CS204: Discrete Mathematics

Ch 2. Basic Structures: Sets, Junctions Ch 9. Relations Sets

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Ch 2. Basic Structures: Sets, Functions

- 2.1 Sets
- 2.2 Set Operations
- 2.3 Functions
- 2.4 Sequences and Summations
- 2.5 Cardinality of Sets
- 2.6 Matrices

Sets

- 1. Set Membership
- 2. Subset & Equality Relationship
- 3. Constructing New Sets form Existing Sets
- 4. Set Identities
- 5. Discussion on Set Comprehension

1. Set Membership

```
x \in S denotes that x is contained in S.

or x is an element of S or x is a member of S
```

 $x \notin S$ denotes that x is not an element of S

 $x \in S$ denotes that x is contained in S.

Set Examples

```
Ø, { }: the empty set, the null set {Larry, Joe, Moe}
```

N: the set of natural numbers including 0

№+: the set of natural numbers excluding 0

 \mathbb{Z} : the set of integers

Q: the set of rational numbers

R: the set of real numbers

Defining Sets

 $x \in S$ denotes that x is contained in S.

What is the limitation of this approach?

Two ways to define sets:

(1) Listing elements of a set: $S = \{x_1, x_2, \dots, x_n\}$

 $x \in S$ denotes that x is contained in S.

Two ways to define sets:

- (1) Listing elements of a set: $S = \{x_1, x_2, \dots, x_n\}$
- (2) Denoting defining property of a set: $\{x \in S \mid x \text{ has property } p\}$

(= set comprehension)

How can we describe properties and relationships of variables for set comprehension?

Use predicate logic

Example

The set of all even numbers

How can we describe properties and relations of variables for set comprehension?

Use predicate logic

Example

```
The set of all even numbers = \{x \in \mathbb{Z} \mid \exists y (y \in \mathbb{Z} \land x = 2 \times y) \}
```

2. Subset Relationship

"
$$A \subseteq B$$
" means " $(\forall x)(x \in A \to x \in B)$." definition

For example,

$$N \subseteq Z \subseteq Q \subseteq R$$
.

Set Equality

Definition 1. (Set Equality)

Two sets A and B are equal (written A = B) if and only if $A \subseteq B$ and $B \subseteq A$.

Definition 2. (Set Equality)

Two sets A and B are equal (A = B) if and only if $\forall x(x \in A \leftrightarrow x \in B)$ holds.

3. Constructing New Sets form Existing Sets

Union and Intersection

Definition of set union: $A \cup B = \{x \mid (x \in A) \lor (x \in B)\}.$ In predicate logic: $(\forall x)(x \in A \cup B \leftrightarrow (x \in A) \lor (x \in B))$

Complement

Define: $A' = \{x \in U \mid x \notin A\}$.

Note that we could also write $A' = \{x \in U \mid \neg(x \in A)\}$ to make the use of the \neg connective explicit.

Set Difference

$$A - B = \{x \in U \mid x \in A \land \neg (x \in B)\}$$

"A - B" is also written "A \ B"

В

Α

Examples

```
Let A = \{1, 2, 3, 4, 5\}, B = \{4, 5, 6, 7, 8\}, and suppose the universal set is U = \{1, 2, \dots 10\}. Then
```

$$A \cup B =$$
 $A \cap B =$
 $B' =$
 $A - B =$

Examples

Let $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7, 8\}$, and suppose the universal set is $U = \{1, 2, \dots 10\}$. Then

$$A \cup B = \{1, 2, \dots, 8\}$$

 $A \cap B = \{4, 5\}$
 $B' = \{1, 2, 3, 9, 10\}$
 $A - B = \{1, 2, 3\}$

Cartesian products and power sets

The Cartesian product $A \times B$ of two sets A and B is the set of all ordered pairs where the first item comes from the first set and the second item comes from the second set. Formally,

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

The power set $\mathcal{P}(S)$ of the set S is the set of all subsets of S:

$$\mathcal{P}(S) = \{X \mid X \subseteq S\}.$$

Examples

Let $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7, 8\}$, and suppose the universal set is $U = \{1, 2, \dots 10\}$. Then

$$(A \cap B) \times A =$$

$$\mathcal{P}(A \cap B) =$$

Examples

Let $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7, 8\}$, and suppose the universal set is $U = \{1, 2, ..., 10\}$. Then

$$(A \cap B) \times A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5)\}$$

$$\mathcal{P}(A \cap B) = \{\emptyset, \{4\}, \{5\}, \{4,5\}\}$$

Set of Strings over an Alphabet

Let Σ be a set of symbols $\{a_1, a_2, ..., a_n\}$, called an *alphabet*.

