Ficha 2 – Transporte por difusão e arrastamento

- Considere um sistema de dois compartimentos separados por uma membrana porosa com 1 mm de espessura e 120 cm² de área, em que 30% da área é ocupada por poros. A concentração no depósito I é 4.5 M e no ponto médio da membrana é 3 M. Sabendo que através dos poros passam 12 moles de soluto por segundo, calcule:
 - a. A concentração do soluto no compartimento II
 - b. A constante de difusão livre do soluto no solvente
 - c. A densidade de corrente total de difusão de soluto e o respectivo sentido.
 - (a) $1.5 \times 10^{-3} \text{ mol} \cdot \text{cm}^{-3}$; (b) $11.11 \text{ cm}^2 \text{s}^{-1}$; (c) $0.1 \text{ mol} \cdot \text{cm}^{-2} \text{ de I para II}$;
- 2. Num depósito, uma membrana porosa com 100 μm de espessura, 100 cm² de área total, 20% da qual é ocupada por poros, separa duas soluções de um mesmo soluto. Sabendo que 20 moles de soluto atravessam a membrana em cada segundo, que a concentração de um dos lados da membrana é 0.2 mol·cm⁻³ e que a constante de difusão livre do soluto no solvente é de 0.02 cm²s⁻¹, determine:
 - a. A concentração da outra solução.
 - b. A densidade de corrente de difusão.
- (a) $0.7 \text{ mol} \cdot \text{cm}^{-3}$; (b) $\pm 0.2 \text{ mol} \cdot \text{cm}^2 \text{s}^{-1}$;
- 3. Uma membrana porosa com 0.05 mm de espessura duas soluções de dois solutos, A e B, num sistema de dois compartimentos. No compartimento I as concentrações dos solutos são $C_I^A=0.3~\mathrm{M}$ e $C_I^B=0.2~\mathrm{M}$, no compartimento II as concentrações são $C_{II}^A=0.1~\mathrm{M}$ e $C_{II}^B=0.5~\mathrm{M}$.
 - Sabendo que as dimensões das moléculas de qualquer dos solutos são inferiores às dimensões dos poros, os coeficientes de difusão livre dos solutos são $D_A = 10^{-3}~{\rm cm}^2 {\rm s}^{-1}$ e $D_B = 5 \times 10^{-4}~{\rm cm}^2 {\rm s}^{-1}$ e que a densidade total de corrente de difusão é igual a $3 \times 10^{-6}~{\rm mol}\cdot{\rm cm}^{-2}{\rm s}^{-1}$. Determine a percentagem de área permeável. (30%)
- 4. Considere dois sistemas, A e B, cada um formado por dois compartimentos, contendo soluções de um mesmo soluto, mas com diferentes concentrações.
 - No sistema A, as duas soluções estão separadas por uma membrana homogénea com coeficiente de participação igual a 0.8 e constante de difusão $D=0.1~{\rm cm^2 s^{-1}}$.
 - No sistema B, as soluções estão separadas por uma membrana porosa de igual espessura e constante de difusão com 40 % da área permeável.
 - Sabendo que a área das duas membranas é igual e que a corrente de soluto que atravessa cada membrana por difusão é a mesma, determine a relação entre as diferenças de concentração, ΔC_A e ΔC_{AB} entre os dois compartimentos nos dois sistemas. $(\Delta C_B = 2\Delta C_A)$

1

BIOFÍSICA (FIS, OCV)

Ficha 2 – Transporte por difusão e arrastamento

- 5. Uma membrana porosa com 100 cm² de área total, dos quais 20 cm²são ocupados por poros e 1 μ m de espessura, separa duas soluções de um mesmo soluto. A concentração de soluto no compartimento II é $C_{II} = 5$ mM e no ponto médio da membrana, dentro de um poro, a concentração é $C_{1/2} = 3$ mM. A constante de difusão livre do soluto no solvente é 2×10^{-4} cm²s⁻¹.
 - Por segundo, atravessam a membrana 20 moles de solvente do compartimento I para o compartimento II mas sabe-se que 20 % das moléculas que incidem na membrana são reflectidas. Determine a densidade total da corrente de soluto que atravessa a membrana. (considere que o volume parcial molar do solvente é igual a 20 cm³).

