Math 114L: Problem Set 3

Owen Jones

April 29, 2024

Question 1

```
induction on terms
Base case: s_1(x) = s_2(x) and s_1(c) = s_2(c) because s_1 is the same assignment to variable x and constant c.
Induction hypothesis: Let \tau_1, \ldots, \tau_n be terms where (s_1, \tau_i) = (s_2, \tau_i).
Induction step: Let f be a function. (s_1, f(\tau_1, \tau_2, \ldots, \tau_n)) = (f((s_1, \tau_1), (s_1, \tau_2), \ldots, (s_1, \tau_n))).
BY IH (f((s_1, \tau_1), (s_1, \tau_2), \ldots, (s_1, \tau_n))) = (f((s_2, \tau_1), (s_2, \tau_2), \ldots, (s_2, \tau_n))) = (s_1, f(\tau_1, \tau_2, \ldots, \tau_n)).
Induction on formulas
Assume for formulas \phi and \psi \phi(s_1) = \phi(s_2) and \psi(s_1) = \psi(s_2).

M \models \neg \phi(s_1) iff M \not\models \phi(s_1) \Rightarrow M \not\models \phi(s_2) iff M \models \neg \phi(s_2) by IH.
M \models \phi(s_1) \rightarrow \psi(s_1) if M \models \psi(s_1) or M \not\models \phi(s_1) thus M \models \psi(s_1) \rightarrow M \models \psi(s_2) or M \not\models \phi(s_1) rightarrow M \not\models \phi(s_2) thus M \models \psi(s_2) or M \not\models \phi(s_2) so
M \models \phi(s_2) \rightarrow \psi(s_2). M \models \forall x \phi(x, s_1) iff \phi(x, s_1) is true for every assignment x. \phi(x, s_1) = \phi(x, s_2) iff M \models \forall x \phi(x, s_2).
```

Question 2

- (1) $\varphi \equiv \neg(\forall y \exists x (x + x = y))$
- (2) $\varphi \equiv (\forall y \exists x (x + y = 0))$
- (3) $\varphi \equiv (\forall y \exists x (x + x = y))$
- (4) $\varphi \equiv (\forall y \exists x (x + x = y))$
- (5) let $\psi(z) \equiv (\exists x(x+x=z))$ (z is even). $\varphi \equiv (\exists x_1, x_2 \forall y(\psi(x_1+y) \lor \psi(x_2+y)))$

Question 3

- (1) $\varphi \equiv (\exists y (\neg (y \le x) \to (\forall z (z \le x) \lor (y \le z))))$
- (2) $\varphi \equiv (\exists y (\neg (x \leq y)))$
- (3) $\varphi \equiv (\exists y (\neg (x \leq y)))$

Question 4

- (1) $(\forall x \neg E(x, x)) \land (\forall y \forall z E(y, z) \rightarrow E(z, y))$
- (2) $M_1 = (G, E)$ where G is given by the graph shown below,

 $M_2 = (G, E)$ where G is given by the graph shown below,

 $M_3 = (G, E)$ where G is an undirected tree.

Question 5

- (a) $\{n: \forall x \forall y ((n=x \times y) \rightarrow ((x=1) \lor (y=1)))\}$
- (b) $\{(n, m) : \exists x (n = m \times x)\}$
- (c) $\varphi(m,k) \equiv \exists x (m=k \times x)$ $\psi(n) \equiv \forall x \forall y ((n=x \times y) \rightarrow ((x=1) \lor (y=1)))$ $\{n: \exists x, \exists y, \exists z (\neg ((x=y) \lor (y=z) \lor (x=z)) \land (\varphi(n,x \times y \times z)) \rightarrow (\psi(x) \land \psi(y) \land \psi(z)))\}$

Question 6

- (a) Consider the automorphism G(x) = -x. If $\mathbb{N} \subset \mathbb{Z}$ is definable, then $a \in \mathbb{N}$ iff $G(a) \in \mathbb{N}$. This is clearly impossible because the negative numbers are not natural numbers.
- (b) Consider the automorphism G(x) = x/2. If $\mathbb{N} \subset \mathbb{Q}$ is definable, then $a \in \mathbb{N}$ iff $G(a) \in \mathbb{N}$. This is clearly impossible because fractions are not natural numbers.

