

Geometria Analítica

Superfícies Quádricas

PROFA. MAGDA MANTOVANI LORANDI

(MATERIAL DA PROF. ADRIANA MIORELLI ADAMI — ADAPTADO)

Período 2022-4

LIVRO-TEXTO

Capítulo 11- Seção 11.7 págs. 821 a 831

ANTON, Howard; BIVENS, Irl; DAVIS, Stephen L. Cálculo. 10. ed. Porto Alegre: Bookman, 2014.

SUPERFÍCIES QUÁDRICAS SEÇÃO 11.7 (PÁGS. 821-831)

FBX5007AA Geometria Analítica e Álgebra Linear

ONDE ENCONTRAMOS ESTAS SUPERFÍCIES?

refrigeração em usinas

Na forma de objetos

SUPERFÍCIES QUÁDRICAS (PÁG. 822)

Na discussão da Fórmula (2) da Seção 10.5, observamos que uma equação de segundo grau

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

representa uma seção cônica (possivelmente degenerada). A equação análoga em um sistema de coordenadas xyz é

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$
(4)

que é chamada *equação de segundo grau em x*, *y e z*. Os gráficos de tais equações são denominados *superfícies quádricas* ou, simplesmente, *quádricas*.

Ver Tabela 11.7.1 na pág. 823

ELIPSOIDE (PÁG. 823)

Exemplo 1 – pág. 824

ESFERA

 Quando a = b = c, o elipsóide se torna uma ESFERA centrada na origem do espaço tridimensional, e cuja equação é:

$$x^2 + y^2 + z^2 = r^2$$

• Quando o centro é o ponto (x_0, y_0, z_0) , a equação da esfera de raio r fica:

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$$

Exemplos

EQUAÇÃO	GRÁFICO		
$(x-3)^2 + (y-2)^2 + (z-1)^2 = 9$	Esfera com centro (3, 2, 1) e raio 3		
$(x+1)^2 + y^2 + (z+4)^2 = 5$	Esfera com centro (-1, 0, -4) e raio √5		
$x^2 + y^2 + z^2 = 1$	Esfera com centro (0, 0, 0) e raio 1		

HIPERBOLOIDE DE UMA FOLHA (PÁG. 823)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

O traço no plano xy é uma elipse, como são os traços nos planos paralelos ao plano xy. Os traços nos planos yz e xz são hipérboles, bem como os traços nos planos paralelos a eles que não passam pelos cortes com os eixos x e y. Nesses pontos, os traços são pares de retas concorrentes.

Exemplo 2 – pág. 824

HIPERBOLOIDE DE DUAS FOLHAS

(PÁG. 823)

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Não há traço no plano xy. Em planos paralelos ao plano xy que intersectam a superfície em mais do que um ponto, os traços são elipses. Os traços nos planos yz e xz, bem como em planos paralelos a eles, são hipérboles.

Exemplo 3 – Pág. 825

CONE ELÍPTICO (PÁG. 823)

Exemplo 4 – pág. 825

PARABOLOIDE ELÍPTICO (PÁG. 823)

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

O traço no plano xy é um ponto (a origem), e os traços em planos paralelos e acima dele são elipses. Os traços nos planos yz e xz, bem como em planos paralelos a eles, são parábolas.

Exemplo 5 – pág. 826

PARABOLOIDE HIPERBÓLICO (PÁG. 823)

$$z = \frac{y^2}{b^2} - \frac{x^2}{a^2}$$

O traço no plano xy é um par de retas que se cruzam na origem. Os traços em planos paralelos ao plano xy são hipérboles. As hipérboles acima do plano xy abrem-se na direção y e as abaixo, na direção x. Os traços nos planos yz e xz, bem como em planos paralelos a eles, são parábolas.

COMPARANDO AS EQUAÇÕES DAS SUPERFÍCIES QUÁDRICAS (PÁG.829)

Tabela 12.7.2

EQUAÇÃO	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$z^2 - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	$z - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	$z - \frac{y^2}{b^2} + \frac{x^2}{a^2} = 0$
CARACTERÍSTICA	Nenhum sinal de menos	Um sinal de menos	Dois sinais de menos	Nenhum termo linear	Um termo linear; dois termos quadráticos com o mesmo sinal	Um termo linear; dois termos quadráticos com sinais opostos
CLASSIFICAÇÃO	Elipsóide	Hiperbolóide de uma folha	Hiperbolóide de duas folhas	Cone elíptico	Parabolóide elíptico	Parabolóide hiperbólico

EXERCÍCIOS PÁGS. 829-831

ELIPSOIDE, HIPERBOLOIDE DE UMA E DUAS FOLHAS CONE ELÍPTICO, PARABOLÓIDE ELÍPTICO, PARABOLÓIDE HIPERBÓLICO

Exercícios de Compreensão 11.7: 1, 2, 3, 4 (a, b, c, d, e, f)

Exercícios 11.7:

1- a, b, c, d, e, f – somente identificar as superfícies quádricas que estudou em aula de acordo com a equação dada.

5 - a, b, c, d, e, f

7 - a, b, c determinar os traços nos planos e esboçar as quádricas como realizado em aula.

8 Opcional - a, b, c

15, 17, 19, 21, 23, 25, 27- identificar as superfícies quádricas e esboçar 15, 17, 19, 21 e 25

9 Em cada item classifique a superfície quádrica, obtenha a equação do traço da superfície no plano dado e afirme se é uma elipse, uma parábola ou uma hipérbole.