

Ejercicios Adicionales

Ejercicios de clase

Enunciado

 Dada la definición de la siguiente cámara ortográfica, indica las transformaciones necesarias para convertirla al volumen canónico.
 Dibuja el resultado de aplicar cada transformación.

```
POSICIÓN=(1, 3, 3)
VECTOR UP=(0, 0, -1)
PUNTO DE INTERÉS=(1, 4, 3)
CERCA=3 LEJOS=10
ANCHO=5 ALTO=1
```


Resolución

Enunciado

Dada la siguiente figura, construye el modelo de punteros a lista de vértices. Para ello, dibuja primero la figura desplegada, e identifica en dicha figura los vértices y los polígonos. A continuación, construye la estructura de datos, ordenando los vértices de cada polígono en sentido antihorario, vistos desde el exterior de la figura. Ten en cuenta las siguientes posiciones: V1 (9, 0, 0), V4 (6, 3, 3) y V5 (3, 3, 3); y que el objeto es simétrico con respecto al plano X = Z.

Resolución

\/	Á	rti	CE	2
v		L	$\mathcal{C}_{\mathcal{C}}$, C

1	900
2	000
3	009
4 5	633
5	3 3 3
6	3 3 6

Polígonos

-	4	5	6	
•	1	2	5	4
3	2	3	6	5
-	1	4	6	3
Ď	1	3	2	

Enunciado

Dada la siguiente escena, calcula la intensidad luminosa en el centro del cuadrado usando el modelo de iluminación de Phong (ambiente+difusa+especular). Recuerda que el vector de reflexión perfecta se calcula mediante la fórmula: $R = 2 \cdot N \cdot (N \cdot L) - L$

Fórmula y ambiente

Fórmula:
$$I = I_a \cdot k_a + I_L \cdot (k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L}) + k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n)$$

Ambiente

$$I = I_a \cdot k_a = 0.3 * 0.4 = 0.12$$

Difusa

Fórmula: $I = I_a \cdot k_a + I_L \cdot (k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L}) + k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n)$

• Difusa $I = I_L \cdot k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L})$

- N=(0,0,1)
- P=((7,4,0)+(5,2,0))/2=(6,3,0)
- $L=(6,3,5)-(6,3,0) \rightarrow (0,0,1)$
- N*L=1>0
- ► I=0.8*0.3*1=0.24

Especular

Fórmula:
$$I = I_a \cdot k_a + I_L \cdot (k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L}) + k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n)$$

• Especular
$$I = I_L k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n$$

- V=(1,3,5)-(6,3,0)=(-5,0,5)
- V=(-0.71,0,0.71)
- R=2N(N*L)-L=(0,0,1)
- R*V=0.71>0
- $I=0.8*0.6*0.71^2=0.24$

Total

Fórmula: $I = I_a \cdot k_a + I_L \cdot (k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L}) + k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n)$

- Intensidad Final
- ► I=0.12+0.24+0.24=0.6