Let a string be a sequence of symbols. (We will defined this precisely later.)

The string of length 0 is called the *empty string* or the null string and is denoted λ (= ϵ = "").

```
\begin{split} \Sigma^0 &: \text{set of strings of length 0, i.e. } \{\lambda\} \\ \Sigma^1 &: \text{set of strings of length 1, i.e. } \{a_1, \, a_2, \, ..., \, a_n\} = \Sigma \\ \dots \\ \Sigma^2 &: \text{set of strings of length 2, i.e. } \{a_1a_1, \, a_2a_1, \, a_2a_1, \, a_2a_2, \, ..., \, a_na_n\} \\ \dots \\ \Sigma^k &: \text{set of strings of length k} \\ \Sigma^* &: \text{the set of all strings of finite length with symbols from } \Sigma, \, \text{i.e.} \\ & \cup \{\Sigma^k \mid k \in \mathbb{N}\} = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots \cup \Sigma^k \cup \ldots \end{split}
```

Cardinality of Set

Cardinality of a set S is the number of elements in S and written |S|.

Example

- (1) If |A| = a and |B| = b, what is $|A \times B|$?
- (2) What is $|\mathcal{P}(S)|$?

Cardinality of Set

Cardinality of a set S is the number of elements in S and written |S|.

Example

- (1) If |A| = a and |B| = b, what is $|A \times B|$? $a \times b$
- (2) What is $|\mathcal{P}(S)|$?

4. Set Identities

Identities from propositional logic

The inference rules for propositional logic give identities for set theory. For example, the addition inference rule

$$q \lor p \Leftrightarrow p \lor q$$

allows us to prove the identity

$$B \cup A = A \cup B$$

2nd Definition of Set Equality When A and B are sets, A = B iff $\forall x(x \in A \leftrightarrow x \in B)$.

in set theory.

Proof that $B \cup A = A \cup B$

Identities from propositional logic

The inference rules for propositional logic give identities for set theory. For example, the addition inference rule

$$q \lor p \Leftrightarrow p \lor q$$

allows us to prove the identity

$$B \cup A = A \cup B$$

in set theory.

Proof that $B \cup A = A \cup B$

Let $x \in B \cup A$. Then, by definition of \cup , $x \in B \lor x \in A$, which is equivalent to $x \in A \lor x \in B$, by commutativity of \lor . Then the last formula implies $x \in A \cup B$, by definition of \cup . So $B \cup A \subseteq A \cup B$. Similarly, $A \cup B \subseteq B \cup A$. Thus $B \cup A = A \cup B$.

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws

Source: [Rosen 19] p.136

Identity	Name
$\frac{\overline{A \cap B} = \overline{A} \cup \overline{B}}{\overline{A \cup B} = \overline{A} \cap \overline{B}}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Theorem (Set Theoretic version of De Morgan's laws).

Let A and B be sets. Then

$$(A \cap B)' = A' \cup B'$$

[1a]

[1b]

[2a]

[2b]

De Morgan's Laws: proof

Proof.

We will prove part 1. (Part 2 is similar.) Let $x \in (A \cup B)'$. In other words, if P(x) is the statement " $x \in A$ " and Q(x) is the statement " $x \in B$," we are starting with the assumption $\neg(P(x) \lor Q(x))$. By De Morgan's laws for propositional logic, this is equivalent to $\neg P(x) \land \neg Q(x)$, which, in the language of set theory, is the same as $x \in A' \cap B'$. We have shown that

$$x \in (A \cup B)' \Leftrightarrow x \in A' \cap B',$$

hence the sets $(A \cup B)'$ and $A' \cap B'$ are equal.

