

Espontaneidade das Reações

Para a reação ocorrer espontaneamente, é necessário que o elemento ("íon") que se oxida possua maior potencial de oxidação, e que o elemento ("íon") que se reduz possua maior potencial de redução.

$$\Delta E^0 = (E^0_{oxid} + E^0_{red}) > 0$$

Observação – Se ΔE < 0 a reação não é espontânea.

EXERCÍCIOS DE APLICAÇÃO

01 (PUC-RS) Com base nos seguintes potenciais de redução:

$$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s) E^{\circ} = -2,37 V$$

$$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$$
 E° = -0,25 V

$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(s)$$
 $E^{\circ} = 0.77 \text{ V}$

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $E^{\circ} = 0.34V$

A equação que corresponde à única reação espontânea é:

- a) $Mg^{2+}(aq) + Ni(s) \rightarrow Mg(s) + Ni^{2+}(aq)$
- b) $Cu^{2+}(aq) + Mg(s) \rightarrow Cu(s) + Mg^{2+}(aq)$
- c) $Ni^{2+}(aq) + 2Fe^{2+}(aq) \rightarrow Ni(s) + 2Fe^{3+}(aq)$
- d) $Cu^{2+}(aq) + 2Fe^{2+}(aq) \rightarrow Cu(s) + 2Fe^{3+}(aq)$
- e) $Ni^{2+}(aq) + Cu(s) \rightarrow Ni(s) + Cu^{2+}(aq)$

02 (UFC-CE) Considere as seguintes reações de oxidação-redução, as quais representam processos espontâneos:

Na(s) + Ag⁺(aq)
$$\rightarrow$$
 Na⁺(aq) + Ag(s)
Li(s) + Na⁺(aq) \rightarrow Li⁺(aq) + Na(s)

$$Li(s) + Ag^{+}(aq) \rightarrow Li^{+}(aq) + Ag(s)$$

Assinale a alternativa que contém as relações corretas de ordem de grandeza dos potenciais de redução (E°) para os processos acima relacionados.

- a) E° (Na⁺/Na) > E° (Ag⁺/Ag) > E° (Li⁺/Li)
- b) E° (Ag⁺/Ag) > E° (Na⁺/Na) > E° (Li⁺/Li)
- c) E° (Li⁺/Li) > E° (Na⁺/Na) > E° (Ag⁺/Ag)
- d) E° (Li⁺/Li) > E° (Ag⁺/Ag) > E° (Na⁺/Na)
- e) E° (Ag⁺/Ag) > E° (Li⁺/Li) > E° (Na⁺/Na)

03 (UFSCar-SP) Filtros de piscinas, construídos em ferro, são muito afetados pela corrosão. No processo de corrosão, ocorre a dissolução lenta do metal, com a formação de íons Fe²⁺ em solução aquosa.

Para a proteção dos filtros, são utilizados os chamados "eletrodos de sacrifício". Estes eletrodos são barras de metais convenientemente escolhidas que, colocadas em contato com o filtro, sofrem corrosão no lugar do ferro.

Com base nos dados a seguir:

Semi-reação	E ⁰ (volt)
$Mg^{2+} + 2e^{-} = Mg^{0}$	-2,37
$Fe^{2+} + 2e^{-} = Fe^{0}$	-0,44
$Ni^{2+} + 2e^{-} = Ni^{0}$	-0,26
$Cu^{2+} + 2e^{-} = Cu^{0}$	+0,34

pode-se prever que são "eletrodos de sacrifício" adequados barras de:

- a) magnésio, apenas.
- b) cobre, apenas.
- c) níquel, apenas.
- d) cobre e níquel, apenas.
- e) cobre, níquel e magnésio.
- 04 **(UFMG-MG)** Um fio de ferro e um fio de prata foram imersos em um mesmo recipiente contendo uma solução de sulfato de cobre (II), de cor azul. Após algum tempo, observou-se que o fio de ferro ficou coberto por uma camada de cobre metálico, o de prata permaneceu inalterado e a solução adquiriu uma coloração amarelada.

Com relação a essas observações, é correto afirmar que:

- a) a oxidação do ferro metálico é mais fácil que a do cobre metálico.
- b) a solução ficou amarelada devido à presença dos íons Cu²⁺.
- c) a substituição do sulfato de cobre (II) pelo cloreto de cobre (II) não levaria às mesmas observações.
- d) o cobre metálico se depositou sobre o ferro por este ser menos reativo que a prata.

05 **(UFV-MG)** Em três recipientes, cada um deles contendo, separadamente, soluções aquosas de sulfato de magnésio (MgSO₄), nitrato de prata (AgNO₃) e sulfato de cobre (CuSO₄), foram mergulhadas lâminas de zinco (Zn°). Considere os seguintes potenciais-padrão de redução:

Semi-reação (em solução aquosa)	Potencial (Volts)
$Ag^+ + e^- \rightarrow Ag^0$	+ 0,80
$Cu^{2+} + 2e^{-} \rightarrow Cu^{0}$	+ 0,34
$Mg^{2+} + 2e^{-} \rightarrow Mg^{0}$	- 2,40
$Zn^{2+} + 2e^- \rightarrow Zn^0$	- 0,76

Haverá deposição de metal sobre a lâmina de zinco:

- a) em todas as soluções.
- b) somente na solução de MgSO₄.
- c) somente na solução de AgNO₃.
- d) nas soluções de CuSO₄ e MgSO₄.
- e) nas soluções de AgNO3 e CuSO4.

06 Considere os seguintes potenciais-padrão em volts:

Cu^{2+}/Cu^0	Zn^{2+}/Zn^0	Ag^+/Ag^0	Pb^{2+}/Pb^0	Fe ²⁺ / Fe ⁰	Ni ²⁺ / Ni ⁰	Al^{3+}/Al^{0}
+0,34	-0,76	+0,80	-0,13	-0,44	- 0,25	-1,66

O processo que ocorre espontaneamente está esquematizado em:

07 Um grave problema para a economia mundial é a corrosão do ferro. Um dos processos que tentam minorá-la é a proteção catódica por eletrodos de sacrifício, que consiste em se ligar ao ferro um outro metal que funcionará como "metal de sacrifício", protegendo-o.

São dados a seguir os potenciais-padrão de redução (E°):

$$E^{\circ} \text{ (volt)}$$

$$Mg^{2+} + 2 e^{-} \rightarrow Mg$$

$$Zn^{2+} + 2 e^{-} \rightarrow Zn$$

$$Fe^{2+} + 2 e^{-} \rightarrow Fe$$

$$Ni^{2+} + 2 e^{-} \rightarrow Ni$$

$$Cu^{2+} + 2 e^{-} \rightarrow Cu$$

$$Ag^{1+} + 1 e^{-} \rightarrow Ag$$

$$E^{\circ} \text{ (volt)}$$

$$- 0,38$$

Os metais listados que poderão ser usados como "metais de sacrifício", no processo de proteção catódica do ferro, são:

- a) Cu e Ag.
- b) Ni e Cu.
- c) Ni e Mg.
- d) Mg e Ag.
- e) Mg e Zn.

08 (UFV-MG) Considere as semi-equações e os potenciais-padrão (E°) de redução:

Ag⁺ + e⁻
$$\rightarrow$$
 Ag° E° = + 0,79 volts
Cu²⁺ + 2 e⁻ \rightarrow Cu° E° = + 0,34 volts
Ni²⁺ + 2 e⁻ \rightarrow Ni° E° = - 0,25 volts
Fe²⁺ + 2 e⁻ \rightarrow Fe° E° = - 0,44 volts
Zn²⁺ + 2 e⁻ \rightarrow Zn° E° = - 0,76 volts

Para armazenar uma solução de sulfato de níquel (NiSO₄), poder-se-ia empregar um recipiente de:

- a) apenas Zn.
- b) Ag, Cu, Fe ou Zn.
- c) Ag ou Cu.
- d) apenas Ag.
- e) Fe ou Zn.

09 (CESGRANRIO-RJ) A proteção catódica ilustrada na figura é um dos métodos utilizados para proteger canalizações metálicas subterrâneas contra a corrosão. Próximo à canalização e ligada a ela por um condutor, é colocada uma barra de metal para que sofra preferencialmente a ação do agente oxidante.

Considerando uma tubulação de ferro, assinale a opção que se refere ao elemento que pode ser utilizado como protetor. Dados:

Fe²⁺ + 2 e⁻
$$\rightarrow$$
 Fe° (E° = -0,44 V)
Cu²⁺ + 2 e⁻ \rightarrow Cu° (E° = +0,34 V)
Ag⁺ + e⁻ \rightarrow Ag° (E° = +0,80 V)
Pb²⁺ + 2 e⁻ \rightarrow Pb° (E° = -0,13 V)
Ni²⁺ + 2 e⁻ \rightarrow Ni° (E° = -0,25 V)
Mg²⁺ + 2 e⁻ \rightarrow Mg° (E° = -2,37 V)

- a) Cu
- b) Ag
- c) Pb
- d) Ni
- e) Mg

10 (UFRJ-RJ) O contato com certos metais (como o cobre e o estanho) pode acelerar a corrosão do ferro e torná-la mais intensa, enquanto o contato com outros metais (como o zinco e o magnésio) pode impedir ou retardar a formação de ferrugem.

