The quasi-partition algebra

Zajj Daugherty

Joint with Rosa Orellana

Dartmouth College

December 5, 2012

Everyone's favorite diagram algebra: Group algebra of the symmetric group ${\cal S}_k$

Everyone's favorite diagram algebra: Group algebra of the symmetric group ${\cal S}_k$

(with multiplication given by concatenation)

Everyone's favorite diagram algebra: Group algebra of the symmetric group ${\cal S}_k$

(with multiplication given by concatenation)

Everyone's favorite diagram algebra: Group algebra of the symmetric group ${\cal S}_k$

(with multiplication given by concatenation)

Classical example: (Schur 1901)

Classical example: (Schur 1901)

1. $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

Classical example: (Schur 1901)

1. $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

2. S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

Classical example: (Schur 1901)

1. $\operatorname{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

2. S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

3. These actions commute!

Modules (vector spaces, with the group or algebra acting as matrices)

Simple S_k -modules are in bijection with partitions, $\lambda \vdash k$

So, for example,

are the simple S_3 -modules (up to isomorphism).

Classical example: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$.

Even better, if $k \leq n$,

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left(\left(\mathbb{C}^n\right)^{\otimes k}\right)}_{\text{(all linear maps that commute with }\operatorname{GL}_n)} = \mathbb{C}S_k.$$

Classical example: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$. Even better, if $k \leq n$,

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left((\mathbb{C}^n)^{\otimes k}\right)}_{\text{(all linear maps that commute with }\operatorname{GL}_n)} = \mathbb{C}S_k.$$

Why this is exciting:

Centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} L(\lambda) \otimes S^{\lambda}$$
 as a GL_n - S_k bimodule,

where $L(\lambda)$ are distinct irreducible GL_n -modules S^λ are distinct irreducible S_k -modules

Classical example: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$.

Even better, if $k \leq n$,

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left(\left(\mathbb{C}^n\right)^{\otimes k}\right)}_{\text{(all linear maps that commute with }\operatorname{GL}_n)} = \mathbb{C}S_k.$$

Why this is exciting:

Centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong igoplus_{\lambda \vdash k} L(\lambda) \otimes S^\lambda$$
 as a $\mathrm{GL}_n\text{-}S_k$ bimodule,

where $egin{array}{ccc} L(\lambda) & {
m are\ distinct\ irreducible} & {
m GL}_n\mbox{-modules} \\ S^{\lambda} & {
m are\ distinct\ irreducible} & S_k\mbox{-modules} \\ \end{array}$

For example,

$$\mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n = \left(L(\square) \otimes S^{\square}\right) \oplus \left(L(\square) \otimes S^{\square}\right) \oplus \left(L(\square) \otimes S^{\square}\right)$$

Let V be the permutation representation of S_n .

$$n imes n$$
 matrices with 1's and 0's \qquad i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

Let V be the permutation representation of S_n .

$$n imes n$$
 matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n .

$$n imes n$$
 matrices with 1's and 0's

i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

Let V be the permutation representation of S_n .

$$n \times n$$
 matrices with 1's and 0's

i.e.
$$\sigma \cdot v_i = v_{\sigma(i)}$$

Now let S_n act diagonally on $V^{\otimes k}$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?

Permutation of the factors again.

$$\delta_{a=b=c} \ (v_a \otimes v_a) \otimes \left(\sum_{i=1}^n v_i \otimes v_i \right)$$

$$v_a \otimes v_b \otimes v_c \otimes v_d$$

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k]=\{1,\ldots,k\} \qquad \text{ and } \qquad [k']=\{1',\ldots,k'\}.$$

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k]=\{1,\ldots,k\} \qquad \text{ and } \qquad [k']=\{1',\ldots,k'\}.$$

We're interested in set partitions of $[k] \cup [k']$.