 J_{s(total)} = 0.32×10-6 mol·cm²s-¹;
- 6. Considere duas soluções separadas por uma membrana homogénea com 2 μ m de espessura e 80 cm² de área. A concentração do soluto no compartimento I é $C_1 = 20 \times 10^{-6}$ mol·cm⁻³.

A corrente de solvente é igual a 16 mol·s⁻¹, do compartimento I para o compartimento II, e 14.4×10^{-3} moles de soluto atravessam a membrana, por difusão, em cada segundo.

Na resolução do problema considere, se necessário, os seguintes dados:

$$D_m = 0.5 \times 10^{-3} \text{ cm}^2 \text{s}^{-1}; K = 1.2; \ \bar{V}_W = 20 \text{ cm}^3 \text{mol}^{-1}; \ \sigma = 0.2$$

Determine:

- a. A densidade total de corrente de soluto.
- b. O número total de moles de soluto reflectidas por unidade de tempo e por unidade de área.

((a)12×10
$$^{-6}$$
 mol·cm $^{-2}$ s $^{-1}$; (b) 48×10 $^{-6}$ mol·cm $^{-2}$ s $^{-1}$)

- 7. Considere um sistema de dois compartimentos separados por uma membrana homogénea com 20 cm² de área total e 10 µm de espessura. Os compartimentos I e II contém soluções de um mesmo soluto cujas concentrações são $C_I = 300 \times 10^{-6} \text{ mol·cm}^{-3}$ e $C_{II} = 400 \times 10^{-6} \text{ mol·cm}^{-3}$. Na resolução do problema considere, se necessário, os seguintes dados: $D_m = 0.5 \times 10^{-3} \text{ cm}^2 \text{s}^{-1}$; K = 1.2; $\overline{V}_W = 20 \text{ cm}^3 \text{mol}^{-1}$; $\sigma = 0.4$ Sabendo que atravessam a membrana, do compartimento II para o compartimento I, 0.1 moles de solvente por segundo, Determine:
 - a. O número total de moles de soluto que atravessam a membrana, por unidade de tempo.
 - b. O numero de moles reflectidas, por unidade de tempo.

((a)1.7×10 $^{-3}$ moles/s (II \rightarrow I); (b) 3.36×10 $^{-4}$ moles/s)

8. Um sistema de dois compartimentos, abertos, contém soluções do mesmo soluto, separados por uma membrana porosa 1 μ m de espessura, com área total de 100 cm², dos quais 4 cm² são ocupadas por poros. O coeficiente de filtração da membrana é $L_P = 5 \times 10^{-9} \text{ mol} \cdot \text{dyn} \cdot \text{s}^{-1}$.

A concentração do soluto no depósito I é $C_I = 4 \times 10^{-6} \text{ mol} \cdot \text{cm}^{-3}$. Num ponto, dentro do poro, a uma distância de $x = 0.8 \, \mu\text{m}$ da interface com o depósito I a concentração é $C_{(x = 0.8 \, \mu\text{m})} = 2 \times 10^{-6} \, \text{mol} \cdot \text{cm}^{-3}$.

Na resolução do problema considere, se necessário, os seguintes dados:

$$T=37~{\rm K};~~D_m=2\times 10^{-6}~{\rm cm^2s^{-1}}; K=1.2;~ \bar{V}_W=18~{\rm cm^3mol^{-1}};~\sigma=0.3$$

Calcule:

- a. A concentração no depósito II
- b. A densidade de corrente de difusão do soluto
- c. A densidade de corrente de arrastamento do soluto
- d. A densidade total de corrente do soluto.