Levando-se em conta os valores dos potenciais (E°) das semi-reações abaixo:

Mg²⁺(aq) + 2 e⁻
$$\rightarrow$$
 Mg(s) - 2,37 V
Zn²⁺(aq) + 2 e⁻ \rightarrow Zn(s) - 0,76 V
Fe²⁺(aq) + 2 e⁻ \rightarrow Fe(s) - 0,44 V
Sn²⁺(aq) + 2 e⁻ \rightarrow Sn(s) - 0,14 V
Cu²⁺(aq) + 2 e⁻ \rightarrow Cu(s) + 0,34 V
½ O₂(g) + 2 e⁻ + H₂O(ℓ) \rightarrow 2 OH⁻(aq) + 0,41 V

- a) calcule o ΔE° da pilha formada por ferro e oxigênio em meio aquoso e o ΔE° da pilha formada por ferro e zinco em meio aquoso;
- b) explique o fato de o oxigênio ser o oxidante mais forte da série apresentada.

11 (UFRJ-RJ) Podemos prever se uma reação de simples troca ocorre ou não com base na série de reatividade decrescente dos metais.

Mergulhando-se uma lâmina de zinco em uma solução de ácido clorídrico, o zinco deslocará o hidrogênio por ser mais reativo do que ele. Se o cobre é usado em lugar do zinco, não ocorre reação.

Outra forma de se prever a espontaneidade de uma reação é utilizar escalas de potenciais de reação, como, por exemplo, a da tabela a seguir, que deve ser usada para resolver os itens a e b.

Potenciais-padrão de redução	Volts
Zn^{2+} + $2e^- \rightarrow Zn^0$	-0,76
$Ni^{2+} + 2e^- \rightarrow Ni^0$	-0,23
$Cu^{2+} + 2e^- \rightarrow Cu^0$	+0,34

- a) Indique se a equação $Cu^{\circ} + Ni^{2+} \rightarrow Cu^{2+} + Ni^{\circ}$ corresponde a uma reação espontânea. Justifique sua resposta.
- b) Escreva a equação da reação que ocorre no ânodo e calcule a força eletromotriz (ddp-padrão) de uma pilha níquel/zinco.
- 12 (UFRJ-RJ) Estávamos na sede da Aços Villares e eu apresentei meu plano para onze pessoas que pensam, respiram e vivem aço no seu trabalho. Aço, inimigo filosófico e eletrolítico do alumínio.

Amyr Klink, PARATII–Entre dois polos, p. 89

A tabela a seguir indica os potenciais-padrão de redução de alguns metais. Use-a para resolver os itens a e b.

Potenciais-Padrão de redução	Volts
$Mg^{2+} + 2e^- \rightarrow Mg^0$	-2,37
$AI^{3+} + 3e^{-} \rightarrow AI^{0}$	-1,66
$Zn^{2+} + 2e^- \rightarrow Zn^0$	-0,76
$Fe^{2+} + 2e^- \rightarrow Fe^0$	-0,44
$Ni^{2+} + 2e^- \rightarrow Ni^0$	-0,23
$Cu^{2+} + 2e^- \rightarrow Cu^0$	+0,34

a) O alumínio e o aço são muito utilizados na construção de barcos. É comum, entretanto, observarmos a existência de pontos de corrosão nos lugares onde o aço entra em contato direto com o alumínio.

Sabendo que o ferro é o princípio constituinte do aço, escreva a reação de oxirredução que ocorre nestes pontos.

b) Uma forma de proteger um metal contra oxidação é fixar lâminas de outro metal que se oxide mais facilmente do que ele.

Escolha, dentre os metais indicados na tabela, o mais adequado para a proteção de uma embarcação de alumínio. Justifique sua resposta.

13 (ITA-SP) Considere as semi-reações representadas pelas semi-equações abaixo e seus respectivos potenciais-padrão de eletrodo.

Fe²⁺(aq) + 2e⁻
$$\rightarrow$$
 Fe(s) E° = -0,44V
1/3 IO₃⁻(aq) + H₂O(ℓ) + 2e⁻ \rightarrow 1/3 I⁻(aq) + 2 OH⁻(aq) E° = +0,26V
Ag⁺(aq) + e⁻ \rightarrow Ag(s) E° = +0,80V

Com base nas informações acima, qual das opções abaixo é relativa à equação química de uma reação que deverá ocorrer quando os reagentes, nas condições padrão, forem misturados entre si?

- a) $Fe^{2+}(aq) + 1/3 I^{-}(aq) + 2 OH^{-} \rightarrow Fe(s) + 1/3 IO_{3}(aq) + H_{2}O(\ell)$
- b) $2 \text{ Ag(s)} + 1/3 \text{ IO}_3^-(aq) + \text{H}_2\text{O}(\ell) \rightarrow 2 \text{ Ag}^+(aq) + 1/3 \text{ I}^-(aq) + 2 \text{ OH}^-(aq)$
- c) $1/3 I^{-}(aq) + 2 OH^{-}(aq) + 2 Ag^{+}(aq) \rightarrow 2 Ag(s) + 1/3 IO_{3}^{-}(aq) + H_{2}O(\ell)$
- d) Fe(s) + $1/3 I^{-}(aq) + 3 H_2O(\ell) \rightarrow Fe^{2+}(aq) + 1/3 IO_3^{-}(aq) + 2 OH^{-}(aq) + 2 H_2(g)$
- e) 2 Ag(s) + $1/3 I^{-}(aq) + 3 H_2O(\ell) \rightarrow 2 Ag^{+}(aq) + 1/3 IO_3^{-}(aq) + 2 OH^{-}(aq) + 2 H_2(g)$
- 14 (UnB-DF) Alguns trocadores de calor utilizam tubos de alumínio por meio dos quais passa a água utilizada para a refrigeração. Em algumas indústrias, essa água pode conter sais de cobre. Sabendo que o potencial-padrão de redução para o alumínio ($A\ell^{3+}$ para $A\ell^{\circ}$) é de -1,66 V e, para o cobre (Cu^{2+} para Cu°), é de + 0,34 V, julgue os itens a seguir.
- (1) A água contendo sais de cobre acarretará a corrosão da tubulação de alumínio do trocador de calor.
- (2) Na pilha eletroquímica formada, o cobre é o agente redutor.
- (3) Se a tubulação do trocador fosse feita de cobre, e a água de refrigeração contivesse sais de alumínio, não haveria formação de pilha eletroquímica entre essas espécies metálicas.
- (4) O valor, em módulo, do potencial-padrão para a pilha eletroquímica formada é igual a 1,32 V.
- 15 (ITA-SP) Abaixo são feitas observações sobre corrosão do ferro em água aerada, sob as mesmas condições de pressão e temperatura, com pregos de ferro, limpos e polidos e submetidos a diferentes meios.
- 1. Prego limpo e polido imerso em água aerada.
- Com o passar do tempo, surgem sinais de aparecimento de ferrugem ao longo do prego (formação de um filme fino de uma substância sólida com coloração marrom-alaranjada).
- 2. Prego limpo e polido recoberto com graxa imerso em água aerada.
- Não há alteração perceptível com o passar do tempo.
- 3. Prego limpo e polido envolvido por uma tira de magnésio e imerso em água aerada.
- Com o passar do tempo, observa-se a precipitação de grande quantidade de uma substância branca, mas a superfície do prego continua aparentemente intacta.
- 4. Prego limpo e polido envolvido por uma tira de estanho e imerso em água aerada.
- Com o passar tempo, surgem sinais de aparecimento de ferrugem ao longo do prego.
- a) Escreva as equações químicas balanceadas para a(s) reação(ões) observada(s) nos experimentos 1, 2 e 3, respectivamente.
- b) Com base nas observações feitas, sugira duas maneiras diferentes de evitar a formação de ferrugem sobre o prego.
- c) Ordene os metais empregados nos experimentos descritos nas observações acima, segundo o seu poder redutor. Mostre como você raciocinou para chegar à ordenação proposta.

- 16 (FUVEST-SP) Deseja-se distinguir, experimentalmente, o estanho do zinco. Para tal, foram feitos três experimentos.
- I. Determinou-se a densidade de um dos metais, a 20°C, com margem de erro de 3%, e achou-se o valor 7,2 g/cm³.
- II. Colocou-se, separadamente, cada um dos metais em uma solução aquosa de ácido clorídrico, de concentração 1 mol/L.
- III. Colocou-se, separadamente, cada um dos metais em uma solução aquosa de sulfato ferroso, de concentração 1 mol/L. Para cada um dos experimentos, com base nos dados fornecidos, explique se foi possível ou não distinguir um metal do outro.

