DataScience Specialization Test Series -Test 2 - Batch A & B - 11th October 2023

Total points 38/60 (2)

The respondent's email (rajendraku0000@gmail.com) was recorded on submission of this

0 of 0 points

Name *

Rajendra Kumar

DataScience Specialization Test Series - Test 2 - Batch A & B - 11th October 2023

38 of 60 points

✓ What is the output of the given code for i in range(101,115): if i == 103: break print(i)
 ● 101 102
 ✓ 102
 ○ 101 102 103
 ○ None of the above

✓	What is the purpose of dimensionality reduction techniques like Principal Component Analysis (PCA)?	1/1
0	To increase the number of features in the dataset	
\bigcirc	To decrease the computational complexity of the model	
	To eliminate irrelevant features and reduce data dimensionality	/
0	To add noise to the data	
×	When performing matrix multiplication using np.dot or @ operator, what is the requirement for the inner dimensions of the matrices?	0/1
0	The inner dimensions must be equal.	
0	The inner dimensions must be different.	
•	There is no specific requirement for the inner dimensions.	×
0	"The inner dimensions must be integers.	
Corr	ect answer	
•	The inner dimensions must be equal.	

✓	Which of the following is an example of an unsupervised learning algorithm?	1/1
\bigcirc	Linear Regression	
	K-Means Clustering	✓
\bigcirc	Decision Trees	
0	Support Vector Machines	
✓	In machine learning, what is the term "overfitting" referring to?	1/1
	Model memorizes training data but fails to generalize	✓
0	Model's inability to learn from training data	
0	Model's inability to memorize training data	
0	Model's ability to generalize well	
~	What is the output of the given code s = "My name is Nick" x = s.count('n') print(x)	1/1
•	1	✓
0	2	
0	0	
0	TypeError	

✓ What Keyword we use for creating an alias name?	1/1
as	✓
with	
like	
in	
Which of the following is an advantage of using an ensemble learn method like Random Forest over a single decision tree?	ning 0/1
Random Forest is less computationally intensive.	
Random Forest is immune to overfitting.	
Random Forest provides more interpretable results.	×
Random Forest reduces variance and improves generalization.	
Correct answer	
Random Forest reduces variance and improves generalization.	

★ What is the output of the given code	0/1
s = {1, 2, 3}	
$t = \{2, 3, 4\}$	
x = s ^ t	
print(x)	
(2,3)	
(1,4)	
(1,2,3,4)	X
0 8	
Correct answer	
{1,4}	
✓ What method to use to all characters in the string are number	rs? 1/1
isdigit()	~
isnum()	
isnumeric()	

✓	Which evaluation metric is commonly used for binary classification problems when the dataset is imbalanced?	1/1
0	Mean Absolute Error (MAE)	
0	Mean Squared Error (MSE)	
•	F1 Score	✓
0	R-squared (R2)	
✓	What is the purpose of regularization techniques such as L1 and L2 regularization in machine learning?	1/1
0	To increase model complexity	
0	To reduce model bias	
	To prevent overfitting by adding a penalty to the model's parameters	✓
0	To speed up model training	

✓	What is the result of the following NumPy code?	1/1
	import numpy as np	
	arr = np.array([1, 2, 3, 4, 5]) result = np.percentile(arr, 25)	
•	1	✓
0	2.5	
0	3	
0	4	
~	What is the loss function used in logistic regression for binary classification?	1/1
0	Mean Absolute Error (MAE)	
0	Mean Squared Error (MSE)	
•	Cross-Entropy Loss (Log Loss)	~
0	Hinge Loss	

×	You have a NumPy array arr with shape (3, 4, 5). What is the result of the following operation?	0/1
	result = np.mean(arr, axis=(0, 2))	
	A 4x3 array	×
0	A 3x5 array	
0	A 1D array with 4 elements	
0	A 1D array with 5 elements	
Corr	ect answer	
•	A 1D array with 4 elements	
✓	What is the result of the given code import pandas as pd	1/1
	df.xyz.map(dict(yes=1, no=0))	
	For the column xyz replaces yes to 1 and no to 0	✓
0	For the column xyz creates a dictionary where yes maps to 1 and no to 2	
0	SyntaxError	
0	TypeError	

