

ARM vs RISC-V: Code Reuse Attacks Exploitable Surface

Code Reuse Attacks (CRAs)

- **Definition**: CRAs manipulate control flow within an application by using existing code components rather than injecting new code.
- Mechanism: Utilize short instruction sequences called "gadgets" stitched together to perform malicious operations.

Example CRA: structure of a jump-oriented programming attack

Surface on ARM and RISC-V

- RISC-V ISA is very similar in 32-bit and 64-bit, with similar instructions supported and identical general purpose registers.
- ARM ISAs are completely different between ARM32 and ARM64. Both instructions and registers differ significantly between the two architectures.

Example Autonomous Dispatcher Gadgets

ADGs are special dispatcher gadgets that link back to themselves. The standard C library on all architectures contains at least one ADG, with a similar structure:

c.lw a5,0(s0)c.addi s0,4 c.jalr a5 bltu s0, s1, -6

c.ld a5,0(s0) c.addi s0,4 c.jalr a5 bltu s0, s1, -6

RV32IMAC

ldr r3, [r5], #4 blx r3 cmp r4, r6 add.w r4 r4,#1 bne #0xf0ccc

RV64G

ldr x0, [x21,x19,1s1 #3] blr x0 cmp x19, x20add x19, x19, #1 b.ne #0x130c88

ARM32

ARM64

Conclusion

- Study of applicative libraries compiled for ARM and RISC-V
- ARM32 has a higher number of return-oriented programming gadgets, while RISC-V has a higher number of jump-oriented programming gadgets
- Security-related libraries such as libssl and libcrypto have a higher number of gadgets compared to other libraries

Perspectives

- Investigate gadget exploitability across all architectures
- Derive innovative hardware-based countermeasures from the signatures of gadgets

Number of return-oriented programming gadgets per section size in megabytes

Number of jump-oriented programming gadgets per section size in megabytes

Contacts: Téo BITON teo.biton@thalesgroup.com Olivier GILLES olivier.gilles@thalesgroup.com Sébastien PILLEMENT sebastien.pillement@univ-nantes.fr

-RV64G

-ARM32

-ARM64

