



## DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |                                                                                                                            |                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Classification internationale des brevets <sup>6</sup> :<br><b>C12N 15/45, 15/31, C07K 14/135, 14/26,<br/>14/765, A61K 39/155, 47/48</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  | A1                                                                                                                         | (11) Numéro de publication internationale: <b>WO 95/27787</b><br><br>(43) Date de publication internationale: 19 octobre 1995 (19.10.95)                                                          |
| (21) Numéro de la demande internationale: PCT/FR95/00444<br><br>(22) Date de dépôt international: 6 avril 1995 (06.04.95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | (81) Etats désignés: AU, CA, JP, NZ, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). |                                                                                                                                                                                                   |
| (30) Données relatives à la priorité:<br>94/04009 6 avril 1994 (06.04.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | FR                                                                                                                         | Publiée<br><i>Avec rapport de recherche internationale.<br/>Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.</i> |
| (71) Déposant ( <i>pour tous les Etats désignés sauf US</i> ): PIERRE FABRE MEDICAMENT [FR/FR]; 45, place Abel-Gance, F-92100 Boulogne (FR).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                            |                                                                                                                                                                                                   |
| (72) Inventeurs; et<br>(75) Inventeurs/Déposants ( <i>US seulement</i> ): BINZ, Hans [CH/FR]; Les Crêts, F-74160 Beaumont (FR). N'GUYEN, Ngoc, Thien [FR/FR]; 7, Les Petits Hutins, Lathoy, F-74160 Saint-Julien-en-Genevois (FR). BAUSSANT, Thierry [FR/FR]; 35, rue Jean-Jaurès, F-01200 Bellegarde (FR). TRUDEL, Michel [CA/CA]; 88, Val d'Ajol, Lorraine, Québec J6Z 3Y3 (CA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |                                                                                                                            |                                                                                                                                                                                                   |
| (74) Mandataire: AHNER, Francis; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                            |                                                                                                                                                                                                   |
| <p>(54) Title: PEPTIDE FRAGMENT OF THE RESPIRATORY SYNCYTIAL VIRUS G PROTEIN, IMMUNOGENIC AGENT, PHARMACEUTICAL COMPOSITION CONTAINING SAME, AND PREPARATION METHOD</p> <p>(54) Titre: FRAGMENT PEPTIDIQUE DE LA PROTEINE G DU VIRUS RESPIRATOIRE SYNCYTIAL, AGENT IMMUNOGENE, COMPOSITION PHARMACEUTIQUE LE CONTENANT ET PROCEDE DE PREPARATION</p> <p>(57) Abstract</p> <p>A polypeptide useful as an immunogen element and characterised in that it is carried on the peptide sequence between amino acid residues 130-230 of the G protein sequence of the human respiratory syncytial virus of sub-groups A and B, or of the bovine respiratory syncytial virus, or on a sequence at least 80 % homologous thereto. An immunogenic agent or pharmaceutical composition containing said polypeptide, and a method for preparing same, are also disclosed.</p> <p>(57) Abrégé</p> <p>La présente invention concerne un polypeptide utilisable comme élément d'immunogène, caractérisé en ce qu'il est porté par la séquence peptidique comprise entre les résidus d'acides aminés 130 et 230 de la séquence de la protéine G du virus respiratoire syncytial humain du sous-groupe A et du sous-groupe B, ou du virus respiratoire syncytial bovin, ou par une séquence présentant au moins 80 % d'homologie avec ladite séquence peptidique. L'invention concerne également un agent immunogène ou une composition pharmaceutique contenant le polypeptide et leur procédé de préparation.</p> |  |                                                                                                                            |                                                                                                                                                                                                   |

**UNIQUEMENT A TITRE D'INFORMATION**

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

|    |                           |    |                                               |    |                       |
|----|---------------------------|----|-----------------------------------------------|----|-----------------------|
| AT | Autriche                  | GB | Royaume-Uni                                   | MR | Mauritanie            |
| AU | Australie                 | GE | Géorgie                                       | MW | Malawi                |
| BB | Barbade                   | GN | Guinée                                        | NE | Niger                 |
| BE | Belgique                  | GR | Grèce                                         | NL | Pays-Bas              |
| BF | Burkina Faso              | HU | Hongrie                                       | NO | Norvège               |
| BG | Bulgarie                  | IE | Irlande                                       | NZ | Nouvelle-Zélande      |
| BJ | Bénin                     | IT | Italie                                        | PL | Pologne               |
| BR | Brésil                    | JP | Japon                                         | PT | Portugal              |
| BY | Bélarus                   | KE | Kenya                                         | RO | Roumanie              |
| CA | Canada                    | KG | Kirghizistan                                  | RU | Fédération de Russie  |
| CF | République centrafricaine | KP | République populaire démocratique<br>de Corée | SD | Soudan                |
| CG | Congo                     | KR | République de Corée                           | SE | Suède                 |
| CH | Suisse                    | KZ | Kazakhstan                                    | SI | Slovénie              |
| CI | Côte d'Ivoire             | LI | Liechtenstein                                 | SK | Slovaquie             |
| CM | Cameroun                  | LK | Sri Lanka                                     | SN | Sénégal               |
| CN | Chine                     | LU | Luxembourg                                    | TD | Tchad                 |
| CS | Tchécoslovaquie           | LV | Lettonie                                      | TG | Togo                  |
| CZ | République tchèque        | MC | Monaco                                        | TJ | Tadjikistan           |
| DE | Allemagne                 | MD | République de Moldova                         | TT | Trinité-et-Tobago     |
| DK | Danemark                  | MG | Madagascar                                    | UA | Ukraine               |
| ES | Espagne                   | ML | Mali                                          | US | Etats-Unis d'Amérique |
| FI | Finlande                  | MN | Mongolie                                      | UZ | Ouzbékistan           |
| FR | France                    |    |                                               | VN | Viet Nam              |
| GA | Gabon                     |    |                                               |    |                       |

**FRAGMENT PEPTIDIQUE DE LA PROTEINE G DU VIRUS RESPIRATOIRE  
SYNCYTIAL, AGENT IMMUNOGENE, COMPOSITION PHARMACEUTIQUE LE  
CONTENANT ET PROCEDE DE PREPARATION**

La présente invention se rapporte à des polypeptides utilisables  
5 notamment dans la préparation d'immunogènes et l'obtention de vaccin contre le virus respiratoire syncytial (VRS) et à des séquences nucléotidiques permettant de les obtenir. L'invention se rapporte également à une protéine adjuvante d'immunité extraite de Klebsiella pneumoniae, à des compositions contenant les polypeptides immunogènes, 10 éventuellement associés à une telle protéine adjuvante, ainsi qu'à leur procédé de préparation.

Le virus respiratoire syncytial (VRS) est la cause la plus fréquente de maladies respiratoires chez le nouveau-né : bronchopneumopathies (bronchiolites). L'OMS estime chaque année 50 millions de cas atteints du 15 VRS, dont 160 000 décès dans le monde entier. Il existe deux sous groupes du virus (sous groupes A et B).

Le VRS est classé dans la famille des Paramyxoviridae, genre pneumovirus comportant un génome ARN non segmenté, de polarité négative, codant pour 10 protéines spécifiques.

Il n'existe pas actuellement de vaccin disponible, contre le VRS. Les 20 vaccins à virus inactivé se sont montrés inefficaces et ont même parfois aggravé les infections des nourrissons. Dans les années 60, les tentatives de vaccination avec le VRS inactivé à la formaline ont conduit à l'échec : au lieu de conférer une protection lors de la réinfection due au VRS, le 25 vaccin a eu pour effet d'aggraver la maladie chez l'enfant.

La demande WO 87/04185 a proposé d'utiliser des protéines structurales du VRS en vue d'un vaccin, comme les protéines d'enveloppe appelées protéine F (protéine de fusion) ou protéine G, une glycoprotéine de 22 Kd, une protéine de 9,5 Kd, ou la protéine majeure de capsid 30 (protéine N).

La demande WO 89/02935 décrit les propriétés de protection de la protéine F entière du VRS, éventuellement modifiées sous forme monomériques ou désacétylée.

Une série de fragments de la protéine F a été clonée en vue de 35 rechercher leurs propriétés neutralisantes.

Toutefois les vaccins immunitaires testés à ce jour se sont montrés inefficaces ou ont induit une pathologie pulmonaire (bronchiolite ou péribronchite).

A l'heure actuelle il n'existe pas de traitement de fond des 5 infections dues au VRS.

Les infections au VRS des voies aériennes supérieures : le traitement repose essentiellement sur les médications symptomatiques identiques à celles des autres infections virales.

Les infections au VRS des voies aériennes inférieures : le traitement 10 chez les nourrissons repose sur le maintien d'une hydratation correcte, l'aspiration des sécrétions et l'administration d'oxygène si besoin. Un effet positif a été observé avec la ribavirine, nucléotide actif in vitro contre le VRS.

C'est pourquoi la présente invention a pour objet un polypeptide 15 utile notamment dans la production d'immunogène, caractérisé en ce qu'il est porté par la séquence peptidique comprise entre les résidus d'acides aminés 130 et 230 de la séquence de la protéine G du virus respiratoire syncytial, ou par une séquence présentant au moins 80% d'homologie avec ladite séquence peptidique. Cette séquence diffère légèrement pour les 20 sous-groupes A et B du VRS humain, ou pour le VRS bovin. L'invention comprend les séquences provenant des VRS humain sous-groupe A et B, ou bovin

La protéine G est une glycoprotéine d'enveloppe du VRS, de poids moléculaire compris entre 84 et 90 Kd, pauvre en méthionine.

25 La Demanderesse a mis en évidence que la séquence comprise entre les acides aminés 130 et 230 de la protéine G naturelle est particulièrement appropriée pour induire une protection efficace contre l'infection par le VRS. L'invention comprend les séquences provenant des VRS humain sous-groupe A ou B, ou bovin.

30 Plus particulièrement la présente invention concerne des polypeptides, utiles notamment comme élément d'immunogène compris dans le précédent et qui comportent la séquence peptidique comprise entre les résidus aminoacides numérotés 174 et 187 de la protéine G du VRS (humain, sous-groupes A et B, ou bovin) ou une séquence présentant au moins 80% d'homologie avec la séquence correspondante.

D'autres séquences peptidiques adaptées à la préparation d'un immunogène comprises dans ladite séquence de la protéine G du VRS sont constituées par la séquence comprise entre les résidus aminoacides numérotés 171 et 187 de la protéine G du VRS humain ou bovin, ou une 5 séquence présentant au moins 80% d'homologie avec la séquence correspondante. D'autres peptides d'intérêt selon la présente invention sont portées par la séquence comprise entre les nucléotides numérotés 158 et 190 de la protéine G du VRS ou une séquence présentant au moins 80% d'homologie avec la séquence correspondante.

10 Selon un autre de ses modes de réalisation l'invention a pour objet des peptides utiles pour la préparation d'un immunogène et qui présentent une séquence correspondant à la séquence comprise entre les résidus aminoacides numérotés 140 et 200 de la protéine G du VRS humain ou bovin, ou une séquence présentant au moins 80% d'homologie avec la 15 séquence correspondante. Des séquences débutant à l'aminocidé 140 de ladite protéine G du VRS et dont l'extrémité C-terminale correspond respectivement à l'aminocide 198, 196, 194, 192, ou 190 ,ainsi que des séquences présentant au moins 80% d'homologie avec les séquences portées par ces fragments sont particulièrement avantageuses.

20 Parmi les variants des séquences précédentes, il faut citer les polypeptides qui comportent une séquence dans laquelle :

- a) l'acide aminé Cys en positions 173 et/ou 186 a été remplacé par un aminoacide ne formant pas de pont disulfure en particulier la serine, et/ou
- 25 b) les acides aminés en positions 176 et 182 sont susceptibles de former un pont covalent autre qu'un pont disulfure notamment l'acide aspartique et l'ornithine.

Ainsi, la séquence polypeptidique 130-230 du VRS sous-groupe A peut être utilisée complète, sous sa forme native. Cette séquence 30 correspond à la séquence notée Seq id n° 1 (ou G2A).

De même, on peut utiliser la séquence polypeptidique complète 130-230 du VRS sous groupe B, sous sa forme native. Cette séquence correspond à la séquence notée Seq id n° 2 (G2B).

La séquence id n° 1 sera notée G2A dans la suite de la demande.

La séquence id n° 2 sera notée G2B dans la suite de la demande.

Des séquences présentant au moins 80% d'homologie avec G2A ou G2B sont également appropriées.

5 La séquence comprise entre les acides aminés 130 et 230, peut être modifiée par le remplacement des résidus cystéine en positions 173 et 186 par des résidus sérine pour obtenir un peptide conservant de bonnes propriétés immunogènes, grâce au maintien de la boucle formée par les résidus Cys en positions 176 et 182. Les séquences en acides aminés et 10 nucléotides de ce polypeptide pour le sous-groupe A sont représentées sur la seq id n° 3 (G2A $\delta$ Cys).

Pour le sous-groupe B, les séquences en acides aminés et en nucléotides sont représentées sur la seq id n° 4 (G2B $\delta$ Cys).

Les séquences peptidiques seront notées G2A $\delta$ Cys et G2B $\delta$ Cys.

15 Selon un autre aspect, l'invention a pour objet un polypeptide utile pour la préparation d'immunogène, caractérisé en ce qu'il consiste en la séquence peptidique comprise entre les résidus aminoacides numérotés 174 et 187 de la protéine G du VRS ou une séquence présentant au moins 80% d'homologie avec ladite séquence peptidique.

20 Dans cette dernière séquence le peptide 174-187 sous-groupe A peut présenter la séquence :

Seq id n° 5 :

Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys.

Le peptide 174-187 sous-groupe B peut présenter la séquence :

25 Seq id n° 6 :

Ser-Ile-Cys-Gly-Asn-Asn-Gln-Leu-Cys-Lys-Ser-Ile-Cys-Lys.

Le résidu Cys en position 186 peut également être remplacé par un résidu sérine, de manière à obtenir la séquence suivante :

Seq id n° 7 pour le sous-groupe A :

30 Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys.

Seq id n° 8 pour le sous-groupe B :

Ser-Ile-Cys-Gly-Asn-Asn-Gln-Leu-Cys-Lys-Ser-Ile-Ser-Lys.

Dans la séquence comprise entre les résidus 174 et 187 du peptide immunogène, selon l'une des variantes de l'invention, les résidus aminoacides en positions 176 et 182 sont respectivement remplacés par un acide aspartique et une ornithine, de manière à obtenir l'une des 5 séquences suivantes :

**Seq id n° 9 pour le sous-groupe A :**

Ser Ile Asp Ser Asn Asn Pro Thr Orn Trp Ala Ile Cys Lys

**Seq id n° 10 pour le sous-groupe B**

10           Ser-Ile-Asp-Gly-Asn-Asn-Gln-Leu-Orn-Lys-Ser-Ile-Cys-Lys.

**Seq id n° 11 pour le sous-groupe A :**

Ser Ile Asp Ser Asn Asn Pro Thr Orn Trp Ala Ile Ser Lys.

**Seq id n° 12 pour le sous-groupe B :**

Ser-Ile-Asp-Gly-Asn-Asn-Gln-Leu-Orn-Lys-Ser-Ile-Ser-Lys.

15           Le maintien des propriétés immunogènes est obtenu grâce au remplacement du pont disulfure (entre les Cys naturelles) par un pont amide entre les positions 176 et 182.

20           D'autres séquences selon l'invention telles que définies précédemment figurent en annexe de la présente demande sous les désignations SEQ ID N°14 à SEQ ID N°73.

L'invention a également pour objet un polypeptide utilisable comme agent immunogène présentant l'une des séquences précédentes et qui comporte en outre au moins un résidu cystéine en position N-terminale ou C- terminale.

25           L'invention comprend également un polypeptide qui consiste en la séquence peptidique comprise entre les résidus aminoacides numérotés 130 et 230 de la séquence de la protéine G du VRS sous-groupe A et sous-groupe B, ou en une séquence présentant 80% d'homologie avec ladite séquence peptidique et qui est sous forme d'une protéine de fusion avec le 30 récepteur de la serumalbumine humaine, nommée BBG2A $\delta$ C ou BBG2B $\delta$ C, ou une autre protéine de liaison. La séquence de la protéine BB complète figure en annexe (Seq ID n° 74).

L'invention comprend également les variants par exemple glycosylés ou sulfatés des différents peptides, que ces fonctions soient naturelles ou non.

Les polypeptides peuvent être préparés par synthèse peptidique ou 5 par les techniques d'ADN recombinant, qui sont connues de l'homme du métier.

En particulier, les séquences du gène codant pour l'épitope d'environ 100 acides aminés peuvent être préparées par assemblage de 10 gènes en phase solide, et la protéine correspondante exprimée par exemple dans *E. coli* par voie intracellulaire.

Les séquences nucléotidiques (ARN ou ADN) codant pour les protéines ou les polypeptides définis ci-dessus font partie de l'invention.

Un autre objet de l'invention est un agent immunogène qui 15 comporte un polypeptide tel que défini précédemment couplé à une protéine porteuse, en particulier à une protéine adjuvante d'immunité.

De préférence, le polypeptide selon l'invention est couplé à une protéine porteuse de type OmpA de la membrane externe d'une bactérie du genre *Klebsiella*, de préférence sous forme d'un conjugué soluble.

La Demanderesse a pu montrer qu'alors que les variants de la 20 séquence 174-187 de la protéine G du VRS sont faiblement immunogènes, leur couplage avec une telle protéine induit une réponse immunitaire spécifique.

L'intensité de la réponse immunitaire a été comparée avec celle 25 obtenue avec des adjuvants classiques, tel que le couplage au porteur KLH (keyhole limpet hemocyanin) coadministré avec l'adjuvant de Freund, ou le couplage à la protéine porteuse TT (tetanus toxoid).

Des résultats particulièrement avantageux sont obtenus pour des compositions contenant un polypeptide immunogène selon l'invention couplé à la protéine p40 de *Klebsiella pneumoniae* ou une protéine 30 présentant 80% d'homologie avec la protéine p40.

Plus particulièrement, ledit polypeptide est couplé à une protéine comportant la séquence peptidique notée Seq id n° 13.