Inclusion-exclusion principle

For finite sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$

Example

The Master of the Universe Society at a certain college accepts members who have 2400 SAT's or 4.0 GPA's in high school. Of the 11 members of the society, 8 had 2400 SAT's and 5 had 4.0 GPA's. How many members had both 2400 SAT's and 4.0 GPA's?

Solution

Inclusion-exclusion principle

For finite sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$

Example

The Master of the Universe Society at a certain college accepts members who have 2400 SAT's or 4.0 GPA's in high school. Of the 11 members of the society, 8 had 2400 SAT's and 5 had 4.0 GPA's. How many members had both 2400 SAT's and 4.0 GPA's?

Solution

 $11 = 8 + 5 - |A \cap B|$, so there are two.

5. Discussion on Set Comprehension

Consider the following:

The barber is the "one who shaves all those, and those only, who do not shave themselves," The question is, does the barber shave himself?

Consider the following:

The barber is the "one who shaves all those, and those only, who do not shave themselves," The question is, does the barber shave himself?

Can you describe it with set comprehension?

```
Let A be the set of such barbers. So A = \{x \mid x \text{ shaves y iff y does not shave y}\}
= \{x \mid \forall y(x \text{ shaves y} \leftrightarrow \neg(y \text{ shaves y})) \}
If z \in A, does z shave z?
```

Consider the following:

The barber is the "one who shaves all those, and those only, who do not shave themselves," The question is, does the barber shave himself?

```
Can you describe it with set comprehension?

Let A be the set of such barbers. So
A = \{x \mid x \text{ shaves y iff y does not shave y}\}
= \{x \mid \forall y (x \text{ shaves y} \leftrightarrow \neg (y \text{ shaves y})) \}
If z \in A, does z \text{ shave } z?

Let z \in A. Then
\forall y (x \text{ shaves y} \leftrightarrow \neg (y \text{ shaves y}))
and by the \forall-elim rule
z \text{ shaves } z \leftrightarrow \neg (z \text{ shaves z})
which is always false. Therefore z \notin A.
```

What does this mean?

Consider the following:

 $A = \emptyset$.

The barber is the "one who shaves all those, and those only, who do not shave themselves," The question is, does the barber shave himself?

```
Can you describe it with set comprehension?

Let A be the set of such barbers. So

A = {x | x shaves y iff y does not shave y}

= {x | ∀y(x shaves y ↔ ¬(y shaves y)) }

If z∈A, does z shave z?

Let z∈A. Then

∀y(x shaves y ↔ ¬(y shaves y))

and by the ∀-elim rule

z shaves z ↔ ¬(z shaves z)

which is always false. Therefore z∉A.

What does this mean?
```

Called the Barber's paradox (Not a genuine paradox. It is only paradoxical.)

Is {1} ∉ {1} true? Or is the set {1} an element of itself?Is it a "meaningful" statement?

Is {1} ∉ {1} true? Or is the set {1} an element of itself?

Is it a "meaningful" statement?

Consider the following set comprehension.

$$A = \{x \mid x \notin x\}$$

Is $A \in A$ true?

Is {1} ∉ {1} true? Or is the set {1} an element of itself?Is it a "meaningful" statement?

Consider the following set comprehension.

$$A = \{x \mid x \notin x\}$$

Is $A \in A$ true?

• If true, then $A \in A$, hence $A \notin A$ must be true.

If false, then $A \notin A$, hence $A \in A$ must be true.

Neither true nor false.

Is $\{1\} \notin \{1\}$ true? Or is the set $\{1\}$ an element of itself?

Is it a "meaningful" statement?

Consider the following set comprehension.

$$A = \{x \mid x \notin x\}$$

Is $A \in A$ true?

If true, then $A \in A$, hence $A \notin A$ must be true.

If false, then $A \notin A$, hence $A \in A$ must be true.

Neither true nor false.

- Russell's paradox
 - Should not allow all possible descriptions for set comprehension.
 - Restrict the underlying domains of variables.

Quiz 10-1

Let S be a set.

- [1] What is the smallest subset of S?
- [2] What is the largest subset of S?
- [3] What is the smallest element of P(S)?
- [4] What is the largest element of P(S)?
- [5] What is the smallest subset of P(S)?
- [6] What is the largest subset of P(S)?