Dados:

Metal (Me)	Densidade a 20 °C (g/cm³)	E _{red} (Me ²⁺ ,Me) (V)
Sn	7,29	-0,14
Zn	7,14	-0,76
Fe		-0,44

17 (FAAP-SP) Uma indústria dispõe de dois tanques para estocar uma solução de sulfato de níquel II, de concentração 1 mol/L. Um deles é construído em ferro e outro tem um revestimento interno de chumbo. Relativamente à contaminação da solução a estocar, por parte do material de construção do tanque, podemos concluir que: Dados:

$Pb^{2+} + 2e^{-} \rightarrow Pb^{0}$	$E^0 = -0.13 \text{ V}$
$Ni^{2+} + 2e^- \rightarrow Ni^0$	$E^0 = -0.25 \text{ V}$
$Fe^{2+} + 2e^{-} \rightarrow Fe^{0}$	$E^0 = -0.44 \text{ V}$

- a) em qualquer dos recipientes ocorre contaminação.
- b) haverá contaminação por parte do chumbo.
- c) não haverá contaminação por parte do ferro.
- d) não haverá contaminação por parte do chumbo.
- e) é impossível concluir sobre a referida contaminação.
- **18 (FUVEST-SP)** Um tipo de bafômetro usado pela polícia rodoviária para medir o grau de embriaguez dos motoristas consiste em uma pilha eletroquímica que gera corrente na presença de álcool (no ar expirado) devido à reação:

2 CH₃CH₂OH(g) + O₂(g)
$$\rightarrow$$
 2 CH₃CHO(g) + 2 H₂O(ℓ)

- O "suspeito" sopra através de um tubo para dentro do aparelho onde ocorre, se o indivíduo estiver alcoolizado, a oxidação do etanol à etanal e a redução do oxigênio à água, em meio ácido e em presença de catalisador (platina).
- a) Sabendo-se que a semi-reação que ocorre em um dos eletrodos é: CH₃CH₂OH → CH₃CHO + 2H⁺ + 2e⁻ Escreva a semi-reação que ocorre no outro eletrodo.
- b) Sendo E°₁ e E°₂, respectivamente, os potenciais-padrão de redução, em meio ácido, dos eletrodos (CH₃CHO, CH₃CH₂OH) e (O₂, H₂O), para que a reação da pilha ocorra é necessário que E°₁ seja maior ou menor do que E°₂ ? Explique.

- 19 (FMU-SP) Para retardar a corrosão do ferro (E° Fe²⁺ /Fe = -0,44 V) dos cascos de navios e canalizações subterrâneas, costuma-se aplicar a eles blocos de um metal que funciona como "metal de sacrifício". Dadas as seguintes semi-reações, com os respectivos potenciais de redução, qual será o melhor "metal de sacrifício" para o ferro?
- a) $Ag^+ + 1e^- \rightarrow Ag E^\circ = 0.80 \text{ volts}$
- b) $Cu^{2+} + 2 e^{-} \rightarrow Cu E^{\circ} = 0.34 \text{ volts}$
- c) $Zn^{2+} + 2 e^{-} \rightarrow Zn E^{\circ} = -0.76 \text{ volts}$
- d) $Mg^{2+} + 2 e^- \rightarrow Mg E^\circ = -2,38 \text{ volts}$
- e) Não existe "metal de sacrifício".
- 20 (UFU-MG) São dadas as seguintes semi-reações com os respectivos potenciais de eletrodos:

$$Mg \rightarrow Mg^{2+} + 2e^{-}E^{\circ} = +2,34 \text{ V}$$

$$Ni \rightarrow Ni^{2+} + 2e^{-}E^{\circ} = +0,25 \text{ V}$$

$$Cu \rightarrow Cu^{2+} + 2e^{-}E^{\circ} = -0.35 \text{ V}$$

$$Ag \rightarrow Ag^{+} + e^{-} E^{\circ} = -0.80 V$$

Considere agora as seguintes reações:

I. Mg + Ni²⁺
$$\rightarrow$$
 Mg²⁺ + Ni

II. Ni + Cu²⁺
$$\rightarrow$$
 Ni²⁺ + Cu

III.
$$2 \text{ Ag}^+ + \text{Mg} \rightarrow \text{Mg}^{2+} + 2 \text{ Ag}$$

IV.
$$Ni^{2+} + 2 Ag \rightarrow Ni + 2 Ag^{+}$$

A análise das equações I, II, III e IV nos permite concluir que:

- a) somente II e III são espontâneas.
- b) somente III e IV são espontâneas.
- c) somente I e II são espontâneas.
- d) somente I, II e III são espontâneas.
- 21 (FUVEST-SP) Uma liga metálica, ao ser mergulhada em ácido clorídrico, pode permanecer inalterada, sofrer dissolução parcial ou dissolução total. Qual dessas situações citadas será observada com a liga de cobre e zinco (latão)? Justifique utilizando as informações relativas às semi-reações medidas em E° (volt):

I.
$$Cl_2 + 2e^- \rightarrow 2Cl^-$$

$$E^0 = +1,36$$

II.
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$
 $E^{0} = +0.34$

$$E^0 = +0,34$$

III.
$$2 H^+ + 2 e^- \rightarrow H_2$$
 $E^0 = 0,00$

$$E^0 = 0,00$$

IV.
$$Zn^{2+} + 2e^{-} \rightarrow Zn$$
 $E^{0} = -0.76$

$$E^0 = -0.76$$

22 (UEL-PR) Quatro lâminas de alumínio são colocadas em contato com soluções aquosas de: $Mg(NO_3)_2$, $Pb(NO_3)_2$, $AgNO_3$ e $Zn(NO_3)_2$. Após certo tempo, constata-se que a massa do alumínio permanece inalterada apenas na primeira solução. Com esse resultado, é possível afirmar que, dentre os seguintes metais, o mais redutor é:

- a) Aℓ
- b) Pb
- c) Ag
- d) Mg
- e) Zn

23 Na tabela apresentada a seguir são indicados os potenciais-padrão de redução (E°) para alguns metais.

Semi-rea	ção	E ⁰ / V vs ERH
${\rm Mg^{2+}}_{\rm (aq)}$ + 2 e ⁻	$\to Mg_{(s)}$	- 2,37
AI^{3+} (aq) + 3 e ⁻	$\rightarrow Al_{(s)}$	- 1,66
Zn ²⁺ _(aq) + 2 e ⁻	$\to Zn_{(s)}$	- 0,76
$Fe^{2+}_{(aq)} + 2 e^{-}$	$\to Fe_{(s)}$	- 0,44
Cu ²⁺ _(aq) + 2 e ⁻	$\to Cu_{(s)}$	+ 0,34
Ag ¹⁺ _(aq) + 1 e ⁻	$\to Ag_{(s)}$	+ 0,80

Observando a tabela, pode-se afirmar que sais de alumínio, nas condições-padrão, só podem reagir com:

- a) zinco metálico.
- b) sais de cobre.
- c) sais de ferro.
- d) magnésio metálico.
- e) prata metálica.
- 24 (VUNESP-SP) São fornecidos os seguintes potenciais de redução, determinados a 25°C:

$$\begin{split} Mg_{(aq)}^{2+} + 2e^{-} &\rightleftarrows Mg_{(s)} & E^{0} = -2.4 \, V \\ Cu_{(aq)}^{2+} + 2e^{-} &\rightleftarrows Cu_{(s)} & E^{0} = +0.34 \, V \end{split}$$

- a) Em solução aquosa, é possível obter magnésio metálico por reação de redução de sal do seu cátion com cobre metálico? Justifique a resposta.
- b) Escreva a equação da reação química que ocorre em uma pilha que funcione em condições-padrão a 25°C, baseada nas duas semi-reações apresentadas.

25 **(UFJF-MG)** Uma das etapas importantes da purificação da água envolve a oxidação de organismos vivos presentes na mesma. Algumas substâncias químicas poderiam ser utilizadas para este fim. Examine com atenção o quadro abaixo.

$$\begin{array}{c} E_{re} \ (V) \\ CI_{2(g)} + 2 \ e^- \rightarrow 2 \ CI^-_{(aq)} \\ H_2O_{2(aq)} + 2 \ H^+_{(aq)} + 2 \ e^- \rightarrow 2 \ H_2O_{(l)} \\ HCIO_{(aq)} + H^+_{(aq)} + e^- \rightarrow 1/2 \ CI_{2(g)} + 2 \ H_2O_{(l)} \\ O_{3(g)} + 2 \ H^+_{(aq)} + 2 \ e^- \rightarrow O_{2(g)} + H_2O_{(l)} \\ CIO_{3^-(aq)} + 3 \ H^+_{(aq)} + 2 \ e^- \rightarrow HCIO_{2(aq)} + H_2O_{(l)} \\ \end{array} \qquad \begin{array}{c} 1,36 \\ 1,77 \\ 2,07 \\ 2,07 \\ \end{array}$$

Com base nos potenciais de redução das substâncias do quadro, a mais eficiente substância para o processo de purificação seria:

- a) cloro. b) peróxido de hidrogênio.
- c) clorato.
- d) ácido hipocloroso.
- e) ozônio.

26 (UFPI-PI) Os solos, por mais secos que pareçam, sempre contêm água, o que os torna excelentes meios eletrolíticos. Para proteger uma tubulação metálica contra o processo de corrosão, faz-se uso, frequentemente, de uma técnica denominada proteção catódica ou eletrodo de sacrifício, conforme ilustração da figura a seguir.

Analise as afirmativas abaixo.