La séquence nucléotidique (ADN ou ARN) codant pour la protéine comportant la séquence id n° 13 est comprise dans l'invention.

Le polypeptide immunogène peut être couplé à la protéine adjuvante d'immunité par des méthodes connues de l'homme du métier

5 telles que :

- Glutaraldéhyde

- Carbodiimide (ex : EDC : 1-(3diméthylaminopropyl)-3-éthylcarbodiimide).

- Bis imido esters (ex : diméthyladipimidate).

- N-hydroxysuccinimidyl esters (ex : disuccinimidyl subérate).

10 - Pour les peptides comportant une cystéine supplémentaire en position N terminale ou C terminale :

\* Maléimido-N-hydroxysuccinimide esters (ex : MBS : maléimido benzoyl-N-hydroxy-succinimide ester).

\* N- succinimidyl Bromoacétate.

15 Le polypeptide peut être conjugué à la protéine porteuse par une protéine de liaison, par exemple le récepteur de la sérumalbumine humaine (BB).

Selon un autre aspect, l'invention a également pour objet un procédé de préparation d'un peptide conjugué entrant dans une 20 composition utile pour prévention ou traitement des affections à VRS, caractérisé en ce que :

- a) on précipite les lipopolysaccharides de membranes de bactéries du genre Klebsiella, en présence d'un sel de cation divalent et de détergents, pour récupérer les protéines membranaires totales dans 25 le surnageant,
- b) on soumet les protéines à une chromatographie par échange d'anions pour séparer la fraction contenant la protéine adjuvante d'immunité,
- c) on concentre la fraction contenant la protéine adjuvante 30 d'immunité,
- d) on conjugue la protéine adjuvante d'immunité avec un polypeptide immunogène tel que définis ci-dessus pour former un conjugué soluble.

Le sel de cation divalent utilisé dans l'étape a) est de préférence un sel de calcium ou de magnésium. Après centrifugation, les protéines du surnageant peuvent être récupérées avec un bon rendement par deux précipitations à l'éthanol.

- 5 Les protéines membranaires, après remise en suspension, sont séparées sur une colonne échangeuse d'anions, utilisable en conditions industrielles. Ce support chromatographique est très stable et compatible avec les traitements de dépyrogénération drastiques, ce qui n'était pas le cas des supports chromatographiques déjà décrits. D'autre part, l'élution de la  
10 protéine peut être réalisée en conditions isocratiques et non par application d'un gradient de NaCl (comme décrit précédemment), ce qui est particulièrement avantageux en conditions industrielles.

Selon un mode de réalisation préféré, après l'étape c), on procède à une seconde étape de chromatographie, sur échangeur de cations, et on  
15 récupère les fractions contenant la protéine adjuvante, qui sont concentrées. Cette étape supplémentaire permet une meilleure élimination des lipopolysaccharides. La protéine adjuvante est ensuite conjuguée avec un polypeptide immunogène selon l'invention.

Selon un autre aspect, l'invention a pour objet une composition  
20 utile pour la prévention et/ou le traitement des affections provoquées par le VRS, caractérisée en ce qu'elle contient un polypeptide caractérisé ci-avant.

Plus particulièrement les compositions contiennent en outre des excipients pharmaceutiquement acceptables adaptés à l'administration par  
25 voie injectable.

En effet, la Demandereuse a mis en évidence que l'injection de telles compositions entraîne une protection, non par un effet neutralisant, mais par une réponse immunitaire systémique de l'organisme.

Les réponses humorales et cellulaire (IgM, IgG, IgA et cellules T)  
30 sont provoquées par le produit qui induit également une protection à long terme et une mémoire immunologique contre les VRS sous groupes a et b.

En vue de l'administration des compositions vaccinales par voie sous-cutanée, il est souhaitable de disposer de conjugué soluble, ce qui est difficile par les méthodes conventionnelles.

C'est pourquoi l'invention concerne également un procédé de préparation d'un conjugué entre un peptide immunogène et une protéine de membrane de Klebsiella, en particulier la protéine p40 de K. pneumoniae, dans lequel le couplage est effectué en présence de 5 glutaraldéhyde à des concentrations inférieures ou égales à 0,05%.

Ce procédé de couplage diminue considérablement les concentrations en glutaraldéhyde en comparaison de celles habituellement utilisées (2 fois 0,01% au lieu de 1% environ) ; le glutaraldéhyde est ajouté en 2 fois sur une période de cinq jours alors que 10 les protocoles décrits mentionnent des temps de 24 heures.

Ces modifications ont permis l'obtention d'un conjugué soluble, sous une forme adaptée à l'administration sous cutanée.

Les protocoles usuels (concentrations en glutaraldéhyde plus élevées et temps courts) se traduisent par la formation d'un gel dense (dû à 15 des réactions de conjugaison P40-P40, très probablement), forme impropre à l'administration et à la manipulation en général.

Le peptide conjugué peut être congelé et utilisé tel quel ou lyophilisé.

20 Les exemples qui suivent sont destinés à illustrer l'invention sans aucunement en limiter la portée.

Dans ces exemples on se réfèrera aux figures suivantes :

- Figure 1 : intensité de la réponse immunitaire induite contre G1A sous 25 différentes formes,
- Figure 2 : Cinétique de la réponse immunitaire induite contre G1A présentée sous différentes formes,
- Figure 3 : Cinétique de la réponse immunitaire induite contre le porteur seul,
- 30 - Figure 4 : Stratégie de clonage par amplification génique de p40.

### **Exemple 1 : Synthèse et Purification du G<sub>1</sub>A**

## Le polypeptide de séquence

5 Ser-Ile-Cys-Ser-Asn-Asn-Pro-Thr-Cys-Trp-Ala-Ile-Ser-Lys  
| \_\_\_\_\_ ss \_\_\_\_\_ |

noté G<sub>1</sub>A, est préparé par synthèse en phase solide en utilisant la chimie Boc.

10

## **Assemblage**

L'assemblage du peptide est effectué par synthèse peptidique en phase solide sur polystyrène (divinylbenzène 1%), en commençant avec un agent de liaison Boc-Lys(2-cl-Z)-phénylacétamidométhyl.

15 On a utilisé la stratégie chimique Boc-Benzyle avec la procédure de déprotection-couplage suivante :

- |    |    |                   |              |
|----|----|-------------------|--------------|
|    | 1. | 55 % TFA dans DCM | (1 x 5 min)  |
|    | 2. | 55 % TFA dans DCM | (1 x 25 min) |
|    | 3. | DCM               | (2 x 1 min)  |
| 20 | 4. | Isopropylalcool   | (1 x 1 min)  |
|    | 5. | DMF               | (2 x 1 min)  |
|    | 6. | 10 % DIEA en DMF  | (2 x 2 min)  |
|    | 7. | Couplage          |              |
|    | 8. | DMF               | (2 x 1 min)  |
| 25 | 9. | DCM               | (2 x 1 min)  |

A chaque étape on utilise 20 ml de solvant par gramme de peptide-résine.

Le couplage est effectué dans du DMF avec un ester hydroxybenzotriazole préformé pendant 30 min. On vérifie à chaque étape du couplage, si des fonctions aminé libres résiduelles sont présentes, par le test à la ninhydrine. Si nécessaire, un double couplage est effectué.

Pour la synthèse du peptide G<sub>1</sub>A, on a utilisé les groupes de protection de la chaîne latérale suivants :

- 2-chlorobenzylloxycarbonyl pour la Lysine,
- Benzyl pour la Sérine et la Thréonine,
- 5 - 4-méthylbenzyl pour la Cystéine,
- Formyl pour le Tryptophane.

Avant l'étape finale de déprotection/cleavage, le groupe formyl est éliminé par traitement 30 min par une solution de piperidine à 25 % dans du DMF. La résine peptidique est lavée par du DCM et de l'éther, et séchée 10 sous pression réduite.

### Clivage

Le peptide est clivé de la résine et complètement déprotégé par un 15 traitement au Fluorure d'Hydrogène liquide. 10 ml de Fluorure d'Hydrogène par gramme de peptide-résine sont utilisés classiquement à 0°C pendant 45 min en présence de p-cresol et d'éthanedithiol comme piège. Après évaporation du Fluorure d'Hydrogène, le mélange de réaction brut est lavé à l'éther, dissout dans du TFA, précipité à l'éther et séché.

20

### Cyclisation et purification

Conditions générales de purification par HPLC :

|                      |                                                        |
|----------------------|--------------------------------------------------------|
| Phase stationnaire : | silice en C <sub>18</sub> , 15-25 µm, 100 Å            |
| 25 Phase mobile :    | solvant A : eau 0,1 % TFA                              |
|                      | solvant B : acetonitrile/A, 60/40% (v/v)               |
| Gradient linéaire :  | 20 à 50 % B en 30 min (première étape de purification) |
| 30                   | 15 à 40 % B en 30 min (seconde étape de purification)  |
| Vitesse du flux :    | 40 ml/min                                              |
| Détection :          | UV (210 nm)                                            |

- Le peptide brut obtenu après clivage est purifié dans les conditions décrites ci-dessus (gradient de 20 à 50 % B). Les fractions ayant une pureté supérieure à 70-80 % (HPLC) sont réunies et lyophilisées. Le peptide est ensuite purifié dans un mélange acétonitrile eau et DMSO (1mg/ml) et
- 5 laissé sous agitation jusqu'à ce que la cyclisation soit complète (4 à 6 jours). L'évolution de la réaction est contrôlée par HPLC. Le mélange de réaction est finalement concentré sur la colonne d'HPLC préparative et un gradient de 15 à 40 % de B est appliqué en 30 min afin de purifier le peptide.
- 10 Généralement, après lyophilisation, une seconde purification dans les mêmes conditions, est effectuée pour atteindre le degré de pureté requis.
- La pureté et l'identité du produit final sont contrôlées par HPLC analytique, analyse des amino acides et analyse de masse FAB.
- 15 Dans le peptide ainsi obtenu, le résidu sérine en treizième position remplace le résidu Cys du peptide naturel, évitant ainsi une hétérogénéité dans la formation des ponts disulfures, pouvant être nuisible à l'immunogénicité.
- 20 Exemple 2 : Préparation de l'épitope G<sub>2</sub>AδCys

#### Construction de gène : matériels et méthodes

Dans un microtube Eppendorf, on rince 300 µg de billes avec du tampon washing/binding (1M NaCl, 10mM Tris-HCl pH7,5, 1 mM EDTA) avant d'ajouter 0,2 pmole de l'oligo biotinylé, 15 minutes d'incubation à température ambiante pour le binding. Les billes avec l'oligo fixé sont rincées et sédimenées. 0,2 pmole de l'oligo phosphorylé en 5' suivant est ajouté dans 60 µl de tampon hybridation/ligation (50mM Tris-HCl pH7,6, 10 mM MgCl<sub>2</sub>, 1 mM ATP, 1mM 1,4-dithiothreitol [DTT], 5% polyéthylène glycol [PEG] 8000). Le mélange d'hybridation est incubé à 70° C pendant 5 mn et laissé revenir à 37° C avant d'ajouter 3 unités de T4 DNA ligase (BRL)

suivi de 15 mn d'incubation à 37° C. Le mélange réactionnel est rincé avant d'ajouter 0,2 pmole d'oligo suivant. La procédure d'hybridation/ligation est répétée autant de fois qu'on ajoute un nouveau oligo complémentaire phosphorylé en 5'. A la fin, le duplex d'ADN fixé sur 5 billes magnétiques peut être séparé du support en coupant avec les enzymes de restriction appropriées.

On prépare l'ADN correspondant à la séquence G2A $\delta$ Cys et à la séquence G2A $\delta$ Cys liée à la protéine de liaison à la serumalbumine humaine(BB) notée BB-G2A $\delta$ Cys.

10 La séquence nucléotidique est exprimée chez *E. coli* pour récupérer les protéines correspondantes.

**Vecteur d'expression :**

15 pVABBG2A $\delta$ C est un vecteur d'expression de type intracellulaire, il contient un promoteur d'origine *E. coli*, l'opération tryptophane (Trp), suivi du gène codant pour le récepteur de la sérum albumine humaine BB (P-Å Nygrén et col, J. Mol. Recognit., 1988, 1, 60) et enfin le gène codant pour G2A $\delta$ C du VRS. L'expression du gène hétérologue peut être induite en présence de l'IAA (acide-3- $\beta$ -indolacrylique). Le produit de fusion BBG2A $\delta$ C peut être purifié par affinité sur colonne HSA-sépharose, après 20 avoir libéré les protéines cytoplasmiques de *E. coli*.

**Exemples de purification de protéines à partir de culture de 500 ml :**

25 La souche *E. coli* RV 308 (Maurer et col., J. Mol. Biol., 1980, 139, 147) transfectée par le plasmide pVABBG2A $\delta$ C, a été sélectionnée sur gélose renfermant de l'ampicilline (100 µg/ml) et de la tétracycline (8 µg/ml). On inocule la souche dans un Erlenmeyer contenant 100 ml de milieu de culture TSB (Tryptic Soy broth, Difco) (30g/l), supplémenté avec de la levure (Yeast Extract, Difco) (5 g/l), de l'Ampicilline (100 µg/ml), de la tétracycline (8 µg/ml) et du Tryptophane (100 µg/ml). Incuber à 32°C 30 pendant 12 heures sous agitation (190 rpm). Transvaser la culture dans un autre erlenmeyer (5 litres) contenant quatre fois le volume initial (400 ml TSB + levure + les mêmes antibiotiques à la même concentration). Lorsque

la densité optique du milieu (à 550 nm) atteint environ une D.O. de 1,5, on induit la production des protéines en ajoutant dans le milieu de l'IAA à la concentration finale de 25 µg/ml. On arrête la culture après 5 heures d'incubation, sous agitation (190 rpm) à 32°C. Après centrifugation, le 5 culot bactérien est resuspendu dans un récipient contenant environ 60 ml de solution de TST (50 mM TrisHCl, pH 8,0, 200mM NaCl, 0,05 % Tween 20, 0,5 mM EDTA) à froid.

On introduit dans le récipient une sonde standard de sonicateur (VIBRA-CELL, Somics Mat, USA). On fait la sonication à la puissance 5 10 pendant deux minutes environ. Le surnageant de solution après centrifugation est filtré à 0,45 µm, et passé dans une colonne contenant environ 3 ml de gel de HSA-sépharose (STAHL et col, J. Immunol. Meth., 1989, 124, 43).

Les protéines purifiées sont analysées par SDS-PAGE sur l'appareil 15 Phast System (PHARMACIA) ou sur Mini Protean BIORAD. Les gels sont révélés par le bleu de Coomassie. La protéine BBG2AδC, représentant plus de 90 % de pureté, correspond bien à la taille attendue (39,3 Kda) par rapport aux standards de poids moléculaires connus.

L'immunotransfert de cette protéine sur membrane Problott (ABI) 20 permet de l'identifier avec des anticorps spécifiques, anti-BB et/ou anti-protéine G du VRS (ss-groupe A). Le rendement de protéines solubles purifiées à partir du cytoplasme de *E. coli* est environ 50 mg/litre de culture.

En fermenteur de 2 litres, on peut obtenir de 500 à 800 mg de 25 protéines BBG2AδC par litre de culture, dans les conditions optimales de culture.

### Exemple 3 : isolement et purification de la protéine p40 naturelle

30 Le procédé de purification de la protéine P40 à partir de la biomasse de *Klebsiella pneumoniae*, souche I-145, a été mis au point avec un objectif principal : mettre au point un procédé permettant la transposition à grande échelle et l'extrapolation industrielle. Ce procédé met en jeu 35 successivement la préparation d'une fraction enrichie en protéines membranaires et la purification de la protéine P40 par chromatographie.

## MATERIEL ET METHODES

La biomasse de Klebsiella pneumoniae (souche I-145, 40 g de cellules sèches) est ajustée à pH 2,5 à l'aide d'acide acétique pur.

- 5 Après addition de 1/2 volume d'une solution contenant 6 % cétrimide, 60 % éthanol, 1,5 M CaCl<sub>2</sub> dont le pH est ajusté à 2,5 avec de l'acide acétique, le mélange est placé sous agitation pendant 16 heures à température ambiante.

Après centrifugation 20 mn à 15000 g à 4°C, les protéines du  
10 surnageant sont précipitées à l'éthanol. Deux précipitations successives avec centrifugation intermédiaire (10 mn, 10000 g, 4 °C) sont réalisées : de 20 à 50 % puis de 50 à 80 %.

Les culots obtenus après la seconde précipitation sont remis en suspension dans une solution de zwittergent 3-14, 1 %.

- 15 Après agitation 4 heures à température ambiante, le pH est ajusté à 6,5 à l'aide de NaOH 1 N.

Une centrifugation du mélange pendant 20 mn à 10000 g à 4 °C permet d'obtenir une fraction enrichie en protéines membranaires (fraction MP).

- 20 Les protéines de la fraction MP sont dialysées contre un tampon Tris/HCl 20 mM pH 8,0 ; zwittergent 3-14, 0,1 %. Le dialysat est déposé sur une colonne contenant un support de type échangeur d'anions forts (colonne de diamètre = 50 mm x H = 250 mm, gel Biorad Macroprep High Q) équilibrée dans le tampon décrit ci-dessus. La protéine P40 est élueée pour 25 une concentration de 50 mM en NaCl dans le tampon d'équilibration.

Les fractions contenant la P40 sont rassemblées et dialysées contre un tampon citrate 20 mM pH 3,0 ; zwittergent 3-14, 0,1 %. Le dialysat est déposé sur une colonne contenant un support de type échangeur de cations forts (dimensions de la colonne : diamètre = 25 mm x H = 160 mm, 30 gel Biorad Macroprep High S) équilibrée dans le tampon citrate 20 mM pH 3,0, zwittergent 3-14, 0,1 %. La protéine P40 est élueée pour une concentration 0,7 M en NaCl. Les fractions contenant la P40 sont rassemblées et concentrées par ultrafiltration à l'aide d'un système de filtration à flux tangentiel Minitan Millipore utilisé avec des plaques de 35 membranes possédant un seuil de coupure 10 kDa.