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \dots, k\}$$
 and $[k'] = \{1', \dots, k'\}.$

We're interested in set partitions of $[k] \cup [k']$. Either as sets of sets

$$d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$$

or as diagrams (considering connected components)

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \dots, k\}$$
 and $[k'] = \{1', \dots, k'\}.$

We're interested in set partitions of $[k] \cup [k']$. Either as sets of sets

$$d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$$

or as diagrams (considering connected components)

(Both encode the map $v_a \otimes v_b \otimes v_c \otimes v_d \mapsto \delta_{b=c=d}(v_a \otimes v_a) \otimes \sum_{i=1} v_i \otimes v_b$)

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \dots, k\}$$
 and $[k'] = \{1', \dots, k'\}.$

We're interested in set partitions of $[k] \cup [k']$. Either as sets of sets

$$d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$$

or as diagrams (considering connected components)

(Both encode the map $v_a \otimes v_b \otimes v_c \otimes v_d \mapsto \delta_{b=c=d}(v_a \otimes v_a) \otimes \sum_{i=1} v_i \otimes v_b$)

Multiplying diagrams:

The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Multiplying diagrams:

The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Nice facts:

Multiplying diagrams:

The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Nice facts:

(*) Associative algebra with identity $1 = \{\{1, 1'\}, \dots, \{k, k'\}\}.$

Multiplying diagrams:

The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Nice facts:

- (*) Associative algebra with identity $1 = \{\{1, 1'\}, \dots, \{k, k'\}\}.$
- (*) $\dim(P_k(n)) = \text{the Bell number } B(2k).$

Multiplying diagrams:

The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Nice facts:

- (*) Associative algebra with identity $1 = \{\{1, 1'\}, \dots, \{k, k'\}\}.$
- (*) $\dim(P_k(n)) = \text{the Bell number } B(2k).$
- (*) $\operatorname{End}_{S_n}(V^{\otimes k}) = P_k(n)$ for $n \geq 2k$.

Problem: V is not irreducible!

$$V = \mathbb{C}\{v_1, \dots, v_n\}$$
$$W = \mathbb{C}\{w_2, \dots, w_n\}$$

 $T = \mathbb{C}v$,

where $w_i = v_i - v_1,$ where $v = v_1 + \cdots + v_n.$

Then $V = W \oplus T$.

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \qquad \text{where } v=v_1+\cdots+v_n.$$

Then $V = W \oplus T$.

The question: What is $\operatorname{End}_{S_n}(W^{\otimes k})$?

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \qquad \text{where } v=v_1+\cdots+v_n.$$

Then $V=W\oplus T$.

The question: What is $\operatorname{End}_{S_n}(W^{\otimes k})$?

Equivalent: Which maps in $P_k(n)$ send $W^{\otimes k} \to W^{\otimes k}$?

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\} \qquad \qquad \text{where } w_i=v_i-v_1,$$

$$T=\mathbb{C}v, \qquad \qquad \text{where } v=v_1+\cdots+v_n.$$

Then $V = W \oplus T$.

The question: What is $\operatorname{End}_{S_n}(W^{\otimes k})$?

Equivalent: Which maps in $P_k(n)$ send $W^{\otimes k} \to W^{\otimes k}$?

A first hint: If p = 0, then $p \cdot v_i = v$. So $p = n\pi_T$ projects onto T.

$$V=\mathbb{C}\{v_1,\ldots,v_n\}$$

$$W=\mathbb{C}\{w_2,\ldots,w_n\}$$

$$T=\mathbb{C}v, \qquad \qquad \text{whe}$$

where $w_i = v_i - v_1$, where $v = v_1 + \cdots + v_n$.

Then $V = W \oplus T$.

The question: What is $\operatorname{End}_{S_n}(W^{\otimes k})$?

Equivalent: Which maps in $P_k(n)$ send $W^{\otimes k} \to W^{\otimes k}$?

A first hint:

If
$$p = 0$$
, then $p \cdot v_i = v$. So $p = n\pi_T$ projects onto T .

$$\begin{split} V &= \mathbb{C}\{v_1,\dots,v_n\} \\ W &= \mathbb{C}\{w_2,\dots,w_n\} \\ T &= \mathbb{C}v, \end{split} \qquad \text{where } w_i = v_i - v_1, \\ \text{where } v = v_1 + \dots + v_n. \end{split}$$

Then $V = W \oplus T$.

The question: What is $\operatorname{End}_{S_n}(W^{\otimes k})$?

Equivalent: Which maps in $P_k(n)$ send $\overline{W}^{\otimes k} \to W^{\otimes k}$?

