PARALLEL RISK ASSESSMENT FOR MARITIME DOMAIN AWARENESS

Alexander Teske

RISK

- Definition: the effect of uncertainty on objectives (ISO 31000)
- A number between [0,1] where 0=no risk and I=high risk
- Classic formula:
 Risk(A) = probability(A) * impact(A)

MARITIME DOMAIN AWARENESS

 Definition: Situational understanding of activities that impact maritime safety, economy, or environment (Abielmona)

Risk management is an activity in maritime domain

awareness

RISK MANAGEMENT IN THE MARITIME DOMAIN

- Objective: monitoring and managing conditions that can lead to disasters at sea in order to:
 - Prevent disasters
 - Respond to disasters
- Examples of risk factors:
 - Sea conditions
 - Proximity to nearby vessels
 - Regional Hostility

RISK MANAGEMENT FRAMEWORK

- Ref: An evolving risk management framework for wireless sensor networks. Falcon et all. 2011
- Modular system for monitoring risk in generic wireless sensor networks
- Each sensor sends raw data which is used to determine risk

PARTIAL RISK MANAGEMENT FRAMEWORK

RISK ASSESSMENT FOR ONE SHIP

THE PROBLEM

- Risk Extraction and Risk Assessment must be performed for thousands of vessels in real time
- Lets see how fast we can get the calculation using parallel computing!

THE APPROACH

- MPI
- If there are n processors and m vessels, each processor calculates risk for ≈m/n vessels
- We hope to see linear speedup

CONCERNS

Communication overhead