## RESULTATS

Les fractions obtenues après chaque étape chromatographique sont analysées par SDS-PAGE afin de rassembler celles contenant la protéine 5 P40.

Les quantités de protéines sont mesurées par la méthode de Lowry (tableau I). La pureté et l'homogénéité de la protéine P40 sont estimées par SDS-PAGE, en présence de standards de masse moléculaire.

Après l'étape de chromatographie d'échange de cations, la protéine 10 P40 est dépourvue du contaminant majeur présent dans la fraction MP (la protéine présentant une masse moléculaire apparente de 18 kDa) et présente un degré de pureté supérieur à 95 %.

Le profil électrophorétique de la P40 révèle plusieurs bandes. Ces bandes sont reconnues après immunoblot par des anticorps monoclonaux 15 P40 obtenus chez la souris. La bande majeure supérieure correspond à la protéine dénaturée (par le traitement à 100°C, 15 min. en présence de SDS), et la bande mineure inférieure à la protéine sous sa forme native.

La P40 est en effet une protéine dite "heat-modifiable", et nous 20 avons pu vérifier cette propriété à l'aide d'une cinétique de chauffage à 100°C en présence de SDS. Sans chauffage la protéine sous forme native présente une structure en hélices  $\alpha$  qui fixe plus de SDS et migre donc plus loin vers l'anode que la forme dénaturée (dénaturation complète après 5 min. à 100°C) qui présente une structure en feuillets  $\beta$  (K.B KELLER (1978) J. Bacteriol. 134, 1181-1183).

25 La contamination par les lipopolysaccharides (LPS) est estimée par dosage par chromatographie en phase gazeuse de l'acide  $\beta$ -hydroxymyristique, acide gras marqueur des LPS de Klebsiella pneumoniae (tableau I).

35

25

15

10

5

Tableau 1 : Tableau récapitulatif des quantités de protéine et LPS des fractions obtenues pour les différentes étapes du procédé de purification de la protéine p40 (n.d. = non déterminé).

| PROTEINES                | RENDEMENT | LPS    |
|--------------------------|-----------|--------|
| BIOMASSE                 | 40 g      | n.d.   |
| FRACTION MP              | 900 mg    | 2,25 % |
| FRACTION ENRICHIE EN P40 | 400 mg    | 1 %    |
| PROTEINE P40             | 130 mg    | 0,3 %  |
|                          |           | 10 %   |
|                          |           | < 1 %  |

Cette méthode est utilisée pour approcher la teneur en LPS des échantillons issus des différentes étapes de purification.

La quantité d'acide  $\beta$ -hydroxymyristique présente dans la fraction P40 après chromatographie d'échange de cations étant inférieure au seuil 5 de quantification du dosage, on peut estimer que la quantité de LPS résiduel est inférieure à 1 %.

**Exemple 4 : clonage de la protéine p40 et expression de BBp40**

10      **SOUCHES BACTERIENNES**

\* E. coli : RV 308 : souche ATCC 31608 (MAURER R., MEYER B.J., PTASCHNE M., J. MOL BIOL, 1980, 139,147-161).

15      \* K. pneumoniae : IP 145 : souche C.I.B.P.F -

**VECTEURS**

20      \* pRIT 28 (Hultman et Col, 1988,7 : 629-638) : vecteur de clonage et de séquençage possédant le gène de résistance à l'ampicilline, les origines de réplication d'E.coli et du phage F1 ainsi qu'une portion du gène lac-z d'E.coli (  $\beta$ -galactosidose).

25      \* pVABB : vecteur d'expression de fusion de gène.

**SOLUTIONS**

30      \* Amplification génique :  
          Tampon de lyse :        25 mM Taps pH 9.3  
                                  2 mM MgCl<sub>2</sub>  
          Tampon d'amplification : 25 mM Taps pH 9.3  
                                  2 mM MgCl<sub>2</sub>  
                                  tween 20 0.1 %  
                                  200 mM dNTP.  
35

**\* Purification des protéines :**

|                                    |                   |         |        |
|------------------------------------|-------------------|---------|--------|
| TST (20X) :                        | Tris base         | 0,5 M   |        |
|                                    | HCl               | 0,3 M   |        |
|                                    | NaCl              | 4 M     |        |
| 5                                  | Tween 20          | 1 %     |        |
|                                    | EDTA              | 20 mM   |        |
|                                    |                   |         |        |
| Tampon de lavage :                 | Tris HCl          | 50 mM   | pH 8,5 |
|                                    | MgCl <sub>2</sub> | 5 mM    |        |
| 10                                 |                   |         |        |
| Solution de dénaturation : Gua-HCl |                   | 7,8 M   |        |
|                                    | Tris-HCl          | 28 mM   | pH 8,5 |
|                                    |                   |         |        |
| Solution de renaturation : Gua-HCl |                   | 0,5 M   |        |
| 15                                 | Tris-HCl          | 25 mM   | pH 8,5 |
|                                    | NaCl              | 150 mM  |        |
|                                    | Tween 20          | 0,05 %. |        |

20

**MATERIEL ET METHODE****- Synthèse des oligonucléotides**

25

Les amores nucléotidiques ont été déterminées à partir de la partie de la séquence publiée de l'OMPA de *Klebsiella pneumoniae* (LAWRENCE, G.J., et al, Journal of general microbiology, 1991, 137, 1911-1921) de la séquence consensus issue de l'alignement des séquences de 5 OMPA d'entérobactéries (*E.coli*, *S.typhimurium*, *S.marcescens*, *S.dysenteriae*, *E.aeruginosae*), ainsi que des séquences de peptides obtenus par séquençage manuel.

Les oligonucléotides ont été synthétisés selon la méthode chimique des phosphoramidites sur l'appareil "Gene Assembler Plus" de Pharmacia.

- Amplification génique par PCR du gène de P40

5

L'ADN de l'OMPA de Klebsiella pneumoniae a été amplifié de la manière suivante.

Une colonie de Klebsiella pneumoniae est lysée dans 10 µl de tampon de lyse par chauffage à 95 °C pendant 5 minutes.

10 1 µl de cette solution sert de source d'ADN pour les réactions d'amplification.

15 Celles-ci sont réalisées dans 100 µl de tampon d'amplification (cf.annexe), avec 5 pmoles de chaque amorce et une unité d'enzyme Taq polymérase (Perkin Elmer Cetus). Chaque cycle comprend une étape de dénaturation de 30 secondes à 95°C suivie d'une hybridation de l'amorce à l'ADN et d'une extension d'une minute à 72 °C. 30 cycles sont ainsi effectués à l'aide d'un thermocycleur "Gen Amp PCR" 9000 Perkin Elmer Cetus .

20 Les PCR suivantes sont réalisées à partir des fragments d'ADN amplifiés précédemment.

Les fragments d'ADN amplifiés sont ensuite digérés, purifiés et liés au vecteur pRIT 28.

SEQUENCAGE

25

30 Les fragments ainsi clonés sont séquencés sur un séquenceur automatique 373 DNA Séquenceur d'Applied Biosystem. Les réactions de séquençage sont réalisées à l'aide du kit "dye Terminator" selon les recommandations du fournisseur (Applied Biosystem) soit sur de l'ADN double brin obtenu après amplification génique ou issu de maxiprep soit sur de l'ADN simple brin issu de fragments PCR dénaturés (Hultman et Col, Nucleic acids res. ; 1989, 17 : 4937-4946).

**EXPRESSION DE LA PROTEINE**

Le gène entier de P40 est cloné dans le vecteur d'expression pVABB. Ce vecteur permet d'adoindre une queue d'affinité "BB" à P40 ; B étant la partie de la protéine G du streptocoque qui lie la serum albumine (Nygren P.A et Col ; Journal mol. Recognit. 1988 ; 1, 69-74).

Les souches d'Ecoli RV308 transformées par le vecteur pVABBP40 sont mises à cultiver une nuit à 37°C sous agitation, dans 100 ml de TSB complémenté en extrait de levure, en ampicilline (200 µg/ml) en tétracycline (8 µg/ml) et en tryptophane (100 µg/ml). Le lendemain, une culture à DO= 1 pour une longueur d'onde de 580 nm est préparée dans du TSB + extraits de levure + ampi + tetra.

Après 10 minutes de culture, l'expression de la protéine est induite par addition d'IAA à (25 µg/ml) dans le milieu . La culture est centrifugée à 4°C à 2460 g pendant 10 minutes.

Le culot est repris par 20ml de TST 1 x pH 7,4, et la solution est alors centrifugée à 4°C à 23000 g pendant 30 minutes.

Le surnageant est passé sur Sépharose ce qui permet d'isoler les protéines dites solubles. Le culot est lavé avec du tampon de lavage puis centrifugé à 23000 g à 4°C pendant 30 minutes. Le culot renfermant les corps d'inclusion est alors repris par 900 µl d'une solution dénaturante + 100 µl de Diothiothreitol 10mM et incubé 2 heures à 37 °C.

La solution est ensuite incubée 1 nuit à température ambiante, sous agitation,dans 100 ml de tampon de renaturation à 2300 g pendant 1 heure.

Le surnageant est passé sur HSA Sépharose.

Dans les deux cas les protéines fixées sont éluées avec de l'acide acétique 0,5 M pH 2,8 et collectées par fraction de 1 ml.

Les fractions collectées sont ensuite analysées sur gel d'électrophorèse en SDS-PAGE et par Immuno blot.

## RESULTATS

Le clonage du gène a été effectué en trois temps selon la stratégie  
5 présentée sur la figure 4.

Dans un premier temps, nous avons confirmé la partie de la séquence publiée à l'exception d'un T à la place d'un A en position 103.

Puis nous avons déterminé la séquence en 3' du gène et enfin celle en 5'.

10 Le gène entier a été obtenu par fusion des deux parties 8/4 et 3/14 puis cloné dans le vecteur pRIT 28. La séquence correspond à SEQ ID N° 13.

La protéine est exprimée sous la forme BBP40.

Elle est essentiellement obtenue à partir des corps d'inclusion. Pour une culture de 200 ml, on purifie une quinzaine de milligrammes de  
15 protéine.

Le profil électrophorétique montre que BBP40, obtenue après dénaturation, est d'une grande pureté. Le poids moléculaire apparent, correspond au poids théorique calculé qui est de 63 kDa.

20 La caractérisation en Immuno blot montre que la protéine purifiée est bien reconnue par un sérum de lapin anti-P40.

### Exemple 5 : couplage de la protéine p40 au peptide G<sub>1</sub>A

p40 (5 mg/ml, 40 mg) est dialysée contre 300 volumes de tampon phosphate de sodium 0,1 M pH 7, zwittergent 3-14, 0,1%.

25 Le dialysat est ajusté à une concentration de 2 mg/ml à l'aide d'un tampon carbonate 0,1 M pH 9 ; zwittergent 3-14, 0,1%. Du sodium dodécyl sulfate (SDS) est ajouté pour atteindre une concentration finale de 4%.

30 Le peptide G<sub>1</sub> (10 mg/10 ml de tampon carbonate 0,1 M pH 9 ; zwittergent 3-14 0,1 %) est ajouté à la solution de p40. La valeur du pH est contrôlée (comprise entre pH 9 et pH 10).

Ajouter 220 µl de glutaraldéhyde (2,5% dans l'eau), agiter 24 heures à 4° C.

Ajouter 5 ml de tampon carbonate 0,1 M pH 9 ; zwittergent 3-14 0,1% ; vérifier le pH (compris entre pH 9 et pH 10) ; agiter 72 heures à 4° C.

Ajouter 220 µl de glutaraldéhyde (2,5% dans l'eau), vérifier le pH, agiter 24 heures à + 4° C.

5 La réaction est stoppée par addition de 100 µl de lysine 1 M. La solution est dialysée 24 heures à 4° C.

Le SDS est éliminé par double précipitation au KCl.

La solution contenant le conjugué p40 est congelée et utilisée telle quelle ou lyophilisée.

10

#### Exemple 6 : activité

#### Matériel et méthodes

15 Les souris C57BL/6 (N=5) sont immunisées à J0, J10, J20 par voie sous cutanée avec 10 µg de G1, couplé ou non à un porteur, en présence ou non d'un adjuvant. Le sérum est collecté et testé par ELISA. Les Ig anti-G1 ou anti-porteur sont isolées sur support BSA-G1 et sur support "porteur" (KLH ou TT ou P40). Les Ig sont révélées à l'aide d'un conjugué anti-Ig lapin peroxydase. La densité optique est lue à 450 nm et le titre en anticorps anti-G1 est donné par l'inverse de la dernière dilution donnant deux fois le bruit de fond. Les résultats représentent la moyenne ± écart-type des titres des 5 souris.

#### 25 RESULTATS

#### Induction d'une réponse immunitaire contre G1A

30 Les souris sont immunisées avec G1A sous différentes formes selon un schéma d'immunisation identique. Les réponses anticorps induites par les différentes formes de G1A sont comparées 28 jours après le début de l'expérience.

Le peptide synthétique G1A administré pur n'induit pas de réponse immunitaire même s'il est coadministré avec l'adjuvant de Freund. Présenté par le porteur KLH, G1A induit une réponse faible qui est significativement augmentée par la coadministration de l'adjuvant de 5 Freund (AF). Présenté par p40, G1A induit une réponse supérieure à celle obtenue dans le schéma d'immunisation classique KLH/G1+AF, p40 à des propriétés de "self-adjuvant carrier".

Les résultats sont présentés sur la figure 1.

#### 10 Cinétique de la réponse immunitaire contre G1A

Les souris sont immunisées avec G1A sous différentes formes selon un schéma d'immunisation identique. Les réponses anticorps induites par les différentes formes de G1A sont comparées dans le temps : 7, 17, 28, 35, 42 15 jours après le début de l'expérience.

La réponse anti-G1A est significativement plus élevée et plus rapide lorsque les souris sont immunisées avec p40/G1A que les immunisations plus classiques TT/G1A et KLH/G1A+AF. Une seule injection de p40/G1A permet d'obtenir, en 7 jours, un titre d'anticorps anti-G1A de 1000. Ce titre 20 est obtenu avec TT/G1A ou KLH/G1A+AF en 28 jours. La réponse maximum (titre = 1/380 000), obtenue après trois injections, en 28 jours, est environ 30 fois supérieure à celle obtenue avec KLH/G1A+AF et 70 fois supérieure à celle obtenue avec TT/G1A. Le titre en anticorps anti-G1A se maintient sans faiblir jusqu'au jour 42.

25 Les résultats sont présentés sur la figure 2.

#### Cinétique de la réponse immunitaire contre le porteur

Les souris sont immunisées avec G1A couplé à un porteur selon un 30 schéma d'immunisation identique. Les réponses anticorps induites par les différents porteurs sont comparées dans le temps, 7, 17, 28, 35, 42 jours après le début de l'expérience.

La réponse anti-p40 (titre voisin du 10 000) est supérieure à la réponse anti-KLH mais non significativement différente de la réponse anti-TT.

Les résultats sont présentés sur la figure 3.

5

## CONCLUSION

Le couplage chimique du peptide G1A sur la protéine p40 a permis d'induire une réponse anti-G1A significativement plus importante et plus 10 rapide que celles provoquées par les modèles de référence KLH/G1A+AF ou TT/G1A. Le couplage du peptide G1B devrait induire des réponses similaires.

Exemple 7 : Evaluation du potentiel protecteur des 15 peptides et des protéines recombinantes de la glycoprotéine G du virus respiratoire syncytial (VRS) sous-groupe A couplés à la protéine porteuse p40

20 Les souris BALB/c ont été immunisées avec les différentes préparations suivantes :

- 1) peptide de synthèse G1A couplé à KLH (keyhole limpet hemocyanin) = KLH.G1A.
- 25 2) peptide de synthèse G1A couplé à la protéine porteuse p40 = p40.G1A.
- 3) témoin p40 seul.
- 4) protéine recombinante produite dans E. coli : BBG2A $\delta$ C couplée à la protéine porteuse p40 = p40.BBG2A $\delta$ C.
- 30 5) peptide de synthèse G1A couplé à la protéine porteuse toxine tétanique (TT) = TT.G1A.
- 6) témoin TT seul.
- 7) témoin BB seul.
- 8) témoin VRS long (sous-groupe A).

Les souris ont reçu 3 doses intramusculaires (200 µg/souris) avec l'hydroxyde d'aluminium comme adjuvant (utilisé couramment chez l'homme). Les résultats des tests de protection ainsi que du profil immunologique des sérum se trouvent dans le tableau 2.

