Multivariate Data Analysis

(MGT513, BAT531, TIM711)

Lecture 3

Chapter 5

Exploratory Factor Analysis (EFA)

What is Exploratory Factor Analysis?

- Exploratory Factor Analysis (EFA)
 - Examines the interrelationships among a large number of variables and then attempts to explain them in terms of their common underlying dimensions.
 - Identifies the common factors and explain their relationship
 - The observed variance in each variable = a few of (unobservable) common factors + a specific factor (unrelated to any factor)

What is Exploratory Factor Analysis?

- Latent Traits or Unobservable Characteristics
 - For length or weight, such a distinction may be unnecessary because the property is almost perfectly Observable
 - However, for attitudes, belief, perceptions, and other psychological notions, our measurement instruments are imperfect

Types of Factor Analysis

Exploratory Factor Analysis (EFA)

 used to discover the factor structure of a construct and examine its reliability. It is data driven.

Confirmatory Factor Analysis (CFA)

 used to confirm the fit of the hypothesized factor structure to the observed (sample) data. It is theory driven.

Objectives

Data Summarization versus Data Reduction

- Data summarization
 - Defining structure through underlying dimensions that, when interpreted and understood, describe the data in a much smaller number of concepts than the original individual variables. The basis for scale development.
- Data reduction
 - Extends the process of data summarization by deriving an empirical value (factor score or summated scale) for each dimension (factor) and then substituting this value for the original variable values in subsequent analysis.

Example 1: Brand Personality

TABLE 5.1 Traits associated with different dimensions of brand personality

Sincerity	Excitement	Competence	Sophistication	Ruggedness
Honest	Daring	Reliable	Glamorous	Tough
Genuine	Spirited	Responsible	Pretentious	Strong
Cheerful	Imaginative	Dependable	Charming	Outdoorsy
Down-to-earth	Up-to-date	Efficient	Romantic	Masculine
Friendly	Cool	Intelligent	Upper class	
		Successful	Smooth	

114 personal traits

Five-factor solution:

- 1. Sincerity
- 2. Excitement
- 3. Competence
- 4. Sophistication
- 5. Ruggedness

Example 2: New Luxury Car Concept

TABLE 5.2	Two-factor solution for
Roberts's da	ta: Factor loadings matrix

	Appealing	Sensible
Luxury	0.884	-0.051
Style	0.748	0.153
Reliability	0.396	0.691
Fuel Economy	-0.202	0.786
Safety	0.720	0.172
Maintenance	0.149	0.756
Quality	0.501	0.650
Durable	0.386	0.677
Performance	0.686	0.391

FIGURE 5.1

Map of factor scores of existing automobiles and new car concept (Source: Roberts, 1984)

Simple illustration

- Holzinger and Swineford (1939)
 - Psychological Testing of Children
 - Five tests with 7th & 8th-graded children(n=145)
 - X1 = Paragraph Comprehension (PARA)
 - X2 = Sentence Completion (SENT)
 - X3 = Word Meaning (WORD)
 - X4 = Addition (ADD)
 - X5 = Counting Dots (DOTS)

Simple illustration

Correlation Matrix

	PARA	SENT	WORD	ADD	DOTS
PARA	1.000				
SENT	0.722	1.000			
WORD	0.714	0.685	1.000		
ADD	0.203	0.246	0.170	1.000	
DOTS	0.095	0.181	0.113	0.585	1.000

Simple illustration: One-Factor Model

One-factor model with five variables

Simple illustration: One-Factor Model

- Let ξ = common factor and δ_i = a specific factor
- One-factor model with five variables

$$X_i = \lambda_i \xi + \delta_i, \qquad i = 1,2,3,4,5$$

where $cor(\delta_i, \delta_j) = 0, i \neq j$ and $cor(\delta_i, \xi) = 0$

• Assume X and ξ are standardized variables. Then

$$Var(X_i) = Var(\lambda_i \xi + \delta_i) = \lambda_i^2 + Var(\delta_i) = 1$$

$$\lambda_i^2 = \text{communality of } X_i$$

$$= \text{the proportion of the variation in } X_i \text{ explained by } \xi$$

$$= 1 - Var(\delta_i) = 1 - \theta_{ii}^2$$

where $\theta_{ii}^2 = \text{Var}(\delta_i) = \text{variance of specific factor } X_i$

