Survival of Breast Cancer Surgery Patients

Srividhya Perumal 8/12/2020

BINARY CLASSIFICATION OF SURVIVAL OF BREAST CANCER SURGERY PATIENTS

INTRODUCTION

The haberman's survival dataset (https://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival) from the UCI machine learning repository was used for this project. The haberman dataset was curated and split into two datasets for training and validation purposes. Our model classifies patients as alive or dead using binary classification. We are using the gradient boosting machine (GBM) classification model. The GBM was trained using the training dataset and the accuracy was tested using the validation dataset. The GBM classification model received an accuracy value of 0.82.

Download, install and load packages necessary for our model.

```
# Download, install and load the packages required for constructing our model
if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")
```

```
## Warning: package 'ggplot2' was built under R version 4.0.2
```

```
if(!require(e1071)) install.packages("e1071", repos = "http://cran.us.r-project.org")
if(!require(gbm)) install.packages("gbm", repos = "http://cran.us.r-project.org")
```

```
## Warning: package 'gbm' was built under R version 4.0.2
```

```
library("caret")
library("e1071")
library("gbm")

# set.seed() so our results are reproducible
set.seed(1)
```

Set.seed() to 1 so that our random variables and results would be reproducible.

DATA EXPLORATION

```
# Load and assign data that we downloaded to variable patients
patients <- read.csv("haberman-data.txt", header = FALSE)
# View structure of haberman dataset
str(patients)</pre>
```

```
## 'data.frame': 306 obs. of 4 variables:
## $ V1: int 30 30 30 31 31 33 33 34 34 ...
## $ V2: int 64 62 65 59 65 58 60 59 66 58 ...
## $ V3: int 1 3 0 2 4 10 0 0 9 30 ...
## $ V4: int 1 1 1 1 1 1 2 2 1 ...
```

By using the structure command to view our dataset we see that there are no column headers. From the UCI machine learning repository we see information about the columns:

- 1. Age of patient at time of operation (numerical)
- 2. Patient's year of operation (year 1900, numerical)
- 3. Number of positive axillary nodes detected (numerical)
- 4. Survival status (class attribute)

We will add the column headers to the respective columns below.

```
# Add respective headings to columns
names(patients)<- c('Operation Age', 'Operation Year', '+ve Axillary Nodes', 'Survival')
# Assign 0 as dead and 1 as alive
patients$Survival <- patients$Survival - 1
# View structure of haberman dataset
str(patients)</pre>
```

```
## 'data.frame': 306 obs. of 4 variables:
## $ Operation Age : int 30 30 30 31 31 33 33 34 34 34 ...
## $ Operation Year : int 64 62 65 59 65 58 60 59 66 58 ...
## $ +ve Axillary Nodes: int 1 3 0 2 4 10 0 0 9 30 ...
## $ Survival : num 0 0 0 0 0 0 1 1 0 ...
```

The survival column indicates whether a patient survived or died. 1 indicates that the patient died.

Each row in the datasets is a record of one patient. From the Survival column, we see that we can use binary classification for our prediction model.

DATA CLEANING

```
# Check for NAs in the 4 columns sapply(patients, function(x) sum(is.na(x)))
```

```
## Operation Age Operation Year +ve Axillary Nodes Survival
## 0 0 0 0
```

There are no NAs and hence the data requires no further cleaning.

DATA VISUALIZATION

To visualize our data we will create density plots by column values.

```
# Create density plots by attribute
par(mfrow=c(2,3))
for(i in c(1:4)) {
  plot(density(patients[,i]), main=names(patients)[i])
}
```

Density 0.000 0.015 0.030 0.030 0.0015 0.030

Operation Age

N = 306 Bandwidth = 3.095

MODELING

```
# Check proportion of dead and alive patients
# Here 1 represents a dead patient
prop.table(table(patients$Survival))
```

```
##
## 0 1
## 0.7352941 0.2647059
```

26.5 % of patients in the dataset have died. This distinction is important because if the proportion was smaller than 15% then it would be considered as a rare event and the data would have to be modeled differently.

```
# Convert values in Survival column to factors
patients$Survival <- ifelse(patients$Survival==1,'yes','no')
patients$Survival <- as.factor(patients$Survival)</pre>
```

To use the classification mode of GBM we change the class of the class column to factor.

The haberman dataset is split into training and testing sets to create and evaluate our prediction system.

```
# Create training and testing datasets
test <- createDataPartition(patients$Survival, p = .3, times = 1, list = FALSE)
train_set <- patients[-test,]
test_set <- patients[test,]</pre>
```

We control resampling of our data to reduce the time by using the trainControl function of the caret package. This function divides our dataset into a 'number' of times to find the best parameters for our model.

```
# Control resampling of data
control <- trainControl(method='cv', number=2, returnResamp='none', summaryFunction = twoClassSu
mmary, classProbs = TRUE)
# Train model
model <- train(patients[,names(patients)[names(patients) != 'Survival']], patients[,'Survival'],
method='gbm', trControl=control, metric = "ROC", preProc = c("center", "scale"))</pre>
```