- 5        Les préparations suivantes confèrent une protection complète suite au challenge avec le VRS Long (Souche A) : p40.G1A, p40.BBG2AδC, par rapport à TT.G1A qui confère aussi une très bonne protection comparable au peptide KLH.G1A. En test ELISA, tous reconnaissent l'antigène VRS avec un titre le plus fort pour p40.G1A=1/12800.
- 10      Quant au test de neutralisation, aucune des préparations ne possède d'activité neutralisante *in vitro*.

| Peptides et Protéines Recombinantes | Protection                                                     |                                       | Titre Elisa versus VRS long      | Neutralisation log 2/25 µl              |
|-------------------------------------|----------------------------------------------------------------|---------------------------------------|----------------------------------|-----------------------------------------|
|                                     | DICT50 log10/g poumons challenge avec VRS long (Sous-Groupe A) | 5 - 6 jours                           |                                  |                                         |
| KLH. G1A (100 à 157 µg)             | 2,45<br>≤ 2,0 ± 0,4<br>p < 0,001                               | 2,45<br>2,15<br>< 1,7                 | ≤ 2,0 ± 0,4<br>p < 0,001         | 4000<br>< 3,0                           |
| P40. G1A (200 µg)                   | < 1,7<br>< 1,7<br>< 1,7                                        | < 1,7<br>< 1,7<br>< 1,7               | < 1,7<br>< 1,7<br>< 1,7          | < 1,7 ± 0<br>p < 0,001                  |
| Témoins P40 (200 µg)                | 4,7<br>4,45<br>4,45<br>4,45                                    | 4,7<br>4,5 ± 0,1<br>p < 0,001<br>4,45 | 4,7<br>4,45<br>4,45<br>4,45      | 12 800<br>< 3,0                         |
| P40. BBG2AδC (200 µg)               | < 1,7<br>< 1,7<br>< 1,7<br>< 1,7                               | < 1,7<br>< 1,7<br>< 1,7<br>< 1,7      | < 1,7<br>< 1,7<br>< 1,7<br>< 1,7 | < 1,7 ± 0<br>p < 0,001<br>1700<br>< 3,0 |

Tableau 2 : Protection conférée et profil immunologique des sérum après challenge avec VRS Long (A) suite à l'immunisation de souris BALB/c avec différentes protéines recombinantes. (3-4 semaines après 3 doses i.m. avec hydroxyde d'Aluminium)

5  
10  
15  
20  
25  
30

| Peptides et Protéines Recombinantes | Protection                                                                                    |                                                    | Titre Elisa-versus VRS long          | Neutralisation log 2/25 µl                |
|-------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|-------------------------------------------|
|                                     | DICT 50 log10/g poumons challenge avec VRS long (1,5.10 <sup>5</sup> /souris) (Sous-Groupe A) | 5 - 6 jours                                        |                                      |                                           |
| TT.G1A<br>(200 µg)                  | < 1,7<br>< 1,7<br>< 1,7<br>2,45                                                               | < 1,7<br>< 1,9 ± 0,3<br>p < 0,001<br>< 1,7<br>2,45 | < 1,7<br>< 1,7<br>< 1,7<br>2,45      | < 1,9 ± 0,3<br>p < 0,001<br>7200<br>< 3,0 |
| TT Témoins<br>(200 µg)              | 4,45<br>4,2<br>4,2<br>4,45<br>3,7                                                             | 4,2 ± 0,3<br>p=0,022<br>4,2<br>4,45<br>3,7         | 4,7<br>4,2<br>4,2<br>4,45<br>3,7     | 4,2 ± 0,4<br>p=0,053<br>250<br>< 3,0      |
| Témoins BB<br>(200 µg)              | 2,95<br>4,2<br>3,95<br>3,7<br>3,7                                                             | 2,95<br>3,7 ± 0,5<br>p=0,853<br>4,2<br>3,7<br>3,7  | 3,8 ± 0,5<br>p=0,760<br>150<br>< 3,0 |                                           |

Tableau 2(suite) : Protection conférée et profil immunoologique des sérum après challenge avec VRS Long (A) suite à l'immunisation de souris BALB/c avec différentes protéines recombinantes. (3-4 semaines après 3 doses i.m. avec hydroxyde d'Aluminium)

35            25            20            15            10            5

| Peptides et Protéines Recombinantes    | Protection                                                                                    |                                      | Titre Elisa versus VRS long          | Neutralisation log 2/25 µl              |
|----------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|
|                                        | DIC T50 log10/g poumons challenge avec VRS long (1,5.10 <sup>5</sup> /souris) (Sous-Groupe A) | 5 - 6 jours                          |                                      |                                         |
|                                        | 7 - 8 jours                                                                                   |                                      |                                      |                                         |
| Témoins VRS long                       | < 1,7<br>< 1,7<br>< 1,7<br>< 1,7                                                              | < 1,7<br>$p=0,001$<br>< 1,7<br>< 1,7 | < 1,7<br>$p=0,001$<br>< 1,7<br>< 1,7 | < 1,7 ± 0<br>$p=0,001$<br>76 800<br>6,6 |
| Témoins, non immunisés, challengés     | 3,95<br>3,95<br>3,7<br>3,45                                                                   | 3,95<br>4,2<br>3,7 ± 0,2<br>3,45     | 3,95<br>4,2<br>3,7<br>3,45           | 3,8 ± 0,3<br>150<br>$p < 3,0$           |
| Témoins, non immunisés, non challengés | Pas de virus                                                                                  | Pas de virus                         | 150                                  | $p < 3,0$                               |

**Tableau 2 (suite) :**  
 Protection conférée et profil immunologique des sérum après challenge avec VRS Long (A) suite à l'immunisation de souris BALB/c avec différentes protéines recombinantes. (3-4 semaines après 3 doses i.m. avec hydroxyde d'Aluminium)

**Exemple 8**

Evaluation du potentiel protecteur des peptides de la glycoprotéine G du virus respiratoire syncytial (VRS) sous-groupe A et sous-groupe B couplés à la KLH. Protection vis-à-vis d'un challenge réalisé avec les deux 5 sous-groupes du VRS.

Les souris BALB/c ont été immunisées avec les différentes préparations suivantes :

1. peptide de synthèse C1A couplé à la KLH (keyhole limpet hemocyanin) = KLH-G1A
- 10 2. peptide de synthèse G1B couplé à la KLH (keyhole limpet hemocyanin) = KLH-G1B. Le peptide G1B correspond à la séquence G (174-187) $\delta$ Cys du sous-groupe B dont la séquence est :

Ser-Ile-Cys-Gly-Asn-Asn-Gln-Leu-Cys-Lys-Ser-Ile-Ser-Lys

| \_\_\_\_\_ s-s \_\_\_\_\_ |

15

3. Témoin KLH
4. Témoin VRS long (sous-groupe A)
5. Témoin VRS 8/60 (sous-groupe B)

Les souris ont reçu 3 doses intramusculaires (200 µg/souris) avec 20 l'adjuvant de Freund. Les résultats des tests de protection ainsi que du profil immunoologique des sérums se trouvent dans le tableau 3.

La préparation KLH-G1A permet une protection complète vis-à-vis du VRS sous-groupe A mais pas vis-à-vis du VRS sous-groupe B. Par contre, la préparation KLH-G1B permet une protection complète vis-à-vis du VRS 25 sous-groupe B mais pas vis-à-vis du VRS sous-groupe A. Le test ELISA reflète la même situation.

5  
10  
15  
20  
25  
30  
35

| Péptides couplés<br>à la KLH | PROTECTION                                    |                                                                                 |                                                                                 |                                          | Titre ELISA   |
|------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|---------------|
|                              | DIC <sub>50</sub> log 10/g poumons            | Challenge<br>VRS long (sous-groupe A)<br>1,5 x 10 <sup>5</sup> /s (50/ $\mu$ l) | Challenge<br>VRS 8/60 (sous-groupe B)<br>0,6 x 10 <sup>5</sup> /s (50/ $\mu$ l) | Versus<br>VRS long (A)                   |               |
| GIA                          | $\leq 1,8 \pm 0,3$<br>$n = 11$<br>$p < 0,001$ | $3,3 \pm 0,5$<br>$n = 10$<br>$p = 0,237$                                        | $\leq 2,1 \pm 0,5$<br>$n = 8$<br>$p < 0,001$                                    | $\leq 100$<br>$n = 10$<br>$p = 0,6$      | 29 866<br>266 |
| GIB                          | $3,8 \pm 0,8$<br>$n = 7$<br>$p = 0,517$       | $\leq 100$<br>$n = 10$<br>$p = 0,237$                                           | $\leq 100$<br>$n = 10$<br>$p = 0,6$                                             | $\leq 100$<br>$n = 10$<br>$p = 0,6$      | 7 200         |
| Témoin KLH                   | $3,7 \pm 0,3$<br>$n = 11$<br>$p = 0,01$       | $3,4 \pm 0,3$<br>$n = 10$<br>$p = 0,6$                                          | $\leq 100$<br>$n = 10$<br>$p = 0,6$                                             | $\leq 200$<br>$n = 10$<br>$p = 0,6$      | 133           |
| Témoin VRS (A)               | $\leq 1,7 \pm 0$<br>$n = 11$<br>$p < 0,001$   | $\leq 1,7 \pm 0$<br>$n = 11$<br>$p < 0,001$                                     | $\leq 1,7 \pm 0$<br>$n = 10$<br>$p < 0,001$                                     | $\leq 68 266$<br>$n = 10$<br>$p < 0,001$ | 51 200        |
| Témoin VRS (B)               | $\leq 1,7 \pm 0$<br>$n = 10$<br>$p < 0,001$   | $\leq 1,7 \pm 0$<br>$n = 10$<br>$p < 0,001$                                     | $\leq 1,7 \pm 0$<br>$n = 10$<br>$p < 0,001$                                     | $\geq 76 800$<br>$n = 10$<br>$p < 0,001$ | 68 266        |

Tableau 3 : Protection conférée et profil immunologique des sérums après challenge avec le RS long (sous-groupe A) ou avec le RS 8/60 (sous-groupe B) suite à l'immunisation de souris BALB/c avec les peptides GIA et GIB.

**Exemple 9: Application vétérinaire**

Evaluation du potentiel protecteur de peptide G1vΔC dérivé de la protéine G de la souche bovine du Virus Respiratoire Syncytial (VRS)  
5 Lerch et al. 1990, J. Virol. 64:5559 couplé à la protéine porteuse KLH.

174

187

Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His  
présentant un pont disulfure en position 176-182.

10 Le peptide préparé par synthèse en phase solide en utilisant la chimie Boc est couplé au KLH en utilisant la glutaraldéhyde (Schaaper et al. Mol. Immunol. (1989) 26: 81-85).

15 Deux veaux ont été immunisés par voie intramusculaire avec 500 µg de G1vΔC-KLH avec de l'adjuvant incomplet de Freund 3 fois à intervalle de 3 semaines. Un veau a été immunisé avec KLH sans peptide G1VΔC, avec un adjuvant incomplet de Freund.

Les animaux sont challengés avec la souche Snook, 21 jours après la dernière inoculation, par voie intranasale et intratrachéale avec chacune 1ml de virus titrant à 2x10<sup>5</sup> /ml.

20 Le virus titré sur cellules de reins de veau selon la méthode des plaques est déterminé dans les lavages nasopharyngéaux respectivement 3 et 2 jours après le challenge et 7 jours dans les poumons des animaux sacrifiés.

25

## REPONSE EN ANTICORPS CIRCULANTS :

Veau 3432 (KLH + FIA):

| 5  | Date  | Traitement      | Titre log <sub>10</sub> ELISA |         |       |              |
|----|-------|-----------------|-------------------------------|---------|-------|--------------|
|    |       |                 | Peptide + KLH                 | Peptide | KLH   | BRSV (Snook) |
|    | 23/11 | J0 vaccination  | < 1.0                         | < 1.0   | < 1.0 | < 1.5        |
|    | 14/12 | J21 Vaccination | < 1.0                         | < 1.0   | 3.0   | < 1.5        |
|    | 04/01 | J42 vaccination | < 1.0                         | < 1.0   | 4.7   | < 1.5        |
| 10 | 01/02 | J70 VRS IN / IT | < 1.0                         | < 1.0   | 5.7   | < 1.5        |
|    | 08/02 | J77 sacrifice   | 1.5                           | < 1.0   | 4.8   | < 1.5        |

Veau 3440 (Peptide - KLH + FIA)

| 15 | Date  | Traitement      | Titre log <sub>10</sub> ELISA |         |       |              |
|----|-------|-----------------|-------------------------------|---------|-------|--------------|
|    |       |                 | Peptide + KLH                 | Peptide | KLH   | BRSV (Snook) |
|    | 23/11 | J0 vaccination  | < 1.0                         | < 1.0   | < 1.0 | < 1.5        |
|    | 14/12 | J21 Vaccination | 1.6                           | < 1.0   | < 1.0 | < 1.5        |
|    | 04/01 | J42 vaccination | 3.8                           | 2.6     | 1.7   | 1.9          |
| 20 | 01/02 | J70 VRS IN / IT | 2.7                           | 2.8     | 2.6   | 3.7          |
|    | 08/02 | J77 sacrifice   | 4.1                           | 2.6     | 1.7   | 3.1          |

Veaux auxquels a été administré 500 µg G1vΔC - KLHen adjuvant incomplet de Freund à trois occasions à 3 semaines d'intervalle.

25

## REPONSE AU CHALLENGE DU VIRUS

| 30 | Veaux | Vaccination         | Relargage nasopharyngéal |                   | J7 Virus du poumon |               | % pneumoniae |
|----|-------|---------------------|--------------------------|-------------------|--------------------|---------------|--------------|
|    |       |                     | No jours                 | Titre max.        | Titre LBA (pfu/ml) | Poumon Homog. |              |
|    | 3432  | KLH + FIA           | 3                        | $5.1 \times 10^3$ | $1.4 \times 10^2$  | 3/3           | 12           |
|    | 3440  | Peptide - KLH + FIA | 2                        | $5.5 \times 10^2$ | < 0.7              | 0/3           | < 1          |

35

## REONSE EN ANTICORPS CIRCULANTS

| 5<br>Veaux | Vaccination           | Titre log <sub>10</sub> ELISA (BRSV Snook) |       |       |       |     |
|------------|-----------------------|--------------------------------------------|-------|-------|-------|-----|
|            |                       | J0                                         | J24   | J42   | J68   | J75 |
| 4138       | KLH + FIA             | < 1.5                                      | < 1.5 | < 1.5 | < 1.5 | 2.4 |
| 4140       | * Peptide - KLH + FIA | < 1.5                                      | < 1.5 | 3.0   | 2.5 ≈ | 2.9 |

- 10 \* Veau auquel a été administré 500 µg de BP 4006 - KLH en adjuvant incomplet de Freund à trois occasions à trois semaines d'intervalle.

## REONSE AU CHALLENGE DU VIRUS

| 15<br>Veaux | Vaccination         | Relargage nasopharyngéal |                 | J7 Virus du poumon |               | % pneumonie |
|-------------|---------------------|--------------------------|-----------------|--------------------|---------------|-------------|
|             |                     | No jours                 | Titre max.      | Titre LBA (pfu/ml) | Poumon Homog. |             |
| 4138        | KLH + FIA           | 5                        | $4 \times 10^1$ | $6.5 \times 10^2$  | 2/3           | 27          |
| 20<br>4140  | Peptide - KLH + FIA | 4                        | $2 \times 10^3$ | $7.0 \times 10^1$  | 3/3           | 2           |

25

30

35

## LISTE DE SEQUENCES

## (1) INFORMATIONS GENERALES:

## (i) DEPOSANT:

- (A) NOM: PIERRE FABRE MEDICAMENT
- (B) RUE: 17, AVENUE JEAN MOULIN
- (C) VILLE: CASTRES
- (E) PAYS: FRANCE
- (F) CODE POSTAL: 81106

(ii) TITRE DE L' INVENTION: ELEMENT D'IMMUNOGENE, AGENT IMMUNOGENE, COMPOSITION PHARMACEUTIQUE ET PROCEDE DE PREPARATION.

(iii) NOMBRE DE SEQUENCES: 75

## (iv) FORME DECHIFFRABLE PAR ORDINATEUR:

- (A) TYPE DE SUPPORT: Floppy disk
- (B) ORDINATEUR: IBM PC compatible
- (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS

## (vi) DONNEES DE LA DEMANDE ANTERIEURE:

- (A) NUMERO DE LA DEMANDE: FR 94 04009
- (B) DATE DE DEPOT: 06-AVRIL-1994

Information pour la SEQ ID NO : 1 G2A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGEUR DE LA SEQUENCE : 101 acides aminés, 303 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|     |                                                                                                  |     |     |     |
|-----|--------------------------------------------------------------------------------------------------|-----|-----|-----|
| 130 | N - Thr Val Lys Thr Lys Asn Thr Thr Thr Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys                  |     |     |     |
|     | 5'- ACC GIG AAA ACC AAA AAC ACC ACC ACC CAG ACC CAG CGG AGC AAA CGG ACC ACC AAA                  |     |     |     |
| 150 | Gln Arg Gln Asn Lys Pro Pro Asn Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe              |     |     |     |
|     | CAG CGT CAG AAC AAA CCG CCG AAC AAA CCG AAC AAC GAT TTC CAT TTC GAA GIG TTC AAC TTC              |     |     |     |
| 171 | 173                                                                                              | 176 | 182 | 186 |
|     |                                                                                                  |     |     |     |
|     | Val Pro Cys Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys <sup>1</sup> Lys Arg Ile Pro Asn |     |     |     |
|     | GIG CCG TGC AGC ATC TGC AGC AAC CCG ACC TGC TGG GCG ATC TGC AAA CGT ATC CCG AAC                  |     |     |     |
| 192 |                                                                                                  |     |     |     |
|     | Lys Lys Pro Gly Lys Lys Thr Thr Lys Pro Thr Lys Lys Pro Thr Phe Lys Thr Thr Lys                  |     |     |     |
|     | AAA AAA CGG AAA AAA ACC ACC AAA CGG ACC AAA AAA CGG ACC TIC AAA ACC ACC AAA                      |     |     |     |
| 213 |                                                                                                  |     |     |     |
|     | 230                                                                                              |     |     |     |
|     | Lys Asp His Lys Pro Gln Thr Thr Lys Pro Lys Glu Val Pro Thr Thr Lys Pro - C                      |     |     |     |
|     | AAA GAT CAT AAA CGG CAG ACC ACC AAA CGG AAA GAA GIG CGG ACC ACC AAA CGG - 3'                     |     |     |     |

Information pour la SEQ ID NO : 2 G2B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 101 acides aminés, 303 nucléotides

NOMBRE DE BRINS : simple

**CONFIGURATION :** linéaire

**TYPE DE MOLECULE : protéine**

130  
 N - Thr Ala Gln Thr Lys Gly Arg Ile Thr Thr Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys  
 51 - ACC GCG CAG ACC AAA GGC CGT ATC ACC ACC AGC ACC CAG ACC AAC AAA CGG AGC ACC AAA  
 150  
 Ser Arg Ser Lys Asn Pro Pro Lys Pro Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe  
 AGC CGT AGC AAA AAC CGG CGG AAA AAA CGG AAA GAT GAT TAC CAC TTC GAA GTG TTC AAC TIC  
 171        173        176                          182                          186  
 Val Pro Cys Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Cys Lys Thr Ile Pro Ser  
 GIG CCC TGC AGC ATC TGC GGC AAC AAC CAG CIG TGC AAA AGC ATC TGC AAA ACC ACC ATC CGG AGC  
 192  
 Asn Lys Pro Lys Lys Pro Thr Ile Lys Pro Thr Asn Lys Pro Thr Thr Lys Thr Thr Asn  
 AAC AAA CGG AAA AGG AAA CGG ACC ATC AAA CGG ACC AAC AAA CGG ACC ACC AAA ACC ACC AAC  
 213                                                          230  
 Lys Arg Asp Pro Lys Thr Pro Ala Lys Met Pro Lys Lys Glu Ile Ile Thr Asn - C  
 AAA CGT GAT CGG AAA ACC CGG GCG AAA ATG CGG AGG AGG GAA ATC ATC ACC AAC - 3'