A first hint:

If
$$p = 0$$
, then $p \cdot v_i = v$. So $p = n\pi_T$ projects onto T .

Any diagram d an isolated vertex satisfies $d = p_i d'$ or $d = d' p_i$.

Two maps in $\operatorname{End}(W^{\otimes k})$:

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

 $\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

$$\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$$

Good: Commutes with S_n Bad: What are they, and how do we multiply?

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

$$\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}$$

Good: Commutes with S_n Bad: What are they, and how do we multiply?

2. Let $f: \{v_1, \dots, v_{n-1}\} \to \{w_2, \dots, w_n\}$ $v_i \mapsto w_{i+1}$.

Put $d \in P_k(n-1)$, and consider

$$[d]: W^{\otimes k} \xrightarrow{f^{-1}} V_{n-1}^{\otimes k} \xrightarrow{d} V_{n-1}^{\otimes k} \xrightarrow{f} W^{\otimes k}$$

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

$$\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$$

Good: Commutes with S_n Bad: What are they, and how do we multiply?

2. Let $f:\{v_1,\ldots,v_{n-1}\}\to\{w_2,\ldots,w_n\}$ $v_i\mapsto w_{i+1}.$ Put $d\in P_k(n-1)$, and consider

$$[d]: W^{\otimes k} \xrightarrow{f^{-1}} V_{n-1}^{\otimes k} \xrightarrow{d} V_{n-1}^{\otimes k} \xrightarrow{f} W^{\otimes k}$$

Good: We know what they are and how to multiply them. Bad: They don't commute with S_n .

Two maps in $\operatorname{End}(W^{\otimes k})$:

1. Put $d \in P_k(n)$, and project its image onto $W^{\otimes k}$:

$$\bar{d}: W^{\otimes k} \xrightarrow{d} V^{\otimes k} \xrightarrow{\pi_W^{\otimes k}} W^{\otimes k}.$$

Good: Commutes with S_n

Bad: What are they, and how do we multiply?

2. Let $f:\{v_1,\ldots,v_{n-1}\}\to\{w_2,\ldots,w_n\}$ $v_i\mapsto w_{i+1}.$ Put $d\in P_k(n-1)$, and consider

$$[d]: W^{\otimes k} \xrightarrow{f^{-1}} V_{n-1}^{\otimes k} \xrightarrow{d} V_{n-1}^{\otimes k} \xrightarrow{f} W^{\otimes k}$$

Good: We know what they are and how to multiply them. Bad: They don't commute with S_n .

Goal: Express \bar{d} in terms of [d']'s.

If X is a set of vertices, the isolation of d (at X) is d_X , the diagram constructed from d by isolating all vertices in X.

For example, if $X = \{1', 4'\}$ and

$$d = egin{pmatrix} 1 & 2 & 3 & 4 \\ \hline 1' & 2' & 3' & 4' \\ \hline \end{array} \qquad ext{then} \qquad d_X = egin{pmatrix} 1 & 2 & 3 & 4 \\ \hline 1' & 2' & 3' & 4' \\ \hline \end{array}$$

We can also place an order on diagrams, where $d' \leq d$ if d' is a refinement of d. In particular, $d_X \leq d$.

Theorem (D.-Orellana)

If $d \in \mathcal{D}$ then

$$ar{d} = [d] + \sum_{X \subseteq [k] \cup [k']} c_X[d_X],$$

where c_X is a (totally explicit) rational function in 1/n.

Theorem (D.-Orellana)

If $d \in \mathcal{D}$ then

$$\bar{d} = [d] + \sum_{X \subseteq [k] \cup [k']} c_X[d_X],$$

where c_X is a (totally explicit) rational function in 1/n.

