Algebra III Final

Winter AY2002/2003

ID 番号、氏名を、各解答用紙に、また、問題番号も忘れずに書いて下さい。定理などは [参考] にあるもののみを使い、[参考] にない定理を引用するときは、その定理の内容も記述せよ。「参考」にあるものを使う時も、何と何が対応するかを明記すること。

- 1. R を可換環 (加法の単位元 0 とし、乗法の単位元 $1 \neq 0$) を含む) とする。R のイデアルが $\{0\}$ と R のみであれば、R は体であることを証明せよ。
- 2. L: K を体の拡大とする。
 - (a) $\alpha \in L$ が K 上代数的な元であることの定義を書け。
 - (b) K の元はすべて K 上代数的であることを証明せよ。
 - (c) 複素数体 C の元で有理数体 Q の元ではないが、Q 上代数的である元の例をあげ、それが条件を満たすことを証明せよ。
- 3. 体の拡大 $Q(\sqrt{5},\sqrt{7}): Q$ を考える。 $L=Q(\sqrt{5},\sqrt{7})$ とおく。
 - (a) $L: \mathbf{Q}$ は単純拡大、すなわち $\alpha \in L$ で $L = \mathbf{Q}(\alpha)$ となるものが存在することを証明せよ。
 - (b) $L: \mathbf{Q}$ の拡大次数 $[L: \mathbf{Q}]$ は 4 であることを証明せよ。
 - (c) L の元はすべて Q 上代数的であることを証明せよ。
 - (d) σ を L の自己同型写像とする。 $a\in Q$ ならば常に $\sigma(a)=a$ でありかつ、 $\sigma(\sqrt{5})=\sqrt{5}$ または $\sigma(\sqrt{5})=-\sqrt{5}$ であることを証明せよ。
 - (e) $Q(\sqrt{5})$ の自己同型 τ で、 $\tau(\sqrt{5}) = -\sqrt{5}$ となるものが存在することを証明せよ。
 - (f) L の自己同型写像 σ で $\sigma(\sqrt{5}) = -\sqrt{5}$ となるものが存在することを証明せよ。
 - (g) $L: \mathbf{Q}$ は正規拡大であることを証明せよ。
- $4.~K = \mathbf{Z}/2\mathbf{Z}$ を 2 個の元からなる体とする。
 - (a) *K* 係数の多項式が既約であることの定義を書き、その定義のもとで既約な 3 次多項式を一つ求めよ。その多項式が既約であることも示せ。
 - (b) K の拡大体 L で 8 個の元からなるものが存在することを証明せよ。
 - (c) L を K の拡大体で 8 個の元からなるものとする。このとき、常に x+x=0 がすべての $x\in L$ に対して成立することを証明せよ。

[参考]

命題 1.1 L:K を体の拡大とし、 α を K 上代数的な L の元、 $m(x) \in K[x]$ を α の最小多項式とする。このとき、次が成立する。

- (1) m(x) は、既約。
- (2) $f(x) \in K[x]$ が、 $f(\alpha) = 0$ を満たせば、m(x) は、f(x) を割り切る。特に、最小多項式はただ一つであり、さらに、 $f(x) \in K[x]$ が、既約な monic な多項式で、 $f(\alpha) = 0$ ならば、f(x) = m(x) すなわち、f(x) は、最小多項式である。
- (3) $K(\alpha) \simeq K[x]/(m(x))_{\circ}$
- (4) $K(\alpha) = K[\alpha] = \{a_0 + a_1\alpha + \dots + a_{d-1}\alpha^{d-1} \mid a_i \in K\}$ であり、 $1, \alpha, \dots, \alpha^{d-1}$ は、K上 一次独立である。ただし、 $\deg m(x) = d$ とする。

命題 1.2~K を体、m(x) を K 上既約な monic な多項式とする。このとき、拡大 $K(\alpha):K$ で、 α の最小多項式が m(x) となるものがある。

 $i:R_1\longrightarrow R_2$ を環準同型とする。このとき、 R_1 、 R_2 を係数とする多項式環の間の写像 $\hat{i}:R_1[x]\longrightarrow R_2[x]$ を次のように定義する。

$$a_0 + a_1 x + \dots + a_s x^s \mapsto i(a_0) + i(a_1) x + \dots + i(a_s) x^s$$
.

すると、 \hat{i} は、環準同型写像である。さらに、i が同型写像なら、 \hat{i} も同型写像である。

定理 $1.3~i:K\to L$ を体同型、 $K(\alpha):K$ 、 $L(\beta):L$ を体の拡大とし、 α を K 上代数的、 β を L 上代数的とする。m(x) が K 上 α の最小多項式とする。もし、 $\hat{i}(m(x))$ が L 上 β の最小多項式ならば、体同型 $j:K(\alpha)\longrightarrow L(\beta)$ で、 $j_{|K}=i$ 、 $j(\alpha)=\beta$ となるものが存在する。

体の拡大 L:K において、L の K 上の次元 $\dim_K L$ を体の拡大 L:K の次数と呼び、 [L:K] と書く。

定理 2.1 M: L, L: K を体の拡大とする。このとき、次が成立する。

$$[M:K] = [M:L][L:K].$$

定義 4.1 体の拡大 L:K が正規であるとは、L において、少なくとも一つの根を持つ K 上の既約多項式 f は、全て、L において(一次因数に)分解している時を言う。

Algebra III を受講した感想、コメント、なんでも構いませんから書いて下さい。(これによって、成績に不利益を及ぼすことはありませんが、同時に、利益を受けることもありません。)

Report および 演習 を 50 点満点、Final を 150 点満点、合計 200 点満点で計算して、成績を出す予定です。

鈴木寬@国際基督教大学数学教室