2) Assume that
$$\alpha \in R$$
, $\exists \alpha_1, \alpha_2 \in R$: $\alpha_1 \alpha = \alpha \alpha_1 = \alpha_2$
 $\alpha_2 \alpha = \alpha \alpha_2 = \alpha_2$

$$\begin{array}{cccc}
& \mathcal{C}_{1} & \mathcal{C}_{2} & \mathcal{C}_{3} & \mathcal{C}_{4} &$$

8) Let R be a ring,
$$a,b,c\in R$$
,

WTS $(ab=ca,a\neq 0\Rightarrow b=c)\Rightarrow R$ is Commutative

Assume that $a,b,c\in R$, $a\neq 0$, $ab=ca\Rightarrow b=c$,

Let $x,y\in R$, $a=\infty$, $b=yx$, $c=xy$,

 $ab=x(yx)=(xy)x=ca\Rightarrow b=c$

i. b=c=) xy=y>c Herce R is commutative.

13) Let \mathbb{Z} be a ring. \emptyset , \mathbb{Z} are subrings of \mathbb{Z} . By Thm 12,3, $S \subseteq \mathbb{Z}$, $S \neq \emptyset$, then $a,b \in S$, $ab \in S \implies S$ is a subring of \mathbb{R} .

$$3Z = \{0, \pm 3, \pm 6, ...\}$$

 $5Z = \{0, \pm 5, \pm 10, ...\}$

are subrings of Z.

in No, NGZ, is a subring of Z

let S = { x G R : ax = 0 }

WTS S is a subring of R

By Thm 12,3, SCZ, SZØ, then

a, bes, a-b, ab ES => S is a subring of R.

let X,y GS,

ac = 0, ay = 0

: ax = ay

ax - ay = 0

C(x-y) = 0 => >C-y G S/

axy: ayy

a(xy) = (ay)y = 0y = 0 => xy GS/

2. S is a subring of Ra

22) Let R be a commutative ring with unity. Let U(R) be the set of units of R WTS UCR) is a group under the multiplication of R. let 1 GR be the unity, 1(1)=1=> | GU(R) let a, b GUCR), a-1, b-1 GR, aber = aber a-1, b'ER =) (ab) = b'a-1 GR, ~ (C1b) Cab) = 1 = 1 = ab & U(R) i U(R) is closed under multiplication, let OLGUCR), OLIGR, a-1 a = 1 =) a-1 GU(R)

i. Ya GUCR), Ct-GUCR)

-. U(R) is a group under multiplication

28) W7S In Z₆, 4/2 Z₈, 3/7 Z₁₅, 9/12

> $4 \in \mathbb{Z}_{6}$, $4(2) = 8 \text{ mod } 6 = 2 \Rightarrow 412$ $3 \in \mathbb{Z}_{8}$, $3(5) = 15 \text{ mod } 8 = 7 \Rightarrow 3|7$ $9 \in \mathbb{Z}_{15}$, $9(8) = 72 \text{ mod } 15 = 12 \Rightarrow 9112$