✓	Which algorithm is commonly used for natural language processing (NLP tasks, such as text classification and sentiment analysis?) 1/1
0	Random Forest	
\bigcirc	K-Means Clustering	
•	Naive Bayes	✓
0	Principal Component Analysis (PCA)	
~	What is the main drawback of the k-nearest neighbors (KNN) algorithm?	1/1
	It is sensitive to outliers.	✓
\bigcirc	It cannot handle categorical data.	
\bigcirc	It requires a lot of training data.	
0	It is computationally efficient for large datasets.	
×	Given a 2D NumPy array arr, how can you calculate the determinant of the submatrix formed by removing the first row and last column?	0/1
\bigcirc	determinant = np.linalg.det(arr[1:, :-1])	
•	determinant = np.det_submatrix(arr, rows=[0], cols=[-1])	×
\bigcirc	determinant = np.remove_row_last_col_det(arr)	
\bigcirc	determinant = np.linalg.det(arr[1:, 1:])	
Corr	ect answer	
•	determinant = np.linalg.det(arr[1:, :-1])	

✓	What is the output of the given code import pandas as pd	1/1
	data = {'Name': ['nicki', 'hary', 'naman', 'jivit'], 'Age': [28, 24, 35, 32]	
	df = pd.DataFrame(data) print(df['Age'].avg())	
•	29.75	✓
0	28	
0	30	
0	None of the above	
✓	What is the purpose of the term "dropout" in deep neural networks?	
0	To remove outliers from the dataset	
	To prevent overfitting by randomly deactivating neurons during training	✓
0	To reduce the learning rate of the network	
0	To increase the model's complexity	

×	What is the output of the given code print('1234444'>'2111')	0/1
•	1234444'>'2111'	×
0	TRUE	
0	FALSE	
0	2111	
Corr	ect answer	
•	TRUE	
✓	What is the output type of the given code string="It might rain today" print(string.split('t'))	1/1
0	string	
•	list	✓
0	set	
0	tuple	

✓	Which type of machine learning task involves predicting a continuous value, such as house prices or stock prices?	1/1
0	Classification	
0	Clustering	
0	Regression	/
0	Reinforcement Learning	
×	What is the purpose of the term "early stopping" in the context of training neural networks?	0/1
0	To stop training as soon as a specific layer in the network is reached	
0	To terminate training when the loss on a validation set starts to increase	
	To stop training after a fixed number of epochs, regardless of performance	×
0	To halt training if the learning rate becomes too large	
Corr	rect answer	
•	To terminate training when the loss on a validation set starts to increase	

/	What is the primary difference between k-means clustering and hierarchical clustering?	1/1
0	K-means is a supervised learning technique, while hierarchical clustering is unsupervised.	
•	K-means requires the number of clusters (k) to be specified in advance, while hierarchical clustering does not.	✓
0	. K-means always produces a dendrogram, while hierarchical clustering does no	t.
0	K-means is only applicable to binary classification problems.	
/	In ensemble learning, what does bagging (Bootstrap Aggregating) involve?	1/1
0	Training multiple models on the same dataset	
0	Combining the predictions of multiple models	
0	Reducing the complexity of a single model	
•	Randomly selecting subsets of the dataset for training	✓
~	Which optimization algorithm is commonly used to train deep neural networks?	1/1
•	Gradient Descent	✓
0	K-Means Clustering	
0	Principal Component Analysis (PCA)	
0	Random Forest	

X You are given a 2D NumPy array arr of shape (4, 4). How can you obtain a 0/1 new 2D array submatrix containing only the elements from rows 1 to 3 (inclusive) and columns 2 to 3 (inclusive)?

submatrix = arr[1:3, 2:3]