- As $\lambda_i^2 \to 1$ $(\theta_{ii}^2 \to 0)$, X_i is a nearly perfect measure of ξ
- As $\lambda_i^2 \to 0$ $(\theta_{ii}^2 \to 1)$, X_i is not explained by ξ

What is Exploratory Factor Analysis?

Two-factor model with five variables

Simple illustration: Two-Factor Model

Two-factor model with five variables

$$X_i = \lambda_{i1}\xi_1 + \lambda_{i2}\xi_2 + \delta_i, \qquad i = 1,2,3,4,5$$
 where $\operatorname{cor}(\delta_i,\delta_j) = 0, i \neq j$ and $\operatorname{cor}(\delta_i,\xi_k) = 0, k = 1,2$ where ξ_1 = Verbal Aptitude Factor ξ_2 = Quantitative Aptitude Factor

• Assume X and ξ are standardized variables. Then

$$Var(X_{i}) = Var(\lambda_{i1}\xi_{1} + \lambda_{i2}\xi_{2} + \delta_{i}) = \lambda_{i1}^{2} + \lambda_{i2}^{2} + Var(\delta_{i})$$

$$= \lambda_{i1}^{2} + \lambda_{i2}^{2} + \theta_{ii}^{2} = 1$$

$$\lambda_{i1}^{2} + \lambda_{i2}^{2} = \text{communality of } X_{i} = 1 - \theta_{ii}^{2}$$

• Consider a student with high ξ_1 and low ξ_2 . We expect the student to perform well on those tests requiring more verbal than quantitative ability. That is, If the student's performance in a task of sentence completion (measured by X_1), we should expect a value of λ_{11} near 1 and a value for λ_{12} closer to 0.

$$X_{1} = \lambda_{11}\xi_{1} + \lambda_{12}\xi_{2} + \dots + \lambda_{1c}\xi_{c} + \delta_{1}$$

$$X_{2} = \lambda_{21}\xi_{1} + \lambda_{22}\xi_{2} + \dots + \lambda_{2c}\xi_{c} + \delta_{2}$$

$$\vdots$$

$$X_{p} = \lambda_{p1}\xi_{1} + \lambda_{p2}\xi_{2} + \dots + \lambda_{pc}\xi_{c} + \delta_{p}$$

In matrix notation,

$$egin{aligned} m{X} &= m{\mathcal{Z}} m{\Lambda}_c^T + m{\Delta} \ \end{aligned}$$
 where $m{\mathcal{Z}} &= [\xi_1, \xi_2, \cdots, \xi_c] \ m{\Delta} &= [\delta_1, \delta_2, \cdots, \delta_p] \ m{\Lambda}_c &= p \ imes c \ \text{matrix of coefficients} \end{aligned}$

- Assumptions For Common Factor Models
- 1. Common factors ξ_i 's are mutually uncorrelated and have a unit variance:

$$\frac{1}{n-1}\mathbf{\mathcal{E}}^T\mathbf{\mathcal{E}}=I$$

2. Specific factors δ_i 's are mutually uncorrelated and have a diagonal covariance matrix variance :

$$\boldsymbol{\Theta} = \frac{1}{n-1} \boldsymbol{\Delta}^T \boldsymbol{\Delta} = diag(\theta_{11}^2, \theta_{22}^2, \cdots, \theta_{pp}^2)$$