- I. Quanto mais pura a água do solo, maior a passagem da corrente elétrica.
- II. O eletrodo de sacrifício tem E° > 0 em relação ao metal da tubulação.
- III. Ao formar a pilha com a tubulação, o eletrodo de sacrifício é o ânodo.

Marque a opção correta.

- a) Apenas I é verdadeira.
- b) Apenas II é verdadeira.
- c) Apenas III é verdadeira.
- d) Apenas I e II são verdadeiras.
- e) Apenas II e III são verdadeiras.

- **27 (FUVEST-SP)** Um experimentador tentou oxidar zinco (Zn) com peróxido de hidrogênio (H_2O_2), em meio ácido. Para isso, adicionou, ao zinco, solução aquosa de peróxido de hidrogênio, em excesso, e, inadvertidamente, utilizou ácido iodídrico [HI(aq)] para acidular o meio. Para sua surpresa, obteve vários produtos.
- a) Escreva as equações químicas balanceadas que representam as reações de oxirredução ocorridas no experimento, incluindo a que representa a decomposição do peróxido de hidrogênio, pela ação catalítica do metal.
- b) Poderá ocorrer reação entre o peróxido de hidrogênio e o ácido iodídrico? Justifique, utilizando semirreações e os correspondentes potenciais-padrão de redução.

Dados: Potenciais-padrão de redução (V): peróxido de hidrogênio, em meio ácido, dando água 1,78 oxigênio (O_2), em meio ácido, dando peróxido de hidrogênio 0,70 iodo (I_2) dando íons iodeto 0,54 íons H^+ dando hidrogênio gasoso (H_2) 0,00 íons Zn^{2+} dando zinco metálico - 0,76

- **28 (UNIFESP-SP)** Usando-se uma tabela de potenciais-padrão de redução, foram feitas, corretamente, as seguintes previsões:
- I. O bromo pode ser obtido de uma solução que tenha íons brometo (por exemplo, água do mar), fazendo-se a sua oxidação com cloro.
- II. A reação $Cu^{2+} + 2 Br^{-} \rightarrow Cu^{0} + Br_{2}$ não é espontânea e, por isso, a obtenção de Br_{2} , a partir de uma solução aquosa de $CuBr_{2}$, só pode ser feita por eletrólise desta solução.

Se E°₁, E°₂ e E°₃ forem, respectivamente, os potenciais padrão dos pares $C\ell_2$ / $C\ell^-$, Br_2 / Br^- e Cu^{2+} / Cu, para que essas previsões sejam válidas, deve existir a seguinte relação:

a)
$$E_1^0 < E_2^0 < E_3^0$$

b)
$$E_1^0 < E_2^0 > E_3^0$$

c)
$$E_1^0 > E_2^0 > E_3^0$$

d)
$$E_1^0 > E_2^0 < E_3^0$$

e)
$$E_1^0 > E_2^0 = E_3^0$$

29 **(FUVEST-SP)** Três metais foram acrescentados a soluções aquosas de nitratos metálicos, de mesma concentração, conforme indicado na tabela. O cruzamento de uma linha com uma coluna representa um experimento.

Um retângulo escurecido indica que o experimento não foi realizado; o sinal (-) indica que não ocorreu reação e o sinal (+) indica que houve dissolução do metal acrescentado e precipitação do metal que estava na forma de nitrato.

	Cd	Co	Pb
$Cd(NO_3)_2$		-	_
$Co(NO_3)_2$	+		_
$Pb(NO_3)_2$	+	+	

Cada um dos metais citados, mergulhado na solução aquosa de concentração 0,1 mol/L de seu nitrato, é um eletrodo, representado por Me | Me²⁺, em que Me indica o metal e Me²⁺, o cátion de seu nitrato. A associação de dois desses eletrodos constitui uma pilha. A pilha com maior diferença de potencial elétrico e polaridade correta de seus eletrodos, determinada com um voltímetro, é a representada por:

- a) Cd Cd²⁺ Pb²⁺ Pb
- b) Pb Pb²⁺ Cd²⁺ Cd
- c) Cd Cd²⁺ Co²⁺ Co
- d) Co Co²⁺ Pb²⁺ Pb
- e) Pb | Pb²⁺ || Co²⁺ | Co

Obs.:

significa ponte salina

- ⊕ significa pólo positivo
- ⊖ significa pólo negativo

- 30 (UNIFESP-SP) Quatro metais, M_1 , M_2 , M_3 e M_4 , apresentam as seguintes propriedades:
- I. Somente M_1 e M_3 reagem com ácido clorídrico 1,0 M, liberando $H_2(g)$.
- II. Quando M_3 é colocado nas soluções dos íons dos outros metais, há formação de M_1 , M_2 e M_4 metálicos.
- III. O metal M_4 reduz Mn_2^{n+} , para dar o metal M_2 e íons Mn_4^{n+} .

Com base nessas informações, pode-se afirmar que a ordem crescente dos metais, em relação à sua capacidade redutora, é:

- a) M_1 , M_2 , M_3 e M_4
- b) M_2 , M_4 , M_1 e M_3
- c) M₂, M₁, M₄ e M₃
- d) M₃, M₁, M₄ e M₂
- e) M₄, M₂, M₁ e M₃

31 (UFC-CE) As estátuas de metal, em geral confeccionadas em cobre metálico, apresentam coloração típica. Com o passar do tempo, todavia, observa-se o aparecimento de uma coloração verde, que é atribuída ao produto da reação de oxidação do cobre pelo ar. Considerando que tintas protetoras contendo metal podem funcionar como ânodo de sacrifício e conhecendo-se o valor do potencial-padrão de redução da reação Cu²+ + 2e⁻ → Cu; E° = + 0,34 V, analise a tabela abaixo.

Tinta	Metal presente na tinta	Semi-reação de redução	Potencial-padrão de redução, Eº (V)
- 1	Pb	Pb ⁴⁺ + 2e ⁻ → Pb ²⁺	+ 1,67
П	Zn	$Zn^{2+} + 2e^- \rightarrow Zn$	- 0,76
III	Sn	Sn ²⁺ + 2e ⁻ → Sn	-0,14
IV	Fe	Fe ²⁺ + 2e ⁻ → Fe	- 0,44
V	Ti	$Ti^{2+} + 2e^- \rightarrow Ti$	- 1,63

Considerando somente as informações contidas na questão, assinale a alternativa que apresenta a tinta mais eficaz na proteção de uma estátua de cobre.

- a) Tinta I
- b) Tinta II
- c) Tinta III
- d) Tinta IV
- e) Tinta V

32 O esquema de corrosão do ferro é descrito nas equações abaixo

ânodo: Fe(s) → Fe²⁺(aq) + 2e⁻ Fe²⁺(aq) → Fe³⁺ + e⁻

cátodo: 2 $H_2O(\ell)$ + $O_2(g)$ + $4e^- \rightarrow 4$ OH $^-$ (na presença de O_2) reação global: 2 Fe(s) + 3 $H_2O(\ell)$ + 3/2 $O_2(g) \rightarrow 2$ $Fe(OH)_3(s)$

O recobrimento do material com uma camada de tinta é uma das ações que diminui a ferrugem contra ação da corrosão, porque a tinta

- a) sendo ácida, reage com a ferrugem, neutralizando-a.
- b) promove um aumento da energia de ativação da reação de oxidação, dificultando-a.
- c) possui potencial de oxidação maior que o ferro, oxidando-se no lugar dele.
- d) evita que o ferro se oxide, isolando-o do contato com o oxigênio e a água.
- e) absorve energia solar, aumentando a energia de ativação da reação, dificultando-a.

Dadas as semi-reações e respectivos E_{red}:

- $Mg^{2+} + 2e^- \rightleftharpoons Mg$ $E_{red} = -2,37V$ I)
- $Ag^+ + e^- \rightleftharpoons Ag$ $E_{red} = +0.80V$ II)
- $C\ell_2 + 2e^- \rightleftharpoons 2C\ell^ E_{red} = +1,36V$ 111)
- a) Quais as espécies químicas que se oxidam em I, II e III?
- I)
- II)
- III)
- b) Quais as espécies químicas que se reduzem em I, II e III?
- I)

- c) Quais as espécies químicas oxidantes em I, II e III?
- I)
- II)
- III)
- d) Quais as espécies químicas redutoras em I, II e III?
- I)
- II)
- III)
- e) Qual o oxidante mais forte (mais energético)?
- f) Qual o redutor mais forte (mais energético)?
- g) Qual o oxidante mais fraco (menos energético)?
- h) Qual o redutor mais fraco (menos energético)?
- 34 Dadas as semi-reações e respectivos E_{red:}

I)
$$Cu^{2+} + 2e^{-} \rightleftharpoons Cu$$
 $E_{red} = +0.337 \text{ V}$

$$E_{red} = +0.337 \text{ V}$$

II)
$$Fe^{2+} + 2e^{-} \rightleftharpoons Fe$$
 $E_{red} = -0.440 \text{ V}$

$$F_{rad} = -0.440 \text{ V}$$

a) Qual das reações abaixo é espontânea?