X

- submatrix = arr[1:4, 2:4]
- submatrix = arr[0:2, 1:3]
- submatrix = arr[2:3, 1:3]

Correct answer

submatrix = arr[1:4, 2:4]

~	What is the output of the given code string="It might rain today" x=string[::-1] print(x)	1/1
•	yadot niar thgim tl	✓
0	it might rain today	
0	today rain might it	
0	TypeError	
	What is the output of the given code y = {2:20,4:40,6:60,8:80} x = sum(y.values()) print(x%2) 100 50 0	1/1
	2	

~	What is the output of the given code $d = \{'a': \{1: 'one', 2: 'two'\}, 'b': \{3: 'three', 4: 'four'\}\}\$ $x = d['b']$ print(x[3])	
	three	✓
\bigcirc	{3: 'three', 4: 'four'}	
0	RuntimeError	
0	None of the above	
~	What is the output of the given code import pandas as pd import numpy as np data = pd.DataFrame({'Name': ['nicki', 'hary', 'naman', 'jivit'], 'Age': [28, 24, 35, 32] }) data['newcol'] = np.random.randint(1, 100, data.shape[0])	1/1
	print(data['newcol'])	
•	Lists random numbers assigned for each row	✓
0	Lists 100 rows with value 1	
0	Lists all rows of newcol assigned values of 100	
0	RuntimeError	

×	What is the output of the following NumPy code? import numpy as np arr np.array([1, 2, 3, 4, 5]) result = np.where(arr $>$ 3)[0]	= 0/1
\bigcirc	Array([3, 4])	
•	Array([4, 3])	×
0	Array([0, 1, 2])	
0	Array([1, 2])	
Corr	ect answer	
•	Array([3, 4])	
×	Which technique is used to combat the problem of class imbalance in a classification problem by assigning different misclassification costs to different classes?	0/1
0	Over-sampling	
\bigcirc	Under-sampling	
0	Cost-sensitive learning	
•	Bagging	×
Corr	ect answer	
•	Cost-sensitive learning	

~	What method is used for slicing a dataframe label based	1/1
0	iloc	
	loc	✓
\bigcirc	label	
0	ix	
×	Given a 1D NumPy array arr, how can you find the index of the first occurrence of a value greater than a specified threshold threshold?	0/1
0	index = np.where(arr > threshold)[0]	
0	index = arr.index(arr > threshold)[0]	
0	index = np.searchsorted(arr, threshold, side='right')	
•	index = np.argwhere(arr > threshold)[0]	×
Corr	rect answer	
•	index = np.where(arr > threshold)[0]	

×	Which machine learning algorithm is particularly well-suited for solving problems involving sequences and time series data, such as speech recognition or language translation?	0/1
\circ	Decision Trees	
\bigcirc	Convolutional Neural Networks (CNN)	
\bigcirc	Long Short-Term Memory (LSTM)	
	K-Means Clustering	×
Corr	ect answer	
•	Long Short-Term Memory (LSTM)	
×	Given a 2D NumPy array arr, how can you obtain the indices of the minimum value in each column?	0/1
0	col_min_indices = np.argmin(arr, axis=0)	
	col_min_indices = arr.argmin(axis=1)	×
\bigcirc	col_min_indices = np.argmin(arr, axis=1)	
0	col_min_indices = arr.argmin(axis=0)	
Corr	ect answer	
	col_min_indices = np.argmin(arr, axis=0)	

What is the output of the given code s = {10, 20, 35} t = frozenset(s) t.add(45) print(t)	1/1
(10,20,35)	
(10,20,35,45)	
TypeError	✓
None of the above	
✓ What is the value of x x=max("It might rain today")	1/1
y	✓
might	
today	
it	

