à déjà trouvé une solution avec
 - Si l'on considère que $x_1 \ge 4$, la deuxième contrainte est violée. L'arbre du Branch and bound récapitulatif est donné plus bas.

8

Plus grand

b) Puisque que l'on a $\frac{31}{3}=\frac{11}{3}x_2+x_3-\frac{2}{3}x_4$, on peut déduire que : $\frac{11}{3}x_2-\frac{2}{3}x_4\geq\frac{1}{3}$. Puisque l'on a $\frac{10}{3}=x_1+\frac{2}{3}x_2+\frac{1}{3}x_4$, on peut donc déduire que $x_4=10-3x_1-2x_2$. On obtient finalement la contrainte : $2x_1+5x_2\geq 7$.

Le tableau final donne :

			2	1	0	0	0
			x_1	x_2	x_3	x_4	x_5
0	x_3	10	0	0	1	0	1
2	x_1	$\frac{36}{11}$	1	0	0	<u>5</u>	$\frac{2}{11}$
1	x_2	$\frac{1}{11}$	0	1	0	$\frac{-2}{11}$	$\frac{-3}{11}$
	z	$\frac{73}{11}$	0	0	0	$\frac{8}{11}$	$\frac{1}{11}$

On choisi l'équation $\frac{36}{11} = x_1 + \frac{5}{11}x_4 + \frac{2}{11}x_5$, on déduit donc $\frac{5}{11}x_4 + \frac{2}{11}x_5 \ge \frac{3}{11}$. Ce qui revient à écrire par l'équation précédente que $\frac{36}{11} - x_1 \ge \frac{3}{11}$ et donc que $x_1 \le 3$.

			2	1	0	0	0	0
			x_1	x_2	x_3	x_4	x_5	x_6
0	x_3	$\frac{17}{2}$	0	0	1	$\frac{-5}{2}$	0	$\frac{11}{2}$
0	x_4	$\frac{3}{2}$	0	0	0	$\frac{5}{2}$	1	$\frac{-11}{2}$
1	x_2	$\frac{1}{2}$	0	1	0	$\frac{1}{2}$	0	$ \begin{array}{c} \frac{-1}{2} \\ \frac{-11}{2} \\ \frac{-3}{2} \end{array} $
2	x_1	$\tilde{3}$	1	0	0	Õ	0	1
	z	$\frac{13}{2}$	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$

On sélectionne l'équation $\frac{1}{2}=x_2+\frac{1}{2}x_4-\frac{3}{2}x_6$. Donc on déduit que $\frac{1}{2}\leq \frac{-3}{2}x_6$

Partie Pratique

- 2.1 Programmation dynamique
- 2.2 Branch and Bound
- ${\bf 2.3}$ Comparaisons entre un algorithme de complexité exponentielle et un FP-TAS