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.1377	nan	0.1000	0.0090
##	2	1.1221	nan	0.1000	0.0072
##	3	1.1060	nan	0.1000	0.0038
##	4	1.1066	nan	0.1000	-0.0055
##	5	1.0983	nan	0.1000	0.0023
##	6	1.0816	nan	0.1000	-0.0002
##	7	1.0702	nan	0.1000	0.0021
##	8	1.0631	nan	0.1000	-0.0007
##	9	1.0560	nan	0.1000	-0.0029
##	10	1.0519	nan	0.1000	0.0008
##	20	1.0164	nan	0.1000	-0.0022
##	40	0.9754	nan	0.1000	-0.0008
##	60	0.9419	nan	0.1000	-0.0026
##	80	0.9245	nan	0.1000	-0.0014
##	100	0.9111	nan	0.1000	-0.0021
##	120	0.8952	nan	0.1000	-0.0023
##	140	0.8857	nan	0.1000	-0.0023
##	150	0.8806	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.1446	nan	0.1000	0.0064
##	2	1.1243	nan	0.1000	0.0058
##	3	1.1075	nan	0.1000	0.0082
##	4	1.0910	nan	0.1000	0.0021
##	5	1.0772	nan	0.1000	0.0028
##	6	1.0592	nan	0.1000	0.0000
##	7	1.0515	nan	0.1000	-0.0045
##	8	1.0404	nan	0.1000	0.0046
##	9	1.0340	nan	0.1000	-0.0004
##	10	1.0265	nan	0.1000	0.0013
##	20	0.9671	nan	0.1000	-0.0055
##	40	0.8903	nan	0.1000	-0.0050
##	60	0.8443	nan	0.1000	-0.0062
##	80	0.8114	nan	0.1000	-0.0023
##	100	0.7827	nan	0.1000	-0.0038
##	120	0.7596	nan	0.1000	-0.0036
##	140	0.7421	nan	0.1000	-0.0069
##	150	0.7281	nan	0.1000	-0.0058
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.1284	nan	0.1000	0.0137
##	2	1.1028	nan	0.1000	0.0072
##	3	1.0788	nan	0.1000	0.0075
##	4	1.0581	nan	0.1000	0.0036
##	5	1.0409	nan	0.1000	-0.0031
##	6	1.0259	nan	0.1000	0.0009
##	7	1.0154	nan	0.1000	0.0018
##	8	1.0092	nan	0.1000	-0.0024
##	9	0.9953	nan	0.1000	0.0042
##	10	0.9835	nan	0.1000	0.0022
##	20	0.9212	nan	0.1000	-0.0059
##	40	0.8286	nan	0.1000	-0.0081

##	60	0.7814	nan	0.1000	-0.0059
##	80	0.7490	nan	0.1000	-0.0062
##	100	0.7165	nan	0.1000	-0.0061
##	120	0.6852	nan	0.1000	-0.0041
##	140	0.6540	nan	0.1000	-0.0040
##	150	0.6394	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.1280	nan	0.1000	0.0116
##	2	1.1066	nan	0.1000	0.0059
##	3	1.0982	nan	0.1000	-0.0022
##	4	1.0848	nan	0.1000	0.0050
##	5	1.0707	nan	0.1000	0.0001
##	6	1.0612	nan	0.1000	0.0015
##	7	1.0567	nan	0.1000	-0.0002
##	8	1.0486	nan	0.1000	0.0027
##	9	1.0376	nan	0.1000	0.0033
##	10	1.0309	nan	0.1000	-0.0022
##	20	0.9942	nan	0.1000	0.0012
##	40	0.9672	nan	0.1000	-0.0124
##	60	0.9439	nan	0.1000	-0.0053
##	80	0.9266	nan	0.1000	-0.0039
##	100	0.9100	nan	0.1000	-0.0041
##	120	0.9036	nan	0.1000	-0.0091
##	140	0.8938	nan	0.1000	-0.0049
##	150	0.8838	nan	0.1000	-0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	Iter 1	TrainDeviance 1.1304	ValidDeviance nan	StepSize 0.1000	Improve 0.0044
				•	
##	1	1.1304	nan	0.1000	0.0044
##	1 2	1.1304 1.0994	nan nan	0.1000 0.1000	0.0044 0.0102
## ## ##	1 2 3	1.1304 1.0994 1.0780	nan nan nan	0.1000 0.1000 0.1000	0.0044 0.0102 0.0023
## ## ## ##	1 2 3 4	1.1304 1.0994 1.0780 1.0486	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086
## ## ## ##	1 2 3 4 5	1.1304 1.0994 1.0780 1.0486 1.0434	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028
## ## ## ## ##	1 2 3 4 5 6	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001
## ## ## ## ##	1 2 3 4 5 6 7	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066
## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027
## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003	nan nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0037 -0.0057
## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 150	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760 0.7459 0.7321 0.7183	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034 -0.0057 -0.0106 -0.0076 -0.0039
## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 150	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760 0.7459 0.7321 0.7183	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034 -0.0057 -0.0106 -0.0039
## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760 0.7459 0.7321 0.7183	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034 -0.0057 -0.0106 -0.0039 Improve 0.0112
### ##################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760 0.7459 0.7321 0.7183 TrainDeviance 1.1264 1.0823	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034 -0.0057 -0.0106 -0.0039 Improve 0.0112 0.0096
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 150 Iter 1 2	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760 0.7459 0.7321 0.7183 TrainDeviance 1.1264 1.0823 1.0645	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034 -0.0057 -0.0106 -0.0039 Improve 0.0112 0.0096 -0.0049
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 150 Iter 1 2 3 4	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760 0.7459 0.7321 0.7183 TrainDeviance 1.1264 1.0823 1.0645 1.0464	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034 -0.0057 -0.0106 -0.0039 Improve 0.0112 0.0096 -0.0049 0.0069
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3 4	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760 0.7459 0.7321 0.7183 TrainDeviance 1.1264 1.0823 1.0645 1.0464 1.0207	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0057 -0.0106 -0.0076 -0.0039 Improve 0.0112 0.0096 -0.0049 0.0069 0.0077
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 150 Iter 1 2 3 4	1.1304 1.0994 1.0780 1.0486 1.0434 1.0295 1.0305 1.0187 1.0104 1.0015 0.9442 0.8737 0.8341 0.8003 0.7760 0.7459 0.7321 0.7183 TrainDeviance 1.1264 1.0823 1.0645 1.0464	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0044 0.0102 0.0023 0.0086 -0.0028 0.0001 -0.0066 -0.0052 0.0027 0.0021 0.0006 -0.0033 -0.0024 -0.0034 -0.0057 -0.0106 -0.0039 Improve 0.0112 0.0096 -0.0049 0.0069