Question 7

- (a) Let $A = \mathbb{N}$ and let $f^M(x) = x$. $\{a\} = \{\exists x (f^M(x) = a)\}$ with $\overline{a}_0 = \{a\}$.
- (b) Let $B = \{-1, 1\}$ and let $f^N(x) = x$. g(x) = -x is an automorphism, so $b \in \{b\}$ iff $g(b) \in \{b\}$ which makes $\{1\}, \{-1\}$ not definable.

Question 8

- (a) Suppose $|A| \neq |B|$. Because |A| is finite, WLOG let |A| = n. Consider two L-sentences. $\phi_n := \forall y (y = x_1 \lor y = x_2 \lor \ldots \lor y = x_n)$ and $\psi_n := \exists x_1, \exists x_2, \ldots, \exists x_n (\neg (x_1 = x_2 \lor x_1 = x_3 \lor \ldots \lor x_1 = x_n \lor x_2 = x_3 \lor \ldots \lor x_2 = x_n \ldots \lor x_{n-1} = x_n) \land \phi_n$. If |B| > |A|, then $\forall x_1, \forall x_2, \ldots \forall x_n \exists y \neg (y = x_1 \lor y = x_2 \lor \ldots \lor y = x_n)$ and if |B| < |A| by the pigeonhole principle $\forall x_1, \forall x_2, \ldots \forall x_n (x_1 = x_2 \lor x_1 = x_3 \lor \ldots \lor x_1 = x_n \lor x_2 = x_3 \lor \ldots \lor x_2 = x_n \ldots \lor x_{n-1} = x_n)$. Hence, we have found a ψ_n s.t $M \models \psi_n$ and $N \not\models \psi_n$.
- (i) Suppose V and W are isomorphic to each other. It follows there exists some map T: V → W. Let {v₁, v₂,..., v_n} be a basis for V. For any w ∈ W, there exists v ∈ V s.t w = Tv. v = α₁v₁ + ... α_nv_n ⇒ w = Tv = T(α₁v₁ + ... α_nv_n) = α₁Tv₁ + ... + α_nTv_n It follows {Tv₁, Tv₂,..., Tv_n} forms a basis for W. Thus, W and V have the same dimension.
 Suppose V and W have the same dimension. Let {v₁, v₂,..., v_n} be a basis for V and {w₁, w₂,..., w_n} be a basis for W. We can define an isomorphism T = [w₁, w₂,..., w_n]⁻¹[v₁, v₂,..., v_n] which is a bijection from V → W. By basic linear algebra, the transformation is linear and preserves 0. Thus, V is isomorphic to W.
 - (ii) From (i) we know that V is isomorphic to W if, V and W have the same dimension. By fact 5.4, this implies $V \equiv W$.

Question 9

- (a) Let $\sigma: \mathbb{R} \to (0,1)$ be the logistic sigmoid function. The domain and codomain are infinite and the logistic sigmoid function is strictly increasing, so σ has an inverse. Moreover, $x \leq y \to \sigma(x) \leq \sigma(y)$ and vice versa. Since we have found a bijection for $\mathbb{R} \to (0,1)$ that preserves \leq , $M_1 \cong M_2$. Because $M_1 \cong M_2$, it follows $M_1 \equiv M_2$ by fact 5.4.
- (b) Consider the sentence $\varphi := \forall y \exists x \neg (x \leq y)$. $M_1 \models \varphi$ but $M_3 \not\models \varphi$ because (0,1] has a maximum. Thus, $M_1 \not\equiv M_3$.