Distribtion	pdf	mean	variance	MLE for θ	Likelihood	Bayes estimator for θ
Normal (μ, σ)	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$\hat{\mu} = \bar{x}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$	$\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}$	$\frac{n\bar{x}+\mu_0}{n+1}$
Exponential	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\hat{\lambda}=rac{1}{ar{x}}$	$\lambda^n e^{-\lambda \sum_{i=1}^n x_i}$	$\frac{n}{n+1}\bar{x}$
Uniform	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\hat{a} = \min(x_i), \hat{b} = \max(x_i)$	$\left(\frac{1}{b-a}\right)^n$	$\frac{a+b}{2}$
$\operatorname{Gamma}(\alpha,\beta)$	$\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$	$rac{lpha}{eta}$	$rac{lpha}{eta^2}$	$\hat{eta}=rac{lpha}{ar{x}}$	$\left(\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right)^n \prod_{i=1}^n x_i^{\alpha-1} e^{-\beta x_i}$	$\frac{\alpha + n\bar{x}}{\beta + n}$
Inverse $\operatorname{Gamma}(\alpha, \beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}e^{-\frac{\beta}{x}}$	$\frac{\beta}{\alpha-1}$ for $\alpha > 1$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$ for $\alpha>2$	$\hat{eta} = rac{lpha}{ar{x}}$	$\left(\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right)^n \prod_{i=1}^n x_i^{-\alpha-1} e^{-\frac{\beta}{x_i}}$	$\frac{\beta + \sum_{i=1}^{n} \frac{1}{x_i}}{\alpha + n + 1}$
Weibull (λ, k)	$\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$	$\lambda\Gamma(1+\frac{1}{k})$	$\lambda^2 \left[\Gamma(1 + \frac{2}{k}) - \Gamma^2(1 + \frac{1}{k}) \right]$	$\hat{\lambda} = \left(\frac{\sum_{i=1}^{n} x_i^k}{n}\right)^{1/k}$	$\left(\frac{k}{\lambda}\right)^n \prod_{i=1}^n \left(\frac{x_i}{\lambda}\right)^{k-1} e^{-(x_i/\lambda)^k}$	$\lambda \left(\frac{\sum_{i=1}^{n} x_i^k}{n} \right)^{1/k}$
$\mathrm{Poisson}(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$\hat{\lambda} = \bar{x}$	$\left(rac{e^{-\lambda}\lambda^{x_i}}{x_i!} ight)^n$	$\frac{n\bar{x}+\lambda_0}{n+1}$