3. Common factors ξ_k 's and specific factors δ_i 's are mutually uncorrelated:

$$\mathbf{\mathcal{Z}}^T \mathbf{\Delta} = \mathbf{0}$$

• Assumptions for common factor models produce the correlation of X

$$R = \text{Var}(X) = \text{E}[X^T X] = \text{E}[(\mathcal{Z}\Lambda_c^T + \Delta)^T (\mathcal{Z}\Lambda_c^T + \Delta)]$$

$$= \text{E}[\Lambda_c \mathcal{Z}^T \mathcal{Z}\Lambda_c^T] + \text{E}[\Lambda_c \mathcal{Z}^T \Delta] + \text{E}[\Delta^T \mathcal{Z}\Lambda_c^T] + \text{E}[\Delta^T \Delta]$$

$$= \Lambda_c \text{E}[\mathcal{Z}^T \mathcal{Z}]\Lambda_c^T + \Lambda_c \text{E}[\mathcal{Z}^T \Delta] + \text{E}[\Delta^T \mathcal{Z}]\Lambda_c^T + \text{E}[\Delta^T \Delta]$$

$$= \Lambda_c \Lambda_c^T + \Theta$$

• The correlation between X and Ξ (factor loading) is

$$\operatorname{Cor}(X, \mathcal{Z}) = \operatorname{E}[X^T \mathcal{Z}] = \operatorname{E}[(\mathcal{Z} \Lambda_c^T + \Delta)^T \mathcal{Z}] = \Lambda_c^T$$

Common Factor Model:

$$\boldsymbol{R} = \boldsymbol{\Lambda}_{c} \; \boldsymbol{\Lambda}_{c}^{T} + \boldsymbol{\Theta}$$

$$\mathbf{R} - \mathbf{\Theta} = \mathbf{\Lambda}_c \; \mathbf{\Lambda}_c^T$$

- PCA revisited:
 - Singular Value Decomposition of X

$$X = Z_s D^{1/2} U^T$$

$$R = E[X^T X] = E[UD^{1/2}(Z_s^T Z_s)D^{1/2}U^T] = (UD^{\frac{1}{2}})(UD^{\frac{1}{2}})^T = FF^T$$

$$R \approx F_c F_c^T$$

For dimension reduction, we try to extract some subset of c components that closely approximates c: c is the first c columns of factor loading matrix c whose elements are interpretable as the correlations between original variables c and c extracted common factors

Solution Procedure

- Principal factor method (Principal axis factoring)
 - Main idea: Replace the diagonal elements of R with communality values and conduct PCA
 - No prior information about measurement error δ
 - Initial estimate of communalities: use Squared Multiple Correlation (SMC)
 - As a initial value, use R_i^2 from the regression of X_i on the remaining X_j 's
 - Iterate until the result converges

Solution Procedure

One iteration

TABLE 5.4 Matrix of factor loadings for two-factor model (with approximate communalities)

	Factor 1	Factor 2
PARA	0.7722	-0.2351
SENT	0.7838	-0.1576
WORD	0.7562	-0.2372
ADD	0.4293	0.6017
DOTS	0.3476	0.6506

Final result

TABLE 5.5 Factor analysis with SMCs as initial estimates

	Prior Comm	unality Estimate	es: SMC		
PARA	SENT	WORD	ADD	DOTS	
0.6158	0.5914	0.5701	0.3672	0.3493	
			Final Eigen	values	
	1	2	3	4	5
Eigenvalue	2.2826	1.0273	0.0252	-0.0010	-0.0247
	Factor	Pattern			
	Factor 1	Factor 2			
PARA	0.8349	-0.2418			
SENT	0.8253	-0.1398			
WORD	0.7898	-0.2274			
ADD	0.4146	0.6503			
DOTS	0.3297	0.6890			
Var	iance Explaine	ed by Each Facto	r		
	2.2826	1.0273			