I)
$$Cu + Fe^{2+} \rightarrow Cu^{2+} + Fe$$

II)
$$Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}$$

- b) Podemos guardar uma solução de FeSO₄ numa panela de cobre?
- c) Podemos guardar uma solução de CuSO₄ numa panela de ferro?

35 Encanamentos de ferro mergulhados em água sofrem corrosão, devido, principalmente, à reação:

$$Fe(s) + 2H^{+}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$$

Para proteger encanamentos nessas condições, costuma-se ligá-los a barras de outros metais, que são corroídos, em vez dos canos de ferro. Conhecendo-se os potenciais-padrão de redução:

$$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$$
 $E_{red} = +0.34 \text{ V}$

$$Fe^{2+} + 2e^{-} \Rightarrow Fe(s)$$
 $E_{red} = -0.44 \text{ V}$

$$Mg^{2+} + 2e^{-} \rightleftharpoons Mg(s)$$
 $E_{red} = -2,37 \text{ V}$

$$2H^+ + 2e^- \Rightarrow H_2(g)$$
 $E_{red} = +0,00 \text{ V}$

E dispondo-se de barras de magnésio e cobre, propõe-se:

- a) Qual metal deve ser utilizado para proteger o encanamento? Justifique.
- b) Escreva as reações que ocorrem na associação do cano de ferro com a barra metálica escolhida, indicando o agente oxidante e o agente redutor.
- 36 Evite comprar conserva cuja lata esteja amassada, porque a lata de folha de flandes (uma liga de ferro e carbono) tem uma proteção de estanho que pode romper quando a lata sofre impacto. Nesse caso, forma-se-á uma pilha e haverá contaminação da conserva.

Considerando os valores dos potenciais-padrão de redução:

$$Fe^{3+} + 3e^{-} \Rightarrow Fe(s)$$
 $E_{red} = -0.036 \text{ V}$

$$Sn^{2+} + 2e^{-} \Rightarrow Sn(s)$$
 E_{red} = -0,136 V

- a) Escreva a equação de funcionamento da pilha.
- b) Diga, apresentando justificativa, se está certo ou errado o conteúdo da seguinte frase:

"São os íons Sn²⁺ que contaminam a conserva na situação descrita no texto acima."

37 Ferro zincado é ferro que contém pequena quantidade de zinco metálico.

A partir dos potenciais padrão de redução, listados a seguir, explique os seguintes fatos observados no cotidiano:

Redução	E ^o (volt)
Fe ²⁺ + 2 e ⁻ = Fe	-0,440
Zn ²⁺ + 2 e ⁻ = Zn	-0,763
$\mathbf{A} \mathcal{A}^{3+} + 3 \mathbf{e}^{-} = \mathbf{A} \mathcal{A}$	-1,663

- a) Rebites de ferro em esquadrias de alumínio causam a corrosão do alumínio.
- b) Pregos de ferro zincado são resistentes à ferrugem.
- **(UNICAMP-SP)** Um corpo metálico quando exposto ao ar e à umidade pode sofrer um processo de corrosão (oxidação), o que pode deixá-lo impróprio para a função a que se destinava.
- a) Uma das formas de se minimizar este processo é a "proteção catódica": prende-se um "metal de sacrifício" no corpo que se deseja proteger do processo de oxidação.

Suponha que você deseja fazer a proteção catódica de uma tubulação em ferro metálico. Qual das substâncias da tabela abaixo você usaria? Justifique.

Potenciais padrão de redução:

Semi-reação de redução	
$F_2(g) + 2e^- = 2 F^-(aq)$	E° = +2,87 V
$Br_2(g) + 2 e^{-} = 2 Br^{-}(aq)$	E° = +1,08 V
$Ag^+(aq) + e^- = Ag(s)$	E° = +0,80 V
$Cu^{2+}(aq) + 2 e^{-} = Cu(s)$	E° = +0,34 V
$Ni^{2+}(aq) + 2 e^{-} = Ni(s)$	E° = -0,25 V
$Fe^{2+}(aq) + 2e^{-} = Fe(s)$	$E^{\circ} = -0.44 \text{ V}$
$Mg^{2+}(aq) + 2 e^{-} = Mg(s)$	E° = -2,37 V

b) Uma outra forma de evitar a corrosão é a galvanização: deposita-se sobre o corpo metálico uma camada de um outro metal que o proteja da oxidação. Das substâncias da tabela acima, qual você usaria para galvanizar uma tubulação em ferro metálico? Justifique.

39 **(UFG-GO)** A corrosão de dutos é um sério problema na exploração do petróleo no mar. Uma alternativa simples para evitá-la é ligar os dutos a um metal de sacrifício. Considerando que os dutos utilizados em uma plataforma de exploração sejam de ferro, qual deve ser o metal adequado para evitar a corrosão?

Potenciais padrão a 298K

$$Fe^{2+}/Fe:-0,44V$$
 $Al^{3+}/Al:-1,66V$

$$Pb^{2+}/Pb := 0.13V$$
 $Ag^{+}/Ag := 0.80V$

$$Be^{2+}/Be:-1,87V$$
 $Au^{2+}/Au:+1,69$

- a) Alumínio
- b) Berílio
- c) Chumbo
- d) Ouro
- e) Prata

40 (VUNESP-SP) Os sais de chumbo constituem-se num grave problema ambiental, pois se ingeridos provocam doenças neurológicas irreversíveis. Numa indústria, quer-se desenvolver um método eletroquímico para depositar chumbo metálico no tratamento do seu efluente. Considere os seguintes valores de potenciais padrão de redução em meio ácido:

$$Ag^{+} + e^{-} \rightarrow Ag$$
 $E^{0} = +0.80V$
 $Cu^{2+} + 2e^{-} \rightarrow Cu$ $E^{0} = +0.34V$
 $Pb^{2+} + 2e^{-} \rightarrow Pb$ $E^{0} = -0.13V$
 $Ni^{2+} + 2e^{-} \rightarrow Ni$ $E^{0} = -0.25V$
 $Zn^{2+} + 2e^{-} \rightarrow Zn$ $E^{0} = -0.76V$
 $Al^{3+} + 3e^{-} \rightarrow Al$ $E^{0} = -1.66V$

O metal mais adequado dentre estes, para ser utilizado como ânodo no processo, é:

- a) o cobre.
- b) a prata.
- c) o níquel.
- d) o zinco.
- e) o alumínio.

41 (UNISA-SP) Considere a tabela a seguir, onde o valor do potencial-padrão de vários eletrodos foi medido a 25°C:

Reações	E°/V
$Mg^{2+} + 2e^- \rightarrow Mg$	- 2,38
$Fe^{2+} + 2e^- \rightarrow Fe$	- 0,44
$Ni^{2+} + 2e^- \rightarrow Ni$	- 0,25
$\operatorname{Sn}^{2+} + 2e^{-} \rightarrow \operatorname{Sn}$	- 0,14
$Cu^{2+} + 2e^- \rightarrow Cu$	+ 0,34

Pode-se afirmar que para proteger do processo de oxidação, que resulta na formação da ferrugem, toda extensão de uma tubulação de um gasoduto feita de ferro, deve-se empregar, conectadas à tubulação, tiras de

- a) cobre, apenas.
- b) magnésio, apenas.
- c) estanho, apenas.
- d) níquel, apenas.
- e) estanho e cobre.

42 (UFMT-MT) Sabe-se que a reciclagem do alumínio para produção de latinhas, por exemplo, é um processo muito mais barato e eficiente, além de consumir muito menos energia, do que a sua fabricação a partir do minério de alumínio ($A\ell_2O_3$). Esse metal dissolve-se em ácido clorídrico, mas não em ácido nítrico que oxida rapidamente a superfície do alumínio e o $A\ell_2O_3$ protege o metal de ataques subsequentes. Essa proteção permite que o ácido nítrico seja transportado em tanques de alumínio. Sobre o alumínio, marque V para as afirmativas verdadeiras e F para as falsas.

- () O potencial padrão de redução do alumínio (Eº = −1,66V) mostra que ele é facilmente oxidado.
- () A resistência do alumínio à corrosão deve-se à formação de uma camada fina, dura e transparente de $A\ell_2O_3$ que adere à superfície do metal.
- () A quantidade de matéria de alumínio necessária para se obter 204g de $A\ell_2O_3$ é 2,5 mols.
- () O átomo de alumínio possui número atômico 13 e massa 26,98u.

Assinale a sequência correta.

- a) V, F, V, V
- b) V, V, F, F
- c) V, V, F, V
- d) F, V, F, F
- e) F, F, V, F

43 (UNIFOR-CE) O esquema seguinte refere-se à corrosão do ferro pela ação do oxigênio do ar, em presença de água. depósito de

O examinador de um vestibular deu à digitadora o esquema correto da corrosão do ferro. Entretanto, a digitadora cometeu vários erros e liberou o esquema acima, em que

- I. trocou as palavras anodo e catodo;
- II. escreveu errada uma das reações de oxirredução;
- III. escreveu errado a fórmula do composto de ferro depositado na superfície.

Está correto o que se afirma em

- a) I, somente.
- b) II, somente.
- c) III, somente.
- d) I e II, somente.
- e) I, II e III.