Information pour la SEO ID N° : 3 G2AΔCvS

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SÉQUENCE : 101 acides aminés, 303 nucléotides

NOMBRE DE BRINS : simple

**CONFIGURATION :** linéaire

**TYPE DE MOLECULE : protéine**

130 N - Thr Val Iys Thr Lys Asn Thr Thr Thr Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys  
 5' - ACC GIG AAA ACC AAA AAC ACC ACG ACC ACC CAG ACC CAG CCG ACC AAA CGG ACC ACC AAA

150  
 Gln Arg Gln Asn Lys Pro Pro Asn Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe  
 CAG CGT CAG AAC AAA CCG CCG AAC AAA CCG AAC AAC GAT TTC CAT TTC GAA GIG TIC AAC TTC  
 171 173 176 182 186  
 Val Pro Ser Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro Asn  
 GTG CCG AGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC AGC AAA CGT ATC CCG AAC  
 192  
 Lys Lys Pro Gly Lys Lys Thr Thr Lys Pro Thr Lys Lys Pro Thr Phe Lys Thr Thr Lys  
 AAA AAA CCG GGC AAA AAA ACC ACC AAC AAA CCG ACC AAA AAA CCG ACC TTC AAA ACC ACC AAA  
 213 230  
 Lys Asp His Lys Pro Gln Thr Thr Lys Pro Lys Glu Val Pro Thr Thr Lys Pro - C  
 AAA GAT CAT AAA CCG CAG ACC ACC AAA CCG AAA GAA GTG CCG ACC ACC AAA CCG - 3'

Information pour la SEQ ID NO : 4 G2B0Cys

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGEUR DE LA SEQUENCE : 101 acides aminés, 303 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

130  
 N - Thr Ala Gln Thr Lys Gly Arg Ile Thr Thr Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys  
 5' - ACC GCG CAG ACC AAA GGC CGT ATC ACC ACC AGC ACC CAG ACC AAC AAA CCG AGC ACC AAA  
 150  
 Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe  
 AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG AAA GAT GAT TAC CAC TTC GAA GIG TIC AAC TTC  
 171 173 176 182 186  
 Val Pro Ser Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Ser Lys Thr Ile Pro Ser  
 GTG CCC AGC AGC ATC TGC GGC AAC AAC CAG CCG TGC AAA AGC ATC AGC AAA ACC ACC ATC CCG AGC  
 192  
 Asn Lys Pro Lys Lys Pro Thr Ile Lys Pro Thr Asn Lys Pro Thr Thr Lys Thr Thr Asn  
 AAC AAA CCG AAA AAG AAA CCG ACC ATC AAA CCG ACC AAC AAA CCG ACC ACC AAA ACC ACC AAC  
 213 230  
 Lys Arg Asp Pro Lys Thr Pro Ala Lys Met Pro Lys Glu Ile Ile Thr Asn - C  
 AAA CGT GAT CCG AAA ACC CCG GCG AAA ATG CCG AAG GAA ATC ATC ACC AAC - 3'

Information pour la SEQ ID NO : 5 GLACys

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 14 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

|                                                                  |     |     |     |     |
|------------------------------------------------------------------|-----|-----|-----|-----|
| 174                                                              | 176 | 182 | 186 | 187 |
| N - Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys - C  |     |     |     |     |
| 5'- AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC TGC AAA - 3' |     |     |     |     |

Information pour la SEQ ID NO : 6 GIBCys

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 14 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

|                                                                  |     |     |     |     |
|------------------------------------------------------------------|-----|-----|-----|-----|
| 174                                                              | 176 | 182 | 186 | 187 |
| N - Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Cys Lys - C  |     |     |     |     |
| 5'- AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC TGC AAA - 3' |     |     |     |     |

Information pour la SEQ ID NO : 7 GIA

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 14 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

174      176                  182                  186 187  
N - Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys - C  
5' - AGC ATC TGC AGC AAC AAC CGG ACC TGC TGG CGG ATC AGC AAA - 3'

Information pour la SEQ ID NO : 8                  G1B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 14 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

174      176                  182                  186 187  
N - Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Ser Lys - C  
5' - AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC AGC AAA - 3'

Information pour la SEQ ID NO : 9                  G1'A

TYPE DE SEQUENCE : acides aminés

LONGUEUR DE LA SEQUENCE : 14 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

174      176                  182                  186 187  
N - Ser Ile Asp Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys - C

Information pour la SEQ ID NO : 10 GL'8

TYPE DE SEQUENCE : acides aminés

LONGUEUR DE LA SEQUENCE : 14 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

174      176                  182                  186 187  
N - Ser Ile Asp Gly Asn Asn Gln Leu Orn Lys Ser Ile Cys Lys - C

Information pour la SEQ ID NO : 11 GL'ADC

TYPE DE SEQUENCE : acides aminés

LONGUEUR DE LA SEQUENCE : 14 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

174      176                  182                  186 187  
N - Ser Ile Asp Ser Asn Asn Pro Thr Orn Trp Ala Ile Ser Lys - C

Information pour la SEQ ID NO : 12 GL'8DC

TYPE DE SEQUENCE : acides aminés

LONGUEUR DE LA SEQUENCE : 14 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

174      176                  182                  186 187  
N - Ser Ile Asp Gly Asn Asn Gln Leu Orn Lys Ser Ile Ser Lys - C

Information pour la SEQ ID NO : 13 P40

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 335 acides aminés, 1005 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

P40 = N -Ala Pro Lys Asp Asn Thr Trp Tyr Ala Gly Gly Lys Leu Gly Trp Ser  
GCT CGT AAA GAT AAC ACC TGG TAT GCA GGT GGT AAA CTG GGT TGG TCC

17

Gln Tyr His Asp Thr Gly Phe Tyr Gly Asn Gly Phe Gln Asn Asn Asn Gly Pro  
CAG TAT CAC GAC ACC GGT TTC TAC GGT AAC AAC GGT TTC CAG AAC AAC AAC GGT CGG  
35

Thr Arg Asn Asp Gln Leu Gly Ala Phe Gly Gly Tyr Gln Val Asn Pro  
ACC CGT AAC GAT CAG CTT GGT GCT CGT GCG TTC CGT GGT TAC CAG GTC AAC AAC CGG  
53

Tyr Leu Gly Phe Glu Met Gly Tyr Asp Trp Leu Gly Arg Met Ala Tyr Lys Gly  
TAC CTC GGT TTC GAA ATG GGT TAT GAC TGG CTG CGC CGT ATG GCA TAT AAA GGC  
71

Ser Val Asp Asn Gly Ala Phe Lys Ala Gln Gly Val Gln Leu Thr Ala Lys Leu  
AGC GTC GAC AAC GGT GCT TTC AAA GCT CAG GGC GTC CAG CTG ACC GCT AAA CTG  
89

Gly Tyr Pro Ile Thr Asp Asp Leu Asp Ile Tyr Thr Arg Leu Gly Gly Met Val  
GGT TAC CGG ATC ACT GAC GAT CTG GAC ATC TAC ACC CGT CTG GGC GGC ATG GTC  
107

Trp Arg Ala Asp Ser Lys Gly Asn Tyr Ala Ser Thr Gly Val Ser Arg Ser Glu  
TGG CGC GCT GAC TCC AAA GGC AAC TAC GCT TCT ACC GGC GTC TCC CGT AGC GAA  
125

His Asp Thr Gly Val Ser Pro Val Phe Ala Gly Gly Val Glu Trp Ala Val Thr  
CAC GAC ACT GGC GTC TCC CCA GTC TTT GCT CGC CGC GTC GAG TGG GCT GTC ACT  
143

Arg Asp Ile Ala Thr Arg Leu Glu Tyr Gln Trp Val Asn Asn Ile Gly Asp Ala  
CGT GAC ATC GCT ACC CGT CTG GAA TAC CAG TGG GTC AAC AAC ATC GGC GAC CGG

161

Gly Thr Val Gly Thr Arg Pro Asp Asn Gly Met Leu Ser Leu Gly Val Ser Tyr  
GGC ACT GTG GGT ACC CGT CCT GAT AAC GGC ATG CTG AGC CTG CGC GTC TCC TAC  
179

Arg Phe Gly Gln Glu Asp Ala Ala Pro Val Val Ala Pro Ala Pro Ala  
CGC TTC GGT CAG GAA GAT GCT GCA CGG GTC GCT CGT GCT CGT CGC CGT CGT

197

Pro Glu Val Ala Thr Lys His Phe Thr Leu Lys Ser Asp Val Leu Phe Asn Phe  
 CCG GAA GTG GCT ACC AAG CAC TTC ACC CTG AAG TCT GAC GTT CTG TTC AAC TTC  
 215

Asn Lys Ala Thr Leu Lys Pro Glu Gly Gln Gln Ala Leu Asp Gln Leu Tyr Thr  
 AAC AAA GCT ACC CTG AAA CCG GAA GGT CAG CAG GCT CTG GAT CAG CTG TAC ACT  
 233

Gln Leu Ser Asn Met Asp Pro Lys Asp Gly Ser Ala Val Val Leu Gly Tyr Thr  
 CAG CTG AGC AAC ATG GAT CCG AAA GAC GGT TCC GCT GTT GAT CIG GGC TAC ACC  
 251

Asp Arg Ile Gly Ser Glu Ala Tyr Asn Gln Gln Leu Ser Glu Lys Arg Ala Gln  
 GAC CCC ATC GGT TCC GAA GCT TAC AAC CAG CAG CTG TCT GAG AAA CGT GCT CAG  
 269

Ser Val Val Asp Tyr Leu Val Ala Lys Gly Ile Pro Ala Gly Lys Ile Ser Ala  
 TCC GTT GAT GAC TAC CTG GTT GCT AAA GGC ATC CCG GCT GGC AAA ATC TCC GCT  
 287

Arg Gly Met Gly Glu Ser Asn Pro Val Thr Gly Asn Thr Cys Asp Asn Val Lys  
 CGC GGC ATG GGT GAA TCC AAC CCG GTT ACT GGC AAC ACC TGT GAC AAC GTG AAA  
 305

Ala Arg Ala Ala Leu Ile Asp Cys Leu Ala Pro Asp Arg Arg Val Glu Ile Glu  
 GCT CGC GCT GGC CTG ATC GAT TGC CTG GCT CCG GAT CGT CGT GTC GAG ATC GAA  
 323

335

Val Lys Gly Tyr Lys Glu Val Val Thr Gln Pro Ala Gly TER - C  
 GTT AAA GGC TAC AAA GAA GTT GTC ACT CAG CCG GCG GGT TAA - 3'

Information pour la SEQ ID NO : 14

G2A8CF

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 101 acides aminés, 303 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                     |     |     |     |     |
|-------------------------------------------------------------------------------------|-----|-----|-----|-----|
| 130                                                                                 |     |     |     |     |
| N - Thr Val Lys Thr Lys Asn Thr Thr Thr Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys     |     |     |     |     |
| 5' - ACC GTG AAA ACC AAA AAC ACC ACC ACG ACC ACC CAG CGC AGC AAA CCG ACC ACC AAA    | 163 | 165 | 168 | 170 |
| 150                                                                                 |     |     |     |     |
| Gln Arg Gln Asn Lys Pro Pro Asn Lys Pro Asn Asn Asp Ser His Ser Glu Val Ser Asn Ser |     |     |     |     |
| CAG CGT CGG AAC AAA CCG CCG AAC AAA CCG AAC AAC GAT TCC CAT TCC GAA GTG TCC AAC TCC |     |     |     |     |
| 171      173      176      182      186                                             |     |     |     |     |
| Val Pro Ser Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro Asn |     |     |     |     |
| GIG CGG AGC ATC TCC AGC AAC AAC CCG ACC TCC TGG GCG ATC AGC AAA CGT ATC CCG AAC     |     |     |     |     |
| 192                                                                                 |     |     |     |     |
| Lys Lys Pro Gly Lys Lys Thr Thr Lys Pro Thr Lys Lys Pro Thr Phe Lys Thr Thr Lys     |     |     |     |     |
| AAA AAA CCG GGC AAA AAA ACC ACG ACC AAA CCG ACC AAA AAA CCG ACC TTC AAA ACC ACC AAA |     |     |     |     |

213

Lys Asp His Lys Pro Gln Thr Thr Lys Pro Lys Glu Val Pro Thr Thr Lys Pro - C  
AAA GAT CAT AAA CCG CAG ACC ACC AAA CCG AAA GAA GTG CCG ACC ACC AAA CCG - 3'

230

Information pour la SEQ ID NO : 15 G4A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 17 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171 173 176 182 186 187  
N - Val Pro Cys Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys - C  
5' - GTG CCG TGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC TCC AAA - 3'

Information pour la SEQ ID NO : 16 G1AδC

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 17 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171 173 176 182 186 187  
N - Val Pro Ser Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys - C  
5' - GTG CCG AGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC AGC AAA - 3'

Information pour la SEQ ID NO : 17 G4B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 17 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171 173 176 182 186 187  
N - Val Pro Cys Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Cys Lys - C  
5' -GIG CCC TGC AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC TGC AAA - 3'

Information pour la SEQ ID NO : 18 G4B'C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 17 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171 173 176 182 186 187  
N - Val Pro Ser Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Ser Lys - C  
5' -GIG CCC AGC AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC AGC AAA - 3'

Information pour la SEQ ID NO : 19 G4'A

TYPE DE SEQUENCE : acides aminés

LONGUEUR DE LA SEQUENCE : 17 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171 173 176 182 186 187  
N - Val Pro Asp Ser Ile Asp Ser Asn Asn Pro Thr Orn Trp Ala Ile Orn Lys - C

Information pour la SEQ ID NO : 20 G4'BOC

TYPE DE SEQUENCE : acides aminés

LONGUEUR DE LA SEQUENCE : 17 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171      173      176      182      186 187  
N - Val Pro Ser Ser Ile Asp Ser Asn Asn Pro Thr Orn Trp Ala Ile Ser Lys - C

Information pour la SEQ ID NO : 21 G4'B

TYPE DE SEQUENCE : acides aminés

LONGUEUR DE LA SEQUENCE : 17 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171      173      176      182      186 187  
N - Val Pro Asp Ser Ile Asp Gly Asn Asn Gln Leu Orn Lys Ser Ile Orn Lys - C

Information pour la SEQ ID NO : 22 G4'BOC

TYPE DE SEQUENCE : acides aminés

LONGUEUR DE LA SEQUENCE : 17 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171      173      176      182      186 187  
N - Val Pro Ser Ser Ile Asp Gly Asn Asn Gln Leu Orn Lys Ser Ile Ser Lys - C

Information pour la SEQ ID NO : 23 G200A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 61 acides aminés, 183 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  
 5' - CAG ACC CAG CGG AGC AAA CGG ACC ACC AAA CAG CGT CAG AAC AAA CGG CGG AAC  
 158 173 176  
 Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys  
 AAA CGG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG CGG TGC AGC ATC TGC  
 177 182 186  
 Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro Asn Lys Lys Pro Gly  
 AGC AAC AAC CGG ACC TGC TGG CGG ATC TGC AAA CGT ATC CGG AAC AAA AAA CGG CGC  
 196 200  
 Lys Lys Thr Thr Thr - C  
 AAA AAA ACC ACG ACC - 3'

Information pour la SEQ ID NO : 24 GL98A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 59 acides aminés, 177 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  
 5' - CAG ACC CAG CGG AGC AAA CGG ACC ACC AAA CAG CGT CAG AAC AAA CGG CGG AAC  
 158 173 176  
 Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys  
 AAA CGG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG CGG TGC AGC ATC TGC  
 177 182 186  
 Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro Asn Lys Lys Pro Gly  
 AGC AAC AAC CGG ACC TGC TGG CGG ATC TGC AAA CGT ATC CGG AAC AAA AAA CGG CGC  
 196 198  
 Lys Lys Thr - C  
 AAA AAA ACC - 3'

Information pour la SEQ ID NO : 25 GL96A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 57 acides aminés, 171 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                              |     |     |  |
|------------------------------------------------------------------------------|-----|-----|--|
| 140                                                                          |     |     |  |
| N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  |     |     |  |
| 5' - CAG ACC CAG CGG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG CGG AAC |     |     |  |
| 158                                                                          |     |     |  |
| 173                    176                                                   |     |     |  |
| Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys  |     |     |  |
| AAA CGG AAC AAC GAT TTC CAT TTC GAA GTG TIC AAC TTC GTG CGG TGC AGC ATC TGC  |     |     |  |
| 177                                                                          | 182 | 186 |  |
| Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro Asn Lys Lys Pro Gly  |     |     |  |
| AGC AAC AAC CGG ACC TGC TGG CGG ATC TGC AAA CGT ATC CGG AAC AAA CGG GGC      |     |     |  |
| 196                                                                          |     |     |  |
| Lys - C                                                                      |     |     |  |
| AAA - 3'                                                                     |     |     |  |

Information pour la SEQ ID NO : 26 GL94A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 55 acides aminés, 165 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                              |     |     |     |
|------------------------------------------------------------------------------|-----|-----|-----|
| 140                                                                          |     |     |     |
| N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  |     |     |     |
| 5' - CAG ACC CAG CGG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG CGG AAC |     |     |     |
| 158                                                                          |     |     |     |
| 173                    176                                                   |     |     |     |
| Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys  |     |     |     |
| AAA CGG AAC AAC GAT TTC CAT TTC GAA GTG TIC AAC TTC GTG CGG TGC AGC ATC TGC  |     |     |     |
| 177                                                                          | 182 | 186 | 194 |
| Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro Asn Lys Lys Pro - C  |     |     |     |
| AGC AAC AAC CGG ACC TGC TGG CGG ATC TGC AAA CGT ATC CGG AAC AAA CGG - 3'     |     |     |     |