Rotation Indeterminancy

• Infinitely number of solutions: Infinitely number of bases (column vectors) for $R-\Theta$

$$T = c \times c$$
 orthogonal transformation matrix $(T^T T = TT^T = I)$

e.g. Two-dimensional orthogonal rotation:

$$T = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

-30 degree rotation:

$$T = \begin{pmatrix} \cos(-30) & -\sin(-30) \\ \sin(-30) & \cos(-30) \end{pmatrix} = \begin{pmatrix} 0.866 & 0.500 \\ -0.500 & 0.866 \end{pmatrix}$$

• The correlations between the rotated factors $(\mathbf{E}^T \mathbf{T})$ and the original variables $\mathbf{X} = \mathbf{E} \mathbf{\Lambda}_c^T + \mathbf{\Delta}$ is

$$\boldsymbol{\Lambda}_{c}^{*} = \frac{1}{n-1} (\boldsymbol{\Xi} \boldsymbol{\Lambda}_{c}^{T} + \boldsymbol{\Delta})^{T} \boldsymbol{\Xi}^{T} \boldsymbol{T} = \boldsymbol{\Lambda}_{c} \boldsymbol{T}$$

Rotation Indeterminancy

Communalities are unchanged by rotation

$$\mathbf{R} - \mathbf{\Theta} = \mathbf{\Lambda}_c^* \, \mathbf{\Lambda}_c^{*T} = (\mathbf{\Lambda}_c \mathbf{T}) (\mathbf{\Lambda}_c \mathbf{T})^T = \mathbf{\Lambda}_c \mathbf{T} \mathbf{T}^T \mathbf{\Lambda}_c^T = \mathbf{\Lambda}_c \mathbf{\Lambda}_c^T$$

Total variance explained by **Unrotated** factors

- = Total variance explained by **Rotated** factors
- Type of rotations
 - 1. Orthogonal rotation: varimax or quartimax
 - 2. Non-orthogonal (Oblique) rotation: promax or direct oblimin

- Desirable factor loading pattern (Comrey, 1973)
 - 1. Most of the loadings on any specific factor (column) should be small (as close to zero as possible), and only a few loadings should be large in absolute value.
 - 2. A specific row of the loadings matrix, containing the loadings of a given variable with each factor, should display nonzero loadings on only one or no more than a few factors.
 - 3. Any pair of factors (columns) should exhibit different patterns of loadings. Otherwise, one could not distinguish the two factors represented by these columns.

Factor Rotation: Orthogonal Rotation Example

TABLE 5.6 Factor loadings for pain relievers

	Unrotated	d Solution	Rotated Solution		
Attribute	Factor 1	Factor 2	Factor 1	Factor 2	
No upset stomach	0.579	-0.452	0.139	0.721	
No bad side effects	0.522	-0.572	0.017	0.774	
Stops the pain	0.645	0.436	0.772	0.097	
Works quickly	0.542	0.542	0.764	-0.051	
Keeps me awake	-0.476	0.596	-0.034	-0.762	
Limited relief	-0.613	-0.439	-0.750	-0.074	
	Variance accounted for			riance inted for	
	1.921	1.562	1.765	1.718	

Factor Rotation: Orthogonal Rotation Example

FIGURE 5.4 Plot of factor loadings for attributes of pain relievers: Unrotated and rotated

- The factor solution is reoriented through a process called rotation. Two types of rotation:
 - Orthogonal rotation preserves the perpendicularity of the axes (i.e., the rotated factors remain uncorrelated). Two widely used methods for orthogonal rotation are varimax rotation (which tries to achieve simple structure by focusing on the columns of the factor loadings matrix) and quartimax rotation (which focuses on the rows).
 - Oblique rotation allows for correlation between the rotated factors. One approach involves rotating the solution to match a target matrix exhibiting simple structure. Some cautions about the properties of oblique factor solutions:
 - Because the common factors are now correlated, the communalities are no longer given by the sum of the squared factor loadings.
 - In an oblique solution, there is a distinction between a structure loading (i.e., the
 correlation between a variable and a factor) and a pattern loading (i.e., the partial
 correlation between a variable and a common factor controlling for other common
 factors).