##	7	0.9861	nan	0.1000	0.0027
##	8	0.9725	nan	0.1000	0.0014
##	9	0.9654	nan	0.1000	0.0007
##	10	0.9532	nan	0.1000	-0.0004
##	20	0.8789	nan	0.1000	-0.0046
##	40	0.8137	nan	0.1000	-0.0098
##	60	0.7542	nan	0.1000	-0.0012
##	80	0.7142	nan	0.1000	-0.0073
##	100	0.6937	nan	0.1000	-0.0093
##	120	0.6677	nan	0.1000	-0.0066
##	140	0.6459	nan	0.1000	-0.0041
##	150	0.6392	nan	0.1000	-0.0035
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.1316	nan	0.1000	0.0092
##	2	1.1084	nan	0.1000	0.0068
##	3	1.0959	nan	0.1000	0.0047
##	4	1.0864	nan	0.1000	0.0017
##	5	1.0750	nan	0.1000	0.0055
##	6	1.0634	nan	0.1000	0.0025
##	7	1.0565	nan	0.1000	0.0005
##	8	1.0472	nan	0.1000	0.0048
##	9	1.0416	nan	0.1000	-0.0006
##	10	1.0389	nan	0.1000	-0.0027
##	20	0.9902	nan	0.1000	-0.0023
##	40	0.9343	nan	0.1000	-0.0040
##	50	0.9151	nan	0.1000	-0.0029

summary(model)


```
## var rel.inf

## +ve Axillary Nodes +ve Axillary Nodes 42.54877

## Operation Age Operation Age 34.27667

## Operation Year Operation Year 23.17456
```

model

```
## Stochastic Gradient Boosting
##
## 306 samples
##
    3 predictor
    2 classes: 'no', 'yes'
##
##
## Pre-processing: centered (3), scaled (3)
## Resampling: Cross-Validated (2 fold)
## Summary of sample sizes: 153, 153
  Resampling results across tuning parameters:
##
##
    interaction.depth n.trees ROC
                                          Sens
                                                     Spec
                                0.7108966 0.9198404 0.2829268
##
    1
                        50
##
    1
                       100
                                0.7071668 0.9199194 0.3082317
    1
                       150
                                0.6941841 0.9155341 0.2594512
##
                                0.7359192 0.9155341 0.2969512
##
    2
                        50
    2
##
                       100
                                0.7285285 0.8665455 0.3945122
##
    2
                                0.7156144 0.8755136 0.3948171
                       150
##
    3
                        50
                                ##
    3
                       100
                                0.7171809 0.8576169 0.3454268
##
                       150
                                0.7136499 0.8620812 0.3454268
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 50, interaction.depth =
   2, shrinkage = 0.1 and n.minobsinnode = 10.
```

PREDICTIONS AND RESULTS

Since our model is now ready, we make predictions and evaluate them by comparing them to the true values.

```
# Create predictions with model
predictions <- predict(object=model, test_set[,names(patients)[names(patients) != 'Survival']],
    type='raw')
# Compute accuracy
print(postResample(pred=predictions, obs=as.factor(test_set[,'Survival'])))</pre>
```

```
## Accuracy Kappa
## 0.8172043 0.4752738
```

The accuracy for our classification model is 0.82 > 0.7 and is accurate.

CONCLUSION

A breast cancer surgery patient survival classification system was created to classify surival of patients. The classification system was validated by comparing its predictions to the true values and the accuracy was determined. The accuracy value of our classification system is 0.82.