Information pour la SEQ ID NO : 27 G192A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 52 acides aminés, 156 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                             |     |     |
|-----------------------------------------------------------------------------|-----|-----|
| 140                                                                         |     |     |
| N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn |     |     |
| 5'- CAG ACC CAG CGG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG CGG AAC |     |     |
| 158                                                                         | 173 | 176 |
| Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys |     |     |
| AAA CCG AAC AAC GAT TTC CAT TTC GAA GIG TTC AAC TTC GIG CGG TGC AGC ATC TGC |     |     |
| 177                182                186                192                |     |     |
| Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro Asn Lys - C         |     |     |
| AGC AAC AAC CGG ACC TGC TGG CGG ATC TGC AAA CGT ATC CGG AAC AAA - 3'        |     |     |

Information pour la SEQ ID NO : 28 G6A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 51 acides aminés, 153 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                             |     |     |
|-----------------------------------------------------------------------------|-----|-----|
| 140                                                                         |     |     |
| N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn |     |     |
| 5'- CAG ACC CAG CGG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG CGG AAC |     |     |
| 158                                                                         | 173 | 176 |
| Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys |     |     |
| AAA CCG AAC AAC GAT TTC CAT TTC GAA GIG TTC AAC TTC GIG CGG TGC AGC ATC TGC |     |     |
| 177                182                186                190                |     |     |
| Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro - C                 |     |     |
| AGC AAC AAC CGG ACC TGC TGG CGG ATC TGC AAA CGT ATC CGG - 3'                |     |     |

Information pour la SEQ ID NO : 29 G7A

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 33 acides aminés, 99 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                  |     |     |
|----------------------------------------------------------------------------------|-----|-----|
| 158                                                                              |     | 173 |
| N - Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile      |     |     |
| 5' - AAA CCG AAC AAC GAT TTC CAT TTC GAA GIG TIC AAC TTC TIC GTG CCG TGC AGC ATC |     |     |
| 176                                                                              | 182 | 186 |
| 190                                                                              |     |     |
| Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro - C                  |     |     |
| TGC AGC AAC AAC CCG ACC TGC TGG CGG ATC TGC AAA CGT ATC CCG - 3'                 |     |     |

Information pour la SEQ ID NO : 30 G200AδC

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 61 acides aminés, 183 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                 |     |              |
|---------------------------------------------------------------------------------|-----|--------------|
| 140                                                                             |     |              |
| N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn     |     |              |
| 5' - CAG ACC CAG CCG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG CCG AAC    |     |              |
| 158                                                                             |     | 173      176 |
| Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys     |     |              |
| AAA CCG AAC AAC GAT TTC CAT TTC GAA GIG TIC AAC TTC TIC GTG CCG AGC AGC ATC TGC |     |              |
| 177                                                                             | 182 | 186          |
| Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro Asn Lys Lys Pro Gly     |     |              |
| AGC AAC AAC CCG ACC TGC TGG CGG ATC AGC AAA CGT ATC CCG AAC AAA CCG GGC         |     |              |
| 196                                                                             | 200 |              |
| Lys Lys Thr Thr Thr - C                                                         |     |              |
| AAA AAA ACC AGG ACC - 3'                                                        |     |              |

Information pour la SEQ ID NO : 31 GL98A&C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 59 acides aminés, 177 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140  
N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  
5' - CAG ACC CAG CCG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG CCG AAC  
158 173 176  
Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys  
AAA CCG AAC AAC GAT TTC CAT TTC GAA GIG TTC AAC TTC GIG CCG AGC AGC ATC TGC  
177 182 186  
Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro Asn Lys Lys Pro Gly  
AGC AAC AAC CCG ACC TGC TGG GCG ATC AGC AAA CGT ATC CCG AAC AAA CCG GCG  
196 198  
Lys Lys Thr - C  
AAA AAA ACC - 3'

Information pour la SEQ ID NO : 32 GL96A&C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 57 acides aminés, 171 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140  
N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  
5' - CAG ACC CAG CCG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG CCG AAC

158

173

176

Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys  
 AAA CCG AAC AAC GAT TTC CAT TTC GAA GTG TIC AAC TTC GTG CGG AGC AGC ATC TGC  
 177                182                186

Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro Asn Lys Lys Pro Gly  
 AGC AAC AAC CGG ACC TGC TGG CGG ATC AGC AAA CGT ATC CGG AAC AAA AAA CGG GCC  
 196

Lys - C  
 AAA - 3'

Information pour la SEQ ID NO : 33 GL94AδC

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 55 acides aminés, 165 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  
 5' - CAG ACC CAG CGG AGC AAA CGG ACC ACC AAA CAG CGT CAG AAC AAA CGG CGG AAC  
 158

173                176

Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys  
 AAA CGG AAC AAC GAT TTC CAT TTC GAA GTG TIC AAC TTC GTG CGG AGC AGC ATC TGC  
 177                182                186                194

Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro Asn Lys Lys Pro - C  
 AGC AAC AAC CGG ACC TGC TGG CGG ATC AGC AAA CGT ATC CGG AAC AAA AAA CGG - 3'

Information pour la SEQ ID NO : 34 GL92AδC

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 52 acides aminés, 156 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  
 5' - CAG ACC CAG CGG AGC AAA CGG ACC ACC AAA CAG CGT CAG AAC AAA CGG CGG AAC

158 Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys  
 AAA CCG AAC AAC GAT TTC CAT TTC GAA GIG TTC AAC TTC GIG CCG AGC AGC ATC TGC  
 173  
 177 182 186 192  
 Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro Asn Lys - C  
 AGC AAC AAC CCG ACC TGC TGG GCG ATC AGC AAA CCG ATC CCG AAC AAA - 3'

Information pour la SEQ ID NO : 35 G6AFC

## **TYPE DE SEQUENCE : acides aminés et nucléotides**

LONGUEUR DE LA SÉQUENCE : 50 acides aminés, 150 nucléotides

**NOMBRE DE BRINS : simple**

**CONFIGURATION : linéaire**

**TYPE DE MOLECULE : protéine**

140  
 N - Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn  
 5' - CAG ACC CAG CGG AGC AAA CGG ACC ACC AAA CAG CGT CAG AAC AAA CGG CGG AAC  
 158 173 176  
 Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys  
 AAA CGG AAC AAC GAT TTC CAT TTC GAA GIG TTC AAC TTC GIG CGG AGC AGC ATC TCC  
 177 182 186 190  
 Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro - C  
 AGC AAC AAC CGG ACC TGC TGG GCG ATC AGC AAA CGT ATC CGG - 3'

Information pour la SEQ ID NO : 36 G7A8C

#### **TYPE DE SEQUENCE : acides aminés et nucléotides**

**LONGEUR DE LA SÉQUENCE :** 33 acides aminés, 99 nucléotides

NOMBRE DE BRINS : simple

**CONFIGURATION :** linéaire

**TYPE DE MOLECULE : protéine**

158 173  
N - Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile  
5' - AAA CCG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG CGG CGG AGC AGC ATC

176                    182                    186                    190  
 Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys Arg Ile Pro - C  
 TGC AGC AAC AAC CGG ACC TCC TGG GCG ATC AGC AAA CGT ATC CGG - 3'

Information pour la SEQ ID N° : 37      G200B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 61 acides aminés, 183 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140  
 N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro  
 5'- AGC ACC CAG ACC AAC AAA CGG AGC ACC AAA AGC CGT AGC AAA AAC CGG CGG AAA AAA CGG  
 160                    173                    176  
 Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys Gly Asn Asn Gln  
 AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GIG CCC TGC AGC ATC TGC GGC AAC AAC CAG  
 182                    186                    200  
 Leu Cys Lys Ser Ile Cys Lys Thr Ile Pro Ser Asn Lys Pro Lys Lys Pro Thr Ile- C  
 CTG TGC AAA AGC ATC TGC AAA ACC ATC CGG AGC AAC AAA CGG AAA AAG AAA CGG ACC ATC- 3'

Information pour la SEQ ID N° : 38      G198B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 59 acides aminés, 177 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140  
 N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro  
 5'- AGC ACC CAG ACC AAC AAA CGG AGC ACC AAA AGC CGT AGC AAA AAC CGG CGG AAA AAA CGG  
 160                    173                    176  
 Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys Gly Asn Asn Gln  
 AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GIG CCC TGC AGC ATC TGC GGC AAC AAC CAG  
 182                    186                    198  
 Leu Cys Lys Ser Ile Cys Lys Thr Ile Pro Ser Asn Lys Pro Lys Lys Pro - C  
 CTG TGC AAA AGC ATC TGC AAA ACC ATC CGG AGC AAC AAA CGG AAA AAG AAA CGG - 3'

Information pour la SEQ ID NO : 39 GL96B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 57 acides aminés, 171 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro  
5' - AGC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG

160

173 176

Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys Gly Asn Asn Gln  
AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GTG CCC TCC AGC ATC TGC GGC AAC AAC CCG  
182 186 196

Ile Cys Lys Ser Ile Cys Lys Thr Ile Pro Ser Asn Lys Pro Lys Lys - C

CIG TGC AAA AGC ATC TGC AAA ACC ATC CCG AGC AAC AAA CCG AAA AAG - 3'

Information pour la SEQ ID NO : 40 GL94B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 55 acides aminés, 165 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro  
5' - AGC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG

160

173 176

Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys Gly Asn Asn Gln  
AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GTG CCC TCC AGC ATC TGC GGC AAC AAC CAG  
182 186 194

Ile Cys Lys Ser Ile Cys Lys Thr Ile Pro Ser Asn Lys Pro - C

CIG TGC AAA AGC ATC TGC AAA ACC ATC CCG AGC AAC AAA CCG - 3'

Information pour la SEQ ID NO : 41 GL92B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 53 acides aminés, 159 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro  
5'- AGC ACC CAG ACC AAC AAA CGG AGC ACC AAA AGC CGT AGC AAA AAC CGG CGG AAA AAA CGG  
160 173 176  
Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys Gly Asn Asn Gln  
AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TIC GIG CCC TGC AGC ATC TGC GGC AAC AAC CAG  
182 186 192  
Leu Cys Lys Ser Ile Cys Lys Thr Ile Pro Ser Asn - C  
CTG TGC AAA AGC ATC TGC AAA ACC ATC CGG AGC AAC - 3'

Information pour la SEQ ID NO : 42 G6B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 51 acides aminés, 153 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro  
5'- AGC ACC CAG ACC AAC AAA CGG AGC ACC AAA AGC CGT AGC AAA AAC CGG CGG AAA AAA CGG  
160 173 176  
Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys Gly Asn Asn Gln  
AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TIC GIG CCC TGC AGC ATC TGC GGC AAC AAC CAG  
182 186 190  
Leu Cys Lys Ser Ile Cys Lys Thr Ile Pro - C  
CTG TGC AAA AGC ATC TGC AAA ACC ATC CGG - 3'

Information pour la SEQ ID NO : 43 G7B

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 33 acides aminés, 99 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                      |     |     |     |
|--------------------------------------------------------------------------------------|-----|-----|-----|
| 158                                                                                  |     | 173 | 176 |
| N - Lys Pro Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys Gly  |     |     |     |
| 5' - AAA CCG AAA GAT GAT TAC CAC TTC GAA GTG TTC AAC TTC GIG CCC TGC AGC ATC TCC GGC |     |     |     |
| 182                                                                                  | 186 | 190 |     |
| Asn Asn Gln Leu Cys Lys Ser Ile Cys Lys Thr Ile Pro - C                              |     |     |     |
| AAC AAC CAG CTG TGC AAA AGC ATC TGC AAA ACC ATC CCG - 3'                             |     |     |     |

Information pour la SEQ ID NO : 44 G2008dc

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 61 acides aminés, 183 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                      |     |     |     |
|--------------------------------------------------------------------------------------|-----|-----|-----|
| 140                                                                                  |     |     |     |
| N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro  |     |     |     |
| 5' - AGC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG |     |     |     |
| 160                                                                                  |     | 173 | 176 |
| Leu Cys Lys Ser Ile Ser Lys Thr Ile Pro Ser Asn Lys Pro Lys Lys Pro Thr Ile- C       |     |     |     |
| CTG TGC AAA AGC ATC AGC AAA ACC ATC CCG AGC AAC AAA CCG AAA AAG AAA CCG ACC ATC- 3'  |     |     |     |
| 182                                                                                  | 186 |     | 200 |

Information pour la SEQ ID NO : 45 GL98BDC

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 59 acides aminés, 177 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                     |     |
|-------------------------------------------------------------------------------------|-----|
| 140                                                                                 |     |
| N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro |     |
| 5'- ACC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG |     |
| 160                                                                                 |     |
| Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys Gly Asn Asn Gln |     |
| AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GTG CCC AGC AGC ATC TGC GGC AAC AAC CAG |     |
| 182                    186                                                          | 198 |
| Leu Cys Lys Ser Ile Ser Lys Thr Ile Pro Ser Asn Lys Pro Lys Lys Pro - C             |     |
| CIG TGC AAA AGC ATC AGC AAA ACC ATC CCG AGC AAC AAA CCG AAA AAG AAA CCG - 3'        |     |

Information pour la SEQ ID NO : 46 GL98BDC

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 57 acides aminés, 171 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                     |     |
|-------------------------------------------------------------------------------------|-----|
| 140                                                                                 |     |
| N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro |     |
| 5'- ACC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG |     |
| 160                                                                                 |     |
| Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys Gly Asn Asn Gln |     |
| AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GTG CCC AGC AGC ATC TGC GGC AAC AAC CAG |     |
| 182                    186                                                          | 196 |
| Leu Cys Lys Ser Ile Ser Lys Thr Ile Pro Ser Asn Lys Pro Lys Lys Pro - C             |     |
| CIG TGC AAA AGC ATC AGC AAA ACC ATC CCG AGC AAC AAA CCG AAA AAG - 3'                |     |

Information pour la SEQ ID NO : 47 GL94B5C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 55 acides aminés, 165 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                         |              |
|-----------------------------------------------------------------------------------------|--------------|
| 140                                                                                     |              |
| N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro     |              |
| 5' - ACC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG    |              |
| 160                                                                                     | 173      176 |
| Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys Gly Asn Asn Gln     |              |
| AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GTG CCC AGC AGC ATC TGC GCC AAC AAC AAC CAG |              |
| 182            186            194                                                       |              |
| Leu Cys Lys Ser Ile Ser Lys Thr Ile Pro Ser Asn Lys Pro - C                             |              |
| CTG TGC AAA AGC ATC AGC AAA ACC ATC CCG AGC AAC CCG - 3'                                |              |

Information pour la SEQ ID NO : 48 GL92B5C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 53 acides aminés, 159 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                         |              |
|-----------------------------------------------------------------------------------------|--------------|
| 140                                                                                     |              |
| N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro     |              |
| 5' - ACC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG    |              |
| 160                                                                                     | 173      176 |
| Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys Gly Asn Asn Gln     |              |
| AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GTG CCC AGC AGC ATC TGC GCC AAC AAC AAC CAG |              |
| 182            186            192                                                       |              |
| Leu Cys Lys Ser Ile Ser Lys Thr Ile Pro Ser Asn - C                                     |              |
| CTG TGC AAA AGC ATC AGC AAA ACC ATC CCG AGC AAC CCG - 3'                                |              |

Information pour la SEQ ID NO : 49 G6B6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 51 acides aminés, 153 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro Pro Lys Lys Pro  
 5' - AGC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG CCG AAA AAA CCG  
 160 173 176  
 Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys Gly Asn Asn Gln  
 AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GIG CCC ACC AGC ATC TGC GGC AAC AAC AAC QAG  
 182 186 190  
 Leu Cys Lys Ser Ile Ser Lys Thr Ile Pro - C  
 CTC TCC AAA AGC ATC AGC AAA ACC ATC CCG - 3'

Information pour la SEQ ID NO : 50 G7B6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 33 acides aminés, 99 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

158

173 176

N - Lys Pro Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Ser Ser Ile Cys Gly  
 5' - AAA CCG AAA GAT GAT TAC CAC TTC GAA GIG TTC AAC TTC GIG CCC ACC AGC AGC ATC TGC GGC  
 182 186 190  
 Asn Asn Gln Leu Cys Lys Ser Ile Ser Lys Thr Ile Pro - C  
 AAC AAC CAG CTG TGC AAA AGC ATC AGC AAA ACC ATC CCG - 3'

Information pour la SEQ ID NO : 51 GZV

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 101 acides aminés, 303 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

130

N - Gln Asn Arg Lys Ile Lys Gly Gln Ser Thr Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn  
5' - CAA AAC AGA AAA ATC AAA GGT CAA TCA ACA CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT  
150

Pro Ser Gly Ser Ile Pro Pro Glu Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr  
CCA TCA GGA ACC ATC CCA CCA GAA AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT  
171 173 176 182 186

Val Pro Cys Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Cys His Ile Glu Thr Glu  
GTT CCC TGC AGT ACA TGT GAA GGT ATT CIT GCA TGC TTA TCA CTC TGC CAT ATT GAG ACC GAA  
192

Arg Ala Pro Ser Arg Ala Pro Thr Ile Thr Leu Lys Lys Thr Pro Lys Pro Lys Thr Thr Lys  
AGA GCA CCA AGC AGA GCA CCA ACA ATC ACC CTC AAA AAG ACA CCA AAA CCA AAA ACC ACA AAA  
213 230

Lys Pro Thr Lys Thr Thr Ile His His Arg Thr Ser Pro Glu Thr Lys Leu Gln - C  
AAG CCA ACC AAG ACA ACA ATC CAT CAC AGA ACC AGC CCA GAA ACC AAA CTG CAA - 3'

Information pour la SEQ ID NO : 52 GZV&C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 101 acides aminés, 303 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

130

N - Gln Asn Arg Lys Ile Lys Gly Gln Ser Thr Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn  
5' - CAA AAC AGA AAA ATC AAA GGT CAA TCA ACA CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT

