

As linguagens regulares constituem a classe de linguagens com menor poder de representação, sendo possível desenvolver algoritmos de reconhecimento, existindo várias aplicações, como a analise léxica, sistemas de animação, hipertextos e hipermédia (Menezes, 2000). As linguagens regulares podem ser presentadas por um autómato finito e por uma Expressão Regular (REGEX).

REGEX - Expressões Regulares - uma forma sequencial de especificar uma linguagem regular, através de um padrão de strings que descreve o mesmo que pode ser descrito por um autómato finito. Um exemplo, em notação UNIX de uma REGEX " [A-Z][a-z]*[][A-Z][A-Z]" representa uma palavra iniciada com maiúscula, seguida de espaço e duas maiúsculas, nesta seria aceite a sequência "Porto PT".

Simulation REGEX

String:
4000 Porto PT
Regex:/ [A-Z][a-z]*[][A-Z][A-Z]
Flags: ☐ ignore case (/i) ☐ global (/g) ☐ multiline (/m)
Test

Replacement Methods

Examples		Try Youself
String: The sky is silver. one two three	A	String: one two three
Regex: /silver/ /(\w+)\s(\w+)\	^	Regex: /(\w+)\s(\w+)/
Replace: blue \$3 \$2 \$1	^ ~	Replace: \$3 \$2 \$1
Test		Test Test

V1.1 [03/01/2021]

- Adicionada Esta Página de Suporte
- Adicionado Repositório <u>GitHub</u>

V1.0 [14/09/2020]

- Professor Doutor Jorge Morais apresenta tutorial do UAbALL: <u>Vídeo</u>
- Ficheiros Exemplo para DFA:
 - 1. Aceitação Strings binarias que não tenham consecutivos 1's: <u>Download</u>
 - 2. Aceitação Strings binarias que não tenham consecutivos 1's [conceito encravamento]: <u>Download</u>
 - 3. Aceitação Strings binarias de multimplos de 8: <u>Download</u>
 - 4. Aceitação Strings numéricas de número par: <u>Download</u>
 - 5. Aceitação Strings terminadas em "ing": <u>Download</u>
 - o 6. Aceitação Strings binárias com quatidade impar de 1's: Download
- Manual v1.0
- Relatório do Projecto http://hdl.handle.net/10400.2/10079
- O Automata Learning Lab da Universidade Aberta (UAbALL), pretende ser um laboratório integrado de simulação de autómatos. Numa primeira fase focado na construção da base e introduzindo a Simulação de Autómatos Finitos Deterministas (DFA). Este Laboratório ambiciona gozar de capacidade de extensibilidade, sendo este documento uma base técnica e científica para que no futuro sejam produzidas as restantes componentes, assim como adaptado a novas realidades tecnológicas e plataformas de distribuição.

DFA NFA NFA-ε PDA TURING REGEX HOME GRAMMAR HELP

As linguagens regulares constituem a classe de linguagens com menor poder de representação, sendo possível desenvolver algoritmos de reconhecimento, existindo várias aplicações, como a analise léxica, sistemas de animação, hipertextos e hipermédia (Menezes, 2000). As linguagens regulares podem ser presentadas por um autómato finito e por uma Expressão Regular (REGEX).

REGEX - Expressões Regulares - uma forma sequencial de especificar uma linguagem regular, através de um padrão de strings que descreve o mesmo que pode ser descrito por um autómato finito. Um exemplo, em notação UNIX de uma REGEX " [A-Z][a-z]*[][A-Z][A-Z]" representa uma palavra iniciada com maiúscula, seguida de espaço e duas maiúsculas, nesta seria aceite a sequência "Porto PT".

Simulation REGEX

String:
4000 Porto PT
Regex:/ $[A-Z][a-z]^*[][A-Z][A-Z]$
Flags: ignore case (/i) global (/g) multiline (/m) Test
Replacement Methods Examples
String: The sky is silver. one two three
Regex: /silver/ /(\w+)\s(\w+)/
Replace: blue \$3 \$2 \$1
Test Try Youself
String:
one two three

Test

Regex:

Replace:

\$3 \$2 \$1

/(\w+)\s(\w+)\s(\w+)/

V1.1 [03/01/2021]

- Adicionada Esta Página de Suporte
- · Adicionado Repositório GitHub

V1.0 [14/09/2020]

- Professor Doutor Jorge Morais apresenta tutorial do UAbALL: <u>Vídeo</u>
- Ficheiros Exemplo para DFA:
 - 1. Aceitação Strings binarias que não tenham consecutivos 1's: <u>Download</u>
 - 2. Aceitação Strings binarias que não tenham consecutivos 1's [conceito encravamento]: <u>Download</u>
 - 3. Aceitação Strings binarias de multimplos de 8: <u>Download</u>
 - 4. Aceitação Strings numéricas de número par: <u>Download</u>
 - 5. Aceitação Strings terminadas em "ing": <u>Download</u>
 - 6. Aceitação Strings binárias com quatidade impar de 1's: <u>Download</u>
- Manual v1.0
- Relatório do Projecto http://hdl.handle.net/10400.2/10079
- O Automata Learning Lab da Universidade Aberta (UAbALL), pretende ser um laboratório integrado de simulação de autómatos. Numa primeira fase focado na construção da base e introduzindo a Simulação de Autómatos Finitos Deterministas (DFA). Este Laboratório ambiciona gozar de capacidade de extensibilidade e adaptabilidade, sendo este documento uma base técnica e científica para que no futuro sejam produzidas as restantes componentes, assim como adaptado a novas realidades tecnológicas e plataformas de distribuição.