	NA/least in the country of the conjugate and a	1 /1
	What is the output of the given code def fun(num):	1/1
	if(num<0):	
	return	
	if num%2==0:	
	print("fun")	
	else:	
	print("no fun")	
	num-=1	
	fun(num)	
	fun(3)	
0	no fun fun	
\bigcirc	no fun fun no fun fun fun	
	no fun fun no fun fun	✓
\bigcirc	RuntimeError	
✓	What is the primary goal of supervised machine learning?	1/1
\bigcirc	Uncover hidden patterns in data	
	Minimina mandal a mandavito.	
\circ	Minimize model complexity	
	Make predictions or classify data	✓
\bigcirc	Reduce overfitting	

. In a support vector machine (SVM), what is the primary goal when choosing the hyperplane that separates data points?	1/1
Maximize the margin between data points and the hyperplane	✓
Minimize the number of support vectors	
Minimize the dimensionality of the data	
Maximize the overlap between different classes	
What is the main purpose of a validation set in the machine learning workflow?	0/1
To train the model	
To evaluate the model's performance on unseen data	×
To fine-tune hyperparameters	
To test the model's generalization	
Correct answer	
To fine-tune hyperparameters	

×	What is the purpose of cross-validation in machine learning?	0/1
	Select the best hyperparameters for a model Train a model on multiple datasets Evaluate a model's performance on a holdout dataset	×
Corr	Assess a model's generalization and reduce bias ect answer Assess a model's generalization and reduce bias	
×	What is the output of the given code d1 = {'a': 11, 'b': 22, 'c': 33, 'd': 44} d2 = {'a': 10, 'b': 20, 'c': 30, 'd': 40} result = map(lambda x, y: x + y, d1.values(), d2.values()) print(list(result))	0/1
	[11,22,33,44] [21,42,63,83] [10,20,30,40] none of the above	×
Corr	ect answer [21,42,63,83]	

✓	What is the value of x d = {'a': [1, 2,5,10,20], 'b': [3, 4,1]} x = d['a'] if 'a' in d else 'Not Found'	1/1
	[1, 2,5,10,20]	✓
0	TRUE	
0	{'a': [1, 2,5,10,20]}	
\bigcirc	none	
×	You have a 2D NumPy array matrix. How can you calculate the mean of each column and store the result in a 1D NumPy array column_means?	0/1
	column_means = np.mean(matrix, axis=0) column_means = matrix.mean(axis=1)	×
0	column_means = np.mean(matrix, axis=1)	
0	column_means = matrix.mean(axis=0)	
Corr	ect answer	
	column_means = np.mean(matrix, axis=0)	

✓ What is the output of the given code f = lambda x, y: x/10 if x > y else y/10 print(f(11, 10))	1/1
1.1	✓
O 1	
O 0	
O 10	
✓ Which type of machine learning algorithm is most suitable for time forecasting tasks, such as stock price prediction or weather forecast.	
O Supervised learning	
Unsupervised learning	
Reinforcement learning	
Recurrent Neural Networks (RNN)	✓
✓ What is the correct code to list columns names of a dataframe	1/1
df.columns.tolist()	
list(df.columns)	
both a and b	✓
None of the above	

✓	In machine learning, what does the term "hyperparameter" refer to?	1/1
0	The features of the dataset	
0	The parameters of the machine learning model	
0	The variables that are automatically learned during training	
•	The settings or configurations that are set before training a model	✓
×	Which machine learning algorithm is best suited for anomaly detection tasks, such as fraud detection or network intrusion detection?	0/1
0	. K-Means Clustering	×
0	Support Vector Machines (SVM)	
0	Decision Trees	
0	Naïve Bayes	
Corre	ect answer	
•	Support Vector Machines (SVM)	
~	In deep learning, what is the purpose of an activation function in a neural network?	1/1
0	It defines the learning rate of the network.	
0	It initializes the weights of the network.	
•	It introduces non-linearity to the model.	✓
0	It determines the network architecture	

H

✓ What is the purpose of the bias-variance trade-off in model selection?	1/1
To minimize both bias and variance	
To maximize both bias and variance	
To balance the trade-off between underfitting and overfitting	✓
To ignore bias and focus only on variance	

This form was created inside REGex Software Services.

Google Forms