150

Pro Ser Gly Ser Ile Pro Pro Glu Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr  
 CCA TCA CGA AGC ATC CCA CCA GAA AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT  
 171 173 176 182 186  
 Val Pro Ser Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His Ile Glu Thr Glu  
 GIT CCC AGC AGT ACA TGT GAA GGT AAT CIT GCA TGC TTA TCA CTC AGC CAT ATT GAG ACG GAA  
 192  
 Arg Ala Pro Ser Arg Ala Pro Thr Ile Thr Leu Lys Lys Thr Pro Lys Pro Lys Thr Thr Lys  
 AGA GCA CCA AGC AGA GCA CCA ACA ATC ACC CTC AAA AAG ACA CCA AAA CCA AAA ACC ACA AAA  
 213 230  
 Lys Pro Thr Lys Thr Thr Ile His His Arg Thr Ser Pro Glu Thr Lys Leu Gln - C  
 AAG CCA ACC AAG ACA ACA ATC CAT CAC AGA ACC AGC CCA GAA ACC AAA CTG CAA - 3'

Information pour la SEQ ID N° : 53 G200V

## **TYPE DE SEQUENCE : acides aminés et nucléotides**

LONGUEUR DE LA SÉQUENCE : 61 acides aminés, 183 nucléotides

### NOMERE DE BRUNS : simple

**CONFIGURATION :** linéaire

TYPE DE MOLECULE : protéine

140

N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
 5' - CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
 160 173 176  
 Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Cys Ser Thr Cys Glu Gly Asn Leu  
 CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC TGC AGT ACA TGT GAA GGT AAT CTT  
 182 186 200  
 Ala Cys Leu Ser Leu Cys His Ile Glu Thr Glu Arg Ala Pro Ser Arg Ala Pro Thr Ile - C  
 GCA TGC TTA TCA CTC TGC CAT ATT GAG AGG GAA AGA GCA CCA AGC AGA GCA CCA ACA ATC - 3'

Information pour la SEQ ID NO : 54 GL198V

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 59 acides aminés, 177 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
 5' - CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
 160 173 176

Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Cys Ser Thr Cys Glu Gly Asn Leu  
 CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC TGC AGT ACA TGT GAA GGT AAT CCT  
 182 186 198

Ala Cys Leu Ser Leu Cys His Ile Glu Thr Glu Arg Ala Pro Ser Arg Ala Pro - C  
 GCA TGC TTA TCA CTC TGC CAT ATT GAG ACG GAA AGA GCA CCA AGC AGA GCA CCA - 3'

Information pour la SEQ ID NO : 55 GL196V

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 57 acides aminés, 171 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
 5' - CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
 160 173 176

Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Cys Ser Thr Cys Glu Gly Asn Leu  
 CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC TGC AGT ACA TGT GAA GGT AAT CCT  
 182 186 196

Ala Cys Leu Ser Leu Cys His Ile Glu Thr Glu Arg Ala Pro Ser Arg - C  
 GCA TGC TTA TCA CTC TGC CAT ATT GAG ACG GAA AGA GCA CCA AGC AGA GCA CCA - 3'

Information pour la SEQ ID NO : 56 G194V

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 55 acides aminés, 165 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                     |              |
|-------------------------------------------------------------------------------------|--------------|
| 140                                                                                 |              |
| N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His |              |
| 5'- CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA CGA AGC ATC CCA CCA GAA AAC CAT |              |
| 160                                                                                 | 173      176 |
| Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Cys Ser Thr Cys Glu Gly Asn Leu |              |
| CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC TGC AGT ACA TGT GAA GGT AAT CCT |              |
| 182            186            194                                                   |              |
| Ala Cys Leu Ser Leu Cys His Ile Glu Thr Glu Arg Ala Pro - C                         |              |
| GCA TGC TTA TCA CTC TGC CAT ATT GAG AGC GAA AGA GCA CCA - 3'                        |              |

Information pour la SEQ ID NO : 57 G192V

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 52 acides aminés, 156 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

|                                                                                     |              |
|-------------------------------------------------------------------------------------|--------------|
| 140                                                                                 |              |
| N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His |              |
| 5'- CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA CGA AGC ATC CCA CCA GAA AAC CAT |              |
| 160                                                                                 | 173      176 |
| Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Cys Ser Thr Cys Glu Gly Asn Leu |              |
| CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC TGC AGT ACA TGT GAA GGT AAT CCT |              |
| 182            186            192                                                   |              |
| Ala Cys Leu Ser Leu Cys His Ile Glu Thr Glu Arg - C                                 |              |
| GCA TGC TTA TCA CTC TGC CAT ATT GAG AGC GAA AGA - 3'                                |              |

Information pour la SEQ ID NO : 58 GSV

LONGUEUR DE LA SEQUENCE : 51 acides aminés, 153 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
 5' - CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
 160 173 176  
 Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Cys Ser Thr Cys Glu Gly Asn Leu  
 CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC TCC AGT ACA TGT GAA CGT AAT CIT  
 182 186 190  
 Ala Cys Leu Ser Leu Cys His Ile Glu Thr - C  
 GCA TGC TTA TCA CTC TGC CAT ATT GAG AGG - 3'

Information pour la SEQ ID NO : 59 G7V

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 33 acides aminés, 99 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

158

N - Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Cys Ser Thr Cys  
 5' - AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC TCC AGT ACA TGT  
 182 186 190  
 Glu Gly Asn Leu Ala Cys Leu Ser Leu Cys His Ile Glu Thr - C  
 GAA CGT AAT CIT GCA TGC TTA TCA CTC TGC CAT ATT GAG AGG - 3'

Information pour la SEQ ID NO : 60 G200v6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 61 acides aminés, 183 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
5'- CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
160

173 176

Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Ser Ser Thr Cys Glu Gly Asn Leu  
CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC AGC AGT ACA TGT GAA GGT AAT CCT

182 186

200

Ala Cys Leu Ser Leu Ser His Ile Glu Thr Glu Arg Ala Pro Ser Arg Ala Pro Thr Ile - C  
GCA TGC TTA TCA CTC AGC CAT ATT GAG AGG GAA AGA GCA CCA ACC AGA GCA CCA ACA ATC - 3'

Information pour la SEQ ID NO : 61 G198v6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 59 acides aminés, 177 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140

N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
5'- CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
160

173 176

Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Ser Ser Thr Cys Glu Gly Asn Leu  
CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC AGC AGT ACA TGT GAA GGT AAT CCT

182 186

198

Ala Cys Leu Ser Leu Ser His Ile Glu Thr Glu Arg Ala Pro Ser Arg Ala Pro - C

GCA TGC TTA TCA CTC AGC CAT ATT GAG AGG GAA AGA GCA CCA ACC AGA GCA CCA - 3'

Information pour la SEQ ID NO : 62 GL96V6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 57 acides aminés, 171 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140  
 N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
 5' - CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
 160 173 176  
 Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Ser Ser Thr Cys Glu Gly Asn Leu  
 CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC AGC AGT ACA TGT GAA GGT AAT CTT  
 182 186 196  
 Ala Cys Leu Ser Leu Ser His Ile Glu Thr Glu Arg Ala Pro Ser Arg - C  
 GCA TGC TTA TCA CTC AGC CAT ATT GAG AGG GAA AGA GCA CCA AGC AGA - 3'

Information pour la SEQ ID NO : 63 GL94V6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 55 acides aminés, 165 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140  
 N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
 5' - CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
 160 173 176  
 Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Ser Ser Thr Cys Glu Gly Asn Leu  
 CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC AGC AGT ACA TGT GAA GGT AAT CTT  
 182 186 194  
 Ala Cys Leu Ser Leu Ser His Ile Glu Thr Glu Arg Ala Pro - C  
 GCA TGC TTA TCA CTC AGC CAT ATT GAG AGG GAA AGA GCA CCA - 3'

Information pour la SEQ ID NO : 64 G192v6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 52 acides aminés, 156 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140  
 N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
 5' - CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
 160 173 176  
 Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Ser Ser Thr Cys Glu Gly Asn Leu  
 CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC AGC AGT ACA TGT GAA GGT AAT CIT  
 182 186 192  
 Ala Cys Leu Ser Leu Ser His Ile Glu Thr Glu Arg - C  
 GCA TCC TTA TCA CTC AGC CAT ATT GAG AGG GAA AGA - 3'

Information pour la SEQ ID NO : 65 G6v6C

LONGUEUR DE LA SEQUENCE : 51 acides aminés, 153 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

140  
 N - Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro Pro Glu Asn His  
 5' - CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA CCA GAA AAC CAT  
 160 173 176  
 Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Ser Ser Thr Cys Glu Gly Asn Leu  
 CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC AGC AGT ACA TGT GAA GGT AAT CIT  
 182 186 190  
 Ala Cys Leu Ser Leu Ser His Ile Glu Thr - C  
 GCA TCC TTA TCA CTC AGC CAT ATT GAG AGG - 3'

Information pour la SEQ ID NO : 66 G7V6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 33 acides aminés, 99 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

158 173 176  
N - Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val Pro Ser Ser Thr Cys  
5' - AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT CCC AGC AGT ACA TGT  
182 186 190  
Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His Ile Glu Thr - C  
GAA GGT AAT CCT GCA TGC TTA TCA CTC AGC CAT ATT GAG AGG - 3'

Information pour la SEQ ID NO : 67 G4V

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 17 acides aminés, 51 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171 173 176 182 186 187  
N - Val Pro Cys Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Cys His - C  
5' - GTT CCC TGC AGT ACA TGT GAA GGT AAT CCT GCA TGC TTA TCA CTC TGC CAT - 3'

Information pour la SEQ ID NO : 68 G4V6C

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGEUR DE LA SEQUENCE : 17 acides aminés, 51 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171 173 176 182 186 187  
N - Val Pro Ser Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His - C  
5' - GGT CCC AGC AGT ACA TGT GAA GGT AAT CCT GCA TCC TTA TCA CTC AGC CAT - 3'

Information pour la SEQ ID NO : 69 G4'V

TYPE DE SEQUENCE : acides aminés

LONGEUR DE LA SEQUENCE : 17 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171 173 176 182 186 187  
N - Val Pro Asp Ser Thr Asp Glu Gly Asn Leu Ala Orn Leu Ser Leu Orn His - C

Information pour la SEQ ID NO : 70 G4'V6C

TYPE DE SEQUENCE : acides aminés

LONGEUR DE LA SEQUENCE : 17 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

171        173        176        182        186 187  
N - Val Pro Ser Ser Thr Asp Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His - C

Information pour la SEQ ID NO : 71        GIV

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 14 acides aminés, 42 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

174        176        182        186 187  
N - Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Cys His - C  
5' - AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC TGC CAT - 3'

Information pour la SEQ ID NO : 72        GIVC

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SEQUENCE : 14 acides aminés

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : peptide

174        176        182        186 187  
N - Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His - C  
5' - AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC AGC CAT - 3'

**Information pour la SEQ ID N° : 73**

**TYPE DE SEQUENCE :** acides aminés

**LONGEUR DE LA SÉQUENCE :** 14 acides aminés

**NOMERE DE ERINS : simple**

**CONFIGURATION :** linéaire

TYPE DE MOLECULE : peptide

174      176                          182                          186 187  
 N - Ser Thr Asp Glu Gly Asn Leu Ala Orn Leu Ser Leu Ser His - C

**Information pour la SEO ID N° : 74**

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGUEUR DE LA SÉQUENCE : 219 acides aminés - 657 nucléotides

NOMBRE DE BRINS : simple

### CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

1  
 HB = N - Lys Tyr Gly Val Ser Asp Tyr Tyr Lys Asn Leu Ile Asn Asn Ala Lys  
 5' - AAA TAT GGA GTA AGT GAC TAT TAC AGG ATC CTA ATC AAC ATT GTC AAA

17 Thr Val Glu Gly Val Lys Asp Leu Gln Ala Gln Val Val Glu Ser Ala Lys Lys  
ACT GGT GAA GGC GTC AAA GAC CTT GAA GCA GAA GTC GTT GAA TTA GGT GCG AGC UUU

35 Ala Arg Ile Ser Glu Ala Thr Asp Gly Leu Ser Asp Phe Leu Lys Ser Gln Thr

53 Pro Ala Glu Asp Thr Val Lys Ser Ile Glu Leu Ala Glu Ala Lys Val Leu Ala

71

Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Tyr His Lys Asn Leu Ile Asn  
 AAC AGA GAA CTT GAC AAA TAT GGA GTA AGT GAC TAT CAC AAG AAC CTA ATC AAC

89

Asn Ala Lys Thr Val Glu Gly Val Lys Asp Leu Gln Ala Gln Val Val Glu Ser  
 AAT GCC AAA ACT GTT GAA GGT GTA AAA GAC CTT CAA GCA CAA GTT GTT GAA TCA

107

Ala Lys Lys Ala Arg Ile Ser Glu Ala Thr Asp Gly Leu Ser Asp Phe Leu Lys  
 GCG AAG AAA GCG CGT ATT TCA GAA GCA ACA GAT GGC TTA TCT GAT TTC TTG AAA

125

Ser Gln Thr Pro Ala Glu Asp Thr Val Lys Ser Ile Glu Leu Ala Glu Ala Lys  
 TCA CAA ACA CCT GCT GAA GAT ACT GTT AAA TCA ATT GAA TTA GCT GAA GCT AAA

143

Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Tyr Tyr Lys Asn  
 GTC TTA GCT AAC AGA GAA CTT GAC AAA TAT GGA GTA AGT GAC TAT TAC AAG AAC

161

Ile Ile Asn Asn Ala Lys Thr Val Glu Gly Val Lys Ala Leu Ile Asp Glu Ile  
 CTA ATC AAC AAT GCC AAA ACT GTT GAA GGT GTA AAA GCA CTG ATA GAT GAA ATT

179

Leu Ala Ala Leu Pro Lys Thr Asp Thr Tyr Lys Leu Ile Leu Asn Gly Lys Thr  
 TTA GCT GCA TTA CCT AAG ACT GAC ACT TAC AAA TTA ATC CTT AAT GGT AAA ACA

197

Leu Lys Gly Glu Thr Thr Thr Glu Ala Val Asp Ala Ala Thr Ala Arg Ser Phe  
 TIG AAA GGC GAA ACA ACT ACT GAA GCT GTT GAT GCT GCT ACT GCA AGA TCT TIC

215

219

Asn Phe Pro Ile Leu - C  
 ATT TIC CCT ATC CTC - 3'

Information pour la SEQ ID NO : 75      8B = fragment de BB

TYPE DE SEQUENCE : acides aminés et nucléotides

LONGEUR DE LA SEQUENCE : 108 acides aminés, 324 nucléotides

NOMBRE DE BRINS : simple

CONFIGURATION : linéaire

TYPE DE MOLECULE : protéine

1

$\delta_{\text{EB}} = \text{N} - \text{Lys Tyr Gly Val Ser Asp Tyr His Lys Asn Leu Ile Asn Asn Ala Lys}$   
5' - AAA TAT GGA GTA AGT GAC TAT CAC AAG AAC CTA ATC AAC AAT GCC AAA

17

$\text{Thr Val Glu Gly Val Lys Asp Leu Gln Ala Gln Val Val Glu Ser Ala Lys Lys}$   
ACT GTT GAA CGT GTA AAA GAC CIT CAA GCA CAA GIT GTT GAA TCA GGG AAG AAA

35

$\text{Ala Arg Ile Ser Glu Ala Thr Asp Gly Leu Ser Asp Phe Leu Lys Ser Gln Thr}$   
GGG CGT ATT TCA GAA CCA ACA GAT GGC TTA TCT GAT TTC TTG AAA TCA CAA ACA

53

$\text{Pro Ala Glu Asp Thr Val Lys Ser Ile Glu Leu Ala Glu Ala Lys Val Leu Ala}$   
CCT GCT GAA GAT ACT GIT AAA TCA ATT GAA TTA GCT GAA GCT AAA GTC TTA GCT

71

$\text{Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Tyr Tyr Lys Asn Leu Ile Asn}$   
AAC AGA GAA CIT GAC AAA TAT GGA GTA AGT GAC TAT TAC AAG AAC CTA ATC AAC

89

$\text{Asn Ala Lys Thr Val Glu Gly Val Lys Ala Leu Ile Asp Glu Ile Leu Ala Ala}$   
AAT GCG AAA ACT GIT GAA CGT GTA AAA GCA CTG ATA GAT GAA ATT TTA GCT GCA

107 108

$\text{Leu Pro - C}$

$\text{TTA CCT - 3'}$

REVENDICATIONS

1. Polypeptide utilisable comme élément d'immunogène, caractérisé en ce qu'il est porté par la séquence peptidique comprise entre 5 les résidus d'acides aminés 130 et 230 de la séquence de la protéine G du virus respiratoire syncytial humain du sous-groupe A et du sous-groupe B, ou du virus respiratoire syncytial bovin, ou par une séquence présentant au moins 80% d'homologie avec ladite séquence peptidique.

2. Polypeptide selon la revendication 1, caractérisé en ce qu'il 10 comporte la séquence peptidique comprise entre les résidus aminoacides numérotés 174 et 187 de la protéine G du VRS ou une séquence présentant au moins 80% d'homologie avec la séquence correspondante.

3. Polypeptide selon l'une des revendications 1 ou 2, caractérisé en ce qu'il comporte une séquence dans laquelle :

- 15 a) l'acide aminé Cys en positions 173 et/ou 186 à été remplacé par un aminoacide ne formant pas de pont disulfure en particulier la serine, et/ou  
b) les acides aminés en positions 176 et 182 sont susceptibles de former un pont covalent autre qu'un pont disulfure notamment l'acide 20 aspartique et l'ornithine.

4. Polypeptide selon l'une des revendications 1 à 3, caractérisé en ce qu'il consiste en une séquence peptidique comprise entre les résidus aminoacides numérotés 140 et 200 de la séquence de la protéine G du VRS ou en une séquence présentant au moins 80% d'homologie avec ladite 25 séquence peptidique.

5. Polypeptide selon l'une des revendications 1 à 3, caractérisé en ce qu'il consiste en une séquence peptidique comprise entre les résidus aminoacides numérotés 158 et 190 de la séquence de la protéine G du virus VRS ou en une séquence présentant au moins 80% d'homologie avec ladite 30 séquence peptidique.

6. Polypeptide selon l'une des revendications 1 à 3, caractérisé en ce qu'il consiste en la séquence peptidique comprise entre les résidus aminoacides numérotés 130 et 230 de la séquence de la protéine G du VRS humain, sous-groupe A et sous-groupe B ou du VRS bovin, ou en une 5 séquence présentant au moins 80% d'homologie avec ladite séquence peptidique.