44 (UNIMONTE-MG) Os potenciais padrões de redução do ferro (Fe) e do cromo (Cr) são dados a seguir:

Fe²⁺(aq) + 2e⁻
$$\rightarrow$$
 Fe(s) E° red = -0,44 V
Cr²⁺(aq) + 2e⁻ \rightarrow Cr(s) E° red = -0,91 V

Um guidom de uma bicicleta é feito de aço (que tem ferro como um dos principais componentes) e é cromado. Caso esse guidom sofra um arranhão, baseando-se nos potenciais fornecidos, pode-se afirmar que o cromo

- a) não tem efeito sobre a redução do ferro.
- b) retarda o processo de corrosão do ferro.
- c) não sofre corrosão antes do ferro.
- d) acelera o processo de oxidação do ferro.

(VUNESP-SP) Uma das vantagens da utilização de reagentes oxidantes na purificação da água, comparando com outros tipos de tratamento, é que os produtos da oxidação química de compostos orgânicos são apenas o dióxido de carbono e a água. Na tabela a seguir são listados alguns agentes oxidantes com seus potenciais-padrão de redução.

Agente	Potencial - padrão de redução
oxidante	(em meio ácido) - Eº (V)
Cl_2	1,36
H_2O_2	1,78
OCl ⁻	1,63
MnO_4	1,51
O_3	2,07

Considerando apenas os parâmetros termodinâmicos apresentados, forneça o nome do agente que é menos eficiente para a oxidação de material orgânico e escreva a equação que representa a semi-reação de redução desse agente.

GABARITO

01- Alternativa B

Calculando o ΔE das reações: ΔE = $E^{\circ}_{redução\ elemento\ que\ reduz}$ – $E^{\circ}_{redução\ elemento\ que\ oxida}$

- a) $Mg^{2+}(aq) + Ni(s) \rightarrow Mg(s) + Ni^{2+}(aq) \Delta E = (-2,37)-(-0,25) = -2,12 \text{ V}$
- b) $Cu^{2+}(aq) + Mg(s) \rightarrow Cu(s) + Mg^{2+}(aq) \Delta E = (+0,34)-(-2,37) = +2,71 \text{ V}$
- c) Ni²⁺(aq) + 2Fe²⁺(aq) \rightarrow Ni(s) + 2Fe³⁺(aq) Δ E = (-0,25)-(+0,77) = -1,02 V
- d) $Cu^{2+}(aq) + 2Fe^{2+}(aq) \rightarrow Cu(s) + 2Fe^{3+}(aq) \Delta E = (+0.34) (+0.77) = -0.43 \text{ V}$
- e) Ni²⁺(aq) + Cu(s) \rightarrow Ni(s) + Cu²⁺(aq) Δ E = (-0,25)-(+0,34) = -0,59 V

02- Alternativa B

 $Na(s) + Ag^{+}(aq) \rightarrow Na^{+}(aq) + Ag(s)$, condição: $E^{\circ}_{redução} Ag^{+}/Ag > E^{\circ}_{redução} Na^{+}/Na$

Li(s) + Na⁺(aq) → Li⁺(aq) + Na(s), condição: E°_{redução} Na⁺/Na > E°_{redução} Li⁺/Li

 $Li(s) + Ag^{+}(aq) \rightarrow Li^{+}(aq) + Ag(s)$, condição: $E^{\circ}_{redução} Ag^{+}/Ag > E^{\circ}_{redução} Li^{+}/Li$

Com isso temos: E°_{redução} Ag⁺/Ag > E°_{redução} Na⁺/Na > E°_{redução} Li⁺/Li

03- Alternativa A

O eletrodo de sacrifício sofre oxidação provocando a redução do ferro: $M^{\circ}(s) + Fe^{2+}(aq) \rightarrow M^{X+}(aq) + Fe^{\circ}(s)$ Condição para ocorrer a proteção: $E^{\circ}_{redução do metal} < E^{\circ}_{redução do ferro}$

04- Alternativa A

Fio de ferro imerso na solução de cobre II, observou-se que o fio de ferro ficou coberto por uma camada de cobre metálico: $Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$, com isso temos que: $E^{\circ}_{reducão} Cu^{2+}/Cu > E^{\circ}_{reducão} Fe^{2+}/Fe$

Fio de ferro imerso na solução de prata, observou-se que o fio de ferro permaneceu inalterado: $Ag(s) + Cu^{2+}(aq) \rightarrow n$ ão ocorre reação, com isso temos que: $E^{\circ}_{redução} Ag^{+}/Ag > E^{\circ}_{redução} Cu^{2+}/Cu$

Desta forma concluímos que: E°_{redução} Ag⁺/Ag > E°_{redução} Cu²⁺/Cu > E°_{redução} Fe²⁺/Fe

05- Alternativa E

 $Zn^{\circ}(s) + Mg^{2+}(aq) \rightarrow n\tilde{a}o$ ocorre reação pois $E^{\circ}_{reduc\tilde{a}o} Zn^{2+}/Zn > E^{\circ}_{reduc\tilde{a}o} Mg^{2+}/Mg$

 $Zn^{\circ}(s) + 2 Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2 Ag(s)$, ocorre reação pois $E^{\circ}_{redução} Ag^{+}/Ag > E^{\circ}_{redução} Zn^{2+}/Zn$

 $Zn^{\circ}(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$, ocorre reação pois $E^{\circ}_{redução} Cu^{2+}/Cu > E^{\circ}_{redução} Zn^{2+}/Zn$

06- Alternativa B

 $Zn^{\circ}(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$, ocorre reação pois $E^{\circ}_{redução} Cu^{2+}/Cu > E^{\circ}_{redução} Zn^{2+}/Zn$

07- Alternativa E

O eletrodo de sacrifício sofre oxidação provocando a redução do ferro: $M^{\circ}(s) + Fe^{2+}(aq) \rightarrow M^{X+}(aq) + Fe^{\circ}(s)$ Condição para ocorrer a proteção: $E^{\circ}_{redução\ do\ metal} < E^{\circ}_{redução\ do\ ferro}$

08- Alternativa C

Para armazenar a solução de Ni^{2+} devemos escolher um recipiente constituído por um metal que não reaja com o níquel da solução: $M^{\circ}(s) + Ni^{2+}(aq) \rightarrow n$ ão ocorre reação, com isso temos: $E^{\circ}_{reducão \, metal \, escolhido} > E^{\circ}_{reducão \, níquel}$.

09- Alternativa E

O eletrodo de sacrifício sofre oxidação provocando a redução do ferro: $M^{\circ}(s) + Fe^{2+}(aq) \rightarrow M^{X+}(aq) + Fe^{\circ}(s)$ Condição para ocorrer a proteção: $E^{\circ}_{redução\ do\ metal} < E^{\circ}_{redução\ do\ ferro}$

10-

a) ΔE° da pilha formada por ferro e oxigênio em meio aquoso: $\Delta E = E^{\circ}_{\text{redução maior}} - E^{\circ}_{\text{redução menor}} = (+0,41)-(-0,44) = +0,85 \text{ V}$ ΔE° da pilha formada por ferro e zinco em meio aquoso: $\Delta E = E^{\circ}_{\text{redução maior}} - E^{\circ}_{\text{redução menor}} = (-0,44)-(-0,76) = +0,32 \text{ V}$ b) É o agente oxidante mais forte, pois apresenta o maior potencial de redução.

11-

a) A reação Cu° + Ni²⁺ → não ocorre pois E°_{redução níquel} < E°_{redução cobre}

b) Pilha de níquel e zinco:

Semi-reação anódica: $Zn^{\circ} \rightarrow Zn^{2+} + 2e^{-}$ Semi-reação catódica: $Ni^{2+} + 2e^{-} \rightarrow Ni^{\circ}$

Reação global: $Zn^{\circ} + Ni^{2+} \rightarrow Zn^{2+} + Ni^{\circ}, \Delta E^{\circ} = (-0.23) - (-0.76) = +0.53 \text{ V}$

12-

a) O contato entre alumínio e ferro provoca a corrosão (oxidação) do alumínio que possui E° redução menor:

 $2 A\ell^{\circ} + 3 Fe^{2+} \rightarrow 2 A\ell^{3+} + 3 Fe^{\circ}$

b) O eletrodo de sacrifício sofre oxidação provocando a redução do alumínio: $M^{\circ}(s) + A\ell^{3+}(aq) \rightarrow M^{X+}(aq) + A\ell^{\circ}(s)$ Condição para ocorrer a proteção: $E^{\circ}_{redução do metal} < E^{\circ}_{redução do alumínio}$, sendo assim o magnésio é a melhor opção.

13- Alternativa A

Semi-reação anódica: $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s) E^{\circ} = -0.44V$

Semi-reação catódica: $1/3 I(aq) + 2 OH(aq) \rightarrow 1/3 IO_3(aq) + H_2O(\ell) + 2e^-E^\circ = +0,26V$

Reação Global: $Fe^{2+}(aq) + 1/3 I^{-}(aq) + 2 OH^{-} \rightarrow Fe(s) + 1/3 IO_{3}^{-}(aq) + H_{2}O(\ell) \Delta E^{\circ} = (+0,26)-(-0,44) = +0,70 V (reação espontânea)$

14-

1. A água contendo sais de cobre acarretará a corrosão da tubulação de alumínio do trocador de calor.

Verdadeiro. $E^{\circ}_{redução} Cu^{2+}/Cu > E^{\circ}_{redução} A\ell^{3+}/A\ell$

2. Na pilha eletroquímica formada, o cobre é o agente redutor.

Falso. O cobre possui maior E°_{redução} e este sofrerá redução logo será agente oxidante.