Orthogonal Rotation

Oblique rotation

Orthogonal rotation methods

- are the most widely used rotational methods.
- are the preferred method when the research goal is data reduction to either a smaller number of variables or a set of uncorrelated measures for subsequent use in other multivariate techniques.

Oblique rotation methods

 best suited to the goal of obtaining several theoretically meaningful factors or constructs because, realistically, very few constructs in the "real world" are uncorrelated.

Factor Rotation: Oblique Rotation

Pattern Loading vs. Structure Loading

FIGURE 5.7

Diagram depicting difference between structure loadings and pattern loadings

Factor Rotation: Oblique Rotation

TABLE 5.12 Results from oblique rotation of psychological test data

	Pattern l	Pattern Loadings		Loadings
	Factor 1	Factor 2	Factor 1	Factor 2
PARA	0.8480	-0.0300	0.8687	0.1906
SENT	0.7905	0.0666	0.8344	0.2753
WORD	0.8016	-0.0271	0.8215	0.1815
ADD	0.0499	0.7312	0.2428	0.7696
DOTS	-0.0432	0.7488	0.1510	0.7626
	Interfactor	Correlation		
	Fac	etor 2		
Factor 1	0.2	0.2528		

Factor Scores

Principal Component Score

$$z_i = X_s u_i$$

Consider approximating *E* as

$$\mathbf{\mathcal{Z}}=\mathbf{X}_{S}\mathbf{B}$$

where **B** is a matrix of factor score coefficients

- $\boldsymbol{\mathcal{Z}}$ is unobservable and so we cannot choose \boldsymbol{B} using OLS
- Let's premultiply each side of the above by $\frac{1}{n-1}X_s^T$

$$\frac{1}{n-1} X_s^T \mathcal{Z} = \frac{1}{n-1} X_s^T X_s B \Leftrightarrow \Lambda_c = RB$$

which reduces to $\boldsymbol{B} = \boldsymbol{R}^{-1} \boldsymbol{\Lambda}_c$

Hence, estimated factor scores are given by

$$\mathcal{Z} = X_S R^{-1} \Lambda_C$$

which is not unique because of rotational indeterminacy.

 To characterize the consideration behavior of cereal consumers (i.e., to explain which brands the consumer is willing to purchase) as a function of the underlying characteristics of 12 different types of brands

TABLE 5.8 List of 25 RTE cereal attributes and 12 RTE cereal brands

Cereals	Attribut	es
1. All Bran	Filling	Family
2. Cerola Muesli	Natural	Calories
3. Just Right	Fibre	Plain
4. Kellogg's Corn Flakes	Sweet	Crisp
5. Komplete	Easy	Regular
6. NutriGrain	Salt	Sugar
7. Purina Muesli	Satisfying	Fruit
8. Rice Bubbles	Energy	Process
9. Special K	Fun	Quality
10. Sustain	Kids	Treat
11. Vitabrit	Soggy	Boring
12. Weetbix	Economical	Nutritious
	Health	

Number of factors: 4 factors?

FIGURE 5.6 Scree plot for RTE cereal data

 SMCs for each of 25 RTE cereal attributes; explaining at least 52%=13/25

TABLE 5.9 SMCs for each of 25 RTE cereal attributes

Filling 0.6333	Natural 0.6359	Fibre 0.7035	Sweet 0.6116	Easy 0.2304	Salt 0.4481	Satisfying 0.6150
Energy 0.5711	Fun 0.4833	Kids 0.6360	Soggy 0.3143	Economical 0.3722	Health 0.7500	Family 0.5989
Calories 0.4168	Plain 0.4083	Crisp 0.4105	Regular 0.5211	Sugar 0.6642	Fruit 0.4877	Process 0.2975
Quality 0.6144	Treat 0.5607	Boring 0.3340	Nutritious 0.7107			