7. Polypeptide selon l'une des revendications 1 à 3, caractérisé en ce qu'il présente l'une des séquences suivantes :

**Seq id n° 5 :**

10 Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys.

**Seq id n° 6 :**

Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Cys Lys.

**Seq id n° 7 :**

Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys.

15 **Seq id n° 8 :**

Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Ser Lys.

**Seq id n° 9 :**

Ser Ile Asp Ser Asn Asn Pro Thr Orn Trp Ala Ile Cys Lys.

**Seq id n° 10 :**

20 Ser Ile Asp Gly Asn Asn Gln Leu Orn Lys Ser Ile Cys Lys.

**Seq id n° 11 :**

Ser Ile Asp Ser Asn Asn Pro Thr Orn Trp Ala Ile Ser Lys.

**Seq id n° 12 :**

Ser Ile Asp Gly Asn ASn Gln Leu Orn Lys Ser Ile Ser Lys.

25

8. Polypeptide selon l'une des revendications 1 à 3, caractérisé en ce qu'il présente l'une des séquences ID n° 14 à 73.

30 9. Polypeptide selon l'une des revendications 1 à 8, caractérisé en ce qu'il comporte en outre au moins un résidu cystéine en position N-terminale ou C- terminale.

10. Agent immunogène, caractérisé en ce qu'il comporte un polypeptide selon l'une des revendications 1 à 9 couplé à une protéine porteuse.

35 11. Agent immunogène selon la revendication 10, caractérisée en ce que la protéine porteuse est une protéine adjuvante d'immunité.

12. Agent immunogène selon l'une des revendications 10 et 11, caractérisé en ce que la protéine porteuse est une protéine OmpA.
13. Agent selon l'une des revendications 10 à 12, caractérisé en ce que le polypeptide est sous forme d'un conjugué soluble avec une protéine de la membrane externe d'une bactérie du genre Klebsiella.
- 5 14. Agent selon l'une des revendications 11 à 13, caractérisé en ce que la protéine adjuvante d'immunité est la protéine p40 de Klebsiella pneumoniae ou une protéine présentant 80% d'homologie avec la protéine p40.
- 10 15. Agent selon l'une des revendications 10 à 14, caractérisé en ce que le polypeptide est conjugué à la protéine porteuse par une protéine de liaison.
16. Agent selon la revendication 15, caractérisé en ce que la protéine de liaison est le récepteur de la sérumalbumine humaine.
- 15 17. Agent selon l'une des revendications 10 à 16, caractérisée en ce que ledit polypeptide est couplé à une protéine comportant la séquence id n° 13.
18. Agent selon l'une des revendications 10 à 17, caractérisé en ce que le couplage est un couplage covalent.
- 20 19. Agent selon l'une des revendications 10 à 18, caractérisé en ce qu'il est obtenu par voie biologique.
20. Composition utile pour la prévention et/ou le traitement des affections provoquées par le VRS humain, sous-groupe A et/ou sous-groupe B, ou le VRS bovin caractérisée en ce qu'elle contient un polypeptide selon l'une des revendications 1 à 9 ou un agent selon l'une des revendications 10 à 19.
- 25 21. Composition selon la revendication 20, caractérisée en ce qu'elle contient en outre des excipients pharmaceutiquement acceptables adaptés à l'administration par voie injectable.
- 30 22. Composition selon l'une des revendications 20 ou 21, caractérisée en ce qu'elle comporte un adjuvant d'immunité non spécifique.

23. Séquence nucléotidique, caractérisée en ce qu'elle code pour un polypeptide selon l'une des revendications 1 à 9.

24. Séquence nucléotidique, caractérisée en ce qu'elle code pour une protéine comportant la séquence id n° 13.

5 25. Procédé de préparation d'un peptide conjugué entrant dans une composition selon l'une des revendications 20 ou 21, caractérisé en ce que :

- a) on précipite les lipopolysaccharides de membranes de bactéries du genre Klebsiella, en présence d'un sel de cation divalent et de détergents, pour récupérer les protéines membranaires totales dans le surnageant,
- b) on soumet les protéines à une chromatographie par échange d'anions pour séparer la fraction contenant la protéine adjuvante d'immunité,
- c) on concentre la fraction contenant la protéine adjuvante d'immunité,
- d) on conjugue la protéine adjuvante d'immunité avec un polypeptide selon l'une des revendications 1 à 9 pour former un conjugué soluble.

20 26. Procédé selon la revendication 25, caractérisé en ce que l'étape d) est effectuée en présence de glutaraldéhyde à des concentrations inférieures ou égales à 0,05% et durant une période supérieure ou égale à 5 jours.

25 27. Utilisation d'une protéine présentant la séquence id n° 13 ou une séquence présentant au moins 80% d'homologie, pour améliorer l'immunogénicité d'un antigène.



## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/FR 95/00444

A. CLASSIFICATION OF SUBJECT MATTER  
 IPC 6 C12N15/45 C12N15/31 C07K14/135 C07K14/26 C07K14/765  
 A61K39/155 A61K47/48

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                      | Relevant to claim No. |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X          | WO-A-92 20805 (PIERRE FABRE MEDICAMENT) 26 November 1992<br>see claims; example III<br>---                                                                                              | 1-16,<br>18-23        |
| X          | WO-A-89 05823 (THE UPJOHN COMPANY) 29 June 1989<br>see page 5, line 21 - line 26<br>see page 13, line 1 - line 15<br>see page 13, line 25 - page 14, line 9;<br>claims; examples<br>--- | 1-6,10,<br>18-21,23   |
| X          | WO-A-93 14207 (CONNAUGHT LABORATORIES LIMITED) 22 July 1993<br>see claims; figures 7,8; examples 1,15-18<br>---                                                                         | 1,2,10,<br>11,18-23   |
|            |                                                                                                                                                                                         | -/-                   |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

## \* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- '&' document member of the same patent family

3

|                                                                                 |                                                                    |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Date of the actual completion of the international search<br><br>28 August 1995 | Date of mailing of the international search report<br><br>11.09.95 |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------|

Name and mailing address of the ISA  
 European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.  
 Fax: (+ 31-70) 340-3016

Authorized officer

Fuhr, C

## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/FR 95/00444

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                       | Relevant to claim No. |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X        | <p>PROC. NATL. ACAD. SCI. U. S. A. (1987),<br/>84(18), 6572-6 CODEN: PNASA6; ISSN:<br/>0027-8424,<br/>1987</p> <p>NORRBY, ERLING ET AL 'Site-directed serology with synthetic peptides representing the large glycoprotein G of respiratory syncytial virus'<br/>see peptide 12<br/>see page 6576, left column, paragraph 3 - paragraph 4; figure 1; table 1<br/>---</p> | 1-9                   |
| X        | <p>JOURNAL OF GENERAL MICROBIOLOGY,<br/>vol. 137, no. 8, August 1991<br/>pages 1911-1921,</p> <p>J.G. LAWRENCE ET AL. 'Molecular and evolutionary relationship among enteric bacteria'<br/>see figure 1<br/>---</p>                                                                                                                                                      | 24, 27                |
| A        | <p>WO-A-92 04375 (THE UPJOHN COMPANY) 19<br/>March 1992<br/>see claims; examples<br/>---</p>                                                                                                                                                                                                                                                                             | 1-8, 10,<br>11, 20-23 |
| A        | <p>JOURNAL OF VIROLOGY,<br/>vol. 63, no. 2, February 1989<br/>pages 925-932,</p> <p>B. GARCIA-BARRENO ET AL. 'Marked Differences in the Antigenic Structure of Human Respiratory Syncytical Virus F and G Glycoproteins'<br/>* Discussion page 931 *</p>                                                                                                                 | 1-8                   |
| A        | <p>EP-A-0 355 737 (BEHRINGWERKE) 28 February<br/>1990<br/>see the whole document<br/>-----</p>                                                                                                                                                                                                                                                                           |                       |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/FR95/00444

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: 27  
because they relate to subject matter not required to be searched by this Authority, namely:  
Remark: Although Claim 27 is directed to a method for treatment of the human or animal body, the search has been carried out and based on the alleged effects of the product (composition).
2.  Claims Nos.:  
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.  Claims Nos.:  
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**  

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

## INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No  
PCT/FR 95/00444

| Patent document cited in search report | Publication date | Patent family member(s) |          | Publication date |
|----------------------------------------|------------------|-------------------------|----------|------------------|
| WO-A-9220805                           | 26-11-92         | AU-A-                   | 1789992  | 30-12-92         |
|                                        |                  | CA-A-                   | 2103021  | 01-12-92         |
|                                        |                  | EP-A-                   | 0584167  | 02-03-94         |
|                                        |                  | JP-T-                   | 7502640  | 23-03-95         |
|                                        |                  | OA-A-                   | 9866     | 15-08-94         |
| -----                                  | -----            | -----                   | -----    | -----            |
| WO-A-8905823                           | 29-06-89         | AU-A-                   | 2785089  | 19-07-89         |
|                                        |                  | CA-A-                   | 1320163  | 13-07-93         |
|                                        |                  | DE-A-                   | 3878468  | 25-03-93         |
|                                        |                  | EP-A, B                 | 0396563  | 14-11-90         |
|                                        |                  | US-A-                   | 5194595  | 16-03-93         |
|                                        |                  | US-A-                   | 5288630  | 22-02-94         |
| -----                                  | -----            | -----                   | -----    | -----            |
| WO-A-9314207                           | 22-07-93         | AU-B-                   | 3340293  | 03-08-93         |
|                                        |                  | CA-A-                   | 2126863  | 22-07-93         |
|                                        |                  | EP-A-                   | 0621898  | 02-11-94         |
|                                        |                  | FI-A-                   | 943211   | 02-09-94         |
|                                        |                  | JP-T-                   | 7501707  | 23-02-95         |
|                                        |                  | NO-A-                   | 942530   | 05-09-94         |
| -----                                  | -----            | -----                   | -----    | -----            |
| WO-A-9204375                           | 19-03-92         | AT-T-                   | 107661   | 15-07-94         |
|                                        |                  | AU-A-                   | 8298291  | 30-03-92         |
|                                        |                  | DE-D-                   | 69102649 | 28-07-94         |
|                                        |                  | DE-T-                   | 69102649 | 03-11-94         |
|                                        |                  | EP-A-                   | 0545951  | 16-06-93         |
|                                        |                  | ES-T-                   | 2055610  | 16-08-94         |
|                                        |                  | JP-T-                   | 6500536  | 20-01-94         |
| -----                                  | -----            | -----                   | -----    | -----            |
| EP-A-0355737                           | 28-02-90         | DE-A-                   | 3828666  | 01-03-90         |
|                                        |                  | AU-B-                   | 614174   | 22-08-91         |
|                                        |                  | AU-A-                   | 4016089  | 01-03-90         |
|                                        |                  | JP-A-                   | 2135095  | 23-05-90         |
| -----                                  | -----            | -----                   | -----    | -----            |

**RAPPORT DE RECHERCHE INTERNATIONALE**

Date Internationale No  
PCT/FR 95/00444

**A. CLASSEMENT DE L'OBJET DE LA DEMANDE**  
**CIB 6 C12N15/45 C12N15/31 A61K39/155 A61K47/48**

**C07K14/135 C07K14/26 C07K14/765**

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

**B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE**

Documentation minimale consultée (système de classification suivi des symboles de classement)

**CIB 6 C12N C07K A61K**

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche utilisée

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

**C. DOCUMENTS CONSIDERES COMME PERTINENTS**

| Catégorie * | Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents                                                                                                           | no. des revendications vues |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| X           | WO-A-92 20805 (PIERRE FABRE MEDICAMENT) 26 Novembre 1992<br>voir revendications; exemple III<br>---                                                                                                      | 1-16,<br>18-23              |
| X           | WO-A-89 05823 (THE UPJOHN COMPANY) 29 Juin 1989<br>voir page 5, ligne 21 - ligne 26<br>voir page 13, ligne 1 - ligne 15<br>voir page 13, ligne 25 - page 14, ligne 9;<br>revendications; exemples<br>--- | 1-6, 10,<br>18-21, 23       |
| X           | WO-A-93 14207 (CONNAUGHT LABORATORIES LIMITED) 22 Juillet 1993<br>voir revendications; figures 7,8; exemples<br>1,15-18<br>---                                                                           | 1,2,10,<br>11,18-23         |



Voir la suite du cadre C pour la fin de la liste des documents



Les documents de familles de brevets sont indiqués en annexe

\* Catégories spéciales de documents cités:

- \*A\* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- \*E\* document antérieur, mais publié à la date de dépôt international ou après cette date
- \*L\* document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- \*O\* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- \*P\* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- \*T\* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- \*X\* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- \*Y\* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- \*&\* document qui fait partie de la même famille de brevets

3

|                                                                         |                                                                  |
|-------------------------------------------------------------------------|------------------------------------------------------------------|
| Date à laquelle la recherche internationale a été effectivement achevée | Date d'expédition du présent rapport de recherche internationale |
| 28 Août 1995                                                            | 11.09.95                                                         |

Nom et adresse postale de l'administration chargée de la recherche internationale  
Office Européen des Brevets, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Fuhr, C

## RAPPORT DE RECHERCHE INTERNATIONALE

Der  
e Internationale No  
PCT/FR 95/00444

## C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

| Catégorie * | Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents                                                                                                                                                                                                                                                                         | no. des revendications visées |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| X           | PROC. NATL. ACAD. SCI. U. S. A. (1987),<br>84(18), 6572-6 CODEN: PNASA6; ISSN:<br>0027-8424,<br>1987<br>NORRBY, ERLING ET AL 'Site-directed<br>serology with synthetic peptides<br>representing the large glycoprotein G of<br>respiratory syncytial virus'<br>see peptide 12<br>voir page 6576, colonne de gauche, alinéa<br>3 - alinéa 4; figure 1; tableau 1<br>--- | 1-9                           |
| X           | JOURNAL OF GENERAL MICROBIOLOGY,<br>vol. 137, no. 8, Août 1991<br>pages 1911-1921,<br>J.G. LAWRENCE ET AL. 'Molecular and<br>evolutionary relationship among enteric<br>bacteria'<br>voir figure 1<br>---                                                                                                                                                              | 24, 27                        |
| A           | WO-A-92 04375 (THE UPJOHN COMPANY) 19 Mars<br>1992<br>voir revendications; exemples<br>---                                                                                                                                                                                                                                                                             | 1-8, 10,<br>11, 20-23         |
| A           | JOURNAL OF VIROLOGY,<br>vol. 63, no. 2, Février 1989<br>pages 925-932,<br>B. GARCIA-BARRENO ET AL. 'Marked<br>Differences in the Antigenic Structure of<br>Human Respiratory Syncytical Virus F and G<br>Glycoproteins'<br>* la Discussion page 931 *                                                                                                                  | 1-8                           |
| A           | EP-A-0 355 737 (BEHRINGERWERKE) 28 Février<br>1990<br>voir le document en entier<br>-----                                                                                                                                                                                                                                                                              |                               |

# RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale n°

PCT/FR 95/00444

## Cadre I Observations - lorsqu'il a été estimé que certaines revendications ne pouvaient pas faire l'objet d'une recherche (suite du point 1 de la première feuille)

Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:

1.  Les revendications n°<sup>s</sup> 27

se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:

**Remarque:** Bien que la revendication 27 pour autant qu'elle concerne une méthode de traitement du corps humain/animal, la recherche a été effectuée et basée sur les effets imputés au produit (à la composition)

2.  Les revendications n°<sup>s</sup>

se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:

3.  Les revendications n°<sup>s</sup>

sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).

## Cadre II Observations - lorsqu'il y a absence d'unité de l'invention (suite du point 2 de la première feuille)

L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir:

1.  Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.

2.  Comme toutes les recherches portant sur les revendications qui s'y prétaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.

3.  Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n°<sup>s</sup>:

4.  Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n°<sup>s</sup>:

Remarque quant à la réserve

- Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposant.
- Le paiement des taxes additionnelles n'était assorti d'aucune réserve.

**RAPPORT DE RECHERCHE INTERNATIONALE**

Renseignements relatifs aux membres de familles de brevets

Document brevet cité  
au rapport de recherche

Date Internationale No

PCT/FR 95/00444

| Document brevet cité<br>au rapport de recherche | Date de<br>publication | Membre(s) de la<br>famille de brevet(s)                                                                              | Date de<br>publication                                                           |  |
|-------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| WO-A-9220805                                    | 26-11-92               | AU-A- 1789992<br>CA-A- 2103021<br>EP-A- 0584167<br>JP-T- 7502640<br>OA-A- 9866                                       | 30-12-92<br>01-12-92<br>02-03-94<br>23-03-95<br>15-08-94                         |  |
| WO-A-8905823                                    | 29-06-89               | AU-A- 2785089<br>CA-A- 1320163<br>DE-A- 3878468<br>EP-A, B 0396563<br>US-A- 5194595<br>US-A- 5288630                 | 19-07-89<br>13-07-93<br>25-03-93<br>14-11-90<br>16-03-93<br>22-02-94             |  |
| WO-A-9314207                                    | 22-07-93               | AU-B- 3340293<br>CA-A- 2126863<br>EP-A- 0621898<br>FI-A- 943211<br>JP-T- 7501707<br>NO-A- 942530                     | 03-08-93<br>22-07-93<br>02-11-94<br>02-09-94<br>23-02-95<br>05-09-94             |  |
| WO-A-9204375                                    | 19-03-92               | AT-T- 107661<br>AU-A- 8298291<br>DE-D- 69102649<br>DE-T- 69102649<br>EP-A- 0545951<br>ES-T- 2055610<br>JP-T- 6500536 | 15-07-94<br>30-03-92<br>28-07-94<br>03-11-94<br>16-06-93<br>16-08-94<br>20-01-94 |  |
| EP-A-0355737                                    | 28-02-90               | DE-A- 3828666<br>AU-B- 614174<br>AU-A- 4016089<br>JP-A- 2135095                                                      | 01-03-90<br>22-08-91<br>01-03-90<br>23-05-90                                     |  |