3. Se a tubulação do trocador fosse feita de cobre, e a água de refrigeração contivesse sais de alumínio, não haveria formação de pilha eletroquímica entre essas espécies metálicas.

Verdadeiro. E° redução $A\ell^{3+}/A\ell < E^{\circ}_{redução} Cu^{2+}/Cu$

4. O valor, em módulo, do potencial-padrão para a pilha eletroquímica formada é igual a 1,32 V.

Falso. $\Delta E^{\circ} = E^{\circ}_{\text{redução maior}} - E^{\circ}_{\text{redução menor}} = (+0,34)-(-1,66) = +2,00 \text{ V}$

15-

a) Experimentos 1 e 4: 4 Fe(s) + 3 $O_2(g)$ + 2 x $H_2O(\ell) \rightarrow 2$ (Fe₂O₃. xH₂O)(s)

Experimento 3: Mg(s) + H₂O(ℓ) + ½ O₂(g) \rightarrow Mg(OH)₂(s)

- b) 1 Revestir o prego com graxa, que, sendo insolúvel em água, impede o contato do metal ferro com a água aerada (proteção mecânica).
- 2 Revestir o prego com magnésio, que atuaria como "metal de sacrifício" sofrendo oxidação e mantendo o ferro intacto (proteção eletrolítica).

c)
$$Sn^{2+} + 2e^{-} \rightarrow Sn^{\circ} E^{\circ}_{red1}$$

$$Fe^{2+} + 2e^{-} \rightarrow Fe^{\circ} E^{\circ}_{red2}$$

$$Mg^{2+} + 2e^{-} \rightarrow Mg^{\circ} E^{\circ}_{red3}$$

E°_{red} são os respectivos potenciais de redução

- Ferro envolvido por magnésio: o magnésio sofre oxidação, mantendo o ferro reduzido: E°_{red2} > E°_{red3}.
- Ferro envolvido por estanho: ferro sofre oxidação, mantendo o estanho reduzido: E°_{red1} > E°_{red2}.
- Conclusão: E°_{red1} > E°_{red2} > E°_{red3}

Poder redutor: Sn < Fe < Mg

16-

Experimento I:

Levando-se em consideração o erro com margem de 3%, o valor 7,2 g/cm³ ficará compreendido entre 7,416 g/cm³ e 6,984 g/cm³.

Como ambos os metais possuem densidades situadas entre esses valores, o experimento I não permitirá a distinção entre estanho e zinco.

Experimento II:

Como ambos os metais apresentam potencial normal de redução menor que o dos íons H^+ : 2 H^+ (aq) + 2e $^- \rightleftharpoons H_2$ (g) E° =zero devemos esperar que ambos os metais sofram reação na solução aquosa de ácido clorídrico, com formação de gás hidrogênio:

$$Zn(s) + 2 H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$$

$$Sn(s) + 2 H^{+}(aq) \rightarrow Sn^{2+}(aq) + H_{2}(g)$$

Assim, o experimento II também não permitirá a distinção entre zinco e estanho.

Experimento III:

Devemos prever se ocorrerão as transformações:

$$Zn(s) + Fe^{2+}(aq) \rightarrow ?$$

$$Sn(s) + Fe^{2+}(aq) \rightarrow ?$$

A tabela com os valores de E° nos mostra que haverá reação entre zinco e solução de íons de Fe²⁺, já que o potencial de redução do ferro é maior que o do zinco:

Assim, não ocorrerá reação na mistura entre o estanho e a solução de íons Fe²⁺, pois o estanho, neste caso, apresenta maior potencial de redução que o ferro.

Portanto, o experimento III permite a identificação do zinco em relação ao estanho.

17- Alternativa D

A solução de níquel deverá ser armazenada num recipiente onde não ocorra reação entre os íons Ni²⁺ da solução e o metal do tanque, para que esta condição seja estabelecida é necessário: E°_{redução metal tanque} > E°_{redução níquel}, sendo assim o metal escolhido é o chumbo.

18-

a)
$$O_2 + 4 e^- + 4 H^+ \rightarrow 2 H_2O$$

b) E°₂ E°₁> 0, porque quem sofre redução (O₂) deve possuir maior potencial de redução (maior capacidade de receber elétrons).

19- Alternativa D

Metal de sacrifício sofrerá oxidação provocando a redução dos íons Fe²⁺. O melhor metal de sacrifício possui o menor potencial de redução: magnésio.

20- Alternativa D

Calculando o ΔE das reações: ΔE = E° redução elemento que reduz — E° redução elemento que oxida

I. Mg + Ni²⁺
$$\rightarrow$$
 Mg²⁺ + Ni Δ E = (-0,25) - (-2,34) = +2,09 V

II. Ni + Cu²⁺
$$\rightarrow$$
 Ni²⁺ + Cu Δ E = (+0,35V) - (-0,25) = +0,60 V

III. 2 Ag⁺ + Mg
$$\rightarrow$$
 Mg²⁺ + 2 Ag Δ E = (+0,80) - (-2,34) = +3,14 V

IV. Ni²⁺ + 2 Ag
$$\rightarrow$$
 Ni + 2 Ag⁺ Δ E = (-0,25) - (+0,80) = -1,05 V

O latão (Cu/Zn) sofre dissolução parcial, pois somente o zinco (menor E° redução) reduz o H⁺ a H₂ (maior E° redução).

22- Alternativa D

Como a lâmina de alumínio colocada na solução de Mg²⁺ não ocorre reação, com isso podemos concluir que o magnésio possui menor E° redução em relação ao alumínio.

Melhor redutor: sofre oxidação: menor E° oxidação: magnésio

23- Alternativa D

Para que os íons $A\ell^{3+}$ sofram redução é necessário que estes apresentem E° redução maior que o menor que sofrerá oxidação, ou seja, metal com E° redução menor. O metal magnésio atende às especificações.

24-

a) Cu + Mg²⁺ → não ocorre reação

Para obtermos magnésio metálico é necessário que os íons magnésio da solução sofram redução, e para que isto ocorra, o E° redução do magnésio tem que ser maior que o E° redução do cobre, o que não ocorre.

b) Semi-reação de oxidação: $Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$

Semi-reação de redução: Cu²⁺(aq) + 2e⁻ → Cu(s)

Reação global: $Mg(s) + Cu^{2+}(aq) \rightarrow Mg^{2+}(aq) + Cu(s)$

25- Alternativa E

Para provocar a oxidação dos organismos patogênicos é necessário que a substância química sofra redução, ou seja, agente oxidante. O melhor oxidante possui maior E° redução: ozônio.

26- Alternativa C

I. Quanto mais pura a água do solo, maior a passagem da corrente elétrica.

Falso. Para ser condutor elétrico é necessário a presença de íons, ou seja, condutor eletrolítico.

II. O eletrodo de sacrifício tem E° > 0 em relação ao metal da tubulação.

Falso. O metal de sacrifício sofrerá oxidação, e para isto ocorrer é necessário apresentar menor E° redução.

III. Ao formar a pilha com a tubulação, o eletrodo de sacrifício é o ânodo.

Verdadeiro. O metal de sacrifício sofrerá oxidação (menor E° redução) constituindo o ânodo.

27-

a)
$$2H_2O_{2(aq)} \xrightarrow{Zn} 2H_2O_{(l)} + O_{2(g)}(decomposição do H_2O_2)$$

$$Zn_{(s)} + 2HI_{(aq)} \rightarrow ZnI_{2(aq)} + H_{2(g)}$$

$$H_2O_{2(aq)} + 2HI_{(aq)} \rightarrow I_{2(s)} + 2H_2O$$
Outras reações possíveis

$$H_2O_2 + 2 e + 2H^+ \longrightarrow 2 H_2O + 1,78 V$$

 $2 \vdash \longrightarrow I_2 + 2 e -0,54 V$
 $H_2O_2 + 2 H^+ + 2 \vdash \longrightarrow I_2 + 2 H_2O + 1,24 V$

28- Alternativa C

I. O bromo pode ser obtido de uma solução que tenha íons brometo (por exemplo, água do mar), fazendo-se a sua oxidação com cloro.

Com isso podemos afirmar que E° redução do cloro é maior que o E° redução do bromo.

II. A reação $Cu^{2+} + 2 Br^{-} \rightarrow Cu^{0} + Br_{2}$ não é espontânea e, por isso, a obtenção de Br_{2} , a partir de uma solução aquosa de $CuBr_{2}$, só pode ser feita por eletrólise desta solução.

Com isso podemos afirmar que E° redução do bromo é maior que o E° redução do cobre.