TABLE 5.10	Unrotated	factor solu	tion for RTE	cereal	data			
	Facto	r 1	Factor 2	Fa	actor 3	Factor		
Filling	0.72	76	0.1030	-0	.0674	0.196	0	
Natural	0.73	23 -	-0.2422	-0	.1077	0.105	52	
Fibre	0.72	26 -	-0.2385	-0	.3098	0.160)7	
Sweet	0.08	50	0.7407	-0	.2053	0.151	10	
Easy	0.31	81	0.1454	0	.2064	0.107	74	
Salt	-0.20	62	0.4995	-0	.1385	0.39	71	
Satisfying	0.72	07	0.1809	0	.1627	0.170	04	
Energy	0.70	22	0.1328	-0	.0657	0.12	64	
Fun	0.38	86	0.4959	0	.2101	-0.15	79	
Kids	0.21	33	0.2759	C	.7335	0.11	18	
Soggy	-0.09	84	-0.2319	C	0.1515	0.42	57	
Economical	0.15	08	-0.2361	C	0.4890	0.10	02	
Health	0.80	81	-0.3075	-0	0.1068	0.07	13	
Family	0.30	74	0.2179	(0.6731	0.02	71	
Calories	-0.16	03	0.5663	-0	0.1721	0.21	51	
Plain	-0.30	55	-0.3560	(0.2178	0.40	86	
Crisp	0.28	88	0.4544	(0.2143	-0.19	27	
Regular	0.59	43	-0.1354	-(0.1927	0.06	82	
Sugar	-0.24	76	0.7213	-(0.2467	0.24	16	
Fruit	0.37	33	0.2534	-(0.4802	-0.15	569	
Process	-0.30	133	0.2721		0.0030	0.24	170	
Quality	0.73	24	-0.1394	-	0.0515	-0.03	328	
Treat	0.46	48	0.5632		0.0758	-0.20		
Boring	-0.37	89	-0.2619	-	0.0988	0.3		
Nutritious	0.79	78	-0.2176		0.1422	0.1		
		Varia	nce explain				232	
	6.10		3,3528		2.0456		184	
		Fin	al Commun				104	
Filling	Natural	Fibre	Swee		Eas		C-1.	Catiofring
0.5829	0.6176	0.7008	0.620		0.17		Salt 0.4689	Satisfying 0.6077
Energy 0.5311	Fun 0.4660	Kids 0.6722	Sogg	y	Econor	mical	Health	Family
Calories	Plain		0.267		0.32	:77	0.7641	0.5958
0.4222	0.4344	Crisp 0.3730	Regul 0.413	ar 13	Sug	ar	Fruit	Process
Quality 0.5596	Treat 0.5798	Boring 0.3370	Nutriti 0.719	ous	0.70	9U8	0.4588	0.2270

TABLE 5.11 Varimax rotation of	f factor solution for RTE cereal data
--------------------------------	---------------------------------------

	Factor 1	Factor 2	Factor 3	Factor 4			
Filling	0.7057	0.0885	0.1998	0.1512			
Natural	0.7529	-0.2084	0.0555	0.0366			
Fibre	0.8214	-0.1156	-0.1200	0.0211			
Sweet	0.0684	0.7020	0.0744	0.3469			
Easy	0.2382	0.0634	0.3252	0.0643			
Salt	-0.0924	0.6855	0.0161	-0.0836			
Satisfying	0.6254	0.0770	0.4240	0.1703			
Energy	0.6594	0.0786	0.1930	0.2098			
Fun	0.1629	0.1765	0.4175	0.4781			
Kids	-0.0252	0.0340	0.8502	0.0102			
Soggy	0.0330	0.0143	0.0942	<u>-0.4806</u>			
Economical	0.0686	-0.2809	0.4149	-0.2289			
Health	0.8287	-0.2877	0.0519	0.0460			
Family	0.0616	-0.0554	0.7612	0.0899			
Calories	-0.1141	0.6267	-0.0072	0.1203			
Plain	-0.1466	-0.0622	0.0680	-0.6566			
Crisp	0.0734	0.1458	0.3732	0.4362			
Regular	0.6132	-0.0996	-0.0270	0.0889			
Sugar	-0.1844	0.8166	-0.0522	0.1651			
Fruit	0.3764	0.1874	-0.2669	0.4429			
Process	-0.2363	0.3737	0.0262	-0.1259			
Quality	0.6466	-0.2444	0.2048	0.1704			
Treat	0.2444	0.2335	0.3368	0.6019			
Boring	-0.1646	0.0668	-0.2255	-0.5048			
Nutritious	0.8315	-0.1764	0.0517	0.0558			
		Variance Explained by Each Factor					
	5.2026	2.6598	2.4747	2.2837			
			2.1741	2,2007			

