

Übungen zur Vorlesung

Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2022/2023

Prof. Dr.-Ing. Sebastian Schlesinger

Besprechung in nächster Vorlesung

Blatt 3

Aufgabe 3.1 (Mengen)

(5 Punkte) Bestimmen Sie die folgenden Mengen:

- (i) $(\{1,2\} \times \{3,4\}) \cup \{1,2,3\}$
- (ii) $\{a,b\} \times \mathcal{P}(\{1,2\})$
- (iii) $\mathscr{P}(\{1,2\}) \cap \mathscr{P}(\{1\})$
- Lösung Anfang
 - (i) $\{1, 2, 3, (1, 3), (1, 4), (2, 3), (2, 4)\}$
 - (ii) $\{(a,\emptyset),(b,\emptyset),(a,\{1\}),(b,\{1\}),(a,\{2\}),(b,\{2\}),(a,\{1,2\}),(b,\{1,2\})\}$
- (iii) $\{\emptyset, \{1\}\}$
- Lösung Ende —

Aufgabe 3.2 (Mengenbeweis)

(4 Punkte)

Zeigen Sie für beliebige Mengen *A*, *B*:

$$A \subseteq B \Leftrightarrow \mathscr{P}(A) \subseteq \mathscr{P}(B)$$

— Lösung Anfang —

"⇒":

Sei $M \in \mathcal{P}(A)$. Wir wollen zeigen, dass dann auch $M \in \mathcal{P}(B)$.

Dann ist $M \subseteq A$. Da aber $A \subseteq B$ ist auch $M \subseteq B$ und damit $M \in \mathcal{P}(B)$.

"≔":

Sei $x \in A$. Wir wollen zeigen, dass dann $x \in B$. Es ist $\{x\} \subseteq A$, also $\{x\} \in \mathcal{P}(A)$.

Wegen Voraussetzung ist aber $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, also $\{x\} \in \mathcal{P}(B)$ und damit $x \in B$.

— Lösung Ende —