Desta forma ficamos com: E°₁ (cloro) > E°₂ (bromo) > E°₃ (cobre)

29- Alternativa A

De acordo com a tabela fornecida temos:

 $Cd + Co^{2+} \rightarrow ocorre reação, logo: E^{\circ} red (Co) > E^{\circ} red (Cd)$

Cd + Pb²⁺ \rightarrow ocorre reação, logo: E° red (Pb) > E° red (Cd)

Co + Pb²⁺ \rightarrow ocorre reação, logo: E° red (Pb) > E° red (Co)

Com isso temos a seguinte ordem de potenciais de redução: E°red (Pb) > E° red (Co) > E° (Cd)

A pilha com maior diferença de potencial de potencial ocorre entre o maior E° red (Pb) cátodo e o menor E° red (Cd) ânodo.

30- Alternativa B

De acordo com as afirmações temos:

I. Somente M₁ e M₃ reagem com ácido clorídrico 1,0 M, liberando H₂(g).

 E° redução (M_2 e M_4) > E° redução (M_1 e M_3)

II. Quando M₃ é colocado nas soluções dos íons dos outros metais, há formação de M₁, M₂ e M₄ metálicos.

 E° redução (M_1 , M_2 e M_4) > E° redução (M_3)

III. O metal M₄ reduz Mn₂ⁿ⁺, para dar o metal M₂ e íons Mn₄ⁿ⁺.

E° redução (M_2) > E° redução (M_4)

Com isso ficamos com: E° red $(M_2) > E^{\circ}$ red $(M_4) > E^{\circ}$ red $(M_1) > E^{\circ}$ red (M_3)

31- Alternativa E

O metal protetor das estátuas de cobre deverá provocar a redução dos íons cobre (E° red maior) segundo a reação:

 $M + Cu^{2+} \rightarrow M^{+X} + Cu$

O melhor metal protetor é o que apresenta menor E° redução: Ti

32- Alternativa D

O recobrimento do material com uma camada de tinta é uma das ações que diminui a ferrugem contra ação da corrosão, porque a tinta evita que o ferro se oxide, isolando-o do contato com o oxigênio e a água.

I)
$$Mg^{2+} + 2e^{-} \rightleftharpoons Mg$$
 $E_{red} = -2,37V$

II)
$$Ag^+ + e^- \rightleftharpoons Ag$$
 $E_{red} = +0.80V$

III)
$$C\ell_2 + 2e^- \rightleftharpoons 2C\ell^ E_{red} = +1,36V$$

Reduzem Oxidam
(oxidantes) (redutores)

- a) Quais as espécies químicas que se oxidam em I, II e III?
- I) Mg; II) Ag; III) Cℓ⁻
- b) Quais as espécies químicas que se reduzem em I, II e III?
- I) Mg^{2+} ; II) Ag^{+} ; III) $C\ell_2$
- c) Quais as espécies químicas oxidantes em I, II e III?
- I) Mg^{2+} ; II) Ag^{+} ; III) $C\ell_2$
- d) Quais as espécies químicas redutoras em I, II e III?
- I) Mg; II) Ag; III) Cℓ-
- e) Qual o oxidante mais forte (mais energético)?

Oxidante mais forte: sofre redução: maior E° red: C\(\ell_2\)

f) Qual o redutor mais forte (mais energético)?

Redutor mais forte: sofre oxidação: menor E° red: Mg

g) Qual o oxidante mais fraco (menos energético)?

Oxidante mais fraco: sofre redução: menor E° red: Mg²⁺

h) Qual o redutor mais fraco (menos energético)?

Redutor mais fraco: sofre oxidação: maior E° red: Cℓ-

34-

a) Qual das reações abaixo é espontânea?

Calculando o ΔE das reações: $\Delta E = E^{\circ}_{redução\ elemento\ que\ reduz} - E^{\circ}_{redução\ elemento\ que\ oxida}$

I) Cu + Fe²⁺
$$\rightarrow$$
 Cu²⁺ + Fe

$$\Delta E = (-0.44) - (+0.337) = -0.777 \text{ V (processo não espontâneo)}$$

II) $Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}$

 $\Delta E = (+0.337) - (-0.44) = +0.77 \text{ V (processo espontâneo)}$

b) Podemos guardar uma solução de FeSO₄ numa panela de cobre?

Sim, pois Cu + Fe²⁺ \rightarrow não ocorre.

c) Podemos guardar uma solução de CuSO₄ numa panela de ferro?

Não, pois Cu^{2+} + Fe \rightarrow ocorre a reação provocando a oxidação do ferro e sua corrosão.

35-

a) Metal de sacrifício sofrerá oxidação provocando a redução dos íons Fe²⁺. O melhor metal de sacrifício possui o menor potencial de redução: magnésio.

b)

Reação anódica (oxidação – redutor): $Mg^{\circ}(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$

Reação catódica (redução – oxidante): $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe^{\circ}(s)$

Reação global: $Mg^{\circ}(s) + Fe^{2+}(aq) \rightarrow Mg^{2+}(aq) + Fe^{\circ}(s)$

36-

a)

Reação anódica (oxidação – redutor): $3 \text{ Sn}^{\circ}(s) \rightarrow 3 \text{ Sn}^{2+}(aq) + 6e^{-}$

Reação catódica (redução – oxidante): $2 \text{ Fe}^{3+}(aq) + 6e^{-} \rightarrow 2 \text{ Fe}^{\circ}(s)$

Reação global: $3 \operatorname{Sn}^{\circ}(s) + 2 \operatorname{Fe}^{3+}(aq) \rightarrow 3 \operatorname{Sn}^{2+}(aq) + 2 \operatorname{Fe}^{\circ}(s)$

b) Afirmação correta, pois segundo a reação descrita no item a, o estanho com menor E_{red} sofrerá oxidação de Sn(s) para Sn²⁺(aq) que contaminará o alimento.

37-

- a) Porque o potencial de oxidação do alumínio é maior que o do ferro.
- b) Porque o zinco oxida-se protegendo o ferro da corrosão.

38-

- a) O cátion do metal de sacrifício deve possuir menor potencial de redução que o cátion Fe²⁺, portanto devemos utilizar magnésio como protetor catódico, uma vez que o metal magnésio tem maior potencial de oxidação que o metal ferro, o que o leva a sofrer a oxidação.
- b) Das substâncias citadas, a mais adequada para galvanizar a tubulação de ferro é o metal níquel, embora o ferro sofra oxidação mais facilmente que o níquel. A escolha se justifica porque a película de níquel impede o contato do ferro com o oxigênio do ar. Isso se dá porque o níquel reage com o oxigênio do ar, formando uma camada de óxido de níquel que fica aderente à superfície do níquel, impedindo o prosseguimento da oxidação.

Não se deve usar o metal magnésio, pois é extremamente reativo.

O cobre e a prata poderiam ser usados para a proteção do ferro. Entretanto, na prática isso não ocorre, devido ao alto custo implicado, e também porque o cobre sofre oxidação lentamente, produzindo azinhavre (carbonato básico de magnésio), e a prata reage com composto que têm enxofre, ficando preta com o passar do tempo.

39- Alternativa B

Metal de sacrifício sofrerá oxidação provocando a redução dos íons Fe²⁺. O melhor metal de sacrifício possui o menor potencial de redução: berílio.

40- Alternativa E

O metal adequado para depositar chumbo metálico no efluente deverá sofrer oxidação (menor E° redução) e provocar a redução dos íons chumbo da solução (maior E° redução). O alumínio é o metal que atende às especificações.

41- Alternativa B

Metal de sacrifício sofrerá oxidação provocando a redução dos íons Fe²⁺. O melhor metal de sacrifício possui o menor potencial de redução: magnésio.

42- Alternativa C

() O potencial padrão de redução do alumínio (Eº = −1,66V) mostra que ele é facilmente oxidado.

Verdadeiro.

() A resistência do alumínio à corrosão deve-se à formação de uma camada fina, dura e transparente de $A\ell_2O_3$ que adere à superfície do metal.

Verdadeiro.

() A quantidade de matéria de alumínio necessária para se obter 204g de $A\ell_2O_3$ é 2,5 mols.

Falso.
$$204g. \frac{1mol}{102g} = 2mols$$

() O átomo de alumínio possui número atômico 13 e massa 26,98u.

Verdadeiro.

43- Alternativa E

I. trocou as palavras anodo e catodo;

Verdadeiro. Ânodo: Fe \rightarrow Fe²⁺ + 2e⁻

II. escreveu errada uma das reações de oxirredução;

Verdadeiro. A equação: 2 Fe \rightarrow 2 Fe²⁺ + 2e⁻ é corretamente representada por: Fe \rightarrow Fe²⁺ + 2e⁻

III. escreveu errado a fórmula do composto de ferro depositado na superfície.

Verdadeiro. O componente da ferrugem é Fe(OH)₃ ou Fe₂O₃.3H₂O

44- Alternativa B

Como o cromo possui menor E°_{redução} este sofrerá oxidação e provocará a redução do ferro, servido como proteção do ferro ao processo da corrosão, ou seja, metal de sacrifício.

45-

Para provocar a oxidação dos organismos patogênicos é necessário que a substância química sofra redução, ou seja, agente oxidante. O oxidante menos eficiente possui menor E° redução: cloro.