For example,

$$= \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} + \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} - \frac{1}{n} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$$

Theorem (D.-Orellana)

If $d \in \mathcal{D}$ then

$$\bar{d} = [d] + \sum_{X \subseteq [k] \cup [k']} c_X[d_X],$$

where c_X is a (totally explicit) rational function in 1/n.

$$= \begin{bmatrix} -\frac{1}{n} \\ -\frac{1}{n} \end{bmatrix} - \frac{1}{n} \begin{bmatrix} -\frac{1}{n} \\ -\frac{1}{n^2} \end{bmatrix} + \frac{1}{n^2} \begin{bmatrix} -\frac{1}{n^2} \\ -\frac{1}{n^2} \end{bmatrix} + \frac{1}{n^2} \begin{bmatrix} -\frac{1}{n^2} \\ -\frac{1}{n^2} \end{bmatrix}$$

Theorem (D.-Orellana)

If $d \in \mathcal{D}$ then

$$\bar{d} = [d] + \sum_{X \subseteq [k] \cup [k']} c_X[d_X],$$

where c_X is a (totally explicit) rational function in 1/n.

Corollary

 $QP_k(n)$ has basis $\{\bar{d} \mid d \in \mathcal{D}\}$, and thus has dimension

$$\sum_{k=0}^{2n} (-1)^{j-1} B(2k-j) + 1, \qquad \text{where } B(r) \text{ is the Bell number.}$$

Theorem (D.-Orellana)

If $d \in \mathcal{D}$ then

$$\bar{d} = [d] + \sum_{X \subseteq [k] \cup [k']} c_X[d_X],$$

where c_X is a (totally explicit) rational function in 1/n.

Corollary

 $QP_k(n)$ has basis $\{\bar{d} \mid d \in \mathcal{D}\}$, and thus has dimension

$$\sum_{j=1}^{2n} (-1)^{j-1} B(2k-j) + 1, \qquad \text{where } B(r) \text{ is the Bell number.}$$

Corollary

If
$$d_1,d_2\in\mathcal{D}$$
,
$$\bar{d}_1\bar{d}_2=\sum_{d\leq d_1d_2}c_d\bar{d}.$$

In particular, if $d_1d_2 \notin \mathcal{D}$, then $\bar{d_1}\bar{d_2} = 0$.

So functionally, $QP_k(n)$ is a subalgebra of $P_k(n-1)$. It's generated by projections of

$$b_i = \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} \right] & \left[\begin{array}{ccc} \cdots & i & \\ \hline \end{array} \right]$$

So functionally, $QP_k(n)$ is a subalgebra of $P_k(n-1)$. It's generated by projections of

$$b_i = \left[\cdots \right] \quad i \quad \left[\cdots \right] \quad s_i = \left[\cdots \right] \quad x_i = \left[\cdots \right] \quad c_i = \left[\cdots \right]$$

With relations that look like

in $P_k(n-1)$:	in $QP_k(n)$:
$s_i^2 = 1$	$\bar{s}_i^2 = 1$
$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$	$\bar{s}_i \bar{s}_{i+1} \bar{s}_i = \bar{s}_{i+1} \bar{s}_i \bar{s}_{i+1}$
$e_i^2 = (n-1)e_i$	$\bar{e}_i^2 = (n-1)\bar{e}_i$
$b_i^2 = b_i$	$\bar{b}_i^2 = \frac{n-2}{n}\bar{b}_i + \frac{1}{n^2}\bar{e}_i$

Representation theory

Tensoring rule for $W = S^{(n-1,1)}$

$$S^{\lambda} \otimes W = c(\lambda)S^{\lambda} \oplus \bigoplus_{\mu \in \Lambda} S^{\mu}$$

where Λ is the set of partitions gotten from λ by moving any corner box to another place, and $c(\lambda)=\#$ corner boxes -1.

Representation theory

Tensoring rule for $W = S^{(n-1,1)}$

$$S^{\lambda} \otimes W = c(\lambda)S^{\lambda} \oplus \bigoplus_{\mu \in \Lambda} S^{\mu}$$

where Λ is the set of partitions gotten from λ by moving any corner box to another place, and $c(\lambda)=\#$ corner boxes -1. Example:

Representation theory

Tensoring rule for $W = S^{(n-1,1)}$

$$S^{\lambda} \otimes W = c(\lambda)S^{\lambda} \oplus \bigoplus_{\mu \in \Lambda} S^{\mu}$$

where Λ is the set of partitions gotten from λ by moving any corner box to another place, and $c(\lambda)=\#$ corner boxes -1. Example:

Assume n >> 1. We can forget the top row:

Г

(Dimensions expressed explicitly in terms of numbers of standard tableaux and Bell numbers.)