Factor 1: Healthful

Factor 2: Artificial

Factor 3: Non-Adult

Factor 4: Interesting

RTE Cereal: Factor Scores

TABLE 5.13 Factor score coefficients for RTE cereal data

	Factor Score Coefficients						
	Factor 1	Factor 2	Factor 3	Factor 4			
Filling	0.1456	0.0915	0.0228	-0.0420			
Natural	0.1370	-0.0142	-0.0112	-0.0417			
Fibre	0.2160	0.0542	-0.1280	-0.0746			
Sweet	0.0425	0.2261	-0.0030	0.0745			
Easy	0.0088	0.0176	0.0663	-0.0115			
Salt	0.0301	0.2010	0.0158	-0.1196			
Satisfying	0.1101	0.0731	0.1540	-0.0361			
Energy	0.0918	0.0752	0.0266	0.0126			
Fun	-0.0024	0.0017	0.1017	0.1316			
Kids	-0.0433	0.0151	0.3735	-0.0789			
Soggy	0.0390	0.0646	0.0402	-0.1995			
Economical	-0.0043	-0.0453	0.1190	-0.0855			
Health	0.2155	-0.0792	-0.0091	-0.0590			
Family	-0.0294	-0.0453	0.2700	-0.0043			
Calories	0.0259	0.1567	-0.0080	-0.0253			
Plain	0.0319	0.0699	0.0740	-0.2534			
Crisp	-0.0372	-0.0136	0.0864	0.1507			
Regular	0.0672	-0.0267	-0.0316	0.0129			
Sugar	0.0444	0.3824	-0.0310	-0.0384			
Fruit	0.0376	0.0321	-0.1393	0.1689			
Process	0.0091	0.1020	0.0196	-0.0824			
Quality	0.0576	-0.0674	0.0531	0.0527			
Treat	-0.0279	0.0329	0.0654	0.2471			
Boring	0.0327	0.0680	-0.0178	-0.1752			
Nutritious	0.2004	0.0045	-0.0229	-0.0711			

RTE Cereal: Factor Scores

TABLE 5.14 Average factor scores for 12 RTE cereals

	Number		.	F 2	F
Brand	of Obs	Factor 1	Factor 2	Factor 3	Factor 4
All Bran	15	0.3490	-0.3185	-0.8861	-0.3754
Cerola	13	0.5174	0.4994	-0.2332	0.6582
Corn Flakes	27	-0.5541	0.1165	0.5738	0.0241
Just Right	16	-0.0133	0.2278	-0.4196	0.4753
Komplete	14	0.5464	0.2338	-1.0084	0.6024
NutriGrain	24	-0.4255	0.8086	0.5482	0.2852
Purina	18	0.6226	0.6838	-0.4095	0.5754
Rice Bubbles	21	-1.1650	-0.4295	0.6041	0.0627
Special K	23	-0.3058	-0.2142	0.1541	-0.0549
Sustain	12	0.6772	-0.3021	-0.3234	0.8566
Vitabrits	25	0.3649	-0.5921	0.2180	-0.9316
Weetbix	27	0.3266	-0.4120	-0.0713	-0.8837

RTE Cereal: Factor Scores

FIGURE 5.8 Scatter plots of factor scores for RTE cereals

